

دانشکده مهندسی کامپیوتر آزمایشگاه شبکههای کامپیوتری

گزارش کار آزمایش ۱

گروه ۴ علی صداقی ۹۷۵۲۱۳۷۸ دانیال بازمانده ۹۷۵۲۱۱۳۵ پیادهسازی این بخش با تغییرات درون فایل lanTopolgy.py ایجاد شده است.

```
info( '*** Adding hosts\n' )
h1 = net.addHost( 'h1')
h2 = net.addHost( 'h2')
h3 = net.addHost( 'h3')
h4 = net.addHost( 'h4')

info( '*** Adding switch\n' )
s14 = net.addSwitch( 's14' )
s24 = net.addSwitch( 's24' )
s34 = net.addSwitch( 's34' )

info( '*** Creating links\n' )
net.addLink( h1, s14 )
net.addLink( h2, s24 )
net.addLink( h4, s14 )
net.addLink( h4, s14 )
net.addLink( h4, s24 )
net.addLink( h4, s34 )
```

```
#This is used to run commands on the hosts
info( '*** Starting terminals on hosts\n' )
h1.cmd('xterm -xrm "XTerm.vt100.allowTitleOps: false" -T h1 &')
h2.cmd('xterm -xrm "XTerm.vt100.allowTitleOps: false" -T h2 &')
h3.cmd('xterm -xrm "XTerm.vt100.allowTitleOps: false" -T h3 &')
h4.cmd('xterm -xrm "XTerm.vt100.allowTitleOps: false" -T h4 &')

info( '*** Running the command line interface\n' )
CLI( net )

info( '*** Closing the terminals on the hosts\n' )
h1.cmd("killall xterm")
h2.cmd("killall xterm")
h3.cmd("killall xterm")
h4.cmd("killall xterm")
```

از دستور scp برای انتقال این فایل از ماشین لوکال به ماشین مجازی استفاده میکنیم.

scp lanTopology.py mininet@192.168.83.3:/home/mininet/py-scripts

برنامه xterm و محیط گرافیکی را نیز از طریق دستور زیر نصب می کنیم:

sudo apt-get update

sudo apt-get install xinit x11-xserver-utils lxde

sudo apt-get install xterm

شبکه درون فایل را از طریق دستور زیر اجرا می کنیم:

sudo mn --custom lanTopology.py --topo=lanTopology

دستورات ip link و ifconfig را روی همه هاستها اجرا می کنیم.

مشاهده میکنیم تمامی اینترفیسها در مد UP هستند و نیازی به زدن دستور توسط ما نیست.

```
root@mininet-vm:/home/mininet/py-scripts# ifconfig h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 10,0,0,1 netmask 255,0,0,0 broadcast 10,255,255,255 ether ea:5a:0c:98:c5:af txqueuelen 1000 (Ethernet) RX packets 0 bytes 0 (0,0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 0 bytes 0 (0,0 B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536 inet 127,0,0,1 netmask 255,0,0,0 loop txqueuelen 1000 (Local Loopback) RX packets 0 bytes 0 (0,0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 0 bytes 0 (0,0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 0 bytes 0 (0,0 B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@mininet-vm:/home/mininet/py-scripts# ip link
1: lo: 1:0: tLOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode IEFAULT group default qlen 1000 link/loopback 00:00:00:00:00:00:00:00:00:00
2: h1-eth0@if4: RROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode IEFAULT group default qlen 1000 link/ether ea:5a:0c:98:c5:af brd ff:ff:ff:ff:ff:ff:ff:ff:link-netnsid 0 root@mininet-vm:/home/mininet/py-scripts#
```

```
root@mininet-vm:/home/mininet/py-scripts# ifconfig
h3-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.3 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 9e;7c;15:bb;c2:9a txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@mininet-vm:/home/mininet/py-scripts# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
2: h3-eth0@if6; <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
    link/ether 9e:7c:15:bb;c2:9a brd ff:ff:ff:ff:ff:ff link-netnsid 0
root@mininet-vm:/home/mininet/py-scripts# |
```

```
h4
   root@mininet-vm:/home/mininet/py-scripts# ifconfig
h4-eth0: flags=4163<UP.BROADCAST.RUNNING.MULTICAST> mtu 1500
inet 10.0.0.4 netmask 255.0.0.0 broadcast 10.255.255.255
ether 1e:ed:04:dc:af:0a txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 h4-eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
ether 5a;f9:43:71:2a;d3 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 h4-eth2: flags=4163<UP.BROADCAST.RUNNING.MULTICAST> mtu 1500
ether ee:5c:d6:2b;b4:46 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
root@mininet-vm:/home/mininet/py-scripts# ip link

1: lo: <L00PBACK,UP,L0WER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
group default qlen 1000
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00

2: h4-eth0@if7: <BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 qdisc noqueue state U
P mode DEFAULT group default qlen 1000
    link/ether 1e:ed:04:dc:af:0a brd ff:ff:ff:ff:ff link-netnsid 0

3: h4-eth1@if8: <BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 qdisc noqueue state U
P mode DEFAULT group default qlen 1000
    link/ether 5a:f9:43:71:2a:d3 brd ff:ff:ff:ff:ff link-netnsid 0

4: h4-eth2@if9: <BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 qdisc noqueue state U
P mode DEFAULT group default qlen 1000
    link/ether ee:5c:d6:2b:b4:46 brd ff:ff:ff:ff:ff:ff link-netnsid 0
root@mininet-vm:/home/mininet/py-scripts# 

Toot@mininet-vm:/home/mininet/py-scripts# 
Toot@mininet/py-scripts# 
Toot@mininet/py-scripts# 
Toot@mininet/py-scripts# 
Toot@mininet/py-scripts# 
To
```

روی هاست h1 برنامه Wireshark را اجرا می کنیم و به اینترفیس h1-eth0 آن گوش می دهیم. یک بسته پینگ نیز از h1 به آدرس 10.10.14.4 ارسال می کنیم.

```
root@mininet-vm:/home/mininet/py-scripts# sudo wireshark
QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-root'
^Z
[1]+ Stopped sudo wireshark
root@mininet-vm:/home/mininet/py-scripts# bg
[1]+ sudo wireshark &
root@mininet-vm:/home/mininet/py-scripts# ping 10.10.14.4 -c 1
PING 10.10.14.4 (10.10.14.4) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
--- 10.10.14.4 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms
root@mininet-vm:/home/mininet/py-scripts#
```


سوال ۱)

درخواست (Request) ارسال نمی شود.

جدول ARP در h1 آدرس فیزیکی معادل IP داده شده را ندارد.

در ابتدا درخواست (ARP (Request فرستاده می شود و از آنجایی که چنین IP ای در شبکه موجود نیست، پاسخی دریافت نمی شود.

یعنی هیچ reply ARP ارسال نمیشود و دریافت نیز نمیشود.

```
root@mininet-vm:/home/mininet/py-scripts# arp -a
? (10.0.0.4) at 1e:ed:04:dc:af:0a [ether] on h1-eth0
? (10.10.14.4) at <incomplete> on h1-eth0
root@mininet-vm:/home/mininet/py-scripts#
```

دستورات ip addr del و ip addr add را روی هر ۴ هاست به صورت زیر اجرا می کنیم.

```
root@mininet-vm:/home/mininet/py-scripts# ip addr del 10.0.0.1 dev h1-eth0
Warning: Executing wildcard deletion to stay compatible with old scripts.
Explicitly specify the prefix length (10.0.0.1/32) to avoid this warning

This special behaviour is likely to disappear in further releases,
fix your scripts!

RINETLINK answers: Cannot assign requested address
root@mininet-vm:/home/mininet/py-scripts# ip addr add 10.10.14.1/24 dev h1-eth0
root@mininet-vm:/home/mininet/py-scripts# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
2: h1-eth0@if4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
group default qlen 1000
link/ether ea:5a:0c:98:c5:af brd ff:ff:ff:ff:ff link-netnsid 0
inet 10.10.14.1/24 scope global h1-eth0
valid_lft forever preferred_lft forever
root@mininet-vm:/home/mininet/py-scripts# 

**Toot@mininet-vm:/home/mininet/py-scripts#**

**Toot@minin
```

root@mininet-vm:/home/mininet/py-scripts# ip addr del 10.0.0.2 dev h2-eth0
Warning: Executing wildcard deletion to stay compatible with old scripts.
Explicitly specify the prefix length (10.0.0.2/32) to avoid this warnin

This special behaviour is likely to disappear in further releases,
fix your scripts!

RTNETLINK answers: Cannot assign requested address

root@mininet-vm:/home/mininet/py-scripts# ip addr add 10.10.24.2/24 dev h2-eth0
root@mininet-vm:/home/mininet/py-scripts# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
ct qlen 1000

I link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
2: h2-eth0@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state U

Pr group default qlen 1000
link/ether 82:0d:68:69:5e:a8 brd ff:ff:ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.10.24.2/24 scope global h2-eth0
valid_lft forever preferred_lft forever
Iroot@mininet-vm:/home/mininet/py-scripts#

```
root@mininet-vm:/home/mininet/py-scripts* ip addr del 10.0.0.4 dev h4-eth0
Warning: Executing wildcard deletion to stay compatible with old scripts.
Explicitly specify the prefix length (10.0.0.4/32) to avoid this warning.

This special behaviour is likely to disappear in further releases,
fix your scripts!
root@miniet-vm:/home/mininet/py-scripts* ip addr
1: lo: <1.00PBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default talen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
2: h4-eth0@if7: <8ROADCAST_MULTICAST_UP_LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
link/teher 1e:ed:044dc:af:0a brd ff:fff:fff:fff:fff link-netnsid 0
3: h4-eth1@if8: <8ROADCAST_MULTICAST_UP_LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
link/ether 5a:f8:43:71:2a:d3 brd fff:fff:fff:fff:ff link-netnsid 0
4: h4-eth2@if9: <8ROADCAST_MULTICAST_UP_LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
link/ether sa:f8:43:71:2a:d3 brd ff:fff:fff:fff:fff link-netnsid 0
root@mininet=vm:/home/mininet/py-scripts* ip addr add 10.10.14.4/24 dev h4-eth0 root@mininet-vm:/home/mininet/py-scripts* ip addr add 10.10.14.4/24 dev h4-eth1 root@mininet-vm:/home/mininet/py-scripts* ip addr add 10.10.34.4/24 dev h4-eth2 root@mininet-vm:/home/mininet/py-scripts* ip addr
1: lo: <1.00PBACK.UP_LOWER_UP> mtu 65536 qdisc noqueue state UPKNOWN group default qlen 1000
link/ether 1s:ed:04:dc:af:0a brd ff:ff:ff:ff:ff:ff:ff:ff link-netnsid 0
inte 127.0.0.1/8 scope global h4-eth0
valid_lft forever preferred_lft forever
2: h4-eth0@if7: <8ROADCAST_MULTICAST_UP_LOWER_UP> mtu 1500 qdisc noqueue state UP group default q
```

یک بسته پینگ از مبدا h1 به 10.10.14.4 ارسال می کنیم.

سوال ۲)

بله Wireshark توانسته هر دو بسته ARP Reply و ICMP Request را روی اینترفیس h1-eth0 بله Wireshark را روی اینترفیس h1-eth0 انجام دهد. در واقع هاست h1 موفق شده آدرس واقعی h4 را پیدا کند.

۴ بخش د

سوال ۳)

```
hl ×

root@mininet-vm:/home/mininet/py-scripts# ping 10.10.24.4 -c 1
ping: connect: Network is unreachable
root@mininet-vm:/home/mininet/py-scripts# ping 10.10.34.4 -c 1
ping: connect: Network is unreachable
root@mininet-vm:/home/mininet/py-scripts#
```

خیر کار نمی کند. زیرا میان این دو آدرس هیچ اینترفیسی وجود ندارد. h4 نیز نمیتواند پیامهای ICMP را Forward کند.

سوال ۴)

```
h1 ×

root@mininet-vm:/home/mininet/py-scripts# ip route
10.10.14.0/24 dev h1-eth0 proto kernel scope link src 10.10.14.1
root@mininet-vm:/home/mininet/py-scripts#
```

در اینجا دو مورد وجود دارد. یکی 10.10.14.0/24 که به عنوان مبدا هر بسته ایست که اینترفیسی برای ارسال آن تعیین نشده. دومی نیز 10.10.14.1 است که بیانگر h1-eth0 است.

سوال ۵)

```
root@mininet-vm:/home/mininet/py-scripts# ip route add default via 10.10.14.4 root@mininet-vm:/home/mininet/py-scripts# ping 10.10.34.4 -c 1 PING 10.10.34.4 (10.10.34.4) 55(84) bytes of data. 64 bytes from 10.10.34.4; icmp_seq=1 ttl=64 time=6.36 ms
--- 10.10.34.4 ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 6.361/6.361/6.361/0.000 ms root@mininet-vm:/home/mininet/py-scripts#
```

این بار اینترفیس eth2 در هاست h4 از طریق h1 قابل دسترسی است. زیرا Default Gateway را در h1 برابر اینترفیسی قرار دادیم که با اینترفیس مقصد در ارتباط است.

سوال ٤)

حل مشكل:

بایستی Default Gateway بر روی h3 و h3 را نیز تغییر دهیم.

روى h2:

ip route add default via 10.10.24.4

روى h3:

ip route add default via 10.10.34.4

همانطور که مشاهده می شود آدرس پیدا شد و پینگ گرفته شد.

سوال ۷) بایستی در هر هاست Default Gatewayها را تعریف کنیم تا به h4 (مرکزی) متصل شوند.

h2 از طريق h1: مقدار RTT: 0.363

```
root@mininet-vm:/home/mininet/py-scripts# ping 10.10.24.2 -c 5
PING 10.10.24.2 (10.10.24.2) 56(84) bytes of data.
64 bytes from 10.10.24.2: icmp_seq=1 ttl=63 time=1.38 ms
64 bytes from 10.10.24.2: icmp_seq=2 ttl=63 time=0.227 ms
64 bytes from 10.10.24.2: icmp_seq=2 ttl=63 time=0.071 ms
64 bytes from 10.10.24.2: icmp_seq=4 ttl=63 time=0.073 ms
64 bytes from 10.10.24.2: icmp_seq=5 ttl=63 time=0.071 ms
--- 10.10.24.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4083ms
rtt min/avg/max/mdev = 0.071/0.363/1.376/0.509 ms
root@mininet-vm:/home/mininet/py-scripts#
```

h3 از طریق h2: مقدار RTT: 1.011

```
h2

root@mininet-vm:/home/mininet/py-scripts# ping 10.10.34.3 -c 5
PING 10.10.34.3 (10.10.34.3) 56(84) bytes of data.
64 bytes from 10.10.34.3: icmp_seq=1 ttl=63 time=3.81 ms
64 bytes from 10.10.34.3: icmp_seq=2 ttl=63 time=0.791 ms
64 bytes from 10.10.34.3: icmp_seq=3 ttl=63 time=0.263 ms
64 bytes from 10.10.34.3: icmp_seq=4 ttl=63 time=0.117 ms
64 bytes from 10.10.34.3: icmp_seq=5 ttl=63 time=0.076 ms
--- 10.10.34.3 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4041ms
rtt min/avg/max/mdev = 0.076/1.011/3.810/1.422 ms
root@mininet-vm:/home/mininet/py-scripts#
```

h1 از طریق h3: مقدار RTT: 2.810

```
h3 ×

root@mininet-vm:/home/mininet/py-scripts# ping 10.10.14.1 -c 5
PING 10.10.14.1 (10.10.14.1) 56(84) bytes of data.
64 bytes from 10.10.14.1: icmp_seq=1 ttl=63 time=3.82 ms
64 bytes from 10.10.14.1: icmp_seq=2 ttl=63 time=9.77 ms
64 bytes from 10.10.14.1: icmp_seq=3 ttl=63 time=0.308 ms
64 bytes from 10.10.14.1: icmp_seq=4 ttl=63 time=0.082 ms
64 bytes from 10.10.14.1: icmp_seq=5 ttl=63 time=0.072 ms
--- 10.10.14.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4038ms
rtt min/avg/max/mdev = 0.072/2.810/9.768/3.758 ms
root@mininet-vm:/home/mininet/py-scripts#
```

با توجه به وجود تقارن در شبکه مقادیر RTT نباید اختلاف زیادی با هم داشته باشند. که این مورد در تصاویر نیز مشاهده می شود (با شک)