Loan Approval Prediction

May 23, 2023

1 Importing Necessary Libraries

```
[1]: import pandas as pd,numpy as np # For Data Manipulation
import matplotlib.pyplot as pp,seaborn as sb # For Data Visualisation
from category_encoders import OrdinalEncoder # For Categorical Encoding
from sklearn.model_selection import train_test_split # For Model Validation sets
from sklearn.naive_bayes import GaussianNB # Model 1 : Naive Bayes -__

_Probablistic Model

from sklearn.tree import DecisionTreeClassifier as DTC # Model 2 : Decision__

_Tree - Determministic Model
import sklearn.tree as tree # For Decision Tree Visualisation
from sklearn.ensemble import RandomForestClassifier # Model 3 : Random Forest -__

_Ensemble Model (Bagging)
from sklearn.metrics import__

_accuracy_score,classification_report,roc_curve,roc_auc_score #Model__

_Validation
```

2 Importing our data

```
[2]: data = pd.read_csv('data.csv')
```

3 Exploring our data - Descriptive

3.1 Getting first 5 rows

```
[3]: data.head()
[3]:
         Loan ID Gender Married Dependents
                                                 Education Self_Employed
     0 LP001002
                   Male
                              No
                                          0
                                                  Graduate
                                                                       No
     1 LP001003
                   Male
                                          1
                             Yes
                                                  Graduate
                                                                       No
     2 LP001005
                   Male
                             Yes
                                          0
                                                  Graduate
                                                                      Yes
                             Yes
     3 LP001006
                   Male
                                          0
                                             Not Graduate
                                                                       No
     4 LP001008
                   Male
                                                  Graduate
                              No
                                                                       No
        ApplicantIncome
                          CoapplicantIncome
                                             LoanAmount Loan_Amount_Term \
     0
                   5849
                                        0.0
                                                     NaN
                                                                      360.0
```

1	4583	1508.0	128.	0 360.0
2	3000	0.0	66.	0 360.0
3	2583	2358.0	120.	0 360.0
4	6000	0.0	141.	0 360.0
	Credit_History Proper	ty_Area Loan_Sta	atus	
0	1.0	Urban	Y	
1	1.0	Rural	N	
2	1.0	Urban	Y	
3	1.0	Urban	Υ	

Urban

Y

3.2 Getting first 'n' rows

1.0

[4]: data.head(10)

4

Lij.		ou.nouu(1)									
[4]:		Loan_ID	Gender	Married	Dependents	E	Education	Self_Employed \	\		
	0	LP001002	Male	No	0		Graduate	No			
	1	LP001003	Male	Yes	1		Graduate	No			
	2	LP001005	Male	Yes	0		Graduate	Yes			
	3	LP001006	Male	Yes	0	Not	Graduate	No			
	4	LP001008	Male	No	0		Graduate	No			
	5	LP001011	Male	Yes	2		Graduate	Yes			
	6	LP001013	Male	Yes	0	Not	Graduate	No			
	7	LP001014	Male	Yes	3+		Graduate	No			
	8	LP001018	Male	Yes	2		${\tt Graduate}$	No			
	9	LP001020	Male	Yes	1		Graduate	No			
		Applicant		Coappl	icantIncome	Loar		Loan_Amount_Term	\		
	0		5849		0.0		NaN	360.0			
	1		4583		1508.0		128.0	360.0			
	2		3000		0.0		66.0	360.0			
	3		2583		2358.0		120.0	360.0			
	4		6000		0.0		141.0	360.0			
	5		5417		4196.0		267.0	360.0			
	6		2333		1516.0		95.0	360.0			
	7		3036		2504.0		158.0	360.0			
	8		4006		1526.0		168.0	360.0			
	9		12841		10968.0		349.0	360.0			
	_	Credit_Hi	•		_Area Loan_S						
	0		1.0		Jrban	Y					
	1		1.0		Rural	N					
	2		1.0		Jrban -	Y					
	3		1.0		Jrban	Y					
	4		1.0		Jrban	Y					
	5		1.0	Ţ	Jrban	Y					

6	1.0	Urban	Y
7	0.0	Semiurban	N
8	1.0	Urban	Y
9	1.0	Semiurban	N

3.3 Getting last 5 rows

[5]: data.tail()

[5]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	\	
	609	LP002978	Female	No	0	Graduate	No		
	610	LP002979	Male	Yes	3+	Graduate	No		
	611	LP002983	Male	Yes	1	Graduate	No		
	612	LP002984	Male	Yes	2	Graduate	No		
	613	LP002990	Female	No	0	Graduate	Yes		
		Applicant	Income	Coappli	cantIncome	LoanAmount	: Loan_Amount_	Term	\
	609		2900		0.0	71.0) 3	360.0	
	610		4106		0.0	40.0) 1	180.0	
	611		8072		240.0	253.0) 3	360.0	
	612		7583		0.0	187.0) 3	360.0	
	613		4583		0.0	133.0) 3	360.0	
		Credit_Hi	story Pi	roperty_A	Area Loan_St	tatus			
	609		1.0	Rı	ıral	Y			
	610		1.0	Rı	ıral	Y			
	611		1.0	Uı	rban	Y			
	612		1.0	U	rban	Y			
	613		0.0	Semiu	rban	N			

3.4 Getting last 'n' rows

[6]: data.tail(10)

[6]:		${ t Loan_ID}$	Gender	Married	Dependents	Education	Self_Employed	\
	604	LP002959	Female	Yes	1	Graduate	No	
	605	LP002960	Male	Yes	0	Not Graduate	No	
	606	LP002961	Male	Yes	1	Graduate	No	
	607	LP002964	Male	Yes	2	Not Graduate	No	
	608	LP002974	Male	Yes	0	Graduate	No	
	609	LP002978	Female	No	0	Graduate	No	
	610	LP002979	Male	Yes	3+	Graduate	No	
	611	LP002983	Male	Yes	1	Graduate	No	
	612	LP002984	Male	Yes	2	Graduate	No	
	613	LP002990	Female	No	0	Graduate	Yes	

ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term \

604	12000	0.0	496.0	360.0
605	2400	3800.0	NaN	180.0
606	3400	2500.0	173.0	360.0
607	3987	1411.0	157.0	360.0
608	3232	1950.0	108.0	360.0
609	2900	0.0	71.0	360.0
610	4106	0.0	40.0	180.0
611	8072	240.0	253.0	360.0
612	7583	0.0	187.0	360.0
613	4583	0.0	133.0	360.0

${\tt Credit_History\ Property_Area\ Loan_Status}$

604	1.0	Semiurban	Y
605	1.0	Urban	N
606	1.0	Semiurban	Y
607	1.0	Rural	Y
608	1.0	Rural	Y
609	1.0	Rural	Y
610	1.0	Rural	Y
611	1.0	Urban	Y
612	1.0	Urban	Y
613	0.0	Semiurban	N

3.5 Looking at the description

[7]: data.describe()

[7]:	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	١
count	614.000000	614.000000	592.000000	600.00000	
mean	5403.459283	1621.245798	146.412162	342.00000	
std	6109.041673	2926.248369	85.587325	65.12041	
min	150.000000	0.000000	9.000000	12.00000	
25%	2877.500000	0.000000	100.000000	360.00000	
50%	3812.500000	1188.500000	128.000000	360.00000	
75%	5795.000000	2297.250000	168.000000	360.00000	
max	81000.000000	41667.000000	700.000000	480.00000	

\

Credit_History 564.000000 count mean 0.842199 std 0.364878 0.000000 ${\tt min}$ 25% 1.000000 50% 1.000000 75% 1.000000 1.000000

max

3.6 Looking at its shape

```
[8]: data.shape
```

[8]: (614, 13)

4 Data Preperation

4.1 Checking for Null Values

```
[9]: data.isnull().sum()
[9]: Loan_ID
                            0
     Gender
                           13
     Married
                            3
     Dependents
                           15
     Education
                            0
     Self_Employed
                           32
     ApplicantIncome
                            0
     CoapplicantIncome
                            0
     LoanAmount
                           22
    Loan_Amount_Term
                           14
     Credit_History
                           50
    Property_Area
                            0
     Loan_Status
                            0
     dtype: int64
```

4.2 Handling Null values

4.2.1 Handling Null Values in Categorical Features

```
[10]: data['Gender'].fillna(method='ffill',inplace=True)
data['Self_Employed'].fillna(method='bfill',inplace=True)
data['Married'].fillna(method='ffill',inplace=True)
```

```
[11]: data.isnull().sum()
```

```
[11]: Loan_ID
                             0
      Gender
                             0
      Married
                              0
      Dependents
                             15
      Education
                              0
      Self_Employed
                              0
      ApplicantIncome
                             0
      CoapplicantIncome
                             0
      LoanAmount
                            22
      Loan_Amount_Term
                            14
      Credit_History
                            50
```

```
Property_Area 0
Loan_Status 0
dtype: int64
```

4.2.2 Handling Null Values in Dependents by mean

```
[12]: data['Dependents'].value_counts()
[12]: 0
            345
      1
            102
      2
            101
      3+
             51
      Name: Dependents, dtype: int64
     Converting the data into numerical
[13]: def convert_to_str(x):
          if x == '3+':
              return float(x[:-1])
          return float(x)
[14]: data['Dependents']=data['Dependents'].apply(convert_to_str)
[15]: data['Dependents'].fillna(data['Dependents'].mean(),inplace=True)
[16]: data['Dependents'] = data['Dependents'].apply(float)
      data['Dependents'].isnull().sum()
[16]: 0
     4.2.3 Handling Null Values in Numerical Features
[17]: data['LoanAmount'].fillna(data['LoanAmount'].mean(),inplace=True)
      data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mean(),inplace=True)
      data['Credit_History'].fillna(data['Credit_History'].mean(),inplace=True)
[18]: data.isnull().sum()
[18]: Loan_ID
                           0
      Gender
                           0
      Married
                           0
      Dependents
                           0
      Education
                           0
      Self_Employed
                           0
      ApplicantIncome
                           0
      CoapplicantIncome
                           0
     LoanAmount
                           0
      Loan_Amount_Term
                           0
```

```
Credit_History 0
Property_Area 0
Loan_Status 0
dtype: int64
```

4.3 Looking for duplicates

```
[19]: data.duplicated().sum()
```

[19]: 0

5 Exploring our data - Graphical

5.1 Histograms

5.2 Kde Plot

[21]: sb.pairplot(data,hue='Loan_Status',kind='kde')
pp.show()

5.3 Pair Plot

[22]: sb.pairplot(data,hue='Loan_Status')
 pp.show()

6 Encoding Categorical Features

```
[23]: data.head()
[23]:
          Loan_ID Gender Married
                                   Dependents
                                                   Education Self_Employed \
        LP001002
                    Male
                               No
                                          0.0
                                                    Graduate
                                                                         No
         LP001003
                    Male
                              Yes
                                          1.0
                                                    Graduate
                                                                         No
        LP001005
                    Male
                              Yes
                                          0.0
                                                    Graduate
                                                                        Yes
         LP001006
                    Male
                              Yes
                                          0.0
                                               Not Graduate
                                                                         No
         LP001008
                    Male
                               No
                                          0.0
                                                    Graduate
                                                                         No
         ApplicantIncome
                           CoapplicantIncome
                                              LoanAmount Loan_Amount_Term
      0
                    5849
                                               146.412162
                                                                       360.0
                                         0.0
      1
                    4583
                                      1508.0
                                               128.000000
                                                                       360.0
```

```
2
               3000
                                    0.0
                                          66.000000
                                                                  360.0
3
               2583
                                                                  360.0
                                 2358.0 120.000000
4
               6000
                                    0.0 141.000000
                                                                  360.0
   Credit_History Property_Area Loan_Status
0
               1.0
                           Urban
                                            Y
               1.0
                           Rural
                                            N
1
                                            Y
2
              1.0
                           Urban
                                            Y
3
               1.0
                           Urban
                           Urban
                                            Y
               1.0
```

6.1 Encoding for non continuous features

```
[24]: data.drop('Loan_ID',axis=1,inplace=True)
```

6.2 Encoding other features

6.2.1 Looking at our categorical Features in detail

```
[25]: cf =
      ⇒['Gender','Married','Education','Self_Employed','Property_Area','Loan_Status']
     for i in cf:
         print('----',i,'-----')
         print(data[i].value_counts())
         print('\n')
    ----- Gender -----
              500
    Male
    Female
              114
    Name: Gender, dtype: int64
    ----- Married -----
    Yes
           400
           214
    No
    Name: Married, dtype: int64
     ----- Education -----
                   480
    Graduate
    Not Graduate
                   134
    Name: Education, dtype: int64
     ----- Self_Employed -----
    No
           528
    Yes
            86
    Name: Self_Employed, dtype: int64
```

```
------- Property_Area -----------
Semiurban 233
Urban 202
Rural 179
Name: Property_Area, dtype: int64
------- Loan_Status ----------
Y 422
N 192
Name: Loan_Status, dtype: int64
```

6.2.2 Defining custom mapping

6.2.3 Encoding our data

6.2.4 Verifying our data

```
[28]: data.head()
```

```
[28]:
         Gender Married Dependents Education Self_Employed ApplicantIncome \
     0
              1
                       0
                                 0.0
                                              1
                                                             0
                                                                           5849
              1
     1
                       1
                                 1.0
                                              1
                                                             0
                                                                           4583
     2
              1
                      1
                                 0.0
                                              1
                                                             1
                                                                           3000
      3
              1
                                 0.0
                                                             0
                      1
                                              0
                                                                           2583
      4
              1
                       0
                                 0.0
                                              1
                                                             0
                                                                           6000
```

```
CoapplicantIncome LoanAmount Loan_Amount_Term
                                                          Credit_History \
      0
                       0.0 146.412162
                                                    360.0
                                                                      1.0
                                                    360.0
      1
                    1508.0 128.000000
                                                                      1.0
      2
                       0.0
                             66.000000
                                                    360.0
                                                                      1.0
      3
                    2358.0 120.000000
                                                    360.0
                                                                      1.0
      4
                       0.0
                           141.000000
                                                    360.0
                                                                      1.0
         Property_Area Loan_Status
                     2
      0
                     0
                                  0
      1
      2
                     2
                                  1
      3
                     2
                                  1
                     2
                                  1
[29]: data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 614 entries, 0 to 613
     Data columns (total 12 columns):
      #
          Column
                             Non-Null Count
                                              Dtype
          _____
                              _____
      0
          Gender
                              614 non-null
                                              int32
          Married
                             614 non-null
                                              int32
      1
      2
                                              float64
          Dependents
                              614 non-null
      3
          Education
                              614 non-null
                                              int32
      4
          Self_Employed
                              614 non-null
                                              int32
      5
          ApplicantIncome
                              614 non-null
                                              int64
      6
          CoapplicantIncome
                             614 non-null
                                              float64
          LoanAmount
                              614 non-null
                                              float64
          Loan_Amount_Term
                              614 non-null
                                              float64
          Credit_History
                              614 non-null
                                              float64
      10 Property_Area
                              614 non-null
                                              int32
      11 Loan Status
                              614 non-null
                                              int32
```

7 Splitting our data set

memory usage: 43.3 KB

dtypes: float64(5), int32(6), int64(1)

```
[31]:
           Gender Married Dependents Education Self_Employed ApplicantIncome \
      244
                 1
                          1
                                     0.0
                                                                                  3406
      393
                 1
                          1
                                     2.0
                                                   0
                                                                   0
                                                                                  1993
      310
                 0
                          0
                                     0.0
                                                   1
                                                                   0
                                                                                 2917
      408
                 1
                          1
                                     1.0
                                                   1
                                                                  0
                                                                                 8300
      572
                 1
                          1
                                     2.0
                                                   1
                                                                                 16666
           CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History
      244
                       4417.0
                                     123.0
                                                        360.0
                                                                           1.0
      393
                       1625.0
                                     113.0
                                                        180.0
                                                                           1.0
                                                        360.0
      310
                          0.0
                                     84.0
                                                                           1.0
      408
                          0.0
                                     152.0
                                                        300.0
                                                                           0.0
      572
                          0.0
                                     275.0
                                                        360.0
                                                                           1.0
           Property_Area
      244
      393
                        1
      310
                        1
      408
                        1
      572
[32]: x_test.head()
[32]:
           Gender
                   Married Dependents Education Self_Employed ApplicantIncome \
      350
                 1
                          1
                                     0.0
                                                                                 9083
                                                                  0
      377
                 1
                          1
                                     0.0
                                                   1
                                                                   0
                                                                                  4310
      163
                 1
                          1
                                     2.0
                                                   1
                                                                  0
                                                                                 4167
      609
                 0
                          0
                                     0.0
                                                   1
                                                                   0
                                                                                  2900
                                     0.0
      132
                          0
                                                   1
                                                                   0
                                                                                 2718
           CoapplicantIncome
                               LoanAmount
                                           Loan_Amount_Term Credit_History
      350
                          0.0
                                     228.0
                                                        360.0
                                                                      1.000000
      377
                          0.0
                                     130.0
                                                        360.0
                                                                      0.842199
                       1447.0
      163
                                     158.0
                                                        360.0
                                                                      1.000000
      609
                                      71.0
                                                        360.0
                                                                      1.000000
                          0.0
      132
                          0.0
                                      70.0
                                                        360.0
                                                                      1.000000
           Property_Area
      350
      377
                        1
      163
                        0
      609
                        0
      132
[33]: y_train.head()
```

```
[33]: 244
            1
     393
            1
     310
            1
      408
            0
      572
             1
     Name: Loan_Status, dtype: int32
[34]: y_test.head()
[34]: 350
             1
      377
             1
      163
             1
      609
      132
     Name: Loan_Status, dtype: int32
         Training our models
     8
     8.1 Model 1 : Naive Bayes (Gaussian Naive Bayes)
[35]: nb = GaussianNB()
      nb.fit(x_train,y_train)
[35]: GaussianNB()
         Model 2: Decision Tree Classifier
[36]: dtc = DTC(criterion="entropy", max_depth=3)
      dtc.fit(x_train,y_train)
[36]: DecisionTreeClassifier(criterion='entropy', max_depth=3)
     8.2.1 Visualising the decision Tree
[37]: pp.figure(figsize=(12,7))
      tree.plot_tree(dtc.fit(x_train,y_train),feature_names = x_train.
       ⇔columns,class_names=['Yes','No'],
                     filled=True,rounded=True)
      pp.show()
```


8.3 Model 3: Random Forest Classifier

```
[38]: rfc = RandomForestClassifier(criterion='entropy', max_depth=3, random_state=42, n_jobs=-1) rfc.fit(x_train,y_train)
```

[38]: RandomForestClassifier(criterion='entropy', max_depth=3, n_jobs=-1, random_state=42)

9 Evaluationg our models

9.1 Accuracy Scores

```
[40]: acc
```

[40]: train test
Naive Bayes 81.265207 79.802956
Decision Tree 82.238443 79.310345
Random Forest 81.508516 79.802956

9.2 Classification Reports

9.2.1 Naive Bayes

[41]: print(classification_report(y_train,nb.

→predict(x_train),target_names=["Yes","No"]))

	precision	recall	f1-score	support
Yes	0.81	0.47	0.59	120
No	0.81	0.96	0.88	291
accuracy			0.81	411
macro avg	0.81	0.71	0.74	411
weighted avg	0.81	0.81	0.79	411

9.3 Decision Tree

	precision	recall	f1-score	support
Yes No	0.93 0.81	0.42	0.58 0.89	120
NO	0.81	0.99	0.89	291
accuracy			0.82	411
macro avg	0.87	0.71	0.74	411
weighted avg	0.84	0.82	0.80	411

9.4 Random Forest

	precision	recall	f1-score	support
Yes	0.91	0.41	0.56	120
No	0.80	0.98	0.88	291
			0.00	
accuracy			0.82	411
macro avg	0.85	0.70	0.72	411

weighted avg 0.83 0.82 0.79 411

9.5 AUC ROC CURVE

9.6 Getting ROC Scores

```
pred_prob1 = nb.predict_proba(x_test)
pred_prob2 = dtc.predict_proba(x_test)
pred_prob3 = rfc.predict_proba(x_test)
fpr1, tpr1, thresh1 = roc_curve(y_test, pred_prob1[:,1], pos_label=1)
fpr2, tpr2, thresh2 = roc_curve(y_test, pred_prob2[:,1], pos_label=1)
fpr3, tpr3, thresh3 = roc_curve(y_test, pred_prob3[:,1], pos_label=1)
random_probs = [0 for i in range(len(y_test))]
p_fpr, p_tpr, _ = roc_curve(y_test, random_probs, pos_label=1)
```

9.7 Getting AUC Scores

```
[45]: auc_score1 = roc_auc_score(y_test, pred_prob1[:,1])
auc_score2 = roc_auc_score(y_test, pred_prob2[:,1])
auc_score3 = roc_auc_score(y_test, pred_prob3[:,1])
auc = pd.DataFrame(data=[auc_score1, auc_score2,__
auc_score3],index=models,columns=['AUC Score'])
auc
```

```
[45]: AUC Score
Naive Bayes 0.736959
Decision Tree 0.735157
Random Forest 0.757740
```

9.8 Plotting the ROC Curve

```
pp.plot(fpr1, tpr1, linestyle='--',color='orange', label='Naive Bayes')
pp.plot(fpr2, tpr2, linestyle='--',color='green', label='Decision Tree')
pp.plot(fpr3, tpr3, linestyle='--',color='blue', label='Random Forest')
pp.plot(p_fpr, p_tpr, linestyle='--', color='blue')
pp.title('ROC curve')
pp.xlabel('False Positive Rate')
pp.ylabel('True Positive rate')
pp.legend(loc='best')
pp.savefig('ROC',dpi=300)
pp.show()
```

