Heaps Crib Sheet March 17, 2018

1 Overview

A heap is a tree based data structure that allows for the retrieval of a min/max quickly. A min heap has the following invariants (max heap invariants are analogous):

- 1. It is a complete binary tree. Each node has up to 2 children and every level except the last is filled. The last level, if not filled, is filled as far left as possible.
- 2. A node's value is less than both its children's values.

The following are important consequences of the invariants:

- 1. The root of the heap contains the min value.
- 2. There are $\log n$ levels, where n is the number of elements in the heap.

2 Implementation

Because the heap is a complete binary tree, it can be represented using an array. Assuming the root is level 0, elements at level i in the heap are placed at indices $[2^i, 2^{i+1} - 1)$ in the array. There is no element placed at index 0 because it makes the following index computations easier.

For some element at index = k:

- leftChildIndex(k) = 2*k
- rightChildIndex(k) = 2*k + 1

3 Operations & Runtimes

Min heaps support the following core operations:

- 1. getMin(): $\Theta(1)$
 - The min is the root of the tree as long as heap invariants are fulfilled.
- 2. insert(E elem): $O(\log n)$
 - Add elem to the leftmost position in the bottom-most level, starting a new level if necessary.
 - If elem < parent, swap elem and parent.
 - Repeat until elem > parent.

In the worst case, the new element swims up all levels.

2 Heaps Crib Sheet

- 3. removeMin(): $O(\log n)$:
 - Swap the root's value with that of the rightmost element on the bottom-most level.
 - Remove the rightmost element on the bottom-most level (which now contains the min value).
 - To find the new root elem:
 - Starting from the root, if elem > any child, swap with smaller of the two children.
 - $-\,$ Repeat until ${\tt elem} < {\tt all}$ children.