Pontíficia Universidade Católica do Rio de Janeiro Departamento de Engenharia Elétrica

Quantile Regression

Marcelo Castiel Ruas*, Henrique Helfer Hoeltgebaum † , Alexandre Street ‡ , Cristiano Fernandes § January 16, 2017

^{*}Aluno de doutorado do Departamento de Engenharia Elétrica da PUC-RIO.

 $^{^\}dagger {\rm Aluno}$ de doutorado do Departamento de Engenharia Elétrica da PUC-RIO.

 $^{{}^{\}ddagger}\mathrm{Professor}$ do Departamento de Engenharia Elétrica da PUC-RIO.

[§]Professor do Departamento de Engenharia Elétrica da PUC-RIO.

1 Simulation

In this section, we investigate how to simulate future paths of the time series y_t . Let T be the total number of observations of y_t . We produce S different paths with size K for each. We have T observations of y_t and we want to simulate Given a vector of explanatory variables x_t , let q_t^{α} be given by the following linear model:

$$q_t^{\alpha} = \beta_0^{\alpha} + x_t^T \beta^{\alpha} + \varepsilon_t, \tag{1.1}$$

where β^{α} is a vector of coefficients for the explanatory variables. The variables chosen to compose x_t can be either exogenous variables, autoregressive components of y_t or both. As the distribution of ε_t is unknown, we have to use a nonparametric approach in order to estimate its one-step ahead density.

The coefficients β_0^{α} and β^{α} are the solution of the minimization problem given in equation ??, reproduced here for convenience:

$$\min_{\beta_{0},\beta,\varepsilon_{t}^{+},\varepsilon_{t}^{-}} \sum_{t=1}^{n} \left(\alpha \varepsilon_{t}^{+} + (1-\alpha)\varepsilon_{t}^{-} \right)
\text{s.t. } \varepsilon_{t}^{+} - \varepsilon_{t}^{-} = y_{t} - \beta_{0} - \beta^{T} x_{t}, \quad \forall t \in \{1,\dots,n\},
\varepsilon_{t}^{+}, \varepsilon_{t}^{-} \geq 0, \quad \forall t \in \{1,\dots,n\}.$$
(1.2)

To produce S different paths of $\{\hat{y}_t\}_{t=T+1}^{T+K}$, we use the following procedure:

- 1. For every quantile $\alpha_i \in (0,1)$, we use equation 1.1 to produce a forecast of $\hat{q}_{T+1}^{\alpha_i}$, as x_{T+1} is supposed to be known at time T+1. In the presence of exogenous variables that are unknown, it is advisable to incorporate its uncertainty by considering different scenarios. In each scenario, though, x_{T+1} must be considered fully known.
- 2. In any given t, by choosing many different values of α_i , we can estimate a sequence of quantiles $q_t^{\alpha_1} \leq q_t^{\alpha_2} \leq \cdots \leq q_t^{\alpha_Q}$ with $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_Q < 1$. Let $F_{y_{T+1}}$ be the estimated distribution function of y_{T+1} . The process of fitting $\hat{F}_{y_{T+1}}$ is by mapping every α_i with its estimated quantile \hat{q}^{α_i} . A problem arises for the distribution extremities, because when $\alpha = 0$ or $\alpha = 1$, the problem 1.2 becomes unbounded. In order to find good estimates for y_{T+1} when $F_{y_{T+1}}$ approaches 0 or 1, we can either use a kernel smoothing function, splines, linear approximation, or any other method. **This will be developed later.** When this sequence of chosen α_i is thin enough, we can approximate well the distribution function of y_{T+1} , as is shown in Figure . Thus, the distribution found for \hat{y}_{T+1} is nonparametric, as no previous assumptions are made about its shape, and its form is fully recovered by the data we have.
- 3. Once we have a distribution for y_{T+1} , we can generate K different simulated values, drawn from the distribution $\hat{F}_{y_{T+1}}$ found on step 2.

Let X be a random variable with uniform distribution over the interval [0,1]. By using results from the Probability Integral Transform, we know that the random variable $F_{y_{T+1}}^{-1}(X)$ has the same distribution as y_{T+1} . So, by drawing a sample of size K from X and applying the inverse function of $F_{y_{T+1}}$, we have our sample of size K for y_{T+1} .

References

- [1] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern optimization lens. arXiv preprint arXiv:1507.03133, 2015.
- [2] Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry Gorinevsky. ℓ_1 trend filtering. $SIAM\ review,\ 51(2):339-360,\ 2009.$
- [3] Roger Koenker. Quantile regression. Number 38. Cambridge university press, 2005.
- [4] Fernando Porrua, Bernardo Bezerra, Luiz Augusto Barroso, Priscila Lino, Francisco Ralston, and Mario Pereira. Wind power insertion through energy auctions in brazil. In *Power and Energy Society General Meeting*, 2010 IEEE, pages 1–8. IEEE, 2010.