Sistema de Rastreamento Solar

Eficiência na geração de energia limpa

Julia Pessoa Souza
Universidade de Brasília - UNB
Brasília-DF, Brasil
juliapessoasouza@gmail.com

Resumo— A busca por eficiência e a melhor obtenção de energia tem se tornado uma constante no estudo da geração de energia solar e com o uso da MSP430 pode-se fazer um modelo de rastreamento de luz para placas solares.

Palavras chaves— energia; eficiência; MSP430;

I. Justificativa

Nos tempos atuais, as discussões no viés de energia renovável, em virtude do aumento do aquecimento global do planeta, têm sido crescentes. O sol é considerado uma fonte de energia sustentável e inesgotável do ponto de vista humano. Tendo em vista a necessidade do maior aproveitamento desta fonte de energia uma solução é o rastreamento de luz para placas solares. Esta é uma forma eficiente de aumentar o aproveitamento da energia.

O sistema proposto otimiza a captação de energia solar por meio do rastreamento de luz. Assim, a mesma placa fotovoltaica pode gerar mais eletricidade ocupando a mesma área, o que aumenta o aproveitamento da energia e a eficiência da geração de eletricidade por meio desta fonte. O sistema diminui o ângulo de incidência entre a luz e o painel solar, aumentando a porcentagem da produção de energia daquele painel. Isso diminui a possível perda de aproveitamento da luz por conta da mudança de posição do sol ao longo do dia.

Os materiais necessários para se construir o sistema são 4 sensores LDR, 4 resistores de 10k Ohms, 2 servo-motores, jumpers, uma protoboard para a montagem do circuito auxiliar e da placa MSP430 para configurar a lógica programacional.

O sistema de seguimento de luz solar consegue aumentar em até 50% a captação de luz no verão e 20% no inverno. Além de ser necessário menos espaço para gerar a mesma quantidade de energia, um sistema de rastreamento solar também é capaz de entregar a potência de forma mais uniforme, ou seja, há uma máxima produção de energia por mais tempo ao longo do dia. Conclui-se que o sistema tem capacidade para aproveitar melhor a captação desta fonte de energia.

Victor Barreto Batalha Universidade de Brasília - UNB Brasília-DF, Brasil victor.batalha@hotmail.com

II. DESENVOLVIMENTO

A. Hardware

O hardware do projeto descrito foi representado em um diagrama de blocos para facilitar a observação.

Figura.1.- Diagrama de Blocos

1.) Sensor LDR

A identificação do surgimento e da localização da luz será feita pelo sistema através do sensor chamado LDR, acoplando o mesmo junto de um resistor no circuito final.

Figura.2-Sensor LDR

O LDR significa resistor dependente de luz ou seja, quanto maior a incidência de luz menor a resistência do mesmo[7]. "Tal componente é constituído de um semicondutor de alta resistência, que ao receber uma grande quantidade de fótons oriundos da luz incidente, ele absorve

elétrons que melhoram sua condutibilidade, reduzindo assim sua resistência.

2.) MSP 430

Como em nossa disciplina trabalhamos com o MSP430, trabalharemos como sugerido pelo professor a versão MSP-EXP430G2. Toda a programação lógica para a resolução do sistema e do problema proposto será embarcada e coloca nessa parte do sistema, sendo responsável por parte da simulação em código via o software Code Composer Visual da texas instruments.

Figura.3- MSP430

3.) Motor DC

Escolhemos o motor DC devido a facilidade em diversas situações como por exemplo poder operar em constante reversão, operar em corrente contínua, sua velocidade ser ajustável e ao seu alto torque na partida podendo assim se movimentar a placa mais rapidamente.

Figura.4 - Motor DC

Através da ideia e realizamos a montagem de um esquemático do circuito proposto no proteus para melhor visualização do sistema sendo representado na figura a seguir.

Figura.5 - Esquemático do Circuito

B. Software

No software definimos em código as entradas e as saídas do sistema no Code Composer, montamos assim o esquemático no proteus para assim com todas as etapas concluídas implementarmos na prática. Nos sensores LDR quanto maior a luz incidida sobre ele maior sua resistência então foi implementado um sistema que compara a resistência dos sensores movimentando o motor de acordo com a maior incidência na posição do LDR.

III. RESULTADOS

IV. REFERENCIA

- $[1] \quad http://www.byd.com/br/pv/sts.html$
- [2] Projeto de um sistema de rastreamento solar baseado na teoria de controle por servovisão - CEFET/RJ
- [3] Estudo comparativo entre metodos de rastreamento solar aplicados a sistemas fotovoltaicos
- [4] Manual do MSP430 disponivel em:https://github.com/Victor-Barreto-Batalha/Microcontroladores-1/tree/master/Refs/MSP430
- [5] "Energia solar", um breve resumo", Aneel. Acesso em 04/09/2017.

 Disponivel em:

 http://www2.aneel.gov.br/aplicacoes/atlas/pdf/03-energia-solar(3).pdf
- [6] Princeton University. «Photoresistor». Consultado em 25 de abril de 2018
- [7] Material sobre o LDR disponivel em:https://portal.vidadesilicio.com.br/sensor-de-luz-com-ldr/
- [8] Material sobre o Motor DC disponivel em:http://www.kalatec.com.br/o-que-sao-motores-dc/