Study Guide
Exam FM: Financial Mathematics
Society of Actuaries (SOA)

Alec James van Rassel

Table des matières

	Information	5
	Autres ressources	6
	Notes sur les vidéos YouTube	6
1	Time Value of Money	8
	Information	8
	Résumés des chapitres	9
	1a. Basic Concepts	11
	1b. Why Do We Need a Force of Interest?	11
	1c. Defining the Force of Interest	12
	1d. Finding the Fund in Terms of the Force of Interest	12
	1e. The Simplest Case : A Constant Force of Interest .	13
	1f. Power Series	13
	1g. The Variable Force of Interest Trap	13
	1h. Equivalent Rates	13
	2a. Equations of Value, Time Value of Money, and	
	Time Diagrams	14
	2b. Unknown Time and Unknown Interest Rate	14
2	Topic: Annuities / cash flows with non-contingent payments	15
_	Information	15
	Résumés des chapitres	17^{-3}
	3a. The Geometric Series Trap	17
	3b. Annuity-Immediate and Annuity-Due	17
	3c. The Great Confusion: Annuity-Immediate and Annuit	y-
	Due	17
	3d. Deferred Annuities	17
	3e. A Short-Cut Method for Annuities with "Block"	
	Payments	17
	3f. Perpetuities	17
	3g. The $a_{\overline{2n}}/a_{\overline{n}}$ Trick (and Variations)	17
	3h. What If the Rate Is Unknown?	18
	3i. What If the Rate Varies?	18

	4a. Annuities with "Off-Payments" Part I	18
	4b. Annuities with "Off-Payments" Part II	18
	4c. Avoiding the m^{thly} Annuity Trap	18
	4d. Continuous Annuities	18
	4e. "Double-Dots Cancel" (and so do "upper m 's")	18
	4f. A Short Note on Remembering Annuity Formulas .	18
	4g. The $s_{\overline{n} }$ Trap When Interest Variess	18
	4h. Payments in Arithmetic Progression	19
	4i. Remembering Increasing Annuity Formulas	19
	4j. Payments in Geometric Progression	19
	4k. The Amazing Expanding Money Machine (Or Conti-	
	nouss Varying Annuities)	19
	4l. A Short-Cut Method for the Palindromic Annuity .	19
	4m. The 0% Test : A Quick Check of Symbolic Answers	19
	Notes sur les vidéos YouTube	19
_		
3	Topic: Loans	20
	Information	20
	Résumés des chapitres	21
	XX. Title-of-ASM-chapter	21
	Notes sur les vidéos YouTube	21
4	Topic : Bonds	22
•	Information	22
	Résumés des chapitres	23
	XX. Title-of-ASM-chapter	$\frac{23}{23}$
	Notes sur les vidéos YouTube	$\frac{23}{23}$
	Trovos sur los rideos Todiuse T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.	
5	Topic : General Cash Flows and Portfolios	24
	Information	24
	Résumés des chapitres	26
	5a	26
	5b	26
	5c	26
	5d	26
	5e	26
	5f	26
	8a	26

	8b	26
	8c	27
	Notes sur les vidéos YouTube	27
6	Topic: Immunization	28
	Information	28
	Résumés des chapitres	29
	10h. Redington Immunization	29
	10i. Full Immunization	29
	10j. A Note on Rebalancing	29
	10k. Immunization by Exact Matching ("Dedication") .	29
	Notes sur les vidéos YouTube	29
7	Topic : Interest Rate Swaps	30
	Information	30
	Résumés des chapitres	31
	11b. What is an Interest Rate Swap?	31
	Notes sur les vidéos YouTube	31
8	Topic : Determinants of Interest Rates	32
	Information	32
	Résumés des chapitres	34
	9a. What is Interest?	34
	9b. Quotation Bases for Interest Rates	34
	9c. Components of the Interest Rate: No Inflation or	
	Default Risk	34
	9d. Components of the Interest Rate: no Inflation but	
	with Default Risk	34
	9e. Components of the Interest Rate: Known Inflation	34
	9f. Components of the Interest Rate: Uncertain Infla-	
	tiono	34
	9g. Savings and Lending Interest Rates	34
	9h. Government and Corporate Bonds	34
	9i. The Role of Central Banks	34
	Notes sur les vidéos YouTube	35

Preliminary

Information

Autres ressources

Subjects of study

Time Value of Money (10%-15%)1

Information

Objective

The Candidate will understand and be able to perform calculations relating to present value, current value, and accumulated value.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the definitions of the following terms:
 - > Interest rate (rate of inter- > Discount rate (rate of disest);
 - count);
 - > Simple interest;
- \rightarrow Convertible *m*-thly (...?);
- > Compound interest;
- > Nominal rate;
- > Accumulation function;
- > Effective rate;

> Future value;

> Inflation;

> Current value;

- > Real rate of interest;
- > Present value;
- > Force of interest;
- > Net present value; > Discount factor;
- > Equation of value.

- b) Given any 3 of:

> Interest rate:

- > Present value: > Future value,
- > Period of time; > Current value;

calculate the remaining item using *simple* or *compound* interest; Solve time value of money equations involving variable force of interest;

- c) Given any 1 of:
 - > Effective interest rate;
 - > Nominal interest rate convertible *m*-thly;
 - > Force of interst, calculate any of the other items;
- d) Write the equation of value given a set of cash flows and interest rate.

Related lessons ASM

Section 1: Interest rates and Discount Rates

- > 1a. Basic Concepts
- > 1b. Why Do We Need a Force of Interest?
- > 1c. Defining the Force of Interest
- > 1d. Finding the Fund in Terms of the Force of Interest
- > 1e. The Simplest Case : A Constant Force of Interest
- > 1f. Power Series
- > 1g. The Variable Force of Interest Trap
- > 1h. Equivalent Rates

Section 2: Practical Applications

- > 2a. Equations of Value, Time Value of Money, and Time Diagrams
- > 2b. Unknown Time and Unknown Interest Rate

Résumés des chapitres

1a. Basic Concepts

Effective rate of interest

- a(t) Accumulation function defined as the Accumulated Value (AV) of the fund at time t of an initial investment of \$1.00 at time 0.
 - $a(0) \equiv 1.$
 - > Generally continuous and increasing.
- a(t) a(t-1) **Amount** of growth in the t^{th} year.
 - > a.k.a. the interest earned
- $\frac{a(t)-a(t-1)}{a(t-1)}$ **Rate** of growth in the t^{th} year.
 - \gt a.k.a. effective rate of interest denoted i_t .
- A(t) **Amount function** defined as the Accumulated Value (AV) of the fund at time t of an initial investment of k at time 0.
 - $\rightarrow A(t) = ka(t).$
- i_t Effective rate of interest defined as the rate of growth based on the amount in the fund at the **beginning** of the year.
 - > $i_t = \frac{A(t) A(t-1)}{A(t-1)}$.
 - > We deduce $A(t) = (1 + i_t)A(t 1)$.

Effective Rate of Discount

- d_t Effective rate of discount defined as the rate of growth based on the amount in the fund at the end of the year.
 - $\rightarrow d_t = \frac{A(t) A(t-1)}{A(t)}.$
 - > Although we could get by without it, it's useful to determine the amount to pay today for a specified amount in the future.

Discounting Finding the price we'd be willing to pay for the promise to receive a future amount.

- > a.k.a. finding the present value which is why $i = \frac{d}{1-d}$.
- $v = (1 d) = \frac{1}{1+i}$.
- $\rightarrow d = \frac{i}{1+i}$.

Nominal Rates of Interest

- $i^{(m)}$ Nominal annual rate of of interest compounded m times a year.
- $\frac{i^{(m)}}{m}$ Effective rate of of interest for an m^{th} of a year.
 - > Thus $(1+i) = \left(1 + \frac{i^{(m)}}{m}\right)^m$.

1b. Why Do We Need a Force of Interest?

- > An effective rate of interest only gives information about the starting and ending values, but give no information about in between.
- > Thus, the force of interest can give information at any given time about the rate of growth.
- > The image of the four different fund's growth curves with the same starting and ending values is a perfect visualization.

1c. Defining the Force of Interest

- > The derivative is divided by the amount function to obtain a rate of growth proportional to the amount invested.
- > Two funds can have the same rate of change but different amounts originally invested.
- > If one fund's growing with a smaller amount of money, then it's rate of change is actually less than the other.

TRAP If given the derivative of the accumulation function, a'(t), use the property that the fund at the beginning is 1, a(0) = 1, to define the +C when integrating for a(t).

1d. Finding the Fund in Terms of the Force of Interest

- > If we want to find the accumulation, or amount, function from the force of interest we inverse the equation.
- > To do so, recall that $\frac{\partial}{\partial x} \ln(f(x)) = \frac{f'(x)}{f(x)}$.
- > Also $\int_0^t \frac{\partial}{\partial r} \ln(a(r)) dr = \ln(a(r))\Big|_0^t = \ln(a(t)).$

Force of interest

Force of interest the rate of growth at a point in time.

- > a.k.a. finding the present value which is why $i = \frac{d}{1-d}$.
- $v = (1 d) = \frac{1}{1+i}$.
- $\rightarrow d = \frac{i}{1+i}$.
- δ_t The Force of interest at time t.
 - $\delta_t = \frac{A'(t)}{A(t)}$.
 - $\Rightarrow a(t) = e^{\int_0^t \delta_r dr}$

1e. The Simplest Case : A Constant Force of Interest

>

Simple Force of interest

 δ The constant force of interest.

> a.k.a. the nominal rate of interest compounded continuously.

$$\delta = \lim_{m \to \infty} i^{(m)} = i^{(\infty)} = \ln(1+i).$$

$$\Rightarrow a(t) = e^{\int_0^t \delta dr} = e^{\delta t}.$$

1f. Power Series

> Not really on past exams, section is « just in case ».

1g. The Variable Force of Interest Trap

- > When we want the accumulated value of an amount not invested at the beginning, we integrate the force of interest over the respective integral.
- > Alternatively, we can take the ratio of the accumulation function at both times.

Variable Force of interest

$$FV = e^{\int_{t_1}^{t_2} \delta_r dr}$$
$$\equiv \frac{a(t_2)}{a(t_1)}$$

1h. Equivalent Rates

>

2a. Equations of Value, Time Value of Money, and Time Diagrams

Time value (equivalence principle) 1\$ today is not equivalent to 1\$ a year from now. However, 1\$ today is equivalent to 1.05\$ a year from now if the rate of interest is 5%.

Comparison date Date at which we solve the equation of of value.

> Important to use **time lines** to solve problems :

> We can treat a problem by **payment** or **interest** period.

2b. Unknown Time and Unknown Interest Rate

> Can approximate the time \bar{t} by using a weighted average of the time of payment times the amount of payment divided by the total amount paid with the **method of equated time**. For example :

Time Due	Payment
1	5
3	1
10	15
Total Payments =	21

$$\bar{t} = \frac{1*5+3*1+10*15}{(5+1+15)}$$

2 Topic: Annuities / cash flows with non-contingent payments (exam weight)

Information

Objective

The Candidate will be able to calculate present value, current value, and accumulated value for sequences of non-contingent payments.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the definitions of the following terms :
 - > Annuity-immediate;
 - > Annuity-due;
 - > Perpetuity;
 - > Payable *m*-thly or continously;
 - > Level payment annuity;
- > Arithmetic increasing/decreasing annuity;
- > Geometric increasing/decreasing annuity;
- > Term of annuity;
- b) For each of the following types of annuity / cash flows, given sufficient information of :
 - > Immediate or due;
- > Interest rate;

- > Present value;
- > Payment amount;
- > Futur value;> Current value;

> Term of annuity,

calculate any remaining item.

The types are:

> Level annuity, finite term;

- > Level perpetuity;
- > Non-level annuities / cash flows;
 - Arithmetic progression, finite term and perpetuity;
 - Geometric progression, finite term and perpetuity;
 - Other non-level annuities / cash flows.

Related lessons ASM

Section 3: Annuities

- > 3a. The Geometric Series Trap
- > 3b. Annuity-Immediate and Annuity-Due
- > 3c. The Great Confusion : Annuity-Immediate and Annuity-Due
- > 3d. Deferred Annuities
- > 3e. A Short-Cut Method for Annuities with "Block" Payments
- > 3f. Perpetuities
- > 3g. The $a_{\overline{2n}}/a_{\overline{n}}$ Trick (and Variations)
- > 3h. What If the Rate Is Unknown?
- > 3i. What If the Rate Varies?

Section 4 : Complex Annuities

- > 4a. Annuities with "Off-Payments" Part I
- > 4b. Annuities with "Off-Payments" Part II
- > 4c. Avoiding the m^{thly} Annuity Trap
- > 4d. Continuous Annuities
- \rightarrow 4e. "Double-Dots Cancel" (and so do "upper m's")
- > 4f. A Short Note on Remembering Annuity Formulas
- \rightarrow 4g. The $s_{\overline{n}|}$ Trap When Interest Variess
- > 4h. Payments in Arithmetic Progression
- > 4i. Remembering Increasing Annuity Formulas
- > 4j. Payments in Geometric Progression
- > 4k. The Amazing Expanding Money Machine (Or Continouss Varying Annuities)

- > 4l. A Short-Cut Method for the Palindromic Annuity
- > 4m. The 0% Test : A Quick Check of Symbolic Answers

Résumés des chapitres

3a. The Geometric Series Trap

Remember the formula for geometric series in words :

$$r^{10} + r^{20} + \dots + r^{10n} = r^{10} \frac{1 - r^n}{1 - r} = (\text{first term}) \frac{1 - (\text{ratio})^{\text{nb. of terms}}}{1 - (\text{ratio})}$$

>

3b. Annuity-Immediate and Annuity-Due

>

3c. The Great Confusion : Annuity-Immediate and Annuity-Due___

>

3d. Deferred Annuities

>

 $3e.\ A$ Short-Cut Method for Annuities with "Block" Payments

>

3f. Perpetuities

>

${f 3g. \ The} a_{\overline{2n}}/a_{\overline{n}} { m Trick} ({ m and \ Variations})$
>
3h. What If the Rate Is Unknown?
>
3i. What If the Rate Varies?
>
4a. Annuities with "Off-Payments" Part I
>
4b. Annuities with "Off-Payments" Part II
>
4c. Avoiding the m^{thly} Annuity Trap
>
4d. Continuous Annuities
>
4e. "Double-Dots Cancel" (and so do "upper m 's")
>
4f. A Short Note on Remembering Annuity Formulas
>

4g. The $s_{\overline{n} }$ Trap When Interest Variess
>
4h. Payments in Arithmetic Progression
>
4i. Remembering Increasing Annuity Formulas
>
4j. Payments in Geometric Progression
>
4k. The Amazing Expanding Money Machine (Or Continouss Varying Annuities)
>
4l. A Short-Cut Method for the Palindromic Annuity
>
4m. The 0% Test: A Quick Check of Symbolic Answers
>

3 Topic : Loans (10%-20%)

Information

Objective

The Candidate will understand key concepts concerning loans and how to perform related calculations.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the *definitions* of the following terms :
 - > Principal;

> Final payment;

> Interest;

- Drop payment;

> Term of loan;

- Baloon payment.
- > Outstanding balance;
- > Amortization.

- b) Calculate:
 - > The missing item given any 4 of:
 - Term of loan;
- Payment period;

- Interest rate;
- Payment amount;
- Principal.
- > The outstanding balance at any point in time;
- > The amount of interest and principal repayment in a given payment;
- > Similar calculations to the above when refinancing is involved.

Résumés des chapitres

4 Topic : Bonds (10%-20%)

Information

Objective

The Candidate will understand key concepts concerning bonds, and how to perform related calculations.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the *definitions* of the following terms :
 - > Price;

> Yield rate;

> Book value;

- > Coupon;
- > Amortization of premium;
- > Coupon rate;
- > Accumulation of discount;
- > Term of bond;
- > Redemption value;
- ,

> Callable / Non-callable.

- > Par value / Face value;
- b) Given sufficient partial information about the items listed below, calculate any of the remaining items:
 - > Price, book value, amortization of premium, accumulation of discount;
 - > Redemption value, face value;
 - > Yield rate;
 - > Coupon, coupon rate;
 - > Term of bond, point in time that a bond has a given book value, amortization of premium, or accumulation of discount.

Résumés des chapitres

5 Topic : General Cash Flows and Portfolios (15%-20%)

Information

Objective

The Candidate will understand key concepts concerning yield curves, rates of return, and measures of duration and convexity, and how to perform related calculations.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the *definitions* of the following terms :
 - > Yield rate / rate of return; > Convexity (Macaulay and modified);
 - Dollar-weighted rate of return;
 Portfolio;

 - > Current value; > Yield Curve;
 - Duration (Macaulay and modified);
 Stock price;
 Stock dividend;
- b) Calculate:
 - > The dollar-weighted and time-weighted rate of return;
 - > The duration and convexity of a set of cash flows;
 - > Either Macaulay or modified duration given the other;
 - > The approximate change in present value due to a change in interest rate,

- Using 1st-order linear approximation based on modified duration;
- Using 1st-order approximation based on Macaulay duration.
- > The price of a stock using the dividend discount model;
- > The present value of a set of cash flows, using a yield curve developed from forward and spot rates.

	Related lessons ASM	
Section 5:		
> 5a		
> 5b		
> 5c		
> 5d		
> 5e		
> 5f		
Section 8:		
> 8a		
> 8b		
> 8c		
Section 10:		
> ??		
> ??		
> ??		
> ??		
> ??		
> ??		
> ??		
Section 11:		
> ??		

Vidéos YouTube

>

Résumés des chapitres

5a.			
>			
5b.			
>			
5c.			
>			
5d.			
>			
5e.			
>			
5f.			
>			
8a.			
>			
01			
8b.			
>			

8c. >

6 Topic: Immunization (10%-15%)

Information

Objective

The Candidate will understand key concepts concerning cash flow matching and immunization, and how to perform related calculations.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the *definitions* of the following terms :
 - > Cash flow matching;
 - > Immunization (including full immunization);
 - > Redington immunization.
- b) Construct an investment portfolio to:
 - > Redington immunize a set of liability cash flows;
 - > Fully immunize a set of liability cash flows;
 - > Exactly match a set of liability cash flows.

Related lessons ASM

Section 10: Duration, Convexity, and Immunization

- > 10h. Redington Immunization
- > 10i. Full Immunization
- > 10j. A Note on Rebalancing
- > 10k. Immunization by Exact Matching ("Dedication")

Vidéos YouTube

>

Résumés des chapitres

Topic: Interest Rate Swaps (0-10%) 7

Information

Objective

The Candidate will understand key concepts concerning interest rate swaps, and how to perform related calculations.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the definitions of the following terms:
 - > Swap rate;

- > Counterparties;
- > Swap term (tenor);
- > Deferred swap;
- > Notional amount;
- > Amortizing swap;
- > Market value of a swap;
- > Accreting swap;
- > Settlement dates;
- > Settlement period;
- > Interest rate swap net pay-
- b) Given sufficient information, calculate:
 - > The market value;
- > deferred or otherwise;
- > Notional amount;
- > with either constant or varying notional amount.
- > Spot rates or swap rate,
- of an interest rate swap

Related lessons ASM

Section 11: Interest Rate Swaps

> 11b. What is an Interest Rate Swap?

Vidéos YouTube

Résumés des chapitres

11b. What is an Interest Rate Swap?

8 Topic : Determinants of Interest Rates (0-10%)

Information

Objective

The Candidate will understand key concepts concerning the determinants of interest rates, the components of interest, and how to perform related calculations.

Learning outcomes

The candidate will be able to:

- a) Define and recognize the *definitions* of the following terms :
 - > Real risk-free rate;
- > Liquidity premium;

- > Inflation rate;
- > Default risk premium;
- > Maturity risk premium.
- b) Explain how the components of interest rates apply in various contexts, such as:
 - > Commercial loans:
 - > Mortgages;
 - > Credit cards;
 - > Bonds;
 - > Government securities.
- c) Explain the **roles** of the Federal Reserve and the FOMC in carrying out *fiscal* policy and *monetary* policy and the **tools** used thereby including:
 - > Targeting the federal funds rate;
 - > Setting reserve requirements;

- > Setting the discount rate.
- d) Explain the theories of why interest rates differ by term, including :
 - > Liquidity preference (opportunity cost);
 - > Expectations;
 - > Preferred habitat;
 - > Market segmentation.
- e) Explain how interest rates differ from one country to another (e.g., U.S. vs. Canada);
- f) In the context of loans with and without inflation protection :
 - > **Identify** the *real* interest and the *nominal* interest rate;
 - > Calculate the effect of changes in inflation on loans with inflation protection.

Related lessons ASM

Section 9 : Determinants of Interest Rates

- > 9a. What is Interest?
- > 9b. Quotation Bases for Interest Rates
- > 9c. Components of the Interest Rate : No Inflation or Default Risk
- > 9d. Components of the Interest Rate : no Inflation but with Default Risk
- > 9e. Components of the Interest Rate: Known Inflation
- > 9f. Components of the Interest Rate: Uncertain Inflationo
- > 9g. Savings and Lending Interest Rates
- > 9h. Government and Corporate Bonds
- > 9i. The Role of Central Banks

Vidéos YouTube

>

Résumés des chapitres

9a. What is Interest?
>
9b. Quotation Bases for Interest Rates
>
9c. Components of the Interest Rate : No Inflation or Default Risk
>
9d. Components of the Interest Rate : no Inflation but with Default Risk
>
9e. Components of the Interest Rate: Known Inflation
>
9f. Components of the Interest Rate: Uncertain Inflationo
>
9g. Savings and Lending Interest Rates
>
9h. Government and Corporate Bonds
>
9i. The Role of Central Banks
>