Computação Avançada Projeto de Avaliação

Mestrado em Engenharia Informática Universidade do Minho Relatório

Grupo

PG41080 João Ribeiro Imperadeiro PG41081 José Alberto Martins Boticas PG41091 Nelson José Dias Teixeira

21 de Janeiro de 2020

Resumo

Este projeto de avaliação relativo à unidade curricular de Computação Avançada consiste, globalmente, em instalar e configurar um cluster de HTCondor com pelo 3 nós e utilizar o mesmo na resolução de uma tarefa de processamento (compressão de um vídeo, em mp4).

Conteúdo

1	Introdução	2
	Implementação 2.1 Instalação e configuração do cluster	3 3
3	Conclusão	6
4	Webgrafia	7

Introdução

De forma sucinta, neste trabalho prático é pedida a implementação de um *cluster* HTCondor para a realização de tarefas de processamento de grandes volumes de dados ou de elevada complexidade. Para além disso, como seria de esperar, é necessário especificar o sistema desenvolvido pelos elementos deste grupo bem como aspetos adicionais associados ao mesmo.

Neste caso em concreto, é pedido algo mais específico, isto é, o desenvolvimento de uma aplicação de *resizing* de vídeo. Através deste caso, é possível mostrar o funcionamento do *cluster* em questão, transformando, por exemplo, um determinado vídeo com resolução *fullHD* (1080p) na resolução *SD* (720p).

A correta realização desta tarefa passa por reduzir o tempo necessário à conversão do vídeo em causa. Como tal, é possível partir o vídeo original em vários segmentos, fazendo a conversão de cada um destes e, no fim, juntá-los todos no vídeo de resultado. Seguindo a sugestão do docente desta unidade curricular, foi utilizado o comando ffmpeg para auxiliar a execução deste tipo de tarefa.

Implementação

2.1 Instalação e configuração do cluster

Antes de iniciarmos o desenvolvimento da solução para a realização da tarefa proposta, foi necessário configurarmos algumas máquinas, parte integrante do nosso *cluster*. Para isso, recorremos ao serviço DigitalOcean, onde é possível alugar máquinas virtuais. Assim, e dado que no enunciado são pedidas, no mínimo, 3 máquinas (valor este facilmente escalável a outros números de máquinas), alugamos 3 servidores virtuais (com 1 núcleo de processamento e 1GB de memória ram), os quais interligamos recorrendo a ligações provadas fornecidas pelo serviço.

Posto isto, fizemos a configuração inicial das máquinas, utilizando o sistema operativo CentOS, na versão 7, e seguimos os passos de instalação do HTCondor, ferramenta para criação de clusters, tal como indicado pelo docente num ficheiro na *Dropbox*. Tendo em conta que num sistema HTCondor há a noção de *master* e worker, tomámos a decisão de criar: 1 máquina master, que recebe os pedidos dos clientes e trata do processamento e eventual divisão de trabalho pelos workers, devolvendo uma resposta no fim do processamento; 3 máquinas worker, sendo que uma delas é a master, que estão responsáveis por efetuar tarefas pedidas pelo master.

Desta forma, o nosso cluster está configurado e pronto a receber tarefas para executar.

2.2 Realização da tarefa

Tendo o cluster configurado, o passo seguinte foi o desenvolvimento dos *scripts* que nos permitem executar a tarefa proposta. Esta tarefa consiste na receção de um vídeo na resolução 1080p de um utilizador pelo *master*. Por sua vez, o *master* procede à sua divisão em 3 partes iguais, enviando cada uma delas para cada um dos *workers*. Estes *workers* comprimem a sua parte do vídeo para a resolução 720p, tarefa esta que demora uma quantidade significativa de tempo, o que a torna ideal para este tipo de sistema de cluster. De seguida, os *workers* enviam a sua parte do vídeo, já comprimida, para o *master*, sendo que este junta todas as partes e devolve o vídeo comprimido ao cliente.

Para atingirmos este objetivo, proposto no enunciado, decidimos desenvolver vários scripts. O primeiro deles é um script DAG, que será submetido com o comando condor submit dag do HTCondor, e especifica a ordem das operações.

Figura 2.1: Planificação da tarefa

No código acima, juntamente com o respetivo diagrama, podemos ver o nosso script, que indica ao HTCondor a ordem e a dependência das operações a realizar na tarefa. Em primeiro lugar, especificamos o trabalho A, onde o vídeo é divido em 3 partes iguais. De seguida, definimos 3 trabalhos, o B1, B2 e B3, que correspondem ao processo de compressão de cada uma das 3 partes do vídeo. Como especificado no script, estes 3 trabalhos dependem do trabalho A, pois é necessário as 3 partes existirem antes de os workers as poderem comprimir. Por último, é definido o trabalho C, dependente do B1, B2 e B3, que corresponde ao processo de junção das 3 partes comprimidas num só vídeo.

Passando agora às operações individuais, começamos por apresentar a de dividir o vídeo em 3 partes de igual comprimento.

```
// job A:
executable = ffmpeg
arguments = -i fragmento.mp4 -c copy -map 0 -segment_time 3.5 -f segment input%1d.mp4
should_transfer_files = YES
transfer_input_files = fragmento.mp4
when_to_transfer_output = ON_EXIT
queue 1
```

Como podemos ver, é utilizada uma das muitas vertentes da ferramenta ffmpeg para dividir o vídeo, sendo que o ficheiro do vídeo (fragmento.mp4) é indicado como sendo o *input*.

De seguida, temos as 3 operações de compressão das partes do vídeo. Dado que os 3 scripts são semelhantes, apresentaremos apenas um deles.

```
// job B1 (semelhante para os jobs B2 e B3):
executable = ffmpeg
arguments = -i input0.mp4 -s 1280x720 -c:a copy output0.mp4
should_transfer_files = YES
transfer_input_files = input0.mp4
when_to_transfer_output = ON_EXIT
queue 1
```

Mais uma vez, é utilizada a ferramenta ffmpeg, recebendo como *input* a parte correspondente a cada uma das tarefas, dependendo do *worker*.

Por fim, vem a operação de junção das 3 partes do vídeo. Como o ffmpeg é muito versátil, utilizamos mais uma das suas capacidades, permitindo-nos obter o vídeo pretendido.

```
// job C
executable = ffmpeg
arguments = -f concat -safe 0 -i outputs.txt -c copy compressed.mp4
should_transfer_files = YES
transfer_input_files = outputs.txt, output0.mp4, output1.mp4, output2.mp4
when_to_transfer_output = ON_EXIT
queue 1
```

Este *script* recebe como *inputs* um ficheiro contendo os caminhos para as diferentes partes do vídeo e as 3 partes do vídeo em si.

Conclusão

Para concluir, foi possível, de uma forma muito simples, configurarmos um cluster virtual utilizando o HTCondor, de forma a comprimir um vídeo, tarefa naturalmente muito exigente do ponto de vista computacional, ao dividirmos o trabalho por 3 máquinas diferente, acelerando este processo. Assim, foi-nos possível pormos em prática os conhecimentos adquiridos na parte de HTC da unidade curricular de Computação Avançada, o que nos permitiu experimentar com máquinas virtuais na cloud e as ferramentas HTCloud/ffmpeg. Por fim, consideramos que a nossa resolução foi muito positiva, ao utilizarmos diversas funcionalidades das ferramentas propostas e ainda termos utilizado o ambiente de máquinas virtuais do HTCondor.

Webgrafia

• Documentação - ffmpeg: https://www.ffmpeg.org/ffmpeg.html

• Configuração do *cluster*:

https://tinyurl.com/sr65bna