Manipulation motion planning

Florent Lamiraux

CNRS-LAAS, Toulouse, France

A few examples

Definitions

A manipulation motion

- is the motion of
 - one or several robots and of
 - one or several objects
- such that each object
 - either is in a stable position, or
 - ▶ is moved by one or several robots.

Definitions

A manipulation motion

- is the motion of
 - one or several robots and of
 - one or several objects
- such that each object
 - either is in a stable position, or
 - is moved by one or several robots.

Composite robot

Kinematic chain composed of each robot and of each object

The configuration space of a composite robot is the cartesian product of the configuration spaces of each robot and object.

$$C = C_{r1} \times C_{rnb, robots} \times SE(3)^{nb \ objets}$$

Composite robot

Kinematic chain composed of each robot and of each object

The configuration space of a composite robot is the cartesian product of the configuration spaces of each robot and object.

$$C = C_{r1} \times C_{r_{nb \ robots}} \times SE(3)^{nb \ objets}$$

Numerical constraints

Constraints to which manipulation motions are subject can be expressed numerically.

Numerical constraints:

$$f(\mathbf{q}) = 0, \quad egin{array}{l} m \in \mathbb{N}, \\ f \in C^1(\mathcal{C}, \mathbb{R}^m) \end{array}$$

- setConstantRightHandSide(True)
- Parameterizable numerical constraints:

$$f(\mathbf{q}) = f_0, \quad egin{aligned} m \in \mathbb{N}, \\ f \in C^1(\mathcal{C}, \mathbb{R}^m) \\ f_0 \in \mathbb{R}^m \end{aligned}$$

setConstantRightHandSide(False)

$$\mathcal{C} = [-\pi, \pi]^6 \times \mathbb{R}^3 \tag{1}$$

$$\mathbf{q} = (q_0, \cdots, q_5, x_b, y_b, z_b)$$
 (2)

Two states:

- placement: the ball is lying on the table,
- grasp: the ball is hold by the end-effector.

Each state is defined by a numerical constraint

▶ placement

$$z_b = 0$$

grasp

$$\mathbf{x}_{gripper}(q_0, \cdots, q_5) - \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = 0$$

Each state is a sub-manifold of the configuration space

Each state is defined by a numerical constraint

▶ placement

$$z_b = 0$$

grasp

$$\mathbf{x}_{gripper}(q_0,\cdots,q_5) - \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = 0$$

Each state is a sub-manifold of the configuration space

Motion constraints

Two types of motion:

- transit: the ball is lying and fixed on the table,
- transfer: the ball moves with the end-effector.

Motion constraints

▶ transit

▶ transfer

$$\mathbf{x}_{gripper}(q_0,\cdots,q_5) - \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = 0$$

Foliation

Motion constraints define a foliation of the admissible configuration space (grasp \cup placement).

► *f*: position of the ball

$$L_f(f_1) = \{\mathbf{q} \in \mathcal{C}, f(\mathbf{q}) = f_1\}$$

▶ g: grasp of the ball

$$L_g(0) = \{\mathbf{q} \in \mathcal{C}, g(\mathbf{q}) = 0\}$$

Foliation

Motion constraints define a foliation of the admissible configuration space (grasp \cup placement).

Solution to a manipulation planning problem is a concatenation of *transit* and *transfer* paths.

- the state of the system is subject to
 - numerical constraints
- trajectories of the system are subject to
 - numerical constraints
 - parameterizable numerical constraints.

- the state of the system is subject to
 - numerical constraints
- trajectories of the system are subject to
 - numerical constraints
 - parameterizable numerical constraints.

- the state of the system is subject to
 - numerical constraints
- trajectories of the system are subject to
 - numerical constraints
 - parameterizable numerical constraints, the dimension of the parameter being possibly less than the dimension of the constraint.
 - parameter value is constant along trajectories.

- the state of the system is subject to
 - numerical constraints
- trajectories of the system are subject to
 - numerical constraints
 - parameterizable numerical constraints, the dimension of the parameter being possibly less than the dimension of the constraint.
 - parameter value is constant along trajectories.

Constraint graph

A manipulation planning problem can be represented by a *manipulation graph*.

- Nodes or states are numerical constraints.
- ► **Edges** or *transitions* are parameterizable numerical constraints.

Projecting configuration on constraint

Newton-Raphson algorithm

- **q**₀ configuration,
- $f(\mathbf{q}) = 0$ non-linear constraint,
- ightharpoonup ϵ numerical tolerance

Projection (\mathbf{q}_0, f):

$${f q} = {f q}_0$$
; $\alpha = 0.95$

for i from 1 to max_iter:

$$\mathbf{q} = \mathbf{q} - \alpha \left(\frac{\partial f}{\partial \mathbf{q}}(\mathbf{q}) \right)^{+} f(\mathbf{q})$$

if $||f(\mathbf{q})|| < \epsilon$: return \mathbf{q}

return failure

Steering method

Mapping \mathcal{SM} from $\mathcal{C}\times\mathcal{C}$ to $\textbf{C}^1([0,1],\mathcal{C})$ such that

$$\mathcal{SM}(\boldsymbol{q}_0,\boldsymbol{q}_1)(0)=\boldsymbol{q}_0$$

$$\mathcal{SM}(\boldsymbol{q}_0,\boldsymbol{q}_1)(1)=\boldsymbol{q}_1$$

Constrained steering method

Let

- SM be a steering method
- ▶ $f \in C^1(\mathcal{C}, \mathbb{R}^m)$ be a numerical constraint.

A constrained steering method $S\overline{\mathcal{M}}$ of constraint f is a steering method such that

$$\forall t \in [0,1], f(S\overline{\mathcal{M}}(t)) = 0$$

Projecting path on constraint

- ▶ path: mapping from [0,1] to C
- $f(\mathbf{q}) = 0$ non-linear constraint,

Applying Newton Raphson at each point may result in a discontinuous path

Discontinuous Projection

$$\mathcal{C} = \mathbb{R}^2, f(x, y) = y^2 - 1$$

$$\frac{\partial f}{\partial \mathbf{q}} = \begin{pmatrix} 0 & 2y \end{pmatrix}, \frac{\partial f}{\partial \mathbf{q}}^+ = \begin{pmatrix} 0 \\ \frac{1}{2y} \end{pmatrix} \text{ ou } \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$y_{i+1} = y_i + \frac{1 - y_i^2}{2y_i}$$

 The initial path is sampled and successive samples are projected,

 The initial path is sampled and successive samples are projected,

•

.

 The initial path is sampled and successive samples are projected,

- The initial path is sampled and successive samples are projected,
- if 2 successive projections are too far away, an intermediate sample is selected.

•

- The initial path is sampled and successive samples are projected,
- if 2 successive projections are too far away, an intermediate sample is selected.
- Choosing appropriate sampling ensures us continuity of the projection.

Manipulation RRT

q_{rand} = shoot_random_config()

for each connected component:

- q_{near} = nearest_neighbour(q_{rand}, roadmap)
 e = select transition(q)
- **q**_{near} = generate_target_config(**q**_{near}, **q**_{near}
- e)
- $\mathbf{q}_{new} = \operatorname{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \operatorname{edge})$ $roadmap.\operatorname{insert_node}(\mathbf{q}_{new})$
- roadmap.insert_edge(e, \mathbf{q}_{near} , \mathbf{q}_{new})
- new_nodes.append (**q**_{new})

for
$$\mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}})$$
:

connect (**q**, roadmap

Manipulation RRT

q_{rand} = shoot_random_config() for each connected component:

```
\mathbf{q}_{near} = nearest_neighbour(\mathbf{q}_{rand}, roadmap)
```

 $e = \text{select_transition}(\mathbf{q}_{near})$ $\mathbf{q}_{proj} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, e)$

 $\mathbf{q}_{new} = \operatorname{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \operatorname{edge})$ $roadmap.\operatorname{insert_node}(\mathbf{q}_{new})$ $roadmap.\operatorname{insert_edge}(\mathbf{e}, \mathbf{q}_{near}, \mathbf{q}_{new})$ $\operatorname{new_nodes.append}(\mathbf{q}_{new})$

for
$$\mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}})$$
:

Manipulation RRT

q_{rand} = shoot_random_config() for each connected component:

q_{near} = nearest_neighbour(q_{rand}, roadmap)
e = select_transition(q_{near})

 $\mathbf{q}_{proj} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, e)$

 $\begin{array}{l} \mathbf{q}_{new} = \operatorname{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \operatorname{edge}) \\ roadmap.\operatorname{insert_node}(\mathbf{q}_{new}) \\ roadmap.\operatorname{insert_edge}(\mathbf{e}, \mathbf{q}_{near}, \mathbf{q}_{new}) \\ \operatorname{new_nodes.append}(\mathbf{q}_{new}) \end{array}$

for
$$\mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}})$$
:

Manipulation RRT

q_{rand} = shoot_random_config() for each connected component:

q_{near} = nearest_neighbour(q_{rand}, roadmap)
e = select_transition(q_{near})

 $e = select_transition(\mathbf{q}_{near})$

 $\mathbf{q}_{proj} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, e)$

 $\mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \text{ edge})$ $roadmap.\text{insert_node}(\mathbf{q}_{new})$ $roadmap.\text{insert_edge}(\mathbf{e}, \mathbf{q}_{near}, \mathbf{q}_{new})$ $new_nodes.append(\mathbf{q}_{new})$

for
$$\mathbf{q} \in (\mathbf{q}_{new}^1,...,\mathbf{q}_{new}^{n_{cc}})$$
:

connect (q, roadmap

Manipulation RRT

q_{rand} = shoot_random_config()
for each connected component:
 q_{near} = nearest_neighbour(q_{rand}, roadmap)
 e = select_transition(q_{near})
 q_{proj} = generate_target_config(q_{near}, q_{rand}, e)
 q_{new} = extend(q_{near}, q_{proj}, edge)
 roadmap.insert_node(q_{new})
 roadmap.insert_edge(e, q_{near}, q_{new})

for
$$\mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}})$$
:

Manipulation RRT

```
q<sub>rand</sub> = shoot_random_config()
for each connected component:
        \mathbf{q}_{near} = \text{nearest\_neighbour}(\mathbf{q}_{rand}, roadmap)
        e = select_transition(\mathbf{q}_{near})
       \mathbf{q}_{proj} = \text{generate\_target\_config}(\mathbf{q}_{near}, \mathbf{q}_{rand},
        \mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \text{edge})
        roadmap.insert_node(q<sub>new</sub>)
```


Manipulation RRT

```
q<sub>rand</sub> = shoot_random_config()
for each connected component:
        \mathbf{q}_{near} = \text{nearest\_neighbour}(\mathbf{q}_{rand}, roadmap)
        e = select_transition(\mathbf{q}_{near})
       \mathbf{q}_{proj} = \text{generate\_target\_config}(\mathbf{q}_{near}, \mathbf{q}_{rand},
        \mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \text{edge})
        roadmap.insert_node(q<sub>new</sub>)
        roadmap.insert_edge(e, q<sub>near</sub>, q<sub>new</sub>)
        new_nodes.append (q<sub>new</sub>)
```

4日 → 4団 → 4 里 → 4 里 → 9 9 ○

Algorithm Manipulation RRT

Manipulation RRT

```
q<sub>rand</sub> = shoot_random_config()
for each connected component:
        \mathbf{q}_{near} = \text{nearest\_neighbour}(\mathbf{q}_{rand}, roadmap)
        e = select_transition(\mathbf{q}_{near})
        \mathbf{q}_{proj} = \text{generate\_target\_config}(\mathbf{q}_{near}, \mathbf{q}_{rand},
        \mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proi}, \text{edge})
        roadmap.insert_node(q<sub>new</sub>)
        roadmap.insert_edge(e, q<sub>near</sub>, q<sub>new</sub>)
        new_nodes.append (q<sub>new</sub>)
for \mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}}):
```

Algorithm Manipulation RRT

Manipulation RRT

```
q<sub>rand</sub> = shoot_random_config()
for each connected component:
        \mathbf{q}_{near} = \text{nearest\_neighbour}(\mathbf{q}_{rand}, roadmap)
        e = select_transition(\mathbf{q}_{near})
       \mathbf{q}_{proj} = \text{generate\_target\_config}(\mathbf{q}_{near}, \mathbf{q}_{rand},
        \mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proi}, \text{edge})
        roadmap.insert_node(q<sub>new</sub>)
        roadmap.insert_edge(e, q<sub>near</sub>, q<sub>new</sub>)
        new_nodes.append (q<sub>new</sub>)
for \mathbf{q} \in (\mathbf{q}_{new}^1, ..., \mathbf{q}_{new}^{n_{cc}}):
        connect (a, roadmap)
```

Select transition

e = select_transition(q_{near})

Outward edges of each node are given a probability distribution. The transition from a node to another node is chosen by random sampling.

Generate target configuration

$$\mathbf{q}_{proj} = \text{generate_target_config}(\mathbf{q}_{near}, \mathbf{q}_{rand}, e)$$

Once edge e has been selected, \mathbf{q}_{rand} is *projected* onto the destination node n_{dest} in a configuration reachable by \mathbf{q}_{near} .

$$f_e(\mathbf{q}_{proj}) = f_e(\mathbf{q}_{near})$$

 $f_{dest}(\mathbf{q}_{proj}) = 0$

Extend

$$\mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \text{edge})$$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on edge constraint:

▶ if projection successful and projected path collision free

$$\mathbf{q}_{new} \leftarrow \mathbf{q}_{proj}$$

▶ otherwise (q_{near}, q_{new}) ← largest path interval tested as collision-free with successful projection.

$$orall \mathbf{q} \in (\mathbf{q}_{near}, \mathbf{q}_{new}), \; f_e(\mathbf{q}) = f_e(\mathbf{q}_{near})$$

Extend

$$\mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \text{edge})$$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on edge constraint:

if projection successful and projected path collision free

$$\mathbf{q}_{\textit{new}} \leftarrow \mathbf{q}_{\textit{proj}}$$

▶ otherwise (q_{near}, q_{new}) ← largest path interval tested as collision-free with successful projection.

$$orall \mathbf{q} \in (\mathbf{q}_{near}, \mathbf{q}_{new}), \; f_e(\mathbf{q}) = f_e(\mathbf{q}_{near})$$

Extend

$$\mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \mathbf{q}_{proj}, \text{edge})$$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on edge constraint:

if projection successful and projected path collision free

$$\mathbf{q}_{new} \leftarrow \mathbf{q}_{proj}$$

▶ otherwise (q_{near}, q_{new}) ← largest path interval tested as collision-free with successful projection.

$$\forall \mathbf{q} \in (\mathbf{q}_{near}, \mathbf{q}_{new}), \ f_e(\mathbf{q}) = f_e(\mathbf{q}_{near})$$

Connect

connect (q, roadmap)

for each connected component cc not containing \mathbf{q} : for all n closest config \mathbf{q}_1 to \mathbf{q} in cc:

▶ connect (q, q₁)

Connect

```
connect (\mathbf{q}_0, \mathbf{q}_1):
s_0 = \text{state } (\mathbf{q}_0)
s_1 = \text{state } (\mathbf{q}_1)
e = \text{transition } (n_0, n_1)
if e and f_e(\mathbf{q}_0) == f_e(\mathbf{q}_1):
\text{if } p = \text{projected\_path } (e, \mathbf{q}_0, \mathbf{q}_1) \text{ collision-free:}
\text{roadmap.insert\_edge } (e, \mathbf{q}_0, \mathbf{q}_1)
\text{return}
```

Connecting trees

Manipulation RRT is initialized with \mathbf{q}_{init} , \mathbf{q}_{goal} .

- 2 connected components.
- possible connection.

Connecting trees: general case

Manipulation RRT is initialized with \mathbf{q}_{init} , \mathbf{q}_{goal} .

- 2 connected components,
- no possible connection.

Connecting trees: general case

Manipulation RRT is initialized with \mathbf{q}_{init} , \mathbf{q}_{qoal} .

- 2 connected components,
- no possible connection.

Crossed foliation transition: generate target configuration

$$\mathbf{q}_{proj} =$$
generate_target_config($\mathbf{q}_{near}, \mathbf{q}_{rand}, e$)

- $\mathbf{q}_1 \leftarrow \text{pick configuration}$
 - ightharpoonup in node N_1 ,
 - not in same connected component as q_{near}

$$f_{e_1}(\mathbf{q}_{proj}) = f_{e_1}(\mathbf{q}_{near})$$

 $f_{e_2}(\mathbf{q}_{proj}) = f_{e_2}(\mathbf{q}_1)$
 $f_{N_2}(\mathbf{q}_{proj}) = 0$

Crossed foliation transition: extend

$$\mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \, \mathbf{q}_{proj}, \, e_1)$$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on e_1 constraint:

if projection successful and projected path collision free

$$\mathbf{q}_2 \leftarrow \mathbf{q}_{\textit{proj}}$$

$$egin{aligned} f_{ heta_2}(\mathbf{q}_2) &= f_{ heta_2}(\mathbf{q}_1) \ f_{N_2}(\mathbf{q}_2) &= 0 \end{aligned}$$

ightharpoonup q₂ is connectable to q₁ via e₂.

Crossed foliation transition: extend

$$\mathbf{q}_{new} = \text{extend}(\mathbf{q}_{near}, \, \mathbf{q}_{proj}, \, e_1)$$

Project straight path $[\mathbf{q}_{near}, \mathbf{q}_{proj}]$ on e_1 constraint:

if projection successful and projected path collision free

$$\mathbf{q}_2 \leftarrow \mathbf{q}_{\textit{proj}}$$

$$f_{e_2}(\mathbf{q}_2) = f_{e_2}(\mathbf{q}_1)$$

 $f_{N_2}(\mathbf{q}_2) = 0$

q₂ is connectable to \mathbf{q}_1 via \mathbf{e}_2 .

Relative positions as numerical constraints

Let $T_1=T_{(R_1,t_1)}$ and $T_2=T_{(R_2,t_2)}$ be two rigid-body transformations. The relative transformation $T_{2/1}=T_1^{-1}\circ T_2$ can be represented by a vector of dimension 6:

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix}$$

where

$$\mathbf{u} = R_1^T (t_2 - t_1)$$

 $R_1^T R_2$ is the matrix of the rotation around axis $\mathbf{v}/\|\mathbf{v}\|$ and of angles $\|\mathbf{v}\|$.

A few words about the BE

