2.向量

有序向量 插值查找

邓俊辉

deng@tsinghua.edu.cn

原理与算法

❖ 假设:已知有序向量中各元素随机分布的 规律

比如: 均匀且独立 的随机分布

❖ 于是:[lo, hi)内各元素应 大致 按照 线性 趋势增长

$$\frac{\text{mi} - \text{lo}}{\text{hi} - \text{lo}} \approx \frac{\text{e} - \text{A[lo]}}{\text{A[hi]} - \text{A[lo]}}$$

❖ 因此:通过 猜测 轴点mi,可以极大地提高收敛速度

$$mi \approx lo + (hi - lo) \cdot \frac{e - A[lo]}{A[hi] - A[lo]}$$

❖ 以英文词典为例: binary大致位于 2/26 处

search大致位于 19/26 处

[lo]	0	Α	1	[1,53)
	1	В	74	[53,104)
	2	С	158	[104,156)
	3	D	292	[156,208)
	4	Е	368	[208,259)
	5	F	409	[259,311)
	6	G	473	[311,363)
	7	Н	516	[363,414)
	8	I	562	[414,466)
	9	J	607	[466,518)
	10	K	617	[518,569)
	11	L	628	[569,621)
	12	М	681	[621,673)
	13	N	748	[673,724)
	14	0	771	[724,776)
	15	Р	806	[776,827)
	16	Q	915	[827,879)
	17	R	922	[879,931)
	18	S	1002	[931,982)
	19	Т	1176	[982,1034)
	20	U	1253	[1034,1086)
	21	V	1271	[1086,1137)
	22	W	1289	[1137,1189)
	23	Х	1337	[1189,1241)
	24	Υ	1338	[1241,1292)
	25	Z	1341	[1292,1344)
[hi]	26		1344	

实例

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lo = 0, hi = 18 插值: mi = 0 + (18 - 0)*(50 - 5)/(92 - 5) \approx 9.3

取: mi = 9

比较: A[9] = 46 < e

❖ lo = 10, hi = 18 插值: mi = 10 + (18 - 10)*(50 - 49)/(92 - 49) ≈ 10.2

取: mi = 10

比较: A[10] = 49 < e

❖lo = 11, hi = 18 插值: mi = 11 + (18 - 11)*(50 - 51)/(92 - 51) ≈ 10.8

取: mi = 10 < 10

查找完成 (NOT_FOUND)

性能

❖最坏:∅(hi - lo) = ∅(n)

//具体实例?

riangle 平均:每经一次比较,待查找区间宽度由n缩至 \sqrt{n} //[Yao76,PIA78],习题解析[2-24]

n,
$$\sqrt{n}$$
, $\sqrt{\sqrt{n}}$, $\sqrt{\sqrt{n}}$, ..., 2

n,
$$n^{1/2}$$
, $n^{1/2^2}$, ..., $n^{1/2^k}$, ..., 2

 \diamondsuit 经多少次比较之后,有 $n^{1/2^k}$ < 2</td>, 或等价地 , $1/2^k \cdot logn < 1$?

不难解得: k = 0(loglogn) //如何理解?

❖ 每经一次比较,待查找区间宽度的 数值n开方 ,有效 字长logn减半

插值查找 = 在字长意义上的 折半查找

二分查找 = 在字长意义上的 顺序查找

综合

- ❖从♂(logn)到♂(loglogn),是否值得?
- ❖ 通常优势不明显——除非查找区间宽度极大,或者比较操作成本极高

比如 , n =
$$2^{(2^5)}$$
 = 2^32 = $4G$ 时 , $\log_2(n)$ = 32 , $\log_2(\log_2(n))$ = 5

- ❖ 易受小扰动的干扰和"蒙骗"
- ❖ 须引入乘法、除法运算
- *实际可行的方法
 - 首先通过插值查找,将查找范围缩小到一定的尺度
 - 然后再进行二分查找

课后

❖ 关于插值查找算法的平均性能分析,试阅读:

A. C. Yao & F. F. Yao

"The Complexity of Searching an Ordered Random Table"

Proc. of 17th FOCS (1976), 222-227