1. 3.2d p.187

 M_1 recognizes $B = \{w \# w \mid w \in \{0,1\}^*\}$ so the input, 10#11, should be rejected:

q ₁ 10#11	q7x0#x1
xq₃0#11	xq ₁ 0#x1
x0q ₃ #11	xxq ₂ #x1
x0#q ₅ 11	xx#q ₄ x1
x0q ₆ #x1	xx#xq ₄ 1
xq ₇ 0#x1	xx#x1q _{reject}

2. 3.2e p.187

 M_1 recognizes $B = \{w \# w \mid w \in \{0,1\}^*\}$ so the input, 10#10, should be accepted:

q ₁ 10#10	xq ₁ 0#x0	xxq ₁ #xx
xq₃0#10	xxq ₂ #x0	xx#q ₈ xx
x0q₃#10	xx#q ₄ x0	xx#xq ₈ x
x0#q ₅ 10	xx#xq40	xx#xxq ₈
x0q ₆ #x0	xx#q ₆ xx	xx#xxq _{accept}
xq70#x0	xxq ₆ #xx	
q7x0#x0	xq ₇ x#xx	

4.

$$\delta(q_0, \#) = (q_1, \#, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, b) = (q_1, b, R)$$

$$\delta(q_1, \#) = (q_2, \#, R)$$

$$\delta(q_2, b) = (q_3, \#, L)$$

$$\delta(q_3, \#) = (q_4, \#, L)$$

$$\delta(q_4, b) = (q_5, b, R)$$

$$\delta(q_4, b) = (q_6, 0, R)$$

$$\delta(q_4, 0) = (q_6, 0, R)$$

$$\delta(q_6, *) = (q_7, 0, L)$$

$$\delta(q_7, 0) = (q_4, 0, L)$$

$$\delta(q_7, b) = (q_4, b, L)$$

$$\delta(q_4, \#) = (q_8, \#, R)$$

$$\delta(q_8, *) = (q_{accept}, b, L)$$

5. 3.5d p.188

No, by definition a Turing machine has q_{accept} and q_{reject} where $q_{accept} \neq q_{reject}$. Additionally, the TM must have an initial state or the machine would immediately halt upon execution. Therefore, a TM requires a minimum of three states.

^{* =} wildcard and therefore can be any symbol of $\Gamma = \{0, b, \#\}$.