数学试题

卟

逊

茁

注意事项:

1. 答题前,学生务必在练习卷、答题卡规定的地方填写自己的学校、准考证号、姓名。 学生要认真核对答题卡上粘贴的条形码的"准考证号、姓名"与学生本人准考证号、 姓名是否一致。

- 2. 回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂 黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案 写在答题卡上。写在本练习卷上无效。
- 3. 答题结束后, 学生必须将练习卷和答题卡一并交回。

一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.

1. 样本数据 2, 2, 3, 3, 3, 4, 4, 5, 5, 6的中位数和众数分别为

A. 3和3 B. 3.5和3

- C. 4和3 D. 3.5和2, 3, 4, 5
- 2. 已知集合 $A = \{-2,0,2,4\}, B = \{x | |x-3| \le m\}$. 若 $A \cap B = A$,则 m 的取值范围是

A. $(1,+\infty)$ B. $[1,+\infty)$ C. $(5,+\infty)$ D. $[5,+\infty)$

3. 设m, n表示两条不同的直线, α 表示平面,则以下结论正确的是

A. 若 $m // \alpha$, $n // \alpha$, 则m // n B. 若 $m \perp \alpha$, $m \perp n$, 则 $n // \alpha$

C. 若 m/α , $m \perp n$, 则 $n \perp \alpha$ D. 若 $m \perp \alpha$, $n \subset \alpha$, 则 $m \perp n$

4. 记 T_n 为等比数列 $\{a_n\}$ 的前n项积. 设命题 $p: T_{12} > 1$; 命题 $q: a_6 \cdot a_7 > 1$, 则p是q的

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

5. 2024 海峡两岸各民族欢度"三月三"暨福籽同心爱中华·福建省第十一届"三月三"畲族文 化节活动在宁德隆重开幕.海峡两岸各民族同胞齐聚于此,与当地群众共同欢庆"三月 三", 畅叙两岸情. 在活动现场, 为了解不同时段的入口游客人流量, 从上午 10 点开 始第一次向指挥中心反馈入口人流量,以后每过一个小时反馈一次.指挥中心统计了 前 5 次的数据 (i,y_i) , 其中i=1,2,3,4,5, y_i 为第i次入口人流量数据(单位:百人),

由此得到y关于i的回归方程 $\hat{y}=\hat{b}\log_2(i+1)+5$. 已知y=9,根据回归方程(参考数

据: $\log_2 3 \approx 1.6$, $\log_2 5 \approx 2.3$), 可预测下午 4点时入口游客的人流量为

A. 9.6

B. 11.0

C. 11.4

D. 12.0

县(市)

2024届宁德 5月质检 第1页(共4页)

珙

核 佻

盐

锹

A. 圆台侧面积为 54π B. 圆台外接球的半径为 6 C. 圆台的体积为 126π D. 圆台侧面上的点到下底圆心 O_2 的最短距离为 $3\sqrt{3}$ 7. 已知抛物线 $x^2=4y$ 的焦点为 F , $A(x_1,y_1)$, $B(x_2,y_2)$ 是抛物线上的两个动点.若 $ AB =\frac{\sqrt{2}}{2}(y_1+y_2+2)$, 则 $\angle AFB$ 的最大值为 A. $\frac{3\pi}{4}$ B. $\frac{2\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$ 8. 函数 $f(x)=\frac{x}{\ln x}$, 若关于 x 的不等式 $[f(x)]^2-af(x)\leq 0$ ($a\in \mathbf{R}$) 有且仅有三个整数解,则 a 的取值范围是 A. $\left[\frac{2}{\ln 2},\frac{5}{\ln 5}\right]$ B. $\left(\frac{2}{\ln 2},\frac{5}{\ln 5}\right]$ C. $\left[\frac{3}{\ln 3},\frac{5}{\ln 5}\right]$ D. $\left(e,\frac{5}{\ln 5}\right]$ 二、选择题:本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目要求,全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分. 9. 已知 z_1,z_2 是两个复数,下列结论中正确的是 A. 若 $z_1=\overline{z_2}$,则 $z_1,z_2\in \mathbf{R}$ B. 若 z_1+z_2 为实数,则 $z_1=\overline{z_2}$ C. 若 z_1,z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D. 若 $\frac{z_1}{z_2}$ 为实数,则 z_1,z_2 均为纯虚数 10. 函数 $f(x)=(x-2)^2\cos\alpha x$. 若存在 $a\in \mathbf{R}$,使得 $f(x+a)$ 为奇函数,则实数 ω 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 R 上的函数 $f(x)$ 满足 $f(xy)=f(x)f(y)+f(x)+f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0)=-1$ B. $f(-1)=0$	6.	已知圆台 0,0,的上底半径为3,下底半径为6,母线长为6,则以下结论错误的是						
7. 已知拋物线 $x^2 = 4y$ 的焦点为 F , $A(x_1, y_1)$, $B(x_2, y_2)$ 是拋物线上的两个动点. 若 $ AB = \frac{\sqrt{2}}{2}(y_1 + y_2 + 2)$, 则 $\angle AFB$ 的最大值为 A. $\frac{3\pi}{4}$ B. $\frac{2\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$ 8. 函数 $f(x) = \frac{x}{\ln x}$, 若关于 x 的不等式 $[f(x)]^2 - af(x) \le 0 (a \in \mathbb{R})$ 有且仅有三个整数解,则 a 的取值范围是 A. $\left[\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ B. $\left(\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ C. $\left[\frac{3}{\ln 3}, \frac{5}{\ln 5}\right]$ D. $\left(c, \frac{5}{\ln 5}\right]$ 二、选择题:本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目要求,全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。 9. 已知 z_1, z_2 是两个复数,下列结论中正确的是 A. 若 $z_1 = \overline{z_2}$,则 $z_1 z_2 \in \mathbb{R}$ B. 若 $z_1 + z_2$ 为实数,则 $z_1 = \overline{z_2}$ C. 若 z_1, z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D. 若 $\frac{z_1}{z_2}$ 为实数,则 z_1, z_2 均为纯虚数 10. 函数 $f(x) = (x-2)^3\cos x$. 若存在 $a \in \mathbb{R}$,使得 $f(x+a)$ 为奇函数,则实数 a 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 R 上的函数 $f(x)$ 满足 $f(x) = f(x) f(y) + f(x) + f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$		Α.	圆台侧面积为:	54π	B. 圆台列	接球的半径为	6	
$ AB = \frac{\sqrt{2}}{2}(y_1 + y_2 + 2)$,则 $\angle AFB$ 的最大值为 A. $\frac{3\pi}{4}$ B. $\frac{2\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$ 8. 函数 $f(x) = \frac{x}{\ln x}$, 若关于 x 的不等式 $[f(x)]^2 - af(x) \le 0 (a \in \mathbb{R})$ 有且仅有三个整数解,则 a 的取值范围是 A. $\left[\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ B. $\left(\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ C. $\left[\frac{3}{\ln 3}, \frac{5}{\ln 5}\right]$ D. $\left(e, \frac{5}{\ln 5}\right]$ 二、选择题: 本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目要求。全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。 9. 已知 z_1, z_2 是两个复数,下列结论中正确的是 A. 若 $z_1 = \overline{z}_2$,则 $z_1 z_2 \in \mathbb{R}$ B. $\overline{A}z_1 + z_2$ 为实数,则 $z_1 = \overline{z}_2$ C. $\overline{A}z_1, z_2$ 均为纯虚数,则 \overline{z}_2 为实数 D. $\overline{a}z_1$ 为实数,则 z_1, z_2 均为纯虚数 10. 函数 $f(x) = (x-2)^3\cos ax$ 若存在 $a \in \mathbb{R}$,使得 $f(x+a)$ 为奇函数,则实数 a 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在R上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$,且值域为 $[-1, +\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$		c.	圆台的体积为	126π	D. 圆台侧	间面上的点到下	底圆心 0₂ 的最短距离为 3√3	
A. $\frac{3\pi}{4}$ B. $\frac{2\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$ 8. 函数 $f(x) = \frac{x}{\ln x}$, 若关于 x 的不等式 $[f(x)]^2 - af(x) \le 0 (a \in \mathbb{R})$ 有且仅有三个整数解,则 a 的取值范围是 A. $\left[\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ B. $\left(\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ C. $\left[\frac{3}{\ln 3}, \frac{5}{\ln 5}\right]$ D. $\left(\frac{5}{\ln 5}\right]$ $\frac{5}{\ln 5}$ D. $\left(\frac{5}{\ln 5}\right)$ D. $\left(\frac{5}$	7.	已知	1抛物线 x²=4y f	的焦点为F,	$A(x_1,y_1)$,	B(x2, y2)是抛	物线上的两个动点. 若	
8. 函数 $f(x) = \frac{x}{\ln x}$, 若关于 x 的不等式 $[f(x)]^2 - af(x) \le 0$ ($a \in \mathbb{R}$) 有且仅有三个整数解,则 a 的取值范围是 A. $\left[\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ B. $\left(\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ C. $\left[\frac{3}{\ln 3}, \frac{5}{\ln 5}\right]$ D. $\left(\frac{5}{\ln 5}\right]$ T. 选择题:本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目要求,全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。 已知 z_1, z_2 是两个复数,下列结论中正确的是 A. 若 $z_1 = \overline{z_2}$,则 $z_1 z_2 \in \mathbb{R}$ B. 若 $z_1 + z_2$ 为实数,则 $z_1 = \overline{z_2}$ C. 若 z_1, z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D. 若 $\frac{z_1}{z_2}$ 为实数,则 z_1, z_2 均为纯虚数 10. 函数 $f(x) = (x-2)^3 \cos ax$. 若存在 $a \in \mathbb{R}$,使得 $f(x+a)$ 为奇函数,则实数 a 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 \mathbb{R} 上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$		AE	$ x = \frac{\sqrt{2}}{2}(y_1 + y_2 + y_3)$	+2),则 <i>∠AFB</i>	的最大值	为		
8. 函数 $f(x) = \frac{x}{\ln x}$, 若关于 x 的不等式 $[f(x)]^2 - af(x) \le 0$ ($a \in \mathbb{R}$) 有且仅有三个整数解,则 a 的取值范围是 A. $\left[\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ B. $\left(\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ C. $\left[\frac{3}{\ln 3}, \frac{5}{\ln 5}\right]$ D. $\left(\frac{5}{\ln 5}\right]$ T. 选择题:本题共 3 小题,每小题 6 分,共 18 分,在每小题给出的选项中,有多项符合题目要求,全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。 已知 z_1, z_2 是两个复数,下列结论中正确的是 A. 若 $z_1 = \overline{z_2}$,则 $z_1 z_2 \in \mathbb{R}$ B. 若 $z_1 + z_2$ 为实数,则 $z_1 = \overline{z_2}$ C. 若 z_1, z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D. 若 $\frac{z_1}{z_2}$ 为实数,则 z_1, z_2 均为纯虚数 10. 函数 $f(x) = (x-2)^3 \cos ax$. 若存在 $a \in \mathbb{R}$,使得 $f(x+a)$ 为奇函数,则实数 a 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 \mathbb{R} 上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$		Α.	$\frac{3\pi}{4}$	B. $\frac{2\pi}{3}$	c.	$\frac{\pi}{2}$	D. $\frac{\pi}{4}$	
A. $\left[\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ B. $\left(\frac{2}{\ln 2}, \frac{5}{\ln 5}\right]$ C. $\left[\frac{3}{\ln 3}, \frac{5}{\ln 5}\right]$ D. $\left(e, \frac{5}{\ln 5}\right]$ T. 选择题: 本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分. 9. 已知 z_1, z_2 是两个复数,下列结论中正确的是 A. 若 $z_1 = \overline{z}_2$,则 $z_1 z_2 \in \mathbb{R}$ B. 若 $z_1 + z_2$ 为实数,则 $z_1 = \overline{z}_2$ C. 若 z_1, z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D. 若 $\frac{z_1}{z_2}$ 为实数,则 z_1, z_2 均为纯虚数 10. 函数 $f(x) = (x-2)^3 \cos ax$.若存在 $a \in \mathbb{R}$,使得 $f(x+a)$ 为奇函数,则实数 a 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 \mathbb{R} 上的函数 $f(x)$ 满足 $f(xy) = f(x) f(y) + f(x) + f(y)$,且值域为 $[-1, +\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$	8.							
二、选择题:本题共 3 小题,每小题 6 分,共 18 分。在每小题给出的选项中,有多项符合题目要求。全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。 9. 已知 z_1, z_2 是两个复数,下列结论中正确的是 A. 若 $z_1 = \overline{z_2}$,则 $z_1 z_2 \in \mathbb{R}$								
题目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分. 9.已知 z_1, z_2 是两个复数,下列结论中正确的是 A.若 $z_1 = \overline{z}_2$,则 $z_1 z_2 \in \mathbb{R}$ B.若 $z_1 + z_2$ 为实数,则 $z_1 = \overline{z}_2$ C.若 z_1, z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D.若 $\frac{z_1}{z_2}$ 为实数,则 z_1, z_2 均为纯虚数 10.函数 $f(x) = (x-2)^3 \cos \omega x$.若存在 $a \in \mathbb{R}$,使得 $f(x+a)$ 为奇函数,则实数 ω 的值可以 是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11.若定义在 \mathbb{R} 上的函数 $f(x)$ 满足 $f(xy) = f(x) f(y) + f(x) + f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$		Α.	$\left[\frac{2}{\ln 2}, \frac{5}{\ln 5}\right)$	B. $\left(\frac{2}{\ln 2}, \frac{5}{\ln 5}\right)$	c.	$\left[\frac{3}{\ln 3}, \frac{5}{\ln 5}\right)$	D. $\left(e, \frac{5}{\ln 5}\right]$	
9. 已知 z_1, z_2 是两个复数,下列结论中正确的是 A. 若 $z_1 = \overline{z_2}$,则 $z_1 z_2 \in \mathbb{R}$	=,	选技	泽题: 本题共 3	小题,每小题	6分,共1	8分. 在每小是	愿给出的选项中,有多项符合	
A. 若 $z_1 = \overline{z}_2$,则 $z_1 z_2 \in \mathbf{R}$ B. 若 $z_1 + z_2$ 为实数,则 $z_1 = \overline{z}_2$ C. 若 z_1, z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D. 若 $\frac{z_1}{z_2}$ 为实数,则 z_1, z_2 均为纯虚数 10. 函数 $f(x) = (x-2)^3 \cos \omega x$. 若存在 $a \in \mathbf{R}$,使得 $f(x+a)$ 为奇函数,则实数 ω 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 \mathbf{R} 上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$	题]要求	总. 全部选对的	得6分,部分说	达对的得部	分分,有选错	的得0分.	
C. 若 z_1, z_2 均为纯虚数,则 $\frac{z_1}{z_2}$ 为实数 D. 若 $\frac{z_1}{z_2}$ 为实数,则 z_1, z_2 均为纯虚数 10. 函数 $f(x) = (x-2)^3 \cos \omega x$. 若存在 $a \in \mathbb{R}$,使得 $f(x+a)$ 为奇函数,则实数 ω 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 \mathbb{R} 上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$,且值域为 $[-1, +\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$	9.	. 已知 z_1, z_2 是两个复数,下列结论中正确的是						
10. 函数 $f(x) = (x-2)^3 \cos \omega x$. 若存在 $a \in \mathbb{R}$, 使得 $f(x+a)$ 为奇函数,则实数 ω 的值可以是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在 \mathbb{R} 上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$		Α.	若 z ₁ = z̄ ₂ ,则 z ₁	$z_2 \in \mathbf{R}$	В.	若 z ₁ + z ₂ 为实	、数,则 z ₁ = z ₂	
是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在R上的函数 $f(x)$ 满足 $f(xy)=f(x)f(y)+f(x)+f(y)$, 且值域为 $[-1,+\infty)$, 则以下结论正确的是 A. $f(0)=-1$ B. $f(-1)=0$	171	c.	若 z1, z2 均为纯点	z数,则 z ₁ 为 3	史数 D.	若 z ₁ 为实数	,则z ₁ ,z ₂ 均为纯虚数	
是 A. $-\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π 11. 若定义在R上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$, 且值域为 $[-1,+\infty)$, 则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$	10.	函数	$f(x) = (x-2)^3$	cosωx. 若存在	Έα∈R,	使得 f(x+a) 为	b奇函数,则实数 ω 的值可以	
11. 若定义在R上的函数 $f(x)$ 满足 $f(xy) = f(x)f(y) + f(x) + f(y)$,且值域为 $[-1,+\infty)$,则以下结论正确的是 A. $f(0) = -1$ B. $f(-1) = 0$		是						
则以下结论正确的是 $A. \ f(0) = -1 \qquad \qquad B. \ f(-1) = 0$		Α.	$-\frac{\pi}{4}$	B. $\frac{\pi}{2}$	c.	$\frac{3\pi}{4}$	D. π	
A. $f(0) = -1$ B. $f(-1) = 0$	11.	若定	义在R上的函数	数 f(x) 满足 f	(xy) = f(x)	f(y)+f(x)	+ f(y),且值域为[-1,+∞),	
		则以	人下结论正确的是	上				
C (-) 21-1111 = 44		Α.	f(0)=-1		В.	f(-1)=0		
C. 了(x)为两函数 D. 了(x)的图象关于(1,0)中心对称		c.	C. f(x)为偶函数			D. f(x)的图象关于(1,0)中心对称		

- 三、填空题:本题共3小题,每小题5分,共15分.
- 12. 已知 e_1, e_2 是两个单位向量,若 e_1 在 e_2 上的投影向量为 $\frac{1}{2}e_2$,则 e_1 与 e_1 e_2 的夹角为
- 13. 中国古代历法是中国劳动人民智慧的结晶,《尚书·尧典》记载"期三百有六旬有六日,以闰月定四时成岁",指出闰年有 366 天.元代郭守敬创造了中国古代最精密的历法——《授时历》,规定一年为365.2425 天,和现行公历格里高利历是一样的,但比它早了 300 多年.现行公历闰年是如下确定的:①能被 4 整除,但不能被 100 整除;②能被 400 整除,满足以上两个条件之一的年份均为闰年,则公元11¹⁰年,距上一个闰年的年数为______.
- 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
- 15. (13分)

在 \triangle ABC 中,角 A , B , C 的对边分别为 a , b , c .已知 $a^2+c^2=9+2ac\cos B$,且 $\sin B=\sqrt{3}\sin A\sin C$.

- (1) 若 BD ⊥ AC, 垂足为 D, 求 BD 的长;
- (2) 若 $\overline{BA} \cdot \overline{BC} = 3$, 求a+c的长.

16. (15分)

在平行四边形 ABCD 中, $\angle D=60^\circ$, CD=1, $AC=\sqrt{3}$. 将 $\triangle ABC$ 沿 AC 翻折到 $\triangle APC$ 的位置,使得 $PD=\sqrt{5}$.

- (1) 证明; CD 1 平面 APC;
- (2) 在线段 AD 上是否存在点 M,使得二面角 M-PC-A 的余弦值为 $\frac{2\sqrt{39}}{13}$? 若存在, 求出 $\frac{|AM|}{|MD|}$ 的值;若不存在,请说明理由.

2024 届宁德 5 月质检 第 3 页 (共 4 页)

已知函数 $f(x) = a\cos x - e^{x+1}$ ($a \in \mathbb{R}$) 的图象在 x = 0 处的切线过点 (-1,2).

- (1) 求 f(x) 在 $[0,\pi]$ 上的最小值;
- (2) 判断 f(x) 在 $\left(-\frac{2\pi}{3},0\right)$ 内零点的个数,并说明理由.

18. (17分)

桌上有除颜色外其他没有任何区别的 7 个黑球和 7 个白球,现将 3 个黑球和 4 个白球装入不透明的袋中.第一次从袋中任取一个球,若取出的是黑球则放入一个白球,若取出的是白球则放入一个黑球,本次操作完成.第二次起每次取球、放球的规则和第一次相同.

- (1) 求第2次取出黑球的概率;
- (2) 记操作完成 n 次后袋中黑球的个数为变量 X_n.
 - (i) 求 X_2 的概率分布列及数学期望 $E(X_2)$;
 - (ii) 求 X_n 的数学期望 $E(X_n)$.

19. (17分)

坐标平面 xO_y 上的点 P(x,y) 也可表示为 $P(r\cos\theta,r\sin\theta)$,其中 r=|OP| , θ 为 x 轴非负半轴绕原点 O 逆时针旋转到与 OP 重合的旋转角. 将点 P 绕原点 O 逆时针旋转 α 后得到点 P'(x',y') ,这个过程称之为旋转变换.

- (1) 证明旋转变换公式: $\begin{cases} x' = x \cos \alpha y \sin \alpha, \\ y' = x \sin \alpha + y \cos \alpha, \end{cases}$ 并利用该公式,求点 $P(\sqrt{3}, 0)$ 绕原点
 - O逆时针旋转 $\frac{\pi}{4}$ 后的点P'的坐标;
- (2) 旋转变换建立了平面上的每个点 P 到 P'的对应关系. 利用旋转变换,可将曲线 通过旋转转化为我们熟悉的曲线进行研究.
 - (i) 求将曲线 $C: y = -\frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{2x}$ 绕原点 O 顺时针旋转 $\frac{\pi}{6}$ 后得到的曲线方程,并求该曲线的离心率:
 - (ii) 已知曲线 $\Gamma:5x^2+5y^2-6xy=8$,点 $F\left(\frac{\sqrt{6}}{2},\frac{\sqrt{6}}{2}\right)$,直线 AB 交曲线 Γ 于 A ,

B两点,作 $\angle AFB$ 的外角平分线交直线 AB 于点 M,求 |FM|的最小值.

例

世

袾

乙

纵