5. Evaluation

Hyunseung Cha

Benchmarks

	GPT-4	GPT-3.5	LM SOTA	SOTA
	Evaluated few-shot	Evaluated few-shot	Best external LM evaluated few-shot	Best external model (incl. benchmark-specific tuning)
MMLU [49]	86.4%	70.0%	70.7%	75.2%
Multiple-choice questions in 57 subjects (professional & academic)	5-shot	5-shot	5-shot U-PaLM [50]	5-shot Flan-PaLM [51]
HellaSwag [52]	95.3%	85.5%	84.2%	85.6
Commonsense reasoning around everyday events	10-shot	10-shot	LLaMA (validation set) [28]	ALUM [53]
AI2 Reasoning Challenge (ARC) [54]	96.3%	85.2%	85.2%	86.5%
Grade-school multiple choice science questions. Challenge-set.	25-shot	25-shot	8-shot PaLM [55]	ST-MOE [18]
WinoGrande [56]	87.5%	81.6%	85.1%	85.1%
Commonsense reasoning around pronoun resolution	5-shot	5-shot	5-shot PaLM [3]	5-shot PaLM [3]
HumanEval [43]	67.0%	48.1%	26.2%	65.8%
Python coding tasks	0-shot	0-shot	0-shot PaLM [3]	CodeT + GPT-3.5 [57]
DROP [58] (F1 score)	80.9	64.1	70.8	88.4
Reading comprehension & arithmetic.	3-shot	3-shot	1-shot PaLM [3]	QDGAT [59]
GSM-8K [60]	92.0%*	57.1%	58.8%	87.3%
Grade-school mathematics questions	5-shot chain-of-thought	5-shot	8-shot Minerva [61]	Chinchilla + SFT+ORM-RL, ORM reranking [62]

Astronomy

What is true for a type-Ia supernova?

- A. This type occurs in binary systems.
- B. This type occurs in young galaxies.
- C. This type produces gamma-ray bursts.
- D. This type produces high amounts of X-rays.

Answer: A

High School Biology

In a population of giraffes, an environmental change occurs that favors individuals that are tallest. As a result, more of the taller individuals are able to obtain nutrients and survive to pass along their genetic information. This is an example of

- A. directional selection.
- B. stabilizing selection.
- C. sexual selection.
- D. disruptive selection

Answer: A

Collection of benchmarks

Knowledge and Language Understanding

Massive Multitask Language Understanding (MMLU)

- Description: Measures general knowledge across 57 different subjects, ranging from STEM to social sciences.
- Purpose: To assess the LLM's understanding and reasoning in a wide range of subject areas.
- Relevance: Ideal for multifaceted AI systems that require extensive world knowledge and problem solving ability.
- Source: Measuring Massive Multitask Language Understanding
- Resources:
 - MMLU GitHub
 - MMLU Dataset

AI2 Reasoning Challenge (ARC)

- Description: Tests LLMs on grade-school science questions, requiring both deep general knowledge and reasoning abilities.
- Purpose: To evaluate the ability to answer complex science questions that require logical reasoning.
- Relevance: Useful for educational Al applications, automated tutoring systems, and general knowledge assessments.
- Source: Think you have Solved Question Answering? Try ARC, the Al2 Reasoning Challenge
- · Resources:
 - ARC Dataset: HuggingFace
 - ARC Dataset: Allen Institute

EleutherAl Im evaluation

https://github.com/EleutherAl/Im-evaluation-harness

실제로 제일 자주 참고하고 쓴 것

ROUGE: Recall-Oriented Understudy Gisting Evaluation

텍스트 요약의 품질 평가 방법.

기계가 생성한 요약을 인간이 작성한 참고 요약과 비교하여 얼마나 유사한지를 측정. ROUGE는 Recall을 중심으로 평가.

1. ROUGE-N: n-그램의 일치도를 측정합니다. 여기서 N은 1, 2, 3 등 다양한 값이 될 수 있습니다.

$$m ROUGE-N = rac{
m Az~ 요약의~ n$$
-그램 중 기계 요약에 포함된 $m n$ -그램 수 $m Az~ 요약의~ n$ -그램 수

2. ROUGE-L: 장문 공통 서브시퀀스(Longest Common Subsequence, LCS)를 사용하여 측정합니다. LCS 는 두 텍스트에서 순서를 유지하면서 가장 긴 공통 부분을 찾는 방법입니다.

$$ext{ROUGE-L} = rac{LCS(참고 요약, 기계 요약)}{ ext{참고 요약의 단어 수}}$$

3. **ROUGE-S**: 빅람(그랩)과 스킵-빅람(Skip-Bigram)을 사용합니다. 스킵-빅람은 원래 순서를 유지하면서 단어를 건너뛸 수 있는 빅람입니다.

$${
m ROUGE-S} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S} - {
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S}}{{
m AUG-S}} = rac{{
m AUGE-S}}{{
m AUGE-S}} = rac{{
m AUGE-S}}{{
m AUGE-S$$

ROUGE: Recall-Oriented Understudy Gisting Evaluation

```
import evaluate
# Load the ROUGE evaluation metric
rouge = evaluate.load('rouge')
# Define the candidate predictions and reference sentences
predictions = ["hello there", "general kenobi"]
references = ["hello there", "general kenobi"]
# Compute the ROUGE score
results = rouge.compute(predictions=predictions, references=references)
# Print the results
print(results)
```

```
{'rougel': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
```

BLEU: Bilingual Evaluation Understudy

기계 번역의 품질을 평가하는 방법.

번역된 문장을 사람의 번역(참고 번역)과 비교하여 얼마나 유사한지를 측정.

주로 번역의 정확성을 객관적으로 평가하기 위해 사용

1. 정밀도(Precision): 기계 번역에서 참고 번역과 일치하는 n-그램의 비율입니다.

$${
m Precision} = rac{$$
기계 번역의 ${
m n}$ -그램 중 일치하는 ${
m n}$ -그램 수 기계 번역의 ${
m n}$ -그램 수

2. 클립된 정밀도(Clipped Precision): 각 n-그램이 참고 번역에서 최대 몇 번 일치할 수 있는지를 제한하여 계산합니다.

예를 들어, 참고 번역에 "the cat"이 한 번만 등장하면, 기계 번역에 "the cat"이 여러 번 등장해도 한 번만 일 치로 계산합니다.

3. 브레버티 페널티(Brevity Penalty, BP): 기계 번역이 너무 짧은 경우 페널티를 줍니다.

$$\mathrm{BP} = egin{cases} 1 & ext{if } c > r \ e^{(1-rac{r}{c})} & ext{if } c \leq r \end{cases}$$

$$ext{BLEU} = ext{BP} \cdot \exp\left(\sum_{n=1}^N w_n \log p_n
ight)$$

여기서 c는 기계 번역의 총 단어 수, r는 참고 번역의 총 단어 수입니다.

BLEU: Bilingual Evaluation Understudy

```
import evaluate
# Define the candidate predictions and reference sentences
predictions = ["hello there general kenobi", "foo bar foobar"]
references = [["hello there general kenobi", "hello there !"],["foo bar foobar"]
# Load the BLEU evaluation metric
bleu = evaluate.load("bleu")
# Compute the BLEU score
results = bleu.compute(predictions=predictions, references=references)
# Print the results
print(results)
{'bleu': 1.0,
 'precisions': [1.0, 1.0, 1.0, 1.0],
 'brevity_penalty': 1.0,
 'length_ratio': 1.166666666666667,
 'translation length': 7,
 'reference_length': 6}
```

Metrics by types

Туре	Description	Example Metrics
Diversity	Examines the versatility of foundation models in responding to different types of queries	Fluency, Perplexity, ROUGE scores
User Feedback	Goes beyond accuracy to look at response quality in terms of coherence and usefulness	Coherence, Quality, Relevance
Ground Truth- Based Metrics	Compares a RAG system's responses to a set of predefined, correct answers	Accuracy, F1 score, Precision, Recall
Answer Relevance	How relevant the LLM's response is to a given user's query.	Binary classification (Relevant/Irrelevant)
QA Correctness	Based on retrieved data, is an answer to a question correct?	Binary classification (Correct/Incorrect)
Hallucinations	Looking at LLM hallucinations with regard to retrieved context	Binary classification (Factual/Hallucinated)
Toxicity	Are responses racist, biased, or toxic?	Disparity Analysis, Fairness Scoring, Binary classification (Non- Toxic/Toxic)

문제점

- Benchmark 가 너무 다양하고, Benchmark 점수가 높다고 내가 원하는 성능도 좋다는 보장이 없음
- Abusing 이 심하고, 모델 발전에 따라 Benchmark 점수 인플레이션이 생김 (MMLU 이후 MMLU pro 가 나옴)
- LLM 을 쓸 때, 결과가 좋지 않으면 다시 묻는 등 prompt engineering 이 잘 반영되지 않았음
- 최종 사용자가 사람이고, 정답이 명확하지 않은 태스크는 결국 사람이 평가해야 (조금 더) 확신할 수 있음
- 사람이 일일이 (거의) 모든 케이스에 대해 평가하는 것은 불가능에 가까움

Abusing?

벤치마크 출처: https://github.com/GAIR-NLP/AIME-Preview

LLM as a Judge

https://velog.io/@you-genie/MT-Bench

MT bench

LLM as a judge 에서 Multi turn 성능을 측정

(LLM 끼리 얼마나 일치하는지, LLM - 사람 간에 얼마나 일치하는지)

Table 1: Sample multi-turn questions in MT-bench.

Category		Sample Questions
Writing	1st Turn	Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions.
	2nd Turn	Rewrite your previous response. Start every sentence with the letter A.
Math	1st Turn	Given that $f(x) = 4x^3 - 9x - 14$, find the value of $f(2)$.
	2nd Turn	Find x such that $f(x) = 0$.
Knowledge	1st Turn	Provide insights into the correlation between economic indicators such as GDP, inflation, and unemployment rates. Explain how fiscal and monetary policies
	2nd Turn	Now, explain them again like I'm five.

MultiChallenge

Evaluation for multi turn conversation with user

FLASK: Alignment skill sets

LM 의 언어 능력을 역량별로 나눠서 평가할 수 있도록.

기존 유명 벤치보다 최에 나왔고, 근래 많이 쓰임.

모델 간 입체적으로 비교할 수 있음

LMSYS Chatbot Arena Leaderboard

Rank* (UB)	A Rank (StyleCtrl)	Model	Arena Score	95% CI 🔺	Votes *	Organization *	License
1		Grok-3-Preview-92-24	1406	+8/-6	9109	xAI	Proprietary
1	1	GPT-4.5-Preview	1400	+5/-6	8596	OpenAI	Proprietary
3		Gemini-2.0-Flash-Thinking-Exp-01-21	1383	+6/-4	21124	Google	Proprietary
3	3	Gemini-2.0-Pro-Exp-02-05	1380	+4/-4	19038	Google	Proprietary
3		ChatGPT-4o-latest (2025-01-29)	1375	+6/-4	20936	OpenAI	Proprietary
6		DeepSeek-R1	1360	+7/-5	11507	DeepSeek	MIT
6		Gemini-2.0-Flash-001	1355	+4/-5	16845	Google	Proprietary
6		01-2024-12-17	1352	+4/-6	23441	OpenAI	Proprietary
8		Gemma-3-27B-it	1340	+8/-8	5028	Google	Gemma
9		Qwen2.5-Max	1339	+4/-5	15607	Alibaba	Proprietary
9	7	ol-preview	1335	+4/-4	33187	OpenAI	Proprietary

+ Routing to the most suitable LLM based on the task can improve the ELO score.

MixEval: Benchmark mixture

(상대적으로 신뢰도가 높은)
Chatbot Arena 과의 correlation
이 높고, 높은 correlation 을
고려했을 때 다른 벤치 마크 대비 필요 연산량이 작음.

Benchmark correlations (%) with Chatbot Arena Elo, against the total costs of evaluating a single GPT-3.5-Turbo-0125 model. MixEval and MixEval-Hard show the highest correlations with Arena Elo and Arena Elo (En) among leading benchmarks. We reference the crowdsourcing price for Amazon Mechanical Turk (\$0.05 per vote) when estimating the cost of evaluating a single model on Chatbot Arena (approximately \$2,936). Chatbot Arena is prohibitively expensive, while MixEval and MixEval-Hard are cheap and cost-effective alternatives. For more details, please refer to our paper.

Multilingual MMLU (MMMLU)

Language	o1-preview	gpt-4o-2024-08-06	o1-mini	gpt-4o-mini-2024-07-18
Arabic	0.8821	0.8155	0.7945	0.7089
Bengali	0.8622	0.8007	0.7725	0.6577
Chinese (Simplified)	0.8800	0.8335	0.8180	0.7305
English (not translated)	0.9080	0.8870	0.8520	0.8200
French	0.8861	0.8437	0.8212	0.7659
German	0.8573	0.8292	0.8122	0.7431
Hindi	0.8782	0.8061	0.7887	0.6916
Indonesian	0.8821	0.8344	0.8174	0.7452
Italian	0.8872	0.8435	0.8222	0.7640
Japanese	0.8788	0.8287	0.8129	0.7255
Korean	0.8815	0.8262	0.8020	0.7203
Portuguese (Brazil)	0.8859	0.8427	0.8243	0.7677
Spanish	0.8893	0.8493	0.8303	0.7737
Swahili	0.8479	0.7708	0.7015	0.6191
Yoruba	0.7373	0.6195	0.5807	0.4583

Evalchemy

Built-in Benchmarks

Available Tasks

- All tasks from LM Evaluation Harness
- Custom instruction-based tasks (found in eval/chat_benchmarks/):
 - MTBench: Multi-turn dialogue evaluation benchmark
 - o WildBench: Real-world task evaluation
 - RepoBench: Code understanding and repository-level tasks
 - MixEval: Comprehensive evaluation across domains
 - o IFEval: Instruction following capability evaluation
 - AlpacaEval: Instruction following evaluation
 - HumanEval: Code generation and problem solving
 - ZeroEval: Logical reasoning and problem solving
 - MBPP: Python programming benchmark
 - Arena-Hard-Auto (Coming soon): Automatic evaluation tool for instruction-tuned LLMs
 - o SWE-Bench (Coming soon): Evaluating large language models on real-world software issues
 - SafetyBench (Coming soon): Evaluating the safety of LLMs
 - Berkeley Function Calling Leaderboard (Coming soon): Evaluating ability of LLMs to use APIs

Hard Datasets

Recap: Evaluation Process

- 1. Metrics selection
 - a. Retrieval: Context relevance
 - b. Generation: Faithfulness (+correctness)
 - c. Latency
 - d. Toxicity-free
- 2. Evaluator preparation
 - a. Logging: Langsmith, Phoenix
 - b. LLM as a judge
 - c. Human evaluation
 - d. Benchmark dataset
- 3. Golden dataset (Synthetic data with LLM + Manual tuning)
- 4. Evaluation & feedback

OpenAl Evaluation

- 1. Metrics selection
 - a. Retrieval: Context relevance
 - b. Generation: Faithfulness (+correctness)
 - c. Latency
 - d. Toxicity-free
- 2. Evaluator preparation
 - a. Logging: Langsmith, Phoenix
 - b. LLM as a judge
 - c. Human evaluation
 - d. Benchmark dataset
- 3. Golden dataset (Synthetic data with LLM + Manual tuning)
- 4. Evaluation & feedback

Other metrics

Model + HW + SW

Batch, caching

Trend following? Update?

DeepSeek V3 updated

Gemini pro 2.5

Qwen 2.5 VL

Optional) LLM to detect hallucination (by lynx)

Figure 1: LLM-as-a-judge responses of GPT-4o, Claude-3-Sonnet and LYNX (70B) for a Question Answering example from HaluEval.

Optional) HaluBench

Optional) Long Context vs RAG?

Figure 1: While long-context LLMs (LC) surpass RAG in long-context understanding, RAG is significantly more cost-efficient. Our approach, SELF-ROUTE, combining RAG and LC, achieves comparable performance to LC at a much lower cost.

Optional) RAG 에서 Generation 이 문제인 경우

# Retrieved chunks	1	5	13	29	61	125	189	253	317	381
Recall@k \ Context Length	2k	4k	8k	16k	32k	64k	96k	128k	160k	192k
Databricks DocsQA	0.547	0.856	0.906	0.957	0.978	0.986	0.993	0.993	0.993	0.993
FinanceBench	0.097	0.287	0.493	0.603	0.764	0.856	0.916	0.916	0.916	0.916
NQ	0.845	0.992	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
HotPotQA	0.382	0.672	0.751	0.797	0.833	0.864	0.880	0.890	0.890	0.890
Average	0.468	0.702	0.788	0.839	0.894	0.927	0.947	0.95	0.95	0.95

Figure 1: Long context performance of GPT, Claude, Llama, Mistral and DBRX models on 4 curated RAG datasets (Databricks DocsQA, FinanceBench, HotPotQA and Natural Questions)

Optional) Multi hop question (HotPotQA style)

Question: "Which company was founded by the author of the book 'The Road Ahead'?"

Steps to answer:

- First hop: Identify the author of the book "The Road Ahead."
 - o The author is *Bill Gates*.
- 2. **Second hop**: Find out which company Bill Gates founded.
 - Bill Gates is the co-founder of *Microsoft*.

Answer: Microsoft.