SPICE Model for NMOS and PMOS FETs in the CD4007 Chip Dr. Lynn Fuller 8-17-2015

The SPICE models below were obtained from measurements of the CD4007 chip. This chip is made by several different companies such as TI and Fairchild. The chip designs are slightly different and the fabrication process is different but the transistor characteristics are suppose to be close to the same.

We measure the Id-Vds family of curves, Id-Vgs transfer curves for saturation and non-saturation operation and for different substrate voltages. We also measure the physical dimensions using a calibrated microscope (after etching away the black plastic package). The gate and field oxide thicknesses and junction depths are inferred from the manufacturers data sheets. For example if the device is suppose to go to 20 volts then the gate oxide needs to be at least 50nm in thickness. The SPICE model should be third generation BSIM3 for better circuit simulation results (convergence). DC sweeps require specifying parameters for L, W, NRD, and NRS. Transient simulation also require AD, AS, PD, and PS to be specified. Transient simulations are compared to ring oscillator measurements for verification of SPICE parameters.

This chip has many parasitic resistors and diodes (capacitors) that are there for electrostatic discharge (ESD) protection. Those components will effect the transient performance of circuits made with these chips.

Data sheet acquired from Harris Semiconductor SCHS018C – Revised September 2003

CMOS Dual Complementary Pair Plus Inverter

High-Voltage Types (20-Volt Rating)

■ CD4007UB types are comprised of three n-channel and three p-channel enhancement-type MOS transistors. The transistor elements are accessible through the package terminals to provide a convenient means for constructing the various typical circuits as shown in Fig. 2.

More complex functions are possible using multiple packages. Numbers shown in parentheses indicate terminals that are connected together to form the various configurations listed.

The CD4007UB types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes), and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

CD4007UB Types

Features:

- Standardized symmetrical output characteristics
- Medium Speed Operation tpHL, tpLH = 30 ns (typ.)
 at 10 V
- 100% tested for quiescent current at 20 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"
- Maximum input current of 1 μA at 18 V over full package-temperature range;
 100 nA at 18 V and 25°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIMITS		UNITS
	MIN.	MAX.	<u> </u>
Supply-Voltage Range (For T _A = Full Package			
Temperature Range)	3	18	V

DIMENSIONS AND PAD LAYOUT FOR CD4007UBH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mile (10⁻³ inch).

Fig. 1 — Detailed schematic diagram of CD4007UB showing input, output, and parasitic diodes.

This figure shows the parasitic diodes in the CD4007 chip. Each reverse biased diode represents a capacitance that should be included when doing SPICE transient analysis. The resistors along with the reverse biased diodes provide electrostatic discharge protection (ESD).

Measured Id-Vds Family of Curves for 5, 10 and 20 volt Operation These measurement made using HP4145 Semiconductor Parameter Analyzer

CD4007 0.0250 Swp: SMU1 Start: 0.0000 V Stop: 10.0000 V 0.0200 Step: 0.1000 V Pts: 101 0.0150 Step: SMU2 Start: 0.0000 V \Box Stop: 10.0000 V Step: 1.0000 V Con: SMU3 Val: 0.0000 V 5.0000r 0.0000 VD Fit #2: 5.9225m Type: Cursor Slp:0.0483m Yint:5.6810m Xint:-117.6184

NMOS at 5Volts

NMOS at 10Volts

NMOS at 20Volts

PMOS at -5 Volts

PMOS at -10 Volts

PMOS at -20 Volts

Picture of the CD4007, Three PMOS, Three NMOS

Measurement Calibration

From these measurements the conversion is 0.35 um/pixel

CD4007 Transistor L and W Measurements

PMOS L=10um, W=360um

NMOS L=10um, W=170um

```
*SPICE MODELS FOR RIT DEVICES AND LABS - DR. LYNN FULLER 8-17-2015
*LOCATION DR.FULLER'S COMPUTER
*and also at: http://people.rit.edu/lffeee
*Used in Electronics II for CD4007 inverter chip
*Note: Properties L=10u W=170u Ad=8500p As=8500p Pd=440u Ps=440u NRD=0.1 NRS=0.1
.MODEL RIT4007N7 NMOS (LEVEL=7
+VERSION=3.1 CAPMOD=2 MOBMOD=1
+TOX=4E-8 XJ=2.9E-7 NCH=4E15 NSUB=5.33E15 XT=8.66E-8
+VTH0=1.4 U0= 1300 WINT=2.0E-7 LINT=1E-7
+NGATE=5E20 RSH=300 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-8 MJ=0.5 PB=0.95
+CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5
+CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10)
*Used in Electronics II for CD4007 inverter chip
*Note: Properties L=10u W=360u Ad=18000p As=18000p Pd=820u Ps=820u NRS=0.54 NRD=0.54
.MODEL RIT4007P7 PMOS (LEVEL=7
+VERSION=3.1 CAPMOD=2 MOBMOD=1
+TOX=5E-8 XJ=2.26E-7 NCH=1E15 NSUB=8E14 XT=8.66E-8
+VTH0=-1.65 U0= 400 WINT=1.0E-6 LINT=1E-6
+NGATE=5E20 RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-8 MJ=0.5 PB=0.94
```

*_____

+CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 PCLM=5 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10)

PSPICE Circuit Schematic for Generating Id-Vds Family of Curves Note: Specification of Model RIT4007N7, L, W, NRD and NRS

New Property Apply Display Delete Property		
	A	
	SCHEMATIC1 : PAGE1	
Color	Default	
Designator		
Graphic	MbreakN.Normal	
ID		
Implementation	RIT4007N7	
Implementation Path	<u></u>	
Implementation Type	PSpice Model	
L	10u	
Location X-Coordinate	460	
Location Y-Coordinate	200	
М		
Name	/NS30	
NRB	///////////////////////////////////////	
NRD	0.1	
NRG		
NRS	0.1	
Part Reference	M1	
PCB Footprint		
PD		
Power Pins Visible		
Primitive	DEFAULT	
PS		
PSpiceOnly	TRUE	
PSpiceTemplate	M^@REFDES %d %g %s %	
Reference	M1	
Source Library	CACADENCE\SPB_16	
Source Package	MbreakN	
Source Part	MbreakN.Normal	
Value	MbreakN	
w	170u	

PSPICE Simulation Profile

DC Sweep V2 from 0 to 5 in 0.01 Volt steps V1 from 0 to 5 in 0.5 Volt steps

Include text file with SPICE model RIT4007N7

Set up plot to plot Id
Use same setup as Last plot
each time SPICE is run

Overlay of PSPICE Simulated Id-Vds Curves and Measured Id-Vds Curves Measured Curves made with Digilent Analog Discovery Module

Overlay of LTSPICE Simulated Id-Vds Curves and Measured Id-Vds Curves Measured Curves made with Digilent Analog Discovery Module

LTSPICE Simulated Id-Vds Curves

PSPICE Simulated Id-Vds Curves

LTSPICE Simulated Id-Vds Curves and Measured Id-Vds Curves at 10 Volts

CD4007 NMOS at 10 Volts, slope 0.0479m, Xint -118

LTSPICE Simulated Id-Vds Curves and Measured Id-Vds Curves at 20 Volts

LTSPICE Simulation

Measured CD4007 PMOS at -5 Volts

PSPICE Circuit Schematic for Generating Id-Vds Family of Curves Note: Specification of Model RIT4007P7, L, W, NRD and NRS

CD4007 PMOS at -5 Volts

CD4007 PMOS at 5 Volts

PSPICE Circuit Schematic for Generating Id-Vds Family of Curves Note: Specification of Model RIT4007P7, L, W, NRD and NRS

Overlay of Measured and PSPICE Simulated CD4007 PMOS at 5 Volts

CD4007 PMOS at -5 Volts

Measured CD4007 PMOS at -5 Volts

PSPICE Simulation

LTSPICE Simulation

Measured CD4007 PMOS at -10 Volts

Measured CD4007 PMOS at -20 Volts

Ring Oscillator including 25pF to model internal ESD devices

