

What is claimed is:

1. A glass-forming mold having a glass-forming surface formed with a noble metal film on a surface of a substrate, wherein
the surface roughness of the most external layer of the noble metal film is coarser than the surface roughness of the substrate surface.
2. A glass-forming mold according to claim 1, wherein
the surface roughness of the most external layer of the noble metal film is within the range 0.2 μm to 1.2 μm .
3. A glass-forming mold according to claim 1, wherein
at least the most external layer of the noble metal film is a platinum film of thickness within the range 0.01 μm to 2 μm .
4. A glass-forming mold according to claim 2, wherein
at least the most external layer of the noble metal film is a platinum film of thickness within the range 0.01 μm to 2 μm .
5. A glass-forming mold according to claim 3, wherein
a noble metal intermediate layer is provided between the substrate and the platinum film, and the thickness of the intermediate layer is within the range 2 μm to 5 μm .
6. A glass-forming mold according to claim 4, wherein
a noble metal intermediate layer is provided between the substrate and the platinum film, and the thickness of the intermediate layer is within the range 2 μm to 5 μm .
7. A method for manufacturing a glass-forming mold having a noble metal film provided at the glass-forming surface of the mold substrate comprising:
forming a noble metal film on a mold substrate surface; and
thereafter carrying out heat treatment such that the relationship between a heat treatment temperature T ($^{\circ}\text{C}$) and a holding time t (hr) at that temperature satisfies the relationship
$$0.2 < (6 \times 10^{-6}) \times (T (0.2 t + 0.8) - 383.3)^2 + 0.127 < 1.2.$$