# League of Legends Diamond Ranked Games (10 min)

Etap pierwszy: Zrozumienie problemu + Zrozumienie danych

| Ogólny opis zbioru danych     |    |
|-------------------------------|----|
| Potencjalne zastosowania:     |    |
| Cele eksploracji danych       |    |
| Cel eksploracji               | 2  |
| Kryteria sukcesu              | 2  |
| Charakterystyka zbioru danych | 2  |
| Opis atrybutów                |    |
| Eksploracyjna analiza danych  | 4  |
| Rozkłady wartości atrybutów   |    |
| Rozkład zmiennej docelowej    |    |
| Korelacje pomiędzy atrybutami | 16 |
| Macierz korelacji             | 19 |
| Ocena jakości danych          | 20 |
| Brakujące dane                | 20 |
| Niespójne dane                | 20 |
| Dane niezrozumiałe            | 20 |
| Wnioski                       | 30 |
| Ocena realizacji celów        | 30 |
| Rewizje celów                 | 30 |
| Dodatkowe cele                |    |
| Podsumowanie                  | 31 |

# Ogólny opis zbioru danych

Zbiór danych zawiera informacje o grach z wysokiej dywizji diamentu w League of Legends, koncentrując się na statystykach z pierwszych 10 minut rozgrywki. Dane te są szczególnie wartościowe, ponieważ pokazują wczesne etapy gry, które często determinują jej ostateczny wynik.

**Źródło**: Kegale

Kategoria: Gry, e-sport

Zawartość: Statystyki z gier rankingowych Diamond w League of Legends

**Horyzont czasowy**: Pierwsze 10 minut każdej gry **Zmienna docelowa**: Wynik gry (wygrana/przegrana)

#### Potencjalne zastosowania:

- Analiza czynników we wczesnej fazie gry wpływających na zwycięstwo
- Badanie wpływu pierwszych 10 minut gry na ostateczny wynik
- Tworzenie modeli predykcyjnych do przewidywania wyniku gry na podstawie początkowych statystyk
- Badanie wzorców strategicznych w grach wysokiej rangi

# Cele eksploracji danych

#### Cel eksploracji

- Identyfikacja kluczowych czynników z pierwszych 10 minut gry, które najsilniej wpływają na końcowy wynik rozgrywki.
- Budowa skutecznego modelu predykcyjnego, który na podstawie statystyk z pierwszych 10 minut pozwoli przewidzieć zwycięzcę meczu.
- Odkrycie istotnych wzorców i zależności strategicznych w początkowej fazie gry na wysokim poziomie rozgrywek.

### Kryteria sukcesu

- Wyodrębnienie statystycznie istotnych predyktorów wyniku gry
- Stworzenie modelu o dokładności predykcji powyżej 70%
- Wykrycie nietrywialnych zależności między zmiennymi

# Charakterystyka zbioru danych

| Parametr         | Wartość                                                                    |
|------------------|----------------------------------------------------------------------------|
| Format           | CSV (Comma-Separated Values)                                               |
| Liczba rekordów  | 9879 gier                                                                  |
| Liczba atrybutów | 40 zmiennych (włączając ID gry i<br>zmienną docelową)                      |
| Struktura        | Jednolity zbiór danych, gdzie każdy<br>wiersz reprezentuje jedną rozgrywkę |
| Zmienna docelowa | blueWins (czy niebieska drużyna<br>wygrała grę - wartości 0/1)             |

# Opis atrybutów

| Grupa<br>atrybutów     | Nazwa atrybutu                    | Тур       | Opis                                                             | Jednostka/Zakres              |
|------------------------|-----------------------------------|-----------|------------------------------------------------------------------|-------------------------------|
| ldentyfikacj<br>a      | gameld                            | Liczbowy  | Unikalny<br>identyfikator<br>gry                                 | Dodatnia liczba<br>całkowita  |
| Wynik                  | blueWins                          | Nominalny | Czy drużyna<br>niebieska<br>wygrała mecz                         | 0=nie, 1=tak                  |
| Zabójstwa i<br>śmierci | blueKills / redKills              | Liczbowy  | Liczba<br>zabójstw<br>zdobytych<br>przez drużynę                 | Nieujemna liczba<br>całkowita |
|                        | blueDeaths / redDeaths            | Liczbowy  | Liczba śmierci<br>w drużynie                                     | Nieujemna liczba<br>całkowita |
|                        | blueAssists /<br>redAssists       | Liczbowy  | Liczba asyst<br>zdobytych<br>przez drużynę                       | Nieujemna liczba<br>całkowita |
|                        | blueFirstBlood /<br>redFirstBlood | Nominalny | Czy drużyna<br>zdobyła<br>pierwsze<br>zabójstwo                  | 0=nie, 1=tak                  |
| Ekonomia               | blueTotalGold /<br>redTotalGold   | Liczbowy  | Całkowita ilość<br>złota<br>zdobytego<br>przez drużynę           | Nieujemna liczba<br>całkowita |
|                        | blueGoldPerMin /<br>redGoldPerMin | Liczbowy  | Średnia ilość<br>złota<br>zdobywana na<br>minutę                 | Liczba<br>rzeczywista         |
|                        | blueGoldDiff                      | Liczbowy  | Różnica w<br>złocie między<br>drużyną<br>niebieską a<br>czerwoną | Liczba całkowita              |

| Rozwój    | blueAvgLevel /                                                        | Liczbowy | Średni poziom                                                           | Liczba                               |
|-----------|-----------------------------------------------------------------------|----------|-------------------------------------------------------------------------|--------------------------------------|
| postaci   | redAvgLevel                                                           |          | bohaterów w<br>drużynie                                                 | rzeczywista > 1                      |
|           | blueTotalExperien<br>ce /<br>redTotalExperienc<br>e                   | Liczbowy | Całkowita ilość<br>doświadczenia<br>zdobytego<br>przez drużynę          | Nieujemna liczba<br>całkowita        |
|           | blueExperienceDif<br>f                                                | Liczbowy | Różnica w<br>doświadczeniu<br>między drużyną<br>niebieską a<br>czerwoną | Liczba całkowita                     |
| Farmienie | blueTotalMinionsK<br>illed /<br>redTotalMinionsKil<br>led             | Liczbowy | Całkowita<br>liczba zabitych<br>minionów                                | Nieujemna liczba<br>całkowita        |
|           | blueTotalJungleMi<br>nionsKilled /<br>redTotalJungleMi<br>nionsKilled | Liczbowy | Całkowita<br>liczba zabitych<br>potworów w<br>dżungli                   | Nieujemna liczba<br>całkowita        |
|           | blueCSPerMin /<br>redCSPerMin                                         | Liczbowy | Średnia liczba<br>minionów<br>zabijanych na<br>minutę                   | Nieujemna liczba<br>rzeczywista      |
| Obiekty   | blueTowersDestro<br>yed /<br>redTowersDestroy<br>ed                   | Liczbowy | Liczba<br>zniszczonych<br>wież<br>przeciwnika                           | Liczba całkowita z<br>przedziału 0-3 |
|           | blueEliteMonsters<br>/ redEliteMonsters                               | Liczbowy | Liczba zabitych<br>elitarnych<br>potworów                               | Nieujemna liczba<br>całkowita        |
|           | blueDragons /<br>redDragons                                           | Liczbowy | Liczba zabitych<br>smoków                                               | Liczba całkowita z<br>przedziału 0-2 |
|           | blueHeralds /<br>redHeralds                                           | Liczbowy | Liczba zabitych<br>heroldów                                             | Liczba całkowita z<br>przedziału 0-1 |
| Wizja     | blueWardsPlaced<br>/ redWardsPlaced                                   | Liczbowy | Liczba<br>postawionych<br>totemów<br>(wardów)                           | Nieujemna liczba<br>całkowita        |
|           | blueWardsDestroy<br>ed /<br>redWardsDestroy                           | Liczbowy | Liczba<br>zniszczonych<br>totemów                                       | Nieujemna liczba<br>całkowita        |

| ed | przeciwnika |
|----|-------------|
|----|-------------|

# Eksploracyjna analiza danych

# Rozkłady wartości atrybutów





















# Rozkład zmiennej docelowej



Rozkład zmiennej blueWins jest prawie zbalansowany z niewielką przewagą porażek drużyny niebieskiej (4930 gier wygranych i 4949 gier przegranych).

## Korelacje pomiędzy atrybutami



Najsilniejsze korelacje ze zmienną docelową blueWins wykazują:

- blueGoldDiff → 0,51
- blueExperienceDiff → 0,49
- blueTotalGold → 0,41
- blueGoldPerMin → **0,41**
- blueTotalExperience → 0,40
- blueAvgLevel → **0,36**
- blueKills → 0,34
- redDeadths → 0,22



Najsilniejsze korelacje ujemne ze zmienną docelową blueWins:  $redGoldDiff \rightarrow \textbf{-0,51}$   $redExperienceDiff \rightarrow \textbf{-0,49}$ 



**Przewaga ekonomiczna jest kluczowa** - różnice w złocie (redGoldDiff i blueGoldDiff) są zdecydowanie najważniejszymi czynnikami wpływającymi na wygraną według modelu Random Forest.



Dla obu zmiennych różnicowych, krzywe rozkładów przecinają się w okolicy wartości zero, co wskazuje, że wyrównany stan ekonomiczny (blueGoldDiff  $\approx$  0) lub doświadczenia (blueExperienceDiff  $\approx$  0) daje podobne szanse obu drużynom. Dla gier wygranych przez drużynę niebieską (blueWins = 1) rozkłady są przesunięte w prawo

(wartości dodatnie), a dla przegranych (blueWins = 0) w lewo (wartości ujemne), co jest zgodne z intuicją - drużyna z przewagą zasobów ma większe szanse na zwycięstwo.

#### Macierz korelacji



Widoczne są wyraźne grupy atrybutów z silną korelacją między sobą, szczególnie w obrębie podobnych metryk dla tej samej drużyny. Najbardziej zauważalne grupy to:

**Metryki złota:** Silna korelacja między blueTotalGold, blueGoldPerMin i blueGoldDiff oraz analogicznie dla drużyny czerwonej (redTotalGold, redGoldPerMin, redGoldDiff). To logiczne powiązanie, gdyż wszystkie te zmienne opisują ekonomię w grze, a wyższe całkowite złoto przekłada się naturalnie na wyższe złoto na minutę.

**Metryki doświadczenia:** Wysoka korelacja między blueTotalExperience, blueAvgLevel, blueExperienceDiff oraz odpowiednikami dla drużyny czerwonej. Wynika to z mechaniki gry - zdobywanie doświadczenia bezpośrednio przekłada się na poziom bohaterów.

**Zabójstwa i śmierci:** Zauważalna jest silna ujemna korelacja między blueKills a redDeaths oraz redKills a blueDeaths, co jest zrozumiałe, gdyż zabójstwo bohatera z jednej drużyny oznacza śmierć dla drugiej drużyny.

Silna korelacja między zmiennymi różnicowymi a zmienną docelową blueWins - szczególnie widoczna dla blueGoldDiff i blueExperienceDiff. To potwierdza kluczową

rolę przewagi ekonomicznej i przewagi poziomów w pierwszych 10 minutach dla ostatecznego wyniku gry.

# Ocena jakości danych

Zbiór danych jest ogólnie wysokiej jakości, z niewielką liczbą braków i niespójności. Zidentyfikowane problemy jakościowe nie powinny znacząco wpływać na wnioski. Dane są wystarczające do osiągnięcia głównych celów analizy, choć z pewnymi ograniczeniami

Analiza spójności danych wykazała, że zbiór cechuje się wysoką jakością. Oto kluczowe obserwacje:

- Liczba zabójstw uzyskanych przez jedną z drużyn zawsze odpowiada liczbie śmierci drugiej – warunek ten jest spełniony.
- W każdej rozgrywce dokładnie jedna drużyna zdobywa FirstBlood ta zasada także została zachowana.
- Średnia wartość bezwzględnej różnicy między wskaźnikami *blueGoldDiff* oraz *redGoldDiff* wynosi dokładnie 0.0.

#### Brakujące dane

Nie znaleziono.

## Niespójne dane

Nie znaleziono.

#### Dane niezrozumiałe

- Niejasna definicja "elitarnych potworów" (czy zawiera smoki i heroldy, czy jest to osobna kategoria)
- Brak informacji o wybieranych bohaterach i rolach graczy
- Niejasność co do dokładnej wersji gry i patcha

| Atrybut | Wykres pudełkowy |
|---------|------------------|
|---------|------------------|





















## Wnioski

## Ocena realizacji celów

#### Identyfikacja kluczowych czynników - Cel osiągnięty:

- Zidentyfikowano najważniejsze predyktory wyniku gry: różnica w złocie, zabójstwa, kontrola obiektów
- Określono wartości graniczne dla poszczególnych metryk, które znacząco zwiększają prawdopodobieństwo wygranej

#### Budowa modelu predykcyjnego - Dane wystarczające:

- Dostępne cechy mają istotną wartość predykcyjną (zwłaszcza zmienne różnicowe)
- Wstępne testy sugerują możliwość osiągnięcia dokładności predykcji >70%

#### Odkrycie wzorców strategicznych - Cel częściowo osiągnięty:

- Zidentyfikowano kilka istotnych wzorców dotyczących kontroli mapy i celów
- Brak danych o konkretnych bohaterach i kompozycjach drużyn ogranicza głębszą analizę strategiczną

#### Rewizje celów

#### Dodatkowe cele

- Porównanie skuteczności różnych stylów gry (agresywny vs pasywny) w fazie wczesnej
- 2. Określenie optymalnego rozkładu zasobów między liniami (top, mid, bot, jungle)
- 3. Identyfikacja punktów przełomowych w pierwszych 10 minutach gry

## Podsumowanie

Na początku przeprowadzono analizę rozkładów, z której wynika, że większość atrybutów numerycznych w zbiorze danych League of Legends nie ma rozkładów normalnych, wykazując lekką asymetrię. Zmienna docelowa (blueWins) jest niemal zbalansowana, z niewielką przewagą zwycięstw drużyny czerwonej (51% vs 49%).

Najsilniejszymi predyktorami wyniku gry okazały się być: blueGoldDiff (r=0,51), BlueExperienceDiff (r=0,49), blueTotalGold (r=0,42), blueGoldPerMin (r=0,42), blueTotalExperience (r=0,40), blueAvgLevel (r=0,35), blueKills (r=0,34), blueEliteMonsters (r=0,22) oraz blueDragons (r=0,21). Warto zauważyć, że zmienne różnicowe (goldDiff, expDiff) mają generalnie wyższą wartość predykcyjną niż wartości bezwzględne dla pojedynczych drużyn.

Korelacje te mają uzasadnienie w mechanice gry - przewaga ekonomiczna (złoto) pozwala na wcześniejsze zakupy silniejszych przedmiotów, co przekłada się na przewagę w walkach drużynowych. Podobnie, wyższy średni poziom bohaterów zwiększa ich siłę bojową, a kontrola elitarnych potworów zapewnia dodatkowe bonusy dla całej drużyny.

W ramach oceny jakości danych wykryto punkty oddalone, szczególnie w statystykach zabójstw i różnicy złota, które jednak reprezentują rzeczywiste, choć rzadkie, ekstremalne scenariusze gry i powinny zostać zachowane w analizie. Główną niedoskonałością zbioru jest brak informacji o wybieranych bohaterach i rolach graczy, co ogranicza głębszą analizę strategiczną.

Biorąc pod uwagę stosunkowo dobrą jakość danych oraz silne korelacje kluczowych metryk z wynikiem gry, cel eksploracji jest możliwy do spełnienia. Zidentyfikowane predyktory powinny pozwolić na stworzenie skutecznego modelu przewidującego zwycięzcę meczu na podstawie statystyk z pierwszych 10 minut gry, z szacowaną dokładnością powyżej 70%. Potencjalnym rozszerzeniem analizy byłoby zbadanie wpływu różnych stylów gry (agresywny vs pasywny) na prawdopodobieństwo wygranej oraz określenie optymalnego rozkładu zasobów między różne role w drużynie.