# Analyse différentielle des régions methylées Revue de littérature

Jakobi Milan

TIMC-Imag

Vendredi 15 mars 2019



## Table des matières

# identification DMRs

Jakobi Milan

#### DMRcate

Données Méthode Bilan

### **DMRcate**

Données

Méthode

Bilan

- ▶ 450k microarray avec 25% des probes sur des zones intercalaires.
- ▶ On utilise les M-values ( =  $log(\beta)$  )

- ▶ 450k microarray avec 25% des probes sur des zones intercalaires.
- On utilise les M-values ( =  $log(\beta)$  )
- Méthode extensible à toutes données génomiques : RRBS, WGBS...

### Présentation de la méthode

identification DMRs

Jakobi Milan

DMRcate

Données Méthode Bilan

3 types d'analyse proposées :

### 3 types d'analyse proposées :

- 1. Analyse entre deux groupes (Traitement vs Contrôle)
- 2. Analyse de contraste.
- 3. Analyse de variabilité ( On identifie alors les VMRs).

# Pseudo-algorithme

Après avoir choisi le type d'analyse, les étapes de la procédure seront les suivantes :

identification DMRs

Jakobi Milan

DMR

Méthode Bilan

1. On calcule  $Y_i$  nos statistiques de test.

- 1. On calcule  $Y_i$  nos statistiques de test.
- 2. On estime la distribution de nos statistiques de test  $Y_i$  par noyau gaussien ( par zones de taille  $\lambda$ ).

- 1. On calcule  $Y_i$  nos statistiques de test.
- 2. On estime la distribution de nos statistiques de test  $Y_i$  par noyau gaussien ( par zones de taille  $\lambda$ ).
- 3. On modélise, par méthode de Satterthwaite, nos statistiques de test "smoothées".

- 1. On calcule  $Y_i$  nos statistiques de test.
- 2. On estime la distribution de nos statistiques de test  $Y_i$  par noyau gaussien ( par zones de taille  $\lambda$ ).
- 3. On modélise, par méthode de Satterthwaite, nos statistiques de test "smoothées".
- 4. On calcule les pvaleurs du modèle.

- 1. On calcule  $Y_i$  nos statistiques de test.
- 2. On estime la distribution de nos statistiques de test  $Y_i$  par noyau gaussien ( par zones de taille  $\lambda$ ).
- 3. On modélise, par méthode de Satterthwaite, nos statistiques de test "smoothées".
- 4. On calcule les pvaleurs du modèle.
- On fixe un seuil à partir duquel on exclue les variables dont la pvaleur est trop forte

- 1. On calcule  $Y_i$  nos statistiques de test.
- 2. On estime la distribution de nos statistiques de test  $Y_i$  par noyau gaussien ( par zones de taille  $\lambda$ ).
- 3. On modélise, par méthode de Satterthwaite, nos statistiques de test "smoothées".
- 4. On calcule les pvaleurs du modèle.
- 5. On fixe un seuil à partir duquel on exclue les variables dont la pvaleur est trop forte
- 6. On construit nos DMRs/ZMRs finales en regroupant les CpG sites qui sont au plus à  $\lambda$  nucléotides

Selon le type d'analyse, nos statistiques de test  $Y_i$  sont différentes : Pour les analyses entre deux groupes ou analyse de contraste, on a :

$$Y_i = \hat{t}^2$$

avec  $t^2$  la statistique du test de Fisher modéré ( ratio de la M-value sur son écart-type). Pour l'analyse de variabilité, on a :

$$Y_i = \frac{V_i}{V}$$

avec  $V_i$  la variance des M-values de l'échantillon i et V la moyenne de cette variance sur tous les échantillons. ( Asymptotiquement équivalent à  $F_{n-1,\infty}$ ).

Pour l'estimation par noyau, chaque noyau est construit sur une longueur de  $\lambda$  nucléotides, et le paramètre d'échelle  $\sigma$  est déterminé par la relation suivante :

$$\sigma = \frac{\lambda}{C}$$

Avec C l'unique hyperparamètre de la méthode (  $C^*$  déterminé par CV). On pose :

$$\begin{cases}
S_{KY}(i) = \sum_{j=1}^{n} K_{ij} Y_{j} \\
S_{K}(i) = \sum_{j=1}^{n} K_{ij} \\
S_{KK} = \sum_{j=1}^{n} K_{ij}^{2}
\end{cases} (1)$$

On pose (Satterwhaite) :

$$\begin{cases}
 a_i = \frac{S_{KK}(i)}{(\mu S_K(i))} \\
 b_i = \frac{\mu S_K^2}{S_{KK}(i)}
\end{cases}$$
(2)

et on teste  $\frac{S_{KY}(i)}{a_i} \sim \chi^2_{b(i)}$ 

Les pvaleurs de ce test sont corrigées par procédure Bonjemini-Hochberg. On retient les sondes dont la pvaleur est inférieure au seuil choisi ( l'auteur conseille 0.05). On finit par construire nos DMRs ( ou VMRs) en regroupant les CpG sites qui sont à au plus  $\lambda$  nucléotides de distance.

### Pros et Cons

- ► Peu d'hyperparamètres : permet de s'affranchir des artefacts du jeu de données
- ▶ 95 % de recall sur jeu de données simulés.
- Les auteurs ont pu retrouvé plusieurs ZMRs qui revenaient à chaque fois selon le type de tissu utilisé.
- ► En comparant à d'autres méthodes utilissant aussi limma, les résultats étaient en moyenne meilleure et au moins aussi rapide.
- A l'étape de construction des zones (après sélection des CpG sites, pourquoi ne pas faire du ML non supervisé?)
- coût calculatoire élevé ( estimation par noyau).
- Taille des DMRs non contrôlable puisqu'adossée au paramètre d'échelle d'estimation par noyau + tailles virtuellement similaires ( max 2λ.
- > ?