Generated on 2024-02-13 19:11:08 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW_RP_ONEOBJ

1 OPTIMALMP

1.1 Optimisation problem

$$\max_{p\!:\!H_t, y\!:\!H_t, p\!:\!L_t, y\!:\!L_t} U_t = -0.25 \left(p\!i\!t\!H - p\!i\!t\!C\!B + p\!i\!H_t \right)^2 - 0.25 \left(-p\!i\!t\!C\!B + p\!i\!L + p\!i\!L_t \right)^2 + \beta \mathbf{E}_t \left[U_{t+1} \right] - 0.25 \lambda y\!H_t^{\ 2} - 0.25 \lambda y\!L_t^{\ 2} \tag{1.1}$$

s.t.:

$$piH_{t-1} = \log etapi_{t-1} + \beta piH_t + \kappa yH_{t-1} + \beta (1 - pH) \left(-piH_t + piL_t \right) \quad \left(\lambda_t^{\text{OPTIMALMP}^1} \right)$$

$$(1.2)$$

$$piL_{t-1} = \log etapi_{t-1} + \beta piL_t + \kappa yL_{t-1} + \beta (1 - pL) (piH_t - piL_t) \quad \left(\lambda_t^{\text{OPTIMALMP}^2}\right)$$

$$\tag{1.3}$$

1.2 First order conditions

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{piH}_t - \beta \mathbf{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] + \lambda_t^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - \textit{pH} \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pL} \right) = 0 \quad \left(\textit{piH}_t \right) \tag{1.4}$$

$$-0.5\lambda y H_t + \beta \kappa E_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] = 0 \quad (y H_t)$$
 (1.5)

$$0.5 \textit{pitCB} - 0.5 \textit{pitL} - 0.5 \textit{pitL} - 0.5 \textit{pitL}_t - \beta E_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] + \lambda_t^{\text{OPTIMALMP}^2} \left(\beta - \beta \left(1 - \textit{pL} \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^1} \left(1 - \textit{pH} \right) = 0 \quad \left(\textit{piL}_t \right) \tag{1.6}$$

$$-0.5\lambda y L_t + \beta \kappa E_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] = 0 \quad (yL_t)$$
(1.7)

2 EXOG

2.1 Identities

$$e tapi_t = e^{\epsilon_t^{\pi} + \phi \log e tapi_{t-1}} \tag{2.1}$$

3 Equilibrium relationships (after reduction)

$$-\epsilon t q p i_t + e^{\epsilon_t^{\pi} + \phi \log \epsilon t q p i_{t-1}} = 0 \tag{3.1}$$

$$-0.5\lambda y H_t + \beta \kappa \mathcal{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] = 0 \tag{3.2}$$

$$-0.5\lambda y L_t + \beta \kappa E_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] = 0 \tag{3.3}$$

$$-piH_{t-1} + \log e^{-it} + \beta piH_t + \kappa yH_{t-1} + \beta (1 - pH) (-piH_t + piL_t) = 0$$
(3.4)

$$-p\!i\!L_{t-1} + \log e\!t\!a\!p\!i_{t-1} + \beta p\!i\!L_t + \kappa y\!L_{t-1} + \beta \left(1 - p\!L\right) \left(p\!i\!H_t - p\!i\!L_t\right) = 0 \tag{3.5}$$

$$-0.5 \text{pit}H + 0.5 \text{pit}CB - 0.5 \text{pit}H_t - \beta E_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1}\right] + \lambda_t^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - pH\right)\right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left(1 - pL\right) = 0 \tag{3.6}$$

$$0.5 \text{pitCB} - 0.5 \text{pitL} - 0.5 \text{pitL} - \beta \text{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] + \lambda_t^{\text{OPTIMALMP}^2} \left(\beta - \beta \left(1 - p L \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^1} \left(1 - p H \right) = 0 \tag{3.7}$$

$$U_t + 0.25 \left(pitH - pitCB + piH_t \right)^2 + 0.25 \left(-pitCB + pitL + piL_t \right)^2 - \beta E_t \left[U_{t+1} \right] + 0.25 \lambda y H_t^2 + 0.25 \lambda y L_t^2 = 0$$

$$(3.8)$$

4 Steady state relationships (after reduction)

$$-\operatorname{dispi}_{ss} + e^{\phi \log \operatorname{dispi}_{ss}} = 0 \tag{4.1}$$

$$-0.5\lambda y H_{ss} + \beta \kappa \lambda_{ss}^{\text{OPTIMALMP}^{1}} = 0 \tag{4.2}$$

$$-0.5\lambda y L_{ss} + \beta \kappa \lambda_{ss}^{\text{OPTIMALMP}^2} = 0 \tag{4.3}$$

$$-piH_{ss} + \log etapi_{ss} + \beta piH_{ss} + \kappa yH_{ss} + \beta (1 - pH) (-piH_{ss} + piL_{ss}) = 0$$

$$(4.4)$$

$$-piL_{ss} + \log etapi_{ss} + \beta piL_{ss} + \kappa yL_{ss} + \beta (1 - pL) (piH_{ss} - piL_{ss}) = 0$$

$$(4.5)$$

$$-0.5 \text{pit} H + 0.5 \text{pit} CB - 0.5 \text{pit} H_{ss} - \beta \lambda_{ss}^{\text{OPTIMALMP}^1} + \lambda_{ss}^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - pH\right)\right) + \beta \lambda_{ss}^{\text{OPTIMALMP}^2} \left(1 - pL\right) = 0 \tag{4.6}$$

$$0.5 pitCB - 0.5 pitL - 0.5 pitL_{ss} - \beta \lambda_{ss}^{\text{OPTIMALMP}^2} + \lambda_{ss}^{\text{OPTIMALMP}^2} \left(\beta - \beta \left(1 - pL\right)\right) + \beta \lambda_{ss}^{\text{OPTIMALMP}^1} \left(1 - pH\right) = 0 \tag{4.7}$$

$$U_{\rm ss} + 0.25 \left(pitH - pitCB + piH_{\rm ss} \right)^2 + 0.25 \left(-pitCB + pitL + piL_{\rm ss} \right)^2 - \beta U_{\rm ss} + 0.25 \lambda y H_{\rm ss}^2 + 0.25 \lambda y L_{\rm ss}^2 = 0 \tag{4.8}$$

5 Parameter settings

$$\beta = 0.99 \tag{5.1}$$

$$\kappa = 0.2465 \tag{5.2}$$

$$\lambda = 0.04106 \tag{5.3}$$

$$\phi = 0.95 \tag{5.4}$$

$$ptH = 2 (5.5)$$

$$pilCB = 2 (5.6)$$

$$pitL = 4 (5.7)$$

$$pH = 0.99 \tag{5.8}$$

$$pL = 0.99 \tag{5.9}$$

$$\sigma = 1 \tag{5.10}$$

$$\theta = 6 \tag{5.11}$$

 \sim

6 Steady-state values

	Steady-state value
etapi	1
$\lambda^{ ext{OPTIMALMP}^1}$	0.0068
$\lambda^{ m OPTIMALMP^2}$	-0.0136
piH	-0.0004
piL	-1.9996
$y\!H$	0.0803
yL	-0.1614
U	-0.0334

7 The solution of the 1st order perturbation

Matrix P

Matrix Q

$$\begin{array}{c} \epsilon tapi \\ piH \\ piL \\ yH \\ yL \\ -49.4067 \\ yL \\ -24.5717 \end{array}$$

Matrix R

Matrix S

$$\begin{array}{c} \epsilon^{\pi} \\ \lambda^{\mathrm{OPTIMALMP^1}} \\ \lambda^{\mathrm{OPTIMALMP^2}} \begin{pmatrix} -49.4067 \\ -24.5717 \\ U \end{pmatrix} \end{array}$$

8 Model statistics

8.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
$\lambda^{ ext{OPTIMALMP}^1}$	0.0068	6.7345	45.3534	Y
$\lambda^{ m OPTIMALMP^2}$	-0.0136	3.3493	11.2178	Y
$p\!i\!H$	-0.0004	9.6383	92.8973	Y
$p\!i\!L$	-1.9996	0.0019	0	Y
$y\!H$	0.0803	6.5317	42.6626	Y
yL	-0.1614	3.2484	10.5523	Y
U	-0.0334	0.4442	0.1973	Y

8.2 Correlation matrix

	etapi	$\lambda^{ ext{OPTIMALMP}^1}$	$\lambda^{ m OPTIMALMP^2}$	piH	piL	$y\!H$	yL	U
etapi	1	-0.999	-0.999	-0.677	-0.677	-1	-1	-1
$\lambda^{ ext{OPTIMALMP}^1}$		1	1	0.71	0.71	1	1	0.999
$\lambda^{ m OPTIMALMP^2}$			1	0.71	0.71	1	1	0.999
piH				1	1	0.688	0.688	0.677
$p\!i\!L$					1	0.688	0.688	0.677
$y\!H$						1	1	1
yL							1	1
U								1

8.3 Cross correlations with the reference variable (pH)

	$\sigma[\cdot]$ rel. to $\sigma[piH]$	piH_{t-5}	piH_{t-4}	piH_{t-3}	pH_{t-2}	piH_{t-1}	piH_t	piH_{t+1}	piH_{t+2}	piH_{t+3}	piH_t
$etapi_t$	0.014	-0.211	-0.404	-0.626	-0.849	-0.972	-0.677	-0.429	-0.226	-0.064	0.06
$\lambda_t^{ ext{OPTIMALMP}^1}$	0.699	0.202	0.396	0.621	0.849	0.982	0.71	0.462	0.253	0.084	-0.0
$\lambda_t^{ ext{OPTIMALMP}^2}$	0.347	0.202	0.396	0.621	0.849	0.982	0.71	0.462	0.253	0.084	-0.0
$p\!i\!H_t$	1	0.005	0.162	0.357	0.588	0.83	1	0.83	0.588	0.357	0.16
$p\!i\!L_t$	0	0.005	0.162	0.357	0.588	0.83	1	0.83	0.588	0.357	0.16
yH_t	0.678	0.208	0.402	0.625	0.849	0.976	0.688	0.44	0.235	0.07	-0.0
$y\!L_t$	0.337	0.208	0.402	0.625	0.849	0.976	0.688	0.44	0.235	0.07	-0.0
U_t	0.046	0.211	0.404	0.626	0.849	0.973	0.677	0.43	0.227	0.064	-0.0

8.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
$\lambda^{ ext{OPTIMALMP}^1}$	0.74	0.498	0.291	0.122	-0.011
$\lambda^{ m OPTIMALMP^2}$	0.74	0.498	0.291	0.122	-0.011
piH	0.83	0.588	0.357	0.162	0.005
$p\!i\!L$	0.83	0.588	0.357	0	0
$y\!H$	0.722	0.48	0.278	0.114	-0.015
yL	0.722	0.48	0.278	0.114	-0.015
U	0.714	0.472	0.272	0.11	-0.016

9 Impulse response functions

Figure 1: Impulse responses $(pi\!H, pi\!L, y\!H, y\!L)$ to ϵ^π shock