CURSUL 2: MULŢIMI

G. MINCU

1. Mulţimi

Noțiunea de mulțime este una primară în matematică.

De obicei, folosim termenul de "mulţime" pentru a desemna o entitate pe care considerăm că o constituie anumite obiecte¹. Acestea din urmă se numesc **elementele** mulţimii.

Vom nota faptul că obiectul x este element al mulțimii M prin $x \in M$.

Vom considera că două mulțimi sunt egale dacă și numai dacă au aceleași elemente.

Cea mai naturală metodă de a reprezenta o mulţime este de a enumera efectiv elementele acesteia; în mod standard, elementele respective se scriu între acolade, fără repetiţii şi în orice ordine dorim.

Exemplul 1. a)
$$\{1, 3, -5\}$$
; $\{-\frac{7}{3}, \pi\}$; $\{a; b; 1, 2(3)\}$, $\{3, -5, 1\}$, $\{-3, 5, 1\}$, etc.

Reamintim aici și mulțimile "uzuale" de numere:

- b) $\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$ multimea numerelor naturale.
- c) $\mathbb{Z} = \{\dots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \dots\}$ mulţimea numerelor întregi.

Observaţia 2.
$$\{1, 3, -5\} = \{3, -5, 1\}, dar \{1, 3, -5\} \neq \{-1, 3, 5\}.$$

Nu toate mulțimile pot fi reprezentate de maniera sintetică propusă anterior, de cele mai multe ori motivul fiind acela că respectivele mulțimi au "prea multe" elemente pentru a fi posibilă (sau utilă!) o astfel de reprezentare. În astfel de situații, apelăm la reprezentarea mulțimilor cu ajutorul unei proprietăți caracteristice elementelor lor.

 $^{^1}$ fie grație unor proprietăți comune ce justifică punerea la
olaltă a acestor obiecte, fie pur și simplu în mod arbitrar/ca exercițiu intelectual

G. MINCU

Exemplul 3. a) $\{a \in \mathbb{N} : \exists k \in \mathbb{N} \ a = 2k+1\}$ - multimea numerelor naturale impare

- b) $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, \ b \neq 0 \right\}$ mulţimea numerelor raţionale.
- c) $\mathbb{R}=$ mulțimea numerelor ce corespund punctelor unei drepte² mulțimea numerelor reale.
- d) $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i^2 = -1\}$ mulţimea numerelor complexe.

Observația 4. În exemplul 3 nu este reprezentată și mulțimea \mathbb{R} în acord cu ideile pe care le-am introdus. O astfel de reprezentare este posibilă, dar greu de urmărit în acest moment.

Definiția 5. Spunem că mulțimea A este **inclusă** în mulțimea B dacă orice element al lui A îi aparține și lui B. Această situație este descrisă și de exprimarea "A este submulțime a mulțimii B".

Desemnăm situația în care mulțimea A este inclusă în mulțimea B prin notația $A \subset B$.

Observația 6. Dacă $A \subset B$, putem avea A = B sau nu. Dacă nu are loc egalitatea celor două mulțimi, spunem că A este inclusă strict în B și scriem $A \subseteq B$.

Observația 7. Dată fiind o mulțime M și o proprietate \mathcal{P} care are sens pentru cel puțin unul dintre elementele lui M, admitem că $\{x \in M : x$ are proprietatea $\mathcal{P}\}$ este o submulțime a lui M. Acest lucru conferă legitimitate manierei "analitice" de prezentare a mulțimilor pe care am amintit-o mai sus³.

Observația 8. Mulțimile A și B sunt egale dacă și numai dacă $A \subset B$ și $B \subset A$.

O consecință foarte importantă a observației 8 este următoarea:

Observația 9. Întotdeauna egalitatea de mulțimi se demonstrează prin dublă incluziune.

Observația 10. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$. Niciuna dintre aceste incluziuni nu este egalitate.

Definiția 11. Considerăm că există o mulțime care nu are niciun element. Ea se notează cu \emptyset și se numește **mulțimea vidă**.

 $^{^2\}mathrm{pe}$ care am fixat originea și unitatea

 $^{^3}$ Atragem atenția asupra faptului că, în lipsa unei mulțimi inițiale M în cadrul căreia să punem problema elementelor cu proprietatea \mathcal{P} , nu avem garanția că acestea constituie o mulțime. Persistența în a lucra cu astfel de "mulțimi" poate conduce la paradoxuri.

Observația 12. Pentru orice mulțime M avem $\emptyset = \{x \in M: x \neq x\}$. Prin urmare, $\emptyset \subset M$.

Se consideră că, dată fiind o mulțime M, submulțimile sale constituie o mulțime.

Definiția 13. Dată fiind mulțimea M, mulțimea $\{A : A \subset M\}$ se numește **mulțimea părților lui** M. Vom nota această mulțime cu $\mathcal{P}(M)$.

2. Principiul inducției

O proprietate fundamentală a mulțimii numerelor naturale, care ne oferă o puternică metodă pentru demonstrația de afirmații și pentru construcția de obiecte, este următoarea⁴:

Principiul inducției: Dacă M este o submulțime a lui $\mathbb N$ cu proprietățile

Prezentăm mai jos două consecințe ale acestui principiu. Acestea stau la baza abordării practice a demonstrațiilor prin inducție matematică.

Teorema 14. Fie P un predicat de variabilă naturală și $n_0 \in \mathbb{N}$ astfel $\hat{n}nc\hat{a}t$:

```
1) P(n_0)

\S i

2) \forall k \ge n_0 \quad P(k) \Rightarrow P(k+1),

atunci \forall n \ge n_0 \quad P(n).
```

Teorema 15. Fie P un predicat de variabilă naturală și $n_0 \in \mathbb{N}$ astfel \hat{n} ncât:

⁴ Principiul inducției este o consecință imediată a axiomaticii teoriei mulțimilor, fie că se utilizează axioma mulțimilor infinite, fie că se pornește de la axiomele lui Peano

3. Operații cu mulțimi

În fiecare dintre situațiile care urmează, în lipsa vreunei alte mențiuni, vom considera că există o mulțime "mare" care conține toate mulțimile în discuție.

Considerăm mulțimile A și B.

Definiția 16. Mulțimea $A \cup B = \{x : x \in A \lor x \in B\}$ se numește **reuniunea** mulțimilor A și B.

Definiția 17. Mulțimea $A \cap B = \{x : x \in A \land x \in B\}$ se numește intersecția mulțimilor A și B.

Definiția 18. Dacă $A \cap B = \emptyset$, spunem că mulțimile A și B sunt disjuncte.

Definiția 19. Mulțimea $A \setminus B = \{x : x \in A \land x \notin B\}$ se numește **diferența** mulțimilor A și B.

Definiția 20. $(a,b) \stackrel{\text{def}}{=} \{\{a\}, \{a,b\}\}\$ se numește **perechea ordonată** determinată de elementele a și b.

Observația 21. Drept consecință a axiomelor teoriei mulțimilor obținem în acest context faptul că toate perechile ordonate (a,b) cu $a \in A$ și $b \in B$ constituie o mulțime.

Definiția 22. $A \times B = \{(a,b) : a \in A \land b \in B\}$ se numește **produsul** cartezian al mulțimilor A și B.

Propoziția 23. Pentru orice mulțimi A, B și C au loc relațiile:

- a) $A \cap B \subset A \subset A \cup B$.
- b) $A \cup B = B \cup A$; $A \cap B = B \cap A$.
- c) $(A \cup B) \cup C = A \cup (B \cup C)$; $(A \cap B) \cap C = A \cap (B \cap C)$.
- d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- e) $A \times (B \cup C) = (A \times B) \cup (A \times C)$; $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Exercițiul 24. Demonstrați propoziția 23!

Punctul c) al propoziției 23 ne sugerează următoarele definiții:

Definiția 25.
$$A \cup B \cup C \stackrel{\text{def}}{=} (A \cup B) \cup C;$$
 $A \cap B \cap C \stackrel{\text{def}}{=} (A \cap B) \cap C.$

Fie E o multime.

Definiția 26. Pentru $A \subset E$, definim complementara lui A în raport cu E ca fiind mulțimea $E \setminus A$.

Notația utilizată pentru complementara lui A în raport cu E este C_EA . Dacă E este subînțeleasă în context, atunci complementara lui A în raport cu E se mai notează și CA sau \overline{A} .

Regulile lui de Morgan: Dacă $A, B \subset E$, atunci:

$$\mathsf{C}_E(A \cup B) = (\mathsf{C}_E A) \cap (\mathsf{C}_E B) \quad \text{si} \quad \mathsf{C}_E(A \cap B) = (\mathsf{C}_E A) \cup (\mathsf{C}_E B).$$

Exercițiul 27. Demonstrați regulile lui de Morgan!

Definiția 28. Dacă E este o mulțime înzestrată cu o lege de compoziție \circ , iar $A, B \subset E$, definim $A \circ B = \{a \circ b : a \in A \land b \in B\}$. Dacă $a \in E$, notăm $a \circ E$ (respectiv, $E \circ a$) în loc de $\{a\} \circ E$ (respectiv, de $E \circ \{a\}$).

Exemplul 29. a) $\{1,2,3\} + \{10,20\} = \{11,12,13,21,22,23\}$

- b) $\{1, 2, 3\} \{10, 20\} = \{-19, -18, -17, -9, -8, -7\}$
- c) $\{1, 2, 3\} \cdot \{10, 20\} = \{10, 20, 30, 40, 60\}$
- d) $2\mathbb{Z}$ = mulţimea numerelor întregi pare.
- e) $3\mathbb{Z} + 1 = \text{mulțimea}$ acelor numere întregi care prin împărțire la 3 dau restul 1.
- f) $\{-1,1\} \cdot \mathbb{N} = \mathbb{Z}$.

4. FAMILII DE MULŢIMI

Pentru generalizarea chestiunilor din paragraful precedent, este necesară o modalitate de a gestiona "multe" mulțimi. Una dintre cele mai frecvente abordări ale chestiunii este următoarea⁵:

Definiția 30. Prin familie de mulțimi indexată după mulțimea I înțelegem o funcție definită pe I și ale cărei valori sunt mulțimi.

Vom nota familia mulţimilor M_i , $i \in I$, cu $(M_i)_{i \in I}$.

O consecință imediată a axiomelor teoriei mulțimilor este aceea că putem defini reuniunea oricărei mulțimi de mulțimi. Este legitimă deci:

Definiția 31. Prin **reuniunea** familiei de mulțimi $(M_i)_{i \in I}$ înțelegem mulțimea $\{x : \exists i \in I \ x \in M_i\}$.

Notația pe care o vom folosi pentru reuniunea familiei de mulțimi $(M_i)_{i\in I}$ este $\bigcup_{i\in I} M_i$. În situația în care $I=\{1,2,\ldots,n\}$, reuniunea

⁵ Pentru a plasa aceste considerații imediat după cele pe care le generalizează, utilizăm aici noțiunea de funcție; aceasta este definită în cursul 3, iar definiția respectivă nu se bazează pe chestiunile din acest paragraf.

6 G. MINCU

familiei menționate se notează și $\bigcup_{i=1}^n M_i$, iar dacă $I=\mathbb{N}$, reuniunea

familiei
$$(M_i)_{i \in I}$$
 se notează și $\bigcup_{i=1}^{\infty} M_i$ sau $\bigcup_{i \geq 1} M_i$

Definiția 32. Prin **intersecția** familiei de mulțimi $(M_i)_{i \in I}$ înțelegem mulțimea $\{x : \forall i \in I \ x \in M_i\}$.

Notația pe care o vom folosi pentru intersecția familiei de mulțimi $(M_i)_{i\in I}$ este $\bigcap_{i\in I} M_i$. În situația în care $I=\{1,2,\ldots,n\}$, intersecția

familiei menționate se notează și $\bigcap_{i=1}^n M_i$, iar dacă $I=\mathbb{N}$, intersecția

familiei
$$(M_i)_{i \in I}$$
 se notează și $\bigcap_{i=1}^{\infty} M_i$ sau $\bigcap_{i > 1} M_i$

Afirmațiile propoziției 23 se generalizează astfel:

Propoziția 33. Pentru orice familie de mulțimi $(A_i)_{i \in I}$ și pentru orice mulțime B au loc relațiile⁶:

a')
$$\forall i \in I \quad \bigcap_{i \in I} A_i \subset A_i \subset \bigcup_{i \in I} A_i$$
.

c') Dacă $I=\bigcup_{j\in J}I_j$, iar mulțimile familiei $(I_j)_{j\in J}$ sunt disjuncte două câte două, atunci

$$\bigcup_{i \in I} A_i = \bigcup_{j \in J} \left(\bigcup_{i \in I_j} A_i \right) \quad \text{si} \quad \bigcap_{i \in I} A_i = \bigcap_{j \in J} \left(\bigcap_{i \in I_j} A_i \right).$$

$$d') \ B \cap \left(\bigcup_{i \in I} A_i \right) = \bigcup_{i \in I} (B \cap A_i) \quad \text{si} \quad B \cup \left(\bigcap_{i \in I} A_i \right) = \bigcap_{i \in I} (B \cup A_i).$$

$$e') \ B \times \left(\bigcup_{i \in I} A_i \right) = \bigcup_{i \in I} (B \times A_i) \quad \text{si} \quad B \times \left(\bigcap_{i \in I} A_i \right) = \bigcap_{i \in I} (B \times A_i).$$

Toate considerațiile anterioare sunt, desigur, valabile și pentru familii de submulțimi ale unei mulțimi date. În acest context funcționează următoarea variantă generalizată a regulilor lui de Morgan:

$$\bigcup_{i \in I} A_{\sigma(i)} = \bigcup_{i \in I} A_i \text{ şi } \bigcap_{i \in I} A_{\sigma(i)} = \bigcap_{i \in I} A_i.$$

⁶Punctul b) al propoziției 23 se generalizează la:

b') Pentru orice funcție bijectivă $\sigma: I \to I$,

Propoziția 34. Dată fiind familia $(A_i)_{i\in I}$ de submulțimi ale mulțimii E, au loc relațiile:

$$\mathbb{C}_E\left(\bigcup_{i\in I}A_i\right) = \bigcap_{i\in I}\mathbb{C}_EA_i \quad \text{si} \quad \mathbb{C}_E\left(\bigcap_{i\in I}A_i\right) = \bigcup_{i\in I}\mathbb{C}_EA_i$$

Bibliografie

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] P. Halmos, Naive set theory, Springer Verlag, 1960.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.
- [4] C. Năstăsescu, *Introducere în teoria mulțimilor*, Ed. Didactică și Pedagogică, București, 1974.