PyCX

A Python-Based Simulation Code Repository for Complex Systems Education

Hiroki Sayama sayama@binghamton.edu http://pycx.sf.net/

This Tutorial Is For...

- Educators who teach complex systemsrelated courses and thus need simple, easyto-understand examples of complex systems simulations
- Students and researchers who want to learn basics of writing complex systems simulations themselves

What is PyCX?

- "Python-based CompleX systems simulations"
 - Online repository (http://pycx.sf.net/) of sample codes of complex systems simulations written in plain Python
 - Iterative maps
 - Cellular automata
 - Dynamical networks
 - Agent-based models

Yet Another Simulation Software?

RePast

NetLogo

MASON

Golly Gephi

DDLab

No, It's Not Software

- PyCX is nothing more than a collection of very simple Python sample codes
- It can run on plain Python

Problems in Teaching Complex Systems with Pre-Built Software

- Students would not advance general technical skills
- Choice of software varies greatly from discipline to discipline
- Students would not have access to details of model implementation
- Use of existing software puts unrecognized limitations to "creativity" in modeling

PyCX As a Potential Solution

- Students can learn generalizable technical skills (i.e., programming in Python)
- Python has become very popular in a number of scientific domains
- Students will be able to see every detail of their model by coding it themselves
- Using a programming language itself as a modeling tool allows open-ended modeling

PyCX Philosophy

- Emphasized:
 - Simplicity
 - Readability
 - Generalizability
 - Pedagogical values

- Not emphasized:
 - Computational speed
 - Efficiency
 - Maintainability

PyCX Coding Style

- One simulation model, one .py file
- Same three-part structure for all dynamic simulations
 - Initialization, visualization, updating
- No object-oriented programming
- Frequent use of global variables

What To Do

- Install Python 2.7, NumPy, SciPy, matplotlib and NetworkX
- Download a PyCX sample code of your interest
- 3. Run it
- 4. Read it
- Change it as you like

Python Installation and Basics

 If you don't have Python on your laptop, get installers online or from the flash drives circulated in the room and install it now

Sample Simulations

- Dynamical systems
- Cellular automata
- Dynamical networks
- Agent-based models

Dynamical Systems

- Logistic map
- Cobweb plot
- Bifurcation diagram
- Lotka-Volterra equations

Dynamic, Interactive Simulations

- Use "pycxsimulator.py" to produce simple interactive GUI
 - New GUI by Przemyslaw Szufel & Bogumil Kaminski at the Warsaw School of Economics!!
 - The file should exist in the same folder where your simulator code is located
 - See "realtime-simulation-template.py" for how to use it

Cellular Automata

- Local majority rule
- Droplet rule
- Game of Life
- Turing pattern formation
- Excitable media
- Host-pathogen interaction
- Forest fire
- Spread of rumor
- Schelling's segregation model (technically ABM, but...)

Dynamical Networks

- Basic network construction and analysis
- Network growth by preferential attachment
- Local majority rule on a network
- Synchronization on a network
- Random walk on a network
- Cascade of failures on a network
- Voter model of opinion formation on a network
- Epidemics on a network
- Epidemics on a network with adaptive link cutting

Agent-Based Models

- Random walk of particles
- Diffusion-limited aggregation
- Predator-prey ecosystem
- Garbage collection by ants
- Aggregation of ants via pheromone-based communication

Actual Use in Classroom

- Binghamton University Graduate Courses
 - BME-510: Modeling Complex Biological Systems (2009, 2010)
 - SSIE-518X/523: Collective Dynamics of Complex Systems (2011-)
 - BME-523X/523: Dynamics of Complex Networks (2012-)
- New England Complex Systems Institute Summer/ Winter Schools
 - CX 202: Complex Systems Modeling and Networks (2008-)
 - CX 102: Computer Programming and Complex Systems (2010-)
- NWO (Netherlands Organisation for Scientific Research) Complexity Winter School (2011)
- NetSci High Summer Workshop (2012-)

Typical Instruction Methods

- BYOL course
- First 3~6 hours: Python installation and basics

 Rest: Modular instructions, using each sample code as a curricular module

Instruction of a Module (30~60 min)

- Describe the key concepts of the phenomenon being modeled, as well as the basic model assumptions
- 2. Run the simulation sample code, show the results and have a brief discussion on the observations
- Open the code in an editor and give a line-byline walk-through, explaining how the model is implemented in detail and addressing any technical questions as needed

Instruction of a Module (30~60 min)

- 4. Have a couple of in-class exercises that require students to understand and then modify the code to implement some model variations
- 5. Summarize the learning experience of the curricular unit and have open Q&A's and/or try further model extensions

Testemonials

- 100% "thumbs-up" user rating scores on SF
- Very positive comments from those who took courses with PyCX or who used PyCX
- Several publications of papers on Pythonbased computer simulation by students and faculty who took courses with PyCX

Home / Browse / PyCX / Reviews

Brought to you by heavama

User Ratings

Summary Files Reviews Support Wiki Code

Rate this Project:

Further Developments

- WPyCX a Warsaw School of Economics version of PyCX written in Python 3.3 has been released just last night!!
 - Thanks to Przemyslaw Szufel and Bogumil Kaminski at Warsaw School of Economics

For More Info

http://pycx.sf.net/

Sayama, H. (2013) PyCX: A Python-based simulation code repository for complex systems education, *Complex Adaptive Systems Modeling*, 1:2, 2013. (open access) http://www.casmodeling.com/content/1/1/2