

科技與美妝的完美結合

目錄

題目發想、使用情境

- 本專題旨在透過AI技術,解決以往需親自到品牌專櫃才能試妝的不便。
- 藉由網路平台,用戶能夠在新奇和便利的體驗中試用化妝品,從而提升對公司產品及我們欲推廣產品的興趣。

使用技能

- 內容流程
 - 前後端架構
 - 資料收集
 - 資料清整
 - 資料庫建立
 - 資料分析
 - 模型建立與優化
 - 臉部分類
 - 文獻回顧

- 使用工具
 - JAVA(Servlet/JSP)
 - Python(socket, flask)
 - MySQL
 - OpenCV
 - Mediapipe
 - Pymatting
 - Tensorflow

前後端 (MVC架構)

- 1. 製作前後端系統架構
- 2. 整合程式,測試運行

AI臉部辨識化妝品推薦系統 —— 流程圖

AI臉部辨識化妝品推薦系統 — MVC架構

- 1.使用MVC架構串聯前 後端以及資料庫
- 2.透過Socket.IO達成 Python串接即時連線拍 照
- 3.透過Flask route完成 響應操作

AI臉部辨識化妝品推薦系統 ——影片

AI臉部辨識化妝品推薦系統 —— 遭遇到的問題

1.實行即時連線上妝:

由於運算資源過於龐大,導致即時上妝無法達成,後續改由拍照並將照片回傳處理。

2.前端串聯後端Python上妝:

將java前端得到的頁面串聯到python後續運行上妝的程式是挺困難的,因為目前都是在本地實作自己的程式,但並沒有每次更新程式碼後,透過CI/CD驗證是否能運行,因此後續再串聯時花較多時間。

資料庫(MySQL)

- 1. 前期資料清理
- 2. 資料庫建立

前期資料清整-臉部選取

資料庫建立

眼影 shades

	brand	produci	
	Maybelline	Fit Me	#15
2	Maybelline	Fit Me	#ffe3
3	Maybelline	Fit Me	#ffe0ca
4	Maybelline	Fit Me	#ffd3be
5	Maybelline	Fit Me	#bd9584
6	Maybelline	Fit Me	#eabda6
7	Maybelline	Fit Me	#fbd2
	Maybelline	Fit Me	#e ²
	Vav belline	Fit Me	

粉底 Foundat

Foundation Shades

	CCA Cosmetics	te Coverage 24 Hour i	
4	BECCA Cosmetics	te Coverage 24 Hour Foun	
	BECCA Cosmetics	ite Coverage 24 Hour Foun	#f≥
4	BECCA Cosmetics	te Coverage 24 Hour Foun	#f6c8
5	BECCA Cosmetics	te Coverage 24 Hour Foun	#f0c4a
6	BECCA Cosmetics	te Coverage 24 Hour Foun	#f2c79
7	BECCA Cosmetics	te Coverage 24 Hour Foun	#dfb38
8	BECCA Cosmetics	te Coverage 24 Hour Foun	#eec29
9	BECCA Cosmetics	te Coverage 24 Hour Foun	#eab49
10	BECCA Cosmetics	te Coverage 24 Hour Foun	#ddad8
11	BECCA Cosmetics	te Coverage 24 Hour Foun	#e5ae
	BECCA Cosmetics	te Coverage 24 Hour Foun	#e0
	BECCA Cosmetics	te Coverage 24 Hour Foun	
	SCCA Cosmetics	te Coverage 24 Hour F	
055	emetics	ite Coverage 24	

口紅 Lips

		1.	-		
	FFFFF	255	255	200	200
	#FAE5E9	250	229	233	
	#F5CAD2	245	202	210	
4	#F0B0BC	240	176	188	349
5	#EB95A5	235	149	165	349
6	#E67A8F	230	122	143	348
7	#E16078	225	96	120	351
8	#DC4562	220	69	98	348
9	#D62A4B	214	42	75	348
10	#FBE8EC	251	232	236	347
11	#F6D1D8	246	209	216	350
	#F1B9C4	241	185	196	
	#EBA2B0	235	162	176	
	568A9C	230	138	15	

資料分析&建立模型

- 負責內容:
 - 1. 資料清整
 - 2. 資料分析EDA
 - --資料視覺化
 - --數據代表性與關聯
 - 3. 建立模型與優化

WorkFlow

策略擬定

Domain Knowledge

資料型態與來源

資料特徵分析

資料特徵分析

資料特徵分析

化妝區域辨識:工作流程

- 1. 臉部不變特徵取出:mediapipe
- 2. 透過去背套件取出化妝區域:pymatting
- 3. 建立預測模型:Autoencoder

pymatting

化妝區域提取流程

建立眼妝模型-Autoencoder

- 特徵提取 (Feature extraction)
- 降維(Dimensionality reduction)
- 生成模型 (Generative models)

建立眼妝模型-DenseNet in Autoencoder

- ResNet-identity mapping
- 自身的feature-map傳遞給所有後續層
- •網絡可以更薄->具有較高的計算效率和記憶體效率

Autoencoder vs DenseNet

Autoencoder

DenseNet

MODEL EVOLUTION FLOW CHART

Autoencoder

The edges of the image are incomplete

DenseNet

Significantly dependent on memory

high requirements on the quantity and quality of training data

VAE

The results are not as good as DenseNet, presumably because there is too little

Vision Transformer

data

討論

- 上色區域上眼影和下眼影不平均
- 不同臉型可能有不同化妝方法
- 現有模型即時辨識的可能性低
- 直接固定區域上妝的套件有什麼不同

臉型分類

 Theiab Alzahrani, Waleed Al-Nuaimy, and Baidaa Al-Bander(2021)

臉型分群

臉型分群

round

square

oval

) rectangle∙

END

感謝您的觀看