In and Out Activity

Motivation

The theme of this breakout session is "Making a Mathematical Statistics Course More Modern." One of the considerations in making Math Stat more modern is which topics should be included and excluded from the course.

Task

Consider the following list of topics that often appear in a Mathematical Statistics textbook. This list is loosely based on the table of contents from *Mathematical Statistics with Applications* by Wackerly, Mendenhall, and Scheaffer.

Identify 15 topics that you feel must be in a Math Stat course. For the purposes of this exercise, we are assuming that transformations (method of mgfs, cdfs, and inverse functions) have already been covered in the preceding Probability course.

Sampling Distributions

- 1. Sampling distributions related to the Normal Distribution (e.g., distribution of xbar)
- 2. Normal distribution theory (relation to Chisq(1), t, etc.)
- 3. Central Limit Theorem
- 4. Simulating sampling distributions

Estimation Topics

- 5. Sufficient statistics
- 6. Maximum Likelihood Estimation
- 7. Method of Moments Estimation
- 8. Bias/Variance/MSE of estimators
- 9. Consistency
- 10. UMVUE
- 11. Cramer-Rao Lower Bound & Asymptotic distribution of MLEs
- 12. Confidence Intervals using pivots
- 13. Confidence Intervals using bootstrapping
- 14. "Conceptual" Confidence Intervals (e.g., what does 95% confidence really mean?)
- 15. Intro Stat Confidence Intervals

Hypothesis Testing

- 16. Neyman-Pearson Hypothesis Testing
- 17. Asymptotic Likelihood Ratio Test
- 18. Hypothesis Testing rejection regions
- 19. Permutation tests
- 20. Intro Stat hypothesis tests
- 21. Theoretical power and Type I/II Errors
- 22. Empirical power

Miscellaneous

- 23. Finite sampling theory (e.g., finite-population correction factor)
- 24. Order statistics
- 25. Sample size calculations
- 26. Inference about variances (tests and intervals)
- 27. Limit Theorems (e.g., weak LLN and strong LLN)

Advanced Topics

- 28. Theory of ANOVA
- 29. Theory of Regression (e.g., proof that standard regression estimators are the best linear unbiased estimators)
- 30. Bayesian statistics
- 31. Analysis of categorical data

32.	Other:					