指标合成的客观权重方法

通过一个实例讲解指标权重确定的方法。我们根据采集到的指标对高校进行排名。

1、数据预处理

(1)统计数据的指标介绍

为全面反映各高校实际情况,选取了包括人才培养、科学研究及成果方面的 18 个指标。这 18 个指标具体为: X_1 -授予博士学位, X_2 -授予硕士学位, X_3 -优博入选数, X_4 -发明专利数, X_5 -实用新型专利数, X_6 -国家一等奖励, X_7 -国家二等奖励数量, X_8 -国家社科基金项目奖一等数量, X_9 -国家社科基金项目奖二等数量, X_{10} -国家社科基金项目奖三等数量, X_{11} -教育部人文社科奖一等数量, X_{12} -教育部人文社科奖二等数量,

 X_{13} —教育部人文社科奖三等数量, X_{14} —国家基地总数和国家重点学科(国家重点实验室、国家工程研究中心、人文社科基地数之和), X_{15} — 经费总数(万元), X_{16} — SCI 总数, X_{17} — EI 总数, X_{18} — CSCD、CSSCI 总数。

表 1 部分高校某年的 18 个指标信息

学校	x1	x2	x 3	x4	x5	x6	x7	x8	x9
北京大学	967	2212	45	139	10	1	16	4	3
中国人民大学	377	1634	16	0	0	0	0	1	4
清华大学	578	2990	48	947	177	2	27	0	0
北京交通大学	68	535	0	16	6	1	0	0	0
北京工业大学	37	429	1	69	17	0	1	0	0
北京航空航天 大学	133	805	8	69	19	0	2	0	0
北京理工大学	201	757	2	14	8	0	0	0	0
北京科技大学	80	496	2	130	16	1	2	0	0

续表 1 各高校的 18 个指标信息(部分)

学校	x10	x11	x12	x13	x14	x15	x16	x17	x18
北京大学	8	4	9	15	99	31954.1	3837	468	4526
中国人民大学	4	3	7	15	36	3665	23	5	1340
清华大学	2	2	3	6	61	77163.2	5073	1698	4647
北京交通大学	0	0	0	0	5	11331	282	49	372
北京工业大学	0	0	0	0	2	15126.2	250	31	493
北京航空航天 大学	0	0	0	0	12	47526.05	403	33	1189
北京理工大学	0	0	0	0	12	29713.81	390	200	1035
北京科技大学	0	0	0	1	8	21358.3	668	5	641

(2)数据的归一化处理

由于各个指标的取值范围不同,量纲与意义不同,为消除这些影响,需要对数据进行归一化处理。

设共有n个学校,每个学校共有m个指标,采集到的观测数据为: x_{ij} $(i=1,2,\cdots,n;j=1,2,\cdots,m)$,每个数值显然越大对排名越有利,因此归一化处理方法可采用下式:

$$y_{ij} = \frac{x_{ij} - x_{jm}^*}{x_{jM}^* - x_{jm}^*} \qquad (i = 1, 2, \dots, n; j = 2, \dots, m)$$
 (1)

其中
$$x_{jM}^* = \max_{1 \le i \le n} x_{ij}$$
, $x_{jm}^* = \min_{1 \le i \le n} x_{ij}$ 。

经过上面变换,所有数据都变到[0,1],便于后续工作进行统一处理。

2. 客观权重确定的三种方法

(1) 熵权法

设n个学校的m个指标已经归一化处理,数据为 y_{ij} $(i=1,2,\cdots,n;j=1,2,\cdots,m)$,其第j 项指标的信息熵计算公式为:

$$E_{j} = -\frac{\sum_{i=1}^{n} p_{ij} \ln p_{ij}}{\ln n} \qquad j = 1, 2, \dots, m$$

$$0 \le E_{j} \le 1 \qquad 其中 p_{ij} = \frac{y_{ij}}{\sum_{i=1}^{n} y_{ij}}, \quad 若 p_{ij} = 0, \quad 则定义 p_{ij} \ln p_{ij} = 0.$$

 E_i 越小,表明数据间差异越大,因此提供的信息越大,该指标权重就越大; E_i 越大,表明数据间彼此越接近,因此提供的信息越少,该指标权重就越小

客观权重计算式:
$$W_j = \frac{1 - E_j}{m - \sum_{j=1}^m E_j}$$
 $j = 1, 2, \dots, m$ (3)

(2) 标准离差法

如果某个指标的标准差大,因此提供的信息越大,该指标权重就越大;反之,某个指标的标准差小,因此提供的信息越少,该指标权重就越小。利用标准差来计算各指标的客观权重,其计算式为:

$$W_{j} = \frac{\sigma_{j}}{\sum_{j=1}^{m} \sigma_{j}} \qquad j = 1, 2, \dots, m$$

$$(4)$$

(3) CRITIC法确定权重

CRITIC法是Diakoulaki提出的一种客观赋权方法,确定权值以两个基本概念为基础:一是对比度,标准差越大权重相对越大。二是评价指标间的冲突性,当两个指标间有较强的正相关,说明两个指标冲突性低,两个指标反映的信息具有较大的相似性;当两个指标间有较强的负相关,说明两个指标冲突性大,两个指标反映的信息具有较大的不同。

确定第j个指标包含的信息量为:

第j个指标权重为:

$$c_j = \sigma_j \sum_{i=1}^{m} (1 - r_{ij}) \quad (j = 1, 2, \dots, m)$$
 (5)

$$w_{j} = \frac{c_{j}}{\sum_{i=1}^{m} c_{i}}$$
 $(j = 1, 2, \dots, m)$ (6)

3. 综合排名方法

采用(1)式对数据归一化处理后,采用三种不同的客观权重,对各学校的所有指标进行加权平均,可以得到各学校的综合得分,计算式为:

$$f_i = \sum_{j=1}^{m} w_j \cdot y_{ij}$$
 $(i = 1, 2, \dots, n)$ (7)

其中权重 w_i 可由(3)、(4)或(6)式计算得到。

表 2 三种不同排名法得到的前 10 名高校

名次	熵权法	标准离差法	CRITIC 法
1	北京大学	北京大学	北京大学
2	清华大学	清华大学	清华大学
3	复旦大学	浙江大学	复旦大学
4	中国人民大学	复旦大学	浙江大学
5	武汉大学	武汉大学	武汉大学
6	北京师范大学	中国人民大学	中国人民大学
7	浙江大学	北京师范大学	北京师范大学
8	南京大学	南京大学	南京大学
9	吉林大学	吉林大学	吉林大学

从表2所排前10名结果来,不同客观权重确定方法排名结果存在一定差异,这说明排名结果是相对的,跟采用方法有关。从差异大小来看,标准离差法和CRITIC法排名结果更接近。

4. 不同排名结果差异的度量方法

设有两种不同方法得到的排名序列分别为 $B_1=(k_1,k_2,\cdots,k_n)$, $B_2=(z_1,z_2,\cdots,z_n)$ 。

其中 k_1, k_2, \cdots, k_n 和 z_1, z_2, \cdots, z_n 都是 $1, 2, \cdots, n$ 的一个排列, k_i 代表第一种排名方法中第i个学校的名次, z_i 代表第二种排名方法中第i个学校的名次。

则第 i 个学校的名次在两种排名方法中的差异为:

$$d_i = |k_i - z_i| \qquad (i = 1, 2, \dots, n)$$
(8)

两种排名方法的排名平均差异定义为:

$$d = \sum_{i=1}^{n} d_i / n \tag{9}$$

为反映两种排名方法名次差异的波动程度,采用排名差异构成的序列 $d_i(i=1,2,\cdots,n)$ 的标准差来度量。其计算式如下:

$$v = \sqrt{\sum_{i=1}^{n} (d_i - d)^2 / n}$$
 (10)

表 3 三种方法的排名差异

方法	(1,2)	(1,3)	(2,3)
平均差异度d	5.1200	4.4400	1.7400
差异度的标准差	5.6089	4.8686	2.3034

其中1代表熵权法,2代表标准偏差法,3代表 CRITIC 法。

从表3的结果来看,标准偏差法与CRITIC法的排名差异最小,为1.74,各学校采用这两种方法的排名差异的波动程度也最小,为2.3034。 从结果看,标准偏差法和CRITIC法确定的权重排名结果最为接近。

```
Matlab程序univer.m
%采用三种客观权重的方法对高校排名
%1. 熵权法,2. 标准离差法,3. CRITIC法
load university.txt;
x=university;
[m,n]=size(x);
%m---数据样本数,n---指标数
%数据的标准化
xmin=min(x);
xmax=max(x);
dis=xmax-xmin;
for i=1:n;
  x(:,i)=(x(:,i)-xmin(i))/dis(i);
end: %归一化
```

```
%1. 熵权法
p=[]; E=[];
 for k=1:n
   s=sum(x(:,k));
   p=x(:,k)/s;
    s=0.0;
   for i=1:m
 if(p(i)>0) s=s+p(i)*log(p(i)); end
   end
   E(k)=-s/log(m); %获得熵
 end;
 s=sum(E);
 W1=(1-E)/(n-s);%熵权法权重
```

```
%2.标准离差法
au=mean(x); );%均值
sig=std(x);% );%标准差
s=sum(sig);
w2=sig/s; %标准离差法获得的权重
```

```
%3.CRITIC法
r=corrcoef(x);%求相关系数
 w=[];
 for i=1:n
    s=0.0;
 for j=1:n
   s=s+(1.0-r(i,j));
 end
  w3(i)=sig(i)*s;
end
s=sum(W3);
W3=W3/s; %CRITIC法获得的权重
```

```
w=W1;%选取一种权重
                                  fid=fopen('result.txt','w');
wg=100*w; %权重归一化
                                  %输出前20名的: 名次,学校序号,得分
f=x*wg′;%计算各学校得分
                                  fprintf(fid,' 名次,学校序号,得分\r\n');
ff=f;
                                   for i=1:20
                                  fprintf(fid,'%5d %5d %6.2f\r\n',i,s(i),ff(i));
s=1:m;
for i=1:m-1
                                  end
                                  fclose(fid);
for j=i+1:m
 if(ff(j)>ff(i))
  temp=ff(i); ff(i)=ff(j); ff(j)=temp;
 temp=s(i); s(i)=s(j);
 s(j)=temp; %s(i)为第i名的学校序号
 end
 end
end
```

谢 谢!