

TENTAMEN

Kursnummer:	HF0024 Matematik för basår II					
Moment:	TENA					
Program:	Tekniskt basår					
Rättande lärare:	Staffan Linnaeus	Staffan Linnaeus				
Examinator:	Niclas Hjelm					
Datum:	2018-10-24					
Tid:	08:00-12:00					
Hjälpmedel:	Formelsamling: ISBN 978-91-27-72279-8 eller ISBN					
	978-91-27-42245-2 (utan anteckningar).					
	Inga andra formelsamlingar är tillåtna!					
	Miniräknare, penna, radergummi, linjal, gradskiva					
Omfattning och		<u>, </u>	. , , , ,			
betygsgränser:	Poäng	Betyg				
betygsgranser.	11	Fx				
	12 – 14	E				
	15 – 17	D	-			
	18 – 20	С	-			
	21 – 23 24 – 26	В	-			
		ter krävs ful	llständiga			
	Till samtliga uppgifter krävs fullständiga lösningar. Lösningarna skall vara tydliga och lätta					
	att följa. Införda beteckningar skall definieras.					
	Uppställda samband skall motiveras.					
	Skriv helst med blyertspenna!					
	Svaret ska framgå tydligt och vara förenklat så					
	långt som möjligt. Svara med enhet och lämplig					
avrundning på tillämpade uppgifter. Svara						
	·					
	övriga uppgifter, om inte annat anges. Lycka till!					

1. Beräkna det exakta värdet av
$$\cos 2v$$
 då man vet att $\cos v = \frac{2}{3}$. (1p)

2. Bestäm
$$f'(\pi)$$
 då $f(x) = 3x \sin x$. (2p)

3. Lös ekvationen
$$\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$$
. (2p)

4. Visa att
$$\tan x + \frac{\cos x}{1 + \sin x} = \frac{1}{\cos x}$$
. (2p)

5. En kula skjuts rakt upp i luften från 2,1 m höjd. Dess hastighet v m/s kan beskrivas med formeln v(t) = 590 - 9,82t, där t är tiden i sekunder. Beräkna kulans höjd över marken efter 120 sekunder.

(2p)

- 6. En liten ö har formen av en cirkel. På grund av landhöjningen växer öns area. När öns radie är 10,52 m så ökar den med hastigheten 0,01052 m/år. Med vilken hastighet växer öns area vid det tillfället?
- 7. Bestäm det minsta värde som funktionen $f(x) = 11 4\cos 2x + \sin 2x \text{ kan anta.}$ (2p)

8. Visa att om
$$n^2 + 5$$
 är ett udda heltal så är n ett jämnt heltal. (2p)

9. Lös ekvationen
$$2 \sin^2 x + \cos x = 1$$
. (3p)

- 10. Kurvan $y = x^2 x 6$ begränsar tillsammans med linjen y = -4 (3p) ett område. Beräkna områdets area exakt.
- 11. Funktionen f(x) har andraderivatan $f''(x) = \sin x + \cos x$. (3p) f(x) går genom origo och tangerar i origo linjen y = 2x. Bestäm f(x).

12. Bestäm
$$\int_{-1}^{1} x^{2n} dx$$
 där n är ett positivt heltal. (2p)

Lösningsförslag

1.
$$\cos 2v = 2\cos^2 v - 1 = \left[\cos v = \frac{2}{3}\right] = 2\left(\frac{2}{3}\right)^2 - 1 = -\frac{1}{9}$$

Svar:
$$\cos 2v = -\frac{1}{2}$$

$$2. \qquad (x) = 3x \sin x$$

$$f'(x) = 3 \sin x + 3x \cos x$$

$$f'(\pi) = 3\sin\pi + 3\pi\cos\pi = 3\cdot 0 + 3\pi(-1) = -3\pi$$

Svar:
$$f'(\pi) = -3\pi$$
.

$$3. \qquad \sin\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$$

$$x + \frac{\pi}{4} = \frac{\pi}{6} + n2\pi$$
 eller $x + \frac{\pi}{4} = \frac{5\pi}{6} + n2\pi$ (n \text{ \text{\text{ar heltal}}})

$$x = \frac{\pi}{6} - \frac{\pi}{4} + n2\pi$$
 eller $x = \frac{5\pi}{6} - \frac{\pi}{4} + n2\pi$

$$x = -\frac{\pi}{12} + n2\pi$$
 eller $x = \frac{7\pi}{12} + n2\pi$

Svar:
$$x = -\frac{\pi}{12} + n2$$
 eller $x = \frac{7\pi}{12} + n2\pi$.

4. =
$$\tan x + \frac{\cos x}{1 + \sin x} = \frac{\sin x}{\cos x} + \frac{\cos x}{1 + \sin x} = \frac{\sin x(1 + \sin x) + \cos x \cos x}{\cos x(1 + \sin x)} =$$

$$\frac{\sin x + \sin^2 x + \cos^2 x}{\cos x (1 + \sin x)} = \frac{(\sin x + 1)}{\cos x (1 + \sin x)} = \frac{1}{\cos x} = HL \qquad d.v.s. \quad VL = HL \quad V.S.V.$$

En lösning där konjugatregeln används:

$$VL = \tan x + \frac{\cos x}{1 + \sin x} = \frac{\sin x}{\cos x} + \frac{\cos x}{1 + \sin x} = \frac{\sin x}{\cos x} + \frac{\cos x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} = \frac{\sin x}{\cos x} + \frac{\cos x (1 - \sin x)}{1 - \sin^2 x} = \frac{\sin x}{\cos x} + \frac{\cos x (1 - \sin x)}{\cos^2 x} = \frac{\sin x}{\cos x} + \frac{(1 - \sin x)}{\cos x} = \frac{\sin x}{\cos x} + \frac{(1 - \sin x)}{\cos x} = \frac{\sin x + 1 - \sin x}{\cos x} = \frac{1}{\cos x} = HL \qquad d.v.s. \quad VL = HL \quad V.S.V.$$

5.

$$\Delta s = \int_{0}^{120} v(t)dt = \int_{0}^{120} (590 - 9.82t)dt = [590t - 4.91t^{2}]_{0}^{120} = 590 \cdot 120 - 4.91 \cdot 120^{2} = 96$$

Alltså är
$$s(120) - s(0) = 96 \implies s(120) = 96 + 2,1 = 98,1$$

6.

Beteckningar: A: arean (m²) r: radien (m) t: tiden (år)	$\frac{\text{Cirkeln:}}{A = \pi r^2}$ $\frac{dA}{dr} = 2 \pi r$
Givet: (gäller just nu)	Kedjeregeln för $(r(t))$:
r = 10,52 m $\frac{dr}{dt} = 0,01052 \text{ m/år}$	$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt} = 2 \pi r \frac{dr}{dt} =$ $= 2\pi \cdot 10,52 \cdot 0,01052 = 0,69536 \dots \approx 0,6954 \text{ m}^2/\text{år}$

Svar: Arean ökar med hastigheten 0,6954 m²/år.

7.
$$f(x) = 11 - 4\cos 2x + \sin 2x = 11 + \sin 2x - 4\cos 2x = 11 + \sqrt{1^2 + 4^2}\sin(2x - v) = 11 + \sqrt{17}\sin(2x + v) \implies f_{min} = 11 + \sqrt{17}\cdot(-1) = 11 - \sqrt{17} \quad \text{ty } -1 \le \sin t \le 1$$
Svar: $f_{min} = 11 - \sqrt{17}$

8. , *m*, *k* nedan betecknar heltal.

Indirekt bevis:

Det som ska visas är att $n^2 + 5$ är udda $\Rightarrow n$ är jämn. Detta är ekvivalent med att visa att n är udda $\Rightarrow n^2 + 5$ är jämn.

n är udda och kan skrivas = $2k + 1 \Rightarrow$ $n^2 + 5 = (2k + 1)^2 + 5 = 2^2k^2 + 2 \cdot 2k + 1 + 5 = 2(2k^2 + 2k + 3) = 2m$. V.S.B.

Motsägelsebevis:

Det som ska visas är att $n^2 + 5$ är udda $\Rightarrow n$ är jämn.

Nu antas att \underline{n} är udda d.v.s. n=2k+1. Detta antagande innebär att $\underline{n^2+5}=(2k+1)^2+5=2^2k^2+2\cdot 2k+1+5=2(2k^2+2k+3)=\underline{2m}$ men detta ger en motsägelse, eftersom n^2+5 är udda. V.S.B.

Direkt bevis:

Det som ska visas är att $n^2 + 5$ är udda $\Rightarrow n$ är jämn. Detta är ekvivalent med att visa att n^2 är jämn $\Rightarrow n$ är jämn.

 n^2 är jämn och kan skrivas $n^2 = 2k$ d.v.s. $n \cdot n = 2 \cdot k$. Eftersom det finns en faktor 2 i HL måste även VL innehålla (minst) en faktor 2 $\implies n$ är jämn. V.S.B.

$$2\sin^{2} x + \cos x = 1$$

$$2(1 - \cos^{2} x) + \cos x = 1$$

$$0 = 1 - 2 + 2\cos^{2} x - \cos x$$

$$\cos^{2} x - \frac{1}{2}\cos x - \frac{1}{2} = 0$$
Sitter $t = \cos x$

Sätter
$$t = \cos x$$
.

$$t^2 - \frac{t}{2} - \frac{1}{2} = 0$$

$$t = \frac{1}{4} \pm \sqrt{\frac{9}{16}}$$

$$t = \frac{1}{4} \pm \frac{3}{4}$$

$$t = 1$$
 eller

$$t = -\frac{1}{2}$$

Återgår till
$$\cos x = t$$
.

$$\cos x = 1$$
 eller

$$\cos x = -\frac{1}{2}$$

$$x = n360^{\circ}$$
 eller

eller
$$\cos x = -\frac{1}{2}$$

eller $x = \pm 120^{\circ} + n360^{\circ}$

heltal)

Svar:
$$x = n120^{\circ}$$

Skärningspunkter mellan linje och graf bestäms:

$$x^2 - x - 6 = -4$$

$$x^2 - x - 2 = 0$$

$$x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{8}{4}}$$

$$x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{1}{4}}$$

$$x = \frac{1}{2} + \frac{3}{2}$$

eller
$$x = \frac{1}{2} - \frac{3}{2}$$

eller $x = -1$

$$x - \frac{1}{2}$$
 $y - \frac{1}{2}$

Positiv koefficient för x^2 -termen ger att $y = x^2 - x - 6$ är underfunktion och då skärningspunkterna är x = -1 och x = 2 så kan arean beräknas med följande integral:

$$Area = \int_{-1}^{2} (-4 - (x^2 - x - 6)dx) = \int_{-1}^{2} (-x^2 + x + 2)dx =$$

$$\left[\frac{-x^3}{3} + \frac{x^2}{2} + 2x \right]_{-1}^{2} = \left(\frac{-2^3}{3} + \frac{2^2}{2} + 2 \cdot 2 \right) - \left(\frac{-(-1)^3}{3} + \frac{(-1)^2}{2} + 2(-1) \right) =$$

$$\frac{-8}{3} + 2 + 4 - \frac{1}{3} - \frac{1}{2} + 2 = 8 - \frac{1}{2} - \frac{9}{3} = \frac{9}{2}$$
Svar: Arean \(\text{ar} \text{ } \frac{9}{2} \) a.e.

$$f''(x) = \sin x + \cos x$$

$$f'(x) = -\cos x + \sin x + C$$

$$f(x) = -\sin x - \cos x + Cx + D$$

Kurvan
$$f(x)$$
 går genom origo, dvs $f(0) = 0$ samtidigt som $f(0) = -\sin 0 - \cos 0 + C \cdot 0 + d = -1 + D$. Vi får då

$$-1 + D = 0 \quad \Rightarrow \quad \underline{=1}.$$

Kurvan f(x) tangerar i origo linjen y=2x, dvs i origo har tangenten luntningen 2. f'(0) = 2 samtidigt som $f'(0) = -\cos 0 + \sin 0 + C$.

Vi får då

$$-cos0 + sin0 + C = 2 \implies -1 + 0 + C = 2 \implies \underline{C = 3}$$
.

Funktionen blir således $f(x) = -\sin x - \cos x + 3x + 1$.

Svar:
$$f(x) = -\sin x - \cos x + 3x + 1$$

12.

$$\int_{-1}^{1} x^{2n} dx = \left[\frac{x^{2n+1}}{2n+1} \right]_{-1}^{1} = \frac{1}{2n+1} (1^{2n+1} - (-1)^{2n+1}) =$$

$$\frac{1}{2n+1}(1-(-1)^{1}(-1)^{2n}) = \frac{1}{2n+1}(1+((-1)^{2})^{n}) =$$

$$\frac{1}{2n+1}(1+1) = \frac{2}{2n+1}$$

Svar:
$$\frac{2}{2n+1}$$

Rättningsmall, TENA I Matematik för basår II, KH0024, vårterminen 2018

B. Beräk C. Prövr D. Felak E. Antar F. Lösni (Via G. Mate	(Därefter fortsatt rättning enligt nya förutsättningar) kningsfel; allvarliga och/eller leder till förenkling ning istället för generell metod tiga antaganden/ansatser numeriska värden	-1 poäng -2 poäng eller me - samtliga poäng - samtliga poäng - samtliga poäng -1 poäng eller me akt, se nedan.) -1 poäng eller n -1 poäng/ -1 poäng/	r ner /tenta
	<u>ka uppgifter:</u> ndat svar	-1 poäng/tenta	
Tillämpa I. Enhet J. Avrun K. Svar	ade uppgifter: saknas/fel dningar i delberäkningar som ger fel svar med felaktigt antal värdesiffror (±1 värdesiffra ok) a avrundningsfel	-1 poäng/tenta -1 poäng/tenta -1 poäng/tenta -1 poäng/tenta -1 poäng/tenta -1 poäng/tenta	
1	Danilanan/anyiin dan an vinlad u yatan att matiyana yanfiin		
1.	Beräknar/använder en vinkel v , utan att motivera varför det räcker, ex. $\cos(2 \arccos \frac{2}{3})$	_	1p
2	Felderiverat		2p
2.	Korrekt $f'(x)$ t, men fel $f'(\pi)$		2p 1p
3.	Hittar enbart en lösningsgrupp		1p
	Period saknas/felaktig		1p
	Felaktig vinkel		1p/gång
4.	Utgår från båda led och flyttar termer mellan leden		2p
5.	Svarar 96 m d.v.s. ej hänsyn till s(0)=2,1	-	1p
6.	Kedjeregeln felaktig och/eller Arean felaktigt deriverad	-	2p
	Framgår inte tydligt vilken variabel som avses vid derivering	O	-
7.	Löser med derivata, påvisar ej maximum och/eller hittar ej a		_
	Felaktigt argument, t.ex. beräknar förskjutningen, men gör d	_	
0	Sätter sinustermen till -1 vid beräkning av max utan någon n	_	0p
	Visar att n är jämn $\Rightarrow n^2 + 5$ är udda.		2p
9.	Fel andragradsekv		3p
	Hittar $t = 1 \& t = -\frac{1}{2}$ därefter fel.	-	2p
	Rätt andragradsekvation, räknefel vid lösning		1p
	Hittar enbart en lösningsgrupp		1p
	Period saknas/felaktig		1p
	Felaktig vinkel		1p/gång
10	Skriver ej ihop lösningarna Korrekt uppställd integral inklusive analytiskt bestämda grän		0p -1p
10.	Bestämmer inte skärningspunkter/integrationsgränser analyt		1p
	Felaktig primitiv funktion		2p
	Motiverar ej val av över- resp. underfunktion		<u>-</u> Р
	Svarar med $-\frac{9}{2}$ eller bristfällig motivering av teckenbyte		1p
	2		- r

(Ej ok: 'areor är ej negativa'. Ok: 'y = -4 borde använts som överfunktion'.) Enhet a.e. anges ej. OK

11. Felaktig primitiv funktion - 2p
Felaktig konstantbestämning - 1p/gång

12. Felaktig primitiv funktion - 2p
Hittat $\frac{1}{2n+1}(1^{2n+1}-(-1)^{2n+1})$ därefter fel/ej fullständigt förenklat -1p