ДИСКРЕТНИ СТРУКТУРИ 1 ТЕОРИЯ 1

- **1.** $A \subseteq B$. Нека A и B са две множества. Казваме, че A е подмножество на B и бележим с $A \subseteq B$ тогава и само тогава, когато всеки елемент от A принадлежи и на B.
- **2.** A = B. Нека A и B са две множества. Казваме, че A е равно на B и бележим A = B тогава и само тогава, когато всеки елемент от A принадлежи и на B ($A \subseteq B$) и обратно всеки елемент от B принадлежи и на B ($A \subseteq B$).
- **3.** Разбиване на множество. Нека A е множество и за произволно $i \in I, A_i$ също е множество. Фамилията $\{A_i\}_{i \in I}$ наричаме разбиване на A , ако:
 - $\forall i \in I : A_i \neq \emptyset, A_i \in A$
 - $A_i \cap A_j = \emptyset$, за всяко $i \neq j, i, j \in I$;
 - $\bullet \quad \bigcup_{i \in I} A_i = A$
- **4.** $x \in \bigcup_{i=0}^n A_i$. Елементът x принадлежи на обединението на множествата A_0, A_1, \dots, A_n тогава и само тогава, когато x принадлежи на <u>поне</u> едно от множествата A_0, A_1, \dots, A_n .
- **5.** $x\in\bigcap_{i=0}^nA_i$. Елементът x принадлежи на сечението на множествата A_0,A_1,\ldots,A_n тогава и само тогава, когато x принадлежи на $\underline{\textit{всяко}}$ едно от множествата A_0,A_1,\ldots,A_n .
- **6.** $x \in A_0 \times A_1 \times \ldots \times A_n$. $\exists a_o \in A_0, a_1 \in A_1, \ldots, a_n \in A_n$ такива, че $x = (a_0, a_1, \ldots, a_n)$ е наредена n+1-орка.
- **7.** Бинарна релация в A. n-местна релация в A се нарича всяко подмножество R на декартовото произведение $A \times A \times \ldots \times A = A^n$,
- т.е. $R \subseteq A^n$. В частност, ако n=2, релацията R наричаме бинарна (двуместна) релация и бележим $R \subseteq A \times A$.
- **8.** Рефлексивна релация. Нека R е бинарна релация в $A \neq \emptyset$. Казваме, че R е рефлексивна, ако за произволно $a \in A$ е изпълнено $(a,a) \in R$.

- **9.** Антирефлексивна релация. Нека R е бинарна релация в $A \neq \emptyset$. Казваме, че E е антирефлексивна, ако за произволно $a \in A$ е изпълнено $(a,a) \notin R$.
- **10.** Симетрична релация. Нека R е бинарна релация в $A \neq \emptyset$. Казваме, че R е симетрична, ако за всеки два *различни* елемента $b \in A$ е изпълнено: ако $(a,b) \in R$ и $(b,a) \in R$, то a=b.
- **11.** Антисиметрична релация. Нека R е бинарна релация в $A \neq \emptyset$. Казваме, че R е антисиметрична, ако за всеки два <u>различни</u> елемента $a,b \in A$ е изпълнено: ако $(a,b) \in R$, то $(b,a) \in R$.
- **12.** Транзитивна релация. Нека R е бинарна релация в $A \neq \emptyset$. Казваме, че R е транзитивна, ако за всеки три елемента $a,b,c \in A$ е изпълнено: ако $(a,b) \in R$ и $(b,c) \in R$, то $(a,c) \in R$. При проверка за транзитивност взимаме произволни различни a,b,c.
- **13.** Релация на еквивалентност. Нека R е бинарна релация в $A \neq \emptyset$. Казваме, че R е релация на еквивалентност, ако R е едновременно рефлексивна, симетрична и транзитивна.
- **14.** Частична наредба. Нека R е бинарна релация в $A \neq \emptyset$. Казваме, че R е частична наредба, ако R е едновременно рефлексивна, антисиметрична и транзитивна.
- **15.** Инективно изображение. Нека $f: A \to B$. Казваме, че функцията f е инективна (*инекция*), ако образите на всеки два различни елемента $a,b \in A$ са различни, т.е. $\forall a \neq b (f(a) \neq f(b))$.
- **16.** Сюрективно изображение. Нека $f:A\to B$. Казваме, че функцията f е сюрективна (*сюрекция*), ако за всеки елемент $b\in B$, съществува $a\in A$, такъв че f(a)=b.
- 17. Изброимо множество. Всяко крайно множество, както и всяко <u>безкрайно</u> множество, от което съществува <u>биекция</u> в множеството на <u>естествените</u> числа е изброимо.
- **18.** Най-много изброимо множество. Казваме, че множеството A е най-много изброимо, ако A е крайно или ако A е изброимо.
- **19.** Крайно множество и брой на елементите му. Множеството A е крайно, ако $A \neq \emptyset$ или $\exists n \in N, n \geq 1$ и биекция $f: A \to I_n$. Естественото число |A| = 0, ако $A = \emptyset$ и |A| = n, в противен случай, наричаме брой на елементите на A.

- **20.** Клас на еквивалентност породен от елемент. Нека A е непразни множество и R е релация на еквивалентност в A. Клас на еквивалентност относно R, съдържащ елемента a се нарича следното множество: $[a]_R = \{b \mid b \in A \ \& bRa\}$
- **21.** Верига в ч.н.м. Нека < A, R> е частично наредено множество (ч.н.м.) и $B\subseteq A$. Казваме, че B е верига (<u>линейно наредено</u>), ако за всеки два елемента $a,b\in B$ е изпълнено, че a и b са <u>сравними</u> относно R.
- **22.** Антиверига в ч.н.м. Нека < A, R > е частично наредено множество (ч.н.м.) и $B \subseteq A$. Казваме, че B е антиверига (<u>линейно наредено</u>), ако за всеки два <u>различни</u> (<u>важно е да се отбележи, че са различни, защото все пак са несравними</u>) елемента $a,b \in B$ е изпълнено, че a и b са <u>несравними</u> относно R.
- **23.** Най-малък елемент на ч.н.м. Нека < A, R > е частично наредено множество (ч.н.м.). Казваме, че елементът $a \in A$ е най-малък, т.т.к. за всяко $b \in A$ е изпълнено $a \le b$.
- **24.** Най-голям елемент на ч.н.м. Нека < A, R > е частично наредено множество (ч.н.м.). Казваме, че елементът $a \in A$ е най-голям, т.т.к. за всяко $b \in A$ е изпълнено $a \ge b$.
- **25.** Минимален елемент на ч.н.м. Нека < A, R > е частично наредено множество (ч.н.м.). Казваме, че елементът $a \in A$ е минимален, т.т.к. не съществува елемент $b \in A$ такъв, че b < a.
- **26.** Максимален елемент на ч.н.м. Нека < A, R > е частично наредено множество (ч.н.м.). Казваме, че елементът $a \in A$ е максимален, т.т.к. не съществува елемент $b \in A$ такъв, че b > a.
- **27.** Твърденията за класовете на еквивалентност, свързани с разбиване на множеството. Нека A е непразно множество и R е релация на еквивалентност в A. Тогава $\{[a]_R | a \in A\}$ е разбиване на множеството A.

 $\{[a_i]\}_i \in I$:

- $a_i \in [a_i]_R \neq \emptyset$
- ako $a_i Ra_j$, to $[a_i] \cap [a_j] = \emptyset$;

$$\bigcup_{i \in I} [a_i]_R = A.$$

28. Твърденията за класовете на еквивалентност, свързани с това дали два елемента са в релация или не. Нека R е релация

на еквивалентност в A. Тогава за всеки два елемента $a,b\in A$ е изпълнено:

- ako aRb, to $[a]_R = [b]_R$;
- ako aRb, to $[a]_R \cap [b]_R = \emptyset$.
- 29. Свойства на изброимите множества.
 - Едно множество A е изброимо, ако елементите му могат да се подредят в безкрайна редица без повторения;
 - ullet Ако A е НМИ и A не е крайно, то A е изброимо;
 - Ако A е изброимо, то $A \times A = A^2$ също е изброимо;
 - Декартовото произведение $\mathbb{N} \times \mathbb{N}$, както и множеството на рационалните числа \mathbb{Q} са изброими множества, но множеството на реалните числа \mathbb{R} и множеството $2^{\mathbb{N}}$ не са изброими множества.
- 30. Свойства на най-много изброимите множества.
 - Едно множество е НМИ, т.т.к. е празно или елементите му могат да се подредят в безкрайна редица (може и с повторения);
 - Ако едно множество B е НМИ и $A\subseteq B$, то множеството A също е НМИ;
 - Ако A_1,A_2,\ldots,A_n са НМИ, то $\bigcup_{i=1}^n A_i$ е НМИ;
 - Ако $A_1,A_2,\ldots,A_n,\ldots$ е безкрайна редица от НМИ, то $\bigcup_{i=1}^\infty A_i$ също е НМИ.
- **31.** твърдението за съществуване на минимален/максимален елемент. Нека < A, R> е ч.н.м. и A е крайно. Тогава A притежава минимален и максимален елемент.
- **32.** Твърденията за топологична сортировка (влагане на ч.н.м. в линейно наредено множество). Нека < A, R > е ч.н.м. и A е крайно. Тогава съществува продължение R_1 на R, такова че $< A, R_1 >$ е линейно ч.н.м.

github.com/andy489