Graded Generalized Algebraic Data Types

Harley Eades

October 13, 2022

Abstract

Write abstract

1 Introduction

Write the intro.

2 The Fundamental Theory

Suppose C is a category and $(\mathcal{E}, \otimes, I)$ is a strict monoidal category.

Definition 2.1 (Graded F-Algebra). For a functor $F : \mathcal{E} \times \mathcal{C} \longrightarrow \mathcal{C}$, a graded F-algebra is a pair (A,h) that consists of a functor $A : \mathcal{E} \longrightarrow \mathcal{C}$ and a family h of morphisms:

$$h_{m,n}: \mathsf{F}(m,\mathsf{A}(n)) {\longrightarrow} \mathsf{A}(m \otimes n)$$

A **homomorphism** between two graded F-algebras (A,h) and (B,h') consists of a morphism

$$\alpha:(A,h)\longrightarrow(B,h')$$

is defined as a natural transformation $\alpha: A_1 \longrightarrow A_2$ such that:

$$\mathsf{F}(\mathsf{m},\alpha_\mathsf{n});h'_{m,n}=h_{m,n};\alpha_{m\otimes n}$$

Definition 2.2. If the category of graded F-algebras has an initial object, then we call this a **graded initial** F-algebra denoted by $(\mu F, in)$. That is, for any other F-algebra (A, h) there must be a unique morphism $\alpha : (\mu F, in) \longrightarrow (A, h)$, but this implies that for any object n, $\alpha_n : \mu F(n) \longrightarrow A(n)$ is unique and $\mu F(n)$ is an initial object in C.

Lemma 2.3 (From Structures to Homomorphisms). Given any graded Falgebra (A,h), the structure map h is also a homomorphism between Falgebras $(F(m,A(-)),F(-,h_{m,-}))$ and $(A(m \otimes -)),h_{-,m\otimes -})$.

Proof. This proof holds trivially by writing out the commutative square for the F-algebra homomorphism.

Lemma 2.4 (Graded Lambek's Lemma). If (A, h) is a graded initial algebra of F, then for any object m, $A(m \otimes -) : \mathcal{E} \longrightarrow \mathcal{C}$ is isomorphic to $F(m, A(-)) : \mathcal{E} \longrightarrow \mathcal{C}$ via h_m .

Proof. Suppose $h_{m,n}: \mathsf{F}(m,A(n)) \longrightarrow \mathsf{A}(m \otimes n)$ is an initial algebra structure for any m and n. Now define an algebra structure:

$$F(m', h_{m,n}): F(m', F(m, A(n))) \longrightarrow F(m', A(m \otimes n))$$

Then by initiality there exists an F-algebra homomorphism

$$i_m : A(m \otimes -) \longrightarrow F(m, A(-))$$

such that:

$$F(m', i_{m,n}); F(m', h_{m,n}) = h_{m',(m \otimes n)}; i_{m',(m \otimes n)}$$

We also know that $h_m: \mathsf{F}(m,A(-)) \longrightarrow \mathsf{A}(m \otimes -)$ is itself a graded F-algebra homomorphism (Lemma 2.3). Thus, since we know that $\mathsf{A}(m \otimes n)$ is an initial object by definition and assumption that A is a graded initial object, and hence, $i_{m,n}; h_{m,n} = \mathrm{id}_{m \otimes n}$.

Next we know that *i* is a graded F-algebra homomorphism which implies

$$F(m, i_{n,I}); F(m, h_{n,I}) = h_{m,n}; i_{m,n}$$

but again by initiality we know that

$$\mathsf{F}(m,i_{n,I});\mathsf{F}(m,h_{n,I}) = \mathsf{id}_{\mathsf{F}(m,\mathsf{A}(n))}$$

Therefore, i is the inverse of h and we obtain our result.

Definition 2.5 (Graded Folds). Suppose (μF , in) is a graded initial F-algebra. Then the unquie map between μF and any other graded F-algebra (A,h) is the **fold** for μF and is denoted by

$$fold(h): \mu F \longrightarrow A$$

Furthermore, we know that the following must hold:

$$in_{m,n}$$
; $fold(h)_{m*n} = F(m, fold(h)_n)$; h

Definition 2.6 (Graded Forgetful Limits). There is a forgetful functor from the category of graded F-algebras and the functor category $[\mathcal{E},\mathcal{C}]$ and their natural transformations. This functor is defined as follows:

$$U_{\mathsf{F}}(\mathsf{A},h) = \mathsf{A}$$

 $U_{\mathsf{F}}(\alpha) = \alpha$

Given an object of $[\mathcal{E},\mathcal{C}]$, say X, then a U_F -cone for X comprises, for every graded F-albebra (A,h), a natural transformation $v_{(A,h)}: X \longrightarrow A$ in $[\mathcal{E},\mathcal{C}]$ such that, for every graded F-algebra homomorphism $\alpha: A \longrightarrow B$, we have $v_{(B,g)} = \alpha; v_{(A,h)}$. We denote these cones by (X,v) and call X its **vertex** and $v_{(A,h)}$ the **projection** from X to A.

A U_F -cone morphism $g: (X, v_1) \longrightarrow (Y, v_2)$ is a natural transformation $g: X \longrightarrow Y$ such that for any graded F-algebra (A, h), we have $g; v_2 = v_1$. A U_F -limit is a U_F -cone to which there is a unique U_F -cone morphism, call the mediating morphism, from any other U_F -cone.

Lemma 2.7 (Forgetful Limits are Unique). If (X, v) is a U_F -limit, then it is unique up to isomorphism.

Proof. Suppose (Y, v') is another U_F -limit. Thus, there is a unique U_F -cone morphism $i: Y \longrightarrow X$ such that i; v = v'. But, there must also be a unique U_F -cone morphism $j: X \longrightarrow Y$ such that j; v' = v. But, by substitution i; j; v' = v' and j; i; v = v, but these in addition to the assumption that both i and j are unique imply that $i; j = \mathrm{id}_Y$ and $j; i = \mathrm{id}_X$, and thus i and j are inverses of each other.

2.1 Interpretation

• A data type is seen as the carrier of the initial algebra of a higher-order functor with type $(|\mathcal{C}| \to \mathcal{C}) \to |\mathcal{C}| \to \mathcal{C}$.

• Constructors have return types of the form $\mathsf{G}(h\,a)$, but initial algebra semantics requires them to be of the form $\mathsf{G}(a)$. To get an equivalent data type with constructors whose return types have this form we use left Kan extensions.

References