5th Bar-Ilan Winter School on Cryptography Advances in Practical Multiparty Computation

"Tiny OT" — Part 1

A New (4 years old) Approach to Practical Active-Secure Two-Party Computation

Claudio Orlandi, Aarhus University

Plan for the next 3 hours...

Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver's trick
- MAC-then-Compute for Active Security

Part 2: Active Secure OT Extension

- Warmup: OT properties
- Recap: Passive Secure OT Extension
- Active Secure OT Extension

Part 3: From "Auth. Bits" to "Auth. Triples"

- Authenticated local-products (aAND)
- Authenticated cross-products (aOT)
- "LEGO" bucketing

Secure Computation

- Privacy
- Correctness
- ...

What kind of *Secure* Computation?

Dishonest majority

The adversary can corrupt up to n-1 participants (n=2).

Static Corruptions

 The adversary chooses which party is corrupted before the protocol starts.

Active Corruptions

Adversary can behave arbitrarily (aka malicious)

No guarantees of fairness, termination

Security with abort

Trusted Dealer

f(x,y)

- Independent of x,y
- Tipically only depends on size of f
- Uses public key crypto technology (slower)

 Uses only information theoretic tools (order of magn. faster)

Part 1: Secure Computation with a Trusted Dealer

Warmup: One-Time Truth Tables

Evaluating Circuits with Beaver's trick

MAC-then-Compute for Active Security

"The simplest 2PC protocol ever"

"The simplest 2PC protocol ever" OTTT (Preprocessing phase)

1) Write the truth table of the function F you want to compute

		À				
		0	1	2	3	
	0	3	2	2	2	
X	1	3	0	0	4	
	2	1	0	0	4	
	3	1	1	4	4	

"The simplest 2PC protocol ever" OTTT (Preprocessing phase)

2) Pick random (r, s), rotate rows and columns

"The simplest 2PC protocol ever" OTTT (Preprocessing phase)

3) Secret share the truth table i.e.,

at random, and let

"The simplest

"Privacy": inputs masked w/uniform random values

, r

$$v = y + s$$

$$T2[u,v]$$

Correctness: by construction

output f(x,y) = T1[u,v] + T2[u,v]

What about active security?

, I

Is this cheating?

- v = y + s + e1 = (y+e1) + s = y' + s
 - Input substitution, not cheating according to the definition!
- M2[u,v] + e2
 - Changes output to z' = f(x,y) + e2
 - Example: f(x,y)=0 for all inputs
 - With e2=1 Alice outputs 1
 - Clearly breach of correctness!

How to force Bob to send the right value?

- Problem: Bob can send the wrong shares
- Solution: use MACs

- e.g.
$$M$$
= aT + b with (a,b) ← F

Abort if M'≠aT'+b

OTTT+MAC

$$v = y + s$$

$$T2[u,v], M[u,v]$$

u = x + r

If
$$(M[u,v]=A[u,v]*T2[u,v]+B[u,v])$$

output $f(x,y) = T1[u,v] + T2[u,v]$
else
abort

Statistical security vs. malicious Bob w.p. 1-1/|F|

Curiosity

- Can we get perfect security?
 - Yes!
 - On the Power of Correlated Randomness in Secure Computation
 - Ishai, Kushilevitz, Meldgaard, O, Paskin
 - TCC 2013

"The simplest 2PC protocol ever" OTTT

Optimal communication complexity ©

Storage exponential in input size ②

→ Represent function using circuit instead of truth table!

Part 1: Secure Computation with a Trusted Dealer

Warmup: One-Time Truth Tables

Evaluating Circuits with Beaver's trick

MAC-then-Compute for Active Security

Circuit based computation

Invariant

For each wire x in the circuit we have

```
-[x] := (x_A, x_B)  // read "x in a box"
```

- Where Alice holds x_A
- Bob holds x_R
- Such that $x_A + x_B = x$

- Notation overload:
 - x is both the r-value and the l-value of x
 - use n(x) for name of x and v(x) for value of x when in doubt.
 - Then $[n(x)] = (x_A, x_B)$ such that $x_A + x_B = v(x)$

Circuit Evaluation (Online phase)

1) $[x] \leftarrow Input(A,x)$:

- chooses random x_B and send it to Bob
- set $x_A = x + x_B$ // symmetric for Bob

Alice only sends a random bit! "Clearly" secure

```
2) z \leftarrow Open(A,[z]):   // z \leftarrow Open([z]) if both get output
```

- Bob sends z_R
- Alice outputs $z=z_A+z_B$ // symmetric for Bob

Alice should learn z anyway! "Clearly" secure

Circuit Evaluation (Online phase)

2) $[z] \leftarrow Add([x],[y])$

// at the end z=x+y

- Alice computes $z_A = x_A + y_A$
- Bob computes $z_B = x_B + y_B$
- We write [z] = [x] + [y]

No interaction! "Clearly" secure As expensive as a local addition!

Circuit Evaluation (Online phase)

2a) $[z] \leftarrow Mul(a,[x])$ // at the end z=a*x

- Alice computes $z_{\Delta} = a^*x_{\Delta}$
- Bob computes $z_R = a^*x_R$

2c) $[z] \leftarrow Add(a,[x])$

// at the end z=a+x

- Alice computes $z_{\Delta} = a + x_{\Delta}$
- Bob computes $z_R = x_R$

Circuit Evaluation (Online phase)

3) Multiplication?

How to compute [z]=[xy]?

Alice, Bob should compute

$$z_A + z_B = (x_A + x_B)(y_A + y_B)$$

$$= (x_A y_A + x_B y_A + x_A y_B + x_B y_B)$$

Alice can compute this

Bob can compute this

How do we compute this?

Circuit Evaluation (Online phase)

3) $[z] \leftarrow Mul([x],[y])$:

1. Get [a], [b], [c] with c=ab from trusted dealer

- 2. e=Open([a]+[x])
- 3. d=Open([b]+[y])

Is this secure?

e,d are "one-time-pad" encryptions of x and y using a and b

4. Compute [z] = [c] + e[y] + d[x] - edab+(ay+xy)+(bx+xy)-(ab+ay+bx+xy)

Part 1: Secure Computation with a Trusted Dealer

Warmup: One-Time Truth Tables

Evaluating Circuits with Beaver's trick

MAC-then-Compute for Active Security

Secure Computation

Active Security?

"Privacy"

even a malicious Bob does not learn anything.

"Correctness"

 a corrupted Bob can change his share during any "Open" (both final result or during multiplication) leading the final output to be incorrect.

Problem

2) $z \leftarrow Open(A,[z])$:

- Bob sends z_B +e
- Alice outputs z=z_A+z_B+e

// symmetric for Bob

Problem

2) $z \leftarrow Open(A,[z])$:

- Bob sends z_B, m_B
- Alice outputs
 - $z=z_A+z_B$ if $m_B=k_A+z_B\Delta_A$
 - "abort" otherwise

- **Solution:** Enhance representation [x]
 - $[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B)) \text{ s.t.}$
 - $m_B = k_A + x_B \Delta_A$ (symmetric for m_A)
 - $-\Delta_{A}\Delta_{B}$ is the same for all wires.

Linear representation

Given

```
 - [x] = ((x_A, k_{Ax}, m_{Ax}), (y_B, k_{Bx}, m_{Bx})) 
 - [y] = ((y_A, k_{Ay}, m_{Ay}), (y_B, k_{By}, m_{By})) 
 - Compute [z] = ((z_A = x_A + y_A, k_{Az} = k_{Ax} + k_{Ay}, m_{Az} = m_{Ax} + m_{Ay}), (z_B = x_B + y_B, k_{Bz} = k_{Bx} + k_{By}, m_{Bz} = m_{Bx} + m_{By}), )
```

And [z] is in the right format since...

$$m_{Bz} = (m_{Bz} + m_{By}) = (k_{Ax} + x_{B}\Delta_{A}) + (k_{Ay} + y_{B}\Delta_{A})$$

= $(k_{Ax} + k_{Ay}) + (x_{B} + y_{B})\Delta_{A} = k_{Az} + z_{B}\Delta_{A}$

Recap

1. Output Gates:

- Exchange shares and MACs
- Abort if MAC does not verify

2. Input Gates:

- Get a random [r] from trusted dealer
- r \leftarrow Open(A,[r])
- Alice sends Bob d=x-r,
- Compute [x]=[r]+d

Recap

1. Addition Gates:

Use linearity of representation to compute[z]=[x]+[y]

2. Multiplication gates:

- Get a random triple [a][b][c] with c=ab from TD.
- e \leftarrow Open([a]+[x]), d \leftarrow Open([b]+[y])
- Compute [z] = [c] + a[y] + b[x] ed

Final remarks

Size of MACs

Lazy MAC checks

Size of MACs

- 1. Each party must store a mac/key pair *for* each other party
 - quadratic complexity!
 - SPDZ (tomorrow) for linear complexity.
- MAC is only as hard as guessing key!
 k MACs in parallel give security 1/|F|^k
 - In TinyOT F=Z₂, then MACs/Keys are k-bit strings
 - MiniMACs for constant overhead

Lazy MAC Check

Lazy MAC Check

1) $z \leftarrow PartialOpen(A,[z])$:

- Bob sends z_B
- 2. Bob runs OutMAC.append(m_B)
- 3. Alice runs InMAC.append($k_A + z_B \Delta_A$)
- 4. Alice outputs $z=z_A+z_B$

2) $z \leftarrow FinalOpen(A,[z])$:

- 1. Steps 1-3 as before
- 2. Bob sends u=H(OutMAC) to Alice
- 3. Alice outputs $z=z_A+z_B$ if u=H(InMAC)
- 4. "abort" otherwise

Recap of Part 1

- Two protocols "in the trusted dealer model"
 - One Time-Truth Table
 - Storage exp(input size) ⊗
 - Communication O(input size) ©
 - 1 round **ⓒ**
 - (BeDOZa)/TinyOT online phase
 - Storage linear #number of AND gates
 - Communication linear #number of AND gates
 - #rounds = depth of the circuit
 - ...and add enough MACs to get active security

Recap of Part 1

 To do secure computation is enough to precompute enough random multiplications!

 If no semi-trusted party is available, we can use cryptographic assumption (next)