

数据手册

STM8S105xx

基础型系列,16MHz STM8S 8位单片机,多达32K字节Flash 集成数据EEPROM,10位ADC,定时器,UART,SPI,I²C

芯片特点

内核

- 高级STM8内核,具有3级流水线的哈佛 结构
- 扩展指令集

存储器

- 中等密度程序和数据存储器:
 - 最多32K字节Flash; 10K次擦写后在 55°C环境下数据可保存20年
 - 数据存储器:多达1K字节真正的数据 EEPROM:可达30万次擦写
- RAM: 多达2K字节

时钟、复位和电源管理

- 2.95 ~ 5.5V工作电压
- 灵活的时钟控制,4个主时钟源
 - 低功率晶体振荡器
 - 外部时钟输入
 - 用户可调整的内部16MHz RC
 - 内部低功耗128kHz RC
- 带有时钟监控的时钟安全保障系统
- 电源管理:
 - 低功耗模式(等待、活跃停机、停机)
 - 外设的时钟可单独关闭
- 永远打开的低功耗上电和掉电复位

中断管理

- 带有32个中断的嵌套中断控制器
- 6个外部中断向量,最多37个外部中断

定时器

- 2个16位通用定时器,带有2+3个 CAPCOM通道(IC、OC或PWM)
- 高级控制定时器: 16位,4个CAPCOM 通道,3个互补输出,死区插入和灵活的 同步
- 带有8位预分频器的8位基本定时器

- 自动唤醒定时器
- **2**个看门狗定时器:窗口看门狗和独立看 门狗

通信接口

- 带有同步时钟输出的UART , 智能卡, 红外IrDA, LIN接口
- SPI接口最高到8Mbit/s
- I²C接口最高到400Kbit/s

模数转换器(ADC)

■ 10位,±1LSB的ADC,最多有10路通道,扫描模式和模拟看门狗功能

I/O 端口

- 48脚封装芯片上最多有38个I/O,包括16个高吸收电流输出
- 非常强健的I/O设计,对倒灌电流有非常 强的承受能力

开发支持

■ 单线接口模块(SWIM)和调试模块(DM),可以方便地进行在线编程和非侵入式调试

表1 产品列表

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

系列	型号					
STM8S105xx	STM8S105K4, STM8S105K6, STM8S105S4, STM8S105S6, STM8S105C4, STM8S105C6					

本文档英文原文下载地址:

http://www.st.com/stonline/products/literature/ds/14771.pdf

目录

1	简介	·	4
2	详细]描述	5
3	模块		6
4	., ., .	-概述	
_	<i>)</i> нн 4.1	STM8的中央处理单元	
	4.1	单线接口模块(SWIM)和调试模块(DM)	
	4.3	中断控制器	
	4.4	Flash程序存储器和数据EEPROM存储器	
	4.5	时钟控制器	9
	4.6	电源管理	
	4.7	看门狗定时器	
	4.8 4.9	自动唤醒计数器 蜂鸣器	
	4.9 4.10	〒四番TIM1 — 16位高级控制定时器	
	4.11	TIM2、TIM3 — 16位通用定时器	
	4.12	TIM4 — 8位基本定时器	
	4.13	模数转换器(ADC1)	11
	4.14	通信接口	
	4.14.	• • • • • • • • • • • • • • • • • • • •	
	4.14. 4.14.		
5		· 及其描述	
0	5.1	封装引脚	
	5.1.1		
6	•	音器和寄存器映像	
O			
	6.1 6.2	存储器映像 寄存器映像	
7	_	* ** *** ***	
-	• • • •	f向量映像	
8	选项	〔字节	29
9	电气	〔特性	32
	9.1	参数条件	32
	9.1.1		
	9.1.2	7, 12,77, 12.	
	9.1.3 9.1.4		
	9.1. 4 9.1.5		
	9.1.6		
	9.1.7		
	9.2	绝对最大额定值	33
	9.3	工作条件	
	9.3.1		
	9.3.2	V . S SVI 14 I	
	9.3.3 9.3.4	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	9.3.4 9.3.5		
	9.3.6		
	9.3.7	· · · · · · · · · · · · · · · · · · ·	
	9.3.8		
		(1977-1971)	

STM8S105xx数据手册

	9.3.9	I ² C接口特性	54
	9.3.10	10位ADC特性	55
	9.3.11	EMC特性	
10	封装特性	生	60
	10.1 封装	揍机械数据	60
	10.1.1	LQFP封装尺寸	60
	10.1.2	VFQFPN封装机械数据	
	10.1.3	SDIP32封装机械数据	64
	10.2 热物	寺性	
	10.2.1	参考文档	
	10.2.2	选择产品的温度范围	
11	订购信息	息	66
12	STM8 ₹	T发工具 (本章从略)	67
		真和在线调试工具	
		件工具	
	12.2.1	STM8工具套件	67
	12.2.2	C和汇编工具	
	12.3 编和	程工具	
13	(英文)版	女本修改记录	68

简介 STM8S105xx数据手册

1 简介

这本数据手册描述了STM8S105xx基础型系列单片机的特点、引脚分配、电气特性、机械特性和订购信息。

- 如果需要关于STM8S单片机存储器、寄存器和外设等的详细信息,请参考<u>STM8S系列单</u> 片机参考手册(RM0016)。
- 如果需要关于内部Flash存储器的编程、擦除和保护的信息,请参考<u>STM8S闪存编程手册</u>(PM0051)。
- 如果需要关于调试和SWIM(single wire interface module单线接口模块),请参考<u>STM8</u> SWIM通信协议和调试模块用户手册(UM0470)。
- 如果需要关于STM8内核的信息,请参考STM8 CPU编程手册(PM0044)。

2 详细描述

STM8S105xx基础型系列8位单片机提供容量为16K~32K字节的Flash程序存储器,集成真正的数据EEPROM。在STM8S微控制器系列的参考手册(RM0016)中,被归为中密度系列。

STM8S105xx基础型系列所有的单片机具有以下性能:

- 更低的系统成本
 - 内部集成真正的EEPROM数据存储器,可以达到30万次的擦写周期
 - 高度集成了内部时钟震荡器、看门狗和掉电复位功能
- 高性能和高可靠性
 - 16MHz CPU时钟频率
 - 强大的I/O功能,拥有分立时钟源的独立看门狗
 - 时钟安全系统
- 缩短开发周期
 - 可根据具体的应用在通用的产品系列中选择,具有合适的封装、存储器大小和外设模块的芯片
 - 完善的文档和多种开发工具选择
- 产品可延续性
 - 最新技术打造的高水平内核和外设
 - 系列产品广泛适应2.95V~5.5V的工作电压

表2 STM8S105xx基础型系列产品特点

芯片型号	引脚	GPIO 数目	外部中断引脚	定器入获出较 道时输捕输比通	定时器互补输出	A/ D转换通道	高吸收电流I/O	序存	sh程 字储器 ^{之节})	数据 EEPRO M存储 器 (字节)	RAM (字节)	外设
STM8S105C6	48	38	35	9	3	10	16		32K	1024	2K	高级控制定时器(TIM1)
STM8S105C4	48	38	35	9	3	10	16		16K	1024	2K	通用定时器(TIM2和TIM3)
STM8S105S6	44	34	31	8	3	9	15	中密	32K	1024	2K	基本定时器(TIM4)
STM8S105S4	44	34	31	8	3	9	15	度	16K	1024	2K	SPI, I ² C, UART
STM8S105K6	32	25	23	8	3	7	12		32K	1024	2K	窗口看门狗,独立看门狗
STM8S105K4	32	25	23	8	3	7	12		16K	1024	2K	ADC

模块框图 STM8S105xx数据手册

3 模块框图

图1 模块框图

4 产品概述

本节将要描述的是STM8S105xx基础型系列芯片的功能模块和外设的基本特点。

如果需要更详细的信息请参考相应的产品系列参考手册(RM0016)。

4.1 STM8的中央处理单元

8位的STM8内核在设计时考虑了代码的效率和性能。

它的6个内部寄存器都可以在执行程序中直接寻址。共有包括间接变址寻址和相对寻址在内的20种寻址模式和80条指令。

结构和寄存器

- 哈佛结构
- 3级流水线
- 32位宽程序存储器总线 对于大多数指令可进行单周期取指
- 两个16位寻址寄存器: X寄存器和Y寄存器 允许带有偏移的和不带偏移的变址寻址模式和读—修改—写式的数据操作
- 8位累加器
- 24位程序指针 16M字节线性地址空间
- 16位堆栈指针 可以访问64K字节深度堆栈
- 8位状态寄存器 可根据上条指令的结果产生7个状态标志位

寻址

- 20种寻址模式
- 用于地址空间内任何位置上的查询数据表的变址寻址方式
- 用于局部变量和参数传递的堆栈指针相对寻址模式

指令集

- 80条指令,指令的平均长度为2字节
- 标准的数据传送和逻辑/算术运算功能
- 8位乘8位的乘法指令
- 16位除8位和16位除16位除法指令
- 位操作指令
- 可通过对堆栈的直接访问实现堆栈和累加器之间的数据直接传送(push/pop)
- 可使用X和Y寄存器传送数据或者在存储器之间直接传送数据

4.2 单线接口模块(SWIM)和调试模块(DM)

单线接口模块和调试模块允许非侵入式、实时的在线调试和快速的存储器编程。

SWIM

通过单线接口模块可以直接访问调试模块和对存储器编程。这个接口在设备运行的所有模式下都有效。最大的数据传输速率为**145**字节/毫秒。

调试模块

非侵入式调试模块近似于一个全功能的仿真器,通过影子寄存器可以实时地观测到存储器、外设和CPU的运行情况。

- 实时地对RAM和外设寄存器进行读写
- 通过暂停CPU可以对所有资源进行读写操作
- 可以对所有程序存储器指令设置断点(软件断点)
- 2个高级断点,23种预定义的配置

4.3 中断控制器

- 带有3级软件优先级设定的嵌套中断
- 带有硬件优先级的32个中断向量
- 包括TLI中断在内的,最多27个外部中断分布在6个中断向量上
- 陷阱(Trap)和复位中断

4.4 Flash程序存储器和数据EEPROM存储器

- 最多可达32K字节的单电压闪存程序存储器
- 最多可达1K字节的真正的数据EEPROM
- 写的同时读:向EERPOM中写数据同时可以执行程序存储器的程序
- 用户选项字节区

写保护(WP)

为了避免由于软件故障导致的对闪存程序存储器和数据EERPOM的意外擦写,芯片提供了写保护功能。

写保护分为两个等级。第一级写保护是MASS(Memory Access Security System,存储器操作安全保障系统)。MASS始终有效并保护主要的闪存程序存储器、数据EEPROM和选项设置字节。

如果需要执行IAP(In-Application Programming,在线编程),可以向控制寄存器中写入MASS关键字序列去掉写保护,然后应用程序就可以向数据EEPROM写入数据,或者修改主程序存储器或者设复用项设置字节。

为了进一步保护一些特殊的UBC(User boot code,用户启动代码)存储器区域,可以打开二级保护。参考图2。

在ICP模式下,可以通过设置UBC选项字节,按页增减UBC区域的大小,一页为512个字节。这将程序存储器分成了两部分:

- 主程序存储器:最多至32K字节减去UBC区域的大小
- 用户指定的启动代码(UBC): 可配置最高至32K字节

在线编程时UBC区域仍然保持写保护。也就是说,MASS关键字不能解锁UBC区域。这保护了 用来存储启动程序,特殊的代码库,复位和中断向量,复位、IAP和通信程序的存储器区域。

图2 Flash存储器结构

读出保护(ROP)

读出保护功能阻止在ICP模式(和调试模式)下对Flash程序存储器和数据EEPROM存储器的读写操作。一旦读保护功能使能后,任何尝试改变其状态的操作都会将程序和数据存储器全部擦除。尽管没有保护被认为是完全不可破解的,这个功能还是为通用的单片机提供了一个非常高等级的保护措施。

4.5 时钟控制器

时钟控制器将来自不同振荡器的系统时钟(f_{MASTER})连接到内核和外设,它也为低功耗模式管理时钟的选通,并确保时钟的可靠性。

特点:

- 时钟分频:为了在速度和电流消耗之间找到一个最佳的平衡点,可以通过一个可编程的预分频器来调整CPU和外设的时钟频率。
- 安全的时钟切换:通过一个配置寄存器,可以在运行的时候安全地切换时钟源。新的时钟 源准备好之前时钟信号不会被切换。这个设计能够保证无故障地切换时钟。
- 时钟管理: 为了减少功耗,时钟控制器可以关闭内核、每个外设或存储器的时钟。
- 主时钟源: 4个不同的时钟源可用来驱动主时钟
 - 1~16MHz高速外部晶振(HSE)
 - 最高至16MHz的高速外部时钟(HSE)
 - 16MHz高速内部RC振荡器(HSI)
 - 128kHz低速内部RC(LSI)
- 启动时钟:复位之后,单片机默认运行在内部2MHz时钟下(HSI/8)。一旦代码开始运行, 应用程序就可以更改预分频比例和时钟源。
- 时钟安全系统(CSS): 这个功能可以用软件打开。一旦HSE时钟失效,CSS可以自动地将 主时钟切换到内部RC(16MHz/8),并且可以选择产生一个中断。
- 可配置的主时钟输出(CCO): 应用程序可以控制输出一个外部时钟。

表3 CLK PCKENR1/2 寄存器的外设时钟门选通位的分配

位	外设时钟	位	外设时钟	位	外设时钟	位	外设时钟
PCKEN17	TIM1	PCKEN13	UART2	PCKEN27	Reserved	PCKEN23	ADC
PCKEN16	TIM2	PCKEN12	Reserved	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	TIM3	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM4	PCKEN10	I2C	PCKEN24	Reserved	PCKEN20	Reserved

4.6 电源管理

为实现有效的电源管理,应用程序可以进入四种不同的低功耗模式。用户可以选择任意模式, 在最低的功耗、最快的启动和可用的唤醒源之间达到最佳的平衡。

- 等待模式(Wait): 在此模式下,CPU停止工作,但是外设仍在运行。可以用内部中断、外部中断、或复位来唤醒。
- 开启调压器的活跃停机模式:在此模式下,CPU和外设时钟停止工作。自动唤醒单元 (AWU)按照设定好的间隔时间产生内部唤醒。主电压调压器保持供电,所以电流的消耗比 调压器关闭的主动暂停模式大,但是唤醒时间更短。可用内部AWU中断,外部中断或者复位来唤醒。
- 调压器关闭的活跃停机模式: 此模式除了主电压调压器断电以外, 其它皆与调压器开启的 主动暂停模式相同, 所以唤醒时间较长。
- 停机模式:此模式下单片机的功耗最低,CPU和外设的时钟都被关闭,主电压调压器断电。可用外部事件或中断唤醒。

4.7 看门狗定时器

看门狗系统基于两个独立的定时器来为应用提供最可靠的安全保障。

WDG(看门狗)定时器可用选项设置字节或软件来激活。一旦激活,除非复位,用户程序不能够 关闭看门狗。

窗口看门狗定时器

窗口看门狗用来监测导致应用程序跳出了正常的执行顺序的软件错误,这种错误通常是外部的干扰或者没有考虑到的逻辑条件产生的。

窗口功能用来调整看门狗的状态使其与应用程序达到完美的结合。

应用软件必须在超时之前的限定时间窗口内刷新计数器。

在下面两种情况下会产生复位:

- 1. 超时: 在16MHz CPU时钟下超时时间可以在75µs到64ms之间进行调整。
- 2. 在窗口之外刷新: 在递减计数器的值小于窗口寄存器存储的值之前, 计数器就被刷新。

独立看门狗(IWDG)定时器

独立看门狗外设用来解决硬件或软件故障导致的处理器失效。

定时器使用128kHz LSI内部RC时钟源,因此即使CPU时钟失效它仍然能够保持工作。

IWDG的时基范围从60µs到1s之间。

4.8 自动唤醒计数器

- 用来从活跃停机模式自动唤醒。
- 时钟源:内部128kHz低频RC振荡器或外部时钟。
- LSI 的时钟可以在内部连接到TIM3的输入捕捉1通道来作校准。

4.9 蜂鸣器

蜂鸣器功能通过BEEP引脚输出信号来产生声音。这个信号可在1、2或者4kHz中选择。

4.10 TIM1 — 16位高级控制定时器

这是一个为宽范围控制应用而设计的高端定时器,带有互补输出、死区控制和中心对齐的PWM 功能,这个领域的应用包括马达控制、照明和半桥驱动等。

- 带有16位预分频的16位递增、递减和双向(递增/递减)自动重载计数器
- 4个独立的捕获/比较通道(CAPCOM),可配置成输入捕获,输出比较,PWM产生(边沿或中心对齐模式)和单脉冲模式输出
- 使用外部信号控制定时器的同步模块
- 强制定时器输出进入预定状态的刹车输入
- 死区时间可调的3个互补输出
- 编码器模式
- 中断源: 3个输入捕获/输出比较,1个溢出/更新,1个刹车

4.11 TIM2、TIM3 — 16位通用定时器

- 16位向上计数和自动装载计数器
- 15位的预分频器,分频系数可调整为1~32768之间的2次幂数值
- 带有3个或2个独立可配置的捕获/比较通道
- PWM模式
- 中断源: 2个或3个输入捕获/输出比较, 1个溢出/更新

4.12 TIM4 — 8位基本定时器

● 8位自动装载可调整的预分频器,比例可选为1~128之间2次幂数值

● 时钟源: CPU时钟

● 中断源: 1个溢出/更新

表4 定时器特点

定时器	计数 器(位)	预分频	计数 模式	CAPCOM 通道	互补 输出	外部 触发	定时器 同步/链
TIM1	16	1~65536之间任意整数	向上/向下	4	3	有	
TIM2	16	1~32768间任意2的幂次	向上	3	0	无	无
TIM3	16	1~32768间任意2的幂次	向上	2	0	无	<i>/</i> L
TIM4	8	1~128间任意2的幂次	向上	0	0	无	

4.13 模数转换器(ADC1)

- STM8S105xx系列基础型产品包括一个10位连续渐近式模数转换器(ADC1),提供多达10个多路复用输入通道,主要特点如下:
 - 输入电压范围: **0~V**DDA
 - 转换时间: 14个时钟周期
 - 单次和连续的以及带缓冲的连续转换模式
 - 缓冲区大小: n x 10位 (n=输入通道数)
 - 对一系列的通道进行单次或连续的扫描
 - 带可编程上限或者下限的模拟看门狗
 - 模拟看门狗中断
 - 外部触发输入
 - 可用TIM1定时器触发信号(TRGO)触发
 - 转换结束(EOC)中断

4.14 通信接口

芯片带有以下接口:

- UART2:
 - 全功能UART,同步模式,SPI主模式,智能卡模式,IrDA模式,LIN2.1主/从模式
- SPI 全双工和半双工, 8M位/秒
- I²C 最高至400k位/秒

4.14.1 UART2

主要特点

- 1M位/秒全双工SCI
- 模拟SPI
- 高精度波特率发生器
- 智能卡模拟
- IrDA SIR编码解码
- LIN主模式
- LIN从模式

异步通信(UART模式)

- 全双工通信 NRZ标准模式
- 可达1M位/秒(f_{CPU}/16)的可编程发送接收波特率,不管输入频率如何皆可兼容任何标准波特率

- 发送和接收使能位可单独设置
- 2个接收唤醒模式:
 - 地址位(MSB)
 - 总线空闲(中断)
- 可产生中断的发送错误检测
- 奇偶校验控制

同步通信

- 全双工同步传输
- SPI主操作
- 8位数据通信
- 最大速度: 在16MHz(f_{CPU}/16)时为1M位/秒

LIN主模式

- 发送:产生13位同步中断帧
- 接收:检测11位中断帧

LIN从模式

- 自动头处理 每个有效的信息头都会产生一个单独的中断
- 自动波特率同步 最大容许偏离原始时钟±15 %
- 同步分隔符检查
- 11位LIN同步间断监测 间断监测始终有效
- LIN标识符区域校验检查
- LIN出错管理
- 热插拔支持

4.14.2 SPI

- 最大速率:主设备或从设备均为8M位/秒(f_{MASTER}/2)
- 全双工同步传输
- 带有一根双向数据线的两线单工同步传输
- 主或从操作 可用硬件或软件选择
- CRC计算
- 1个字节的发送或接收缓冲器
- 从/主选择引脚

4.14.3 I²C

- I²C主设备特点:
 - 时钟产生
 - 开始和停止位产生
- I²C从设备特点:
 - 可编程的I²C地址检测
 - 停止位检测
- 可产生和检测7位/10位寻址和广播寻址
- 提供不同的通信速率:
 - 标准速率(最高至100kHz)
 - 高速(最高至400kHz)

5 引脚及其描述

5.1 封装引脚

图3 LQFP 48引脚图

- 1. (HS)高吸收电流。
- 2. (T)真正的开漏输出(没有P-buffer和连接到Voo的保护二极管)。
- 3. []复用功能重映射选项(如果相同的复用功能显示两次,用户也只能选择其中的一个,并不是其中一个是另一个的备份)。

图4 LQFP44引脚图

- 1. (HS)高吸收电流。
- 2. (T)真正的开漏输出(没有P-buffer和连接到Voo的保护二极管)。
- 3. []复用功能重映射选项(如果相同的复用功能显示两次,用户也只能选择其中的一个,并不是其中一个是另一个的备份)。

图5 VFQFN32/LQFP32引脚图

- 1. (HS)高吸收电流。
- 2. []复用功能重映射选项(如果相同的复用功能显示两次,用户也只能选择其中的一个,并不是其中一个是另一个的备份)。

图6 SDIP32引脚图

- 1. (HS)高吸收电流。
- 2. (T)真正的开漏输出(没有P-buffer和连接到Voo的保护二极管)。
- 3. []复用功能重映射选项(如果相同的复用功能显示两次,用户也只能选择其中的一个,并不是其中一个是另一个的备份)。

表5 符号和缩写说明

类型	= 输入	, O = 输出, S = 供电引脚							
电平	输入	CM = CMOS							
一 电干	输出	HS = High sink 高吸收电流							
	O1 = 慢:	O1 = 慢速(最高到2MHz)							
输出速率	O2 = 快速(最高到10MHz)								
神山坯学	O3 = 可配置成快速或慢速,复位后默认为慢速								
	O4 = 可	配置成快速或慢速,复位后默认为快速							
光口和松州和罗	输入	float = 浮置,wpu = 弱上拉							
端口和控制配置	输出	T = 真正的开漏结构, OD = 开漏结构, PP = 推挽							
复位状态		加粗字体							

表6 STM8S105微控制器引脚说明

	管脚	编号					输入			输	出			
LQFP48	LQFP44	VFQFPN32/LQFP32	SDIP32	管脚名称	类型	浮空	弱上拉	外部中断	高吸收	速度	OD	PP	主功能 (复位后)	默认的 复用功能
1	1	1	6	NRST	I/O		Х						复位(Reset)	
2	2	2	7	PA1/OSCIN	I/O	Х	Х			01	Χ	Х	端口A1	晶振输入
3	3	3	8	PA2/OSCOUT	I/O	Х	Χ	Х		01	Χ	Х	端口A2	晶振输出
4	4	-	-	V _{SSIO_1}	S								I/O地线	
5	5	4	9	VSS	S								数字地	
6	6	5	10	VCAP	S								1.8V调压器电	 自容
7	7	6	11	VDD	S								数字部分供电	1
8	8	7	12	V_{DDIO_1}	S								I/O供电	
9	-	-	-	PA3/TIM2_CH3 [SPI_NSS]	I/O	х	Х	Х		01	Х	Х	端口A3	定时器2通道3
10	9	1	ı	PA4	I/O	X	Χ	Х	HS	О3	Χ	Х	端口A4	
11	10	-	-	PA5	I/O	Х	Х	Х	HS	О3	Х	Х	端口A5	
12	11	1	-	PA6	I/O	X	Χ	Х	HS	О3	Χ	Х	端口A6	
-	-	8	13	PF4/AIN12	I/O	Χ	Χ			01	Χ	Х	端口F4	模拟输入12 ⁽¹⁾
13	12	9	14	V_{DDA}	S								模拟供电	
14	13	10	15	V_{SSA}	S								模拟地	
15	14	-	-	PB7/AIN7	I/O	Х	Χ	Х		01	Χ	Х	端口B7	模拟输入7
16	15	-	ı	PB6/AIN6	I/O	X	Χ	Х		01	Χ	Х	端口B6	模拟输入6
17	16	11	16	PB5/AIN5 [I ² C_SDA]	I/O	х	Х	Х		01	Х	Х	端口B5	模拟输入5
18	17	12	17	PB4/AIN4 [I ² C_SCL]	I/O	X	Х	X		01	Х	X	端口B4	模拟输入4
19	18	13	18	PB3/AIN3/ TIM1_ETR	I/O	X	Х	Х		01	Х	Х	端口B3	模拟输入3
20	19	14	19	PB2/AIN2/ TIM1_CH3N	I/O	х	Х	Х		01	Х	х	端口B2	模拟输入2
21	20	15	20	PB1/AIN1/ [TIM1_CH2N]	I/O	х	Х	Х		01	Х	Х	端口B1	模拟输入1
22	21	16	21	PB0/AIN0/ [TIM1_CH1N]	I/O	X	Х	Х		01	Х	Х	端口B0	模拟输入0

	管脚	编号					输入			输	出			
LQFP48	LQFP44	VFQFPN32/LQFP32	SDIP32	管脚名称	类型	浮空	弱上拉	外部中断	高吸收	速度	OD	PP	主功能 (复位后)	默认的 复用功能
23	-	-	-	PE7/AIN8	I/O	Х	Χ	Х		01	Х	Х	端口E7	模拟输入8
24	22	-	-	PE6/AIN9	I/O	X	Χ	Х		01	Х	Х	端口E6	模拟输入9(2)
25	23	17	22	PE5/SPI_NSS	I/O	X	Х	Х		01	Х	Х	端口E5	SPI主/从选择
26	24	18	23	PC1/TIM1_CH1/ UART2_CK	I/O	х	Х	Х	HS	О3	Х	Х	端口C1	定时器1-通道1 UART2同步时钟
27	25	19	24	PC2/TIM1_CH2	I/O	X	Χ	Χ	HS	О3	Х	Χ	端口C2	定时器1-通道2
28	26	20	25	PC3/TIM1_CH3	I/O	X	Χ	Χ	HS	О3	Х	Χ	端口C3	定时器1-通道3
29	_	21	26	PC4/TIM1_CH4	I/O	X	Χ	Χ	HS	О3	Х	Χ	端口C4	定时器1-通道4
30	27	22	27	PC5/SPI_SCK	I/O	X	Χ	Χ	HS	О3	Х	Χ	端口C5	SPI时钟
31	28	-	-	$V_{\rm SSIO_2}$	S								I/O地线	
32	29	-	1	V_{DDIO_2}	S								I/O供电	
33	30	23	28	PC6/SPI_MOSI	I/O	X	Χ	Х	HS	О3	Х	Х	端口C6	SPI主出/从入
34	31	24	29	PC7/SPI_MISO	I/O	X	Χ	Χ	HS	О3	Х	Χ	端口C7	SPI主入/从出
35	32	-	ı	PG0	I/O	X	Χ			01	Х	Χ	端口G0	
36	33	1	ı	PG1	I/O	X	Χ			01	Х	X	端口G1	
37	ı	-	ı	PE3/TIM1_BKIN	I/O	X	Χ	Χ		01	Χ	Χ	端口E3	定时器1-刹车输入
38	34	-	1	PE2/I ² C_SDA	I/O	X	Χ	Х		01	T ⁽³⁾		端口E2	I ² C数据
39	35	-	1	PE1/I ² C_SCL	I/O	X	Χ	Χ		01	T ⁽³⁾		端口E1	I ² C时钟
40	36	-	ı	PE0/CLK_CCO	I/O	X	Χ	Χ	HS	О3	Х	Х	端口E0	可配置的时钟输出
41	37	25	30	PD0/TIM3_CH2 [TIM1_BKIN] [CLK_CCO]	I/O	x	X	X	HS	О3	X	X	端口D0	定时器3-通道2
42	38	26	31	PD1/SWIM	I/O	Х	Χ	Х	HS	04	Х	Х	端口D1	SWIM数据接口
43	39	27	32	PD2/TIM3_CH1 [TIM2_CH3]	I/O	х	Х	Х	HS	О3	Х	Х	端口D2	定时器3-通道1
44	40	28	1	PD3/TIM2_CH2/ [ADC_ETR]	I/O	х	Х	Х	HS	О3	Х	Х	端口D3	定时器2通道2
45	41	29	2	PD4/TIM2_CH1/ [BEEP]	I/O	х	Х	Х	HS	О3	Х	Х	端口D4	定时器2通道1
46	42	30	3	PD5/UART2_TX	I/O	X	Χ	Х		О3	Х	Х	端口D5	UART1数据发送
47	43	31	4	PD6/UART2_RX	I/O	X	Х	Х		О3	Х	Х	端口D6	UART1数据接收
48	44	32	5	PD7/TL1 [TIM1_CH4]	I/O	X	Х	Х		О3	Х	Х	端口D7	最高级中断

- 1. AIN12不能够用于ADC的扫描模式也不能用于模拟看门狗。
- 2. 在44脚封装中,AIN9不能用于ADC的扫描模式。
- 3. 在开漏输出列中'T'表示真正的开漏I/O(没有P-buffer和连接到Voo的保护二极管)。

5.1.1 备选功能重映射

如引脚描述表最右列中所示,通过对8个AFR(备选功能重映射)选项位中的一位,一些备选功能可以被重新映射到不同的I/O端口上。请参考第8章:选项字节。当相应的重映射选项被打开后,引脚默认的复用功能将不可用了。

如果要使用备选的功能,外设寄存器中相应的外设一定要被使能。

备选功能重映射不影响I/O端口的GPIO功能(请见参考手册RM0016中有关GPIO的章节)。

6 存储器和寄存器映像

6.1 存储器映像

图7 存储器映像

下表列出了每一种存储器的大小和边界地址,对于不同的RAM大小的情况下,堆栈的顶部都是 RAM的结束地址。

表7 FLASH,数据EEPROM和RAM边界地址

存储器区域	大小(字节)	起始地址	结束地址	
FLASH程序存储器	32K	0x00 8000	0x00 FFFF	
FLAST作油品	16K	0x00 8000	0x00 BFFF	
RAM	2K	0x00 0000	0x00 07FF	
数据EEPROM	1024	0x00 4000	0x00 43FF	

6.2 寄存器映像

表8 I/O端口硬件寄存器映像

地址	模 组	寄存器标号	寄存器含义	复位值
00 5000h		PA_ODR	端口A数据输出锁存寄存器	00h
00 5001h		PA_IDR	端口A输入引脚值寄存器	00h
00 5002h	端口A	PA_DDR	端口A数据方向寄存器	00h
00 5003h		PA_CR1	端口A控制寄存器1	00h
00 5004h		PA_CR2	端口A控制寄存器2	00h
00 5005h		PB_ODR	端口B数据输出锁存寄存器	00h
00 5006h		PB_IDR	端口B输入引脚值寄存器	00h
00 5007h	端口B	PB_DDR	端口B数据方向寄存器	00h
00 5008h		PB_CR1	端口B控制寄存器1	00h
00 5009h		PB_CR2	端口B控制寄存器2	00h
00 500Ah		PC_ODR	端口C数据输出锁存寄存器	00h
00 500Bh		PC_IDR	端口C输入引脚值寄存器	00h
00 500Ch	端口C	PC_DDR	端口C数据方向寄存器	00h
00 500Dh		PC_CR1	端口C控制寄存器1	00h
00 500Eh		PC_CR2	端口C控制寄存器2	00h
00 500Fh		PD_ODR	端口D数据输出锁存寄存器	00h
00 5010h		PD_IDR	端口D输入引脚值寄存器	00h
00 5011h	端口D	PD_DDR	端口D数据方向寄存器	00h
00 5012h		PD_CR1	端口D控制寄存器1	00h
00 5013h		PD_CR2	端口D控制寄存器2	00h
00 5014h		PE_ODR	端口E数据输出锁存寄存器	00h
00 5015h		PE_IDR	端口E输入引脚值寄存器	00h
00 5016h	端口E	PE_DDR	端口E数据方向寄存器	00h
00 5017h		PE_CR1	端口E控制寄存器1	00h
00 5018h		PE_CR2	端口E控制寄存器2	00h
00 5019h		PF_ODR	端口F数据输出锁存寄存器	00h
00 501Ah		PF_IDR	端口F输入引脚值寄存器	00h
00 501Bh	端口F	PF_DDR	端口F数据方向寄存器	00h
00 501Ch		PF_CR1	端口F控制寄存器1	00h
00 501Dh		PF_CR2	端口F控制寄存器2	00h
00 501Eh	端口G	PG_ODR	端口G数据输出锁存寄存器	00h
00 501Fh		PG_IDR	端口G输入引脚值寄存器	00h
00 5020h		PG_DDR	端口G数据方向寄存器	00h
00 5021h		PH_CR1	端口G控制寄存器1	00h

00 5022h		PG_CR2	端口G控制寄存器2	00h	
00 5023h		PH_ODR	端口H数据输出锁存寄存器	00h	
00 5024h		PH_IDR		端口H输入引脚值寄存器	00h
00 5025h	端口H	PH_DDR	端口H数据方向寄存器	00h	
00 5026h		PH_CR1		端口H控制寄存器1	00h
00 5027h		PH_CR2	端口H控制寄存器2	00h	
00 5028h		PI_ODR	端口数据输出锁存寄存器	00h	
00 5029h		PI_IDR	端口I输入引脚值寄存器	00h	
00 502Ah	端口I	PI_DDR	端口数据方向寄存器	00h	
00 502Bh		PI_CR1	端口I控制寄存器1	00h	
00 502Ch		PI_CR2	端口I控制寄存器2	00h	

表9 通用硬件寄存器影像

70713	仪3					
地址	模组	寄存器标号	寄存器含义	复位值		
00 5050h 至 00 5059h	保留区(1	0字节)				
00 505Ah		FLASH_CR1	FLASH控制寄存器1	00h		
00 505Bh		FLASH_CR2	FLASH控制寄存器2	00h		
00 505Ch	Flash	FLASH_NCR2	FLASH互补控制寄存器2	FFh		
00 505Dh	Flash	FLASH_FPR	FLASH保护寄存器	00h		
00 505Eh	_	FLASH_NFPR	FLASH互补保护寄存器	FFh		
00 505Fh		FLASH_IAPSR	FLASH在应用编程状态寄存器	00h		
00 5060h 至 00 5061h	保留区(2	字节)				
00 5062h	Flash	FLASH_PUKR	FLASH解保护寄存器	00h		
00 5063h			保留区(1字节)			
00 5064h	Flash	FLASH_DUKR	数据EEPROM解保护寄存器	00h		
00 5065h 至 00 509Fh	保留区(59字节)					
00 50A0h	ITC	EXTI_CR1	外部中断控制寄存器1	00h		
00 50A1h	110	EXTI_CR2	外部中断控制寄存器2	00h		
00 50A2h 至 00 50B2h	保留区(1	7字节)				
00 50B3h	RST	RST_SR	复位状态寄存器	xx		
00 50B4h 至 00 50BFh	保留区(12字节)					
00 50C0h	CLK	CLK_ICKR	内部时钟控制寄存器	01h		
00 50C1h	CLK	CLK_ECKR	外部时钟控制寄存器	00h		
00 50C2h	保留区(1	字节)				
00 50C3h	CLK	CLK_CMSR	主时钟状态寄存器	E1h		
00 50C4h		CLK_SWR	主时钟切换寄存器	E1h		
00 50C5h		CLK_SWCR	时钟切换控制寄存器	x0h		
00 50C6h		CLK_CKDIVR 时钟分频寄存器				

Ou 50C8h	00 50C7h		CLK PCKENR1	外设时钟门控寄存器1	FFh
OD 50C9h					00h
CLK_PCKENR2 外设时钟门控寄存器2 FFh	00 50C9h				00h
OD 50CBh					FFh
CLK_HSITRIMR HISIFI中微调寄存器	00 50CBh			CAN总线时钟控制寄存器	00h
OD 50CDh			_		xxh
00 50CEh 至	00 50CDh		_		x0h
WWDG	至	保留区(3	字节)		
WWDG_WR WWDR窗口寄存器 7Fh OS 50D3h	00 50D1h	14/14/15 0	WWDG_CR	WWDG控制寄存器	7Fh
至 00 50DFh	00 50D2h	WWDG	WWDG_WR	WWDR窗口寄存器	7Fh
MVDG	至	保留区(1	3字节)		
NO 50E2h	00 50E0h		IWDG_KR	IWDG密钥寄存器	_
QD 50E3h	00 50E1h	IWDG	IWDG_PR	IWDG预分频寄存器	00h
	00 50E2h		IWDG_RLR	IWDG重装载寄存器	FFh
AWU_APR AWU异步預分類寄存器 3Fh 00 50F2h 00 50F2h AWU_TBR AWU时基选择寄存器 00h 00 50F3h BEEP BEEP_CSR BEEP控制/状态寄存器 1Fh 00 50F4h 至 00 50F4h 至 00 50F4h 至 00 5020h 00 5201h 00 5202h 00 5202h 00 5203h 00 5203h 00 5204h 00 5205h 00 5205h 00 5206h SPI_CR2 SPI控制寄存器 00h SPI_DR SPI_SR SPI业态寄存器 00h SPI_CRCPR SPI CRC多项式寄存器 07h SPI_CRCPR SPI CRC多项式寄存器 07h SPI_TXCRCR SPI接收CRC寄存器 FFh FFh SPI_TXCRCR SPI接收CRC寄存器 FFh FFh SPI_TXCRCR SPI接受CRC寄存器 FFh O0 5208h 至 00 5207h I2C_CR1 I²C控制寄存器1 00h 12C_CR2 I²C控制寄存器2 00h 12C_ORAL I²Cl自身地址寄存器低位 00h 12C_OARL I²Cl自身地址寄存器低位 00h 12C_OARL I²Cl自身地址寄存器高位 00h 12C_DARL I²Cl自身地址寄存器高位 00h 12C_DR I²C数据寄存器 00h 12C_ST1h I²CL_SR1 I²CX态寄存器1 00h 12C_SR1 I²CX & SPI控制 & SPI控制 & SPI控制 & SPIC和 & SP	至	保留区(1	3字节)		
AWU_TBR AWU时基选择寄存器 O0h O0 50F3h BEEP BEEP_CSR BEEP控制/状态寄存器 1Fh O0 50F4h	00 50F0h		AWU_CSR1	AWU控制/状态寄存器	00h
DO 50F3h BEEP BEEP_CSR BEEP控制/状态寄存器 1Fh	00 50F1h	AWU	AWU_APR	AWU异步预分频寄存器	3Fh
Read (12字 中) Read (12	00 50F2h		AWU_TBR	AWU时基选择寄存器	00h
至 00 50FFh 保留区(12字节) 00 5200h 00 5201h 00 5201h 00 5202h 00 5202h 00 5203h 00 5204h 00 5204h 00 5206h 00 5206h 00 5206h 00 5206h 00 5206h 00 5207h 00 5206h 00 5207h 00 5207h 00 5207h 00 5207h 00 5207h 00 5207h 00 5208h 至 00 5207h 00 5210h 00 5211h 00 5211h 00 5212h 00 5212h 00 5213h 00 5214h 00 5214h 00 5214h 00 5214h 00 5216h 00 5217h 00 5216h 00 5216h 00 5217h 00 5216h 00 5217h 00 5216h 00 5217h 00 5216h 00 5217h 00 5217h 00 5216h 00 5217h 00 5216h 12C_DR 12C_DR 12C_MR 12C_MR 67器 00h 00 5216h 00 5217h 00 5216h 12C_DR 12C_DR 12C_MR 67器 00h 00 5216h 00 5217h 00 5216h 12C_DR 12C_MR 12C_MR 67器 00h 00 5217h 00 5216h 12C_DR 12C_MR 12C_MR 67器 00h 00h 00 5217h 00h 00h 00h 00h 00h 00h 00h 00h 00h 0	00 50F3h	BEEP	BEEP_CSR	BEEP控制/状态寄存器	1Fh
OD 5200h OD 5201h OD 5202h OD 5202h OD 5202h OD 5203h OD 5203h OD 5204h OD 5203h OD 5204h OD 5205h OD 5205h OD 5206h OD 5207h OD 5210h OD 5211h OD 5211h OD 5212h OD 5213h OD 5213h OD 5214h OD 5213h OD 5214h OD 5215h CR		/⊟ हम हन /4	000世)		
SPI_CR2 SPI控制寄存器2 O0h		保留区(1.	2子寸)		
SPI_ICR SPI中断控制寄存器 O0h	00 5200h		SPI_CR1	SPI控制寄存器1	00h
00 5203h SPI_SR SPI\太态寄存器 02h 00 5204h SPI_DR SPI数据寄存器 00h 00 5205h SPI_CRCPR SPI CRC多项式寄存器 07h 00 5206h SPI_RXCRCR SPI接收CRC寄存器 FFh 00 5207h SPI_TXCRCR SPI发送CRC寄存器 FFh 00 5208h FFh FFh 00 520Fh I2C_CR1 I²C控制寄存器 00h 00 5210h I2C_CR2 I²C控制寄存器2 00h 00 5211h I2C_CR2 I²C頻率寄存器 00h 00 5213h I2C_OARL I²C自身地址寄存器低位 00h 00 5214h I2C_OARH I²C自身地址寄存器高位 00h 00 5215h 保留区(1字节) 00 00h 00h 00 5216h I²C I2C_DR I²C数据寄存器 00h 00 5217h I2C_SR1 I²C状态寄存器1 00h	00 5201h		SPI_CR2	SPI控制寄存器2	00h
SPI_DR	00 5202h		SPI_ICR	SPI中断控制寄存器	00h
SPI_DR	00 5203h	CDI	SPI_SR	SPI状态寄存器	02h
SPI_RXCRCR SPI接收CRC寄存器 FFh	00 5204h	581	SPI_DR	SPI数据寄存器	00h
SPI_TXCRCR SPI发送CRC寄存器 FFh	00 5205h		SPI_CRCPR	SPI CRC多项式寄存器	07h
QU 5208h 至	00 5206h		SPI_RXCRCR	SPI接收CRC寄存器	FFh
至 00 520Fh 保留区(8字节) 00 5210h 00 5211h 00 5211h 00 5212h 00 5212h 00 5213h 00 5214h 00 5214h 00 5214h 00 5214h 00 5214h 00 5215h 00 5215h 00 5215h 00 5215h 00 5216h 00 5216h 00 5216h 00 5217h 0	00 5207h		SPI_TXCRCR	SPI发送CRC寄存器	FFh
00 520Fh I2C_CR1 I²C控制寄存器1 00h 00 5211h I2C_CR2 I²C控制寄存器2 00h 00 5212h I²C I2C_FREQR I²C频率寄存器 00h 00 5213h I2C_OARL I²C自身地址寄存器低位 00h 00 5214h I2C_OARH I²C自身地址寄存器高位 00h 00 5215h 保留区(1字节) 00 5216h I²C I2C_DR I²C数据寄存器 00h 00 5217h I2C_SR1 I²C状态寄存器1 00h		伊匈豆/0	· · · · · · · · · · · · · · · · · · ·		
00 5211h I ² C I ² CE I ² CE<			가 h)		
00 5212h I²C I2C_FREQR I²C頻率寄存器 00h 00 5213h I2C_OARL I²C自身地址寄存器低位 00h 00 5214h I2C_OARH I²C自身地址寄存器高位 00h 00 5215h 保留区(1字节) V 00 5216h I²C I2C_DR I²C数据寄存器 00h 00 5217h I2C_SR1 I²C状态寄存器1 00h	00 5210h		I2C_CR1	I ² C控制寄存器1	00h
00 5213h I2C_OARL I ² C自身地址寄存器低位 00h 00 5214h I2C_OARH I ² C自身地址寄存器高位 00h 00 5215h 保留区(1字节) 00 5216h I ² C I2C_DR I ² C数据寄存器 00h 00 5217h I2C_SR1 I ² C状态寄存器1 00h	00 5211h		I2C_CR2	I ² C控制寄存器2	00h
00 5214h I2C_OARH I²C自身地址寄存器高位 00h 00 5215h 保留区(1字节) 00 5216h I²C I2C_DR I²C数据寄存器 00h 00 5217h I2C_SR1 I²C状态寄存器1 00h	00 5212h	I ² C	I2C_FREQR	I ² C频率寄存器	00h
00 5215h 保留区(1字节) 00 5216h I²C I2C_DR I²C数据寄存器 00h 00 5217h I2C_SR1 I²C状态寄存器1 00h	00 5213h		I2C_OARL	I ² C自身地址寄存器低位	00h
00 5216h I²C I2C_DR I²C数据寄存器 00h 00 5217h I2C_SR1 I²C状态寄存器1 00h	00 5214h		I2C_OARH	I ² C自身地址寄存器高位	00h
00 5217h	00 5215h	保留区(1	字节)		
	00 5216h	I ² C	I2C_DR	I ² C数据寄存器	00h
00 5218h	00 5217h		I2C_SR1	I ² C状态寄存器1	00h
	00 5218h		I2C_SR2	I ² C状态寄存器2	00h

		T		1
00 5219h		I2C_SR3	I ² C状态寄存器3	00h
00 521Ah		I2C_ITR	I ² C中断控制寄存器	00h
00 521Bh		I2C_CCRL	I ² C时钟控制寄存器低位	00h
00 521Ch		I2C_CCRH	I ² C时钟控制寄存器高位	00h
00 521Dh	I2C_TRISER		I ² C TRISE寄存器	02h
00 521Eh		I2C_PECR	I ² C包错误检查寄存器	00h
00 521Fh	/E 57 E 40			
至 00 523Fh	保留区(3	3子节)		
00 5240h		UART2_SR	UART1 状态寄存器	C0h
00 5241h		UART2 DR	UART1 数据寄存器	xxh
00 5242h		UART2 BRR1	UART1 波特率寄存器1	00h
00 5243h		UART2 BRR2	UART1 波特率寄存器2	00h
00 5244h		UART2 CR1	UART1 控制寄存器1	00h
00 5245h		UART2 CR2	UART1 控制寄存器2	00h
00 5246h	UART2	UART2 CR3	UART1 控制寄存器3	00h
00 5247h		UART2 CR4	UART1 控制寄存器4	00h
00 5248h		保留		
00 5249h		UART2 CR6	UART2 控制寄存器6	00h
00 524Ah		UART2 GTR	UART1保护时间寄存器	00h
00 524Bh		UART2 PSCR	UART1预分频寄存器	00h
00 524Ch			C	
至 00 524Fh	保留区(4	字节)		
00 5250h	TIM1	TIM1 CR1	TIM1控制寄存器1	00h
00 5251h		TIM1 CR2	TIM1控制检测器2	00h
00 5252h		TIM1 SMCR	TIM1从模式控制寄存器	00h
00 5253h		TIM1 ETR	TIM1外部触发寄存器	00h
00 5254h		TIM1 IER	TIM1中断使能寄存器	00h
00 5255h		TIM1_SR1	TIM1状态寄存器1	00h
00 5256h		TIM1 SR2	TIM1状态寄存器2	00h
00 5257h		TIM1_GR	TIM1事件产生寄存器	00h
00 5258h		TIM1 CCMR1	TIM1比较/捕获模式寄存器1	00h
00 5250h		TIM1_CCMR2	TIM1比较/捕获模式寄存器2	00h
00 525Ah		TIM1_CCMR3	TIM1比较/捕获模式寄存器3	00h
00 525An		TIM1_CCMR4	TIM1比较/捕获模式寄存器4	00h
00 525Ch		TIM1_CCER1	TIM1比较/捕获使能寄存器1	00h
00 525Dh		TIM1_CCER2	TIM1比较/捕获使能寄存器2	00h
00 525Eh		TIM1_CNTRH	TIM1计数器高位	00h
00 525Eh		TIM1_CNTRL	TIM1计数器低位	00h
00 5260h		TIM1_SITTLE	TIM1预分频寄存器高位	00h
00 5261h		TIM1_PSCRL	TIM1预分频寄存器低位	00h
00 5261h		TIM1_FOORL	TIM1预装载寄存器高位	FFh
00 5262h		TIM1_ARRL	TIM1预装载寄存器低位	FFh
00 5264h		TIM1_ARRE	TIM1重复计数器寄存器	00h
00 5264h		TIM1_CCR1H	TIM1比较/捕获寄存器1高位	00h
00 320311		THVII_CORTIT	TIMITUX/用外刊行命「同世	UUII

00 5266h		TIM1_CCR1L	TIM1比较/捕获寄存器1低位	00h
00 5267h		TIM1_CCR2H	TIM1比较/捕获寄存器2高位	00h
00 5268h		TIM1_CCR2L	TIM1比较/捕获寄存器2低位	00h
00 5269h		TIM1_CCR3H	TIM1比较/捕获寄存器3高位	00h
00 526Ah		TIM1_CCR3L	TIM1比较/捕获寄存器3低位	00h
00 526Bh		TIM1_CCR4H	TIM1比较/捕获寄存器4高位	00h
00 526Ch		TIM1_CCR4L	TIM1比较/捕获寄存器4低位	00h
00 526Dh		TIM1_BKR	TIM1刹车寄存器	00h
00 526Eh		TIM1_DTR	TIM1死区寄存器	00h
00 526Fh		TIM1_OISR	TIM1输出停滞状态寄存器	00h
00 5270h 至 00 52FFh	保留区(1	47字节)		
00 5300h		TIM2_CR1	TIM2控制寄存器1	00h
00 5301h		TIM2_IER	TIM2中断使能寄存器	00h
00 5302h		TIM2_SR1	TIM2状态寄存器1	00h
00 5303h		TIM2_SR2	TIM2状态寄存器2	00h
00 5304h		TIM2_EGR	TIM2事件产生寄存器	00h
00 5305h		TIM2_CCMR1	TIM2比较/捕获寄存器1	00h
00 5306h		TIM2_CCMR2	TIM2比较/捕获寄存器2	00h
00 5307h		TIM2_CCMR3	TIM2比较/捕获寄存器3	00h
00 5308h		TIM2_CCER1	TIM2比较/捕获使能寄存器1	00h
00 5309h		TIM2_CCER2	TIM2比较/捕获使能寄存器2	00h
00 530Ah	TIM2	TIM2_CNTRH	TIM2计数器高位	00h
00 530Bh		TIM2_CNTRL	TIM2计数器低位	00h
00 530Ch		TIM2_PSCR	TIM2预分频寄存器	00h
00 530Dh		TIM2_ARRH	TIM2预装载寄存器高位	FFh
00 530Eh		TIM2_ARRL	TIM2预装载寄存器低位	FFh
00 530Fh		TIM2_CCR1H	TIM2比较/捕获寄存器1高位	00h
00 5310h		TIM2_CCR1L	TIM2比较/捕获寄存器1低位	00h
00 5311h		TIM2_CCR2H	TIM2比较/捕获寄存器2高位	00h
00 5312h		TIM2_CCR2L	TIM2比较/捕获寄存器2低位	00h
00 5313h		TIM2_CCR3H	TIM2比较/捕获寄存器3高位	00h
00 5314h		TIM2_CCR3L	TIM2比较/捕获寄存器3低位	00h
00 5315h		4 Padday		
至 00 531Fh	保留区(1	1字节)		
00 5320	TIM3	TIM3_CR1	TIM3控制寄存器1	00h
00 5321		TIM3_IER	TIM3中断使能寄存器	00h
00 5322		TIM3_SR1	TIM3状态寄存器1	00h
00 5323		TIM3_SR2	TIM3状态寄存器2	00h
00 5324		TIM3_EGR	TIM3事件产生寄存器	00h
00 5325		TIM3_CCMR1	TIM3比较/捕获寄存器1	00h
00 5326		TIM3_CCMR2	TIM3比较/捕获寄存器2	00h
00 5327		TIM3_CCER1	TIM3比较/捕获使能寄存器1	00h
00 5328		TIM3_CNTRH	TIM3计数器高位	00h
			· · · · · · · · · · · · · · · · · · ·	

		T	1	
00 5329		TIM3_CNTRL	TIM3计数器低位	00h
00 532A		TIM3_PSCR	TIM3预分频寄存器	00h
00 532B		TIM3_ARRH	TIM3预装载寄存器高位	FFh
00 532C		TIM3_ARRL	TIM3预装载寄存器低位	FFh
00 532D		TIM3_CCR1H	TIM3比较/捕获寄存器1高位	00h
00 532E		TIM3_CCR1L	TIM3比较/捕获寄存器1低位	00h
00 532F		TIM3_CCR2H	TIM3比较/捕获寄存器2高位	00h
00 5330		TIM3_CCR2L	TIM3比较/捕获寄存器2低位	00h
00 5331				
至	保留区(1	5字节)		
00 533F 00 5340h		TIM4 CR1	TIM4控制寄存器1	00h
		_		00h
00 5341h 00 5342h		TIM4_IER	TIM4中断使能寄存器	
	TIMA	TIM4_SR	TIM4状态寄存器	00h
00 5343h	TIM4	TIM4_EGR	TIM4事件产生寄存器	00h
00 5344h		TIM4_CNTR	TIM4计数器	00h
00 5345h		TIM4_PSCR	TIM4预分频寄存器	00h
00 5346h		TIM4_ARR	TIM4预装载寄存器	FFh
00 5347h 至	保留区 (1	53字节)		
00 53DFh	•	,		
00 53E0h 至	ADC1	ADC DDVD	ADO 粉·根·經·油·安·左·思	00h
至 00 53F3h	ADCT	ADC_DBxR	ADC数据缓冲寄存器	John
00 53F4h				
至 00 53FFh	保留区(1	2字节)		
00 53FFH		ADC CSR	ADC控制/状态寄存器	00h
00 5401h		ADC CR1	ADC配置寄存器1	00h
00 5402h		ADC CR2	ADC配置寄存器2	00h
00 5402h		ADC_CR3	ADC配置寄存器3	00h
00 5404h		ADC DRH	ADC数据寄存器高位	00h
00 5405h		ADC DRL	ADC数据寄存器低位	00h
00 5406h		ADC TDRH	ADC施密特触发器禁用寄存器高位	00h
00 5407h		ADC TDRL	ADC施密特触发器禁用寄存器低位	00h
00 5408h	ADC1	ADC HTRH	ADC高阈值高位	03h
00 5409h		ADC HTRL	ADC高阈值低位	FFh
00 540Ah		ADC_ITTRE	ADC低阈值高位	00h
00 540Bh		ADC_LTRI	ADC低阈值低位	00h
00 540Ch		ADC_LTKL	ADC模拟看门狗状态寄存器高位	00h
00 540Dh		ADC_AWSRL	ADC模拟看门狗状态寄存器低位	00h
00 540Eh		ADC_AWGRE	ADC模拟看门狗抡制寄存器高位	00h
00 540Fh		ADC_AWORIT	ADC模拟看门狗控制寄存器低位	00h
00 5410h		, 150_/WOILE	、	1 3011
至	保留区(1	008字节)		
00 57FFh				

表10 CPU/SWIM/调试模块/中断控制寄存器

地址	模组	寄存器标号		寄存器含义	复位值
00 7F00h		Α		累加器	00h
00 7F01h		PCE		程序计数器扩展字节	00h
00 7F02h		PCH		程序计数器高字节	00h
00 7F03h		PCL		程序计数器低字节	00h
00 7F04h		XH		X索引寄存器高字节	00h
00 7F05h	CPU ⁽¹⁾	XL		X索引寄存器低字节	00h
00 7F06h		YH		Y索引寄存器高字节	00h
00 7F07h		YL		Y索引寄存器低字节	00h
00 7F08h		SPH		堆栈指针高字节	17h
00 7F09h		SPL		堆栈指针低字节	FFh
00 7F0Ah		CCR		条件代码寄存器	28h
00 7F0Bh 至 00 7F5Fh	保留区(8	35字节)	1		
00 7F60h	CPU	CFG_GCR	全	局配置寄存器	00h
00 7F70h		ITC_SPR1	中	断软件优先级寄存器1	FFh
00 7F71h		ITC_SPR2	中	断软件优先级寄存器2	FFh
00 7F72h		ITC_SPR3	中	断软件优先级寄存器3	FFh
00 7F73h	ITC	ITC_SPR4	中	断软件优先级寄存器4	FFh
00 7F74h		ITC_SPR5	中	断软件优先级寄存器5	FFh
00 7F75h		ITC_SPR6	中	断软件优先级寄存器6	FFh
00 7F76h	_	ITC_SPR7	中	断软件优先级寄存器7	FFh
00 7F77h		ITC_SPR8	中	断软件优先级寄存器8	FFh
00 7F78h 00 7F79h	保留区(2	!字节)	_		
00 7F80h	SWIM	SWIM_CSR	SV	VIM控制状态寄存器	00h
00 7F81h 至 00 7F8Fh	保留区(1	5字节)			
00 7F90h		DM_BK1RE	DN	M断点1寄存器扩展字节	FFh
00 7F91h		DM_BK1RH	DN	M断点1寄存器高字节	FFh
00 7F92h		DM_BK1RL	DI	M断点1寄存器低字节	FFh
00 7F93h] [DM_BK2RE	DI	M断点 2 寄存器扩展字节	FFh
00 7F94h] [DM_BK2RH	DI	M断点 2 寄存器高字节	FFh
00 7F95h	DM	DM_BK2RL	DN	M断点 2 寄存器低字节	FFh
00 7F96h		DM_CR1	DN	M调试模块控制寄存器1	00h
00 7F97h] [DM_CR2	DN	M调试模块控制寄存器2	00h
00 7F98h		DM_CSR1	DN	M调试模块控制/状态寄存器1	10h
00 7F99h		DM_CSR2	DI	M调试模块控制/状态寄存器2	00h
00 7F9Ah		DM_ENFCTR	DN	M使能功能寄存器	FFh
00 7F9Bh 至 00 7F9Fh 1 只有调试模	保留区(5				

^{1.} 只有调试模块可以访问

7 中断向量映像

表11 中断向量表

中断编号	中断源	说明	从停机模 式唤醒	从活跃停机 模式唤醒	向量地址	
	RESET	复位	是	是	0x00 8000	
	TRAP	软件中断	-	-	0x00 8004	
0	TLI	外部最高级中断	-	-	0x00 8008	
1	AWU	从停机模式自动唤醒	-	是	0x00 800C	
2	CLK	时钟控制器	-	-	0x00 8010	
3	EXTI0	端口A外部中断	是 ⁽¹⁾	是 ⁽¹⁾	0x00 8014	
4	EXTI1	端口B外部中断	是	是	0x00 8018	
5	EXTI2	端口C外部中断	是	是	0x00 801C	
6	EXTI3	端口D外部中断	是	是	0x00 8020	
7	EXTI4	端口E外部中断	是	是	0x00 8024	
8		保留	-	-	0x00 8028	
9		保留	-	-	0x00 802C	
10	SPI	传输结束	是	是	0x00 8030	
11	TIM1	定时器1 更新/上溢出/下溢出/触发/刹车	-	-	0x00 8034	
12	TIM1	定时器1 捕获/比较	-	-	0x00 8038	
13	TIM2	定时器2 更新/上溢出	-	-	0x00 803C	
14	TIM2	定时器2 捕获/比较	-	-	0x00 8040	
15	TIM3	定时器3 更新/上溢出	-	-	0x00 8044	
16	TIM3	定时器2 捕获/比较	-	-	0x00 8048	
17		保留	-	-	0x00 804C	
18		保留	-	-	0x00 8050	
19	I ² C	I ² C中断	是	是	0x00 8054	
20	UART2	发送完成	-	-	0x00 8058	
21	UART2	接收寄存器数据满	-	-	0x00 805C	
22	ADC1	ADC1转换结束/模拟看门狗中断	-	-	0x00 8060	
23	TIM4	定时器4 更新/上溢出	-	-	0x00 8064	
24	FLASH	EOP/WR_PG_DIS	-	-	0x00 8068	
	保留 0					

^{1.} PA1除外

8 选项字节

选项字节包括芯片硬件特性的配置和存储器的保护信息,这些字节保存在存储器中一个专用的 块内。除了ROP(读出保护)字节,每个选项字节必须被保存两次,一个是通常的格式(OPTx)和 一个用来备份的互补格式(NOPTx)。

可以在ICP模式(通过SWIM)下访问下表中EEPROM的地址来修改选项字节。

选项字节也可以通过应用程序在IAP模式下修改,但是ROP选项只能在ICP模式(通过SWIM)下被修改。

有关SWIM编程过程的内容请参考<u>STM8S闪存编程手册(PM0051)</u>和<u>STM8 SWIM通信协议和调试模块用户手册(UM0470)</u>。

表12 选项字节

الما المال	此 面 <i>勾</i>	选项				货					出厂
地址	选项名称	字节	7	6	5	4	3	2	1	0	默认 设置
0x4800	读保护	OPT0				R	OP[7:0]				00h
0x4801	用户	OPT1				U	BC[7:0]				00h
0x4802	启动代码	NOPT1				NU	BC[7:0]				FFh
0x4803	备选功能	OPT2	AFR7	AFR6	AFR5	AFR4	AFR3	AFR2	AFR1	AFR0	00h
0x4804	重映射 (AFR)	NOPT2	NAFR7	NAFR6	NAFR5	NAFR4	NAFR3	NAFR2	NAFR1	NAFR0	FFh
0x4805	甘户火币	ОРТ3		保留		HSI TRIM	LSI _EN	IWDG _HW	WWDG _HW	WWDG _HALT	00h
0x4806	其它选项	NOPT3		保留		NHSI TRIM	NLSI _EN	NIWDG _HW	NWWDG _HW	NWWDG _HALT	FFh
0x4807	n+ 4-h 1/4 1/5	OPT4		保	:留		EXT CLK	CKAWU SEL	PRS C1	PRS C0	00h
0x4808	时钟选项	NOPT4		保	:留		NEXT CLK	U	NPRS C1	NPRS C0	FFh
0x4809	HSE时钟	OPT5				HSE	ECNT[7:0]				00h
0x480A	启动选项	NOPT5				NHSI	ECNT[7:0]				FFh
0x480B	保留	OPT6					保留				00h
0x480C		NOPT6					保留				FFh
0x480D	保留	OPT7					保留				00h
0x480E	小田	NOPT7					保留				FFh
0x487E	Bootloader	OPTBL					L[7:0]				00h
0x487F	_ 301.04401	NOPTBL				NI	3L[7:0]				FFh

表13 选项字节描述

选项字节	说明
	ROP[7:0] 存储器读出保护(ROP)
OPT0	0xAA: 读出保护使能(通过SWIM协议写入)
	注:详细内容请参考产品参考手册(RM0016)中关于Flash/EEPROM存储器读保护内容的章节。

	UBC[7:0] 用户启动代码区域
	0x00: 没有UBC,没有写保护。
	0x01:页0~页1定义为UBC,存储器写保护。
	0x02: 页0~页3定义为UBC,存储器写保护。
OPT1	0x03: 页0~页4定义为UBC,存储器写保护。
	0x3E: 页0~页63定义为UBC,存储器写保护.
	其余数值:保留
	注:详细内容请参考产品参考手册(RM0016)中关于Flash/EEPROM存储器写保护内容的章节。
	AFR7 备选功能重映射选项7
	0: 端口D4备选功能为TIM2_CH1
	1:端口D4备选功能为BEEP
	AFR6 备选功能重映射选项6
	0: 端口B5备选功能为AIN5,端口B4备选功能为AIN4
	1: 端口B5备选功能为I ² C SDA,端口B4备选功能为I ² C SCL
	AFR5 备选功能重映射选项5
	0:端口B3备选功能为AIN3,端口B2备选功能为AIN2,端口B1备选功能为AIN1,端口B0备选功能为AIN0
	1:端口B3备选功能为TIM1_ETR,端口B2备选功能为TIM1_CH3N,端口B1备选功能为TIM1_CH2N,端口B0备选功能为TIM1_CH1N
	AFR4 备选功能重映射选项 4
	0: 端口D7备选功能为TLI
OPT2	1: 端口D7备选功能为TIM1_CH4
	AFR3 备选功能重映射选项3
	0: 端口D0备选功能为TIM3_CH2
	1: 端口D0备选功能为TIM1_BKIN
	AFR2 备选功能重映射选项2
	0: 端口D0备选功能为TIM3_CH2
	1:端口D0备选功能为CLK_CCO
	注:如果同时选择AFR2和ARF3,则AFR2选项的优先级高于AFR3。
	AFR1 被选功能重映射选项1
	0:端口A3备选功能为TIM2_CH3,端口D2备选功能为TIM3_CH1
	1:端口A3备选功能为TIM3_CH1,端口D2备选功能为TIM2_CH3
	AFRO 被选功能重映射选项0
	0: 端口D3备选功能为TIM2 CH2
	1: 端口D3备选功能为ADC_ETR
	HSITRIM: 高速内部时钟调节寄存器大小
	0: CLK HSITRIMR寄存器支持3位调节。
	1: CLK HSITRIMR寄存器支持4位调节。
	_
	LSI_EN: 低速内部时钟使能
	0: LSI时钟不能被用作CPU的时钟源。
	1: LSI时钟可以被用作CPU的时钟源。
OPT3	IWDG_HW: 独立看门狗
	0: IWDG独立看门狗由软件激活。
	1: IWDG独立看门狗由硬件激活。
	WWDG_HW: 窗口看门狗激活
	0: WWDG窗口看门狗由软件激活。
	1: WWDG窗口看门狗由硬件激活。
	WWDG_HALT: 当芯片进入停机模式时窗口看门狗的复位动作
	0: 如果窗口看门狗使能,当芯片进入停机模式时不产生复位。
	/**/

	1: 如果窗口看门狗使能,当芯片进入停机模式时可以产生复位。
	EXT_CLK: 外部时钟选择
	0:外部晶体振荡器连接到OSCIN/OSCOUT引脚上
	1:外部时钟连接到OSCIN引脚上
	CKAWUSEL: 自动唤醒单元/时钟
OPT4	0: LSI时钟源作为AWU的时钟
OF 14	1:HSE分频后的时钟作为AWU的时钟源
	PRSC[1:0]: AWU时钟预分频
	0x: 16MHz到128kHz分频
	10:8MHz到128kHz分频
	11:4MHz到128kHz分频
	HSECNT[7:0]: HSE晶体振荡器稳定时间
	0x00: 2048个HSE周期
OPT5	0xB4: 128个HSE周期
	0xD2: 8个HSE周期
	0xE1: 0.5个HSE周期
OPT6	保留
OPT7	保留
	BL[7:0]: 启动引导选项字节
OPTBI	复位后引导ROM中的程序检查这个选项。同时根据0x487E,0x487F地址的内容和复位向量
OI IBL	0x8000中的内容决定CPU跳到引导程序还是复位向量运行。
	更多信息请参考STM8S引导程序手册。

表14 OPT2 的备选功能重映射

选项字节	说明(1)
	AFR7 备选功能重映射选择 7
	0: AFR7 重映射选择不使能: 默认的备选功能(2).
	1: Port D4 备选功能 = BEEP.
	AFR6 备选功能重映射选择6
	0: AFR6 重映射选择不使能: 默认的备选功能(2).
	1: Port B5 备选功能 = I2C_SDA; port B4 备选功能 = I2C_SCL.
	AFR5 备选功能重映射选择5
	0: AFR5 重映射选择不使能: 默认的备选功能(2).
	1: Port B3 备选功能 = TIM1_ETR; 备选功能 = TIM1_NCC3; port B1 备选功能 =
	TIM1_CH2N; port B0 备选功能 = TIM1_CH1N.
	AFR4 备选功能重映射选择4
	0: AFR4 重映射选择不使能: 默认的备选功能(2).
ODTO	1: Port D7备选功能 = TIM1_CH4.
OPT2	AFR3 备选功能重映射选择3
	0: AFR3 重映射选择不使能: 默认的备选功能(2).
	1: Port D0备选功能 = TIM1_BKIN.
	AFR2 备选功能重映射选择2
	0: AFR2 重映射选择不使能: 默认的备选功能(2).
	1: Port D0 备选功能 = CLK_CCO.
	注意: 当2者都使能时 AFR2 比 AFR3 优先级高。
	AFR1 备选功能重映射选择1
	0: AFR1 重映射选择不使能: 默认的备选功能(2).
	1: Port A3 备选功能 = TIM3_CH1; port D2 备选功能TIM2_CH3.
	AFRO 备选功能重映射选择 O
	0: AFR0 重映射选择不使能: 默认的备选功能(2).
	1: Port D3 备选功能 = ADC_ETR.

- 1. 不要在同一个端口使能多于一个的备选功能
- 2. 请参考引脚描述部分

电气特性 STM8S105xx数据手册

9 电气特性

9.1 参数条件

除非特别说明,所有电压的都以Vss为基准。

9.1.1 最小和最大值

除非特别说明,在生产线上通过对100%的产品在环境温度T_A=25°C和T_A=T_{Amax}下执行的测试 (T_{Amax}与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率 条件下得到保证。

在每个表格下方的注解中说明为通过推算、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在推算的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3\Sigma$)得到。

9.1.2 典型数值

除非特别说明,典型数据是基于 T_A =25°C和 V_{DD} =5V。这些数据仅用于设计指导而未经测试。 典型的ADC精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均±2 Σ)。

9.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

9.1.4 典型电流消耗

测量典型电流消耗时,V_{DD},V_{DDIO}和V_{DDA} 连接在一起,如下图所示。

图8 供电电流测量条件

9.1.5 引脚的负载条件

9.1.6 负载电容

测量管脚参数时的负载条件如下图所示。

图9 管脚负载条件

参照2009年6月STM8S105xx 数据手册英文第8版

9.1.7 引脚输入电压

管脚上的输入电压测量如下图所示。

图10 管脚输入电压

9.2 绝对最大额定值

加在器件上的载荷如果超过'绝对最大额定值'列表中给出的值可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表15 电压特性

符号	描述	最小值	最大值	单 位
V _{DDx} - V _{SS} 供电电压(包括V _{DDA} 和V _{DDIO}) ⁽¹⁾		-0.3	6.5	
V _{IN}	在真正开漏管脚上的输入电压(PE1、PE2) ⁽²⁾	V _{SS} -0.3	6.5	V
	在其他管脚上的输入电压(2)	V _{SS} -0.3	V _{DD} +0.3	
$ V_{DDx} - V_{DD} $	o 不同供电管脚之间的电压差 50		mV	
V _{SSx} - V _{SS}	不同接地管脚之间的电压差	50		
V _{ESD}	ESD静电放电电压	参考'绝对最大额定值'列表		

- 1. 所有的电源(VDD, VDDIO, VDDA)和地(VSS, VSSIO, VSSA)管脚必须始终连接到外部对应的供电引脚上。
- 2. $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 V_{IN} > V_{DD} 时,有一个正向注入电流;当 V_{IN} < V_{DD} 时,有一个负向注入电流。对于真正开漏的管脚,没有正向注入电流,它对应 V_{IN} 的最大值必须得到保证。

表16 电流特性

符号	描述	最大值(1)	单位
I _{VDD}	经过V _{DD} 电源线的总电流(输出电流) ⁽²⁾	60	
I _{VSS}	经过Vss地线的总电流(灌电流) ⁽²⁾	60	
	任意I/O和控制管脚上的输出灌电流	20	
I _{IO}	任意I/O和控制管脚上的输出电流	20	
	所有I/O和控制管脚上的总输出电流(有2个V _{DDIO} 的器件) ⁽³⁾	200	mA
ΣI_{10}	所有I/O和控制管脚上的总输出电流(有1个V _{DDIO} 的器件) ⁽³⁾	100	
2110	所有I/O和控制管脚上的总输出灌电流(有2个Vppio的器件) ⁽³⁾	160	IIIA
	所有I/O和控制管脚上的总输出灌电流(有1个V _{DDIO} 的器件) ⁽³⁾	80	
	NRST管脚的注入电流	+/-4	
I _{INJ(PIN)} (4) (5)	OSCIN管脚的注入电流	+/-4	
	其他管脚的注入电流 ⁽⁶⁾	+/-4	
$\sum I_{\text{INJ(PIN)}}^{(4)}$	所有I/O和控制管脚上的总注入电流 ⁽⁶⁾	+/-20	

- 1. 数据基于特性总结得出,没有在生产时测试。
- 2. 所有的电源(V_{DD}、V_{DDIO}、V_{DDA})和地(V_{SS}、V_{SSIO}、V_{SSA})管脚必须始终连接到外部对应的供电引脚上。
- 3. 同时使用的用于大电流I/O(灌电流或拉电流)的管脚,必须均匀地分布在Vppio/Vssio的管脚之间。

- 4. $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 V_{IN} > V_{DD} 时,有一个正向注入电流;当 V_{IN} <> V_{DD} 时,有一个负向注入电流。对于真正开漏的管脚,没有正向注入电流,它对应 V_{IN} 的最大值必须得到保证。
- 5. 负注入电流会干扰器件的模拟性能。参看9.3.10节。
- 6. 当几个I/O口同时有注入电流时, $\Sigma I_{INJ(PIN)}$ 的最大值为正向注入电流与负向注入电流的即时绝对值之和。该结果基于在器件4个I/O端口上 $\Sigma I_{INJ(PIN)}$ 最大值的特性。

表17 热特性

符号	描述	值	单位
T _{STG}	保存温度范围	-65 至 150	°
TJ	最大结温	150	C

9.3 工作条件

表18 通用操作条件

符号	<u>参数</u>		最小值	最大值	单 位	
f _{CPU}	内部CPU时钟频率		0	16	MHz	
V_{DD}/V_{DD_IO}	标准工作电压		2.95	5.5	V	
CEXT	VCAP 外部电容(1)	0.05δESRδ 0.2∧ 在1MHz时	470	3300	nF	
P _D ⁽²⁾	功率消耗	44和48脚的产品,8个标准端口的输出,同时有2个大电流吸收端口和2个开漏端口 ⁽³⁾ 。	443			
P _D ···/	温度标号6: T _A =85℃ 温度标号3: T _A =125℃	32脚的产品,8个标准端口的输出,同时有2个大电流吸收端口 ⁽³⁾ 。		360	mW	
T _A	开控制度(制度标号C)	最大功率消耗	-40	85		
	环境温度(温度标号6)	低功率消耗 ⁽⁴⁾	-40	105	•	
	环境温度(温度标号3)	最大功率消耗	-40	125	°C	
		低功率消耗(4)	-40	140	C	
TJ	结温度范围	温度标号6	-40	105		
		温度标号3	-40	130 ⁽³⁾		

- 1. 当然选择电容时必须要注意,由于电容本身的误差,同时也取决于应用温度,外加直流偏置以及频率因素。
- 2. 使用公式 PDmax = (TJmax TA)/UJA 来计算PDmax(TA),参见(10.2 节的 热特性),TJmax 的值在表 18中给出,UJA 在表 56中给出。
- 3. 计算方法参考 10.2 节
- 4. 在低功耗的状态,由于TJ 没有超过TJmax 因此TA 能达到该温度范围。
- 5. TJmax 的给出是依据测试界限,超过该值的产品性能是不保证的。

图11 不同f_{CPUmax}及V_{DD}对比

表19 在上电/掉电时的工作条件

符号	参数	条件	最小值	典型值	最大值	单位
t _{VDD}	V _{DD} 上升速率		2 ⁽¹⁾		∞	μs/V
	V _{DD} 下降速率		2 ⁽¹⁾		∞	
t _{TEMP}	复位释放延迟	VDD上升			1.7 ⁽¹⁾	ms
V _{IT+}	上电复位阀值		2.65	2.8	2.95	V
V _{IT-}	掉电复位阀值		2.58	2.7	2.88	V
V _{HYS(BOR)}	掉电复位滞后			70		mV

^{1.} 由设计保证,未在生产上测试。

9.3.1 VCAP外部电容

通过在V_{CAP}脚上加一个外部电容C_{EXT}来保证主电压调节器的稳定。该电容的典型值为470nF,同时具有较低的等效串联电阻(ESR)。要注意引脚上的串联电感值要小于15nH。

图12 外部电容

9.3.2 供电电流特性

电流消耗的测量方法如图8所示。

在运行模式下的总电流消耗

MCU处于以下条件中:

- 所有的I/O口工作于输入模式,并被连接到V_{DD}或V_{SS}(无负载)。
- 除非明确提及,所有外设都停止工作(通过配置外设时钟门控寄存器来停止时钟)。 运行在通常的V_{DD}及T_A条件下。

表20 在V_{DD}=5.0V, MCU处于运行模式执行代码时的总电流消耗

符号	参数	条件		典型值	最大值	单 位
		f _{CPU} =f _{MASTER} =16MHz	HSE晶振(16MHz)	3.2		
			HSE外部时钟(16MHz)	2.6	3.2	
	运行模式下的		HSI RC振荡器(16MHz)	2.5	3.2	
	供电电流,代 码在RAM中执	f _{CPU} =f _{MASTER} /128=125kHz	HSE外部时钟(16MHz)	1.6	2.2	
	行 行		HSI RC振荡器(16MHz)	1.3	2.0	
		f _{CPU} =f _{MASTER} /128=15.625kHz	HSI RC振荡器(16MHz/8)	0.75		
I _{DD(RUN)}		f _{CPU} =f _{MASTER} =128kHz	LSI RC振荡器(128kHz)	0.75		mΛ
	运行模式下的 供电电流,代 码在Flash中执 行		HSE晶振(16MHz)	7.7		mA
			HSE外部时钟(16MHz)	7.0	8	
			HSI RC振荡器(16MHz)	7.0	8.0	
		f _{CPU} =f _{MASTER} =2MHz	HSI RC振荡器(16MHz/8) ⁽²⁾	1.5		
		f _{CPU} =f _{MASTER} /128=125kHz	HSI RC振荡器(16MHz)	1.35	2.0	
		f _{CPU} =f _{MASTER} /128=15.625kHz	HSI RC振荡器(16MHz/8)	0.75		
		f _{CPU} =f _{MASTER} =128kHz	LSI RC振荡器(128kHz)	0.6		

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。

表21 在 V_{DD} =3.3V,MCU处于运行模式执行代码时的总电流消耗

符号	参数	条·	典型值	最大值	单位	
	运行模式下的 供电电流,代 码在RAM中执 行	f _{CPU} =f _{MASTER} =16MHz	HSE晶振(16MHz)	2.8		
			HSE外部时钟(16MHz)	2.6	3.2	
			HSI RC振荡器(16MHz)	2.5	3.2	
		f _{CPU} =f _{MASTER} /128=125kHz	HSE外部时钟(16MHz)	1.6	2.2	
			HSI RC振荡器(16MHz)	1.3	2.0	
		f _{CPU} =f _{MASTER} /128=15.625kHz	HSI RC振荡器(16MHz/8)	0.75		
I _{DD(RUN)}		f _{CPU} =f _{MASTER} =128kHz	LSI RC振荡器(128kHz)	0.55		mA
	运行模式下的 供电电流,代 码在Flash中执 行	f _{CPU} =f _{MASTER} =16MHz	HSE晶振(16MHz)	7.3		IIIA
			HSE外部时钟(16MHz)	7.0	8	
			HSI RC振荡器(16MHz)	7.0	8.0	
		f _{CPU} =f _{MASTER} =2MHz	HSI RC振荡器(16MHz/8) ⁽²⁾	1.5		
		f _{CPU} =f _{MASTER} /128=125kHz	HSI RC振荡器(16MHz)	1.35	2.0	
		f _{CPU} =f _{MASTER} /128=15.625kHz	HSI RC振荡器(16MHz/8)	0.75		
		f _{CPU} =f _{MASTER} =128kHz	LSI RC振荡器(128kHz)	0.6		

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。

在等待模式下的电流消耗

表22 在V_{DD}=5.0V,MCU处于等待模式时的总电流消耗

符号	参数	条,	件	典型值	最大值	单位
			HSE晶振(16MHz)	2.15		
		f _{CPU} =f _{MASTER} =16MHz	HSE外部时钟(16MHz)	1.55	2.0	
	等待模式下的		HSI RC振荡器(16MHz)	1.5	1.9	m 1
I _{DD(WFI)}	供电电流	f _{CPU} =f _{MASTER} /128=125kHz	HSI RC振荡器(16MHz)	1.3		mA
		f _{CPU} =f _{MASTER} /128=15.625kHz	HSI RC振荡器(16MHz/8) ⁽²⁾	0.7		
		f _{CPU} =f _{MASTER} =128kHz	LSI RC振荡器(128kHz)	0.5		

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。

表23 在V_{DD}=3.3V,MCU处于等待模式时的总电流消耗

符号	参数	条·	件	典型值	最大值	单位
			HSE晶振(16MHz)	1.75		
		f _{CPU} =f _{MASTER} =16MHz	HSE外部时钟(16MHz)	1.55	2.0	
	等待模式下的		HSI RC振荡器(16MHz)	1.5	1.9	mA
I _{DD(WFI)}	供电电流	f _{CPU} =f _{MASTER} /128=125kHz	HSI RC振荡器(16MHz)	1.3		IIIA
		f _{CPU} =f _{MASTER} /128=15.625kHz	HSI RC振荡器(16MHz/8) ⁽²⁾	0.7		
		f _{CPU} =f _{MASTER} =128kHz	LSI RC振荡器(128kHz)	0.5		

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。

在活跃停机模式下的电流消耗

表24 在V_{DD}=5.0V, MCU处于活跃停机模式时的总电流消耗

			条件		典型	最大值	最大值	
符号	参数	主调压器 (MVR) ⁽¹⁾	闪存模式 (2)	时钟源	值	85 °C(1)	125 °C(1)	単位
	汗虾 痘			HSE晶振(16MHz)	1080			
		下的供	工作模式	LSI RC 振 荡 器 (128kHz)	200	320	400	
١,	机模式			HSE晶振(16MHz)	1030			
I _{DD(AH)}	下的供 电电流		断电模式	LSI RC 振 荡 器 (128kHz)	140	270	350	μΑ
		光	工作模式	LSI RC 振 荡 器	68	120	220	
		关闭	断电模式	(128kHz)	12	60	150	

- 1. 配置CLK_ICKR寄存器中的REGAH位。
- 2. 配置FLASH_CR1寄存器中的AHALT位。
- 3. 数据基于特性总结得出,没有在生产上测试。

表25 在V_{DD}=3.3V, MCU处于活跃停机模式时的总电流消耗

	参数		条件		典型	最大值	最大值	
符号		主调压器 (MVR) ⁽¹⁾	闪存模式 (2)	时钟源	值	85 °C(1)	125 °C(1)	単位
	汗 野偉			HSE晶振(16MHz)	680			
		·跃停 开启 - 模式	工作模式	LSI RC 振 荡 器 (128kHz)	200	320	400	
١,	机模式		断电模式	HSE晶振(16MHz)	630			۸
IDD(AH)	下的供 电电流			LSI RC 振 荡 器 (128kHz)	140	270	350	μΑ
		关闭	工作模式	LSI RC 振 荡 器	66	120	220	
		大网	断电模式	(128kHz)	10	60	150	

- 1. 配置CLK_ICKR寄存器中的REGAH位。
- 2. 配置FLASH_CR1寄存器中的AHALT位。

在停机模式下的电流消耗

表26 在V_{DD}=5.0V,MCU处于停机模式时的总电流消耗

符号	参数	条件	典型值	最大值85 °C(1)	最大值125 °C(1)	单位
1	停机模式下	闪存处于工作模式,唤醒后使用HSI时钟	62	90	150	
IDD(H)	的供电电流	闪存处于断电模式,唤醒后使用HSI时钟	6.5	20	80	μΑ

1. 数据基于特性总结得出,没有在生产上测试。

表27 在V_{DD}=3.3V, MCU处于停机模式时的总电流消耗

符号	参数	条件	典型值	最大值85 °C(1)	最大值125 °C(1)	单位
	停机模式下	闪存处于工作模式,唤醒后使用HSI时钟	60	90	150	μA
IDD(H)	的供电电流	闪存处于断电模式,唤醒后使用HSI时钟	4.5	20	80	μΑ

1. 数据基于特性总结得出,没有在生产上测试。

低功耗模式下的唤醒时间

表28 唤醒时间

符号	参数		条件			最大值 ⁽¹⁾	单位
tagrage)	从等待模式至运行					见注 ⁽²⁾	
twu(wFI) 模式的唤醒时间 ⁽³⁾		f _{CPU} =f _{MASTER} =	f _{CPU} =f _{MASTER} =16MHz				
) - /- I++ D./		MVR 调 压	闪存处于工作模式(5)		1 ⁽⁶⁾	2 ⁽⁶⁾	
	从活跃停机模式至	从活跃停机模式至 器开启 ⁽⁴⁾ 运行模式的唤醒时	器开启 ⁽⁴⁾	闪存处于断电模式(5)	唤醒后	3 ⁽⁶⁾	
t _{WU(AH)}	运行侯式的唤醒的 间 ⁽³⁾	MVR 调 压	闪存处于工作模式(5)	使用 HSI	48 ⁽⁶⁾		μs
		器关闭 ⁽⁴⁾	闪存处于断电模式(5)		50 ⁽⁶⁾		
	从停机模式至运行 模式的唤醒时间 ⁽³⁾	闪存在工作模式 ⁽⁵⁾		52			
t _{WU(H)}		闪存在断电模式(5)			54		

- 1. 数据由设计保证,没有在生产上测试。
- 2. $t_{WU(WFI)} = 2 \times 1/f_{master} + 7 \times 1/f_{CPU}$
- 3. 测量从中断事件发生到取中断向量。
- 4. 配置CLK_ICKR寄存器中的REGAH位。
- 5. 配置FLASH_CR1寄存器中的AHALT位。
- 6. 根据同步状态需要增加1个LSI周期。

在强迫复位状态下的总电流消耗及时间

表29 在强迫复位状态下的总电流消耗及时间

符号	参数	条件	典型值	最大值 ⁽¹⁾	单位
I _{DD(R)}	复位状态下的供电电流(2)	V _{DD} =5V	500		mA
		V _{DD} =3.3V	400		ША
t _{RESETBL}	释放复位管脚至读取复位向量			150	μs

- 1. 数据由设计保证,没有在生产上测试。
- 2. 特别是在所有IO口都连接到Vss。

片上外设的电流消耗

运行在通常的VDD及TA条件下。

使用内部HSI RC振荡器,f_{CPU}=f_{MASTER}=16MHz。

表30 外设电流功耗

符号	参数	典型值	单位
I _{DD(TIM1)}	定时器 1 供电电流 ⁽¹⁾	230	
I _{DD(TIM2)}	定时器 2 供电电流 ⁽¹⁾	115	
I _{DD(TIM3)}	定时器 3 供电电流 ⁽¹⁾	90	
I _{DD(TIM4)}	定时器 4 供电电流 ⁽¹⁾	30	
I _{DD(UART2)}	UART2供电电流 ⁽²⁾	110	μA
I _{DD(SPI)}	SPI供电电流 ⁽²⁾	45	
I _{DD(I2C)}	I ² C供电电流 ⁽²⁾	65	
I _{DD(ADC1)}	ADC1进行转换时的供电电流 ⁽³⁾	955	

- 1. 数据根据复位配置和定时器计数器运行在16MHz时的I_{DD}差值测量得到。没有IC/OC操作(没有I/O端口操作)。 生产时不做测试。
- 2. 数据根据片上外设处于复位配置并且没有开启时钟,和开启片上外设时钟但未处于复位配置时的I_{DD}差值测量得到。没有I/O端口操作。生产时不做测试。
- 3. 数据根据复位配置与连续的A/D转换时的I_{DD}差值测量得到。生产时不做测试。

电流消耗曲线

图 15 至 图 18 图14为当代码在RAM中运行时的典型电流消耗。

图13 使用外部HSE时钟f_{CPU}=16MHz时典型的I_{DD(RUN)}对比V_{DD}

图14 使用外部HSE时钟 VDD = 5 V 时典型的I_{DD(RUNI)} 对比 fCPU

图15 使用内部HSI RC时钟f_{CPU}=16MHz时典型的I_{DD(RUNI)}对比V_{DD}

图16 使用外部HSI 时钟f_{CPU}=16MHz时典型的I_{DD(WFI)}对比V_{DD}

图17 使用外部HSE时钟 VDD = 5 V 时典型的I_{DD(WFI)} 对比 fCPU

图18 使用内部HSI RC时钟f_{CPU}=16MHz时典型的I_{DD(WFI)}对比V_{DD}

9.3.3 外部时钟源和时间特性

HSE用户外部时钟

运行在通常的VDD及TA条件下。

表31 HSE用户外部时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSE_ext}	用户外部时钟源频率		0		16	MHz
V _{HSEH} ⁽¹⁾	OSCIN输入管脚高电平电压		0.7 x V _{DD}		$V_{DD} + 0.3V$	\/
V _{HSEL} ⁽¹⁾	OSCIN输入管脚低电平电压		V _{SS}		$0.3 \times V_{DD}$	V
I _{LEAK_HSE}	OSCIN输入管脚漏电流	$V_{SS} < V_{IN} < V_{DD}$	-1		+1	μΑ

1. 数据基于特性总结得出,没有在生产时测试。

图19 HSE外部时钟源

HSE石英/陶瓷晶体振荡器

HSE可由1~16MHz石英/陶瓷晶体提供时钟。本节的所有信息都是基于使用典型外部器件得到的特性结果。在实际应用中,晶体和负载电容必须尽可能近地放置于振荡器管脚旁,以减少输出畸变及启动时间。请参考晶体的用户手册以了解更多信息(频率、封装、精度...)。

表32 HSE振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSE}	外部高速振荡器频率		1		16	MHz
R_F	反馈电阻			220		kΩ
C ⁽¹⁾	建议的加载电容(2)				20	pF
	HSE振荡器功率消耗	C=20pF,f _{OSC} =16MHz			6(启动) 1.6(稳定) ⁽³⁾	m۸
IDD(HSE)	HOE恢汤	C=10pF,f _{OSC} =16MHz			6(启动) 1.2(稳定) ⁽³⁾	mA
g _m	振荡器跨导系数		5			mA/V
t _{SU(HSE)} (4)	启动时间	V _{DD} 是稳定的		1		ms

- 1. C大约为晶体Cload的2倍。
- 2. 可根据供电电流,使用Rm较小的高质量晶体来优化振荡器的选择。更多信息请参考晶体的用户手册。
- 3. 数据基于特性总结得出,没有在生产中测试。
- 4. t_{SU(HSE)}是晶体的起振时间,其值为从软件使能HSE开始,直到16MHz稳定振荡的时间。该值通过测量一个标准晶体得到;对于不同的晶体制造商,该值可能变化较大。

图20 HSE振荡器电路框图

HSE振荡器关键参数gm计算公式

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

Rm: 理想电阻(参看晶体技术手册) Cm: 理想电容(参看晶体技术手册)

CL1=CL2=C: 外部接地电容

 $g_m >> g_{mcrit}$

9.3.4 内部时钟源和时间特性

运行在通常的 V_{DD} 及 T_A 条件下。

高速内部RC振荡器(HSI)

表33 HSI振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSI}	频率			16		MHz
	HSI振荡器的精度	用户使用CLK_HSITRIM寄存 器在给定的V _{DD} 和T _A 条件下调 整 ⁽¹⁾			1 ⁽¹⁾	%
ACC _{HSI}		V _{DD} =5V,T _A =25℃	-2.5 ⁽⁴⁾		1.3 ⁽⁴⁾	
	HSI振荡器的精度	V_{DD} =5 V , $25^{\circ}C \le T_A \le 125^{\circ}C$	-2.5 ⁽⁴⁾		2 ⁽⁴⁾	%
	(工厂校准后)	2.95V ≤ V _{DD} ≤ 5.5V -40°C ≤ T _A ≤ 125°C	-4.5 ^{(3) (4)}		3 ^{(3) (4)}	70
t _{su(HSI)}	HSI振荡器包括校准 的唤醒时间				1 ⁽²⁾	μs
I _{DD(HSI)}	HSI振荡器电流消耗			170	250 ⁽³⁾	μA

- 1. 参考应用笔记。
- 2. 由设计保证,没有在生产上测试。
- 3. 数据基于特性总结得出,没有在生产上测试。
- 4. 根据未来的确定以提供更准确结果。

图21 在5种温度下典型的HSI频率与V_{DD}对比

图22 在4种温度下典型的HSI频率与V_{DD}对比

低速内部RC振荡器(LSI)

运行在通常的VDD及TA条件下。

表34 LSI 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单 位
f _{LSI}	频率		110	128	146	kHz
t _{SU(LSI)}	LSI振荡器的唤醒时间				7 ⁽¹⁾	μs
I _{DD(LSI)}	LSI振荡器电流消耗			5		μΑ

^{1.} 由设计保证,没有在生产上测试。

图23 在4种温度下典型的LSI频率与V_{DD}对比

9.3.5 存储器特性

RAM和硬件寄存器

表35 RAM和硬件寄存器

符号	参数	条件	最小值	单 位
V_{RM}	数据保持 ⁽¹⁾	停机(或复位)模式	$V_{\text{IT-max}}^{(2)}$	V

^{1.} 不丢失在RAM和硬件寄存器中保存的数据的最小供电电压(在停机模式或复位状态)。由设计保证,没有在 生产上测试。

2. 关于V_{IT-max}参数,见表19。

FLASH程序存储器/数据EEPROM存储器

正常工作条件: T_A = -40~125℃

表36 FLASH程序存储器/数据EEPROM存储器

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压(所有模式下,执行/写/擦除)	f _{CPU} ≤ 16MHz	2.95		5.5	٧
t _{prog}	对于字节/字/块(1字节/4字节/128字节)标准编程时间(包括擦除)			6.6		
	对于1块(128字节)的快速编程时间			3	3.33	ms
t _{erase}	擦除一块的时间(128字节)			3	3.33	
NI	擦除/写入周期 ⁽²⁾ (程序存储器)	T _A = +85℃	10k			次数
N _{RW}	擦除/写入周期 ⁽²⁾ (数据存储器)	T _A = +125℃	300k	1M		1人刻
	在T _A =+85℃时经过10k次擦除/写入后,数据保持(程序存储器)	T _{RET} = 55°C	20			
t _{RET}	在T _A =+85℃时经过10k次擦除/写入后,数据保持(数据存储器)	T _{RET} = 55°C	20			年
	在T _A =+125℃时经过300k次擦除/写入后,数据保持(数据存储器)	T _{RET} = 85°C	1			
I _{DD}	供电电流(Flash编程或擦除1至128字节)			2		mA

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 存储器的组织结构是基于4字节的;因此,即使写/擦除操作只针对1个字节,实际的操作也是基于4个字节。

9.3.6 I/O端口管脚特性

通用特性

除非特别说明,数据均对应于MCU运行在通常的V_{DD}及T_A条件下。所有没有使用的I/O口必须连接到固定的电平:例如将I/O口配置成输出模式,或使用上拉或下拉电阻。

表37 I/O静态特性

符号	参数	条件	最小值	典型值	最大值	单 位
V _{IL}	输入低电平电压		-0.3V		0.3 x V _{DD}	V
V_{IH}	输入高电平电压	$V_{DD} = 5V$	$0.7 \times V_{DD}$		$V_{DD} + 0.3V$	V
V _{hys}	滞回电压 ⁽¹⁾			700		mV
R _{pu}	上拉电阻	$V_{DD} = 5V$, $V_{IN} = V_{SS}$	30	45	60	kΩ
		快速I/O,负载=50pF			20 ⁽²⁾	
t _R , t _F	上升和下降时间 (10%~90%)	标准和大吸收I/O, 负载=50pF			125 ⁽²⁾	ns
I _{lkg}	数据输入漏电流	$V_{SS} \le V_{IN} \le V_{DD}$			±1 ⁽²⁾	
I _{lkg ana}	模拟输入漏电流	$V_{SS} \le V_{IN} \le V_{DD}$			±250 ⁽²⁾	μΑ
$I_{lkg(inj)}$	相邻管脚的漏电流	注入电流±4mA			±1 ⁽²⁾	

- 1. 施密特触发器的滞回电压。数据基于特性总结得出,没有在生产中测试。
- 2. 数据基于特性总结得出,没有在生产上测试。

图24 在4种温度下典型的V_{IL}和V_{IH}与V_{DD}的对比

图25 在4种温度下典型的上拉电阻与V_{DD}的对比

图26 在4种温度下典型的上拉电流I_{PU}与V_{DD}的对比

1. 上拉是一个纯电阻,曲线向下经过0点。

表38 输出驱动电流(标准端口)

符号	参数	条件	最小值	最大值	单位
V	输出低电平,4个管脚吸收电流	$I_{IO} = 4mA$, $V_{DD} = 3.3V$		1 ⁽¹⁾	
V _{OL}	输出低电平,8个管脚吸收电流	$I_{IO} = 10 \text{mA}, \ V_{DD} = 5 \text{V}$		2	\/
\/	输出高电平,4个管脚输出电流	$I_{IO} = 4mA$, $V_{DD} = 3.3V$	2.1 ⁽¹⁾		V
V _{OH}	输出高电平,8个管脚输出电流	$I_{IO} = 10 \text{mA}, V_{DD} = 5 \text{V}$	2.4		

1. 数据基于特性总结得出,没有在生产中测试。

表39 输出驱动电流(真正的开漏端口)

符号	参数	条件	最小值	最大值	单位
		$I_{IO} = 10 \text{mA}, \ V_{DD} = 3.3 \text{V}$		1.5 ⁽¹⁾	
V _{OL}	输出低电平,2个管脚吸收电流	$I_{IO} = 10$ mA, $V_{DD} = 5$ V		1	V
		$I_{IO} = 20$ mA, $V_{DD} = 5$ V		2 ⁽¹⁾	

^{1.} 数据基于特性总结得出,没有在生产中测试。

表40 输出驱动电流(吸收大电流端口)

符号	参数	条件	最小值	最大值	单位
	输出低电平,4个管脚吸收电流	$I_{IO} = 10 \text{mA}, \ V_{DD} = 3.3 \text{V}$		1 ⁽¹⁾	
V_{OL}	输出低电平,8个管脚吸收电流	$I_{IO} = 10 \text{mA}, \ V_{DD} = 5.0 \text{V}$		0.8	
	输出低电平,4个管脚吸收电流	$I_{IO} = 20 \text{mA}, V_{DD} = 5.0 \text{V}$		1.6 ⁽¹⁾	
	输出高电平,4个管脚输出电流	$I_{IO} = 10 \text{mA}, \ V_{DD} = 3.3 \text{V}$	1.9 ⁽¹⁾		V
V _{OH}	输出高电平,8个管脚输出电流	$I_{IO} = 10 \text{mA}, \ V_{DD} = 5.0 \text{V}$	3.8		
	输出高电平,4个管脚输出电流	$I_{IO} = 20 \text{mA}, \ V_{DD} = 5.0 \text{V}$	2.9 ⁽¹⁾		

^{1.} 数据基于特性总结得出,没有在生产中测试。

典型的输出电平曲线

图 28 至 图 35 是在单一的引脚上输出时测量到的典型输出电平曲线。

图27 V_{DD}=3.3V时,典型的V_{OL}曲线(标准端口)

图28 V_{DD} =5.0V时,典型的V_{OL}曲线(标准端口)

图29 V_{DD} =3.3V时,典型的V_{OL}曲线(真正开漏端口)

图30 V_{DD} =5.0V时,典型的V_{OL}曲线(真正开漏端口)

图31 V_{DD} =3.3V时,典型的V_{OL}曲线(吸收大电流端口)

图32 V_{DD} =5.0V时,典型的V_{OL}曲线(吸收大电流端口)

图33 V_{DD} =3.3V时, 典型的V_{DD}-V_{OH}曲线(标准端口)

图34 V_{DD} =5.0V时, 典型的V_{DD}-V_{OH}曲线(标准端口)

图35 V_{DD} =3.3V时,典型的V_{DD}-V_{OH}曲线(吸收大电流端口)

图36 V_{DD} =5.0V时,典型的V_{DD}-V_{OH}曲线(吸收大电流端口)

9.3.7 复位管脚特性

除非特别说明,数据均对应于MCU运行在通常的VDD及TA条件下。

表41 NRST管脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(NRST)}	NRST输入低电平 ⁽¹⁾		-0.3V		$0.3 \times V_{DD}$	
V _{IH(NRST)}	NRST输入高电平 ⁽¹⁾		$0.7 \times V_{DD}$		$V_{DD} + 0.3$	V
V _{OL(NRST)}	NRST输出低电平 ⁽¹⁾	I _{OL} =2mA			0.5	
R _{PU(NRST)}	NRST上拉电阻 ⁽²⁾		30	40	60	kΩ
t _{IFP(NRST)}	NRST输入滤波脉冲 ⁽³⁾				75	ns
t _{INFP(NRST)}	NRST输入无滤波脉冲 ⁽³⁾		500			ns
t _{OP(NRST)}	NRST输出脉冲 ⁽³⁾		15			μs

- 1. 数据基于特性总结得出,没有在生产中测试。
- 2. R_{PU}上拉等效阻抗是基于一个有阻抗的晶体管。
- 3. 数据由设计保证,没有在生产中测试。

图37 在4种温度条件下NRST的典型VIL和VIH相对于VDD的变化

图38 在4种温度条件下NRST的典型上拉阻抗R_{PU}相对于VDD的变化

图39 在4种温度条件下NRST的典型上拉电流I_{PU}相对于VDD的变化

下图中的复位网络保护芯片不被意外复位。用户必须确保NRST引脚上的电平能够低于表37中 $V_{\rm LL}$ 极限值。否则芯片将不能够被复位。

图40 推荐的复位引脚保护

9.3.8 串行外设接口(SPI)

除非特别指定,下表中的参数是在通常的环境温度、 f_{MASTER} 频率和 V_{DD} 供电电压条件下测量得到的。 t_{MASTER} = $1/f_{MASTER}$

更多关于输入/输出复用功能特性(NSS, SCK, MOSI, MISO)的细节请参考I/O端口特性。

表**42** SPI特性

符号	参数	条件 ⁽¹⁾	最小值	最大值	单位
f _{SCK}	SPI时钟频率	主模式	0	8	MHz
1/t _{c(SCK)}	SFI的 种频率	从模式	0	6	IVITZ
$t_{r(SCK)}$ $t_{f(SCK)}$	SPI时钟上升和下降时间	电容负载: C = 30pF		25	
t _{SU(NSS)} ⁽¹⁾	NSS建立时间	从模式	4 x t _{MASTER}		
$t_{h(NSS)}^{(1)}$	NSS保持时间	从模式	70		
$t_{w(SCKL)}^{(1)}$	SCK高和低的时间	主模式	tsck/2 - 15	tsck/2 + 15	
t _{su(MI)} ⁽¹⁾	数据输入建立时间	主模式	5		
t _{su(SI)} ⁽¹⁾	数船棚八建立时 间	从模式	5		
t _{h(MI)} ⁽¹⁾	数据输入保持时间	主模式	7		ns
t _{h(SI)} ⁽¹⁾	数据制/C体符时间	从模式	10		
t _{a(SO)} ⁽¹⁾⁽²⁾	数据输出访问时间	从模式		3 x t _{MASTER}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	数据输出禁止时间	从模式	25		
t _{v(SO)} ⁽¹⁾	数据输出有效时间	从模式(使能边沿之后)		73	
t _{v(MO)} ⁽¹⁾	数据输出有效时间	主模式(使能边沿之后)		36	
t _{h(SO)} ⁽¹⁾	数据输出保持时间	从模式(使能边沿之后)	28		
t _{v(MO)} ⁽¹⁾	数%相正不针则则	主模式(使能边沿之后)	12		

- 1. 数据基于设计模拟和/或特性总结得出,没有在生产中测试。
- 2. 最小时间是指驱动到输出的最小时间,最大时间是指数据在端口上有效的最长时间。
- 3. 最小时间是指输出变为无效的最小时间,最大时间是指端口上的数据变为高阻态的最长时间。

图41 SPI时序图 — 从模式并且CPHA=0

图42 SPI时序图 — 从模式并且CPHA=1⁽¹⁾

1. 测量点基于CMOS电平: 0.3V_{DD}和0.7V_{DD}

图43 SPI时序图 — 主模式⁽¹⁾

1. 测量点基于CMOS电平: 0.3V_{DD}和0.7V_{DD}

9.3.9 I²C接口特性

表**43** I²C特性

か 口	シ 州・	标准I ²	C模式	快速I ² C模式 ⁽¹⁾		角份
符号	参数	最小值(2)	最大值(2)	最小值 ⁽²⁾	最大值 ⁽²⁾	单位
t _{w(SCLL)}	SCL时钟低时间	4.7		1.3		110
t _{w(SCLH)}	SCL时钟高时间	4.0		0.6		μs
t _{su(SDA)}	SDA建立时间	250		100		
t _{h(SDA)}	SDA数据保持时间	0(3)		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)}	SDA和SCL上升时间		1000		300	ns
t _{r(SCL)}						
$t_{f(SDA)} \ t_{f(SCL)}$	SDA和SCL下降时间		300		300	
t _{h(STA)}	开始条件保持时间	4.0		0.6		
t _{su(STA)}	重复的开始条件建立时间	4.7		0.6		μs
t _{su(STO)}	停止条件建立时间	4.0		0.6		μs
t _{w(STO:STA)}	停止至开始条件时间(总线空闲)	4.7		1.3		μs
Сь	每条总线的容性负载		400		400	pF

- 1. f_{MASTER}至少为8MHz才能达到最快的I²C速度(400kHz)。
- 2. 数据基于标准I²C协议的需要,没有在生产中测试。
- 3. 如果接口不允许延长低电平时间,则只需要遵守开始条件的最长保持时间。
- 4. 为了跳过SCL下降沿的不确定区域,芯片必须在内部为SDA提供一个至少300ns的保持时间。

图44 I²C 总线的应用和基本时序图⁽¹⁾

1. 测量点基于CMOS电平: 0.3V_{DD}和0.7V_{DD}

9.3.10 10 位ADC特性

V_{DDA}、f_{MASTER}和T_A在通常的操作条件下,除非特别说明。

表**44** ADC特性

符号	参数	条件	最小值	典型值	最大值	单位
f	ADC时钟频率	V _{DDA} = 2.95~5.5V	1		4	MHz
f _{ADC}	ADO的 种频率	V _{DDA} = 4.5~5.5V	1		6	IVIITZ
V_{DDA}	模拟供电		3		5.5	V
V _{REF+}	正参考电压		2.75 ⁽¹⁾		V_{DDA}	V
V _{REF-}	负参考电压		V_{SSA}		0.5 ⁽¹⁾	V
V	V _{AIN} 转换电压范围 ⁽²⁾		V_{SSA}		V_{DDA}	V
VAIN		具有VREF+和VREF-的型号	V_{REF}		V_{REF^+}	V
C _{ADC}	内部采样保持电容			3		pF
ts ⁽²⁾	采样时间	f _{ADC} = 4MHz		0.75		0
LS.	木件 的问	$f_{ADC} = 6MHz$		0.5		μs
t _{STAB}	从待机模式唤醒时间			7		μs
	2.2.4.4.1.1.2.1.2.1.2.1.1.1.1.1.1.1.1.1.	f _{ADC} = 4MHz	3.5		μs	
t _{CONV}	总转换时间(包括采样时间, 10位分辨率)	f _{ADC} = 6MHz	2.33		μs	
	问,IU四分辨 半		14			1/f _{ADC}

^{1.} 数据由设计保证,没有在生产中测试。

^{2.} 在采样时间内,输入电容 C_{AIN} (最大3pF)能够从外部进行充电或放电。模拟信号源的内部阻抗必须保证电容在采样时间 t_s 内能够达到最终的电压。在采样时间 t_s 之后,模拟输入电压的变化不会影响转换结果。采样时间 t_s 的值由编程确定。

表45 R_{AIN}<10kΩ, V_{DDA}=3.3V条件下ADC的精确度

符号	参数	条件	典型值	最大值 ⁽¹⁾	单位	
	总误差 ⁽²⁾	f _{ADC} = 2MHz	1.1	2		
E _T	心庆左	f _{ADC} = 4MHz	1.6	2.5		
1 = 1	偏移误差 ⁽²⁾	f _{ADC} = 2MHz	0.7	1.5		
E ₀	個份 庆左	f _{ADC} = 4MHz	1.3	2		
I E a I	E _G 增益误差 ⁽²⁾	增益误差(2)	f _{ADC} = 2MHz	0.2	1.5	LSB
LG			f _{ADC} = 4MHz	0.5	2	LOD
E _D	微分线性误差 ⁽²⁾	f _{ADC} = 2MHz	0.7	1		
LD	100万线 住 庆 左	f _{ADC} = 4MHz	0.7	1		
15.1	积分线性误差(2)	f _{ADC} = 2MHz	0.6	1.5		
E _L	157月以正庆左	f _{ADC} = 4MHz	0.6	1.5		

^{1.} 基于对具有V_{REF+}/V_{REF}-的LQFP80产品数据特性总结,没有在生产中测试。

表46 R_{AIN} <10kΩ, V_{DD} =5V条件下ADC的精确度

符号	参数	条件	典型值	最大值 ⁽¹⁾	单位
		f _{ADC} = 2MHz	1	2.5	
E _T	总误差 ⁽²⁾	f _{ADC} = 4MHz	1.4	3	
		f _{ADC} = 6MHz	1.6	3.5	
		f _{ADC} = 2MHz	0.6	2	
E ₀	偏移误差 ⁽²⁾	f _{ADC} = 4MHz	1.1	2.5	
		f _{ADC} = 6MHz	1.2	2.5	
		f _{ADC} = 2MHz	0.2	2	
E _G	增益误差 ⁽²⁾	f _{ADC} = 4MHz	0.6	2.5	LSB
		f _{ADC} = 6MHz	0.8	2.5	
		f _{ADC} = 2MHz	0.7	1.5	
E _D	微分线性误差 ⁽²⁾	f _{ADC} = 4MHz	0.7	1.5	
		f _{ADC} = 6MHz	0.8	1.5	
		f _{ADC} = 2MHz	0.6	1.5	
E _L	积分线性误差(2)	f _{ADC} = 4MHz	0.6	1.5	
		f _{ADC} = 6MHz	0.6	1.5	

^{1.} 正在进行数据特性总结。

^{2.} ADC精度与负的注入电流的关系:必须避免在任何模拟输入管脚注入负的电流,这会显著地降低将要在另一个模拟输入上的转换精度。建议在可能产生潜在的负注入电流的标准模拟管脚上增加一个肖特基二极管。任何正的注入电流,只要不超过9.3.6节的I_{INJ(PIN)}和ΣI_{INJ(PIN)},则不会影响ADC的精度。

^{2.} ADC精度与负的注入电流的关系: 必须避免在任何模拟输入管脚注入负的电流,这会显著地降低将要在另一个模拟输入上的转换精度。建议在可能产生潜在的负注入电流的标准模拟管脚上增加一个肖特基二极管(连接到地)。任何限制在9.3.6节的 $I_{\text{INJ(PIN)}}$ 和 $\Sigma I_{\text{INJ(PIN)}}$ 的正向注入电流,不会影响ADC的精度。

图45 ADC的精确度特性

- 1. 一个真实的转换曲线例子
- 2. 理想的转换曲线
- 3. 端点连接线
 - ET = 总误差:实际的转换曲线与理想的转换曲线的最大偏差。
 - Eo = 偏移误差: 第一个实际的转换值与第一个理想的转换值之间的偏差
 - E_G = 增益误差: 最后一个实际的转换值与最后一个理想的转换值之间的偏差
 - E_D = 差分线性误差:实际的转换步长与理想的转换步长之间的最大偏差
 - EL = 积分线性误差: 在任何实际转换值与端点连接线的最大偏差

图46 ADC的典型应用

9.3.11 EMC特性

兼容性测试是在产品评定中一个样本基础上进行的。

功能EMS(电磁兼容)

产品在两种电磁测试环境下运行一个简单的应用程序(用I/O端口翻转两个LED)直到失效发生(在LED上表现出来)。

- **ESD:** 静电放电(正向和反向)加载在芯片的所有引脚上,直到功能性干扰发生。测试遵守 IEC 1000-4-2标准。
- **FTB**: 快速脉冲群电压(正向和反向)经过一个100pF的电容加载在Vpd和Vss上,直到功能性干扰发生。测试遵守IEC 1000-4-4标准。

设备复位允许正常的操作继续进行。表中的测试结果是基于<u>应用笔记AN1709</u>中定义的EMS等级和分类得到的。

设计可靠的软件以避免噪声问题

EMC性能评定和优化是在典型的应用环境和简单的MCU软件下元器件级别的测试。应该注意的 是良好的EMC性能高度依赖于用户的应用和特殊的软件。

因此建议用户进行EMC软件优化,并且针对应用的EMC等级要求进行预先的测试。

参照2009年6月STM8S105xx 数据手册英文第8版

软件要求

软件流程中必须包括对于失控情况的处理,例如:

- 程序指针错误
- 意外复位
- 关键数据纠错(控制寄存器等)

评估试验

大多数一般失效(意外复位和程序指针错误)能够恢复,通过在NRST引脚或振荡器引脚上加上1秒钟的低电平。

为了完成这种试验,ESD信号可以被直接加载在芯片引脚上,可超出指定的范围。当检测到意外的状态时,软件能够阻止不可恢复的错误发生(参见应用笔记AN1015)。

表47 EMS数据

符号	参数	条件	级别/等级
V _{FESD}	施加到任意I/O脚上的静电电压,导致功能失效的极限。	V _{DD} =5V,T _A =+25℃, f _{MASTER} =16MHz, 遵循IEC 1000-4-2标准	2B
V _{EFTB}	通过一个100pF的电容,施加到V _{DD} 和V _{SS} 脚上的快速脉冲群电压,导致功能失效的极限。	V _{DD} =5V,T _A =+25℃, f _{MASTER} =16MHz, 遵循IEC 1000-4-4标准	4A

电磁干扰(EMI)

电磁干扰测试遵循为测试软件、板卡布局和引脚负载制定的SAE J 1752/3 标准。

表48 EMI数据

		条件					
符号	参数			最大f _{HSE}	单位		
13 3		一般条件	监视频率段	16MHz/ 8MHz	16MHz/ 16MHz	1 12	
		V _{DD} =5V,	0.1MHz~30MHz	13	14		
	尖峰级别	T _A =+25℃,	30MHz~130MHz	23	19	dΒμV	
S _{EMI}		LQFP48封装	130MHz~1GHz	-4	-4		
	SAE EMI级别	遵循SAE J 1752/3		2	1.5	-	

^{1.} 数据基于特性总结得出,没有在生产中测试。

最大绝对等级(电子敏感性)

为了确定产品在电子敏感性方面的性能,使用特定的测试方法进行了两种不同的测试(ESD和LU)。更加详尽的内容参见应用笔记AN1181。

静电放电(ESD)

静电放电(3个正向脉冲,接着是3个反向脉冲,间隔为1秒)根据引脚的组合加载在每一组样本引脚上。样本的大小取决于芯片供电引脚的数目(3个样本x(n+1)供电引脚)。测试符合JESD22-A114A/A115A标准。更多详尽的内容参见应用笔记AN1181。

表49 ESD绝对最大等级

符号	评级	条件	等级	最大值 ⁽¹⁾	单位
V _{ESD(HBM)}	静电放电电压(人体模型)	T _A =+25℃,遵循JESD22-A114	Α	2000	٧
V _{ESD(CDM)}	静电放电电压(充电设备模型)	LQFP32封装,T _A =+25℃,遵循 JESD22-C101	IV	1000	V

^{1.} 数据基于特性总结得出,没有在生产中测试。

静态死锁

为了获得死锁性能,需要在10个样片上进行两种相反的静态测试。

- 供电过压(加载到每一个电源供电引脚)和
- 在每一个样片上进行电流注入(加载到每一个输入、输出和可配置的I/O上)

测试符合EIA/JESD 78 IC死锁标准。更多详尽的内容参见应用笔记AN1181。

表50 电子敏感性

符号	参数	条件	等级 ⁽¹⁾
		T _A =+25°C	Α
LU	静态死锁等级	T _A =+85°C	Α
		T _A =+125℃	Α

^{1.} 等级说明: A等级是STMicroelectronics的内部规范。它的所有限制高于JEDEC规范,也就是说一个符合A等级的芯片超出了JEDEC标准。B等级严格符合所有JEDEC标准(国际标准)。

10 封装特性

为了符合环境的需要,ST根据不同的环境等级提供了这些芯片不同等级的ECOPACK®封装。 ECOPACK®规范、等级定义和产品状态可以在www.st.com网站上获得。

ECOPACK®是ST的商标。

10.1 封装机械数据

10.1.1 LQFP封装尺寸

图47 48脚低剖面方形扁平封装(7x7)

表51 48脚低剖面方形扁平封装尺寸

+ = □		毫米			英寸 ⁽¹⁾	
标号	最小值	典型值	最大值	最小值	典型值	最大值
Α			1.600			0.0630
A1	0.050		0. 150	0.0020		0. 0059
A2	1.350	1. 400	1. 450	0. 0531	0. 0551	0. 0571
b	0. 170	0. 220	0. 270	0.0067	0.0087	0. 0106
С	0.090		0. 200	0.0035		0. 0079
D	8.800	9. 000	9. 200	0. 3465	0. 3543	0. 3622
D1	6.800	7. 000	7. 200	0. 2677	0. 2756	0. 2835
D3		5. 500			0. 2165	
E	8.800	9. 000	9. 200	0. 3465	0. 3543	0. 3622
E1	6.800	7. 000	7. 200	0. 2677	0. 2756	0. 2835
E3		5. 500			0. 2165	
е		0.500			0. 0197	
L	0.450	0.600	0.750	0. 0177	0. 0236	0. 0295
L1		1.000			0. 0394	
k	0. 0°	3. 5°	7. 0°	0.0°	3. 5°	7. 0°
ccc			0.080			0.0031

^{1.} 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

图48 44脚低剖面方形扁平封装(10x10)

表52 44脚低剖面方形扁平封装尺寸

七日		毫米			英寸 ⁽¹⁾	
标号	最小值	典型值	最大值	最小值	典型值	最大值
Α			1.600			0.0630
A1	0.050		0. 150	0.0020		0.0059
A2	1.350	1. 400	1. 450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0. 0177
С	0.090		0. 200	0.0035		0.0079
D	11.800	12.000	12. 200	0. 4646	0. 4724	0. 4803
D1	9.800	10.000	10. 200	0. 3858	0.3937	0. 4016
D3		8. 000			0.3150	
Е	11.800	12.000	12. 200	0. 4646	0. 4724	0. 4803
E1	9.800	10.000	10. 200	0. 3858	0. 3937	0. 4016
E3		8. 000			0.3150	
е		0.800			0. 0315	
L	0.450	0.600	0.750	0. 0177	0.0236	0. 0295
L1		1.000			0. 0394	
k	0.0°	3. 5°	7. 0°	0.0°	3. 5°	7. 0°
ccc						

^{1.} 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

图49 32脚低剖面方形扁平封装尺寸(7x7)

表53 32脚低剖面方形扁平封装尺寸(7x7)

1-: D		毫米			英寸 ⁽¹⁾	
标号	最小值	典型值	最大值	最小值	典型值	最大值
Α			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090		0.200	0.0035		0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3		5.600			0.2205	
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3		5.600			0.2205	
е		0.800			0.0315	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ccc			0.100			0.0039

^{1.} 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

10.1.2 VFQFPN封装机械数据

图50 32脚薄细间距方形扁平无引脚QFN封装(5x5)

表54 32脚薄细间距方形扁平无引脚VFQFPN封装封装数据

标号		毫米			英寸 ⁽¹⁾	
70 T	最小值	典型值	最大值	最小值	典型值	最大值
Α	0.80	0.90	1.00	0.0315	0.0354	0.0394
A1	0	0.02	0.05		0.0008	0.0020
A3		0.20			0.0079	
b	0.18	0.25	0.30	0.0071	0.0098	0.0118
D	4.85	5.00	5.15	0.1909	0.1969	0.2028
D2	3.20	3.45	3.70	0.1260	0.1358	0.1457
Е	4.85	5.00	5.15	0.1909	0.1969	0.2028
E2	3.20	3.45	3.70	0.1260	0.1358	0.1457
е		0.50			0.0197	
L	0.30	0.40	0.50	0.0118	0.0157	0.0197
ddd			0.08			0.0031

^{1.} 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

10.1.3 SDIP32 封装机械数据

图51 32脚窄间距的双列直插DIP(400ml)朔封装

表55 32脚窄间距的双列直插DIP(400ml)朔封装的结构数据

4 ⊂. □		毫米			英寸 ⁽¹⁾	
标号	最小值	典型值	最大值	最小值	典型值	最大值
Α	3.556	3.759	5.080	0.1400	0.1480	0.2000
A1	0.508			0.0200		
A2	3.048	3.556	4.572	0.1200	0.1400	0.1800
В	0.356	0.457	0.584	0.0140	0.0180	0.0230
B1	0.762	1.016	1.397	0.0300	0.0400	0.0550
С	0.203	0.254	0.356	0.0079	0.0100	0.0140
D	27.430	27.940	28.450	1.0799	1.1000	1.1201
Е	9.906	10.410	11.050	0.3900	0.4098	0.4350
E1	7.620	8.890	9.398	0.3000	0.3500	0.3700
е		1.778			0.0700	
eA		10.160			0.4000	
eB			12.700			0.5000
L	2.540	3.048	3.810	0.1000	0.1200	0.1500

^{1.} 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

10.2 热特性

芯片的最大结温(T_{jmax})一定不能超过表**188**给出的数值范围。 芯片的最大结温(T_{Jmax})用摄氏温度表示,可用下面的公式计算:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

这里:

● T_{Amax}是最大的环境温度,用℃表示

封装特性 STM8S105xx数据手册

- Θ_{IA}是封装结到环境的热阻抗,用℃/W标示
- P_{Dmax}是P_{INTmax}和P_{I/Omax}的和(P_{Dmax}= P_{INTmax}+ P_{I/Omax})
- P_{INTmax}是I_{DD}和V_{DD}的积,用瓦特(Watt)表示,是芯片的最大内部功耗
- P_{I/Omax}是所有输出引脚的最大功率消耗 这里:

 $P_{I/Omax}$ = Σ ($V_{OL}^*I_{OL}$) + Σ ((V_{DD} - V_{OH}) * I_{OH}) 考虑在应用中I/O上低电平和高电平的实际的 $V_{OL}^*I_{OL}$ 和 $V_{OH}^*I_{OH}$ 。

表56 热特性(1)

符号	参数	数值	单位
Θ_{JA}	结到环境的热阻抗—— LQFP48 – 7x7mm	57	°C/W
Θ_{JA}	结到环境的热阻抗——LQFP48 – 10x10mm	54	°C/W
Θ_{JA}	结到环境的热阻抗——LQFP32 – 7x7mm	59	°C/W
Θ_{JA}	结到环境的热阻抗——VFQFPN 32 - 5 x 5 mm	22	°C/W

^{1.} 热阻抗是基于自然对流环境下,对符合JEDEC JESD51-2标准的4层PCB板测量得到的。

10.2.1 参考文档

JESD51-2 集成电路热测量环境条件 - 自然对流(空气静止)。

参见www.jedec.org。

10.2.2 选择产品的温度范围

当订购微控制器时,温度范围在订购代码中指定(见第图-52)。

下面的例子说明如何根据特定的应用计算需要的温度范围。

假设下面的应用条件:

最大环境温度T_{Amax} = 82℃(根据JESD51-2标准测量)

 $I_{DDmax} = 15 \text{ mA}, V_{DD} = 5 \text{ V}$

同时最多有8个普通I/O处于输出低电平I_{OL}=10mA, V_{OL}=2V

同时最多有4个大电流I/O处于输出低电平I_{OL}=20mA, V_{OL}=1.5V

同时最多有2真正开漏I/O处于输出低电平I_{OI}=20mA, V_{OI}=2V

 $P_{INTmax} = 15mA \times 5.5V = 82.5mW$

 P_{IOmax} = (10 mA x 2 V x 8)+(20 mA x 2 V x 2)+(20 mA x 1.5 V x 4) = 360 mW

这样得到了: PINTmax = 82.5 mW 和PIOmax = 360 mW:

 $P_{Dmax} = 82.5 \text{ mW} + 360 \text{ mW}$

因此 P_{Dmax} = 443 mW

根据Error! Reference source not found.中得到的数据如下计算T.lmax:

对于LQFP32 59℃/W

 $T_{Jmax} = 75^{\circ}C + (46^{\circ}C/W \times 464mW) = 75^{\circ}C + 27^{\circ}C = 102^{\circ}C$

结果在尾缀为6的版本(-40 < T」 < 106℃)温度范围内。

在这个例子中,最低要订购温度范围尾缀为6的芯片。

订购信息 STM8S105xx数据手册

11 订购信息

图52 STM8S105xx基础型订购信息表

如果需要可用的选择和可订购的型号列表,或者关于这颗芯片任何方面的更多信息,请到www.st.com网站或者联络离您最近的ST销售机构。

- 12 STM8开发工具 (本章从略)
- 12.1 仿真和在线调试工具
- 12.2 软件工具
- 12.2.1 STM8 工具套件
- 12.2.2 C和汇编工具
- 12.3 编程工具

13 (英文)版本修改记录

表57 文档版本修改记录

Date	Revision	Changes
05-Jun-2008	1	Initial release.
23-Jun-2008	2	Corrected number of high sink outputs to 9 in I/Os on page 1. Updated part numbers in Table 2: STM8S105xx access line features on page 10.
12-Aug-2008	3	Updated part numbers in <i>Table 2: STM8S105xx access line features</i> on page 10. USART renamed UART1, LINUART renamed UART2. Added <i>Table 7: Pin-to-pin comparison of pin 7 to 12 in 32-pin access line devices</i> .
17-Sep-2008	4	Removed STM8S102xx and STM8S104xx root part numbers corresponding to devices without data EEPROM. Updated STM8S103 pinout in Section 5.2 on page 29. Added low and medium density Flash memory categories. Added Note 1 in Table 16: Current characteristics. Updated Table 6: Option bytes on page 39.
05-Feb-2009	5	Updated STM8S103 pinout in Section 5.2 on page 29 Updated number of High Sink I/Os in pinout. TSSOP20 pinout modified (PD4 moved to pin 1 etc.) Added WFQFN20 package Updated Section 6: Option bytes on page 39 Added Section 7: Memory and register map on page 44
27-Feb-2009	6	Removed STM8S103x products (separate STM8S103 datasheet created) Updated Section 9: Electrical characteristics
12-May-2009	7	Added SDIP32 silhouette and package to the Features and Section 10.1.3: SDIP32 package mechanical data; added Figure 6: SDIP32-pin pinout; updated Table 6: Pin description for STM8S105 microcontrollers and Figure 52: STM8S105xx access line ordering information scheme for the SDIP. Updated V _{DD} range (2.95 V to 5.5 V) on page 1. Amended name of package VQFPN32 Added Table 3 on page 16. Updated Section 4.8: Auto wakeup counter on page 18. Updated pins 25, 30, and 31 in Figure 5. Removed Table 7: Pin-to-pin comparison of pin 7 to 12 in 32-pin access line devices. Added Table 14: Description of alternate function remapping bits [7:0] of OPT2.

Date	Revision	Changes
12-May-2009	7 cont'd	Section 9: Electrical characteristics: Updated VCAP specifications; updated Table 15, Table 18, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27, Table 29, Table 35, and Table 42; added current consumption curves Figure 13 to Figure 18; removed figure 20: typical HSE frequency vs f _{cpu} @ 4 temperatures; updated Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17 on page 60; modified HSI accuracy in Table 33: HSI oscillator characteristics on page 63; added Figure 44: Typical application with I2C bus and timing diagram 1) on page 79; modified f _{SCK} , t _{V(SO)} and t _{V(MO)} in Table 42: SPI characteristics on page 75; updated figures and tables of High speed internal RC oscillator (HSI) on page 63; replaced Figure 23, Figure 24, Figure 26, and Figure 39 on page 74. Section 10: Package characteristics: Updated Table 56: Thermal characteristics and removed Table 57: Junction temperature range. Updated Figure 52: STM8S105xx access line ordering information scheme.
10-Jun-2009	8	Document status changed from "preliminary data" to "datasheet". Standardized name of the VFQFPN package. Removed 'wpu' from I ² C pins in <i>Table 6: Pin description for STM8S105 microcontrollers</i> .

