

中华人民共和国密码行业标准

GM/T 0002—2012

SM4 分组密码算法

SM4 block cipher algorithm

2012-03-21 发布 2012-03-21 实施

国家密码管理局 发布

目 次

前	言 …				•••••	• • • • • • • • • • • • • • • • • • • •	 	 		 \prod
1	范围	i					 	 		 • 1
2	术语	吾和定义					 	 		 • 1
3	符号	号和缩略 记	吾				 	 		 • 1
4	算法	去结构 …					 	 		 • 1
5	密钥	月及密钥	参量 …				 	 		 • 2
6	轮回	函数 F …					 	 		 • 2
	6.1	轮函数约	吉构 …				 	 		 • 2
	6.2	合成置抗	免 T …				 	 	• • • • • • • • • • • • • • • • • • • •	 • 2
7	算法	去描述 …					 	 		 • 3
	7.1	加密算法	去				 	 		 • 3
	7.2									
	7.3	密钥扩展	展算法				 	 	• • • • • • • • • • • • • • • • • • • •	 • 3
陈	录 A	(资料性	附录)	运算示例			 	 		 • 4
	A. 1	示例 1					 	 		 • 4
	A. 2	示例 2					 	 		 • 5

前 言

本标准依据 GB/T 1.1-2009 给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准的附录 A 为资料性附录。

本标准由国家密码管理局提出并归口。

本标准起草单位:中国科学院数据与通信保护研究教育中心、国家密码管理局商用密码检测中心。 本标准主要起草人:吕述望、李大为、张超、张众、董芳、毛颖颖、刘振华。

SM4 分组密码算法

1 范围

本标准规定了 SM4 分组密码算法的算法结构和算法描述,并给出了运算示例。 本标准适用于密码应用中使用分组密码的需求。

2 术语和定义

下列术语和定义适用于本文件。

2. 1

分组长度 block length

一个信息分组的比特位数。

2.2

密钥长度 key length

密钥的比特位数。

2.3

密钥扩展算法 key expansion algorithm

将密钥变换为轮密钥的运算单元。

2.4

轮数 rounds

轮函数的迭代次数。

2.5

字 word

长度为32比特的组(串)。

2.6

S 盒 S-box

S 盒为固定的 8 比特输入 8 比特输出的置换,记为 Sbox(.)。

3 符号和缩略语

下列符号和缩略语适用于本文件:

④ 32 位异或

<<<ii>32 位循环左移 i 位

4 算法结构

SM4 密码算法是一个分组算法。该算法的分组长度为 128 比特,密钥长度为 128 比特。加密算法与密钥扩展算法都采用 32 轮非线性迭代结构。数据解密和数据加密的算法结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

1

5 密钥及密钥参量

加密密钥长度为 128 比特,表示为 $MK = (MK_0, MK_1, MK_2, MK_3)$,其中 $MK_i(i=0,1,2,3)$ 为字。 轮密钥表示为 $(rk_0, rk_1, \dots, rk_{31})$,其中 $rk_i(i=0,\dots,31)$ 为 32 比特字。轮密钥由加密密钥生成。 $FK = (FK_0, FK_1, FK_2, FK_3)$ 为系统参数, $CK = (CK_0, CK_1, \dots, CK_{31})$ 为固定参数,用于密钥扩展 算法,其中 $FK_i(i=0,\dots,3)$ 、 $CK_i(i=0,\dots,31)$ 为字。

6 轮函数 F

6.1 轮函数结构

设输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,轮密钥为 $rk \in Z_2^{32}$,则轮函数 F 为: $F(X_0, X_1, X_2, X_3, rk) = X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk)$

6.2 合成置换 T

 $T: Z_2^{32} \rightarrow Z_2^{32}$ 是一个可逆变换,由非线性变换 τ 和线性变换 L 复合而成,即 $T(.) = L(\tau(.))$ 。

(1) 非线性变换 τ

τ由 4 个并行的 S 盒构成。

设输入为 $A = (a_0, a_1, a_2, a_3) \in (Z_2^8)^4$,输出为 $B = (b_0, b_1, b_2, b_3) \in (Z_2^8)^4$,则 $(b_0, b_1, b_2, b_3) = \tau(A) = (\operatorname{Sbox}(a_0), \operatorname{Sbox}(a_1), \operatorname{Sbox}(a_2), \operatorname{Sbox}(a_3))$

其中,Sbox 数据如下:

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	D6	90	E9	FE	CC	E1	3D	В7	16	В6	14	C2	28	FB	2C	05
1	2B	67	9 A	76	2 A	BE	04	С3	AA	44	13	26	49	86	06	99
2	9C	42	50	F4	91	EF	98	7A	33	54	0B	43	ED	CF	AC	62
3	E4	В3	1C	A9	C9	08	E8	95	80	DF	94	FA	75	8F	3F	A6
4	47	07	A7	FC	F3	73	17	BA	83	59	3C	19	E6	85	4F	A8
5	68	6B	81	B2	71	64	DA	8B	F8	EB	0F	4B	70	56	9D	35
6	1E	24	0E	5E	63	58	D1	A2	25	22	7C	3B	01	21	78	87
7	D4	00	46	57	9F	D3	27	52	4C	36	02	E7	A0	C4	С8	9E
8	EA	BF	8A	D2	40	C7	38	В5	A3	F7	F2	CE	F9	61	15	A1
9	E0	AE	5D	A4	9B	34	1A	55	AD	93	32	30	F5	8C	B1	ЕЗ
A	1D	F6	E2	2E	82	66	CA	60	C0	29	23	AB	0D	53	4E	6F
В	D5	DB	37	45	DE	FD	8E	2F	03	FF	6A	72	6D	6C	5B	51
С	8D	1B	AF	92	BB	DD	ВС	7F	11	D9	5C	41	1F	10	5 A	D8
D	0A	C1	31	88	A 5	CD	7B	BD	2D	74	D0	12	В8	E5	B4	В0
Е	89	69	97	4 A	0C	96	77	7E	65	В9	F1	09	C5	6E	C6	84
F	18	F0	7D	EC	3A	DC	4D	20	79	EE	5F	3E	D7	СВ	39	48

注:输入'EF',则经S盒后的值为表中第E行和第F列的值,Sbox(EF)=84。

(2) 线性变换 L

非线性变换 τ 的输出是线性变换 L 的输入。设输入为 $B \in Z_2^{32}$,输出为 $C \in Z_2^{32}$,则: $C = L(B) = B \oplus (B < << 2) \oplus (B < << 10) \oplus (B < << 18) \oplus (B < << 24)$

7 算法描述

7.1 加密算法

本加密算法由 32 次迭代运算和 1 次反序变换 R 组成。

设明文输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,密文输出为 $(Y_0, Y_1, Y_2, Y_3) \in (Z_2^{32})^4$,轮密钥为 $rk_i \in Z_2^{32}$, $i=0,1,2,\cdots,31$ 。加密算法的运算过程如下:

- (1)32 次迭代运算: $X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i), i=0,1,\dots,31;$
- (2)反序变换: $(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32})$ 。

7.2 解密算法

本算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序。解密时,使用轮密钥序 $(rk_{31}, rk_{30}, \dots, rk_0)$ 。

7.3 密钥扩展算法

本算法轮密钥由加密密钥通过密钥扩展算法生成。

加密密钥 $MK = (MK_0, MK_1, MK_2, MK_3) \in (Z_2^{32})^4$,轮密钥生成方法为:

 $(K_0, K_1, K_2, K_3) = (MK_0 \oplus FK_0, MK_1 \oplus FK_1, MK_2 \oplus FK_2, MK_3 \oplus FK_3)$,

 $rk_i = K_{i+4} = K_i \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_i), i = 0, 1, \dots, 31_o$

其中:

(1) T'是将 6.2 中合成置换 T 的线性变换 L 替换为 L':

 $L'(B) = B \oplus (B < <13) \oplus (B < <23)$:

(2) 系统参数 FK 的取值为:

 $FK_0 = (A3B1BAC6), FK_1 = (56AA3350), FK_2 = (677D9197), FK_3 = (B27022DC);$

(3)固定参数 CK 取值方法为:

设 $ck_{i,j}$ 为 CK_i 的第 j 字节 $(i=0,1,\cdots,31;j=0,1,2,3)$,即 $CK_i = (ck_{i,0},ck_{i,1},ck_{i,2},ck_{i,3}) \in (Z_2^8)^4$,则 $ck_{i,j} = (4i+j) \times 7 \pmod{256}$ 。

固定参数 CK_i ($i=0,1,\dots,31$)具体值为:

00070E15, 1C232A31, 383F464D, 545B6269,

70777E85, 8C939AA1, A8AFB6BD, C4CBD2D9,

E0E7EEF5, FC030A11, 181F262D, 343B4249,

50575E65, 6C737A81, 888F969D, A4ABB2B9,

C0C7CED5, DCE3EAF1, F8FF060D, 141B2229,

30373E45, 4C535A61, 686F767D, 848B9299,

A0A7AEB5, BCC3CAD1, D8DFE6ED, F4FB0209,

10171E25, 2C333A41, 484F565D, 646B7279。

附 录 A (资料性附录) 运算示例

A.1 示例 1

本部分为 SM4 分组密码算法对一组明文进行加密的运算示例。 输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 轮密钥与每轮输出状态:

```
rk[0] = F12186F9 \quad X[4] = 27FAD345
```

- $rk[1] = 41662B61 \quad X[5] = A18B4CB2$
- rk[2]=5A6AB19AX[6]=11C1E22A
- rk[3]=7BA92077 X[7]=CC13E2EE
- rk[4] = 367360F4 X[8] = F87C5BD5
- rk[5] = 776A0C61 X[9] = 33220757
- rk[6] = B6BB89B3 X[10] = 77F4C297
- $rk[7] = 24763151 \quad X[11] = 7A96F2EB$
- rk[8] = A520307C X[12] = 27DAC07F
- rk[9] = B7584DBD X[13] = 42DD0F19
- rk[10] = C30753ED X[14] = B8A5DA02
- rk[11] = 7EE55B57 X[15] = 907127FA
- $rk[12] = 6988608C \quad X[16] = 8B952B83$
- rk[13] = 30D895B7 X[17] = D42B7C59
- rk[14] = 44BA14AF X[18] = 2FFC5831
- rk[15]=104495A1 X[19]=F69E6888
- $rk[16] = D120B428 \quad X[20] = AF2432C4$
- rk[17] = 73B55FA3 X[21] = ED1EC85E
- $rk[18] = CC874966 \quad X[22] = 55A3BA22$
- $rk[19] = 92244439 \quad X[23] = 124B18AA$
- rk[20] = E89E641F X[24] = 6AE7725F
- rk[21] = 98CA015A X[25] = F4CBA1F9
- $rk[22] = C7159060 \quad X[26] = 1DCDFA10$
- rk[23] = 99E1FD2E X[27] = 2FF60603
- rk[24] = B79BD80C X[28] = EFF24FDC
- rk[25] = 1D2115B0 X[29] = 6FE46B75
- rk[26] = 0E228AEB X[30] = 893450AD
- rk[27] = F1780C81 X[31] = 7B938F4C
- $rk[28] = 428D3654 \quad X[32] = 536E4246$
- $rk \lceil 29 \rceil = 62293496 \quad X \lceil 33 \rceil = 86B3E94F$
- rk[30] = 01CF72E5 X[34] = D206965E

 $rk[31] = 9124A012 \quad X[35] = 681EDF34$

输出密文: 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

A.2 示例 2

本部分为 SM4 分组密码算法使用固定的加密密钥,对一组明文反复加密 1 000 000 次的运算示例。

输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

输出密文: 59 52 98 C7 C6 FD 27 1F 04 02 F8 04 C3 3D 3F 66