Linguaggi Formali e Traduttori

2.5 Proprietà di chiusura dei linguaggi regolari

- Sommario
- Unione e concatenazione
- Complemento
- Intersezione
- Intersezione (costruzione diretta)
- Differenza
- Inversione
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

In questa lezione studiamo le più importanti proprietà di chiusura dei linguaggi regolari ponendoci la seguente domanda: dati due linguaggi regolari L ed L', i seguenti linguaggi sono regolari?

- $L \cup L'$
- $L \cap L'$
- *LL'*
- ullet
- L-L'
- ullet L^R

In tutti i casi possiamo rispondere affermativamente.

Unione e concatenazione

Teorema

I linguaggi regolari sono chiusi per unione e concatenazione.

Dimostrazione

Siano L_1 ed L_2 linguaggi regolari.

Dunque esistono due espressioni regolari E_1 ed E_2 tali che $L_1=L(E_1)$ e $L_2=L(E_2)$.

Ora E_1+E_2 e E_1E_2 sono espressioni regolari che generano, rispettivamente, $L_1\cup L_2$ e L_1L_2 .

Concludiamo che $L_1 \cup L_2$ e L_1L_2 sono regolari.

Complemento

Teorema

I linguaggi regolari sono chiusi per complemento.

Dimostrazione

Sia $m{L}$ un linguaggio regolare.

Dunque esiste un DFA $A=(Q,\Sigma,\delta,q_0,F)$ tale che L=L(A).

Definiamo $B=(Q, \varSigma, \delta, q_0, Q-F)$ e osserviamo che

$$w \in L(A) \Leftrightarrow \hat{\delta}(q_0,w) \in F \Leftrightarrow w
otin L(B)$$

Concludiamo che $\overline{L}=L(B)$ e che \overline{L} è regolare.

Intersezione

Teorema

I linguaggi regolari sono chiusi per intersezione.

Dimostrazione

Siano L_1 ed L_2 linguaggi regolari su un alfabeto Σ .

Usando le leggi di De Morgan, osserviamo che

$$L_1\cap L_2=\overline{\overline{L_1\cap L_2}}=\overline{\overline{L_1}\cup \overline{L_2}}$$

Siccome i linguaggi regolari sono chiusi per unione e complemento, concludiamo che $L_1\cap L_2$ è regolare.

Intersezione (costruzione diretta)

Dimostrazione alternativa

Siano L_1 ed L_2 linguaggi regolari su un alfabeto Σ .

Dunque esistono due DFA
$$A_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 e $A_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ tali che $L_1=L(A_1)$ e $L_2=L(A_2)$.

Definiamo
$$B = (Q_1 { imes} Q_2, \varSigma, \delta, (q_1, q_2), F_1 { imes} F_2)$$
 dove

$$\delta((p,q),a)=(\delta_1(p,a),\delta_2(q,a))$$

per ogni $p \in Q_1$, $q \in Q_2$ e $a \in \Sigma$. Concludiamo osservando che

$$egin{array}{ll} w \in L(B) &\Leftrightarrow& \hat{\delta}((q_1,q_2),w) \in F_1 imes F_2 \ &\Leftrightarrow& \hat{\delta}_1(q_1,w) \in F_1 \wedge \hat{\delta}_2(q_2,w) \in F_2 \ &\Leftrightarrow& w \in L(A_1) \wedge w \in L(A_2) \ &\Leftrightarrow& w \in L_1 \cap L_2 \end{array}$$

Differenza

Teorema

I linguaggi regolari sono chiusi per differenza.

Dimostrazione

Siano L_1 ed L_2 linguaggi regolari su un alfabeto Σ .

Per concludere basta osservare che $L_1-L_2=L_1\cap\overline{L_2}$ e ricordare che i linguaggi regolari sono chiusi per intersezione e complemento.

Inversione

Teorema

I linguaggi regolari sono chiusi per inversione.

Dimostrazione

Se $m{L}$ è un linguaggio regolare deve esistere un'espressione regolare $m{E}$ tale che $m{L}=m{L}(m{E})$.

Definiamo l'espressione regolare $m{E^R}$ per induzione sulla struttura di $m{E}$ e per casi sulla sua forma, usando le seguenti equazioni:

È facile dimostrare che $L(E^R) = L(E)^R$, dunque L^R è regolare.

Esercizi

Aiutandosi con le tecniche illustrate in questa lezione, risolvere i seguenti esercizi.

- 1. Se L è un linguaggio regolare, cosa si può dire di L^* e di L^+ ? Sono regolari?
- 2. Definire un DFA che riconosca il linguaggio delle stringhe sull'alfabeto $\{0,1\}$ in cui non c'è uno 0 seguito da due 1.
- 3. Definire un DFA che riconosca il linguaggio delle stringhe sull'alfabeto $\{0,1\}$ di lunghezza pari e che contengono almeno un ${\bf 1}$.
- 4. Definire un'espressione regolare per il linguaggio $L(E)^R$, dove $E=(ab)^*(b+a^*)^*$.