STACK OVERFLOW KEYWORD EXTRACTION SYSTEM

GROUP 9

Group Members:

Pavithra lyer (piyer3)
Sanya Kathuria (skathur2)
Unnati Agrawal (uagrawa)

PROBLEM STATEMENT

Develop a web application that extracts and discovers the trend of keywords, languages or technologies over the desired time period using the Stack Overflow data.

Have a closer contact with modern technologies used to process big data.

Automate the process and store data in a NoSQL database.

Build an application which scales with user traffic.

MOTIVATION

Number of data sources is exploding!

Data is arriving faster!

Immense Variety in Data!

SCALING UP IS BECOMING INFEASIBLE!

Stack overflow is a much **loved programmer question and answer** site written by two guys nobody has ever heard of before.

Well, not exactly. Created by top programmer and blog stars <u>Jeff Atwood</u> and <u>Joel Spolsky</u>.

WHY DISTRIBUTED PROCESSING FOR STATIC DATA ANALYSIS?

DATA VOLUME AND VARIETY!

SERVERS CANNOT TAKE IT ANYMORE!

FEATURES OF THE SYSTEM

STATIC DATA ANALYSIS - Building a distributed data processing framework can be a complex task!

- Low Latency
- Scalable
- Faster in-memory Processing
- Storing the results
- Reporting the results real-time on REST API
- Ad-hoc Queries.

TECHNOLOGIES USED

COMPONENTS

- Infrastructure AWS
- Data Kaggle
- Data Cleaning Python
- Distributed database Cassandra
- Fast and parallel computations Spark
- Cloud Infrastructure AWS EC2
- Scalable serverless computing for backend microservice AWS Lambda

ARCHITECTURE

STATIC DATA PROCESSING PIPELINE

- Data Cleaning Kaggle dataset
- Data Transformation Removing Tags
- Data Processing Spark Approaches-
 - Remove stop words
 - Better approach -
 - Fix keywords as you can't come up with an exhaustive list of stopwords
 - Spark code flow

WHY SPARK?

- Distributed in-memory analytic processing.
- Batch and streaming analytics.
- Fast 10x-100x faster than Hadoop MapReduce.
- Rich Scala, Java and Python APIs

- Previous world record held by Hadoop MapReduce cluster of 2100 nodes, in 72 minutes.
- Spark completed the benchmark in 23 minutes on just 206 EC2 nodes. (2004)
- = 3X faster using 10X fewer machines.

WHY CASSANDRA?

- Very fast.
- Extremely Resilient.
- Linear scale and easy to operate.
- Continuous availability and Disaster avoidance.

ISSUES

- Setting up Spark is difficult!
 - Go for Apache Spark on AWS EMR.
- Cassandra configuration to make it accessible from other nodes.
- Setting up AWS Lambda to interact with EC2 servers.
 - Added IAM role with EC2 access
 - Configure Lambda and all EC2 instances in same VPC
 - AWS Educate does not give you permissions to edit IAM roles!

CONCLUSION

- Data Preprocessing and Configuration set up took 80% of the time and effort.
- Spark cluster when configured properly is fault tolerant.
- Spark cluster took hardly half an hour to extract top keywords from our dataset.
- Overall, Distributed Computing was way faster than using single machine for large datasets.

FUTURE WORK

- Stream data from Stackoverflow.
- Handle large data by adding more nodes to Spark Cluster.
- Extract keywords from technical blogs.

THANK YOU

ANY QUESTIONS?

POST QUESTIONS ON STACKOVERFLOW AND TEST OUR SYSTEM!