Comparative study of PSSM, ANN, SMM for peptide MHC binding

Contents

Dataset statistics	J
No. binders vs size	2
PSSM .	5
Assessing optimal beta	4
MM	(
SMM: Gradient descent	6
Optimising lambda	
Assessment of lambda	
SMM: Monte Carlo	
INN	11
BLOSUM vs Sparse encoding	13
Comparing all results	1 4
Average PCC	14
Max PCC	
Negative PCC values	
Visualise performance for ALL methods	
Visualising PCC vs Size and Number of binders for all methods	

Dataset statistics

##		Allele	Size	Number	of	binders
##	1	A0101	1157			103
##	2	A0201	3089			1181
##	3	A0202	1447			649
##	4	A0203	1443			639
##	5	A0206	1437			513
##	6	A0301	2094			517
##	7	A1101	1985			693
##	8	A2301	104			49
##	9	A2402	197			99
##	10	A2403	254			29
##	11	A2601	672			53
##	12	A2902	160			68
##	13	A3001	669			77
##	14	A3002	92			29
##	15	A3101	1869			427
##	16	A3301	1140			184
##	17	A6801	1141			498
##	18	A6802	1434			397
##	19	A6901	833			86

```
## 20
       B0702 1262
                                   208
## 21
       B0801
               708
                                    20
       B1501
               978
                                   179
## 23
       B1801
               118
                                    47
##
  24
       B2705
               969
                                    56
## 25
       B3501
               736
                                   211
## 26
       B4001 1078
                                    40
## 27
       B4002
                                    39
               118
## 28
       B4402
               119
                                    44
## 29
       B4403
               119
                                    34
##
  30
       B4501
               114
                                    49
## 31
       B5101
               244
                                    85
##
   32
       B5301
               254
                                   106
## 33
       B5401
               255
                                    81
## 34
       B5701
                59
                                    11
## 35
       B5801
               988
                                   104
## [1] 86
```

No. binders vs size

The number of binders clearly scales linearly with the size of the dataset.

PCC Size vs no. binders

[1] 0.8714809

PSSM

Assessing optimal beta

From the graphs, PCC performance between beta values is minimal.

PSSM PCC vs Number of binders

PSSM PCC vs Size

Varying beta (weight on prior)

SMM

SMM: Gradient descent

Lambda = 0.01, epsilon = 0.05, epochs = 100 (doesn't make a difference). Lambda = 1 gave optimum results, so those values are used in the final comparison

SMM (Gradient descent) PCC vs Number of binders

Optimising lambda

SMM GD PCC vs Number of binders

Varying lambda (Cost function)

SMM GD PCC vs Size

Assessment of lambda

1 has best overall performance - by graph, and it has highest average.

```
## # A tibble: 1 x 1
     `Lambda = 0.01 mean PCC`
##
                         <dbl>
##
## 1
                         0.600
## # A tibble: 1 x 1
     `Lambda = 0.1 mean PCC`
##
##
                        <dbl>
## 1
                        0.624
## # A tibble: 1 x 1
##
     `Lambda = 1 mean PCC`
##
                      <dbl>
## 1
                      0.647
## # A tibble: 1 x 1
     `Lambda = 5 mean PCC`
##
##
                      <dbl>
## 1
                      0.632
## # A tibble: 1 x 1
     `Lambda = 10 mean PCC`
##
                       <dbl>
## 1
                       0.608
```

SMM: Monte Carlo

Lambda = 0.01, Epochs = 1000; no optimisations made

SMM (Monte Carlo) PCC vs Number of binders

ANN

Originally run with BLOSUM encoding - sparse coding was later found to be inferior, so the final comparisons are used with BLOSUM encoding

BLOSUM vs Sparse encoding

ANN PCC vs Number of binders

BLOSUM encoding vs Sparse encoding


```
ANN_original %>% select(PCC) %>% summarise(`BLOSUM mean PCC` = mean(PCC)) %>% round(3)
```

```
## # A tibble: 1 x 1
## `sparse mean PCC`
## <dbl>
## 1 0.694
```

Comparing all results

ALL results are compared using the optimal parameters.

PSSM: beta = 100 - beta had no significant on performance, so we just use the original beta value SMM GD: lambda = 1, epsilon = 0.05, epochs = 100 - optimised, from lambda 0.01 originally SMM MC: lambda = 0.01, epochs = 1000 ANN: BLOSUM encoding

Average PCC

Max PCC

```
## # A tibble: 1 x 4
## 'PSSM max PCC' 'GD max PCC' 'MC max PCC' 'ANN max PCC'
## <dbl> <dbl> <dbl> <dbl> <dbl> 0.64
```

Negative PCC values

3 negative values in PSSM and MC. Interestingly enough, there are 3 different allele in each case.

11

\mathbf{PSSM}

3 B5701

##	#	A tibb	le: 3 z	κ 4			
##		Allele	Size	PCC	`Number	of 1	binders`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>			<int></int>
##	1	A6901	838	-0.0175			86
##	2	B0801	713	-0.0475			20
##	3	B4001	1083	-0.0655			40
M	C						
##	#	A tibb	le: 3 z	κ 4			
##		Allele	Size	PCC	`Number	c of	binders`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>			<int></int>
##	1	B4002	118	-0.127			39
##	2	B4403	119	-0.00242			34

59 -0.0316

Visualise performance for ALL methods

PCC performance between all methods

Alternate plot (ridgeline)

Picking joint bandwidth of 0.071

Picking joint bandwidth of 0.071

Visualising PCC vs Size and Number of binders for all methods

Exploring the size categories and average performance between them

##		Allele	Size	Number	of	binders	Category
##	1	A0101	1157			103	Small
##	2	A2301	104			49	Small
##	3	A2402	197			99	Small
##	4	A2403	254			29	Small
##	5	A2601	672			53	Small
##	6	A2902	160			68	Small
##	7	A3001	669			77	Small
##	8	A3002	92			29	Small
##	9	A3301	1140			184	Small
##	10	A6901	833			86	Small
##	11	B0702	1262			208	Small
##	12	B0801	708			20	Small
##	13	B1501	978			179	Small
##	14	B1801	118			47	Small
##	15	B2705	969			56	Small
##	16	B3501	736			211	Small
##	17	B4001	1078			40	Small
##	18	B4002	118			39	Small
##	19	B4402	119			44	Small
##	20	B4403	119			34	Small
##	21	B4501	114			49	Small
##	22	B5101	244			85	Small
##	23	B5301	254			106	Small
##	24	B5401	255			81	Small
##	25	B5701	59			11	Small

```
## 26 B5801 988
                           104
                                  Small
## Allele Size Number of binders Category
## 1 A0202 1447
                 649
                               Medium
## 2 A0203 1443
                           639
                                Medium
## 3 A0206 1437
                           513
                                Medium
## 4 A0301 2094
                           517
                                Medium
## 5 A1101 1985
                           693
                               Medium
## 6 A3101 1869
                           427
                                Medium
## 7 A6801 1141
                           498
                                Medium
## 8 A6802 1434
                           397
                                Medium
## # A tibble: 1 x 1
## `PSSM small`
##
     <dbl>
## 1
         0.258
## # A tibble: 1 x 1
## `PSSM medium`
##
      <dbl>
## 1
      0.427
## # A tibble: 1 x 1
## `SMM GD small`
##
          <dbl>
## 1
           0.621
## # A tibble: 1 x 1
## `SMM GD medium`
##
           <dbl>
           0.715
## 1
## # A tibble: 1 x 1
## `SMM MC small`
##
      <dbl>
## 1
          0.280
## # A tibble: 1 x 1
## `SMM MC medium`
##
           <dbl>
## 1
           0.712
## # A tibble: 1 x 1
## `ANN small`
##
     <dbl>
        0.715
## 1
## # A tibble: 1 x 1
## `ANN medium`
##
     <dbl>
## 1
         0.810
```