Démonstration de la décomposition dans une base orthonormale

Soit $\mathcal{B} = \{u_1, \dots, u_{s^2}\}$ une base orthonormale de \mathbb{R}^{s^2} obtenue par ACP, et soit $V_k \in \mathbb{R}^{s^2}$ un vecteur représentant un patch vectorisé. On note m_v le vecteur moyen des données.

Étape 1 : Centrage du vecteur

On commence par centrer le vecteur V_k en soustrayant le vecteur moyen :

$$V_k^{\text{centr\'e}} = V_k - m_v.$$

Étape 2: Projection sur la base orthonormale

Comme \mathcal{B} est une base orthonormale, tout vecteur $V_k^{\mathrm{centr\'e}}$ peut s'écrire comme une combinaison linéaire des vecteurs de \mathcal{B} . Les coefficients de cette combinaison sont donnés par les projections de $V_k^{\mathrm{centr\'e}}$ sur chaque vecteur de la base :

$$V_k^{\text{centr\'e}} = \sum_{i=1}^{s^2} \underbrace{\langle V_k^{\text{centr\'e}}, u_i \rangle}_{\alpha_i^{(k)}} u_i,$$

où $\langle\cdot,\cdot\rangle$ désigne le produit scalaire. Par orthonormalité de la base, on a :

$$\langle u_i, u_j \rangle = \delta_{ij}$$
 avec $\delta_{ij} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{sinon.} \end{cases}$

Étape 3: Expression des coefficients

Les coefficients $\alpha_i^{(k)}$ sont calculés par :

$$\alpha_i^{(k)} = \langle V_k^{\text{centr\'e}}, u_i \rangle = u_i^{\top} (V_k - m_v),$$

où u_i^{\top} est la transposée de u_i .

Étape 4: Reconstruction du vecteur original

En ajoutant le vecteur moyen m_v à la décomposition centrée, on obtient la reconstruction du vecteur original :

$$V_k = m_v + V_k^{\text{centr\'e}} = m_v + \sum_{i=1}^{s^2} \alpha_i^{(k)} u_i.$$

Justification mathématique

Cette décomposition repose sur le ${f th\'eor\`eme}$ de projection orthogonale dans un espace euclidien :

- Toute base orthonormale permet de décomposer un vecteur en une somme de ses projections sur les axes de la base.
- \bullet Les coefficients $\alpha_i^{(k)}$ sont les coordonnées de $V_k^{\text{centr\'e}}$ dans la base $\mathcal{B}.$

Application au seuillage

Dans le cadre du débruitage, on applique un seuillage aux coefficients $\alpha_i^{(k)}$ pour réduire le bruit :

$$Z_k = m_v + \sum_{i=1}^{s^2} \text{Seuillage}(\alpha_i^{(k)}) u_i.$$

Cette opération permet de préserver les composantes principales du signal tout en atténuant les contributions du bruit.