Regularização e Regressão Ridge

Prof. Dr. Leandro Balby Marinho

Aprendizagem de Máquina

Roteiro

1. Sintomas de Overfitting

2. Otimização de Parâmetros

3. Validação Cruzada

Função Geradora

Considere os dados abaixo gerados pela função sen $(2\pi x)$ com ruído aleatório adicionado.

Normalmente, não sabemos o formato da função geradora, e então tentamos achar uma aproximação coerente.

Escolha do Modelo

Para M = grau do polinômio:

Erro no Treino vs. Erro no Teste

Tamanho dos Parâmetros

Na regressão linear, overfitting é caracterizado por grandes valores dos parâmetros:

	M=0	M=1	M=3	M = 9
<i>w</i> ₀	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
W_2			-25.43	-5321.83
W ₃			17.37	48568.31
<i>W</i> 4				-231639.30
W ₅				640042.26
w ₆				-1061800.52
W_7				1042400.18
w ₈				-557682.99
W ₉				125201.43

Formato Desejado do Custo

Queremos balancear:

- i. Ajuste aos dados
- ii. Magnitude dos coeficientes (Complexidade do modelo)

Custo total=medida do ajuste (RSS) + medida da magnitude.

Medida da magnitude dos coeficientes de regressão

Que medida é indicativa da magnitude dos coeficientes:

► Soma:

$$\sum_{j=0}^{D} \mathbf{w}_{j}$$

▶ Soma de valores absolutos (norma L_1):

$$\sum_{j=0}^{D} |\mathbf{w}_j| = ||\mathbf{w}||_1$$

► Soma dos quadrados (normal *L*₂):

$$\sum_{i=0}^{D} \mathbf{w}_j^2 = ||\mathbf{w}||_2^2$$

Validação Cruzada

Validação Cruzada

Regressão Ridge (também chamada de Regularização L2)

Custo total=
$$\underbrace{\text{medida do ajuste}}_{\text{RSS}(\mathbf{w})} + \underbrace{\text{medida da magnitude}}_{||\mathbf{w}||_2^2}$$

Tarefa: Selecionar ŵ para minimizar

$$\mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$$

- ▶ $\lambda = 0$: problema reduz a achar os mínimos quadrados $(||\hat{\mathbf{w}}^{MQ}||_2^2)$.
- $\lambda = \infty$
 - ▶ se $\hat{\mathbf{w}} \neq 0$ o custo total é ∞
 - se $\hat{\mathbf{w}} = 0$ o cursto total é RSS(0)
- ▶ $0 < \lambda < \infty$:

$$0 \le ||\hat{\mathbf{w}}||_2^2 \le ||\hat{\mathbf{w}}^{MQ}||_2^2$$

Trade-off Bias-Variância

- \blacktriangleright λ grande:
 - ► Bias grande, baixa variância
 - Exemplo: $\hat{\mathbf{w}} = 0$ para $\lambda = \infty$
- \blacktriangleright λ pequeno:
 - Bias pequeno, alta variância
 - Exemplo: Método dos mínimos quadrados para um polinômio de alta ordem para $\lambda=0$

Caminho dos Coeficientes na Regressão Ridge

Impacto da Regularização

Impacto da Regularização no Teste

Roteiro

1. Sintomas de Overfitting

2. Otimização de Parâmetros

3. Validação Cruzada

Usando notação de matrizes: todas as observações

$$y = Hw + \epsilon$$

Custo de uma curva D-dimensional

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w})^2$$
$$= (\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w})$$

Notação vetorial para $||w||_2^2$

$$||\mathbf{w}||_2^2 = w_0^2 + w_1^2 + w_2^2 + \ldots + w_D^2$$

$$||\mathbf{w}||_2^2 = \mathbf{w}^T \mathbf{w}$$

Custo da regressão Ridge

Na forma matricial o custo agora é dado por:

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2 = (\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

$$\nabla \left[\mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2 \right] = \nabla \left[(\mathbf{y} - \mathbf{H} \mathbf{w})^T (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w} \right]$$

$$\nabla \left[\mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2 \right] = \nabla \left[(\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w} \right]$$
$$= \nabla \left[(\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w}) \right] + \nabla \left[\lambda \mathbf{w}^T \mathbf{w} \right]$$

$$\nabla \left[\mathsf{RSS}(\mathsf{w}) + \lambda ||\mathsf{w}||_2^2 \right] = \nabla \left[(\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) + \lambda \mathsf{w}^T \mathsf{w} \right]$$
$$= \nabla \left[(\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) \right] + \nabla \left[\lambda \mathsf{w}^T \mathsf{w} \right]$$
$$= -2\mathsf{H}^T (\mathsf{y} - \mathsf{Hw}) + 2\lambda \mathsf{w}$$

$$\nabla \left[\mathsf{RSS}(\mathsf{w}) + \lambda ||\mathsf{w}||_2^2 \right] = \nabla \left[(\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) + \lambda \mathsf{w}^T \mathsf{w} \right]$$

$$= \nabla \left[(\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) \right] + \nabla \left[\lambda \mathsf{w}^T \mathsf{w} \right]$$

$$= -2\mathsf{H}^T (\mathsf{y} - \mathsf{Hw}) + 2\lambda \mathsf{w}$$

$$= -2\mathsf{H}^T (\mathsf{y} - \mathsf{Hw}) + 2\lambda \mathsf{Iw} \quad (\mathsf{I} = \mathsf{identidade})$$

$$\nabla \text{RSS}(\mathbf{w}) = -2\mathbf{H}^T(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$

$$-2\mathbf{H}^T\mathbf{y} + 2\mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$

$$\nabla \text{RSS}(\mathbf{w}) = -2\mathbf{H}^T(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$

$$-2\mathbf{H}^{T}\mathbf{y} + 2\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$
$$-\mathbf{H}^{T}\mathbf{y} + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)}$$

$$\nabla$$
RSS(w) = $-2H^T(y - Hw) + 2\lambda Iw = 0$

$$\begin{aligned} &-2\mathbf{H}^T\mathbf{y} + 2\mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0 \\ &-\mathbf{H}^T\mathbf{y} + \mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)} \\ &\mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^T\mathbf{y} \end{aligned}$$

$$\nabla \text{RSS}(\mathbf{w}) = -2\mathbf{H}^T(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$

$$-2\mathbf{H}^{T}\mathbf{y} + 2\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$

$$-\mathbf{H}^{T}\mathbf{y} + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)}$$

$$\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$(\mathbf{H}^{T}\mathbf{H} + \lambda\mathbf{I})\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$\nabla$$
RSS(w) = $-2H^T(y - Hw) + 2\lambda Iw = 0$

Resolvendo para w:

$$-2\mathbf{H}^{T}\mathbf{y} + 2\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$

$$-\mathbf{H}^{T}\mathbf{y} + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)}$$

$$\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$(\mathbf{H}^{T}\mathbf{H} + \lambda\mathbf{I})\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$\hat{\mathbf{w}} = (\mathbf{H}^{T}\mathbf{H} + \lambda\mathbf{I})^{-1}\mathbf{H}^{T}\mathbf{y}$$

Custo da inversão de matrizes (quando inversível): $O(D^3)$

$$\hat{\mathbf{w}}^{\mathsf{ridge}} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H}^T \mathbf{y}$$

- ▶ $\lambda = 0$: problema reduz a achar os mínimos quadrados $((\mathbf{H}^T\mathbf{H})^{-1}\mathbf{H}^T\mathbf{y})$.
- $\lambda = \infty$: $\hat{\mathbf{w}}^{\text{ridge}} = 0$ (análogo a dividir por infinito)

Gradiente Descendente

Gradient-Descent-Ridge

1 while not converged

2
$$w_j^{(t+1)} = w_j^{(t)} - \alpha \left[-2 \sum_{i=1}^N x_i (y_i - \hat{y}_i(w_j^{(t)})) + 2\lambda w_j^{(t)} \right]$$

Gradiente Descendente

Gradient-Descent-Ridge

1 while not converged

2
$$w_j^{(t+1)} = (1 - 2\alpha\lambda)w_j^{(t)} + 2\alpha\sum_{i=1}^{N} x_i (y_i - \hat{y}_i(w_j^{(t)}))$$

Gradient-Descent-OLS

1 while not converged

2
$$w_j^{(t+1)} = w_j^{(t)} + 2\alpha \sum_{i=1}^{N} x_i \left(y_i - \hat{y}_i(w_j^{(t)}) \right)$$

Roteiro

1. Sintomas de Overfitting

2. Otimização de Parâmetros

3. Validação Cruzada

Como encontrar o melhor λ ?

- ► Dividindo os dados em K blocos diferentes de forma aleatória.
- ► No caso de uma partição (1/2,1/2) dos dados,
 - A primeira parte é usada para treino e a segunda para validação.
 - A segunda parte é usada para treino e a primeira para validação.
- ► Essa ideia pode ser generalizada para *k* partições de igual tamanho.
- ightharpoonup Em cada execução, k-1 partições são usadas para treino e uma para validação.
- ➤ O procedimento é repetido k vezes e a média do MSE calculada.

Validação Cruzada 5-fold

For $k = 1, \ldots, K$

- 1. Estime $\hat{\mathbf{w}}_{\lambda}^{(k)}$ nos blocos de treino
- 2. Calcule o erro no bloco de validação $\ell_k(\lambda)$

Calcule erro médio: $CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} \ell_k(\lambda)$ (repita para todos os λ)

4 □ → 4 同 → 4 □ → 1 ■ 40 Q ○

Referências

- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2013.
- Yaser S. Abu-Mostafa, Malik Magdon-Ismail. Learning from Data. AMLBook, 2012.
- Emily Fox and Carlos Guestrin. Machine Learning Specialization. Curso online disponível em https://www.coursera.org/specializations/machine-learning. Último acesso: 14/09/2017.