[70240413 Statistical Machine Learning, Spring, 2017]

Statistical Machine Learning Theory and Applications

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.Tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

February 21, 2017

A bit about the Instructor

- Jun Zhu, Associate Professor, Depart. of Computer Science & Technology. I received my Ph.D. in DCST of Tsinghua University in 2009. My research interests include statistical machine learning, Bayesian nonparametrics, and data mining
- ♦ I did post-doc at the Machine Learning Department in CMU with Prof. Eric P. Xing. Before that I was invited to visit CMU for twice. I was also invited to visit Stanford for joint research (with Prof. Li Fei-Fei)
- 2015: Adjunct Associate Professor at CMU

- Served as Area Chairs for ICML, NIPS, UAI, AAAI, IJCAI; Associate Editor for PAMI, AI Journal
- ♦ Research is supported by National 973, NSFC, "Tsinghua 221 Basic Research Plan for Young Talents".
- ♦ Homepage: http://bigml.cs.tsinghua.edu.cn/~jun

Contact Information

- Jun Zhu
 - State Key Lab of Intelligent Technology and Systems,
 Department of Computer Science, Tsinghua U.
 - Office: Rm 4-513, FIT Building
 - E-mail: dcszj@tsinghua.edu.cn
 - □ Phone: 62772322, 18810502646
 - □ Office hours: Thursday afternoon 3:00pm-5:00pm

Teaching Assistants

- Chongxuan Li (Head TA)
 - Office: Rm 1-509, FIT Building
 - □ E-mail: chongxuanli1991@gmail.com
 - □ Phone: 62795869, 15201523592
 - Deep Learning, Latent variable models,
 Bayesian inference
 - Publish at NIPS, ICML, etc.
 - http://bigml.cs.tsinghua.edu.cn/~chong xuan/

Teaching Assistants

- Jiaxin Shi
 - E-mail: <u>ishijiaxin@126.com</u>
 - □ Phone: 62795869, 18810690095
 - Deep learning
 - Publish at VAST, NIPS
- Yucen Luo
 - E-mail: <u>luoyucencen@163.com</u>
 - □ Phone: 62795869, 18810301080
 - Deep learning, Latent variable models
 - Publish at ICML.
- Yong Ren
 - E-mail: reny11@foxmail.com
 - Phone: 62795869, 17601648338
 - Deep learning, Bayesian methods, Optimization
 - Publish at NIPS, PAMI
- ◆ TA office hours: Wednesday afternoon 3:00pm-5:00pm
- Office: Rm 1-508/509, FIT Building

Resources

- Mainly class slides/notes
- Recommended text books
 - □ Christopher M. Bishop. *Pattern Recognition and Machine Learning*, Springer, 2007.
 - □ Trevor Hastie, Robert Tibshirani, Jerome Friedman. *Elements of Statistical Learning*. 2nd Edition, Springer, 2009.
- Further readings:
 - Conferences:
 - Theory: ICML, NIPS, UAI, COLT, AISTATS, AAAI, IJCAI
 - App: KDD, SIGIR, WWW, ACL
 - Journals:
 - JMLR, PAMI, MLJ

Prerequisites

- Knowledge of probability, linear algebra, statistics and algorithms
 - Calculus:
 - Derivative, integral of multivariate functions
 - Linear Algebra
 - Matrix inversion, eigen-decomposition, ...
 - Basic Probability and Statistics
 - Probability distributions, Mean, Variance, Conditional probabilities, Bayes rule, ...
- Knowledge of programming languages, e.g., C/C++, Java, matlab, Python
- ♦ **Homework 0**: take the Self-Evaluation
 - Minimum & modest background tests (available at course webpage)

Overview of Class

- Introduction
- Unsupervised learning
- Supervised learning
- Learning theory
- Probabilistic graphical models
- Bayesian methods
- Online learning
- Sparse learning
- Deep learning

3 units

6 units

6 units

3 units

6 units

3 units

3 units

6 units

6 units

HW1 out

HW1 due HW2 out

HW2 due HW3 out

HW3 due HW4 out

HW4 due June 7

Grading

- ♦ Participation (10%)
 - □ 1 mid-term quiz (10 points each time)
- Homeworks (40%)
 - □ 4 homeworks (10 points each time)
- ♦ Project (50%)
 - □ 2~4 students to form a team
 - Apply machine learning to solve a real problem
 - Choose one task at Kaggle (http://www.kaggle.com/competitions)
 - Submit materials:
 - a proposal (6th week), a mid-term report (9th week), a final report (18th week), and the implementation code (18th week)
 - All reports should be in NIPS format, written in English:
 (http://nips.cc/Conferences/2014/PaperInformation/StyleFiles)
 - □ Poster presentation (16th or 17th week)

Some example Kaggle tasks

Data Science Bowl 2017

Can you improve lung cancer detection?

Featured · 2 months to go · 511 kernels

\$1,000,000 1.149 teams

The Nature Conservancy Fisheries Monitoring

Can you detect and classify species of fish?

Featured · 2 months to go · 269 kernels

\$150,000 1,547 teams

Google Cloud & YouTube-8M Video Understanding Challenge

Can you produce the best video tag predictions?

Featured · 3 months to go · 14 kernels

\$100,000 95 teams

Digit Recognizer

Classify handwritten digits using the famous MNIST data Getting Started • 3 years to go • 2,361 kernels

1,422 teams

Titanic: Machine Learning from Disaster

Predict survival on the Titanic using Excel, Python, R & Random Forests Getting Started \cdot 3 years to go \cdot 6,074 kernels

5.864 teams

- If the end date is later than June 5, report the position in the leaderboard;
- Otherwise, TAs will define a train/test split and compare your methods with 1 or 2 baselines.

