cervical-cancer-prediction

February 7, 2024

1 Installing Libraries

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

2 Importing the Dataset

```
[2]: from google.colab import drive drive.mount("/content/gdrive") data = pd.read_csv('/content/gdrive/My Drive/Final Year Project/cervicalcancer.

csv')
print(data.shape) data
```

Mounted at /content/gdrive (835, 36)

[2]:		Age	Number of sexual	partners	First sexual	intercourse \
	0	18		4.0		15.0
	1	15		1.0		14.0
	2	34		1.0		NaN
	3	52		5.0		16.0
	4	46		3.0		21.0
		•••		•••		•••
	830	34		3.0		18.0
	831	32		2.0		19.0
	832	25		2.0		17.0
	833	33		2.0		24.0

0 1	Num of pre	gnancies 1.0 1.0	Smokes 0.0 0.0		okes	(years) 0.0 0.0	Smoke	s (packs	-	. 0	\
2		1.0	0.0			0.0			0		
3		4.0	1.0			37.0			37		
4		4.0	0.0			0.0			0		
		•••	•••			•••					
830		0.0	0.0			0.0			0	. 0	
831		1.0	0.0			0.0			0	. 0	
832		0.0	0.0			0.0			0	. 0	
833		2.0	0.0			0.0			0	. 0	
834		1.0	0.0			0.0			0	. 0	
						_		,			
^	Hormonal C	ontracept		ormo	nal	Contrace	ptives	•		•••	\
0			0.0					0.00	0.0	•••	
1			0.0					0.00	0.0	•••	
2			0.0					0.00	0.0	•••	
3 4			1.0					3.00	0.0	•••	
			1.0					15.00	0.0	•••	
830			0.0					0.00	0.0		
831			1.0					8.00	0.0	•••	
832			1.0					0.08	0.0	•••	
833			1.0					0.08	0.0		
834			1.0					0.50	0.0		
	STDs: Time	since fi	irst dia	gnos	is	STDs: Ti	me sinc	e last d	liagno	osis	\
0					aN					NaN	
1					aN					NaN	
2					aN					NaN	
3					aN					NaN	
4				N	aN					NaN	
•••									•••		
830					aN					NaN	
831					aN					NaN	
832					aN					NaN	
833					aN - N					NaN	
834				N	aN					NaN	
	Dx:Cancer	Dx:CIN	Dx:HPV	Dx	Hin	selmann	Schill	er Cito	ology	Bi	opsy
0	0	0	0	0		0		0	0		0
1	0	0	0	0		0		0	0		0
2	0	0	0	0		0		0	0		0
3	1	0	1	0		0		0	0		0
4	0	0	0	0		0		0	0		0

• •			• •	•••	•••			
830	0	0	0	0	0	0	0	0
831	0	0	0	0	0	0	0	0
832	0	0	0	0	0	0	1	0
833	0	0	0	0	0	0	0	0
834	0	0	0	0	0	0	0	0

[835 rows x 36 columns]

[3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 835 entries, 0 to 834
Data columns (total 36 columns):

#	Column	Non-Null Count	Dtype
0	Age	835 non-null	int64
1	Number of sexual partners	810 non-null	float64
2	First sexual intercourse	828 non-null	float64
3	Num of pregnancies	779 non-null	float64
4	Smokes	822 non-null	float64
5	Smokes (years)	822 non-null	float64
6	Smokes (packs/year)	822 non-null	float64
7	Hormonal Contraceptives	732 non-null	float64
8	Hormonal Contraceptives (years)	732 non-null	float64
9	IUD	723 non-null	float64
10	IUD (years)	723 non-null	float64
11	STDs	735 non-null	float64
12	STDs (number)	735 non-null	float64
13	STDs:condylomatosis	735 non-null	float64
14	STDs:cervical condylomatosis	735 non-null	float64
15	STDs:vaginal condylomatosis	735 non-null	float64
16	STDs:vulvo-perineal condylomatosis	735 non-null	float64
17	STDs:syphilis	735 non-null	float64
18	STDs:pelvic inflammatory disease	735 non-null	float64
19	STDs:genital herpes	735 non-null	float64
20	STDs:molluscum contagiosum	735 non-null	float64
21	STDs:AIDS	735 non-null	float64
22	STDs:HIV	735 non-null	float64
23	STDs:Hepatitis B	735 non-null	float64
24	STDs: HPV	735 non-null	float64
25	STDs: Number of diagnosis	835 non-null	int64
26	STDs: Time since first diagnosis	71 non-null	float64
27	STDs: Time since last diagnosis	71 non-null	float64
28	Dx:Cancer	835 non-null	int64
29	Dx:CIN	835 non-null	int64
30	Dx:HPV	835 non-null	int64

31	Dx	835 non-null	int64
32	Hinselmann	835 non-null	int64
33	Schiller	835 non-null	int64
34	Citology	835 non-null	int64
35	Biopsy	835 non-null	int64

dtypes: float64(26), int64(10)

memory usage: 235.0 KB

[4]: data.describe()

[4]:		Age Number	of sexual pa	rtners First se	exual inter	course \	
	count	835.000000	-	000000		000000	
	mean	27.023952		551852	17.0	020531	
	std	8.482986		676686		317000	
	min	13.000000		000000		000000	
	25%	21.000000		000000		000000	
	50%	26.000000		000000		000000	
	75%	32.000000	3.	000000	18.0	00000	
	max	84.000000	28.	000000	32.0	00000	
		Num of pregnancies	Smokes	Smokes (years)	Smokes (pa	acks/year)	\
	count	779.000000	822.000000	822.000000	- 8	322.000000	
	mean	2.304236	0.149635	1.253850		0.465823	
	std	1.455817	0.356930	4.140727		2.256273	
	min	0.000000	0.00000	0.000000		0.00000	
	25%	1.000000	0.00000	0.000000		0.00000	
	50%	2.000000	0.00000	0.000000		0.00000	
	75%	3.000000	0.000000	0.000000		0.000000	
	max	11.000000	1.000000	37.000000		37.000000	
		Hormonal Contracept		al Contraceptive	•	IUD	\
	count	732.00		7	32.000000	723.000000	
	mean		51639		2.302916	0.114799	
	std		76777		3.794180	0.319000	
	min		00000		0.000000	0.000000	
	25%		00000		0.000000	0.000000	
	50%		00000		0.500000	0.000000	
	75%		00000		3.000000	0.000000	
	max	1.00	00000		30.000000	1.000000	
		STDs: Time since	first diagra	ogia CTDa. Timo	since last	- diagnosis	\
	count		71.00		s since las	71.000000	\
	mean	•••		.0845		5.816901	
	std			5024		5.755271	
	min	•••		0000		1.000000	
	25%	•••		0000		2.000000	
	50%	•••		0000		3.000000	
	- 0 /0		1.00			5.00000	

75% max		8.000000 22.000000				7.500000 22.000000	
	Dx:Cancer	Dx:CIN	Dx:HPV	Dx	Hinselmann	Schiller	\
count	835.000000	835.000000	835.000000	835.000000	835.000000	835.000000	
mean	0.021557	0.010778	0.021557	0.028743	0.041916	0.087425	
std	0.145319	0.103320	0.145319	0.167182	0.200518	0.282626	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
	Citology	Biopsy					
count	835.000000	835.000000					
mean	0.051497	0.064671					
std	0.221142	0.246091					
min	0.000000	0.000000					
25%	0.000000	0.000000					
50%	0.000000	0.000000					
75%	0.000000	0.000000					
max	1.000000	1.000000					

[8 rows x 36 columns]

[5]: # Determining the null values in each column data.isnull().sum()

[5]:	Age	0
	Number of sexual partners	25
	First sexual intercourse	7
	Num of pregnancies	56
	Smokes	13
	Smokes (years)	13
	Smokes (packs/year)	13
	Hormonal Contraceptives	103
	Hormonal Contraceptives (years)	103
	IUD	112
	IUD (years)	112
	STDs	100
	STDs (number)	100
	STDs:condylomatosis	100
	STDs:cervical condylomatosis	100
	STDs:vaginal condylomatosis	100
	STDs:vulvo-perineal condylomatosis	100
	STDs:syphilis	100
	STDs:pelvic inflammatory disease	100

```
STDs:genital herpes
                                        100
STDs:molluscum contagiosum
                                        100
STDs:AIDS
                                        100
STDs:HIV
                                        100
STDs:Hepatitis B
                                        100
STDs:HPV
                                        100
STDs: Number of diagnosis
                                          0
STDs: Time since first diagnosis
                                        764
STDs: Time since last diagnosis
                                        764
Dx:Cancer
                                          0
Dx:CIN
                                          0
Dx: HPV
                                          0
Dx
                                          0
Hinselmann
                                          0
                                          0
Schiller
Citology
                                          0
                                          0
Biopsy
dtype: int64
```

[6]: data.columns

3 Correlation Plot

[7]: <Axes: >


```
# Biopsy vs no. of sexual partners

#categorical to categorical
fig, (ax1,ax2) = plt.subplots(2, 1, figsize = (15, 8))
sns.countplot(x = 'Number of sexual partners', data = data, ax=ax1)
sns.barplot(x = 'Number of sexual partners', y = 'Biopsy', data = data, ax=ax2)

#continuous to categorical
facet = sns.FacetGrid(data, hue='Biopsy',aspect=4)
facet.map(sns.kdeplot,'Number of sexual partners',shade= True)
facet.set(xlim=(0, data['Number of sexual partners'].max()))
facet.add_legend()
```

[8]: <seaborn.axisgrid.FacetGrid at 0x7cedb5df5e70>


```
[12]: #continuous to categorical
facet = sns.FacetGrid(data, hue='Biopsy', aspect=4)
facet.map(sns.kdeplot,'Num of pregnancies', shade= True)
facet.set(xlim=(0, data['Num of pregnancies'].max()))
facet.add_legend()
```

[12]: <seaborn.axisgrid.FacetGrid at 0x7cedb40a3550>


```
[13]: fig, (axis1) = plt.subplots(1, 1, figsize = (15, 5))
sns.countplot(x = 'Biopsy', data=data, ax = axis1)
```

[13]: <Axes: xlabel='Biopsy', ylabel='count'>


```
[14]: # list the heatmap of top correlation

corr = data.corr()

# number of variables for heatmap
k = 15
```


4 Data Preprocessing

```
[17]: # Inputing the missing values from the given dataset
      # we will impute the categorical variables with 0 or 1 and continuous variables_
       ⇒with median value
      data['Number of sexual partners'] = data['Number of sexual partners'].

¬fillna(data['Number of sexual partners'].median())
      data['Number of sexual partners'].isnull().any()
[17]: False
[18]: # Inputing the missing values from First sexual intercourse
      data['First sexual intercourse'] = data['First sexual intercourse'].

¬fillna(data['First sexual intercourse'].median())
      data['First sexual intercourse'].isnull().any()
[18]: False
[19]: # Inputing the missing values from Num of pregnancies
      data['Num of pregnancies'] = data['Num of pregnancies'].fillna(data['Num of_
       →pregnancies'].median())
      data['Num of pregnancies'].isnull().any()
[19]: False
[20]: # Inputing the missing values from Smokes
      data['Smokes'] = data['Smokes'].fillna(data['Smokes'].median())
      data['Smokes'].isnull().any()
[20]: False
[21]: # Inputing the missing values from Smokes (years)
      data['Smokes (years)'] = data['Smokes (years)'].fillna(1)
      data['Smokes (years)'].isnull().any()
[21]: False
[22]: # Inputing the missing values from Smokes (packs/year)
      data['Smokes (packs/year)'] = data['Smokes (packs/year)'].fillna(data['Smokes<sub>||</sub>

¬(packs/year)'].median())
      data['Smokes (packs/year)'].isnull().any()
```

```
[22]: False
[23]: # Inputing the missing values from Hormonal Contraceptives
     data['Hormonal Contraceptives'] = data['Hormonal Contraceptives'].
      →fillna(data['Hormonal Contraceptives'].median())
     data['Hormonal Contraceptives'].isnull().any()
[23]: False
[24]: # Inputing the missing values from Hormonal Contraceptives (years)
     data['Hormonal Contraceptives (years)'] = data['Hormonal Contraceptives_
      data['Hormonal Contraceptives (years)'].isnull().any()
[24]: False
[25]: # Inputing the missing values from IUD
     data['IUD'] = data['IUD'].fillna(0)
     data['IUD'].isnull().any()
[25]: False
[26]: # Inputing the missing values from IUD (years)
     data['IUD (years)'] = data['IUD (years)'].fillna(0)
     data['IUD (years)'].isnull().any()
[26]: False
[27]: # Inputing the missing values from STDs
     data['STDs'] = data['STDs'].fillna(1)
     data['STDs'].isnull().any()
[27]: False
[28]: # Inputing the missing values from STDs (number)
     data['STDs (number)'] = data['STDs (number)'].fillna(data['STDs (number)'].
      →median())
     data['STDs (number)'].isnull().any()
```

[28]: False

```
[29]: # Inputing the missing values from STDs:condylomatosis
      data['STDs:condylomatosis'] = data['STDs:condylomatosis'].fillna(data['STDs:

¬condylomatosis'].median())
      data['STDs:condylomatosis'].isnull().any()
[29]: False
[30]: # Inputing the missing values from STDs:cervical condylomatosis
      data['STDs:cervical condylomatosis'] = data['STDs:cervical condylomatosis'].

¬fillna(data['STDs:cervical condylomatosis'].median())

      data['STDs:cervical condylomatosis'].isnull().any()
[30]: False
[31]: # Inputing the missing values from STDs:vaginal condylomatosis
      data['STDs:vaginal condylomatosis'] = data['STDs:vaginal condylomatosis'].

→fillna(data['STDs:vaginal condylomatosis'].median())
      data['STDs:vaginal condylomatosis'].isnull().any()
[31]: False
[32]: # Inputing the missing values from STDs:vulvo-perineal condylomatosis
      data['STDs:vulvo-perineal condylomatosis'] = data['STDs:vulvo-perineal_

¬condylomatosis'].fillna(data['STDs:vulvo-perineal condylomatosis'].median())
      data['STDs:vulvo-perineal condylomatosis'].isnull().any()
[32]: False
[33]: # Inputing the missing values from STDs:syphilis
      data['STDs:syphilis'] = data['STDs:syphilis'].fillna(data['STDs:syphilis'].
       →median())
      data['STDs:syphilis'].isnull().any()
[33]: False
[34]: # Inputing the missing values from STDs:pelvic inflammatory diseases
      data['STDs:pelvic inflammatory disease'] = data['STDs:pelvic inflammatory⊔

¬disease'].fillna(data['STDs:pelvic inflammatory disease'].median())

      data['STDs:pelvic inflammatory disease'].isnull().any()
[34]: False
```

```
[35]: # Inputing the missing values from STDs:genital herpes
      data['STDs:genital herpes'] = data['STDs:genital herpes'].fillna(data['STDs:
       →genital herpes'].median())
      data['STDs:genital herpes'].isnull().any()
[35]: False
 []: # Inputing the missing values from STDs:molluscum contagiosum
      data['STDs:molluscum contagiosum'] = data['STDs:molluscum contagiosum'].

→fillna(data['STDs:molluscum contagiosum'].median())
      data['STDs:molluscum contagiosum'].isnull().any()
 []: False
[36]: # Inputing the missing values from STDs:AIDS
      data['STDs:AIDS'] = data['STDs:AIDS'].fillna(data['STDs:AIDS'].median())
      data['STDs:AIDS'].isnull().any()
[36]: False
[37]: # Inputing the missing values from STDs:HIV
      data['STDs:HIV'] = data['STDs:HIV'].fillna(data['STDs:HIV'].median())
      data['STDs:HIV'].isnull().any()
[37]: False
[38]: # Inputing the missing values from STDs:Hepatitis B
      data['STDs:Hepatitis B'] = data['STDs:Hepatitis B'].fillna(data['STDs:Hepatitis_
       →B'].median())
      data['STDs:Hepatitis B'].isnull().any()
[38]: False
[39]: # Inputing the missing values from STDs:HPV
      data['STDs:HPV'] = data['STDs:HPV'].fillna(data['STDs:HPV'].median())
      data['STDs:HPV'].isnull().any()
[39]: False
[40]: # Inputing the missing values from STDs: Time since first diagnosis
```

```
data['STDs: Time since first diagnosis'] = data['STDs: Time since first diagnosis']

diagnosis'].fillna(data['STDs: Time since first diagnosis'].median())

      data['STDs: Time since first diagnosis'].isnull().any()
[40]: False
[41]: # Inputing the missing values from STDs: Time since last diagnosis
      data['STDs: Time since last diagnosis'] = data['STDs: Time since last ⊔

¬diagnosis'].fillna(data['STDs: Time since last diagnosis'].median())

      data['STDs: Time since last diagnosis'].isnull().any()
[41]: False
[49]: #STDs:molluscum contagiosum STDs: Time since last diagnosis
      data['STDs:molluscum contagiosum'] = data['STDs:molluscum contagiosum'].

¬fillna(data['STDs:molluscum contagiosum'].median())
      data['STDs:molluscum contagiosum'].isnull().any()
[49]: False
[50]: # Determining the null values in each column
      data.isnull().sum()
[50]: Age
                                             0
                                             0
      Number of sexual partners
      First sexual intercourse
                                             0
      Num of pregnancies
                                             0
      Smokes
                                             0
      Smokes (years)
                                             0
      Smokes (packs/year)
                                             0
      Hormonal Contraceptives
                                             0
      Hormonal Contraceptives (years)
                                             0
      IUD
                                             0
      IUD (years)
                                             0
      STDs
                                             0
      STDs (number)
                                             0
      STDs:condylomatosis
                                             0
      STDs:cervical condylomatosis
                                             0
      STDs:vaginal condylomatosis
                                             0
      STDs:vulvo-perineal condylomatosis
                                             0
      STDs:syphilis
                                             0
      STDs:pelvic inflammatory disease
                                             0
      STDs:genital herpes
                                             0
      STDs:molluscum contagiosum
                                             0
      STDs:AIDS
                                             0
```

```
0
      STDs:Hepatitis B
      STDs: HPV
                                              0
      STDs: Number of diagnosis
                                              0
      STDs: Time since first diagnosis
                                              0
      STDs: Time since last diagnosis
                                              0
      Dx:Cancer
                                              0
      Dx:CIN
                                              0
      Dx: HPV
                                              0
      Dx
                                              0
      Hinselmann
                                              0
      Schiller
                                              0
      Citology
                                              0
      Biopsy
                                              0
      dtype: int64
[51]: data.describe()
                          Number of sexual partners First sexual intercourse
                                          835.000000
      count
             835.000000
                                                                      835.000000
      mean
              27.023952
                                            2.535329
                                                                       17.020359
      std
                                            1.654044
                                                                        2.805154
               8.482986
                                                                       10.000000
      min
              13.000000
                                            1.000000
      25%
              21.000000
                                            2.000000
                                                                       15.000000
      50%
              26.000000
                                            2.000000
                                                                       17.000000
      75%
              32.000000
                                            3.000000
                                                                       18.000000
              84.000000
      max
                                           28.000000
                                                                       32.000000
                                                Smokes (years)
                                                                 Smokes (packs/year)
             Num of pregnancies
                                       Smokes
                      835.000000
                                   835.000000
                                                    835.000000
                                                                          835.000000
      count
      mean
                        2.283832
                                     0.147305
                                                      1.249898
                                                                             0.458571
      std
                                                                             2.239363
                        1.408152
                                     0.354623
                                                      4.108449
      min
                        0.000000
                                     0.000000
                                                      0.000000
                                                                             0.000000
      25%
                        1.000000
                                     0.000000
                                                      0.000000
                                                                             0.000000
      50%
                        2.000000
                                     0.000000
                                                      0.000000
                                                                             0.000000
      75%
                        3.000000
                                     0.000000
                                                      0.000000
                                                                             0.000000
                       11.000000
                                     1.000000
                                                     37.000000
                                                                           37.000000
      max
             Hormonal Contraceptives
                                        Hormonal Contraceptives (years)
                                                                                   IUD
                                                                                        \
                           835.000000
                                                               835.000000
                                                                           835.000000
      count
                             0.694611
                                                                 2.080520
                                                                              0.099401
      mean
      std
                             0.460848
                                                                 3.601364
                                                                              0.299379
```

0

STDs:HIV

[51]:

min

25%

50%

75%

max

0.000000

0.000000

0.500000

3.000000

30.000000

0.000000

0.000000

0.000000

0.000000

1.000000

0.00000

0.00000

1.000000

1.000000

1.000000

```
STDs: Time since last diagnosis
          STDs: Time since first diagnosis
count
                                  835.000000
                                                                     835.000000
                                    4.182036
                                                                        3.239521
mean
std
                                    1.809358
                                                                        1.843420
                                    1.000000
                                                                        1.000000
min
25%
                                    4.000000
                                                                        3.000000
50%
                                    4.000000
                                                                        3.000000
75%
                                    4.000000
                                                                        3.000000
                                   22.000000
max
                                                                      22.000000
        Dx:Cancer
                        Dx:CIN
                                                          Hinselmann
                                                                          Schiller
                                     Dx:HPV
                                                      Dx
count
       835.000000
                    835.000000
                                 835.000000
                                              835.000000
                                                           835.000000
                                                                       835.000000
         0.021557
                                                             0.041916
                      0.010778
                                   0.021557
                                                0.028743
                                                                          0.087425
mean
         0.145319
                      0.103320
                                   0.145319
                                                0.167182
                                                             0.200518
std
                                                                          0.282626
min
         0.000000
                      0.000000
                                   0.00000
                                                0.000000
                                                             0.000000
                                                                          0.000000
25%
         0.000000
                                   0.00000
                                                0.000000
                                                             0.000000
                                                                          0.00000
                      0.000000
50%
         0.000000
                      0.000000
                                   0.000000
                                                0.000000
                                                             0.000000
                                                                          0.000000
75%
         0.000000
                      0.000000
                                   0.00000
                                                0.000000
                                                             0.000000
                                                                          0.00000
         1.000000
                      1,000000
                                   1.000000
                                                1,000000
                                                             1,000000
                                                                          1.000000
max
         Citology
                        Biopsy
       835.000000
                    835.000000
count
mean
         0.051497
                      0.064671
std
         0.221142
                      0.246091
min
         0.000000
                      0.000000
25%
         0.000000
                      0.000000
50%
         0.000000
                      0.000000
75%
         0.000000
                      0.000000
         1.000000
                      1.000000
max
```

[8 rows x 36 columns]

5 Data Visualization

```
fig, (ax1,ax2,ax3,ax4,ax5,ax6,ax7) = plt.subplots(7, 1, figsize = (20,40))
sns.countplot(x='Age', data=data, ax=ax1)
sns.countplot(x='Number of sexual partners', data=data, ax=ax2)
sns.countplot(x='Num of pregnancies', data=data, ax=ax3)
sns.countplot(x='Smokes (years)', data=data, ax=ax4)
sns.countplot(x='Hormonal Contraceptives (years)', data=data, ax=ax5)
sns.countplot(x='IUD (years)', data=data, ax=ax6)
sns.countplot(x='STDs (number)', data=data, ax=ax7)
```

```
[52]: <Axes: xlabel='STDs (number)', ylabel='count'>
```



```
[53]: x=data[['Age', 'Number of sexual partners', 'First sexual intercourse', 'Num of
                     opregnancies', 'Smokes', 'Smokes (years)', 'Smokes (packs/year)', 'Hormonal⊔
                     →Contraceptives', 'Hormonal Contraceptives (years)', 'IUD', 'IUD (years)', □

¬'STDs', 'STDs (number)', 'STDs:condylomatosis','STDs:cervical
□
                    ⇔condylomatosis', 'STDs:vaginal condylomatosis', 'STDs:vulvo-perineal condylomatosis', 'STDs:vulvo-perineal
                    ⇔condylomatosis', 'STDs:syphilis','STDs:pelvic inflammatory disease', 'STDs:
                    ogenital herpes','STDs:molluscum contagiosum', 'STDs:AIDS', 'STDs:HIV','STDs:
                    ⇔Hepatitis B', 'STDs:HPV', 'STDs: Number of diagnosis', 'STDs: Time since⊔
                    ⇔first diagnosis', 'STDs: Time since last diagnosis', 'Dx:Cancer', 'Dx:CIN', |
                    y=data[['Biopsy']]
[54]: print(x.shape)
                 print(y.shape)
                (835, 35)
                (835, 1)
[55]: from sklearn.ensemble import ExtraTreesClassifier
                 # Building the model
                 model = ExtraTreesClassifier()
                 # Training the model
                 model.fit(x, y)
                 col=x.columns
                 imp=pd.Series(model.feature_importances_,index=col)
                 imp.nlargest(10).plot(kind='bar')
```

[55]: <Axes: >


```
[56]: #Only considering the most important features for prediction

xnew=data[['Schiller', 'Hinselmann', 'Age', 'First sexual intercourse',

\( \times' \) 'Hormonal Contraceptives (years)', 'Num of pregnancies', 'Number of sexual

\( \times \) partners', 'Citology', 'Smokes (years)', 'Hormonal Contraceptives']]
```

```
[57]: # splitting the dataset into training and test set
      from sklearn.model_selection import train_test_split
      x_train, x_test, y_train, y_test = train_test_split(xnew, y, test_size = 0.4,__
       →random_state = 45)
      print(x_train.shape)
      print(y_train.shape)
      print(x_test.shape)
      print(y_test.shape)
     (501, 10)
     (501, 1)
     (334, 10)
     (334, 1)
[58]: # MinMaxScaling
      from sklearn.preprocessing import MinMaxScaler
      # creating a minmax scaler
      mm = MinMaxScaler()
      # feeding the independent data into the scaler
      x_train = mm.fit_transform(x_train)
      x_test = mm.fit_transform(x_test)
```

MODELLING

#Logistic Regression

```
[59]: from sklearn.linear_model import LogisticRegression

# creating the model
model = LogisticRegression()

# feeding the training data into the model
model.fit(x_train, y_train)

# predicting the test set results
y_pred = model.predict(x_test)

# Calculating the accuracies
print("Training accuracy :", model.score(x_train, y_train))
print("Testing accuracy :", model.score(x_test, y_test))

# classification report
```

```
print(classification_report(y_test, y_pred))
# confusion matrix
print(confusion_matrix(y_test, y_pred))
```

Training accuracy: 0.9640718562874252 Testing accuracy: 0.9550898203592815

	precision	recall	f1-score	support
0	0.96	0.99	0.98	313
1	0.75	0.43	0.55	21
accuracy			0.96	334
macro avg	0.86	0.71	0.76	334
weighted avg	0.95	0.96	0.95	334

[[310 3] [12 9]]

#Support Vector Machine

```
[60]: from sklearn.svm import SVC

# creating the model
model = SVC()

# feeding the training data into the model
model.fit(x_train, y_train)

# predicting the test set results
y_pred = model.predict(x_test)

# Calculating the accuracies
print("Training accuracy :", model.score(x_train, y_train))
print("Testing accuracy :", model.score(x_test, y_test))

# classification report
print(classification_report(y_test, y_pred))

# confusion matrix
print(confusion_matrix(y_test, y_pred))
```

Training accuracy: 0.9680638722554891 Testing accuracy: 0.9580838323353293

Р	recision	recall	11-score	support
0	0.97	0.98	0.98	313
1	0.68	0.62	0.65	21

```
0.96
                                                        334
         accuracy
                                  0.80
                                            0.81
        macro avg
                        0.83
                                                        334
     weighted avg
                        0.96
                                  0.96
                                            0.96
                                                        334
     [[307
             6]
      [ 8 13]]
     #Decision Tree
[61]: from sklearn.linear_model import LogisticRegression
      from sklearn.tree import DecisionTreeClassifier
      # creating the model
      model = DecisionTreeClassifier()
      # feeding the training data into the model
      model.fit(x_train, y_train)
      # predicting the test set results
      yb_pred = model.predict(x_test)
      # Calculating the accuracies
      print("Training accuracy :", model.score(x_train, y_train))
      print("Testing accuracy :", model.score(x_test, y_test))
      # classification report
      print(classification_report(y_test, y_pred))
      # confusion matrix
      print(confusion_matrix(y_test, y_pred))
     Training accuracy: 1.0
     Testing accuracy : 0.9101796407185628
```

	precision	recall	il-score	support
0 1	0.97 0.68	0.98 0.62	0.98 0.65	313 21
accuracy macro avg weighted avg	0.83 0.96	0.80 0.96	0.96 0.81 0.96	334 334 334

[[307 6] [8 13]]

#Random Forest

```
[62]: from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import confusion_matrix
      from sklearn.metrics import classification_report
      # creating the model
      model = LogisticRegression()
      # feeding the training data into the model
      model.fit(x_train, y_train)
      # predicting the test set results
      y_pred = model.predict(x_test)
      # Calculating the accuracies
      print("Training accuracy :", model.score(x_train, y_train))
      print("Testing accuracy :", model.score(x_test, y_test))
      # classification report
      print(classification_report(y_test, y_pred))
      # confusion matrix
      print(confusion_matrix(y_test, y_pred))
```

Training accuracy: 0.9640718562874252 Testing accuracy: 0.9550898203592815

	precision	recall	f1-score	support
0	0.96	0.99	0.98	313
1	0.75	0.43	0.55	21
accuracy			0.96	334
macro avg	0.86	0.71	0.76	334
weighted avg	0.95	0.96	0.95	334

[[310 3] [12 9]]