Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna

- 1. Molecular models
- 2. The Quantum Drude Oscillator (QDO)
- 3. Introducing QDO water
- 4. Liquid-vapour interface of QDO water

- 1. Molecular models
- 2. The Quantum Drude Oscillator (QDO)
- 3. Introducing QDO water
- 4. Liquid-vapour interface of QDO water

Challenge efficiently model intermolecular interactions

Challenge

efficiently model intermolecular interactions

Solution

begin with simple building blocks

Challenge

efficiently model intermolecular interactions

Solution

begin with simple building blocks and assemble them into molecules

Electrostatics

• •

Point charges

• •

Electrostatics

Point charges

Constraints

Translational

Rotational

Electrostatics Constraints Non-Coulomb forces Point charges Translational Rotational repulsion Pont Coulomb forces Point charges Translational repulsion

Electrostatics

• •

Point charges

Constraints

Translational

Rotational

Non-Coulomb forces

van der Waals

repulsion

Response (limited)

Fluctuating dipole

Charge transfer

- 1. Molecular models
- 2. The Quantum Drude Oscillator (QDO)
- 3. Introducing QDO water
- 4. Liquid-vapour interface of QDO water

Quantum Drude Oscillator (QDO)

Light negative particle tethered harmonically to a heavy positive, oppositely charged nucleus

Quantum Drude Oscillator (QDO)

Light negative particle tethered harmonically to a heavy positive, oppositely charged nucleus

Free parameters

 μ reduced mass

 ω spring frequency

q charge

Quantum Drude Oscillator: Response

$$\begin{array}{ccc} \textbf{Polarisation} & \alpha_l & = & \left[\frac{q^2}{\mu\omega^2}\right] \left[\frac{(2l-1)!!}{l}\right] \left[\frac{\hbar}{2\mu\omega}\right]^{l-1} \\ \hline & \overline{\text{dipole}} \end{array}$$

Quantum Drude Oscillator: Response

$$\begin{array}{ccc} \textbf{Polarisation} & \alpha_l & = & \left[\frac{q^2}{\mu\omega^2}\right] \left[\frac{(2l-1)!!}{l}\right] \left[\frac{\hbar}{2\mu\omega}\right]^{l-1} \\ \hline & \overline{\text{dipole}} \end{array}$$

Dispersion
$$C_6=rac{3}{4}lpha_1lpha_1\hbar\omega$$
 dipole-dipole $C_8=5lpha_1lpha_2\hbar\omega$ dipole-quadrupole

Quantum Drude Oscillator: Invariants

$$\begin{bmatrix} 1.5 & CH_4 & H_2O \\ 1 & & & \\ 0.5 & & & \\ \end{bmatrix}$$
He Ne Ar Kr Xe
$$\begin{bmatrix} 1.5 & He & Ne & Ar & Kr & Xe \\ 1 & & & & \\ 0.5 & & & & \\ \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & H & Li & K & Rb & Cs \\ 1 & & & & \\ \end{bmatrix}$$

Quantum Drude Oscillator: Invariants

Electrostatics Constraints Non-Coulomb forces Point charges Translational Rotational Rotational repulsion

Response

Fluctuating dipole

Quantum Drude Oscillator

Charge transfer

- 1. Molecular models
- 2. The Quantum Drude Oscillator (QDO)
- 3. Introducing QDO water
- 4. Liquid-vapour interface of QDO water

- 1. Molecular models
- 2. The Quantum Drude Oscillator (QDO)
- 3. Introducing QDO water

Frame QDO Repulsion Damping Sampling

4. Liquid-vapour interface of QDO water

1. Frame

ground state moments

2. QDO

molecular response

$$\mu$$
 = 0.3656 amu

$$\omega$$
 = 0.6287 ω_h

$$q$$
 =-1.1973 e

3. Repulsion

Short range correction

4. Electrostatic Damping

Short range correction

Gaussian charges
$$-rac{\mathrm{erf}(\gamma r)}{r}$$

4. Electrostatic Damping

Short range correction

5. Efficient Sampling

Path Integral Molecular Dynamics

5. Efficient Sampling

Path Integral Molecular Dynamics

no cross interactions between beads

- 1. Molecular models
- 2. The Quantum Drude Oscillator (QDO)
- 3. Introducing QDO water
- 4. Liquid-vapour interface of QDO water

1. Setup

300 QDO-water molecules Periodic boundaries

Unit cell 20.80126 × 20.80126 × 80 Å³

2. Density

(g·cm⁻³)

3. Dipole moment (Debye)

3. Surface charge density

(e·A-3·10-3)

4. Electronic distribution

(minus gas phase ground state charge density)

4. Electronic distribution

(minus gas phase ground state charge density)

4. Electronic distribution

(minus gas phase ground state charge density)

5. Nearest neighbour distribution

5. Nearest neighbour distribution

- 1. Molecular models
- 2. The Quantum Drude Oscillator (QDO)
- 3. Introducing QDO water
- 4. Liquid-vapour interface of QDO water

Conclusions

QDOs are an accurate model for long range forces QDO water has a physical liquid-vapour interface

Next steps

Exploration of the interface's structure and the effects of dispersion and polarisation on physical properties

References

A. Jones, Quantum drude oscillators for accurate many-body intermolecular forces, PhD thesis, The University of Edinburgh

A. Jones, F. Cipcigan, V. Sokhan, J. Crain, G. Martyna, Electronically coarse grained water, PRL (under review)

THE UNIVERSITY of EDINBURGH

Liquid radial distribution function

