1. (开放题)请自行查阅数字 EDA、模拟 EDA 的若干个知名商业化工具,简述其名称以及主要用途。

数字 EDA 主要涉及数字电路的设计、验证和优化。数字电路处理的是<u>离散</u>的、数字信号(通常是 0 和 1),并通过逻辑门、触发器等基本元件来实现各种功能。

【数字 EDA 工具】

Synopsys

- o Synopsys Design Compiler: 数字逻辑综合工具,将 RTL 代码转换为门级网表,并进行逻辑优化、面积优化、功耗优化
- Synopsys Prime Time: 静态时序分析(STA)工具,通过时序验证、违例检测、报告生成以及与其他工具集成,帮助设计人员确保芯片设计的时许性能和可靠性。
- o Synopsys Formality: 形式验证工具 , 通过数学方法对设计进行形式验证,以确保设计在所有可能的输入条件下都能正确工作,通常用于验证综合后的设计与原始设计的一致性
- o Synopsys IC Compiler II: 布局布线工具, 将综合后的网表布局在芯片上,并进行 精确的布线,以确保设计满足时序和物理约束
- o 等等
- Cadence 提供了一系列工具和解决方案,涵盖从数字 IC 设计到印刷电路板 (PCB)设计的多个方面
 - o Genus Synthesis Solution: 逻辑综合工具

• Siemens (Mentor Graphics)

o Calibre: 行业领先的后端物理验证工具,提供设计规则检查(DRC)、版图与原理 图比对(LVS)以及物理验证等功能,确保设计的电气性能和制造可行性。

• AMD XIlinx

- o Vivado Design Suite: FPGA 和 SoC (系统级芯片)设计工具,用于 HDL 设计的 合成和分析的软件套件,可以完成从设计输入、综合、仿真到下载的完整 FPGA 流程。
- o Vitis HLS: 高层次综合工具, 将高层次编程语言(如 C、C++ 和 OpenCL)代码转换为硬件描述语言(HDL)代码,从而生成 FPGA 设计所需的硬件电路。
- Intel Altera 专注于 FPGA 和 CPLD 的设计制造
 - o Quartus Prime Design Software: Altera 的 FPGA 设计套件,支持从设计输入到实现的全过程。

模拟 EDA 专注于模拟电路的设计、验证和优化。模拟电路处理的是<u>连续</u>的模拟信号,如电流和电压,它们可以在无限的值范围内变化。

【模拟 EDA 工具】

Cadence

- o Virtuoso: Cadence 用于模拟和混合信号设计的核心平台。提供从电路仿真、设计输入、到物理布局等一整套模拟电路设计的解决方案。
- o Spectre: 用于模拟电路仿真的 SPICE 级工具,提供准确的电路仿真,包括直流分析、 瞬态分析和噪声分析。

Synopsys

- o HSPICE: 经典模拟电路仿真工具,广泛用于高精度电路仿真。
- o Custom Compiler: 专注于模拟设计的一个集成设计环境,帮助设计人员实现高效的模拟和混合信号设计。
- o FineSim: 高性能的混合信号仿真工具,专门用于处理大型的模拟和数字混合设计。

• Siemens (Mentor Graphics)

o AMS Designer: 用于模拟/数字混合信号电路仿真的工具。

- o **Pyxis**:模拟设计平台,集成了设计、仿真、版图工具,专门用于模拟和混合信号 IC 设计。
- o Eldo: 高精度的 SPICE 仿真器,广泛应用于模拟电路仿真中。

2. (开放题)为什么数字 EDA 比模拟自动化程度高呢?

数字 EDA 用于设计数字电路,处理的是离散的 0-1 两种状态,如微处理器、DSP、存储器和逻辑电路等。

模拟 EDA 用于设计模拟电路,处理的是连续的信号,如放大器、滤波器等,在设计过程中需要考虑更多物理特性

特性/方面	数字 EDA	模拟 EDA
信号类型	离散的数字信号(0和1)	连续的模拟信号(电压、电流)
设计结构	逻辑门、触发器、组合逻辑等标准化单元	电阻、电容、电感、放大器等 非线性元件
描述语言	高级描述语言(HDL,如 Verilog、VHDL)	通常使用 SPICE 模型进行电路 描述
综合与优化	高度自动化,使用算法进行逻辑 综合与优化	优化过程较为复杂,通常需要 手动调节和优化
时序分析	自动执行时序分析和优化	时序分析通常较为复杂,难以 完全自动化
验证方法	形式验证、功能仿真、自动生成测试用例	仿真与测量,通常需要手动配 置测试条件
仿真工具	逻辑仿真工具,如 ModelSim、 Vivado	电路仿真工具,如 HSPICE、 Cadence Virtuoso

工具成熟度	工具和技术发展较成熟,自动化程度高	工具成熟度较高,但自动化程度相对较低
设计复杂性	设计规则和算法化处理较为规范	模拟电路的复杂性和非线性效应使得自动化处理更具挑战性

数字 EDA 自动化程度更高,主要有以下原因

1. 复杂程度不同

- a. 数字电路处理 0-1 两位离散信号,相对简单且规则明确。通过布尔逻辑、时序分析等方法,工具能够较好的解决设置和优化问题。
- b. 相比之下,模拟电路需要处理复杂的模拟信号和非线性现象,难以全面建模和自动化

2. 设计流程不同

- a. 数字电路设计流程相对固定(RTL 设计-综合-静态时序分析-布局布线-验证),EDA 工具能够高校执行自动化任务。
- b. 而模拟 EDA 由于电路的物理复杂性和多变性,自动化程度较低,更依赖工程师的经验 和手动调整

3. 标准化程度不同

- a. 数字电路有较为成熟的设计标准和标准单元库,使 EDA 工具可以自动完成大部分设计 和优化任务。
- b. 模拟电路设计则更依赖工程师的经验, 难以标准化。