Tower of Definitions in Cohesive Topos Theory

1. Category

A category C consists of:

- A class of **objects**, Ob(C),
- A class of morphisms, $\operatorname{Hom}_{\mathcal{C}}(X,Y)$, for each pair $X,Y \in \operatorname{Ob}(\mathcal{C})$,
- Composition maps $\circ : \operatorname{Hom}(Y, Z) \times \operatorname{Hom}(X, Y) \to \operatorname{Hom}(X, Z)$,
- Identity morphisms $id_X \in Hom(X, X)$ for each X,

satisfying associativity and identity laws.

2. Functor

A functor $F: \mathcal{C} \to \mathcal{D}$ assigns to each:

- Object $X \in \mathcal{C}$ an object $F(X) \in \mathcal{D}$,
- Morphism $f: X \to Y$ a morphism $F(f): F(X) \to F(Y)$,

such that $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$ and $F(g \circ f) = F(g) \circ F(f)$.

3. Natural Transformation

A natural transformation $\eta: F \Rightarrow G$ between functors $F, G: \mathcal{C} \to \mathcal{D}$ consists of morphisms $\eta_X: F(X) \to G(X)$ such that for every $f: X \to Y$ in \mathcal{C} ,

$$F(X) \xrightarrow{\eta_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\eta_Y} G(Y)$$

commutes.

4. Adjunction

An adjunction between categories C and D consists of functors

$$F: \mathcal{C} \leftrightarrows \mathcal{D}: G$$

and natural transformations (unit η and counit ε)

$$\eta: \mathrm{Id}_{\mathcal{C}} \Rightarrow G \circ F, \quad \varepsilon: F \circ G \Rightarrow \mathrm{Id}_{\mathcal{D}}$$

satisfying the triangle identities.

5. Topos

A **topos** \mathcal{E} is a category that:

- Has all finite limits and colimits,
- Is Cartesian closed: has exponential objects [X, Y],
- Has a subobject classifier Ω .

6. Geometric Morphism

A geometric morphism $f: \mathcal{E} \to \mathcal{F}$ between topoi consists of an adjoint pair

$$f^*: \mathcal{F} \leftrightarrows \mathcal{E}: f_*$$

with $f^* \dashv f_*$, where f^* preserves finite limits (i.e., is left exact).

7. Cohesive Topos

A **cohesive topos** is a topos $\mathcal E$ equipped with a quadruple of adjoint functors:

$$\Pi \dashv \Delta \dashv \Gamma \dashv \nabla : \mathcal{E} \leftrightarrows \mathbf{Set}$$

such that:

- Γ is the global sections functor,
- Δ is the constant sheaf functor,
- ∇ sends a set to a codiscrete object,
- \bullet II is the shape or fundamental groupoid functor,
- Δ and ∇ are fully faithful,
- Δ preserves finite limits,
- II preserves finite products (in some variants).

8. Cohesive Adjunction Tower Diagram

$$\mathcal{E} \xrightarrow{ \biguplus }_{ \biguplus }^{ \overrightarrow{\mu} } \mathbf{Set}$$