Relational realizability model for QTT

Our aim is to build a concrete realizability model for QTT which allows for metareasoning with results derived from parametricity. To that end, a construction of a quantified category with families (QCwF[fill]) is presented. We follow the relational approach to types introduced by Reynolds for typed lambda calculus[fill] and later refined for dependent types theories.[fill] Once and for all fix a usage semiring R and an R-linear combinatory algebra \mathscr{A}^1 .

Taking stocks

Definition 1 (Assembly). An assembly Γ is a pair $(|\Gamma|, e)$ where $|\Gamma|$ is a carrier set and e is a realizability function $|\Gamma| \to \mathcal{P}(\mathscr{A})$, s.t $e(\gamma)$ is nonempty for every $\gamma \in |\Gamma|$.

We interpret $E(\gamma)$ as a set of witnesses for the existence of γ and write $a \vDash_{\Gamma} \gamma$ to denote $a \in e(\gamma)$.

A morphism between two assemblies $(|\Gamma|, E_{\Gamma})$ and $(|\Delta|, E_{\Delta})$ is a function $f : |\Gamma| \to |\Delta|$ that is realizable - there exists $a_f \in \mathscr{A}$, s.t the following holds for every $\gamma \in |\Gamma|$ and $a_{\gamma} \in \mathscr{A}$:

$$a_{\gamma} \vDash_{\Gamma} \gamma \implies a_{f}.a_{\gamma} \vDash_{\Delta} f(\gamma)$$

We say that a_f tracks f. Note that only an existence of a realizer for f is stipulated in the definition - multiple realizers do not induce multiple morphisms. Using these notions we can construct a category $Asm(\mathscr{A})$.

Definition 2 (Reflexive graph). A reflexive graph (r.g.) G is a tuple $(G_O, G_R, G_{refl}, G_{src}, G_{tgt})$, where G_O and G_R are sets, G_{src} and G_{tgt} are functions $G_R \to G_O$ and G_{refl} is a function $G_O \to G_R$, s.t $G_{src} \circ G_{refl} = id_{G_O} = G_{tgt} \circ G_{refl}$.

 G_O and G_R stand for a set of objects and a set of relations, respectively. In general, reflexive graphs are less structured than categories as relations need not compose.

A morphism between reflexive graphs G and H is a pair of functions $(f_o: G_O \to H_O, f_r: G_R \to H_R)$, s.t all of the depicted squares commute:

$$G_{O} \xrightarrow{f_{o}} H_{O}$$

$$G_{src} \left(\begin{matrix} \uparrow \\ G_{refl} \end{matrix} \middle) G_{tgt} & H_{src} \left(\begin{matrix} \downarrow \\ H_{refl} \end{matrix} \middle) H_{tgt} \right)$$

$$G_{R} \xrightarrow{f_{r}} H_{R}$$

Reflexive graphs equipped with r.g. morphisms form a category $\mathcal{R}Gph(\mathcal{S}et)$. We use reflexive graphs to give a dyadic interpretation of types in the spirit of [fill].

 $[\]overline{}^1$ In case some non-trivial properties of $\mathscr A$ are required, we will tacitly assume that $\mathscr A$ is a graph model(see [fill]) - also to fix

Assembling a reflexive graph

One could easily generalize reflexive graphs by considering object and relation components from an arbitrary category \mathcal{C} instead of $\mathcal{S}et$. As our purpose is to build a realizability model, we pick $Asm(\mathcal{A})$ as the category of interest and identify two appropriate notions of reflexive graph of assemblies and a family of reflexive graphs of assemblies.

Definition 3 (Reflixive graph of assemblies). A reflexive graph of assemblies G is a pair of assemblies (G_O, G_R) and a triple of set-theoretic $(G_{refl}: |G_O| \to |G_R|, G_{src}: |G_R| \to$ $|G_O|$, $G_{tgt}: |G_R| \to |G_O|$), such that the identities in Definition 2 are satisfied.

In essence, sets are directly replaced by the objects from $Asm(\mathscr{A})$, while the morphism are kept intact - plain set-theoretic functions.

However, we require realizable functions only in the definition morphism between reflexive graph of assemblies. With these components, we obtain a category $\mathcal{R}Gph(\mathscr{A})$. By considering r.g. of assemblies of shape (X, X, id_X, id_X, id_X) , we identify isomorphic copy of $\mathcal{A}sm(\mathscr{A})$ inside $\mathcal{R}Gph(\mathscr{A}).$

A terminal object in $\mathcal{R}Gph(\mathscr{A})$ is a tuple (1,1,id,id,id), where 1 is the terminal assembly $(\{\star\}, f)$, with f defined as $\star \mapsto \{I\}$.

Definition 4 (Family of reflexive graphs of assemblies). Let \mathcal{C} be a category with a terminal object. Given a reflexive graph $\Gamma \in Ob(\mathcal{C})$, a family of internal r.g. over Γ is a tuple S := $(S_O, S_R, S_{refl}, S_{src}, S_{tqt})$, where:

- $S_O:\Gamma_O\to\mathcal{A}sm(\mathscr{A})$
- $S_R: \Gamma_R \to \mathcal{A}sm(\mathscr{A})$
- a Γ -indexed collection of functions $S_{refl} := \{f : |S_O(\gamma)| \to |S_R(\Gamma_{refl}(\gamma))|\}_{\gamma \in \Gamma_O}$
- $S_{src} := \{ f : |S_R(\gamma)| \to |S_O(\Gamma_{src}(\gamma))| \}_{\gamma \in \Gamma_R}$
- $S_{tqt} := \{ f : |S_R(\gamma)| \to |S_O(\Gamma_{tqt}(\gamma))| \}_{\gamma \in \Gamma_R}$

such that

• each identity in the following collection is satisfied:

$$S_{\sigma}(\Gamma_{refl}(\gamma)) \circ S_{refl}(\gamma) = id \text{ for every } \gamma \in \Gamma_O, \sigma \in \{src, tqt\}$$

We are only interested in cases when C = Set or $C = Asm(\mathscr{A})$.

A morphism M between two families S and T of internal r.g. over Γ is a pair of Γ -indexed collection of functions:

- $M_O := \{f : |S_O(\gamma)| \to |T_O(\gamma)|\}_{\gamma \in \Gamma_O}$ $M_R := \{f : |S_R(\gamma)| \to |T_R(\gamma)|\}_{\gamma \in \Gamma_O}$

such that:

- $T_{refl}(M_O(\gamma)(x)) = M_R(\Gamma_{refl}(\gamma))(S_{refl}(\gamma)(x))$ for every $\gamma \in \Gamma_O$, $x \in S_O(\gamma)$
- $T_{src}(M_R(\gamma)(r)) = M_O(\Gamma_{src}(\gamma))(S_{src}(\gamma)(r))$ for every $\gamma \in \Gamma_R$, $r \in S_R(\gamma)$
- $T_{tat}(M_R(\gamma)(r)) = M_O(\Gamma_{tat}(\gamma))(S_{tat}(\gamma)(r))$ for every $\gamma \in \Gamma_R$, $r \in S_R(\gamma)$

A terminal family of r.g. over Γ , 1_{Γ} , consists of two constant functions, mapping $\gamma \in \Gamma$ to a terminal assembly 1, and three Γ -indexed collections with a sole element id_1 .

A CwF from families of reflexive graphs of assemblies

As a first step toward obtaining a relationally parametric realizability model of QTT, we construct a concrete CwF using families of internal graphs of assemblies. Consider the category $\mathcal{R}Gph$ with terminal object $1 := (\{\star\}, \{\star\}, id, id, id)$. Let $\Gamma, \Delta \in Ob(\mathcal{R}Gph)$, define:

- the collection of semantic types $Ty(\Gamma)$ as the collection of families of reflexive graphs of assemblies Γ .
- given a type $S \in Ty(\Gamma)$, let $Tm(\Gamma, S) := Hom(1_{\Gamma}, S)$. Spelling this out and ignoring the contribution of the terminal family, we get: An element $M \in Tm(\Gamma, S)$ is a pair of functions $(M_O : \forall \gamma \in \Gamma_O.S_O(\gamma), M_R : \forall \gamma \in \Gamma_R.S_R(\gamma))$, such that

$$\forall \gamma \in \Gamma_O.S_{refl}(M_O(\gamma)) = M_R(\Gamma_{refl}(\gamma))$$

$$\forall \gamma \in \Gamma_R.S_{src}(M_R(\gamma)) = M_O(\Gamma_{src}(\gamma))$$

$$\forall \gamma \in \Gamma_R.S_{tgt}(M_R(\gamma)) = M_O(\Gamma_{tgt}(\gamma))$$

- given $f: \Gamma \to \Delta$, substitutions in types and terms is a precomposition with f on the object and relation components of types and terms respectively. Clearly, these operations are compatible with identity and composition in $\mathcal{R}Gph$
- context extension: Suppose $S \in Ty(\Gamma)$, construct a r.g. $\Gamma.S$ as:

$$(\Gamma.S)_O = \{(\gamma, x) : \gamma \in \Gamma_O, x \in S_O(\gamma)\}$$

$$(\Gamma.S)_R = \{(\gamma, r) : \gamma \in \Gamma_R, r \in S_R(\gamma)\}$$

$$(\Gamma.S)_{refl}(\gamma, x) = (\Gamma_{refl}(\gamma), S_{refl}(\gamma)(x))$$

$$(\Gamma.S)\sigma(\gamma, r) = (\Gamma\sigma(\gamma), S\sigma(\gamma)(r)), \quad \sigma \in \{src, tgt\}$$

Claim. $Hom_{\mathcal{R}Gph}(\Delta, \Gamma.S) \cong \{(f, M) : f : \Delta \to \Gamma, M \in Tm(\Delta, S\{f\})\}, natural in \Delta.$

Upgrading to a QCwF

Recall the definition of a QCwF from [fill]. Given a usage semiring R, a R-QCwF consists of

- 1. A CwF ()
- 2.
- 1. A CwF $(C, 1, Ty, Tm, -..., \langle -... \rangle)$.

Consider the CwF built in the previous section

- 2. Category \mathcal{L} for context with resource annotation, equipped with a faithful functor U: $\mathcal{L} \to \mathcal{C}$.
 - Take $cL := \mathcal{R}Gph(\mathscr{A})$ and let U be the functor $\mathcal{R}Gph(\mathscr{A}) \to \mathcal{R}Gph$, sending an assembly to its underlying set, forgetting the realizability function.
- 3. Addition structure let $\mathcal{L} \times_{\mathcal{C}} \mathcal{L}$ denote the pullback $\mathcal{L} \xrightarrow{U} \mathcal{C} \xleftarrow{U} \mathcal{L}$, we stipulate the existence of a functor $(+): \mathcal{L} \times_{\mathcal{C}} \mathcal{L} \to \mathcal{L}$, s.t $U(\Gamma' + \Gamma'') = U(\Gamma') = U(\Gamma'')$. Moreover, there is a distinguished object $\Diamond \in \mathcal{L}$, s.t $U(\Diamond) = 1$.

Suppose Γ' , Γ'' are r.g. of assemblies, such that $|\Gamma'_O| = |\Gamma''_O|$ and $|\Gamma'_R| = |\Gamma''_R|$. Construct the internal r.g. $\Gamma := \Gamma' + \Gamma''$, where:

- $\Gamma_O := (|\Gamma'_O|, \models_{\Gamma})$ with $a \models_{\Gamma} \gamma$ iff there exist $x, y \in \mathscr{A}$, s.t. a = [x, y] and $x \models_{\Gamma'} \gamma$ and $y \models_{\Gamma''} \gamma$.
- define Γ_R similarly as Γ_O .
- Γ_{refl} , Γ_{src} , Γ_{tgt} are all inherited from Γ' (or Γ''). (should check this is indeed well-defined)

Pick a terminal internal r.g. as an interpretation for \Diamond .

- 4. Scaling with $\rho \in R$ there is a functor $\rho(-): \mathcal{L} \to \mathcal{L}$, s.t. $U(\rho(-)) = U(-)$. Again we define a internal r.g. $\Gamma := \rho(\Gamma')$ as:
 - $\Gamma_{\sigma} = (|\Gamma'_{\sigma}|, \models_{\Gamma_{\sigma}})$ with $a \models_{\Gamma_{\sigma}} \gamma$ iff there is $x \in \mathscr{A}$, s.t $a = !_{\rho}x$ and $x \models_{\Gamma'_{\sigma}} \gamma$ for $\sigma \in \{O, R\}$
 - Γ_{σ} is just Γ'_{σ} for $\sigma \in \{src, tgt, rfl\}$

As the functor ρ modifies only realizability information, it is clear that $U(\rho(-)) = U(-)$ holds.

Type formers

Dependent function types in 1-fragment Given an internal reflexive graph Γ , $S \in Ty(\Gamma)$, $T \in Ty(\Gamma.S)$, $\rho \in R$, define $\Pi \rho ST \in Ty(\Gamma)$ as the tuple of:

• Object assembly. Let $\gamma \in |\Gamma_O|$

$$|(\Pi \rho ST)_{O}|(\gamma) := \{(f_{O}, f_{R})|$$

$$f_{O} : \forall s \in S_{O}(\gamma).T_{O}(\gamma, s),$$

$$\exists a \in \mathscr{A} \ \forall s \in |S_{O}(\gamma)|, b \in \mathscr{A}.$$

$$b \vDash_{S_{O}(\gamma)} s \implies a.!_{\rho}b \vDash_{T_{O}(\gamma, s)} f_{O}(s)$$

$$f_{R} : \forall r \in S_{R}(\Gamma_{refl}(\gamma)).T_{R}(\Gamma_{refl}(\gamma), r),$$

$$\exists a \in \mathscr{A} \ \forall r \in |S_{R}(\Gamma_{refl}(\gamma))|, b \in \mathscr{A}.$$

$$b \vDash_{S_{R}(\Gamma_{refl}(\gamma))} r \implies a.!_{\rho}b \vDash_{T_{R}(\Gamma_{refl}(\gamma), r)} f_{R}(r),$$

$$\forall s \in S_{O}(\gamma).T_{refl}(\gamma, s)(f_{O}(s)) = f_{R}(S_{refl}(\gamma)(s)),$$

$$\forall r \in S_{R}(\Gamma_{refl}(\gamma)).T_{src}(\Gamma_{refl}(\gamma), r)(f_{R}(r)) = f_{O}(S_{src}(\Gamma_{refl}(\gamma))(r)),$$

$$\forall r \in S_{R}(\Gamma_{refl}(\gamma)).T_{tat}(\Gamma_{refl}(\gamma), r)(f_{R}(r)) = f_{O}(S_{tat}(\Gamma_{refl}(\gamma))(r))\}$$

 $a \vDash_{(\Pi \rho ST)_O(\gamma)} (f_O, f_R)$ iff $a = [a_o, a_r]$ where the realizers a_o, a_r are given by the existential statements above.

• Relation assembly. Let $\gamma \in |\Gamma_R|$

$$|(\Pi \rho ST)_{R}|(\gamma) := \{((f_{O}^{src}, f_{R}^{src}), (f_{O}^{tgt}, f_{O}^{tgt}), r)|$$

$$(f_{O}^{src}, f_{R}^{src}) \in (\Pi \rho ST)_{O}(\Gamma_{src}(\gamma)),$$

$$(f_{O}^{tgt}, f_{R}^{tgt}) \in (\Pi \rho ST)_{O}(\Gamma_{tgt}(\gamma)),$$

$$r : \forall s \in S_{R}(\gamma).T_{R}(\gamma, s),$$

$$\exists a \in \mathscr{A} \ \forall s \in |S_{R}(\gamma)|, b \in \mathscr{A}.b \vDash_{S_{R}(\gamma)} s \implies a.!_{\rho}b \vDash_{T_{R}(\gamma, s)} r(s),$$

$$\forall s \in S_{R}(\gamma).T_{src}(\gamma, s)(r(s)) = f_{O}^{src}(S_{src}(\gamma)(s)),$$

$$\forall s \in S_{R}(\gamma).T_{tgt}(\gamma, s)(r(s)) = f_{O}^{tgt}(S_{tgt}(\gamma)(s)) \}$$

• collections of morphisms:

$$(\Pi \rho ST)_{refl}(\gamma)(f_O, f_R) := ((f_O, f_R), (f_O, f_R), f_R) \text{ for } \gamma \in \Gamma_O$$

$$(\Pi \rho ST)_{src}(\gamma)(f^{src}, f^{tgt}, r) := f^{src} \text{ for } \gamma \in \Gamma_R$$

$$(\Pi \rho ST)_{src}(\gamma)(f^{src}, f^{tgt}, r) := f^{tgt} \text{ for } \gamma \in \Gamma_R$$

These collections satisfy the identity conditions in Definition 4.