WORLD INTELLECTUAL PROPERTY ORGANIZATION

PCT

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International P: . Classification 5: C12Q 1/70, C07H 15/12, 'IIU. G01N 33/53 7/00, C12N 15/00 C12P 21/06, C12N 5/00 C12Q 1/68, A61K 39/00

(11) International Publication Number:

WO 91/08310

(43) International Publication Date:

13 June 1991 (13.06.91)

(21) International Application Number:

PCT/US90/06887

(22) International Filing Date:

26 November 1990 (26.11.90)

(30) Priority data: 442,027

27 November 1989 (27.11.89) US

(71) Applicant: RESEARCH CORPORATION TECHNOLO-GIES, INC. [US/US]; 6840 East Broadway Boulevard, Tucson, AZ 85710 (US).

(72) Inventors: PIENIAZEK, Norman, J.; 420 Hunt River Way, Suwanee, GA 30174 (US). SLEMENDA, Susan, B. ; 2346 South Hairston, Decatur, GA 30035 (US). PIENI-AZEK, Danuta; 420 Hunt River Way, Suwanee, GA 30174 (US). VELARDE, Jorge; 4975 Brighton Avenue #4, San Diego, CA 92107 (US). LUFTIG, Ronald, B.; \$120 Biles Mondial LA 70003 (US) 5120 Pike, Metairie, LA 70003 (US).

(74) Agent: SCOTT, Anthony, C.; Scully, Scott, Murphy & Presser, 400 Garden City Plaza, Garden City, NY 11530 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent) tent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European pa-

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DETECTION OF HUMAN ADENOVIRUS

RL1 RL3 RL4 RL6 LONG FIBER RL2 RL5 SHORT FIBER

I.O kb

Protein coding regions in the E3-fiber area of the human enteric adenovirus type 41 Tak (map position of fragment shown: 74% to 92%)

(57) Abstract

The present invention relates to DNA and proteins of human Adenovirus Type 41 and their use in detection of said virus. More specifically, the present invention relates to the isolation of a 41.4 kd short fiber protein and a 60.6 kd long fiber protein of Adenovirus Type 41 (Ad41), as well as protein derived from the Ad41 E3 region, thereby providing virus-derived antigens and active derivatives and parts thereof, useful in the development of diagnostic assays, DNA probes and vaccines for said virus or other related viruses belonging to the human enteric family.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				ML	Mali
AT	Austria	PI	Finland	MN	Mongolia
Ü	Australia	FR	France	MR	Mauritania
LB.	Barbados	GA	Gabon	MW	Malawi
LE.	Belgium	GB	United Kingdom	NL	Notherlands
F	Burkina Faso	GN	Guinea	NO	Norway
iG	Bulgaria	GR	Greece	PL	Poland
Ñ	Benin	HU	Hungary	RO	Romania
SR	Brazil	rr	tuly	SD	Sudan
CA	Canada	JP	Japan Democratic People's Republic	SE	Sweden
CF	Central African Republic	KP		SN	Sencgal
œ	Congo		of Korua	SU	Soviet Union
СН	Switzerland	KR	Republic of Korea	TD	Chad
CI	Côte d'Ivoire	LI		TC	Togo
СМ	Cameroon	LK	Sri Lanka	US	United States of America
DE	Germany	LU	l.uxunihourg		
DK	Denmark	MC	Monaco		
ES	Snain	MG	Madagascar		

1

10

15

20

25

DETECTION OF HUMAN ADENOVIRUS

The present invention relates to DNA and proteins of human adenovirus type 41 and methods of detection thereof. In particular, the present invention relates to the isolation of a 41.4 kd fiber protein ("short" fiber protein) and a 60.6 kd fiber protein ("long" fiber protein) of human adenovirus type 41 (Ad41), as well as proteins derived from the Ad41 E3 region, thereby providing virus-derived antigens and active derivatives and parts thereof, useful in the development of diagnostic assays, DNA probes and vaccines for said virus or other related viruses belonging to the human enteric adenovirus family. The present invention is further directed to recombinant DNA molecules containing the Ad41 long fiber protein gene, the Ad41 short fiber protein gene and the Ad41 E3, gene (encoding the proteins RL-1 to RL-6) thereby providing a source of recombinant viral components useful in the development of said diagnostic assays for Ad41. The present invention is also directed to first antibodies specific to the above-identified Ad41 viral components and to second antibodies specific to the first antibodies. These second antibodies are also useful in the development of diagnostic assays for Ad41 and other adenoviruses.

Adenoviruses are simple DNA-containing viruses (i.e., composed of only DNA and protein) that multiply in the cell nucleus of the host. These viruses induce latent or acute infections in tonsils, adenoids, lungs, bladder and cornea as well as the gastrointestinal tract and are readily activated. Several adeno-

5

15

20

viruses are the first common viruses of humans shown to be oncegenic for lower animals under special experimental circumstances. The adenoviruses may serve as "helpers" for adeno-associated viruses which cannot replicate in their absence.

The viral particles of the adenovirus have a dense central core and an outer coat known as the capsid. These particles have an icosahedral configuration and are composed of 252 capsomers: 240 hexons make up the faces and edges of the equilateral triangles and 12 pentons comprise the vertices. The hexons are truncated triangular. 10 or polygonal prisms with a central hole. The pentons are more complex, consisting of a polygonal base with an attached fiber protein, whose length (i.e., short or long) varies with viral type. Minor capsid proteins are also associated with the hexons or pentons and confer stability on the capsid to form links with the core proteins, and to function in virion assembly.

Each virion contains one linear, double-stranded DNA molecule associated with proteins to form the core of the adenovirus.

The early region 3 (E3) of adenoviruses plays a critical role in pathogenesis of the virus's disease process even though none of its gene products are essential for replication of the virus in cell cultures. Not all proteins coded in the E3 regions of adenoviruses have been identified, even for the most commonly studied adenovirus, type 2 (Ad2). However, it has been postulated that they mediate cellular or immunological responses through structural or functional homology to regulatory molecules. For this reason, it is

30

possible that proteins generated from the E3 region, or their derivatives, can be used in therapy as modulators of the immune response (e.g., as an immunostimulation system in AIDS patients) or as anti-cancer agents to modify the action of various growth factors.

In addition, specific E3 proteins can be used to distinguish between different adenovirus types.

Adenoviruses are widespread in nature. The 89 accepted members of the adenovirus family have similar chemical and physical characteristics and a family cross-reactive antigen but are distinguished by antibodies to their individual type-specific antigens: at least 41 are from humans and the rest from various animals.

The enteric adenoviruses, such as Adenovirus Type 40 or 41 (and also known as Type F Enteric Adenoviruses), are a virus group that cause serious intestinal and diarrheal diseases of young children. In 1978, the World Health Organization initiated a program for global prevention and control for such childhood diseases. As a result, the relative importance of various pathogens in the etiology of diarrhea in many parts of the world has been recognized. For example, rotaviruses, which rank as the most prevalent viral pathogen in childhood diarrhea, may now be close to control as many vaccines are now in sight. This has been made possible through very intensive research over the past decade.

However, the control of enteric adenoviruses, which are responsible for at least 15% of all cases of severe infantile gastroenteritis, is not yet within reach. Although they are second after rotaviruses as viral agents causing this type of infection, enteric adenoviruses remain a poorly defined group of viruses. The

10

15

20

paucity of research done on enteric adenoviruses is mainly due to the difficulty of propagating the viruses in cultures. For this reason, there is no sensitive, fast, and diagnostic procedure able to distinguish between enteric adenoviruses and other adenoviruses (Group A, B, C, D, and E) which are commonly present in stools but are not agents of gastroenteritis. Another reason for studying enteric adenoviruses is their possible link to intestinal cancer which appears later in the life of infected individuals.

The standard reference methods for diagnosis of enteric adenoviruses have been (1) immunoelectron microscopy; (2) typespecific neutralization; (3) growth differences on primary human and Graham-293 cells. None of these methods are accurate and suitable for rapid routine use. Recently a new commercially available enzymelinked immunoabsorbent assay (ELISA) to detect enteric adenoviruses (Adeno-Type 40/41 EIA, Cambridge Bioscience) based on a polyclonal antibody to enteric adenovirus hexon protein was created, but this kit lacks both specificity and sensitivity.

However, the present invention solves the problems associated with the previous methodologies. The present invention describes a recombinant DNA molecule which can produce at least one of Human Adenovirus Type 41 Tak (Ad41) short fiber protein, long fiber protein, or proteins RL-1 to RL-6 of the Ad41 E3 region. (There are presently several isolates known of human adenovirus type 41, but the most common isolate of this adenovirus is human adenovirus type 41 Tak, represented in the present invention. This isolate is the standard Ad41 strain and it is listed in the American Type Culture collection under catalog number ATCC #VR-930.)

30

25

20

The Ad41 short and long fiber protein gene and Ad41 E3 proteins are useful for assays for human enteric adenoviruses since they express only minor immunological cross-reactivity between adenoviruses belonging to different serotypes; they are unique adenovirus proteins (i.e., Ad41 long fiber protein and possibly the short fiber as well are responsible for attachment of the virus to specific cellular receptors in the cell membrane during infection) and they express selective type-specific antigenicity. The genes of the present invention are ideal candidates for specific, selective monoclonal antibodies based on an enzyme immunoassay EIA) kit, a DNA probe assay system and a vaccine derived from the gene products. The present invention will not only enhance the understanding of the mechanism by which human enteric adenoviruses cause disease in humans, but will also assist in developing molecular probes for diagnosis of such infections.

The present invention relates to an isolated nucleic acid encoding a protein selected from human adenovirus type 41 Tak long fiber protein, short fiber protein, E3 RL-1 protein, E3 RL-2 protein, E3 RL-3 protein, E3 RL-4 protein, E3 RL-5 protein or E3 RL-6 protein. The present invention also relates to a replicable expression vector comprising the nucleic acid encoding a protein selected from human adenovirus type 41 Tak long fiber protein, short fiber protein, E3 RL-1 protein, E3 RL-2 protein, E3 RL-3 protein, E3 RL-4 protein, E3 RL-5 protein or E3 RL-6 protein operably linked to a nucleotide sequence capable of effecting an expression of a polypeptide encoded by any one of said nucleic acids.

- The present invention further relates to a recomminant protein of human enteric adenovirus Type 41 wherein said protein is long fiber protein, short fiber protein, RL-1, RL-2, RL-3, RL-4, RL-5 or RL-6.
- In addition, the present invention relates to a polypeptide comprising an antigenic fragment of human adenovirus Type 41 long fiber protein, short fiber protein, RL-1 protein, RL-2 protein, RL-3 protein, RL-4 protein, RL-5 protein or RL-6 protein. Also the present invention relates to antibodies against a long fiber protein of human adenovirus Type 41, a short fiber protein, RL-1 protein, RL-2 protein, RL-3 protein, RL-4 protein, RL-5 protein or RL-6 protein.

Further, the present invention relates to a vaccine for immunization against a human adenovirus comprising the administration of a mixture of inactivated Ad41 and at least one of recombinant Ad41 long fiber protein, recombinant Ad41 short fiber protein and recombinant Ad41 E3 proteins RL-1 to RL-6 or active fragments thereof in association with a conventional vaccine carrier.

Another aspect of the invention relates to a method of detecting or diagnosing human adenovirus comprising contacting serum, tissue, or tissue extracts of an individual to be tested with an antibody against Ad41 long fiber protein, short fiber protein, RL-1 protein, RL-2 protein, RL-3 protein, RL-4 protein, RL-5 protein or RL-6 protein or an active fragment thereof, for a time and under conditions necessary to form an antibody-antigen complex, and detecting any resultant antibody-antigen complex.

15

20

Yet another aspect of the invention is a method for detecting human adenovirus Type 41, human adenovirus Ad40 or any adenovirus antigenically or structurally similar to human AD41 in infected cells in a sample comprising lysing said cells, fixing the DNA of the infected cells and detecting the DNA containing said long fiber protein gene, short fiber protein gene or E3 gene by a specific probe nucleic acid wherein said probe nucleic acid is DNA, cDNA, recombinant DNA or RNA.

Still another aspect of this invention is a compartmentalized kit for detection of human adenovirus type 41 comprising at
least one first container adapted to contain an antibody having
specificity for Ad41 long fiber protein, short fiber protein or E3
proteins RL-1 to RL-6 and at least one second container adapted to
contain a reporter molecule capable of detecting the antibody of said
first container.

Fig. 1 is a representation of the DNA sequence of the human enteric adenovirus Type 41 Tak long fiber protein gene, and the corresponding amino acid sequence of Ad41 long fiber protein.

Fig. 2 is a representation of the DNA sequence of the human enteric adenovirus Type 41 Tak short fiber protein gene.

Fig. 3 is a representation of the amino acid sequence of Ad41 short fiber protein.

25

. ._ .

20

Fig. 4 is a representation of the DNA sequence of the human enteric adenovirus Type 41 Tak E3 gene.

Fig. 5 is a representation of the amino acid sequence of Ad41 RL-1 protein.

Fig. 6 is a representation of the amino acid sequence of Ad41 RL-2 protein.

Fig. 7 is a representation of the amino acid sequence of Ad41 RL-3 protein.

Fig. 8 is a representation of the amino acid sequence of 10 Ad41 RL-4 protein.

Fig. 9 is a representation of the amino acid sequence Ad41 R-L-5 protein.

Fig. 10 is a representation of the amino. acid sequence of Ad41 RL-6 protein.

- Fig. 11 is a representation of a map of the protein coding regions in the E3 region and fiber (short and long) area of the human enteric adenovirus type 41 Tak. The E3 region is represented by proteins RL-1 to RL-6. The map position of the fragment shown is 74% to 92%.
- The present invention contemplates identification, isolation and utilization of structural components of Type F Adenoviruses. In particular, the present invention relates to the human adenovirus Type 41 Tak (Ad41) long fiber protein gene, short fiber protein gene, and the entire E3 gene, and

30

25

diagnostic assays, monoclonal and polyclonal antibodies, DNA probes, and vaccines prepared relative thereto. This invention provides the advantage of a previously unavailable source of virus particles and parts thereof, and antigenic determinants and parts thereof, being highly desirable for its medical and experimental utility

In accordance with the present invention, the Ad41 long fiber protein gene, the Ad41 short fiber protein gene and the Ad41 E3 gene have been obtained by DNA sequencing of selected clones from an Ad41 library using standard techniques.

With respect to the Ad41 fiber protein gene coding for a 60.6 kd Ad41 fiber protein, henceforth this will be referred to in the Specification and Claims, as "Ad41 long fiber protein" and "Ad41 long fiber protein gene". In particular, this Ad41 long fiber protein gene found in the 1.9 Kb SmaI-EcoRI DNA fragment (map position 86.4% to 92%) of the human enteric Ad41 strain Tak was cloned in pBluescript II and sequenced directly using custom oligonucleotide primers. The gene coding for the Ad41 long fiber protein was identified using the sequence of Ad5 fiber protein gene as a reference. The procedure is outlined in more detail in the Examples.

In general, the fiber protein gene has three structural domains, the tail, the shaft and the knob, (i.e., NH₂ [N-terminus] - tail, shaft, knob - COOH [C-terminus]). Of these three domains, the "knob", which is responsible for the interaction of the virus with the cellular receptors displayed the lowest homology with other-human adenoviruses such as Ad2, Ad3, Ad5, and Ad7 at the DNA or protein level.

30

25

10

15

A 650 bp Hind III/Eco RI DNA fragment coding for the "knob" domain is subcloned on pUC18 vector and used in standard Southern hybridization with DNAs of representative serotypes of the Adenovirus subgroups A, B, C, D, E, and F. Only human enteric adenoviruses Ad 40 and Ad 41 of Type F can be detected.

The dsDNA sequence of the Ad41 long fiber protein gene and subsequent amino acid sequence of Ad41 long fiber protein is represented in Fig. 1. Ad41 long fiber protein shows a high degree of homology with Ad40 fiber protein, except for the shaft region. The Ad41 long fiber protein gene shaft contains 22 typical amino acid repeats, whereas Ad40 has only 21 such repeats. (This refers to the fact that all fiber protein genes sequenced to date have shown a characteristic 15-residue motif, which is repeated 6 to 12 times and detection of this motif has aided rapid recognition of the sequence.) There is 97.7% homology between the amino acid sequence of Ad41 long fiber protein and Ad40 fiber protein in the knob region.

Further analysis has shown that the long fiber protein gene as represented in Fig. 1, starting from the N-terminus (from the left in Fig. 1 or from the 5' end of the DNA) is composed of the domains

(i) "Tail". It is 126 bases long (from base at position 201 to 326). On the protein level, it has 42 amino acid residues (from Met [Methionine] to Pro [Proline]). The "tail" anchors the fiber in the penton base on the virion surface and show a high degree of homology between all adenoviruses.

discussed above and set forth in further detail below.

25

10

15

(ii) "Shaft". It is 1038 bases long (from base at position 327 to 1364). On the protein level it has 346 amino acid residues (from Gly [Glycine] to Leu [Leucine]). The "shaft" is a structural part of the fiber and is composed of repeating units (about 15 amino acids in each unit) showing high structural (but not sequence) homology among all adenoviruses. The number of these repeating units determines the length of fiber protein. In the case of Ad5, Ad2 and Ad41, there are 22 such units; in the case of Ad3 and Ad7, 6 units; and in Ad40, 21 units.

(iii) "Knob". It is 525 bases long (from base at position 1365 to 1889). On the protein level, it has amino acid residues (from Trp [Tryptophan] to Gln [Glutamic acid]). The TAA sequence ending the DNA sequence of the fiber gene (bases 1887-1889) is a part of the gene, but is not translated into an amino acid; it is a termination (or nonsense) codon. The "knob" region is responsible for the interaction of the virus with cellular receptors and determines the specificity of the virus. It differs substantially from adenovirus to adenovirus, depending on the types of cells infected by the virus.

The sequences flanking the Ad41 long fiber protein gene found in Fig. 1 contain various regulatory signals.

With respect to the previously undiscovered 41.4 kd Ad41 protein gene and subsequent protein encoded therein, these are henceforth characterized in the Specification and Claims as "Ad41 short fiber protein gene" and "Ad41 short fiber protein".

25

1

10

15

20

30

l It was surprisingly found when sequencing the DNA of the human enteric adenovirus type 41 Tak genome upstream of the Ad41 long fiber protein gene, using standard techniques, that an open reading frame of 387 amino acids existed coding for the 5 heretofore undisclosed Ad41 short fiber protein. The first 42 amino acids of the Ad41 short fiber protein show a high degree of homology both to Ad41 (74%) and Ad2 (61%) 60.6 kd long fiber protein tail domains. Furthermore, amino acids 43 to 233 of the short fiber protein form a typical shaft domain of twelve 15-residue repetitive 10 motifs which is in contrast to 22 such repeats found for Ad2, Ad5, and the long fiber protein of Ad41 or 6 repeats found for Ad3 and Ad7. The knob domain (amino acids 234 to 387) is about 15% shorter than found for the above mentioned viruses. If this gene is expressed, Ad41 would resemble avian adenoviruses which were found to have 15 two fibers of different length protruding from their pentons. The sequence presented in Fig. 2 is from the EcoRV site at map position 83.1% to the AccI site at map position 87.1%. This region was cloned and sequenced in a manner that described above.

The structure of the short fiber shows the same structural elements as described for other fiber genes (but not the identical sequence), namely:

- (i) "Tail". It is 126 bases long (from base at position 157 to 282). On the protein level, it has 42 amino acid residues (from Met [Methionine] to Pro [Proline]).
- 25 (ii) "Shaft". It is 573 bases long (from base at position 283 to 855). On the protein level it has 191 amino acid residues (from Gly [Glycine] to Ile [Isoleucine]). The short fiber of Ad41 has 12 repeating units.

30

(iii) "Knob". The short fiber "knob" of Ad41 is 465 bases long (from base at position 856 to base at position 1320). On the protein level, it has 154 amino acids (from Trp [Tryptophane] to Gln [Glutamine]). The TAA sequence ending the short fiber protein gene (bases 1318-1320) is a part of the gene, but is not translated into an amino acid; it is a termination codon.

The knob region of the Ad41, short fiber protein is very different from the knob region of the long fiber protein as well as from knob regions of fiber proteins of other adenoviruses.

This enteric adenovirus (Ad41) is understood to use two different receptors on the surface of a cell for binding and/or penetration. It is also understood that two different fibers with distinct "knobs" permit the Ad41 virus to infect at least two different types of cells in the gastrointestinal tract. Therefore the present invention also relates to diagnostic immunoassays and effective vaccines which utilize the different Ad41 fiber proteins as discussed in further detail below.

In addition, the present invention also contemplates another critical sequence, the DNA sequence of the Ad41 E3 region as shown in Fig. 3. This will be referred to in the Specification and Claims as the Ad41 E3 gene.

In addition, the amino acid sequences of six putative proteins encoded by this region are described herein, and referred to in the Specification and Claims as RL-1, RL-2, RL-3, RL-4, RL-5 and RL-6 as set forth in further detail below.

The Ad41 E3 region DNA sequence has 3373 bases, including the flanking regions. The sequence disclosed herein is from the EcoRI restriction site at map position 74% to the EspI restriction site at map position 83.9%.

25

10

15

- The Ad41 E3 region codes for some unique, previously 1 unrevealed proteins. The Ad41 E3 region contains information sufficient to code for at least 6 proteins; in the following order. (from the left, or 5' end):
- (1) The region from base 683 to base 1204 codes for a 19.4 5 . kd protein, referred to herein as RL-1. This protein has 173 amino It is unique for Ad41. acid residues.
 - The region from base 1207 to 2037 codes for a 31.6 kd protein, referred to herein as RL-2. This protein has 276 amino acid residues. It is unique for Ad 41.
 - (3) The region from base 1730 to 1909 codes for a 6.7 kd protein (in a different reading frame than the 31.6 kd protein), referred to herein as RL-3. This protein has 59 amino acid residues and is unique for Ad41.
- (4) The region from base 2056 to base 2328 codes for a 15 10.1 kd protein, referred to herein as RL-4. This protein as 90 amino acid residues and shows 40% homology to an Ad 2 10.4 kd protein. It was postulated by Carlin, et al., Cell, 57:135-144 (1989) that the same protein in Ad2 induces internalization and degradation of the epidermal growth factor receptors (EGF-R) . 20
 - (5) The region from base 2325 to base 2648 codes for a 12.3 kd protein, referred to herein as RL-5. This protein has 107 amino acid residues and shows 35% homology to an Ad2 14.5 kd protein; the function of the Ad2 protein is unknown.
- (6) Finally, the region from base 2641 to base 3009 codes 25 for a 14.0 kd protein, referred to herein as RL-6. This protein has 122 amino acid residues and shows 50% homology to an Ad2 14.7 kd protein which was found by Gooding, et al., Cell, 53:341-346 (1988) to inhibit cytolysis by the tumor necrosis factor (TNF).

30

The present invention contemplates the use of the Ad41 long and short fiber protein genes, and the Ad41 E3 region gene, via production of their gene products, to prepare antibodies. Such antibodies may be monoclonal or polyclonal. Additionally, it is within the scope of this invention to include second antibodies (monoclonal or polyclonal) directed to the first antibodies discussed above.

Accordingly, the pesent invention relates to a method for stimulating an immune response to human adenovirus type 41 Tak 10 which consists of administering an effective amount of at least one of Ad41 long fiber protein, Ad41 short fiber protein, and Ad41 E3 proteins RL-1, RL-2, RL-3, RL-4, RL-5 and RL-6, under conditions as described below, sufficient to cause the production of polyclonal or monoclonal antibodies to at least one of said Ad41 proteins, wherein the dosage effective amount of said Ad41 proteins can be from about 0.001 mg to 100 mg.

In order to produce such antibodies, Ad41 long fiber protein, Ad41 short fiber protein or Ad41 E3 proteins (RL-1 to RL-6) are first purified, and methods of antibody production are described below. Both polyclonal and monoclonal antibodies are obtainable by immunization with at least one of the above-identified proteins or their active components (which, in the case of the fiber proteins, can be the tail, shaft or knob). The methods of obtaining both types of antibodies are well known in the art; e.g., extensive protocols for antibody production can be found in Harlow, et al., Antibodies: A Laboratory Manual, Cold Spring Harbor, N.Y., 1988. Polyclonal antibodies are less preferred, but are relatively easily prepared by injection of

30

1

15

a suitable laboratary animal with, for example, 0.001 to 100 mg of the purified viral antigenic component, collecting serum from the animal, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of imunoassay, they are generally less favored because of the potential heterogeneity of the product.

In another embodiment of the present invention, monoclonal antibodies are contemplated for detection and diagnosis of Ad41 and related adenoviruses.

The production of monoclonal antibodies relative to the present invention is particularly preferred because of the ability to produce monoclonal antibodies in large quantities and the homogeneity of the final product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art. (See, e.g., Kohler, G. and Milstein, C., Nature 256: 495-497, 1975; European Journal of Immunology, 6:511-519, 1976; the teachings of which are herein incorporated by reference).

Unlike preparation of polyclonal sera, the choice of animal is dependent on the availability of appropriate immortal lines capable of fusing with lymphocytes thereof. Mouse and rat have been the animals of choice in hybridoma technology and are preferably used. Humans can also be utilized as sources for sensitized lymphocytes if appropriate immortalized human (or nonhuman) cell lines are available. For the purpose of the present invention the animal of

30

25

Brichocin, Jun

choice may be injected with, for example, a preferred range from about 1 mg to about 20 mg of the purified virus or antigenic component thereof. (A range of 0.001 mg to 100 mg of purified viral component is also contemplated.) Usually the injecting material is emulsified in Freund's complete adjuvant. Boosting injections may also be required. The detection of antibody can be carried out by testing the antisera-with appropriately labeled antigen. Lymphocytes can be obtained by removing the spleen or lymphnodes of sensitized animals in a sterile fashion and carrying out fusion. Alternately, lymphocytes can be stimulated or immunized in vitro, as described, for example, in C.Reading, J. Immunol. Meth. 53: 261-291, 1982.

A number of cell lines suitable for cell fusion, have been developed, and the choice of any particular cell line for hybridization protocols in the production of monoclonal antibodies is directed by any one of a number of criteria such as speed, uniformity of growth characteristics, deficiency of its metabolism for a component of the growth medium, and potential for a good fusion frequency.

Intraspecies hybrids, particularly between like strains, 20 work better than interspecies fusions. Several cell lines are available, including mutants selected for the loss of ability to secrete myeloma immunoglubulin. Included among these are the following mouse myeloma lines: MPC11-X45-6TG, P3-NS1-1-Ag4-1, P3-X63-Ag8, or mutants thereof such as X63-Ag8.653, SP2-0-Ag14 (all BALB/C-derived), Y3-'Ag1.2.3 (rat), and U266 (human).

30

Barr on Sendai virus, or polyethylene glycol. Polyethylene glycol (PEG) is the most efficacious agent for the fusion of mammalian somatic cells. PEG itself may be toxic for cells, and various concentrations should be tested for effects on viability before attempting fusion. The molecular weight range PEG may be varied from 1,000 to about 70% w/w in saline or serum-free medium. Exposure to PEG at 37°C for about 30 seconds is preferred in the present case, utilizing murine cells. Extremes of temperature (i.e. about 45°C) are avoided, and preincubation of each component of the fusion system at 37°C prior to fusion gives optimum results. The ratio between lymphocytes and malignant cells range of from about 1:1 to about 1:10 gives good results.

The successfully fused cells can be separated from the myeloma line by any technique known by the art. The most common and preferred method is to choose a malignant line which is Hypoxanthine Guanine Phosphoribosyl Transferase (HGPRT) deficient, which will not grow in an aminopterin containing medium used to allow only growth of hybrids and which is generally composed of hypoxanthine lx10⁻⁴M, aminopterin 1x10⁵M, and thymidine 3x10⁻⁵M, commonly known as the HAT medium. The fusion mixture can be grown in the HAT-containing culture medium immediately after the fusion 24 hours later. The feeding schedules usually entail maintenance in HAT medium for two weeks and then feeding with either regular culture medium or hypoxanthine, thymidine containing medium.

30

25

15

The growing colonies described above are tested for the presence of monoclonal antibodies that recognize the antigenic preparation, wherein said antigenic preparation which includes at least one of the above-identified Ad41 proteins or a derivative 5 thereof. Hybridoma antibodies are identified by using an assay where the antigen is bound to a solid support and allowed to react to hybridoma supernatants containing putative antibodies. The presence of antibodies is shown by "sandwich" techniques using a variety of indicators, as discussed in further detail below. Most of the common methods are sufficiently sensitive for use in the range of antibody concentrations secreted during hybrid growth.

Cloning of antibody-secreting hybrids can be carried out after 21-23 days of cell growth in selected medium. Cloning can be performed by cell limiting dilution in fluid phase or by directly; \cdot selecting single cells growing in semi-solid agarose. For limiting dilution, cell suspensions are diluted serially to yield a statistical probability of having only one cell per well. For the agarose technique, hybrids are seeded in a semisolid upper layer, over a lower layer containing feeder cells. The colonies from the upper layer may be picked up and eventually transferred to wells.

Antibody-secreting hybrids can be grown in various tissue culture flasks, yielding supernatants with variable concentrations of antibodies. In order to obtain higher concentrations, hybrids may be transferred into animals to obtain inflammatory ascites. Antibodycontaining ascites can be harvested 8-12 days after intraperitoneal

25

ı

15

injection. The ascites contain a higher concentration of antibodies but include both monoclonals and immunoglobulins from the inflammatory ascites. Antibody purification may then be achieved by, for example, affinity chromatography. The present invention further contemplates the use of the above-described antibodies in a detection assay (immunoassay) for human enteric adenoviruses (Group F), particularly Ad41 and Ad40.

A wide range of immunoassay techniques are available as can be seen by reference to U.S. Patent Nos. 4,016,043, 4,424,279, 4,018,653 and by Harlow, et al., supra. This, of course, includes both single-site and two-site,or "sandwich", assays of the non-competitive types, as well as in traditional competitive binding assays. Sandwich assays are among the most useful and commonly used assays and are favored for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention.

In a typical forward assay, an unlabeled antibody is immobilized in a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen binary complex, a second antibody, labeled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of a ternary complex of antibody-labeled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of the visible signal produced by the reporter molecule. The results may either be

30

25

10

15

20

ביינינים באר ביינים ביינים

qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten.

Variations on the forward assay include a simultaneous 5 assay, in which both sample and labeled antibody are added simultaneously to the bound antibody, or a reverse assay in which the labeled antibody and sample to be tested are first combined, incubated and then added to the unlabeled surface bound antibody. These techniques are well known to those skilled in the art, and the possibility of minor variations will be readily apparent to those skilled in the art.

As used herein, "sandwich assay" is intended to encompass all variations on the basic two-site technique. For example, these antibodies may be used to detect Ad41 by its long and/or short fiber proteins or any one of E3 proteins RL-1 to RL-6 or other antigenically related adenoviruses (i.e., Ad40) by use of specific antigenic determinants, or parts thereof (i.e., Ad41 fiber proteins, or the tails, shafts or knobs of said proteins) as immobilized immunoadsorbants. Serum is obtained from subjects to be tested and said serum contacted to the immobilized viral immunoadsorbants. If said serum contains antibodies to said immunoadsorbants, an antibody-adsorbant conjugate will result. After removing excess serum and non-bound antibodies, a second antibody specific to a first antibody, said first antibody being capable of forming a conjugate with said immunoadsorbant, is added thus resulting in a double antibody-adsorbant conjugate. This double antibody-adsorbant conjugate will only result if the test serum contains antibodies to the immunoadsorbant. Consequently, standard detection techniques can be used to identify the conjugate.

10

15

In another immunoassay, the competitive binding assay, a limiting amount of antibody specific for the molecule of interest (either an antigen or hapten) is combined with specific volumes of solutions containing an unknown amount of the molecule to be detected and a solution containing a detectably labeled known amount of the molecule to be detected or an analog thereof. Labeled and unlabeled molecules then compete for the available binding sites on the antibody. Phase separation of the free and antibody-bound molecules allows measurement of the amount of label present in each phase, thus indicating the amount of antigen or hapten in the sample being tested. A number of variations in this general competitive binding assay currently exist.

In any of the known immunoassays, for practical purposes, one of the antibodies to the antigen (Ad41 long fiber protein, Ad41 short fiber protein or any one of Ad41 E3 proteins RL-1 to RL-6 or fragments thereof) will be typically bound to a solid phase and a second molecule, either the second antibody in a sandwich assay, or in a competitive assay, the known amount of antigen, will bear a detectable label or reporter molecule in order to allow visual detection of an antibody-antigen reaction. When two antibodies are employed, as in the sandwich assay, it is only necessary that one of the antibodies be specific for, e.g., Ad41 short or long fiber protein or its antigenic fragments (the tail, the shaft or the knob). The following description will relate to a discussion of a typical forward sandwich assay; however, the general techniques are to be understood as being applicable to any of the contemplated immunoassays.

In the typical forward sandwich assay, a first antibody having specificity for, e.g., Ad41 short or long fiber protein or its antigenic fragments is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polivinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs or microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking, covalently binding, or physically adsorbing the molecule to the insoluble carrier. Following binding, the polymerantibody complex is washed in preparation for the test sample. An. aliquot of the sample to be tested is then added to the solid phase complex and incubated at 25°C for a period of time sufficient to allow binding of any subunit present in the antibody. The incubation period will vary, but will generally be in the range of about 2-40 minutes. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

By "reporter molecule", as used in the present specification and claims, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionucleotide containing molecules.

25

1

10

15

1

5

10

15

20

In the case of an enzymic immunoassay (EIA), an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and alkaline phosphates, among others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. For example, p-nitrophenyl phosphate is suitable for use with alkaline phosphatase conjugates; and for peroxidase conjugates, 1,2-phenylenediamine, 5-aminosalicyclic acid, or tolidine are commonly used. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above.

In all cases, the enzyme-labeled antibody is added to the first antibody hapten complex, allowed to bind, and then excess reagent is washed away. A solution containing the appropriate substrate is then added to the ternary complex of antibody-antigenantibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample.

Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular

30

wavelength, the fluorochrome-labeled antibody absorbs the light energy, inducing a state of excitability in the molecule, followed by emission of the light at a characteristic color visually detectable with a light microscope. As in the EIA the fluorescent labeled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining ternary complex is then exposed to the light of the appropriate wavelength, the fluorescence observed inicates the presence of the hapten of interest. Immunofluorescence and EIA techniques are both very well established in the art and are particularly preferred for the present However, other report molecules, such as radioisotope, chemiluminescent of bioluminescent molecules, may also be employed. It will be readily apparent to the skilled technician how to vary the procedure to suit the required purpose. It will also be apparent that the foregoing can be used to detect directly or indirectly (i.e., 15 via antibodies) Type F adenoviruses.

In a preferred embodiment, the present invention also contemplates the use of the Ad41 E3 proteins RL-1 to RL-6 and Ad41 short fiber protein knob and Ad41 long fiber protein knob in enzyme immunoassays for selective detection of human enteric adenoviruses and in particular Ad41 and Ad40 in the stool of patients with gastroenteritis. EIA can give a clear, rapid result in about 2 hours and can therefore be more convenient and efficient and less expensive than a DNA probe test.

25

20

10

The present invention further contemplates an ELISA (enzyme-linked immunoabsorbent assay) test for the presence of antibodies to Ad41 long or short fiber protein or Ad41 E3 proteins RL-1 to RL-6 in serum or other specimens, such as saliva or the duodenal fluid from patients with gastroenteritis. The Ad41 long or short fiber protein "knob" of the present invention can be used, for example, to coat microtiter plates.

The present invention also contemplates the use of recombinant DNA molecules which contain at least one of the following genes: Ad41 long fiber protein gene, Ad41 short fiber protein gene, Ad41 E3 region gene encoding for proteins RL-1, RL-2, RL-3, RL-4, RL-5 or RL-6. The present invention contemplates using these recombinant DNA molecules in the development of diagnostic assays for Ad41. In another embodiment, the present invention contemplates the use of recombinant DNA molecules or derivatives thereof as described above, to generate antibodies useful in diagnostic and therapeutic techniques.

Another aspect of the present invention is the employment of the genetic information contained in the DNA of the Ad41 long fiber protein gene, the Ad41 short fiber protein gene and the Ad41 E3 gene. As defined herein, DNA is referred to as the genetic component of the virus (i.e., double-stranded DNA). Said DNA can be inserted in recombinant expression molecules such that, for example, the Ad41 long fiber protein gene encoded thereon is transcribed and the product can then be obtained. Such products can then be used as antigenic components to generate, for example, antibodies. The present invention contemplates the

30

25

10

15

l transformatian of a host cell or organism with dsDNA of Fig. 1 (Ad41 long fiber protein gene) and/or Fig. 2 (Ad41 short fiber protein gene) and/or Fig. 4 (Ad41 E3 gene) which is capable of producing Ad41 (long or short) fiber protein or Ad41 E3 (RL-1 to RL-6) proteins wherein the host cell or organism is a bacterium (e.g., E. coli), yeast, insect cell or a mammalian cell.

The present invention also relates to DNA described above which can be used to generate probe nucleic acids for hybridization to homologous Ad41 or Ad40 DNA sequences, utilizing at least one of the following Ad41 genes: Ad41 long fiber protein gene, Ad41 short fiber protein gene or Ad41 E3 gene encoding the RL-1 to RL-6 Ad41 proteins.

Another aspect of this invention relates to a recombinant nucleic acid or an isolated nucleic acid molecule, said molecule; defined herein to be dsDNA or recombinant DNA encoding Ad41 short fiber protein, Ad41 long fiber protein, or E3 proteins RL-1 to R-6, or parts thereof. In one embodiment the recombinant nucleic acid molecule is complementary DNA (cDNA). It is considered within the scope of the present invention to include the cDNA molecule encoding the above-identified Ad41 proteins, or to regions or parts thereof including any base deletion, insertion or substitution or any other alteration with respect to nucleotide sequence or chemical composition (e.g. methylation and glycosylation). Additionally, the present invention is directed to restriction fragments and synthetic fragments from a nucleic acid encoding the above-identified Ad41 proteins. Moreover, another embodiment of the this invention is directed to the genomic Ad41 long fiber protein gene, Ad41

25

10

15

short fiber protein gene or E3 gene, which may include recombinant clones like cosmids encoding the entire gene or subclones encoding any region of the above-identified genes. Recombinant DNA encoding such subregions of the gene are useful as hybridization probes to detect the presence of the above-identified genes.

Methods considered useful in obtaining recombinant Ad41 cDNA are contained in Maniatis, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York; (2d Ed. 1989), for example, or any of the myriads of laboratory manuals on recombinant DNA technology which are widely available. Maniatis, et al. further discloses how to obtain deletions and insertions by site-directed mutagenesis, and subsequent selection of mutants for activity.

In a preferred embodiment, the present invention provides a dsDNA or recombinant DNA or cDNA having a nucleotide sequence encoding the Ad41 long fiber protein gene, as shown in Fig. 1. This sequence encodes the 60.6 kd Ad41 long fiber protein having the amino acid sequence shown in Fig. 1.

The present invention further provides a dsDNA or recombinant DNA or cDNA having a nucleotide sequence encoding the Ad41 short fiber as shown in Fig. 2, wherein this sequence encodes a 41.4 kd Ad41 short fiber protein having an amino acid sequence as shown in Fig. 3.

The present invention additionally provides a dsDNA or recombinant DNA or cDNA having a nucleotide sequence which encodes for the E3 region of Ad41 as shown in Fig. 4 wherein this region encodes six E3 proteins, RL-1 to RL-6. The E3 DNA sequence, from base 683 to base 1204, encodes RL-1, a

30

25

10

1 19.4 kd protein having an amino acid sequence as shown in Fig. 5. The E3 DNA sequence from base 1207 to base 2037 encodes RL-2, a 31.6 kd protein having an amino acid sequence as shown in Fig. 6. The E3 DNA sequence from base 1730 to base 1909 encodes RL-3, a 6.7 kd protein having an amino acid sequence as shown in Fig. 7. The E3 DNA sequence from base 2056 to base 2328 encodes RL-4, a 10.1 kd protein having an amino acid sequence as shown in Fig. 8 The E3 DNA sequence from base 2325 to base 2648 encodes RL-5, a 12.3 kd protein having an amino acid sequence as shown in Fig. 9. The E3 DNA sequence from base 2641 to base 3009 encodes RL-6, a 14.0 kd protein having an amino acid sequence as shown in Fig. 10.

The present invention further contemplates the preparation and use of a vaccine composition for the treatment of human adenovirus type 41 and related adenoviruses, including Ad40. The preparation of said vaccine is accomplished by utilization of at least one of the following adenovirus type 41 proteins: Ad41 short fiber protein, Ad41 long fiber protein, and E3 proteins RL-1 through RL-6. This is done by genetic engineering of at least one of the above-identified proteins and expressing at least one of these proteins in suitable vector/host cell systems such as bacteria, yeast or any other suitable vector/host system. In a further preferred embodiment, the vaccine of the present invention contemplates the use of cloned Ad41 long fiber protein "knob" or short fiber protein "knob" as an immunizing agent.

Previously used vaccines have generally comprised (I) an attenuated live virus type of vaccine in which the virus has been rendered avirulent but not killed by some form

15

20

of genetic attenuation; or (II) specific viral components isolated and purified from the virus and inactivated by formalin or some other chemical or physical treatment. The present invention contemplates conventional Type II vaccines, wherein the specific viral components isolated and purified from the virus and inactivated by formalin or other treatments are contemplated to be at least one of Ad41 short fiber protein, AD41 long fiber protein, E3 Rl-1, RL-2, RL-3, RL-4, RL-5 or RL-6 protein. In addition, with respect to Ad41 long and short fiber protein "viral component" also contemplates at least one of the tail, shaft or knob of these proteins. The present invention also contemplates the preparation of recombinant Ad41 proteins for use in a vaccine against Ad41 and Ad40.

In another embodiment, the present invention is directed to a Type II vaccine which is a combination of inactivated Ad41 and i at least one of recombinant long and short Ad41 protein fibers and Ad41 E3 proteins RL-1 to RL-6.

By vaccine is meant an agent used to stimulate the immune system of a living organism so that protection against future harm is provided. Administration of a vaccine contemplated by the present invention to the patient (or animal) may be by any known or standard techniques. These include oral ingestion, intestinal intubation, or broncho-nasal spraying. Other methods of administration, such as intravenous injection, that allow the carrier microbe to reach the human or animal's bloodstream may be acceptable when the carrier microbe is unable to reproduce.

30

25

15

Recombinant DNA techniques for the preparation of recombinant Ad41 proteins for use in the preparation of vaccines are sufficiently well known and widespread so as to be considered routine. In very general and broad terms, a method for use herein cosists of transferring the genetic material, or more usually part of the genetic material, of one organism into a second organism so that the transferred genetic material becomes a permanent part of (recombines with) the genetic material of the oganisms to which it is transferred. This usually consists of first obtaining a small piece of DNA from 10 the parent organism either from a plasmid or a parent chromosome. A plasmid (also called an extrachromosomal element) is a hereditary unit that is physically separated from the chromosome of the cell. The DNA may be of any size and is often obtained by the action of a restriction endonuclease enzyme which acts to split DNA molecules at specific base-pair sites. In the present invention an Ad41 long fiber protein gene can be obtained which is a 1.9 kb SmaI-EcoRI DNA fragment or an Ad41 short fiber protein gene which is an EcoRV-AccI DNA fragment or an Ad41 E3 sequence which is an EcoRI-EspI DNA fragment. The DNA pieces of the Ad41 protein gene may be transferred into a host cell by various means such as transformation (uptake of naked DNA from the external environment, which can be artificially induced by the presence of various chemical agents, such as calcium ions). Other methods such as transduction are also suitable, wherein the DNA is packaged within a phage such as the co-called cosmid vector. Once the parent DNA is in the carrier cell, it may continue to exist as a separate piece (generally true of complete transmitted plasmids) or it may insert into the host cell chromosome and be reproduced with the chromosome during cell division.

20

25

1

PARCOCIO JUIC

Transferring genetic materials is relatively straightforward. Any method capable of producing recombinant organisms comprising genes from pathogenic organisms that are expressed in avirulent microbes will suffice. The techniques of DNA isolation, gene cloning, and related techniques are disclosed in great detail in, for example, Recombinant DNA, Methods of Enzymology, Volume 68, Ray Wu, ed., Academic Press (1979), and Maniatiis, T., et al., Molecular Cloning, Cold Spring Harbor Laboratories (1982), which are herein incorprated by references and are applicable to the Ad41 protein gene of the present invention. 10

Vaccines of the present invention may be administered either as a liquid or in enteric-coated capsules. Such preparations are resistant to acid and enzymes in the stomach of the inoculated animal while dissolving in the intestines. Various enteric-coatings are known in the art, for example, as disclosed in U.S. Patent Nos.3,241,520 and 3,253,944 and are commercially available. A method suitable for preparation of enteric-coated capsules is described in U.S. Patent No. 4,152,415, which is herein incorporated by reference, and can be easily modified to provide capsules containing the carrier microbes of the present invention.

Vaccines of the present invention may be administered orally in enteric-coated capsules as described above or may be administered parenterally (e.g., by intramuscular, subcutaneous, or intravenous injection). The amount required will vary with the antigenicity of the gene product and need only be an amount sufficient to induce an immune response typical of existing vaccines. Routine

30

25

1

15

experimentation will easily establish the required amount. Typical initial dosages of vaccine could be about 0.001-100 mg antigen/kg body weight, with increasing amounts or multiple dosages used as needed to provide the desired level of protection.

The pharmaceutical carrier in which the vaccine is suspended or dissolved may be any solvent or solid that is non-toxic to the inoculated animal and compatible with the carrier organism or antigenic gene product. Suitable pharmaceutical carriers include liquid carriers, such as normal saline and other non-toxic salts at 10 or near physiological concentrations, and solid carriers, such as talc or sucrose. Adjuvants, such as Freund's adjuvant, complete or incomplete may be added to enhance the antigenicity via the bronchial tubes, the vaccine is suitably present in the form of an aerosol. Booster immunizations may be repeated numerous times with beneficial results.

In a preferred embodiment, the present invention contemplates a vaccine specific to Ad41 long fiber protein or at least one of its active fragments, e.g., the tail, the shaft or the knob of the long fiber protein, a vaccine specific to Ad41 short fiber protein or at least one of its active fragments, or a vaccine specific to at least one of the proteins of the Ad41 E3 region, RL-1 to RL-6.

A number of viral polypeptide preparations derived from viral coats or envelopes have been suggested as possible active components for vaccine compositions. For example, U.S. Patent No. 4,470,967 describes vaccine preparations which are made by complexing viral polypeptide with a lectin, the latter element acting as adjuvant. A number of

25

5

15

references, e.g., 4,344,935 or 4,356,169 or Morein, et al., J. Gen. Virol., 64: 1557-1569, 1983, utilize a method of preparation of parainfluenza glycoprotein compositions in which the viral glycoprotein HN and F are solubilized with a detergent, to extract them 5 from the viral envelope, followed by some method of phase separation in order to remove the detergent and lipids. The latter procedures produce a glycoprotein subunit which is not only detergent free, but also lipid free. The latter type of highly purified glycoprotein is considered the preferred type of active agent for potential use of 10 commercial vaccine.

In another aspect, the present invention relates to a method of treating infectious diseases caused by Ad41 and other related adenoviruses such as Ad40.

The subject invention also encompasses antibodies, either monoclonal or polyclonal, which are useful in the therapeutic 15 control of infection by adenoviruses and in particuliar, Ad41 or Ad40. Said antibodies can be prepared as described above and by injecting mammalian species, e.g., human, horse, rabbit, sheep, mice, etc. with inactivated virus or derivatives thereof (i.e., the tail, shaft or knob) and then purifying said antibodies employing the detection systems contemplated and described herein.

In another embodiment, the present invention relates to the development of specific human or other eukaryotic (e.g., yeast, baculovirus, or Chinese hamster cells) polyclonal or monoclonal antibodies, as well as human-mouse chimeric polyclonal or monoclonal antibodies for administration in passive immunization against human adenoviruses, and in particular, Ad41 and Ad40. Immunization

25

refers to the process of inducing a continuing high antibody level in an organism i.e., in humans, which is directed against an antigen to which the organism has been previously exposed.

Passive immunization, as defined herein, refers to resistance (e.g., temporary or sustained protection against infection) based on giving preformed antibodies to a patient from an in vivo or in vitro source. The main advantage of passive immunization is the prompt availability of large amounts of antibodies against human adenoviruses as described in the above embodiment of the present invention.

A chimeric antibody, as defined herein, is an antibody molecule made by recombinant DNA technology involving immunoglobulin genes of two different species. The human-mouse chimeric antibody is produced by combining the Fab portion of the mouse immunoglobulan gene and the Fc portion of the human immunoglobulin gene by recombinant DNA technique. The prodution of human-mouse chimeric antibodies is advantageous since large amounts of antibodies can be produced by this system and human-mouse chimeric antibodies can be recognized by cells of the human immune system whereas non-chimeric antibodies would not be recognized as easily by cells (e.g., phagocytic) of the human immune system. The chimeric antibodies can be produced in large amounts in the mouse system and can recognize human adenoviruses as contemplated in the present invention. Human-mouse immunoglobulins have also been found to make large amounts of antibodies in yeast and this system is also contemplated herein. The following references discuss the methodologies for producing such antibodies and are incorporated herein by reference: Morrison, et al., P.N.A.S., 81:6851 (1984); Horowitz, et al., P.N.A.S., 85:8678 (1988); and Tao, et al., J. Immunol., 143:2595 (1989).

5

10

15

20

- The present invention also provides a kit for production of recombinant viral components of at least one of the above-identified Ad41 genes, to produce a vaccine to Ad41 or related viruses such as Ad40.
- The present invention further contemplates the use of probes to detect hybridization, cellular DNA from infected tissue (e.g.bicpsy material) carrying intergrated structural Ad41 DNA (i.e., of the Ad41 long or short fiber protein gene or Ad41 E3 gene). The probe can be DNA, cDNA, recombinant DNA or RNA. The present invention further contemplates a kit for detection of viral components of Ad41 or Ad40.

In one particular embodiment of the present invention, patient specimens (tissue or tissue extracts) containing biopsy material are smeared onto a standard microscope slide, then fixed with an appropriate fixative. The DNA or RNA probe, which has been labeled (e.g. with biotin-avidin-enzyme) is added. The slide is then placed onto a heating block for one or two minutes to allow both the probe and the target nucleic acids to be separated from their complementary strand (if double stranded). Non-hybridized probe DNA or RNA is removed by gentle washing. After a suitable detection complex is added, hybridization is detected with a light microscope following formation of a colored compound. Alternatively, the probe nucleic acid is labeled with a radioactive isotope and tissue to be tested lysed and their DNA fixed to, for example, nitrocellulose paper. Hybridization and DNA/RNA detection systems are well known in the art.

In a further embodiment, the present invention also relates to a kit for the detection of Ad41 long and/or short fiber protein and its active fragments and fiber protein of related adenoviruses and/or Ad41 E3 region proteins, the kit being compartmentalized to receive a first container adapted

30

15

20

to contain an antibody having specificity for Ad41 long and/or short fiber protein or fragments thereof or Ad41 E3 region proteins, and a second container containing an antibody specific for first antibody and being labeled with a reporter molecule capable of giving a detectable signal. If the reporter molecule is an enzyme, then a third container, containing a substrate for said enzyme is provided.

In another embodiment, the present invention contemplates pharmaceutical compositions containing at least one of the above-identified Ad41 proteins, or derivatives thereof, for treatment of Ad41 or related viruses such as Ad40. The dosage effective amount of such compounds is from about 10 mg to about 100 mg per kg body weight.

The DNA sequence comprising the full-lenght, 60.6 kd Ad41 (Tak) long fiber protein has been deposited with the European Molecular Biology Laboratory (EMBL) database and accorded the accession number X16583.

The DNA sequence comprising the full-length 41.4 kd Ad41 short fiber protein has been deposited with the EMBL database and accorded the accession number X17016. The Ad41 E3 DNA sequence has been deposited with the GenBank database an accorded the accession number M33160.

EXAMPLES

1. Cells and virus

25 - Monolayer cultures of HEp-2, HeLa, Human Intestine (HI407), and Graham-293 cell lines were grown in Dulbecco's modification of Eagle minimal essential medium containing 10% fetal bovine serum (FBS). 293 cells were obtained from Flow Laboratories as well as ATCC; all other cell lines were from ATCC. The adenovirus type 41 (Ad41) strain Tak (prototype strain 73-3544 = ATCC #VR-930) used was provided by Dr. Jan C. de Jong, Bilthoven, The Netherlands,

and originally passaged by him in HeLa (pl), Hep-2 (p4) and HeLa (p4).

Detailed methods for growth and analysis of Ad41 were performed as described in Pieniazek et. al, Virology, 174: 239-249 (1990).

5 2. Isolation of viral DNA

A modification of the method of Hirt, J. Mol. Biol., 26: 365-369 (1967) was used. Monolayers of cells, grown in 25 cm2 flasks, are inoculated with the virus. After 2 hours the solution was discarded and medium containing 5% FBS was added. The cultures were incubated at 37° C for up to 15 days or until maximal CPE could be 10 observed. The cells to be analyzed were scraped into the culture fluid and centrifuged at 1000 x g for 5 min. The pellet was suspended in 0.5 ml of 1 x SSPE buffer, pH 7.4, per flask. EDTA and SDS were added to the final concentration of 50 mM and 1%, respectively. The lysate was allowed to stand 20 min. at room temperature, then NaCl was added 15 to 1.0 M and the sample was incubated at 4° C for at least 1 hr. The high-molecular weight DNA and cell debris was pelleted by spinning the lysate for 15 min. in an Eppendorf centrifuge. T1 RNase was added to the clarified supernatant to a final concentration of 25 ug/ml. After incubation for 30 min. at 37° C proteinase K (Boehringer-20 Mannheim) was added to 200 um/ml and the sample was further incubated for 30 min. as above. The proteins were removed by one extraction with saturated phenol and one by phenol/chloroform mixture (1:1 v/ v) according to the method of Maniatis et al., Molecular Cloning: A Lab Manual, Cold Spring Harbor, NY (1982). DNA was precipitated 25 with 3 volumes of ethanol. Nucleic acid, prepared from one culture flask was suspended in 50 ul of TE buffer (10 mm Tris-HCl, 1 mM EDTA, pH 7.5) and stored at 4° C.

3. Cloning of Ad41 EcoRI band B.

Restriction enzyme EcoRI was purchased from BRL and is used according to manufacturer's specifications. Briefly, 3 ul of sample was digested at 37° C with 5 units of enzyme in a final volume 5 of 10 ul. Nucleic acid fragments were separated by electrophcresis on 1% agarose gels (BioRad) and the EcoRI band was identified by ethidium bromide staining. An agarose fragment containing this band was excised from the gel and the DNA was recovered using the GENECLEAN kit (Bio 101, La Jolla, CA.). This isolated DNA fragment was mixed with EcoR-digested plasmid pBluescipt II SK(+) (Stratagene, La Jolla, CA.) and treated with phage T4 DNA ligase (BRL). Next, competent cells of E. coli strain XL-1 Blue (Stratagene) were transformed with this ligation mixture and a clone containing Ad41 EcoRI band B was selected by estimating the size of the insert and restriction enzyme mapping.

15

10

4. DNA Sequencing

Preliminary sequencing was accomplished using the method Deininger, Analyt. Biochem., 135: 247-263 (1983). Ad41 EcoRI band B was isolated from an agarose gel as above and sheered by sonication. The ends of the sheered fragments were then filled with T4 DNA 20 polymerase and the fragments were cloned into the SmaI site of the M13mp18 phage vector. Individual M13 clones were sequenced using the Sequenase kit from USB (Cleveland, OH). DNA sequences were analyzed using the IBI/Pustell software package from IBI (New Haven, CT) and their Gel Reader sonic digitizer. 25

After locating the start and end of the fiber gene by homology to the published Ad5 fiber sequence (Chroboczek and Jacrot, Virology, 161: 549-554, 1987), Ad41 long fiber gene was sequenced using a modified approach. Custom

oligonucleotide primers were used in a double-stranded DNA sequencing protocol according to the Sequenase Version 2.0 manual (in the Sequenase kit from USB, Clevelans, OH). The complete sequence of the SmaI - EcoRI fragment (map position 86.4% to 92%), shown in Fig. 1, was assemble from fragment obtained by sequencing both strands including sequencing in the presence of dITP to resolve problems with compressions of the DNA.

The same method as described above was utilized for sequencing the Ad41 short fiber gene, and the complete sequence of the EcoRv-AccI fragment (map position 83.1% to 87.1%) is shown in Fig. 2. The Ad41 E3 region DNA was also sequenced in similar fashion, and the complete sequence of this EcoRT-EspI fragment (map position 74% to 83.9%) is shown in Fig. 4.

The protein coding regions of E3 DNA, short fiber DNA and;

15 long fiber DNA of human adenovirus type 41 Tak, are shown by the proteins RL-1 to RL-6, short fiber protein and long fiber protein as illustrated in the map of Fig. 11.

20

10

25

30

WE CLAIM:

- 1. An isolated nucleic acid encoding a protein selected from human adenovirus type 41 Tak long fiber protein, short fiber protein, E3 RL-1 protein, E3 RL-2 protein, E3 RL-3 protein, E3 RL-4 protein, E3 RL-5 protein or E3 RL-6 protein.
- 5 2. The nucleic acid of Claim 1 wherein said nucleic acid is DNA, cDna, recombinant DNA or RNA.
 - 3. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence of the human adenovirus Type 41 Tak long fiber protein gene and which comprises:

10

25

ATG AAA CGA GCC AGA CTT GAA GAT GAC TTC AAC CCC TAC TTT GCT CGG TCT GAA CTT CTA CTG AAG TTG GGG

- GTC TAC CCT TAC GAA CAC TAC AAT CCC CTT GAC ATC CCA TTT ATT ACA CCC i

 CAG ATG GGA ATG CTT GTG ATG TTA GGG GAA CTG TAG GGT AAA TAA TGT GGG
 - CCG TTT GCC TCC TCC AAC GGC TTG CAA GAA AAA CCA CCG GGA GTC CTC AGC GGC AAA CGG AGG AGG TTG CCG AAC GTT CTT TTT GGT GGC CCT CAG GAG TCG
- 20 CTG AAA TAC ACT GAT CCA CTT ACA ACC AAA AAC GGG GCT TTA ACC TTA AAA GAC TTT ATG TGA CTA GAA GTA TGT TGG TTT TTG CCC CGA AAT TGG AAT TTT
 - CTG GGC ACG GGA CTA AAC ATT GAT GAA AAT GGA GAT CTT TCT TCA GAT GCT GAC CCG TGC CCT GAT TTG TAA CTA CTT TTA CCT CTA GAA AGA AGT CTA CGA
 - AGC GTG GAA GTT AGC GCC CCT ATT ACT AAA ACC AAC AAA ATC GTA GGT TTA TCG CAC CTT CAA TCG CGG GGA TAA TGA TTT TGG TTG TTT TAG CAT CCA AAT
- AAT TAC ACT AAA CCT CTC GCC CTG CGA AGT AAC GCG CTC ACT CTT TCT TAC

 30 TTA ATG TGA TTT GGA GAG CGG GAC GCT TCA TTG CGC GAG TGA GAA AGA ATG
 - AAC GCA CCC TTA ACC GTA GTA AAT AAC AAT TTA GCT TTA AAT ATC TCA CAA TTG CGT GGG AAT TTG CAT CAT TTA TTG TTA AAT CGA AAT TTA TAG AGT GTT
- 35 CCT GTC ACT GTT AAT GCA AAC AAC GAA CTT TCT CTC TTA ATA GAC GCC CCA GGA CAG TGA CAA TTA CGT TTG CTT GAA AGA GAG AAT TAT CTG CGG GGT

- 1 CTT AAT GCT GAC ACG GGC ACT CTT CGC CTT CAA AGT GCT GCA CCT CTT GGA
 GAA TTA CGA CTG TGC CCG TGA GAA GCG GAA GTT TCA CGA CGT GGA GAA CCT
- CTA GTG GAC AAA ACA CTA AAA GTT TTG TTT TCT AGC CCC CTC TAT CTA GAT

 5 GAT CAC CTG TTT TGT GAT TTT CAA AAC AAA AGA TCG GGG GAG ATA GAT CTA
 - AAT AAC TTT CTT ACA CTA GCC ATT GAA CGC CCG CTA GCT CTA TCC AGT AGC TTA TTG AAA GAA TGT GAT CGG TAA CTT GCG GGC GAT CGA GAT AGG TCA TCG
- 10. AGA GCA GTG ACC CTT AAG TAT TCA CCA CCT TTA AAA ATA GAA AAC GAA AAC TCT CGT CAC TGG GAA TTC ATA AGT GGT GGA AAT TTT TAT CTT TTG CTT TTG
 - TTA ACC CTA AGC ACA GGC GGG CCT TTT ACT GTA AGC GGG GGA, AAT CTA AAC

 AAT TGG GAT TCG TGT CCG CCC GGA AAA TGA CAT TCG CCC CCT TTA GAT TTG
- TTA ACA ACA TCG GCA CCT CTC TCC GTG CAA AAC AAC TCT CTC TCC TTA GTC
 AAT TGT TGT AGC CGT GGA GAG AGG CAC GTT TTG TTG AGA GAG AGG AAT CAG

- ATT ACT TCT CCT TTA AAA GTT ATT AAT TCT ATG TTA GCC GTT GGG GTT AAC

 20 TAA TGA AGA GGA AAT TTT CAA TAA TTA AGA TAC AAT CGG CAA CCC CAA TTG
 - CCG CCT TTT ACC ATC ACT GAC TCT GGA TTA GCT ATG GAC TTA GGA GAC GGT GGC GGA AAA TGG TAG TGA CTG AGA CCT AAT CGA TAC CTG AAT CCT CTG CCA
- 25 CTT GCA- CTA GGT GGC TCT AAG TTA ATA ATC AAT CTT GGT CCA GGT TTA CAA
 GAA CGT GAT CCA CCG AGA TTC AAT TAT TAG TTA GAA CCA GGT CCA AAT GTT
 - ATG TCT. AAT GGA GCT ATT ACT TTA GCA CTA GAT GCA GCG CTG CCT TTG CAA
 TAC AGA TTA CCT CGA TAA TGA AAT CGT GAT CTA CGT CGC GAC GGA AAC GTT
 - TAT AGA GAC AAC CAA CTT CAA CTC AGA ATT GGC TCA ACA TCT GGC TTA ATT
 ATA TCT CTG TTG GTT GAA GTT GAG TCT TAA CCG AGT TGT AGA CCG AAT TAA
- ATG AGC GGA GTA ACA CAA ACA TTA AAC GTC AAT GCC AAT ACC GGC AAA GGT

 35 TAC TCG CCT CAT TGT GTT TGT AAT TTG CAG TTA CGG TTA TGG CCG TTT CCA
 - CTT GCT GTT GAA AAC AAC TCA CTA GTT GTT AAG CTT GGG AAC GGT CTT CGC GAA CGA CAA CTT TTG TTG AGT GAT CAA CAA TTC GAA CCC TTG CCA GAA GCG

TIT GAT AGC TGG GGA AGC ATA ACT GTC TCG CCT ACT ACC ACT ACC CCT ACC AAA CTA TCG ACC CCT TCG TAT TGA CAG AGC GGA TGA TGG TGA TGG GGA TGG ACC CTA TGG ACC ACC GCA GAC CCA TCA CCT AAC GCC ACT TTT TAT GAA TCA TGG GAT ACC TGG TGG CGT CTG GGT AGT GGA TTG CGG TGA AAA ATA CTT AGT 5 CTA GAC GCC AAA GTG TGG CTA GTT TTA GTA AAA TGC AAC GGC ATG GTT AAC GAT CTG CGG TTT CAC ACC GAT CAA AAT CAT TTT ACG TTG CCG TAC CAA TTG GGG ACC ATA TCC ATT AAA GCT CAG AAA GGC ATT TTA CTT AGA CCT ACA GCT 10 CCC TGG TAT AGG TAA TTT CGA GTC TTT CCG TAA AAT GAA TCT GGA TGT CGA AGT TTT ATT TCC TTT GTC ATG TAT TTC TAC AGC GAT GGA ACA, TGG AGA AAA TCA AAA TAA AGG AAA CAG TAC ATA AAG ATG TCG CTA CCT TGT ACC TCT TTT ' 15 AAC TAT CCC GTG TTT GAC AAC GAA GGG ATA CTA GCA AAC AGT GCC ACG TGG TTG ATA GGG CAC AAA CTG TTG CTT CCC TAT GAT CGT TTG TCA CGG TGC ACC GGT TAT CGA CAA GGA CAG TCT GCC AAC ACT AAC GTT TCT AAT GCT GTA GAA CCA ATA GCT GTT CCT GTC AGA CGG TTG TGA TTG CAA AGA TTA CGA CAT CTT TTT ATG CCT AGC TCT AAA AGA TAT CCC AAT CAA AAA GGT TCT GAA GTT CAG AAA TAC GGA TCG AGA TTT TCT ATA GGG TTA GTT TTT CCA AGA CTT CAA GTC AAC ATG GCT CTT ACC TAC ACT TTT TTG CAA GGT GAT CCT AAC ATG GCC ATA 25 TTG TAC CGA GAA TGG ATG TGA AAA AAC GTT CCA CTA GGA TTG TAC CGG TAT TCC TTT CAG AGT ATT TAT AAT CAT GCA TTA GAA GGC TAC TCA TTA AAA TTT AGG AAA GTC TCA TAA ATA TTA GTA CGT AAT CTT CCG ATG AGT AAT TTT AAA 30 ACC TGG CGC GTT CGA AAT AAT GAA CGT TTT GAC ATC CCC TGC TGC TCA TTT

TGG ACC GCG CAA GCT TTA TTA CTT GCA AAA CTG TAG GGG ACG ACG AGT AAA

TCT TAT GTA ACA GAA CAA TAA A

35 AGA ATA CAT TGT CTT GTT ATT T

- 1 The nucleic acid according to Claims 1 or 2 having a nucleotide sequence of the human adenovirus Type 41 long fiber protein gene which comprises: CCCGGGCAAC ATGCTCATCC AAATCTCGCC TAACATCACC TTCAGTGTCG TCTACAACGA GGGCCCGTTG TACGAGTAGG TTTAGAGCGG ATTGTAGTGG AAGTCACAGC AGATGTTGCT GATAAACAGT GGGTATGCTT TTACTTTTAA ATGGTCAGCC GAACCGGGAA AACCTTTTCA CTATTTGTCA CCCATACGAA AATGAAATT TACCAGTCGG CTTGGCCCTT TTGGAAAAGT 10 CCCACCTACC GCTGTATTTT GCTACATAAC TGAACAATAA AATCATTGCA GGCACAATCT GGGTGGATGG CGACATAAAA CGATGTATTG ACTTGTTATT TTAGTAACGT CCGTGTTAGA TCGCATTTCT TTTTTTCCAG ATG AAA CGA GCC AGA CTT GAA GAT'GAC TTC AAC CCC AGCGTAAAGA AAAAAAGGTC TAC TTT GCT CGG TCT GAA CTT CTA CTG AAG TTG GGG 15 GTC TAC CCT TAC GAA CAC TAC AAT CCC CTT GAC ATC CCA TTT ATT ACA CCC CAG ATG GGA ATG CTT GTG ATG TTA GGG GAA CTG TAG GGT AAA TAA TGT GGG CCG TTT GCC TCC TCC AAC GGC TTG CAA GAA AAA CCA CCG GGA GTC CTC AGC 20 GGC AAA CGG AGG AGG TTG CCG AAC GTT CTT TTT GGT GGC CCT CAG GAG TCG CTG AAA TAC ACT GAT CCA CTT ACA ACC AAA AAC GGG GCT TTA ACC TTA AAA GAC TIT ATG TGA CTA GGT GAA TGT TGG TTT TTG CCC CGA AAT TGG AAT TTT 25 CTG GGC ACG GGA CTA AAC ATT GAT GAA AAT GGA GAT CTT TCT TCA GAT GCT GAC CCG TGC CCT GAT TTG TAA CTA CTT TTA CCT CTA GAA AGA AGT CTA CGA AGC GTG GAA GTT AGC GCC CCT ATT ACT AAA ACC AAC AAA ATC GTA GGT TTA TCG CAC CTT CAA TCG CGG GGA TAA TGA TTT TGG TTG TTT TAG CAT CCA AAT 30 AAT TAC ACT AAA CCT CTC GCC CTG CGA AGT AAC GCG CTC ACT CTT TCT TAC
 - CCT GTC ACT GTT AAT GCA AAC AAC GAA CTT TCT CTC TTA ATA GAC GCC CCA GGA CAG TGA CAA TTA CGT TTG TTG CTT GAA AGA GAG AAT TAT CTG CGG GGT

TTA ATG TGA TTT GGA GAG CGG GAC GCT TCA TTG CGC GAG TGA GAA AGA ATG

AAC GCA CCC TTA AAC GTA GTA AAT AAC AAT TTA GCT TTA AAT ATC TCA CAA

TTG CGT GGG AAT TTG CAT CAT TTA TTG TTA AAT CGA AAT TTA TAG AGT GTT

1 CTT AAT GCT GAC ACG GGC ACT CTT CGC CTT CAA AGT GCT GCA CCT CTT GGA GAA TTA CGA CTG TGC CCG TGA GAA GCG GAA GTT TCA CGA CGT GGA GAA CCT CTA GTG GAC AAA ACA CTA AAA GTT TTG TTT TCT AGC CCC CTC TAT CTA GAT GAT CAC CTG TTT TGT GAT TTT CAA AAC AAA AGA TCG GGG GAG ATA GAT CTA 5 AAT AAC TTT CTT ACA CTA GCC ATT GAA CGC CCG CTA GTC CTA TCC AGT AGC TTA TTG AAA GAA TGT GAT CGG TAA CTT GCG GGC GAT CGA GAT AGG TCA TCG AGA GCA GTG ACC CTT AAG TAT TCA CCA CCT TTA AAA ATA GAA AAC GAA AAC 10 TET EGT CAC TGG GAA TTC ATA AGT GGT GGA AAT TTT TAT CTT TTG CTT TTG TTA ACC CTA AGC ACA GGC GGG CCT TTT ACT GTA AGC GGG GGA AAT CTA AAC AAT TGG GAT TCG TGT CCG CCC GGA AAA TGA CAT TCG CCC CCT TTA GAT TTG 15 ATT ACT TCT CCT TTA AAA GTT ATT AAT TCT ATG TTA GCC GTT GGG GTT AAC TAA TGA AGA GGA AAT TTT CAA TAA TTA AGA TAC AAT CGG CAA CCC CAA TTG CCG CCT TTT ACC ATC ACT GAC TCT GGA TTA GCT ATG GAC TTA GGA GAC GGT 20 GGC GGA AAA TGG TAG TGA CTG AGA CCT AAT CGA TAC CTG AAT CCT CTG CCA CTT GCA CTA GGT GGC TCT AAG TTA ATA ATC AAT CTT GGT CCA GGT TTA CAA GAA CGT GAT CCA CCG AGA TTC AAT TAT TAG TTA GAA CCA GGT CCA AAT GTT 25 ATG TCT AAT GGA GCT ATT ACT TTA GCA CTA GAT GCA GCG CTG CCT TTG CAA TAC AGA TTA CCT CGA TAA TGA AAT CGT GAT CTA CGT CGC GAC GGA AAC GTT TAT AGA GAC AAC CAA CTT CAA CTC AGA ATT GGC TCA ACA TCT GGC TTA ATT ATA TCT CTG TTG GTT GAA GTT GAG TCT TAA CCG AGT TGT AGA CCG ATT TAA 30 ATG AGC GGA GTA ACA CAA ACA TTA AAC GTC AAT GCC AAT ACC GGC AAA GGT TAC TCG CCT CAT TGT GTT TGT AAT TTG CAG TTA CGG TTA TGG CCG TTT CCA CTT GCT GTT GAA AAC AAC TCA CTA GTT GTT AAG CTT GGG AAC GGT CTT CGC

GAA CGA CAA CTT TTG TTG AGT GAT CAA CAA TTC GAA CCC TTG CCA GAA GCG

TTT GAT AGC TGG GGA AGC ATA ACT GTC TCG CCT ACT ACC ACT ACC CCT ACC AAA CTA TCG ACC CCT TCG TAT TGA CAG AGC GGA TGA TGG TGA TGG GGA TGG

- ACC CTA TGG ACC ACC GCA GAC CCA TCA CCT AAC GCC ACT TTT TAT GAA TCA
 TGG GAT ACC TGG TGG CGT CTG GGT AGT GGA TTG CGG TGA AAA ATA CTT AGT
- CTA GAC GCC AAA GTG TGG CTA GTT TTA GTA AAA TGG AAC GGC ATG GTT AAC

 GAT CTG CGG TTT CAC ACC GAT CAA AAT CAT TTT ACG TTG CCG TAC CAA TTG
 - GGG ACC. ATA TCC ATT AAA GCT CAG AAA GGC ATT TTA CTT AGA CCT ACA GCT CCC TGG TAT AGG TAA TTT CGA GTC TTT CCG TAA AAT GAA TCT GGA TGT CGA
- 10 AGT TIT ATT TCC TIT GTC ATG TAT TTC TAC AGC GAT GGA ACA TGG AGA AAA
 TCA AAA TAA AGG AAA CAG TAC ATA AAG ATG TCG CTA CCT TGT ACC TCT TTT
 - AAC TAT CCC GTG TTT GAC AAC GAA GGG ATA CTA GCA AAC AGT GCC ACG TGG TTG ATA GGG CAC AAA CTG TTG CTT CCC TAT GAT CGT TTG TCA CGG TGC ACC ;
- GGT TAT CGA CAA GGA CAG TCT GCC AAC ACT AAC GTT TCT AAT GCT GTA GAA
 CCA ATA GCT GTT CCT GTC AGA CGG TTG TGA TTG CAA AGA TTA CGA CAT CTT
- TTT ATG CCT AGC TCT AAA AGA TAT CCC AAT CAA AAA GGT TCT GAA GTT CAG
 AAA TAC GGA TCG AGA TTT TCT ATA GGG TTA GTT TTT CCA AGA CTT CAA GTC
 - AAC ATG GCT CTT ACC TAC ACT TTT TTG CAA GGT GAT CCT AAC ATG GCC ATA
 TTG TAC CGA GAA TGG ATG TGA AAA AAC GTT CCA CTA GGA TTG TAC CGG TAT
- TCC TTT. CAG AGT ATT TAT AAT CAT GCA TTA GAA GGC TAC TCA TTA AAA TTT
 AGG AAA GTC TCA TAA ATA TTA GTA CGT AAT CTT CCG ATG AGT AAT TTT AAA
 - ACC TGG CGC GTT CGA AAT AAT GAA CGT TTT GAC ATC CCC TGC TGC TCA TTT TGG ACC GCG CAA GCT TTA TTA CTT GCA AAA CTG TAG GGG ACG ACG AGT AAA
- 30
 TCT TAT GTA ACA GAA CAA TAA A ATATTGTTGT TTTTGTTTTT ATAACTTTAT
 AGA ATA CAT TGT CTT GTT ATT T TATAACAACA AAAACAAAAA TATTGAAATA
- TGATACTTTT ACAGAATTC

 35 ACTATGAAAA TGTCTTAAG

5. The nucleic acid according to Claim 1 or 2 having a 1 nucleotide sequence encoding an amino acid sequence for Ad41 long

fiber protein which comprises: Met Lys Arg Ala Arg Leu Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr Glu His Tyr Asn Pro Leu Asp Ile Pro Phe Ile Thr Pro 5 Pro Phe Ala Ser Ser Asn Gly Leu Gln Glu Lys Pro Pro Gly Val Leu Ser

Leu Gly Thr Gly Leu Asn Ile Asp Glu Asn Gly Asp Leu Ser Ser Asp Ala

Ser Val Glu Val Ser Ala Pro Ile Thr Lys Thr Asn Lys Ile Val Gly Leu Asn Tyr Thr Lys Pro Leu Ala Leu Arg Ser Asn Ala Leu Thr Leu Ser Tyr Asn Ala Pro Leu Asn Val Val Asn Asn Asn Leu Ala Leu Asn Ile Ser Gln 10 Pro Val Thr Val Asn Ala Asn Asn Glu Leu Ser Leu Leu Ile Asp Ala Pro Leu Asn Ala Asp Thr Gly Thr Leu Arg Leu Gln Ser Ala Ala Pro Leu Gly Leu Val Asp Lys Thr Leu Lys Val Leu Phe Ser Ser Pro Leu Tyr Leu Asp

Asn Asn Phe Leu Thr Leu Ala Ile Glu Arg Pro Leu Ala Leu Ser Ser j Arg Ala Val Thr Leu Lys Tyr Ser Pro Pro Leu Lys Ile Glu Asn Glu Asn Leu 15 Thr Leu Ser Thr Gly Gly Pro Phe Thr Val Ser Gly Gly Asn Leu Asn Leu Thr Thr Ser Ala Pro Leu Ser Val Gln Asn Asn Ser Leu Ser Leu Val Ile Thr Ser Pro Leu Lys Val Ile Asn Ser Met Leu Ala Val Gly Val Asn Pro Pro Phe Thr Ile Thr Asp Ser Gly Leu Ala Met Asp Leu Gly Asp Gly Leu Ala Leu Gly Gly Ser Lys Leu Ile Ile Asn Leu Gly Pro Gly Leu Gln Met Ser Asn Gly Ala Ile 20 Thr Leu Ala Leu Asp Ala Ala Leu Pro Leu Gln Tyr Arg Asp Asn Gln Leu Gln Leu Arg Ile Gly Ser Thr Ser Gly Leu Ile Met Ser Gly Val Thr Gln Thr Leu

Asn Val Asn Ala Asn Thr Gly Lys Gly Leu Ala Val Glu Asn Asn Ser Leu Val Val Lys Leu Gly Asn Gly Leu Arg Phe Asp Ser Trp Gly Ser Ile Thr Val Ser Pro Thr Thr Thr Pro Thr Thr Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn 25 Ala Thr Phe Tyr Glu Ser Leu Asp Ala Lys Val Trp Leu Val Leu Val Lys Cys Asn Gly Met Val Asn Gly Thr Ile Ser Ile Lys Ala Gln Lys Gly Ile Leu Leu

Arg Pro Thr Ala Ser Phe Ile Ser Phe Val Met Tyr Phe Tyr Ser Asp Gly Thr Trp Arg Lys Asn Tyr Pro Val Phe Asp Asn Glu Gly Ile Leu Ala Asn Ser Ala

Thr Trp Gly Tyr Arg Gln Gly Gln Ser Ala Asn Thr Asn Val Ser Asn Ala Val Glu Phe Met Pro Ser Ser Lys Arg Tyr Pro Asn Gln Lys Gly Ser Glo Val Gln Asn Met Ala Leu Thr Tyr Thr Phe Leu Gln Gly Asp Pro Asn Met A. a ile Ser Phe Gln Ser Ile Tyr Asn His Ala Leu Glu Gly Tyr Ser Leu Lys Phe fhr Trp Arg Val Arg Asn Asn Glu Arg Phe Asp Ile Pro Cys Cys Ser Phe Ser Tyr Val

35 Thr Glu Gln

1 6. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence of human adenovirus type 41 short fiber protein which comprises: ATG AAA AGA ACC AGA ATT 5 TAC TTT TCT TGG TCT TAA GAA GAC GAC TTC AAC CCC GTC TAC CCC TAT GAC ACC TTC TCA ACT CCC CTT CTG CTG AAG TTG GGG CAG ATG GGG ATA CTG TGG AAG AGT TGA GGG 10 AGC ATC CCC TAT GTA GCT CCG CCC TTC GTT TCT TCT GAC GGG TTA CAG TCG TAG GGG ATA CAT CGA GGC GGG AAG CAA AGA AGA CTG CCC AAT GTC GAA AAA CCC CCA GGA GTT TTA GCA CTC AAG TAC ACT GAC CCC ATT ACT CTT TTT GGG GGT CCT CAA AAT CGT GAG TTC ATG TGA CTG GGG TAA TGA 15 ACC AAT GCT AAG CAT GAG CTT ACT TTA AAA CTT GGA AGC AAC ATA ACT TGG TTA CGA TTC GTA CTC GAA TGA AAT TTT GAA CCT TCG TTG TAT TGA TTA GAA AAT GGG TTA CTT TCG GCC ACA GTT CCC ACT GTT TCT CCT CCC 20 AAT CTT TTA CCC AAT GAA AGC CGG TGT CAA GGG TGA CAA AGA GGA GGG CTT ACA AAC AGT AAC AAC TCC CTG GGT TTA GCC ACA TCC GCT CCC ATA GAA TGT TTG TCA TTG AGG GAC CCA AAT CGG TGT AGG CGA GGG TAT 25 GCT GTA TCA GCT AAC TCT CTC ACA TTG GCC ACC GCC GCA CCA CTG ACA CGA CAT AGT CGA TTG AGA GAG TGT AAC CGG TGG CGG CGT GGT GAC TGT GTA AGC AAC CAG CTT AGT ATT AAC GCG GGC AGA GGT TTA GTT ATA CAT TCG TTG TTG GTC GAA TCA TAA TTG CGC CCG TCT CCA AAT CAA TAT 30 ACT AAC AAT GCC TTA ACA GTT AAT CCT ACC GGA GCG CTA GGT TTC AAT TGA TTG TTA CGG AAT TGT CAA TTA GGA TGG CCT CGC GAT CCA AAG TTA AAC ACA GGA GCT TTA CAA TTA AAT GCT GCA GGA GGA ATG AGA GTG GAC 35 TTG TGT CCT CGA AAT GTT AAT TTA CGA CGT CCT TAC TCT CAC CTG GGT GCC AAC TTA ATT CTT CAT GTA GCA TAA CCC TTT GAA GCA ATC AAC

CCA CGG TTG AAT TAA GAA GTA CAT CGT ATA GGG AAA CTT CGT TAG TTG

1 CAG CTA ACA CTG CGA TTA GAA AAC GGG TTA GAA GTA ACC AGC GGA GGA GTC GAT TGT GAC GCT AAT CTT TTG CCC AAT CTT CAT TGG TCG CCT CCT AAG CTT AAC GTT AAG TTG GGA TCA GGC CTC CAA TTT GAC AGT AAC GGA TTC GAA TTG CAA TTC AAC CCT AGT CCG GRG GTT AAA CTG TCA TTG CCT CGC ATT GCT ATT AGT AAT AGC AAC CGA ACT CGA AGT GTA CCA TCC CTC GCG TAA CGA TAA TCA TTA TCG TTG GCT TGA GCT TCA CAT GGT AGG GAG ACT ACC ATT TGG TCT ATC TCG CCT ACG CCT AAC TGC TCC ATT TAT GAA 10 TGA TGG TAA ACC AGA TAG AGC GGA TGC GGA TTG ACG AGG TAA ATA CTT ACC CAA GAT GCA AAC CTA TTT CTT TGT CTA ACT AAA AAC GGA GCT CAC TGG GTT CTA CGT TTG GAT AAA GAA ACA GAT TGA TTT TTG CCT CGA GTG 15 GTA TTA GGT ACT ATA ACA ATC AAA GGT CTT AAA GGA GCA CTG CGG GAA CAT AAT CCA TGA TAT TGT TAG TTT CCA GAA TTT CCT CGT GAC GCC CTT ATG CAC GAT AAC GCT CTA TCT TTA AAA CTT CCC TTT GAC AAT CAG GGA TAC GTG CTA TTG CGA GAT AGA AAT TTT GAA GGG AAA CTG TTA GTC CCT 20 AAT TTA CTT AAC TGT GCC TTG GAA TCA TCC ACC TGG CGT TAC CAG GAA TTA AAT GAA TTG ACA CGG AAC CTT AGT AGG TGG ACC GCA ATG GTC CTT ACC AAC- GCA GTG GCC TCT AAT GCC TTA ACA TTT ATG CCC AAC AGT ACA 25 TGG TTG CGT CAC CGG AGA TTA CGG AAT TGT AAA TAC GGG TTG TCA TGT GTG TAT. CCA CGA AAC AAA ACC GCT CAC CCG GGC AAC ATG CTC ATC CAA CAC ATA GGT GCT TTG TTT TGG CGA GTG GGC CCG TTG TAC GAG TAG GTT 30 ATC TCG CCT AAC ATC ACC TTC AGT GTC GTC TAC AAC GAG ATA AAC AGT TAG AGC GGA TTG TAG TGG AAG TCA CAG CAG ATG TTG CTC TAT TTG TCA GGG TAT GCT TTT ACT TTT AAA TGG TCA GCC GAA CCG GGA AAA CCT TTT CCC ATA CGA AAA TGA AAA TTT ACC AGT CGG CTT GGC CCT TTT GGA AAA 35 CAC CCA CCT ACC GCT GTA TTT TGC TAC ATA ACT GAA CAA TAA

GTG GGT GGA TGG CGA CAT AAA ACG ATG TAT TGA CTT GTT ATT

- 7. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence of human adenovirus type 41 Tak short fiber protein which comprises:
- GATATCAGTT GTTTGTCAAG TTTTTCCAGC AGCACCACCT GCCCTTCCTC CCAACTTTCG

 5 CTATAGTCAA CAAACAGTTC AAAAAGGTCG TCGTGGTGGA CGGGAAGGAG GGTTGAAAGC
 - TAGGGGATGT GCCAACGGC AGCAAACTTT CTCCACGTCC TAAAGGGTAT ATCGGTGTTC ATCCCCTACA CGGTTGCCCG TCGTTTGAAA GAGGTGCAGG ATTTCCCATA TAGCCACAAG
- 10 ACCTTTTAC CCTGACCCAC GATCTTCATC TTGCAG ATG AAA AGA ACC AGA ATT TGGAAAAAATG GGACTGGGTG CTAGAAGTAG AACGTC TAC TTT TCT TGG TCT TAA
 - GAA GAC GAC TTC AAC CCC GTC TAC CCC TAT GAC ACC TTC TCA ACT CCC CTT CTG CTG AAG TTG GGG CAG ATG GGG ATA CTG TGG AAG AGT TGA GGG
- AGC ATC CCC TAT GTA GCT CCG CCC TTC GTT TCT TCT GAC GGG TTA CAG TCG TAG GGG ATA CAT CGA GGC GGG AAG CAA AGA AGA CTG CCC AAT GTC

- GAA AAA CCC CCA GGA GTT TTA GCA CTC AAG TAC ACT GAC CCC ATT ACT

 CTT TTT GGG GGT CCT CAA AAT CGT GAG TTC ATG TGA CTG GGG TAA TGA
 - ACC AAT GCT AAG CAT GAG CTT ACT TTA AAA CTT GGA AGC AAC ATA ACT TGG TTA CGA TTC GTA CTC GAA TGA AAT TTT GAA CCT TCG TTG TAT TGA
- 25 TTA GAA AAT GGG TTA CTT TCG GCC ACA GTT CCC ACT GTT TCT CCT CCC AAT CTT TTA CCC AAT GAA AGC CGG TGT CAA GGG TGA CAA AGA GGA GGG
 - CTT ACA AAC AGT AAC AAC TCC CTG GGT TTA GCC ACA TCC GCT CCC ATA GAA TGT TTG TCA TTG TTG AGG GAC CCA AAT CGG TGT AGG CGA GGG TAT
 - GCT GTA TCA GCT AAC TCT CTC ACA TTG GCC ACC GCC GCA CCA CTG ACA CGA CAT AGT CGA TTG AGA GAG TGT AAC CGG TGG CGG CGT GGT GAC TGT
- GTA AGC AAC AAC CAG CTT AGT ATT AAC GCG GGC AGA GGT TTA GTT ATA

 35 CAT TCG TTG TTG GTC GAA TCA TAA TTG CGC CCG TCT CCA AAT CAA TAT
 - ACT AAC AAT GCC TTA ACA GTT AAT CCT ACC GGA GCG CTA GGT TTC AAT TGA TTG TTA CGG AAT TGT CAA TTA GGA TGG CCT CGC GAT CCA AAG TTA

- 1 AAC ACA GGA GCT TTA CAA TTA AAT GCT GCA GGA GGA ATG AGA GTG GAC TTG TGT CCT CGA AAT GTT AAT TTA CGA CGT CCT CCT TAC TCT CAC CTG
- GGT GCC AAC TTA ATT CTT CAT GTA GCA TAT CCC TTT GAA GCA ATC AAC
 5 CCA CGG TTG AAT TAA GAA GTA CAT CGT ATA GGG AAA CTT CGT TAG TTG
 - CAG CTA ACA CTG CGA TTA GAA AAC GGG TTA GAA GTA ACC AGC GGA GGA GTC GAT TGT GAC GCT AAT CTT TTG CCC AAT CTT CAT TGG TCG CCT CCT
- 10 AAG CTT AAC GTT AAG TTG GGA TCA GGC CTC CAA TTT GAC AGT AAC GGA
 TTC GAA TTG CAA TTC AAC CCT AGT CCG GAG GTT AAA CTG TCA TTG CCT
 - CGC ATT GCT ATT AGT AAT AGC AAC CGA ACT CGA AGT GTA CCA TCC CTC GCG TAA CGA TAA TCA TTA TCG TTG GCT TGA GCT TCA CAT GGT AGG GAG
- ACT ACC ATT TGG TCT ATC TCG CCT ACG CCT AAC TGC TCC ATT TAT GAA
 TGA TGG TAA ACC AGA TAG AGC GGA TGC GGA TTG ACG AGG TAA ATA CTT
- ACC CAA GAT GCA AAC CTA TTT CTT TGT CTA ACT AAA AAC GGA GCT CAC

 20 TGG GTT CTA CGT TTG GAT AAA GAA ACA GAT TGA TTT TTG CCT CGA GTG
 - GTA TTA GGT ACT ATA ACA ATC AAA GGT CTT AAA GGA GCA CTG CGG GAA CAT AAT CCA TGA TAT TGT TAG TTT CCA GAA TTT CCT CGT GAC GCC CTT
- 25 ATG CAC -GAT AAC GCT CTA TCT TTA AAA CTT CCC TTT GAC AAT CAG GGA TAC GTG CTA TTG CGA GAT AGA AAT TTT GAA GGG AAA CTG TTA GTC CCT
 - AAT TTA CTT AAC TGT GCC TTG GAA TCA TCC ACC TGG CGT TAC CAG GAA TTA AAT GAA TTG ACA CGG AAC CTT AGT AGG TGG ACC GCA ATG GTC CTT
- ACC AAC GCA GTG GCC TCT AAT GCC TTA ACA TTT ATG CCC AAC AGT ACA
 TGG TTG CGT CAC CGG AGA TTA CGG AAT TGT AAA TAC GGG TTG TCA TGT
- GTG TAT CCA CGA AAC AAA ACC GCT CAC CCG GGC AAC ATG CTC ATC CAA

 35 CAC ATA GGT GCT TTG TTT TGG CGA GTG GGC CCG TTG TAC GAG TAG GTT

- 1 ATC TCG CCT AAC ATC ACC TTC AGT GTC GTC TAC AAC GAG ATA AAC AGT TAG AGC GGA TTG TAG TGG AAG TCA CAG CAG ATG TTG CTC TAT TTG TCA
- GGG TAT GCT TTT ACT TTT AAA TGG TCA GCC GAA CCG GGA AAA CCT TTT 5 CCC ATA CGA AAA TGA AAA.TTT ACC AGT CGG CTT GGC CCT TTT GGA AAA

CAC CCA CCT ACC GCT GTA TTT TGC TAC ATA ACT GAA CAA TAA GTG GGT GGA TGG CGA CAT AAA ACG ATG TAT TGA CTT GTT ATT

- 10 AATCATTGCA GGCACAATCT TCGCATTTCT TTTTTTCCAG ATGAAACGAG CCAGACTTGA
 TTAGTAACGT CCGTGTTAGA AGCGTAAAGA AAAAAAGGTC TACTTTGCTC GGTCTGAACT
 AGATGACTTC AACCCCGTCT AC
 TCTACTGAAG TTGGGGCAGA TG
- 8. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence 15 encoding an amino acid sequence for Ad41 short fiber protein which comprises: Met Lys Arg Thr Arg Ile Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr Asp Thr Phe Ser Thr Pro Ser Ile Pro Tyr Val Ala Pro Pro Phe Val Ser Ser Asp Gly Leu Gln Glu Lys Pro Pro Gly Val Leu Ala Leu Lys Tyr Thr Asp Pro Ile Thr Thr Asn Ala Lys His Glu Leu Thr Leu Lys Leu Gly Ser Asn Ile Thr Leu Glu Asn Gly Leu Leu 20 Ser Ala Thr Val Pro Thr Val Ser Pro Pro Leu Thr Asn Ser Asn Asn Ser Leu Gly Leu Ala Thr Ser Ala Pro Ile Ala Val Ser Ala Asn Ser Leu Thr Leu Ala Thr Ala Ala Pro Leu Thr Val Ser Asn Asn Gln Leu Ser Ile Asn Ala Gly Arg Gly Leu Val Ile Thr Asn Asn Ala Leu Thr Val Asn Pro Thr Gly Ala Leu Gly Phe Asn Asn Thr Gly Ala Leu Gln Leu Asn Ala Ala Gly Gly Met Arg Val Asp Gly Ala Asn Leu Ile 25 Leu His Val Ala Tyr Pro Phe Glu Ala Ile Asn Gln Leu Thr Leu Arg Leu Glu Asn Gly Leu Glu Val Thr Ser Gly Gly Lys Leu Asn Val Lys Leu Gly Ser Gly Leu Gln Phe Asp Ser Asn Gly Arg Ile Ala Ile Ser Asn Ser Asn Arg Thr Arg Ser Val Pro Ser Leu Thr Thr Ile Trp Ser Ile Ser Pro Thr Pro Asn Cys Ser Ile Tyr Glu Thr Gln Asp Ala Asn Leu Phe Leu Cys Leu Thr Lys Asn Gly Ala His Val Leu Gly Thr 30 Ile Thr Ile Lys Gly Leu Lys Gly Ala Leu Arg Glu Met His Asp Asn Ala Leu Ser Leu Lys Leu Pro Phe Asp Asn Gln Gly Asn Leu Leu Asn Cys Ala Leu Glu Ser Ser Thr Trp Arg Tyr Gln Glu Thr Asn Ala Val Ala Ser Asn Ala Leu Thr Phe Met Pro Asn Ser Thr Val Tyr Pro Arg Asn Lys Thr Ala His Pro Gly Asn Met Leu Ile Gln Ile Ser Pro Asn Ile Thr Phe Ser Val Val Tyr Asn Glu Ile Asn Ser Gly Tyr Ala 35 Phe Thr Phe Lys Trp Ser Ala Glu Pro Gly Lys Pro Phe His Pro Pro Thr Ala Val . Phe Cys Tyr Ile Thr Glu Gln

9. The nucleic acid according to Claim 1 or 2 encoding the E3 region which encodes RL-1, RL-2, RL-3, RL-4, RL-5, and RL-6 protein of human adenovirus Type 41 having a nucleotide sequence which comprises:

GAATTCGCGC CACTCGAAAC CAAATTTTGC TGGAGCAAGC TGCCCTGACC TCCACCCGC CTTAAGCGCG GTGAGCTTTG GTTTAAAACG ACCTCGTTCG ACGGGACTGG AGGTGGGGGCG GAAGTCAATT GAACCCGCCC AATTGGCCCG CTGCCCAGGT GTATCAGGAA AACCCCGCTC CTTCAGTTAA CTTGGGCGGG TTAACCGGGC GAEGGGTECA CATAGTECTT TTGGGGCGAG CGACCACAGT TCTCCTGCCA CGCGACGCTG AGGCCGAAGT CCAAATGACT AACTCCGGAG GCTGGTGTCA AGAGGACGGT GCGCTGCGAC TCCGGCTTCA GGTTTACTGA TTGAGGCCTC .15 CGCAATTAGC GGGCGGATCC AGACACGTCA GGTTCAGAGG TCGGTCCTCG CCCTACTCTC GCGTTAATCG CCCGCCTAGG TCTGTGCAGT CCAAGTCTCC AGCCAGGAGC GGGATGAGAG

CAGGTCCTAT AAAGAGGCTG ATTATCCGAG GCCGGGGTAT CCAGCTCAAC GACGAAGTGG GTCCAGGATA TTTCTCCGAC TAATAGGCTC CGGCCCCATA GGTCGAGTTG CTGCTTCACC

. . .

ı	. 310	320	330	340	350	360
	* *	* *	* *	* *	* *	* *
	TGAGCTCCT	r AACCGGTCT	CGACCTGACG	GAGTTTTCCA (GCTTGGAGGT (GCCGGCCGCT
	ACTCGAGGA	A TTGGCCAGA	GCTGGACTGC	CTCAAAAGGT (CGAACCTCCA	CGGCCGGCGA
5	37	0 380	390	400	410	420
_	* *	* *	₹ *	* * *	* *	* *
	CCTCCTTCA	C - TCCTCGCCA	G GCGTACCTGA	CACTCCAGAG	CTCTTCTTCC -	CAGCCTCGCT
	GGAGGAAGT	G AGGAGCGGT	C CGCATGGACT	GTGAGGTCTC	GAGAAGAAGG	GTCGGAGCGA
		430 44	0 450	460	470	480
10	* *	* *	* *	* *	* *	* *
	CCGGCGGCA	T TGGAACCCT	C CAGTTTGTGG	AGGAGTTTGT	ACCCTCCGTT	TACTTCAACC
	GGCCGCCGT	A ACCTTGGGA	G GTCAAACACC	TCCTCAAACA	TGGGAGGCAA	ATGAAGTTGG
	. 49	50	0 510	520	, 530	540
	* *	* *	* *	* *	* *	* i *
15	CATTCTCG	G CGCTCCTGG	T CTTTACCCAG	ACGACTTCAT	CCCAAACTAC	GACGCGGTGA
	GTAAGAGC	CC GCGAGGACC	A GAAATGGGTC	TGCTGAAGTA	GGGTTTGATG	CTGCGCCACT
	5:	50 56	50 570	580	590	600
	* *	* *	* *	* *	* *	*
	GCGAATCT	GT GGACGGCT	AC GACTGAATCO	CAATGGTGCG	TCCGTGACTG	TGTGGCTGCA
20	CGCTTAGA	CA CCTGCCGA	IG CTGACTTAG	GTTACCACGC	AGGCACTGAC	ACACCGACGT
	6	10 6	20 63	640	650	660
	* *	* *	* *	* *	* *	* *
	ACATCTAC	AT CGGCGCCG	TA ATCCTTGCT	A CTTTGTCTGA	AAAGTCTGTG	ATTTTTACTT
	TGTAGATG	TA GCCGCGGC	AT TAGGAACGA	T GAAACAGACT	TTTCAGACAC	TAAAAATGAA
25	- 6	70 6	80 69	0 700	710	720
	* *	* *	* *	* *	* *	* *
		AG CGCTTGGA				
	TGGCGAGG	STC GCGAACCT	AA TGTACTTCT	a gacacaagaa		
	7	730 7	40 75	0 760	770	
30	* . *	* *	* *	* *	* *	
				TGGTTCCTT		
	TTCATCG	GAT TCCTGAAC	STG GATGTTGG	ACCAAGGAAT		
	•	790 8	81	10 820		
	* *	* *				* * *
35				C TGAGTCTAC		
	GTTTCCA	TGT GTGGTTT	gag aaataaaa	AG ACTCAGATG	G TGAAGATAA	C GTGAATTGAC

1	850	860	87C	880	890	900
	* *	* * .	* *	* *	ж *	* *
	TTCTTGTCGT	AACCAACTCG	TTCAGTGGCG	CGCTAACAGA	CAATTTTGCA	AACTATTTTG
	AAGAACAGCA	TTGGTTGAGC	AAGTCACCGC	GCGATTGTCT	GTTAAAACGT	TTGATAAAAC
5	910	920	930	940	950	960
	* *	* *	* *	* *	* *	* *
	GGACGCTCTT	- ATTGTTCAAG	GAAACAACAG	CCTTTGTAAC	AACTGTACTG	CTACTACTTT
	CCTGCGAGAA	TAACAAGTTC	CTTTGTTGTC	GGAAACATTG	TTGACATGAC	GATGATGAAA
	970	980	990	1000	1010	1020
10	* *	* *	* *	* *	* *	* *
	AACTCTT AĆĀ	CCTCCTTTTG	TTCCCGGTCC	ATACTTGTGC	ATTEGEACAG	GAAGAGGGCC
	TTGAGAATGT	GGAGGAAAAC	AAGGGCCAGG	TATGAACACG	TAACCGTGTC	CTTCTCCCGG
	1030	1040	1050	1060	1070	1080
	* * `	* *	* *	* *	* *	* (*
15	TAGCTGCTTT	AATCGCTGGA	CTTTACAAAA	AGAGAACCTA	ACCACTACCA	CCCTCCTTCC
	ATCGACGAAA	TTAGCGACCT	GAAATGTTTT	TCTCTTGGAT	TGGTGATGGT	GGGAGGAAGG
	1090	1100	1110	1120	1130	1140
	* *	*	*	*	*	* *
	CCTTACTACT	TATACTTTTT	CCCAAAAAA	AATTTACTTT	TTGCCCATTA	TTGCACTTTT
20	GGAATGATGA	ATATGAAAAA	GGGTTTTTT	TTAAATGAAA	AACGGGTAAT	AACGTGAAAA
	1150	1160	1170	1180	1190	1200
	* *	*	*	*	*	* *
	GGCCTTTGTC	TGTGTTATTA	CCGCTAATTA	CATTTTAATT	TTCAATCTTG	ATAATTTTTA
	CCGGAAACAG	ACACAATAAT	GGCGATTAAT	GTAAAATTAA	AAGTTAGAAC	TAAAAAAT
25	1210	1220	1230	1240	1250	1260
	* *	* *	* *	* *	* *	* *
		TGCTGTTTTT				
	GATTAGTACG	ACGACAAAAA	TGAAACGGAA			
	127	0 1280	1290	1300	1310	
30	* *	* *	* *		* *	* *
		TTAACAACCT				
	CTTTTTTGAG	AATTGTTGGA				
	1330	1340				
	* *	* *			* *	* *
35		AAACTCCTCA				
	CTAAGATACT	TTTGAGGAGT	CTAACTGCTT	GAATGATCAG	AATCGACCTA	ATTTGTCCTT

ı	1390	1400	1410	1420	·1430	1440
*	*	* *	* *	* *	* *	* *
	GACAATCCTA	ACAAAAACTT	ACAATCATTT	TTTTTTATTG	GTCAAAAACT	CTGTGAAGTT
	CTGTTAGGAT	TGTTTTTGAA	TGTTAGTAAA	AAAAAATAAC	CAGTTTTTGA	GACACTTCAA
5	1450	1460	1470	1480	1490	1500
4	* *	* *	* *	* *	* *	* *
	ACCAAAGACA	AAATCACTGT	TTTTAACTAT	TATCCGTTGG	AATTTTCCTG	CGCTAACGTA
	TGGTTTCTGT	TTTAGTGACA	AAAATTGATA	ATAGGCAACC	TTAAAAGGAC	GCGATTGCAT
	1510	1520	1530	1540	1550	1560
10	* *	* *	* *	* *	* *	* *
	ACCTTGTATT	TGTATAATCT	TAAAACTGAC	GATTCTGGCC	TCTATAATGG	AAAGGCCCAT
	TGGAACATAA	ACATATTAGA	ATTTTGACTG	CTAAGACCGG	AGATATTACC	TTTCCGGGTA
	1570	1580	1590	1600	1610	1620
	* *	* *	* *	* *	* *	* *
15	ACCAAAGAGC					
	TGGTTTCTCG	AACTTGTATT	GTGGATACAA	TCCGAAATAC	AATAACTGTA	AGGAGGCGGA
	1630	1640	1650	1660	1670	1680
	* *	* *	* *	* *	* *	* *
				ATACAGGCTA		
20	TTCACACTGT	AATGAAGTGC	AATGAATCC	TATGTCCGAT	GACCCCTTCT	
	1690	1700	1710	1720	1730	
	* *	* *	* *	* *	* *	* *
	****					TGGCAGGCAA
		TAACGTGAT				ACCGTCCGTT
25	175	0 1760	-			
	* *	* *	* *	* *	* *	
	AGCAACTTC			C GGAAACAAA		
						I AAAAATACTT 0 1860
•				0 184		
30) * *					
						C TTTTAACGAC
				00 - 190		G AAAATTGCTG .0 1920
		-				* * *
21						T CCTCATTCTT
٦:						CA GGAGTAAGAA
	GAAACAGT.	II GITGGICG	G MGMIGIIM	ry riuciarit	o negrocare	Jong Landan

1	1930	1940	1950	1960	1970	1980
	* *	* *	* *	* *	* *	* *
	CTCATAGTAG	TTGGCTTAAT	AATAATTTCC	GCTAGTTTAA	TATTGCTTTA	TTGCCACCGC
	GAGTATCATC	AACCGAATTA	TTATTAAAGG	CGATCAAATT	ATAACGAAAT	AACGGTGGCG
5	1990	2000	2010	2020	2030	2040
	* *	* *	* *	* *	* *	* *
	AAAAAAATCA	AGGCCGAAGT	TCAACATCAA	CCAGTGCATA	TTTGTTTAGA	TAAAATAAAA
	TTTTTTTAGT	TCCGGCTTCA	AGTTGTAGTT	GGTCACGTAT	AAACAAATCT	TTTTATTTTA
	2050	2060	2070	2080	2090	2100
10	* *	* *	* *	* *	* *	* *
	AAAAAAGAAA	AGTCATACCA	TTGAGGAGAA	GAGGACGAAC	AGACAGACGG	TTAATAGATG
	2110	2120	2130	2140	2150	2160
	* *	* *	* *	* *	* * *	* *
	GCCTCCACCA	CCTTCGCCGC	AGTCTCCCAC	CTTGATACGG	ATTGTCTTCC	CGCCTTGCTG
15	CGGAGGTGGT	GGAAGCGGCG	TCAGAGGGTG	GAACTATGCC	TAACAGAAGG	GCGGAACGAC
	2170	2180	2190	2200	2210	2220
	* *	* *	* *	* *	,* *	* *
	ACTTATCTCA				•	CACTTTTTTT
	TGAATAGAGT	AGAAGTGGAG	ACAAACGACG	TGACGGTAGA	CGTCGTAACG	GTGAAAAAA
20	2230	2240	2250	2260	2270	2280
	* *	* *	* *	* *	* *	* *
	GTGGCCATTT	TCCAAACTGC	GGACTACCTA		TGGCATACTA	TCGTCATCAT
	CACCGGTAAA	AGGTTTGACG	CCTGATGGAT	ATGCAATCTC		AGCAGTAGTA
	2290	2300	2310	- 2320	2330	2340
25	* '*'	* *	* *	* *	* *	* *
	CCCCAATATA	GGAACCACGA				
	GGGGTTATAT		•		ACAGTACTTT	
	2350				2390	
	* *			* *		
30	TCTGTCTTAT			•		
						GGGTGGCTCA
						2460
						* *
						ATTTTTATTT
35	AGGACGCGAC	GATGAGTTGT	CTTTGGAGAA	GGAAAACCGA	CATGAGGTAA	TAAAAATAAA

1	2470	2480	2490	2500	2510	2520
	* *	* *	* *	* *	* *	* *
	TGATTTTCTT TGCCACCTTT		TTGGGATTAC	AAATTTACGG	CTGCCTTCAC	CTGGGCTGGA
	ACTAAAAGAA	ACGGTGGAAA	AACCCTAATG	TTTAAATGCC	GACGGAAGTG	GACCCGACCT
5	2530	2540	2550	2560	2570	2580
	* *	* *	* *	* *	* *	* *
	TGCATCCTCC	- CAACAACCTA	CCCAGATTTC	CTGGTTTCTT	ATTACAGCCC	CCGCCGCCCC
	ACGTAGGAGG	GTTGTTGGAT	GGGTCTAAAG	GACCAAAGAA	TAATGTCGGG	GCCGCCGGG
	2590	2600	/ 2610	2620	2630	2640
10	* * *	* * *	* *	* *	* *	* *
	CACCAGCTCC	TGTACAGCGC	GCTCCATCAG	TTATTAGCTA	CTTTCATCTT	AACTCTGAAG
	GTGGTCGAGG	ACATGTCGCG	CGAGGTAGTC	AATAATCGAT	GAAAGTAGAA	TTGAGACTTC
	2650	2660	2670	2680	2690	2700
	* *	* *	* *	* *	* *	* ; *
15	ATGTCTGACC	AACTAGAAAT	CGACGGGCAG	CGCACTGAGC	AGCTGATCCT	TGCTCGGCGA
	TACAGACTGG	TTGATCTTTA	GCTGCCCGTC	GCGTGACTCG	TCGACTAGGA	ACGAGCCGCT
	2710	2720	2730	2740	2750	2760
	* *	* *	* *	* *	* *	* *
	AAACTCAAAC	AACAAAACCA	GGAATTGTTC	AACCTTCAAG	CCTTACACCA	ATGCAAAAAG
20	TTTGAGTTTG	TTGTTTTGGT	CCTTAACAAG	TTGGAAGTTC	GGAATGTGGT	TACGTTTTTC
	2770	2780	2790	2800	2810	2820
	* *	* *	* *	* *	* *	* *
	GGTCTTTTCT	GCCTGGTTAA	ACAAGCTGAA	CTTTGCTATG	ATGTAACCCA	ACAGGGGCAT
	CCAGAAAAGA	CGGACCAATT	TGTTCGACTT	GAAACGATAC	TACATTGGGT	TGTCCCCGTA
25	-2830	2840	2850	2860	2870	2880
	* *	* *	* *	* *	* *	* *
	GAGCTATCAT	r acactttaaa	CAAGCAAAGA	CAGAGCTTTA	TGACTATGGT	GGGGGTTAAG
	CTCGATAGT	A TGTGAAATTT	GTTCGTTTCT	GTCTCGAAAT	ACTGATACCA	CCCCCAATTC
	2890	2900	2910	2920	2930	2940
30	* *	* *	* *	* *	* *	* *
	CCCATTAAG	G TTACTCAGCA	ATCCGGCCCA	GTTGAGGGA	GCATTCTTTG	TCAGTGCACC
	GGGTAATTC	C AATGAGTCGT	TAGGCCGGG	CAACTCCCTT	CGTAAGAAA	AGTCACGTGG
	295	0 2960	2970	2980	2990	3000
	* *	* *	* *	* *	* *	* *
35	AATTCTGAA	T GCATGTACAC	TATGGTAAA	A ACCCTGTGTC	G GTCTCAGGG	A ACTICICCC
	TTAAGACTT	A CGTACATGT	ATACCATTT	T TGGGACACA	C CAGAGTCCC	T TGAAGAGGGG

_			2020	2040	3050	3060
1	3010 3020		3030	3040	3030	3000
	* *	* *	* *	* *	* *	* *
	TTTAATTAAA	GTTATCTGAT	TAATAAAGCT	TACCTTAAAT	TTGATATCAG	TTGTTTGTCA
	AAATTAATTT	CAATAGACTA	ATTATTTCGA	ATGGAATTTA	AACTATAGTC	AACAAACAGT
5	3070	3080	3090	3100	3110	3120
	* *	* *	* *	* *	* *	* *
		GCAGCACCAC				
	TCAAAAAGGT	CGTCGTGGTG	GACGGGAAGG	AGGGTTGAAA	GCATCCCCTA	CACGGTTGCC
	3130	3140	3150	3160	3170	3180
	* *	* *	* *	* *	* *	* *
10	GCAGCAAACT				TCACCTTTTT	
	CGTCGTTTGA	AAGAGGTGCA	GGATTTCCCA	TATAGCCACA	AGTGGAAAAA	TGGGACTGGG
	3190	3200	3210	3220	3230	3240
	* *	* *	* *	* *	* *	* • *
		TCTTGCAGAT				
	TGCTAGAAGT	AGAACGTCTA	CTTTTCTTGG	TCTTAACTTC	TGCTGAAGTT	
15	3250	3260	3275	3280	3290	3300
	* *	* *	* *	* *	* *	* *
		CCTTCTCAAC				
	GGGATACTGT	GGAAGAGTTG				
	3310	3320	3330	3340	3350	3360
	.	• •	• "	* * '	* * *	. x ×
20		AGGAAAAACC				
		TCCTTTTTGG	GGGTCCTCAA	AATCGTGAGT	TCATGTGACT	GGGGTAATGA
	3370					
	* *					
	ACCAATGCTA					
	TGGTTACGAT	TCG				
25	• •		• • • •		Claim 1 or	· 2 having a
						2 having a
	nucleotide	sequence of	Fig. 4 from	n pase 683 t	o pase 1204.	ongoding an
					Taim 1 Or 2	encoding an
	amino acid	sequence for			The Cor Cor	Tau Arm

Met Lys Ile Cys Val Leu Phe Cys Val Leu Ser Leu Thr Ser Ser Leu Arg Thr Ser Pro Thr Thr Val Gly Ser Leu Arg Gln Leu Gln Asp Ser Thr Lys

Gly Thr His Gln Thr Leu Tyr Phe Ser Glu Ser Thr Thr Ser Ile Ala Leu

35

- Asn Cys Ser Cys Arg Asn Gln Leu Val Gln Trp Arg Ala Asn Arg Gln Phe Cys Lys Leu Phe Trp Asp Ala Leu Ile Val Gln Gly Asn Asn Ser Leu Cys Asn Asn Cys Thr Ala Thr Thr Leu Thr Leu Thr Pro Pro Phe Val Pro Gly Pro Tyr Leu Cys Ile Gly Thr Gly Arg Gly Pro Ser Cys Phe Asn Arg Trp Thr Leu Gln Lys Glu Asn Leu Thr Thr Thr Thr Leu Leu Pro Leu Thr Thr Tyr Thr Phe Ser Gln Lys Lys Ile Tyr Phe Leu Pro Ile Ile Ala Leu Leu Ala Phe Val Cys Val Ile Thr Ala Asn Tyr Ile Leu Ile Phe Asn Leu Asp Asn Phe Tyr
- 12. The nucleic acid according to Claim 1 or 2 having 10 a nucleotide sequence of Fig. 4 from base 1207 to base 2037.
- 13. The nucleic acid according to Claim 1 of 2 encoding an amino acid sequence for RL-2 which comprises: Met Leu Leu Phe Leu Cys Leu Leu Phe Cys Ser Ala Tyr Ala Ala Val Pro Glu Lys Thr Leu Asn Asn Leu Val Arq Val Tyr Ala Leu Val Gly Thr i Asn Leu Ser Leu Asp Ser Met Lys Thr Pro Gln Ile Asp Glu Leu Thr Ser 15 Leu Ser Trp Ile Lys Gln Glu Asp Asn Pro Asn Lys Asn Leu Gln Ser Phe Phe Phe Ile Gly Gln Lys Leu Cys Glu Val Thr Lys Asp Lys Ile Thr Val Phe Asn Tyr Tyr Pro Leu Glu Phe Ser Cys Ala Asn Val Thr Leu Tyr Leu Tyr Asn Leu Lys Thr Asp Asp Ser Gly Leu Tyr Asn Gly Lys Ala His Thr Lys Glu Leu Glu His Asn Thr Tyr Val Arg Leu Tyr Val Ile Asp Ile Pro 20 Pro Pro Lys Cys Asp Ile Thr Ser Arg Tyr Leu Gly Ile Gln Ala Thr Gly Glu Asp Tyr Cys Leu Ile Glu Ile Asn Cys Thr Asn Ser Lys Tyr Pro Ala Val Val Lys Phe Asn Gly Arg Gln Ser Asn Phe Tyr His Tyr Val Ser Glu Asn Gly Asn Lys Glu Leu Pro Asn Phe Tyr Glu Thr His Ile Thr Val Asn Gly Thr His Lys Ser Phe His Phe Asn Tyr Pro Phe Asn Asp Leu Cys Gln 25 Thr Thr Ser Ala Leu Gln Tyr Asn Asp Asn Val Gln Val Val Leu Ile Leu Leu Ile Val Val Gly Leu Ile Ile Ser Ala Ser Leu Ile Leu Leu Tyr Cys His Arg Lys Lys Ile Lys Ala Glu Val Gln His Gln Pro Val His Ile
- 30 14. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence of Fig. 4 from base 1730 to base 1909.

BNSMCIN- WA GIARRINAT ! .

Cys Leu Glu Lys

- 15. The nucleic acid according to Claim 1 of 2 encoding an amino acid sequence for RL-3 which comprises.

 Met Ala Gly Lys Ala Thr Ser Thr Ile Met Leu Ala Lys Thr Glu Thr Lys Asn Phe Gln Ile Phe Met Lys His Thr Ser Leu Leu Met Val Pro Thr Lys Ala Phe Thr Leu Ile Thr Leu Leu Thr Thr Phe Val Lys Gln Pro Ala Leu Tyr Asn Ile Met Thr Met Ser Arg
 - 16. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence of Fig. 4 from base 2056 to base 2328.
- an amino acid sequence for RL-4 which comprises:

 Met Val Thr Pro Leu Leu Leu Leu Val Cys Leu Pro Ile Ile Tyr Ala Ser

 Thr Thr Phe Ala Ala Val Ser His Leu Asp Thr Asp Cys Leu Pro Ala Leu

 Leu Thr Tyr Leu Ile Phe Thr Ser Val Cys Cys Thr Ala Ile Cys Ser Ile

 Ala Thr Phe Phe Val Ala Ile Phe Gln Thr Ala Asp Tyr Leu Tyr Val Arg ;

 Val Ala Tyr Tyr Arg His His Pro Gln Tyr Arg Asn His Glu Val Ala Ala

 Leu Leu Cys Leu Ser
 - 18. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence of Fig. 4 from base 2325 to base 2648.
- an amino acid sequence for RL-5 which compises:

 Met Lys Val Pro Leu Leu Cys Leu Ile Leu Leu His Lys Val Leu Ala Asn
 Cys His Leu His Arg Pro Thr Glu Phe Leu Arg Cys Tyr Ser Thr Glu Thr
 Ser Ser Phe Trp Leu Tyr Ser Ile Ile Phe Ile Leu Ile Phe Phe Ala Thr
 Phe Leu Gly Leu Gln Ile Tyr Gly Cys Leu His Leu Gly Trp Met His Pro
 Pro Asn- Asn Leu Pro Arg Phe Pro Gly Phe Leu Leu Gln Pro Pro Pro
 Pro Pro Ala Pro Val Gln Arg Ala Pro Ser Val Ile Ser Tyr Phe His Leu
 Asn Ser Glu Asp Val
 - 20. The nucleic acid according to Claim 1 or 2 having a nucleotide sequence of Fig. 4 from base 2641 to base 3009.

- 21. The nucleic acid according to Claim 1 or 2 encoding an amino acid sequence for RL-6 which comprises:

 Met Ser Asp Gln Leu Glu Ile Asp Gly Gln Arg Thr Glu Gln Leu Ile Leu Ala Arg Arg Lys Leu Lys Gln Gln Asn Gln Glu Leu Phe Asn Leu Gln Ala

 5 Leu His Gln Cys Lys Lys Gly Leu Phe Cys Leu Val Lys Gln Ala Glu Leu Cys Tyr Asp Val Thr Gln Gln Gly His Glu Leu Ser Tyr Thr Leu Asn Lys Gln Arg Gln Ser Phe Met Thr Met Val Gly Val Lys Pro Ile Lys Val Thr Gln Gln Gly Pro Val Glu Gly Ser Ile Leu Cys Gln Cys Thr Asn Ser Glu Cys Met Tyr Thr Met Val Lys Thr Leu Cys Gly Leu Arg Glu Leu Leu Pro Phe Asn
 - 22. A replicable expression vector compising the nucleic acid of Claim 1 or 2 operably linked to a nucleotide sequence capable of effecting expression of a polypeptide encoded by any one of said nucleic acids.
- 23. A recombinant DNA according to Claim 4 having the identifying characteristics of the Ad41 long fiber protein sequence accorded the EMBL accession number X16583.
 - 24. A recombinant DNA according to Claim 7 having the identifying characteristics of the Ad41 short fiber protein sequence accorded the EMBL accession number X17016.
 - 25. A recombinant DNA according to Claim 9 having the identifying characteristics of the Ad41 E3 sequence encoding Ad41 proteins RL-1 to RL-6 accorded the GenBank accession number M33160.
- 26. A recombinant protein of human enteric adenovirus

 Type 41 wherein said protein is long fiber protein, short fiber protein, RL-1, RL-2, RL-3, RL-4, RL-5 or RL-6.

1 27. The recombinant protein of Claim 26 of long fiber protein of human enteric adenovirus Type 41 wherein said protein has an amino acid sequence comprising:

Met Lys Arg Ala Arg Leu Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr Glu His Tyr Asn Pro Leu Asp Ile Pro Phe Ile Thr Pro 5 Pro Phe Ala Ser Ser Asn Gly Leu Gln Glu Lys Pro Pro Gly Val Leu Ser Leu Gly Thr-Gly Leu Asn Ile Asp Glu Asn Gly Asp Leu Ser Ser Asp Ala Ser Val Glu Val Ser Ala Pro Ile Thr Lys Thr Asn Lys Ile Val Gly Leu Asn Tyr Thr Lys Pro Leu Ala Leu Arg Ser Asn Ala Leu Thr Leu Ser Tyr Asn Ala Pro Leu Asn Val Val Asn Asn Asn Leu Ala Leu Asn Ile Ser Gln 10 Pro Val Thr Val Asn Ala Asn Asn Glu Leu Ser Leu Leu Ile Asp Ala Pro Leu Asn Ala Asp Thr Gly Thr Leu Arg Leu Gln Ser Ala Ala Pro Leu Gly Leu Val Asp Lys Thr Leu Lys Val Leu Phe Ser Ser Pro Leu Tyr Leu Asp Asn Asn Phe Leu Thr Leu Ala Ile Glu Arg Pro Leu Ala Leu Ser Ser Ser Arg Ala Val Thr Leu Lys Tyr Ser Pro Pro Leu Lys Ile Glu Asn Glu Asn 15 Leu Thr Leu Ser Thr Gly Gly Pro Phe Thr Val Ser Gly Gly Asn Leu Asn Leu Thr Thr Ser Ala Pro Leu Ser Val Gln Asn Asn Ser Leu Ser Leu Val Ile Thr Ser Pro Leu Lys Val Ile Asn Ser Met Leu Ala Val Gly Val Asn Pro Pro Phe Thr Ile Thr Asp Ser Gly Leu Ala Met Asp Leu Gly Asp Gly Leu Ala Leu Gly Gly Ser Lys Leu Ile Ile Asn Leu Gly Pro Gly Leu Gln 20 Met Ser Asn Gly Ala Ile Thr Leu Ala Leu Asp Ala Ala Leu Pro Leu Gln Tyr Arg Asp Asn Gln Leu Gln Leu Arg Ile Gly Ser Thr Ser Gly Leu Ile Met Ser Gly Val Thr Gln Thr Leu Asn Val Asn Ala Asn Thr Gly Lys Gly Leu Ala Val Glu Asn Asn Ser Leu Val Val Lys Leu Gly Asn Gly Leu Arg Phe Asp Ser Trp Gly Ser Ile Thr Val Ser Pro Thr Thr Thr Pro Thr 25 Thr Leu Tro Thr Thr Ala Asp Pro Ser Pro Asn Ala Thr Phe Tyr Glu Ser Leu Asp Ala Lys Val Trp Leu Val Leu Val Lys Cys Asn Gly Met Val Asn Gly Thr Ile Ser Ile Lys Ala Gln Lys Gly Ile Leu Leu Arg Pro Thr Ala Ser Phe Ile Ser Phe Val Met Tyr Phe Tyr Ser Asp Gly Thr Trp Arg Lys Asn Tyr Pro Val Phe Asp Asn Glu Gly Ile Leu Ala Asn Ser Ala Thr Trp 30 Gly Tyr Arg Gln Gly Gln Ser Ala Asn Thr Asn Val Ser Asn Ala Val Glu Phe Met Pro Ser Ser Lys Arg Tyr Pro Asn Gln Lys Gly Ser Glu Val Gln Asn Met Ala Leu Thr Tyr Thr Phe Leu Gln Gly Asp Pro Asn Met Ala Ile Ser Phe Gln Ser Ile Tyr Asn His Ala Leu Glu Gly Tyr Ser Leu Lys Phe Thr Tro Arg Val Arg Asn Asn Glu Arg Phe Asp Ile Pro Cys Cys Ser Phe 35 Ser Tyr Val Thr Glu Gln

10

28. The recombinant protein of Claim 26 of the short fiber 1 protein of human enteric adenovirus Type 41 wherein said protein has an amino acid sequence comprising:

Met Lys Arg Thr Arg Ile Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr Asp Thr Phe Ser Thr Pro Ser Ile Pro Tyr Val Ala Pro Pro Phe Val Ser Ser Asp Gly Leu Gln Glu Lys Pro Pro Gly Val Leu Ala Leu Lys Tyr Thr Asp Pro Ile Thr Thr Asn Ala Lys His Glu Leu Thr Leu Lys Leu Gly Ser Asn Ile Thr Leu Glu Asn Gly Leu Leu Ser Ala Thr Val Pro Thr Val Ser Pro Pro Leu Thr Asn Ser Asn Asn Ser Leu Gly Leu Ala Thr Ser Ala Pro Ile Ala Val Ser Ala Asn Ser Leu Thr Leu Ala Thr Ala Ala Pro Leu Thr Val Ser Asn Asn Gln Leu Ser Ile Asn Ala Gly Arg Gly Leu Val Ile Thr Asn Asn Ala Leu Thr Val Asn Pro Thr Gly Ala Leu Gly Phe Asn Asn Thr Gly Ala Leu Gln Leu Asn Ala Ala Gly Gly Met Arg Val Asp Gly Ala Asn Leu Ile Leu His Val Ala Tyr Pro Phe Glu Ala Ile Asn Gln Leu Thr Leu Arg Leu Glu Asn Gly Leu Glu Val Thr Ser Gly Gly Lys Leu Asn Val Lys Leu 15 Gly Ser Gly Leu Gln Phe Asp Ser Asn Gly Arg Ile Ala Ile Ser Asn Ser Asn Arg Thr Arg Ser Val Pro Ser Leu Thr Thr Ile Trp Ser Ile Ser Pro Thr Pro Asn Cys Ser Ile Tyr Glu Thr Gln Asp Ala Asn Leu Phe Leu Cys Leu Thr Lys Asn Gly Ala His Val Leu Gly Thr Ile Thr Ile Lys Gly Leu Lys Gly Ala Leu Arg Glu Met His Asp Asn Ala Leu Ser Leu Lys Leu Pro 20 Phe Asp Asn Gln Gly Asn Leu Leu Asn Cys Ala Leu Glu Ser Ser Thr Trp Arg Tyr Gln Glu Thr Asn Ala Val Ala Ser Asn Ala Leu Thr Phe Met Pro Asn Ser Thr Val Tyr Pro Arg Asn Lys Thr Ala His Pro Gly Asn Met Leu Ile Gln Ile Ser Pro Asn Ile Thr Phe Ser Val Val Tyr Asn Glu Ile Asn Ser Gly Tyr Ala Phe Thr Phe Lys Trp Ser Ala Glu Pro Gly Lys Pro Phe

His Pro Pro Thr Ala Val Phe Cys Tyr Ile Thr Glu Gln

30

25

29. The recombinant protein of Claim 26 of E3 RL-1 protein of human adenovirus Type 41 wherein said protein has an amino acid sequence comprising:

Met Lys Ile Cys Val Leu Phe Cys Val Leu Ser Leu Thr Ser Ser Leu Arg

Thr Ser Pro Thr Thr Val Gly Ser Leu Arg Gln Leu Gln Asp Ser Thr Lys
Gly Thr His Gln Thr Leu Tyr Phe Ser Glu Ser Thr Thr Ser Ile Ala Leu
Asn Cys Ser Cys Arg Asn Gln Leu Val Gln Trp Arg Ala Asn Arg Gln Phe
Cys Lys Leu Phe Trp Asp Ala Leu Ile Val Gln Gly Asn Asn Ser Leu Cys
Asn Asn Cys Thr Ala Thr Thr Leu Thr Leu Thr Pro Pro Phe Val Pro Gly
Pro Tyr Leu Cys Ile Gly Thr Gly Arg Gly Pro Ser Cys Phe Asn Arg Trp
Thr Leu Gln Lys Glu Asn Leu Thr Thr Thr Thr Leu Pro Leu Thr Thr
Tyr Thr Phe Ser Gln Lys Lys Ile Tyr Phe Leu Pro Ile Ile Ala Leu Leu
Ala Phe Val Cys Val Ile Thr Ala Asn Tyr Ile Leu Ile Phe Asn Leu Asp
Asn Phe Tyr

15

30. The recombinant protein of Claim 26 of E3 RL-2 protein of human adenovirus Type 41 wherein said protein has an amino acid sequence comprising:

Met Leu Leu Phe Leu Leu Cys Leu Leu Phe Cys Ser Ala Tyr Ala Ala Val Pro Glu Lys Thr Leu Asn Asn Leu Val Arg Val Tyr Ala Leu Val Gly Thr. 20 Asn Leu Ser Leu Asp Ser Met Lys Thr Pro Gln Ile Asp Glu Leu Thr Ser Leu Ser Trp Ile Lys Gln Glu Asp Asn Pro Asn Lys Asn Leu Gln Ser Phe Phe Phe Ile Gly Gln Lys Leu Cys Glu Val Thr Lys Asp Lys Ile Thr Val Phe Asn Tyr Tyr Pro Leu Glu Phe Ser Cys Ala Asn Val Thr Leu Tyr Leu Tyr Asn Leu Lys Thr Asp Asp Ser Gly Leu Tyr Asn Gly Lys Ala His Thr 25 Lys Glu Leu Glu His Asn Thr Tyr Val Arg Leu Tyr Val Ile Asp Ile Pro Pro Pro Lys Cys Asp Ile Thr Ser Arg Tyr Leu Gly Ile Gln Ala Thr Gly Glu Asp Tyr Cys Leu Ile Glu Ile Asn Cys Thr Asn Ser Lys Tyr Pro Ala Val Val Lys Phe Asn Gly Arg Gln Ser Asn Phe Tyr His Tyr Val Ser Glu Asn Gly Asn Lys Glu Leu Pro Asn Phe Tyr Glu Thr His Ile Thr Val Asn 30 Gly Thr His Lys Ser Phe His Phe Asn Tyr Pro Phe Asn Asp Leu Cys Gln Thr Thr Ser Ala Leu Gln Tyr Asn Asp Asn Val Gln Val Val Leu Ile Leu Leu Ile Val Val Gly Leu Ile Ile Ile Ser Ala Ser Leu Ile Leu Leu Tyr Cys His Arg Lys Lys Ile Lys Ala Glu Val Gln His Gln Pro Val His Ile Cys Leu Glu Lys 35

- 1 31. The recombinant protein of Claim 26 of E3 R1-3 protein of human adenovirus Type 41 wherein said protein has an amino acid sequence comprising:
- Met Ala Gly Lys Ala Thr Ser Thr Ile Met Leu Ala Lys Thr Glu Thr Lys

 Asn Phe Gln Ile Phe Met Lys His Thr Ser Leu Leu Met Val Pro Thr Lys

 Ala Phe Thr Leu Ile Thr Leu Leu Thr Thr Phe Val Lys Gln Pro Ala Leu

 Tyr Asn Ile Met Thr Met Ser Arg
 - 32. The recombinant protein of Claim 26 of E3 R1-4 protein of human adenovirus Type 41 wherein said
- protein has an amino acid sequence comprising:

 Met Val Thr Pro Leu Leu Leu Leu Val Cys Leu Pro Ile Ile Tyr Ala Ser

 Thr Thr Phe Ala Ala Val Ser His Leu Asp Thr Asp Cys Leu Pro Ala Leu

 Leu Thr Tyr Leu Ile Phe Thr Ser Val Cys Cys Thr Ala Ile Cys Ser Ile

 Ala Thr Phe Phe Val Ala Ile Phe Gln Thr Ala Asp Tyr Leu Tyr Val Arg;

 Val Ala Tyr Tyr Arg His His Pro Gln Tyr Arg Asn His Glu Val Ala Ala

 Leu Leu Cys Leu Ser
 - 33. The recombinant protein of Claim 26 of E3 RL-5 protein of human adenovirus Type 41 wherein said protein has an amino acid sequence comprising:

- 34. The recombinant protein of Claim 26 of E3 RL-6 protein of human adenovirus Type 41 wherein said protein has an amino acid sequence comprising:
- Met Ser Asp Gln Leu Glu Ile Asp Gly Gln Arg Thr Glu Gln Leu Ile Leu

 Ala Arg Arg Lys Leu Lys Gln Gln Asn Gln Glu Leu Phe Asn Leu Gln Ala
 Leu His Gln Cys Lys Lys Gly Leu Phe Cys Leu Val Lys Gln Ala Glu Leu
 Cys Tyr Asp Val Thr Gln Gln Gly His Glu Leu Ser Tyr Thr Leu Asn Lys
 Gln Arg Gln Ser Phe Met Thr Met Val Gly Val Lys Pro Ile Lys Val Thr
 Gln Gln Ser Gly Pro Val Glu Gly Ser Ile Leu Cys Gln Cys Thr Asn Ser

 Glu Cys Met Tyr Thr Met Val Lys Thr Leu Cys Gly Leu Arg Glu Leu Leu
 Pro Phe Asn
 - 35. A polypeptide encoded by the nucleic acid of any one of Claims 1-21.
- 36. A polypeptide comprising an antigenic fragment i

 15 of human adenovirus Type 41 long fiber protein, short fiber protein,

 Rl-1 protein, RL-2 protein, RL-3 protein, RL-4 protein, RL-5 protein

 or RL-6 protein.
 - 37. Antibodies against a long fiber protein of human adenovirus Type 41, a short fiber protein, RL-1 protein, RL-2 protein, RL-3 protein, RL-4 protein, RL-5 protein or
- 20 RL-2 protein, RL-3 protein, RL-4 protein, RL-5 protein or RL-6 protein.
 - 38. Antibodies against the polypeptides of Claims 35 or 36.
 - 39. The antibodies according to Claim 38 which
- are specific to the tail, shaft or knob region of the Ad41 long fiber protein or short fiber protein.
 - 40. The antibodies according to any one of Claims 37 to 39 wherein said antibodies are monoclonal or polyclonal.
- 41. A vaccine for immunization against a human

 30 adenovirus comprising the administration of an effective
 amount of at least one of Ad41 long fiber protein, short fiber protein,
 RL-1, RL-2, RL-3, Rl-4, RL-5 or RL-6 and/or active fragments thereof
 in association with a conventional vaccine carrier.

- 1 42. A vaccine for immunization against a human adenovirus comprising the administration of a mixture of inactivated Ad41 and at least one of recombinant proteins as described in any one of Claims 26 to 34 or active
- 5 fragments thereof in association with a conventional vaccine carrier.
 - 43. The vaccine according to Claim 41 or 42 wherein the human adenovirus is Ad41 or Ad40.
 - 44. The vaccine according to any one of Claims 41 to 43 wherein the dosage effective range is about 0.001-100 mg antigen/kg body.
 - 45. A host organism or cell transformed by the nucleic acid of any one of Claims 1 to 21.
- 46. A host organism or cell according to Claim 45 i 15 wherein the host is yeast or bacterium.
 - 47. A method of detecting or diagnosing human adenovirus comprising contacting serum, tissue, or tissue extracts of an individual to be tested with an antibody against Ad41 long fiber protein, short fiber protein, RL-1 protein, RL-2 protein, RL-3 protein, RL-4 protein, RL-5 protein or RL-6 protein or an active fragment thereof, for a time and under conditions necessary to form an antibody-antigen complex, and detecting any resultant antibody-antigen complex.
- Type 41, human adenovirus Ad40 or any adenovirus antigenically or structurally similar to human Ad41 in infected cells in a sample comprising lysing said cells, fixing the DNA of the infected calls and detecting the DNA containing said long fiber protein gene, short fiber protein gene or E3 gene by a specific probe nucleic acid wherein said probe nucleic acid is DNA, cDNA, recombinant DNA or RNA.

1 49. A compartmentalized kit for detection of human adenovirus type 41 comprising at least one first container adapted to contain an antibody having specificity for said Ad41 long fiber protein, short fiber protein or E3 proteins, RL-1 to RL-6 and at least one second container adapted to contain a reporter molecule capable of detecting the antibody of said first container.

50. The kit of Claim 49 wherein the reporter molecule is a radioisotope, an enzyme, a fluorescent molecule, a chemiluminescent molecule or a bioluminescent molecule.

15.

20

25

30

1			10 20		30		40				5.0			60				
	*	*		*		*		*		*		*		*		*		*
	CCCGG	GCA	AC	ATG	CTCA	TCC	AAA'	AATCTCGCC TAACATC		CATC	ACC	CC TTCAGTGTCG			TCTACAACGA			
	GGGCC	CGT	rG	TAC	GAGT	AGG	TTT	AGAG	CGG	ATT	GTAG	TGG	AAG	TCAC	AGC	AGA	TGTT	GCT
5	SmaI																	
			70 -			80			90			100			110	1:		120
	*	*	ī	*		*		*		*	•	*		*		*		*
	GATA	AACA	GT	GGG	TATG	CTT	TTA	CTTI	TAA	ATG	GTCA	.GCC	GAA	CCGC	GAA	AAC	CTTT	TCA
10	CTAT"	TTGT	CA	CCC	ATAC	GAA	AAT	GAAA	ATT	TAC	CAGI	CGG	CTT	GGC	CCTT	TTG	GAAA	AGT
			130			140			150			160			170			180
	*	7	ŧ	*	•	*	:	*	•	*	•	*		*		*		•
	CCCA	CCACCTACC		GCT	GTAT	TTT	GCI	TACATAAC TGA		TGA	ACAA	AATA			rgca	GGCACAATC		i
15	GGGT	GGAT	GG	CGA	CATA	AAA	CGP	TGT	ATTG	ACT	TGT	TTA	TTF	GTA	ACGT	CCG	TGT	raga
			190			200			210			220			230			
	*		*	4	t		٠.		k	*	r		+	7		*		*
	TCGC	ATTT	CT	TTTT	TTCC										GAC			
	AGCG	AAAT	.GA	AAAA	AAGO	TC									CTG			
20								_	-				Glu	Asp	Asp	Phe	Asn	Pro
							60.	6 KI		BER 1	PROT							
			240			250			260			270			280	*		
	*	*		*		*	*		*		*		*					
		TAC																
25		ATG																
	Val	Tyr	Pro	Tyr	G1u	His							Pro	Sue	ire	Int	210	
									D FI	BER		EIN		22				330
		• -		290				00	A		310		•	32	.∪	,	*	330
	****		.*		*		*		•		•		-					-
30		TTT					~~~	mm.c		CDD	***	CCB	CCG	GGZ	. כידר	- Ст с	260	!
		TTT																
		AAA Phe																
	PIO	rne	ATS	. ser	Sel	n5I				BER				1				
							50	. 0 1				\						

ı	340			350)			360			370)		3	80			
	×	,	+	*		*		*		*		*		×		*		*
	CTG	AAA	TAC	ACT	GAT	CCA	CTT	ACA	ACC	AAA	AAC	GGG	GCT	TTA	ACC	TTA	AAA	
5	GAC	TTT	ATG	TGA	CTA	GGT	GAA	TGT	TGG	TTT	TTG	CCC	CGA	AAT	TGG	AAT	TTT	
	Leu	Lys	Tyr	Thr	Asp	Pro	Leu	Thr	Thr	Lys	Asn	Gly	Ala	Leu	Thr	Leu	Lys	
-				••		•	60.6	KD	FIBE	R PR	.OTEI	N		•				
	390			400			410			420			430			44C		
	*	;	*	*		*		*		*		*		*		*		*
10	CTG	GGC																
													GAA					
	Leu	Gly	Thr	Gly	Leu	Asn	Ile	Asp	Glu	Asn	Gly	Asp	Leu	Ser	Ser	Asp	Ala	
							60.6	KD	FIBE	R PF	OTE:	EN			•			
			450			460			470			480	ı		490			i
15	*		*	*		*		*		*		*		*		*		*
													AAA					
		CAC																
	Ser	Val	Glu	Val	Ser	Ala	Pro	Ile	Thr	Lys	Thr	Asn	Lys	Ile	Val	Gly	Leu	
							60.6	KD	FIBE	ER PI	ROTE	IN						
20			500	ì		510)		520)		530)		540)		
	*		*	4	٠	*		*		*		*		*		*		*
			•												•			
		TAC																
		ATG																
25	Asn	Tyr	Thr	Lys	Pro	Leu							Leu	Thr	Leu	Ser	Tyr	•
							60.6	KD		ER P	ROTE							
			550			560			570			580			590			
	*		. *	•	*	*	•	*		*		*		*		*		*
30		GCA																
		CGT																
	Asr	Ala	Pro	Leu	Asn	Val							a Leu	Asr	ı Ile	e Ser	Glr	1
							60.	6 KD	FIB	ER P	ROTE	IN						

ı		•	600			610			620			630			640			
_	*	*		*		*	•	*		*		*		*	•	*	*	
				-														
	CCT	GTC	ACT	GTT	AAT	GCA	AAC	AAC	GAA	CTT	TCT	CTC	TTA	ATA	GAC	GCC	CCA	
5	GGA	CAG	TGA	CAA	TTA	CGT	TTG	TTG	CTT	GAA	AGA	GAG	AAT	TAT	CTG	CGG	GGT	
	Pro	Val	Thr	Val	Asn	Ala	Asn	Asn	Glu	Leu	Ser	Leu	Leu	Ile	qzA	Ala	Pro	
				••		. (50.6	KD	FIBE	R PR	OTEI	N						
			650)			660			670)		6	80			690	
	*	4	*	*		*		*		*		*		*		*	*	
10	CTT			GAC														
		TTA																
	Leu	Asn	Ala	Asp	Thr								Ala	Ala	Pro	Leu	Gly	•
							60.6	KD	FIBE	R PF	COTE	EN			•			_
			700	ì		710)		720)		730)		740		(i
15	*		*	*	•	*		*		*		*		*		*	•	*
		GTG																
		CAC																
	Leu	Val	Asp	Lys	Thr								Pro	Leu	Tyr	Leu	Asp	-
20							60.6	KD.			ROTE		_					
	750		760)		77	0		78)		79	O	_		_		
	* .		*		k	4		*		*		*				· .	3.00	,
		AAC																
		TTG																
25	Asn	Asn	Phe	e Leu	Thr	Let							1 Ala	ı Let	ı ser	Ser	261	
								6 KD		_	ROTE		^					
	800)	81	0		82	Ž		83	_		84	U	*		*		*
		٠.			*		*	, 		*			.			CAR		
		GCA																
30		CGT																
	Arg	, Ala	Va.	l Thi	r Leu	ı Ly							2 11	e GT	u ASI	1 616	, nai	•
							60.	6 KI) FIE	SER E	ROT	TN						

.Figure 1 - Cont'd

WO 91/08310 PCT/US90/06887

4/27

ı	850			860)			870			880)		8	90		
	*	,	*	*	•	*		*		*		*		*		*	*
	TTA	ACC	CTA	AGC	ACA	GGC	GGG	CCT	TTT	ACT	GTA	AGC	GGG	GGA	AAT	CTA	AAC
	AAT	TGG	GAT	TCG	TGT	CCG	CCC	GGA	AAA	TGA	CAT	TCG	CCC	CCT	TTA	GAT	TTG
5	Leu	Thr	Leu	Ser	Thr	Gly	Gly	Pro	Phe	Thr	Val	Ser	Gly	Gly	Asn	Leu	Asn
						(50.6	KD	FIBE	R PR	OTEI	N					•
	900			-910	1		920)		9	930			940			950
	*	(*	*		*		*		*		*		*		*	*
	TTA	ACA	ACA	TCG	GCA	CCT	CTC	TCC	GTG	CAA	AAC	AAC	TCT	CTC	TCC	TTA	GTC
10	AAT	TGT	TGT	AGC	CGT	GGA	GAG	AGG	CAC	GTT	TTG	TTG	AGA	GAG	AGG	AAT	CAG
	Leu	Thr	Thr	Ser	Ala	Pro	Leu	Ser	Val	Gln	Asn	Asn	Ser	Leu	Ser	Leu	Val
						(60.6	KD	FIBE	R PR	OTE	N					
			9	60			970			98	0			990			1000
	*	1	٠.	*		*		*	*		*		*	*		*	i
15	ATT	ACT	TCT	CCT	TTA	AAA	GTT	ATT	AAT	TCT	ATG	TTA	GCC	GTT	GGG	GTT	AAC
	TAA	TGA	AGA	GGA	AAT	TTT	CAA	TAA	TTA	AGA	TAC	AAT	CGG	CAA	CCC	CAA	TTG
	Ile	Thr	Ser	Pro	Leu	Lys	Val	Ile	Asn	Ser	Met	Leu	Ala	Val	Gly	Val	Asn
						•	60.6	KD	FIBE	R PF	OTE	N					•
			1010)		1	020			1030)		10	40			1050
20	*		*	*	•	*		*		*		×		×		*	*
	CCG	CCT	TTT	ACC	ATC	ACT	GAC	TCT	GGA	TTA	GCT	ATG	GAC	TTA	GGA	GAC	GGT
	GGC	GGA	AAA	TGG	TAG	TGA	CTG	AGA	CCT	AAT	CGA	TAC	CTG	AAT	CCT	CTG	CCA
	Pro	Pro	Phe	Thr	Ile	Thr	Asp	Ser	Gly	Leu	Ala	Met	Asp	Leu	Gly	Asp	Gly
25		٠	•			,	60.6	KD	FIBE	R PF	ROTE	IN					

Figure 1 - Cont'd

ı			1060	1		1070)		1080	١		1090			1100)		
	*		*	4	۲	*		*		*		*		*		*		
	CTT	GCA	CTA	GGT	GGC	TCT	AAG	TTA	ATA	ATC	AAT	CTT	GGT	CCA	GGT	TTA	CAA	
	GAA.	CGT	GAT	CCA	CCG	AGA	TTC	AAT	TAT	TAG	TTA	GAA	CCA	GGT	CCA	AAT	GTŤ	
5	Leu	Ala	Leu	Gly	Gly	Ser	Lys	Leu	Ile	Ile	Asn	Leu	Gly	Pro	Gly	Leu	Gln	
							60.6	KD	FIBE	R PR	OTEI	N						
			1110	**		1120			1130			1140		•	1150			
	*		*	*	•	*		*		*		*		*		*		₹
	ATG	TCT	AAT	GGA	GCT	ATT	ACT	TTA	GCA	CTA	GAT	GCA	GCG	CTG	CCT	TTG	CAA	
10	TAC	AGA	TTA	CCT	CGA	TAA	TGA	AAT	CGT	GAT	CTA	CGT	CGC	GAC	GGA	AAC	GTT	
	Met	Ser	Asn	Gly	Ala	Ile	Thr	Leu	Ala	Leu	Asp	Ala	Ala	Leu	Pro	Leu	Gln	
							60.6	KD	FIBE	R PR	OTEI	N						•
			1160			1170			1180			1190			1200			
	*		*	*	•	. *		*		*		*		*		*		ė
15			GAC															
	ATA	TCT	CTG	TTG	GTT	GAA	GTT	GAG	TCT	TAA	CCG	AGT	TGT	AGA	CCG	AAT	TAA	
	Tyr	Arg	Asp	Asn	Gln	Leu	Gln	Leu	Arg	Ile	Gly	Ser	Thr	Ser	Gly	Leu	Ile	
							60.6	Ю	FIBE	R PR	OTEI	N						
			1210			1220			1230			1240			1250			
20	*		*	*	•	*		*		*		*		*		*		.
20			* GGA	*GTA	ACA	*	ACA	* TTA	AAC	* GTC	AAT	* GCC	AAT	* ACC	GGC	* AAA		*
20	TAC	TCG	* GGA CCT	GTA CAT	ACA TGT	* CAA GTT	ACA TGT	* TTA AAT	AAC TTG	* GTC CAG	AAT TTA	* GCC CGG	AAT TTA	* ACC TGG	GGC CCG	* AAA TTT	CCA	
20	TAC	TCG	* GGA	GTA CAT	ACA TGT	* CAA GTT Gln	ACA TGT	* TTA AAT Leu	AAC TTG Asn	* GTC CAG Val	AAT TTA Asn	* GCC CGG Ala	AAT TTA	* ACC TGG	GGC CCG	* AAA TTT	CCA	
	TAC	TCG Ser	* GGA CCT Gly	GTA CAT Val	ACA TGT Thr	* CAA GTT Gln	ACA TGT Thr 60.6	* TTA AAT Leu KD	AAC TTG Asn FIBE	* GTC CAG Val R PR	AAT TTA Asn OTEI	* GCC CGG Ala	AAT TTA Asn	* ACC TGG Thr	GGC CCG Gly	* AAA TTT	CCA	
20	TAC	TCG Ser	* GGA CCT	GTA CAT Val	ACA TGT Thr	* CAA GTT Gln	ACA TGT Thr 60.6	* TTA AAT Leu KD	AAC TTG Asn	* GTC CAG Val R PR	AAT TTA Asn OTEI	* GCC CGG Ala N	AAT TTA Asn	* ACC TGG Thr	GGC CCG	* AAA TTT	CCA	
	TAC Met	TCG Ser	* GGA CCT Gly 1260	* GTA CAT Val	ACA TGT Thr	CAA GTT Gln:	ACA TGT Thr 60.6	* TTA AAT Leu KD	AAC TTG Asn FIBE	* GTC CAG Val R PR	AAT TTA Asn OTEI	* GCC CGG Ala N 1290 *	AAT TTA Asn	* ACC TGG Thr	GGC CCG Gly	* AAA TTT Lys .	CCA	
	TAC Met * CTT	TCG Ser	* GGA CCT Gly 1260 * GTT	* GTA CAT Val * GAA	ACA TGT Thr	CAA GTT Gln 1270 * AAC	ACA TGT Thr 60.6	* TTA AAT Leu KD * CTA	AAC TTG Asn FIBE 1280	* GTC CAG Val R PR * GTT	AAT TTA Asn OTEI	* GCC CGG Ala N 1290 * CTT	AAT TTA Asn GGG	* ACC TGG Thr * AAC	GGC CCG Gly 1300 GGT	* AAA TTT Lys . * CTT	CCA Gly CGC	×
	TAC Met * CTT GAA	TCG Ser GCT CGA	* GGA CCT Gly 1260 * GTT CAA	GTA CAT Val * GAA CTT	ACA TGT Thr AAC TTG	CAA GTT Gln 1270 * AAC TTG	ACA TGT Thr 60.6	* TTA AAT Leu KD * CTA GAT	AAC TTG Asn FIBE 1280 GTT CAA	* GTC CAG Val R PR * GTT CAA	AAT TTA Asn OTEI AAG TTC	* GCC CGG Ala N 1290 * CTT GAA	AAT TTA Asn GGG CCC	* ACC TGG Thr * AAC TTG	GGC CCG Gly 1300 GGT CCA	* AAA TTT Lys . * CTT GAA	CCA Gly CGC GCG	Ř
25	TAC Met * CTT GAA	TCG Ser GCT CGA	* GGA CCT Gly 1260 * GTT	GTA CAT Val * GAA CTT	ACA TGT Thr AAC TTG	CAA GTT Gln 1270 * AAC TTG Asn	ACA TGT Thr 60.6	* TTA AAT Leu KD * CTA GAT Leu	AAC TTG Asn FIBE 1280 GTT CAA Val	* GTC CAG Val R PR * GTT CAA Val	AAT TTA Asn OTEI AAG TTC Lys	* GCC CGG Ala N 1290 * CTT GAA Leu	AAT TTA Asn GGG CCC	* ACC TGG Thr * AAC TTG	GGC CCG Gly 1300 GGT CCA	* AAA TTT Lys . * CTT GAA	CCA Gly CGC GCG	Ř
	TAC Met * CTT GAA	TCG Ser GCT CGA	* GGA CCT Gly 1260 * GTT CAA Val	GTA CAT Val * GAA CTT Glu	ACA TGT Thr AAC TTG Asn	CAA GTT Gln 1270 * AAC TTG Asn	ACA TGT Thr 60.6 TCA AGT Ser 60.6	* TTA AAT Leu KD * CTA GAT Leu KD	AAC TTG Asn FIBE 1280 GTT CAA Val	* GTC CAG Val R PR * GTT CAA Val R PR	AAT TTA Asn OTEI AAG TTC Lys OTEI	* GCC CGG Ala N 1290 * CTT GAA Leu N	AAT TTA Asn GGG CCC Gly	* ACC TGG Thr * AAC TTG Asn	GGC CCG Gly 1300 GGT CCA Gly	* AAA TTT Lys . * CTT GAA	CCA Gly CGC GCG	Ř
25	TAC Met * CTT GAA	TCG Ser GCT CGA Ala	* GGA CCT Gly 1260 * GTT CAA Val	GTA CAT Val * GAA CTT Glu	ACA TGT Thr AAC TTG Asn	CAA GTT Gln 1270 * AAC TTG Asn	ACA TGT Thr 60.6 TCA AGT Ser 60.6	* TTA AAT Leu KD * CTA GAT Leu KD	AAC TTG Asn FIBE 1280 GTT CAA Val	* GTC CAG Val R PR CAA Val R PR	AAT TTA Asn OTEI AAG TTC Lys OTEI	* GCC CGG Ala N 1290 * CTT GAA Leu N	AAT TTA Asn GGG CCC Gly	* ACC TGG Thr * AAC TTG Asn	GGC CCG Gly 1300 GGT CCA	* AAA TTT Lys . * CTT GAA	CCA Gly CGC GCG	Ř
25	* CTT GAA Leu	TCG Ser GCT CGA Ala	* GGA CCT Gly 1260 * GTT CAA Val 1310 *	GTA CAT Val * GAA CTT Glu *	ACA TGT Thr AAC TTG Asn	CAA GTT GIn 1270 * AAC TTG Asn 1320 *	ACA TGT Thr 60.6 TCA AGT Ser 60.6	* TTA AAT Leu KD * CTA GAT Leu KD	AAC TTG Asn FIBE 1280 GTT CAA Val FIBE	* GTC CAG Val R PR * GTT CAA Val R PR *	AAT TTA Asn OTEI AAG TTC Lys OTEI	* GCC CGG Ala N 1290 * CTT GAA Leu N 1340 *	AAT TTA Asn GGG CCC Gly	* ACC TGG Thr * AAC TTG Asn	GGC CCG Gly 1300 GGT CCA Gly	* AAA TTT Lys * CTT GAA Leu	CCA Gly CGC GCG Arg	Ř
25	* CTT GAA Leu * TTT	TCG Ser GCT CGA Ala	* GGA CCT Gly 1260 * GTT CAA Val 1310 * AGC	GTA CAT Val * GAA CTT Glu * TGG	ACA TGT Thr AAC TTG Asn	CAA GTT Gln 1270 * AAC TTG Asn 1320 * AGC	ACA TGT Thr 60.6 TCA AGT Ser 60.6	* TTA AAT Leu KD * CTA GAT Leu KD * ACT	AAC TTG Asn FIBE 1280 GTT CAA Val FIBE 1330 GTC	* GTC CAG Val R PR * GTT CAA Val R PR * TCG	AAT TTA Asn OTEI AAG TTC Lys OTEI	* GCC CGG Ala N 1290 * CTT GAA Leu N 1340 *	AAT TTA Asn GGG CCC Gly	* ACC TGG Thr * AAC TTG Asn * ACT	GGC CCG Gly 1300 GGT CCA Gly 1350	* AAA TTT Lys * CTT GAA Leu *	CCA Gly CGC GCG Arg	*
25 30	* CTT GAA Leu * TTT AAA	TCG Ser GCT CGA Ala GAT CTA	* GGA CCT Gly 1260 * GTT CAA Val 1310 * AGC TCG	GTA CAT Val * GAA CTT Glu * TGG ACC	ACA TGT Thr AAC TTG Asn	CAA GTT Gln 1270 * AAC TTG Asn 1320 * AGC TCG	ACA TGT Thr 60.6 TCA AGT Ser 60.6	* TTA AAT Leu KD * CTA GAT Leu KD * ACT	AAC TTG Asn FIBE 1280 GTT CAA Val FIBE 1330 GTC CAG	* GTC CAG Val R PR * GTT CAA Val R PR * TCG AGC	AAT TTA Asn OTEI AAG TTC Lys OTEI CCT GGA	* GCC CGG Ala N 1290 * CTT GAA Leu N 1340 * ACT	AAT TTA Asn GGG CCC Gly ACC TGG	* ACC TGG Thr * AAC TTG Asn * ACT TGA	GGC CCG Gly 1300 GGT CCA Gly 1350 ACC TGG	* AAA TTT Lys * CTT GAA Leu * CCT GGAA	CCA Gly CGC GCG Arg	*
25	* CTT GAA Leu * TTT AAA	TCG Ser GCT CGA Ala GAT CTA	* GGA CCT Gly 1260 * GTT CAA Val 1310 * AGC	GTA CAT Val * GAA CTT Glu * TGG ACC	ACA TGT Thr AAC TTG Asn	CAA GTT Gln 1270 * AAC TTG Asn 1320 * AGC TCG Ser	ACA TGT Thr 60.6 TCA AGT Ser 60.6	* TTA AAT Leu KD * CTA GAT Leu KD * ACT TGA Thr	AAC TTG Asn FIBE 1280 GTT CAA Val FIBE 1330 GTC CAG	* GTC CAG Val R PR * GTT CAA Val R PR * TCG AGC Ser	AAT TTA Asn OTEI AAG TTC Lys OTEI CCT GGA Pro	* GCC CGG Ala N 1290 * CTT GAA Leu N 1340 * ACT TGA Thr	AAT TTA Asn GGG CCC Gly ACC TGG	* ACC TGG Thr * AAC TTG Asn * ACT TGA	GGC CCG Gly 1300 GGT CCA Gly 1350 ACC TGG	* AAA TTT Lys * CTT GAA Leu * CCT GGAA	CCA Gly CGC GCG Arg	*

Figure 1 - Cont'd

1			1360		1	1370		1	1380		;	1390		:	1400			
	*	;	*	*		*		*		*		*		*		*	7	*
	ACC	CTA	TGG	ACC	ACC	GCA	GAC	CCA	TCA	CCT	AAC	GCC	ACT	TTT	TAT	GAA	TCA	
	TGG	GAT	ACC	TGG	TGG	CGT	CŢG	GGT	AGT	GGA	TTG	CGG	TGA	AAA	ATA	CTT	AGT	
5	Thr	Leu	Trp	Thr	Thr	Ala	Asp	Pro	Ser	Pro	Asa	Ala	Thr	Phe	Tyr	Glu	Ser	
						,	60.6	KD 1	FIBE	R PR	OTEI	N						
	1410	כ		1420			1430			1440			1450			1460		
	*	*	•	*		*	*		*		*	-st	•	*		*	;	*
	CTA	GAC	GCC	AAA	GTG	TGG	CTA	GTT	TTA	GTA	AAA	TGC	AAC	GGC	ATG	GTT	AAC	
10	GAT	CTG	CGG	TTT	CAC	ACC	GAT	CAA	AAT	CAT	TTT	ACG	TTG	CCG	TAC	CAA	TTG	
	Leu	Asp	Ala	Lys	Val	Trp	Leu	Val	Leu	Val	Lys	C <u>y</u> s	Asn	Gly	Met	Val	Asn	
							60.6	KD	FIBE	R PR	OTEI	N					•	
				1470			1480			1490			1500		•	1510		
	*	*		*		*	*		A		*	•	•	*		*	i	*
15	GGG	ACC	ATA	TCC	ATT	AAA	GCT	CAG	AAA	GGC	ATT	TTA	CTT	AGA	CCT	ACA	GCT	
	CCC	TGG	TAT	AGG	TAA	TTT	CGA	GTC	TTT	CCG	TAA	TAA	GAA	TCT	GGA	TGT	CGA	
	Gly	Thr	Ile	Ser	Ile	Lys	Ala	Gln	Lys	Gly	Ile	Leu	Leu	Arg	Pro	Thr	Ala	
						•	50.6	KD	FIBE	R PF	OTE	IN						
				1520)		1530			1540)		1550)		1560		
20	*	*		*	*		*	*		*	7	٠	*		*	*		*
	AGT	TTT	ATT	TCC	TTT	GTC	ATG	TAT	TTC	TAC	AGC	GAT	GGA	ACA	TGG	AGA	AAA	
	TCA	AAA	TAA	AGG	AAA	CAG	TAC	ATA	AAG	ATG	TCG	CTA	CCT	TGT	ACC	TCT	TTT	
	Ser	Phe	Ile	Ser	Phe	Val	Met	Tyr	Phe	Tyr	Ser	Asp	Gly	Thr	Trp	Arg	Lys	
٠						€	0.6	KD I	FIBE	R P	ROTE	IN						
25	-	· ·		1570)		1580)		1590)		1600)		1610)	
	*		*		*		*		*		*		*			*		*
	AAC	TAT	CCC	GTG	TTT	GAC	AAC	GAA	GGG	ATA	CTA	GCA	AAC	AGT	GCC	ACG	TGG	
		ATA																
	Asn	Tyr	Pro	Val	Phe	Asp	Asn	Glu	Gly	Ile	Leu	Ala	Asn	Ser	Ala	Thr	Trp	
30							60.6	KD	FIBE	R P	ROTE	IN						
				1620)		1630)		164	0		1650)		1660)	
	*		*	;	t	*		*		*		*		*		*		*
		TAT																
		ATA																
35	Gly	Tyr	Arg	Gln	Gly	Gln							Ser	Asn	Ala	Val	Glu	i
							60.	5 KD	FIBE	ER P	ROTE	IN						
							Ξi	aure	e 1 ·	- 00	n+							

ı			1670		;	1680		:	1690		1	1700			1710				
	*	*		*	*		*		*	*		*	*	•	*		*	*	
	TTT	ATG	CCT	AGC	TCT	AAA	AGA	TAT	CCC	AAT	CAA	AAA	GGT	TCT	GAA	GTT	CAG		
	AAA	TAC	GGA	TCG	AGA	TTT	TCT	ATA	GGG	TTA	GTT	TTT	CCA	AGA	CTT	CAA	GTC		
5	Phe	Met	Pro	Ser	Ser	Lys	Arg	Tyr	Pro	Asn	Gln	Lys	Gly	Ser	Glu	Val	Gln		
							60.	6 KD	FIE	BER E	ROT	EIN							
			1720	-		1730			1740		:	1750			1760				
	*		*		*		*		*	•		*		*		*		*	
	AAC	ATG	GCT	CTT	ACC	TAC	ACT	TTT	TTG	CAA	GGT	GAT	CCT	AAC	ATG	GCC	ATA		
10	TTG	TAC	CGA	GAA	TGG	ATG	TGA	AAA	AAC	GTT	CCA	CTA	GGA	TTG	TAC	CGG	TAT		
	Asn	Met	Ala	Leu	Thr	Tyr	Thr	Phe	Leu	Gln	Gly	Asp	Pro	Asn	Met	Ala	Ile		
							60.	6 KI	FIE	BER I	PROT	EIN							
																		•	
			1770			1780			1790			1800			1810			100	
15	*		*		*		*		7	k		*		*		*		*	
	TCC	TTT	CAG	AGT	ATT	TAT	AAT	CAT	GCA	TTA	GAA	GGC	TAC	TCA	TTA	AAA	TTT		
	AGG	AAA	GTC	TCA	TAA	ATA	TTA	GTA	CGT	AAT	CTT	CCG	ATG	AGT	AAT	TTT	AAA		
	Ser	Phe	Gln	Ser	Ile	Tyr	Asn	His	Ala	Leu	Glu	Gly	Tyr	Ser	Leu	Lys	Phe		
							60	.6 KI	D FI	BER !	PROT	EIN			٠				
20			1820			1830	l		1840)		1850)		1860				
	*		*		*		*		•	*		*		*		*		*	
			CGC																
			GCG																
	Thr	Trp	Arg	Val	Arg	Asn	Asn	Glu	Arg	Phe	Asp	Ile	Pro	Cys	Cys	Ser	Phe		
25		٠	. •				60	.6 K	D FI	BER :	PROT								
			1870)		1880)		1890)		1900)		1910			1920	
	*		*		*		*			*		*		*		*		*	
			GTA																
•			CAT						TAT	AACA	ACA	AAA	ACAA	AAA	TAT	TGAA	ATA		
30	Ser	Tyr	Val	Thr	Glu	Gln													
							60	.6 K	D FI	BER	PROT	EIN							
		193											•						
			* 1																
			TTT										•						
35	ACI	RATGA	AAA	IGI					•										
					Ecc	RI	•												

1		10		20		30		40		50		60
	*	*	*	*	*	*	*	*	*	*	*	*
	GA	TATCAGTT	GTI	TGTCAAG	TTTI	TCCAGC	AGCA	CCACCT	GCCCT	TCCTC	CCAAC	TTTCG
	CT	ATAGTCAA	CAA	ACAGTTC	AAAA	AAGGTCG	TCGT	GGTGGA	CGGGA	AGGAG	GGTTG	AAAGC
5		70		80		90		100		110		120
	*	*	*	*	*	*	*	*	*	*	*	*
	TA	.GGGGATGT	GCC	AACGGGC	AGCA	AACTTT	CTCC	ACGTCC	TAAAG	GGTAT	ATCGG	IGTTC
	AT	CCCCTACA	CGG	TTGCCCG	TCGT	TTGAAA	GAGG'	TGCAGG	ATTTC	CCATA	TAGCC	ACAAG
		130		140		150		160		170		180
10	*	*	*	*.	*	*	*	*	*	*	*	*
	AC	CTTTTTAC	CCI	GACCCAC	GATO	CTTCATC	TTGC	ag <u>atg</u> a	AAAGA	ACCAG	AATTG	AAGAC
	TG	GAAAAATG	GGA	CTGGGTG	CTAC	SAAGTAG	AACG'	TCTACT	TTTCT	TGGTC	TTAAC	TTCTG
		190		200		210		220		, 230		240
	*	*	*	*	*	*	*	*	*	*	*	i · *
15	GA	CTTCAACC	CCG	TCTACCC	CTAT	GACACC	TTCT	CAACTC	CCAGC	ATCCC	CTATG	PAGCT
	CT	GAAGTTGG	GGC	AGATGGG	GATA	CTGTGG	AAGA	GTTGAG	GGTCG	TAGGG	GATAC	ATCGA
		250		260		270		280		290		300
	*	*	*	*	*	*	*	*	*	*	*	*
	CC	GCCCTTCG	TTI	CTTCTGA	CGGG	STTACAG	GAAA	AACCCC	CAGGA	GTTTT	AGCAC'	ICAAG
20	GG	CGGGAAGC	AAA	GAAGACT	GCCC	CAATGTC	CTTT	TTGGGG	GTCCT	CAAAA	TCGTG.	AGTTC
		310		320		330		340		350		360
	*	*	*	*	*	*	*	*	*	*	*	* *
	TA	CACTGACC	CCA	TTACTAC	CAAT	CCTAAG	CATG	AGCTTA	CTTTA	AAACT	TGGAA	GCAAC
	AT	GTGACTGG	GGI	AATGATG	GTT	ACGATTC	GTAC'	TCGAAT	GAAAT	TTTGA	ACCTT	CGTTG
25		370		380		390		400		410		420
	*	*	*	*	*	*	*	*	*	*	*	*
		AACTTTAG		ATGGGTT		TCGGCC		TTCCCA		TCTCC	TCCCC	
	TA	TTGAAATC										
		430		. 440								480
30	*	*				*						
		CAGTAACA										
	արդր	CTCATTCT	ጥርል	GGGACCC	רמממ	いいここかにか	ACCC	CACCCT	ATCCA	CATAC		アクカクカ

1	490	500	510	520	530	540
	* *	* ×	* *	* *	* *	* *
	CTCACATTGG	CCACCGCCGC	ACCACTGACA	GTAAGCAACA	ACCAGCTTAG	TATTAACGCG
	GAGTGTAACC	GGTGGCGGCG	TGGTGACTGT	CATTCGTTGT	TGGTCGAATC	ATAATTGCGC
5	550	560	570	580	590	600
_	* *	* *	* *	* *	* *	* *
	GGCAGAGGTT.	TAGTTATAAC	TAACAATGCC	TTAACAGTTA	ATCCTACCGG	AGCGCTAGGT
	CCGTCTCCAA	ATCAATATTG	ATTGTTACGG	AATTGTCAAT	TAGGATGGCC	TCGCGATCCA
	610	620	630	640	650	660
10	* *	ж ж	* *	* *	* *	* *
	TTCAATAACA	CAGGAGCTTT	ACAATTAAAT	GCTGCAGGAG	GAATGAGAGT	GGACGGTGCC
	AAGTTATTGT	GTCCTCGAAA	TGTTAATTTA	CGACGTCCTC	CTTACTCTCA	CCTGCCACGG
	670	680	690	700	,710	• 720
	* *	* *	* *	* *	* *	* ; *
15	AACTTAATTC	TTCATGTAGC	ATATCCCTTT	GAAGCAATCA	ACCAGCTAAC	ACTGCGATTA
_	TTGAATTAAG	AAGTACATCG	TATAGGGAAA	CTTCGTTAGT	TGGTCGATTG	TGACGCTAAT
	730	740	750	760	770	780
	* *	* *	* *	* *	* *	* *
	GAAAACGGGT	TAGAAGTAAC	CAGCGGAGGA	AAGCTTAACG	TTAAGTTGGG	ATCAGGCCTC
20	CTTTTGCCCA	ATCTTCATTG	GTCGCCTCCT	TTCGAATTGC	AATTCAACCC	TAGTCCGGAG
	790	800	810	820	830	840
	* *	* *	* *	* *	* *	* *
	CAATTTGACA	GTAACGGACG	CATTGCTATT	AGTAATAGCA	ACCGAACTCG	AAGTGTACCA
	GTTAAACTGT	CATTGCCTGC	GTAACGATAA	TCATTATCGT	TGGCTTGAGC	TTCACATGGT
25	850	860	870	880	890	900
-	* *	* * 1	* * *	* * *		* *
	TCCCTCACTA	CCATTTGGTC	TATCTCGCCT	ACGCCTAACT	GCTCCATTTA	TGAAACCCAA
	AGGGAGTGAT	GGTAAACCAG	ATAGAGCGGA	TGCGGATTGA	CGAGGTAAAT	ACTTTGGGTT
	910	920	930	940	950	960
30	* *	* *	* *	* *	* *	* *
	GATGCAAACG	TATTTCTTTG	TCTAACTAAA	AACGGAGCTC	ACGTATTAGG	TACTATAACA
	CTACGTTTG	ATAAAGAAAC	AGATTGATTT	TTGCCTCGAG	TGCATAATCC	ATGATATTGT
	970	980	990	1000	1010	1020
	* *			* *		
35	ATCAAAGGT	C TTAAAGGAGG	ACTGCGGGAA	ATGCACGATA	ACGCTCTATC	TTTAAAACTT
-	TAGTTTCCA	G AATTTCCTC	TGACGCCCTT	TACGTGCTAT	TGCGAGATAG	AAATTTTGAA

1		1030		1040		1050		1060		1070		1080
	*	*	*	*	*	*	*	*	*	*	*	*
	CCC'	ITTGACA	ATCAC	GGAAA	TTTAC	CTTAAC	TGTGC	CTTGG	AATCA	TCCAC	CTGGC	GTTAC
	GGG	AAACTGT	TAGTO	CCTTT	AAATO	GAATTG	ACACG	GAACC	TTAGT	AGGTG	GACCG	CAATG
5		1090		1100		1110		1120		1130		1140
	*	*	*	*	*	*	*	*	*	я	#	*
	CAG	GAAACCA	- ACGC	GTGGC	CTCT	AATGCC	TTAAC	CATTTA	TGCCC	AACAG	TACAG	TGTAT
	GTC	CTTTGGT	TGCGT	CACCG	GAGAT	TTACGG	AATTO	TAAAT	ACGGG	TTGTC	ATGTC.	ACATA
		1150		1160	-	1170		1180		1190		1200
10	*	*	*	*	*	*	*	*	*	*	*	*
	CCA	CGAAACA	AAACO	CGCTCA	CCCG	GGCAAC	ATGCT	CATCC	AAATC	TCGCC	TAACA	TCACC
	GGT	GCTTTGT	TTTG	GCGAGT	GGGC	CCGTTG	TACG	AGTAGG	TTTAG	AGCGG	ATTGT	AGTGG
		1210		1220		1230		1240		1250		1 260
	*	*	*	*	*	*	*	*	*	*	*	i
15	TTC	agtgtcg	TCTA	CAACGA	GATA	AACAGT	GGGT	ATGCTT	TTACT	TTTAA	ATGGT	CAGCC
	AAG	TCACAGC	AGAT	STTGCT	CTAT	TTGTCA	CCCA	racgaa	AATGA	TTAAA	TACCA	GTCGG
		1270		1280		1290		1300		1310		1320
	*	*	☆	Ŕ	*	*	*	*	*	*	*	#
		.CCGGGAA										
20	CTT	GGCCCTT	TTGG	AAAAGT	GGGT	GGATGG	.CGAC	AAAATA	CGĀTG	TATTG	ACTTG	TTATT
		1330		1340		1350	•	1360		1370		1380
	*	*	#	*	Ħ	*	*	*	#	*	*	*
		CATTGCA										
	TTA	GTAACGT	CCGT	GTTAGA	AGCG	TAAAGA	AAAA	AAGGTC	TACT	TGCTC	GGTCI	GAACT
25		1390		1400								
		*	#	Ħ	*							
		TGACTTC			AC							
	TCT	TACTGAAG	TTGG	GGCAGA	TO							

Met Lys Arg Thr Arg Ile Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr Asp 1 Thr Phe Ser Thr Pro Ser Ile Pro Tyr Val Ala Pro Pro Phe Val Ser Ser Asp Gly Leu Gln Glu Lys Pro Pro Gly Val Leu Ala Leu Lys Tyr Thr Asp Pro Ile Thr Thr Asn Ala Lys His Glu Leu Thr Leu Lys Leu Gly Ser Asn Ile Thr Leu Glu Asn Gly Leu Leu Ser Ala Thr Val Pro Thr Val Ser Pro 5 Pro Leu Thr Asn Ser Asn Asn Ser Leu Gly Leu Ala Thr Ser Ala Pro Ile Ala Val Ser Ala Asn Ser Leu Thr Leu Ala Thr Ala Ala Pro Leu Thr Val Ser Asn Asn Gln Leu Ser Ile Asn Ala Gly Arg Gly Leu Val Ile Thr Asn Asn Ala Leu Thr Val Asn Pro Thr Gly Ala Leu Gly Phe Asn Asn Thr Gly Ala Leu Gln Leu Asn Ala Ala Gly Gly Met Arg Val Asp Gly Ala Asn Leu 10 Ile Leu His Val Ala Tyr Pro Phe Glu Ala Ile Asn Gln Leu Thr Leu Arg Leu Glu Asn Gly Leu Glu Val Thr Ser Gly Gly Lys Leu Asn Val Lys Leu Gly Ser Gly Leu Gln Phe Asp. Ser Asn Gly Arg Ile Ala Ile, Ser Asn Ser Asn Arg Thr Arg Ser Val Pro Ser Leu Thr Thr Ile Trp Ser Ile Ser Pro: Thr Prc Asn Cys Ser Ile Tyr Glu Thr Gln Asp Ala Asn Leu Phe Leu Cys 15 Leu Thr Lys Asn Gly Ala His Val Leu Gly Thr Ile Thr Ile Lys Gly Leu Lys Gly Ala Leu Arg Glu Met His Asp Asn Ala Leu Ser Leu Lys Leu Pro Phe Asp Asn Gln Gly Asn Leu Leu Asn Cys Ala Leu Glu Ser Ser Thr Trp Arg Tyr Gln Glu Thr Asn Ala Val Ala Ser Asn Ala Leu Thr Phe Met Pro Asn Ser Thr Val Tyr Pro Arg Asn Lys Thr Ala His Pro Gly Asn Met Leu 20 Ile Glr. Ile Ser Pro Asn Ile Thr Phe Ser Val Val Tyr Asn Glu Ile Asn Ser Gly Tyr Ala Phe Thr Phe Lys Trp Ser Ala Glu Pro Gly Lys Pro Phe His Pro Pro Thr Ala Val Phe Cys Tyr Ile Thr Glu Gln

25

. -_ .

ı		10		20	30		40	50		60
	ж	*	*	*	*	*	*	*	*	*
	GAATTCG	CGC	CACTCGA	CAA	CAAATTTTGC	TGGAGC	AAGC	TGCCCTGACC	TCCACC	CCGC
	CTTAAGC	GCG	GTGAGCT	rtg	GTTTAAAACG	ACCTCGT	TCG	ACGGGACTGG	AGGTGG	GGCG
5										
		70		80	90		100	110		120
	*	*	*	*	*	*	*	*	*	*
	GAAGTCA	ATT	GAACCCG	CCC	AATTGGCCCG	CTGCCC	AGGT	GTATCAGGAA	AACCCC	GCTC
	CTTCAGT	TAA	CTTGGGC	GGG	TTAACCGGGC	GACGGG'	ICCA	CATAGTCCTT	TTGGGG	CGAG
10										
		130	:	140	150		160	170		180
	*	*	*	*	*	*	*	*	*	. *
	CGACCAC	AGT	TCTCCTG	CCA	CGCGACGCTG	AGGCCG	AAGT	CCAAATGACT	AACTCC	GGAG
	GCTGGTG	TCA	AGAGGAC	GGT	GCGCTGCGAC	TCCGGC'	TTCA	GGTTTACTGA	TTGAGG	CTC
15										
		190	;	200	210		220	230		240
	*	*	*	*	*	*	*	*	*	*
	CGCAATT	AGC	GGGCGGA	TCC	AGACACGTCA	GGTTCA	GAGG	TCGGTCCTCG	CCCTAC	TCTC
	GCGTTAA	ATCG	CCCGCCT	AGG	TCTGTGCAGT	CCAAGT	CTCC	AGCCAGGAGC	GGGATG	GAGAG
20										
		250		260	270		280	290		300
	*	*	*	*	*	*	*	*	*	*
	CAGGTC	CTAT	AAAGAGG	CTG	ATTATCCGAG	GCCGGG	GTAT	CCAGCTCAAC	GACGA	GTGG
	GTCCAG	GATA	TTTCTCC	GAC	TAATAGGCTC	CGGCCC	CATA	GGTCGAGTTG	CTGCTT	CACC
25	. • -	- •								
		310		320	330		340	350		360
	*	*	*	*	*	*	*	*	*	*
								GCTTGGAGGT		
	ACTCGA	GGAA	TTGGCC	AGAG	GCTGGACTGC	CTCAAA	AGGT	CGAACCTCCA	CGGCC	GGCGA
30										
•	370	380		390	400		410	420		
								*		
								CTCTTCTTCC		
	GGAGGA	AGTG	AGGAGC	GGTC	CGCATGGACT	GTGAG	STCTC	GAGAAGAAGG	GTCGG	AGCGA
35					•					

Figure 4

							460	470	Δ	80
1	4	130		440	450		460	4 70	*	*
	* *		*	* 	*	*	× aaacc	ACCCTCCGTT	TACTTCAA	CC
	CCGGCGGCA	_	TGGAAC		CAGTTTGTGG	AGGAG		TGGGAGGCAA	ATGAAGTT	
	GGCCGCCGT	Α	ACCTTG	GGAG	GTCAAACACC	TCCTC	AAACA	IGGGAGGCAA	AIGILIGIT	00
5		•	•		520		530	540		
	490	500		510	520 *	*	330	. *	*	*
	* *	••	*	×	CTTTACCCAG		TTCAT	CCCAAACTAC	GACGCGGT	GA
	CATTCTC		CGCTCC		GAAATGGGTC		AAGTA	GGGTTTGATG	CTGCGCCA	
	GTAAGAG	CCC	GCGAGG	ACCA	GAMMIGGGIC	10010	rroin.	00011100		
10				560	570		580	590	ϵ	00
		550	*	± ×	*	*	*	*	*	*
	* * *		GGACGG		GACTGAATCC	CAATO	GTGCG	TCCGTGACTG	TGTGGCT	GCA
	GCGAATO		CCTGCC		CTGACTTAGG		CACGC	AGGCACTGAC		CGT
7.5	CGCTTAG	ACA	CCIGCC	,GA1G	0101.01					
15		610		620	630		640	650		660
	. ,	910	*	*	*	*	*	*	*	*
	ACATCT	ACAT	CGGCGG	CCGTA	ATCCTTGCTA	CTTT	GTCTGA	AAAGTCTGTG	ATTTTTA	CTT
	TGTAGA		GCCGC		TAGGAACGAT	GAAA	CAGACT	TTTCAGACAC	TAAAAAT	GAA
20	IGIAGA.									
20		670		680	690		700	710		720
	*	*	*	*	*	*	,	*	*	*
	ACCGCT	CCAG	CGCTT	GGATT	ACATGAAGAT	CTGT	GTTCTT	TTTTGTGTGC	TAAGTTT	AAC
	TGGCGA		GCGAA	CCTAA	TGTACTTCTA	A GACA	CAAGAA	AAAACACACG	ATTCAAA	TTG
25	• •									•
-2		730		740	750		760	770		780
					•	*		* *	*	*
	AAGTAG	CCTA	AGGAC	TTCAC	CTACAACCG'	r TGG1	TCCTT	CGTCAGCTAC	AAGATTO	CAC
	TTCATO	GGAT	TCCTG	AAGTG	GATGTTGGC.	A ACC	AGGAAT	GCAGTCGATG	TTCTAAC	GTG
30										0.40
		790		800	81	0	820) 830)	840
	*	*	*		* *	*		* *	*	
	CAAAGO	STACA	CACCA	AAACTO	TTTATTTT	C TGA	GTCTAC(CACTTCTATTO	G CACTTA	ACTG
	GTTTC	CATGI	GTGG:	rttga@	AAATAAAA	G ACT	CAGATG	G TGAAGATAA	C GTGAAT	TGAC
35										
					Eiguro	4- CO	מדימ			

Figure 4- Cont'd

ı	850	860	870	880	890	900
	* *	* *	*	* *	*	* *
	TTCTTGTCGT	AACCAACTCG	TTCAGTGGCG	CGCTAACAGA	CAATTTTGCA	AACTATTTTG
	AAGAACAGCA	TTGGTTGAGC	AAGTCACCGC	GCGATTGTCT	GTTAAAACGT	TTGATAAAAC
5						
	910	920	930	940	950	960
	* * .	* *	*	* *	*	* *
	GGACGCTCTT	ATTGTTCAAG	GAAACAACAG	CCTTTGTAAC	AACTGTACTG	CTACTACTTT
	CCTGCGAGAA	TAACAAGTTC	CTTTGTTGTC	GGAAACATTG	TTGACATGAC	GATGATGAAA
10						
	970	980	990	1000	1010	1020
	* *	* *	*	* *	*	* *
	AACTCTTACA	CCTCCTTTTG	TTCCCGGTCC	ATACTTGTGC	ATTGGÇACAG	GAAGAGGGCC
	TTGAGAATGT	GGAGGAAAAC	AAGGGCCAGG	TATGAACACG	TAACCGTGTC	CTTCTQCCGG
15						
	1030	1040	1050	106	1070	1090
	* *	* *	*	* *	*	* *
	TAGCTGCTTT	AATCGCTGGA	CTTTACAAAA	AGAGAACCTA	ACCACTACCA	CCCTCCTTCC
	ATCGACGAAA	TTAGCGACCT	GAAATGTTTT	TCTCTTGGAT	TGGTGATGGT	GGGAGGAAGG
20						
	1090	1100	1110	1120	1130	1140
	* *	* 3	* *	* *	*	* *
	CCTTACTACT	TATACTTTTT	СССААААААА	AATTTACTTT	TTGCCCATTA	TTGCACTTTT
	GGAATGATGA	ATATGAAAAA	GGGTTTTTT	TTAAATGAAA	AACGGGTAAT	AACGTGAAAA
25						
	1150	1160	1170	1180	1190	1200
	* *	*	* *	* 1	*	* *
					TTCAATCTTG	
	CCGGAAACAG	ACACAATAAT	GGCGATTAAT	GTAAAATTAA	AAGTTAGAAC	TATTAAAAAT
30						
	1210	1220	1230	1240	1250	1260
	* *	*		*		* *
						CGCCGTGCCA
	GATTAGTAC	G ACGACAAAA	TGAAACGGAA	GAAAAGACGA	GACGGATACG	GCGGCACGGT
35						•

Figure 4 - Con'd

					7.21.0	1320
1	1270	1280	1290	1300	1310	1320
	* *	* *	*	* *	*	
	GAAAAAACTC				TTGGTACCAA	
	CTTTTTTGAG	AATTGTTGGA	GCAAGCCCAC	ATACGGAATC	AACCATGGTT	AGATAGGGAA
5	•					
	1330	1340	1350	1360	1370	1380
	* *.	. * *	*	* *	· *	* *
	GATTCTATGA	AAACTCCTCA				
	CTAAGATACT	TTTGAGGAGT	CTAACTGCTT	GAATGATCAG	AATCGACCTA	ATTTGTCCTT
10	1390	1400	1410	1420	1430	1440
	* *	* *	*	* , *	*	* *
	GACAATCCTA	ACAAAAACTT				
	CTGTTAGGAT	TGTTTTTGAA	TGTTAGTAAA	AAAAAATAAC	CAGTTTTTGA	GACACTTCAA
	•					i
15	1450	1460	1470	1480	1490	1500
	* *	* *	*	* *	*	* *
	ACCAAAGACA	AAATCACTGT	TTTTAACTAT	TATCCGTTGG	AATTTTCCTG	CGCTAACGTA
	TGGTTTCTGT	TTTAGTGACA	AAAATTGATA	ATAGGCAACC	TTAAAAGGAC	GCGATTGCAT
20	1510	1520	1530	1540	1550	1560
	* *	* *	* *	* *	*	* *
	ACCTTGTATT	TGTATAATCT	TAAAACTGAC	GATTCTGGCC	TCTATAATGG	AAAGGCCCAT
	TGGAACATAA	ACATATTAGA	ATTTTGACTG	CTAAGACCGG	AGATATTACC	TTTCCGGGTA
		. 1	•		·	
25	- 1570	1580	1590	1600	1610	1620
-,	* *	*	* *	* 3	* *	* *
	ACCAAAGAGC	TTGAACATAA	CACCTATGTT	AGGCTTTATG	TTATTGACAT	TCCTCCGCCT
						AGGAGGCGGA
		. •				
30	1630) 1640	1650	1660	1670	1680
50						* *
						TTATTGTTTA
						AATAACAAAT

1	1690	1700	1710	1720	1730	1740
1	* *	* *	*	* *	*	* *
	ATTGAAATCA	ATTGCACTAA	CTCCAAATAC	CCAGCTGTGG	TTAAATTTAA	TGGCAGGCAA
				GGTCGACACC	AATTTAAATT	ACCGTCCGTT
5	114101111101					
,	1750	1760	1770	1780	1790	1800
	* *	* *	*	* *	* *	* *
	AGCAACTTCT	ACCATTATGT	TAGCGAAAAC	GGAAACAAAG	AACTTCCAAA	TTTTTATGAA
	TCGTTGAAGA	TGGTAATACA	ATCGCTTTTG	CCTTTGTTTC	TTGAAGGTTT	AAAAATACTT
10						
	1810	1820	1830	1840	1850	1860
	* *	* *	*	* *	*	* *
	ACACACATCA	CTGTTAATGG	TACCCACAAA	AGCTTTCACT	TTAATTACCC	TTTTAACGAC
	TGTGTGTAGT	GACAATTACC	ATGGGTGTTT	TCGAAAGTGA	AATTAATGGG	AAAATTGCTG
15						•
	1870	1880	1890	. 1900	1910	1920
	* *	* *	*	* *	*	* *
	CTTTGTCAAA	CAACCAGCGC	TCTACAATAT		TCCAGGTAGT	
	GAAACAGTTT	GTTGGTCGCG	AGATGTTATA	TTACTGTTAC	AGGTCCATCA	GGAGTAAGAA
20						
	1930	1940	1950	1960	1970	1980
	* *	* 1	* *	* *		* *
	CTCATAGTAG		AATAATTTCC		TATTGCTTTA	
	GAGTATCATC	AACCGAATTA	TTATTAAAGG	CGATCAAATT	ATAACGAAAT	AACGGTGGCG
25	· - <u>-</u> ·		_			
	1990	2000	2010	2020		2040
	* *	*	* * .		* *	* *
						AAAATAAAAT
	TTTTTTTAGT	TCCGGCTTCA	AGTTGTAGTT	GGTCACGTAT	AAACAAATCT	TTTTATTTTA
30					2000	2:00
	2050				2090 * *	
	* *	*		*		
						AATTATCTAC
	· AAAAAAGAAA	AGTCATACCA	A TTGAGGAGA	A GAGGACGAAC	AGACAGACGG	TIMMINGALG
35			Dimens (l = Conrid		

Figure 4 - Cont'd

7	2110	2120	2130	2140	2150	2160
1	* *	* *	*	* *	*	* *
	GCCTCCACCA	CCTTCGCCGC	AGTCTCCCAC	CTTGATACGG	ATTGTCTTCC	CGCCTTGCTG
	CGGAGGTGGT					
5						
	2170	2180	2190	2200	2210	2220
	* * * .	* *	*	* *	* *	* *
	ACTTATCTCA	TCTTCACCTC	TGTTTGCTGC	ACTGCCATCT	GCAGCATTGC	CACTTTTTTT
	TGAATAGAGT	AGAAGTGGAG	ACAAACGACG	TGACGGTAGA	CGTCGTAACG	GTGAAAAAA
10						
	2230	2240	2250	2260	2270	2280
	* *	* *	*	* *	*	* *
	GTGGCCATTT	TCCAAACTGC	GGACTACCTA	TACGTTAGAG	TGGCATACTA	TCGTCATCAT
	CACCGGTAAA	AGGTTTGACG	CCTGATGGAT	ATGCAATCTC	ACCGTATGAT	AGCAGTAGTA
15						
	2290	2300	2310	2320	2330	2340
	* *	* *		* *	*	* *
				CTTCTGTGCC		
	GGGGTTATAT	CCTTGGTGCT	CCACCGGCGG	GAAGACACGG	ACAGTACTTT	CAAGGAGAAG
20				•		
	2350	2360	2370	2380	2390	2400
	* *	* *		* *		* *
				CCAACTGCCA		
	AGACAGAATA	GGAGGAAGTG	TTTCAGGACC	GGTTGACGGT	GGAGGTGGCC	GGGTGGCTCA
25	• • •					0.4.6.0
	2410	2420	2430			2460
	•	*		* *		
				CCTTTTGGCT		
	AGGACGCGAC	GATGAGTTGT	CTTTGGAGAA	GGAAAACCGA	CATGAGGTAA	TAAAAATAAA
30					0510	2520
	2470			2500		* *
				* .	:	
						CTGGGCTGGA
	ACTAAAAGAA	. ACGGTGGAAA	AACCCTAATO	TTTAAATGCC	GACGGAAGTG	GACCCGACCT

Figure 4- Cont'd

ı	2530	2540	2550	2560	2570	258C
	* *	* *	*	* *	π	* *
	TGCATCCTCC	CAACAACCTA	CCCAGATTTC	CTGGTTTCTT	ATTACAGCCC	CCGCCGCCCC
	ACGTAGGAGG	GTTGTTGGAT	GGGTCTAAAG	GACCAAAGAA	TAATGTCGGG	GGCGGCGGG
5						
	2590	2600	2610	2620	2630	264C
	* *	* *	*	* *	· *	* *
	CACCAGCTCC	TGTACAGCGC	GCTCCATCAG	TTATTAGCTA	CTTTCATCTT	AACTCTGAAG
	GTGGTCGAGG	ACATGTCGCG	CGAGGTAGTC	AATAATCGAT	GAAAGTAGAA	TTGAGACTTC
10						
	2650	. 2660	2670	2680	2690	2700
	* *	* *	*	* . *	*	* *
	ATGTCTGACC	AACTAGAAAT	CGACGGGCAG	CGCACTGAGC	AGCTGATCCT	TGCTCGGCGA
	TACAGACTGG	TTGATCTTTA	GCTGCCCGTC	GCGTGACTCG	TCGACTAGGA	ACGAGCGGCT
15						
	2710	2720	2730	2740	2750	2760
	* *	* *	*	* *	*	* *
	AAACTCAAAC	AACAAAACCA	GGAATTGTTC	AACCTTCAAG	CCTTACACCA	ATGCAAAAAG
	TTTGAGTTTG	TTGTTTTGGT	CCTTAACAAG	TTGGAAGTTC	GGAATGTGGT	TACGTTTTTC
20						
	2770	2780	2790	2800	2810	2820
	* *	* *	*	* *	*	* *
	GGTCTTTTCT	GCCTGGTTAA	ACAAGCTGAA	CTTTGCTATG	ATGTAACCCA	ACAGGGGCAT
	CCAGAAAAGA	CGGACCAATT	TGTTCGACTT	GAAACGATAC	TACATTGGGT	TGTCCCCGTA
25	. * *- *					
	2830	2840	2850	2860	2870	2880
	* *					* *
						GGGGGTTAAG
	CTCGATAGTA	TGTGAAATTT	GTTCGTTTCT	GTCTCGAAAT	ACTGATACCA	CCCCCAATTC
30						
	2890					2940
						* *
						TCAGTGCACC
	GGGTAATTCC	AATGAGTCGT	TAGGCCGGGT	CAACTCCCTT	CGTAAGAAAC	AGTCACGTGG
35						
			7: 4	Contid		

Figure 4 - Cont'd

ı	2950	2960	2970	2980	2990	3000
Ι,	* *	* *	*	* *	*	* *
	AATTCTGAAT	GCATGTACAC	TATGGTAAAA	ACCCTGTGTG	GTCTCAGGGA	ACTTCTCCCC
	TTAAGACTTA	CGTACATGTG	ATACCATTTT	TGGGACACAC	CAGAGTCCCT	TGAAGAGGGG
5	1112101101111				•	
)	3010	3020	3030	3040	3050	3060
	* *	* *	*	* *	· *	* *
		GTTATCTGAT	TAATAAAGCT	TACCTTAAAT	TTGATATCAG	TTGTTTGTCA
	AAATTAATTT	CAATAGACTA	ATTATTTCGA	ATGGAATTTA	AACTATAGTC	AACAAACAGT
10						
10	3070	3080	3090	3100	3110	3120
	* A	* *	*	* *	*	* *
	ACTTTTTCCA	GCAGCACCAC	CTGCCCTTCC	TCCCAACTTT	CGTAGGGGAT	GTGCCÅACGC
	TCAAAAAGGT (CCTCCTGGTG	ACGGGAAGG A	GGGTTGAAA GC	ATCCCCTA CAC	GGTTGÇC
15	I CAREE I I I I					
1)	3130	3140	3150	3160	3170	3180
	* *	* *	*	* *	*	* *
	GCAGCAAACT	TTCTCCACGT	CCTAAAGGGT	ATATCGGTGT	TCACCTTTTT	ACCCTGACCC
	CGTCGTTTGA				agtggaaaaa	
20	00.00.00					
20	3190	3200	3210	3220	3230	3240
	* *	*	* *	* *	* *	* *
	ACGATCTTCA	TCTTGCAGAT	GAAAAGAACC	AGAATTGAAG	ACGACTTCAA	CCCCGTCTAC
	TGCTAGAAGT	AGAACGTCTA	CTTTTCTTGG	TCTTAACTTC	TGCTGAAGTT	GGGGCAGATG
25	• •					
	3250	3260	3270	3280	3290	3300
	* *	*	* *	***	* *	* *
	CCCTATGACA	CCTTCTCAAC	TCCCAGCATO	CCCTATGTAG	CTCCGCCCTT	CGTTTCTTCT
	GGGATACTGT	GGAAGAGTT	AGGTCGTAC	G GGGATACATO	GAGGCGGGAA	GCAAAGAAGA
30	·					

Figure 4 - Cont'd

ı	33	310		3320	3330		3340	3350		3360
	* *		*	*	*	*	*	*	*	*
	GACGGGTT	CAC	AGGAAA	AACC	CCCAGGAGTT	TTAGC	ACTCA	AGTACACTGA	CCCCA	TTACT
	CTGCCCA	ATG	TCCTTT	TTGG	GGGTCCTCAA	AATCG	TGAGT	TCATGTGACT	GGGGT	AATGA
5			•	•						
	33	370								
	*	*.								
	ACCAATG	CTA	AGC							
	TGGTTAC	GAT	TCG							
10										

Figure - Cont'd

15

20

25

30

1 Met Lys Ile Cys Val Leu Phe Cys Val Leu Ser Leu Thr Ser Ser Leu Arg
Thr Ser Pro Thr Thr Val Gly Ser Leu Arg Gln Leu Gln Asp Ser Thr Lys
Gly Thr His Gln Thr Leu Tyr Phe Ser Glu Ser Thr Thr Ser Ile Ala Leu
Asn Cys Ser Cys Arg Asn Gln Leu Val Gln Trp Arg Ala Asn Arg Gln Phe

5 Cys Lys Leu Phe Trp Asp Ala Leu Ile Val Gln Gly Asn Asn Ser Leu Cys
Asn Asn Cys Thr Ala Thr Thr Leu Thr Leu Thr Pro Pro Phe Val Pro Gly
Pro Tyr Leu Cys Ile Gly Thr Gly Arg Gly Pro Ser Cys Phe Asn Arg Trp
Thr Leu Gln Lys Glu Asn Leu Thr Thr Thr Thr Leu Pro Leu Thr Thr
Tyr Thr Phe Ser Gln Lys Lys Ile Tyr Phe Leu Pro Ile Ile Ala Leu Leu
Ala Phe Val Cys Val Ile Thr Ala Asn Tyr Ile Leu Ile Phe Asn Leu Asp
Asn Phe Tyr

15

20

25

30

35

Met Leu Leu Phe Leu Leu Cys Leu Leu Phe Cys Ser Ala Tyr Ala Ala Val Pro Glu Lys Thr Leu Asn Asn Leu Val Arg Val Tyr Ala Leu Val Gly Thr Asn Leu Ser Leu Asp Ser Met Lys Thr Pro Gln Ile Asp Glu Leu Thr Ser Leu Ser Trp Ile Lys Gln Glu Asp Asn Pro Asn Lys Asn Leu Gln Ser Phe Phe Phe Ile Gly Gln Lys Leu Cys Glu Val Thr Lys Asp Lys Ile Thr Val 5 Phe Asn Tyr Tyr Pro Leu Glu Phe Ser Cys Ala Asn Val Thr Leu Tyr Leu Tyr Asn Leu Lys Thr Asp Asp Ser Gly Leu Tyr Asn Gly Lys Ala His Thr Lys Glu Leu Glu His Asn Thr Tyr Val Arg Leu Tyr Val Ile Asp Ile Pro Pro Pro Lys Cys Asp Ile Thr Ser Arg Tyr Leu Gly Ile Gln Ala Thr Gly Glu Asp Tyr Cys Leu Ile Glu Ile Asn Cys Thr Asn Ser Lys Tyr Pro Ala 10 Val Val Lys Phe Asn Gly Arg Gln Ser Asn Phe Tyr His Tyr Val Ser Glu Asn Gly Asn Lys Glu Leu Pro Asn Phe Tyr Glu Thr His Ile Thr Val Asn. Gly Thr His Lys Ser Phe His Phe Asn Tyr Pro Phe Asn Asp, Leu Cys Gln Thr Thr Ser Ala Leu Gln Tyr Asn Asp Asn Val Gln Val Val Leu Ile Leu Leu Ile Val Val Gly Leu Ile Ile Ile Ser Ala Ser Leu Ile Leu Leu Tyr 15 Cys His Arg Lys Lys Ile Lys Ala Glu Val Gln His Gln Pro Val His Ile Cys Leu Glu Lys

20

25

30

35

Met Ala Gly Lys Ala Thr Ser Thr Ile Met Leu Ala Lys Thr Glu Thr Lys
Asn Phe Gln Ile Phe Met Lys His Thr Ser Leu Leu Met Val Pro Thr Lys
Ala Phe Thr Leu Ile Thr Leu Leu Thr Thr Phe Val Lys Gln Pro Ala Leu
Tyr Asn Ile Met Thr Met Ser Arg

5

10

15

20

25

30

35

Met Val Thr Pro Leu Leu Leu Leu Val Cys Leu Pro Ile Ile Tyr Ala Ser Thr Thr Phe Ala Ala Val Ser His Leu Asp Thr Asp Cys Leu Pro Ala Leu Leu Thr Tyr Leu Ile Phe Thr Ser Val Cys Cys Thr Ala Ile Cys Ser Ile Ala Thr Phe Phe Val Ala Ile Phe Gln Thr Ala Asp Tyr Leu Tyr Val Arg Val Ala Tyr Tyr Arg His His Pro Gln Tyr Arg Asn His Glu Val Ala Ala Leu Leu Cys Leu Ser

10

15

20

25

Figure 8

30

25/27.

10

15

20

25

30

35

PCT/US90/06887

26/27

Met Ser Asp Gln Leu Glu Ile Asp Gly Gln Arg Thr Glu Gln Leu Ile Leu Ala Arg Arg Lys Leu Lys Gln Gln Asn Gln Glu Leu Phe Asn Leu Gln Ala Leu His Gln Cys Lys Lys Gly Leu Phe Cys Leu Val Lys Gln Ala Glu Leu Cys Tyr Asp Val Thr Gln Gln Gly His Glu Leu Ser Tyr Thr Leu Asn Lys Gln Arg Gln Ser Phe Met Thr Met Val Gly Val Lys Pro Ile Lys Val Thr Gln Gln Gln Gser Gly Pro Val Glu Gly Ser Ile Leu Cys Gln Cys Thr Asn Ser Glu Cys Met Tyr Thr Met Val Lys Thr Leu Cys Gly Leu Arg Glu Leu Leu Pro Phe Asn

10

15

20

25

30

Protein coding regions in the E3-fiber area of the human enteric adenovirus type 41 Tak (map position of fragment shown: 74% to 92%)

I.O kb

F.65.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US90/06887

	FION OF SUBJECT MATTER (if several classif		
IPC(5):C12	Pational Patent Ciassification (IPC) of to both National 1/70; C12Q 1/00; G01N 33/53;	CO7H 15/12 17/00; C12	N 15/00;C12P 21/0
C12N 5/00); C12Q 1/68; A61K 39/00	U.S. CL. 435/5,7.1,	240.1.69.1.172.3
II. FIELDS SEA		3307307382	
	Minimum Documen	tation Searched 4	
lassification Syste	m (Classification Sympols	
U.S. CL.:	435/5, 7.2, 240.1, 69	.1, 252.3, 172.3, 240.	.2;
	424/88,93, 92; 536/27		
	Documentation Searched other to	han Minimum Occumentation are Included in the Fields Searched by	
Automated	Patent Search, As well as Di		al Databases
AUCOMACEU	racent ocaren, no were de la		
III. DOCUMENT	S CONSIDERED TO BE RELEVANT		
	itation of Document, 14 with indication, where appl	ropriate, of the relevant passages 17	Resevant to Claim No. 1*
F . Y	US, A. 4.888,170 (CURT 19 December 1989 (see	135, 1111	1-40
	19 December 1989 (See	CO1. 6. 11. 6-31/	•
y y	US. A. 4,855,224 (BERM	AN et al.)	1-47 ,
•	08 August 1989 (See co		49
	-		
. Y	J. Gen. Virol. Vol. 70	, issued 1989	1-21.
	Toogood et al., "The A	denovirus	26-36
	Type 40 Hexon: Sequenc	e Predicted	
	Structure and relation	ship to	
	Other Adenovirus Hexon	s",	
	pp. 3203-3214, see ent	ire document.	1
	Nucleic Acids Research	Vol 17	1-21
I I	No. 22, issued 25 Nove	mber 1989	
	Pieniazek et al. "Sequ	ence of human	
	enteric adenovirus typ	e 41 Tak fiber	:
	protein gene", page 94	74. see	; •
	entire document.		<u> </u>
	entire document.		•
i '	·• ·		
			•
		"T" later document published alto	r the international filing date
	ories of cited documents: 15 defining the general state of the art which is not	or priority date and not in collected to understand the princ	nflict with the application but
considered	to be of particular relevance	invention	
"E" earlier doc filing date	ument but published on or after the international	"X" document of particular releving cannot be considered novel	ance; the claimed invention or cannot be considered to
"L" document	which may throw doubts on priority claim(s) or ited to establish the publication date of another	involve an inventive step "Y" document of particular relev	the claimed invention
citation or	other special reason (as specified)	cannot be considered to invol-	ve an inventive step when the
"O" document other mean	referring to an oral disclosure, use, exhibition or	document is combined with o ments, such combination bein	d operans to a betson skilled
"P" document	Dublished prior to the international filing date but the priority date claimed	in the art. "&" document member of the sam	ne patent family
IV. CERTIFICA			
	I Completion of the International Search 3	Date of Mailing of this International	Search Report 1
28 March		1 8 AP	R 1991
International Sea	rching Authority 1	Signature of Authorized Office 10	ion
ISA	/US	Bradley L. Siss	son