Universidade de Brasília

Delineamento e Análise de Experimentos

Professora Juliana Betini Fachini Gomes e-mail: jfachini@unb.br

Brasília - 2022

- Vamos relembrar o experimento de sementes de um híbrido simples:
- Selecione sementes de um híbrido simples de milho;
- Faça a semeadura de maneira que as sementes sejam colocadas no solo, na mesma posição e na mesma profundidade;
- Considere que sejam aplicadas 4 doses distintas de nitrogênio, sendo elas:
 - 0 N
 - 1 N
 - 2 N
 - 3 N
- As sementes irão germinar, as plantas crescerão e no momento em que emitirem o pendão, mede-se as alturas das plantas, do solo até a inserção da última folha .

• Agora, vamos supor que o terreno seja em declive;

• O que esse fato pode causar no experimento?

• É possível controlar esse fato?

- Sim!!!
- Nesses casos em que a fonte incômoda de variabilidade é conhecida e controlável, devemos usar o terceiro príncipio básico da experimentação: o Controle Local;
- Ou seja, devemos repartir a área experimental heterogênea em subáreas homogêneas;
- Em um terréno em declive, essas subáreas são ao longo das curvas de nível;

- Cada subárea recebe todos os tratamentos, uma vez cada e, esse conjunto constitui um Bloco;
- O que caracteriza o Experimentos em Blocos Casualizados completo;
- Nesse tipo de delineamento cada bloco é uma repetição;
- É importante salientar que dentro de cada bloco deve haver o máximo possível de homogeneidade a fim de que sejam oferecidas as mesmas condições a todos os tratamentos.

Como é o modelo matemático para representar essa situação?

O modelo do delineamento em blocos casualizados completo para a tratamentos e b blocos é definido por:

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., b$$
 (1)

em que μ é a média geral, τ_i é a média ou efeito dos tratamentos, β_j é o efeito de blocos e ε_{ij} componente de erro aleatório com distribuição $N(0,\sigma^2)$.

 Usualmente, pensamos nos efeitos de tratamento e bloco como desvios da média geral, de modo que

$$\sum_{i=1}^{a} \tau_i = 0 \qquad \sum_{j=1}^{b} \beta_j = 0$$

 Também podemos escrever o modelo (1) como modelo de médias:

$$y_{ij}=\mu_{ij}+\varepsilon_{ij},\quad i=1,2,...,a;\quad j=1,2,...,b$$
 em que $\mu_{ij}=\mu+\tau_i+\beta_i.$

• As hipóteses de interesse para o modelo (1) são definidas por:

$$\begin{cases} H_0: \tau_1=\tau_2=...=\tau_{\it a}=0, & \hbox{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases}$$

• Ou de forma equivalente:

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_a \\ H_1: \exists \mu_i \neq \mu_j, \ i \neq j, \end{cases}$$

em que
$$\mu_i = (1/b) \sum_{j=1}^b (\mu + \tau_i + \beta_j) = \mu + \tau_i$$
.

A análise de variância pode ser estendida para o modelo (1). Seja:

- $y_{i.} = \sum_{j=1}^{b} y_{ij}$ o total de todas as observações do i tratamento;
- $y_{.j} = \sum_{i=1}^{a} y_{ij}$ o total de todas as observações no j bloco;
- $y_{..} = \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}$ o total geral de todas as observações e N = ab o número total de observações.

Similarmente, tem-se as médias:

- $\bar{y}_{i.} = y_{i.}/b$ é a média das observações do i tratamento;
- $\bar{y}_{.j} = y_{.j}/a$ é a média das observações no j bloco;
- $\bar{y}_{..} = y_{..}/N$ é a média geral de todas as observações.

• A *SS_T* pode ser escrita como:

$$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y_{..}})^{2} = b \sum_{i=1}^{a} (\bar{y_{i.}} - \bar{y_{..}})^{2} + a \sum_{j=1}^{b} (\bar{y_{.j}} - \bar{y_{..}})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y_{.j}} - \bar{y_{i.}} + \bar{y_{..}})^{2}$$

$$= SQ_{Trat} + SQ_{Bloco} + SQ_{Res}$$

ANOVA

TABLE: Tabela de Análise de Variância

Fonte de Variação	SQ	g.l.	QM	F
Tratamentos	SQ_{Trat}	a - 1	QM_{Trat}	QM_{Trat}/QM_{Res}
Bloco	SQ_{Bloco}	b - 1	QM_{Bloco}	
Resíduo	SQ_{Res}	(a-1)(b-1)	QM_{Res}	
Total	SQ_T	N - 1		