Job No.:
 EHB 128
 Address:
 57 Blackmore Road, Garston, New Zealand
 Date:
 11/01/2024

 Latitude:
 -45.474083
 Longitude:
 168.68633
 Elevation:
 326 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N5	Ground Snow Load	0.95 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	7.9 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	41.27 m/s
Wind Pressure	1.02 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = 0.6722

For roof CP,e from 0 m To 15.85 m Cpe = -0.6948 pe = -0.64 KPa pnet = -1.39 KPa

For roof CP,e from m To m Cpe = pe = KPa pnet = KPa

For wall Windward Cp, i = 0.6722 side Wall Cp, i = -0.5984

For wall Windward and Leeward CP,e from 0 m To 5 m Cpe = 0.7 pe = 0.64 KPa pnet = 1.30 KPa

For side wall CP,e from 0 m To 5 m Cpe = pe = 0.64 KPa pnet = 1.30 KPa

Maximum Upward pressure used in roof member Design = 1.39 KPa

Maximum Downward pressure used in roof member Design = 0.39 KPa

Maximum Wall pressure used in Design = 0.3 KPa

Maximum Racking pressure used in Design = 0.92 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4850 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.64 S1 Downward =12.68 S1 Upward =20.70

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M 1.35D	0.89 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	382.02 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.46 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	184.15 %
M0.9D-WnUp	-3.08 Kn-m	Capacity	-3.71 Kn-m	Passing Percentage	120.45 %

First Page

<u>Pole Shed App Ver 01 2022</u>						
V _{1.35D}	0.74 Kn	Capacity	12.06 Kn	Passing Percentage	1629.73 %	
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.03 Kn	Capacity	16.08 Kn	Passing Percentage	792.12 %	
$ m V_{0.9D ext{-}WnUp}$	-2.54 Kn	Capacity	-20.10 Kn	Passing Percentage	791.34 %	

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.56 mm
Deflection under Dead and Service Wind = 9.91 mm

Limit by Woolcock et al, 1999 Span/240 = 20.00 mm Limit by Woolcock et al, 1999 Span/100 = 48.00 mm

Reactions

Maximum downward = 2.03 kn Maximum upward = -2.54 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design External

External Rafter Load Width = 2500 mm

External Rafter Span = 5963 mm

Try Rafter 300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.94 \qquad K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.94 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.94 \qquad K1 \; Long \; term = 0.8 \qquad K3 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.94 \qquad K1 \; Long \; term = 0.8 \qquad K2 \; Long \; term = 0.8 \qquad K3 \; Long \; term = 0.8 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.94 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; term = 0.8 \qquad K2 \; Long \; term = 0.8 \qquad K3 \; Long \; term = 0.8 \qquad K4 \; Long \;$

K8 Upward =0.94 S1 Downward =13.93 S1 Upward =13.93

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M 1.35D	3.75 Kn-m	Capacity	4.72 Kn-m	Passing Percentage	125.87 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	10.33 Kn-m	Capacity	6.30 Kn-m	Passing Percentage	60.99 %
$M_{0.9D ext{-W}nUp}$	-12.95 Kn-m	Capacity	-7.87 Kn-m	Passing Percentage	60.77 %
V _{1.35D}	2.52 Kn	Capacity	14.47 Kn	Passing Percentage	574.21 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	6.93 Kn	Capacity	19.30 Kn	Passing Percentage	278.50 %
$V_{0.9D ext{-W}nUp}$	-8.68 Kn	Capacity	-24.12 Kn	Passing Percentage	277.88 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 20.59 mmDeflection under Dead and Service Wind = 23.85 mm Limit by Woolcock et al, 1999 Span/240= 24.93 mm Limit by Woolcock et al, 1999 Span/100 = 59.83 mm

Reactions

Maximum downward = 6.93 kn Maximum upward = -8.68 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Second page

Joint Group for Rafters = J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 50 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -25.20 \text{ kn} > -8.68 \text{ Kn}$

Single Shear Capacity under short term loads = -10.84 Kn > -8.68 Kn

Intermediate Design Sides

Intermediate Spacing = 2991.2911775842485 mm Intermediate Span = 7261 mm

Try Intermediate 2x250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward = 1.00 S1 Downward = 12.68 S1 Upward = 1.14

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	9.36 Kn-m	Capacity	11.66 Kn-m	Passing Percentage	124.57 %
Vo.9D-WnUp	5.16 Kn-m	Capacity	40.2 Kn-m	Passing Percentage	779.07 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 192.495 mm

Limit by Woolcock et al, 1999 Span/100 = 72.61 mm

Reactions

Maximum = 5.16 kn

Girt Design Front and Back

Girt's Spacing = 700 mm

Girt's Span = 5000 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.41 S1 Downward =11.27 S1 Upward =26.57

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.38 Kn-m Capacity 1.53 Kn-m Passing Percentage 110.87 % 1.10 Kn-m 16.08 Kn-m Passing Percentage 1461.82 % Capacity $V_{0.9D\text{-}WnUp}$

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 23.72 mm

Limit by Woolcock et al, 1999 Span/100 = 50.00 mm

Sag during installation = 37.90 mm

Reactions

Maximum = 1.10 kn

Girt Design Sides

Girt's Spacing = 700 mm

Girt's Span = 2991 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.64 S1 Downward =11.27 S1 Upward =20.55

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.49 Kn-m	Capacity	2.40 Kn-m	Passing Percentage	489.80 %
V _{0.9D-WnUp}	0.66 Kn-m	Capacity	16.08 Kn-m	Passing Percentage	2436.36 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 3.04 mm

Limit by Woolcock et al. 1999 Span/100 = 29.91 mm

Sag during installation =4.85 mm

Reactions

Maximum = 0.66 kn

End Pole Design

Geometry For End Bay Pole

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level)	Dry Use	Height	7600 mm
Area	54091 mm2	As	40568.5546875 mm2
Ix	232952248 mm4	Zx	1774874 mm3
Iy	232952248 mm4	Zx	1774874 mm3
Lateral Restraint	mm c/c		

Loads

Total Area over Pole = 14.956455887921242 m2

Dead	3.74 Kn	Live	3.74 Kn
Wind Down	5.83 Kn	Snow	9.42 Kn

4/6

Moment Wind	14.75 Kn-m	Moment snow	2.57 Kn-m
Phi	0.8	K8	0.35
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	270.66 Kn	PhiMnx Wind	17.91 Kn-m	PhiVnx Wind	96.07 Kn
PhiNex Dead	162.39 Kn	PhiMnx Dead	10.75 Kn-m	PhiVnx Dead	57.64 Kn
PhiNcx Snow	216.52 Kn	PhiMnx Snow	14.33 Kn-m	PhiVnx Snow	76.85 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.89 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.75 < 1 OK$

Deflection at top under service lateral loads = 59.82 mm < 78.80 mm

Ds = 0.6 mm Pile Diameter

L= 1550 mm Pile embedment length

f1 = 5925 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 14.956455887921242 m2

Moment Wind =	14.75 Kn-m	Moment Snow =	2.57 Kn-m
Shear Wind =	2.49 Kn	Shear Snow =	2.57 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.44 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 14.96 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1550 mm Pile embedment length

f1 = 5925 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 14.75 Kn-m Moment Snow = 2.57 Kn-mShear Wind = 2.49 Kn Shear Snow = 2.57 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.44 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 14.96 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2701) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2701)

Skin Friction = 58.92 Kn

Weight of Pile + Pile Skin Friction = 65.11 Kn

Uplift on one Pile = 46.02 Kn

Uplift is ok