Applied Statistics Lab 1: Developing a Statistical Analysis

Introduction to Statistical Thinking and Data Analysis
MSc in Epidemiology / Health Data Analytics
Autumn 2022

10 October 2022

Today

- Introduction to Applied Statistics Lab (15 minutes)
- Getting to know each other (30 minutes)
- Steps in developing a statistical analysis (15 minutes)
- Group exercise: developing a statistical analysis plan (60 minutes)
 - Hypertension case study
 - Based on CDC Field Epidemiology Training Program (FETP): NCD
 Training Module on Creating an Analysis Plan
 https://www.cdc.gov/globalhealth/healthprotection/fetp/training_modules/9/Creating-Analysis-Plan_PW_Final_09242013.pdf

Applied Stats Lab tutors

Room 1

Katherine

Thomas Wright

Haowei Wang

Bethan Cracknell Daniels

Lucas Cheng

Lanre Edun

Room 2

Applied statistical analysis

- Statistics is the science of:
 - collecting, summarizing, presenting, and interpreting data,
 - estimating the magnitude of associations,
 - testing hypotheses.
- Developing, conducting, and communicating statistics involves each of these components.
- Both written and oral communication are important.
 - Written: journal articles, reports, *mini-project assessments*, *MSc theses*.
 - Oral: Meetings, lectures and seminars, conferences, policy presentations.

Imperial College London Communicating statistical analyses

- Communication of statistical findings almost *never* involves computer code or screen output from statistical programs.
- The exact steps and processes of statistical analysis (R commands run, assumptions checked, etc.) are usually not the focus reporting on an analysis.
- But it is important that the reporting of results communicates that statistical steps have been done properly.
 - This will also be the standard for assessment in this course.

Applied Statistics Lab

- Practice doing statistics:
 - Data preparation and exploratory analysis.
 - Developing an analysis plan.
 - Conducting analysis and interpreting results.
 - Presenting findings.
- Randomly allocated into groups of 4-5 students.
- Three group projects analysing a dataset to address a research question.
 - Continuous outcomes and linear regression
 - Binary data and logistic regression, and
 - Longitudinal data and survival analysis.
- Culminating in 10-minute group presentation of findings (weeks 4, 7, 10).

10 Oct	Developing a statistical analysis plan		
17 Oct	Project 1: Analysis plan and exploratory analysis		
24 Oct	Project 1: Inferential analysis and interpretation of results		
31 Nov	Project 1: Communicating findings (presentation)		
7 Nov	Project 2: Analysis plan and exploratory analysis		
14 Nov	Project 2: Inferential analysis and interpretation of results		
21 Nov	Project 2: Communicating findings (presentation)		
28 Nov	Project 3: Analysis plan and exploratory analysis		
5 Dec	Project 3: Inferential analysis and interpretation of results		
12 Dec	Project 3: Communicating findings (presentation)		

Applied Stats Lab: G64

Tutors: Katherine Davis, Thomas Wright, Haowei Wang

G64				
	Jingxian Huang		Yuchen Xie	
	Elena Venero Garcia		Elin Rowlands	
Group 1	Michaelis Vasiliadis	Group 4	Daniel Adams	
	Jian Chen		Lea Maria Khoueiry	
	Seth Howes		Vaishnavi Shridar	
	Yiyang Shi		Bing Chen	
Group 2	Emmanuelle Kern		Oliver Simmons	
	Anu Bode-Favours	Group 5	Daniel Huntley	
	Ka Ki Lui		Marina Berger	
	Siwei Wu		Wenjia Zhang	
Group 3	Shuhui Li		Mi Ma	
	Pin-Chun Wang		Harrison Goldspink	
	Cameron Appel	Group 6	David Ensor	
	Kheerthiharan Saravanan		Megan Pete	
	Sreenidhi Venkatesh		Wenqi Cho	

Applied Stats Lab: G65

Tutors: Bethan Cracknell-Daniels, Lucas Cheng, Lanre Edun

G65				
	Xihao Cao		Ciara Hamilton	
	Thomas Allwright		Alia Rafiq	
Group 7	Emily Knight	Group 10	Huike Cheng	
	Mehak Gurnani		Ria Sachdeva	
	Xheni Prebibaj		Helena Bicanic-Popovic	
	Chiara Pligersdorffer		Sandra Gudziunaite	
Group 8	Angela Aumonier		Aditya Ramani	
	Fiona Rice	Group 11	Jaidip Gill	
	Nicole Cizauskas		Robert Campbell	
	Yang Shen			
	Mathias Brugel		Juliet Arukwe	
	Abdul-Hakeem Khan		Gillian Sigle-Hall	
Group 9	Gabrielle Provost	Group 12	James Tait	
	Omar Eweis		Samuel Quill	
	Yuju Ahn			

Group introductions

- 1. What are your goals for pursuing MSc in Epidemiology / Health Data Analytics?
- 2. What is your previous experience with medical statistics?
- 3. Desert Island Statisticians*:
 - You're being castaway to work from home during a global pandemic.
 - Everyone gets a copy of Kirkwood & Sterne and a web archive of Stack Overflow.
 - On your way out of the office, allow you to select one more textbook and an essential office item.
 - What's your (1) textbook of choice and (2) essential office item?
- Instructions: Spend 15 minutes in your groups addressing 3 questions.
 - Record your answers to the (1) textbook of choice, and (2) essential office item in a table on 1 PowerPoint slide.
 - Return to your classroom and present your name, textbook, and essential office item.

^{*} If you are not familiar with *Desert Island Disks* on BBC Radio 4, I especially recommend this episode with Bernardine Evaristo: https://www.bbc.co.uk/programmes/m000mrb1

Part 2: Developing a Statistical Analysis Plan

Steps in a statistical analysis

- 1. Identify the research question and hypothesis
- 2. Define target population
- 3. Select the dataset and define inclusion/exclusion criteria.
- 4. Identify variables to be used in main analysis (outcome, main exposure, stratifying variables)
- 5. Define key shell tables

Steps in a statistical analysis

- 1. Conduct exploratory data analysis: understand your dataset.
- 2. Conduct inferential statistics: answer your research question
- 3. Check assumptions and sensitivity analysis: are the findings robust
- 4. Interpret the results: state the conclusion to the research question
 Should be as close to a 'yes'/'no' answer to your hypothesis as possible.
- 5. Contextualize the findings: how do the findings compare to existing evidence.
- 6. Implications for policy and practice

Two types of statistics

Descriptive statistics: Exploratory analysis

- Describe and summarise key features of the dataset
- Understanding the characteristics of a particular sample.

Inferential statistics: Hypothesis driven

- Use data from a sample to draw conclusions about the population.
- Generalizable scientific conclusions that add to general body of knowledge.

Reading a paper

 Scientific papers in medicine, epidemiology, and public health follow a formulaic format that map to the steps of a statistical analysis.

Introduction:

- What is the research question?
- Why is it important?
- What is the target population?

Methods

- Define the dataset
- Inclusion and exclusion criteria
- Statistical methods and assumptions

Reading a paper

- Results
 - 'Table 1': descriptive statistics
 - Statistical inference results: answers to the research questions

Conclusions

- Answer primary research question
- Contextualize findings, compare with other literature
- Implications for policy, practice, future research

Imperial College London Exercise: Hypertension Case Study

- Read the Hypertension Case Study in the handout.
- In your group address and record the following components of the analysis plan:
 - Research question(s) and/or hypotheses.
 - Dataset(s) to be used.
 - Inclusion/exclusion criteria.
 - Variables to be used in the main analysis (List 3-4 outcome and exposure variables).
 - Statistical methods and software to be used.

Hypertension Case Study

- Nutrition transition

 'double disease burden'
- Non-communicable diseases (NCDs) responsible for 60% of deaths worldwide.
 - 80% of NCD deaths occur in low- and middle-income countries (LMIC)
 - 30% occur below age 60 in LMIC vs. <20% in HIC
- Cardiovascular diseases (CVD) are largest cause of death, 30% of all deaths; 50% of NCDs.
 - Behavioural risk factors: tobacco use, physical inactivity, unhealthy diet, harmful use of alcohol
- Effective prevention exists.
 - E.g. reducing sodium consumption

Hypertension Case Study

- Country X—rapidly modernizing nation of 10 million people, growing middle-class.
- Increasing overall life expectancy, but a surprisingly high rate of CVD deaths, especially stroke.
 - Increased use of renal dialysis reported in two southern provinces.
- Traditional diet is generally rich in fresh vegetables, whole grains, and healthy oils.
- Young and middle-aged have increased consumption of meals out of the home.
 - Higher in fat, salt, and processed foods.
- Tremendous expansion of restaurants that serve meals not typical of the traditional diet in the country.

Hypertension Case Study: task

- Health recommendations: particular concern about lack of basic information on hypertension, potential underlying risk factor.
- You are the leader of the Ministry of Health's Chronic Disease Surveillance Unit.
 - MOH request to analyse national health survey data on hypertension, collected every two years for past decade.
 - Provide the report to national and provincial decision makers.

Objectives:

- 1. Better understand magnitude and burden of hypertension.
- 2. Key determinants and underlying factors of this public health burden.

Criteria	Marks (Total 40)
Introduction	
Research question and population of interest identified.	3
Clear motivation for why research is important and rationale for study.	3
Specific objectives and testable hypotheses articulated.	3
Methods	
Dataset, inclusion criteria, and data processing clearly described and suitable to address question.	3
Clear description of analysis plan to adjudicate hypotheses, including clear identification of primary outcome and exposure variables.	3
Clear description of choice of statistical model to address the hypothesis and why chosen.	3

Criteria	Marks
Results	
Appropriate presentation of descriptive statistics; communicated understanding of key relevant features of the study population.	3
Presentation of results inferential statistical analyses proves clear and concise answers to study hypotheses	3
Clear and focused figures and tables used effectively to aid communication of results narrative.	3
Accurate and elegant presentation and interpretation of statistical outcomes and sensitivity analyses.	3
Conclusions	
Clear statement and interpretation of results linked to overall study aims and hypotheses	3
Findings are contextualized and implications for public health practice and research articulated	3
Presentation in allotted time and well paced	2
Overall quality and clarity of presentation slides	2