A számítógépes szemantika alapjai

A szemantika fő megközelítései

- 3 nagy iskola
 - A szemantika logikai formulákkal történő leírása

A szemantika fő megközelítései

- 3 nagy iskola
 - A szemantika logikai formulákkal történő leírása
 - Tudásbázisok létrehozása (hiper)gráfok segítségével

• Pl. Wordnet, ConceptNet, Microsoft Concept Graph, Babelnet,

(Open)Cyc, ...

A szemantika fő megközelítései

- 3 nagy iskola
 - A szemantika logikai formulákkal történő leírása
 - Tudásbázisok létrehozása (hiper)gráfok segítségével

• Pl. Wordnet, ConceptNet, Microsoft Concept Graph, Babelnet, (Open)Cyc, ...

Szavak vektorokkal történő jellemzése

Montague nyelvtan

- "There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians" (Universal Grammar 1970)
- A jelentést logikai formulákkal ragadják meg
- Kategóriákra alapozó nyelvtan
- Felteszi a jeletés rekurzív és kompozicionális voltát
 - Vö. white wine vs. white snow vs. white terror
 - "Colorless green ideas sleep furiously."
- Lásd még: Frege, Russell, Tarski munkássága

A disztribúciós hipotézis (Firth)

- "You shall know a word by the company it keeps" (Firth, 1957)
 - Az ötlet már az 1935-ös The technique of semantics című munkájában is fellelhető

Secondly, the complete meaning of a word is always contextual, and no study of meaning apart from a complete context can be taken seriously.

 Lásd még: Zellig Harris, Charles Osgood (szemantikus differenciál)

Szavak mint vektorok

- Az ún. term-dokumentum mátrix maga fölfogható a szavak egy reprezentációjaként
 - A mátrix ij eleme megmondja, hogy az i szó a j dokumentumban hányszor fordult elő

	d1	d2		dn
w1=korong	3	4		
w2=ütő	2	0	•••	1
w3=hazafutás	0	0		5
•••				
wm	1	2		1

Szingulárisérték felbontás (SVD)

- Bármely mátrix fölírható U*Σ*V' szorzat alakban
 - Ahol U, V' ortogonális, Σ diagonális

Szingulárisérték felbontás (SVD)

- Bármely mátrix fölírható U*Σ*V' szorzat alakban
 - Ahol U, V' ortogonális, Σ diagonális
- "Csonkolt"-SVD (truncated-SVD)
 - U, V mátrixokból k<min(m,n) oszlopot tartsunk csupán meg
 - Σ-nek hagyjuk el a k*k-n "felüli" részét

Szingulárisérték felbontás (SVD)

- Bármely mátrix fölírható U*Σ*V' szorzat alakban
 - Ahol U, V' ortogonális, Σ diagonális
- "Csonkolt"-SVD (truncated-SVD)
 - U, V mátrixokból k<min(m,n) oszlopot tartsunk csupán meg
 - Σ-nek hagyjuk el a k*k-n "felüli" részét
 - Egyfajta tömörítés: M legjobb k rangú közelítését kapjuk így meg

Látens Szemantikus Indexelés (Deerwester, S., et al, 1988)

- Az M mátrix legyen a term-dokumentum mátrix
 - U mint term–látens téma mátrix
 - V' mint látens téma–dokumentum mátrix
 - A látens téma tekinthető a jelentéscsoportoknak

Az input mátrix súlyozása

- Gyakori, de érdektelen szavak → nyers gyakoriságok helyett alkalmazzunk súlyozást (pl. tf–idf)
 - tf: (dokumentumon belüli) term gyakoriság
 - Idf: invertált dokumentum frekvencia log(N/df(t))
 - N a korpusz dokumentumainak száma
 - df(t): azon dokumentumok száma, melyben t term előfordul

Az input mátrix súlyozása

- Gyakori, de érdektelen szavak → nyers gyakoriságok helyett alkalmazzunk súlyozást (pl. tf–idf)
 - tf: (dokumentumon belüli) term gyakoriság
 - Idf: invertált dokumentum frekvencia log(N/df(t))
 - N a korpusz dokumentumainak száma
 - df(t): azon dokumentumok száma, melyben t term előfordul
 - Pl. ha t term az i dokumentumban 3szor szerepel, egyébként pedig a korpusz minden negyedik dokumentumában található meg, akkor tf-idf(t,i) = 3 * log(4) = 6

SVD kookkurencia mátrixon

- Ugyanaz, mint eddig, csak a term-dokumentum mátrix helyett a kookkurencia (együttelőfordulási) mátrixon dolgozzunk
 - A mátrix egy ij eleme magadja, hogy az i szó környezetében j szó hányszor fordul elő
 - A term–dokumentum mátrixszal ellentétben itt egy négyzetes termek száma*termek száma mátrixszal van dolgunk
 - Fontos hiperparaméter w a figyelembe vett környezet mérete
 - Kicsi w: inkább szintaktikus kapcsolatok
 - Nagy w: jobban szemantika

Pointwise Mutual Information

- A nyers gyakoriságokat itt is szokás transzformálni (pl. PMI)
 - PMI(x,y) = log(P(x,y)/(P(x)*P(y)))
- Két esemény együttes valószínűsége hogy viszonyul marginálisaik szorzatához
 - Marginálisuk szorzat = együttes valószínűségük, amennyiben függetlenek

Pointwise Mutual Information

- A nyers gyakoriságokat itt is szokás transzformálni (pl. PMI)
 - PMI(x,y) = log(P(x,y)/(P(x)*P(y)))
- Két esemény együttes valószínűsége hogy viszonyul marginálisaik szorzatához
 - Marginálisuk szorzat = együttes valószínűségük, amennyiben függetlenek

	kutya	olvas	ugat
kutya	0	1	8
olvas	1	2	0
ugat	8	0	0

Pointwise Mutual Information

- A nyers gyakoriságokat itt is szokás transzformálni (pl. PMI)
 - PMI(x,y) = log(P(x,y)/(P(x)*P(y)))
- Két esemény együttes valószínűsége hogy viszonyul marginálisaik szorzatához
 - Marginálisuk szorzat = együttes valószínűségük, amennyiben függetlenek
 - P(kutya,ugat)=8/20
 - P(kutya)=9/20, P(ugat)=8/20
 - PMI(kutya, ugat)=log(20/9) ≈ 1.15

		kutya	olvas	ugat
5	kutya	0	1	8
	olvas	1	2	0
	ugat	8	0	0

Pointwise Mutual Information variánsok

- Pozitív PMI (PPMI)
 - Motiváció: a negatív értékek nem igazán érdekesek
 - PPMI(x,y) = max(0, PMI(x,y))

Pointwise Mutual Information variánsok

- Pozitív PMI (PPMI)
 - Motiváció: a negatív értékek nem igazán érdekesek
 - PPMI(x,y) = max(0, PMI(x,y))
- Normalizált (P)PMI
 - Motiváció: a (P)PMI mutatónak kedveznek a kevés előfordulással rendelkező események
 - Ha x és y csak egymással fordul elő, akkor PMI(x,y)=-log(P(x,y)), ami ritka (x,y) eseménypárosra nagyon magas értéket jelent!
 - Ezt kompenzálandó, a kapott értéket osszuk el –log(P(x,y))-nal
 - -1 (ha $P(x,y) \rightarrow 0$) és 1 (ha P(x)=P(x,y)=P(y)) közé szorítjuk ezzel

PMI és az alacsony előfordulások

- A PMI értékek "javítására" hallucináljunk megfigyeléseket
 - Laplace-simítás: a tényleges megfigyelések értékeit növeljük 1-el
 - Ad hoc megoldásnak tűnik, de nem is annyira az (lásd: multinomiális eloszlás Dirichlet priorral történő Maximum A Posteriori becslése)

PMI és az alacsony előfordulások

- A PMI értékek "javítására" hallucináljunk megfigyeléseket
 - Laplace-simítás: a tényleges megfigyelések értékeit növeljük 1-el
 - Ad hoc megoldásnak tűnik, de nem is annyira az (lásd: multinomiális eloszlás Dirichlet priorral történő Maximum A Posteriori becslése)
- A tényleges megfigyeléseket emeljük valamijen x<1 hatványra, és így normalizáljunk
 - A magas értékek ezt jobban megsínylik
 - Pl. x=.75 választása esetén [0.01, 0.05, 0.94] → [0.029, 0.097, 0.874]

Kookkurenciamátrix kiterjesztése

- A környezetbe bevehetjük a nyelvtani stuktúrát is
 - A mátrix sorai továbbra is a szavak, a kontextusokat jelölő oszlopok azonban (szóalak–reláció) párosok lesznek
 - Egy lehetőség pl. ha dependenciaelemzést használunk

Kookkurenciamátrix kiterjesztése

- A környezetbe bevehetjük a nyelvtani stuktúrát is
 - A mátrix sorai továbbra is a szavak, a kontextusokat jelölő oszlopok azonban (szóalak–reláció) párosok lesznek
 - Egy lehetőség pl. ha dependenciaelemzést használunk

- Side note: Scientists discovered a new animal from space.
 - PP attachment problémaköre

Szóvektorok viselkedése

- Az előző módszerekkel szavakhoz vektorokat tudunk társítani
 - Hasonló jelentésű szópár → hasonlóan irányba mutató vektorok
 - Pontszorzat: $\mathbf{v}'*\mathbf{w} = \Sigma \mathbf{v}i * \mathbf{w}i$
 - Pl. v'=[3, 1], w'= [5, 2] esetén v'*w = ?

Szóvektorok viselkedése

- Az előző módszerekkel szavakhoz vektorokat tudunk társítani
 - Hasonló jelentésű szópár → hasonlóan irányba mutató vektorok
 - Pontszorzat: $\mathbf{v}'*\mathbf{w} = \Sigma \mathbf{v}i * \mathbf{w}i$
 - Pl. v'=[3, 1], w'= [5, 2] esetén v'*w = 17
 - Koszinusz hasonlóság: ? ≥ v'*w / (||v|| * ||w||) ≥ ?

Szóvektorok viselkedése

- Az előző módszerekkel szavakhoz vektorokat tudunk társítani
 - Hasonló jelentésű szópár → hasonlóan irányba mutató vektorok
 - Pontszorzat: $\mathbf{v}'*\mathbf{w} = \Sigma \mathbf{v}i * \mathbf{w}i$
 - Pl. v'=[3, 1], w'= [5, 2] esetén v'*w = 17
 - Koszinusz hasonlóság: $1 \ge v$ '*w / (||v|| * ||w||) ≥ -1
 - 1 esetén orientációjuk megegyezik
 - 0 esetén ortogonálisak
 - -1 esetén ellentétes irányba mutatnak