# sns\_addiction\_regression

June 20, 2025

### 1 Abstract

본 연구는 학생들의 SNS 사용과 관련된 행동/심리적 요인이 중독 수준에 미치는 영향을 분석을 목적으로 수행되었다. 본 연구는 SNS 일일 사용 시간, 수면 시간, 정신 건강 점수, SNS 관련 갈등 경험, 나이 등의 변수가 소셜미디어 중독 점수에 미치는 영향을 종합적으로 검토하는 방향으로 수행되었으며, 방법론으로는 OLS 회귀, 범주형 변수 포함 회귀, GMM 클러스터링, VIF 분석, ANOVA가 사용되었다. 결론적으로, 정신 건강 점수와 SNS 갈등 경험이 중독에 가장 유의미한 영향을 주는 것으로 파악됐다. 또한 중독 수준이 높아질수록 해당 요인의 영향력이 감소하였으며, 수면 시간은 중독 점수와 음의 상관이 존재함을 파악했다.

## 2 Introduction

## 2.1 Research Question

"학생들의 일일 소셜미디어 사용 시간, 수면 시간, 정신건강 점수, 그리고 소셜미디어 관련 갈등 경험은 소셜미디어 중독 점수에 어떤 영향을 미치는가?"

# 2.2 Hyphothesis

- 귀무가설 (H0): 모든 독립 변수는 중독 점수에 유의미한 영향을 미치지 않는다.
- 대립가설 (H1): 하나 이상의 독립 변수는 중독 점수에 유의미한 영향을 미친다.

```
[1]: import statsmodels.api as sm
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    from statsmodels.graphics.gofplots import qqplot
    from sklearn.mixture import GaussianMixture
    from scipy import stats
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import patsy

import warnings
    warnings.filterwarnings("ignore")

df = pd.read_csv("data/Students Social Media Addiction.csv")
```

## 3 Research Method

## 3.1 Data

- 샘플 수: 705명
- 주요 변수
  - 종속 변수: Addicted\_Score (소셜미디어 중독 점수)
  - 독립 변수: Avg\_Daily\_Usage\_Hours, Sleep\_Hours\_Per\_Night, Mental\_Health\_Score, Conflicts\_Over\_Social\_Media, Age 등

### [2]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 705 entries, 0 to 704
Data columns (total 13 columns):
```

| #  | Column                           | Non-Null Count | Dtype   |
|----|----------------------------------|----------------|---------|
|    |                                  |                |         |
| 0  | Student_ID                       | 705 non-null   | int64   |
| 1  | Age                              | 705 non-null   | int64   |
| 2  | Gender                           | 705 non-null   | object  |
| 3  | Academic_Level                   | 705 non-null   | object  |
| 4  | Country                          | 705 non-null   | object  |
| 5  | Avg_Daily_Usage_Hours            | 705 non-null   | float64 |
| 6  | Most_Used_Platform               | 705 non-null   | object  |
| 7  | Affects_Academic_Performance     | 705 non-null   | object  |
| 8  | Sleep_Hours_Per_Night            | 705 non-null   | float64 |
| 9  | Mental_Health_Score              | 705 non-null   | int64   |
| 10 | Relationship_Status              | 705 non-null   | object  |
| 11 | Conflicts_Over_Social_Media      | 705 non-null   | int64   |
| 12 | Addicted_Score                   | 705 non-null   | int64   |
| 4+ | og. $floo+64(0)$ $in+64(E)$ objo | a+ (6)         |         |

dtypes: float64(2), int64(5), object(6)

memory usage: 71.7+ KB

## 3.2 Correlation Analysis

- 주요 변수 간 피어슨 상관계수 계산
- Addicted\_Score와 높은 상관을 가진 변수:
  - Mental\_Health\_Score: -0.945 (강한 음의 상관)
  - Conflicts\_Over\_Social\_Media: +0.934
  - Avg\_Daily\_Usage\_Hours: +0.832

```
[3]: numeric_vars = [
          'Age', 'Avg_Daily_Usage_Hours', 'Sleep_Hours_Per_Night',
          'Mental_Health_Score', 'Conflicts_Over_Social_Media', 'Addicted_Score'
]
correlation_matrix = df[numeric_vars].corr()
```

#### correlation\_matrix

| [3]: |                             | Age       | 0- 0- 0         |          | \           |   |
|------|-----------------------------|-----------|-----------------|----------|-------------|---|
|      | Age                         | 1.000000  | -0              | .113682  |             |   |
|      | Avg_Daily_Usage_Hours       | -0.113682 | 1               | .000000  |             |   |
|      | Sleep_Hours_Per_Night       | 0.125265  | -0              | .790582  |             |   |
|      | Mental_Health_Score         | 0.160278  | -0              | .801058  |             |   |
|      | Conflicts_Over_Social_Media | -0.184482 | 0               | .804582  |             |   |
|      | Addicted_Score              | -0.166396 | 0               | .832000  |             |   |
|      |                             |           |                 |          |             |   |
|      |                             | Sleep_Hou | rs_Per_Night M  | ental_He | alth_Score  | \ |
|      | Age                         |           | 0.125265        |          | 0.160278    |   |
|      | Avg_Daily_Usage_Hours       |           | -0.790582       |          | -0.801058   |   |
|      | Sleep_Hours_Per_Night       |           | 1.000000        |          | 0.707439    |   |
|      | Mental_Health_Score         |           | 0.707439        |          | 1.000000    |   |
|      | Conflicts_Over_Social_Media |           | -0.677266       |          | -0.893572   |   |
|      | Addicted_Score              |           | -0.764858       |          | -0.945051   |   |
|      |                             |           |                 |          |             |   |
|      |                             | Conflicts | _Over_Social_Me | dia Add  | icted_Score | ! |
|      | Age                         |           | -0.184          | 482      | -0.166396   | ; |
|      | Avg_Daily_Usage_Hours       |           | 0.804           | 582      | 0.832000    | ) |
|      | Sleep_Hours_Per_Night       |           | -0.677          | 266      | -0.764858   | ; |
|      | Mental_Health_Score         |           | -0.893          | 572      | -0.945051   |   |
|      | Conflicts_Over_Social_Media |           | 1.000           | 000      | 0.933586    | ; |
|      | Addicted_Score              |           | 0.933           |          | 1.000000    | ) |
|      |                             |           |                 |          |             |   |

# 3.3 OLS Regression

# 3.3.1 모델 1: 수치형 변수만 포함한 회귀

- 설명력 (R<sup>2</sup>): 0.945
- 유의미 변수:
  - Mental\_Health\_Score (p < 0.001)
  - Conflicts\_Over\_Social\_Media (p < 0.001)
  - Sleep\_Hours\_Per\_Night (p < 0.001)

## 3.3.2 모델 2: 범주형 변수 포함 (Gender, Country, Platform 등)

- 설명력 (R²): 0.982
- 유의미 변수:
  - 학업 성과에 영향을 준다고 답한 경우 (+0.66)
  - TikTok, Snapchat 사용자 (정의 영향)
  - WhatsApp, LINE 사용자 (부의 영향)

# [4]: # 모델 1: 수치형 변수만 포함한 회귀모형

```
y1, X1 = patsy.dmatrices('Addicted_Score ~ ' + ' + '.join(model1_features),__

→data=df, return_type='dataframe')
model1 = sm.OLS(y1, X1).fit()
# 모델 2: 범주형 변수 포함한 회귀모형
# 범주형 변수는 자동으로 더미 처리됨
formula_model2 = ('Addicted_Score ~ Age + Avg_Daily_Usage_Hours +__
 →Sleep_Hours_Per_Night + '
                'Mental_Health_Score + Conflicts_Over_Social_Media + '
                'C(Gender) + C(Academic_Level) + C(Country) + '
                'C(Most_Used_Platform) + C(Affects_Academic_Performance) + '
                'C(Relationship_Status)')
y2, X2 = patsy.dmatrices(formula_model2, data=df, return_type='dataframe')
model2 = sm.OLS(y2, X2).fit()
print(model1.summary())
print("
print(model2.summary())
                        OLS Regression Results
______
Dep. Variable:
                   Addicted_Score
                                  R-squared:
                                                              0.945
Model:
                             OLS
                                 Adj. R-squared:
                                                              0.944
Method:
                    Least Squares F-statistic:
                                                              2380.
Date:
                 Fri, 20 Jun 2025 Prob (F-statistic):
                                                               0.00
Time:
                                                            -306.26
                         13:11:25 Log-Likelihood:
No. Observations:
                             705
                                 AIC:
                                                              624.5
Df Residuals:
                             699
                                  BIC:
                                                              651.9
Df Model:
                              5
Covariance Type:
                       nonrobust
_____
```

| ==========          | ======================================= |         |         |       |  |  |
|---------------------|-----------------------------------------|---------|---------|-------|--|--|
| [0.025 0.975]       | coef                                    | std err | t       | P> t  |  |  |
|                     |                                         |         |         |       |  |  |
| Intercept           | 9.9859                                  | 0.396   | 25.222  | 0.000 |  |  |
| 9.209 10.763        |                                         |         |         |       |  |  |
| Age                 | 0.0037                                  | 0.010   | 0.363   | 0.717 |  |  |
| -0.017 0.024        |                                         |         |         |       |  |  |
| Avg_Daily_Usage_How | ırs 0.0203                              | 0.023   | 0.872   | 0.384 |  |  |
| -0.025 0.066        |                                         |         |         |       |  |  |
| Sleep_Hours_Per_Ni  | ght -0.2103                             | 0.021   | -10.032 | 0.000 |  |  |
| -0.251 -0.169       |                                         |         |         |       |  |  |
| Mental_Health_Score | -0.6715                                 | 0.030   | -22.072 | 0.000 |  |  |
| -0.731 -0.612       |                                         |         |         |       |  |  |

| Conflict<br>0.598          | s_Over_Soci<br>0.735            |                                | 0.6666             | 0.035             | 19.004    | 0.000           |
|----------------------------|---------------------------------|--------------------------------|--------------------|-------------------|-----------|-----------------|
| Omnibus:                   |                                 | =======                        | 31.428             | <br>Durbin-Watson | <br>:     | <br>2.048       |
| Prob(Omn                   | ibus):                          |                                | 0.000              | Jarque-Bera (     | JB):      | 42.402          |
| Skew:                      |                                 |                                | 0.408              | Prob(JB):         |           | 6.20e-10        |
| Kurtosis<br>======         |                                 |                                | 3.882<br>=======   | Cond. No.         | =======   | 658.<br>======  |
| Notes:<br>[1] Stan         |                                 | assume tha                     | at the cov         | ariance matrix    | of the er | rors is correct |
|                            |                                 | 01                             | LS Regress         | ion Results       |           |                 |
| ======<br>Dep. Var         | :=======<br>:iable:             | Addict                         | ======<br>ed_Score | R-squared:        | =======   | <br>0.982       |
| Model:                     |                                 |                                | OLS                | Adj. R-square     | d:        | 0.978           |
| Method:                    |                                 | Least                          | Squares            | F-statistic:      |           | 240.4           |
| Date:                      |                                 | Fri, 20 .                      | Jun 2025           | Prob (F-stati     | stic):    | 0.00            |
| Time:                      |                                 | :                              | 13:11:25           | Log-Likelihoo     | d:        | 93.174          |
| No. Obse                   | ervations:                      |                                | 705                | AIC:              |           | 77.65           |
| Df Resid                   | luals:                          |                                | 573                | BIC:              |           | 679.3           |
| Df Model                   |                                 |                                | 131                |                   |           |                 |
| Covarian<br>======         | ce Type:                        | no                             | onrobust<br>====== | ========          | =======   | ========        |
| ======<br>P> t <br>        | [0.025                          | 0.975]                         |                    | coef              | std err   | t               |
| <br>Intercep               | <br>ot                          |                                |                    | 9.3507            | 0.569     | 16.434          |
| 0.000                      | 8.233                           | 10.468                         |                    |                   |           |                 |
|                            | r)[T.Male]                      |                                |                    | -0.0206           | 0.033     | -0.633          |
| 0.527                      | -0.085                          | 0.043                          | - 7                |                   |           |                 |
|                            | nic_Level)[T                    |                                | ΣŢ]                | 0.3891            | 0.134     | 2.898           |
| 0.004<br>C(Academ<br>0.015 | 0.125<br>nic_Level)[T<br>-0.216 | 0.653<br>.Undergradı<br>-0.023 | uate]              | -0.1196           | 0.049     | -2.428          |
|                            |                                 | _                              |                    |                   |           |                 |

-0.2120

-0.8408

-0.7674

0.2418

-0.2661

0.356

0.398

0.397

0.372

0.290

-0.595

-2.113

-1.932

0.651

-0.917

C(Country)[T.Albania]

C(Country)[T.Andorra]

C(Country)[T.Argentina]

C(Country)[T.Armenia]

C(Country)[T.Australia]

-0.911

-1.622

-1.548

-0.488

-0.836

0.487

-0.059

0.013

0.972

0.304

0.552

0.035

0.054

0.515

0.360

| C(Country)[T.Austria]        | -0.0931 | 0.355 | -0.262 |
|------------------------------|---------|-------|--------|
| 0.793 -0.791 0.605           |         |       |        |
| C(Country)[T.Azerbaijan]     | -0.1847 | 0.375 | -0.493 |
| 0.622 -0.921 0.552           |         |       |        |
| C(Country)[T.Bahamas]        | -0.1098 | 0.355 | -0.309 |
| 0.757 -0.807 0.587           |         |       |        |
| C(Country)[T.Bahrain]        | -0.0401 | 0.337 | -0.119 |
| 0.905 -0.701 0.621           |         |       |        |
| C(Country)[T.Bangladesh]     | -0.2091 | 0.293 | -0.713 |
| 0.476 -0.785 0.367           |         |       |        |
| C(Country)[T.Belarus]        | -0.0406 | 0.353 | -0.115 |
| 0.908 -0.734 0.653           |         |       |        |
| C(Country)[T.Belgium]        | -0.7351 | 0.397 | -1.851 |
| 0.065 -1.515 0.045           |         |       |        |
| C(Country) [T.Bhutan]        | -1.0479 | 0.413 | -2.539 |
| 0.011 -1.859 -0.237          |         |       |        |
| C(Country)[T.Bolivia]        | 0.1017  | 0.336 | 0.303  |
| 0.762 -0.558 0.761           |         |       |        |
| C(Country) [T.Bosnia]        | 0.0772  | 0.335 | 0.231  |
| 0.818 -0.580 0.735           | 0.4000  | 0 000 | 0 440  |
| C(Country)[T.Brazil]         | 0.1260  | 0.307 | 0.410  |
| 0.682 -0.478 0.730           | 0.0044  | 0.050 |        |
| C(Country)[T.Bulgaria]       | 0.0314  | 0.353 | 0.089  |
| 0.929 -0.662 0.725           | 0.4400  | 0.004 |        |
| C(Country) [T.Canada]        | -0.1100 | 0.291 | -0.378 |
| 0.705 -0.681 0.461           |         |       |        |
| C(Country)[T.Chile]          | 0.0080  | 0.337 | 0.024  |
| 0.981 -0.653 0.669           |         |       |        |
| C(Country)[T.China]          | -0.1140 | 0.357 | -0.320 |
| 0.749 -0.814 0.586           | 0 4505  | 0.074 |        |
| C(Country)[T.Colombia]       | -0.1785 | 0.374 | -0.477 |
| 0.633 -0.913 0.556           | 0 0055  |       | 4 500  |
| C(Country)[T.Costa Rica]     | -0.6355 | 0.398 | -1.598 |
| 0.110 -1.416 0.145           | 0.0450  | 0.070 | 0.040  |
| C(Country) [T.Croatia]       | 0.0173  | 0.376 | 0.046  |
| 0.963 -0.721 0.755           | 0.7450  | 0.055 | 0.045  |
| C(Country) [T.Cyprus]        | 0.7159  | 0.355 | 2.015  |
| 0.044 0.018 1.414            | 0.7000  | 0.455 | 4 545  |
| C(Country)[T.Czech Republic] | -0.7033 | 0.455 | -1.545 |
| 0.123 -1.598 0.191           | 0. 5074 | 0.000 | 4 000  |
| C(Country)[T.Denmark]        | -0.5674 | 0.289 | -1.963 |
| 0.050 -1.135 0.000           | 0.0440  | 0.070 | 0 004  |
| C(Country) [T.Ecuador]       | 0.2463  | 0.373 | 0.661  |
| 0.509 -0.486 0.979           | 0.7400  | 0.074 | 4 040  |
| C(Country) [T.Egypt]         | 0.7183  | 0.374 | 1.918  |
| 0.056 -0.017 1.454           | 0.0010  | 0.050 | 0 000  |
| C(Country) [T.Estonia]       | -0.0319 | 0.356 | -0.090 |
| 0.929 -0.731 0.667           |         |       |        |

| C(Country)[T.Finland]    | -0.3273 | 0.299 | -1.095 |
|--------------------------|---------|-------|--------|
| 0.274 -0.914 0.260       |         |       |        |
| C(Country)[T.France]     | -0.3180 | 0.289 | -1.100 |
| 0.272 -0.886 0.250       |         |       |        |
| C(Country)[T.Georgia]    | -0.1780 | 0.353 | -0.504 |
| 0.615 -0.872 0.516       |         |       |        |
| C(Country)[T.Germany]    | -0.4435 | 0.290 | -1.528 |
| 0.127 -1.013 0.126       |         |       |        |
| C(Country)[T.Ghana]      | -0.5829 | 0.430 | -1.357 |
| 0.175 -1.427 0.261       |         |       |        |
| C(Country)[T.Greece]     | -0.3518 | 0.375 | -0.939 |
| 0.348 -1.088 0.384       |         |       |        |
| C(Country)[T.Hong Kong]  | -0.1772 | 0.374 | -0.473 |
| 0.636 -0.912 0.558       |         |       |        |
| C(Country)[T.Hungary]    | -0.0934 | 0.356 | -0.262 |
| 0.793 -0.793 0.606       |         |       |        |
| C(Country)[T.Iceland]    | -0.0594 | 0.355 | -0.167 |
| 0.867 -0.757 0.638       |         |       |        |
| C(Country)[T.India]      | -0.0243 | 0.288 | -0.084 |
| 0.933 -0.591 0.542       |         |       |        |
| C(Country)[T.Indonesia]  | -0.7948 | 0.372 | -2.139 |
| 0.033 -1.524 -0.065      |         |       |        |
| C(Country)[T.Iraq]       | 0.0839  | 0.356 | 0.236  |
| 0.814 -0.614 0.782       |         |       |        |
| C(Country)[T.Ireland]    | -0.2053 | 0.292 | -0.703 |
| 0.482 -0.779 0.368       |         |       |        |
| C(Country) [T.Israel]    | 0.2136  | 0.378 | 0.566  |
| 0.572 -0.528 0.955       |         |       |        |
| C(Country) [T.Italy]     | -0.2667 | 0.289 | -0.924 |
| 0.356 -0.834 0.300       |         |       |        |
| C(Country)[T.Jamaica]    | -0.5150 | 0.390 | -1.322 |
| 0.187 -1.280 0.250       |         |       |        |
| C(Country) [T. Japan]    | -0.5942 | 0.302 | -1.964 |
| 0.050 -1.188 -8.64e-05   |         |       |        |
| C(Country) [T. Jordan]   | -0.2826 | 0.375 | -0.753 |
| 0.452 -1.019 0.454       |         |       |        |
| C(Country)[T.Kazakhstan] | -0.3910 | 0.431 | -0.907 |
| 0.365 -1.238 0.456       |         |       |        |
| C(Country)[T.Kenya]      | -0.1924 | 0.377 | -0.510 |
| 0.610 -0.934 0.549       |         |       |        |
| C(Country) [T.Kosovo]    | -0.7311 | 0.399 | -1.831 |
| 0.068 -1.516 0.053       |         |       |        |
| C(Country)[T.Kuwait]     | -1.2400 | 0.455 | -2.726 |
| 0.007 -2.134 -0.346      |         |       |        |
| C(Country)[T.Kyrgyzstan] | -0.3387 | 0.378 | -0.896 |
| 0.370 -1.081 0.403       |         |       |        |
| C(Country)[T.Latvia]     | -1.0539 | 0.456 | -2.313 |
| 0.021 -1.949 -0.159      |         |       |        |
|                          |         |       |        |

| C(Country)[T.Lebanon]                         | 0.2750    | 0.392 | 0.701  |
|-----------------------------------------------|-----------|-------|--------|
| 0.483 -0.495 1.045                            | 0.0044    | 0.007 | 0.740  |
| C(Country) [T.Liechtenstein]                  | 0.2941    | 0.397 | 0.740  |
| 0.459 -0.486 1.074<br>C(Country)[T.Lithuania] | -0.4192   | 0.377 | -1.112 |
| 0.267 -1.160 0.321                            | -0.4192   | 0.377 | -1.112 |
| C(Country) [T.Luxembourg]                     | -1.0862   | 0.456 | -2.384 |
| 0.017 -1.981 -0.191                           | 1.0002    | 0.100 | 2.001  |
| C(Country) [T.Malaysia]                       | 0.0926    | 0.298 | 0.311  |
| 0.756 -0.493 0.678                            | 0.0020    | 0.200 | 0.022  |
| C(Country) [T.Maldives]                       | 0.1774    | 0.293 | 0.605  |
| 0.545 -0.398 0.753                            |           |       |        |
| C(Country)[T.Malta]                           | -0.1255   | 0.355 | -0.354 |
| 0.723 -0.822 0.571                            |           |       |        |
| C(Country)[T.Mexico]                          | 0.0045    | 0.294 | 0.015  |
| 0.988 -0.573 0.582                            |           |       |        |
| C(Country) [T.Moldova]                        | -0.1110   | 0.373 | -0.297 |
| 0.766 -0.845 0.623                            |           |       |        |
| C(Country) [T.Monaco]                         | 4.051e-05 | 0.358 | 0.000  |
| 1.000 -0.702 0.702                            |           |       |        |
| C(Country) [T.Montenegro]                     | -0.3181   | 0.376 | -0.847 |
| 0.397 -1.056 0.420                            |           |       |        |
| C(Country) [T.Morocco]                        | -0.1116   | 0.376 | -0.297 |
| 0.766 -0.849 0.626                            |           |       |        |
| C(Country)[T.Nepal]                           | 0.0687    | 0.292 | 0.235  |
| 0.814 -0.505 0.643                            |           |       |        |
| C(Country)[T.Netherlands]                     | -0.5555   | 0.298 | -1.865 |
| 0.063 -1.140 0.029                            |           |       |        |
| C(Country)[T.New Zealand]                     | -0.3966   | 0.301 | -1.317 |
| 0.188 -0.988 0.195                            |           |       |        |
| C(Country)[T.Nigeria]                         | -0.6951   | 0.372 | -1.867 |
| 0.062 -1.426 0.036                            |           |       |        |
| C(Country)[T.North Macedonia]                 | 0.3890    | 0.435 | 0.893  |
| 0.372 -0.466 1.244                            |           |       |        |
| C(Country)[T.Norway]                          | -0.2855   | 0.399 | -0.715 |
| 0.475 -1.069 0.498                            |           |       |        |
| C(Country)[T.Oman]                            | 0.0234    | 0.374 | 0.063  |
| 0.950 -0.712 0.759                            |           |       |        |
| C(Country)[T.Pakistan]                        | -0.3729   | 0.295 | -1.266 |
| 0.206 -0.951 0.206                            |           |       |        |
| C(Country)[T.Panama]                          | -0.3362   | 0.378 | -0.891 |
| 0.374 -1.078 0.405                            |           |       |        |
| C(Country)[T.Paraguay]                        | -0.2742   | 0.375 | -0.731 |
| 0.465 -1.011 0.462                            |           |       |        |
| C(Country)[T.Peru]                            | -0.1782   | 0.374 | -0.477 |
| 0.633 -0.912 0.555                            |           |       |        |
| C(Country)[T.Philippines]                     | -0.6004   | 0.429 | -1.399 |
| 0.162 -1.443 0.242                            |           |       |        |

| C(Country)[T.Poland]                         | -0.1304 | 0.292 | -0.447 |
|----------------------------------------------|---------|-------|--------|
| 0.655 -0.704 0.443                           | 0.0400  | 0.074 | 0 504  |
| C(Country)[T.Portugal]<br>0.573 -0.944 0.523 | -0.2106 | 0.374 | -0.564 |
| C(Country) [T.Qatar]                         | -0.1934 | 0.375 | -0.516 |
| 0.606 -0.929 0.543                           | -0.1354 | 0.070 | -0.010 |
| C(Country) [T.Romania]                       | 0.1633  | 0.375 | 0.435  |
| 0.663 -0.573 0.900                           |         |       |        |
| C(Country) [T.Russia]                        | -0.2039 | 0.299 | -0.683 |
| 0.495 -0.790 0.383                           |         |       |        |
| C(Country)[T.San Marino]                     | 0.0751  | 0.355 | 0.211  |
| 0.833 -0.623 0.773                           |         |       |        |
| C(Country)[T.Serbia]                         | 0.6789  | 0.374 | 1.815  |
| 0.070 -0.056 1.413                           |         |       |        |
| C(Country)[T.Singapore]                      | -0.1576 | 0.302 | -0.521 |
| 0.602 -0.751 0.436                           |         |       |        |
| C(Country)[T.Slovakia]                       | -1.0157 | 0.353 | -2.876 |
| 0.004 -1.709 -0.322                          |         |       |        |
| C(Country)[T.Slovenia]                       | -0.9038 | 0.398 | -2.271 |
| 0.024 -1.685 -0.122                          |         |       |        |
| C(Country)[T.South Africa]                   | 0.0162  | 0.354 | 0.046  |
| 0.963 -0.679 0.712                           | 0.0704  | 0.076 | 0.005  |
| C(Country) [T.South Korea]                   | -0.9794 | 0.376 | -2.605 |
| 0.009 -1.718 -0.241                          | 0.0126  | 0 202 | 0 047  |
| C(Country) [T.Spain] 0.963 -0.561 0.588      | 0.0136  | 0.292 | 0.047  |
| C(Country) [T.Sri Lanka]                     | -0.2135 | 0.291 | -0.735 |
| 0.463 -0.784 0.357                           | -0.2133 | 0.231 | -0.755 |
| C(Country) [T.Sweden]                        | -0.3563 | 0.357 | -0.998 |
| 0.319 -1.057 0.345                           | 0.0000  | 0.007 | 0.000  |
| C(Country) [T.Switzerland]                   | -0.4507 | 0.288 | -1.563 |
| 0.119 -1.017 0.116                           |         |       |        |
| C(Country) [T.Syria]                         | -0.6736 | 0.397 | -1.696 |
| 0.090 -1.454 0.106                           |         |       |        |
| C(Country) [T.Taiwan]                        | 0.0677  | 0.356 | 0.190  |
| 0.849 -0.631 0.766                           |         |       |        |
| C(Country)[T.Tajikistan]                     | -0.0208 | 0.396 | -0.053 |
| 0.958 -0.798 0.756                           |         |       |        |
| C(Country)[T.Thailand]                       | -0.7113 | 0.372 | -1.911 |
| 0.057 -1.443 0.020                           |         |       |        |
| C(Country)[T.Trinidad]                       | -0.7836 | 0.397 | -1.972 |
| 0.049 -1.564 -0.003                          |         |       |        |
| C(Country)[T.Turkey]                         | -0.0371 | 0.289 | -0.128 |
| 0.898 -0.605 0.531                           |         |       |        |
| C(Country)[T.UAE]                            | -0.2384 | 0.303 | -0.787 |
| 0.431 -0.833 0.356                           |         |       |        |
| C(Country)[T.UK]                             | -0.1671 | 0.292 | -0.572 |
| 0.567 -0.741 0.407                           |         |       |        |

| C(Country)[T.USA]                                  | 0.2567  | 0.290 | 0.885  |
|----------------------------------------------------|---------|-------|--------|
| 0.377 -0.313 0.827                                 |         |       |        |
| C(Country)[T.Ukraine]                              | -0.2163 | 0.356 | -0.608 |
| 0.543 -0.915 0.482                                 |         |       |        |
| C(Country)[T.Uruguay]                              | 0.7631  | 0.390 | 1.956  |
| 0.051 -0.003 1.529                                 |         |       |        |
| C(Country)[T.Uzbekistan]                           | -0.7641 | 0.372 | -2.053 |
| 0.041 -1.495 -0.033                                |         |       |        |
| C(Country)[T.Vatican City]                         | -0.0307 | 0.381 | -0.080 |
| 0.936 -0.780 0.718                                 |         |       |        |
| C(Country)[T.Venezuela]                            | -0.3754 | 0.375 | -1.001 |
| 0.317 -1.112 0.361                                 |         |       |        |
| C(Country)[T.Vietnam]                              | 0.2427  | 0.379 | 0.640  |
| 0.522 -0.502 0.987                                 |         |       |        |
| C(Country)[T.Yemen]                                | -0.1525 | 0.376 | -0.405 |
| 0.685 -0.892 0.587                                 |         |       |        |
| <pre>C(Most_Used_Platform)[T.Instagram]</pre>      | -0.0147 | 0.042 | -0.350 |
| 0.727 -0.097 0.068                                 |         |       |        |
| <pre>C(Most_Used_Platform)[T.KakaoTalk]</pre>      | -0.0303 | 0.263 | -0.115 |
| 0.908 -0.547 0.486                                 |         |       |        |
| <pre>C(Most_Used_Platform)[T.LINE]</pre>           | -0.5637 | 0.128 | -4.401 |
| 0.000 -0.815 -0.312                                |         |       |        |
| <pre>C(Most_Used_Platform)[T.LinkedIn]</pre>       | -0.2165 | 0.125 | -1.735 |
| 0.083 -0.462 0.029                                 |         |       |        |
| <pre>C(Most_Used_Platform)[T.Snapchat]</pre>       | 0.4112  | 0.175 | 2.349  |
| 0.019 0.067 0.755                                  |         |       |        |
| <pre>C(Most_Used_Platform)[T.TikTok]</pre>         | 0.1011  | 0.042 | 2.379  |
| 0.018 0.018 0.185                                  |         |       |        |
| <pre>C(Most_Used_Platform)[T.Twitter]</pre>        | -0.0883 | 0.061 | -1.441 |
| 0.150 -0.209 0.032                                 |         |       |        |
| <pre>C(Most_Used_Platform)[T.VKontakte]</pre>      | -0.1038 | 0.120 | -0.863 |
| 0.389 -0.340 0.133                                 |         |       |        |
| <pre>C(Most_Used_Platform)[T.WeChat]</pre>         | -0.1592 | 0.274 | -0.582 |
| 0.561 -0.697 0.378                                 |         |       |        |
| <pre>C(Most_Used_Platform)[T.WhatsApp]</pre>       | -0.2782 | 0.059 | -4.723 |
| 0.000 -0.394 -0.163                                |         |       |        |
| <pre>C(Most_Used_Platform)[T.YouTube]</pre>        | 0.0209  | 0.146 | 0.143  |
| 0.887 -0.266 0.308                                 |         |       |        |
| <pre>C(Affects_Academic_Performance) [T.Yes]</pre> | 0.6643  | 0.076 | 8.725  |
| 0.000 0.515 0.814                                  |         |       |        |
| C(Relationship_Status)[T.In Relationship]          | 0.1016  | 0.122 | 0.835  |
| 0.404 -0.137 0.340                                 |         |       |        |
| C(Relationship_Status)[T.Single]                   | -0.0435 | 0.121 | -0.360 |
| 0.719 -0.281 0.194                                 |         |       |        |
| Age                                                | -0.0394 | 0.015 | -2.637 |
| 0.009 -0.069 -0.010                                |         |       |        |
| Avg_Daily_Usage_Hours                              | 0.0874  | 0.029 | 2.997  |
| 0.003 0.030 0.145                                  |         |       |        |
|                                                    |         |       |        |

| Kurtosis:                                     | 8.109  | Cond. No.         |         | 7.72e+03  |
|-----------------------------------------------|--------|-------------------|---------|-----------|
| Skew:                                         | 0.112  | Prob(JB):         |         | 1.45e-167 |
| Prob(Omnibus):                                | 0.000  | Jarque-Bera (JB): |         | 768.322   |
| Omnibus:                                      | 88.075 | Durbin-Watson:    |         | 2.111     |
| 0.000 0.345 0.495                             |        | .=========        | :====== |           |
| Conflicts_Over_Social_Media 0.000 0.343 0.495 |        | 0.4190            | 0.039   | 10.813    |
|                                               |        | 0.4190            | 0.039   | 10.813    |
| 0.000 -0.609 -0.481                           |        |                   |         |           |
| Mental_Health_Score                           |        | -0.5453           | 0.033   | -16.718   |
| 0.004 -0.125 -0.024                           |        |                   |         |           |
| Sleep_Hours_Per_Night                         |        | -0.0744           | 0.026   | -2.901    |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.72e+03. This might indicate that there are strong multicollinearity or other numerical problems.

## 3.4 VIF Evaluation

- 모델 1: 모든 변수 VIF < 10 (안정적)
- 모델 2: 국가 더미 변수와 SNS 플랫폼 더미 중 다수 VIF  $> 30 \rightarrow$  다중공선성 존재

```
[5]: def compute_vif(X):
    vif_data = pd.DataFrame()
    vif_data['Variable'] = X.columns
    vif_data['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.
    →shape[1])]
    return vif_data

# 모델 1의 VIF
vif_model1 = compute_vif(X1)

# 모델 2의 VIF
vif_model2 = compute_vif(X2)
```

## [6]: vif\_model1

| [6]: | Variable                    | VIF        |
|------|-----------------------------|------------|
| 0    | Intercept                   | 784.929070 |
| 1    | Age                         | 1.040674   |
| 2    | Avg_Daily_Usage_Hours       | 4.292493   |
| 3    | Sleep_Hours_Per_Night       | 2.789703   |
| 4    | Mental_Health_Score         | 5.652000   |
| 5    | Conflicts Over Social Media | 5.646419   |

# [7]: vif\_model2[vif\_model2["VIF"] >= 10]

| [7]: | Variable                                          | VIF         |
|------|---------------------------------------------------|-------------|
| 0    | Intercept                                         | 4126.759655 |
| 8    | C(Country)[T.Australia]                           | 20.894388   |
| 13   | C(Country)[T.Bangladesh]                          | 30.179427   |
| 19   | C(Country)[T.Brazil]                              | 13.512929   |
| 21   | C(Country)[T.Canada]                              | 49.472485   |
| 23   | C(Country)[T.China]                               | 35.952642   |
| 29   | C(Country)[T.Denmark]                             | 39.242054   |
| 33   | C(Country)[T.Finland]                             | 12.774641   |
| 34   | C(Country)[T.France]                              | 39.252159   |
| 36   | C(Country)[T.Germany]                             | 20.894008   |
| 42   | C(Country)[T.India]                               | 73.739436   |
| 45   | C(Country)[T.Ireland]                             | 40.054430   |
| 47   | <pre>C(Country)[T.Italy]</pre>                    | 30.699972   |
| 49   | C(Country)[T.Japan]                               | 33.704552   |
| 61   | C(Country)[T.Malaysia]                            | 12.705127   |
| 62   | C(Country)[T.Maldives]                            | 28.716710   |
| 64   | C(Country)[T.Mexico]                              | 40.549718   |
| 69   | C(Country)[T.Nepal]                               | 28.536989   |
| 70   | C(Country)[T.Netherlands]                         | 12.684577   |
| 71   | C(Country)[T.New Zealand]                         | 12.976770   |
| 76   | C(Country)[T.Pakistan]                            | 29.007747   |
| 81   | C(Country)[T.Poland]                              | 24.117600   |
| 85   | C(Country)[T.Russia]                              | 32.851391   |
| 88   | C(Country)[T.Singapore]                           | 13.071947   |
| 92   | C(Country)[T.South Korea]                         | 32.612125   |
| 93   | C(Country)[T.Spain]                               | 40.142431   |
| 94   | C(Country)[T.Sri Lanka]                           | 28.225124   |
| 96   | C(Country)[T.Switzerland]                         | 39.030581   |
| 102  | C(Country)[T.Turkey]                              | 39.296791   |
| 103  | C(Country)[T.UAE]                                 | 13.114758   |
| 104  | C(Country)[T.UK]                                  | 32.878944   |
| 105  | C(Country)[T.USA]                                 | 57.441661   |
| 114  | <pre>C(Most_Used_Platform)[T.KakaoTalk]</pre>     | 14.743567   |
| 121  | <pre>C(Most_Used_Platform)[T.WeChat]</pre>        | 19.868001   |
| 124  | <pre>C(Affects_Academic_Performance)[T.Yes]</pre> | 16.975742   |
| 125  | C(Relationship_Status)[T.In Relationship]         | 45.612877   |
| 126  | <pre>C(Relationship_Status)[T.Single]</pre>       | 46.226892   |
| 128  | Avg_Daily_Usage_Hours                             | 17.114615   |
| 129  | Sleep_Hours_Per_Night                             | 10.639188   |
| 130  | Mental_Health_Score                               | 16.540484   |
| 131  | Conflicts_Over_Social_Media                       | 17.537509   |

# 3.5 Optimal OLS Regression

- 회귀 모형: Addicted\_Score ~ Sleep\_Hours\_Per\_Night + Mental\_Health\_Score + Conflicts Over Social Media
- 회귀 계수:
  - Sleep Hours Per Night: 21.118
  - Mental Health Score: 71.619
  - Conflicts Over Social Media: 58.084
- 유의 확률:
  - Sleep Hours Per Night: p<0.0001\*\*\*
  - Mental Health Score: p<0.0001\*\*\*
  - Conflicts\_Over\_Social\_Media: p<0.0001\*\*\*

```
[8]: model1_formula = 'Addicted_Score ~ Sleep_Hours_Per_Night + Mental_Health_Score +

→Conflicts_Over_Social_Media'

model1_formula_fit = sm.OLS.from_formula(model1_formula, data=df).fit()

anova_results_fixed = sm.stats.anova_lm(model1_formula_fit, typ=2)

anova_results_fixed
```

| [8]: |                             | $sum\_sq$ | df    | F          | PR(>F)       |
|------|-----------------------------|-----------|-------|------------|--------------|
|      | Sleep_Hours_Per_Night       | 21.117762 | 1.0   | 150.226194 | 1.977604e-31 |
|      | Mental_Health_Score         | 71.618590 | 1.0   | 509.475774 | 3.266240e-85 |
|      | Conflicts_Over_Social_Media | 58.083739 | 1.0   | 413.192413 | 1.438482e-72 |
|      | Residual                    | 98.541744 | 701.0 | NaN        | NaN          |
|      |                             |           |       |            |              |

## 3.6 Model Diagnostics

### 3.6.1 1. Residual Analysis

최종 OLS 회귀 모형 (Addicted\_Score ~ Sleep + Mental\_Health + Conflict)의 적합도를 검토하기 위해 잔차 분석을 수행하였다.

| 그래프 유형               | 해석                                                                             |
|----------------------|--------------------------------------------------------------------------------|
| Q–Q Plot             | 잔차의 정규성 가정을 시각적으로 검토한 결과, 대부분의 점들이 45도<br>대각선을 어긋남. 이를 통해 잔차 정규성이 기각됐음을 알 수 있음 |
| Residuals vs Fitted  | 잔차와 예측값 간의 산점도 분석 결과, <b>특정한 패턴이 보이지 않아</b>                                    |
| Plot                 | 선형성 가정 충족. 또한, 잔차의 분산이 일정하게 퍼져 있어 <b>등분산성</b>                                  |
|                      | (homoscedasticity) <b>가정도 만족</b> 하는 것으로 보임.                                    |
| Scale-Location Plot  | 제곱근한 표준화 잔차와 예측값 사이의 관계에서 점들이 무작위로                                             |
|                      | 분포되어 있어 <b>등분산성이 다시 한 번 확인</b> 됨.                                              |
| Cook's Distance Plot | 영향력 높은 관측치를 확인하기 위해 Cook's Distance를 시각화한                                      |
|                      | 결과, 기준선 $(4/n)$ 을 초과하는 관측치가 많이 관측됨. <b>특별히 통제해야</b>                            |
|                      | 할 이상치(outlier)가 상당수.                                                           |

→ 결론: 전반적으로 회귀모형은 잔차 정규성이 기각되어, 추가적인 분석에 대한 고려 필요

### 3.6.2 2. Histogram of Addicted Score

종속 변수인 Addicted\_Score에 대한 분포를 시각화하였다.

- 형태: 히스토그램은 2개의 분포가 겹친 형태를 띔.
- 해석:
  - 중독 점수읩 분포는 쌍봉 형태로, 2개의 분포로 분리해서 분석하는 것이 가능할 것으로 추측.
- → 결론: 종속 변수를 2개의 분포로 분리하여 분석하는 작업 필요

```
[9]: def resid_plot(model):
        resid = model.resid
        fitted = model.fittedvalues
        std_resid = model.get_influence().resid_studentized_internal
        cooks_d = model.get_influence().cooks_distance[0]
         # (a) Q-Q plot - 정규성
        fig, ax = plt.subplots(2, 2, figsize=(10, 8))
        qqplot(resid, line="45", ax=ax[0, 0])
        ax[0, 0].set_title("Q-Q Plot")
         # (b) Residuals vs Fitted - 선형성·등분산성
        ax[0, 1].scatter(fitted, resid, alpha=0.7)
        ax[0, 1].axhline(0, ls="--")
        ax[0, 1].set_xlabel("Fitted values")
        ax[0, 1].set_ylabel("Residuals")
        ax[0, 1].set_title("Residuals vs Fitted")
         # (c) Scale-Location (√1표준화 잔차I vs Fitted) - 등분산성
        ax[1, 0].scatter(fitted, np.sqrt(np.abs(std_resid)), alpha=0.7)
        ax[1, 0].set_xlabel("Fitted values")
        ax[1, 0].set_ylabel("\sqrt{|Standardized Residuals|")
        ax[1, 0].set_title("Scale-Location")
        # (d) Cook's Distance - 영향력 관측치
        ax[1, 1].stem(range(len(cooks_d)), cooks_d, markerfmt=",")
        ax[1, 1].set_xlabel("Observation index")
        ax[1, 1].set_ylabel("Cook's Distance")
        ax[1, 1].set_title("Cook's Distance")
         # 기준선: 4/n
        ax[1, 1].axhline(4 / len(df), ls="--")
        plt.tight_layout()
        plt.show()
```

```
[10]: resid_plot(model1_formula_fit)
```



```
[11]: plt.figure(figsize=(6, 4))
   plt.hist(df['Addicted_Score'], bins=20, edgecolor='black')
   plt.title("Histogram of Addicted_Score")
   plt.xlabel("Addicted Score")
   plt.ylabel("Frequency")
   plt.grid(True)
   plt.show()
```



### 3.7 Gausian Mixture Method

- Addicted\_Score 기준으로 2개의 그룹으로 분류:
  - Group 0: 중독 낮음 (N=236)
  - Group 1: 중독 높음 (N=469)

```
[12]: gmm = GaussianMixture(n_components=2, random_state=42)
df['GMM_Group'] = gmm.fit_predict(df[['Addicted_Score']])
```

# 3.8 Group-specific Regression Analysis after GMM

GMM(Gaussian Mixture Model)을 활용하여 분리한 그룹에 대해 각각 회귀 분석을 진행하였다. 각 그룹에 대해 동일한 회귀식을 적용하였으며, 이후 회귀 계수를 비교함으로써 독립 변수와 종속 변수의 관계를 파악했다. 회귀 계수 비교는 z-test와 유사한 방법( $\frac{b_1-b_2}{\sqrt{se_1^2+se_2^2}}$ )으로 진행했다.

분석은 다음 순서로 진행하였다.

- 1. 수치형 변수로만 회귀
- 2. 성별 변수를 포함한 회귀
- 3. 학업 성과 영향 여부 변수를 포함한 회귀
- 4. 학업 수준 변수를 포함한 회귀

```
[13]: reg_vars = ['Mental_Health_Score', 'Conflicts_Over_Social_Media',
                  'Sleep_Hours_Per_Night', 'Avg_Daily_Usage_Hours', 'Age']
      group0 = df[df['GMM_Group'] == 0]
      group1 = df[df['GMM_Group'] == 1]
      X0 = sm.add_constant(group0[reg_vars])
      y0 = group0['Addicted_Score']
      X1 = sm.add_constant(group1[reg_vars])
      y1 = group1['Addicted_Score']
      model0 = sm.OLS(y0, X0).fit()
      model1 = sm.OLS(y1, X1).fit()
      # 회귀 계수 비교 (계수 차이 검정 - z-test 유사)
      # 계산: (b1 - b2) / sqrt(se1^2 + se2^2)
      coef_diff = model0.params - model1.params
      se\_diff = (model0.bse ** 2 + model1.bse ** 2) ** 0.5
      z_scores = coef_diff / se_diff
      p_values = 2 * (1 - stats.norm.cdf(abs(z_scores)))
      comparison_df = pd.DataFrame({
          'Variable': coef_diff.index,
          'Coef_Diff': coef_diff.values,
          'Z-Score': z_scores,
          'P-Value': p_values
      })
      comparison_df.reset_index(drop=True)
[13]:
                           Variable Coef_Diff
                                                 Z-Score
                                                               P-Value
                              const 0.036070 0.049258 9.607133e-01
      0
      1
                Mental_Health_Score -0.281519 -4.975124 6.520589e-07
      2 Conflicts_Over_Social_Media 0.125223 1.789641 7.351161e-02
               Sleep_Hours_Per_Night 0.027682 0.618541 5.362187e-01
      3
               Avg_Daily_Usage_Hours -0.096450 -2.153770 3.125825e-02
      4
                                      0.054669 3.121060 1.802016e-03
                                Age
[14]: print(model0.pvalues)
      print("
      print(model1.pvalues)
     const
                                    2.722547e-40
     Mental_Health_Score
                                    3.031636e-42
     Conflicts_Over_Social_Media
                                    1.994067e-20
     Sleep_Hours_Per_Night
                                    2.795860e-04
```

```
Avg_Daily_Usage_Hours
                                    7.247532e-01
                                     2.001210e-02
     Age
     dtype: float64
     const
                                     3.302736e-81
     Mental_Health_Score
                                     2.598108e-43
     Conflicts_Over_Social_Media
                                    7.264723e-26
     Sleep_Hours_Per_Night
                                     1.379294e-13
     Avg_Daily_Usage_Hours
                                    4.906118e-04
     Age
                                     3.971120e-02
     dtype: float64
[15]: report_df = pd.DataFrame({
          'Group': ['GMM Group 0', 'GMM Group 1'],
          'Sample Size': [len(group0), len(group1)],
          'R-squared': [model0.rsquared, model1.rsquared],
          'Mental_Health Coef': [model0.params['Mental_Health_Score'], model1.
       →params['Mental_Health_Score']],
          'Conflict Coef': [model0.params['Conflicts_Over_Social_Media'], model1.
      →params['Conflicts_Over_Social_Media']]
      })
      report_df.reset_index(drop=True)
```

[15]: Group Sample Size R-squared Mental\_Health Coef Conflict Coef
0 GMM Group 0 236 0.824165 -0.782232 0.580838
1 GMM Group 1 469 0.862676 -0.500714 0.455615

### 3.8.1 1. 수치형 변수(Mental Health, Conflict, Usage Hours, Age 포함) 회귀 분석 결과

- Group 0(중독 낮음)에서 정신건강 점수의 부적 영향력이 훨씬  $\rightarrow$  정신적으로 안정된 학생일 수록 중독에서 더욱 자유로움
- SNS 사용 시간이 높은 중독 그룹에서 중독 점수에 더 큰 영향을 미침
- 나이는 높은 중독 그룹에서 중독 점수를 더 낮추는 경향

```
X1 = sm.add_constant(X1.astype(float))
      y1 = group1['Addicted_Score']
      gender_model0 = sm.OLS(y0, X0).fit()
      gender_model1 = sm.OLS(y1, X1).fit()
      coef_diff = gender_model0.params - gender_model1.params
      se_diff = (gender_model0.bse ** 2 + gender_model1.bse ** 2) ** 0.5
      z_scores = coef_diff / se_diff
      p_values = 2 * (1 - stats.norm.cdf(abs(z_scores)))
      gender_comparison_df = pd.DataFrame({
          'Variable': coef_diff.index,
          'Coef_Diff': coef_diff.values,
          'Z-Score': z_scores,
          'P-Value': p_values
      })
      gender_comparison_df.dropna(axis=0).reset_index(drop=True).

→sort_values("Coef_Diff", key=np.abs, ascending=False)

[16]:
                            Variable Coef_Diff
                                                  Z-Score
                                                                P-Value
                 Mental_Health_Score -0.286187 -5.028398
                                                           4.945951e-07
      4
        Conflicts_Over_Social_Media 0.122351 1.742046
                                                           8.150040e-02
      5
      2
               Avg_Daily_Usage_Hours -0.097132 -2.164400
                                                           3.043366e-02
                                       0.060930 3.038488 2.377686e-03
      1
                                 Age
      0
                               const -0.041202 -0.082765 9.340385e-01
      7
                         Gender_Male -0.038588 -0.151024 8.799568e-01
      3
               Sleep_Hours_Per_Night 0.028826 0.642958 5.202516e-01
                       Gender_Female -0.002614 -0.010662 9.914931e-01
[17]: print(gender_model0.pvalues)
      print("
      print(gender_model1.pvalues)
                                    9.284900e-39
     const
     Age
                                    1.465422e-02
     Avg_Daily_Usage_Hours
                                    7.122043e-01
     Sleep_Hours_Per_Night
                                    3.179936e-04
     Mental_Health_Score
                                    4.235684e-42
     Conflicts_Over_Social_Media
                                    3.440992e-20
                                    8.836169e-40
     Gender_Female
     Gender_Male
                                    2.926340e-37
     dtype: float64
                                    1.027737e-78
     const
                                    7.144387e-02
     Age
```

X1 = pd.get\_dummies(group1[cat\_vars1])

```
Sleep_Hours_Per_Night
                                     1.666872e-13
     Mental_Health_Score
                                     3.874843e-43
     Conflicts_Over_Social_Media
                                     1.395615e-25
     Gender Female
                                     1.195216e-80
     Gender_Male
                                     2.196479e-75
     dtype: float64
[18]: gender_report_df = pd.DataFrame({
          'Group': ['GMM Group 0', 'GMM Group 1'],
          'Sample Size': [len(group0), len(group1)],
          'R-squared': [gender_model0.rsquared, gender_model1.rsquared],
          'Mental_Health Coef': [gender_model0.params['Mental_Health_Score'],

→gender_model1.params['Mental_Health_Score']],
          'Sleep_Hours Coef': [gender_model0.params['Sleep_Hours_Per_Night'],

→gender_model1.params['Sleep_Hours_Per_Night']],
          'Conflict Coef': [gender_model0.params['Conflicts_Over_Social_Media'],,,

→gender_model1.params['Conflicts_Over_Social_Media']],
          'Gender_Male Coef': [gender_model0.params['Gender_Male'], gender_model1.
       →params['Gender_Male']],
          'Gender_Female Coef': [gender_model0.params['Gender_Female'], gender_model1.
       →params['Gender_Female']]
      })
      gender_report_df.reset_index(drop=True)
```

5.240078e-04

```
[18]:
              Group Sample Size R-squared Mental_Health Coef Sleep_Hours Coef \
      0 GMM Group 0
                             236
                                   0.824718
                                                      -0.786878
                                                                        -0.141854
      1 GMM Group 1
                             469
                                   0.862676
                                                      -0.500691
                                                                       -0.170680
        Conflict Coef Gender_Male Coef Gender_Female Coef
      0
             0.578027
                               3.228326
                                                   3.263811
      1
             0.455676
                               3.266914
                                                   3.266425
```

## 3.8.2 2. 성별(Gender) 포함 회귀 분석 결과

Avg\_Daily\_Usage\_Hours

- 성별 변수는 중독 점수에 유의미한 영향 없음 → 본 연구에서는 **남녀 간 중독 정도 차이는 통계** 적으로 유의하지 않음
- 정신건강 점수는 여전히 낮은 중독 그룹에서 훨씬 더 큰 부적 효과를 가짐

```
[19]: cat_vars2 = ['Age', 'Affects_Academic_Performance', 'Avg_Daily_Usage_Hours',

→'Sleep_Hours_Per_Night',

'Mental_Health_Score', 'Conflicts_Over_Social_Media']

group0 = df[df['GMM_Group'] == 0]
group1 = df[df['GMM_Group'] == 1]
```

```
X0 = pd.get_dummies(group0[cat_vars2])
      X0 = sm.add_constant(X0.astype(float))
      y0 = group0['Addicted_Score']
      X1 = pd.get_dummies(group1[cat_vars2])
      X1 = sm.add_constant(X1.astype(float))
      y1 = group1['Addicted_Score']
      perf_model0 = sm.OLS(y0, X0).fit()
      perf_model1 = sm.OLS(y1, X1).fit()
      coef_diff = perf_model0.params - perf_model1.params
      se_diff = (perf_model0.bse ** 2 + perf_model1.bse ** 2) ** 0.5
      z_scores = coef_diff / se_diff
      p_values = 2 * (1 - stats.norm.cdf(abs(z_scores)))
      perf_comparison_df = pd.DataFrame({
          'Variable': coef_diff.index,
          'Coef_Diff': coef_diff.values,
          'Z-Score': z_scores,
          'P-Value': p_values
      })
      perf_comparison_df.dropna(axis=0).reset_index(drop=True).
       →sort_values("Coef_Diff", key=np.abs, ascending=False)
[19]:
                                Variable Coef_Diff
                                                       Z-Score
                                                                     P-Value
      O Affects_Academic_Performance_No
                                         6.410356 10.327672 0.000000e+00
                     Mental_Health_Score -0.276371 -4.893397 9.911002e-07
      4
      3
             Conflicts_Over_Social_Media
                                         0.092437
                                                      1.306091 1.915215e-01
      2
                   Avg_Daily_Usage_Hours -0.089511 -1.999806 4.552127e-02
      1
                                           0.055552
                                                      3.181140 1.466966e-03
                                     Age
                                                      0.639405 5.225598e-01
                   Sleep_Hours_Per_Night
                                           0.028564
[20]: print(perf_model0.pvalues)
      print("
      print(perf_model1.pvalues)
     Age
                                        2.001210e-02
     Avg_Daily_Usage_Hours
                                        7.247532e-01
     Sleep_Hours_Per_Night
                                        2.795860e-04
     Mental_Health_Score
                                        3.031636e-42
     Conflicts_Over_Social_Media
                                        1.994067e-20
     Affects_Academic_Performance_No
                                        2.722547e-40
     dtype: float64
```

```
3.180798e-02
     Age
     Avg_Daily_Usage_Hours
                                         1.357694e-03
     Sleep_Hours_Per_Night
                                         7.172399e-14
     Mental_Health_Score
                                         2.157065e-44
     Conflicts_Over_Social_Media
                                         1.766648e-27
     Affects_Academic_Performance_No
                                         1.247273e-78
     Affects_Academic_Performance_Yes
                                         9.514690e-76
     dtype: float64
[21]: perf_report_df = pd.DataFrame({
          'Group': ['GMM Group 0', 'GMM Group 1'],
          'Sample Size': [len(group0), len(group1)],
          'R-squared': [perf_model0.rsquared, perf_model1.rsquared],
          'Mental_Health Coef': [perf_model0.params['Mental_Health_Score'],__
       →perf_model1.params['Mental_Health_Score']],
          'Sleep_Hours Coef': [perf_model0.params['Sleep_Hours_Per_Night'],__
       →perf_model1.params['Sleep_Hours_Per_Night']],
          'Conflict Coef': [perf_model0.params['Conflicts_Over_Social_Media'],
       →perf_model1.params['Conflicts_Over_Social_Media']],
          'Age Coef': [perf_model0.params['Age'], perf_model1.params['Age']],
          'Performance_No Coef': [perf_model0.
       →params['Affects_Academic_Performance_No'], perf_model1.
       →params['Affects_Academic_Performance_No']]
      })
      perf_report_df.reset_index(drop=True)
```

1.158240e-82

```
[21]:
              Group Sample Size R-squared Mental_Health Coef Sleep_Hours Coef \
                                   0.824165
     0 GMM Group 0
                             236
                                                     -0.782232
                                                                      -0.143020
     1 GMM Group 1
                             469
                                   0.864966
                                                     -0.505861
                                                                      -0.171584
        Conflict Coef Age Coef Performance_No Coef
     0
             0.580838 0.030678
                                           9.834846
             0.488401 -0.024874
                                           3.424490
```

### 3.8.3 3. 학업 성과 영향 여부 포함 회귀 분석 결과

const

- 중독 점수가 높은 그룹은 "SNS가 학업에 영향 없다"고 인식하는 경향 강함  $\rightarrow$  **자기인식 왜곡** 가능성
- 중독 점수가 낮은 그룹은 학업 영향도, 정신건강 영향도 민감하게 인식하는 경향

```
[22]: cat_vars3 = ['Age', 'Academic_Level', 'Avg_Daily_Usage_Hours',

→'Sleep_Hours_Per_Night',

'Mental_Health_Score', 'Conflicts_Over_Social_Media']
```

```
group0 = df[df['GMM_Group'] == 0]
      group1 = df[df['GMM_Group'] == 1]
      X0 = pd.get_dummies(group0[cat_vars3])
      X0 = sm.add_constant(X0.astype(float))
      y0 = group0['Addicted_Score']
      X1 = pd.get_dummies(group1[cat_vars3])
      X1 = sm.add_constant(X1.astype(float))
      y1 = group1['Addicted_Score']
      academic_model0 = sm.OLS(y0, X0).fit()
      academic_model1 = sm.OLS(y1, X1).fit()
      coef_diff = academic_model0.params - academic_model1.params
      se_diff = (academic_model0.bse ** 2 + academic_model1.bse ** 2) ** 0.5
      z_scores = coef_diff / se_diff
      p_values = 2 * (1 - stats.norm.cdf(abs(z_scores)))
      academic_comparison_df = pd.DataFrame({
          'Variable': coef_diff.index,
          'Coef_Diff': coef_diff.values,
          'Z-Score': z_scores,
          'P-Value': p_values
      })
      academic_comparison_df.dropna(axis=0).reset_index(drop=True).

→sort_values("Coef_Diff", key=np.abs, ascending=False)

[22]:
                             Variable Coef Diff
                                                                 P-Value
                                                   Z-Score
      4
                 Mental_Health_Score -0.290282 -5.083225 3.710797e-07
      5
         Conflicts_Over_Social_Media 0.122512 1.736538 8.246870e-02
      2
                Avg_Daily_Usage_Hours -0.103668 -2.283686 2.238998e-02
                                  Age 0.067123 2.066999 3.873425e-02
      1
          Academic_Level_High School -0.061986 -0.265946 7.902806e-01
      7
      0
                                const -0.051194 -0.070495 9.437999e-01
      8 Academic_Level_Undergraduate
                                       0.033063 0.129145 8.972426e-01
              Academic_Level_Graduate -0.022270 -0.071557 9.429542e-01
      6
      3
               Sleep_Hours_Per_Night
                                       0.018388 0.397040 6.913379e-01
[23]: print(academic_model0.pvalues)
      print("
      print(academic_model1.pvalues)
     const
                                     7.952805e-28
                                     5.471261e-01
     Age
                                     7.172933e-01
     Avg_Daily_Usage_Hours
```

```
Sleep_Hours_Per_Night
     Mental_Health_Score
                                      1.690386e-41
     Conflicts_Over_Social_Media
                                      3.619284e-20
     Academic_Level_Graduate
                                      5.186221e-19
     Academic_Level_High School
                                      6.484018e-28
     Academic_Level_Undergraduate
                                      1.385404e-24
     dtype: float64
     const
                                      4.150602e-62
                                      9.723855e-03
     Age
     Avg_Daily_Usage_Hours
                                      2.278103e-04
     Sleep_Hours_Per_Night
                                      1.494453e-12
     Mental_Health_Score
                                      1.984330e-42
     Conflicts_Over_Social_Media
                                      6.609827e-26
     Academic_Level_Graduate
                                      5.062354e-46
     Academic_Level_High School
                                     9.975119e-74
     Academic_Level_Undergraduate
                                      9.522075e-60
     dtype: float64
[24]: academic_report_df = pd.DataFrame({
          'Group': ['GMM Group 0', 'GMM Group 1'],
          'Sample Size': [len(group0), len(group1)],
          'R-squared': [academic_model0.rsquared, academic_model1.rsquared],
          'Mental_Health Coef': [academic_model0.params['Mental_Health_Score'],_
       →academic_model1.params['Mental_Health_Score']],
          'Sleep_Hours Coef': [academic_model0.params['Sleep_Hours_Per_Night'], __
       →academic_model1.params['Sleep_Hours_Per_Night']],
          'Conflict Coef': [academic_model0.params['Conflicts_Over_Social_Media'],,,
       →academic_model1.params['Conflicts_Over_Social_Media']],
          'High School Coef': [academic_model0.params['Academic_Level_High School'],,,
       →academic_model1.params['Academic_Level_High School']],
          'Undergraduate Coef': [academic_model0.
       →params['Academic_Level_Undergraduate'], academic_model1.
       →params['Academic_Level_Undergraduate']],
          'Graduate Coef': [academic_model0.params['Academic_Level_Graduate'],,,
       →academic_model1.params['Academic_Level_Graduate']]
      })
      academic_report_df.reset_index(drop=True)
[24]:
               Group
                      Sample Size R-squared Mental_Health Coef Sleep_Hours Coef
      0 GMM Group 0
                              236
                                    0.824573
                                                                          -0.148005
                                                        -0.784252
      1 GMM Group 1
                              469
                                    0.864628
                                                        -0.493970
                                                                          -0.166393
         Conflict Coef High School Coef
                                          Undergraduate Coef
                                                               Graduate Coef
      0
              0.581765
                                2.529172
                                                     2.534003
                                                                    2.584873
      1
              0.459253
                                2.591158
                                                     2.500940
                                                                    2.607143
```

2.963692e-04

### 3.8.4 4. 학업 수준(Academic Level) 포함 회귀 분석 결과

- 학업 수준(고등학생, 학부생, 대학원생)에 따른 중독 점수 영향력 차이는 미미
- 그러나 정신건강 점수의 영향력은 낮은 중독 그룹에서 여전히 더 강하게 나타남

## 4 Conclusion

## 4.1 Research Summary

- 1. **정신 건강 점수**는 모든 분석에서 일관되게 소셜미디어 중독 점수에 가장 강력한 부적 영향력을 미침. 특히 중독 수준이 낮은 집단에서 그 영향력이 더욱 두드러짐.
- 2. **SNS 관련 갈등 경험**은 중독 점수를 높이는 주요 요인으로 작용하며, 두 그룹 모두에서 정(+)의 영향력을 가짐.
- 3. 수면 시간 역시 중독 점수와 음의 상관관계를 가지며, 수면 부족이 중독 악화에 기여할 수 있음을 시사함.
- 4. **성별, 학업 수준, 플랫폼 종류 등은 일부 유의미하지만**, 정신 건강과 갈등 경험에 비해 상대적으로 영향력이 낮음.

### 4.2 Theoretical implications

- 본 연구는 SNS 중독이 단순히 사용 시간에 의해서가 아니라, **심리사회적 변수(정신 건강, 갈등, 수면**)와 밀접하게 연결되어 있음을 실증적으로 입증
- 특히 중독 경향이 낮은 집단은 정신 건강과 수면에 민감하게 반응하므로, 이들에 대한 사전적 예방 조치가 효과적일 수 있음

### 4.3 Suggestion

- 예방 중심 개입 전략 필요: 정신 건강 취약 학생을 조기 발견하고, SNS 관련 갈등 조절 교육을 병행할 것
- 중독 고위험군은 자기 인식 왜곡 경향이 있으므로, 행동 데이터 기반의 간접적 평가와 피드백 설계가 요구됨
- 학생 대상 프로그램 설계 시, 단일 요인(시간 차단 등)에만 의존하지 말고, 정서·관계적 요소를 복합적으로 고려할 것