# Conceptos de Arquitectura de Computadoras

# Clase 6 RISC Computadoras de repertorio reducido

de instrucciones

NO se cumlple una instrucción en un ciclo de reloj, se decia eso y no es reaaaaaaaaaaaaaaaaa

# Historia de evolución (1)

Se separa el hardware del software

- El concepto de familia:
  - Introducido por IBM en su System/360 en 1964.
  - DEC PDP-8.
  - Separa la arquitectura de la implementación.
- Unidad de control microprogramada:
  - Idea propuesta por Wilkes en 1951.
  - Introducida por IBM en la línea S/360 en 1964.
- Memoria cache:
  - En 1968 en el IBM S/360 Modelo 85.

UC microprogramada: conjunto de pequeñas subrutinas cuyo objetivo era completar una determinada instrucción. Como cada instrucción tenía un objetivo chiquito, eran microprogramas CISC --> complejidad que tenia era que para cada instrucción un mini programa

# Historia de evolución (2)

- RAM de estado sólido Memoria de acceso aleatorio, se reemplazan las memorias que usaban las compus basadas en ferritas.
- Microprocesadores
  - comienzo con Intel 4004 en 1971. Solo procesaba 4 bits.
  - Variantes
    - propósito general
    - embebidos/empotrados
- Procesadores múltiples

Memoria CACHE: no está hecha para guardar información, esta hecha para dar VELOCIDAD a la respuesta.

Memorias de estado sólido: chips de la computación actual. Almacenan bits pero con un formato muy electrónico. Transistores

#### El paso siguiente – RISC

Tiene un repertorio reducido de instrucciones.

#### Computadoras de repertorio reducido de instrucciones

computadores pequeños todos en un dispositivo --> CPU, mem RAM, E/S.

- Características principales:
  - Gran número de registros de uso general ó mejorar tecnología de compiladores para optimizar el uso de los registros.
  - Repertorio de instrucciones limitado y sencillo.
  - Énfasis en la optimización de la segmentación de instrucciones.

Las operaciones involucradas en instrucciones no puedan ser realizadas por las otras operaciones. NO TENER REDUNDANCIA EN LAS OPERACIONES QUE REALIZO CON LAS INSTRUCCIONES. Ir por el camino único que puede darme una instrucción en particular

Limitación: repertorio de instrucciones limitado en cantidades para no tener instrucciones por cualquier lado. Esto nos lleva a tener operaciones cuasielementales. Con estas tenemos la ventaja de ubicarla y utilizarla en un cauce segmentado.

# Comparación de procesadores

computadoras de conjunto de instrucciones complejos

|                                         | Complex Instruction Set<br>(CISC)Computer |               |                | Reduced Instruction<br>Set (RISC) Computer |               | Superscalar |                |                |  |
|-----------------------------------------|-------------------------------------------|---------------|----------------|--------------------------------------------|---------------|-------------|----------------|----------------|--|
| Characteristic                          | IBM<br>370/168                            | VAX<br>11/780 | Intel<br>80486 | SPARC                                      | MIPS<br>R4000 | PowerPC     | Ultra<br>SPARC | MIPS<br>R10000 |  |
| Year developed                          | 1973                                      | 1978          | 1989           | 1987                                       | 1991          | 1993        | 1996           | 1996           |  |
| Number of instructions                  | 208                                       | 303           | 235            | 69                                         | 94            | 225         |                |                |  |
| Instruction size (bytes)                | 2–6                                       | 2-57          | 1-11           | 4                                          | 4             | 4           | 4              | 4              |  |
| Addressing modes                        | 4                                         | 22            | 11             | 1                                          | 1             | 2           | 1              | 1              |  |
| Number of general-<br>purpose registers | 16                                        | 16            | 8              | 40 - 520                                   | 32            | 32          | 40 - 520       | 32             |  |
| Control memory size<br>(Kbits)          | 420                                       | 480           | 246            | _                                          | _             | _           | _              | _              |  |
| Cache size (KBytes)                     | 64                                        | 64            | 8              | 32                                         | 128           | 16-32       | 32             | 64             |  |

#### Finalidad del CISC

- Facilitar el trabajo del escritor de compiladores.
- Mejorar la eficiencia de la ejecución:
  - Secuencias complejas de operaciones en microcódigo.
- Dar soporte a HLL más complejos.

#### Inconvenientes del CISC

- El software 'es' mucho más caro que el hardware.
- El nivel del lenguaje era cada vez más complicado.
- Salto semántico
  - Diferencias entre operaciones HLL y operaciones de la Arquitectura
- Todo esto conduce a:
  - Repertorios de instrucciones grandes
  - Más modos de direccionamiento
  - Varias sentencias de HLL implementadas en el Hardware
    - Por ejemplo, el CASE del VAX

# Características de la ejecución

#### Estudios sobre programas escritos en HLL

- Operaciones realizadas
  - Funcionamiento del procesador e interacción con memoria
- Operandos usados
  - Tipos y frecuencia de uso
    - Organización de la memoria y modos de direccionamiento
- Secuenciamiento de la ejecución
  - Organización del control y del cauce

#### Estudios dinámicos: medir durante la ejecución

#### Frecuencia dinámica relativa

|        | Aparición |    | Instr | uc. máquina | Referencias a memoria |    |  |  |
|--------|-----------|----|-------|-------------|-----------------------|----|--|--|
|        | dinámica  |    | (Pon  | deradas)    | (Ponderadas)          |    |  |  |
|        | Pascal C  |    | Pasc  | al C        | Pascal C              |    |  |  |
| Assign | 45        | 38 | 13    | 13          | 14                    | 15 |  |  |
| Loop   | 5         | 3  | 42    | 32          | 33                    | 26 |  |  |
| Call   | 15        | 12 | 31    | 33          | 44                    | 45 |  |  |
| If     | 29        | 43 | 11    | 21          | 7                     | 13 |  |  |
| GoTo   | -         | 3  | _     | -           | _                     | _  |  |  |
| Otras  | 6         | 1  | 3     | 1           | 2                     | 1  |  |  |

#### **Operaciones**

- Asignaciones:
  - Movimiento de datos.
- Estamentos condicionales (IF, LOOP):
  - Control secuencial.
- El procedimiento llamada/retorno consume mucho tiempo.
- Algunas instrucciones HLL conducen a muchas operaciones de código máquina.

#### **Operandos**

- Principalmente variables escalares locales.
- La optimización debe concentrarse en el acceso a la variables locales.

|                      | Pascal | С  | Promedio |
|----------------------|--------|----|----------|
| Constantes enteras   | 16     | 23 | 20       |
| Variables escalares  | 58     | 53 | 55       |
| Matrices/estructuras | 26     | 24 | 25       |

#### Llamadas a procedimientos

- Se consume mucho tiempo.
- Depende del número de parámetros tratados.
- Depende del nivel de anidamiento.
  - La mayoría de los programas no tienen una larga secuencia de llamadas seguida por la correspondiente secuencia de retornos.
  - La mayoría de las variables son locales.
  - Las referencias a operandos están muy localizadas.

#### Ventana de profundidad

#### Consecuencias

- Se puede ofrecer mejor soporte para los HLL optimizando las prestaciones de las características más usadas y que más tiempo consumen.
  - Usar un gran número de registros:
    - Optimizar las referencias a operandos
  - Prestar cuidadosa atención al diseño de los cauces de instrucciones:
    - Predicción de bifurcaciones, etc.
  - Es recomendable un repertorio con instrucciones simples (reducido)

# Amplio banco de registros

- Aproximación por Software:
  - El compilador es necesario para asignar registros.
  - Asignación de registros a las variables que se usen mas en un período de tiempo dado.
  - Requiere el uso de sofisticados algoritmos de análisis de programas.
- Aproximación por Hardware:
  - Utilización de más registros.
  - De esta manera, más variables pueden mantenerse en registros durante periodos de tiempo más largos.

#### Registros para variables locales

- Muchos Registros=>Reducir el acceso a memoria.
- Por estudios anteriores=> Almacenar las variables escalares locales en registros.

Problema: Cada llamada de procedimiento/función cambia la 'localidad'

- Los parámetros deben ser pasados.
- Los resultados tienen que ser devueltos.
- Las variables de los programas de llamada tienen que ser restauradas.

## Ventanas de registro

#### Por estudios realizados y con los registros:

- Se requieren pocos parámetros y variables locales en cada llamada.
- Hay limitación en la 'profundidad' de llamadas.
- Utilización de múltiples conjuntos pequeños de registros para c/llamada distinta.
- La llamada cambia el conjunto de registros a usar.
- Los retornos vuelven a cambiar al anterior conjunto de registros utilizado.

# Ventanas de registro (2)

- Tres áreas dentro de un conjunto de registros:
  - Registros de parámetros.
  - Registros de datos locales.
  - Registros temporales.
- Los registros temporales de un conjunto se solapan con los registros de parámetros del nivel más bajo adyacente.
  - Esto posibilita que los parámetros se pasen sin que exista transferencia de datos.

# Ventanas de registro solapadas



# Diagrama de buffer circular



## Variables globales

- El compilador asigna posiciones de memoria a las variables:
  - Ineficiente para variables globales a las que se accede frecuentemente.
- Incorporar al procesador un conjunto de registros para variables globales.
  - Dividir registros de la ventana en curso

#### Amplio banco de registros vs cache

#### Banco de registros amplio

- Todos los datos escalares locales
- Variables individuales
- Variables globales asignadas por el compilador
- Salvaguarda/restauración basadas en la profundidad de anidamiento

#### Cache

- Datos escalares locales recientemente usados
- Bloques de memoria
- Variables locales y globales usadas recientemente
- Salvaguarda/restauración basadas en el algoritmo de reemplazo

Direccionamiento de registro • Direccionamiento de memoria

# Optimización de uso de registros basada en el compilador

- Supongamos un pequeño número de registros
  - por ejemplo 16 o 32.
- El uso optimizado es responsabilidad del compilador
- Los programas HLL no tienen referencias explícitas a los registros.
  - Normalmente pensando en C registro int.

# Optimización de ... (2)

- Cada 'cantidad' del programa candidata se asigna a un registro simbólico o virtual.
- Asignar el número ilimitado de registros simbólicos a un número fijo de registros reales.
- Registros simbólicos que no se solapan pueden compartir el registro real.
- Si se agotan los registros reales, algunas de las variables se asignan a posiciones de memoria.
  - En la optimización se usa 'coloreado de grafos'

# ¿Por qué CISC?

- ¿Simplificación del compilador?
  - Ésta primera razón parece obvia
  - Instrucciones de máquina complejas son difíciles de aprovechar
  - La optimización es más difícil:↓ tamaño, † velocidad.
- ¿Programas más pequeños?
  - El programa ocupa menos memoria, pero la memoria hoy día es muy barata.
  - El número de bits de memoria que ocupa no tiene porqué ser más pequeño al tener menos instrucciones
    - Más instrucciones necesitan códigos de operación más largos.
    - Las referencias a registros necesitan menos bits.

# ¿Por qué CISC? (2)

- ¿Programas más rápidos?
  - Propensión a usar las instrucciones más sencillas.
  - Unidad de control más compleja.
  - Memoria de control del microprograma más grande.
  - Aumenta el tiempo de ejecución de las instrucciones simples.
- No está nada claro que la tendencia hacia CISC fuera la apropiada.

#### Características del RISC

- Una instrucción por ciclo. POR CICLO DE RELOJ
- Operaciones registro a registro. Por eso tenemos las máquinas de 3 direcciones
- Modos de direccionamiento sencillos. Que el hardware pueda ejecutar de la manera mas eficiente
- Formatos de instrucción sencillos.

- Diseño cableado (sin microcódigo). Las instrucciones se ejecutan con una decodificación binaria
- Formato de instrucción fijo. tamaño de instrucción es fijo
- Mayor tiempo/esfuerzo de compilación.

El compilador toma el lenguaje de alto nivrl y lo acomoda lo mejor posible a nivel del cauce

#### **RISC frente a CISC**

No existe una clara barrera diferenciadora.

- Muchos diseños incluyen características de ambos criterios.
  - Por ejemplo, PowerPC y Pentium II

# Algunos procesadores

| Processor   | Number<br>of<br>instruc-<br>tion<br>sizes | Max<br>instruc-<br>tion size<br>in bytes | Number of<br>addressing<br>modes | Indirect<br>addressing | Load/store<br>combined<br>with<br>arithmetic | Max<br>number of<br>memory<br>operands | Unaligned<br>addressing<br>allowed | Max<br>Number of<br>MMU uses | Number of<br>bits for<br>integer<br>register<br>specifier | Number of<br>bits for FP<br>register<br>specifier |
|-------------|-------------------------------------------|------------------------------------------|----------------------------------|------------------------|----------------------------------------------|----------------------------------------|------------------------------------|------------------------------|-----------------------------------------------------------|---------------------------------------------------|
| AMD29000    | 1                                         | 4                                        | 1                                | no                     | no                                           | 1                                      | no                                 | 1                            | 8                                                         | 3"                                                |
| MIPS R2000  | 1                                         | 4                                        | 1                                | no                     | no                                           | 1                                      | no                                 | 1                            | 5                                                         | 4                                                 |
| SPARC       | 1                                         | 4                                        | 2                                | no                     | no                                           | 1                                      | no                                 | 1                            | 5                                                         | 4                                                 |
| MC88000     | 1                                         | 4                                        | 3                                | no                     | no                                           | 1                                      | no                                 | 1                            | 5                                                         | 4                                                 |
| HP PA       | 1                                         | 4                                        | 10"                              | no                     | no                                           | 1                                      | no                                 | 1                            | 5                                                         | 4                                                 |
| IBM RT/PC   | 2°                                        | 4                                        | 1                                | no                     | no                                           | 1                                      | no                                 | 1                            | 4"                                                        | 3"                                                |
| IBM RS/6000 | 1                                         | 4                                        | 4                                | no                     | no                                           | 1                                      | yes                                | 1                            | 5                                                         | 5                                                 |
| Intel i860  | 1                                         | 4                                        | 4                                | no                     | no                                           | 1                                      | no                                 | 1                            | 5                                                         | 4                                                 |
| IBM 3090    | 4                                         | 8                                        | 25                               | пов                    | yes                                          | 2                                      | yes                                | 4                            | 4                                                         | 2                                                 |
| Intel 80486 | 12                                        | 12                                       | 15                               | пов                    | yes                                          | 2                                      | yes                                | 4                            | 3                                                         | 3                                                 |
| NSC 32016   | 21                                        | 21                                       | 23                               | yes                    | yes                                          | 2                                      | yes                                | 4                            | 3                                                         | 3                                                 |
| MC68040     | 11                                        | 22                                       | 44                               | yes                    | yes                                          | 2                                      | yes                                | 8                            | 4                                                         | 3                                                 |
| VAX         | 56                                        | 56                                       | 22                               | yes                    | yes                                          | 6                                      | yes                                | 24                           | 4                                                         | 0                                                 |
| Clipper     | 4"                                        | 8 °                                      | 9°                               | no                     | no                                           | 1                                      | 0                                  | 2                            | 4"                                                        | 3"                                                |
| Intel 80960 | 2"                                        | 8 °                                      | 9°                               | no                     | no                                           | 1                                      | yes a                              | _                            | 5                                                         | 3"                                                |

a RISC that does not conform to this characteristic.

CISC that does not conform to this characteristic.

## Controversia RISC y CISC

#### Cuantitativa:

 Comparación del tamaño de los programas y su velocidad de ejecución

#### Cualitativa:

 Revisión de soporte de lenguajes de alto nivel y uso óptimo de los recursos VLSI.

# Controversia RISC y CISC (2)

- Problemas de las comparaciones:
  - No existe un par de máquinas RISC y CISC directamente comparables.
  - No hay un conjunto de programas de prueba definitivo.
  - Dificultad para separar los efectos del hardware de los del compilador.
  - Mayoría de comparaciones con máquinas de "juguete", no con productos comerciales.
  - La mayoría de las máquinas son una mezcla de ambas.

#### Lecturas recomendadas

- Organización y Arquitectura de Computadores, W. Stallings, Capítulo 12. 5º edición.
- Diseño y evaluación de arquitecturas de computadores, M. Pardo y A. Guzmán, Capítulo 1. 1º ed.

www.cpu-world.com