Database Systems: Design, Implementation, and Management Eighth Edition

Chapter 1
Database Systems

Objectives

- The differences between data and information
- What a database is
- What the various types of databases are
- Why they are valuable assets for decision making
- The importance of database design

Objectives (continued)

- How modern databases evolved from file systems
- About flaws in file system data management
- What the database system's main components are
- How a database system differs from a file system
- The main functions of a database management system (DBMS)

Introduction

- Good decisions require good information derived from raw facts
- Data managed most efficiently when stored in a database
- Databases evolved from computer file systems
- Understanding file system characteristics is important

Data vs. Information

- Data are raw facts
- Information is the result of processing raw data to reveal meaning
- Information requires context to reveal meaning
- Raw data must be formatted for storage, processing, and presentation
- Data are the foundation of information, which is the bedrock of knowledge

Data vs. Information (continued)

- Data: building blocks of information
- Information produced by processing data
- Information used to reveal meaning in data
- Accurate, relevant, timely information is the key to good decision making
- Good decision making is the key to organizational survival

Introducing the Database and the DBMS

- Database: shared, integrated computer structure that stores a collection of data
 - End-user data: raw facts of interest to the end user
 - Metadata: data about data
- Metadata provides description of data characteristics and relationships in data
 - Complements and expands value of data
- Database management system (DBMS): collection of programs
 - Manage structure and control access to data

Role and Advantages of the DBMS

- DBMS is the intermediary between the user and the database
- Database structure stored as file collection
- Access database through the DBMS
- DBMS enables data to be shared
- DBMS integrates many users' views of the data

Role and Advantages of the DBMS (continued)

- Advantages of a DBMS:
 - Improved data sharing
 - Improved data security
 - Better data integration
 - Minimized data inconsistency
 - Improved data access
 - Improved decision making
 - Increased end-user productivity

Types of Databases

- Databases can be classified according to:
 - Number of users
 - Database location(s)
 - Expected type and extent of use
- Single-user database supports only one user at a time
 - Desktop database single-user, runs on PC
- Multiuser database supports multiple users at the same time
 - Workgroup database supports a small number
 - Enterprise database supports a large number

Types of Databases (continued)

- Centralized database: data located at a single site
- Distributed database: data distributed across several different sites
- Operational database: supports a company's day-to-day operations
 - Transactional or production database
- Data warehouse: stores data used for tactical or strategic decisions

Types of Databases (continued)

- Unstructured data exist in their original state
- Structured data result from formatting
 - Structure applied based on type of processing to be performed
- Semistructured data have been processed to some extent
- Extensible Markup Language (XML)
 represents data elements in textual format
- XML database supports semistructured XML data

TABLE Types of Databases 1.1 MS Access X X X X X2 MS SQL X X Χ X X X X Server χ^2 X X X X IBM DB2 X X X X X X X X X X X* MySQL X^2 X X Oracle X X X X X

* Supports XML functions only. XML data is stored in large text objects.

RDBMS

Why Database Design is Important

- Database design focuses on design of database structure used for end-user data
 - Designer must identify database's expected use
- Well-designed database:
 - Facilitates data management
 - Generates accurate and valuable information
- Poorly designed database:
 - Causes difficult-to-trace errors

Historical Roots: Files and File Systems

- Reasons for studying file systems:
 - Complexity of database design easier to understand
 - Understanding file system problems helps to avoid problems with DBMS systems
 - Knowledge of file system useful for converting file system to database system
- File systems typically composed of collection of file folders, each tagged and kept in cabinet
 - Organized by expected use

Historical Roots: Files and File Systems (continued)

- Contents of each file folder logically related
- Manual system served as a data repository for small data collections
 - Cumbersome for large collections
- Data processing (DP) specialist converted computer file structure from manual system
 - Wrote software that managed the data
 - Designed the application programs
- Initially, computer files systems resembled manual systems

Historical Roots: Files and File Systems (continued)

- As number of files increased, file systems evolved
 - Each file used its own application program to store, retrieve, modify data
 - Each file owned by individual or department that commissioned its creation
- Data processing (DP) manager supervised the DP department
- DP department's primary activity remained programming

RECORD: a logically connected set of one or more fields that describe person, place or thing

TABLE 1.2 Basic File Terminology			
TERM	DEFINITION		
Data	"Raw" facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD) sales value. Data have little meaning unless they have been organized in some logical manner. The smallest piece of data that can be "recognized" by the computer is a single character, such as the letter A, the number 5, or a symbol such as /. A single character requires 1 byte of computer storage.		
Field	A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to define and store data.		
Record	A logically connected set of one or more fields that describes a person, place, or thing. For example, the fields that constitute a record for a customer named J. D. Rudd might consist of J. D. Rudd's name, address, phone number, date of birth, credit limit, and unpaid balance.		
File	A collection of related records. For example, a file might contain data about vendors of ROBCOR Company, or a file might contain the records for the students currently enrolled at Gigantic University.		

Problems with File System Data Management

- File system an improvement over manual system
 - File systems used for more than two decades
 - Understanding the shortcomings of file systems aids in development of modern databases
 - Many problems not unique to file systems
- Even simple file system retrieval task required extensive programming
 - Ad hoc queries impossible
 - Changing existing structure difficult

Problems with File System Data Management (continued)

- Security features difficult to program
 - Often omitted in file system environments
- Summary of file system limitations:
 - Requires extensive programming
 - Can not perform ad hoc queries
 - System administration complex and difficult
 - Difficult to make changes to existing structures
 - Security features likely to be inadequate

Structural and Data Dependence

• Structural dependence: access to a file dependent on its own structure structure dependent on its own structure st

penggunaan sistem yang merubah struktur capaian data. Contoh: keluarkan duit Tabung Haji cara manual dan juga dengan menggunakan ATM.

- All file system programs must be modified to conform to a new file structure
- Structural independence: change file structure without affecting data access

perubahan tidak menjejaskan capaian data

- Data dependence: data access changes when data storage characteristics change cara capaian data berubah apabila data berubah
- Data independence: data storage characteristics do not affect data access

Structural and Data Dependence (continued)

- Practical significance of data dependence is difference between logical and physical format
- Logical data format: how human views the data
- Physical data format: how computer must work with data
- Each program must contain:
 - Lines specifying opening of specific file type
 - Record specification
 - Field definitions

Field Definitions and Naming Conventions

- Storing customer name as single field is a liability
 - Better record definition breaks fields into component parts
- Selecting proper field names important; field names are descriptive
 - With proper naming conventions, file structure becomes self-documenting
 - Some software places restrictions on length of field names
- Each record should have unique identifier

TABLE 1.3

Sample Fields in the CUSTOMER_V2 File

FIELD	CONTENTS	SAMPLE ENTRY
CUS_LNAME	Customer last name	Ramas
CUS_FNAME	Customer first name	Alfred
CUS_INITIAL	Customer initial	A
CUS_AREACODE	Customer area code	615
CUS_PHONE	Customer phone	234-5678
CUS_ADDRESS	Customer street address or box number	123 Green Meadow Lane
CUS_CITY	Customer city	Murfreesboro
CUS_STATE	Customer state	TN
CUS_ZIP	Customer zip code	37130
AGENT_CODE	Agent code	502

Data Redundancy

- File system structure makes it difficult to combine data from multiple sources
 - Vulnerable to security breaches
- Organizational structure promotes storage of same data in different locations
 - Islands of information
- Data stored in different locations unlikely to be updated consistently
- Data redundancy: same data stored unnecessarily in different places

Data Redundancy (continued)

- Data inconsistency: different and conflicting versions of same data occur at different places
- Data anomalies: abnormalities when all changes in redundant data not made correctly
 - Update anomalies
 - Insertion anomalies
 - Deletion anomalies

Database Systems

- Database system consists of logically related data stored in a single logical data repository
 - May be physically distributed among multiple storage facilities
- DBMS eliminates most of file system's problems
- Current generation stores data structures, relationships between structures, access paths
 - Takes care of defining, storing, managing all access paths and components

The Database System Environment

- Database system: defines and regulates the collection, storage, management, use of data
- Five major parts of a database system:
 - Hardware
 - Software
 - People
 - Procedures
 - Data

The Database System Environment (continued)

- Hardware: all the system's physical devices
- Software: three types of software required:
 - Operating system software
 - DBMS software
 - Application programs and utility software
- People: all users of the database system:
 - System and database administrators
 - Database designers
 - Systems analysts and programmers
 - End users

The Database System Environment (continued)

- Procedures: instructions and rules that govern the design and use of the database system
- Data: the collection of facts stored in the database
- Database systems created and managed at different levels of complexity
- Database solutions must be cost-effective as well as tactically and strategically effective
- Database technology already in use affects selection of a database system

DBMS Functions

- Most functions transparent to end users
 - Can only be achieved through the DBMS
- Data dictionary management
 - DBMS stores definitions of data elements and relationships (<u>metadata</u>) in a data dictionary
 - DBMS looks up required data component structures and relationships
 - Changes automatically recorded in the dictionary
 - DBMS provides data abstraction, removes structural and data dependency

- Data storage management
 - DBMS creates and manages complex structures required for data storage
 - Also stores related data entry forms, screen definitions, report definitions, etc.
 - Performance tuning: activities that make the database perform more efficiently
 - DBMS stores the database in multiple physical data files

- Data transformation and presentation
 - DBMS transforms data entered to conform to required data structures
 - DBMS transforms physically retrieved data to conform to user's logical expectations
- Security management
 - DBMS creates a security system that enforces user security and data privacy
 - Security rules determine which users can access the database, which items can be

- Multiuser access control
 - DBMS uses sophisticated algorithms to ensure concurrent access does not affect integrity
- Backup and recovery management
 - DBMS provides backup and data recovery to ensure data safety and integrity
 - Recovery management deals with recovery of database after a failure
 - Critical to preserving database's integrity

- Data integrity management
 - DBMS promotes and enforces integrity rules
 - Minimizes redundancy
 - Maximizes consistency
 - Data relationships stored in data dictionary used to enforce data integrity
 - Integrity especially important in transactionoriented database systems

- Database access languages and application programming interfaces
 - DBMS provides access through a query language
 - Query language is a nonprocedural language
 - Structured Query Language (SQL) is the de facto query language
 - Standard supported by majority of DBMS vendors

- Database communication interfaces
 - Current DBMSs accept end-user requests via multiple different network environments
 - Communications accomplished in several ways:
 - End users generate answers to queries by filling in screen forms through Web browser
 - DBMS automatically publishes predefined reports on a Web site
 - DBMS connects to third-party systems to distribute information via e-mail

Managing the Database System: A Shift in Focus

- Database system provides a framework in which strict procedures and standards enforced
 - Role of human changes from programming to managing organization's resources
- Database system enables more sophisticated use of the data
- Data structures created within the database and their relationships determine effectiveness

Managing the Database System: A Shift in Focus (continued)

- Disadvantages of database systems:
 - Increased costs
 - Management complexity
 - Maintaining currency
 - Vendor dependence
 - Frequent upgrade/replacement cycles

Summary

- Data are raw facts
- Information is the result of processing data to reveal its meaning
- Accurate, relevant, timely information is the key to good decision making
- Data usually stored in a database
- DBMS implements a database and manages its contents

Summary (continued)

- Metadata is data about data
- Database design defines the database structure
 - Well-designed database facilitates data management, generates valuable information
 - Poorly-designed database leads to bad decision making, organizational failure
- Databases evolved from manual and computerized file systems
 - In a file system, data stored in independent files
 - Each requires its own management program

Summary (continued)

- Some limitations of file system data management:
 - Requires extensive programming
 - System administration complex and difficult
 - Changing existing structures difficult
 - Security features likely inadequate
 - Independent files tend to contain redundant data
 - Structural and data dependency problems

Summary (continued)

- Database management systems developed to address file system's inherent weaknesses
- DBMS present database to end user as single repository
 - Promotes data sharing
 - Eliminates islands of information
- DBMS enforces data integrity, eliminates redundancy, promotes security