Laboratory Report Activity No. 5

Bandgap Voltage Reference

In partial fulfilment for the course ECE 126 (Introduction to Analog IC Design)

Submitted by ECCLESIASTES G. MONTAOS, JR.

Submitted to PROF. ALLENN C. LOWATON

Introduction

Voltage references are electronic devices that can produce a constant amount of voltage. Ideally, its constant voltage output does not vary with respect to the loading, the changes in supply voltage, the changes in temperature, and varying manufacturing process. Commonly, voltage references are called voltage sources; but technically, voltage references are used to create voltage sources.

Objective

This laboratory activity aims to produce a design of voltage reference using the operational amplifier previously constructed in activity no. 4. Changes of the output voltage with respect to the changes in temperature, voltage supply, and process corners are to be observed in this activity.

Procedure

Construct the bandgap voltage reference circuit diagram below and set equal initial values for resistances R1, R2, and R3.

Set R1 = R2 = R3 = $7 \text{ k}\Omega$ and simulate (TT process corner only).

```
opamp_bandgap - Notepad
                                    File Edit Format View Help
VoltageReference_Initial
.lib 'mm018.1' tt
.lib 'mm018.1' tt bip
.subckt opamp vinm vinp vout
vdd vdd gnd 1.8v
mp4 vx vg1 vdd vdd pch w=11u 1=1u
mp3 vg1 vg1 vdd vdd pch w=11u 1=1u
mn2 vg1 vinm vs1 gnd nch w=5u 1=1u
mn1 vx vinp vs1 gnd nch w=5u 1=1u
mn5 vs1 vg2 gnd gnd nch w=10u 1=1u
mn8 vg2 vg2 gnd gnd nch w~10u 1=1u
mp6 vout vx vdd vdd pch w=30u 1=1u
mn7 vout vg2 gnd gnd nch w=30u 1=1u
Iref vdd vg2 17.5u
cc vx vout 4p
cload vout gnd 10p
.ends
vdd vdd gnd 1.8v
xopamp vinm vinp vout opamp
q1 gnd gnd vinm pnp10 area=1
q2 gnd gnd ve2 pnp10 area=5
mp17 vref vout vdd vdd pch w=20u 1=1u
r1 vref vinm 7k
r2 vref vinp 7k
r3 vinp ve2 7k
.option post probe
.dc temp -40 120 0.1
.dc vdd 1.62 1.98 0.1
.probe v(vref), v(vinm), v(vinp,ve2)
.end
```

**** mosfets

100.5458f

6.5502f

cgs

cgd

56.8615f

3.5982f

56.8615f

3.5982f

хоратр xopamp xopamp subckt xopamp xopamp xopamp xopamp xopamp element 0:mp17 1:mp4 1:mp3 1:mn2 1:mn1 1:mn5 1:mn8 1:mp6 1:mn7 0:nch.5 0:pch.2 0:nch.2 model 0:pch.2 0:pch.2 0:pch.2 0:nch.5 0:nch.5 0:nch.5 Saturati Saturati region Saturati Saturati Saturati Saturati Saturati Saturati Saturati 17.5000u -54.9422u 54.942111 id -12.1856u -8.0374u -7.9933u 7.9933u 8.0374u 16.0307u 1.2553a 8.412e-19 8.366e-19 -188.1248a -188.1248a -3.108e-20 -3.393e-20 5.6227a -1.041e-19 ibs 37.0889f 20.5417f 20.5417f -3.6043p -813.6146f -363.5461a -366.9388a 54.7791f -122.1078p ibd 533.8898m -690.5417m 533.8898m -572.5568m -588.7123m -588.7123m 562.4238m 563.1080m 533.8898m vgs -1.0691 -690.5417m -588.7123m 1.0858 983.9968m 125.4615m 533.8898m -572.5568m 1.2274 vds. 0. 0. 0. vbs 0. 0. 0. -125.4615m -125.4615m 0. 483.3087m -458.6638m 482.7150m -458.5495m -458.6383m -458.6618m 518.1284m 518.1526m 483.4028m wth 113.1857m -220.3299m 113.5311m -133.6906m -144.3100m -144.2936m 109.5749m 109.9857m 113.1262m vdsat -114.0073m -130.0739m -130.0504m 44.2954m 44.9554m 50.5812m -231.8779m 51.1748m vod 50,4871m 4.1930m 2.0833m 12.6231m 1.4300m 794.7320u 794.7277u 2.0543m 2.0541m 4.1930m beta 511.7809m 483.3501m 531.0444m gam eff 487.0362m 496.0994m 496.0994m 516.6628m 516.6628m 511.7809m 408.0533u 91.7464u 269.6497u 837,4950u 149, 88234 91.3281u 125.8040u 126.3507u 235.9377u 1.1261u gds 594.1761n 420.4814n 447.2459n 409.6834n 419.5245n 24.7889u 2.8911u 2.6583u 77.1915u 134.5298u 243.3598u 33.8988u 67.6364u gmb 48.8054u 30.1251u 29.9862u 34.0454u 11.4717f 37.5308f 30.8087f 23.0385f 13.5456f 13.8124f 5.2485f 5.3131f 12.6577f cdtot 51.3470f 195.9453f 154.8115f cgtot 123.1419f 69.0659f 69.0659f 24.6075f 24.7227f 51.3471f 57.7515f 254.3388f 174.4806f 156,4698f 57.7516f 88.4316f 88.4316f 26.8314f 27.0233f cstot 37.8697f 128.9203f 110.7538f cbtot 83.7827f 47.4705f 47.7373f 17.7127f 17.7866f 39.0557f

17.4615f

1.8252f

17.3158f

1.8252f

111.1670f

10.9877f

36.8746f

3.6577f

36.8747f

3.6577f

165.9628f

9.8302f

Observe the changes in the base-emitter voltage of Q1 with respect to varying temperature and also indicate the resulting voltage at room temperature (300 K).

Observe the changes in the voltage across R3 and do the same as the previous instruction.

TEMPERATURE COEFFICIENT

SENSITIVITY TO VOLTAGE SUPPLY CHANGE

$$TC = \frac{Vrefmax - Vrefmin}{Temp sweep x Vref at 27°C}$$

$$S(\frac{Vref}{Vad}) = \frac{Vdd}{Vref} (\frac{dVref}{dVdd}) \times 100 \%$$

Observe the changes in the value of Vref with respect to the changing temperature.

Solve for the Temperature Coefficient (changes in voltage value per degree Celsius) using the formula indicated.

For optimal performance, solve for the values of R1 and R2 with respect to R3 by using the idea that Vref = Vbe1 + (R1/R3) ln(n) Vr3.

From the selation
$$\frac{\partial V_{ref}}{\partial T} = \alpha_1 \frac{\partial V_{ref}}{\partial T} + \alpha_2 \frac{\partial V_{rg}}{\partial T}$$

$$\frac{\partial V_{ref}}{\partial T} = 0 = -1.80005 (10^{-3}) + 1.37984 (10^{-4}) \left(\frac{R_1}{R_3}\right)$$

$$R_1 = 13R_3 = R_2$$

$$R_2 = 91 \text{ k.}\Omega$$

$$R_3 = 7 \text{k}\Omega$$

Using the new values for R1 and R2, simulate again the bandgap reference voltage but now in three (3) different process corners (TT, FF, SS).

```
pamp_bandgap_design - Notepad
File Edit Format View Help
VoltageReference_Design
.lib 'mm018.1' tt
.lib 'mm018.1' tt_bip
.subckt opamp vinm vinp vout
                                               vdd vdd gnd 1.8v
vdd vdd gnd 1.8v
                                               xopamp vinm vinp vout opamp
                                               q1 gnd gnd vinm pnp10 area=1
mp4 vx vg1 vdd vdd pch w=11u 1=1u
                                               q2 gnd gnd ve2 pnp10 area=5
mp3 vg1 vg1 vdd vdd pch w=11u 1=1u
                                               mp17 vref vout vdd vdd pch w=20u 1=1u
mn2 vg1 vinm vs1 gnd nch w=5u 1=1u
                                               r1 vref vinm 91k
mn1 vx vinp vs1 gnd nch w=5u 1=1u
                                               r2 vref vinp 91k
mn5 vs1 vg2 gnd gnd nch w=10u 1=1u
                                               r3 vinp ve2 7k
mn8 vg2 vg2 gnd gnd nch w=10u 1=1u
mp6 vout vx vdd vdd pch w=30u 1=1u
                                               .option post probe
mn7 vout vg2 gnd gnd nch w=30u 1=1u
                                               .dc temp -40 120 0.1
                                               .dc vdd 1.62 1.98 0.1
Iref vdd vg2 17.5u
                                               . op
cc vx vout 4p
                                               .probe v(vref)
cload vout gnd 10p
.ends
                                               . end
```

TT:

**** mos	fets								
subckt		хоратр	хоратр	xopamp	хоратр	хоратр	хоратр	xopamp	xopamp
element	0:mp17	1:mp4	1:mp3	1:mn2	1:mn1	1:mn5	1:mn8	1:mp6	1:mn7
model	0:pch.2	0:pch.2	0:pch.2	0:nch.5	0:nch.5	0:nch.5	0:nch.5	0:pch.2	0:nch.2
region	Saturati								
id	-11.9868u	-8.0318u	-7.9878u	7.9877u	8.0318u	16.0195u	17.5000u	-54.9401u	54.9400u
ibs	1.2348a	8.406e-19	8.360e-19	-188.0997a	-188.0997a	-3.106e-20	-3.393e-20	5.6225a	-1.040e-19
ibd	36.7594f	20.5417f	20.5417f	-3,6273p	-819.4961f	-363.4976a	-366.9388a	54.7791f	-121.1182p
vgs	-573.3493m	-588.6518m	-588.6518m	562.2580m	562.9425m	533.8898m	533.8898m	-690.5309m	533.8898m
vds	-566.9834m	-690.5309m	-588.6518m	1.0863	984.4528m	125.0163m	533.8898m	-573.3493m	1,2267
vbs	0.	0.	0.	-125.0163m	-125.0163m	0.	0.	0.	0.
vth	-458.6652m	-458.6383m	-458.6618m	518,0090m	518.0332m	483.4029m	483.3087m	-458.6636m	482.7152m
vdsat	-134.1559m	-144.2675m	-144,2510m	109,5444m	109.9553m	113.1261m	113.1857m	-220.3219m	113.5310m
vod	-114.6841m	-130.0134m	-129.9899m	44.2490m	44.9093m	50.4870m	50.5812m	-231.8673m	51.1746m
beta	1.4297m	794.7413u	794.7370u	2.0543m	2.0542m	4.1930m	4.1930m	2.0834m	12.6231m
gam eff	487.0362m	496.0994m	496.0994m	516.6653m	516.6653m	511.7809m	511.7809m	483.3501m	531.0444m
gm	146.9223u	91.7083u	91.2900u	125.7362u	126.2831u	235.6293u	269.6497u	408.0546u	837.4720u
gds	698.2952n	420.2479n	447.0027n	409.4365n	419.2650n	25.1026u	1.1261u	2.8870u	2.6585u
gmb	48.0859u	30.1125u	29.9736u	33.8878u	34.0345u	67.5491u	77.1915u	134.5301u	243.3531u
cdtot	25.0991f	13.5456f	13,8126f	5,2485f	5.3131f	12.6594f	11.4717f	37.5249f	30.8115f
cgtot	123.2728f	69.0619f	69.0619f	24.6000f	24.7153f	51.3471f	51.3470f	195.9451f	154.8115f
cstot	156.6992f	88.4245f	88.4245f	26.8193f	27.0115f	57.7516f	57.7515f	254.3384f	174.4806f
cbtot	85.8549f	47.4701f	47.7371f	17.7147f	17.7887f	39.0574f	37.8697f	128.9144f	110.7566f
cgs	100.7168f	56.8562f	56.8562f	17.3050f	17.4509f	36.8747f	36.8746f	165.9624f	111.1670f
ced	6.5502f	3.5982f	3.5982f	1.8252f	1.8252f	3.6577f	3.6577f	9.8302f	10.9877f

FF:

**** mosfets

subckt		хоратр	хоратр	xopamp	хоратр	хоратр	xopamp	xopamp	хоратр
element	0:mp17	1:mp4	1:mp3	1:mn2	1:mn1	1:mn5	1:mn8	1:mp6	1:mn7
model	0:pch.2	0:pch.2	0:pch.2	0:nch.5	0:nch.5	0:nch.5	0:nch.5	0:pch.2	0:nch.2
region	Saturat1	Saturati							
id	-11.9821u	-8.5303u	-8.4828u	8.4828u	8.5303u	17.0131u	17.5000u	-55.9701u	55.9698u
ibs	1.2343a	8.928e-19	8.878e-19	-190,2707a	-190.2707a	-3.299e-20	-3.393e-20	5.7278a	-1.060e-19
ibd	36.7990f	20.5813f	20.5813f	-3.3472p	-799.9261f	-366.9687a	-367.0984a	54.8187f	-257.1579p
vgs	-500.9453m	-521.2865m	-521.2865m	482.9710m	483.6405m	430.6076m	430.6076m	-617.5623m	430.6076m
vds	-567.2135m	-617.5623m	-521.2865m	1.0744	978.1448m	204,2929m	430.6076m	-500.9453m	1.2991
vbs	0.	0.	0.	-204.2929m	-204.2929m	0.	0.	0.	0.
vth	-391.7983m	-391.7605m	-391.7827m	438.9203m	438.9436m	383,4417m	383.3894m	-391.8249m	382.8454m
vdsat	-130.2488m	-143.8107m	-143.7951m	109.2582m	109.6608m	110.5584m	110.5909m	-215.5912m	110.9623m
vod	-109.1470m	-129.5260m	-129.5038m	44.0507m	44.6968m	47.1659m	47.2182m	-225.7374m	47.7622m
beta	1.5342m	852.6267u	852.6224u	2.2027m	2.2026m	4.4820m	4.4820m	2.2342m	13.5959m
gam eff	487,2530m	496.3698m	496.3698m	516.1361m	516.1361m	511.6158m	511.6158m	483.5404m	531.1462m
gm	150.9120u	97.8154u	97.3463u	134.6599u	135.2541u	266.1914u	275.1161u	425.1762u	868.4627u
gds	716.2573n	474.3051n	515.0396n	440.8704n	451.0247n	4.5175u	1.3337u	3.4519u	2.7483u
gmb	49.3880u	32.1106u	31.9552u	34.7885u	34.9415u	75.7184u	78.2412u	140.2008u	250.9518u
cdtot	24.5249f	13.4339f	13.6903f	5.1524f	5.2078f	12.1457f	11.5192f	37.1953f	30.1530f
cgtot	125.2503f	70.7455f	70.7455f	25.2185f	25.3346f	51.6380f	51.6379f	200.3777f	155.4363f
cstot	156.8654f	89.5254f	89.5254f	26.9711f	27.1612f	56.6520f	56.6520f	257.2007f	170.8510f
cbtot	84.6916f	47.1152f	47.3716f	17.0765f	17.1406f	38.2418f	37.6154f	127.8162f	109.1150f
cgs	101.7246f	58.1543f	58.1543f	17.8725f	18.0183f	36.4442f	36.4442f	169.4140f	109.6465f
cgd	6.8852f	3.7856f	3.7856f	1.9249f	1.9249f	3.8490f	3.8490f	10.3292f	11.5455f

SS:

**** mosfets

subckt		хоратр	хорапр	хоратр	хоратр	хоратр	xopamp	хоратр	хоратр
element	0:mp17	1:mp4	1:mp3	1:mn2	1:mn1	1:mn5	1:mn8	1:mp6	1:mn7
model	0:pch.2	0:pch.2	0:pch.2	0:nch.5	0:nch.5	0:nch.5	0:nch.5	0:pch.2	0:nch.2
region	Saturati								
id	-12.0408u	-5.7530u	-5.7124u	5.7124u	5.7530u	11.4654u	17.5000u	-54.0705u	54.0704u
ibs	1.2404a	6.022e-19	5.979e-19	-170.3000a	-170,3000a	-2.223e-20	-3.394e-20	5.5335a	-1.024e-19
1bd	36.7197f	20.5020f	20.5020f	-3.7755p	-594.4694f	-329.7504a	-509.4995a	54.7394f	-51.3523p
vgs	-646.0858m	-633.0563m	-633.0563m	627.6929m	628.5514m	637.7840m	637.7840m	-763.7534m	637.7840m
vds	-564.3189m	-763.7534m	-633.0563m	1.1072	976.5459m	59.7007m	637.7840m	-646.0858m	1.1539
vbs	0.	0.	0.	-59.7007m	-59.7007m	0.	0.	8.	0.
vth	-525.5363m	-525.5193m	-525.5493m	600.1551m	600.1855m	583.3622m	583.2295m	-525.5064m	582.5891m
vdsat	-138.3207m	-128.8766m	-128.8564m	99.8446m	100.3153m	116.1533m	116.2386m	-225.2429m	116.5509m
vod	-120.5494m	-107.5370m	-107.5070m	27.5379m	28.3659m	54,4218m	54.5545m	-238.2470m	55.1949m
beta	1.3354m	745.5245u	745.5192u	1.9125m	1.9123m	3.8941m	3.8942m	1.9473m	11.6540m
gam eff	486.8255m	495.8370m	495.8370m	517.1270m	517.1270m	511.9413m	511.9413m	483.1651m	530.9453m
gm	143.4602u	72.6300u	72.2151u	94.6522u	95.2170u	137.9611u	263.7658u	392.3584u	808.2221u
gds	685.5166n	303.0593n	318.8846n	309.1585n	318.0396n	124.2963u	1.0047u	2.5203u	2.5767u
gmb	46.9521u	23.8288u	23.6909u	26.5079u	26.6649u	40.0480u	75.9261u	129.3226u	235.9114u
cdtot	25.6851f	13.6497f	13.9903f	5.3344f	5.4250f	13.1785f	11.4267f	37.8347f	31.5096f
cgtot	121.3480f	65.5903f	65.5903f	20.6945f	20.8912f	51.1728f	51.1726f	191.7189f	154.5173f
cstot	156.5370f	84.1214f	84.1214f	21.0843f	21.4175f	59.0067f	59.0062f	251.7097f	178.5592f
cbtot	87.0750f	47.6817f	48.0223f	18.0224f	18.1305f	39.9072f	38.1554f	130.0741f	112.5284f
cgs	99.7141f	53.1760f	53.1760f	12.5614f	12.8118f	37.4235f	37.4231f	162.6856f	113.0237f
cgd	6.2158f	3.4114f	3.4114f	1.7263f	1.7263f	3.4671f	3.4671f	9.3318f	10.4306f

Observe the changes in the values of Vref with respect to the changes in temperature in three (3) different process corners.

PROCESS CORNERS	TEMPERATURE COEFFICIENT (ppm/°C)
TT	9.68191
FF	26.00956
SS	21.74810

Calculations:

Observe the changes in the values of Vref with respect to the changes in the voltage supply $(\pm 10\%)$ in three (3) different process corners.

PROCESS CORNERS	SENSITIVITY TO VDD CHANGE
TT	0.19891%
FF	0.21722%
SS	0.18702%

Calculations:

Discussion of Results

The initial circuit having $R1 = R2 = R3 = 7 \text{ k}\Omega$ has a temperature coefficient of 2227.32 ppm/ $^{\circ}$ C which is relatively high. To improve the performance of this voltage reference with respect to its dependence on temperature variation, R1 and R2 were both set to $91 \text{ k}\Omega$ according to the relation specified earlier in this activity.

After the changes in the values of the resistors, the new voltage reference was simulated in three different process corners. The results are much better as compared to the initial design: from 2227.32 ppm/°C to less than 30 ppm/°C.

The results on the variation of the supply voltage (VDD±10%) show that the new design has less than 1% sensitivity to sudden changes in supply voltage in all three process corners.

Looking at the results with respect to the different process corners, there are apparent differences among the processes especially in temperature variation. The supply voltage variation has somehow the same results in the three processes but looking closely to their values, there are differences in the millivolts scale.

Conclusion

The designed bandgap voltage reference in this activity is considerably good in terms of its independence on the changes in temperature and changes in supply voltage. The different process corners, however, impact the way the output of the reference voltage should behave. Overall, this design performs as it should be but no way near ideal voltage references where there is complete independence on the varying parameters.