```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('Housing.csv')

df.head()
```

→		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus
	0	13300000	7420	4	2	3	yes	no	no	no	yes	2	yes	furnished
	1	12250000	8960	4	4	4	yes	no	no	no	yes	3	no	furnished
	2	12250000	9960	3	2	2	yes	no	yes	no	no	2	yes	semi-furnished
	3	12215000	7500	4	2	2	yes	no	yes	no	yes	3	yes	furnished
	4	11410000	7420	4	1	2	ves	ves	ves	no	ves	2	no	furnished

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 545 entries, 0 to 544
 Data columns (total 13 columns):

Data	COTUMNIS (COLAT 13	COTUMNIS).			
#	Column	Non-Null Count	Dtype		
0	price	545 non-null	int64		
1	area	545 non-null	int64		
2	bedrooms	545 non-null	int64		
3	bathrooms	545 non-null	int64		
4	stories	545 non-null	int64		
5	mainroad	545 non-null	object		
6	guestroom	545 non-null	object		
7	basement	545 non-null	object		
8	hotwaterheating	545 non-null	object		
9	airconditioning	545 non-null	object		
10	parking	545 non-null	int64		
11	prefarea	545 non-null	object		
12	furnishingstatus	545 non-null	object		
<pre>dtypes: int64(6), object(7)</pre>					

https://colab.research.google.com/drive/13b7nLwKHRf50oII1cuboQPPMAkK0GdGp#printMode=true

memory usage: 55.5+ KB

```
df.columns
```

X=df[['area', 'bedrooms', 'bathrooms']]

Χ

}		area	bedrooms	bathrooms
	0	7420	4	2
	1	8960	4	4
	2	9960	3	2
	3	7500	4	2
	4	7420	4	1
	540	3000	2	1
	541	2400	3	1
	542	3620	2	1
	543	2910	3	1
	544	3850	3	1

545 rows × 3 columns

y=df['price']

У

8/7/24, 9:05 PM

	price
0	13300000
1	12250000
2	12250000
3	12215000
4	11410000
5	10850000
6	10150000
7	10150000
8	9870000
9	9800000
10	9800000
11	9681000
12	9310000
13	9240000
14	9240000
15	9100000
16	9100000
17	8960000
18	8890000
19	8855000
20	8750000
21	8680000
22	8645000
23	8645000
24	8575000

- 8540000
- 8463000
- 8400000
- 8400000
- 8400000
- 8400000
- 8400000
- 8295000
- 8190000
- 8120000
- 8080940
- 8043000
- 7980000
- 7962500
- 7910000
- 7875000
- 7840000
- 7700000
- 7700000
- 7560000
- 7560000
- 7525000
- 7490000
- 7455000
- 7420000
- 7420000
- E4 7400000

/420000

7350000

7350000

7350000

7350000

7343000

7245000

7210000

7210000

7140000

7070000

7070000

7035000

7000000

6930000

6930000

6895000

6860000

6790000

6790000

6755000

6720000

6685000

6650000

6650000

6650000

- 6650000
- 6650000
- 6629000
- 6615000
- 6615000
- 6580000
- 6510000
- 6510000
- 6510000
- 6475000
- 6475000
- 6440000
- 6440000
- 6419000
- 6405000
- 6300000
- 6300000
- 6300000
- 6300000
- 6300000
- 6293000
- 6265000
- 6230000
- 6230000
- 6195000
- 6195000

- 6195000
- 6160000
- 6160000
- 6125000
- 6107500
- 6090000
- 6090000
- 6090000
- 6083000
- 6083000
- 6020000
- 6020000
- 6020000
- 5950000
- 5950000
- 5950000
- 5950000
- 5950000
- 5950000
- 5950000
- 5950000
- 5943000
- 5880000
- 5880000
- 5873000
- 5873000
- 5866000

- 5810000
- 5810000
- 5810000
- 5803000
- 5775000
- 5740000
- 5740000
- 5740000
- 5740000
- 5740000
- 5652500
- 5600000
- 5600000
- 5600000
- 5600000
- 5600000
- 5600000
- 5600000
- 5600000
- 5600000
- 5565000
- 5565000
- 5530000
- 5530000
- 5530000
- 5523000

5495000

5460000

5460000

5460000

5460000

5425000

5390000

5383000

5320000

5285000

5250000

5250000

5250000

5250000

5250000

5250000

5250000

5250000

5250000

5243000

5229000

5215000

5215000

5215000

5145000

5110000

5110000

5110000

5110000

5075000

5040000

5040000

5040000

5040000

5033000

5005000

4970000

4970000

4956000

4935000

4907000

4900000

4900000

4900000

4900000

4900000

4900000

4900000

4900000

4900000

- 4900000
- 4900000
- 4893000
- 4893000
- 4865000
- 4830000
- 4830000
- 4830000
- 4830000
- 4795000
- 4795000
- 4767000
- 4760000
- 4760000
- 4760000
- 4753000
- 4690000
- 4690000
- 4690000
- 4690000
- 4690000
- 4690000
- 4655000
- 4620000
- 4620000
- 4620000

- 4620000
- 4613000
- 4585000
- 4585000
- 4550000
- 4550000
- 4550000
- 4550000
- 4550000
- 4550000
- 4550000
- 4543000
- 4543000
- 4515000
- 4515000
- 4515000
- 4515000
- 4480000
- 4480000
- 4480000
- 4480000
- 4480000
- 4473000
- 4473000
- 4473000

∠0∠ 4440UUU

4410000

4410000

4403000

4403000

4403000

4382000

4375000

4340000

4340000

4340000

4340000

4340000

4319000

4305000

4305000

4277000

4270000

4270000

4270000

4270000

4270000

4270000

4235000

4235000

4200000

- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4200000
- 4193000
- 4193000
- 4165000
- 4165000
- 4165000
- 4130000
- 4130000
- 4123000
- 4098500
- 4095000
- 4095000

4060000

4060000

4060000

4060000

4060000

4025000

4025000

4025000

4007500

4007500

3990000

3990000

3990000

3990000

3990000

3920000

3920000

3920000

3920000

3920000

3920000

3920000

3885000

3885000

3850000

- 3675000
- 3640000
- 3640000
- 3640000
- 3640000
- 3640000
- 3640000
- 3640000
- 3640000
- 3640000
- 3633000
- 3605000
- 3605000
- 3570000
- 3570000
- 3570000
- 3570000
- 3535000
- 3500000
- 3500000
- 3500000
- 3500000
- 3500000
- 3500000
- 3500000

3500000

3500000

3500000

3500000

3500000

3500000

3500000

3500000

3500000

3493000

3465000

3465000

3465000

3430000

3430000

3430000

3430000

3430000

3430000

3423000

3395000

3395000

3395000

3360000

3360000

- 3360000
- 3360000
- 3360000
- 3360000
- 3360000
- 3353000
- 3332000
- 3325000
- 3325000
- 3290000
- 3290000
- 3290000
- 3290000
- 3290000
- 3290000
- 3290000
- 3290000
- 3255000
- 3255000
- 3234000
- 3220000
- 3220000
- 3220000
- 3220000
- 3150000
- 3150000

- 3150000
- 3150000
- 3150000
- 3150000
- 3150000
- 3150000
- 3150000
- 3143000
- 3129000
- 3118850
- 3115000
- 3115000
- 3115000
- 3087000
- 3080000
- 3080000
- 3080000
- 3080000
- 3045000
- 3010000
- 3010000
- 3010000
- 3010000
- 3010000
- 3010000
- 3010000
- 470 0000000

2961000

2940000

2940000

2940000

2940000

2940000

2940000

2940000

2940000

2870000

2870000

2870000

2870000

2852500

2835000

2835000

2835000

2800000

2800000

2730000

2730000

2695000

2660000

2660000

- 2660000
- 2660000
- 2660000
- 2660000
- 2653000
- 2653000
- 2604000
- 2590000
- 2590000
- 2590000
- 2520000
- 2520000
- 2520000
- 2485000
- 2485000
- 2450000
- 2450000
- 2450000
- 2450000
- 2450000
- 2450000
- 2408000
- 2380000
- 2380000
- 2380000
- 2345000

```
8/7/24, 9:05 PM
```

2275000

2275000

2275000

2240000

2233000

2135000

2100000

2100000

2100000

1960000

1890000

1890000

1855000

1820000

1767150

1750000

1750000

1750000

lr.fit(X_train,y_train)

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=20,random_state=42)
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
```

```
▼ LinearRegression
     LinearRegression()
y pred=lr.predict(X test)
y_pred
    array([6504774.5440896 , 6332520.54804435, 3578975.56480286,
           4329959.60777193, 3944139.57648938, 4968046.58258537,
           5635812.02134362, 6167182.01671737, 3282190.92535475,
           3476703.76935861, 8945092.82754798, 3539651.60007598,
           3460261.70902361, 3625096.08908266, 3947849.38448248,
           6713895.39533145, 2822174.73421017, 4700940.40708207,
           4645293.28718555, 4306097.93145073])
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, r2_score
mean_absolute_error(y_test,y_pred)
    1165534.030576608
mean_absolute_percentage_error(y_test,y_pred)
    0.32811095350239644
r2_score(y_test,y_pred)
    0.385832856304992
sns.regplot(x='area',y='price',data=df)
```

<Axes: xlabel='area', ylabel='price'>

