Customer Segmentation Using K-means Clustering Importing The Dependencies In [13]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans import warnings warnings.simplefilter("ignore") Data Collection and Analysis In [2]: #Loading the data from csv file to pandas dataframe dataset = pd.read_csv('Mall_Customers.csv') In [5]: #first 10 rows of the dataset dataset.head(10) CustomerID Genre Age Annual Income (k\$) Spending Score (1-100) Out[5]: Male 19 15 1 81 21 15 Male 2 16 6 3 Female 20 23 16 77 4 Female 17 40 5 Female 31 22 17 76 6 Female 18 6 7 Female 35 23 18 94 8 Female 19 3 Male 64 10 Female 19 72 In [7]: #shape of the dataset (rows, columns) dataset.shape (200, 5)Out[7]: In [8]: #getting some basic information about the dataset dataset.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): Column Non-Null Count Dtype CustomerID 200 non-null int64 200 non-null 1 Genre object 200 non-null int64 Age Annual Income (k\$) 200 non-null int64 Spending Score (1-100) 200 non-null int64 dtypes: int64(4), object(1) memory usage: 7.9+ KB #checking the null values if present in the dataset or not dataset.isnull().sum() ${\tt CustomerID}$ Out[10]: Genre Age Annual Income (k\$) Spending Score (1-100) dtype: int64 Choosing the Annual Income Column and Spending Score Column In [11]: x = dataset.iloc[:,[3,4]].valuesarray([[15, 39], [15, 81], [16, 6], [16, 77], [17, 40], [17, 76], [18, 6], 94], [18, [19, 3], [19, 72], [19, 14], [19, 99], [20, 15], [20, 77], [20, 13], [20, 79], [21, 35], [21, 66], [23, 29], [23, 98], 35], [24, [24, 73], [25, 5], [25, 73], [28, 14], 28, 82], 28, 32], 28, 61], [29, 31], [29, 87], [30, 4], [30, 73], 4], [33, [33, 92], [33, 14], [33, 81], [34, 17], [34, 73], [37, 26], [37, 75], [38, 35], [38, 92], [39, 36], [39, 61], [39, 28], [39, 65], [40, 55], [40, 47], [40, 42], [40, 42], 42, 52], 42, 60], 54], [43, 43, 60], 43, 45], 43, 41], 50], [44, 44, 46], 46, 51], 46, 46], [46, 56], [46, 55], [47, 52], [47, 59], [48, 51], [48, 59], [48, 50], [48, 48], [48, 59], [48, 47], [49, 55], [49, 42], [50, 49], [50, 56], [54, 47], [54, 54], [54, 53], [54, 48], [54, 52], [54, 42], [54, 51], [54, 55], [54, 41], [54, 44], [54, 57], [54, 46], [57, 58], [57, 55], [58, 60], [58, 46], [59, 55], [59, 41], [60, 49], [60, 40], [60, 42], [60, 52], [60, 47], [60, 50], [61, 42], [61, 49], [62, 41], [62, 48], [62, 59], [62, 55], [62, 56], [62, 42], [63, 50], [63, 46], [63, 43], [63, [63, 52], [63, [64, 42], [64, 46], [65, 48], [65, 50], [65, 43], [65, 59], [67, 43], [67, 57], [67, 56], [67, 40], [69, 58], [69, 91], [70, 29], [70, 77], [71, 35], [71, 95], [71, 11], [71, 75], [71, 9], [71, 75], [72, 34], [72, 71], [73, [73, 88], [73, [73, 73], [74, 10], [74, 72], [75, 5], [75, 93], [76, 40], 87], [76, [77, 12], [77, 97], [77, 36], 74], [77, 22], [78, [78, 90], 78, 17], 88], 78, 20], [78, [78, 76], 78, 16], [78, 89], [78, 1], [78, 78], [78, 1], [78, 73], [79, 35], [79, 83], 5], [81, [81, 93], [85, 26], [85, 75], [86, 20], [86, 95], [87, 27], [87, 75], [87, 10], [87, 92], [88, 13], [88, 86], [88, 15], 69], [88, [93, 14], [93, 90], [97, 32], [97, 86], [98, 15], [98, 88], [99, 39], [99, 97], [101, 24], [101, 68], [103, 17], [103, 85], [103, 23], [103, 69], [113, 8], [113, 91], [120, 16], [120, 79], [126, 28], [126, 74], [137, 83]], dtype=int64) Choosing the Number of Clusters WCSS -> Within Clusters Sum of Squares In [14]: #finding WCSS values for different number of clusters wcss =[] **for** i **in** range(1,11): $kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)$ #n_clusters -> each cluster will occur one by one till 10 wcss.append(kmeans.inertia_) In [15]: #plot an elbow graph sns.set() plt.plot(range(1,11), wcss) plt.title('The Elbow Point Graph') plt.xlabel('Number of Clusters') plt.ylabel('WCSS') plt.show() The Elbow Point Graph 250000 200000 150000 100000 50000 6 Number of Clusters Training the K-means Clustering Model In [16]: kmeans = $KMeans(n_clusters = 5, init = 'k-means++', random_state = 0)$ $y = kmeans.fit_predict(x)$ In [18]: 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, $0,\ 2,\ 0,\ 2,\ 0,\ 2,\ 0,\ 2,\ 0,\ 2,\ 0,\ 2,\ 0,\ 2,\ 0,\ 2,\ 0,\ 2,\ 0,\ 2,$ 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2]) 5 clusters -> 0,1,2,3,4 Visualizing all the Clusters In [30]: #plotting all the clusters and their centroids plt.figure(figsize=(8,8)) plt.scatter(x[y==0,0], x[y==0,1], s=50, c='green', label='Cluster 1') plt.scatter(x[y==1,0], x[y==1,1], s=50, c='maroon', label='Cluster 2') plt.scatter(x[y==2,0], x[y==2,1], s=50, c='orange', label='Cluster 3') plt.scatter(x[y==3,0], x[y==3,1], s=50, c='violet', label='Cluster 4') plt.scatter(x[y==4,0], x[y==4,1], s=50, c='blue', label='Cluster 5') #plot the centroids plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, c='cyan', label='Centroids') plt.title('Customer Groups') plt.xlabel('Annual Income') plt.ylabel('Spending Score') plt.show() Customer Groups 100 Spending Score 120 Annual Income