Devoir à la maison n° 18

À rendre le 6 mai

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$, soit f un endomorphisme de E. On cherche à démontrer le résultat suivant :

$$\exists p \in [1, n], E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p.$$

- 1) Cas général.
 - a) Montrer que Ker $f^k \subset \text{Ker } f^{k+1}$ pour tout $k \in \mathbb{N}$.
 - **b)** En déduire que la suite $(\dim \operatorname{Ker} f^p)_{p \in \mathbb{N}}$ est convergente.
 - c) Montrer qu'il existe un plus petit entier naturel k tel que Ker $f^k = \text{Ker } f^{k+1}$. On le notera p. Cet entier p est appelé l'indice de f.
 - **d)** Montrer qu'il existe une famille (x_1, \ldots, x_p) telle que pour tout $i \in [1, p]$, $x_i \in \text{Ker } f^i \setminus \text{Ker } f^{i-1}$.
 - e) Montrer que cette famille est libre.
 - f) En déduire que $p \leq n$.
 - g) Montrer par récurrence que Ker $f^k = \text{Ker } f^p$ pour tout $k \in \mathbb{N}$ tel que $k \geqslant p$.
 - h) En déduire que $E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p$.
- 2) Quelques exemples.
 - a) Calculer l'indice de f si f est nul ou si f est un automorphisme de E.
 - b) Soit $a \in \mathbb{R}$ et soit f_a l'endomorphisme de \mathbb{R}^4 défini par :

$$f_a: \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \longrightarrow \begin{pmatrix} ax + y + az \\ y + az + t \\ x + y + az \\ y \end{pmatrix}.$$

Déterminer pour quelles valeurs de a l'application f_a est bijective, et déterminer l'indice de f_a pour les valeurs de a pour lesquelles f_a n'est pas un automorphisme.

- 3) Contre-exemples. On ne suppose maintenant plus E de dimension finie.
 - a) Existe t-il nécessairement k tel que $\operatorname{Im} f^{k+1} = \operatorname{Im} f^k$?
 - b) Existe t-il nécessairement k tel que $\operatorname{Ker} f^{k+1} = \operatorname{Ker} f^k$?
 - c) On pose $F = \bigcap_{k \in \mathbb{N}} \operatorname{Im} f^k$ et $G = \bigcup_{k \in \mathbb{N}} \operatorname{Ker} f^k$. Montrer que F et G sont des sousespaces vectoriels de E.
 - d) A t-on nécessairement $E = F \oplus G$ dans le cas où E est de dimension finie?
 - e) Et dans le cas où E n'est pas de dimension finie?