TABLE A.1 Thermophysical Properties of Selected Metallic Solids^a

						'		Prop	erties at	Various '	Properties at Various Temperatures (K)	ures (K)			
	Molting		Properties	roperties at 300 K					k (W.	$(\mathbf{m}\cdot\mathbf{K})/c_p$	$k (W/m \cdot K)/c_p (J/kg \cdot K)$				
Composition	Point (K)	$ ho (kg/m^3)$	$\binom{c_p}{\mathrm{J/kg \cdot K}}$	$k = (W/m \cdot K)$	$\alpha \cdot 10^6$ (m ² /s)	100	200	400	009	800	1000	1200	1500	2000	2500
Aluminum Pure	933	2702	903	237	97.1	302	237	240	231	218					
Alloy 2024-T6 (4.5% Cu, 1.5% Mg, 0.6% Mn)	775	2770	875	177	73.0	65 473	163 787	186 925	186 1042						
Alloy 195, Cast (4.5% Cu)		2790	883	168	68.2			174	185						
Beryllium	1550	1850	1825	200	59.2	990	301 1114	161 2191	126 2604	106 2823	90.8 3018	78.7 3227	3519		
Bismuth	545	9780	122	7.86	6.59	16.5 112	9.69 120	7.04 127							
Boron	2573	2500	1107	27.0	9.76	190 128	55.5 600	16.8 1463	10.6 1892	9.60	9.85 2338				
Cadmium	594	8650	231	8.96	48.4	203	99.3 222	94.7 242							
Chromium	2118	7160	449	93.7	29.1	159 192	111	90.9	80.7 542	71.3 581	65.4 616	61.9	57.2 779	49.4 937	
Cobalt	1769	8862	421	99.2	26.6	167 236	122 379	85.4 450	67.4 503	58.2 550	52.1 628	49.3 733	42.5 674		
Copper Pure	1358	8933	385	401	117	482	413	393	379	366	352	339			
Commercial bronze	1293	8800	420	52	14	727	356 42 785	397 52 460	417 59 545	433	451	480			
Phosphor gear bronze (89% Cu. 11% Sn.)	1104	8780	355	54	17		5 4	65	5						
Cartridge brass (70% Cu 30% Zn)	1188	8530	380	110	33.9	75	95 360	137	149						
Constantan (55% Cu, 45% Ni)	1493	8920	384	23	6.71	17	19 362	,	ì						
Germanium	1211	5360	322	59.9	34.7	232	96.8 290	43.2 337	27.3 348	19.8 357	17.4 375	17.4 395			

Table A.1 Continued

								Prop	erties at	Various	Properties at Various Temperatures (K)	ures (K)			
	Melting		Propertie	Properties at 300 K					k (W/	$\mathbf{m}\cdot\mathbf{K})/c_p$	$k (W/m \cdot K)/c_p (J/kg \cdot K)$				
Composition	Point (K)	ρ (kg/m³)	$c_p = (J/\mathrm{kg} \cdot \mathrm{K})$	$k = (W/m \cdot K)$	$\begin{array}{c}\alpha\cdot10^6\\ (m^2/s)\end{array}$	100	200	400	009	800	1000	1200	1500	2000	2500
Gold	1336	19300	129	317	127	327 109	323 124	311	298 135	284 140	270 145	255 155			
Iridium	2720	22500	130	147	50.3	172 90	153 122	144 133	138	132 144	126 153	120 161	1111		
Iron Pure	1810	7870	447	80.2	23.1	134 216	94.0 384	69.5 490	54.7 574	43.3 680	32.8 975	28.3 609	32.1 654		
Armco (99.75% pure)		7870	447	72.7	20.7	95.6	80.6	65.7	53.1	42.2	32.3 975		31.4		
Carbon steels Plain carbon (Mn $\leq 1\%$, Si $\leq 0.1\%$)		7854	434	60.5	17.7			56.7 487	48.0 559		30.0				
AISI 1010		7832	434	63.9	18.8			58.7	48.8	39.2	31.3				
Carbon–silicon (Mn $\leq 1\%$, 0.1% $<$ Si $<$ 0.6%)		7817	446	51.9	14.9			487 49.8 501	559 44.0 582		29.3 29.3 971				
Carbon-manganese-silicon $(1\% < Mn \le 1.65\%, 0.1\% < Si \le 0.6\%)$		8131	434	41.0	11.6			42.2 487	39.7 559	35.0 685	27.6 1090				
Chromium (low) steels $\frac{1}{2}$ Cr- $\frac{1}{4}$ Mo-Si (0.18% C, 0.65% Cr, 0.23% Mo, 0.6% Si)		7822	444 444	37.7	10.9			38.2 492	36.7 575	33.3 688	26.9 969				
$1 \text{ Cr}^{-\frac{1}{2}}\text{Mo}$ (0.16% C, 1% Cr,		7858	442	42.3	12.2			42.0 492	39.1 575	34.5 688	27.4 969				
0.34% MO, 0.39% 31) 1 Cr–V (0.2% C, 1.02% Cr, 0.15% V)		7836	443	48.9	14.1			46.8 492	42.1 575	36.3	28.2 969				

						90 86 380 459				79.1 347		9.4	179	51.9	112 376			64.1 65.6 172 189		
	31.7	780				98 98 330 38	82.6	010	33.0		110 307		165 17 76					62.2 6 160 17		
	28.0					105 308	76.2		27.6		102 291	82.6	157	45.7 162	116 327	25.7 967	361 292	61.0 155	58.7 167	
25.4	25.4	24.2 602	24.7 606			112 295	71.8	705	24.0 626		94.2 281	78.7	152	44.6 156	121	31.2 946	379 277	60.2 152	56.9 156	
22.8	22.6 587	282 21.3 576	21.9 585		146 1267	118 285	67.6	230 21 545	20.5 546	61.3	86.9 271	75.6	146	44.1 151	127 293	42.2 913	396 262	59.4 149	56.9 145	
20.0	19.8	18.3 550	18.9 559	31.4	149 1170	126 275	65.6	392 16 525	17.0 510	58.2 283	79.7 261	73.2	141	44.2 145	136 274	61.9 867	412 250	58.6 146	55.8 134	
17.3	16.6 16.6 515	15.2 504	15.8 513	34.0 132	153 1074	134 261	80.2	483 480 480	13.5 473	55.2 274	73.6 251	71.8	136	46.1 139	146 253	98.9	425 239	57.8 144	54.5 124	62.2
	12.6	70		36.7 125	159 934	143 224	107	283	10.3 372	52.6 249	71.6 227	72.6	125	51.0	154 220	264 556	430 225	57.5 133	54.6 112	73.3
	9.2	7				179 141	164	727	8.7		76.5 168	77.5	100	58.9 97	186 147	884 259	444 187	59.2 110	59.8 99	85.2
3.91	3.95	3.48	3.71	24.1	87.6	53.7	23.0	3.4	3.1	23.6	24.5	25.1	17.4	16.7	49.6	89.2	174	24.7	39.1	40.1
15.1	14.9	13.4	14.2	35.3	156	138	2.06	12	11.7	53.7	71.8	71.6	47	47.9	150	148	429	57.5	54.0	9.99
480	477	468	480	129	1024	251	444	420	439	265	244	133	162	136	243	712	235	140	118	227
8055	7900	8238	7978	11340	1740	10240	8900	8400	8510	8570	12020	21450	16630	21100	12450	2330	10500	16600	11700	7310
	1670			601	923	2894	1728	1672	1665	2741	1827	2045	1800	3453	2236	1685	1235	3269	2023	505
Stainless steels AISI 302	AISI 304	AISI 316	AISI 347	Lead	Magnesium	Molybdenum	Nickel Pure	Nichrome (80% Ni. 20% Cr)	Inconel X-750 (73% Ni, 15% Cr, 6.7% Fe)	Niobium	Palladium	Platinum Pure	Alloy 60Pt-40Rh	Rhenium	Rhodium	Silicon	Silver	Tantalum	Thorium	Tin

TABLE A.1 Continued

								Prop	erties at	Various 1	Properties at Various Temperatures (K)	ures (K)			
	Melting		Properties	operties at 300 K					k (W/1	$\mathbf{n} \cdot \mathbf{K})/c_p$	$k (W/m \cdot K)/c_p (J/kg \cdot K)$	_			
Composition	Point (K)	$\begin{pmatrix} \rho & c_t \\ (\text{kg/m}^3) & (\text{J/kg}) \end{pmatrix}$	$\binom{c_p}{\mathrm{J/kg}\cdot\mathrm{K}}$	$k = (W/m \cdot K)$	$\begin{array}{c}\alpha\cdot 10^6\\ (m^2/s)\end{array}$	100	200	400	009	800	1000	1200	1500	2000	2500
Titanium	1953	4500	522	21.9	9.32	30.5	24.5 465	20.4 551		19.7	20.7		24.5 686		
Tungsten	3660	19300	132	174	68.3	208	186 122	159 137	137	125 145	118 148	113 152	107	100	95
Uranium	1406	19070	116	27.6	12.5	21.7 94	25.1 108	29.6 125		38.8 176	43.9				
Vanadium	2192	6100	489	30.7	10.3	35.8 258	31.3 430	31.3	33.3 540	35.7 563	38.2 597	40.8	44.6 714	50.9 867	
Zinc	663	7140	389	116	41.8	117 297	118 367	1111	103 436						
Zirconium	2125	6570	278	22.7	12.4	33.2 205	25.2 264	21.6	20.7 322	21.6 342	23.7 362	26.0 344	28.8 344	33.0 344	

^aAdapted from References 1–7.

TABLE A.2 Thermophysical Properties of Selected Nonmetallic Solids^a

								Pro	perties a	Properties at Various Temperatures (K)	Tempera	tures (K)			
	Molting		Propertic	Properties at 300 K					k (W	$k (W/m \cdot K)/c_p (J/kg \cdot K)$, (J/kg · K	(2			
Composition	Point (K)	(kg/m^3)	$\binom{c_p}{\mathrm{J/kg\cdot K}}$	$k = (W/m \cdot K)$	$\alpha \cdot 10^6$ (m ² /s)	100	200	400	009	800	1000	1200	1500	2000 2500	9
Aluminum oxide, sapphire	2323	3970	765	46	15.1	450	82	32.4 940		13.0 1180	10.5 1225				
Aluminum oxide, polycrystalline	2323	3970	765	36.0	11.9	133	55	26.4 940			7.85 1225	6.55	5.66	00.9	
Beryllium oxide	2725	3000	1030	272	88.0			196 1350	111 1690	70 1865	47 1975		21.5	15 2750	
Boron	2573	2500	1105	27.6	66.6	190	52.5	18.7 1490			6.3 2350	5.2 2555			
Boron fiber epoxy	290	2080													
k , \parallel to fibers k , \perp to fibers c_p			1122	2.29		2.10 0.37 364	2.23 0.49 757	2.28 0.60 1431							
Carbon Amorphous	1500	1950	I	1.60	I	0.67	1.18	1.89	2.19	2.37	2.53	2.84	3.48		
Diamond, type IIa insulator		3500	509	2300		10,000	4000 194								
Graphite, pyrolytic k , \parallel to layers k , \perp to layers c ,	2273	2210	709	1950 5.70		~	3230 9.23 411	60	892 2.68 1406	667 2.01 1650	534 1.60 1793	448 1.34 1890	357 1.08 1974	262 0.81 2043	
Graphite fiber epoxy (25% vol) composite k , heat flow \parallel to fibers	450	1400		11.1			8.7								
k , heat flow \perp to fibers c_p Pyroceram, Corning 9606	1623	2600	935	3.98	1.89	0.46 337 5.25	0.68 642 4.78	1.1 1216 3.64 908	3.28 1038	3.08	2.96	2.87	2.79		

TABLE A.2 Continued

								Pro	perties at	Properties at Various Temperatures (K)	Tempera	tures (K)			
	Molting		Propertic	rties at 300 K					k (W.	$k (W/m \cdot K)/c_p (J/kg \cdot K)$	(J/kg·K	(C)			
Composition	Point (K)	ho (kg/m ³)	ρ (kg/m^3) $(J/kg \cdot K)$	k (W/m·K)	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	100	200	400	009	800	1000	1200	1500	2000	2500
Silicon carbide	3100	3160	675	490	230				 1050		87 1195	58 1243	30 1310		
Silicon dioxide, crystalline (quartz)	1883	2650													
k , \parallel to c axis k , \perp to c axis				10.4 6.21		39 20.8	16.4			4.2					
C_p			745												
Silicon dioxide, polycrystalline (fused silica)	1883	2220	745	1.38	0.834	69.0	1.14	1.51	1.75 1040	2.17	2.87 1155	4.00			
Silicon nitride	2173	2400	691	16.0	9.65		578	13.9	11.3 937	9.88	8.76 1155	8.00 1226	7.16	6.20	
Sulfur	392	2070	708	0.206	0.141	65	0.185 606								
Thorium dioxide	3573	9110	235	13	6.1				6.6 274	4.7 285	3.68	3.12	2.73 315	2.5	
Titanium dioxide, polycrystalline	2133	4157	710	4.8	2.8			7.01	5.02 880	3.94 910	3.46 930	3.28 945			
0 4 1 1 1 1 1 1 1 1	71 00	, ,													

^aAdapted from References 1, 2, 3 and 6.

 Table A.3
 Thermophysical Properties of Common Materials^a

$Structural\ Building\ Materials$

		Typical Properties at 300	K
Description/Composition	Density, ρ (kg/m ³)	Thermal Conductivity, k (W/m · K)	Specific Heat, c_p (J/kg · K)
Building Boards			
Asbestos-cement board	1920	0.58	_
Gypsum or plaster board	800	0.17	_
Plywood	545	0.12	1215
Sheathing, regular density	290	0.055	1300
Acoustic tile	290	0.058	1340
Hardboard, siding	640	0.094	1170
Hardboard, high density	1010	0.15	1380
Particle board, low density	590	0.078	1300
Particle board, high density Woods	1000	0.170	1300
Hardwoods (oak, maple)	720	0.16	1255
Softwoods (fir, pine)	510	0.12	1380
Masonry Materials			
Cement mortar	1860	0.72	780
Brick, common	1920	0.72	835
Brick, face	2083	1.3	
Clay tile, hollow			
1 cell deep, 10 cm thick		0.52	
3 cells deep, 30 cm thick Concrete block, 3 oval cores	_	0.69	_
Sand/gravel, 20 cm thick		1.0	
Cinder aggregate, 20 cm thick		0.67	
Concrete block, rectangular core			_
2 cores, 20 cm thick, 16 kg	_	1.1	_
Same with filled cores	_	0.60	_
Plastering Materials			
Cement plaster, sand aggregate	1860	0.72	_
Gypsum plaster, sand aggregate	1680	0.22	1085
Gypsum plaster, vermiculite aggregate	720	0.25	_

 Table A.3
 Continued

Insulating Materials and Systems

		Typical Properties at 300	K
Description/Composition	Density, ρ (kg/m ³)	Thermal Conductivity, k (W/m · K)	Specific Heat, c_p (J/kg · K)
Blanket and Batt			
Glass fiber, paper faced	16	0.046	_
	28	0.038	_
	40	0.035	_
Glass fiber, coated; duct liner	32	0.038	835
Board and Slab			
Cellular glass	145	0.058	1000
Glass fiber, organic bonded	105	0.036	795
Polystyrene, expanded			
Extruded (R-12)	55	0.027	1210
Molded beads	16	0.040	1210
Mineral fiberboard; roofing	265	0.049	
material	200	0.0.5	
Wood, shredded/cemented	350	0.087	1590
Cork	120	0.039	1800
Loose Fill	120	0.029	1000
	160	0.045	
Cork, granulated Diatomaceous silica, coarse	350	0.043	_
Powder	400	0.009	_
Diatomaceous silica, fine powder	200	0.052	_
Diatomaceous sinca, fine powder	275	0.052	_
Glass fiber, poured or blown	16	0.043	835
Vermiculite, flakes	80	0.043	835 835
verificulte, flakes	160	0.063	1000
E 1/E 1' N	100	0.003	1000
Formed/Foamed-in-Place	100	0.046	
Mineral wool granules with	190	0.046	_
asbestos/inorganic binders,			
sprayed		0.100	
Polyvinyl acetate cork mastic;	_	0.100	_
sprayed or troweled	70	0.026	1045
Urethane, two-part mixture;	70	0.026	1045
rigid foam			
Reflective			
Aluminum foil separating fluffy	40	0.00016	_
glass mats; 10-12 layers, evacuated;			
for cryogenic applications (150 K)			
Aluminum foil and glass paper	120	0.000017	_
laminate; 75–150 layers; evacuated;			
for cryogenic application (150 K)			
Typical silica powder, evacuated	160	0.0017	_

TABLE A.3 Continued
Industrial Insulation

Description/	Maximum	Typical Density			Typica	ıl Theri	nal Con	ductivit	y, k (W/	m·K),	at Varic	Typical Thermal Conductivity, k (W/m \cdot K), at Various Temperatures (K)	peratur	es (K)		
Composition	Temperature (K)	(kg/m ³)	200	215	230	240	255	270	285	300	310	365	420	530	645	750
Blankets District mineral fiber	000	06 102									0.030	2000	9500	0700		
Dialivet, lillielal 110el,	920	261-06 40 06									0.030	0.040	0.000	0.070		
Blanket mineral fiber	015	10				0.036	0.038	0.040	0.043	0.048	0.050	0.076	0.00	0.000		
glass; fine fiber,	È	QT.				0.00	0.00	2	F 0.0	0.0	20.0	0.0.0				
organic bonded		12				0.035	0.036	0.039	0.042	0.046	0.049	0.069				
		16				0.033	0.035	0.036	0.039	0.042	0.046	0.062				
		24				0.030	0.032	0.033	0.036	0.039	0.040	0.053				
		32				0.029	0.030	0.032	0.033	0.036	0.038	0.048				
Disalest olympias		0				0.027	0.029	0.030	0.032	0.033	0.033	0.04				
Dianket, amınına– silica fiher	1530	48												0.071	0.105	0.150
		2 2												0.050	0.087	0.135
		5 6												0.050	0.097	0.120
		128												0.049	0.068	0.091
Felt, semirigid;	480	50-125						0.035	0.036	0.038	0.039	0.051	0.063			
organic bonded	730	20	0.023	0.025	0.026	0.027	0.029	0.030	0.032	0.033	0.035	0.051	0.079			
Felt, laminated;																
no binder	920	120											0.051	0.065	0.087	
Blocks, Boards, and																
Pipe Insulations																
Asbestos paper,																
laminated and																
corrugated																
4-ply	420	190								0.078	0.082	0.098				
6-ply	420	255								0.071	0.074	0.085				
8-ply	420	300								0.068	0.071	0.082				
Magnesia, 85%	290	185									0.051	0.055	0.061			
Calcium silicate	920	190									0.055	0.059	0.063	0.075	0.089	0.104

Table A.3 Continued

Industrial Insulation (Continued)

Docorintion/	Maximum	Typical Density			Typica	l Thern	nal Cono	luctivity	', k (W/I	n · K), ε	Typical Thermal Conductivity, k (W/m \cdot K), at Various Temperatures (K)	us Tem	eratur	es (K)		
Composition	Temperature (K)	(kg/m³)	200	215	230	240	255	270	285	300	310	365	420	530	645	750
Cellular glass Diatomaceous	700 1145	145 345			0.046	0.048	0.051	0.052	0.055	0.058	0.062	0.069	0.079	0.092	0.098	0.104
Silica Polystyrana rigid	1310	385												0.101	0.100	0.115
Extruded (R-12)	350	56	0.023	0.023	0.022	0.023	0.023	0.025	0.026	0.027	0.029					
Extruded (R-12)	350	35	0.023	0.023	0.023	0.025	0.025	0.026	0.027	0.029						
Molded beads	350	16	0.026	0.029	0.030	0.033	0.035	0.036	0.038	0.040						
Rubber, rigid																
foamed	340	70						0.029	0.030	0.032	0.033					
Insulating Cement Mineral fiber																
(rock, slag or glass)																
With clay binder	1255	430									0.071	0.079	0.088	0.105	0.123	
With hydraulic setting binder	922	260									0.108	0.115	0.123	0.137		
Loose Fill																
Cellulose, wood																
or paper pulp		45							0.038	0.039	0.042					
Perlite, expanded	1	105	0.036	0.039	0.042	0.043	0.046	0.049	0.051	0.053	0.056					
Vermiculite,																
expanded	I	122			0.056	0.058	0.061	0.063	0.065	0.068	0.071					
		80			0.049	0.051	0.055	0.058		0.063	990.0					

 TABLE A.3
 Continued

$Other\ Materials$

Description/ Composition	Temperature (K)	Density, ρ (kg/m ³)	Thermal Conductivity, k (W/m · K)	Specific Heat, c_p (J/kg · K)
Asphalt	300	2115	0.062	920
Bakelite	300	1300	1.4	1465
Brick, refractory				
Carborundum	872	_	18.5	
	1672	_	11.0	_
Chrome brick	473	3010	2.3	835
	823		2.5	
T	1173		2.0	
Diatomaceous	478	_	0.25	
silica, fired	1145	2050	0.30	060
Fireclay, burnt 1600 K	773 1073	2030	1.0 1.1	960
	1373	_	1.1	
Fireclay, burnt 1725 K	773	2325	1.3	960
Theolay, built 1725 It	1073	2323	1.4	700
	1373		1.4	
Fireclay brick	478	2645	1.0	960
•	922		1.5	
	1478		1.8	
Magnesite	478		3.8	1130
	922	_	2.8	
	1478		1.9	
Clay	300	1460	1.3	880
Coal, anthracite	300	1350	0.26	1260
Concrete (stone mix)	300	2300	1.4	880
Cotton	300	80	0.06	1300
Foodstuffs				
Banana (75.7%				
water content)	300	980	0.481	3350
Apple, red (75%	200	0.40	0.512	2600
water content)	300	840	0.513	3600
Cake, batter	300	720	0.223	
Cake, fully baked Chicken meat, white	300 198	280	0.121 1.60	_
(74.4% water content)	233		1.49	_
(74.476 water content)	253		1.35	
	263		1.20	
	273		0.476	
	283		0.480	
	293		0.489	
Glass				
Plate (soda lime)	300	2500	1.4	750
Pyrex	300	2225	1.4	835

 Table A.3
 Continued

Other Materials (Continued)

Description/ Composition	Temperature (K)	Density, ho (kg/m ³)	Thermal Conductivity, <i>k</i> (W/m · K)	Specific Heat, c_p (J/kg · K)
Ice	273 253	920	1.88 2.03	2040 1945
Leather (sole)	300	998	0.159	
Paper	300	930	0.180	1340
Paraffin	300	900	0.240	2890
Rock Granite, Barre Limestone, Salem Marble, Halston Quartzite, Sioux Sandstone, Berea Rubber, vulcanized Soft Hard Sand Soil Snow	300 300 300 300 300 300 300 300 300 273	2630 2320 2680 2640 2150 1100 1190 1515 2050 110 500	2.79 2.15 2.80 5.38 2.90 0.13 0.16 0.27 0.52 0.049 0.190	775 810 830 1105 745 2010 — 800 1840 —
Teflon	300 400	2200	0.35 0.45	_
Tissue, human Skin Fat layer (adipose) Muscle	300 300 300	_ _ _	0.37 0.2 0.5	_ _ _
Wood, cross grain Balsa Cypress Fir Oak Yellow pine White pine	300 300 300 300 300 300	140 465 415 545 640 435	0.055 0.097 0.11 0.17 0.15 0.11	2720 2385 2805 —
Oak Fir	300 300	545 420	0.19 0.14	2385 2720

^aAdapted from References 1 and 8–13.

TABLE A.4 Thermophysical Properties of Gases at Atmospheric Pressure^a

		-					
\boldsymbol{T}	ρ	c_p	$\mu \cdot 10^7$	$v \cdot 10^6$	$k \cdot 10^3$	$\alpha \cdot 10^6$	
(K)	(kg/m^3)	$(kJ/kg \cdot K)$	$(\mathbf{N} \cdot \mathbf{s/m}^2)$	(m^2/s)	$(\mathbf{W/m \cdot K})$	(m^2/s)	Pr
Air. M	= 28.97 kg/k	xmol					
	_		71.1	2.00	0.24	2.54	0.706
100 150	3.5562	1.032	71.1	2.00 4.426	9.34	2.54 5.84	0.786
200	2.3364 1.7458	1.012 1.007	103.4 132.5	7.590	13.8 18.1	10.3	0.758 0.737
250	1.7438	1.007	159.6	11.44	22.3	15.9	0.737
300	1.3947	1.007	184.6	15.89	26.3	22.5	0.720
300	1.1014	1.007	164.0	13.09	20.3	22.3	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5004	1.051	205.0	52.60	46.0	76.0	0.605
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1300	0.2679	1.173	496.0	185.1	82	257	0.728
1400	0.2488	1.207	530	213	91	303	0.713
1500	0.2322	1.230	557	240	100	350	0.685
1600	0.2322	1.248	584	268	106	390	0.688
1700	0.2049	1.267	611	298	113	435	0.685
1800	0.1935	1.286	637	329	120	482	0.683
1900	0.1833	1.307	663	362	128	534	0.677
2000	0.1741	1.337	689	396	137	589	0.672
2100	0.1658	1.372	715	431	147	646	0.667
2200	0.1582	1.417	740	468	160	714	0.655
2300	0.1513	1.417	766	506	175	783	0.633
2400	0.1313	1.558	792	547	196	869	0.630
2500	0.1389	1.665	818	589	222	960	0.613
3000	0.1369	2.726	955	841	486	1570	0.536
Ammo	nia (NH) M	= 17.03 kg/kmo	J				
	-	_		147	247	16.6	0.007
300	0.6894	2.158	101.5	14.7	24.7	16.6	0.887
320	0.6448	2.170	109	16.9	27.2	19.4	0.870
340	0.6059	2.192	116.5	19.2	29.3	22.1	0.872
360	0.5716	2.221	124	21.7	31.6	24.9	0.872
380	0.5410	2.254	131	24.2	34.0	27.9	0.869

 TABLE A.4
 Continued

<i>T</i> (K)	ρ (kg/m ³)	$c_p \ (\mathbf{k} \mathbf{J}/\mathbf{kg} \cdot \mathbf{K})$	$\frac{\mu \cdot 10^7}{(\text{N} \cdot \text{s/m}^2)}$	v·10 ⁶ (m ² /s)	$\frac{k \cdot 10^3}{(\text{W/m} \cdot \text{K})}$	$\frac{\alpha \cdot 10^6}{\text{(m}^2/\text{s)}}$	Pr
Ammo	nia (NH ₃) (co	ontinued)					
400	0.5136	2.287	138	26.9	37.0	31.5	0.853
420	0.4888	2.322	145	29.7	40.4	35.6	0.833
440	0.4664	2.357	152.5	32.7	43.5	39.6	0.826
460	0.4460	2.393	159	35.7	46.3	43.4	0.822
480	0.4273	2.430	166.5	39.0	49.2	47.4	0.822
500	0.4101	2.467	173	42.2	52.5	51.9	0.813
520	0.3942	2.504	180	45.7	54.5	55.2	0.827
540	0.3795	2.540	186.5	49.1	57.5	59.7	0.824
560	0.3708	2.577	193	52.0	60.6	63.4	0.827
580	0.3533	2.613	199.5	56.5	63.8	69.1	0.817
Carbon	n Dioxide (Co	O_2), $\mathcal{M} = 44.01 \text{ k}$	g/kmol				
280	1.9022	0.830	140	7.36	15.20	9.63	0.765
300	1.7730	0.851	149	8.40	16.55	11.0	0.766
320	1.6609	0.872	156	9.39	18.05	12.5	0.754
340	1.5618	0.891	165	10.6	19.70	14.2	0.746
360	1.4743	0.908	173	11.7	21.2	15.8	0.741
380	1.3961	0.926	181	13.0	22.75	17.6	0.737
400	1.3257	0.942	190	14.3	24.3	19.5	0.737
450	1.1782	0.981	210	17.8	28.3	24.5	0.728
500	1.0594	1.02	231	21.8	32.5	30.1	0.725
550	0.9625	1.05	251	26.1	36.6	36.2	0.721
600	0.8826	1.08	270	30.6	40.7	42.7	0.717
650	0.8143	1.10	288	35.4	44.5	49.7	0.712
700	0.7564	1.13	305	40.3	48.1	56.3	0.717
750	0.7057	1.15	321	45.5	51.7	63.7	0.714
800	0.6614	1.17	337	51.0	55.1	71.2	0.716
Carbon	n Monoxide (CO), $\mathcal{M} = 28.01$	kg/kmol				
200	1.6888	1.045	127	7.52	17.0	9.63	0.781
220	1.5341	1.044	137	8.93	19.0	11.9	0.753
240	1.4055	1.043	147	10.5	20.6	14.1	0.744
260	1.2967	1.043	157	12.1	22.1	16.3	0.741
280	1.2038	1.042	166	13.8	23.6	18.8	0.733
300	1.1233	1.043	175	15.6	25.0	21.3	0.730
320	1.0529	1.043	184	17.5	26.3	23.9	0.730
340	0.9909	1.044	193	19.5	27.8	26.9	0.725
360	0.9357	1.045	202	21.6	29.1	29.8	0.725
380	0.8864	1.047	210	23.7	30.5	32.9	0.729
400	0.8421	1.049	218	25.9	31.8	36.0	0.719
450	0.7483	1.055	237	31.7	35.0	44.3	0.714
500	0.67352	1.065	254	37.7	38.1	53.1	0.710
550	0.61226	1.076	271	44.3	41.1	62.4	0.710
600	0.56126	1.088	286	51.0	44.0	72.1	0.707

Table A.4 Continued

Carbon Monoxide (CO) (continued) 650 0.51806 1.101 301 58.1 47.0 82.4 0.705 700 0.48102 1.114 315 65.5 50.0 93.3 0.702 800 0.42095 1.140 343 81.5 55.5 116 0.705 Helium (He), M = 4.003 kg/kmol 100 0.4871 5.193 96.3 19.8 73.0 28.9 0.686 120 0.4060 5.193 107 26.4 81.9 38.8 0.679 140 0.3481 5.193 117 26.4 81.9 38.8 0.679 140 0.3481 5.193 129 — 99.2 — — 160 — 5.193 129 — 99.2 — — 200 — 5.193 150 — 115.1 — — 220 0.2216 5.193 160 72.2 123.1	<i>T</i> (K)	ρ (kg/m ³)	$c_p \ (k J/kg \cdot K)$	$\frac{\mu \cdot 10^7}{(\mathbf{N} \cdot \mathbf{s/m}^2)}$	$\begin{array}{c} \nu \cdot 10^6 \\ (\text{m}^2/\text{s}) \end{array}$	$\frac{k \cdot 10^3}{(\text{W/m} \cdot \text{K})}$	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	Pr
700 0.48102 1.114 315 65.5 50.0 93.3 0.702 750 0.44899 1.127 329 73.3 52.8 104 0.705 Helium (He), M = 4.003 kg/kmol 100 0.4871 5.193 96.3 19.8 73.0 28.9 0.686 120 0.4060 5.193 107 26.4 81.9 38.8 0.679 140 0.3481 5.193 118 33.9 90.7 50.2 0.676 160 — 5.193 118 33.9 90.7 50.2 0.673 200 — 5.193 139 51.3 107.2 76.2 0.673 200 — 5.193 150 — 115.1 — — 220 0.2216 5.193 160 72.2 123.1 107 0.675 240 — 5.193 180 96.0 137 141 0.682 2	Carbo	n Monoxide (CO) (continued)	ı				
750 0.44899 1.127 329 73.3 52.8 104 0.702 800 0.42095 1.140 343 81.5 55.5 116 0.705 **Helium (He).	650	0.51806	1.101	301	58.1	47.0	82.4	0.705
Helium (He), M = 4.003 kg/kmol 100 0.4871 5.193 96.3 19.8 73.0 28.9 0.686 120 0.4060 5.193 107 26.4 81.9 38.8 0.679 140 0.3481 5.193 118 33.9 90.7 50.2 0.676 160	700	0.48102	1.114	315	65.5	50.0	93.3	0.702
Helium (He), M = 4.003 kg/kmol 100	750	0.44899	1.127	329		52.8	104	0.702
100 0.4871 5.193 96.3 19.8 73.0 28.9 0.686 120 0.4060 5.193 107 26.4 81.9 38.8 0.679 140 0.3481 5.193 118 33.9 90.7 50.2 0.676 160 — 5.193 129 — 99.2 — — — 180 0.2708 5.193 139 51.3 107.2 76.2 0.673 200 — 5.193 160 72.2 123.1 107 0.675 240 — 5.193 170 — 130 — — — 260 0.1875 5.193 180 96.0 137 141 0.682 280 — 5.193 190 — 145 — — 300 0.1625 5.193 199 122 152 180 0.680 350 — 5.193 243 199 187 295 0.675 450 — 5.193 263 — 204 — — 400 0.1219 5.193 263 — 204 — — 400 0.0754 5.193 283 290 220 434 0.668 550 — 5.193 32 — — — — — 500 0.09754 5.193 320 — 252 — — 500 0.09754 5.193 332 — 264 — — 700 0.06969 5.193 350 — 252 — — 5.193 320 — 252 — — 700 0.06969 5.193 350 502 278 768 0.654 750 — 5.193 344 — 291 — — 800 — 5.193 382 — 304 — — 700 0.06969 5.193 350 502 278 768 0.654 750 — 5.193 344 — 330 — — 1000 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H ₂), M = 2.016 kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09691 14.48 108.2 179 226 258 0.695 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701	800	0.42095	1.140	343	81.5	55.5	116	0.705
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Helium	M = 4	.003 kg/kmol					
140	100	0.4871	5.193	96.3	19.8	73.0	28.9	0.686
160 — 5.193 129 — 99.2 — — 180 0.2708 5.193 139 51.3 107.2 76.2 0.673 200 — 5.193 150 — 115.1 — — 220 0.2216 5.193 160 72.2 123.1 107 0.675 240 — 5.193 170 — 130 — — 260 0.1875 5.193 180 96.0 137 141 0.682 280 — 5.193 190 — 145 — — 300 0.1625 5.193 199 122 152 180 0.680 350 — 5.193 221 — 170 — — 400 0.1219 5.193 243 199 187 295 0.675 450 — 5.193 283 290 220 434	120	0.4060	5.193	107	26.4	81.9	38.8	0.679
180 0.2708 5.193 139 51.3 107.2 76.2 0.673 200	140	0.3481	5.193	118	33.9	90.7	50.2	0.676
180 0.2708 5.193 139 51.3 107.2 76.2 0.673 200	160		5.193	129		99.2		_
220 0.2216 5.193 160 72.2 123.1 107 0.675 240 — 5.193 170 — 130 — — 260 0.1875 5.193 180 96.0 137 141 0.682 280 — 5.193 190 — 145 — — 300 0.1625 5.193 199 122 152 180 0.680 350 — 5.193 221 — 170 — — 400 0.1219 5.193 243 199 187 295 0.675 450 — 5.193 263 — 204 — — 500 0.09754 5.193 283 290 220 434 0.668 550 — 5.193 320 — 252 — — 600 — 5.193 320 — 252 — — 600 — 5.193 332 — 264 — — 600 — 5.193 332 — 264 — — 700 0.06969 5.193 332 — 264 — — 700 0.06969 5.193 364 — 291 — — 800 — 5.193 382 — 304 — — 700 0.06969 5.193 364 — 291 — — 800 — 5.193 344 — 291 — — 800 — 5.193 344 — 330 — — 900 — 5.193 414 — 330 — — 1000 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H₂), ℳ = 2.016 kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691		0.2708	5.193	139	51.3	107.2	76.2	0.673
220 0.2216 5.193 160 72.2 123.1 107 0.675 240 — 5.193 170 — 130 — — 260 0.1875 5.193 180 96.0 137 141 0.682 280 — 5.193 190 — 145 — — 300 0.1625 5.193 199 122 152 180 0.680 350 — 5.193 221 — 170 — — 400 0.1219 5.193 243 199 187 295 0.675 450 — 5.193 263 — 204 — — 500 0.09754 5.193 283 290 220 434 0.668 550 — 5.193 320 — 252 — — 600 — 5.193 320 — 252 — — 600 — 5.193 332 — 264 — — 600 — 5.193 332 — 264 — — 700 0.06969 5.193 332 — 264 — — 700 0.06969 5.193 364 — 291 — — 800 — 5.193 382 — 304 — — 700 0.06969 5.193 364 — 291 — — 800 — 5.193 344 — 291 — — 800 — 5.193 344 — 330 — — 900 — 5.193 414 — 330 — — 1000 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H₂), ℳ = 2.016 kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	200		5 103	150		115.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.2216			72.2		107	0.675
260 0.1875 5.193 180 96.0 137 141 0.682 280 — 5.193 190 — 145 — — 300 0.1625 5.193 199 122 152 180 0.680 350 — 5.193 221 — 170 — — — 400 0.1219 5.193 243 199 187 295 0.675 450 — 5.193 263 — 204 — — — 500 0.09754 5.193 283 290 220 434 0.668 250 — 5.193 320 — 2552 — — — 600 — 5.193 332 — 264 — — — — — — 600 — 5.193 332 — 264 — — — 650 — 5.193 332 — 264 — — — 2552 — — — 600 — 5.193 332 — 264 — — — — — — — 260 — 5.193 332 — 264 — — — 264 — — — 1000 0.06969 5.193 350 502 278 768 0.654 750 — 5.193 364 — 291 — — — — — 1000 0.04879 5.193 414 — 330 — — 1000 0.04879 5.193 446 914 354 1400 0.654 1400 0.654 1400 0.04879 5.193 446 914 354 1400 0.654 1400 0.654 1400 0.0699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04888 14.52 126.4 261 266 378 0.691		0.2210			12.2		107	0.073
280 — 5.193 190 — 145 — — 300 0.1625 5.193 199 122 152 180 0.680 350 — 5.193 221 — 170 — — 400 0.1219 5.193 243 199 187 295 0.675 450 — 5.193 263 — 204 — — 500 0.09754 5.193 283 290 220 434 0.668 550 — 5.193 320 — — — — — 600 — 5.193 320 — 252 — — 600 — 5.193 332 — 264 — — 700 0.06969 5.193 332 — 264 — — 700 0.06969 5.193 350 502 278 768 0.654 750 — 5.193 382 — 304 — — 800 — 5.193 382 — 304 — — 800 — 5.193 382 — 304 — — 100 0.04879 5.193 414 — 330 — — 1000 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H₂), M = 2.016 kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 2550 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 500 0.04848 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691		0.1875			96.0		1/11	0.682
300 0.1625 5.193 199 122 152 180 0.680 350 — 5.193 221 — 170 — — 400 0.1219 5.193 243 199 187 295 0.675 450 — 5.193 263 — 204 — — 500 0.09754 5.193 283 290 220 434 0.668 550 — 5.193 320 — — — — — 600 — 5.193 332 — 264 — — 700 0.06969 5.193 332 — 264 — — 700 0.06969 5.193 350 502 278 768 0.654 750 — 5.193 382 — 304 — — 800 — 5.193 382 — 304 — — 900 — 5.193 382 — 304 — — 100 0.04879 5.193 414 — 330 — — 100 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H₂), ℳ = 2.016 kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04888 14.50 117.2 218 247 316 0.689		0.1673			90.0		141	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200		3.193	190	_	143	_	_
400 0.1219 5.193 243 199 187 295 0.675 450 — 5.193 263 — 204 — — 500 0.09754 5.193 283 290 220 434 0.668 550 — 5.193 320 — — — — 600 — 5.193 320 — 252 — — 650 — 5.193 332 — 264 — — 700 0.06969 5.193 350 502 278 768 0.654 750 — 5.193 364 — 291 — — 800 — 5.193 382 — 304 — — 900 — 5.193 414 — 330 — — 1000 0.04879 5.193 414 — 330 — — 1000 0.24255	300	0.1625	5.193	199	122	152	180	0.680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350		5.193	221		170	_	_
500 0.09754 5.193 283 290 220 434 0.668 550 — 5.193 320 — 252 — — 600 — 5.193 320 — 252 — — 650 — 5.193 332 — 264 — — 700 0.06969 5.193 350 502 278 768 0.654 750 — 5.193 364 — 291 — — 800 — 5.193 382 — 304 — — 900 — 5.193 414 — 330 — — 1000 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H ₂), M = 2.016 kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 <td< td=""><td>400</td><td>0.1219</td><td>5.193</td><td>243</td><td>199</td><td>187</td><td>295</td><td>0.675</td></td<>	400	0.1219	5.193	243	199	187	295	0.675
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450	_	5.193	263	_	204		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	0.09754	5.193	283	290	220	434	0.668
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	550		5 102					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				220		252		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_		_	_
750 — 5.193 364 — 291 — — 800 — 5.193 382 — 304 — — 900 — 5.193 414 — 330 — — 1000 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H ₂), $\mathcal{M} = 2.016$ kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689		0.06060			502		769	0.654
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		— —						— —
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
1000 0.04879 5.193 446 914 354 1400 0.654 Hydrogen (H ₂), $\mathcal{M} = 2.016$ kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>								_
Hydrogen (H_2), $\mathcal{M} = 2.016$ kg/kmol 100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691		_			_			_
100 0.24255 11.23 42.1 17.4 67.0 24.6 0.707 150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	1000	0.04879	5.193	446	914	354	1400	0.654
150 0.16156 12.60 56.0 34.7 101 49.6 0.699 200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	Hydro	gen (H_2), $\mathcal{M} =$	= 2.016 kg/kmol					
200 0.12115 13.54 68.1 56.2 131 79.9 0.704 250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	100		11.23	42.1	17.4		24.6	0.707
250 0.09693 14.06 78.9 81.4 157 115 0.707 300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	150	0.16156	12.60	56.0	34.7		49.6	0.699
300 0.08078 14.31 89.6 111 183 158 0.701 350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	200	0.12115	13.54	68.1	56.2	131	79.9	0.704
350 0.06924 14.43 98.8 143 204 204 0.700 400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691		0.09693	14.06	78.9	81.4		115	0.707
400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	300	0.08078	14.31	89.6	111	183	158	0.701
400 0.06059 14.48 108.2 179 226 258 0.695 450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691	350	0.06024	14.43	08 8	143	204	204	0.700
450 0.05386 14.50 117.2 218 247 316 0.689 500 0.04848 14.52 126.4 261 266 378 0.691								
500 0.04848 14.52 126.4 261 266 378 0.691								
	550	0.04407	14.53	134.3	305	285	445	0.685

 Table A.4
 Continued

(K)	ρ (kg/m ³)	$c_p \ (\mathbf{k} \mathbf{J}/\mathbf{k} \mathbf{g} \cdot \mathbf{K})$	$\frac{\mu \cdot 10^7}{(\mathbf{N} \cdot \mathbf{s/m}^2)}$	$\begin{array}{c} v \cdot 10^6 \\ (\text{m}^2/\text{s}) \end{array}$	$\frac{k \cdot 10^3}{(\text{W/m} \cdot \text{K})}$	$\begin{array}{c} \alpha \cdot 10^6 \\ (\text{m}^2/\text{s}) \end{array}$	Pr
Hydro	gen (H ₂) (con	ntinued)					
600	0.04040	14.55	142.4	352	305	519	0.678
700	0.03463	14.61	157.8	456	342	676	0.675
800	0.03030	14.70	172.4	569	378	849	0.670
900	0.02694	14.83	186.5	692	412	1030	0.671
1000	0.02424	14.99	201.3	830	448	1230	0.673
1100	0.02204	15.17	213.0	966	488	1460	0.662
1200	0.02020	15.37	226.2	1120	528	1700	0.659
1300	0.01865	15.59	238.5	1279	568	1955	0.655
1400	0.01732	15.81	250.7	1447	610	2230	0.650
1500	0.01732	16.02	262.7	1626	655	2530	0.643
1600	0.0152	16.28	273.7	1801	697	2815	0.639
1700	0.0143	16.58	284.9	1992	742	3130	0.637
1800	0.0135	16.96	296.1	2193	786	3435	0.639
1900	0.0128	17.49	307.2	2400	835	3730	0.643
2000	0.0121	18.25	318.2	2630	878	3975	0.661
Nitrog	en (N_2) , $\mathcal{M} =$	28.01 kg/kmol					
100	3.4388	1.070	68.8	2.00	9.58	2.60	0.768
150	2.2594	1.050	100.6	4.45	13.9	5.86	0.759
200	1.6883	1.043	129.2	7.65	18.3	10.4	0.736
250	1.3488	1.042	154.9	11.48	22.2	15.8	0.727
300	1.1233	1.041	178.2	15.86	25.9	22.1	0.716
350	0.9625	1.042	200.0	20.78	29.3	29.2	0.711
400	0.8425	1.045	220.4	26.16	32.7	37.1	0.704
450	0.7485	1.050	239.6	32.01	35.8	45.6	0.703
500	0.6739	1.056	257.7	38.24	38.9	54.7	0.700
550	0.6124	1.065	274.7	44.86	41.7	63.9	0.702
600	0.5615	1.075	290.8	51.79	44.6	73.9	0.701
700	0.4812	1.098	321.0	66.71	49.9	94.4	0.701
800	0.4211	1.122	349.1	82.90	54.8	116	0.715
900	0.3743	1.146	375.3	100.3	59.7	139	0.713
1000	0.3368	1.140	399.9	118.7	64.7	165	0.721
1100	0.2062	1 107	422.2	129.2	70.0	102	0.710
1100	0.3062	1.187	423.2	138.2	70.0	193	0.718
1200	0.2807	1.204	445.3	158.6	75.8	224	0.707
1300	0.2591	1.219	466.2	179.9	81.0	256	0.701
Oxyge	$n(O_2), \mathcal{M}=3$	2.00 kg/kmol					
100	3.945	0.962	76.4	1.94	9.25	2.44	0.796
150	2.585	0.921	114.8	4.44	13.8	5.80	0.766
200	1.930	0.915	147.5	7.64	18.3	10.4	0.737
250	1.542	0.915	178.6	11.58	22.6	16.0	0.723
300	1.284	0.920	207.2	16.14	26.8	22.7	0.711

 Table A.4
 Continued

<i>T</i> (K)	$\rho \\ (kg/m^3)$	$(\mathbf{k} \mathbf{J}/\mathbf{k} \mathbf{g} \cdot \mathbf{K})$	$\frac{\mu \cdot 10^7}{(\text{N} \cdot \text{s/m}^2)}$	$v \cdot 10^6$ (m ² /s)	$\frac{k \cdot 10^3}{(\text{W/m} \cdot \text{K})}$	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	Pr
Oxygei	n (O ₂) (conti	nued)					
350	1.100	0.929	233.5	21.23	29.6	29.0	0.733
400	0.9620	0.942	258.2	26.84	33.0	36.4	0.737
450	0.8554	0.956	281.4	32.90	36.3	44.4	0.741
500	0.7698	0.972	303.3	39.40	41.2	55.1	0.716
550	0.6998	0.988	324.0	46.30	44.1	63.8	0.726
600	0.6414	1.003	343.7	53.59	47.3	73.5	0.729
700	0.5498	1.031	380.8	69.26	52.8	93.1	0.744
800	0.4810	1.054	415.2	86.32	58.9	116	0.743
900	0.4275	1.074	447.2	104.6	64.9	141	0.740
1000	0.3848	1.090	477.0	124.0	71.0	169	0.733
1100	0.3498	1.103	505.5	144.5	75.8	196	0.736
1200	0.3206	1.115	532.5	166.1	81.9	229	0.736
1300	0.2960	1.125	588.4	188.6	87.1	262	0.721
Water	Vapor (Stear	m), $\mathcal{M} = 18.02 \text{ kg}$	g/kmol				
380	0.5863	2.060	127.1	21.68	24.6	20.4	1.06
400	0.5542	2.014	134.4	24.25	26.1	23.4	1.04
450	0.4902	1.980	152.5	31.11	29.9	30.8	1.01
500	0.4405	1.985	170.4	38.68	33.9	38.8	0.998
550	0.4005	1.997	188.4	47.04	37.9	47.4	0.993
600	0.3652	2.026	206.7	56.60	42.2	57.0	0.993
650	0.3380	2.056	224.7	66.48	46.4	66.8	0.996
700	0.3140	2.085	242.6	77.26	50.5	77.1	1.00
750	0.2931	2.119	260.4	88.84	54.9	88.4	1.00
800	0.2739	2.152	278.6	101.7	59.2	100	1.01
850	0.2579	2.186	296.9	115.1	63.7	113	1.02

^aAdapted from References 8, 14, and 15.

 Table A.5
 Thermophysical Properties of Saturated Fluids a

<i>T</i> (K)	ρ (kg/m ³)	$c_p \ (kJ/kg \cdot K)$	$\frac{\mu \cdot 10^2}{(\mathbf{N} \cdot \mathbf{s/m}^2)}$	$\begin{array}{c} v \cdot 10^6 \\ (\text{m}^2/\text{s}) \end{array}$	$\frac{k \cdot 10^3}{(\text{W/m} \cdot \text{K})}$	$\frac{\alpha \cdot 10^7}{(\text{m}^2/\text{s})}$	Pr	$\frac{\beta \cdot 10^3}{(\mathbf{K}^{-1})}$
Engin	e Oil (Unuse	d)						
273	899.1	1.796	385	4280	147	0.910	47,000	0.70
280	895.3	1.827	217	2430	144	0.880	27,500	0.70
290	890.0	1.868	99.9	1120	145	0.872	12,900	0.70
300	884.1	1.909	48.6	550	145	0.859	6400	0.70
310	877.9	1.951	25.3	288	145	0.847	3400	0.70
320	871.8	1.993	14.1	161	143	0.823	1965	0.70
330	865.8	2.035	8.36	96.6	141	0.800	1205	0.70
340	859.9	2.076	5.31	61.7	139	0.779	793	0.70
350	853.9	2.118	3.56	41.7	138	0.763	546	0.70
360	847.8	2.161	2.52	29.7	138	0.753	395	0.70
370	841.8	2.206	1.86	22.0	137	0.738	300	0.70
380	836.0	2.250	1.41	16.9	136	0.723	233	0.70
390	830.6	2.294	1.10	13.3	135	0.709	187	0.70
400	825.1	2.337	0.874	10.6	134	0.695	152	0.70
410	818.9	2.381	0.698	8.52	133	0.682	125	0.70
420	812.1	2.427	0.564	6.94	133	0.675	103	0.70
430	806.5	2.471	0.470	5.83	132	0.662	88	0.70
Ethyle	ene Glycol [C	$C_2H_4(OH)_2$						
273	1130.8	2.294	6.51	57.6	242	0.933	617	0.65
280	1125.8	2.323	4.20	37.3	244	0.933	400	0.65
290	1118.8	2.368	2.47	22.1	248	0.936	236	0.65
300	1114.4	2.415	1.57	14.1	252	0.939	151	0.65
310	1103.7	2.460	1.07	9.65	255	0.939	103	0.65
320	1096.2	2.505	0.757	6.91	258	0.940	73.5	0.65
330	1089.5	2.549	0.561	5.15	260	0.936	55.0	0.65
340	1083.8	2.592	0.431	3.98	261	0.929	42.8	0.65
350	1079.0	2.637	0.342	3.17	261	0.917	34.6	0.65
360	1074.0	2.682	0.278	2.59	261	0.906	28.6	0.65
370	1066.7	2.728	0.228	2.14	262	0.900	23.7	0.65
373	1058.5	2.742	0.215	2.03	263	0.906	22.4	0.65
Glyce	rin [C ₃ H ₅ (OI	$[H]_3$						
273	1276.0	2.261	1060	8310	282	0.977	85,000	0.47
280	1271.9	2.298	534	4200	284	0.972	43,200	0.47
290	1265.8	2.367	185	1460	286	0.955	15,300	0.48
300	1259.9	2.427	79.9	634	286	0.935	6780	0.48
310	1253.9	2.490	35.2	281	286	0.916	3060	0.49

 Table A.5
 Continued

T	0	0	$\mu \cdot 10^2$	v ⋅ 10 ⁶	$k \cdot 10^3$	$lpha \cdot 10^7$		$\beta \cdot 10^3$
(K)	ρ (kg/m ³)	$(kJ/kg \cdot K)$	$(\mathbf{N} \cdot \mathbf{s/m}^2)$	(m^2/s)	(W/m·K)	(m^2/s)	Pr	(\mathbf{K}^{-1})
Refrig	gerant-134a ($C_2H_2F_4$						
230	1426.8	1.249	0.04912	0.3443	112.1	0.629	5.5	2.02
240	1397.7	1.267	0.04202	0.3006	107.3	0.606	5.0	2.11
250	1367.9	1.287	0.03633	0.2656	102.5	0.583	4.6	2.23
260	1337.1	1.308	0.03166	0.2368	97.9	0.560	4.2	2.36
270	1305.1	1.333	0.02775	0.2127	93.4	0.537	4.0	2.53
280	1271.8	1.361	0.02443	0.1921	89.0	0.514	3.7	2.73
290	1236.8	1.393	0.02156	0.1744	84.6	0.491	3.5	2.98
300	1199.7	1.432	0.01905	0.1588	80.3	0.468	3.4	3.30
310	1159.9	1.481	0.01680	0.1449	76.1	0.443	3.3	3.73
320	1116.8	1.543	0.01478	0.1323	71.8	0.417	3.2	4.33
330	1069.1	1.627	0.01292	0.1209	67.5	0.388	3.1	5.19
340	1015.0	1.751	0.01118	0.1102	63.1	0.355	3.1	6.57
350	951.3	1.961	0.00951	0.1000	58.6	0.314	3.2	9.10
360	870.1	2.437	0.00781	0.0898	54.1	0.255	3.5	15.39
370	740.3	5.105	0.00580	0.0783	51.8	0.137	5.7	55.24
Refrig	gerant-22 (Cl	HClF ₂)						
230	1416.0	1.087	0.03558	0.2513	114.5	0.744	3.4	2.05
240	1386.6	1.100	0.03145	0.2268	109.8	0.720	3.2	2.16
250	1356.3	1.117	0.02796	0.2062	105.2	0.695	3.0	2.29
260	1324.9	1.137	0.02497	0.1884	100.7	0.668	2.8	2.45
270	1292.1	1.161	0.02235	0.1730	96.2	0.641	2.7	2.63
280	1257.9	1.189	0.02005	0.1594	91.7	0.613	2.6	2.86
290	1221.7	1.223	0.01798	0.1472	87.2	0.583	2.5	3.15
300	1183.4	1.265	0.01610	0.1361	82.6	0.552	2.5	3.51
310	1142.2	1.319	0.01438	0.1259	78.1	0.518	2.4	4.00
320	1097.4	1.391	0.01278	0.1165	73.4	0.481	2.4	4.69
330	1047.5	1.495	0.01127	0.1075	68.6	0.438	2.5	5.75
340	990.1	1.665	0.00980	0.0989	63.6	0.386	2.6	7.56
350	920.1	1.997	0.00831	0.0904	58.3	0.317	2.8	11.35
360	823.4	3.001	0.00668	0.0811	53.1	0.215	3.8	23.88
Merci	ury (Hg)							
273	13,595	0.1404	0.1688	0.1240	8180	42.85	0.0290	0.181
300	13,529	0.1393	0.1523	0.1125	8540	45.30	0.0248	0.181
350	13,407	0.1377	0.1309	0.0976	9180	49.75	0.0196	0.181
400	13,287	0.1365	0.1171	0.0882	9800	54.05	0.0163	0.181
450	13,167	0.1357	0.1075	0.0816	10,400	58.10	0.0140	0.181
500	13,048	0.1353	0.1007	0.0771	10,950	61.90	0.0125	0.182
550	12,929	0.1352	0.0953	0.0737	11,450	65.55	0.0112	0.184
600	12,809	0.1355	0.0911	0.0711	11,950	68.80	0.0103	0.187

 Table A.5
 Continued

 $Saturated\ Liquid-Vapor,\ 1\ atm^b$

Fluid	T _{sat} (K)	$h_{fg} \ ({ m kJ/kg})$	$ ho_f ho_f ho(kg/m^3)$	$\rho_g \over (kg/m^3)$	$\sigma \cdot 10^3$ (N/m)
Ethanol	351	846	757	1.44	17.7
Ethylene glycol	470	812	1111^{c}	_	32.7
Glycerin	563	974	1260^{c}	_	63.0^{c}
Mercury	630	301	12,740	3.90	417
Refrigerant R-134a	247	217	1377	5.26	15.4
Refrigerant R-22	232	234	1409	4.70	18.1

^aAdapted from References 15–19.

^bAdapted from References 8, 20, and 21.

^cProperty value corresponding to 300 K.

TABLE A.6 Thermophysical Properties of Saturated Water^a

Tempera-	Drocentro	Specific Volume (m³/kg)	ific me kg)	Heat of Vapor- ization,	Specific Heat (kJ/kg·K)	cific at g·K)	Viscosity (N·s/m²)	osity s/m²)	The Condi (W/r	Thermal Conductivity (W/m·K)	Pra Nun	Prandtl Number	Surface Tension,	Expansion Coefficient,	Temper-
(K)	$p \text{ (bar)}^b$	$v_f \cdot 10^3$	v_g	\mathbf{k}_{fg}^{nfg}	$c_{p,\mathrm{f}}$	$c_{p,g}$	$\mu_f \cdot 10^6$	$\mu_g \cdot 10^6$	$k_f \cdot 10^3$	$k_g \cdot 10^3$	$Pr_{\rm f}$	Pr_g	(N/m)	(\mathbf{K}^{-1})	T (K)
273.15	0.00611	1.000	206.3	2502	4.217	1.854	1750	8.02	695	18.2	12.99	0.815	75.5	-68.05	273.15
275	0.00697	1.000	181.7	2497	4.211	1.855	1652	8.09	574	18.3	12.22	0.817	75.3	-32.74	275
280	0.00990	1.000	130.4	2485	4.198	1.858	1422	8.29	582	18.6	10.26	0.825	74.8	46.04	280
285	0.01387	1.000	99.4	2473	4.189	1.861	1225	8.49	290	18.9	8.81	0.833	74.3	114.1	285
290	0.01917	1.001	2.69	2461	4.184	1.864	1080	8.69	869	19.3	7.56	0.841	73.7	174.0	290
295	0.02617	1.002	51.94	2449	4.181	1.868	656	8.89	909	19.5	6.62	0.849	72.7	227.5	295
300	0.03531	1.003	39.13	2438	4.179	1.872	855	60.6	613	19.6	5.83	0.857	71.7	276.1	300
305	0.04712	1.005	29.74	2426	4.178	1.877	692	9.29	620	20.1	5.20	0.865	70.9	320.6	305
310	0.06221	1.007	22.93	2414	4.178	1.882	695	9.49	628	20.4	4.62	0.873	70.0	361.9	310
315	0.08132	1.009	17.82	2402	4.179	1.888	631	69.6	634	20.7	4.16	0.883	69.2	400.4	315
320	0.1053	1.011	13.98	2390	4.180	1.895	577	68.6	640	21.0	3.77	0.894	68.3	436.7	320
325	0.1351	1.013	11.06	2378	4.182	1.903	528	10.09	645	21.3	3.42	0.901	67.5	471.2	325
330	0.1719	1.016	8.82	2366	4.184	1.911	489	10.29	650	21.7	3.15	0.908	9.99	504.0	330
335	0.2167	1.018	7.09	2354	4.186	1.920	453	10.49	959	22.0	2.88	0.916	8.59	535.5	335
340	0.2713	1.021	5.74	2342	4.188	1.930	420	10.69	099	22.3	2.66	0.925	64.9	266.0	340
345	0.3372	1.024	4.683	2329	4.191	1.941	389	10.89	664	22.6	2.45	0.933	64.1	595.4	345
350	0.4163	1.027	3.846	2317	4.195	1.954	365	11.09	899	23.0	2.29	0.942	63.2	624.2	350
355	0.5100	1.030	3.180	2304	4.199	1.968	343	11.29	671	23.3	2.14	0.951	62.3	652.3	355
360	0.6209	1.034	2.645	2291	4.203	1.983	324	11.49	674	23.7	2.02	0.960	61.4	6.769	360
365	0.7514	1.038	2.212	2278	4.209	1.999	306	11.69	<i>LL</i> 9	24.1	1.91	0.969	60.5	707.1	365
370	0.9040	1.041	1.861	2265	4.214	2.017	289	11.89	629	24.5	1.80	0.978	59.5	728.7	370
373.15	1.0133	1.044	1.679	2257	4.217	2.029	279	12.02	089	24.8	1.76	0.984	58.9	750.1	373.15
375	1.0815	1.045	1.574	2252	4.220	2.036	274	12.09	681	24.9	1.70	0.987	58.6	761	375
380	1.2869	1.049	1.337	2239	4.226	2.057	260	12.29	683	25.4	1.61	0.999	57.6	788	380
385	1.5233	1.053	1.142	2225	4.232	2.080	248	12.49	685	25.8	1.53	1.004	9.99	814	385
390	1.794	1.058	0.980	2212	4.239	2.104	237	12.69	989	26.3	1.47	1.013	55.6	841	390
400	2.455	1.067	0.731	2183	4.256	2.158	217	13.05	889	27.2	1.34	1.033	53.6	968	400
410	3.302	1.077	0.553	2153	4.278	2.221	200	13.42	889	28.2	1.24	1.054	51.5	952	410
420	4.370	1.088	0.425	2123	4.302	2.291	185	13.79	889	29.8	1.16	1.075	49.4	1010	420
430	5.699	1.099	0.331	2091	4.331	2.369	173	14.14	685	30.4	1.09	1.10	47.2		430

Table A.6 Continued

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tempera-	Pressure	Specific Volume (m³/kg)	3 a (Heat of Vaporization,	Spe H (kJ/1	Specific Heat (kJ/kg·K)	Viscosity (N·s/m²)	Viscosity (N·s/m²)	The Condi	Thermal Conductivity (W/m·K)	Pra Nu	Prandtl Number	Surface Tension,	Expansion Coeffi- cient,	Temper-
7.333 1.110 0.261 2.059 4.36 2.46 162 14,50 682 31.7 1.04 1.12 45.1 9.319 1.123 0.088 2.036 4.44 2.56 122 1485 673 34.6 0.99 1.14 42.9 11.7 1.137 0.167 1981 4.44 2.76 15.8 667 33.1 0.99 1.14 42.9 11.790 1.167 0.116 1981 4.48 2.79 16.9 1.88 660 38.1 0.89 1.13 40.7 21.83 1.167 0.111 1912 4.59 3.70 124 16.29 66.3 8.1 0.89 1.13 40.7 9.8 1.04 1.25 60.9 1.11 40.7 9.8 1.26 6.4 40.1 8.8 60.9 1.1 4.2 9.2 4.4 9.2 1.29 1.58 66.7 38.1 0.89 1.1 4.2 9.2	(K)	$p \text{ (bar)}^b$	$v_f \cdot 10^3$	v_g	(kJ/kg)	$c_{p,f}$	$c_{p,g}$	$\mu_{\mathrm{f}} \cdot 10^6$	$\mu_g \cdot 10^6$	$k_f \cdot 10^3$	$k_g \cdot 10^3$	Pr_{f}	Pr_g	(N/m)	(\mathbf{K}^{-1})	$T(\mathbf{K})$
9319 1123 0.208 2024 4.40 2.56 152 14.85 678 33.1 0.99 1.14 4.29 11.71 1.137 0.167 1889 4.44 2.68 143 15.19 673 34.6 0.95 1.17 40.7 11.75 1.157 0.167 1889 4.44 2.68 15.91 9.62 1.20 0.95 1.17 40.7 17.30 1.167 0.032 1870 4.59 3.20 128 660 38.1 0.89 1.22 36.2 26.40 1.203 0.0766 1825 4.66 3.7 118 16.59 661 4.23 0.89 1.20 4.29 3.20 128 661 4.23 0.89 1.22 6.21 9.23 6.21 6.23 1.23 0.88 1.23 0.89 1.34 1.65 6.31 4.47 8.81 1.65 6.31 4.47 8.81 1.72 8.81 1.2	440	7.333	1.110	0.261	2059	4.36	2.46	162	14.50	682	31.7	1.04	1.12	45.1		440
11.71 11.37 0.167 1989 4.44 2.68 143 15.19 673 34.6 0.95 1.17 40.7 14.55 1.152 0.136 1951 4.48 2.79 136 15.54 667 36.3 0.92 1.20 38.5 17.90 1.167 0.111 1912 4.53 2.94 129 15.88 660 38.1 0.89 1.23 36.2 21.83 1.184 0.0922 1.295 4.46 3.70 118 16.59 641 47.5 0.86 1.28 31.6 31.64 1.202 0.0056 1825 4.66 3.27 118 16.59 641 47.5 0.84 1.35 26.9 31.70 1.244 0.0525 1730 4.84 3.70 108 17.33 621 47.5 0.84 1.35 26.9 44.58 1.284 0.045 1679 4.95 3.96 104 17.72 608 50.8 1.39 24.5 61.19 1.323 0.045 1620 5.08 4.44 9.7 18.1 5.64 5.24 4.45 9.7 61.19 1.325 0.0269 1499 5.43 5.09 9.4 19.1 5.63 6.07 0.90 1.81 61.10 1.325 0.0269 1499 5.48 5.07 9.4 19.1 5.63 6.07 0.90 1.81 61.10 1.325 0.0269 1499 5.88 5.67 9.1 1.05 1.44 1.05 1.24 61.10 1.325 0.0269 1499 5.88 5.67 9.1 1.05 1.44 1.05 1.05 61.10 1.325 0.0163 1.24 6.41 7.35 84 2.15 4.47 1.05 1.24 1.25 1.24 1.33 1.41 0.0137 1.16 7.00 8.8 5.67 9.1 4.40 9.7 5.40 4.40 9.1 1.25 3.46 4.5 1.24 1.25 1.24	450	9.319	1.123	0.208	2024	4.40	2.56	152	14.85	829	33.1	0.99	1.14	42.9		450
14.55 1.152 0.136 1951 4.48 2.79 136 15.54 667 36.3 0.92 1.20 38.5 17.90 1.167 0.111 1912 4.53 2.94 129 15.88 660 38.1 0.92 12.93 36.2 21.83 1.184 0.0922 1870 4.59 3.10 124 16.23 651 40.1 0.87 1.23 33.9 - 31.40 1.204 0.025 1870 4.74 3.47 118 16.59 642 42.3 0.86 1.33 0.86 1.33 3.90 - 31.70 1.244 0.0526 1730 4.84 1.73 0.81 1.74 3.94 1.34 0.85 1.31 2.94 1.99 5.94 1.91 6.83 6.14 9.75 6.84 4.93 0.84 1.33 0.84 1.34 0.85 1.31 2.94 1.94 1.72 6.83 1.44 1.8	460	11.71	1.137	0.167	1989	4.44	2.68	143	15.19	673	34.6	0.95	1.17	40.7		460
11.94 1.167 0.111 1912 4.53 2.94 129 15.88 660 38.1 0.89 1.23 36.2 21.83 1.184 0.0922 1870 4.59 3.10 124 16.23 651 40.1 0.87 1.25 33.9 26.40 1.203 0.0766 1825 4.66 3.77 118 16.59 642 42.3 0.86 1.28 31.6 1.24 327 118 16.59 641 47.5 0.86 1.29 31.6 1.24 327 118 16.59 641 47.5 0.89 1.31 2.93 1.39 31.6 1.49 1.69 642 42.3 0.86 1.39 31.6 1.49 1.69 641 9.8 1.31 68 1.31 1.49 1.73 68 631 44.7 1.83 31.6 1.49 1.73 88 1.47 0.88 1.43 31.8 1.49 1.83 6.41	470	14.55	1.152	0.136	1951	4.48	2.79	136	15.54	<i>L</i> 99	36.3	0.92	1.20	38.5		470
21.83 1.184 0.0922 1870 4.59 3.10 124 16.23 651 40.1 0.87 1.25 33.9 — 26.40 1.203 0.0766 1825 4.66 3.27 118 16.59 642 42.3 0.86 13.8 31.6 — 31.66 1.222 0.0631 1779 4.74 3.47 113 16.95 631 44.75 0.86 13.3 26.9 — 44.58 1.224 0.0445 1730 4.84 3.70 108 17.72 608 50.6 0.85 13.9 — 61.19 1.234 0.0445 15.2 104 17.7 608 50.0 18.4 17.7 608 50.0 18.4 17.7 608 50.0 18.4 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	480	17.90	1.167	0.1111	1912	4.53	2.94	129	15.88	099	38.1	0.89	1.23	36.2		480
26.40 1.203 0.0766 1825 4.66 3.27 118 16.59 642 4.23 0.86 1.38 31.6 31.66 1.222 0.0631 1779 4.74 3.47 113 16.95 631 4.47 0.85 1.31 29.3 37.70 1.244 0.0255 1730 4.84 3.70 108 17.35 601 4.75 0.85 1.31 29.3 44.58 1.258 0.0445 1622 5.84 3.70 108 17.72 608 6.85 1.39 24.5	490	21.83	1.184	0.0922	1870	4.59	3.10	124	16.23	651	40.1	0.87	1.25	33.9	1	490
31.66 1.222 0.0631 1779 4.74 3.47 113 16.95 631 44.7 0.85 1.31 29.3 — 44.58 1.244 0.0525 1730 4.84 3.70 108 17.33 621 47.5 0.84 1.35 26.9 — 44.58 1.268 0.0445 1679 4.95 3.96 104 17.72 608 50.6 1.85 1.39 24.5 — 52.38 1.294 0.0375 1622 5.08 4.27 101 18.1 594 54.0 0.86 1.47 0.89 5.69 9.4 19.7 6.89 58.3 0.87 1.47 19.7 9.6 1.47 1.72 6.89 58.3 0.87 1.47 19.7 9.6 1.47 1.72 1.89 58.3 0.87 1.47 19.7 9.6 1.48 1.72 1.89 58.3 0.87 1.47 19.7 9.7 1.48 1.47	500	26.40	1.203	0.0766	1825	4.66	3.27	118	16.59	642	42.3	0.86	1.28	31.6		500
37.70 1.244 0.0525 1730 4.84 3.70 108 17.33 621 4.75 0.84 1.35 26.9 — 44.58 1.268 0.0445 1679 4.95 3.96 104 17.72 608 50.6 0.85 1.39 24.5 — 52.38 1.294 0.0375 1622 5.08 4.27 101 18.1 594 54.0 0.86 1.39 24.5 — 61.19 1.323 0.0317 1564 5.24 4.64 97 18.6 580 58.3 68.7 1.47 19.7 6.87 6.71 19.7 548 76.7 0.99 1.59 1.54 1.91 56.8 6.77 0.99 1.59 5.48 20.4 58.9 6.71 1.91 58.8 76.7 0.99 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.50 1.50 1.51 1.71 1.71	510	31.66	1.222	0.0631	1779	4.74	3.47	113	16.95	631	44.7	0.85	1.31	29.3		510
44.58 1.268 0.0445 1679 4.95 3.96 104 17.72 608 50.6 0.85 1.39 24.5 ————————————————————————————————————	520	37.70	1.244	0.0525	1730	4.84	3.70	108	17.33	621	47.5	0.84	1.35	26.9		520
52.38 1.294 0.0375 1622 5.08 4.27 101 18.1 594 54.0 0.86 1.43 22.1 — 61.19 1.323 0.0317 1564 5.24 4.64 97 18.6 580 58.3 0.87 1.47 19.7 — 71.08 1.355 0.0269 1499 5.48 5.09 94 19.1 563 63.7 0.90 1.52 1.73 — 94.51 1.392 0.028 1499 5.69 94 19.1 563 63.7 0.90 1.52 17.3 18.3 70 1.70	530	44.58	1.268	0.0445	1679	4.95	3.96	104	17.72	809	50.6	0.85	1.39	24.5		530
61.19 1.323 0.0317 1564 5.24 4.64 97 18.6 58.0 58.3 0.87 1.47 19.7 — 71.08 1.355 0.0269 1499 5.43 5.09 94 19.1 563 63.7 0.90 1.52 17.3 — 82.16 1.392 0.028 1429 5.67 91 19.7 548 76.7 0.94 15.9 17.3 — 94.51 1.433 0.0193 1353 6.00 6.40 88 20.4 528 76.7 0.99 1.68 17.9 — 108.3 1.482 0.0163 1774 6.41 7.35 84 21.5 51.4 1.05 1.28 81.5 1.14 47 1.28 1.14 1.14 1.15 1.14 77 24.1 447 114 1.15 1.14 1.14 1.15 1.14 1.14 1.15 1.14 1.15 1.14 1.14 1	540	52.38	1.294	0.0375	1622	5.08	4.27	101	18.1	594	54.0	98.0	1.43	22.1	1	540
71.08 1.355 0.0269 1499 5.43 5.09 94 19.1 563 63.7 6.03 1.52 17.3 — 82.16 1.392 0.0228 1429 5.68 5.67 91 19.7 548 76.7 0.94 1.59 15.9 — 94.51 1.433 0.0193 1353 6.00 6.40 88 20.4 528 76.7 0.94 1.59 15.8 — 108.3 1.482 0.0193 1353 6.00 6.40 88 20.4 528 1.67 1.99 1.68 1.28 1.11 77 22.1 497 92.9 1.14 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05 1.84 1.05	550	61.19	1.323	0.0317	1564	5.24	4.64	26	18.6	580	58.3	0.87	1.47	19.7		550
$\begin{array}{llllllllllllllllllllllllllllllllllll$	999	71.08	1.355	0.0269	1499	5.43	5.09	94	19.1	563	63.7	06.0	1.52	17.3		995
94.51 1.433 0.0193 1353 6.00 6.40 88 20.4 528 76.7 0.99 1.68 12.8 — 108.3 1.482 0.0163 1274 6.41 7.35 84 21.5 513 84.1 1.05 1.05 1.05 1.05 1.01 1.05 1.06 8.75 81 22.7 497 92.9 1.14 2.15 8.4 -	570	82.16	1.392	0.0228	1429	5.68	5.67	91	19.7	548	7.97	0.94	1.59	15.0		570
108.3 1.482 0.0163 1274 6.41 7.35 84 21.5 513 84.1 1.05 1.84 10.5 123.5 1.541 0.0137 1176 7.00 8.75 81 22.7 497 92.9 1.14 2.15 8.4 137.3 1.612 0.0115 1068 7.85 11.1 77 24.1 467 103 1.30 2.60 6.3 159.1 1.705 0.0094 941 9.35 15.4 72 25.9 444 114 1.52 3.46 4.5 169.1 1.778 0.0085 858 10.6 18.3 70 27.0 430 121 1.65 42.0 3.20 4.8 2.6 4.5 190.9 1.935 0.0066 683 16.4 27.6 64 30.0 367 142 9.6 9.6 9.8 215.2	580	94.51	1.433	0.0193	1353	00.9	6.40	88	20.4	528	76.7	0.99	1.68	12.8		580
123.5 1.541 0.0137 1176 7.00 8.75 81 22.7 497 92.9 1.14 2.15 8.4 — 137.3 1.612 0.0115 1068 7.85 11.1 77 24.1 467 103 1.30 2.60 6.3 — 159.1 1.705 0.0094 941 9.35 15.4 72 25.9 444 114 1.52 3.46 4.5 — 169.1 1.778 0.0085 858 10.6 18.3 70 27.0 430 121 1.65 4.20 3.5 — 179.7 1.856 0.0065 683 16.4 27.6 64 30.0 367 141 2.7 6.0 1.5 — 202.7 2.075 0.0065 683 16.4 27.6 64 30.0 367 155 4.2 9.6 0.8 — 215.2 2.317 0.0045 361 9	590	108.3	1.482	0.0163	1274	6.41	7.35	84	21.5	513	84.1	1.05	1.84	10.5	1	590
$\begin{array}{llllllllllllllllllllllllllllllllllll$	009	123.5	1.541	0.0137	1176	7.00	8.75	81	22.7	497	92.9	1.14	2.15	8.4		009
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	610	137.3	1.612	0.0115	1068	7.85	11.1	77	24.1	467	103	1.30	2.60	6.3	1	610
	620	159.1	1.705	0.0094	941	9.35	15.4	72	25.9	444	114	1.52	3.46	4.5		620
179.71.8560.007578112.622.16728.04121302.04.82.6190.91.9350.006668316.427.66430.03921412.76.01.5202.72.0750.005756026425932.03671554.29.60.8215.22.3510.0045361905437.033117812260.1221.23.1700.00320 ∞ ∞ ω 4545.0238238 ∞ ∞ 0.0	625	169.1	1.778	0.0085	858	10.6	18.3	70	27.0	430	121	1.65	4.20	3.5	1	625
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	630	179.7	1.856	0.0075	781	12.6	22.1	29	28.0	412	130	2.0	8.8	2.6		630
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	635	190.9	1.935	0.0066	683	16.4	27.6	64	30.0	392	141	2.7	0.9	1.5		635
215.2 2.351 0.0045 361 90 — 54 37.0 331 178 12 26 0.1 — 221.2 3.170 0.0032 0 ∞ ∞ 45 45.0 238 238 ∞ ∞ 0.0 —	640	202.7	2.075	0.0057	260	26	42	59	32.0	367	155	4.2	9.6	8.0	I	640
221.2 3.170 0.0032 0 ∞ ∞ 45 45.0 238 238 ∞ ∞ 0.0 —	645	215.2	2.351	0.0045	361	06		54	37.0	331	178	12	26	0.1	I	645
	647.3^{c}	221.2	3.170	0.0032	0	8	8	45	45.0	238	238	8	8	0.0		647.3°

^aAdapted from Reference 22. ^b1 bar = 10^5 N/m². ^cCritical temperature.

Composition	Melting Point (K)	<i>T</i> (K)	ρ (kg/m³)	$(\mathbf{kJ/kg \cdot K})$	v·10 ⁷ (m ² /s)	k (W/m·K)	$\frac{\alpha \cdot 10^5}{(\text{m}^2/\text{s})}$	Pr
Bismuth	544	589 811 1033	10,010 9738 9454	0.1444 0.1545 0.1645	1.617 1.133 0.8343	16.4 15.6 15.6	1.138 1.035 1.001	0.0142 0.0110 0.0083
Lead	600	644 755 977	10,540 10,412 10,140	0.159 0.155	2.276 1.849 1.347	16.1 15.6 14.9	1.084 1.223	0.024 0.017
Potassium	337	422 700 977	807.3 741.7 674.4	0.80 0.75 0.75	4.608 2.397 1.905	45.0 39.5 33.1	6.99 7.07 6.55	0.0066 0.0034 0.0029
Sodium	371	373 644 977	928.0 860.2 778.5	1.38 1.30 1.26	7.532 3.270 2.285	86.0 72.3 59.7	6.69 6.48 6.12	0.011 0.0051 0.0037
NaK, (56%/44%)	292	366 644 977	887.4 821.7 740.1	1.130 1.055 1.043	6.522 2.871 2.174	25.6 27.5 28.9	2.552 3.17 3.74	0.026 0.0091 0.0058
NaK, (22%/78%)	262	366 672 1033	849.0 775.3 690.4	0.946 0.879 0.883	5.797 2.666 2.118	24.4 26.7	3.05 3.92	0.019 0.0068
PbBi, (44.5%/55.5%)	398	422 644 922	10,524 10,236 9835	0.147 0.147	 1.496 1.171	9.05 11.86	0.586 0.790	0.189
Mercury	234			See Table A	5			

^aAdapted from Reference 23.

 Table A.8
 Binary Diffusion Coefficients at One Atmosphere a,b

Substance A	Substance B	<i>T</i> (K)	$D_{ m AB} \ ({ m m}^2/{ m s})$
Gases			
NH ₃	Air	298	0.28×10^{-4}
H_2O	Air	298	0.26×10^{-4}
$\tilde{\text{CO}}_2$	Air	298	0.16×10^{-4}
H_2	Air	298	0.41×10^{-4}
O_2	Air	298	0.21×10^{-4}
Acetone	Air	273	0.11×10^{-4}
Benzene	Air	298	0.88×10^{-5}
Naphthalene	Air	300	0.62×10^{-5}
Ar	N_2	293	0.19×10^{-4}
H_2	O_2^2	273	0.70×10^{-4}
H_2^2	N_2^2	273	0.68×10^{-4}
H_2^2	$\widetilde{\text{CO}}_2$	273	0.55×10^{-4}
$\widetilde{\text{CO}}_2$	N_2	293	0.16×10^{-4}
CO_2	O_2^z	273	0.14×10^{-4}
O_2	N_2^2	273	0.18×10^{-4}
Dilute Solutions			
Caffeine	H_2O	298	0.63×10^{-9}
Ethanol	H_2O	298	0.12×10^{-8}
Glucose	H_2^2O	298	0.69×10^{-9}
Glycerol	H_2^2O	298	0.94×10^{-9}
Acetone	H_2^2O	298	0.13×10^{-8}
CO_2	H_2^2O	298	0.20×10^{-8}
O_2	H_2^2O	298	0.24×10^{-8}
H_2^2	H_2^2O	298	0.63×10^{-8}
N_2	$H_2^{2}O$	298	0.26×10^{-8}
Solids			
O_2	Rubber	298	0.21×10^{-9}
N_2	Rubber	298	0.15×10^{-9}
CO ₂	Rubber	298	0.11×10^{-9}
He	SiO ₂	293	0.4×10^{-13}
H ₂	Fe	293	0.26×10^{-12}
Cd	Cu	293	0.27×10^{-18}
Al	Cu	293	0.13×10^{-33}

^aAdapted with permission from References 24, 25, and 26.

$$D_{\rm AB} \propto p^{-1} T^{3/2}$$

^bAssuming ideal gas behavior, the pressure and temperature dependence of the diffusion coefficient for a binary mixture of gases may be estimated from the relation

 Table A.9
 Henry's Constant for Selected Gases in Water at Moderate Pressure^a

	$H = p_{A,i}/x_{A,i} \text{ (bar)}$							
<i>T</i> (K)	NH ₃	Cl ₂	H_2S	SO_2	CO_2	CH ₄	O_2	H_2
273	21	265	260	165	710	22,880	25,500	58,000
280	23	365	335	210	960	27,800	30,500	61,500
290	26	480	450	315	1300	35,200	37,600	66,500
300	30	615	570	440	1730	42,800	45,700	71,600
310	_	755	700	600	2175	50,000	52,500	76,000
320	_	860	835	800	2650	56,300	56,800	78,600
323	_	890	870	850	2870	58,000	58,000	79,000

^aAdapted with permission from Reference 27.

TABLE A.10 The Solubility of Selected Gases and Solids^a

Gas	Solid	<i>T</i> (K)	$S = C_{A,i}/p_{A,i}$ $(kmol/m^3 \cdot bar)$
O_2	Rubber	298	3.12×10^{-3}
N_2	Rubber	298	1.56×10^{-3}
CO_2	Rubber	298	40.15×10^{-3}
Не	SiO_2	293	0.45×10^{-3}
H_2	Ni	358	9.01×10^{-3}

^aData from Reference 26.

Table A.11 Total, Normal (n) or Hemispherical (h) Emissivity of Selected Surfaces

					Emiss	ivity, ε_n or	ε_h , at Varic	Emissivity, ϵ_n or ϵ_n , at Various Temperatures (K)	ıtures (K)			
Description/Composition		100	200	300	400	009	800	1000	1200	1500	2000	2500
Aluminum												
Highly polished, film		0.02	0.03	0.04	0.05	90.0						
Fon, ongar Anodized		0.00	0.00	0.87	0.76							
Chromium												
Polished or plated	(<i>n</i>)	0.05	0.07	0.10	0.12	0.14						
Copper	į			4				4				
Highly polished Stably oxidized	<u>(2</u> (2)			0.03	0.03	0.04	0.04	0.04				
Gold												
Highly polished or film	(<i>h</i>)	0.01	0.02	0.03	0.03	0.04	0.05	90.0				
Foil, bright	(<i>h</i>)	90.0	0.07	0.07								
Molybdenum												
Polished	(y)					0.00	0.08	0.10	0.12	0.15	0.21	0.26
Shot-blasted, rough Stably oxidized						0.80	0.20	0.31	0.33	74.0		
Nickel												
Polished	(<i>h</i>)					0.09	0.11	0.14	0.17			
Stably oxidized	(h)					0.40	0.49	0.57				
Platinum												
Polished	(<i>h</i>)						0.10	0.13	0.15	0.18		
Silver												
Polished	(<i>h</i>)			0.02	0.05	0.03	0.05	80.0				
Stainless steels												
Typical, polished	(n)			0.17	0.17	0.19	0.23	0.30				
Typical, cleaned	(<i>u</i>)			0.22	0.22	0.24	0.28	0.35				
Typical, lightly oxidized	(<i>n</i>)						0.33	0.40				
Typical, highly oxidized	(n)						0.67	0.70	92.0			
AISI 347, stably oxidized	(<i>u</i>)					0.87	0.88	0.89	0.90			
Tantalum									,			(
Polished	(<i>y</i>)								0.11	0.17	0.23	0.78
Tungsten Polished	(h)							0.10	0.13	0.18	0.25	0.29
	,											

 Table A.11
 Continued

$\underline{Nonmetallic\ Substances}^b$

Description/Composition		Temperature (K)	Emissivity $arepsilon$
Aluminum oxide	(n)	600	0.69
	(/	1000	0.55
		1500	0.41
Asphalt pavement	(<i>h</i>)	300	0.85-0.93
Building materials			
Asbestos sheet	(<i>h</i>)	300	0.93-0.96
Brick, red	(h)	300	0.93-0.96
Gypsum or plaster board	(<i>h</i>)	300	0.90-0.92
Wood	(<i>h</i>)	300	0.82-0.92
Cloth	(<i>h</i>)	300	0.75-0.90
Concrete	(<i>h</i>)	300	0.88-0.93
Glass, window	(<i>h</i>)	300	0.90-0.95
Ice	(h)	273	0.95-0.98
Paints			
Black (Parsons)	(<i>h</i>)	300	0.98
White, acrylic	(h)	300	0.90
White, zinc oxide	(h)	300	0.92
Paper, white	(h)	300	0.92-0.97
Pyrex	(n)	300	0.82
1 /10/1	(,,,	600	0.80
		1000	0.71
		1200	0.62
Pyroceram	(n)	300	0.85
- ,	(**)	600	0.78
		1000	0.69
		1500	0.57
Refractories (furnace liners)			
Alumina brick	(n)	800	0.40
		1000	0.33
		1400	0.28
		1600	0.33
Magnesia brick	(n)	800	0.45
		1000	0.36
		1400	0.31
Kaolin insulating brick	(42)	1600	0.40
Raomi insulating brick	(n)	800 1200	0.70 0.57
		1400	0.47
		1600	0.53
Sand	(<i>h</i>)	300	0.90
Silicon carbide	` ,	600	0.87
SHICOH CALDIGE	(n)	1000	0.87
		1500	0.85
Skin	(12)	300	0.85
	(h)		
Snow	(<i>h</i>)	273	0.82-0.90

 Table A.11
 Continued

No	nmote	ıllic	Subs	$stances^b$
/ V (mmen	LLLLC	σm	stances

Description/Composition		Temperature (K)	Emissivity $arepsilon$
Soil	(h)	300	0.93-0.96
Rocks	(<i>h</i>)	300	0.88-0.95
Teflon	(<i>h</i>)	300	0.85
		400	0.87
		500	0.92
Vegetation	(<i>h</i>)	300	0.92-0.96
Water	(<i>h</i>)	300	0.96

^aData from Reference 1.

TABLE A.12 Solar Radiative Properties for Selected Materials^a

Description/Composition	α_{s}	$oldsymbol{arepsilon}^{b}$	$\alpha_{\scriptscriptstyle S}/arepsilon$	$ au_S$
Aluminum				
Polished	0.09	0.03	3.0	
Anodized	0.14	0.84	0.17	
Quartz overcoated	0.11	0.37	0.30	
Foil	0.15	0.05	3.0	
Brick, red (Purdue)	0.63	0.93	0.68	
Concrete	0.60	0.88	0.68	
Galvanized sheet metal				
Clean, new	0.65	0.13	5.0	
Oxidized, weathered	0.80	0.28	2.9	
Glass, 3.2-mm thickness				
Float or tempered				0.79
Low iron oxide type				0.88
Metal, plated				
Black sulfide	0.92	0.10	9.2	
Black cobalt oxide	0.93	0.30	3.1	
Black nickel oxide	0.92	0.08	11	
Black chrome	0.87	0.09	9.7	
Mylar, 0.13-mm thickness				0.87
Paints				
Black (Parsons)	0.98	0.98	1.0	
White, acrylic	0.26	0.90	0.29	
White, zinc oxide	0.16	0.93	0.17	
Plexiglas, 3.2-mm thickness				0.90
Snow				
Fine particles, fresh	0.13	0.82	0.16	
Ice granules	0.33	0.89	0.37	
Tedlar, 0.10-mm thickness				0.92
Teflon, 0.13-mm thickness				0.92

^aBased on tables from Reference 29.

^bData from References 1, 9, 28, and 29.

 $^{^{\}it b}$ The emissivity values in this table correspond to a surface temperature of approximately 300 K.

References

- 1. Touloukian, Y. S., and C. Y. Ho, Eds., Thermophysical Properties of Matter, Vol. 1, Thermal Conductivity of Metallic Solids; Vol. 2, Thermal Conductivity of Nonmetallic Solids; Vol. 4, Specific Heat of Metallic Solids; Vol. 5, Specific Heat of Nonmetallic Solids; Vol. 7, Thermal Radiative Properties of Metallic Solids; Vol. 8, Thermal Radiative Properties of Nonmetallic Solids; Vol. 9, Thermal Radiative Properties of Coatings, Plenum Press, New York, 1972.
- Touloukian, Y. S., and C. Y. Ho, Eds., Thermophysical Properties of Selected Aerospace Materials, Part I: Thermal Radiative Properties; Part II: Thermophysical Properties of Seven Materials. Thermophysical and Electronic Properties Information Analysis Center, CINDAS, Purdue University, West Lafayette, IN, 1976.
- Ho, C. Y., R. W. Powell, and P. E. Liley, *J. Phys. Chem. Ref. Data*, 3, Supplement 1, 1974.
- 4. Desai, P. D., T. K. Chu, R. H. Bogaard, M. W. Ackermann, and C. Y. Ho, Part I: Thermophysical Properties of Carbon Steels; Part II: Thermophysical Properties of Low Chromium Steels; Part III: Thermophysical Properties of Nickel Steels; Part IV: Thermophysical Properties of Stainless Steels. CINDAS Special Report, Purdue University, West Lafayette, IN, September 1976.
- American Society for Metals, Metals Handbook, Vol. 1, Properties and Selection of Metals, 8th ed., ASM, Metals Park, OH, 1961.
- Hultgren, R., P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society of Metals, Metals Park, OH, 1973.
- Hultgren, R., P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, *Selected Values of the Thermodynamic Properties of Binary Alloys*, American Society of Metals, Metals Park, OH, 1973.
- American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE Handbook of Fundamentals, ASHRAE, New York, 1981.
- Mallory, J. F., Thermal Insulation, Van Nostrand Reinhold, New York, 1969.
- Hanley, E. J., D. P. DeWitt, and R. E. Taylor, "The Thermal Transport Properties at Normal and Elevated Temperature of Eight Representative Rocks," *Proceedings of the Seventh Symposium on Thermophysical Properties*, American Society of Mechanical Engineers, New York, 1977.
- Sweat, V. E., "A Miniature Thermal Conductivity Probe for Foods," American Society of Mechanical Engineers, Paper 76-HT-60, August 1976.

- Kothandaraman, C. P., and S. Subramanyan, *Heat and Mass Transfer Data Book*, Halsted Press/Wiley, Hoboken, NJ, 1975.
- Chapman, A. J., Heat Transfer, 4th ed., Macmillan, New York, 1984.
- Vargaftik, N. B., Tables of Thermophysical Properties of Liquids and Gases, 2nd ed., Hemisphere Publishing, New York, 1975.
- 15. Eckert, E. R. G., and R. M. Drake, *Analysis of Heat and Mass Transfer*, McGraw-Hill, New York, 1972.
- Vukalovich, M. P., A. I. Ivanov, L. R. Fokin, and A. T. Yakovelev, *Thermophysical Properties of Mercury*, State Committee on Standards, State Service for Standards and Handbook Data, Monograph Series No. 9, Izd. Standartov, Moscow, 1971.
- Tillner-Roth, R., and H. D. Baehr, J. Phys. Chem. Ref. Data, 23, 657, 1994.
- 18. Kamei, A., S. W. Beyerlein, and R. T. Jacobsen, *Int. J. Thermophysics*, **16**, 1155, 1995.
- Lemmon, E. W., M. O. McLinden, and M. L. Huber, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 7.0 National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2002.
- Bolz, R. E., and G. L. Tuve, Eds., CRC Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Boca Raton, FL, 1979.
- Liley, P. E., private communication, School of Mechanical Engineering, Purdue University, West Lafayette, IN, May 1984.
- Liley, P. E., Steam Tables in SI Units, private communication, School of Mechanical Engineering, Purdue University, West Lafayette, IN, March 1984.
- Liquid-Metals Handbook, 2nd ed., The Atomic Energy Commission, Department of the Navy, Washington, DC, 1952.
- Perry, J. H., Ed., Chemical Engineer's Handbook, 4th ed., McGraw-Hill, New York, 1963.
- Geankoplis, C. J., Mass Transport Phenomena, Holt, Rinehart & Winston, New York, 1972.
- Barrer, R. M., Diffusion in and Through Solids, Macmillan, New York, 1941.
- Spalding, D. B., Convective Mass Transfer, McGraw-Hill, New York, 1963.
- Gubareff, G. G., J. E. Janssen, and R. H. Torborg, *Thermal Radiation Properties Survey*, Minneapolis-Honeywell Regulator Company, Minneapolis, MN, 1960.
- 29. Kreith, F., and J. F. Kreider, *Principles of Solar Energy*, Hemisphere Publishing, New York, 1978.

Mathematical Relations and Functions

Secti	on	Page
B.1	Hyperbolic Functions	930
B.2	Gaussian Error Function	931
B.3	The First Four Roots of the Transcendental Equation, $\xi_n \tan \xi_n = Bi$, for Transient Conduction in a Plane Wall	932
B.4	Bessel Functions of the First Kind	933
B.5	Modified Bessel Functions of the First and Second Kinds	934

B.1 Hyperbolic Functions¹

x	sinh x	$\cosh x$	tanh x	x	sinh x	$\cosh x$	tanh x
0.00	0.0000	1.0000	0.00000	2.00	3.6269	3.7622	0.96403
0.10	0.1002	1.0050	0.09967	2.10	4.0219	4.1443	0.97045
0.20	0.2013	1.0201	0.19738	2.20	4.4571	4.5679	0.97574
0.30	0.3045	1.0453	0.29131	2.30	4.9370	5.0372	0.98010
0.40	0.4108	1.0811	0.37995	2.40	5.4662	5.5569	0.98367
0.50	0.5211	1.1276	0.46212	2.50	6.0502	6.1323	0.98661
0.60	0.6367	1.1855	0.53705	2.60	6.6947	6.7690	0.98903
0.70	0.7586	1.2552	0.60437	2.70	7.4063	7.4735	0.99101
0.80	0.8881	1.3374	0.66404	2.80	8.1919	8.2527	0.99263
0.90	1.0265	1.4331	0.71630	2.90	9.0596	9.1146	0.99396
1.00	1.1752	1.5431	0.76159	3.00	10.018	10.068	0.99505
1.10	1.3356	1.6685	0.80050	3.50	16.543	16.573	0.99818
1.20	1.5095	1.8107	0.83365	4.00	27.290	27.308	0.99933
1.30	1.6984	1.9709	0.86172	4.50	45.003	45.014	0.99975
1.40	1.9043	2.1509	0.88535	5.00	74.203	74.210	0.99991
1.50	2.1293	2.3524	0.90515	6.00	201.71	201.72	0.99999
1.60	2.3756	2.5775	0.92167	7.00	548.32	548.32	1.0000
1.70	2.6456	2.8283	0.93541	8.00	1490.5	1490.5	1.0000
1.80	2.9422	3.1075	0.94681	9.00	4051.5	4051.5	1.0000
1.90	3.2682	3.4177	0.95624	10.000	11013	11013	1.0000

¹The hyperbolic functions are defined as

$$\sinh x = \frac{1}{2}(e^x - e^{-x}) \qquad \cosh x = \frac{1}{2}(e^x + e^{-x}) \qquad \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh x}{\cosh x}$$

The derivatives of the hyperbolic functions of the variable u are given as

$$\frac{d}{dx}(\sinh u) = (\cosh u)\frac{du}{dx} \qquad \frac{d}{dx}(\cosh u) = (\sinh u)\frac{du}{dx} \qquad \frac{d}{dx}(\tanh u) = \left(\frac{1}{\cosh^2 u}\right)\frac{du}{dx}$$

B.2 Gaussian Error Function¹

w	erf w	w	erf w	w	erf w
0.00	0.00000	0.36	0.38933	1.04	0.85865
0.02	0.02256	0.38	0.40901	1.08	0.87333
0.04	0.04511	0.40	0.42839	1.12	0.88679
0.06	0.06762	0.44	0.46622	1.16	0.89910
0.08	0.09008	0.48	0.50275	1.20	0.91031
0.10	0.11246	0.52	0.53790	1.30	0.93401
0.12	0.13476	0.56	0.57162	1.40	0.95228
0.14	0.15695	0.60	0.60386	1.50	0.96611
0.16	0.17901	0.64	0.63459	1.60	0.97635
0.18	0.20094	0.68	0.66378	1.70	0.98379
0.20	0.22270	0.72	0.69143	1.80	0.98909
0.22	0.24430	0.76	0.71754	1.90	0.99279
0.24	0.26570	0.80	0.74210	2.00	0.99532
0.26	0.28690	0.84	0.76514	2.20	0.99814
0.28	0.30788	0.88	0.78669	2.40	0.99931
0.30	0.32863	0.92	0.80677	2.60	0.99976
0.32	0.34913	0.96	0.82542	2.80	0.99992
0.34	0.36936	1.00	0.84270	3.00	0.99998

¹The Gaussian error function is defined as

$$\operatorname{erf} w = \frac{2}{\sqrt{\pi}} \int_0^w e^{-v^2} dv$$

The complementary error function is defined as

$$\operatorname{erfc} w \equiv 1 - \operatorname{erf} w$$

B.3 The First Four Roots of the Transcendental Equation, $\xi_n \tan \xi_n = Bi$, for Transient Conduction in a Plane Wall

$Bi = \frac{hL}{k}$	$\xi_{_1}$	$oldsymbol{\xi}_2$	ξ_3	ξ_4
0	0	3.1416	6.2832	9.4248
0.001	0.0316	3.1419	6.2833	9.4249
0.002	0.0447	3.1422	6.2835	9.4250
0.004	0.0632	3.1429	6.2838	9.4252
0.006	0.0774	3.1435	6.2841	9.4254
0.008	0.0893	3.1441	6.2845	9.4256
0.01	0.0998	3.1448	6.2848	9.4258
0.02	0.1410	3.1479	6.2864	9.4269
0.04	0.1987	3.1543	6.2895	9.4290
0.06	0.2425	3.1606	6.2927	9.4311
0.08	0.2791	3.1668	6.2959	9.4333
0.1	0.3111	3.1731	6.2991	9.4354
0.2	0.4328	3.2039	6.3148	9.4459
0.3	0.5218	3.2341	6.3305	9.4565
0.4	0.5932	3.2636	6.3461	9.4670
0.5	0.6533	3.2923	6.3616	9.4775
0.6	0.7051	3.3204	6.3770	9.4879
0.7	0.7506	3.3477	6.3923	9.4983
0.8	0.7910	3.3744	6.4074	9.5087
0.9	0.8274	3.4003	6.4224	9.5190
1.0	0.8603	3.4256	6.4373	9.5293
1.5	0.9882	3.5422	6.5097	9.5801
2.0	1.0769	3.6436	6.5783	9.6296
3.0	1.1925	3.8088	6.7040	9.7240
4.0	1.2646	3.9352	6.8140	9.8119
5.0	1.3138	4.0336	6.9096	9.8928
6.0	1.3496	4.1116	6.9924	9.9667
7.0	1.3766	4.1746	7.0640	10.0339
8.0	1.3978	4.2264	7.1263	10.0949
9.0	1.4149	4.2694	7.1806	10.1502
10.0	1.4289	4.3058	7.2281	10.2003
15.0	1.4729	4.4255	7.3959	10.3898
20.0	1.4961	4.4915	7.4954	10.5117
30.0	1.5202	4.5615	7.6057	10.6543
40.0	1.5325	4.5979	7.6647	10.7334
50.0	1.5400	4.6202	7.7012	10.7832
60.0	1.5451	4.6353	7.7259	10.8172
80.0	1.5514	4.6543	7.7573	10.8606
100.0	1.5552	4.6658	7.7764	10.8871
∞	1.5708	4.7124	7.8540	10.9956

B.4 Bessel Functions of the First Kind

x	$J_0(x)$	$J_1(x)$
0.0	1.0000	0.0000
0.1	0.9975	0.0499
0.2	0.9900	0.0995
0.3	0.9776	0.1483
0.4	0.9604	0.1960
0.5	0.9385	0.2423
0.6	0.9120	0.2867
0.7	0.8812	0.3290
0.8	0.8463	0.3688
0.9	0.8075	0.4059
1.0	0.7652	0.4400
1.1	0.7196	0.4709
1.2	0.6711	0.4983
1.3	0.6201	0.5220
1.4	0.5669	0.5419
1.5	0.5118	0.5579
1.6	0.4554	0.5699
1.7	0.3980	0.5778
1.8	0.3400	0.5815
1.9	0.2818	0.5812
2.0	0.2239	0.5767
2.1	0.1666	0.5683
2.2	0.1104	0.5560
2.3	0.0555	0.5399
2.4	0.0025	0.5202

B.5 Modified Bessel Functions¹ of the First and Second Kinds

x	$e^{-x}I_0(x)$	$e^{-x}I_1(x)$	$e^x K_0(x)$	$e^x K_1(x)$
0.0	1.0000	0.0000	∞	∞
0.2	0.8269	0.0823	2.1407	5.8334
0.4	0.6974	0.1368	1.6627	3.2587
0.6	0.5993	0.1722	1.4167	2.3739
0.8	0.5241	0.1945	1.2582	1.9179
1.0	0.4657	0.2079	1.1445	1.6361
1.2	0.4198	0.2152	1.0575	1.4429
1.4	0.3831	0.2185	0.9881	1.3010
1.6	0.3533	0.2190	0.9309	1.1919
1.8	0.3289	0.2177	0.8828	1.1048
2.0	0.3085	0.2153	0.8416	1.0335
2.2	0.2913	0.2121	0.8056	0.9738
2.4	0.2766	0.2085	0.7740	0.9229
2.6	0.2639	0.2046	0.7459	0.8790
2.8	0.2528	0.2007	0.7206	0.8405
3.0	0.2430	0.1968	0.6978	0.8066
3.2	0.2343	0.1930	0.6770	0.7763
3.4	0.2264	0.1892	0.6579	0.7491
3.6	0.2193	0.1856	0.6404	0.7245
3.8	0.2129	0.1821	0.6243	0.7021
4.0	0.2070	0.1787	0.6093	0.6816
4.2	0.2016	0.1755	0.5953	0.6627
4.4	0.1966	0.1724	0.5823	0.6453
4.6	0.1919	0.1695	0.5701	0.6292
4.8	0.1876	0.1667	0.5586	0.6142
5.0	0.1835	0.1640	0.5478	0.6003
5.2	0.1797	0.1614	0.5376	0.5872
5.4	0.1762	0.1589	0.5279	0.5749
5.6	0.1728	0.1565	0.5188	0.5633
5.8	0.1696	0.1542	0.5101	0.5525
6.0	0.1666	0.1520	0.5019	0.5422
6.4	0.1611	0.1479	0.4865	0.5232
6.8	0.1561	0.1441	0.4724	0.5060
7.2	0.1515	0.1405	0.4595	0.4905
7.6	0.1473	0.1372	0.4476	0.4762
8.0	0.1434	0.1341	0.4366	0.4631
8.4	0.1398	0.1312	0.4264	0.4511
8.8	0.1365	0.1285	0.4168	0.4399
9.2	0.1334	0.1260	0.4079	0.4295
9.6	0.1305	0.1235	0.3995	0.4198
10.0	0.1278	0.1213	0.3916	0.4108

 $^{{}^{1}}I_{n+1}(x) = I_{n-1}(x) - (2n/x)I_{n}(x)$