NAS Parallel Benchmark (Version 1.0) Results 11-96

Subhash Saini¹ and David H. Bailey² Report NAS-96-18, November 1996

Numerical Aerospace Simulation Program
NASA Ames Research Center
Mail Stop T 27A-1
Moffett Field, CA 94035-1000, USA

email: saini@nas.nasa.gov

Abstract

The NAS Parallel Benchmarks have been developed at NASA Ames Research Center to study the performance of parallel supercomputers. The eight benchmark problems are specified in a "pencil and paper" fashion. In other words, the complete details of the problem to be solved are given in a technical document, and except for a few restrictions, benchmarkers are free to select the language constructs and implementation techniques best suited for a particular system. These results represent the best results that have been reported to us by the vendors for the specific systems listed. In this report³, we present new NPB (Version 1.0) performance results for the following systems:

- DEC Alpha Server 8400 5/440,
- Fujitsu VPP Series (VX, VPP300, and VPP700),
- HP/Convex Exemplar SPP2000,
- IBM RS/6000 SP P2SC node (120 MHz)
- NEC SX-4/32,
- SGI/CRAY T3E,
- SGI Origin200
- SGI Origin2000

We also report High Performance Fortran (HPF) based NPB results for IBM SP2 Wide Nodes, HP/Convex Exemplar SPP2000, and SGI/CRAY T3D. These results have been submitted by Applied Parallel Research (APR) and Portland Group Inc. (PGI). We also present sustained performance per dollar for Class B LU, SP and BT benchmarks.

Subhash Saini is an employe of MRJ Inc. This work is supported by NASA Ames Research Center through contract NAS 2-14303.

^{2.} David H. Bailey is an employee of NASA Ames Research Center.

^{3.} URL: http://www.nas.nasa.gov/NAS/NPB/

1: Introduction

The Numerical Aerodynamic Simulation (NAS) Program, located at NASA Ames Research Center, is a pathfinder in high-performance computing for NASA and is dedicated to advancing the science of computational aerodynamics. One key goal of the NAS organization is to demonstrate by the year 2000 an operational computing system capable of simulating an entire aerospace vehicle system in one to several hours. It is currently projected that the solution of this Grand Challenge problem will require a system that can perform scientific computations at a sustained rate of approximately 1000 times faster than 1990 generation supercomputers. Such a computer system will most likely employ hundreds or even thousands of powerful RISC processors operating in parallel.

In order to objectively measure the performance of various highly parallel computer systems and to compare them with conventional supercomputers, NAS has developed the NAS Parallel Benchmarks (NPB 1.0) [1, 2]. Note that the NPB 1.0 are distinct from the NAS High Speed Processor (HSP) benchmarks and procurements. The HSP benchmarks are used for evaluating production supercomputers for procurements in the NAS organization, whereas the NPB 1.0 are used for studying highly parallel processor (HPP) systems in general.

2: NAS Parallel Benchmarks

The NPB 1.0 consist of a set of eight benchmark problems, each of which focuses on some important aspect of highly parallel supercomputing for aerophysics applications. Some extension of Fortran or C is required for implementations, and reasonable limits are placed on the use of assembly code and the like. Otherwise, programmers are free to utilize language constructs that maximize performance on the particular system being studied. The choice of data structures, processor allocation, and memory usage are generally left open to the discretion of the implementer.

The eight problems consist of five kernels and three simulated computational fluid dynamics (CFD) applications. The five kernels comprise relatively compact problems, each emphasizing a particular type of numerical computation. Compared with the simulated CFD applications, they can be implemented fairly readily and provide insight as to the general levels of performance that can be expected on these specific types of numerical computations.

The simulated CFD applications, on the other hand, usually require more effort to implement, but they are more representative of the types of actual data movement and computation required in state-of-the-art CFD application codes. For example, in an isolated kernel, a certain data structure may be very efficient on a certain system; and yet, this data structure may be inappropriate if incorporated into a larger application. By comparison, the simulated CFD applications require data structures and implementation techniques that are more typical of real CFD applications.

(Space does not permit a complete description of these benchmark problems. A more detailed description of these benchmarks, together with the rules and restrictions associated with them, is given in reference 2.)

There are now three standard sizes for the NAS Parallel Benchmarks: Class A, Class B and Class C size problems. The nominal benchmark sizes for Class A, Class B and Class C problems

are shown in Table 1. These tables also give the standard floating-point operation (flop) counts for Class A and Class B. We recommend that those wishing to compute performance rates in millions of floating point operations per second (Mflop/s) use these standard flop counts. Table 1 contains Mflop/s rates calculated in this manner for the current fastest implementation on one processor of CRAY Y-MP for Class A and on one processor of CRAY C90 for Class B. Note, however, that in this report, performance rates are *not* cited in Mflop/s; instead we present, the wall clock times (and, the equivalent performance ratios). We suggest that these, not Mflop/s, be examined when comparing different systems and implementations.

With the exception of the IS benchmark, these standard flop counts were determined by using the hardware performance monitor on the CRAY Y-MP or CRAY C90, and we believe that they are close to the minimal counts required for these problems. In the case of the IS benchmark, which does not involve floating-point operations, we selected a value approximately equal to the number of integer operations required, in order to permit the computation of performance rates analogous to Mflop/s rates. We reserve the right to change these standard flop counts in the future, if necessary.

The NAS organization reserves the right to verify any NPB results that are submitted to us. We may, for example, attempt to run the submitter's code on another system of the same configuration as that used by the submitter. In those instances where we are unable to reproduce the vendor's supplied results (allowing a 5% tolerance), our policy is to alert the submitter of the discrepancy and allow submitter to resolve the discrepancy in the next release of this report. If the discrepancy is not resolved to our satisfaction, then our own observed results and not the submitter's results will be reported.

3: NAS Parallel Benchmark Results

In the following section, each of the eight benchmarks will be briefly described, and then the best performance results we have received to date for each computer system will be given in Tables 2 through 10 and Tables 14-18. These tables include run times and performance ratios. The performance ratios compare individual timings with the current best time for that benchmark achieved on one processor of CRAY Y-MP for Class A and on one processor of CRAY C90 for Class B. The run times in each case are elapsed time measured in accordance with the specifications of NPB rules. This report includes a number of new results including previously unpublished - DEC Alpha Server 8400 5/440, Fujitsu VPP Series (VX, VPP300, VPP700), HP/Convex Exemplar SPP2000, IBM RS/6000 SP P2SC node (120 MHz), NEC SX-4/32, SGI/CRAY T3E, SGI Origin200 and SGI Origin2000

3.1: Kernels

The results for five kernels (EP, MG, CG, FT, and IS) are given below in the following section:

3.1.1: The Embarrassingly Parallel (EP) Benchmark

The first of the five kernel benchmarks is an *embarrassingly parallel* problem. In this benchmark, two-dimensional statistics are accumulated from a large number of Gaussian pseudorandom numbers, which are generated according to a particular scheme that is well-suited for parallel computation. This problem is typical of many *Monte Carlo* applications. Since it requires almost no communication, in some sense this benchmark provides an estimate of the upper achievable limits for floating-point performance on a particular system. Results for EP benchmark

are given in Table 2.

3.1.2: Multigrid (MG) Benchmark

The second kernel benchmark is a simplified multigrid kernel, which solves a 3-D Poisson PDE. This problem is simplified in the sense that it has constant rather than variable coefficients as in a more realistic application. This code is a good test of both short and long distance highly structured communication. The Class B problem uses the same size grid as of Class A but a greater number of inner loop iterations. Results for this benchmark are shown in Table 3.

3.1.3: Conjugate Gradient (CG) Benchmark

In this benchmark, a conjugate gradient method is used to compute an approximation to the smallest eigenvalue of a large, sparse, symmetric positive definite matrix. This kernel is typical of unstructured grid computations in that it tests irregular long-distance communication and employs sparse matrix-vector multiplication. Results are shown in Table 4.

3.1.4: 3-D FFT PDE (FT) Benchmark

In this benchmark a 3-D partial differential equation is solved using FFTs. This kernel performs the essence of many *spectral methods*. It is a good test of long-distance communication performance. The rules of the NPB specify that assembly-coded, library routines may be used to perform matrix multiplication and one-dimensional, two-dimensional, or three-dimensional FFTs. Thus this benchmark is somewhat unique in that computational library routines may be legally employed. Results are shown in Table 5.

3.1.5: Integer Sort (IS) Benchmark

This benchmark tests a sorting operation that is important in *particle method* codes. This type of application is similar to particle-in-cell applications of physics, wherein particles are assigned to cells and may drift out. The sorting operation is used to reassign particles to the appropriate cells. This benchmark tests both integer computation speed and communication performance. This problem is unique in that floating point arithmetic is not involved. Significant data communication, however, is required. Results are shown in Table 6.

3.2: Simulated CFD Application Benchmarks

The three simulated CFD application benchmarks are intended to accurately represent the principal computational and data movement requirements of modern CFD applications.

3.2.1: LU Simulated CFD Application (LU) Benchmark

The first of these is the so-called the lower-upper diagonal (LU) benchmark. It does not perform a LU factorization but instead employs a symmetric successive over-relaxation (SSOR) numerical scheme to solve a regular-sparse, block 5x5 lower and upper triangular system. This problem represents the computations associated with a newer class of implicit CFD algorithms, typified at NASA Ames by the code INS3D-LU. This problem exhibits a somewhat limited amount of parallelism compared to the next two benchmarks. A complete solution of the LU benchmark requires 250 iterations. Results are given in Table 7.

3.2.2: SP Simulated CFD Application (SP) Benchmark

The second simulated CFD application is called the scalar pentadiagonal (SP) benchmark. In this benchmark, multiple independent systems of nondiagonally dominant, scalar pentadiagonal equations are solved. A complete solution of the SP benchmark requires 400 iteration. Results are given in Table 8.

3.2.3: BT Simulated CFD Application (BT) Benchmark

The third simulated CFD application is called the block tridiagonal (BT) benchmark. In this benchmark, multiple independent systems of non-diagonally dominant, block tridiagonal equations with a 5x5 block size are solved.

SP and BT are representative of computations associated with the implicit operators of CFD codes such as *ARC3D* at NASA Ames. SP and BT are similar in many respects, but there is a fundamental difference with respect to the communication to computation ratio. Timings are cited as complete run times, in seconds, as with the other benchmarks. For the BT benchmark, 200 iterations are required. Results of BT benchmark are given in Table 9.

3.3 NPB 1.0 Class C Results

In Table 10 are given the Class C NPB 1.0 results for EP, MG, CG, FT, LU, SP and BT benchmarks on CRAY T3E.

4: Sustained Performance Per Dollar

One aspect of the relative performance of these systems has not been addressed so far, namely the differences in price between these systems. One should not be too surprised that the CRAY C90 system, for example, exhibits superior performance rates on these benchmarks, since its current list price is much greater than that of the other systems tested.

One way to compensate for these price differences is to compute sustained performance per million dollars, *i.e.* the performance ratio figures shown in Tables 2 through 9 divided by the list price in millions. Some figures of this type are shown in Tables 11-13 for Class B LU, SP, and BT benchmarks, respectively. The table includes the list price of the minimal system (in terms of memory per node and number of processors) required to run the full Class B size NPB as implemented by the vendor. These prices were provided by the vendors and include any associated software costs, i.e. operating system, compilers, scientific libraries as required, *etc.* but do not include maintenance. Note that some vendors' standard configurations may include substantially more hardware than required for the benchmark.

5 High Performance Fortran Based NPB

High Performance Fortran (HPF), the high-level language for parallel Fortran programming, is based on Fortran 90. HPF was defined by an informal standards committee known as the High Performance Fortran Forum (HPFF) in 1993, and modeled on TMC's CM Fortran language. Several HPF features have since been incorporated into the draft ANSI/ISO Fortran 95, the next formal revision of the Fortran standard.

HPF allows users to write a single parallel program that can execute on a serial machine, a shared-memory parallel machine, or a distributed-memory parallel machine. HPF eliminates the

complex, error-prone task of explicitly specifying how, where, and when to pass messages between processors on distributed-memory machines, or when to synchronize processors on shared-memory machines. HPF is designed in a way that allows the programmer to code an application at a high level, and then selectively optimize portions of the code by dropping into message-passing or calling tuned library routines as "extrinsics".

Compilers supporting High Performance Fortran features first appeared in late 1994 and early 1995 from Applied Parallel Research (APR) Digital Equipment Corporation, and The Portland Group (PGI). IBM introduced an HPF compiler for the IBM RS/6000 SP in April of 1996. Over the past year, these implementations have shown steady improvement in terms of both features and performance. NAS is working toward a standard set of HPF NPBs which can be used as a measure of both HPF compilers and hardware systems. In advance of that release we have chosen to publish here results achieved using versions of the HPF NPBs developed outside of NAS and submitted by APR and PGI. These results can be compared to the MPI results in NPB 2.2 [4] and the other NPB 1.0 results supplied here to provide perspective on performance currently obtainable using HPF versus MPI or versus hand-tuned implementations such as those supplied by the hardware vendors.

For more details on HPF, see reference 3 and references therein. HPF NPB results appear in Tables 14-18.

References

- [1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, "The NAS Parallel Benchmarks," *International Journal of Supercomputer Applications*, Vol 5, No.3 (Fall1991), pp. 63-73.
- [2] D. H. Bailey, J. Barton, T. Lasinski, and H. D. Simon, eds., "The NAS Parallel Benchmarks," NASA Technical Memorandum 103863, NASA Ames Research Center, Moffett Field, CA 94035-1000, July 1993.
- [3] S. Saini, "NAS Experiences of Porting CM Fortran Codes to HPF on IBM SP2 and SGI Power Challenge", pp. 873-880, in *The Proceedings of IEEE 10th International Parallel Processing Symposium (IPPS)*, Honolulu, Hawaii, April 15-19, 1996.
- [4] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice Yarrow, "The NAS Parallel Benchmarks 2.0", Report NAS-95-020, December, 1995.

Table 1: NAS Parallel Benchmarks Problem Size.

			Class A			Class B		Class C
Benchmark Name	Abb.	Nominal Size	Operation Count (x 10 ⁹)	Mflop/s CRAY Y-MP/1	Nominal Size	Operation Count (x10 ⁹)	Mflop/s CRAY C90/1	Nominal Size
Embarrassingly Parallel	EP	2 ²⁸	26.68	211	2 ³⁰	100.9	689	2 ³²
Multigrid	MG	256 ³	3.905	176	256 ³	18.81	557	512 ³
Conjugate Gradient	CG	14x10 ³	1.508	127	75x10 ³	54.89	447	1.5 x 10 ⁵
3-D FFT PDE	FT	256 ² x128	5.631	196	512x256 ²	71.37	645	512 ³
Integer Sort	IS	$2^{23}x2^{19}$	0.7812	68	$2^{25}x2^{21}$	3.150	244	2 ²⁷
LU Simulated CFD Appl.	LU	64 ³	64.57	194	102 ³	319.6	711	162 ³
SP Simulated CFD Appl.	SP	64 ³	102.0	216	102 ³	447.1	648	162 ³
BT Simulated CFD Appl.	BT	64 ³	181.3	229	102 ³	721.5	705	162 ³

Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

			Clas	ss A	Class	s B
Computer System	Date Received	Number Processor	Time in seconds	Ratio to CRAY Y-MP/1	Time in seconds	Ratio to CRAY C90/1
BBN TC2000	Dec 91	64	284.0	0.44	NA	NA
Convex Exemplar SPP1000	Mar 95	1 8 16	376.8 48.1 24.3	0.33 2.62 5.19	NA 191.0 96.0	NA 0.77 1.53
		32 64	11.8 6.1	10.69 20.68	48.0 24.5	3.05 5.98
HP/Convex Exemplar SPP2000	Nov 96	1 4 8 16	160.9 41.2 20.7 10.5	0.78 3.06 6.10 12.02	NA NA NA NA	NA NA NA
CRAY C90	Feb 95	1 2 4 8 16	36.62 18.42 9.15 4.61 2.36	3.45 6.85 13.79 27.37 53.46	146.41 73.66 36.78 18.37 9.35	1.0 1.99 3.98 7.97 15.66
CRAY J916	Feb 95	1 2 4 8 16	169.44 86.70 43.09 21.54 10.78	0.74 1.46 2.93 5.86 11.70	675.71 340.13 170.15 85.49 43.16	0.22 0.43 0.86 1.71 3.39
CRAY T3D	Feb 95	16 32 64 128 256 512 1024	22.74 11.37 5.68 2.87 1.44 0.72 0.55	5.55 11.10 22.21 43.96 87.62 175.24 229.40	91.83 45.92 22.95 11.47 5.74 2.87 2.19	1.59 3.19 6.38 12.76 25.51 51.01 66.85
CRAY T3E	Nov 96	2 4 8 16 32 64 128 256	56.2 28.1 14.1 7.0 3.5 1.8 0.9 0.4	2.25 4.49 8.95 18.02 36.05 70.09 140.19 315.43	224.5 112.2 56.1 28.1 14.0 7.0 3.5 1.8	0.65 1.31 2.61 5.21 10.46 20.92 41.83 81.34

Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

CRAY T916	July 95	1	18.56	6.80	76.13	1.92
		2	9.54	13.23	38.11	3.84
		4	4.77	26.45	19.12	7.66
		8	2.42	52.14	9.65	15.17
CRAY Y-MP	Aug 92	1	126.17	1.0	NA	NA
		8	15.87	7.95	NA	NA
DEC Alpha Server	Oct 95	1	155.6	0.81	622.22	0.24
8400 5/300		4	77.97	1.61	311.9	0.47
(300 MHz)		8	39.1	3.23	156.69	0.93
		16	19.71	6.40	78.43	1.87
DEC Alpha Server	Nov 96	1	94.6328	1.33	378.3750	0.39
8400 5/440		2	47.3750	2.66	189.2344	0.77
(437 MHz)		4	23.8125	5.30	94.8594	1.54
		8	12.1016	10.43	47.6172	3.07
		12	8.4609	14.91	33.1172	4.42
Fujitsu VPP500	Aug 94	1	44.25	2.85	176.64	0.83
		2	22.3411	5.65	88.7866	1.65
		4	11.24	11.23	44.52	3.29
		8	5.67	22.26	22.36	6.5
		16	2.87	43.96	11.26	13.00
		32	1.46	86.42	5.68	25.78
		64	0.75	168.23	2.88	50.84
Fujitsu VX	Nov 96	1	30.3312	4.16	120.9485	1.21
		2	15.3105	8.24	57.6907	2.54
		4	7.3720	17.11	30.4367	4.81
Fujitsu VPP300	Nov 96	1	30.3312	4.16	120.9485	1.21
		2	15.3105	8.24	57.6907	2.54
		4	7.3720	17.11	30.4367	4.81
		8	3.9217	32.17	14.6048	10.02
		16	1.9962	63.20	7.7563	18.88
Fujitsu VPP700	Nov 96	1	30.3312	4.16	120.9485	1.21
		2	15.3105	8.24	57.6907	2.54
		4	7.3720	17.11	30.4367	4.81
		6	3.9217	32.17	14.6048	10.02
		16	1.9962	63.20	7.7563	18.88
		32	1.0265	122.91	3.7444	39.10
IBM RS/6000 SP	Mar 95	8	19.91	6.34	79.75	1.84
Wide-node1 (67 MHz)		16	9.95	12.69	39.89	3.67
		32	4.98	25.34	19.9	7.36
		64	2.49	50.67	9.95	14.71
		128	1.25	100.94	4.99	29.34
	•	•	•			

Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

IBM RS/6000 SP	Nov 96	8	NA	NA	39.84	3.68
P2SC node (120 MHz)		16	NA	NA	20.04	7.31
		32	NA	NA	10.02	14.61
		64	NA	NA	5.02	29.17
IBM RS/6000 SP	Mar 95	8	20.82	6.06	82.94	1.77
Thin-node2 (67 MHz)		16	10.42	12.11	41.47	3.53
		32	5.23	24.12	20.75	7.06
		64	2.62	48.16	10.37	14.12
		128	1.31	96.31	5.19	28.21
Intel iPSC/860	May 92	32	102.7	1.23	NA	NA
		64	51.4	2.46	NA	NA
		128	25.7	4.91	NA	NA
Intel Paragon	Jan 95	64	15.29	8.25	61.04	2.40
OSF R 1.2		128	7.67	16.45	30.57	4.79
		256	3.87	32.60	15.37	9.53
		512	2.23	56.58	8.93	16.40
		1024	1.15	109.71	4.45	32.90
Intel Paragon	Jan 95	64	7.80	16.18	31.15	4.70
(SunMos turbo)		128	3.93	32.10	15.60	9.39
		256	2.00	63.09	7.82	18.62
		512	1.12	112.65	3.98	36.79
		1024	.59	213.85	2.05	71.42
Intel Paragon MP	Jan 95	64	8.02	15.73	31.42	4.66
OSF R1.3		128	4.17	30.26	15.88	9.22
		256	2.26	55.83	8.11	18.05
		512	1.28	95.57	4.23	34.61
Intel Paragon MP	Nov 95	64	5.75	21.94	22.70	6.45
(SunMos turbo)		128	2.94	42.92	11.40	12.84
		256	1.54	81.93	5.78	25.34
		512	0.87	145.02	2.98	49.13
Kendall Square KSR1	Oct 93	16	101.9	1.23	NA	NA
		32	51.4	2.45	NA	NA
		64	26.0	4.85	NA	NA
		128	12.8	9.86	NA	NA
Kendall Square KSR2	Feb 94	32	24.8	5.09	NA	NA
	May 94	64	13.0	9.71	46.6	3.14
Kyoto/Matsushita ADENART	Feb 94	256	32.9	3.83	NA	NA
						•

Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

MasPar MP-1	Aug 92	4K	248.0	0.51	NA	NA
		16K	69.3	1.82	NA	NA
MasPar MP-2	Nov 92	16K	22.4	5.63	NA	NA
Meiko CS-1	Aug 92	16	116.8	1.08	NA	NA
Meiko CS-2	Oct 94	16	39.39	3.20	152.81	0.96
		32	20.45	6.16	77.20	1.90
		64	11.00	11.46	39.48	3.71
		96	7.84	16.07	26.84	5.45
		128	6.29	20.06	21.16	6.92
nCUBE-2S	Mar 94	64	83.8	1.51	336.3	0.44
		128	41.93	3.01	168.2	0.87
		256	20.97	6.02	84.1	1.74
		512	10.50	12.02	42.1	3.48
		1024	5.25	24.03	21.0	6.97
NEC SX-3	Oct 94	1	21.27	5.93	NA	NA
NEC SX-4/32	Nov 96	1	NA	NA	89.56	1.63
		2	NA	NA	44.79	3.27
		4	NA	NA	22.417	6.53
		8	NA	NA	11.224	13.04
		16	NA	NA	5.658	25.87
		32	NA	NA	2.944	49.73
Silicon Graphics	Oct 94	1	242.95	0.52	973.62	0.15
Power Challenge XL		4	61.44	2.05	245.74	0.60
(75 MHz)		8	30.77	4.10	122.98	1.19
		16	15.48	8.15	61.79	2.37
SGI	May 95	1	169.10	0.75	676.78	0.22
Power Challenge XL		2	87.46	1.44	352.31	0.42
(90 MHz)		4	43.87	2.88	176.52	0.83
		8	21.98	5.74	87.80	1.67
		16	11.05	11.42	44.22	3.31
SGI Origin200	Nov 96	1	110.47	1.14	442.77	0.33
(180 MHz)		2	56.68	2.23	224.93	0.65
		4	29.43	4.29	114.87	1.27

Table 2: Results of the Embarrassingly Parallel (EP) benchmark.

SGI Origin2000	Nov 96	1	101.93	1.24	408.25	0.36
(195 MHz)		2	51.70	2.44	207.22	0.71
		4	25.83	4.88	103.44	1.42
		8	13.00	9.71	52.06	2.81
		16	6.68	18.89	26.71	5.48
		31	NA	NA	NA	NA
		32	3.55	35.54	14.17	10.33
Thinking Machines	Oct 91	8K	126.6	1.00	NA	NA
CM-2		16K	63.9	1.97	NA	NA
		32K	33.7	3.74	NA	NA
		64K	18.8	6.71	NA	NA
Thinking Machines	Oct 91	8K	76.9	1.64	NA	NA
CM-200		16K	39.2	3.22	NA	NA
		32K	20.7	6.10	NA	NA
		64K	10.9	11.58	NA	NA
Thinking Machines	Nov 92	16	42.4	2.98	NA	NA
CM-5		32	21.5	5.87	NA	NA
		64	10.9	11.58	NA	NA
		128	5.4	23.36	NA	NA
		256	2.7	46.73	NA	NA
		512	1.4	90.12	NA	NA
Thinking Machines	Sep 95	16	27.2	4.64	108.5	1.35
CM-5E		32	13.6	9.28	54.3	2.70
Thinking Machines	Sept 95	64	6.9	18.29	27.1	5.40
CM-500		128	3.6	35.04	13.7	10.69
		256	2.0	63.09	7.0	20.92
	•	•			•	

Table 3: Results of the Multigrid (MG) benchmark.

		Number	Clas	ss A	Clas	s B
Computer System	Date Received	Processor	Time in seconds	Ratio to CRAY Y-MP/1	Time in seconds	Ratio to CRAY C90/1
Convex Exemplar	Mar 95	1	208.0	0.11	NA	NA
SPP1000		8	29.9	0.74	150.4	0.22
		16	17.3	1.28	85.1	0.40
		32	11.0	2.02	52.7	0.64
		64	NA	NA	39.6	0.85
HP/Convex Exemplar	Nov. 96	1	28.1	0.79	NA	NA
SPP2000		4	8.0	2.78	NA	NA
		8	5.3	4.19	NA	NA
		16	4.3	5.17	NA	NA
CRAY C90	Feb 95	1	7.27	3.06	33.78	1.00
		2	3.71	5.99	17.24	1.96
		4	1.92	11.58	8.89	3.80
		8	1.10	20.20	4.59	7.36
		16	0.71	31.30	3.43	9.85
CRAY EL	Aug 92	1	89.19	0.25	NA	NA
		4	27.94	0.80	NA	NA
		8	22.30	0.95	NA	NA
CRAY J916	Feb 95	1	39.08	0.57	184.88	0.18
		2	20.52	1.09	94.71	0.36
		4	10.75	2.07	48.69	0.69
		8	5.88	3.78	26.60	1.27
		16	3.82	2.06	16.12	2.10
CRAY T3D	Feb 95	16	13.78	1.61	66.58	0.51
		32	6.40	3.47	30.10	1.11
		64	2.61	8.51	12.56	2.69
		128	1.36	16.34	6.57	5.14
		256	0.74	30.03	3.37	10.02
		512	0.39	56.97	1.74	19.41
		1024	0.25	88.88	1.15	29.38
CRAY T3E	Nov 96	2	NA	NA 1.00	NA	NA
		4	11.2	1.98	52.7	0.64
		8	5.6	3.97	26.4	1.28
		16	2.8	7.94	13.4	2.52
		32 64	1.5 0.8	14.81 27.78	7.0 3.8	4.83 8.89
		128	0.8	55.55	2.0	8.89 16.89
		256	0.4	111.1	1.1	30.71
		250	0.2	111.1	1.1	50.71

Table 3: Results of the Multigrid (MG) benchmark.

CRAY T916	July 95	1	4.43	5.02	20.30	1.66
		2	2.28	9.75	10.50	3.22
		4	1.27	17.50	5.54	6.10
		8	0.99	22.44	4.06	8.32
CRAY Y-MP	Aug 92	1	22.22	1.00	NA	NA
		8	2.96	7.51	NA	NA
Fujitsu VPP500	Mar 95	4	1.44	15.43	6.81	4.96
		8	0.75	29.63	3.59	9.41
		16	0.42	52.90	2.01	16.81
		32	0.26	85.46	1.26	26.81
Fujitsu VX	Nov 96	4	1.38	16.10	6.58	5.13
Fujitsu VPP300	Nov 96	4	1.38	6.10	6.58	5.13
		8	0.75	29.63	3.59	9.41
		16	0.41	54.20	1.95	17.32
Fujitsu VPP700	Nov 96	4	1.38	6.10	6.58	5.13
		8	0.75	29.63	3.59	9.41
		16	0.41	54.20	1.95	17.32
		32	0.25	88.88	1.30	25.98
IBM SP-1	Mar 94	8	17.50	1.27	82.03	0.41
		16	9.49	2.34	44.57	0.76
		32	5.10	4.36	24.37	1.39
		64	2.89	7.69	13.86	2.44
IBM RS/6000 SP	Oct 94	8	6.04	3.68	27.92	1.21
Wide-node1 (67 MHz)		16	3.17	7.01	14.58	2.32
		32	1.69	13.15	7.72	4.38
		64	0.95	23.39	4.36	7.75
		128	0.53	41.92	2.46	13.73
IBM RS/6000 SP	Nov 96	8	NA	NA	17.00	1.99
P2SC node (120 MHz)		16	NA	NA	9.02	3.75
		32	NA	NA	4.91	6.88
		64	NA	NA	2.91	11.61
IBM RS/6000 SP	Feb 95	8	7.18	3.09	32.73	1.04
Thin-node2 (67 MHz)		16	3.74	5.94	17.13	1.97
		32	1.99	11.17	9.14	3.96
		64	1.12	19.84	5.20	6.50
		128	0.63	35.27	2.95	11.45
Intel iPSC/860	Aug 92	128	8.6	2.58	NA	NA

Table 3: Results of the Multigrid (MG) benchmark.

	I	1				
Intel Paragon MP	Jan 95	64	6.1	3.64	28.7	1.18
(OSF1.3)		128	3.53	6.29	15.9	2.12
		256	2.48	8.96	10.4	3.24
Intel Paragon	Jan 95	64	7.72	2.88	36.9	0.92
(SunMos)		128	4.05	5.49	19.5	1.73
		256	2.35	9.46	11.4	2.96
		512	1.75	12.70	8.51	3.97
Intel Paragon	Nov 95	64	5.85	3.8	27.9	1.21
(SunMos Turbo)		128	3.17	7.01	15.2	2.22
		256	1.87	11.88	9.05	3.73
		512	1.46	15.22	7.01	4.82
Intel Paragon MP	Jan 95	64	4.83	4.60	23.3	1.45
SunMos Turbo		128	2.78	7.99	13.4	2.52
		256	1.67	13.31	8.12	4.16
		512	1.37	16.22	6.72	5.03
Kendall Square KSR1	Feb 94	32	19.7	1.13	NA	NA
		64	10.3	2.16	NA	NA
		128	5.6	3.97	NA	NA
Kendall Square KSR2	Feb 94	32	10.3	2.20	NA	NA
	May 94	64	5.7	3.90	26.1	1.29
MasPar MP-1	Aug 92	16K	12.0	1.86	NA	NA
MasPar MP-2	Nov 92	16K	4.36	5.09	NA	NA
Meiko CS-1	Aug 92	16	42.8	0.52	NA	NA
Meiko CS-2	Oct 94	16	7.60	2.93	35.46	0.95
		64	2.35	9.83	10.76	3.14
		128	1.43	15.54	6.55	5.16
NEC SX-3	Oct 94	1	2.80	7.94	13.16	2.57
NEC SX-4/32	Nov 96	1	NA	NA	19.28	1.75
		2	NA	NA	9.76	3.46
		4	NA	NA	5.00	6.76
		8	NA	NA	2.63	12.84
		16	NA	NA	1.46	23.14
		32	NA	NA	0.95	35.56
		32	NA	NA	0.95	35.56

Table 3: Results of the Multigrid (MG) benchmark.

	1					
nCUBE-2S	Mar 94	64	37.6	0.59	NA	NA
		128	19.2	1.16	NA	NA
		512	5.3	4.19	NA	NA
		1024	2.8	7.94	NA	NA
SGI	Oct 95	1	37.97	0.59	176.22	0.19
Power Challenge	000	2	20.03	1.11	93.30	0.36
90 MHz		4	10.63	2.09	49.45	0.68
		8	6.55	3.39	30.43	1.11
		16	5.71	3.89	26.30	1.11
		10	3.71	3.09	20.30	1.20
SGI Origin200	Nov 96	1	34.69	0.64	245.09	0.14
(180 MHz)		2	21.77	1.02	151.04	0.22
		4	12.89	1.72	77.05	0.44
SGI Origin2000	Nov 96	1	30.14	0.74	194.88	0.17
(195 MHz)		2	17.75	1.25	113.79	0.30
		4	10.67	2.08	56.19	0.60
		8	6.00	3.70	28.41	1.19
		16	3.34	6.65	15.03	2.25
		31	NA	NA	NA	NA
		32	2.12	10.48	8.61	3.92
Thinking Machines	Dec 91	16K	45.8	0.49	NA	NA
CM-2	20071	32K	26.0	0.85	NA	NA
		64K	14.1	1.58	NA	NA
		OTK	17.1	1.50	1771	1171
Thinking Machines	Dec 91	16K	30.2	0.74	NA	NA
CM-200		32K	17.2	1.29	NA	NA
Thinking Machines	Aug 93	32	19.5	1.14	NA	NA
CM-5		64	10.9	2.03	NA	NA
		128	6.1	3.64	NA	NA
Thinking Machines	Sep 95	16	7.7	2.89	36.1	0.94
CM-5E	Sep 75	32	3.8	5.85	18.7	1.81
Thinking Machines	Sep 95	64	2.2	10.1	10.6	3.19
CM-500	257 75	128	1.41	15.76	6.2	5.49
		256	0.91	24.42	3.9	8.67
	1					

Table 4: Results of the Conjugate Gradient (CG) benchmark.

		.Number	Clas	ss A	Class	s B
Computer System	Date Received	Processor	Time in seconds	Ratio to CRAY Y-MP/1	Time in seconds	Ratio to CRAY C90/1
BBN TC2000	Dec 91	40	51.4	0.23	NA	NA
Convex Exemplar SPP1000	Mar 95	1 8 16 32 64	202.9 22.2 8.94 4.30 NA	0.06 0.54 1.33 2.77 NA	NA NA 837.0 485.4 292.1	NA NA 0.15 0.25 0.42
HP/Convex Exemplar SPP2000	Nov 96	1 4 8 16	37.7 9.8 5.0 2.7	0.32 1.22 2.38 4.41	NA NA NA NA	NA NA NA NA
CRAY C90	Feb 95	1 2 4 8 16	3.43 1.79 0.95 0.53 0.34	3.48 6.66 12.55 22.49 35.06	122.90 63.11 33.25 18.11 10.61	1.00 1.95 3.70 6.79 11.58
CRAY EL	Sep 93	1 4 8	45.24 14.29 10.14	0.26 0.83 1.18	NA NA NA	NA NA NA
CRAY J916	July 95	1 2 4 8 16	15.93 8.42 4.42 2.61 1.68	0.75 1.42 2.70 4.57 7.10	532.03 293.24 150.92 80.67 42.86	0.23 0.42 0.81 1.52 2.87
CRAY T3D	Feb 95	16 32 64 128 256 512 1024	14.37 7.44 3.93 2.11 1.21 0.72 0.58	0.83 1.60 3.03 5.65 9.85 16.56 20.55	570.11 291.30 158.81 82.07 47.15 27.34 16.58	0.22 0.42 0.77 1.50 2.61 4.50 7.41

Table 4: Results of the Conjugate Gradient (CG) benchmark.

CRAY T3E	Nov 96	1	NA	NA	802.3	0.15
		2	NA	NA	404.5	0.30
		8	6.5	1.83	205.6	0.60
		16	2.9	4.11	107.1	1.15
		32	1.6	7.45	59.3	2.07
		64	0.9	13.24	33.8	3.64
		128	0.6	19.87	22.9	5.37
		256	0.4	29.80	22.2	5.54
CRAY T916	July 95	1	1.95	6.11	73.98	1.66
		4	1.10	10.84	37.79	3.25
		8	0.58	20.55	19.65	6.25
		16	0.38	31.37	11.43	10.75
CRAY Y-MP	Aug 92	1	11.92	1.00	NA	NA
		8	2.38	5.01	NA	NA
Fujitsu VPP500	Aug 94	1	5.68	2.10	NA	NA
		2	3.06	3.90	104.51	1.18
		4	1.72	6.93	55.40	2.22
		8	1.04	11.46	31.80	3.86
		15	NA	NA	20.85	5.89
		16	0.80	14.90	NA	NA
		30	NA	NA	15.21	8.08
Fujitsu VX	Nov 96	1	5.8703	2.03	NA	NA
		2	3.1802	3.75	104.1408	1.18
		4	1.8185	6.55	57.8277	2.13
Fujitsu VPP300	Nov 96	1	5.8703	2.03	NA	NA
		2	3.1802	3.75	104.1408	1.18
		4	1.8185	6.55	57.8277	2.13
		8	1.0656	11.19	32.0605	3.83
		15	NA	NA	19.7696	6.22
		16	0.7514	15.86	NA	NA
Fujitsu VPP700	Nov 96	1	5.8703	2.03	NA	NA
		2	3.1802	3.75	104.1408	1.18
		4	1.8185	6.55	57.8277	2.13
		8	1.0656	11.19	32.0605	3.83
		15	NA	NA	19.7696	6.22
		16	0.7514	15.8	NA	NA
		30	NA	NA	13.4585	9.13
		35	0.6726	17.72	NA	NA

Table 4: Results of the Conjugate Gradient (CG) benchmark.

IBM SP-1	Feb 94	8	21.37	0.56	NA	NA
		16	12.82	0.93	638.2	0.19
		32	7.98	1.49	362.9	0.34
		64	4.72	2.53	193.4	0.64
IBM RS/6000 SP	Mar 94	8	4.91	2.43	156.21	0.79
Wide-node1 (67 MHz)		16	3.09	3.86	88.4	1.39
		32	2.09	5.70	52.53	2.34
		64	1.6	7.45	33.79	3.64
		128	1.38	8.64	25.44	4.83
IBM RS/6000 SP	Nov 96	8	NA	NA	115.88	1.06
P2SC node (120 MHz)		16	NA	NA	62.21	1.98
		32	NA	NA	36.22	3.39
		64	NA	NA	22.71	5.41
IBM RS/6000 SP	Mar 95	8	5.60	2.13	234.46	0.52
Thin-node2 (67 MHz)		16	3.48	3.43	120.23	1.02
		32	2.34	5.09	67.16	1.83
		64	1.72	6.93	38.52	3.19
		128	1.48	8.05	28.50	4.31
Intel iPSC/860	Sep 93	128	7.0	1.70	NA	NA
Intel Paragon	Mar 94	64	4.10	2.91	NA	NA
(OSF1.2)		128	3.30	3.61	132.5	0.93
		256	2.83	4.21	70.0	1.76
		512	NA	NA	47.6	2.58
Intel Paragon	Nov 95	64	3.59	3.32	NA	NA
(SunMos)		128	2.76	4.31	125.4	0.98
		256	2.44	4.89	63.6	1.93
		512	NA	NA	40.5	3.03
Kendall Square KSR1	Feb 94	32	19.0	0.63	NA	NA
		64	13.4	0.89	NA	NA
Kendall Square KSR2	Feb 94	32	9.8	1.22	NA	NA
_		64	6.1	1.95	182.0	0.67
MasPar MP-1	Aug 92	4K	64.5	0.18	NA	NA
	-	16K	14.6	0.82	NA	NA
MasPar MP-2	Nov 92	16K	11.0	1.08	NA	NA
Meiko CS-1	Aug 92	16	67.5	0.18	NA	NA
Meiko CS-2	Oct 94	16	7.18	1.66	248.30	0.49
		32	5.60	2.13	156.50	0.79

Table 4: Results of the Conjugate Gradient (CG) benchmark.

nCUBE-2S	Mar 94	64	29.6	0.40	NA	NA
		128	16.9	0.7 1	NA	NA
		256	9.6	1.24	NA	NA
		512	6.2	1.92	NA	NA
		1024	4.1	2.91	NA	NA
NEC SX-4/32	Nov 96	1	NA	NA	81.77	1.50
		2	NA	NA	45.12	2.72
		4	NA	NA	26.31	4.67
Silicon Graphics	Oct 94	1	39.0	0.31	NA	NA
Power Challenge XL		2	16.9	0.71	NA	NA
(75 MHz)		4	7.2	1.66	NA	NA
		8	4.5	2.65	NA	NA
		16	3.5	3.41	NA	NA
SGI	May 95	1	35.14	0.34	NA	NA
Power Challenge		2	19.58	0.61	NA	NA
(90 MHz)	0.405	4	8.79	1.35	NA	NA
	Oct 95	8	4.03	2.96	NA	NA
		16	2.54	4.69	NA	NA
SGI Origin200	Nov 96	1	31.38	0.38	1731.18	0.07
(180 MHz)		2	18.67	0.64	1002.32	0.12
		4	9.76	1,22	624.62	0.20
SGI Origin2000	Nov 96	1	26.89	0.44	1538.71	0.08
(195 MHz)		2	14.37	0.83	851.82	0.14
		4	6.23	1.91	490.76	0.25
		8	3.02	3.95	283.19	0.43
		16	2.04	5.84	156.57	0.78
		31	NA	NA	79.65	1.54
Thinking Machines	Mar 92	8K	25.6	0.47	NA	NA
CM-2		16K	14.1	0.85	NA	NA
		32K	8.8	1.35	NA	NA
Thinking Machines	Aug 93	32	20.7	0.58	NA	NA
CM-5		64	10.6	1.12	NA	NA
		128	6.2	1.92	NA	NA
Thinking Machines	Sep 95	16	13.5	0.88	454	0.27
CM-5E		32	8.0	1.49	251	0.49
Thinking Machines	Sep 95	64	5.4	2.21	149	0.82
CM-500		128	3.9	3.06	91	1.35
				3.51		

Table 5: Results of the 3-D FFT PDE (FT) benchmark.

Computer System		Number	Clas	ss A	Class	s B
	Date Received	Processor	Time in seconds	Ratio to CRAY Y-MP/1	Time in seconds	Ratio to CRAY C90/1
Convex Exemplar	Mar 95	1	178.6	0.16	NA	NA
SPP1000		8	25.5	1.13	375.4	0.29
		16	20.5	1.40	NA	NA
		32	13.9	2.07	NA	NA
CRAY C90	Feb 95	1	8.95	3.21	110.60	1.00
		2	4.53	6.35	55.75	1.98
		4	2.29	12.56	27.95	3.96
		8	1.29	22.30	14.12	7.83
		16	0.80	35.96	7.65	14.46
CRAY EL	May 93	1	105.1	0.27	NA	NA
		4	27.9	1.03	NA	NA
		8	18.5	1.56	NA	NA
CRAY J916	July 95	1	42.84	0.67	530.06	0.21
		2	22.08	1.30	267.92	0.41
		4	11.21	2.57	134.92	0.82
		8	5.80	4.97	70.51	1.57
		16	3.41	8.44	38.06	2.91
CRAY T3D	Feb 95	16	11.80	2.44	NA	NA
		32	5.90	4.87	NA	NA
		64	2.99	9.62	40.57	2.73
		128	1.52	18.93	20.68	5.35
		256	0.77	37.36	10.77	10.27
		512	0.51	56.41	6.44	17.17
		1024	0.32	89.91	3.76	29.41
CRAY T3E	Nov 96	2	28.9	1.00	NA	NA
		4	14.4	2.00	NA	NA
		8	7.3	3.94	86.2	1.28
		16	3.7	7.78	43.1	2.57
		32	1.9	15.14	21.8	5.07
		64	1.0	28.77	11.0	10.05
		128	0.5	57.54	5.5	20.11
		256	0.2	143.85	2.8	39.5

Table 5: Results of the 3-D FFT PDE (FT) benchmark.

CRAY T916	July 95	1	5.23	5.50	64.81	1.71
		2	2.67	10.78	32.39	3.41
		4	1.40	20.55	16.65	6.64
		8	0.98	29.36	9.48	11.67
CRAY Y-MP	Aug 92	1	28.77	1.0	NA	NA
	-	8	4.19	6.87	NA	NA
Fujitsu VPP500	Sept 95	1	11.25	2.56	NA	NA
	_	2	5.67	5.07	NA	NA
		4	2.88	9.99	31.21	3.54
		8	1.44	19.98	15.92	6.95
		16	0.75	38.36	7.94	13.91
		32	0.40	71.93	4.07	27.17
		64	0.24	119.88	2.18	50.73
Fujitsu VX	Nov 96	1	6.3272	4.55	NA	NA
		2	4.3788	6.57	49.6885	2.23
		4	2.2557	12.75	24.5128	4.51
Fujitsu VPP300	Nov 96	1	6.3272	4.55	NA	NA
		2	4.3788	6.57	49.6885	2.23
		4	2.2557	12.75	24.5128	4.51
		8	1.1491	25.04	12.3758	8.94
		16	0.6005	47.91	6.3013	17.55
Fujitsu VPP700	Nov 96	1	6.3272	4.55	NA	NA
		2	4.3788	6.57	49.6885	2.23
		4	2.2557	12.75	24.5128	4.51
		8	1.1491	25.04	12.3758	8.94
		16	0.6005	47.91	6.3013	17.55
		32	0.3345	86.01	3.2577	33.95
IBM SP-1	Feb 94	8	43.68	0.66	NA	NA
		16	22.86	1.26	286.5	0.39
		32	12.08	2.38	143.2	0.77
		64	6.46	4.45	74.5	1.49
IBM RS/6000 SP	Oct 94	8	13.31	2.16	NA	NA
Wide-node1 (67 MHz)		16	7.17	4.01	91.8	1.20
		32	3.96	7.27	47.23	2.34
		64	2.19	13.4	26.05	4.25
		128	1.23	23.39	14.52	7.62

Table 5: Results of the 3-D FFT PDE (FT) benchmark.

IBM RS/6000 SP P2SC node (120 MHz)	Nov 96	8 16 32 64	NA NA NA NA	NA NA NA NA	83.24 40.52 21.07 15.07	1.33 2.73 5.25 7.34
IBM RS/6000 SP Thin-node2 (67 MHz)	Mar 95	8 16 32 64 128	14.78 8.09 4.31 2.39 1.30	1.95 3.56 6.68 12.04 22.13	NA 101.03 51.38 28.02 15.68	NA 1.09 2.15 3.95 7.05
Intel iPSC/860	Dec 91 Apr 92	64 128	20.9 9.7	1.38 2.97	NA NA	NA NA
Intel Paragon OSF R 1.2	Nov 95	16 32 64 128 256	24.7 12.99 6.83 3.85 3.46	1.16 2.21 4.21 7.47 8.32	NA NA 83.6 42.07 25.93	NA NA 1.32 2.63 4.27
Intel Paragon SunMos	Nov 95	16 32 64 128 256 512	20.46 10.54 5.47 3.13 2.82 NA	1.41 2.73 5.26 9.19 10.20 NA	NA NA 60.9 32.15 18.66 16.17	NA NA 1.82 3.44 5.93 6.84
Intel Paragon MP R1.3	Nov 95	16 32 64 128 256	17.6 9.52 5.16 2.93 2.73	1.63 3.02 5.58 9.82 10.54	NA NA 60.9 31.0 19.87	NA NA 1.82 3.57 5.57
Intel Paragon MP SunMos Turbo	Nov 95	64 128 256 512	3.87 2.38 2.20 1.92	7.43 12.09 13.08 14.98	41.8 22.76 14.2 12.4	2.65 4.86 7.79 8.92
Kendall Square KSR1	Feb 94	32 64	16.2 9.2	1.78 3.13	NA NA	NA NA
Kendall Square KSR2	Feb 94 May 94	32 64	9.0 6.5	3.20 4.43	NA 124.0	NA 0.89
Kyoto/Matsushita ADENART	Feb 94	256	72.7	0.4	NA	NA

Table 5: Results of the 3-D FFT PDE (FT) benchmark.

	ı	1			1	
MasPar MP-1	Aug 92	16K	18.3	1.57	NA	NA
MasPar MP-2	Nov 92	16K	8.0	3.60	NA	NA
Meiko CS-1	Aug 92	16	170.0	0.17	NA	NA
Meiko CS-2	Oct 94	16	12.67	2.27	NA	NA
		32	7.17	4.01	82.71	1.34
		64	4.53	6.35	48.04	2.30
nCUBE-2S	Mar 94	64	62.8	0.46	NA	NA
		128	32.9	0.87	NA	NA
		256	16.0	1.8	NA	NA
		512	8.4	3.43	NA	NA
		1024	4.1	7.02	NA	NA
NEC SX-3	Oct 94	1	2.79	10.31	37.52	2.95
NEC SX-4/32	Nov 96	1	NA	NA	56.57	1.96
		2	NA	NA	28.14	3.93
		4	NA	NA	14.79	7.48
		8	NA	NA	8.03	13.77
		16	NA	NA	4.74	23.33
		32	NA	NA	3.14	35.22
Silicon Graphics	Oct 94	1	61.17	0.47	761.67	0.15
Power Challenge XL		2	35.53	0.81	414.52	0.27
(75 MHz)		4	19.98	1.44	223.97	0.49
		8	12.57	2.29	130.15	0.85
		16	11.18	2.57	110.37	1.00
SGI	May 95	1	51.89	0.55	642.3	0.17
Power Challenge		2	27.49	1.05	331.5	0.33
(90 MHz)		4	16.64	1.73	181.4	0.61
		8	10.47	2.75	110.6	1.00
		16	9.23	3.12	93.9	1.18
SGI Origin200	Nov 96	1	66.56	0.43	NA	NA
(180 MHz)		2	35.51	0.81	NA	NA
		4	18.61	1.55	NA	NA

Table 5: Results of the 3-D FFT PDE (FT) benchmark.

			1		
Nov 96	1	55.43	0.52	810.41	0.14
	2	29.53	0.97	419.72	0.26
	4	15.56	1.85	215.95	0.51
	8	8.05	3.57	108.42	1.02
	16	4.55	6.32	54.88	2.02
	32	3.16	9.10	28.66	3.85
Dec 91	16K	37.0	0.78	NA	NA
	32K	18.2	1.58	NA	NA
	64K	11.4	2.52	NA	NA
Dec 91	8K	45.6	0.63	NA	NA
Aug 93	32	14.9	1.93	NA	NA
	64	7.9	3.64	NA	NA
	128	6.6	4.36	NA	NA
Sep 95	16	12.8	2.25	160	0.69
_	32	6.7	4.29	82.0	1.35
Feb 94	64	3.9	7.38	46.0	2.40
	128	2.9	9.92	34.0	3.25
Sep 95	64	3.5	8.22	41.9	2.64
-	128	1.96	14.67	22.5	4.92
	256	1.33	21.63	13.2	8.38
	Dec 91 Dec 91 Aug 93 Sep 95 Feb 94	2 4 8 16 32 Dec 91 16K 32K 64K Dec 91 8K Aug 93 32 64 128 Sep 95 16 32 Feb 94 64 128	2 29.53 4 15.56 8 8.05 16 4.55 32 3.16 Dec 91 16K 37.0 32K 18.2 64K 11.4 Dec 91 8K 45.6 Aug 93 32 14.9 64 7.9 128 6.6 Sep 95 16 12.8 32 6.7 Feb 94 64 3.9 128 2.9 Sep 95 64 3.5 128 1.96	2 29.53 0.97 4 15.56 1.85 8 8.05 3.57 16 4.55 6.32 32 3.16 9.10 Dec 91 16K 37.0 0.78 32K 18.2 1.58 64K 11.4 2.52 Dec 91 8K 45.6 0.63 Aug 93 32 14.9 1.93 64 7.9 3.64 128 6.6 4.36 Sep 95 16 12.8 2.25 32 6.7 4.29 Feb 94 64 3.9 7.38 128 2.9 9.92 Sep 95 64 3.5 8.22 Sep 95 64 3.5 8.22 128 1.96 14.67	2 29.53 0.97 419.72 4 15.56 1.85 215.95 8 8.05 3.57 108.42 16 4.55 6.32 54.88 32 3.16 9.10 28.66 Dec 91 16K 37.0 0.78 NA 32K 18.2 1.58 NA 64K 11.4 2.52 NA Dec 91 8K 45.6 0.63 NA Aug 93 32 14.9 1.93 NA 64 7.9 3.64 NA 128 6.6 4.36 NA Sep 95 16 12.8 2.25 160 82.0 7.38 46.0 4.29 82.0 Feb 94 64 3.9 7.38 46.0 128 2.9 9.92 34.0 Sep 95 64 3.5 8.22 41.9 128 1.96 14.67 22.5

Table 6: Results of the Integer Sort (IS) benchmark.

Computer System	Date	Number	Class A		Class B	
Бузин	Received	Processor	Time in seconds	Ratio to Cray Y-MP/1	Time in seconds	Ratio to Cray C90/1
Convex Exemplar SPP1000	Mar 95	1 8	83.2 10.1	0.14 1.13	NA 43.5	NA 0.30
HP/Convex Exemplar SPP2000	Nov 96	1 4 8 16	30.6 7.04 3.49 2.21	0.37 1.63 3.28 5.19	NA NA NA NA	NA NA NA NA
CRAY C90	Feb 95	1 2 4 8 16	3.33 1.64 0.85 0.46 0.27	3.44 6.99 13.48 24.91 42.44	12.92 6.50 3.30 1.73 0.98	1.0 1.99 3.92 7.47 13.18
CRAY EL	Sep 93	1 4 8	43.76 12.99 8.45	0.26 0.88 1.35	NA NA NA	NA NA NA
CRAY J916	July 95	1 2 4 8 16	13.75 7.02 3.81 2.21 1.63	0.83 1.63 3.00 5.19 7.03	54.41 27.96 13.93 7.60 4.91	0.24 0.46 0.93 1.70 2.63
CRAY T3D	Feb 95	16 32 64 128 256 512 1024	7.07 3.89 2.09 1.05 0.55 0.31 0.44	1.62 2.95 5.48 10.91 20.84 36.97 26.05	NA 16.57 8.74 4.56 2.36 1.33 1.22	NA 0.78 1.48 2.83 5.47 9.71 10.59

Table 6: Results of the Integer Sort (IS) benchmark.

CRAY T3E	Nov 96	2	16.9	0.68	NA	NA
		4	8.1	1.42	38.9	0.33
		8	4.0	2.87	18.6	0.69
		16	2.2	5.21	9.8	1.32
		32	1.2	9.55	5.1	2.53
		64	0.6	19.10	2.9	4.46
		128	0.3	38.20	1.6	8.08
		256	0.2	57.30	0.8	16.15
CRAY T916	July 95	1	2.02	5.67	7.44	1.74
		2	1.02	11.24	3.74	3.45
		4	0.52	22.04	1.92	6.73
		8	0.38	30.16	1.41	9.16
CRAY Y-MP	Aug 92	1	11.46	1.00	NA	NA
		8	1.85	6.19	NA	NA
Fujitsu VPP500	Apr 94	1	2.189	5.24	NA	NA
		2	1.574	7.28	NA	NA
		4	1.098	10.44	3.70	3.49
		8	0.917	12.50	3.03	4.26
Fujitsu VX	Nov 96	1	2.3968	4.78	9.1964	1.41
		2	1.8038	6.35	6.0875	2.12
		4	1.2519	9.15	4.1363	3.12
Fujitsu VPP300	Nov 96	1	2.3968	4.78	9.1964	1.41
		2	1.8038	6.35	6.0875	2.12
		4	1.2519	9.15	4.1363	3.12
		8	1.1249	10.19	3.1959	4.04
		16	1.0204	11.23	2.7231	4.74
Fujitsu VPP700	Nov 96	1	2.3968	4.78	9.1964	1.41
		2	1.8038	6.35	6.0875	2.12
		4	1.2519	9.15	4.1363	3.12
		8	1.1249	10.19	3.1959	4.04
		16	1.0204	11.23	2.7231	4.74
		32	0.9839	11.64	2.7211	4.75
IBM SP-1	Feb 94	8	16.81	0.68	NA	NA
		16	8.85	1.29	37.3	0.35
		32	5.04	2.27	20.1	0.64
		64	3.06	3.75	11.2	1.15
		1	L			l

Table 6: Results of the Integer Sort (IS) benchmark.

IBM RS/6000 SP	Mar 95	8	4.93	2.32	19.75	0.65
Wide-node1 (67 MHz)		16	2.65	4.32	10.60	1.22
		32	1.54	7.44	5.92	2.18
		64	0.89	12.88	3.41	3.79
		128	0.59	19.42	1.98	6.53
IBM RS/6000 SP	Nov 96	8	NA	NA	11.16	1.16
P2SC node (120 MHz)		16	NA	NA	5.85	2.21
		32	NA	NA	3.20	4.04
		64	NA	NA	1.75	7.38
IBM RS/6000 SP	Feb 95	8	5.16	2.22	20.79	0.62
Thin-node2 (67 MHz)		16	2.89	3.97	11.46	1.13
		32	1.66	6.90	6.37	2.03
		64	0.91	12.59	3.58	3.61
		128	0.61	18.79	2.05	6.30
Intel iPSC/860	May 92	32	25.7	0.45	NA	NA
		64	17.3	0.66	NA	NA
		128	13.6	0.84	NA	NA
Intel Paragon	Mar 94	32	7.81	1.47	NA	NA
(OSF1.2)		64	4.34	2.64	17.33	0.75
		128	2.41	4.76	9.52	1.36
		256	NA	NA	5.94	2.18
		512	NA	NA	4.69	2.75
Intel Paragon	Mar 94	32	5.48	2.09	NA	NA
(SunMos)		64	3.77	3.04	11.98	1.08
		128	2.29	5.00	7.22	1.79
Kendall Square KSR1	Feb 94	32	10.8	1.06	NA	NA
1		64	6.6	1.74	NA	NA
Kendall Square KSR2	Feb 94	32	7.0	1.64	NA	NA
1	May 94	64	3.9	2.94	20.3	0.64
	•					
Kyoto/Matsushita	Feb 94	256	46.6	0.25	NA	NA
ADENART	1007	250	70.0	0.23	11/1	11/1
MasPar MP-1	Jan 93	16K	11.5	1.00	NA	NA
MasPar MP-2	Jan 93	16K	7.7	1.49	NA	NA
Meiko CS-1	Aug 92	16	62.7	0.18	NA	NA

Table 6: Results of the Integer Sort (IS) benchmark.

nCUBE-2S	Mar 94	64	23.2	0.49	NA	NA
		128	12.0	0.96	47.5	0.27
		256	6.1	1.88	NA	NA
		512	3.2	3.58	12.5	1.03
		1024	1.7	6.74	6.5	1.99
NEC SX-4/32	Nov 96	1	NA	NA	6.77	1.91
		2	NA	NA	3.50	3.69
		4	NA	NA	1.877	6.88
		8	NA	NA	1.139	11.34
		16	NA	NA	0.896	14.42
SGI	Oct 95	1	20.0	0.57	NA	NA
Power Challenge		2	11.9	0.96	NA	NA
(90 MHz)		4	7.1	1.61	NA	NA
		8	5.0	2.29	NA	NA
SGI Origin200	Nov 96	1	17.26	0.66	235.05	0.055
(180 MHz)		2	9.18	1.25	154.28	0.084
		4	4.89	2.34	79.18	0.16
SGI Origin2000	Nov 96	1	13.66	0.84	104.48	0.12
(195 MHz)		2	7.07	1.62	54.36	0.24
		4	3.80	3.02	27.25	0.47
		8	2.14	5.36	15.09	0.86
		16	1.34	8.55	8.89	1.45
		32	1.21	9.47	5.76	2.24
Thinking Machines CM-200	Dec 91	64K	5.7	2.01	NA	NA
Thinking Machines	Aug 93	32	43.1	0.27	NA	NA
CM-5		64	24.2	0.47	NA	NA
		128	12.0	0.96		NA
Thinking Machines	Sep 95	16	11.9	0.96	NA	NA
CM-5E		32	6.1	1.88	31.4	0.41
	Feb 94	64	3.1	3.70	16.4	0.79
		128	1.66	6.90	8.4	1.54
Thinking Machines	Sep 95	64	3.16	3.63	16.1	0.80
CM-500		128	1.67	6.86	8.2	1.58
		256	1.16	9.88	4.3	3.0
L	_1	l	l	1	l	I .

 $\label{thm:condition} \mbox{Table 7: Results of the LU CFD Application (LU)} \mbox{benchmark}.$

٠

Computer	Date	No.	Class A		Class B	
System	Received	Proc.	Time in seconds	Ratio to Cray YMP/1	Time in seconds	Ratio to Cray C90/1
BBN TC2000	Dec 91	62	3032.0	0.11	NA	NA
Convex Exemplar SPP1000	Mar 95	1 8 16	2668 331 196	0.13 1.00 1.70	NA 1492 827	NA 0.30 0.54
		32	126	2.65	465.9	0.9
CRAY C90	Feb 95	1 2 4 8 16	119.78 62.29 32.20 17.15 10.17	2.78 5.35 10.36 19.45 32.79	449.54 231.98 121.26 63.03 37.93	1.00 1.94 3.71 7.13 11.85
CRAY EL	Aug 92	1 4 8	1449.0 522.3 351.6	0.23 0.64 0.95	NA NA NA	NA NA NA
CRAY J916	July 95	1 2 4 8 16	492.83 254.94 135.07 72.73 47.59	0.68 1.31 2.47 4.51 7.01	1994.05 1024.74 526.29 286.17 170.26	0.23 0.44 0.85 1.57 2.64
CRAY T3D	Feb 95	16 32 64 128 256 512 1024	205.69 106.89 55.32 28.71 15.94 9.02 7.09	1.62 3.12 6.03 11.62 20.92 36.97 47.04	844.53 451.18 233.45 120.53 65.06 36.39 20.77	0.53 1.00 1.93 3.73 6.9 12.35 21.64

CRAY T3E	Nov 96	2	356.4	0.94	1497.4	0.30
		4	179.2	1.86	728.9	0.62
		8	90.2	3.70	365.8	1.23
		16	46.9	7.11	185.1	2.43
		32	24.0	13.90	95.9	4.69
		64	12.9	25.85	51.5	8.73
		128	7.1	46.97	29.5	15.24
		256	4.2	79.41	16.8	26.76
CRAY T916	July 95	1	82.67	4.03	293.38	1.53
		2	46.91	7.11	149.33	3.01
		4	23.68	14.08	77.95	5.77
		8	15.74	21.19	43.13	10.42
		16	NA	NA	28.26	15.91
CRAY Y-MP	Aug 92	1	333.5	1.00	NA	NA
		8	49.5	6.74	NA	NA
DEC Alpha Server	Oct 95	1	528.6	0.63	2304.9	0.20
8400 5/300		2	301.77	1.11	1350.0	0.33
(300 MHz)		4	158.78	2.10	691.8	0.65
		8	91.72	3.64	376.23	1.19
		12	79.13	4.21	296.19	1.51
DEC Alpha Server	Nov 96	1	378.61	0.88	1684.47	0.27
8400 5/440		2	219.41	1.52	987.54	0.46
(437 MHz)		4	115.83	2.88	500.12	0.90
		8	67.965	4.91	271.32	1.66
Fujitsu VPP500	Oct 95	1	101.960	3.27	414.82	1.08
		2	61.409	5.43	242.23	1.86
		3	NA	NA	175.20	2.57
		4	35.789	9.31	NA	NA
		6	NA	NA	97.851	4.59
		8	21.041	15.85	NA	NA
		16	13.944	23.92	NA	NA
		17	NA	NA	43.644	10.30
		34	NA	NA	28.095	16.00
Fujitsu VX	Nov 96	1	77.732	4.29	297.94	1.51
		2	50.880	6.55	190.00	2.37
		3	NA	NA	138.34	3.25
		4	30.500	10.93	NA	NA

Fujitsu VPP300	Nov 96	1	77.732	4.29	297.94	1.51
		2	50.880	6.55	190.00	2.37
		3	NA	NA 10.02	138.34	3.25
		4	30.500	10.93	NA 70.026	NA
		6	NA	NA 10.00	78.026	5.76
		8	18.444	18.08	NA	NA
		16	12.553	26.57	NA	NA
Fujitsu VPP700	Nov 96	1	77.732	4.29	297.94	1.51
		2	50.880	6.55	190.00	2.37
		3	NA	NA	138.34	3.25
		4	30.500	10.93	NA	NA
		6	NA	NA	78.026	5.76
		8	18.444	18.08	NA	NA
		16	12.553	26.57	NA	NA
		17	NA	NA	36.736	12.24
		32	10.063	33.14	NA	NA
IBM SP-1	Feb 94	8	291.4	1.14	NA	NA
		16	172.9	1.93	604.8	0.74
		32	101.8	3.28	348.1	1.29
		64	63.2	5.28	207.5	2.17
IBM RS/6000 SP	Mar 95	8	112.5	2.96	429.8	1.05
Wide-node1 (67 MHz)		16	64.6	5.16	234.4	1.92
		32	36.5	9.14	129.7	3.47
		64	22.7	14.69	76.8	5.85
		128	15.2	21.94	47.8	9.4
IBM RS/6000 SP	Oct 95	1	501.5	0.67	2066.6	0.22
Wide-node2 (77 MHz)		8	80.81	4.13	311.53	1.44
		16	48.36	6.90	171.79	2.62
		32	29.41	11.34	98.04	4.59
		64	19.20	17.37	59.45	7.56
IBM RS/6000 SP	Nov 96	8	NA	NA	236.64	1.90
P2SC node (120 MHz)		16	NA	NA	126.77	3.55
,		32	NA	NA	73.16	6.14
		64	NA	NA	42.89	10.48
IBM RS/6000 SP	Mar 95	8	120.8	2.76	477.3	0.94
Thin-node1 (67 MHz)	1,141 /3	16	70.9	4.70	255.4	1.76
(0, 1,111)		32	40.1	8.32	141.3	3.18
		64	24.5	13.61	82.9	5.42
		128	15.9	20.97	51.2	8.78
Intel iPSC/860	Mar 91	64	690.8	0.48	NA	NA
	1.201 / 1	128	442.5	0.75	NA	NA
		120	112.3	0.75	1,11	1111

Intel Paragon (OSF1.2)	Jul 94	64	190.0	1.76	675.0	0.67
		128	118.0	2.83	406.0	1.11
		256	75.0	4.45	254.0	1.77
		512	NA	NA	175.0	2.57
Kendall Square KSR1	Feb 94	32	341.0	0.98	NA	NA
•		64	199.0	1.68	NA	NA
		128	155.0	2.15	NA	NA
Kendall Square KSR2	Feb 94	32	172.0	1.93	NA	NA
	May 94	64	102.0	3.27	424.0	1.06
MasPar MP-1	Aug 92	4K	1580.0	0.21	NA	NA
MasPar MP-2	Nov 92	4K	463.5	0.72	NA	NA
Meiko CS-1	Aug 92	16	2937.0	0.11	NA	NA
nCUBE-2S	Mar 94	64	1322.0	0.25	NA	NA
		128	712.5	0.47	NA	NA
		256	389.1	0.86	NA	NA
		512	226.1	1.48	NA	NA
		1024	134.1	2.49	NA	NA
NEC SX-4/32	Nov 96	1	NA	NA	291.06	1.54
		2	NA	NA	148.29	3.03
		4	NA	NA	77.246	5.82
		8	NA	NA	43.087	10.43
		16	NA	NA	27.151	16.56
		17	NA	NA	25.294	17.77
		32	NA	NA	20.909	21.50
Silicon Graphics	Oct 94	1	604.0	0.55	2617.9	0.17
Power Challenge XL		4	231.8	1.44	1010.5	0.44
(75 MHz)		8	111.7	2.99	550.2	0.82
		16	65.3	5.11	308.1	1.46
SGI	Oct 94	1	549.02	0.61	2439.90	0.18
Power Challenge - XL		2	356.73	0.93	1500.30	0.30
(90 MHz)		4	188.33	1.77	774.93	0.58
		8	101.00	3.30	419.90	1.07
		16	65.90	5.06	292.02	1.54
SGI Origin200	Nov 96	1	397.30	0.84	1873.60	0.24
(180 MHz)		2	206.52	1.61	958.01	0.47
		4	114.39	2.92	519.32	0.87
	I	1	L	I		

SGI Origin2000	Nov 96	1	351.35	0.95	1522.30	0.30
(195 MHz)		2	181.39	1.84	777.43	0.58
		4	97.52	3.42	401.80	1.12
		8	50.56	6.60	221.32	2.03
		16	29.91	11.15	130.41	3.45
		25	NA	NA	89.75	5.01
		31	18.93	17.62	NA	NA
Thinking Machines	Mar 91	8K	1307.0	0.26	NA	NA
CM-2		16K	850.0	0.39	NA	NA
		32K	546.0	0.61	NA	NA
Thinking Machines	Aug 93	32	418.0	0.80	NA	NA
CM-5		64	272.0	1.23	NA	NA
		128	171.0	1.95	NA	NA
Thinking Machines	Sep 95	16	256	1.30	957	0.47
CM-5E		32	143	2.33	533	0.84
	Feb 94	64	97.0	3.44	367.0	1.22
		128	65.0	5.13	318.0	1.41
Thinking Machines	Sep 95	64	90	3.71	336	1.34
CM-500		128	61	5.47	247	1.82
		256	43	7.76	149	3.02

Table 8: Results of the SP simulated CFD application (SP) benchmark.

Computer	Date	Number	Clas	ss A	Class B		
System	Received	Number Processor	Time in seconds	Ratio to Cray YMP/1	Time in seconds	Ratio to Cray C90/1	
BBN TC2000	Dec 91	112	880.0	0.54	NA	NA	
Convex Exemplar	Mar 95	1	2533	0.19	NA	NA	
SPP1000		8	345	1.37	1584	0.44	
		16	228	2.07	1068	0.65	
		32	144	3.27	697.4	0.99	
		64	102	4.62	449.5	1.5	
HP/Convex Exemplar	Nov 96	1	770.9	0.61	NA	NA	
SPP2000		4	198.6	2.37	NA	NA	
		8	101.6	4.64	NA	NA	
		16	56.6	8.33	NA	NA	
CRAY C90	Feb 95	1	174.50	2.70	689.60	1.00	
		2	87.32	5.40	345.57	2.00	
		4	44.75	10.54	175.85	3.92	
		8	22.74	20.73	90.80	7.59	
		16	12.82	36.78	52.22	13.21	
CRAY EL	Aug 92	1	2025.7	0.23	NA	NA	
		4	601.9	0.78	NA	NA	
		8	488.4	0.97	NA	NA	
CRAY J916	July 95	1	870.47	0.54	3728.69	0.18	
		2	436.91	1.08	1927.50	0.36	
		4	226.66	2.08	941.08	0.73	
		8	118.30	3.99	521.73	1.32	
		16	77.54	6.08	316.58	2.18	
CRAY T3D	Feb 95	16	202.11	2.33	818.07	0.84	
		32	104.10	4.53	463.62	1.49	
		64	53.26	8.85	233.52	2.95	
		128	27.54	17.12	130.45	5.29	
		256	14.71	32.05	74.89	9.21	
		512	8.91	52.92	42.63	16.18	
		1024	5.41	87.15	25.23	27.33	

Table 8: Results of the SP simulated CFD application (SP) benchmark.

CRAY T3E	Nov 96	2	621.9	0.76	2427.7	0.28
		4	313.0	1.51	1230.5	0.56
		8	157.5	3.00	611.7	1.13
		16	79.8	5.91	312.9	2.20
		32	39.2	12.03	162.7	4.24
		64	20.4	23.11	85.5	8.07
		128	11.2	42.10	48.1	14.34
		256	6.0	78.58	26.9	25.64
CRAY T916	Jul 95	1	112.37	4.20	427.56	1.61
		2	56.46	8.35	214.63	3.21
		4	30.42	15.50	113.02	6.10
		8	18.69	25.23	60.61	11.38
		16	NA	NA	40.59	16.99
CRAY Y-MP	Aug 92	1	471.5	1.01	NA	NA
	-	8	64.6	7.30	NA	NA
DEC Alpha Server	Mar 95	1	749.61	0.63	3448.10	0.20
8400 5/300		4	199.17	2.37	904.45	0.76
(300 MHz)		8	118.04	3.99	452.13	1.53
		12	102.75	4.59	364.54	1.89
DEC Alpha Server	Nov 96	1	575.80	0.82	2569.5	0.27
8400 5/440		2	290.83	1.62	1294.9	0.53
(437 MHz)		4	153.89	3.06	661.45	1.04
		8	91.430	5.16	363.35	1.90
Fujitsu VPP500	Mar 95	1	99.309	4.75	404.08	1.71
		2	61.588	7.66	241.23	2.86
		4	32.114	14.68	127.48	5.41
		6	NA	NA	83.710	8.24
		8	16.399	28.75	64.930	10.62
		16	8.5761	54.98	NA	NA
		17	NA	NA	30.474	22.63
		32	4.5355	103.96	NA	NA
		34	NA	NA	15.674	44.0
		51	NA	NA	10.654	64.73
		64	2.5483	185.03	NA	NA
Fujitsu VX	Nov 96	1	80.504	5.86	331.36	2.08
i e e e e e e e e e e e e e e e e e e e	1	1 2	(0.426	7.00	210.11	2 15
		2	60.436	7.80	219.11	3.15

Table 8: Results of the SP simulated CFD application (SP) benchmark.

Fujitsu VPP300	Nov 96	1	80.504	5.86	331.36	2.08
		2	60.436	7.80	219.11	3.15
		4	31.324	15.05	114.41	6.03
		6	NA	NA	78.381	8.80
		8	16.054	29.37	58.781	11.73
		16	8.2465	57.18	NA	NA
Fujitsu VPP700	Nov 96	1	80.504	5.86	331.36	2.08
Tujiisu VII 700	1407 70	2	60.436	7.80	219.11	3.15
		4	31.324	15.05	114.41	6.03
		6	NA	NA	78.381	8.80
		8		29.37	58.781	
			16.054			11.73
		16	8.2465	57.18	NA	NA
		17	NA 4.5211	NA 104.06	27.860	24.75
		32	4.5311	104.06	NA	NA 47.17
		34	NA	NA	14.621	47.17
IBM SP-1	Feb 94	8	441.6	1.07	NA	NA
		16	268.7	1.75	941.2	0.73
		32	165.0	2.86	522.4	1.32
		64	100.4	4.69	302.3	2.28
IBM RS/6000 SP	Mar 95	8	143.8	3.28	589.3	1.17
Wide-node1 (67 MHz)		16	83.2	5.67	300.6	2.29
, ,		32	48.7	9.68	163.8	4.21
		64	30.1	15.66	91.7	7.52
		128	18.7	25.21	54.8	12.58
IBM RS/6000 SP	Oct 95	1	711.8	0.66	3087.0	0.22
Wide-node2 (77 MHz)	00173	8	114.15	4.13	453.66	1.52
(((((((((((((((((((16	69.32	6.80	248.51	2.77
		32	43.20	10.91	142.88	4.83
		64	26.46	17.82	80.17	8.60
		04	20.40	17.62	60.17	8.00
IBM RS/6000 SP	Nov 96	8	NA	NA	359.81	1.92
P2SC node (120 MHz)		16	NA	NA	182.30	3.78
		32	NA	NA	107.16	6.44
		64	NA	NA	58.35	11.82
IBM RS/6000 SP	Mar 95	8	161.1	2.93	640.9	1.08
Thin-node2 (67 MHz)	11111)3	16	93.3	5.05	342.3	2.01
(0, 2,222)		32	53.6	8.80	184.4	3.74
		64	32.7	14.42	101.6	6.79
		128	20.6	22.89	59.9	11.51
		120	20.0	22.09	33.9	11.31

Table 8: Results of the SP simulated CFD application (SP) benchmark.

Intel iPSC/860	Jul 94	64	640.0	0.74	NA	NA
	Aug 92	128	449.5	1.05	NA	NA
Lated Decree	T 104	C 4	226.0	2.00	0.60.0	0.70
Intel Paragon (OSF1.2)	Jul 94	64 102	226.0 NA	2.09 NA	960.0 610.0	0.72 1.13
(0311.2)		102	143.0	3.30	010.0 NA	NA
					387.0	
		204	NA 07.0	NA		1.78
		256	97.0	4.86	301.0	2.29
		324	89.0	5.30	262.0	2.63
		400	NA	NA	246.0	2.80
		484	NA	NA	209.0	3.30
Kendall Square KSR1	Feb 94	32	418.0	1.13	NA	NA
		64	257.0	1.83	NA	NA
		128	160.0	2.95	NA	NA
Kendall Square KSR2	Feb 94	32	221.0	2.13	NA	NA
Kendan Square KSK2	May 94	64	131.0	3.59	495.0	1.39
	Iviay 54	04	131.0	3.39	493.0	1.39
Kyoto/Matsushita	Feb 94	256	209.9	2.24	NA	NA
ADENART						
MasPar MP-1	Aug 92	4K	1772	0.27	NA	NA
MasPar MP-2	Nov 92	4K	615	0.77	NA	NA
Triagram Tria	110172	111	013	0.77	1111	1111
Meiko CS-1	Aug 92	16	2975	0.16	NA	NA
nCUBE-2S	Mar 94	64	1243.2	0.38	NA	NA
		128	717.4	0.66	NA	NA
		256	387.3	1.22	NA	NA
		512	208.6	2.26	NA	NA
		1024	120.9	3.90	NA	NA
NEC SX-3	Oct 94	1	75.72	6.23	495.0	1.39
NEC SX-4/32	Nov 96	1	NA	NA	398.77	1.73
		2	NA	NA	199.08	3.46
		4	NA	NA	99.984	6.90
		8	NA	NA	52.353	13.17
		16	NA	NA	28.823	23.93
		17	NA	NA NA	24.697	27.92
		26	NA	NA NA	17.410	39.61
		32	NA NA	NA NA	17.130	40.26
			1,11	1,71	17.130	.0.20

Table 8: Results of the SP simulated CFD application (SP) benchmark.

Silicon Graphics	Oct 94	1	858.3	0.55	3719.5	0.19
Power Challenge XL		4	225.8	2.09	947.6	0.73
(75 MHz)		8	119.5	3.95	491.4	1.40
		16	67.2	7.02	313.1	2.20
SGI	May 95	1	757.00	0.62	3343.90	0.21
Power Challenge - XL		2	387.90	1.22	1685.30	0.41
(90 MHz)		4	200.44	2.35	853.35	0.81
		8	106.43	4.43	445.38	1.55
		16	63.18	7.46	294.22	2.34
SGI Origin200	Nov 96	1	768.25	0.61	4036.90	0.17
(180 MHz)		2	408.32	1.15	2259.90	0.31
		4	222.04	2.12	1229.30	0.56
SGI Origin2000	Nov 96	1	675.28	0.70	3068.70	0.22
(195 MHz)		2	346.02	1.36	1628.00	0.42
		4	187.86	2.51	803.64	0.86
		8	97.97	4.81	423.61	1.63
		16	52.01	9.07	234.99	2.94
		25	NA	NA	140.48	4.91
		31	30.47	15.47	NA	NA
Thinking Machines	Dec 91	16K	1444.0	0.33	NA	NA
CM-2		32K	917.0	0.51	NA	NA
		64K	640.0	0.74	NA	NA
Thinking Machines		32	289.0	1.63	NA	NA
CM-5		64	170.0	2.77	NA	NA
		128	119.0	3.96	NA	NA
Thinking Machines	Sep 95	16	268	1.76	1580	0.44
CM-5E	_	32	144	3.27	771	0.89
	Feb 94	64	104.0	4.53	595.0	1.16
		128	61.0	7.73	320.0	2.16
Thinking Machines	Sep 95	64	85	5.55	405	1.70
CM-500		128	51	9.25	236	2.92
		256	34	13.87	140	4.93

Table 9: Results of the BT simulated CFD application (BT) benchmark.

Computer System	Date	Number	Clas	ss A	Class	s B
System	Received	Processor	Time in seconds	Ratio to CRAY Y-MP/1	Time in seconds	Ratio CRAY C90/1
BBN TC2000	Dec 91	112	1378.0	0.58	NA	NA
Convex Exemplar	Mar 95	1	2825	0.28	NA	NA
SPP1000		8	366	2.17	1675	0.61
		16	211	3.76	984	1.04
		32	125	6.34	559.8	1.82
		64	78	10.16	338.2	3.03
HP/Convex Exemplar	Nov 96	1	829.4	0.96	NA	NA
SPP2000		4	212.9	3.72	NA	NA
		8	107.2	7.39	NA	NA
		16	55.3	14.33	NA	NA
CRAY C90	Feb 95	1	276.80	2.86	1023.4	1.00
		2	139.44	5.68	519.46	1.97
		4	72.11	10.99	265.20	3.86
		8	36.99	21.42	138.16	7.41
		16	20.30	39.03	78.80	12.99
CRAY EL	May 93	1	3832.8	0.21	NA	NA
		4	1090.2	0.73	NA	NA
		8	764.1	1.04	NA	NA
CRAY J916	July 95	1	1202.53	0.66	5356.59	0.19
		2	608.83	1.30	2789.74	0.37
		4	317.62	2.49	1414.43	0.72
		8	168.46	4.70	765.60	1.34
		16	98.80	8.02	426.91	2.40
CRAY T3D	Feb 95	16	230.41	3.44	918.04	1.11
		32	115.53	6.85	476.97	2.15
		64	59.01	13.43	252.86	4.04
		128	29.96	26.44	128.21	7.98
		256	15.89	49.87	68.38	15.0
		512	8.39	94.45	38.01	26.92
		1024	4.56	173.77	20.45	50.04

Table 9: Results of the BT simulated CFD application (BT) benchmark.

CRAY T3E	Nov 96	2	677.9	1.17	2988.7	0.34
		4	339.8	2.33	1480.7	0.69
		8	172.5	4.59	735.6	1.39
		16	88.6	8.94	370.3	2.76
		32	44.6	17.77	192.2	5.32
		64	22.7	34.91	99.9	10.24
		128	11.9	66.59	54.5	18.78
		256	6.2	127.81	29.3	34.93
CRAY T916	July 95	1	193.19	4.10	649.10	1.58
		2	100.10	7.92	332.38	3.08
		4	53.23	14.89	169.27	6.05
		8	30.66	25.84	92.43	11.07
		16			64.06	15.98
CRAY Y-MP	Aug 92	1	792.4	1.00	NA	NA
		8	114.0	6.95	NA	NA
DEC Alpha Server	Oct 95	1	1048.7	0.76	4076.50	0.25
8400 5/300		2	527.04	1.50	2525.00	0.41
(300 MHz)		4	271.13	2.92	1278.60	0.80
		8	146.91	5.39	649.53	1.58
		12	103.47	7.66	458.21	2.23
DEC Alpha Server	Nov 96	1	747.75	1.06	3390.4	0.30
8400 5/440		2	376.03	2.11	1727.7	0.59
(437 MHz)		4	192.67	4.11	881.90	1.16
		8	103.54	7.65	454.39	2.25
Fujitsu VPP500	Mar 95	1	142.42	5.56	NA	NA
		2	75.17	10.54	NA	NA
		4	39.14	20.25	NA	NA
		8	19.82	39.98	NA	NA
		16	9.99	79.32	NA	NA
		17	NA	NA	37.26	27.47
		32	5.09	155.68	NA	NA
		34	NA	NA	18.82	54.38
		51	NA	NA	12.61	81.16
		64	2.66	297.90	NA	NA
Fujitsu VX	Nov 96	1	129.40	6.12	487.29	2.10
				i	ı	1
		2	68.510	11.57	258.20	3.96

Table 9: Results of the BT simulated CFD application (BT) benchmark.

· · · · · · · · · · · · · · · · · · ·						
Fujitsu VPP300	Nov 96	1	129.40	6.12	487.29	2.10
		2	68.510	11.57	258.20	3.96
		3	NA	NA	175.09	5.84
		4	35.518	22.31	NA	NA
		6	NA	NA	88.541	11.56
		8	18.088	43.81	NA	NA
		16	9.2841	85.35	NA	NA
Fujitsu VPP700	Nov 96	1	129.40	6.12	487.29	2.10
		2	68.510	11.57	258.20	3.96
		3	NA	NA	175.09	5.84
		4	35.518	22.31	NA	NA
		6	NA	NA	88.541	11.56
		8	18.088	43.81	NA	NA
		16	9.2841	85.35	NA	NA
		17	NA	NA	31.634	32.35
		32	4.9286	160.78	NA	NA
		34	NA	NA	16.824	60.83
IBM SP-1	Aug 94	8	443.9	1.79	NA	NA
		16	249.2	3.18	987.4	1.04
		32	143.0	5.54	511.2	2.00
		64	83.1	9.54	274.6	3.73
IBM RS/6000 SP	Mar 95	8	206.7	3.83	862.8	1.19
Wide-node1 (67 MHz)		16	112.9	7.02	440.6	2.32
		32	61.8	12.82	226.8	4.51
		64	34.7	22.84	119.1	8.59
		128	20.1	39.42	67.0	15.27
IBM RS/6000 SP	Oct 95	1	1130.7	0.70	4775.7	0.21
Wide-node2 (77 MHz)		8	170.74	4.64	708.47	1.44
		16	95.48	8.30	375.76	2.72
		32	51.34	15.44	197.91	5.17
		64	29.01	27.31	105.19	9.73
IBM RS/6000 SP	Nov 96	8	NA	NA	504.58	2.03
P2SC node (120 MHz)		16	NA	NA	263.77	3.88
		32	NA	NA	143.77	7.12
		64	NA	NA	76.49	13.38
IBM RS/6000 SP	Feb 95	8	216.6	3.66	889.8	1.15
Thin-node2 (67 MHz)		16	118.0	6.72	459.2	2.23
		32	64.9	12.21	237.2	4.31
		64	36.3	21.83	124.8	8.20
		128	20.8	38.10	69.6	14.70

Table 9: Results of the BT simulated CFD application (BT) benchmark.

Intal :DCC/960	Aug 02	61	7147	1 11	NA	NA
Intel iPSC/860	Aug 92	64 128	714.7 414.3	1.11 1.91	NA NA	NA NA
		120	414.3	1.71	IVA	IVA
Intel Paragon	Mar 94	64	235.0	3.37	NA	NA
(OSF1.2)		102	NA	NA	633.0	1.62
		128	129.0	6.14	NA	NA
		204	NA	NA	359.0	2.86
		256	83.0	9.55	NA	NA
		306	NA	NA	257.0	3.98
		408	NA	NA	226.0	4.53
		510	NA	NA	196.0	5.22
		512	63.0	12.58	NA	NA
Intel Paragon	Nov 93	64	224.0	3.54	NA	NA
(SunMos)	Mar 94	102	NA	NA	598.0	1.71
		128	113.0	7.01	NA	NA
		204	NA	NA	324.0	3.16
		306	NA	NA	215.0	4.76
Kendall Square KSR1	Feb 94	32	457	1.74	NA	NA
1		64	256	3.1	NA	NA
		128	145	5.46	NA	NA
Kendall Square KSR2	Feb 94	32	225	3.52	NA	NA
	May 94	64	130	6.10	542.0	1.89
Kyoto/Matsushita ADENART	Feb 94	256	314.1	2.52	NA	NA
MasPar MP-1	Aug 92	4K	2396.0	0.33	NA	NA
MasPar MP-2	Nov 92	4K	789.0	1.00	NA	NA
Meiko CS-1	Aug 92	16	2984.0	0.27	NA	NA
Meiko CS-2	Oct 94	8	570.4	1.39	NA	NA
		16	286.6	2.77	NA	NA
		32	149.3	5.31	NA	NA
nCUBE-2S	Mar 94	64	1243.2	0.64	NA	NA
		128	644.7	1.22	NA	NA
	Jul 94	256	336.7	2.35	NA	NA
		512	179.1	4.42		
		1024	100.9	7.85	NA NA	NA NA
NEC SX-3	Oct 94	1	100.31	7.90	NA	NA
NEC SX-3		512 1024	179.1 100.9	4.42 7.85	NA NA	NA NA

Table 9: Results of the BT simulated CFD application (BT) benchmark.

				1		1
NEC SX-4/32	Nov 96	1	NA	NA	577.16	1.77
		2	NA	NA	288.72	3.54
		4	NA	NA	146.59	6.98
		8	NA	NA	75.393	13.57
		16	NA	NA	40.932	25.00
		17	NA	NA	35.574	28.77
		26	NA	NA	23.996	42.65
		32	NA	NA	24.042	42.57
Silicon Graphics	Oct 94	1	1330.3	0.60	5698.7	0.18
Power Challenge XL		4	355.9	2.23	1450.0	0.71
(75 MHz)		8	177.0	4.48	775.0	1.32
		16	91.8	8.63	426.0	2.40
SGI	May 95	1	1145.20	0.69	5089.60	0.20
Power Challneg XL		2	574.37	1.38	2537.70	0.40
(90 MHz)		4	298.74	2.65	1278.60	0.80
		8	152.65	5.19	672.56	1.52
		16	80.20	9.88	391.88	2.61
SGI Origin200	Nov 96	1	826.53	0.96	3953.70	0.26
(180 MHz)		2	420.08	1.89	2091.50	0.49
		4	222.57	3.56	1069.20	0.95
SGI Origin2000	Nov 96	1	768.42	1.03	3437.70	0.30
(195 MHz)		2	388.43	2.04	1767.00	0.58
		4	196.13	4.04	904.23	1.13
		8	103.41	7.66	468.77	2.18
		16	55.44	14.29	253.07	4.04
		25	NA	NA	151.87	6.73
		31	30.05	26.37	NA	NA
Thinking Machines	Dec 91	16K	1118.0	0.71	NA	NA
CM-2		32K	634.0	1.25	NA	NA
		64K	370.0	2.14	NA	NA
Thinking Machines	Dec 91	16K	832.0	0.95	NA	NA
CM-200		32K	601.0	1.32	NA	NA
Thinking Machines	May 93	32	284.0	2.79	NA	NA
CM-5		64	175.0	4.50	NA	NA
		128	119.0	6.66	NA	NA

Table 9: Results of the BT simulated CFD application (BT) benchmark.

Thinking Machines CM-5E	Sep 95 Feb 94	16 32 64 128	259 135 84.0 48.0	3.06 5.87 9.43 16.50	1480 712 464.0 253.0	0.69 1.44 2.21 4.05
Thinking Machines CM-500	Sep 95	64 128 256	75 43 27	10.56 18.43 29.34	370 209 114	2.77 4.90 8.98

Table 10: Results for NPB 1.0 Class C on CRAY T3E.

No. of								
CPUs	EP	MG	CG	FT	IS	LU	SP	BT
1	NA	NA	NA	NA	NA	NA	NA	NA
4	448.8	NA	NA	NA	NA	NA	NA	NA
8	224.4	NA	NA	NA	NA	NA	NA	NA
16	112.2	NA	272.9	NA	48.9	773.4	1352.7	1806.5
32	56.1	53.0	146.2	93.4	23.8	387.8	661.5	904.3
64	28.1	26.7	78.5	47.2	14.5	195.3	327.0	454.4
128	14.0	13.6	51.7	23.7	7.5	101.5	174.3	230.6
256	7.0	7.1	46.9	12.1	4.0	52.8	93.9	115.4

Table 11: Approximate sustained performance per dollar for Class B LU benchmark.

.

Computer System	# Proc.	Memory	Ratio to C90/1	List Price Million Dollars	Performance per Million Dollars	Date
CRAY T3E	128	64 MB/PE	15.24	5.0	3.05	Nov 96
DEC Alpha Server 8400 5/440 (437 MHz)	8	2 GB	1.66	0.58	2.86	Nov 96
Fujitsu VX	3	2 GB /PE	3.25	1.11	2.93	Nov 96
Fujitsu VPP300	6	512 MB /PE	5.76	1.54	3.74	Nov 96
Fujitsu VPP700	17	512 MB/PE	12.24	5.17	2.37	Nov 96
IBM RS/6000 SP P2SC node (120 MHz)	64	128 MB/PE	10.48	3.52	2.98	Nov 96
NEC SX-4/32	32	4 GB	21.50	10.7	2.0	Nov 96
SGI Origin2000 (195 MHz)	26	2 GB	5.01	0.96	5.21	Nov 96

Table 12: Approximate sustained performance per dollar for Class B SP benchmark.

•

Computer System	# Proc	Memory	Ratio to C90/1	List Price Million Dollars	Performance per Million Dollars	Date
CRAY T3E	128	64 MB/PE	14.34	5.0	2.87	Nov 96
DEC Alpha Server 8400 5/440 (437 MHz)	8	2 GB	1.90	0.58	3.28	Nov 96
Fujitsu VX	4	512 MB/PE	6.03	1.0	6.03	Nov 96
Fujitsu VPP300	8	512 MB/PE	11.73	1.99	5.89	Nov 96
Fujitsu VPP700	34	512 MB/PE	47.17	9.98	4.73	Nov 96
IBM RS/6000 SP P2SC node (120 MHz)	64	128 MB/PE	11.82	3.52	3.36	Nov 96
NEC SX-4/32	32	4 GB	40.26	10.7	3.76	Nov 96
SGI Origin2000 (195 MHz)	26	2 GB	4.91	0.96	5.11	Nov 96

Table 13: Approximate sustained performance per dollar for Class B BT benchmark.

•

Computer System	# Proc	Memory	Ratio to C90/1	List Price Million Dollars	Performance per Million Dollars	Date
CRAY T3E	128	64 MB/PE	18.78	5.0	3.76	Nov 96
DEC Alpha Server 8400 5/440 (437 MHz)	8	2 GB	2.25	0.58	3.88	Nov 96
Fujitsu VX	3	512 MB/PE	5.84	1.11	5.26	Nov 96
Fujitsu VPP300	6	512 MB/PE	11.56	1.54	7.51	Nov 96
Fujitsu VPP700	34	512 MB/PE	60.83	9.98	6.1	Nov 96
IBM RS/6000 SP P2SC node (120 MHz)	64	128 MB/PE	13.38	3.52	3.80	Nov 96
NEC SX-4/32	32	4 GB	42.57	10.7	3.98	Nov 96
SGI Origin2000 (195 MHz)	26	2 GB	6.73	0.96	7.01	Nov 96

Table 14: Results of the HPF based EP benchmark.

	Date Received	Number Processor	Time in seconds			
Computer System			Cla	Class A		Class B
			APR	PGI	APR	PGI
HP/Convex	Oct 96	1	NA	617	NA	NA
Exemplar SPP200		2	NA	289	NA	NA
		4	NA	145	NA	NA
		8	NA	75	NA	NA
		16	NA	39	NA	NA
IBM SP2	Sept 96	1	NA	947	NA	NA
Wide Nodes	-	2	NA	473	NA	1895
		4	NA	237	NA	946
		8	NA	119	NA	474
		16	79	59	NA	237
		32	42	30	NA	119
		64	23	15	NA	59
SGI/CRAY T3D	Sept 96	1	NA	1190	NA	4782
	-	2	NA	596	NA	2398
		4	NA	302	NA	1190
		8	NA	151	NA	595
		16	86	74	NA	298
		32	43	37	NA	149
		64	22	19	NA	NA

Table 15: Results of the HPF based MG benchmark.

Computer System	Date	Number		Time in	in seconds		
Computer System	Received	Processor	Cla	Class A		Class B	
			APR	PGI	APR	PGI	
IBM SP2	Sept 96	16	12	NA	NA	NA	
Wide Nodes		32	9	NA	NA	NA	
		64	7	NA	NA	NA	
SGI/CRAY T3D	Sept 96	16	64	NA	NA	NA	
		32	37	NA	NA	NA	
		64	25	NA	NA	NA	

Table 16: Results of the HPF based FT benchmark.

Computor System	Doto	Number _ Processor	Time in seconds			
Computer System	Date Received		Cla	Class A		Class B
			APR	PGI	APR	PGI
IBM SP2	Sept 96	16	NA	6.2	NA	NA
Wide Nodes		32	NA	3.1	NA	NA
(67 mHz)		64	NA	2.6	NA	NA
SGI/CRAY T3D	Sept 96	16	NA	27.2	NA	NA
		32	NA	15.6	NA	NA
		64	NA	9.5	NA	NA
		128	NA	5.6	NA	19.6

Table 17: Results of the HPF based SP benchmark.

	Date Received	Number _ Processor	Time in seconds			
Computer System			Class A		Clas	Class B
			APR	PGI	APR	PGI
HP/Convex	Oct 96	1	NA	3826	NA	NA
Exemplar SPP200		2	NA	1908	NA	NA
		4	NA	966	NA	NA
		8	NA	504	NA	NA
		16	NA	274	NA	NA
IBM SP2	Sept 96	16	315	237	NA	NA
Wide Nodes		32	207	142	NA	NA
(67 MHz)		64	130	99	NA	NA
SGI/CRAY T3D	Sept 96	8	NA	1618	NA	NA
		16	803	834	NA	3327
		32	420	425	NA	1950
		64	226	228	NA	1012

Table 18: Results of the HPF based BT benchmark.

		Number - Processor	Time in seconds			
Computer System	Date Received		Cla	Class A		Class B
			APR	PGI	APR	PGI
HP/Convex	Oct 96	1	NA	2372	NA	NA
Exemplar SPP200		2	NA	1161	NA	NA
		4	NA	699	NA	NA
		8	NA	335	NA	NA
		16	NA	175	NA	NA
IBM SP2	Sept 96	1	NA	3273	NA	NA
Wide Nodes	_	2	NA	1697	NA	NA
(67 MHz)		4	NA	907	NA	3788
		8	NA	469	NA	1963
		16	332	249	NA	1111
		32	184	135	NA	652
		64	109	81	NA	350
SGI/CRAY T3D	Sept 96	8	NA	1669	NA	6795
	_	16	1044	855	NA	3634
		32	536	438	NA	2119
		64	275	226	NA	1096