Calculus III (Math 241)

- W15 Do Exercises 22, 24, 26 in [Ste16], Ch. 13.1.
- **W16** Do Exercise 50 in [Ste16], Ch. 13.1.
- W17 Do Exercises 24 and 28 in [Ste16], Ch. 13.2.
- **W18** Consider the vectors $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (1, -1, 0)$, $\mathbf{v}_3 = (0, 1, -1)$. Define $\mathbf{A} \in \mathbb{R}^{3\times 3}$ as the matrix with columns \mathbf{v}_1 , \mathbf{v}_2 and $\mathbf{v}_3 \operatorname{proj}_{\mathbf{v}_2}(\mathbf{v}_3)$ in this order.
 - a) Compute **A** and verify that the columns of **A** are mutually orthogonal.
 - b) Compute the inverse matrix A^{-1} using the algorithm presented in the lecture.
 - c) The matrix A^{-1} arises from A by a simple transformation. Try to find this transformation and, if successful, prove your discovery.

W19 Consider the matrices

$$R(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}, \quad S(\phi) = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{pmatrix}, \quad \phi \in [0, 2\pi).$$

- a) Show that $\mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{x} \to R(\phi)\mathbf{x}$ is the rotation around $(0,0)^\mathsf{T}$ with angle ϕ .
- b) Show that $\mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{x} \to S(\phi)\mathbf{x}$ is a reflection, and find its axis.
- c) Show that $R(\phi)^{-1} = R(-\phi) = R(\phi)^{\mathsf{T}}$ and $S(\phi)^{-1} = S(\phi) = S(\phi)^{\mathsf{T}}$.
- d) Determine all rotations/reflections of \mathbb{R}^2 that preserve the equilateral triangle Δ with vertices $(1,0), (-\frac{1}{2},\pm\frac{1}{2}\sqrt{3}).$

Hint: There are six such symmetries, three rotations and three reflections.