

## Problema F

archivo: felices{.c,.cpp,.pas}

Un número es "feliz" si al sumar el cuadrado de cada uno de los dígitos que lo conforma y repetir este proceso un número finito de veces la suma converge a 1. Para algunos números, la cantidad de iteraciones necesarias para que la suma sea 1 puede ser mayor que para otros y a esa cantidad de iteraciones se le conoce como la "distancia de la felicidad". Por ejemplo, para el caso del número 1 su "distancia de la felicidad" es 0 ya que  $1^2 = 1$ . No así para el 23 cuya "distancia de la felicidad" es 3, ya que  $2^2 + 3^2 = 13, 1^2 + 3^2 = 10, 1^2 + 0^2 = 1$ .

Un número se dice que es "no feliz" cuando está infinitamente lejos de llegar a la felicidad, es decir, se queda atrapado en un ciclo y su suma nunca llega a 1. Se puede demostrar que todo número "no feliz" se queda atrapado en el ciclo 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37... y así para siempre sin llegar al 1. Por ejemplo, este es el caso del número 11 como se muestra en la siguiente secuencia.

$$\begin{array}{c} \to 11 \\ 1^2 + 1^2 \to 2 \\ 2^2 \to 4 \\ 4^2 \to 16 \\ 1^2 + 6^2 \to 37 \\ 3^2 + 7^2 \to 58 \\ 5^2 + 8^2 \to 89 \\ 8^2 + 9^2 \to 145 \\ 1^2 + 4^2 + 5^2 \to 42 \\ 4^2 + 2^2 \to 20 \\ 2^2 + 0^2 \to 4 \\ 4^2 \to 16 \\ \vdots$$

Dados el límite inferior y superior de un rango de números enteros, escriba un programa que determine cuántos números **no felices** hay en dicho rango (extremos incluidos).

## Entrada

La entrada consiste de muchos casos de prueba. Cada caso de prueba consiste de dos números enteros positivos, A y B (tales que  $1 \le A \le B \le 10^{18}$ ) por línea, separados por un espacio. El fin de la entrada viene indicada por una línea que contiene dos ceros.

## Salida

Para cada caso de prueba en la entrada imprima una línea con un número entero, indicando la cantidad de números no felices entre A y B.



| Entrada de ejemplo | Salida para la entrada de ejemplo |
|--------------------|-----------------------------------|
|                    |                                   |
| 1 1                | 0                                 |
| 23 23              | 0                                 |
| 11 11              | 1                                 |
| 2 4                | 3                                 |
| 1 10               | 7                                 |
| 1 100              | 80                                |
| 0 0                |                                   |
|                    |                                   |

## Subtareas

Se probarán distintos casos de prueba para distintos valores de A y B:

- 25 puntos. Se probarán 5 casos de prueba con  $1 \le A, B \le 10^2$  y A = B. Cada caso de prueba vale 5 puntos.
- 25 puntos. Se probarán 5 casos de prueba con  $1 \le A \le B \le 10^3$ . Cada caso de prueba vale 5 puntos.
- 25 puntos. Se probarán 5 casos de prueba con  $1 \le A \le B \le 10^{12}$ . Cada caso de prueba vale 5 puntos.
- 25 puntos. Se probarán 5 casos de prueba con  $1 \le A \le B \le 10^{18}$ . Cada caso de prueba vale 5 puntos.

Nota: Tenga en cuenta el límite superior máximo de A y B al momento de programar su solución ya que puede necesitar un tipo de datos grande (long long en C++ o Int64 en Pascal).