

Important Notice

Trademarks

All brand names, trademarks and registered trademarks belong to their respective owners.

- MIPI is registered trademark of the Mobile Industry Processor Interface (MIPI) Alliance.
- I²C is a trademark of Phillips Semiconductor Corp.

All other trademarks used in this publication are the property of their respective owners.

Chip Handling Guide

Precaution against Electrostatic Discharge

When using semiconductor devices, ensure that the environment is protected against static electricity:

- 1. Wear antistatic clothes and use earth band.
- 2. All objects that are in direct contact with devices must be made up of materials that do not produce static electricity.
- 3. Ensure that the equipment and work table are earthed.
- 4. Use ionizer to remove electron charge.

Contamination

Do not use semiconductor products in an environment exposed to dust or dirt adhesion.

Temperature/Humidity

Semiconductor devices are sensitive to:

- Environment
- Temperature
- Humidity

High temperature or humidity deteriorates the characteristics of semiconductor devices. Therefore do not store or use semiconductor in such conditions.

Mechanical Shock

Do not to apply excessive mechanical shock or force on semiconductor devices.

Chemical

Do not expose semiconductor devices to chemicals because of reactions that deteriorate the characteristics of devices.

Light Protection

In non-Epoxy Molding Compound (EMC) package, do not expose semiconductor IC to bright light. Exposure to bright light causes malfunctioning of the device. However, a few special products that utilize light or with security functions are exempted from this guide.

Radioactive, Cosmic and X-ray

Radioactive substances, cosmic ray, or X-ray may influence semiconductor devices. These substances or rays may cause a soft error during a device operation. Therefore, ensure to shield the semiconductor device under environment that may be exposed to radioactive substances, cosmic ray, or X-ray.

EMS (Electromagnetic Susceptibility)

Strong electromagnetic wave or magnetic field may affect the characteristic of semiconductor device during the operation under insufficient PCB circuit design for Electromagnetic Susceptibility (EMS).

Revision History

REV. No.	DATE	DESCRIPTIONS	AUTHOR(S)
1.0	07/15/2020	Initial draft	Julius Gu

Table of Contents

1		产品简介	. 9
	1.1	概述	. 9
	1.2	特性	. 9
	1.3	内部框架图	10
	1.4	上电时序	10
	1.5	成像方向	12
2		引脚与封装	13
	2. 1	CSP 封装引脚说明	13
	2.2	C2496 CSP 脚位图	15
	2.3	CSP 封装尺寸图	16
3		典型应用电路	18
	3. 1	C2496 CSP 封装典型应用电路	18
	3. 2	C2496 电源供电及滤波电容连接	20
4		基本功能	22
	4. 1	AEC/AGC	22
		4.1.1 AEC/AGC 控制策略	22
		4.1.2 MEC/MGC 控制寄存器	22
	4.2	GROUP ACCESS	31
	4.3	视频输出模式	33
		4.3.1 读取顺序	33
		4.3.2 输出窗口	34
	4.4	· · · · · · · · · · · · · · · · · · ·	35

List of Figures

图 1-1	C2496 结构图	10
图 1-2	上下电时序图	11
图 1-3	C3390 成像示意图	12
图 1-4	C3390 First Pixel 及 PIN1 示意图	12
图 2-1	C2496 CSP 封装脚位图(Top View)	15
图 2-2	C2496 CSP 封装示意图	16
图 3-1	C2496 CSP 封装 DVP 输出典型应用电路	18
图 3-2	C2496 CSP 封装 MIPI 输出典型应用电路	19
图 3-3	C2496 电源供电及滤波电容连接方式	20
图 3-4	C2496 推荐电源树(Power Tree)	21
图 4-1	像素阵列图一	33
图 4-2	像素阵列图二	33
图 4-3	镜像和倒置实例	34
	List of Tables	
表 1-1		
表 2-1	上下电时序表	11
	上下电时序表	
表 2-2		13
表 2-2 表 4-1	C2496 CSP 封装引脚说明表	13 17
•	C2496 CSP 封装引脚说明表. C2496 CSP 封装尺寸.	13 17 22
表 4-1	C2496 CSP 封装引脚说明表. C2496 CSP 封装尺寸. MEC 寄存器表.	13 17 22 23
表 4-1 表 4-2	C2496 CSP 封装引脚说明表. C2496 CSP 封装尺寸. MEC 寄存器表. MGC 寄存器表.	1317222323
表 4-1 表 4-2 表 4-3	C2496 CSP 封装引脚说明表. C2496 CSP 封装尺寸. MEC 寄存器表. MGC 寄存器表. 模拟增益寄存器-增益映射表.	131722232331
表 4-1 表 4-2 表 4-3 表 4-4	C2496 CSP 封装引脚说明表. C2496 CSP 封装尺寸. MEC 寄存器表. MGC 寄存器表. 模拟增益寄存器-增益映射表 数字增益寄存器-增益映射表	13 17 22 23 23 31 32
表 4-1 表 4-2 表 4-3 表 4-4 表 4-5	C2496 CSP 封装引脚说明表. C2496 CSP 封装尺寸. MEC 寄存器表. MGC 寄存器表. 模拟增益寄存器-增益映射表 数字增益寄存器-增益映射表 GROUP ACCESS 控制寄存器.	13 17 22 23 23 31 32 34

List of Conventions

Register RW Access Type Conversions

TYPE	DEFINITION	DESCRIPTIONS					
RO	Read Only	The application has permission to read the Register field. Write read-only field have no effect.					
WO	Write Only	The application has permission to write in the Register field.					
RW	Read & Write	The application has permission to read and write in the Register field. The application sets this field by write 1'b1 and clears it by writing 1'b0.					

Register Value Conventions

EXPRESSION	DESCRIPTIONS			
х	Undefined bit			
xx	xx Undefined multiple bit			
? Undefined, but depends on the device or pin status				
Device Dependent				
Pin Value	The value depends on the pin status			

Reset Value Conventions

EXPRESSION	DESCRIPTIONS				
0	Clears the register field				
1	Sets the register field				
х	Don't care condition				

Warning: Some bits of control registers are driven by hardware or write operation only. As a result the indicated reset value and the read value after reset might be different.

List of Acronyms

ACRONYMS	DESCRIPTIONS			
APS	Active Pixel Sensor			
CDS	Correlated Double Sampling			
CIS	CMOS Image Sensor			
FPN	Fixed Pattern Noise			
HSYNC	Horizontal Sync. Signal			
VSYNC	Vertical Sync. Signal			
FSYNC/FS	Frame Sync. Signal			
LVDS	Low-Voltage Differential Signaling			
ОТР	One-Time Programmable			
PLL	Phase-Locked Loop			

1

产品简介

1.1概述

C2496 是一款 1080P BSI CMOS 图像传感器芯片,其光学尺寸为 1/3.7",内置 ISP 包括自动暗电平校正和坏点校正。

C2496 支持 MIPI CSI-2 串行接口(单通道 TX)和 10-Bit DVP 并行接口。其有效像素为 1936 x 1096,最大帧率为 30FPS@1080P。 C2496 不仅具有高低光灵敏度和低暗电流的特性,而且通过片上 10 位 ADC、可编程增益控制和 CDS 极大减小固定模式噪声(FPN-Fixed Pattern Noise)以获取更好、更清晰的图像。所有 ISP 功能和传感器操作均可由主控通过 2 线串口总线接口控制及访问。

C2496 采用低成本摄像模组封装-COB/CSP 封装形式,适用于安防监控、车载等应用。

1.2特性

自动控制:

■ 自动暗电平校正(ABLC)

图像质量控制:

■ 坏点校正(BPC)

可编程控制:

- 帧率(最大帧率 30FPS@1080)
- 分辨率(最大分辨率 1936X1096)
- Binning 模式
- MEC/MGC/MWB 控制
- 可编程 2 线 I²C 控制, PINSEL 引脚 接高 ID 地址为 0x20;接地时为 0x6C
- 行列抽样
- 反转和镜像 (Mirror/Flip)
- 子窗选取和裁切
- 多摄像模组帧同步
- 嵌入数据行

- 片上温度计
- 支持 MIPI 数据类型/VC 标志

输出格式和接口:

- 10-Bit RAW 单通道 MIPI CSI-2
- 10-Bit RAW DVP

像素:

■ 尺寸: 2.2 μ m X 2.2 μ m

光学性能:

- 光学尺寸: 1/3.7"
- CRA: 9°

电压:

- AVDD: $3.3V (3.0^{\circ}3.6V)$
- IOVDD: 1.8V (1.7V~AVDD)
- DVDD: 1.2V (1.08~1.32V)

其它控制:

■ 寄存器 group access 功能

1.3内部框架图

图 1-1 展示了 C2496 内部功能模块结构组成。

图 1-1 C2496 结构图

1.4上电时序

数字电压(IOVDD)和模拟电压(AVDD)时序没有任何限制,具体上、下电时序要求如以下图、 表所示。

上电:

- 拉低 RSTB
- IOVDD 上电
- AVDD 上电
- DVDD 上电
- 拉高 RSTB
- 等待8000 个 RCK 时钟周期
- 访问 I²C 总线
- 发送初始化配置
- 使能 Streaming 模式 0x0100=0x01

下电:

- 使能 software Standby 0x0100=0x00
- 等待当前帧结束
- 拉低 RSTB
- DVDD 断电
- AVDD 断电
- IOVDD 断电

图 1-2 描述了上下电时序,表 1-1 列出了上下电时序的各时间名称及具体要求数值。

图 1-2 上下电时序图

表 1-1 上下电时序表

Symbol	Description	Min	Max	Unit
t1	IOVDD to AVDD	0	-	ms
t2	AVDD to DVDD	0	-	ms
t3	DVDD to RSTB	100	10 ⁶	μs
t4	RSTB to RCLK	100	10 ⁶	μs
t5	Clock cycles required before first I2C access	8000	-	Clock Cycle
t6	RSTB to DVDD off	100	10 ⁶	μs
t7	DVDD off to AVDD off	100	10 ⁶	μs
t8	AVDD off to IOVDD off	100	10 ⁶	μs

1.5成像方向

图 1-3 展示了 C3390 成像方向;图 1-4 展示了 C3390 First Pixel 及 PIN1 示意图。

图 1-3 C3390 成像示意图

图 1-4 C3390 First Pixel 及 PIN1 示意图

2

引脚与封装

2.1 CSP 封装引脚说明

表 2-1 列出了 C2496 CSP 封装引脚信息及相关描述。

表 2-1 C2496 CSP 封装引脚说明表

Ball No.	Pad Name	Туре	Description
A1	AVDD	Power	Analog circuit power
A2	DVDD1	Power	Digital circuit power
A3	AVDD	Power	Analog circuit power
A4	STR	Ю	Strobe
A5	DVDD1	Power	Digital circuit power
A6	IOVDD	Power	IO circuit power
A7	VSYN(NC)	Output	DVP VSYN output (No connection)
A8	DVDD1	Power	Digital circuit power
A9	AVDD	Power	Analog circuit power
B1	AVD2	Power	Analog circuit power
B2	IOGND	Ground	IO circuit ground
В3	PINSEL	Input	ID selection
B4	IOVDD	Power	IO circuit power
B5	RSTB	Input	System shutdown/reset, active low with internal pull down resistor
В6	AGND	Ground	Analog circuit ground
В7	ICLK	Input	I2C clock
B8	IOGND	Ground	IO circuit ground
В9	AVD2	Power	Analog circuit power
C1	AGND	Ground	Analog circuit ground
C2	VTST	Output	Test pin
C3	NC	-	-
C4	NC	-	-

Ball No.	Pad Name	Туре	Description			
C5	NC	-	-			
C6	FS	Ю	System sync			
C7	IDAT	Ю	I2C data			
C8	HSYN(NC)	Output	DVP HSYN output (No connection)			
C9	AGND	Ground	Analog circuit ground			
D1	AGND	Ground	Analog circuit ground			
D2	VR0	Reference	Analog internal reference			
D5	NC	-	-			
D6	DVDD2	Power	Digital circuit power			
D7	IOGND	Ground	IO circuit ground			
D8	D4(NC)	Output	DVP data bit4 output (No connection)			
D9	IOGND	Ground	IO circuit ground			
E1	VR3	Reference	Analog internal reference			
E2	D9(SCP)	Output	DVP data bit9 output (MIPI clock lane positive output)			
E3	IOGND	Ground	IO circuit ground			
E4	D5(SDP)	Output	DVP data bit5 output (MIPI data lane positive output)			
E5	RCK	Input	System input reference clock			
E6	IOVDD	Power	IO circuit power			
E7	D0(NC)	Output	DVP data bit0 output (No connection)			
E8	D8(NC)	Output	DVP data bit8 output (No connection)			
E9	IOVDD	Power	IO circuit power			
F1	AVDD	Power	Analog circuit power			
F2	DVDD2	Power	Digital circuit power			
F3	D7(SCN)	Output	DVP data bit7 output (MIPI clock lane negative output)			
F4	D3(SDN)	Output	DVP data bit3 output (MIPI data lane negative output)			
F5	D1(NC)	Output	DVP data bit1 output (No connection)			
F6	PCLK(NC)	Output	DVP PCLK output (No connection)			
F7	D2(NC)	Output	DVP data bit2 output (No connection)			
F8	D6(NC)	Output	DVP data bit6 output (No connection)			
F9	DVDD2	Power	Digital circuit power			

2.2 C2496 CSP 脚位图

图 2-1 给出了 C2496 CSP 封装脚位图。

图 2-1 C2496 CSP 封装脚位图(Top View)

2.3 CSP 封装尺寸图

C2496 提供 55 脚 CSP 封装, 其封装尺寸如图 2-2 所示。

图 2-2 C2496 CSP 封装示意图

表 2-2 列出了 C2496 CSP 封装各尺寸信息。

表 2-2 C2496 CSP 封装尺寸

Parameter	Symbol	Normal	Min	Max	Normal	Min	Max
Farameter	Symbol	Millimeter			Inches		
Package Body Dimension X	А	5.2100	5.1850	5.2350	0.2051	0.2041	0.2061
Package Body Dimension Y	В	3.6400	3.6150	3.6650	0.1433	0.1423	0.1443
Package Height	С	0.7300	0.6750	0.7850	0.0287	0.0266	0.0309
Si Thickness	C6	0.1300	0.1200	0.1400	0.0051	0.0047	0.0055
Thickness from top glass surface to wafer	C5	0.4350	0.4210	0.4490	0.00171	0.0166	0.0177
Cavity Wall + Epoxy thickness	C4	0.0350	0.0310	0.0390	0.0014	0.0012	0.0015
Glass Thickness	С3	0.4000	0.3900	0.4100	0.0157	0.0154	0.0161
Package Body Thickness	C2	0.6100	0.5750	0.6450	0.0240	0.0226	0.0254
Ball Height	C1	0.1200	0.0900	0.1500	0.0047	0.0035	0.0059
Ball Diameter	D	0.2500	0.2200	0.2800	0.0098	0.0087	0.0110
Total Ball Count	N	52(2NA)					
Ball Count X axis	N1	6					
Ball Count Yaxis	N2	9					
Pins Pitch X axis1	J1	0.5300	0.5200	0.5400	0.0209	0.0205	0.0213
Pins Pitch Y axis1	J2	0.5300	0.5200	0.5400	0.0209	0.0205	0.0213
BGA center to package center offset in X-direction	Х	0.0000	-0.0250	0.0250	0.0000	-0.0010	0.0010
BGA center to package center offset in Y-direction	Y	0.0000	-0.0250	0.0250	0.0000	-0.0010	0.0010
Edge to Ball Center Distance along X1	S1	0.4850	0.4550	0.5150	0.0191	0.0179	0.0203
Edge to Ball Center Distance along Y1	S2	0.4950	0.4650	0.5250	0.0195	0.0183	0.0207

3

典型应用电路

3.1 C2496 CSP 封装典型应用电路

C2496 CSP 封装 DVP 输出典型应用电路如图 3-1 所示。

图 3-1 C2496 CSP 封装 DVP 输出典型应用电路

C2496 CSP 封装 MIPI 输出典型应用电路如图 3-2 所示。

图 3-2 C2496 CSP 封装 MIPI 输出典型应用电路

注意事项:

- 1. 设计 PCB 时, 使 AVDD (3.3V) 滤波电容 C1、C2 靠近 A1 脚;
- 2. 设计 PCB 时, 使 AVDD (3.3V) 滤波电容 C11、C13 靠近 A9 脚;
- 3. 设计 PCB 时, 使 AVD2 (3.3V) 滤波电容 C3、C4 靠近 B1 脚;
- 4. 设计 PCB 时, 使 AVD2 (3.3V) 滤波电容 C12、C14 靠近 B9 脚;

- 5. 设计 PCB 时, 使 DVDD1 (1.2V) 滤波电容 C6、C7 靠近 A5 脚;
- 6. 设计 PCB 时, 使 DVDD2 (1.2V) 滤波电容 C16、C17 靠近 D6/F2 脚;
- 7. 设计 PCB 时, 使 IOVDD (1.8V) 滤波电容 C5、C15 靠近 E6 脚;
- 8. 设计 PCB 时, 使 VRO 滤波电容 C8 靠近 D2 脚;
- 9. 设计 PCB 时, 使 VR3 滤波电容 C9 靠近 E1 脚;
- 10. 设计 PCB 时, 电源 AVDD 滤波电容 C1、C2 和 C11 必须保留, C13 建议保留;
- 11. 设计 PCB 时, 电源 AVD2 滤波电容 C3、C4 和 C12 必须保留, C14 建议保留;
- 12. 设计 PCB 时, 电源 DVDD 滤波电容 C6、C7 和 C16 必须保留, C17 建议保留;
- 13. 设计 PCB 时, 电源 IOVDD 滤波电容 C5 和 C15 必须保留:
- 14. 设计 PCB 时, VR0、VR3 滤波电容 C8 和 C9 必须保留;
- 15. 设计 PCB 时, 电源电阻 R6/R7/R8 必须保留;
- **16**. 设计 PCB 时, SDA 和 SCL 上拉电阻 $(4.7K\Omega)$ 是否添加视系统具体设计而定;
- 17. 设计 PCB 时, PINSEL 脚为芯片 I2C ID 选择引脚,接高 I2C ID 为 0x20,接地为 0x6C;
- **18**. 设计 PCB 时,FS 脚为帧同步信号引脚,可通过寄存器配置为输出或输入,默认为输出,空接:
- 19. 设计 PCB 时, RESET RC 复位电路是否采用视系统具体设计而定;
- **20**. 设计 PCB 时,RCK 保护电阻 R1(10Ω)是否添加视具体应用而定,行车记录仪必须添加;
- 21. 设计 PCB 时, 若改变参考电路以及增删元器件请务必确认更改可行性。

3.2 C2496 电源供电及滤波电容连接

C2496 电源供电及滤波电容连接方式如图 3-3 所示。

图 3-3 C2496 电源供电及滤波电容连接方式

C2496 推荐供电设计如图 3-4 所示。

图 3-4 C2496 推荐电源树 (Power Tree)

基本功能

4. 1 AEC/AGC

AEC/AGC 都是基于亮度进行调节的, AEC 调节曝光时间, AGC 调节增益值, 最终使图像亮度在设定亮度阈值范围内。

4.1.1 AEC/AGC 控制策略

C2496 本身没有 AEC 功能,需要通过后端平台实现 AEC/AGC。

在整个 AEC/AGC 调整过程中,不是独立地调整 sensor 的曝光时间或者增益,调整策略为:曝光时间优先,曝光时间已经最长无法继续调整时再调整增益。

以图像过暗的情况为例,调控的先后顺序为:①开启1x模拟增益,直到曝光时间达到上限;②曝光时间达到上限后,再开始调用自动增益控制。需要明确的是:开启增益,会直接导致平均噪声呈倍数放大,信噪比降低;而加大曝光时间,则有助于提升信噪比。

相反,当图像过亮时,则优先关闭增益,当增益降到 1x 模拟增益时,图像仍旧过亮,才会降低曝光时间。

增益最小为1x模拟增益,不可能低于1x模拟增益或者直接置0,直接置0图像画面会全黑。

曝光时间与增益是一个交互的调节体系,在调试的时候,需要综合考虑。

4.1.2 MEC/MGC 控制寄存器

MEC 控制寄存器如表 4-1 所示。

表 4-1 MEC 寄存器表

Function	Register	RW	Description
Integration Time	0202	RW	Integration Time Hi
Integration Time	0203	RW	Integration Time Lo

曝光控制说明如下:

1) 曝光调节步长为一行曝光时间,一行曝光时间计算公式为:

1 line time =
$$\frac{1}{\text{vt pixel clk}} \times line_length_pclk$$

其中, vt_pixel_clk 为 system clock, line_length_pclk 为 HTS (row pixels)。

- 2) 曝光时间是在当前帧(第 N 帧)写入,隔帧生效(第 N+2 帧生效);增益是在当前帧写入,下一帧(第 N+1)生效。
- 3)曝光时间下限不能小于 1 行曝光,上限不能超过帧总行数(reg0x0340, reg0x0341)。 MGC 控制寄存器如表 4-2 所示。

表 4-2 MGC 寄存器表

Function	Register	RW	Description
Analog Gain	0205	RW	Analog Gain

增益控制说明如下:

1) C2496 增益包括模拟增益和数字增益。最大模拟增益为 15.5x,模拟增益寄存器-增益映射 见表 4-3;数字增益最大为 8x,数字增益寄存器-增益映射见表 4-4,数字增益精度为 1/256。数字增益寄存器 REG0216[2:0]为数字增益整数部分,REG0217 为数字增益小数部分,其映射公式如下:

Gain = REG0216[2:0] +
$$\frac{REG0217}{256}$$

注: REG0216[2:0]最小值为1。

表 4-3 模拟增益寄存器-增益映射表

Register [0x0205]	Gain	Total Gain
00	1.0000	1.0000
01	1.0625	1.0625
02	1.1250	1.1250
03	1.1875	1.1875
04	1.2500	1.2500
05	1.3125	1.3125
06	1.3750	1.3750
07	1.4375	1.4375
08	1.5000	1.5000

Register [0x0205]	Gain	Total Gain
09	1.5625	1.5625
0a	1.6250	1.6250
0b	1.6875	1.6875
0c	1.7500	1.7500
0d	1.8125	1.8125
0e	1.8750	1.8750
Of	1.9375	1.9375
10	2.0000	2.0000
11	2.0000	2.0000
12	2.1250	2.1250
13	2.1250	2.1250
14	2.2500	2.2500
15	2.2500	2.2500
16	2.3750	2.3750
17	2.3750	2.3750
18	2.5000	2.5000
19	2.5000	2.5000
1a	2.6250	2.6250
1b	2.6250	2.6250
1c	2.7500	2.7500
1d	2.7500	2.7500
1e	2.8750	2.8750
1f	2.8750	2.8750
20	3.0000	3.0000
21	3.0000	3.0000
22	3.1250	3.1250
23	3.1250	3.1250
24	3.2500	3.2500
25	3.2500	3.2500
26	3.3750	3.3750
27	3.3750	3.3750

Register [0x0205]	Gain	Total Gain
28	3.500	3.5000
29	3.500	3.5000
2a	3.6250	3.6250
2b	3.6250	3.6250
2c	3.7500	3.7500
2d	3.7500	3.7500
2e	3.8750	3.8750
2f	3.8750	3.8750
30	4.0000	4.0000
31	4.0000	4.0000
32	4.0000	4.0000
33	4.0000	4.0000
34	4.2500	4.2500
35	4.2500	4.2500
36	4.2500	4.2500
37	4.2500	4.2500
38	4.5000	4.5000
39	4.5000	4.5000
3a	4.5000	4.5000
3b	4.5000	4.5000
3c	4.7500	4.7500
3d	4.7500	4.7500
3e	4.7500	4.7500
3f	4.7500	4.7500
40	5.0000	5.0000
41	5.0000	5.0000
42	5.0000	5.0000
43	5.0000	5.0000
44	5.2500	5.2500
45	5.2500	5.2500
46	5.2500	5.2500

Register [0x0205]	Gain	Total Gain
47	5.2500	5.2500
48	5.5000	5.5000
49	5.5000	5.5000
4a	5.5000	5.5000
4b	5.5000	5.5000
4c	5.7500	5.7500
4d	5.7500	5.7500
4e	5.7500	5.7500
4f	5.7500	5.7500
50	6.0000	6.0000
51	6.0000	6.0000
52	6.0000	6.0000
53	6.0000	6.0000
54	6.2500	6.2500
55	6.2500	6.2500
56	6.2500	6.2500
57	6.2500	6.2500
58	6.5000	6.5000
59	6.5000	6.5000
5a	6.5000	6.5000
5b	6.5000	6.5000
5c	6.7500	6.7500
5d	6.7500	6.7500
5e	6.7500	6.7500
5f	6.7500	6.7500
60	7.0000	7.0000
61	7.0000	7.0000
62	7.0000	7.0000
63	7.0000	7.0000
64	7.2500	7.2500
65	7.2500	7.2500

Register [0x0205]	Gain	Total Gain
66	7.2500	7.2500
67	7.2500	7.2500
68	7.5000	7.5000
69	7.5000	7.5000
6a	7.5000	7.5000
6b	7.5000	7.5000
6c	7.7500	7.7500
6d	7.7500	7.7500
6e	7.7500	7.7500
6f	7.7500	7.7500
70	8.0000	8.0000
71	8.0000	8.0000
72	8.0000	8.0000
73	8.0000	8.0000
74	8.0000	8.0000
75	8.0000	8.0000
76	8.0000	8.0000
77	8.0000	8.0000
78	8.5000	8.5000
79	8.5000	8.5000
7a	8.5000	8.5000
7b	8.5000	8.5000
7c	8.5000	8.5000
7d	8.5000	8.5000
7e	8.5000	8.5000
7f	8.5000	8.5000
80	9.0000	9.0000
81	9.0000	9.0000
82	9.0000	9.0000
83	9.0000	9.0000
84	9.0000	9.0000

Register [0x0205]	Gain	Total Gain
85	9.0000	9.0000
86	9.0000	9.0000
87	9.0000	9.0000
88	9.5000	9.5000
89	9.5000	9.5000
8a	9.5000	9.5000
8b	9.5000	9.5000
8c	9.5000	9.5000
8d	9.5000	9.5000
8e	9.5000	9.5000
8f	9.5000	9.5000
90	10.000	10.000
91	10.000	10.000
92	10.000	10.000
93	10.000	10.000
94	10.000	10.000
95	10.000	10.000
96	10.000	10.000
97	10.000	10.000
98	10.500	10.500
99	10.500	10.500
9a	10.500	10.500
9b	10.500	10.500
9c	10.500	10.500
9d	10.500	10.500
9e	10.500	10.500
9f	10.500	10.500
a0	11.000	11.000
a1	11.000	11.000
a2	11.000	11.000
a3	11.000	11.000

Register [0x0205]	Gain	Total Gain
a4	11.000	11.000
a5	11.000	11.000
a6	11.000	11.000
a7	11.000	11.000
a8	11.500	11.500
a9	11.500	11.500
aa	11.500	11.500
ab	11.500	11.500
ac	11.500	11.500
ad	11.500	11.500
ae	11.500	11.500
af	11.500	11.500
b0	12.000	12.000
b1	12.000	12.000
b2	12.000	12.000
b3	12.000	12.000
b4	12.000	12.000
b5	12.000	12.000
b6	12.000	12.000
b7	12.000	12.000
b8	12.500	12.500
b9	12.500	12.500
ba	12.500	12.500
bb	12.500	12.500
bc	12.500	12.500
bd	12.500	12.500
be	12.500	12.500
bf	12.500	12.500
c0	13.000	13.000
c1	13.000	13.000
c2	13.000	13.000

Register [0x0205]	Gain	Total Gain
c3	13.000	13.000
c4	13.000	13.000
c5	13.000	13.000
c6	13.000	13.000
c7	13.000	13.000
c8	13.500	13.500
с9	13.500	13.500
ca	13.500	13.500
cb	13.500	13.500
CC	13.500	13.500
cd	13.500	13.500
се	13.500	13.500
cf	13.500	13.500
d0	14.000	14.000
d1	14.000	14.000
d2	14.000	14.000
d3	14.000	14.000
d4	14.000	14.000
d5	14.000	14.000
d6	14.000	14.000
d7	14.000	14.000
d8	14.500	14.500
d9	14.500	14.500
da	14.500	14.500
db	14.500	14.500
dc	14.500	14.500
dd	14.500	14.500
de	14.500	14.500
df	14.500	14.500
e0	15.000	15.000
e1	15.000	15.000

Register [0x0205]	Gain	Total Gain
e2	15.000	15.000
e3	15.000	15.000
e4	15.000	15.000
e5	15.000	15.000
e6	15.000	15.000
e7	15.000	15.000
e8	15.500	15.500
e9	15.500	15.500
ea	15.500	15.500
eb	15.500	15.500
ec	15.500	15.500
ed	15.500	15.500
ee	15.500	15.500
ef	15.500	15.500

表 4-4 数字增益寄存器-增益映射表

Register [0x0216,0x0217]	Gain	Total Gain
100	1	1
200	2	2
300	3	3
400	4	4
500	5	5
600	6	6
700	7	7
7ff	7+255/256	7+255/256

4. 2 GROUP ACCESS

C2496 支持寄存器 Group Access 功能, Group Access 是指将配置的寄存器根据需求组成一个或几个 Register Group, 然后根据具体情况将各组 Register Group 特定时刻写出生效。C2496 最多支持 8 组 Group, 每组 Group 都可以在对应寄存器中设置该 Group 的起始地址和长

度,Group0 的起始地址为 0xe000。寄存器的配置可以预先载入缓存中,一旦某组 Group 激活便可以将其缓存中的寄存器配置读写到既定寄存器中。

内部缓存区的起始地址为 0xe000,缓存大小为 768 个字节,最多可以存储 256 个寄存器配置信息。写操作时可以逐个字节访问内部缓存区,而读操作则每次访问 3 个字节。Group Access 功能由寄存器 0x340f 控制,在 Fast Write 模式下,寄存器配置信息从指定的 Group 读出并立即写入到既定寄存器中,在 Delay Write 模式下,当通过寄存器 0x340f 接收到命令时,写操作将在帧结束进行。

注意: Group Start Address 必须为 12 的倍数,即真正的 BUFFER 起始地址为寄存器的值乘 12。寄存器的值乘 4 代表真正起始地址前可存放的寄存器个数。

Register Name	Description
group0	rsvd
group1	group1 start
group2	group2 start
group3	group3 start
group4	group0 len
group5	group1 len
group6	group2 len
group7	group3 len
groupf	[7] delay read[6] fast read[5] delay write2[4] delay write[3] fast write[2:0] group sel
group10	group4 start
group11	group5 start
group12	group6 start
group13	group7 start
group14	group4 len
group15	group5 len
group16	group6 len
	group0 group1 group2 group3 group4 group5 group6 group7 group10 group11 group12 group13 group14 group14 group15

group17

表 4-5 GROUP ACCESS 控制寄存器

3417

group7 len

4.3 视频输出模式

4.3.1 读取顺序

图 4-1 提供了芯片整个 Array 的结构示意图及 Pixel 坐标。

图 4-1 像素阵列图一

图 4-2 给出了 First Pixel 数据的颜色格式。

图 4-2 像素阵列图二

C2496 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序,而后者会垂直 颠倒传感器的读出顺序。如图 4-3 所示。

图 4-3 镜像和倒置实例

表 4-6 列出了左右镜像和上下倒置相关寄存器。

表 4-6 镜像和倒置模式控制寄存器

功能	寄存器地址	寄存器值	描述
镜像模式	0x0101	0x01	[0] mirror
倒置模式	0x0101	0x02	[1] flip

4.3.2 输出窗口

表 4-7 列出了定义输出窗口相关的寄存器。

表 4-7 输出窗口寄存器

功能	寄存器地址	描述
列起始地址	{0x0344,0x0345}	输出窗口列起始位置
列结束地址	{0x0348,0x0349}	输出窗口列结束位置
行起始地址	{0x0346,0x0347}	输出窗口行起始位置
行结束地址	{0x034A,0x034B}	输出窗口行结束位置
输出列数	{0x034C,0x034D}	输出窗口宽度
输出行数	{0x034E,0x034F}	输出窗口高度
列偏移	{0x3008,0x3009}	输出窗口列偏移
行偏移	{0x034A,0x034B}	输出窗口行偏移

4.4 帧率

C2496 帧率可以按照以下公式来计算:

Frame Rate =
$$\frac{Clock\ Frequency}{VTS \times HTS} \ (FPS)$$

其中,Clock Frequency 指的是系统时钟频率; VTS 指的是帧长(帧总行数),即图像垂直方向上有效数据行数以及帧消隐行数之和; HTS 指的是行长(行时钟数),即图像水平方向上有效时钟以及行消隐时钟之和。

表 4-8 列出了帧尺寸相关寄存器。

表 4-8 帧尺寸相关寄存器

地址	寄存器名	描述
0x0340	VTS 高 8 位	帧总行数,高8位
0x0341	VTS低8位	帧总行数,低 8 位
0x0342	HTS 高 8 位	行时钟数,高8位
0x0343	HTS低8位	行时钟数,低8位