计算智能讲义——MaxSAT 问题

计算机科学与技术学院 M201973122 李研

1 Definition

首先给出以下符号定义:

Symbol	Definition	Description
X_i	Variable	变元, $x_i + \overline{x}_i = 1, i = 1, 2,, n$
C_i	Clause	子句, $C_i = \left(\bigvee_{i \in S_i^+} x_i \right) \vee \left(\bigvee_{i \in S_i^-} \overline{x}_i \right), i = 1, 2,, m$
CNF	Formula	合取范式, $CNF = \underset{i \in S}{\bigwedge} C_i, i = 1, 2,, n$

Maximum Satisfiability: 找到一组 x_i 的取值,使得满足的子句数目 $|C_i|$ 最大。

2 Algorithms

给出以下符号定义:

-111	11 4 7 1 1 1 4 7 6 7 6 7			
Symbol	Definition	Description		
$E[Z_i]$	Expectation	期望,对应字句 C_i 被满足的期望		
$E[Z x_i]$	Conditional Expectation	条件期望,在 x_i 确定取值的前提下,		
		CNF 被满足的期望		
E[Z]	Total Expectation	总期望,CNF 被满足的期望		

2.1 Randomized Algorithm

● 算法描述:

将 x_i 分别以 $\frac{1}{2}$ 的概率设置为0或1,则 C_i 被满足的期望为 $E[Z_i]=1-2^{-|C_i|}$,

$$CNF$$
 被满足的期望为 $E[Z] = \sum_{i=1}^{m} E[Z_i] = \sum_{i=1}^{m} (1-2^{-|C_i|})$ 。

● 近似比分析:

设 $min|C_i|=K$,则有

$$m(1-2^{-K}) \le E[Z] \le OPT \le m$$

- 算法分析:
 - ◆ 简单粗暴,易于理解;
 - ◆ 结果不可控,近似比只是给出理论上期望的上界,而未必每次都能得到相应质量的解。

2.2 Derandomized Algorithm

● 算法描述:

在算法①的基础上,每个变元 x_i 都有 $\frac{1}{2}$ 的概率取 0 或 1,即有 $E[Z] = \frac{1}{2} E[Z|x_i=1] + \frac{1}{2} E[Z|x_i=0] \text{ 。对于每个变元 } x_i \text{ ,比较 } \frac{1}{2} E[Z|x_i=1]$ 和 $\frac{1}{2} E[Z|x_i=0]$ 的大小,选择二者中期望值较大者对应的 x_i 取值。在此基础上,进行下一步迭代。

● 近似比分析:

因为每一步迭代都选择了期望值较大的,所以总的条件期望E[Z|x]要大于随机算法的期望值E[Z]:

$$E[Z \mid x] \ge E[Z] \ge m(1 - 2^{-K})$$

- 算法分析:
 - ◆ 结果可控,在变元顺序确定的情况下能保证结果一致性;
 - ◆ 结果与变元顺序有关,没有回溯,变元的值一旦确定便不能再更改;
 - ◆ 算法复杂度较高,条件期望的计算比较耗时;
 - ◆ 可能的优化方向:使用 branch and bound 的树搜索框架,通过维护一个全局的条件期望实现剪枝和加速搜索。

2.3 LP Rounding Algorithm

给出以下两个决策变量的定义:

Symbol	Definition	Description
${\cal Y}_i$	Decision Variables	决策变量,变元 x_i 的 $0/1$ 决策变量
$q_{_i}$	Decision Variables	决策变量,子句 C_i 的 $0/1$ 决策变量

● 算法描述:

建立 MaxSAT 混合整数规划模型如下:

$$\begin{aligned} \text{maximize:} & & \sum_{i=1}^m q_i \\ \text{s.t.} & & q_i \leq \sum_{j \in S_i^+} y_j + \sum_{j \in S_i^-} \left(1 - y_j\right) & \forall i \\ & & q_i, y_j \in \{0, 1\} \end{aligned}$$

♦ Relaxing:

松弛最后一条布尔约束为 $0 \le q_i, y_j \le 1$,即得到线性规划模型。

♦ Rounding:

求解模型,并按照下述策略设置变元取值:

for
$$j = 1$$
 to n do

Independently set
$$x_j = \begin{cases} 1: \text{ with probability } y_j^* \\ 0: \text{ with probability } 1 - y_j^* \end{cases}$$

end for

● 近似比分析:

以 $C_1 = x_1 \vee ... \vee x_k$ 为例,利用算数-几何平均不等式,得到 C_1 的部分期望如下:

$$egin{aligned} \Pr[C_1] &= 1 - \prod_{j=1}^k ig(1 - y_j^*ig) \ &\geq 1 - igg(rac{1}{k} \sum_{j=1}^k ig(1 - y_j^*ig)igg)^k \ &\geq 1 - igg(1 - rac{q_1^*}{k}igg)^k \ &\geq 1 - igg(1 - rac{1}{k}igg)^k \ &\geq q_1igg(1 - igg(1 - 1/eig) \end{aligned}$$

$$\text{INE}[Z] = \sum_{i=1}^{m} \mathrm{E}\left[Z_{i}\right] \geq \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{|C_{i}|}\right)^{|C_{i}|}\right) \geq m \left(1 - \left(1 - \frac{1}{K}\right)^{K}\right).$$

● 算法分析:

- ◆ 结果相对可控,较算法①求解质量有较大提升;
- → 求解效率与线性规划求解器的性能有较大关系,随着变元数目增多,求解时间也逐渐延长。

2.4 LP Derandomized Algorithm

● 算法描述:

在算法③的基础上去随机化,每个变元 x_i 都有 y_i^* 的概率取 1, $1-y_i^*$ 的概率取 0,即 $E[Z]=y_i^*\cdot E[Z|x_i=1]+(1-y_i^*)\cdot E[Z|x_i=0]$ 。对于每个变元 x_i ,比较 $y_i^*\cdot E[Z|x_i=1]$ 和 $(1-y_i^*)\cdot E[Z|x_i=0]$ 的大小,选择二者中较大的期望值,取 其对应的 x_i 取值。在此基础上,进行下一步迭代。

● 近似比分析:

同理,该算法的条件期望E[Z|x]要大于算法③的期望值E[Z]:

$$E[Z \mid x] \ge E[Z] \ge m \left(1 - \left(1 - \frac{1}{K}\right)^{K}\right)$$

- 算法分析:
 - ◆ 结果可控,且与变元顺序无关;
 - ◆ 继承了算法②③的优缺点,既是四类算法中求解质量最好的,也是耗时最多的;
 - ◆ 可能的优化方向:将算法②和算法④结合可以给出一个 ³/₄ 近似比的算法 (每次从两个算法中随机挑选一个执行):

$$E[Z] = \sum_{i=1}^{m} E[Z_i] \ge \sum_{i=1}^{m} \frac{1}{2} \left((1 - 2^{-|C_i|}) + \left(1 - \left(1 - \frac{1}{|C_i|} \right)^{|C_i|} \right) \right) \ge (3/4)m$$

3 Implementation

Github: https://github.com/lyandut/MyMaXSat