Federated Learning with Partial Client Participation

July 26, 2021

Let $\Delta w_t^{(i)} = \frac{1}{\eta}(w_t - w_{t,\tau}^{(i)})$ be the update sent by node i at time t. Let p_i be the probability with which the i-th node sends its update. Let $\mathcal{A}(t)$ be the set of active clients at round t. We study the following setups:

i) FedAvg(Unbiased) or FedAvg(Importance Sampling)

$$G_t = \frac{1}{n} \sum_{i \in \mathcal{A}(t)} \frac{\Delta w_t^{(i)}}{p_i}$$

ii) MIFA

$$G_t^{(i)} = \begin{cases} \Delta w_t^{(i)}, & \text{if } i \in \mathcal{A}(t) \\ G_{t-1}^{(i)} & \text{otherwise} \end{cases}$$

$$G_t = \frac{1}{n} \sum_{i \in [n]} G_t^{(i)}$$

Note that in this case $\mathbb{E}\left[G_t^{(i)}\right] \neq \Delta w_t^{(i)}$

iii) Unbiased MIFA or U-MIFA

$$G_t^{(i)} = \begin{cases} \frac{1}{p_i} \Delta w_t^{(i)} - \left(\frac{1}{p_i} - 1\right) G_{t-1}^{(i)}, & \text{if } i \in \mathcal{A}(t) \\ G_{t-1}^{(i)} & \text{otherwise} \end{cases}$$

$$G_t = \frac{1}{n} \sum_{i \in [n]} G_t^{(i)}$$

Note that in this case $\mathbb{E}\left[G_t^{(i)}\right] = \Delta w_t^{(i)}$.

Simple Quadratic Experiment

10 clients, $p_i = 0.1$, $\eta = 0.02$.

Q) Can we speed things up with momentum? iv) MIFAm

$$G_t^{(i)} = \begin{cases} \Delta w_t^{(i)}, & \text{if } i \in \mathcal{A}(t) \\ G_{t-1}^{(i)} & \text{otherwise} \end{cases}$$

$$G_t = \frac{1}{n} \sum_{i \in [n]} G_t^{(i)}$$

$$v_t = \beta v_{t-1} + G_t$$

$$w_t = w_{t-1} - \eta v_t$$

v) U-MIFAm

$$\begin{split} G_t^{(i)} &= \begin{cases} \frac{1}{p_i} \Delta w_t^{(i)} - \left(\frac{1}{p_i} - 1\right) G_{t-1}^{(i)}, & \text{if } i \in \mathcal{A}(t) \\ G_{t-1}^{(i)} & \text{otherwise} \end{cases} \\ G_t &= \frac{1}{n} \sum_{i \in [n]} G_t^{(i)} \\ v_t &= \beta v_{t-1} + G_t \\ w_t &= w_{t-1} - \eta v_t \end{split}$$

Empirical results suggest that U-MIFAm works better in practice.

Experiment on simple quadratic

Experiment on Logistic Regression:

Objective:

$$f_i(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$
 (1)

Assumption:Bounded client variance

$$\left\|\nabla f_i(w_t) - \nabla f(w_t)\right\|^2 \le \sigma_G^2$$

i) Non-zero error floor for Partial Client Participation:

$$G_t = \frac{1}{n} \sum_{i \in \mathcal{A}(t)} \frac{\nabla f_i(w_t)}{p}$$

$$f(w_{t+1}) - f(w_t) \leq \underbrace{-\eta \mathbb{E}\left[\langle \nabla f(w_t), G_t \rangle\right]}_{T_1} + \underbrace{\frac{\eta^2 L}{2} \mathbb{E}\left[\|G_t\|^2\right]}_{T_2}$$

$$\leq -\eta \langle \nabla f(w_t), \mathbb{E}\left[G_t\right] \rangle + \frac{\eta^2 L}{2} \mathbb{E}\left[\|G_t\|^2\right]$$

$$= -\eta \langle \nabla f(w_t), \nabla f(w_t) \rangle + \frac{\eta^2 L}{2} \mathbb{E}\left[\|G_t\|^2\right]$$

$$= -\eta \|\nabla f(w_t)\|^2 + \frac{\eta^2 L}{2} \left[\|\nabla f(w_t)^2\|^2 + \frac{1}{n^2} \left(\frac{1}{p} - 1\right) \sum_{i=1}^n \|\nabla f_i(w_t)\|^2\right]$$

$$= -\eta \|\nabla f(w_t)\|^2 + \frac{\eta^2 L}{2} \left[\|\nabla f(w_t)^2\|^2 + \frac{1}{n^2} \left(\frac{1}{p} - 1\right) \sum_{i=1}^n \|\nabla f_i(w_t) - \nabla f(w_t) + \nabla f(w_t)\|^2\right]$$

$$\leq -\eta \|\nabla f(w_t)\|^2 + \frac{\eta^2 L}{2} \left[\|\nabla f(w_t)^2\|^2 + \frac{2}{n} \left(\frac{1}{p} - 1\right) \sigma_G^2 + \frac{2}{n} \left(\frac{1}{p} - 1\right) \|\nabla f(w_t)\|^2\right]$$

$$= -\eta \|\nabla f(w_t)\|^2 \left(1 - \frac{\eta L}{2} (1 + c)\right) + \frac{\eta^2 Lc}{2} \sigma_G^2$$

$$\leq -\frac{\eta}{2} \|\nabla f(w_t)\|^2 + \frac{\eta^2 Lc}{2} \sigma_G^2$$

Summing over t = 0, 1, ..., T - 1 we have,

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\|\nabla f(w_t)\|^2\right] \leq \frac{2(f(w_0) - f^*)}{\eta T} + \frac{\eta^2 Lc}{2}\sigma_G^2$$

ii) Zero error floor for MIFA:

$$G_t^{(i)} = \begin{cases} \nabla f_i(w_t), & \text{if } i \in \mathcal{A}(t) \\ G_{t-1}^{(i)} & \text{otherwise} \end{cases}$$

$$G_t = \frac{1}{n} \sum_{i \in [n]} G_t^{(i)}$$

Bounding T_1

We have,

$$T_{1} = -\eta \langle \nabla f(w_{t}), G_{t} \rangle$$

$$= -\frac{\eta}{2} \|\nabla f(w_{t})\|^{2} - \frac{\eta}{2} \|G_{t}\|^{2} + \frac{\eta}{2} \|\nabla f(w_{t}) - G_{t}\|^{2}$$

$$\|\nabla f(w_t) - G_t\|^2 = \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_t) - \frac{1}{n} \sum_{i=1}^n f_i(w_{t-\tau(t,i)}) \right\|^2$$

$$\leq \frac{1}{n} \sum_{i=1}^n \left\| f_i(w_t) - f_i(w_{t-\tau(t,i)}) \right\|^2$$

$$\leq \frac{L^2}{n} \sum_{i=1}^n \left\| w_t - w_{t-\tau(t,i)} \right\|^2$$

$$\leq \frac{L^2 \eta^2}{n} \sum_{i=1}^n \tau(t,i) \sum_{j=t-\tau(t,i)}^t \|G_j\|^2$$

We have therefore,

$$f(w_{t+1}) - f(w_t) \le -\frac{\eta}{2} \|\nabla f(w_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left[\|G_t\|^2 \right] + \frac{\eta^3 L^2}{2n} \sum_{i=1}^n \tau(t, i) \sum_{j=t-\tau(t, i)}^t \mathbb{E} \left[\|G_j\|^2 \right] + \frac{\eta^2 L}{2} \mathbb{E} \left[\|G_t\|^2 \right]$$
$$= -\frac{\eta}{2} \|\nabla f(w_t)\|^2 + \frac{\eta^3 L^2}{2n} \sum_{i=1}^n \tau(t, i) \sum_{j=t-\tau(t, i)}^t \mathbb{E} \left[\|G_j\|^2 \right] - \frac{\eta}{2} (1 - \eta L) \mathbb{E} \left[\|G_t\|^2 \right]$$

Summing over $t = 1, 2, \dots T - 1$ we have,

$$f(w_{T}) - f(w_{1}) \leq -\frac{\eta}{2} \sum_{t=1}^{T-1} \|\nabla f(w_{t})\|^{2} + \frac{\eta^{3}L^{2}}{2n} \sum_{t=1}^{T-1} \sum_{i=1}^{n} \tau(t, i) \sum_{j=t-\tau(t, i)}^{t} \mathbb{E}\left[\|G_{j}\|^{2}\right] - \frac{\eta}{2}(1 - \eta L) \sum_{t=1}^{T-1} \mathbb{E}\left[\|G_{t}\|^{2}\right]$$

$$\leq -\frac{\eta}{2} \sum_{t=1}^{T-1} \|\nabla f(w_{t})\|^{2} + \frac{\eta^{3}L^{2}}{2n} \sum_{t=1}^{T-1} \sum_{i=1}^{n} \tau_{\max} \sum_{j=t-\tau_{\max}}^{t} \mathbb{E}\left[\|G_{j}\|^{2}\right] - \frac{\eta}{2}(1 - \eta L) \sum_{t=1}^{T-1} \mathbb{E}\left[\|G_{t}\|^{2}\right]$$

$$\leq -\frac{\eta}{2} \sum_{t=1}^{T-1} \|\nabla f(w_{t})\|^{2} + \frac{\eta^{3}L^{2}\tau_{\max}^{2}}{2} \sum_{t=1}^{T-1} \mathbb{E}\left[\|G_{j}\|^{2}\right] - \frac{\eta}{2}(1 - \eta L) \sum_{t=1}^{T-1} \mathbb{E}\left[\|G_{t}\|^{2}\right]$$

$$\leq -\frac{\eta}{2} \sum_{t=1}^{T-1} \|\nabla f(w_{t})\|^{2} - \frac{\eta}{2} \left(1 - \eta L - \eta^{2}L^{2}\tau_{\max}^{2}\right) \sum_{t=1}^{T-1} \mathbb{E}\left[\|G_{t}\|^{2}\right]$$

$$\leq -\frac{\eta}{2} \sum_{t=1}^{T-1} \|\nabla f(w_{t})\|^{2}$$

We get,

$$\mathbb{E}\left[\frac{1}{T-1}\sum_{t=1}^{T-1}\|\nabla f(w_t)\|^2\right] \le \frac{2(f(w_1) - f^*)}{\eta T - 1}$$

Equivalence between variance reduction methods in SGD and partial client participation

Methods:- SAG,SAGA, SVRG, SARAH

SAG, SAGA methods require you to pay a memory cost $(n \times d)$

SVRG, SARAH require you to compute updates from all clients occasionally.

General analysis for MIFA and U-MIFA:

$$\begin{split} f(w_{t+1}) - f(w_t) &\leq -\eta \mathbb{E}\left[\langle \nabla f(w_t), G_t \rangle \right] + \frac{\eta^2 L}{2} \mathbb{E}\left[\|G_t\|^2 \right] \\ &= -\frac{\eta}{2} \left\| \nabla f(w_t) \right\|^2 - \frac{\eta}{2} \mathbb{E}\left[\|G_t\|^2 \right] + \frac{\eta}{2} \mathbb{E}\left[\left\| \nabla f(w_t) - G_t \right\|^2 \right] + \frac{\eta^2 L}{2} \mathbb{E}\left[\left\| G_t \right\|^2 \right] \\ &= -\frac{\eta}{2} \left\| \nabla f(w_t) \right\|^2 + \frac{\eta}{2} \mathbb{E}\left[\left\| \nabla f(w_t) - G_t \right\|^2 \right] - \frac{\eta}{2} \left(1 - \eta L \right) \mathbb{E}\left[\left\| G_t \right\|^2 \right] \\ &\leq -\frac{\eta}{2} \left\| \nabla f(w_t) \right\|^2 + \frac{\eta}{2} \mathbb{E}\left[\left\| \nabla f(w_t) - G_t \right\|^2 \right] \end{split}$$

The second step uses $\langle x,y\rangle=-\frac{1}{2}\left\|x\right\|^2-\frac{1}{2}\left\|y\right\|^2+\frac{1}{2}\left\|x-y\right\|^2.$ The fourth step uses $\eta L\leq 1.$

Analyzing $\mathbb{E}\left[\left\|
abla f(w_t) - G_t
ight\|^2
ight]$ for MIFA:

$$\mathbb{E}\left[\|\nabla f(w_t) - G_t\|^2\right] = \mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^n \nabla f_i(w_t) - \frac{1}{n}\sum_{i=1}^n G_t^{(i)}\right\|^2\right]$$

$$\leq \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \left\|\nabla f_i(w_t) - G_t^{(i)}\right\|^2\right]$$

$$= \frac{1-p}{n}\sum_{i=1}^n \left\|\nabla f_i(w_t) - G_{t-1}^{(i)}\right\|^2$$

Analyzing $\mathbb{E}\left[\left\|\nabla f(w_t) - G_t \right\|^2\right]$ for U-MIFA:

$$\mathbb{E}\left[\left\|\nabla f(w_{t}) - G_{t}\right\|^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}\nabla f_{i}(w_{t}) - \frac{1}{n}\sum_{i=1}^{n}G_{t}^{(i)}\right\|^{2}\right]$$

$$= \mathbb{E}\left[\frac{1}{n^{2}}\sum_{i=1}^{n}\left\|\nabla f_{i}(w_{t}) - G_{t}^{(i)}\right\|^{2}\right]$$

$$= \frac{1-p}{n^{2}p}\sum_{i=1}^{n}\left\|\nabla f_{i}(w_{t}) - G_{t-1}^{(i)}\right\|^{2}$$

$$= \frac{1}{np}\left(\frac{1-p}{n}\sum_{i=1}^{n}\left\|\nabla f_{i}(w_{t}) - G_{t-1}^{(i)}\right\|^{2}\right)$$

Learning Rate:

MIFA paper suggests using $\eta \leq \frac{1}{Ln}$. Reddi paper suggest we can use something like $\frac{1}{L\eta^{2/3}}$

i) Convex and L-smooth objective

Criteria -
$$\min_{t \in T} f(x_t) - f(x^*) \le \epsilon$$

Assumptions

i)
$$\|\nabla f_i(x) - \nabla f(x)\|^2 \le \sigma_G^2$$

i) $\|\nabla f_i(x) - \nabla f(x)\|^2 \le \sigma_G^2$ ii) sample b clients at each round without replacement

Method	η bound	Convergence	Complexity
FedGD	$\mathcal{O}(\frac{1}{L})$	$\frac{1}{T} \left(\frac{1}{2\eta} \ x_0 - x^*\ ^2 + f(x_0) - f(x^*) \right)$	$\mathcal{O}(rac{n}{\epsilon})$
FedPGD	$\mathcal{O}(\frac{1}{L})$	$\frac{1}{T} \left(\frac{1}{2\eta} \ x_0 - x^*\ ^2 + 2(f(x_0) - f(x^*)) + \frac{\eta L}{n-1} \left(\frac{n}{b} - 1 \right) \sigma_G^2$	$\mathcal{O}(\frac{1}{\epsilon^2})$ w.d
SAGA/U-MIFA	$\mathcal{O}(\frac{1}{L})$	$\frac{1}{T} \left(\frac{8}{\eta} \ x_0 - x^*\ ^2 + 8n(f(x_0) - f(x^*)) \right)$	$\mathcal{O}(\frac{n}{\epsilon})$??

i) Non-Convex and L-smooth objective

Criteria -
$$\min_{t \in T} \|\nabla f(x_t)\|^2 \le \epsilon$$

Assumptions

i)
$$\|\nabla f_i(x) - \nabla f(x)\|^2 \le \sigma^2$$

i) $\|\nabla f_i(x) - \nabla f(x)\|^2 \le \sigma^2$ ii) sample b clients at each round without replacement

Method	η bound	Convergence	Complexity
FedGD	$\mathcal{O}(\frac{1}{L})$	$\frac{2(f(x_0) - f(x^*)}{\eta T}$	$\mathcal{O}(rac{nL}{\epsilon})$
FedPGD	$\mathcal{O}(\frac{1}{L})$	$\frac{2(f(x_0)-f(x^*)}{\eta T} + \frac{\eta L}{n-1} \left(\frac{n}{b} - 1\right)\sigma^2$	$\mathcal{O}(rac{L}{\epsilon^2})$
SAGA/U-MIFA	$\mathcal{O}(rac{1}{Ln^{2/3}})$	$\frac{\mathcal{O}(1)(f(x_0) - f(x^*))}{\eta T}$	$\mathcal{O}(\frac{n^{2/3}L}{\epsilon})$
ZeroSarah ??	$\mathcal{O}(rac{1}{Ln^{1/2}})$	$\frac{\mathcal{O}(1)(f(x_0) - f(x^*)) + \Delta}{\eta T}$	$\mathcal{O}(\frac{n^{1/2}L}{\epsilon})$