Local statistics: Geographically-weighted regression

GIS 5923 Spatial Statistics

Local Statistics

- A local statistic is any descriptive statistic associated with a spatial data set whose value varies from place to place.
- In the broadest sense, any spatial data set is a collection of local statistics, since the recorded attribute values are different at each location.
- But, a "local statistic" usually is one that is derived by considering a subset of the data local to or nearby the spatial location where it is being calculated. Example: the localized mean

Two topics in Local Statistics

- We will cover two general topics:
- In this set of slides, we will focus on geographically-weighted regression: regression models in which we allow the coefficients to vary spatially
- In the next set of slides, we will cover Local Indicators of Spatial Association (LISAs): used to identify hotspots and outliers

Simpson's paradox

Spatially aggregated data

Spatially disaggregated

House density

House density

Some definitions

- Spatial nonstationarity exists when the relationship between two covariates changes across the study region.
 - Example: the relationship between housing price and square footage may differ between urban and rural regions
- Global models (i.e., fitting a single regression model to the entire study region) assume that the relationships between covariates and response are stationary.
- Local models (e.g., Geographically-weighted regression) account for spatial nonstationarity by allowing model coefficients to vary spatially

When to consider a GWR model

- Before fitting a GWR model or some other spatial regression model, the first step is to fit an ordinary least squares model and assess the fit
- An OLS model is said to be mis-specified if there is strong spatial autocorrelation in the residuals... This is good justification for fitting a GWR model. If the residuals are spatially random, there is not good justification for fitting a GWR model.
- Let's look at some examples...

Regression model residuals

Residuals are the difference between observed and estimated values

Positive residuals occur when the point lies above the regression line; i.e., the model <u>underpredicts</u> Y

Negative residuals occur when the point lies below the regression line; i.e., the model <u>overpredicts</u> Y

Is there stationarity in the relationship between # of kids and library density in Boston?

Geographically Weighted Regression

 In of the preceding example, we see spatial autocorrelation in the residuals from the ordinary least squares model. This is evidence that the OLS model is mis-specified, and good justification for fitting a GWR model.

 In Geographically Weighted Regression, we allow the regression coefficients to vary spatially:

A review of the OLS model

• In OLS regression, we have a data set $\{y_i, x_{i1}, ..., x_{ip}\}$ with i = 1,..., n spatial units and p regressors or explanatory variables. The OLS model is:

$$y_i = \beta_o + \beta_1 X_{i,1} + ... + \beta_p X_{i,p} + \varepsilon_i$$

The OLS model in vector form

We can write the same model in vector form as:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \dots & \dots & \dots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{pmatrix} \qquad \boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_0 \\ \dots \\ \boldsymbol{\beta}_p \end{pmatrix}$$

Estimating the coefficients in OLS

 In the OLS model, we estimate the unknown parameters by minimizing the sum of the squared residuals. The estimated value of the unknown parameters is:

$$\beta = (X^T X)^{-1} X^T y$$

Estimating the coefficients in GWR

 In GWR, we estimate n distinct models (one for each of the n spatial units). To estimate the regression coefficients for each spatial unit, we modify the OLS estimator by introducing a set of weights

$$\beta = (X^T G X)^{-1} G X^T y$$

where G is an $n \times n$ diagonal matrix for each spatial unit in the data set. The diagonal elements give the weight we wish to associate with each observation.

How do we choose G?

- The weighting scheme in the matrix G is an essential feature of the GWR model and depends on two choices:
 - 1) What is the kernel that describes the shape of the relationship between two spatial units?
 - 2) What is the bandwidth of the kernel, i.e., how quickly does influence decay with distance?
- The choice of the appropriate bandwidth is an essential element of fitting a GWR model

Some very simple types of G

 The two simplest rules for specifying G for a spatial unit j are to choose binary weights based on some distance threshold:

$$g_{i,i} = \begin{cases} 1 & \text{if } d_{ij} < d^* \\ 0 & \text{else} \end{cases}$$

Or to choose binary weights based on a k-nearest

neighbors approach: $g_{i,i} = \begin{cases} 1 & \text{if j is one of the k-nearest neighbors of i} \\ 0 & \text{else} \end{cases}$

More complex (but more common) G

• A more common approach is to specify a kernel function that weights nearby locations more strongly than distant locations. The most common is the Gaussian kernel. For each spatial unit *j*

$$g_{i,i} = exp\left(-\frac{1}{2}\left(\frac{d_{i,j}}{\sigma}\right)^2\right)$$

- Other common kernels are the bi-square and tri-cube; they just specify different relationships between distance and weight.
- All of these kernels have a parameter σ called the bandwidth through which we can control the range of observations in the samples.

$$g_{i,i} = exp\left(-\frac{1}{2}\left(\frac{d_{i,j}}{\sigma}\right)^2\right)$$

Gaussian

dist

How to choose the bandwidth

- There are two approaches the specifying the bandwidth: a priori and via the data in a process called calibration.
- If the bandwidth is determined a priori, the research chooses the bandwidth based on knowledge of the data set or research problem
- If the bandwidth is determined via calibration, an iterative search process identifies the bandwidth that minimizes the error of the prediction model.

