

BRL  
TN-342  
c.1A

REFERENCE COPY

TECHNICAL NOTE No. 842  
AFSWP NO 767

REFERENCE COPY  
DOES NOT CIRCULATE

# Records of Air Shock Loading On A Three Dimensional Model

GLENN P. BEICHLER

TECHNICAL LIBRARY  
AMXBR-LB (Bldg. 305)  
ABERDEEN PROVING GROUND, MD. 21005

DEPARTMENT OF THE ARMY PROJECT Nos. 598-09-003 AND 503-04-002  
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0112

The Ballistic Research Laboratories Technical Note is designed for use within the laboratories or for issuing available information, when the occasion demands speed.

The contents of this paper are of the nature of advance information and may be extended or otherwise revised.

**BALLISTIC RESEARCH LABORATORIES**



**ABERDEEN PROVING GROUND, MARYLAND**

BALLISTIC RESEARCH LABORATORIES

TECHNICAL NOTE NO. 842

JANUARY 1954

RECORDS OF AIR SHOCK LOADING ON A THREE  
DIMENSIONAL MODEL

Glenn P. Beichler

TECHNICAL LIBRARY  
AMXBR-LB (Bldg. 305)  
ABERDEEN PROVING GROUND, MD. 21005

Department of the Army Project Nos. 598-09-003  
and 503-04-002  
Ordnance Research and Development Project No. TB3-0112

Funds for this work were provided by the Armed Forces  
Special Weapons Project as a part of Operation Upshot-  
Knothole Project 3.28.1

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

TECHNICAL NOTE NO. 842

GPBeichler/ddh  
Aberdeen Proving Ground, Md.  
January 1954

RECORDS OF AIR SHOCK LOADING ON A THREE  
DIMENSIONAL MODEL

ABSTRACT

Tracings are presented of the original records of air blast loading obtained in the 24-inch BRL shock tube on the front, top and rear surfaces of a rectangular shaped three-dimensional model. The records were obtained at incident shock pressures of approximately 3, 5 and 8 psi using a 2" x 4" x 2" "Oilite" model. Since essentially, the variations in loading are over in less than one millisecond the incident shock wave is a step shock.

TECHNICAL LIBRARY  
AMXBR-LB (Bldg. 305)  
ABERDEEN PROVING GROUND, MD. 21005

## INTRODUCTION

A primary objective for the Ballistic Research Laboratories Shock Tube Facility has been to reduce to a routine operation the obtaining of accurate blast loading data on three-dimensional models. This has been done on a series of models for Ballistic Research Laboratories AFSWP Project 3.28.1. The results on the first model of this series are presented here. While the work presented here does not represent the ultimate perfection of the art nor even a fair example of the far more advanced present state of measurement techniques, it is a typical series of curves which may be useful to others in interpreting field data or theoretical work or, perhaps, in planning future model work for the shock tube. No analysis of the records is attempted; no conclusions are drawn.

## EXPERIMENTAL PROCEDURE

### The Model

The 2" x 4" x 2" model was made of "Oilite", a highly compressed powdered metal made of copper and tin and impregnated with oil, in an effort to achieve some internal damping and consequent reduction of vibration. One 2" x 4" face was instrumented with five piezoelectric pressure gauges as shown in sketch 1. The model could then be oriented in the shock tube as this instrumented face is normal to the shock front, side-on, or facing away from the direction of shock wave approach. The model was mounted on a large flat plate extending across the shock tube in such a way that leads from the five gauges could be readily brought out from the tube.

### The Gauges

The one-half inch overall diameter piezoelectric gauges were constructed with 0.2" diameter tourmaline crystal elements. Complete description of gauge design and construction may be found in BRL Technical Note No. 860 by C. Benjamin Granath. Recording was accomplished with the eight channel Armour oscillograph which in addition provided calibration and time measurements.

## RESULTS

Pressure versus time curves are presented at five different points on the 2" x 4" front, top, and rear surfaces of a 2" x 4" x 2" three-dimensional model using incident step shock strengths of approximately 3, 5, and 8 psi. The position at which the pressure-time curve was taken is indicated in the little sketch adjacent to each curve. Incident pressure is also indicated for each curve as  $P_1$ . For the short times presented, the incident pressure is essentially a constant. Rough pressure and time coordinates are indicated. Timing marks are in milliseconds. More precise measurements may be made by using the pressure and time factors given for each curve. For the pressure-time curves for the model top positions

the direction of approach of the shock wave is denoted by an arrow on the diagram and the approximate time of arrival of the shock at the front face is shown on the pressure-time curve with a caret (^).

GLENN P. BEICHLER

*Glenn P Beichler*



GAUGE POSITIONS 1 THRU 5

SKETCH I  
OILITE MODEL

TECHNICAL LIBRARY  
AMXBR-LB (Bldg. 305)  
ABERDEEN PROVING GROUND, MD. 21005







OILITE MODEL

POSITION 1

BACK FACE

$P_{MM} = 1081 \text{ PSI}$

$t_{MM} = 0.170 \text{ M SEC.}$

$P_1 = 3.30$

PRESSURE

PSI

3

2

1

0

TIME (M SEC.)

POSITION 2

BACK FACE

$P_{MM} = 103 \text{ PS}$

$t_{MM} = 0.173 \text{ M SEC.}$

$P_1 = 3.30$

PRESSURE

PSI

3

2

1

0

TIME (M SEC.)



O L T E MODEL

POSITION 5

BACK FACE

1 MM = 1118 PS

1 MM = 0.172 MSEC

P<sub>1</sub> = 2.44

PRESSURE  
PSI

3  
2.5  
2.0  
1.5  
1.0



TIME (MSEC.)











OILITE MODEL

POSITION 5

FRONT FACE

MM = 4205 PS

IMM = 0.75

P. = 5.33

PRESSURE

PSI

12  
10  
8  
6  
4  
2  
0

TIME ( MSEC )



OILITE MODEL

POSITION 1

BACK FACE

MM = .082 PSI

MM = .0174 SEC.

P<sub>1</sub> = 5.5

5 -

PRESSURE

PSI

3.75 -

2.5 -

1 TIME (MSEC) 2

POSITION 2

BACK FACE

MM = .0893 PSI

MM = .0172 SEC.

P<sub>1</sub> = P<sub>2</sub>

5 -

3.75 -

2.5 -

PRESSURE

PSI

1 TIME (MSEC) 2



OILITE MODEL

POSITION 5

BACK FACE

IMM = 112 PSI

IMM = 0.185 SEC.

P<sub>1</sub> = 5.08

5

3.75

PRESSURE

PSI

2.5

0

TIME (MSEC.)

2



OILITE MODEL

POSITION 3

TOP FACE

$$I_{MM} = 0.969 \text{ PSI}$$

$$I_{MM} = 0.20 \text{ M SEC}$$

$$P_1 = 4.34$$

PRESSURE

PSI

X O

1

2

TIME (M SEC)

POSITION 4

TOP FACE

$$I_{MM} = 117 \text{ PSI}$$

$$I_{MM} = 0.20 \text{ M SEC}$$

$$P_1 = 4.34$$

PRESSURE

PSI

X O

1

2

TIME (M SEC)

$\Delta$  = INDICATES TIME SHOCK WAVE STRUCK MODEL

OILITE MODEL

POSITION 5

TOP FACE

1 MM = 148 PSI  
1 MM = .022 MSEC.  
C<sub>L</sub> = 9.34



Δ = INDICATES TIME SHOCK WAVE STRUCK MODEL





O LITE MODEL

POSITION 5

IMM = 26 PSI

IMM = .0170 SEC.

P<sub>c</sub> = 0.30

FRONT FACE

PRESSURE

PSI







OILITE MODEL

POSITION 5

BACK FACE

$l_{MM} = 10 \text{ PSI}$   
 $l_{MM} = .0172 \text{ MSEC}$   
 $P_1 = 7.84$

PRESSURE  
PSI



OILITE MODEL

POSITION 1

TOP FACE

$\Delta M = 161 \text{ PSI}$

$P = 9.01$

$\Delta MM = 0.22 \text{ MSEC}$

10

7.5

5

2.5

PRESSURE  
PSI

0

2

TIME (MSEC.)

POSITION 2

TOP FACE

$\Delta M = 123 \text{ PSI}$

$\Delta MM = 0.22 \text{ MSEC}$

$P = 9.01$

10

7.5

5

2.5

PRESSURE  
PSI

$\Delta t$  INDICATES TIME

SHOCK WAVE

STRUCK MODEL

0

2

TIME (MSEC.)



OILITE MODEL

POSITION 5

TOP FACE

$\text{MM} = 2038 \text{ PSI}$   
 $\text{MM} = .1022 \text{ M SEC}$   
 $P_0 = 9.0$



A - INDICATES TIME SHOCK WAVE STRUCK MODEL

DISTRIBUTION LIST

| <u>No. of Copies</u> | <u>Organization</u>                                                                                                                                                | <u>No. of Copies</u> | <u>Organization</u>                                                                                                                                                              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                    | Chief of Ordnance<br>Department of the Army<br>Washington 25, D.C.<br>Attn: ORDTB - Bal Sec                                                                        | 1                    | Director of Intelligence<br>United States Air Force<br>Washington 25, D. C.<br>Attn: Lt. Col. John W. Ault<br>Deputy Director for<br>Targets<br>Physical Vulnerability<br>Branch |
| 4                    | Chief, Bureau of Ordnance<br>Department of the Navy<br>Washington 25, D. C.<br>Attn: Re3                                                                           | 1                    | Commander<br>Air Research and Development<br>Command<br>P. O. Box 1395<br>Baltimore 3, Maryland<br>Attn: Lt. Col. D. L. Crowson                                                  |
| 2                    | Commander<br>Naval Ordnance Laboratory<br>White Oak<br>Silver Spring 19, Maryland<br>Attn: Explosives Division                                                     |                      |                                                                                                                                                                                  |
| 1                    | Commander<br>Naval Ordnance Test Station<br>Inyokern<br>P. O. China Lake, California<br>Attn: Technical Library                                                    | 1                    | Commanding Officer<br>Air Force Cambridge Research<br>Laboratory<br>230 Albany Street<br>Cambridge, Massachusetts<br>Attn: FRHS-1, Geophysical<br>Research Library               |
| 1                    | Director<br>Naval Research Laboratory<br>Anacostia Station<br>Washington 20, D. C.                                                                                 | 1                    | Commander<br>Air Materiel Command<br>Wright-Patterson Air Force<br>Base, Ohio<br>Attn: MCAIDS                                                                                    |
| 1                    | Chief, Bureau of Yards and<br>Docks<br>Department of the Navy<br>Washington 25, D. C.<br>Attn: Code P-300                                                          | 1                    | Diamond Ordnance Fuze<br>Laboratories<br>Connecticut Avenue at Van Ness<br>St. N.W.<br>Washington 25, D. C.<br>Attn: Mr. Fred Harris,<br>Division 20                             |
| 1                    | Officer in Charge<br>Naval Civil Engineering<br>Research & Evaluation<br>Laboratory<br>Naval Station<br>Port Hueneme, California                                   | 1                    | Director<br>David Taylor Model Basin<br>Washington 7, D. C.<br>Attn: Structural Mechanics<br>Division                                                                            |
| 1                    | Deputy Chief of Staff<br>Development Research &<br>Development Directorate<br>United States Air Force<br>Washington 25, D. C.<br>Attn: Chief, Research<br>Division |                      |                                                                                                                                                                                  |

DISTRIBUTION LIST

| <u>No. of Copies</u> | <u>Organization</u>                                                                                                                                | <u>No. of Copies</u> | <u>Organization</u>                                                                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------|
| 5                    | Armed Forces Special Weapons Project<br>P. O. Box 2610<br>Washington 25, D. C.<br>Attn: Blast Branch                                               | 1                    | Broadview Research & Development<br>P. O. Box 1093<br>Burlingame, California<br>Attn: Dr. Richard I. Condit   |
| 1                    | Chief of Engineers<br>Department of the Army<br>Washington 25, D. C.<br>Attn: Mr. M. D. Kirkpatrick                                                | 1                    | Dr. John M. Richardson<br>Institute of Industrial Research<br>University of Denver<br>Denver 10, Colorado     |
| 1                    | Commanding General<br>Technical Command<br>Army Chemical Center, Maryland                                                                          | 1                    | Dr. S. J. Fraenkel<br>Division of Engineering Mechanics<br>Armour Research Foundation<br>Chicago 16, Illinois |
| 2                    | Los Alamos Scientific Laboratory<br>P. O. Box 1663<br>Los Alamos, New Mexico<br>Attn: Dr. Fred Reines                                              | 1                    | Dr. R. J. Hansen<br>Massachusetts Institute of Technology<br>Cambridge 39, Massachusetts                      |
| 5                    | Director<br>Armed Services Technical Information Agency<br>Documents Service Center<br>Knott Building<br>Dayton 2, Ohio<br>Attn: DSC - SA          | 1                    | Dr. N. M. Newmark<br>111 Talbot Laboratory<br>University of Illinois<br>Urbana, Illinois                      |
| 1                    | Director, Project RAND<br>Department of the Air Force<br>1700 Main Street<br>Santa Monica, California<br>Attn: Mr. Marc Peter                      | 1                    | Dr. Otto LaPorte<br>Engineering Research Institute<br>University of Michigan<br>Ann Arbor, Michigan           |
| 1                    | Applied Physics Laboratory<br>8621 Georgia Avenue<br>Silver Spring, Maryland                                                                       | 1                    | Dr. Walker Bleakney<br>Princeton University<br>Princeton, New Jersey                                          |
| 2                    | Sandia Corporation<br>P. O. Box 5800<br>Albuquerque, New Mexico<br>Attn: Physics Div. -<br>Dr. E. Cox<br>Blast Model Studies Div.<br>Dr. J. Shreve | 1                    | Dr. J. Kirkwood<br>Department of Chemistry<br>Yale University<br>New Haven, Connecticut                       |