CPU Scheduling

44-550: Operating Systems

CPU Scheduling

- Determining what CPU resources are available to running processes is one of the responsibilities of the OS
- Must be efficient and effective
- More than one policy
 - When does a process move from ready to run?
- The OS must decide when it should switch context

Figure: From https://xkcd.com/1542/

Types of Scheduling

- Long term
 - Decides which processes to load into memory
 - Decides which process to start based on order and priority
- Medium Term
 - Schedule processes based on resources required
 - Suspend processes that cannot run (maximum claim on resource exceeds that available)
- Short Term (CPU Scheduling)
 - Allocates CPU time among runnable processes
 - Very fast execution vital
 - A quick decision is more important than the optimal decision
 - Uses a ready list to determine which processes are ready to run

Some Definitions

CPU Burst

The amount of time the process uses the processor before it is no longer ready

Time Slice

A discrete, finite unit of time. When talking CPU scheduling, equal time slices are called *quanta* (which is the plural of *quantum*)

Context Switch

A process in which the context of the current process is saved, the CPU is deallocated from that process, and allocated to a new process (and the new context is loaded). A significantly expensive operation.

Scheduler Functions

- Selects the next process to get CPU time
 - Obtains process from ready queue, loads the context
- De-allocates the CPU from the currently running process
- Allocates the CPU to the newly selected process

Context Switches

- Can happen:
 - At the end of the CPU burst
 - Process is interrupted by the OS
 - Process has completed the time slice
- OS may have different classes of processes, or it may be fair
 - All processes are treated the same, or...
 - Processes are given a priority set by the OS or the user

Scheduling Policies

- Non-preemptive
 - Process executes until CPU burst is complete
- Preemptive
 - Process can get interrupted while executing
 - Time slice expires
 - Higher priority may be in ready queue

Considerations

- CPU Utilization
- Throughput
 - Number of processes executed and completed in a certain time period
- Process average wait time
- Average turnaround time
 - Average time from start to finish
- Average response time
 - Time from when a process sends a command to the OS until the response is received
- Fairness
 - How processes are treated

A Sampling of Policies

- First Come First Served (FCFS)
- Shortest Job First (SJF)
- Round Robin (RR)
- Shortest Remaining Time (SRT)

No one policy is superior to all others; it becomes a balancing act and determining what characteristics of each policy are important

First Come First Served

- Implemented with a queue (FIFO)
- Arrival order determines the selection of next process to run
- Non-preemptive

Process	Burst Tin	ne(t) Arr	ival Time
A	7		0
В	4		4
C	1		5
D	1		9
Е	3		12
	Waiting	Running	

FCFS Example

What if all jobs get there simultaneously?

Ouch! We can do better than that! We should try some other scheduling policies. This is dead simple to implement, though.

FCFS: the Convoy Effect

- CPU heavy jobs will hold CPU until exit or I/O
 - I/O is rare in CPU burst intensive processes
- Have to intelligently deal with I/O bursts and CPU bursts
- Example:
 - CPU bound runs (I/O bound idle)
 - CPU bound blocks
 - I/O bound jobs run, quickly block on I/O
 - CPU bound runs again
 - I/O Completes
 - CPU bound still runs while I/O devices idle

Shortest Job First (SJF) (Original Problem)

Shortest Job First (SJF) (All Arrive at Time 0)

SJF

- SJF doesn't always minimize Turnaround Time (though it will miminize Wait Time)
- Requires a "psychic" CPU
 - Not completely sure how long the CPU bursts for a process are
 - Can estimate based on past behavior, though
- Lots of short jobs could push out a long running job