

1st seminar

Sedatohypnotic-anxyiolytic drugs, Alcohols

László Drimba M.D.

Department of Pharmacology and Pharmacotherapy
University of Debrecen

Sedatohypnotics, anxiolytics

- sedative-hypnotic-anxiolytic effects
- anxiety disorders:
 - GAD (generalised anxiety disorder)
 - panic disorder
 - phobias
 - PTSD (post-traumatic stress disorder)
 - OCD (obsessive-compulsive disorder)
- hypnotic disorders
 - insomnia

Sedative-Hypnotic drugs

Classification:

- benzodiazepines
 - chlordiazepoxide (Librium®)
 - diazepam (Valium ®, Seduxen ®)
 - clonazepam (Rivotril ®)
 - triazolam
 - alprazolam (Xanax ®, Frontin ®)
 - midazolam (Dormicum ®, Midazolam Torrex ®)
 - flunitrazepam (Rohipnol ®)
- barbiturates
 - phenobarbital (Phenobarbital ®)
 - pentobarbital (Nembutal ®)
 - thiopental (Trapanal ®)
 - secobarbital
- ☐ 5HT receptor agonists
 - buspirone (Buspar ®)
- □ "Z compounds"
 - zolpidem (Stilnox ®)
 - zopiclon (Imovan ®)
 - zaleplon
- melatonin receptor agonist
 - ramelteon

"Ideal" sedatohypnotics

Physiologic background

GABA (γ-aminobutyric acid)

- main NT in the CNS (inhibitory effect)
- GAD (glutamic acid decarboxylase)
- GABA transaminase
- GABAerg neurons, astrocytes
- Receptors
 - \blacksquare GABA_A:
 - □ ionotropic
 - □ ligand gated Cl⁻ channel→Cl⁻influx→hyperpolarisation
 - \Box pentamer structure ($\alpha_2\beta_2\gamma_1$)
 - \blacksquare GABA_B:
 - □ G-protein coupled, inhibits adenylyl cyclase
 - □ inhibiting VG Ca²⁺ ch., opening K+ channels
 - □ location pre/post synaptically

history: 1960's – chlordiazepoxide

structure:

benzene ring +
diazepine ring (7 membered heterocyclic) +
5-aryl substituent ring
(+ oxazole/triazole ring - alprazolam, triazolam)

Benzodiazepines

Classification

- chemical structure
 - □ basic:
 - diazepam, chlordiazepoxide, clonazepam, midazolam
 - □ triazole ring:
 - triazolam
 - oxazole rings
 - alprazolam, cloxazolam
- potency (anxiolytic effect)
 - high potential (eff. dose < 10mg/day)
 - low potential (eff. dose > 10mg/day)
- duration of action
 - ultrashort: midazolam, triazolam
 - short: lorazepam, oxazepam
 - medium: alprazolam
 - long: diazepam, clonazepam, flunitrazepam

mechanism of action:

specific regulatory site on GABA_A receptor

<u>GABA_A R</u>: Cl⁻ channel, pentamer structure $(2\alpha, 2\beta, \gamma)$ inhibitory function - hyperpolarisation in CNS

binding site for

GABA (γ-amino butyric acid),

BZD, barbiturates

ALLOSTERIC MODULATION

BZD R, ω R!

 α_1 : hypnosis, sedation α_5 : amnesia

 α_2 : anxiolytic, anticonvulsant

↑ frequency of channel opening!!!

Drugs acting on BZD receptor

- BZD receptor agonists: benzodiazepines,
 - "Z compounds"
- BZD receptor antagonist: flumazenile (Annexate®)
 - competitive antagonism
 - □ short half life ($t_{1/2}$: 0,7-1,3 hours)→intoxication relapse
 - diagnostic and therapeutic
 - □ antidotum! (NB.! complex therapy of intoxication)
 - \Box 0.2-0.4 mg
- **BZD** receptor inverse agonist: β-CCB (β-carbolines)
 - bicuculline
 - □ experimental appl.

Benzodiazepines

Pharmakokinetic features:

absorption: 80-100%, oral application

lipid solubility \(\gamma \) - penetrating, accumulating in CNS

PPB: ↑

metabolised by CYP3A4, CYP2C19 (ketoconazole, H₂ blockers, makrolides)

active metabolite: desmethyl-diazepam (diazepam,clonazepam, chlordiazepoxide) $t_{1/2}$: 40-60 h \rightarrow prolonged effect!

DEBRICO DE LA CONTRACTION DE L

- sedative, anxiolytic:
 - calming effects, produce drowsiness
- anaesthetic:
 - premedication: ET intubation, etc.
- amnestic:
 - anterograd and retograd amnesia
- hypnotic:
 - ↓ latency of sleep onset
 - ↑ duration of NREM (4 stages)
 - ↓ duration of REM
- anticonvulsant:
 - anti seizure therapy (see below)
- muscle relaxant

Benzodiazepines

Adverse effects:

■ tolerance→abuse→dependence

- withdrawal syndrome
 - psychological
 - physical
- cardiovascular/respiratory depression
 - (impaired cardiac/metabolic/respiratory function)

Therapeutical use/Clinical indication:

- relief of anxiety (GAD, Phobias, OCD)
- insomnia
- sedation and amnesia before and during medical and surgical procedures (Anaesthesia, Preoperative phases)
- main component of balanced anaesthesia (i.v.)
- treatment of epilepsy and seizures (GTCS)
- control of ethanol or other sedative-hypnotic withdrawal states

history: - 1912, barbituric acid

classification: (based on duration of action)

- ultrashort: thiopental (Trapanal)
- short: cyclobarbital
- medium: secobarbital
- long: phenobarbital (Phenobarbital)

mechanism of action:

specific regulatory site on GABA_A receptor

binding site for barbiturates

† duration of channel opening!!! allosteric modulator

Effects:

similar to BDZbut! extremly depressant on CNS

cardiovascular/respiratory depression

- hepatic enzyme induction (phenobarbital)
 - □ OAC, coumarin, phenytoin, digitalis (serum cc.↓)

Therapeutical use:

- obselete drugs!!!
- anti-seizure therapy: infants, children→phenobarbital
- sedation and amnesia before and during medical and surgical procedures → thiopental
- main component of balanced anaesthesia $(i.v.) \rightarrow$ thiopental
- therapy of neonatal jaundice → phenobarbital

Adverse effects:

- tolerance→dependence/addiction→abuse
 - → respiratory depression, coma (ethanol!)
- withdrawal syndrome
 - psychological
 - physical
- more marked than, BZDs

"Z compounds"

- zolpidem, zopiclon, zaleplon
 - \square selective ω_1 receptor agonist (bind selectively to α_1 subunit)
 - \square ω_1 receptor: cortex, hippocampus
 - □ novel hypnotic effects no CNS depression
 - □ no anxiolytic, sedative, muscle-relaxant effects
 - □ can be antagonized by flumazenil

Melatonin receptor agonists

Ramelteon:

- □ agonism on MT₁, MT₂ receptors (suprachiasm. nucl.)
- no direct effects on GABAerg neurons
- hypnotic drug
 - treatment of insomnia
- oral administration
 - rapid absorption, excessive first-pass metabolism
- □ no anxiolytic, sedative, muscle-relaxant effects
- □ adverse effects:
 - dizzines, fatigue
 - endocrine changes: testosterone↓ prolactin↑
- □ no withdrawal symptoms, no abuse

Buspirone

- □ partial agonist (5HT_{1A} receptor)
- sedative, hypnotic, euphoric effects
- no anticonvulsant, muscle relaxant properties
- □ no withdrawal symptoms, no abuse
- □ no prompt effect (appr. 1 week)
- \square active metabolit: $\alpha_2 R$ agonism, $BP \downarrow$
- □ other drugs: gepirone, ipsapirone

Other drugs producing sedatohypnotic-anxiolytic effects

- □ chloralhydrate
- □ promethazin, cyclizin (antihistamines)
- ☐ TCA (imipramine)
- □ Alcohols

Alcohols

history: Ancient Aegypt

Roman Empire

Medieval ages

Industrial revolution

"most commonly abused drug" "French paradox"

- main types:
 - □ ethyl-alcohol (ethanol)
 - □ methyl-alcohol (methanol)
 - □ ethylen-glycol

Ethanol

- Pharmacokinetic aspects
 - □ water-soluble
 - □ rapid absorption (stomach, small intestine)
 - □ rapid distribution, CNS (,,well perfused")
 - □ metabolized in the liver
 - ADH (ethanol→acetaldehyde), ADH1A, ADH1B, AD1C
 - MEOS (CYP2E1) (when ADH is saturated)
 - ALDH (acetaldehyde →acetic acid), (mutation:ALDH2*2)
 - □ excreted by kidney, lungs

Ethanol (acute consumption)

mechanism of action

□ CN	NS:	BAC (IIIg/	(df) symptoms
•	inhibiting glutamate R (NMDA channel)	50-100	sedation, "subjective high", slower reactions
•	enhancing the action of GABA on GABA _A R	100-200	impaired motorium, slurred speech, ataxia
•	blocking VG sodium/calcium channels	200-300	emesis, stupor
•	activating VG potassium channels	300-400	coma, blackout
	release of β endorfins	>500	respiratory depression, death

 $\mathbf{P} \wedge \mathbf{C} \pmod{d1}$

eximptome

- ☐ Heart
 - cardiodepressive effect
- ☐ Respiratory system
 - depression
- □ Smooth muscle
 - vasodilation

Ethanol (chronic consumption)

•	Liver and GIT ☐ fatty liver, alcohol induced hepatitis, cirrhosis ☐ enzyme induction (early phases) ☐ chronic pancreatitis ☐ malabsorption syndrome
•	CNS □ neurotoxicity (Wernicke-Korsakoff syndrome) □ tolerance – dependence – alcohol withdrawal syndrome • delirium tremens
•	Cardiovascular system
•	Blood/Immune system □ anaemia □ infections
•	Fetal alcohole syndrome intrauterine growth retardation

abnormalities in development of midfacial region

microcephaly

Ethanol

Management of acute alcohol intoxication

- prevent respiratory depression
- □ prevent aspiration (vomitus)
- □ glucose i.v.
- \Box thiamine i.v. (Vitamin B_1)
- □ prevent electrolyte disturbances: antiemetic drugs (metoclopramide, Vitamin B₆)

Management of alcohol withdrawal syndrome

- sedation, anxiolysis, anti-seizure therapy
 - diazepam, clonazepam, chlordiazepoxide
- antipsychotic
 - haloperidol, carbamazepine, mepobramate
- □ ICP↓
 - glycerol, mannisol, Oradexon®
- neuroprotection
 - thiamine (Vitamin B₁)
 - glucose
- electrolyte, saline suppl.

Ethanol

Treatment of alcoholism

- □ disulfiram (Antaethyl®)
 - blocking ALDH → acetaldehyde↑, "hangover"
 - sweating, facial flushing, nausea, vomiting, hypotension, confusion
- □ acamprosate
 - NMDA antagonist, GABA_AR activator
 - effects based on receptor occupancy partial agonism
- naltrexone

Methanol

- industrial application, detergents
- accidental/suicide intoxication
- absorbed from skin, GIT
- metabolized by ADH, ALDH
 (methanol→formaldehyde→formic acid)
- Symptoms
 - □ visual disturbances (snow storm)→(retina destruction)
 - □ nausea, vomitus, seizures (metabolic acidosos)
 - □ respiratory distress, coma

Therapy

- □ decontamination
- \square ethanol (p.o., i.v.) saturating ADH
- ☐ fomepizole inhibitor of ADH
- \square alkalization (Na₂HCO₃)
- □ haemodialysis
- □ support of respiration
- □ anti seizure therapy

- windshield washing, anti-freeze formulations
- accidental/suicide intoxication
- rapid absorption from GIT
- metabolized by ADH
- Symptoms
 - □ headache
 - □ nausea, vomitus, seizures (metabolic acidosos)
 - □ acute renal failure
 - □ respiratory distress, coma

Intoxication of ethylene glycol

Therapy

- □ decontamination
- \square ethanol (p.o., i.v.) saturating ADH
- ☐ fomepizole inhibitor of ADH
- □ alkalization (Na₂HCO₃)
- □ haemodialysis
- □ support of respiration
- □ anti seizure therapy