

# Markov Random Fields for Computer Vision (Part 1) Machine Learning Summer School (MLSS 2011)

Stephen Gould stephen.gould@anu.edu.au

Australian National University

13-17 June, 2011

| ◆日 ▶ ◆昼 ▶ ◆昼 ▶ | 夏 | 釣 � ♡

Stephen Gould 1/23



Label every pixel in an image with a class label from some pre-defined set, i.e.,  $y_p \in \mathcal{L}$ .

2/23

Stephen Gould



Label every pixel in an image with a class label from some pre-defined set, i.e.,  $y_p \in \mathcal{L}$ .





Interactive figure-ground segmentation (Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006)



Label every pixel in an image with a class label from some pre-defined set, i.e.,  $y_p \in \mathcal{L}$ .





Interactive figure-ground segmentation (Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006)





**Surface context** (Hoiem et al., 2005)



Label every pixel in an image with a class label from some pre-defined set, i.e.,  $y_p \in \mathcal{L}$ .





Interactive figure-ground segmentation (Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006)



Surface context (Hoiem et al., 2005)



**Semantic labeling** (He et al., 2004; Shotton et al., 2006; Gould et al., 2009)



Label every pixel in an image with a class label from some pre-defined set, i.e.,  $y_p \in \mathcal{L}$ .





Interactive figure-ground segmentation (Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006)



Surface context (Hoiem et al., 2005)





**Semantic labeling** (He et al., 2004; Shotton et al., 2006; Gould et al., 2009)







**Stereo matching** (Scharstein and Szeliski, 2002)

←□ → ←□ → ← = → ← = → ← = → へ ○



Label every pixel in an image with a class label from some pre-defined set, i.e.,  $y_p \in \mathcal{L}$ .





Interactive figure-ground segmentation (Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006)



Surface context (Hoiem

et al., 2005)





Semantic labeling (He et al., 2004; Shotton et al., 2006; Gould et al., 2009)







Stereo matching (Scharstein and Szeliski, 2002)





Image denoising (Felzenszwalb and Huttenlocher. 2004; Szeliski et al., 2008)



# Digital Photo Montage



(Agarwala et al., 2004)

Stephen Gould 3/23



# Digital Photo Montage

demonstration



#### **Tutorial Overview**

- Part 1. Pairwise conditional Markov random fields for the pixel labeling problem (45 minutes)
- Part 2. Pseudo-boolean functions and graph-cuts (1 hour)
- Part 3. Higher-order terms and inference as integer programming (30 minutes)

please ask lots of questions

Stephen Gould 5/23



#### Probability Review

#### Bayes Rule

$$\underbrace{P(\mathbf{y} \mid \mathbf{x})}_{\text{posterior}} = \underbrace{\frac{P(\mathbf{x} \mid \mathbf{y}) \cdot P(\mathbf{y})}{P(\mathbf{x})}}_{\text{likelihood}}$$

Maximum a Posteriori (MAP) inference:  $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x})$ .



#### Probability Review

#### Baves Rule

$$\underbrace{P(\mathbf{y} \mid \mathbf{x})}_{\text{posterior}} = \underbrace{\frac{P(\mathbf{x} \mid \mathbf{y}) \cdot P(\mathbf{y})}{P(\mathbf{x})}}_{\text{likelihood}}$$

Maximum a Posteriori (MAP) inference:  $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{v}} P(\mathbf{y} \mid \mathbf{x})$ .

#### Conditional Independence

Random variables  $\mathbf{y}$  and  $\mathbf{x}$  are *conditionally independent* given  $\mathbf{z}$  if  $P(\mathbf{y}, \mathbf{x} \mid \mathbf{z}) = P(\mathbf{y} \mid \mathbf{z}) P(\mathbf{x} \mid \mathbf{z})$ .

| ◆日 ▶ ◆昼 ▶ ◆昼 ▶ | 夏 | 釣 � ♡



#### Graphical Models

We can exploit conditional independence assumptions to represent probability distributions in a way that is both *compact* and *efficient* for inference.

This tutorial is all about one particular representation, called a Markov Random Field (MRF), and the associated inference algorithms that are used in computer vision.





$$\frac{1}{7}\Psi(a,b)\Psi(b,d)\Psi(d,c)\Psi(c,a)$$

 4□ → 4♂ → 4 毫 → 4 毫 → 1 € → 9 €

 Stephen Gould

 7/23



#### Graphical Models



$$P(a, b, c, d) = \frac{1}{Z} \Psi(a, b) \Psi(b, d) \Psi(d, c) \Psi(c, a)$$
$$= \frac{1}{Z} \exp \left\{ -\psi(a, b) - \psi(b, d) - \psi(d, c) - \psi(c, a) \right\}$$

where  $\psi = -\log \Psi$ .



### **Energy Functions**

Let  $\mathbf{x}$  be some observations (i.e., features from the image) and let  $\mathbf{y} = (y_1, \dots, y_n)$  be a vector of random variables. Then we can write the conditional probability of  $\mathbf{y}$  given  $\mathbf{x}$  as

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp \{-E(\mathbf{y}; \mathbf{x})\}\$$

where  $Z(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{L}^n} \exp \{-E(\mathbf{y}; \mathbf{x})\}$  is called the *partition function*.

Stephen Gould



### **Energy Functions**

Let  $\mathbf{x}$  be some observations (i.e., features from the image) and let  $\mathbf{y} = (y_1, \dots, y_n)$  be a vector of random variables. Then we can write the conditional probability of  $\mathbf{y}$  given  $\mathbf{x}$  as

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp \{-E(\mathbf{y}; \mathbf{x})\}\$$

where  $Z(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{L}^n} \exp \{-E(\mathbf{y}; \mathbf{x})\}$  is called the *partition function*.

The energy function E(y; x) usually has some structured form:

$$E(\mathbf{y}; \mathbf{x}) = \sum_{c} \psi_{c}(\mathbf{y}_{c}; \mathbf{x})$$

where  $\psi_c(\mathbf{y}_c; \mathbf{x})$  are *clique potentials* defined over a subset of random variables  $\mathbf{y}_c \subseteq \mathbf{y}$ .

Stephen Gould 9/23

#### Conditional Markov Random Fields

$$E(\mathbf{y}; \mathbf{x}) = \sum_{c} \psi_{c}(\mathbf{y}_{c}; \mathbf{x})$$

$$= \sum_{i \in \mathcal{V}} \psi_{i}^{U}(y_{i}; \mathbf{x}) + \sum_{ij \in \mathcal{E}} \psi_{ij}^{P}(y_{i}, y_{j}; \mathbf{x}) + \sum_{c \in \mathcal{C}} \psi_{c}^{H}(\mathbf{y}_{c}; \mathbf{x}).$$
pairwise
higher-order



Stephen Gould 10/23



### Pixel Neighbourhoods



4-connected,  $\mathcal{N}_4$ 



8-connected,  $\mathcal{N}_8$ 

Stephen Gould 11/23



# Binary MRF Example

Consider the following energy function for two binary random variables,  $y_1$  and  $y_2$ .

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)$$

### Binary MRF Example

Consider the following energy function for two binary random variables,  $y_1$  and  $y_2$ .

$$\begin{split} E\left(y_{1},y_{2}\right) &= \psi_{1}(y_{1}) + \psi_{2}(y_{2}) + \psi_{12}(y_{1},y_{2}) \\ &= \underbrace{5\bar{y}_{1} + 2y_{1}}_{\psi_{1}} \\ &+ \underbrace{\bar{y}_{2} + 3y_{2}}_{\psi_{2}} \\ &+ \underbrace{3\bar{y}_{1}y_{2} + 4y_{1}\bar{y}_{2}}_{\psi_{12}} \end{split}$$
 where  $\bar{y}_{1} = 1 - y_{1}$  and  $\bar{y}_{2} = 1 - y_{2}$ .

Stephen Gould 12/23



### Binary MRF Example

Consider the following energy function for two binary random variables,  $y_1$  and  $y_2$ .

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)$$

$$= \underbrace{5\bar{y}_1 + 2y_1}_{\psi_1} + \underbrace{\bar{y}_2 + 3y_2}_{\psi_2} + \underbrace{3\bar{y}_1y_2 + 4y_1\bar{y}_2}_{}$$

where  $\bar{y}_1 = 1 - y_1$  and  $\bar{y}_2 = 1 - y_2$ .

#### Graphical Model



#### Probability Table

| <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | Ε  | Р     |
|-----------------------|-----------------------|----|-------|
| 0                     | 0                     | 6  | 0.244 |
| 0                     | 1                     | 11 | 0.002 |
| 1                     | 0                     | 7  | 0.090 |
| 1                     | 1                     | 5  | 0.664 |

Stephen Gould 12/23



#### Compactness of Representation

Consider a 1 mega-pixel image, e.g.,  $1000 \times 1000$  pixels. We want to annotate each pixel with a label from  $\mathcal{L}$ . Let  $L = |\mathcal{L}|$ .

- There are  $L^{10^6}$  possible ways to label such an image.
- A naive encoding—i.e., one big table—would require  $L^{10^6}-1$  parameters.
- A pairwise MRF over  $\mathcal{N}_4$  requires  $10^6L$  parameters for the unary terms and  $2\times 1000\times (1000-1)L^2$  parameters for the pairwise terms, i.e.,  $O(10^6L^2)$ . Even less are required if we share parameters.

Stephen Gould 13/23



#### Inference and Energy Minimization

We are usually interested in finding the most probable labeling,

$$\boldsymbol{y}^{\star} = \operatorname*{argmax}_{\boldsymbol{y}} \operatorname{P} \left( \boldsymbol{y} \mid \boldsymbol{x} \right) = \operatorname*{argmin}_{\boldsymbol{y}} \boldsymbol{\textit{E}} \left( \boldsymbol{y} ; \boldsymbol{x} \right).$$

This is known as *maximum a posteriori* (MAP) inference or *energy minimization*.



#### Inference and Energy Minimization

We are usually interested in finding the most probable labeling,

$$\boldsymbol{y}^{\star} = \operatorname*{argmax}_{\boldsymbol{y}} \operatorname{P} \left( \boldsymbol{y} \mid \boldsymbol{x} \right) = \operatorname*{argmin}_{\boldsymbol{y}} \boldsymbol{\textit{E}} \left( \boldsymbol{y} ; \boldsymbol{x} \right).$$

This is known as *maximum a posteriori* (MAP) inference or *energy minimization*.

A number of techniques can be used to find  $\mathbf{y}^*$ , including:

- message-passing (dynamic programming)
- integer programming (part 3)
- graph-cuts (part 2)

However, in general, inference is NP-hard.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○



#### Characterizing Markov Random Fields

Markov random fields can be categorized via a number of different dimensions:

- Label space: binary vs. multi-label; homogeneous vs. heterogeneous.
- Order: unary vs. pairwise vs. higher-order.
- Structure: chain vs. tree vs. grid vs. general graph; neighbourhood size.
- Potentials: submodular, convex, compressible.

These all affect tractability of inference.



### Markov Random Fields for Pixel Labeling

$$P(\mathbf{y} \mid \mathbf{x}) \propto P(\mathbf{x} \mid \mathbf{y}) P(\mathbf{y}) = \exp\{-E(\mathbf{y}; \mathbf{x})\}$$

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} \psi_i^U(y_i; \mathbf{x}) + \lambda \sum_{ij \in \mathcal{N}_8} \psi_{ij}^P(y_i, y_j; \mathbf{x})$$
unary
pairwise

$$\psi_{i}^{U}(y_{i}; \mathbf{x}) = \underbrace{-\sum_{\ell \in \mathcal{L}} \llbracket y_{i} = \ell \rrbracket \log \mathrm{P}\left(x_{i} \mid \ell\right)}_{\ell \in \mathcal{L}}$$

$$\psi_{ij}^{P}(y_{i}, y_{j}; \mathbf{x}) = \underbrace{\llbracket y_{i} \neq y_{j} \rrbracket}_{\text{Potts prior}}$$

Here the prior acts to "smooth" predictions (independent of x).

Stephen Gould 16/23



# Prior Strength













 $\lambda = 1$ 

 $\lambda = 4$ 

 $\lambda = 16$ 

 $\lambda = 128$ 

 $\lambda = 1024$ 

Stephen Gould 17/23



#### Interactive Segmentation Model

Label space: foreground or background





$$\mathcal{L} = \{0, 1\}$$

• Unary term: Gaussian mixture models for foreground and background

$$\psi_i^U(y_i; \mathbf{x}) = \sum_{k} \frac{1}{2} |\Sigma_k| + \frac{1}{2} (x_i - \mu_k)^T \Sigma_k^{-1} (x_i - \mu_k) - \log \lambda_k$$

Pairwise term: contrast-dependent smoothness prior

$$\psi_{ij}^{P}(y_i, y_j; \mathbf{x}) = \begin{cases} \lambda_0 + \lambda_1 \exp\left(-\frac{\|x_i - x_j\|^2}{2\beta}\right), & \text{if } y_i \neq y_j \\ 0, & \text{otherwise} \end{cases}$$

Stephen Gould 18/23



#### Geometric/Semantic Labeling Model

• Label space: pre-defined label set, e.g.,





$$\mathcal{L} = \{ sky, tree, grass, \ldots \}$$

 Unary term: Boosted decision-tree classifiers over "texton-layout" features [Shotton et al., 2006]

$$\psi_i^U(y_i = \ell; \mathbf{x}) = \theta_\ell \log P(\phi_i(\mathbf{x}) \mid \ell)$$

Pairwise term: contrast-dependent smoothness prior

$$\psi_{ij}^{P}(y_i, y_j; \mathbf{x}) = \begin{cases} \lambda_0 + \lambda_1 \exp\left(-\frac{\|x_i - x_j\|^2}{2\beta}\right), & \text{if } y_i \neq y_j \\ 0, & \text{otherwise} \end{cases}$$



### Stereo Matching Model

Label space: pixel disparity



$$\mathcal{L} = \{0, 1, \dots, 127\}$$

• Unary term: sum of absolute differences (SAD) or normalized cross-correlation (NCC)

$$\psi_i^U(y_i; \mathbf{x}) = \sum_{(u,v) \in W} |\mathbf{x}_{\text{left}}(u,v) - \mathbf{x}_{\text{right}}(u-y_i,v)|$$

Pairwise term: "discontinuity preserving" prior

$$\psi_{ii}^{P}(y_{i}, y_{i}) = \max\{|y_{i} - y_{i}|, d_{\max}\}$$

Stephen Gould 20/23



# Image Denoising Model



Label space: pixel intensity or colour

$$\mathcal{L} = \{0, 1, \dots, 255\}$$

• Unary term: square distance

$$\psi_i^U(y_i;\mathbf{x}) = \|y_i - x_i\|^2$$

• Pairwise term: truncated L<sub>2</sub> distance

$$\psi_{ij}^P(y_i,y_j) = \max\left\{\|y_i - y_j\|^2, d_{\max}^2\right\}$$

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ



### Digital Photo Montage Model







Label space: image index

$$\mathcal{L} = \{1, 2, \dots, K\}$$

- Unary term: none!
- Pairwise term: seem penalty

$$\psi_{ij}^{P}(y_i, y_j; \mathbf{x}) = \|\mathbf{x}_{y_i}(i) - \mathbf{x}_{y_j}(i)\| + \|\mathbf{x}_{y_i}(j) - \mathbf{x}_{y_j}(j)\|$$

(or edge-normalized variant)

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ からぐ



#### end of part 1

Stephen Gould 23/23