Liquidity, Default Risk, and the Information Sensitivity of Sovereign Debt

Stelios Fourakis

University of Minnesota

foura001@umn.edu

June 5, 2020

This Paper

- Document empirical relationships between interest rate spreads, liquidity, and default risk in Spain.
 - ▶ Bid-Ask Spread = $Y\overline{T}M_{Bid} Y\overline{T}M_{ASK}$
- Explain variation in liquidity measures as the equilibrium result of some traders having private information.
- Match business cycle patterns of debt accumulation in a developed country using more flexible preferences.

Bid-Ask Spreads and Interest Rates: Spain

▶ vs. CDS S → Bid-Ask Spread Time Series → Interest Rate Spread Time Series

Liquidity and Bid-Ask Spreads: Spain

Literature Review

- Passadore and Xu (2018) and Chaumont (2018):
 - ▶ This paper has no search frictions in secondary markets.
 - ▶ Differences in valuations not driven by permanent changes in investor preferences (good investor vs. bad investor).
- Gorton and Ordonez (2014 and 2019) and Dang, Gorton, and Holmstrom (2015):
 - This paper implements a version of their "information sensitivity" concept.

Key Ingredients

- Model of external sovereign debt a la Eaton Gersovitz (1981).
- Add model of secondary market interactions with:
 - Ability of some agents to acquire private, payoff-relevant information
 - Anonymous trading
 - Random differences in fundamental valuations of bonds between buyers and sellers

Environment

- Small open economy.
- Output is a Markov Process y(s).
- Benevolent government and representative consumer. Recursive preferences.
- Single long term bond: maturity rate λ & coupon rate κ
- While in default, output is reduced.
- Continuum $[0, \bar{B}]$ of risk neutral, competitive international investors, each of whom can hold a unit of debt.
- Current investors may spend $f(\pi)$ to access information about y(s') one period ahead of time with probability π .

Timing

- 1 Income and reentry realized.
- Oefault decisions.
- Primary market opens, borrowing decisions made, auction occurs.

Timing

- Income and reentry realized.
- ② Default decisions.
- Open Primary market opens, borrowing decisions made, auction occurs.
- **4** A noisy signal \hat{y}' about GDP in the next period becomes available. Current investors may attempt to access it at cost.
- Ourrent investors' random taste shocks are realized.

Timing

- Income and reentry realized.
- 2 Default decisions.
- Primary market opens, borrowing decisions made, auction occurs.
- **4** A noisy signal \hat{y}' about GDP in the next period becomes available. Current investors may attempt to access it at cost.
- Ourrent investors' random taste shocks are realized.
- Secondary market opens:
 - Random matching.
 - ▶ Bid and ask prices submitted simultaneously.
 - If $p_{bid} \ge p_{ask}$, the transaction clears at p_{bid} .
 - New purchasers replace exiting sellers.

Government Problem

$$W(s,b) = \max_{d \in \{0,1\}} (1-d)W^{R}(s,b) + dW^{D}(s)$$
 (1)

Conditional on repayment:

$$W^R(s,b) = {\sf max}_{c,b',} {\it U}(c,ar{W}(s,b'))$$

$$c + (\lambda + (1 - \lambda)\kappa)b = y(s) + q(s, b')(b' - (1 - \lambda)b)$$

$$W^D(s) = U(y(s) - \phi(s), \bar{W}^D(s))$$

where $\mu(.)$ is a certainty equivalent operator and:

$$\bar{W}(s,b') = \mu(W(s',b')|s)$$
 $\bar{W}^D(s) = \mu(W(s',0),W^D(s')|s)$

(2)

(3)

(4)

(5)

Secondary Markets

Risk neutrality and competitiveness of lenders:

$$q(s,b') = \max_{\pi} (1-\pi)q_U(s,b') + \pi q_I(s,b') - f(\pi)$$
 (6)

- $\pi_S(s, b')$ = equilibrium proportion of current investors who obtain access to \hat{y}' .
- $q_U(.), q_I(.)$ = value of being uninformed or informed, respectively.
- $\pi_S(s, b') \in (0, 1)$ implies:

$$q_I(s,b') - f'(\pi) = q_U(s,b')$$
 (7)

Secondary Markets - Notation

 v denotes the undiscounted unit value of the asset to an uninformed agent.

$$v(s,b') = E[(1 - d(s',b'))(\lambda + (1 - \lambda)(\kappa + q(s',b''(s',b'))))|s]$$
(8)

Secondary Markets - Notation

 v denotes the undiscounted unit value of the asset to an uninformed agent.

$$v(s,b') = E[(1-d(s',b'))(\lambda + (1-\lambda)(\kappa + q(s',b''(s',b'))))|s]$$
(8)

• $\hat{v} \sim G(.)$ denotes the random variable which is the undiscounted unit value of the asset to an informed agent (and of course $E[\hat{v}] = v$).

$$\hat{v}(s, \hat{y}', b') = E[(1 - d(s', b'))(\lambda + (1 - \lambda)(\kappa + q(s', b''(s', b'))))|s, \hat{y}']$$
(9)

Secondary Markets - Notation

 v denotes the undiscounted unit value of the asset to an uninformed agent.

$$v(s,b') = E[(1-d(s',b'))(\lambda + (1-\lambda)(\kappa + q(s',b''(s',b'))))|s] (8)$$

• $\hat{v} \sim G(.)$ denotes the random variable which is the undiscounted unit value of the asset to an informed agent (and of course $E[\hat{v}] = v$).

$$\hat{v}(s, \hat{y}', b') = E[(1 - d(s', b'))(\lambda + (1 - \lambda)(\kappa + q(s', b''(s', b'))))|s, \hat{y}']$$
(9)

- $\hat{\delta} \sim F(.)$ denotes the random taste shock of current investors.
- ullet denotes the constant, known taste shock of new investors.

Secondary Markets - Sellers

Given any bid strategy of buyers and their own $\hat{\delta}$, sellers solve:

$$q_{U}(v|\hat{\delta}) = \max_{p_{S,U}} \mathbf{1}\{p_{S,U} > p_{B}\}\hat{\delta}v + \mathbf{1}\{p_{S,U} \le p_{B}\}p_{B}$$
 (10)

or:

$$q_{I}(\hat{v}|\hat{\delta}) = \max_{p_{S,I}} \mathbf{1}\{p_{S,I} > p_{B}\}\hat{\delta}\hat{v} + \mathbf{1}\{p_{S,I} \le p_{B}\}p_{B}$$
(11)

Secondary Markets - Sellers

Given any bid strategy of buyers and their own $\hat{\delta}$, sellers solve:

$$q_{U}(v|\hat{\delta}) = \max_{p_{S,U}} \mathbf{1}\{p_{S,U} > p_{B}\}\hat{\delta}v + \mathbf{1}\{p_{S,U} \le p_{B}\}p_{B}$$
 (10)

or:

$$q_{I}(\hat{v}|\hat{\delta}) = \max_{p_{S,I}} \mathbf{1}\{p_{S,I} > p_{B}\}\hat{\delta}\hat{v} + \mathbf{1}\{p_{S,I} \le p_{B}\}p_{B}$$
 (11)

Since transactions clear at the bid price:

$$p_{S,U}^{\star}(\hat{\delta}, v) = \hat{\delta}v \qquad \qquad p_{S,I}^{\star}(\hat{\delta}, \hat{v}) = \hat{\delta}\hat{v}$$
 (12)

Probabilities of trading at a given bid price p_B :

$$Pr(Trade|U,v)(p_B) = F(\frac{p_B}{v}) \qquad Pr(Trade|I,\hat{v})(p_B) = F(\frac{p_B}{\hat{v}})$$
 (13)

Secondary Markets - Seller Values

Secondary Markets - Seller Equilibrium Behavior

Secondary Markets - Buyers

Buyers then solve:

$$max_{p_B}(1-\pi_S)(\delta v - p_B)F(\frac{p_B}{v}) + \pi_S\left(-Pr(\hat{v}=0)p_B + \int_V (\delta \hat{v} - p_B)F(\frac{p_B}{\hat{v}})dG(\hat{v})\right)$$
(14)

Mechanism driving bid ask spreads:

$$\left(\delta\hat{\mathbf{v}}-\mathbf{p}_{B}
ight)$$
 negatively correlated with $F(rac{\mathbf{p}_{B}}{\hat{\mathbf{v}}})$

Secondary Markets - Buyer Values

Secondary Markets - Buyer Best Response

Secondary Markets - Equilibrium

Secondary Markets - Equilibrium

Functional Forms

• Epstein-Zin Preferences:

$$U(c, \bar{W}'(s)) = ((1-\beta)c^{1-\psi} + \beta \bar{W}'(s)^{1-\psi})^{\frac{1}{1-\psi}}$$
 (15)

$$\bar{W}'(s) = E[W(s')^{1-\gamma}|s]^{\frac{1}{1-\gamma}}$$
 (16)

• $y(s) = \tilde{y} + m$

$$\tilde{y}' = \rho \tilde{y} + \eta \quad \eta \sim^{iid} N(0, \sigma_{\eta}^2) \quad m \sim^{iid} TN(0, \sigma_{m}^2, -\bar{m}, \bar{m}) \quad (17)$$

- $\hat{\delta} \sim U(\delta, \bar{\delta})$
- \hat{y}' parametrized as the true \tilde{y}' plus a noise term:

$$\hat{y}' = \tilde{y}' + \epsilon \qquad \qquad \epsilon \sim^{iid} N(0, \sigma_{\epsilon}^2)$$
 (18)

Calibration

All parameter values are monthly, where applicable.

Table 1: Fixed Parameters

Parameter	Value	Notes
$\overline{\rho}$	0.9918	SE: 0.007
σ_{η}	0.0049	SE: 0.0005
σ_{m}	0.0015	SE: 0.0004
\bar{m}	0.0031	
θ	0.0130	CE 2012
$\underline{\delta}$	0.990	Fix implied $r_f=0.33\%$ when $\pi_S=0$
δ	0.999	Fix B-A Spread = 2.5 b.p. when $\pi_S = 0$
$ar{\delta}$	1.001	Fix volumes=37% when $\pi_S=0$
λ	0.0122	Weighted Average Maturity of Debt
κ	0.0041	Average Coupon of Debt

Calibration

This leaves the parameters below.

Table 2: Calibrated Parameters

Parameter	Value	Notes
$\overline{\psi}$	11.73	Govt Inverse IES
γ	4.83	Govt Risk Aversion
β	0.992	Govt Discount Factor
d_0	-0.110	Linear Default Cost
d_1	0.142	Quadratic Default Cost
f	0.000125	Cost of Information (Linear)
σ_ϵ	0.037	SD of Noise in \hat{y}

Results

Table 3: Targeted Moments (Annualized Values)

Moment	Data	Model	
E[B'/Y]	Jan 1 2001 - June 30 2012	11.9%	13.5%
$ ho(B'/Y, \mathit{In}(Y))$	Jan 1 2001 - June 30 2012	-0.76	-0.49
$\rho(NX/Y,In(Y))$	Jan 1 2001 - June 30 2012	-0.78	-0.10
$E[r-r^f]$	Jan 1 2001 - June 30 2012	0.72%	0.83%
$\sigma(r-r^f)$	Jan 1 2001 - June 30 2012	1.13%	1.05%
E[BA]	Jan 1 2001 - June 30 2012	5.5 b.p.	5.4 b.p.
$\rho(BA, r - r^f)$	Jan 1 2001 - June 30 2012	0.84	0.80

Results - Mechanism

Results - Crises

Results - Crises

Results - Validation

- In the model, realized bid-ask spreads depend on the distribution of forecasts obtained by investors.
- Those forecasts in turn depend on the true value of future output.
- Therefore, bid-ask spreads should provide information on future output.
- Does including this information improve forecasts of Spanish output during the crisis relative to the one-step ahead prediction of the Kalman Filter?

Results - Validation

Conclusions

- A model of costly acquisition of private information by traders can rationalize the type of relationship between bid-ask spreads and interest rate spreads/default risk observed in the data.
- Predictions the model makes about the relationship between bid-ask spreads and future realizations of output are borne out in the data.

Liquidity and Bid-Ask Spreads: Spain

Bid-Ask Spreads and CDS Spreads: Spain

Interest Rates: Spain

Bid-Ask Spreads: Spain

Back to Int/BA
 Back to CDS/BA

CDS Spreads: Spain

Bid-Ask Spreads: Spain

Data From Bloomberg and Bank of Spain

Secondary Markets - Equilibrium

