Lecture 1 FOUNDATIONS OF INFORMATION SYSTEMS IN BUSINESS

LEARNING OBJECTIVES

- 1. Know the basics of computers timeline.
- 2. Discuss how Moore's Law creates infinite opportunities for innovation.
- 3. Understand the concept of a system and how it relates to information systems.
- 4. Components of information systems.
- 5. Information technology (IT) versus IS.
- 6. Data versus Information.
- 7. Information systems Activities.
- 8. Information systems model.

1.COMPUTERS TIMELINE

Pennsylvania)

- Electronic Numerical Integrator and Calculator (ENIAC) was developed in 1946 (University of
- ➤ Uni-Versal Automatic Computer (UNIVAC I), installed first at US Census Bureau 1951.
- ➤ IBM (International Business Machine), complete product system/360 (*multitasking*) in the mid-1960s.
- Multitasking refers to the fact that more than one user appears to be working on the computer at the same time. Types of multitasking: preemptive & cooperative
- > Minicomputers appeared in the 1970s.
- > Microcomputers emerged in the science in the early 1980s.

COMPUTERS TIMELINE

1

Computers are often classified into for sizes:

- 1. Microcomputers personal computers (PC)
 - Apple and Tandy Corporation were pioneered in the microcomputer market
 - IBM introduced the Personal Computer in 1982
 - used for business & personal application
- 2. Minicomputers.
- 3. Mainframe computers (need to <u>Information</u> <u>Specialists.</u> have the similar structure of PC
- 4. Supercomputers.

2. MOORE'S LAW

1

The power of computer doubles about every 18 months for a given cost.

Refers to the increased of storage density of integrated circuits on a silicon chip.

Example:

Say that your friend takes a job with a starting salary of \$40000, and a guaranteed raise of 20 percent every year. You take a job with a starting salary of \$5000 but your salary doubles every year and half (based on Moore's law).

Chapter

MOORE'S LAW

(CONTD)

Year	Friend	You
0	\$40,000	\$5,000
1	\$48,000	
1.5		\$10,000
2	\$57,600	
3	\$69.120	\$20,000
4	\$82,944	
4.5		\$40,000
5	\$99,533	
6	\$119,439	\$80,000
7	\$143,327	
7.5		\$160,000
8	\$171,993	
9	\$206,391	\$320,000
10	\$247,669	
10.5		\$640,000
11	\$297,203	
12	\$356,644	\$1,280,000
13	\$427,973	
13.5		\$2,560,000
14	\$513,567	
15	\$616,281	\$5,120,000

MOORE'S LOW (CONT'D)

Moore's law states that the "number of <u>transistors</u> per square inch on an integrated chip doubles every 18 months."

Graph shows that the ratio of price to performance of Intel processors has fallen from about \$4,000, in 1984, to a penny per 100,000 transistors today

CONSEQUENCES MOORE'S LAW

1

- YouTube
- iPad
- Facebook
- Pandora
- Twitter
- LinkedIn
- Foursquare

What happens when data storage and communications costs are essentially zero?

All of these companies, created since 2005, exist because of Moore's Law.

3. WHAT IS A SYSTEM?

- A system is defined as
 - □ a set of interrelated components
 - ☐ With a clearly defined boundary
 - Working together to achieve a common set of objectives
 - By accepting inputs and producing outputs in an organized transformation process

SYSTEMS HAVE THREE BASIC FUNCTIONS:

1

- Input involves capturing and assembling elements that enter the system to be processed
- Processing involves transformation process that convert input into output
- Output involves transferring elements that have been produced by the transformation process to their ultimate destination

CYBERNETIC SYSTEM

- All systems have input, processing and output
- A cybernetic system, a self-monitoring, selfregulating system, adds feedback and control:
 - Feedback is data about the performance of a system
 - Control involves monitoring and evaluating feedback to determine whether a system is moving towards the achievement of its goal

A BUSINESS AS A SYSTEM

Stakeholders in the Business Environment

WHAT IS AN INFORMATION SYSTEM?

- An organized combination of
 - 1. People
 - 2. Hardware
 - 3. Software
 - 4. Communications networks
 - 5. Data resources
 - 6. Policies and procedures
- That stores, retrieves, transforms, and disseminates information in an organization

4. COMPONENTS OF AN IS

1

- People
 - End users: the people who use the IS or the information from the IS.
 - ☐ IS specialists: the people who develop and operate IS.
- Hardware Resources
 - ☐ All physical devices used in information processing
 - □ Machines, data media, PCs.
- □ Software Resources
 - All information processing instructions including programs and procedures.
 - System software, application software and procedures.

COMPONENTS OF AN IS (CONT.)

- Data Resources
 - ☐ Facts about the business transactions
 - □ Processed and organized information
 - Databases of organized data
- □ Network Resources
 - Communications media
 - □ Network infrastructure: hardware and software
 - ☐ The Internet, intranets and extranets

COMPONENTS OF AN IS (CONT.)

Automation moves work from human side to computer side

Increasing degree of difficulty of change

5. INFORMATION SYSTEM (IS) VERSUS INFORMATION TECHNOLOGY (IT)

- IS is all the components and resources necessary to deliver information and functions to the organization.
- IT is hardware, software, networking and data management
- In theory, IS could be paper based, but we will focus on Computer-Based Information Systems (CBIS)
- S and IT play vital roles in business and improve the effectiveness and efficiency of business processes, managerial decision making.

INFORMATION SYSTEM (IS) VERSUS INFORMATION TECHNOLOGY (IT)

1

IS = IT + Procedures + People

Avoid common mistake: You cannot buy an IS

- Can buy or lease hardware, software licenses, databases and predesigned procedures.
- People require training, overcoming employees' resistance to change, managing employees using new system.

6. DATA VERSUS INFORMATION

- Data are raw facts about physical phenomena or business transactions.
- Information is data that has been converted into meaningful and useful context for end users.
- Example:
 - ☐ Sales data is names, quantities and dollar amounts
 - □ Sales information is amount of sales by product type, sales territory or salesperson.

DATA VERSUS INFORMATION

Does this graph contain information?

DATA VERSUS INFORMATION

1

Does this graph contain information?

This graph does not contain information. The graph is data that humans perceive and, in turn, conceive information.

DATA CHARACTERISTICS

Data Characteristics Required for Good Information:

- Accurate
- Timely
- Relevant to subject
- Sufficient
- Worth its cost

7. IS ACTIVITIES

- Input of data resources
 - Data entry activities
- Processing of data into information
 - □ E.g., calculate, compare, sort, classify, summarize
- Output of information products
 - □ Messages, reports, forms and graphic images
- Storage of data resources
 - □ Data elements and databases
- Control of system performance
 - ☐ Monitoring and evaluating feedback

8.INFORMATION SYSTEMS MODEL

THANK YOU