Banco de Dados I

09 - Álgebra Relacional

Marcos Roberto Ribeiro

Introdução

- A Álgebra Relacional é uma linguagem muito importante utilizada no modelo relacional
- Ela é composta por um conjunto de operadores que, quando combinados, permitem realizar diversos tipos de operações sobre uma relação ou um conjunto de relação
- A álgebra relacional está relacionada com a linguagem SQL, sendo que os SGBD atuais traduzem as consultas SQL para expressões da álgebra relacional para realizar o processamento das consultas
- Toda operação da Álgebra Relacional possui uma mais relações como entrada e uma relação como saída

Principais Operações da Álgebra Relacional

- Seleção (σ)
- Projeção (π)
- Renomeação (ρ)
- Junção (⋈)
- Funções de agregação (γ)
- União (∪)
- Interseção (∩)
- Diferença (-)
- Produto Cartesiano (×)

Seleção

• A operação de seleção (σ) permite selecionar tuplas de uma relação que atendam a certas condições

$$\sigma_{< condição>}(< relação>)$$

- A condição pode conter comparações de atributos e valores usando os operadores =, ≠, <, ≤, > e ≥
- ullet As comparações podem ser combinadas com os conectivos \wedge , \vee e \neg

Exemplo de Seleção

Relação cliente

	id_cliente	nome_cliente	endereco	saldo
t_1	1	José	Rua X	90,00
t_2	2	Cristina	Avenida 1	110,00
t_3	3	Tadeu	Avenida 3	234,00
t ₄	4	Rodrigo	Rua X	37,00

• Consulta: "Informe os clientes com saldo maior ou igual a 100"

SQL

SELECT * FROM cliente WHERE saldo >= 100;

Expressão Algébrica

 $\sigma_{ exttt{saldo}\geq 100}(exttt{cliente})$

Exemplo de Seleção

Relação cliente

	id_cliente	nome_cliente	endereco	saldo
t_1	1	José	Rua X	90,00
t_2	2	Cristina	Avenida 1	110,00
<i>t</i> ₃	3	Tadeu	Avenida 3	234,00
t ₄	4	Rodrigo	Rua X	37,00

• Consulta: "Informe os clientes com saldo maior ou igual a 100"

SQL

SELECT * FROM cliente
WHERE saldo >= 100;

Expressão Algébrica

 $\sigma_{\mathtt{saldo} \geq 100}(\mathtt{cliente})$

Projeção

 A operação de projeção projeta as colunas selecionadas de uma relação (é uma espécia de seleção vertical)

$$\pi_{\langle atributos \rangle}(\langle relação \rangle)$$

Os atributos são separados por vírgula

Exemplo de Projeção

Relação cliente

	id_cliente	nome_cliente	endereco	saldo
t_1	1	José	Rua X	90,00
t_2	2	Cristina	Avenida 1	110,00
t_3	3	Tadeu	Avenida 3	234,00
t_4	4	Rodrigo	Rua X	37,00

• Consulta: "Informe o nome e endereço dos clientes"

SQL

SELECT nome_cliente, endereco FROM cliente;

Expressão Algébrica

 $\pi_{\text{nome_cliente,endereco}}(\text{cliente})$

Exemplo de Projeção

Relação cliente

	id_cliente	nome_cliente	endereco	saldo
t_1	1	José	Rua X	90,00
t_2	2	Cristina	Avenida 1	110,00
t_3	3	Tadeu	Avenida 3	234,00
t_4	4	Rodrigo	Rua X	37,00

• Consulta: "Informe o nome e endereço dos clientes"

SQL

SELECT nome_cliente, endereco FROM cliente;

Expressão Algébrica

 $\pi_{\texttt{nome_cliente}, \texttt{endereco}}(\texttt{cliente})$

Exemplo de Seleção e Projeção

Relação cliente

	id_cliente	nome_cliente	endereco	saldo
$\overline{t_1}$	1	José	Rua X	90,00
t_2	2	Cristina	Avenida 1	110,00
t ₃	3	Tadeu	Avenida 3	234,00
t ₄	4	Rodrigo	Rua X	37,00

• Consulta: "Informe o nome e endereço dos clientes com saldo maior ou igual 100"

SQL

SELECT nome_cliente, endereco FROM cliente WHERE saldo >= 100:

Expressão Algébrica

 $\pi_{\texttt{nome_cliente}, \texttt{endereco}}(\sigma_{\texttt{saldo} \geq 100}(\texttt{cliente}))$

Exemplo de Seleção e Projeção

Relação cliente

WHERE saldo >= 100;

	id_cliente	nome_cliente	endereco	saldo
t_1	1	José	Rua X	90,00
t_2	2	Cristina	Avenida 1	110,00
t ₃	3	Tadeu	Avenida 3	234,00
t ₄	4	Rodrigo	Rua X	37,00

• Consulta: "Informe o nome e endereço dos clientes com saldo maior ou igual 100"

SELECT nome_cliente, endereco FROM cliente

Expressão Algébrica

 $\pi_{\texttt{nome_cliente}, \texttt{endereco}}(\sigma_{\texttt{saldo} \geq \texttt{100}}(\texttt{cliente}))$

Produto Cartesiano

A operação de produto cartesiano combina as tuplas de duas relações

- O produto cartesiano retorna todas as combinações de tuplas possíveis
- Se a relação1 possui n tuplas e a relação2 possui m tuplas, a relação resultante terá $n \times m$ tuplas
- As tuplas resultantes terão os atributos das duas relações de entrada

Exemplo de Produto Cartesiano I

Relação cliente

	id_cliente	nome_cliente	endereco	saldo	id_vend
t_1	1	José	Rua X	90,00	10
t_2	2	Cristina	Avenida 1	110,00	10
t ₃	3	Tadeu	Avenida 3	234,00	20
t ₄	4	Rodrigo	Rua X	37,00	20

Relação vendedor

	id_vend	nome_vend
t_1'	10	João
t_2'	20	Maria

• Consulta: "Informe os cliente combinados com os vendedores"

Exemplo de Produto Cartesiano II

SQL

Expressão Algébrica

SELECT *

FROM cliente, vendedor;

 $cliente \times vendedor$

Resultado

	id_cliente	nome_cliente	endereco	saldo	id_vend	id_vend'	nome_vend
$t_1 \times t'_1$	1	José	Rua X	90,00	10	10	João
$t_2 \times t_1^{\prime}$	2	Cristina	Avenida 1	110,00	10	10	João
$t_3 \times t_1'$	3	Tadeu	Avenida 3	234,00	20	10	João
$t_{4} \times t'_{1}$	4	Rodrigo	Rua X	37,00	20	10	João
$t_1 \times t'_2$	1	José	Rua X	90,00	10	20	Maria
$t_2 \times t_2'$	2	Cristina	Avenida 1	110,00	10	20	Maria
$t_3 \times t_2^7$	3	Tadeu	Avenida 3	234,00	20	20	Maria
$t_{4} \times t_{2}'$	4	Rodrigo	Rua X	37,00	20	20	Maria

Renomeação

• A operação de renomeação permite renomear relações e atributos

$$\rho_{< relação'>}(< relação>)$$

$$\rho_{(< A'_1>,...,< A'_n>)}(< relação>)$$

$$\rho_{< relação'>(< A'_1>,...,< A'_n>)}(< relação>)$$

 A renomeação é especialmente útil quando uma tabela precisa de ser usada mais de uma vez em uma expressão

Exemplo de Renomeação

SQL

SELECT * FROM cliente AS c;

Expressão Algébrica

 $ho_c(exttt{cliente})$

SQL

SELECT id_cliente AS id, nome_cliente AS n, endereco AS e, saldo FROM cliente;

Expressão Algébrica

 $ho_{(\mathrm{id,n,e,saldo})}(\mathtt{cliente})$

SQL

SELECT id_cliente AS id,
nome_cliente AS n,
endereco AS e,
saldo
FROM cliente AS c;

Expressão Algébrica

 $\rho_{c(id,n,e,saldo)}(cliente)$

Operações com Conjuntos

 As operações com conjuntos permitem realizar a união, interseção ou diferença entre duas relações

$$<$$
relação $1> \cup <$ relação $2>$ $<$ relação $1> \cap <$ relação $2>$ $<$ relação $1> - <$ relação $2>$

 As duas relações envolvidas na operação precisam ter o mesmo número de atributos e os domínios dos atributos correspondentes precisam ser idênticos

Exemplo de Operações com Conjuntos

SQL

SELECT nome_cliente FROM cliente UNION SELECT nome_vend FROM vendedor;

Expressão Algébrica

 $\pi_{\texttt{nome_cliente}}(\texttt{cliente}) \cup \pi_{\texttt{nome_vend}}(\textit{vendedor})$

SQL

SELECT nome_cliente FROM cliente INTERSECT SELECT nome_vend FROM vendedor;

Expressão Algébrica

 $\pi_{\mathtt{nome_cliente}}(\mathtt{cliente}) \cap \pi_{\mathtt{nome_vend}}(\mathit{vendedor})$

SQL

SELECT nome_cliente FROM cliente EXCEPT

SELECT nome_vend FROM vendedor;

Expressão Algébrica

 $\pi_{\texttt{nome_cliente}}(\texttt{cliente}) - \pi_{\texttt{nome_vend}}(\textit{vendedor})$

Junção

- A operação de junção permite combinar tuplas de duas relações considerando comparações entre os atributos destas relações
- Existem diversas variantes na operação de junção, mas vamos considerar primeiro a junção condicional

- A <condição> da junção é semelhante a condição da seleção, mas devem haver comparações entre os atributos da <relação1> e da <relação2>
- Quando as relações participantes possuem atributos homônimos, pode ser feita a junção natural sobre estes atributos sem precisar de nenhuma condição
- Também existem traduções para as junções externas da linguagem SQL:

 $A \bowtie B$: **LEFT JOIN**

 $A \bowtie B$: RIGHT JOIN

 $A \supset \subset B$: LEFT RIGHT JOIN

Exemplo de Junção

Relação cliente

	id_cliente	nome_cliente	endereco	saldo	id_vend
t ₁	1	José	Rua X	90,00	10
t ₂	2	Cristina	Avenida 1	110,00	10
t ₃	3	Tadeu	Avenida 3	234,00	20
t4	4	Rodrigo	Rua X	37,00	20

Relação vendedor

t_1' 10 João t_2' 20 Maria		id_vend	nome_vend
t ₂ 20 Maria	t'_{1}	10	João
	t ₂	20	Maria

• Consulta: "Informe os cliente e seus respectivos vendedores"

SQL

```
SELECT * FROM cliente, vendedor
WHERE cliente.id_vend = vendedor.id_vend;
```

Expressão Algébrica

cliente M(cliente.id_vend=vendedor.id_vend) vendedor

Exemplo de Junção

Relação cliente

	id_cliente	nome_cliente	endereco	saldo	id_vend
t ₁	1	José	Rua X	90,00	10
t ₂	2	Cristina	Avenida 1	110,00	10
t ₃	3	Tadeu	Avenida 3	234,00	20
t ₄	4	Rodrigo	Rua X	37,00	20

Relação vendedor

	id_vend	nome_vend
t_1'	10	João
t ₂	20	Maria

• Consulta: "Informe os cliente e seus respectivos vendedores"

SQL

```
SELECT * FROM cliente, vendedor
WHERE cliente.id_vend = vendedor.id_vend;
```

Expressão Algébrica

cliente ⋈_(cliente.id_vend=vendedor.id_vend) vendedor

Resultado

	id_cliente	nome_cliente	endereco	saldo	id_vend	id_vend'	nome_vend
t''	1	José	Rua X	90,00	10	10	João
$t_2^{7\prime}$	2	Cristina	Avenida 1	110,00	10	10	João

Exemplo de Junção

Relação cliente

	ld_cliente	nome_cliente	endereco	saldo	1d_vend
t ₁	1	José	Rua X	90,00	10
t ₂	2	Cristina	Avenida 1	110,00	10
t ₃	3	Tadeu	Avenida 3	234,00	20
t ₄	4	Rodrigo	Rua X	37,00	20

Relação vendedor

	id_vend	nome_vend
t'_{1}	10	João
t ₂ ⁷	20	Maria

17/21

• Consulta: "Informe os cliente e seus respectivos vendedores"

SQL

```
SELECT * FROM cliente, vendedor
WHERE cliente.id_vend = vendedor.id_vend;
```

Expressão Algébrica

 $\texttt{cliente} \bowtie_{(\texttt{cliente.id_vend} = \texttt{vendedor.id_vend})} \texttt{vendedor}$

Resultado

	id_cliente	nome_cliente	endereco	saldo	id_vend	id_vend'	nome_vend
$t_{1}^{\prime\prime}$	1	José	Rua X	90,00	10	10	João
$t_2^{7\prime}$	2	Cristina	Avenida 1	110,00	10	10	João
t ₃ "	3	Tadeu	Avenida 3	234,00	20	20	Maria
t''	4	Rodrigo	Rua X	37,00	20	20	Maria

Função de Agregação

• A operação de função de agregação agrupar tuplas e sumarizar dados de atributos

$$<$$
 $A_1>,...,<$ $A_n>$ $\gamma<$ $F_1(A'_1)>,...,<$ $F_2(A'_m)>$ $(<$ relação> $)$

- Os atributos $< A_1 >, ..., < A_n >$ são usados para agrupar os dados e as funções $< F_1(A_1') >, ..., < F_2(A_m') >$ realizar a sumarização sobre os atributos $A_1', ..., A_m'$
- Podem ser usadas as mesmas funções da linguagem SQL (AVG, SUM, MAX, MIN, COUNT, etc.)

Exemplo de Função de Agregação

Relação venda

id_cliente	mes	valor
1	2015-02	470,00
1	2015-03	390,00
3	2015-03	230,00
2	2015-04	210,00
3	2015-04	140,00
2	2015-05	110,00
2	2015-05	480,00

 Consulta: "Informe total de vendas de cada mês"

SQL

```
SELECT mes, SUM(valor)
FROM venda
GROUP BY mes;
```

Expressão Algébrica

mag YgIIM (Walor) (venda)

Resultado

Exemplo de Função de Agregação

Relação venda

id_cliente	mes	valor
1	2015-02	470,00
1	2015-03	390,00
3	2015-03	230,00
2	2015-04	210,00
3	2015-04	140,00
2	2015-05	110,00
2	2015-05	480,00

 Consulta: "Informe total de vendas de cada mês"

SQL

```
SELECT mes, SUM(valor)
FROM venda
GROUP BY mes;
```

Expressão Algébrica

 $_{\text{mes}}\gamma_{\text{SUM(valor)}}(\text{venda})$

Resultado

mes	SUM(valor)
2015-02	470,00
2015-03	620,00
2015-04	350,00
2015-05	590,00

Planos de Execução de Consultas

- Uma das importantes aplicações da álgebra relacional está relacionada ao processamento de consultas
- Os SGBD traduzem as consultas para expressões algébricas e, posteriormente, para planos de execução representados por árvores
- Exemplo:

Consulta SELECT nome_cliente, nome_vendedor FROM cliente, vendedor WHERE cliente.id_vendedor = → vendedor.id_vendedor;

Expressão Algébrica

Planos de Execução de Consultas

- Uma das importantes aplicações da álgebra relacional está relacionada ao processamento de consultas
- Os SGBD traduzem as consultas para expressões algébricas e, posteriormente, para planos de execução representados por árvores
- Exemplo:

Expressão Algébrica

 $\pi_{\texttt{nome_cliente}, \texttt{nome_vendedor}}(\sigma_{\texttt{saldo}>100}(\texttt{cliente} \bowtie_{\texttt{id_vendedor}=\texttt{id_vendedor}} \texttt{vendedor}))$

Referências

(2012).

Postgresql documentation.

Elmasri, R. and Navathe, S. B. (2011).

Sistemas de banco de dados.

Pearson Addison Wesley, São Paulo, 6 edition.

Ramakrishnan, R. and Gehrke, J. (2008).

Sistemas de gerenciamento de banco de dados.

McGrawHill. São Paulo. 3 edition.