Boolean Algebra and Logic Expressions

Buboy Bernal

1 Boolean Algebra and Logic Expressions

Boolean algebra provides a mathematical framework for analyzing and simplifying digital logic circuits. It operates on binary variables (0 and 1) with three basic operations: AND (\cdot) , OR (+), and NOT (\overline{A}) .

1.1 Basic Boolean Laws

1.1.1 Commutative Laws

- AND Form: $A \cdot B = B \cdot A$
- **OR Form**: A + B = B + A

Example:

If A = 1 and B = 0:

$$1 \cdot 0 = 0 \cdot 1 = 0$$

$$1+0=0+1=1$$

1.1.2 Associative Laws

- AND Form: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- **OR Form**: A + (B + C) = (A + B) + C

Example:

For
$$A = 1, B = 0, C = 1$$
:

$$1 \cdot (0 \cdot 1) = (1 \cdot 0) \cdot 1 = 0$$

$$1 + (0 + 1) = (1 + 0) + 1 = 1$$

1.1.3 Distributive Laws

- AND over OR: $A \cdot (B+C) = A \cdot B + A \cdot C$
- OR over AND: $A + B \cdot C = (A + B) \cdot (A + C)$

Example:

For
$$A = 1, B = 0, C = 1$$
:

$$1 \cdot (0+1) = 1 \cdot 0 + 1 \cdot 1 = 1$$

$$1 + 0 \cdot 1 = (1+0) \cdot (1+1) = 1$$

1.2 De Morgan's Theorems

These are fundamental for simplifying complex Boolean expressions:

• First Theorem: $\overline{A \cdot B} = \overline{A} + \overline{B}$

• Second Theorem: $\overline{A+B} = \overline{A} \cdot \overline{B}$

Example:

For
$$A = 1, B = 0$$
:
 $\overline{1 \cdot 0} = \overline{1} + \overline{0} = 0 + 1 = 1$
 $\overline{1 + 0} = \overline{1} \cdot \overline{0} = 0 \cdot 1 = 0$

A	В	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$	Verification
0	0	1	1	✓
0	1	1	1	✓
1	0	1	1	✓
1	1	0	0	✓

3.3 Simplification of Logic Circuits

Boolean algebra helps reduce complex circuits to simpler forms with fewer gates.

Example 1: Simplification Using Identities

Simplify $Y = A \cdot B + A \cdot \overline{B}$:

$$\begin{split} Y &= A \cdot B + A \cdot \overline{B} \\ &= A \cdot (B + \overline{B}) \quad \text{(Distributive Law)} \\ &= A \cdot 1 \quad \text{(Complement Law)} \\ &= A \end{split}$$

Example 2: Applying De Morgan's Theorem

Simplify $\overline{A \cdot B} + \overline{A \cdot C}$:

$$\overline{A \cdot B} + \overline{A \cdot C} = \overline{A} + \overline{B} + \overline{A} + \overline{C}$$
$$= \overline{A} + \overline{B} + \overline{C}$$

Figure 1: Original vs. Simplified Circuit

Practice Exercises

A. True or False

F 1. () The expression $A + \overline{A}B$ simplifies to A + B.

F 2. () De Morgan's first theorem states $\overline{A+B} = \overline{A} \cdot \overline{B}$.

T 3. () The distributive law allows A + BC = (A + B)(A + C).

B. Multiple Choice

1. Which law is used in A(B+C) = AB + AC?

a) Commutative b) Associative c) Distributive d) Identity

2. The simplified form of $\overline{\overline{A} + \overline{B}}$ is:

a) A + B b) $A \cdot B$ c) $\overline{A} \cdot \overline{B}$ d) $\overline{A + B}$

3. If $X = \overline{A}B + A\overline{B}$, what is \overline{X} ?

a) $AB + \overline{A}\overline{B}$ b) $\overline{AB} + A\overline{B}$ c) A + B d) $A \cdot B$

C. Higher-Level Thinking

1. Design Problem: Simplify $Y=\overline{A}B+\overline{A}\,\overline{B}+AB$ and draw the optimized circuit.

2. Proof: Using Boolean algebra, prove that $(A+B)(\overline{A}+C)(B+C)=(A+B)(\overline{A}+C)$.

 $3.\,$ Application: Explain how Boolean simplification reduces power consumption in digital circuits.

Group terms:

$$Y = \overline{A}B + \overline{AB} + AB$$

Factor the first two terms:

$$=\overline{A}(B+\overline{B})+AB$$

Note that $B+\overline{B}=1$:

$$=\overline{A}(1)+AB=\overline{A}+AB$$

Now apply the Absorption Law:

$$\overline{A} + AB = \overline{A} + B$$

Final simplified expression:

$$Y = \overline{A} + B$$

Optimized Circuit:

• 1 **NOT** gate for A $\rightarrow \overline{A}$

• 1 **OR** gate to combine $\overline{A}+B$

1

Prove:

$$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$$

Step-by-step proof:

Let's simplify the left-hand side:

Distribute $(A+B)(\overline{A}+C)$ first:

$$=(A+B)(\overline{A}+C)$$

Keep that expression.

Now multiply it with (B+C):

$$=[(A+B)(\overline{A}+C)](B+C)$$

We can see that (B+C) is **redundant** in this case because:

- The result of $(A+B)(\overline{A}+C)$ already covers all 1-cases of (B+C)
- . So multiplying by (B + C) doesn't change the outcome
- Therefore,

$$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$$

3

How Boolean simplification reduces power consumption:

Boolean simplification:

- · Reduces the number of logic gates needed in a digital circuit
- Fewer gates means:
 - Less switching activity → lower dynamic power
 - Smaller chip area → less leakage current
 - Simpler wiring → faster response time
- This results in:
 - Lower power consumption
 - Improved reliability
 - Longer battery life in portable devices

Conclusion: Simplifying Boolean expressions optimizes both performance and power efficiency in digital electronics.