

SENTIMENT ANALYSIS OF AIRBNB REVIEWS

TEAM: SENTIMENT SYNTHESIZERS

Avantika Gargya, Basava Satish Velagapudi, Krisha Gandhi, Kenneth Fung, Sai Bharadwaj

Colab: https://colab.research.google.com/drive/13aAb9QW8bqrzDqp8i5yhze-P2frbOMkh?authuser=4#scrollTo=efzQ7KLOQfv4

Problem Statement

Advanced NLP-Driven Insights from Airbnb Reviews for Neighborhood and Listing Centric Recommendations

Goals

- Help Hosts understand the positive and negative aspects of the property, fix issues and boost their bookings
- Help Customers quickly assess listings & make an informed booking
- Help Airbnb identify trends, highlight popular areas and optimize
 pricing and market strategy

Dataset Overview

Source

We got access to the Airbnb listings dataset from their Inside Initiative - https://insideairbnb.com/get-the-data/

Scope

We used New York City's data as of January 3, 2025- focusing on Manhattan and Brooklyn neighbourhoods.

Listings

There are about **37.7K** listings across 5 boroughs with information across 75 columns with information such as listing info (description, photos, price), host info, property type, neighbourhood info, availability

Reviews

We have over **969K** reviews across all the listings. It contains the listing id, reviewer info (name, id, date of posting)in addition to the review itself.

Additionally, we can access information on the **neighbourhoods**, as well as the availability **calendar**.

Pre-processing

Merged Dataset

Merged reviews data with listings data on listing id; added property type, price and neighbourhood and removed reviewer details. 7

Missing Values

- Reviews 235 missing dropped.
- Prices 19K missing, imputed by median by neighbourhood

3

Neighbourhood Division

To generate more granular insights, we split NY city into 5 boroughs - Manhattan, Brooklyn, Staten Island, The Bronx and Queens. 4

Sampling

Focus neighbourhoods
: Manhattan - 340K
: Brooklyn - 410K
Since the data was still
sizeable leading to slow
analysis speed
we resorted to a
sampling approach.

Pre-processing

Language **Detection**

- We used the langdetect library to identify languages in Airbnb reviews, finding over 30 languages, with English, Spanish & French being the most common.
- We focused on **Brooklyn** and Manhattan, which had the highest number of listings & reviews.

Language **Distribution &** Sampling

- We **filtered reviews** to include only languages with over 5,000 reviews, refining our dataset to English, Spanish, and French.
- A subsample (~51k reviews)
- High-review listings(>100 reviews)
- Sampling an equal number of reviews per listing
- **46** reviews per listing-Brooklyn
- **65** reviews per listing-Manhattan

Language **Translation**

- We translated non-English reviews (French and Spanish) into English using the Google **Translator API**
- This **ensured consistency** in sentiment analysis while leveraging automation

Text Pre-processing for Sentiment Analysis

1.

Setup & Initialization

- **Lemmatization:** WordNetLemmatizer
- Dictionary Validation: US, UK, Canadian, Australian, New Zealand, and South African
- **Stopword Management:** Retain essential stopwords like "not," "no," and "against" to preserve sentiment meaning

3.

Token Filtering & Lemmatization

- Validate words: Retain only those recognized in at least one of the English dictionaries
- Apply Lemmatization: Convert words to their base forms, reducing dimensionality

2.

Text Cleaning & Normalization

- Convert text to lowercase
- **Tokenization:** Split text into individual words
- **Stopword Removal:** Remove irrelevant words
- Apostrophe Normalization: Standardize apostrophes (e.g., "dog"s" → "dog's")
- Punctuation Removal: Retain only letters, digits, spaces & apostrophes

4.

Reconstructing the Processed Text

- Rejoin tokens: After filtering & lemmatization, tokens are rejoined into structured text
- Implementation on the dataframes: We now apply preprocessing separately to the Brooklyn & Manhattan datasets

Sentiment Analysis

Library Used: TextBlob

Polarity Score: a float value that is in the range of [-1,1] where 1 means a positive statement and -1 means a negative statement

Subjectivity Score: a float value that is in the range of [0,1]. O means a personal opinion and 1 means factual information

Score Labelling: <0, tagged it as a negative review; if >=0, it was labelled as positive <0.3, labelled as objective, if <=0.7, mixed, else subjective.

Analysis Approaches:

Sentiment analysis across all Manhattan & Brooklyn listing reviews

Sentiment scores averaged by listing_id to help hosts gauge guest feedback

cleaned_reviews	polarity	subjectivity	sentiment_label	subjectivity_label
neighborhood quiet people peaceful amenity eas	0.208333	0.402778	Positive	Mixed
great communicating home great stay highly rec	0.586667	0.680000	Positive	Mixed
stayed again enjoyed again	0.500000	0.700000	Positive	Mixed
check in process absolutely easy responsive qu	0.266667	0.622222	Positive	Mixed
not sure cleaning fee charged cleaner do visib	-0.263333	0.466111	Negative	Mixed

Theme Extraction

Idea:

- Go beyond sentiment analysis to extract key themes and features from reviews.
- Provide actionable insights for both hosts and guests.

Key Takeaways

For Hosts

For Guests

- Improve listing descriptions
- Adjust pricing for competitiveness
- Address recurring issues for better ratings
- Summarized review insights for quick decisions
- Avoid common pitfalls (e.g., noisy streets)
- Find stays that match their needs

Data-driven insights → Higher ratings, better reviews, increased bookings!

Results - Neighborhood

	Brooklyn	Manhattan
Sentiment_Score	0.4141	0.4086

Sentiment Label	Count in Brooklyn	Count in Manhattan	
Positive	50548	50502	
Negative	558	848	

Word Cloud for Positive Reviews - Brooklyn

Top Positive Themes In great neighborhood recommend anyone looking the start and additional and the start and anyone looking the st

Word Cloud for Positive Reviews - Manhattan

Results - Neighborhood

Negative Reviews for Brooklyn listings		Negative Revi <mark>ews f</mark> or Manhattan listings		
Feature	Mean TF-IDF Score	Feature	Mean TF-IDF Score	
within walking distance	0.009175	worst experience ever	0.010547	
keep in mind	0.005817	not worth price	0.006691	
in sunset park	0.005376	within walking distance	0.005896	
bathroom not clean	0.005376	fe <mark>w bloc</mark> k away	0.004717	
not clean enough	0.005376	front desk staff	0.004427	

Results - LDA

Q

1

Comfort

Complaints about **broken furnitures** (e.g., "not work") and comfort in certain areas (e.g., "ceiling fan", "air conditioning").

2

Cleanliness

Dissatisfaction with **tidiness** and **hygiene** of the listing, especially when shared with others ("flat mate", "common area").

3

Expectations vs Reality

Concerns with **unmet expectations** ("in city", "in photo"), **noise** ("lot noise"), and comfort (e.g., "not comfortable", "air conditioning").

Results - Listing

Listing ID	Average Sentiment Score	Sentiment Label
6848	0.3623	Positive

Feature	Relevance	Feature	Relevance
in great location	0.013591	within walking distance	0.009175
within walking distance	0.010521	keep in mind	0.005817
home away home	0.007245	in sunset park	0.005376

big comfortable
live upstairs next time
highly recommend
walking distance
definitely recommend
everything needed
great location

Limitations

Use entire dataset

2

Dissect needs and reviews by cultural backgrounds

Identify patterns over the year

Filter out fake reviews

Conclusion

Reveal Customer Feelings

How do Airbnb guests feel about their stays?

Drivers for Sentiment

What factors drive good or bad experiences?

Benefits

Improve listing, pricing, host services, listing-search

