Analyse Numérique Exercices – Série 20

2 avril 2020 ${\bf Questions~marqu\'ees~de~\star} \\ {\bf \grave{a}~rendre~le~9~avril~2020~avant~13h00} \\ \label{eq:question}$

1. ((**), Questions a et b) Fonction d'itérations et convergence de la méthode de point fixe Supposons que l'on veut calculer les racines de l'équation $f(x) = x^2 - 5x + 6 = 0$ avec les méthodes de point fixe suivantes :

(1)
$$x_{k+1} = \frac{x_k^2 + 6}{5}$$
, (2) $x_{k+1} = \sqrt{5x_k - 6}$, (3) $x_{k+1} = \frac{x_k^2 - 6}{2x_k - 5}$.

- (a) (0.25 points) Vérifier que les racines de f(x) sont points fixes des fonctions d'itérations $\Phi_1(x)$, $\Phi_2(x)$, $\Phi_3(x)$ relatives aux trois méthodes ci-dessus.
- (b) **(0.75 points)** Analyser la convergence de ces méthodes (convergente, pas convergente, taux de convergence).
- (c) Considérez le tableau suivant, qui collecte des valeurs de x_k calculées en MATLAB selon les méthodes de point fixe proposées ci-dessus :

itération	A	В	С	D	Е
0	3.1000000000000000	3.10000000000000000	3.1000000000000000	2.1000000000000000	2.1000000000000000
1	3.082207001484488	3.1220000000000000	3.0083333333333334	2.0820000000000000	1.9875000000000000
2	3.067741026785416	3.1493768000000000	3.000068306010928	2.0669448000000000	1.999847560975610
3	3.055929504083346	3.183714845675648	3.000000004665074	2.054452161249408	1.999999976769426
4	3.046251388250275	3.227208043715103	3.00000000000000001	2.044154736572473	2.00000000000000000
:	:	:	:	:	:
100	3.000000001115209	Inf	3	2.000000000023234	2

Associer chaque colonne à la fonction d'itération la plus raisonnable parmi les fonctions d'itérations $\Phi_1(x), \ \Phi_2(x), \ \Phi_3(x).$

- (d) La fonction d'itération $\Phi_3(x)$ n'a pas été choisie par hasard. Pourquoi la méthode (3) montre le taux de convergence que vous avez trouvé dans le point (b)? Comment est-ce qu'on peut construire $\Phi_3(x)$?
- (e) Considérer maintenant la fonction

$$g(x) = \frac{x}{\sqrt{1+x^2}}.$$

On veut calculer la racine de g(x) = 0 à l'aide de l'itération suivante :

$$x_{k+1} = -x_k^3.$$

- i. Quel est le taux de convergence de cette méthode? Pour quelles valeurs de x_0 la méthode converge? Comment est-ce qu'on peut trouver la fonction d'itération $\Phi(x) = -x^3$?
- ii. Qu'est-ce qui se passe pour $x_0 = \pm 1$? Et pour $x_0 = 2$? Vérifier directement.
- 2. (**, Questions a et b)(Quelques exemples contre-intuitifs)
 - (a) **(0.50 points)** On pose $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$. Que valent les normes 2 de A et B? En fonction de la condition initiale choisie, que peut-on dire de la convergence et de la divergence des suites définies par $x_{k+1} = Ax_k$ et $y_{k+1} = By_k$?
 - (b) (0.50 points) On se donne la suite définie par $x_{k+1} = \sin(x_k)$, $x_0 \in]0, \pi/2]$. Montrer que pour tout $k, x_k \in [0, \pi/2]$. L'application sin est-elle contractante? Montrer que $(x_k)_k$ converge vers 0, le point fixe de sin sur $[0, \pi/2]$.

- (c) On définit la suite arithmético-géométrique par $x_{k+1} = \frac{x_k + y_k}{2}$, $y_{k+1} = \sqrt{x_k y_k}$, $x_0 = a$, $y_0 = b$ avec $a \ge b > 0$.
 - i. Montrer que $x_k \geq y_k$ pour $k \geq 1$. En déduire que les suites sont adjacentes et qu'elles convergent vers une même limite notée m satisfaisant $x_k \geq m \geq y_k$.
 - ii. On pose $e_k=(x_k-m,y_k-m)$. Montrer que $\|e_k\|_1=x_k-y_k$ pour $k\geq 1$. En déduire que

$$||e_{k+1}||_1 \le \frac{1}{8m} ||e_k||_1^2.$$

Indication: On pourra prouver l'égalité $\frac{(x_k-y_k)^2}{4}=2(x_{k+1}-y_{k+1})x_{k+2}$.

- iii. Donner une condition suffisante sur a et b pour avoir une inégalité du type $||e_k||_1 \le \alpha \beta^{2^k}$ avec $|\beta| < 1$.
- iv. On pose la fonction

$$F(x,y) = \begin{pmatrix} \frac{x+y}{2} \\ \sqrt{xy} \end{pmatrix}.$$

Que vaut F'(m,m)? Que dire de l'estimation précédente de e_k ? Est-elle en accord avec le cours?