Definition 5.1

A separating set or a vertex cut of a graph G is a set $S\subseteq V(G)$ such that G-S has more than one component.

- A separating set or a vertex cut of a graph G is a set $S \subseteq V(G)$ such that G S has more than one component.
- ightharpoonup Vertex connectivity or connectivity $\kappa(G)$ of a graph G is defined as follows:

- A separating set or a vertex cut of a graph G is a set $S \subseteq V(G)$ such that G-S has more than one component.
- ightharpoonup Vertex connectivity or connectivity $\kappa(G)$ of a graph G is defined as follows:
 - $\kappa(G) = 0$ if G is disconnected;

- A separating set or a vertex cut of a graph G is a set $S \subseteq V(G)$ such that G S has more than one component.
- ightharpoonup Vertex connectivity or connectivity $\kappa(G)$ of a graph G is defined as follows:
 - $ightharpoonup \kappa(G) = 0$ if G is disconnected;
 - $\kappa(G) = |G| 1$ if G is connected, but has no pair of distinct non-adjacent vertices.

- A separating set or a vertex cut of a graph G is a set $S \subseteq V(G)$ such that G S has more than one component.
- ightharpoonup Vertex connectivity or connectivity $\kappa(G)$ of a graph G is defined as follows:
 - $ightharpoonup \kappa(G) = 0$ if G is disconnected;
 - $\kappa(G)' = |G| 1$ if G is connected, but has no pair of distinct non-adjacent vertices.
 - $\kappa(G)=j$ if G is connected, but has a pair of non-adjacent vertices, and j is the smallest integer such that G has a j-element vertex cut.

- A separating set or a vertex cut of a graph G is a set $S \subseteq V(G)$ such that G-S has more than one component.
- ightharpoonup Vertex connectivity or connectivity $\kappa(G)$ of a graph G is defined as follows:
 - $ightharpoonup \kappa(G) = 0$ if G is disconnected;
 - $\kappa(G) = |G| 1$ if G is connected, but has no pair of distinct non-adjacent vertices.
 - $\kappa(G)=j$ if G is connected, but has a pair of non-adjacent vertices, and j is the smallest integer such that G has a j-element vertex cut.
- ▶ If k is a positive integer, then G is k-connected or k-vertex-connected if $k \le \kappa(G)$.

Definition 5.1

- A separating set or a vertex cut of a graph G is a set $S \subseteq V(G)$ such that G S has more than one component.
- ightharpoonup Vertex connectivity or connectivity $\kappa(G)$ of a graph G is defined as follows:
 - $ightharpoonup \kappa(G) = 0$ if G is disconnected;
 - $\kappa(G) = |G| 1$ if G is connected, but has no pair of distinct non-adjacent vertices.
 - $\kappa(G)=j$ if G is connected, but has a pair of non-adjacent vertices, and j is the smallest integer such that G has a j-element vertex cut.
- ▶ If k is a positive integer, then G is k-connected or k-vertex-connected if $k \le \kappa(G)$.

Note 5.2

 Vertex connectivity is not affected by adding or deleting loops and parallel edges.

Definition 5.1

- A separating set or a vertex cut of a graph G is a set $S \subseteq V(G)$ such that G S has more than one component.
- ightharpoonup Vertex connectivity or connectivity $\kappa(G)$ of a graph G is defined as follows:
 - $ightharpoonup \kappa(G) = 0$ if G is disconnected;
 - $\kappa(G) = |G| 1$ if G is connected, but has no pair of distinct non-adjacent vertices.
 - $ightharpoonup \kappa(G)=j$ if G is connected, but has a pair of non-adjacent vertices, and j is the smallest integer such that G has a j-element vertex cut.
- ▶ If k is a positive integer, then G is k-connected or k-vertex-connected if $k \le \kappa(G)$.

Note 5.2

- Vertex connectivity is not affected by adding or deleting loops and parallel edges.
- K_1 is connected although $\kappa(K_1) = 0$.

Example 5.3

 $ightharpoonup \kappa(K_n) = n-1 \text{ for } n \geq 2;$

- $ightharpoonup \kappa(K_n) = n-1 \text{ for } n \geq 2;$

- $ightharpoonup \kappa(K_n) = n-1 \text{ for } n \geq 2;$
- ▶ If T is a non-trivial tree, then $\kappa(T) = 1$.

- $ightharpoonup \kappa(K_n) = n-1 \text{ for } n \geq 2;$
- ▶ If T is a non-trivial tree, then $\kappa(T) = 1$.
- $ightharpoonup \kappa(C_n)=2$ for all $n\geq 3$.

- $ightharpoonup \kappa(K_n) = n-1 \text{ for } n \geq 2;$
- ▶ If T is a non-trivial tree, then $\kappa(T) = 1$.
- $ightharpoonup \kappa(C_n)=2$ for all $n\geq 3$.
- An *n*-wheel W_n is obtained from C_n by adding a new vertex and joining it to all vertices of C_n . If $n \ge 3$, then $\kappa(W_n) = 3$.

Definition 5.4

▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.

- A disconnecting set of edges of a graph G with |G|>1 is a set $F\subseteq E(G)$ such that $G\setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- ► The edge connectivity of G, written $\kappa'(G)$ is the maximum k such that G is k-edge-connected.

- A disconnecting set of edges of a graph G with |G|>1 is a set $F\subseteq E(G)$ such that $G\setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.

- ▶ A disconnecting set of edges of a graph G with |G|>1 is a set $F\subseteq E(G)$ such that $G\setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- ► A bond is a minimal non-empty edge cut.

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- ► A bond is a minimal non-empty edge cut.

Definition 5.4

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- A bond is a minimal non-empty edge cut.

Example 5.5

disconnecting set, but not an edge cut

Definition 5.4

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- A bond is a minimal non-empty edge cut.

Example 5.5

disconnecting set, but not an edge cut

•

Definition 5.4

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- ► A bond is a minimal non-empty edge cut.

Example 5.5

edge cut, but not a bond

Definition 5.4

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- ► A bond is a minimal non-empty edge cut.

Example 5.5

edge cut, but not a bond

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- A bond is a minimal non-empty edge cut.

- ▶ A disconnecting set of edges of a graph G with |G| > 1 is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component.
- ► A graph is *k*-edge-connected if every disconnecting set has at least *k* edges.
- The edge connectivity of G, written κ'(G) is the maximum k such that G is k-edge-connected.
- ▶ Given $S,T \subseteq V(G)$, we write [S,T] for the set of edges with one endpoint in S and the other in T.
- An edge cut is a set of edges of the form $[S, \overline{S}]$ where S is a non-empty proper subset of V(G).
- A bond is a minimal non-empty edge cut.

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta$.

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta$. Clearly, $\kappa(G) < |G| - 1$.

_

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta$. Clearly, $\kappa(G) \leq |G|-1$. Suppose $[S,\overline{S}]$ is a minimum edge cut of size $k'=\kappa'(G)$.

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta$. Clearly, $\kappa(G) \leq |G|-1$. Suppose $[S,\overline{S}]$ is a minimum edge cut of size $k'=\kappa'(G)$. If every vertex in S is adjacent to every vertex in \overline{S} , then $k'=|S||\overline{S}|\geq |G|-1$, and the inequality follows.

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta.$ Clearly, $\kappa(G) \leq |G|-1.$ Suppose $[S,\overline{S}]$ is a minimum edge cut of size $k'=\kappa'(G).$ If every vertex in S is adjacent to every vertex in \overline{S} , then $k'=|S||\overline{S}|\geq |G|-1,$ and the inequality follows. Hence we may assume that there are vertices $s\in S$ and $\overline{s}\in \overline{S}$ that are non-adjacent.

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta.$ Clearly, $\kappa(G) \leq |G|-1.$ Suppose $[S,\overline{S}]$ is a minimum edge cut of size $k'=\kappa'(G).$ If every vertex in S is adjacent to every vertex in \overline{S} , then $k'=|S||\overline{S}| \geq |G|-1,$ and the inequality follows. Hence we may assume that there are vertices $s \in S$ and $\overline{s} \in \overline{S}$ that are non-adjacent. Let T be the vertex set consisting of all neighbors of s in \overline{S} and all vertices in S-s that have neighbors in $\overline{S}.$

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta.$ Clearly, $\kappa(G) \leq |G|-1.$ Suppose $[S,\overline{S}]$ is a minimum edge cut of size $k'=\kappa'(G).$ If every vertex in S is adjacent to every vertex in \overline{S} , then $k'=|S||\overline{S}| \geq |G|-1,$ and the inequality follows. Hence we may assume that there are vertices $s \in S$ and $\overline{s} \in \overline{S}$ that are non-adjacent. Let T be the vertex set consisting of all neighbors of s in \overline{S} and all vertices in S-s that have neighbors in $\overline{S}.$ Then T is a vertex cut consisting of one endpoint of each edge in $[S,\overline{S}].$

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Proof.

The edges incident to a vertex form a disconnecting set, so $\kappa' \leq \delta.$ Clearly, $\kappa(G) \leq |G|-1.$ Suppose $[S,\overline{S}]$ is a minimum edge cut of size $k'=\kappa'(G).$ If every vertex in S is adjacent to every vertex in \overline{S} , then $k'=|S||\overline{S}| \geq |G|-1,$ and the inequality follows. Hence we may assume that there are vertices $s \in S$ and $\overline{s} \in \overline{S}$ that are non-adjacent. Let T be the vertex set consisting of all neighbors of s in \overline{S} and all vertices in S-s that have neighbors in $\overline{S}.$ Then T is a vertex cut consisting of one endpoint of each edge in $[S,\overline{S}].$ Hence $\kappa \leq \kappa'.$

$$\kappa=1<\kappa'=2<\delta=3$$

Example 5.8

$$\kappa=1<\kappa'=2<\delta=3$$

Theorem 5.9

If G is a connected graph and S is a non-empty proper subset of V(G), then $F=[S,\overline{S}]$ is a bond if and only if $G\setminus F$ has two components.

Example 5.8

$$\kappa=1<\kappa'=2<\delta=3$$

Theorem 5.9

If G is a connected graph and S is a non-empty proper subset of V(G), then $F=[S,\overline{S}]$ is a bond if and only if $G\setminus F$ has two components. Equivalently, if and only if the subgraphs of G induced by each of S and \overline{S} are connected.

Example 5.8

$$\kappa = 1 < \kappa' = 2 < \delta = 3$$

Theorem 5.9

If G is a connected graph and S is a non-empty proper subset of V(G), then $F=[S,\overline{S}]$ is a bond if and only if $G\setminus F$ has two components. Equivalently, if and only if the subgraphs of G induced by each of S and \overline{S} are connected.

Proof.

If $G \setminus F$ has two components, then F is a bond, since $G \setminus F'$ is connected for every proper subset F' of F.

Example 5.8

$$\kappa = 1 < \kappa' = 2 < \delta = 3$$

Theorem 5.9

If G is a connected graph and S is a non-empty proper subset of V(G), then $F=[S,\overline{S}]$ is a bond if and only if $G\setminus F$ has two components. Equivalently, if and only if the subgraphs of G induced by each of S and \overline{S} are connected.

Proof.

If $G \setminus F$ has two components, then F is a bond, since $G \setminus F'$ is connected for every proper subset F' of F.

If $G\setminus F$ has more than two components, then we may assume $S=A\cup B$ with no edges between A and B.

Example 5.8

$$\kappa = 1 < \kappa' = 2 < \delta = 3$$

Theorem 5.9

If G is a connected graph and S is a non-empty proper subset of V(G), then $F = [S, \overline{S}]$ is a bond if and only if $G \setminus F$ has two components. Equivalently, if and only if the subgraphs of G induced by each of S and \overline{S} are connected.

Proof.

If $G \setminus F$ has two components, then F is a bond, since $G \setminus F'$ is connected for every proper subset F' of F.

If $G\setminus F$ has more than two components, then we may assume $S=A\cup B$ with no edges between A and B. Then $[A,\overline{A}]$ is an edge cut which is a proper subset of F; a contradiction. \square

Definition 5.10

▶ A k-separation of a graph G is a pair of subgraphs $\{A,B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j:G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

- ▶ A k-separation of a graph G is a pair of subgraphs $\{A, B\}$ of G such that each of A and B has size at least k, $A \neq G$, $B \neq G$, $A \cup B = G$, and $A \cap B$ is trivial of order at most k.
- ▶ If G has a k-separation for some k, then Tutte connectivity of G is $\min\{j: G \text{ has a } j \text{ separation}\}$, and ∞ if no k-separation exists.

Theorem 5.12

If G is a graph on at least 3 vertices and $G \ncong K_3$, then the Tutte connectivity of G is $\min(\kappa(G), g(G))$, where g(G) is the girth of G, that is, the length of a shortest cycle in G.

Theorem 5.12

If G is a graph on at least 3 vertices and $G \ncong K_3$, then the Tutte connectivity of G is $\min(\kappa(G), g(G))$, where g(G) is the girth of G, that is, the length of a shortest cycle in G.

Theorem 5.12

If G is a graph on at least 3 vertices and $G \ncong K_3$, then the Tutte connectivity of G is $\min(\kappa(G), g(G))$, where g(G) is the girth of G, that is, the length of a shortest cycle in G.

Definition 5.13

ightharpoonup A component of a graph G is a maximal subgraph of G that has Tutte connectivity at least 1.

Theorem 5.12

If G is a graph on at least 3 vertices and $G \ncong K_3$, then the Tutte connectivity of G is $\min(\kappa(G), g(G))$, where g(G) is the girth of G, that is, the length of a shortest cycle in G.

- ▶ A component of a graph G is a maximal subgraph of G that has Tutte connectivity at least 1.
- A block of a graph G is a maximal subgraph of G that has Tutte connectivity at least 2.

Theorem 5.12

If G is a graph on at least 3 vertices and $G \ncong K_3$, then the Tutte connectivity of G is $\min(\kappa(G), g(G))$, where g(G) is the girth of G, that is, the length of a shortest cycle in G.

Definition 5.13

- ▶ A component of a graph G is a maximal subgraph of G that has Tutte connectivity at least 1.
- A block of a graph G is a maximal subgraph of G that has Tutte connectivity at least 2.

Note 5.14

A block of a non-empty graph is an isolated vertex, a loop-graph, a graph on two vertices with a positive number of edges between those vertices, or is vertex-2-connected.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The ${\color{red} {\rm block-tree}}$ of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The block-tree of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G and those vertices of G that belong to more than one block.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The block-tree of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G and those vertices of G that belong to more than one block. The only edges in T are those that join vertices of G to bloks that contain them.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The block-tree of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G and those vertices of G that belong to more than one block. The only edges in T are those that join vertices of G to bloks that contain them.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The block-tree of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G and those vertices of G that belong to more than one block. The only edges in T are those that join vertices of G to bloks that contain them.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The block-tree of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G and those vertices of G that belong to more than one block. The only edges in T are those that join vertices of G to bloks that contain them.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The block-tree of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G and those vertices of G that belong to more than one block. The only edges in T are those that join vertices of G to bloks that contain them.

Note 5.15

Two distinct blocks in a graph share at most one vertex since otherwise their union would be Tutte-2-connected.

Definition 5.16

The block-tree of a connected graph G is a tree T whose vertex set is the disjoint union of the blocks of G and those vertices of G that belong to more than one block. The only edges in T are those that join vertices of G to bloks that contain them.

Whitney's Characterization of 2-Connected Graphs

Definition 5.18

Two paths are internally-disjoint if neither contains a non-endpoint of the other.

Whitney's Characterization of 2-Connected Graphs

Definition 5.18

Two paths are internally-disjoint if neither contains a non-endpoint of the other.

Theorem 5.19 (Whitney)

A graph with at least three vertices is 2-connected if and only if each pair u and v of vertices is connected by a pair internally-disjoint uv-paths.

Lemma 5.20 (Expansion Lemma)

If G is a k-connected graph and G' is obtained from G by adding a new vertex y adjacent to at least k vertices of G, then G' is also k-connected.

Lemma 5.20 (Expansion Lemma)

If G is a k-connected graph and G' is obtained from G by adding a new vertex y adjacent to at least k vertices of G, then G' is also k-connected.

Proof.

Suppose S is a separating set of G'.

Lemma 5.20 (Expansion Lemma)

If G is a k-connected graph and G' is obtained from G by adding a new vertex y adjacent to at least k vertices of G, then G' is also k-connected.

Proof.

Suppose S is a separating set of G'. If $y \in S$, then S-y separates G, so $|S| \geq k+1$.

Lemma 5.20 (Expansion Lemma)

If G is a k-connected graph and G' is obtained from G by adding a new vertex y adjacent to at least k vertices of G, then G' is also k-connected.

Proof.

Suppose S is a separating set of G'. If $y \in S$, then S-y separates G, so $|S| \ge k+1$. If $y \notin S$ and $N(y) \subseteq S$, then $|S| \ge k$.

Lemma 5.20 (Expansion Lemma)

If G is a k-connected graph and G' is obtained from G by adding a new vertex y adjacent to at least k vertices of G, then G' is also k-connected.

Proof.

Suppose S is a separating set of G'. If $y \in S$, then S-y separates G, so $|S| \geq k+1$. If $y \notin S$ and $N(y) \subseteq S$, then $|S| \geq k$. Otherwise, S must separate G, and again $|S| \geq k$.

Theorem 5.21

Theorem 5.21

If G is simple and $|G| \ge 3$, then the following are equivalent (and characterize simple 2-connected graphs):

(A) G is connected and has no cut-vertex;

Theorem 5.21

- (A) G is connected and has no cut-vertex;
- (B) For every two vertices x and y of G, there are two internally-disjoint xy-paths;

Theorem 5.21

- (A) G is connected and has no cut-vertex;
- (B) For every two vertices x and y of G, there are two internally-disjoint xy-paths;
- (C) For every two vertices x and y of G, there is a cycle through x and y.

Theorem 5.21

- (A) G is connected and has no cut-vertex;
- (B) For every two vertices x and y of G, there are two internally-disjoint xy-paths;
- (C) For every two vertices x and y of G, there is a cycle through x and y.
- (D) $\delta \geq 1$ and every pair of edges of G lies on a common cycle.

Definition 5.22

ightharpoonup Subdividing an edge uv of a graph G is the operation of deleting uv and adding a path uwv through a new vertex w.

- ightharpoonup Subdividing an edge uv of a graph G is the operation of deleting uv and adding a path uwv through a new vertex w.
- A graph G is a subdivision of a graph H if G can be obtained from H by successively subdividing (zero or more) edges.

- ▶ Subdividing an edge uv of a graph G is the operation of deleting uv and adding a path uwv through a new vertex w.
- ▶ A graph *G* is a subdivision of a graph *H* if *G* can be obtained from *H* by successively subdividing (zero or more) edges.
- ▶ A graph H is a topological minor of G, written $H \leq_{\mathsf{t}} G$, if a subgraph of G is a subdivision of H.

- ▶ Subdividing an edge uv of a graph G is the operation of deleting uv and adding a path uwv through a new vertex w.
- A graph G is a subdivision of a graph H if G can be obtained from H by successively subdividing (zero or more) edges.
- ▶ A graph H is a topological minor of G, written $H \leq_{\mathsf{t}} G$, if a subgraph of G is a subdivision of H.
- ▶ A graph is a topological minor of *G* if it can be obtained from *G* by a sequence of operations each of which is one of the following:

- ▶ Subdividing an edge uv of a graph G is the operation of deleting uv and adding a path uwv through a new vertex w.
- ▶ A graph *G* is a subdivision of a graph *H* if *G* can be obtained from *H* by successively subdividing (zero or more) edges.
- ▶ A graph H is a topological minor of G, written $H \leq_{\mathsf{t}} G$, if a subgraph of G is a subdivision of H.
- ▶ A graph is a topological minor of *G* if it can be obtained from *G* by a sequence of operations each of which is one of the following:
 - deleting an edge;

- ▶ Subdividing an edge uv of a graph G is the operation of deleting uv and adding a path uwv through a new vertex w.
- ▶ A graph *G* is a subdivision of a graph *H* if *G* can be obtained from *H* by successively subdividing (zero or more) edges.
- ▶ A graph H is a topological minor of G, written $H \leq_{\mathsf{t}} G$, if a subgraph of G is a subdivision of H.
- ▶ A graph is a topological minor of *G* if it can be obtained from *G* by a sequence of operations each of which is one of the following:
 - deleting an edge;
 - deleting a vertex; and

- ▶ Subdividing an edge uv of a graph G is the operation of deleting uv and adding a path uwv through a new vertex w.
- A graph G is a subdivision of a graph H if G can be obtained from H by successively subdividing (zero or more) edges.
- ▶ A graph H is a topological minor of G, written $H \leq_{\mathsf{t}} G$, if a subgraph of G is a subdivision of H.
- ▶ A graph is a topological minor of *G* if it can be obtained from *G* by a sequence of operations each of which is one of the following:
 - deleting an edge;
 - deleting a vertex; and
 - contracting an edge incident with a vertex of degree two (un-subdividing an edge).

Subdivisions and 2-Connectedness

Corollary 5.23

A subdivision of a 2-connected graph is also 2-connected.

Definition 5.24

▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell-1$ new vertices.

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.
- ▶ An ear decomposition is a partition of E(G) into sets R_0, R_1, \ldots, R_k so that $C = R_0$ is a cycle, and R_i , for i > 0, is a path addition to the graph $R_0 \cup R_1 \cup \ldots \cup R_{i-1}$.

Definition 5.24

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.
- ▶ An ear decomposition is a partition of E(G) into sets R_0, R_1, \ldots, R_k so that $C = R_0$ is a cycle, and R_i , for i > 0, is a path addition to the graph $R_0 \cup R_1 \cup \ldots \cup R_{i-1}$.

Definition 5.24

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.
- ▶ An ear decomposition is a partition of E(G) into sets R_0, R_1, \ldots, R_k so that $C = R_0$ is a cycle, and R_i , for i > 0, is a path addition to the graph $R_0 \cup R_1 \cup \ldots \cup R_{i-1}$.

Definition 5.24

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.
- ▶ An ear decomposition is a partition of E(G) into sets R_0, R_1, \ldots, R_k so that $C = R_0$ is a cycle, and R_i , for i > 0, is a path addition to the graph $R_0 \cup R_1 \cup \ldots \cup R_{i-1}$.

Definition 5.24

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.
- ▶ An ear decomposition is a partition of E(G) into sets R_0, R_1, \ldots, R_k so that $C = R_0$ is a cycle, and R_i , for i > 0, is a path addition to the graph $R_0 \cup R_1 \cup \ldots \cup R_{i-1}$.

Definition 5.24

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.
- ▶ An ear decomposition is a partition of E(G) into sets R_0, R_1, \ldots, R_k so that $C = R_0$ is a cycle, and R_i , for i > 0, is a path addition to the graph $R_0 \cup R_1 \cup \ldots \cup R_{i-1}$.

Definition 5.24

- ▶ A path addition to G is the addition to G of a path of length $\ell \geq 1$ between two vertices of G, introducing $\ell 1$ new vertices.
- ► The added path is an ear.
- ▶ An ear decomposition is a partition of E(G) into sets R_0, R_1, \ldots, R_k so that $C = R_0$ is a cycle, and R_i , for i > 0, is a path addition to the graph $R_0 \cup R_1 \cup \ldots \cup R_{i-1}$.

Whitney's Ear Decomposition

Theorem 5.26 (Whitney's Ear Decomposition)

A simple graph is 2-connected if and only if it has an ear decomposition.

Whitney's Ear Decomposition

Theorem 5.26 (Whitney's Ear Decomposition)

A simple graph is 2-connected if and only if it has an ear decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle of some ear decomposition.

Definition 5.27

A closed-ear decomposition of a graph G is a partition of E(G) into sets R_0 , R_1 , ..., R_k such that R_0 is a cycle and R_i for i>0 is either a path addition

Definition 5.27

A closed-ear decomposition of a graph G is a partition of E(G) into sets R_0 , R_1, \ldots, R_k such that R_0 is a cycle and R_i for i>0 is either a path addition or a cycle with exactly one vertex in $R_0 \cup R_1 \cup \ldots R_{i-1}$ (closed ear).

Definition 5.27

A closed-ear decomposition of a graph G is a partition of E(G) into sets R_0 , R_1, \ldots, R_k such that R_0 is a cycle and R_i for i > 0 is either a path addition or a cycle with exactly one vertex in $R_0 \cup R_1 \cup \ldots R_{i-1}$ (closed ear).

Theorem 5.28

A simple graph is 2-edge-connected if and only if it has a closed-ear decomposition.

Definition 5.27

A closed-ear decomposition of a graph G is a partition of E(G) into sets R_0 , R_1, \ldots, R_k such that R_0 is a cycle and R_i for i > 0 is either a path addition or a cycle with exactly one vertex in $R_0 \cup R_1 \cup \ldots R_{i-1}$ (closed ear).

Theorem 5.28

A simple graph is 2-edge-connected if and only if it has a closed-ear decomposition. Moreover, every cycle in a 2-edge-connected graph is the initial cycle in some closed-ear decomposition.

The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum size of a vertex-cut separating x from y equals the maximum number of pairwise internally-disjoint xy-paths.

Theorem 5.30 (Edge Version of Menger's Theorem)

If x and y are distinct vertices of a graph, then the minimum size $\kappa'(x,y)$ of the set of edges that separate x from y equals the maximum number $\lambda'(x,y)$ of pairwise edge-disjoint xy-paths.

Theorem 5.30 (Edge Version of Menger's Theorem)

If x and y are distinct vertices of a graph, then the minimum size $\kappa'(x,y)$ of the set of edges that separate x from y equals the maximum number $\lambda'(x,y)$ of pairwise edge-disjoint xy-paths.

Definition 5.31

The line graph of a graph G, written L(G), is a simple graph whose vertex set is E(G) with two vertices adjacent if the corresponding edges are adjacent in G.

Theorem 5.30 (Edge Version of Menger's Theorem)

If x and y are distinct vertices of a graph, then the minimum size $\kappa'(x,y)$ of the set of edges that separate x from y equals the maximum number $\lambda'(x,y)$ of pairwise edge-disjoint xy-paths.

Definition 5.31

The line graph of a graph G, written L(G), is a simple graph whose vertex set is E(G) with two vertices adjacent if the corresponding edges are adjacent in G.

Theorem 5.30 (Edge Version of Menger's Theorem)

If x and y are distinct vertices of a graph, then the minimum size $\kappa'(x,y)$ of the set of edges that separate x from y equals the maximum number $\lambda'(x,y)$ of pairwise edge-disjoint xy-paths.

Definition 5.31

The line graph of a graph G, written L(G), is a simple graph whose vertex set is E(G) with two vertices adjacent if the corresponding edges are adjacent in G.

Theorem 5.30 (Edge Version of Menger's Theorem)

If x and y are distinct vertices of a graph, then the minimum size $\kappa'(x,y)$ of the set of edges that separate x from y equals the maximum number $\lambda'(x,y)$ of pairwise edge-disjoint xy-paths.

Definition 5.31

The line graph of a graph G, written L(G), is a simple graph whose vertex set is E(G) with two vertices adjacent if the corresponding edges are adjacent in G.

Tutte's Wheel Theorem

Theorem 5.34 (Tutte's Wheel Theorem)

If G is a Tutte-3-connected graph on at least four vertices that is not a wheel, then there is an edge e of G such that at least one of G/e and $G\setminus e$ is also Tutte-3-connected.

Tutte's Wheel Theorem

Theorem 5.34 (Tutte's Wheel Theorem)

If G is a Tutte-3-connected graph on at least four vertices that is not a wheel, then there is an edge e of G such that at least one of G/e and $G\setminus e$ is also Tutte-3-connected.

Lemma 5.35 (Thomassen 1980)

Every 3-connected graph G on at least five vertices has an edge e such that G/e is 3-connected.