SESSION 13: STATISTICAL MACHINE LEARNING (III)

Gang Li Deakin University, Australia 2021-08-09

No Free Lunch Theorem	3
PAC Learning	4
The No-Free-Lunch Theorem	6
NFL Theorem and Prior Knowledge	7
Error Decomposition	8
The VC Dimension	9
Is Infinite Class PAC learnable?	LO
The VC Dimension	
The VC Dimension — Examples (1)	13
The VC Dimension — Examples (2)	
The VC Dimension — Examples (3)	
The VC Dimension — Examples (4)	
The VC Dimension — Examples (5)	
The VC Dimension — Examples (6)	
Radon's Lemma	L9
Quiz 2	20

Table of Content

No Free Lunch Theorem

PAC Learning

The No-Free-Lunch Theorem

NFL Theorem and Prior Knowledge

Error Decomposition

The VC Dimension

Is Infinite Class PAC learnable?

The VC Dimension

The VC Dimension — Examples (1)

The VC Dimension — Examples (2)

The VC Dimension — Examples (3)

The VC Dimension — Examples (4)

The VC Dimension — Examples (5)

The VC Dimension — Examples (6)

Radon's Lemma

Quiz

(None)-e316cd8 (2021-08-09) -2/24

No Free Lunch Theorem

3 / 24

PAC Learning

Leslie Valiant, Turing Award 2010

- For transformative contributions to the theory of computation, including
 - ◆ the theory of probably approximately correct (PAC) learning,
 - ♦ the complexity of enumeration and of algebraic computation,
 - ♦ and the theory of parallel and distributed computing.

(None)-e316cd8 (2021-08-09) -4/24

What is Learnable and How to Learn?

For any finite hypothesis class \mathcal{H} , we have shown that:

■ \mathcal{H} is PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \rceil$$

Ĉ

 \blacksquare \mathscr{H} is Agnostic PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil$$

■ This sample complexity is obtained using the $ERM_{\mathcal{H}}$ learning rule

What is more?

- What about infinite hypothesis classes?
- What is the sample complexity of a given class?
- Is there a generic learning algorithm that achieves the optimal sample complexity?

(None)-e316cd8 (2021-08-09) - 5 / 24

The No-Free-Lunch Theorem

Let A be any learning algorithm for the task of binary classification with respect to the 0-1 loss over a domain \mathscr{X} , and m be any number representing a training set size: $m \leq |\mathscr{X}|/2$. Then, there exists a distribution \mathscr{D} over $\mathscr{X} \times \{0,1\}$ such that

- There exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$
- With probability at least 1/7 over the choice of $S \sim \mathcal{D}^m$, we have $L_{\mathcal{D}}(A(S)) \ge 1/8$

Intuition.

- It means that: for every learner, there exists a task on which it fails, even though that task can be successfully learned by another learner.
- We need to show
 - 1. For any algorithm A that receives a training set S of m examples from $\mathscr{X} \times \{0,1\}$, there exists a function $f: \mathscr{X} \to \{0,1\}$ such that $L_{\mathscr{D}}(f) = 0$ and

$$E_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S))] \ge 1/4$$

2. From above, we derive that $P[L_{\mathscr{D}}(A(S))] \ge 1/8 \ge 1/7$

Proof-1.

- 1. Estimate the probabilities that any given learner A will err on a random point: the probability that a random test point x, is not covered by S is at least 1/2.
- 2. Any hypothesis from A will has the probability 50% of making error on x, so the expected error will be at least 1/4.

Proof-1.

Proof-2.

- 1. Let θ be a random variable that receives values in [0,1] and $E[\theta] \ge 1/4$.
- 2. From Markov's Inequality,

$$P[\theta \ge 1/8] \ge \frac{1/4 - 1/8}{1 - 1/8} = 1/7$$

(None)-e316cd8 (2021-08-09) - 6 / 24

NFL Theorem and Prior Knowledge

Let \mathscr{X} be an infinite domain set and \mathscr{H} be the set of all functions $\mathscr{X} \to \{0,1\}$, then \mathscr{H} is not PAC learnable.

Proof-V1.

- By way of contradiction: if \mathcal{H} is learnable, choose $\epsilon < 1/8$ and $\delta < 1/7$.
- By the definition of PAC learnability: there exists a learning algorithm A and an integer $m = m(\epsilon, \delta)$, such that, for any distribution \mathscr{D} over $\mathscr{X} \times \{0, 1\}$, if for some function $f : \mathscr{X} \to \{0, 1\}$, $L_{\mathscr{D}}(f) = 0$, then with probability greater than 1δ , $L_{\mathscr{D}}(A(S)) \leq \epsilon$.
- From NFL, since $|\mathcal{X}| > 2m$, for every learning algorithm, there exists a distribution \mathcal{D} such that with probability greater than $1/7 > \delta$, $L_{\mathcal{D}}(A(S)) > 1/8 > \epsilon$. contradiction!

Proof-V2.

■ By way of contradiction: if \mathcal{H} is learnable, then for some ϵ and δ we have $m_{\mathcal{H}}:(0,1)^2 \to \mathcal{N}$, for every distribution \mathcal{D} over \mathcal{X} and function f:

$$P_{S \sim \mathcal{D}^m}[L_{\mathcal{D},f}(A(S)) > \epsilon] < \delta$$

whenever $m > m_{\mathcal{H}}(\epsilon, \delta)$

- Let $m = 2m_{\mathcal{H}}(1/8, 1/7)$, \mathcal{H} includes every possible function from S to $\{0, 1\}$.
- From NFL, we have

$$m_{\mathcal{H}}(1/8, 1/7) \ge m/2 > m_{\mathcal{H}}(1/8, 1/7)$$

Contradiction!!!

We can escape the hazards foreseen by the NFL theorem by using our prior knowledge about a specific learning task, to avoid the distributions that will cause us to fail when learning that task.

■ Such prior knowledge can be expressed by restricting our hypothesis class.

(None)-e316cd8 (2021-08-09) - 7 / 24

Error Decomposition

Let h_S be an $ERM_{\mathscr{H}}$ hypothesis: $h_S \in \operatorname{argmin}_{h \in \mathscr{H}} L_S(h)$. Assume $f \in \mathscr{Y}^{\mathscr{X}}$ be the true hypothesis, and h^* is the best hypothesis in \mathscr{H} : $h^* = \min_{h^* \in \mathscr{H}} L_{\mathscr{D}}(h^*)$. Then we can have:

$$L_{\mathcal{D}}(h_S) - L_{\mathcal{D}}(f) = \underline{L_{\mathcal{D}}(h_S)} - \underline{L_{\mathcal{D}}(h^*)} + \underline{L_{\mathcal{D}}(h^*)} - \underline{L_{\mathcal{D}}(f)} = \epsilon_{est} + \epsilon_{app}$$

The Approximation Error $\epsilon_{app} = L_{\mathscr{D}}(h^*) - L_{\mathscr{D}}(f)$

- lacksquare How much risk do we have due to restricting to ${\mathscr H}$
- \blacksquare It does not depend on S
- It decreases with the complexity (size, or VC dimension) of \mathcal{H}

The Estimation Error $\epsilon_{est} = L_{\mathcal{D}}(h_S) - L_{\mathcal{D}}(h^*)$

- lacksquare Result of L_S being only an estimate of $L_{\mathscr{D}}$
- lacksquare It decreases with the size of S
- It increases with the complexity of \mathcal{H}
- We have $\epsilon_{est} = L_{\mathscr{D}}(h_S) L_{\mathscr{D}}(h^*) < 2 \sup_{h \in \mathscr{H}} L_S(h) L_{\mathscr{D}}(h)$. From Hoffding's Inequality, this provides an upper bound for ϵ_{est}

Bias-Complexity Tradeoff.

Overfitting Choosing \mathcal{H} to be a very rich class will decrease the ϵ_{app} , but at the same time might increase the ϵ_{est} , as a rich \mathcal{H} might lead to overfitting.

Underfitting Choosing \mathcal{H} to be a very small class will reduce the estimation error ϵ_{est} , but at the same time might increase the approximation error ϵ_{app} , as a small \mathcal{H} might lead to underfitting.

Bayes Optimal However, Bayes optimal classifier depends on the underlying distribution \mathcal{D} , which we do not know.

Bias-Complexity Tradeoff: Example.

(None)-e316cd8 (2021-08-09) - 8 / 24

Is Infinite Class PAC learnable?

Threshold functions $\mathcal{X} = \mathcal{R}, \, \mathcal{Y} = \pm 1, \, \text{let } \mathcal{H}_{\theta} = \{x \mapsto sign(x - \theta) : \theta \in \mathcal{R}\}$

 \mathscr{H}_{θ} is PAC learnable using ERM rule, with sample complexity of $m_{\mathscr{H}}(\epsilon, \delta) \leq \lceil \frac{\log(2/\delta)}{\epsilon} \rceil$

Proof.

1. Let a^* be the perfect threshold, namely $L_{\mathcal{D}}(h_{a^*}) = 0$. let $a_0 < a^* < a_1$ be such at $P[x \in (a_0, a^*)] = P[x \in (a^*, a^1)] = \epsilon$

- 2. Let b_S be the threshold for ERM result h_S , let $b_0 = \max\{x : (x, -1) \in S\}$ and $b_1 = \min\{x : (x, +1) \in S\}$.
- 3. A sufficient condition for $L_{\mathcal{D}}(h_s) > \epsilon$ can be rewritten as:

$$P[L_{\mathcal{D}}(h_s) > \epsilon] \le P[b_0 < a_0 \lor b_1 > a_1] \le P[b_0 < a_0] + P[b_1 > a_1]$$

Proof.

4. The event $b_0 < a_0$ happens if and only if all examples in S are not in the internal (a_0, a^*) , whose probability mass is defined to be ϵ :

$$P[b_0 < \alpha_0] = P[\forall (x, y) \in S, x \notin (\alpha_0, \alpha^*)] = (1 - \epsilon)^m \le e^{\epsilon m}$$

- 5. When we have $m > \log \frac{2/\delta}{\epsilon}$, $P[b_0 < \alpha_0]$ is at most $\frac{\delta}{2}$.
- 6. Similarly, we have $P[b_1 < a_1] \le \frac{\delta}{2}$.
- 7. Combining with above, we conclude the proof.

(None)-e316cd8 (2021-08-09) -10 / 24

Is Infinite Hypothesis Class PAC learnable?

Finite-Set functions Let $\mathcal{H}_F = \{x \mapsto h_F(x) : \text{ finite set } F \subseteq \mathcal{R}\} \bigcup \{x \mapsto 1\}$

 \mathcal{H}_F is not PAC learnable using ERM rule. $h_F(x) = \begin{cases} 1 & \text{if } x \in F \\ -1 & \text{if } x \notin F \end{cases}$

Proof.

- 1. Let \mathcal{D} be the uniform distribution over \mathcal{X} , and the labelling function is $f = \{x \mapsto 1\}$.
- 2. Let $S \sim \mathcal{D}^m$ be a sample with size m from distribution \mathcal{D} : $S = \{(x_1, 1), \dots, (x_m, 1)\}$
- 3. An ERM learner may pick a $h_F \in \mathcal{H}_F$ for $F = \{x_1, \dots, x_m\}$, and with $L_S(h_F) = 0$.
- 4. What is $L_{\mathcal{D}}(h_F)$?
 - h_F fails on every test point which is outside F.
 - $\blacksquare L_{\mathscr{D}}(h_F) = 1$

(None)-e316cd8 (2021-08-09) -11/24

The VC Dimension

Let $C = \{x_1, \dots, x_m\} \subset \mathcal{X}$, and \mathcal{H} be a class of hypothesis from \mathcal{X} to $\{\pm 1\}$. The restriction \mathcal{H}_C of \mathcal{H} to C is the set of hypothesis from C to $\{\pm 1\}$ that can be derived from $\mathcal{H}: \forall x_i \in C, h_C(x_i) = h(x_i)$

■ we can represent \mathcal{H}_C as the vector $(h(x_1), \dots, h(x_m)) \in \{\pm 1\}^m$

A hypothesis class $\mathcal H$ shatters a finite set $C \subset \mathcal X$ if the restriction of $\mathcal H$ to C is the set of all possible functions from C to $\{\pm 1\}$.

■ in this case, we have $|\mathcal{H}_C| = 2^{|C|}$

The VC-dimension of a hypothesis class \mathcal{H} , denoted $VCdim(\mathcal{H})$, the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .

- If \mathcal{H} can shatter sets of arbitrary large size, we say that $VCdim(\mathcal{H}) = \infty$
- To show that $VCdim(\mathcal{H}) = d$, we need to show
 - There exists a set C of size d which is shattered by \mathcal{H}
 - Any set *C* of size d + 1 is not shattered by \mathcal{H}

(None)-e316cd8 (2021-08-09) -12/24

The VC Dimension — Examples (1)

Threshold functions $\mathcal{X} = \mathcal{R}, \mathcal{Y} = \pm 1, \text{ let } \mathcal{H}_{\theta} = \{x \mapsto sign(x - \theta) : \theta \in \mathcal{R}\}$

 $VCdim(\mathcal{H}_{\theta})=1$

Demo.

- Show that {0} is shattered
- Show that any two points can not be shattered

(None)-e316cd8 (2021-08-09) -13/24

The VC Dimension — Examples (2)

Finite-Set functions Let $\mathcal{H}_F = \{x \mapsto h_F(x) : \text{ finite set } F \subseteq \mathcal{R}\} \bigcup \{x \mapsto 1\}$

 $VCdim(\mathcal{H}_F) = \infty$

Demo.

■ Show that any set can be shattered

(None)-e316cd8 (2021-08-09) - 14 / 24

The VC Dimension — Examples (3)

Finite Hypothesis Classes Let $\mathcal H$ be a finite hypothesis class,

 $VCdim(\mathcal{H}) < \log_2(|\mathcal{H}|)$

Demo.

 \blacksquare Show that any set with at most $\log_2(|\mathcal{H}|)$ size can be shattered

(None)-e316cd8 (2021-08-09) -15 / 24

The VC Dimension — Examples (4)

Intervals functions $\mathcal{X} = \mathcal{R}, \mathcal{Y} = \pm 1$, let $\mathcal{H}_{a,b} = \{h_{a,b}(x) : a < b \in \mathcal{R}\}$, where $h_{a,b}(x) = 1$ iff $x \in (a,b)$.

 $VCdim(\mathcal{H}_{a,b})=2$

Demo.

- Show that $\{0,1\}$ is shattered
- Show that any three points can not be shattered

(None)-e316cd8 (2021-08-09) - 16 / 24

(None)-e316cd8 (2021-08-09) - 17 / 24

The VC Dimension — Examples (6)

Halfspaces $\mathcal{X} = \mathcal{R}^d$, let $\mathcal{H}_S = \{\vec{x} \mapsto sign(\langle \vec{w}, \vec{x} \rangle) : \vec{w} \in \mathcal{R}^d\}$, where the inner product $\langle \vec{w}, \vec{x} \rangle = \vec{w} \cdot \vec{x} = \sum_{i=1}^d w_i x_i$.

 $VCdim(\mathcal{H}_S) = d$

Demo.

- Show that $\{e_1, \dots, e_d\}$ is shattered
- Show that any d + 1 points can not be shattered

Proof-1.

Show that the across zero half space $VCdim(\mathscr{H}_S^0) \ge d$

- Consider the points $\{e_1, \dots, e_d\}$, where $e_i = (0, \dots, 1, \dots, 0)$.
- Pick $B \subset \{e_1, \dots, e_d\}$, let $h_B = (w_1, \dots, w_d)$, with $w_i = \{ \begin{cases} 1 & \text{if } e_i \in B \\ -1 & \text{if } e_i \notin B \end{cases}$
- $\forall e_i$, we have $h_B(e_i) = 1$ if $e_i \in B$, and -1 otherwise:

$$h_B(x) = sign(\langle \vec{w}, \vec{e} \rangle) = w_i$$

Proof-2.

Show that the across zero half space $VCdim(\mathcal{H}_S^0) < d+1$

- Aim: given any set $A = \{x_1, \dots, x_{n+1}\}$, which can not be shattered by \mathcal{H}_S . From linear algebra, we have $\sum_{i=1}^{d+1} a_i x_i = 0$
- We decompose them into positive set P and negative set N, and then have $\sum_{i \in P} a_i x_i = \sum_{j \in N} |a_j| x_j$
- Let $B = \{x_i : i \in P\}$, let us apply \mathcal{H}_B on both sides:

$$\mathcal{H}_B(\sum_{i \in P} a_i x_i) = \sum_{i \in P} a_i \mathcal{H}_B(x_i) = \mathcal{H}_B(\sum_{j \in N} |a_j| x_j) = \sum_{j \in N} |a_j| \mathcal{H}_B(x_j)$$

the left hand side is positive, the right hand side is negative. Contradiction!!!

(None)-e316cd8 (2021-08-09) -18/24

Radon's Lemma

For every n, for every $\{x_1, x_2, \dots, x_{n+2}\} \subset \mathcal{R}^n$, there exists $B \subset \{x_1, x_2, \dots, x_{n+2}\}$,

 $CovHull(B)\cap CovHull(\{x_1,x_2,\cdots,x_{n+2}\}-B)\neq \phi$

(None)-e316cd8 (2021-08-09) - 19 / 24

Quiz 20 / 24

No Free Lunch Theorem

1. To design a learning algorithm to predict whether patients are going to suffer a heart attack based on features includin blood pressure (BP), body-mass index (BMI), age (A), level of physical activity (P), and income (I). You have to choose between two algorithms: the first picks an axis aligned rectangle in the 2-dimensional space spanned by the features BP and BMI; and the other picks an axis aligned rectangle in the 5-dimensional space spanned by all the preceding features.

- Explain the pros and cons of each choice.
- Explain how the size of training sample affects your choice.
- 2. Prove that if $|\mathcal{X}| \ge km$ for a positive integer $k \ge 2$, then we can replace the lower bound of 1/4 in the No-Free-Lunch theorem with $\frac{k-1}{2k} = \frac{1}{2} \frac{1}{2k}$. Namely, let A be a learning algorithm for the task of binary classification. Let m be any number smaller than $|\mathcal{X}|/k$, representing a training sample size. Then, there exists a distribution \mathscr{D} over $\mathscr{X} \times \{0,1\}$ such that:
 - There exists a function f, which maps \mathcal{X} to $\{0,1\}$ with $L_{\mathcal{D}}(f) = 0$.
 - $\blacksquare \quad E_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A(S)) \ge \frac{1}{2} \frac{1}{2k}].$

(None)-e316cd8 (2021-08-09) -21/24

The VC Dimension

- 1. Show the following monotonicity property of VC-dimension: for every two hypothesis classes if $\mathcal{H}' \subseteq \mathcal{H}$, then $VCDim(\mathcal{H}') \leq VCDim(\mathcal{H})$.
- 2. For a finite hypothesis clas \mathcal{H} , $VCDim(\mathcal{H}) \leq \lfloor \log(|\mathcal{H}|) \rfloor$. However, this is just an upper bound. The VC-dimension of a class can be much lower than that:
 - Find an example of a class \mathcal{H} of functions over the real interval $\mathbb{X} = [0,1]$, such that \mathbb{H} is finite while $VCDim(\mathcal{H}) = 1$.
 - Give an example of a finite hypothesis class \mathcal{H} over the domain $\mathbb{X} = [0,1]$, where $VCDim(\mathcal{H}) = \lfloor \log(|\mathcal{H}|) \rfloor$.

(None)-e316cd8 (2021-08-09) -22 / 24

Questions?	
	(N) 212 12 (2221 22 22) 22 (24

(None)-e316cd8 (2021-08-09) -23/24

Contact Information

Associate Professor **GANG LI**School of Information Technology
Deakin University
Geelong, Victoria 3216, Australia

GANGLI@TULIP.ORG.AU

OPEN RESOURCES OF TULIP-LAB

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING

(None)-e316cd8 (2021-08-09) - 24 / 24