Lecture 19 (sections 4.1,4.2)

Section 4.1 — continuation

 \implies More vector spaces:

$$\mathcal{F} \equiv \left\{ f: \ (-\infty, \infty) \to \mathbb{R} \right\}$$

Is this a vector space?

• Let $f, g \in \mathcal{F}$

[addition]
$$(f+g)(x) \stackrel{def}{\equiv} f(x) + g(x)$$

[multiplication]
$$(k \cdot f)(x) \stackrel{def}{\equiv} k \cdot f(x)$$

All axioms are satisfied;

"0" function:

$$0(x) \stackrel{def}{\equiv} 0$$
 for $x \in (-\infty, \infty)$

 \mathcal{F} is a real (scalar multiplication by a real number) vector space

 \implies Let V be a real vector space. W is a subset of V.

Definition:

W is a subspace of V if W is a vector space itself with operations inherited from V.

- \implies Simplified definition of a subspace:
 - \bullet V is a vector space
 - W is a subset of V: $W \in V$
 - for any $u, v \in W$

$$u + v \in W$$

• for any $u \in W$ and $k \in \mathbb{R}$,

$$k \cdot u \in W$$

 \Longrightarrow W is closed under additions and multiplications

■ Example: $V = \mathbb{R}^2$

Consider

$$W = \{(x, y) \in \mathbb{R}^2 \text{ such that } y = 3x\}$$

i.e.,

$$W = \{(x, 3x), \qquad x \in \mathbb{R}\}$$

Let $u, v \in W \Longrightarrow$

$$u = (x_1, 3x_1), \qquad v = (x_2, 3x_2)$$

$$u + v = (x_1 + x_2, 3x_1 + 3x_2) = (x_1 + x_2, 3(x_1 + x_2)) \in W$$

 \bullet $k \in \mathbb{R}$,

$$k \cdot u = (k \cdot x_1, k \cdot 3 \cdot x_1) = (k \cdot x_1, 3(k \cdot x_1)) \in W$$

 \implies W is a subspace of \mathbb{R}^2

W is a line passing through the origin

- Example: list all subspaces of \mathbb{R}^2 :
 - (a) {0}
 - (b) any straight line passing through the origin
 - \bigcirc \mathbb{R}^2 itself
- Example: let

$$V: M_{n \times n} = \{n \times n \text{ real matrices}\}$$

This is a vector space.

$$W_{n \times n} \stackrel{def}{\equiv} \{\underbrace{\text{symmetric}}_{A^T = A} \ n \times n \text{ real matricies} \}$$

Note:

$$W_{n\times n}\subset M_{n\times n}$$

Let $A, B \in W_{n \times n}$

$$(A+B)^{T} = A^{T} + B^{T} = A + B \implies \in W_{n \times n}$$
$$(k \cdot A)^{T} = k \cdot A^{T} = k \cdot A \implies \in W_{n \times n}$$

 $\implies W_{n \times n}$ is a subspace

■ Example: consider a vector space of real functions

$$\mathcal{F} = \left\{ f: \ (-\infty, \infty) \to \mathbb{R} \right\}$$

Define $\mathcal{C} \subset \mathcal{F}$ as follows:

$$\mathcal{C} \stackrel{def}{\equiv} \left\{ f : (-\infty, \infty) \to \mathbb{R} , \text{ such that } f \text{ is a continuous function} \right\}$$

 \blacksquare Example: another subspace is a space of polynomials of degree $\leq n$ —

$$\mathcal{P}_n \stackrel{def}{\equiv} \left\{ a_0 + a_1 \cdot x + \cdot a_n \cdot x^n \right\}$$

$$P_1 \& P_2 \in \mathcal{P}_n \implies P_1 + P_2 \in \mathcal{P}_n$$

$$P_1 \in \mathcal{P}_n, \ k \in \mathbb{R} \implies k \cdot P_1 \in \mathcal{P}_n$$

 \implies \mathcal{P}_n is a subspace of \mathcal{C} , which is a subspace of \mathcal{F} :

$$\mathcal{P}_n \subset \mathcal{C} \subset \mathcal{F}$$

Intersection of two subspaces is a subspace

Definition:

Let V be a vector space. We say that u is a linear combination of

$$(v_1, v_2, \cdots v_n) \in V$$

if

$$u = c_1 \cdot v_1 + c_2 \cdot v_2 + \dots + c_n \cdot v_n$$

for some real numbers $c_1, c_2, \cdots c_n$.