

Cálculo 2

Lista de Fixação - Semana 1 - Módulo 2

1) Calcule os limites das sequências.
(a)
$$a_n = \frac{n^2 - 2n + 1}{n - 1}$$
 (b) $a_n = \sqrt{\frac{2n}{n + 1}}$ (c) $a_n = \frac{\ln(n)}{n^{\frac{1}{n}}}$ (d) $a_n = \frac{n}{2^n}$

(b)
$$a_n = \sqrt{\frac{2n}{n+1}}$$

(c)
$$a_n = \frac{\ln(n)}{n^{\frac{1}{n}}}$$

(d)
$$a_n = \frac{n}{2^n}$$

(e)
$$a_n = \frac{n}{2^n}$$

(f)
$$a_n = \frac{\operatorname{sen}(\mathbf{r})}{n}$$

(e)
$$a_n = \frac{n!}{2^n}$$
 (f) $a_n = \frac{\text{sen(n)}}{n}$ (g) $a_n = \left(1 + \frac{7}{n}\right)^n$ (h) $a_n = \sqrt[n]{4^n n}$

(h)
$$a_n = \sqrt[n]{4^n n}$$

- 2) Prove que:
- (a) $\lim_{n\to\infty} x^{\frac{1}{n}} = 1 \ (x>0)$
- **(b)** $\lim_{n\to\infty} \sqrt[n]{n} = 1$

(b)
$$\lim_{n\to\infty} \left(\frac{3}{n}\right)^{\frac{1}{n}} = 1$$

3) Encontre os dez primeiros termos da sequência.

(a)
$$a_1 = 1$$
, $a_{n+1} = a_n + \frac{1}{2^n}$

(b)
$$a_1 = 1, a_{n+1} = \frac{a_n}{n+1}$$

(c)
$$a_1 = 2$$
, $a_{n+1} = \frac{(-1)^{n+1}a_n}{2}$

GABARITO

1)

- (a) $\lim a_n = \infty$ (b) $\lim a_n = \sqrt{2}$ (c) $\lim a_n = \infty$ (d) $\lim a_n = 0$

- (e) $\lim a_n = \infty$ (f) $\lim a_n = 0$ (g) $\lim a_n = e^7$ (h) $\lim a_n = 4$

2)

- (a) Use a continuidade da exponencial e a regra de L'Hospital.
- (b) Use a continuidade da exponencial.
- (c) Use os itens anteriores.

(a)
$$1, \frac{3}{2}, \frac{7}{2^2}, \frac{3.5}{2^3}, \frac{31}{2^4}, \frac{3^2.7}{2^5}, \frac{127}{2^6}, \frac{3.5.17}{2^7}, \frac{7.73}{2^8}, \frac{11.31}{2^9}$$
.

$$\textbf{(b)}\ \ 1, \frac{1}{2}, \frac{1}{2.3}, \frac{1}{2^3.3}, \frac{1}{2^3.3.5}, \frac{1}{2^4.3^2.5}, \frac{1}{2^4.3^2.5.7}, \frac{1}{2^7.3^2.5.7}, \frac{1}{2^7.3^4.5.7}, \frac{1}{2^8.3^4.5^2.7}$$

(c)
$$2, 1, -\frac{1}{2}, -\frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, -\frac{1}{2^5}, -\frac{1}{2^6}, \frac{1}{2^7}, \frac{1}{2^8}$$

Cálculo 2

Lista de Fixação - Semana 2

Temas abordados: Séries geométricas, Séries Telescópicas, Séries de Potências

1) (Termos de uma Série) Expanda as séries abaixo até o sétimo termo.

$$(a)\sum_{n=0}^{\infty}\frac{e^n}{10}$$

$$(b)\sum_{n=1}^{\infty}\frac{1}{n^2}$$

$$(c)\sum_{n=0}^{\infty}n^2$$

$$(d)\sum_{n=1}^{\infty} \frac{1}{n} \cos(n\pi)$$

$$(a) \sum_{n=0}^{\infty} \frac{e^n}{10} \qquad (b) \sum_{n=1}^{\infty} \frac{1}{n^2} \qquad (c) \sum_{n=0}^{\infty} n^2$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{n} \cos(n\pi) \qquad (e) \sum_{n=0}^{\infty} (-1)^n \frac{1}{n!} e^n \qquad (f) \sum_{n=1}^{\infty} \ln(n) e^n$$

$$(f)\sum_{n=1}^{\infty}\ln(n)e^{r}$$

2) (Séries Geométricas) Calcule a soma da série:

$$(a)\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)$$

$$(a)\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n \qquad \qquad (b)\sum_{n=0}^{\infty} 7\left(\frac{1}{5}\right)^n$$

$$(c)\sum_{n=0}^{\infty} \left(\frac{1}{3} + \frac{2}{7}\right)$$

$$(d) \sum_{n=0}^{\infty} \left(\frac{1}{13}\right)^{n+1} \qquad (e) \sum_{n=0}^{\infty} \left(\frac{3}{\pi}\right)^{n} \qquad (f) \sum_{n=0}^{\infty} (\cos(1))^{n}$$

$$(e)$$
 $\sum_{0}^{\infty} \left(\frac{3}{\pi}\right)^{3}$

$$f) \sum_{n=0}^{\infty} (\cos(1))^n$$

3) (Séries Telescópicas) Decida se a série converge ou diverge e calcule sua soma.

(a)
$$e \sum_{n=0}^{\infty} (e^{-n} - e^{-(n+1)})$$

$$(b)\sum_{n=1}^{\infty} \frac{13}{n(n+1)}$$

(c)
$$\sum_{n=0}^{\infty} \sin(n)(1-\cos(1)) - \cos(n)\sin(1)$$

4) (Domínio da Função) Determine o dom(f) para as seguintes séries de potência:

(a)
$$f(x) = \sum_{n=0}^{\infty} (0,1)^n x^n + \sum_{n=0}^{\infty} (0,1)^{n+1} x^n$$

(b) $f(x) = \sum_{n=0}^{\infty} a_n x^n$, tal que os termos da série são dados pela equação de recorrência $a_{n+2} = \frac{2(n-4)}{(n+2)(n+1)} a_n \text{ com as condições iniciais}$

$$a_0 = 1$$
 $a_1 = 0$

4) Essa questão n cai no teste 2 -----> CAI NA PROVA 2

1) (a)
$$\frac{1}{10} + \frac{e}{10} + \frac{e^2}{10} + \frac{e^3}{10} + \frac{e^4}{10} + \frac{e^5}{10} + \frac{e^6}{10} + \sum_{n=7}^{\infty} \frac{e^n}{10}$$

(b)
$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49} + \sum_{n=8}^{\infty} \frac{1}{n^2}$$

(c)
$$1+4+9+16+25+36+\sum_{n=0}^{\infty} n^2$$

(d)
$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \sum_{n=8}^{\infty} \frac{1}{n} \cos(n\pi)$$

(e)
$$1 - e + \frac{e^2}{2!} - \frac{e^3}{3!} + \frac{e^4}{4!} - \frac{e^5}{5!} + \frac{e^6}{6!} + \sum_{n=7}^{\infty} (-1)^n \frac{1}{n!} e^n$$

(f)
$$\ln(2)e^2 + \ln(3)e^3 + \ln(4)e^4 + \ln(5)e^5 + \ln(6)e^6 + \ln(7)e^7 + \sum_{8}^{\infty} \ln(n)e^n$$

2) (a)
$$\frac{3}{2}$$
; (b) $\frac{35}{4}$; (c) $\frac{21}{8}$; (d) $\frac{13}{12}$; (e) $\frac{\pi-3}{3}$; (f) $\frac{1}{1-\cos(1)}$;

3) (a) e; (b) 13; (c) Diverge, pois o limite do n-ésimo +1 termo tendendo ao infinito não existe. (Dica: Use o sin da soma);

4) (a)
$$dom(f) = (-10, 10)$$

(b) Como f(x) é um polinômio, $dom(f) = \mathbb{R} = (-\infty, \infty)$;