1 Vectors

Vectors have a magnitude (length) and direction.

 $\vec{u}~\&~\vec{v}$ have the same direction and magnitude, ... they are equivalent.

Zero Vector \vec{O} has length zero.

Vectors appear in forces, position, velocity, acceleration, torque, displacement, images.

 $\underline{\operatorname{Sums}}\ \vec{\vec{u}} + \vec{v} = \vec{v} + \vec{u}$

Scalar Multiplication

- If $c \in \mathbb{R}$, then vector $c\vec{v}$ has length —c— times the length of \vec{v} and
 - the same direction as \vec{v} if c > 0
 - opposite direction as \vec{v} if c < 0
- If c = 0 or $\vec{v} = \vec{o}$, then $c\vec{v} = 0$

Ex: Consider \vec{u} and \vec{v} . Sketch $2\vec{u} - \vec{v}$

Components

Sketch vectors equivalent to $\vec{a} = <2, -1>$

Choose any initial position in the graph. So long as it obeys the magnitude and direction of the vector it is valid.

Unmarked in the graph is the point $o\vec{P}$ which is the position vector for point P, otherwise known as the origin.

Find components of the vector \vec{a} that has the following:

Initial Point: (3,1)Terminal Point: (-2,5)

Vector \vec{a} has point (-2-3, 5-1) = (-5, 4)

Find components of the vector \vec{b} that has the following:

Initial Point: (1,2,3)

Terminal Point: (-2, 5, -7)

Vector \vec{a} has point (-2-1,5-2,-7-3)=(-3,3,-10)

To sum up, In general \vec{AB} has components $B(x_2,y_2),\ A(x_1,y_1)$ and is the result of $\vec{AB}=< x_2-x_1,y_2-y_1>$

Vector \vec{ABC} has components $B(x_2,y_2,z_2),~A(x_1,y_1,z_1).$ It is the result of $\vec{ABC}=< x_2-x_1,y_2-y_1,z_2-z_1>$