A Brief Introduction to Categories

Tom Divers

PLRG :: Bristol

October 10, 2025

"A monad is a monoid in the category of endofunctors (of a specific category)"

"A monad is a monoid in the category of endofunctors (of a specific category)"

and other such malarkey

Content Overview

- Today: Categories, functors, natural transformations
- Products, exponentials, CCCs
- Models of STLC

Idea is not for you to learn this stuff properly, but to get the gist of why we care

Categories are a way of talking about transformations:

- Functions between sets
- Programs between types
- Linear maps between vector spaces
- Homptopies between spaces

and many many many other things

A category ${\mathcal C}$ is defined by:

A category C is defined by:

• $\mathsf{Ob}(\mathcal{C})$: The *class* of things that we're transforming. We call these **objects**. (Sometimes we just write \mathcal{C})

Tom Divers Cats October 10, 2025 5/11

A category C is defined by:

- Ob(C): The *class* of things that we're transforming. We call these **objects**. (Sometimes we just write C)
- \bullet Hom $(\mathcal{C})\colon$ The class of the transformations themselves. We call these $\mathbf{morphisms}.$

A category C is defined by:

- $\mathsf{Ob}(\mathcal{C})$: The *class* of things that we're transforming. We call these **objects**. (Sometimes we just write \mathcal{C})
- \bullet Hom $(\mathcal{C})\colon$ The class of the transformations themselves. We call these $\mathbf{morphisms}.$

Often, the category we're talking about will be inferred from context.

A category C is defined by:

- $\mathsf{Ob}(\mathcal{C})$: The *class* of things that we're transforming. We call these **objects**. (Sometimes we just write \mathcal{C})
- \bullet Hom $(\mathcal{C})\colon$ The class of the transformations themselves. We call these $\mathbf{morphisms}.$

Often, the category we're talking about will be inferred from context.

 $X, Y, Z \cdots$ are objects. $f: X \rightarrow Y$ is a morphism from X to Y.

Tom Divers Cats October 10, 2025 5/11

A category C is defined by:

- $\mathsf{Ob}(\mathcal{C})$: The *class* of things that we're transforming. We call these **objects**. (Sometimes we just write \mathcal{C})
- \bullet Hom $(\mathcal{C})\colon$ The class of the transformations themselves. We call these $\mathbf{morphisms}.$

Often, the category we're talking about will be inferred from context.

 $X, Y, Z \cdots$ are objects. $f: X \rightarrow Y$ is a morphism from X to Y.

Hom(X, Y) is the *class* of all morphisms from X to Y.

Tom Divers Cats October 10, 2025 5/11

Identity:

• For each object X, we have a morphism $id_X: X \to X$

Composition:

• For morphisms $f\colon X\to Y$ and $g\colon Y\to Z$, we have another morphism $g\circ f\colon X\to Z$

Identity:

• For each object X, we have a morphism $id_X: X \to X$

Composition:

• For morphisms $f\colon X\to Y$ and $g\colon Y\to Z$, we have another morphism $g\circ f\colon X\to Z$

Laws:

Identity:

• For each object X, we have a morphism $id_X: X \to X$

Composition:

• For morphisms $f\colon X\to Y$ and $g\colon Y\to Z$, we have another morphism $g\circ f\colon X\to Z$

Laws:

- Unit: For $f: X \to Y$, we have $f = f \circ id_X = id_Y \circ f$
- Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$

Some very important categories:

- Set:
 - Objects are sets (e.g. $\{1\}, \mathbb{N}, \{f \mid f \colon \mathbb{N} \to \{a, b, c\}\}, \cdots$)
 - $\bullet \ \operatorname{\mathsf{Hom}}(X,\,Y) = \{f \,|\, f \colon X \to Y\}$
 - $id_X = \lambda a.a$
 - $g \circ f = \lambda a.g(f(a))$

Some very important categories:

- Set:
 - Objects are sets (e.g. $\{1\}, \mathbb{N}, \{f \mid f : \mathbb{N} \to \{a, b, c\}\}, \cdots$)
 - $\operatorname{\mathsf{Hom}}(X,\,Y)=\{f\,|\,f\colon X\to Y\}$
 - $id_X = \lambda a.a$
 - $g \circ f = \lambda a.g(f(a))$
- Hask:
 - Objects are types in Haskell (e.g. Int, Bool -> IO String, ...)
 - $Hom(X,Y) = \{f \mid f :: X \rightarrow Y\}$
 - $id_x = \a.a :: X \rightarrow X$
 - $g \circ f = g.f = \a.g$ (f a)

Some very important categories:

- Set:
 - Objects are sets (e.g. $\{1\}, \mathbb{N}, \{f \mid f \colon \mathbb{N} \to \{a, b, c\}\}, \cdots$)
 - $\operatorname{\mathsf{Hom}}(X,\,Y)=\{f\,|\,f\colon X\to Y\}$
 - $id_X = \lambda a.a$
 - $g \circ f = \lambda a.g(f(a))$
- Hask:
 - Objects are types in Haskell (e.g. Int, Bool -> IO String, ...)
 - $Hom(X,Y) = \{f \mid f :: X \rightarrow Y\}$
 - $id_x = \a.a :: X \rightarrow X$
 - $g \circ f = g.f = \a.g (f a)$

We'll talk about why/how these are similar in another advanced haskell

• \mathcal{C}^{op} : Same objects as \mathcal{C} . If $f: X \to Y \in \mathcal{C}$ then $f^{\text{op}}: Y \to X \in \mathcal{C}^{\text{op}}$

- \mathcal{C}^{op} : Same objects as \mathcal{C} . If $f: X \to Y \in \mathcal{C}$ then $f^{\text{op}}: Y \to X \in \mathcal{C}^{\text{op}}$
- Orders: A category where $\mathsf{Hom}(X,\,Y)=\emptyset$ or $\leq_{XY}:X\to Y$ is the only element of $\mathsf{Hom}(X,\,Y)$.

- \mathcal{C}^{op} : Same objects as \mathcal{C} . If $f: X \to Y \in \mathcal{C}$ then $f^{\text{op}}: Y \to X \in \mathcal{C}^{\text{op}}$
- Orders: A category where $\mathsf{Hom}(X,\,Y)=\emptyset$ or $\leq_{XY}:X\to Y$ is the only element of $\mathsf{Hom}(X,\,Y)$.
- Monoids: One object M, $\operatorname{Hom}(M,M)$ are all the monoid elements, and the monoid operation is \circ .

- \mathcal{C}^{op} : Same objects as \mathcal{C} . If $f: X \to Y \in \mathcal{C}$ then $f^{\text{op}}: Y \to X \in \mathcal{C}^{\text{op}}$
- Orders: A category where $\mathsf{Hom}(X,\,Y)=\emptyset$ or $\leq_{XY}:X\to Y$ is the only element of $\mathsf{Hom}(X,\,Y).$
- Monoids: One object M, $\operatorname{Hom}(M,M)$ are all the monoid elements, and the monoid operation is \circ .
- **Groups:** A monoid where each morphism f is an isomorphism (has an inverse f^{-1} , with $f^{-1} \circ f = \operatorname{id}_M$). Any category where each morphism has such an inverse is called a *groupoid*.

- \mathcal{C}^{op} : Same objects as \mathcal{C} . If $f: X \to Y \in \mathcal{C}$ then $f^{\text{op}}: Y \to X \in \mathcal{C}^{\text{op}}$
- Orders: A category where $\mathsf{Hom}(X,\,Y)=\emptyset$ or $\leq_{XY}:X\to Y$ is the only element of $\mathsf{Hom}(X,\,Y).$
- Monoids: One object M, $\operatorname{Hom}(M,M)$ are all the monoid elements, and the monoid operation is \circ .
- **Groups:** A monoid where each morphism f is an isomorphism (has an inverse f^{-1} , with $f^{-1} \circ f = \operatorname{id}_M$). Any category where each morphism has such an inverse is called a *groupoid*.

If you can redefine something as a category, you can often *generalise* useful things about it

It'd be nice if we could relate categories to each other.

It'd be nice if we could relate categories to each other.

Let $\mathcal C$ and $\mathcal D$ be categories. A **functor** $F:\mathcal C\to\mathcal D$ maps $X,f\in\mathcal C$ to $F(X),F(f)\in\mathcal D$.

It'd be nice if we could relate categories to each other.

Let $\mathcal C$ and $\mathcal D$ be categories. A **functor** $F:\mathcal C\to\mathcal D$ maps $X,f\in\mathcal C$ to $F(X),F(f)\in\mathcal D.$

Rules:

- If $f: X \to Y$ then $F(f): F(X) \to F(Y)$
- $\bullet \ F(\mathsf{id}_X) = \mathsf{id}_{F(X)}$
- $\bullet \ \mathit{F}(\mathit{f} \circ \mathit{g}) = \mathit{F}(\mathit{f}) \circ \mathit{F}(\mathit{g})$

It'd be nice if we could relate categories to each other.

Let $\mathcal C$ and $\mathcal D$ be categories. A **functor** $F:\mathcal C\to\mathcal D$ maps $X,f\in\mathcal C$ to $F(X),F(f)\in\mathcal D.$

Cats

Rules:

- If $f: X \to Y$ then $F(f): F(X) \to F(Y)$
- $\bullet \ F(\mathsf{id}_X) = \mathsf{id}_{F(X)}$
- $\bullet \ \mathit{F}(\mathit{f} \circ \mathit{g}) = \mathit{F}(\mathit{f}) \circ \mathit{F}(\mathit{g})$

An **endofunctor** is a functor $F: \mathcal{C} \to \mathcal{C}$.

9/11

```
-- f :: * -> * is any type constructor
-- f transforms our objects

class Functor f where
    -- fmap transforms our morphisms
    fmap :: (a -> b) -> (f a -> f b)

-- fmap must satisfy:
    -- fmap id = id
    -- fmap (f . g) = fmap f . fmap g
```

A Haskell functor f is an endofunctor f : Hask \rightarrow Hask.

Tom Divers Cats October 10, 2025 10 / 11

What about relating functors to each other? Let's say we want to show that Maybe can be simulated by List:

data Maybe a = Nothing | Just a

So we need to show that

- \bullet \exists eta :: forall a. Maybe a -> List a
- eta . (mmap f) = (fmap f) . eta for all $f :: a \rightarrow b$

Tom Divers Cats October 10, 2025 11 / 11