

Alcohol Hangover

(Mechanism and mediator)

이 경 개 · 장 대 자 식품산업지원연구본부

L 서 론

숙취(Alcohol Hangover)를 유발하는 다양한 원인들이 현재 연구되고 있고, 알코울의 직접적인 작용으로 숙취를 유발할 수 있는 요소들이 밝혀지고 있는데, 이는 알코울이 urine 생산, 위장관, 혈당농도, 수면패턴, 생체리돔에 미치는 부작용에 의한 것이다. 또한 숙취현상은 알코울 섭취중단(withdrawal), 알코울대사, 음료수에 포함된 비알코울성기타성분, 약품, 성격, 알코울 중독에 대한 유전적인 조건에 의해 나타날 수 있는 것으로 나타나고 있다.

본문에서 일반적 알코올 대사 및 숙취에 대한 내용을 다루어 숙취 및 숙취해소에 대한 과학적인 이해를 돌고자 한다.

II. Alcohol metabolism

대사(metabolism)란 정상적으로 섭취된 물질을 대사물질(metabolites)로 변화시켜 주는 생체의 화 화반응이다. 외부에서 들어오는 물질의 경우(예: 술), 대사 후에 원래보다 더욱 독성이 강한 대사산 물이 간혹 생성되어 신체 조직에 해를 입힐 때도 있 다. 대사는 여러 단계의 대사과정을 가지고 있으며, 그 중 하나가 산화(oxidation)이다. 알코울은 산화 과정을 통해 대사성 해독화되고 협중에서 제거되어 알코울의 체대축적으로 인한 세포와 기관손상을 예방할 수 있다. 알코울은 물에 잘 녹아 음주 후에 위장관에서 흡수되어 협액을 통해 되와 간을 포함한신체 각 조직에 분포된다. 협액을 통해 간에 운반된알코울은 식초산으로 변한 후 각 조직에 운반되어산화(대사)되기도 한다. 대사 받지 않은 알코울은협중에 남아 있다가 숭(호흡기), 피부 또는 소변으로 배출된다.

지금부터 알코올 대사와 대사과정에 영향을 미치는 요인들에 대해 알아보도록 하겠다. 알코올 대사를 이해하면서 이것들이 식품, 호로몬, 약품 대사에 어떤 영향을 미치는가를 알 수 있을 것 이다.

1. 알코올의 흡수

입안에 돌어선 술은 식도에서 자극을 주면서 흘러 내려가 위장에 돌어선다. 이때부터 본격적인 '흉수 과정'이 시작된다. 음주를 하게 되면 처음 식도 및 구강 정막에서 알코올은 소량 흉수된다. 이후 약 10% 정도의 알코올이 위장에서 흉수되며 나머지 90%는 소장에서 흉수되게 된다. 위에서는 알코올 의 흉수속도가 느린 반면 소장에서는 흉수속도가 빠

로다. 이렇게 흡수된 알코울은 문맥을 통해 간으로 이동된다. 위와 장관을 통해 흡수초기의 알코올 대 사는 (Fig 1)과 같다. 위장에서 미처 감당하지 못 한 알코올은 십이지장과 소장의 윗부분에서 약 60% 정도, 회장에서 약 20% 정도가 처리된다. 위장과 십이지장, 소장에서 흡수된 알코울은 문맥이 라는 일종의 '컨베이어 벨트'를 타고 간장으로 옮겨 진다.

2. 알코올의 분포 대사 및 배설

2.1. 분포

상기 그림은 공복 상태의 남자 8명을 대상으로 하 여 알코올 함량이 같은 standard drink를 음주하 게 한 뒤 혈중 알코올 농도를 측정한 실험의 평균값 을 그래프로 나타낸 것이다. Pig. 2 처럼 대개 음주 후 30-60 분이면 최고 혈중농도에 도달한다. 알코

Fig. 1. Schematic representation of first-pass metabolism. (A) Alcohol ingested through the mouth reaches the stomach, where a portion is metabolized by the enzyme alcohol dehydrogenase (ADH). The remaining alcohol enters the intestine, where most of the remainder is absorbed into the bloodstream and enters the portal vein that leads to the liver. In the liver, part of the alcohol is metabolized by ADH or cytochrome P450. The remaining alcohol enters the general (i.e., systemic) circulation and eventually is transported back to the liver and metabolized there. The metabolism of alcohol in the stomach or during the first passage through the liver after absorption from the intestine is called first-pass metabolism. (B) Changes in blood alcohol levels (BALs) after oral alcohol ingestion and after intravenous administration of the same alcohol dose. The difference in BALs achieved with both administration routes (i.e., the amount by which the BAL is lower after oralingestion) represents that portion of the ingested alcohol that has been broken down by first-pass metabolism before reaching the systemic circulation.

Fig. 2. Change of BAC(blood alcohol concentration) after the rapid consumption of different amounts of alcohol by eight adult fasting male subjects.

Table 1. Behaviour affected by increasing amounts of alcohol on the brain

BSA(mg%)	신체 및 정신적 변화
0.02-0.03%	두드러진 변화는 없고 약간 기분이 좋은 상태
0.05-0.06%	이완감, 푸근함을 느낌, 자극 에 대한 반응 시간이 조금 늦 어짐, 민첩한 근육운동이 안됨
0.08-0.09%	시각, 청각의 저하, 균형감, 언어 기능의 저하, 다행감이 생김, 자신감이 커짐, 운동조절능력 저하
0.11-0.12%	신체균형을 잡기 어렇게 됨, 정신 적인 활동능력과 판단이 떨어짐
0.14-0.15%	신체와 정신의조절기능이 현저 히 떨어짐
0.20%	운동조절능력상실(움직이기 위 해서는 남의 도움이 필요), 정신활동의 혼란
0.30%	거의 인사불성 상태에서 심신 을 겨우 가눔
0.40%	무의식
0.5.%	깊은 혼수상태
0.60%	호흥부전으로 사망할 수도 있음

울이 체내 미치는 효과는 혈중농도가 울라갈 때가 내려갈 때에 비해 크다고 알려져 있다(Mellaby Effect).

2.2 대사 및 배설

제대로 흡수된 알코올은 폐, 소변, 땀으로 10% 정도 배설되며, 90%는 간에서 대사되고 산화된다. 산화율은 건강한 성인에서는 개인의 대사율과 상관 없이 일정하여, 평균시간 당 40%, 약 3/4 ounce (소주 3/4잔)의 알코올이 산화된다. 이 대사과정을 통해 본격적으로 알코올의 독성을 없애는 분해과정이 시작되는 것이다. 분해과정을 전담하고 있는 간장은 알코올의 약 90%를 처리한다. 간장에서 알코올의 대사과정은 크게 두 단계로 나누어진다.

첫째 과정은 알코올을 acetaldehyde라는 물질과 수소로 전환되는 단계이다. 이 단계에는 알코올 탈 수소효소(ADH)와 미크로송 에탄을 산화계(MEOS) 가 주로 관여한다. 두 성분 가운데 탈수소효소는 전 체 알코올 처리의 약 80%를 담당하며, MEOS는 나머지 20% 정도를 처리한다. 이 효소들의 활성은 개인마다 달라 알코올 제거율의 차이가 나타난다. 연구에 의하면 ADH는 활성이 다른 변종 ADH가 것으로 존재하는 나타났는데. 이골 isoenzyme의 알코올 분해령은 적은 편이다. 알코 올 대사 효소인 cytochrome P450은 또한 MEOS (microsomal ethanol oxidizing system)이라고 도 하며, 이는 소포체에서 생성되는 cytochrome P450 reductase 와 CYP2E1라는 두 가지 효 소로 구성되어 있다. CYP2E1은 알코올뿐 아니라 acetaldehyde, acetamino phen(pain medication), antibiotic isoniazid, barbiturate phenobarbital 과 같은 의약품의 대사 및 알코올-의약품간의 상호 대사에 중요한 역할을 한다. 가끔 음주를 하는 사람 에게 있어서 CYP2E1은 알코몰대사에 적게 관여하 며, 연속적이며 대량의 알코올 섭취시에는 CYP2 P1의 활성이 10배 이상 증가하여 ADH보다 더 많 이 알코올대사에 관여하게 된다.

두번째 과정은 ADH와 MEOS에 의해 만들어진

목성물질은 인체에 무해한 아세테이트로 대사된다. 이 과정을 담당하는 주역은 미토콘드리아라는 기관 과 원형질에 있는 아세트 알데하이드 탈수소효소 (ALDH, aldehyde dehydrogenase)이다. 이 ALDH는 ALDHI과 ALDH2 타입이 있는데, 이골 은 각각 세포내 다른 부위에 위치한다. ALDH1은 세포내 아세트알데하이드가 고충도일 때 활성을 나 타내며, ALDH2는 저동도에서 활성을 나타낸다. 이것으로 미루어 보아 ALDH2가 음주후 알코올 대 사 중 낮은 아세트알데하이도 수준을 유지하는데 중 요한 역할을 하고 있음을 알 수 있다. 알코몰과 아 세트알데하이드의 대사에 중요한 역할하고 있음을 알 수 있다. 알코올과 아세트알데하이드의 대사에서 의 ALDH2의 활성은 유전적 변이에 따라 차이를 나타낸다. 한국인을 포함한 동양인물(중국, 일본인 을 포함하여 약 20~40%)에게는 아세트알데히드 랄수소효소(ALDH)에 유전적으로 다른 돌연변이가 존재한다. 특히 아세트알데히드 탈수소효소2(ALD) H2)중 glutamic acid이 lysine라는 아비노산으로 돌연변이가 되어, 이 효소의 역가가 현저히 감소 한다.

이와 같은 ALDH2의 돌연변이로 인해 동양인돌 은 술을 한잔만 해도 체내 아세트알데히드가 축적되 어 얼굴이 붉어지는 홍조종, 구토종상을 나타낸다. 이런 증상을 경험한 사람들은 경험하지 않는 사람들 보다 체내 아세트알데하이드의 수준이 10~20배 이 상이 높다. 연구자들은 유전적인 요인과 ALDH2 생성세포의 불활성 돌연변이로 인해 동양인의 40% 정도가 감소된 ALDH2의 활성을 나타내고 있는 것 으로 보고하고 있다. 간장에서 분해과정을 거친 알 코올은 심장에서 대통백을 거쳐 우리 몸 곳곳에 있 는 근육이나 지방조직으로 스며들게 된다. 간장에서 분해되지 않은 일부(약 10%정도)는 소변을 통해 그대로 배설되거나 대부분은 몸 곳곳에서 에너지로 소비되거나 호흡, 땀 기타 분비물이라는 형태로 몸 밖으로 빠져 나오기 시작한다. 알코울의 최종 형태 를 화학적으로 설명하면 탄산가스(CO₂)와 물로 분 해된다고 할 수 있다(Fig. 3-4).

ADH. - alcohol dehydrogenase ALDH acetaldehyde dehydrogenase - microsomal ethan ol oxidizing system MEOS (CYP2E1 cytochrome P450 isoform)

Fig. 3. The metabolism of ethanol

Fig. 4. Disposal of alcohol from the body

Factors influencing alcohol absorption and metabolism

알코올 대사는 각 개인의 유전적인 또는 환경적인 요인에 의하여 결정되는데 각 개인의 성별, 연령, 체중, 영양상태 및 신체조건에 따라 어느 정도 영향. 올 받기도 한다.

3.1 성별, 세종

젊고 건장한 남성이 나이가 많은 남자나 여자보다. 훨씬 더 빨리 알코울을 대사시킬 수 있다. 실제로 같은 양의 알코올을 남녀가 마셨을 경우, 여자의 알 코올 혈중 농도가 남자보다 높아, 여자들이 남자보 다 간, 뇌 또는 심장에 조직손상을 많이 입는다고 보고되어 있다. 여자들의 평균 체중이 남자보다 가 너워 간의 알코올 효소량 및 몽의 수분 함량이 적기 때문에 남자보다 상대적으로 혈중농도가 높아진다. 또한 최근의 연구 결과로는 여성의 위장에 존재하는 알코올 탈수소효소(ADH isozyme)가 남자에 비해 적게 분포되어, 결과적으로 혈중농도가 높아진다는 주장이 있어 주목을 받고 있다.

3.2 음식

알코올의 흡수률은 성별뿐 만 아니라 위장의 공복 상태나 음식물 존재 여부에 따라 달라지고, 따라서 혈중 농도가 달라질 수 있다. 식이지방의 함량이 높. 울수록, 알코올의 흉수가 지연되며, 식사 후 또는 식사 중에 반주로 마시는 알코올은 공복시 음주할 경우에 비해 3배 정도 천천히 흡수된다. 따라서 식 사와 함께 천천히 술을 마시면 술이 신체에 축적되 는 것을 막아 건강유지에 도움이 된다.

3.3 인종

한국인을 포함한 일부 동양인물(중국, 일본인을 포함하여 약 20~40%)에게는 알코올 탈수소효소 전적으로 다른 돌연변이가 존재한다. 특히 아세트알 - 구강 및 식도암이 발생할 확률이 16배 정도 높아진

데히드의 대사에 관여하는 아세트 알데히드탈수소효 소2(ALDH2) 중 글루타민산이 라이신이라는 아버 노산으로 돌연변이가 되어, 이 효소의 역가가 현저 히 감소한다. 이와같은 돌연변이로 인해 술을 한잔 만 해도 아세트알데히드가 축척되어 얼굴이 붉어지 는 홍조증을 나타낸다. 이번 사람들의 경우, 주위의 강압적인 분위기 때문에 알코올을 더 마시면 생체에 유독한 아세트 알데히드가 축척되어 생체내의 고분 자 단백질들과 반응하게 되어, 인체에 악역향을 미 치게 된다.

4. Effects of Alcohol Metabolism

4.1 음주가 장기에 미치는 영향

4.1.1 구강·식도

우리가 술을 마시면 위장관에서 흡수되기 전에 가 장먼저 접촉하는 신체 부위가 구강과 식도이다. 간 이나 다른 조직에 비해 구강 및 식도에는 유해산소 를 중화시킬 수 있는 여러가지 함산화제나 복구에 관여 효소들이 적어서 암이 쉽게 발생할 수 있다는 연구가 있다.

|알코올||도수가||높은 소주, 위스키, 고량주 등을 물에 회석하지 않고 오랫동안 마시면 구강 정막이나 식도를 싸고 있는 표피충(상피충)에 강한 자극을 주 고 탈수현상을 일으킨다. 장기간 많은 양의 술을 마 시면 구강·식도의 표피 세포에 존재하는 CYP2E1 의 양을 증가시킨다. 질소를 함유한 음식물 중 일부 는 체내에서 발암 물질인 나이트로사민(nitrosamin) 계열 화합 물질돌로 변할 수 있는데, 이돌 나이트로 사민 화합물들은 CYP2E1 효소에 의해 대사를 받 아, 우리 몸의 핵산과 반응하여 돌연변이를 일으킨 다. 특히 세포 조직에 돌연변이를 복구하는 기능이 멀어지면 암으로 진행될 수 있다.

1993년에 발표된 일본인을 대상으로 한 역학조사 (ADH)나 아세트알데히드 탈수소효소(ALDH)에 유 - 에 의하면 장기간 음주자의 경우 비음주자를 보다 다고 한다. 정확한 이유는 잘 알려져 있지 않으나 간이나 다른 조직에 비해 구강 및 식도에는 유해 산 소를 중화시킬 수 있는 여러 가지 함산화제나 복구. 에 관여하는 효소들이 적어서 암이 발생할 수 있을. 것이라고 추정된다. 술과 담배를 장기간 계속해서 마시거나 피우게 되면 이골 부위의 암의 발생 확률 이 더욱 높아진다는 연구 논문들이 발표되고 있다.

4.1.2 위장관

우리가 마시는 술은 구강, 식도를 통해 위장에 도달 하는데 일부(20~30%)는 위에서 흡수되고, 나머지 대부분은 소장 및 대장에서 흡수된다. 심한 스트베 스나 불규칙적인 식사, 위산과다로 위에 염증이 있 는 상태에서 음주를 계속하면 신체에 해로운 결과를 가져 올 수 있다. 한국인을 비롯한 동양계인들은 위 염 또는 위궤양을 일으킨다고 알려진 헬리코박테리 아를 75% 이상 갖고 있다고 한다. 이런 헬리코박테 리아를 갖고 있는 사람들이 음주를 많이 하면 위장 의 정상 기능을 더욱 감소시켜 더 빨리 위염이나 위 궤양으로 진전될 수 있다. 술을 많이 마시면 신체에 필요한 필수 아이노산, 지방산, 비타민 및 미네랄, 등의 흡수가 억제되거나 멀어지고, 소대장 정막세포 돌의 염증을 유발시켜 장염이나 설사를 일으킬 수 있고, 심하면 궤양까지 유발할 수 있다.

4.1.3 간

간은 우리 몸에서 가장 큰 장기로서, 필요로 하는 각종 영양분의 대사는 물론 뇌에 팔요한 에너지를 공급하고, 목성물질물을 해독시키는 기능을 한다. 알코올을 자주 지나치게 마시면 거의 100% 모두 알코울성 지방간이 생기고, 심하면(음주자의 10~ 35% 정도) 알코울성 간염이나 간의 성유화를 일으 킨다. 그리고 더 심하면 음주자의 10~20%는 알코 울성 간정화증을 일으킨다. 알코울성 간염이나 간경 화종이 바로 나타나지 않고 오랜 기간 과음 후 나타 나는 이유는 간세포 특유의 재생능력으로 간세포가 죽어도 일부는 다시 살아나고 또 아픈지 모르고 지

나치기 때문이다. 같은 양의 술을 마셔도 사람마다 알코울성 간염이나 간정화증의 발병이 다른 이유는 각 개인마다 갖고 있는 유전적인 요인과 성별의 차 이에 있다고 한다. 알코올 대사에 관련된 효소들. 면역이나 저항에 관여하는 단백질이 사람마다 다르 다. 여성의 경우, 남성보다 체내 수분량이 적고, 알 코울 대사 관련 효소활성이 적어서 혈중 알코올 농 도가 높게 나타난다. 여자가 남자보다 알코올에 의 한 질병에 더 예민하다는 사실은 역학적인 조사에서 많이 나타나고 있다.

4.1.4 췌장

장기간 음주를 하면 당뇨병과 비슷한 중상을 유발 하게 되며 그 유발원은 진료를 해 보면, 알코울성 급성 또는 만성 췌장염으로 밝혀질 때가 많다. 미국 인의 경우 췌장염 환자의 약 65%~70% 정도가 음 주와 관련된 것으로 보고되고 있다. 알코올 또는 아 세트알데히드가 췌장내의 랑게한스섬 세포(Langerhans) Islands)를 직접·간접적으로 꽈괴시켜 췌장의 기 능이 저하됨에 따라 당뇨병 증상이 나타난다. 알코 올에 의한 간기능의 약화로 간에서 형성되는 췌장효 소역제제(antitrypsin과 acroglobulin)의 합성이 떨어져 췌장의 분해효소가 많이 분비되어 만성췌장 염을 일으킬 수 있다는 보고도 있다. 자주 반족되는 만성췌장염의 경우 알코올에 의한 영양분 흡수장애 에 기인할 수도 있는데, 이 경우에도 여자들이 남자 돌보다 더 잘 걸린다는 연구보고가 많이 있다.

4.1.5 두뇌

알코올을 조금 마시면 처음에는 중추 및 말초신경 이 흥분되고 위산분비가 촉진된다. 또 도파민 (dopamine)이라는 신경전달물질이 분비되어 기분 이 좋아지게 된다. 그러나 술을 과음하거나 장기간 남용 또는 과용하면 뇌세포 파괴를 촉진시켜 뇌의 기능을 억제시킨다. 정상인들은 매일 뇌세포가 십만 - 개씩 죽는데, 알코올을 다량 마시면 더 많은 뇌세포

가 죽게 된다. 이에 따라 학업이나 기억 또는 사고 능력 모두 떨어지고 이는 알코올의 농도에 정비례하다 여 나타난다고 한다. 과음하면 취중에 무슨 이야기 를 하고 무슨 행동을 했는지 기억할 수 없다. 실제! 로 일시적으로 술에 취하게 되면 좌우 평형감각이 감소되거나 없어지고 언어 구사의 억제, 사고 및 판 단 능력이 저하 내지는 격감한다. 술을 장기간 복용 하면, 특히 알코올 중독자의 경우에는 뇌의 정상 구. 조에 영향을 주어 알코울성 치매, 소뇌 퇴화 및 베 로니크-코사코프(Wernicke-Korsakoff) 정신병을 일 으킨다. 특히, 알코올 중독환자들의 대부분은 성. 나. 이가 비슷한 정상적 대조군에 비하여 활동적인 뇌의 부피가 훨씬 감소되어 있다는 보고가 많이 있다. 또 한 알코울성 치매는 성인 치매 중에 약 1% 정도를 차지하는데, 그 중상은 노인성 치매와 비슷하게 심 한 기억상실 중세를 보인다. 목히 최근에 얻은 정보 에 대한 기억이 현저히 떨어진다. 이를 뇌의 구조축 소와 기능감소는 유전적인 요인과 알코올 과다소비 로 인한 영양실조에 의해 좌우된다고 알려져 있다.

4.1.6 심혈관

약간의 음주는 리저바를(reservatol)이라는 화학 물질을 만들어, 혈증에 나쁜 콜베스테롤을 감소시킨 다고 주장되어 왔다. 그러나 하루에 5잔 이상씩 장 기간 과음을 하면 알코울성 심근경색증을 일으켜 심 장의 근육이 약해지거나 심장의 부패가 20~30% 정도 늘어난다. 알코울의 종류에 관계없이 모든 종 류의 알코울은 하루에 한잔정도 소량 섭취할 경우 심혈관 질환에 좋다고 한다. 최근 연구에 의하면 소 량의 알코올 섭취는 동맥(혈관)내부에 침적되어 동 맥경화증을 일으킬 수 있는 해로운 LDL cholesterol 을 건강에 유익한 HDL cholesterol로 바꾸어 준다 고 한다.

그러나 간이 췌장, 기타 다른 장기 손상 및 안전 사고를 고려하여 미국 국립알코올 연구소에서는 성 인남자는 하루에 2잔, 임산부를 제외한 여자는 1잔 씩 마실 것을 권고하고 있다. 이와는 반대로 하루에 5잔 이상씩 장기간 과음을 하면 알코올성 심근경색 증을 일으켜 정상인에 비하여 심장의 근육이 약해지 거나 심장의 부피가 20~30%정도 늘어난다. 알코 울성 심근경색증은 선천성 심근경색증과 증상 및 구 조가 비슷하며 심실·심방의 수축력이 약해지는데, 이는 알코올이 심장근육의 칼슘을 비롯한 전해질 대 사에 영향을 주어 생긴다는 주장이 있다. 그러나 금 주시에는 회복된다고 한다.

4.1.7 근육

적절한 양의 음주는 술을 안 마신 경우보다 관상 동백 질환에 좋다는 보고가 많이 있다. 그러나 장기 간 과음을 계속하면 심근, 골격근, 평활근 등의 약 화와 마비를 가져온다. 통계학적으로 질환자수와 알 코올 음주량과의 관계가 U곡선 모양의 관계를 갖는 데, 어느 정도의 음주는 건강에 좋다는 의미를 포함 한다. 그러나 장기간 과음을 하면 심근경색종, 고혈 압, 부정백 그리고 뇌졸중(중품) 등을 가져온다. 과 음으로 인한 영양실조는 골격근의 주요 단백질인 마. 이오글로빈(myoglobin)을 파괴하여 간혹 근경면 및 통증을 일으키는데, 장기간 음주자들의 소변에서 동종의 단백질이 검출된다. 이는 골격근의 꽈과 및 약화를 의미하며 장기간 음주를 하면 남성 호로몬과 생식선 자국 호르몬(gonadotropin)의 감퇴를 유발 할 수 있다. 아직도 과량의 술이 심장 및 기타 근육 에 나쁜가 하는 정확한 이론은 정법되어 있지 않으 나, 실제 통계 조사에 의하면, 장기간 술을 많이 아 시는 사람은 뇌졸중이나 혈관, 근육 질환에 걸릴 확 률이 정상인에 비해 4배 정도 높다고 한다.

4.1.8 略

알코울을 단시간에 과량 마시면 부갑상선 호로몬의 분비가 적어지고 오줌으로 활습의 배출이 증가되어, 활습의 제대농도가 감소한다. 장기간 만성적으로 음주를 할 경우 비타민 D의 대사장애로 활습의 흡수가 떨어지고 조골세포에 직접 손상을 주어 뼈가 약해진다. 특히 뼈가 약한 노인이나 골다공증의 위험이 높은 폐경기가 지난 여성이 과음을 할 경우 술

에 의한 영향이 더 크게 나타난다. 폐경기 이후 여 성이 소량의 술을 마시면 여성 호로몬인 에스트로겐 이 증가하여 뼈 건강유지 또는 심장질환 예방에 좋 다는 보고도 있다. 이러한 찬반된 의견도 알코올 양. 이나 횟수에 관계되기에 미국의 국법알코울연구소에 서는 노인이나 임산부를 제외한 여성의 경우 하루에 한 잔 정도만 음주할 것을 권고하고 있다. 이 정도 의 음주양은 기분에 좋고, 순환기 등에 좋으며, 술. 로 인한 간질환, 칼슘 대사 장애를 일으키지 않는 안전한 음주양이라고 판단되기 때문이다.

4.1.9 호로몬

알코올을 장기간 과도하게 섭취하면 내분비 세포 물에 나쁜 영향을 주어, 여러 호로몬들의 생합성. 분비 및 신호 전달 과정에 영향을 미쳐 여러 가지 질환을 초래할 수 있다. 내분비 호로몬은 신체이 한 부분에서 합성되어 내분비계를 통하여 다른 곳으로 운반된 후 그곳의 세포나 조직의 기능을 조절하는 생체 신호 전달물질이다. 우리 생체가 정상으로 유 지되려면 이를 내분비계에서 분비되는 호로몬의 양 과 시간이 적절히 조절되어야 하고, 또한 대상세포 (target cells)도 이돌 각각에 대한 수용체가 분포 해 있어야 하며, 세포내 신호전달체계가 잘 운용되는 어야 한다. 만약 이들 과정 중 한 군데라도 이상이 있다면 갑상선 항진종, 당뇨병 등 우리가 흔히 듣고. 보는 여러 가지 질병으로 나타난다. 알코울성 췌장 염은 췌장에서 분비하는 소화효소는 물론이고 혈당. 을 조절하는 인슐린의 분비를 비정상화시켜 혈당을 올려 고혈당을 유발하거나 혈당이 떨어져 저혈당이 나타난다. 과량의 알코올을 급히 섭취하였을 경우에 는 6~36시간 이내에 현저한 저혈당을 유발하여 심 각한 뇌의 손상을 가져올 수 있다. 왜냐하면 뇌는 다른 조직과 달리 3대 영양소 중 오직 탄수화물만 영양소로 사용하는데, 영양분인 포도당(탄수화물의 일종)의 공급이 저하되면 뇌의 기능저하는 물론 영 양결핍으로 뇌세포가 죽을 수도 있기 때문이다. 뇌 세포는 죽으면 더 이상 재생이 어렵기 때문에 심각 한 문제가 된다.

알코올을 장기 복용하면 남성 호로몬인 테스토스 테론의 생합성에 관여하는 효소의 기능을 떨어뜨려. 테스토스테론의 농도를 떨어뜨린다. 뇌에서 분비되 어 성호로몬을 자극하는 생식선 자극호로몬 (gonadotropin)의 동도도 음주에 의해 감소되는데. 이런 현상은 동물실험에서도 잘 증명되고 있다. 결 론적으로 장기간의 음주는 성기능이나 성욕을 감퇴 시키고, 고환의 크기가 작아지거나 또는 기능이 쇠 퇴하여 정자의 생산이 줄어들고 불임증을 유발한다. 많은 경우에 남성 호로몬이 적어집에 따라 상대적으 로 여성호로몬인 에스트로겐의 농도가 높아져. 턱수 염이 없어지고 유방이 커지는 등 심한 여성화 현상 을 나타내기도 한다. 또한 알코올의 음주는 여성 호 로몬의 합성, 대사나 조절에도 영향을 미친다. 갱년 기 전의 여성이 과음을 하면 월경이 중지되고, 규칙 적인 배란이 이루어지지 않는다. 또 갱년기가 빨리 올 수 있고, 간절적으로 알코올성 간췌장의 기능제 하나 영양결핍에 기인한다고 보고되어 있다.

4.1.10 면역

여러 가지 병원성 세균, 기생총 및 바이러스 감염 에 대해 대항하고, 잘 견디도록 방어해 주는 면역기 능에는 특수한 세포군(백혈구 및 거식세포몰)과 조 '직물(홍선, 비장, 램프선, 골수)이 관여한다.

- 지속적인 음주는 동물이나 사람 모두에게 모든 종 류의 백혈구 양을 현저히 저하시키고, 면역 단백질 인 항체의 생성량도 감소시킨다. 그 결과, 알코올 과음자들은 정상인에 비하여 훨씬 낮은 면역 기능을 보유하여, 외부의 세균성 또는 바이러스성 질환(감 기포함)에 걸릴 확률이 훨씬 높다. 한국을 비롯한 동양인들의 6~11% 정도가 간염 바이러스를 갖고 있어, 구미 선진국보다 높은 보균율을 갖고 있다. 이돌 간염바이러스는 특히 술잔 돌리는 과정에서 감 염되는 확률이 높다. 이런 경우 술을 장기간 음주하 면 간의 간염 바이러스와 간에 비치는 술의 영향이 상승적으로 작용하여 더 빨리 유해한 영향을 미칠 수 있다.

4.2 음주가 건강에 미치는 영향

4.2.1 흡연

통계조사에 의하면 흡연 청소년이 미래에 알코올 중독에 걸릴 확률은 비흡연 청소년들에 비하여 10 배나 높다고 한다. 담배(주성분:니코틴)나 음주 또 는 마약은 뇌의 벤트랑 테그멘텀(Ventral tegmentum) 이라는 부위에서 신경전달물질의 하나인 도파민(dopamine)을 유리시켜 뉴클리우스 어컴벤 스(nucleus accumbens)라는 뇌의 부분을 자극하 여 기분을 좋게 만든다. 기분이 울적해지면 예전에 기분이 좋았던 기억 때문에 술이나 담배를 하게 된 다. 이때 문제가 되는 것은 습관성, 의존증 내지는 중독성이 생겨 금연이나 금주가 어렇게 된다는 것이. 다. 의학적으로 문제가 되는 것은 바로 술·담배 심 지어는 마약까지 같이 혼용하는 것이다. 이들의 대 사 과정에 생기는 독성물질과 과산화물이 신체에 약. 영향을 끼친다. 특히, 술 담배를 하면 뇌의 식욕 기능을 억제하여 식사를 하고 싶은 감정이 없어지므 로 식사를 제대로 하지 않는다. 그 결과 필수 영양 분과 항산화물질들이 결핍되어 간이나 뇌 조직세포 물을 손상시키거나, 기능의 저하를 가져온다. 장기 간 과음하면 암의 발생 빈도도 높아진다. 심장・ 폐·구강·목·식도 질환 등의 경우 담배만 피우면 7배, 음주만 하면 6배, 술·담배를 동시에 하면 38 배 내지 40배정도 발병 확률이 증가한다고 한다.

4.2.2 연령

◇ 청소년의 음주

술이 신체에 미칠 수 있는 폐해는 성인보다 청소 년들에게 더 강하다. 청소년은 신체 내의 세포를 비 롯한 모든 조직들이 아직 성숙되지 못했을 뿐만 아 니라 계속적으로 성장하고 있는 단계에 있기 때문에 술의 영향이 더 크다. 청소년들이 술을 마시면 빠른 속도로 뇌신경세포에 알코올이 확산되어 뇌에 마비현상이 일어난다. 감각과 운동이 약해지면 판단력이 호려지고 기억력이 떨어진다. 기억력이 떨어진다는 것은 학습능력을 그만큼 저하시키는 것을 의미한다. 알코올로 인해 파괴된 뇌신경세포는 다른 조직세포 와는 다르게 재생되지 않는다. 이외에도 술은 여러가지 질병을 가져올 수 있다. 술로 인해 질병에 걸릴 가능성은 성인보다 청소년이 당연히 높다. 무엇보다도 술이 청소년에게 해로운 것은 술이 중독성이 있다는 사실이다. 이로 인해 술을 습관적으로 마시게 되면 성장하여 알코올 중독에 걸리기 쉽다.

◇ 노인의 음주

노인은 신체의 기능이 멀어져서 알코올대사도 젊 을 때보다 늦어져 협중 알코올 농도가 높아지고 빨 리 취하며 알코올의 폐해가 뚜렷이 나타난다. 노인 은 평형감각, 반사작용이 저하되어 사고가 날 가능 성이 높다. 술을 마시면 판단력이 멀어지고 실수하 기 쉬워 이러한 사고를 당할 위험이 커진다. 고혈 압, 당뇨병 등으로 여러 가지 약을 복용하는 노인의 경우 약물과 알코올이 서로 영향을 미쳐 약효가 멀 어지거나 부작용을 나타낼 수 있다. 술을 마실 경우 알코올 자체가 뇌세포를 손상시키므로 치매중세가 더 심해지고 더 빨리 치매에 걸릴 수 있다. 젊은 사 람도 장기간 과음을 하게 되면 뇌의 전투엽을 위축 시켜 지적 사고 및 판단령이 감소한다. 노인이 경우 알코울로 인한 뇌세포 손상이 더욱 빠르게 나타나며 술을 끊더라도 자세나 평형기능을 조절하는 소뇌의 손상은 회복되지 않는다. 특히 알코올로 인한 뇌 손 상 증상을 노인성 치매 등 정상적인 노화현상과 구 별하기 쉽지 않아 치료시기를 놓칠 수 있어 주의해 야 한다.

4.2.3 비만

알코울과 비만이 직접적인 상관관계는 없으나, 비 만한 사람이 알코울을 많이 마시면 그만큼 질병에 걸릴 확률이 커져 주의를 필요로 한다. 비만한 사람

은 심장질환이 많고, 또 약이나 다른 세포독성 물질 에 의한 조직손상을 많이 받는다고 한다. 비만한 사 람의 경우, 알코올에 의해 유발되는 CYP2E1의 양. 이 많고, 그로 인한 유독한 대사물이 일시에 너무 많이 생겨 조직손상을 입는다는 일부 주장도 있다.

4.2.4 영양

알코올 그 자체가 높은 열량(7.1kcal/mol)을 갖 고 있으나, 신체에 필요한 각종 영양소가 부족하여 장기적으로 파음(하루 5잔이상)하면 영양결핍증에 걸려 체중이 줄어들고, 신체 여러 조직의 기능장애. 혹은 저하를 초래한다. 만성적으로 음주를 하였을 경우, 이때 대사되는 알코올은 소모 에너지로서 방 출되어 소모되기 때문에 실제 생체 에너지 차원에는 . 도움이 되지 않으므로 체중이 줄 것이라는 일부 주 장도 있다. 그러나 체중이 감소하는 확실한 이유는 과음시 다른 음식물이 섭취량 감소와 알코올에 의한 비효율적인 영양분의 이용때문이라고 할 수 있다. 알코올은 췌장에서 분비되는 소화효소들의 분비를 억제하고 위장 및 소장에서 각종 영양분들의 흡수를 억제한다. 3대 영양소인 탄수화물, 단백질, 지방은 어느정도 생체내의 대사반응에 의하여 필요할 때 즉 시 상호교환이 가능하다. 그러나 꼭 필요한 각종 비 타민류나 칼슘, 아연, 아그네슘 등의 미네랄류는 체. 외로부터 음식물로 공급, 흡수되어 저장이 되어야. 하는데, 알코올은 이들의 흉수 및 이용되는 과정도! 억제하여 질병 등의 부작용을 초래한다. 정상발육에 꼭 필요한 비타민A나 열산이 부족하면 알코올성 태 아중후군 경우처럼 신생아의 발육부진 및 두뇌기능 저하를 가져오며, 비타민 A, B, C, E, K의 결핍으 로 상처발생시 재생이 늦어지기도 한다. 알코울성 정신질환인 Wernicke-Korsakoff 환자는 비타민 B 가 부족하여 생기는데, 초기 중상의 경우에는 비타 민 B를 투여하면 환자의 치유나 상태를 완화시킬 수 있다. 음주시 뇌세포막의 필수 구성성분 지방산 (n-3계열)인 DHA가 적어 뇌세포와 간의 상호 신 호전달이 제대로 이루어지지 않아 기분상승에 관여 하는 세로토닌(serotonin), 도파민(dopamine) 등 의 신경전달물질물이 제대로 작동하지 못해 알코올 중독자에게 우울증 자살, 비사교적 성격같은 정신질 환이 많아진다고 한다.

4.2.5 약물

우리가 마신 알코올도 다른 음식이나 약물과 마찬 가지로 흡수, 분포 대사 및 배설의 과정을 거친다. 이 경우 약물과 알코올을 동시에 섭취하거나 장기간 음주한 후 치료약을 복용하면 이들 약물의 효과가 멀어지거나 부작용이 나타날 수 있다.

급히 알코올을 마시면 간에서 약물 대사효소를 경 쟁적으로 저해하여 약물의 농도를 높여주고 생체이 용률을 증가시킨다. 그 결과 예상치 못했던 약물의 부작용을 유발할 수 있다. 장기간 알코올을 마시면 약물대사효소들인 사이토크롬 P450효소군(CYP 2E1 포함)을 유도시켜 효소가 증가하고 빨리 대사 시킨다. 결국 약의 농도가 떨어져 약 작용이 떨어지 고, 실제 더 많은 양의 약물을 사용해야 효과를 나 타낸다. 알코올 유발성 CYP2E1 효소에 의해 대사 를 받는 치료약골은 더욱 목성이 강한 대사산물로 변하여, 간이나 기타 장기 조직에 손상을 입힐 수 있다. 실제 해열진통제로 많이 쓰이는 타이레놀(아. 세트 아미노펜)과 결핵 치료제인 아이소나이아지드 (Isoniazid, INH), 또 아취제로 사용되는 할로만 (halothane) 등을 음주자들이 사용하면 조직손상 을 더 입힌다고 알려져 있다. 정신 계통에 작용하는 신경안정제나 함우울증 치료제골은 알코올과 병용하 면 정신집중에 문제가 많아 운전사고 등을 많이 초 래한다고 한다. 그 외에도 각종 마약성 약품들, 함 하스타민제, 간질치료제, 위궤양 치료제, 심장질환 치료제 등은 음주에 의해 약물의 효과가 떨어지거나 높아질 가능성이 많아 주의해야 한다.

4.2.6 스트레스

- 스트레스는 여러 가지 외부자국에 대한 신체의 객

관적인 반응이다. 외부 자극을 받으면 되의 하단부 에 있는 시상하부에서 부신피질자국호로몬 방출인자 (corticotropin releasing hormone, CRP)를 분 비시킨다. 이 물질은 뇌의 뇌하수체에 작용하여 ACTH (adreno corticotropic hormone)이라는 호로몬을 분비한다. ACTH는 대분비계를 통해 부신 에서 부신파질 스트로이드 호로몬을 분비하여 스트 레스 반응과 긴장감을 갖게 한다. 사람마다 스트레 스에 대한 반응도 다른데, 유전적 요인(선천적) 또 는 훈련과 교육(후천적)에 의해 다르며, 대개 식욕 감퇴, 갈종, 발열, 주의령과 집중력 산만, 잦는 기분 의 변화 등으로 나타난다. 또한 위산이 과다분비되 고, 근육이 쇠약해지며, 지방이 분해되어 결국 몸이 아르게 된다. 스트레스는 알코올 소비량과 정비례의 상관관계를 갖고 있다. 실제 소량의 알코올 음주는 사람이나 실험동물에서 모두 기분을 좋게 하여 여러. 가지 스트레스 요인을 잠시나가 잊게 하나, 과음이 나 폭음을 하면 알코올 그 자체가 스트레스 반응에 관여하는 조직들(시상하부-뇌하수체-부신)에 직접 작용하여 이곳들의 호로몬 분비를 증가시키므로 스 트레스를 더 심하게 한다.

4.2.7 암

동물실험에서는 알코올 자체가 직접 암을 일으킨 다는 연구결과는 없으나 알코올이 간접적으로 발암 을 돕는 발암촉진제라는 사실은 많이 보고 되어 있 다. 사람의 경우 행동방식이나 취미가 다르고, 식사 의 패턴과 주거환경이 각기 다르지만, 암이 발생빈 도와 음주량과는 밀접한 상관관계가 있다. 특히 구 강암과 식도암의 경우는 음주량과 암의 발생빈도가 정비례한다. 그러나 위암, 췌장암, 대장암 등 소화 기 영역의 암은 알코올과 약간 관련이 있거나 혹은 없는 것으로 보고되어 있다. 간암의 경우는 알코올 은 중요한 요인 중 하나로 알려져 있다. 이 경우 간 암 바이러스 존재여부가 가장 중요한 원인이 되고, 알코올이 중요한 보조역할을 하는 것으로 알려졌다. 알코올 섭취는 여성호로몬인 에스트로겐을 상승시켜 여성에게 흔히 발생하는 유방암과 약간의 상관관계 가 있다고 보고되고 있다. 그러나 여성에게 생기는 다른 암돌(자궁경부암, 질암, 난소암)과 음주와 무

Table 2. Symptoms of Hangover

Туре
Patigue, weakness, and thirst
Headache and muscal aches
Nausea, vomiting, and stomach pain
Decreased sleep, decreased REM,1
and increased slow—wave sleep
Vertigo and sensitivity to light and sound
Decreased attention and concentration
Depression, anxiety, and irritability
Tremor, sweating, and increased pulse
and systolic blood pressure

^{&#}x27;REM=rapid eye movements.

관하다고 알려져 있다.

II. Alcohol Hangover

숙취란 무엇인가?

숙취관 음주 후 나타나는 정신적, 육체적 불유해 한 부작용들을 말한다. 육체적인 부작용으로는 피 끈, 두통, 광음에 대한 민감성, 근육통, 눈의 충혈, 갈증 등이 대표적이며, 교감신경작용의 증가로 인한 심장수축에 의한 혈압 및 심장박동수의 증가, 전율, 발한 등의 증상을 동반하기도 한다. 정신적인 부작 용으로는 현기종, 분위기 적응력 및 인지력 문화, 우울증, 홍분, 신경과민 증상이 있다. 이번 증상될 의 특성은 섭취한 알코올 음료의 형태와 그 양에 따 라 다양하게 나타나며, 숙취를 경험한 사람들은 개 인에 따라 경우에 따라 이런 증상들을 복합적으로 다르게 나타나고 있다. 일반적으로 숙취는 음주를 마친 후 혈중 알코울농도(blood alcohol con-

Table 3. Possible Contributing Factors to Hangover

Direct effects of alcohol

- Dehydration
- Electrolyte imbakabce
- Gastrointestinal disturbances
- Low blood sugar
- Sleep and biological rhythm disturbances

Alcohol withdrawal

Alcohol metabolism(i.e., acetaldehyde toxicity)

Nonalcohol effects

- Compound other than alcohol in beverages, especially methanol
- · Use of other drugs, especially nicotine
- Personality type
- Family history for alcoholism

centration) 가 멀어지기 순간부터 나타나며, 이는 BAC가 제로일 때 최고조에 달하며, 그 후 24시간 또는 그 이상 지속적으로 나타난다.

2. 숙취의 발생빈도

일반적으로 알코올이 섭취되는 양이 많을수록, 섭취 시간이 길어질수록 숙취의 발생번도는 증가한다는 보고가 있는 반면 만취한 사람들은 숙취를 전혀 경 험하지 않고, 저농도의 알코올 섭취자들만이 숙취를 경험한다는 보고도 있다. 핀란드인 2,160명을 대상 으로 한 주마다 증가하는 알코울섭취와 숙취의 빈도 의 상관도를 조사한 결과, 알코올 다량섭취자(일주 일에 106g 이상, 대략 9잔이상을 마신 대상)의 숙 취경험비율이 대조군의 6.6%와는 달리 43.8%으로 나타났다. 그러나 다른 보고는 심한 알코올 섭취자 돌이 오히려 숙취를 덜 경험한다고 주장하고 있다.

Physiological factors contributing to Hangover

숙취증상을 유발하는 요인은 (표2)과 같이 크게 ① 알코올이 직접 뇌와 그 외 기관에 미치는 영향 ② 알코올 withdrawal에 의한 영향 ③ 알코올 대 사 후 발생하는 대사산물이 신체에 미치는 영향 ④ 비알코울성 요인돌로 나누어 볼 수 있다.

3.1 알코올의 직접적인 영향

3.1.1 탈수현상(dehydration) 및 전해질 부족. (electrolyte imbalance)

알코올의 작용으로 인해 술을 마시면 소변이나 땀, 기타 분비물로 많은 수분을 소비하게 된다. 그 로인해 제대 수분이 부족하며, 몸이 나른해진다. 수 분 250 ml 내 50 g 알코올을 섭취하게 되면 체내 에서 600-1000 ml의 수분이 소비된다. 이는 알코 올이 되하수체로 부터의 호르몬(antidiuretic hormone, vasopressin 등) 분비를 저해시켜 신장의 수분재흡수를 방해하여 소변생산이 증가되기 때문이 다. 또한 숙취 중의 오한, 구토와 설사증상은 체액 및 전해질의 불균형을 초래할 수 있다. 그 의 탈수 현상으로 나타나는 증상으로는 갈증, 쇠약, 정막건 조증, 현기증 등이 있다.

3.1.2 위·장관 장해 (gastrointestinal disturbances)

알코울을 다량 섭취 시에는 위와 장을 자극하여 위염, stomach emptying 지연을 유발하고 유리 지방산 및 트리클리세리드의 복합체를 간에 축적되 게 하고 지방간을 유발한다. 또한 알코울은 위산, 췌장액, 장액분비를 촉진하는데, 이물은 숙취 중에 나타나는 복통, 메스커움, 구토 중상의 원인이 된다.

3.1.3 저혈당 (low blood sugar)

체내 알코움의 흡수로 인한 간 및 기타 기관대사의 변화는 저혈당을 유발할 수 있다. 알코올 대사는 지방간과 체내 박토산(lactic acid)과 같은 중간대사산물의 축적을 유발하는데 이는 글루코오스 생산을 저해할 수 있다. 알코올로 인해 유발된 저혈당증은 음식을 섭취하지 않은 음주자에게 일반적으로 나타나는데, 이는 지속적인 알코올 섭취와 비균형적인 영양섭취는 글루코오스 생성저하 및 글리코겐 형태로 간에 저장된 글루코오스의 고갈을 촉진하여 저혈당증을 유발한다. 글루코오스는 뇌의 기본적인 에너지원이기 때문에 저혈당증은 피곤, 쇠약, 정신적 장애를 유발할 수 있다. 당뇨는 특히 알코올성 혈당변화에 민감하지만, 저혈당 증상이 숙취를 유발하는지는 아직 밝혀지지 않은 상태이다.

3.1.4 수면장해와 기타 생체리돔(disturption of sleep and other biological rhythms)

알코올은 편안한 수면을 취하게도 하는 진정효과 도 있지만, 음주 후 숙취로 인한 피로는 수면을 방 해하기도 한다. 알코올 섭취 후 BAC(blood alcohol concentration)치가 감소세를 나타나게 되면 흥분상태로 인해 수면을 깊게 취할 수 없게 되며 더 욱이 야간의 음주행위는 수면시간을 단축시켜 불면 중 증상을 유발하기도 한다. 또 알코올은 꿈꾸는 시 간을 단축시키고 깊은 수면을 초래하여 평상시의 수 면패턴을 변화시키고 목근육을 이완시켜 코를 심하 게 골게 하고 간철적인 호흥질환을 유발하기도 한 다. 그리고 알코올은 숙취기간 중 기타 생체리움을 방해하기도 한다.

음주 시 체온이 멀어지고, 숙취 중에는 체온이 상승하는 등 체온의 변화로 신체리돔을 깨고, 뼈의 성장 및 단백질대사에 중요한 성장호로몬의 야간 분비를 억제시킨다. 이와 반대로 알코올은 뇌하수체로부터 부신피질자국호로몬의 분비를 촉진하며 이는 탄수화물대사 및 stress response에 중요한 역할을하는 cortisol 분비를 자극시켜 평상시 cortisol 수준을 변화시키기도 하며 이로 인한 신체리돔의 변화는 해로운 jet lag을 야기한다.

3.1.5 알코올과 두통

25-64세 사이 숙취를 경험한 덴마크인을 대상으로 역학조사를 한 결과, 그 중 72%가 비슷한 타입의 두통을 느낀 것으로 나타났다. 알코올은 혈관확장을 유발하여 두통을 일으키며, 또한 히스타민 (histamine), 세로토닌(serotonin), 프로스타글란단 (prostaglandin)과 같은 두통 유발원과 관련된호르몬 및 기타 신경전달물질에 영향을 미쳐 두통을느끼게 한다. 그러나 숙취 중 두통의 원인론은 알려지지 않고 있다.

3.2 Alcohol Withdrawal(AW)의 영향

심한 음주후의 AW 중상은 억제물질물을 연속적으로 관리하는 중추신경계(central nervous system) 이 변화에 의해 나타난다. 이런 변화는 신경세포막에 위치하고 있는 두가지 타일의 receptor의 변형을 포함한다.

하나는 중요한 GABA(gamma aminobutyric acid)라는 chemical messenger (newrotransmitter) 와 결합하고 다른 receptor는 glutamate와 결합한 다. GABA와 glutamate는 신경세포활성 조절에 중요한 물질이며, GABA는 신경세포활성을 억제시. 키는데 중요하고 glutamate는 신경세포를 자극하 는 중요한 물질이다. 만성적으로 음주의 경우에는 체내 GABA 민감성 receptor가 감소하고 glutamate 민감성 receptor는 증가하게 되는데, 이는 알코몰의 sedative effect의 균형을 조절하고자 함 에서 비롯된 것으로 보인다. 그러나 체내에서 알코 올이 제거된 경우에는 중추신경계와 교감신경계는 불균형적인 상태, 즉 흥분상태로 남아있게 된다. 교 감신경계의 이런 흥분상태는 멀림, 오한, 빈박으로 설명되어 진다(이것들은 숙취와 AW증상으로 모두 나타남), 알코올의존성 환자들의 withdrawal 에피 소드를 조사한 기관(CIWA)의 연구보고에 따르면. withdrawal 주요중상으로 나타난 메스커움, 구토, 발한, 흥분, 두통, 감각장애, 청각 및 시각장애, 위 치 및 시간지각장애가 숙취 중에도 자주 나타난다고 한다. 이런 몇 가지 중상을 통해 숙취가 가벼운 AW 증상이라는 보고도 나오고 있다.

3.3 Alcohol metabolites의 영향

알코올은 두 과정을 통해 대사가 이루어지는데, 후 선은 ALD(alcohol dehydrogenase)의 작용으로 알코올은 중간대사산물인 아세트알데히드로 대사되 고, 다음 ALDH에 의해 아세트알데히드는 아세테이 트(acetate)로 전환된다. 아세트알데히드는 단백질 과 그 외 중요한 생화학적 화합물에 결합하는 화학 적 반응물질이며, 그 농도가 높을수록 빈탁, 오한, 홍조, 메스커움, 구토와 같은 유해한 영향을 제대에 미친다. 대부분 ALDH의 작용으로 아세트알데히드 는 빠르게 분해하여 비록 혈액에 미량이 존재하지만 그 물질이 체내에 축적되지 않도록 하고 있다. 그러 나 간혹 ALDH 효소의 유전적 변이로 아세트알데 히드가 대사되지 않고 체내에 축적되는 경우가 있는 데, 이들은 소량 음주에도 거의 홍조, 오한을 나타. 낸다. 이번 아세트알데히드반응과 숙취증상의 유사 성으로 인해 몇몇 연구자들은 아세트알데히드가 숙 취를 유발시킨다고 주장하고 있다. 비록 BAC 수준 이 제로에 이른 후 유리 아세트알데히드가 혈액에 존재하지 않는다 하여도 알코올 대사산물인 이 물질 의 유해한 영향은 숙취기간 내에 지속될 것이다.

3.4 알코올 외 기타 영향

3.4.1 Congeners

우리들이 소비하고 있는 알코올음료는 에탄올이 함유되어 있으며, 또한 대부분의 알코올 음료는 에 탄울의 생화학적 활성을 가진 기타 알코올류를 함유 하고 있다. Congeners로 알려진 이돌 화합물은 알 코올 음료의 향미 및 외관에 영향을 미친다. 이돌 congenera는 음료의 유기구성물들이 분해되면서 숙 성 및 제조공정 중에 에탄올과 함께 생성된다. 현재 연구자들은 알코올 음료중의 congeners가 알코올 중독과 함께 숙취를 동반하는 것으로 알고 있다. 연 구보고에 의하면 진(gin)과 보드카(vodka)와 같이 순수한 에탄올을 많이 함유한 음료가 위스키, 브랜 다. 레드와인과 같이 여러 종의 congeners를 함유 한 음료보다 더 적은 숙취증상을 나타낸다고 한다. 알코올 음료의 congeners 중 에탄올에 이어 다양 함유되어 있는 메탄몰이 숙취와 관련되어 있으며, 메탄울은 에탄울보다 탄소원자 한 개, 수소원자 2개 가 적은 구조상 차이가 있다. 에탄을 대사효소, ADH, ALDH와 같은 효소들은 또한 메탄율의 대사 에도 관여하며, 이때 생성되는 메탄을 대사생성물은 매우 유해하며, 고통도 하에서는 사망에 까지 이론 다. 메탄올에 의한 숙취를 주로 발생시키는 알코올 음료는 브랜디, 위스키와 같이 메탄올을 고놓도로 함유한 종류알코올 음료로 Jones(1987)은 4명을 대상으로 메탄올 함량이 100 mg/L인 베드와인을 마시게 한 후 메탄올의 혈중농도를 측정한 결과 에 탄울 대사 후 몇 시간동안 유지되며, 이 시간은 숙 취증상을 나타내는 시간에 대응하는 것으로 나타났 다. 이렇게 메탄율이 높은 농도로 유지되는 것은 에 탄울이 경쟁적으로 메탄올대사를 방해하기 때문이다. 에탄울의 readministration가 숙취증상을 받아 낸다는 사실은 에탄울이 메탄을 대사를 방해하여 메탄올에 의해 숙취증상이 유도되는 것의 증거라 할수 있다. 메탄올에 의한 숙취는 메탄을 대사억제로 formaldehyde와 formic acid 생산속도가 늦춰짐에 따라 발생한다. 어떤 사람은 레드와인을 마신 후 바로 두통증상을 나는데, 최근 연구결과에 따르면 레드와인은 plasma serotonin과 plasma histamine의 수준을 증가시킨는 특정성분은 아직 알려지지 않고 있으나, 최근 plasma serotonin과 plasma histamine의 수준을 증가시킨는 투통을 발생시킬수 있다고 받아들여지고 있다.

3.4.2 기타 약품

기타 약품은 대량의 알코올을 동반하기도 한다. 대부분의 음주자는 흡연을 하며, 기타약품을 먹고 있다. 기타약품이 숙취증상을 나타나게 하며, 알코 올 중독에 영향을 미치고 있지만, 다양한 알코올과 기타 약품의 상호작용에 의한 숙취에 대해서는 아직 자세히 알려지지 않았다.

3.4.3 개인적 영향

신경질적이고 화를 잘 내고 배타적인 성격과 부정적인 삶의 자세와 범죄심리, 개인적으로 알코울중독의 위험성이 높은 사람일수록 숙취증상이 더 자주나타난다고 한다. 이런 보고들은 알코울중독의 위험성이 높은 사람일수록 더 심한 AW증상과 숙취를 경험하면서 이런 고통돌을 경감하기 위해 더 많은 음주를 할 가능성이 높다고 제시하고 있다.

그리고 알코올중독에 대한 유전적 요인이 취한 상태에 대한 민감성을 둔감시키고, 알코올 중독에 대한 위험성을 증가시키는 데 연관성을 나타낸다. New-lin과 Pretorius(1990)는 알코올중독에 양성적인 유전환경일수록 숙취증상이 증가하는 경향이 있다고 보고했다. 이들은 비알코올 중독자인 남성의 아들과 알코울중독경험이 있는 남성의 아들을 대상으로 숙

취에 대해 직접 베포트하게 한 결과, 알코울중독에 대해 양성적인 유전적 배경을 가진 자손에게 더 심 한 숙취중상이 나타나는 것으로 나타났다.

4. 숙취예방 (Treatments for Hangover)

숙취기간 및 그 중상의 심각성을 감소시키기 위해 무수히 많은 민간요법과 해소책이 이용되어 왔다. 현재 숙취예방을 위해 연구되고 있는 효과적인 숙취 예방 및 해소 방법은 다음과 같다.

- ① 음주시간 : 음주시간을 조절함으로써 숙취시간 을 단축시킬 수 있다.
- ② 음주량과 알코몰의 질 : 취하지 않을 정도로 적 당량을 음주한 사람일수록 숙취증상을 덜 나타내 며, 취한 사람들 사이에서도 음주량이 적은 사람이 많은 사람보다 숙취증상을 덜 보인다고 한다. 숙취 는 저알코올 음료나 비알코올 음료와는 상관없는 증상이다.
- ③ 술의 타입: 마신 술의 타입도 숙취감소에 중요한 영향을 미친다. Congeners를 적게 함유한 알코올음료(예. 보드카, 진, pure ethanol)일수록 congeners를 다양 함유한 알코올 음료(브랜디, 위스키, 베드와인)보다 숙취가 적게 나타난다.
- ④ 과일, 과일주스 및 기타 fructose 함유 식품의 섭취로 숙취 강도를 감소시킬 수 있다. 또한 토스 토나 크래커와 같이 탄수화물을 함유한 음식물은 저협당증을 보완해주며, 메스커움을 경감시켜 준다.
- ⑤ 충분한 수면 : 음주로 수면부족에 의한 피로를 풀어주어야 한다.
- ⑥ 음주 중이나 후에 비알코올 음료를 마심으로 같 중을 해소할 수 있다.
- ⑦ 약품 : 예를 들어 antacids는 구토와 메스커용을 감소시키고, 아스피린과 그 외 nonsteroidal anti-inflammatory mediation (ibuprofen 또는 naproxen)은 두통과 근육통을 감소시킨다. 그러나 이 약품들은 복통이나 메스커용이 있을 때는 주의하여 하며, nonsteroidal anti-inflammatory

mediation은 자체가 위경면을 일으키기도 하고. 알코올로 인한 위염을 유발할 시킬 수 있다. 특히 아스피린 대용으로 사용하는 acetaminophen은 숙취 중 복용을 피해야 하는데 이는 알코올대사가 acetaminophen의 독성을 촉진시켜 간손상을 유 발하기 때문이다. 고혈압과 편두통 치료에 이용되 는 propanolol, beta-adrenegic antagonist는 AW로 인한 교감신경계의 홍분을 감소하는 효과가. 있으나, propanolol에 숙취로 인한 두통을 감소시. 키는지에 대해서는 아직 밝혀지지 않았다. Ondansetron과 tropisetron과 같은 antagonist (at serotonin-3 receptor)는 진토제로 알코몰로 인한 구토나 메스꺼움 예방에 효과가 있으나, 숙취증상 이 심해질수록 그 효과를 볼 수 없다. 민간요법으 로 과학적인 근거는 부족하지만, 커피의 카페인은 보통 숙취로 인한 피곤과 권태로움을 없애는 데 효 과적이다.

이렇게 다양한 숙취예방법을 제시하였지만, 무엇 보다 숙취예방에는 알코올 섭취를 자제하는 것이 가 장 효과적일 것이다.

5, 앞으로 연구되어야 할 분야

우선 숙취를 일으키는 cogeners 중 특히 메탄율에 대 한 연구가 이루어져야 한다. 예를 들어 숙취 및 그 중 요 증상률 일으키는 것이 에탄울인지 아니면 congeners인지를 확실히 할 수 있는 연구가 이루어져야 하며, 이것에 대한 해답은 숙취의 병리생리학적 이해 에 중요한 단서를 제공할 것이다. 특히 흥미로운 것은 숙취가 개인의 성격과 가정적(유전적) 배경이 알코 올 중독의 위험성을 증가시키고, 심한 숙취를 유발 한다는 점이다. 현재 이론적으로 숙취증상이 더욱 자주 발생하고 지속될수록 음주를 더 조장하기보다 는 음주를 억제시키고, 가벼운 AW증상은 알코올에 대한 열망을 증가시킨다고 이야기되고 있으나, 앞으로 의 연구들은 인간이 생물학적으로 더 심한 AW에 대 해 사전에 예방을 할 수 있는지, 이것으로 알코올섭 취의 증가를 예방할 수 있는지에 관해 이루어질 것이.

다. 숙취의 동물모델은 계속 이용하여, 취한 후 바 로 일어나는 생리적, 행동적 변화와, 이 동물 모델 은 withdrawal의 초기중상과 congeners가 숙취에 미치는 영향을 조사할 경우나 숙취의 사전예방방법 과 알코올 섭취를 금지하기 위한 방법의 연구에 이 용하고 있다. 마지막으로 숙취는 단순한 설명만으로는 이해할 수 없는 복잡한 상태이므로 숙취증상의 이해는 알코올이 생리적으로 비치는 영향 및 그에 상용하는 반응들에 대한 올바른 이해를 가능하게 할 것이다.

Ⅳ. 참고문헌

- 1. Begleiter, H., Porjesz, B. and Yerregrobstein, C., Excitability cycle of somatosensory evoked potentials during experimental alcoholization and withdrawal. Psycho-pharmacologia 37(1): 15-21 (1974)
- 2. Bogin, R.M., Nostrant, T.T. and Young, M.J., Propranonol for the treatment of alcoholic hangover. American Journal of Drug & Alcahol abuse 13(1&2):175-180 (1987)
- 3. Chapman, L.P., Experimental induction of hangover. Quarterly Journal of Studies on Alcohol 5(Suppl. 5):67-86 (1970)
- 4. Earleywine, M. Hangover moderates the association between personality and drinking problems. Addictive Behaviors 18(3):291-297 (1993a)
- 5. Earleywine, M. Personality risk for alcoholism covaries with hangover symptoms. Addictive Behaviors 18(4): 415-420 (1993b)
- 6. Elsenhofer, G..., Lambie, D.G... Whiteside. E.A. and Johnson. R.H., Vasopressin concentrations during alcohol withdrawal. British Journal of

- Addiction 80(2):195-199 (1985)
- Gauvin, D. V., Cheng, E.Y. and Hiloway,
 F.A., Biobehavioral correlates. In:
 Galanter, M., Recent Developments in Alcoholism: Volume 11. Ten Years of Progress, New York: Plenum Press, pp. 281-304 (1993)
- Gauvin, D.V., Briscoe, R.J., Baird, T.J., Vallett, M., Carl, K.L. and Holloway, P.A., Crossgeneralization of an EtOH "hangover" cue to endogenously and exogenously induced stimuli. Pharmaculogy Einchemistry and Behavior 57(1/2): 199-206 (1997)
- Girre, C., Hispard, E., Palombo, S., N'guyen, C. and Dally, S., Increased metabolism of acetaminophen in chronically alcoholic patients. Alcoholism Clinical & Experimental Research 17(1): 170-173 (1993)
- Harburg, E., Gunn, R., Gleiberman, L., Difranceisco, W.and Schork, A., Psychosocial factors, alcohol use, and hangover signs among social drinkers: A reappraisal. Journal of Clinical Epide miology 46(5):413-422 (1993)
- Jarisch, R., Wantke, P., Wine and headache. International Archives of Allergy and Immunology 110(1):7–12 (1996)
- Jones, A.W., Elimination half-life of methanol during hangover. Pharmaculogy & Taxicalogy 60(3): 217-220 (1987)
- Kauhanen, J., Kaplan, G.A., Goldberg, D.D., Cohen, R.D., Lakka, T.A. and Salonen, J.T., Frequent hangovers and cardiovascular mortality in middleaged

- men. Epidemiology 8(3):310-314 (1997)
- 14. Lemon, J. Chesher, G., Fox, A.Greeley, J. and Nabke, C., Investigation of the hangover effects of an acute dose of alcohol on psychomotor performance. Alcoholism: Clinical and Experimental Research 17(3):665-668 (1993)
- Lieber, C.S., Medical disorders of alcoholism. New England Journal of Medicine 333:1058-1065 (1995)
- Littleton, J., Little, H., Current concepts of ethanol dependence. Addiction 89(11) :1397-1412 (1994)
- Macandrew, C., The differentiation of male alcoholic outpatients from nonalcoholic psychiatric outpatients by means of the MMPI. Quarterly Journal of Studies on Alcohol 26(2):238-246 (1965)
- Montastruc, P. L'alcool exagere la soif.
 (Alcohol exaggerates thirst). HCEIA Informations 4:41-42 (1986)
- Muhonen, T., Jokelainen, K., Hook- nikanne, J., Methuen, T. and Salaspuro, M., Tropisetron and hangover. Addiction Biology 2(4): 461-462 (1997)
- National Institute on Alcohol Abuse and Alcoholism. Alcohol Alert No.26: Alcohol and Hormones. PH 352. Bethesda, MD: the Institute (1994)
- Newlin, D.B. Pretorius, M.B., Sons of alcoholics report greater hangover symptoms than sons of nonalcoholics: A pilot study. Alcoholism: Clinical and Experimental Research 14(5): 713-716 (1990)
- Parantainen, J., Prostaglandins in alcohol in tolerance and hangover. Drug and Alcohol Dependence 11(3-4):239-248

(1983)

- 23. Pattichis, K., Louca, L., Jarman, J., San dler, M., and Glover, V., 5- Hydroxytryptamine release from platelets by different red wines: Implications for migraine, European Journal of Pharmaashgy 292:173-177 (1995).
- Pawan, G.L., Alcoholic drinks and hangover effects. Proceedings of the Natrition Society 32(1):15A (1973).
- Pinel, J.P.J., Mucha, R.P., Increased susceptibility to seizures following brief exposure to alcohol: Hangover or artifact. In: Eriksson, K., ed. Animal Models in Alcohol Research, New York: Academic Press, pp. 413-418 (1980)
- Pristach, C.A., Smith, C.M., and Whitney, R.B., Alcohol withdrawal syndromes: Prediction from detailed medical and drinking histories. Drug and Alcohol Dependence 11(2):117-199 (1983)
- 27. Rasmussen, B.K., Dlesen, J., Symptomatic and non-symptomatic headaches in a general population. Neurology 42(6): 1225-1231 (1992)
- 28. Schuckit, M.A., Smith, T.L., An 8-year follow-up of 450 sons of alcoholic and control subjects. Anthives of General Psychiatry 53(3):202–210 (1996)
- 29. Seppala, T., Leino, T., Linnoila, M., Hut tunen, M.O., Ylikahri, R.H., Effects of hangover on psychomotor skills related to driving: Modification fructose and glucose. Acta Pharmacologia Toxicologia 38: 209- 218 (1976)
- 30. Smith, C.M., Barnes, G.M., Signs and symptoms of hangover: Prevalence and

- relationship to alcohol use in a general adult population. Drug and Alcohol Dependence 11(3/4): 249-269 (1983)
- 31. Spenser, A., Memoirs of William Hickey. London : Hurst & Blackett Ltd., pp.103-104 (1913)
- 32. Streufert, S., Pogash, R., Braig, D., Gin grich, D., Kantner, A., Landis, R., Lonardi, L., Roache, J. and Severs, W., Alcohol hangover and managerial effectiveness. Alcoholism: Clinical and Experimental Research 19(5):1141-1146 (1995)
- 33. Sullivan, J.T., Sykora, K., Schneiderman, J., Naranjo, C.A. and Sellers, E.M., Assessment of alcohol withdrawal: The revised Clinical Institute Withdrawal Assessment for Alcohol scale (CIWA-Ar). British Journal of Addiction 84(11):1353-1357 (1989)
- 34. Tornros, J. and Laurell, H., Acute and hangover effects of alcohol on simulated driving performance. Rlntalkabol 28(1): 24-30 (1991)
- 35. Tsai, G., Gastfriend, D.R. and Coyle, J.T., The glutamatergic basis of human alcoholism. American Journal Psychiatry 152(3):332-340 (1995).
- 36. Walsh, J.K. Humm, T., Muehlbach, M. .J. Sugerman, J.L. and Schweitzer, P.K., Sedative effects of ethanol at night. Journal of studies on Alcohol 52(6):597-600 (1991)
- 37. Yesayage, J.A., Leirer, V.O., Hangover effects on aircraft pilots 14 hours after alcohol ingestion: A preliminary report. American. Journalαf Paychiatry 143(12): 1546-1550 (1986)

V. 알코올 대사 및 숙취 관련 문헌

논 문 계 목	출 저	저자명	권(호)수, 웨이지 (연도)
양파, 로즈마리, 타임의 기능성에 관한 연구	한국조리과학회지	정동옥	17(3), 218-223 (2001)
감과 가공식품의 알코올 대사촉진물질	한국식품영양과학회지	김석기	30(5), 954-958 (2001)
Midronate가 협칭 알코울 농도와 숙취에 미치는 영향	한국식품영양과학회지	박선민	27(1), 168-174 (1998)
Aspartate 및 asparagine 투여가 알코올 대사 및 중추신경계 효과에 미치는 영향	대한 약리학회지	임동석	31(2), 261-269 (1995)
알코올 의존 환자에서 알코올 대사 효소 및 도파민, 세로토닌 수송체의 유전자 다형성	대한내과학회	최인근	(1), 12-14 (2003)
흰쥐에 있어서 홍국 색소 추출물이 알코올대사에 미치는 영향	한국식품영양과학회지	유대식	32(4), 603-607 (2003)
대장균에서 사람 ALDH2 유전자의 발현	한국식품영양학회지	꽉보연	10(2), 268-271 (1997)
갈화가 에탄몰을 투여한 흰위의 지질과산화와 알코몰 대사효소의 활성도에 미치는 영향	한국식품영양과학회지	이정숙	29(5), 935-942 (2000)
알코올 투여한 흰쥐 간세포내 알코올 탈수소효소의 활성과 함산화에 미치는 식물추출물들의 영향	한국식품영양과학회지	조성환	30(4), 679-683 (2001)

논 문 계 목	출 처	저자명	권(호)수, 폐이지 (연도)
취 열수추출물이 흰줘의 알콜을 대사효소계에 미치는 영향	한국식품영양과학회지	김명주	31(1), 92–97 (2002)
취추출물이 알코올을 급여한 흰줘의 뇌조직에 미치는 영향	한국식품영양과학회지	김명주	29(4), 669-675 (2000)
알코올 대사가 장관 글루타민 흡수 장애 유도	한국수의공중보건 학회지	청규식	24(3), 231-237 (2000)
단풍취로부터 분리한 apigenin 7-O-β-D- glucoside가 알코올 대사 효소에 미치는 영향	한국농화학회지	문행인, 지옥표, 신말식	42(2), 162-165 (1999)
당귀의 첨가 식이가 흰줘의 지방 대사와 알코울 대사 및 간기능에 미치는 영향	한국농화학회지	오석홍	42(1), 29-33 (1999)
단풍취 분획물이 알코올 대사 효소에 미치는 영향	한국농화학회지	문형인	41(6), 447-450 (1998)
메티오닌과 셀렌 수준이 흰줘의 알코울 대사 효소계에 미치는 영향	한국식품영양과학회지	김명주	26(2), 319-326 (1997)
알콜의 대사적 영향	한국식품영양학회지	정병선	4(2), 207-212 (1991)
소엽의 추출물이 협장알콜농도와 간의 알콜대사효소의 미치는 영향	한국약용작물학회지	문행인. 지옥표	6(2), 126-130 (1998)

논 문 계 목	출 저	저자명	권(호)수, 폐이지 (연도)
환취에 있어서 구기자 추출물 첨가식이가 간조직의 유해산소 및 알콜대사 효소활성에 미치는 영향	한국식품영양과학회지	윤종국	30(4), 668-672 (2001)
옥미수의 분획이 알코올 및 알콜대사효소에 미치는 효과	한국자원식물학회지	문형인	10(4), 319-323 (1997)
오미자 과육과 종자의 물추출물이 알콜대사에 미치는 효과	동아시아식생활학회지	이정숙	1(3), 299-304 (1991)
알로에 추출물이 알코올 대사에 미치는 영향	한국식품위생안전성 학회지	정정철	11(1), 31-34 (1996)
식이내 SE 수준과 알콜섭취가 흰줘의 지질과산화와 지방대사에 미치는 영향	한국식품영양학회지	김갑순	4(1), 21-34 (1991)
대나무숯 제조과정에서 나오는 대나무액(죽력)을 활용한 기능성 음료 개발 -항당뇨, 숙취해소, 함피로기능을 중점으로	동신대학교 연구보고서	장경선, 김정상	2003
기능성 소재를 첨가한 장류제품 개발 (1차년도)	한국식품개발연구원 연구보고서	임성일	2000
수출상품 향토 유자가공 및 유자향 추출기술개발	남해군농촌지도소	이홍	1996

논 문 계 목	출 저	저차명	권(호)수, 페이지 (연도)
Effect of ethanol in single dose on liver of ethanol-treated and nontreated mice	Alcoholmetabolism	Leonora mirone	390-394 (1965)
Absorption, diffusion, distribution and elimination of ethanol: Effect on biological membranes	INTERNATIONAL ENCYCLOPEDIA OF PHARMACOLOGY AND THERAPEUTICS	Wallgren .H	1, 161–188 (1970)
Preparation of aldehyde oxidase in its native and deflavo forms	J. Biological Chem.	Umberto Branzolin	14, 4339-4345 (1974)
Gas-Liquid chromatographic determination of ethanol and acetaldehyde in tissues	J. Pharmacol.methods	James P. Brien	4, 51-58 (1980)
Retardation of ethanol absorption by food in the stomach	J. Studies on alcohol	John Sh ultz, He nry Wein er	41(9), 861-870 (1980)
Acetaldehyde concentration in rat blood and brain during the calcium carbimide-ethanol interaction	CAN, J. Physiol. pharmacol.	D.J.Hoov er, J.F.B rien	59, 65-70 (1981)
A rapid method to evaluate acute ethanol intoxication in mice	PHARMACOL. BIOCHEM.& BEHAVIOR	K. Blum, S.F. Flat on, H. Sc hwertner	14, 835-838 (1981)
Urinary sulfur containing metabolites after administration of ethanol, acetaldehyde and formaldehyde to rats	TOXICOLOGY LETTERS	Kari He mminki	11, 1-6 (1982)
Inhibition of ethanol absorption by butyl-biguanide in rat gastrointestinal tract in vivo	RES. EXP. MED	L. Debre ceni, B. Caete	184, 205–208 (1984)

논 문 제 목	출 처	저치명	권(호)수, 페이지 (연도)
Decreased blood levels of ethanol and acetaldehyde by S-Adenosyl-L-methionine in Humans	Arch. Toxicol., suppl.	C. Di Padova, R. Tritapepe	7, 240-242 (1984)
Effect of diethyldithiocarbamate, a metabolite of disulgiram, on the pharmacokinetics of alcohol and acetaldehyde in the rat	J. Pharmacobiodyn.	Ryvichiro nishigaki, Kazumichi Utsugi	8, 847-852 (1985)
NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates	Archives of Blochemstry and Biophysics	Ewa Kukielka, Arthur I. Cederbaum	275(2), 540-550 (1989)
Concentration of blood and wrine ethanol, acetaldehyde, acetate and acetone during experimental hangover in volunteers	Jpn. J. Alcohol & Drug dependence	Shojiro Tsukamoto	26(6), 500-510 (1991)
Acetaldehyde and acetate production during ethanol metablism in perfused rat liver	Alcoholmetabolism	T.J. Braggins	441-449 (1991)
Effect of acetaldehyde on ethanol absorption in the canine jejunum	Jpn. J. Alcohol & Drug dependence	Toyohoko Shinohara , Iwao Ijiri	27(5), 519-527 (1992)
In vivo formation of isoquinoline alkaloids: Effect of time and route of administration of ethanol	Alcoholmetabolism	Morray G. Hamilton, Kenneth Blom	73–86 (1992)

논 문 계 목	출 거	저차명	권(호)수, 페이지 (연도)
Determination of hepatic acetaldehyde and its biphasic relationship to the ethanol concentration in rats	Alcoholmetabolism	C.J. Peter eriksson	459-467 (1992)
Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: Comparisons with NADPH	Archives of Biochemistry and Biophysics	Elisa Dicker, Arthur I. Cederbaum	293(2), 274-280 (1992)
Genetic factors in alcohol metabolism and alcoholism	Seminars in liver disease	Bosron.W. F. Ehrig.T. Li.TK	13(2), 126-135 (1993)
Quantitative analysis of erythrocyte velocity in rat liver after acute ethanol administration	JPN. J. Alcohol & Drug dependence	Hisayoshi Hamamatsu	28(6), 467-482 (1993)
Alcohol and the Liver	Alcohol alert	Enoch Gordis, M.D	19. 329 (1993)
Acetaldehyde/protein interactions: Are they involved in the pathogenesis of alcoholic liver disease?	Dig. dis.	Simon Worrall, John de Jersey	11, 265–277 (1993)
In vivo uptake of ethanol and release of acetate in rat liver and GI	LIPE SCI.	Ming-ta Huang, Chih-chin Huand	53, 165-170 (1993)
Changes in free and bound alcohol metabolites in the urine during ethanol oxidation	JPN. J. Alcohol & Drug dependence	Shojiro Tsukamoto	28(6), 441-452 (1993)

논 문 계 목	출 저	저자명	권(호)수, 폐이지 (연도)
홍삼박 볶음처리 추출액이 알콜해목에 미치는 효과	한국인삼학회지	고지훈	18(2), 118-121 (1994)
Composition of ethanol and ethanol metabolites and symptoms of acute alcohol-intoxicated patients	JPN. J. Alcohol & Drug dependence	Minoru Kitazawa	29(1), 31-39 (1994)
Roles of alcohol dehydrogenase in rat ethanol elimination kinetics	Alcohol & Alcoholism	Hiroshi Matsumo to	29(\$1), 15-20 (1994)
ラットのエタノ-ル代謝に及ぼす Spirulina platensisの影響	日本營養 ・ 食糧學會誌	Kimiko Araki, Eiko itoh	47(5), 395–400 (1994)
Temperature dependence of ethanol depression in mice: Dose Reponse	Alcoholism: clinical and Experimental research	Deborah A. Finn, Peter J. Syapin	18(2), 382-386 (1994)
Lack of effect of acetaldehyde on the cardiovascular system in rats	Dariusz	Kendall. M.J.Spa nnuth.P.	37 .371-374 (1994)
Effect of erythromycin on alcohol absorption	J. Nuclear med.	Paul R. Young	35(1), 184-185 (1994)
Changes in hepatic enzyme activities related to ethanol metabolism in mice following chronic ethanol administration	J. NUTR. SCI. Vitaminol	Ritsuko Kishimot o, Ikuko Pujiwara	

논 문 계 목	출 저	거차명	권(호)수, 폐이지 (연도)
Absorption of (-)-epigallocatechin gallate into the circulation system of rats	Biosci. Biotech. Biochem.	Tomonori Unno, Tadakazu takeo	59(8), 1558-1559 (1995)
Inhibitoty effect of glycine on ethanol absorption from gastrointestinal tract	Biol. Pharm, bull	Tervaki Akao	18(12), 1653–1656 (1995)
Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism	Archives of Biochemistry and Biophysics	Lurdes Mira, Luisa Maia	318(1), 53-58 (1995)
Additional proof of reductiorn of ethanol absorption from rat intestine in vivo by high acetaldehyde concentrations	Alcohol & Alcoholism	Hiroshi kinoshita, Iwao Ijiri, Setsuko Ameno	30(4), 419-421 (1995)
High intracolonic acetaldehyde values produced by a bacteriocolonic pathway for ethanol oxidation in piglets	GUT	K. Jokelainen,	39, 100-104 (1996)
Ethnic differences in gastric alcohol dehydrogenase activity and ethanol first-pass metabolism	Alcoholism: Clinical and Experimental research	Kazufumi Dohmen	20(9), 1569–1576 (1996)
Expression, activities, and kinetic mechanism of human stomach alcohol dehydrogenase	Enzymol, and Molecul, Biology of carbonyl Metabolism	Shih-Jiun Yiin,Chih-Li Han	6, 347–356 (1996)

논 문 제 목	출 처	거 치명	권(호)수, 폐이지 (연도)
Blood ethanol concentrations following oral ethanol ingestion-influence of age and gender	Z gastroenterol	Gartner, U.,Schmier, M.	34, 675–679 (1996)
アルコールと肝疾患	臨床營養	Hasumura, Yasushi	89(5), 619-623 (1996)
アルコール代謝と遺妻因	臨床營養	Harada, Shoji	89(5), 595-599 (1996)
アルコ ルと業理作用	臨床營養	Kato, Shinzo	89(5), 590-594 (1996)
アルコ ルと心・血管疾患	臨床營養	Sakurai hideohiko	89(5), 607-613 (1996)
アルコ ルと発養障害	臨床營養	Yamauchi, Masayoshi	89(5), 624-627 (1996)
糖尿病とアルコ ル	臨床營養	Suzuki, Yoshihiko	89(5), 614-618 (1996)
アルコ ルとフレンチ・バラどっクス	臨床營養	Kondo, Kazuo	89(5), 600-606 (1996)
日本人のアルコ ル機取款況	臨床營養	Tanaka, heizo	89(5), 584-589 (1996)
Effect of bezafibrate on ethanol oxidation in rats	Alcoholism: clinical and Experimental research	Shojiro Tsukamoto	20(9). 1599-1603 (1996)

논 문 계 목	출 처	저자명	권(호)수, 폐이지 (연도)
Effect of tea(Camellia sinensis) chemical compounds in ethanol metabolism in ICR mice	Biosci. Biotech. biochem	Takami Kakuda	60(9), 1450-1454 (1996)
Development and characterization of a binge drinking model in mice for evaluations of the immunological effects of ethanol	Alcoholism: clinical and Experimental research	Edmond J. Carson, Stephen B. Proett	20(1), 132-138 (1996)
Enzymology of ethanol and acetaldehyde metabolism in mammals	Archives of medical res.	Hector riveros-Ro sas	28(4),453-471 (1997)
The role of gastrointestinal factors in alcohol metabolism	Alcohol & Alcoholism	Helmut K. Seitz, Gudrun poschl	32(5), 543-549 (1997)
Alcohol hangover(mechanism and mediators)	Alcohol health & Research world	Robert Swift, M.D	22(1), 54-60 (1998)
Urinary excretion of methanol and 5-hydroxytryptophol as biochemical makers of recent drinking in the hangover state	Alcohol & Alcoholism	Preben bendtsen, A. Wayne Jones	33(4), 431–438 (1998)
アルコール性肝障害の条養法	臨床營養	Horie, Yoshinori	93(1), 45-52 (1998)
Microsomal acetaldehyde oxidation is negligible in the presence of ethanol	Alcoholism: clinicla and Experimetal research	Yue-sheng Wu, Katja S.	22(5), 1165-1169 (1998)

논 문 계 목	출 거	저자명	권(호)수, 페이지 (연도)
Determinations of free and bound ethanol, acetaldehyde and acetate in human blood and urine by headspace gas chromatography	JPN. J. Alcohol & Drug dependence	Shojiro Tsukamoto , Takashi Kanegae	33(3), 200-209 (1998)
Alcohol and medication interactions	Alcohol health & Research world	Ron Weathermo n, David W. Crabb	23(1), 40-54 (1999)
Morphological and biochemical effects of a low ethanol dose on rat liver regeneration	Digestive diseases and Science	Jose A., Morales-G onzalez, MD	44(10), 1963-1974 (1999)
Effect of twelve months ethanol feeding on rat liver metabolic activity	INT. J. Molecular med.	Jurgen biewald, Hans-Jurg en bromme	3, 279-284 (1999)
Immunohistochemical study on acetaldehyde adducts in alcohol-fed mice	Alcoholism: clinical and Experimental res.	Kazuhiko Nakamura, Kazuhiko Iwahashi	24(4), 93-96 (2000)