From last time

Sources

- Type
 - Inductive
 - Grounded
- Waveform

Harmonic (FDEM)

Transient (TDEM)

- Location
 - Airborne
 - Ground
 - Borehole

Transmitter considerations

Time or frequency?

Key factor is moment

$$m = I$$
 (current) A (area) N (# of turns)

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^5} - \frac{\mathbf{m}}{|\mathbf{r}|^3} \right)$$

Airborne Survey

Resolve

SkyTEM

Large Loop

Applications for different systems

Skin Depth

 EM waves decay when propagating in a conducting earth

Skin depth

$$\delta \approx 500 \sqrt{\frac{\rho}{f}} \quad \text{meter}$$

where ρ is resistivity in Ωm and f is frequency in Hz

Today's Topics

- Data and Processing
 - Sounding curves
 - Apparent conductivity/resistivity
 - In-phase and quadrature maps
 - 1D Inversion
- Examples
 - Sand and gravel quarries
 - Bookpurnong
- Recap of EM Methods

Data and Processing

Data: Sounding Curve

Data obtained at a single location

Time

SkyTEM

Sampling times

Sounding curve

Frequency

Resolve

Sampling frequencies

Sounding curve

FEM sounding curve example

- Coincident loop system
- VMD source and receiver measuring Bz(f)

FEM sounding curve example

10⁻¹⁶

10²

10³

Frequency (Hz)

Information about conductivity is captured by the sounding curve

10⁵

10⁴

FEM sounding curve example

- 3 layers + air,
- ρ_2 varies

- Four different cases:
 - Halfspace

$$\rho_2 = 100 \Omega m$$

Resistive

$$\rho_2 = 1000 \ \Omega m$$

- Conductive

$$\rho_2 = 10 \Omega m$$

- Very conductive

$$\rho_2 = 1 \Omega m$$

- Fields
 - J_{y} imag
 - Secondary B imag

Curves for different layer conductivities

Data: Apparent Conductivity

For horizontal coplanar FEM systems

$$\delta \approx 500 \sqrt{\frac{\rho}{f}}$$

• If $s \ll \delta$ and $Re[Hs] \sim 0$ then for a half-space:

$$rac{H_s}{H_p} \simeq i rac{\omega \mu_0 \sigma s^2}{4}$$

Apparent conductivity:

$$\sigma_a = rac{4}{\omega \mu_0 s^2} {
m Im} \left\{rac{H_s}{H_p}
ight\}$$

- Could compute apparent resistivity
- Could turn sounding curve into apparent resistivity curve for background response

Processing: Apparent Conductivity Map

- Lateral variability in near surface conductivity from EM 31
- Taken for two different transmitter-receiver orientations

Processing: Apparent Conductivity and In-Phase Data

- Apparent conductivity (mS/m): lateral changes in conductivity
- In-phase (ppm): Large value highlights buried conductors

EM-31 and Pipe

EM-31 and Conductors

Finding good conductors

High induction number over a conductor

Finding metallic objects

Inversion

1D Inversion example

1D Inversion example

Frequency sounding

Time sounding

Estimated earth resistivity

Example: Sand and Gravel Quarries

Sand and Gravel Quarries

- **Setup:** Find sand and gravel quarries. Area has granitic mountains, rolling hills and lakes. Glacial deposits are responsible for potential sand and gravel resources. Some of the area is bog and agricultural land. (Picture)
- Properties: Bog material is wet and conductive. Gravel deposits are resistive (low conductivity).
 Gravels are unconsolidated and have a low seismic velocity.
- Survey: Preliminary EM survey (EM31) Logistically easy and gives an estimate of ground
 conductivity in the top few meters. Good reconnaissance tool. More detailed follow-up using DC
 resistivity to get 2D conductivity structure and seismic to find the base of the gravel.
- Data: EM31data. Also DC and seismic are acquired along selected line profiles.

Sand and Gravel Quarries

- Processing: EM31 data is converted to ground conductivity. (Picture). DC
 resistivity data is inverted to get a 2D cross section. Seismic data are inverted to
 provide location of refracting interfaces.
- Interpretation: Areas of low conductivity are identified from the EM survey. The inversion of DC and seismic data outline a gravel lens along one of the transects. Gravel lens is 5-8 meters in thickness and 40-50 meters in length.
- Synthesis: Seems successful. Have found gravel lenses and results have helped assess the potential tonnage across the site.

Example: Bookpurnong

Viezzoli et al., 2009

Properties

Location map for salinity measurements

Unit	Conductivity
Saline water	High, 3 - 5 S/m
Fresh water	Low, 0.01 S/m

Conductivity from salinity measurements

Survey

Resolve system (2008)

Horizontal Co-planar (HCP) frequencies:

- 382, 1822, 7970, 35920 and 130100 Hz

Vertical Co-axial (VCA) frequencies: - 3258 Hz

Flight lines

Vertical Co-axial

Horizontal Co-planar (HCP) data

Quadrature (Imaginary)

Sounding curve

Response curve

Processing: 1D inversion

Data fit

Conductivity model (stitched)

Interpretation

Conductivity model (stitched)

Losing Stream

Gaining Stream

- 1 Water table 2 Unsaturated zone
- 3 Saturated zone 4 Flow direction

Synthesis

Hydrological model

Conductivity model (stitched)

EM Recap

EM Survey & Physical Properties

Physical Properties

Basic Experiment

- Source (Tx):
 Current loop makes primary magnetic field
- Induction:
 Time-varying magnetic fields
 induce electric fields everywhere
 - → Large induced currents in conductors
- Secondary Fields: Induced currents in conductors produce secondary magnetic fields
- Receiver (Rx):
 Measures magnetic fields

EM Response from Targets

Coupling coefficient:

Depends on loop geometry

$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

Response over target

Attenuation of EM Signal

Data: Sounding Curve

Data obtained at a single location

Time

SkyTEM

Sampling times

Sounding curve

Frequency

Resolve

Sampling frequencies

Receiver Coils

Sounding curve

Apparent Conductivity and In-Phase Data

- Apparent conductivity (mS/m): lateral changes in conductivity
- In-phase (ppm): Large value highlights buried conductors

Unit Activities

- Labs: (EM I)
 - Monday, November 4th
 - Tuesday, November 5th
- Labs: (EM II)
 - Monday, November 18th
 - Tuesday, November 19th
- TBL:
 - Wednesday, November 15th
- Quiz:
 - Wednesday, November 15th