# BANA 6043 - 003 Stat Computing - Project

Name: Jeevan Sai Reddy Beedareddy

UCID: M12368208

Mail ID: <u>beedarjy@mail.uc.edu</u>

**Background**: Flight landing.

Motivation: To reduce the risk of landing overrun.

Goal: To study what factors and how they would impact the landing distance of a commercial flight.

# Executive Summary:

1. Landing Distance is majorly impacted by Speed\_Ground, Speed\_Air and Height. Speed\_Air has around 75% missing values

- 2. Landing Distance also varies based on type of aircraft. For Airbus, mean Landing Distance is around 1300 meters where as for Boeing mean Landing Distance is around 1750. This difference of around 450 between two is statistically significant
- 3. Since, Landing Distance is dependent upon type of aircraft as well, we decided to build on two models one for Airbus and the other for Boeing. Number of observations for each aircraft is also almost same and hence building two models might not create any biases
- 4. Below is the final model equation for Airbus

Distance = -2522.89061 + 42.55420\*speed\_ground + 14.09773\*height

5. Below is the final model equation for Boeing

Distance = -2008.46764 + 42.28538\*speed\_ground + 14.19682\*height

### Questions mentioned:

- 1. How many observations (flights) do you use to fit your final model? If not all 950 flights, why?
- A. There were 831 observations in the final model. This was further split in to Airbus and Boeing. Removing exact duplicates reduced number of observations from 950 to 850 Removing observations with abnormal values reduced number of observations from 850 to 831. Given there were very few abnormal values, treating them as an error and removing will not affect model
- 2. What factors and how they impact the landing distance of a flight?
- A. In the final model, we chose Speed\_Ground and height to be impacting Landing Distance. Increment in Speed\_Ground by around 42 MPH would increase landing distance by 1 meter and increment in height by around 14 meters would increase landing distance by 1 meter
- 3. Is there any difference between the two makes Boeing and Airbus?
- A. Yes. There is difference between two makes. For Airbus, mean Landing Distance is around 1300 meters where as for Boeing mean Landing Distance is around 1750. This difference of around 450 between two is statistically significant

# Chapter 1: Data Preparation and Data Cleaning:

After defining business outcomes, first step is to prepare data suited for analysis. In order to do the same we need to follow below steps:

- a. Combine data sets: Aggregate data from multiple sources and create one master data set. Call it as analytical data
- b. Completeness check: Understand if there are any missing values in the data
- c. Validity check: Understand if there are any abnormalities in the data
- d. Clean data: Handle missing values and abnormalities
- e. Summarize distribution

### Part 1: Combine data sets:

**Goal:** We have two data sets provided FAA1 and FAA2. Need to combine the same and create one master dataset.

### **Process:**

- 1. Load FAA1 dataset. There are 8 variables in the same. Check for any exact duplicates and remove exact duplicates i.e. if there are any two rows having exactly same values across all variables, keep only one row. This need to be done because having duplicate values might impact analysis results. Call it as FAA1 DATA.
- 2. Load FAA2 dataset. There are 7 variables in the same. Check for any exact duplicates and remove exact duplicates i.e. if there are any two rows having exactly same values across all variables, keep only one row. This need to be done because having duplicate values might impact analysis results. Call it as FAA2\_DATA. Please note that there were around 50 observations where there was no data for any variable
- 3. Combine FAA1 and FAA2. In order to concatenate FAA1 and FAA2, generally it is preferred to have same number of variables in both data sets. Since, we don't have duration in FAA2 data set, create one temporary dataset from FFA1 by removing duration and concatenate this temporary dataset with FAA2. Call this concatenated dataset to be FAA1\_FAA2\_COMBINED. Also remove any exact duplicates from FAA1\_FAA2\_COMBINED. This step would give us around 851 observations and 7 variables
- 4. Attach duration to FAA1\_FAA2\_COMBINED: Create a primary key in FAA1\_DATA (this has duration variable) by concatenating all variables other than duration i.e. AIRCRAFT, NO\_PASG, SPEED\_GROUND, SPEED\_AIR, HEIGHT, PITCH, DISTANCE. Create another temporary dataset from FAA1\_DATA with only primary key and duration. Call it as FFA1\_DATA\_PRIM\_KEY. Similarly create primary key for FAA1\_FAA2\_COMBINED by concatenating variables AIRCRAFT, NO\_PASG, SPEED\_GROUND, SPEED\_AIR, HEIGHT, PITCH, DISTANCE. Merge FAA1\_FAA2\_COMBINED and FAA1\_DATA\_PRIM\_KEY by primary key created. Call it as FAA1\_FAA2\_COMBINED\_V3
- 5. Remove rows where all observations have missing values. Call it as FAA1\_FAA2\_N\_MISS. This would give us 850 observations and 9 variables including primary key created.

### SAS Code:

```
/*------- Chapter 1: Importing data in to SAS and combining datasets ------*/
/*-----*/
proc import out=FAA1 DATA
     datafile="/folders/myfolders/STAT Computing/FAA1.xls"
     dbms=xls replace;
 sheet='FAA1';
run;
PROC PRINT DATA=FAA1 DATA;
RUN;
/*-----There might be cases where exact duplicates are present ------*/
/*-----*/ Remove exact duplicates from imported data set -----*/
proc sort data=FAA1 DATA
 out=FAA1_DATA
 NODUPRECS;
 by aircraft duration no pasg speed ground speed air height pitch distance;
run;
PROC PRINT DATA=FAA1 DATA;
RUN;
/*----*/
proc import out=FAA2 DATA
     datafile="/folders/myfolders/STAT Computing/FAA2.xls"
     dbms=xls replace;
 sheet='FAA2';
run;
PROC PRINT DATA=faa2_data;
RUN;
/*-----*/
Remove exact duplicates from imported data set -----*/
proc sort data=FAA2 DATA
 out=FAA2 DATA
 NODUPRECS;
 by aircraft no_pasg speed_ground speed_air height pitch distance;
PROC PRINT DATA=FAA2 DATA;
RUN;
/*----- Upon observing, FAA2 doesn't have duration. Hence first let's combine
```

```
data sets with out duration column -----*/
/*----*/
DATA FAA1_DATA_V2;
SET FAA1_DATA;
DROP DURATION;
RUN;
PROC PRINT DATA=faa1_data_v2;
RUN;
/*----- Combining FAA1 and FAA2 data sets. Here we are doing simple concatenation -----*/
DATA FAA1 FAA2 COMBINED;
     SET FAA1_DATA_V2 FAA2_DATA;
RUN;
PROC PRINT DATA=FAA1_FAA2_COMBINED;
RUN;
/*-----*/
proc sort data=FAA1_FAA2_COMBINED
 out=FAA1 FAA2 COMBINED
 NODUPRECS;
 by aircraft no_pasg speed_ground speed_air height pitch distance;
PROC PRINT DATA=FAA1 FAA2 COMBINED;
RUN;
/*-----*/
DATA FAA1_FAA2_COMBINED_V2;
SET FAA1_FAA2_COMBINED;
length PRIM KEY $ 5000;
PRIM_KEY = catx('__', AIRCRAFT, NO_PASG, SPEED_GROUND, SPEED_AIR, HEIGHT, PITCH, DISTANCE);
put all;
RUN;
PROC PRINT DATA=faa1_faa2_combined_v2;
RUN;
/*----- There is duration column in FAA1_DATA. Need to extract the same
and join back to above created data set -----*/
DATA FAA1_DATA_PRIM_KEY;
SET FAA1 DATA;
length PRIM KEY $ 5000;
```

```
PRIM_KEY = catx('__', AIRCRAFT, NO_PASG, SPEED_GROUND, SPEED_AIR, HEIGHT, PITCH, DISTANCE);
put _all_;
KEEP PRIM_KEY DURATION;
RUN;
PROC PRINT DATA = FAA1 DATA PRIM KEY;
RUN;
/*-----*/
PROC SORT DATA=faa1_faa2_combined_v2;
BY PRIM KEY;
RUN;
PROC SORT DATA=faa1 data prim key;
BY PRIM_KEY;
RUN;
/*-----*/
DATA FAA1_FAA2_COMBINED_V3;
MERGE FAA1_FAA2_COMBINED_V2 FAA1_DATA_PRIM_KEY;
BY PRIM_KEY;
RUN;
PROC PRINT DATA=faa1_faa2_combined_v3;
RUN;
/*-----*/
DATA FAA1 FAA2 N MISS;
SET FAA1 FAA2 COMBINED V3;
WHERE PRIM_KEY ^= '.__._.';
RUN;
PROC PRINT DATA=faa1_faa2_n_miss;
RUN;
```

# SAS Output:

Output dataset: FAA1\_FAA2\_N\_MISS

Number of Variables: 9 Number of Observations: 850

Snapshot of output:

| Obs | aircraft | no_pasg | speed_ground | speed_air    | height       | pitch        | distance     | PRIM_KEY                                        |
|-----|----------|---------|--------------|--------------|--------------|--------------|--------------|-------------------------------------------------|
| 1   | airbus   | 46      | 104.07757658 | 103.40921036 | 19.7157721   | 4.1043931104 | 2494.8046454 | airbus46104.07757658103.4092103619.71577214.10  |
| 2   | airbus   | 46      | 40.801786477 | -            | 24.400127629 | 3.9682093233 | 620.09051196 | airbus4640.80178647724.4001276293.9682093233_   |
| 3   | airbus   | 48      | 61.570704648 | -            | 21.785707448 | 4.3511947442 | 560.53392302 | airbus4861.57070464821.7857074484.3511947442_   |
| 4   | airbus   | 50      | 84.219908138 | -            | 32.542946798 | 3.318828622  | 1485.4400456 | airbus5084.21990813832.5429467983.318828622     |
| 5   | airbus   | 51      | 62.484050366 |              | 26.53804471  | 3.8228939729 | 749.48028928 | airbus5162.48405036626.538044713.8228939729     |
| 6   | airbus   | 51      | 83.630692914 |              | 23.302265488 | 4.5566399591 | 1460.4181796 | airbus5183.63069291423.3022654884.5566399591_   |
| 7   | airbus   | 52      | 72.036625004 |              | 24.740341243 | 3.6279838777 | 648.02156805 | airbus5272.03662500424.7403412433.6279838777_   |
| 8   | airbus   | 52      | 73.761115944 |              | 9.688307724  | 3.3585464091 | 554.16098701 | airbus5273.7611159449.6883077243.3585464091     |
| 9   | airbus   | 52      | 89.577029476 |              | 35.463228123 | 3.834651479  | 1390.8995718 | airbus5289.57702947635.4632281233.834651479     |
| 10  | airbus   | 54      | 50.903105868 |              | 35.729484049 | 4.5440403076 | 597.98554514 | airbus5450.90310586835.7294840494.5440403076_   |
| 11  | airbus   | 54      | 67.456935552 |              | 41.334169856 | 3.8581993926 | 877.06227359 | airbus5467.45693555241.3341698563.8581993926_   |
| 12  | airbus   | 54      | 80.24779883  |              | 48.426731903 | 3.289757889  | 1303.6900358 | airbus5480.2477988348.4267319033.2897578891     |
| 13  | airbus   | 54      | 83.071912777 |              | 37.317578277 | 3.4734612582 | 1338.6101651 | airbus5483.07191277737.3175782773.4734612582_   |
| 14  | airbus   | 54      | 86.425045711 | -            | 14.748572684 | 3.5418381552 | 1476.177543  | airbus5486.42504571114.7485726843.5418381552_   |
| 15  | airbus   | 55      | 68.751529748 | -            | 48.277120042 | 4.2626359629 | 1079.1170993 | airbus5568.75152974848.2771200424.2626359629_   |
| 16  | airbus   | 56      | 73.974086384 | -            | 32.455027763 | 3.0805850946 | 769.49665785 | airbus5673.97408638432.4550277633.0805850946_   |
| 17  | airbus   | 56      | 86.528840828 | -            | 40.94901507  | 3.7270256473 | 1437.6338566 | airbus5686.52884082840.949015073.7270256473     |
| 18  | airbus   | 57      | 88 418098446 |              | 45 02439155  | 3 7036944046 | 1616 3360538 | airbus 57 88 418098446 45 02439155 3 7036944046 |

# Part 2: Completeness Check:

**Goal:** In this step we would be checking for missing values amongst all variables. PROC UNIVARIATE can be used to check for missing values for all numerical variables. Use PROC FREQ to check for missing values for categorical variables. There is only one categorical variable i.e. AIRCRAFT.

### SAS Code:

# SAS Output:

Only Speed\_Air and Duration have missing values. All other variables don't have any. Below is the part of output where missing values are presented

# Speed\_Air:

| Missing Values |       |            |             |  |  |  |  |
|----------------|-------|------------|-------------|--|--|--|--|
| Missing        |       | Percent Of |             |  |  |  |  |
| Value          | Count | All Obs    | Missing Obs |  |  |  |  |
|                | 642   | 75.53      | 100.00      |  |  |  |  |

# Duration:

| Missing Values |       |            |             |  |  |  |  |  |
|----------------|-------|------------|-------------|--|--|--|--|--|
| Missing        |       | Percent Of |             |  |  |  |  |  |
| Value          | Count | All Obs    | Missing Obs |  |  |  |  |  |
|                | 50    | 5.88       | 100.00      |  |  |  |  |  |

Frequency distribution for aircraft:

| TI  |    | -         | ъ. |      |      |
|-----|----|-----------|----|------|------|
| Ine | rк | $-\omega$ | PI | oced | IUre |

|          | aircraft  |         |                      |                       |  |  |  |  |  |
|----------|-----------|---------|----------------------|-----------------------|--|--|--|--|--|
| aircraft | Frequency | Percent | Cumulative Frequency | Cumulative<br>Percent |  |  |  |  |  |
| airbus   | 450       | 52.94   | 450                  | 52.94                 |  |  |  |  |  |
| boeing   | 400       | 47.06   | 850                  | 100.00                |  |  |  |  |  |

# Part 3: Validity Check

Goal: Check for any abnormalities in the data. Below are rules for checking abnormalities

- 1. Duration needs to greater than 40 mins. Else abnormal
- 2. Ground speed needs to be in the range of 30 140 MPH. Else abnormal
- 3. Air speed needs to be in the range of 30 140 MPH. Else abnormal
- 4. Height needs to grater than 6 meters. Else abnormal
- 5. Distance needs to be less than 6000 feet. Else abnormal

### SAS Code:

```
/*-----*/ Using limits provided, checking for abnormalities in data -----*/
/*----- Since speed_air has so many missing values, make sure that only non-missing
values are taken in to consideration -----*/
DATA FAA1 FAA2 N MISS;
SET FAA1 FAA2 N MISS;
IF DURATION > 40 OR (DURATION = .) THEN DURATION MEASURE = 'NORMAL';
ELSE DURATION MEASURE = 'ABNORMAL';
IF SPEED_GROUND >= 30 AND SPEED_GROUND <= 140 THEN SPEED_GROUND_MEASURE = 'NORMAL';
ELSE SPEED GROUND MEASURE = 'ABNORMAL';
IF (SPEED_AIR >= 30 AND SPEED_AIR <= 140) OR (SPEED_AIR = .) THEN SPEED_AIR_MEASURE =
'NORMAL':
ELSE SPEED_AIR_MEASURE = 'ABNORMAL';
IF HEIGHT >= 6 THEN HEIGHT MEASURE = 'NORMAL';
ELSE HEIGHT MEASURE = 'ABNORMAL';
IF DISTANCE <= 6000 THEN DISTANCE MEASURE = 'NORMAL';
ELSE DISTANCE MEASURE = 'ABNORMAL';
RUN;
PROC PRINT DATA=FAA1_FAA2_N_MISS;
RUN:
PROC FREQ DATA=FAA1 FAA2 N MISS;
TABLES DURATION_MEASURE SPEED_GROUND_MEASURE SPEED_AIR_MEASURE HEIGHT_MEASURE
DISTANCE MEASURE;
RUN;
```

### SAS Output:

Every variable has few abnormalities. Percentage of abnormalities is very minimal. Please note that and Duration Air Speed also have missing values. They need not be considered abnormal as per above definition.

# The FREQ Procedure

| DURATION_MEASURE | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|------------------|-----------|---------|-------------------------|-----------------------|
| ABNORM           | 5         | 0.59    | 5                       | 0.59                  |
| NORMAL           | 845       | 99.41   | 850                     | 100.00                |

| SPEED_GROUND_MEASURE | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----------------------|-----------|---------|-------------------------|-----------------------|
| ABNORM               | 3         | 0.35    | 3                       | 0.35                  |
| NORMAL               | 847       | 99.65   | 850                     | 100.00                |

| SPEED_AIR_MEASURE | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|-------------------|-----------|---------|-------------------------|-----------------------|
| ABNORM            | 1         | 0.12    | 1                       | 0.12                  |
| NORMAL            | 849       | 99.88   | 850                     | 100.00                |

| HEIGHT_MEASURE | Frequency | Percent | Cumulative Frequency | Cumulative<br>Percent |
|----------------|-----------|---------|----------------------|-----------------------|
| ABNORM         | 10        | 1.18    | 10                   | 1.18                  |
| NORMAL         | 840       | 98.82   | 850                  | 100.00                |

| DISTANCE_MEASURE | Frequency | Percent | Cumulative Frequency | Cumulative<br>Percent |
|------------------|-----------|---------|----------------------|-----------------------|
| ABNORM           | 2         | 0.24    | 2                    | 0.24                  |
| NORMAL           | 848       | 99.76   | 850                  | 100.00                |

Below are sample statistics before handling abnormalities and missing values:

| Variable     | Count | Mean     | Standard  | Minimum  | Maximum   | Count   | %Missing |
|--------------|-------|----------|-----------|----------|-----------|---------|----------|
|              |       |          | Deviation |          |           | Missing |          |
| distance     | 850   | 1526     | 928.56008 | 34.08078 | 6533      | 0       | 0.00%    |
| no_pasg      | 850   | 60.10353 | 7.49314   | 29.00000 | 87.00000  | 0       | 0.00%    |
| speed_ground | 850   | 79.45232 | 19.05949  | 27.73572 | 141.21864 | 0       | 0.00%    |
| speed_air    | 208   | 103.7977 | 10.25904  | 90.00286 | 141.72494 | 642     | 75.53%   |
|              |       | 2        |           |          |           |         |          |
| height       | 850   | 30.14422 | 10.28773  | -3.54625 | 59.94596  | 0       | 0.00%    |
| pitch        | 850   | 4.00936  | 0.52883   | 2.28448  | 5.92678   | 0       | 0.00%    |
| duration     | 800   | 154.0065 | 49.25923  | 14.76421 | 305.62171 | 50      | 5.88%    |
|              |       | 4        |           |          |           |         |          |

# Part 4: Handle abnormalities and missing values

**Goal:** Since we found there are few abnormalities in our variables, need to handle the same. Also instances of abnormalities are very less such and hence can remove the same:

Only duration and Air Speed has missing values. Duration has around 5% and Air speed has around 75% missing values. For Duration, we can handle it by replacing missing values with median of non-missing values. For Air Speed, since there are 75% missing values, we need not handle the same and have it in current form

### SAS Code:

```
/*-----*/ Using limits provided, checking for abnormalities in data -----*/
/*----- Since speed air has so many missing values, make sure that only non missing
values are taken in to consideration -----*/
DATA FAA1 FAA2 N MISS;
SET FAA1 FAA2 N MISS;
IF DURATION > 40 OR (DURATION = .) THEN DURATION_MEASURE = 'NORMAL';
ELSE DURATION_MEASURE = 'ABNORMAL';
IF SPEED_GROUND >= 30 AND SPEED_GROUND <= 140 THEN SPEED_GROUND_MEASURE = 'NORMAL';
ELSE SPEED_GROUND_MEASURE = 'ABNORMAL';
IF (SPEED AIR >= 30 AND SPEED AIR <= 140) OR (SPEED AIR = .) THEN SPEED AIR MEASURE =
'NORMAL';
ELSE SPEED AIR MEASURE = 'ABNORMAL';
IF HEIGHT >= 6 THEN HEIGHT MEASURE = 'NORMAL';
ELSE HEIGHT MEASURE = 'ABNORMAL';
IF DISTANCE <= 6000 THEN DISTANCE MEASURE = 'NORMAL';
ELSE DISTANCE_MEASURE = 'ABNORMAL';
PROC PRINT DATA=FAA1_FAA2_N_MISS;
RUN;
```



# Output:

We can do PROC UNIVARIATE to check if there are still missing values. Now, there shouldn't be any missing values in DURATION. Also total number of observations would be around 831 Below are sample statistics after handling abnormalities and missing values:

| Variable     | Count | Mean     | Standard  | Minimum  | Maximum   | Count   | %Missing |
|--------------|-------|----------|-----------|----------|-----------|---------|----------|
|              |       |          | Deviation |          |           | Missing |          |
| distance     | 831   | 1522     | 896.33815 | 41.72231 | 5382      | 0       | 0.00%    |
| no_pasg      | 831   | 60.05535 | 7.49132   | 29.00000 | 87.00000  | 0       | 0.00%    |
| speed_ground | 831   | 79.54270 | 18.73568  | 33.57410 | 132.78468 | 0       | 0.00%    |
| speed_air    | 831   | 103.4850 | 9.73628   | 90.00286 | 132.91146 | 642     | 77.25%   |
|              |       | 4        |           |          |           |         |          |
| height       | 831   | 30.45787 | 9.78481   | 6.22752  | 59.94596  | 0       | 0.00%    |
| pitch        | 831   | 4.00516  | 0.52657   | 2.28448  | 5.92678   | 0       | 0.00%    |
| duration     | 831   | 154.7461 | 46.87113  | 41.94937 | 305.62171 | 0       | 5.88%    |
|              |       | 7        |           |          |           |         |          |

# Part 5: Summarize distribution

Goal: Plot distributions to get some sense of data

This can be done with PROC Univariate. Please check for normality of data and also box plots

# SAS Code:

PROC UNIVARIATE data= FAA1\_FAA2\_N\_MISS\_V3 PLOT; RUN;

# Output:

For Distance is skewed towards right because of presence of very high distances. Also remember that we did handle for abnormalities in distance. We need not treat for outliers given that there is a possibility of high distances.



All other variables are having almost normal distribution

# Chapter 2: Exploratory Data Analysis

After cleaning data, we need to perform Exploratory Data Analysis to get insights regarding data.

# Part 1: Bi-Variate Analysis

Goal: To understand relationship between landing distance and all independent variables

### SAS Code:

```
/*----- Plotting landing distance against all independent variables ------*/
title "Landing Distance vs No of passengers";
proc plot data=FAA1_FAA2_N_MISS_V3;
plot distance*no pasg = '*';
run;
title "Landing Distance vs Speed Ground";
proc plot data=FAA1_FAA2_N_MISS_V3;
plot distance*speed ground = '*';
run;
title "Landing Distance vs Speed Air";
proc plot data=FAA1 FAA2 N MISS V3;
plot distance*speed air = '*';
run;
title "Landing Distance vs Height";
proc plot data=FAA1_FAA2_N_MISS_V3;
plot distance*height = '*';
run;
title "Landing Distance vs Pitch";
proc plot data=FAA1_FAA2_N_MISS_V3;
plot distance*pitch = '*';
run;
title "Landing Distance vs Duration";
proc plot data=FAA1_FAA2_N_MISS_V3;
plot distance*duration = '*';
run;
```

# Output:

# Landing Distance vs No of Passengers: There is no evident linear relationship



# Landing Distance vs Speed Ground: There is evident linear relationship



# Landing Distance vs Speed Air: There is evident linear relationship for values that are not missing



# Landing Distance vs Height: There is no evident linear relationship



# Landing Distance vs Pitch: There is no evident linear relationship Landing Distance vs Pitch

Sunday, October 7, 2018 02:44:16 AM 1



.....

# Landing Distance vs Duration: There is no evident linear relationship



NOTE: 242 obs hidden.

# Part 2: To understand if make of aircraft has any impact on landing distance

**Goal:** To study landing distance by aircraft and to conclude impact of the same. Here we will be checking for box-plot as well as performing two sample t-test

### SAS Code:

```
/*--- To plot box-plot of distance across types of aircrafts ------*/
PROC BOXPLOT DATA=FAA1_FAA2_COMBINED_V3;
PLOT DISTANCE*AIRCRAFT;
TITLE TO UNDERSTAND DIFFERENCES BETWEEN AIRBUS AND BOEING;
RUN;

/*--- Performing Two Sample T-Test ------*/
PROC TTEST DATA=FAA1_FAA2_COMBINED_V3;
CLASS AIRCRAFT;
VAR DISTANCE;
RUN;
```

# Output:

### TO UNDERSTAND DIFFERENCES BETWEEN AIRBUS AND BOEING



# The TTEST Procedure

Variable: distance (distance)

| aircraft   | Method        | N   | Mean   | Std Dev | Std Err | Minimum | Maximum |
|------------|---------------|-----|--------|---------|---------|---------|---------|
| airbus     |               | 450 | 1318.2 | 792.3   | 37.3516 | 34.0808 | 4896.3  |
| boeing     |               | 400 | 1759.8 | 1012.2  | 50.6123 | 371.3   | 6533.0  |
| Diff (1-2) | Pooled        |     | -441.7 | 902.5   | 62.0193 |         |         |
| Diff (1-2) | Satterthwaite |     | -441.7 |         | 62.9027 |         |         |

| aircraft   | Method        | Mean   | 95% CL Mean |        | Std Dev | 95%<br>CL Std Dev |        |
|------------|---------------|--------|-------------|--------|---------|-------------------|--------|
| airbus     |               | 1318.2 | 1244.8      | 1391.6 | 792.3   | 743.7             | 847.8  |
| boeing     |               | 1759.8 | 1660.3      | 1859.3 | 1012.2  | 946.6             | 1087.7 |
| Diff (1-2) | Pooled        | -441.7 | -563.4      | -319.9 | 902.5   | 861.5             | 947.6  |
| Diff (1-2) | Satterthwaite | -441.7 | -565.1      | -318.2 |         |                   |        |

| Method        | Variances | DF     | t Value | Pr >  t |
|---------------|-----------|--------|---------|---------|
| Pooled        | Equal     | 848    | -7.12   | <.0001  |
| Satterthwaite | Unequal   | 753.38 | -7.02   | <.0001  |

| Equality of Variances |        |        |         |        |  |  |  |  |
|-----------------------|--------|--------|---------|--------|--|--|--|--|
| Method                | Num DF | Den DF | F Value | Pr > F |  |  |  |  |
| Folded F              | 399    | 449    | 1.63    | <.0001 |  |  |  |  |

From box-plot as well as two sample T-Test, it is evident there is a difference between landing distances of two types of air-crafts. Boeing has high landing distances and also it is statistically significant from Two sample T-Test

Since it is evident that two types of aircrafts have different landing distances, we would be required two separate models for each type of air-craft. Also, both types of aircrafts have around similar number of observations. Hence two models might not create any biases in the output

# Chapter 3: Model Iterations and Model Selection

**Goal:** From chapter 2, we concluded that we would be building two models each for Airbus and Boeing. In order to do the same, we need to iterate on first few basic models and select the one that fits best in the end.

# Part 1: Check for Correlation

**Goal:** Checking for correlation helps us understand impact of all dependent variables on landing distance. Also, there has to minimum / zero correlation amongst independent variables. Building the correlation matrix also helps us identify such cases.

### For Airbus:

### SAS Code:

```
/*--- Generating correlation matrix for Airbus -----*/
PROC CORR DATA=FAA1_FAA2_N_MISS_V3;
VAR DISTANCE NO_PASG SPEED_GROUND SPEED_AIR HEIGHT PITCH DURATION;
WHERE AIRCRAFT = 'airbus';
RUN;
```

# SAS Output:

| Pearson Correlation Coefficients Prob >  r  under H0: Rho=0 Number of Observations |          |                  |              |               |          |          |          |  |  |
|------------------------------------------------------------------------------------|----------|------------------|--------------|---------------|----------|----------|----------|--|--|
|                                                                                    | distance | no_pasg          | speed_ground | speed_air     | height   | pitch    | duration |  |  |
| distance                                                                           | 1.00000  | -0.00732         | 0.90520      | 0.96411       | 0.14494  | 0.07330  | -0.07420 |  |  |
| distance                                                                           |          | 0.8777           | <.0001       | <.0001        | 0.0022   | 0.1230   | 0.1185   |  |  |
|                                                                                    | 444      | 444              | 444          | 85            | 444      | 444      | 444      |  |  |
| no pasg                                                                            | -0.00732 | 1.00000          | 0.00906      | -0.06372      | 0.02367  | -0.11802 | -0.02323 |  |  |
| no pasg                                                                            | 0.8777   | 11 Day Stockholm | 0.8491       | 0.5623        | 0.6189   | 0.0128   | 0.6254   |  |  |
|                                                                                    | 444      | 444              | 444          | 85            | 444      | 444      | 444      |  |  |
| speed ground                                                                       | 0.90520  | 0.00906          | 1.00000      | 0.98169       | -0.03346 | -0.00493 | -0.05654 |  |  |
| speed ground                                                                       | <.0001   | 0.8491           |              | <.0001        | 0.4819   | 0.9176   | 0.2345   |  |  |
|                                                                                    | 444      | 444              | 444          | 85            | 444      | 444      | 444      |  |  |
| speed air                                                                          | 0.96411  | -0.06372         | 0.98169      | 1.00000       | -0.00546 | 0.00007  | 0.01523  |  |  |
| speed air                                                                          | <.0001   | 0.5623           | <.0001       | 3323232525252 | 0.9604   | 0.9995   | 0.8900   |  |  |
| •                                                                                  | 85       | 85               | 85           | 85            | 85       | 85       | 85       |  |  |
| height                                                                             | 0.14494  | 0.02367          | -0.03346     | -0.00546      | 1.00000  | 0.05128  | -0.01227 |  |  |
| height                                                                             | 0.0022   | 0.6189           | 0.4819       | 0.9604        |          | 0.2809   | 0.7966   |  |  |
|                                                                                    | 444      | 444              | 444          | 85            | 444      | 444      | 444      |  |  |
| pitch                                                                              | 0.07330  | -0.11802         | -0.00493     | 0.00007       | 0.05128  | 1.00000  | -0.04102 |  |  |
| pitch                                                                              | 0.1230   | 0.0128           | 0.9176       | 0.9995        | 0.2809   |          | 0.3885   |  |  |
| •                                                                                  | 444      | 444              | 444          | 85            | 444      | 444      | 444      |  |  |
| duration                                                                           | -0.07420 | -0.02323         | -0.05654     | 0.01523       | -0.01227 | -0.04102 | 1.00000  |  |  |
| duration                                                                           | 0.1185   | 0.6254           | 0.2345       | 0.8900        | 0.7966   | 0.3885   |          |  |  |
|                                                                                    | 444      | 444              | 444          | 85            | 444      | 444      | 444      |  |  |

It is clear that speed\_ground and speed\_air are highly correlated with distance. But speed\_air has only 85 observations and is also highly correlated with speed\_ground. Hence, we can choose only speed\_ground instead of speed\_air.

## For Boeing:

### SAS Code:

/\*--- Generating correlation matrix for Boeing ------\*/
PROC CORR DATA=FAA1\_FAA2\_N\_MISS\_V3;
VAR DISTANCE NO\_PASG SPEED\_GROUND SPEED\_AIR HEIGHT PITCH DURATION;
WHERE AIRCRAFT = 'boeing';
RUN;

# SAS Output:

| Pearson Correlation Coefficients Prob >  r  under H0: Rho=0 Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |              |           |          |          |          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|-----------|----------|----------|----------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | distance | no_pasg  | speed_ground | speed_air | height   | pitch    | duration |  |  |
| distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00000  | -0.01785 | 0.90050      | 0.97760   | 0.06920  | -0.06504 | -0.01064 |  |  |
| distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.7262   | <.0001       | <.0001    | 0.1743   | 0.2017   | 0.8347   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 387      | 387      | 387          | 118       | 387      | 387      | 387      |  |  |
| no pasg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.01785 | 1.00000  | -0.01043     | 0.02104   | 0.07297  | 0.11215  | -0.05091 |  |  |
| no pasq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7262   |          | 0.8379       | 0.8211    | 0.1519   | 0.0274   | 0.3178   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 387      | 387      | 387          | 118       | 387      | 387      | 387      |  |  |
| speed ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.90050  | -0.01043 | 1.00000      | 0.99048   | -0.08263 | -0.04755 | -0.04361 |  |  |
| speed ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <.0001   | 0.8379   |              | <.0001    | 0.1046   | 0.3509   | 0.3922   |  |  |
| The state of the s | 387      | 387      | 387          | 118       | 387      | 387      | 387      |  |  |
| speed_air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97760  | 0.02104  | 0.99048      | 1.00000   | -0.12922 | -0.02499 | 0.05264  |  |  |
| speed air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.0001   | 0.8211   | <.0001       |           | 0.1631   | 0.7882   | 0.5713   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118      | 118      | 118          | 118       | 118      | 118      | 118      |  |  |
| height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06920  | 0.07297  | -0.08263     | -0.12922  | 1.00000  | 0.00492  | 0.03558  |  |  |
| height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1743   | 0.1519   | 0.1046       | 0.1631    |          | 0.9232   | 0.4852   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 387      | 387      | 387          | 118       | 387      | 387      | 387      |  |  |
| pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.06504 | 0.11215  | -0.04755     | -0.02499  | 0.00492  | 1.00000  | -0.02132 |  |  |
| pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2017   | 0.0274   | 0.3509       | 0.7882    | 0.9232   |          | 0.6759   |  |  |
| * Clay cellul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 387      | 387      | 387          | 118       | 387      | 387      | 387      |  |  |
| duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.01064 | -0.05091 | -0.04361     | 0.05264   | 0.03558  | -0.02132 | 1.00000  |  |  |
| duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8347   | 0.3178   | 0.3922       | 0.5713    | 0.4852   | 0.6759   |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 387      | 387      | 387          | 118       | 387      | 387      | 387      |  |  |

It is clear that speed\_ground and speed\_air are highly correlated with distance. But speed\_air has only 118 observations and is also highly correlated with speed\_ground. Hence, we can choose only speed\_ground instead of speed\_air

# Part 2: Model Iterations and Model Selection

In order to finalize on model and final equation, we need to perform few iterations. In each iteration, we will be removing one variable and will be checking for change in R-Square. Adding too many variables which don't contribute to R-Square leads to overfitting. Hence need to keep only variables that would impact R-Square

# For airbus: SAS Code: /\*--- Model Iterations and Selection of Model -----\*/ /\*--- Iter 1 -----\*/

```
PROC REG DATA=FAA1_FAA2_N_MISS_V3;
MODEL DISTANCE = NO_PASG SPEED_GROUND HEIGHT PITCH DURATION;
WHERE AIRCRAFT = 'airbus';
RUN;
/*--- Iter 2 -----*/
PROCREG DATA=FAA1 FAA2 N MISS V3;
MODEL DISTANCE = SPEED_GROUND HEIGHT PITCH DURATION;
WHERE AIRCRAFT = 'airbus';
RUN;
/*--- Iter 3 -----*/
PROC REG DATA=FAA1_FAA2_N_MISS_V3;
MODEL DISTANCE = SPEED GROUND HEIGHT DURATION;
WHERE AIRCRAFT = 'airbus';
RUN;
/*--- Iter 4 -----*/
PROC REG DATA=FAA1_FAA2_N_MISS_V3;
MODEL DISTANCE = SPEED_GROUND HEIGHT;
WHERE AIRCRAFT = 'airbus';
RUN;
/*--- Iter 5 -----*/
PROC REG DATA=FAA1_FAA2_N_MISS_V3;
MODEL DISTANCE = SPEED GROUND;
WHERE AIRCRAFT = 'airbus';
RUN;
```

# SAS Output:

Below is the table explaining variables in each iteration, R-Square

| Iteration Number    | Variables Selected    | R-Square            | Comments                                      |
|---------------------|-----------------------|---------------------|-----------------------------------------------|
| Iter 1              | NO_PASG,              | 0.8553              | In this iteration, we didn't consider         |
|                     | SPEED_GROUND, HEIGHT, |                     | SPPED_AIR owing to high correlation with      |
|                     | PITCH, DURATION       |                     | SPEED_GROUND and high missing values          |
| Iter 2              | SPEED_GROUND HEIGHT   | 0.8552              | Even with removing NO_PASG, R-Square          |
|                     | PITCH DURATION        |                     | didn't change significantly. Hence can filter |
|                     |                       |                     | out NO_PASG                                   |
| Iter 3              | SPEED_GROUND HEIGHT   | 0.8506              | Even with removing PITCH, R-Square didn't     |
|                     | DURATION              |                     | change significantly. Hence can filter out    |
|                     |                       |                     | PITCH                                         |
| <mark>lter 4</mark> | SPEED_GROUND HEIGHT   | <mark>0.8501</mark> | Even with removing DURATION, R-Square         |
|                     |                       |                     | didn't change significantly. Hence can filter |
|                     |                       |                     | out DURATION                                  |

| Iter 5 | SPEED_GROUND | 0.8194 | By removing HEIGHT, R-Square changed      |
|--------|--------------|--------|-------------------------------------------|
|        |              |        | significantly. Hence can't filter out the |
|        |              |        | same                                      |

Hence, we will be choosing ITER 4 and below are few model characteristics

| Root MSE       | 307.26984  | R-Square | 0.8501 |
|----------------|------------|----------|--------|
| Dependent Mean | 1323.31696 | Adj R-Sq | 0.8495 |
| Coeff Var      | 23.21967   |          |        |

| Parameter Estimates                                     |              |   |             |          |        |        |  |  |  |
|---------------------------------------------------------|--------------|---|-------------|----------|--------|--------|--|--|--|
| Variable Label DF Parameter Standard Error t Value Pr > |              |   |             |          |        |        |  |  |  |
| Intercept                                               | Intercept    | 1 | -2522.89061 | 85.19508 | -29.61 | <.0001 |  |  |  |
| speed_ground                                            | speed_ground | 1 | 42.55420    | 0.86152  | 49.39  | <.0001 |  |  |  |
| height                                                  | height       | 1 | 14.09773    | 1.48228  | 9.51   | <.0001 |  |  |  |

For every 42 MPH increment in speed\_ground, distance increases by 1 meter and for every 14 meters increment in height, distance increases by 1 meter.

Hence, final equation for AIRBUS would be

Distance = -2522.89061 + 42.55420\*speed\_ground + 14.09773\*height

```
For Boeing:

SAS Code:

/*--- Iter 1 ------*/

PROC REG DATA=FAA1_FAA2_N_MISS_V3;

MODEL DISTANCE = NO_PASG SPEED_GROUND HEIGHT PITCH DURATION;

WHERE AIRCRAFT = 'boeing';

RUN;

/*--- Iter 2 ------*/

PROC REG DATA=FAA1_FAA2_N_MISS_V3;

MODEL DISTANCE = SPEED_GROUND HEIGHT PITCH DURATION;

WHERE AIRCRAFT = 'boeing';

RUN;

/*--- Iter 3 ---------*/

PROC REG DATA=FAA1_FAA2_N_MISS_V3;
```

```
MODEL DISTANCE = SPEED_GROUND HEIGHT DURATION;
WHERE AIRCRAFT = 'boeing';
RUN;

/*--- Iter 4 -------*/
PROC REG DATA=FAA1_FAA2_N_MISS_V3;
MODEL DISTANCE = SPEED_GROUND HEIGHT;
WHERE AIRCRAFT = 'boeing';
RUN;

/*--- Iter 5 -------*/
PROC REG DATA=FAA1_FAA2_N_MISS_V3;
MODEL DISTANCE = SPEED_GROUND;
WHERE AIRCRAFT = 'boeing';
RUN;
```

# SAS Output:

Below is the table explaining variables in each iteration, R-Square

| Iteration Number | Variables Selected                             | R-Square | Comments                                                                                                            |
|------------------|------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------|
| Iter 1           | NO_PASG, SPEED_GROUND, HEIGHT, PITCH, DURATION | 0.8330   | In this iteration, we didn't consider SPPED_AIR owing to high correlation with SPEED_GROUND and high missing values |
| Iter 2           | SPEED_GROUND HEIGHT<br>PITCH DURATION          | 0.8327   | Even with removing NO_PASG, R-Square didn't change significantly. Hence can filter out NO_PASG                      |
| Iter 3           | SPEED_GROUND HEIGHT<br>DURATION                | 0.8322   | Even with removing PITCH, R-Square didn't change significantly. Hence can filter out PITCH                          |
| Iter 4           | SPEED_GROUND HEIGHT                            | 0.8317   | Even with removing DURATION, R-Square didn't change significantly. Hence can filter out DURATION                    |
| Iter 5           | SPEED_GROUND                                   | 0.8109   | By removing HEIGHT, R-Square changed significantly. Hence can't filter out the same                                 |

Hence, we will be choosing ITER 4 and below are few model characteristics

| Root MSE       | 392.36824  | R-Square | 0.8317 |
|----------------|------------|----------|--------|
| Dependent Mean | 1750.98330 | Adj R-Sq | 0.8308 |
| Coeff Var      | 22.40845   |          |        |

| Parameter Estimates |              |    |                       |                   |         |         |
|---------------------|--------------|----|-----------------------|-------------------|---------|---------|
| Variable            | Label        | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |
| Intercept           | Intercept    | 1  | -2008.46764           | 104.75662         | -19.17  | <.0001  |
| speed_ground        | speed_ground | 1  | 42.28538              | 0.97362           | 43.43   | <.0001  |
| height              | height       | 1  | 14.19682              | 2.06276           | 6.88    | <.0001  |

Hence final equation for BOEING would be

Distance = -2008.46764 + 42.28538\*speed\_ground + 14.19682\*height