2019 Math 340:101. Quiz 1 Friday, 2019 September 13 IN CLAS
Last name
First name
Student number

Grade

1. (3 points) Put the following linear programming problem in standard form, that is, standard inequality form. (Do not solve it.)

minimize
$$x_1 - 3x_2$$

subject to $x_1 + x_2 = 2$
 $x_1 \ge 3$
 x_2 unconstrained

"minimize $x_1 - 3x_2$ " \Leftrightarrow "maximize $-x_1 + 3x_2$ ". " $x_1 + x_2 = 2$ " \Leftrightarrow " $x_1 + x_2 \le 2$ and $-x_1 - x_2 \le -2$ ". Also, let $x_2 = x_2' - x_2''$, x_2' , $x_2'' \ge 0$ and $x_1 = x_1' + 3$. Then, the objective function becomes $-(x_1' - 3x_2' + 3x_2'' + 3) = -x_1' + 3x_2' - 3x_2'' - 3$ but -3 can be dropped.

maximize
$$-x'_1 + 3x'_2 - 3x''_2$$

subject to $x'_1 + x'_2 - x''_2 \le -1$
 $-x'_1 + x'_2 - x''_2 \le 1$
 $x'_1, x'_2, x''_2 \ge 0$

2. (3 points) Let S_1 and S_2 are two convex sets in \mathbb{R}^n . Prove that their intersection $S_1 \cap S_2$ is again a convex set.

Let x_1, x_2 be two points in $S_1 \cap S_2$. Then, $x_1, x_2 \in S_1$. By convexity of S_1 , $(1-t)x_1+tx_2 \in S_1$ for any $t \in [0,1]$. Similarly, $x_1, x_2 \in S_2$. By convexity of S_2 , $(1-t)x_1+tx_2 \in S_2$ for any $t \in [0,1]$. Therefore, for any $t \in [0,1]$, we see that $(1-t)x_1+tx_2 \in S_1 \cap S_2$. This means that $S_1 \cap S_2$ is convex.

3. (4 points) The following dictionary is obtained from solving a standard form LP problem with the simplex method. Find the next dictionary in the simplex method.

$$x_{2} = 12 + x_{1} - x_{4}$$

$$x_{3} = 5 + x_{1} - x_{4}$$

$$x_{5} = 4 + x_{1} - x_{4}$$

$$z = 7 - x_{1} + 2x_{4}$$

The current basic feasible solution is

$$x_1 = x_4 = 0$$
 $x_2 = 2$ $x_3 = 5$ $x_5 = 4$.

We only have 1 choice of entering variable: x_4 . It is constrained to be at most 12, 5, or 4, so x_5 is the leaving variable. From the corresonding row, that is $x_5 = 4 + x_1 - x_4$, we get $x_4 = 4 + x_1 - x_5$. We use this and get the next dictionary as follows:

$$x_{2} = 8 + x_{5}$$

$$x_{3} = 1 + x_{5}$$

$$x_{4} = 4 + x_{1} - x_{5}$$

$$z = 15 + x_{1} - 2x_{5}$$

Blank page