TITLE

BY YIZHI ZHANG

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics in the Graduate College of the Illinois Institute of Technology

Approved		
P P	Advisor	

Chicago, Illinois Date © Copyright by YIZHI ZHANG Date

ACKNOWLEDGMENT

Will be added once thesis is finished

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF SYMBOLS	viii
ABSTRACT	ix
CHAPTER	
1. INTRODUCTION	1
2. PROBLEM STATEMENT, DEFINITION AND ASSUMPTIONS	2
3. ERROR BOUND ANALYSIS	4
3.1. Trapezoidal Rule	4
4. ADAPTIVE, AUTOMATIC ALGORITHMS WITH GUARANTEES	8
4.1. Basic Concepts	8 8 9
5. COMPUTATIONAL COST OF GUARANTEED ALGORITHMS	10
5.1. Traezoidale rule	10 10
6. LOWER BOUND OF COMPLEXITY	13
6.1. Traezoidale rule	13 14
7. NUMERICAL EXPERIMENTS	18
7.1 Traezoidale rule	18

7.2. Simpson's Rule	19
8. CONCLUSION	20
8.1. Summary	20
APPENDIX	21
A. TABLE OF TRANSITION COEFFICIENTS FOR THE DESIGN OF LINEAR-PHASE FIR FILTERS	21
B. NAME OF YOUR SECOND APPENDIX	23
C. NAME OF YOUR THIRD APPENDIX	25

LIST OF TABLES

Table		Page
7.1	The probability of the test function lying in the cone for the original and eventual values of τ and the empirical success rate of Algorithm	
	1 plus the success rates of other common quadrature algorithms	19

LIST OF FIGURES

Figure

LIST OF SYMBOLS

Symbol	Definition		
β	List of symbols will be added later		

ABSTRACT

Abstract will be included once all parts are finished

INTRODUCTION

Introduce existing algorithms for integration problems.

show drwabacks

1. Non-adaptive 2. adaptive no guarantees 3. maybe more

introduce

$$INT(f) = \int_{a}^{b} f(x)dx \in \mathbb{R}.$$
 (1.1)

PROBLEM STATEMENT, DEFINITION AND ASSUMPTIONS

In the previous chapter, I introduced the problem that this thesis is going to be focus on, which is the univariate integration problem, $INT(f) = \int_a^b f(x)dx \in \mathbb{R}$. To solve this problem, we need some adaptive integration algorithms constructed by the fixed cost building blocks such as composite trapezoidal rule and composite Simpson's rule.

The composite trapezoidal rule using n equally spaced intervals between (a, b) can be defined as:

$$T(f,n) = \frac{b-a}{2n} \sum_{j=0}^{n} (f(u_j) + f(u_{j+1})), \tag{2.1}$$

where

$$u_j = a + \frac{j(b-a)}{n}, \qquad j = 0, \dots, n, \qquad n \in \mathbb{N}.$$
 (2.2)

In the meanwhile, the composite Simpson's rule using 3n equally spaced intervals between (a, b) can be defined as:

$$S(f,n) = \frac{b-a}{6n} \sum_{j=0}^{3n} (f(v_j) + 4f(v_{j+1}) + f(v_{j+2})), \tag{2.3}$$

(double check index and fraction it is not right.) where

$$v_j = a + \frac{j(b-a)}{n}, \qquad j = 0, \dots, 3n, \qquad n \in 2\mathbb{N}.$$
 (2.4)

The reason why we use 3n intervals with an even number of n is that...

In order to find the error bound of guaranteed algorithms, we start from some existing result of the error bound for trapezoidal rule and Simpson's rule in terms of the variation of the function. So we will have the following definition:

The space of input functions is $\mathcal{F} := \mathcal{V}^1$ and \mathcal{V}^3 , separately for trapezoidal rule and Simpson's rule. The general definitions of the variation, some relevant norms and

spaces are as follows:

$$\operatorname{Var}(f) := \sup_{\substack{n \in \mathbb{N} \\ a = x_0 < x_1 < \dots < x_n = b}} \sum_{i=1}^n |f(x_i) - f(x_{i-1})|, \qquad (2.5a)$$

$$||f||_1 := \int_a^b |f(x)| \, \mathrm{d}x,$$
 (2.5b)

$$\mathcal{V}^k := \mathcal{V}^k[a, b] = \{ f \in C[a, b] : Var(f^{(k)}) < \infty \}.$$
 (2.5c)

Define partition u and v, or x? what should I use here? maybe x

For trapezoidale rule, we use $\widehat{V}_1(f', \{v_j\}_{j=0}^n$ to approximate $\operatorname{Var}(f')$, where

$$\widehat{V}_1(f', \{v_j\}_{j=0}^n) = \sum_{j=1}^n \left| f(v_{j+1}) - f(v_j) - \frac{f(b) - f(a)}{n} \right|. \tag{2.6}$$

For Simpson's rule, we use $\widehat{V}(f''', \{u_j\}_{j=0}^{n+1})$ to approximate $\operatorname{Var}(f''')$, where

$$\widehat{V}_3(f''', \{v_j\}_{j=0}^{n+1}) = \sum_{j=1}^{n-1} |f'''(u_{j+1}) - f'''(u_j)|.$$
(2.7)

So the algorithm will be guaranteed to work for the cone of integrands for which $\widehat{V}(f^{(p)}, \{x_j\}_{j=0}^{n+1})$ does not underestimate $\operatorname{Var}(f^{(p)})$ too much:

$$C := \left\{ f \in \mathcal{V}^p, \text{Var}(f^{(p)}) \le \mathfrak{C}(\text{size}(\{x_j\}_{j=0}^{n+1})) \widehat{V}_p(f^{(p)}, \{x_j\}_{j=0}^{n+1}), \right.$$
for all choices of $n \in \mathbb{N}$, and $\{x_j\}_{j=0}^{n+1}$ with $\text{size}(\{x_j\}_{j=0}^{n+1}) < \mathfrak{h} \right\}, \quad (2.8)$

the problem with N and 2N

The goal is to find an algorithm that can provide an upper bound of the approximation error using only function values. In the next chapter, I will give detailed deduction of error bound analysis.

I need to write down more details. I need to give all definition before used in the algorithms for both trap and sim.

ERROR BOUND ANALYSIS

I need to translate trap language to sim language to make them uniform. I need to explain the deduction for trap without using and assumptions or known theories in the paper. I also need to figure out notations. I need the notations not to conflict. Then I need to go to chapter 2 and change notation.

3.1 Trapezoidal Rule From (ref), the error bound of Trapezoidal rule is related to the variation of the third derivatives of the function to be integrated:

$$\operatorname{err}(f,n) \le \overline{\operatorname{err}}(f,n) := \frac{(b-a)^2 \operatorname{Var}(f')}{8n^2}.$$
(3.1)

Note that $\widetilde{F}_n(f)$ never overestimates $|f|_{\widetilde{\mathcal{F}}}$ because

$$|f|_{\widetilde{\mathcal{F}}} = \|f' - A_2(f)'\|_1 = \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} |f'(x) - A_2(f)'(x)| dx$$

$$\geq \sum_{i=1}^{n-1} \left| \int_{x_i}^{x_{i+1}} [f'(x) - A_2(f)'(x)] dx \right| = \|A_n(f)' - A_2(f)'\|_1 = \widetilde{F}_n(f).$$

To find an upper bound on $|f|_{\widetilde{\mathcal{F}}} - \widetilde{F}_n(f)$, note that

$$|f|_{\widetilde{\mathcal{F}}} - \widetilde{F}_n(f) = |f|_{\widetilde{\mathcal{F}}} - |A_n(f)|_{\widetilde{\mathcal{F}}} \le |f - A_n(f)|_{\widetilde{\mathcal{F}}} = ||f' - A_n(f)'||_1,$$

since $(f - A_n(f))(x)$ vanishes for x = 0, 1. Moreover,

$$||f' - A_n(f)'||_1 = \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} |f'(x) - (n-1)[f(x_{i+1}) - f(x_i)]| dx.$$
 (3.2)

Now we bound each integral in the summation. For i = 1, ..., n - 1, let $\eta_i(x) = f'(x) - (n-1)[f(x_{i+1}) - f(x_i)]$, and let p_i denote the probability that $\eta_i(x)$ is non-negative:

$$p_i = (n-1) \int_{x_i}^{x_{i+1}} \mathbb{1}_{[0,\infty)}(\eta_i(x)) dx,$$

and so $1 - p_i$ is the probability that $\eta_i(x)$ is negative. Since $\int_{x_i}^{x_{i+1}} \eta_i(x) dx = 0$, we know that η_i must take on both non-positive and non-negative values. Invoking the Mean Value Theorem, it follows that

$$\frac{p_i}{n-1} \sup_{x_i \le x \le x_{i+1}} \eta_i(x) \ge \int_{x_i}^{x_{i+1}} \max(\eta_i(x), 0) \, \mathrm{d}x$$

$$= \int_{x_i}^{x_{i+1}} \max(-\eta_i(x), 0) \, \mathrm{d}x \le \frac{-(1-p_i)}{n-1} \inf_{x_i \le x \le x_{i+1}} \eta_i(x).$$

These bounds allow us to derive bounds on the integrals in (3.2):

$$\int_{x_{i}}^{x_{i+1}} |\eta_{i}(x)| dx
= \int_{x_{i}}^{x_{i+1}} \max(\eta_{i}(x), 0) dx + \int_{x_{i}}^{x_{i+1}} \max(-\eta_{i}(x), 0) dx
= 2(1 - p_{i}) \int_{x_{i}}^{x_{i+1}} \max(\eta_{i}(x), 0) dx + 2p_{i} \int_{x_{i}}^{x_{i+1}} \max(-\eta_{i}(x), 0) dx
\leq \frac{2p_{i}(1 - p_{i})}{n - 1} \left[\sup_{x_{i} \leq x \leq x_{i+1}} \eta_{i}(x) - \inf_{x_{i} \leq x \leq x_{i+1}} \eta_{i}(x) \right]
\leq \frac{1}{2(n - 1)} \left[\sup_{x_{i} \leq x \leq x_{i+1}} f'(x) - \inf_{x_{i} \leq x \leq x_{i+1}} f'(x) \right],$$

since $p_i(1 - p_i) \le 1/4$.

Plugging this bound into (3.2) yields

$$||f' - f(1) + f(0)||_{1} - \widetilde{F}_{n}(f) = |f|_{\widetilde{\mathcal{F}}} - \widetilde{F}_{n}(f)$$

$$\leq ||f' - A_{n}(f)'||_{1}$$

$$\leq \frac{1}{2n - 2} \sum_{i=1}^{n-1} \left[\sup_{x_{i} \leq x \leq x_{i+1}} f'(x) - \inf_{x_{i} \leq x \leq x_{i+1}} f'(x) \right]$$

$$\leq \frac{\operatorname{Var}(f')}{2n - 2} \leq \frac{\tau}{2n - 2} |f|_{\widetilde{\mathcal{F}}},$$

So

$$|f|_{\widetilde{\mathcal{F}}} \le \frac{2n-2}{2n-2-\tau}\widetilde{F}_n(f).$$

Then we will have

$$\overline{\text{err}}(f,n) := \frac{(b-a)^2 \operatorname{Var}(f')}{8n^2} \le \frac{(b-a)\tau}{4(n-1)(2n-2-\tau)} \widetilde{F}_n(f).$$

3.2 Simpson's Rule

From (ref), the error bound of Simpson's rule is related to the variation of the third derivatives of the function to be integrated:

$$\operatorname{err}(f, n) \le \overline{\operatorname{err}}(f, n) := \frac{(b - a)^4 \operatorname{Var}(f''')}{5832n^4}.$$
(3.3)

We do not have the variation of the third derivative of the function. In order to find the error bound, the approximation (1) and (2) of variation of the third derivative of the function defined in Chapter 2 became important.

By definition, the approximation (1) is actually a lower bound of Var(f'''):

$$\widehat{V}(f''', \{x_j\}_{j=0}^{n+1}) \le \text{Var}(f'''), \quad \forall f \in \mathcal{C}, \quad \{x_j\}_{j=0}^{n+1}, \quad n \in \mathbb{N}.$$
 (3.4)

The algorithm will be guaranteed to work for the cone (2) of integrands for which $\hat{V}(f''', \{x_j\}_{j=0}^{n+1})$ does not underestimate Var(f''') too much.

We cannot use $\widehat{V}(f''', \{x_j\}_{j=0}^{n+1})$ to approximate $\operatorname{Var}(f''')$ because it depends on values of f''', not values of f. However, $\widehat{V}(f''', \{x_j\}_{j=0}^{n+1})$ is closely related to the following approximation to $\operatorname{Var}(f''')$:

$$\widetilde{V}_n(f) = \frac{27n^3}{(b-a)^3} \sum_{j=1}^{n-1} |f(v_{3j+3}) - 3f(v_{3j+2}) + 3f(v_{3j+1}) - 2f(v_{3j}) + 3f(v_{3j-1}) - 3f(v_{3j-2}) + f(v_{3j-3})|, \quad (3.5)$$

We use divided differences to explain The relationship between (1) and (2).

Let $h = v_{i+1} - v_i = (b - a)/3n$ and

$$f[v_i] = f(v_i), \text{ for } i = 0, \dots, 3n,$$

$$f[v_i, v_{i-1}] = \frac{f(v_i) - f(v_{i-1})}{h}, \text{ for } i = 1, \dots, 3n,$$

$$f[v_i, v_{i-1}, v_{i-2}] = \frac{f(v_i) - 2f(v_{i-1}) + f(v_{i-2})}{2h^2}, \text{ for } i = 2, \dots, 3n,$$

$$f[v_i, v_{i-1}, v_{i-2}, v_{i-3}] = \frac{f(v_i) - 3f(v_{i-1}) + 3f(v_{i-2}) - f(v_{i-3})}{6h^3}, \text{ for } i = 3, \dots, 3n.$$

According to Mean Value Theorem for divided differences, (ref), for all $j = 1, 2, \dots, n, \exists x_j \in (v_{3j-3}, v_{3j})$ such that

$$f[v_{3j}, v_{3j-1}, v_{3j-2}, t_{3j-3}] = \frac{f'''(x_j)}{6},$$

for $j=1,2,\cdots,n$. This implies that

$$f'''(x_j) = \frac{f(v_{3j}) - 3f(v_{3j-1}) + 3f(v_{3j-2}) - f(v_{3j-3})}{h^3},$$

$$= \frac{27n^3}{(b-a)^3} [f(v_{3j}) - 3f(v_{3j-1}) + 3f(v_{3j-2}) - f(v_{3j-3})]. \quad (3.6)$$

If we combine (3.5) and (3.6) together, we obtain

$$\widetilde{V}_n(f) = \sum_{j=1}^{n-1} |f'''(x_{j+1}) - f'''(x_j)| = \widehat{V}(f''', \{x_j\}_{j=0}^{n+1}).$$
(3.7)

Then we can use $\widetilde{V}_n(f)$ to approximate $\operatorname{Var}(f''')$ by just using function values.

ADAPTIVE, AUTOMATIC ALGORITHMS WITH GUARANTEES

4.1 Basic Concepts AA I need to explain the embedded mechanism and stopping criteria with tolerance, max iteration and max number of points. In the following subsections, I need detailed explanation of the algorithms.

4.2 Trapezoidal Rule

Algorithm 1 (Adaptive Univariate Integration). Let the sequence of algorithms $\{T_n\}_{n\in\mathcal{I}}, \ \{\widetilde{F}_n\}_{n\in\mathcal{I}}, \ \text{and} \ \{F_n\}_{n\in\mathcal{I}} \ \text{be as described above.}$ Let $\tau \geq 2$ be the cone constant. Set i = 1. Let $n_1 = \lceil (\tau + 1)/2 \rceil + 1$. For any error tolerance ε and input function f, do the following:

Stage 1. Estimate $||f' - f(1) + f(0)||_1$ and bound $\operatorname{Var}(f')$. Compute $\widetilde{F}_{n_i}(f)$ in (2.6) and $F_{n_i}(f)$ in (??).

Stage 2. Check the necessary condition for $f \in \mathcal{C}_{\tau}$. Compute

$$\tau_{\min,n_i} = \frac{F_{n_i}(f)}{\widetilde{F}_{n_i}(f) + F_{n_i}(f)/(2n_i - 2)}.$$

If $\tau \geq \tau_{\min,n_i}$, then go to stage 3. Otherwise, set $\tau = 2\tau_{\min,n_i}$. If $n_i \geq (\tau + 1)/2$, then go to stage 3. Otherwise, choose

$$n_{i+1} = 1 + (n_i - 1) \left\lceil \frac{\tau + 1}{2n_i - 2} \right\rceil.$$

Go to Stage 1.

Stage 3. Check for convergence. Check whether n_i is large enough to satisfy the error tolerance, i.e.

$$\widetilde{F}_{n_i}(f) \le \frac{4\varepsilon(n_i-1)(2n_i-2-\tau)}{\tau}.$$

If this is true, then return $T_{n_i}(f)$ and terminate the algorithm. If this is not true, choose

$$n_{i+1} = 1 + (n_i - 1) \max \left\{ 2, \left\lceil \frac{1}{(n_i - 1)} \sqrt{\frac{\tau \widetilde{F}_{n_i}(f)}{8\varepsilon}} \right\rceil \right\}.$$

Go to Stage 1.

4.3 Simpson's Rule

Algorithm 2 (Adaptive Univariate Integration). Given an interval [a, b], an inflation function, \mathfrak{C} , a positive key mesh size \mathfrak{h} , a positive error tolerance, ε , and a routine for generating values of the integrand, f, set l = 1, and $n_1 = 2(\lfloor (b-a)/\mathfrak{h} \rfloor + 1)$.

Stage 1 Compute the error estimate $\widetilde{\text{err}}(f, n_l)$ according to (??).

Stage 2 If $\widetilde{\operatorname{err}}(f, n_l) \leq \varepsilon$, then return the Simpson's rule approximation $S_{n_l}(f)$ as the answer.

Stage 3 Otherwise let $n_{l+1} = \max(2, m)\eta_l$, where

$$m = \min\{r \in \mathbb{N} : \eta(rn_l)\widetilde{V}_{n_l(f)} \le \varepsilon\}, \text{ with } \eta(n) := \frac{(b-a)^4\mathfrak{C}(2(b-a)/n)}{5832n^4}.$$

increase l by one, and go to 1.

Theorem 1. Algorithm 2 is successful, i.e.,

$$\left| \int_a^b f(x) dx - \mathit{integral}(f, a, b, \varepsilon) \right| \leq \varepsilon, \qquad \forall f \in \mathcal{C}.$$

COMPUTATIONAL COST OF GUARANTEED ALGORITHMS

5.1 Traezoidale rule

Theorem 2. Let $\sigma > 0$ be some fixed parameter, and let $\mathcal{B}_{\sigma} = \{ f \in \mathcal{V}^1 : \operatorname{Var}(f') \leq \sigma \}$. Let $T \in \mathcal{A}(\mathcal{B}_{\sigma}, \mathbb{R}, \operatorname{INT}, \Lambda^{\operatorname{std}})$ be the non-adaptive trapezoidal rule defined by Algorithm ??, and let $\varepsilon > 0$ be the error tolerance. Then this algorithm succeeds for $f \in \mathcal{B}_{\sigma}$, i.e., $|\operatorname{INT}(f) - T(f, \varepsilon)| \leq \varepsilon$, and the cost of this algorithm is $\left\lceil \sqrt{\sigma/(8\varepsilon)} \right\rceil + 1$, regardless of the size of $\operatorname{Var}(f')$.

Now let $T \in \mathcal{A}(\mathcal{C}_{\tau}, \mathbb{R}, \mathrm{INT}, \Lambda^{\mathrm{std}})$ be the adaptive trapezoidal rule defined by Algorithm 1, and let τ , n_1 , and ε be as described there. Let \mathcal{C}_{τ} be the cone of functions defined in (2.8). Then it follows that Algorithm 1 is successful for all functions in \mathcal{C}_{τ} , i.e., $|\mathrm{INT}(f) - T(f, \varepsilon)| \leq \varepsilon$. Moreover, the cost of this algorithm is bounded below and above as follows:

$$\max\left(\left\lceil\frac{\tau+1}{2}\right\rceil, \left\lceil\sqrt{\frac{\operatorname{Var}(f')}{8\varepsilon}}\right\rceil\right) + 1$$

$$\leq \max\left(\left\lceil\frac{\tau+1}{2}\right\rceil, \left\lceil\sqrt{\frac{\tau \|f'-f(1)+f(0)\|_{1}}{8\varepsilon}}\right\rceil\right) + 1$$

$$\leq \cot(T, f; \varepsilon)$$

$$\leq \sqrt{\frac{\tau \|f'-f(1)+f(0)\|_{1}}{2\varepsilon}} + \tau + 4 \leq \sqrt{\frac{\tau \operatorname{Var}(f')}{4\varepsilon}} + \tau + 4. \quad (5.1)$$

The algorithm is computationally stable, meaning that the minimum and maximum costs for all integrands, f, with fixed $||f' - f(1) + f(0)||_1$ or Var(f') are an ε -independent constant of each other.

5.2 Simpson's rule

Theorem 3. Let $N(f, \varepsilon)$ denote the final number of n_l in Stage 2 when the algorithm terminates. Then this number is bounded below and above in terms of the true, yet

unknown, Var(f''').

$$\max\left(\left\lfloor \frac{2(b-a)}{\mathfrak{h}}\right\rfloor + 1, \left\lceil (b-a)\left(\frac{\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4}\right\rceil\right) \leq N(f,\varepsilon) \\
\leq 2\min\left\{n \in \mathbb{N} : n \geq 2\left(\left\lfloor \frac{(b-a)}{\mathfrak{h}}\right\rfloor + 1\right), \eta(n)\operatorname{Var}(f''') \leq \varepsilon\right\} \\
\leq 2\min_{0 < \alpha \leq 1} \max\left(2\left(\left\lfloor \frac{(b-a)}{\alpha\mathfrak{h}}\right\rfloor + 1\right), (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4} + 1\right). (5.2)$$

The number of function values required by the algorithm is $3N(f,\varepsilon)+1$.

Proof. No matter what inputs f and ε are provided, $N(f, \varepsilon) \geq n_1 = 2(\lfloor (b-a)/\mathfrak{h} \rfloor + 1)$. Then the number of intervals increases until $\widetilde{\text{err}}(f, n) \leq \varepsilon$, which by (??) implies that $\overline{\text{err}}(f, n) \leq \varepsilon$. This implies the lower bound on $N(f, \varepsilon)$.

Let L be the value of l for which Algorithm 2 terminates. Since n_1 satisfies the upper bound, we may assume that $L \geq 2$. Let m be the integer found in Step 3, and let $m^* = \max(2, m)$. Note that $\eta((m^* - 1)n_{L-1}) \operatorname{Var}(f''') > \varepsilon$. For $m^* = 2$, this is true because $\eta(n_{L-1}) \operatorname{Var}(f''') \geq \eta(n_{L-1}) \widetilde{V}_{n_{L-1}}(f) = \widetilde{\operatorname{err}}(f, n_{L-1}) > \varepsilon$. For $m^* = m > 2$ it is true because of the definition of m. Since η is a decreasing function, it follows that

$$(m^* - 1)n_{L-1} < n^* := \min \left\{ n \in \mathbb{N} : n \ge \left| \frac{2(b-a)}{n} \right| + 1, \eta(n) \operatorname{Var}(f''') \le \varepsilon \right\}.$$

Therefore $n_L = m^* n_{L-1} < m^* \frac{n^*}{m^*-1} = \frac{m^*}{m^*-1} n^* \le 2n^*$.

To prove the latter part of the upper bound, we need to prove that

$$n^* \leq \max\left(\left\lfloor \frac{2(b-a)}{\alpha\mathfrak{h}} \right\rfloor + 1, (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4} + 1\right), \quad 0 < \alpha < 1.$$

For fixed $\alpha \in (0, 1]$, we only need to consider that case where $n^* > \lfloor 2(b-a)/(\alpha \mathfrak{h}) \rfloor + 1$. This implies that $n^* - 1 > \lfloor 2(b-a)/(\alpha \mathfrak{h}) \rfloor \geq 2(b-a)/(\alpha \mathfrak{h})$ thus $\alpha \mathfrak{h} \geq 2(b-a)/(n^*-1)$.

Also by the definition of n^* , η , and \mathfrak{C} is non-decreasing:

$$\begin{split} &\eta(n^*-1)\operatorname{Var}(f''')>\varepsilon,\\ &\Rightarrow 1<\left(\frac{\eta(n^*-1)\operatorname{Var}(f''')}{\varepsilon}\right)^{1/4},\\ &\Rightarrow n^*-1< n^*-1\left(\frac{\eta(n^*-1)\operatorname{Var}(f''')}{\varepsilon}\right)^{1/4},\\ &= n^*-1\left(\frac{(b-a)^4\mathfrak{C}(2(b-a)/(n^*-1))\operatorname{Var}(f''')}{5832(n^*-1)^4\varepsilon}\right)^{1/4},\\ &\leq (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4}. \end{split}$$

This completes the prove of latter part of the upper bound.

LOWER BOUND OF COMPLEXITY

6.1 Traezoidale rule Next, we derive a lower bound on the cost of approximating functions in the ball \mathcal{B}_{σ} and in the cone \mathcal{C}_{τ} by constructing fooling functions. Following the arguments of Section ??, we choose the triangle shaped function $f_0: x \mapsto 1/2 - |1/2 - x|$. Then

$$|f_0|_{\widetilde{\mathcal{F}}} = ||f_0' - f_0(1) + f_0(0)||_1 = \int_0^1 |\operatorname{sign}(1/2 - x)| \, dx = 1,$$

 $|f_0|_{\mathcal{F}} = \operatorname{Var}(f_0') = 2 = \tau_{\min}.$

For any $n \in \mathcal{J} := \mathbb{N}_0$, suppose that the one has the data $L_i(f) = f(\xi_i)$, $i = 1, \ldots, n$ for arbitrary ξ_i , where $0 = \xi_0 \le \xi_1 < \cdots < \xi_n \le \xi_{n+1} = 1$. There must be some $j = 0, \ldots, n$ such that $\xi_{j+1} - \xi_j \ge 1/(n+1)$. The function f_1 is defined as a triangle function on the interval $[\xi_j, \xi_{j+1}]$:

$$f_1(x) := \begin{cases} \frac{\xi_{j+1} - \xi_j - |\xi_{j+1} + \xi_j - 2x|}{8} & \xi_j \le x \le \xi_{j+1}, \\ 0 & \text{otherwise.} \end{cases}$$

This is a piecewise linear function whose derivative changes from 0 to 1/4 to -1/4 to 0 provided $0 < \xi_j < \xi_{j+1} < 1$, and so $|f_1|_{\mathcal{F}} = \text{Var}(f_1') \le 1$. Moreover,

INT
$$(f) = \int_0^1 f_1(x) dx = \frac{(\xi_{j+1} - \xi_j)^2}{16} \ge \frac{1}{16(n+1)^2} =: g(n),$$
$$g^{-1}(\varepsilon) = \left\lceil \sqrt{\frac{1}{16\varepsilon}} \right\rceil - 1.$$

Using these choices of f_0 and f_1 , along with the corresponding g above, one may invoke Theorems ??-??, and Corollary ?? to obtain the following theorem.

Theorem 4. For $\sigma > 0$ let $\mathcal{B}_{\sigma} = \{ f \in \mathcal{V}^1 : \operatorname{Var}(f') \leq \sigma \}$. The complexity of integration on this ball is bounded below as

$$comp(\varepsilon, \mathcal{A}(\mathcal{B}_{\sigma}, \mathbb{R}, INT, \Lambda^{std}), \mathcal{B}_{s}) \geq \left\lceil \sqrt{\frac{\min(s, \sigma)}{16\varepsilon}} \right\rceil - 1.$$

(6.1a)

Algorithm?? using the trapezoidal rule has optimal order in the sense of Theorem ??.

For $\tau > 2$, the complexity of the integration problem over the cone of functions C_{τ} defined in (2.8) is bounded below as

$$comp(\varepsilon, \mathcal{A}(\mathcal{C}_{\tau}, \mathbb{R}, INT, \Lambda^{std}), \mathcal{B}_{s}) \geq \left\lceil \sqrt{\frac{(\tau - 2)s}{32\tau\varepsilon}} \right\rceil - 1.$$

The adaptive trapezoidal Algorithm 1 has optimal order for integration of functions in C_{τ} in the sense of Corollary ??.

6.2 Simpson's rule building fooling function:

$$bump(x;t,h) := \begin{cases} (x-t)^3/6, & t \le x < t+h, \\ [-3(x-t)^3 + 12h(x-t)^2 - 12h^2(x-t) + 4h^3]/6, & t+h \le x < t+2h, \end{cases}$$

$$bump(x;t,h) := \begin{cases} [3(x-t)^3 - 24h(x-t)^2 + 60h^2(x-t) - 44h^3]/6, & t+2h \le x < t+3h, \\ (t+4h-x)^3/6, & t+3h \le x < t+4h, \end{cases}$$

$$0, & \text{otherwise,}$$

$$\operatorname{bump}'''(x;t,h) := \begin{cases} 1, & t \le x < t+h, \\ -3, & t+h \le x < t+2h, \\ 3, & t+2h \le x < t+3h,, \\ -1, & t+3h \le x < t+4h, \\ 0, & \text{otherwise,} \end{cases}$$
 (6.1b)

$$Var(bump'''(\cdot; t, h)) \le 16 \text{ with equality if } a < t < t + 4h < b, \tag{6.1c}$$

Var(bump'''(
$$\cdot$$
; t, h)) ≤ 16 with equality if $a < t < t + 4h < b$, (6.1c)
$$\int_{a}^{b} \operatorname{peak}(x; t, h) dx = h^{4}.$$
 (6.1d)

The following double-bump function always lies in C:

twobp
$$(x; t, h, \pm) := \text{bump}(x; a, \mathfrak{h}) \pm \frac{15[\mathfrak{C}(h) - 1]}{16} \text{bump}(x; t, h)$$
$$a + 5\mathfrak{h} \le h \le b - 5h, 0 \le h < \mathfrak{h}. \quad (6.2a)$$

$$Var(twobp'''(x;t,h,\pm)) = 15 + 16\frac{15[\mathfrak{C}(h)-1]}{16} = 15\mathfrak{C}(h).$$
 (6.2b)

From this definition it follows that

$$\mathfrak{C}(\operatorname{size}(\{x_j\}_{j=0}^{n+1}))\widehat{V}(\operatorname{twobp}'''(x;t,h,\pm),\{x_j\}_{j=0}^{n+1})$$

$$\geq \begin{cases} 15\mathfrak{C}(h) = \operatorname{Var}(\operatorname{twobp}'''(x;t,h,\pm)), h \leq \operatorname{size}(\{x_j\}_{j=0}^{n+1})) < \mathfrak{h} \\ \mathfrak{C}(0)\operatorname{Var}(\operatorname{twobp}'''(x;t,h,\pm)), 0 \leq \operatorname{size}(\{x_j\}_{j=0}^{n+1})) < h \end{cases}$$

$$\geq \operatorname{Var}(\operatorname{twobp}'''(x;t,h,\pm))$$

Although twobp"'($x; t, h, \pm$) may have a bump with arbitrarily small width 4h, the height is small enough for twobp"'($x; t, h, \pm$) to lie in the cone.

complexity:

Theorem 5. Let int be any (possibly adaptive) algorithm that succeeds for all integrands in C, and only uses function values. For any error tolerance $\varepsilon > 0$ and any arbitrary value of Var(f'''), there will be some $f \in C$ for which int must use at least

$$-\frac{5}{4} + \frac{b - a - 5\mathfrak{h}}{8} \left[\frac{[\mathfrak{C}(0) - 1] \operatorname{Var}(f''')}{\varepsilon} \right]^{1/4}$$
(6.3)

function values. As $Var(f''')/\varepsilon \to \infty$ the asymptotic rate of increase is the same as the computational cost of integral.

Proof. For any positive α , suppose that $\operatorname{int}(\cdot, a, b, \varepsilon)$ evaluates integrand $\alpha \operatorname{bump}'''(\cdot; t, h)$ at n nodes before returning to an answer. Let $\{x_j\}_{j=1}^m$ be the m < n ordered

nodes used by $\operatorname{int}(\cdot, a, b, \varepsilon)$ that fall in the interval (x_0, x_{m+1}) where $x_0 := a + 3\mathfrak{h}$, $x_{m+1} := b - h$ (why h but not \mathfrak{h} or 5h?) and $h := (b - a - 5\mathfrak{h})/(4n + 5)$. There must $a_i = a_i + a_i$

$$\frac{x_{j+1} - x_j}{4} \ge \frac{x_{m+1} - x_0}{4(m+1)} \ge \frac{x_{m+1} - x_0}{4(n+1)} = \frac{b - a - 5\mathfrak{h} - h}{4n + 4} = h.$$

Choose one such x_j and call it t. The choice of t and h ensures that $\operatorname{int}(\cdot, a, b, \varepsilon)$ cannot distinguish between $\alpha \operatorname{bump}(\cdot; t, h)$ and $\alpha \operatorname{twobp}(\cdot; t, h, \pm)$. Thus

$$\operatorname{int}(\alpha \operatorname{twobp}(\cdot; t, h, \pm), a, b, \varepsilon) = \operatorname{int}(\alpha \operatorname{bump}(\cdot; t, h), a, b, \varepsilon)$$

Moreover, α bump $(\cdot; t, h)$ and α twobp $(\cdot; t, h, \pm)$ are all in the cone \mathcal{C} . This means that int is successful for all of the functions.

$$\begin{split} \varepsilon & \geq \frac{1}{2} \left[\left| \int_a^b \alpha \mathrm{twobp}(x;t,h,-) dx - \mathrm{int}(\alpha \mathrm{twobp}(\cdot;t,h,-),a,b,\varepsilon) \right| \right. \\ & + \left| \int_a^b \alpha \mathrm{twobp}(x;t,h,+) dx - \mathrm{int}(\alpha \mathrm{twobp}(\cdot;t,h,+),a,b,\varepsilon) \right| \left. \right] \\ & \geq \frac{1}{2} \left[\left| \mathrm{int}(\alpha \mathrm{bump}(\cdot;t,h,-),a,b,\varepsilon) - \int_a^b \alpha \mathrm{twobp}(x;t,h,-) dx \right| \right. \\ & + \left| \int_a^b \alpha \mathrm{twobp}(x;t,h,+) dx - \mathrm{int}(\alpha \mathrm{bump}(\cdot;t,h,+),a,b,\varepsilon) \right| \left. \right] \\ & \geq \frac{1}{2} \left| \int_a^b \alpha \mathrm{twobp}(x;t,h,+) dx - \int_a^b \alpha \mathrm{twobp}(x;t,h,-) dx \right| \\ & = \int_a^b \alpha \mathrm{bump}(x;t,h) dx \\ & = \frac{15\alpha [\mathfrak{C}(h)-1]h^4}{16} \\ & = \frac{[\mathfrak{C}(h)-1]h^4 \operatorname{Var}(\alpha \mathrm{bump}'''(\cdot;a,\mathfrak{h}))}{16} \end{split}$$

Substituting h in terms of n:

$$4n + 5 = \frac{b - a - 5\mathfrak{h}}{h} \ge (b - a - 5\mathfrak{h}) \left[\frac{[\mathfrak{C}(h) - 1] \operatorname{Var}(\alpha \mathsf{bump'''}(\cdot; a, \mathfrak{h})))}{16\varepsilon} \right]^{1/4},$$
$$\ge \frac{b - a - 5\mathfrak{h}}{2} \left[\frac{[\mathfrak{C}(0) - 1] \operatorname{Var}(\alpha \mathsf{bump'''}(\cdot; a, \mathfrak{h}))}{\varepsilon} \right]^{1/4}.$$

Since α is an arbitrary positive number, the value of $Var(\alpha bump'''(\cdot; a, \mathfrak{h}))$ is arbitrary.

Finally, comparing the upper bound on the computational cost of integral in (5.2) with the lower bound on the computational cost of the best algorithm in (6.3), both of them increase as $\mathcal{O}((\operatorname{Var}(f''')/\varepsilon))^{1/4}$ as $(\operatorname{Var}(f''')/\varepsilon)^{1/4} \to \infty$. Thus integral is optimal.

NUMERICAL EXPERIMENTS

7.1 Traezoidale rule Consider the family of bump test functions defined by

$$f(x) = \begin{cases} b[4a^2 + (x-z)^2 + (x-z-a)|x-z-a| \\ -(x-z+a)|x-z+a|], & z-2a \le x \le z+2a, \quad (7.1) \\ 0, & \text{otherwise.} \end{cases}$$

with $\log_{10}(a) \sim \mathcal{U}[-4, -1]$, $z \sim \mathcal{U}[2a, 1 - 2a]$, and $b = 1/(4a^3)$ chosen to make $\int_0^1 f(x) dx = 1$. It follows that $||f' - f(1) + f(0)||_1 = 1/a$ and $Var(f') = 2/a^2$. The probability that $f \in \mathcal{C}_\tau$ is min $(1, \max(0, (\log_{10}(\tau/2) - 1)/3))$.

As an experiment, we chose 10000 random test functions and applied Algorithm 1 with an error tolerance of $\varepsilon = 10^{-8}$ and initial τ values of 10, 100, 1000. The algorithm is considered successful for a particular f if the exact and approximate integrals agree to within ε . The success and failure rates are given in Table 7.1. Our algorithm imposes a cost budget of $N_{\text{max}} = 10^7$. If the proposed n_{i+1} in Stages 2 or 3 exceeds N_{max} , then our algorithm returns a warning and falls back to the largest possible n_{i+1} not exceeding N_{max} for which $n_{i+1} - 1$ is a multiple of $n_i - 1$. The probability that f initially lies in \mathcal{C}_{τ} is the smaller number in the third column of Table 7.1, while the larger number is the empirical probability that f eventually lies in \mathcal{C}_{τ} after possible increases in τ made by Stage 2 of Algorithm 1. For this experiment Algorithm 1 was successful for all f that finally lie inside \mathcal{C}_{τ} and for which no attempt was made to exceed the cost budget.

Some commonly available numerical algorithms in MATLAB are quad and integral [?] and the MATLAB Chebfun toolbox [?]. We applied these three routines

			Success	Success	Failure
	au	$\operatorname{Prob}(f \in \mathcal{C}_{\tau})$	No Warning	Warning	No Warning
Algorithm 1	10	$0\% \rightarrow 25\%$	25%	< 1%	75%
	100	$23\% \rightarrow 58\%$	56%	2%	42%
	1000	$57\% \rightarrow 88\%$	68%	20%	12%
quad			8%		92%
integral			19%		81%
chebfun			29%		71%

Table 7.1. The probability of the test function lying in the cone for the original and eventual values of τ and the empirical success rate of Algorithm 1 plus the success rates of other common quadrature algorithms.

to the random family of test functions. Their success and failure rates are also recorded in Table 7.1. They do not give warnings of possible failure.

7.2 Simpson's Rule I need to use a good example to run the tests. Then I will need to compare the results for both algorithms with other algorithms. After that, I need to compare trap and sim to get the conclusion such as sim has faster convergence rate than trap. This will require an sample function good to both trap and sim.

CONCLUSION

A

8.1 Summary

A

APPENDIX A $\label{thm:coefficients} \mbox{TABLE OF TRANSITION COEFFICIENTS FOR THE DESIGN OF } \\ \mbox{LINEAR-PHASE FIR FILTERS}$

Your Appendix will go here!

$\label{eq:appendix} \text{APPENDIX B}$ NAME OF YOUR SECOND APPENDIX

Your second appendix text....

$\label{eq:appendix} \mbox{APPENDIX C}$ NAME OF YOUR THIRD APPENDIX

Your third appendix text....