MATH 265 HW1

Hanzhang Yin

Aug/26/2024

Question 1

Proof. Define a function f as:

$$f: \mathbb{N} \to \{1, 4, 7, 10, 13, \dots\} : n \mapsto 3n - 2$$

Now we need to show f is one to one and onto.

• Prove f is one to one

Proof. To prove f is one to one, we must show that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Suppose $f(n_1) = f(n_2)$. Then:

$$3n_1 - 2 = 3n_2 - 2$$

$$\Rightarrow 3n_1 = 3n_2 \Rightarrow n_1 = n_2$$

Since $n_1 = n_2$, f is injective.

 \bullet Prove f is onto

Proof. To prove f is *onto*, we need to show for every $m \in \{1, 4, 7, 10, 13, \dots\}$, there exists an $n \in \mathbb{N}$ s.t. f(n) = m.

Take any $m \in \{1, 4, 7, 10, 13, \dots\}$. We want to find n such that 3n-2 = m. Solving for n:

$$3n-2=m\Rightarrow 3n=m+2\Rightarrow n=\frac{m+2}{3}$$

Since m is given of the form 3k+1 for some integer k. Therefore, $n \in \mathbb{N}$, and f is onto.

Since f is one to one and onto, it is a bijection. Hence, f(n) = 3n - 2 is a explicit bijection from the set \mathbb{N} to $\{1, 4, 7, 10, 13, \dots\}$.

Question 2

Proof. Define a function f as:

$$f:(0,1)\to \mathbb{R}_{>0}: n\mapsto \frac{n}{1-n}$$

Now we need to show f is one to one and onto.

 \bullet Prove f is one to one

Proof. To prove f is one to one, we must show that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Suppose $f(n_1) = f(n_2)$. Then:

$$\frac{n_1}{1 - n_1} = \frac{n_2}{1 - n_2}$$

$$\Rightarrow n_1(1 - n_2) = n_2(1 - n_1)$$

$$\Rightarrow n_1 - n_1 n_2 = n_2 - n_2 n_1$$

$$\Rightarrow n_1 = n_2$$

Thus, f is one to one.

 \bullet Prove f is onto

Proof. To prove f is onto, we need to show for every $m \in \mathbb{R}_{>0}$, there exists an $n \in (0,1)$ s.t. f(n) = m.

Take any m > 0. We want to find n such that $\frac{n}{1-n} = m$. Solving for n:

$$n = m(1-n) \Rightarrow n + nm = m \Rightarrow n(1+m) = m \Rightarrow n = \frac{m}{1+m}$$

Note that m>0, this implies $0<\frac{m}{1+m}<1$, hence $n\in(0,1)$. Thus, for every m>0, there is an $n\in(0,1)$ s.t. f(n)=m. (i.e. f is onto)

Since f is one to one and onto, it is a bijection. Hence, $f(n) = \frac{n}{1-n}$ is a explicit bijection from the set (0,1) to $\mathbb{R}_{>0}$.

Question 3

Proof. Let $x \in [0,1)$ s.t. $g(x) = w, w \in \mathbb{R}_{>0}$, modified the function f from Q2

$$g:[0,1)\to\mathbb{R}_{>0}:g(x)=\begin{cases} \frac{\frac{1}{2}}{1-\frac{1}{2}}=1, & \text{if } x=0\\ \frac{\frac{2^{n+1}}{1-\frac{1}{2^{n+1}}}=\frac{1}{2^{n+1}-1}, & \text{if } x=\frac{1}{2^{n}}, n\in\mathbb{N}^{+}\\ \frac{x}{1-x}, & \text{if } x\neq\frac{1}{2^{n}}, n\in\mathbb{N} \end{cases}$$

Now we need to show g is one to one and onto.

• Prove q is one to one

Proof. To prove g is one to one, we must show that if $g(x_1) = g(x_2)$, then

Case 1: $x_1 = 0 \text{ and } x_2 \neq 0$:

- If $x_1 = 0$, then $g(x_1) = 1$
- If $x_2 \neq 0$, $g(x_2)$ will either be in form $\frac{2n+1}{1-\frac{1}{2n+1}}$ or $\frac{x_2}{1-x_2}$, both are not equal to 1. Thus, $g(x_1) \neq g(x_2)$.

Case 2: $x_1 = \frac{1}{2^n}, x_2 = \frac{1}{2^m}$ s.t. $n \neq m$

- For $x_1 = \frac{1}{2^n}$, we have $g(x_1) = \frac{2n+1}{1-\frac{1}{2n+1}}$.
- For $x_2 = \frac{1}{2^m}$, we have $g(x_2) = \frac{2m+1}{1-\frac{1}{2m+1}}$.

Since $n \neq m$, $g(x_1) \neq g(x_2)$.

Case 3: $x_1 \neq \frac{1}{2^n}$ and $x_2 \neq \frac{1}{2^m}$ with $x_1 \neq x_2$ If $x_1, x_2 \notin \left\{ \frac{1}{2^n} \right\}$, then $g(x_1) = \frac{x_1}{1 - x_1}$ and $g(x_2) = \frac{x_2}{1 - x_2}$. Since $x_1 \neq x_2$, $\frac{x_1}{1 - x_1} \neq \frac{x_2}{1 - x_2}$. Hence, $g(x_1) \neq g(x_2)$. Combining all cases, g(x) is injective.

• Prove g is onto

To prove g is onto, we need to show for every $w \in \mathbb{R}_{>0}$, there exists an $x \in [0,1)$ s.t. g(x) = w.

Proof. – For any w = 1, we have g(0) = 1.

- For any $w = \frac{2n+1}{1-\frac{1}{n-1}}$, there exists and $x = \frac{1}{2^n}$ such that g(x) = w.
- For any other w>0, there exists an $x\in(0,1)\backslash\{\frac{1}{2^n}\}$ s.t. g(x)= $\frac{x}{1-x} = w$, we can get:

$$x = \frac{w}{1+w}$$

Since $w > 0, x \in (0, 1)$.

Overall, for any w > 0, there is an $x \in [0,1)$ s.t. g(x) = w. Hence, g(x) is surjective. П

Since g is one to one and onto, it is a bijection.

Question 4

(a) Show that $g \circ f$ is injective if both of f and g are injective.

Proof. Given that $f: A \to B$ and $g: B \to C$ are injective. We can write $g \circ f$ as $g \circ f: A \to C$, defined as $(g \circ f)(x) = g(f(x))$. Assume: $(g \circ f)(x) = (g \circ f)(y)$, for some $x, y \in A$,

- 1. By the definition of composite function, we can get g(f(x)) = g(f(y))
- 2. Given, g is injective, f(x) = f(y)
- 3. Also given, f is injective, x = y

Hence, $g \circ f$ is injective.

(b) Show that $g \circ f$ is surjective if both of f and g are surjective.

Proof. Given that $f: A \to B$ and $g: B \to C$ are surjective. We can write $g \circ f$ as $g \circ f: A \to C$, defined as $(g \circ f)(x) = g(f(x))$. Let an arbitary value $z \in C$. We need to find some $x \in A$ such that $(g \circ f)(x) = z$

- 1. Given g is surjective, hence there exists a $y \in B$ such that g(y) = z
- 2. Given f is surjective, hence there exists a $x \in B$ such that f(x) = y
- 3. Hence, $(g \circ f)(x) = g(f(x)) = g(y) = z$

Hence, $g \circ f$ is surjective.