Μεταπτυχιακό ΑΛΜΑ Ζαχαράκης Αλέξανδρος azacharakis@yandex.com Τσιάρας Λάμπρος std08262@di.uoa.gr Ακαδημαικό Έτος 2016-2017

Θεωρία Αναδρομής 1η Σειρά Ασκήσεων

Άσκηση 2

Θα δείξουμε ότι το πρόβλημα είναι αποφάνσιμο κατασκευάζοντας μηχανή Turing που το αποφασίζει. Παρατηρούμε το εξής: οι διαμορφώσεις μιας μηχανής turing $M=(Q,\Sigma,\Gamma,q_0,q_{yes},q_{no})$ που η κεφαλή δεν περνάει από τη θέση n της ταινίας είναι πεπερασμένες. Συγκεκριμένα κάθε διαμόρφοση μπορεί να κωδικοποιηθεί ως (q,i,w) όπου q είναι η κατάσταση της μηχανής, i η θέση της κεφαλής και w η λέξη που περιέχει η ταινία. Αφού μετράμε τις καταστάσεις που η κεφαλή δεν φτάνει στη θέση n το μήκος της w είναι μικρότερο από n. Άρα όλες οι πιθανές διαφορετικές διαμορφώσεις της M είναι το πολύ $C=|Q|\cdot n\cdot |\Sigma|^n$. Αν λοιπόν τρέξουμε τη μηχανή M για περισσότερα από C βήματα έχουμε τρεις περιπτώσεις:

- 1. Θα περάσει η κεφαλή από τη θέση n
- 2. Θα τερματίσει η μηχανή χωρίς να περάσει η κεφαλή από τη θέση n
- 3. Μία διαμόρφωση θα επαναληφθεί.

Αν συμβεί το τρίτο ενδεχόμενο ο υπολογισμός δεν θα τερματίσει ποτέ αφού η Μηχανή θα επαναλαμβάνει τα ίδια configuration (ο υπολογισμός είναι ντετερμινιστικός) και η κεφαλή δεν θα περάσει ποτέ από τη θέση n αν δεν έχει ήδη περάσει.

Θα χρησιμοποιήσουμε την καθολική μηχανή Turing U για να προσωμοιώσουμε C+1 βήματα της M. Η μηχανή που θα κάνει την προσωμοίωση θα έχει δύο επιπλέον ταινίες από αυτές που χρειάζεται η U. Αρχικά στην μία επιπλέον ταινία εκτελοούμε n κινήσεις δεξιά και βάζουμε ένα ειδικό σύμβολο * σε αυτή τη θέση. Στην άλλη κρατάμε έναν δυαδικό μετρητή ξεκινόντας από 0.

Η μηχανή U προσωμοιώνει ένα ενα τα βήματα της . Σε κάθε βήμα που προσωμοιώνει κάνει τις εξής επιπλέον δουλειές: Κινεί την 1η επιπλέον κεφαλή ακριβώς όπως κινήται η κεφαλή της M, αυξάνει κατά 1 τον μετρητή, ελέγχει αν διάβασε το ειδικό σύμβολο * και αν ναι πηγαίνει στην κατάσταση αποδοχής και τέλος συγκρίνει τον μετρητή με την ποσότητα C και αν είναι μεγαλύτερος από αυτή πηγαίνει στην κατάσταση απόρριψης.

Άσκηση 12

Διακρίνουμε δύο περιπτώσεις. Αν $Dom(f)=\emptyset$ τότε $\forall n\in\mathbb{N}$ $f(n)=\uparrow$ και συνεπώς έχουμε ότι $Im(f)=\emptyset$ το οποίο σύνολο είναι αναδρομικό και αναγνωρίζεται από την μηχανή Turing με $q_{\alpha\rho\chi\kappa\eta}=q_{no}$.

Αν $Dom(f) \neq \emptyset$ τότε ως μη κενό υποσύνολο των φυσικών το Dom(f) έχει ελάχιστο στοιχείο, έστω n και έστω f(n) = m. Η f λοιπόν δεν ορίζεται για στοιχεία μικρότερα του n και επειδή είναι και φθίνουσα το m είναι το μέγιστο στοιχείο του Im(f). Αρα $Im(f) \subseteq \{1, 2, \ldots, m\}$ και συνεπώς είναι πεπερασμένο. Όμως κάθε πεπερασμένο σύνολο είναι αναδρομικό.

Για το δεύτερο κομμάτι θεωρούμε ότι $L\subseteq\mathbb{N}$ για να βγαίνει νόημα (το οποίο είναι ΟΚ αφού $\Sigma *$ και \mathbb{N} είναι ισομορφικά). Η απόδειξη του ζητούμενου είναι ακριβώς ίδια με παραπάνω, δηλαδή είτε η εικόνα των στοιχείων του L είναι το κενό σύνολο, είτε έχει όπως και πριν ελάχιστο στοιχείο.