Return Extrapolation and Day/Night Effects

Christopher S. Jones USC Marshall

Sungjune Pyun NUS BS/RMI

Tong Wang Univ. Oklahoma

Singapore Scholars Symposium

November 2022

Tug of war - Lou, Polk, and Skouras (2019)

	Overnight	Intraday		Overnight	Intraday
Decile	Excess	Excess	Decile	Excess	Excess
1	-1.51%	1.62%	1	1.59%	-1.51%
	(-7.76)	(4.76)		(5.51)	(-3.45)
10	1.96%	-1.63%	10	-0.22%	0.69%
	(8.17)	(-4.74)		(-1.20)	(2.51)
10-1	3.47%	-3.24%	10-1	-1.81%	2.19%
	(16.57)	(-9.34)		(-8.44)	(6.72)

 Stocks with relatively high past overnight (daytime) returns outperform overnight (during the day).

Tug of war - Lou, Polk, and Skouras (2019)

Investors that have different clienteles trade on different times of the day.

Research questions

- ▶ What types of stocks do overnight traders prefer?
- ▶ What are the drivers of day/night return patterns?
- ▷ Relationship to other documented day/night return patterns
 - Stock prices appreciate only overnight (Kelly and Clark 2011)
 - CAPM only holds overnight (Hendershott, Livdan, Roesch 2020)

Three ingredients from behavioral finance and institutional trading

1) Return extrapolation

- ▷ Expectations are positively correlated with past returns
- ▶ Market returns (Greenwood and Shleifer 2014) and individual stock returns (Da, Huang, and Jin 2014)
- 2) Unsophisticated investors trade relatively more in the morning.
 - Different investor clientele (Lou, Polk, and Skouras 2019)
 - ▶ Higher attention at open (Berkman et. al. 2012)
 - ▶ Larger price dislocation and illquid at open (e.g., Brock and Kleidon 1992)
- 3) Short-selling constraint is binding \rightarrow overpricing (Miller 1977)

Our main findings - Return extrapolation

- At the stock level, we find:
 - Morning (Afternoon) order imbalance is positively (negatively) related to past daytime returns
 - Overnight (daytime) returns positively (negatively) related to past daytime returns
- At the portfolio level, we find extrapolative trading leads to the observed day/night return patterns of characteristic-sorted portfolios
- ▷ At the aggregate level, we find evidence of extrapolative trading

Relationship to existing work

- ➤ The direction (daytime returns positively predict next night returns) is in contrast to
 - daily return reversals (e.g., Avramov Chordia, and Goyal 2006)
 - periodicity in order flows (Heston, Korajczyk, and Sadka 2010)
 - existence of investor clienteles (Lou, Polk, and Skouras 2019)
- ▶ We focus on the morning trades
 - Overnight risk premium (e.g., Barrot, Kaniel, and Sraer 2016, Hendershott et. al. 2020)
 - Margin requirement and lending fee overnight (e.g., Bogousslavsky 2021)

Data

- ▶ Trade and Quote (1993-2014) combined with Polygon (2015-2020)
 - Polygon is the data provider for Robinhood
 - NYSE, NASDAQ, and AMEX. Remove stock price less than \$5 and stocks with market capitalization that falls in the first NYSE quintile
- ▶ Intraday Order imbalance (OIB) measured using signed volume (Lee and Ready 1991)

$$OIB = \frac{Buy - Sell}{Shares Outstanding}.$$

- ▶ 13 anomaly characteristics from Lou, Polk, and Skouras (2019)
- ▶ Retail order imbalance (Boehmer, Jones and Zhang 2021), intermarket sweep order to proxy institutional trade

Motivation

Extrapolation at the stock level - Fama-Macbeth regression

$$\mathsf{OIB}_{\mathit{int},t,i} = \alpha + \beta R_{9:45-3:59,t-1,i} + \delta' \mathsf{OIB}_{\mathbf{t-1},\mathbf{i}} + \epsilon_{\mathsf{int},\mathbf{t},\mathbf{i}}$$

	9:30-9:45	9:45-10:30	10:30-4:00
$R_{9:45-3:59,t-1,i}$	1.8620 (26.88)	0.3332 (9.51)	-0.1537 (-9.68)
R ² (%)	0.68	1.41	3.27

Conclusion

What happens with binding short sale constraint?

- Unconditional effect
 - Since returns are on average close to zero, return extrapolation does not imply any unconditional effect on morning OIB.
- returns are negative.
 - We test by adding "Max(day return, 0)" to the regression
 - If there is extrapolation, we expect $\beta_a > 0$.

$$\begin{aligned} \mathsf{OIB}_{int,t,i} &= \alpha + \beta R_{9:45-3:59,t-1,i} \\ &+ \beta_a \max(R_{9:45-3:59,t-1,i}, 0) + \mathsf{Control}_{t-1,i} + \epsilon_{int,t,i} \end{aligned}$$

OIB predictability with short sale constraint

	9:30-9:45	9:45-10:30	10:30-4:00
$R_{9:45-3:59,t-1}$	0.8032	-0.3041	-0.4571
	(5.39)	(-3.98)	(-14.43)
$\max(R_{9:45-3:59,t-1},0)$	2.0664	1.3060	0.7893
	(9.56)	(11.66)	(18.14)
Control	Lagged	night and wee	k returns
R ² (%)	0.70	1.43	3.33

Retail (left) vs Institutional (right) Trade

Return predictability - FM approach

▶ To avoid mechanical reversal due to illiquidity and program trading, we use lagged day returns ending 3PM.

Dependent variable	Ni	Night returns: $R_{3:59-9:45,t}$						
$R_{9:45-3:59,t-1}$	-0.1000 (-0.87)							
$R_{9:45-3:00,t-1}$		0.9533	0.8807	-0.3839	1.1716			
		(8.12)	(7.92)	(-2.76)	(6.89)			
$\max(R_{9:45-3:00,t-1},0)$				1.0215	-0.2479			
				(4.72)	(-1.05)			
$R_{3:59-9:45,t-1}$			3.1559	3.7447	-3.2472			
			(10.29)	(30.05)	(-23.00)			
Characteristic controls	N	N	N	Y	Y			
R ² (%)	0.00	0.03	0.05	0.14	0.06			

Conclusion

Morning extrapolation stronger for retail-focused stocks?

Regression of Order Imbalance

Motivation

	Z=Mispricing		Z=Google Search Vol		Z=% Retail volume	
	9:30-9:45	10:30-4:00	9:30-9:45	10:30-4:00	9:30-9:45	10:30-4:00
$R_{9:45-3:59,t-1}$	0.9892	0.0969	2.4352	2.4352	0.4656	0.4903
	(4.07)	(1.96)	(28.55)	(-2.19)	(2.96)	(18.44)
$Z \times R_{9:45-3:00,t-1}$	0.0132	-0.0056	11.0916	-2.8402	46.2576	-8.7669
	(2.69)	(-5.75)	(5.39)	(-9.03)	(13.21)	(-17.63)
Z	0.0004	0.0003	0.1028	0.1028	-0.1656	0.0068
	(5.05)	(15.71)	(4.3)	(5.47)	(-2.46)	(0.57)

Regression of Returns

	Z=Mispricing		Z=Google	Search Vol	Z=% Ret	Z=% Retail volume	
	Night	Day	Night	Day	Night	Day	
$R_{9:45-3:59,t-1}$	-2.7646	-0.5491	-1.0307	-2.1700	-2.7459	0.6721	
	(-2.15)	(-1.17)	(-2.72)	(-0.83)	(-3.62)	(2.58)	
$Z \times R_{9:45-3:00,t-1}$	0.0642	0.0323	13.6811	1.3157	33.1346	-8.6307	
	(2.93)	(3.09)	(6.74)	(0.13)	(6.12)	(-2.71)	
Z	-0.0004	-0.0009	0.0322	-3.8893	0.3486	-0.4663	
	(-0.89)	(-4.26)	(0.87)	(-1.03)	(3.82)	(-4.25)	

Characteristic-sorted portfolios (13×10 portfolios)

- ▶ The short-sale constraint is captured by return dispersion of the portfolio
 - If the fraction of stocks with positive returns are higher, cross-sectional dispersion will increase

		OIB (×	1000)			Ret	urns	
$R_{t-1,9:45-3:00}$	0.979 (6.67)	-0.713 (-23.27)	0.929 (6.58)	-0.660 (-23.37)	0.030 (8.39)	0.008 (1.62)	0.021 (6.4)	0.004 (1.09)
Lag disp.			0.946 (6.16)	0.405 (12.96)			0.026 (7.67)	-0.039 (-7.68)
$R_{t-1,3:59-9:45}$	0.030 (0.17)	-0.078 (-1.94)	-0.014 (-0.09)	-0.098 (-2.62)	0.040 (8.87)	0.016 (2.59)	0.038 (9.25)	0.013 (2.45)
R ² (%)	12.59	35.62	12.59	36.05	0.49	0.06	0.55	0.26

Extrapolation and overpriced stocks

- ▶ We further investigate whether market-wide extrapolation is more prevalent for overpriced stocks
- Characteristics are defined so that high (portfolio 10) is underpriced (positive alpha)
- > Replace portfolio returns and dispersion with market-wide measure

$$HML_{c,t+1} = \alpha_c + \beta_c R_{m,t} + \gamma_c Disp_{m,t} + \epsilon_{c,t+1},$$

HML = night - day returns of the HML portfolio

 \triangleright Compare the slope of this regression (β_c and γ_c) with the night-day return difference (as in LPS).

$\overline{\text{Day/night returns (y) vs. slope of OIB regressions(x)}}$

 Motivation
 Main result
 Security Market Line
 Market Returns
 Conclusion

 ○○○○○
 ○○○○
 ○○
 ○
 ○
 ○
 ○

Security Market Line (SML) around the day

- Hendershott, Livdan, and Roesch (2020) argue that high beta stocks require overnight risk premium
- ▷ Also consistent with extrapolating market returns since market returns are on average positive
- ▷ If these patterns are driven by return extrapolation, we expect the overnight SML to be steeper following positive day returns

SML conditional on previous daytime returns

Following positive returns (left) and negative returns (right)

Motivation

Market return extrapolation at the aggregate level

	Order Imbalance						
	9:30	-9:45	10:30	0-4:00	Difference		
$R_{m,9:45-3:00,t-1}$	2.102 (6.44)	1.969 (5.66)	-0.151 (-1.26)	-0.242 (-1.91)	2.253 (7.55)	2.211 (7.24)	
Dispersion(t-1)		5.002 (11.89)		3.419 (20.31)		1.584 (4.86)	
R ² (%)	1.06	6.56	0.03	21.62	1.49	2.15	

	Returns						
	Night		Day		Night minus day		
$R_{m,9:45-3:00,t-1}$	0.039 (2.04)	0.039 (2.07)	-0.055 (-2.00)	-0.055 (-2.00)	0.094 (2.90)	0.094 (2.91)	
Dispersion(t-1)	. ,	-0.019 (-0.91)	, ,	0.010 (0.35)		-0.028 (-0.88)	
R ² (%)	0.17	0.19	0.19	0.18	0.39	0.41	

Conclusion

Motivation

- ▶ We find strong evidence of extrapolative trading near the open.
- ▷ Our results explains:
 - Higher returns at the open for stocks that performed well the past day
 - Higher returns at the open for overpriced stocks
 - Steep SML for overnight returns