Rank-74055 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 74055

General information

Number of lines	4
Number of points	9
Number of singular points	1
Number of Eckardt points	1
Number of double points	1
Number of single points	7
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{4}
Type of lines on points	$3, 2, 1^7$

Singular Points

The surface has 1 singular points:

0:
$$P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0,0,0,1,0,0)_{5}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \mathbf{Pl}(1,0,0,1,0,0)_{6}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0,1,0,1,0,0)_{7}$$

Rank of lines: (0, 30, 14, 33)

Rank of points on Klein quadric: (0, 5, 6, 7)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0). T = 2$$

Double Points

The surface has 1 Double points:

The double points on the surface are:

$$P_3 = (0,0,0,1) = \ell_1 \cap \ell_3$$

Single Points

The surface has 7 single points:

The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0

1 : $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

2: $P_7 = (0, 1, 1, 0)$ lies on line ℓ_3

 $3: P_9 = (1,0,0,1)$ lies on line ℓ_2

6: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 0123 \\ \hline 00110 \\ 11011 \\ 21100 \\ 30100 \end{array}$$

4: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1

5: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_2

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_1	P_1

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_1	P_1	P_3

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1
in point	P_1	P_1

Line 3 intersects

Line	ℓ_1
in point	P_3

The surface has 9 points:

The points on the surface are:

 $4: P_7 = (0, 1, 1, 0)$ $8: P_{14} = (0, 1, 1, 1)$

 $0: P_0 = (1,0,0,0)$ $1: P_1 = (0,1,0,0)$ $2: P_3 = (0,0,0,1)$ $3: P_5 = (1,1,0,0)$ $5: P_{9} = (1, 0, 0, 1)$ $6: P_{10} = (0, 1, 0, 1)$ $7: P_{11} = (1, 1, 0, 1)$