Лабораторна робота N4

РОЗВ'ЯЗУВАННЯ ЗАДАЧІ КОШІ ДЛЯ ОДНОГО РІВНЯННЯ ПЕРШОГО ПОРЯДКУ ОДНОКРОКОВИМ МЕТОДОМ ЗІ ЗМІННИМ КРОКОМ

Скласти програму для розв'язування задачі Коші:

$$y' = f(x, y), y(x_0) = y_0, x \in [a, b].$$

У табл.1.6 наведено варіанти рівнянь. Обчислення зробити тричі - з кроком h_0 та кроками $h_1=h_0/5$, $h_2=h_0/25$.

Таблиця 1.6

Номер варі- анта	Рівняння	Почат- кова умова	a	ь	ho	Точний розв'зок
1	$\epsilon y' + (1+x)y =$ $= \frac{5}{2} (1+x)$ при $\epsilon = 0.03$	-1	0	1	0.2	$\frac{5}{2} - 3.5 \exp(\frac{-\frac{x^2}{2} - x}{\varepsilon})$
2	$\epsilon y' + y = g(x) + $ $+\epsilon g'(x) g(x) = 10 - $ $-(10 + x)e^{-x}$ при $\epsilon = \frac{1}{200}$	10	0	1	0.2	$g(x) + 10 \exp(-\frac{x}{\varepsilon})$
3	y'= -2ky ² при k=500	10	0	1	0.2	$\frac{10}{1+20kx}$
4	$10y' = y - y^2$	0.5	0	1	0.2	$\frac{e^{\frac{x}{10}}}{e^{\frac{x}{10}} + 1}$
5	$y' = \frac{xy}{1 + x^2}$	1	0	6	0.8	$\frac{e^{\overline{10}} + 1}{y = C\sqrt{1 + x^2}}$
6	$y' = (x-y)^2 + 1$	-1	0	2	0.2	$x-\frac{1}{x+1}$

ĺ	1		1		1	
7	y'+2xy=2xy ²	0.5	0	2	0.4	$\frac{1}{1+e^{x^2}}$
8	$xy'+y=y^2\ln x$	0.5	1	2	0.2	$\frac{1}{1+x+\ln x}$
9	$y' = \frac{1+y^2}{1+x^2}$	1	0			$\frac{1+x}{1-x}$
10	$xy'-4y-x^2\sqrt{y}=0$	0	1	2	0.2	$\frac{x^4 \ln^2 x }{4}$
11	$y'-y+y^2\cos x=0$	1	0	3	0.5	$\frac{2e^{x}}{1+e^{x}(\cos x+\sin x)}$
12	$y' = \frac{e^{X}}{e^{-y}}$	0	0	10	0.9	-ln(2-e ^x)
13	$yy' = (1-2x)\frac{1}{y}$	1	0	2	0.4	$\sqrt[3]{1+3x-3x^2}$
14	$y' = \frac{y}{x} \ln \frac{y}{x}$	0.74	2	3		xe ^{1-x}
15	$y + \sqrt{x^2 + y^2} - xy' = 0$	-0.5	0	1	0.2	$\frac{x^2-1}{2}$
16	$xy' = x\sin\frac{y}{x} + y$	$\frac{\frac{\pi}{2}}{0.54}$	1	3	0.2	2x arctgx
17	$y^2 - 4xy + $ $+4x^2y' = 0$	0.54	2	3	0.2	$\frac{4x}{\ln x}$
18	$\sin x + \frac{y'}{\sqrt{y}} = 0$	1	0	5		$\frac{(1+\cos x)^2}{4}$
19	$y' = x (y^2 + 1)$	1	0	1	0.2	$tg(\frac{x^2}{2} + \frac{\pi}{4})$

		1	0	1	0.2	1
20	$y'+xy=x^3y^3$					$(x^{2}+1+Ce^{x^{2}})^{-\frac{1}{2}},$ $C=0$
	(Рівняння					C=0
	Бернуллі)					
	-	0	0	3	0.5	sinx
21	$(y')^2+y^2=1$					
		1	0	1	0.2	$1 \cdot \mathbf{v}^3 \cdot \mathbf{v}^3$
22	$y' = 3x^2y + x^5 + x^2$					$\frac{1}{3}(5e^{x^3} - (2 + x^3))$
	$+x^{5}+x^{2}$					
23	y' = -2y + 4x	0	0	10	1	$e^{-2x} + 2x - 1$
	- x ²	1	0	1	0.2	$e^{-x^2}(1+\frac{x^2}{2})$
24	$y'=2xy-3xe^{-x^2}$					$e^{-x} \left(1 + \frac{x}{2}\right)$
25	y'+y=cosx	1.5	0	2	0.4	$e^{-x} + \frac{\cos x + \sin x}{\cos x}$
						2

Перед складанням програм слід упевнитися у правильності розв'язку підстановкою його в рівняння і початкові умови.

Для кожної величини кроку на одному полі треба зробити графіки точного та наближеного розв''язків. При кожному значенні аргументу друкувати

$$x_k$$
, $y(x_k)$, y_k , $y(x_k) - y_k = D$, $\frac{D}{y(x_k)} \cdot 100$.

Залежно від варіанта використовувати один із таких методів:

- 1) явний Ейлера;
- 2) неявний Ейлера;
- 3) Ейлера-Коші;
- 4) трапецій;
- 5) удосконалений Ейлера;
- 6) Ейлера-Коші з ітераціями;
- 7) Хойне;
- 8) Рунге-Кутта третього порядку;
- 9) Кутта-Мерсона;
- 10) Рунге-Кутта-Фельберга першого порядку;
- 11) Рунге-Кутта-Фельберга другого порядку;
- 12) Рунге-Кутта-Фельберга третього порядку;
- 13) Рунге-Кутта-Фельберга четвертого порядку;
- 14) Рунге-Кутта-Фельберга п"ятого порядку;

15) Рунге-Кутта-Фельберга сьомого порядку; Розрахункові формули методів наведені в табл.1.7 . Таблиця 1.7

	1	таолици т./
Метод	По- ря- док	Розрахункова формула
1	2	3
Ейлера	1	$y_{k+1} = y_k + hf(x_k, y_k)$
Неявний Ейлера	1	$y_{k+1} = y_k + hf(x_{k+1}, y_{k+1})$
Удоскона- лений	2	$y_{k+1} = y_k + hf(x_k + \frac{h}{2}, y_k + k_1);$
Ейлера		$k_1 = \frac{h}{2} f(x_k, y_k)$
Ейлера- Коші	2	$y_{k+1} = y_k + \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_k + k_l)];$
		$k_1 = hf(x_k, y_k)$
Трапецій	2	$y_{k+1} = y_k + \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$
Хойне	3	$y_{k+1} = y_k + \frac{1}{6} (k_1 + 4k_2 + k_3);$
		$k_1 = hf(x_k, y_k);$
		$k_2 = hf(x_k + \frac{h}{2}, y_k + \frac{k_1}{2});$
		$k_3 = hf(x_k + h, y_2 - k_1 + 2k_2)$
Рунге- Кутта	3	$y_{k+1} = y_k + \frac{1}{4} (k_1 + 3k_3);$
третього порядку		$k_1 = hf(x_k, y_k);$
		$k_2 = hf(x_k + \frac{h}{3}, y_k + \frac{k_1}{3});$
		$k_3 = hf(x_k + \frac{2}{3}h, y_k + \frac{2}{3}k_2)$

	1	
Рунге- Кутта четверто-	4	$y_{k+1} = y_k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
ГО		$k_1 = hf(x_k, y_k); k_2 = hf(x_k + \frac{h}{2}, y_k + \frac{k_1}{2});$
порядку		$k_3 = hf(x_k + \frac{h}{2}, y_k + \frac{k_2}{2});$
		$k_4 = hf(x_k + h, y_k + k_3)$
Кутта-	1	$y_{k+1} = y_k + \frac{1}{2}(k_1 + 4k_4 + k_5);$
Мерсона	4	2 (1 4 3)
		$k_1 = \frac{h}{3} f(x_k, y_k); k_2 = \frac{h}{3} f(x_k + \frac{h}{3}, y_k + k_1);$
		$k_3 = \frac{h}{3} f(x_k + \frac{h}{3}, y_k + \frac{k_1}{2} + \frac{k_2}{2});$
		$k_4 = \frac{h}{3} f(x_k + \frac{h}{2}, y_k + \frac{3}{8} k_1 + \frac{9}{8} k_3);$
		$k_5 = \frac{h}{3} f(x_k + h, y_k + \frac{3}{2} k_1 - \frac{9}{2} k_3 + 6k_4)$
Рунге- Кутта-	1	$y_{k+1} = y_k + \frac{1}{256} (k_0 + 255k_1);$
Фельберга		$k_0 = hf(x_k, y_k);$
		$k_1 = hf(x_k + \frac{h}{2}, y_k + \frac{k_0}{2});$
Рунге- Кутта-	2	$y_{k+1} = y_k + \frac{214}{891}k_0 + \frac{1}{33}k_1 + \frac{650}{891}k_2;$
Фельберга		$k_0 = hf(x_k, y_k); k_1 = hf(x_k + \frac{h}{4}, y_k + \frac{k_0}{4});$
		$k_2 = hf(x_k + \frac{27}{40}h, y_k - \frac{189}{300}k_0 + \frac{729}{800}k_1);$
Рунге- Кутта- Фельберга	3	$y_{k+1} = y_k + \frac{1}{6}k_0 + \frac{27}{52}k_2 + \frac{49}{156}k_3;$

		$k_0 = hf(x_k, y_k);$
		$k_1 = hf(x_k + \frac{h}{4}, y_k + \frac{k_0}{4});$
		$k_2 = hf(x_k + \frac{4}{9}h, y_k + \frac{4}{81}k_0 + \frac{32}{81}k_1);$
		$k_3 = hf(x_k + \frac{6}{7}h, y_k + \frac{57}{98}k_0 - \frac{437}{343}k_1 + \frac{1053}{686}k_2);$
Рунге- Кутта-	4	$y_{k+1} = y_k + \frac{1}{9}k_0 + \frac{9}{20}k_2 + \frac{16}{43}k_3 + \frac{1}{12}k_4;$
Фельберга		$k_0 = hf(x_k, y_k);$
		$k_1 = hf(x_k + \frac{2}{9}h, y_k + \frac{2}{9}k_0);$
		$k_2 = hf(x_k + \frac{h}{3}, y_k + \frac{1}{12}k_0 + \frac{1}{4}k_1);$
		$k_3 = hf(x_k + \frac{3}{4}h, y_k + \frac{69}{128}k_0 - \frac{243}{128}k_1 +$
		$+\frac{135}{64}k_2);$
		$k_4 = hf(x_k + h, y_k - \frac{17}{12}k_0 + \frac{27}{4}k_1 - \frac{27}{5}k_2 +$
		$+\frac{16}{15}$ k ₃);
Рунге- Кутта-	5	$y_{k+1} = y_k + \frac{31}{384}k_0 + \frac{1125}{2816}k_2 + \frac{9}{32}k_3 +$
Фельберга		$+\frac{125}{768}k_4+\frac{5}{66}k_5;$
		$k_0 = hf(x_k, y_k);$
		$k_1 = hf(x_k + \frac{1}{6}h, y_k + \frac{1}{6}k_0);$
		$k_2 = hf(x_k + \frac{4}{15}h, y_k + \frac{4}{75}k_0 + \frac{16}{75}k_1);$
		$k_3 = hf(x_k + \frac{2}{3}h, y_k + \frac{5}{6}k_0 - \frac{3}{8}k_1 + \frac{5}{2}k_2);$

Г		1
		$k_4 = hf(x_k + \frac{4}{5}h, y_k - \frac{8}{5}k_0 - \frac{144}{25}k_1 - 4k_2 + \frac{16}{25}k_3);$ $k_5 = hf(x_k + h, y_k + \frac{361}{320}k_0 - \frac{18}{5}k_1 + \frac{407}{128}k_2 - \frac{11}{128}k_3 - $
		$-\frac{11}{80}k_3 + \frac{55}{128}k_4);$
Рунге-Кутта-Фельберга	7	$y_{k+1} = y_k + \frac{41}{840} k_0 + \frac{34}{105} k_1 + \frac{9}{35} (k_6 + k_7) + \frac{9}{280} (k_8 + k_9) + \frac{41}{840} k_{10},$ $k_0 = h f(x_k, y_k);$ $k_1 = h f(x_k + \frac{2}{27} h, y_k + \frac{2}{27} k_0);$ $k_2 = h f(x_k + \frac{1}{9} h, y_k + \frac{1}{36} k_0 + \frac{1}{12} k_1);$ $k_3 = hf(x_k + \frac{1}{6} h, y_k + \frac{1}{24} k_0 + \frac{1}{8} k_2);$ $k_4 = hf(x_k + \frac{5}{12} h, y_k + \frac{5}{12} k_0 - \frac{25}{16} k_2 + \frac{25}{16} k_3);$ $k_5 = hf(x_k + \frac{1}{2} h, y_k + \frac{1}{20} k_0 + \frac{1}{4} k_3 + \frac{1}{5} k_4);$ $k_6 = hf(x_k + \frac{5}{6} h, y_k - \frac{25}{508} k_0 + \frac{125}{508} k_3 - \frac{65}{27} k_4 + \frac{125}{54} k_5);$ $k_7 = hf(x_k + \frac{1}{6} h, y_k + \frac{31}{300} k_0 + \frac{61}{225} k_4 - \frac{2}{9} k_5 + \frac{13}{900} k_6);$ $k_8 = hf(x_k + \frac{2}{3} h, y_k + 2k_0 - \frac{53}{6} k_3 + \frac{704}{45} k_4 - \frac{1}{25} k_4 + \frac{1}{25} k_5 + 1$
		$-\frac{107}{9}k_5 + \frac{67}{90}k_6 + 3k_7);$

$$k_{9} = hf(x_{k} + \frac{1}{3}h, y_{k} - \frac{91}{108}k_{0} + \frac{23}{108}k_{3} - \frac{976}{135}k_{4} + \frac{311}{54}k_{5} - \frac{19}{60}k_{6} + \frac{17}{6}k_{7} - \frac{1}{12}k_{8});$$

$$k_{10} = hf(x_{k} + h, y_{k} + \frac{2383}{4100}k_{0} - \frac{341}{164}k_{3} + \frac{4496}{1025}k_{4} - \frac{301}{82}k_{5} + \frac{2133}{4100}k_{6} + \frac{45}{82}k_{7} + \frac{45}{164}k_{8} + \frac{18}{41}k_{9});$$

У висновках до роботи порівняти величини $\mathbf{e}(\mathbf{x_k,h})=\mathbf{y}(\mathbf{x_k})-\mathbf{y_k}$ для $\mathbf{h_0}$, $\mathbf{h_1}$, $\mathbf{h_2}$ і двох значень аргументу, один з яких $\mathbf{x=b}$. Порівняти зменшення похибки \mathbf{e} при зменшенні кроку з теоретично очікуваним.

Залежно від варіанта виконати одне з додаткових завдань.

- 1. Накреслити графіки функцій e(x) при h_0 , h_1 , h_2 на одному полі зі спільним масштабом;
- 2. Накреслити графіки функцій $e(x)/y(x_k)$ при h_0 , h_1 , h_2 на одному полі зі спільним масштабом;
 - 3. Побудувати таблицю, в графах якої розміщені

h, y(b) - y_n,
$$\frac{y(b) - y_n}{y(b)} \cdot 100$$

4. Побудувати стовпцеву діаграму величини

$$\frac{y(x_k) - y_k}{y(x_k)} \cdot 100$$

при $x_k=b$ і h_0,h_1,h_2 .

5. Побудувати на одному полі графіки повної локальної похибки $\mathbf{e}(\mathbf{x_k}) = \mathbf{y}(\mathbf{x_k}) - \mathbf{y_k}$ і теоретично очікуваної локальної похибки урізання при $\mathbf{h} = \mathbf{h_2}$.

Замінити у програмі розрахункові формули свого методу розрахунковими формулами методу Рунге-Кутта четвертого порядку і повторити обчислення . Порівняти одержані результати.

Варіанти індивідуальних завдань наведені в табл. 1.8.

Таблиця 1.8

Номер варіанта	1	2	3	4	5	6	7	8	9	10	11
Метод	2	3	4	5	6	7	8	9	10	11	12
Додаткове завдання	5	1	2	3	4	1	2	3	4	1	3

Номер варіанта	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Метод	13	14	15	1	4	5	4	7	8	9	10	11	12	13
Додаткове завдання	3	5	4	5	1	5	2	3	4	1	2	3	4	1

Варіант 26 = Варіант 12

Варіант 27 = Варіант 4