Caso de Estudo 3: Algoritmo "Quicksort"

Usa também uma estratégia de divisão e conquista:

- 1. **Divisão**: partição do vector A[p..r] em dois sub-vectores A[p..q-1] e A[q+1..r] tais que todos os elementos do primeiro (resp. segundo) são \leq A[q] (resp. \geq A[q])
 - os sub-vectores são possivelmente vazios
 - cálculo de q faz parte do processo de partição

Função partition recebe a sequência A[p..r], executa a sua partição "in place" usando o último elemento do vector como **pivot** e devolve o índice q.

- 2. **Conquista**: ordenação recursiva dos dois vectores usando *quicksort*. Nada a fazer para vectores de dimensão 1.
- 3. Combinação: nada a fazer!

Função de Partição

```
int partition (int A[], int p, int r)
{
  x = A[r];
  i = p-1;
  for (j=p; j<r; j++)
    if (A[j] \le x) {
      i++;
      swap(A, i, j);
  swap(A, i+1, r);
  return i+1;
}
void swap(int X[], int a, int b)
\{ aux = X[a]; X[a] = X[b]; X[b] = aux; \}
Função de partição executa em tempo linear D(n) = \Theta(n).
```

Análise de Correcção - Invariante

No início de cada iteração do ciclo for tem-se para qualquer posição k do vector:

- 1. Se $p \le k \le i$ então $A[k] \le x$;
- 2. Se $i + 1 \le k \le j 1$ então A[k] > x;
- 3. Se k = r então A[k] = x.

- \Rightarrow Verificar as propriedades de *inicialização* $(j=p,\ i=p-1),$ preservação, e terminação (j=r)
 - ⇒ o que fazem as duas últimas instruções?

Algoritmo "Quicksort"

```
void quicksort(int A[], int p, int r)
{
  if (p < r) {
    q = partition(A,p,r)
    quicksort(A,p,q-1);
    quicksort(A,q+1,r);
  }
}</pre>
```

A recorrência correspondente a este algoritmo é:

$$T(n)=D(n)+T(k)+T(k')+C(n)$$
 sendo $D(n)=\Theta(n)$ e $C(n)=0$; $k'=n-k-1$
$$T(n)=\Theta(n)+T(k)+T(n-k-1)$$

Análise de Pior Caso

$$T(n) = \Theta(n) + \max_{k=0}^{n-1} \left(T(k) + T(n-k-1)\right), \quad \text{com k entre 0 e $n-1$}$$

Admitamos $T(n) \leq cn^2$; temos por substituição:

$$T(n) \leq \Theta(n) + \max(ck^{2} + c(n - k - 1)^{2})$$

$$= \Theta(n) + c\max(k^{2} + (n - k - 1)^{2})$$

$$= \Theta(n) + c\max(2k^{2} + (2 - 2n)k + (n - 1)^{2})$$

$$P(k)$$

por análise de P(k) conclui-se que os máximos no intervalo $0 \le k \le n-1$ se encontram nas extremidades, com valor $P(0) = P(n-1) = (n-1)^2$.

O pior caso ocorre então quando a partição produz um vector com 0 elementos e outro com n-1 elementos.

Continuando o raciocínio:

$$T(n) \le \Theta(n) + c(n^2 - 2n + 1) = \Theta(n) + cn^2$$

logo temos uma prova indutiva de $T(n) = O(n^2)$. Mas será isto apenas um limite superior para o pior caso ou será também neste caso $T(n) = \Theta(n^2)$?

Basta considerar o caso em que em todas as invocações recursivas a partição produz vectores de dimensões 0 e n-1 para se ver que este tempo de pior caso ocorre mesmo na prática:

$$T_p(n) = \Theta(n) + T_p(n-1) + T_p(0) = \sum_{i=0}^n \Theta(i) = \Theta(n^2)$$

Temos então $T_p(n) = \Theta(n^2)$.

Análise de Tempo de Execução de "quicksort"

- No pior caso "quicksort" executa em $\Theta(n^2)$, tal como "insertion sort", mas este pior caso ocorre quando a sequência de entrada se encontra já ordenada \Rightarrow (Porquê?), caso em que "insertion sort" executa em tempo $\Theta(n)$!
- \bullet Análise de *melhor caso*: partição produz vectores de dimensão $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil 1$

$$T(n) \leq \Theta(n) + 2T(n/2)$$
 com solução $T_m(n) = \Theta(n \lg n).$

- Contrariamente à situação mais comum, o caso médio de execução de "quick-sort" aproxima-se do melhor caso, e não do pior.
- Basta construir a árvore de recursão admitindo por exemplo que a função de partição produz sempre vectores de dimensão 1/10 e 9/10 do original.
- Apesar de aparentemente má, esta situação produz $T_m(n) = \Theta(n \lg n)$.

Análise de Caso Médio de "quicksort"

- Numa execução de "quick sort" são efectuadas n invocações da função de partição. \Rightarrow (porquê?)
- Em geral o tempo total de execução é T(n)=O(n+X), onde X é o número total de comparações efectuadas.
- ullet É necessária uma análise detalhada, probabilística, do caso médio, para determinar o valor esperado de X.
- Numa situação "real" a função de partição não produzirá sempre vectores com as mesmas dimensões relativas . . .

Análise de Caso Médio

- Análise Probabilística implica a utilização de uma distribuição sobre o input.
- Por exemplo no caso da ordenação, deveríamos conhecer a probabilidade de ocorrência de cada permutação possível dos elementos do vector de entrada.
- Quando é irrealista ou impossível assumir algo sobre os inputs, pode-se *impor* uma distribuição uniforme, por exemplo permutando-se previamente de forma aleatória o vector de entrada.
- Desta forma asseguramo-nos de que todas as permutações são igualmente prováveis.
- Num tal algoritmo com aleatoriedade, nenhum input particular corresponde ao pior ou ao melhor casos; apenas o processamento prévio (aleatório) pode gerar um input pior ou melhor.

Algoritmo "quicksort" com aleatoriedade

Em vez de introduzir no algoritmo uma rotina de permutação aleatória do vector de entrada, usamos a técnica de *amostragem aleatória*.

O pivot é (em cada invocação) escolhido de forma aleatória de entre os elementos do vector. Basta usar a seguinte versão da função de partição:

Este algoritmo pode depois ser analisado com ferramentas probabilísticas (fora do âmbito deste curso).

Algoritmos de Ordenação Baseados em Comparações

Todos os algoritmos estudados até aqui são baseados em comparações: dados dois elementos A[i] e A[j], é efectuado um teste (e.g. A[i]<=A[j]) que determina a ordem relativa desses elementos. Assumiremos agora que

- um tal algoritmo não usa qualquer outro método para obter informação sobre o valor dos elementos a ordenar;
- a sequência não contém elementos repetidos.

A execução de um algoritmo baseado em comparações sobre sequências de uma determinada dimensão pode ser vista de forma abstracta como uma Árvore de Decisão.

Nesta árvore, cada nó:

- corresponde a um teste de comparação entre dois elementos da sequência;
- tem como sub-árvore esquerda (resp. direita) a árvore correspondente à continuação da execução do algoritmo caso o teste resulte verdadeiro (resp. falso).

Cada folha corresponde a uma ordenação possível do input; todas as permutações da sequência devem aparecer como folhas. (\Rightarrow Porquê?)

A execução concreta do algoritmo para um determinado vector de input corresponde a um caminho da raíz para uma folha, ou seja, uma sequência de comparações.

O pior caso de execução de um algoritmo de ordenação baseado em comparações corresponde ao caminho mais longo da raíz para uma folha. O número de comparações efectuadas é dado neste caso pela *altura* da árvore.

■ Exemplo – Árv. de Decisão para "insertion sort", N=3 ■

Exemplo – Árv. de Decisão para "merge sort", N=3

Um Limite Inferior para o Pior Caso . . .

Teorema. A altura h de uma árvore de decisão tem o seguinte limite mínimo:

$$h \ge \lg(N!)$$
 com N a dimensão do input

Prova. Em geral uma árvore binária de altura h tem no máximo 2^h folhas. As árvores que aqui consideramos têm N! folhas correspondentes a todas as permutações do input, pelo que (cfr. pg. 35)

$$N! \le 2^h \quad \Rightarrow \quad \lg(N!) \le h$$

Corolário. Seja T(N) o tempo de execução no pior caso de qualquer algoritmo de ordenação baseado em comparações. Então

$$T(N) = \Omega(N \lg N)$$

"Merge sort" é assimptoticamente óptimo uma vez que é $O(N \lg N)$.

Algoritmo "Counting Sort"

- Assume-se que *os elementos de A[] estão contidos no intervalo entre 0 e k* (com *k* conhecido).
- O algoritmo baseia-se numa *contagem*, para cada elemento x da sequência a ordenar, do número de elementos inferiores ou iguais a x.
- Esta contagem permite colocar cada elemento directamente na sua posição final. ⇒ Porquê?
- Algoritmo produz novo vector (output) e utiliza vector auxiliar temporário.

Algoritmo não efectua comparações, o que permite quebrar o limite $\Omega(N \lg N)$.

Algoritmo "Counting Sort"

```
void counting_sort(int A[], int B[], int k) {
 int C[k+1];
 for (i=0; i<=k; i++) /* inicialização de C[] */
  C[i] = 0;
                            /* contagem ocorr. A[j] */
 for (j=1 ; j \le N ; j++)
   C[A[j]] = C[A[j]]+1;
 for (i=1; i<=k; i++) /* contagem dos <= i
                                                   */
   C[i] = C[i] + C[i-1];
 for (j=N ; j>=1 ; j--) { /* construção do}
                                                  */
   B[C[A[j]]] = A[j];
                    /* vector ordenado
                                                  */
   C[A[j]] = C[A[j]]-1;
```

⇒ Qual o papel da segunda instrução do último ciclo?

Análise de "Counting Sort"

```
Tempo
void counting_sort(int A[], int B[], int k) {
  int C[k+1]:
                                                            \Theta(k)
  for (i=0 : i<=k : i++)
    C[i] = 0;
                                                            \Theta(N)
  for (j=1; j \le N; j++)
    C[A[j]] = C[A[j]]+1;
  for (i=1; i<=k; i++)
                                                            \Theta(k)
    C[i] = C[i] + C[i-1];
  for (j=N ; j>=1 ; j--) {
                                                            \Theta(N)
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
Se k = O(N) então T(N) = \Theta(N+k) = \Theta(N) \Rightarrow Alg. Tempo Linear!
```

Propriedade de Estabilidade

Elementos iguais aparecem no sequência ordenada pela mesma ordem em que estão na sequência inicial

Esta propriedade torna-se útil apenas quando há dados associados às chaves de ordenação.

"Counting Sort" é estável. ⇒ Porquê?

Algoritmo "Radix Sort"

Algoritmo útil para a ordenação de sequências de estruturas com múltiplas chaves. Imagine-se um vector de *datas* com campos *dia*, *mês*, e *ano*. Para efectuar a sua ordenação podemos:

1. Escrever uma função de comparação (entre duas datas) que compara primeiro os anos; em caso de igualdade compara então os meses; e em caso de igualdade destes compara finalmente os dias:

$$21/3/2002 < 21/3/2003$$
 compara apenas anos $21/3/2002 < 21/4/2002$ compara anos e meses $21/3/2002 < 22/3/2002$

Qualquer algoritmo de ordenação tradicional pode ser então usado.

2. Uma alternativa consiste em ordenar a sequência três vezes, uma para cada chave das estruturas. Para isto é necessário que o algoritmo utilizado para cada ordenação parcial seja *estável*.

Exemplo de Utilização de "Radix Sort"

O mesmo princípio pode ser utilizado para ordenar sequências de inteiros com o mesmo número de dígitos, considerando-se sucessivamente cada dígito, partindo do *menos significativo*.

Exemplo:

$$475$$
 812
 812
 123
 985
 123
 123
 246
 123
 444
 444
 444
 598
 \Rightarrow
 475
 \Rightarrow
 475
 246
 985
 \Rightarrow
 475
 \Rightarrow
 812
 \Rightarrow
 \Rightarrow
 \Rightarrow
 \Rightarrow
 \Rightarrow
 444
 \Rightarrow
 \Rightarrow
 \Rightarrow
 \Rightarrow
 \Rightarrow
 \Rightarrow
 444
 \Rightarrow
 \Rightarrow

Como proceder se os números não tiverem todos o mesmo número de dígitos?

Algoritmo "Radix Sort"

```
void radix_sort(int A[], int p, int r, int d)
{
  for (i=1; i<=d; i++)
    stable_sort_by_index(i, A, p, r);
}</pre>
```

- o dígito menos significativo é 1; o mais significativo é d.
- o algoritmo stable_sort_by_index(i, A, p, r):
 - ordena o vector A entre as posições p e r, tomando em cada posição por chave o dígito i;
 - tem de ser estável (por exemplo, "counting sort").

Prova de Correcção: indutiva. \Rightarrow Qual a propriedade fundamental?

Análise de Tempo de Execução de "Radix Sort"

- Se stable_sort_by_index for implementado pelo algoritmo "counting sort", temos que dados N números com d dígitos, e sendo k o valor máximo para os números, o algoritmo "radix sort" ordena-os em tempo $\Theta(d(N+k))$.
- Se k = O(N) e d for pequeno, tem-se $T(N) = \Theta(N)$.
- "Radix Sort" executa então (em certas condições) em tempo linear.