Tarea Tres.

Teoría de números uno.

Contreras Mendoza Ximena de la Luz

30 de marzo de 2020

Ejercicio 1.

1. Sea $a, b \in \mathbb{Z}$. Pruebe que $(a, b) = 1 \Longrightarrow (a^n, b^n) = 1, \ \forall \ n \geqslant 0$

 $\begin{array}{l} \textit{Demostraci\'on}. \text{ Sea } a = p_1^{\alpha_1} \cdots p_t^{\alpha_t} \text{ y } b = p_1^{\beta_1} \cdots p_s^{\beta_s} \text{ factorizaciones en primos respectivamente de a y b.} \\ \text{Como } (a,b) = 1 \Longrightarrow p_i^{\alpha_i} \neq p_j^{\beta_j} \; \forall \; 1 \leqslant i \leqslant t \; \text{y } 1 \leqslant j \leqslant s \Longrightarrow a^k = p_1^{k\alpha_1} \cdots p_t^{k\alpha_t} \; \text{y } b^k = p_1^{k\beta_1} \cdots p_s^{k\beta_s} \\ \text{tampoco tienen factores primos en común.} \end{array}$

2. Pruebe que $a \mid b \iff a^n \mid b^n, \ \forall \ n > 0$.

 $Demostración. \Longrightarrow)$ Por inducción sobre n.

Base
$$n = 1$$
 $a \mid b \Longrightarrow b = az$ p.a. $z \in \mathbb{Z}$. $b = b^1 = (az)^1 = az$ $\therefore a^1 \mid b^1$.

H.I. Supongamos válido el resultado para n=k P.d. válido para n=k+1.

Por Hipótesis de inducción $b^k = (az)^{\hat{k}} = a^k z^k$.

Por otro lado $b^{k+1}=b^kb=b^k(az)=a^kz^k(ak)=a^kaz^kz=a^{k+1}z^{k+1}$ como $z^{k+1}\in\mathbb{Z}$ tenemos que $a^{k+1}\mid b^{k+1}$ \therefore si $a\mid b\Longrightarrow a^n\mid b^n$ \forall n>0.

$$\iff$$
 $a^n \mid b^n \forall n > 0$ en particular para $n = 1, a^1 = a \text{ y } b^1 = b$ se cumple $a \mid b$.

3. Sea $a \in \mathbb{Z}$ que no sea una n-ésima potencia de p, i.e. no existen n > 0 tal que $a = p^n$. Pruebe que $log_p(a)$ es irracional.

Demostración. Observaciones: $log_p(a) = x \Leftrightarrow p^x = a$.

- 1. $x \in \mathbb{R} \ y \ x \notin \mathbb{Z}$.
- $2. \ a, p \in \mathbb{Z}.$
- 3. $a \neq p^n \ \forall \ n > 0$

Supongamos $x \in \mathbb{Q} \Longrightarrow x = \frac{\alpha}{\beta} \text{ con } \alpha, \beta \in \mathbb{Z}, \beta \neq 0, \quad log_p(a) = \frac{\alpha}{\beta} \Leftrightarrow p^{\frac{\alpha}{\beta}} = a \iff \sqrt[\beta]{p^{\alpha}} = a \iff p^{\alpha} = a^{\beta} \to \leftarrow \text{ pues } a \neq p^n \ \forall \ n > 0$

La contradicción viene de suponer que $x \in \mathbb{Q}$. Por lo tanto x es irracional.

Ejercicio 2.

1. Para $r \in \mathbb{Q}$ arbitrario define la parte entera de r como $[r]:=m\acute{a}x\{k\in\mathbb{Z}:k\leq r\}$. Con esta definición pruebe que

$$\nu_p(n!) = \sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right] = \left[\frac{n}{p} \right] + \left[\frac{n}{p^2} \right] + \left[\frac{n}{p^3} \right] + \cdots$$

Tienen que probar que la serie es convergente para que tenga sentido la igualdad.

Demostración. Primero probaré que $\sum_{i=1}^{\infty} \left\lceil \frac{n}{p^i} \right\rceil$ converge.

Afirmación: $\sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right]$ en realidad es una suma finita, $\exists k \in \mathbb{N}$ tal que $\forall n \geqslant k, \left[\frac{n}{p^k} \right] = 0$

Prueba: Sea $a_n = \left\lceil \frac{m}{p^n} \right\rceil$. Mi sucesión de a_n es estrictamente decreciente i.e. $a_n > a_{n+1} \ \forall \ n \geqslant 1$.

1

$$p > 1 \Longrightarrow p^{n+1} > p^n \ \forall \ n \Longrightarrow \frac{1}{p^{n+1}} < \frac{1}{p^n} \Longrightarrow \frac{m}{p^{n+1}} < \frac{m}{p^n} \Longrightarrow \left\lceil \frac{m}{p^{n+1}} \right\rceil \leqslant \left\lceil \frac{m}{p^n} \right\rceil$$

Hay dos casos, que $\frac{m}{p^{n+1}}, \frac{m}{p^n} \in \mathbb{Q}$ pero que $\frac{m}{p^{n+1}}, \frac{m}{p^n} \not\in \mathbb{Z}$.

1.
$$\exists a \in \mathbb{Z} \text{ tal que } a-1 < \frac{m}{p^{n+1}} < a < \frac{m}{p^n} \Longrightarrow a-1 = \left[\frac{m}{p^{n+1}}\right] < a = \left[\frac{m}{p^n}\right].$$

2. No existe un entero entre $\frac{m}{p^{n+1}}$ y $\frac{m}{p^n}$ entonces $\left[\frac{m}{p^{n+1}}\right] = \left[\frac{m}{p^n}\right]$ por lo tanto $\left[\frac{m}{p^{n+1}}\right] \leqslant \left[\frac{m}{p^n}\right]$. Si ambos $\left\lceil \frac{m}{p^{n+1}} \right\rceil$, $\left\lceil \frac{m}{p^n} \right\rceil \in \mathbb{Z} \Longrightarrow \left\lceil \frac{m}{p^{n+1}} \right\rceil \leqslant \left\lceil \frac{m}{p^n} \right\rceil$.

Si alguno de ellos es entero y el otro iracional:

1.
$$\left[\frac{m}{p^{n+1}}\right] \in \mathbb{Z} \text{ y } \left[\frac{m}{p^n}\right] \notin \mathbb{Z} \text{ entonces } \frac{m}{p^{n+1}} = \left[\frac{m}{p^{n+1}}\right]; \frac{m}{p^{n+1}} < \frac{m}{p^n}.$$

Por otro lado
$$\frac{m}{p^{n+1}} = \left[\frac{m}{p^n}\right] : \left[\frac{m}{p^{n+1}}\right] \leqslant \left[\frac{m}{p^n}\right].$$

$$2. \left[\frac{m}{p^n}\right] \in \mathbb{Z} \text{ y } \left[\frac{m}{p^{n+1}}\right] \notin \mathbb{Z} \text{ entonces } \frac{m}{p^n} = \left[\frac{m}{p^n}\right]; \left[\frac{m}{p^{n+1}}\right] < \frac{m}{p^{n+1}} < \frac{m}{p^n} = \left[\frac{m}{p^n}\right] \therefore \left[\frac{m}{p^{n+1}}\right] \leqslant \left[\frac{m}{p^n}\right].$$

Por lo tanto para toda n, $\left\lceil \frac{m}{p^n} \right\rceil$ son enteros positivos decrecientes, por el P.B.O. debe de haber un mínimo. El cero es dicho mínimo.

Si
$$p > m \Longrightarrow \frac{m}{p} < 1 \Longrightarrow \left[\frac{m}{p}\right] = 0.$$

Si
$$p < m \Longrightarrow \frac{m}{p} > 1$$
, como $\frac{m}{p} > \frac{m}{p^2} > \dots > \frac{m}{p^n}$.

Sea $\varepsilon = 1$

como lím $_{n\to\infty(\frac{m}{p^n})}=0\Longrightarrow \exists N\in\mathbb{N}$ talque si $n\geqslant N\Longrightarrow |\frac{m}{p^n}|<\varepsilon=1.$ A partir de N se cumple que $1>\frac{m}{p^n}$ si $n\geqslant N$

$$\therefore \left\lceil \frac{m}{p^n} \right\rceil = 0.$$

Por lo tanto $\sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right]$ es una suma finita, pues a partir de cierta k, sumo puros ceros, por lo tanto $\sum_{i=1}^{\infty} \left| \frac{n}{p^i} \right|$ converge.

Ahora probaré la igualdad: $\nu_p(n!) = \sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right]$.

Lema : $q = \left[\frac{n}{m}\right]$. Donde q es el número de múltiplos de m menores que n.

Prueba: Por el Algoritmo de la división, $n = qm + r \longrightarrow (1)$ con $0 \le r < q$ entonces el mayor múltiplo de m hasta n es qm. Todos los múltiplos de m hasta n son m, 2m, 3m, ..., qm. Dividiendo (1) por m tenemos $\frac{n}{m} = q + \frac{r}{m} \Longrightarrow \left[\frac{n}{m}\right] = \left[q + \frac{r}{m}\right]$ pero $0 \leqslant \frac{r}{m} < 1$ $\therefore \left[q + \frac{r}{m}\right] = q$. Como qm es el mayor multiplo de m hasta n, entonces $q = \left[\frac{n}{m}\right] \quad \star$

 $\left\lceil \frac{n}{m} \right\rceil$ es el mayor multiplo de n hasta p^k entonces es el número de enteros $0 < m \leqslant n$ multiplos de p^k . Veamos que cualquier entero m tal que $0 < m \le n$ que es divisible por p^j y no por p^{j+1} debe ser contado exactamente j veces i.e. una vez en $\left[\frac{n}{p}\right]$, una vez en $\left[\frac{n}{p^2}\right]$, ..., una vez en $\left[\frac{n}{p^j}\right]$. Son todos los múltiplos de p como factor de n! por lo tanto $\nu_p(n!) = \sum_{i=1}^{\infty} \left\lceil \frac{n}{p^i} \right\rceil$.

Ejercicio 3.

Pruebe que no hay polinomios con coeficientes enteros que generen números primos. Más precisamente pruebe que $\forall f \in \mathbb{Z}[x] \quad \exists n \in \mathbb{Z} \text{ tal que } f(n) \text{ es compuesto.}$

Demostración. Supongamos que $\exists f \in \mathbb{Z}[x]$ tal que $\forall n \in \mathbb{Z}, f(n)$ es primo.

Sea $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, un polinomio de grado n, con coeficientes enteros, tal que, da valores primos para cualquier número entero.

En particular $f(1) = a_n + a_{n-1} + ... + a_1 + a_0 = p$, primo. Calculemos f(1 + kp) con $k \in \mathbb{Z}$.

$$f(1+kp) = a_n(1+kp)^n + a_{n-1}(1+kp)^{n-1} + \dots + a_1(1+kp) + a_0.$$

Utilizando el binomio de Newton,
$$\sum_{i=1}^{n} = \frac{n!}{i!(n-i)!} (1)^{n-k} (kp)^i = \sum_{i=1}^{n} = \frac{n!}{i!(n-i)!} (kp)^i$$

Observemos que todos los términos son múltiplos de p, excepto posiblemente $a_n, a_{n-1}, ..., a_1, a_0$ pero $a_n + a_{n-1} + ... + a_1 + a_0 = p$ así f(1 + kp) es un múltiplo de p. Digamos mp para alguna $m \in \mathbb{Z}$.

Como f(x) da valores primos para toda $n \in \mathbb{Z} \Longrightarrow f(1+kp)=mp$ es primo, eso implica que m=1. Por lo tanto f(1+kp)=p con $k\in\mathbb{Z}$ arbitraria, es decir f toma el valor p para una cantidad infinita de valores.

Sea g(x) = f(x) - p, las raíces de g(x) serian 1 + kp, para cualquier $k \in \mathbb{Z}$ i.e. g(x) tendría una cantidad infinita de raíces. $\rightarrow \leftarrow$

Es una contradicción al Teorema Fundamental del Álgebra. La contradicción surge de suponer que existe un polinomio en $\mathbb{Z}[x]$ tal que $\forall n \in \mathbb{Z}, f(n)$ es primo. Por lo tanto debe pasar que $\forall f \in \mathbb{Z}[x] \quad \exists n \in \mathbb{Z}$ tal que f(n) es compuesto.

 $[n/p^n] \le n/p^n, nu_p(n!)$