Statistics

Hao

Review of Statistics ¹

Jasmine(Yu) Hao

Faculty of Business and Economics Hong Kong University

September 2, 2021

¹This section is based on Stock and Watson (2020), €hapter 3. (≥)

Estimators

Suppose you want to understand the distribution of X in the population.

- \triangleright When a statistic $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ is a function of an i.i.d. sample, then the distribution is determined by the population distribution is F and the sample size is n.
- \triangleright We call the distribution of $\hat{\theta}$ the **sample distribution**.

The goal of an estimator $\hat{\theta}$ is to learn about the parameter θ , we evaluate the

- The exact bias and variance.
- ▶ The distribution under normality.
- \triangleright The asymptotic distribution as $n \to \infty$.

Statistical

Confiden

Example of

Example of Hypothesis Testin

t-distribution

_

Goodness of Estimators

Let $\hat{\theta}$ be an estimator of θ . Then

- ▶ The bias of $bias(\hat{\theta})$ is $E[\hat{\theta}] \theta$.
 - ♦ We say an estimator is **unbiased** if the bias is 0.
- ightharpoonup The **mean squared error** of an estimator $\hat{\theta}$ for θ is

$$\mathit{mse}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2].$$

 \diamond The mean squared error is $mse(\hat{\theta}) = var(\hat{\theta}) + (bias(\hat{\theta}))^2$.

BLUE

Best Unbiased Estimator

Definition 1 (Best Linear Unbiased Estimator (BLUE))

If $\sigma^2 < \infty$ the sample mean \bar{X}_n has the lowest variance among all linear unbiased estimators of μ .

.

Estimation of Sample Mean

Testing

Hypothesis

Type I and Type

Statistical

Confide

Interval

Hypothesis Testin

t-distribution

Bias, consistency, and efficiency

- \triangleright Suppose Y_1, \ldots, Y_n are i.i.d.
- \triangleright Denote an estimator for μ_Y as $\hat{\mu}_Y$.
- ▶ The bias of $\hat{\mu}_Y$ is $E(\hat{\mu}_Y) \mu_Y$.
- $\triangleright \hat{\mu}_Y$ is an **unbiased** estimator of $\hat{\mu}_Y$ if $E(\hat{\mu}_Y) = \mu_Y$.
- $\triangleright \hat{\mu}_Y$ is an **consistent** estimator of $\hat{\mu}_Y$ if $\hat{\mu}_Y \rightarrow_p \mu_Y$.
- ▶ Let $\tilde{\mu}_Y$ denote another estimator for μ_Y , and suppose both $\bar{\mu}_Y$ and $\tilde{\mu}_Y$ are consistent. Then $\hat{\mu}_Y$ is more efficient if $var(\hat{\mu}_Y) < var(\tilde{\mu}_Y)$.

Estimation of Sample Mean

 \triangleright the law of large numbers states that $\bar{Y} \rightarrow_{p} \mu_{Y}$, \bar{Y} is consistent.

 $\triangleright E(\bar{Y}) = \mu_Y$, so \bar{Y} is an unbiased estimator of μ_Y .

▷ Consider $\tilde{Y} = \frac{1}{n} (\frac{1}{2} Y_1 + \frac{3}{2} Y_2 + ...)$, then

 \triangleright \overline{Y} is the Best Linear Unbiased Estimator for μ_Y .

 $var(\tilde{Y}) = 1.25\sigma_Y^2/n > var(\bar{Y}) = \sigma_Y^2/n$. \bar{Y} is more efficient than

イロト 不倒 トイラト イラト

Latimator

Estimation of Sampl Mean

Hypoth

Hypothesis

Type I and Type

Signific

Confiden

Interval

Example of Hypothesis Testin

a disasticuation

Reference

 \triangleright A point hypothesis is the statement that θ equals a specific value θ_0 .

- ightharpoonup A common example is θ measures the effect the proposed policy. A typical question is whether $\theta=\theta_0$.
- ▶ The **null hypothesis**, written as H_0 : $\theta = \theta_0$.
- ▶ The **alternative hypothesis**, written as H_A : $\theta \neq \theta_0$, is the set $\{\theta \in \Theta : \theta \neq \theta_0\}$.
 - ♦ **One-sided** hypothesis: H_A : $\theta > \theta_0$.
 - ♦ **Two-sided** hypothesis: H_A : $\theta \neq \theta_0$.

Hypoth Testing

Hypothesis

Type I and Type

Statistic Significa

Confiden

Example of

Hypothesis Testi

t-distribution

Reference

Acceptance and Rejection

- ▶ A hypothesis test is a decision based on data. We can either fail to reject the null hypothesis or reject the null hypothesis.
- ▷ An alternative way to express a decision rule is to construct a real-valued function of the data called a **test statistics**

$$T = T(X_1, \ldots, X_n)$$

together with a critical region C.

- A hypothesis can be expressed as
 - ⋄ Fail to reject H_0 if T ∈ C.
 - ⋄ Reject H_0 if $T \notin C$.

Note: "Accept" H_0 does not mean H_0 is true.

Estimator

BLUE

stimation of Sampl

Hypothe Testing

Hypothesis

Type I and Typ

Statistica

C--64--

Interval

Example of Hypothesis Test

t-distribution

Reference

Example - Hypothesis Testing I

Consider the following examples:

- ightharpoonup 2n adults who were raised in similar settings, n attended early childhood education. Let \bar{W}_1 be the average wage in the early childhood education group, and let \bar{W}_2 be the average wage in the remaining sample. Null hypothesis $H_0: \bar{W}_1 > \bar{W}_2$.
- \triangleright You ride each bus once and record the time it takes to travel from home to the university. Let X_1 and X_2 be the two recorded travel times. You adopt the following decision rule: If the absolute difference in travel times is greater than B minutes you will reject the hypothesis that the average travel times are the same, otherwise you will accept the hypothesis.

Statistics

Hao

DILLE

stimation of Sample

Hypothesis

Hypothesis

Type I and Ty

Statistical

Significance

Interval

Example of

t-distributi

Reference

Example - Hypothesis Testing II

(a) Early Childhood Education Example

(b) Bus Travel Example

stimators

BLUE

Estimation of Sampl

Testing

Hypothes

Type I and Type II

Statistical Significant

Confidence Interval

Example of

Hypotnesis Test

t-distribution

Reference

Type I and Type II error

- ▶ A false rejection of the null hypothesis is a **Type I error**.
- ▶ A false acceptance of the alternative hypothesis is a **Type II** error.

	Accept H_0	Reject <i>H</i> ₀			
H_0 true	Correct Decision	Type I Error			
H_1 true	Type II Error	Correct Decision			

Statistical Significance

- \triangleright the sample average \overline{Y} will rarely be exactly equal to the hypothesized value $\mu_{Y,0}$.
- \triangleright Differences between \bar{Y} and $\mu_{Y,0}$ can arise because
 - \diamond the true mean is not $\mu_{Y,0}$ (the null hypothesis is false) or
 - \diamond the true mean equals $\mu_{Y,0}$ (the null hypothesis is true) but \bar{Y} differs from $\mu_{Y,0}$ because of random sampling.
- certainty.

Estimators

Latimatora

Estimation of Sampl

Testing

Hypothes

Type I and Type

Statistical Significance

Confiden

Example of Hypothesis Testin

..,,,------

t-distributio

t-distributio

With a sample of data

- \triangleright cannot conclude if H_0 Is true.
- □ can do probabilistic calculation that permits testing the null hypothesis in a way that accounts for sampling uncertainty.
- ▶ How?compute the p-value of the null hypothesis.

Statistical

Significance

▶ The p-value, also called the **significance probability**, is the probability of drawing a statistic at least as adverse to the **null hypothesis** as the one you actually computed in your sample, assuming the null hypothesis is correct.

▶ In the case at hand, the p-value is the probability of drawing Y at least as far in the tails of its distribution under the null hypothesis as the sample average you actually computed.

 $\triangleright p - \text{value} = Pr(|\bar{Y} - \mu_{Y,0}| > |\bar{Y}^{act} - \mu_{Y,0}|)$

Statistical

Significance

Example I

In a sample of recent college graduates, the average wage is \$22.64. The p-value is the probability of observing a value of Y at least as different from \$20 (the population mean under the null hypothesis) as the observed value of \$22.64 by pure random sampling variation, assuming that the null hypothesis is true.

- \triangleright If this p-value is small (say, 0.1%), unlikely that this sample drawn if the null hypothesis is true;
 - reasonable to conclude that the null hypothesis is not true.
- ▶ if this p-value is large (say, 40%), likely that the observed sample average of \$22.64 could have arisen just by random sampling variation if the null hypothesis is true;
 - the evidence against the null hypothesis is weak in this probabilistic sense, (fail to reject)

- ▶ To compute the p-value, need to know the shape of the distribution.
- \triangleright With CLT, the sampling distribution of \overline{Y} is well approximated by a normal distribution

When σ_{Y} is known, then we can compute the p-value

- \triangleright Recall: By CLT, $(\bar{Y} \mu_Y)/\sqrt{\sigma_{\bar{Y}}} \rightarrow_d N(0,1)$, then $\sqrt{n}(\bar{Y}-\mu_Y) \rightarrow_d N(0,\sigma_Y^2).$
- Under the null hypothesis,

$$p-\mathsf{value} = Pr(\left|rac{ar{Y}-\mu_{Y,0}}{\sigma_{ar{Y}}}
ight| > \left|rac{ar{Y}^{\mathsf{act}}-\mu_{Y,0}}{\sigma_{ar{Y}}}
ight|) = 2\Phi(-\left|rac{ar{Y}^{\mathsf{act}}-\mu_{Y,0}}{\sigma_{ar{Y}}}
ight|),$$

 \triangleright where Φ is the standard normal cumulative distribution function.

Statistical Significance

Computing p-value

- ▶ Suppose we are interested in testing the null hypothesis in $H_0: \mathbb{E}(X) = \mu$ with the alternative hypothesis $H_A: \mathbb{E}(X) \neq \mu$. Two-sided test.
- \triangleright We observe the realization of X_1, \ldots, X_n as x_1, \ldots, x_n .
- \triangleright Note that \bar{X} is a function of X_1, \ldots, X_n , which are i.i.d., therefore is a random variable.

- ▷ Under H_0 , the distribution of $\frac{\bar{X} \mathbb{E}(X)}{\sigma_{\bar{X}}} \sim N(0, 1)(\mathsf{CLT})$.
- $\triangleright p = 1 \mathbb{P}\left(\left|\frac{\bar{X} \mathbb{E}(X)}{\sigma_{\bar{Y}}}\right| < \left|\frac{\bar{X} \mathbb{E}(X)}{\sigma_{\bar{Y}}}\right|\right).$

Issue: $\sigma_{\bar{x}}$ unknown.

Statistical Significance

If the following assumptions hold:

- 1. X_1, \ldots, X_n are i.i.d.
- 2. $\mathbb{E}(X_i) < \infty$.

The sample variance is computed

$$\bar{s}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

- $\triangleright \mu$ is unknown, need to be estimated.
- $\triangleright \mathbb{E}((X-\bar{X})^2) \to \frac{n-1}{n}\sigma.$
- ▶ The sample variance is a consistent estimator of the population variance.

Locimacoro

Estimation of Sampl

Testing

Hypothes

Type I and Type

Statistical Significance

Confiden

Interval

Example of Hypothesis Testir

t-distributio

- -----

Sample Variance - Example

- \triangleright When Y_1, \ldots, Y_n are i.i.d. draws from a Bernoulli distribution with success probability p,
- \triangleright the formula for the variance of \bar{Y} simplifies to p(1-p)/n,
- ▶ The formula for the standard error also takes on a simple form that depends only on Y and n: $SE(\bar{Y}) = \sqrt{\bar{Y}(1-\bar{Y})} > n$.

Statistical

Significance

The standardized sample average can be constructed using

$$t = \frac{\bar{X} - \mu}{\sqrt{\bar{s}^2}}.$$

With the sample of x_1, \ldots, x_n , we can compute the sample *t*-statistic tsample

The p-value is given by

$$p$$
-value = $2\Phi(-|t^{sample}|)$.

Estimator

BLUE Estimation of Sam

Mean

Testing Hypothes

Type I and Type

error Statistical

Significance

Example of Hypothesis Testir

t-distribution

When construct hypothesis test, can fix a significance level.

- \triangleright α -significance test means the tolerance to make Type I error is α .
- $\triangleright \alpha$ is referred to as the **size** of the test.

Suppose the two-sided test has the **significance level** of α , the rule is "**Reject** H_0 if $|t^{sample}| > 1 - \Phi^{-1}(\alpha/2)$ ".

$$\alpha = 1\%, 1 - \Phi^{-1}(\alpha/2) = 2.58.$$

$$\alpha = 5\%, 1 - \Phi^{-1}(\alpha/2) = 1.96.$$

$$\alpha = 10\%, 1 - \Phi^{-1}(\alpha/2) = 1.64.$$

stimators

BLUE Estimation of Samp

Hypothes Testing

Type I and Type error

Statistical Significance

Confidence Interval

Example of Hypothesis Testin

t-distributio

Confidence Interval I

- > random sampling error makes it impossible to learn the exact value of the population mean
- ▶ it is possible to construct a set of values that contains the true population mean with a certain prespecified probability.
- \triangleright It's called **confidence set**, the prespecified probability that μ_Y is contained in this set is called the **confidence level**.
- ▶ The confidence set for μ_Y turns out to be all the possible values of the mean between a lower and an upper limit, so that the confidence set is an interval, called a **confidence interval**.
- ▶ The **coverage probability** of a confidence interval for the population mean is the probability, computed over all possible random samples, that it contains the true population mean.

Confidence Interval

Confidence Interval II

A 95\% two-sided confidence interval for mY is an interval constructed so that it contains the true value of mY in 95% of all possible random samples. When the sample size n is large, 90%, 95%, and 99% confidence intervals for mY are:

- \triangleright 90% confidence interval for $\mu_Y = \bar{Y} \pm 1.64 SE(\bar{Y})$
- \triangleright 95% confidence interval for $\mu_Y = \bar{Y} \pm 1.96 SE(\bar{Y})$
- \triangleright 99% confidence interval for $\mu_Y = \bar{Y} \pm 2.58 SE(\bar{Y})$

Confidence

Interval

▶ consider the problem of constructing a 95% confidence interval for the mean hourly earnings of recent college graduates using a hypothetical random sample of 200 recent college graduates where

- $\bar{Y} = \$22.64 \text{ and } se(\bar{Y}) = 1.28.$
- ▶ The 95% confidence interval for mean hourly earnings is $22.64 \pm 1.96 \times 1.28 = (20.13, 25.15).$
- ▶ The **coverage probability** of a confidence interval for the population mean is the probability, computed over all possible random samples, that it contains the true population mean

BLUE

Mean

Hypothe Testing

Hypothesis

Type I and Type

Statistical

Confidence

Interval

Example of Hypothesis Testin

t-distributio

References

Confidence Interval (More general sense) I

We are interested in learning a parameter of interest θ from i.i.d. random sample of X_1, \ldots, X_n .

- ▶ With random sampling error, it's impossible to learn the exact value of the parameter of interest.
- ightharpoonup Construct a **confidence set**: the parameter of interested has $1-\alpha$ probability to fall into the confidence set.
- ▶ The coverage probability of the interval estimator is the probability that the random interval contains the true parameter.
 - \diamond An $1-\alpha$ asymptotic confidence interval for a parameter has the asymptotic coverage probability $1-\alpha$.

Locillia

Estimation of Sampl

Hypothe Testing

Hypothes

Type I and Type

Statistical

Significan

Confidence Interval

Example of

Hypothesis Testir

t-distribut

References

Confidence Interval (More general sense) II

A normal-based $1-\alpha$ confidence interval is

$$CI = [\hat{\theta} - Z_{1-\alpha/2}s(\hat{\theta}), \hat{\theta} + Z_{1-\alpha/2}s(\hat{\theta})],$$

where $\hat{\theta}$ is the estimator for θ and $se(\hat{\theta})$ is the estimated standard deviation. $Z_{1-\alpha/2}$ is the $1-\alpha/2$ -quantile of a normal distribution.

Test for Difference Between Two Groups I

Suppose we observe the i.i.d sample $W_1, \ldots, W_{n_1}, \ldots, W_n$.

- ightharpoonup Sample W_1,\ldots,W_{n_1} are the monthly wage of graduates with master's degree, let μ_1 denote the population mean and σ_1^2 the population variance of group 1.
- Sample W_{n_1+1}, \ldots, W_n are the monthly wage of graduates with bachelor's degree, let μ_2 denote the population mean and σ_2^2 the population variance of group 2.
- ▷ Let $n_2 = n n_1$.
- $\vdash H_0: \mu_1 \mu_2 > d_0, H_1: \mu_1 \mu_2 \leq d_0$, with significance level of α .

Statistical

Confiden

Example of Hypothesis Testing

Hypothesis Testii

t-distribution

References

Test for Difference Between Two Groups

- \triangleright The parameter of interest is $\theta = \mu_1 \mu_2$.
- ▶ Let \overline{W}_1 and \overline{W}_2 be the estimated sample mean and s_1^2 and s_2^2 be the estimated sample variance for group 1 and group 2.
- ightharpoonup The standard error of $\hat{ heta}=ar{W}_1-ar{W}_2$ is $se(\hat{ heta})=\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$.
- ightharpoonup We construct the t-statistic as $t=rac{\hat{ heta}-d_0}{\operatorname{se}(\hat{ heta})}$.
- \triangleright We reject H_0 if $t > Z_{1-\alpha}$.

Example of Hypothesis Testing

Social Class or Education? Childhood Circumstances and Adult Earning I

This example is based on the example in SW2020 Chapter 3, p.p. 122.

Qualification	Father's NS-SEC = Higher			Father's NS-SEC = Routine			Difference, Higher vs. Routine			
	Yh	sh	n _h	Yr	Sp	n _r	$Y_h - Y_r$	$SE(Y_h - Y_r)$	95% Cor Interv	nfidenc al for <i>d</i>
None	£2,223.13	£2,115.12	1129	£1,842.98	£1,48729	6383	£380.15	£65.64	£251.38	£508.9
GCSE/O-Level	£2,837.18	£1,819.73	1962	£2,596.93	£1,738.47	4042	£240.25	£49.35	£143.49	£337.0
A-Level	£3,045.99	£2,451.81	1216	£2,745.70	£1,912.50	1169	£300.30	£89.85	£124.11	£476.4
Undergraduate degree or more	£3,690.51	£2,743.55	4359	£3,370.96	£2,443.58	2505	£319.55	£64.11	£193.86	£445.2
All categories	£3,215.71	£2,497.73	8666	£2405.45	£1,886.86	14099	£810.25	£31.18	£749.13	£871.3

Figure

stimator

BLUE

Estimation of Samp Mean

Hypothesi Testing

Type I and Type

error

Confiden

Example of Hypothesis Testing

Hypothesis Test

t-distributio

Ci

Social Class or Education? Childhood Circumstances and Adult Earning II

- breaks down the differences in mean household income for individuals according to their are father's NS-SEC occupation type,
- ▶ and considers these differences for selected highest level of educational qualification
- The data shows that within both groups according to the NS-SEC of a father's occupation, those with higher qualifications are part of households with higher total income.
- ▶ Test the differences between mean income by the father's occupational categorization $(Y_h Y_r)$ for each of the educational groupings.

Example of Hypothesis Testing

Social Class or Education? Childhood Circumstances and Adult Earning III

- ▶ For individuals with no qualifications
- \triangleright test statistics = $\frac{(2223.13-1842.98)}{2115.12^2/1129+1487.29^2/6383} = 5.7911.$
- \triangleright The 95 \% CI for the difference $(Y_h Y_r)$ is $(2223.13 - 1842.98) \pm 1.96\sqrt{2115.12^2/1129 + 1487.29^2/6383} =$ (251.38, 508.93).

Testing Testing

Type I and Type

error

Significa

Interval

Hypothesis To

t-distribution

Use t-distribution when n is small

Consider the t-statistic used to test the hypothesis $H_0: \mu_Y = \mu_{Y,0}$, using data Y_1, \ldots, Y_n .

$$t = \frac{\bar{Y} - \mu_{Y,0}}{\sqrt{s_Y^2/n}},$$

where s_Y^2 is the estimated sample mean.

- ▶ When n is larger, under general conditions the t-statistic has a standard normal distribution if the sample size is large and the null hypothesis is true.
- ▶ When n is small, then the t-statistic in Equation has a Student t distribution with n 1 degrees of freedom.

t-distribution

To illustrate a test for the difference between two means

- \triangleright let μ_w be the mean hourly earnings in the population of women recently graduated from college.
- \triangleright let μ_m be the population mean for recently graduated men.
- ▶ Consider the null hypothesis that mean earnings for these two populations differ by a certain amount, say, d_0 . Then the null hypothesis and the two-sided alternative hypothesis are

$$H_0: \mu_m - \mu_w = d_0 \text{ vs. } H_1: \mu_m - \mu_w \neq d_0$$

t-distribution

Population means are unknown:

- ▶ must be estimated from samples of men and women.
- \triangleright Suppose we have samples of n_m men and n_w women drawn at random from their populations.
- \triangleright Let the sample average annual earnings be \bar{Y}_m for men and \bar{Y}_w for women.
- \triangleright An estimator of $\mu_m \mu_w$ is $\bar{Y}_m \bar{Y}_w$.

Estimators

BILLE

Estimation of Sampl

Testing

Hypothes

Type I and Type I

Statistical

Significan

Interval

Example of Hypothesis Testin

t-distribution

t-distributio

References

In asymptotics:

$$\ \ \, \triangleright \ \, \bar{Y}_m \rightarrow_d N(\mu_m,\sigma_m^2/n_m), \, \, \bar{Y}_w \rightarrow_d N(\mu,\sigma_w^2/n_w)$$

⊳ By properties of random distributions,
$$\bar{Y}_m - \bar{Y}_w \rightarrow N(\mu_m - \mu_w, (\sigma_m^2/n_m) + (\sigma_w^2/n_w)^2)$$
.

t-distribution

Construct t-statistics:

$$t = rac{ar{Y}_m - ar{Y}_w}{\sqrt{(\sigma_m^2/n_m) + (\sigma_w^2/n_w)^2}}.$$

- \triangleright When *n* is larger(> 30), $t \rightarrow_d N(0, 1)$.
 - \diamond If the test is at 5% significance level, reject if t > 1.64.
- \triangleright When *n* is small(\leq 30), $t \sim t \operatorname{dist}_{n-1}$

ctimator

DILLE

Estimation of Sample

Hypothes Testing

Hypothesi

Type I and Type

Statistical

Confidence

Example of Hypothesis Testin

t-distribution

References

Distribution Table I

прренил

ctimatore

DILLE

Estimation of Sample

Hypothes Testing

Hypothesi

Type I and Type

Statistical

Significano

Confidence

Example of

Hypothesis Testin

t-distribution

Reference

Distribution Table II

		Second Decimal Value of z										
z	0	- 1	2	3	4	5	6	7	8	9		
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.186		
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.214		
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.245		
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.27		
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.313		
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.34		
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.385		
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.42		
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.46		
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.533		
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.573		
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614		
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.65		
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.683		
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.723		
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.75		
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.783		
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813		
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.83		
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.863		
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.883		
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.903		
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917		
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.93		
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.94		
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.95		
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.963		
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.970		
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.976		
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.981		
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.985		
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989		
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.991		
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.993		
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.995		
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996		
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.997		
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998		
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.996		

References

Stock, J. H. and Watson, M. W. (2020). Introduction to econometrics, volume 4. Pearson New York.