Modul 2 Deret Taylor dan Deret Maclaurin

Tujuan Pembelajaran

 Menentukan deret Taylor dan deret Maclaurin dari suatu fungsi di sekitar titik yang ditentukan

Deret Tak Terhingga

Dalam mata kuliah kalkulus tentang deret tak terhingga

Dengan turunan pertama, didapatkan hampiran

$$\sin x \approx x$$
 untuk $x \approx 0$

Bila digunakan deret kedua dan ketiga, akan didapatkan hampiran yang lebih baik

$$\sin x \approx x - \frac{x^3}{6} \text{ untuk } x \approx 0$$

Deret Tak Terhingga

Kelak akan dapat ditunjukkan bahwa

$$\sin x = x - \frac{x^2}{3!} + \frac{x^5}{5!} - K + K$$
, untuk $x \in \Re$

Konvergen

Deret pangkat

$$S(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - K$$

Konvergen untuk seluruh bilangan real x, dan S(x) memenuhi persamaan diferensial orde 2:

$$S''(x) = -S(x)$$

dengan S(0)=0 dan S'(0)=1 . Solusi persamaan differensial ini adalah $S(x)=\sin x$

Sejauh ini...

- Diberikan suatu deret pangkat, dapat ditentukan selang kekonvergenannya
- Untuk deret geometri, serta turunan dan integralnya, bisa didapatkan jumlahnya
- Demikian juga untuk beberapa deret pangkat yang jumlahnya sama dengan e^x , $\cos x$, dan $\sin x$
- Lalu, dengan operasi pada deret pangkat, dapat diperoleh uraian deret pangkat dari fungsi seperti $f(x) = xe^x$ dan $g(x) = e^x/(1-x)$

Pertanyaan baru

• Diberikan suatu fungsi f(x), dapatkah diuraikan sebagai deret pangkat

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + K$$

untuk x disekitar a ?

• Dengan perkataan lain, apakah dapat dicari nilai dari c_0, c_1, c_2, K sehingga deret pangkat di atas konvergen ke f(x) untuk x di sekitar x = a?

Pertanyaan baru

Misalkan f dapat diuraikan sebagai deret pangkat di sekitar x = a

Maka, c_0 pasti sama dengan nilai f(a)

Selanjutnya, jika diturunkan f terhadap x

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + K$$

Maka, c_1 pasti sama dengan nilai f'(a)

Turunkan lagi terhadap x

$$f''(x) = 2!c_2 + 3!2c_3(x-a) + 4.3c_4(x-a)^2 + K$$

Maka, c_2 pasti sama dengan nilaif''(a) dst...

Jadi...

ullet Jika f dapat diuraikan sebagai deret pangkat

(1)
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + K$$

Maka, f mempunyai turunan setiap orde dan

(2)
$$c_n = \frac{f^{(n)}(a)}{n!}, \quad n = 0,1,2,K$$

dengan $f^{(0)}(a) = f(a)$ dan 0! = 1

Tetapi bagaimana sebaliknya? Jika $f^{(n)}(a)$ ada untuk tiap n, dan c_n dihitung dengan persamaan (2), apakah jumlah deret pangkat (1) sama dengan f(x)?

Deret Taylor dan Deret Maclaurin

Uraian deret pangkat dari f disekitar x = a disebut **deret Taylor** untuk f di a , yakni:

$$f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+K$$

Jika a = 0, maka deret pangkat tersebut disebut **deret Maclaurin** untuk f, yakni:

$$f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(0)}{3!}x^3+K$$

Polinom dan Suku Sisa Taylor

Misalkan f fungsi yang mempunyai turunan ke-(n+1) pada selang terbuka I yang memuat a. Maka, untuk setiap $x \in I$, berlaku

$$f(x) = P_n(x) + R_n(x)$$

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + K + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

dan suku sisa

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}, \quad x < c < a$$

Jadi

Jika
$$n = 0$$
 maka

$$f(x) = P_0(x) + R_0(x)$$
$$f(x) = f(a) + f'(c)(x - a)$$

Teorema nilai rata-rata

Jadi, persamaan polynomial sebelumnya merupakan bentuk umum dari teorema nilai rata-rata

Teorema Taylor

Misalkan f fungsi yang mempunyai turunan tiap orde pada selang l=(a-r,a+r). Maka, untuk setiap $x \in I$ berlaku

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + K$$

Jika dan hanya jika

$$\lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} = 0, \ x < c < a$$

Contoh 1

Tentukan deret Maclaurin untuk $\sin x$ dan periksa bahwa deret tersebut merepresentasikan $\sin x$ untuk setiap $x \in \Re$

Solusi

Jika ditentukan fungsi $f(x) = \sin x$, maka dapat disusun tabel penurunan fungsinya

n	$f^{(n)}(x)$	$f^{n}(0)$	C_n
0	$\sin x$	0	0
1	$\cos x$	1	1
2	$-\sin x$	0	0
3	$-\cos x$	-1	1/3!
V	V	N	V

Solusi

• Jadi deret Maclaurin untuk $f(x) = \sin x$ adalah

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - K$$

Nilai diatas berlaku untuk semua nilai x. Untuk membuktikan hasil diatas maka perlu dihitung suku sisanya.

Solusi

Karena
$$|f^{(n+1)}(x)| = |\sin x|$$
, maka

$$\left| R_n(x) \right| \le \frac{1}{(n+1)!} \left| x^{n+1} \right|$$

Tapi $\lim_{n\to\infty} x^n/n! = 0$, untuk setiap x. Dengan demikian

$$\lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} = 0$$

Tugas

- 1. Dapatkan deret maclaurin dari
- a. $\cos x$

b.
$$ln(1+x)$$

2. Dapatkan deret taylor dari $\cos x$ disekitar $x = \frac{3\pi}{2}$