Regularity and Smoothness

Smoothness

1 Modules of differentials and derivations

In this subsection, let R be a ring and A an R-algebra.

Definition 1 (Derivation). A derivation of A over R is an R-linear map $\partial: A \to M$ with an A-module such that for all $a, b \in A$, we have

$$\partial(ab) = a\partial(b) + b\partial(a).$$

Given the module M, the set of all derivations of A over R into M forms an A-module, denoted by $\operatorname{Der}_R(A, M)$.

Given a module homomorphism $f: M \to N$ of A-modules and a derivation $\partial \in \operatorname{Der}_R(A, M)$, the map $f \circ \partial$ is a derivation of A over R into N.

Proposition 2. The functor $Der_R(A, -)$ is representable. The representing object is denoted by $\Omega_{A/R}$, which is called the *module of differentials* of A over R.

Proof. First suppose A is a free R-algebra with a set of generators $a_{\lambda}, \lambda \in \Lambda$. Then an R-derivation $\partial \in \operatorname{Der}_{R}(A, M)$ is uniquely determined by its values on the generators a_{λ} . Let

$$\Omega_{A/R} := \bigoplus_{\lambda \in \Lambda} A \cdot \mathrm{d}a_{\lambda}$$

and $d: A \to \Omega_{A/R}$ be the R-derivation defined by $a_{\lambda} \mapsto da_{\lambda}$. For any R-derivation $\partial \in \operatorname{Der}_{R}(A, M)$, we can define a unique A-module homomorphism $\Phi_{\partial}: \Omega_{A/R} \to M$ by sending da_{λ} to $\partial(a_{\lambda})$ such that $\partial = \Phi_{\partial} \circ d$. This gives a bijection

$$\operatorname{Der}_R(A, M) \cong \operatorname{Hom}_A(\Omega_{A/R}, M), \quad \partial \mapsto \Phi_{\partial}.$$

Now suppose A = F/I is an arbitrary R-algebra, where F is a free R-algebra and I is an ideal of F. Then we can define the module of differentials

$$\Omega_{A/R} := \left(\Omega_{F/R} \otimes_F A\right) / \sum_{f \in I} A \cdot \mathrm{d}f.$$

The R-linear map $d_A: F \otimes_F A \xrightarrow{d_F} \Omega_{F/R} \otimes_F A \to \Omega_{A/R}$ is a derivation of A over R.

For any R-derivation $\partial \in \operatorname{Der}_R(A, M)$, note that $F \to A \xrightarrow{\partial} M$ is an R-derivation of F over R into M. Then we get an F-module homomorphism $\Omega_F \to M$. It gives an A-module homomorphism $\Omega_F \otimes_F A \to M, \operatorname{d} f \otimes 1 \mapsto \partial f$. This map factors into $\Omega_F \otimes_F A \to \Omega_{A/R}$ and $\Phi_{\partial} : \Omega_{A/R} \to M$. Since Φ_{∂} is A-linear and $\Omega_{A/R}$ is generated by $\operatorname{d} a_{\lambda}$ as A-module, such Φ_{∂} is unique.

Corollary 3. Suppose A is of finite type over R. Then the module of differentials $\Omega_{A/R}$ is a finitely generated A-module.

Remark 4. Let B be an A-algebra, M an A-module and N a B-module. If there is a homomorphism of A-modules $M \to N$, then we can extend it to a homomorphism of B-modules $M \otimes_A B \to N$ by sending $m \otimes b$ to $m \cdot b$. And such extension is unique in the sense of following commutative diagram:

$$M \xrightarrow{\longrightarrow} N$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \otimes_A B$$

Hence we get a natural bijection

$$\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(M \otimes_A B, N).$$

Proposition 5. Let A, R' be R-algebras and $A' := A \otimes_R R'$. Then the module of differentials $\Omega_{A'/R'}$ is isomorphic to $\Omega_{A/R} \otimes_A A'$.

Date: June 26, 2025, Author: Tianle Yang, My Website

Proof. We check the universal property of $\Omega_{A/R} \otimes_A A'$. First, the map

$$d_{A'}: A \otimes_R R' \to \Omega_{A/R} \otimes_R R' \cong \Omega_{A/R} \otimes_A A', \quad a \otimes r \mapsto da \otimes r$$

is an R'-derivation of A' into $\Omega_{A/R} \otimes_A A'$. For any R'-derivation $\partial' : A' \to M$ into an A'-module M, we can compose it with the homomorphism $A' \to A$ and get an R-derivation $\partial : A \to M$. By the universal property of $\Omega_{A/R}$, there is a unique A-module homomorphism $\Phi : \Omega_{A/R} \to M$ such that $\partial = \Phi \circ d_A$. Then we can extend it to an A'-module homomorphism $\Phi' : \Omega_{A/R} \otimes_A A' \to M$ by Remark 4. By the construction, we have $\Phi' \circ d_{A'} = \partial'$.

Proposition 6. Let A be an R-algebra and S a multiplicative set of A. Then we have an isomorphism

$$\Omega_{S^{-1}A/R} \cong S^{-1}\Omega_{A/R}.$$

Proof. Let

$$d_{S^{-1}A}: S^{-1}A \to S^{-1}\Omega_{A/R}, \quad \frac{a}{s} \mapsto \frac{sda - ads}{s^2}.$$

By direct computation, $d_{S^{-1}A}$ is an R-derivation of $S^{-1}A$ over R into $S^{-1}\Omega_{A/R}$. For any R-derivation $\partial: S^{-1}A \to M$ into an $S^{-1}A$ -module M, we can get an $S^{-1}A$ -module homomorphism $\Phi': S^{-1}\Omega_{A/R} \to M$ as proof of Proposition 5. We have

$$\partial(s \cdot \frac{a}{s}) = s\partial(\frac{a}{s}) + \frac{a}{s}\partial s.$$

It follows that

$$\partial(\frac{a}{s}) = \frac{s\partial a - a\partial s}{s^2} = \frac{s\Phi'(\mathrm{d}a) - a\Phi'(\mathrm{d}s)}{s^2} = \Phi'(\frac{s\mathrm{d}a - a\mathrm{d}s}{s^2}).$$

Thus, $\Phi' \circ d_{S^{-1}A} = \partial$.

Theorem 7. Let A be an R-algebra and B an A-algebra. Then there is a natural short exact sequence

$$\Omega_{A/R} \otimes_A B \to \Omega_{B/R} \to \Omega_{B/A} \to 0$$

of B-modules.

Proof. Let $d_{A/R}: A \to \Omega_{A/R}$ be the R-derivation of A over R. The map $A \to B \xrightarrow{d_{B/R}} \Omega_{B/R}$ induces a B-linear map

$$u: \Omega_{A/R} \otimes_A B \to \Omega_{B/R}, \quad d_{A/R}(a) \otimes b \mapsto bd_{B/R}(a).$$

The map $d_{B/A}$ is an A-derivation and hence R-derivation. Then it induces a B-linear map

$$v: \Omega_{B/R} \to \Omega_{B/A}, \quad d_{B/R}(b) \mapsto d_{B/A}(b).$$

Since $\Omega_{B/A}$ is generated by elements of the form $d_{B/A}(b)$ for $b \in B$, the map v is surjective. And clearly $d_{B/A}(a) = ad_{B/A}(1) = 0$ for $a \in A$.

Consider the composition $B \xrightarrow{\mathrm{d}_{B/R}} \Omega_{B/R} \to \Omega_{B/R} / \operatorname{Im} u$. For every $a \in A, b \in B$, we have

$$[d_{B/R}(ab)] = [bd_{B/R}(a) + ad_{B/R}(b)] = [bd_{B/R}(a)] + [ad_{B/A}(b)] = [ad_{B/A}(b)].$$

Hence it is indeed an A-derivation of B. Then it induces a B-linear map

$$\varphi: \Omega_{B/A} \to \Omega_{B/R} / \operatorname{Im} u, \quad d_{B/A}(b) \mapsto [d_{B/R}(b)].$$

The map φ is surjective since $\Omega_{B/R}$ is generated by elements of the form $d_{B/R}(b)$ for $b \in B$. Note that the composition

$$\Omega_{B/A} \xrightarrow{\varphi} \Omega_{B/R} / \operatorname{Im} u \to \Omega_{B/A} / \operatorname{Ker} v$$

is the identity map. Thus, φ is injective and hence an isomorphism. In particular, we have $\operatorname{Ker} v = \operatorname{Im} u$.

Remark 8. The exact sequence in Theorem 7 is left exact if and only if every R-derivation of A into B-module extends to an R-derivation of B into B-module.

Yang: To be completed.

Theorem 9. Let A be an R-algebra and I an ideal of A. Set B := A/I. Then there is a natural short exact sequence

$$I/I^2 \to \Omega_{A/R} \otimes_A B \to \Omega_{B/R} \to 0$$

of B-modules.

Proof. Suppose $A = F/\mathfrak{b}$ for some free R-algebra F and an ideal \mathfrak{b} of F. Let \mathfrak{a} be the preimage of I in F. Let $\mathrm{d}\mathfrak{b}$ (resp. $\mathrm{d}\mathfrak{a}$) denote the image of \mathfrak{b} (resp. \mathfrak{a}) in $\Omega_{F/R}$. Then we have

$$\Omega_{A/R} \otimes_A B = \Omega_{F/R} \otimes_F B/(\mathrm{d}\mathfrak{b} \otimes_F B), \quad \Omega_{B/R} = \Omega_{F/R} \otimes_F B/(\mathrm{d}\mathfrak{a} \otimes_F B).$$

Clearly

$$I/I^2 \cong (\mathfrak{a}/\mathfrak{b}) \otimes_F B \to (\mathrm{d}\mathfrak{a} \otimes_F B)/(\mathrm{d}\mathfrak{b} \otimes_F B)$$

is surjective. Then the exact sequence follows.

Definition 10. Let k be a field and A an integral k-algebra of finite type of dimension n. We say A is smooth at $\mathfrak{p} \in \operatorname{Spec} A$ if the module of differentials $\Omega_{A,\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module of rank n.

Example 11. Let K/k be a finite generated field extension and k' be the algebraic closure of k in K. Then

$$\dim_{\mathsf{K}} \Omega_{\mathsf{K}/\mathsf{k}} = \operatorname{trdeg}(\mathsf{K}/\mathsf{k}) + \dim_{\mathsf{k}'} \Omega_{\mathsf{k}'/\mathsf{k}},$$

and $\dim_{k'} \Omega_{k'/k} = 0$ if and only if k' is separable over k.

First suppose K = k' is algebraic over k. Suppose k'/k is separable. For every $\alpha \in k'$, suppose $f(\alpha) = 0$ for $f \in k[T]$. Then $df(\alpha) = f'(\alpha)d\alpha = 0$. By the separability of k'/k, we have $f'(\alpha) \neq 0$. It follows that $d\alpha = 0$. Conversely, let $\alpha \in k'$ be a inseparable element over k. Since $k[\alpha] \to k[\alpha], \alpha^n \mapsto n\alpha^{n-1}$ is a non-zero R-derivation, we have $\Omega_{k[\alpha]/k} \neq 0$. By induction on number of generated elements, choosing a middle field $k \subset k'' \subset k'$, at least one of $\Omega_{k''/k}$ and $\Omega_{k'/k''}$ is non-zero. Then $\Omega_{K/k} \neq 0$ by Theorem 7.

Then suppose $\mathsf{k}' = \mathsf{k}$. By the Noether's Normalization Lemma, we can find a finite set of elements $T_1, \dots, T_n \in \mathsf{K}$ such that K is algebraic over $\mathsf{k}'(T_1, \dots, T_n)$. Note that we can choose T_i such that $\mathsf{K}/\mathsf{k}'(T_1, \dots, T_n)$ is separable. To see this, if $\alpha \in \mathsf{K}$ is an inseparable element over $\mathsf{k}'(T_1, \dots, T_n)$, then by replacing a suitable T_i with α , we reduce the inseparable degree of $\mathsf{K}/\mathsf{k}'(T_1, \dots, T_n)$.

Since $K/k'(T_1, \dots, T_n)$ is finite, every k-derivation of $k'(T_1, \dots, T_n)$ into K-module extends to a k-derivation of K into K-module. Then by Remark 8, we have

$$0 \to \Omega_{\mathsf{k}'(T_1,\cdots,T_n)/\mathsf{k}} \otimes_{\mathsf{k}'(T_1,\cdots,T_n)} \mathsf{K} \to \Omega_{\mathsf{K}/\mathsf{k}} \to \Omega_{\mathsf{K}/\mathsf{k}'(T_1,\cdots,T_n)} \to 0.$$

Finally, note that every k-derivation ∂ of k' into K-module can be extended to $\mathsf{k}'[T_1,\cdots,T_n]$ by setting $\partial T_i=0$. Thus, we have

$$0 \to \Omega_{\mathsf{k}'/\mathsf{k}} \otimes_{\mathsf{k}'} \mathsf{k}'[T_1, \cdots, T_n] \to \Omega_{\mathsf{k}'[T_1, \cdots, T_n]/\mathsf{k}} \to \Omega_{\mathsf{k}'[T_1, \cdots, T_n]/\mathsf{k}'} \to 0.$$

This follows that

$$\dim_{\mathsf{K}} \Omega_{\mathsf{K}/\mathsf{k}} = \dim_{\mathsf{K}} \Omega_{\mathsf{K}/\mathsf{k}'} + \dim_{\mathsf{k}'} \Omega_{\mathsf{k}'/\mathsf{k}}.$$

2 Applications to affine varieties

Let k be arbitrary field, $A = \mathsf{k}[T_1, \dots, T_n]$ and \mathfrak{m} a maximal ideal of A such that $\kappa(\mathfrak{m})$ is separable over k. We try to give an explanation of Zariski's tangent space at \mathfrak{m} using the language of derivation. We know that $\Omega_{A/\mathsf{k}} = \bigoplus_{i=1}^n A \mathrm{d} T_i$, thus $\Omega_{A_{\mathfrak{m}}/\mathsf{k}} \cong \bigoplus_{i=1}^n A_{\mathfrak{m}} \mathrm{d} T_i$. Then

$$\operatorname{Der}_{\mathsf{k}}(A_{\mathfrak{m}}, A_{\mathfrak{m}}) \cong \operatorname{Hom}_{\mathsf{k}}(\Omega_{A_{\mathfrak{m}}/\mathsf{k}}, A_{\mathfrak{m}}) \cong \bigoplus_{i=1}^{n} A_{\mathfrak{m}} \partial_{i},$$

where $\partial_i \in \operatorname{Der}_{\mathsf{k}}(A_{\mathfrak{m}}, A_{\mathfrak{m}})$ is the derivation defined by $\mathrm{d}T_i \mapsto 1$ and $\mathrm{d}T_j \mapsto 0$ for $j \neq i$. It coincides with the usual derivation $f \mapsto \partial f/\partial T_i$. Consider the restriction of ∂_i to \mathfrak{m} and take values in the residue field $\kappa(\mathfrak{m})$, we get

$$\Phi: \mathfrak{m} \xrightarrow{(\partial_1, \dots, \partial_n)^T} A_{\mathfrak{m}}^n \to \kappa(\mathfrak{m})^n$$

Since $\kappa(\mathfrak{m})$ is separable over k, we claim that $\operatorname{Ker} \Phi = \mathfrak{m}^2$. Indeed, by Remark 12, we can write every $f \in \mathfrak{m} \setminus \mathfrak{m}^2$ as $\sum_i a_i g_i$. Then

$$\frac{\partial f}{\partial T_i} = a_i \frac{\partial g_i}{\partial T_i} + g_i \frac{\partial a_i}{\partial T_i}.$$

$$T_{A,\mathfrak{m}} = (\mathfrak{m}/\mathfrak{m}^2)^{\vee} \cong \bigoplus_{i=1}^n \kappa(\mathfrak{m}) \cdot \partial_i|_x,$$

where $x \in \mathbb{A}^n_k$ is the point corresponding to \mathfrak{m} . This coincides with the usual tangent space at x in language of differential geometry.

Remark 12. Let k be arbitrary field, $A = \mathsf{k}[T_1, \cdots, T_n]$ and g_i irreducible polynomials in one variable T_i over k. Then for every $f \in A$, we can write

$$f = \sum_{I = (i_1, \dots, i_n) \in \mathbb{Z}_{>0}^n} a_I g_1^{i_1} \dots g_n^{i_n}, \quad a_I \in A, \quad \deg_{T_i} a_I \le \deg g_i.$$

This is called the Taylor expansion of f with respect to g_1, \dots, g_n .

When n=1, it follows from division algorithm. For n>1, we can use induction on n. Let $\mathsf{K}=\mathsf{k}(T_1,\cdots,T_{n-1})$. Then we can write f as

$$f = \sum_{i=0}^{r} a_i g_n^i, \quad a_i \in \mathsf{K}[T_n], \quad \deg a_i < \deg g_n.$$

Comparing the coefficients of two sides from the highest degree of T_n to the lowest degree, we see that

$$a_i \in \mathsf{k}[T_1, \cdots, T_{n-1}].$$

By induction hypothesis, the conclusion follows.

Let B = A/I be a k of finite type, $I = (F_1, \dots, F_m) \subset \mathfrak{m}$ and \mathfrak{n} the image of \mathfrak{m} in B. We have an exact sequence of $\kappa(\mathfrak{m})$ -vector spaces

$$0 \to I/(I \cap \mathfrak{m}^2) \to \mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{n}/\mathfrak{n}^2 \to 0.$$

It induces an isomorphism

$$T_{B,\mathfrak{n}} \cong \{\partial \in T_{A,\mathfrak{m}} : \partial(f) = 0, \forall f \in I\}.$$

The Jacobian matrix of F_1, \ldots, F_m is the $m \times n$ matrix

$$J(F_1, \dots, F_m) := \left(\frac{\partial F_i}{\partial T_j}\right)_{1 \le i \le m, 1 \le j \le m}$$

with entries in B.

Theorem 13. Setting as above. Then B is regular at \mathfrak{n} if and only if the Jacobian matrix J has maximal rank $n - \dim B_{\mathfrak{n}}$ after taking values in the residue field $\kappa(\mathfrak{m})$.

Proof. We have an exact sequence

$$0 \to T_{B,\mathfrak{n}} \to T_{A,\mathfrak{m}} \xrightarrow{\Psi} \kappa^m \to 0,$$

where Ψ sends $\partial \in T_{A,\mathfrak{m}}$ to $(\partial(F_1),\ldots,\partial(F_m))^T$. Note that the matrix of Ψ is just J^T , the transpose of the Jacobian matrix. Hence

$$\operatorname{rank} J = n - \dim_{\kappa} T_{B,\mathfrak{n}} \le n - \dim B_{\mathfrak{n}}$$

and the equality holds if and only if B is regular at \mathfrak{n} .

Remark 14. If $\kappa(\mathfrak{m})$ is not separable over k, then we still have the inequality

$$\operatorname{rank} J \le n - \dim B_{\mathfrak{n}}.$$

Indeed, in any case, we have an exact sequence

$$0 \to I/(I \cap \mathfrak{m}^2) \to \mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{n}/\mathfrak{n}^2 \to 0.$$

Hence $\dim_{\kappa} I/(I \cap \mathfrak{m}^2) = n - \dim B_{\mathfrak{n}}$. There is a $\kappa(\mathfrak{m})$ -linear map

$$I/(I \cap \mathfrak{m}^2) \to \kappa(\mathfrak{m})^n, \quad [f] \mapsto (\partial_1(f), \dots, \partial_n(f))^T,$$

and every row of the Jacobian matrix J is in the image of this map. Thus, the rank of J is at most $n - \dim B_n$. Hence if rank $J = n - \dim B_n$, we can still see that B is regular at n. However, the converse does not hold in general.

Proposition 15. Let k be a field, k the algebraic closure of k, A a k-algebra of finite type and $A_k := A \otimes_k k$. Yang: Suppose A_k is integral. Let $\mathfrak{m} \in \mathrm{mSpec}\,A$ and \mathfrak{m}' be a maximal ideal of A_k lying over \mathfrak{m} . Then

- (a) If A_k is regular at \mathfrak{m}' , then A is regular at \mathfrak{m} ;
- (b) suppose $\kappa(\mathfrak{m})$ is separable over k, the converse holds.

Proof. Regarding $J_{\mathfrak{m}}$ and $J_{\mathfrak{m}'}$ as matrices with entries in \mathbf{k} , they are the same and hence have the same rank. If $A_{\mathbf{k}}$ is regular at \mathfrak{m}' , since $\kappa(\mathfrak{m}) = \mathbf{k}$, then rank $J_{\mathfrak{m}'} = n - \dim A_{\mathbf{k},\mathfrak{m}'}$. Note that $\dim A_{\mathbf{k},\mathfrak{m}'} = \operatorname{trdeg}(\mathscr{K}(A_{\mathbf{k}})/\mathbf{k}) = \operatorname{trdeg}(\mathscr{K}(A_{\mathbf{k}})/\mathbf{k}) = \dim A_{\mathfrak{m}}$, we have rank $J_{\mathfrak{m}} = n - \dim A_{\mathfrak{m}}$. Hence A is regular at \mathfrak{m} .

Conversely, suppose A is regular at \mathfrak{m} and $\kappa(\mathfrak{m})$ is separable over k. Then rank $J_{\mathfrak{m}} = n - \dim A_{\mathfrak{m}}$. Hence A_k is regular at \mathfrak{m}' .

Proposition 16. Let k be a field and A an integral k-algebra of finite type and of dimension n. Let k be the algebraic closure of k and $A_k := A \otimes_k k$. Then A is smooth at $\mathfrak{p} \in \operatorname{Spec} A$ if and only if A_k is regular at every \mathfrak{m}' over \mathfrak{m} .

Proof. Since $\Omega_{A_{\mathbf{k}}/\mathbf{k}} \cong \Omega_{A/\mathbf{k}} \otimes_A A_{\mathbf{k}}$ is free of rank n if and only if $\Omega_{A/\mathbf{k}}$ is free of rank n, we can assume that $\mathbf{k} = \mathbf{k}$. If A is smooth at \mathfrak{p} , then $\Omega_{A_{\mathfrak{p}}/\mathbf{k}} \cong \bigoplus A_{\mathfrak{p}} \mathrm{d} f_i$ is free of rank n. Let $\mathfrak{P}_i \in \mathrm{Der}_{\mathbf{k}}(A_{\mathfrak{m}}, A_{\mathfrak{m}})$ be the derivation defined by $\mathrm{d} f_i \mapsto 1$ and $\mathrm{d} T_j \mapsto 0$ for $j \neq i$. Then we have $\partial_i f_j = \delta_{ij}$ for $1 \leq i, j \leq n$. Then similar to above argument, we have an isomorphism

$$\mathfrak{m}/\mathfrak{m}^2 \xrightarrow{(\partial_1, \dots, \partial_n)^T} \mathbf{k}^n.$$

This shows that A_k is regular at \mathfrak{m} .

Conversely, suppose $A_{\mathbf{k}}$ is regular at \mathfrak{m} . Note that $\mathfrak{m}/\mathfrak{m}^2 \to \Omega_{A,\mathbf{k}} \otimes_A \mathbf{k}$ is surjective since $\Omega_{A_{\mathbf{k}}/\mathbf{k}} = 0$. Then by Nakayama's lemma, $\Omega_{A_{\mathfrak{m}}/\mathbf{k}}$ is generated by n elements as an $A_{\mathfrak{m}}$ -module.

Note that $\dim_{\mathscr{K}(A)} \Omega_{\mathscr{K}(A)/\mathsf{k}} = \operatorname{trdeg}(\mathscr{K}(A)/\mathsf{k}) = \dim A_{\mathfrak{m}} = n$. Yang: By induction on transcendental degree.

Yang: By Nakayama's Lemma, $\Omega_{A_{\mathfrak{m}}/k}$ is free of rank n as an $A_{\mathfrak{m}}$ -module.

Yang: To be completed.

Example 17. Let k be an imperfect field of characteristic p > 2. Suppose $\alpha = \beta^p \in \mathsf{k}$ and β is not in k. Let $A = \mathsf{k}[x,y]/(x^2 - y^p - \alpha)$ and $\mathfrak{m} = (x,y^p - \alpha) = (x)$. Note that \mathfrak{m} is principal, so A is regular at \mathfrak{m} . However,

$$J_{\mathfrak{m}} = \left(\frac{\partial}{\partial x}(x^2 - y^p - \alpha), \frac{\partial}{\partial y}(y^p - \alpha)\right) = (2x, 0) = (0, 0) \in M_{1 \times 2}(\kappa(\mathfrak{m})).$$

Thus, A is not smooth at \mathfrak{m} . From the view of differentials, we have

$$\Omega_{A_{\mathfrak{m}}/k} = A_{\mathfrak{m}} dx \oplus A_{\mathfrak{m}} dy / A_{\mathfrak{m}} \cdot x dx = \kappa(\mathfrak{m}) dx \oplus A_{\mathfrak{m}} dy,$$

which is not free as an $A_{\mathfrak{m}}$ -module.