Generative Adversarial Network (GAN)

Namwoo Kang

Smart Design Lab

CCS Graduate School of Green Transportation

KAIST

Reference

□ 강의 슬라이드 및 실습코드는 아래의 링크에서 받으실 수 있습니다

- http://www.smartdesignlab.org/dl_aischool_2021.html
- Contributors: 김성신, 유소영, 이성희, 김은지

□ 강의 소스

- Andrew Ng O ML Class (www.holehouse.org/mlclass/)
- Fei-Fei Li & Justin Johnson & Serena Yeung, CS231n: Convolutional Neural Networks for Visual Recognition, Stanford (http://cs231n.stanford.edu/)
- Stefano Ermon & Aditya Grover, CS 236: Deep Generative Models , Stanford (https://deepgenerativemodels.github.io/)
- 모두를 위한 딥러닝 (https://hunkim.github.io/ml/)
- 모두를 위한 딥러닝 시즌 2 (https://deeplearningzerotoall.github.io/season2/lec_tensorflow.html)
- 이활석, Autoencoders (https://www.slideshare.net/NaverEngineering/ss-96581209)
- 최윤제, 1시간만에 GAN(Generative Adversarial Network) 완전 정복하기 (search=5)
- 김성범, [핵심 머신러닝] Principal Component Analysis (PCA, 주성분 분석) (https://youtu.be/FhQm2Tc8Kic)

Contents

- Ch1: Introduction to Unsupervised Learning Part I
- → Probability & Maximum Likelihood
- Ch2: Introduction to Unsupervised Learning Part II
- → Generative Model & Dimensionality Reduction

Ch3: Principal Component Analysis (PCA)

→ Machine Learning Model

Ch4: Autoencoder & Anomaly Detection

Ch5: Variational AutoEncoder (VAE)

Ch6: Generative Adversarial Network (GAN)

Ch7: Application: Mechanical Design + Al

→ Deep Learning Models

→ CAD/CAM/CAE/Design Optimization + AI

Generative Adversarial Network (GAN) – How to work

VAEs define intractable density function with latent **z**:

$$p_{\theta}(x) = \int p_{\theta}(x|z)p_{\theta}(z)dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don't work with any explicit density function! Instead, take game-theoretic approach: learn to generate from training distribution through 2-player game

Training GANs: Two-player game

- **Generator network**: try to fool the discriminator by generating real-looking images
- **Discriminator network**: try to distinguish between real and fake images

Objective function (minimax game)

$$\min_{G} \max_{D} V(D, G) = E_{x \sim p_{data}(x)}[\log D(x)] + E_{z \sim p_{z}(z)}[\log(1 - D(G(z))]$$

2. Generator 학습

D(G(x)) = 1 일때 $\log 0$ 으로 최소화

가짜 이미지

 $\max_{G} E_{z \sim p_{z}(z)} [\log(D(G(z)))]$

GAN eventually minimizes the distance between the real data distribution and the model distribution.

$$\min_{G} \max_{D} V(D,G) \qquad = \qquad$$

Objective function of GANs

$$E_{x \sim p_{\operatorname{data}}(x)}[\log D(x)] + E_{z \sim p_z(z)}[\log(1 - D(G(z))]$$

$$\min_{G,D} JSD(p_{data}||p_g)$$

Jenson-Shannon divergence

$$JSD(P||Q) = \frac{1}{2}KL(P||M) + \frac{1}{2}KL(Q||M)$$

Where
$$M = \frac{1}{2}(P + Q)$$

1. Discriminator 최적해 증명 (1/2)

integral maximum.

S SMART DESIGN KAIST

1. Discriminator 최적해 증명 (2/2)

$$D^*(x) = arg \max_{D} V(D)$$
The function inside integral
$$= arg \max_{D} v(x) \log D(x) + p_g(x) \log (1 - D(x))$$
Substitute $a = p_{data}(x), y = D(x), b = p_g(x)$

$$a \log y + b \log (1 - y)$$
Differentiate with respect to $D(x)$ using $\frac{d}{dx} \log f(x) = \frac{f'(x)}{f(x)}$
Note that $D(x)$ cannot affect to $p_{data}(x)$ and $p_g(x)$

$$\frac{a - (a + b)y}{y(1 - y)} = 0$$
Find the point where the derivative value is 0

$$\frac{a - (a + b)y}{y(1 - y)} = 0$$
It has a maximum value when $y = \frac{a}{a + b}$
Substitute $a = p_{data}(x), y = D(x), b = p_g(x)$

2. Generator 최적해 증명

$$\begin{aligned} & \underset{G}{\min} \max_{D} V(D,G) = \underset{G}{\min} V(D^*,G) - \underset{G}{\min} D \\ & V(D^*,G) = E_{x \sim p_{\text{data}}(x)}[\log D^*(x)] + E_{x \sim p_g}[\log(1-D^*(x))] \\ & = \int_{x} p_{\text{data}}(x) \log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} dx + \int_{x} p_g(x) \log \frac{p_g(x)}{p_{\text{data}}(x) + p_g(x)} dx \\ & = -log4 + log4 + \int_{x} p_{\text{data}}(x) \log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} dx + \int_{x} p_g(x) \log \frac{p_g(x)}{p_{\text{data}}(x) + p_g(x)} dx \\ & = -log4 + \int_{x} p_{\text{data}}(x) \log \frac{2 \cdot p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} dx + \int_{x} p_g(x) \log \frac{2 \cdot p_g(x)}{p_{\text{data}}(x) + p_g(x)} dx \\ & = -log4 + \int_{x} p_{\text{data}}(x) \log \frac{2 \cdot p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} dx + \int_{x} p_g(x) \log \frac{2 \cdot p_g(x)}{p_{\text{data}}(x) + p_g(x)} dx \\ & = -log4 + KL(p_{\text{data}}||\frac{p_{\text{data}} + p_g}{2}) + KL(p_g||\frac{p_{\text{data}} + p_g}{2}) \\ & = -log4 + 2 \cdot JSD(p_{\text{data}}||p_g) \end{aligned} \qquad \text{Optimizing V(D,G) is same as minimizing } JSD(p_{\text{data}}||p_g) \end{aligned}$$

 $p_{data}(x) = p_g(x)$ $D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} = \frac{1}{2}$

VAE vs. GAN

VAE

Blurry
Tend to remember input images
Smooth

GAN

Sharp

Generate new unseen images

Mode collapse

Unstable convergence

VAE vs. GAN

VAE: maximum likelihood approach

GAN Coding

Deep Convolutional GAN (DCGAN)

	Generator	Discriminator
Pooling Layers	Not used. But use stride convolutions instead	
Batch normalization	Use except output layer	Use except input layer
Fully connected hidden layers	Not used	
Activation function	ReLU for all layers except for the output, which uses Tanh	LeakyReLU for all layers

DCGAN: Interpretable Vector Math

DCGAN: Interpretable Vector Math

Glasses man No glasses woman

Results of doing the same arithmetic in pixel space

DCGAN Coding

Various GAN Structures

Conditional GAN (cGAN)

InfoGAN

MNIST digits generated using InfoGAN

Infogan는 의미있는 개념(ex. 숫자 유형,기울기 등)을 포착한다.

Row는 Latent categorical value에 따라 대응하며, Column은 Latent continuous variable에 따라 대응한다.

Boundary Equilibrium GAN (BEGAN)

Autoencoder loss:
$$\mathcal{L}(v) = |v - A(v)|^{\eta}$$
 where

$$\begin{cases} \mathbb{R}^{N_x} \to \mathbb{R}^{N_x} & \text{is an autoencoder function} \\ \eta \in \{1, 2\} & \text{is a targe norm} \\ v \in \mathbb{R}^{N_z} & \text{is a sample of dimension } N_z \end{cases}$$

Discriminator:
$$\mathcal{L}_D = \mathcal{L}(x) - k_t \mathcal{L}(G(z_D))$$
 for θ_D 진짜가 가짜가 복원이 잘되도록 복원이 안되도록

Generator:

$$\mathcal{L}_G = \mathcal{L}(G(z_G))$$
 for θ_G 가짜가 복원이 잘되도록

Discriminator와 Generator의 균형 맞추기 γ \rightarrow L(x) 에 집중 \rightarrow G(z) 다양성 떨어짐, 퀄리티 증가 0부터 점점 $k_{t+1} = k_t + \lambda_k (\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G)))$ $\gamma \uparrow \rightarrow L(G(z))$ 에 집중 $\rightarrow G(z)$ 다양성 증가, 퀄리티 감소 기지기

Boundary Equilibrium GAN (BEGAN)

Convergence Measure

$$M_{global} = \mathcal{L}(x) + |\gamma(\mathcal{L}(x)) - \mathcal{L}(G(z_G))|$$

Various GANs Coding

GAN ZOO

GAN DCGAN WGAN CGAN LSGAN SGAN ACGAN InfoGAN CycleGAN

2017: Explosion of GANs

Better training and generation

LSGAN, Zhu 2017.

Wasserstein GAN, Arjovsky 2017. Improved Wasserstein GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

CelebA-HQ 1024 × 1024

Progressive growing

2017: Explosion of GANs

Source->Target domain transfer

CycleGAN. Zhu et al. 2017.

Text -> Image Synthesis

this small bird has a pink primaries and secondaries.

this magnificent fellow is breast and crown, and black almost all black with a red crest, and white cheek patch.

Reed et al. 2017.

Many GAN applications

Pix2pix. Isola 2017. Many examples at https://phillipi.github.io/pix2pix

2019: BigGAN

Figure 6: Additional samples generated by our model at 512×512 resolution.

2020: StyleGAN2

What Questions Do You Have?

nwkang@kaist.ac.kr

www.smartdesignlab.org

