最適スライディングモード制御を用いた宇宙機の姿勢安定制御

TM21K020 久門田 諒

1 はじめに

剛体宇宙機は運動方程式は共に非線形方程式になり、通常の線形制御理論を適用することは難しい。また、剛体宇宙機の姿勢安定化問題は性能の最適性だけでなくロバスト性を考慮した制御設計が必要になる。そこで、本報告書では、ロバスト性の高いスライディングモード制御と最適制御理論を組み合わせた最適スライディングモード制御を宇宙機に適用することを検討した。

2 制御入力の決定

剛体宇宙機の運動方程式を表現する際,修正ロドリゲスパラメータ (MRP) を用いて宇宙機の姿勢を表現する.宇宙機の運動方程式は次のようになる.[1]

$$\begin{cases} J \frac{d\omega}{dt} &= -\omega^{\times} J \omega + u + d \\ \frac{d\sigma}{dt} &= G(\sigma) \omega \end{cases}$$
 (1)

$$G(\sigma) = \frac{1}{4}[(1 - \sigma^T \sigma)I_3 + 2\sigma^{\times} + 2\sigma\sigma^T]$$
 (2)

次に、最適滑り面sを最適制御理論を用いて決定すると、次のようになる。

$$s = \omega + \frac{\sqrt{\rho}\sigma}{1 + \sigma^T \sigma} \tag{3}$$

制御入力 u は等価制御入力 u_{eq} と可変構造入力 u_{vs} の和で構成され、最適制御入力 u は次のようになる.

$$M(\sigma) = \frac{\sqrt{\rho}}{4(1 + \sigma^T \sigma)} [(1 - \sigma^T \sigma) I_3 + 2\sigma^{\times}]$$
 (4)

$$u = \omega^{\times} J\omega - JM(\sigma)\omega - d - \alpha_1 s - \alpha_2 sgn(s)$$
 (5)

3 数値シミュレーション

式 (1) と,式 (5) において符号関数 sgn(s) を使用した時と $tanh(\mu s)$ に置換した時の MRP,角速度,入力を比較した。図 1 と図 2 から外乱環境下での入力のチャタリングおよび MRP と角速度の振動が改善された。

参考文献

[1] Chuanjiang Li, Yibo Wang, Liang Xu, Zhongzhao Zhang: Spacecraft Attitude Stabilization Using Optimal Sliding Mode Control, IEEE(2010)

図1 MRP, 角速度, 入力の推移 (sign)

図 2 MRP, 角速度, 入力の推移 (tanh)