לוגיקה הרצאה 2

הגדרה אינדוקטיבית - של קבוצה

-wהעולם

- B- מוכל ב W קבוצת בסיס
- יצירה פעולות\כללי יצירה -F
- מוכלת ב W מוגדרת כקבוצה מוכלת $X_{B,F}$
 - $X_{B,F}$ מוכל ב B .1
- . $X_{B,F}$ שייך ל $f(x_1,...,x_n)$ אז f שייך ל אז א ו $X_{B,F}$ שייך ל $X_{1...n}$ אם .2
 - . בו את את שמקיימת מינימלית מינימלית את א $X_{B,F}\,$.3

$$X_{B,F} = \cup X_i$$
 -הראינו ש $X_1 = B$ $X_{i+1} = X_i \cup F(X_i)$

משפט ההוכחה באינדוקציה

 $X_{B,F}\subseteq Y$ נתונים אז F,B עבור (ב) ו-(ב) אם מספקת מספקת את

הוכחה באינדוקציית מבנה:

 $X_{B,F} \subseteq Y$ -כדי להוכיח

$$B\subseteq Y$$
 .1

.F -טגורה ל- Y .2

 $b \in X_{B,F}$ להראות

-ע כך $a_1 \ldots a_n$ נראה סדרת יצירה

 $1 \le i \le n$ ולכל $a_n = b$

Fאו התקבלה מהקודמים הסדרה ע"י הפעלת פעולה מ- $a_i \in B$

 $b \notin X_{B,F}$ להראות

ונראה T (קבוצה) נציע תכונה

$$X_{B,F} \subseteq T$$
 $b \notin T$

$$b \notin T$$

לוגיקה - תחשיב מורכב מ-

- * הגדרה סינטקטית של שפה
- * הגדרה של הסמנטיקה של מילים בשפה
- "משפטים" מערכת הוכחה עם אכסיומות וכללי היסק שמאפשרת להוכיח \star
- . פער בין אוסף הנוסחאות היכיחיות (יש אפשרות להוכיח אותן) לבין סמנטיקה \star

תחשביב הפסוקים

סינטקס של תחשיב הפסיקים

A,B,C "משתנים" דוגמאות משתנים" ((A o B) o (B o A)),(A o B),(+A) B "השמש זורחת נסמן A (ממן ע"י $(A\wedge B)$ השמש זורח וחם בחוץ $(A\wedge B)$ אם השמש זורחת אז חם בחוץ

הגדרה של הסינטקס של תחשיבי הפסוקים

קבוצה הפסוקים היא הקבוצה האינדוקטיבית שמוגדרת באופן הבא:

$$W=(\{\lor,\land,\lnot,\rightarrow,(,)\}\cup\{p_i|i\in N\})$$
 בסיס: $B=\{p_i|i\in N\}$ בסיס: p_i נקראות פסוקים אטומיים הפעולות:

$$F = \{F_{\neg}, F_{\wedge}, F_{\vee}, F_{\rightarrow}\} \star$$

$$F_{\neg}(\alpha) = (\neg \alpha) \star$$

$$F_{\vee}(\alpha,\beta) = (\alpha \vee \beta) \star$$

$$F_{\wedge}(\alpha,\beta) = (\alpha \wedge \beta) \star$$

$$F_{\rightarrow}(\alpha,\beta) = (\alpha \rightarrow \beta) \star$$

:איך נראה ש

(פסוק חוקי מחוקי (
$$(p_5 \wedge p_{11}) o (p_6 o p_5))$$

- p_5 .1
- p_{11} .2
- $(p_5 \wedge p_{11})$.3
 - p_6 .4
- $(p_6 \to p_5)$.5
- $((p_5 \land p_{11}) \to (p_6 \to p_5))$.6

? מסוק $p_2(p_1:p_2)$ פסוק

לא!

נוכיח:

<u>תכונה:</u> כל פסוק הוא או אטומי או שמספר הסוגריים הפתוחים שווה למספר הסוגריים הסגורים.

הוכחה באינדוקציית מבנה:

בסיס לכל פסוק אטומי יש תכונה.

סגור את שמקיימים lpha,eta נתונים שמקיימים את התכונה

.ב- α יש א סוגריים מכל סוג מכל

ב- β יש n סוגריים מכל סוג.

 $(\alpha \to \beta) = F_{\to}(\alpha, \beta)$ נסתכל על המקרה הפעלת

.(n+k+1 ש מכל מספר הסוגריים מכל (מספר (מ

מסקנה מההוכחה ש- $p_2(p_1$ אינו פסוק.(צריך היה להראות לכל פעולה).

 $eta=b_1\cdots b_k, lpha=a_1\dots a_n$ עבור סדרות סימנים לא ריקות ו- lpha ו- lpha כך ש- lpha עבור סדרות סימנים לא ריקות lpha אם lpha אם לא לא לא ובנוסף לכל lpha מתקיים lpha מתקיים lpha

דוגמאות:

abab הוא רישא של $ab \star$

aabc הוא רישא של $ab~\star$

(n < k) lpha
eq eta ו- eta ו- lpha אם lpha אם lpha הוא רישא של ממש של ממש

מספר α אז ב- α מספר לכל פסוק לכל פסוק אז ב-טוי שהוא הישה ביטוי הישה ממש לא ב-מ α אז ב- α הסוגריים השמאליים

גדול ממש ממספר הסוגריים הימניים.

מסקנה α לא פסוק

דוגמה

$$\underbrace{((p_5 \to p_6) \lor (p_7 \land p_{11})}_{\beta}$$

דוגמה לשפה חדשה שאין בה סוגריים ולכן אין בה קריאה יחידה:

 $a \wedge b \wedge c$ סדרת סימנים

 $c,a\wedge b$ על \wedge (1)

 $b \wedge c, a$ על (2)

משפט הקריאה היחידה

- \square אם יש פסוקים eta_1, γ_1 וקשר lpha אם יש פסוקים כך ש- $lpha=(eta_2\square\gamma_2)$ -ט כך ש- $lpha=(eta_2\triangle\alpha_2)$ שבנוסף יש בסוקים eta_2, γ_2 וקשר $lpha=(eta_2\triangle\alpha_2)$ הם אותו קשר. אז בהכרח $lpha=(eta_2, \gamma_1=\gamma_2, \gamma_1=\gamma_2)$ ו-
- 2. לכל פסוק α , אם יש פסוק β כך ש- $(\neg\beta)$ אז אין קשר β^* ואם קיים $\alpha=(\gamma\Box\delta)$ כך ש- γ,δ כך ש- $\beta=\beta^*$ אז $\alpha=(\neg\beta^*)$ כך ש-

 $eta_1,eta_2,\gamma_1,\gamma_2,\square,\triangle$ שיש נניח בשלילה נניח נניח $lpha=(eta_1\square\gamma_1)=(eta_2\triangle\gamma_2)$ ולא מתקיימות טענות המשפט

$$lpha=\underbrace{a_1}_{(b_1)}\underbrace{a_2\ldots a_n}_{b_2)}\,eta_1$$
ננית ע- (a_1) הוא רעעא ממע של (a_1)

נניח ש- β_1 הוא רישא ממש של β_1 , הוא פסוק ולפי מסקנה מתכונה, β_1 הוא פסוק ולפי מסקנה מתכונה, רישא ממש של פסוק אינו פסוק ולכן β_1 אינו פסוק. β_2 , β_1 פסוקים. $\beta_1=\beta_2$

$$eta_1=eta_2$$
 ידוע ידוע $\dfrac{-$ (2) אבל $-$ אבל $-$ (2) אבל $-$ אבל $-$ (2) $-$ (2) אבל $-$ (3) $-$ (4) $-$ (4) $-$ (5) $-$ (6) $-$ (6) $-$ (7) $-$ (7) $-$ (8) $-$ (9) $-$ (9) $-$ (10) $-$ (

. ולכן זהים באותו מקום ב-lpha ולכן והים והים igtriangle

 $\gamma_1
eq \gamma_2$ ונניח ווע $\square = \triangle, \beta_1 = \beta_2$ ידוע ידוע שקרה (3) ונניח ב- α ונמשכות בהסוף ולכן α איתכן כי שתיהן מתחילות באותו מקום ב- α ונמשכות עד הסוף ולכן והות.

כתוצאה מהקריאה היחידה אפשר להתאים לכל פסוק עץ יצירה שהעולם שלו הם פסוקים אטומיים ובכל צומת פנימי יש קשר, אם הקשר הוא \neg אז יש לצומת בן יחיד.

אם הוא \rightarrow, \lor, \land אז יש לו 2 בנים.

$$(((A \to B) \lor (\neg C)) \land (X_{17} \to (A \lor B)))$$

משפט הקריאה היחידה מבטיח לנו כי לכל פסוק קיים עץ יחיד.

סמנטיקה

מטרה להתאים ערך אמת או שקר לפסוקים האטומיים ומזה להסיק ערך אמת או שקר לפסוק כולו.

$$T$$
 - אמת \star

$$F$$
 - שקר \star

 $\{T,F\}$:ערכי אמת

 $\{T,F\}$ השמה היא פונקציה מקבוצה הפסוקים האטומיים לקבוצה

$$V: \{p_i|i\in N\} \to \{T,F\}$$

$$V_2(p_i) = \begin{cases} T & i\%2 = 0 \\ F & i\%2 \neq 0 \end{cases}$$

סמנטיקה לפסוק כלשהו:

$$V:\{p_i|i\in\mathbb{N}\} o\{T,F\}$$
 בהנתן נגדיר $\{T,F\} o\{T,F\}$ הפסוקים: $\overline{V}:X_{B,F} o\{T,F\}$

נגדיר פונקציות טבלת אמת:

$$TT_{\neg}: \{T, F\} \to \{T, F\}$$

$$TT_{\wedge}: \{T,F\} \wedge \{T,F\} \rightarrow \{T,F\}$$

$$TT_{\vee}: \{T,F\} \vee \{T,F\} \rightarrow \{T,F\}$$

$$TT_{\rightarrow}: \{T,F\} \rightarrow \{T,F\} \rightarrow \{T,F\}$$