This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(21) Application No. 47458/77 (22) Filed 15 Nov. 1977 (31) Convention Application No. 752696 (32) Filed 20 Dec. 1976 in (33) United States of America (US)

(44) Complete Specification Published 14 Jan. 1981

(51) INT. CL.³ C10G 45/64

Index at Acceptance C5E 409 412 TB

20

(54) IMPROVED PROCESS FOR CATALYTICALLY DEWAXING GAS OIL

(71) We, MOBIL OIL CORPORATION, a Corporation organised under the laws of the State of New York, United States of America, of 150 East 42nd Street, New York, New York, 10017, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be

particularly described in and by the following statement:-

This invention relates to a process for dewaxing petroleum oils and fractions thereof by selectively removing normal paraffinic and other undesirable hydrocarbons from petroleum oils in which they are present in admixture with other hydrocarbons, in order to lower the pour point of such oils. More particularly, the invention relates to an improved single-step process for selectivity removing normal paraffinic and other undesirable hydrocarbons from petroleum oils by contacting same with a specific zeolite catalyst in the presence of a large amount of co-fed water.

It is well known in the art to form various lubricating oils from hydrocarbon fractions derived from petroleum crudes. A heretofore practiced common procedure known in the art is to extract these hydrocarbon fractions with various solvents so as to give a raffinate of a desired high viscosity index, such material being resistant to changes in viscosity with changes in temperature and thus being useful under varying operating conditions. Moreover, it is particularly desired that the lube oil have a low pour point so that it can be effectively used at low temperature conditions, since excessive thickening at low temperature is often unacceptable. It is also known in the art to carry out dewaxing operations by contacting hydrocarbon fractions with crystalline aluminosilicate zeolites having pore sizes of about 5 Angstrom units so as to selectively remove normal paraffins.

The present invention is concerned with an improved process for dewaxing normal paraffin-containing oils which is more economical than conventional solvent dewaxing procedures or catalytic dewaxing procedures involving 5 Angstrom unit zeolites and which, with certain feedstocks, produces a higher product yield with equivalent or higher pour point

reduction and prolonged catalyst cycle time between regenerations.

Trace amounts of water used to promote various catalytic reactions, not including gas oil dewaxing, is known in the art. For example, U.S. Patent 3,546,100 teaches restricting the partial pressure of water in contact with a hydrocracking catalyst during hydrocracking of a hydrocarbon compound to within the range of 10 to 130 mm. U.S. Patent 3,649,524 teaches a

high temperature reforming process using only 8-20 ppm water.

Somewhat larger amounts of water have been used in high temperature catalytic dehydrogenation of hydrocarbons (U.S. Patent 3,907,921), wherein 25-3000 ppm of water is used; and in hydrodesulfurization of gas oils and cycle oils (U.S. Patent 3,720,602) wherein 5 to 50 percent of water is injected. In the latter patent, the catalyst material used does not include zeolite materials.

The use of large amounts of water, i.e. about 0.1 to about 15 moles water/mole hydrocarbon feedstock, would be expected, based upon the teaching of the art, to destroy conventional porous, siliceous heterogeneous catalysts, such as used in the present method.

U.S. Patent 3,755,138 discloses a two-step process for dewaxing hydrocarbon oil feedstocks boiling above about 650°F having an intermediate pour point. One step of the patent process comprises solvent dewaxing and the other step comprises contact with a ZSM-5 type of zeolite in the absence of co-fed water. U.S. Patent Re. 28,398 discloses dewaxing a hydrocarbon oil boiling above 350°F by shape selective cracking and

	hydrocracking over a zeolite of ZSM-5 type without co-led water.	
	This is a solotor to improved processing of gas oils wherein said blocessing complises	
	contacting a gas oil feedstock in the presence of from about 0.1 to about 13 moles of co-led	
	water (male of case oil feedstock with a catalyst comprising a crystalling attitudence acoust	5 .
5	characterized by a silica/alumina mole ratio of at least 12 and a constraint index, hereinafter	J .
	defined within the approximate range of 1 to 12.	
	The foodstock intended for treatment in accordance with the present invention indy be	
	and the defined of hydrogathon oils holling above about 300 ff and particularly between	`.
	L DEDUCE AND ANALY L THULL BETTACKED IN THE RECORD OF A HIGH MICHARD AND A CONTRACT OF A CONTRAC	40
10	of from about 0.01 to about 3 wt. percent is most advantageously benefited by the present	10
10	·	
	- 11	
	the investigation and referred to generally as / NM-7 IVDE OF as Deliaville like Zwivi-3 and merced	
15	TO a seal and a composition restrict in this invention complies a crystalline adminious	15
13	15. 1 And and by a cilica /alimina male talla al least 12 aliu a culturalit index et	
	from about 1 to about 12, non-limiting examples of which include ZSM-5, ZSM-11, ZSM-12,	
	max 4 A C = - 3 77 CM 200	
	The TOXA E is tought by I.C. Patent 4 /II/ XXII. III & DICICIEU SYMMOME IN MICH.	
••	zeolite ZSM-5 for use in the catalyst composition useful in this invention has a formula, in	20
20	terms of mole ratios of oxides in anhydrous state, as follows:	
	terms of mole fallos of Oxides in anniqued state, as zero	
	$(0.9 \pm 0.2) \text{ M}_2\text{O}: \text{Al}_2\text{O}_3: x\text{SiO}_2$	
	wherein M is selected from a mixture of alkali metal cations, especially sodium, and	
	wherein M is selected from a linkture of alkan inetan preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations, the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations and the alkyl groups of which preferably contain 2 to 5 carbon tetraalkylammonium cations and the alkyl groups of the cation 2 to 5 carbon tetraalkylammonium cations and the cation 2 to 5 carbon tetraalkylammonium cations and the cation 2 to 5 carbon tetraalkylammonium cations and the cation 2 to 5 carbon tetraalkylammonium cations and the cation 2 to 5 carbon tetraalkylammonium cations and the cation 2 to 5 carbon tetraalkylammonium cations and the cation 2 to 5 carbon tetraalkylammonium cations and 2 to 5 carbon tetraalk	25
25	atoms, and x is at least 5. Particularly preferred is a zeolite having the formula in the anydrous	
	atoms, and x is at least 5. Particularly preferred is a 200me maxing me to me and a second maxing me and a s	
	state as follows:	
	$(0.9 \pm 0.2) \text{ M}_{2}\text{O} : \text{Al}_{2}\text{O}_{3} : \text{ZSiO}_{2}$	
	n	30
30	wherein Z is from greater than 30 to about 350 or higher.	-
	Zeolite ZSM-11 is taught by U.S. Patent 3,709,979. In the as synthesized form, the zeolite	
	Zeolite ZSM-11 is taught by 0.3. Fating 3,769,1 in this invention has a formula, in terms of ZSM-11 for use in the catalyst composition useful in this invention has a formula, in terms of	
	mole ratios of oxides in the annydrous state, as follows.	
	(0.9 ± 0.3) M ₂ O: Al ₂ O ₃ : 20 to 90 SiO ₂	35
35		33
	wherein M is a mixture of at least one of the quaternary cations of a Group V-A element of	
		٠.
	total amount of the original cations. Thus, the zeome can be expressed by the terms	40
40	formula in terms of mole ratios of oxides:	70
	$(0.9 \pm 0.3) (xXR_4 + 1-xM_2O) : Al_2O_3 : 20 \text{ to } 90 \text{ SiO}_2$	
		•
	wherein R is an alkyl or aryl group having between 1 and 7 carbon atoms, M is an alkali metal	•
	cation Y is a group V-A element, especially a inetal, and X is between oil and oil	
45		45
43	7CM_35 is described in U.S. Patent No. 4,010,243. This zeome can be identified, in terms	
	of mole ratios of oxides and in the annydrous state, as follows.	٠.
50	pyrrolidine, M is an alkali metal cation and x is greater than 8, and is characterized by a	50
20		
	In a preferred synthesized form, zeolite ZSM-35 has a formula, in terms of mole ratios of	
	oxides and in the anhydrous state, as follows:	
		55
55		
	ZSM-38 is described in U.S. Patent No. 4,046,859. This zeolite can be identified, in terms	
	ZSM-38 is described in U.S. Fatelit 140, 450-4505, 1111 Section 1411 April 1511 April 15	
	of mole ratios of oxides and in the anhydrous state, as follows:	
	$(0.3 - 2.5)R_2O : (0 - 0.8)M_2O : Al_2O_3 : xSiO_2$	60
60	wherein R is an organic nitrogen-containing cation derived from a 2-(hydroxyalkyl)	
	trially lammonium compound. X is greater than o and it is an arken moter denoting the	
		٠.
	In a preferred synthesized form, the zeolite has a formula, in terms of mole ratios of single	•
	and in the anhydrous state, as follows:	65
65	$(0.4 - 2.5)R_2O : (0 - 0.6)M_2O : Al_2O_3 : ySiO_2$	VJ

25

40

50

15

35

wherein R is an organic nitrogen-containing cation derived from a 2-(hydroxyalkyl) trialkylammonium compound, wherein alkyl is methyl, ethyl or a combination thereof, M is an alkali metal, especially sodium, and y is from greater than 8 to about 50.

an alkali metal, especially sodium, and y is from greater than to a accurate the Although the zeolites herein described have unusually low alumina contents, i.e. high silica to alumina ratios, they are very active even when the silica to alumina ratio exceeds 30. The activity is surprising since catalytic activity is generally attributed to framework aluminium atoms and cations associated with these aluminum atoms. These catalysts retain their crystallinity for long periods in spite of the presence of steam at high temperature which induces irreversible collapse of the framework of other zeolites, e.g. of the X and A type. Furthermore, carbonaceous deposits, when formed, may be remoed by burning at higher than usual temperatures to restore activity. In many environments the zeolites of this class exhibit very low coke forming capability, conducive to very long times on stream between

burning regenerations.

An important characteristic of the crystal structure of the zeolites for use herein is that they provide constrained access to, and egress from, the intracrystalline free space by virtue of having a pore dimension greater than about 5 Angstroms and pore windows of about a size such as would be provided by 10-membered rings of oxygen atoms. It is to be understood, of course, that these rings are those formed by the regular disposition of the tetrahedra making up the anionic framework of the crystalline aluminosilicate, the oxygen atoms themselves being bonded to the silicon or aluminum atoms at the centers of the tetrahedra. Briefly, the preferred type catalysts useful in this invention possess, in combination: a silica to alumina ratio of at least about 12; and a structure providing constrained access to the crystalline free

The silica to alumina ratio referred to may be determined by conventional analysis. This ratio is meant to represent, as closely as possible, the ratio in the rigid anionic framework of the zeolite crystal and to exclude aluminum in the binder or in cationic or other form within the channels. Although catalysts with the silica to alumina ratio of at least 12 are useful, it is preferred to use catalysts having higher ratios of at least about 30. Such catalysts, after activation, acquire an intracrystalline sorption capacity for normal hexane which is greater than that for water, i.e. they exhibit "hydrophobic" properties. It is believed that this hydrophobic character is advantageous in the present invention.

The type zeolites useful in this invention freely sorb normal hexane and have a pore dimension greater than about 5 Angstroms, or, if elliptical in pore shape, at least the size of the pores in ZSM-5. In addition, the structure must provide constrained access to larger molecules. It is sometimes possible to judge from a known crystal structure whether such constrained access exists. For example, if the only pore windows in a crystal are formed by 8-membered rings of oxygen atoms, then access to molecules of larger cross-section then normal hexane is excluded and the zeolite is not of the desired type. Windows of 10-membered rings are preferred, although, in some instances, excessive puckering or pore blockage may render these catalysts ineffective. Twelve-membered rings do not generally appear to offer sufficient constraint to produce the advantageous conversions. Also, structures can be conceived due to pore blockage or other cause, that may be operative. Rather than attempt to judge from crystal structure whether or not a catalyst possesses the necessary constrained access, a simple determination of the "constraint index" may be made

by passing cotinuously a mixture of an equal weight of normal hexane and 3-methylpentane over a small sample, approximately 1 gram or less, of catalyst at atmospheric pressure according to the following procedure. A sample of the catalyst, in the form of pellets or extrudate; is crushed to a particle size about that of coarse sand and mounted in a glass tube. Prior to testing, the catalyst is treated with a strem of air at 1000°F for at least 15 minutes. The catalyst is then flushed with helium and the temperature adjusted between 550°F to give an overall conversion between 10% and 60%. The mixture of hydrocarbons is passed at 1 liquid hourly space velocity (i.e., 1 volume of liquid hydrocarbon per volume of catalyst per hour) over the catalyst with a helium dilution to give a helium to total hydrocarbon mole ratio of 4:1. After 20 minutes on stream, a sample of the effluent is taken and analyzed, most conveniently by gas chromatography, to determin the fraction remaining unchanged for each

of the two hydrocarbons.

The "constraint index" is calculated as follows:

Constraint Index = log10 (fraction of n-hexane remaining)

log 10 (fraction of 3-methylpentane remaining)

The constraint index approimates the ratio of the cracking rate constants for the two hydrocarbons. Catalysts suitable for the present invention are those having a constraint index in the approximate range of 1 to 12. Constraint Index (CI) values for some typical catalysts, including those useful herein, are:

	Crystalline Aluminosilicate	C I			•
	ZSM-5	8.3			• ,
5	ZSM-11	8.7		••	5
	ZSM-12	2			
	ZSM-35	. 2		•	•
10	ZSM-38	2	• •	• • •	10
10	Beta	0.6		· •	•
	ZSM-4	0.5		• .	•
	H-Zeolon	0.5	. :	•	15
15	REY	0.4	• • • •	•	
	Erionite	38 .	: :	•	
				. •	
20	it is to be realized that the above constraint index value	es typically cha	racterize the st	ecified	20
	the state of the community of the commun	ai variaines usci	T III GO FOT HINNING F	, , , , , , , , ,	
•	calculation thereof. I hus, for a given zeome depending	anving convers	ion between 10	0% and	
25					25
	Likewise, other variables such as the crystal size of	ined with the 2	zeolite may aff	ect the	
					•
30	constraint index, as utilized herein, while allolding a life	o consideratio	n the manner	of its	.30
,50	determination, with the probability, in some instances	s, of compound	ing variable ex	tremes. 50°F to	
	However, in all instances, at a temperature within the 950°F, the constraint index will have a value for any giv				•
	approximate range of 1 to 12.	the presence of	of organic cation	ons, are	35
35					
	cations from the forming solution. They may be activate	exchange with a	mmonium salt	s and by	
					40
40	be absolutely essential to the formation of this speci	al type of zeoli	te. More genera	ally, it is	40 .
	calcination in air at about 1000°F for from about 1.	at least in part	by ion exchar	nge with	•
45	ring nickel notassium rare earth metals and the	like by contact	r with salts the	ereof in	45
	accordance with techniques well known in the art.	this type zeoli	ite catalyst by	various	
	activation procedures and other treatments such a	1 minerals whi	ich may be so	treated	•
50	extraction and calcination, in combinations. Natural include ferrierite, brewsterite, stilbite, dachiardite, ep include ferrierite, stilbite, dachiardite, ep 7.5 M	istilbite, heular	ndite and clino	ptilolite.	· 50
30	The preferred crystalline aluminosilicates are 251vi	-J, ZJIVI-11, 2	DOM: 15, -51-		
	ZSM-38, with ZSM-5 particularly preferred. In a preferred aspect of this invention, the catalysts	hereof are sele	ected as those	having a	
	crystal framework density, in the dry nydrogen form	olites which s	atisfy all three	of these	55
55					
	invention are those having a constraint index as define	tal density of	not less than a	bout 1.6	
60	number of silicon plus aluminum atoms per 1000 cubic	naper the entil	re contents of w	hich are	
•	Molecular Sieves, London, April 1967, published	the crustal frai	mework densit	v may be	
65	determined by classical pyknometer techniques. For	r example, it	may be determ	nined by	65
33	• • • • • • • • • • • • • • • • • • • •		•		

immersing the dry hydrogen form of the zeolite in an organic solvent which is not sorbed by the crystal. It is possible that the unusual sustained activity and stability of this class of zeolite is associated with its high crystal anionic framework density of not less than about 1.6 grams per cubic centimeter. This high density of course must be associated with a relatively small amount of free space within the crystal, which might be expected to result in more stable structures. This free space, however, is important as the locus of catalytic activity.

Crystal framework densities of some typical zeolites are:

10 °		Zeolite	Void Volume	Framework Density	10
		Ferrierite	0.28 cc/cc	1.76 g/cc	15
15		Mordenite	.28	1.7	15
		ZSM-5, -11	.29	1.79	•
20		Dachiardite	.32	1.72	20
•		L	.32	1.61	
		Clinoptilolite	.34	1.71	. 25
25	· .	Laumontite	.34	1.77	
		ZSM-4	.38	1.65	
30		Heulandite	.39	1.69	30 .
· .;		P	.41	1.57	•
	•	Offretite	.40	1.55	. 35
35		Levynite	.40	1.54	
•		Erionite	.35	1.51	
40 .	•	Gmelinite	44	1.46	. 40
	•	Chabazite .	.47	1:45	•
		A	.5	1.3	45
45 .		Υ	.48	1.27	• . •

Members of the above group of zeolites for use in the catalyst composition of the present invention possess definite distinguishing crystalline structures as evidenced by the above U.S. Patents incorporated herein by reference.

The synthetic ZSM-35 zeolite possessess a definite distinguishing crystalline structure whose X-ray diffraction pattern shows substantially the significant lines set forth in Table 1.

BLE	

		ADLE 1	•
	Interplanar Spacing	Relative Intensity	
5	9.6 ± 0.20	Very Strong-Very, Very Strong	5
	7.10 ± 0.15	Medium	
	6.98 ± 0.14	Medium	10
10	6.64 ± 0.14	Medium	10
	5.78 ± 0.12	Weak ·	•
	5.68 ± 0.12	Weak	· ·
15	4.97 ± 0.10	Weak	15
	4.58 ± 0.09	Weak	
	3.99 ± 0.08	Strong	
. 20	3.94 ± 0.08	Medium-Strong	20.
20	3.85 ± 0.08	Medium	
	3.78 ± 0.08	Strong	
	3.74 ± 0.08	Weak	25
25	3.66 ± 0.07	Medium	. 23
	3.54 ± 0.07	Very Strong	
	3.48 ± 0.07	Very Strong	·. ·
30	3.39 ± 0.07	Weak	30
	3.32 ± 0.07	Weak-Medium	•
	3.14 ± 0.06	Weak-Medium	
35	. 2.90 ± 0.06	Weak	35
	2.85 ± 0.06	Weak	
	2.71 ± 0.05	Weak	·
40	2.65 ± 0.05	Weak .	40
40	2.62 ± 0.05	. Weak	40
	2.58 ± 0.05	Weak .	
	2.54 ± 0.05	Weak	·
45	2.48 ± 0.05	Weak	. , 45

The synthetic ZSM-38 zeolite possesses a definite distinguishing crystalline structure
whose X-ray diffraction patterns shows substantially the significant lines set forth in Table 50
1A.

TABLE 1A

•	Interplanar Spacing	Relative Intensity	
. 5	9.8 ± 0.20	Strong	5
	9.1 ± 0.19	Medium	
٠.	8.0 ± 0.16	Weak	
10	7.1 ± 0.14	Medium	10
	6.7 ± 0.14	Medium	
	6.0 ± 0.12	Weak	
	4.37 ± 0.09	Weak	15
15	4.23 ± 0.09	Weak	
•	4.01 ± 0.08	Very Strong	
	3.81 ± 0.08	Very Strong	
20	3.69 ± 0.07	Medium :	20
•	3.57 ± 0.07	Very Strong	
	3.51 ± 0.07	Very Strong	
25	3.34 ± 0.07	Medium	25
	3.17 ± 0.06	Strong	
	3.08 ± 0.06	Medium	
30	3.00 ± 0.06	Weak	30
30	2.92 ± 0.06	Medium	
	2.73 ± 0.06	Weak	
	2.66 ± 0.05	Weak	35 ·
35	2.60 ± 0.05	Weak	33
•	2.49 ± 0.05	Weak	
		. •	
40	These values were determined by standard technique doublet of copper, and a scintillation counter spectrometer used. The peak heights, I, and the positions as a function	of 2 times theta, where theta is the	40 `
45	Bragg angle, were read from the spectrometer chart. From I/Io, where Io is the intensity of the strongest line or peak, a in Angstrom units, corresponding to the recorded line understood that these X-ray diffraction patterns are charabove respectively identified zeolites. Ion exchange of the	racteristic of all the species of the socium ion with cations reveals	45
50	relative intensity. Other minor variations can occur depratio of the particular sample, as well as if it has been sample.	ending on the silicon to aluminum ubjected to thermal treatment. occss of this invention are prepared	
55	as indicated in their respective patents, as referred to a Zeolite ZSM-35 can be suitably prepared by preparing	a solution containing sources of an aitrogen-containing oxide, an oxide	55

	•		÷		÷	
			TABLE 2			
			Broad	Preferred		
5		R ⁺			•	5
		R+ + M+	0.02 - 1.0	0.3 – 0.9		٠.
10		OH7/SiO ₂	0.05 - 0.5	0.07 - 0.49		10
10		H ₂ O/OH ⁻	41 - 500	100 - 250		
		SiO ₂ /Al ₂ O ₃	8.8 - 200	12 - 60		
15		ı				15
20	ethylenediamine ar zeolite are formed alkali without any cliquid and recovere mixture to a tempe about 6 hours to ab about 400°F with the to about 80 days. The digestion of separated from the	nd M is an alkali r . (The quantity organic base conted. Typical reacterature of from a out 100 days. A ne amount of time the gel particle reaction mediur	gen-containing cation that it is calculated tribution). Thereafter tion conditions consists about 90°F to about more preferred tempere at a temperature in second to the condition that is so that is carried out until m, as by cooling the way product is dried, e.g.	ning the mixture ur only from the inor , the crystals are se et of heating the fo 400°F for a period rature range is from such range being from crystals form. The	reganic sources of the ganic sources of parated from the regoing reaction of time of from about 150°F to om about 6 hours solid product is erature, filtering	20
30	hours. Zeolite ZSM-38 alkali metal oxide	can be suitably p preferably sodiu ide of silicon and	orepared by preparing im oxide, an organic i d water and having a c	ga solution contain	ing sources of an govide	30
35	•	•	TABLE 3	•		35
			Broad	Preferred		
		R+	Di Oute	Trejerrea		40
40	•	R ⁺ + M ⁺	0.2 - 1.0:	0.3 - 0.9		
			0.05 - 0.5	0.07 - 0.49		
45		OH7SiO ₂ H ₂ O/OH	41 - 500	100 - 250		45
		•	8.8 - 200	12 - 60		•
		SiO ₂ /Al ₂ O ₃	8.8 - 200			50
50						. 30
55	crystals of the zeolit sources of alkali v separated from the foregoing reaction r of time of from about 150°F to about 150°F	compound and Me are formed. (To without any orgaliquid and recover in the following the following to a temporary of the following the followin	s is carried out until	i, and maintaining is calculated only fro ion). Thereafter, on conditions consist 90°F to about 40 oreferred temperate a temperature in scrystals form. The hole to room temp	om the inorganic the crystals are st of heating the 00°F for a period ure range is from such range being solid product is erature, filtering	55 60
65	and water washing.	The crystalline p	product is thereafter d	ried, e.g. at 230°F	101 Hom about 6	65

N. and 8.2 wt. % carbon, and it was identified by X-ray as ZSM-5.

After drying at about 250°F, the zeolite was mixed with alpha-alumina monohydrate and H-O (65% zeolite. 35% alumina binder on ignited basis). then extruded to form 1/16 inch pellets. The pellets were calcined in nitrogen atmosphere for 3 hours at 1000°F, ion exchanged with 1 normal NH₄Cl at room temperature for 1 hour using 5 milliliters solution

20

35

10

per gram of dry zeolite, water-washed, and finally calcined in 100% air for 3 hours at 1000°F. Examples 2-7

The catalyst material prepared in Example 1, sized to 30-60 mesh, was charged to a 5/16th -inch I.D. stainless steel tubing reactor with provision for water injection at the reactor inlet -inch I.D. stainless steel tubing reactor with provision for water injection at the reactor liner from a positive displacement pump. Six separate runs were conducted in this reactor, each with 5 or 10 cc of fresh catalyst, under varying conditions and for different times on stream. The feedstock to the reactor was a 650-760°F Arab Gas Oil having a pour point of 55°F and a specific gravity of 0.8866. No hydrogen was added to the reactor for these runs. Reaction conditions and results are reported hereinafter in Table 4.

From the information generated by Examples 2-7, it is observed that aging rates were high at the reaction pressures used when water was not co-fed to the reactor. The beneficial affect of the large amounts of co-fed water on coke lay-down is clear by comparison of the examples

of the large amounts of co-fed water on coke lay-down is clear by comparison of the examples

run with and without water injection.

Evample	2	m	4	5	•	7
Dadinple.		ç	005	200	200	. 500
Pressure, Psig	50	2 .) (1)	1.0	1.1	1.1
Gas oil, LHSV	1.0	0.1	2	0.06	0.10	0.83
H ₂ O, LHSV	1	0.00	l• 	2.6	3.9	32.5
Mole ratio of H ₂ O/gas oil	1	0.7	. 94	550	540	530
Initial temperature, F*	019	030	077	092	620	610
Final temperature, F*	078	0.00	∞	22	10	14-
Time on stream, days.	o t	- 25	29	. 10	∞	9
Aging rate, 'F/day	22.0	15.7	11.5	17.3	. 9.6	7.5

For 330°F product, pour point of 0°F.

Example 8

	Example 6				
5	A portion of the dried amn with 1 normal Ni(NO ₃) ₂ at 19 extrudate, water-washed, dried final product was analyzed and	0°F for 4 hours i ed, and finally ca I found to contai	using 5 cc of exchange Ilcined in 100% air fo	e solution per gram of dry or 3 hours at 1000°F. The	5
10	A 3.3 cc portion of fresh charged to the reactor used for Examples 2-7. The catalyst was added to the reactor for LHSV of the gas oil feedstock	or Examples 2-7 as sulfided <i>in sitt</i> this run at 2500	for a run with the sa with a H ₂ S/H ₂ mix scf/bbl. pressure wa	me feedstock as used for ture at 750°C. Hydrogen s maintained at 500 psig,	10
15	feedstock was 6.5 ± 1.0. The Regeneration #1 Hydrogen regeneration at scf/bbl.	e catalyst was re	generated twice dur	ing the run as follows:	15
20	Regeneration #2 Hydrogen regeneration at flow of 2500 scf/bbl. Results of the run proved the prevent the catalyst from deposition. Aging data for the	at the use of co- deactivating by	fed water and hydrog	en worked synergistically	20
25			•	• • • • • • • • • • • • • • • • • • • •	. 25
	TABLE 5				
30	Cycle	Fresh	After Regen. #1	After Regen. #2	30
50	Days on stream	24	20	4	
35	Total days on stream	24	44	48	35
	Initial temp., °F*	540	580	~ 580	
40	Final temp., °F*	660	640	-	. 40
	Aging rate, °F/day	5	3	· _	45
45	*For 330°F [†] product	, pour point of 0	°F.		43
50	WHAT WE CLAIM IS:- 1. A catalytic process for	doweying gos oi	l feedstock comprisi	ne contactine said eas oil	50
55	feedstock with a catalyst of silica/alumina mole ratio of at 1 to 12, in the presence of feedstock	comprising a colleast 12 and a collection about 0.1	rystalline aluminosi instraint index within to about 15 moles	the approximate range of of water/mole of gas oil	55
60	 The process of Claim I The process of any on 	wherein said of claims 1	rystalline aluminosil rystalline aluminosil rystalline aluminosil rystalline aluminosil to 6 wherein said p	icate zeolite is ZSM-11. icate zeolite is ZSM-12. icate zeolite ZSM-35. icate zeolite is ZSM-38. rocess is conducted at a	60
65	temperature from about 450° 3000 psig, a liquid hourly spacirculation rate of from 0 to al	F to about 800 e velocity of fro	°F, a pressure of from about 0.1 hr ⁻¹ to a	n about 50 psig to about bout 20 hr ⁻¹ , a hydrogen	65

	oil feedstock is from about 0.1 to about 5. 8. The process of any one of the preceding Claims wherein said gas oil feedstock is a hydrocarbon oil boiling above about 350°F. 9. Process of catalytically dewaxing gas oil substantially as described herein with	
5 .	reference to any one of Examples 3, 5, 6 or 9. 10 Gas oil which has been dewaxed by the process of any one of the preceding Claims.	5
	For the Applicants CARPMAELS & RANSFORD,	
10	Chartered Patent Agents, 43 Bloomsbury Square, London WC1A 2RA	10

Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon, Surrey, 1980.
Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from
which copies may be obtained.