1. Fill in missing items:

1. Γ	$\vdash (P \lor Q) \supset R$	premise
2. <i>P</i>	⊢ <i>P</i>	A
3	⊢ <u> </u>	2,∨I
4	⊢ <u> </u>	1,3,⊃E
5. Γ	⊢	4,⊃I
6. <i>Q</i>	$\vdash Q$	A
7	⊢ <u> </u>	6,∨I
8	⊢ <u> </u>	1,7,⊃E
9. Г	$\vdash Q \supset R \qquad \dots$	8,⊃I
10. Γ	⊢ <u> </u>	5,9,∧I

2. Add missing items.

Γ	$\vdash \neg P \land \neg Q \qquad \qquad \dots \\ \text{premise}$
$P\vee Q$	$\vdash P \lor Q \qquad \dots \dots$
P	⊢
Γ	⊢ ¬P
$P,P\vee Q$	$\vdash P \qquad \dots \dots$
Γ,	$\vdash \neg P$ 4
_	$\vdash \neg (P \lor Q)$
_	$\vdash Q \qquad \dots \dots$
Γ	$\vdash \neg Q \qquad \dots \dots$
Q,	$\vdash Q \qquad \dots \dots$
Γ,	$\vdash \neg Q \qquad \dots \dots \dots 9$
	$\vdash \neg (P \lor Q)$
$\Gamma, P \vee Q$	$\vdash \neg (P \lor Q)$
Γ	$\vdash \neg (P \lor Q)$
	$\begin{array}{c} \Gamma \\ P\vee Q \\ P \\ \Gamma \\ \Gamma, P\vee Q \\ \Gamma, _ \\ - \\ \Gamma \\ Q, _ \\ \Gamma, _ \\ - \\ \Gamma, P\vee Q \\ \Gamma \end{array}$

3.	Here is part of a derivation from $\Gamma \vdash \neg (P \lor Q)$ to $\Gamma \vdash \neg P \land \neg Q$. Com-
	plete the rest.

1.	Γ	$\vdash \neg (P \lor Q)$	premise
2.	P	⊢ <i>P</i>	
3.	P	$\vdash \ P \lor Q \qquad \dots$	2,∨I
4.	Γ, P	$\vdash \neg (P \lor Q)$	1
5.	Γ	$\vdash \neg P$	3,4,¬I

4. When someone offers considerations that lead to a contradiction, that is usually taken to be a bad thing. One reason why contradictions are bad is captured by the observation known as *ex contradictione quodlibet*: from a contradiction, derive at will. That is, if you had proof of a contradiction you could prove anything you want. The following demonstrates the point. Add the missing annotations:

Notice that you could replace Q with anything you please. So can equally well derive $\neg Q$. Here we have a decisive reason to reject the premise: something must have gone wrong in thinking that we have conclusive reason to accept the premise.

5. Derive from $\Gamma \vdash P \supset (Q \supset R)$ to $\Gamma \vdash (P \land Q) \supset R$. Hint: $P \land Q$.	assume
7. Derive from $\Gamma \vdash (P \land Q) \supset R$ to $\Gamma \vdash P \supset (Q \supset R)$. Hint: assume Q .	ne P and

8.		noted earlier that the conditional (\neg) has some odd features. The ties show up in our proof system as well.	
	(a)	Derive from $\Gamma \vdash P$ to $\Gamma \vdash Q \supset P$. (Hint: remember you can add anything you want to the datum of a sequent).	
	(b)	Derive from $\Gamma \vdash \neg P$ to $\Gamma \vdash P \supset Q$. (Hint: assume P, and remember you can add anything you want, in particular $\neg Q$ to the datum—see also the problem at the top of these exercises.)	
	(c)	Derive from $\Gamma \vdash P$ to $\Gamma \vdash \neg P \supset Q$. (Hint: assume $\neg P$; and don't forget the point about being able to add things to the datum.)	

9.	Derive from $\Gamma \vdash P \supset (Q \lor R)$ and $\Delta \vdash \neg Q$ to $\Gamma, \Delta \vdash P \supset R$. (Hint: First derive $\Gamma, P \vdash Q \lor R$. Then adapt the derivation in the first problem of the previous set of exercises.)