ENGR727-001

ENGR 727-001 ADVANCED MECHANICS OF MATERIALS: HOMEWORK 4

Joby M. Anthony III < jmanthony1@liberty.edu>

PhD Student

Problems:

- ✓ Problem 1
- ✓ Problem 2
- ✓ Problem 3
- ✓ Problem 4
- ✓ Problem 5
- ✓ Problem 6
- ✓ Problem 7
- ✓ Problem 8
- Problem 9
- ✓ Problem 10
- ✓ Problem 11
- ✓ Problem 12

1. PROBLEM 1

A square, glass block in the side of a skyscraper is loaded so that the block is in a state of plane strain ($\epsilon_{zx} = \epsilon_{zy} = \epsilon_{zz} = 0$). (a) Determine the displacements for the block for the deformations shown and the strain components for the xy-coordinate axes. (b) Determine the strain components for the XY-axes.

FIGURE 1-1. ADAPTED FROM ASSIGNMENT INSTRUCTIONS.

— Problem Statement

SOLUTION

The displacement for the block are as shown in $\underline{\text{Fig. 1-1}}$. The strain components along the xy-axes can be found from building the strain state in matrix notation:

$$[\epsilon] = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$$
(1)

Equations u(x,y) and v(x,y) can be found from solving a linear system of equations for which there are four equations and four unknowns:

$$u(x,y) := egin{bmatrix} 1 & x_1 & y_1 & xy_1 \ 1 & x_2 & y_2 & xy_2 \ 1 & x_3 & y_3 & xy_3 \ 1 & x_4 & y_4 & xy_4 \end{bmatrix} egin{bmatrix} c_1 \ c_2 \ c_3 \ c_4 \end{bmatrix} = egin{bmatrix} d(x,y) := egin{bmatrix} 1 & x_1 & y_1 & xy_1 \ 1 & x_2 & y_2 & xy_2 \ 1 & x_3 & y_3 & xy_3 \ 1 & x_4 & y_4 & xy_4 \end{bmatrix} egin{bmatrix} d_1 \ d_2 \ d_3 \ d_4 \end{bmatrix} = egin{bmatrix} d_1 \ d_2 \ d_3 \ d_4 \end{bmatrix}$$

Solving Eq. 1-2 with input data from the appropriate points lends to Eq. 1-3.

$$u(x,y) = 6.50521303491303e - 19 * x * y$$

 $v(x,y) = -2.38524477946811e - 18 * x *$

This means that $\underline{\text{Eq. 1-1}}$ can now be solved to reveal the strain state of the glass block: $\left[\epsilon_{xy}\right] = \begin{bmatrix} -2m & -2m \\ -2m & 2.50m \end{bmatrix}$.

To find the strain components projected onto the XY-axes, which is at some angle offset from the xy-axes, Eq. 1-4 must be implemented.

$$egin{aligned} \epsilon_{x'} &= \epsilon_x \cos^2(heta) + \epsilon_y \sin^2(heta) + \gamma_{xy} \sin(heta) \cos(heta) \ \gamma_{x'y'} &= -(\epsilon_x - \epsilon_y) \sin(2 heta) + \gamma_{xy} \cos(2 heta) \end{aligned}$$

, wherein $\epsilon_{y'}$ can be found by replacing θ with $\theta+\frac{\pi}{2}$ in the equation for $\epsilon_{x'}$. This yields $[\epsilon_{XY}]=\begin{bmatrix} -491.03u & 2.90m \\ -2.90m & 991.03u \end{bmatrix}$

2. PROBLEM 2

A square plate, 1 m on a long side, is loaded in a state of plane strain and is deformed as shown. (a) Write expressions for the u and v displacements for any point on the plate. (b) Determine the components of **Green Strain** in the plate. (c) Determine the total **Green Strain** at point B for a line element in the direction of line OB. (d) For point B, compare the components of strain from part (b) to the components of strain for **Small-Displacement Theory**. (e) Compare the strain determined in part (c) to the corresponding strain using **Small-Displacement Theory**.

FIGURE 2-1. ADAPTED FROM ASSIGNMENT INSTRUCTIONS.

- Problem Statement

SOLUTION

As demonstrated in <u>Sec. 1</u>, expressions for displacement for any point on the plate may be found by solving <u>Eq. 1-2</u>. This yields the following expressions:

$$\epsilon_{x} = \frac{\partial u}{\partial x} + \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial x} \right)^{2} \right]$$

$$\epsilon_{y} = \frac{\partial v}{\partial y} + \frac{1}{2} \left[\left(\frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial v}{\partial y} \right)^{2} \right]$$

$$(4)$$

$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial y}$$

$$(5)$$

The strain state, then, becomes: $\epsilon_{Green} = \begin{bmatrix} -12.42m & -13.70a \\ -13.70a & 12.58m \end{bmatrix}. \text{ The percent error between}$ $\epsilon_{Green} \text{ and } \epsilon_{Small} = \begin{bmatrix} -12.50m & -13.88a \\ -13.88a & 12.50m \end{bmatrix} \text{ is } 0.0062 \%.$ Projecting this strain state along the line OB can be found by the direction of cosines for this <1,1> vector (l=0.7071) and m=0.7071: $(\epsilon_{Green})_{OB} = \begin{bmatrix} -8.78m & -9.69a \\ -9.69a & 8.89m \end{bmatrix}.$ The percent error between ϵ_{Small} and $(\epsilon_{Green})_{OB}$ is 0.2876 %.

3. PROBLEM 3

Solve Problem 2.3 from the textbook.

— Problem Statement

PROBLEM 2.3

A displacement field in a body is given by

$$u = c(x^2 + 10), \quad v = 2cyz, \quad w = c(-xy + 1)$$

where $c = 10^{-4}$. Determine the state of strain on an element positioned at (0, 2, 1).

SOLUTION

The strain state can be found from determining the strain state at the point in the displacement field:

$$[\epsilon] = egin{bmatrix} \epsilon_x = rac{\partial u}{\partial x} & \gamma_{xy} = rac{\partial u}{\partial y} + rac{\partial v}{\partial x} & \gamma_{xz} = rac{\dot{\epsilon}}{\dot{\epsilon}} \ 0 & \epsilon_y = rac{\partial v}{\partial y} & \gamma_{yz} = rac{\dot{\epsilon}}{\dot{\epsilon}} \ 0 & 0 & \epsilon_z = \ \end{pmatrix}$$

When Eq. 3-6 is plugged into Eq. 3-7, this takes the form

$$\begin{array}{l} u(x,y) = -0.0375*x*y+0.025*x-1.38777878078145e-172xy+01.001\underline{84002}094058e-17\\ v(x,y) = -0.0125*x*y+0.0125*x+0.0125*y+2.5771\underline{1}895\underline{3}215\underline{6}8e~\underline{2}y\underline{18}~x\\ \text{The strain state of the plate may be found by solving } \underbrace{\text{Eq. 2-5}} \\ \end{array} \right.$$

with the developed displacement equations. Which further yields $[\underline{\text{eq-5-strain}}\ \underline{p}]$ for $\epsilon(x=0,y=2,z=1)$.

$$[\epsilon] = egin{bmatrix} 2 & 0 & -1 \ 0 & 4 & 1 \ 0 & 0 & 4 \end{bmatrix} imes 10^{-4} \tag{8}$$

2

ANSWER

$$\epsilon = \begin{bmatrix} 0 & 0 & -200u \\ 0 & 200u & 400u \\ 0 & 0 & 200u \end{bmatrix}.$$

4. PROBLEM 4

Solve Problem 2.4 from the textbook.

- Problem Statement

PROBLEM 2.4

The displacement field and strain distribution in a member have the form

$$u = a_0 x^2 y^2 + a_1 x y^2 + a_2 x^2 y \ v = b_0 x^2 y + b_1 x y \ \gamma_{xy} = c_0 x^2 y + c_1 x y + c_2 x^2 + c_3 y^2$$

Which relationships connecting the constraints (a's, b's, and c's) make the foregoing expressions (Eq. 4-9) possible?

ANSWER

These equations assume *plane-strain*; therefore, the constants can be found from the contribution of the respective derivatives of each displacement field equation.

5. PROBLEM 5

Solve Problem 2.9 from the textbook.

— Problem Statement

PROBLEM 2.9

A 100 mm by 150 mm rectangular plate QABC is deformed into the shape shown by the dashed lines in Fig. 5-1. All dimensions shown in the figure are in millimeters. Determine at point Q (a) the strain components ϵ_x , ϵ_y , and γ_{xy} and (b) the principal strains and the direction of the principal axes.

Figure P2.9.

FIGURE 5-1. ADAPTED FROM [1]. SOLUTION

Following a procedure similar to that displayed in Sec. 1 yields the strain state: $\begin{bmatrix} -12.50m & -13.88a \\ -13.88a & 12.50m \end{bmatrix} \text{ which yields}$ the principal strains: $\epsilon_1, \epsilon_2, \epsilon_3 = 12.50m, 12.50m, 0$ in the $\theta_p = 277.56a \ rad$ direction.

6. PROBLEM 6

Solve Problem 2.12 from the textbook.

- Problem Statement

PROBLEM 2.12

A thin, rectangular plate $a=20~mm \times b=12~mm$ (Fig. 6-1) is acted upon by a stress distribution resulting in the uniform strains $\epsilon_x=300\mu$, $\epsilon_y=500\mu$, and $\gamma_{xy}=200\mu$. Determine the changes in length of diagonals QB and AC.

Figure P2.11.

FIGURE 6-1. ADAPTED FROM [1]. SOLUTION

Because the plate undergoes a displacement that yields a symmetric strain state, the change in length for diagonals AC and QB are equal and found by finding the difference of the hypotenuse: e.g. $a'=(1+\epsilon_x)a_0=20.01$. Therefore, $\Delta l_{AC}=8.23m\ m$ and $\Delta l_{QB}=8.23m\ m$.

7. PROBLEM 7

Solve Problem 2.22 from the textbook.

— Problem Statement

PROBLEM 2.22

Solve Problem 2.21 [1] for a state of strain given by

$$\begin{bmatrix} 400 & 100 & 0 \\ 100 & 0 & -200 \\ 0 & -200 & 600 \end{bmatrix} \mu \tag{10}$$

Problem 2.21 asks to determine (a) the strain invariants; (b) the normal strain in the x' direction which is directed at an angle $\theta=30~^\circ$ from the x-axis; (c) the principal strains ϵ_1 , ϵ_2 , and ϵ_3 ; and, (d) the maximum shear strain.

ANSWERS

The strain invariants of given strain state (Eq. 7-10): © 2019 by ASME

$$egin{aligned} J_1 &= p_x + p_y + p_z = 1m \ J_2 &= p_x p_y + p_x p_z + p_y p_z \ &- p_{xy}^2 - p_{yz}^2 - p_{xz}^2 \ J_2 &= 190n \ J_3 &= \|\mathbf{p}\| = 0.0 \end{aligned}$$

The normal strain along x' , which is $\theta=30\,^\circ$ up from the x-axis, is $\epsilon_{x'}=556.21u$.

The principal strains come from solving $\epsilon_p^3 - J_1 \epsilon_p^2 + J_2 \epsilon_p - J_3 = 0$:

- $\epsilon_1 = 1.15m$
- $\epsilon_2 = 231.47u$
- $\epsilon_3 = 82.74u$

The maximum principal strain (magnitude and direction), $\epsilon_1=1.15m \angle -360.04y\ rad$. The magnitude of the shear strain is the average of the principal strains (from **Mohr's Circle**): $\gamma_{max}=82.74u$.

8. PROBLEM 8

Solve Problem 2.24 from the textbook.

— Problem Statement

PROBLEM 2.24

At a point in a loaded frame, the strain with respect to the coordinate set xyz is

$$\begin{bmatrix} -300 & -583 & -300 \\ -583 & 200 & -67 \\ -300 & -67 & -200 \end{bmatrix} \mu \tag{11}$$

Determine (a) the magnitudes and directions of the principal strains and (b) the maxmimum shear strains.

ANSWERS

The principal strains come from solving $\epsilon_p^3-J_1\epsilon_p^2+J_2\epsilon_p-J_3=0$: The strain invariants of given strain state (Eq. 8-11):

$$egin{aligned} J_1 &= p_x + p_y + p_z = -300u \ J_2 &= p_x p_y + p_x p_z + p_y p_z \ &- p_{xy}^2 - p_{yz}^2 - p_{xz}^2 \ J_2 &= -474.38n \ J_3 &= \|\mathbf{p}\| = 0.0 \end{aligned}$$

- $\epsilon_1 = 710.18u$
- $\epsilon_2 = 710.18u$
- $\epsilon_3 = 79.09u$

The maximum principal strain (magnitude and direction), $\epsilon_1 = 710.18u \angle -1.30~rad$. The magnitude of the shear strain is the average of the principal strains (from **Mohr's Circle**): $\gamma_{max} = 79.09u$.

9. PROBLEM 9

Solve Problem 2.28 from the textbook.

- Problem Statement

PROBLEM 2.28

A $16~mm \times 16~mm$ square ABCD is sketched on a plate before loading. Subsequent to loading, the square becomes the rhombus illustrated in <u>Fig. 9-1</u>. Determine the (a) modulus of elasticity, (b) Poisson's Ratio, and (c) the shear modulus of elasticity.

Figure P2.28.

FIGURE 9-1. ADAPTED FROM [1].

10. PROBLEM 10

Solve Problem 2.52 from the textbook.

— Problem Statement

PROBLEM 2.52

The distribution of stress in a structural member is given (in megapascals) by Eqs. (d) of Example 1.2 of Chapter 1 (Eq. 10-12). Calculate the strains at the specified point $Q(\frac{3}{4}, \frac{1}{4}, \frac{1}{2})$ for E=200~GPa and $\nu=0.25$.

$$egin{align} \sigma_x &= -x^3 + y^2, & au_{xy} &= 5z + 2y^2 \ \sigma_y &= 2x^2 + rac{1}{2}y^2, & au_{xz} &= xz^3 + x^2y & (12) \ \sigma_z &= 4y^2 - z^3, & au_{yz} &= 0 \ \end{pmatrix}$$

SOLUTION

The strain state can be found from determining the strain state at the point in the displacement field:

$$[\epsilon] = egin{bmatrix} \epsilon_x = rac{1}{E}[\sigma_x -
u(\sigma_y + \sigma_z)] & & & & & \epsilon_y = rac{1}{E} \ & & & & & & & \end{bmatrix}$$

When Eq. 10-12 and point Q are plugged into Eq. 10-13, this yields [eq-5-strain p] for $\epsilon(x=0,y=2,z=1)$.

$$[\epsilon] = \begin{bmatrix} -3.40u & 32.81u & 2.93u \\ 0 & 6.07u & 0 \\ 0 & 0 & -371.09n \end{bmatrix} \text{ Using the provided stress tensor, the} \\ \text{(14)} & \text{found by solving } \underbrace{\frac{\text{Eq. } 11-15}{\text{Eq. } 0}}_{-142.86u & 1.14m} \end{bmatrix}.$$

ANSWER

The strain tensor at point
$$(0,2,1),$$
 $[\epsilon] = \begin{bmatrix} -3.40u & 32.81u & 2.93u \\ 0 & 6.07u & 0 \\ 0 & 0 & -371.09n \end{bmatrix}.$

11. PROBLEM 11

Solve Problem 2.53 from the textbook.

— Problem Statement

PROBLEM 2.53

An aluminum alloy plate $(E = 70 \ GPa, \ \nu = \frac{1}{3})$ of dimensions a = 300 mm, b = 400 mm, and thickness $t=10 \ mm$ is subjected to biaxial stresses as shown in Fig. 11-1. Calculate the change in (a) the length AB and (b) the volume of the plate.

Figure P2.53.

FIGURE 11-1. ADAPTED FROM [1]. **SOLUTION**

$$\epsilon_{x} = \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E}$$

$$\epsilon_{y} = \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{x}}{E}$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$
(15)

Using the provided stress tensor, the strain state may be yields: Therefore, $\Delta b = \epsilon_y b = 457.14 m \ mm$ and $\Delta V = (\epsilon_x + \epsilon_y)V_0 = 685.71 \ mm^3$.

12. PROBLEM 12

Solve Problem 2.54 from the textbook.

— Problem Statement

PROBLEM 2.54

The steel, rectangular parallelepiped ($E = 200 \ GPa$ and $\nu = 0.3$) shown in Fig. 12-1 has dimensions $a = 250 \ mm$, $b=200 \ mm$, and $c=150 \ mm$. It is subjected to triaxial $\sigma_y = -50~MPa,$ $\sigma_x = -60 \ MPa$, $\sigma_z = -40 \ MPa$ acting on the x, y, and z faces. Determine (a) the changes Δa , Δb , and Δc in the dimensions of the block, and (b) the change ΔV in the volume.

Figure P2.54.

FIGURE 12-1. ADAPTED FROM [1]. **SOLUTION**

Following a similar procedure as in Sec. 11, the changes in length for each side and the final volume of the parallelepiped are: $\Delta a = 0.006 \ mm$, $\Delta b = 0.04 \ mm$, $\Delta c = 0.069 \ mm$, and $V_f = [1+(\epsilon_x-2
u\epsilon_x)]dxdydz = V_0 + \Delta V = -2.25k\ mm^3.$

BIBLIOGRAPHY

[1] A. Ugural and S. Fenster, Advanced Mechanics of Materials and Applied Elasticity (International Series in the Physical and Chemical Engineering Sciences), Sixth. Pearson, 2019.