and querying hosts communicate. A simple design for DNS would have one DNS server that contains all the mappings. In this centralized design, clients simply direct all queries to the single DNS server, and the DNS server responds directly to the querying clients. Although the simplicity of this design is attractive, it is inappropriate for today's Internet, with its vast (and growing) number of hosts. The problems with a centralized design include: A single point of failure. If the DNS server crashes, so does the entire Internet! Traffic volume. A single DNS server would have to handle all DNS queries (for all the HTTP requests and e-mail messages generated from hundreds of millions of hosts). Distant centralized database. A single DNS server cannot be "close to" all the querying clients. If we put the single DNS server in New York City, then all queries from Australia must travel to the other side of the globe, perhaps over slow and congested links. This can lead to significant delays. Maintenance. The single DNS server would have to keep records for all Internet hosts. Not only would this centralized database be huge, but it would have to be updated frequently to account for every new host. In summary, a centralized database in a single DNS server simply doesn't scale. Consequently, the DNS is distributed by design. In fact, the DNS is a wonderful example of how a distributed database can be implemented in the Internet. A Distributed, Hierarchical Database In order to deal with the issue of scale, the DNS uses a large number of servers, organized in a hierarchical fashion and distributed around the world. No single DNS server has all of the mappings for all of the hosts in the Internet. Instead, the mappings are distributed across the DNS servers. To a first approximation, there are three classes of DNS servers—root DNS servers, top-level domain (TLD) DNS servers, and authoritative DNS servers—organized in a hierarchy as shown in Figure 2.17. To understand how these three classes of servers interact, suppose a DNS client wants to determine the IP address for the hostname www.amazon.com . To a first Figure 2.17 Portion of the hierarchy of DNS servers approximation, the following events will take place. The client first contacts one of the root servers, which returns IP addresses for TLD servers for the top-level domain com . The client then contacts one of these TLD servers, which returns the IP address of an authoritative server for amazon.com. Finally, the client contacts one of the authoritative servers for amazon.com, which returns the IP address for the hostname www.amazon.com. We'll soon examine this DNS lookup process in more detail. But let's first take a closer look at these three classes of DNS servers: Root DNS servers. There are over 400 root name servers scattered all over the world. Figure 2.18 shows the countries that have root names servers, with countries having more than ten darkly shaded. These root name servers are managed by 13 different organizations. The full list of root name servers, along with the organizations that manage them and their IP addresses can be found at [Root Servers 2016]. Root name servers provide the IP addresses of the TLD servers. Top-level domain (TLD) servers. For each of the top-level domains — top-level domains such as com, org, net, edu, and gov, and all of the country top-level domains such as uk, fr, ca, and jp — there is TLD server (or server cluster). The company Verisign Global Registry Services maintains the TLD servers for the com top-level domain, and the company Educause maintains the TLD servers for the edu top-level domain. The network infrastructure supporting a TLD can be large and complex; see [Osterweil 2012] for a nice overview of the Verisign network. See [TLD list 2016] for a list of all top-level domains. TLD servers provide the IP addresses for authoritative DNS servers. Figure 2.18 DNS root servers in 2016 Authoritative DNS servers. Every organization with publicly accessible hosts (such as Web servers and mail servers) on the Internet must provide publicly accessible DNS records that map the names of those hosts to IP addresses. An organization's authoritative DNS server houses these DNS records. An organization can choose to implement its own authoritative DNS server to hold these records; alternatively, the organization can pay to have these records stored in an authoritative DNS server of some service provider. Most universities

and large companies implement and maintain their own primary and secondary (backup) authoritative DNS server. The root, TLD, and authoritative DNS servers all belong to the hierarchy of DNS servers, as shown in Figure 2.17. There is another important type of DNS server called the local DNS server. A local DNS server does not strictly belong to the hierarchy of servers but is nevertheless central to the DNS architecture. Each ISP—such as a residential ISP or an institutional ISP—has a local DNS server (also called a default name server). When a host connects to an ISP, the ISP provides the host with the IP addresses of one or more of its local DNS servers (typically through DHCP, which is discussed in Chapter 4). You can easily determine the IP address of your local DNS server by accessing network status windows in Windows or UNIX. A host's local DNS server is typically "close to" the host. For an institutional ISP, the local DNS server may be on the same LAN as the host; for a residential ISP, it is typically separated from the host by no more than a few routers. When a host makes a DNS query, the query is sent to the local DNS server, which acts a proxy, forwarding the query into the DNS server hierarchy, as we'll discuss in more detail below. Let's take a look at a simple example. Suppose the host cse.nyu.edu desires the IP address of gaia.cs.umass.edu . Also suppose that NYU's ocal DNS server for cse.nyu.edu is called dns.nyu.edu and that an authoritative DNS server for gaia.cs.umass.edu is called dns.umass.edu . As shown in Figure 2.19, the host cse.nyu.edu first sends a DNS query message to its local DNS server, dns.nyu.edu . The query message contains the hostname to be translated, namely, gaia.cs.umass.edu . The local DNS server forwards the query message to a root DNS server. The root DNS server takes note of the edu suffix and returns to the local DNS server a list of IP addresses for TLD servers responsible for edu . The local DNS server then resends the query message to one of these TLD servers. The TLD server takes note of the umass.edu suffix and responds with the IP address of the authoritative DNS server for the University of Massachusetts, namely, dns.umass.edu. Finally, the local DNS server resends the query message directly to dns.umass.edu, which responds with the IP address of gaia.cs.umass.edu . Note that in this example, in order to obtain the mapping for one hostname, eight DNS messages were sent: four query messages and four reply messages! We'll soon see how DNS caching reduces this query traffic. Our previous example assumed that the TLD server knows the authoritative DNS server for the hostname. In general this not always true. Instead, the TLD server Figure 2.19 Interaction of the various DNS servers may know only of an intermediate DNS server, which in turn knows the authoritative DNS server for the hostname. For example, suppose again that the University of Massachusetts has a DNS server for the university, called dns.umass.edu . Also suppose that each of the departments at the University of Massachusetts has its own DNS server, and that each departmental DNS server is authoritative for all hosts in the department. In this case, when the intermediate DNS server, dns.umass.edu, receives a query for a host with a hostname ending with cs.umass.edu , it returns to dns.nyu.edu the IP address of dns.cs.umass.edu , which is authoritative for all hostnames ending with cs.umass.edu . The local DNS server dns.nyu.edu then sends the query to the authoritative DNS server, which returns the desired mapping to the local DNS server, which in turn returns the mapping to the requesting host. In this case, a total of 10 DNS messages are sent! The example shown in Figure 2.19 makes use of both recursive queries and iterative queries. The query sent from cse.nyu.edu to dns.nyu.edu is a recursive query, since the query asks dns.nyu.edu to obtain the mapping on its behalf. But the subsequent three queries are iterative since all of the replies are directly returned to dns.nyu.edu. In theory, any DNS query can be iterative or recursive. For example, Figure 2.20 shows a DNS query chain for which all of the queries are recursive. In practice, the queries typically follow the pattern in Figure 2.19: The query from the requesting host to the local DNS server is recursive, and the remaining queries are iterative. DNS Caching Our discussion thus far has ignored DNS caching,

a critically important feature of the DNS system. In truth, DNS extensively exploits DNS caching in order to improve the delay performance and to reduce the number of DNS messages Figure 2.20 Recursive queries in DNS ricocheting around the Internet. The idea behind DNS caching is very simple. In a query chain, when a DNS server receives a DNS reply (containing, for example, a mapping from a hostname to an IP address), it can cache the mapping in its local memory. For example, in Figure 2.19, each time the local DNS server dns.nyu.edu receives a reply from some DNS server, it can cache any of the information contained in the reply. If a hostname/IP address pair is cached in a DNS server and another query arrives to the DNS server for the same hostname, the DNS server can provide the desired IP address, even if it is not authoritative for the hostname. Because hosts and mappings between hostnames and IP addresses are by no means permanent, DNS servers discard cached information after a period of time (often set to two days). As an example, suppose that a host apricot.nyu.edu queries dns.nyu.edu for the IP address for the hostname cnn.com . Furthermore, suppose that a few hours later, another NYU host, say, kiwi.nyu.edu, also queries dns.nyu.edu with the same hostname. Because of caching, the local DNS server will be able to immediately return the IP address of cnn.com to this second requesting host without having to query any other DNS servers. A local DNS server can also cache the IP addresses of TLD servers, thereby allowing the local DNS server to bypass the root DNS servers in a query chain. In fact, because of caching, root servers are bypassed for all but a very small fraction of DNS queries. 2.4.3 DNS Records and Messages The DNS servers that together implement the DNS distributed database store resource records (RRs), including RRs that provide hostname-to-IP address mappings. Each DNS reply message carries one or more resource records. In this and the following subsection, we provide a brief overview of DNS resource records and messages; more details can be found in [Albitz 1993] or in the DNS RFCs [RFC 1034; RFC 1035]. A resource record is a four-tuple that contains the following fields: (Name, Value, Type, TTL) TTL is the time to live of the resource record; it determines when a resource should be removed from a cache. In the example records given below, we ignore the TTL field. The meaning of Name and Value depend on Type: If Type=A, then Name is a hostname and Value is the IP address for the hostname. Thus, a Type A record provides the standard hostname-to-IP address mapping. As an example, (relay1.bar.foo.com, 145.37.93.126, A) is a Type A record. If Type=NS, then Name is a domain (such as foo.com) and Value is the hostname of an authoritative DNS server that knows how to obtain the IP addresses for hosts in the domain. This record is used to route DNS queries further along in the query chain. As an example, (foo.com, dns.foo.com, NS) is a Type NS record. If Type=CNAME, then Value is a canonical hostname for the alias hostname Name. This record can provide querying hosts the canonical name for a hostname. As an example, (foo.com, relay1.bar.foo.com, CNAME) is a CNAME record. If Type=MX, then Value is the canonical name of a mail server that has an alias hostname Name. As an example, (foo.com, mail.bar.foo.com, MX) is an MX record. MX records allow the hostnames of mail servers to have simple aliases. Note that by using the MX record, a company can have the same aliased name for its mail server and for one of its other servers (such as its Web server). To obtain the canonical name for the mail server, a DNS client would query for an MX record; to obtain the canonical name for the other server, the DNS client would query for the CNAME record. If a DNS server is authoritative for a particular hostname, then the DNS server will contain a Type A record for the hostname. (Even if the DNS server is not authoritative, it may contain a Type A record in its cache.) If a server is not authoritative for a hostname, then the server will contain a Type NS record for the domain that includes the hostname; it will also contain a Type A record that provides the IP address of the DNS server in the Value field of the NS record. As an example, suppose an edu TLD server is not authoritative for the host gaia.cs.umass.edu . Then this server will contain a record for a domain that includes the host gaia.cs.umass.edu, for example, (umass.edu, dns.umass.edu, NS). The edu TLD server would also contain a Type A record, which maps the DNS server dns.umass.edu to an IP address, for example, (dns.umass.edu, 128.119.40.111, A) . DNS Messages Earlier in this section, we referred to DNS query and reply messages. These are the only two kinds of DNS messages. Furthermore, both query and reply messages have the same format, as shown in Figure 2.21. The semantics of the various fields in a DNS message are as follows: The first 12 bytes is the header section, which has a number of fields. The first field is a 16-bit number that identifies the query. This identifier is copied into the reply message to a query, allowing the client to match received replies with sent queries. There are a number of flags in the flag field. A 1-bit query/reply flag indicates whether the message is a query (0) or a reply (1). A 1-bit authoritative flag is Figure 2.21 DNS message format set in a reply message when a DNS server is an authoritative server for a queried name. A 1-bit recursion-desired flag is set when a client (host or DNS server) desires that the DNS server perform recursion when it doesn't have the record. A 1-bit recursion-available field is set in a reply if the DNS server supports recursion. In the header, there are also four number-of fields. These fields indicate the number of occurrences of the four types of data sections that follow the header. The question section contains information about the query that is being made. This section includes (1) a name field that contains the name that is being queried, and (2) a type field that indicates the type of question being asked about the name—for example, a host address associated with a name (Type A) or the mail server for a name (Type MX). In a reply from a DNS server, the answer section contains the resource records for the name that was originally queried. Recall that in each resource record there is the Type (for example, A, NS, CNAME, and MX), the Value, and the TTL . A reply can return multiple RRs in the answer, since a hostname can have multiple IP addresses (for example, for replicated Web servers, as discussed earlier in this section). The authority section contains records of other authoritative servers. The additional section contains other helpful records. For example, the answer field in a reply to an MX query contains a resource record providing the canonical hostname of a mail server. The additional section contains a Type A record providing the IP address for the canonical hostname of the mail server. How would you like to send a DNS query message directly from the host you're working on to some DNS server? This can easily be done with the nslookup program, which is available from most Windows and UNIX platforms. For example, from a Windows host, open the Command Prompt and invoke the nslookup program by simply typing "nslookup." After invoking nslookup, you can send a DNS query to any DNS server (root, TLD, or authoritative). After receiving the reply message from the DNS server, nslookup will display the records included in the reply (in a human-readable format). As an alternative to running nslookup from your own host, you can visit one of many Web sites that allow you to remotely employ nslookup. (Just type "nslookup" into a search engine and you'll be brought to one of these sites.) The DNS Wireshark lab at the end of this chapter will allow you to explore the DNS in much more detail. Inserting Records into the DNS Database The discussion above focused on how records are retrieved from the DNS database. You might be wondering how records get into the database in the first place. Let's look at how this is done in the context of a specific example. Suppose you have just created an exciting new startup company called Network Utopia. The first thing you'll surely want to do is register the domain name networkutopia.com at a registrar. A registrar is a commercial entity that verifies the uniqueness of the domain name, enters the domain name into the DNS database (as discussed below), and collects a small fee from you for its services. Prior to 1999, a single registrar, Network Solutions, had a monopoly on domain name registration for com, net, and org domains. But now there are many registrars competing for customers, and the Internet Corporation for Assigned Names and Numbers (ICANN) accredits the various

registrars. A complete list of accredited registrars is available at http://www.internic.net. When you register the domain name networkutopia.com with some registrar, you also need to provide the registrar with the names and IP addresses of your primary and secondary authoritative DNS servers. Suppose the names and IP addresses are dns1.networkutopia.com, dns2.networkutopia.com, 212.2.212.1, and 212.212.21. For each of these two authoritative DNS servers, the registrar would then make sure that a Type NS and a Type A record are entered into the TLD com servers. Specifically, for the primary authoritative server for networkutopia.com, the registrar would insert the following two resource records into the DNS system: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A) You'll also have to make sure that the Type A resource record for your Web server www.networkutopia.com and the Type MX resource record for your mail server mail.networkutopia.com are entered into your authoritative DNS FOCUS ON SECURITY DNS VULNERABILITIES We have seen that DNS is a critical component of the Internet infrastructure, with many important services—including the Web and e-mail—simply incapable of functioning without it. We therefore naturally ask, how can DNS be attacked? Is DNS a sitting duck, waiting to be knocked out of service, while taking most Internet applications down with it? The first type of attack that comes to mind is a DDoS bandwidth-flooding attack (see Section 1.6) against DNS servers. For example, an attacker could attempt to send to each DNS root server a deluge of packets, so many that the majority of legitimate DNS queries never get answered. Such a large-scale DDoS attack against DNS root servers actually took place on October 21, 2002. In this attack, the attackers leveraged a botnet to send truck loads of ICMP ping messages to each of the 13 DNS root IP addresses. (ICMP messages are discussed in Section 5.6. For now, it suffices to know that ICMP packets are special types of IP datagrams.) Fortunately, this largescale attack caused minimal damage, having little or no impact on users' Internet experience. The attackers did succeed at directing a deluge of packets at the root servers. But many of the DNS root servers were protected by packet filters, configured to always block all ICMP ping messages directed at the root servers. These protected servers were thus spared and functioned as normal. Furthermore, most local DNS servers cache the IP addresses of toplevel-domain servers, allowing the query process to often bypass the DNS root servers. A potentially more effective DDoS attack against DNS would be send a deluge of DNS queries to top-level-domain servers, for example, to all the top-level-domain servers that handle the .com domain. It would be harder to filter DNS queries directed to DNS servers; and top-level-domain servers are not as easily bypassed as are root servers. But the severity of such an attack would be partially mitigated by caching in local DNS servers. DNS could potentially be attacked in other ways. In a man-in-the-middle attack, the attacker intercepts queries from hosts and returns bogus replies. In the DNS poisoning attack, the attacker sends bogus replies to a DNS server, tricking the server into accepting bogus records into its cache. Either of these attacks could be used, for example, to redirect an unsuspecting Web user to the attacker's Web site. These attacks, however, are difficult to implement, as they require intercepting packets or throttling servers [Skoudis 2006]. In summary, DNS has demonstrated itself to be surprisingly robust against attacks. To date, there hasn't been an attack that has successfully impeded the DNS service. servers. (Until recently, the contents of each DNS server were configured statically, for example, from a configuration file created by a system manager. More recently, an UPDATE option has been added to the DNS protocol to allow data to be dynamically added or deleted from the database via DNS messages. [RFC 2136] and [RFC 3007] specify DNS dynamic updates.) Once all of these steps are completed, people will be able to visit your Web site and send e-mail to the employees at your company. Let's conclude our discussion of DNS by verifying that this statement is true. This verification also helps to solidify what we have

learned about DNS. Suppose Alice in Australia wants to view the Web page www.networkutopia.com . As discussed earlier, her host will first send a DNS query to her local DNS server. The local DNS server will then contact a TLD com server. (The local DNS server will also have to contact a root DNS server if the address of a TLD com server is not cached.) This TLD server contains the Type NS and Type A resource records listed above, because the registrar had these resource records inserted into all of the TLD com servers. The TLD com server sends a reply to Alice's local DNS server, with the reply containing the two resource records. The local DNS server then sends a DNS query to 212.212.212.1, asking for the Type A record corresponding to www.networkutopia.com. This record provides the IP address of the desired Web server, say, 212.212.71.4, which the local DNS server passes back to Alice's host. Alice's browser can now initiate a TCP connection to the host 212.212.71.4 and send an HTTP request over the connection. Whew! There's a lot more going on than what meets the eye when one surfs the Web! 2.5 Peer-to-Peer File Distribution The applications described in this chapter thus far—including the Web, e-mail, and DNS—all employ client-server architectures with significant reliance on always-on infrastructure servers. Recall from Section 2.1.1 that with a P2P architecture, there is minimal (or no) reliance on always-on infrastructure servers. Instead, pairs of intermittently connected hosts, called peers, communicate directly with each other. The peers are not owned by a service provider, but are instead desktops and laptops controlled by users. In this section we consider a very natural P2P application, namely, distributing a large file from a single server to a large number of hosts (called peers). The file might be a new version of the Linux operating system, a software patch for an existing operating system or application, an MP3 music file, or an MPEG video file. In client-server file distribution, the server must send a copy of the file to each of the peers—placing an enormous burden on the server and consuming a large amount of server bandwidth. In P2P file distribution, each peer can redistribute any portion of the file it has received to any other peers, thereby assisting the server in the distribution process. As of 2016, the most popular P2P file distribution protocol is BitTorrent. Originally developed by Bram Cohen, there are now many different independent BitTorrent clients conforming to the BitTorrent protocol, just as there are a number of Web browser clients that conform to the HTTP protocol. In this subsection, we first examine the selfscalability of P2P architectures in the context of file distribution. We then describe BitTorrent in some detail, highlighting its most important characteristics and features. Scalability of P2P Architectures To compare client-server architectures with peer-to-peer architectures, and illustrate the inherent selfscalability of P2P, we now consider a simple quantitative model for distributing a file to a fixed set of peers for both architecture types. As shown in Figure 2.22, the server and the peers are connected to the Internet with access links. Denote the upload rate of the server's access link by u, the upload rate of the ith peer's access link by u, and the download rate of the ith peer's access link by d. Also denote the size of the file to be distributed (in bits) by F and the number of peers that want to obtain a copy of the file by N. The distribution time is the time it takes to get sii Figure 2.22 An illustrative file distribution problem a copy of the file to all N peers. In our analysis of the distribution time below, for both client-server and P2P architectures, we make the simplifying (and generally accurate [Akella 2003]) assumption that the Internet core has abundant bandwidth, implying that all of the bottlenecks are in access networks. We also suppose that the server and clients are not participating in any other network applications, so that all of their upload and download access bandwidth can be fully devoted to distributing this file. Let's first determine the distribution time for the client-server architecture, which we denote by D. In the client-server architecture, none of the peers aids in distributing the file. We make the following observations: The server must transmit one copy of the file to each of the N peers. Thus the server must transmit NF bits. Since the server's upload rate is u,

the time to distribute the file must be at least NF/u . Let d denote the download rate of the peer with the lowest download rate, that is, The peer with the lowest download rate cannot obtain all F bits of the file in less than F/d seconds. Thus the minimum distribution time is at least F/d. Putting these two observations together, we obtain cs s s min dmin=min{d1,dp,...,dN}. min min Dcs≥max{NFus,Fdmin}. This provides a lower bound on the minimum distribution time for the client-server architecture. In the homework problems you will be asked to show that the server can schedule its transmissions so that the lower bound is actually achieved. So let's take this lower bound provided above as the actual distribution time, that is, We see from Equation 2.1 that for N large enough, the client-server distribution time is given by NF/u. Thus, the distribution time increases linearly with the number of peers N. So, for example, if the number of peers from one week to the next increases a thousand-fold from a thousand to a million, the time required to distribute the file to all peers increases by 1,000. Let's now go through a similar analysis for the P2P architecture, where each peer can assist the server in distributing the file. In particular, when a peer receives some file data, it can use its own upload capacity to redistribute the data to other peers. Calculating the distribution time for the P2P architecture is somewhat more complicated than for the client-server architecture, since the distribution time depends on how each peer distributes portions of the file to the other peers. Nevertheless, a simple expression for the minimal distribution time can be obtained [Kumar 2006]. To this end, we first make the following observations: At the beginning of the distribution, only the server has the file. To get this file into the community of peers, the server must send each bit of the file at least once into its access link. Thus, the minimum distribution time is at least F/u . (Unlike the client-server scheme, a bit sent once by the server may not have to be sent by the server again, as the peers may redistribute the bit among themselves.) As with the client-server architecture, the peer with the lowest download rate cannot obtain all F bits of the file in less than F/d seconds. Thus the minimum distribution time is at least F/d. Finally, observe that the total upload capacity of the system as a whole is equal to the upload rate of the server plus the upload rates of each of the individual peers, that is, The system must deliver (upload) F bits to each of the N peers, thus delivering a total of NF bits. This cannot be done at a rate faster than u . Thus, the minimum distribution time is also at least Putting these three observations together, we obtain the minimum distribution time for P2P, denoted by D. Equation 2.2 provides a lower bound for the minimum distribution time for the P2P architecture. It turns out that if we imagine that each peer can redistribute a bit as soon as it receives the bit, then there is a Dcs=max{NFus,Fdmin} (2.1) s s min min utotal=us+u1+···+uN. total NF/(us+u1+···+uN). P2P DP2P≥max{Fus,Fdmin,NFus+∑i=1Nui} (2.2) redistribution scheme that actually achieves this lower bound [Kumar 2006]. (We will prove a special case of this result in the homework.) In reality, where chunks of the file are redistributed rather than individual bits, Equation 2.2 serves as a good approximation of the actual minimum distribution time. Thus, let's take the lower bound provided by Equation 2.2 as the actual minimum distribution time, that is, Figure 2.23 compares the minimum distribution time for the client-server and P2P architectures assuming that all peers have the same upload rate u. In Figure 2.23, we have set and Thus, a peer can transmit the entire file in one hour, the server transmission rate is 10 times the peer upload rate, Figure 2.23 Distribution time for P2P and client-server architectures and (for simplicity) the peer download rates are set large enough so as not to have an effect. We see from Figure 2.23 that for the client-server architecture, the distribution time increases linearly and without bound as the number of peers increases. However, for the P2P architecture, the minimal distribution time is not only always less than the distribution time of the client-server architecture; it is also less than one hour for any number of peers N. Thus, applications with the P2P architecture can be self-scaling. This scalability is a direct consequence of peers being

redistributors as well as consumers of bits. BitTorrent BitTorrent is a popular P2P protocol for file distribution [Chao 2011]. In BitTorrent lingo, the collection of DP2P=max{Fus,Fdmin,NFus+∑i=1Nui} (2.3) F/u=1 hour, us=10u, dmin≥us. all peers participating in the distribution of a particular file is called a torrent. Peers in a torrent download equal-size chunks of the file from one another, with a typical chunk size of 256 KBytes. When a peer first joins a torrent, it has no chunks. Over time it accumulates more and more chunks. While it downloads chunks it also uploads chunks to other peers. Once a peer has acquired the entire file, it may (selfishly) leave the torrent, or (altruistically) remain in the torrent and continue to upload chunks to other peers. Also, any peer may leave the torrent at any time with only a subset of chunks, and later rejoin the torrent. Let's now take a closer look at how BitTorrent operates. Since BitTorrent is a rather complicated protocol and system, we'll only describe its most important mechanisms, sweeping some of the details under the rug; this will allow us to see the forest through the trees. Each torrent has an infrastructure node called a tracker. Figure 2.24 File distribution with BitTorrent When a peer joins a torrent, it registers itself with the tracker and periodically informs the tracker that it is still in the torrent. In this manner, the tracker keeps track of the peers that are participating in the torrent. A given torrent may have fewer than ten or more than a thousand peers participating at any instant of time. As shown in Figure 2.24, when a new peer, Alice, joins the torrent, the tracker randomly selects a subset of peers (for concreteness, say 50) from the set of participating peers, and sends the IP addresses of these 50 peers to Alice. Possessing this list of peers, Alice attempts to establish concurrent TCP connections with all the peers on this list. Let's call all the peers with which Alice succeeds in establishing a TCP connection "neighboring peers." (In Figure 2.24, Alice is shown to have only three neighboring peers. Normally, she would have many more.) As time evolves, some of these peers may leave and other peers (outside the initial 50) may attempt to establish TCP connections with Alice. So a peer's neighboring peers will fluctuate over time. At any given time, each peer will have a subset of chunks from the file, with different peers having different subsets. Periodically, Alice will ask each of her neighboring peers (over the TCP connections) for the list of the chunks they have. If Alice has L different neighbors, she will obtain L lists of chunks. With this knowledge, Alice will issue requests (again over the TCP connections) for chunks she currently does not have. So at any given instant of time, Alice will have a subset of chunks and will know which chunks her neighbors have. With this information, Alice will have two important decisions to make. First, which chunks should she request first from her neighbors? And second, to which of her neighbors should she send requested chunks? In deciding which chunks to request, Alice uses a technique called rarest first. The idea is to determine, from among the chunks she does not have, the chunks that are the rarest among her neighbors (that is, the chunks that have the fewest repeated copies among her neighbors) and then request those rarest chunks first. In this manner, the rarest chunks get more quickly redistributed, aiming to (roughly) equalize the numbers of copies of each chunk in the torrent. To determine which requests she responds to, BitTorrent uses a clever trading algorithm. The basic idea is that Alice gives priority to the neighbors that are currently supplying her data at the highest rate. Specifically, for each of her neighbors, Alice continually measures the rate at which she receives bits and determines the four peers that are feeding her bits at the highest rate. She then reciprocates by sending chunks to these same four peers. Every 10 seconds, she recalculates the rates and possibly modifies the set of four peers. In BitTorrent lingo, these four peers are said to be unchoked. Importantly, every 30 seconds, she also picks one additional neighbor at random and sends it chunks. Let's call the randomly chosen peer Bob. In BitTorrent lingo, Bob is said to be optimistically unchoked. Because Alice is sending data to Bob, she may become one of Bob's top four uploaders, in which case Bob would start to send data to Alice. If

the rate at which Bob sends data to Alice is high enough, Bob could then, in turn, become one of Alice's top four uploaders. In other words, every 30 seconds, Alice will randomly choose a new trading partner and initiate trading with that partner. If the two peers are satisfied with the trading, they will put each other in their top four lists and continue trading with each other until one of the peers finds a better partner. The effect is that peers capable of uploading at compatible rates tend to find each other. The random neighbor selection also allows new peers to get chunks, so that they can have something to trade. All other neighboring peers besides these five peers (four "top" peers and one probing peer) are "choked," that is, they do not receive any chunks from Alice. BitTorrent has a number of interesting mechanisms that are not discussed here, including pieces (minichunks), pipelining, random first selection, endgame mode, and anti-snubbing [Cohen 2003]. The incentive mechanism for trading just described is often referred to as tit-for-tat [Cohen 2003]. It has been shown that this incentive scheme can be circumvented [Liogkas 2006; Locher 2006; Piatek 2007]. Nevertheless, the BitTorrent ecosystem is wildly successful, with millions of simultaneous peers actively sharing files in hundreds of thousands of torrents. If BitTorrent had been designed without tit-fortat (or a variant), but otherwise exactly the same, BitTorrent would likely not even exist now, as the majority of the users would have been freeriders [Saroiu 2002]. We close our discussion on P2P by briefly mentioning another application of P2P, namely, Distributed Hast Table (DHT). A distributed hash table is a simple database, with the database records being distributed over the peers in a P2P system. DHTs have been widely implemented (e.g., in BitTorrent) and have been the subject of extensive research. An overview is provided in a Video Note in the companion website. Walking though distributed hash tables 2.6 Video Streaming and Content Distribution Networks Streaming prerecorded video now accounts for the majority of the traffic in residential ISPs in North America. In particular, the Netflix and YouTube services alone consumed a whopping 37% and 16%, respectively, of residential ISP traffic in 2015 [Sandvine 2015]. In this section we will provide an overview of how popular video streaming services are implemented in today's Internet. We will see they are implemented using application-level protocols and servers that function in some ways like a cache. In Chapter 9, devoted to multimedia networking, we will further examine Internet video as well as other Internet multimedia services. 2.6.1 Internet Video In streaming stored video applications, the underlying medium is prerecorded video, such as a movie, a television show, a prerecorded sporting event, or a prerecorded user-generated video (such as those commonly seen on YouTube). These prerecorded videos are placed on servers, and users send requests to the servers to view the videos on demand. Many Internet companies today provide streaming video, including, Netflix, YouTube (Google), Amazon, and Youku. But before launching into a discussion of video streaming, we should first get a quick feel for the video medium itself. A video is a sequence of images, typically being displayed at a constant rate, for example, at 24 or 30 images per second. An uncompressed, digitally encoded image consists of an array of pixels, with each pixel encoded into a number of bits to represent luminance and color. An important characteristic of video is that it can be compressed, thereby trading off video quality with bit rate. Today's off-the-shelf compression algorithms can compress a video to essentially any bit rate desired. Of course, the higher the bit rate, the better the image quality and the better the overall user viewing experience. From a networking perspective, perhaps the most salient characteristic of video is its high bit rate. Compressed Internet video typically ranges from 100 kbps for low-quality video to over 3 Mbps for streaming high-definition movies; 4K streaming envisions a bitrate of more than 10 Mbps. This can translate to huge amount of traffic and storage, particularly for high-end video. For example, a single 2 Mbps video with a duration of 67 minutes will consume 1 gigabyte of storage and traffic. By far, the most important performance

measure for streaming video is average end-to-end throughput. In order to provide continuous playout, the network must provide an average throughput to the streaming application that is at least as large as the bit rate of the compressed video. We can also use compression to create multiple versions of the same video, each at a different quality level. For example, we can use compression to create, say, three versions of the same video, at rates of 300 kbps, 1 Mbps, and 3 Mbps. Users can then decide which version they want to watch as a function of their current available bandwidth. Users with high-speed Internet connections might choose the 3 Mbps version; users watching the video over 3G with a smartphone might choose the 300 kbps version. 2.6.2 HTTP Streaming and DASH In HTTP streaming, the video is simply stored at an HTTP server as an ordinary file with a specific URL. When a user wants to see the video, the client establishes a TCP connection with the server and issues an HTTP GET request for that URL. The server then sends the video file, within an HTTP response message, as quickly as the underlying network protocols and traffic conditions will allow. On the client side, the bytes are collected in a client application buffer. Once the number of bytes in this buffer exceeds a predetermined threshold, the client application begins playback—specifically, the streaming video application periodically grabs video frames from the client application buffer, decompresses the frames, and displays them on the user's screen. Thus, the video streaming application is displaying video as it is receiving and buffering frames corresponding to latter parts of the video. Although HTTP streaming, as described in the previous paragraph, has been extensively deployed in practice (for example, by YouTube since its inception), it has a major shortcoming: All clients receive the same encoding of the video, despite the large variations in the amount of bandwidth available to a client, both across different clients and also over time for the same client. This has led to the development of a new type of HTTP-based streaming, often referred to as Dynamic Adaptive Streaming over HTTP (DASH). In DASH, the video is encoded into several different versions, with each version having a different bit rate and, correspondingly, a different quality level. The client dynamically requests chunks of video segments of a few seconds in length. When the amount of available bandwidth is high, the client naturally selects chunks from a high-rate version; and when the available bandwidth is low, it naturally selects from a low-rate version. The client selects different chunks one at a time with HTTP GET request messages [Akhshabi 2011]. DASH allows clients with different Internet access rates to stream in video at different encoding rates. Clients with low-speed 3G connections can receive a low bit-rate (and low-quality) version, and clients with fiber connections can receive a high-quality version. DASH also allows a client to adapt to the available bandwidth if the available end-to-end bandwidth changes during the session. This feature is particularly important for mobile users, who typically see their bandwidth availability fluctuate as they move with respect to the base stations. With DASH, each video version is stored in the HTTP server, each with a different URL. The HTTP server also has a manifest file, which provides a URL for each version along with its bit rate. The client first requests the manifest file and learns about the various versions. The client then selects one chunk at a time by specifying a URL and a byte range in an HTTP GET request message for each chunk. While downloading chunks, the client also measures the received bandwidth and runs a rate determination algorithm to select the chunk to request next. Naturally, if the client has a lot of video buffered and if the measured receive bandwidth is high, it will choose a chunk from a high-bitrate version. And naturally if the client has little video buffered and the measured received bandwidth is low, it will choose a chunk from a low-bitrate version. DASH therefore allows the client to freely switch among different quality levels. 2.6.3 Content Distribution Networks Today, many Internet video companies are distributing on-demand multi-Mbps streams to millions of users on a daily basis. YouTube, for example, with a library of hundreds of millions of videos, distributes hundreds of millions of video streams to users around the world every day. Streaming all this traffic to locations all over the world while providing continuous playout and high interactivity is clearly a challenging task. For an Internet video company, perhaps the most straightforward approach to providing streaming video service is to build a single massive data center, store all of its videos in the data center, and stream the videos directly from the data center to clients worldwide. But there are three major problems with this approach. First, if the client is far from the data center, server-to-client packets will cross many communication links and likely pass through many ISPs, with some of the ISPs possibly located on different continents. If one of these links provides a throughput that is less than the video consumption rate, the end-to-end throughput will also be below the consumption rate, resulting in annoying freezing delays for the user. (Recall from Chapter 1 that the end-to-end throughput of a stream is governed by the throughput at the bottleneck link.) The likelihood of this happening increases as the number of links in the end-to-end path increases. A second drawback is that a popular video will likely be sent many times over the same communication links. Not only does this waste network bandwidth, but the Internet video company itself will be paying its provider ISP (connected to the data center) for sending the same bytes into the Internet over and over again. A third problem with this solution is that a single data center represents a single point of failure—if the data center or its links to the Internet goes down, it would not be able to distribute any video streams. In order to meet the challenge of distributing massive amounts of video data to users distributed around the world, almost all major videostreaming companies make use of Content Distribution Networks (CDNs). A CDN manages servers in multiple geographically distributed locations, stores copies of the videos (and other types of Web content, including documents, images, and audio) in its servers, and attempts to direct each user request to a CDN location that will provide the best user experience. The CDN may be a private CDN, that is, owned by the content provider itself; for example, Google's CDN distributes YouTube videos and other types of content. The CDN may alternatively be a thirdparty CDN that distributes content on behalf of multiple content providers; Akamai, Limelight and Level-3 all operate third-party CDNs. A very readable overview of modern CDNs is [Leighton 2009; Nygren 2010]. CDNs typically adopt one of two different server placement philosophies [Huang 2008]: Enter Deep. One philosophy, pioneered by Akamai, is to enter deep into the access networks of Internet Service Providers, by deploying server clusters in access ISPs all over the world. (Access networks are described in Section 1.3.) Akamai takes this approach with clusters in approximately 1,700 locations. The goal is to get close to end users, thereby improving user-perceived delay and throughput by decreasing the number of links and routers between the end user and the CDN server from which it receives content. Because of this highly distributed design, the task of maintaining and managing the clusters becomes challenging. Bring Home. A second design philosophy, taken by Limelight and many other CDN companies, is to bring the ISPs home by building large clusters at a smaller number (for example, tens) of sites. Instead of getting inside the access ISPs, these CDNs typically place their clusters in Internet Exchange Points (IXPs) (see Section 1.3). Compared with the enter-deep design philosophy, the bring-home design typically results in lower maintenance and management overhead, possibly at the expense of higher delay and lower throughput to end users. Once its clusters are in place, the CDN replicates content across its clusters. The CDN may not want to place a copy of every video in each cluster, since some videos are rarely viewed or are only popular in some countries. In fact, many CDNs do not push videos to their clusters but instead use a simple pull strategy: If a client requests a video from a cluster that is not storing the video, then the cluster retrieves the video (from a central repository or from another cluster) and stores a copy locally while streaming the video to the client at the same time. Similar Web

caching (see Section 2.2.5), when a cluster's storage becomes full, it removes videos that are not frequently requested. CDN Operation Having identified the two major approaches toward deploying a CDN, let's now dive down into the nuts and bolts of how a CDN operates. When a browser in a user's CASE STUDY GOOGLE'S NETWORK INFRASTRUCTURE To support its vast array of cloud services—including search, Gmail, calendar, YouTube video, maps, documents, and social networks—Google has deployed an extensive private network and CDN infrastructure. Google's CDN infrastructure has three tiers of server clusters: Fourteen "mega data centers," with eight in North America, four in Europe, and two in Asia [Google Locations 2016], with each data center having on the order of 100,000 servers. These mega data centers are responsible for serving dynamic (and often personalized) content, including search results and Gmail messages. An estimated 50 clusters in IXPs scattered throughout the world, with each cluster consisting on the order of 100–500 servers [Adhikari 2011a]. These clusters are responsible for serving static content, including YouTube videos [Adhikari 2011a]. Many hundreds of "enter-deep" clusters located within an access ISP. Here a cluster typically consists of tens of servers within a single rack. These enter-deep servers perform TCP splitting (see Section 3.7) and serve static content [Chen 2011], including the static portions of Web pages that embody search results. All of these data centers and cluster locations are networked together with Google's own private network. When a user makes a search query, often the query is first sent over the local ISP to a nearby enter-deep cache, from where the static content is retrieved; while providing the static content to the client, the nearby cache also forwards the query over Google's private network to one of the mega data centers, from where the personalized search results are retrieved. For a YouTube video, the video itself may come from one of the bring-home caches, whereas portions of the Web page surrounding the video may come from the nearby enter-deep cache, and the advertisements surrounding the video come from the data centers. In summary, except for the local ISPs, the Google cloud services are largely provided by a network infrastructure that is independent of the public Internet. host is instructed to retrieve a specific video (identified by a URL), the CDN must intercept the request so that it can (1) determine a suitable CDN server cluster for that client at that time, and (2) redirect the client's request to a server in that cluster. We'll shortly discuss how a CDN can determine a suitable cluster. But first let's examine the mechanics behind intercepting and redirecting a request. Most CDNs take advantage of DNS to intercept and redirect requests; an interesting discussion of such a use of the DNS is [Vixie 2009]. Let's consider a simple example to illustrate how the DNS is typically involved. Suppose a content provider, NetCinema, employs the third-party CDN company, KingCDN, to distribute its videos to its customers. On the NetCinema Web pages, each of its videos is assigned a URL that includes the string "video" and a unique identifier for the video itself; for example, Transformers 7 might be assigned http://video.netcinema.com/6Y7B23V. Six steps then occur, as shown in Figure 2.25: 1. The user visits the Web page at NetCinema. 2. When the user clicks on the link http://video.netcinema.com/6Y7B23V, the user's host sends a DNS query for video.netcinema.com. 3. The user's Local DNS Server (LDNS) relays the DNS query to an authoritative DNS server for NetCinema, which observes the string "video" in the hostname video.netcinema.com. To "hand over" the DNS query to KingCDN, instead of returning an IP address, the NetCinema authoritative DNS server returns to the LDNS a hostname in the KingCDN's domain, for example, a1105.kingcdn.com. 4. From this point on, the DNS query enters into KingCDN's private DNS infrastructure. The user's LDNS then sends a second query, now for a1105.kingcdn.com, and KingCDN's DNS system eventually returns the IP addresses of a KingCDN content server to the LDNS. It is thus here, within the KingCDN's DNS system, that the CDN server from which the client will receive its content is specified. Figure 2.25 DNS

redirects a user's request to a CDN server 5. The LDNS forwards the IP address of the contentserving CDN node to the user's host. 6. Once the client receives the IP address for a KingCDN content server, it establishes a direct TCP connection with the server at that IP address and issues an HTTP GET request for the video. If DASH is used, the server will first send to the client a manifest file with a list of URLs, one for each version of the video, and the client will dynamically select chunks from the different versions. Cluster Selection Strategies At the core of any CDN deployment is a cluster selection strategy, that is, a mechanism for dynamically directing clients to a server cluster or a data center within the CDN. As we just saw, the CDN learns the IP address of the client's LDNS server via the client's DNS lookup. After learning this IP address, the CDN needs to select an appropriate cluster based on this IP address. CDNs generally employ proprietary cluster selection strategies. We now briefly survey a few approaches, each of which has its own advantages and disadvantages. One simple strategy is to assign the client to the cluster that is geographically closest. Using commercial geo-location databases (such as Quova [Quova 2016] and Max-Mind [MaxMind 2016]), each LDNS IP address is mapped to a geographic location. When a DNS request is received from a particular LDNS, the CDN chooses the geographically closest cluster, that is, the cluster that is the fewest kilometers from the LDNS "as the bird flies." Such a solution can work reasonably well for a large fraction of the clients [Agarwal 2009]. However, for some clients, the solution may perform poorly, since the geographically closest cluster may not be the closest cluster in terms of the length or number of hops of the network path. Furthermore, a problem inherent with all DNS-based approaches is that some end-users are configured to use remotely located LDNSs [Shaikh 2001; Mao 2002], in which case the LDNS location may be far from the client's location. Moreover, this simple strategy ignores the variation in delay and available bandwidth over time of Internet paths, always assigning the same cluster to a particular client. In order to determine the best cluster for a client based on the current traffic conditions, CDNs can instead perform periodic real-time measurements of delay and loss performance between their clusters and clients. For instance, a CDN can have each of its clusters periodically send probes (for example, ping messages or DNS queries) to all of the LDNSs around the world. One drawback of this approach is that many LDNSs are configured to not respond to such probes. 2.6.4 Case Studies: Netflix, YouTube, and Kankan We conclude our discussion of streaming stored video by taking a look at three highly successful largescale deployments: Netflix, YouTube, and Kankan. We'll see that each of these systems take a very different approach, yet employ many of the underlying principles discussed in this section. Netflix Generating 37% of the downstream traffic in residential ISPs in North America in 2015, Netflix has become the leading service provider for online movies and TV series in the United States [Sandvine 2015]. As we discuss below, Netflix video distribution has two major components: the Amazon cloud and its own private CDN infrastructure. Netflix has a Web site that handles numerous functions, including user registration and login, billing, movie catalogue for browsing and searching, and a movie recommendation system. As shown in Figure 2.26, this Web site (and its associated backend databases) run entirely on Amazon servers in the Amazon cloud. Additionally, the Amazon cloud handles the following critical functions: Content ingestion. Before Netflix can distribute a movie to its customers, it must first ingest and process the movie. Netflix receives studio master versions of movies and uploads them to hosts in the Amazon cloud. Content processing. The machines in the Amazon cloud create many different formats for each movie, suitable for a diverse array of client video players running on desktop computers, smartphones, and game consoles connected to televisions. A different version is created for each of these formats and at multiple bit rates, allowing for adaptive streaming over HTTP using DASH. Uploading versions to its CDN. Once all of the versions of a movie have been created, the hosts

in the Amazon cloud upload the versions to its CDN. Figure 2.26 Netflix video streaming platform When Netflix first rolled out its video streaming service in 2007, it employed three third-party CDN companies to distribute its video content. Netflix has since created its own private CDN, from which it now streams all of its videos. (Netflix still uses Akamai to distribute its Web pages, however.) To create its own CDN, Netflix has installed server racks both in IXPs and within residential ISPs themselves. Netflix currently has server racks in over 50 IXP locations; see [Netflix Open Connect 2016] for a current list of IXPs housing Netflix racks. There are also hundreds of ISP locations housing Netflix racks; also see [Netflix Open Connect 2016], where Netflix provides to potential ISP partners instructions about installing a (free) Netflix rack for their networks. Each server in the rack has several 10 Gbps Ethernet ports and over 100 terabytes of storage. The number of servers in a rack varies: IXP installations often have tens of servers and contain the entire Netflix streaming video library, including multiple versions of the videos to support DASH; local IXPs may only have one server and contain only the most popular videos. Netflix does not use pull-caching (Section 2.2.5) to populate its CDN servers in the IXPs and ISPs. Instead, Netflix distributes by pushing the videos to its CDN servers during offpeak hours. For those locations that cannot hold the entire library, Netflix pushes only the most popular videos, which are determined on a day-to-day basis. The Netflix CDN design is described in some detail in the YouTube videos [Netflix Video 1] and [Netflix Video 2]. Having described the components of the Netflix architecture, let's take a closer look at the interaction between the client and the various servers that are involved in movie delivery. As indicated earlier, the Web pages for browsing the Netflix video library are served from servers in the Amazon cloud. When a user selects a movie to play, the Netflix software, running in the Amazon cloud, first determines which of its CDN servers have copies of the movie. Among the servers that have the movie, the software then determines the "best" server for that client request. If the client is using a residential ISP that has a Netflix CDN server rack installed in that ISP, and this rack has a copy of the requested movie, then a server in this rack is typically selected. If not, a server at a nearby IXP is typically selected. Once Netflix determines the CDN server that is to deliver the content, it sends the client the IP address of the specific server as well as a manifest file, which has the URLs for the different versions of the requested movie. The client and that CDN server then directly interact using a proprietary version of DASH. Specifically, as described in Section 2.6.2, the client uses the byte-range header in HTTP GET request messages, to request chunks from the different versions of the movie. Netflix uses chunks that are approximately four-seconds long [Adhikari 2012]. While the chunks are being downloaded, the client measures the received throughput and runs a rate-determination algorithm to determine the quality of the next chunk to request. Netflix embodies many of the key principles discussed earlier in this section, including adaptive streaming and CDN distribution. However, because Netflix uses its own private CDN, which distributes only video (and not Web pages), Netflix has been able to simplify and tailor its CDN design. In particular, Netflix does not need to employ DNS redirect, as discussed in Section 2.6.3, to connect a particular client to a CDN server; instead, the Netflix software (running in the Amazon cloud) directly tells the client to use a particular CDN server. Furthermore, the Netflix CDN uses push caching rather than pull caching (Section 2.2.5): content is pushed into the servers at scheduled times at off-peak hours, rather than dynamically during cache misses. YouTube With 300 hours of video uploaded to YouTube every minute and several billion video views per day [YouTube 2016], YouTube is indisputably the world's largest video-sharing site. YouTube began its service in April 2005 and was acquired by Google in November 2006. Although the Google/YouTube design and protocols are proprietary, through several independent measurement efforts we can gain a basic understanding about how YouTube operates [Zink 2009; Torres 2011; Adhikari

2011a]. As with Netflix, YouTube makes extensive use of CDN technology to distribute its videos [Torres 2011]. Similar to Netflix, Google uses its own private CDN to distribute YouTube videos, and has installed server clusters in many hundreds of different IXP and ISP locations. From these locations and directly from its huge data centers, Google distributes YouTube videos [Adhikari 2011a]. Unlike Netflix, however, Google uses pull caching, as described in Section 2.2.5, and DNS redirect, as described in Section 2.6.3. Most of the time, Google's clusterselection strategy directs the client to the cluster for which the RTT between client and cluster is the lowest; however, in order to balance the load across clusters, sometimes the client is directed (via DNS) to a more distant cluster [Torres 2011]. YouTube employs HTTP streaming, often making a small number of different versions available for a video, each with a different bit rate and corresponding quality level. YouTube does not employ adaptive streaming (such as DASH), but instead requires the user to manually select a version. In order to save bandwidth and server resources that would be wasted by repositioning or early termination, YouTube uses the HTTP byte range request to limit the flow of transmitted data after a target amount of video is prefetched. Several million videos are uploaded to YouTube every day. Not only are YouTube videos streamed from server to client over HTTP, but YouTube uploaders also upload their videos from client to server over HTTP. YouTube processes each video it receives, converting it to a YouTube video format and creating multiple versions at different bit rates. This processing takes place entirely within Google data centers. (See the case study on Google's network infrastructure in Section 2.6.3.) Kankan We just saw that dedicated servers, operated by private CDNs, stream Netflix and YouTube videos to clients. Netflix and YouTube have to pay not only for the server hardware but also for the bandwidth the servers use to distribute the videos. Given the scale of these services and the amount of bandwidth they are consuming, such a CDN deployment can be costly. We conclude this section by describing an entirely different approach for providing video on demand over the Internet at a large scale—one that allows the service provider to significantly reduce its infrastructure and bandwidth costs. As you might suspect, this approach uses P2P delivery instead of (or along with) client-server delivery. Since 2011, Kankan (owned and operated by Xunlei) has been deploying P2P video delivery with great success, with tens of millions of users every month [Zhang 2015]. At a high level, P2P video streaming is very similar to BitTorrent file downloading. When a peer wants to see a video, it contacts a tracker to discover other peers in the system that have a copy of that video. This requesting peer then requests chunks of the video in parallel from the other peers that have the video. Different from downloading with BitTorrent, however, requests are preferentially made for chunks that are to be played back in the near future in order to ensure continuous playback [Dhungel 2012]. Recently, Kankan has migrated to a hybrid CDN-P2P streaming system [Zhang 2015]. Specifically, Kankan now deploys a few hundred servers within China and pushes video content to these servers. This Kankan CDN plays a major role in the start-up stage of video streaming. In most cases, the client requests the beginning of the content from CDN servers, and in parallel requests content from peers. When the total P2P traffic is sufficient for video playback, the client will cease streaming from the CDN and only stream from peers. But if the P2P streaming traffic becomes insufficient, the client will restart CDN connections and return to the mode of hybrid CDN-P2P streaming. In this manner, Kankan can ensure short initial startup delays while minimally relying on costly infrastructure servers and bandwidth. 2.7 Socket Programming: Creating Network Applications Now that we've looked at a number of important network applications, let's explore how network application programs are actually created. Recall from Section 2.1 that a typical network application consists of a pair of programs—a client program and a server program—residing in two different end systems. When these two programs are executed, a client process and a server process are created, and these processes

communicate with each other by reading from, and writing to, sockets. When creating a network application, the developer's main task is therefore to write the code for both the client and server programs. There are two types of network applications. One type is an implementation whose operation is specified in a protocol standard, such as an RFC or some other standards document; such an application is sometimes referred to as "open," since the rules specifying its operation are known to all. For such an implementation, the client and server programs must conform to the rules dictated by the RFC. For example, the client program could be an implementation of the client side of the HTTP protocol, described in Section 2.2 and precisely defined in RFC 2616; similarly, the server program could be an implementation of the HTTP server protocol, also precisely defined in RFC 2616. If one developer writes code for the client program and another developer writes code for the server program, and both developers carefully follow the rules of the RFC, then the two programs will be able to interoperate. Indeed, many of today's network applications involve communication between client and server programs that have been created by independent developers—for example, a Google Chrome browser communicating with an Apache Web server, or a BitTorrent client communicating with BitTorrent tracker. The other type of network application is a proprietary network application. In this case the client and server programs employ an application-layer protocol that has not been openly published in an RFC or elsewhere. A single developer (or development team) creates both the client and server programs, and the developer has complete control over what goes in the code. But because the code does not implement an open protocol, other independent developers will not be able to develop code that interoperates with the application. In this section, we'll examine the key issues in developing a client-server application, and we'll "get our hands dirty" by looking at code that implements a very simple client-server application. During the development phase, one of the first decisions the developer must make is whether the application is to run over TCP or over UDP. Recall that TCP is connection oriented and provides a reliable byte-stream channel through which data flows between two end systems. UDP is connectionless and sends independent packets of data from one end system to the other, without any guarantees about delivery. Recall also that when a client or server program implements a protocol defined by an RFC, it should use the well-known port number associated with the protocol; conversely, when developing a proprietary application, the developer must be careful to avoid using such wellknown port numbers. (Port numbers were briefly discussed in Section 2.1. They are covered in more detail in Chapter 3.) We introduce UDP and TCP socket programming by way of a simple UDP application and a simple TCP application. We present the simple UDP and TCP applications in Python 3. We could have written the code in Java, C, or C++, but we chose Python mostly because Python clearly exposes the key socket concepts. With Python there are fewer lines of code, and each line can be explained to the novice programmer without difficulty. But there's no need to be frightened if you are not familiar with Python. You should be able to easily follow the code if you have experience programming in Java, C, or C++. If you are interested in client-server programming with Java, you are encouraged to see the Companion Website for this textbook; in fact, you can find there all the examples in this section (and associated labs) in Java. For readers who are interested in client-server programming in C, there are several good references available [Donahoo 2001; Stevens 1997; Frost 1994; Kurose 1996]; our Python examples below have a similar look and feel to C. 2.7.1 Socket Programming with UDP In this subsection, we'll write simple client-server programs that use UDP; in the following section, we'll write similar programs that use TCP. Recall from Section 2.1 that processes running on different machines communicate with each other by sending messages into sockets. We said that each process is analogous to a house and the process's socket is

analogous to a door. The application resides on one side of the door in the house; the transportlayer protocol resides on the other side of the door in the outside world. The application developer has control of everything on the application-layer side of the socket; however, it has little control of the transport-layer side. Now let's take a closer look at the interaction between two communicating processes that use UDP sockets. Before the sending process can push a packet of data out the socket door, when using UDP, it must first attach a destination address to the packet. After the packet passes through the sender's socket, the Internet will use this destination address to route the packet through the Internet to the socket in the receiving process. When the packet arrives at the receiving socket, the receiving process will retrieve the packet through the socket, and then inspect the packet's contents and take appropriate action. So you may be now wondering, what goes into the destination address that is attached to the packet? As you might expect, the destination host's IP address is part of the destination address. By including the destination IP address in the packet, the routers in the Internet will be able to route the packet through the Internet to the destination host. But because a host may be running many network application processes, each with one or more sockets, it is also necessary to identify the particular socket in the destination host. When a socket is created, an identifier, called a port number, is assigned to it. So, as you might expect, the packet's destination address also includes the socket's port number. In summary, the sending process attaches to the packet a destination address, which consists of the destination host's IP address and the destination socket's port number. Moreover, as we shall soon see, the sender's source address—consisting of the IP address of the source host and the port number of the source socket—are also attached to the packet. However, attaching the source address to the packet is typically not done by the UDP application code; instead it is automatically done by the underlying operating system. We'll use the following simple client-server application to demonstrate socket programming for both UDP and TCP: 1. The client reads a line of characters (data) from its keyboard and sends the data to the server. 2. The server receives the data and converts the characters to uppercase. 3. The server sends the modified data to the client. 4. The client receives the modified data and displays the line on its screen. Figure 2.27 highlights the main socket-related activity of the client and server that communicate over the UDP transport service. Now let's get our hands dirty and take a look at the client-server program pair for a UDP implementation of this simple application. We also provide a detailed, line-by-line analysis after each program. We'll begin with the UDP client, which will send a simple application-level message to the server. In order for Figure 2.27 The client-server application using UDP the server to be able to receive and reply to the client's message, it must be ready and running—that is, it must be running as a process before the client sends its message. The client program is called UDPClient.py, and the server program is called UDPServer.py. In order to emphasize the key issues, we intentionally provide code that is minimal. "Good code" would certainly have a few more auxiliary lines, in particular for handling error cases. For this application, we have arbitrarily chosen 12000 for the server port number. UDPClient.py Here is the code for the client side of the application: from socket import * serverName = 'hostname' serverPort = 12000 clientSocket = socket(AF_INET, SOCK_DGRAM) message = raw_input('Input lowercase sentence:') clientSocket.sendto(message.encode(),(serverName, serverPort)) modifiedMessage, serverAddress = clientSocket.recvfrom(2048) print(modifiedMessage.decode()) clientSocket.close() Now let's take a look at the various lines of code in UDPClient.py. from socket import * The socket module forms the basis of all network communications in Python. By including this line, we will be able to create sockets within our program. serverName = 'hostname' serverPort = 12000 The first line sets the variable serverName to the string 'hostname'. Here, we provide a string containing either the IP address

of the server (e.g., "128.138.32.126") or the hostname of the server (e.g., "cis.poly.edu"). If we use the hostname, then a DNS lookup will automatically be performed to get the IP address.) The second line sets the integer variable serverPort to 12000. clientSocket = socket(AF_INET, SOCK_DGRAM) This line creates the client's socket, called clientSocket . The first parameter indicates the address family; in particular, AF_INET indicates that the underlying network is using IPv4. (Do not worry about this now—we will discuss IPv4 in Chapter 4.) The second parameter indicates that the socket is of type SOCK_DGRAM, which means it is a UDP socket (rather than a TCP socket). Note that we are not specifying the port number of the client socket when we create it; we are instead letting the operating system do this for us. Now that the client process's door has been created, we will want to create a message to send through the door. message = raw_input('Input lowercase sentence:') raw_input() is a built-in function in Python. When this command is executed, the user at the client is prompted with the words "Input lowercase sentence:" The user then uses her keyboard to input a line, which is put into the variable message. Now that we have a socket and a message, we will want to send the message through the socket to the destination host.

clientSocket.sendto(message.encode(),(serverName, serverPort)) In the above line, we first convert the message from string type to byte type, as we need to send bytes into a socket; this is done with the encode() method. The method sendto() attaches the destination address (serverName, serverPort) to the message and sends the resulting packet into the process's socket, clientSocket. (As mentioned earlier, the source address is also attached to the packet, although this is done automatically rather than explicitly by the code.) Sending a client-toserver message via a UDP socket is that simple! After sending the packet, the client waits to receive data from the server. modifiedMessage, serverAddress = clientSocket.recvfrom(2048) With the above line, when a packet arrives from the Internet at the client's socket, the packet's data is put into the variable modifiedMessage and the packet's source address is put into the variable serverAddress. The variable serverAddress contains both the server's IP address and the server's port number. The program UDPClient doesn't actually need this server address information, since it already knows the server address from the outset; but this line of Python provides the server address nevertheless. The method recyfrom also takes the buffer size 2048 as input. (This buffer size works for most purposes.) print(modifiedMessage.decode()) This line prints out modifiedMessage on the user's display, after converting the message from bytes to string. It should be the original line that the user typed, but now capitalized. clientSocket.close() This line closes the socket. The process then terminates. UDPServer.py Let's now take a look at the server side of the application: from socket import * serverPort = 12000 serverSocket = socket(AF_INET, SOCK_DGRAM) serverSocket.bind((", serverPort)) print("The server is ready to receive") while True: message, clientAddress = serverSocket.recvfrom(2048) modifiedMessage = message.decode().upper() serverSocket.sendto(modifiedMessage.encode(), clientAddress) Note that the beginning of UDPServer is similar to UDPClient. It also imports the socket module, also sets the integer variable serverPort to 12000, and also creates a socket of type SOCK_DGRAM (a UDP socket). The first line of code that is significantly different from UDPClient is: serverSocket.bind((", serverPort)) The above line binds (that is, assigns) the port number 12000 to the server's socket. Thus in UDPServer, the code (written by the application developer) is explicitly assigning a port number to the socket. In this manner, when anyone sends a packet to port 12000 at the IP address of the server, that packet will be directed to this socket. UDPServer then enters a while loop; the while loop will allow UDPServer to receive and process packets from clients indefinitely. In the while loop, UDPServer waits for a packet to arrive. message, clientAddress = serverSocket.recvfrom(2048) This line of code is similar to what we saw in UDPClient. When a packet arrives at the server's socket, the packet's data is

put into the variable message and the packet's source address is put into the variable clientAddress. The variable clientAddress contains both the client's IP address and the client's port number. Here, UDPServer will make use of this address information, as it provides a return address, similar to the return address with ordinary postal mail. With this source address information, the server now knows to where it should direct its reply. modifiedMessage = message.decode().upper() This line is the heart of our simple application. It takes the line sent by the client and, after converting the message to a string, uses the method upper() to capitalize it. serverSocket.sendto(modifiedMessage.encode(), clientAddress) This last line attaches the client's address (IP address and port number) to the capitalized message (after converting the string to bytes), and sends the resulting packet into the server's socket. (As mentioned earlier, the server address is also attached to the packet, although this is done automatically rather than explicitly by the code.) The Internet will then deliver the packet to this client address. After the server sends the packet, it remains in the while loop, waiting for another UDP packet to arrive (from any client running on any host). To test the pair of programs, you run UDPClient.py on one host and UDPServer.py on another host. Be sure to include the proper hostname or IP address of the server in UDPClient.py. Next, you execute UDPServer.py, the compiled server program, in the server host. This creates a process in the server that idles until it is contacted by some client. Then you execute UDPClient.py, the compiled client program, in the client. This creates a process in the client. Finally, to use the application at the client, you type a sentence followed by a carriage return. To develop your own UDP client-server application, you can begin by slightly modifying the client or server programs. For example, instead of converting all the letters to uppercase, the server could count the number of times the letters appears and return this number. Or you can modify the client so that after receiving a capitalized sentence, the user can continue to send more sentences to the server. 2.7.2 Socket Programming with TCP Unlike UDP, TCP is a connection-oriented protocol. This means that before the client and server can start to send data to each other, they first need to handshake and establish a TCP connection. One end of the TCP connection is attached to the client socket and the other end is attached to a server socket. When creating the TCP connection, we associate with it the client socket address (IP address and port number) and the server socket address (IP address and port number). With the TCP connection established, when one side wants to send data to the other side, it just drops the data into the TCP connection via its socket. This is different from UDP, for which the server must attach a destination address to the packet before dropping it into the socket. Now let's take a closer look at the interaction of client and server programs in TCP. The client has the job of initiating contact with the server. In order for the server to be able to react to the client's initial contact, the server has to be ready. This implies two things. First, as in the case of UDP, the TCP server must be running as a process before the client attempts to initiate contact. Second, the server program must have a special door—more precisely, a special socket—that welcomes some initial contact from a client process running on an arbitrary host. Using our house/door analogy for a process/socket, we will sometimes refer to the client's initial contact as "knocking on the welcoming door." With the server process running, the client process can initiate a TCP connection to the server. This is done in the client program by creating a TCP socket. When the client creates its TCP socket, it specifies the address of the welcoming socket in the server, namely, the IP address of the server host and the port number of the socket. After creating its socket, the client initiates a three-way handshake and establishes a TCP connection with the server. The three-way handshake, which takes place within the transport layer, is completely invisible to the client and server programs. During the three-way handshake, the client process knocks on the welcoming door of the server process. When the server "hears" the knocking, it creates a new door—more precisely, a new socket that is dedicated to that particular client. In our example below, the welcoming door is a TCP socket object that we call serverSocket; the newly created socket dedicated to the client making the connection is called connectionSocket . Students who are encountering TCP sockets for the first time sometimes confuse the welcoming socket (which is the initial point of contact for all clients wanting to communicate with the server), and each newly created server-side connection socket that is subsequently created for communicating with each client. From the application's perspective, the client's socket and the server's connection socket are directly connected by a pipe. As shown in Figure 2.28, the client process can send arbitrary bytes into its socket, and TCP guarantees that the server process will receive (through the connection socket) each byte in the order sent. TCP thus provides a reliable service between the client and server processes. Furthermore, just as people can go in and out the same door, the client process not only sends bytes into but also receives bytes from its socket; similarly, the server process not only receives bytes from but also sends bytes into its connection socket. We use the same simple client-server application to demonstrate socket programming with TCP: The client sends one line of data to the server, the server capitalizes the line and sends it back to the client. Figure 2.29 highlights the main socket-related activity of the client and server that communicate over the TCP transport service. Figure 2.28 The TCPServer process has two sockets TCPClient.py Here is the code for the client side of the application: from socket import * serverName = 'servername' serverPort = 12000 clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((serverName, serverPort)) sentence = raw_input('Input lowercase sentence:') clientSocket.send(sentence.encode()) modifiedSentence = clientSocket.recv(1024) print('From Server: ', modifiedSentence.decode()) clientSocket.close() Let's now take a look at the various lines in the code that differ significantly from the UDP implementation. The first such line is the creation of the client socket. clientSocket = socket(AF_INET, SOCK_STREAM) This line creates the client's socket, called clientSocket . The first parameter again indicates that the underlying network is using IPv4. The second parameter Figure 2.29 The client-server application using TCP indicates that the socket is of type SOCK_STREAM, which means it is a TCP socket (rather than a UDP socket). Note that we are again not specifying the port number of the client socket when we create it; we are instead letting the operating system do this for us. Now the next line of code is very different from what we saw in UDPClient: clientSocket.connect((serverName, serverPort)) Recall that before the client can send data to the server (or vice versa) using a TCP socket, a TCP connection must first be established between the client and server. The above line initiates the TCP connection between the client and server. The parameter of the connect() method is the address of the server side of the connection. After this line of code is executed, the three-way handshake is performed and a TCP connection is established between the client and server, sentence = raw_input('Input lowercase sentence:') As with UDPClient, the above obtains a sentence from the user. The string sentence continues to gather characters until the user ends the line by typing a carriage return. The next line of code is also very different from UDPClient: clientSocket.send(sentence.encode()) The above line sends the sentence through the client's socket and into the TCP connection. Note that the program does not explicitly create a packet and attach the destination address to the packet, as was the case with UDP sockets. Instead the client program simply drops the bytes in the string sentence into the TCP connection. The client then waits to receive bytes from the server. modifiedSentence = clientSocket.recv(2048) When characters arrive from the server, they get placed into the string modifiedSentence. Characters continue to accumulate in modifiedSentence until the line ends with a carriage return character. After printing the capitalized sentence, we close the client's socket: clientSocket.close() This last line closes the socket and, hence, closes the TCP connection