Due Date: March 8 | Weight: 10%

INDIVIDUAL ASSINGMENT No. 2/3

Business Challenge:

Use data provided in class to generate credit default forecasting model by applying the following steps*:

- 1. Randomly divide data into training samples T(ols) and T(rt) and hold-out samples H(ols) and H(rt).
- 2. Method 1: OLS
 - a. Used library algorithms to run OLS on T(ols) to generate and store the regression function.
 - b. Run regression function on H(ols) and generate MSE and R².
- 3. Method 2: Regression Tree
 - a. Use library algorithms and set tuning parameters to tree depth 8, minimum units in each non-terminal node 20, and R² minimal improvement per split 1%.
 - b. Run algorithm on T(rt) to generate and store prediction algorithm.
 - c. Run prediction algorithm on H(rt) to generated MSE and R².
- 4. Assess methods 1 and 2 based on MSE and R² and calculate value-add of best method.

Deliverables:

- 1. Executive Summary: 10 Lines, non-technical, describing:
 - a. Business Understanding: Target business value-add
 - b. Data Understanding: Credentials, relevance, and top categories
 - c. Modeling: Techniques, parameters, and performance metrics
 - d. Performance & Evaluation: Was value-add achieved, areas for further analytics

2. Technical Methodology:

STEPS	SPECS
1. Data Management & Workflow	For each row, use technical language to provide step-by-step
2. Training & Out-of-Sample Datasets	description of data & modeling decisions, why such decisions, whether
3. Model Parameters	performance was as desired, and areas for further analytics. Use
4. Fit & Performance	business challenge above as model (Max > 20 words per line item).

- 3. **Data & Code:** Submit files for following items (in Text, Excel, R, or Python):
 - a. Training & out-of-sample datasets
 - b. Algorithms
 - c. Interface for prediction & delivery

Evaluation Criteria:

- 1. **Executive Summary:** Ability to explain and justify in non-technical language your outcome business value-add based on the process and methodology you chose for business understanding, data understanding, modeling, and performance & evaluation.
- 2. **Technical Methodology:** Ability to use technical language to describe your process and methodology for above table items 1-4 and generate a step-by-step by step guide to duplicate your analytics using the datasets you provided as attachments.
- 3. **Data & Code:** Usability of datasets and code as provided to duplicate analytics using the Technical Methodology you provided.

S	Scoring Metho
Executive Summary Clarity of:	3
Data Understanding Description	
Modeling Description	
Performance & Evaluation Description	
Technical Methodology Clarity of:	
Data Classification Description	1
Training & Out-of-Sample Datasets Description	1
Model Parameters Description	1
Fit & Performance Description	1
Data & Code Duplication:	
Training & Out-of-Sample Datasets Duplicability	1
Algorithms Duplicability	1
Interface for Prediction & Delivery Duplicability	1
Total (Max):	10

^{*}Additional References: Sendhil Mullainathan, Machine Learning: An Applied Econometric Approach, Online Appendix, April 2017. In class material.