

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

MATEMÁTICAS PARA LAS CIENCIAS APLICADAS 1

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

3ra lista de problemas

Tercer Parcial

Autores:

Ramírez Mendoza Joaquín Rodrigo Salinas Trinidad Betsi Ivana Villalobos Juárez Gontrán Eliut Treviño Puebla Héctor Jerome

Noviembre 2024

3ra lista de problemas

Ramírez Mendoza Joaquín Rodrigo Salinas Trinidad Betsi Ivana Villalobos Juárez Gontrán Eliut Treviño Puebla Héctor Jerome

3 de noviembre de 2024

ANTON-BIVENS-DAVIS 3.4 EJERCICIO 23

1) Un satélite se encuentra en una órbita elíptica alrededor de la Tierra. Su distancia r (en millas) desde el centro de la Tierra está dada por

$$r = \frac{4995}{1 + 0.12 cos\theta}$$

donde θ es el ángulo medido desde el punto de la órbita más cercano a la superficie de la Tierra (ver la figura adjunta).

- a) Halla la altitud del satélite en el perigeo (el punto más cercano a la superficie de la Tierra) y en el apogeo (el punto más alejado de la superficie de la Tierra). Usa 3960 mi como el radio de la Tierra.
- b) En el instante en que θ es 120°, el ángulo θ aumenta a una tasa de 2,7° /min. Halla la altitud del satélite y la tasa a la que cambia la altitud en ese instante. Expresa la tasa en unidades de mi/min.

a): 1.- Halla la altitud del satélite en el perigeo.

Tenenmos que evaluar la ecuación que nos da el radio del centro de la tierra al satélite, esto es cuado $\theta = 0^{\circ}$ pues en la trayectoria elíptica del satélite donde intersecta al eje horizontal en el punto más cercano a la tierra es el ángulo que se forma.

$$r_p = \frac{4995}{1 + 0.12\cos\theta} \Big|_{\theta=0}$$

$$= \frac{4995}{1 + 0.12\cos(0)}$$

$$= \frac{4995}{1 + 0.12(1)}$$

$$\approx 4459.8214 \ mi$$

Ahora para saber la altitud desde el punto más cercano a la superficie de la tierra al satélite debemos tomar en cuneta que $r_T = 3960 \ mi$ para así calcular la diferencia de $r_p - r_T$, la cual nos dará la altitud deseada

$$Altitud_p = r_p - r_T = 4459.8214 \ mi - 3960 \ mi \simeq 499.8214 \ mi$$

- \therefore la Altitud del satélite en el perigeo es de $\simeq 499.8214 \; mi$ de distancia.
- 2.- Repetimos el procedimiento en el punto más alejado, el apogeo, este caso ocurre cuando $\theta = 180^{\circ}$ pues considerando la trayectoria elíptica del satélite donde intersecta al eje horizontal en el punto más legano a la superficei de la tierra, el ángulo que se forma es de 180° .

$$r_a = \frac{4995}{1 + 0.12\cos\theta} \Big|_{\theta = 180}$$

$$= \frac{4995}{1 + 0.12\cos(180)}$$

$$= \frac{4995}{1 + 0.12(-1)}$$

$$\approx 5676.1363 \ mi$$

 $5676.1363 \ mi$ es la distancia desde el centro de la tierra al satélite, debemos calcular la diferencia entre el radio de la tierra r_T y la distancia en el punto r_a para saber la altitud desde la superficie hasta el punto r_a

$$Altitud_a = r_a - r_T = 5676.1363 \ mi - 3960 \ mi \simeq 1716.1363 \ mi$$

- : la Altitud del satélite en el Apogeo es de $\simeq 1716.1363~mi$ de distancia.
- b): Halla la altitud del satélite y la tasa a la que cambia la altitud en el instante que θ es 120°. Sabemos que el ángulo θ aumenta a una tasa de 2,7° /min. en ese instante.
- 1.- Para hallar la altitud del satélite debemos utilizamos el mismo argumento anterior cuando $\theta=120^{\circ}$

$$r_s = \frac{4995}{1 + 0.12cos\theta} \Big|_{\theta = 120}$$

$$= \frac{4995}{1 + 0.12cos(120)}$$

$$= \frac{4995}{1 + 0.12(-\frac{1}{2})}$$

$$\simeq 5313.8297 \ mi$$

$$Altitud_s = r_s - r_T$$

$$= 5313.8297 \ mi - 3960 \ mi$$

$$\simeq 1353.8297 \ mi$$

: la Altitud del satélite cuando $\theta=120^\circ$ es de $\simeq 1353.8297~mi$ de distancia. la tasa a la que cambia la altitud en ese instante.

La altitud r depende del ángulo θ , y θ a su vez cambia con el tiempo t. La regla de la cadena nos permite relacionar estas tasas de cambio.

$$\frac{dr}{dt} = \frac{dr}{d\theta} \cdot \frac{d\theta}{dt}$$

$$\frac{dr}{d\theta} = \frac{d}{d\theta} \left(\frac{4995}{1 + 0.12 \cdot \cos\theta}\right) \qquad \Longrightarrow \frac{dr}{dt} = \frac{dr}{d\theta} \cdot \frac{d\theta}{dt}$$

$$= -\frac{4995 \cdot (-0.12 (sen\theta))}{(1 + 0.12 \cdot \cos\theta)^2} \qquad \Longrightarrow \frac{dr}{dt} = \frac{dr}{d\theta} \cdot \frac{d\theta}{dt}$$

$$= \frac{599.4 \cdot (sen\theta)}{(1 + 0.12 \cdot \cos\theta)^2} \cdot \left(\frac{2.7 \cdot \pi}{180}\right)$$

$$\frac{d\theta}{dt} = \frac{599.4 \cdot (sen\theta)}{(1 + 0.12 \cdot \cos\theta)^2} \cdot (0.015 \cdot \pi)$$

$$= \frac{599.4 \cdot (0.015 \cdot \pi) \cdot (sen\theta)}{(1 + 0.12 \cdot \cos\theta)^2}$$
Nota: en radianes $\frac{d\theta}{dt} = \frac{2.7 \cdot \pi}{180}$

$$= \frac{8.991\pi \cdot (sen\theta)}{(1 + 0.12 \cdot \cos\theta)^2}$$

$$\implies \frac{dr}{dt}\Big|_{\theta=120^{\circ}} = \frac{8.991\pi \cdot (sen(120^{\circ}))}{(1+0.12 \cdot cos(120^{\circ}))^{2}}$$

$$= \frac{8.991\pi \cdot \left(\frac{\sqrt{3}}{2}\right)}{\left(1+0.12 \cdot \left(-\frac{1}{2}\right)\right)^{2}}$$

$$\approx \frac{24.4618}{0.8836}$$

$$\approx 27.6842 \ mi/min$$

 \therefore la tasa a la que cambia la altitud en ese instante es de $27.6842 \ mi/min$

ANTON-BIVENS-DAVIS 4 EJERCICIO 48

2) Utilice la diferenciación implícita para demostrar que una función definida implícitamente por senx + cosy = 2y tiene un punto crítico siempre que cosx = 0. Luego utilice la prueba de la primera o segunda derivada para clasificar estos puntos críticos como máximos o mínimos relativos.

Aplicación de la derivación implícita

$$sen(x) + cos(y) = 2y$$

$$\frac{d}{dx}(sen(x)) + \frac{d}{dx}(cos(y)) = \frac{d}{dx}(2y)$$

$$cos(x) + (-sen(y))\frac{dy}{dx} = 2\frac{dy}{dx}$$

$$(-sen(y))\frac{dy}{dx} - 2\frac{dy}{dx} = -cos(x)$$

$$\frac{dy}{dx}(-sen(y) - 2) = -cos(x)$$

$$\frac{dy}{dx} = \frac{-cos(x)}{(-sen(y) - 2)}$$

$$\frac{dy}{dx} = \frac{-cos(x)}{-(sen(y) + 2)}$$

$$\frac{dy}{dx} = \frac{cos(x)}{(sen(y) + 2)}$$

Análisis de púntos críticos

$$\therefore \frac{dy}{dx} = 0 \iff \cos(x) = 0$$

.:.nuestros puntos críticos ocurren en los valores:

$$cos(x) = 0 \iff x = \frac{\pi}{2} \pm k\pi, k \in \mathbb{Z}$$

Clasificación de los puntos críticos. Para clasificar estos puntos críticos, aplicamos la prueba de la segunda derivada.

$$\begin{split} \frac{d^2y}{dx^2} \left(\frac{\cos(x)}{\sin(y) + 2} \right) &= \frac{\left(sen(y) + 2 \right) \left(-sen(x) \right) - \cos(x) \left(\cos(y) \frac{dy}{dx} \right)}{\left(sen(y) + 2 \right)^2} \\ &= \frac{\left(sen(y) + 2 \right) \left(-sen(x) \right) - \cos(x) \cdot \cos(y) \cdot \frac{\cos(x)}{\sin(y) + 2}}{\left(sen(y) + 2 \right)^2} \\ &= \frac{\left(sen(y) + 2 \right)^2 \left(-sen(x) \right) - \cos^2(x) \cdot \cos(y)}{\left(sen(y) + 2 \right)^3} \end{split}$$

Dado que la ecuación coseno es periódica, toma el valor de cero en exactamente estos puntos dentro de su periodo. $cos\left(\frac{\pi}{2}\right)=0$ y $cos\left(\frac{3\pi}{2}\right)=0$

Para ver esto más claramente:

Evaluamos los puntos donde cos(x) = 0

$$\begin{split} \left. \frac{d^2y}{dx^2} \right|_{\cos(x)=0} &= \frac{(sen(y)+2)^2 \left(-sen(x)\right) - \cos^2(x) \cdot \cos(y)}{(sen(y)+2)^3} \\ &= \frac{(sen(y)+2)^2 \left(-sen(x)\right) - 0 \cdot \cos(y)}{\left(sen(y)+2\right)^3} \\ &= -\frac{sen(x)}{(sen(y)+2)} \end{split}$$

Sustutuyendo en $\frac{d^2y}{dx^2}$ para $x = \frac{\pi}{2}$:

Sustutuyendo en $\frac{d^2y}{dx^2}$ para $x = \frac{3\pi}{2}$:

$$\sin\left(\frac{\pi}{2}\right) = 1 \implies \frac{d^2y}{dx^2} = -\frac{1}{\sin y + 2}$$

$$\sin\left(\frac{3\pi}{2}\right) = -1 \implies \frac{d^2y}{dx^2} = \frac{1}{\sin y + 2}$$

Por lo tanto, para $x=\frac{\pi}{2}+k\pi$ es negativo, lo que implica un **máximo relativo**. Para $x=\frac{3\pi}{2}+k\pi$ es positivo, lo que implica un **mínimo relativo**.

ANTON-BIVENS-DAVIS 9.7 EJERCICIO 29

29) Encuentra los primeros 4 polinomios distintos de Taylor sobre $x = x_0$, y usa una utilidad gráfica para graficar la función dada y el polinomio de Taylor en la misma pantalla.

$$f(x) = cosx \text{ en } x_0 = \pi$$

Para facilitar la búsqueda de estos polinomios, primero hallemos las derivadas (que presentará una forma cíclica):

Derivando:	Evaluando en: $x_0 = \pi$	Valor:
$f^0(x) = cos(x)$	$f^0(\pi) = cos(\pi)$	$cos(\pi) = -1$
$f^1(x) = -\operatorname{sen}(x)$	$f^1(\pi) = -\operatorname{sen}(\pi)$	$-sen(\pi) = 0$
$f^2(x) = -\cos(x)$	$f^2(\pi) = -\cos(\pi)$	$-cos(\pi) = 1$
$f^3(x) = sen(x)$	$f^3(\pi) = sen(\pi)$	$sen(\pi) = 0$

Para generar los diferestes polinomios ocuparemos el desarrollo de Taylor:

$$\sum_{k=0}^{n} \frac{f^k(x_0)}{k!} (x - x_0)^k$$

Para $P_0(x)$:

$$\sum_{k=0}^{0} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0$$
$$\frac{f^0(\pi)}{0!} (x - \pi)^0 = \frac{\cos(\pi)}{1} (x - \pi)^0$$
$$\frac{\cos(\pi)}{1} (x - \pi)^0 = \cos(\pi)(1)$$
$$\cos(\pi)(1) = -1$$

Así, esta es nuestra **primera** aproximación a la función. $P_0(x) = -1$ Para $P_1(x)$:

$$\sum_{k=0}^{1} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0 + \frac{f^1(\pi)}{1!} (x - \pi)^1$$

Para el nuevo Término:

$$\frac{f^1(\pi)}{1!}(x-\pi)^1 = \frac{-sen(\pi)}{1}(x-\pi)$$
$$\frac{sen(\pi)}{1}(x-\pi) = sen(\pi)(x-\pi)$$
$$sen(\pi)(x-\pi) = 0$$

Así la sumatoria resulta:

$$\sum_{k=0}^{1} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + 0$$

$$\sum_{k=0}^{1} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1$$

En este caso podemos ver que dada la multiplación por 0 (debido a $sen(\pi)$) el polinomio resultante es igual al anterior (NO es distinto).

Podremos ver que se repetirá este comportamiento siempre que el término de la sumatoria involucre $sen(\pi)$, con esto el término se cancelará".

Para $P_2(x)$:

$$\sum_{k=0}^{2} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} = \frac{f^{0}(\pi)}{0!} (x - \pi)^{0} + \frac{f^{1}(\pi)}{1!} (x - \pi)^{1} + \frac{f^{2}(\pi)}{2!} (x - \pi)^{2}$$

Para el nuevo Término:

$$\frac{f^2(\pi)}{2!}(x-\pi)^2 = \frac{-\cos(\pi)}{2}(x-\pi)^2$$
$$\frac{-\cos(\pi)}{2}(x-\pi)^2 = \frac{1}{2}(x-\pi)^2$$
$$\frac{1}{2}(x-\pi)^2 = \frac{(x-\pi)^2}{2}$$

Así la sumatoria resulta:

$$\sum_{k=0}^{2} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2}$$

Así, esta es nuestra **segunda** aproximación a la función. $P_2(x) = -1 + \frac{(x-\pi)^2}{2}$

Para $P_3(x)$:

$$\sum_{k=0}^{3} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} = \frac{f^{0}(\pi)}{0!} (x - \pi)^{0} + \frac{f^{1}(\pi)}{1!} (x - \pi)^{1} + \frac{f^{2}(\pi)}{2!} (x - \pi)^{2} + \frac{f^{3}(\pi)}{3!} (x - \pi)^{3}$$

Para el nuevo Término:

Como se mecionó mas arriba sabemos que el nuevo termino involucrará a $sen(\pi)$ (Dado que la derivación de cos(x) es cíclica), por esto, este término también será 0.

Así la sumatoria resulta:

$$\sum_{k=0}^{3} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} + 0$$
$$\sum_{k=0}^{3} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2}$$

Por lo tanto este no es un Polinomio Distinto.

Para $P_4(x)$:

$$\sum_{k=0}^{4} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0 + \frac{f^1(\pi)}{1!} (x - \pi)^1 + \frac{f^2(\pi)}{2!} (x - \pi)^2 + \frac{f^3(\pi)}{3!} (x - \pi)^3 + \frac{f^4(\pi)}{4!} (x - \pi)^4$$

Para el nuevo Término:

$$\frac{f^4(\pi)}{4!}(x-\pi)^4 = \frac{\cos(\pi)}{24}(x-\pi)^4$$
$$\frac{\cos(\pi)}{24}(x-\pi)^4 = \frac{-1}{24}(x-\pi)^4$$
$$\frac{-1}{24}(x-\pi)^4 = -\frac{(x-\pi)^4}{24}$$

Así la sumatoria resulta:

$$\sum_{k=0}^{4} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24}$$

Así, esta es nuestra **tercera** aproximación a la función. $P_4(x)=-1+\frac{(x-\pi)^2}{2}-\frac{(x-\pi)^4}{24}$

Para $P_5(x)$:

$$\sum_{k=0}^{3} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} = \frac{f^{0}(\pi)}{0!} (x - \pi)^{0} + \frac{f^{1}(\pi)}{1!} (x - \pi)^{1} + \dots + \frac{f^{5}(\pi)}{5!} (x - \pi)^{5}$$

Para el nuevo Término:

Este termino también involucrará a $sen(\pi)$, por esto, este término también será 0.

Así la sumatoria resulta:

$$\sum_{k=0}^{5} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24} + 0$$
$$\sum_{k=0}^{5} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24}$$

Por lo tanto este no es un Polinomio Distinto.

Para $P_6(x)$:

$$\sum_{k=0}^{6} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0 + \frac{f^1(\pi)}{1!} (x - \pi)^1 + \dots + \frac{f^6(\pi)}{6!} (x - \pi)^6$$

Para el nuevo Término:

$$\frac{f^6(\pi)}{6!}(x-\pi)^6 = \frac{-\cos(\pi)}{720}(x-\pi)^6$$
$$\frac{-\cos(\pi)}{720}(x-\pi)^6 = \frac{1}{720}(x-\pi)^6$$
$$\frac{1}{720}(x-\pi)^6 = \frac{(x-\pi)^6}{720}$$

Así la sumatoria resulta:

$$\sum_{k=0}^{4} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24} + \frac{(x - \pi)^6}{720}$$

Así, esta es nuestra **cuarta** aproximación a la función. $P_6(x) = -1 + \frac{(x-\pi)^2}{2} - \frac{(x-\pi)^4}{24} + \frac{(x-\pi)^6}{720}$

Podemos notar comportamientos similares en las aproximaciones con lo cual incluso Podríamos generar una fórmula para generar estos Polinomio.

A continuación están las gráficas, tanto de la función original como de los Polinomios Generados:

Gráfica de la función y los Polinomios

Ampliación de la Gráfica (Para notar mejor la aproximación realizada)

$$f(x) = \cos(x)$$

$$P_0(x) = -1$$

$$P_2(x) = -1 + \frac{(x - \pi)^2}{2}$$

$$P_4(x) = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24}$$

$$P_6(x) = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24} + \frac{(x - \pi)^6}{720}$$

Simbología