EECS 16A Designing Information Devices and Systems I Fall 2020 Discussion 12A

1. Amplifier with Multiple Inputs

In this problem we will use superposition and the Golden Rules to find the output of the following op amp circuit with multiple inputs:

(a) First, let's turn off v_{s2} . Use the **Golden Rules** to find v_{o1} for the circuit below.

(b) Now let's turn off v_{o1} . Use the **Golden Rules** to find v_{o2} for the circuit below.

(c) Use superposition to find the output voltage v_o for the circuit shown below.

Reference: Inner products

Let \vec{x} , \vec{y} , and \vec{z} be vectors in real vector space \mathbb{V} . A mapping $\langle \cdot, \cdot \rangle$ is said to be an inner product on \mathbb{V} if it satisfies the following three properties:

- (a) Symmetry: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$
- (b) Linearity: $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$ and $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$
- (c) Non-negativeness: $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$.

We define the norm of $\vec{x} = [x_1, x_2, ..., x_n]^T$ as $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$.

2. Mechanical Inner Products

For the following pairs of vectors, find the Euclidean inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.

(a)

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

3. Correlation

We are given the following two signals, $s_1[n]$ and $s_2[n]$ respectively.

Find the cross correlations, $corr_{s_1}(s_2)$ and $corr_{s_2}(s_1)$ for signals s[n] and s[n]. Recall

$$\operatorname{corr}_{x}(y)[k] = \sum_{i=-\infty}^{\infty} x[i]y[i-k].$$

!=-∞									
$\operatorname{corr}_{ec{s_1}}(ec{s_2})[k]$									
\vec{s}_1	0	0	1	2	3	0	0		
	10		1			0	0		
$\frac{\vec{s}_2[n+2]}{\vec{s}_2[n+2]}$		1							
$\langle \vec{s}_1, \vec{s}_2[n+2] \rangle$		+ -	+	+	+	+	+	=	
\vec{s}_1	0	0	1	2	3	0	0		
$\frac{\vec{s}_2[n+1]}{\vec{s}_2[n+1]}$									
$\langle \vec{s}_1, \vec{s}_2[n+1] \rangle$		+ -	+	+	+	+	+	=	
. 1									
\vec{s}_1	0	0	1	2	3	0	0		
$\vec{s}_2[n]$									
$\langle \vec{s}_1, \vec{s}_2[n] \rangle$	+	+	+		+	+	+ =	=	
·									
\vec{s}_1	0	0	1	2	3	0	0		
$\vec{s}_2[n-1]$									

$$\operatorname{corr}_{\vec{s_2}}(\vec{s_1})[k]$$

\vec{s}_2	0	0	2	2	4	3	0	0
$\vec{s}_1[n+2]$								
$\langle \vec{s}_2, \vec{s}_1[n+2] \rangle$	+	-	+	+	+	+	+	=

\vec{s}_2	0	0		2	4	3	0		0	
$\vec{s}_1[n-2]$										
$\langle \vec{s}_2, \vec{s}_1[n-2] \rangle$	_	H	+	+	-	F	+	+	=	=