

Concours d'entrée 2005-2006

Chimie Durée : 1 heure

Traiter les deux exercices suivants

Premier exercice (10 points) Acide fort et acide faible

On considère les deux solutions suivantes :

- Une solution aqueuse saturée (S₁) d'acide benzoïque C₆H₅COOH.
- Une solution aqueuse (S₂) d'acide nitrique HNO₃, de concentration molaire $C_2 = 8x10^{-3}$ mol.L⁻¹. Le pH de chaque solution est égal à 3.

Données:

- Solubilité de l'acide benzoïque dans l'eau : s = 2,4 g. L⁻¹.
- Masse molaire de l'acide benzoïque : M = 122 g.mol⁻¹.
- Zone de virage du bleu de bromothymol : jaune 6 vert 7,6 bleu.
- La température des solutions aqueuses considérées est 25 °C.
 - 1- Calculer la concentration molaire C_1 de la solution saturée (S_1) .
 - 2- Montrer que l'acide nitrique est fort et que l'acide benzoïque est faible.
 - 3- Ecrire l'équation de la réaction de chacun de ces deux acides avec l'eau.
 - 4- Calculer le coefficient d'ionisation de l'acide benzoïque dans cette solution.
 - 5- Montrer que le pKa du couple acide benzoïque/ion benzoate C₆H₅COOH/C₆H₅COO⁻) est égal à 4,26.
 - 6- Calculer le volume V_2 de la solution d'acide nitrique(S_2) qu'il faut ajouter à un volume $V_3 = 50$ mL d'une solution de benzoate de sodium C_6H_5COONa de concentration $C_3 = 8 \times 10^{-3}$ mol.L⁻¹ pour avoir une solution tampon de pH = 4,26.

Le benzoate de sodium est totalement soluble dans l'eau.

Deuxième exercice (10 points) Identification d'un composé organique

La formule moléculaire d'un composé organique (A), à chaîne carbonée saturée et acyclique (ouverte), est C₄ H₈O.

- 1- Ecrire les formules semi-développées des isomères possibles de (A).
- 2- Décrire un test permettant d'identifier le groupement fonctionnel caractérisant ces isomères.

- 3- L'oxydation ménagée du composé (A) par une solution de dichromate de potassium acidifiée par l'acide sulfurique conduit à un composé (B). Un extrait de (B) jaunit le bleu de bromotyhmol. En déduire le (s) nom (s) systématique (s) d'isomère (des isomères) mis en jeux.
- 4- Le composé (B) réagit avec SOCl₂ en donnant un composé organique (C) à chaîne carbonée ramifiée. Déduire la formule de (A). Ecrire les formules semi-développées de (B) et (C) et donner le nom systématique de chacun d'eux.
- 5- L'hydrogénation de (A) donne un composé (D). Ecrire la formule semi-développée de (D) et donner son nom systématique.
- 6- Ecrire l'équation de la réaction entre (C) et (D).

Concours d'entrée 2005 –2006

Solution de Chimie

Durée : 1 heure

Premier exercice (10 points) Acide fort et acide faible

1- La concentration molaire de la solution saturée (S₁) est donnée par :

$$n = \frac{n}{M} = \frac{2.4}{122} = 0.01967 mol$$

$$C_1 = \frac{n_1}{V} = \frac{0.01967}{1} = 0.01967 mol. L^{-1}$$

$$[C_6 H_5 COOH] = 0.01967 mol. L^{-1}$$

2- HNO₃est un acide fort?

*
$$S_2 : C_2 = 10^{-3} \text{ mol } L^{-1}, \text{ pH} = 3$$

$$[H_3O^+] = 10^{-pH} = 10^{-3}$$
, $[H_3O^+] = [HNO_3] = 10^{-3}$ mol.L⁻¹

Ainsi l'acide nitrique est un acide fort.

*[C_6H_5COOH] est un acide faible ? pH = 3

$$C_1 = 0.01967 mol. L^{-1}$$
, il faut que $C_1 > [H_3O^+]$

$$pH = 3 \text{ d'où } [H_3O^+] = 0^{-pH} = 10^{-3} \text{ mol.L}^{-1} \text{ ou } 0,001 \text{ mol.L}^{-1}$$

$$C_1 = [C_6H_5COOH] = 0.01967mol.L^{-1} > [H_3O^+]$$

Ainsi l'acide benzoïque est un acide faible.

3- L'équation de la réaction de l'acide nitrique avec l'eau est : $HNO_3+H_2O \rightarrow H_3O^+ + NO_3^-$

L'équation de la réaction de l'acide benzoïque avec l'eau est : $C_6H_5COOH + H_2O \rightleftharpoons H_3O^+ + C_6H_5COO^-$

4- On dresse le tableau qui représente l'état du système :

	[C ₆ H ₅ COOH]	[H3O+]	[C ₆ H ₅ COO ⁻]
Etat initial	$C_1 = 1,96 .10^{-2}$	0	0
Etat final	$C_1(1-\alpha)$	$C_1 \alpha$	$C_1 \alpha$

[H₃O⁺]= C₁
$$\alpha$$
 et $\alpha = \frac{[H_3O^+]}{C_1} = \frac{10^{-3}}{0,0196} \approx 0,05.$ $\alpha = 0,05$

5-
$$[C_6H_5COOH] = C_1 (1-\alpha) = 0.01967 (1-0.05) = 0.01867$$

 $[H_3O^+] = [C_6H_5COO^-] = 10^{-3}$

$$K_a = \frac{[\text{H3O}^+][C_6H_5COO^-]}{[C_6H_5COOH]} = \frac{10^{-3} \times 10^{-3}}{0,01867} = 5,356.10^{-5}$$

Et
$$pK_a = -\log Ka = 4,26$$

6- Pour avoir une solution tampon, pH= $pK_a = 4,26$

A la demi-équivalence $C_a V_a = \frac{C_b V_b}{2}$

HNO₃ et C₆H₅COONa sont complètement solubles dans l'eau

 C_aV_a nombre de moles de HNO₃ ou (H₃O⁺)

 C_bV_b nombre de moles de C_6H_5COONa ou $(C_6H_5COO^-)$

 C_bV_b doit être plus grand que C_aV_a pour qu'à la fin de la réaction il reste du $C_6H_5COO^-$ dans la solution.

$$C_6H_5COO^- + H_3O^+ \rightleftharpoons C_6H_5COOH + H_2O$$

Etat initial $C_b V_b$ $C_a V_a$ 0

Etat final

 $C_b V_b - C_a V_a$ 0 $C_a V_a$

Le pH de la solution finale s'écrit :

$$pH = pK_a + log \frac{[C_6H_3COO^{-}]}{[C_6H_5COOH]}Or, pH = pK_a$$

On en déduit que log
$$\frac{[C_6H_3COO^{-}]}{[C_6H_5COOH]} = 0$$

Et
$$[C_6H_3COO^{-}] = [C_6H_5COOH]$$

$$C_b V_b - C_a V_a = C_a V_a$$
 et $C_a V_a = \frac{C_b V_b}{2}$

$$C_2 V_2 = \frac{1}{2}C_3 V_3 \text{ et } V_2 = \frac{C_3 V_3}{2C_2} = \frac{8 \times 10^{-3} \times 50}{2 \times 10^{-3}} = 200 \text{mL}$$

Deuxième exercice (10 points) Identification d'un composé organique

1- Formules semi-développées de (A) C₄H₈O et isomères :

La chaine carbonée de (A) est saturée et acyclique, les isomères possibles sont donc :

(A₁):
$$CH_3 - CH_2 - CH_2 - C - H$$
 aldehyde

ou

(A₂):
$$CH_3 - CH - C - H$$
 aldéhyde $CH_3 - CH_3 - CH$

2- Identification:

C₄H₈O + réactif de Schiff→ coloration rose : (A) est un aldéhyde

C₄H₈O + réactif de Schiff→ reste incolore : (A) est une cétone

- 3- (A) Par oxydation ménagée \longrightarrow (B)
 - (B) + bleu de Bromothymol \longrightarrow couleur jaune
 - (B) est un acide et par suite (A) est un aldéhyde

(A₁):
$$C H_3$$
— $C H_2$ — CH_2 — C — H butanal

- Formule de (A) est donc le de formule :
- (B) acide + SOCl₂→ composé à chaine ramifiée (C)
- (B) dérive d'un aldéhyde à chaine ramifiée

$$CH_3$$
 — CH — C — H 2— méthylpropanal CH_3 O

• Formules semi-développées

noms

(B) est un acide à chaine ramifiée

(C) est un chlorure d'acyle

4- L'hydrogénation de (A) conduit à la formation de l'alcool primaire (D) ayant la même chaine carbonée de formule CH₃ — CH — C — H + H₂ \rightarrow CH₃ — CH — CH₂OH 2 méthylpropan -1-ol

 CH_3

