Navegação do questionário

2022/1 CCT ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Painel / Meus cursos / Departamento de Ciência da Computação / Bacharelado em Ciência da Computação / 2022/1 CC / 2022/1 CC / 2022/1_CCT_CCI192-04U_AOC0004 / Semana 07 / Revisão p/ P1

int t1 = 10; int t2 = 3;

Atingiu 0,50 de

0,50

 Marcar questão

int t3 = t1 + 2 * t2;

Considere a seguinte relação entre variáveis em C e registradores do MIPS:

Variável em C	Registrador MIPS
t1	\$t1
t2	\$t2
t3	\$t3

Complete o trecho de código MIPS abaixo que representa o trecho de código C acima.

li \$t1, 10 li \$t2, 3

a. mult \$t2, 2

Mostrar uma página por vez Terminar revisão

```
auu ets, etz, ett
 O b. mult $t2, 2, $t2
       add $t3, $t2, $t1
 0 C. sll $t2, $t2, 1
       add $t3, $t2, $t1
 O d. mult $t2, $t2, 2
       add $t3, $t2, $t1
 O e. mul $t2, 2
       add $t1, $t2, $t3
 O f. mul $t2, 2
       add $t3, $t2, $t1
Sua resposta está correta.
A resposta correta é: sll $t2, $t2, 1
add $t3, $t2, $t1
Correto
Notas para este envio: 0,50/0,50.
Traduza todo o programa em C abaixo (que contém uma função recursiva) para Assemble do MIPS
int sum(int x) {
 if (x == 0)
```

Questão **3**Completo
Atingiu 1,99 de 2,00

Marcar questão

```
int sum(int x) {
    if (x == 0)
        return 0;
    return x + sum(x-1);
}

int main() {
    int a;
    scanf("%i", &a);
    a = sum(a);
    printf("%i\n", a);
    return 0;
}

Submeta um único arquivo .s ou .asm (em texto puro) contendo o seu programa.
```

Comentário:

Você esta fazendo \$s0 = x - 1 na Linha 31, isto está complicando sua lógica.

Observe que você restaura o valor de \$50 (valor da função chamadora) na Linha 37 e usa este valor na Linha 40.

Veja o código da questão 04 para uma alternativa mais elegante de solução.

Questão **4** Correto Atingiu 2,40 de

questão

3,00

Considere o código assembly do MIPS32 abaixo e o respectivo endereço em memória de cada instrução.

```
.text
.globl main
main:
0x00 addiu $a0, $zero, 4
0x04 jal soma
# imprimir resultado
```

```
0x08 addu $a0, $zero, $v0
0x0C addiu $v0, $zero, 1
0x10 syscall
     end:
0x14 addiu $v0, $zero, 10
0x18 syscall
0x1C bne $a0, $zero, soma_corpo
0x20 addiu $v0, $zero, 0
0x24 jr $ra
    soma_corpo:
     # salvar contexto
0x28 addi $sp, $sp, -8
0x2C sw $s0, 0($sp)
0x30 sw $ra, 4($sp)
      # código principal
0x34 addu $s0, $zero, $a0
0x38 addi $a0, $a0, -1
0x3C jal soma
0x40 add $v0, $v0, $s0
      # restaurar contexto
0x44 lw $s0, 0($sp)
0x48 lw $ra, 4($sp)
0x4C addi $sp, $sp, 8
       # retorna
0x50 jr $ra
```

No início do programa os valores dos seguintes registradores são: \$sp = 0xfo e pa = 0x00. Os valores dos demais registradores de interesse e palavras na pilha são 0x00.

Considere o exato momento em que pc = 0x20.

A) Indique os valores em hexadecimal na pilha. Cada linha da tabela indica o endereço inicial de uma palavra de 4 bytes.

Endereço	Va	lor	
0xFC	0x00	\$	~
0xF8	0x08	\$	~
0xF4	0x00	\$	~
0xF0	0x40	\$	~
0xEC	0x04	\$	~
0xE8	0x40	\$	~
0xE4	0x03	\$	~
0xE0	0x40	\$	~
0xDC	0x02	\$	~
0XD8	0x00	‡	~
0XD4	0x00	\$	~

B) Indique os valores dos registradores

Registrador	Valor
Şra	0x40 \$ 🗸

\$sp	0xDC ⇒ ✓
\$a0	0x00 \$
\$80	0x01 💠 🗸

Questão **5** Correto Atingiu 2,00 de 2,00 Marcar

questão

E os seguintes códigos de controle da ALU:

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

Associe os valores dos sinais de controle emitidos pela unidade de controle para a instrução. O valor x indica 'tanto faz' ('doesn't care'):

add \$t1,\$t2,\$t3

Sinal de Controle	Valor
RegDst	1 🗢 🗸
Branch	0 \$
MemRead	0 0
MemtoReg	0 \$
ALUOp	10 🕈 🗸
MemWrite	0 \$
ALUSrc	0 🗢 🗸
RegWrite	1 💠 🗸
Saída controlador Al	.U 0010 \$ 🗸

Correto

Notas para este envio: 2,00/2,00.

Questão **6** Correto Atingiu 1,60 de 2,00

2,00 P Marcar questão

E os seguintes códigos de controle da ALU:

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

Associe os valores dos sinais de controle emitidos pela unidade de controle para a instrução. O valor x indica 'tanto faz' ('doesn't care'):

addi \$t1,\$t2,16

Sinal de Controle	Valor
RegDst	0 +
Branch	0 \$
MemRead	0 0
MemtoReg	0 \$
ALUOp	00 \$ ~
Manal Mrita	0.4

Você acessou como VICTOR EDUARDO REQUIA (Sair) 2022/1 CCT CCI192-04U AOC0004 Resumo de retenção de dados

Obter o aplicativo para dispositivos móveis