Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA

Kazuhiko Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa, T. Aoyama, M. Sato, H. Kobayashi
Tohoku University
14 November, 2018
SC18

Outline

- Background
- Overview of SX-Aurora TSUBASA
- Performance evaluation
 - Benchmark performance
 - Application performance
- Conclusions

Background

- Supercomputers become important infrastructures
 - Widely used for scientific researches as well as various industries
 - Top1 Summit system reaches 143.5 Pflop/s
- Big gap between theoretical performance and sustained performance
 - Compute-intensive applications stand to benefit from high peak performance
 - ➤ Memory-intensive applications are limited by lower memory performance

Memory performance has gained more and more attentions

A new vector supercomputer

SX-Aurora TSUBASA

- Two important concepts of its design
 - High usability
 - High sustained performance
- New memory integration technology
 - Realize the world's highest memory bandwidth
- New architecture
 - Vector host (VH) is attached to vector engines (VEs)
 - VE is responsible for executing an entire application
 - VH is used for processing system calls invoked by the applications

SC18

VH

X86 Linux

Vector processor

New execution model

Highlights of the execution model

- Two advantages over conventional execution model
 - Avoid frequent data transfers between VE and VH
 - Applications are entirely executed on VE
 - Only necessary data for system calls need to be transferred

→ High sustained performance

- No special programming
 - Explicit specifications of computation kernels are not necessary
 - System calls are transparently offloaded to the VH
 - Programmers do not need to care system calls

→ High usability

Specification of SX-Aurora TSUBASA

- Memory bandwidth
 - 1.22 TB/s world's highest memory bandwidth
 - Six HBM2 memory modules integration
 - 3.0 TB/s LLC bandwidth
 - LLC is connected to cores via 2D mesh network
- Computational capability
 - 2.15 Tflop/s@1.4 GHz
 - 8 powerful vector cores
 - 16 nm FINFET process technology
 - 4.8 billion transistors
 - 14.96 mm x 33.00 mm

Outline

- Background
- Overview of SX-Aurora TSUBASA
- Performance evaluation
 - Benchmark performance
 - Application performance
- Conclusions

Experimental environments

- SX-Aurora TSUBASA A300-2
 - 2x VEs Type 10B
 - 1x VH

VH	Intel Xeon Gold 6126
Frequency	2.60 GHz / 3.70 GHz (Turbo)
Peak FP / core	83.2 Gflop/s
# cores	12
Peak DP Flops	998.4 Gflop/s
Mem BW	128 GB/s
Mem Capacity	96 GB
Mem config	DDR4-2666 DIMM 16GB x 6

VE	Type 10B
Frequency	1.4 GHz
Peak FP / core	268.8 Gflop/s
# cores	8
Peak DP Flops / socket	2.15 Tflop/s
Memory BW	1.2 TB/s
Memory capacity	48 GB
Memory config	HBM2

14 November, 2018

2018

ΙU

Experimental environments cont.

Processor	SX-Aurora Type 10B	Xeon Gold 6126	SX-ACE	Tesla V100	Xeon Phi KNL 7290
Frequency	1.4 GHz	2.6 GHz	1.0 GHz	1.245 GHz	1.5 GHz
# of cores	8	12	4	5120	72
DP flop/s (SP flop/s)	2.15 T (4.30 T)	998.4 GF (1996.8 GF)	256 GF	7 TF (14 TF)	3.456 TF (6.912 TF)
Memory subsystem	HBM2 x6	DDR4 x6ch	DDR3 x16ch	HBM2 x4	MCDRAM DDR4
Memory BW	1.22 TB/s	128 GB/s	256 GB/s	900 GB/s	450+ GB/s 115.2 GB/s
Memory capacity	48 GB	96 GB	64 GB	16 GB	16 GB 96 GB
LLC BW	2.66 TB/s	N/A	1.0 TB/s	N/A	N/A
LLC capacity	16 MB shared	19.25 MB shared	1 MB private	6 MB shared	1 MB shared by 2 cores

Applications used for evaluation

- SGEMM/DGEMM
 - Matrix-matrix multiplications to evaluate the Peak flop/s
- Stream benchmark
 - Simple kernels (copy, scale, add, triad) to measure sustained memory performance
- Himeno benchmark
 - Jacobi kernels with a 19-point stencil as a memory-intensive kernels
- Application kernels
 - Kernels of practical applications of Tohoku univ in Earthquake, CFD, Electromagnetic
- Microbenchmark to evaluate the execution model
 - Mixture with vector-friendly Jacobi kernels and I/O kernels

Overview of application kernels

Kernels	Fields	Methods	Memory access	Mesh size	Code B/F	Actual B/F
Land mine	Electro magnetic	FDTD	Sequential	100x750x750	6.22	5.15
Earthquake	Seismolo gy	Friction Law	Sequential	2047x2047x256	4.00	4.00
Turbulent Flow	CFD	Navier- Stokes	Sequential	512x16384x512	1.91	0.35
Antenna	Electro magnetic	FDTD	Sequential	252755x9x97336	1.73	0.98
Plasma	Physics	Lax- Wendroff	Indirect	20,048,000	1.12	0.075
Turbine	CFD	LU-SGS	Indirect	480x80x80x10	0.96	0.0084

Outline

- Background
- Overview of SX-Aurora TSUBASA
- Performance evaluation
 - Benchmark performance
 - Application performance
- Conclusions

SGEMM/DGEMM Performance

- High scalability up to 8 threads
 - High vectorization ratio 99.36%, good vector length 253.8
- High efficiency
 - Efficiency 97.8~99.2%

Memory performance(Stream Triad)

- High sustained memory bandwidth of SX-Aurora TSUBASA
 - Efficiency: Aurora 79%, ACE 83%, Skylake 66%, V100 81%
- Scalability
 - Saturated even when the number of threads is less than half

Himeno (Jacobi) performance

- Higher performance... except GPU
 - Vector reduction becomes bottleneck due to copy among vector pipes
- Nice thread scalability
 - 6.9x speedup in 8 threads => 86% parallel efficiency

Application kernel performance

- SX-Aurora TSUBASA could achieve high performance
 - Plasma, Turbine => Indirect access, memory latency-bound
 - Antenna => computation-bound to memory BW-bound
 - Land mine, Earthqauke, Turbulent flow =>memory or LLC BWbound

Memory bound? or LLC bound?

- Further analysis using 4 types of Bytes/Flop ratio
 - Memory B/F = (memory BW) / (peak performance)
 - **LLC B/F** = (LLC BW) / (peak performance)
 - Code B/F = (necessary data in Byte) / (# FP operations)
 - Actual B/F = (# block memory access) * (block size) / (# FP operations)

B/F ratio	Actual < Memory	Memory > Actual
Code < LLC	Computation-bound	Memory BW-bound
Code > LLC	LLC BW-bound	Memory or LLC bound *

- Code B/F > Actual B/F * LLC BW / Memory BW => LLC bound
- Code B/F < Actual B/F * LLC BW / Memory BW => memory bound

Application kernel performance

- Land mine (Code 6.22, Actual 5.79)
- Earthqauke (Code 6.00, Actual 2.00)
- Turbulent flow (Code 1.91, Actual 0.35)
- Antenna (Code 1.73, Actual 0.98)

- => LLC bound
- => LLC bound
- => memory BW bound
- => memory BW bound

Evaluation of the execution model

- (Transparent/Explicit)
 Offload from VE to VH
- Offload from VH to VE

21

Multi-VE performance on A300-8

- Stream VE-level scalability
 - Almost ideal scalability up to 8 VEs
- Himeno VE-level scalability
 - Good scalability up to 4VEs
 - Lack of vector lengths when more than 5VEs
 - Problem size is too small

Outline

- Background
- Overview of SX-Aurora TSUBASA
- Performance evaluation
 - Benchmark performance
 - Application performance
- Conclusions

Application evaluation [28° E 130° E 132° E 134° E 136° E 136° E 136° E 136° E

Applications

- Tsunami simulation code
 - Mainly consists on ground fluctuation and Tsunami inundation prediction
 - Used for a real-time tsunami inundation system
 - A costal region of Japan(1244x826km) with an 810m resolution
- Direct numerical simulation code of turbulent flows
 - Incompressible Navier-Stokes equations and a continuum equation are solved by 3D FFT
 - MPI parallelization to 4VEs (1~32 processes)
 - 128³, 256³, 512³ grid points

Performance of the Tsunami code

- Core performance is x 11.4, x 4.1, x2.4, to KNL, Skylake, ACE.
- Socket performance is x 2.5, x 1.9, x 3.5

Performance of the DNS code

- About 8.14, 6.73, 5.48 speedup by 32cores to 1core in 128³, 256³, 512³ grids
 - LLC hit ratios of 256³ and 512³ are lower than that of 128³
 - 10% is bank conflicts

Conclusions

- A vector supercomputer SX-Aurora TSUBASA
 - The highest bandwidth 1.22 TB/s by six HBM2 integration
 - New execution model to achieve high usability and high sustained performance
- Performance evaluation
 - Benchmark programs
 - → High sustained memory performance
 - → effectiveness of a new execution model
 - Application programs
 - → High sustained performance
- Future work
 - Further optimizations for SX-Aurora TSUBASA

Acknowledgements

- People
 - Hiroyuki Takizawa
 - Ryusuke Egawa
 - Souya Fujimoto
 - Yasuhisa Masaoka

- Projects
 - The closed beta program for early access to Aurora
 - High performance computing division (jointly-organized with NEC), Cyberscience Center, Tohoku university