Gaussian Processes

MLAI Lecture 23

Neil D. Lawrence

Department of Computer Science Sheffield University

23rd November 2012

Book

Rasmussen and Williams (2006)

Outline

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Constructing Covariance

GP Limitations

Conclusions

Outline

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Constructing Covariance

GP Limitations

Conclusion:

Sampling a Function

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{y} = [y_1, y_2 \dots y_{25}].$
- We will plot these points against their index.

Figure: A sample from a 25 dimensional Gaussian distribution.

Figure: A sample from a 25 dimensional Gaussian distribution.

Figure: A sample from a 25 dimensional Gaussian distribution.

Figure: A sample from a 25 dimensional Gaussian distribution.

Figure: A sample from a 25 dimensional Gaussian distribution.

Figure: A sample from a 25 dimensional Gaussian distribution.

Figure: A sample from a 25 dimensional Gaussian distribution.

Figure: A sample from a 25 dimensional Gaussian distribution.

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_2)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_2|y_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_2)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_2|y_1 = -0.513)$.

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_2)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_2|y_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_2)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_2|y_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of y_2 from y_1 requires conditional density.
- Conditional density is also Gaussian.

$$p(y_2|y_1) = \mathcal{N}\left(y_2|rac{k_{1,2}}{k_{1,1}}y_1, k_{2,2} - rac{k_{1,2}^2}{k_{1,1}}
ight)$$

where covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_5)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_5|y_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_5)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_5|y_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_5)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_5|y_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(y_1, y_5)$.
- We observe that $y_1 = -0.313$.
- Conditional density: $p(y_5|y_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of y_{*} from y requires multivariate conditional density.
- Multivariate conditional density is also Gaussian.

$$\rho(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}\left(\mathbf{y}_*|\mathbf{K}_{*,\mathbf{y}}\mathbf{K}_{\mathbf{y},\mathbf{y}}^{-1}\mathbf{y},\mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{y}}\mathbf{K}_{\mathbf{y},\mathbf{y}}^{-1}\mathbf{K}_{\mathbf{y},*}\right)$$

• Here covariance of joint density is given by

$$\mathbf{K} = egin{bmatrix} \mathbf{K}_{\mathbf{y},\mathbf{y}} & \mathbf{K}_{*,\mathbf{y}} \\ \mathbf{K}_{\mathbf{y},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- Prediction of y_{*} from y requires multivariate conditional density.
- Multivariate conditional density is also Gaussian.

$$egin{aligned}
ho(\mathbf{y}_*|\mathbf{y}) &= \mathcal{N}\left(\mathbf{y}_*|oldsymbol{\mu}, \Sigma
ight) \ oldsymbol{\mu} &= \mathbf{K}_{*,\mathbf{y}}\mathbf{K}_{\mathbf{y},\mathbf{y}}^{-1}\mathbf{y} \ \Sigma &= \mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{y}}\mathbf{K}_{\mathbf{y},\mathbf{y}}^{-1}\mathbf{K}_{\mathbf{y},*} \end{aligned}$$

Here covariance of joint density is given by

$$\mathbf{K} = egin{bmatrix} \mathbf{K}_{\mathbf{y},\mathbf{y}} & \mathbf{K}_{*,\mathbf{y}} \\ \mathbf{K}_{\mathbf{y},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \exp\left(-\frac{\left\|\mathbf{x} - \mathbf{x}'\right\|_{2}^{2}}{2\ell^{2}}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \exp\left(-rac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}
ight)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 imes \exp\left(-rac{(-3.0 - 3.0)^2}{2 imes 2.00^2}
ight)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k\left(x_{i},x_{j}
ight)=lpha\exp\left(-rac{\left|\left|x_{i}-x_{j}
ight|^{2}}{2\ell^{2}}
ight)}{1.00}$$
 $x_{1}=-3.0,\ x_{1}=-3.0$

$$k_{1,1}=1.00 imes\exp\left(-rac{\left(-3.0--3.0
ight)^{2}}{2 imes2.00^{2}}
ight)$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$\mathit{k}_{2,1} = 1.00 imes \exp\left(-rac{(1.20 - 1.20)^2}{2 imes 2.00^2}
ight)$$

$$\emph{x}_1=-3.0$$
, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=2.00$ and $\alpha=1.00$.

$$k\left(x_{i},x_{j}
ight)=lpha\exp\left(-rac{||x_{i}-x_{j}||^{2}}{2\ell^{2}}
ight)$$

$$x_{2}=1.20,\ x_{1}=-3.0$$

$$0.110$$

$$k_{2,1}=1.00 imes\exp\left(-rac{(1.20-1.20)^{2}}{2 imes2.00^{2}}
ight)$$

$$x_1=-3.0$$
, $x_2=1.20$, and $x_3=1.40$ with $\ell=2.00$ and $\alpha=1.00$.

$$k\left(x_i,x_j
ight)=lpha\exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_2=1.20,\ x_1=-3.0$$

$$0.110$$

$$k_{2,1}=1.00 imes\exp\left(-rac{(1.20-1.20)^2}{2 imes2.00^2}
ight)$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k\left(x_i,x_j
ight)=lpha\exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_2=1.20,\ x_2=1.20$$

$$0.110$$

$$k_{2,2}=1.00 imes\exp\left(-rac{(1.20-1.20)^2}{2 imes2.00^2}
ight)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k\left(x_i,x_j
ight) = lpha \exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$
 $x_2 = 1.20, \ x_2 = 1.20$
 $1.00 \quad 0.110$
 1.00
 1.00
 1.00

$$x_1=-3.0$$
, $x_2=1.20$, and $x_3=1.40$ with $\ell=2.00$ and $\alpha=1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$\begin{bmatrix} 1.00 & 0.110 \end{bmatrix}$$

$$x_3 = 1.40, x_1 = -3.0$$

$$\mathit{k}_{3,1} = 1.00 imes \exp\left(-rac{(1.40 - 1.40)^2}{2 imes 2.00^2}
ight)$$

$$\emph{x}_1=-3.0$$
, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=2.00$ and $\alpha=1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$
1.00 0.110 0.0889

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$\begin{bmatrix}
1.00 & 0.110 & 0.0889
\end{bmatrix}$$

$$k_{3,2} = 1.00 imes \exp\left(-rac{(1.40 - 1.40)^2}{2 imes 2.00^2}
ight)$$

 $x_3 = 1.40, x_2 = 1.20$

0.0889

1.00

0.110

 $\emph{x}_1=-3.0$, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=2.00$ and $\alpha=1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$0.110 \quad 0.0889$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$1.00 \quad 0.110 \quad 0.0889$$

$$0.110 \quad 1.00 \quad 0.995$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$1.00 \quad 0.110 \quad 0.0889$$

$$0.110 \quad 1.00 \quad 0.995$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995 \quad \boxed{1.00}$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 imes \exp\left(-rac{(1.40 - 1.40)^2}{2 imes 2.00^2}
ight)$$

 $x_1 = -3.0$, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3$$
, $x_1 = -3$

$$k_{1,1} = 1.0 imes \exp\left(-rac{(-3--3)^2}{2 imes 2.0^2}
ight)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3, \ x_1 = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - -3)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

1.0

$$x_2 = 1.2, x_1 = -3$$
 $k_{2,1} = 1.0 imes \exp\left(-rac{(1.2 - 1.2)^2}{2 imes 2.0^2}
ight)$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_1 = -3$$

$$0.11$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_i,x_j
ight) = lpha \exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_2 = 1.2, \ x_1 = -3 \qquad \qquad \begin{bmatrix} 1.0 & 0.11 \\ 0.11 \\ k_{2,1} = 1.0 imes \exp\left(-rac{(1.2-1.2)^2}{2 imes 2.0^2}
ight) \end{bmatrix}$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_i,x_j
ight) = lpha \exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_2 = 1.2, \ x_2 = 1.2 \qquad \qquad 0.11$$

$$k_{2,2} = 1.0 imes \exp\left(-rac{(1.2-1.2)^2}{2 imes 2.0^2}
ight)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_i,x_j
ight) = lpha \exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_2 = 1.2, \ x_2 = 1.2$$

$$0.11 \ 1.0$$

$$k_{2,2} = 1.0 imes \exp\left(-rac{(1.2-1.2)^2}{2 imes 2.0^2}
ight)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_i,x_j
ight) = lpha \exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_3 = 1.4, \ x_1 = -3 \qquad \qquad \boxed{ egin{array}{c} 1.0 & 0.11 \\ 0.11 & 1.0 \ \end{array} }$$
 $k_{3,1} = 1.0 imes \exp\left(-rac{(1.4-1.4)^2}{2 imes 2.0^2}
ight)$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$\begin{bmatrix}
1.0 & 0.11 & 0.089 \\
0.11 & 1.0
\end{bmatrix}$$

0.089

$$\mathit{k}_{3,1} = 1.0 imes \exp\left(-rac{(1.4 - 1.4)^2}{2 imes 2.0^2}
ight)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_{i},x_{j}
ight)=lpha\exp\left(-rac{\left|\left|x_{i}-x_{j}
ight|^{2}}{2\ell^{2}}
ight)}{1.0\ 0.11\ 0.089}$$
 $x_{3}=1.4,\ x_{2}=1.2$ 0.089 0.089

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_i,x_j
ight) = lpha \exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_3 = 1.4, \ x_2 = 1.2$$

$$x_3 = 1.0 \times \exp\left(-rac{(1.4-1.4)^2}{2\times 2.0^2}
ight)$$

$$1.0 \quad 0.11 \quad 0.089$$

$$0.11 \quad 1.0$$

$$0.089 \quad 1.0$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k\left(x_{i},x_{j}\right)=lpha\exp\left(-rac{||x_{i}-x_{j}||^{2}}{2\ell^{2}}
ight)$$

$$x_{3}=1.4,\ x_{2}=1.2$$

$$0.089 \ 1.0$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

 $k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4-1.4)^2}{2\times 2.0^2}\right)$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_i,x_j
ight) = lpha \exp\left(-rac{||x_i-x_j||^2}{2\ell^2}
ight)$$

$$x_3 = 1.4, \ x_3 = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-rac{(1.4-1.4)^2}{2\times 2.0^2}
ight)$$

$$1.0 \quad 0.11 \quad 0.089$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.089 \quad 1.0 \quad 1.0$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k\left(x_{i},x_{j}
ight)=lpha\exp\left(-rac{||x_{i}-x_{j}||^{2}}{2\ell^{2}}
ight)$$

$$x_{4}=2.0,\ x_{1}=-3$$

$$0.11\ 1.0\ 1.0$$

$$0.089\ 1.0\ 1.0$$

$$k_{4,1}=1.0 ext{ } \exp\left(-rac{(2.0-2.0)^{2}}{2 ext{ } 2 ext{ } 2.0^{2}}
ight)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$0.044$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

$$x_1=-3$$
, $x_2=1.2$, $x_3=1.4$, and $x_4=2.0$ with $\ell=2.0$ and $\alpha=1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$0.044 \quad 0.92$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92 \quad 0.96$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0 \quad 0.92$$

0.089 1.0 1.0 0.96

0.044 0.92 0.96

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

 $k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0 \quad 0.92$$

$$x_4 = 2.0, x_4 = 2.0$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96 \quad 1.0$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 imes \exp\left(-rac{(2.0 - 2.0)^2}{2 imes 2.0^2}
ight)$$

$$x_1 = -3$$
, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 imes \exp\left(-rac{(-3.0 - 3.0)^2}{2 imes 5.00^2}
ight)$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k\left(x_{i},x_{j}
ight)=lpha\exp\left(-rac{||x_{i}-x_{j}||^{2}}{2\ell^{2}}
ight)$$

$$x_{1}=-3.0,\ x_{1}=-3.0$$

$$4.00$$

$$k_{1,1}=4.00 imes\exp\left(-rac{(-3.0--3.0)^{2}}{2 imes5.00^{2}}
ight)$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

4.00

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 imes \exp\left(-rac{(1.20 - 1.20)^2}{2 imes 5.00^2}
ight)$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$\emph{x}_1=-3.0$$
, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=5.00$ and $\alpha=4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$2.81$$

$$k_{2,1} = 4.00 imes \exp\left(-rac{(1.20 - 1.20)^2}{2 imes 5.00^2}
ight)$$

 $\emph{x}_1 = -3.0$, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$
 4.00 2.81

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

 $x_1 = -3.0$, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

2.81

4.00

$$x_3 = 1.40, x_1 = -3.0$$
 4.00
$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$x_3 = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

$$\emph{x}_1=-3.0$$
, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=5.00$ and $\alpha=4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$4.00 \quad 2.81 \quad 2.72$$

$$2.81 \quad 4.00$$

$$\emph{x}_1=-3.0$$
, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=5.00$ and $\alpha=4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$4.00 \quad 2.81$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

2.72

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

2.72

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$
 $4.00 \quad 2.81 \quad 2.72$

$$2.81 \quad 4.00$$

$$\emph{x}_1 = -3.0$$
, $\emph{x}_2 = 1.20$, and $\emph{x}_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$4.00 \quad 2.81 \quad 2.72$$

$$2.81 \quad 4.00 \quad 4.00$$

$$\emph{x}_1=-3.0$$
, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=5.00$ and $\alpha=4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$4.00 \quad 2.81 \quad 2.72$$

$$2.81 \quad 4.00 \quad 4.00$$

$$x_1 = -3.0$$
, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$
 $4.00 \quad 2.81 \quad 2.72$

$$2.81 \quad 4.00 \quad 4.00$$

$$2.72 \quad 4.00 \quad 4.00$$

$$\emph{x}_1=-3.0$$
, $\emph{x}_2=1.20$, and $\emph{x}_3=1.40$ with $\ell=5.00$ and $\alpha=4.00$.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 imes \exp\left(-rac{(1.40 - 1.40)^2}{2 imes 5.00^2}
ight)$$

 $x_1=-3.0$, $x_2=1.20$, and $x_3=1.40$ with $\ell=5.00$ and $\alpha=4.00$.

Outline

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Constructing Covariance

Conclusion

Basis Function Form

Radial basis functions commonly have the form

$$\phi_k\left(\mathbf{x}_i\right) = \exp\left(-rac{\left|\mathbf{x}_i - \boldsymbol{\mu}_k
ight|^2}{2\ell^2}
ight).$$

 Basis function maps data into a "feature space" in which a linear sum is a non linear function.

Figure: A set of radial basis functions with width $\ell = 2$ and location parameters $\mu = \begin{bmatrix} -4 & 0 & 4 \end{bmatrix}^{\top}$.

Basis Function Representations

• Represent a function by a linear sum over a basis,

$$y(\mathbf{x}_{i,:};\mathbf{w}) = \sum_{k=1}^{m} w_k \phi_k(\mathbf{x}_{i,:}), \tag{1}$$

• Here: m basis functions and $\phi_k(\cdot)$ is kth basis function and

$$\mathbf{w} = [w_1, \dots, w_m]^{\top}$$
.

• For standard linear model: $\phi_k(\mathbf{x}_{i,:}) = x_{i,k}$.

Random Functions

Functions derived using:

$$y(x) = \sum_{k=1}^{m} w_k \phi_k(x),$$

where W is sampled from a Gaussian density,

$$w_k \sim \mathcal{N}(0, \alpha)$$
.

Figure: Functions sampled using the basis set from figure 2. Each line is a separate sample, generated by a weighted sum of the basis set. The weights, \mathbf{w} are sampled from a Gaussian density with variance $\alpha=1$.

• Use matrix notation to write function,

$$y\left(\mathbf{x}_{i};\mathbf{w}\right)=\sum_{k=1}^{m}w_{k}\phi_{k}\left(\mathbf{x}_{i}\right)$$

$$y = \Phi w$$
.

- w and y are only related by a inner product
- ullet is fixed and non-stochastic for a given training set
- y is Gaussian distributed.
- it is straightforward to compute distribution for **y**

• Use matrix notation to write function,

$$y\left(\mathbf{x}_{i};\mathbf{w}\right)=\sum_{k=1}^{m}w_{k}\phi_{k}\left(\mathbf{x}_{i}\right)$$

$$y = \Phi w$$
.

- w and y are only related by a inner product
- ullet is fixed and non-stochastic for a given training set
- y is Gaussian distributed.
- it is straightforward to compute distribution for y

• Use matrix notation to write function,

$$y\left(\mathbf{x}_{i};\mathbf{w}\right)=\sum_{k=1}^{m}w_{k}\phi_{k}\left(\mathbf{x}_{i}\right)$$

$$\mathsf{y} = \Phi \mathsf{w}$$
 .

- w and y are only related by a inner product
- ullet is fixed and non-stochastic for a given training set
- y is Gaussian distributed.
- it is straightforward to compute distribution for y

Use matrix notation to write function,

$$y\left(\mathbf{x}_{i};\mathbf{w}\right)=\sum_{k=1}^{m}w_{k}\phi_{k}\left(\mathbf{x}_{i}\right)$$

$$y = \Phi w$$
.

- w and y are only related by a inner product.
- ullet is fixed and non-stochastic for a given training set
- y is Gaussian distributed.
- it is straightforward to compute distribution for y

• Use matrix notation to write function,

$$y\left(\mathbf{x}_{i};\mathbf{w}\right)=\sum_{k=1}^{m}w_{k}\phi_{k}\left(\mathbf{x}_{i}\right)$$

$$y = \Phi w$$
.

- w and y are only related by a inner product.
- ullet Φ is fixed and non-stochastic for a given training set.
- y is Gaussian distributed.
- it is straightforward to compute distribution for **y**

• Use matrix notation to write function,

$$y\left(\mathbf{x}_{i};\mathbf{w}\right)=\sum_{k=1}^{m}w_{k}\phi_{k}\left(\mathbf{x}_{i}\right)$$

$$y = \Phi w$$
.

- w and y are only related by a inner product.
- ullet Φ is fixed and non-stochastic for a given training set.
- y is Gaussian distributed.
- it is straightforward to compute distribution for y

• Use matrix notation to write function,

$$y\left(\mathbf{x}_{i};\mathbf{w}\right)=\sum_{k=1}^{m}w_{k}\phi_{k}\left(\mathbf{x}_{i}\right)$$

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}$$
.

- w and y are only related by a inner product.
- ullet Φ is fixed and non-stochastic for a given training set.
- y is Gaussian distributed.
- it is straightforward to compute distribution for y

- ullet We use $\langle\cdot
 angle$ to denote expectations under prior distributions.
- We have

$$\langle \mathsf{y}
angle = \phi \, \langle \mathsf{w}
angle$$

Prior mean of w was zero giving

$$\langle \mathsf{y} \rangle = \mathsf{0}.$$

Prior covariance of v is

$$\mathsf{K} = \left\langle \mathsf{y} \mathsf{y}^{ op}
ight
angle - \left\langle \mathsf{y}
ight
angle \left\langle \mathsf{y}
ight
angle^{ op}$$

$$\left\langle \mathsf{y}\mathsf{y}^{ op} \right
angle = \Phi \left\langle \mathsf{w}\mathsf{w}^{ op} \right
angle \Phi^{ op}$$

$$K = \gamma' \Phi \Phi^{\top}$$
.

- We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left\langle \mathsf{y}
ight
angle =\phi\left\langle \mathsf{w}
ight
angle$$
 .

Prior mean of w was zero giving

$$\langle \mathsf{y}
angle = \mathsf{0}$$
 .

Prior covariance of y is

$$\mathsf{K} = \left\langle \mathsf{y}\mathsf{y}^{ op} \right
angle - \left\langle \mathsf{y}
ight
angle \left\langle \mathsf{y}
ight
angle^{ op}$$

$$\left\langle \mathsf{y}\mathsf{y}^{ op} \right
angle = \mathbf{\Phi} \left\langle \mathsf{w}\mathsf{w}^{ op} \right
angle \mathbf{\Phi}^{ op}$$

$$\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\top}$$
.

- We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left\langle \mathsf{y}
ight
angle =\phi\left\langle \mathsf{w}
ight
angle$$
 .

ullet Prior mean of $oldsymbol{w}$ was zero giving

$$\langle \mathbf{y}
angle = \mathbf{0}.$$

$$egin{aligned} \mathbf{y} & \mathbf{s} \\ \mathbf{K} &= \left\langle \mathbf{y} \mathbf{y}^{ op}
ight
angle - \left\langle \mathbf{y}
ight
angle \left\langle \mathbf{y}
ight
angle^{ op} \\ \left\langle \mathbf{y} \mathbf{y}^{ op}
ight
angle &= \mathbf{\Phi} \left\langle \mathbf{w} \mathbf{w}^{ op}
ight
angle \mathbf{\Phi}^{ op} \end{aligned}$$

$$\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\top}$$
.

- We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left\langle \mathsf{y}
ight
angle =\phi\left\langle \mathsf{w}
ight
angle$$
 .

• Prior mean of w was zero giving

$$\langle \mathbf{y}
angle = \mathbf{0}.$$

• Prior covariance of y is

$$\mathbf{K} = \left\langle \mathbf{y} \mathbf{y}^{ op}
ight
angle - \left\langle \mathbf{y}
ight
angle \left\langle \mathbf{y}
ight
angle^{ op}$$

$$\left\langle \mathsf{y}\mathsf{y}^{ op}
ight
angle = \Phi \left\langle \mathsf{w}\mathsf{w}^{ op}
ight
angle \Phi^{ op}$$

$$\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\top}$$
.

- We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left\langle \mathsf{y}
ight
angle =\phi\left\langle \mathsf{w}
ight
angle$$
 .

• Prior mean of **w** was zero giving

$$\langle \mathbf{y}
angle = \mathbf{0}.$$

• Prior covariance of y is

$$\mathbf{K} = \left\langle \mathbf{y} \mathbf{y}^{ op}
ight
angle - \left\langle \mathbf{y}
ight
angle \left\langle \mathbf{y}
ight
angle^{ op}$$

$$\left\langle \mathbf{y}\mathbf{y}^{ op}
ight
angle =\mathbf{\Phi}\left\langle \mathbf{w}\mathbf{w}^{ op}
ight
angle \mathbf{\Phi}^{ op},$$

$$\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}}.$$

• The prior covariance between two points x_i and x_j is

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\gamma'\sum_{\ell}^{m}\phi_{\ell}\left(\mathbf{x}_{i}\right)\phi_{\ell}\left(\mathbf{x}_{j}\right)$$

or in vector form

$$\epsilon\left(\mathbf{x}_{i},\mathbf{x}_{j}
ight)=\phi_{z}\left(\mathbf{x}_{i}
ight)^{ op}\phi_{z}\left(\mathbf{x}_{j}
ight)$$
 ,

For the radial basis used this gives

$$k(\mathbf{x}_i, \mathbf{x}_j) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{|\mathbf{x}_i - \boldsymbol{\mu}_k|^2 + |\mathbf{x}_j - \boldsymbol{\mu}_k|^2}{2\ell^2}\right)$$

• The prior covariance between two points x_i and x_j is

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\gamma'\sum_{\ell}^{m}\phi_{\ell}\left(\mathbf{x}_{i}\right)\phi_{\ell}\left(\mathbf{x}_{j}\right)$$

or in vector form

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j),$$

For the radial basis used this gives

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{\left|\mathbf{x}_{i} - \boldsymbol{\mu}_{k}\right|^{2} + \left|\mathbf{x}_{j} - \boldsymbol{\mu}_{k}\right|^{2}}{2\ell^{2}}\right)$$

• The prior covariance between two points x_i and x_j is

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\gamma'\sum_{\ell}^{m}\phi_{\ell}\left(\mathbf{x}_{i}\right)\phi_{\ell}\left(\mathbf{x}_{j}\right)$$

or in vector form

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j),$$

• For the radial basis used this gives

$$k(\mathbf{x}_i, \mathbf{x}_j) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{|\mathbf{x}_i - \boldsymbol{\mu}_k|^2 + |\mathbf{x}_j - \boldsymbol{\mu}_k|^2}{2\ell^2}\right)$$

• The prior covariance between two points x_i and x_j is

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\gamma'\sum_{\ell}^{m}\phi_{\ell}\left(\mathbf{x}_{i}\right)\phi_{\ell}\left(\mathbf{x}_{j}\right)$$

or in vector form

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j),$$

• For the radial basis used this gives

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{\left|\mathbf{x}_{i} - \boldsymbol{\mu}_{k}\right|^{2} + \left|\mathbf{x}_{j} - \boldsymbol{\mu}_{k}\right|^{2}}{2\ell^{2}}\right).$$

Selecting Number and Location of Basis

- Need to choose
 - location of centers
 - number of basis functions
- Consider uniform spacing over a region:

$$k\left(x_{i}, x_{j}\right) = \gamma \Delta \mu \sum_{k=1}^{\infty} \exp\left(-\frac{1 - i \gamma_{j} - i \beta_{k} + i \gamma_{k} + i \gamma_{k}}{2\ell^{2}}\right)$$

Selecting Number and Location of Basis

- Need to choose
 - location of centers
 - number of basis functions
- Consider uniform spacing over a region:

Selecting Number and Location of Basis

- Need to choose
 - location of centers
 - number of basis functions
- Consider uniform spacing over a region

Selecting Number and Location of Basis

- Need to choose
 - location of centers
 - number of basis functions
- Consider uniform spacing over a region:

$$k\left(x_{i},x_{j}\right)=\gamma\Delta\mu\sum_{k=1}^{m}\exp\left(-\frac{x_{i}^{2}+x_{j}^{2}-2\mu_{k}\left(x_{i}+x_{j}\right)+2\mu_{k}^{2}}{2\ell^{2}}\right),$$

Uniform Basis Functions

• Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Specify the bases in terms of their indices,

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=1}^{\infty} \exp\left(-\frac{1}{2\ell^2}\right)$$
$$-\frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}$$

Uniform Basis Functions

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

• Specify the bases in terms of their indices,

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=1}^{m} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2}\right)$$
$$-\frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}.$$

- Take $\mu_0 = a$ and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$
- Take limit as $\Delta\mu \to 0$ so $m \to \infty$

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2(\mu - \frac{1}{2}(x + x_j))^2 - \frac{1}{2}(x + y_j)^2}{2\ell^2}\right) d\mu$$

where we have used $k \cdot \Delta \mu \to \mu$.

- Take $\mu_0 = a$ and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.
- ullet Take limit as $\Delta \mu o 0$ so $m o \infty$

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2(\mu - \frac{1}{2}(m + x_j))^2 - \frac{1}{2}}{2\ell^2}\right)$$

where we have used $k \cdot \Delta \mu \to \mu$.

- Take $\mu_0 = a$ and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.
- Take limit as $\Delta \mu \to 0$ so $m \to \infty$

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2}\right)$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.

- Take $\mu_0 = a$ and $\mu_m = b$ so $b = a + \underline{\Delta}\mu \cdot (m-1)$.
- Take limit as $\Delta \mu o 0$ so $m o \infty$

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2(\mu - \frac{1}{2}(x_i + x_j))^2 - \frac{1}{2}(x_i + x_j)^2}{2\ell^2}\right) d\mu,$$

where we have used $k \cdot \Delta \mu \to \mu$.

Result

• Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right)$$

$$\times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}(x_i + x_j)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}(x_i + x_j)\right)}{\ell}\right) \right],$$

ullet Now take limit as $a o -\infty$ and $b o \infty$.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right)$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$

Result

• Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right)$$

$$\times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}(x_i + x_j)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}(x_i + x_j)\right)}{\ell}\right) \right],$$

• Now take limit as $a \to -\infty$ and $b \to \infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right)$$

where $lpha=\gamma\sqrt{\pi\ell^2}$.

Result

• Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right)$$

$$\times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}(x_i + x_j)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}(x_i + x_j)\right)}{\ell}\right) \right],$$

• Now take limit as $a o -\infty$ and $b o \infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$.

- A RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic
- Note: The functional form for the covariance function and basis functions are similar.
 - in general they are very different
- Similar results can obtained for multi-dimensional input networks Williams (1998); Neal (1996).

- A RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.

 Similar results can obtained for multi-dimensional input networks Williams (1998): Neal (1996).

- A RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- **Note:** The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different
- Similar results can obtained for multi-dimensional input networks Williams (1998); Neal (1996).

- A RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- **Note:** The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different
- Similar results can obtained for multi-dimensional input networks Williams (1998); Neal (1996).

Nonparametric Gaussian Processes

- This work takes us from parametric to non-parametric.
- The limit implies infinite dimensional w.
- Gaussian processes are generally non-parametric: combine data with covariance function to get model.
- This representation cannot be summarized by a parameter vector of a fixed size.

- Parametric models have a representation that does not respond to increasing training set size.
- Bayesian posterior distributions over parameters contain the information about the training data.
 - Use Bayes' rule from training data, $p(\mathbf{w}|\mathbf{t}, \mathbf{X})$,
 - Make predictions on test data

$$p\left(t_{*}|\mathbf{X}_{*},\mathbf{t},\mathbf{X}
ight)=\int p\left(t_{*}|\mathbf{w},\mathbf{X}_{*}
ight)p\left(\mathbf{w}|\mathbf{t},\mathbf{X}
ight)d\mathbf{w}
ight).$$

- w becomes a bottleneck for information about the training set to pass to the test set.
- Solution: increase *m* so that the bottleneck is so large that it no longer presents a problem.
- How big is big enough for m? Non-parametrics says $m \to \infty$.

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it is possible to express parametric as GPs

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most m, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{x}_j$.

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it is possible to express parametric as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- I hese are known as degenerate covariance matrices.
- Their rank is at most m, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{x}_j$

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it is possible to express parametric as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_1(\mathbf{x}_i)^{\top} \phi_1(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most m, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{x}_j$

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it is possible to express parametric as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_1(\mathbf{x}_i)^{\top} \phi_1(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most *m*, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{x}_j$

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it is possible to express parametric as GPs:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most *m*, non-parametric models have full rank covariance matrices.
- ullet Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{ op} \mathbf{x}_j$.

- For non-parametrics prediction at new points y_* is made by conditioning on y in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a fixed number of parameters.
 - the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points y_* is made by conditioning on y in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction car be summarized in a *fixed* number of parameters.
 - the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points y_* is made by conditioning on y in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
 - the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points y_* is made by conditioning on y in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
- Complexity of parametric model remains fixed regardless of the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points y_* is made by conditioning on y in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
- Complexity of parametric model remains fixed regardless of the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

Covariance Functions

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-rac{\|x-\mu_i\|_2^2}{\ell^2}
ight)$$
 $oldsymbol{\mu} = egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}$

Covariance Functions

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-rac{\|x-\mu_i\|_2^2}{\ell^2}
ight)$$
 $egin{aligned} \mu = egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}$

Covariance Functions and Mercer Kernels

- Mercer Kernels and Covariance Functions are similar.
- the kernel perspective does not make a probabilistic interpretation of the covariance function.
- Algorithms can be simpler, but probabilist

Covariance Functions and Mercer Kernels

- Mercer Kernels and Covariance Functions are similar.
- the kernel perspective does not make a probabilistic interpretation of the covariance function.

Covariance Functions and Mercer Kernels

- Mercer Kernels and Covariance Functions are similar.
- the kernel perspective does not make a probabilistic interpretation of the covariance function.
- Algorithms can be simpler, but probabilistic interpretation is crucial for kernel parameter optimization.

Outline

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Constructing Covariance

GP Limitation

Conclusion:

Constructing Covariance Functions

• Sum of two covariances is also a covariance function.

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

Constructing Covariance Functions

• Product of two covariances is also a covariance function.

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

Multiply by Deterministic Function

- If y(x) is a Gaussian process.
- $g(\mathbf{x})$ is a deterministic function.
- $h(\mathbf{x}) = y(\mathbf{x})g(\mathbf{x})$
- Then

$$k_h(\mathbf{x}, \mathbf{x}') = g(\mathbf{x})k_f(\mathbf{x}, \mathbf{x}')g(\mathbf{x}')$$

where k_h is covariance for $h(\cdot)$ and k_f is covariance for $y(\cdot)$.

Covariance Functions

MLP Covariance Function

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \mathrm{asin}\left(\frac{w\mathbf{x}^{\top}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\top}\mathbf{x} + b + 1}\sqrt{w\mathbf{x}'^{\top}\mathbf{x}' + b + 1}}\right)$$

 Based on infinite neural network model.

$$w = 40$$

Covariance Functions

MLP Covariance Function

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \mathrm{asin}\left(\frac{w\mathbf{x}^{\top}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\top}\mathbf{x} + b + 1}\sqrt{w\mathbf{x}'^{\top}\mathbf{x}' + b + 1}}\right)$$

 Based on infinite neural network model.

$$w = 40$$

$$b=4$$

Covariance Functions

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^{\mathsf{T}} \mathbf{x}'$$

• Bayesian linear regression.

$$\alpha = 1$$

Covariance Functions

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^{\mathsf{T}} \mathbf{x}'$$

• Bayesian linear regression.

$$\alpha = 1$$

Gaussian Noise

• Gaussian noise model,

$$p(t_i|y_i) = \mathcal{N}(t_i|y_i, \sigma^2)$$

where σ^2 is the variance of the noise.

• Equivalent to a covariance function of the form

$$k(\mathbf{x}_i, \mathbf{x}_i) = \delta_{i,i}\sigma^2$$

where $\delta_{i,i}$ is the Kronecker delta function.

 Additive nature of Gaussians means we can simply add this term to existing covariance matrices.

Figure: Examples include WiFi localization, C14 callibration curve.

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$\mathcal{N}\left(\mathbf{t}|\mathbf{0},\mathbf{K}
ight) = rac{1}{(2\pi)^{rac{N}{2}}|\mathbf{K}|} \mathrm{exp}\left(-rac{\mathbf{t}^{ op}\mathbf{K}^{-1}\mathbf{t}}{2}
ight)$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$\mathcal{N}\left(\mathbf{t}|\mathbf{0},\mathbf{K}
ight) = rac{1}{\left(2\pi
ight)^{rac{N}{2}}|\mathbf{K}|} \mathrm{exp}\left(-rac{\mathbf{t}^{ op}\mathbf{K}^{-1}\mathbf{t}}{2}
ight)$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$\log \mathcal{N}\left(\mathbf{t}|\mathbf{0},\mathbf{K}\right) = -\frac{N}{2}\log 2\pi - \frac{1}{2}\log |\mathbf{K}| - \frac{\mathbf{t}^{\top}\mathbf{K}^{-1}\mathbf{t}}{2}$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Learning Covariance Parameters Can we determine covariance parameters from the data?

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

$$\mathsf{K} = \mathsf{R} \Lambda^2 \mathsf{R}^{ op}$$

Diagonal of Λ represents distance along axes.

R gives a rotation of these axes.

where $oldsymbol{\Lambda}$ is a $\emph{diagonal}$ matrix and $oldsymbol{\mathsf{R}}^{ op}oldsymbol{\mathsf{R}}=oldsymbol{\mathsf{I}}.$

Useful representation since $|\mathbf{K}| = ig| \Lambda^2 ig| = |\Lambda|^2.$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 \ \hline 0 & \lambda_2 \end{bmatrix}$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} egin{bmatrix} \lambda_2 \ \lambda_1 \end{bmatrix}$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} egin{bmatrix} \lambda_2 \ \lambda_1 \end{bmatrix}$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} egin{bmatrix} \lambda_2 & |oldsymbol{\Lambda}| \ \lambda_1 & \lambda_1 \end{bmatrix}$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ \hline 0 & 0 & \lambda_3 \end{bmatrix}$$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ \hline 0 & 0 & \lambda_3 \end{bmatrix}$$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2 \lambda_3$$

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix} egin{bmatrix} \lambda_1 & \lambda_2 \ \lambda_1 \end{bmatrix}$$

$$\mathsf{R}\Lambda = egin{bmatrix} w_{1,1} & w_{1,2} \ w_{2,1} & w_{2,2} \end{bmatrix} egin{bmatrix} \lambda_1 \ \lambda_2 \end{bmatrix} \lambda_1$$

$$|\mathbf{R}\mathbf{\Lambda}| = \lambda_1\lambda_2$$

Data Fit: $\frac{\mathbf{t}^{-1}\mathbf{K}^{-1}\mathbf{t}}{2}$

Data Fit: $\frac{\mathbf{t}^{-1}\mathbf{K}^{-1}\mathbf{t}}{2}$

Data Fit: $\frac{\mathbf{t}^{-1}\mathbf{K}^{-1}\mathbf{t}}{2}$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{t}^{\top} \mathbf{K}^{-1} \mathbf{t}}{2}$$

Gene Expression Example

Data from Della Gatta et al. (2008). Figure from Kalaitzis and Lawrence (2011).

Outline

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Constructing Covariance

GP Limitations

Conclusion

Limitations of Gaussian Processes

- Inference is $O(N^3)$ due to matrix inverse (in practice use Cholesky).
- Gaussian processes don't deal well with discontinuities (financial crises, phosphorylation, collisions, edges in images).
- Widely used exponentiated quadratic covariance (RBF) can be too smooth in practice (but there are many alternatives!!).

Summary

- Broad introduction to Gaussian processes.
 - Started with Gaussian distribution.
 - Motivated Gaussian processes through the multivariate density.
- Emphasized the role of the covariance (not the mean).
- Performs nonlinear regression with error bars.
- Parameters of the covariance function (kernel) are easily optimized with maximum likelihood.

Reading

- Section 2.3 of Bishop up to top of pg 85 (multivariate Gaussians).
- Section 3.3 of Bishop up to 159 (pg 152-159).

References I

- C. M. Bishop. *Pattern Recognition and Machine Learning*. Springer-Verlag, 2006. [Google Books] .
- G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research*, 18(6): 939–948, Jun 2008. [URL]. [DOI].
- A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. *BMC Bioinformatics*, 12(180), 2011. [DOI].
- R. M. Neal. *Bayesian Learning for Neural Networks*. Springer, 1996. Lecture Notes in Statistics 118.

References II

- J. Oakley and A. O'Hagan. Bayesian inference for the uncertainty distribution of computer model outputs. *Biometrika*, 89(4): 769–784, 2002.
- C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006. [Google Books].
- C. K. I. Williams. Computation with infinite neural networks. *Neural Computation*, 10(5):1203–1216, 1998.