All the formulas listed below should be memorized. (Some of them may be found in Appendix A.) Also, you are required to know how to use them in calculations.

$(1) \sum_{k=m}^{n} (ca_k + db_k) = c \sum_{k=m}^{n} a_k + d \sum_{k=m}^{n} b_k$	(4) Summarizing n terms of geometrical progression with the
	first term b and common ratio r :
	$b+br+br^2++br^{n-1}=b\frac{r^n-1}{r-1}$
n n	(4a) Summarizing terms of infinite
(2) $\sum_{k=m}^{n} c = c \sum_{k=m}^{n} 1 = c(n-m+1)$	geometrical progression $(r <1)$:
	$b+br+br^2+=\frac{b}{1-r}$
(3a) Summarizing n terms of	Telescoping:
arithmetical progression with the first	$(5a) \sum_{k=1}^{n} (a_k - a_{k-1}) =$
term a_1 and common difference d :	$\begin{vmatrix} \overline{k_{=m}} \\ = (a_m - a_{m-1}) + (a_{m+1} - a_m) + \dots + (a_n - a_{n-1}) = \end{vmatrix}$
$\begin{vmatrix} a_1 + a_2 + \dots + a_n = \\ = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n-1)d) = \end{vmatrix}$	$= a_n - a_{m-1}$
$= \frac{a_1 + a_n}{2} n$	(5b) $\sum_{k=m}^{n} (a_k - a_{k+1}) =$
\mathcal{L}	$= (a_m - a_{m+1}) + (a_{m+1} - a_{m+2}) + \dots + (a_n - a_{n+1}) =$
(3b) $\sum_{k=m}^{\infty} k = m + (m+1) + (m+2) + + n =$	$=a_m-a_{n+1}$
$=\frac{m+n}{2}(n-m+1)$	(6) Harmonic numbers:
	$H_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \approx \ln n + \gamma + \frac{1}{12n},$
(3c) $\sum_{k=1}^{n} k = \frac{1+n}{2}n$	where $\gamma \approx 0.57721$ (Euler's constant)

Properties of Logarithms $(a > 0, a \neq 1)$

$$\log_a x^y = y \log_a x$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$\log_a x = \frac{1}{\log_x a}$$

$$x^{\log_a y} = y^{\log_a x}$$

Properties of Exponential functions $(a > 0, a \neq 1)$

$$a^0 = 1$$
, $a^1 = a$, $a^{-1} = \frac{1}{a}$

$$a^m \cdot a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$(a^m)^n = (a^n)^m = a^{mn}; \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

Derivatives of Exponential and Logarithmic Functions (e is a base of a natural logarithmic function; a>0 and $a\neq 1$)

$$(e^x)' = e^x; (a^x)' = a^x \cdot lna$$

$$(\ln x)' = \frac{1}{x}; (\log_a x)' = \frac{1}{x \cdot \ln a}$$