ASSIGNMENT 3

PRANSHU GAUR

1. $x \equiv 3 \mod 5$ and $x \equiv 4 \mod 11$, will have solution of type $x \equiv a \mod N$, where $N = 5 \times 11 = 55$.

 $N_1 = 55/5 = 11$ and $N_2 = 55/11 = 5$.

 $11 \times x_1 \equiv 1 \mod 5 \text{ and } 5 \times x_2 \equiv 1 \mod 11.$

Therefore, $x_1 = 1$ and $x_2 = 9$ will satisfy the equation.

Now, $a = \sum x_i \times N_i \times b_i = 1 \times 11 \times 3 + 9 \times 5 \times 4 = 213$.

So, the solution is $x \equiv 213 \mod 55$ which is simplified as $x \equiv 48 \mod 55$.

2. 7-safe numbers are $\{3,4\}$; 11-safe numbers are $\{3,4,5,6,7,8\}$ and 13safe numbers are $\{3, 4, 5, 6, 7, 8, 9, 10\}$.

By the Chinese Remainder Theorem they will have a unique solution of the form $x \equiv x_i \mod N_i$ for each combination as $\gcd(7,11,13) = 1$.

Hence, there are $2 \times 6 \times 8$ solutions mod $7 \times 11 \times 13$, which means 96 solutions mod 1001.

So, there are 960 solution uptil 10010.

But we need values upto 10000. So the numbers from 10001 to 10010 must be checked individually.

 $10001 \mod 7 = 5$, not a solution.

 $10002 \mod 7 = 6$, not a solution.

 $10003 \mod 7 = 0$, not a solution.

 $10004 \mod 7 = 1$, not a solution.

 $10005 \mod 7 = 2$, not a solution.

 $10006 \mod 7 = 3$, $10006 \mod 11 = 7$ and $10006 \mod 13 = 9$, a solution.

 $10007 \mod 7 = 4$, $10007 \mod 11 = 8$ and $10007 \mod 13 = 10$, a solution.

 $10008 \mod 7 = 5$, not a solution.

 $10009 \mod 7 = 6$, not a solution.

 $10010 \mod 7 = 0$, not a solution.

Hence, total solutions = 960 - 2 = 958.

3. $\binom{n}{7} = \frac{n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)}{2^4 \cdot 3^2 \cdot 5 \cdot 7}$ If $\binom{n}{7}$ is to be divisible by 12, then numerator must be divisible by $2^6 \cdot 3^3$.

If the numerator is to be divisible by 27, any of the number should be divisible by 9, and hence as these are 7 consecutive numbers, there are 7 possibilities for mod 9 of n.

Now, we have to check when the numerator is divisible by 64.

If n is even then n,n-2,n-4 and n-6 are each divisible by 2 and two of them are divisible by 4 (either n and n-4 or n-2 and n-6), and hence it is divisble by 64.

If n is odd, n-1,n-3 and n-5 are each divisible by 2.

Now, if n-3 is divisible by 4 then it must also be divisible by 16 for the numerator to be divisible by 64, and hence there is 1 possibility for mod 16 of n.

If n-1 is divisible by 4, then so is n-5 and hence the number is divisible by 32, and so any of n-1 or n-5 must be divisible by 8 for the numerator to be divisible by 64. Hence there are 2 possibilities for mod 8 of n, and 4 for mod 16 of n.

Combining all these, there are 2 requirements, one for divisibility by 27 and other for divisibility by 64. They are :

 $n \equiv 0,1,2,3,4,5,6 \mod 9$

 $n \equiv 0,1,2,3,4,5,6,8,9,10,12,13,14 \mod 16$

Therefore for $\binom{n}{7}$ to be divisible by 12, there are 7 ×13 possibilities mod (9 ×16).

Hence there are 91 solutions for every 144 numbers and hence the fraction of checked numbers that are punched reaches a limiting value $\frac{91}{144}$ and hence m + n = 91 + 144 = 235.