幾何学 I 演習 2. 多様体の定義と例

- 1. 実射影空間 $\mathbf{R}P^n$ について,以下を示せ.
 - (1) $\mathbf{R}P^1$ は S^1 と同相である.
 - (2) $\mathbf{R}P^n$ はコンパクトである.
- $2. \ f: \mathbf{R}^{n+1} \to \mathbf{R}$ を C^∞ 級関数として,M を f=0 で定義される集合とする. $M \neq \emptyset$ で,M の各点で $grad\ f \neq 0$ となるとき,M は,n 次元可微分多様体の構造をもつことを示せ.
- $3. \ a_j, \ 1 \leq j \leq n+1$ を $a_1 < a_2 < \cdots < a_{n+1}$ を満たす実数とする. n 次元球面

$$S^n = \{(x_1, \dots, x_{n+1}) \in \mathbf{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1\}$$

上の関数 ƒ を

$$f(x_1, \dots, x_{n+1}) = \sum_{j=1}^{n+1} a_j x_j^2$$

で定める。 $(df)_p=0$ となる $p\in S^n$ をすべて求めよ.

 $4. k \le n$ とする。 \mathbf{R}^n の k 個のベクトルで、長さが 1 で互いに直交する もの全体の集合を $V_{n,k}$ で表す。 $V_{n,k}$ にコンパクト可微分多様体の構造が 入ることを示し、その次元を求めよ。