Name:

Enrolment No:

Semester : IV

UPES Assignment II

Programme Name: B.Tech. (SoCS)

Course Name : Linear Algebra

Course Code : MATH 2059 Max. Marks: 10

Nos. of page(s) : 02

S. No.		Marks	CO
Q 1	Suppose V is a set of all real functions and \mathcal{F} be the field of real scalars. If the sum of the functions $f(x)$ and $g(x)$ in V is defined to be $f(g(x))$, then the zero vector is $g(x) = x$. Keep the usual scalar multiplication $cf(x)$, then find two rules that are broken in order to V be a vector space over the field \mathcal{F} .	1	CO2
Q 2	Choose $x = (x_1, x_2, x_3, x_4)$ in R^4 . It has 24 rearrangements like (x_2, x_1, x_3, x_4) and (x_4, x_3, x_1, x_2) . Those 24 vectors, including x itself, span a subspace S . Find specific vectors x so that the dimension of S is: $(a)0$ $(b)1$ $(c)3$ $(d)4$	1	CO2
Q 3	Find a counterexample to the following statement: If v_1, v_2, v_3, v_4 is a basis for the vector space R^4 and if W is a subspace, then some subset of the v 's is a basis for W .	1	CO2
Q 4	Let $P = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.8 & 0.3 \\ 0.2 & 0 & 0.4 \end{bmatrix}$ and $x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Consider a system whose state is described by the Markov chain $x_{k+1} = Px_k$ for $k = 0,1,\cdots$ What happens to the system as time passes? † Hint: Compute the state vectors x_1, x_2, \cdots, x_{15} to find out.	1	CO4
Q 5	 For a non-empty subset S of an inner product space V, the orthogonal complement of S is defined as: S[⊥] = {v ∈ V < v, s >= 0 ∀ s ∈ S} which is a subspace of V. Determine S[⊥] in each of the following cases: a) S = {(1,2,-2), (1,-1,3)} in V = ℝ³ w.r.t. the usual inner product. 	1	CO2

	b) $S = \{1 + x, x^2\}$ in $V = \mathcal{P}_2(\mathbb{R})$ w.r.t. the inner product $< p(x), q(x) > = \int_{-1}^{1} p(x)q(x)dx$		
Q 6	Consider the electric circuit given below:	1	CO4
Q 7	Suppose A is a 2 × 2 symmetric matrix with unit eigenvectors e_1 and e_2 . If its eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -2$, what are U, Σ and V^T ?	2	CO4
Q 8	In Question no. 7, if A changes to $4A$, what is the change in the SVD? What is the SVD for A^T and for A^{-1} ?	2	CO4