

BIT MANIPULATION SOLUTIONS

Solution 1: The value of $x^x = 0$.

Think about it, xor gives 0 when the bits are the same. If we compare the same number to itself, the bits will always be the same. So, the answer of x^x will always be 0.

Solution 2: The idea is to use XOR operators to swap two numbers by their property $x \cdot x = 0$

```
public class Solution {
   public static void main(String[] args) {
      int x = 3, y = 4;
      System.out.println("Before swap: x = " + x + " and y = " + y);
      //swap using xor
      x = x ^ y;
      y = x ^ y;
      x = x ^ y;
      System.out.println("After swap: x = " + x + " and y = " + y);
   }
}
```

Solution 3: The expression -~x will add 1 to an integer x. We know that to get negative of a number, invert its bits and add 1 to it (Remember negative numbers are stored in 2's complement form), i.e.,

```
-x = \sim x + 1;
-\sim x = x + 1 (by replacing x by \sim x)
```

```
public class Solution {
   public static void main(String[] args) {
      int x = 6;
      System.out.println(x + " + " + 1 + " is " + -~x);
      x = -4;
      System.out.println(x + " + " + 1 + " is " + -~x);
      x = 0;
      System.out.println(x + " + " + 1 + " is " + -~x);
}
```


Solution 4:

```
public class Solution {
   public static void main(String[] args) {
        // Convert uppercase character to lowercase
        for (char ch = 'A'; ch <= 'Z'; ch++) {
            System.out.println((char)(ch | ' '));
            // prints abcdefghijklmnopqrstuvwxyz
        }
   }
}</pre>
```

APNA COLLEGE