Improving Supervised Bilingual Mapping of Word Embeddings

Written by: Armand Joulin, Piotr Bojanowski, Tomas Mikolov, and Edouard Grave

Presented by: Ehsan Amjadian @RBC

Summary

• Objective:

 Improving the alignment of continuous word representations from different languages

Method:

- Leveraging a small bilingual lexicon to learn linear transformation
- Uses retrieval criterion as the loss function (as opposed to square loss)

• Contributions:

- Proposing a new convex objective function
- Avoids the hubness problem during retrieval
- Achieves state of the art results in word translation task
- Shows the orthogonal mapping constraint does not improve the quality of translations

Intro: Idea

- Possible to learn word translation by linear mapping from one vector space to the other (same d) (Mikolov et al., 2013)
- A small bilingual lexicon is used as supervision
- A regression problem
- Learnt transformation generalizes well to unseen words

Intro: Applications

Transferring predictive models

• $Model_{lang_A} \rightarrow Model_{lang_B}$

Sentiment analysis

• Spam detection etc.

Intro: Some background

- Square loss is sub-optimal → hubness problem
- Instead classification or retrieval criteria can be used e.g., Cross-domain Similarity Local Scaling (CSLS)
- Other methods to improve the results:
 - Semi-supervised: refinement procedure
 - Weak supervision: string matches between vocabs as additional examples
- More to come on all of the above.

Intro: Main Contribution

A new convex objective function

Can be minimized by the projected subgradient method

Task

- Learning bilingual lexicon given:
 - Monolingual vectors
 - A set of pairs of words (seeds)
- Estimate mapping of the words in the different languages
- Infer word translations for non-seeds

Goal: Learn Linear Mapping Between Seeds

 $\mathbf{W} \in \mathbb{R}^{d \times d}$

Linear mapping

 $i \in \{1, \dots, N\}$

Entire vocab

 $\mathbf{x}_i \in \mathbb{R}^d$

Vector in source

 $\mathbf{y}_i \in \mathbb{R}^d$

Vector in target

 $(\mathbf{x}_i, \mathbf{y}_i)_{i \in \{1, \dots, n\}}$

Seeds

 $i \in \{n+1,\ldots,N\}$

Unpaired

Goal: Learn Linear Mapping Between Seeds

$$\min_{\mathbf{W} \in \mathbb{R}^{d \times d}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{W} \mathbf{x}_i, \mathbf{y}_i), \tag{1}$$

$$\ell_2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2^2$$

→ Linear Least Squares Problem → can be solved in Closed Form

Orthogonal Constraint Improvement

- L2 normalized vectors and orthogonal constraint are believed to improve the results
- $W^TW = I_d$
- Believed to preserve word vector distances hence word similarities
- Method to solve regression then: orthogonal Procrustes analysis
- These norms may discard critical information

Inference

$$t(i) \in \underset{j \in \{1, \dots, N\}}{\operatorname{arg\,min}} \ \ell(\mathbf{W}\mathbf{x}_i, \mathbf{y}_j). \tag{2}$$

Nearest Neighbor Search

$$t(i) \in \underset{j \in \{1,...,N\}}{\operatorname{arg\,min}} \|\mathbf{W}\mathbf{x}_i - \mathbf{y}_j\|_2^2.$$
 (3)

The hubness problem with nearest neighbor search

• Hubs:

words that appear to frequently in the neighborhood of other words

Antihubs:

words that are not nearest neighbors of any points

• Solutions:

- Inverted Softmax (ISF, Smith et al., 2017)
- Cross-domain Similarity Local Scaling (CSLS, Conneau et al., 2017)

• Problem:

Only for inference, that is, transformation's loss stays the same for both ISF & CSLS

Resolving the discrepancy in loss

- Directly optimize CSLS in (1)
 - Coherent learning and inference criteria
 - W (translation model) directly learnt

CSLS

$$\operatorname{CSLS}(\mathbf{x}, \mathbf{y}) = -2\cos(\mathbf{x}, \mathbf{y}) + \frac{1}{k} \sum_{\mathbf{y}' \in \mathcal{N}_Y(\mathbf{x})} \cos(\mathbf{x}, \mathbf{y}') + \frac{1}{k} \sum_{\mathbf{x}' \in \mathcal{N}_X(\mathbf{y})} \cos(\mathbf{x}', \mathbf{y}),$$

- Assumptions: W an orthogonal matrix
- $||x_i||_2 = 1$, $||y_i||_2 = 1$
- $\cos(\mathbf{W}\mathbf{x}_i, \mathbf{y}_i) = \mathbf{x}_i^{\top}\mathbf{W}^{\top}\mathbf{y}_i$

$$\mathbf{w} \in \mathcal{O}_{d} \frac{1}{n} \sum_{i=1}^{n} -2\mathbf{x}_{i}^{\top} \mathbf{W}^{\top} \mathbf{y}_{i}
+ \frac{1}{k} \sum_{\mathbf{y}_{j} \in \mathcal{N}_{Y}(\mathbf{W} \mathbf{x}_{i})} \mathbf{x}_{i}^{\top} \mathbf{W}^{\top} \mathbf{y}_{j}
+ \frac{1}{k} \sum_{\mathbf{W} \mathbf{x}_{j} \in \mathcal{N}_{X}(\mathbf{y}_{i})} \mathbf{x}_{j}^{\top} \mathbf{W}^{\top} \mathbf{y}_{i}. \quad (4)$$

Optimization

- So far minimizing a non-smooth cost over the manifold of orthogonal matrices $O_{d.} \rightarrow$ one solution: manifold optimization (computationally demanding)
- Alternatives: convex relaxation

2 relaxations of O_d

• 1. Replace the set O_d by its convex hull C_d : matrices with singular values < 1 (unit ball of the spectral norm)

• 2. The ball of radius \sqrt{d} in Frobenius norm denoted by β_d

A brief proof

• Since we're dealing with a convex domain

$$\sum_{\mathbf{y}_j \in \mathcal{N}_k(\mathbf{W}\mathbf{x}_i)} \mathbf{x}_i^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \mathbf{y}_j = \max_{S \in \mathcal{S}_k(n)} \sum_{j \in S} \mathbf{x}_i^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \mathbf{y}_j,$$

- $S_k(n)$: set of all subsets of $\{1, ..., n\}$ of size k.
- Leads to the max of linear functions of W which is also convex.
- > CSLS convex wrt W and is a piecewise linear function
- Projected subgradient method (descent :/) is used to minimize over C_d and β_d

Projections

• On the set C_d taking matrix SVD then and thresholding the singular values to 1.

• On β_d dividing the matrix by its Frobenius norm.

An Illustration from Conneau et al. @FB

Refinement Procedure

- After one iteration: augment the training lexicon by the best inferred translation (by W) then train W_{t+1}
- Worth emphasizing that previous methods used square loss to learn W and CSLS for inference. [divergence risk, no convergence guaranteed]
- The proposed directly optimizes CSLS loss and KNN leverages all the unlabeled as opposed to only labeled lexicon that is:
 - $\{y_1, ..., y_N\}$ instead of $\{y_1, ..., y_n\}$

Experiments

- Details for all language pairs:
 - Epochs = 10
 - Learning rate in {1, 10, 25, 50} divided by 2 when loss doesn't decrease
 - Parameters selected using a validation set
 - All word vectors are L₂ unit normalized.
 - K = 10

Experiment 1

Method	en-es	es-en	en-fr	fr-en	en-de	de-en	en-ru	ru-en	en-zh	zh-en	avg.
Adversarial + refine ICP + refine	81.7 82.2	83.3 83.8	82.3 82.5	82.1 82.5	74.0 74.8	72.2 73.1	44.0 46.3	59.1 61.6	32.5	31.4	64.3
Procrustes Procrustes + refine	81.4	82.9	81.1	82.4	73.5	72.4	51.7	63.7	42.7	36.7	66.8
	82.4	83.9	82.3	83.2	75.3	73.2	50.1	63.5	40.3	35.5	66.9
CSLS (spectral)	83.0	84.9	82.7	84.1	78.2	75.8	56.4	66.3	44.4	45.6 41.9	70.1
CSLS (Frobenius)	84.5	86.4	83.1	84.1	79.1	75.9	57.0	67.1	44.6		70.4

- Refinement minimally helps or damages orthogonal Procrustes.
- Preserving word vector distance seems not essential to word translation.

Experiment 2: Impact of extended normalization

• Uses only C_d Relaxation

	Full	Seeds
en-es	83.0	80.7
es-en	84.9	83.9
en-fr	82.7	81.7
fr-en	84.1	83.2
en-de	78.2	75.1
de-en	75.8	72.1
en-ru	56.4	51.1
ru-en	66.3	63.8
avg.	76.4	74.0

Comparison to the State of the Art

	en-it	it-en
Adversarial + refine + CSLS	45.1	38.3
Mikolov et al. (2013)	33.8	24.9
Dinu et al. (2014)	38.5	24.6
Artetxe et al. (2016)	39.7	33.8
Smith et al. (2017)	43.1	38.0
Procrustes + CSLS	44.9	38.5
CSLS (spectral)	45.3	37.9

- Word vectors learned on WaCky datasets (Baroni et al. 2009)
- Epochs: chosen from {1, 2, 5, 10} based on validation set performance
- > state of the art on en-it and comparable performance on it-en

Conclusion

- Retrieval Criterion Instead of Square Loss improves the supervised learning of the bilingual mapping.
- Proved CSLS is convex in W and can be used for learning.
- Resulting in same criterion for learning and inference.
- Expanded the KNN search to all the vocabs not only those in the labeled lexicon, which in turn improves performance.
- With the novel objective function the orthogonal mapping does not improve translation quality.

Adversarial Approach

$$\mathcal{L}_D(\theta_D|W) = -\frac{1}{n} \sum_{i=1}^n \log P_{\theta_D} \left(\text{source} = 1 \middle| Wx_i \right) - \frac{1}{m} \sum_{i=1}^m \log P_{\theta_D} \left(\text{source} = 0 \middle| y_i \right)$$

$$\mathcal{L}_{W}(W|\theta_{D}) = -\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta_{D}} \left(\text{source} = 0 \middle| Wx_{i} \right) - \frac{1}{m} \sum_{i=1}^{m} \log P_{\theta_{D}} \left(\text{source} = 1 \middle| y_{i} \right)$$