Analysis Notebook

import pandas as pd

10

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn as sk
import statsmodels.api as sm
import statsmodels.formula.api as smf
from ucimlrepo import fetch_ucirepo
# fetch dataset
seoul_bike_sharing_demand = fetch_ucirepo(id=560)
# data (as pandas dataframes)
X = seoul_bike_sharing_demand.data.features
y = seoul_bike_sharing_demand.data.targets
# metadata
print(seoul_bike_sharing_demand.metadata)
# variable information
print(seoul_bike_sharing_demand.variables)
{'uci_id': 560, 'name': 'Seoul Bike Sharing Demand', 'repository_url': 'https://archive.ics
                                           type demographic description
                     name
                              role
0
                     Date Feature
                                           Date
                                                        None
                                                                    None
1
        Rented Bike Count Feature
                                        Integer
                                                        None
                                                                    None
2
                                                        None
                                                                    None
                     Hour Feature
                                        Integer
3
              Temperature Feature
                                     Continuous
                                                        None
                                                                    None
4
                 Humidity Feature
                                        Integer
                                                        None
                                                                    None
5
               Wind speed Feature
                                     Continuous
                                                        None
                                                                    None
6
               Visibility Feature
                                        Integer
                                                        None
                                                                    None
7
   Dew point temperature
                                                        None
                                                                    None
                           Feature
                                     Continuous
8
          Solar Radiation
                           Feature
                                     Continuous
                                                        None
                                                                    None
                                                        None
9
                 Rainfall Feature
                                        Integer
                                                                    None
```

Integer

None

None

Snowfall Feature

11 12 13			Feature	Categorical Binary Binary	None None None
	units	missing_values			
0	None	no			
1	None	no			
2	None	no			
3	C	no			
4	%	no			
5	m/s	no			
6	10m	no			
7	C	no			
8	Mj/m2	no			
9	mm	no			
10	cm	no			
11	None	no			
12	None	no			
13	None	no			

Instead of using the functional days as a target, we will use it as a predictor and try to predict the rented bike count to forecast demand for bikes. Let's do some data cleaning and preprocessing to make these new matrices as well as finalize our features for model fitting.

```
target = X['Rented Bike Count']
X = X.drop(columns=['Rented Bike Count'])
X['Functional Day'] = y.astype('category')
y = target

X['Date'] = pd.to_datetime(X['Date'], format='%d/%m/%Y')
X['Day'] = X['Date'].dt.day
X['Month'] = X['Date'].dt.month
X['Year'] = X['Date'].dt.year
X = X.drop(columns=["Date"])

X = pd.get_dummies(X, drop_first=True)
X = X.astype('float')
```

X.head()

	Hour	Temperature	Humidity	Wind speed	Visibility	Dew point temperature	Solar Radiation
0	0.0	-5.2	37.0	2.2	2000.0	-17.6	0.0
1	1.0	-5.5	38.0	0.8	2000.0	-17.6	0.0
2	2.0	-6.0	39.0	1.0	2000.0	-17.7	0.0
3	3.0	-6.2	40.0	0.9	2000.0	-17.6	0.0

	Hour	Temperature	Humidity	Wind speed	Visibility	Dew point temperature	Solar Radiation
4	4.0	-6.0	36.0	2.3	2000.0	-18.6	0.0

y.head()

- 0 254
- 1 204
- 2 173
- 3 107
- 4 78

Name: Rented Bike Count, dtype: int64

Now let's do some visualization with the dataset just to see if there are any useful patterns.

sns.heatmap(X.corr())

sns.barplot(x='Month', y=y, data=X)

sns.barplot(x="Day", y=y, data=X)

sns.scatterplot(x='Rainfall', y=y, data=X)

sns.scatterplot(x="Snowfall", y=y, data=X)

sns.scatterplot(x="Temperature", y=y, data=X)

sns.scatterplot(x="Wind speed", y=y, data=X)

OLS Regression Results

Dep. Variable:	Rented Bike Co	\mathtt{unt}	R-sq	uared (uncente	ered):	0.795	
Model:		OLS	Adj.	R-squared (ur	centered)	:	0.795
Method:	Least Squa	res	F-st	atistic:			1998.
Date:	Fri, 10 Jan 2	025	Prob	(F-statistic)	:		0.00
Time:	00:02	:33	Log-	Likelihood:			-65594.
No. Observations:	8	760	AIC:				1.312e+05
Df Residuals:	8	743	BIC:				1.313e+05
Df Model:		17					
Covariance Type:	nonrob	ust					
=======================================		====	=====		.======		
	coef	std	err	t	P> t	[0.025	0.975]
Hour	27.4627	0	.735	37.376	0.000	26.022	28.903
Temperature	15.9652	3	.662	4.359	0.000	8.786	23.144
Humidity	-10.9818	1	.031	-10.651	0.000	-13.003	-8.961
Wind speed	19.5192	5	.100	3.827	0.000	9.522	29.517
Visibility	0.0070	0	.010	0.701	0.483	-0.013	0.027
Dew point temperatur	re 11.2057	3	.834	2.923	0.003	3.691	18.721
Solar Radiation	-78.2988	7	.610	-10.289	0.000	-93.216	-63.381
Rainfall	-58.3407	4	.269	-13.666	0.000	-66.709	-49.973
Snowfall	32.8892	11	.332	2.902	0.004	10.677	55.102
Day	-1.0765	0	.539	-1.998	0.046	-2.132	-0.021
Month	4.0784	1	.813	2.249	0.025	0.524	7.633
Year	-0.0468	0	.050	-0.939	0.348	-0.145	0.051
Seasons_Spring	-112.1860	17	.465	-6.423	0.000	-146.422	-77.950
Seasons_Summer	-140.8455	18	.260	-7.713	0.000	-176.640	-105.051
Seasons_Winter	-349.9548	21	.221	-16.491	0.000	-391.553	-308.357
Holiday_No Holiday	120.4375	21	.638	5.566	0.000	78.023	162.852
Functional Day_Yes	935.7315	26	.710	35.034	0.000	883.374	988.089
Omnibus:	1426.	== = 583	 Durb	oin-Watson:	=====	0.510	
<pre>Prob(Omnibus):</pre>	0.	000	Jaro	ue-Bera (JB):		2863.536	5
Skew:	0.	990	Prob	(JB):		0.00)
Kurtosis:	4.	981	Cond	l. No.		1.53e+04	1

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 1.53e+04. This might indicate that there are strong multicollinearity or other numerical problems.

With the p values produced and the large condition number, it is clear we need to perform some form of feature selection. I will use lasso regression to see which variables are most important in the prediction.

```
lasso = sm.OLS(y, X).fit_regularized(method='elastic_net', alpha=0.1, L1_wt=1)
print("Lasso Regression Coefficients:")
print(lasso.params)
Lasso Regression Coefficients:
Hour
                          26.240363
Temperature
                           9.308941
Humidity
                         -11.552014
Wind speed
                          22.244678
                           0.031987
Visibility
Dew point temperature
                         16.886413
Solar Radiation
                         -62.493750
Rainfall
                         -57.592126
Snowfall
                          27.416864
Day
                          -0.000368
Month
                           7.951308
Year
                           0.035022
Seasons_Spring
                         -60.812330
Seasons_Summer
                         -93.293391
Seasons_Winter
                        -309.429074
Holiday_No Holiday
                         140.319947
Functional Day_Yes
                         734.396895
dtype: float64
selected = lasso.params[lasso.params > 0.05]
print(selected)
Hour
                          26.240363
Temperature
                           9.308941
Wind speed
                          22.244678
Dew point temperature
                          16.886413
Snowfall
                          27.416864
Month
                           7.951308
Holiday_No Holiday
                         140.319947
Functional Day_Yes
                         734.396895
dtype: float64
X = X[selected.index]
smaller_lm = sm.OLS(y, X).fit()
print(smaller_lm.summary())
```

OLS Regression Results

Dep. Variable: Rented Bike Count R-squared (uncentered): 0.748

Model:	OLS	Adj. R-squared (uncentered):	0.748
Method:	Least Squares	F-statistic:	3251.
Date:	Fri, 10 Jan 2025	Prob (F-statistic):	0.00
Time:	00:02:34	Log-Likelihood:	-66499.
No. Observations:	8760	AIC:	1.330e+05
Df Residuals:	8752	BIC:	1.331e+05
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]	
Hour	25.2777	0.792	31.927	0.000	23.726	26.830	
Temperature	45.1963	1.145	39.459	0.000	42.951	47.442	
Wind speed	-30.3990	5.376	-5.654	0.000	-40.938	-19.860	
Dew point temperature	-19.4852	1.044	-18.662	0.000	-21.532	-17.439	
Snowfall	-27.4366	12.194	-2.250	0.024	-51.341	-3.533	
Month	-1.7357	1.453	-1.195	0.232	-4.584	1.113	
Holiday_No Holiday	-244.0583	19.780	-12.338	0.000	-282.833	-205.284	
Functional Day_Yes	236.0189	20.421	11.558	0.000	195.989	276.049	
Omnibus:	1326.	519 Durbi	n-Watson:		0.390		
Prob(Omnibus):	0.	000 Jarqu	e-Bera (JB):		2508.533		

Prob(JB):

Cond. No.

0.00

121.

Notes:

Skew:

Kurtosis:

[1] R^2 is computed without centering (uncentered) since the model does not contain a constant [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Based on the above results, the month predictor is no longer significant so we remove that as well. This gives us the final linear model below.

0.952

4.802

```
X = X.drop(columns=['Month'])
final_lm = sm.OLS(y, X).fit()
print(final_lm.summary())
```

OLS Regression Results

Dep. Variable:	Rented Bike Count	R-squared (uncentered):	0.748
Model:	OLS	Adj. R-squared (uncentered):	0.748
Method:	Least Squares	F-statistic:	3715.
Date:	Fri, 10 Jan 2025	Prob (F-statistic):	0.00
Time:	00:02:34	Log-Likelihood:	-66500.
No. Observations:	8760	AIC:	1.330e+05

Df Residuals: 8753	BIC:	1.331e+05
--------------------	------	-----------

Df Model: 7
Covariance Type: nonrobust

=======================================	========	========	:========	=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Hour	25.2127	0.790	31.919	0.000	23.664	26.761
Temperature	45.0539	1.139	39.548	0.000	42.821	47.287
Wind speed	-29.9506	5.363	-5.584	0.000	-40.464	-19.438
Dew point temperature	-19.4854	1.044	-18.662	0.000	-21.532	-17.439
Snowfall	-29.0629	12.118	-2.398	0.016	-52.818	-5.308
Holiday_No Holiday	-248.5649	19.418	-12.801	0.000	-286.628	-210.501
Functional Day_Yes	231.0510	19.993	11.556	0.000	191.859	270.243
===========				======	========	
Omnibus:	1326.	920 Durbi	n-Watson:		0.390	
<pre>Prob(Omnibus):</pre>	0.	000 Jarqu	ue-Bera (JB):		2516.414	
Skew:	0.	951 Prob((JB):		0.00	
Kurtosis:	4.	810 Cond.	No.		117.	
=======================================	========	========	:========	=======	========	

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.