ปฏิบัติการเคมีทั่วไป 2302113, 2302163, 2302178

Qualitative Analysis for Cations

การวิเคราะห์เชิงคุณภาพสำหรับ แคทไอออน

ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

วัตถุประสงค์เชิงพฤติกรรม

- ตึกษาปฏิกิริยาการตกตะกอน การเกิดสารเชิงซ้อนของแคทไอออน บางชนิด
- 🔘 ศึกษาปฏิกิริยาสำหรับการทดสอบเฉพาะของแคทไอออนบางชนิด
- 🔘 ฝึกทักษะการวิเคราะห์เชิงคุณภาพสำหรับแคทไอออน

ทฤษฎีและหลักการทดลอง

การวิเคราะห์เชิงคุณภาพ เป็นวิธีที่ใช้สำหรับตรวจสอบชนิดของสาร อาศัยหลักการ <u>ตกตะกอน</u>และ <u>เกิดสารเชิงซ้อน</u>

(สังเกตุจาก การเปลี่ยนสี การเกิดแก๊ส การตกตะกอน หรือการละลายตะกอน)

แคทไอออน 9 ชนิด (Ag⁺, Hg₂²⁺ , Pb²⁺, Ni²⁺, Zn²⁺, Mn²⁺ , Fe³⁺, Cr³⁺, Al³⁺)

ขั้นที่ 1 แยกแคทไอออนเป็นกลุ่ม ๆ ตามสมบัติของสารประกอบที่ คล้ายคลึงกัน

> กลุ่มที่ 1 ตกตะกอนคลอไรด์ (Ag⁺ Pb²⁺ Hg₂²⁺)

กลุ่มที่ 2 ตกตะกอนไฮดรอกไซด์ (Ni²⁺ Mn²⁺ Fe³⁺) กลุ่มที่ 3 สารเชิงซ้อนไฮดรอกโซ (Al³⁺ Zn²⁺ Cr³⁺)

ขั้นที่ 2 ทดสอบเฉพาะของแคทไอออนในแต่ละกลุ่ม

การทดสอบเฉพาะของแคทใอออน กลุ่มที่ 1 (Ag+ Pb²+ Hg₂²+)

- Pb²⁺
 - (1) น้ำตะกอนขาว PbCl₂ ที่ได้จากการตกตะกอนแยกกลุ่มคลอไรค์ มาละลายในน้ำร้อน
 - (2) เติมสารละลาย CrO₄ ²⁻ จะได้ตะกอนเหลือง
 - (3) ตะกอนเหลืองละลายใน NaOH

การทดสอบเฉพาะของแคทใอออน กลุ่มที่ 1 (Ag+ Pb²⁺ Hg₂²⁺)

Ag⁺

- ์ (1) น้ำตะกอนขาว AgCI ที่ได้จากการตกตะกอนแยกกลุ่มคลอไรด์ มาละลายในสารละลาย NH₃ ที่มากเกินพอ
- (2) เติม HNO₃ จนสารละลายมีฤทธิ์เป็น<mark>กรด</mark>จะได้ตะกอนขาว

 $[Ag(NH_3)_2]^+ + C\Gamma + 2H^+ \rightarrow AgCl_{(s)} + 2NH_4^+$

ตะกอนขาว

การทดสอบเฉพาะของแคทใอออน กลุ่มที่ 1 (Ag+ Pb²⁺ Hg₂²⁺)

Hg₂²⁺

- (1) น้ำตะกอนขาว Hg₂Cl₂ ที่ได้จากการตกตะกอนแยกกลุ่มคลอไรด์ มาละลายในสารละลาย NH₃ ที่มากเกินพอ
- (2) Hg₂Cl₂ เกิด disproportionation ให้ HgNH₂Cl และ Hg⁰

การทดสอบเฉพาะของแคทใอออน กลุ่มที่ 2 (Ni²⁺ Mn²⁺ Fe³⁺)

Ni²⁺

- (1) น้ำตะกอนเขียว Ni(OH)₂ ที่ได้จากการตกตะกอนแยกกลุ่มไฮดรอกไซด์ มาละลายในกรด HNO₃ และ HCI
- (2) เติม NH $_4$ CI และ NH $_3$ จะเกิดเป็นสารเซิงซ้อน [Ni(NH $_3$) $_6$] $^{2+}$
- (3) สารเซิงซ้อน [Ni(NH₃)₆]²⁺ จะทำปฏิกิริยากับ dimethyl glyoxime (DMG) ได้ตะกอนแดง

 $[Ni(NH_3)_6]^{2+} + 2C_4H_8O_2N_2 + 4H_2O_{(1)} \rightarrow Ni(C_4H_7O_2N_2)_{2(s)} + 6NH_4^{+} + 4OH^{-}$

ตะกอนแดง

การทดสอบเฉพาะของแคทไอออน กลุ่มที่ 3 (Al³+ Zn²+ Cr³+)

Fe³⁺

- (1) นำตะกอนน้ำตาล Fe(OH), ที่ได้จากการตกตะกอนแยกกลุ่มไฮดรอกไซด์ มาละลายในกรด HNO, และ HCI
- (2) เติม KSCN ได้สารละลายสีแดงเลือดนก
- (3) เติม $K_{4}[Fe(CN)_{e}]$ ได้ตะกอนสีน้ำเงิน

การทดสอบเฉพาะของแคทใอออน กลุ่มที่ 2 (Ni²⁺ Mn²⁺ Fe³⁺)

\bullet Mn²+

- (1) น้ำตะกอนดำ MnO¸.2H¸O ที่ได้จากการตกตะกอนแยกกลุ่มไฮดรอกไซด์ มาละลายในกรด HNO¸ และ HCI
- (2) เติม HNOฐ และ NaBiOฐ จะได้สารละลายสีม่วงแดง

3(s) 4 (aq)

สลล. ม่วงแดง

การทดสอบเฉพาะของแคทใอออน กลุ่มที่ 3 (Al³+ Zn²+ Cr³+)

\bullet AI^{3+}

- ์ (1) นำ [AI(OH)₄] ที่ได้จากการแยกกลุ่มสารเชิงซ้อนไฮดรอกโซ มาทำให้มีฤทธิ์เป็น<u>กรด</u> ด้วย CH₃COOH
- (2) เติม NH₃ มากเกินพอ จะได้ตะกอนวุ้น AI(OH)₃
- (3) ละลายตะกอนวุ้นด้วย CH₃COOH และเติม catechol violet จะได้สารละลายสีน้ำเงิน

 $AI^{3+} + 3OH^{-} \rightarrow AI(OH)_{3}$

ตะกอนวุ้น

การทดสอบเฉพาะของแคทไอออน กลุ่มที่ 3 (Al³+ Zn²+ Cr³+)

Zn²⁺

- ์ (1) นำ [Zn(OH)₄]²⁻ ที่ได้จากการแยกกลุ่มสารเชิงซ้อนไฮดรอกโซ มาทำให้มีฤทธิ์เป็น<u>กรด</u> ด้วย CH₃COOH
- (2) เติม NH₃ มากเกินพอ และ K₄[Fe(CN)₆] จะได้ตะกอนเขียวอ่อน
- (3) ตะกอนเขียวอ่อน ละลายใน NaOH

ตะกอนละลายใน NaOH

 $Zn^{2+} + K_4[Fe(CN)_6] \rightarrow K_2Zn_3[Fe(CN)_6]$

ตะกอนเขียวอ่อน

การทดสอบเฉพาะของแคทไอออน กลุ่มที่ 3 (Al³+ Zn²+ Cr³+)

Cr³⁺

- (1) นำ $\mathrm{CrO_4^{\ 2-}}$ ที่ได้จากการแยกกลุ่มสารเชิงซ้อนไฮดรอกโซ มาเติม $\mathrm{BaCl_2}$ ได้ตะกอนเหลือง $\mathrm{BaCrO_4}$
- (2) ละลายตะกอนเหลืองด้วย HNO₃ แล้วเติม H₂O₂ ได้สารละลายสีน้ำเงินที่จางหายไปอย่างรวดเร็ว

ตะกอนเหลือง

วิธีทุดลอง

- o ตอนที่ 1 ทดสอบ Positive test ของแคทใอออน 9 ชนิด
- ตอนที่ 2 วิเคราะห์สารตัวอย่างแคทไอออนของแข็ง จำนวน 1 ชนิด (10 คะแนน)
 - 2.1) หาตัวทำละลายของสารตัวอย่าง

นำสารตัวอย่างของแข็ง ประมาณ 10 mg (~ปริมาณเม็ดถั่วเขียว) ละลายในตัวทำละลาย หากไม่ ละลายให้นำไปอุ่นให้ความร้อน และหากยังไม่ละลาย ให้เปลี่ยนตัวทำละลายตามลำดับต่อไปนี้

- น้ำ
- HNO₃ 2.0 M
- HNO₃ 6.0 M
- HCl 2.0 M
- 2.2) นำสารตัวอย่างที่ทราบตัวทำละลายแล้ว มาวิเคราะห์หาชนิดสารตัวอย่างตาม แผนภาพ (หนังสือหน้า 104) โดยการทดสอบแยกกลุ่ม และทดสอบเฉพาะตามลำดับ (ห้าม ข้ามขั้นตอนโดยเด็ดขาด)

ข้อควรระวังในการทดลอง

- ห้ามนิสิต ใช้หลอดทดลองของตนเอง ดูดสารละลายจากส่วนรวม โดย เด็ดขาด
- ใส่แว่นตานิรภัย ตลอดที่ทำการทดลอง
- ห้ามทิ้งสารที่เหลือจากการทดลองลองอ่างน้ำเด็ดขาด ให้เททิ้งในส่วนที่จัด
 ไว้ให้
- หากมีการเก็บแยกตะกอน เพื่อนำไปทดสอบต่อ ให้<u>เซนทริฟิวจ์ก่อนทุกครั้ง</u>
 แล้วแยกสารละลายออกจากตะกอน