

Galileo orbit performance monitoring with Where

M. Dähnn, G. A. Hjelle, A.-S. Kirkvik, I. Fausk, M. Ouassou, A. M. Solberg

NKG General Assembly, Helsinki, 6. September 2018

Part I

Background

Galileo deployment

2020

Exploitation Phase

Initial Services

In-Orbit Validation

Development

2005/2008

GIOVE A & B

Motivation – Galileo performance monitoring

- testing and verifying the initial services
- detecting anomalies (satellite faults)
- ensure the provision of high quality satellite data to users
- signal-in-space range error is a key performance indicator used from all GNSS

Part II

What is signal-in-space range error (SISRE)?

What is signal-in-space range error (SISRE)?

SISRE: Statistical uncertainty of the modeled pseudorange related to errors in the broadcast orbit and clock information.

SISRE computation

$$SISRE = \sqrt{(w_r \cdot \Delta r - \Delta t)^2 + w_{a,c}^2 \cdot (\Delta a^2 + \Delta c^2)}$$
weight factors

Part III

Part IV

Results

Galileo E1/E5a (FNAV) E01 mean = 1.75 ± 4.03 m 30 rms = 4.40 mE02 E08 E09 25 Navigation messages E11 were not refreshed. E12 20 -E19 SISRE [m] E22 E24 15 -E26 E30 10 5 0

Time (May 2017)

05-13 00 05-13 12 05-14 00 05-14 12 05-15 00 05-15 12 05-16 00 05-16 12

Part V

Conclusion and outlook

Conclusion and outlook

- Where SISRE solution shows comparable results to other studies (e.g. Montenbruck et. al (2018) or Galileo-IS-OS (2018)) with SISRE RMS of 16 cm and monthly 95th percentile of 30-50 cm
- Further validation of Where SISRE analysis needed
- Improvement of SISRE analysis by quality checking of input data and outlier rejection

Thank you for your attention!

Literature

Galileo-IS-OS (2018): European GNSS (Galileo) inital services – Open service quarterly performance report. January-March 2018.

Galileo-OS-SDD (2016): European GNSS (Galileo) inital services – Open service definition document. Issue 1.0, December 2016.

Galileo-OS-SIS-ICD (2015): European GNSS (Galileo) Open service – Signal in space inferface control document. Issue 1.2, November 2015.

Montenbruck, O., Steigenberger, P., and Hauschild, A. (2018): *Multi-GNSS signal-in-space range error assessment – methodology and results.* Advances in Space Research, 61(12):3020-3038. DOI 10.1016/j.asr.2018.03.041.

Galileo satellite constellation

Satellite antenna relation

 Relate orbit and clock differences to center of mass by applying PCOs given by GSC and IGS (igs14.atx)

