COMP170 Discrete Mathematical Tools for Computer Science

More on "time until first success"

Version 2.0: Last updated, May 13, 2007

Example 1

Throw a fair die until you see a 1.

Then throw it until you see a 2.

Continue until you see all of 3, 4, 5, 6, in that order.

How many times, on average, do you throw the die?

Set $X_1 = \#$ of throws until you see 1.

For i > 1: $X_i = \#$ of throws, starting from when you see i-1 for the first time, until you see i for the first time.

$$251$$
 3142 65443 134 64125 1436
 $X_1 = 3$ $X_2 = 4$ $X_3 = 5$ $X_4 = 3$ $X_5 = 5$ $X_6 = 4$

$$251 \ 3142 \ 65443 \ 134 \ 64125 \ 1436$$
 $X_1 = 3 \ X_2 = 4 \ X_3 = 5 \ X_4 = 3 \ X_5 = 5 \ X_6 = 4$

Total number of throws is

$$X = X_1 + X_2 + \ldots + X_6.$$
 $X = 19$

 X_i is a geometric random variable with p=1/6, $\Rightarrow E(X_i)=\frac{1}{p}=6$.

Then, by linearity of expectation,

$$E(X) = E(X_1) + E(X_2) + \dots + E(X_6) = 6 \cdot 6 = 36.$$

Example 2

Throw a fair die until you have seen all 6 numbers.

How many times do you throw the die on average?

Let N_i be the *i*th new number we see.

Let
$$X_1 = 1$$
:

For i > 1: $X_i = \#$ of throws needed to get N_i after first time we see N_{i-1} .

Example

	2	2 5	23	3 2 3 6	5 2 6 5 1	2 1 5 6 1 3	4
i	1	2	3	4	5		6
N_i	2	5	3	6	1		4
X_i	1	2	2	4	5		7

Example 2 (cont'd)

$$X = X_1 + X_2 + X_3 + X_4 + X_5 + X_6$$

$$\Rightarrow E(X) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5) + E(X_6)$$

so we need to calculate all of the $E(X_i)$

$$i = 1$$
: $X_1 = 1$ so $E(X_1) = 1$.

i=2: Once N_1 is chosen, X_2 is the number of times we need to throw the die until we see something that is *not* N_1 . Since being "not N_1 " occurs with probability $\frac{5}{6}$, X_2 is geometric with $p=\frac{5}{6}$ so $E(X_2)=\frac{1}{p}=\frac{6}{5}$.

i=3: Similarly, once N_1,N_2 are chosen, X_3 is the number of times we need to throw the die until we see something that is *not* N_1,N_2 . Since being "not N_1,N_2 " occurs with probability $\frac{4}{6}$, X_3 is geometric with $p=\frac{4}{6}$ so $E(X_3)=\frac{1}{p}=\frac{6}{4}$.

Example 2 (cont'd)

$$X = X_1 + X_2 + X_3 + X_4 + X_5 + X_6$$

General i In the general case, once $N_1, N_2, \ldots N_{i-1}$ are chosen, X_i is the number of times we need to throw the die until we see something that is $not \ N_1, N_2, \ldots, N_{i-1}$. Since being "not $N_1, N_2, \ldots, N_{i-1}$ " occurs with probability $\frac{6-(i-1)}{6}$, X_i is geometric with $p = \frac{6-(i-1)}{6}$ so $E(X_i) = \frac{1}{p} = \frac{6}{6-(i-1)}$.

$$\Rightarrow E(X) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5) + E(X_6)$$

$$= \frac{6}{6} + \frac{6}{5} + \dots + \frac{6}{1} = 6 \sum_{i=1}^{6} \frac{1}{i} = 6 \cdot \frac{49}{20} = \frac{147}{10}.$$

Compare this to previous problem in which we needed $6 \cdot 6$ flips on average, to see the numbers in order.

Example 3

This is known as the coupon collectors problem.

There are n coupons.

If you collect all of them, you win a prize.

Each time you go to the store, you get a random coupon.

How long do you need (in expectation) to collect all of the coupons?

$$X = X_1 + X_2 + \ldots + X_n$$
.

$$X_1 = 1$$
.

For i > 1: $X_i = \text{time needed to receive } i \text{th new coupon after having received } (i-1) \text{st new coupon.}$

Example 3 (cont'd)

 X_i is geometric with p = (n - (i - 1))/n.

So,

$$E(X_i) = \frac{n}{n - (i-1)}$$

$$E(X) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \frac{n}{n - (i-1)} = n \sum_{i=1}^{n} \frac{1}{i}$$

We just showed that

$$E(X) = n \sum_{i=1}^{n} \frac{1}{i}$$

 $H_n = \sum_{i=1}^n 1/i$ has a special name. It is called the n^{th} harmonic number.

It is also known that $\forall n | H_n - \ln n | \leq 2$. So H_n grows like $\ln n$ and

E(X) grows like $n \ln n$.