

Corso di Laurea Magistrale in Ingegneria Informatica

CORSO DI ALGORITMI E STRUTTURE DATI

Prof. ROBERTO PIETRANTUONO

Indicazioni

Si consegni un file in **formato editabile (.txt, .docx, .rtf, etc.)** nominandolo "CognomeNome", in cui è riportata l'implementazione (nel linguaggio scelto) seguita da una indicazione della complessità temporale dell'algoritmo implementato (complessità nel caso peggiore, è sufficiente il limite superiore O(f(n))). Se si utilizzano librerie di cui non si conosce la complessità, lo si indichi nella spiegazione (ad esempio, "la complessità è $O(n \log n)$ al netto della complessità dell'algoritmo x, che è non nota"). Se si utilizza la randomizzazione, si indichi anche il tempo di esecuzione atteso.

PROBLEMA 1

Si richiede di analizzare un particolare algoritmo di ordinamento. L'algoritmo elabora una sequenza di n interi distinti scambiando due elementi adiacenti finché la sequenza non viene ordinata in ordine crescente. Per la sequenza di input: 91054, l'algoritmo produce l'output 01459.

Bisogna determinare quante operazioni di scambio sono necessarie a quest'algoritmo per ordinare una determinata sequenza di input.

INPUT

L'input contiene diversi casi di test. Ogni test case inizia con una riga che contiene un singolo intero n < 500.000 — la lunghezza della sequenza di input. Ciascuna delle seguenti n righe contiene un singolo intero $0 \le a[i] \le 999.999.999$. L'immissione termina con una sequenza di lunghezza n = 0, che chiaramente non deve essere elaborata.

OUTPUT

Per ogni sequenza di input, il programma stampa una singola riga contenente il numero minimo di operazioni di scambio necessarie per ordinare la sequenza di input data.

Sample Input

5 9

1

5

4 3

1 2

3

Sample Output

6

0