305 Lecture 17 - Building Complicated Truth Tables

Brian Weatherson

July 13, 2020

The Example

We are going to work out the truth table for this sentence:

$$(A \lor \neg B) \to (B \to (A \land C))$$

 $\boldsymbol{\cdot}\$ How many rows should there be in the truth table?

How Many Rows

- How many rows should there be in the truth table?
- \cdot There are three (3) atomic sentences, so there should be $2^3=8$ rows.

Laying Out the Rows

- · The convention for these is a bit odd.
- · Here's one way to think about it.
- For the left-most column you fill the first half of the rows with $\mathbb T$ and then the second half of the rows with $\mathbb F$.

First Column

Α	В	C	(A	\vee	\neg	В)—	→ (B	$\rightarrow ($	Α /	\ C))
T											
T											
T											
T											
F											
F											
F											
F											

Second Column

- Then the second column has one quarter \mathbb{T} , followed by one quarter \mathbb{F} , followed by one quarter \mathbb{F} .
- $\boldsymbol{\cdot}\,$ In this case that means we alternate every two rows.

Second Column

Α	В	С	$(A \lor \neg B) \to (B \to (A \land C))$
T	\mathbb{T}		
T	\mathbb{T}		
T	F		
T	F		
F	\mathbb{T}		
F	\mathbb{T}		
F	F		
F	F		

Third Column

- · From now on you do half as many rows between changes.
- In this table we did 4 rows with one value then 4 of another for column 1, 2 with one value then 2 with another for column 2, and now alternate every row for column 3.
- It's helpful to know the full algorithm in case you ever have to do this with 5 or more variables.
- · But I won't do that in this course.

Third Column

```
A B C | (A \lor \neg B) \rightarrow (B \rightarrow (A \land C))
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF
```

Parsing the Sentence

Now we need to go back to our sentence.

$$(A \lor \neg B) \to (B \to (A \land C))$$

What is its main connective?

Parsing the Sentence

Now we need to go back to our sentence.

$$(A \lor \neg B) \to (B \to (A \land C))$$

What is its main connective?

• It's the first \rightarrow . The sentence is of the form $D \rightarrow E$, where D is $(A \lor \neg B)$ and E is $(B \rightarrow (A \land C))$

Building Up

So eventually, we will have the truth value for the whole sentence under the first \rightarrow .

- · But that's some distance away.
- While that's where we want to get to, we have to build from the inside out.
- The first thing to do is to repeat the values for the atomic sentences.

Atomic Replicator

A B C	(A V	¬ B)−	→ (B -	→ (A /	(C))
TTT	T	T	T	T	T
TTF	T	T	\mathbb{T}	\mathbb{T}	F
TFT	T	F	F	\mathbb{T}	T
TFF	T	F	F	\mathbb{T}	F
FTT	F	T	\mathbb{T}	F	T
FTF	F	T	\mathbb{T}	F	F
FFT	F	F	F	F	T
FFF	F	F	F	F	F

What can we fill in immediately?

Next Steps

- We have enough on the table to include the values for $\neg B$.
- And we have enough on the table to include the values for the A \wedge C on the far right.
- · We'll do these in order.

Negation

Everywhere B is \mathbb{T} , $\neg B$ is \mathbb{F} , so let's include all of those.

Α	В	C	(A	\vee \neg	В	$) \rightarrow (B$	\rightarrow (A	∧ C))
T	T	T	T	F	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	F	\mathbb{T}	\mathbb{T}	T	F
\mathbb{T}	F	\mathbb{T}	T		F	F	T	T
\mathbb{T}	F	F	T		F	F	T	F
F	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	\mathbb{T}	F	T
F	\mathbb{T}	F	F	F	\mathbb{T}	T	F	F
F	F	\mathbb{T}	F		F	F	F	T
F	F	F	F		F	F	F	F

Negation (cont)

Everywhere B is \mathbb{F} , $\neg B$ is \mathbb{T} , so let's include all of those.

Α	В	C	(A	\vee \neg	В	$) \rightarrow (B$	\rightarrow (A	∧ c))
T	T	T	T	F	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	F	\mathbb{T}	T	T	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	F	F	T	T
\mathbb{T}	F	F	T	\mathbb{T}	F	F	T	F
F	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	T	F	T
F	\mathbb{T}	F	F	F	\mathbb{T}	T	F	F
F	F	\mathbb{T}	F	\mathbb{T}	F	F	F	T
F	F	F	F	T	F	F	F	F

Conjunction

If A, C are both \mathbb{T} , so is $A \wedge C$. So let's include those.

Α	В	C	(A	\vee \neg	В	$) \rightarrow (B$	\rightarrow (A	\land	C))
T	T	T	T	F	T	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	F	\mathbb{T}	T	T		F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}
\mathbb{T}	F	\mathbb{F}	T	T	\mathbb{F}	F	\mathbb{T}		F
F	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	T	F		\mathbb{T}
F	\mathbb{T}	\mathbb{F}	F	F	\mathbb{T}	T	F		F
F	F	\mathbb{T}	F	\mathbb{T}	F	F	F		\mathbb{T}
F	F	F	F	T	F	F	F		F

Conjunction (cont)

And $A \wedge C$ is false everywhere else.

Α	В	C	(A	\vee \neg	В	$) \rightarrow (B$	\rightarrow (A	\land	C))
T	T	T	T	F	T	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	F	\mathbb{T}	T	T	F	F
${\mathbb T}$	F	\mathbb{T}	T	T	F	F	\mathbb{T}	${\mathbb T}$	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	F	F	T	F	F
F	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	T	F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	\mathbb{T}	T	F	F	F
F	F	\mathbb{T}	F	T	F	F	F	F	\mathbb{T}
F	F	F	F	T	F	F	F	F	\mathbb{F}

Complex Disjunction

- The next step is combining the values of A and $\neg B$ to get the value of $A \lor \neg B$.
- The main thing to remember here is what your inputs are.
- In this case it's not too confusing; it's the values immediately to either side of the V.
- · But that won't be the general case.

Disjunction

When A is \mathbb{T} , so is $A \vee \neg B$.

Α	В	С	(A	\vee	\neg	В	$) \rightarrow (B$	\rightarrow (A	\wedge	C))
T	T	T	T	T	F	T	T	T	T	T
\mathbb{T}	T	F	T	\mathbb{T}	F	T	T	T	F	\mathbb{F}
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F	F	T	F	F
F	\mathbb{T}	\mathbb{T}	F		F	\mathbb{T}	T	F	F	\mathbb{T}
F	\mathbb{T}	F	F		F	\mathbb{T}	T	F	F	F
F	F	\mathbb{T}	F		\mathbb{T}	F	F	F	F	\mathbb{T}
F	F	F	F		\mathbb{T}	F	F	F	F	F

Disjunction (cont)

And when $\neg B$ is \mathbb{T} , so is $A \vee \neg B$.

Α	В	C	(A	\vee	\neg	В	$) \rightarrow (B$	\rightarrow (A	\land	C))
T	\mathbb{T}	T	T	\mathbb{T}	F	T	T	T	\mathbb{T}	T
\mathbb{T}	\mathbb{T}	F	T	\mathbb{T}	F	\mathbb{T}	T	T	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	F	F
F	${\mathbb T}$	\mathbb{T}	F		F	\mathbb{T}	T	F	F	\mathbb{T}
F	\mathbb{T}	F	F		F	\mathbb{T}	T	F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F	F	F	F	\mathbb{T}
F	F	F	F	\mathbb{T}	\mathbb{T}	F	F	F	F	F

Disjunction (part III)

Otherwise, $A \lor \neg B$ is \mathbb{F} .

Α	В	С	(A	\vee	\neg	В	$) \rightarrow$ (B	\rightarrow (A	\wedge	C))
T	T	T	T	T	F	T	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	T	F	F	T	F	\mathbb{F}
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}	T	F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}	T	F	F	\mathbb{F}
F	F	\mathbb{T}	F	T	\mathbb{T}	F	F	F	F	\mathbb{T}
F	F	F	F	T	\mathbb{T}	F	F	F	F	\mathbb{F}

Conditional

- Now we have to do $B \rightarrow (A \land C)$.
- · We have to remember the table for \rightarrow TFTT.
- And we have to remember that what's on the right-hand side of this conditional is a complex sentence: A ∧ C.

Conditional Terminology

- It's helpful to recall our distinctive terminology for conditionals
- We'll often call the left-hand side of a conditional the antecedent.
 ('Ante' for before, if that helps.)

Conditional Terminology

- It's helpful to recall our distinctive terminology for conditionals
- We'll often call the left-hand side of a conditional the antecedent.
 ('Ante' for before, if that helps.)
- And we'll call the right-hand side the consequent (i.e., what comes after).
- We won't have fancy distinct terminology for the left-hand and right-hand sides of other sentences, because they are symmetric.

B is \mathbb{T} , $A \wedge C$ is \mathbb{T} , so this is $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

Α	В	C	(A	\vee	\neg	В	$) \rightarrow (B$	\rightarrow (Α	\land	C))
T	T	T	T	T	F	T	T	T	T	T	T
\mathbb{T}	T	F	T	\mathbb{T}	F	T	T		T	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F	F		\mathbb{T}	\mathbb{T}	\mathbb{T}
${\mathbb T}$	F	F	T	\mathbb{T}	\mathbb{T}	F	F		T	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}	T		F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}	T		F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F	F		F	F	\mathbb{T}
F	F	F	F	T	\mathbb{T}	F	F		F	F	F

B is \mathbb{T} , $A \wedge C$ is \mathbb{F} , so this is $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

Α	В	C	(A	\vee	\neg	В	$) \rightarrow ($	В	\rightarrow (Α	\land	C))
T	T	T	T	T	F	T		T	T	\mathbb{T}	T	T
\mathbb{T}	T	F	T	T	F	\mathbb{T}		\mathbb{T}	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F		F		\mathbb{T}	\mathbb{T}	\mathbb{T}
${\mathbb T}$	F	F	T	\mathbb{T}	\mathbb{T}	F		F		${\mathbb T}$	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}		\mathbb{T}		F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}		\mathbb{T}		F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F		F		F	F	\mathbb{T}
F	F	F	F	T	\mathbb{T}	F		F		F	F	\mathbb{F}

B is \mathbb{F} , A \wedge C is \mathbb{T} , so this is $\mathbb{F} \to \mathbb{T}$, i.e., \mathbb{T} .

Α	В	C	(A	\vee	\neg	B)	\rightarrow (B	\rightarrow	(A	\land	C))
T	\mathbb{T}	T	T	\mathbb{T}	F	T	T	T	T	\mathbb{T}	T
\mathbb{T}	\mathbb{T}	F	T	\mathbb{T}	F	\mathbb{T}	T	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	T	${\mathbb T}$	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F	F		\mathbb{T}	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	T	T		F	F	\mathbb{T}
F	${\mathbb T}$	F	F	F	F	T	T		F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F	F		F	F	\mathbb{T}
F	F	F	F	\mathbb{T}	\mathbb{T}	F	F		F	F	F

B is \mathbb{F} , A \wedge C is \mathbb{F} , so this is $\mathbb{F} \to \mathbb{F}$, i.e., \mathbb{T} .

Α	В	C	(A	\vee	\neg	В	$) \rightarrow ($	В	\rightarrow (Α	\wedge	C))
T	T	T	T	T	F	\mathbb{T}		T	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	\mathbb{T}	F	\mathbb{T}		\mathbb{T}	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F		F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F		F	\mathbb{T}	T	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}		\mathbb{T}		F	F	\mathbb{T}
F	T	F	F	F	F	\mathbb{T}		\mathbb{T}		F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F		F		F	F	\mathbb{T}
F	F	F	F	T	T	F		F		F	F	F

B is \mathbb{T} , $A \wedge C$ is \mathbb{F} , so this is $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

Α	В	C	(Α	\vee	\neg	В)	\rightarrow (В	\rightarrow (Α	\land	C))
T	T	T		T	T	F	\mathbb{T}		\mathbb{T}	T	T	T	T
\mathbb{T}	T	F		T	T	F	\mathbb{T}		\mathbb{T}	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}		T	\mathbb{T}	\mathbb{T}	\mathbb{F}		\mathbb{F}	\mathbb{T}	\mathbb{T}	\mathbb{T}	\mathbb{T}
${\mathbb T}$	F	F		T	T	T	\mathbb{F}		\mathbb{F}	\mathbb{T}	\mathbb{T}	F	F
F	\mathbb{T}	\mathbb{T}		F	F	F	\mathbb{T}		\mathbb{T}	F	F	F	\mathbb{T}
F	\mathbb{T}	F		F	F	F	\mathbb{T}		\mathbb{T}		F	F	F
F	F	\mathbb{T}		F	T	T	\mathbb{F}		\mathbb{F}		F	F	\mathbb{T}
F	F	F		F	T	T	F		F		F	F	F

B is \mathbb{T} , $A \wedge C$ is \mathbb{F} , so this is $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

Α	В	C	(A	\vee	\neg	В)	\rightarrow (В	\rightarrow (Α	\land	C))
T	T	T	T	\mathbb{T}	F	T		\mathbb{T}	T	\mathbb{T}	T	T
\mathbb{T}	T	F	T	T	F	\mathbb{T}		\mathbb{T}	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F		F	\mathbb{T}	\mathbb{T}	\mathbb{T}	\mathbb{T}
${\mathbb T}$	F	F	T	\mathbb{T}	\mathbb{T}	F		\mathbb{F}	T	\mathbb{T}	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}		\mathbb{T}	F	F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}		\mathbb{T}	F	F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F		F		F	F	\mathbb{T}
F	F	F	F	\mathbb{T}	\mathbb{T}	F		F		F	F	F

Rows 7 and 8

B is \mathbb{F} , $A \wedge C$ is \mathbb{F} , so this is $\mathbb{F} \to \mathbb{F}$, i.e., \mathbb{F} .

Α	В	C	(A	\vee	\neg	В)	\rightarrow (В	\rightarrow (A	\land	C))
T	T	T	T	T	F	\mathbb{T}		T	T	\mathbb{T}	T	T
\mathbb{T}	T	F	T	\mathbb{T}	F	\mathbb{T}		\mathbb{T}	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F		F	T	\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F		F	T	\mathbb{T}	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}		\mathbb{T}	F	F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}		\mathbb{T}	F	F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F		F	\mathbb{T}	F	F	\mathbb{T}
F	F	F	F	T	\mathbb{T}	F		F	\mathbb{T}	F	F	\mathbb{F}

Almost Done

- · Now we just need to put the two parts together.
- We have a conditional whose left-hand side, the antecedent, is $A \lor \neg B$.
- And the right-hand side, the consequent, is $B \to (A \land C)$.
- In each row we've computed the truth values for the antecedent and consequent.
- · Now it's a matter of just looking up how they combine.
- · Remember that the truth table for \rightarrow is TFTT.
- To help, I've started by putting in blue the columns for the antecedent and consequent.

Getting There

Bolding the two relevant columns.

A B C	$(A \lor \neg B) \rightarrow (B \rightarrow (A \land C))$
TTT	
TTF	TTET TETE
TFT	
TFF	
FTT	
FTF	FFFT TFFFF
FFT	
FFF	FFTF FTFFF

That's $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

That's $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

That's $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

That's also $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

Rows 5 and 6

That's $\mathbb{F} \to \mathbb{F}$, i.e., \mathbb{T} .

Rows 7 and 8

That's $\mathbb{F} \to \mathbb{T}$, i.e., \mathbb{T} .

Summing Up

It's true everywhere except when A, B are both \mathbb{T} , and C is \mathbb{F} .

Α	В	C	(Α	\vee	\neg	В	$) \rightarrow ($	В	\rightarrow (Α	\land	C))
T	T	\mathbb{T}		T	T	F	T	T	T	T	T	T	T
T	T	\mathbb{F}		T	T	F	T	F	\mathbb{T}	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}		T	T	\mathbb{T}	F	T	F	T	\mathbb{T}	\mathbb{T}	\mathbb{T}
T	F	F		T	T	T	F	T	F	T	\mathbb{T}	F	F
F	\mathbb{T}	\mathbb{T}		F	F	F	\mathbb{T}	T	\mathbb{T}	F	F	F	\mathbb{T}
\mathbb{F}	\mathbb{T}	F		\mathbb{F}	F	F	T	T	\mathbb{T}	F	F	F	F
F	F	\mathbb{T}		F	F	\mathbb{T}	F	T	F	T	F	F	\mathbb{T}
F	F	F		F	F	T	F	T	F	T	F	F	F

