Let the Tensors Flow! An introduction to Google's Deep-Learning Framework

Pascal Pompey
Research Engineer,
Predictive analytics
IBM Dublin Research Laboratory
Pascal.pompey@gmail.com

Menu

- Come on! Turn to the deep side of learning!
- Why Tensorflow?
- Tensorflow's main concepts
 - Hello world application
 - Standard NN application
- BREAK!!! May the beer be with you!
- Recap
- Recommended architecture of tensor flow projects
- SNLI

Menu

- Deep learning: A new hope
 - Come on! Turn to the deep side of learning!
 - Why Tensorflow?
 - Tensorflow's main concepts
 - Hello world application
 - Standard NN application
- BIKE ACCIDENT, Wait for episode 2

Come on! Turn to the deep-side of learning

Come on! Turn to the deep-side of learning

- Why deep learning?
- Historical context
 - Machine-learning & Data-mining
 - Bits and pieces to solve different problem
 - Data-science:
 - Solving complex problems
 - Many data-sources, unstructured-data
- Requirements of data-science
 - Integrate heterogeneous data-sources
 - Explore and generate complex feature spaces
 - Integrate many different techniques together in a single pipeline
 - Consolidate methods and workflows

Come on! Turn to the deep-side of learning

- Why deep learning?
- Historical context
 - Machine-learning & Data-mining
 - Bits and pieces to solve different problem
 - Data-science:
 - Solving complex problems
 - Many data-sources, unstructured-data
- Requirements of data-science
 - Integrate heterogeneous data-sources
 - Explore and generate complex feature spaces
 - Integrate many different techniques together in a single pipeline
 - Consolidate methods and workflows

Complex data-science applications

How it used to be done before

- Data-flows: Different frameworks
- Learning: Different algorithms
- Programming: Different libraries / languages

Complex data-science applications

How it used to be done before

Complex data-science applications

How it used to be done before

The Lego idea

Specification of a data-science lego block

- Needs to be able to learn anything
- Needs to be able to fit in an encompassing learning problem
- Needs to scale horizontally for processing and learning

Deep-Learning and Lego

- Neural Network: Universal approximator
- Back-propagation: ties it all together

Deep learning and lego

The Lego idea Deep-learning implements the lego interface

Deep-Learning and Lego

- Neural Network: Universal approximator
- Back-propagation: ties it all together

Come on! Turn to the deep side of learning!

Why Tensor-Flow?

Deep-learning libraries classified

Deep-learning libraries classified

The Tensor-Flow school of deep-learning

Underpinning concepts of tensor-flow

What are tensors?

- Double: 3.14159...
- Vector: [1.0, 2.0, 3.0, 5.0, 8.0, 13.0, ...]
 - e.g. time-series
- Matrix: [[1, 2], [1, 4], [1, 8], [1, 16], ...]
 - e.g. images
- Tensor: [[matrix], [matrix], [matrix], [matrix]]
 - e.g. list of images

Why tensors?

What are tensors?

- Double: 3.14159.. Tensor of rank 0, shape []
 Vector: [1.0, 2.0, 3.0, 5.0, 8.0, 13.0, ...]
- Matrix: [[1, 2], [1, 4], [1, 8], [1, 16], ...]
 - e.g. images– Tensor of rank 2, shape [n, m]
- Tensor: [[matrix], [matrix], [matrix], [matrix]]
 - e.g. list of images ←
 Tensor of rank 3, shape [n, m,k]
- Tensor of rank r, shape [d1, d2, ...]
 - You get the idea

Tensors are defined by a shape and a type

Tensors are the main data-structure holding data in tensor flow

Why tensors?

What are tensors?

- Double: 3.14159.. Tensor of rank 0, shape []
 Vector: [1.0, 2.0, 3.0, 5.0, 8.0, 13.0, ...]
- Matrix: [[1, 2], [1, 4], [1, 8], [1, 16], ...]
 - e.g. images– Tensor of rank 2, shape [n, m]
- Tensor: [[matrix], [matrix], [matrix], [matrix]]
 - e.g. list of images ←
 Tensor of rank 3, shape [n, m,k]
- Tensor of rank r, shape [d1, d2, ...]
 - You get the idea

Tensors are defined by a shape and a type

Tensors are the main data-structure holding data in tensor flow

Ingredients of data-science applications

Let's do it!

Sessions + data-dictionary + placeholders

"Hello data!" in tensorflow

Defining inputs in tensor flow

Placeholders = source of the flow

Passing data to applications Data-dictionary

feed_dict = {placeholder_variable : values}

Outputting data in tensor flow

Session.run() returns target tensors

retrieved_tensor = session.run(tensors_to_retrieve, feed_dict)

Running applications in tensorflow: Session

A defined application is run in a session object

Let's do it!

Sessions + data-dictionary + placeholders

"Hello data!" in tensorflow

Defining processing pipelines

The application graph is where intermediary data (tensors) intertwines with model variables

Defining variables in tensorflow

Warnings:

- tensorflow picky about variables types
- Variables are attached to a session
- Variables MUST be initialized before starting using
 - init = tf.initialize_all_variables()
 - session.run(init)

Let's do it!

Sessions + data-dictionary + placeholders + Tensors + variables

Logistic-regression in tensorflow

Actually learning something

Defining loss and optimizer

Defining a loss and adding a training operation enables to define an optimization problem

Let's run it!

```
Sessions + data-dictionary + placeholders &

Tensors + variables &

Loss + optimizer
```

Logistic-regression in tensorflow

Comparison point Tensorflow & scikit-learn

Tensorflow

- Full fledged optimization routine
- SGD based
- Requires definition of optimization problem
- Designed to scale

Scickit-learn

Out-of-box ML library

- Dedicated optimizer
- Just use the fit() and predict() methods
- Designed to be userfriendly

Phases of data-science applications

- Definition
- Training
- Scoring

Shall I use deep-learning / tensorflow?

- Application is complex
- Data is
 - Highly dimensional
 - Plenty
- Feature space is:
 - Complex
 - HugeYES!

- Application is simple
- Data is
 - Concise
 - Small
- Feature space is:
 - Intuitive
 - SimpleNO!

Don't use a sledgehammer to kill a fly.

Defining a neural network

Our basic lego block

Let's do it!

Sessions + data-dictionary + placeholders + Tensors + variables + NN operations

Mnist in tensorflow

The process of deep-learning

Hyper-parameters tunning

Defining a loss and adding a training operation enables to define an optimization problem

Hyper-parameters tuning

It's a trap!

Recommended structure of a deep-learning application

Ingredients of data-science applications

Outputting data in tensor flow

Session.run() returns target tensors

Why would google open-source TensorFlow?

One Framework to rule them all, One Framework to find them,
One Framework to bring them all and in deep-learning bind them

End of presentation