Lecture 4.1: Norms

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Introduction: the Euclidean norm

Definition

We define the Euclidean norm of $x=(x_1,\dots,x_n)\in\mathbb{R}^n$ as: $\|x\|_2=\sqrt{x_1^2+\dots+x_n^2}.$

Introduction: the Euclidean norm

Definition

We define the Euclidean norm of $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ as:

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}.$$

- . For all LGR, laxlle = lal halle
- . If ||2||2=0, then 2=0

General norms

Let V be a vector space.

/26R/2703

Definition

A norm $\|\cdot\|$ on V is a function from V to $\mathbb{R}_{\geq 0}$ that verifies:

- 1. Homogeneity: $\|\alpha v\| = |\alpha| \times \|v\|$ for all $\alpha \in \mathbb{R}$ and $v \in V$.
- 2. Positive definiteness: if ||v|| = 0 for some $v \in V$, then v = 0.
- 3. Triangular inequality: $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$.

 \mathcal{E}_{X} : For $V = \mathbb{R}^{n}$, the Euclidean norm $U = \mathbb{R}^{n}$.

Other examples

ightharpoonup The ℓ_1 norm

Other examples

The infinity-norm

$$||x||_{\infty} \stackrel{\text{def}}{=} \max(|x_1|,\ldots,|x_n|).$$

Exercise: Balls drawing

For each of the norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$, draw the «ball»:

Exercise: Balls drawing

For each of the norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$, draw the «ball»:

$$B = \{x \in \mathbb{R}^2 \mid \|x\| \leq 1\}.$$
We are going to investigate the "shape" of the boundary of B: the x, such that $|x_1| + |x_2| = 1$

$$x_1, x_2 \geqslant 0$$

$$x_2 = 1 - x_1$$

Exercise: Balls drawing

For each of the norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$, draw the «ball»:

$$B = \{x \in \mathbb{R}^2 \mid ||x|| \le 1\}.$$

$$= \left\langle (\mathbf{A}_{\mathbf{A}_{\mathbf{J}}} \mathbf{A}_{\mathbf{Z}}) \mid \begin{array}{c} \mathbf{A}_{\mathbf{A}_{\mathbf{J}}} \le \underline{\mathbf{A}} \\ \mathbf{A}_{\mathbf{Z}_{\mathbf{J}}} \le \underline{\mathbf{A}} \end{array} \right\}$$

