Software Specifications Context Free Grammar Pumping Lemma Examples

Cain Susko

Queen's University School of Computing

March 8, 2022

Example

where
$$(P1)$$
 $v \neq \varepsilon$ or $x \neq \varepsilon$
 $(P2)$ $|vwx| \leq P$
 $(P3)$ for each $i \geq 0$: $uv^iwx^iy \in L$

Consider the Language of Squares:

$$L_2 = \{ww \mid w \in \{a, b\} * \}.$$

The claim is that L_2 is not context free.

Note: showing that L_2 is not CF, roughly speaking, shows that variable declarations cannot be specified with CF Grammars.

attempt 1 The Question is what string s should we use to derive a contradiction with the Pumping Lemma? The first (bad) idea for s is the following:

$$s = a^p b a^p b \in L_2.$$

$$s = a^{p-1} a b a^{p-1} b.$$

Where:

$$u = a^{p-1}$$

$$v = a$$

$$w = b$$

$$x = a$$

$$y = a^{p-1}b$$

Let p be the constant yielded from the pumping lemma. Additionally as given by the pumping lemma, s = uvwxy for all context free languages. However, there is **no contradiction** with s as v and x can be repeated in parallel.

attempt 2 We have to show that **any** way of writing a string in 5 parts, as per the pumping lemma, does *not* satisfy the pumping lemma in order to show that a language is context free. We need to also make sure that the middle part of the string (vwx) with length at most p.

Thus, we will try a better idea for s:

$$s = a^p b^p a^p b^p.$$

Thus, we will start our proof:

For the sake of contradiction assume that L_2 is context free and let p be the constant given by the pumping lemma.

$$s = a^p b^p a^p b^p$$
.

by the pumping lemma, s can be written in 5 parts:

$$s = uvwxy$$

where u, v, w, x, y satisfy the 3 properties of the pumping lemma. we shall divide s into 3 parts such that:

$$I = a^p b^p$$

$$II = a^p b^p$$

$$III = b^p a^p$$

Since $|vwx| \le p$, the substring vwx must be within one of the parts I, II, III.

- part I vwx is inside the prefix a^pb^p in the string uv^2wx^2y . The first symbol of the second half of the prefix is b and the first symbol of the first half is an a. Therefore, uv^2wx^2y is not in L_2
- part II Similarly, if vwx is inside the suffix a^pb^p in the string uv^2wx^2y then the last symbol of the first half is a and the last symbol of the second half is b. Again, $uv^2wx^2y \notin L_2$
- part III The last case is that vxy is in the middle part. Now, $uv^0wx^0y = uwy$ is of the form $a^pb^ia^jb^p$ where $i \neq p$ or $j \neq p$. Again, $uv^0wx^0y \notin L_2$, which produces **a contradiction**, and thus, L_2 is not context free.