Tiempo máximo para la realización de la evaluación: 2hs.

P1) **Hallar** la familia de curvas ortogonal a $x \cdot y^2 = k$

De la familia de curvas hallada, **indicar** la ecuación de la curva que pasa por el punto de coordenadas (1,3)

- P2) Indicar la dirección correspondiente a la derivada direccional mínima de $h = g \circ \vec{f}$ en el punto
- (1,1), siendo $\vec{f}(x,y) = (y-x^2,xy^2)$ y g(u,v) se encuentra definida por $z+u^2-v^2+\ln(u+z)=0$
- P3) **Hallar** la ecuación de la recta tangente a la curva intersección de $y = \sqrt{25 x^2}$ \wedge $x^2 + z^2 = 25$ en el punto (4,3,3)

Determinar el plano en el que se encuentra incluida la curva que pasa por dicho punto.

- P4) Analizar la existencia de extremos locales de $f(x, y) = x^2 y^2 xy + y + 1$
- T1) **Definir** solución general y solución particular de una ecuación diferencial de orden "n". **Resolver** la ecuación $\cos(x) \cdot y' + \sin(x) \cdot y 1 = 0$
- T2) **Definir** derivada direccional de una función escalar de \Re^2

Calcular (si existen) las derivadas direccionales de $f(x, y) = \begin{cases} \frac{y}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$ en (0,0)