IP

1. Subnet이란?

서브넷 이란, IP 주소에서 **네트워크 영역**을 부분적으로 분할해 나눠진 작은 부분 네트워크를 뜻한다. 네트워크를 분할하는 서브네팅(Subnetting)은 서브넷 마스크(Subnet Mask)를 통해 이루어진다.

11001101 00000000 00000001 xxxxxxxx

이 경우 최상위 비트가 110이므로 C 클래스 네트워크이다. 앞의 24비트는 네트워크 주소로, 뒤의 8비트는 호스트 주소이다.

IP 주소 = 네트워크 식별 비트(IP 주소가 속한 네트워크) + 호스트 식별 비트 (해당 네트워크에서 개별적인 호스트(기기)를 식별)

1. 클래스 A (첫 번째 비트가 O으로 시작)

- 첫 번째 옥텟(8비트)을 네트워크 식별에 사용하고, 나머지 3개의 옥텟은 호스트 식별에 사용합니다.
- 첫 번째 옥텟의 범위: 0.0.0.0 ~ 127.255.255.255
- 네트워크 식별 비트: 0
- 호스트 식별 비트: 24

예시:

- 0.0.0.0 은 네트워크 주소
- 127.255.255.255 는 마지막 호스트 주소

2. 클래스 B (첫 번째 비트가 10으로 시작)

- 처음 2개의 옥텟(16비트)을 네트워크 식별에 사용하고, 나머지 2개의 옥텟은 호스트 식별에 사용합니다.
- 첫 번째 옥텟의 범위: 128.0.0.0 ~ 191.255.255.255
- 네트워크 식별 비트: 10
- 호스트 식별 비트: 16

예시:

- **128.0.0.0** 은 네트워크 주소
- 191.255.255.255 는 마지막 호스트 주소

3. 클래스 C (첫 번째 비트가 110으로 시작)

- 처음 3개의 옥텟(24비트)을 네트워크 식별에 사용하고, 나머지 1개의 옥텟은 호스트 식별에 사용합니다.
- 첫 번째 옥텟의 범위: 192.0.0.0 ~ 223.255.255.255
- 네트워크 식별 비트: 110
- 호스트 식별 비트: 8

예시:

- **192.0.0.0** 은 네트워크 주소
- 223.255.255.255 는 마지막 호스트 주소

4. 클래스 D (첫 번째 비트가 1110으로 시작)

- 멀티캐스트용 IP 주소 범위를 나타냅니다.
- 예시: 224.0.0.0 ~ 239.255.255.255

5. **클래스 E (첫 번째 비트가 1111으로 시작)**

• 실험 및 특수용도를 위한 예약 주소 범위를 나타냅니다.

예시: 240.0.0.0 ~ 255.255.255.255

	Оххх хххх		XXXX XXXX. XXXX XXXX. XXX	XX XXXX	
A	Network Address		Host Address	Host Address	
1.	0.0.0.0 ~ 127.255.255.255	0.0.0 ~ 255.255.255		5	
	10xx xxx	XX. XXXX XXXX		XXXX XXXX. XXXX XXXX	
В	Network Address			Host Address	
	128.0.0.0 ~ 191.255.255.255			0.0 ~ 255.255	
		110x xxxx. xxxx xxxx. xxxx xxxx		хххх	
<u> </u>		Network Address		Host Address	
		192.0.0.0 ~ 223.255.255.255		0 ~ 255	
D	Multicast Address				
	224.0.0.0 ~ 239.255.255.255				
E	Reversed				
_ (240.0.0.0 ~ 255.255.255				

2. NAT (Network Address Translation)

- **IPV4** → 2^32(약 40억)개의 globally unique한 주소를 가질 수 있음
- IPV6 → 2^128(약 40억 * 40억 * 40억)개의 주소를 가질 수 있음
- → 라우터 변환을 해야하기 때문에 IPV4를 계속 사용
 - NAT: 내 컴퓨터의 IP를 공유기 자신의 공인 IP로 변환, IPV4의 주소 부족 문제를 어느 정도 해결
 - 내부적으로 유일한 IP주소를 사용하다가 외부에 나갈때는 게이트웨이의 IP주소로 바꿔준 후 외부에서 사용된다.
 - o Outbound: Rewrite the src IP address(데이터가 서버 밖으로 나가는 경우)
 - ∘ Inbound: Rewrite the dest IP address(데이터가 서버로 들어오는 경우)

- DHCP(Dynamic Host Configuration Protocol): IP주소를 동적으로 할당,
- 네트워크 안에 컴퓨터에 자동으로 네임 서버 주소, IP주소, 게이트웨이 주소를 할당해주는 것을 의미하고, 해당 클라이언트에게일정 기간 임대를 하는 동적 주소 할당 프로토콜이다.

3. IP fragmentation, reassebly

: 큰 IP 패킷들이 적은 MTU(Maximum Transmission Unit)을 갖는 링크를 통해 전송되는 경우 여러 개의 작은 조각(Fragment)를 쪼개어 전송

IP 4

- Fragement Identifier (16bits) : 각 조각이 동일한 데이터그램에 속하면 같은 일련번 호를 공유
- Fragmentation Flag: (3bits)
 - (1) 첫 번째 비트 (1bit) : 미사용. 항상 0
 - ② 두 번째 비트 (1bit): DF(Don't Fragment) 비트. 0으로 설정된 경우 라우터에서도 조각화가 가능함. 1로 설정된 경우에는 라우터의 조각화 제한
 - ③ 세 번째 비트 (1bit): MF(More Fragment) 비트. 현재의 조각이 마지막이면 0. 뒤따라 오는 조각이 있으면 1.
- **Fragmentation Offset** (13bits) : 8 바이트 오프셋으로 조각에 저장된 원래 데이터의 순서를 나타냄.

서브넷마스크(subnet mask)와 서브넷팅(subnetting)이란??

서브넷 마스크(Subnet Mask)와 서브넷팅(Subnetting)?? 서브넷팅 (Subnetting)이란 ?? 서브넷팅이란 IP주소 낭비를 방지하기 위해 네트워크를 분할하여 효율적으로 사용하는 개념입니다. IPv4 주소(32bit)

https://devoong2.tistory.com/entry/서브넷마스크subnet-mask와-서브넷팅subnetting이란

