# 3. 識別 一概念学習一

### 3.1 カテゴリ特徴に対する「教師あり・識別」問題の定義

### • 問題設定



•カテゴリ特徴

年齢=若年 処方=近視 乱視=なし 涙量=正常 推薦レンズ=ソフト

# contact-lensesデータ

表 3.1 コンタクトレンズデータ (contact-lens.arff)

|     |                |                    | `           | ,              |                       |                                                             |                                                                              |
|-----|----------------|--------------------|-------------|----------------|-----------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|
| No. | age            | spectacle-prescrip | astigmatism | tear-prod      | contact-              | lenses                                                      |                                                                              |
| 1   | young          | myope              | no          | reduced        | none                  |                                                             |                                                                              |
| 2   | young          | myope              | no          | $_{normal}$    | $\operatorname{soft}$ |                                                             |                                                                              |
| 3   | young          | myope              | yes         | reduced        | none                  | 表                                                           | 3.2 コンタクトレンズデータの特徴値                                                          |
| 4   | young          | myope              | yes         | $_{ m normal}$ | hard                  | <br>特徴                                                      |                                                                              |
| 5   | young          | hypermetrope       | no          | reduced        | none                  | 付(X)<br>————————————————————————————————————                | 1世<br>                                                                       |
| 6   | young          | hypermetrope       | no          | $_{ m normal}$ | $\operatorname{soft}$ | age(年齢)                                                     | {young, pre-presbyopic, presbyopic} (若年, 老眼前期, 老眼)                           |
| 7   | young          | hypermetrope       | yes         | reduced        | none                  | spectacle-prescrip(眼鏡) astigmatism(乱視) tear-prod-rate(涙量)   | {myope, hypermetrope} (近視, 遠視) {no, yes} (なし, あり) {reduced, normal} (減少, 正常) |
| 8   | young          | hypermetrope       | yes         | $_{normal}$    | hard                  |                                                             |                                                                              |
| 9   | pre-presbyopic | myope              | no          | reduced        | none                  |                                                             |                                                                              |
| 10  | pre-presbyopic | myope              | no          | $_{normal}$    | $\operatorname{soft}$ |                                                             |                                                                              |
| 11  | pre-presbyopic | myope              | yes         | reduced        | none                  | $contact$ -lenses $( \mathcal{O} \mathcal{I} \mathcal{A} )$ | {soft, hard, none} (ソフト, ハード, なし)                                            |
| 12  | pre-presbyopic | myope              | yes         | $_{normal}$    | hard                  |                                                             |                                                                              |
| 13  | pre-presbyopic | hypermetrope       | no          | reduced        | none                  |                                                             |                                                                              |
| 14  | pre-presbyopic | hypermetrope       | no          | normal         | $\operatorname{soft}$ |                                                             |                                                                              |
| 15  | pre-presbyopic | hypermetrope       | yes         | reduced        | none                  |                                                             |                                                                              |
| 16  | pre-presbyopic | hypermetrope       | yes         | normal         | none                  |                                                             |                                                                              |
| 17  | presbyopic     | myope              | no          | reduced        | none                  |                                                             |                                                                              |
| 18  | presbyopic     | myope              | no          | normal         | none                  |                                                             |                                                                              |
| 19  | presbyopic     | myope              | yes         | reduced        | none                  |                                                             |                                                                              |
| 20  | presbyopic     | myope              | yes         | normal         | hard                  |                                                             |                                                                              |
| 21  | presbyopic     | hypermetrope       | no          | reduced        | none                  |                                                             |                                                                              |
| 22  | presbyopic     | hypermetrope       | no          | normal         | $\mathbf{soft}$       |                                                             |                                                                              |
| 23  | presbyopic     | hypermetrope       | yes         | reduced        | none                  |                                                             |                                                                              |
| 24  | presbyopic     | hypermetrope       | yes         | $_{ m normal}$ | none                  |                                                             |                                                                              |

### 3.2 概念学習とバイアス

- ・概念学習とは
  - 正解の概念を説明する特徴ベクトルの性質(論理式)を求めること
  - 「softレンズを勧める」という概念の例

(乱視=あり) ∧ (ドライアイ=なし) ⇒ soft

- 学習の方法
  - 初期の概念学習:学習対象の概念にバイアス(偏見)をかけて絞り込み
    - FIND-Sアルゴリズム
    - 候補削除アルゴリズム
  - 決定木学習:探索方法にバイアスをかけて準最適解を探す

### 3.2.1 初期の概念学習

- FIND-Sアルゴリズム
  - 最も特殊な概念から始めて、正例を使って順次一般化する
    - 求める論理式を「リテラル(特徴名=値)のAND結合(∧)」に限定
    - すべての正例をカバーする論理式が得られれば終了
    - 正解概念の候補(仮説空間): 4×3×3×3+1=109
  - 例:「コンタクトレンズの使用を勧めない」(none) の概念を獲得したい



### 3.2.1 初期の概念学習

- 候補削除アルゴリズム
  - FIND-Sに加えて、もっとも一般的な概念 <?,?,?,?>を負例をカバー しないように順次特殊化
  - すべてのデータの処理が終わって、残った論理式集合が正解候補



FIND-Sと同様に概念獲得失敗



#2をカバーしないように最小限特殊化

<?,?,?,?>は「すべてが正例」

# 3.2.2 概念学習のバイアスを考える

- ・初期の概念学習の問題点
  - リテラルのOR結合(∨)が表現できないので、正解概念が 仮説空間内に存在しないことが多い

例) (年齢=若年 / 年齢=老眼前期) が表現できない

# 3.2.2 概念学習のバイアスを考える

- 単純にリテラルのOR結合を許す場合
  - ・正解概念の候補数が増大する
    - 2の事例数乗 224=16777216
  - 正例のOR結合が自明な解となり、未知事例に対して判定する 根拠を持たない

### • 解決策

- 仮説空間はリテラルのOR結合を許し、探索方法にバイアスを かけて候補を限定する
- 見つかった候補が未知データに対しても適用可能な概念であるようなバイアスとは何か

### 3.3 決定木の学習

- ・概念を決定木で表す
  - ルートノードから始めて、特徴の値によって事例を分類する
  - リーフに至れば分類は終了
- 決定木の要素と意味
  - ノード(節):特徴
  - エッジ(枝):値
  - リーフ(葉):出力



### 3.3.1 決定木とは

- 決定木学習の作り方
  - ノードとする特徴を決める
    - 分割後のデータができるだけ同一クラスが偏るように特徴を選択する
  - 特徴の値に基づいてデータを分割する
  - すべてのデータが単一のクラスになればリーフとする
  - そうでなければ、分割後のデータ集合に対して同様の操作を行う
    - ただし、これまでに使用した特徴は選択しない

#### Algorithm 3.1 ID3 アルゴリズム

```
入力: 正解付き学習データ D, クラス特徴 y, 特徴集合 A出力: 決定木 T root ノードを作成 if D が全て正例 then return ラベル Yes else if D が全て負例 then return ラベル No else if 特徴集合 A == \emptyset(空集合) then return D 中の最頻値のクラス else
```

```
a \leftarrow A 中で最も分類能力の高い特徴
 root ノードの決定特徴 \leftarrow a
 for all a の取りうる値 v do
   a=v に対応する枝を作成
   データの中から値vを取る部分集合D_vを作成
   if D_v == \emptyset then
    return D中の最頻値のクラス
   else
    ID3(部分集合 D_v, クラス特徴 y, 特徴集合 A-a)
   end if
 end for
end if
return root ノード
```

- 分類能力の高い属性を決定する方法
  - その属性を使った分類を行うことによって、なるべくきれいに クラスが分かれるように
  - ・エントロピー
    - データ集合Dの乱雑さを表現
    - $_-$  正例の割合: $P_+$  , 負例の割合: $P_-$
    - エントロピーの定義

$$E(D) = -P_{+} \log_{2} P_{+} - P_{-} \log_{2} P_{-}$$



- 情報獲得量
  - 特徴aを用いた分割後のエントロピーの減少量
  - 特徴aで値vを取るデータの集合: Dv
  - Dvの要素数: |Dv|
  - 情報獲得量の定義

$$Gain(D, a) \equiv E(D) - \sum_{v \in Values(a)} \frac{|D_v|}{|D|} E(D_v)$$

- ID3アルゴリズムのバイアス
  - 分類能力の高いノードをなるべく根の近くにもつ
  - 欲張り法で探索を行い、すべてのリーフが単一クラスの集合になれば終了



### なぜ小さな木の方がよいか

- オッカムの剃刀
  - 「データに適合する最も単純な仮説を選べ」
  - 複雑な仮説
    - → 表現能力が高い
    - → 偶然にデータを説明できるかもしれない
  - 単純な仮説
    - → 表現能力が低い
    - → 偶然にデータを説明できる確率は著しく低い
    - → でも説明できた!
    - **→ 必然!**

### 3.3.3 過学習を避ける

- 決定木学習における過学習の避け方
  - 学習過程で木の成長を止める
    - リーフに所属することができる最小データ数(または割合)を多くする
    - 木の段階の最大数を小さくする
  - 十分に成長させた後に枝刈り
    - Reduced error pruning
      - 1.学習用データを用いてできるだけ成長した木を作成する
    - Minimal cost-complexity pruning
      - $-R_a(T)$  が最小となる木を探索



# 3.4 数値特徴に対する決定木

- CART (Classification and Regression Trees)
  - ・ 必ず2つの子ノードを持つ2分木構造
  - 数値特徴はノードとして何度でも出現可能
  - ・ 識別と回帰のいずれにも使える
  - scikit-learnでは、DecisionTreeClassifier, DecisionTreeRegressor として実装されている

# 3.4 数値特徴に対する決定木

- ノードにおけるデータ分割
  - カテゴリ特徴:特徴の値で分割
  - 数値特徴: 閾値との比較で分割
- 閾値θの決め方

#### 情報獲得量の多い区切りを選ぶ



$$\begin{aligned} \text{Gain}(D, \text{humidity}_{82.5}) &= 0.94 - \frac{7}{14} \text{Entropy}(D, < 82.5) - \frac{7}{14} \text{Entropy}(D, \ge 82.5) \\ &= 0.152 \end{aligned}$$

# 3.4 数値特徴に対する決定木

- sklearn.tree.DecisionTreeClassifier の主なパラメータ
  - criterion:情報獲得量の計算法
    - ジニ不純度  $GiniImpurity(D) \equiv 2 \cdot P_{+} \cdot P_{-}$
    - $\bot \succ \Box \Box \Box E(D) = -P_{+} \log_{2} P_{+} P_{-} \log_{2} P_{-}$
    - ・ジニ不純度のほうが最頻クラスの分離に少し偏る
  - max\_depth:木の最大の深さ
  - min\_samples\_split: ノードが分割可能な事例数の最小値
  - ccp\_alpha: 枝刈り後の木の複雑さを表すパラメータ

### まとめ

- 初期の概念学習
  - 論理式の形式を制限することでバイアスを実現
  - 制限が強すぎてしばしば概念獲得に失敗する
- 決定木
  - 論理式の形式は自由にして、探索でバイアスを実現
  - 学習データの少しの変動で、得られる木がまったく異なることがある
  - 原理的には学習データに対して誤りのない識別器を実現できるので、過学習への対処が必要になる