2

CLAIMS

WHAT IS CLAIMED:

1	1.	A built-in self-test controller, comprising:	
2	a logi	c built-in self-test engine capable of executing a logic built-in self-test,	
3		including:	
4		a logic built-in self-test state machine; and	
5		a pattern generator seeded with a first primitive polynomial; and	
6	a multiple input signature register capable of storing the results of an executed logic		
7		built-in self-test, the contents thereof being stored per a second primitive	
8 .		polynomial.	
Ē	2.	The built-in self-test controller of claim 1, wherein the first primitive	
	polynomial is $x^{3I} + x^3 + I$.		
Ţ.	3.	The built-in self-test controller of claim 1, wherein the second primitive	
	polynomial is	$x^{32} + x^{28} + x + 1$.	
	4.	The built-in self-test controller of claim 1, wherein the logic built-in self-test	
E	state machine further comprises:		
5. 5.1	a reset	state entered upon receipt of an external reset signal;	
□ 4≟ ·	an init	iate state entered from the reset state upon receipt of a logic built-in self-test run	
5		signal;	
6	a scan	state entered from the initiate state upon the initialization of components and	
7		signals in the logic built-in self-test domain in the initiate state;	
8	a step state entered into from the scan state and from which the scan state is entered		
9		unless the content of the pattern generator equals a predetermined vector	
10		count; and	
11	a don	e state entered into when the content of the pattern generator equals the	
12		predetermined vector count.	

comprises a linear feedback shift register seeded with a primitive polynomial.

The built-in self-test controller of claim 1, wherein the pattern generator

6.

2	register includes at least one of:		
3	a bit indicating whether the logic built-in self-test is done;		
4	a bit indicating an error condition arose; and		
5	a bit indicating whether the stored results are from a previous logic built-in self-test		
6		run.	
ì	7.	The built-in self-test controller of claim 1, wherein the seed for the pattern	
2	generator is externally configurable.		
1	8.	A built-in self-test controller, comprising:	
2	means	for executing a logic built-in self-test, including a pattern generator seeded	
æ û		with a first primitive polynomial; and	
1 0 −	means	for storing the results of an executed logic built-in self-test, the contents	
s ^N d □		thereof being stored per a second primitive polynomial.	
N M	٠9.	The built-in self-test controller of claim 8, wherein the first primitive	
TOFIDI "BOYOFGE	polynomial is $x^{3l} + x^3 + 1$.		
j.	10.	The built-in self-test controller of claim 8, wherein the second primitive	
H.		$x^{32} + x^{28} + x + 1$.	
വ 门	polynomiai is	x + x + x + 1.	
H .	11.	The built-in self-test controller of claim 8, wherein the seed for the pattern	
2	generator is externally configurable.		
ì	12.	A integrated circuit device, comprising:	
2	a plurality of memory components;		
3	a logic core;		
4	a testing interface; and		
5	a built-in self-test controller, including:		
6 ⁻		a logic built-in self-test engine capable of executing a logic built-in self-test	
7		and storing the results thereof, including:	
8		a logic built-in self-test state machine; and	
9		a pattern generator seeded with a first primitive polynomial; and	

The built-in self-test controller of claim 1, wherein the multiple input signature

ı

2

3

5 6

1

2

10

11

12

ì

2

ì

2

ı

2

a multiple input signature register capable of storing the results of an executed logic built-in self-test, the contents thereof being stored per a second primitive polynomial.

- 13. The integrated circuit device of claim 12, wherein the first primitive polynomial is $x^{3l} + x^3 + I$.
- 14. The integrated circuit device of claim 12, wherein the first primitive polynomial is $x^{32} + x^{28} + x + 1$.
- 15. The integrated circuit device of claim 12, wherein the logic built-in self-test state machine further comprises:
 - a reset state entered upon receipt of an external reset signal;
 - an initiate state entered from the reset state upon receipt of a logic built-in self-test run signal;
 - a scan state entered from the initiate state upon the initialization of components and signals in the logic built-in self-test domain in the initiate state;
 - a step state entered into from the scan state and from which the scan state is entered unless the content of the pattern generator equals a predetermined vector count; and
 - a done state entered into when the content of the pattern generator equals the predetermined vector count.
- 16. The integrated circuit device of claim 12, wherein the pattern generator comprises a linear feedback shift register seeded with a primitive polynomial.
- 17. The integrated circuit device of claim 12, wherein the multiple input signature register includes at least one of:
 - a bit indicating whether the logic built-in self-test is done;
 - a bit indicating an error condition arose; and
 - a bit indicating whether the stored results are from a previous logic built-in self-test run.
 - 18. The integrated circuit device of claim 12, further comprising:
 - a memory built-in self-test engine; and

3

1

2

3

5

6

7

3

2

1

2

1

2

- a memory built-in self-test signature register capable of storing the results of the memory built-in self-test.
- 19. The integrated circuit device of claim 12, wherein the memory components include a static random access memory device.
- 20. The integrated circuit device of claim 12, wherein testing interface comprises a Joint Test Action Group tap controller.
- 21. The integrated circuit device of claim 12, wherein the seed for the pattern generator is externally configurable.
 - 22. A method for performing a logic built-in self-test, the method comprising: seeding a pattern generator in a logic built-in self-test engine with a first polynomial; executing a logic built-in self-test using the contents of the pattern generator; and storing the results of an executed logic built-in self-test in a multiple input signature register utilizing a second primitive polynomial.
- 23. The method of claim 22, wherein seeding the pattern generator with the first primitive polynomial includes seeding the pattern generator with the polynomial $x^{31} + x^3 + 1$.
- 24. The method of claim 23, wherein storing the results of the executed logic built-in self-test utilizing the second primitive polynomial utilizes the primitive polynomial is $x^{32} + x^{28} + x + 1$.
- 25. The method of claim 22, wherein storing the results of the executed logic built-in self-test utilizing the second primitive polynomial utilizes the primitive polynomial is $x^{32} + x^{28} + x + 1$.
- 26. The method of claim 22, wherein executing the logic built-in self-test includes:
 - initiating a plurality of components and signals in a logic built-in self-test domain of the dual mode built-in self-test controller upon receipt of a logic built-in selftest run signal;
 - scanning a scan chain upon the initialization of the components and the signals; stepping to a new scan chain; and

2

1

2

3

1

ı

2

8

9

1

2

5

6

7.

1

- repeating the previous scanning and stepping until the content of the pattern generator equals a predetermined vector count.
- 27. The method of claim 26, further comprising at least one of:.
- setting a bit in a multiple input signature register indicating whether the logic built-in self-test is done;
- setting a bit in the multiple input signature register indicating an error condition arose; and
- setting a bit in the multiple input signature register indicating whether the stored results are from a previous logic built-in self-test run.
- 28. The method of claim 22, further comprising externally configuring the seed.
- 29. A method for testing an integrated circuit device, the method comprising: interfacing the integrated circuit device with a tester; performing a logic built-in self-test, including:
 - seeding a pattern generator in a logic built-in self-test engine with a first polynomial;
 - executing a logic built-in self-test using the contents of the pattern generator; and
- storing the results of an executed logic built-in self-test in a multiple input signature register utilizing a second primitive polynomial; and reading the stored results.
- 30. The method of claim 29, wherein seeding the pattern generator with the first primitive polynomial includes seeding the pattern generator with the polynomial $x^{31} + x^3 + 1$.
- 31. The method of claim 29, wherein storing the results of the executed logic built-in self-test utilizing the second primitive polynomial utilizes the primitive polynomial $x^{32} + x^{28} + x + 1$.
 - 32. The method of claim 29, further comprising externally configuring the seed.
- 33. The method of claim 29, further comprising performing a memory built-in self-test.