MAT128A: Numerical Analysis, Section 2 Homework for the week of October 1

1. What is the condition number of evaluation of the function

$$f(x) = \exp(\cos(x))$$

at the point x?

- 2. Suppose that f and g are continuously differentiable functions $\mathbb{R} \to \mathbb{R}$. Let $\kappa_f(x)$ denote the condition number of evaluation of the function f at x. Find an expression for the condition number of evaluation of the function h(x) = f(g(x)) at x in terms of $\kappa_f(g(x))$ and g'(x).
- 3. Suppose that f and g are continuously differentiable functions $\mathbb{R} \to \mathbb{R}$. Let $\kappa_f(x)$ denote the condition number of evaluation of the function f at x, and let Let $\kappa_g(x)$ denote the condition number of evaluation of the function g at x. Find an expression for the condition number of evaluation of the function $h(x) = f(x) \cdot g(x)$ at x in terms of $\kappa_f(x)$ and $\kappa_g(x)$.
- 4. Suppose that f and g are continuously differentiable functions $\mathbb{R} \to \mathbb{R}$. Let $\kappa_f(x)$ denote the condition number of evaluation of the function f at x, and let Let $\kappa_g(x)$ denote the condition number of evaluation of the function g at x. Find an expression for the condition number of evaluation of the function h(x) = f(x)/g(x) at x in terms of $\kappa_f(x)$ and $\kappa_g(x)$.
- 5. What is the Fourier series of the function f(x) = x?
- 6. What is the Fourier series of the function f(x) = |x|?

(Hint: you can easily find an antiderivative of $x \exp(inx)$ using integration by parts).