EECS151: Introduction to Digital Design and ICs

Lecture 11 – CMOS

Bora Nikolić

Intel Unveils Second-Generation Neuromorphic Chip

October 5, 2021, Intel has unveiled its second-generation neuromorphic computing chip, Loihi 2, the first chip to be built on its Intel 4 process technology. Designed for research into cutting-edge neuromorphic neural networks, Loihi 2 brings a range of improvements. They include a new instruction set for neurons that provides more programmability, allowing spikes to have integer values beyond just 1 and 0, and the ability to scale into three-dimensional meshes of chips for larger systems.

Intel's Loihi 2 second-generation neuromorphic processor. (Source: Intel)

EETimes

Review

- Core FPGA building blocks:
 - Configurable Logic Blocks (CLBs)
 - Configurable Interconnect
 - Switch boxes
- Modern FPGA Designs:
 - BRAMs, DSPs, and Al Engines
- CMOS process is used for producing chips
 - Planar bulk process used up to 28nm node
 - finFET and FDSOI used below the 22nm node

MOS Transistors

3 Berkeley 6 6 6 6 NC SA

EECS151 L12 CMOS2
Nikolić, Fall 2021

MOS Transistors

Symbol

Polysilicon
Gate (G) (or metal)
Source (S) Drain (D)

Gate oxide

 N^+ diffusion

W

Confacts

- NMOS: Drain is at higher voltage
- PMOS: Source is at higher voltage

P-type

PMOS

Different Kinds of MOS Transistors

Planar bulk CMOS

Transistor Dimensions are Quantized

- FinFET widths are discrete ($W = kW_{unit}$)
 - k is an integer
- Lengths are quantized because of lithography
 - Also are quantized lower metal layers, contacts...

EECS151 L12 CMOS2
Nikolić, Fall 2021

Ohm's Law

Resistors

Physical resistors

W

$$R = \rho \frac{L}{TW}$$

Series and Parallel

• With two identical resistors, R

Equivalent to doubling length

Equivalent to doubling width

An n-Channel MOS Transistor

Polysilicon gate,
dielectric, and substrate form a
capacitor.

When $V_{GS} \le V_{Th}$ transistor is off

 $V_{DS} > 0$, transistor leaks $I_{DS} \sim nA$

An n-Channel MOS Transistor

When V_{GS}<V_{Th} transistor is off

 $V_G > V_{Th}$, small region near the surface turns from p-type to n-type.

nFet is on. Current is proportional to V_{DS}

An n-Channel MOS Transistor

$V_{\rm GD} < V_{\rm Th}$ transistor saturates

$$(V_{DS} > V_{GS} - V_{Th})$$

MOS Transistors

NMOS Transistor I-V characteristics

Old transistor

Nearly linear $I_{DS} \sim K(V_{GS}-V_{Th})$

~7nm transistor

Velocity Saturation

Carrier velocity in the channel saturates

- All submicron transistors are velocity saturated
- Other effects (drain-induced barrier lowering) cause I_{DS} to increase in saturation

Administrivia

- Homework 5 will be posted later this week, due next week
- No lab this week
 - Lab 6 (last) after the midterm
- Midterm 1 on October 7, 7-8:30pm
 - You will be assigned a classroom
 - One double-sided page of notes allowed
 - Material includes FPGAs

Nikolić, Fall 2021

MOS Transistor as a Switch

MOS Transistor as a Resistive Switch

- V_{GS} controls the switch
 - (it also charges the channel capacitor)

ON/OFF Switch Model of MOS Transistor

A More Realistic Model

• It is a dimmer!

A Logic Perspective

NMOS Transistor

PMOS Transistor

AND and OR

AND

$$F = AB$$

 $(F = AB + \overline{A} \cdot O)$

$$F = A+B$$

 $(F = A\cdot 1 + \overline{A}B)$

- Keep in mind single NMOS/PMOS transistors are imperfect switches!
 - Turns off when $|V_{GS}| = |V_{Th}|$

Peer Instruction

- Switch logic
- Which combination of inputs implements F = AB?

	R1	R2	R3	R4
a)	1	Χ	Χ	Х
b)	0	X	Χ	Х
c)	1	0	0	0
d)	1	1	1	0
e)	1	1	1	1
f)	None of the above			

Summary

- CMOS process is used for producing chips
 - Planar bulk process used up to 28nm node
 - finFET, FDSOI used below the 22nm node

Berkeley ©

EECS151 L12 CMOS2Nikolić, Fall 2021 22