ECE 35,	Winter 2022	Your sequence number		
		Last name		
Quiz 3	/12	First + middle name(s)		
	/ 12	PID		

Instructions:

- · Read each problem completely and thoroughly before beginning
- All calculations need to be done on these sheets
- Put a box around your answer for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit

(1) (6 points)

Consider the circuit below. For t < 2 s, the switch is in position 1 and it is possible that the system has not yet reached steady state.

When the ideal ammeter reading has a value of X, we move the switch <u>from position 1 to position 2</u>. This happens at time t = 2 s. The switch then remains in position 2.

Find $i_a(t)$ for t > 2 s. Write the equation.

The circuit is also copied on the next page for your convenience.

(2) (6 points)

Consider the circuit below.

For t < 0 s, both switches are closed, and the system has reached steady state.

At time t = 0 s, both switches open and remain open.

The current I_S varies as shown in the graph.

- a. Find the node voltage v_a at time $t = 0^+$ s (i.e., immediately after the switches open).
- b. Find the node voltage v_b at time $t = 0^+$ s.
- c. Find the node voltage v_a at time t = 6 s.
- d. Find the node voltage v_b at time t = 6 s.

