

Graph Representation Learning: Self-Supervision and Generative Modelling NORA Summer School on Geometric Deep Learning

Raghavendra Selvan

Assistant Professor (TT)
Dept. of Computer Science (ML Section)
University of Copenhagen
Pioneer Centre for Artificial Intelligence, Denmark

Graph Representation Learning: Overview

- Lecture-3
 - Graph Representation Learning
 - Self-Supervised GNNs
 - Generative Modelling for Graphs Variational Autoencoders

Representation Learning with GNNs: Overview

- Lecture-3
 - Graph Representation Learning
 - Self-Supervised GNNs
 - Generative Modelling for Graphs Variational Autoencoders

Representation Learning is Compact Feature Learning

Formalizing representation learning:

"Learning representations of the data that make it easier to extract useful information when building classifiers or other predictors." [1]

$$\mathbf{h} = g_{\phi}(\mathbf{z}) \tag{1}$$

$$\mathbf{z} = f_{\theta}(\mathbf{x}) \in \mathbb{R}^F \tag{2}$$

h are usually psuedo-labels, z can then be used in any downstream task to predict. v.

Undercomplete Autoencoder

Also, interesting for graphs:

- Access meaningful vector representations of graphs
- Many applications: Graph similarity, graph matching, graph generation

^[1]Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville, Pascal Vincent, 2014 Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, Mehdi Noroozi, Paolo Favaro, 2017

Autoencoders

- PCA is a linear dimensionality reduction method
- Autoencoders: (possibly) Non-linear PCA
- Neural Network based comprising encoder-decoder pair
- Undercomplete, Regularized, Sparse, Denoising AEs
- Compression, dimensionality reduction

Graphical model view of Autoencoders

Autoencoders

Encoder: $f_{\phi}(\cdot) : \mathbf{x} \in \mathbb{R}^{F} \to \mathbf{z} \in \mathbb{R}^{D}$ Decoder: $g_{\theta}(\cdot) : \mathbf{z} \in \mathbb{R}^{D} \to \hat{\mathbf{x}} \in \mathbb{R}^{F}$,

- Undercomplete Autoencoders: $\mathcal{L}(\mathbf{x}, g(f(\mathbf{x})))$ where $\mathcal{L}(\cdot)$ is a loss function penalizing $g(f(\mathbf{x})) \neq \mathbf{x}$
- Regularized Autoencoders: $\mathcal{L}(\mathbf{x}, g(f(\mathbf{x}))) + \Omega(\mathbf{z})$ where $\Omega(\mathbf{z})$ is a regularization penalty
- Denoising Autoencoders: $\mathcal{L}(\mathbf{x}, g(f(\tilde{\mathbf{x}})))$ where $\tilde{\mathbf{x}}$ is \mathbf{x} corrupted with some form of stochastic noise

Autoencoders in practice

Optimizing the Autoencoder: An MLE perspective

- Likelihood for Autoencoders: $p(\hat{\mathbf{X}}|\mathbf{X};\theta,\phi)$
- ullet $heta,\phi$ are optimized to maximize the likelihood
- Maximum likelihood estimation (MLE)
- Continuous values: Mean Squared Error is commonly used
- Categorical values: Cross entropy loss

Applying Autoencoders

- Undercomplete autoencoders D < F
- Non-linear low dimensional representation
- Clustering, Compression
- Feature extraction
- Similarity of data points
- Snapshot of the data manifold

What else can the latent space be used for?

Regularizing Autoencoders

- Latent space can be unstructured
- Discontinuities in the space
- Forcing structure with regularization
- Stochastic Autoencoders

Idea

Instead of embedding data as points, embed them as probability densities

Regularizing the latent space of Autoencoders

Regularizing the latent space of Autoencoders

Variational Autoencoders (VAE)

- Regularized stochastic Autoencoders
- Inspired and driven by Approximate Variational Inference
- Encoder and decoder are probabilistic
- Data is mapped to a probability density
- Deep Generative model

VAE Objective

As we are in probabilistic setting:

- We can estimate the data distribution p(x)
- Estimation from observed data $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$
- Probabilistic Encoder: $q_{\phi}(\mathbf{z}|\mathbf{x}) \approx p(\mathbf{z}|\mathbf{x})$
- Probabilistic Decoder: $p_{\theta}(\mathbf{x}|\mathbf{z})$
- Prior on latent variables: p(z)

VAE objective

$$\mathcal{L}_{\mathsf{VAE}} = -\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \Big[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \Big] + \mathsf{KL} \Big[q_{\phi}(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}) \Big]$$

- Autoencoder with regularisation
- First term is reconstruction loss
- Second term is regularisation penalty
- Regularisation forces the encoder to match the prior p(z)

Generative modelling using VAEs

- Primary difference between Autoencoders
- Exploiting structure of latent space
- Sample from prior → Decode samples
- Once trained, VAEs can be used to generate data

- Pseudo-labels derived graph data
- Labels can be derived from: $\mathbf{X} \in \mathbb{R}^{N \times F}, \mathbf{A} \in [0, 1]^{N \times N}, \mathbf{E} \in \mathbb{R}^{E \times N \times N}$
 - Masking node features:

$$\mathbf{h} = \mathbf{M} \cdot \mathbf{X}, \mathbf{M} \in \{0, 1\}^{N \times F}$$

- Noisy edges:

$$\mathbf{h} = 0.5 \cdot \mathbf{A} + \mathbf{N}, \mathbf{N} \in [-0.5, 0.5]^{N \times N}$$

 Reconstruction with undercomplete autoencoders

- Pseudo-labels derived graph data
- Labels can be derived from: $\mathbf{X} \in \mathbb{R}^{N \times F}, \mathbf{A} \in [0, 1]^{N \times N}, \mathbf{E} \in \mathbb{R}^{E \times N \times N}$
 - Masking node features:

$$\mathbf{h} = \mathbf{M} \cdot \mathbf{X}, \mathbf{M} \in \{0, 1\}^{N \times F}$$

- Noisy edges:

$$\mathbf{h} = 0.5 \cdot \mathbf{A} + \mathbf{N}, \mathbf{N} \in [-0.5, 0.5]^{N \times N}$$

 Reconstruction with undercomplete autoencoders

- Pseudo-labels derived graph data
- Labels can be derived from: $\mathbf{X} \in \mathbb{R}^{N \times F}, \mathbf{A} \in [0, 1]^{N \times N}, \mathbf{E} \in \mathbb{R}^{E \times N \times N}$
 - Masking node features:
 - $\mathbf{h} = \mathbf{M} \cdot \mathbf{X}, \mathbf{M} \in \{0, 1\}^{N \times F}$
 - Noisy edges: $\mathbf{h} = 0.5 \cdot \mathbf{A} + \mathbf{N}, \mathbf{N} \in [-0.5, 0.5]^{N \times N}$
- Reconstruction with undercomplete autoencoders

- Pseudo-labels derived graph data
- Labels can be derived from: $\mathbf{X} \in \mathbb{R}^{N \times F}, \mathbf{A} \in [0, 1]^{N \times N}, \mathbf{E} \in \mathbb{R}^{E \times N \times N}$
 - Masking node features: $\mathbf{h} = \mathbf{M} \cdot \mathbf{X}, \mathbf{M} \in \{0, 1\}^{N \times F}$
 - Noisy edges: $\mathbf{h} = 0.5 \cdot \mathbf{A} + \mathbf{N}, \mathbf{N} \in [-0.5, 0.5]^{N \times N}$
- Reconstruction with undercomplete autoencoders

Summary: Generative Modeling for Grapsh

- + Probabilistic Autoencoder
- + Latent space regularisation with prior
- + Structure of latent space exploited for generative sampling
- + Interpolation in latent space
- + Feature disentanglement
- Difficult to train for high dimensional data
- Not obvious for graph structured data
- Gaussian approximations

Representation Learning with GNNs: Overview

- Lecture-3
 - Graph Representation Learning
 - Self-Supervised GNNs
 - Generative Modelling for Graphs

Variational Autoencoders

GNNs for Characterising Atomic Structure of Mono-Metallic Nanoparticles

- Solve structures starting from X-ray scattering measurements
- Reconstruct structures of nanoparticles, $s \in S$, from their corresponding property (PDFs), $x \in \mathcal{X}$.
- Learning task: $f(\cdot): \mathcal{X} \to \mathcal{S}$.
- From a density esimtation point of view: p(s|x).
- Many-to-one mapping

Latent Generative Model

conditional-VAE

- Treat structures as a graphs with atoms as nodes, distances as edge attributes
- Using property-structure pairs formulate a conditional generative model
- Conditional Variational Autoencoder (CVAE)
- CVAE extends VAE framework to include conditioning input
- CVAE objective minimizes KLD between p(z|s, x) and its variational approximation q_φ(z|s, x) resulting in an objective of the form:

$$\mathcal{L}_{\text{CVAE}} = \mathcal{L}_{sup} + \mathcal{L}_{reg} \tag{3}$$

$$= -\mathbb{E}_{q_{\phi}} \left[\log p_{\theta}(\mathbf{s}|\mathbf{z}, \mathbf{x}) \right] + \mathsf{KL} \left[q_{\phi}(\mathbf{z}|\mathbf{s}, \mathbf{x}) || p_{\psi}(\mathbf{z}|\mathbf{x}) \right]$$
(4)

High level overview of the conditional generative model

- Conditioning input at Encoder/Prior networks using MLPs
- Encoder only during training
- Inference using Prior network alone
- Use GNNs in the encoder $q_{\phi}(\cdot)$:

$$\mathbf{H}^{(m)} = \sigma(\mathbf{H}^{(m-1)}, \mathbf{A}; \Theta_{m-1})$$
 (5)

with
$$\mathbf{H}^{(0)} = \mathbf{X} \in \mathbb{R}^{N \times F}$$
 and $\mathbf{H}^{(M)} = \mathbf{Z} \in \mathbb{R}^{N \times L}$

Trained entirely with simulated data

Joint Representation Space of property + structures in 2D latent space

Fig. 2 | The two-dimensional latent space with structure reconstructions. The points in the latent space

Meaningful interpolation in latent space

Fig. 6 | Latent space and reconstructions of stacking faulted nanoparticles. a) The latent space and reconstructed structures shown with their stacking sequence. The structures are shown in two dimensions, and

Results on structure prediction of nanoparticles based on properties

Fig. 5 | Fitting experimental PDFs with structures obtained by DeepStruc. a) The DeepStruc latent space

