INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Date 22.02.2007 FN Time: 2 Hrs. Full Marks: 35 No. of Students: 19 Spring Semester: 2007 Department: Computer Science and Engineering Sub. No: CS 60078 Sub. Name: Complex Network Theory

You can score 36 if you try hard !!!

Question 1

The following question is with respect to the society of actors in Bollywood. You are presented with the a set of data below

Movie (M)	Actors that have participated in M
MHN	SK, SAK, PZ
BLK	AB, RM
SN	SAK, PZ
KKKG	AB, SK, K, KK
BAZG	SK, K
DDLJ	SK, K
DN	SK, KK
EKLV	AB, SAK

i) Represent the above data of the movies and the actors in the form of a network N_B . What is the name for this special category of networks?

[2.5+0.5=3]

ii) Which actor has participated in the largest number of movies? How many? How does this map to a specific property of N_B . What is the probability that an actor chosen uniformly at random from the above set has done a) exactly two movies b) at least two movies?

$$[0.5+0.5+0.5+1.5+1.5=4.5]$$

iii) Suppose that a movie analyst wants to now build another network N_W which represents the actors and the relationship in terms of their co-acting in movie(s). What are the nodes and edges of N_W ? Illustrate the steps clearly to obtain N_W given N_B ?

[0.5+1.5=2]

- iv) Given that N_W is a weighted network find out an exact expression for the average weighted-degree (sum of the edge-weights incident on a node) of its nodes assuming,
 - a) all movies cast an equal number $(= \mu)$ of actors and there are n movies and m actors in all
 - b) each movie $\mathbf{M_i}$ casts $\boldsymbol{\mu_i}$ number of actors and there are \boldsymbol{n} movies and \boldsymbol{m} actors in

For each of the above cases (a) and (b) also compute the average number of movies that an actor participates. What do these values boil down to in N_B ?

[1.5+1.5+2.5=5.5]

Question 2

- a) Find out the betweenness centrality of a clique.
- b) Find out the clustering coefficient of a clique.

[1+1=2]

Ouestion 3

The questions enlisted below are related to the Wasserman-Faust network shown in Fig. 1.

Fig. 1. Wasserman-Faust network

- a) How many structurally equivalent classes can you find in this network?
- b) What are these classes? List them through arguments.
- c) Compute the similarity between the nodes by means of
 - i) Pearson's correlation coefficient
 - ii) Euclidian distance

and present the result in a tabular form.

- d) Which of the nodes are most similar in each of the above cases (i and ii)?
- e) Suppose that the graph in Fig.1. described a franchise group of hamburger restaurants. Actor A is the central headquarters, actors B, C, and D are the managers of three different stores. Actors E and F are workers at one store; G, H, I are the workers at a second store; J and K are workers at the third store.
 - i) Is there any kind of similarity pattern that you observe between the actors B and D? What is it better known as?
 - ii) You can group the nodes into classes based on this similarity. Through arguments list these classes.
 - iii) Identify some other example(s) where this kind of a similarity features quite often.

$$[1+2+5+1+(1+2+1)]$$

Question 4

Explain the execution of the *Radicchi et al.* algorithm with the help of this network. Draw each step separately and form a dendogram. [6]