GRAFOS

Prof. Cristhiane Xavier

Baseado em: Ziviani, Nivio. Projeto de Algoritmos – Cap.7 Algoritmos em Grafos.

Motivação

- Muitas aplicações em computação necessitam considerar um conjunto de conexões entre pares de objetos:
 - Existe um caminho para ir de um objeto a outro seguindo as conexões?
 - Qual é a menor distância entre um objeto e outro objeto?
 - Quantos outros objetos podem ser alcançados a partir de um determinado objeto?
- Existe um tipo abstrato chamado **grafo** que é usado para modelar tais situações.

Aplicações

- Alguns exemplos de problemas práticos que podem ser resolvidos através de uma modelagem em grafos:
 - Ajudar máquinas de busca a localizar informação relevante na Web.
 - Descobrir os melhores casamentos entre posições disponíveis em empresas e pessoas que aplicaram para as posições de interesse.
 - Descobrir qual é o roteiro mais curto para visitar as principais cidades de uma região turística.

Conceito

- Coleção de vértices e arestas;
 - Vértice é um objeto simples que pode ter nomes e outros atributos;
 - Aresta é uma conexão entre dois vértices.

- Notação: G = (V, A)
 - Vé um conjunto de vértices
 - A conjunto de arestas

Exemplo

• Os conjuntos abaixo definem um grafo *G*:

$$V(G) = \{1, 2, 3, 4, 5, 6, 7\}$$

$$A(G) = \{1, 2\}, \{1, 5\}, \{2, 5\}, \{3, 4\}, \{5, 7\}$$

Terminologia

- Dois vértices u e v são adjacentes (vizinhos) se {u,v} ε
 E(G), ou seja, se há pelo menos uma aresta ligando u a v em G.
- Duas arestas são adjacentes se possuem um vértice em comum.
- Um grafo que possui um único vértice é chamado de trivial, os demais grafos são não-triviais.
- Um grafo é *simples* se não possui laços nem aresta paralela, ou seja, ligando os mesmos pares de vértices.

Grafo completo

 Cada par de vértices distintos é ligado por uma aresta, ou seja, possui arestas ligando todos os nós entre si.

Grafo direcionado

• O conjunto de arestas consiste em pares de vértices ordenados, onde a aresta (u,v) é diferente da aresta (v,u).

Grafo direcionado

- Uma aresta (u, v) sai do vértice u e entra no vértice
 v. O vértice v é adjacente ao vértice u.
- Podem existir arestas de um vértice para ele mesmo, chamadas de *self-loops*.

Grafo não direcionado

- As arestas (u, v) e (v, u) são consideradas como uma única aresta. A relação de adjacência é simétrica.
- Self-loops não são permitidos.

Grau de um vértice

- O grau de um vértice u d(u) de um grafo não direcionado é o número de arestas que incidem em u.
- Um vértice de grau zero é dito isolado ou não conectado.
- O grau de um vértice em um grafo direcionado é o número de arestas que chegam nele mais o número de arestas que saem dele.

Grau de um vértice

• Ex.: O vértice 2 tem *in-degree* 2, *out-degree* 2 e grau 4.

 A soma dos graus de todos os vértices de um grafo G é igual a 2 vezes o número do arestas, ou seja,

$$\Sigma d(u) = 2 |E|$$

 $u \in V$

Multigrafo

• Pode-se ter várias arestas incidentes no mesmo par de vértices.

Grafo ponderado ou valorado

• Possui valores associados às suas arestas que representam, por exemplo, custo, peso, distância, comprimento, etc..

Caminho em Grafos

- Um caminho de comprimento k de um vértice v_1 a um vértice v_n em um grafo é uma sequência de vértices: $(v_1, v_2, v_3, ..., v_{n-1}, v_n)$.
- O comprimento do caminho é o número de arestas dele.
- Se existir um caminho de v_0 a v_n , é dito que v_n é alcançável por v_0 .

Caminho em grafos

- Um caminho é **simples** se todos os vértices do caminho são distintos.
- Ex.: O caminho (0, 1, 2, 3) é simples e tem comprimento 3. O caminho (1, 3, 0, 3) não é simples.

Ciclos

- Em um grafo direcionado:
 - Um caminho $(v_0, v_1, ..., v_k)$ forma um ciclo se $v_0 = v_k$ e o caminho contém pelo menos uma aresta.
 - O ciclo é simples se os vértices v₁, v₂, . . . , v_k são distintos.
 - O self-loop é um ciclo de tamanho 1.

Ciclos

• Ex.: O caminho (0, 1, 2, 3, 0) forma um ciclo. O caminho(0, 1, 3, 0) forma o mesmo ciclo que os caminhos (1, 3, 0, 1) e (3, 0, 1, 3).

Ciclos

- Em um grafo não direcionado:
 - Um caminho $(v_0, v_1, ..., v_k)$ forma um ciclo se $v_0 = v_k$ e o caminho contém pelo menos três arestas.
 - O ciclo é simples se os vértices v_1, v_2, \ldots, v_k são distintos.
 - Ex.: O caminho (0, 1, 2, 0) é um ciclo.

Componentes Conectados

- Um grafo não direcionado é conectado se cada par de vértices está conectado por um caminho.
- Os componentes conectados são as porções conectadas de um grafo.
- Um grafo não direcionado é conectado se ele tem exatamente um componente conectado.

Componentes Conectados

• Ex.: Os componentes são: {0, 1, 2}, {4, 5} e {3}.

Componentes fortemente conectados

- Um grafo direcionado G = (V,A) é fortemente conectado se cada dois vértices quaisquer são alcançáveis a partir um do outro.
- Os **componentes fortemente conectados** de um grafo direcionado são conjuntos de vértices sob a relação "são mutuamente alcançáveis".

Componentes fortemente conectados

• Ex.: {0, 1, 2, 3}, {4} e {5} são os componentes fortemente conectados, {4, 5} não o é pois o vértice 5 não é alcançável a partir do vértice 4.

Representação Computacional

- Em geral, um grafo pode ser representado de três formas:
 - Matriz de Adjacências
 - Matriz de Incidências
 - Lista de Adjacências

Matriz de Adjacências

• É uma matriz A |V| x |V|, onde

Aij =
$$\begin{cases} 1, \text{ se existe a aresta } v_i v_j \\ 0, \text{ caso contrário} \end{cases}$$

- Para grafos ponderados A[i, j] contém o rótulo ou peso associado à aresta.
- Se não existir uma aresta de i para j então é necessário utilizar um valor que não possa ser usado como rótulo ou peso.

Matriz de Adjacências

	1	2	3	4	5	6	7
1	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0
3	0	0	0	1	0	0	0
4	0	0	1	0	0	0	0
5	1	1	0	0	0	0	1
6	0	0	0	0	0	0	0
7	0	0	0	0	5 1 0 0 0 1	0	0

Matriz de Adjacências - Análise

- Deve ser utilizada para grafos densos, onde |A| é próximo de |V |².
- O tempo necessário para acessar um elemento é independente de |V | ou |A|.
- É muito útil para algoritmos em que necessitamos saber com rapidez se existe uma aresta ligando dois vértices.
- A maior desvantagem é que a matriz necessita de muito espaço.

Matriz de Adjacências

Outros exemplos:

	0	1	2	3	4	5	
0		1		1			
1			1	1			
2			1	1			
3	1						
5							
5							
(a)							

	0	1	2	3	4	5
0		1	1			
1	1		1			
2	1	1				
3						
4						
5						

(b)

Exercício 1

• Criar a matriz de adjacências para o grafo abaixo:

Exercício 1

• Criar a matriz de adjacências para o grafo abaixo:

	1	2	3	4	5
1	O	3	8	-4 10 0 0	O
2	O	O	O	10	1
3	O	4	O	0	0
4	O	Ο	O	0	6
5	2	O	-5	O	0

Lista de Adjacências

- Usadas para representar grafos esparsos, ou seja, onde o número de arestas é bem menor que |V|².
- Para cada vértice, existe uma lista encadeada contendo os vértices adjacentes, ou seja, que são ligados diretamente por uma aresta.

Lista de Adjacências

Lista de Adjacências

Outro exemplo:

Exercício 2

• Criar a lista de adjacências para o grafo abaixo:

Exercício 2

• Criar a lista de adjacências para o grafo abaixo:

Lista de Adjacências - análise

- Os vértices de uma lista de adjacência são em geral armazenados em uma ordem arbitrária.
- É compacta e usualmente utilizada na maioria das aplicações.
- A principal desvantagem é que ela pode gastar tempo maior do que a matriz para determinar se existe uma aresta entre o vértice i e o vértice j, pois podem existir n vértices na lista de adjacentes do vértice i.

Matriz de Incidências

• É uma matriz A|V| x |A|, onde as colunas representam os vértices e as linhas representam as arestas, e

Aij =
$$\begin{cases} 1, \text{ se a aresta } e_j \text{ incide no vértice } v_i \\ 0, \text{ caso contrário} \end{cases}$$

Matriz de Incidências

	1	2	3	4	5
1	1	1	0	0	0
1 2 3	0	1	1	0	0
3	0	0	0	1	0
4	0	0	0	1	0
5	1	0	1	0	1
6	0	0	0	0	0
7	0	0	0	0	1

Link para os vídeos das aulas

- AEDII 16/06/2020
- https://drive.google.com/file/d/1BqOi2jAaRdETfV
 ZallhoRgq4gRJKrWm8/view?usp=sharing

- LABII 16/06/2020
- https://drive.google.com/file/d/1gYNhyWRbFdUD
 uG79lnmovUoW6cDTPKhV/view?usp=sharing