Machine Learning Übungsblatt 4

Ramon Leiser

Tobias Hahn

December 6, 2016

1 Begriffsdefinitionen

2 Markov Ketten

3 Hidden Markov Modell

3.1 Modelle

Spielstandsänderung(t)	Spielstandsänderung(t+1)	P(Spielstandsänderung(t+1)-Spielstandsänderung(t))
KÄ	KÄ	0.6
KÄ	TG	0.2
KÄ	TW	0.2
TW	KÄ	0.4
TW	TG	0.3
TW	TW	0.3
TG	KÄ	0.4
TG	TG	0.4
TG	TW	0.2

Table 1: Transitionsmodell

Laut	Spielstandsänderung	P(Laut—Spielstandsänderung)
Ole	KÄ	0.8
Toor	KÄ	0.05
Ohhh	KÄ	0.15
Ole	TG	0.1
Toor	TG	0.2
Ohhh	TG	0.7
Ole	TW	0.1
Toor	TW	0.8
Ohhh	TW	0.1

Table 2: Sensormodell

Zustand	P(Zustand)
KÄ	0.33
TG	0.33
TW	0.33

Table 3: A priori Wahrscheinlichkeiten

3.2 FORWARD-Algorithmus

```
\begin{array}{l} {\rm Calculations} \\ {\rm P(KAE|Ole)} = {\rm P(Ole|KAE)} \ * \ ({\rm P(KAE|KAE)} \ * \ {\rm P(KAE)} \ + \ {\rm P(KAE|TW)} \ * \ {\rm P(TW)} \ + \ {\rm P(KAE|TG)} \ * \ {\rm P(TG)}) = \\ {\rm 0.26664} \ \tilde{\ } = \ 0.824742268041 \\ {\rm P(TW|Ole)} = {\rm P(Ole|TW)} \ * \ ({\rm P(TW|KAE)} \ * \ {\rm P(KAE)} \ + \ {\rm P(TW|TW)} \ * \ {\rm P(TW)} \ + \ {\rm P(TW|TG)} \ * \ {\rm P(TG)}) = \\ {\rm 0.103092783505} \\ {\rm P(TG|Ole)} = {\rm P(Ole|TG)} \ * \ ({\rm P(TG|KAE)} \ * \ {\rm P(KAE)} \ + \ {\rm P(TG|TW)} \ * \ {\rm P(TW)} \ + \ {\rm P(TG|TG)} \ * \ {\rm P(TG)}) = \\ {\rm 0.023331} \ \tilde{\ } = \ 0.0721649484536 \end{array}
```

Scores

Score	Wahrscheinlichkeit
0:0	0.825
1:0	0.103
0:1	0.072

Calculations

Scores

1	1
Score	Wahrscheinlichkeit
0:0	0.713
1:0	0.153
0:1	0.110
2:0	0.008
1:1	0.012
0:2	0.004
+	

Calculations

Scores

Score	Wahrscheinlichkeit
0:0	0.182
1:0	0.125
0:1	0.473
2:0	0.021
1:1	0.112
0:2	0.070
3:0	0.001
2:1	0.006
1:2	0.008
0:3	0.003

Calculations

Scores

Score	Wahrscheinlichkeit
0:0	0.148
1:0	0.122
0:1	0.399
2:0	0.030

1	1
1:1	0.153
0:2	0.093
3:0	0.003
2:1	0.019
1:2	0.022
0:3	0.007
4:0	0.000
3:1	0.001
2:2	0.001
1:3	0.001
0:4	0.000

Calculations

 $P(KAE | Toor!) \ = \ P(Toor! | KAE) \ * \ (P(KAE | KAE) \ * \ P(KAE) \ + \ P(KAE | TW) \ * \ P(TW) \ + \ P(KAE | TG) \ * \ P(TG))$ = 0.0262858574288 = 0.0677968291844

0.0562858574288 = 0.145173223736

Score	Wahrscheinlichkeit
0:0	0.010
1:0	0.125
0:1	0.049
2:0	0.098
1:1	0.342
0:2	0.064
3:0	0.024
2:1	0.126
1:2	0.097
0:3	0.014
4:0	0.002
3:1	0.016
2:2	0.021
1:3	0.009
0:4	0.001
5:0	0.000
4:1	0.001
3:2	0.001
2:3	0.001
1:4	0.000

| 0:5 | 0.000 | + + + +