Network Security Devices, Design, and Technology

A degree of security can be achieved with standard security features, and proper hardware orientation, but improper configuration can introduce vulnerabilities

OSI Model:

- 7 layers (like dip)
- each has different networking tasks
- each cooperates with adjacent layers

Devices

Bridges

1-to-1 connection between two networks (operates at layer 2, ethernet)

 most OSs allow a software bridge - i.e. to share a network connection, but can introduce vulnerabilities

Switches

- layer 3 switches (smart switch)
- can learn which device is connected at each port (ARP), inspects MAC address of frames to store in MAC table
- forwards frames intended for a specific device rather than broadcast like a hub
- proper configuration includes loop prevention and flood guards (port security)
- port security limits the number of MAC addresses linked to a port

Routers

- forward packets across different networks (layer 3)
- can filter traffic with access control lists
- can blacklist networks

Load Balancers

- distributes work over multiple devices
- reduces chance of overload, and increases bandwidth of service
- software or hardware based
- layer 4 (network & transport layers) or layer 7 (application layer HTTP)
- different scheduling mechanisms round-robin, affinity, other

Proxies

- forward proxy relays requests on behalf of the user
- application / multipurpose proxy specific protocols
- reverse proxy routes requests coming in to correct internal server (load balancing?)
- $transparent\ proxy$ does not require any user configuration manipulates packages & headers

Advantages:

- increases speed
- reduces tech costs
- improved management
- stronger security

Hardware

Provide greater security than standard devices

Firewalls

inspect packets and accept or deny entry - "allow", "drop", "reject"

- software or hardware based
- hardware firewalls are harder to configure and are more expensive
- software firewalls only protect that device, host-based firewall
- stateless packet filtering individual packets are approved by rules
- stateful packet filtering keeps a record of state per connection, makes decisions based on connection & decisions
- rule-based firewalls have a decision graph, but are static in nature
- application-aware firewalls operate at a higher level
 - predefined application signatures, header inspection, payload analysis
 - web application firewalls inspect HTTP

Virtual Private Network (VPN)

all transmitted data between host and VPN is encrypted

- \bullet remote-access VPN user-to-LAN
- site-to-site between hosts on the WWW
- $\bullet \;\; always\text{-}on \;\; VPN$ allow the user to always stay connected
- endpoint may be software on a computer (OpenVPN) or a VPN concentrator
 - dedicated hardware that aggregates hundreds or thousands of VPN
- full tunnel (all traffic is routed) vs. split tunnel (only some traffic)

Mail Gateway

- SMTP (sending), POP/POP3 (downloads inbox), IMAP (mail remains on server)
- monitors for and rejects unwanted mail
 - inbound can be searched for malware, spam, and phishing
 - outbound can be searched for sensitive data

Network Intrusion Detection and Prevention

Intrusion Detection System (IDS)

- Inline IDS acts like a bridge to your network
 - can block attacks, but can block service
- Passive IDS connects to a port on your switch, and gets a copy of the traffic
 - can't block attacks, but can at most cause false alarms
- can be configured in-band (via network protocols in its own network), or out-of-band via remote access
- Host Intrusion Detection System (HIDS)
 - monitors system calls and file system access
 - recognizes unauthorized registry modification
 - watches for shifty I/O
 - can't watch network traffic, only local traffic
 - all log data is local
 - resource intensive
- Network Intrusion Detection System (NIDS)
 - installed on firewalls & routers
 - can sound alarm & log events
- Application-aware IDS
 - uses contextual knowledge in real time
 - it can know OS versions & which applications are running, and what vulnerabilities are present

Monitoring

- anomaly-based compared to some baseline
- signature-based compared to well-known attacks
- behavior-based by watching abnormal actions of processes and programs alerts user
- heuristic monitoring via experience-based techniques

Intrusion Prevention System

- Monitors traffic to immediately block attacks
- similar to NIDS, NIPS is inline to the firewall
- application-aware IPSs exist

Security and Information Event Management (SIEM)

- Real-time monitoring and aggregation for reports
- Can be a separate device, software, or a 3rd party
- Aggregation, correlation, automated alerts and triggers, time sync, event duplication, logs

Hardware Security Module

For storing crypto keys

SSL Decrypter

SSL/TLS Accelerator

Card installed into web server

Media Gateway

Translates between different media types - a "soft switch"

Unified Threat Management (UTM)

Antispam, antiphishing, antispyware, encryption, intrusion protection, web filtering

Internet Content Filter

Restricts based on keywords

Web Security Gateway

Application-level content examination

Network Architecture

Network design can make a system more robust, by utilizing security zones and network segregation

- One zone may be permitted to users, while sensitive access is not permitted, partly because it's on a different network
 - common examples: demilitarized zones, NAT (network address translation)
- $\bullet~$ DMZ is "outside" the secure network untrusted users can access DMZ
- NAT masks IP addresses of **one** private user
 - PAT masks a series of private IP addresses, and maps them to different ports on the public IP

Terms:

- Intranet a private network internal to an organization
- Extranet a private network 3rd parties can operate on
- Guest Network a public network

Types of Network Segregation

- Physical Network Segregation isolates network physically with an air Gap No connection between private and other network
- Network Hierarchy core switches at the top, workgroup switches at the bottom
- Virtual LAN logical grouping, but potentially sparse hosts
 - special tagging for different switches operating under the same VLANs
 - proprietary implementations, or IEEE 802.1Q

Methods for securing a network

Network Access Control

- $\bullet\,$ prevents suboptimally secure hosts from connecting to main network may quarantine them
- $\bullet \;\; host \; agent \; health \; checks$ either permanent or dissolvable
- can be embedded in Microsoft Windows Active Directory domain controller
- if AD scans the device, it's "agentless"
- quarantine is based on *health certificates* generated by a *health registry* authority

Data Loss Prevention

content inspection - security analysis of the transaction within its approved context

- common uses include monitoring emails, and blocking flash drives from copying files
- operates by content inspection
- looks at:
 - security level of content
 - who's requesting it
 - where it's stored
 - when it was requested
 - where it is going
- three types of DLP sensors:
 - DLP network sensors
 - DLP storage sensors
 - DLP agent sensors
- policy violations are reported by *DLP agent* to *DLP server*
 - can block data

- redirect request to authoritative individual to examine request
 quarantine the data until later
 alert a supervisor