CO2 Accumulation in the UCPD

OD Modeling

CO2 Accumulation in the UCPD

- Helmet is modeled as constant volume chamber with two inlets and one outlet.
- First inlet: Fan blowing air into the helmet at constant volume flow rate
- Second inlet/outlet to lungs: Inhale air from the helmet and exhale CO2
- Outlet: opening to surroundings
- Concentration of CO2 in the air 0.04% by volume
- More than 5% CO2 is harmful
- (ref: www.ncbi.nlm.nih.gov/pmc/articles/PMC5380556/pdf/12245_2017_Article_14 2.pdf)

OD Modeling in Cantera

Repository: https://github.com/abhishekd18/covid19

OD Modeling in Cantera

Volume flow rate into the helmet

VFR = 30.0 I/min

Helmet volume

HV = 5.0 I

Lungs volume

LV = 6.0 I

Less than 1% CO2 accumulation

Reduction in Helmet volume

VFR = 30.0 l/min, HV = 3.0 l, LV = 6.0 l

CO2 saturates earlier

Less than 1% CO2 accumulation

Reduction in Helmet volume

VFR = 30.0 l/min, HV = 1.0 l, LV = 6.0 l

CO2 saturates earlier

Less than 1% CO2 accumulation

Reduction in Volume flow rate

VFR = 20.0 l/min, HV = 5.0 l, LV = 6.0 l

~ 1% CO2 accumulation

Reduction in Helmet volume

VFR = 20.0 l/min, HV = 3.0 l, LV = 6.0 l

CO2 saturates earlier

~ 1% CO2 accumulation

Reduction in Helmet volume

VFR = 20.0 l/min, HV = 1.0 l, LV = 6.0 l

CO2 saturates earlier

~ 1% CO2 accumulation

Reduction in Volume flow rate

VFR = 10.0 l/min, HV = 5.0 l, LV = 6.0 l

~ 1.5% CO2 accumulation

Reduction in Volume flow rate

VFR = 10.0 l/min, HV = 3.0 l, LV = 6.0 l

~ 1.5% CO2 accumulation

Reduction in Volume flow rate

VFR = 10.0 l/min, HV = 1.0 l, LV = 6.0 l

~ 1.5% CO2 accumulation

Summary

- Preliminary 0D modeling study for current design indicates approximately 1% CO2 concentration inside the closed helmet with fan
- CO2 concentration in the current design is below harmful levels of more than 5%
- Reduction in volume flow rate of fan is likely to increase CO2 concentration
- Reduction in the helmet volume saturates the CO2 levels quickly and also result in more fluctuations indicating more fresh air mixing within the helmet