

Physique

Classe: 4ème année scientifique

Chapitre : les oscillations électriques forcées

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(\$ 40 min

8 pts

On considère un circuit électrique série constitué par un G.B.F délivrant une tension sinusoïdale $\mathbf{u}(t) = U_m \sin(2\pi N t)$, un condensateur de capacité C, un résistor de résistance $\mathbf{R} = 80\Omega$ et une bobine d'inductance \mathbf{L} et de résistance interne \mathbf{r} . Un oscilloscope bicourbe permet de visualiser les tensions $\mathbf{u}(t)$ et $\mathbf{u}_R(t)$.

1. Faire les connexions nécessaires sur l'oscilloscope afin de visualiser $\mathbf{u}(t)$ et $\mathbf{u}_R(t)$ respectivement sur les voies \mathbf{X} et \mathbf{Y} .

- 2. Préciser l'excitateur et le résonateur.
- 3. Pourquoi le circuit RLC est dit en oscillations forcées?
- 4. Etablir l'équation différentielle relative à l'intensité i du courant.

5.

- a. Faire la construction de Fresnel pour les valeurs particulières de la fréquence
 N du GBF.
- b. Préciser pour chacun des cas précédents, l'état électrique du circuit.
- c. Exprimer Im et tg (ϕ_i ϕ_u) en fonction de L, C, ω , R, r et Um
- d. Représenter l'allure de $I_m = f(N)$ pour deux valeurs de R $(R_1 > R_2)$
- e. Que devient l'expression de Im lorsque $N = N_0$?

6. On fixe la fréquence du G.B.F à la valeur N_1 = 348,43 Hz.

Sur la figure suivante, on donne les oscillogrammes observés sur l'oscilloscope.

a. Montrer que l'oscillogramme (a) représente u (t).

- b. Déterminer le déphasage $\Delta \phi = \phi_i$ ϕ_u . En déduire s'il s'agit d'un circuit capacitif, résistif ou inductif.
- c. Déterminer les valeurs des tensions maximales U_m et U_{Rm} .
- d. Calculer les valeurs de l'intensité maximale I_m du courant et de l'impédance Z_1 du circuit.
- e. Ecrire u(t) et i(t)
- f. Sachant que $U_{cm} = 2,28V$.
 - i. Faire la construction de Fresnel avec l'échelle : $1cm \longrightarrow 1V$.
 - ii. En déduire les valeurs de la résistance interne ${\bf r}$ de la bobine, son inductance ${\bf L}$ et la capacité ${\bf C}$ du condensateur.
 - iii. Ecrire dans ce cas $u_c(t)$ et $u_b(t)$.

Exercice 2

(\$ 40 min

8 pts

Un générateur de basse fréquence **(GBF)**, délivrant une tension sinusoïdale $\mathbf{u(t)} = \mathbf{U} \, \sqrt{2} sin \, (2\pi Nt + \phi_u), \text{ de valeur efficace } \mathbf{U} \text{ constante et de fréquence } \mathbf{N}$ réglable, alimente un circuit électrique comportant les dipôles suivants, montés en série :

- un condensateur de capacité $C=31,25 \mu F$.
- un résistor de résistance $R=25~\Omega$.
- une bobine d'inductance L et de résistance propre r.
- 1. Pour une fréquence $N = N_0$ de la tension d'alimentation on obtient sur l'écran de l'oscilloscope les deux courbes (I) et (II) de la figure -1- ci-dessous correspondant aux tensions u(t) et $u_R(t)$.

- a. Indiquer en le justifiant, laquelle des deux courbes (I) et (II) représente la tension u(t).
- b. Quelle grandeur électrique, autre que la tension $\mathbf{u}_{R}(\mathbf{t})$, peut être déterminée à partir de l'autre courbe ? Justifier.
- c. Préciser, en le justifiant l'état d'oscillation du circuit.
- d. Déterminer:
 - i. les valeurs efficaces **U** et **I** de la tension **u(t)** et de l'intensité du courant

$$i(t) = I\sqrt{2} \ 2 \sin \left(2 \ \pi N t + \phi_i\right)$$

ii. la fréquence N de la tension u(t).

Montrer qu'à la résonance d'intensité on a : $\mathbf{r} = \mathbf{R}$ (Error! – 1). Calculer la valeur de L et r.

- 2. l'équation différentielle reliant $\mathbf{i(t)}$, sa dérivé première $\frac{d\mathbf{i(t)}}{dt}$ et sa primitive $\int \mathbf{i(t)} dt$ s'écrit : (R+r) i(t) + L $\frac{di(t)}{dt}$ + $\frac{1}{c}\int i(t)dt = u(t)$ Pour une fréquence N₁ < N₀, nous avons tracé la construction de Fresnel incomplète figure-2
 - a. Compléter cette construction en traçant, dans l'ordre suivant et selon l'échelle indiquée, les vecteurs de Fresnel représentant $\mathbf{u}(\mathbf{t})$ et $\mathbf{L} \frac{\mathbf{di}(\mathbf{t})}{\mathbf{dt}}$

Echelle: 3 cm
$$\rightarrow$$
 $2\sqrt{2}$ 2V

- b. En déduire à partir de cette construction :
 - la valeur maximale Im de l'intensité du courant.
 - le déphasage $\Delta \phi = \phi_i \phi_u$ de l'intensité du courant i(t) par rapport à u(t).
 - la valeur de la fréquence N1.
- c. Calculer la puissance moyenne consommée par le circuit.

Exercice 3

(\$ 40 min

8 pts

Une portion de circuit AB comporte en série un résistor de résistance R variable, une bobine de résistance **r** et d'induction **L** et un condensateur de capacité **C variable**.

Cette portion de circuit AB est excitée par un générateur de basse fréquence (GBF) qui délivre une tension sinusoïdale $\mathbf{u}(\mathbf{t}) = \mathbf{U}_m \sin(\omega \mathbf{t})$ de fréquence N réglable.

On observe sur un oscilloscope bicourbe les tensions u(t) sur la voie X et $u_c(t)$ sur la voie Y.

I. Pour une résistance R_1 du résistor et pour une capacité $C_1 = 4.5 \mu F$ on obtient les oscillogrammes suivants pour une fréquence $N=N_1$ du GBF :

- 1. Indiquer les éléments de la partie du circuit **AB** et les connexions aux bornes de l'oscilloscope permettant cette visualisation.
- 2. Montrer que la courbe C_1 représente u(t).

N W W

- 3. Déterminer à partir du graphe :
 - a. la fréquence N_1 .
 - b. les tensions maximales U_m et U_{cm} .
 - c. Le déphasage $\Delta \varphi = \varphi_u \varphi_{uc}$.
 - d. En déduire que $\varphi_i \varphi_u = \frac{\pi}{6}$ rad. Préciser alors l'état électrique du circuit.
- 4. Ecrire u(t) et uC(t).
- 5. Calculer la valeur de l'intensité maximale I_m qui traverse le circuit et l'impédance ${\bf Z}$ du circuit AB.

6.

- a. Faire la construction de Fresnel de l'annexe en traçant dans l'ordre et selon l'échelle indiquée les vecteurs correspondant à u(t); $R_T i(t)$; $\frac{1}{c_1} \int id(t) \operatorname{et} L \frac{di}{dt} \operatorname{avec} R_T =$ (R_1+r)
 - b. Déduire de cette construction la valeur :
 - i. de la résistance totale du circuit R_T
 - ii. de l'inductance L de la bobine.
- 7- On modifie la valeur de la capacité à une valeur C₂ on constate que l'intensité maximale *Im* qui traverse le circuit reste la même.
 - a. Montrer que C_1 et C_2 vérifie la relation $\frac{1}{c_2} + \frac{1}{c_1} = 8\pi^2 N_1^2 L$
 - b. Calculer C₂.

II. On fixe R à $R_2 = 370\Omega$, on fait varier la fréquence N du GBF et à l'aide de deux voltmètres branchés respectivement aux bornes du résistor et aux bornes du condensateur de capacité C_1 on note U_R aux bornes du résistor et U_C aux bornes du condensateur ce qui permet de tracer les courbes $U_R = f(\omega)$ et $U_{C1} = g(\omega)$ de la figure 3 :

- 1. Donner en fonction de U_m ; R_T ; ω ; L et C_1 l'expression de I_m
- 2. Déduire celle de Q_m .
- 3. Ecrire alors en fonction des mêmes grandeurs les expressions de UR et Uc.
- 4. Trouver l'expression de la pulsation ω pour laquelle il y a résonance d'intensité.

5.

- a. Montrer qu'à la résonance de charge on a : $N_r^2 = N_0^2 \frac{(R+r)^2}{\Omega \pi^2 I^2}$
- b. En déduire dans ce cas que $\mathbf{Q_{mr}} = \frac{U_m}{R_T \sqrt{\omega_0^2 \frac{RT^2}{4I^2}}}$
- 6. Identifier les courbes A et B.
- 7. Donner les expressions littérales de K_1 , K_2 ; K_3 ; K_4 et K_5 .
- 8. Retrouver les valeurs de R_T ; L; C_1 et r.
- 9. Ecrire pour $\omega = 500 \text{ rad.s}^{-1}$ les expressions de i(t) et u(t).
- III. Choisir les propositions correctes dans chacun des cas suivants :
- 1. A la résonance d'intensité :
 - a. $\mathbf{u}(t)$ et $\mathbf{u}_{c}(t)$ deviennent en quadrature de phase
 - b. $U = U_R + U_{bc}$
 - La puissance moyenne consommée par le dipôle RLC est maximale.
 - d. $\varphi i \varphi u = 0$
- 2. A la résonance de charge :
 - a. $\mathbf{u}_{c}(\mathbf{t})$ est en avance de phase par rapport à $\mathbf{u}(\mathbf{t})$.
 - b. $\varphi_i \varphi_u < 0$
 - c. $U = U_R + U_{bc}$
 - d. Le circuit est résistif.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000