basicThermals

Heat transfer modes

Conduction

Fourier's law

Convection

Newton's law of cooling

Radiation

Stephan-Boltzman law

Dimensionless numbers

YouTube

	Reynold	Prantl	Grashoff	Nusselt	Reyleigh
Range	> 0	≥ 1			

Terminology

Kinematic viscosity

Represents how easily air flows due to internal resistances, independent of external forces.

$$\nu = \frac{\mu}{\rho}$$

 μ is dynamic viscosity $kg.\,m^{-1}s^{-1}$ ρ is density kg/m^3

Dynamic viscosity

Represents how much force is needed to move one layer of fluid relative to another

$$au=\murac{du}{dy}$$

au is shear stress N/m^2 du/dy is velocity gradient 1/s μ is dynamic viscosity $Pa.\,s,kg.\,/m^{-1}s^{-1}$

Reynold's number

Ratio of inertial forces to viscous forces

$$R_e = rac{
ho V L_c}{\mu}$$

V is air velocity m/s L_c characteristic length m μ is dynamic viscosity of fluid $Pa.\ s$ ρ density of fluid

 L_c depends on the flow configuration

- ullet for pipe flow $L_c=r_{pipe}$
- for cross-flow over a cylinder (flow perpendicular to axis) $L_c = 2 r_{cylinder})$

R_e upper limit for $ ightarrow$	Laminar	Transitional	Turbulent
Internal flow e.g., inside a pipe	2300	3500	> 3500
External flow e.g., over cylinder, sphere	10^5	$3 imes10^5$	$>3 imes10^5$
Flat plate boundary layer	$< 5 imes 10^5$	10^{6}	$> 10^{6}$

Prantl

It is the ratio of momentum diffusivity and thermal diffusivity
It relate the behavior of the thermal boundary layer and velocity boundary layer $L_{vbl}/L_{tbl}=P_r^n$

$$P_r = rac{C_p \mu}{k}$$

 C_p is specific heat capacity $J.\,kg^{-1}K^{-1}$ μ is fluid dynamic viscosity $kg.\,m^{-1}s^{-1}$ k is fluid thermal conductivity $W.\,m^{-1}K^{-1}$

Grashof

It quantifies the ratio of buoyancy forces to viscous forces

Higher the ratio, more dominant are the buoyancy forces \implies stronger natural convection

$$G_r = rac{geta(T_s-T_{ambient})L_c^3}{
u^2}$$

g gravitational constant m/s^2

$$\beta = 1/T_{avg}$$

 T_s is surface temperature

 L_c is characteristic length <u>^1ffba7</u>

 ν is kinematic viscosity m^2 . s (yes, meter squared)

Nusselt

 $N_{\it u}$ is the ratio of convection and conduction heat transfer at the layer of the fluid

$$N_u \geq 1$$

If $N_u = 1$, heat transfer only happens from conduction, i.e., no contribution from fluid motion. The most important application of N_u is the calculation of the convective heat transfer of a fluid.

Rayleigh

Biot B_i

- Biot number is the ratio of thermal resistance for conduction inside a body to the resistance for convection at the surface of the body.
- Problems involving small Biot number (<< 1) are analytically simpler.
 - this makes temperature uniform inside the body
 - enabling lumped capacitance modeling for body temperature evolution

$$B_i = rac{h}{k} L_c$$
 $L_c = rac{Body \, volume}{Heated/cooled \, surface \, area}$

h is convective heat transfer $W.\,m^{-2}K-1$ k is thermal conductivity $W.\,m^{-1}K^{-1}$ L_c is characteristic length m

How to calculate these numbers for complex shapes?

Terminologies

- 1. dynamic pressure
- 2. viscosity
 - 1. dynamic viscosity
 - 2. turbulent dynamic viscosity
- 3. Biot number