Mit dem Sinus modellieren

Kirill Heitzler

20. März 2021

Grundlagen

Rechtwinkliges Dreieck - Beschriftung

Der Sinus

Sinus - Beispiel

Der Kosinus und der Tangens

Grundlagen

Rechtwinkliges Dreieck - Beschriftung

Abbildung 1: Rechtwinkliges Dreieck

► Gegen den Uhrzeigersinn

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- ▶ B

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- B
- C

Abbildung 1: Rechtwinkliges Dreieck

Die Ecken werden mit den Buchstaben A, B, C gegen den Uhrzeigersinn bei A angefangen beschriftet.

Abbildung 1: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **▶** β

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **>** £
- $ightharpoonup \gamma$

Abbildung 2: Rechtwinkliges Dreieck

Die Winkel α , β , γ werden in die Ecken der entsprechenden Buchstaben A, B, C gesetzt.

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 3: Rechtwinkliges Dreieck

ightharpoonup "Ankathete von lpha"

Abbildung 3: Rechtwinkliges Dreieck

- ightharpoonup "Ankathete von lpha"
- ightharpoonup "Gegenkathete von α "

Abbildung 3: Rechtwinkliges Dreieck

Die anliegende Kathete zu Winkel α wird "Ankathete von α " genannt und die Kathete gegenüber von α wird "Gegenkathete von α " genannt.

Abbildung 3: Rechtwinkliges Dreieck

Hypotenuse

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

"Hypotenuse"

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

Die Hypotenuse liegt gegenüber des rechten Winkels $\gamma.$

Abbildung 4: Rechtwinkliges Dreieck

Der Sinus

Abbildung 5: Rechtwinkliges Dreieck

$$sin(\alpha) =$$

Abbildung 5: Rechtwinkliges Dreieck

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{}$$

Abbildung 5: Rechtwinkliges Dreieck

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 5: Rechtwinkliges Dreieck

In einem rechtwinkligen Dreieck (Abbildung 5) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

den Sinus von α .

Abbildung 5: Rechtwinkliges Dreieck

Sinus - Beispiel Gegenkathete von α mithilfe des Sinus berechnen

Aufgabe

Berechne die Höhe des Freiburger Münsters. Das rechtwinklige Dreieck in Abbildung 6 besitzt einen rechten Winkel (90°), die Hypotenuse 164,05 Meter und die Winkelweite des Winkels α mit 45°. Berechne die Gegenkathete von α namens x.

Abbildung 6: Rechtwinkliges Dreieck am Münster

$$\sim \alpha = 45^{\circ}$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ▶ Gegenkathete von $\alpha = x$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}} \tag{1}$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ▶ Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1) $\sin(45^\circ) =$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- Gegenkathete von $\alpha = x$

$$sin(\alpha) = \frac{Gegenkathete \ von \ \alpha}{Hypotenuse}$$

$$sin(45^{\circ}) = \frac{x}{}$$
(1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 $\sin(45^\circ) = \frac{x}{164,05m}$
(1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

$$\sin(45^\circ) = \frac{x}{164,05m}$$

$$| \cdot 164,05m$$
 (2)

$$\sin(45^\circ) = \frac{x}{164.05m} \qquad |\cdot 164,05m \quad (2)$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ)\cdot 164,05\,m =$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m} \qquad |\cdot 164,05m \quad (2)$$

$$\sin(45^{\circ}) \cdot 164,05m = x$$
 (3)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m}$$
 | · 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x$$

$$x \cong$$
(3)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m}$$
 | \cdot 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x \tag{3}$$

$$x \cong 116m \tag{4}$$

Antwort

Abbildung 7: Rechtwinkliges Dreieck am Münster

Antwort

Die Gegenkathete von α beträgt etwa 116 Meter, somit ist das Münster auch etwa 116 Meter groß.

Abbildung 7: Rechtwinkliges Dreieck am Münster

Der Kosinus und der Tangens

Sinus von α

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(lpha) = rac{\mathsf{Gegenkathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 8: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) =$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(lpha) = rac{\mathsf{Ankathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}}$$

Abbildung 9: Rechtwinkliges Dreieck

Tangens von α

$$tan(\alpha) =$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$an(lpha) = rac{\mathsf{Gegenkathete} \; \mathsf{von} \; lpha}{}$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Ankathete\ von\ }\alpha}$$

Abbildung 10: Rechtwinkliges Dreieck