README

CalorimeterShower(unsigned int in_enlargement, unsigned int in_m_modules_x,

unsigned int in_modules_y, unsigned int in_dimensions, DetectorType in_det_type): initiallizes the class CalorimeterShower using a magnification of in_enlargement, length of the high resolution image in x direction in_n_modules_x and in y direction in_n_modules_y, the dimension of the image in_dimension and the detector type. The detector type can be one of the following:

- OLGA
- MAINZ
- GAMS_ECAL1
- SHASHLIK
- GAMSRH
- GAMS_ECAL2

set_x_range(double,double): sets the range in x direction in mm

 $\mathtt{set_y_range}(\mathtt{double},\mathtt{double}):$ sets the range in y direction in mm

set_n_modules_x(unsigned int): defines the calorimeter cells in x direction that are used with the shower center in the middle

set_n_modules_y(unsigned int) :defines the calorimeter cells in y direction that are used with the shower center in the middle

set_n_events(unsigned int) : sets the number of events for a toy MC generation

generate_shower(unsigned int n_events, unsigned int dim):generates a toy MC shower with a set number of events n_events and a dimension dim, which can be 1 or 2 (in theory any natural number)

generate_shower(unsigned int) : generates a 1D toy MC shower with a
given number of events

generate_2D_shower(unsigned int) : generates a 2D toy MC shower with a
given number of events

write_file() : writes all plots

histo_to_txt(TH2D*, string): writes the histogram as a txt file for Manim

set_fit_attempts(unsigned int) : sets the fit attempts for the debiasing the
Lasso solution

lednev_fit(string plot_name=''best fit;1''): performs the phenomenological fit on the debiased AMP solution named plot_name in the file created by multiresolution(...)

read_plot(string toolboxFileName, string toolboxDirectory, string toolboxHisto): first string defines Toolbox' output file (has to be a .root file) used here for the high resolution approximation named toolboxHisto in the root directory

toolboxDirectory. In case no directory is present, you can use

read_plot(string toolboxFileName, string toolboxHisto) instead

multiresolution(uint n_cells_x, uint n_cells_y): performs the AMP algorithm on a cut out, which is defined from -n_cells_x to +n_cells_x in x-direction and from -n_cells_y to +n_cells_y in y-direction with (0,0) being the maximum, of the high resolution approximation

multiresolution(uint): same as other method, but just in x-dimension calibrate_penalty(): performs a minimization for λ , one part of the penalty factor

set_direct_fit() : the Lednev fit will now not fit to the high resolution image, but wil be transformed and fitted to the high resolution approximation
reduce_fit_range_x(uint n) : removes n cells in the high resolution image or
high resolution approximation from both ends of the x axis for the Lednev fit
reduce_fit_range_y(uint n) :removes n cells in the high resolution image or
high resolution approximation from both ends of the y axis for the Lednev fit
shift_approximation_in_x(uint n) : by default the cut out is centered around
the maximum shower value, but in case this maximum is not the geometrical
center, you can move center by n cells in x direction

shift_approximation_in_y(uint n): by default the cut out is centered around the maximum shower value, but in case this maximum is not the geometrical center, you can move center by n cells in y direction

set_number_of_parameter_pairs(uint): defines the number of parameter pairs (a_i, b_i) for the Lednev fit

add_initial_limits_for_a(double, double): sets the range to draw the initial a from. First call of this method defines a_1 , second a_2 and so on

add_initial_limits_for_b(double, double): sets the range to draw the initial b from. First call of this method defines b_1 , second b_2 and so on

write_stats_into_file(string out_file_name): prints informations (enlargement, iterations, lowest χ^2 , MSE between showers and NCDFs, duration) about the AMP into a txt file

set_min_lednev_fits(uint) : defines a minimum number of successful fits
that must be reached before termination

filter_indices_radially(uint in=3): includes only cells within a Chebyshev distance of in, then excludes the cells in the next larger Chebyshev distance in+1, includes the next cells with in+2, excludes in+3 and in+4, includes in+5 and so on

set_amp_file(string in) : sets file name of the root file containing the AMP
results, read-only

set_lednev_file(string in) : sets output file with file name in for the phenomenological fit

set_debias_tolerance(double) : defines the tolerance for the least squares
fit debiasing the AMP result

set_debias_tolerance_increase(double) : if the debiasing fails often enough
with the given tolerance, the latter will be increased by a factor defined here
set_lednev_tolerance(double) : defines the tolerance used for the phenomenological fit

set_lednev_tolerance_increase(double): if the phenomenological fit fails often enough with the given tolerance, the latter will be increased by a factor defined here

set_max_ncdf_deviation(double): defines the maximum absolute difference

between maxima or minima respectively of the high resolution data's NCDF and the Lednev fit result

```
Minimal working example:
unsigned int mag=5;
unsigned int n_modules=5;
unsigned int dim=2;
CalorimeterShower shower(mag, n_modules, n_modules, dim, SHASHLIK);
shower.set_number_of_parameter_pairs(3);
shower.add_initial_limits_for_a(0,0.2);
shower.add_initial_limits_for_a(0.7,0.9);
shower.add_initial_limits_for_b(4,6);
shower.add_initial_limits_for_b(2,2.4);
shower.add_initial_limits_for_b(10,200);
shower.shift_approximation_in_x(0);
shower.shift_approximation_in_y(1);
shower.read_plot("my_shower_cell2368_40GeV_x5.root", "highResApprox");
shower.multiresolution(2,2);
shower.set_lednev_file("lednev_fit_x5_3par_25x25.root");
shower.lednev_fit("best fit;1");
```