

Hadoop Architecture

Philippe Julio – Principal Field Technologist Architecture Ambassador

Sun Microsystems France

Data Management Vision

« The Data are not created relevant, they become so! »

Data-Driven on-Line Websites

- To run the apps: messages, posts, blog entries, video clips, maps, web graph...
- To give the data context: friends networks, social networks, collaborative filtering...
- To keep the applications running: web logs, system logs, system metrics, database query logs...

May 2010

New Data and Management Economics

May 2010

What Is Hadoop?

"Flexible and available architecture for large scale computation and data processing on a network of commodity hardware"

Open Source + Hardware Commodity = IT Costs Reduction

What Is Hadoop used for?

- Searching
- Log processing
- Recommendation systems
- Data Warehousing
- Video and Image analysis

Who Used Hadoop?

Top level Apache Foundation project

- Large, active user base, mailing lists, user groups
- Very active development, strong development team

http://wiki.apache.org/hadoop/PoweredBy

May 2010

Who Support Hadoop?

- 101tec Inc. Integration, customization, consulting. (Hadoop, Pig, Zookeeper, Lucene, Nutch)
- Cloudera, Inc. Get Cloudera's Distribution for Hadoop it's free, and help you to
 optimize your configuration. We also provide commercial support and professional
 training for Hadoop. Basic training is online for free
- Cloudify assist organizations in integrating Cloud Computing into their IT and Business strategies and in building and managing scalable, next-generation infrastructure environments (Hadoop, Solr, AWS, distributed architectures)
- Doculibre Inc. Open source and information management consulting. (Lucene, Nutch, Hadoop, Solr, Lius etc.)
- ScaleUnlimited, Inc. Training and mentoring on large architectures. Hadoop Bootcamp now available
- Tinvention -Ingegneria Informatica Italian Consulting Company, offer support on open source architecture based on Java, including architectures based on Hadoop.

http://wiki.apache.org/hadoop/Support

Infrastructure as a Services

General Purpose Storage Servers

- Combine server with disk & networking
- Specialized software enables general purpose systems designs to provide high performance data services

Sun's Open Platform direction

Sun Fire x4xxx (Data Compute and Store)

Sun Sparc Enterprise T5xxx (Data Compute and Store)

Sun Storage 7xxx (Data Store)

Data moves to the infrastructure

OpenSolaris Live Hadoop

- Avalaible on your Laptop
- OpenSolaris
- Hadoop Live CD based on 3 zones

 - #1 Local Zone : DataNode, TaskTracker
 - #2 Local Zone : DataNode, TaskTracker
- Hbase
- JDK with Java compiler and related tools
- http://opensolaris.org/os/project/livehadoop

Hadoop Ecosystem

PIG (Data Flow)

HIVE (Batch SQL)

SQOOP (Data import)

CHUKWA

(Displaying, Monitoring, Analyzing Logs)

MAP REDUCE (Job scheduling - Raw processing)

HBASE (Real Time Query)

HDFS

(Hadoop Distributed File System – Unstructured Storage)

AVRO (Serialization)

May 2010

Hadoop Architecture Hadoop Common

- Hadoop Common is a set of utilities that support the Hadoop subprojects.
- Hadoop Common includes FileSystem, RPC, and serialization libraries.

http://hadoop.apache.org/common/

Hadoop Architecture HDFS & Map Reduce

Hadoop Distributed File System

- A scalable, Fault tolerant, High performance distributed file system capable of running on Sun hardware
- Hadoop cluster with 3 nodes minimum
- Data divided into 64MB or 128MB blocks, each block replicated 3 times (default)
- No 15k RPM disks or RAID required
- NameNode holds filesystem metadata
- Files are broken up and spread over the DataNodes

Hadoop Map Reduce

- Software framework for distributed computation
- Input | Map() | Copy/Sort | Reduce() | Output
- JobTracker schedules and manages jobs
- TaskTracker executes individual map() and reduce() tasks on each cluster node

Slave Nodes

Hadoop Architecture HDFS

NameNode

Manages file system NameSpace

- Maps a file name to set of blocks
- Maps a block to the DataNodes where it resides
- Cluster configuration management
- Replication engine for blocks
- Metadata management
 - Metadata are in main memory
 - > List of files, list of blocks in each file
 - List of DataNode in each block
 - > File attributes, replication factor...
- Transaction Log
 - > Records for file creation, file deletion...

DataNode

Block Server

- > Stores data in the local file system
- Stores the metadata of a block
- Serves data and metadata to clients

Block Report

Periodically sends a report of all existing blocks to the NameNode

Pipeline of Data

Forwards data to other specified DataNodes

Hadoop Architecture HDFS

Blocks Placement

- First replica on a node in a local rack
- Second replica on different rack
- > 3rd replica on other rack
- Clients read from nearest replica

Heartbeats

- DataNodes send heartbeat to the NameNode (once every 3 seconds)
- NameNode used heartbeats to detect DataNode failure

Replication Engine

- Chooses new DataNodes for new replicas
- Balances disk usage
- Balances communication traffic to DataNodes

Data Correctness

- File creation : Client computes checksum per 512 bytes – DataNode stores the checksum
- File Access: Client retrieves the data and checksum from DataNode – If Validation fails, Client tries other replicas

Data Pipeline

- Client retrieves a list of DataNodes on which to place replicas of a block
- Client writes block to the first DataNode
- The first DataNode forwards the data to the next DataNode in the Pipeline
- When all replicas are written, the client moves on to write the next block in file

Rebalancer

- > Usually run when new DataNodes are added
- Cluster is online when Rebalancer is active
- Rebalancer is throttled to avoid network congestion
- Command line tool

http://hadoop.apache.org/hdfs

DataNode

Hadoop Architecture MapReduce

TaskTracker

http://hadoop.apache.org/mapreduce

Hadoop Architecture MapReduce

Map Phase

 Raw data analyzed and converted to name/value pair

Shuffle Phase

 All name/value pairs are sorted and grouped by their keys

Reduce Phase

 All values associated with a key are processed for results

Input | Map() | Copy/Sort | Reduce() | Output

Hadoop Architecture HBase

- Clone of Big Table (Google)
- Implemented in Java (Clients : Java, C++, Ruby...)
- Data is stored "Column-oriented"
- Distributed over many servers
- Tolerant of machine failure
- Layered over HDFS
- Strong consistency

- It's not a relational database (No Joins)
- Sparse data nulls are stored for free
- Semi-structured or unstructured data
- Data changes through time
- Versioned data
- Scalable Goal of billions of rows x millions of columns

Table Timestamp Animal Repair Row Size Type Cost t2 Zebra Medium 1000€ Enclosure1 t1 Lion Big Region Enclosure2 t3 Monkey Small 1500€ **Family** Kev Cell Column

(Table, Row_Key, Family, Column, Timestamp) = Cell (Value)

Hadoop Architecture HBase

- Table
 - Regions for scalability, defined by row [start_key, end_key)
 - Store for efficiency, 1 per Family
 - 1..n StoreFiles (HFile format on HDFS)
- Everything is byte
- Rows are ordered sequentially by key
- Special tables -ROOT- , .META.
 - Tell clients where to find user data

http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Hadoop Architecture Hive

http://hadoop.apache.org/hive

- Data Warehouse infrastructure that provides data summarization and ad hoc querying on top of Hadoop
 - > MapReduce for execution
 - > HDFS for storage
- MetaStore
 - Table/Partitions properties
 - > Thrift API: Current clients in Php (Web Interface), Python interface to Hive, Java (Query Engine and CLI)
 - Metadata stored in any SQL backend
- Hive Query Language
 - Basic SQL : Select, From, Join, Group By
 - Equi-Join, Multi-Table Insert, Multi-Group-By
 - > Batch query

Hadoop Architecture Pig

- A high-level data-flow language and execution framework for parallel computation
- Simple to write MapReduce program
- Abstacts you from specific detail
- Focus on data processing
- Data flow
- For data manipulation

http://hadoop.apache.org/pig

PIG Language Example

Hadoop Architecture Sqoop

- Sqoop is a tool designed to help users of large data import existing relational databases into their Hadoop clusters
- Automatic data import
- SQL-to-Hadoop
- Easy import data from many databases to Hadoop
- Generates code for use in MapReduce applications
- Integrates with Hive

http://www.cloudera.com/hadoop-sqoop

Hadoop Architecture Zookeeper

- A high-performance coordination service for distributed applications
- ZooKeeper is a centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services

- All servers store a copy of the data
- A leader is elected at startup
- Followers service clients, all updates go through leader
- Update responses are sent when a majority of servers have persisted the change

http://hadoop.apache.org/zookeeper

Hadoop Architecture Avro

- A data serialization system that provides dynamic integration with scripting languages
- Avro Data
 - > Expressive
 - > Smaller and Faster
 - > Dynamic
 - Schema store with data
 - APIs permit reading and creating
 - Include a file format and a textual encoding
- Avro RPC
 - > Leverage versioning support
 - For Hadoop service provide cross-language access

http://hadoop.apache.org/avro/docs/current

Hadoop Architecture Chukwa

- A data collection system for managing large distributed systems
- Build on HDFS and MapReduce
- Tools kit for displaying, monitoring and analyzing the log files

http://hadoop.apache.org/chukwa

Hadoop Architecture Oracle & HDFS

- External tables present data stored in a file system in a table format
- Use SQL queries transparently
- The FUSE : File system in USErspace
- FUSE drivers allow users to mount a HDFS store and treat it like a normal file system
- Oracle Table Functions provide an alternate way to fetch data from Hadoop

ORACLE

Hadoop Architecture x86 Servers Components

Low Cost Server & Storage : Sun Fire X4xxx

Interface

- HDFS
- NFS.
- HTTP
 - ...

Hadoop Architecture x86 Servers Components

Low Cost Server: Sun Blade

Interface

- HDFS
- NFS
- HTTP
- ..

Hadoop Architecture High Availability

High Availability

Single Point Of Failure (SPOF)

Hadoop Cluster

High Availability Hadoop Cluster

Hadoop Architecture High Availability with Secondary NameNode

- Is usually run on different servers
 - > Primary et Secondary NameNode
- Copies FSImage and transaction Log (EditLog) from NameNode to a temporary directory
- Merges FSImage and Transaction Log periodically into a new FSImage in temporary directory
- Uploads new FSImage to the NameNode
- Purges transaction Log on the NameNode

Temporary directory

Hadoop Architecture High Availability with Sun StorageTek Availability Suite

Point-in-Time Copy & Remote Mirror Copy

opensolaris

http://hub.opensolaris.org/bin/view/Project+avs/WebHome

Hadoop Architecture High Availability with Open HA Cluster

Hadoop Architecture High Availability with AvatarNode

- HDFS clients are configured to access the AvatarNode via a Virtual IP Address (VIP)
- When PrimaryAvatarNode is down, the Standby AvatarNode takes the relay
- The Standby AvatarNode ingests all committed transactions because it reopens the edits log and consumes all transactions until the end of the file
- The Standby AvatarNode finishes ingestion of all transactions from the shared NFS filer and then leaves SafeMode
- The VIP switches from Primary AvatarNode to Standby AvatarNode

http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html

Code has been contributed to the Apache HDFS project via HDFS-976. A prerequisite for this patch is HDFS-966.

Hadoop Architecture World Wide IP Cluster HA

for all data nodes

DataNodes

Hadoop Architecture Sizing

Assumptions

- Business Data Volume = Customer needs
- No RAID factor, No HBA port
- 2 CPU Quad-core for all servers
- 2 System hard disks
- Number of replication blocks = 3
- Block size = 128 MB

Cloud Storage Model Amazon 53 Amazon 54 Amazon 55 A

Sizing for HA Cluster

- Temporary Space = 25% of the total hard disk
- Raw Data Volume = 1.25 * (Business Data Volume * Nb of replication blocks)
- Number of NameNode Servers = 2
- Number of DataNode Servers = Raw Data Volume / Server Capacity Storage
- NameNode RAM = 64 GB
- DataNode RAM = 32 GB mini

Hadoop Architecture Proof Of Concept

- 1 Primary NameNode
- 1 Secondary NameNode
- 3 Data Nodes

Sun Fire X4275

- 2 CPU Quad Core Intel
- Up to 144GB RAM
- 2 Boot Disks
- 10 Disks for Hadoop
- Up to 24TB Disks
- 2 RU

Cloud Storage Model

Hadoop Architecture Production

Cloud Storage Model

Hadoop Architecture Production

opensolaris

1 Primary NameNode / Rack

1 Secondary NameNode / Rack

9 DataNode / Rack

1 Blade 6270 / Node

For other racks: 10 DataNode / Rack

Cloud Storage Model

Philippe Julio

philippe.julio@sun.com http://blogs.sun.com/philippejulio