

FORM PTO-1390 U S DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE (REV 10-98)		ATTORNEY'S DOCKET NUMBER GIN-6713CPUS
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C.371		U.S. APPLICATION NO. (If known, see 37 CFR 1.5) 09/554933
INTERNATIONAL APPLICATION PCT/JP98/05238	INTERNATIONAL FILING DATE 20 November 1998 (20.11.98)	PRIORITY DATE CLAIMED 25 November 1997 (25.11.97)
TITLE OF INVENTION HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAs ENCODING THESE PROTEINS		
APPLICANT(S) FOR DO/EO/US Seishi KATO; Tomoko KIMURA; and Shingo SEKINE		
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:		
<ol style="list-style-type: none"> 1. <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C.371. 2. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. 3. <input type="checkbox"/> This express request to begin national examination procedures (35 U.S.C. 371 (f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371 (b) and PCT Articles 22 and 39(1). 4. <input checked="" type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date. 5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) <ol style="list-style-type: none"> a. <input type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau). b. <input checked="" type="checkbox"/> has been transmitted by the International Bureau. c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US). 6. <input type="checkbox"/> A translation of the International Application into English (35 U.S.C 371(c)(2)). 7. <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) <ol style="list-style-type: none"> a. <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau). b. <input type="checkbox"/> have been transmitted by the International Bureau. c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. d. <input checked="" type="checkbox"/> have not been made and will not be made. 8. <input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 9. <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)) (unexecuted) (5 sheets); 10. <input type="checkbox"/> A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). 		
Items 11. to 16. below concern document(s) or information included:		
<ol style="list-style-type: none"> 11. <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. <input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included 13. <input type="checkbox"/> A FIRST preliminary amendment. <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment. 14. <input type="checkbox"/> A substitute specification. 15. <input type="checkbox"/> A change of power of attorney and/or address letter. 16. <input checked="" type="checkbox"/> Other items or information: Transmittal Letter (2 sheets in duplicate); Sequence Diskette Transmittal Letter with Sequence Listing Diskette and hard copy of Sequence Listing attached (26 sheets); PCT Notification of Receipt of Record Copy (PCT/IB/301) (2 sheets); PCT Notification Concerning Submission or Transmittal of Priority Document (Form PCT/IB/304) (1 sheet); PCT Notification of the Recording of a Change (Form PCT/IB/306) (1 sheet); PCT International Published Application (WO 99/27094) (without International Search Report) (89 sheets); PCT International Search Report (Form PCT/ISA/210) (5 sheets); PCT Information Concerning Elected Offices Notified of their Election (Form PCT/IB/332) (1 sheet); Cover Page of PCT International Published Application (WO 99/27094) (1 sheet); PCT Notification of Transmittal of the International Preliminary Examination Report (Form PCT/IPEA/416) (9 sheets); PCT Written Opinion (7 sheets); Check (#037073) (\$100); Certificate of Express Mailing (1 sheet); and Return Postcard. 		

COPY

U.S. APPLICATION NO. (if known, see 37 CFR 1.5) 09/554933	INTERNATIONAL APPLICATION NO. PCT/JP98/05238	ATTORNEY'S DOCKET NO. GIN-6713CPUS	
17. <input checked="" type="checkbox"/> The following fees are submitted:		CALCULATIONS PTO USE ONLY	
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) .(a/o January 1, 2000):			
Search Report has been prepared by the EPO or JPO..... International preliminary examination fee paid to USPTO (37 CFR 1.482). No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)). Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO..... International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4). ENTER APPROPRIATE BASIC FEE AMOUNT =		\$840 \$670 \$690 \$670 \$96 \$840	
Surcharge of \$130.00 for furnishing the oath or declaration later than 20 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$--	
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE
Total claims	11	-20 = 0	X \$18.00 \$0
Independent claims	2	-3 = 0	X \$78.00 \$0
MULTIPLE DEPENDENT CLAIM(S) (if applicable)		+ 260.00	\$260
TOTAL OF ABOVE CALCULATIONS =		\$1100	
Reduction of 1/2 for filing by small entity, if applicable. Verified Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28)		\$--	
SUBTOTAL =		\$1100	
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).		\$--	
TOTAL NATIONAL FEE =		\$1100	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property		\$--	
TOTAL FEES ENCLOSED =		\$1100	
		Amount to be: refunded	\$
		charged	\$
<p>a. <input checked="" type="checkbox"/> A check in the amount of \$1100 to cover the above fees is enclosed.</p> <p>b. <input type="checkbox"/> Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 12-0080. A duplicate copy of this sheet is enclosed.</p>			
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.			
SEND ALL CORRESPONDENCE TO: Amy E. Mandragouras, Esq. LAHIVE & COCKFIELD, LLP 28 State Street Boston, Massachusetts 02109 United States of America (617)227-7400 Date: 22 May 2000			
SIGNATURE Peter C. Lauro NAME 32,360 REGISTRATION NUMBER			

31/PR+5

1 526 Rec'd PCT/PTO 22 MAY 2000

DESCRIPTION

Human Proteins Having Transmembrane
Domains and DNAs Encoding these Proteins

5

TECHNICAL FIELD

The present invention relates to human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as eucaryotic 10 cells expressing said cDNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against said proteins. The human cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene 15 therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by said cDNAs. Cells, wherein these membrane protein genes are introduced and membrane proteins are expressed in large amounts, can be utilized for detection of the corresponding 20 ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

Membrane proteins play important roles, as signal 25 receptors, ion channels, transporters, etc. in the material transportation and the information transmission which are mediated by the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., 30 transporters for saccharides and amino acids, and so on, where the genes of many of them have been cloned already.

It has been clarified that abnormalities of these membrane proteins are associated with a number of hitherto-cryptogenic diseases. For instance, a gene of a membrane protein having twelve transmembrane domains was identified 5 as the gene responsible for cystic fibrosis [Rommens, J. M. et al., Science 245: 1059-1065 (1989)]. In addition, it has been clarified that several membrane proteins act as receptors when a virus infects the cells. For instance, HIV-1 is revealed to infect into the cells through 10 mediation of a membrane protein fusin having a membrane protein on the T-cell membrane, a CD-4 antigen, and seven transmembrane domains [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many 15 diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification, many membrane proteins have been isolated by an approach from the gene side. A general method is the so-called 20 expression cloning which comprises transfection of a cDNA library in eucaryotic cells to express cDNAs and then detection of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a physiological technique on the change in 25 the membrane permeability. However, this method is applicable only to cloning of a gene of a membrane protein with a known function.

In general, membrane proteins possess hydrophobic transmembrane domains inside the proteins, wherein, after 30 synthesis thereof in the ribosome, these domains remain in

the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of the cDNA for encoding the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection 5 of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

DISCLOSURE OF INVENTION

The object of the present invention is to provide 10 novel human proteins having transmembrane domains, DNAs coding for said proteins, and expression vectors of said cDNAs as well as transformation eucaryotic cells that are capable of expressing said cDNAs.

As the result of intensive studies, the present 15 inventors have been successful in cloning of cDNAs coding for proteins having transmembrane domains from the human full-length cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins having transmembrane domains, namely 20 proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 3. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs containing any of the base sequences represented by Sequence Nos. 4 to 6, 7, 9 and 11, 25 as well as transformation eucaryotic cells that are capable of expressing said cDNAs.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1: A figure depicting the 30 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01207.

Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01862.

5 Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10493.

BEST MODE FOR CARRYING OUT THE INVENTION

The proteins of the present invention can be obtained, 10 for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the transmembrane domains of the present invention, wherein the 15 method for obtainment by the recombinant DNA technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of cDNAs of the present invention, followed by in vitro translation 20 using this RNA as a template. Also, recombination of the translation region into a suitable expression vector by the method known in the art leads to production of a large amount of the encoded protein by using prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and 25 eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case in which a protein of the present invention is produced by expression of one of the DNAs by in vitro expression, recombination of the translation 30 region in said cDNA into a vector having an RNA polymerase

promoter, followed by addition into an in vitro translation system such as a rabbit reticulocyte lysate, a wheat germ extract, or the like, allows in vitro production of the protein of the present invention. Examples of the RNA 5 polymerase promoter include T7, T3, SP6, and so on. Vectors containing such an RNA polymerase promoter are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II, and so on. Also, addition of the dog pancreas microsome etc. in the reaction system enables the membrane protein of the 10 present invention to be expressed in a form integrated in the microsome membrane.

In the case in which a protein of the present invention is produced by expression of a DNA in a microorganism such as *Escherichia coli* etc., a recombinant 15 expression vector bearing the translation region in the cDNA of the present invention is constructed in an expression vector having an origin, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator etc., which can be replicated in the microorganism, and, after 20 transformation of the host cells with said expression vector, the thus-obtained transformant is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In this case, a protein fragment containing an optional region can be obtained by 25 carrying out the expression with inserting an initiation codon and a termination codon in front of and behind an optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion coding for said cDNA can be obtained by 30 cleavage of said fusion protein with a suitable protease.

Examples of the expression vector for *Escherichia coli* include the pUC system, pBluescript II, the pET expression system, the pGEX expression system, and so on.

In the case in which one of the proteins of the present invention is produced by expression of a DNA in eucaryotic cells, the protein of the present invention can be produced as a transmembrane protein on the cell-membrane surface, when the translation region of said cDNA is subjected to recombination to an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) insertion site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian culture cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, *Xenopus laevis* egg cells, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the present proteins on the membrane surface. The expression vector can be introduced in the eucaryotic cells by methods known in the art such as the electroporation method, the potassium phosphate method, the liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a surface-active agent, sonication,

enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence in the amino acid sequences represented by Sequence Nos. 1 to 3. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequence are secreted in the form of maturation proteins on the surface of the cells, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come within the scope of the present invention. When sugar chain-binding sites are present in the amino acid sequences, expression in appropriate eucaryotic cells affords proteins wherein sugar chains are added. Accordingly, such proteins or peptides wherein sugar chains are added shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs

coding for the above-mentioned proteins. Said DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries of the human cell origin. These cDNA are synthesized by using as templates poly(A)⁺ RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of an optional portion in the cDNA base sequences of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of an oligonucleotide to be hybridized at both termini of the objective cDNA fragment, followed by the usage of this oligonucleotide as the primer for the RT-PCR method from an mRNA isolated from human cells.

The cDNAs of the present invention are characterized

by containing either of the base sequences represented by Sequence Nos. 4 to 6 or the base sequences represented by Sequence Nos. 7, 9 and 11. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total 5 base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

10	Sequence No.	HP No.	Cell	Number of bases	Number of amino acids
15	1, 4, 7	HP 01207	Stomach Cancer	2938	269
	2, 5, 8	HP 01862	Stomach Cancer	2290	311
	3, 6, 9	HP 10493	PMA-U937	3705	383

Hereupon, the same clones as the cDNAs of the present 20 invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines and human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of Sequence Nos. 4 to 6, 7, 25 9 and 11.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution 30 with other nucleotides in Sequence Nos. 4 to 6, 7, 9 and 11 shall come within the scope of the present invention.

In a similar manner, any protein that is formed by these modifications comprising insertion or deletion of one

or plural amino acids and/or substitution with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by Sequence Nos.

5 1 to 3.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence in the base sequences represented by Sequence Nos.

4 to 6 or in the base sequences represented by Sequences No.

10 7, 9 and 11. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be utilized as the probes for the gene diagnosis.

In addition to the activities and uses described above, 15 the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by 20 administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

25 The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein 30 is preferentially expressed (either constitutively or at a

particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions;

5 to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out"

10 known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an

15 antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap

20 assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in

biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and,
5 of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors
10 of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of
15 being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning:
20 A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

25 Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a
30 nitrogen source and use as a source of carbohydrate. In

such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, 5 suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

10 A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, 15 have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any 20 one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

25 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. 30 Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing

Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 5 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of 10 spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and 15 Measurement of mouse and human Interferon γ , Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of 20 hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 25 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. 30 J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and

Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark,S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

10 Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols 15 in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic 20 studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

25 Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in 30 the treatment of various immune deficiencies and disorders

(including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These 5 immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the 10 present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the 15 immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic 20 lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitus, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present 25 invention may also be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), 30 may also be treatable using a protein of the present

invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an 5 immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell 10 responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is 15 generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

20 Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and 25 organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its 30 recognition as foreign by T cells, followed by an immune

reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this manner prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et

al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte 5 antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which 10 promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand 15 interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of 20 autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include 25 murine experimental autoimmune encephalitis, systemic lupus erythematosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New 30 York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity.

Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected *ex vivo* with an expression vector directing the expression of a peptide having B7-2-like activity alone, or 5 in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to 10 target a tumor cell for transfection *in vivo*.
15

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class 20 II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the 25 appropriate class I or class II MHC in conjunction with a
30

peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of 5 an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T 10 cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

15 Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience
20 (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al.,
25 J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986;
30 Bowman et al., J. Virology 61:1992-1998; Takai et al., J.

Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses
5 and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In
10 vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro
20 assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 30 1995; Porgador et al., Journal of Experimental Medicine

182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad. Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting

the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with 5 irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with 10 chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use 15 in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell 20 disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., 25 in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among 30 other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence 5 embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. 10 Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. 15 R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. 20 Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, 25 Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. 30

Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity,

etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present 5 invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a 10 preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament 15 tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or 20 repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or 25 induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also 30 include an appropriate matrix and/or sequestering agent as

a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium),

muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of 5 fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or 10 liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for 15 inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent 20 Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without 25 limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

30 A protein of the present invention may also exhibit

activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of 5 follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals.

10 Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic,

15 based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to

20 increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without 25 limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

30 Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, 5 eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and 10 other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

15 A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of 20 cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

25 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability 30 of a protein to induce the adhesion of one cell population

to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, 5 Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 10 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is 15 expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be 20 useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among 25 other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., 30 Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-

474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or 5 inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and 10 their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and 15 ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as 20 inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in 25 Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 30 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-

1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160
1989; Stoltenborg et al., J. Immunol. Methods 175:59-68,
1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

5 Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell
10 adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins
15 exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-
20 reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of
25 the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein

of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive

disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

15

Examples

The present invention is embodied in more detail by the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Cloning. A Laboratory Manual " , Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from TAKARA SHUZO. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

30 (1) Preparation of Poly(A)⁺ RNA

The histiocyte lymphoma cell line U937 (ATCC CRL 1593) stimulated by phorbol ester and tissues of stomach cancer delivered by the operation were used for human cells to extract mRNAs. The cell line was incubated by a
5 conventional procedure.

After about 1 g of the human cells was homogenized in 20 ml of a 5.5 M guanidinium thiocyanate solution, a total mRNA was prepared according to the literature [Okayama, H. et al., "Method in Enzymology", Vol. 164, Academic Press, 10 1987]. This was subjected to chromatography on oligo(dT)-cellulose column washed with a 20 mM Tris-hydrochloride buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A)⁺ RNA according to the above-described literature.
15

(2) Construction of cDNA Library

Ten micrograms of the above-mentioned poly(A)⁺ RNA were dissolved in a 100 mM Tris-hydrochloride buffer solution (pH 8), one unit of an RNase-free, bacterial alkaline phosphatase was added, and the reaction was run at 20 37 °C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was 25 added one unit of a tobacco-origin acid pyrophosphatase (Epicentre Technologies) and a total 100 µl volume of the resulting mixture was reacted at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was 30 dissolved in water to obtain a solution of a decapped

poly(A)⁺ RNA.

The decapped poly(A)⁺ RNA and 3 nmol of a chimeric DNA-RNA oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') were dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol, whereto was added 50 units of T4RNA ligase and a total 30 µl volume of the resulting mixture was reacted at 20 °C for 12 hours. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in water to obtain a chimeric-oligo-capped poly(A)⁺ RNA.

After digestion of vector pKA1 (Japanese Patent Kokai Publication No. 1992-117292) developed by the present inventors with KpnI, about 60 dT tails were added using a terminal transferase. A vector primer to be used below was prepared by digestion of this product with EcoRV to remove a dT tail at one side.

After 6 µg of the previously-prepared chimeric-oligo-capped poly(A)⁺ RNA was annealed with 1.2 µg of the vector primer, the resulting product was dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), 200 units of a reverse transcriptase (GIBCO-BRL) were added, and the reaction in a total 20 µl volume was run at 42°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 7.5), 100 mM NaCl, 10 mM MgCl₂, and 1

mM dithiothreitol. Thereto were added 100 units of EcoRI and a total 20 μ l volume of the resulting mixture was reacted at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 20 mM Tris-hydrochloride buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl₂, 10 mM (NH₄)₂SO₄, and 50 μ g/ml of the bovine serum albumin. Thereto were added 60 units of an *Escherichia coli* DNA ligase and the resulting mixture was reacted at 16°C for 16 hours. To the reaction solution were added 2 μ l of 2 mM dNTP, 4 units of *Escherichia coli* DNA polymerase I, and 0.1 unit of *Escherichia coli* RNase H and the resulting mixture was reacted at 12°C for one hour and then at 22°C for one hour.

Next, the cDNA-synthesis reaction solution was used for transformation of *Escherichia coli* DH12S (GIBCO-BRL). The transformation was carried out by the electroporation method. A portion of the transformant was sprayed on the 2xYT agar culture medium containing 100 μ g/ml ampicillin and the mixture was incubated at 37°C overnight. A colony formed on the agar medium was picked up at random and inoculated on 2 ml of the 2xYT culture medium containing 100 μ g/ml ampicillin. After incubation at 37°C overnight, the culture mixture was centrifuged to separate the mycelia, from which a plasmid DNA was prepared by the alkaline lysis method. The plasmid DNA was subjected to double digestion with EcoRI and NotI, followed by 0.8% agarose gel electrophoresis, to determine the size of the cDNA insert. Furthermore, using the thus-obtained plasmid as a template, the sequence reaction was carried out by using an M13

universal primer labeled with a fluorescent dye and a Taq polymerase (a kit of Applied Biosystems) and then the product was examined with a fluorescent DNA sequencer (Applied Biosystems) to determine an about 400-bp base 5 sequence at the 5'-terminus of the cDNA. The sequence data were filed as the homo/protein cDNA bank database.

(3) Selection of cDNAs Encoding Proteins Having Transmembrane Domains

A base sequence registered in the homo/protein cDNA bank was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon was examined. Then, the selection was made for the presence of a signal sequence that is characteristic to a secretory protein at the N-terminus of the portion encoded by the ORF. These clones were sequenced from the both 5' and 3' directions by the use of the deletion method using exonuclease III to determine the whole base sequence. The hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by the ORF by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of a putative transmembrane domain in the amino acid 20 sequence of an encoded protein, this protein was judged as a membrane protein.

(4) Functional Verification of Secretory Signal Sequence or Transmembrane Domains

It was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-

196 (1995)] that the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the above-mentioned steps functions as a secretory signal sequence. First, the plasmid containing the target cDNA was cleaved 5 at an appropriate restriction enzyme site existing at the downstream of the portion expected for encoding the secretory signal sequence. In the case in which this restriction site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the mung-bean nuclease. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 promoter 10 and a cDNA encoding the secretory signal sequence at the downstream of the promoter was separated by agarose gel electrophoresis. The resulting fragment was inserted between HindIII in pSSD3 (DDBJ/EMBL/GenBank Registration No. AB007632) and a restriction enzyme site selected so as to 15 match with the urokinase-coding frame, thereby constructing a vector expressing a fusion protein of the secretory signal sequence of the target cDNA and the urokinase protease domain.

After *Escherichia coli* (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 µg/ml of ampicillin, the helper phage M13KO7 (50 µl) was 25 added and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 µl of 1 mM Tris-0.1 mM EDTA, pH 8 (TE). Also, there 30 were used as controls suspensions of single-stranded phage

particles prepared in the same manner from pSSD3 and from the vector pKA1-UPA containing a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)].

5 The culture cells originating from the simian kidney, COS7, were incubated at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 × 10⁵ COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO₂. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) (TDMEM).
10 To the resulting cells was added a suspension of 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 µl of TRANSFECTAM™ (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was
15 removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO₂.
20

25 To 10 ml of a 50 mM phosphate buffer solution (pH 7.4) containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM calcium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the transfected COS7 cells were
30

spotted on the fibrin plate, which was incubated at 37°C for 15 hours. In the case in which a clear circle appears on the fibrin plate, it is judged that the cDNA fragment codes for the amino acid sequence functioning as a secretory signal sequence. On the other hand, in case in which a clear circle is not formed, the cells were washed well, then the fibrin sheet was placed on the cells, and incubation was carried out at 37°C for 15 hours. In case in which a clear portion is formed on the fibrin sheet, it indicates that the urokinase activity was expressed on the cell surface. In other words, the cDNA fragment is judged to code for the transmembrane domains.

(5) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_{NT} rabbit reticulocyte lysate kit (Promega). In this case, [³⁵S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was reacted at 30°C for 90 minutes in a total 25 µl volume of the reaction solution containing 12.5 µl of T_{NT} rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to kit), 2 µl of an amino acid mixture (methionine-free), 2 µl of [³⁵S]methionine (Amersham) (0.37 MBq/µl), 0.5 µl of T7RNA polymerase, and 20 U of RNasin. To 3 µl of the resulting reaction solution was added 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting

mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiograph.

5 (6) Expression by COS7

Escherichia coli bearing the expression vector of the protein of the present invention was infected with helper phage M13KO7 and single-stranded phage particles were obtained by the above-mentioned procedure. The thus-obtained phage was used for introducing each expression vector in the culture cells originating from the simian kidney, COS7. After incubation at 37°C for 2 days in the presence of 5% CO₂, the incubation was continued for one hour in the culture medium containing [³⁵S]cystine or [³⁵S]methionine. Collection and dissolution of the cells, followed by subjecting to SDS-PAGE, allowed to observe the presence of a band corresponding to the expression product of each protein, which did not exist in the COS7 cells. For instance, HP01207 produced a band of 25 kDa in the membrane fraction.

(7) Clone Examples

<HP01207> (Sequence Nos. 1, 4, and 7)

Determination of the whole base sequence of the cDNA insert of clone HP01207 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 100-bp 5'-nontranslation region, an 810-bp ORF, and a 2028-bp 3'-nontranslation region. The ORF codes for a protein consisting of 269 amino acid residues and there existed seven transmembrane domains. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the

Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a smear translation product of a high molecular weight.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the mouse Surf-4 protein (PIR Accession No. A34727). Table 2 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the mouse Surf-4 protein (MM). Therein, the marks of * and . represent an amino acid residue identical with the protein of the present invention and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 99.3% in the entire region.

15

Table 2

	HS MGQNNDLMGTAEDFADQFLRVTKQYLPHVARLCLISTFLEDGIRMWFPQWSEQRDYIDTTWN *****
20	MM MGQNNDLMGTAEDFADQFLRVTKQYLPHVARLCLISTFLEDGIRMWFPQWSEQRDYIDTTWS HS CGYLLASSFVFLNLLGQLTGCVLVLSRNFVQYACFGLFGIIALQTIAYSILWDLKFLMRN *****
	MM CGYLLASSFVFLNLLGQLTGCVLVLSRNFVQYACFGLFGIIALQTIAYSILWDLKFLMRN HS LALGGGLLLLAECSRSEGKSMFAGVPTMRESSPKQYMQLGGRVLLVLMFMTLLHFDASFF *****
25	MM LALGGGLLLLAECSRSEGKSMFAGVPTMRESSPKQYMQLGGRVLLVLMFMTLLHFDASFF HS SIVQNIVGTALMILVAIGFKTKLAALTIVVVWLFAINVYFNAFWTIPVYKPMHDFLKYDFF **.*****
	MM SIIQNIVGTALMILVAIGFKTKLAALTIVVVWLFAINVYFNAFWTIPVYKPMHDFLKYDFF HS QTMSVIGGLLVVALGPAGVSMDEKKKEW *****
30	MM QTMSVIGGLLVVALGPAGVSMDEKKKEW

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of a base sequence that exhibited an analogy of 98.6% with a 762-bp part from position 122 up to position 883 (GenBank 5 Accession No. Y14820), which codes for the fragment of the present protein.

The mouse Surf-4 protein is one of proteins which are encoded in the mouse surfeit locus and has been considered to a housekeeping protein that is essential to the survival 10 of cells [Huxley, C. et al., Mol. Cell. Biol. 10: 605-614 (1990)].

<HP01862> (Sequence Nos. 2, 5 and 9)

Determination of the whole base sequence of the cDNA insert of clone HP01862 obtained from cDNA libraries of 15 human stomach cancer revealed the structure consisting of an 80-bp 5'-nontranslation region, a 936-bp ORF, and a 1274-bp 3'-nontranslation region. The ORF codes for a protein consisting of 311 amino acid residues and there existed seven transmembrane domains. Figure 2 depicts the 20 hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a smear translation product of a high molecular weight.

The search of the protein data base using the amino 25 acid sequence of the present protein has revealed the presence of sequences that were analogous to the rat NMDA receptor glutamate-binding subunit (GenBank Accession No. S19586). Table 3 shows the comparison of the amino acid sequence between the human protein of the present invention 30 (HP) and the rat NMDA receptor glutamate-binding subunit

(RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 41.0%.

Table 3

HS MSNPSAPPYEDRNP
10 RN MKRVWSLGTAILPQTLAILWGHKPLCLPMFSLPTLGPHTHRPLSSPLPMVNQGIPMVPV
HS LYPGPLPPGGYGQPSVLPGGYPAYPGYPQPGYGHAGYPQPMPPTHPMPMNYGPGHGYDG
** * **. * *. **.*.*.* * . . ** **.
RN PITRWLPLKDLLKEATHQGHYPQSP-FPPNPYQPPPQDPGSPQHGNYQEEGPPSYYDN
HS EERA VSDSFGPGEWDDRKVRFIRKVSIISVQLLTVIAIIAIFTFVEPVSAFVRRNVA
.. * . . * . . . ****.* . . . ****. *. *** **
RN QD-----FPSVNW-DKSIRQA FIRKVFLVLTQLSVTLSTVAIFTFVGEVKGFVRANW
HS VYYVSYAVFVVTYLILACCQGPRRRFPWNIIILLTLFTFAMGFMTGTISSMYQTAKVIIAM
.*****.* . . . * . * . ***. * . . * . . . * . * . * . * . ***. *.
20 RN TYYVSYAIFFISLIVLSCCGDFRKHHKPWNLVALSILTISLSYMGMIASFYNTEAVIMAV
HS IITAVVSISVTIFCFQTKVDFTSCTGLFCVLGIVLLVTGIVTSIVLYFQYVYWLHMLYAA
. . * . . * . *. ***** * . . * . * . . * * . . . ***.
RN GITTAVCFTVVIFSMQTRYDFTSCMGVLLVSVVLFIFAIL---CIFIRNRI-LEIVYAS
HS LGAI CFTLFLAYDTQLVLGNRKHTISPEDYITGALQIYTDIYIFTFVLQLMGDRN
. ** *** *. ***. . . ***. * . . * . . ***. ***** * . . * . . *
RN LGALLFTCFLAVDTQLLLGNKQLSLSPEEYVFAALNLYTDIINIFLYILTIIGRSQGIGQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. H06014) in EST, but any of the sequences was shorter than the present cDNAs and was not

found to contain the initiation codon.

The rat NMDA receptor glutamate-binding subunit is one of subunits of an NMDA receptor complex which exist specifically in the brain [Kumar, K. N. et al., Nature 354: 5 70-73 (1991)]. The protein of the present invention has seven transmembrane domains characteristic to channels and transporters and thereby is considered to play an important role as a channel and a transporter.

<HP10493> (Sequence Nos. 3, 6 and 11)

10 Determination of the whole base sequence of the cDNA insert of clone HP10493 obtained from cDNA libraries of the human lymphoma U937 revealed the structure consisting of a 123-bp 5'-nontranslation region, a 1152-bp ORF, and a 2430-bp 3'-nontranslation region. The ORF codes for a protein 15 consisting of 383 amino acid residues and there existed one transmembrane domain at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Introduction of an expression vector, wherein the HindIII-AccI fragment 20 containing a cDNA portion coding for the N-terminal 44 amino acid residues of the present protein was inserted into the HindIII-PmaCI site of pSSD3, into the COS7 cells revealed the urokinase activity on the cell surface to indicate that the present protein is the type-II membrane 25 protein. In vitro translation resulted in formation of a translation product of 43 kDa that was almost consistent with the molecular weight of 43,001 predicted from the ORF.

30 The search of the protein data base using the amino acid sequence of the present protein has not revealed the presence of any known protein having an analogy. The search

of the motif sequences has revealed a high probability that histidine at position 175 is an active site of the trypsin-type serine protease. Accordingly, the present protein is likely to be a membrane-type protease. Also, the GenBank
5 using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. R81003) in EST, but many sequences were not distinct and the same ORF as that in the present cDNA was not found.

10

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as eucaryotic
15 cells expressing said cDNAs. All of the proteins of the present invention exist in the cell membrane, so that they are considered to be proteins controlling the proliferation and the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as
20 pharmaceuticals such as carcinostatic agents relating to the control of the proliferation and the differentiation of the cells or as antigens for preparing antibodies against said proteins. The cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources
25 for the gene therapy. Furthermore, the cDNAs can be utilized for large-scale expression of said proteins. Cells, wherein these membrane protein genes are introduced and membrane proteins are expressed in large amounts, can be utilized for detection of the corresponding ligands,
30 screening of novel low-molecular pharmaceuticals, and so on.

COUNCIL OF EUROPEAN UNION

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are

5 transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding
10 sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods
15 include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding
20 sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided.
25 The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 30 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol.

58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of
5 cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene
10 expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of
15 extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk,
20 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative
25 genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614,396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms
30

are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of
5 the corresponding gene(s).

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane
10 domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence
15 information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed
20 protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize
25 overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that share at least 75% sequence identity (more preferably, at least 85% identity;
30

most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention.
5 As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of
15 the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

20 The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions,
25 more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F;
30 stringent conditions are at least as stringent as, for

example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table

5

Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) [‡]	Hybridization Temperature and Buffer [†]	Wash Temperature and Buffer [†]
A	DNA : DNA	≥50	65°C; 1×SSC -or- 42°C; 1×SSC, 50% formamide	65°C; 0.3×SSC
B	DNA : DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA : RNA	≥50	67°C; 1×SSC -or- 45°C; 1×SSC, 50% formamide	67°C; 0.3×SSC
D	DNA : RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA : RNA	≥50	70°C; 1×SSC -or- 50°C; 1×SSC, 50% formamide	70°C; 0.3×SSC
F	RNA : RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or- 42°C; 4×SSC, 50% formamide	65°C; 1×SSC
H	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA : RNA	≥50	67°C; 4×SSC -or- 45°C; 4×SSC, 50% formamide	67°C; 1×SSC
J	DNA : RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA : RNA	≥50	70°C; 4×SSC -or- 50°C; 4×SSC, 50% formamide	67°C; 1×SSC
L	RNA : RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or- 40°C; 6×SSC, 50% formamide	50°C; 2×SSC
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
O	DNA : RNA	≥50	55°C; 4×SSC -or- 42°C; 6×SSC, 50% formamide	55°C; 2×SSC
P	DNA : RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA : RNA	≥50	60°C; 4×SSC -or- 45°C; 6×SSC, 50% formamide	60°C; 2×SSC
R	RNA : RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

‡ : The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

5 † : SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after

10 hybridization is complete.

15 *T_B - T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m(°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m(°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

20 Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory

25 Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc.,

sections 2.10 and 6.3-6.4, incorporated herein by reference.

30 Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 35 90% or 95% identity) with the polynucleotide of the present

invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

CLAIMS

1. A protein comprising any one of the amino acid sequences represented by Sequence Nos. 1 to 3.
- 5 2. A DNA coding for the protein according to Claim 1.
3. A cDNA comprising any one of the base sequences represented by Sequence Nos. 4 to 6.
4. The cDNA according to Claim 3 comprising any one of the base sequences represented by Sequence Nos. 7, 9 and 10 11.
5. An expression vector capable of expressing the DNA according to any one of Claims 2 to 4 by in vitro translation or in eucaryotic cells.
6. A transformation eucaryotic cell capable of 15 expressing the DNA according to any one of Claims 2 to 4 and of producing the protein according to Claim 1.

Fig.1

1/3

09/554933

PCT/JP98/05238

WO 99/27094

Fig.2

2/3

09/554933

WO 99/27094

PCT/JP98/05238

Fig.3

**DECLARATION, PETITION AND POWER OF ATTORNEY
FOR PATENT APPLICATION**

(Check one):

Declaration Submitted with Initial Filing
 Declaration Submitted after Initial Filing

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

**HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAs
ENCODING THESE PROTEINS**

the specification of which (check one):

is attached hereto.
OR
 was filed on **22 May 2000** as U.S. National Application Serial No. 09/554,933
(U.S. National Filing of PCT/JP98/05238 filed on 20 November 1998).

and was amended by PCT Article 19 Amendment on _____
(if applicable),

and was amended by PCT Article 34 Amendment on _____
(if applicable).

I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56.

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

PRIORITY CLAIM

(Check one):

no such applications have been filed.
 such applications have been filed as follows

1) FOREIGN PRIORITY CLAIM: I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate or §365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate or any PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application Number(s)	Country	Foreign Filing Date (dd/mm/yyyy)	Priority Not Claimed	Certified Copy Attached Yes No
9/323129	JP	25 November 1997 (25.11.97)	<input type="checkbox"/>	<input type="checkbox"/> <input checked="" type="checkbox"/>
			<input type="checkbox"/>	<input type="checkbox"/> <input type="checkbox"/>

Additional foreign application numbers are listed on a supplemental priority sheet attached hereto.

2) PROVISIONAL PRIORITY CLAIM: I hereby claim the benefit under Title 35, United States Code §119(e) of any United States provisional application(s) listed below.

Provisional Application Number(s)	Filing Date (dd/mm/yyyy)

Additional provisional application numbers are listed on a supplemental priority sheet attached hereto.

3) U.S./PCT PRIORITY CLAIM: I hereby claim the benefit under Title 35, United States Code, §120 of any United States application or §365(c) of any PCT international application designating the United States of America, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

U.S. Parent Application Number	PCT Parent Number	Parent Filing Date (dd/mm/yyyy)	Parent Patent Number (if applicable)
	PCT/JP98/05238	20 November 1998 (20.11.98)	

Additional U.S. or PCT international application numbers are listed on a supplemental priority sheet attached hereto.

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

[Handwritten signature]

James E. Cockfield	Reg. No. <u>19,162</u>	Megan E. Williams	Reg. No. <u>43,270</u>
Thomas V. Smurzynski	Reg. No. <u>24,798</u>	Nicholas P. Triano III	Reg. No. <u>36,397</u>
Ralph A. Loren	Reg. No. <u>29,325</u>	Peter C. Lauro	Reg. No. <u>32,360</u>
Giulio A. DeConti, Jr.	Reg. No. <u>31,503</u>	DeAnn F. Smith	Reg. No. <u>36,683</u>
Ann Lampert Hammitt	Reg. No. <u>34,858</u>	William D. DeVaul	Reg. No. <u>42,483</u>
Elizabeth A. Hanley	Reg. No. <u>33,505</u>	David J. Rikkers	Reg. No. <u>43,882</u>
Amy E. Mandragouras	Reg. No. <u>36,207</u>	Chi Suk Kim	Reg. No. <u>42,728</u>
Anthony A. Laurentano	Reg. No. <u>38,220</u>	Maria Laccotripe Zacharakis	Limited Recognition
Jane E. Remillard	Reg. No. <u>38,872</u>	Debra J. Milasincic	Under 37 C.F.R. § 10.9(b)
Jeremiah Lynch	Reg. No. <u>17,425</u>	David R. Burns	Reg. No. <u>P46,931</u>
Kevin J. Canning	Reg. No. <u>35,470</u>		Reg. No. <u>P46,590</u>
David A. Lane, Jr.	Reg. No. <u>39,261</u>		
Jeanne M. DiGiorgio	Reg. No. <u>41,710</u>		

of LAHIVE & COCKFIELD, LLP, 28 State Street, Boston, Massachusetts 02109, United States of America, and

Ellen J. Kapinos	Reg. No. 32,245	Elizabeth Hurley	Reg. No. 41,859
Barbara A. Gyure	Reg. No. 34,614		
M. Kymne Hehman	Reg. No. 39,206		

of GENETICS INSTITUTE, INC., 87 CambridgePark Drive, Cambridge, Massachusetts 02140, United States of America,

Egon E. Berg	Reg. No. 21,117	Elizabeth M. Barnhard	Reg. No. 31,088
Gale F. Matthews	Reg. No. 32,269	Alan M. Gordon	Reg. No. 30,637
Darryl L. Webster	Reg. No. 34,276		

of GENETICS INSTITUTE, INC., One Campus Drive, Parsippany, New Jersey 07054, United States of America, and

Rebecca R. Barrett	Reg. No. 35,152	Steven R. Eck	Reg. No. 36,126
Arnold S. Milowsky	Reg. No. 35,288	Michael R. Nagy	Reg. No. 33,432
George Tarnowski	Reg. No. 27,472	Arthur G. Seifert	Reg. No. 28,040

of GENETICS INSTITUTE, INC., P.O. Box 8299, Philadelphia, Pennsylvania 19101, United States of America.

Send Correspondence to:

Amy E. Mandragouras, Lahive & Cockfield, LLP, 28 State Street, Boston, Massachusetts 02109, United States of America

Direct Telephone Calls to: (name and telephone number)

Peter C. Lauro, (617) 227-7400, also at Lahive & Cockfield, LLP, 28 State Street, Boston, Massachusetts 02109, United States of America

Wherefore I petition that letters patent be granted to me for the invention or discovery described and claimed in the attached specification and claims, and hereby subscribe my name to said specification and claims and to the foregoing declaration, power of attorney, and this petition.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first inventor Seishi KATO	
Inventor's signature	Date
	10 August 2000
Residence	
3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014, Japan	
Citizenship	
Japan	
Post Office Address (if different)	

Full name of sole or first inventor Tomoko KIMURA	
Inventor's signature	Date
	10 August 2000
Residence	
715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032, Japan	
Citizenship	
Japan	
Post Office Address (if different)	

Full name of sole or first inventor Shingo SEKINE	
Inventor's signature 	Date 10 August 2000
Residence Remonzu 101, 2-8-15, Atago, Ageo-shi, Saitama 362-0034, Japan	
Citizenship Japan	
Post Office Address (if different)	

09/554933

526 Rec'd PCT/PTO 22 MAY 2000

IN THE UNITED STATES PATENT DESIGNATED OFFICE (DO/US)
(National Phase of International App.: PCT/JP98/05238)

In re the
application of: **Seishi KATO et al.**

International Application No.: **PCT/JP98/05238**

International Filing Date: **20 November 1998**

U.S. Serial No.: **Not yet assigned**

Filed: **Herewith**

For: **HUMAN PROTEINS HAVING
TRANSMEMBRANE DOMAINS AND DNAs
ENCODING THESE PROTEINS**

Attorney Docket No.: **GIN-6713CPUS**

Assistant Commissioner for Patents
BOX PCT
Washington, D.C. 20231

TRANSMITTAL LETTER FOR DISKETTE OF SEQUENCE LISTING

Dear Sir:

Enclosed is a diskette which contains a computer readable form of the Sequence Listing for the above-referenced patent application. The Sequence Listing complies with the requirements of 37 C.F.R. § 1.821. The material on this diskette is identical in substance to the Sequence Listing appearing on pages 1 to 26 which are submitted herewith. The computer readable form of the Sequence Listing contained on the enclosed diskette is understood to comply with the requirements of § 1.824(d).

Respectfully submitted,

Peter C. Lauro
Registration No. 32,360
Agent for Applicants

28 State Street
Boston, MA 02109
Tel. (617) 227-7400
Dated: 22 May 2000

SEQUENCE LISTING

<110> Sagami Chemical Research Center

5 <120> Human Proteins Having Transmembrane Domains and DNAs Encoding these Proteins

<130> 660857

<140>

<141>

10

<150> Japan 9-323129

<151> 1997-11-25

<160> 12

15

<170> Windows 95 (Word 98)

<210> 1

<211> 269

20 <212> PRT

<213> Homo sapiens

<400> 1

Met Gly Gln Asn Asp Leu Met Gly Thr Ala Glu Asp Phe Ala Asp Gln

25 1 5 10 15

Phe Leu Arg Val Thr Lys Gln Tyr Leu Pro His Val Ala Arg Leu Cys

20 25 30

Leu Ile Ser Thr Phe Leu Glu Asp Gly Ile Arg Met Trp Phe Gln Trp
 35 40 45
 Ser Glu Gln Arg Asp Tyr Ile Asp Thr Thr Trp Asn Cys Gly Tyr Leu
 50 55 60
 5 Leu Ala Ser Ser Phe Val Phe Leu Asn Leu Leu Gly Gln Leu Thr Gly
 65 70 75 80
 Cys Val Leu Val Leu Ser Arg Asn Phe Val Gln Tyr Ala Cys Phe Gly
 85 90 95
 Leu Phe Gly Ile Ile Ala Leu Gln Thr Ile Ala Tyr Ser Ile Leu Trp
 10 100 105 110
 Asp Leu Lys Phe Leu Met Arg Asn Leu Ala Leu Gly Gly Leu Leu
 115 120 125
 Leu Leu Leu Ala Glu Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly
 130 135 140
 15 Val Pro Thr Met Arg Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly
 145 150 155 160
 Gly Arg Val Leu Leu Val Leu Met Phe Met Thr Leu Leu His Phe Asp
 165 170 175
 Ala Ser Phe Phe Ser Ile Val Gln Asn Ile Val Gly Thr Ala Leu Met
 20 180 185 190
 Ile Leu Val Ala Ile Gly Phe Lys Thr Lys Leu Ala Ala Leu Thr Leu
 195 200 205
 Val Val Trp Leu Phe Ala Ile Asn Val Tyr Phe Asn Ala Phe Trp Thr
 210 215 220
 25 Ile Pro Val Tyr Lys Pro Met His Asp Phe Leu Lys Tyr Asp Phe Phe
 225 230 235 240
 Gln Thr Met Ser Val Ile Gly Gly Leu Leu Leu Val Val Ala Leu Gly

	245	250	255		
	Pro Gly Gly Val Ser Met Asp Glu Lys Lys Lys Glu Trp				
	260	265			
5	<210> 2				
	<211> 311				
	<212> PRT				
	<213> Homo sapiens				
10	<400> 2				
	Met Ser Asn Pro Ser Ala Pro Pro Pro Tyr Glu Asp Arg Asn Pro Leu				
	1	5	10	15	
	Tyr Pro Gly Pro Leu Pro Pro Gly Gly Tyr Gly Gln Pro Ser Val Leu				
	20	25	30		
15	Pro Gly Gly Tyr Pro Ala Tyr Pro Gly Tyr Pro Gln Pro Gly Tyr Gly				
	35	40	45		
	His Pro Ala Gly Tyr Pro Gln Pro Met Pro Pro Thr His Pro Met Pro				
	50	55	60		
	Met Asn Tyr Gly Pro Gly His Gly Tyr Asp Gly Glu Glu Arg Ala Val				
20	65	70	75	80	
	Ser Asp Ser Phe Gly Pro Gly Glu Trp Asp Asp Arg Lys Val Arg His				
	85	90	95		
	Thr Phe Ile Arg Lys Val Tyr Ser Ile Ile Ser Val Gln Leu Leu Ile				
	100	105	110		
25	Thr Val Ala Ile Ile Ala Ile Phe Thr Phe Val Glu Pro Val Ser Ala				
	115	120	125		
	Phe Val Arg Arg Asn Val Ala Val Tyr Tyr Val Ser Tyr Ala Val Phe				

130 135 140
 Val Val Thr Tyr Leu Ile Leu Ala Cys Cys Gln Gly Pro Arg Arg Arg
 145 150 155 160
 Phe Pro Trp Asn Ile Ile Leu Leu Thr Leu Phe Thr Phe Ala Met Gly
 5 165 170 175
 Phe Met Thr Gly Thr Ile Ser Ser Met Tyr Gln Thr Lys Ala Val Ile
 180 185 190
 Ile Ala Met Ile Ile Thr Ala Val Val Ser Ile Ser Val Thr Ile Phe
 195 200 205
 10 Cys Phe Gln Thr Lys Val Asp Phe Thr Ser Cys Thr Gly Leu Phe Cys
 210 215 220
 Val Leu Gly Ile Val Leu Leu Val Thr Gly Ile Val Thr Ser Ile Val
 225 230 235 240
 Leu Tyr Phe Gln Tyr Val Tyr Trp Leu His Met Leu Tyr Ala Ala Leu
 15 245 250 255
 Gly Ala Ile Cys Phe Thr Leu Phe Leu Ala Tyr Asp Thr Gln Leu Val
 260 265 270
 Leu Gly Asn Arg Lys His Thr Ile Ser Pro Glu Asp Tyr Ile Thr Gly
 275 280 285
 20 Ala Leu Gln Ile Tyr Thr Asp Ile Ile Tyr Ile Phe Thr Phe Val Leu
 290 295 300
 Gln Leu Met Gly Asp Arg Asn
 305 310

 25 <210> 3
 <211> 383
 <212> PRT

<213> Homo sapiens

<400> 3

Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Cys

5 1 5 10 15

Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro Thr Trp

20 25 30

Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr Leu Asn Leu

35 40 45

10 Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu Val Ser Ser Ser

50 55 60

Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu Pro Thr Tyr Glu Glu

65 70 75 80

Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu Tyr Ala Asn Gly Ser Arg

15 85 90 95

Thr Glu Thr Gln Val Gly Ile Tyr Ile Leu Ser Ser Gly Asp Gly

100 105 110

Ala Gln His Arg Asp Ser Gly Ser Ser Gly Lys Ser Arg Arg Lys Arg

115 120 125

20 Gln Ile Tyr Gly Tyr Asp Ser Arg Phe Ser Ile Phe Gly Lys Asp Phe

130 135 140

Leu Leu Asn Tyr Pro Phe Ser Thr Ser Val Lys Leu Ser Thr Gly Cys

145 150 155 160

Thr Gly Thr Leu Val Ala Glu Lys His Val Leu Thr Ala Ala His Cys

25 165 170 175

Ile His Asp Gly Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val

180 185 190

Gly Phe Leu Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp
 195 200 205
 Ser Thr Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val
 210 215 220
 5 Lys Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp
 225 230 235 240
 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro His
 245 250 255
 Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Gln Leu
 10 260 265 270
 Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp Arg Pro Gly
 275 280 285
 Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu Thr Tyr Asp Leu
 290 295 300
 15 Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala Ser Gly Ser Gly Val
 305 310 315 320
 Tyr Val Arg Met Trp Lys Arg Gln Gln Gln Lys Trp Glu Arg Lys Ile
 325 330 335
 Ile Gly Ile Phe Ser Gly His Gln Trp Val Asp Met Asn Gly Ser Pro
 20 340 345 350
 Gln Asp Phe Asn Val Ala Val Arg Ile Thr Pro Leu Lys Tyr Ala Gln
 355 360 365
 Ile Cys Tyr Trp Ile Lys Gly Asn Tyr Leu Asp Cys Arg Glu Gly
 370 375 380
 25
 <210> 4
 <211> 807

<212> DNA

<213> Homo sapiens

<400> 4

5 atgggccaga acgacctgat gggcacggcc gaggactcg ccgaccagtt ctcgggtgc 60
 acaaaggcagt acctgccccca cgtggcgccc ctctgtctga tcagcacctt cctggaggac 120
 ggcacatccgta tgggttcca gtggagcgag cagcgcgact acatcgacac cacctggaac 180
 tgccggctacc tgctggcctc gtccttcgtc ttccctcaact tgctgggaca gctgactggc 240
 tgccgtcctgg tggtagcag gaacctcggt cagtcgcct gcttcgggct ctttggaaatc 300

10 atagctctgc agacgattgc ctacagcatt ttatggact tgaagttttt gatgaggaac 360
 ctggccctgg gaggaggcct gttgctgctc ctagcagaat cccgttctga agggaaagagc 420
 atgtttgcgg gcgtccccac catgcgttag agctccccca aacagtacat gcagctcgga 480
 ggcagggtct tgctggttct gatgttcatg accctccctc actttgacgc cagttcttt 540
 tctattgtcc agaacatcggt gggcacagct ctgatgattt tagtggccat tggtttaaa 600

15 accaagctgg ctgcttgac tcttgttgf fggctcttg ccatcaacgt atattcaac 660
 gccttctgga ccattccagt ctacaagccc atgcatgact tcctgaaata cgacttctc 720
 cagaccatgt cggtgattgg gggcttgctc ctgggtgg ccctgggccc tgggggtgc 780
 tccatggatg agaagaagaa ggagtgg 807

20 <210> 5
 <211> 933
 <212> DNA
 <213> Homo sapiens

25 <400> 5
 atgtccaacc ccagcgcccc accaccatat gaagaccgca accccctgtta cccaggccct 60
 ctggcccccctg ggggctatgg gcagccatct gtcctgcccag gagggtatcc tgcctaccct 120

ggctacccgc agcctggcta cggtcaccct gctggctacc cacagccat gccccccacc 180
 cacccgatgc ccatgaacta cggcccaggc catggctatg atggggagga gagagcggtg 240
 agtgatagct tcgggcctgg agagtggat gaccggaaag tgcgacacac tttatccga 300
 aagglttact ccatcatctc cgtgcagctg ctcatcaactg tggccatcat tgctatctc 360
 5 acctttgtgg aacctgttag cgcccttggaggagaaatg tggctgtcta ctacgtgtcc 420
 tatgctgtct tcgttgtcac ctacctgate ctgcctgtct gccagggacc cagacccgt 480
 ttcccatggaa acatcattct gctgaccctt ttacttttgc catgggctt catgacgggc 540
 accatttcca gtatgtacca aaccaaagcc gtcatttcattg caatgatcat cactgcggtg 600
 gtatccattt cagtcaccaat cttctgcttt cagaccaagg tggacttcac ctgcgtgcaca 660
 10 ggcctttct gtgcctggg aattgtgctc ctggtaactg ggattgtcac tagatttg 720
 ctctacttcc aatacgtttta ctggctccac atgctctatg ctgcctggg ggccatttg 780
 ttccccctgt tcctggctta cgacacacag ctggcctgg ggaaccggaa gcacaccatc 840
 agccccgagg actacatcac tggcccccctg cagattaca cagacatcat ctacatctc 900
 acctttgtgc tgtagctgat ggggatcgc aat 933

15 <210> 6
 <211> 1149
 <212> DNA
 <213> Homo sapiens

20 <400> 6
 atggcaggga ttccagggtc cctttccctt ctcttccttc tgctctgtgc tttgggca 60
 gtgagccctt acagtgcctt ctggaaaccc acttggctgtc cataccgcct ccctgtcg 120
 ttggccctgtt ctaccctcaa tttagccaaag ccagacttg gagccgaagc caaattagaa 180
 25 gtatcttctt catgtggacc ccagtgtcat aaggaaactc cactgcccac ttacgaagag 240
 gccaagcaat atctgtctta tgaaaacgctc tatgccaatg gcagccgcac agagacgcag 300
 gtggccatct acatcctcag cagtagtggaa gatggggccca aacaccgaga ctcagggtct 360

tcaggaaagt ctcgaaggaa gcggcagatt tatggctatg acagcaggtt cagcatttt 420
 gggaggact tcctgctcaa ctacccttc tcaacatcg tgaagttatc cacgggctgc 480
 accggcaccc tggtggcaga gaagcatgtc ctcacagctg cccactgcat acacgatgga 540
 aaaacctatg taaaaggaac ccagaagctt cgagtggctt tcctaaagcc caagttaaa 600
 5 gatggtggtc gaggggcca cgaactccact tcagccatgc ccgagcagat gaaattcag 660
 tggatccggg tgaaacgcac ccatgtgccc aagggttggta tcaaggcata tgccaatgac 720
 atcggcatgg attatgatta tgccctcctg gaactcaaaa agccccacaa gagaaaaattt 780
 atgaagattg gggtagcccc tcctgctaag cagctgccag gggcagaat tcacttcct 840
 ggtagatgaca atgaccgacc aggcaatttg gtgtatcgct tctgtgacgt caaagacgag 900
 10 acctatgact tgctctacca gcaatgcgat gcccagccag gggccagcgg gtctgggtc 960
 tatgtgagga tggtaagag acagcagcag aagtgggagc gaaaaatttat tggcatttt 1020
 tcagggcacc agtgggtggta catgaatgg tccccacagg atttcaacgt ggctgtcaga 1080
 atcactcctc tcaaataatgc ccagattgc tattggatta aaggaaacta cctggattgt 1140
 agggagggg 1149

15 <210> 7
 <211> 2938
 <212> DNA
 <213> Homo sapiens

20 <400> 7
 aaaaagggca cttcctgtgg aggccgcagc gggtgccggc gccgacgggc gagagccagc 60
 gagcgagcga gcgagccgag ccgagccctcc cgccgtcgcc atg ggc cag aac gac 115
 Met Gly Gln Asn Asp

25 1 5
 ctg atg ggc acg gcc gag gac ttc gcc gac cag ttc ctc cgt gtc aca 163
 Leu Met Gly Thr Ala Glu Asp Phe Ala Asp Gln Phe Leu Arg Val Thr

	10	15	20	
	aag cag tac ctg ccc cac gtg gcg cgc ctc tgt ctg atc agc acc ttc			211
	Lys Gln Tyr Leu Pro His Val Ala Arg Leu Cys Leu Ile Ser Thr Phe			
	25	30	35	
5	ctg gag gac ggc atc cgt atg tgg ttc cag tgg agc gag cag cgc gac			259
	Leu Glu Asp Gly Ile Arg Met Trp Phe Gln Trp Ser Glu Gln Arg Asp			
	40	45	50	
	tac atc gac acc acc tgg aac tgc ggc tac ctg ctg gcc tcg tcc ttc			307
	Tyr Ile Asp Thr Thr Trp Asn Cys Gly Tyr Leu Leu Ala Ser Ser Phe			
10	55	60	65	
	gtc ttc ctc aac ttg ctg gga cag ctg act ggc tgc gtc ctg gtg ttg			355
	Val Phe Leu Asn Leu Leu Gly Gln Leu Thr Gly Cys Val Leu Val Leu			
	70	75	80	85
	agc agg aac ttc gtg cag tac gcc tgc ttc ggg ctc ttt gga atc ata			403
15	Ser Arg Asn Phe Val Gln Tyr Ala Cys Phe Gly Leu Phe Gly Ile Ile			
	90	95	100	
	gtc ctg cag acg att gcc tac agc att tta tgg gac ttg aag ttt ttg			451
	Ala Leu Gln Thr Ile Ala Tyr Ser Ile Leu Trp Asp Leu Lys Phe Leu			
	105	110	115	
20	atg agg aac ctg gcc ctg gga gga ggc ctg ttg ctg ctc cta gca gaa			499
	Met Arg Asn Leu Ala Leu Gly Gly Leu Leu Leu Leu Ala Glu			
	120	125	130	
	tcc cgt tct gaa ggg aag agc atg ttt gcg ggc gtc ccc acc atg cgt			547
	Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly Val Pro Thr Met Arg			
25	135	140	145	
	gag agc tcc ccc aaa cag tac atg cag ctc gga ggc agg gtc ttg ctg			595
	Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly Gly Arg Val Leu Leu			

150 155 160 165
 gtt ctg atg ttc atg acc ctc ctt cac ttt gac gcc agc ttc ttt tct 643
 Val Leu Met Phe Met Thr Leu Leu His Phe Asp Ala Ser Phe Phe Ser
 170 175 180
 5 att gtc cag aac atc gtg ggc aca gct ctg atg att tta gtg gcc att 691
 Ile Val Gln Asn Ile Val Gly Thr Ala Leu Met Ile Leu Val Ala Ile
 185 190 195
 ggt ttt aaa acc aag ctg gct gct ttg act ctt gtt gtg tgg ctc ttt 739
 Gly Phe Lys Thr Lys Leu Ala Ala Leu Thr Leu Val Val Trp Leu Phe
 10 200 205 210
 gcc atc aac gta tat ttc aac gcc ttc tgg acc att cca gtc tac aag 787
 Ala Ile Asn Val Tyr Phe Asn Ala Phe Trp Thr Ile Pro Val Tyr Lys
 215 220 225
 ccc atg cat gac ttc ctg aaa tac gac ttc ttc cag acc atg tcg gtg 835
 15 Pro Met His Asp Phe Leu Lys Tyr Asp Phe Phe Gln Thr Met Ser Val
 230 235 240 245
 att ggg ggc ttg ctc ctg gtg gtc ctc ctg ggc cct ggg ggt gtc tcc 883
 Ile Gly Gly Leu Leu Leu Val Val Ala Leu Gly Pro Gly Gly Val Ser
 250 255 260
 20 atg gat gag aag aag aag gag tgg taa cagtcacaga tccctacctg 930
 Met Asp Glu Lys Lys Glu Trp
 265
 cctggctaag accegtggcc gtcaaggact ggttcggggt ggattcaaca aaactgccag 990
 ctttatgtta tccttcccc ttccccccc ttggtaaagg cacagatgtt ttgagaacctt 1050
 25 tatttgcaga gacacctgag aatcgatggc tcagtctgct ctggagccac agtctggcgt 1110
 ctgacccttc agtgcaggcc agcctggcag ctggaagcct ccccacgccc gaggcttg 1170
 agtgaacagc ccgcttggct gtggcatctc agtcctattt ttgagtttt ttgtgggggt 1230

acaggagggg gcctcaagc tgtactgtga gcagacgcat tggattatc attcaaagca 1290
gtccctct tatggtaag ttacattt tagcgaaac tactaaatta tttgggtgg 1350
ttcagccaaa cctcaaaaca gttaatctcc ctggttaaa atcacaccag tggtttgat 1410
gttggttctg cccgcattg tattttatag gaatactgaa aacatttagg gacacccaaa 1470
5 gaatgatgca gtattaaagg ggtggtagaa gctgctgtt atgataaaag tcatcggtca 1530
aaaaatcagc ttggatttgtt gccaagtgtt ttatggta acaccctggg agtttttagta 1590
gcttggggca aggtggaggg gcaagaagtc cttggggaaag ctgctggctt ggggtgtc 1650
ggcctccaag ctggcagtgg gaaggcetag tgagaccaca cagggtagc cccagcagca 1710
gcaccctgca agccagccctg gccagctgtc cagaccagct tgcagagccg cagccgtgt 1770
10 gggcaggggg tggcagga gctcccagca ctggagaccc acggactcaa cccagttacc 1830
tcacatgggg cttttctga gcaaggcttc gaaagcgcag gccgcctgg ctgagcagca 1890
ccgccttc ccagctgcac tggccctgtg gacagccccg acacaccact ttccctggc 1950
tgtcgctcac tcagattgtc cgttgctat gccgaatgca gccaatttc cttttacaa 2010
tttgatgc ttaccgatt tgcatttaat cctgtattta aagtttctta acactgcctt 2070
15 atactgtgtt tctcttttg ggggagctta actgctgtt gctccctgtc gtctgcacca 2130
tagtaatgc cacaagggtt gtcgaacacc tctctggccc ctagacctat ctggggacag 2190
gctggctcag cctgtctcca gggctgtgc ggcccagccc egagcctgcc tccctctgg 2250
cctctcatcc attggctctg cagggcaggg gtgaggcagg ttctgctca taagtgttt 2310
tggaagtcac ctacctttt aacacagccg aactagtccc aacgcgttg caaatattcc 2370
20 cctggtagcc tacttcctta ccccgaaata ttggtaagat cgtcaatgg cttcaggaca 2430
tgggttcct tctcctgtga tcattcaagt gtcactgca tgaagactgg ctgtctcag 2490
tgttcaacc tcaccaggc tgcgtttgg tccacaccctc gctccctttt agtggctat 2550
gacagccccc atcaaatgac cttggccaag tcacggttc tctgtggca aggtgggtt 2610
gctgatgggt ggaaagttagg gtggacaaa ggaggccacg tgagcagtca gcaccagttc 2670
25 tgcaccagca ggcgcctccgt cctagtggtt gttcctgtt ctccctggccc tgggtggct 2730
aggccctgtat tcggaaagat gccttgcag ggaggggagg ataagtggga tctaccaatt 2790
gatttggca aaacaatttc taagttttt ttgcattatg tggaaacag atctaaatct 2850

cattttatgc tgtatTTAT atcttagttg tgTTGAAaaa cgtttgatt ttggaaaca 2910
 catcaaaata aataatggcg ttgttgt 2938

<210> 8

5 <211> 269

<212> PRT

<213> Homo sapiens

<400> 8

10 Met Gly Gln Asn Asp
 1 5

Leu Met Gly Thr Ala Glu Asp Phe Ala Asp Gln Phe Leu Arg Val Thr

10 15 20

Lys Gln Tyr Leu Pro His Val Ala Arg Leu Cys Leu Ile Ser Thr Phe

15 25 30 35

Leu Glu Asp Gly Ile Arg Met Trp Phe Gln Trp Ser Glu Gln Arg Asp

40 45 50

Tyr Ile Asp Thr Thr Trp Asn Cys Gly Tyr Leu Leu Ala Ser Ser Phe

55 60 65

20 Val Phe Leu Asn Leu Leu Gly Gln Leu Thr Gly Cys Val Leu Val Leu

70 75 80 85

Ser Arg Asn Phe Val Gln Tyr Ala Cys Phe Gly Leu Phe Gly Ile Ile

90 95 100

Ala Leu Gln Thr Ile Ala Tyr Ser Ile Leu Trp Asp Leu Lys Phe Leu

25 105 110 115

Met Arg Asn Leu Ala Leu Gly Gly Leu Leu Leu Leu Ala Glu

120 125 130

Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly Val Pro Thr Met Arg
 135 140 145
 Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly Gly Arg Val Leu Leu
 150 155 160 165
 5 Val Leu Met Phe Met Thr Leu Leu His Phe Asp Ala Ser Phe Phe Ser
 170 175 180
 Ile Val Gln Asn Ile Val Gly Thr Ala Leu Met Ile Leu Val Ala Ile
 185 190 195
 Gly Phe Lys Thr Lys Leu Ala Ala Leu Thr Leu Val Val Trp Leu Phe
 10 200 205 210
 Ala Ile Asn Val Tyr Phe Asn Ala Phe Trp Thr Ile Pro Val Tyr Lys
 215 220 225
 Pro Met His Asp Phe Leu Lys Tyr Asp Phe Phe Gln Thr Met Ser Val
 230 235 240 245
 15 Ile Gly Gly Leu Leu Leu Val Val Ala Leu Gly Pro Gly Gly Val Ser
 250 255 260
 Met Asp Glu Lys Lys Lys Glu Trp
 265

 20 <210> 9
 <211> 2290
 <212> DNA
 <213> Homo sapiens

 25 <400> 9
 acactccgag gccaggaacg ctccgtctgg aacggcgcag gtcccagcag ctggggttcc 60
 ccctcagccc gtgagcagcc atg tcc aac ccc agc gcc cca cca cca tat gaa 113

Met Ser Asn Pro Ser Ala Pro Pro Pro Tyr Glu

	1	5	10	
				gac cgc aac ccc ctg tac cca ggc cct ctg ccc cct ggg ggc tat ggg 161
				Asp Arg Asn Pro Leu Tyr Pro Gly Pro Leu Pro Pro Gly Gly Tyr Gly
5	15	20	25	
				cag cca tct gtc ctg cca gga ggg tat cct gcc tac cct ggc tac ccg 209
				Gln Pro Ser Val Leu Pro Gly Gly Tyr Pro Ala Tyr Pro Gly Tyr Pro
	30	35	40	
				cag cct ggc tac ggt cac cct gct ggc tac cca cag ccc atg ccc ccc 257
10				Gln Pro Gly Tyr Gly His Pro Ala Gly Tyr Pro Gln Pro Met Pro Pro
	45	50	55	
				acc cac ccg atg ccc atg aac tac ggc cca ggc cat ggc tat gat ggg 305
				Thr His Pro Met Pro Met Asn Tyr Gly Pro Gly His Gly Tyr Asp Gly
	60	65	70	75
15				gag gag aga gcg gtg agt gat agc ttc ggg cct gga gag tgg gat gac 353
				Glu Glu Arg Ala Val Ser Asp Ser Phe Gly Pro Gly Glu Trp Asp Asp
	80	85	90	
				cgg aaa gtg cga cac act ttt atc cga aag gtt tac tcc atc atc tcc 401
				Arg Lys Val Arg His Thr Phe Ile Arg Lys Val Tyr Ser Ile Ile Ser
20	95	100	105	
				gtg cag ctg ctc atc act gtg gcc atc att gct atc ttc acc ttt gtg 449
				Val Gln Leu Leu Ile Thr Val Ala Ile Ile Ala Ile Phe Thr Phe Val
	110	115	120	
				gaa cct gtc agc gcc ttt gtg agg aga aat gtg gct gtc tac tac gtg 497
25				Glu Pro Val Ser Ala Phe Val Arg Arg Asn Val Ala Val Tyr Tyr Val
	125	130	135	
				tcc tat gct gtc ttc gtt gtc acc tac ctg atc ctt gcc tgc tgc cag 545

Ser Tyr Ala Val Phe Val Val Thr Tyr Leu Ile Leu Ala Cys Cys Gln
 140 145 150 155
 gga ccc aga cgc cgt ttc cca tgg aac atc att ctg ctg acc ctt ttt 593
 Gly Pro Arg Arg Arg Phe Pro Trp Asn Ile Ile Leu Leu Thr Leu Phe
 5 160 165 170
 act ttt gcc atg ggc ttc atg acg ggc acc att tcc agt atg tac caa 641
 Thr Phe Ala Met Gly Phe Met Thr Gly Thr Ile Ser Ser Met Tyr Gln
 175 180 185
 acc aaa gcc gtc atc att gca atg atc atc act gcg gtg gta tcc att 689
 10 Thr Lys Ala Val Ile Ile Ala Met Ile Ile Thr Ala Val Val Ser Ile
 190 195 200
 tca gtc acc atc ttc tgc ttt cag acc aag gtg gac ttc acc tcg tgc 737
 Ser Val Thr Ile Phe Cys Phe Gln Thr Lys Val Asp Phe Thr Ser Cys
 205 210 215
 15 aca ggc ctc ttc tgt gtc ctg gga att gtg ctc ctg gtg act ggg att 785
 Thr Gly Leu Phe Cys Val Leu Gly Ile Val Leu Leu Val Thr Gly Ile
 220 225 230 235
 gtc act agc att gtg ctc tac ttc caa tac gtt tac tgg ctc cac atg 833
 Val Thr Ser Ile Val Leu Tyr Phe Gln Tyr Val Tyr Trp Leu His Met
 20 240 245 250
 ctc tat gct gct ctg ggg gcc att tgt ttc acc ctg ttc ctg gct tac 881
 Leu Tyr Ala Ala Leu Gly Ala Ile Cys Phe Thr Leu Phe Leu Ala Tyr
 255 260 265
 25 gac aca cag ctg gtc ctg ggg aac cgg aag cac acc atc agc ccc gag 929
 Asp Thr Gln Leu Val Leu Gly Asn Arg Lys His Thr Ile Ser Pro Glu
 270 275 280
 gac tac atc act ggc gcc ctg cag att tac aca gac atc atc tac atc 977

Asp Tyr Ile Thr Gly Ala Leu Gln Ile Tyr Thr Asp Ile Ile Tyr Ile

285	290	295		
			ttc acc ttt gtg ctg cag ctg atg ggg gat cgc aat taaggag	1020
Phe Thr Phe Val Leu Gln Leu Met Gly Asp Arg Asn				
5	300	305	310	
caagccccca tttcacccg atcctggcct ctcccttcca agctagaggg ctggcccta 1080				
tgactgtggt ctggcctta gcaccttgc ctcccttg agtaacatgc ccagttcct 1140				
ttctgtcctg gagacaggtg gcctctctgg ctatggatgt gtgggtactt ggtggggacg 1200				
gaggagctag ggactaactg ttgctttgg tggccttggc agggactagg ctgaagatgt 1260				
10	gtcttcctccc cgccacactac tgtatgacac cacattttc ctaacagctg gggttgttag 1320			
gaardatgaaa agagcctatt cgatagctag aaggaaatat gaaaggtaga agtgaattca 1380				
aggtcacgag gttccctcc cacctctgtc acaggcttct tgactacgta gttggagcta 1440				
tttcttcccc cagcaaagcc agagagctt gtcccccggcc tcctggacac ataggccatt 1500				
atccctgtatt ccttggctt ggcattttt agctcaggaa ggtagaagag atctgtgcc 1560				
15	atgggtctcc ttgctcaat cccttcttgt ttcatgtaca tatgtattgt ttatctgggt 1620			
tagggatggg ggacagataa tagaacgagc aaagtaacct atacaggcca gcatggaca 1680				
gcatctcccc tggccttgct cctggcttgt gacgctataa gacagagcag gccacatgt 1740				
gccatctgtc cccattttt gaaagctgct gggcctcct tgcaggcttc tggatcttg 1800				
gtcagagtga actcttgctt cctgtattca ggcagctcag agcagaaagt aaggggcaga 1860				
20	gtcatacgtg tggccaggaa gtagccaggg tgaagagaga ctgggtcg 1920			
tgccctgggg tccctcacct ggctagggag ataccgaagc ctactgtggt actgaagact 1980				
tctgggtctt ttccctctgc taacccaggaa agggtctaa gaggaaggtg acttctct 2040				
gtttgtctta agttgcactg ggggattct gacttgaggg ccatcttcc agccagccac 2100				
tgccttcttt gtaatattaa gtgccttgag ctggatggg gaagggggac aagggtcagt 2160				
25	ctgtcgggtg gggcagaaa tcaaattcagc ccaaggatata agttaggatt aattacttaa 2220			
tagagaaatc ctaactatata cacacaaagg gataacaacta taaatgtaat aaaatttatg 2280				
tctagaagtt 2290				

<210> 10

<211> 311

<212> PRT

5 <213> Homo sapiens

<400> 10

Met Ser Asn Pro Ser Ala Pro Pro Pro Tyr Glu

1 5 10

10 Asp Arg Asn Pro Leu Tyr Pro Gly Pro Leu Pro Pro Gly Gly Tyr Gly

15 20 25

Gln Pro Ser Val Leu Pro Gly Gly Tyr Pro Ala Tyr Pro Gly Tyr Pro

30 35 40

Gln Pro Gly Tyr Gly His Pro Ala Gly Tyr Pro Gln Pro Met Pro Pro

15 45 50 55

Thr His Pro Met Pro Met Asn Tyr Gly Pro Gly His Gly Tyr Asp Gly

60 65 70 75

Glu Glu Arg Ala Val Ser Asp Ser Phe Gly Pro Gly Glu Trp Asp Asp

80 85 90

20 Arg Lys Val Arg His Thr Phe Ile Arg Lys Val Tyr Ser Ile Ile Ser

95 100 105

Val Gln Leu Leu Ile Thr Val Ala Ile Ile Ala Ile Phe Thr Phe Val

110 115 120

Glu Pro Val Ser Ala Phe Val Arg Arg Asn Val Ala Val Tyr Tyr Val

25 125 130 135

Ser Tyr Ala Val Phe Val Val Thr Tyr Leu Ile Leu Ala Cys Cys Gln

140 145 150 155

Gly Pro Arg Arg Arg Phe Pro Trp Asn Ile Ile Leu Leu Thr Leu Phe
 160 165 170
 Thr Phe Ala Met Gly Phe Met Thr Gly Thr Ile Ser Ser Met Tyr Gln
 175 180 185
 5 Thr Lys Ala Val Ile Ile Ala Met Ile Ile Thr Ala Val Val Ser Ile
 190 195 200
 Ser Val Thr Ile Phe Cys Phe Gln Thr Lys Val Asp Phe Thr Ser Cys
 205 210 215
 Thr Gly Leu Phe Cys Val Leu Gly Ile Val Leu Leu Val Thr Gly Ile
 10 220 225 230 235
 Val Thr Ser Ile Val Leu Tyr Phe Gln Tyr Val Tyr Trp Leu His Met
 240 245 250
 Leu Tyr Ala Ala Leu Gly Ala Ile Cys Phe Thr Leu Phe Leu Ala Tyr
 255 260 265
 15 Asp Thr Gln Leu Val Leu Gly Asn Arg Lys His Thr Ile Ser Pro Glu
 270 275 280
 Asp Tyr Ile Thr Gly Ala Leu Gln Ile Tyr Thr Asp Ile Ile Tyr Ile
 285 290 295
 Phe Thr Phe Val Leu Gln Leu Met Gly Asp Arg Asn
 20 300 305 310

 <210> 11
 <211> 3705
 <212> DNA
 25 <213> Homo sapiens

 <400> 11

actctcgct gtgcggcggg gcaggcatgg gagccgcgcg ctctctcccg gcccacac 60
 ctgtctgagc ggccgcagcga gccgggccc gggggctg ctggcgcgg aacagtgtc 120
 ggc atg gca ggg att cca ggg ctc ctc ttc ctt ctc ttc ttg ctc 168
 Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Leu Leu
 5 1 5 10 15
 tgt gct gtt ggg caa gtg agc cct tac agt gcc ccc tgg aaa ccc act 216
 Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro Thr
 20 25 30
 tgg cct gca tac cgc ctc cct gtc gtc ttg ccc cag tct acc ctc aat 264
 10 Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr Leu Asn
 35 40 45
 tta gcc aag cca gac ttt gga gcc gaa gcc aaa tta gaa gta tct tct 312
 Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu Val Ser Ser
 50 55 60
 15 tca tgt gga ccc cag tgt cat aag gga act cca ctg ccc act tac gaa 360
 Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu Pro Thr Tyr Glu
 65 70 75
 gag gcc aag cca tat ctg tct tat gaa acg ctc tat gcc aat ggc agc 408
 Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu Tyr Ala Asn Gly Ser
 20 80 85 90 95
 cgc aca gag acg cag gtg ggc atc tac atc ctc agc agt agt gga gat 456
 Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile Leu Ser Ser Ser Gly Asp
 100 105 110
 ggg gcc caa cac cga gac tca ggg tct tca gga aag tct cga agg aag 504
 25 Gly Ala Gln His Arg Asp Ser Gly Ser Ser Gly Lys Ser Arg Arg Lys
 115 120 125
 cgccaggatttatggctatgacagcaggttcagcattttggaaaggac 552

Arg Gln Ile Tyr Gly Tyr Asp Ser Arg Phe Ser Ile Phe Gly Lys Asp
 130 135 140

ttc ctg ctc aac tac cct ttc tca aca tca gtg aag tta tcc acg ggc 600
 Phe Leu Leu Asn Tyr Pro Phe Ser Thr Ser Val Lys Leu Ser Thr Gly
 5 145 150 155

tgc acc ggc acc ctg gtg gca gag aag cat gtc ctc aca gct gcc cac 648
 Cys Thr Gly Thr Leu Val Ala Glu Lys His Val Leu Thr Ala Ala His
 160 165 170 175

tgc ata cac gat gga aaa acc tat gtg aaa gga acc cag aag ctt cga 696
 10 Cys Ile His Asp Gly Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg
 180 185 190

gtg ggc ttc cta aag ccc aag ttt aaa gat ggt ggt cga ggg gcc aac 744
 Val Gly Phe Leu Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn
 195 200 205

15 gac tcc act tca gcc atg ccc gag cag atg aaa ttt cag tgg atc cgg 792
 Asp Ser Thr Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg
 210 215 220

gtg aaa cgc acc cat gtg ccc aag ggt tgg atc aag ggc aat gcc aat 840
 Val Lys Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn
 20 225 230 235

gac atc ggc atg gat tat gat tat gcc ctc ctg gaa ctc aaa aag ccc 888
 Asp Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro
 240 245 250 255

cac aag aga aaa ttt atg aag att ggg gtg agc cct cct gct aag cag 936
 25 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Gln
 260 265 270

ctg cca ggg ggc aga att cac ttc tct ggt tat gac aat gac cga cca 984

Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp Arg Pro
 275 280 285
 ggc aat ttg gtg tat cgc ttc tgt gac gtc aaa gac gag acc tat gac 1032
 Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu Thr Tyr Asp
 5 290 295 300
 ttg ctc tac cag caa tgc gat gcc cag cca ggg gcc agc ggg tct ggg 1080
 Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala Ser Gly Ser Gly
 305 310 315
 gtc tat gtg agg atg tgg aag aga cag cag aag tgg gag cga aaa 1128
 10 Val Tyr Val Arg Met Trp Lys Arg Gln Gln Lys Trp Glu Arg Lys
 320 325 330 335
 att att ggc att ttt tca ggg cac cag tgg gtg gac atg aat ggt tcc 1176
 Ile Ile Gly Ile Phe Ser Gly His Gln Trp Val Asp Met Asn Gly Ser
 340 345 350
 15 cca cag gat ttc aac gtg gct gtc aga atc act cct ctc aaa tat gcc 1224
 Pro Gln Asp Phe Asn Val Ala Val Arg Ile Thr Pro Leu Lys Tyr Ala
 355 360 365
 cag att tgc tat tgg att aaa gga aac tac ctg gat tgt agg gag ggg 1272
 Gln Ile Cys Tyr Trp Ile Lys Gly Asn Tyr Leu Asp Cys Arg Glu Gly
 20 370 375 380
 tgacacag tggccctcc tggcagcaat taagggtctt catgttctta ttttaggaga 1330
 ggccaaattt tttttgtca ttggcggtca cacgtgtgtg tgtgtgtgtg tgtgttaagggt 1390
 gtctataat cttttaccta ttcttacaa ttgcaagatg actggcttta ctatggaaa 1450
 actggtttgt gtatcatatc atatatcatt taagcagttt gaaggcatac tttgcatac 1510
 25 aaataaaaaa aataactgatt tggggcaatg aggaatattt gacaattaag ttaatcttca 1570
 cgaaaaatggca aactttgatt ttatattcat ctgaacttgtt ttcaaagattt tatattaaat 1630
 atttggcata caagagatata gaattttat atgtgtcat gtgtgtttc ttctgagatt 1690

catcttggtg gtgggtttt ttgtttttt aattcagtgc ctgatctta atgctccat 1750
 aaggcagtgt tcccatttag gaacttgc acgatttgtt aggcagaata ttgtggattt 1810
 ggaggcattt gcatggtagt ctgttgaacag taaaatgtat tggttactat actgatacac 1870
 atattaaact ataccttata gtaaaccagt atcccaagct gcttttagtt caaaaatag 1930
 5 tttctttcc aaagggtgtt gctctacttt gtaggaagtc ttgcataatg gccctccaa 1990
 cttaaagtc ataccagagt gccaagagt gtttatccca acccttccat ttaacaggat 2050
 ttcactcaca ttcttggAAC tagcttattt tcagaagaca ataatcaggg cttaatttga 2110
 acaggctgta ttccctccca gcaaacagtt gtggccacac taaaacaat catagcattt 2170
 tacccctggta ttatagcaca tctcatgttt tatcatttgg atggagtaat taaaatgaa 2230
 10 ttaaattcca gagaacaatg gaagcattgc ctggcagatg tcacaacaga ataaccactt 2290
 gtttggagcc tggcacagtc ctccagcctg atcaaaaatt attctgcata gttttcagtg 2350
 tgcttctgg gagctatgtt ctcttcaat ttggaaacctt ttctctctca ttatagtga 2410
 aaatacttgg aagttacttt aagaaaacca gtgtggcctt ttccctcta gctttaaaag 2470
 ggccgccttt gctggaatgc tctaggat agataaacaat ttaggtataa tagcaaaaat 2530
 15 gaaaatttggaa agaatgcaaa atggatcaga atcatgcctt ccaataaagg ccttacaca 2590
 tgtttatca atatgattat caaatcacag catatacaga aaagacttgg acttatttga 2650
 tgttttattt ttatggctct cggcctaagc acttcttctt aatgtatcg gagaaaaaat 2710
 caaatggact acaagcacgt gtttgctgtt ctgcacccc aggttaaacct gcattgtac 2770
 aatttgtaag gatattcaga tggagcactg tcacttagac attctctgg ggattttctg 2830
 20 cttgtcttc ttgagctttt tggaggata attctgataa ggcactcaag aaacgtacaa 2890
 ccacagtgc ttcttcaaat catatgagaa atactatgca tagcaaggag atgcagagcc 2950
 gccaggaaaa ttctgagttc cagcacaatt ttcttggaa tctaacagga atctagcctg 3010
 aggaagaagg gaggtctcca ttctatgtc tggattttgg gggttttgtt tgttttgct 3070
 ttagcttggt gaaaaaaaaatg tcactgaaca ccaagaccag aatggattttt ttaaaaaaaa 3130
 25 tagatgttcc ttgttgaag caccctgatt ctttgattttt gatTTTGC aaagtttagac 3190
 aatggcacaa agtcaaaaatg aatcatgtt tagttcaca agtagatgtt atttactaaa 3250
 gaatgataca cccatatgtt atatacagct taactcacag aactgtaaaa gaaaattata 3310

aaataattca acatgtccat ctttttagtg ataataaaag aaagcatggt attaaactat 3370
 catagaagta gacagaaaaa gaaaaaagga ctcatggcat tattaatata attagtgcct 3430
 tacatgtgtt agttatacat attagaagca tattgccta gtaaggctag tagaaccaca 3490
 ttcccaaag tgcgtccctt aaacactcat gccttatgtat ttctaccaa aagtaaaaag 3550
 5 ggttgttata agtcagagga agatgcctct ccattttccc tctctttatc agaggttcac 3610
 atgcctgtct gcacattaaa agctctggga agacctgttg taaagggaca agttgaggtt 3670
 gtaaaatctg catttaataa aacatcttg atcac 3705

<210> 12

10 <211> 383

<212> PRT

<213> Homo sapiens

<400> 12

15 Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Leu Leu

1 5 10 15

Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro Thr

20 25 30

Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr Leu Asn

20 35 40 45

Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu Val Ser Ser

50 55 60

Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu Pro Thr Tyr Glu

65 70 75

25 Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu Tyr Ala Asn Gly Ser

80 85 90 95

Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile Leu Ser Ser Gly Asp

	100	105	110	
	Gly Ala Gln His Arg Asp Ser Gly Ser Ser Gly Lys Ser Arg Arg Lys			
	115	120	125	
	Arg Gln Ile Tyr Gly Tyr Asp Ser Arg Phe Ser Ile Phe Gly Lys Asp			
5	130	135	140	
	Phe Leu Leu Asn Tyr Pro Phe Ser Thr Ser Val Lys Leu Ser Thr Gly			
	145	150	155	
	Cys Thr Gly Thr Leu Val Ala Glu Lys His Val Leu Thr Ala Ala His			
	160	165	170	175
10	Cys Ile His Asp Gly Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg			
	180	185	190	
	Val Gly Phe Leu Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn			
	195	200	205	
	Asp Ser Thr Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg			
15	210	215	220	
	Val Lys Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn			
	225	230	235	
	Asp Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Pro			
	240	245	250	255
20	His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Gln			
	260	265	270	
	Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp Arg Pro			
	275	280	285	
	Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu Thr Tyr Asp			
25	290	295	300	
	Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala Ser Gly Ser Gly			
	305	310	315	

Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln Lys Trp Glu Arg Lys

320 325 330 335

Ile Ile Gly Ile Phe Ser Gly His Gln Trp Val Asp Met Asn Gly Ser

340 345 350

5 Pro Gln Asp Phe Asn Val Ala Val Arg Ile Thr Pro Leu Lys Tyr Ala

355 360 365

Gln Ile Cys Tyr Trp Ile Lys Gly Asn Tyr Leu Asp Cys Arg Glu Gly

370 375 380

10