Exercise session notes - Week 11

Semidefinite Programs + Applications

1 Application: Markowitz portfolio optimization

In this problem we have a budget B that we want to invest in assets $1, \ldots, n$. At time t = 0 we know the prices of the assets as

$$p_1^0, \ldots, p_n^0$$

After some period of time we may know some predictions of the prices, and at time t = T we know the distribution of the prices as

$$P_1^T, \ldots, P_n^T$$

which are random variables. In order to model the problem as a mathematical problem we define the Rate of Return:

$$R_i = \frac{P_i^T}{p_i^0} - 1$$

which essentially gives us the amount that we receive at T by buying asset i. (if $R_i = 0$ then we receive the same amount, if $R_i = 1$ then we double the amount, if $R_i = -\frac{1}{2}$ then we lose half of the amount).

We then define our decision variables x_i = fraction of the budget B spent on asset i (the vector x is called portfolio). Then the final revenue/loss is the random variable

$$R^{\top} x = \sum_{i} R_i \cdot x_i$$

This RV has expected value

$$\mu^{\top} x := \sum_{i} x_i \cdot \mathbb{E}[R_i]$$

and variance

$$x^{\top} \Sigma x := \sum_{i,j} \operatorname{Cov}(R_i, R_j) x_i x_j$$

Finally we can write our mathematical program as follows:

• Goal: Minimize risk with lower bound on profit, as QP.

$$\min \quad x^{\top} \Sigma x$$

s.t
$$\mu^{\top} x \ge b$$

$$\mathbf{1}^{\top} x = 1$$

• Goal: Maximize profit with upper bound on risk, as QCQP.

$$\max \quad \mu^{\top} x$$
s.t
$$x^{\top} \Sigma x \le \gamma^2$$

$$\mathbf{1}^{\top} x = 1$$

Convex Optimization Jonathan Schnell

• Goal: Maximize utility function (balance between profit and risk), as SOCP.

$$\max \quad \mu^{\top} x - \delta \sqrt{x^{\top} \Sigma x}$$

s.t
$$\mathbf{1}^{\top} x = 1$$

2 Application: Max-Cut Problem

We firstly recall the definition of a SemiDefinite Program:

$$\min \quad \operatorname{Tr}(CX)$$
 s.t.
$$\operatorname{Tr}(A_iX) = b$$

$$X \succeq 0$$

As the objective function and the constraints are affine, and $X \succeq 0$ is equivalent to X being in the positive semidefinite cone, we get SDP \subseteq CP. In the lecture notes it is also proven SOCP \subseteq CP, and thus we concluded the inclusions related to convex programs.

In the Max-Cut Problem we are given a graph G=(V,E), with edge weights w_e for $e \in E$ and $\sum_e w_e = 1$. The goal is to find a subset of vertices $S \subseteq V$ with cut value

$$c(S) := \sum_{e \in \delta(S)} w_e$$

maximized. For example the cut in the following graph has cut value 4 and it is the maximum that we can achieve

Note that for general graphs this problem is NP-hard, on the other hand for bipartite graphs and complete graphs this problem becomes trivial. There is also a theorem that gives us the existence of a cut with cut value $\geq \frac{1}{2}$ (see Ch. 7.5 in Lecture notes).

2.1 Semidefinite Formulation

We want to solve the mathematical problem

$$\max \sum_{e \in \delta(S)} w_e \quad \text{s.t.} \quad S \subseteq V$$

To do that we first define the decision variables $x \in \{-1, 1\}^V$ with

$$x_v = 1 \iff v \in S$$

Convex Optimization Jonathan Schnell

Therefore we can write an equivalent program as

$$\max \sum_{uv \in E} w_{uv} \cdot \left(\frac{1 - x_u x_v}{2}\right) \quad \text{s.t.} \quad x \in \{-1, 1\}^V$$

Let us define the matrix $X = (x_u \cdot x_v)_{u,v \in V} \in \{-1,1\}^n \times n$, then we can write the program as

$$\max \quad \operatorname{Tr}(WX) = \sum_{uv} X_{u,v} W_{u,v}$$
s.t.
$$X_{ii} = 1$$

$$X = xx^{\top}$$

$$x \in \{-1, 1\}^n$$

Finally we can drop the last two constraints and we get the SDP relaxation

$$\max \quad \operatorname{Tr}(WX) = \sum_{uv} X_{u,v} W_{u,v}$$
 s.t.
$$X_{ii} = 1$$

$$X \succeq 0$$

By solving this problem we end up with an approximation of 0.87856... of the value of the max-cut.