ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ

DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ

STUDIJNÍ PROGRAM: GEODÉZIE A KARTOGRAFIE

STUDIJNÍ OBOR: GEOMATIKA

DIPLOMOVÁ PRÁCE

Rozšíření nástroje pro práci s katastrálními daty v programu QGIS

QGIS VFK PLUGIN IMPROVEMENTS

Vedoucí práce: Ing. Martin Landa, Ph.D. Katedra geomatiky

Abstrakt

Cílem diplomové práce je rozšířit projekt laboratoře OSGeoREL ČVUT v Praze zaměřený na práci s katastrálními daty poskytovanými ve výměnném formátu VFK v prostředí open source nástroje QGIS. Práce navazuje na již existující nástroj implementovaný jako tzv. zásuvný modul a rozšiřuje ho o novou funkctionalitu a to především zpracování a vizualizaci datových vět změnových souborů VFK. Druhotným cílem je usnadnění distribuce zásuvného modulu v prostředí QGIS s důrazem na jeho přenositelnost.

Klíčová slova

VFK, QGIS, ČUZK, Python, C++, PyQt, GDAL, zásuvný modul

Abstract

KEYWORDS

VFK, QGIS, CUZK, Python, C++, PyQt, GDAL, plugin

Prohlášení	
Prohlašuji, že jsem diplomovou práci na tastrálními daty v programu QGIS" vyprackterých jsem čerpal, jsou uvedeny v seznam	oval samostatně. Všechny podklady, ze
V Praze dne	 Štěpán Bambula

Poděkování

Seznam použitých zkratek

VFK Výměnný formát katastru nemovitostí

ČUZK Český úřad zeměměřický a katastrální

GDAL Geospatial Data Abstraction Library

GIS Geografický informační systém

OSGeo Open Source Geospatial Foundation

ISKN Informační systém katastru nemovitostí

SGI Soubor geodetických informací

SPI Soubor popisných informací

Obsah

Ú	vod		1
1	Reš	erše nástrojů pro práci s VFK	2
	1.1	ISKN Studio pro ArcGIS	2
		1.1.1 ISKN View pro ArcGIS	3
	1.2	Import dat KN ve výměnném formátu	4
	1.3	Spirit VFK	5
	1.4	VFK2DWG	6
	1.5	VFK2DB	6
	1.6	Topol VFK Import	7
	1.7	GDAL – VFK Driver	8
2	Pou	žité technologie	10
	2.1	QGIS	10
	2.2	GDAL/OGR	
	2.3	Python	11
	2.4	PyQt	12
3	Info	ormační systém katastru nemovitostí	13
	3.1	Historie a vývoj	13
	3.2	Hlavní charakteristiky ISKN	14
		3.2.1 Optimalizace uložení dat	14
		3.2.2 Optimalizace procesů při správě KN	
		3.2.3 Bezpečnost	
	3.3		15

		3.3.1	Poskytování dat dálkovým přístupem	16
		3.3.2	Poskytování dat ve výměnném formátu ISKN	16
4	Výr	něnný	formát ISKN	17
	4.1	Vývoj	$form \acute{a}tu \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	17
		4.1.1	Výměnný formát KN před ISKN	17
		4.1.2	Výměnný formát VF ISKN	18
	4.2	Strukt	ura výměnného formátu ISKN	19
		4.2.1	Hlavička &H	20
		4.2.2	Datové bloky	22
		4.2.3	Koncový znak &K	28
	4.3	Změno	ové věty v NVF	28
		4.3.1	Obsah změnového exportu – Typy tabulek	29

$\mathbf{\acute{U}vod}$

Kapitola 1

Rešerše nástrojů pro práci s VFK

V současné době existuje několik nástrojů pro práci s katastrálními daty. Ať už se jedná o moduly, které jsou distribuovány zdarma, nebo za úplatu, jako nadstavba pro komerční nástroje, případně o moduly dostupné pro open-source nástroje. S trochou nadsázky se dá říci, že každý větší software pro práci s prostorovými daty má svůj zásuvný modul (nadstavbu) pro práci s daty *VFK*.

V této kapitole bych se chtěl věnovat vybraným nástrojům pracujícím s těmito daty. Moduly, které jsou šířeny zdarma a bylo je možné vyzkoušet, byly otestovány přímo. Popis komerčních modulů vychází především z dostupně dokumentace na příslušných oficiálních webových stránkách.

1.1 ISKN Studio pro ArcGIS

Aplikace ISKN Studio slouží pro převod dat VFK do do geodatabáze, se kterou je schopen pracovat program ArcGIS. Struktura geodatabáze je navržena dle připravené šablony. Tato šablona je vždy vázána k dané verzi formátu VFK a může být stažena přímo ze stránek společnosti Arcdata Praha, která je zárověn zvůrcem této aplikace. Data načtená touto aplikací mohou být exportována také ve formátu .xml. Díky této aplikaci může být v geodatabázi sestavena geometrie vektorových prvků. [9]

Strutura vytvořené geodatabáze je shodná s datovými bloky obsaženými ve vstupním souboru VFK (pro každý datový blok je vytvořena jedna tabulka).

Aplikace disponuje kromě zpracování souboru VFK dalšími funkcionalitami. Jednou z hlavních je možnost kontroly struktury vstupního VFK souboru podle zvolené šablony nebo podle geodatabáze. Samozřejmostí je možnost uložení protokolu o zpracování. Aplikace je distribuována zdarma.

Obrázek 1.1: Aplikace ISKN Studio (zdroj: vlastní)

1.1.1 ISKN View pro ArcGIS

ISKN View je sesterskou aplikací ke zvýše zmíněnému ISKN Studio (1.1). Software je používán jako doplněk (Add-In) v programu ArcGIS verze 10.1 a vyšší.

Obrázek 1.2: Aplikace ISKN View (zdroj: [9])

Díky ISKN View je umožněno rychlé a jednoduché vyhledávání v datech ISKN, která byla pomocí aplikace ISKN Studio převedena do některé z podporovaných geodatabází. Aplikace je rovněž šířena bezúplatně. [9]

1.2 Import dat KN ve výměnném formátu

Jedná se o modul vytvořený společností GISOFT, který slouží k převodu a načtení dat ve formátech VFK a VKM do formátu DGN. Modul spolupracuje s produkty společnosti Bentley Systems, především MicroStation. Umožňuje načtení dat jak ve starém, tak i v novém výměnném formátu (viz kapitola č. 4) KN. Je dostupný jako volitelný modul pro nadstavby **MGEO**¹ a **SPIDER**². Může být použit v následujících případech:

Samostatně: Použití samostatně se hodí v případě, kdy jsou načítána data výměnného formátu obsahující pouze katastrální mapu. V tomto případě bude vstupní soubor převeden do podoby výkresu ve formátu DGN.

Spolu s modulem Práce s popisnými informacemi KN: Tento mód je užitečný v případě, kdy jsou v souboru spolu s katastrání mapou dostupné i popisné informace (případně jsou uvedeny pouze popisné informace).

Obrázek 1.3: Import dat KN ve výměnném formátu – ukázka použití (zdroj: [7])

Veškeré informace uvedené o tomto modulu vycházejí z oficiálního popisu modulu uvedeného na stránkách společnostu GISOFT. [7]

¹http://www.gisoft.cz/MGEO/MGEO

²http://www.gisoft.cz/SPIDER/SPIDER

1.3 Spirit VFK

Software Spirit VFK je vytvořený a distribuovaný společností GEOREAL jako samostatně spustitelná desktopová aplikace. Slouží pro převod dat (VFK) katastru nemovitostí do jakékoli geodatabáze podporované společností ESRI.

Do geodatabáze jsou postupně importovány tabulky, relace a ostatní obsažené objekty ISKN. Takto vytvořená databáze může být použita v souvisejících aplikačních nadstavbách **Spirit KN**³ a **Spirit Portál - KN**⁴, případně může sloužit prodalší analytické práce nad daty KN. Import dat do geodatabáze probíhá v následujících krocích:

- 1. příprava geodatabáze (tvorba tabulek, relací, ...),
- 2. import dat VFK,
- 3. vektorizace parcel, budov a ostatních mapových vrstev,
- 4. optimalizace mapových vrstev, tvorba symbologie.

Symbologie (ve formátech MXD a LYR) vytvářená v posledním kroku se používá pro zobrazování dat ve výše zmíněných aplikačních nadstavbách pro ArcMap. Aplikace Spirit VFK může být využívána pro pravidelnou aktualizaci datových skladů katastru nemovitostí.

Obrázek 1.4: Spirit VFK – ukázka aplikace (zdroj: [17])

³http://www.georeal.cz/cz/spirit-desktop/spirit-kn

⁴http://www.georeal.cz/cz/spirit-server/portal-kn

Pro aplikaci existuje i její odlehčená verze Spirit VFK Light, díky které je možné importovat data VFK do osobní geodatabáze ArcGIS (MS Access) nebo databáze MS SQL Server. Používání obou aplikací nevyžaduje znalost struktury dat ISKN nebo výměnného formátu VFK.

Veškeré výše uvedené informace pocházejí z oficiálních stránek produktu, viz [17].

1.4 VFK2DWG

Jedná se o aplikaci od společnosti CAD Studio. Slouží jako nadstavba (utilita) pro produkty firmy Autodesk založených na AutoCadu (AutoCAD, AutoCAD Architecture, AutoCAD Map 3D, AutoCAD Civil 3D, . . .). Díky této aplikaci je možné do výše uvedených programů načíst data VF ISKN (.vfk) a dále s nimi pracovat.

Obrázek 1.5: Aplikace VFK2DWG (zdroj: [3])

Aplikace převádí *VFK* soubory na objekty (hranice parcel, parcelní čísla, vnitřní kresby, popisy, ...), se kterými je AutoCAD schopen pracovat. Tyto objekty jsou pomocí hypertextových odkazů provázány se stránkami ČUZK (respektive s aplikací **Nahlížení do KN**), kde o nich mohou být zjištěny dodatečné informace.

Nejnovější verze aplikace pracuje i s daty formátu ve verzi 5.1 a je podporována i v AutoCAD 2016. Bohužel se jedná o komerční aplikaci a proto nemohla být otestována. Veškeré informace byly převzaty z oficiálních stránek společnosti CAD Studio, viz [3].

1.5 VFK2DB

VFK2DB je databázová varianta výše zmíněné aplikace (1.4), která se chová jako samostatně spustitelný program nezávislý na konkrétním programu GIS či CAD.

Aplikace importuje data z formátu *VFK* do relační databáze Oracle nebo MS SQL Server (v budoucnu se počítá s doplněním exportu do dalších typů databází,

Obrázek 1.6: Aplikace VFK2DWG – ukázka načtených dat (zdroj: [3])

např. PostGIS, SQLite). Takto vytvořená databáze může být načtena některým z GIS produktů založených na prostorových SQL databázích (AutoCAD Map 3D, ESRI, Bentley, Intergraph, GeoServer, MapServer, ...).

Opět se jedná o komerční aplikaci společnosti CAD Studio, a proto nemohla být otestována. Veškerý zde uvedený popis vychází z oficiální dokumentace na stránkách společnosti, viz [2].

1.6 Topol VFK Import

Jak už ze samotného názvu plyne, aplikace Topol VFK Import byla vyvinuta společností Data System s.r.o. ve spolupráci se společností Topol Software. Aplikace disponuje vlastním grafickým prostředím, ve kterém je možné VFK data exportovat do formátů DWG a DXF, případně do vlastního formátu (OpenGIS MDB) společnosti Topol.

Opět se jedná o komerční aplikaci, a proto nemohla být vykoušena. Veškeré informace pocházejí z webových stránek výrobce, viz [19].

Obrázek 1.7: Topol VFK Import – ukázka zpracovaných dat (zdroj: [19])

1.7 GDAL – VFK Driver

VFK Driver, díky kterému je možné data VFK číst, je součástí knihovny GDAL (viz 2.2) od verze 1.7. Vstupní VFK soubor je knihovnou GDAL rozeznán jako OGR datasource, každý datový blok je poté vnímán jako OGR layer. Od GDAL verze 1.10 je podpora VFK přidána pouze v případě, kdy je knihovna kompilována s podporou SQLite (./configure --with-sqlite).

Driver si interně data při prvním čtení ukládá do databáze SQLite ve stejném adresáři, jako je umístěn VFK soubor. Při opětovném čtení driver používá pro čtení již vytvořenou databázi. Implicitní chování driveru může být ovlivněno zadáním proměnných prostředí.

Jednou z nejdůležitějších je proměnná OGR_VFK_DB_NAME sloužící pro definici jména SQLite databáze. Neméně důležitá proměnná OGR_VFK_DB_OVERWRITE říká, že při každém čtení souboru VFK se vytváří databáze SQLite znovu, čtení tedy probíhá pouze ze souboru. Níže je uvedena ukázka otevření souboru VFK. [6]

Obrázek 1.8: Ukázka načtení VFK pomocí VFK Driveru GDAL v programu GRASS GIS (zdroj: vlastní)

Kapitola 2

Použité technologie

2.1 QGIS

QGIS je geografický informační systém, který je distribuován jako open-source¹ pod licencí *GNU General Public License*. Je oficiálním a klíčovým produktem organizace OSGeo. Díky přenositelnosti zdrojového kódu je použitelný na širokém spektru platforem, ať už jsou to desktopové platformy Linux, MacOS, Windows, nebo mobilní platforma Android.

Obrázek 2.1: QGIS – logo (zdroj: [15])

Program umožňuje prohlížení, tvorbu a editaci velkého množství vektorových (Esri Shapefile, GeoJSON, GPX, ...), ale i rastrových (GeoTIFF, JPEG, ...) nebo databázových formátů. Podporuje zpracování dat GPS a tvorbu mapových výstupů. Mimo jiné umožňuje provádět prostorové analýzy, analýzy terénu nebo analýzy síťové, práci s mapovou algebrou a mnoho dalšího.

QGIS nedisponuje tak širokou paletou nástrojů, jako jeho open-source kolega GRASS GIS. Jeho funkcionalita ale může být rozšířena díky nepřebernému množství zásuvných modulů. Jedním z nejdůležitějších modulů pro analýzu geografických dat je zásuvný modul GRASS GIS, který zpřístupňuje funkce stejnojmenného programu.

¹Open-source software je takový software, k němuž zákazník dostane od jeho tvůrce zdrojový kód a může jej dále upravovat. Jednotlivé definice termínu "open source" se liší zvláště v podmínkách pro další distribuci softwaru.[1]

QGIS poté může sloužit jako jeho nadstavba. [15] [16]

2.2 GDAL/OGR

GDAL je knihovna určená pro čtení a zápis rastrových GIS formátů. Knihovna je vyvíjena pod hlavičkou Open Source Geospatial Foundation a vydávána pod licencí X/MIT. Knihovna používá jednoduchý abstraktní datový model pro všechny podporované datové formáty. Kromě toho nabízí také řadu užitečných nástrojů pro příkazovou řádku určených pro konverzi a zpracování dat. [5]

Obrázek 2.2: GDAL – logo (zdroj: [4])

GDAL byla původně vyvíjena Frankem Warmerdamem a to do verze 1.3.2, posléze byla knihovna převedena na GDAL/OGR Project Management Committee, která je součástí Open Source Geospatial Foundation.[5]

Knihovna OGR, která je od verze 2.0 součástí knihovny GDAL/OGR, slouží pro práci s daty ve vektorovém formátu.[4]

GDAL/OGR je považován za jeden z hlavních open-source projektů. Knihovna je hojně využívána také v komerční GIS sféře. Knihovna je otevřená a poskytuje základní funkcionalitu potřebnou pro denní práci s rozsáhlým množstvím GIS formátů.[5]

2.3 Python

Jazyk Python je objektově orientovaný programovací jazyk, který efektivně používá víceúrovňové datové typy. Jedná se o jazyk interpretovaný, čímž se jeví jako ideální nástroj pro psaní skriptů, ale i rychlý vývoj aplikací. Je vyvíjen jako opensource software, díky čemuž se stává použitelným na velkém množství platforem (Linux, Windows, MacOS, ...). Jazyk je rozšířitelný o široké spektrum modulů, které umožňují řešit problematiku takřka z jakékoli oblasti. V současné době je Python vyvíjen ve dvou verzích, ve verzi 2.x a v novější verzi 3.x. [11] [14]

Obrázek 2.3: Python – logo (zdroj: [14])

2.4 PyQt

PyQt je modul, který zpřístupňuje knihovnu Qt pro programovací jazyk Python. Spolu s PySide se jedná o nejznámější a nejpoužívanější modul pro Python postavený nad knihovnou Qt. Je vyvíjen britskou firmou Riverbank Computing ve dvou verzích. Ve verzi 4, podporující knihovnu Qt 4, a ve verzi 5, která podporuje novější verzi Qt knihovny. Modul je dostupný na všech platformách, které podporují knihovnu Qt (Windows, MacOS/X a Linux). PyQt je šířeno pod tzv. dvojí licencí, GNU GPL v3 a Riverbank Commercial License. Spolu s těmito licencemi je dostupné i pod komerční licencí.

Obrázek 2.4: PyQt – logo (zdroj: [13])

Pro grafický návrh aplikace je vhodné použít nativní grafické uživatelské rozhraní Qt Designer. Výstupem z tohoto programu je soubor obsahující vzhled aplikace ve formátu .xml. PyQt je poté schopné tento formát převést do kódu jazyka Python. Pro komunikaci mezi objekty je využíváno signálů a slotů, díky čemuž je vytvoření komponent velice snadné.

PyQt v sobě kombinuje mocnost knihovny Qt s jednoduchostí jazyka Python, což z něj dělá výkonný nástroj pro vývoj grafických aplikací. [12] [13]

Kapitola 3

Informační systém katastru nemovitostí

ISKN je integrovaný informační systém pro podporu výkonu státní správy katastru nemovitostí a pro zajištění jeho uživatelských služeb. Obsahuje prostředky pro současné vedení souborů popisných informací (SPI) a souborů geodetických informací (SGI). Dále jsou v něm obsaženy prostředky pro podporu správních a administrativních činností při vedení katastru nemovitostí a pro správu dokumentačních fondů. [8]

Obrázek 3.1: ČUZK – logo (zdroj: [8])

3.1 Historie a vývoj

Vývoj systému byl započat v roce 1997 ve spolupráci se společností APP Czech s.r.o.¹, která fungovala jako systémový integrátor a dodavatel aplikačního programového vybavení. Dalšími společnostmi podílejícími se na vývoji ISKN byly Infinity, a.s., Compaq Computer s.r.o.², Oracle Czech, s.r.o., Bentley Systems, s.r.o., BEA Systems, s.r.o. [8]

Systém byl nasazen do provozu v září roku 2001, a to na všech katastrálních pracovištích včetně centrály. Dolaďování a převzetí závěrečných etap probíhalo v roce 2002. V témže roce byl dokončen audit systému. [8]

¹Dnes společnost funguje pod názvem NESS Czech s.r.o.

²Dnes pod názvem HP.

Implementace ISKN plně nahradila dřívější způsob vedení katastru nemovitostí. ISKN integroval vedení a správu katastru nemovitostí pod jediný informační systém společný pro všechna pracoviště katastrálních úřadů a centrum. Toto vede k tomu, že je možné zveřejňovat a poskytovat aktuální data z katastru nemovitostí prostřednictvím dálkového přístupu během několika málo minut, a to z celého území republiky. [8]

Data jsou do systému ISKN ukládána pomocí Spatial Cartridge Option do databáze Oracle. Podpora vzdáleného přístupu k datům pomocí sítě Internet je zajištěna pomocí BEA WebLogic. Systémový management využívá nástrojů CA Unicenter. [8]

V roce 2004 byla uzavřena nová smlouva se společností NESS Czech s.r.o. na rozvoj a údržbu informačního systému v letech 2004 – 2006. V tomto období byl zmodernizován především Dálkový přistup do katastru nemovitostí a zavedena orientační mapa parcel. Důležitou inovací bylo zavedení elektronické značky pro výpis z katastru nemovitostí a pro kopii katastrální mapy ³. [8]

Společnost NESS Czech s.r.o. poté v dalších letech vyhrála několik veřejných zakázek týkajících se údržby a rozvoje ISKN. Hlavním cílem bylo převedení decentralizovaného systému (107 lokálních databází replikovaných do centrální databáze) na centralizovaný systém, ve kterém byla data ISKN uložena pouze v jedné databázi. Spolu s touto úpravou byla změněna i architektura z původní client/server na třívrstvou architekturu. Architektura je postavena na platformě Oracle Forms/Reports 10g a databázi Oracle 10g. Další změnou byl přechod na vyšší verzi Bentley nástroje pro správu prostorových dat. [8]

ISKN byl nadále zlepšován. Za zmínku stojí především systém pro Dálkový přístup do katastru nemovitostí nebo zavedení možnosti získat informaci o ukončení řízení pomocí SMS nebo e-mailové zprávy. [8]

3.2 Hlavní charakteristiky ISKN

3.2.1 Optimalizace uložení dat

Díky zvolení jednotného datového modelu pro uložení popisných a prostorových dat v databázi Oracle spolu s daty týkajících se správních řízení byla umožněna současná aktualizace popisných a prostorových dat a udržení jejich vzájemné konzistence. Pro optimalizaci byla také přijata koncepce samostatné evidence budov a bezešvé digitální katastrální mapy. Od konce roku 2001 jsou uchovávány také veškerá historická data popisných a prostorových dat, díky čemuž je možné sestavovat

³Tento krok umožnil, aby tzv. "ověřující" podle zákona č. 365/2000 Sb., o informačních systémech veřejné správy, v platném znění, mohli poskytovat ověřené výpisy z katastru nemovitostí, převedené z elektronické do listinné podoby. [8]

data do potřebných výstupů k historickému datu od zavedení ISKN v roce 2001. [8]

3.2.2 Optimalizace procesů při správě KN

Do systému ISKN byla zavedena celá řada automatických kontrol pro proces zapsání změny do KN. Dále bylo umožněno převzetí aktuálních dat z jiných registrů (např. registr obyvatel) a ostatních informačních systémů. Postup provedení změny dat KN je následující: na základě návrhu je připraven budoucí stav, který je možné před jeho zplatněním zobrazit (SPI, SGI), případně v něm provádět úpravy. Toto zajišťuje důkladnou kontrolu výsledného stavu katastru. Proces realizace změny je navíc zajištěn i technicko-organizačními opatřeními (návrh změny a kontrolu, včetně zplatnění provádí vždy jiná osoba dle přidělených uživatelských rolí). [8]

Díky novým procesům ve zpracování dat/návrhů změn je možné částečné nabytí platnosti geometrického plánu s automatizovanou změnou návrhu změny v budoucím stavu. Nové procesy také umožňují aktualizaci dat katastru nemovitostí takovým způsobem, aniž by zamkly aktualizovaná data. Pouze se jimi řeší konflikty v aktualizaci stejných dat.

Součástí ISKN je také jednotná centrální správa číselníků, která vnáší jednotnost do procesu zpracování změn na katastrálních úřadech. Tímto se rapidně zvyšuje konzistence a kvalita datové základny. Některé z centrálních číselníků nebo seznamů jsou přebírány z externích datových zdrojů (např. číselníky územní identifikace, PSČ). [8]

3.2.3 Bezpečnost

Vysoká bezpečnost ochrany dat je zajištěna kombinací hardwarových prostředků s operačním systémem, databází a vlastní aplikací ISKN. Nepřetržitý provoz je zajištěn pomocí technologie databázových a aplikačních clusterů a tím, že je celá infrastruktura zdvojena (primární a záložní centrum). Do záložního centra jsou replikována veškerá data tak, aby byl v případě náhlého výpadku primárního centra zajištěn nepřetržitý provoz ISKN. [8]

3.3 Poskytování dat

Poskytování dat je umožněno na základě vyhlášky číslo 358/2013 Sb., o poskytování údajů z katastru nemovitostí. [8]

3.3.1 Poskytování dat dálkovým přístupem

Na základě registrace je umožněno poskytování dat (zdarma, nebo za úplatu podle typu zákazníka) prostřednictvím sítě Internet. Výpisy z KN a snímky katastrální mapy mají povahu veřejných elektronických listin (jsou opatřeny elektronickou značkou) a mohou být převedeny do podoby listinných veřejných listin. Tímto způsobem je v současné době vyřizována více než třetina výstupů. [8]

Více informací o této metodě poskytování dat je spolu s aplikací dostupných na stránkách ČUZK (http://www.cuzk.cz/aplikace-dp/).

3.3.2 Poskytování dat ve výměnném formátu ISKN

Data z KN mohou být poskytována v textovém souboru, který obsahuje záznamy v pevně definované struktuře. Více informací o tomto výměnném formátu je uvedeno v kapitole č. 4.

Kapitola 4

Výměnný formát ISKN

V této kapitole je ve stručnosti popsána historie vývoje výměnného formátu ISKN spolu s jeho popisem, ve kterém se věnuji především sekcím důležitým pro vývoj zásuvného modulu pro QGIS, který dokáže data v tomto formátu zobrazit.

4.1 Vývoj formátu

Hlavním milníkem ve vývoji výměnného formátu bylo zavedení ISKN, viz. kapitola č. 3. Do této doby byly soubory SPI a SGI ukládány odděleně, což se právě se zavedením ISKN změnilo. Tento krok vedl k vytvoření nového výměnného formátu (NVF), který postupně nahrazoval starý výměnný formát (SVF). [10]

4.1.1 Výměnný formát KN před ISKN

Tento formát je po zavedení nového formátu také nazýván starý výměnný formát – SVF. Byl vytvořen roku 1996, kdy začala vznikat digitalizace SGI. Obsahuje dvě samostatné části:

- 1. **SPI** Obsahuje informace o vlastnících, parcelách a nabývacích titulech. Byl distribuován ve dvou formátech:
 - (a) soubory ve formátu .dbf: Tento typ souboru byl dále dělen na další dvě části:
 - i. SPI bez jiných právních vztahů (bez JPV),
 - ii. SPI s jinými právními vztahy (s JPV).
 - (b) soubory ve formátu .txt: SB, SC, SE

Data byla poskytována v následujících rozsazích: podle územní jednotky (katastrální území, obec, okres, ČR), dle výběru parcel, nebo na základě oprávněného subjektu (pouze ve formátu .txt).

Ve výše zmíněných formátech (.dbf, .txt) jsou značné nesoulady. Ty jsou způsobeny hlavně neexistencí některých položek v novém datovém modelu ISKN nebo jejich rozdílnou interpretací.

2. SGI – Jsou v něm obsaženy informace o poloze nemovitostí.

Data byla poskytována pro katastrální území, kde již byla provedena digitalizace.

V současné době je již oficiální podpora ukončena a byl nahrazen právě novým výměnným formátem. [22]

4.1.2 Výměnný formát VF ISKN

Formát je nazýván také jako nový výměnný $formát - \mathbf{NVF}$. V tomto formátu jsou obsaženy zároveň popisné i grafické informace včetně dat o řízení. Data jsou vytvářena ve dvou stavech:

- Stavová data Data jsou vygenerována vzhledem ke konkrétnímu časovému okamžiku. Obsahují vždy kompletní data pro daný okamžik. Práce s těmito daty je řešena v původní verzi zásuvného modulu pro QGIS.
- Změnová data Jsou v nich obsaženy pouze změny za požadovaný časový úsek. Zpracováním a zobrazením změnových dat v programu QGIS se zabývá právě tato diplomová práce.

Data jsou poskytována v následujících rozsazích:

- územní jednotka (katastrální území, obec, okres, ČR),
- oprávněný subjekt,
- výběr parcel,
- výběr parcel polygonem v mapě.

Do výměnného souboru je možné dle přání zákazníka vybrat libovolné kombinace datových skupin, viz tab. 4.1. [10]

Název skupiny Obsah Nemovitosti parcely a budovy bytové jednotky Jednotky Bonitní díly parcel kódy BPEJ k parcelám oprávněné subjekty listv vlastnictví, Vlastnictví a vlastnické vztahy Jiné právní vztahy ostatní právní vztahy kromě vlastnictví Řízení údaje o řízení (vklad, záznam,...) a listiny Prvky katastrální mapy katastrální mapy v digitální podobě **BPEJ** hranice BPEJ včetně kódů Geometrický plán geometrické plány Rezervovaná čísla rezervovaná parcelní čísla a čísla PBPP Definiční body definiční body parcel a staveb Adresní místa adresní místa budov

Tabulka 4.1: Datové skupiny VF ISKN (zdroj: [21])

4.2 Struktura výměnného formátu ISKN

Tato kapitola pojednává o struktuře výměnného formátu ISKN. Nejsou zde popsány a do detailu rozvedeny veškeré datové bloky formátu, ale pouze ty nejdůležitější prvky formátu vzhledem k zásuvnému modulu pro QGIS. Podrobný popis formátu je dostupný v oficiální dokumentaci ([18]), ze které tato kapitola čerpá. Veškeré ukázky výměnného formátu jsou pořízeny z testovacích dat dostupných na stránkách ČUZK ([21]).

Datový soubor .vfk se skládá ze tří základních částí, které budou samostatně popsány na následujících řádcích této kapitoly:

- hlavička &H,
- datové bloky &B,
- koncový znak &K.

Datový soubor je vytvářen v kódování češtiny dle ČSN ISO 8859-2 (ISO Latin2)¹. Desetinným oddělovačem je tečka (.). Datum a čas je uveden ve tvaru "03.06.1999 09:58:42". Jednotlivé záznamy na řádcích jsou odděleny pomocí středníku (;). Každá datová věta je ukončena pomocí souslednosti znaků <CR><LF>. Znak "Z" znamená, že následující řádek souboru výměnného formátu je pokračováním předchozího řádku a tvoří jedinou datovou větu, která v textové položce obsahuje formátovací znaky <CR><LF>. [18]

¹Ve výjimečných případech je možné použít kódování WIN1250. Toto kódování je použito i v souboru ve formátu XML verze 1.0.

4.2.1 Hlavička &H

Každý řádek hlavičky začíná sousledností znaků &H, po které následuje označení položky, např. VERZE. Jednotlivé údaje jsou odděleny pomocí středníku. Hlavička obsahuje několik povinných řádků, jejichž seznam je uveden v tabulce 4.2.

Tabulka 4.2: Seznam položek hlavičky (zdroj: [18])

Položka	Popis
VERZE	označení verze VF
VYTVORENO	datum a čas vytvoření souboru
PUVOD	původ dat
CODEPAGE	označení kódové stránky
SKUPINA	seznam skupin datových bloků souboru
JMENO	jméno osoby, která soubor vytvořila
PLATNOST	časová podmínka použitá pro vytvoření souboru
ZMENY	stavová, nebo změnová data
POLYG	omezující podmínka – polygon
KATUZE	omezující podmínka – katastrální území
OPSUB	omezující podmínka – oprávněné subjekty
PAR	omezující podmínka – parcely

Příklad prvních řádků hlavičky je uveden v tabulce 4.3. Tabulka byla vytvořena na základě testovacích dat a obsahuje i některé nepovinné položky, např. &HINFO.

Tabulka 4.3: Ukázka hlavičky (zdroj: [18])

Položka	Atributy
&HVERZE	"5.0"
&HINFO	"TESTOVACÍ"
&HVYTVORENO	"23.11.2013 12:58:06"
&HPUVOD	"ISKN"
&HCODEPAGE	"WE8ISO8859P2"
&HSKUPINA	"NEMO";"JEDN";"BDPA";"VLST";"JPVZ"
&HJMENO	"Kokeš Petr Ing."
&HPLATNOST	"23.11.2013 12:51:00";"23.11.2013 12:51:00"
&HZMENY	0
&HNAVRHY	0
&HPOLYG	0

VERZE: Pouze jeden řádek označující verzi souboru VFK.

VYTVOŘENO: Datum a čas, kdy byl datový soubor vygenerován.

- PŮVOD: Specifikuje původ dat. Standardně je zde uvedeno "ISKN".
- CODEPAGE: Označení kódové stránky. Hodnota "WE8ISO8859P2" značí kódování češtiny dle ČSN ISO 8859-2. Hodnota ""EE8MSWIN1250" slouží pro označení kódování češtiny dle MS WIN1250.
- SKUPINA: Uvádí se zde seznam datových bloků souboru. Např. &HSKUPINA; "Zkratka skupiny\;[\Zkratka skupiny" ...].
- JMÉNO: Jméno osoby, která soubor vytvořila. Např. &HJMENO; "Jméno Příjmení".
- PLATNOST: Časová podmínka použitá pro vytvoření souboru. Zde jsou možné dvě varianty:
 - Data jsou platná v daném čase. &HPLATNOST; "03.12.2013 09:56:42"; "03.12.2013 09:56:42",
 - data jsou platná v daném období. & HPLATNOST; "03.12.2012 09:56:42"; "03.12.2013 09:56:42".

S tímto souvisí položka &HZMENY, která nabývá hodnot 0/1 a označuje, zda se jedná o data stavová, nebo změnová. Položka &HNAVRHY nabývá také hodnot 0/1 a značí, zda jsou v souboru obsaženy potvrzené geometrické plány, či nikoliv.

- KATUZE: Obsahuje jeden řádek, který popisuje hlavičku omezující podmínky katastrálních území. Další řádky začínající &D tvoří omezující podmínku. Počet datových řádků udává počet katastrálních území, která omezující podmínku tvoří. Pokud v omezující podmínce není žádné katastrální území, bude uvedena pouze hlavička. Pro ujasnění je zde uveden příklad z testovacích dat.
 - &HKATUZE; KOD N6; OBCE_KOD N6; NAZEV T48; PLATNOST_OD D; PLATNOST_DO &DKATUZE;693936;550426;"Jama";"19.06.1991 00:00:00";""
- **OPSUB:** První řádek popisuje hlavičku omezující podmínky oprávněných subjektů. Další řádky s daty poté omezující podmínku tvoří, obdobně jako je uvedeno u omezující podmínky pro katastrální území. Počet datových řádků je shodný s počtem oprávněných subjektů v omezující podmínce.
- PAR: První řádek popisuje hlavičku omezující podmínky parcel. Další řádky tvoří omezující podmínku. Počet datových řádků je shodný s počtem parcel uvedených v omezující podmínce.
- **POLYG:** Tento údaj může nabývat hodnot 0/1. Pokud je uvedena hodnota 1, tak je obsah souboru odvozen z polygonu. V takovém to případě musí být polygon na dalších řádcích definován svými vrcholy. Takto zadaný polygon může mít nejvýše 101 vrcholů. Příklad zadání omezujícího polygonu:

```
&HPOLYGDATA; 675124.12; 1024587.24
&HPOLYGDATA; 675224.12; 1024687.24
&HPOLYGDATA; 675184.12; 1024537.24
```

4.2.2 Datové bloky

Datové bloky obsahují řádky dvojího typu:

- uvozující řádek bloku &B obsahuje seznam atributů s jejich datovými typy, viz tab. 4.4,
- datové řádky &D v řádku jsou uvedeny vlastní data.

Tabulka 4.4: Datové typy ISKN (zdroj: [10])

		(3 [-])
Kód	Datový typ	Číslo za kódem
N	číselný	maximální délka položky
${ m T}$	textový	maximální délka textu
D	$datumov\acute{y}$	ve tvaru DD.MM.YYYY HH:MI:SS

Níže je uveden příklad datového bloku pro blok "PARCELA". Ukázka je pořízena z testovacích dat.

```
&BPAR; ID N30; STAV_DAT N2; DATUM_VZNIKU D; DATUM_ZANIKU D; PRIZNAK_KONTEXTU N1; RIZENI_ID_VZNIKU N30; RIZENI_ID_ZANIKU N30; PKN_ID N30; PAR_TYPE T10; KATUZE_KOD N6; KATUZE_KOD_PUV N6; DRUH_CISLOVANI_PAR N1; KMENOVE_CISLO_PAR N5; ZDPAZE_KOD N1; PODDELENI_CISLA_PAR N3; DIL_PARCELY N1; MAPLIS_KOD N30; ZPURVY_KOD N1; DRUPOZ_KOD N2; ZPVYPA_KOD N4; TYP_PARCELYN1; VYMERA_PARCELY N9; CENA_NEMOVITOSTI N14.2; DEFINICNI_BOD_PAR T100; TEL_ID N30; PAR_ID N30; BUD_ID N30; IDENT_BUD T1; SOUCASTI T1; PS_ID N30; IDENT_PS T1
```

```
&DPAR;3067989306;0;"26.06.2003 07:43:05";"";3;3003873306;;;"PKN"; 693936;;1;37;;1;;6780;2;13;;;332;;"";674674306;;323700306;"a";"n ";;"n"
```

Seznam skupin datových bloků ISKN

V této sekci je uveden popis jednotlivých skupin datových bloků. Jsou zde uvedeny pouze nejpodstatnější informace, podrobný popis lze dohledat v oficiální dokumentaci formátu VFK ([18]).

NEMOVITOSTI: Jedná se o největší skupinu datových bloků. Celkem jich může obsahovat až 21. V této skupině se nachází dva nejdůležitější bloky z pohledu zásuvného modulu pro QGIS, a to bloky PAR a BUD. Právě tyto dva bloky jsou pomocí zásuvného modulu vizualizovány. Dále je zde obsažen například číselník způsobů využití pozemku nebo způsob využití budov. Seznam všech bloků v této skupině je uveden v tabulce 4.5. Znak (*) uvedený v tabulce znamená, že daný blok nepodléhá historizaci.

Tabulka 4.5: Seznam datových bloků ve skupině "NEMOVITOSTI" (zdroj: [18])

Kód	Popis
PAR	Parcely
BUD	Budovy
CABU	Části budov
ZPOCHN*	Číselník způsobů ochrany nemovitosti
DRUPOZ*	Číselník druhů pozemku
ZPVYPO*	Číselník způsobů využití pozemku
$ZDPAZE^*$	Číselník zdrojů parcel ZE
ZPURVY*	Číselník způsobů určení výměry
TYPBUD*	Číselník typů budov
MAPLIS*	Číselník mapových listů
KATUZE*	Číselník katastrálních území
$OBCE^*$	Číselník obcí – vázaně
CASOBC*	Číselník částí obce – vázaně
OKRESY*	Číselník okresů – vázaně
KRAJE*	Číselník krajů – vázaně
NKRAJE*	Číselník nových krajů – vázaně
RZO	Přiřazení způsobu ochrany k nemovitostem
ZPVYBU*	Způsob využití budov
PS	Práva stavby
RU	Přiřazení účelu práva stavby
UCEL	Číselník účelů práva stavby

JEDNOTKY: V této skupině jsou uvedeny bytové či nebytové prostory, které byly označeny příslušnou listinou jako jednotka. Pro každou jednotku je uveden její popis (jednoznačně ji identifikuje v rámci budovy), typ a způsob využití. Ke každé jednotce je dále uveden spoluvlastnický podíl ($\frac{\text{velikost podlahové plochy}}{\text{celková plocha všech jednotek v domě}}$). [10]

Tabulka 4.6: Seznam datových bloků ve skupině "JEDNOTKY" (zdroj: [18])

Kód	Popis
JED	Jednotky
TYPJED*	Číselník typů jednotek
ZPVYJE*	Způsob využití jednotek

BONITNÍ DÍLY PARCEL: Jsou zde uvedeny informace o bonitních dílech parcely. Ve skupině se nachází pouze jeden datový blok (BDP), ve kterém je popsán vztah mezi BPEJ² a parcelou. [10]

VLASTNICTVÍ: Tato skupina bloků obsahuje informace o vlastnictví. Jako vlastník zde může být uvedena fyzická osoba, právnická osoba nebo jiný oprávněný uživatel (manželé v bezpodílovém spoluvlastnictví). Ve skupině se může nacházet několik datových bloků, viz tab. 4.7. [10]

Tabulka 4.7: Seznam datových bloků ve skupině "VLASTNICTVÍ" (zdroj: [18])

Kód	Popis
OPSUB	Oprávněné subjekty
VLA	Vlastnictví
CHAROS*	Číselník charakteristik oprávněných subjektů
TEL	Katastrální tělesa

JINÉ PRÁVNÍ VZTAHY: Obsahuje informace o jiných než vlastnických vztazích jednoho oprávněného subjektu (nemovitosti) ke konkrétnímu předmětu (nemovitosti, vlastnictví, dalšímu jinému právnímu vztahu). Seznam a popis datových bloků je uveden v tabulce č. 4.8. [10]

Tabulka 4.8: Seznam datových bloků ve skupině "JINÉ PRÁVNÍ VZTAHY" (zdroj: [18])

Kód	Popis
JPV	Jiné právní vztahy
TYPRAV*	Číselník typů právních vztahů
RJPV	Vazba JPV k jinému věcnému právu

²Bonitovaná půdně-ekologická jednotka: Základní určovací a oceňovací jednotka produkční schopnosti zemědělské půdy. Je vyjádřená číselným kódem – číslice kódu vyjadřují půdně-klimatické vlastnosti půdy. Jednotky tvoří ohraničený územní celek, který má specifické ekologické vlastnosti a bioenergetický potenciál. [20]

ŘÍZENÍ: Tato skupina je druhou nejobsáhlejší skupinou ve výměnném formátu. Může být obsažena ve změnovém exportu z ISKN – v tomto případě obsahuje pouze záznamy, které byly v daném časovém intervalu změněny. Obsahuje několik datových bloků, viz tab. 4.9. [10]

Tabulka 4.9: Seznam datových bloků ve skupině "ŘÍZENÍ" (zdroj: [18])

Kód	Popis
RIZENI*	Řízení (vklad, záznam)
RIZKU*	Vazba Řízení – Katastrální území
OBJRIZ*	Objekty řízení (parcely, budovy,)
PRERIZ*	Předměty řízení
$UCAST^*$	Účastníci řízení
ADRUC*	Adresy účastníků řízení
LISTIN*	Listiny
DUL^*	Další údaje listin
LDU^*	Vazba Listiny – Další údaje listin
TYPLIS*	Číselník typů listin
TYPPRE*	Číselník typů předmětu řízení
TYPRIZ*	Typy řízení
TYPUCA*	Typy účastníků řízení
$UCTYP^*$	Vazba Účastnící – Typy účastníků řízení
RL	Přiřazení listin k nemovitostem, vlastnictví a jiným právním vztahům
OBESMF*	Obeslání účastníků řízení

PRVKY KATASTRÁLNÍ MAPY: Tato skupina je jednou z nejdůležitějších pro zásuvný modul, respektive pro driver VFK v knihovně GDAL. Jsou v ní totiž obsaženy jak popisné, tak hlavně polohopisné informace o prvcích polohopisu. Z nich (tedy hlavně z prvních dvou datových bloků SOBR a SBP) je tvořena geometrie vektorové mapy. Spolu s nimi skupina obsahuje další neméně důležité datové bloky, viz tab. 4.10. [10]

Tabulka 4.10: Seznam datových bloků ve skupině "PRVKY KATASTRÁLNÍ MAPY" (zdroj: [18])

Kód	Popis
SOBR*	Souřadnice obrazu bodů polohopisu v mapě
SBP	Spojení bodů polohopisu – definuje polohopisné liniové prvky
SBM	Spojení bodů mapy – definuje nepolohopisné liniové prvky
KODCHB*	Číselník kódů charakteristiky kvality bodu
TYPSOS*	Číselník typů souřadnicových systémů
HP	Hranice parcel
OP	Obrazy parcel (parcelní číslo, značka druhu pozemku,)
OB	Obrazy budov (obvod budovy, značka druhu budovy)
DPM	Další prvky mapy
OBBP	Obrazy bodů BP
TYPPPD*	Číselník typů prvků prostorových dat
ZVB	Zobrazení věcných břemen
POM	Prvky orientační mapy
SPOM	Spojení prvků orientační mapy – definuje liniové prvky
SPOL	Souřadnice polohy bodů polohopisu (měřené)

BPEJ: Skupina BPEJ obsahuje dva datové bloky, viz tab. 4.11. Jsou v ní obsaženy informace o bonitovaných půdně ekologických jednotkách. BPEJ je základní mapovací a oceňovací jednotka zemědělských půd, která vyjadřuje rozdílné produkční a ekonomické efekty zemědělského území. Hranice BPEJ nejsou součástí katastrální mapy. Pouze tvoří rozhraní mezi dvěma jednotkami. [10]

Tabulka 4.11: Seznam datových bloků ve skupině "BPEJ" (zdroj: [18])

Kód	Popis
HBPEJ	Hranice BPEJ
OBPEJ	Označení BPEJ

GEOMETRICKÝ PLÁN: Tato skupina obsahuje sadu bloků popisujících geometrický plán a hlavičku dalších změn v KM, které nejsou prováděny geometrickým plánem. Obsahuje několik datových bloků, jejichž seznam je uveden v tabulce č. 4.12. Ve skupině je obsažena tabulka pro uchování záznamů podrobného měření změn jak v terénu, tak i změn, které s měřením v terénu nesouvisí (slučování parcel, demolice budov, ...). [10] [18]

Tabulka 4.12: Seznam datových bloků ve skupině "GEOMETRICKÝ PLÁN" (zdroj: [18])

Kód	Popis
NZ	Hlavičky geometrických plánů a ostatních změn KM
ZPMZ	Hlavičky ZPMZ
NZZP	Vazební tabulka návrhy změn KM – ZPMZ
PARG	Parcely GP
BUDG	Budovy GP
BDPG	Bonitní díly parcel GP
HPG	Hranice parcel GP
OPG	Obrazy parcel GP
OBG	Obrazy budov GP
ZVBG	Zobrazení věcných břemen GP
DPMG	Další prvky mapy GP
SBPG	Spojení bodu polohopisu GP
OBPEJG	Označení BPEJ GP
SBMG	Spojení bodů mapy GP
HBPEJG	Hranice BPEJ GP
OBDEBOG	Obrazy definičních bodů parcel a budov GP

REZERVOVANÁ ČÍSLA: Rezervovanými čísly se v této skupině myslí parcelní čísla, která byla rezervována pro účely vyhotovení geometrického plánu. Před potvrzením geometrického plánu probíhá kontrola, jestli byla použita přidělená rezervovaná parcelní čísla. Při zápisu nové parcely do KN se její číslo z tabulky RECI maže. Úplné parcelní číslo musí být jedinečné v rámci tabulek PAR a RECI.

Datový blok DOCI obsahuje všechna parcelní čísla, která kdy byla použita za dobu elektronického vedení katastru nemovitostí v informačním systému ISKN (od r. 2001). Seznam všech datových bloků je uveden v tabulce č. 4.13. [10] [18]

Tabulka 4.13: Seznam datových bloků ve skupině "REZERVOVANÁ ČÍSLA" (zdroj: [18])

Kód	Popis
RECI	Rezervovaná parcelní čísla
DOCI	Dotčená parcelní čísla
DOHICI	Dotčená historická parcelní čísla
REZBP	Rezervovaná čísla bodu PBPP

DEFINIČNÍ BODY: Skupina obsahuje pouze jeden datový blok OBDEBO. V tomto bloku jsou obsaženy obrazy definičních bodů parcel, budov a částí budov (po-

kud jsou v ISKN naplněny). Jsou zde uvedeny údaje o souřadnicích a odkazech (ID) na objekty v KN. [18]

ADRESNÍ MÍSTA: Datový blok BUDOBJ zajišťuje vazbu mezi budovami a adresami pomocí ID budovy a kódu objektu. Tento blok nepracuje s historií – obsahuje vždy aktuální data bez ohledu na datum, ke kterému je export NVF vytvořen.

Ve druhém bloku (ADROBJ) jsou uvedeny odkazy na adresy budov, které jsou obsaženy v bloku nemovitostí. Blok opět nepracuje s historií. [18]

Tabulka 4.14: Seznam datových bloků ve skupině "ADRESNÍ MÍSTA" (zdroj: [18])

Kód	Popis
BUDOBJ	Odkazy objektů na adresy
ADROBJ	Adresy

4.2.3 Koncový znak &K

Specifickou částí výměnného formátu je takzvaný "koncový znak" &K. Načtení tohoto znaku signalizuje konec souboru výměnného formátu. Pro driver VFK v knihovně GDAL znak znamená konec načítání.

4.3 Změnové věty v NVF

Změnový export nelze provést nad všemi skupinami datových bloků. Proveden může být pouze nad následujícími:

- nemovitosti,
- jednotky,
- bonitní díly parcel,
- vlastnictví,
- JPV,
- řízení,
- prvky katastrální mapy,
- BPEJ.

Objekty, které byly vybrány v parametrech při spuštění exportu, jsou součástí datového souboru i v případě, kdy na nich nebyla provedena žádná změna (tzn. jsou platné). Pro ostatní objekty ve vybraných datových skupinách se exportují pouze změnové věty. [18]

4.3.1 Obsah změnového exportu – Typy tabulek

Z pohledu exportu změnových vět rozlišujeme několik skupin tabulek, které jsou rozděleny podle toho, zda podléhají principu historizace, či nikoliv.

Tabulky předmětu KN podléhající principu historizace

Uchovává se u nich jak minulost, tak současnost. Tento typ obsahuje tabulky, ve kterých jsou uloženy informace o parcelách, budovách, jednotkách, OS, JPV, přiřazených listinách a katastrálních tělesech. Aktuálnost dat je vyjádřena pomocí následujících atributů: datum vzniku, datum zániku, stav dat a kontext změn. Může nastat několik kombinací atributů, jejich seznam a popis je uveden v tabulce č. 4.15. [18]

Tabulka 4.15: Kombinace atributů vyjadřujících aktuálnost dat (zdroj: [18])

Operace	Stav dat	Kontext změn	Událost
UPDATE	-1	1	Objekt byl v exportovaném období změněn, původní verze objektu zanikla, nová verze vznikla. Nová verze není vzhledem k sys. datu aktuální, (záznam je v minulosti).
	-1	3	Objekt v exportovaném období vznikl a později byl změněn – verze není vzhledem k sys. datu aktuální, (záznam je v minulosti).
	0	3	Objekt byl v exportovaném období změněn, vznikla nová verze, která vzhledem k sys. datu je aktuální.
DELETE	3	1	Objekt byl v exportovaném období zrušen.
INSERT	0	3	Objekt vznikl v exportovaném období.
LOCK	0	2	Objekty zadané ve vstupních parametrech.

Jestliže je provedena operace UPDATE, tak je možné mít v exportovaném datovém souboru několik vět se stejným ID. Počet těchto vět je ovlivněn především počtem změn na daném objektu v exportovaném období, ale i vzájemným vztahem datových položek platnost od a platnost do u exportovaného objektu vzhledem k danému období.

U operací INSERT a DELETE je v datovém souboru možný pouze jeden záznam s jedním ID. [18]

Příklad obsahu změnového exportu:

```
ID N30;STAV_DAT N2;DATUM_VZNIKU D;DATUM_ZANIKU D;PRIZNAK_KONTEXTU N1;
   RIZENI_ID_VZNIKU N30;RIZENI_ID_ZANIKU N30
493589708;-1;"11.12.1998";"13.09.2002";1;908105708;919198708
493589708;-1;"13.09.2002";"14.11.2002";3;919198708;920435708
493589708;-1;"14.11.2002";"15.11.2002";3;920435708;920595708
493589708;-1;"15.11.2002";"";3;920595708;922200708
```

Tabulky nepodléhající principu historizace (skupina RIZENI)

Jsou exportovány daná řízení, která byla v zadaném intervalu (Platnost od – Platnost do) zplatněna, nebo uzavřena. Na tato řízení navazuje vazba na k.ú., objekty řízení, předměty říz., účast. říz., adresy, listiny, vazba na další údaje listin, typy účastníků řízení a denormalizovaná data o obeslání účastníků. [18]

Tabulky nepodléhají principu historizace (skupiny GMPL a REZE)

U těchto tabulek se udržuje aktuální stav. Nemohou být proto obsahem změnových vět. Jsou zde udržovány informace o geometrických plánech (skupina GMPL) a rezervovaných číslech (skupina REZE). [18]

Export číselníků

V číselnících jsou exportována jen ta data, u kterých byla platnost započata nebo ukončena v zadaném časovém intervalu (Platnost od – Platnost do). [18]

Literatura

- [1] AbcLinuxu výkladový slovník. [online], cit. 2016-03-15. URL http://www.abclinuxu.cz/slovnik/open-source
- [2] CAD Studio VFK2DB. [online], cit. 2016-04-18. URL http://www.cadstudio.cz/vfk
- [3] CAD Studio VFK2DWG. [online], cit. 2016-04-18. URL http://www.cadstudio.cz/vfk2dwg
- [4] GDAL Official website. [online], cit. 2016-03-15. URL http://www.gdal.org/
- [5] GDAL Wikipedie. [online], cit. 2016-03-16. URL https://cs.wikipedia.org/wiki/GDAL
- [6] VFK Czech Cadastral Exchange Data Format. [online], cit. 2016-04-21. URL http://gdal.org/drv_vfk.html
- [7] Import dat KN ve výměnném formátu. [online], cit. 2016-04-21. URL http://www.gisoft.cz/Moduly/ImportVFK
- [8] Informační systém katastru nemovitostí. [online], cit. 2016-03-28. URL http://goo.gl/9o771D
- [9] ISKN pro ArcGIS for Desktop. [online], cit. 2016-04-20.
 URL https://www.arcdata.cz/produkty/ceska-specifika/iskn-pro-arcgis-for-desktop
- [10] LANDA, M.: Návrh modulu GRASSu pro import dat ve výměnném formátu ISKN. Diplomová práce, České vysoké učení technické, Praha, 2005. URL http://goo.gl/5ZzQps
- [11] PILGRIM, M.: Dive into Python. Berkeley: Apress, 7 2004, ISBN 978-1-59059-356-1.
- [12] PyQt Official website. [online], cit. 2016-03-15. URL https://riverbankcomputing.com/software/pyqt/intro

- [13] PyQt Wikipedie. [online], cit. 2016-03-15. URL https://en.wikipedia.org/wiki/PyQt
- [14] Python official website. [online], cit. 2016-03-15. URL https://www.python.org/
- [15] QGIS Official website. [online], cit. 2016-03-15. URL http://www.qgis.org/
- [16] QGIS Wikipedie. [online], cit. 2016-03-16. URL https://cs.wikipedia.org/wiki/QGIS
- [17] Spirit VFK. [online], cit. 2016-04-21.

 URL http://www.georeal.cz/cz/spirit-desktop/spirit-vfk
- [18] Struktura VFK. [online], cit. 2016-03-15. URL http://goo.gl/2I22N6
- [19] Topol VFK Import. [online], cit. 2016-04-20. URL http://www.datasystem.cz/vfk-import-s-37-m-4.html
- [20] Slovník VUGTK. [online], cit. 2016-04-01. URL http://www.vugtk.cz/slovnik/index.php
- [21] Výměnný formát ISKN v textovém tvaru. [online], cit. 2016-03-30. URL http://goo.gl/zF0Dt2
- [22] Výměnný formát KN před ISKN. [online], cit. 2016-03-30. URL http://goo.gl/XRjxyb

Seznam obrázků

1.1	Aplikace ISKN Studio	3
1.2	Aplikace ISKN View	3
1.3	Import dat KN ve výměnném formátu – ukázka použití	4
1.4	Spirit VFK – ukázka aplikace	5
1.5	Aplikace VFK2DWG	6
1.6	Aplikace VFK2DWG – ukázka načtených dat	7
1.7	Topol VFK Import – ukázka zpracovaných dat	8
1.8	Ukázka načtení VFK pomocí VFK Driveru GDAL v programu GRASS GIS	9
2.1	QGIS – logo	10
2.2	GDAL – logo	11
2.3	Python – logo	12
2.4	PyQt – logo	12
3.1	ČUZK – logo	13

Seznam tabulek

4.1	Datové skupiny VF ISKN	19
4.2	Seznam položek hlavičky	20
4.3	Ukázka hlavičky	20
4.4	Datové typy ISKN	22
4.5	Seznam datových bloků ve skupině "NEMOVITOSTI"	23
4.6	Seznam datových bloků ve skupině "JEDNOTKY" 	24
4.7	Seznam datových bloků ve skupině "VLASTNICTVÍ"	24
4.8	Seznam datových bloků ve skupině "JINÉ PRÁVNÍ VZTAHY" . . .	24
4.9	Seznam datových bloků ve skupině "ŘÍZENÍ"	25
4.10	Seznam datových bloků ve skupině "PRVKY KATASTRÁLNÍ MAPY"	26
4.11	Seznam datových bloků ve skupině "BPEJ"	26
4.12	Seznam datových bloků ve skupině "GEOMETRICKÝ PLÁN"	27
4.13	Seznam datových bloků ve skupině "REZERVOVANÁ ČÍSLA"	27
4.14	Seznam datových bloků ve skupině "ADRESNÍ MÍSTA"	28
4.15	Kombinace atributů vyjadřujících aktuálnost dat	29