KON 426E INTELLIGENT CONTROL SYSTEMS

LECTURE 7 04/04/2022

Neural Networks in Control Inverse Learning (Generalized Learning)

Consider the nonlinear plant: $\vec{x}(k+1) = \vec{f}(\vec{x}(k), \vec{u}(k))$

(Assuming the order of the plant is known and all state variables are measurable.)

$$\vec{x}(k+2) = \vec{f}(\vec{x}(k+1), \vec{u}(k+1)) = \vec{f}(\vec{f}(\vec{x}(k), \vec{u}(k)), \vec{u}(k+1))$$

$$\vec{x}(k+n) = \vec{F}(\vec{x}(k), \vec{U})$$

where $\vec{U} = [\vec{u}(k) \vec{u}(k+1), \vec{u}(k+n)]$

Assume the inverse dynamics of the plant exists, then:

$$\overrightarrow{U} = \overrightarrow{G}(\overrightarrow{x}(k), \overrightarrow{x}(k+n))$$

This means that there is a unique input sequence \vec{u} specified by mapping \vec{G} that can drive the plant from state $\vec{x}(k)$ to $\vec{x}(k+n)$

in n time steps. How do we find this \mathbf{G} ?

 \mathbf{G} exists by assumption but it does not always have an analytic solution.

We will estimate \hat{U} by using a NN: $\hat{U} = \hat{G}(\vec{x}(k), \vec{x}_d(k+n))$

Application Phase

Combination of training and application phases for on-line inverse learning

Problems Associated with Inverse Learning

- An inverse model does not always exist
- Inverse learning is an indirect approach.
- ➤ It tries to minimize **NN output error** instead of the **overall system error**.
- \triangleright NN output error: $\|\boldsymbol{v} \hat{\boldsymbol{v}}\|^2$
- > System error: $\|\vec{x}_d(k) \vec{x}(k)\|^2$ (difference between desired and actual trajectories)
- Minimization of the NN error $\| \vec{v} \hat{\vec{v}} \|^2$ does not guarantee the minimization of overall system error $\| \vec{x}_d(k) \vec{x}(k) \|^2$

Specialized Learning

The plant

Specialized Learning

$$\vec{x}(k+1) = \vec{f}(\vec{x}(k), \vec{u}(k))$$

NN output

$$\widehat{u}(\mathbf{k}) = \overrightarrow{F}(\overrightarrow{x}_d(\mathbf{k}), \overrightarrow{x}(\mathbf{k}), \overrightarrow{w})$$

Set

$$\vec{u}(k) = \hat{u}(k)$$

$$\vec{x}(k+1) = \vec{f}\left(\vec{x}(k), \vec{F}(\vec{x}_d(k), \vec{x}(k), \vec{w})\right)$$

Minimize

$$E(\overrightarrow{w}) = \sum_{k} \left\| \overrightarrow{x}_d(k+1) - \overrightarrow{f} \left(\overrightarrow{x}(k), \overrightarrow{F}(\overrightarrow{x}_d(k), \overrightarrow{x}(k), \overrightarrow{w}) \right) \right\|$$

Problems Associated with Specialized Learning

In order to update the weights, you have to compute:

$$\frac{\partial E}{\partial \overrightarrow{w}} = \frac{\partial E}{\partial e} \frac{\partial e}{\partial \overrightarrow{x}} \frac{\partial \overrightarrow{x}}{\partial u} \frac{\partial u}{\partial \overrightarrow{w}}$$

You can easily compute $\frac{\partial E}{\partial e}$, $\frac{\partial e}{\partial \vec{x}}$ and $\frac{\partial u}{\partial \vec{w}}$

However, computation of $\frac{\partial \vec{x}}{\partial u}$ (the <u>Jacobian</u>) is not easy.

Jacobian defines the dynamics of the plant, and most of the time you need to use a second NN (or another intelligent structure) to calculate it.

Specialized Learning with Model Referencing

Figure 17.10. (a) Desired model block; (b) specialized learning with model referencing.

Different types of modelling for nonlinear dynamical systems

Nonlinear autoregressive exogenous model (NARX)

$$x(k+1) = f(x(k), x(k-1), \dots, x(k-n), u(k), u(k-1), \dots, u(k-m))$$

Nonlinear autoregressive moving average (NARMA)

$$x(k+1) = f(x(k)) + g(x(k))u(k)$$

Finding the NARX model of a a system using neural network

$$x(k+1) = f(x(k), x(k-1), \dots, x(k-n), u(k), u(k-1), \dots, u(k-m))$$

The required NN architecture to identify x(k+1)

Self-Tuning Adaptive Control (NARMA-L2)

$$x(k+1) = f(x(k)) + g(x(k))u(k)$$

$$u(k) = \frac{-\hat{f}(.) + r_{k+1}}{\hat{g}(.)}$$

$$x(k+1) = f(x(k)) + g(x(k)) \frac{-f(.) + r_{k+1}}{\hat{g}(.)}$$

$$x(k+1) = r_{k+1}$$

NARMA-L2 Controller

Certainty Equivalence Principle-

Using the estimated variable instead of the real one

Universal Approximation Theorem

(Haykin, 1999, pg. 230-231)

Let $\varphi(.)$ be a non-constant, bounded and monotone- increasing continuous function. Let I_{m_0} denote the m_0 - dimensional unithypercube $[0,1]^{m_0}$. The space of continuous functions on I_{m_0} is denoted by $C(I_{m_0})$.

Then, given any function $f \ni C(I_{m_0})$ and $\varepsilon > 0$, there exist an ineteger m_1 and sets of real constants α_i , b_i and w_{ij} where $i = 1, 2, ..., m_1$ and $j = 1, 2, ..., m_0$ such that we may define:

$$F(x_1, ..., x_{m_0}) = \sum_{i=1}^{m_1} \alpha_i \varphi \left(\sum_{j=1}^{m_0} w_{ij} x_j + b_i \right)$$

as an approximate realization of the function f(.) that is:

$$|F(x_1, \ldots, x_{m_0}) - f(x_1, \ldots, x_{m_0})| < \epsilon$$

for all $x_1, x_2, ..., x_{m_0}$ that lie in the input space.

The universal approximation theorem is directly applicable to multilayer perceptrons (MLPs).

- The activation function $\varphi(.)$ e.g. $\frac{1}{1+e^{-v}}$ is a nonconstant, bounded, monotone-increasing function.
- \triangleright The network has m_0 input nodes and a single hidden layer consisting of m_1 neurons. The inputs are: x_1, \dots, x_{m_0}
- \triangleright Hidden neuron i has synaptic weights w_{i_1}, \dots, w_{m_0} and bias b_i .
- The network output is a linear combination of the outputs of the hidden neurons with $\alpha_1, \alpha_2, \dots, \alpha_{m_1}$ defining the synaptic weights of the output layer.

- > This is an existence theorem.
- It states that a single hidden layer is sufficient for a multilayer perceptron to compute a uniform approximation to a given training set represented by the set of inputs x_1, \dots, x_{m_0} and a desired output $f(x_1, \dots, x_{m_0})$
- ➤ **BUT** the theorem **DOES NOT** say that a single hidden layer is optimum in the sense of learning time, ease of implementation or generalization.