

ROCKET DESIGN DATA HANDBOOK

**BELL
AEROSYSTEMS
COMPANY**

DIVISION OF BELL AEROSPACE CORPORATION

A
textron
COMPANY

BELL AEROSYSTEMS COMPANY

DIVISION OF BELL AEROSPACE CORPORATION - A **textron** COMPANY

ROCKET DESIGN DATA HANDBOOK

FIFTH EDITION
NOVEMBER 1961

Presented with the compliments of

BELL AEROSYSTEMS COMPANY

DIVISION OF BELL AEROSPACE CORPORATION-A COMPANY

POST OFFICE BOX ONE

BUFFALO 5, NEW YORK

ROCKETS DEPARTMENT

Name

Norman D. H. Jr.

Home

Tele

Busine

Telephone

BELL AEROSYSTEMS COMPANY

DIVISION OF BELL AEROSPACE CORPORATION

THE BELL AGENA ROCKET ENGINE

World's most reliable rocket engine — a record achieved by the Bell Agena Rocket Engine on the U.S. Air Force's DISCOVERER and MIDAS satellite programs*. Starting with DISCOVERER I on February 28, 1959, this rocket engine has performed as required in more than 35 space flights. The Bell Agena Rocket Engine is also scheduled for use on NASA's RANGER and MARINER spacecraft.

Thrust — 16,000 pounds

Engine Specific Impulse — Highest of any operational rocket engine in this class

Propellants — Red Fuming Nitric Acid and Unsymmetrical Dimethylhydrazine

Restart Capability — Two (2) engine starts in vacuum

Thrust Vector Control — Gimbaled thrust chamber

Installation — Four point engine mount

Engine Weight — Approximately 290 pounds

Overall Length — Approximately 7 feet

*See Space Log pp. 84-88

TABLE OF CONTENTS

	Page
Highlights in Rocketry	1
Rocket Symbols	5
Greek Alphabet	7
Rocket Relationships	8
Principles of Rocket Propulsion	8
Rocket Equations	9
Performance of Rocket Propellants	17
Liquid Bipropellant Combinations	18
Performance of Monopropellants	22
Physical Properties of Fuels	23
Physical Properties of Oxidizers	26
Rocket Heat Transfer	27
Pump Relationships	31
Ballistic and Celestial Mechanics	34
Short Range Ballistic Trajectories	36
Simplified Vertical Trajectory Equations	37
Mechanics of Conic Section Trajectories	38
Characteristic Data of the Solar System	44
Physical Properties	45
General Properties of Gases	45
Physical Properties of Gases	46
General Properties of Air	48
Composition of Air	50
ICAO Atmospheric Standard	51
Standard Atmosphere	52
Chemical Elements	59
Miscellaneous Constants	62
Physical Properties of Refractory Materials	63
Physical Properties of Metals	64

Conversion Tables	68
Charts	
Thrust Coefficient, C_f , as a function of Pressure Ratio, Area Ratio, and Specific Heat Ratio for Optimum Expansion Conditions	13
General Theoretical Performance Curves	14
Nozzle Separation Pressure as a Function of P_o/P_c	16
Gas Film Coefficient vs. Area Ratio for Typical Rocket	30
Approximate Relative Impeller Shapes and Efficiencies as Related to Specific Speed	33
Inertial Trajectories in a Central Gravity Field .	40
Range of Ballistic Trajectories over Reference Sphere 100 Miles above Earth	41
Escape Velocity and Period of Revolution of a Satellite Vehicle as a Function of Altitude	42
Natural Logarithm of n vs $\ln n$	43
No. 86, the ARDC Model Atmosphere, 1956	54
Temperature and Speed of Sound versus Altitude	56
Speed of Sound Versus Temperature	57
Variation of Power with Altitude for Different Prime Movers	58
Space Log	84

HIGHLIGHTS IN ROCKETRY

- 1232 A.D. Battle of Kai-fung-fu. Assaults were repulsed by "arrows of flaming fire," consisting of ordinary arrows to which were tied small packages of incendiary powder.
- 1379 Battle for Isle of Chiozza. A defending tower was set afire by a crude powder rocket, eliminating last pocket of resistance.
- 1805 William Congreve of England (later knighted) demonstrated powder rockets with a range of 2000 yards.
- 1807 City of Copenhagen razed by a bombardment involving 25,000 rockets.
- Aug. 24, 1814 Battle of Bladensburg. Employment of rockets defeated and dispersed troops, leading to capture of Washington, D. C.
- Sept. 1814 Battle of Fort McHenry. Renowned primarily for its contribution to the "Star Spangled Banner."
- 1838 First patent granted (England) for life saving rocket subsequently employed by coastal rescue units.
- 1903 Konstantin Eduardovich Ziolkovsky (Russia) published first treatise on space travel advocating the use of liquid fuel rockets.

1919	Dr. Robert H. Goddard, the father of American rocketry, wrote "A Method of Reaching Extreme Altitudes." Two years later Dr. Goddard began experiments with liquid fuel rockets.	1938	Early model of German V-2 (A-3) attained an altitude of 40,000 feet and a range of 11 miles.
1923	Herman Oberth of Germany authored "The Rocket into Interplanetary Space." Oberth, like Dr. Goddard, favored liquid fuel rockets because of their greater combustion efficiency.	1942-1945	Solid propellant rockets employed by Armed Forces for artillery projectiles and aircraft assist take-off (JATO) applications.
March 16, 1926	Dr. Goddard launched the first vehicle to be powered by a liquid-fuel rocket engine. The vehicle traveled a distance of 184 feet in 2.5 seconds.	1942	First flight of prototype V-2 (A-4).
1927	Foundation in Germany of Society for Space Travel (Verein fur Raumschiffahrt).	April, 1942	First American military airplane to use liquid fuel rockets for assisted take-off.
1928	Fritz Von Opel of Germany flew first rocket-propelled aircraft near Frankfurt (solid propellant charges mounted on a glider).	July 5, 1944	First American aircraft (Northrop MX-324) powered by liquid fuel rocket engine.
1930	Foundation of American Interplanetary Society. In 1934, the name of the organization was changed to American Rocket Society.	Sept. 8, 1944	First V-2 attack on city of London.
Dec. 30, 1930	Rocket flight conducted by Dr. Goddard attained an altitude of 4800 feet, a range of 13,000 feet, and a speed of 550 miles per hour.	December 1944	First American liquid rocket guided missile (Private A) launched.
May 31, 1935	Rocket flight conducted by Dr. Goddard attained an altitude of 7500 feet.	Ocotober 1945	First flight of WAC Corporal attained an altitude of 43.5 miles.
1937	Establishment of Research Institute at Peenemunde.	Oct. 14, 1947	Bell Aircraft Corporation X-1, powered by a Reaction Motors, Incorporated (RMI) rocket engine, completed the first piloted supersonic flight in history.
		Feb. 24, 1949	"Bumper" configuration consisting of V-2, on which was mounted a WAC Corporal, attained a record-breaking altitude of 250 miles.
		Dec. 12, 1953	Bell Aircraft Corporation X-1A airplane, powered by RMI rocket engine, established a new unofficial world's speed record of over 1600 mph.

- July 23, Bell Aircraft Corporation X-2 airplane, 1956 powered by Curtiss-Wright rocket engine established a new unofficial world's speed record of 1900 mph.
- Sept. 7, Bell X-2 established new unofficial world's altitude record of over 126,200 feet.
- Sept. 27, Bell X-2 established new unofficial world's speed record of 2148 mph.
- Oct. 4, The U.S.S.R. launched "Sputnik I," the world's first satellite. Weighing an estimated 184 pounds, it orbited at an altitude of 170 to 580 miles.
- Nov. 3, The U.S.S.R. launched "Sputnik II," the first satellite to contain a living animal.
- Jan. 31, United States launched its first satellite, "Explorer I."
- March 17, United States launched "Vanguard I."
- Aug. 4, X-15 utilizing Bell Aerospace Company reaction controls establishes new speed record of 2196 mph.
- Aug. 12, X-15 establishes new altitude record at 136,500 feet.
- SPACE LOG. See pages 84 to 86

ROCKET SYMBOLS

A_e	Nozzle exit area	in. ²
A_t	Throat area	in. ²
A_w	Chamber inner surface area	in. ²
C_f	Thrust coefficient	none
c^*	Characteristic exhaust velocity	ft/sec
c	Effective exhaust velocity	ft/sec
F	Thrust	lb
g	Acceleration of gravity	ft/sec ²
h	Altitude	ft
I_{sp}	Specific impulse	sec
I_t	Total impulse	lb-sec
k	Ratio of specific heats C_p/C_v	none
L^*	Characteristic length	in.
M	Molecular weight	lb/mol
\dot{M}	Mass flow, \dot{W}/g	lb-sec/ft
n	Polytropic exponent	none
P_c	Chamber pressure, absolute	lb/in. ²
P_e	Exit pressure, absolute	lb/in. ²
P_o	Ambient absolute pressure	lb/in. ²
r	Mixture ratio, \dot{W}_o/\dot{W}_f	none
R	Universal gas constant (1545)	ft-lb/mol-°R
T	Absolute temperature	°R
T_c	Combustion temperature	°R

t	Time	sec
v	Velocity	ft/sec
v_e	Exhaust velocity	ft/sec
v_s	Satellite velocity	ft/sec
V	Specific volume	ft ³ /lb
V_c	Thrust chamber volume	in. ³
W	Weight	lb
W_f	Weight of fuel	lb
W_i	Initial weight	lb
W_o	Weight of oxidizer	lb
\dot{W}	Fluid flow rate	lb/sec
\dot{W}_f	Fuel flow rate	lb/sec
\dot{W}_o	Oxidizer flow rate	lb/sec
γ	Weight density	lb/ft ³
δ	Specific gravity	none
ϵ	Area ratio, A_e/A_t	none
η	Efficiency	none
ρ	Mass density	lb-sec ² /ft ⁴

GREEK ALPHABET

A	α	Alpha
B	β	Beta
Γ	γ	Gamma
Δ	δ	Delta
E	ϵ	Epsilon
Z	ζ	Zeta
H	η	Eta
Θ	θ	Theta
I	ι	Iota
K	κ	Kappa
Λ	λ	Lambda
M	μ	Mu
N	ν	Nu
Ξ	ξ	Xi
O	\circ	Omicron
Π	π	Pi
R	ρ	Rho
Σ	σ	Sigma
T	τ	Tau
Υ	υ	Upsilon
Φ	ϕ	Phi
X	χ	Chi
Ψ	ψ	Psi
Ω	ω	Omega

ROCKET RELATIONSHIPS

PRINCIPLES OF ROCKET PROPULSION

The fundamental principle upon which all jet and rocket prime movers operate is based on Newton's third law, i.e., for every action there is an equal and opposite reaction. To afford a more complete understanding, consider the following illustration of a typical rocket thrust chamber.

Upon combustion of the propellants in the thrust chamber, the gases expand through the nozzle at a high velocity. The internal pressure at the nozzle end is relieved, leaving an unbalanced pressure at the other end which tends to propel the chamber or the vehicle to which it is mounted in the direction opposite to the issuing jet. Propulsion is dependent upon internal conditions alone and not the effect of the jet pushing against the surrounding air.

The propulsive force exerted by the jet is expressed as

$$\text{Thrust} = \frac{\dot{W}v_e}{g} + A_e(P_e - P_o)$$

where \dot{W} represents the propellant flow rate, v_e the nozzle exhaust velocity, A_e the nozzle exit area, P_e the exit pressure, and P_o atmospheric pressure. In a perfect vacuum, P_o is equal to zero, indicating that the thrust increases with altitude.

In contrast to other forms of jet engines, the rocket does not use the oxygen in the atmosphere for the combustion process. Instead, the oxidizer is carried aloft with the fuel. Thus, the rocket is the only means of achieving travel beyond the atmosphere of the earth.

ROCKET EQUATIONS

Thrust

$$F = \frac{\dot{W}}{g} v_e + (P_e - P_o) A_e$$

Effective Exhaust Velocity

$$c = \frac{Fg}{\dot{W}} = I_{sp} g = v_e + \frac{P_e - P_o}{\dot{W}} A_e g$$

Characteristic Velocity - Frozen Composition (see page 17)

$$c^* = \frac{P_c A_t g}{\dot{W}} = \frac{I_{sp} g}{C_f} = \frac{\sqrt{gkR} \frac{T_c}{M}}{k \left(\frac{2}{k+1} \right)^{\frac{k+1}{2(k-1)}}}$$

Coefficient of Thrust - Frozen Composition

$$C_f = \frac{F}{P_c A_t}$$

$$= \sqrt{\frac{2k^2}{k-1}} \left(\frac{2}{k+1} \right)^{\frac{k+1}{k-1}} \left[1 - \left(\frac{P_e}{P_c} \right)^{\frac{k-1}{k}} \right] + \frac{(P_e - P_o)}{P_c} \frac{A_e}{A_t}$$

Total Impulse

$$I_t = W_p I_{sp} = F \times t$$

W_p = total weight of propellants

Density Impulse

$$I_D = I_{sp} \delta_p$$

Propellant Bulk Specific Gravity

$$\delta_p = \frac{1+r}{\frac{1+r}{\delta_f} \delta_o}$$

δ_f = specific gravity of fuel, δ_o = specific gravity
of oxidizer

Characteristic Length

$$L^* = \frac{V_c}{A_t}$$

Stay Time of Combustion Gases in Chamber

$$t_c = \frac{V_c}{\dot{W}} \times \frac{P_c}{12R} \left(\frac{T_c}{M} \right)$$

Mach Number

$$Ma = \frac{v}{a} = \sqrt{\frac{v}{kg R' T}} \quad a = \text{speed of sound, ft/sec}$$

$$R' = \text{gas constant} = \frac{R}{\text{molecular weight}}$$

Mach Number as a Function of Nozzle Area

$$\frac{A_2}{A_1} = \frac{Ma_1}{Ma_2} \sqrt{\left(\frac{1 + \frac{k-1}{2} Ma_2^2}{1 + \frac{k-1}{2} Ma_1^2} \right)^{\frac{k+1}{k-1}}}$$

Horsepower Equivalent to Thrust

$$HP = \frac{v(\text{MPH})}{375} F$$

General Theoretical Thrust Chamber Performance

The plot on pages 14 and 15 is designed to estimate the performance of any propellant combination for any set of operating conditions including chamber pressure, area ratio, and altitude by knowing the performance at sea level when operating at 300 psia chamber pressure with optimum expansion. The upper ordinate is expressed as the ratio of the performance at the operating condition to that at the reference sea level value. The chart is entered at the specified altitude (lower ordinate), moving horizontally to the correct chamber pressure. Proceeding vertically, the chosen area ratio is found and the specific impulse ratio read from the upper ordinate. The product of this ratio and the reference specific impulse value will indicate the performance at the specified conditions.

The theoretical performance calculations based on shifting equilibrium for most propellant combinations falls within 1% of these curves. Maximum deviation was found to be 3%.

Thrust Coefficient, C_f , as a Function of Pressure Ratio, Area Ratio, and Specific Heat Ratio for Optimum Expansion Conditions

PERFORMANCE OF ROCKET PROPELLANTS

The specific impulse (I_{sp}) of a propellant combination is related to the energy content of the combustion gases. The general equation for specific impulse is:

$$I_{sp} = \sqrt{\frac{2J}{g} (h_c - h_e)_s}$$

where h_c = enthalpy of combustion products before expansion, BTU/lb

h_e = enthalpy of combustion products after expansion, BTU/lb

J = mechanical equivalent of heat
= 778 ft-lb/BTU

s = denotes expansion at constant entropy, with chemical equilibrium maintained

Calculations performed in accordance with the above equation are called "Shifting Equilibrium" (S.E.) calculations.

If it is assumed that there is no shifting equilibrium during expansion, and that the specific heat of the gas is constant, ideal gas relationships can be substituted in the above equation, and a "Frozen Composition" (F.C.) calculation can be made. The modified equation is:

$$I_{sp} = \sqrt{\frac{2R}{g} \frac{k}{k-1} \frac{T_c}{M} \left[1 - \left(\frac{P_e}{P_c} \right)^{\frac{k-1}{k}} \right]}$$

The above relations are for a fully expanded exhaust nozzle (i.e. $P_e = P_o$).

LIQUID BIPORELLANT COMBINATIONS

Oxidizer	Fuel	r	T _c (°F)	I _{sp}	Bulk Sp. Gr.
				300° → 14.7 psia	
Chlorine	Ammonia*	3.93	4980	240 (F.C.)	1.34
Trifluoride:	Hydrazine*	2.5	6100	258 (S.E.)	1.45
	Methyl Alcohol*	2.88	5150	230 (S.E.)	1.35
Liquid	Ammonia*	3.00	7280	311 (S.E.)	1.158
Fluorine:	Hydrazine*	2.00	7324	315 (S.E.)	1.293
	Hydrogen*	5.67	5514	364 (S.E.)	0.376
	Lithium*	2.19	7000	336 (S.E.)	0.960
	Methyl Alcohol*	2.375	7182	299 (S.E.)	1.193
90% Hydrogen Peroxide:	JP-4	7.75	4508	234.5 (S.E.)	1.26
Nitrogen	uns-Dimethyl-hydrazine*	4.40	4490	239.5 (S.E.)	1.21
Tetroxide:	Hydrazine*	2.04	4350	242.6 (S.E.)	1.235
Mixed Oxides of uns-Dimethyl-Nitrogen (24% NO): hydrazine*					
Nitrogen	Ammonia	2.029	4627	238 (S.E.)	1.07
Tetroxide:	Aniline*	3.87	5742	221 (F.C.)	1.36
	Benzene	4.418	5598	214 (F.C.)	1.32
	Ethylamine*	4.096	5538	230 (F.C.)	1.22
	Hydrazine*	1.25	5080	254.5 (S.E.)	1.23
	Hydrogen	11.5	5610	279 (F.C.)	0.57
Isopropyl Alcohol		3.06	4773	224 (F.C.)	1.22
Propane		4.15	5121	240 (F.C.)	1.15
Turpentine					
(α pinene)*		4.7	5542	221 (F.C.)	1.35
UDMH		2.25	5288	249.5 (S.E.)	1.143
Xyliidene*		3.00	5470	223 (F.C.)	1.32
Nitrogen	Ammonia	4.2	6128	277 (S.E.)	1.24
Liquid	Acetylene	1.23	6012	266 (F.C.)	0.83
Oxygen:	Aluminum				
	Borohydride	1.32	6000	276 (F.C.)	0.775
	Ammonia	1.25	4834	250 (F.C.)	0.878
	Ethyl Alcohol	1.50	5297	242 (F.C.)	0.969
	Ethylene	1.86	5538	264 (F.C.)	0.842
	Hydrazine	0.83	5382	263 (F.C.)	1.062
	Hydrazine Hydrate	1.00	4572	242 (F.C.)	1.07
	Hydrogen	3.5	4426	347 (S.C.)	0.262
	Isopropyl Alcohol	1.85	5553	241 (F.C.)	0.982
	Lithium	1.15	13000	318 (F.C.)	0.746
	JP-4	2.4	5737	263 (S.E.)	1.005
	Lithium				
	Borohydride*	1.47	8300	306 (F.C.)	—

NOTE: *Denotes that the propellant combination is hypergolic, i.e., the propellants burn spontaneously upon mixing.

Oxidizer	Fuel	r	T _c (°F)	300→14.7 I _{sp} psia	Bulk Sp. Gr.
Lithium Hydride*	Lithium Hydride*	1.34	6400	268 (F.C.)	0.98
Methane	Methane	2.33	4874	263 (F.C.)	0.71
Methyl Alcohol	Methyl Alcohol	1.15	5076	237 (F.C.)	0.950
Methyl Amine	Methyl Amine	2.06	5600	252 (F.C.)	0.986
Nitromethane	Nitromethane	0.076	4703	226 (F.C.)	1.13
n-Octane	n-Octane	2.33	5625	262 (S.E.)	0.962
Ammonia	Ammonia	2.08	6042	292 (S.E.)	1.08
Difluoride:	Hydrazine	1.35	6285	299 (S.E.)	1.24
Ozone:	Ammonia	1.13	5175	267 (F.C.)	0.974
	Hydrazine	0.63	5418	277 (F.C.)	1.167
	Hydrogen	3.5	5026	375 (S.E.)	0.275
	JP-4	2.2	6327	286 (S.E.)	1.193
Perchloryl-fluoride:	Hydrazine*	1.30	5516	262 (S.E.)	1.30
	JP-4	3.85	6092	249 (S.E.)	1.34
	uns-Dimethyl-hydrazine	2.45		254.5 (S.E.)	1.27

WFNA (14% NO ₂):	Aniline	2.20	4202	231.5 (S.E.)	1.11
	Diethylenetriamine*	3.61	4908	234 (S.E.)	1.37
	Hydrazine*	1.40	4796	246 (S.E.)	1.267
	JP-4	4.65	5012	231.5 (S.E.)	1.31
	Turpentine (α pinene)*	4.4	5113	231 (S.E.)	1.353
	Toluene	4.1	5130	227 (S.E.)	1.345
	uns-Dimethyl-hydrazine	2.7	4920	239 (S.E.)	1.23
WFNA:	Aniline*	3.00	4942	222 (F.C.)	1.346
	Furfuryl Alcohol*	2.65	4885	210 (F.C.)	1.382
	Hydrazine*	1.22	4681	246 (S.E.)	1.228
	Hydrogen	12.6	5360	298 (F.C.)	0.604
	JP-4	4.65	5032	230 (S.E.)	1.29
	Methyl Alcohol	2.36	4480	219 (F.C.)	1.190
	Methyl-Furfuryl Alcohols (50-50)*	2.52	4699	213 (F.C.)	1.30
	n-Octane	4.00	4744	229 (F.C.)	1.226

NOTE: *Denotes that the propellant combination is hypergolic, i.e., the propellants burn spontaneously upon mixing.

PERFORMANCE OF MONOPROPELLANTS

Name	Formula	T _C (°F)	I _{sp} 300 → 14.7	psia	Sp. Gr.
Ethylene Oxide	C ₂ H ₄ O	2114	166(F.C.)	0.887	
Hydrazine	N ₂ H ₄	1125	174(S.E.)	1.0045	
Nitromethane	CH ₃ NO ₂	3950	218(F.C.)	1.13	
n-Propyl Nitrate	CH ₃ CH ₂ CH ₂ NO ₃	1886	179(S.E.)	0.935	
90% Hydrogen Peroxide	H ₂ O ₂	1381	133(S.E.)	1.387	

PHYSICAL PROPERTIES OF FUELS

Name	Formula	B. P. (°F)	F. P. (°F)	Approx. Cost \$/lb (1957)	Specific Gravity** (Temp. °F)
Acetylene	C ₂ H ₂	-119 subl.	-115	0.15	0.62 (-119.2)
Aluminum Borohydride	Al(BH ₄) ₃	113	-85	0.544	
Ammonia	NH ₃	-28	-108	0.043	0.682 (-28)
Aniline	C ₆ H ₅ NH ₂	364	21	0.23	1.022
Benzene	C ₆ H ₆	176	42	0.05	0.879
Diethylenetriamine	(NH ₂ C ₂ H ₄) ₂ NH	404.8	-38.2	0.415-0.43	0.954
Ethyl Alcohol	C ₂ H ₅ OH	174	-175	0.06	0.790
Ethyl Alcohol 75% Water 25%	C ₂ H ₅ OH+H ₂ O	179	-76	0.05	0.854
Ethylamine	C ₂ H ₅ NH ₂	63	-114	0.30	0.706
Ethylene	C ₂ H ₄	-155	-273	0.75	0.566 (-152)
Ethylene Oxide*	C ₂ H ₄ O	52	-168	0.245	0.887 (45)
Ethyl Nitrate*	C ₂ H ₅ NO ₃	192	-152	2.00	1.105

* Can be used as a monopropellant

** At 60 °F unless otherwise noted

Name	Formula	B.P. (°F)	F.P. (°F)	Approx. Cost \$/lb	Specific Gravity** (Temp. °F)
Furfuryl Alcohol	C ₄ H ₇ OCH ₂ OH	340	-26	0.21	1.138
Heptane	C ₇ H ₁₆	208	-131	0.32	0.684
Hydrazine	N ₂ H ₄	236	35	3.00	1.00
68% Hydrazine	N ₂ H ₄ +H ₂ O	250	-63	1.75	1.00
Hydrogen	H ₂	-422	-434	0.70 gas 10.00 liq.	0.0708 (-423)
Isopropyl Alcohol	C ₃ H ₇ OH	180	-128	0.10	0.781
JP-4 (MIL-F-5642B)	Hydrocarbon Mixture	470 (90%)	-76	0.017	0.751-0.802
JP-5 (MIL-F-5624B)	Hydrocarbon Mixture	550 (e.p.)	-40	0.02	0.80-0.85
Lithium	Li	2507	367	13.00-20.00	0.534
Lithium Hydride	Li H	--	1256	--	0.82
Methane	CH ₄	-258	-296	0.15	0.38 (-164)
Methyl Alcohol	CH ₃ OH	150	-144	0.05	0.796
Methylamine	CH ₃ NH ₂	20	-135	0.31	0.769
Nitromethane*	CH ₃ NO ₂	214	-19	0.25	1.13

n-Octane	C ₈ H ₁₈	257	-71	0.10	0.704
Propane	C ₃ H ₈	-44	-310	0.004	0.585 (-48)
n-Propyl Nitrate*	C ₃ H ₇ NO ₃	230	-150	0.40	0.935
RP-1	Hydrocarbon Mixture	500 (90%)	-76	0.02	0.801-0.815
Toluene	C ₆ H ₅ CH ₃	231	-139	0.04	0.862
Triethylaluminum	(C ₂ H ₅) ₃ Al	367	-53	20.00	0.835
Triethylamine	N(C ₂ H ₅) ₃	192	-175	0.47	0.728
Turpentine (α pinene)*	C ₁₀ H ₁₆	309	-67	0.12	0.858
uns-Dimethylhydrazine	N ₂ H ₂ (CH ₃) ₂	146	-71	2.40-3.25	0.785
2, 3-Xyldene	(CH ₃) ₂ C ₆ H ₃ NH ₂	428	-58	0.50	0.98

* Can be used as a monopellant.

** At 60°F unless otherwise noted.

PHYSICAL PROPERTIES OF OXIDIZERS

Name	Formula	B.P. (°F)	F.P. (°F)	Cost \$/lb	Specific Gravity (Temp. °F)**
Chlorine Trifluoride	C1F ₃	52.2	-105.3	3.00	1.83
Fluorine	F ₂	-306	-363	4.00-10.00	1.51 (-306)
Hydrogen Peroxide*	H ₂ O ₂	288	31	1.00	1.392
90% Hydrogen Peroxide*	H ₂ O ₂ +H ₂ O	285	11.3	0.53-0.61	1.387
Mixed Oxides of Nitrogen	76% N ₂ O ₄ 24% NO			0.10	1.46 (26)
Nitric Acid:					
WFNA (MIL-N-7254C)	HNO ₃	187	-43	0.056	1.505
RFNA (14.0% NO ₂) (MIL-N-7254C)	HNO ₃ +NO ₂ +H ₂ O	142	-65	0.055	1.558
Nitrogen Tetroxide	N ₂ O ₄	70	12	0.075	1.49
Nitrogen Trifluoride	NF ₃	-200	-341		1.54 (-200)
Oxygen	O ₂	-297	-361	0.03-0.06	1.142 (-297)
Oxygen difluoride	OF ₂	-228.6	-370.8		1.496 (-288.6)
Ozone	O ₃	-169	-315		1.571 (-297)
Perchloryl Fluoride	C1O ₃ F	-52.2	-231	15.00	1.69 (-52.2)

* Can be used as a monopropellant.

** At 60 °F unless otherwise noted.

ROCKET HEAT TRANSFER

Symbols	Dimensions
A	Cross section area of flow passage ft ²
C _p	Specific heat at constant pressure BTU/lb °F
D	Diameter ft
D _h	Hydraulic diameter of coolant passage ft
h _g	Gas coefficient of heat transfer BTU/ft ² sec °F
h _L	Liquid coefficient of heat transfer BTU/ft ² sec °F
k	Thermal conductivity BTU/ft ² sec °F/ft
k _g	Gas thermal conductivity BTU/ft ² sec °F/ft
k _w	Wall thermal conductivity BTU/ft ² sec °F/ft
k _L	Liquid thermal conductivity BTU/ft ² sec °F/ft
Pr	Prandtl number ($\mu C_p/k$) none
q	Heat transfer rate BTU/sec
q/a	Heat transfer flux BTU/ft ² sec
Re	Reynolds number (vDγ/μ) none
t	Wall thickness ft
T _b	Coolant bulk temperature °R
T _c	Combustion temperature °R
T _i	Wall inside surface temperature °R
T _o	Wall outside surface temperature °R
α	Wall absorptivity none
ε	Gas emissivity none
μ	Viscosity, absolute lb/ft sec

Heat is transferred from the combustion gases to the chamber wall by forced convection and radiation. In a regeneratively cooled rocket, this heat is conducted through the wall and transferred by forced convection to the coolant (one of the propellants). The coolant must have sufficient heat capacity to absorb all of the incident heat without reaching its boiling point.

Heat Flux to Walls

Forced Convection

$$\left(\frac{q}{a}\right)_c = h_g (T_c - T_i)$$

where $h_g = 0.023 \frac{W}{A} C_p (Re)^{-0.2} (Pr)^{-0.6}$

Radiation

$$\left(\frac{q}{a}\right)_r = 0.483 \epsilon \cdot \alpha \left[\left(\frac{T_c}{1000} \right)^4 - \left(\frac{T_i}{1000} \right)^4 \right]$$

Heat Conducted Through Walls

$$\frac{q}{a} = \left(\frac{q}{a}\right)_c + \left(\frac{q}{a}\right)_r$$

$$= \frac{k_w}{t} (T_i - T_o)$$

Heat Transferred to Coolant

$$\frac{q}{a} = h_L (T_o - T_b)$$

$$\text{where } h_L = 0.023 \frac{k_L}{D_h} \cdot Re^{0.8} Pr^{0.4}$$

Over-all Heat Transfer Coefficient

$$u = \frac{1}{\frac{1}{h_g} + \frac{t}{k_w} + \frac{1}{h_L}}$$

and

$$(T_c - T_i) = (T_c - T_b) \frac{u}{h_g}$$

Gas Film Coefficient vs. Area Ratio for Typical Rocket

PUMP RELATIONSHIPS**Symbols**

		Dimensions
b.hp.	Brake horsepower	hp
D	Impeller diameter	in.
f.hp.	Fluid horsepower	hp
H_f	Friction head	ft
H_p	Fluid static head	ft
H_{sv}	Suction head above vapor pressure	ft
H_t	Fluid total head	ft
H_v	Fluid velocity head	ft
H_{vp}	Fluid vapor pressure head	ft
H_z	Height of fluid surface above or below pump impeller centerline	ft
n	Rotational speed	rpm
n_s	Pump specific speed	$\frac{\text{rpm} \sqrt{\text{gpm}}}{\text{ft}^{3/4}}$
Q	Volume flow rate	gpm
S	Suction specific speed	$\frac{\text{rpm} \sqrt{\text{gpm}}}{\text{ft}^{3/4}}$
V	Fluid velocity	ft/sec
γ	Fluid specific weight	lb/cu ft
δ	Fluid specific gravity	none
η	Over-all efficiency	percent
Φ	Over-all head rise coefficient at point of maximum efficiency	none

Pump Specific Speed

$$n_s = n \frac{\sqrt{Q}}{H^{3/4}}$$

Fluid Velocity Head

$$H_v = \frac{V^2}{2g}$$

Fluid Total Head

$$H_t = H_p + H_v$$

Section Head Above
Vapor Pressure

$$H_{sv} = H_p + H_v = H_{vp}$$

Suction Specific Speed

$$S = \frac{n \sqrt{Q}}{H_{sv}^{3/4}}$$

Over-all Efficiency

$$\eta = \frac{f. \text{ hp.}}{b. \text{ hp.}}$$

Fluid Horsepower

$$f. \text{ hp.} = \frac{QH\delta}{3960}$$

Impeller Diameter

$$D = \frac{1840 \Phi \sqrt{H}}{n}$$

BALLISTIC AND CELESTIAL MECHANICS

Definitions

Apogee - the point in an elliptical orbit which is farthest from the center of the earth.

Ballistic range - the range on surface of the reference sphere from the cutoff point to the point of re-entry through the reference sphere.

Conic Section Trajectory - A trajectory based on a central gravity field. The trajectory may be circular, elliptical, parabolic or hyperbolic.

Constant of Gravitation (G) - The proportionality constant for the attractive force between two masses.

Cutoff velocity - the vehicle velocity at the point of thrust termination.

Gravity field, central - a force field in which the lines of force converge at the center of the mass.

Gravity field, homogeneous - a force field in which the lines of force are parallel.

Path angle - the angle (θ) from the local vertical to the tangent to the vehicle path.

Perigee - the point in an orbit which is closest to the center of the earth.

Reference sphere - a hypothetical spherical surface in space, through the cutoff point, concentric with the gravity field.

Short Range Trajectory - A trajectory (under 50 miles) based on a homogeneous gravity field.

True anomaly - The angular distance (α) of a satellite from its perigee.

Symbols	Dimensions
a	Semi-major axis of ellipse ft
b	Semi-minor axis of ellipse ft
e	Eccentricity of ellipse none
g_e	Gravity at earth surface ft/sec^2
g_c	Gravity at cutoff altitude ft/sec^2
g_h	Gravity at h altitude ft/sec^2
h_c	Cutoff altitude ft
h_p	Peak altitude ft
n	Loaded vehicle weight/cutoff vehicle weight none
p	Parameter of a conic section ft
r	Radius vector ft
r_a	Radius vector to apogee ft
r_p	Radius vector to perigee ft
R_c	Radius from mass center to cutoff altitude ft
R_e	Radius of earth, mean ft
t	Period of revolution seconds
v_a	Velocity at apogee ft/sec
v_c	Cutoff velocity ft/sec
v_e	Escape velocity ft/sec
v_o	Initial velocity ft/sec
v_p	Velocity at perigee ft/sec
v_s	Satellite circular velocity ft/sec

X	Range	ft
α	True anomaly (angle between major axis and radius vector)	degrees
θ	Path angle with vertical	degrees
θ_c	Cutoff path angle with vertical	degrees
μ	Gravitational factor, $g_e R_e^2$	ft ³ /sec ²
ϕ	Launch angle with horizontal $(90^\circ - \theta)$	degrees
ψ	Initial thrust/weight ratio, F/W_i	none

SHORT RANGE BALLISTIC TRAJECTORIES

Range

$$X = \frac{v_c^2}{g} \sin 2\phi$$

Maximum Altitude

$$h = \frac{v_c^2}{2g} \sin^2 \phi$$

Flight Duration

$$t = \frac{2v_c}{g} \sin \phi$$

SIMPLIFIED VERTICAL TRAJECTORY EQUATIONS

Assuming constant gravitational acceleration, constant thrust, and no drag

I_{sp} = mean effective specific impulse

$$\psi = \frac{F}{W_i} = \text{initial thrust to weight ratio}$$

$$n = \frac{\text{loaded weight } (W_i)}{\text{cutoff weight } (W_c)}$$

Velocity at Cutoff (end of burning time)

$$v_c = g_e I_{sp} \left(\ln n - \frac{n-1}{\psi n} \right)$$

Altitude at Cutoff

$$h_c = g_e \left(I_{sp} \right)^2 \left(\frac{n-1}{\psi n} \right) \left[1 - \frac{\ln n}{n-1} - \frac{1}{2} \frac{n-1}{\psi n} \right]$$

Height from Cutoff to Peak Altitude

$$h_{p-c} = \frac{g_e^2}{2g} \left(I_{sp} \right)^2 \left(\ln n - \frac{n-1}{\psi n} \right)^2$$

\bar{g} = average gravity from cutoff to peak altitude

Peak Altitude

$$h_p = h_c + h_{p-c}$$

$$\text{Time of Powered Flight } t = \frac{n-1}{\psi n} I_{sp}$$

MECHANICS OF CONIC SECTION TRAJECTORIES

Escape Velocity, Minimum

$$v_e = R_e \sqrt{\frac{2g_e}{R_e + h}} = v_s \sqrt{2}$$

Satellite Circular Velocity

$$v_s = R_e \sqrt{\frac{g_e}{R_e + h}}$$

Variation of Gravity with Altitude

$$g_h = g_e \left(\frac{R_e}{R_e + h} \right)^2$$

Parameter of a Conic Section Trajectory

$$p = \frac{b^2}{a} = \frac{v_c^2 \sin \theta_c}{g_c}$$

Eccentricity of a Conic Section Trajectory

$$e = \sqrt{\frac{a^2 - b^2}{a}} = \sqrt{1 + \frac{\left(v_c^2 - \frac{2\mu}{R_e}\right) v_c^2 R_c^2 \sin^2 \theta_c}{\mu^2}}$$

Satellite Velocity in an Elliptical Orbit

$$v_a = \sqrt{\frac{\mu(1-e)}{r_a}} = \sqrt{\frac{\mu(1-e)}{a(1+e)}}$$

$$v_p = \sqrt{\frac{\mu(1+e)}{r_p}} = \sqrt{\frac{\mu(1+e)}{a(1-e)}}$$

Period of Revolution of a Circular Orbit Relative to Earth

$$t = \frac{2\pi(R_e + h)}{v_s}$$

Period of Revolution of an Elliptical Orbit

$$t = \sqrt{\frac{4\pi^2 a^3}{\mu}}$$

Range in Reference Sphere of Ballistic Trajectories in a Central Gravity Field

$$X = 2R_c \arctan \frac{v_c^2 \sin \theta_c \cos \theta_c}{R_c g_c - v_c^2 \sin^2 \theta_c}$$

Approximate Range from Cutoff to Impact in a Central Gravity Field (No Drag)

$$X' = X + h_c \tan \theta_c$$

Inertial Trajectories in a Central Gravity Field

Range of Ballistic Trajectories over Reference Sphere
100 miles above Earth

Escape Velocity and Period of Revolution of a Satellite Vehicle as a Function of Altitude

CHARACTERISTIC DATA OF THE SOLAR SYSTEM

$$\text{Constant of gravitation (G)} = 6.664 \times 10^{-8} \text{ cm}^3/\text{gm sec}^2 \\ = 3.44 \times 10^{-8} \text{ ft}^4/\text{lb sec}^4$$

Planet	Diameter Miles	Acceleration Of Gravity At Surface Ft/Sec ²	Escape Velocity At Surface Ft/Sec
Mercury	3,194	10.449	13,109
Venus	7,842	28.297	33,697
Earth	7,926	32.172	36,677
Moon	2,159	5.19	7,693
Mars	4,263	12.95	16,825
Jupiter	89,229	85.27	197,700
Saturn	74,937	37.62	119,200
Uranus	33,181	33.85	72,490
Neptune	30,882	47.61	82,380
Sun	864,100	900	2,020,000

Mean radius of the earth = 3,963 statute miles

Mean radius of earth's orbit = 4.9×10^{11} feet

Weight of earth = 13.22×10^{24} lb (Avdp)

Volume of earth = 38.38×10^{21} ft³

Average density of earth = 344 lb/ft³

1 degree of latitude at 40° = 69 statute miles

1 nautical mile = 1' of arc on the earth's surface at the equator = 6080.2 feet

PHYSICAL PROPERTIESGENERAL PROPERTIES OF GASES

Polytropic

$$P_0 V_0^n = P V^n, \quad \frac{T}{T_0} = \left(\frac{V_0}{V} \right)^{n-1} = \left(\frac{P}{P_0} \right)^{\frac{n-1}{n}}$$

Reversible Adiabatic

$$\frac{P}{P_0} = \left(\frac{V_0}{V} \right)^k, \quad \frac{T}{T_0} = \left(\frac{V_0}{V} \right)^{k-1} = \left(\frac{P}{P_0} \right)^{\frac{k-1}{k}} \quad n = k$$

Constant Temperature

$$\frac{P}{P_0} = \frac{V_0}{V}$$

Constant Volume

$$\frac{T}{T_0} = \frac{P}{P_0}$$

Constant Pressure

$$\frac{T}{T_0} = \frac{V}{V_0}$$

Perfect Gas Law

$$PV = RT, \quad P = \rho gRT$$

PHYSICAL PROPERTIES OF GASES

Gas	Weight of 1 cu ft at standard atmos. and 68°F lb	Density relative to air	Gas Constant, R' ft/°R	Specific heat at room temperatures			Normal Boiling Point °F	Weight Density of Liquefied Gas lb/ft³	Critical Temp. °F	Critical Pressure Atmospheres
				C _p BTU lb°F	C _v BTU lb°F	k				
Acetylene	0.06754	0.897	59.40	0.350	0.2737	1.28	-118	24.9 at +86°F	96.8	62
Air	0.07528	1.000	53.30	0.241	0.1725	1.40	-317.6	57.4	-233	-220.3
Ammonia	0.04420	0.587	90.77	0.523	0.4064	1.29	-28	38.1	+61	270.3
Argon	0.1037	1.377	38.70	0.124	0.0743	1.67	-302	87.3	-303	-187.7
Carbon Dioxide	0.1142	1.516	35.13	0.205	0.1599	1.28	-109	48.0	+68	88.0
Carbon Monoxide	0.07269	0.965	55.19	0.243	0.1721	1.41	-310	53.7	-90	-220.33
Helium	0.01039	0.138	386.30	1.250	0.754	1.67	-452	9.18	-456	-450.2
Hydrogen	0.005234	0.0695	766.80	3.420	2.4350	1.40	-423	4.37	-423	-399.8
Methane	0.04163	0.553	96.37	0.593	0.4692	1.26	-258	25.9	-263	-116.5
Nitric Oxide	0.07788	1.034	51.52	0.231	0.1648	1.40	-291	91.7	+60	-136.7
Nitrogen	0.07274	0.966	55.16	0.247	0.1761	1.40	-320	50.4	-321	-232.8
Steam	--	0.623	85.81	0.460	0.3600	1.28	+212	62.4	+39	705.2
										217.72

GENERAL PROPERTIES OF AIR

Symbols

P_0	Standard absolute pressure at sea level	lb/ft ²
T_0	Standard absolute temperature sea level	°R
q	Impact pressure	lb/ft ²
σ	Density Ratio, ρ/ρ_0	none
γ	Specific Weight	lb/ft ³

Specific Weight of Air

$$\gamma = 0.07651 \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right) = 1.325 \left[\frac{P \text{ (in. Hg)}}{T} \right]$$

Density of Air

$$\rho = 0.002378 \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right) = 0.041187 \left[\frac{P \text{ (in. Hg)}}{T} \right]$$

Air Density Ratio

$$\sigma = \frac{\rho}{\rho_0} = \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right) = 17.32 \left[\frac{P \text{ (in. Hg)}}{T} \right]$$

Speed of Sound in Air

$$C_{fps} = 49.04 \sqrt{T}$$

$$C_{mph} = 33.5 \sqrt{T}$$

$$C_{knots} = 29.04 \sqrt{T}$$

Specific Heat of Air

$$C_p = 0.240 \text{ BTU/lb°F}$$

$$C_v = 0.1715 \text{ BTU/lb°F}$$

Molecular Weight of Air

$$M = 28.966 \text{ lb/Mol}$$

Specific Gas Constant for Air

$$R' = 53.3$$

COMPOSITION OF AIR

The air of the NACA standard atmosphere is assumed to be dry and to have the following composition at all altitudes considered:

Constituent Gas	Mole Percent	Molecular Weight
Nitrogen	78.09	28.016
Oxygen	20.95	32.000
Argon	0.93	39.944
Carbon Dioxide	0.03	44.010
Neon	1.8×10^{-3}	20.183
Helium	5.24×10^{-4}	4.003
Krypton	1.0×10^{-4}	83.7
Hydrogen	5.0×10^{-5}	2.016
Xenon	8.0×10^{-6}	131.3
Ozone	1.0×10^{-6}	48.000
Radon	6.0×10^{-18}	222.0

ICAO ATMOSPHERIC STANDARD

	English	Metric
Standard Values at Sea Level		
Pressure	29.92 in. Hg 2116 lb/ft ²	760 mm Hg 10332.27 kg/m ²
Temperature	59° F	15°C
Absolute temperature	518.688° R	288.16° K
Specific weight	0.076475 lb/ft ³	1.2250 kg/m ³
Mass density	0.0023769 lb sec ² /ft ⁴	0.12492 kg sec ² /m ⁴
Standard Values at Altitude		
Isothermal Altitude	36,089.24 ft	11,000 m
Isothermal Temperature	-69.7°F	-56.5°C

STANDARD ATMOSPHERE

52

Altitude Feet	Temperature $^{\circ}\text{C}$	Temperature $^{\circ}\text{F}$	Pressure $\frac{\text{lb}}{\text{in.}^2}$	Density $\frac{\rho}{\rho_0}$
0	15.0	59.0	14.69	2116.
1000	13.0	55.4	14.17	2041.
2000	11.0	51.9	13.67	1968.
3000	9.1	48.3	13.17	1897.
4000	7.1	44.7	12.69	1828.
5000	5.1	41.2	12.23	1761.
6000	3.1	37.6	11.78	1696.
7000	1.1	34.0	11.34	1633.
8000	-0.8	30.5	10.92	1572.
9000	-2.8	26.9	10.51	1513.
10,000	-4.8	23.3	10.10	1455.
11,000	-6.8	19.8	9.722	1400.
12,000	-8.8	16.2	9.347	1346.
13,000	-10.8	12.6	8.986	1294.
14,000	-12.7	9.1	8.632	1243.
15,000	-14.7	5.5	8.292	1194.
16,000	-16.7	1.9	7.965	1147.
17,000	-18.7	-1.6	7.646	1101.
18,000	-20.7	-5.2	7.340	1057.
19,000	-22.6	-8.8	7.042	1014.
20,000	-24.6	-12.3	6.753	972.5

Altitude Feet	Temperature $^{\circ}\text{C}$	Temperature $^{\circ}\text{F}$	Pressure $\frac{\text{lb}}{\text{in.}^2}$	Density $\frac{\rho}{\rho_0}$
21,000	-26.6	-15.9	6.475	932.4
22,000	-28.6	-19.5	6.206	893.7
23,000	-30.6	-23.0	5.946	856.3
24,000	-32.5	-26.6	5.696	820.2
25,000	-34.5	-30.2	5.453	785.3
26,000	-36.5	-33.7	5.219	751.6
27,000	-38.5	-37.3	4.994	719.1
28,000	-40.5	-40.9	4.776	687.8
29,000	-42.5	-44.4	4.567	657.6
30,000	-44.4	-48.0	4.364	628.4
31,000	-46.4	-51.6	4.169	600.3
32,000	-48.4	-55.1	3.981	573.3
33,000	-50.4	-58.7	3.800	547.2
34,000	-52.4	-62.2	3.626	522.1
35,000	-54.3	-65.8	3.458	498.0
36,000	-55.0	-69.4	3.296	474.7
36,089	-55.0	-69.7	3.283	472.7
37,000	-55.0	-69.7	3.142	452.4
38,000	-55.0	-69.7	2.994	431.2
39,000	-55.0	-69.7	2.854	411.0
40,000	-55.0	-69.7	2.720	391.7
45,000	-55.0	-69.7	2.139	308.0
50,000	-55.0	-69.7	1.682	242.2
55,000	-55.0	-69.7	1.323	190.5
60,000	-55.0	-69.7	1.040	149.8
65,000	-55.0	-69.7	0.8181	117.8

DIVISION OF BELL AEROSPACE CORPORATION

BELL AEROSYSTEMS COMPANY

DIVISION OF BELL AEROSPACE CORPORATION

No. 86, the ARDC Model Atmosphere, 1956

Altitude Feet	Temperature °C	Temperature °F	Pressure		in. Hg	$\frac{\text{lb sec}^2}{\text{ft}^4}$	$\frac{\rho}{\rho_0}$	Altitude Feet
			lb in. ²	lb ft ²				
70,000	-56.50	-69.70	0.6505	93.67	1.324	1.399×10^{-4}	0.05887	70,000
80,000	-56.50	-69.70	0.4036	58.12	0.8218	8.683×10^{-5}	0.03653	80,000
90,000	-49.56	-57.20	0.2520	36.29	0.5131	5.253×10^{-5}	0.02210	90,000
100,000	-40.50	-40.89	0.1603	23.08	0.3264	3.211×10^{-5}	0.01351	100,000
110,000	-31.44	-24.60	0.1038	14.95	0.2113	2.001×10^{-5}	8.420×10^{-3}	110,000
120,000	-22.40	-8.32	6.831×10^{-2}	9.837	0.1391	1.270×10^{-5}	5.342×10^{-3}	120,000
130,000	-13.36	7.94	4.564×10^{-2}	6.573	0.09294	8.189×10^{-6}	3.445×10^{-3}	130,000
140,000	-4.34	24.19	3.094×10^{-2}	4.455	0.06299	5.364×10^{-6}	2.256×10^{-3}	140,000
150,000	4.68	40.42	2.125×10^{-2}	3.060	0.04326	3.564×10^{-6}	1.499×10^{-3}	150,000
160,000	9.50	49.10	1.476×10^{-2}	2.125	0.03004	2.433×10^{-6}	1.023×10^{-3}	160,000
170,000	9.50	49.10	1.026×10^{-2}	1.478	0.02090	1.693×10^{-6}	7.122×10^{-4}	170,000
180,000	4.06	39.31	7.132×10^{-3}	1.027	0.01453	1.199×10^{-6}	5.046×10^{-4}	180,000
190,000	-7.62	18.29	4.894×10^{-3}	0.7047	9.963×10^{-3}	8.589×10^{-7}	3.613×10^{-4}	190,000
200,000	-19.30	-2.74	3.300×10^{-3}	0.4752	6.718×10^{-3}	6.058×10^{-7}	2.549×10^{-4}	200,000
250,000	-76.30	-105.34	3.378×10^{-4}	4.864×10^{-2}	6.877×10^{-4}	7.996×10^{-8}	3.364×10^{-5}	250,000
300,000	-76.30	-105.34	2.568×10^{-5}	3.698×10^{-3}	5.229×10^{-5}	6.065×10^{-9}	2.552×10^{-6}	300,000
350,000	-52.52	-62.53	2.649×10^{-6}	3.814×10^{-4}	5.393×10^{-6}	4.957×10^{-10}	2.085×10^{-7}	350,000
400,000	-16.25	2.76	4.233×10^{-7}	6.096×10^{-5}	8.619×10^{-7}	6.565×10^{-11}	2.762×10^{-8}	400,000
450,000	67.55	153.6	9.660×10^{-8}	1.391×10^{-5}	1.967×10^{-7}	1.111×10^{-11}	4.672×10^{-9}	450,000
500,000	185.3	365.6	3.385×10^{-8}	4.875×10^{-6}	6.892×10^{-8}	2.862×10^{-12}	1.204×10^{-9}	500,000
600,000	402.0	755.7	8.000×10^{-9}	1.152×10^{-6}	1.629×10^{-8}	4.499×10^{-13}	1.893×10^{-10}	600,000
700,000	468.5	875.4	3.854×10^{-9}	5.550×10^{-7}	5.550×10^{-9}	1.277×10^{-13}	5.371×10^{-11}	700,000
800,000	537.3	999.2	1.106×10^{-9}	1.592×10^{-7}	2.251×10^{-9}	4.443×10^{-14}	1.869×10^{-11}	800,000
900,000	607.1	1125	5.092×10^{-10}	7.332×10^{-8}	1.037×10^{-9}	1.794×10^{-14}	7.546×10^{-12}	900,000
1,000,000	677.2	1251	2.581×10^{-10}	3.717×10^{-8}	5.256×10^{-10}	8.103×10^{-15}	3.409×10^{-12}	1,000,000
1,500,000	1025	1878	2.109×10^{-11}	3.037×10^{-9}	4.293×10^{-11}	4.326×10^{-16}	1.820×10^{-13}	1,500,000
1,700,000	1162	2123	1.004×10^{-11}	1.446×10^{-9}	2.044×10^{-11}	1.816×10^{-16}	7.640×10^{-14}	1,700,000

Temperature and Speed of Sound versus Altitude

Speed of Sound versus Temperature

Variation of Power with Altitude for Different Prime Movers

CHEMICAL ELEMENTS

	Symbol	Atomic Number	Atomic* Weight
Actinium	Ac	89	(227)
Aluminum	Al	13	26.98
Americium	Am	95	(243)
Antimony	Sb	51	121.76
Argon	A	18	39.944
Arsenic	As	33	74.91
Astatine	At	85	(210)
Barium	Ba	56	137.36
Berkelium	Bk	97	(249)
Beryllium	Be	4	9.013
Bismuth	Bi	83	209.00
Boron	B	5	10.82
Bromine	Br	35	79.916
Cadmium	Cd	48	112.41
Calcium	Ca	20	40.08
Californium	Cf	98	(249)
Carbon	C	6	12.011
Cerium	Ce	58	140.13
Cesium	Cs	55	132.91
Chlorine	Cl	17	35.457
Chromium	Cr	24	52.01
Cobalt	Co	27	58.94
Columbium (see Niobium)			
Copper	Cu	29	63.54
Curium	Cm	96	(245)
Dysprosium	Dy	66	162.51
Einsteinium	E	99	(253)
Erbium	Er	68	167.27
Europium	Eu	63	152.0
Fermium	Fm	100	(255)

*Atomic weights in parentheses denote the mass numbers of isotopes of longest known half-life.

		Symbol	Atomic Number	Atomic* Weight
Fluorine		F	9	19.00
Francium		Fr	87	(223)
Gadolinium		Gd	64	157.26
Gallium		Ga	31	69.72
Germanium		Ge	32	72.60
Gold		Au	79	197.0
Hafnium		Hf	72	178.50
Helium		He	2	4.003
Holmium		Ho	67	164.94
Hydrogen		H	1	1.0080
Indium		In	49	114.82
Iodine		I	53	126.91
Iridium		Ir	77	192.2
Iron		Fe	26	55.85
Krypton		Kr	36	83.80
Lanthanum		La	57	138.92
Lead		Pb	82	207.21
Lithium		Li	3	6.940
Lutetium		Lu	71	174.99
Magnesium		Mg	12	24.32
Manganese		Mn	25	54.94
Mendelevium		Mv	101	(256)
Mercury		Hg	80	200.61
Molybdenum		Mo	42	95.95
Neodymium		Nd	60	144.27
Neon		Ne	10	20.183
Neptunium		Np	93	(237)
Nickel		Ni	28	58.71
Niobium (Columbium)		Nb	41	92.91
Nitrogen		N	7	14.008
Nobelium		No	102	(258)
Osmium		Os	76	190.2
Oxygen		O	8	16.0000

		Symbol	Atomic Number	Atomic* Weight
Palladium		Pd	46	106.4
Phosphorus		P	15	30.975
Platinum		Pt	78	195.09
Plutonium		Pu	94	(242)
Polonium		Po	84	(210)
Potassium		K	19	39.100
Praesodymium		Pr	59	140.92
Promethium		Pm	61	(145)
Protactinium		Pa	91	(231)
Radium		Ra	88	226.05
Radon		Rn	86	(222)
Rhenium		Re	75	186.22
Rhodium		Rh	45	102.91
Rubidium		Rb	37	85.48
Ruthenium		Ru	44	101.1
Samarium		Sm	62	150.35
Scandium		Sc	21	44.96
Selenium		Se	34	78.96
Silicon		Si	14	28.09
Silver		Ag	47	107.880
Sodium		Na	11	22.991
Strontium		Sr	38	87.63
Sulfur		S	16	32.066
Tantalum		Ta	73	180.95
Technetium		Tc	43	(99)
Tellurium		Te	52	127.61
Terbium		Tb	65	158.93
Thallium		Tl	81	204.39
Thorium		Th	90	232.05
Thulium		Tm	69	168.94
Tin		Sn	50	118.70

*Atomic weights in parentheses denote the mass numbers of isotopes of longest known half-life.

	Symbol	Atomic Number	Atomic Weight
Titanium	Ti	22	47.90
Tungsten	W	74	183.86
Uranium	U	92	238.07
Vanadium	V	23	50.95
Xenon	Xe	54	131.30
Ytterbium	Yb	70	173.04
Yttrium	Y	39	88.92
Zinc	Zn	30	65.38
Zirconium	Zr	40	91.22

MISCELLANEOUS CONSTANTS

Mechanical equivalent of heat	4.182 joule cal ⁻¹
Electronic charge	4.80294 x 10 ⁻¹⁰ esu
Mass of electron, m _e	9.1066 x 10 ⁻²⁸ gm
Mass of proton, m _p	1.67248 x 10 ⁻²⁴ gm
Mass of α particle, m _{α}	6.6442 x 10 ⁻²⁴ gm
Mass of hydrogen atom, m _H	1.67339 x 10 ⁻²⁴ gm
Avogadro's number, N ₀	6.0228 x 10 ²³ (gm mol) ⁻¹
Planck constant, h	6.6254 x 10 ⁻²⁷ erg sec
Boltzmann constant, k	1.38049 x 10 ⁻¹⁶ erg (°k) ⁻¹
Velocity of light in vacuum, c	2.997928 x 10 ¹⁰ cm sec ⁻¹ 186,282 miles sec ⁻¹

1 mil (electric definition), measure of wire diameter = 0.001 in.
 1 mil (angular measure) = 360°/6400 (Army Ordnance)
 1 mil (angular measure) = 1/1000 radian (Naval Ordnance)
 1 Navy mil = 1.0186 Army mil
 Heat equivalent of fusion of water, 79.24 cal per gram
 Heat equivalent of vaporization of water, 535.9 cal per gram

$$e = 2.71828$$

$$\log_e 10 = 2.30258$$

$$\pi = 3.14159$$

PHYSICAL PROPERTIES OF REFRACATORY MATERIALS

Material	Melting or Decomposition Temp. °F	*True Specific Gravity	**Apparent Specific Gravity	Linear Coefficient of Expansion/ $^{\circ}\text{C} \times 10^{-6}$	Thermal Conductivity BTU/hr/ft ² /in./°F	Specific Heat
Chromic Oxide	3614	5.21		7.0 - 12.0		
Alumina	3660	3.97	2.95	8.1	18	0.27
Silicon Carbide	3990	3.17	2.82	4.5	56	0.19
Niafrax A			2.77	6.7	113	
Lt. Wt. Niafrax			2.30			
Boron Carbide	4440	2.51	4.5			
Zircon	4532	4.56	3.32	5.1	12	0.132
Beryllium Oxide	4658	3.02	2.87	9.3	1080-1380	0.40
Zirconia	4892	6.27	4.40	11.0	5	0.168
Magnesia	5072	3.58	2.50	14.3	23	0.187
Thoria	5522	9.69	7.34	9.4		0.06
Titanium Carbide	5748	4.25				
Graphite	6332	2.25	1.60	1.5	600	0.34

* True Specific Gravity is based on a solid mass.

** Apparent Specific Gravity accounts for the voids that exist in refractories.

PHYSICAL PROPERTIES OF METALS

Materials	Specific Gravity	Density lb/in. ³	Melting Point °F	Ultimate Tensile Strength x 10 ³ psi	Modulus of Elasticity x 10 ⁶ psi	Coefficient of Thermal Expansion (32°F - 212°F) x 10 ⁻⁶ in./in./°F	Thermal Conductivity (32°F - 212°F) BTU/ft ² hr °F/in.
Aluminum EC-0	2.7	0.098	1195-1215	12	10.0	13.7	1,630
Al Alloys 1100-0	2.71	0.098	1190-1215	13	10.0	13.7	1,540
(Wrought) 3003-0	2.73	0.099	1190-1210	16	10.0	12.9	1,340
3004-0	2.72	0.098	1165-1205	26	10.0	12.9	1,130
2014-T6	2.80	0.101	950-1180	70	10.6	12.5	1,070
2024-T4	2.77	0.100	935-1180	68	10.6	12.6	840
5052-0	2.68	0.097	1100-1200	28	10.2	13.2	960
6061-T6	2.70	0.098	1080-1200	45	10.0	13.0	1,070
Al Alloys (Cast)							
Sand 195-T6	2.78	0.101	970-1170	36	10.3	12.2	1,310
Perm. Mold 195-T6	2.78	0.101	970-1170	40	10.3	12.2	1,310
Sand 355-T6	2.66	0.096	1015-1150	35	10.3	12.2	990
Perm. Mold 355-T6	2.66	0.096	1015-1150	43	10.3	12.2	990
Sand 356-T6	2.63	0.095	1035-1135	33	10.3	11.9	1,050
Perm. Mold 356-T6	2.63	0.095	1035-1135	40	10.3	11.9	1,050
Beryllium	1.85	0.066	2345	35-95	36-44	13.3	1,130
Brass Yellow (Hard)	8.47	0.306	1710	74	14	10.5	830
Bronze-Manganese Hard Temper	8.36	0.302	1645	90	15	11.2	700
Bronze-Phosphor (5%) Hard Temper	8.86	0.320	1920	100	15	9.4	565
Bronze-Aluminum Hard	7.78	0.281	1900	105	15	9.2	490
Beryllium Copper Hard Temp	8.23	0.297	1750	190	18	9.2	650
Copper Hard Temp	8.92	0.322	1980	52	16	9.3	2,700
Muntz Metal Hard Temp	8.40	0.303	1660	80	13	10.8	870
Cupro-Nickel (70-30) Cold-Rolled	8.94	0.323	2240	80	20	8.5	200
Dowmetal C Cast & H. T.	1.82	0.066	1110	40	6.5	14	464
Gold (Pure) Hard Temp	19.32	0.698	1945	32	13	7.8	2,000
Iron Wrought (Hot Rolled)	7.70	0.278	2750	48	29	6.7	418
Cast (As Cast)	7.20	0.260	2150	25	13	6.7	310
Malleable (As Cast)	7.32	0.264	2250	55	25	6.6	435

Materials	Specific Gravity	Density lb/in. ³	Melting Point °F	Ultimate Tensile Strength x 10 ³ psi	Modulus of Elasticity x 10 ⁶ psi	Coefficient of Thermal Expansion (32°F - 212°F) x 10 ⁻⁶ in./in./°F	Thermal Conductivity (32°F - 212°F) BTU/ft ² hr °F/in.
K-Monel (Wrought)	8.47	0.306	2400-2460	150	26	7.8	130
Hot Rolled							
Inconel (Wrought)	8.51	0.307	2540-2600	100	31	6.4	104
Hot Rolled				44	6.5	14.4	553
Magnesium	1.8	0.065	950-1150	105	30	7.2	420
Wrought J-1 Alloy							
Nickel (Wrought)	8.89	0.321	2615-2635	47	17	6.5	490
Hard Temp							
Palladium	11.98	0.432	2830	36	24	4.9	480
Hard Temp				43	10.5	10.6	2900
Platinum	21.40	0.772	3225	69	30	6.7	360
Hard Temp							
Silver (Pure)	10.50	0.379	1760	85	28	9.6	113
Hard Temp							
Steel SAE 1020	7.86	0.284	2760	90	28	8.9	113
Hot Rolled							
Stainless Steel				85	28	9.3	110
Type 304	8.02	0.29	2550-2650	75	29	5.5	173
Annealed							
Type 316	8.02	0.29	2500-2550	80	29	12.4	288
Annealed				95	29	12.3	288
Type 321 & 347	7.92	0.286	2550-2600	80	29	12.7	288
Annealed							
Type 410	7.75	0.28	2700-2790	42	27	3.57	375
Annealed							
Steel Alloys				2.38	7.1	11.7	455
4130 Annealed	7.85	0.283	2500-2600	145	16	3.3	118
4140 Annealed	7.85	0.283	2500-2600	140	16	5.0	80-120
8630 Annealed	7.84	0.283	2500-2600				
Tantalum	16.6	0.60	5425				
Annealed				21	--	13-18	780
Tin	7.29	0.263	450				
Annealed							
Titanium (Pure)	4.54	0.164					
Cold Rolled							
Titanium Alloy							
Fe, Cr, Mo	4.68	0.169					
Annealed							
Zinc	7.15	0.258	786				

CONVERSION FACTORSAREA

	Multiply	By	To Obtain
Acres	43,560		Square feet
	0.4047		Hectares
	1.562x10 ⁻³		Square miles
Square centimeters	0.1550		Square inches
	1.08x10 ⁻³		Square feet
Square kilometers	0.3861		Square miles
Square inches	6.4516		Square centimeters
Square feet	144		Square inches
	0.111		Square yards
Square yards	1296		Square inches
	0.8361		Square meters
Square miles	2.5900		Square kilometers
	640		Acres

DENSITY

	Multiply	By	To Obtain
Grams per cubic centimeter	62.428		Pounds per cubic foot
	0.03613		Pounds per cubic foot
Pounds per cubic inch	1728		Pounds per cubic foot
	27.68		Grams per cubic centimeter

ENERGY

	Multiply	By	To Obtain
BTU's	777.97		Foot-pounds
	2.930x10 ⁻⁴		Kilowatt-hours
	251.98		Gram-calories
	1054.8		Joules
Ergs	9.4805x10 ⁻¹¹		BTU's
	1.0		Dyna-centimeters
Calories	7.37x10 ⁻⁸		Foot-pounds
	1.02x10 ⁻³		Gram-centimeters
	1x10 ⁻⁷		Joules
	2.389x10 ⁻⁵		Kilogram-calories
Horsepower-hour	3.968x10 ⁻³		BTU's
	4.186		Joules
Joules	2544		BTU's
	1.98x10 ⁶		Foot-pounds
	641.3		Kilogram-calories
Kilogram-calories	9.480x10 ⁴		BTU's
	0.73756		Foot-pounds
Kilogram-meters	2.388x10 ⁻⁴		Kilogram-calories
	0.10179		Kilogram-meters
Watt-seconds	1.0		Watt-seconds
	2.778x10 ⁻⁴		Watt-hours
Watt-hours	3.725x10 ⁻⁷		Horsepower-hours
Kilogram-meters	3.9685		BTU's
	3087.4		Foot-pounds
Kilogram-meters	426.85		Kilogram-meters
	7.233		Foot-pounds
	9.8066x10 ⁷		Ergs

FORCE

Multiply	By	To Obtain
Dynes	1.020×10^{-3}	Grams
	2.248×10^{-6}	Pounds
	7.233×10^{-5}	Poundals
Grams	15.432	Grains
	0.03527	Ounces
	0.00220	Pounds
	980.665	Dynes

Multiply	By	To Obtain
Miles	5280	Feet
	0.8684	Nautical miles
	1760	Yards
	1.6093	Kilometers
Nautical miles	6080.2	Feet
	1.85325	Kilometers
Light years	5.9×10^{12}	Miles
	9.46×10^{12}	Kilometers

HEAT TRANSFER COEFFICIENT

Multiply	By	To Obtain
BTU/(hr)(ft ²)(°F)	0.0001355	Gm cal/(sec)(cm ²) (°C)
	1.929×10^{-6}	BTU/(sec)(in. ²) (°F)
	0.0005669	watts/cm ² °C

POWER

Multiply	By	To Obtain
BTU's per minute	12.96	Foot-pounds per second
	0.2520	Kilogram-calories per minute
BTU's per second	1.414	Horsepower
	1054.8	Watts
Horsepower	33,000	Foot-pounds per minute
	550	Foot-pounds per second
	76.040	Kilogram-meters per second
	1.0139	Metric horsepower
	0.707	BTU's per second
	2545	BTU's per hour
	745.2	Watts

LENGTH

Multiply	By	To Obtain
Centimeters	0.2837	Inches
	0.03281	Feet
	1×10^8	Angstroms
	1×10^4	Microns
Meters	39.37	Inches
	3.281	Feet
	1.0936	Yards
Kilometers	0.6214	Miles
	0.5396	Nautical miles

Multiply	By	To Obtain	Multiply	By	To Obtain
Horsepower, metric	75	Kilogram-meters per second		1.0332	Kilograms per square centimeter
	0.9863	Horsepower	Centimeters of mercury	5.3524	Inches of water
	41.83	BTU's per minute		0.4460	Feet of water
	542.5	Foot-pounds per second		0.1934	Pounds per square inch
	10.54	Kilogram-calories per minute		27.845	Pounds per square foot
	735.5	Watts		135.95	Kilograms per square meter
Kilowatts	0.9483	BTU's per second	Feet of water	0.02947	Atmospheres
	737.6	Foot-pounds per second		0.4335	Pounds per square inch
	0.2389	Kilogram-calories per second		62.378	Pounds per square foot
	1.3410	Horsepower	Inches of mercury	0.03342	Atmospheres
	3414	BTU's per hour		13.60	Inches of water
PRESSURE					
Multiply	By	To Obtain		1.133	Feet of water
Atmospheres	76.0	Centimeters of mercury		0.4912	Pounds per square inch
	29.921	Inches of mercury		70.727	Pounds per square foot
	33.93	Feet of water		345.32	Kilograms per square meter
	10332	Kilograms per square meter	Inches of water	0.03609	Pounds per square inch
	14.696	Pounds per square inch		5.1981	Pounds per square foot
	2116.2	Pounds per square foot		25.38	Kilograms per square meter
	1.0133	Bars			

Multiply	By	To Obtain
Kilograms per square centimeter	0.9678 14.22	Atmospheres Pounds per square inch
Kilograms per square meter	0.00142 0.20482 0.00328 0.1	Pounds per square inch Pounds per square foot Feet of water Grams per square centimeter
Pounds per square inch	70.31	Grams per square centimeter

THERMAL CONDUCTIVITY

Multiply	By	To Obtain
BTU/(hr)(ft ²)(°F per ft)	0.00413 12 0.0173	Gm-cal/(sec) (cm ²) (°C per cm) BTU/(hr) (ft ²) (°F per in.) Watts/(cm ²) (°C/cm)

TEMPERATURE

°C	=	5/9(F-32)
°F	=	9/5 C+32
0°C	=	273.16°K
0°F	=	459.688°R

VELOCITY

Multiply	By	To Obtain
Feet per minute	0.01136 0.01829	Miles per hour Kilometers per hour
	0.0580	Centimeter per second
	0.01667	Feet per second
Feet per second	0.6818 1.097	Miles per hour Kilometers per hour
	30.48	Centimeters per second
	0.3048 0.5921	Meters per second Knots
Knots	1.0	Nautical miles per hour
	1.6889	Feet per second
	1.1515	Miles per hour
	1.8532	Kilometers per hour
	0.5148	Meters per second

Multiply	By	To Obtain
Meters per second	3.281	Feet per second
	2.237	Miles per hour
	3.600	Kilometers per hour
Miles per hour	1.467	Feet per second
	0.4470	Meters per second
	1.609	Kilometers per hour
	0.8684	Knots

VISCOSITY

Multiply	By	To Obtain
Radians per second	57.296	Degrees per second
	0.1592	Revolutions per second
	9.55	Revolutions per minute

ABSOLUTE VISCOSITY

Poise	1.0	gm/cm sec
	1.0	dyne sec/cm ²
	100	Centipoise
Centipoise	0.000672	lb/ft sec
	0.0000209	lb sec/ft ²
	2.42	lb/ft hr

Multiply	By	To Obtain
Stoke	1.0	cm ² /sec
	0.155	in. ² /sec
	0.001076	ft ² /sec
density (gm/cm ³)	1.0	Poise

VOLUME

Multiply	By	To Obtain
Barrels	42	Gallons (Oil)
	31.5	Gallons
Cubic centimeters	10 ⁻³	Liters
	0.0610	Cubic inches
Cubic feet	28317	Cubic centimeters
	1728	Cubic inches
	0.03704	Cubic yards
	7.481	Gallons
	28.32	Liters
Cubic inches	16.387	Cubic centimeters
	0.01639	Liters
	4.329x10 ⁻³	Gallons
	0.01732	Quarts (liquid)
Gallons, imperial	277.4	Cubic inches
	1.201	U.S. gallons
	4.546	Liters
Gallons, U.S. (liquid)	231	Cubic inches
	0.1337	Cubic feet

Multiply	By	To Obtain	Multiply	By	To Obtain
Gallons, U.S. (liquid)	3.785	Liters	Tons (long)	2240	Pounds (avdp)
	0.8327	Imperial gallons		1016	Kilograms
	128	Fluid ounces		1000	Kilograms
Ounces, fluid	29.57	Cubic centimeters	Tons (metric)	2205	Pounds (avdp)
	1.805	Cubic inches		1.102	Tons (short)
Liters	0.2642	Gallons	Tons (short)	2000	Pounds (avdp)
	0.0353	Cubic Feet		907.2	Kilograms
	1.0567	Quarts		0.9072	Tons (metric)
	61.025	Cubic inches			
Quarts, U.S. (liquid)	0.0334	Cubic feet			
	57.749	Cubic inches			
	0.9463	Liters			

WEIGHT

Multiply	By	To Obtain
Grams	15.432	Grains
	0.03527	Ounces (avdp)
	0.002205	Pounds (avdp)
	1000	Milligrams
	0.001	Kilograms
	980.67	Dynes
Kilograms	2.205	Pounds (avdp)
	35.27	Ounces (avdp)
Pounds (avdp)	7000	Grains
	16.0	Ounces
	1.215	Pounds (troy)
	0.4536	Kilograms

BELL AEROSYSTEMS COMPANY

DIVISION OF BELL AEROSPACE CORPORATION

NOTES

ROCKET OXIDIZER

ROCKET CATALYST

ROCKET FUEL

FUEL

FIRE PROTECTION

DE-ICING

PNEUMATIC

ELECTRICAL CONDUIT

WATER INJECTION

LUBRICATION

HYDRAULIC

COMPRESSED GAS

WARNING SYMBOL

INSTRUMENT AIR

COOLANT

BREATHING OXYGEN

AIR CONDITION

FLUID LINE IDENTIFICATION COLORS

The fluid line identifications represent designations for systems only. For coding lines which do not fall into one of these systems the contents shall be designated by black lettering on a white background.

Pressure transmitter lines shall be identified by the same colors as the lines from which pressure is being transmitted.

Filler lines, vent lines, and drain lines from functions or related functional equipment shall be identified by the same identifications as the function lines.

No.	Name	Launch Date	Weight in lbs	Perigee Apogee in miles	Inclination to Equator	Period in min	Life	Remarks
1.	Sputnik I	10/4/57	184	142/588	65°	96.17	92 days	
2.	Sputnik II	11/3/57	1120	140/1038	65°	103.7	162 days	Dog lived one week.
3.	Explorer I	1/31/58	30.8	217/1199	33.34	107.9	3-5 years	Discovered radiation belt.
4.	Vanguard I	3/17/58	3.25	406/2463	34.25	134.1	200-1000 years	
5.	Explorer III	3/26/58	31	121/1746	33.4	115.87	93 days	
6.	Sputnik III	5/15/58	7000	105/238	65.3	89.7	692 days	
7.	Explorer IV	7/26/58	38.4	163/1380	50.29	110.27	85-91 days	More radiation belt data.
8.	Pioneer I	10/11/58	84.4	Moon probe; reached 70,700 mi., proved radiation a band.				
9.	Pioneer III	12/6/58	12.95	Moon probe; reached 63,580 mi., discovered second radiation belt.				
10.	Project Score	12/18/58	8750	110/920	32.3	101.46	34 days	Atlas ICBM. Communications test.
11.	Lunik I	1/2/59	3245	450-day solar orbit				
12.	Vanguard II	2/17/59	20.74	346/2050	32.88	125.4	100+ yrs.	Cloud cover scanner. Processing
13.	Discoverer I*	2/28/59	1300	99/605	87	95.9	5 days	First polar orbit.
14.	Pioneer IV	3/3/59	13.4	406.95-day solar orbit				Space radiation data.
15.	Discoverer II*	4/13/59	1610	142/220	89.8	90.5	13 days	Capsule returned but lost in Arctic.
16.	Explorer VI	8/7/59	142	115/24,618	46.9	753.6	1+ year	First photos of earth from space.
17.	Discoverer V*	8/18/60	1700	100/400	60	64	47 days	Capsule still in higher orbit.
18.	Discoverer VI*	8/19/60	1700	138/637	90	95.28	63 days	Capsule separated but lost.
19.	Lunik II	9/12/59	858.4	Impacted on moon 9/13/59.	Approximately 35 hour flight time.			
20.	Vanguard III	9/18/59	100	321/2321	33.3	129.9	30-40 yrs.	Magnetic & micrometeorite studies.
21.	Lunik III	10/4/59	614	24,840/ 292,000	polar	15 days	199 days	First photos of moon far side.
22.	Explorer VII	10/13/59	91	344/673	50.3	101.2	20-30 yrs	Still transmitting.
23.	Discoverer VII* 11/7/59	1700	104/550	90	95	19 days		
24.	Discoverer VIII* 11/20/59	1700	120/1056	90	103.7	110 days	Capsule returned but lost.	
25.	Pioneer V	3/11/60	94.8	(74.9/92.3) x 10 ⁶ solar orbit,	period 311.6 days			Record distance radio transmission.
26.	Tiros I	4/1/60	270	429/465	48.3	99.2	50-100 yrs	Cloud cover photos transmitted.
27.	Transit IB	4/13/60	265	229/455	51	95.6	16(?) mo.	Broadcast navigation signals.
28.	Discoverer XI*	4/15/60	1700	109/380	80.1	92.4	11 days	Capsule ejected but lost.
29.	Sputnik IV	5/15/60	10,008 total	198/198 (191/429)	64.9 (64.9)	91 (94.25)	n.a. n.a.	Separated into 8 pieces + (dummy-manned capsule)
30.	Midas II*	5/24/60	5000	300/320	33	94.4	4 yrs	Missile infrared detector.

No.	Name	Launch Date	Weight in lbs.	Perigee Apogee in miles	Inclination to Equator	Period in min.	Life	Remarks
31.	Transit II A	6/22/60	265	389/650	polar	101.7	50(?) yrs	Also piggy-back "Grebi".
32.	Discoverer XIII*8/10/60	1700	161/436	polar	94.1	97 days	Capsule recovered from water.	
33.	Echo I	8/12/60	137.4	945/1049	48.6	118.3	1(?) yr	100' aluminized plastic sphere
34.	Discoverer XIV*8/18/60	1700	111/504	79.65	94	21(?) days	Capsule recovered in air.	
35.	Sputnik V	8/19/60	10,141	191/191	64.9	91	27 hrs	Zoo capsule recovered.
36.	Courier IB	9/4/60	500	602/752		106.9	1(?) yr	Active-repeater communications
37.	Discoverer XV*9/12/60	1700	130/470	polar				Capsule returned but lost.
38.	Explorer VIII	11/3/60	90	259/1423	50			Direct sampling upper ionosphere.
39.	Discoverer XVII*11/2/60	2100	/615	polar				Capsule recovered in air.
40.	Tiros II	11/23/60	280	386.9/453.2	48.53	98.37		Infrared scanner, cloud photos.
41.	Sputnik VI	12/1/60	10,060	115/164	65°	88.6	1 day	Zoo satellite burned on re-entry.
42.	Discoverer XVIII*	12/7/60	2100	150/450	polar	94		Capsule recovered in air.
43.	Discoverer XX*	12/20/60	2100	130/400	polar	93	1 mo.	Missile-infrared detector.
44.	Sputnik VII	1/4/61	14,203	100/100	64.0	60.00	11 days	
45.	Venus Probe	3/12/61	1410					Interplanetary probe; aphelion 1,0100 A.U., perihelion 0.7183 A.U.
46.	Sputnik VIII	2/12/61		123/198		89.7	13 days	
47.	Explorer IX	2/16/61	15	438/1555	38.86	118.1		Polka dot balloon.
48.	Discoverer XX*	2/17/61	2450	176/393	80.91	93.8		No attempt to recover 300-lb capsule.
49.	Discoverer XXI*	2/18/61	2100	154/475	80.74	94.8		Infrared equipment, background radiation.
50.	Transit IIIB / Lofti	2/21/61		117/511	23.86	94.5	37 days	Orbit achieved, malfunction hampered quality of Transit data.
51.	Sputnik IX	3/9/61	10,340	113.9/154.5			1 day	
52.	Sputnik X	3/25/61	10,320	111/150	64.54	88.42	1 day	
53.	Explorer X	3/25/61	79	100/112500	33.0	50.2		Optical-pumping magnetometer.
54.	Discoverer XXII*	4/8/61	2100	183/324	82.31	92.8		Capsule ejected in wrong direction.
55.	Vostok I	4/12/61	10,418	103.76/187.66	65.07	89.1	1 day	Yuri Gagarin, first Russian Cosmonaut.
56.	Explorer XI	4/27/61	82	302/1113	28.80	107.9	1-3 years	Measures atmospheric absorption of stellar gamma rays.
57.	Mercury-Redstone	5/5/61	2000					Cmdr. Shepard, first U.S. Astronaut.
58.	Discoverer XXV*	6/15/61	2100	139.1/251.6	82.11	90.87	2 days	

BELL AEROSYSTEMS COMPANY

NO.	Name	Launch Date	Weight in lbs.	Perigee Apogee in miles	Inclination to Equator in min	Period in min	Life	Remarks
59.	Transit IV-A	6/29/61	175	547/620	67.0	103.8	1 year	Three-in-one launch with Injun/Greb III.
60.	Injun/Greb III	6/29/61	Injun 40 Greb III 55	548/619	67.0	103.8		Failed to separate but transmitting.
61.	Discoverer XXVI*	7/7/61	2100	142/352	82.93	92.6		Systems evaluation of Agena B. Capsule recovered.
62.	Tiros III	7/12/61	285	457/511	47.8	100.3		Transmitting cloud cover weather pictures.
63.	Midas III*	7/12/61	3500	2084/2197	91.17	161.5		Infrared early warning.
64.	Mercury-Redstone	7/21/61	2000	Suborbital Flight				Capt. Grissom, second U.S. Astronaut.
65.	Vostok II	8/6/61	10,430	110.3/115.3	64.0	88.6	2 days	Gherman Titov, second Russian Cosmonaut; 17-1/2 orbits.
66.	Explorer XII	8/15/61	83	183/48059	33.09	1593	1 year	Study Van Allen belts and energetic particles in space.
67.	Ranger I*	8/23/61	675	105/312.5	32.90	91.1		Failed to achieve planned orbit.
68.	Explorer XIII*	8/25/61	187	174.60/606.34	36.42	97.27	3 days	Orbit achieved.
69.	Discoverer XXXIX*	8/30/61	2100	140/345	82.14	91.0	3 months	Reliability testing of Agena B.
70.	Discoverer XXX*	9/12/61		144/306	82.71	91.9		
71.	Discoverer	9/17/61		138/202	82.7	90.0		