# CHAPTER 8

# PROBABILISTIC PROGRAMMING

In which we explain the idea of universal languages for probabilistic knowledge representation and inference in uncertain domains.

The spectrum of representations—atomic, factored, and structured—has been a persistent theme in AI. For deterministic models, search algorithms assume only an atomic representation; CSPs and propositional logic provide factored representations; and first-order logic and planning systems take advantage of structured representations. The expressive power afforded by structured representations yields models that are vastly more concise than the equivalent factored or atomic descriptions.

For probabilistic models, Bayesian networks as described in Chapters 13 and 14 are factored representations: the set of random variables is fixed and finite, and each has a fixed range of possible values. This fact limits the applicability of Bayesian networks, because the Bayesian network representation for a complex domain is simply too large. This makes it infeasible to construct such representations by hand and infeasible to learn them from any reasonable amount of data.

The problem of creating an expressive formal language for probabilistic information has taxed some of the greatest minds in history, including Gottfried Leibniz (the co-inventor of calculus), Jacob Bernoulli (discoverer of e, the calculus of variations, and the Law of Large Numbers), Augustus De Morgan, George Boole, Charles Sanders Peirce (one of the principal logicians of the 19th century), John Maynard Keynes (the leading economist of the 20th century), and Rudolf Carnap (one of the greatest analytical philosophers of the 20th century). The problem resisted these and many other efforts until the 1990s.

Thanks in part to the development of Bayesian networks, there are now mathematically elegant and eminently practical formal languages that allow the creation of probabilistic models for very complex domains. These languages are *universal* in the same sense that Turing machines are universal: they can represent any computable probability model, just as Turing machines can represent any computable function. In addition, these languages come with general-purpose inference algorithms, roughly analogous to sound and complete logical inference algorithms such as resolution.

There are two routes to introducing expressive power into probability theory. The first is via logic: to devise a language that defines probabilities over first-order possible worlds, rather than the propositional possible worlds of Bayes nets. This route is covered in Sections 18.1 and 18.2, with Section 18.3 covering the specific case of temporal reasoning. The second route is via traditional programming languages: we introduce stochastic elements—random choices, for example—into such languages, and view programs as defining probability distributions over their own execution traces. This approach is covered in Section 18.4.



Figure 18.1 Top: Some members of the set of all possible worlds for a language with two constant symbols, R and J, and one binary relation symbol, under the standard semantics for first-order logic. Bottom: the possible worlds under database semantics. The interpretation of the constant symbols is fixed, and there is a distinct object for each constant symbol.

Probabilistic programming language (PPL)

Both routes lead to a **probabilistic programming language (PPL)**. The first route leads to declarative PPLs, which bear roughly the same relationship to general PPLs as logic programming (Chapter 9) does to general programming languages.

# 18.1 Relational Probability Models

Recall from Chapter 12 that a probability model defines a set  $\Omega$  of possible worlds with a probability  $P(\omega)$  for each world  $\omega$ . For Bayesian networks, the possible worlds are assignments of values to variables; for the Boolean case in particular, the possible worlds are identical to those of propositional logic.

For a first-order probability model, then, it seems we need the possible worlds to be those of first-order logic—that is, a set of objects with relations among them and an interpretation that maps constant symbols to objects, predicate symbols to relations, and function symbols to functions on those objects. (See Section 8.2.) The model also needs to define a probability for each such possible world, just as a Bayesian network defines a probability for each assignment of values to variables.

Let us suppose, for a moment, that we have figured out how to do this. Then, as usual (see page 407), we can obtain the probability of any first-order logical sentence  $\phi$  (phi) as a sum over the possible worlds where it is true:

$$P(\phi) = \sum_{\omega:\phi \text{ is true in } \omega} P(\omega). \tag{18.1}$$

Conditional probabilities  $P(\phi | \mathbf{e})$  can be obtained similarly, so we can, in principle, ask any question we want of our model—and get an answer. So far, so good.

There is, however, a problem: the set of first-order models is infinite. We saw this explicitly in Figure 8.4 on page 277, which we show again in Figure 18.1 (top). This means that (1) the summation in Equation (18.1) could be infeasible, and (2) specifying a complete, consistent distribution over an infinite set of worlds could be very difficult.



**Figure 18.2** (a) Bayes net for a single customer  $C_1$  recommending a single book  $B_1$ .  $Honest(C_1)$  is Boolean, while the other variables have integer values from 1 to 5. (b) Bayes net with two customers and two books.

In this section, we avoid this issue by considering the **database semantics** defined in Section 8.2.8 (page 282). The database semantics makes the **unique names assumption**—here, we adopt it for the constant symbols. It also assumes **domain closure**—there are no more objects beyond those that are named. We can then guarantee a finite set of possible worlds by making the set of objects in each world be exactly the set of constant symbols that are used; as shown in Figure 18.1 (bottom), there is no uncertainty about the mapping from symbols to objects or about the objects that exist.

We will call models defined in this way **relational probability models**, or RPMs.<sup>1</sup> The most significant difference between the semantics of RPMs and the database semantics introduced in Section 8.2.8 is that RPMs do not make the closed-world assumption—in a probabilistic reasoning system we can't just assume that every unknown fact is false.

Relational probability model

#### 18.1.1 Syntax and semantics

Let us begin with a simple example: suppose that an online book retailer would like to provide overall evaluations of products based on recommendations received from its customers. The evaluation will take the form of a posterior distribution over the quality of the book, given the available evidence. The simplest solution is to base the evaluation on the average recommendation, perhaps with a variance determined by the number of recommendations, but this fails to take into account the fact that some customers are kinder than others and some are less honest than others. Kind customers tend to give high recommendations even to fairly mediocre books, while dishonest customers give very high or very low recommendations for reasons other than quality—they might be paid to promote some publisher's books.<sup>2</sup>

For a single customer  $C_1$  recommending a single book  $B_1$ , the Bayes net might look like the one shown in Figure 18.2(a). (Just as in Section 9.1, expressions with parentheses such as  $Honest(C_1)$  are just fancy symbols—in this case, fancy names for random variables.) With

 $<sup>^{1}</sup>$  The name *relational probability model* was given by Pfeffer (2000) to a slightly different representation, but the underlying ideas are the same.

<sup>&</sup>lt;sup>2</sup> A game theorist would advise a dishonest customer to avoid detection by occasionally recommending a good book from a competitor. See Chapter 17.

two customers and two books, the Bayes net looks like the one in Figure 18.2(b). For larger numbers of books and customers, it is quite impractical to specify a Bayes net by hand.

Fortunately, the network has a lot of repeated structure. Each Recommendation(c,b) variable has as its parents the variables Honest(c), Kindness(c), and Quality(b). Moreover, the conditional probability tables (CPTs) for all the Recommendation(c,b) variables are identical, as are those for all the Honest(c) variables, and so on. The situation seems tailor-made for a first-order language. We would like to say something like

```
Recommendation(c,b) \sim RecCPT(Honest(c), Kindness(c), Quality(b))
```

which means that a customer's recommendation for a book depends probabilistically on the customer's honesty and kindness and the book's quality according to a fixed CPT.

Like first-order logic, RPMs have constant, function, and predicate symbols. We will also assume a **type signature** for each function—that is, a specification of the type of each argument and the function's value. (If the type of each object is known, many spurious possible worlds are eliminated by this mechanism; for example, we need not worry about the kindness of each book, books recommending customers, and so on.) For the book-recommendation domain, the types are *Customer* and *Book*, and the type signatures for the functions and predicates are as follows:

```
Honest : Customer → {true, false}

Kindness : Customer → {1,2,3,4,5}

Quality : Book → {1,2,3,4,5}

Recommendation : Customer × Book → {1,2,3,4,5}
```

The constant symbols will be whatever customer and book names appear in the retailer's data set. In the example given in Figure 18.2(b), these were  $C_1$ ,  $C_2$  and  $B_1$ ,  $B_2$ .

Given the constants and their types, together with the functions and their type signatures, the **basic random variables** of the RPM are obtained by instantiating each function with each possible combination of objects. For the book recommendation model, the basic random variables include  $Honest(C_1)$ ,  $Quality(B_2)$ ,  $Recommendation(C_1,B_2)$ , and so on. These are exactly the variables appearing in Figure 18.2(b). Because each type has only finitely many instances (thanks to the domain closure assumption), the number of basic random variables is also finite.

To complete the RPM, we have to write the dependencies that govern these random variables. There is one dependency statement for each function, where each argument of the function is a logical variable (i.e., a variable that ranges over objects, as in first-order logic). For example, the following dependency states that, for every customer c, the prior probability of honesty is  $0.99 \ true$  and  $0.01 \ false$ :

```
Honest(c) \sim \langle 0.99, 0.01 \rangle
```

Similarly, we can state prior probabilities for the kindness value of each customer and the quality of each book, each on the 1–5 scale:

```
Kindness(c) \sim \langle 0.1, 0.1, 0.2, 0.3, 0.3 \rangle

Quality(b) \sim \langle 0.05, 0.2, 0.4, 0.2, 0.15 \rangle
```

Finally, we need the dependency for recommendations: for any customer c and book b, the score depends on the honesty and kindness of the customer and the quality of the book:

```
Recommendation(c,b) \sim RecCPT(Honest(c), Kindness(c), Quality(b))
```

Type signature

Basic random variable

where RecCPT is a separately defined conditional probability table with  $2 \times 5 \times 5 = 50$  rows, each with 5 entries. For the purposes of illustration, we'll assume that an honest recommendation for a book of quality q from a person of kindness k is uniformly distributed in the range  $\left[\left\lfloor \frac{q+k}{2}\right\rfloor, \left\lceil \frac{q+k}{2}\right\rceil\right]$ .

The semantics of the RPM can be obtained by instantiating these dependencies for all known constants, giving a Bayesian network (as in Figure 18.2(b)) that defines a joint distribution over the RPM's random variables.<sup>3</sup>

The set of possible worlds is the Cartesian product of the ranges of all the basic random variables, and, as with Bayesian networks, the probability for each possible world is the product of the relevant conditional probabilities from the model. With C customers and B books, there are C Honest variables, C Kindness variables, D Quality variables, and D Recommendation variables, leading to  $D^C = D^C = D^$ 

We can refine the model by asserting a **context-specific independence** (see page 438) to reflect the fact that dishonest customers ignore quality when giving a recommendation; moreover, kindness plays no role in their decisions. Thus, Recommendation(c,b) is independent of Kindness(c) and Quality(b) when Honest(c) = false:

```
\label{eq:recommendation} Recommendation(c,b) \sim \quad \begin{array}{ll} \textbf{if } \textit{Honest}(c) \ \textbf{then} \\ & \textit{HonestRecCPT}(\textit{Kindness}(c),\textit{Quality}(b)) \\ \textbf{else} \ \langle 0.4, 0.1, 0.0, 0.1, 0.4 \rangle \, . \end{array}
```

This kind of dependency may look like an ordinary if—then—else statement in a programming language, but there is a key difference: the inference engine *doesn't necessarily know the value of the conditional test* because Honest(c) is a random variable.

We can elaborate this model in endless ways to make it more realistic. For example, suppose that an honest customer who is a fan of a book's author always gives the book a 5, regardless of quality:

```
Recommendation(c,b) \sim \quad \begin{array}{ll} \textbf{if } Honest(c) \textbf{ then} \\ & \textbf{if } Fan(c,Author(b)) \textbf{ then } Exactly(5) \\ & \textbf{else } HonestRecCPT(Kindness(c),Quality(b)) \\ & \textbf{else } \langle 0.4,0.1,0.0,0.1,0.4 \rangle \end{array}
```

Again, the conditional test Fan(c,Author(b)) is unknown, but if a customer gives only 5s to a particular author's books and is not otherwise especially kind, then the posterior probability that the customer is a fan of that author will be high. Furthermore, the posterior distribution will tend to discount the customer's 5s in evaluating the quality of that author's books.

In this example, we implicitly assumed that the value of Author(b) is known for every b, but this may not be the case. How can the system reason about whether, say,  $C_1$  is a fan of  $Author(B_2)$  when  $Author(B_2)$  is unknown? The answer is that the system may have to reason about *all possible authors*. Suppose (to keep things simple) that there are just two

<sup>&</sup>lt;sup>3</sup> Some technical conditions are required for an RPM to define a proper distribution. First, the dependencies must be *acyclic*; otherwise the resulting Bayesian network will have cycles. Second, the dependencies must (usually) be *well-founded*: there can be no infinite ancestor chains, such as might arise from recursive dependencies. See Exercise 18.HAMD for an exception to this rule.



**Figure 18.3** Fragment of the equivalent Bayes net for the book recommendation RPM when  $Author(B_2)$  is unknown.

authors,  $A_1$  and  $A_2$ . Then  $Author(B_2)$  is a random variable with two possible values,  $A_1$  and  $A_2$ , and it is a parent of  $Recommendation(C_1, B_2)$ . The variables  $Fan(C_1, A_1)$  and  $Fan(C_1, A_2)$  are parents too. The conditional distribution for  $Recommendation(C_1, B_2)$  is then essentially a **multiplexer** in which the  $Author(B_2)$  parent acts as a selector to choose which of  $Fan(C_1, A_1)$ 

and  $Fan(C_1,A_2)$  actually gets to influence the recommendation. A fragment of the equivalent Bayes net is shown in Figure 18.3. Uncertainty in the value of  $Author(B_2)$ , which affects the

In case you are wondering how the system can possibly work out who the author of  $B_2$  is: consider the possibility that three other customers are fans of  $A_1$  (and have no other favorite authors in common) and all three have given  $B_2$  a 5, even though most other customers find it quite dismal. In that case, it is extremely likely that  $A_1$  is the author of  $B_2$ . The emergence of sophisticated reasoning like this from an RPM model of just a few lines is an intriguing example of how probabilistic influences spread through the web of interconnections among objects in the model. As more dependencies and more objects are added, the picture conveyed

dependency structure of the network, is an instance of **relational uncertainty**.

Relational uncertainty

Multiplexer

18.1.2 Example: Rating player skill levels

by the posterior distribution often becomes clearer and clearer.

Rating

Many competitive games have a numerical measure of players' skill levels, sometimes called a **rating**. Perhaps the best-known is the Elo rating for chess players, which rates a typical beginner at around 800 and the world champion usually somewhere above 2800. Although Elo ratings have a statistical basis, they have some ad hoc elements. We can develop a Bayesian rating scheme as follows: each player i has an underlying skill level Skill(i); in each game g, i's actual performance is Performance(i, g), which may vary from the underlying skill level; and the winner of g is the player whose performance in g is better. As an RPM, the model looks like this:

```
Skill(i) \sim \mathcal{N}(\mu, \sigma^2)

Performance(i, g) \sim \mathcal{N}(Skill(i), \beta^2)

Win(i, j, g) = \mathbf{if} \ Game(g, i, j) \ \mathbf{then} \ (Performance(i, g) > Performance(j, g))
```

where  $\beta^2$  is the variance of a player's actual performance in any specific game relative to the player's underlying skill level. Given a set of players and games, as well as outcomes for some of the games, an RPM inference engine can compute a posterior distribution over the skill of each player and the probable outcome of any additional game that might be played.

For team games, we'll assume, as a first approximation, that the overall performance of team t in game g is the sum of the individual performances of the players on t:

```
TeamPerformance(t,g) = \sum_{i \in t} Performance(i,g).
```

Even though the individual performances are not visible to the ratings engine, the players' skill levels can still be estimated from the results of several games, as long as the team compositions vary across games. Microsoft's TrueSkill<sup>TM</sup> ratings engine uses this model, along with an efficient approximate inference algorithm, to serve hundreds of millions of users every day.

This model can be elaborated in numerous ways. For example, we might assume that weaker players have higher variance in their performance; we might include the player's role on the team; and we might consider specific kinds of performance and skill—e.g., defending and attacking—in order to improve team composition and predictive accuracy.

#### 18.1.3 Inference in relational probability models

The most straightforward approach to inference in RPMs is simply to construct the equivalent Bayesian network, given the known constant symbols belonging to each type. With B books and C customers, the basic model given previously could be constructed with simple loops:<sup>4</sup>

```
for b = 1 to B do
  add node Quality<sub>b</sub> with no parents, prior \langle 0.05, 0.2, 0.4, 0.2, 0.15 \rangle
for c = 1 to C do
  add node Honest_c with no parents, prior \langle 0.99, 0.01 \rangle
  add node Kindness<sub>c</sub> with no parents, prior \langle 0.1, 0.1, 0.2, 0.3, 0.3 \rangle
  for b = 1 to B do
    add node Recommendation_{c,b} with parents Honest_c, Kindness_c, Quality_b
         and conditional distribution RecCPT(Honest_c, Kindness_c, Quality_b)
```

This technique is called **grounding** or **unrolling**; it is the exact analog of **propositionaliza**- Grounding tion for first-order logic (page 298). The obvious drawback is that the resulting Bayes net Unrolling may be very large. Furthermore, if there are many candidate objects for an unknown relation or function—for example, the unknown author of B<sub>2</sub>—then some variables in the network may have many parents.

Fortunately, it is often possible to avoid generating the entire implicit Bayes net. As we saw in the discussion of the variable elimination algorithm on page 451, every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query. Moreover, if the query is conditionally independent of some variable given the evidence, then that variable is also irrelevant. So, by chaining through the model starting from the query and evidence, we can identify just the set of variables that are relevant to the query. These are the only ones that need to be instantiated to create a potentially tiny fragment of the implicit Bayes net. Inference in this fragment gives the same answer as inference in the entire implicit Bayes net.

Another avenue for improving the efficiency of inference comes from the presence of repeated substructure in the unrolled Bayes net. This means that many of the factors constructed during variable elimination (and similar kinds of tables constructed by clustering algorithms)

Several statistical packages would view this code as defining the RPM, rather than just constructing a Bayes net to perform inference in the RPM. This view, however, misses an important role for RPM syntax: without a syntax with clear semantics, there is no way the model structure can be learned from data.

will be identical; effective caching schemes have yielded speedups of three orders of magnitude for large networks.

Third, MCMC inference algorithms have some interesting properties when applied to RPMs with relational uncertainty. MCMC works by sampling complete possible worlds, so in each state the relational structure is completely known. In the example given earlier, each MCMC state would specify the value of  $Author(B_2)$ , and so the other potential authors are no longer parents of the recommendation nodes for  $B_2$ . For MCMC, then, relational uncertainty causes no increase in network complexity; instead, the MCMC process includes transitions that change the relational structure, and hence the dependency structure, of the unrolled network.

Finally, it may be possible in some cases to avoid grounding the model altogether. Resolution theorem provers and logic programming systems avoid propositionalizing by instantiating the logical variables only as needed to make the inference go through; that is, they *lift* the inference process above the level of ground propositional sentences and make each lifted step do the work of many ground steps.

The same idea can be applied in probabilistic inference. For example, in the variable elimination algorithm, a lifted factor can represent an entire set of ground factors that assign probabilities to random variables in the RPM, where those random variables differ only in the constant symbols used to construct them. The details of this method are beyond the scope of this book, but references are given at the end of the chapter.

# 18.2 Open-Universe Probability Models

We argued earlier that database semantics was appropriate for situations in which we know exactly the set of relevant objects that exist and can identify them unambiguously. (In particular, all observations about an object are correctly associated with the constant symbol that names it.) In many real-world settings, however, these assumptions are simply untenable. For example, a book retailer might use an ISBN (International Standard Book Number) as a constant symbol to name each book, even though a given "logical" book (e.g., "Gone With the Wind") may have several ISBNs corresponding to hardcover, paperback, large print, reissues, and so on. It would make sense to aggregate recommendations across multiple ISBNs, but the retailer may not know for sure which ISBNs are really the same book. (Note that we are not reifying the *individual copies* of the book, which might be necessary for used-book sales, car sales, and so on.) Worse still, each customer is identified by a login ID, but a dishonest customer may have thousands of IDs! In the computer security field, these multiple IDs are called **sybils** and their use to confound a reputation system is called a **sybil attack**.<sup>5</sup> Thus, even a simple application in a relatively well-defined, online domain involves both ex**istence uncertainty** (what are the real books and customers underlying the observed data) and **identity uncertainty** (which logical terms really refer to the same object).

Sybil attack Existence uncertainty Identity uncertainty

Sybil

The phenomena of existence and identity uncertainty extend far beyond online booksellers. In fact they are pervasive:

• A vision system doesn't know what exists, if anything, around the next corner, and may not know if the object it sees now is the same one it saw a few minutes ago.

<sup>&</sup>lt;sup>5</sup> The name "Sybil" comes from a famous case of multiple personality disorder.

- A text-understanding system does not know in advance the entities that will be featured in a text, and must reason about whether phrases such as "Mary," "Dr. Smith," "she," "his cardiologist," "his mother," and so on refer to the same object.
- An intelligence analyst hunting for spies never knows how many spies there really are and can only guess whether various pseudonyms, phone numbers, and sightings belong to the same individual.

Indeed, a major part of human cognition seems to require learning what objects exist and being able to connect observations—which almost never come with unique IDs attached—to hypothesized objects in the world.

Thus, we need to be able to define an open universe probability model (OUPM) based on the standard semantics of first-order logic, as illustrated at the top of Figure 18.1. A language for OUPMs provides a way of easily writing such models while guaranteeing a unique, consistent probability distribution over the infinite space of possible worlds.

Open universe probability model (OUPM)

#### 18.2.1 Syntax and semantics

The basic idea is to understand how ordinary Bayesian networks and RPMs manage to define a unique probability model and to transfer that insight to the first-order setting. In essence, a Bayes net *generates* each possible world, event by event, in the topological order defined by the network structure, where each event is an assignment of a value to a variable. An RPM extends this to entire sets of events, defined by the possible instantiations of the logical variables in a given predicate or function. OUPMs go further by allowing generative steps that add objects to the possible world under construction, where the number and type of objects may depend on the objects that are already in that world and their properties and relations. That is, the event being generated is not the assignment of a value to a variable, but the very existence of objects.

One way to do this in OUPMs is to provide **number statements** that specify conditional distributions over the numbers of objects of various kinds. For example, in the bookrecommendation domain, we might want to distinguish between customers (real people) and their login IDs. (It's actually login IDs that make recommendations, not customers!) Suppose (to keep things simple) the number of customers is uniform between 1 and 3 and the number of books is uniform between 2 and 4:

$$\#Customer \sim UniformInt(1,3)$$
  
 $\#Book \sim UniformInt(2,4)$ . (18.2)

We expect honest customers to have just one ID, whereas dishonest customers might have anywhere between 2 and 5 IDs:

$$\#LoginID(Owner = c) \sim$$
 if  $Honest(c)$  then  $Exactly(1)$  else  $UniformInt(2,5)$ . (18.3)

This number statement specifies the distribution over the number of login IDs for which customer c is the Owner. The Owner function is called an **origin function** because it says Origin function where each object generated by this number statement came from.

The example in the preceding paragraph uses a uniform distribution over the integers between 2 and 5 to specify the number of logins for a dishonest customer. This particular distribution is bounded, but in general there may not be an a priori bound on the number of

Number statement

Poisson distribution

objects. The most commonly used distribution over the nonnegative integers is the **Poisson distribution**. The Poisson has one parameter,  $\lambda$ , which is the expected number of objects, and a variable X sampled from Poisson( $\lambda$ ) has the following distribution:

$$P(X=k) = \lambda^k e^{-\lambda}/k!$$
.

The variance of the Poisson is also  $\lambda$ , so the standard deviation is  $\sqrt{\lambda}$ . This means that for large values of  $\lambda$ , the distribution is narrow relative to the mean—for example, if the number of ants in a nest is modeled by a Poisson with a mean of one million, the standard deviation is only a thousand, or 0.1%. For large numbers, it often makes more sense to use the **discrete log-normal distribution**, which is appropriate when the log of the number of objects is normally distributed. A particularly intuitive form, which we call the **order-of-magnitude distribution**, uses logs to base 10: thus, a distribution OM(3,1) has a mean of  $10^3$  and a standard deviation of one order of magnitude, i.e., the bulk of the probability mass falls between  $10^2$  and  $10^4$ .

The formal semantics of OUPMs begins with a definition of the objects that populate possible worlds. In the standard semantics of typed first-order logic, objects are just numbered tokens with types. In OUPMs, each object is a generation history; for example, an object might be "the fourth login ID of the seventh customer." (The reason for this slightly baroque construction will become clear shortly.) For types with no origin functions—e.g., the *Customer* and *Book* types in Equation (18.2)—the objects have an empty origin; for example,  $\langle Customer, , 2 \rangle$  refers to the second customer generated from that number statement. For number statements with origin functions—e.g., Equation (18.3)—each object records its origin; for example, the object  $\langle LoginID, \langle Owner, \langle Customer, , 2 \rangle \rangle$ , 3 $\rangle$  is the third login belonging to the second customer.

The **number variables** of an OUPM specify how many objects there are of each type with each possible origin in each possible world; thus  $\#LoginID_{\langle Owner,\langle Customer,2\rangle\rangle}(\omega)=4$  means that in world  $\omega$ , customer 2 owns 4 login IDs. As in relational probability models, the **basic random variables** determine the values of predicates and functions for all tuples of objects; thus,  $Honest_{\langle Customer,2\rangle}(\omega)=true$  means that in world  $\omega$ , customer 2 is honest. A possible world is defined by the values of all the number variables and basic random variables. A world may be generated from the model by sampling in topological order; Figure 18.4 shows an example. The probability of a world so constructed is the product of the probabilities for all the sampled values; in this case,  $1.2672 \times 10^{-11}$ . Now it becomes clear why each object contains its origin: this property ensures that every world can be constructed by exactly one generation sequence. If this were not the case, the probability of a world would be an unwieldy combinatorial sum over all possible generation sequences that create it.

Open-universe models may have infinitely many random variables, so the full theory involves nontrivial measure-theoretic considerations. For example, number statements with Poisson or order-of-magnitude distributions allow for unbounded numbers of objects, leading to unbounded numbers of random variables for the properties and relations of those objects. Moreover, OUPMs can have recursive dependencies and infinite types (integers, strings, etc.). Finally, well-formedness disallows cyclic dependencies and infinitely receding ancestor chains; these conditions are undecidable in general, but certain syntactic sufficient conditions can be checked easily.

Discrete log-normal distribution

Order-of-magnitude distribution

Number variable

| Variable                                                                                                                       | Value | Probability |
|--------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| #Customer                                                                                                                      | 2     | 0.3333      |
| #Book                                                                                                                          | 3     | 0.3333      |
| $Honest_{\langle Customer, , 1 \rangle}$                                                                                       | true  | 0.99        |
| $Honest_{\langle Customer, , 2 \rangle}$                                                                                       | false | 0.01        |
| $Kindness_{\langle Customer, , 1 \rangle}$                                                                                     | 4     | 0.3         |
| $Kindness_{\langle Customer, , 2 \rangle}$                                                                                     | 1     | 0.1         |
| $Quality_{\langle Book, , 1 \rangle}$                                                                                          | 1     | 0.05        |
| $Quality_{\langle Book,,2\rangle}$                                                                                             | 3     | 0.4         |
| $Quality_{\langle Book, , 3 \rangle}$                                                                                          | 5     | 0.15        |
| $\#LoginID_{\langle Owner, \langle Customer, , 1 \rangle \rangle}$                                                             | 1     | 1.0         |
| $\#LoginID_{\langle Owner,\langle Customer,,2 \rangle \rangle}$                                                                | 2     | 0.25        |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 1 \rangle \rangle, 1 \rangle, \langle Book, , 1 \rangle}$ | 2     | 0.5         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 1 \rangle \rangle, 1 \rangle, \langle Book, , 2 \rangle}$ | 4     | 0.5         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 1 \rangle \rangle, 1 \rangle, \langle Book, , 3 \rangle}$ | 5     | 0.5         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 2 \rangle \rangle, 1 \rangle, \langle Book, , 1 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 2 \rangle \rangle, 1 \rangle, \langle Book, , 2 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 2 \rangle \rangle, 1 \rangle, \langle Book, , 3 \rangle}$ | 1     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 2 \rangle \rangle, 2 \rangle, \langle Book, , 1 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 2 \rangle \rangle, 2 \rangle, \langle Book, , 2 \rangle}$ | 5     | 0.4         |
| $Recommendation_{\langle LoginID, \langle Owner, \langle Customer, , 2 \rangle \rangle, 2 \rangle, \langle Book, , 3 \rangle}$ | 1     | 0.4         |

**Figure 18.4** One particular world for the book recommendation OUPM. The number variables and basic random variables are shown in topological order, along with their chosen values and the probabilities for those values.

#### 18.2.2 Inference in open-universe probability models

Because of the potentially huge and sometimes unbounded size of the implicit Bayes net that corresponds to a typical OUPM, unrolling it fully and performing exact inference is quite impractical. Instead, we must consider approximate inference algorithms such as MCMC (see Section 13.4.2).

Roughly speaking, an MCMC algorithm for an OUPM is exploring the space of possible worlds defined by sets of objects and relations among them, as illustrated in Figure 18.1(top). A move between adjacent states in this space can not only alter relations and functions but also add or subtract objects and change the interpretations of constant symbols. Even though each possible world may be huge, the probability computations required for each step—whether in Gibbs sampling or Metropolis—Hastings—are entirely local and in most cases take constant time. This is because the probability ratio between neighboring worlds depends on a subgraph of constant size around the variables whose values are changed. Moreover, a logical query can be evaluated *incrementally* in each world visited, usually in constant time per world, rather than being recomputing from scratch.

Some special consideration needs to be given to the fact that a typical OUPM may have possible worlds of infinite size. As an example, consider the multitarget tracking model in Figure 18.9: the function X(a,t), denoting the state of aircraft a at time t, corresponds to an infinite sequence of variables for an unbounded number of aircraft at each step. For this reason, MCMC for OUPMs samples not completely specified possible worlds but *partial* 

worlds, each corresponding to a disjoint set of complete worlds. A partial world is a minimal self-supporting instantiation<sup>6</sup> of a subset of the relevant variables—that is, ancestors of the evidence and query variables. For example, variables X(a,t) for values of t greater than the last observation time (or the query time, whichever is greater) are irrelevant, so the algorithm can consider just a finite prefix of the infinite sequence.

#### 18.2.3 Examples

The standard "use case" for an OUPM has three elements: the *model*, the *evidence* (the known facts in a given scenario), and the *query*, which may be any expression, possibly with free logical variables. The answer is a posterior joint probability for each possible set of substitutions for the free variables, given the evidence, according to the model. Every model includes type declarations, type signatures for the predicates and functions, one or more number statements for each type, and one dependency statement for each predicate and function. (In the examples below, declarations and signatures are omitted where the meaning is clear.) As in RPMs, dependency statements use an if-then-else syntax to handle context-specific dependencies.

#### Citation matching

Millions of academic research papers and technical reports are to be found online in the form of pdf files. Such papers usually contain a section near the end called "References" or "Bibliography," in which citations—strings of characters—are provided to inform the reader of related work. These strings can be located and "scraped" from the pdf files with the aim of creating a database-like representation that relates papers and researchers by authorship and citation links. Systems such as CiteSeer and Google Scholar present such a representation to their users; behind the scenes, algorithms operate to find papers, scrape the citation strings, and identify the actual papers to which the citation strings refer. This is a difficult task because these strings contain no object identifiers and include errors of syntax, spelling, punctuation, and content. To illustrate this, here are two relatively benign examples:

- 1. [Lashkari et al 94] Collaborative Interface Agents, Yezdi Lashkari, Max Metral, and Pattie Maes, Proceedings of the Twelfth National Conference on Articial Intelligence, MIT Press, Cambridge, MA, 1994.
- 2. Metral M. Lashkari, Y. and P. Maes. Collaborative interface agents. In Conference of the American Association for Artificial Intelligence, Seattle, WA, August 1994.

The key question is one of identity: are these citations of the same paper or different papers? Asked this question, even experts disagree or are unwilling to decide, indicating that reasoning under uncertainty is going to be an important part of solving this problem.<sup>8</sup> Ad hoc approaches—such as methods based on a textual similarity metric—often fail miserably. For example, in 2002, CiteSeer reported over 120 distinct books written by Russell and Norvig.

<sup>&</sup>lt;sup>6</sup> A self-supporting instantiation of a set of variables is one in which the parents of every variable in the set are also in the set.

<sup>&</sup>lt;sup>7</sup> As with Prolog, there may be infinitely many sets of substitutions of unbounded size; designing exploratory interfaces for such answers is an interesting visualization challenge.

<sup>&</sup>lt;sup>8</sup> The answer is yes, they are the same paper. The "National Conference on Articial Intelligence" (notice how the "fi" is missing, thanks to an error in scraping the ligature character) is another name for the AAAI conference; the conference took place in Seattle whereas the proceedings publisher is in Cambridge.

```
type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)

#Researcher \sim OM(3,1)
Name(r) \sim NamePrior()
Professor(r) \sim Boolean(0.2)
#Paper(Author = r) \sim if Professor(r) then OM(1.5,0.5) else OM(1,0.5)
Title(p) \sim PaperTitlePrior()
CitedPaper(c) \sim UniformChoice(\{Paper p\})
Text(c) \sim HMMGrammar(Name(Author(CitedPaper(c))), Title(CitedPaper(c)))
```

**Figure 18.5** An OUPM for citation information extraction. For simplicity the model assumes one author per paper and omits details of the grammar and error models.

In order to solve the problem using a probabilistic approach, we need a generative model for the domain. That is, we ask how these citation strings come to be in the world. The process begins with researchers, who have names. (We don't need to worry about how the researchers came into existence; we just need to express our uncertainty about how many there are.) These researchers write some papers, which have titles; people cite the papers, combining the authors' names and the paper's title (with errors) into the text of the citation according to some grammar. The basic elements of this model are shown in Figure 18.5, covering the case where papers have just one author.

Given just citation strings as evidence, probabilistic inference on this model to pick out the most likely explanation for the data produces an error rate 2 to 3 times lower than CiteSeer's (Pasula *et al.*, 2003). The inference process also exhibits a form of collective, knowledge-driven disambiguation: the more citations for a given paper, the more accurately each of them is parsed, because the parses have to agree on the facts about the paper.

#### **Nuclear treaty monitoring**

Verifying the Comprehensive Nuclear-Test-Ban Treaty requires finding all seismic events on Earth above a minimum magnitude. The UN CTBTO maintains a network of sensors, the International Monitoring System (IMS); its automated processing software, based on 100 years of seismology research, has a detection failure rate of about 30%. The NET-VISA system (Arora *et al.*, 2013), based on an OUPM, significantly reduces detection failures.

The NET-VISA model (Figure 18.6) expresses the relevant geophysics directly. It describes distributions over the number of events in a given time interval (most of which are

<sup>&</sup>lt;sup>9</sup> The multi-author case has the same overall structure but is a bit more complicated. The parts of the model not shown—the *NamePrior*, *rTitlePrior*, and *HMMGrammar*—are traditional probability models. For example, the *NamePrior* is a mixture of a categorical distribution over actual names and a letter trigram model (see Section 24.1) to cover names not previously seen, both trained from data in the U.S. Census database.

```
\#SeismicEvents \sim Poisson(T * \lambda_e)
Time(e) \sim UniformReal(0,T)
EarthQuake(e) \sim Boolean(0.999)
Location(e) \sim \mathbf{if} \ Earthquake(e) \ \mathbf{then} \ SpatialPrior() \ \mathbf{else} \ UniformEarth()
Depth(e) \sim if Earthquake(e) then UniformReal(0,700) else Exactly(0)
Magnitude(e) \sim Exponential(log(10))
Detected(e, p, s) \sim Logistic(weights(s, p), Magnitude(e), Depth(e), Dist(e, s))
\#Detections(site = s) \sim Poisson(T * \lambda_f(s))
\#Detections(event=e, phase=p, station=s) = if Detected(e, p, s) then 1 else 0
OnsetTime(a, s) if (event(a) = null) then \sim UniformReal(0, T)
   else = Time(event(a)) + GeoTT(Dist(event(a), s), Depth(event(a)), phase(a))
                   + Laplace(\mu_t(s), \sigma_t(s))
Amplitude(a, s) if (event(a) = null) then \sim NoiseAmpModel(s)
   else = AmpModel(Magnitude(event(a)), Dist(event(a), s), Depth(event(a)), phase(a))
Azimuth(a,s) if (event(a) = null) then \sim UniformReal(0, 360)
   else = GeoAzimuth(Location(event(a)), Depth(event(a)), phase(a), Site(s))
                   + Laplace(0, \sigma_a(s))
Slowness(a, s) if (event(a) = null) then \sim UniformReal(0, 20)
   else = GeoSlowness(Location(event(a)), Depth(event(a)), phase(a), Site(s))
                   + Laplace(0, \sigma_s(s))
ObservedPhase(a,s) \sim CategoricalPhaseModel(phase(a))
```

Figure 18.6 A simplified version of the NET-VISA model (see text).

naturally occurring) as well as over their time, magnitude, depth, and location. The locations of natural events are distributed according to a spatial prior that is trained (like other parts of the model) from historical data; man-made events are, by the treaty rules, assumed to occur uniformly over the surface of the Earth. At every station s, each phase (seismic wave type) p from an event e produces either 0 or 1 detections (above-threshold signals); the detection probability depends on the event magnitude and depth and its distance from the station. "False alarm" detections also occur according to a station-specific rate parameter. The measured arrival time, amplitude, and other properties of a detection d from a real event depend on the properties of the originating event and its distance from the station.

Once trained, the model runs continuously. The evidence consists of detections (90% of which are false alarms) extracted from raw IMS waveform data, and the query typically asks for the most likely event history, or *bulletin*, given the data. Results so far are encouraging; for example, in 2009 the UN's SEL3 automated bulletin missed 27.4% of the 27294 events in the magnitude range 3–4 while NET-VISA missed 11.1%. Moreover, comparisons with dense regional networks show that NET-VISA finds up to 50% more real events than the final bulletins produced by the UN's expert seismic analysts. NET-VISA also tends to associate more detections with a given event, leading to more accurate location estimates (see Figure 18.7). As of January 1, 2018, NET-VISA has been deployed as part of the CTBTO monitoring pipeline.

Despite superficial differences, the two examples are structurally similar: there are unknown objects (papers, earthquakes) that generate percepts according to some physical pro-



Figure 18.7 (a) Top: Example of seismic waveform recorded at Alice Springs, Australia. Bottom: the waveform after processing to detect the arrival times of seismic waves. Blue lines are the automatically detected arrivals; red lines are the true arrivals. (b) Location estimates for the DPRK nuclear test of February 12, 2013: UN CTBTO Late Event Bulletin (green triangle at top left); NET-VISA (blue square in center). The entrance to the underground test facility (small "x") is 0.75km from NET-VISA's estimate. Contours show NET-VISA's posterior location distribution. Courtesy of CTBTO Preparatory Commission.

cess (citation, seismic propagation). The percepts are ambiguous as to their origin, but when multiple percepts are hypothesized to have originated with the same unknown object, that object's properties can be inferred more accurately.

The same structure and reasoning patterns hold for areas such as database deduplication and natural language understanding. In some cases, inferring an object's existence involves grouping percepts together—a process that resembles the clustering task in machine learning. In other cases, an object may generate no percepts at all and still have its existence inferred as happened, for example, when observations of Uranus led to the discovery of Neptune. The existence of the unobserved object follows from its effects on the behavior and properties of observed objects.

# 18.3 Keeping Track of a Complex World

Chapter 14 considered the problem of keeping track of the state of the world, but covered only the case of atomic representations (HMMs) and factored representations (DBNs and Kalman filters). This makes sense for worlds with a single object—perhaps a single patient in the intensive care unit or a single bird flying through the forest. In this section, we see what happens when two or more objects generate the observations. What makes this case different from plain old state estimation is that there is now the possibility of *uncertainty* about which object generated which observation. This is the **identity uncertainty** problem of Section 18.2 (page 648), now viewed in a temporal context. In the control theory literature, this is the **data** association problem—that is, the problem of associating observation data with the objects Data association that generated them. Although we could view this as yet another example of open-universe probabilistic modeling, it is important enough in practice to deserve its own section.



**Figure 18.8** (a) Observations made of object locations in 2D space over five time steps. Each observation blip is labeled with the time step but does not identify the object that produced it. (b–c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the case in which false alarms, detection failures, and track initiation/termination are possible.

#### 18.3.1 Example: Multitarget tracking

The data association problem was studied originally in the context of radar tracking of multiple targets, where reflected pulses are detected at fixed time intervals by a rotating radar antenna. At each time step, multiple blips may appear on the screen, but there is no direct observation of which blips at time t correspond to which blips at time t-1. Figure 18.8(a) shows a simple example with two blips per time step for five steps. Each blip is labeled with its time step but lacks any identifying information.

Let us assume, for the time being, that we know there are exactly two aircraft,  $A_1$  and  $A_2$ , generating the blips. In the terminology of OUPMs,  $A_1$  and  $A_2$  are **guaranteed objects**, meaning that they are guaranteed to exist and to be distinct; moreover, in this case, there are no other objects. (In other words, as far as aircraft are concerned, this scenario matches the database semantics that is assumed in RPMs.) Let their true positions be  $X(A_1,t)$  and  $X(A_2,t)$ , where t is a nonnegative integer that indexes the sensor update times. We assume the first observation arrives at t=1, and at time 0 the prior distribution for every aircraft's location is InitX(). Just to keep things simple, we'll also assume that each aircraft moves independently according to a known transition model—e.g., a linear–Gaussian model as used in the Kalman filter (Section 14.4).

The final piece is the sensor model: again, we assume a linear–Gaussian model where an aircraft at position  $\mathbf{x}$  produces a blip b whose observed blip position Z(b) is a linear function of x with added Gaussian noise. Each aircraft generates exactly one blip at each time step, so

Guaranteed object

```
\#Aircraft(EntryTime = t) \sim Poisson(\lambda_a)
Exits(a,t) \sim \mathbf{if} \ InFlight(a,t) \ \mathbf{then} \ Boolean(\alpha_e)
InFlight(a,t) = (t = EntryTime(a)) \lor (InFlight(a,t-1) \land \neg Exits(a,t-1))
X(a,t) \sim \mathbf{if} t = EntryTime(a) \mathbf{then} InitX()
     else if InFlight(a,t) then \mathcal{N}(\mathbf{F}X(a,t-1),\Sigma_x)
\#Blip(Source=a, Time=t) \sim \text{if } InFlight(a,t) \text{ then } Bernoulli(DetectionProb}(X(a,t)))
\#Blip(Time=t) \sim Poisson(\lambda_f)
Z(b) \sim \text{if } Source(b) = null \text{ then } Uniform Z(R) \text{ else } \mathcal{N}(\mathbf{H}X(Source(b), Time(b)), \Sigma_z)
```

Figure 18.9 An OUPM for radar tracking of multiple targets with false alarms, detection failure, and entry and exit of aircraft. The rate at which new aircraft enter the scene is  $\lambda_a$ , while the probability per time step that an aircraft exits the scene is  $\alpha_e$ . False alarm blips (i.e., ones not produced by an aircraft) appear uniformly in space at a rate of  $\lambda_f$  per time step. The probability that an aircraft is detected (i.e., produces a blip) depends on its current position.

the blip has as its origins an aircraft and a time step. So, omitting the prior for now, the model looks like this:

```
guaranteed Aircraft A_1, A_2
X(a,t) \sim \text{if } t = 0 \text{ then } InitX() \text{ else } \mathcal{N}(\mathbf{F} X(a,t-1), \Sigma_x)
\#Blip(Source=a, Time=t) = 1
Z(b) \sim \mathcal{N}(\mathbf{H} \ X(Source(b), Time(b)), \Sigma_{\tau})
```

where **F** and  $\Sigma_x$  are matrices describing the linear transition model and transition noise covariance, and **H** and  $\Sigma_{z}$  are the corresponding matrices for the sensor model. (See page 501.)

The key difference between this model and a standard Kalman filter is that there are two objects producing sensor readings (blips). This means there is uncertainty at any given time step about which object produced which sensor reading. Each possible world in this model includes an association—defined by values of all the Source(b) variables for all the time steps—between aircraft and blips. Two possible association hypotheses are shown in Figure 18.8(b-c). In general, for n objects and T time steps, there are  $(n!)^T$  ways of assigning blips to aircraft—an awfully large number.

The scenario described so far involved n known objects generating n observations at each time step. Real applications of data association are typically much more complicated. Often, the reported observations include **false alarms** (also known as **clutter**), which are not False alarm caused by real objects. **Detection failures** can occur, meaning that no observation is reported Clutter for a real object. Finally, new objects arrive and old ones disappear. These phenomena, which create even more possible worlds to worry about, are illustrated in Figure 18.8(d). The corresponding OUPM is given in Figure 18.9.

Because of its practical importance for both civilian and military applications, tens of thousands of papers have been written on the problem of multitarget tracking and data association. Many of them simply try to work out the complex mathematical details of the probability calculations for the model in Figure 18.9, or for simpler versions of it. In one sense, this is unnecessary once the model is expressed in a probabilistic programming language, because the general-purpose inference engine does all of the mathematics correctly for any model—including this one. Furthermore, elaborations of the scenario (formation flying,

Detection failure

objects heading for unknown destinations, objects taking off or landing, etc.) can be handled by small changes to the model without resorting to new mathematical derivations and complex programming.

From a practical point of view, the challenge with this kind of model is the complexity of inference. As for all probability models, inference means summing out the variables other than the query and the evidence. For filtering in HMMs and DBNs, we were able to sum out the state variables from 1 to t-1 by a simple dynamic programming trick; for Kalman filters, we also took advantage of special properties of Gaussians. For data association, we are less fortunate. There is no (known) efficient exact algorithm, for the same reason that there is none for the switching Kalman filter (page 502): the filtering distribution, which describes the joint distribution over numbers and locations of aircraft at each time step, ends up as a mixture of exponentially many distributions, one for each way of picking a sequence of observations to assign to each aircraft.

As a response to the complexity of exact inference, several approximate methods have been used. The simplest approach is to choose a single "best" assignment at each time step, given the predicted positions of the objects at the current time. This assignment associates observations with objects and enables the track of each object to be updated and a prediction made for the next time step. For choosing the "best" assignment, it is common to use the so-called **nearest-neighbor filter**, which repeatedly chooses the closest pairing of predicted position and observation and adds that pairing to the assignment. The nearest-neighbor filter works well when the objects are well separated in state space and the prediction uncertainty and observation error are small—in other words, when there is no possibility of confusion.

When there is more uncertainty as to the correct assignment, a better approach is to choose the assignment that maximizes the joint probability of the current observations given the predicted positions. This can be done efficiently using the **Hungarian algorithm** (Kuhn, 1955), even though there are n! assignments to choose from as each new time step arrives.

Any method that commits to a single best assignment at each time step fails miserably under more difficult conditions. In particular, if the algorithm commits to an incorrect assignment, the prediction at the next time step may be significantly wrong, leading to more incorrect assignments, and so on. Sampling approaches can be much more effective. A **particle filtering** algorithm (see page 510) for data association works by maintaining a large collection of possible current assignments. An **MCMC** algorithm explores the space of assignment histories—for example, Figure 18.8(b–c) might be states in the MCMC state space—and can change its mind about previous assignment decisions.

One obvious way to speed up sampling-based inference for multitarget tracking is to use the **Rao-Blackwellization** trick from Chapter 14 (page 514): given a specific association hypothesis for all the objects, the filtering calculation for each object can typically be done exactly and efficiently, instead of sampling many possible state sequences for the objects. For example, with the model in Figure 18.9, the filtering calculation just means running a Kalman filter for the sequence of observations assigned to a given hypothesized object. Furthermore, when changing from one association hypothesis to another, the calculations have to be redone only for objects whose associated observations have changed. Current MCMC data association methods can handle many hundreds of objects in real time while giving a good approximation to the true posterior distributions.

Nearest-neighbor filter

Hungarian algorithm





**Figure 18.10** Images from (a) upstream and (b) downstream surveillance cameras roughly two miles apart on Highway 99 in Sacramento, California. The boxed vehicle has been identified at both cameras.

#### 18.3.2 Example: Traffic monitoring

Figure 18.10 shows two images from widely separated cameras on a California freeway. In this application, we are interested in two goals: estimating the time it takes, under current traffic conditions, to go from one place to another in the freeway system; and measuring *demand*—that is, how many vehicles travel between any two points in the system at particular times of the day and on particular days of the week. Both goals require solving the data association problem over a wide area with many cameras and tens of thousands of vehicles per hour.

With visual surveillance, false alarms are caused by moving shadows, articulated vehicles, reflections in puddles, etc.; detection failures are caused by occlusion, fog, darkness, and lack of visual contrast; and vehicles are constantly entering and leaving the freeway system at points that may not be monitored. Furthermore, the appearance of any given vehicle can change dramatically between cameras depending on lighting conditions and vehicle pose in the image, and the transition model changes as traffic jams come and go. Finally, in dense traffic with widely separated cameras, the prediction error in the transition model for a car driving from one camera location to the next is far greater than the typical separation between vehicles. Despite these problems, modern data association algorithms have been successful in estimating traffic parameters in real-world settings.

Data association is an essential foundation for keeping track of a complex world, because without it there is no way to combine multiple observations of any given object. When objects in the world interact with each other in complex activities, understanding the world requires combining data association with the relational and open-universe probability models of Section 18.2. This is currently an active area of research.

```
function GENERATE-IMAGE() returns an image with some letters
  letters \leftarrow GENERATE-LETTERS(10)
  return RENDER-NOISY-IMAGE(letters, 32, 128)
function GENERATE-LETTERS(\lambda) returns a vector of letters
  n \sim Poisson(\lambda)
  letters \leftarrow []
  for i = 1 to n do
      letters[i] \sim UniformChoice(\{a, b, c, \cdots\})
  return letters
function RENDER-NOISY-IMAGE(letters, width, height) returns a noisy image of the letters
  clean\_image \leftarrow RENDER(letters, width, height, text\_top = 10, text\_left = 10)
  noisy\_image \leftarrow []
  noise\_variance \sim UniformReal(0.1, 1)
  for row = 1 to width do
      for col = 1 to height do
          noisy\_image[row,col] \sim \mathcal{N}(clean\_image[row,col],noise\_variance)
  return noisy_image
```

**Figure 18.11** Generative program for an open-universe probability model for optical character recognition. The generative program produces degraded images containing sequences of letters by generating each sequence, rendering it into a 2D image, and incorporating additive noise at each pixel.

## 18.4 Programs as Probability Models

Many probabilistic programming languages have been built on the insight that probability models can be defined using executable code in any programming language that incorporates a source of randomness. For such models, the possible worlds are execution traces and the probability of any such trace is the probability of the random choices required for that trace to happen. PPLs created in this way inherit all of the expressive power of the underlying language, including complex data structures, recursion, and, in some cases, higher-order functions. Many PPLs are in fact computationally universal: they can represent any probability distribution that can be sampled from by a probabilistic Turing machine that halts.

# 18.4.1 Example: Reading text

We illustrate this approach to probabilistic modeling and inference via the problem of writing a program that reads degraded text. These kinds of models can be built for reading text that has been smudged or blurred due to water damage, or spotted due to aging of the paper on which it is printed. They can also be built for breaking some kinds of CAPTCHAs.

Figure 18.11 shows a generative program containing two components: (i) a way to generate a sequence of letters; and (ii) a way to generate a noisy, blurry rendering of these letters using an off-the-shelf graphics library. Figure 18.12(top) shows example images generated by invoking GENERATE-IMAGE nine times.



Figure 18.12 The top panel shows twelve degraded images produced by executing the generative program from Figure 18.11. The number of letters, their identities, the amount of additive noise, and the specific pixel-wise noise are all part of the domain of the probability model. The bottom panel shows twelve degraded images produced by executing the generative program from Figure 18.15. The Markov model for letters typically yields sequences of letters that are easier to pronounce.

#### 18.4.2 Syntax and semantics

A generative program is an executable program in which every random choice defines a Generative program random variable in an associated probability model. Let us imagine unrolling the execution of a program that makes random choices, step by step. Let  $X_i$  be the random variable corresponding to the *i*th random choice made by the program; as usual,  $x_i$  denotes a possible value of  $X_i$ . Let us call  $\omega = \{x_i\}$  an **execution trace** of the generative program—that is, a sequence of possible values for the random choices. Running the program once generates one such trace, hence the term "generative program."

The space of all possible execution traces  $\Omega$  can be viewed as the sample space of a probability model defined by the generative program. The probability distribution over traces can be defined as the product of the probabilities of each individual random choice:  $P(\omega) =$  $\prod_{i} P(x_i|x_1, \dots x_{i-1})$ . This is analogous to the distribution over worlds in an OUPM.

It is conceptually straightforward to convert any OUPM into a corresponding generative program. This generative program makes random choices for each number statement and for the value of each basic random variable whose existence is implied by the number statements. The main extra work that the generative program needs to do is to create data structures that represent the objects, functions, and relations of the possible worlds in the OUPM. These data structures are created automatically by the OUPM inference engine because the OUPM assumes that every possible world is a first-order model structure, whereas a typical PPL makes no such assumption.

The images in Figure 18.12 can be used to get an intuitive understanding of the probability distribution  $P(\Omega)$ : we see varying levels of noise, and in the less noisy images, we also see sequences of letters of varying lengths. Let  $\omega_1$  be the trace corresponding to the image in the top right corner of this figure, containing the letters ocflwe. If we unrolled this trace  $\omega_1$  into a Bayesian network, it would have 4,104 nodes: 1 node for the variable n; 6 nodes for the variables *letters*[i]; 1 node for the *noise\_variance*; and 4,096 nodes for the pixels in noisy\_image. We thus see that this generative program defines an open-universe probability model: the number of random choices it makes is not bounded a priori, but instead depends on the value of the random variable n.

Execution trace



**Figure 18.13** Noisy input image (top) and inference results (bottom) produced by three runs, each of 25 MCMC iterations, with the model from Figure 18.11. Note that the inference process correctly identifies the sequence of letters.



**Figure 18.14** Top: extremely noisy input image. Bottom left: with three inference results from 25 MCMC iterations with the independent-letter model from Figure 18.11. Bottom right: three inference results with the letter bigram model from Figure 18.15. Both models exhibit ambiguity in the results, but the latter model's results reflect prior knowledge of plausible letter sequences.

```
function GENERATE-MARKOV-LETTERS(\lambda) returns a vector of letters n \sim Poisson(\lambda)
letters \leftarrow []
letter\_probs \leftarrow \text{MARKOV-INITIAL}()
for i = 1 to n do
letters[i] \sim Categorical(letter\_probs)
letter\_probs \leftarrow \text{MARKOV-TRANSITION}(letters[i])
return letters
```

**Figure 18.15** Generative program for an improved optical character recognition model that generates letters according to a letter bigram model whose pairwise letter frequencies are estimated from a list of English words.

#### 18.4.3 Inference results

Let's apply this model to interpret images of letters that have been degraded with additive noise. Figure 18.13 shows a degraded image, along with results from three independent MCMC runs. For each run, we show a rendering of the letters contained in the trace after stopping the Markov chain. In all three cases the result is the letter sequence uncertainty, suggesting that the posterior distribution is highly concentrated on the correct interpretation.

Now let's degrade the text further, blurring it enough that it is difficult for people to read. Figure 18.14 shows the inference results on this more challenging input. This time, although MCMC inference appears to have converged on (what we know to be) the correct number of letters, the first letter is misidentified as a q and there is uncertainty about five of the ten following letters.

At this point, there are many possible ways to interpret the results. It could be that MCMC inference has mixed well and the results are a good reflection of the true posterior given the model and the image; in that case, the uncertainty in some of the letters and the error in the first letter are unavoidable. To get better results, we might need to improve the text model or reduce the noise level. It could also be that MCMC inference has not mixed properly: if we ran 300 chains for 25 thousand or 25 million iterations, we might find a quite different distribution of results, perhaps indicating that the first letter is probably u rather than q.

Running more inference could be costly in terms of dollars and waiting time. Moreover, there is no foolproof test for convergence of Monte Carlo inference methods. We could try to improve the inference algorithm, perhaps by designing a better proposal distribution for MCMC or using bottom-up clues from the image to suggest better initial hypotheses. These improvements require additional thought, implementation, and debugging. The third alternative is to improve the model. For example, we could incorporate knowledge about English words, such as the probabilities of letter pairs. We now consider this option.

### 18.4.4 Improving the generative program to incorporate a Markov model

Probabilistic programming languages are modular in a way that makes it easy to explore improvements to the underlying model. Figure 18.15 shows the generative program for an improved model that generates letters sequentially rather than independently. This generative program uses a Markov model that draws each letter given the previous letter, with transition probabilities estimated from a reference list of English words.

Figure 18.12 shows twelve sampled images produced by this generative program. Notice that the letter sequences are significantly more English-like than those generated from the program in Figure 18.11. The right-hand panel in Figure 18.14 shows inference results from this Markov model applied to the high-noise image. The interpretations more closely match the generating trace, though there is still some uncertainty.

#### 18.4.5 Inference in generative programs

As with OUPMs, exact inference in generative programs is usually prohibitively expensive or impossible. On the other hand, it is easy to see how to perform rejection sampling: run the program, keep just the traces that agree with the evidence, and count the different query answers found in those traces. Likelihood weighting is also straightforward: for each generated trace, keep track of the weight of the trace by multiplying all the probabilities of the values observed along the way.

Likelihood weighting works well only when the data are reasonably likely according to the model. In more difficult cases, MCMC is usually the method of choice. MCMC applied to probabilistic programs involves sampling and modifying execution traces. Many of the considerations arising with OUPMs also apply here; in addition, the algorithm has to be careful about modifications to an execution trace, such as changing the outcome of an if-statement, that may invalidate the remainder of the trace.

Further improvements in inference come from several lines of work. Some improvements can produce fundamental shifts in the class of problems that are tractable with a given PPL, even in principle; lifted inference, described earlier for RPMs, can have this effect. In many cases, generic MCMC is too slow, and special-purpose proposals are needed to enable the inference process to mix quickly.

An important focus of recent work in PPLs has been to make it easy for users to define and use such proposals so that the efficiency of PPL inference matches that of custom inference algorithms devised for specific models.

Many promising approaches are aimed at reducing the overhead of probabilistic inference. The compilation idea described for Bayes nets in Section 13.4.3 can be applied to inference in OUPMs and PPLs, and typically yields speedups of two to three orders of magnitude. There have also been proposals for *special-purpose hardware* for algorithms such as message-passing and MCMC. For example, Monte Carlo hardware exploits low-precision probability representations and massive fine-grained parallelism to deliver 100–10,000x improvements in speed and energy efficiency.

Methods based on learning can also give substantial improvements in speed. For example, **adaptive proposal distributions** can gradually learn how to generate MCMC proposals that are reasonably likely to be accepted and reasonably effective in exploring the probability landscape of the model to ensure rapid mixing. It is also possible to train deep learning models (see Chapter 22) to represent proposal distributions for importance sampling, using synthetic data that was generated from the underlying model.

In general, one expects that any formalism built on top of general programming languages will run up against the barrier of computability, and this is the case for PPLs. If we assume, however, that the underlying program halts for all inputs and all random choices, does the additional requirement of doing probabilistic inference still render the problem undecidable? It turns out that the answer is yes, but only for a computational model with infinite-precision continuous random variables. In that case, it becomes possible to write a computable probability model in which inference encodes the halting problem. On the other hand, with finite-precision numbers and with the smooth probability distributions typically used in real applications, inference remains decidable.

# Summary

This chapter has explored expressive representations for probability models based on both logic and programs.

• **Relational probability models** (RPMs) define probability models on worlds derived from the **database semantics** for first-order languages; they are appropriate when all the objects and their identities are known with certainty.

Adaptive proposal distribution

- Given an RPM, the objects in each possible world correspond to the constant symbols in the RPM, and the basic random variables are all possible instantiations of the predicate symbols with objects replacing each argument. Thus, the set of possible worlds is finite.
- RPMs provide very concise models for worlds with large numbers of objects and can handle relational uncertainty.
- Open-universe probability models (OUPMs) build on the full semantics of first-order logic, allowing for new kinds of uncertainty such as identity and existence uncertainty.
- **Generative programs** are representations of probability models—including OUPMs—as executable programs in a **probabilistic programming language** or **PPL**. A generative program represents a distribution over **execution traces** of the program. PPLs typically provide *universal* expressive power for probability models.

# **Bibliographical and Historical Notes**

Hailperin (1984) and Howson (2003) recount the long history of attempts to connect probability and logic, going back to Leibniz's *Nouveaux Essais* in 1704. These attempts usually involved probabilities attached directly to logical sentences. The first rigorous treatment was Gaifman's propositional **probability logic** (Gaifman, 1964b). The idea is that a probability assertion  $P(\phi) \ge p$  is a constraint on the distribution over possible worlds, just as an ordinary logical sentence is a constraint on the possible worlds themselves. Any distribution P that satisfies the constraint is a model, in the standard logical sense, of the probability assertion, and one probability assertion entails another just when the models of the first are a subset of the models of the second.

Within such a logic, one can prove, for example, that  $P(\alpha \land \beta) \leq P(\alpha \Rightarrow \beta)$ . Satisfiability of sets of probability assertions can be determined in the propositional case by linear programming (Hailperin, 1984; Nilsson, 1986). Thus, we have a "probability logic" in the same sense as "temporal logic"—a logical system specialized for probabilistic reasoning.

To apply probability logic to tasks such as proving interesting theorems in probability theory, a more expressive language was needed. Gaifman (1964a) proposed a *first-order* probability logic, with possible worlds being first-order model structures and with probabilities attached to sentences of (function-free) first-order logic. Scott and Krauss (1966) extended Gaifman's results to allow infinite nesting of quantifiers and infinite sets of sentences.

Within AI, the most direct descendant of these ideas appears in **probabilistic logic programs** (Lukasiewicz, 1998), in which a probability range is attached to each first-order Horn clause and inference is performed by solving linear programs, as suggested by Hailperin. Halpern (1990) and Bacchus (1990) also built on Gaifman's approach, exploring some of the basic knowledge representation issues from the perspective of AI rather than probability theory and mathematical logic.

The subfield of **probabilistic databases** also has logical sentences labeled with probabilities (Dalvi *et al.*, 2009)—but in this case probabilities are attached directly to the tuples of the database. (In AI and statistics, probability is attached to general relationships, whereas observations are viewed as incontrovertible evidence.) Although probabilistic databases can model complex dependencies, in practice one often finds such systems using global independence assumptions across tuples.

Probability logic

Probabilistic databases

Attaching probabilities to sentences makes it very difficult to define complete and consistent probability models. Each inequality *constrains* the underlying probability model to lie in a half-space in the high-dimensional space of probability models. Conjoining assertions corresponds to intersecting the constraints. Ensuring that the intersection yields a single point is not easy. In fact, the principal result in Gaifman (1964a) is the construction of a single probability model requiring 1) a probability for every possible ground sentence and 2) probability constraints for infinitely many existentially quantified sentences.

One solution to this problem is to write a partial theory and then "complete" it by picking out one canonical model in the allowed set. Nilsson (1986) proposed choosing the *maximum entropy* model consistent with the specified constraints. Paskin (2002) developed a "maximum-entropy probabilistic logic" with constraints expressed as weights (relative probabilities) attached to first-order clauses. Such models are often called **Markov logic networks** or MLNs (Richardson and Domingos, 2006) and have become a popular technique for applications involving relational data. Maximum-entropy approaches, including MLNs, can produce unintuitive results in some cases (Milch, 2006; Jain *et al.*, 2007, 2010).

Beginning in the early 1990s, researchers working on complex applications noticed the expressive limitations of Bayesian networks and developed various languages for writing "templates" with logical variables, from which large networks could be constructed automatically for each problem instance (Breese, 1992; Wellman *et al.*, 1992). The most important such language was Bugs (Bayesian inference Using Gibbs Sampling) (Gilks *et al.*, 1994; Lunn *et al.*, 2013), which combined Bayesian networks with the **indexed random variable** notation common in statistics. (In Bugs, an indexed random variable looks like X[i], where i has a defined integer range.)

These closed-universe languages inherited the key property of Bayesian networks: every well-formed knowledge base defines a unique, consistent probability model. Other closed-universe languages drew on the representational and inferential capabilities of logic programming (Poole, 1993; Sato and Kameya, 1997; Kersting *et al.*, 2000) and semantic networks (Koller and Pfeffer, 1998; Pfeffer, 2000).

Research on open-universe probability models has several origins. In statistics, the problem of **record linkage** arises when data records do not contain standard unique identifiers—for example, various citations of this book might name its first author "Stuart J. Russell" or "S. Russell" or even "Stewart Russel." Other authors share the name "S. Russell."

Hundreds of companies exist solely to solve record linkage problems in financial, medical, census, and other data. Probabilistic analysis goes back to work by Dunn (1946); the Fellegi–Sunter model (1969), which is essentially naive Bayes applied to matching, still dominates current practice. Identity uncertainty is also considered in multitarget tracking (Sittler, 1964), whose history is sketched in Chapter 14.

In AI, the working assumption until the 1990s was that sensors could supply logical sentences with unique identifiers for objects, as was the case with Shakey. In the area of natural language understanding, Charniak and Goldman (1992) proposed a probabilistic analysis of coreference, where two linguistic expressions (say, "Obama" and "the president") may refer to the same entity. Huang and Russell (1998) and Pasula *et al.* (1999) developed a Bayesian analysis of identity uncertainty for traffic surveillance. Pasula *et al.* (2003) developed a complex generative model for authors, papers, and citation strings, involving both relational and identity uncertainty, and demonstrated high accuracy for citation information extraction.

Indexed random variable

Record linkage

The first formal language for open-universe probability models was BLOG (Milch *et al.*, 2005; Milch, 2006), which came with a (very slow) general-purpose MCMC inference engine. Laskey (2008) describes another open-universe modeling language called **multi-entity Bayesian networks**. The NET-VISA global seismic monitoring system described in the text is due to Arora *et al.* (2013). The Elo rating system was developed in 1959 by Arpad Elo (1978) but is essentially the same at Thurstone's Case V model (Thurstone, 1927). Microsoft's TrueSkill model (Herbrich *et al.*, 2007; Minka *et al.*, 2018) is based on Mark Glickman's (1999) Bayesian version of Elo and now runs on the infer.NET PPL.

Data association for multitarget tracking was first described in a probabilistic setting by Sittler (1964). The first practical algorithm for large-scale problems was the "multiple hypothesis tracker" or MHT algorithm (Reid, 1979). Important papers are collected by Bar-Shalom and Fortmann (1988) and Bar-Shalom (1992). The development of an MCMC algorithm for data association is due to Pasula *et al.* (1999), who applied it to traffic surveillance problems. Oh *et al.* (2009) provide a formal analysis and experimental comparisons to other methods. Schulz *et al.* (2003) describe a data association method based on particle filtering.

Ingemar Cox analyzed the complexity of data association (Cox, 1993; Cox and Hingorani, 1994) and brought the topic to the attention of the vision community. He also noted the applicability of the polynomial-time Hungarian algorithm to the problem of finding most-likely assignments, which had long been considered an intractable problem in the tracking community. The algorithm itself was published by Kuhn (1955), based on translations of papers published in 1931 by two Hungarian mathematicians, Dénes König and Jenö Egerváry. The basic theorem had been derived previously, however, in an unpublished Latin manuscript by the famous mathematician Carl Gustav Jacobi (1804–1851).

The idea that probabilistic programs could also represent complex probability models is due to Koller *et al.* (1997). The first working PPL was Avi Pfeffer's IBAL (2001, 2007), based on a simple functional language. BLOG can be thought of as a declarative PPL. The connection between declarative and functional PPLs was explored by McAllester *et al.* (2008). CHURCH (Goodman *et al.*, 2008), a PPL built on the Scheme language, pioneered the idea of piggybacking on an existing programming language. CHURCH also introduced the first MCMC inference algorithm for models with random higher-order functions and generated interest in the cognitive science community as a way to model complex forms of human learning (Lake *et al.*, 2015). PPLs also connect in interesting ways to computability theory (Ackerman *et al.*, 2013) and programming language research.

In the 2010s, dozens of PPLs emerged based on a wide range of underlying programming languages. Figaro, based on the Scala language, has been used for a wide variety of applications (Pfeffer, 2016). Gen (Cusumano-Towner *et al.*, 2019), based on Julia and TensorFlow, has been used for real-time machine perception as well as Bayesian structure learning for time series data analysis. PPLs built on top of deep learning frameworks include Pyro (Bingham *et al.*, 2019) (built on PyTorch) and Edward (Tran *et al.*, 2017) (built on TensorFlow).

There have been efforts to make probabilistic programming accessible to more people, such as database and spreadsheet users. Tabular (Gordon *et al.*, 2014) provides a spreadsheet-like relational schema language on top of infer.NET. BayesDB (Saad and Mansinghka, 2017) lets users combine and query probabilistic programs using an SQL-like language.

Inference in probabilistic programs has generally relied on approximate methods because exact algorithms do not scale to the kinds of models that PPLs can represent. Closed-universe

languages such as BUGS, LIBBI (Murray, 2013), and STAN (Carpenter *et al.*, 2017) generally operate by constructing the full equivalent Bayesian network and then running inference on it—Gibbs sampling in the case of BUGS, sequential Monte Carlo in the case of LIBBI, and Hamiltonian Monte Carlo in the case of STAN. Programs in these languages can be read as instructions for building the ground Bayes net. Breese (1992) showed how to generate only the relevant fragment of the full network, given the query and the evidence.

Working with a grounded Bayes net means that the possible worlds visited by MCMC are represented by a vector of values for variables in the Bayes net. The idea of directly sampling first-order possible worlds is due to Russell (1999). In the FACTORIE language (McCallum *et al.*, 2009), possible worlds in the MCMC process are represented within a standard relational database system. The same two papers propose incremental query reevaluation as a way to avoid full query evaluation on each possible world.

Inference methods based on grounding are analogous to the earliest propositionalization methods for first-order logical inference (Davis and Putnam, 1960). For logical inference, both resolution theorem provers and logic programming systems rely on **lifting** (Section 9.2) to avoid instantiating logical variables unnecessarily.

Pfeffer *et al.* (1999) introduced a variable elimination algorithm that cached each computed factor for reuse by later computations involving the same relations but different objects, thereby realizing some of the computational gains of lifting. The first truly lifted probabilistic inference algorithm was a form of variable elimination described by Poole (2003) and subsequently improved by de Salvo Braz *et al.* (2007). Further advances, including cases where certain aggregate probabilities can be computed in closed form, are described by Milch *et al.* (2008) and Kisynski and Poole (2009). There is now a fairly good understanding of when lifting is possible and of its complexity (Gribkoff *et al.*, 2014; Kazemi *et al.*, 2017).

Methods of speeding up inference come in several flavors, as noted in the chapter. Several projects have explored more sophisticated algorithms, combined with compiler techniques and/or learned proposals. LIBBI (Murray, 2013) introduced the first particle Gibbs inference for probabilistic programs; one of the first inference compilers, with GPU support for massively parallel SMC; and use of the modeling language to define custom MCMC proposals. Compilation of probabilistic inference is also studied by Wingate *et al.* (2011), Paige and Wood (2014), Wu *et al.* (2016a). Claret *et al.* (2013), Hur *et al.* (2014), and Cusumano-Towner *et al.* (2019) demonstrate static analysis methods for transforming probabilistic programs into more efficient forms. PICTURE (Kulkarni *et al.*, 2015) is the first PPL that let users apply learning from forward executions of the generative program to train fast bottom-up proposals. Le *et al.* (2017) describe the use of deep learning techniques for efficient importance sampling in a PPL. In practice, inference algorithms for complex probability models often use a mixture of techniques for different subsets of variables in the model. Mansinghka *et al.* (2013) emphasized the idea of inference programs that apply diverse inference tactics to subsets of variables chosen during inference runtime.

The collection edited by Getoor and Taskar (2007) includes many important papers on first-order probability models and their use in machine learning. Probabilistic programming papers appear in all the major conferences on machine learning and probabilistic reasoning, including NeurIPS, ICML, UAI, and AISTATS. Regular PPL workshops have been attached to the NeurIPS and POPL (Principles of Programming Languages) conferences, and the first International Conference on Probabilistic Programming was held in 2018.