Exercise Walkthrough: Closure Properties of a σ -Algebra

Justin Lanfermann

25. June 2025

Abstract

This document provides a detailed, step-by-step walk through for an exercise from the Discrete Probability Theory course. We will prove several key closure properties of a algebra, relying only on its fundamental definition and De Morgan's laws. Each step is explained in detail, referencing the concepts as presented in the course script.

1 The Exercise Statement

Exercise 1. Suppose A is a σ -algebra over $\Omega \neq \emptyset$, let A_0, A_1, A_2, \ldots be a countable collection of sets in A and let $m \in \mathbb{N}$. Then the sets

$$\Omega, \quad A_0 \setminus A_1, \quad \bigcup_{i=0}^m A_i, \quad \bigcap_{i=0}^m A_i, \quad \bigcap_{i \in \mathbb{N}} A_i$$

are also in A.

[Hint: Use de Morgan's law for the intersection properties.]

2 Foundational Concepts

Before we begin, let's recall the core definition that our entire proof will be built upon. All our reasoning must trace back to these three fundamental properties.

Definition 1 (σ -algebra [1, Def. 1.5]). A collection of subsets $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ is called a σ -algebra on Ω if it satisfies the following three axioms:

- (i) $\emptyset \in \mathcal{A}$ (The empty set is in \mathcal{A}).
- (ii) For each $A \in \mathcal{A}$, we have $A^c \in \mathcal{A}$ (It is closed under complements).
- (iii) For each sequence $(A_i)_{i\in\mathbb{N}}$ in A, we have $\bigcup_{i\in\mathbb{N}} A_i \in A$ (It is closed under countable unions).

We will now prove each part of the exercise step-by-step. The numbering follows the solution provided in the exercise sheet.

3 Step-by-Step Proof

Solution. We are given that \mathcal{A} is a σ -algebra and $(A_i)_{i\in\mathbb{N}}$ is a collection of sets, where each $A_i\in\mathcal{A}$.

Part (i): The whole set Ω is in A

Claim: $\Omega \in \mathcal{A}$.

Reasoning: This property follows directly from the first two axioms of a σ -algebra.

1. From axiom (i), we know that the empty set is in A:

$$\emptyset \in \mathcal{A}$$

2. From axiom (ii), we know that if a set is in \mathcal{A} , its complement must also be in \mathcal{A} . Applying this to the empty set, we get:

$$\emptyset^c \in \mathcal{A}$$

3. The complement of the empty set, \emptyset^c , is the set of all elements in Ω that are not in \emptyset . By definition, this is the entire sample space Ω .

$$\emptyset^c = \Omega \setminus \emptyset = \Omega$$

4. Therefore, we conclude that $\Omega \in \mathcal{A}$.

Part (ii): The difference of two sets is in A

Claim: For any $A_0, A_1 \in \mathcal{A}$, the set difference $A_0 \setminus A_1$ is also in \mathcal{A} .

Reasoning: To prove this, we first express the set difference using operations we know \mathcal{A} is closed under (or will prove it is closed under).

1. The set difference $A_0 \setminus A_1$ can be written as the intersection of A_0 and the complement of A_1 (see Note 5 for an explanation):

$$A_0 \setminus A_1 = A_0 \cap A_1^c$$

- 2. We are given that $A_0 \in \mathcal{A}$ and $A_1 \in \mathcal{A}$.
- 3. By axiom (ii) of a σ -algebra, since $A_1 \in \mathcal{A}$, its complement A_1^c must also be in \mathcal{A} .
- 4. Now we need to show that the intersection of two sets in \mathcal{A} (namely A_0 and A_1^c) is also in \mathcal{A} . This property, closure under finite intersection, is what we will prove in Part (iv). Assuming that result for a moment, we can conclude:

$$A_0 \cap A_1^c \in \mathcal{A}$$

5. Thus, $A_0 \setminus A_1 \in \mathcal{A}$.

Part (iii): The finite union of sets is in A

Claim: For any finite m, the union $\bigcup_{i=0}^{m} A_i$ is in \mathcal{A} .

Reasoning: The axioms guarantee closure under *countable* unions. A finite union is just a special case of a countable union. We can show this formally by constructing a countable sequence of sets from our finite collection.

- 1. We are given a finite collection of sets A_0, A_1, \ldots, A_m , all in \mathcal{A} .
- 2. Let's define a new, infinite sequence of sets $(B_i)_{i\in\mathbb{N}}$ as follows (see Note 5 for this technique):

$$B_i := \begin{cases} A_i & \text{if } i \le m \\ \emptyset & \text{if } i > m \end{cases}$$

- 3. Is every set B_i in our new sequence in \mathcal{A} ? Yes. For $i \leq m$, $B_i = A_i$, which is in \mathcal{A} by our premise. For i > m, $B_i = \emptyset$, which is in \mathcal{A} by axiom (i). So, $(B_i)_{i \in \mathbb{N}}$ is a countable collection of sets in \mathcal{A} .
- 4. Now, we can take the countable union of this new sequence. Since taking the union with an empty set doesn't add any elements $(A \cup \emptyset = A)$, this union is equivalent to our original finite union:

$$\bigcup_{i\in\mathbb{N}} B_i = A_0 \cup A_1 \cup \cdots \cup A_m \cup \emptyset \cup \emptyset \cup \cdots = \bigcup_{i=0}^m A_i$$

5. By axiom (iii) of a σ -algebra, the countable union of sets in \mathcal{A} must be in \mathcal{A} . Therefore:

$$\bigcup_{i\in\mathbb{N}} B_i \in \mathcal{A} \implies \bigcup_{i=0}^m A_i \in \mathcal{A}$$

Part (iv): The finite intersection of sets is in A

Claim: For any finite m, the intersection $\bigcap_{i=0}^m A_i$ is in \mathcal{A} .

Reasoning: This proof cleverly combines the closure under complements (axiom ii), the closure under finite unions (which we just proved in Part iii), and De Morgan's Law [1, Lemma 1.2].

- 1. We are given the sets A_0, A_1, \ldots, A_m , all in \mathcal{A} .
- 2. By axiom (ii), their complements are also in A:

$$A_0^c, A_1^c, \dots, A_m^c \in \mathcal{A}$$

3. From Part (iii), we know that \mathcal{A} is closed under finite unions. So, the union of these complements must be in \mathcal{A} :

$$\bigcup_{i=0}^{m} A_i^c \in \mathcal{A}$$

4. Now we use one of De Morgan's Laws (see Note 5), which states that the complement of an intersection is the union of the complements:

$$\bigcap_{i=0}^{m} A_i = \left(\bigcup_{i=0}^{m} A_i^c\right)^c$$

5. We already established that the set $(\bigcup_{i=0}^m A_i^c)$ is in \mathcal{A} . By axiom (ii), its complement must also be in \mathcal{A} .

3

6. Therefore, $(\bigcup_{i=0}^m A_i^c)^c \in \mathcal{A}$, which means $\bigcap_{i=0}^m A_i \in \mathcal{A}$.

Part (v): The countable intersection of sets is in \mathcal{A}

Claim: The countable intersection $\bigcap_{i\in\mathbb{N}} A_i$ is in \mathcal{A} .

Reasoning: The logic is identical to the finite case in Part (iv), but we use the axiom for countable unions directly instead of the derived property for finite unions.

- 1. We are given a countable sequence of sets $(A_i)_{i\in\mathbb{N}}$, all in \mathcal{A} .
- 2. By axiom (ii), their complements form another countable sequence of sets in A:

$$(A_i^c)_{i\in\mathbb{N}}$$
 are all in \mathcal{A}

3. By axiom (iii), the countable union of these complements is in A:

$$\bigcup_{i\in\mathbb{N}} A_i^c \in \mathcal{A}$$

4. We apply De Morgan's Law for countable sets (see Note 5):

$$\bigcap_{i\in\mathbb{N}} A_i = \left(\bigcup_{i\in\mathbb{N}} A_i^c\right)^c$$

- 5. Since $(\bigcup_{i\in\mathbb{N}} A_i^c)$ is in \mathcal{A} , its complement must also be in \mathcal{A} by axiom (ii).
- 6. Therefore, $\bigcap_{i\in\mathbb{N}} A_i \in \mathcal{A}$.

4 Summary

By starting with the three basic axioms of a σ -algebra, we have successfully proven that it is also closed under several other important set operations:

- Containing the whole space Ω .
- Finite and countable intersections.
- Finite unions.
- Set differences.

These closure properties are what make σ -algebras a robust foundation for probability theory, ensuring that if we can measure the probability of some basic events, we can also measure the probability of more complex events constructed from them.

5 Additional Explanations

[1] What is a σ -algebra?

As stated in Definition 1, a σ -algebra \mathcal{A} is a collection of subsets of Ω (called "events") for which we want to define probabilities. Think of it as the set of all "valid questions" we can ask about the outcome of a random experiment. For this collection to be mathematically sound, it must satisfy three rules:

- 1. The trivial event is included: We must be able to ask about the probability of "nothing happening." So, the empty set \emptyset must be in \mathcal{A} .
- 2. If you can ask about an event, you can ask about its opposite: If we can ask "what is the probability of event A?", we must also be able to ask "what is the probability of event A not happening?". This means if $A \in \mathcal{A}$, its complement A^c must also be in \mathcal{A} .
- 3. If you can ask about a list of events, you can ask if at least one of them happens: If we have a countable list of events A_1, A_2, A_3, \ldots , we must be able to ask "what is the probability that at least one of these events happens?". This means the union $\bigcup_{i=1}^{\infty} A_i$ must also be in A.

[2] De Morgan's Laws

De Morgan's laws provide a crucial link between unions and intersections via complements. As stated in the script [1, Lemma 1.2], for any collection of sets $\{A_i\}_{i\in I}$:

$$\left(\bigcup_{i\in I}A_i\right)^c=\bigcap_{i\in I}A_i^c\quad\text{(The complement of a union is the intersection of the complements)}$$

$$\left(\bigcap_{i\in I}A_i\right)^c=\bigcup_{i\in I}A_i^c\quad\text{(The complement of an intersection is the union of the complements)}$$

In our proofs, we used the second law to turn an intersection problem into a union problem, which we could then handle with the σ -algebra axioms.

[3] Set Difference as an Intersection

The set difference $A \setminus B$ contains all elements that are in set A but not in set B. This can be stated as: "an element x is in $A \setminus B$ if and only if (x is in A) AND (x is not in B)". The statement "x is not in B" is equivalent to "x is in the complement of B, B^c ". Therefore, we can rewrite the condition as: "(x is in A) AND $(x \text{ is in } B^c)$ ". This is precisely the definition of the intersection $A \cap B^c$.

$$A \setminus B = \{x \in \Omega \mid x \in A \text{ and } x \notin B\} = \{x \in \Omega \mid x \in A \text{ and } x \in B^c\} = A \cap B^c$$

[4] The "Padding" Technique for Finite Collections

The axioms of a σ -algebra are defined for *countable* (infinite) sequences of sets. To prove properties for *finite* collections, we use a simple but powerful trick: we turn the finite collection into an infinite one in a way that doesn't change the result of the operation (union or intersection).

• For Unions: We "pad" the sequence with empty sets (\emptyset) . Since $A \cup \emptyset = A$, adding empty sets doesn't change the final union.

$$\bigcup_{i=0}^{m} A_i = A_0 \cup \dots \cup A_m \cup \emptyset \cup \emptyset \cup \dots = \bigcup_{i=0}^{\infty} B_i, \text{ where } B_i = \begin{cases} A_i & i \leq m \\ \emptyset & i > m \end{cases}$$

• For Intersections: We "pad" the sequence with the whole space (Ω) . Since $A \cap \Omega = A$, adding the whole space doesn't change the final intersection.

$$\bigcap_{i=0}^{m} A_i = A_0 \cap \dots \cap A_m \cap \Omega \cap \Omega \cap \dots = \bigcap_{i=0}^{\infty} C_i, \text{ where } C_i = \begin{cases} A_i & i \leq m \\ \Omega & i > m \end{cases}$$

This allows us to apply the axioms for countable collections to prove properties for finite ones.

References

[1] Niki Kilbertus. Discrete Probability Theory. Summersemester 2025, Technical University of Munich.