Logistic Regression

Example- Bank dataset

Target Variable "y" is in categorical format.

Summary →

age	balance	day	duration	campaign	pdays	previous
Min. :18.00	Min. : -8019	Min. : 1.00	Min. : 0.0	Min. : 1.000	Min. : -1.0	Min.: 0.0000
1st Qu.:33.00	1st Qu.: 72	1st Qu.: 8.00	1st Qu.: 103.0	1st Qu.: 1.000	1st Qu.: -1.0	1st Qu.: 0.0000
Median :39.00	Median: 448	Median :16.00	Median : 180.0	Median : 2.000	Median : -1.0	Median: 0.0000
Mean :40.94	Mean : 1362	Mean :15.81	Mean : 258.2	Mean : 2.764	Mean : 40.2	Mean : 0.5803
3rd Qu.:48.00	3rd Qu.: 1428	3rd Qu.:21.00	3rd Qu.: 319.0	3rd Qu.: 3.000	3rd Qu.: -1.0	3rd Qu.: 0.0000
Max. :95.00	Max. :102127	Max. :31.00	Max. :4918.0	Max. :63.000	Max. :871.0	Max. :275.0000

There is significant difference between mean and median of some variables in the dataset.

marital	education	default	housing	loan	contact	poutcome	У
divorced: 5207	primary: 6851	no :44396	no :20081	no :37967	cellular :29285	failure: 4901	no :39922
married :27214	secondary:23202	yes: 815	yes:25130	yes: 7244	telephone: 2906	other: 1840	yes: 5289
single :12790	tertiary:13301				unknown :13020	success: 1511	
	unknown: 1857					unknown:36959	

From the above information default and y categories are not balanced.

job	month		
blue-collar:9732	may :13766		
management :9458	jul : 6895		
technician :7597	aug : 6247		
admin. :5171	jun : 5341		
services :4154	nov : 3970		
retired :2264	apr : 2932		
(Other) :6835	(Other): 6060		

Box Plot →

Splitting of data into train and test

Train = 31648 & Test = 13563

Model-1 Building →

 $glm(formula = y \sim ., family = binomial(link = "logit"), data = Train_B)$

<u>AIC: 15017</u>

Plot of wrong prediction (Red) v/s actual prediction (Green)

Confusion Matrix >

no yes FALSE 11660 1065 TRUE 287 551

Efficiency → 0.900317

Influence Plot

Model-2 Building →

 $\label{eq:model_B2} \begin{array}{lll} \text{model_B2} & <- \text{ glm}(y\sim.,\text{data} = \text{Train_B[-influence_B1,-c(1,14,5)],family} = \text{"binomial"}) \\ & \underline{\text{AIC: } 15010} \end{array}$

Confusion Matrix →

yes 1067 549 FALSE 11659 TRUE 288

Efficiency → 0.9000958

Comparison between Model-1 and Model-2 →

Model No	AIC	Efficiency	F1 Scores
Model-1	15017	0.900317	0.945201
Model-2	15010	0.9000958	0.9452817

From the above information we can infer that there is no significant difference between Model-1 and Model-2. But we have considered many insignificant variables in Model-1 and only significant variables in Model-2.

So our Model-2 is final model as best model.