CALCOLO DELLE PROBABILITÁ E STATISTICA

Alessandro Zappatore

Università del Piemonte Orientale Anno accademico 2024/2025, 2° semestre

1 Introduzione

1.1 Insieme degli esiti

Notazione: denotiamo con

Ω

l'insieme degli esiti di un sperimento, supposto noto.

Ex. 1 Nel caso di un dato possiamo prendere $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ex. 2 Nel caso di una moneta $\Omega = \{T, C\}$ dove T denota la faccia testa e C la faccia croce.

Ex. 3 In una gara di 4 cavalli, denotati 1,2,3 e 4, Ω è l'insieme delle quadruple ottenute permutando (1,2,3,4), cioè 24 esiti possibili:

$$\Omega = \{(1, 2, 3, 4), (2, 1, 3, 4), (3, 2, 1, 4), \dots\}$$

In un esperimento ci interessa sapere un sottoinsieme di Ω (Ex. ci interessa solo chi è arrivato primo).

1.2 Evento

Definizione: un sottoinsieme E di Ω è detto **evento**.

Ex. il cavallo 3 arriva primo se si verifica l'evento $E = \{(3, 1, 2, 4), (3, 2, 1, 4), (3, 1, 4, 2), (3, 4, 2, 1), (3, 2, 4, 1)\}$

1.3 Elemento elementare

Definizione: E è un elemento elementare se contiene un solo elemento.

Ex. nel lancio di un dado, l'evento $E = \{2\}$ corrisponde all'uscita della faccia 2 ed è un evento elementare. $E = \{1, 3, 5\}$ corrisponde all'uscita di un numero dispari e **non** è un evento elementare.

1.4 Insieme di tutti gli eventi

Notazione: denotiamo con

ε

l'insieme di tutti gli eventi, cioè l'insieme delle parti di Ω . Supponiamo che $\emptyset \in \varepsilon$.

ATTENZIONE: pensare agli eventi come a tutti i sottoinsiemi di Ω va bene **solo** se Ω è un insieme finito.

1.5 Verificarsi di un evento

Definizione: diciamo che si verifica l'evento E se l'esito dell'esperimento è un evento di E. Un esperimento produce esiti (singoli punti di Ω), non eventi.

1.6 Operatori insiemistici

Dati due eventi E ed F in ε , si verifica:

- E oppure F se si verifica $E \cup F$.
- $E \text{ ed } F \text{ se si verifica } E \cap F.$

1.6.1 Incompatibilità

 $E \text{ ed } F \text{ sono detti incompatibili se } E \cap F = \emptyset.$

Ex. Il cavallo 3 arriva primo se si verifica l'evento $E = \{(3, 1, 2, 4), (3, 2, 1, 4), (3, 1, 4, 2), (3, 4, 1, 2), (3, 4, 2, 1), (3, 2, 4, 1)\}$

Il cavallo 3 arriva secondo se si verifica l'evento $F = \{(1,3,2,4), (1,3,4,2), (2,3,1,4), (2,3,4,1), (4,3,1,2), (4,3,2,1)\}$

Il cavallo 1 arriva ultimo se si verifica l'evento $G = \{(2,3,4,1), (2,4,3,1), (3,2,4,1), (3,4,2,1), (4,2,3,1), (4,3,2,1)\}$

- Il cavallo 3 arriva primo o secondo se si verifica $E \cup F$.
- Il cavallo 3 arriva primo e il cavallo 1 arriva ultimo se si verifica $E \cap G$.
- $E \cap G = \emptyset$ quindi E ed F sono eventi incompatibili.

1.7 Complemento

Definizione: dato un evento E, E non si verifica se si verifica E^C (E complemento).

$$E^C = \Omega \setminus E$$

1.8 Leggi di De Morgan

Dati gli eventi E ed F, si ha che:

- $(E \cup F)^C = E^C \cap F^C$
- $(E \cap F)^C = E^C \cup F^C$

2 Concetto di probabilità

Associamo ad ogni evento E un numero $\mathbb{P}[E]$ che misura il nostro grado di fiducia che E si verifichi e che soddisfa i seguenti 3 assiomi (assiomi di KOLMOGOROV):

- 1. $\mathbb{P}[E] \ge 0 \quad \forall E \in \varepsilon$
- 2. $\mathbb{P}[\Omega] = 1$
- 3. $\mathbb{P}[E \cup F] = \mathbb{P}[E] + \mathbb{P}[F]$ $\forall E, F \in \varepsilon \ tali \ che \ E \cap F = \emptyset$

Questa è detta definizione assiomatica di probabilità.

Osservazioni:

- $\mathbb{P}[\Omega] = \mathbb{P}[\Omega \cup \emptyset] = \mathbb{P}[\Omega] + \mathbb{P}[\emptyset] \Rightarrow \mathbb{P}[\emptyset] = 0$
- dato $E \in \varepsilon$, si ha: $1 = \mathbb{P}[\Omega] = \mathbb{P}[E \cup E^C] \stackrel{(2^{\circ}assioma)}{=} \mathbb{P}[E] + \mathbb{P}[E^C] \stackrel{(1^{\circ}assioma)}{\geq} \mathbb{P}[E]$ in conclusione $\mathbb{P}[E] \leq 1$, e quindi $\mathbb{P}[E]$ è un numero tra 0 e 1.

2

2.0.1 Tipi di eventi

- Ω è anche detto **evento certo** ed ha probabilità 1.
- \emptyset è anche detto evento impossibile ed ha probabilità 0.
- \bullet ogni altro evento E ha probabilità tra 0 e 1.

2.0.2 Grado di fiducia

Il grado di fiducia, la probabilità che si associa ad un evento, è intrinsecamente soggettivo.

2.1 Interpretazione frequentistica della probabilità

Ripetendo N volte l'esperimento, diciamo $\nu_N(E)$ il numero di volte in cui si è verificato un evento arbitrario E. Il numero:

$$\mathbb{P}[E] = \frac{\nu_N(E)}{N}$$

soddisfa gli assiomi di Kolmogorov, e quindi è una probabilità.

- 1. $\mathbb{P}[E] \geq 0$ è ovvio.
- 2. $\mathbb{P}[\Omega] = 0$ poiché $\nu_N(\Omega) = N$
- 3. $\mathbb{P}[E \cup F] = \mathbb{P}[E] + \mathbb{P}[F]$ se $E \cap F = \emptyset$ perché $\nu_N(E \cup F) = \nu_N(E) + \nu_N(F)$

$N \to \infty$

 $N \to \infty$ non ha senso perché $\frac{\nu_N(E)}{N}$ oscilla.

$$\frac{\nu_N(\{T\})}{N} \quad con \; N = 2 \times 2^n \quad tende \; a \; \frac{1}{2} \; quando \; n \to \infty$$

$$\frac{\nu_N(\{T\})}{N} \quad con \; N = 3 \times 2^n \quad tende \; a \; \frac{2}{3} \; quando \; n \to \infty$$

La funzione continua ad oscillare tra $\frac{1}{2}$ e $\frac{2}{3}$ e il limite nono esiste se $n \to \infty$.

2.1.1 Proposizione

Dati due eventi E ed F, vale:

1.
$$\mathbb{P}[E^C] = 1 - \mathbb{P}[E]$$

$$2. \ {\rm I\!P}[E] \leq {\rm I\!P}[F] \quad se \quad E \subseteq F$$

3.
$${\rm I\!P}[E \cup F] = {\rm I\!P}[E] + {\rm I\!P}[F] - {\rm I\!P}[E \cap F]$$

Dimostrazione

$$1. \ 1 \overset{(2^{\circ}assioma)}{=} \mathbb{P}[\Omega] = \mathbb{P}[E \cup E^C] \overset{(3^{\circ}assioma)}{=} \mathbb{P}[E] + \mathbb{P}[E^C] \Rightarrow \mathbb{P}[E^C] = 1 - \mathbb{P}[E]$$

2. se
$$E \subseteq F$$
 allora $\mathbb{P}[F] = \mathbb{P}[E \cup (F \setminus E)] \stackrel{(3^{\circ}assioma)}{=} \mathbb{P}[E] + \mathbb{P}[F \setminus E] \stackrel{(1^{\circ}assioma)}{\geq} \mathbb{P}[E]$

3

3. è banale se $E \cap F = \emptyset$. Supponiamo allora che $E \cap F \neq \emptyset$

•
$$A \cup B = \emptyset$$
 $E = A \cup B$

•
$$A \cap C = \emptyset$$
 $F = A \cup C$

•
$$B \cup C = \emptyset$$
 $E \cup F = E \cup C$ e $E \cap C = \emptyset$

Per il terzo assioma di Kolmogorov.

•
$$\operatorname{IP}[E] = \operatorname{IP}[A] + \operatorname{IP}[B]$$

•
$$\mathbb{P}[F] = \mathbb{P}[A] + \mathbb{P}[C]$$

•
$$\mathbb{P}[E \cup F] = \mathbb{P}[E] + \mathbb{P}[C] = \mathbb{P}[E] + \mathbb{P}[C] + \mathbb{P}[A] - \mathbb{P}[A] = \mathbb{P}[E] + \mathbb{P}[F] - \mathbb{P}[A] = \mathbb{P}[E] + \mathbb{P}[F] - \mathbb{P}[E \cap F]$$

Esercizio (Probabilità non fumatori)

Una persona fuma la sigaretta con probabilità 0.28, il sigaro con probabilità 0.07 ed entrambi con probabilità 0.05.

Qual è la probabilità che la persona non fumi?

Svolgimento Come prima cosa calcolo gli esiti e Ω .

- n: non fuma;
- s: fuma la sigaretta ma non il sigaro;
- c: fuma il sigaro ma non la sigaretta;
- e: fuma entrambi.

$$\Omega = \{n, s, c, e\}$$

L'esercizio ci chiede di calcolare: $\mathbb{P}[\{n\}]$

- La persona fuma la sigaretta se si verifica: $E = \{s, e\}$. $\mathbb{P}[E] = 0.28$.
- La persona fuma il sigaro se si verifica $F = \{c, e\}$. $\mathbb{P}[F] = 0.07$.
- La persona fuma entrambi se si verifica: $\mathbb{P}[\{e\}] = \mathbb{P}[E \cap F] = 0.05$.

Notiamo che:

$$\{n\} \} \{s, c, e\}^C$$
$$\{s, c, e\} = \{s, e\} \cup \{c, e\} = E \cup F$$

Il calcolo finale sarà:

$$\mathbb{P}[\{n\}] = \mathbb{P}[\{s, c, e\}^C] = 1 - \mathbb{P}[\{s, c, e\}] = 1 - \mathbb{P}[E \cup F] = 1 - \left[\mathbb{P}[E] + \mathbb{P}[F] - \mathbb{P}[E \cap F]\right] = 1 - \mathbb{P}[E] - \mathbb{P}[F] + \mathbb{P}[E \cap F] = 1 - 0.28 - 0.07 + 0.05 = \mathbf{0.7}$$

2.2 Proposizione

Se $E_1 \cdots E_n \in \varepsilon$ sono n eventi incompatibili, cioè se $E_i \cap E_j = \emptyset$ per ogni $i \neq j$, allora:

$$\mathbb{P}\left[\bigcup_{i=1}^{n} E_i\right] = \sum_{i=1}^{n} = \mathbb{P}[E_i]$$

Dimostrazione Dato $l \in \{1 \cdots n - 1\}$ si ha:

$$\bigcup_{i=1}^{l+1} E_i = \left(\bigcup_{i=1}^{l} E_i\right) \cup E_{l+1}$$

inoltre

$$\left(\bigcup_{i=1}^{l} E_i\right) \cap E_{l+1} = \emptyset$$

per ipotesi.

Quindi:

$$\mathbb{P}\bigg[\bigcup_{i=1}^{l+1} E_i = \mathbb{P}\bigg[\bigg(\bigcup_{i=1}^{l} E_i\bigg) \cup E_{l+1}\bigg] \overset{(3^\circ assioma)}{=} \mathbb{P}\bigg[\bigcup_{i=1}^{l} E_i\bigg] + \mathbb{P}[E_{l+1}]$$

Per provare la proposizione basta iterare questa formula da l=1 a l=n-1

$$\mathbb{P}[E_1 \cup E_2] = \mathbb{P}[E_1] + \mathbb{P}[E_2] \qquad (l = 1)$$

$$\mathbb{P}[E_1 \cup E_2 \cup E_3] = \mathbb{P}[E_1 \cup E_2] + \mathbb{P}[E_3] = \mathbb{P}[E_1] + \mathbb{P}[E_2] + \mathbb{P}[E_3] \qquad (l = 2)$$

2.3 Esperimento con esiti finiti ed equiprobabili

Consideriamo un esperimento con un numero finito di esisti equiprobabili: esiste $p \in [0, 1]$ tale che:

$$\mathbb{P}[\{\omega\}] = p \qquad \forall \omega \in \Omega$$

Ex. moneta per la moneta significa che $\mathbb{P}[\{T\}] = \mathbb{P}[\{c\}]$

Ex. dado per il dado significa che $\mathbb{P}[\{1\}] = \mathbb{P}[\{2\}] = \mathbb{P}[\{3\}] = \mathbb{P}[\{4\}] = \mathbb{P}[\{5\}] = \mathbb{P}[\{6\}]$

Dico che $p = \frac{1}{|\Omega|}$ infatti:

$$1 = \mathbb{P}[\Omega] = \mathbb{P}\left[\bigcup_{\omega \in \Omega} \{\omega\}\right] = \sum_{\omega \in \Omega} \mathbb{P}[\{\omega\}] = \sum_{\omega \in \Omega} p = p \times |\Omega|$$

Dato un evento E si ha:

$$\mathbb{P}[E] = \mathbb{P}\left[\bigcup_{\omega \in E} \{\omega\}\right] = \sum_{\omega \in E} \mathbb{P}[\{\omega\}] = \sum_{\omega \in E} p = p \times |E| = \frac{|E|}{|\Omega|}$$

Dunque $\mathbb{P}[E]$ per esiti equiprobabili è il rapporto tra i casi favorevoli in E e tutti i casi in Ω .

Esercizio (Probabilità estrazione palline) (1)

Si estraggono a caso 2 palline da un urna che ne contiene 3 bianche e 2 nere. Quale è la probabilità che le due palline estratte abbiano colori diversi?

Svolgimento Numero le palline da 1 a 5=3+2 iniziando dalle bianche. Allora:

$$\Omega = \{(1,2), (1,3), (1,4), (1,5), (2,1), (2,3), (2,4), (2,5), (3,1), (3,2), (3,4), (3,5), (4,1), (4,2), (4,3), (4,5), (5,1), (5,2), (5,3), (5,4)\}$$
$$|\Omega| = 20$$

Esercizio (Probabilità estrazione palline) (2)

$$E = \{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5,), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3)\}$$

$$|E| = 12$$

In conclusione:

$$\mathbb{P}[E] = \frac{|E|}{|\Omega|} = \frac{12}{20} = \frac{3}{5}$$