منطق پیشرفته

محسن خاني

۲ مهر ۱۳۹۸

چکیده

هدفهم در درس منطق پیشرفته، اثبات دو قضیهی مهم گودل است: قضیهی تمامیت و قضیهی ناتمامیت. بنا به قضیهی تمامیت، در منطق مرتبهی اول، اگر حکمی در تمامی مدل های یک تئوری درست باشد، آن حکم با استفاده از اصول آن تئوری اثبات می شود. مثلاً اگر حکمی مرتبهی اول در تمامی گروههای آبلی برقرار باشد، آنگاه قطعاً اثباتی برای آن حکم با استفاده از اصول موضوعهی گروههای آبلی پیدا می شود.

در بخش دوم درس، به قضایای ناتمامیت گودل خواهم پرداخت. بنا به ناتمامیت اول گودل، امکان ارائه یک اصل بندی کامل برای حساب توسط یک الگوریتم وجود ندارد.

نیز بنا به قضیهی ناتمامیت دوم گودل، یک قضیهای مرتبهی اول درباره اعداد طبیعی وجود دارد این قضیه (با این که در مورد اعداد طبیعی درست است، از اصول پئانو نتیجه نمی شود).

فهم دقیق قضیههای بالا، البته نیازمند پشت سر گذاشتن چندین جلسه از درس است. برای خواندن یک مقدمهی مفصل تر برای درس منطق، لطفاً به جزوهی درس مبانی منطق و نظریهی مجموعهها، در تارنمای شخصیم مراجعه کنید. رویکردم در تدریس، بیشتر با تکیه بر نظریهی مدل خواهد بود که تخصصم است. منابع بخشهای اولی، کتاب تنتوزیگلر است. ۱

١ الفبا، بدون معانى

مطالعهی هر مفهوم جبری در منطق مرتبهی اول، نخست نیازمند انتخاب یک زبان مناسب است. زبان، حکم حروف الفبای فارسی را دارد که کلمات قرار است با استفاده از آنها ساخته شوند.

تعریف ۱ (یک زبان مرتبه ی اول). منظور از یک زبان مرتبه اول L، یک مجموعه متشکل از نمادهایی برای توابع، نمادهایی برای روابط و نمادهایی برای ثوابت است. برای هر نماد تابعی $f \in L$ یک عدد طبیعی n_f به نام تعداد مواضع تابع f در نظر گرفته شده است. گرفته شده است و برای نماد رابطه ای R نیز یک عدد طبیعی n_R به نام تعداد مواضع رابطه ی R در نظر گرفته شده است.

توجه ۲.

 ۱. نماد تابعی با تابع فرق میکند. بعداً قرار است متناظر با هر نماد تابعی، یک تابع واقعی پیدا کنیم که ترجمهی آن نماد باشد.

۱ تایپ اولیهی جلسات به ترتیب توسط: ج۱ آرمان عطائی، صورت گرفته است.

۲. در یک زبانِ مرتبه ی اول L، نمادهای منطقی مانند \wedge ، \vee ، \forall ، \forall ، \forall ، \forall ، \forall ، \forall اینها در منطق مرتبه ی اول سخن خواهیم گفت.

برای مطالعه یک پدیده، باید زبانی را انتخاب کنیم که از پس بیان ویژگیهای جبری آن پدیده برآید. در درسهای آینده این سخن را روشنتر خواهم کرد. در زیر مثالی از چند زبان مرتبهی اول آوردهام.

مثال ۳ (مثالهائي از زبانهاي مرتبهي اول).

- ۱. زبان تهی: $\phi = L$ که شامل هیچ نمادی برای تابع، ثابت یا رابطه نیست.
- ۲. زبان گروههای جمعی آبلی: $\{+,-,ullet\}$ در این زبان، +,+ نمادهای تابعی دو موضعی هستند و + نمادی برای یک ثابت است.
- ۳. زبان نظریهی گروهها: $L_{Group} = \{\cdot, ^- \cdot, e\}$ در این زبان، $^-$ یک نماد تابعی تکموضعی، یک نماد تابعی دوموضعی و e یک نماد برای یک ثابت است.
 - ۴. زبان نظریهی گراف: $L_{Graph} = \{R\}$. در این زبان، R یک نماد رابطه ای دو موضعی است.
- ۵. زبان حلقهها: $L_{Ring} = \{+, -, \cdot, \cdot, 1\}$ که در آن ۱ ، ۰ دو نماد برای دو ثابت هستند. این زبان در واقع از افزودن ِ ۰ و نماد برای دو ثابت هستند. این زبان در واقع از افزودن ِ ۰ و به زبان گروههای جمعی آبلی به دست می آید.
 - ع. زبان نظریهی مجموعهها: $\{\in\}=L_{Set}=\{\in\}$. در این زبان، علامت \in یک نماد رابطه ای دوموضعی است.
 - $L_{\mathbb{N}} = \{+,\cdot,ullet, 1,s\}$ در این زبان، s یک نماد تابعی تکموضعی (برای تابع تالی) است.

طبیعت برخی پدیده ها، بخصوص فضاهای توپولوژیک، مرتبه ی اول نیست ولی در عین حال برخی فضاهای توپولوژیک که ساختار جبری دارند،مرتبه ی اول هستند.

تمرین ۱. برای مطالعهی فضاهای برداری چه زبان مرتبهی اولی را پیشنهاد میکنید؟

بحث زبان را فعلاً رها میکنم. در جلسات آینده، دوباره به زبان (به بیان بهتر، به نحو) بازخواهیم گشت.

۲ جبر ساختارها

در منطق مرتبهی اول، جملات باید در ساختارها معنا شوند. مثلاً این را که «هر عنصری دارای یک وارون ضربی است» باید در یک گروه ضربی معنا کرد.

L (L ساختار). فرض کنید L یک زبان مرتبهی اول باشد. منظور از یک L ساختار جفتی به صورت زیر است:

$$\mathfrak{M} = (M, (z^{\mathfrak{M}})_{z \in L})$$

که متشکل از یک مجموعهی M است به نام جهان آن L ساختار، و همچنین برای هر نماد $z \in L$ یک مابازای $z^{\mathfrak{M}}$ وجود دارد که به آن تعبیر(معنای) نماد z در ساختار z گفته می شود. این تعبیر به صورت دقیق ِ زیر تعریف می شود.

- ullet اگر z یک نماد ثابت باشد آنگاه $z^{\mathfrak{M}} \in \mathbb{Z}$ یک عنصر است که به آن تعبیر ثابت z گفته می شود.
 - اگر z یک نماد تابعی و n تعداد مواضع آن باشد آنگاه z

$$z^{\mathfrak{M}}:M^n\to M$$

یک تابع است که به آن تعبیر نماد تابعی z گفته می شود.

. اگر z یک نماد رابطه ای n موضعی باشد آنگاه $m \subseteq z^{\mathfrak{M}} \subseteq z^{\mathfrak{M}}$ یک رابطه است که به آن تعبیرِنماد رابطه ی گفته می شود.

به طور خاص دقت کنید که جهان یک ساختار مرتبه ی اول، تحت تابعهای تعبیرشده بسته است. همچنین این تابعها بردشان زیرمجموعه ی M (و نه M^n است).

تمرین ۲. برای هر کدام از زبانهای L در مثال T بررسی کنید که L ساختارهای مربوطه چگونهاند.

تعریف ۵ (M همومرفیسم). فرض کنید $\mathfrak M$ و $\mathfrak M$ دو M ساختار باشند. تابع $M:M\to M$ را یک M همومرفیسم مینامیم هرگاه حافظ ساختار باشد، به بیان دقیق هرگاه این گونه باشد که

 $z \in L$ برای هر نماد ثابت \bullet

$$h(z^{\mathfrak{M}}) = z^{\mathfrak{N}}$$

 $a_1, \ldots, a_n \in M$ و هر نماد تابعی n موضعی $f \in L$

$$h(f^{\mathfrak{M}}(a_1,\cdots,a_n))=f^{\mathfrak{N}}(h(a_1),\cdots,h(a_n))$$

 $a_1, \cdots, a_n \in M$ وبرای هر نماد رابطهای n موضعی $R \in L$ و هر هر \bullet

$$R^{\mathfrak{M}}(a_1,\cdots,a_n)\Rightarrow R^{\mathfrak{N}}(h(a_1),\cdots,h(a_n))$$

به یک طرفه بودن فلشِ بالا دقت کنید. اگر h یک به یک باشد و فلش بالا دو طرفه باشد، آنگاه h را یک نشاندن می نامیم. اگر h یک نشاندنِ پوشا باشد، آن را یک ایزومرفیسم می نامیم.

دقت کنید که مفاهیم بالا، تعمیم مفاهیم همنام خود در جبر گروهها، حلقهها، فضاهای برداری و غیره هستند.