# Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des SLCI

**Sciences** Industrielles de l'Ingénieur

**TD 99** 



# Quille pendulaire \*

Concours Commun Mines Ponts 2014

Savoirs et compétences :

# Mise en situation

Objectif L'objectif de proposer un correcteur permettant de vérifier l'ensemble des critères du cahier des charges.

# Modélisation du vérin

**Question** 1 Donner les expressions des fonctions de transfert  $A_1$ ,  $A_2$ ,  $A_3$  et  $A_4$  en fonction de la variable complexe p et des constantes.

**Correction** D'une part, on transforme les équations dans le domaine de Laplace :  $Q(p) = SpX(p) + \frac{V}{2R}p\Sigma(p)$  et  $Mp^2X(p) = S\Sigma(p) - kX(p) - \lambda pX(p) - F_R(p)$ .

En utilisant le schéma-blocs, on a  $\Sigma(p) = A_2(A_1Q(p) - X(p)) = A_1A_2Q(p) - A_2X(p)$ .

Par ailleurs  $\Sigma(p) = \frac{Q(p) - SpX(p)}{\frac{V}{2B}p} = Q(p)\frac{2B}{Vp} - X(p)\frac{S2B}{V}$ . On a donc  $A_2 = \frac{S2B}{V}$ ,  $A_1A_2 = \frac{2B}{Vp}$  soit  $A_1 = \frac{S2B}{V}$ 

 $\frac{}{Vp}\frac{}{S2B} = \frac{}{Sp}$ 

On a aussi  $X(p) = A_4 \left( -F_R(p) + A_3 \Sigma(p) \right) = -A_4 F_R(p) + A_3 A_4 \Sigma(p)$ . Par ailleurs,  $X(p) \left( M p^2 + \lambda p + k \right) = S \Sigma(p) - F_R(p) \Leftrightarrow X(p) = \frac{S \Sigma(p)}{M p^2 + \lambda p + k} - \frac{F_R(p)}{M p^2 + \lambda p + k}$ . On a donc :  $A_4 = \frac{1}{M p^2 + \lambda p + k}$  et  $A_3 = S$ . Au final,  $A_1 = \frac{1}{Sp}$ ,  $A_2 = \frac{S2B}{V}$ ,  $A_3 = S$  et  $A_4 = \frac{1}{M p^2 + \lambda p + k}$ .

**Question** 2 Donner les expressions des fonctions de transfert  $H_1$  et  $H_2$  en fonction de  $A_1$ ,  $A_2$ ,  $A_3$  et  $A_4$ , puis de la variable p et des constantes.

Correction Méthode 1: Utilisation des relations précédentes On a  $X(p) = (H_1Q(p) - F_R(p))H_2(p)$ .

Par ailleurs, on a vu que  $X(p) = A_4(-F_R(p) + A_3\Sigma(p))$  et  $\Sigma(p) = A_2(A_1Q(p) - X(p))$ .

On a donc  $X(p) = A_4(-F_R(p) + A_3A_2(A_1Q(p) - X(p))) \Leftrightarrow X(p)(1 + A_2A_3A_4) = A_4(-F_R(p) + A_3A_2A_1Q(p))$ . On a

donc  $H_1(p) = A_1 A_2 A_3$  et  $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$ 

Méthode 2 : Lecture directe du schéma-blocs Revient à utiliser la méthode précédente.

Méthode 3 : Algèbre de schéma-blocs Le schéma-blocs proposé est équivalent au schéma suivant.



1

On retrouve le même résultat que précédemment.



$$A_1 = \frac{1}{Sp}, A_2 = \frac{S2B}{V}, A_3 = S \text{ et } A_4 = \frac{1}{Mp^2 + \lambda p + k}.$$
 En faisant le calcul on obtient :  $H_1(p) = \frac{2BS}{pV}$  et  $H_2 = \frac{\frac{1}{Mp^2 + \lambda p + k}}{1 + \frac{2BS^2}{V} \frac{1}{Mp^2 + \lambda p + k}} = \frac{1}{Mp^2 + \lambda p + k + \frac{2BS^2}{V}}.$ 

**Question 3** Pour ce vérin non perturbé  $(F_R = 0)$ , donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

Correction Dans ce cas, 
$$\frac{X(p)}{Q(p)} = H_1(p)H_2(p)\frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$$
.

# Modélisation de la servo valve : comportement pour une commande de grande amplitude

**Question** 4 À l'aide de la caractéristique de la servovalve :

- 1. justifier ce palier et donner la valeur numérique de  $K_{SV}$ ;
- 2. indiquer sur la figure l'intervalle de temps où le retour d'information a une influence sur la commande du vérin et celui où il n'en a pas. Associer à chacun de ces intervalles le modèle utile : modèle en « boucle fermée » ou en « boucle ouverte ».

**Correction** En début de simulation, il y a une saturation du débit à  $20 \times 10^{-3}$  m<sup>3</sup>s<sup>-1</sup>. La tension de commande en régime saturé étant de 10 V, on a  $K_{SV} = 2 \times 10^{-3}$  m<sup>3</sup>s<sup>-1</sup>V<sup>-1</sup>.

Jusqu'à 1,9 seconde, le retour n'a aucune influence sur la commande. On est donc en BO. Au delà, la régulation entre en en jeu. On est donc en BF.

**Question** 5 Montrer, en précisant la ou les exigences mises en défaut, que le cahier des charges n'est pas respecté au niveau des critères « vérifiables ».

#### Correction

| Exigences                                              | Niveau    | Simulation                          | Validation |
|--------------------------------------------------------|-----------|-------------------------------------|------------|
| Stabilité :                                            |           |                                     |            |
| C11 : Marge de gain                                    | 10 dB     | _                                   | -          |
| C12 : Dépassement vis-à-vis d'une entrée en échelon    | Aucun     | Dépassement faible                  | NON        |
| Rapidité :                                             |           |                                     |            |
| C21 : Temps de réponse à 5 %                           | 4 s maxi  | ≥2.5s                               | OUI        |
| C22 : Vitesse angulaire de rotation de la quille       | 8°/s maxi | $\simeq 20 \mathrm{^{\circ}s^{-1}}$ | NON        |
| Précision                                              |           |                                     |            |
| C3 : Erreur statique vis-à-vis d'une entrée en échelon | Nulle     | Difficile à mesurer                 | _          |

# Comportement pour une commande de faible amplitude

**Question** 6 Pour l'entrée définie ci-dessus, déterminer la valeur de la tension v(t) à l'instant initial  $t = 0^+$ ,  $v(0^+)$ . Expliquer succinctement que tout au long de ce fonctionnement, la servovalve fonctionnera sans saturer.

**Correction** En BO, on va avoir  $v(0^+) = 5 \cdot K_C' = 5.5$  V.  $v(0^+) < 10$  V. On est ici en BO. La tension ne peut donc pas dépasser la tension de saturation.

Question 7 De quelle hypothèse générale d'étude des systèmes asservis ce constat participe-t-il?

Correction Pour de telles tension, on est donc en régime linéaire.

**Question** 8 Tracer sur les figures suivantes les diagrammes d'amplitude asymptotiques de Bode de  $H_{BO}(p)$  en indiquant les valeurs numériques associées aux points particuliers et la valeur des pentes.



Correction On a: 
$$H_{BO}(p) = \frac{2.2}{p(1+0.12p+0.04p^2)}$$
. En conséquences,  $\frac{1}{\omega_0^2} = 0.04$  et  $\omega_0 = 5$  rad s<sup>-1</sup> et  $\frac{2\xi}{\omega_0} = 0.12 \Leftrightarrow \xi = 0.3$ 

On a donc une asymptote de  $-20\,\mathrm{dB/decade}$  pour  $\omega < 5\,\mathrm{rad}\,\mathrm{s^{-1}}$  et  $-60\,\mathrm{dB/decade}$  pour  $\omega > 5\,\mathrm{rad}\,\mathrm{s^{-1}}$ .

De plus, pour  $\omega = 5 \text{ rad s}^{-1}$ , on a  $20 \log \frac{2,2}{5} = -7.1 \text{ dB}$ .

**Question** 9 Déterminer par calcul la pulsation de résonance  $\omega_r$  de cette fonction de transfert.

Correction On a 
$$\omega_r = \omega_0 \sqrt{1 - 2\xi^2} = 5 \times \sqrt{1 - 2 \times 0.3^2} \simeq 4.5 \,\mathrm{rad}\,\mathrm{s}^{-1}$$
.

**Question 10** Évaluer littéralement puis numériquement à cette pulsation  $\omega_r$  la différence, notée  $\Delta K$  et exprimée en dB, entre l'amplitude de résonance et l'amplitude évaluée par le diagramme asymptotique.

**Question** 11 Tracer sur la figure précédente, l'allure des diagrammes d'amplitude et de phase (asymptotiques et allure de la courbe réelle) de Bode de ce correcteur pour  $K_{COR} = 1$ . Préciser les expressions littérales des pulsations caractéristiques.

**Correction** On a 
$$b > 1$$
 donc  $T < bT$  et  $\frac{1}{T} > \frac{1}{bT}$ .

Pour  $\omega < \frac{1}{hT}$  on a donc un gain de pente nulle et un déphasage nul.

Pour  $\frac{1}{hT} < \omega < \frac{1}{T}$  on a donc un gain de pente -20 dB/decade et un déphasage de -180°.

Pour  $\omega > \frac{1}{T}$  on a donc un gain de pente 0 dB/decade et un déphasage de 0°.

**Question 12** Déterminer alors en fonction de b, l'amplitude  $|C(j\omega^*)|_{dB}$  à la pulsation notée  $\omega^*$ .

$$|C(j\omega^*)|_{\mathrm{dB}} = 10\log\frac{1+T^2\frac{1}{T^2b}}{1+b^2T^2\frac{1}{T^2b}} = 10\log\frac{1+\frac{1}{b}}{1+b} = 10\log\frac{1}{b}\frac{1+b}{1+b} = -10\log b.$$

**Question 13** Pour  $K_{COR} = 1$ , en faisant correspondre la pulsation de résonance  $\omega_r$  de  $H_{BO}$  à  $\omega^*$ :

- calculer b pour que « l'excès » de gain  $\Delta K$  soit compensé par le correcteur et calculer la valeur de T ;
- calculer le supplément de déphasage introduit par le correcteur à la pulsation  $\omega^*$ .

Correction D'une part, on veut que  $\left|C\left(j\omega^*\right)\right|_{\mathrm{dB}} = -4.8$  soit  $10\log b = 4.8$  et b = 3.02. D'autre part,  $\omega^* = \omega_r$  et  $T = \frac{1}{\omega_r\sqrt{b}} = 0.127\,\mathrm{s}$ .

Par ailleurs, on a donc  $\phi(\omega^*) = \arcsin\left(\frac{1-b}{1+b}\right) = \arcsin\left(\frac{1-3,02}{1+3,02}\right) \simeq -28,79^\circ$ .

#### Validation du cahier des charges

**Question 14** Déterminer la vitesse de rotation angulaire maximale de la quille obtenue avec ce réglage du correcteur. Validez les exigences 2.2.1 et 2.2.2 en laissant vos constructions apparentes.

**Correction** En regardant où la courbe a la pente la plus importante, on a apporximativement  $2/0, 5 \simeq 4^{\circ}/s$ .  $t_5\% \simeq 2.3 \, \text{s} < 4 \, \text{s} \ 4^{\circ}/s < 8^{\circ}/s$ . CDCF validé.

**Question 15** Conclure en utilisant le diagramme ci-dessous.



# Correction

#### Domaine du client

«requirement»
Vitesse angulaire

Id = "2.2.2" Text = "Vitesse angulaire de la quille inférieure à 8°/s."

«requirement»
Temps de réponse

ld = "2.2.1" Text = "T5% < 4 s."

Hypothèse de linéarisation du modèle

Modèle initial

Pour être dans des conditions où le modèle et linéaire, la consigne doit être inférieure à 5°. Domaine de la modélisation

Modèle linéaire Correcteur proportionnel C(p) = 0,44

$$\omega_{quille} = 20^{\circ}/s$$
 Ecart = +12  $^{\circ}/s$ 

 $T_{5\%} = 2.5 s$ Ecart = -1.5 s.  $\checkmark$   $\begin{aligned} & \text{Modèle linéaire} \\ & \text{Correcteur retard de phase} \\ & \textit{C}(p) = \textit{K}_{\textit{COR}} \frac{1+0,127~p}{1+3\times0,127~p} \end{aligned}$ 

$$\omega_{quille}$$
 = 4°/  $s$   
Ecart = 4°/s OK

$$T_{5\%} = 2,3 \ s$$
  
Ecart = -1,7 s OK