Sheet 1 of 95

Figure 1

= SOLID SUPPORT

R = TERMINAL PROTECTING GROUP FOR EXAMPLE: DIMETHOXYTRITYL (DMT)

(1)

CLEAVABLE LINKER

(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR

(2)

INVERTED DEOXYABASIC SUCCINATE)

= CLEAVABLE LINKER
(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR INVERTED DEOXYABASIC SUCCINATE)

INVERTED DEOXYABASIC SUCCINATE LINKAGE

GLYCERYL SUCCINATE LINKAGE

Figure 2

T $\frac{1}{2}$ = 40 days

Figure 3

T $\frac{1}{2}$ = 15 seconds (control) 5'-CGUACGCGGAAUACUUCGATT (SEQ ID NO: 394) 3'-TTGCAUGCGCCUUAUGAAGCU (SEQ ID NO: 395)

5'-B cAAccACAAAuAcAACATT B (SEQ ID NO: 396) 3'-TXGuuGGuGuuuuAuGuuGuu (SEQ ID NO: 397)

T $\frac{1}{2}$ = 138 min

T $\frac{1}{2}$ = 3.7 days

5'-B cAAccACAAAUACAACAATT B (SEQ ID NO: 396)

3'-TDGuuGGuGuuuuAuGuuGuu (SEQ ID NO: 398)

T $\frac{1}{2}$ = 72 minutes 5'-B cAAccAcAAAuAcAAcAATT B (SEQ ID NO: 396) 3'-XTGuuGGuGuuuuAuGuuGuu (SEQ ID NO: 399)

5'-B cAAccACAAAUACAACAATT B (SEQ ID NO: 396) 3'-LTGuuGGuGuuuuAuGuuGuu (SEQ ID NO: 400)

5'-B cAAccACAAAAUACAACAATT B (SEQ ID NO: 396) 3'-tTGuuGGuGuuuuAuGuuGuu (SEQ ID NO: 401)

T 1/2 = 32 days

RNAi Control

1 1/2 = 15 seconds

1 1/2 = 15 seconds

1 1/2 = 15 multiples

Time Minutes

G, A, U, C = Guanosine, Adenosine, Uridine, Cytidine

T = Thymidine

Lower Case = 2'-deoxy-2'-fluoro

S = phosphorothioate

B = inverted deoxyabasic

D = inverted Thymidine X = 3'-deoxy Thymidine

t = L-thymidine

- = Glyceryl moiety

Figure 10

Figure 18

```
SENSE STRAND (SEQ ID NO 471)
             ALL PYRIMIDINES = 2'-O-ME OR 2'-FLUORO EXCEPT POSITIONS (N N)
                                                          -3'
               5'-
                                                          -51
          L-(N_sN)NNNNNNNNNNNNNNNSN_sN_sN_sN
      3'-
                         ANTISENSE STRAND (SEQ ID NO 472)
                  ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N)
                         SENSE STRAND (SEQ ID NO 473)
             ALL PYRIMIDINES = 2'-O-ME OR 2'-FLUORO EXCEPT POSITIONS (N N)
                                                          -3'
      5'-
               B
                                                           -5'
           3'-
                         ANTISENSE STRAND (SEQ ID NO 474)
                   ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N)
                         SENSE STRAND (SEQ ID NO 475)
             ALL PYRIMIDINES = 2'-O-ME OR 2'-FLUORO EXCEPT POSITIONS (N N)
      5'-
                                                           -31
               -5'
      3'-
                         ANTISENSE STRAND (SEQ ID NO 476)
                   ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N)
                       SENSE STRAND (SEQ ID NO 477)
      ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N) AND ALL PURINES = 2'-DEOXY
                                                           -3'
      5'-
               1)
                                                           -51
           L-(N<sub>5</sub>N) NNNNNNNNNNNNNNNNNNNNN
      3'-
                      ANTISENSE STRAND (SEQ ID NO 478)
       ALL PYRIMIDINES = 2'-FLUORO AND ALL PURINES = 2'-O-ME EXCEPT POSITIONS (N N)
                          SENSE STRAND (SEO ID NO 479)
                  ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N)
       5'-
                B-NNNNNNNNNNNNNNNNNNNNNNNNN-3'
\mathbf{E}
          -51
       3'-
                       ANTISENSE STRAND (SEQ ID NO 480)
       ALL PYRIMIDINES = 2'-FLUORO AND ALL PURINES = 2'-O-ME EXCEPT POSITIONS (N N)
                        SENSE STRAND (SEQ ID NO 477)
      ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N) AND ALL PURINES = 2'-DEOXY
               -3'
       5'-
F
            -5'
       3'-
                       ANTISENSE STRAND (SEQ ID NO 481)
      ALL PYRIMIDINES = 2'-FLUORO EXCEPT POSITIONS (N N) AND ALL PURINES = 2'-DEOXY
```

POSITIONS (NN) CAN COMPRISE ANY NUCLEOTIDE, SUCH AS DEOXYNUCLEOTIDES (eg. THYMIDINE) OR UNIVERSAL BASES

B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP THAT IS OPTIONALLY PRESENT

L = GLYCERYL MOIETY THAT IS OPTIONALLY PRESENT

S = PHOSPHOROTHIOATE OR PHOSPHORODITHIOATE

Figure 19

		SENSE STRAND (SEQ ID NO 482)	
A	5'- 3'-	$c_S c_S c_S c_S G G G A G G u c u c G u A_S G_S A_S T_S T$ $L-T_S T G G G G c c c u c c A G A G c_S A_S u_S c_S u$ ANTISENSE STRAND (SEQ ID NO 483)	-3' -5'
		SENSE STRAND (SEQ ID NO 484)	j
В	5'-	cccGGGAGGucucGuAGA T_ST L- TT GGGG $cccucc$ AGAG c Aucu	-3' -5'
		SENSE STRAND (SEQ ID NO 486)	j
C	5'-	iB-cccGGGAGGucucGuAGATT-iB L-T _S TGGGG <i>cccucc</i> AGAG <i>cAucu</i> ANTISENSE STRAND (SEQ ID NO 487)	-3' -5'
		SENSE STRAND (SEQ ID NO 488)	j
D	5'-	iB-cccGGGAGGucucGuAGATT-iB L-T _S Tggggcccuccagagcaucu ANTISENSE STRAND (SEQ ID NO 489)	-3' -5'
		SENSE STRAND (SEQ ID NO 490)	j
E	5'-	iB-cccGGGAGGucucGuAGATT-iB L-T _S Tggggcccuccagagcaucu ANTISENSE STRAND (SEQ ID NO 491)	-3' \ -5' \
		SENSE STRAND (SEQ ID NO 488)	
I	5'-	iB-cccGGGAGGucucGuAGATT-iB L-T _S TGGGGcccuccAGAGcAucu ANTISENSE STRAND (SEQ ID NO 492)	-3' -5'
	l		,)

lower case = 2'-O-Methyl or 2'-de: $0 \times y$ -2'-fluoro italic lower case = 2'-deoxy-2'-fluoro underline = 2'-O-methyl

ITALIC UPPER CASE = DEOXY

B = INVERTED DEOXYABASIC

L = GLYCERYL MOIETY OPTIONALLY PRESENT

S = PHOSPHOROTHIOATE OR

PHOSPHORODITHIOATE

Positional analysis

Figure 21: Target site Selection using siRNA

R = O, S, N, alkyl, substituted alkyl, O-alkyl, S-alkyl, alkaryl, or aralkyl B = Independently any nucleotide base, either naturally occurring or chemically modified, or optionally H (abasic).

Inventors: McSwiggen et al.
Attorney Docket No. 03-465-B (400.138)
Sheet 23 of 95

Figure 23: Inhibition of VEGF-Induced Angiogenesis

✓ Inhibition of VEGF induced Angiogenesis

Attorney Docket No. 03-465-B (400.138) Sheet 24 of 95

Figure 27: Modification Strategy

All-Ribo vs. Stab9/10 HBV Site 1580: HBsAg Levels Figure 31: Duration of siRNA Effect

Figure 36: Chemically Modified siRNA targeting HCV chimera

r)

Figure 37: Chemically Modified siRNA targeting HCV chimera

HCV/PV#280-siRNA to HCV-Luc site 325/345

Attorney Docket No. 03-465-B (400.138) Sheet 39 of 95

17.

Figure 41: Dose Response with Fully Modified HCV Site 327 siNA

Figure 42: Solid Phase Post-synthetic conjugation of pteroic acid

į

Figure 43

NA = siNA or a portion thereof p = phosphorous moiety

Figure 44

NA = siNA or a portion thereof p = phosphorous moiety

PG = protecting groups NA = siNA or portion thereof S = solid support S~~PGNA-LINKER-OH Figure 45: Solid Phase Post-synthetic conjugation of pteroic acid pterin-6-aldehyde NHMMT HOOCH NHR. COOFmO NHR COOFm 0 NHMMTr I NiPr2 COOFmO CEO, COOFmo COOH phosphitylation ΖI ΖI ZI Ť NHMMTr piperidine methylamine p-aminobenzoyl-glytamyl-LINKER-NA NHMMT ΙŻ ΙZ COOFm COOFMO OCE -0-b-0OCE S MA-LINKER --- O-P-C 0= 0 ດົ S ~ BGNA-LINKER -S^{~~BG}NA-LINKER-I I

Attorney Docket No. 03-465-B (400.138) Sheet 46 of 95

N,N-diisopropylchlorophosphoramidite, 1-methylimidazole, DIPEA, CH₂Cl₂, (iv) Ac₂O, TEA, CH₃CN, (v) Reagents and Conditions: (i) diethylamine, DMF, (ii) 8, diisopropylethylamine, DMF, (iii) 2-cyanoethyl HCI, Ac₂O, (vi) Hg(CN)₂, MS 4A, CH₃NO₂-toluene 1:1, (vii) H₂, 5% Pd-C, ethanol, (viii) M-hydroxysuccinimide, DCC, THF.

Figure 47: Synthesis of N-acetyl-D-galactosamine-D-threoninol conjugate

HO NH2 i NH 11Ac₃NAcGal ii NH 11Ac₃NAcGal H₃C OR H₃C OR
$$H_3$$
C OH H_3 C OH H_3 C OR H_3 C OH H_3 C OH H_3 C OH H_3 C OR H_3 C OH H_3 C OR H_3 C OR

Reagents and Conditions: (i) 7, DCC, N-hydroxysuccinimide, (ii) MMTr-Cl, pyridine, (iii) 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, 1-methylimidazole, DIPEA, CH₂Cl₂.

Figure 48: Conjugation of targeting ligands to the 5'-end of a siNA molecule

N-acetyl-D-galactosamine conjugate

Attorney Docket No. 03-465-B (400.138) Sheet 49 of 95

Figure 49: Synthesis of dodecanoic acid linker

Attorney Docket No. 03-465-B (400.138) Sheet = 50 of 95

Figure 50: Oxime linked siNA/Peptide

Figure 51: siNA/Phospholipid Conjugates

siNA= short interfering nucleic acid molecule or a portion thereof CL=cleavable linker (e.g. A-dT, C-dT)

Attorney Docket No. 03-465-B (400.138) Sheet 52 of 95

Figure 52: siNA Phospholipid Conjugate

CL = CLEAVABLE LINKER, E.G. ADENOSINE-THYMIDINE DIMER THAT IS OPTIONALLY PRESENT

Figure 53: siNA-NAcGalactosamine post-synthetic coupling

FOR EXAMPLE: OLIGO-LINKER =

Where n is an integer from 1 to 20

Figure 55: siNA 3'-PEG Conjugate

CL = CLEAVABLE LINKER, E.G. ADENOSINE-THYMIDINE DIMER THAT IS OPTIONALLY PRESENT

Figure 56: siNA 3'-Cholesterol Conjugate

Figure 57: Nucleic Acid Cholesterol Conjugates

PEG=polyethylene glycol

CL=cleavable linker (e.g. A-dT, C-dT)

siNA= short interfering nucleic acid molecule or a portion thereof

CHOL=cholesterol or an analog or metabolite thereof

W= linker molecule (see for example Formulae 109 or 112)

Figure 58: siNA Cholesterol Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present CHOL=cholesterol or an analog or metabolite thereof W= linker molecule (see for example Formulae 107, 108, 109 or 115) n = integer, e.g. 1, 2, or 3

Figure 59: siNA Cholesterol Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present CHOL=cholesterol or an analog or metabolite thereof W= linker molecule (see for example Formulae 107, 108, 109 or 115) n = integer, e.g. 1, 2, or 3

Figure 60: siNA Cholesterol Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present CHOL=cholesterol or an analog or metabolite thereof
W= linker molecule (see for example Formulae 107, 108, 109 or 112)
n = integer, e.g. 1, 2, or 3

N=integer, e.g. 1, 2, 3, or 4

Figure 61: siNA Lipid Conjugates

5'-Lipid-W-CL
$$\frac{\text{SENSE}}{3! \left(\frac{1}{n}\right)_{n}}$$
 ANTISENSE

5' $\frac{\text{SENSE}}{3! \left(\frac{1}{n}\right)_{n}} \left(\frac{1}{n}\right)_{n}$ CL-W-Lipid 3' $\left(\frac{1}{n}\right)_{n}$ ANTISENSE

5'-Lipid-W-CL $\frac{\text{SENSE}}{3! \left(\frac{1}{n}\right)_{n}} \left(\frac{1}{n}\right)_{n}$ CL-W-Lipid ANTISENSE

3'-Lipid-W-CL-
$$\left(\begin{array}{c} \frac{\text{SENSE}}{|||||||||||||||} \\ \frac{5'}{n} & \text{ANTISENSE} \end{array}\right)$$
3'-Lipid-W-CL- $\left(\begin{array}{c} \frac{\text{SENSE}}{||||||||||||||} \\ \frac{1}{n} & \text{ANTISENSE} \end{array}\right)$ CL-W-Lipid 3'-Lipid-W-CL- $\left(\begin{array}{c} \frac{\text{SENSE}}{||||||||||||||||} \\ \frac{1}{n} & \text{ANTISENSE} \end{array}\right)$ CL-W-Lipid 3'-Lipid-W-CL- $\left(\begin{array}{c} \frac{\text{SENSE}}{|||||||||||||||||} \\ \frac{1}{n} & \text{ANTISENSE} \end{array}\right)$

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present Lipid=Straight chain or branched alkyl or fatty acid, e.g. $C_{18}H_{37}$ W= linker molecule (see for example Formulae 48, 49, 64, or 65) n = integer, e.g. 1, 2, or 3

Figure 62: siNA Lipid Conjugates

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present Lipid=Straight chain or branched alkyl or fatty acid, e.g. C₁₈H₃₇ W= linker molecule (see for example Formulae 48, 49, 64, or 65) n = integer, e.g. 1, 2, or 3

N=integer, e.g. 1, 2, 3, or 4

Figure 63: siNA Galactosamine Conjugates

3'-GAL-W-CL-
$$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}\right)$$
 ANTISENSE $\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right)$ CL-W-GAL 3'-GAL-W-CL- $\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right)$ ANTISENSE $\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$ CL-W-GAL 3'-GAL-W-CL $\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$ CL-W-GAL 3'-GAL-W-CL- $\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$ ANTISENSE $\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$ CL-W-GAL 3'-GAL-W-CL- $\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$ ANTISENSE

CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present GAL=GALACTOSAMINE; e.g. compounds having Formulae 51-56, 86, 92, 99, 100, 103, 105, 106 W= linker molecule (see for example Formulae 102 or 103) n = integer, e.g. 1, 2, or 3

Figure 64: siNA Galactosamine Conjugates

GAL=GALACTOSAMINE; e.g. compounds having Formulae 51-56, 86, 92, 99, 100, 103, 105, 106 CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present W= linker molecule (see for example Formulae 102 or 103) n = integer, e.g. 1, 2, or 3

N=integer, e.g. 1, 2, 3, or 4

Figure 65: Generalized siNA Conjugate Design

5'-CONJ-W-CL
$$\frac{\text{SENSE}}{3! \left(\frac{1}{n}\right) + \frac{1}{n}} = \frac{5!}{n} = \frac{\text{SENSE}}{3! \left(\frac{1}{n}\right) + \frac{1}{n}} = \frac{5!}{n} = \frac{\text{SENSE}}{3! \left(\frac{1}{n}\right) + \frac{1}{n}} = \frac{5!}{n} = \frac{\text{SENSE}}{3! \left(\frac{1}{n}\right) + \frac{1}{n}} = \frac{\text{SENSE}}{3! \left(\frac{1}{n}\right) + \frac{1}{n}} = \frac{1}{n} = \frac{1}{n}$$

3'-CONJ-W-CL-
$$\left(\begin{array}{c} \frac{\text{SENSE}}{||||||||||||||} \\ \frac{\text{SENSE}}{\text{n}} \\ \end{array}\right)_{n}$$
3'-CONJ-W-CL- $\left(\begin{array}{c} \frac{\text{SENSE}}{||||||||||||||} \\ \frac{\text{SENSE}}{\text{n}} \\ \end{array}\right)_{n}$
CL-W-CONJ-S'-CONJ-W-CL $\frac{\text{SENSE}}{||||||||||||||||} \\ \frac{\text{SENSE}}{\text{n}} \\ \frac{\text{SENSE}}{\text{order}} \\ \frac{\text{SENSE}}{\text{order}} \\ \frac{\text{SENSE}}{\text{order}} \\ \frac{\text{CL-W-CONJ-W-CONJ-W-CL-}}{\text{order}} \\ \frac{\text{SENSE}}{\text{order}} \\ \frac{\text{OL-W-CONJ-W-CNJ-$

CONJ=any biologically active molecule or conjugate as described herein CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present W= linker molecule n = integer, e.g. 1, 2, or 3

Figure 66: Generalized siNA Conjugate design

CONJ=any biologically active molecule or conjugate as described herein CL=cleavable linker (e.g. A-dT, C-dT) that is optionally present W= linker molecule

n = integer, e.g. 1, 2, or 3 N=integer, e.g. 1, 2, 3, or 4 Sheet 67 of 95

Administration of Conjugated or Unconjugated Chemistries Figure 67: Distribution of Intact siNA in Liver After SC

Figure 68: Lipid Free Delivery of HBV siNA Conjugates in Cell Culture

Figure 70: Synthesis of "tri" Galactosamine phosphoramidite

Figure 71: Synthesis of another Tri-Galactosamine Conjugate

1) HCI, MeOH

⊕ NH₃

Figure 72: Alternate Synthesis of Tri-Galactosamine Conjugate

Figure 73: Synthesis of NHS Cholesterol Conjugate

rigure 13. Symmests of NH3 Cholesterol Conjugate

1) NaN₃, NaI

2)
$$CH_2CHCN$$
, KOH

N3

O

 $CONJUGATE$

1)
$$H_2$$
, Pd/C
 H_2 , Pd/C
 H_2 , Pd/C
 H_2 , H_2 , H_2 , H_3 , H_4 , H_3 , H_4 , H_4 , H_5 , H_5 , H_5 , H_6 , H_8

Figure 74: Phosphorylated siNA constructs

modifications herein

Figure 75: 5'-phosphate modifications

Figure 76: siNA Targeting VEGFR-1 Inhibits VEGF-Induced Rat Corneal Angiogenesis

Figure 77: Duration of Effect of Modified siNA Constructs

HBV siRNA Duration: Day 3

4

Figure 77: Duration of Effect of Modified siNA Constructs

Figure 77: Duration of Effect of Modified siNA Constructs

Sheet 80 of 95

Sheet 81 of 95

Ш

Figure 77: Duration of Effect of Modified siNA Constructs

Figure 78: Phosphorylated siNA constructs

?

Figure 79: 5'-phosphate modifications

Attorney Docket No. 03-465-B (400.138)
Sheet 85 of 95

Figure 80: Serum HBV DNA in Mice Treated with siNA Via HDI

Figure 81: Serum HBsAg in Mice Treated with siNA Via HDI

with siNA Via HDI 5 and 7 days post treatment Figure 83: Serum HBV DNA in Mice Treated

Mnč.0 (32672/32712)Mat 1607 Figure 85: Luciferase Dose Response of select active siNA constructs Mnč Mn0f MnZS Mnč.0 siNA 1544 (32666/32706) Mnf Mnč Mn01 Mn2S MnZS HCA 303 1/8 luv-Plasmid Only 9.0 0.5 0.4 0.1 0.7 0.2 0 Firefly/Renilla

Figure 89: HBV/siNA to site 1580 Combination Constructs

