

" Manual de Uso Conqueror Robot Tank con Python"

Emiliano Sánchez Moreno

Gabriel Esperilla León

Bruno Arturo Goñi Flores

Astrid Guadalupe Navarro Rojas

Mayra González Martínez

Herramientas computacionales: el arte de la programación

Mauricio Paletta Nannarone

Jueves 20 de marzo de 2025

Introducción

Conqueror Robot Tank fue programado en Python para entender de manera sencilla y digerible las funciones y cómo se traslada al movimiento del Tanque.

El tanque fue programado para estudiantes de preparatoria y puede ser utilizado por personas con conocimientos de programación casi nulos.

Especificaciones Técnicas

Hardware: Kit Conqueror Robot Tank ensamblado

Software: Arduino IDE, Python **Interfaces de comunicación:** USB

Instalacion y configuracion

Instalación Python: https://www.python.org/downloads/

Librerías Python:

pip install pyduinocli
pip install pyserial

Librerias Arduino (Incluidas en el .zip):

Comandos y funcionalidades

Comando	Descripción	Ejemplo de uso
MOVE_BACK	Mueve el robot hacia adelante por 3 segundos	robot.move_forward()
MOVE_FORWARD	Mueve el robot hacia atrás por 3 segundos	robot.move_backward()
TURN_LEFT	Gira el robot a la izquierda 45 grados	robot.turn_left()
TURN_RIGHT	Gira el robot a la derecha 45 grados	robot.turn_right()
FULL_STOP	Detiene el robot	robot.stop()

Ejemplos de uso

Ejemplo 1 (movimiento completo):

```
Python
from RobotController import RobotController
robot = RobotController()

robot.move_forward() # Mueve adelante
robot.turn_left() # Gira a la izquierda
robot.stop() # Se detiene

robot.sketch_manager.finalize_sketch() # Finaliza y guarda el código
robot.upload_sketch() # Compila y sube el código a la raspberry del
Robot
```

Ejemplo 2 (giro de 180 grados):

```
Python
from RobotController import RobotController

robot = RobotController()

# Girar 180 grados (4 giros de 45°)
for _ in range(4):
    robot.turn_left() # Asumiendo que turn_left() gira 45° # Esperar
un breve tiempo para completar el giro antes de seguir robot.stop()
robot.sketch_manager.finalize_sketch()
robot.upload_sketch()
```

Ejemplo 3 (movimiento cuadrado):

```
Python
from RobotController import RobotController
import time

robot = RobotController()

for _ in range(4): # Repetir 4 veces para formar un cuadrado
robot.move_forward() # Avanza en línea recta
   time.sleep(2) # Espera 2 segundos para moverse

# Girar 90° (2 giros de 45°)
for _ in range(2):
   robot.turn_left()
   time.sleep(1) # Esperar un momento para completar el giro

robot.stop()
robot.sketch_manager.finalize_sketch()
robot.upload_sketch()
```