Harmonische Analysis 250018 VO (2023W)

José Luis Romero

Universität Wien

Princeton Lecture Series in Analysis

- ► Teil I: Fourier Analysis
- ► Teil II: Complex Analysis
- ► Teil III: Real Analysis
- ► Teil IV: Functional Analysis

Die Integrationstheorie (Lebesgue)

Funktionen

(i) $f:[a,b]\to\mathbb{R}$ ist messbar, wenn

$$f^{-1}(U)$$
 messbar, für $U\subset \mathbb{R}$ offen

(ii) $f:[a,b] \to \mathbb{R}$ ist *integrierbar*, wenn messbar und

$$\int_{a}^{b} |f(x)| \, dx < \infty$$

Achtung!

- "Integrierbar" bedeutet im Buch von Stein und Shakarchi "Riemann integrierbar"
- Riemann integrierbare Funktionen sind beschränkt

Beispiel: $f:[0,1]\to\mathbb{R}$, $f(x)=\log(x)$, ist (für uns) integrierbar

Théorie analitique de la chaleur (Wärmeausbreitung) (Paris 1822)

Jean Baptiste Joseph Fourier (1768-1830)

"Jede Funktion f auf $[-\pi,\pi]$ kann als Summe von Sinus- und Kosinusfunktionen dargestellt werden:"

$$f(x) = \sum_{n\geq 0} a_n \cos(nx) + \sum_{n\geq 1} b_n \sin(nx)$$

Moderne Fragen

- ▶ Welche Funktionen? (stetig, differenzierbar, ...)
- ▶ Wie konvergiert die Reihe? (punktuell, gleichmäßig, ...)

Damals

- Kein formaler Funktionsbegriff ("Formel mit Variablen")
- ► Keine Mengenlehre (Dedekind, Cantor 1870s)

Die Fourier-Behauptung löste viele Entwicklungen aus

Unsere Untersuchung der Fourier-Behauptung

Funktionen

(i) $f:[a,b]\to\mathbb{R}$ ist messbar, wenn

$$f^{-1}(U)$$
 messbar, für $U \subset \mathbb{R}$ offen

(ii) $f:[a,b]\to\mathbb{R}$ ist integrierbar, wenn messbar und

$$\int_{a}^{b} |f(x)| \, dx < \infty$$

Komplexe Funktionen $f:[a,b]\to\mathbb{C}$

- (i) f ist messbar, wenn $\mathrm{Re}f,\mathrm{Im}f$ messbar sind
- (ii) f ist integrierbar, wenn $\mathrm{Re} f, \mathrm{Im} f: [a,b] o \mathbb{R}$ integrierbar sind
- (iii) $\int_a^b f(x) dx = \int_a^b \operatorname{Re} f(x) dx + i \int_a^b \operatorname{Im} f(x) dx$

Beispiel: Stetige Funktionen auf [a,b] sind integrierbar $(a,b<\infty)$

Komplexe Exponentialfunktionen

$$e^{ix} = \cos(x) + i\sin(x), \qquad x \in \mathbb{R}$$

Exponential funktion mit **Frequenz** $n \in \mathbb{Z}$: $e^{inx} = \cos(nx) + i\sin(nx)$

Definition 1

Ein trigonometrisches Polynom ist eine endliche Linearkombination

$$p(x) = \sum_{n=-N}^{N} a_n e^{inx}, \qquad a_{-N}, \dots, a_N \in \mathbb{C}, N \in \mathbb{N}$$

Die unendliche Summe (wenn konvergent)

$$\sum_{n=-\infty}^{\infty} a_n e^{inx} = \lim_{N \to \infty} \sum_{n=-N}^{N} a_n e^{inx}$$

wird Fourier-Reihe mit Koeffizienten $\{a_n\}_{n\in\mathbb{Z}}\subset\mathbb{C}$ bezeichnet

Bemerkung 2

$$\sum_{n=-N}^{N} a_n e^{inx} = a_0 + \sum_{n=1}^{N} \left\{ (a_n + a_{-n}) \cos(nx) + (a_n - a_{-n}) i \sin(nx) \right\}$$

Definition 3 (Summierbare Folgen)

$$\ell^1(\mathbb{Z}) := \left\{ a : \mathbb{Z} \to \mathbb{C} : \sum_{n \in \mathbb{Z}} |a_n| < \infty \right\}$$

Satz 4 (Absolut konvergente Fourier-Reihe)

Sei $a \in \ell^1(\mathbb{Z})$. Dann ist die Fourier-Reihe

$$f(x) := \sum_{n \in \mathbb{Z}} a_n e^{inx}$$

für jedes $x \in \mathbb{R}$ absolut konvergent. Darüber hinaus:

- (i) Die Fourier-Reihe ist gleichmäßig konvergent auf $\mathbb R$
- (ii) f ist stetig und 2π -periodisch d.h., $f(x+2\pi)=f(x)$, $\forall x\in\mathbb{R}$
- (iii) Die Koeffizienten sind

$$a_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx$$

Wir arbeiten häufig mit 2π -periodischen Funktionen $f: \mathbb{R} \to \mathbb{C}$:

$$f(x+2\pi) = f(x), \qquad x \in \mathbb{R}$$

Bemerkungen

- $f(x+2\pi n)=f(x), n\in\mathbb{Z}$
- ▶ Durch seine Beschränkung auf $[-\pi, \pi)$ bestimmt
- ▶ Auch bestimmt auf $[-\pi + a, \pi + a)$, $\forall a \in \mathbb{R}$
- Darüber hinaus

$$\int_{-\pi + a}^{\pi + a} f(x) \, dx = \int_{-\pi}^{\pi} f(x) \, dx$$

(Übungsblatt)

Wir sagen, dass f integrierbar ist, wenn f auf $[-\pi,\pi]$ integrierbar ist

Definition 5 (Fourier-Koeffizienten)

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und integrierbar. Die Fourier Koeffizienten von f sind:

$$\hat{f}(n) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx \qquad n \in \mathbb{Z}$$

Achtung:

Wir wissen nicht, ob

$$f(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n)e^{inx} \tag{1}$$

Aus historischen Gründen schreiben wir trotzdem

$$f(x) \sim \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{inx}$$

Frage: Nehmen wir an, dass $\sum_{n} |\hat{f}(n)| < \infty$. Folgt (1) daraus?

Beispiel 6 ("Sawtooth function" (Sägezahnfunktion))

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch mit f(x) = x, $-\pi \le x < \pi$.

Dann

$$\hat{f}(n) = \begin{cases} \frac{(-1)^{n+1}}{in} & n \neq 0 \\ 0 & n = 0 \end{cases}$$

In historischer Notation $f(x) \sim \sum_{n \neq 0} \frac{(-1)^{n+1}}{in} e^{inx}$

Beispiel ("Sawtooth function" (Sägezahnfunktion))

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch mit f(x) = x, $-\pi \le x < \pi$.

Partielle Fourier Reihe

$$S_N(x) = \sum_{n=-N}^{N} \frac{(-1)^{n+1}}{in} e^{inx}$$

Beispiel ("Sawtooth function" (Sägezahnfunktion))

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch mit f(x) = x, $-\pi \le x < \pi$.

Partielle Fourier Reihe

$$S_N(x) = \sum_{n=-N}^{N} \frac{(-1)^{n+1}}{in} e^{inx}$$

Beispiel ("Sawtooth function" (Sägezahnfunktion))

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch mit f(x) = x, $-\pi \le x < \pi$.

Partielle Fourier Reihe

$$S_N(x) = \sum_{n=-N}^{N} \frac{(-1)^{n+1}}{in} e^{inx}$$

Beispiel 7 (Der Dirichlet Kern)

Sei D_N das trigonometrische Polynom

$$D_N(x) = \sum_{n=-N}^{N} e^{inx}$$

Johann Peter Gustav Lejeune Dirichlet (1805-1859)

$$\widehat{D_N}(n) = \begin{cases} 1 & n \in \{-N, \dots, N\} \\ 0 & n \notin \{-N, \dots, N\} \end{cases}$$

Nach Berechnung

$$D_N(x) = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

Beispiel (Der Dirichlet Kern)

Sei D_N das trigonometrische Polynom

$$D_N(x) = \sum_{n=-N}^{N} e^{inx} = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

Beispiel (Der Dirichlet Kern)

Sei D_N das trigonometrische Polynom

$$D_N(x) = \sum_{n=-N}^{N} e^{inx} = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

Beispiel (Der Dirichlet Kern)

Sei D_N das trigonometrische Polynom

$$D_N(x) = \sum_{n=-N}^{N} e^{inx} = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

Beispiel 8 (Der Poisson Kern)

Sei $r \in (0,1)$ und

$$P_r(x) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{inx}$$

Siméon Denis Poisson (1781-1840)

Da $\left(r^{|n|}\right)_{n\in\mathbb{Z}}\in\ell^1(\mathbb{Z})$,

$$\widehat{P_r}(n) = r^{|n|}$$

Nach Berechnung

$$P_r(x) = \frac{1 - r^2}{1 - 2r\cos(x) + r^2}$$

Beispiel (Der Poisson Kern)

Sei $r \in (0,1)$ und

$$P_r(x) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{inx} = \frac{1 - r^2}{1 - 2r\cos(x) + r^2}$$

Beispiel (Der Poisson Kern)

Sei $r \in (0,1)$ und

$$P_r(x) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{inx} = \frac{1 - r^2}{1 - 2r\cos(x) + r^2}$$

Beispiel (Der Poisson Kern)

Sei $r \in (0,1)$ und

$$P_r(x) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{inx} = \frac{1 - r^2}{1 - 2r\cos(x) + r^2}$$

Frage

Seien $f, g : \mathbb{R} \to \mathbb{C}$ 2π -periodisch und integrierbar mit

$$\hat{f}(n) = \hat{g}(n), \qquad n \in \mathbb{Z}$$

Folgt daraus, dass f = g?

Nein, z.B.,

$$f(x) = \begin{cases} 1 & x = 0, \\ 0 & x \in [-\pi, \pi) \setminus \{0\} \end{cases}$$

hat Fourier-Koeffizienten

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx = 0$$

weil $f \equiv 0$ fast überall

Satz 9 (Eindeutigkeit der Fourier-Koeffizienten)

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und integrierbar mit

$$\hat{f}(n) = 0, \qquad n \in \mathbb{Z}$$

und $x_0 \in \mathbb{R}$.

Wenn f bei x_0 stetig ist, dann $f(x_0) = 0$.

Spitzenpolynome (Peaky polynomials): $(\varepsilon + \cos(x))^N$

Korollar 10

Seien $f,g:\mathbb{R} \to \mathbb{C}$ 2π -periodisch und stetig mit

$$\hat{f}(n) = \hat{g}(n), \qquad n \in \mathbb{Z}$$

Dann $f \equiv g$.

Korollar 11

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und stetig mit $\sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty$. Dann

$$f(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n)e^{inx}, \quad x \in \mathbb{R}$$

mit absoluter und gleichmäßiger Konvergenz.

Bemerkung: In diesem Fall hat die Reihenfolge der Koeffizienten keinen Einfluss auf die Konvergenz!

Nächste Frage: Wann sind die Fourier-Koeffizienten absolut summierbar?

Satz 12

Sei $f:\mathbb{R} \to \mathbb{C}$ 2π -periodisch und stetig differenzierbar. Dann

$$\hat{f}'(n) = i \, n \, \hat{f}(n), \qquad n \in \mathbb{Z}$$

Korollar 13

Sei $f:\mathbb{R} \to \mathbb{C}$ 2π -periodisch und zweimal stetig differenzierbar. Dann existiert C>0, so dass

$$|\hat{f}(n)| \le C|n|^{-2}, \qquad n \in \mathbb{Z} \setminus \{0\}$$

Korollar 14

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und zweimal stetig differenzierbar. Dann konvergiert die Fourier-Reihe von f absolut und gleichmäßig gegen f.

Das Korollar 14 formalisiert die Behauptung von Fourier!

Satz (Fubini-Tonelli)

Sei $F:[a,b] imes [c,d] o \mathbb{C}$ messbar. Dann

(i)

$$\int_{[a,b]\times[c,d]} |F(x,y)| \, dx dy = \int_a^b \left[\int_c^d |F(x,y)| \, dy \right] dx$$
$$= \int_c^d \left[\int_a^b |F(x,y)| \, dx \right] dy \in [0,\infty]$$

(ii) Wenn $\int |F(x,y)| dxdy < \infty$, dann

$$\int_{[a,b]\times[c,d]} F(x,y) \, dx dy = \int_a^b \left[\int_c^d F(x,y) \, dy \right] dx$$
$$= \int_c^d \left[\int_a^b F(x,y) \, dx \right] dy$$

(Vollständige Fassung; Skriptum Zweimüller, & 3.7)

Die L1-Norm

Definition 15

Für eine messbare Funktion $f:[-\pi,\pi]\to\mathbb{C}$ definieren wir

$$||f||_{L^1([-\pi,\pi])} = ||f||_1 := \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| \, dx \in [0,\infty]$$

Bemerkung

$$||f||_1 = 0 \Leftrightarrow |\{x \in [-\pi, \pi] : f(x) \neq 0\}| = 0 \Leftrightarrow "f \text{ ist fast ""uberall Null"}|$$

Definition 16

Eine Folge von integrierbaren Funktionen $f_n: [-\pi, \pi] \to \mathbb{C}$ konvergiert im Mittel gegen $f: [-\pi, \pi] \to \mathbb{C}$, falls

$$||f_n - f||_1 \to 0, \qquad n \to \infty$$

Beispiel

$$f_n(x) = \sqrt{n} \cdot 1_{[-1/n, 1/n]}, f = 0.$$
 Dann $||f_n - f||_1 \to 0$

$Beispiel \ ("Sawtooth \ function" \ (S\"{a}gezahnfunktion))$

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch mit f(x) = x, $-\pi \le x < \pi$.

Wir werden lernen, dass $||S_N(f) - f||_1 \to 0$, $N \to \infty$

Näherung mit stetigen Funktionen

Lemma (Aus der Maßtheorie)

Sei $f:[-\pi,\pi]\to\mathbb{C}$ integrierbar und $\varepsilon>0$. Dann existiert $g:[-\pi,\pi]\to\mathbb{C}$ stetig mit

$$||f - g||_1 < \varepsilon$$

(Cf. Skriptum Zweimüller, Satz 3.15)

Lemma 17 (Verbesserte Version)

Sei $f:[-\pi,\pi]\to\mathbb{C}$ integrierbar und $\varepsilon>0$. Dann existiert $g:\mathbb{R}\to\mathbb{C}$ stetig und periodisch mit

$$||f - g_{|[-\pi,\pi]}||_1 < \varepsilon$$

Das Faltungsprodukt (convolution product)

Definition 18

Seien $f,g:\mathbb{R}\to\mathbb{C}$ 2π -periodisch mit f integrierbar und g messbar und beschränkt. Die **Faltung** von f und g ist

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) dy, \qquad x \in \mathbb{R}$$

Bemerkung: f*g ist 2π -periodisch

$$(f * g)(x + 2\pi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x + 2\pi - y) \, dy = f * g(x)$$

Definition

Seien $f,g:\mathbb{R}\to\mathbb{C}$ 2π -periodisch mit f integrierbar und g messbar und beschränkt. Die **Faltung** von f und g ist

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) dy, \qquad x \in \mathbb{R}$$

Beispiel

Sei
$$g(x) = \begin{cases} \pi/\varepsilon, & |x| < \varepsilon \\ 0, & |x| \ge \varepsilon \end{cases}$$

Dann
$$f * g(x) = \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(y) \, dy$$

Das Faltungsprodukt (convolution product)

Definition

Seien $f,g:\mathbb{R}\to\mathbb{C}$ 2π -periodisch mit f integrierbar und g messbar und beschränkt. Die **Faltung** von f und g ist

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) dy, \qquad x \in \mathbb{R}$$

Wichtig für uns weil...

Lemma 19

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und integrierbar. Dann

$$\sum_{n=-N}^{N} \hat{f}(n)e^{inx} = (f * D_N)(x)$$

wobei
$$D_N(x) = \sum_{n=-N}^N e^{inx} = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$
 der Dirichlet Kern ist

Satz 20

Seien $f,g:\mathbb{R} \to \mathbb{C}$ 2π -periodisch mit f integrierbar und g messbar und beschränkt. Dann

- (i) $\widehat{f*g}(n) = \widehat{f}(n)\widehat{g}(n)$ für alle $n \in \mathbb{Z}$
- (ii) f * g ist stetig

Satz 21

Seien $f,g,h:\mathbb{R}\to\mathbb{C}$ 2π -periodisch, messbar und beschränkt. Dann

- (i) $(\lambda f) * g = \lambda f * g$ für alle $\lambda \in \mathbb{C}$
- (ii) f * (g + h) = f * g + f * h
- (iii) f * g = g * f
- (iv) f * (g * h) = (f * g) * h

Erinnerung

Lemma 19:

$$(f * D_N)(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{inx}$$

wobei D_N der Dirichlet Kern ist

► Korollar 14: für zweimal stetige differenzierbare *f*:

$$f*D_N o f$$
 gleichmäßig

Wir wollen andere Kerne K_N finden mit $f*K_N o f$

Definition 22

Eine gute Folge von Kernen ist eine Folge $(K_n)_{n\geq 1}$ von 2π periodischen und integrierbaren Funktionen, mit

(G1) Für alle
$$n \geq 1$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x) \, dx = 1$$

(G2) Es gibt
$$M > 0$$
, so dass für alle $n > 1$

$$\int_{-\pi}^{\pi} |K_n(x)| \, dx \le M$$

(G3) Für jedes
$$\delta > 0$$

$$\int_{\delta \le |x| \le \pi} |K_n(x)| \, dx \longrightarrow 0, \ \text{für } n \to \infty$$

Sei $(K_n)_{n\geq 1}$ eine gute Folge von Kernen und $f:\mathbb{R}\to\mathbb{C}$ 2π -periodisch, messbar und beschränkt. Dann

- (i) Wenn f bei $x_0 \in \mathbb{R}$ stetig ist, dann $(f * K_n)(x_0) \to f(x_0)$
- (ii) Wenn f auf $\mathbb R$ stetig ist, dann $f*K_n \to f$ gleichmäßig

Ist die Folge der Dirichlet Kerne $(D_N)_{N\geq 1}$ eine gute Folge?

$$D_N(x) = \sum_{n=-N}^{N} e^{inx} = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

Gilt (G1)?

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) \, dx = \widehat{D_N}(0) = 1$$

Gilt (G2)? Übung:

$$\int_{-\pi}^{\pi} |D_N(x)| \, dx \ge c \log(N)$$

für eine Konstante c > 0.

Das Rekonstruktionsproblem

Sei $f:\mathbb{R} \to \mathbb{C}$ stetig und 2π periodisch

- (a) Satz 9: f ist durch $(\hat{f}(n))_{n\in\mathbb{Z}}$ bestimmt
- (b) Satz 12: wenn f zweimal stetig differenzierbar ist, dann gibt es eine Rekonstruktionsmethode. Die Fourier Reihe konvergiert:

$$f(x) = \lim_{N \to \infty} S_N(x) = \lim_{N \to \infty} \sum_{n = -N}^{N} \hat{f}(n)e^{inx}$$

Satz 24 (Du Bois-Reymond, 1873)

Eine stetige 2π -periodische Funktion $f:\mathbb{R}\to\mathbb{C}$ existiert mit $S_N(0)\not\longrightarrow f(0)$ für $N\to\infty$

Beweis: später

Paul du Bois-Reymond (1831-1889)

Summationsmethoden

Kann man f noch mit einer konkreten Formel rekonstruieren?

Definition 25

Die Cesàro-Durchschnitte von $f: \mathbb{R} \to \mathbb{C}$ sind die Funktionen

$$C_N(f)(x) := \frac{1}{N} \sum_{M=0}^{N-1} \sum_{n=-M}^{M} \hat{f}(n)e^{inx}, \qquad N \ge 1$$

Ernesto Cesàro (1859-1906)

Bemerkung 26

 $C_N(f)(x) = f * F_N(x)$ wobei F_m ist der Fejér Kern

$$F_N(x) := \frac{1}{N} \sum_{M=0}^{N-1} D_M(x)$$

Satz 27

Der Fejér Kern ist

$$F_N(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)}$$

und $(F_N)_{N>1}$ ist eine gute Folge von Kernen.

Lipót Fejér (1880-1959)

Korollar 28 (Satz von Fejér, 1900)

Sei $f:\mathbb{R}\to\mathbb{C}$ 2π -periodisch, messbar und beschränkt. Dann gilt Folgendes.

(i) Wenn f bei $x_0 \in \mathbb{R}$ stetig ist, dann

$$C_N(f)(x_0) \to f(x_0)$$
 für $N \to \infty$

(ii) Wenn f auf \mathbb{R} stetig ist, dann

$$C_N(f) o f$$
 gleichmäßig für $N o \infty$

Lemma 29 (Fourier Koeffizienten des Fejér Kernes) $Sei F_N der$ Fejér Kern

$$F_N(x) := \frac{1}{N} \sum_{M=0}^{N-1} D_M(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)}$$

Dann

$$\widehat{F_N(n)} = \begin{cases} \frac{N - |n|}{N}, & |n| \le N - 1\\ 0, & |n| \ge N \end{cases}$$

Korollar 30 (Cesàro Summe als gewichtete Fourier Summe)

$$C_N(f)(x) = f * F_N(x) = \sum_{n=-(N-1)}^{N-1} \left(1 - \frac{|n|}{N}\right) \hat{f}(n)e^{inx}$$

Definition 31

Die **Abel-Durchschnitte** *von* $f : \mathbb{R} \to \mathbb{C}$ *sind die* Funktionen

$$A_r(f)(x) := \sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{inx}, \qquad r \in (0, 1)$$

Niels Henrik Abel (1802-1829)

Bemerkung 32

Für $r \in (0,1)$ und integrierbare f:

$$\sum_{n\in\mathbb{Z}} r^{|n|} |\hat{f}(n)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| \, dx \sum_{n\in\mathbb{Z}} r^{|n|} < \infty$$

Nach dem Satz 4 konvergiert die Reihe von $A_r(f)$ absolut und gleichmäßig

Satz 33

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch, messbar und beschränkt. Dann

$$A_r(f) = f * P_r,$$

wobei P_r der Poisson Kern ist.

Sei $\{r_n:n\geq 1\}\subset (0,1)$ mit $r_n\to 1$. Dann ist $(P_{r_n})_{n\geq 1}$ eine Gute Folge von Kernen.

Korollar 35

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch, messbar und beschränkt. Dann:

(i) Wenn f bei $x_0 \in \mathbb{R}$ stetig ist, dann

$$A_r(f)(x_0) \to f(x_0)$$
 für $r \to 1^-$

(ii) Wenn f auf \mathbb{R} stetig ist, dann

$$A_r(f) o f$$
 gleichmäßig für $r o 1^-$

Summationsmethoden, Zusammenfassung

Sei $f: \mathbb{R} \to \mathbb{R}$ 2π -periodisch und stetig

Es ist nicht immer der Fall, dass für jedes $x \in \mathbb{R}$

$$f(x) = \lim_{N \to \infty} \sum_{n = -N}^{N} \hat{f}(n)e^{inx}$$

Es gilt aber

$$f(x) = \lim_{N \to \infty} \sum_{n=-N}^{N} \left(1 - \frac{n}{N}\right) \hat{f}(n) e^{inx}$$
$$= \lim_{r \to 1^{-}} \sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{inx}$$

mit gleichmäßiger Konvergenz

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und integrierbar. Sei $\{K_N: N \geq 1\}$ eine gute Folge von Kernen mit jedem K_N beschränkt. Dann $f*K_N \to f$ im Mittel, d.h..

$$||f * K_N - f||_1 \to 0, \qquad N \to \infty$$

Korollar 37 (Eindeutigkeit der Fourier Koeffizienten, zweite Version)

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und integrierbar. Wenn $\hat{f}(n) = 0$ für jedes $n \in \mathbb{Z}$, dann ist f fast überall Null

Korollar 38

Sei $f: \mathbb{R} \to \mathbb{C}$ 2π -periodisch und integrierbar mit $\sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty$. Dann ist f fast stetig, d.h, eine stetige Funktion g existiert, mit f = g fast überall.

Die Laplace-Gleichung

Satz 39

Sei $f:S^1 \to \mathbb{R}$ stetig. Dann existiert $g:\overline{\mathbb{D}} \to \mathbb{R}$ stetig, mit

- ightharpoonup g unendlich differenzierbar auf $\mathbb D$
- $ightharpoonup \Delta g = 0$ auf $\mathbb D$
- $ightharpoonup g=f \ ext{auf} \ S^1=\partial \mathbb{D}$

Außerdem ist g eindeutig bestimmt.

Notation

$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$$
$$S^1 = \{z \in \mathbb{C} : |z| = 1\}$$
$$\Delta g(x, y) = \partial_{xx} g + \partial_{yy} g$$

Quadratintegrierbare Funktionen

Informelle Definition

$$L^2([-\pi,\pi]) = \left\{ f: [-\pi,\pi] \to \mathbb{C} \text{ messbar, mit } \|f\|_2 < \infty \right\}$$
 wobei
$$\|f\|_2 = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 \, dx \right]^{\frac{1}{2}}$$

Strenge Definition

$$L^2([-\pi,\pi]) = \big\{ f: [-\pi,\pi] \to \mathbb{C} \text{ messbar, mit } \|f\|_2 < \infty \big\} / \sim$$
 wobei
$$f \sim g \Leftrightarrow |\{x \in [-\pi,\pi]: f(x) \neq g(x)\}| = 0$$
 "f und g sind fast überall gleich"
$$\text{``} f = g \text{ a.e.''}$$

Bemerkung:

$$L^{\infty}([-\pi,\pi]) \subset L^{2}([-\pi,\pi]) \subset L^{1}([-\pi,\pi])$$

Sei V ein Vektorraum auf \mathbb{C} .

Ein **inneres Produkt** ist eine Abbildung $\langle, \rangle: V \times V \to \mathbb{C}$, mit ... Bedingungen

Sesquilinear

$$\langle \alpha x + y, z \rangle = \alpha \langle x, z \rangle + \langle y, z \rangle$$
$$\langle x, \alpha y + z \rangle = \overline{\alpha} \langle x, y \rangle + \langle x, z \rangle$$

► Hermitesch

$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

Positiv definit

$$\langle x, x \rangle \ge 0$$
 und $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

(für alle $x, y, z \in V$ und $\alpha, \beta \in \mathbb{C}$)

Wir schreiben $||x|| = \langle x, x \rangle^{1/2}$

Beispiel

$$\ell^2(\mathbb{Z}) = \Big\{ a: \mathbb{Z} \to \mathbb{C} : \langle a, a \rangle < \infty \Big\} \quad \text{mit} \qquad \langle a, b \rangle = \sum_{b \in \mathbb{Z}} a_b \overline{b_k}$$

Beste Annäherung

Lemma 40

Sei (V,\langle,\rangle) ein komplexer Vektorraum mit innerem Produkt. Sei $\{e_k:k=1,\dots,n\}$ eine orthonormale Menge, d.h.,

$$\langle e_k, e_j \rangle = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases}$$

Sei $W=\left\{\sum_{k=1}^n c_k e_k: c_1,\dots,c_n\in\mathbb{C}\right\}$ den entsprechenden erzeugten Unterraum. Sei $x\in V$. Dann

$$d(x, W) := \inf_{y \in W} ||x - y|| = ||x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k||$$

Seien $f \in L^2([-\pi,\pi])$ und

$$S_N(f)(x) := \sum_{n=-N}^{N} \hat{f}(n)e^{inx}, \qquad N \ge 1$$

die partielle Fourier-Summen. Dann

► (Quadratische Konvergenz)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - S_N(f)(x)|^2 dx \longrightarrow 0 \quad \text{für } N \to \infty$$

► (Parseval-Isometrie)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$$

Lokale Konvergenz

Definition 42

Sei $f: \mathbb{R} \to \mathbb{R}$ 2π -periodisch und $x_0 \in \mathbb{R}$. Wir sagen, dass f Lipschitz bei x_0 ist, falls eine Konstante C>0 existiert, so dass

$$|f(x) - f(x_0)| \le C|x - x_0| \qquad x \in \mathbb{R}$$

Bemerkung 43

Stetig differenzierbar ⇒ Lipschitz bei jedem Punkt.

Satz 44

Sei $f:\mathbb{R} \to \mathbb{R}$ 2π -periodisch integrierbar und Lipschitz bei $x_0 \in \mathbb{R}$. Dann

$$S_N(f)(x_0) \to f(x_0)$$
 für $N \to \infty$

Beispiel 45

Sei $f: \mathbb{R} \to \mathbb{R}$, die Sägezahnfunktion — f(x) = x, $-\pi \le x < \pi$, f periodisch — und $x_0 \in (-\pi, \pi)$. Dann ist f bei x_0 Lipschitz.

Das Lokalisierungsprinzip von Riemann

Georg Friedrich Bernhard Riemann 1826-1866

Korollar 46

Seien $f,g:\mathbb{R}\to\mathbb{R}$ 2π -periodisch, messbar und beschränkt. Sei $x_0\in\mathbb{R}$. Nehmen wir an, dass $f\equiv g$ auf einer Umgebung von x_0 . Dann $S_N(f)(x_0)\to f(x_0)$ genau dann wenn $S_N(g)(x_0)\to f(x_0)$.

Die Fourier-Transformation auf \mathbb{R}

Definition 47

Sei $f \in L^1(\mathbb{R})$. Die Fourier-Transformation von f ist

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\xi} dx, \qquad \xi \in \mathbb{R}$$

Bemerkung 48

- ► Die Abbildung

$$L^1(\mathbb{R}) \to L^\infty(\mathbb{R})$$

 $f \mapsto \hat{f}$

ist linear und stetig

Sei $f \in L^1(\mathbb{R})$. Dann

(i) Sei $T_a f(x) := f(x-a)$ wobei $a \in \mathbb{R}$. Dann

$$\widehat{T_a f}(\xi) = e^{-2\pi i a \xi} \, \widehat{f}(\xi), \qquad \xi \in \mathbb{R}$$

(ii) Sei $M_a f(x) := e^{2\pi i a x} f(x)$ wobei $a \in \mathbb{R}$. Dann

$$\widehat{M_a f}(\xi) \equiv \widehat{f}(\xi - a), \qquad \xi \in \mathbb{R}$$

(iii) Sei $D_a f(x) := f(ax)$, wobei a > 0. Dann

$$\widehat{D_a f}(\xi) = a^{-1} \widehat{f}(\xi/a), \qquad \xi \in \mathbb{R}$$

Lemma 50 (L^p Stetigkeit)

Sei $f \in L^p(\mathbb{R})$, p = 1, 2. Dann

$$\int_{\mathbb{T}} |f(x) - f(x+y)|^p dx \to 0, \qquad \text{für } y \to 0.$$

Definition 51

Eine Funktion $f: \mathbb{R} \to \mathbb{C}$ heißt **Schwartz**, falls

- f ist unendlich differenzierbar
- ightharpoonup für jedes $k, j \in \mathbb{N}_0$ gilt

$$\sup_{x \in \mathbb{R}} (1 + |x|)^k \left| \frac{d^j}{dx^j} f(x) \right| < \infty$$

Der Raum aller Schwartz-Funktionen wird mit $\mathcal{S}(\mathbb{R})$ bezeichnet

Lemma 52

Wenn $f \in \mathcal{S}(\mathbb{R})$, dann

- $f' \in \mathcal{S}(\mathbb{R})$
- ▶ $pf \in \mathcal{S}(\mathbb{R})$, für jedes (algebraisches) Polynom p

Beispiel 53

Sei $\Phi(x):=e^{-\pi x^2}$ die Gauß-Funktion. Dann $\Phi\in\mathcal{S}(\mathbb{R})$

Sei $f \in \mathcal{S}(\mathbb{R})$. Dann

(i)
$$\hat{f}'(\xi) = 2\pi i \xi \, \hat{f}(\xi), \qquad \xi \in \mathbb{R}$$

(ii) Sei
$$P(f)(x) := -2\pi i x f(x)$$
. Dann

$$\widehat{Pf}(\xi) = \frac{d}{d\xi}\widehat{f}(\xi), \qquad \xi \in \mathbb{R}$$

(iii)
$$\hat{f} \in \mathcal{S}(\mathbb{R})$$

(iii)
$$f \in \mathcal{S}(\mathbb{R})$$

Satz 55 Sei $\Phi:\mathbb{R}\to\mathbb{R}$, $\Phi(x):=e^{-\pi x^2}$, die Gauß-Funktion. Dann gilt $\hat{\Phi}=\Phi$

Definition 56

Seien $f \in L^1(\mathbb{R})$ und $g \in L^{\infty}(\mathbb{R})$. Die Faltung von f und g ist

$$(f * g)(x) = \int_{\mathbb{R}} f(y)g(x - y) dy, \qquad x \in \mathbb{R}$$

Bemerkung 57

f * g ist (auch) wohldefiniert, wenn

- $f \in L^{\infty}$, $q \in L^1$
- $ightharpoonup f, g \in L^2$
- ▶ $f \in C_c$ und $g \in C$ (und vice versa)

Bemerkung 58

In den oben genannten Fällen: f * g = g * f

Lemma 59

Seien $f \in \mathcal{S}(\mathbb{R})$ und $g \in L^1(\mathbb{R})$ mit

$$\int_{\mathbb{R}} (1+|x|)^k |g(x)| \, dx < \infty, \qquad k \ge 0$$

Dann $f * g \in \mathcal{S}(\mathbb{R})$. Insbesondere wenn $f, g \in \mathcal{S}(\mathbb{R})$, dann $f * g \in \mathcal{S}(\mathbb{R})$.

Satz 60

Seien $f, g \in \mathcal{S}(\mathbb{R})$. Dann

$$\widehat{f * g}(\xi) = \widehat{f}(\xi) \, \widehat{g}(\xi), \qquad \xi \in \mathbb{R}$$

Definition 61

Eine Familie von integrierbaren Funktionen $K_{\varepsilon}: \mathbb{R} \to \mathbb{C}$, $\varepsilon > 0$ heißt eine gute Familie von Kernen, falls

- (G1) $\int_{\mathbb{D}} K_{\varepsilon}(x) dx = 1, \qquad \varepsilon > 0$
- (G2) $\sup_{\varepsilon>0} \int_{\mathbb{R}} |K_{\varepsilon}(x)| dx < \infty$
- (G3) Für jedes $\delta > 0$ gilt

$$\int_{|x|>\delta} |K_{\varepsilon}(x)| dx \longrightarrow 0, \qquad \text{für } \varepsilon \to 0^+$$

Lemma 62

Sei $K \in L^1(\mathbb{R})$ mit $\int_{\mathbb{R}} K(x) dx = 1$ und

$$K_{\varepsilon}(x) := \frac{1}{\varepsilon}K(x/\varepsilon).$$

Dann ist $(K_{\varepsilon})_{\varepsilon>0}$ eine gute Familie von Kernen

Seien $(K_{\varepsilon})_{\varepsilon>0}$ eine gute Familie von Kernen, mit jedem K_{ε} beschränkt.

(i) Sei $f \in L^p(\mathbb{R})$ mit p = 1, 2. Dann

$$f * K_{\varepsilon} \to f in L^p$$
 für $\varepsilon \to 0^+$.

(ii) Sei $f \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Dann

$$f * K_{\varepsilon} \to f$$
 für $\varepsilon \to 0^+$

punktweise und gleichmäßig, wenn f gleichmäßig stetig ist.

Lemma 64

Seien $f, g \in L^1(\mathbb{R})$. Dann

$$\int_{\mathbb{R}} f(x)\hat{g}(x) dx = \int_{\mathbb{R}} \hat{f}(y)g(y) dy$$

Satz 65

Sei $f \in L^1(\mathbb{R})$ mit $\hat{f} \in L^1(\mathbb{R})$. Dann gilt

$$f(x) = \int_{\mathbb{R}} \hat{f}(\boldsymbol{\xi}) e^{2\pi i x \boldsymbol{\xi}} d\boldsymbol{\xi}, \tag{2}$$

für fast jedes $x \in \mathbb{R}$.

Darüber hinaus, wenn $f \in \mathcal{S}(\mathbb{R})$, dann gilt (2) für jedes $x \in \mathbb{R}$.

Satz 66 (Plancherel)

Sei $f \in \mathcal{S}(\mathbb{R})$. Dann

$$\int_{\mathbb{R}} |f(x)|^2 dx = \int_{\mathbb{R}} |\hat{f}(\xi)|^2 d\xi$$

Definition 67

Sei $f \in L^1(\mathbb{R})$. Die inverse Fourier Transformation von f ist

$$\check{f}(\xi) = \int_{\mathbb{R}} f(x)e^{2\pi ix\xi} dx$$

Lemma 68 (Dichte der Schwartz-Klasse)

Sei $f \in L^p(\mathbb{R})$, p=1,2. Dann existiert $\{f_n: n \geq 1\} \subset \mathcal{S}(\mathbb{R})$ mit

$$||f_n - f||_n \to 0$$
 für $n \to \infty$.

Satz 69

- (i) Die Abbildung $\mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$, $f \mapsto \hat{f}$ ist bijektiv.
- (ii) Ein isometrischer Isomorphismus $\mathcal{F}:L^2(\mathbb{R}) \to L^2(\mathbb{R})$ existiert, mit

$$\mathcal{F}f = \hat{f}, \qquad f \in \mathcal{S}(\mathbb{R}).$$

Deierstraf,

Karl Weierstraß (1815-1897)

Satz 70 (Weierstraß, 1885)

Sei
$$f \in C[0,1]$$
. Dann existiert $\{f_n : n \geq 1\} \subset \mathbb{C}[x]$ mit

$$\|f_n-f\|_{L^\infty([0,1])}\to 0 \qquad \text{ für } n\to\infty.$$

Zur Erinnerung:

$$D_a f(x) = f(ax), \qquad x \in \mathbb{R}, a > 0$$

 $\widehat{D_a f}(\xi) = a^{-1} \widehat{f}(x/a)$

Prinzip: "Je konzentrierter eine Funktion ist, desto breiter ist ihre Fourier-Transformation"

Quantifizierung der Verbreitung

$$V(f) := \frac{\int_{\mathbb{R}} x^2 |f(x)|^2 dx}{\int_{\mathbb{R}} |f(x)|^2 dx}$$

Zeit-Frequenz Verbreitung: $V(f) \cdot V(\hat{f}) = V(D_a f) \cdot V(\widehat{D_a f})$ Beweis:

$$V(D_a f) = \frac{\int_{\mathbb{R}} x^2 |f(ax)|^2 dx}{\int_{\mathbb{R}} |f(ax)|^2 dx} = a^{-2} \frac{\int_{\mathbb{R}} (ax)^2 |f(ax)|^2 dx}{\int_{\mathbb{R}} |f(ax)|^2 dx} = a^{-2} V(f)$$
$$V(\widehat{D_a f}) = V(a^{-1} D_{1/a} \hat{f}) = V(D_{1/a} \hat{f}) = a^2 V(\hat{f})$$

Die Unschärferelation (Heisenberg's uncertainty principle)

Satz 71

Sei $\psi \in \mathcal{S}(\mathbb{R})$ mit $\|\psi\|_2 = 1$. Dann

$$V(\psi) \cdot V(\hat{\psi}) = \int_{\mathbb{R}} x^2 |\psi(x)|^2 dx \cdot \int_{\mathbb{R}} \xi^2 |\hat{\psi}(\xi)|^2 d\xi \ge \frac{1}{16\pi^2}$$

Die Gleichheit gilt genau dann, wenn

$$\psi(x) = \alpha e^{-\beta x^2}, \qquad x \in \mathbb{R}$$

mit
$$\beta > 0$$
 und $|\alpha|^2 = \sqrt{\frac{2\beta}{\pi}}$

Bewegung eines Teilchens entlang einer Linie

Klassische Mechanik: Position und Impuls: $(p,q) \in \mathbb{R}$

Statistische Mechanik

Positionsdichte und Impulsdichte: $p, q : \mathbb{R} \to [0, \infty)$ mit $\int_{\mathbb{R}} p(x) dx = \int q(x) dx = 1$

$$\mathbb{P} \big(\mathsf{Teilchen} \in [a, b] \big) = \int_a^b p(x) \, dx, \quad \mathbb{P} \big(\mathsf{Impuls} \in [a, b] \big) = \int_a^b q(x) \, dx$$

- ullet Schlankes p o fast sichere Positionsangaben
- ullet Dichtes p o sehr unsichere Positionsangabe

Erwartete Position und Impuls (normiert):

$$p_* = \int_{\mathbb{R}} x p(x) dx = 0, \qquad q_* = \int_{\mathbb{R}} x q(x) dx = 0$$

Unsicherheit: Varianz von Position und Impuls

$$\sigma^{2}(p) = \int_{\mathbb{R}} x^{2} p(x) dx, \quad \sigma^{2}(q) = \int_{\mathbb{R}} x^{2} q(x) dx$$

Z.B.

$$\mathbb{P}\big(\mathsf{Teilchen} \notin [-a,a]\big) \leq \frac{\sigma^2(p)}{4a^2}$$

Das Modell von Heisenberg

Quantenmechanik (Teilchen = Elektron):

Wellenfunktion (Quantum state) $\psi \in L^2(\mathbb{R})$ mit $\|\psi\|_2 = 1$

Positionsdichte und Impulsdichte:

$$p(x) = |\psi(x)|^2, \qquad q(\xi) = |\hat{\psi}(\xi)|^2$$

Bemerkung

$$\sigma^2(p) = V(\psi), \qquad \sigma^2(q) = V(\hat{\psi})$$

Unschärferelation (Werner Heisenberg, 1927 / Hermann Weyl, 1928)

$$\sigma(p) \cdot \sigma(q) \ge \frac{1}{4\pi}$$

und = gilt, wenn p und q bestimmte Normalverteilungen sind Planck Konstante: $1\leftrightarrow h=6.62607015\times 10^{-34}\,\rm J\cdot Hz^{-1}$

Das Problem der Dido

Aus der Aeneis:

- Dido war eine Königin ohne Land
- Sie kaufte "so viel Land, wie sie mit der Haut eines Bullen bedecken konnte"
- Geschickt schnitt Sie die Haut in schmale Streifen und band sie zusammen
- ▶ Dido bildete einen Kreis, der ein Stück Land umschloss, das zu Karthago wurde

Warum ein Kreis? Maximale Fläche bei festem Umfang (isoperimetrische Ungleichung)

Isoperimetrische Ungleichung

Für jede Kurve gilt

Fläche der umschlossenen Region
$$\leq \frac{1}{4\pi}$$
Länge²

Die Gleichheit gilt für einen Kreis mit dem Radius r

Fläche der umschlossenen Region
$$=\pi r^2$$
 Länge $=2\pi r$

Länge einer Kurve

Sei $\gamma:[a,b] o \mathbb{R}^2$ stetig differenzierbar

$$L_{\Gamma} = \lim_{N \to \infty} \sum_{k=1}^{N} \|\gamma(t_k) - \gamma(t_{k-1})\| \quad \text{mit } t_k = a + \frac{k}{N}(b-a)$$
$$= \lim_{N \to \infty} \sum_{k=1}^{N} \frac{\|\gamma(t_k) - \gamma(t_{k-1})\|}{t_k - t_{k-1}} (t_k - t_{k-1}) = \int_a^b \|\gamma'(t)\| dt$$

Umschlossene Fläche

Sei $\Omega\subset\mathbb{R}^2$ kompakt und $\gamma:[a,b]\to\partial\Omega$ eine stetig differenzierbare Parametrisierung der Grenze

Satz von Green: Seien $P,Q:\mathbb{R}^2 \to \mathbb{R}$ stetig diff.

$$\int_{\gamma} P dx + Q dy = \int_{\Omega} (\partial_x Q - \partial_y P) dx dy$$

(Wenn γ einfach und positiv orientiert ist)

Insbesondere: wenn $P(x) = -\frac{1}{2}y$, $Q(x) = \frac{1}{2}x$,

$$\frac{1}{2}\int_{\gamma}xdy-ydx=\int_{\Omega}1\,dxdy=\mathsf{Fl\"{a}che}(\Omega)$$

Satz 72 (Isoperimetrische Ungleichung)

Sei $\gamma:[a,b]\to\mathbb{R}^2$ eine stetig differenzierbare geschlossene einfache Kurve, $\gamma(t)=(x(t),y(t))$, d.h,

- $ightharpoonup \gamma'(t) \neq (0,0), \ \forall t \in [a,b]$
- $ightharpoonup \gamma(a) = \gamma(b) \text{ und } \gamma'(a^+) = \gamma'(b^-)$
- $ightharpoonup \gamma(t) \neq \gamma(s)$, $\forall t, s \in [a, b]$, $t \neq s$

Wir definieren

$$L_{\gamma} := \int_{a}^{b} \|\gamma'(t)\| dt = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

$$A_{\gamma} := \frac{1}{2} \Big| \int_{\gamma} x dy - y dx \Big| = \frac{1}{2} \Big| \int_{a}^{b} [x(t)y'(t) - y(t)x'(t)] dt \Big|$$

Dann

$$A_{\gamma} \le \frac{L_{\gamma}^2}{4\pi}$$

Die Gleichheit gilt genau dann, wenn γ einen Kreis parametrisiert.

Adolf Hurwitz (1859 – 1919)

Verteilung der Zahlen mod 1

Für $\alpha \in \mathbb{R}$ sei

E.g. $\langle 3.77 \rangle = 0.77$

Wie sieht $\{\langle n\alpha\rangle:n\in\mathbb{N}\}$ aus?

- ▶ Wenn $\alpha \in \mathbb{Q}$, ist die Folge endlich
- ▶ Wenn $\alpha \notin \mathbb{Q}$, sind alle Zahlen unterschiedlich

Satz (Kronecker, 1884)

Sei $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Dann liegt $\{\langle n\alpha \rangle : n \in \mathbb{N}\}$ dicht in [0,1]

Eine Folge $\{\alpha_n : n \in \mathbb{N}\} \subset [0,1]$ heißt **gleichverteilt**, wenn

$$\frac{\#\{k:\alpha_k\in(a,b),1\leq k\leq n\}}{m}\longrightarrow (b-a),\qquad \text{für }n\to\infty$$

gilt für jedes Intervall $(a,b)\subset [0,1)$

Bemerkung

 $gleichverteilt \Rightarrow dicht$

Beispiel

$$\frac{0}{2}, \frac{1}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{0}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \dots$$

ist gleichverteilt (Übung!)

Beispiel

Sei $\mathbb{Q} \cap [0,1) = \{q_n : n \geq 1\}$. Die Folge von

$$lpha_n = egin{cases} q_{n/2} & \textit{für } n \textit{ gerade} \\ 0 & \textit{für } n \textit{ ungerade} \end{cases}$$

ist nicht gleichverteilt

Hermann Klaus Hugo Weyl (1885-1955)

Satz 73 (Weyl, 1916)

Sei $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Dann ist $\{\langle n\alpha \rangle : n \in \mathbb{N}\}$ gleichverteilt in [0,1).

Bilder: Wikimedia commons IDs / Lizenz

- Jean Baptiste Joseph Fourier: A. F. Barthelmy Geille Portraits et Histoire des Hommes Utiles, Collection de Cinquante Portraits, Soc. Montyon et Franklin, 1839/40.
- Johann Peter Gustav Lejeune Dirichlet: 90476
- Siméon Denis Poisson: François-Séraphin Delpech, 378439
- Paul du Bois-Reymond: 3287521
- Ernesto Cesàro: 7921531
- Lipót Fejér: 32636978
- Niels Henrik Abel: Johan Gørbitz, 90392
- Georg Friedrich Bernhard Riemann, von August Weger Bildarchiv Austria
- Adolf Hurwitz, 1518800
- Dido, Von Mathias Merian the elder Historische Chronica Frankfurt 1630, 4894547
- Weierstraß, Public domain
- Weyl, By ETH Zürich ETH-Bibliothek Zürich, Bildarchiv, CC BY-SA 3.0, $8098412\,$