Math 856 Homework 2

Starred (*) problems are due Friday, October 9

(*) 9: [Lee, problem 2-1 (part)] Using the charts on the circle S^1 given by steriographic projection, compute the local coordinate representations of the functions

$$f_n: S^1 \to S^1$$
 given by $f_n(z) = z^n$ (in complex coordinates)

and use this to demonstrate that each f_n is C^{∞} .

- **10:** We know that if $C, D \subseteq M$ are disjoint closed sets of the smooth manifold M, then there exists a smooth function $f: M \to [0,1]$ with $C \subseteq f^{-1}(0)$ and $D \subseteq f^{-1}(1)$. But we can in fact make these containments equalities:
 - (a) Show that it suffices to build a smooth function $g: M \to [0,1]$ with $C = g^{-1}(0)$.
- (b) Build a countable cover $\{U_i\}$ of $M \setminus C$ by open sets of the form $h_i^{-1}(B(x_i, 1))$ for a collection of coordinate charts $h_i = (x^1, \ldots, x^n)$ with image containing $B(x_i, 2)$. Build C^{∞} functions $g_i : M \to \mathbb{R}$ which are > 0 in U_i and = 0 on $M \setminus U_i$. Note that $\overline{U_i}$ is compact; for each i, let

$$\alpha_i = \sup_{x \in \overline{U_i}; j \le i; m \le i; k_1, \dots k_m \le n} \left\{ \frac{\partial^m g_j}{\partial x^{k_1} \cdots \partial x^{k_m}} (x) \right\}.$$

Show that the function $g = \sum g_i/(\alpha_i 2^i)$ is C^{∞} and $C = g^{-1}(0)$.

- **11:** [Lee, problem 2-6] For M a (smooth) manifold, let C(M) denote the set of continuous functions from M to \mathbb{R} , thought of as an algebra (i.e., a ring and a vector space over \mathbb{R}) with scalar multiplication by \mathbb{R} , and pointwise addition and multiplication. Let $C^{\infty}(M)$ be the subalgebra of smooth functions. If $F: M \to N$ is continuous, let $F^*: C(N) \to C(M)$ be given by $F^*(f) = f \circ F$.
 - (a) Show that F^* is a linear map.
 - (b) Show that F is smooth $\Leftrightarrow F^*(C^\infty(N)) \subseteq C^\infty(M)$.
- (c) Suppose F is a homeomorphism. Show that F is a diffeomorphism $\Leftrightarrow F^*: C^{\infty}(N) \to C^{\infty}(M)$ is an isomorphism.
- (*) 12: [Lee, problem 2-17] Find an example of a (non-closed: it can't be done if the set is closed! This is what the Tietze Extension Theorem says...) subset A of a smooth manifold M, and a smooth function $f: A \to \mathbb{R}$ which admits **no** extension to a smooth function $\tilde{f}: M \to \mathbb{R}$.

(Recall that f is called smooth if for every $x \in A$ there is a neighborhood $x \in \mathcal{U}$ and a smooth extension of $f|_{A \cap \mathcal{U}}$ to the neighborhood \mathcal{U} .

13. Giving $M_1 \times M_2$ the product smooth structure, show that $f: N \to M_1 \times M_2$ is smooth \Leftrightarrow the maps $p_1 \circ f: N \to M_1$, $p_2 \circ f: N \to M_2$ are smooth, where p_1, p_2 are the projections onto the first and second factors, respectively. Show, moreover, that the product smooth structure is the only smooth structure on $M_1 \times M_2$ with this property.

- (*) 14. For $a \in M$, let $\mathcal{F}_a \subseteq C^{\infty}(M)$ denote the smooth functions satisfying f(a) = 0. and let $L : \mathcal{F}_a \to \mathbb{R}$ be a linear operator satisfying L(fg) = 0 for all $f, g \in \mathcal{F}_a$. Show that there is a unique derivation $X \in T_aM$ satisfying $X|_{\mathcal{F}_a} = L$.
 - (N.B. This leads to still another characterization of tangent vectors, has the vector space of linear maps $X: \mathcal{F}_a/W \to \mathbb{R}$, where $W = \mathcal{F}_a^2$ = the ideal generated by products fg for $f, g \in \mathcal{F}_a$.)
 - 15. Using our 'standard' charts on the sphere S^n (domains are the 2n open hemispheres, and maps ignore the coordinate whose sign is being restricted), show that the map $F: S^3 \to S^2$ given by

$$F(x, y, z, w) = (2xz + 2yw, 2yz - 2xw, x^{2} + y^{2} - z^{2} - w^{2})$$

is smooth (here we write points of S^3 as points of \mathbb{R}^4 satisfying $x^2 + y^2 + z^2 + w^2 = 1$). [Check also that it maps into S^2 !]

[N.B.: This is a fairly famous map, known as the *Hopf map*. Writing points in \mathbb{R}^4 as pairs of complex numbers (z_1, z_2) , this map can be expressed as $F(z_1, z_2) = (2z_1\overline{z_2}, |z_1|^2 - |z_2|^2)$. (This was stolen straight from Wikipedia.) If $F(z_1, z_2) = F(w_1, w_2)$, then $z_1 = \lambda w_1$ and $z_2 = \lambda w_2$ for some complex number λ with $|\lambda| = 1$. This implies that every point inverse is a 'round' circle.]