Digital Speech and Audio Processing 2016-2017

Project 3: Real-time LPC vocoder

Realtime Audio processing: input-output handling strategies

1. File-based processing (typical Matlab use):

→ pre-recorded audio, full signal is known at processing time

1. File-based processing (typical Matlab use):

1. File-based processing (typical Matlab use):

1. File-based processing (typical Matlab use):

Sample-based processing:

→ Samples are immediately processed as they come in

Sample-based processing:

Sample-based processing:

Pro

- Low(est) I/O latency, realtime processing possible
- I/O operations require minimal amount of memory

Con

- - Limited amount of processing time available (1 sample)
 - Restricted to purely causal processing (no look-ahead)
 - Some algorithms are only updated once every N samples, but this update only has 1 sample processing time.
 - May lead to non-uniform processor load with short and high peaks → inefficient use of processor

03/05/2017 Pag.9 Real-time processing

Block-based processing:

Samples are buffered and processed in blocks

Block-based processing:

Block-based processing:

LPC-based vocoder

Vrije Universiteit Brussel

Linear Predictive Coding

Linear Predictive Coding

- Signal S(z) = E(z) H(z) (filtered version of source)
- Filter H(z)

•
$$H(z) = \frac{1}{1 + \sum_{i=1}^{O} a_i z^{-i}} -> s(n) = \sum_{i=1}^{O} a_i s(n-i) + e(n)$$

- Determines spectral envelope (phoneme)
- Source E(z)
 - e(n) = part of s(n) that cannot be predicted with LP
 - Theoretically a periodic impulse train or white noise (more complex in reality)
 - Determines F0 (pitch)

LPC vocoder in music

- LPC analysis on speech
 - $H_{speech}(z)$, $E_{speech}(z)$
 - $g_{speech} = \sqrt{\sum e_{speech}^2(n)}$
- LPC analysis on instrument
 - $H_{instr}(z)$, $E_{instr}(z)$
 - $g_{instr} = \sqrt{\sum e_{instr}^2 (n)}$
- $S_{out}(z) = E_{instr}(z) \frac{g_{speech}}{g_{instr}} H_{speech}(z)$
 - Apply spectral envelope of speech (phoneme) on instrument
 - Apply amplitude dynamics of speech on instrument
 - Keep pitch of instrument
 - Makes instrument "talk"

LPC vocoder in music

Examples

- Daft Punk Instant Crush https://www.youtube.com/watch?v=a5uQMwRMHcs
- Kavinsky Nightcall https://www.youtube.com/watch?v=MV_3Dpw-BRY
- Mogwai Hunted by a freak https://www.youtube.com/watch?v=Pbx6J3kw_PI
- Imogen Heap Hide And Seek https://www.youtube.com/watch?v=UYIAfiVGluk
- Neil Young Transformer Man https://www.youtube.com/watch?v=eblFQppJfyg

Assignment

- Make matlab function
 - $out = vocodeLPC(in_{speech}, in_{instr}, O_{LPC})$
 - *out* = output frame
 - in_{speech} = input speech frame (windowed)
 - in_{inst} = input instrument frame (windowed)
 - O_{LPC} = LPC order
- Use built-in matlab function lpc()
- Test offline using testVocoder.m
- Test real-time using rtVocoder.m
 - Matlab, directSound -> Latency!!!

LPC vocoder

Example

Modulator	Carrier	Output

M83 - Starwaves