Compressed Direct-Address Table - practical index for genomic sequences

Katarzyna Jabłonowska

Michał Sabaciński Norbert Dojer

Segovia 10 October 2019

The problem

ATTATATAGTTGTAA

- √GTTGT
- **√**TAA
- \times CTA

Our goal is to find an algorithm that:

- scans the whole text only once
- is flexible
- is fast and memory efficient

The basic idea

Two steps:

- Building an index
- Searching for patterns

Building an index

Step 1

0(AA)	1	l
1(AC)	0	l
2(AG)	1	l
3(AT)	3	l
4(CA)	0	l
5(CC)	0	ı
6(CG)	0	l
7(CT)	0	ı
8(GA)	0	ı
9(GC)	0	l
10(GG)	0	l
11(GT)	2	ı
12(TA)	4	ı
13(TC)	0	l
14(TG)	1	ı
15(TT)	2	ı

Step 2

0(AA)	1
1(AC)	1
2(AG)	2
3(AT)	5
4(CA)	5
5(CC)	5
6(CG)	5
7(CT)	5
8(GA)	5
9(GC)	5
10(GG)	5
11(GT)	7
12(TA)	11
13(TC)	11
14(TG)	12
15(TT)	14

Step 3

Prefix length = 2Substring length = 3

Step 4

Searching for patterns

Compression

- 'GTCCAT'
- 'GTCCAT'
- \bullet 'GTCCAT*', $* \in \Sigma$
- **4** '*GTCCAT', * $\in \Sigma$
- **5** 'GTCCAT**', $* \in \Sigma$

Experiments

- human genome
- C++
- prefixLength = 10 and 12
- patterns of length 40 or 200. All or none of them appearing in the text

Results

8000 10000 12000 14000

memory[mb]

6000

2000 4000

Thank you