Introduction

OSI is more time consuming than TCP/IP as it has more layers and so there is more time taken when changing between layers

Definition: Distributed Systems

A collection of independent components, including

- Hardware
- Software Components
- Web services

Which work together and appear to its users as a single coherent system

Duplicated components in distributed systems allow for redundancy if one of them fails

The front end is a server and selects which component will serve the request

It is not economical to get all the components to process the request if there are duplicated components.

1 Comparison

Networks:

- Focus on the method and implementation of communication
- Data transmission: addressing, scheduling, quality control and error recovery

Distributed Systems:

- Components: heterogeneous (OS, H/W, S/W), physically loosely coupled, but are required to collaborate
- System architecture: transparency (hide the components from the user so it acts as one system, think transparency as in invisible), performance, reliability
- Network technology: means to connect and organise DS components

2 Applications of distributed systems

- Rapid system development, reuse existing components or services
- Construct low cost and scalable system: link up many low cost machines to work together as a coherent system
- Improve system reliability or availability: based on redundant components

3 Design issues

Network issues:

- Highly variable bandwidth
- Possibly large and variable latency

Distributed event issues:

- No native support to clock synchronization among hosts
- Difficult to ensure data consistency

System failure issue:

• Unpredictable failures of components, may be due to failure of a network component or communication delay incurred on the communication path

Security issues

- Centralized systems:
 - Can rely on physical security
 - Users understand what trust to assign to the system
 - System administrators are responsible
- Distributed systems:
 - None of the above applies
 - Hard to know what is being trusted or what can be trusted

4 Transparency requirement

Hide the separation of components or their organisation and changes

Types of transparency	Description
Access	Hide differences in data representations and how a
	component is accessed
Location	Hide where a component is located
Migration	Hide that a component or a resource may move to
	another location(content distribution network)
Relocation	Hide that a component or a resource may be moved to
	another location while in use (caching)
Replication	Hide that a component or a resource may have multiple
-	copies(provide fast or local access)
Concurrency	Hide that a resource may be shared by several
	competitive users(handle shared resources)
Failure	Hide the failure and recovery of a resource or a
	component