有限オートマトン

離散数学・オートマトン 2020年後期 佐賀大学理工学部 只木進一

オートマトンと形式言語

- ■オートマトン (Automaton)
 - ➡計算の抽象モデル
 - ▶「計算する」とは何か?
- →形式言語 (Formal Language)
 - ■オートマトンの入力として正しい言語
 - ▶文法を数学的に分析

決定性有限オートマトン Deterministic Finite State Automata: DFA

- $\blacksquare M = \langle Q, \Sigma, \delta, q_0, F \rangle$
 - Q:内部状態の有限集合
 - ►∑:入力アルファベット、つまり入力記号の集合
 - $\delta: Q \times \Sigma \to Q: 状態遷移関数$

 - ightharpoonup F ⊆ Q: 受理状態

δ	a	b
q_0	q_2	q_1
q_1	q_0	q_0
q_2	q_0	q_0

動作イメージ

⊢Mの推移的閉包と受理言語

- 入力 $w \in \Sigma^*(\Sigma^* d\Sigma D)$ 要素の0個以上の列) によって、初期状態 q_0 から状態qへ遷移し、テープに残っている文字列がw'
 - $ightharpoonup (q_0, w) \vdash_M^* (q, w')$
- 入力wを受理
 - $(q_0, w) \vdash_M^* (q_F, \epsilon), q_F \in F$
- ●受理言語

 - DFAが受理言語を定める

受理する入力の例

a, aaa, aba, baa, bba, aaaaa, aaaba, abaaa, babaa, babba, bbbaa, bbbba,

動作例:

$$(q_0, \text{abaaa}) \vdash (q_2, \text{baaa})$$

$$\vdash (q_0, aaa) \vdash (q_2, aa) \vdash (q_0, a) \vdash (q_2, \epsilon)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_3\}$$

δ	a	b
q_0	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

動作例

$$ig(q_0, ext{aaaaab}ig) dashig(q_2, ext{aaaab}ig) dashig(q_0, ext{aaaab}ig) \ dashig(q_2, ext{ab}ig) dashig(q_2, ext{b}ig) dashig(q_3, \epsilonig)$$

$$(q_0, abbaba) \vdash (q_2, bbaba) \vdash (q_3, baba)$$

 $\vdash (q_2, aba) \vdash (q_0, ba) \vdash (q_1, a) \vdash (q_3, \epsilon)$

- $ightharpoonup M = \langle Q, \Sigma, \delta, q_0, F \rangle$
 - Q:内部状態の集合
 - ► Σ: 入力アルファベット、つまり入力記号の集合
 - - ■2^QはQのべき集合、つまりQの部分集合の族。遷移 先が複数であることに注意

 - ightharpoonup F ⊆ Q: 受理状態

例

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_2\}$$

δ	0	1
q_0	$\{q_{0}\}$	$\{q_0, q_1\}$
q_1	Ø	{q ₂ }
q_2	$\{q_2\}$	{q ₂ }

