Continuous optimization ENT305A

Elise Grosjean

Ensta-Paris Institut Polytechnique de Paris September 2025

1 Reminders

- Optimization problem
- Existence of a solution
- Gradient methods
- Newton's method

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

What is an optimization problem?

$$f: x \to x^2, x \in [-5, 5]$$

$$\mathcal{D} = K = \mathbb{R}$$

What is an optimization problem?

Notation.

Let $\bar{B}(\bar{x}, \varepsilon)$ denote the closed ball of center \bar{x} and radius ε .

Definition.

A feasible point \bar{x} is a local solution to (P) if and only if there exists $\varepsilon > 0$ such that \bar{x} is a **global** solution to the following **localized** problem:

$$\inf_{x\in\mathbb{R}^n}f(x),\quad x\in K\cap \bar{B}(\bar{x},\varepsilon).$$

What is an optimization problem?

Constraints.

Most of the time, the feasible set K is described by

$$K = \left\{ x \in \mathbb{R}^n \middle| \begin{array}{l} h_i(x) = 0, & \forall i \in \mathcal{E} \\ g_j(x) \le 0, & \forall j \in \mathcal{I} \end{array} \right\},\,$$

where $h \colon \mathbb{R}^n \to \mathbb{R}^{m_1}$, $g \colon \mathbb{R}^n \to \mathbb{R}^{m_2}$.

We call the expressions

- $h_i(x) = 0$: equality constraint
- $g_i(x) \le 0$: inequality constraint.

1 Reminders

- Optimization problem
- Existence of a solution
- Gradient methods
- Newton's method

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Existence of a solution

Theorem 1 (existence of extreme value (Weierstrass))

Assume the following:

- **1**
- **?**

Then the optimization problem (P) has (at least) one solution.

Existence of a solution

Theorem 2 (existence of extreme value (Weierstrass))

Assume the following:

- K is non-empty and compact (i.e. closed and bounded)
- f is continuous on K.

Then the optimization problem (P) has (at least) one solution.

Remarks. If $K = \{x \in \mathbb{R}^n \mid h_i(x) = 0, \forall i \in \mathcal{E}, g_j(x) \leq 0, \forall j \in \mathcal{I}\}$, where h_i, g_j are continuous, then K is closed. In practical exercises, it is not necessary to justify the continuity of h_i or g_j .

Optimality conditions

Let us fix a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ for the whole section. Let us consider

$$\inf_{x \in \mathbb{R}^n} f(x) \tag{P}$$

The function f is said to be **stationary** at $x \in \mathbb{R}^n$ if $\nabla f(x) = 0$.

Theorem 3 (Necessary optimality condition)

Let $\bar{x} \in \mathbb{R}^n$ be a local solution of (P). Then, f is stationary at \bar{x} .

Remark. Stationarity is only a necessary condition!

And to sum up the courses ...

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Necessary conditions	Sufficient conditions
No constraints	if \overline{x} local sol.,	if $f \in C^2(K)$, $\nabla f(\overline{x}) = 0$,
$K = \mathbb{R}^d$ (opt.)	$f \in C^2(K)$ then,	$D^2f(\overline{x})$ positive def.
	$D^2f(\overline{x})$ is positive semi-def.	then \overline{x} local sol.
Affine		
constraints		
Non-linear		
constraints		
		then KKT=global sol.

1 Reminders

- Optimization problem
- Existence of a solution
- Gradient methods
- Newton's method

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Our goal: solving numerically the problem

$$\inf_{x \in \mathbb{R}^n} f(x). \tag{P}$$

General idea: to compute a sequence $(x_k)_{k\in\mathbb{N}}$ such that

$$f(x_{k+1}) \leq f(x_k), \quad \forall k \in \mathbb{N},$$

the inequality being strict if $\nabla f(x_k) \neq 0$. \rightarrow **Iterative** method.

Our goal: solving numerically the problem

$$\inf_{x \in \mathbb{R}^n} f(x). \tag{P}$$

General idea: to compute a sequence $(x_k)_{k\in\mathbb{N}}$ such that

$$f(x_{k+1}) \leq f(x_k), \quad \forall k \in \mathbb{N},$$

the inequality being strict if $\nabla f(x_k) \neq 0$. \rightarrow **Iterative** method. How to compute x_{k+1} ?

Main idea of gradient methods.

Let $x_k \in \mathbb{R}^n$. Let d_k be a descent direction at x_k . Let $\alpha > 0$. Then

$$f(x_k + \alpha d_k) = f(x_k) + \alpha \underbrace{\langle \nabla f(x_k), d_k \rangle}_{<0} + o(\alpha).$$

Therefore, if α is small enough,

$$f(x_k + \alpha d_k) < f(x_k).$$

We can set

$$x_{k+1} = x_k + \alpha d_k.$$

Gradient descent algorithm.

- Input: $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$.
- **2** Set k = 0.
- **3** While $\|\nabla f(x_k)\| \geq \varepsilon$, do
 - (a) Find a descent direction d_k .
 - (b) Find $\alpha_k > 0$ such that $f(x_k + \alpha_k d_k) < f(x_k)$.
 - (c) Set $x_{k+1} = x_k + \alpha_k d_k$.
 - (d) Set k = k + 1.
- 4 Output: x_k .

Remark. Step (b) is crucial; it is called **line search**.

The real α_k is called **stepsize**.

Exercice: Code the gradient descent algorithm

On the choice of α_k .

On the choice of α_k .

On the choice of α_k .

Let us fix $x_k \in \mathbb{R}^n$. Let us define

$$\phi_k : \alpha \in \mathbb{R} \mapsto f(x_k + \alpha d_k).$$

The condition $f(x_k + \alpha_k d_k) < f(x_k)$ is equivalent to

$$\phi_k(\alpha_k) < \phi_k(0).$$

A natural idea: define α_k as a solution to

$$\inf_{\alpha\geq 0}\phi_k(\alpha).$$

Minimizing ϕ_k would take too much time! A **compromise** must be found between simplicity of computation and quality of α .

Observation. Recall that $\phi_k(\alpha) = f(x_k + \alpha d_k)$. We have

$$\phi'_k(\alpha) = \langle \nabla f(x_k + \alpha d_k), d_k \rangle.$$

In particular, since d_k is a descent direction,

$$\phi'_k(0) = \langle \nabla f(x_k), d_k \rangle < 0.$$

Definition 4

Let us fix $0 < c_1 < 1$. We say that α satisfies **Armijo's rule** if

$$\phi_k(\alpha) \leq \phi_k(0) + c_1 \phi_k'(0) \alpha.$$

Backstepping algorithm for Armijo's rule

- **1** Input: $c_1 \in (0,1)$, $\beta > 0$, and $\gamma \in (0,1)$.
- 2 Set $\alpha = \beta$.
- 3 While α does not satisfy Armijo's rule,
 - Set $\alpha = \gamma \alpha$.
- **4** Output α .

Definition 5

Let $0 < c_1 < c_2 < 1$. We say that $\alpha > 0$ satisfies **Wolfe's rule** if

$$\phi_k(\alpha) < \phi_k(0) + c_1 \phi_k'(0) \alpha$$
 and $\phi_k'(\alpha) \ge c_2 \phi'(0)$.

Bisection method for Wolfe's rule

- **1** Input: $c_1 \in (0,1)$, $c_2 \in (c_1,1)$, $\beta > 0$, $\alpha_{\min}, \alpha_{\max}$.
- 2 Set $\alpha = \beta$.

While Wolfe's rule not satisfied:

- f 1 if lpha does not satisfy Armijo's rule :
 - $\blacksquare \mathsf{Set} \ \alpha_{\mathit{max}} = \alpha$
- **2** if α satisfies Armijo's rule and $\phi_k'(\alpha) < c2\phi_k'(0)$, do
 - Set $\alpha_{min} = \alpha$
- **3** Output: α .

General comments on theoretical results from literature.

- In practice: $(x_k)_{k \in \mathbb{N}}$ "usually" **converges to a local solution**. Thus a good **initialization** (that is the choice of x_0) is crucial.
- In general, **slow** convergence.

Reminders

- Optimization problem
- Existence of a solution
- Gradient methods
- Newton's method

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Main idea.

Originally, Newton's method aims at solving non-linear equations of the form

$$F(x)=0,$$

where $F: \mathbb{R}^n \to \mathbb{R}^n$ is a given continuously differentiable function. It is an iterative method, generating a sequence $(x_k)_{k \in \mathbb{N}}$. Given x_k , we have

$$F(x) \approx F(x_k) + DF(x_k)(x - x_k).$$

Thus we look x_{k+1} as the solution to the linear equation

$$F(x_k) + DF(x_k)(x - x_k) = 0$$

that is, $x_{k+1} = x_k - DF(x_k)^{-1}F(x_k)$.

Remarks.

- If there exists \bar{x} such that $F(\bar{x}) = 0$ and $DF(\bar{x})$ is regular, then for x_0 close enough to \bar{x} , the sequence $(x_k)_{k \in \mathbb{N}}$ is well-posed and converges "quickly" to \bar{x} .
- On the other hand, if x_0 is far away from \bar{x} , there is **no** guaranty of convergence.

Back to problem (P). Assume that f is continuously twice differentiable. Apply Newton's method with $F(x) = \nabla f(x)$ so as to solve $\nabla f(x) = 0$. Update formula:

$$x_{k+1} = x_k - D^2 f(x_k)^{-1} \nabla f(x_k).$$

The difficulties mentioned above are still relevant.

Optimization with Newton's method.

Newton's formula can be written in the form:

$$x_{k+1} = x_k + \alpha_k d_k,$$

where

$$\alpha_k = 1$$
 and $d_k = -D^2 f(x_k)^{-1} \nabla f(x_k)$.

■ If $D^2 f(x_k)$ is positive definite (and $\nabla f(x_k) \neq 0$), then $D^2 f(x_k)^{-1}$ is also positive definite, and therefore d_k is descent direction:

$$\langle \nabla f(x_k), d_k \rangle = -\langle \nabla f(x_k), D^2 f(x_k)^{-1} \nabla f(x_k) \rangle < 0.$$

Globalised Newton's method.

- **1** Input: $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$, a linesearch rule (Armijo, Wolfe,...).
- **2** Set k = 0.
- **3** While $\|\nabla f(x_k)\| \geq \varepsilon$, do
 - (a) If $-D^2 f(x_k)^{-1} \nabla f(x_k)$ is computable and is a descent direction, set $d_k = -D^2 f(x_k)^{-1} \nabla f(x_k)$, otherwise set $d_k = -\nabla f(x_k)$.
 - (b) If $\alpha=1$ satisfies the linesearch rule, then set $\alpha_k=1$. Otherwise, find α_k with an appropriate method.
 - (c) Set $x_{k+1} = x_k + \alpha_k d_k$.
 - (d) Set k = k + 1.
- 4 Output: x_k .

Comments.

- The numerical computation of $D^2 f(x_k)$ may be **very time consuming** and may generate storage issues because of n^2 figures in general).
- **Quasi-Newton** methods construct a sequence of positive definite matrices H_k such that $H_k \approx D^2 f(x_k)^{-1}$. The matrix H_k can be stored efficiently (with O(n) figures). Then $d_k = -H_k \nabla f(x_k)$ is a descent direction. Good speed of convergence is achieved. \rightarrow **The ideal compromise!**

1 Reminders

- Optimization problem
- Existence of a solution
- Gradient methods
- Newton's method

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Linear equality constraints

■ We investigate in this section the problem

$$\inf_{x \in \mathbb{R}^n} f(x), \quad \text{s.t.} \quad \left\{ \begin{array}{l} h_i(x) = 0, \quad \forall i \in \mathcal{E} \\ g_j(x) \leq 0, \quad \forall j \in \mathcal{I}. \end{array} \right.$$

- Let $x \in \mathbb{R}^n$ be feasible. Let $j \in \mathcal{I}$. We say that
 - the inequality constraint j is **active** if $g_j(x) = 0$
 - the inequality constraint j is **inactive** if $g_j(x) < 0$.

Linear constraints

- Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $h: \mathbb{R}^n \to \mathbb{R}^{m_1}$ and $g: \mathbb{R}^n \to \mathbb{R}^{m_2}$ be two continuously differentiable functions.
- Let the **Lagrangian** $L: \mathbb{R}^n \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \to \mathbb{R}$ be defined by

$$L(x,\mu,\lambda)=f(x)+\langle \mu,h(x)\rangle+\langle \lambda,g(x)\rangle$$

$$=f(x)+\sum_{i=1}^{m_1}\mu_ih_i(x)+\sum_{i=1}^{m_2}\lambda_jg_j(x).$$

The variables μ, λ are referred to as **dual variables**.

Linear equality constraints

Theorem 6

Assume that h and g are affine, that it to say, there exists $A \in \mathbb{R}^{m_2 \times n}$ and $b \in \mathbb{R}_2^m$ such that

$$g(x) = Ax + b.$$

Let \bar{x} be a local solution to (P).

Then there exists $(\mu, \lambda) \in \mathbb{R}^{m1} \times \mathbb{R}^{m_2}$ such that the following three conditions, referred to as Karush-Kuhn-Tucker (KKT) conditions, are satisfied:

- **1 Stationarity** *condition*: $\nabla_{\mathbf{x}} \mathbf{L}(\bar{\mathbf{x}}, \mu, \lambda) = 0$.
- **2** Sign condition: for all $j \in \mathcal{I}$, $\lambda_j \geq 0$.
- **Complementarity** condition: for all $j \in \mathcal{I}$, $g_i(\bar{x}) < 0 \Longrightarrow \lambda_i = 0$.

Linear constraints

Illustration.

KKT stationarity

KKT stationarity

Linear constraints

Linear constraints

Example 2(a). Case of **one (inactive) inequality equality constraint**:

Linear constraints

Example 2(b). Case of **one (active) inequality equality constraint**:

1 Reminders

- Optimization problem
- Existence of a solution
- Gradient methods
- Newton's method

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Definition 7

Let \bar{x} be a feasible point. Let the set of **active inequality** constraints $\mathcal{I}_0(\bar{x})$ be defined by

$$\mathcal{I}_0(\bar{x}) = \big\{ j \in \mathcal{I} \, | \, g_j(\bar{x}) = 0 \big\}.$$

We say that the **Linear Independence Qualification Condition** (**LICQ**) holds at \bar{x} , if the following set of vectors is linearly independent:

$$\{\nabla h_i(\bar{x})\}_{i\in\mathcal{E}}\cup\{\nabla g_j(\bar{x})\}_{j\in\mathcal{I}_0(\bar{x})}$$

Theorem 8

Let \bar{x} be a local solution to (P). Assume that the LICQ holds at \bar{x} . Then there exists a unique (μ, λ) such that the KKT conditions are satisfied.

Remarks.

At a numerical level, a solution that does not satisfy the LICQ is hard to compute.

Example 4.

Consider the problem

$$\inf_{x \in \mathbb{R}} x$$
, subject to: $x^2 \le 0$.

Unique feasible point: $\bar{x} = 0$, thus the solution.

Lagrangian:

$$L(x,\lambda)=x+\lambda x^2.$$

At zero:

$$\nabla_{\mathsf{x}} \mathsf{L}(0,\lambda) = 1 + 2\lambda \bar{\mathsf{x}} = 1 \neq 0.$$

The LICQ is not satisfied, since $\nabla g_1(0) = 0$.

Theorem 9

Assume that

- f is convex
- for all $i \in \mathcal{E}$, the map $x \mapsto h_i(x)$ is **affine**
- for all $j \in \mathcal{I}$, the map $x \mapsto g_j(x)$ is **convex**.

Then any feasible point \bar{x} satisfying the KKT conditions is a global solution to the problem.

Remark. The result holds whether the LICQ holds or not at \bar{x} .

Exercise. Consider the function $f:(x,y) \in \mathbb{R}^2 \mapsto \exp(x+y^2) + y + x^2$.

- **1** Prove that f is coercive. *Indication:* Use $\exp(z) \ge 1 + z$
- **2** Compute $\nabla f(x,y)$ and $\nabla^2 f(x,y)$.
- We recall that a symmetric matrix of size 2 of the form $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive semidefinite if and only if $a+c \geq 0$ and $ac-b^2 \geq 0$. Using this fact, prove that f is convex.
- 4 We consider the following problem:

$$\inf_{(x,y)\in\mathbb{R}^2} f(x,y), \quad \text{subject to: } \begin{cases} -x-y \le 0 \\ -x-2 \le 0. \end{cases} \tag{\mathcal{P}}$$

Verify that (0,0) is feasible and satisfies the KKT conditions.

5 Is the point (0,0) a global solution to problem (\mathcal{P}) ?

Solution.

1. We use the inequality: $\exp(z) \ge 1 + z$, which yields:

$$f(x,y) \ge x + y^2 + y + x^2$$

$$= \frac{1}{2}(x^2 + y^2) + \frac{1}{2}(x^2 + 2x + 1) + \frac{1}{2}(y^2 + 2y + 1) - 1$$

$$= \frac{1}{2}||(x,y)||^2 + \frac{1}{2}(x+1)^2 + \frac{1}{2}(y+1)^2 - 1 \underset{||(x,y)|| \to \infty}{\longrightarrow} \infty.$$

2. It holds:

$$\frac{\partial f}{\partial x} = \exp(x + y^2) + 2x, \qquad \frac{\partial f}{\partial y} = 2y \exp(x + y^2) + 1.$$

Therefore,
$$\nabla f(x,y) = \begin{pmatrix} \exp(x+y^2) + 2x \\ 2y \exp(x+y^2) + 1 \end{pmatrix}$$
.

We also have

$$\frac{\partial^2 f}{\partial x^2} = \exp(x + y^2) + 2, \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 2y \exp(x + y^2),$$

$$\frac{\partial^2 f}{\partial y^2} = 2 \exp(x + y^2) + 4y^2 \exp(x + y^2).$$

Thus,
$$D^2 f(x,y) = \begin{pmatrix} \exp(x+y^2) + 2 & 2y \exp(x+y^2) \\ 2y \exp(x+y^2) & (2+4y^2) \exp(x+y^2) \end{pmatrix}$$
.

3. Proof of positive definiteness of D^2f . It holds:

$$a + c = (3 + 4y^2) \exp(x + y^2) + 2 \ge 0$$

and

$$ac - b^2 = 2 \exp(2x + 2y^2) + 4(1 + 2y^2) \exp(x + y^2) \ge 0.$$

It follows that $D^2f(x,y)$ is positive semidefinite, for all (x,y). Therefore f is a convex function.

4. Feasibility of (0,0): we have $0+0\geq 0$ and 0+2>0. KKT conditions. Lagrangian:

$$L(x, y, \lambda_1, \lambda_2) = \exp(x + y^2) + y + x^2 - \lambda_1(x + y) - \lambda_2(x + 2).$$

Therefore,

$$\frac{\partial L}{\partial x}(0,0,\lambda_1,\lambda_2) = 1 - \lambda_1 - \lambda_2, \qquad \frac{\partial L}{\partial y}(0,0) = 1 - \lambda_1.$$

Taking $\lambda_1 = 1$ and $\lambda_2 = 0$, we have:

- 1 Stationarity: $\frac{\partial L}{\partial x}(0,0,1,0) = \frac{\partial L}{\partial y}(0,0,1,0) = 0.$
- 2 Sign condition: $\lambda_1 \geq 0$, $\lambda_2 \geq 0$.
- 3 Complementarity: the second constraint is inactive and the corresponding Lagrange multiplier is null.

- 5. We have the following:
 - The cost function is convex.
 - The functions -(x + y) and -(x + 2) are convex.
 - \blacksquare The point (0,0) is feasible and satisfies the KKT conditions.

Therefore (0,0) is a global solution.

Exercise.

Consider:

$$\inf_{x \in \mathbb{R}^2} f(x) := -x_1 - x_2, \quad \text{s.t.} \; \left\{ \begin{array}{ll} g_1(x) = & x_1^2 + 2x_2^2 - 3 & \leq 0 \\ g_2(x) = & x_1 - 1 & \leq 0. \end{array} \right.$$

- Show that $\bar{x} = (1,1)$ is feasible
- Verify that the LICQ and the KKT conditions hold at $\bar{x} = (1, 1)$.
- Prove that $\bar{x} = (1,1)$ is a global solution.

Verification of the LICQ.

$$abla g_1(ar x) = egin{pmatrix} 2ar x_1 \ 4ar x_2 \end{pmatrix} = egin{pmatrix} 2 \ 4 \end{pmatrix} \quad \text{and} \quad
abla g_2(ar x) = egin{pmatrix} 1 \ 0 \end{pmatrix}.$$

We have: $\mathcal{E} = \emptyset$, $\mathcal{I}_0(\bar{x}) = \{1, 2\}$. The vectors $\nabla g_1(\bar{x})$ and $\nabla g_2(\bar{x})$ are linearly independent, since

$$\det\begin{pmatrix}2&4\\1&0\end{pmatrix}=-4\neq0.$$

Thus the LICQ is satisfied at \bar{x} .

KKT conditions.

- Lagrangian: $L(x, \lambda) = (-x_1 x_2) + \lambda_1(x_1^2 + 2x_2^2 3) + \lambda_2(x_1 1).$
- Stationarity condition:

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 2\bar{x}_1 \\ 4\bar{x}_2 \end{pmatrix} \lambda_1 + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

It is satisfied at \bar{x} with $\lambda_1 = 1/4 \ge 0$ and $\lambda_2 = 1/2 \ge 0$.

- The sign condition is satisfied.
- The complementarity condition is satisfied (all inequality constraints are active).

1 Reminders

- Optimization problem
- Existence of a solution
- Gradient methods
- Newton's method

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Consider the family of optimization problems

$$\inf_{x \in \mathbb{R}^n} f(x), \quad \text{s.t.} \quad \begin{cases} h_i(x) = y_i, & \forall i \in \mathcal{E}, \\ g_j(x) \le y_j, & \forall j \in \mathcal{I}, \end{cases}$$
 (P(y))

parametrized by the vector $y \in \mathbb{R}^m$.

■ Let the **value function** *V* be defined by

$$V(y) = \operatorname{val}(P(y)).$$

■ A variation δy_i in the *i*-th constraint generates a variation of the optimal cost of $\lambda_i \delta y_i$.

Exercise.

A company decides to rent an engine over d days. The engine can be used to produce two different objects. The two objects are not produced simultaneously. Let x_1 and x_2 denote the times dedicated to the production of each object. The resulting benefits (in $k \in$) are given by:

$$\frac{x_1}{1+x_1} \quad \text{and} \quad \frac{x_2}{4+x_2}.$$

- 1 Formulate the problem as a minimization problem.
- 2 Justify the existence of a solution.
- Write the KKT conditions. What is the unit of the dual variable?
- 4 Verify that $\bar{x} = (4,6)$ satisfies the KKT conditions for d = 10 days. Is it a global solution to the problem?
- 5 The renting cost of the engine is 70€/day. Is it of interest for the company to rent the engine for a longer time?

1. Problem:

$$\inf_{x \in \mathbb{R}^2} -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2}, \quad \text{s.t.} \begin{cases} x_1 + x_2 = d \\ -x_1 \le 0 \\ -x_2 \le 0 \end{cases}$$

2. The feasible set is obviously compact and non-empty and the cost function is continuous. Therefore, there exists a solution.

3. Let \bar{x} be a solution. Let $\mu \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}^2$ be the associated Lagrange multipliers. Lagrangian:

$$L(x,\mu,\lambda) = -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2} + \mu(x_1+x_2-d) - \lambda_1 x_1 - \lambda_2 x_2.$$

KKT conditions:

Stationarity:

$$-\frac{1}{(1+\bar{x}_1)^2}+\mu-\lambda_1=0, \qquad -\frac{4}{(4+\bar{x}_2)^2}+\mu-\lambda_2=0.$$

- Sign condition: $\lambda_1 \geq 0$, $\lambda_2 \geq 0$.
- Complementarity: $\bar{x}_1 > 0 \Rightarrow \lambda_1 = 0$, $\bar{x}_2 > 0 \Rightarrow \lambda_2 = 0$.
- Units: $[\mu] = [\lambda_1] = [\lambda_2] = \mathsf{k} \in /\mathsf{day}$.

4. Let μ,λ be such that the KKT conditions hold true. By complementarity condition, we necessarily have $\lambda_1=\lambda_2=0$. The stationarity condition holds true with

$$\mu = \frac{1}{(1 + \bar{x}_1)^2} = \frac{4}{(4 + \bar{x}_2)^2} = \frac{1}{25} = 0.04.$$

The sign condition trivially holds true since the inequality constraints are inactive. Lagrangian:

$$L(x,\mu,\lambda) = -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2} + 0.04(x_1+x_2-d).$$

If $x_1 + x_2 > d$, the cost associated to constraints is increased, otherwise decreased (company rents the engine for the $d - x_1 - x_2$ remaining days).

The point \bar{x} is feasible and satisfies the KKT conditions. We have affine constraints and a convex cost function, therefore, the KKT conditions are sufficient. The point \bar{x} is a global solution.

5. *d* is fixed.

Increasing the renting time of y days will generate a variation of cost of μy (approximately), that is, an augmentation of the benefit of $40 \ensuremath{\in}$ /day (less the renting price). It corresponds to the benefit that the company can have from another firm for renting the engine. Thus, the cost will corresponds to:

$$c(\overline{x}, \mu, \lambda) = -\frac{4}{1+4} - \frac{6}{4+6} - 0.04y + 0.07y = -1.4 + 0.03y.$$

It would be of interest for the company to reduce the renting time.

And to sum up the courses ...

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Necessary conditions	Sufficient conditions
No constraints	if \overline{x} local sol.,	if $f \in C^2(K)$, $\nabla f(\overline{x}) = 0$,
$K=\mathbb{R}^d$ (opt.)	$f \in C^2(K)$ then,	$D^2 f(\overline{x})$ positive def.
	$D^2f(\overline{x})$ is positive semi-def.	then \overline{x} local sol.
Affine		f convex,
constraints	\overline{x} local sol. then KKT	then KKT=global sol.
Non-linear		f convex,
constraints	\overline{x} local sol., LICQ then KKT	h affine, g convex,
		then KKT=global sol.