Logic and Applications: Task 10

Mario Tsatsev s1028415 Group 8

April 21, 2020

Exercise 1

(i) Theorem: $\forall x: D, \forall y: D, Rxy \vdash \forall z: D, Rzz$

Abbreviations (if any used):

Let $\Gamma = \dots$

Let $\Sigma = \dots$

Derivation tree:

$$\frac{\forall x: D, \forall y: D, \ \mathbf{R} \times \mathbf{y} \ , x: D \vdash \forall x: D, \forall y: D \ , \mathbf{R} \times \mathbf{y}}{\forall x: D, \forall y: D, \ \mathbf{R} \times \mathbf{y} \ , x: D \vdash \forall y: D \ , \mathbf{R} \times \mathbf{y}} \underbrace{\forall Ex}_{\forall Ex} \\ \frac{\forall x: D, \forall y: D, \ \mathbf{R} \times \mathbf{y} \ , x: D \vdash \mathbf{R} \times \mathbf{x}}{\forall x: D, \forall y: D, \mathbf{R} \times \mathbf{y} \vdash \forall z: D, \mathbf{R} \times \mathbf{z}} \underbrace{\forall Ey}_{\forall Ex}$$

(ii) Theorem: $\forall x: D, P \times A \rightarrow Q \times A, \exists y: D, P \times A \rightarrow A \times A$

Abbreviations: Let $\Gamma = \forall x : D \ P \ x \rightarrow Q \ x \ Let \Sigma = x$

Derivation tree:

$$\frac{1}{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash \forall x : D, P \ x \to Q \ x} }{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash Px} \xrightarrow{F, \exists y : D \ P \ y, Px, \Sigma \vdash Px \to Q \ x} } \forall E$$

$$\frac{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash Px \to Q \ x}{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash Px \to Q x} \to E$$

$$\frac{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash Qx}{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash \exists y : D, Q \ y} \exists Ix$$

$$\frac{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash \exists y : D, Q \ y}{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash \exists y : D, Q \ y} \exists E$$

$$\frac{\Gamma, \exists y : D \ P \ y, Px, \Sigma \vdash \exists y : D, P \ y}{\Gamma, \exists y : D, P \ y \vdash \exists x : D, P \ x} \exists E$$

(iii) Theorem: $\exists x: D$ P x \vee Q x \vdash $\exists x: D$, P x \vee $\exists x: D$, Q x

Abbreviations: Let $\Gamma = \exists x : D \neq X \vee P \neq X$

Derivation tree:

$$\frac{-hyp}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ P\ x\vdash \exists x:D,\ P\ x} = \frac{-hyp}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ P\ x\vdash \exists x:D,\ P\ x} = \frac{-hyp}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ P\ x\vdash \exists x:D,\ P\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x,\ Q\ x\vdash \exists x:D,\ Q\ x} = \frac{\exists Ex}{\Gamma,x,\ P\ x\ \lor\ Q\ x} = \frac{\exists$$

 $\Gamma, \vdash \exists x : D, \ \mathbf{Q} \ \mathbf{x} \ \lor \exists x : D, \ \mathbf{P} \ \mathbf{x}$

(iv) Theorem: $\exists x : D, R \times X \wedge P \times \vdash \neg(\forall x : D, P \times \rightarrow \neg(\exists y : D R \times Y))$

Abbreviations:

Derivation tree:

(v) Theorem:

Abbreviations:

Derivation tree:

(vi) Theorem: $\forall x: D, P X \lor R x x, \forall x: D, P x \rightarrow (\exists y: D, R x y \land R y x) \vdash \forall x: D, \exists y: D R x y$

Abbreviations: Let $\Gamma = \forall x: D, P X \lor R x x$ and Let $\Delta = \forall x: D, P x \rightarrow (\exists y: D, R x y \land R y x)$ Let $\Phi = R x y \land R y x$

Derivation tree:

 $\frac{\Gamma, \Delta, x : D, \vdash \exists y : D, \mathbf{R} \times \mathbf{y}}{} = \nabla, \Delta \vdash \forall x : D, \exists y : D, \mathbf{R} \times \mathbf{y}$

In some places i had x:D or y:D but i had to remove it to fit it on the page, also again sorry for the size :/

Exercise 2

 $I \ did \ \textbf{Theorem aMarriedPersonLooksAtAnUnmarriedPerson}.$

Well not necessarily start over but i was not sure if i could use LEM so i tried without it and then failed so i did it with LEM at the end

Exercise 3

I did manage to prove Theorem the Response Lectures Of Logic And Applications PayOff. directly, no start overs

Exercise 4

- a) This theorem basically holds because of the strange combination of quantifiers and operators. To be more precise, \dots
 - Note that it is crucial that the set of students is not empty, because it is not empty then there is no student for who anything could hold
- b) I did not manage to prove Theorem ${\tt drinkers_paradox}.$ I REALLY TRIED

Exercise 5

- a) I did manage to prove the theorem from Task10_pred001.v. directly
- b) I did not manage to prove the theorem from ${\tt Task10_pred009.v.}$ started over
- c) I did manage to prove the theorem from Task10_pred020.v. don't remember honestly:/
- d) I did not manage to prove the theorem from Task10_pred031.v. directly
- e) I did manage to prove the theorem from Task10_pred042.v. took some time but it worked and i did not have to start over