Západočeská univerzita v Plzni Fakulta aplikovaných věd

DIPLOMOVÁ PRÁCE

Semidefinitní programování v kombinatorické optimalizaci

Autor: Ondřej Špaček

Vedoucí práce: Doc. Ing. Roman Čada, Ph.D.

Plzeň, 2020

ProhlášeníProhlašuji, že jsem svou diplomovou práci vypracoval samostatně s použitím odborné literatury uvedené v seznamu, který je uveden na konci této práce. V Plzni dne

podpis

Poděkování

Především bych chtěl poděkovat svému vedoucímu diplomové práce Doc. Ing. Romanu Čadovi, Ph.D. za spoustu času, který mi věnoval a cenné rady při řešení problémů spojených s vypracováním diplomové práce.

Abstrakt

Klíčová slova

Abstract

Keywords

Použité značky a symboly

Obsah

Úvod		2
Ι	Teorie	3
1	Základní geometrické pojmy	4
2	Lineární programování	5
3	Semidefinitní programování	6
4	Kuželové programování	7
II	I Kombinatorické úlohy	8
5	Shannonova kapacita	9
6	Maximální řez	10
7	Problém obchodního cestujícího	11
Η	II Implementace	12
8	Lovászova theta funkce	13
9	Maximální řez	14
Závěr		15

$\acute{\mathbf{U}}\mathbf{vod}$

Část I

Teorie

Kapitola 1

Základní geometrické pojmy

Mějme dva body $x_1,x_2\in\mathbb{R}^n$ takové, že $x_1\neq x_2$ a parametr $\theta\in\mathbb{R}^n$. Potom výraz

$$y = \theta x_1 + (1 - \theta)x_2 \tag{1.1}$$

popisuje přímku procházející body x_1 a x_2 . Pro $\theta=0$ dostáváme bod x_2 a pro $\theta=1$ bod x_1 . Omezíme-li tedy θ na interval $\langle 0,1\rangle$, dostaneme úsečku s koncovými body x_1 a x_2 . Výraz 1.1 lze přepsat do tvaru

$$y = x_2 + \theta(x_1 - x_2), \tag{1.2}$$

který můžeme interpretovat jako součet počátečního bodu x_2 a nějakého násobku směrového vektoru $x_1 - x_2$.

Říkáme, že množina $C \subseteq \mathbb{R}^n$ je afinní, jestliže přímka procházející libovolnými dvěma různými body z C leží v C.

Kapitola 2 Lineární programování

Kapitola 3 Semidefinitní programování

Kapitola 4 Kuželové programování

Část II Kombinatorické úlohy

Kapitola 5 Shannonova kapacita

Kapitola 6 Maximální řez

Kapitola 7

Problém obchodního cestujícího

Část III Implementace

Kapitola 8 Lovászova theta funkce

Kapitola 9 Maximální řez

Závěr