5/31/2015 Coursera

Feedback — Quiz 2

Help Center

Thank you. Your submission for this guiz was received.

You submitted this quiz on **Sun 17 May 2015 7:15 AM PDT**. You got a score of **12.00** out of **12.00**.

Question 1

Load the Alzheimer's disease data using the commands:

```
library(AppliedPredictiveModeling)
library(caret)
data(AlzheimerDisease)
```

Which of the following commands will create training and test sets with about 50% of the observations assigned to each?

```
Your Answer
                                                                                   Explanation
                                                                      Score
adData = data.frame(diagnosis,predictors)
trainIndex = createDataPartition(diagnosis, p = 0.50)
training = adData[trainIndex,]
testing = adData[-trainIndex,]
adData = data.frame(predictors)
trainIndex = createDataPartition(diagnosis,p=0.5,list=FALSE)
training = adData[trainIndex,]
testing = adData[-trainIndex,]
0
                                                                      3.00
adData = data.frame(diagnosis,predictors)
trainIndex = createDataPartition(diagnosis, p = 0.50,list=FALS
E)
training = adData[trainIndex,]
```

testing = adData[-trainIndex,]

5/31/2015 Coursera

```
adData = data.frame(diagnosis,predictors)
trainIndex = createDataPartition(diagnosis,p=0.5,list=FALSE)
training = adData[trainIndex,]
testing = adData[trainIndex,]

Total

3.00 /
3.00
```

Question 2

Load the cement data using the commands:

```
library(AppliedPredictiveModeling)
data(concrete)
library(caret)
set.seed(975)
inTrain = createDataPartition(mixtures$CompressiveStrength, p = 3/4)[[1]]
training = mixtures[ inTrain,]
testing = mixtures[-inTrain,]
```

Make a histogram and confirm the SuperPlasticizer variable is skewed. Normally you might use the log transform to try to make the data more symmetric. Why would that be a poor choice for this variable?

Your Answer	Score	Explanation
• There are values of zero so when you take the log() transform those values will be -Inf.	3.00	
The log transform produces negative values which can not be used by some classifiers.		
The SuperPlasticizer data include negative values so the log transform can not be performed.		
The log transform is not a monotone transformation of the data.		
Total	3.00 / 3.00	

Question 3

Load the Alzheimer's disease data using the commands:

```
library(caret)
library(AppliedPredictiveModeling)
set.seed(3433)
data(AlzheimerDisease)
adData = data.frame(diagnosis,predictors)
inTrain = createDataPartition(adData$diagnosis, p = 3/4)[[1]]
training = adData[ inTrain,]
testing = adData[-inTrain,]
```

Find all the predictor variables in the training set that begin with IL. Perform principal components on these variables with the preProcess() function from the caret package. Calculate the number of principal components needed to capture 80% of the variance. How many are there?

Your Answer	Score	Explanation
<u>0</u> 10		
⊙ 7	3.00	
<u>12</u>		
9		
Total	3.00 / 3.00	

Question 4

Load the Alzheimer's disease data using the commands:

```
library(caret)
library(AppliedPredictiveModeling)
set.seed(3433)
data(AlzheimerDisease)
adData = data.frame(diagnosis,predictors)
inTrain = createDataPartition(adData$diagnosis, p = 3/4)[[1]]
```

5/31/2015 Coursera

training = adData[inTrain,]
testing = adData[-inTrain,]

Create a training data set consisting of only the predictors with variable names beginning with IL and the diagnosis. Build two predictive models, one using the predictors as they are and one using PCA with principal components explaining 80% of the variance in the predictors. Use method="glm" in the train function. What is the accuracy of each method in the test set? Which is more accurate?

Your Answer	s	core	Explanation
Non-PCA Accuracy: 0.65	✓ 3.	.00	
PCA Accuracy: 0.72			
Non-PCA Accuracy: 0.91			
PCA Accuracy: 0.93			
Non-PCA Accuracy: 0.72			
PCA Accuracy: 0.71			
Non-PCA Accuracy: 0.74			
PCA Accuracy: 0.74			
Total	3	.00 / 3.00	