Knowledge Representation Techniques

Propositional logic in AI

- Propositional logic (PL) is the simplest form of logic where all the statements are made by propositions.
- A proposition is a declarative statement which is either true or false. It is a technique of knowledge representation in logical and mathematical form.
 - a) It is Sunday. (True proposition)
 - b) The Sun rises from West (False proposition)
 - c) 3+3= 7(False proposition)
 - d) 5 is a prime number. (True proposition)

Propositional logic forms the basis for many AI systems, including expert systems, rule-based systems, and natural language processing.

Propositional logic in AI

- Propositional logic is a formal language that uses symbols to represent propositions and logical connectives to combine them.
- The symbols used in propositional logic include
 - letters such as p, q, and r, which represent propositions, and
 - logical connectives/operators such as ∧ (conjunction/and), ∨
 (disjunction/or), and ¬ (negation/not), which are used to combine propositions.
- **Tautology**: a proposition formula which is always true and is also called a valid sentence.
- Contradiction: a proposition formula which is always false.
- Statements which are questions, commands, or opinions are not propositions such as "Where is Rohini", "How are you", "What is your name", are not propositions.

Types of Propositional

Atomic Proposition: Atomic propositions are the simple propositions. It consists of a single proposition symbol. These are the sentences which must be either true or false.

Example:

P: The sky is blue. Q: The grass is green.

R: 2+2=4. S: The Earth orbits the Sun.

Compound proposition: Compound propositions are constructed by combining simpler or atomic propositions, using parenthesis and logical connectives.

Example:

- a) "It is raining today, and street is wet."
- b) "Ankit is a doctor, and his clinic is in Mumbai."

- Logical connectives are used to connect two simpler propositions or representing a sentence logically.
- We can create compound propositions with the help of logical connectives.
- There are mainly five connectives, which are given as follows:
 - Negation
 - Conjunction
 - Disjunction
 - Implication
 - Biconditional

Negation

- A sentence such as \neg P is called negation of P.
- A literal can be either Positive literal or negative literal.
- For example: \neg P: The sky is not blue.

• Conjunction:

- Conjunction of two propositions P and Q is denoted by P ∧ Q and is read as "P and Q's".
- The conjunction is true only if both P and Q are true.
- For example: $P \land Q$: The sky is blue and the grass is green.
- Example: Rohan is intelligent and hardworking.
 - p= Rohan is intelligent, q= Rohan is hardworking. \rightarrow p \land q.

• Disjunction:

- Disjunction of two propositions P and Q is denoted by P V Q and is read as "P or Q".
- The disjunction is true if at least one of P and Q is true.
- For example: P V Q: The sky is blue or the grass is green.
- For example: "Ritika is a doctor or Engineer",
 - P= Ritika is Doctor. Q= Ritika is Doctor, so we can write P V Q.

For Negation:

P	⊐P	
True	False	
False	True	

For Conjunction:

P	Q	PΛQ
True	True	True
True	False	False
False	True	False
False	False	False

For disjunction:

P	Q	PVQ.
True	True	True
False	True	True
True	False	True
False	False	False

• Implication:

- Implication of two propositions p and q is denoted by $p \rightarrow q$ and is read as "if p then q".
- For example, Let P= It is raining, and Q= Street is wet, If it is raining, then the street is wet, is written as $P \rightarrow Q$
- Let, P: Ram goes to school daily, Q: Ram gets good marks.

P	Q	P→ Q
True	True	True
True	False	False
False	True	True
False	False	True

The implication is false only if p is true and q is false.

• Biconditional:

- A sentence such as $P \Leftrightarrow Q$ is a Biconditional sentence,
- Examples,
- If I am breathing, then I am alive
 - P = I am breathing, Q = I am alive, represented as $P \Leftrightarrow Q$.
- I will eat lunch if and only if my mood improves.

For Biconditional:

P	Q	P⇔ Q
True	True	True
True	False	False
False	True	False
False	False	True

Connective symbols	Word	Technical term	Example
Λ	AND	Conjunction	AΛB
V	OR	Disjunction	AVB
→	Implies	Implication	$A \rightarrow B$
\Leftrightarrow	If and only if	Biconditional	A⇔ B
¬or∼	Not	Negation	¬ A or ¬ B

Precedence of connectives

Precedence	Operators
First Precedence	Parenthesis
Second Precedence	Negation
Third Precedence	Conjunction(AND)
Fourth Precedence	Disjunction(OR)
Fifth Precedence	Implication
Six Precedence	Biconditional

Properties of Operators

Commutativity:

- $P \land Q = Q \land P$, or
- $P \lor Q = Q \lor P$.

Identity element:

- $P \wedge True = P$,
- P V True= True.

• DE Morgan's Law:

- $\neg (P \land Q) = (\neg P) \lor (\neg Q)$
- $\neg (P \lor Q) = (\neg P) \land (\neg Q).$

• Double-negation elimination:

•
$$\neg (\neg P) = P$$
.

• Associativity:

- $(P \land Q) \land R = P \land (Q \land R),$
- $(P \lor Q) \lor R = P \lor (Q \lor R)$

• Distributive:

- $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$.
- $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$.

Translations

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Translations

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \rightarrow q$
- We will go swimming only if it is sunny. $p \rightarrow r$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset. $s \rightarrow t$

- A preposition is **satisfiable** if it is possible to find an interpretation (model) that makes the preposition true.
 - There is at least one interpretation under which the preposition can evaluate to True.
- A preposition is **contingent** if and only if there is some interpretation that satisfies it and some interpretation that falsifies it.
 - For example, the preposition $(p \land q)$ is contingent. If p and q are both true, it is true. If p and q are both false, it is false.
- A sentence is **unsatisfiable** if and only if it is not satisfied by any truth assignment.
 - For example, the sentence $(p \land \neg p)$ is unsatisfiable. No matter what truth assignment we take, the sentence is always false.

- A preposition is **valid** if and only if all interpretations make the preposition true.
 - For example, the sentence (p $\lor \neg p$) is **valid**. If a truth assignment makes p true, then the first disjunct is true and the disjunction as a whole true. If a truth assignment makes p false, then the second disjunct is true and the disjunction as a whole is true.
- A preposition is **valid** iff its negation is **not satisfiable**.
- A preposition is satisfiable if it is either contingent or valid.

Check if following are unsatisfiable, contingent or valid

- $1. \qquad P \vee Q$
- 2. $(P \lor Q) \land \neg Q$
- 3. $(P \lor Q) \land \neg Q \rightarrow P$

Check if following are unsatisfiable, contingent or valid

- $1. \qquad P \vee Q$
- 2. $(P \lor Q) \land \neg Q$
- 3. $(P \lor Q) \land \neg Q \rightarrow P$

				valid sentence ?
P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True True True False	False True False False	True True True True