

WHAT IS CLAIMED IS:

5

1. A cleaning unit for removing toner remaining on a surface of an image carrier of an image-forming apparatus, comprising:

10 a vibration member extending in a direction of a width of the image carrier, the vibration member having at least one vibration application part attached thereto;

15 a blade member attached to at least an end region of the vibration member, the blade member extending in the direction of the width of the image carrier; and

20 a driving part configured to drive the at least one vibration application part at a driving frequency, the driving frequency being a resonance frequency,

wherein the vibration member is configured to provide vibration to the blade member and a force to press the blade member against the image carrier.

25

2. The cleaning unit as claimed in claim 1,
wherein the driving part is configured to be capable
of changing the driving frequency.

5

3. The cleaning unit as claimed in claim 2,
wherein the driving frequency of the driving part is
10 set based on frictional resistance between the blade
member and the image carrier.

15

4. The cleaning unit as claimed in claim 3,
wherein the driving frequency of the driving part is
set based on a coefficient of friction of the surface
of the image carrier.

20

5. The cleaning unit as claimed in claim 3,
25 wherein the driving frequency of the driving part is

set based on rotational torque of the image carrier.

5

6. The cleaning unit as claimed in claim 3,
wherein the driving frequency of the driving part is
set based on a result of detection of a cleaning
characteristic.

10

7. The cleaning unit as claimed in claim 1,
15 wherein the at least one vibration application part
includes a piezoelectric element.

20

8. The cleaning unit as claimed in claim 1,
wherein the toner is polymerized toner formed by
polymerization.

25

9. The cleaning unit as claimed in claim 1,
wherein the resonance frequency is determined by the
blade member and the image carrier.

5

10. A process cartridge freely attachable
to and detachable from a main body of an image
10 forming apparatus, comprising:

at least one of an image carrier, a charging
unit, a development unit, and a transfer unit; and
a cleaning unit configured to remove toner
remaining on a surface of the image carrier,

15 the cleaning unit including:

a vibration member extending in a
direction of a width of the image carrier, the
vibration member having at least one vibration
application part attached thereto;

20 a blade member attached to at least an
end region of the vibration member, the blade member
extending in the direction of the width of the image
carrier; and

25 a driving part configured to drive the
at least one vibration application part at a driving

frequency, the driving frequency being a resonance frequency,

wherein the vibration member is configured
to provide vibration to the blade member and a force
5 to press the blade member against the image carrier.

10 11. An image-forming apparatus forming an
image by electrophotography, comprising:

a cleaning unit configured to remove toner
remaining on a surface of an image carrier of the
image-forming apparatus,

15 the cleaning unit including:

a vibration member extending in a
direction of a width of the image carrier, the
vibration member having at least one vibration
application part attached thereto;

20 a blade member attached to at least an
end region of the vibration member, the blade member
extending in the direction of the width of the image
carrier; and

25 a driving part configured to drive the
at least one vibration application part at a driving

frequency, the driving frequency being a resonance frequency,

wherein the vibration member is configured to provide vibration to the blade member and a force
5 to press the blade member against the image carrier.

10 12. An image-forming apparatus forming a color image, comprising:

 a plurality of process cartridges freely attachable to and detachable from a main body of the image forming apparatus,

15 the process cartridges each including:

 at least one of an image carrier, a charging unit, a development unit, and a transfer unit; and

20 a cleaning unit configured to remove toner remaining on a surface of the image carrier,

 the cleaning unit including:

 a vibration member extending in a direction of a width of the image carrier, the vibration member having at least one vibration
25 application part attached thereto;

a blade member attached to at least an end region of the vibration member, the blade member extending in the direction of the width of the image carrier; and

5 a driving part configured to drive the at least one vibration application part at a driving frequency, the driving frequency being a resonance frequency,

wherein the vibration member is configured
10 to provide vibration to the blade member and a force to press the blade member against the image carrier.

15

13. A cleaning unit, comprising:
a cleaning blade configured to come into contact with an image carrier and remove toner remaining thereon,

20 the cleaning blade including:
a vibration application member;
a vibration member to which the vibration application member is attached; and
an elastic blade member attached to the
25 vibration member,

wherein: the vibration member has first and second ends, the first end being fixed to a fixing member and the second end being directed to the image carrier so that an end of the blade member attached
5 to the vibration member comes into contact with the image carrier; and

the vibration application member expands and contracts in in-plane directions thereof to generate flexural vibration in the vibration member, the
10 vibration application member being driven to expand and contract in the in-plane directions in a same phase.

15

14. The cleaning unit as claimed in claim
13, wherein maximum amplitude of a mode of vibration caused in an end part of the blade member in an
20 extending direction thereof by a frequency of voltage applied to the vibration application member is smaller than an average particle size of the toner.

25

15. The cleaning unit as claimed in claim
14, wherein the voltage applied to the vibration
application member to vibrate the vibration
application member is set so that the amplitude of
5 vibration of the end part of the blade member is
constant.

10

16. The cleaning unit as claimed in claim
13, wherein maximum amplitude of vibration of the
image carrier in a part thereof contacting an end
part of the blade member is smaller than an average
15 particle size of the toner, the maximum amplitude
being caused by vibration of the blade member.

20

17. The cleaning unit as claimed in claim
16, wherein the voltage applied to the vibration
application member to vibrate the vibration
application member is set so that the amplitude of
25 vibration of the end part of the blade member is

constant.

5

18. The cleaning unit as claimed in claim
13, wherein a driving frequency f_p applied to the
vibration application member is above an audible
range, and satisfies a condition $f_p > \sqrt{2} \times f_n$, where f_n
10 is a resonance frequency of a mode of vibration
having a node in an end part of the blade member.

15

19. The cleaning unit as claimed in claim
13, wherein the vibration application member
comprises a plurality of piezoelectric elements.

20

20. A cleaning unit, comprising:
a cleaning blade configured to come into
25 contact with an image carrier and remove toner

remaining thereon,

the cleaning blade including:

a multilayer vibration application member;

5 a vibration member to which the vibration application member is attached; and an elastic blade member attached to the vibration member,

wherein the multilayer vibration application member is disposed between the vibration member and a fixing member disposed opposite the vibration member so as to couple the vibration member and the fixing member and cause an end of the blade member attached to the vibration member to come into contact with the 15 image carrier, the multilayer vibration application member being driven to expand and contract in a same phase between the fixing member and the vibration member.

20

21. The cleaning unit as claimed in claim 20, wherein maximum amplitude of a mode of vibration 25 caused in an end part of the blade member in an

extending direction thereof by a frequency of voltage applied to the multilayer vibration application member is smaller than an average particle size of the toner.

5

22. The cleaning unit as claimed in claim
10 21, wherein the voltage applied to the multilayer vibration application member to vibrate the multilayer vibration application member is set so that the amplitude of vibration of the end part of the blade member is constant.

15

23. The cleaning unit as claimed in claim
20 20, wherein maximum amplitude of vibration of the image carrier in a part thereof contacting an end part of the blade member is smaller than an average particle size of the toner, the maximum amplitude being caused by vibration of the blade member.

25

24. The cleaning unit as claimed in claim
23, wherein the voltage applied to the multilayer
vibration application member to vibrate the
multilayer vibration application member is set so
5 that the amplitude of vibration of the end part of
the blade member is constant.

10

25. The cleaning unit as claimed in claim
20, wherein a driving frequency f_p applied to the
multilayer vibration application member is above an
audible range, and satisfies a condition $f_p > \sqrt{2} \times f_n$,
15 where f_n is a resonance frequency of a mode of
vibration having a node in an end part of the blade
member.

20

26. The cleaning unit as claimed in claim
20, wherein the multilayer vibration application
member comprises a plurality of multilayer
25 piezoelectric elements.

27. A cleaning unit, comprising:

a cleaning blade configured to come into contact with an image carrier and remove toner remaining thereon,

5 the cleaning blade including:

 a vibration application member;

 a vibration member to which the vibration application member is attached; and

 an elastic blade member attached to the

10 vibration member,

 wherein: the vibration member has a fixed first end and a second end directed to the image carrier so that an end of the blade member attached to the vibration member comes into contact with the

15 image carrier;

 the vibration application member expands and contracts in in-plane directions thereof at a frequency in a frequency band above an audible range so as to cause flexural vibration in the vibration

20 member; and

 a gap formed between the image carrier and the blade member by propagation of vibration generated by a drive member rotating the image carrier is smaller than an average particle size of

25 the toner.

28. The cleaning unit as claimed in claim
27, wherein a frequency of the vibration generated by
the drive member is excluded from a frequency band
where a mode of vibration occurs in an end part of
5 the blade member.

10 29. The cleaning unit as claimed in claim
28, wherein the drive member is a stepper motor; and
 a frequency of driving pulses driving the
stepper motor is excluded from a frequency band where
a mode of vibration occurs in an end part of the
15 blade member.

20 30. The cleaning unit as claimed in claim
28, wherein the drive member is a motor whose number
of poles and number of phases are s and m,
respectively; and
 a frequency determined by (s × m) is
25 excluded from a frequency band where a mode of

vibration occurs in an end part of the blade member.

5

31. The cleaning unit as claimed in claim
28, wherein a drive transmission mechanism of the
drive member is a gear whose number of rotations and
number of teeth are r and z, respectively; and
10 a meshing frequency of the gear determined
by (z × r) is excluded from a frequency band where a
mode of vibration occurs in an end part of the blade
member.

15

32. The cleaning unit as claimed in claim
28, wherein a drive transmission mechanism of the
20 drive member is a gear whose number of rotations and
number of teeth are r and z, respectively; and
a frequency that is an integral multiple of
a meshing frequency of the gear determined by (z × r)
is excluded from a frequency band where a mode of
25 vibration occurs in an end part of the blade member.

33. The cleaning unit as claimed in claim
27, wherein the image carrier is charged by a
charging roller provided in contact therewith; and
a frequency that is an integral multiple of
5 a frequency of voltage applied to the charging roller
is excluded from a frequency band where a mode of
vibration occurs in an end part of the blade member.

10

34. An image-forming apparatus, comprising:
an image carrier; and
a cleaning unit configured to remove toner
15 remaining on the image carrier,
the cleaning unit including:
a cleaning blade configured to come
into contact with the image carrier and remove the
toner remaining thereon,
20 the cleaning blade including:
a vibration application member;
a vibration member to which the
vibration application member is attached; and
an elastic blade member attached
25 to the vibration member,

wherein: the vibration member has first and second ends, the first end being fixed to a fixing member and the second end being directed to the image carrier so that an end of the blade member attached 5 to the vibration member comes into contact with the image carrier; and

the vibration application member expands and contracts in in-plane directions thereof to generate flexural vibration in the vibration member, the 10 vibration application member being driven to expand and contract in the in-plane directions in a same phase.

15

35. An image-forming apparatus, comprising:
an image carrier; and
a cleaning unit configured to remove toner
20 remaining on the image carrier,
the cleaning unit including:
a cleaning blade configured to come
into contact with the image carrier and remove the
toner remaining thereon,
25 the cleaning blade including:

a multilayer vibration application member;

a vibration member to which the vibration application member is attached; and

5 an elastic blade member attached to the vibration member,

wherein the multilayer vibration application member is disposed between the vibration member and a fixing member disposed opposite the vibration member
10 so as to couple the vibration member and the fixing member and cause an end of the blade member attached to the vibration member to come into contact with the image carrier, the multilayer vibration application member being driven to expand and contract in a same
15 phase between the fixing member and the vibration member.

20

36. An image-forming apparatus, comprising:
an image carrier; and
a cleaning unit configured to remove toner remaining on the image carrier,

25 the cleaning unit including:

a cleaning blade configured to come into contact with the image carrier and remove the toner remaining thereon,

the cleaning blade including:

5 a vibration application member;
 a vibration member to which the vibration application member is attached; and
 an elastic blade member attached to the vibration member,

10 wherein: the vibration member has a fixed first end and a second end directed to the image carrier so that an end of the blade member attached to the vibration member comes into contact with the image carrier;

15 the vibration application member expands and contracts in in-plane directions thereof at a frequency in a frequency band above an audible range so as to cause flexural vibration in the vibration member; and

20 a gap formed between the image carrier and the blade member by propagation of vibration generated by a drive member rotating the image carrier is smaller than an average particle size of the toner.

37. A process cartridge, comprising:
an image carrier;
a charging unit charging the image carrier;
a developing unit performing development to
5 form a toner image on the image carrier;
a transfer unit transferring the toner image
to a transfer medium; and
a cleaning unit configured to remove toner
remaining on the image carrier,
10 the cleaning unit including:
a cleaning blade configured to come
into contact with the image carrier and remove the
toner remaining thereon,
the cleaning blade including:
15 a vibration application member;
a vibration member to which the
vibration application member is attached; and
an elastic blade member attached
to the vibration member,
20 wherein: the vibration member has first and
second ends, the first end being fixed to a fixing
member and the second end being directed to the image
carrier so that an end of the blade member attached
to the vibration member comes into contact with the
25 image carrier; and

the vibration application member expands and contracts in in-plane directions thereof to generate flexural vibration in the vibration member, the vibration application member being driven to expand 5 and contract in the in-plane directions in a same phase.

10

38. A process cartridge, comprising:
an image carrier;
a charging unit charging the image carrier;
a developing unit performing development to
15 form a toner image on the image carrier;
a transfer unit transferring the toner image
to a transfer medium; and
a cleaning unit configured to remove toner
remaining on the image carrier,
20 the cleaning unit including:
a cleaning blade configured to come
into contact with the image carrier and remove the
toner remaining thereon,
the cleaning blade including:
25 a multilayer vibration application

member;

a vibration member to which the vibration application member is attached; and

an elastic blade member attached

5 to the vibration member,

wherein the multilayer vibration application member is disposed between the vibration member and a fixing member disposed opposite the vibration member so as to couple the vibration member and the fixing member and cause an end of the blade member attached to the vibration member to come into contact with the image carrier, the multilayer vibration application member being driven to expand and contract in a same phase between the fixing member and the vibration member.

15 member.

20 39. A process cartridge, comprising:

an image carrier;

a charging unit charging the image carrier;

a developing unit performing development to form a toner image on the image carrier;

25 a transfer unit transferring the toner image

to a transfer medium; and

a cleaning unit configured to remove toner remaining on the image carrier,

the cleaning unit including:

5 a cleaning blade configured to come into contact with the image carrier and remove the toner remaining thereon,

the cleaning blade including:

a vibration application member;

10 a vibration member to which the vibration application member is attached; and

an elastic blade member attached to the vibration member,

wherein: the vibration member has a fixed 15 first end and a second end directed to the image carrier so that an end of the blade member attached to the vibration member comes into contact with the image carrier;

the vibration application member expands and 20 contracts in in-plane directions thereof at a frequency in a frequency band above an audible range so as to cause flexural vibration in the vibration member; and

a gap formed between the image carrier and 25 the blade member by propagation of vibration

generated by a drive member rotating the image carrier is smaller than an average particle size of the toner.

5

40. A color image-forming apparatus, comprising:

10 at least two process cartridges, the process cartridges each including:
 an image carrier;
 a charging unit charging the image carrier;

15 a developing unit performing development to form a toner image on the image carrier;
 a transfer unit transferring the toner image to a transfer medium; and

20 a cleaning unit configured to remove toner remaining on the image carrier,
 the cleaning unit including:
 a cleaning blade configured to come into contact with the image carrier and remove
25 the toner remaining thereon,

the cleaning blade including:
a vibration application
member;
a vibration member to which
5 the vibration application member is attached; and
an elastic blade member
attached to the vibration member,
wherein: the vibration member has first and
second ends, the first end being fixed to a fixing
10 member and the second end being directed to the image
carrier so that an end of the blade member attached
to the vibration member comes into contact with the
image carrier; and
the vibration application member expands and
15 contracts in in-plane directions thereof to generate
flexural vibration in the vibration member, the
vibration application member being driven to expand
and contract in the in-plane directions in a same
phase.

20

41. A color image-forming apparatus,
25 comprising:

at least two process cartridges,
the process cartridges each including:
an image carrier;
a charging unit charging the image
5 carrier;
a developing unit performing
development to form a toner image on the image
carrier;
a transfer unit transferring the toner
10 image to a transfer medium; and
a cleaning unit configured to remove
toner remaining on the image carrier,
the cleaning unit including:
a cleaning blade configured to
15 come into contact with the image carrier and remove
the toner remaining thereon,
the cleaning blade including:
a multilayer vibration
application member;
20 a vibration member to which
the vibration application member is attached; and
an elastic blade member
attached to the vibration member,
wherein the multilayer vibration application
25 member is disposed between the vibration member and a

fixing member disposed opposite the vibration member so as to couple the vibration member and the fixing member and cause an end of the blade member attached to the vibration member to come into contact with the 5 image carrier, the multilayer vibration application member being driven to expand and contract in a same phase between the fixing member and the vibration member.

10

42. A color image-forming apparatus, comprising:

15 at least two process cartridges, the process cartridges each including:
 an image carrier;
 a charging unit charging the image carrier;
20 a developing unit performing development to form a toner image on the image carrier;
 a transfer unit transferring the toner image to a transfer medium; and
25 a cleaning unit configured to remove

toner remaining on the image carrier,
the cleaning unit including:
a cleaning blade configured to
come into contact with the image carrier and remove
5 the toner remaining thereon,
the cleaning blade including:
a vibration application
member;
a vibration member to which
10 the vibration application member is attached; and
an elastic blade member
attached to the vibration member,
wherein: the vibration member has a fixed
first end and a second end directed to the image
15 carrier so that an end of the blade member attached
to the vibration member comes into contact with the
image carrier;
the vibration application member expands and
contracts in in-plane directions thereof at a
20 frequency in a frequency band above an audible range
so as to cause flexural vibration in the vibration
member; and
a gap formed between the image carrier and
the blade member by propagation of vibration
25 generated by a drive member rotating the image

carrier is smaller than an average particle size of
the toner.