

TDAM: Top-Down Attention Module for Contextually Guided Feature Selection in CNNs

Shantanu Jaiswal, Basura Fernando, Cheston Tan

Motivation

Prominent attention mechanisms for CNNs primarily operate in a feedforward bottom-up manner, thereby being constrained to local information of input feature maps.

Top-down information flow can enable higher-layers to provide semantically-richer contextual information and specify "what and where to look" in lower-level feature maps.

Aim: A <u>lightweight top-down attention module</u> that iteratively generates a <u>"visual searchlight"</u> to perform <u>channel and spatial modulation</u> of its inputs and <u>outputs more contextually-relevant feature maps</u> at each computation step.

Module design

$\mathbf{X_{t+1}^0} = \mathbf{X_t'^0} \otimes \sigma(\mathcal{A})$

Primary module specifications:

- 1. Number of computation steps ('T')
- 2. Feedback distance ('m')
- 3. Attention technique ('joint' or 'top')

Experiments on ImageNet-1k and resolution robustness

Increases top-1 classification accuracy of a ResNet50 to 79.0% and 67.7% on Ver. 1 and Ver. 2 validation splits respectively.

Outperforms prior state-of-the-art attention modules while having lesser parameters and comparable FPS in most cases (with the exception of ECA).

79

	Method	BB.	Param.	FLOPs	FPS	V2	V1
	_	-	_		121	Top1	Top1
6	ResNet (CVPR16)	et5	25.56 M	4.12 G	2143	66.39	77.51
	SE (CVPR18)		28.07 M	4.13 G	1911	66.92	78.03
	CBAM (ECCV18)		28.07 M	4.14 G	1442	67.28	78.59
	ECA (CVPR20)	R	25.56 M	4.13 G	1989	66.72	78.11
	FCA-TS (ICCV21)		28.07 M	4.13 G	1876	67.19	78.70
	TDjoint $(t=2, m=1)$		27.65 M	4.59 G	1890	67.66	78.96
<u>'t</u>	TDtop $(t=2, m=1)$		27.06 M	4.59 G	1905	67.21	78.82
	TDtop $(t=2, m=3)$		27.66 M	$5.98~\mathrm{G}$	1539	67.70	78.90
	ResNet	01	44.55 M	7.85 G	1376	69.64	80.36
	SE	et1	49.29 M	7.86 G	1201	69.88	80.84
	CBAM	Resnet1	49.29 M	7.88 G	862	70.03	81.20
	FCA-TS	Re	49.29 M	7.86 G	1164	70.12	81.15
	TDjoint $(t=2,m=1)$		46.75 M	8.37 G	1237	70.56	81.62
	TDjoint(t=2,m=1,L4)		45.94 M	8.01 G	1258	70.28	81.12

TDj(t2,m1): 79.52
TDt(t2,m3): 79.46
ECA: 78.8
SE: 78.75
ResNet: 78.24
FCA: 79.02
CBAM: 78.86

Input resolution

TDAM-models are relatively more robust to changes in input resolution during inference, thereby obtaining better results at higher resolutions.

Model (RNet50)	ImageNet-V1 Top1 Acc.			
-0	Best	224^{2}	168^{2}	448^{2}
ResNet	78.24	77.51	74.53	75.64
SE	78.75	78.03	75.52	76.78
CBAM	78.86	78.59	75.10	75.21
ECA	78.80	78.11	75.46	76.85
FCA-TS	79.02	78.70	75.74	76.99
TDjoint(t2,m1)	79.52	78.96	76.03	77.41
TDtop(t2,m3)	79.46	78.90	76.12	77.57

Visualizing attention of TDAM-models over time (computation steps)

- TDAM-models learn to <u>"shift attention"</u> by localizing individual objects or features at each computation step <u>without any explicit supervision</u>.
- Visualization script provided in source code to try on arbitrary examples.

Weakly-supervised object localization and other recognition tasks

Model	Image	Net(V1)
-	Top1	Top5
RNet50	57.04	68.67
RNet101	58.54	69.86
RNet50 + SE	56.62	67.88
RNet50 + CBAM	58.91	70.54
RNet50 + ECA	56.94	68.38
RNet50 + FCA-TS	56.88	67.86
RNet50 + TDjoint(t=2,m=1)	61.55	72.10
RNet50 + TDtop(t=2,m=3)	61.97	72.37

Improves weakly supervised localization acc. by 5% indicating more precise feature activation maps.

Improves
state-of-the-arts for
fine-grained (CUB,
Stanford Dogs) and
multi-label (MS-COCC
object recognition.

	Model (ResNet50)	CUB	Dogs	MS-C	COCO	
	-	Top1	Top1	mAP	F1-O	
	ResNet	88.26	85.97	77.58	75.45	
	SE	88.89	86.55	78.21	76.37	
	CBAM	89.37	86.98	79.17	77.15	
\mathcal{I}	FCA-TS	88.94	86.76			
	TDjoint(t=2,m=1)	89.61		79.61		
	TDtop(t=2,m=3)	89.75	87.30	79.56	77.62	

 Improvements on multiple tasks and benchmarks suggest benefits of <u>feedback-driven channel and spatial attention</u> in <u>enabling iterative task-specific refinement of constituent</u> <u>feature maps</u> within the backbone.

Ablation study (Impact of feedback steps, distance and technique)

(Ablations performed on a hierarchically-reduced subset of ImageNet-1k comprising 200 classes; Further analyses in paper)

Source code and models publicly available at:

https://github.com/shantanuj/TDAM_Top_down_a ttention_module