

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 01-261989

(43)Date of publication of application : 18.10.1989

(51)Int.CI.

H04N 11/04

H03M 1/12

H04N 7/137

(21)Application number : 63-090799

(71)Applicant : CANON INC

(22)Date of filing : 13.04.1988

(72)Inventor : ISHII YOSHISUE

SHIMOKOORIYAMA MAKOTO

(54) METHOD FOR PROCESSING COLOR VIDEO SIGNAL

(57)Abstract:

PURPOSE: To efficiently encode a block on the two kinds of color difference signals by block-encoding the color difference signal information-compressed by sub-sampling.

CONSTITUTION: The data of a luminance signal Y read from a blocking circuit 10 are block-encoded in an encoding circuit 12 and are outputted after cutting down an information quantity. On the other hand, color signals CN and CW digitalized at A/D converters 14 and 16, respectively, are sub-sampled in FOSS circuits 18 and 20. The sub-sampled color difference signals CN and CW are time-multiplexed by a multiplexing circuit 21. The multiplex signals of the CN and CW outputted from the multiplexing circuit 21 are arranged-converted every block involving the CN and CW by a blocking circuit 23 and are supplied to an encoding circuit 25. The multiplex signals of the CN and CW block-encoded in the encoding circuit 25 are time-axis-multiplexed in a multiplexing circuit 30 with the block-encoded luminance signal.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

る。

この高能率符号化方式の1つの例として1画面を($n \times m$)個の標本点からなる符号化ブロックに分割し、各ブロック内の各画素の相間を用いて画質劣化を伴わずに情報の圧縮を行うブロック符号化がある。このブロック符号化は最も相間の高い画素を用いて符号化を行えるので画質の劣化も小さく、かつ符号誤りの伝播が各ブロック内のみに抑えられるという点で有利である。

【発明が解決しようとする問題点】

そこで、本発明は2種の色差信号と輝度信号とよりなるコンポーネントビデオ信号を伝送または記録再生する場合に、2種の色差信号についても効率よくブロック符号化を行い得る新規なカラービデオ信号処理方法を提示せんとするものである。

【問題点を解決するための手段】

かかる目的下に於て、本発明のカラービデオ信号処理方法にあっては、2種類のデジタル色

差信号の夫々についてサブサンプリングを行い、サブサンプリングされた2種類の色差信号と共に含む($n \times m$)サンプル(n, m は夫々2以上の整数)のブロック毎に符号化を行う。

【作用】

上述の如くすることで、サブサンプリングによって情報圧縮された色差信号について、ブロック符号化を施すため、圧縮率が極めて高く、かつブロック内の画素密度が高くブロック内の画素は高い相関性を有するため良好な符号化を行いうことが可能となった。

【実施例】

以下、本発明の実施例について説明する。

第1図は本発明の方法の一実施例としてのカラービデオ信号の伝送システムの概略構成を示す図である。図中2は輝度信号(Y)の入力端子、4, 6は夫々色差信号(Cu, Cv)の入力端子である。入力された輝度信号はA/D変換器8で標本化され、ブロック化回路10に入力される。ブロック化回路10はラスター走査

3

順のデジタル輝度信号を(4×4)画素のブロック毎に読み出す回路である。

第2図はブロック化回路の動作を説明するための図で、図中実線は第1フィールドの走査線、破線は第2フィールドの走査線を夫々示し、一点鉛線はブロックの境界を示す。即ちブロック化回路10は○内に示す画素番号で1→2→3→4→17→18→19→20→…→9→10→11→12→25→26→27→28→…の順で入力されたデータを1→2→3→4→5→6→7→8→9→…の順で出力する。

符号化回路12ではブロック化回路10から読み出されたデータをブロック符号化して、情報量(1画素当たりのビット数)を削減した後、出力する。

他方、入力端子4, 6から入力された色差信号Cu, Cvは夫々A/D変換器14, 16で輝度信号の4倍の周波数のサンプリングクロックでデジタル信号に変換される。デジタル化され

4

た色差信号Cu, Cvは次段のフィールドオフセットサブサンプリング回路(F OSS)18, 20にてサブサンプリングされる。このF OSS 18, 20に於ける出力画素と間引き画素の位置関係を第3図に示す。第3図に於ても実線は第1フィールドの走査線、破線は第2フィールドの走査線であり、○は後段へ伝送する画素、×は間引き画素である。各画素間の間隔が輝度信号の4倍であることは勿論である。サブサンプリングされた、色差信号Cu, Cvは多重化回路21によって時間多重される。この時F OSS 18, 20に於ける色差信号Cu, Cvの夫々の伝送画素は第4図(a)の如く同一でも、第4図(b)の如く異なってもよい。第4図中○はCuの伝送画素、△はCvの伝送画素、×はCu, Cv共間引く画素を示す。但し、第4図(a)の如き同一画素に於けるCu, Cvを多重する場合であっても時間多重するため結局第4図(b)の如きシフトした画素に於けるCu, Cvを交互に伝送する

5

—660—

6

場合と同様のデータ系列が多重化回路 21 から出力される。

多重化回路 21 から出力される C_u , C_v の多重信号はブロック化回路 23 に供給され、ブロック化回路 10 の場合と同様に C_u , C_v を含むブロック毎に配列変換されて符号化回路 25 に供給される。

符号化回路 25 でブロック符号化された色差信号 C_u , C_v の多重信号は更にブロック符号化された輝度信号と多重化回路 30 で時間軸多重され端子 32 を介して通信機、磁気録再機等の伝送路 34 へ送出される。

尚、ブロック符号化の方式としては、例えば直交変換符号化、ベクトル量子化、およびブロック内の最大値及び最小値と各要素毎これらの間を線形量子化した量子化インデックスを伝送する符号化等、ブロック内の相関を利用した符号化方式を適用できる。

上述の如き構成によれば、サブサンプリングした色差信号をブロック符号化したので、高い

圧縮率の情報圧縮が可能でかつ各符号化ブロックの大きさはそれほど大きくならない。この場合、1つのブロック内に C_u , C_v の両方の信号が含まれており、これらを同時にブロック符号化することになるが、一般に、色差信号 C_u , C_v 間には高い相関性があり、ブロックの大きさを小さくすることでブロック内の根本点間の相関性を高くできる。

次に復号系について説明する。

伝送路 34 を介したカラービデオ信号は端子 36 を介して分離化回路 38 に供給され輝度信号と、色差信号 C_u , C_v の多重信号に分離される。これらは夫々ブロック復号化回路 40, 43 に供給され、符号化回路 1-2, 25, と逆の処理により復号され、情報量を元に戻す。復号された輝度信号、色差信号 C_u , C_v の多重信号は夫々ラスター化回路でブロック順から走査順へと配列変換される。

ラスター化された色差多重信号は色差分離回路 51 で C_u , C_v に分離され、分離された色

差信号 C_u , C_v は補間回路 52, 54 で間引かれていた画素を補間した後、D/A 変換器 58, 60 に入力され、輝度信号についてはラスター化回路 46 の出力がそのまま D/A 変換器 56 に供給される。この時、D/A 変換器 56 の動作周波数は D/A 変換器 58, 60 の 4 倍であり、これらの D/A 変換器 56, 58, 60 でアナログ化された輝度信号、色差信号 C_u , C_v はコンポーネントカラービデオ信号として端子 62, 64, 66 から出力される。

第 5 図は本発明の他の実施例としてのカラービデオ信号伝送システムの構成を示す図で、第 1 図のシステムの構成の一部を変更したものである。第 5 図中、第 1 図と同様の構成要素については同一番号を付し説明は省略する。

第 5 図中、A/D 変換器 14, 16 から出力された色差信号 C_u , C_v は夫々前置フィルタ 15, 17 に供給され、後段の画素間引のパターンに対応する帯域制限が行われる。この処

理は、周知の様にスペクトラムの折返しによる妨害を防止するために行われている。前置フィルタ 15, 17 から出力される色差信号 C_u , C_v はデータセレクタ 21 の 2 つの入力端子に供給され、バターン信号発生回路 19 から出力されるサブサンプリングバターン信号に応じて選択的に出力される。例えば第 4 図 (b) に示す如き C_u , C_v の各画素を出力したい場合には、バターン信号は色差信号の 1 サンプル期間毎にセレクタ 21 が出力データを切り換える様、1 サンプル期間毎に反転する信号である。また、ラスター化回路 49 から出力される色差信号 C_u , C_v の多重信号は、データセレクタ 53 の B 側端子、データセレクタ 55 の A 側端子に夫々供給される。他方データセレクタ 53 の A 側端子、データセレクタ 55 の B 側端子には "0" サンプルデータが供給されている。データセレクタ 53, 55 はバターン信号発生回路 19 が出力するバターン信号と同一のバターン信号を出力するバターン信号発生回路

50からの出力により制御され、データセレクタ53がA側の入力信号を出力している時データセレクタ55もA側の入力信号を出力する構成となっている。即ちデータセレクタ53、55から出力される信号は間引かれた画素を“0”サンプルと置換した色差信号C_u、C_vであり、これらは前置フィルタ15、17と同一の帯域制限を行う補間フィルタ57、59に供給することにより元の信号が再生されることになる。この様な構成でも第1図のシステムと同様の効果が得られる。

尚、上述実施例ではサブサンプリングをフィールドオフセットサブサンプリングとしたが、サブサンプリングのパターンはこれに限定されるものではない。例えば第6図(a)、(b)に示す如きサブサンプリングのパターンとすることも可能である。尚、第6図(a)、(b)に於て実線、破線、○及び△の持つ意味は第4図(a)、(b)の場合と全く同様である。

1 1

第4図(a)、(b)は夫々色差信号C_u、C_vの伝送画素の位置関係を示す図。

第5図は本発明の他の実施例としてのカラービデオ信号伝送システムの概略構成を示す図。

第6図(a)、(b)は色差信号C_u、C_vの伝送画素の位置関係の他の例を示す図である。

図中4、6…色差信号入力端子

18、20…フィールドオフセットサブサンプリング回路

21…多重化回路

23…プロック化回路

25…プロック符号化回路

1 2

また、上述実施例に於ける符号化プロックのサイズは(4×4)画素の場合を説明したが、一般に(n×m)画素(n≥2, m≥2)であれば同様の効果が得られ、これらn、mの値は符号化方式、データ圧縮率の要求等によって任意に決定できるものである。

【発明の効果】

以上、説明した様に本発明によれば、色差信号について画質を劣化させず極めて高い圧縮率での情報圧縮が可能なカラービデオ信号処理方法が得られる。

4. 図面の簡単な説明

第1図は本発明の方法の一実施例としてのカラービデオ信号伝送システムの概略構成を示す図。

第2図は第1図中のプロック化回路の動作を説明するための図。

第3図はフィールドオフセットサブサンプリング回路による出力画素と間引画素の位置関係を示す図。

出願人 キヤノン株式会社

代理人 丸島義一

第 1 図

第 2 図

第 3 図

(a)

(b)

○ : C_W

△ : C_N

× : 間引きサンプル点

第 4 図

第 5 図

(a)

(b)

○ : C_W

△ : C_N

第 6 図