	Teste de Matemática A
	2020 / 2021
Teste N.º 2	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tinta az	ul ou preta.
Não é permitido o uso de corretor. Risque aquilo o	que pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada item.	
	nunciado.

respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

1. Considere a expressão $P(x) = \frac{(\sec x - \cos x)^2}{(\cos^2 x + \sec^2 x)(1 - \tan x)^2}$

Para todo o x onde a igualdade tem significado, podemos concluir que P(x) é igual a:

- (A) $\frac{1}{\cos^2 x}$
- **(B)** $\cos^2 x$

(C) $\cos x$

(D) $-\cos x$

2. Na figura está representada, num referencial o.n. Oxy, a circunferência trigonométrica.

Sabe-se que:

- os pontos A e B são pontos da circunferência;
- o ponto A pertence ao eixo das abcissas;
- a reta AC é tangente à circunferência no ponto A;
- o ponto O pertence à reta BC;
- α é a amplitude, em radianos, do ângulo AOB, com $\alpha \in \left]\frac{\pi}{2}, \pi\right[$.
- **2.1.** Mostre que a área do triângulo [ABC] pode ser dada, em função de α , por $A(\alpha) = \frac{\sin \alpha \log \alpha}{2}$.
- **2.2.** Considere o valor de α para o qual se tem $\cos\left(-\frac{\pi}{2} + \alpha\right) + 2\mathrm{sen}(2021\pi \alpha) = \cos\left(\frac{\pi}{3}\right)$.

Para este valor de α , e sem recorrer à calculadora a não ser para efetuar eventuais cálculos numéricos, determine o valor exato da área do triângulo [ABC].

2.3. Considere os pontos A' e B', dos quais se sabe que são os pontos simétricos de A e de B, respetivamente, relativamente ao eixo das ordenadas.

Sabe-se que existe um valor de α para o qual a área do triângulo [ABC] é igual à área do trapézio [AA'BB'].

Determine, recorrendo às capacidades gráficas da calculadora, o valor de α .

Na sua resposta:

- · equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente o valor de α , em radianos, com aproximação às centésimas.
- **2.4.** Considere agora as funções f e g, de domínio $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$, definidas por:

$$f(x) = \frac{\sin x - \log x}{2}$$
 e $g(x) = \sin x \cos x - \frac{\log x}{2}$

Recorrendo a processos exclusivamente analíticos, determine uma expressão geral para as abcissas dos pontos de interseção dos gráficos das funções f e g.

3. De dois vetores \vec{u} e \vec{v} , sabe-se que $||\vec{u}|| = 4$, $||\vec{v}|| = 5$ e $\vec{u} \cdot \vec{v} = -1$.

Qual das seguintes afirmações é verdadeira?

- **(A)** $(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \sqrt{39}$
- **(B)** $\|\vec{u} + \vec{v}\| = 39$
- **(C)** $(\vec{u} \vec{v}) \cdot (\vec{u} \vec{v}) = 43$
- **(D)** $\|\vec{u} \vec{v}\| = 43$
- **4.** Na figura estão representadas, num referencial o.n. Oxy, a circunferência de centro C e de diâmetro [AB] e a reta t tangente à circunferência no ponto A.

Sabe-se ainda que:

- as coordenadas dos pontos A e B são, respetivamente, (3,-1) e (-1,4);
- a área do setor circular representado a sombreado na figura é $\frac{41\pi}{48}$.

4.1. Seja r a reta paralela à reta t e que passa no centro da circunferência.

Qual é a equação reduzida da reta r?

(A)
$$y = \frac{4}{5}x + \frac{7}{10}$$

(B)
$$y = \frac{5}{4}x + \frac{1}{4}$$

(C)
$$y = \frac{4}{5}x + \frac{23}{10}$$

(D)
$$y = \frac{5}{4}x$$

4.2. Seja α a inclinação da reta AC. Determine o valor exato de sen α .

Apresente o resultado sob a forma de fração com o denominador racionalizado.

- **4.3.** Determine o valor exato do produto escalar $\overrightarrow{CB} \cdot \overrightarrow{CD}$.
- **4.4.** Qual é o lugar geométrico dos pontos P do plano que satisfazem a condição $\overrightarrow{PB} \cdot \overrightarrow{PD} = 0$?
 - (A) Reta perpendicular à reta BD a passar em B.
 - (B) Reta perpendicular à reta BD a passar em D.
 - (C) Circunferência de diâmetro [BD].
 - (D) Mediatriz do segmento de reta [BD].

5. Considere, num referencial o.n. 0xyz, a superfície esférica de equação:

$$(x + 1)^2 + (y - 2)^2 + (z - 1)^2 = 10$$

5.1. Seja *P* o ponto da superfície esférica de abcissa negativa, ordenada 3 e cota 1.

Considere o plano tangente à superfície esférica no ponto *P*. Uma equação desse plano poderá ser:

(A)
$$5x - 5y - 2z + 37 = 0$$

(B)
$$5x - 5y - 2z + 7 = 0$$

(C)
$$3x - y - 3 = 0$$

(D)
$$3x - y + 15 = 0$$

5.2. Seja C o centro da superfície esférica e seja C' o simétrico do ponto C relativamente ao plano xOz. Determine a amplitude do ângulo C'OC.

Apresente o resultado em graus, arredondado às décimas.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

COTAÇÕES

	Item											
	Cotação (em pontos)											
1.	2.1.	2.2.	2.3.	2.4.	3.	4.1.	4.2.	4.3.	4.4.	5.1.	5.2.	
10	20	20	25	25	10	10	20	20	10	10	20	200