Dynamic Programming

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
 - Rather than give the general structure, let us first give a motivating example:
 - Matrix Chain-Products
- Review: Matrix Multiplication.
 - C = A *B
 - $A ext{ is } d imes e ext{ and } B ext{ is } e imes f$

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j]$$

■ *O*(*def*) time

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- \bullet A_i is d_i × d_{i+1}
- Problem: How to parenthesize?

Example

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes 1500 + 75 = 1575 ops
- B*(C*D) takes 1500 + 2500 = 4000 ops

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_0*A_1*...*A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best

Running time:

- The number of paramethesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm!

A Greedy Approach

- Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - But A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

- Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.
 Dynamic Programming

A "Recursive" Approach

- Define subproblems:
 - Find the best parenthesization of A_i*A_{i+1}*...*A_i.
 - Let N_{i,j} denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is $N_{0,n-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0^*...*A_i)*(A_{i+1}^*...*A_{n-1})$.
 - Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,i} is the following:

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- N_{i,i}'s are easy, so start with them
- Then do length 2,3,... subproblems, and so on.
- Running time: O(n³)

Algorithm *matrixChain(S)*:

Input: sequence *S* of *n* matrices to be multiplied

Output: number of operations in an optimal paranethization of *S*

```
for i \leftarrow 1 to n\text{-}1 do N_{i,i} \leftarrow 0 for b \leftarrow 1 to n\text{-}1 do for \ i \leftarrow 0 \text{ to } n\text{-}b\text{-}1 \text{ do} j \leftarrow i\text{+}b N_{i,j} \leftarrow \text{+infinity} for k \leftarrow i to j\text{-}1 do N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}
```

A Dynamic Programming Algorithm Visualization

answer

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the N table takes O(n) time.
- ◆ Total run time: O(n³)
- Getting actual
 parenthesization can be
 done by remembering
 "k" for each N entry

Matrix Chain algorithm

Algorithm *matrixChain*(*S*): **Input:** sequence *S* of

Input: sequence S of n matrices to be

multiplied

Output: # of multiplications in optimal

parenthesization of S

for
$$i \leftarrow 0$$
 to n -1 do

$$N_{i,i} \leftarrow 0$$

for $b \leftarrow 1$ to n-1 do // b is # of ops in S for $i \leftarrow 0$ to n-b-1 do

$$j \leftarrow i + b$$

$$N_{i,i} \leftarrow + infinity$$

for $k \leftarrow i$ to j-1 do

$$\mathbf{sum} = N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}$$

if $(\mathbf{sum} < N_{i,j})$ then

$$N_{i,j} \leftarrow \mathbf{sum}$$

 $O_{i,j} \leftarrow k$

return $N_{0,n-1}$

Example: ABCD

- A is 10 × 5
- B is 5 × 10
- C is 10 × 5
- D is 5 × 10

N	0	1	2	3
0	0	500 ₀	500 ₀	1000 2
	Α	AB	A(BC)	(A(BC))D
1		0	250 ₀	500 ₁
		В	ВС	(BC)D
2			0	500 ₀
			С	CD
3				0
				D

Example: ABCD

- A is 10 × 5
- B is 5 × 10
- C is 10 × 5
- D is 5 × 10

N	0	1	2	3
0	0	500 ₀	500 ₀	1000 2
	Α	AB	A(BC)	(A(BC))D
1		0	250 ₀	500 ₁
		В	ВС	(BC)D
2			0	500 ₀
_			С	CD
3				0
				D

```
// return expression for multiplying
// matrix chain A<sub>i</sub> through A<sub>i</sub>
\exp(i,j)
   if (i=j) then
                       // base case, 1 matrix
      return 'A_i'
   else
      k = O[i,j] // see red values on left
      S1 = \exp(i,k) // 2 recursive calls
      S2 = \exp(k+1,j)
      return '(' S1 S2 ')'
```

Conclusions

- Dynamic programming is a useful technique for solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- Running time

Naïve algorithm: O(4ⁿ)

DP: $O(n^3)$