SELECTION GAMES AND ARHANGELSKII'S CONVERGENCE PRINCIPLES

STEVEN CLONTZ

Abstract. We prove the things.

1. Clontz results

- 5 **Definition 1.** Say a collection \mathcal{A} is Γ-like if it satisfies the following for each $A \in \mathcal{A}$.
 - $|A| \geq \aleph_0$.

2

3

- If $A' \subseteq A$ and $|A'| \ge \aleph_0$, then $A' \in \mathcal{A}$.
- **Definition 2.** Let Γ_X be the collection of open γ -covers \mathcal{U} of X, that is, infinite
- 9 open covers of X such that for each $x \in X$, $\{U \in \mathcal{U} : x \in U\}$ is cofinite in \mathcal{U} .
- Definition 3. Let $\Gamma_{X,x}$ be the collection of non-trivial sequences $S \subseteq X$ converging
- to x, that is, infinite subsets of X such that for each neighborhood U of x, $S \cap U$
- is cofinite in S.
- 13 It follows that $\Gamma_X, \Gamma_{X,x}$ are both Γ -like. We also require the following.
- Definition 4. Say a collection \mathcal{A} is almost-Γ-like if for each $A \in \mathcal{A}$, there is $A' \subseteq A$ such that:
 - $|A'| = \aleph_0$.

16

- If A'' is a cofinite subset of A', then $A'' \in A$.
- So all Γ-like sets are almost-Γ-like.
- **Theorem 5.** Let \mathcal{B} be Γ-like. Then $\alpha_1(\mathcal{A},\mathcal{B})$ holds if and only if I $\gamma_{pre} G_{cf}(\mathcal{A},\mathcal{B})$.
- Proof. We first assume $\alpha_1(\mathcal{A},\mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined
- strategy for I. By $\alpha_1(\mathcal{A}, \mathcal{B})$, we immediately obtain $B \in \mathcal{B}$ such that $|A_n \setminus B| < \aleph_0$.
- Thus $B_n = A_n \cap B$ is a cofinite choice from A_n , and $B' = \bigcup \{B_n : n < \omega\}$ is an
- infinite subset of B, so $B' \in \mathcal{B}$. Thus II may defeat I by choosing $B_n \subseteq A_n$ each
- round, witnessing I $gamma G_{cf}(\mathcal{A}, \mathcal{B})$.
- On the other hand, let I $\gamma G_{cf}(\mathcal{A}, \mathcal{B})$. Given $A_n \in \mathcal{A}$ for $n < \omega$, we note that
- II may choose a cofinite subset $B_n \subseteq A_n$ such that $B = \bigcup \{B_n : n < \omega\} \in \mathcal{B}$. Then

П

- 27 B witnesses $\alpha_1(A, B)$ since $|A_n \setminus B| \leq |A_n \setminus B_n| \leq \aleph_0$.
- **Theorem 6.** Let \mathcal{A} be almost- Γ -like and \mathcal{B} be Γ -like. Then $\alpha_2(\mathcal{A},\mathcal{B})$ holds if and
- only if I $\uparrow_{pre} G_1(\mathcal{A}, \mathcal{B})$.

Key words and phrases. Selection principle, selection game, α_i property, convergence.

49

51

56

57

Proof. We first assume $\alpha_2(\mathcal{A},\mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined strategy for \mathscr{I} . We may apply $\alpha_2(\mathcal{A},\mathcal{B})$ to choose $B \in \mathcal{B}$ such that $|A_n \cap B| \geq \aleph_0$. We may then choose $a_n \in (A_n \cap B) \setminus \{a_i : i < n\}$ for each $n < \omega$. It follows that $B' = \{a_n : n < \omega\} \in \mathcal{B}$ since B' is an infinite subset of $B \in \mathcal{B}$; therefore A_n does not define a winning predetermined strategy for I.

Now suppose I $\uparrow G_1(\mathcal{A},\mathcal{B})$. Given $A_n \in \mathcal{A}$ for $n < \omega$, first choose $A'_n \in \mathcal{A}$ such that $A'_n = \{a_{n,j} : j < \omega\} \subseteq A_n$, j < k implies $a_{n,j} \neq a_{n,k}$, and $A_{n,m} = \{a_{n,j} : m \leq j < \omega\} \in \mathcal{A}$. Finally choose some $\theta : \omega \to \omega$ such that $|\theta^{\leftarrow}(n)| = \aleph_0$ for each $n < \omega$. Since playing $A_{\theta(m),m}$ during round m does not define a winning strategy for I in $G_1(\mathcal{A},\mathcal{B})$, II may choose $x_m \in A_{\theta(m),m}$ such that $B = \{x_m : m < \omega\} \in \mathcal{B}$. Choose $a_m \in \mathcal{A}$ for each $a_m \in$

Theorem 7. Let \mathcal{A} be almost-Γ-like and \mathcal{B} be Γ-like. Then $\alpha_4(\mathcal{A}, \mathcal{B})$ holds if and only if I γ $G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if I γ $G_{fin}(\mathcal{A}, \mathcal{B})$.

we have shown that $A_n \cap B$ is infinite. Thus B witnesses $\alpha_2(\mathcal{A}, \mathcal{B})$.

Proof. We first assume $\alpha_4(\mathcal{A}, \mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined strategy for I in $G_{<2}(\mathcal{A}, \mathcal{B})$. We then may choose $A'_n \in \mathcal{A}$ where $A'_n = \{a_{n,j} : j < \omega\} \subseteq A_n, j < k$ implies $a_{n,j} \neq a_{n,k}$, and $A''_n = A'_n \setminus \{a_{i,j} : i, j < n\} \in \mathcal{A}$.

 $\omega\}\subseteq A_n,\ j< k$ implies $a_{n,j}\neq a_{n,k}$, and $A_n''=A_n'\setminus\{a_{i,j}:i,j< n\}\in\mathcal{A}$. By applying $\alpha_4(\mathcal{A},\mathcal{B})$ to A_n'' , we obtain $B\in\mathcal{B}$ such that $A_n''\cap B\neq\emptyset$ for infintelymany $n<\omega$. We then let $F_n=\emptyset$ when $A_n''\cap B=\emptyset$, and $F_n=\{x_n\}$ for some $x_n\in A_n''\cap B$ otherwise. Then we will have that $B'=\bigcup\{F_n:n<\omega\}\subseteq B$ belongs to \mathcal{B} once we show that B' is infinite. To see this, for $m\leq n<\omega$ note that either F_m is empty (and we let $j_m=0$) or $F_m=\{a_{m,j_m}\}$ for some $j_m\geq m$; choose $N<\omega$ such that $j_m< N$ for all $m\leq n$ and $F_N=\{x_N\}$. Thus $F_m\neq F_N$ for all $m\leq n$ since $x_N\not\in\{a_{i,j}:i,j< N\}$. Thus II may defeat the predetermined strategy A_n by playing F_n each round.

Since I $\gamma_{\text{pre}} G_{<2}(\mathcal{A}, \mathcal{B})$ immediately implies I $\gamma_{\text{pre}} G_{fin}(\mathcal{A}, \mathcal{B})$, we assume the latter.

Given $A_n \in \mathcal{A}$ for $n < \omega$, we note this defines a (non-winning) predetermined strategy for I, so II may choose $F_n \in [A_n]^{<\aleph_0}$ such that $B = \bigcup \{F_n : n < \omega\} \in \mathcal{B}$. Since B is infinite, we note $F_n \neq \emptyset$ for infinitely-many $n < \omega$. Thus B witnesses $\alpha_4(\mathcal{A}, \mathcal{B})$ since $A_n \cap B \supseteq F_n \neq \emptyset$ for infinitely-many $n < \omega$.

Theorem 8. Let \mathcal{B} be Γ-like. Then I $\uparrow_{pre} G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if I $\uparrow_{pre} G_{fin}(\mathcal{A}, \mathcal{B})$.

63 *Proof.* Assume $\bigcup \mathcal{A}$ is well-ordered. Given a winning predetermined strategy A_n for I in $G_{<2}(\mathcal{A},\mathcal{B})$, consider $F_n \in [A_n]^{<\aleph_0}$. We set

$$F_n^* = \begin{cases} \emptyset & \text{if } F_n \setminus \bigcup \{F_m : m < n\} = \emptyset \\ \{\min(F_n \setminus \bigcup \{F_m : m < n\})\} & \text{otherwise} \end{cases}$$

Since $|F_n^*| < 2$, we have that $\bigcup \{F_n^* : n < \omega\} \notin \mathcal{B}$. In the case that $\bigcup \{F_n^* : n < \omega\}$ is finite, we immediately see that $\bigcup \{F_n : n < \omega\}$ is also finite and therefore not in \mathcal{B} . Otherwise $\bigcup \{F_n^* : n < \omega\} \notin \mathcal{B}$ is an infinite subset of $\bigcup \{F_n : n < \omega\}$, and thus $\bigcup \{F_n : n < \omega\} \notin \mathcal{B}$ too. Therefore A_n is a winning predetermined strategy for I in $G_{fin}(\mathcal{A}, \mathcal{B})$ as well.

Theorem 9. Let \mathcal{B} be Γ -like. Then $I \uparrow G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$.

Proof. Assume $\bigcup \mathcal{A}$ is well-ordered. Suppose $I \uparrow G_{<2}(\mathcal{A}, \mathcal{B})$ is witnessed by the strategy σ . Let $\langle \rangle^* = \langle \rangle$, and for $s \cap \langle F \rangle \in ([\bigcup \mathcal{A}]^{<\aleph_0})^{<\omega} \setminus \{\langle \rangle\}$ let

$$(s^{\frown}\langle F \rangle)^{\star} = \begin{cases} s^{\star \frown} \langle \emptyset \rangle & \text{if } F \setminus \bigcup \text{range}(s) = \emptyset \\ s^{\star \frown} \langle \{\min(F \setminus \bigcup \text{range}(s))\} \rangle & \text{otherwise} \end{cases}$$

We then define the strategy τ for I in $G_{fin}(\mathcal{A}, \mathcal{B})$ by $\tau(s) = \sigma(s^*)$. Then given any counterattack $\alpha \in ([\bigcup \mathcal{A}]^{<\aleph_0})^{\omega}$ by II played against τ , we note that $\alpha^* = \bigcup \{(\alpha \upharpoonright n)^* : n < \omega\}$ is a counterattack to σ , and thus loses. This means $B = \bigcup_{\sigma} \{(\alpha \upharpoonright n)^* : n < \omega\}$ is a counterattack to σ .

We consider two cases. The first is the case that $\bigcup \operatorname{range}(\alpha^*)$ is finite. Noting that $\alpha^*(m) \cap \alpha^*(n) = \emptyset$ whenever $m \neq n$, there exists $N < \omega$ such that $\alpha^*(n) = \emptyset$ for all n > N. As a result, $\bigcup \operatorname{range}(\alpha) = \bigcup \operatorname{range}(\alpha \upharpoonright n)$, and thus $\bigcup \operatorname{range}(\alpha)$ is finite, and therefore not in \mathcal{B} .

In the other case, $\bigcup \operatorname{range}(\alpha^*) \notin \mathcal{B}$ is an infinite subset of $\bigcup \operatorname{range}(\alpha)$, and therefore $\bigcup \operatorname{range}(\alpha) \notin \mathcal{B}$ as well. Thus we have shown that τ is a winning strategy for I in $G_{fin}(\mathcal{A}, \mathcal{B})$.

We further note that the above proof technique could be used to establish that perfect-information and Markov winning strategies for II in $G_{fin}(\mathcal{A}, \mathcal{B})$ may be improved to be valid in $G_{<2}(\mathcal{A}, \mathcal{B})$, provided \mathcal{B} is Γ -like. As such, $G_{<2}(\mathcal{A}, \mathcal{B})$ and $G_{fin}(\mathcal{A}, \mathcal{B})$ are effectively equivalent games under this hypothesis.

Theorem 10. Let \mathcal{A} be almost- Γ -like and \mathcal{B} be Γ -like. Then $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$, and $I \uparrow G_1(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow G_1(\mathcal{A}, \mathcal{B})$.

Proof. We assume I ↑ $G_{fin}(\mathcal{A}, \mathcal{B})$ and let the symbol † mean $< \aleph_0$ (respectively, I ↑ $G_1(\mathcal{A}, \mathcal{B})$ and † = 1, and for convenience we assume II plays singleton subsets of \mathcal{A} rather than elements). As \mathcal{A} is almost-Γ-like, there is a winning strategy σ where $|\sigma(s)| = \aleph_0$ and $\sigma(s) \cap \bigcup \operatorname{range}(s) = \emptyset$ (that is, σ never replays the choices of II) for all partial plays s by II.

For each $s \in \omega^{<\omega}$, suppose $F_{s \mid m} \in [\bigcup A]^{\dagger}$ is defined for each $0 < m \le |s|$. Then let $s^* : |s| \to [\bigcup A]^{\dagger}$ be defined by $s^*(m) = F_{s \mid m+1}$, and define $\tau' : \omega^{<\omega} \to A$ by $\tau'(s) = \sigma(s^*)$. Finally, set $[\sigma(s^*)]^{\dagger} = \{F_{s \frown \langle n \rangle} : n < \omega\}$, and for some bijection $b : \omega^{<\omega} \to \omega$ let $\tau(n) = \tau'(b(n))$ be a predetermined strategy for I in $G_{fin}(A, \mathcal{B})$ (resp. $G_1(A, \mathcal{B})$).

Suppose α is a counterattack by II against τ , so

77

78

79

80

81 82

85

87

97

100

107

108

109

$$\alpha(n) \in [\tau(n)]^{\dagger} = [\tau'(b(n))]^{\dagger} = [\sigma(b(n)^{\star})]^{\dagger}$$

It follows that $\alpha(n) = F_{b(n) \cap \langle m \rangle}$ for some $m < \omega$. In particular, there is some infinite subset $W \subseteq \omega$ and $f \in \omega^{\omega}$ such that $\{\alpha(n) : n \in W\} = \{F_{f \upharpoonright n+1} : n < \omega\}$. Note here that $(f \upharpoonright n+1)^* = (f \upharpoonright n)^* \cap \langle F_{f \upharpoonright n+1} \rangle$. This shows that $F_{f \upharpoonright n+1} \in [\sigma((f \upharpoonright n)^*)]^{\dagger}$ is an attempt by II to defeat σ , which fails. Thus $\bigcup \{F_{f \upharpoonright n+1} : n < \omega\} = \bigcup \{\alpha(n) : n \in W\} \not\in \mathcal{B}$, and since this set is infinite (as σ prevents II from repeating choices) we have $\bigcup \{\alpha(n) : n < \omega\} \not\in \mathcal{B}$ too. Therefore τ is winning. \square

Note that the assumption in Theorem 10 that \mathcal{A} be almost- Γ -like cannot be omitted. In [todo cite Clontz k-tactics in Gruenhage game] an example of a space and point where $I \uparrow G_1(\mathcal{A}, \mathcal{B})$ but $I \uparrow G_1(\mathcal{A}, \mathcal{B})$ is given, where \mathcal{A} is the set of open

neighborhoods of the given point (which are all uncountable), and \mathcal{B} is the set of

130

converging sequences to that point. (Note that $G_1(\mathcal{A},\mathcal{B})$ is called $Gru_{O,P}(X,x)$ in that paper. In fact, more is shown: I has a winning perfect-information strategy, but any strategy that only uses the most recent k moves of II and the round number 113 can be defeated, where k is any natural number.) 114 **Proposition 11.** Let \mathcal{B} be Γ -like, $\mathcal{B} \subseteq \mathcal{A}$, and $I \underset{pre}{\gamma} G_{fin}(\mathcal{A}, \mathcal{B})$. Then \mathcal{A} is almost-115 Γ -like. 116 *Proof.* Let $A \in \mathcal{A}$, and for all $n < \omega$ let $A_n = A$. Then A_n is not a winning predetermined strategy for I, so II may choose finite sets $B_n \subseteq A_n = A$ such that 118 $A' = \bigcup \{B_n : n < \omega\} \in \mathcal{B} \subseteq \mathcal{A}.$ 119 It follows that $A' \subseteq A$ and $|A'| = \aleph_0$, and for any infinite subset $A'' \subseteq A'$ (in 120 particular, any cofinite subset), $A'' \in \mathcal{B} \subseteq \mathcal{A}$. Thus \mathcal{A} is almost- Γ -like. 121 Corollary 12. Let \mathcal{B} be Γ -like and $\mathcal{B} \subseteq \mathcal{A}$. Then $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow_{pre} G_{fin}(\mathcal{A}, \mathcal{B}), \text{ and } I \uparrow G_1(\mathcal{A}, \mathcal{B}) \text{ if and only if } I \uparrow_{pre} G_1(\mathcal{A}, \mathcal{B}).$ 123 *Proof.* Assuming I $\uparrow G_{fin}(\mathcal{A}, \mathcal{B})$, we have I $\uparrow G_{fin}(\mathcal{A}, \mathcal{B})$ by Proposition 11 and 124 Theorem 10. 125 Similarly, assuming I γ $G_1(\mathcal{A}, \mathcal{B}) \Rightarrow I \gamma G_{fin}(\mathcal{A}, \mathcal{B})$, we have I $\gamma G_1(\mathcal{A}, \mathcal{B})$ by 126 Proposition 11 and Theorem 10. 127 This corollary generalizes e.g. Theorems 26 and 30 of [cite Scheepers 1996 Ram-128 sey] and Theorem 5 of [cite MR2119791]. 129

References

 131 Department of Mathematics and Statistics, The University of South Alabama, Mo- 132 Bile, AL 36688

133 Email address: sclontz@southalabama.edu