Lycée Buffon DS 5
MPSI Année 2020-2021

Devoir du 18/12/2020

Exercice 1 : On dit qu'une application $f : \mathbb{R} \to \mathbb{R}$ est continue au sens de Cesàro en $a \in \mathbb{R}$ si pour toute suite $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$, on a

$$\left(\frac{x_1 + x_2 + \dots + x_n}{n} \xrightarrow[n \to +\infty]{} a\right) \Longrightarrow \left(\frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n} \xrightarrow[n \to +\infty]{} f(a)\right)$$

On dit que $f: \mathbb{R} \to \mathbb{R}$ est continue au sens de Cesàro sur \mathbb{R} si f est continue au sens de Cesàro en tout $a \in \mathbb{R}$.

L'objectif de cet exercice est de déterminer toutes les fonctions continues au sens de Cesàro sur \mathbb{R} .

- 1. (a) Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite de nombres réels qui converge vers $a\in\mathbb{R}$. Prouver que la suite $\left(y_n=\frac{x_1+x_2+\cdots+x_n}{n}\right)_{n\in\mathbb{N}^*}$ converge vers a. On dit alors que x converge en moyenne vers a.
 - (b) Soit $(x,y) \in \mathbb{R}^2$ et u la suite définie par $\forall p \in \mathbb{N}, u_{2p} = x$ et $u_{2p+1} = y$. Prouver que la suite u converge en moyenne vers $\frac{x+y}{2}$.
 - (c) Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue en $a \in \mathbb{R}$. La fonction f est-elle continue au sens de Cesàro en a? La réponse sera justifiée.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue au sens de Cesàro sur \mathbb{R} .
 - (a) On pose g = f f(0). Prouver que f est continue au sens de Cesàro sur \mathbb{R} équivaut à g est continue au sens de Cesàro sur \mathbb{R} . On suppose donc désormais que f(0) = 0.
 - (b) Prouver que $\forall (x,y) \in \mathbb{R}^2$, $f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$
 - (c) En déduire que f est additive, càd que $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y)
 - (d) Prouver que f est \mathbb{Q} -linéaire, càd $\forall x \in \mathbb{R}, \ \forall r \in \mathbb{Q}, \ f(rx) = rf(x)$.
 - (e) Prouver que $\forall x \in \mathbb{R}, \quad f(x) = xf(1).$
- 3. Conclure.

Exercice 2 : Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée telle que la suite $\left(u_n + \frac{u_{2n}}{2}\right)_{n\in\mathbb{N}}$ converge vers un réel ℓ . Le but de cet exercice est de démontrer que la suite u est convergente.

- 1. On dit qu'un réel a est une valeur d'adhérence d'une suite réelle $(v_n)_{n\in\mathbb{N}}$ s'il existe une suite extraite de $(v_n)_{n\in\mathbb{N}}$ qui converge vers a.
 - (a) Montrer qu'une suite admettant au moins deux valeurs d'adhérence distinctes est une suite divergente.
 - (b) Donner un exemple d'une suite n'admettant pas de valeur d'adhérence et un exemple de suite divergente admettant exactement une valeur d'adhérence.
- 2. Prouver que u admet une valeur d'adhérence, que l'on notera a.
- 3. Prouver qu'alors $2(\ell a)$ est encore une valeur d'adhérence de la suite $(u_n)_{n \in \mathbb{N}}$.
- 4. On considère la suite définie par $a_0 = a$ et $\forall n \in \mathbb{N}$, $a_{n+1} = 2(l a_n)$. Prouver que pour tout entier n, a_n est une valeur d'adhérence de la suite u.
- 5. Déterminer, pour tout entier naturel n, a_n en fonction de n.
- 6. Prouver que u admet $\frac{2\ell}{3}$ pour unique valeur d'adhérence.
- 7. Prouver qu'une suite bornée converge si, et seulement si, elle ne possède qu'une seule valeur d'adhérence.
- 8. Conclure.

Exercice 3:

- 1. Étudier les variations de $f: x \mapsto \frac{\ln x}{x}$. En déduire que pour tout $n \in \mathbb{N}^*$, l'équation $\ln x + nx = 0$ d'inconnue $x \in \mathbb{R}^{+*}$ a une unique solution que l'on notera u_n .
- 2. Prouver que la suite u est monotone.
- 3. Montrer que la suite u converge et déterminer sa limite.
- 4. On considère la suite $v = (nu_n)_{n \in \mathbb{N}^*}$
 - (a) Prouver que la suite v tend vers $+\infty$.
 - (b) En déduire un équivalent de v_n lorsque n tend vers $+\infty$.
 - (c) Déterminer un équivalent de $\ln v_n$
 - (d) Prouver que $u_n \frac{\ln n}{n} \underset{n \to +\infty}{\sim} \frac{\ln(\ln n)}{n}$.

On pourra utiliser le fait que $u_n = -\frac{\ln(u_n)}{n}$.

(e) En déduire un équivalent de $u_n - \frac{\ln n}{n} + \frac{\ln(\ln n)}{n}$ lorsque n tend vers $+\infty$.

Exercice 4:

- 1. Déterminer la limite un équivalent et la limite en 0 de $\frac{\sqrt[3]{x^3 x}}{\sqrt{x^2 + x}}$ et $\ln(1 + e^x) \ln(2)$
- 2. Déterminer la limite en 1/2 de $(2x^2 3x + 1)\tan(\pi x)$.
- 3. Déterminer la limite en 1 de $\frac{1+\cos(\pi x)}{(x-1)\tan(2\pi x)}$.