Teoremas utilizados:

- Teorema 1.21: Para cada real x > 0 y cada entero n > 0 existe un unico real positivo y tal que $y^n = x$
- Proposición 1.18: Lo siguiente es verdadero en un conjunto ordenado:
 - Si x > 0 entonces -x < 0 y viceversa.
 - Si x > 0 y y < z entonces xy < xz.
 - Si x < 0 y y < z entonces xy > xz.
 - Si $x \neq 0$ entonces $x^2 > 0$. En particular, 1 > 0.
 - Si 0 < x < y entonces $0 < \frac{1}{y} < \frac{1}{x}$

Ejercicio 1.6. Sea b > 1

1. Si m,n,p,q son enteros con $n>0,\,p>0,$ y $r=\frac{m}{n}=\frac{p}{q}$ pruebe que

$$(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}$$

Quizas tenga sentido definir $b^r = (b^m)^{\frac{1}{n}}$

- 2. Pruebe que $b^{r+s} = b^r b^s$ si r y s son racionales
- 3. Si x es real, defina B(x) el conjunto de todos los numeros b^t , donde t es racional y $y=t\leq x$. Demuestre que

$$b^r = \sup B(r)$$

cuando r es racional. Por lo tanto hace sentido definir

$$b^x = \sup B(x)$$

para cada real x.

- 4. Pruebe que $b^{x+y} = b^x b^y$ para todos los reales x y y
- **Solución:** 1. Para comenzar vamos a aprovechar el hecho de que $\frac{m}{n} = \frac{p}{q}$. Esto tiene como consecuencia que mq = pn = k por lo cual

$$((b^p)^{\frac{1}{q}})^{np} = ((b^p)^{\frac{1}{q}})^{qm} = b^{mp}$$
$$((b^p)^{\frac{1}{q}})^n = b^m$$

Por lo tanto por el teorema 1.21 queda

$$(b^p)^{\frac{1}{q}} = (b^m)^{\frac{1}{n}}$$

2. Sea $r = \frac{m}{n}$ y $s = \frac{v}{w}$. Por lo tanto, $r + s = \frac{mw + vn}{nw}$, y

$$b^{r+s} = (b^{mw+vn})^{\frac{1}{nw}} = ((b^{mw}b^{nw}))^{\frac{1}{nw}}$$

Ahora, por el corolario del teorema 1,21 del libro tenemos que

$$b^{r+s} = (b^{mw})^{\frac{1}{nw}} (b^{nv})^{\frac{1}{nw}} = b^r b^s$$

Con la ultima parte saliendo de la parte (a)

- 3. En este caso, notemos que dado que b > 1 entonces $t < r \implies b^t < b^r$. Por lo tanto, dado que para B(x) todos los t deben ser menores o iguales a r entonces sabemos que b^x debe ser un limite superior. Ahora para mostrar que x es el minimo limite superior podemos aprovechar que entre cualesquiera dos numeros reales existe un numero real. Por lo tanto, si escogemos cualquier r < x este pertenecera a B(x) y hara que $b^r < b^x$.
- 4. Por definición sabemos que $b^{x+y} = \sup (B(x+y))$. Ahora cualquier numero racional menor x+y puede escribirse como r+s donde r < x y s < y. Para hacer esto hagamos:

$$t - y < r < x$$
$$s = t - r.$$

Ahora dado que estos pueden ser cualquier numero entonces B(x+y) queda definido como el conjunto de todos los numero uv donde $u \in B(x)$ y $v \in B(y)$. Ahora, dado que cualquiera de esos productos es menor a $M = \sup(B(x)) \sup(B(y))$ vemos que M es un limite superior de B(x+y). Por otro lado, suponga que $0 < c < \sup(B(x)) \sup(B(y))$. Entonces, $\frac{c}{\sup(B(x))} < \sup(B(y))$. Sea $m = \left(\frac{1}{2}\right) \left(\frac{c}{\sup(B(x)) + \sup(B(y))}\right)$.

Por lo tanto $\frac{c}{\sup(B(x))} < m < \sup(B(y))$ y existe $u \in B(x)$ y $v \in B(y)$ tal que $\frac{c}{m} < u$ y m < v. Entonces tenemo $c = \left(\frac{c}{m}\right) m < uv \in B(x+y)$. Por lo tanto, c no es un limite superior y en consecuencia $\sup(B(x+y)) = \sup(B(x)) \sup(B(y))$. lo que demuestra lo solicitado.

Ejercicio 1.8. Pruebe que no se puede definir un orden en el campo complejo que lo convierta en un conjunto ordenado **Hint:** -1 es un cuadrado.

Solución: Asuma por contradicción que existe un orden definido sobre \mathbb{C} que lo haga un conjunto ordenado. Por la parte (a) de la proposición 1.18 o i > 0 o -i > 0. Por lo tanto, $-1 = i^2 = (-1)^2$ debe ser positivo. Pero entonces $1 = (-1)^2$ debe tambien ser positivo. Por lo que esto entra en contradicción con la proposición 1.18 y en consecuencia lo demostramos por contradicción.

Ejercicio 2.1. Demuestre que $2xy \le x^2 + y^2$

Solución:

$$2xy \le x^2 + y^2$$
$$0 \le x^2 + y^2 - 2xy$$
$$0 \le (x+y)^2$$

Ejercicio 2.2. Use la desigualdad del punto anterior con

$$x = \frac{x_i}{\sqrt{x_1^2 + x_2^2}}, \ y = \frac{y_i}{\sqrt{y_1^2 + y_2^2}}$$

primero con i = 1 y luego con i = 2

Solución:

$$\frac{2x_1y_1}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \leq \frac{x_1^2}{x_1^2 + x_2^2} + \frac{y_1^2}{y_1^2 + y_2^2}$$

$$\frac{2x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \leq \frac{x_2^2}{x_1^2 + x_2^2} + \frac{y_2^2}{y_1^2 + y_2^2}$$

$$\frac{2x_1y_1}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} + \frac{2x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \leq \frac{x_1^2}{x_1^2 + x_2^2} + \frac{y_1^2}{y_1^2 + y_2^2} + \frac{x_2^2}{x_1^2 + x_2^2} + \frac{y_2^2}{y_1^2 + y_2^2}$$

$$\frac{2x_1y_1}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} + \frac{2x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \leq \frac{x_1^2 + x_2^2}{x_1^2 + x_2^2} + \frac{y_1^2 + y_2^2}{y_1^2 + y_2^2}$$

$$\frac{2x_1y_1}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} + \frac{2x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \leq \frac{1}{x_1^2 + x_2^2}$$

$$\frac{2x_1y_1}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} + \frac{2x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \leq 1$$

$$2x_1y_1 + 2x_2y_2 \leq \sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}$$

$$2(x_1y_1 + x_2y_2) \leq \sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}$$

Ejercicio 2.22. Un espacio metrico es llamado separable si contiene un subconjunto contable denso. Muestre que \mathbb{R}^k es separable. **Hint:** Considere el conjunto de puntos que solo tiene coordenadas racionales.

Solución: Para comenzar tomemos \mathbb{Q}^k . Este es un conjunto contable y subconjunto de \mathbb{R}^k . Ademas, como se ha demostrado en clase y en el libro este conjunto es denso. Por lo tanto, solo hace falta mostrar que $\forall x \in \mathbb{R}$ se cumple que x es un punto limite de \mathbb{Q}^k o $x \in \mathbb{Q}^k$.

Siendo asi, sea a un punto en \mathbb{R}^k y sea r > 0, entonces tenemos la vecindad $N_r(a)$. Ahora definamos un b tal que $a_i < b_i < a_i + \frac{r}{\sqrt{k}}$. De esa manera

$$d(a,b) = \sqrt{(a_1 - b_1)^2 + \dots + (a_k - b_k)^2} < \sqrt{(a_1 - a_1 - \frac{r}{k})^2 + \dots + (a_k - a_k - \frac{r}{k})^2} = \sqrt{\frac{r^2}{k} + \dots + \frac{r^2}{k}} = \sqrt{k\frac{r^2}{k}} = r$$

Por lo tanto, todos los puntos de \mathbb{R}^k son puntos limites de \mathbb{Q}^k por lo tanto es separable.

Ejercicio 2.23. Una collección $\{V_{\alpha}\}$ de subconjuntos abiertos de X se dice que es una base de X si lo siguiente es verdad: Para cada $x \in X$ y cada conjunto abierto $G \subset X$ tal que $x \in G$, tenemos que $x \in V_{\alpha} \subset G$ para algun α . En otras palabras, cada conjunto abierto en X es la union de una subcolección de $\{V_{\alpha}\}$

Pruebe que cada espacio metrico separable tiene una base contable. **Hint:** Tome todas las vecindades con un radio racional y centro en algun subconjunto contable denso de X

Solución: Sea $x_1, x_2, \ldots, x_n, \ldots$ un subconjunto denso contable de X. Para cada entero positivo m y cada numero racional positivo r sea $V_{(m,r)} = y : d(y,x_m) < r$. La colección $V_{(m,r)}$ es contable.

Sea $x \in X$ y sea G cualquier subconjunto abierto de X con $x \in G$. Entonces, existe $\delta > 0$ tal que $B_{\delta}(X) \subset G$. La bola abierta $B_{\frac{\delta}{2}}(x)$ contiene un punto x_k para algun k. Sea r un numero racional tal que $d(x_k, x) < r < \frac{\delta}{2}$. Luego, $x_{\delta}(x_k) \subset B_{\delta}(x) \subset G$

Ejercicio 4.1. Muestre que la familia de abiertos definida satisface los siguientes axiomas

- (a) $\emptyset, \mathbb{R} \in \tau$
- (b) Union arbitraria de elementos de τ pertenece a τ (τ es cerrado bajo uniones arbitrarias)
- (c) Intersección finita de elementos de τ pertenece a τ (τ es finita bajo intersecciones finitas)

Solución: (a) \emptyset es evidente pues es la union arbitraria de ningun elemento. Por otro lado, notese que

$$\lim_{n\to\infty}\bigcup_{i=1}^n[-i,i)=\mathbb{R}$$

Luego, $\mathbb{R} \in \tau$.

(b) Sea $\{U_i\}$ una colección arbitraria de elementos de τ . Luego, por definición

$$\bigcup U_i = \bigcup \left(\bigcup_j B_{ij}\right) = \bigcup_{i,j} B_{ij}.$$

donde B_{ij} son elementos de \mathbb{B} : τ es cerrado bajo uniones arbitrarias.

(c) Sea $\{U_i\}$ una colección arbitraria de elementos de τ . Por el punto la intersección la podemos expresar como una union arbitraria de la siguiente manera:

$$\bigcap U_i = \bigcap \left(\bigcup_j B_{ij}\right) = \bigcup_j \left(\bigcap U_{ij}\right).$$

Ejercicio 4.2. Suponga que existe una métrica para la cual τ sea la familia de abiertos definidos por la métrica. Muestre entonces que existe un subconjunto enumerable A de B tal que todo elemento de τ podría ser escrito como una unión de elementos de A.

Solución: Tomemos el subconjunto enumerable A tal que

$$A = \{ [a, b) : a, b \in \mathbb{Q} \}$$

Como \mathbb{Q} es enumerable, A es un subconjunto enumerable de \mathbb{B} . Ahora, dado que cualquier abierto en τ es una union de intervalos abiertos en \mathbb{R} y cada intervalo es la union de elementos de A. Por lo tanto se llega al resultado esperado

Ejercicio C. on la misma notación del punto anterior, muestre que existe un elemento de τ que no puede ser escrito como unión de elementos de A. Conclusión: la topología τ **NO** es metrizable.

Solución: Para mostrar que existe un elemento en τ que no puede expresarse como una union de elementos de A tomemos $[\sqrt{2}, 2)$. Sabemos por las definiciones tomadas que este es un conjunto abierto y por tanto esta en τ .

Supongamos ahora, por contradicción, que $[\sqrt{2},2)$ puede expresarse como la union de elementos de A. Es decir que existe:

$$[\sqrt{2},2) = \bigcup_{n=1}^{\infty} I_n$$

Cada I_n es de la forma $[a_n, b_n)$ con $a_n, b_n \in \mathbb{Q}$. Por la densidad de los numeros racionales en los numeros reales podemos encontrar un irracional x_n tal que $a_n < x_n < b_n$. Luego tomemos el conjunto $X = \{x_1, x_2, \ldots\}$. Dado que $\forall x_n; x_n \in [\sqrt{2}, 2)$ entonces $X \subset [\sqrt{2}, 2)$.

Sin embargo, X no puede ser expresado como la union de elementos de A. Lo anterior, debido a que cualquier elemento de A es un intervalo cerrado por el lado izquierdo con un racional y X esta hecho unicamente de numeros irracionales. Por lo tanto llegamos a una contradicción y en consecuencia τ no es metrizable.