Structural Bioinformatics

Adithi Kumar

Introduction to the RCSB Protein Data Bank (PDB)

First, let's see what is in the PDB database, the main repository of protein structures.

Downloaded composition stats from: "https://www.rcsb.org/stats/summary"

For context:

Release 2023_04 of 13-Sep-2023 of UniProtKB/TrEMBL contains 251600768 sequence entries

The PDB only contains 183,201. (Structure determination takes a very long time and is very expensive) Sequencing is a lot easier and inexpensive.

```
stats <- read.csv("https://tinyurl.com/statspdb",row.names=1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	158,844	11,759	12,296	197	73	32
Protein/Oligosaccharide	9,260	2,054	34	8	1	0
Protein/NA	8,307	3,667	284	7	0	0
Nucleic acid (only)	2,730	113	1,467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183,201					
Protein/Oligosaccharide	11,357					
Protein/NA	12,265					
Nucleic acid (only)	4,327					
Other	205					
Oligosaccharide (only)	22					

We need to get rid of commas in the numbers because R is treating this dataframe as a characters instead of numericals.

```
x <- stats$X.ray
  X
[1] "158,844" "9,260"
                         "8,307"
                                    "2,730"
                                              "164"
                                                         "11"
  #gsub will (globally) substitute the commas with nothing on the column from x
  # as.numeric will then convert x into a numeric
  as.numeric(gsub(",", "", x))
[1] 158844
             9260
                            2730
                     8307
                                     164
                                             11
  rm.comma <- function(x) {</pre>
    as.numeric(gsub(",", "", x))
  rm.comma(stats$EM)
[1] 11759 2054 3667
                         113
                                  9
                                        0
I can use 'apply()' to fix the whole table...
  # apply(df, row(1) or column(2), function to apply)
  pbdstats <- apply(stats,2, rm.comma)</pre>
  rownames(pbdstats) <- rownames(stats)</pre>
  head(pbdstats)
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	158844	11759	12296	197	73	32
Protein/Oligosaccharide	9260	2054	34	8	1	0
Protein/NA	8307	3667	284	7	0	0
Nucleic acid (only)	2730	113	1467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183201					

```
Protein/Oligosaccharide 11357
Protein/NA
                         12265
Nucleic acid (only)
                          4327
Other
                            205
Oligosaccharide (only)
                             22
```

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
#long way to answer
  (sum(pbdstats[,1])+sum(pbdstats[,2]))/(sum(pbdstats[,"Total"]))
[1] 0.9315962
  #OR make a function with all column totals
  totals <- apply(pbdstats, 2, sum)</pre>
  round(totals/totals["Total"]*100,2)
                               EM
           X.ray
                                                NMR Multiple.methods
           84.83
                             8.33
                                               6.68
                                                                 0.11
         Neutron
                            Other
                                              Total
            0.04
                             0.02
                                             100.00
  84.83 +8.33
```

[1] 93.16

93.16% of the structures in the PDB are solved by X-Ray and Electron Microcopy

Q2: What proportion of structures in the PDB are protein?

```
ptn_total <- pbdstats[1, "Total"]</pre>
ptn_total/sum(pbdstats[, "Total"])
```

[1] 0.8667026

86.67% of the structures in the PDB are protein.

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

Skipped for time!

Visualizing the HIV-1 protease structure

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

This is a 2 angstrom structure. Hydrogen is smaller than the resolution of the program so it can't be seen in the structure.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

HOH 308; the water molecule is hydrogen bonded to the protein and the ligand; it stabilizes the binding between the two.

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

Here is a lovely figure of HIP-Pr with the catalytic ASP residues, the MK1 compound and the all important water 308.

Introduction to Bio3D in R

The bio3d package for structural bioinformatics

```
library(bio3d)
pdb <- read.pdb("1hsg")</pre>
```

```
Note: Accessing on-line PDB file
  pdb
Call: read.pdb(file = "1hsg")
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
```

Q7: How many amino acid residues are there in this pdb object?

There are 198 amino acid residues in this PDB object

Q8: Name one of the two non-protein residues?

HOH and MK1 (the drug/ligand)

Q9: How many protein chains are in this structure?

There are 2 protein chains in this structure.

```
attributes(pdb)
```

```
$names
[1] "atom"
             "xyz"
                       "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
  head(pdb$atom)
  type eleno elety alt resid chain resno insert
                                                               У
1 ATOM
           1
                 N < NA >
                          PRO
                                         1
                                             <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
                                             <NA> 30.307 38.663 5.319 1 40.62
                CA <NA>
                          PRO
                                   Α
                                         1
3 ATOM
           3
                 C <NA>
                          PRO
                                         1 <NA> 29.760 38.071 4.022 1 42.64
                                   Α
4 ATOM
           4
                 O <NA>
                          PRO
                                         1 <NA> 28.600 38.302 3.676 1 43.40
                                   Α
5 ATOM
                                        1 <NA> 30.508 37.541 6.342 1 37.87
           5
                CB <NA>
                          PRO
                                   Α
                                             <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
           6
                CG <NA>
                          PRO
                                   Α
                                         1
  segid elesy charge
  <NA>
            N
                <NA>
   <NA>
                <NA>
  <NA>
                <NA>
   <NA>
            0
                <NA>
5 <NA>
            С
                <NA>
6 <NA>
            С
                <NA>
Look at Adenylate Kinase!
Let's finish today with a bioinformatics calculation to predict the functional motions of a PDB
structure.
  adk <- read.pdb("6s36")
  Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE
  adk
 Call: read.pdb(file = "6s36")
```

Total Models#: 1

```
Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)

Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 244 (residues: 244)
Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]

Protein sequence:

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
DELVIALWERLAGERGRAGELL DGERRITHGARAWEAGINWDAYM EERWERELLDELL
```

DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

```
+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call
```

Normal Mode Analysis is used predict protein flexibility and possible conformational changes in structural bioinformatics.

```
#Perform a NMA for adk
m <- nma (adk)

Building Hessian... Done in 0.044 seconds.
Diagonalizing Hessian... Done in 0.643 seconds.</pre>
```


look at a "movie" of those possible motions by load the resulting "adk_m7.pdb" into Mol
mktrj(m, file="adk_m7.pdb")