Tutorial Problems 1.

Topics:

- 1. Units and conversions
- 2. Dimensional analysis
- 3. Mathematical notations and order of magnitude
- 4. Measurements and uncertainties

1. Units and conversions

Express the following quantities in questions 1.1 - 1.4 using the prefixes listed in Table 1.4 (slide 13) and the unit abbreviations. For example, 20000m = 20 km.

- 1.1. The average *peak* power output of a single lightning stroke:
 - P = 10 000 000 000 000 watts
- 1.2. Distance from Earth to Moon: $s = 3.8 \times 10^8$ meter
- 1.3. Mass of a mosquito: m = 0.00004 kilogram
- 1.4. Period (T) of a radio wavelength 30 m (shortwave): $T = 0.1 \times 10^{-6}$ seconds
- 1.5. What is the frequency of this radio wave if f = 1 / T?
- 1.6. How many seconds in (a) an hour? (b) in a day (24 hrs)? in a year (365 days)? What is your age in seconds?
- 1.7. Express speed of light in vacuum, $c = 3 \times 10^8$ m/s, in km / hr.
- 1.8. Astronomical distances are often measured by **lightyear (LY)**. 1 lightyear is the distance that light covers in 1 year. What is 1 lightyear in meters and kilometres?
- 1.9. Calculate the density of a solid cube that measures 5 cm on each side and has a mass of 350 g. (density = mass / volume)
- 1.10. How many grams of copper are required to make a hollow spherical shell with an inner radius of 5.70 cm and an outer radius of 5.75 cm? The density of copper is 8.93 g/cm³. The volume of a sphere is $V = \frac{4}{3}\pi r^3$

2. Dimensional Analysis

- 2.1. Show that the expression $x = vt + \frac{1}{2}at^2$ is dimensionally correct, where x is a coordinate and has units of length (L), v is velocity L/T , a is acceleration L / T^2 , and t is time (T)
- 2.2. Which of the equations below are dimensionally correct?
 - (a) $v = v_0 + a x$
 - (b) $v = \sqrt{2gh}$ where v is velocity, g is acceleration of gravity, h is height
- 2.3. Derive units of force using F = ma, where m is mass, and a is acceleration

School of Engineering (TAFE) MANU2112 Engineering Science

- 2.4. Newton's gravitational law is given by $F = G \frac{Mm}{r^2}$. Here F is the force of gravity, M and m are masses, and r is a length. What are the SI units of proportionality constant G?
- 2.5. Figure shows a *frustrum of a cone*. Of the following mensuration (geometrical) expressions, which describes
 - (a) the total circumference of the flat circular faces,
 - (b) the volume, and
 - (c) the area of the curved surface?

(i)
$$\pi(r_1+r_2)[h^2+(r_1-r_2)^2]^{1/2}$$
 (ii) $2\pi(r_1+r_2)$ (iii) $\pi h(r_1^2+r_1r_2+r_2^2)$.

3. Mathematical notations and order of magnitude

- 3.1. The mass of the Sun is 1.99×10^{30} kg, and the mass of an atom of hydrogen, of which the Sun is mostly composed, is 1.67×10^{-27} kg. How many atoms are in the Sun?
- 3.2. The mean radius of the Earth is 6.37×10^6 m, and that of the Moon is 1.74×10^8 cm. From these data calculate
 - (a) the ratio of the Earth's surface area to that of the Moon and
 - (b) the ratio of the Earth's volume to that of the Moon.

Recall that the surface area of a sphere is $4 \pi r^2$ and the volume of a sphere is $\frac{4}{3} \pi r^3$.

School of Engineering (TAFE) MANU2112 Engineering Science

- 3.3. The distance from the Sun to the nearest star is 4×10^{16} m. The Milky Way galaxy is roughly a disk of diameter $\sim 10^{21}$ m and thickness $\sim 10^{19}$ m. Find the order of magnitude of the number of stars in the Milky Way. Assume the distance between the Sun and our nearest neighbour is typical.
- 3.4. Assuming 60 heartbeats a minute, estimate the total number of times the heart of a human beats in an average lifetime of 70 years.

4. Measurements and uncertainties

- 4.1. The radius of a solid sphere is measured to be (6.50 ± 0.20) cm, and its mass is measured to be (1.85 ± 0.02) kg. Determine the density of the sphere in kilograms per cubic meter and the uncertainty in the density.
- 4.2. How many significant figures are in the following numbers?
 - 78.9 ± 0.2
 - 3.788x10⁹
 - 2.46x10⁻⁶
 - 0.0053
- 4.3. A rectangular plate has a length of (21.3 \pm 0.2) cm and a width of (9.8 \pm 0.1) cm. Calculate the area of the plate including its uncertainty.