				16	1 🤶		I â
$ au_1^{\#2}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1 t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2}\;(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} +^{\alpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\#1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\sharp 1}\dagger^{lphaeta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\sharp_{1}}$ † lpha	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	<u>t₁-2t₃</u> 3 √2	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_3)$	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0

<u>t1</u>

<u>t1</u> 2

0

0

 $\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ α_{2}

Lagrangian density
$-\frac{1}{3}t_{1} \omega_{\alpha}^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} + \frac{2}{3}t_{3} \omega_{\alpha}^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} - t_{1} \omega_{\kappa \lambda}^{\ \ \kappa} \omega_{\kappa \lambda}^{\ \ \prime} + f^{\alpha \beta} \tau_{\alpha \beta} +$
$\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - r_5 \partial_i \omega^{\kappa\lambda}_{\ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} + \frac{2}{3} r_2 \partial^\beta \omega^{\theta\alpha}_{\ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \kappa} - \frac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} -$
$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{ } \partial_\kappa \omega^{\theta\alpha\beta} - r_5 \partial_\alpha \omega_{\lambda}^{ } \partial_\kappa \omega^{\theta\kappa\lambda} + r_5 \partial_\theta \omega_{\lambda}^{ } \partial_\kappa \omega^{\theta\kappa\lambda} - r_5 \partial_\alpha \omega_{\lambda}^{ } \partial_\kappa \omega^{\kappa\lambda\theta} +$
$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_\lambda^{\ \theta} \partial^\kappa f_{\alpha} +$
$\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\alpha}^{\;\;\alpha}\partial^{\kappa}f'_{\;\;\prime}+\frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\lambda}^{\;\;\lambda}\partial^{\kappa}f'_{\;\;\prime}+$
$\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\ \ \prime}-\frac{4}{3}t_3\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\ \ \prime}-\frac{1}{3}t_1\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ \prime}+\frac{2}{3}t_3\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ \prime}+$
$2t_1 \omega_{_{IK}\theta} \partial^{\kappa} f^{_{I}\theta} - \frac{1}{3} t_1 \omega_{_{I}\alpha}^{\ \alpha} \partial^{\kappa} f^{_{I}}_{\ \kappa} + \frac{2}{3} t_3 \omega_{_{I}\alpha}^{\ \alpha} \partial^{\kappa} f^{_{I}}_{\ \kappa} - \frac{1}{3} t_1 \omega_{_{I}\lambda}^{\ \lambda} \partial^{\kappa} f^{_{I}}_{\ \kappa} +$
$\frac{2}{3}t_3\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\ \alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\ \alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}r_2\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} -$
$\frac{2}{3}r_{2}\partial^{\beta}\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$

	#	1	1	3	m	М	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_{1}^{\#2}\alpha + 2ik \sigma_{1}^{\#2}\alpha == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2\overline{\imath}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

`	ے ا								
		$'''$ #1 + $\alpha\beta$	ω ₂ + –	$f^{*1} + \alpha \beta$	72+1	$\omega_{2-}^{#1} + \alpha \beta \chi$	- 7		
	#	t_0^+ σ_0^{-1}	C)	C	D	0	1	$k^2 r_2 - t_1$
	-#2	t_0^{\pm}	C)	C)	0	(0
	#1	t <u>°</u> ±	i √2 k	$(1+2k^2)^2t_3$	2 k ²	$(1+2k^2)^2t_3$	0	•	0
	#	0 <u>0</u> +	1	$(1+2k^2)^2t_3$	i √2 k	$(1+2k^2)^2t_3$	0	(0
			#1 +	- + 0	<u>+</u> #1	+ ⁰ ;	$\tau_{0}^{\#2}$ †	- +	$\sigma_{0}^{\pi^{\perp}}$ \top

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

?	$J^P = 1^-$	
?	$\sum_{k^{\mu}}$	_

Massive particle					
Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$				
Polarisations:	3				
Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$				
Spin:	1				
Parity:	Odd				

	Massive particle			
?	Pole residue:	$-\frac{1}{r_2} > 0$		
0-	Polarisations:	1		
	Square mass:	$\frac{t_1}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		

(No massless particles)