MATH 2242 (Calculus IV) Course Outline

1.5 n-Dimensional Euclidean Space

- \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n
- Addition

• Scalar multiplication

• Standard basis vectors

$$\mathbf{e}_1 = \langle 1, 0, \dots, 0 \rangle, \, \mathbf{e}_2 = \langle 0, 1, \dots, 0 \rangle, \, \dots, \, \mathbf{e}_n = \langle 0, 0, \dots, 1 \rangle$$

• Theorems

$$(\alpha \mathbf{x} + \beta \mathbf{y}) \cdot \mathbf{z} = \alpha (\mathbf{x} \cdot \mathbf{z}) + \beta (\mathbf{y} \cdot \mathbf{z})$$

■ Prove the above theorem.

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$$

$$\mathbf{x} \cdot \mathbf{x} \ge 0$$

•
$$\mathbf{x} \cdot \mathbf{x} = 0$$
 if and only if $\mathbf{x} = \mathbf{0}$

■
$$|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$$
 (the Cauchy-Schwarz inequality)

■ Prove the Cauchy-Schwarz inequality.

■
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$
 (the triangle inequality)

■ Prove the triangle inequality.

• Matrices

$$\blacksquare A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- Addition A + B
- lacktriangle Scalar Mutiplication αA
- \blacksquare Transposition A^T
- Vectors as Matrices

$$\bullet \mathbf{a} = \langle a_1, a_2, \dots, a_n \rangle = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

$$\bullet \mathbf{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

- Matrix Multiplication
 - If A has m rows and B has n columns, then M = AB is an $m \times n$ matrix.
 - Coordinate ij of M = AB is given by $m_{ij} = \mathbf{a_i} \cdot \mathbf{b_j}$ where $\mathbf{a_i}^T$ is the ith row of A and $\mathbf{b_i}$ is the jth column of B.
 - \blacksquare (Example 4) Compute AB and BA for

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 \blacksquare (Example 5) Compute AB for

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Matrices as Linear Transformations
 - An $m \times n$ matrix A gives a function from \mathbb{R}^n to \mathbb{R}^m : $\mathbf{x} \mapsto A\mathbf{x}$
 - This linear transformation satsifies $A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}$
 - (Example 7) Express A**x** where $x = \langle x_1, x_2, x_3 \rangle$ and $A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$. Then compute where the points (3, -2, 1), (1, 0, 1), (-1, 1, 0), and (-3, 3, 0) in \mathbb{R}^3 get mapped to in \mathbb{R}^4
- Identity and Inverse

- If $AA^{-1} = A^{-1}A = I_n$, then A is invertable and A^{-1} is its inverse.
- Determinant
 - Let A_i be the submatrix of A with the first column and ith row removed. Then $\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{1i} \det(A_i)$
- Suggested HW: 1-18, 21-24

2.3 Differentiation

- Functions $\mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{f}(\mathbf{x}) = \langle f_1(\mathbf{x}), \dots, f_m(\mathbf{x}) \rangle$ where $f_i : \mathbb{R}^n \to \mathbb{R}$
- Partial Derivative Matrix

- Let $\mathbf{T} = \mathbf{Df}(\mathbf{x_0})$. We say \mathbf{f} is differentiable at $\mathbf{x_0}$ if $\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x_0}) + \mathbf{T}\mathbf{x}$ for all \mathbf{x} near $\mathbf{x_0}$.
- $\mathbf{f}(\mathbf{x}_0) + \mathbf{T}\mathbf{x}$ is the equation of the tangent plane for \mathbf{f} at \mathbf{x} .
- (Example) Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{f}(x,y) = \langle x^2 + y^2, xy \rangle$, and let $\mathbf{T} = \mathbf{Df}(1,0)$. Compute $\mathbf{f}(1.1,-0.1)$ and $\mathbf{f}(1,0) + \mathbf{T}\langle 1.1, -0.1 \rangle$.
- If each $\frac{\partial f_i}{\partial x_j}$: $\mathbb{R}^n \to \mathbb{R}$ is a continuous function near \mathbf{x} , then \mathbf{f} is strongly differentiable at \mathbf{x} .
- Gradient
 - If $f: \mathbb{R}^n \to \mathbb{R}$, then the gradient vector function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $\nabla f(\mathbf{x}) = (\mathbf{D}f(\mathbf{x}))^T = \langle \frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x}) \rangle$
 - Let $\mathbf{T} = \mathbf{D} f(\mathbf{x}_0)$. Then $\mathbf{T} \mathbf{x} = \nabla f(\mathbf{x}_0) \cdot \mathbf{x}$
- Suggested HW: 1-21

Remaining Topics

- 2.4 Introduction to Paths and Curves
- 2.5 Properties of the Derivative
- 2.6 Gradients and Directional Derivatives
- 3.2 Taylor's Theorem
- 4.1 Acceleration and Newton's Second Law
- 4.2 Arc Length
- 4.3 Vector Fields
- 4.4 Divergence and Curl
- 5.3 The Double Integral Over More General Regions
- 5.4 Changing the Order of Integration
- 5.5 The Triple Integral
- 6.1 The Geometry of Maps from \mathbb{R}^2 to \mathbb{R}^2
- 6.2 The Change of Variables Theorem
- 7.1 The Path Integral
- 7.2 Line Integrals
- 7.3 Parametrized Surfaces
- 7.4 Area of a Surface
- 7.5 Integrals of Scalar Functions Over Surfaces
- 7.6 Surface Integrals of Vector Fields
- 8.1 Green's Theorem
- 8.2 Stokes' Thoerem
- 8.3 Conservative Fields
- 8.4 Gauss' Theorem