Домашнее задание по ДОЭФ

2 декабря 2024 г.

Домашнее задание присылается на адрес dinoptef@yandex.ru в виде архива (zip или rar), содержащего 2 или более файлов (текстовый документ, таблицы Excel, файлы с кодом на R или python). Если используется Jupyter Notebook или аналоги, то прислываются все-равно два файла: первый файл содержит строчки кода, во втором (чистовом) файле строчки кода скрыты.

Название архива и название письма должны соответствовать формату:

Номер группы Φ амилия $Excel_R$ python.

Пример темы письма: 160 Иванов Excel R

Пример названия архива: 160 Иванов Excel R.zip

Между словами должны быть нижние подчеркивания. Слово БЭК не используется. В качестве Фамилии используется фамилия выполневшего работу, а не фамилия семинариста, домашнего животного или соседа.

В последней части названия должны быть перечислены все программные продукты из набора Excel, R, python, которые использовались в домашнем задании. Задачи, выполненные в разных программных продуктах, будут проверяться разными людьми, поэтому в случае пропуска соответствующего указания в названии часть задач проверена не будет.

Домашние задания, присланные на любые другие адреса электронной почты, или с названием писем и архивов, не соответствующих требуемому формату, НЕ ПРОВЕРЯ-ЮТСЯ.

Проверяющий оставляет за собой право задать студенту, сдавшему задание в ${\bf R}$ или python, вопросы по коду. В случае невразумительного ответа, баллы за задание снимаются.

Все задачи оцениваются одинаково (в 2 балла). Для получения итоговой оценки в 10 баллов требуется решить 5 задач. В условии каждой задачи написано, в какой программе ее можно решить. Проверяющий оставляет за собой ставить бонусные баллы за уникальные решения.

Последний срок сдачи: 17 декабря 2024 года 09:59.

Домашнее задание можно сдавать заранее, то есть в любой момент до установленного срока. При доставке письма на указанный адрес (dinoptef@yandex.ru) в ответ будет отправлено автоматическое подтверждение об его получении. Проверяется только последнее версия домашнего задания, присланная до установленного срока.

В домашнем задании используются следующие параметры: a_1, a_2, a_3 - номер первой, второй и третьей буквы фамилии в алфавите соответственно, b_1, b_2, b_3 - номер первой, второй и третьей буквы имени в алфавите соответственно, c_1, c_2, c_3 - номер первой, второй и третьей буквы отчества (или снова имени, если таковое отсутствует) в алфавите соответственно.

За основу используется алфавит, представленный здесь:

https://ru.wikipedia.org/wiki/Русский алфавит

Если в фамилии, имени или отчестве букв меньше, чем три, то отсутствующие буквы считаются совпадающими с последней буквой в фамилии, имени или отчестве.

1 Задача для R, Python, Excel

Численно найдите экстремум функционала

$$V[y] = \int_0^2 (y'^2 + a_1 y y' + b_1 y^2 + c_1 y e^{2t}) dt, y(0) = -b_2, y(2) = b_3$$

2 Задача для R, Python, Excel

Численно найдите экстремум функционала

$$V[y] = \int_0^2 (b_1 y - b_2 u) \, dt,$$

$$y(0) = a_1, y(2)$$
 свободно, $y' = a_3 y + u, u \in [-c_1, c_2]$

3 Задача для Excel

3. Технологическая мощность предприятия M(t) в начале планового периода (5 лет, планирование осуществляется с шагом месяц) оценивалась в $M(0) = 100a_1 + 10a_2 + a_3$ денежных единиц. В течение периода изменение мощности описывается по закону

$$\frac{d}{dt}M(t) = J(t) - \delta M(t),$$

где J(t) - инвестиции текущего месяца, $\delta = \frac{1}{5+c_1}$ - норма амортизации. Имеющаяся в текущем месяце мощность генерирует доход $\pi(t) = a_1 M(t)^{0.6}$, который без остатка делиться на $\pi(t) = J(t) + CF(t) + Tax(t)$, где CF(t) - выводимый денежный поток (не может быть отрицательным),

$$Tax(t) = \frac{1}{5 + c_2}\pi(t)$$

- налог на доходы предприятия. Месячная безрисковая процентная ставка в течение всего период равна 0,3%. Рассчитайте оптимальную стратегию наращивания технологической мощности, инвестиций и денежных потоков, максимизирующую NPV. Как изменится стратегия, если
 - 1. В начале 4 года безрисковая процентная ставка вырастет до 0,5%,
 - 2. Налог на доходы снизится в 2 раза, то есть $Tax(t) = \frac{1}{2(5+c_2)}\pi(t)$,
 - 3. Норма амортизации увеличится в 2 раза, то есть $\delta = \frac{2}{5+c_1}$.

4 Задача для Excel

Рассматривается задача управления портфелем активов российского резидента в течение 36 месяцев (начиная с января $2015 + round(0.1a_1)$ года до 31 декабря $2018 + round(0.1a_1)$ года), максимизирующего приведенную стоимость будущих денежных потоков (cash flow) с дисконт-фактором в экспоненциальной форме $\delta = \frac{1}{5+c_1}$. В портфель входят депозитный счет в долларах и депозитный счет в евро. Начальное состояние счетов — $100000a_1 + 10000a_2 + 1000a_3$ долларов и $100000b_1 + 10000b_2 + 1000b_3$ евро. К концу планового периода предполагается закрыть оба счета. Рассчитанное в рублях изменение остатков на счетах

сопряжено с дополнительными издержками, описываемыми функциями $f_1(x) = 0.0001x^2$ и $f_2(x) = 0.0001x^2$ соответственно для счета в долларах и евро.

Данные о курсах валют можно найти на сайте Банка России в разделе Статистика.

При планировании предполагается, что темпы роста курсов валют в течение оставшегося отрезка времени будут равны их темпам роста за предыдущий год. На момент планирования известны все предыдущие значения курсов. Планирование осуществляется каждое полугодие, начиная с 1 января $2016 + round(0.1a_1)$ года. Требуется

- 1. Для каждого этапа планирования построить оптимальные траектории остатков на валютных счетах до 31 декабря $2018 + round(0.1a_1)$ года,
- 2. Сопоставить траекторию, реализованную по результатам полугодового планирования с траекторией, оптимальной в условиях полного знания динамики курсов.

5 Задача для Excel

В течение четырехлетнего планового периода (с шагом в 1 месяц) банк управляет объемом выданных кредитов L(t) и привлеченных депозитов S(t). К началу планового периода банк имел задолженность в размере $S(0)=1000+100b_1+10b_2+b_3$ и портфель кредитов $L(0)=1000+100c_1+10c_2+c_3$. Процентная ставка по безрисковому инструменту составляет 1%. Изменение текущего портфеля за счет выдачи кредитов $K(t)=\frac{d}{dt}L(t)$ или привлечения депозитов $V(t)=\frac{d}{dt}S(t)$ сопровождается расходами

$$C(t) = \frac{a_1}{1000} (K(t)^2 + V(t)^2).$$

Цель политики банка — максимизация суммарного показателя прибыли, рассчитываемой по формуле $\pi(t) = r_l(t)L(t) - r_s(t)S(t) - C(t)$. Проведите тестирование возможности безубыточности деятельности банка. Для этого процентные ставки описываются как случайные величины, имеющие равномерное распределение на отрезках: по депозитам

$$\left[0.4 + \frac{b_1}{33} - \frac{c_2}{100}; 0.4 + \frac{b_1}{33} + \frac{c_2}{100}\right],$$

по кредитам

$$\left[0.4 + \frac{b_1}{33} + \frac{b_2}{100} - \frac{c_1}{100}; 0.4 + \frac{b_1}{33} + \frac{b_2}{100} + \frac{c_1}{100}\right].$$

Проведите 5 симуляций.

Замечание: речь идет именно о процентах. Чтобы использовать в формулах, нужно делить на 100. Все ставки уже считаются месячными!

6 Задача для R, Python

Имеется динамическая система, характеризуемая координатой x и соростью v. Параметром управления u является ускорение системы, выбираемое из отрезка [-1,1]. Требуется за минимальное время T перевести систему из начального состояния (x_0, v_0) в состояние (0,0). Численно решите эту задачу оптимального управления, реализовав код для произвольного вектора (x_0, v_0) .

 Π одсказка. $x' = v \ u \ v' = u$.

7 Задача для R, Python

Численно решите следующую задачу оптимального управления:

$$\int_0^2 \frac{u^2}{2} - ty + ydt \to \min$$

$$y(0) = 0, |u(t)| \le \frac{3}{8}$$

при следующих уравнениях динамики у:

- (a) y'(t) = u(t) t
- (b) $y'(t) = u(t) + u^2(t) t$

8 Задача для R, Python

Популяция осиного улья может быть описана следующими уравнениями:

$$\begin{cases} \dot{x}(t) &= (\alpha u(t)-\beta)x(t), \text{ где } x(0)=1\\ &\dot{y}(t)=\gamma(1-u(t))x(t), \text{ где } y(0)=0 \end{cases}$$

Переменной x обозначается число ос-рабочих, а y — число королев. Константы α, β, γ — положительные действительные числа. α, γ — параметры окружающей среды, β — коэффициент смертности ос-рабочих. Управление $u(t) \in [0,1]$ — доля улья, тратящая ресурсы на увеличение числа королев.

Численно исследуйте траектории управления и траектории состояния для различных параметров α, β, γ , если задача улья состоит в максимизации числа ос-королев в последний момент времени (его можно выбрать любым, достаточно большим)