SULVEI VINC

 Nome

 Cognome

 Matricola

Architettura degli Elaboratori

Corso di Laurea in Informatica 25 Novembre 2008

- 1. Codificare i numeri interi (a) -68 e (b) 92 in modulo e segno a 8 bit
 - (a) 11000100
- 2. Determinare i numeri interi rappresentati dalle sequenze di bit (a) 10111111010 e (b) 1001100101 nella notazione in complemento a 2
 - (a) <u>-262</u> (b) <u>4.13</u>
- 3. Convertire da base 16 a base 4 i seguenti numeri naturali
 - (a) 8D3B 20310323
- (b) C5A9
- 30112221
- 4. Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

				1.1
x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	**
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	-
0	1	1	1	-
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	-
1	1	1	1	-

SOP

5. Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_3} \cdot (\overline{\overline{x_1} \cdot x_4}) + x_3 \cdot (\overline{\overline{x_2} \cdot x_1 \cdot \overline{x_4}})$ facendo uso di un solo multiplexer con 2 linee di controllo (selezione).

6. Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 3, 6, ... e in generale j = 3i per i > 0, $z_j = 1$ se la somma dei bit finora letti è dispari.

Stati 95,7 con

- J=istente J di une generica fese
di 3 istenti consecutivi

- r = resto stelle divisione della somme dei lit letti fino el pesso precedente incluso e del numero Z

7. Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

			,						
x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0	0	1	0	-2000	1	estings.	0
0	0	1	1	0	1	٠.	70000	1	1
0	1	0	1	0	oma.	0	0	Alama Maria	1
0	1	1	Negro	-	, adecor	estelan	editors.	/see	· easily,
1	0	0	0	0	0	CHIES .	0	ine	0
1	0	1	0	1	0	, maga	Falter	0	0
1	1	0	0	0	-ditto	1	0	capates	1
1	1	1	(Amount	compa	rinado	engings y.	ويتنصه	James	48103

i_1 :.	5C 1/2	
j_2 :.	$\overline{\chi} \overline{\gamma}_{\lambda}$	
7:	XY2+YA	

 $k_1: \underbrace{\chi}_{k_2: \underbrace{\chi}$

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.

W. JUNE

Nome	

Cognome _____

Matricola _____

Architettura degli Elaboratori

Corso di Laurea in Informatica 25 Novembre 2008

1. Codificare i numeri interi (a) -57 e (b) 83 in complemento a 2 a 8 bit

(a)	1	1	0	D	0	1	1)

- (b) 01010011
- 2. Determinare i numeri interi rappresentati dalle sequenze di bit (a) 10111111101 e (b) 1001100010 nella notazione in modulo e segno

(a)	253
(b)	<u>~38</u>

-3. Convertire da base 4 a base 16 i seguenti numeri naturali

(a) 33211102 <u>F 3 5 2</u>

(b) 23111221

B563

4. Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

mizzando il metodo dene mappe di						
x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$		
0	0	0	0	1		
0	0	0	1	0		
0	0	1	0	1		
0	0	1	1	0		
0	1	0	0	.0		
0	1	0	1	·0		
0	1	1	0	· <u> </u>		
0	1	1	1	,1		
1	0	0	0	· 1		
1	0	0	1	-		
1	0	1	0	· I		
1	0	1	1	•		
1	1	0	0	. 0		
1	1	0	1	-		
1	1	1	0	1		
1	1	1	1	-		

SOF

5. Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = x_3 \cdot (\overline{x_1 \cdot x_4}) + \overline{x_3} \cdot (\overline{x_2} \cdot \overline{x_1} \cdot \overline{x_4})$) facendo uso di un solo multiplexer con 2 linee di controllo (selezione).

6. Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 2, 4, ... e in generale j = 2i per i > 0, $z_j = 1$ se la somma dei bit finora letti non è divisibile per 3.

Stati 95,7 con

- 5 = istente 5 di una generica fasa di
2 istenti consecutivi

- 7 = neste delle divisione delle somma dei lit letti fino al passo precedente incluso e del runnero 3

7. Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0	*Allenda	demay	- Acres	Lumb	, marie	- Darest	-sopo
0	0	1	1	0	1	rolling	toppe	1	0
0	1	0	1	1	· 145qqq	0	A	vantaia	1
0	1	1	1	1	routings.	0	e totara	0	1
1	0	0	s)augite)	example	F/overn	Acres	Amairis	Seratop	u.R.P.O
1	0	1	0	1	0	Appeals.	4220A-	0	0
1	1	0	1	0	region.	0	0	.0009	0
1	1	1	0	1	-	1	, geinte	0	1

 $j_1: \frac{\partial \zeta}{\partial \zeta}$

 $k_1: \frac{\chi \sqrt{z}}{\bar{\chi} \bar{\chi}}$

2: XY1+4142 Selle oppure X 72+4142

ATTENZIONE: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.

SULVA UNE	
Nome	
Cognome	
Matricala	

Architettura degli Elaboratori

Corso di Laurea in Informatica 25 Novembre 2008

- 1. Codificare i numeri interi (a) -45 e (b) 67 in modulo e segno a 8 bit
 - (a) 10101101
 - (b) 01000011
- 2. Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1100111010 e (b) 1110100101 nella notazione in complemento a 2
 - (a) <u>-138</u>
 - (b) <u>-31</u>
- 3. Convertire da base 16 a base 4 i seguenti numeri naturali
 - (a) 8B3D 2023 03.31
- (b) A5C9
- 12 113021
- 4. Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

				done mappe di ma
x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	-
0	1	0	1	-
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	-1
1	0	1	1	-
1	1	0	0	
1	1	0	1	-
1	1	1	0	0
1	1	1	1	1

SUL

5. Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_3} \cdot (\overline{x_1} \cdot \overline{x_4}) + x_3 \cdot (\overline{x_2} \cdot \overline{x_1} \cdot \overline{x_4})$) facendo uso di un solo multiplexer con 2 linee di controllo (selezione).

6. Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 1, 3, 5 ... e in generale j = 2i + 1 per $i \ge 0$, $z_j = 1$ se la somma dei bit finora letti è divisibile per 3.

Steti 95,7 con

- 5 = istente 5 sti une generice fast
sli 2 istenti consecutivi

- 2 = resto della dirisione della somma
dei lit letti fino el passo precedente
incluso e del numero 3

7. Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0	0	0	0	40000	0	4000	1
0	0	1		rates	dage	4.2mmPys	g de margo	4500	4.7900D
0	1	0	A	4	4000	0	1	, engs	0
0	1	1	0	0	dingo	Λ	utée	1	1
1	0	0	1	0	1	estra	0	-comme	1
1	0	1	42000	estrice	esien.	ethype.	235000	discussion.	
1	1	0	1	U	epots,	0	0	480	0
1	1	1	1	1	, метоф	0	400	D	0

$j_1:$)C	
$j_2 : __$	5C Y1	
z:	y + X y z	

 $k_1: \frac{\mathcal{K}_{1}}{\mathcal{K}_{2}: \mathcal{K}_{2}}$

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.

Solvows	? <u>^</u>
Nome	
Cognome	

Matricola _

Architettura degli Elaboratori

Corso di Laurea in Informatica 25 Novembre 2008

- 1. Codificare i numeri interi (a) -55 e (b) 88 in complemento a 2 a 8 bit
 - (a) 12001001
 - (b) 01011000
- 2. Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1011001010 e (b) 1001010101 nella notazione in modulo e segno
 - (a) -202
- 3. Convertire da base 4 a base 16 i seguenti numeri naturali
- (b) 11223231
- SAED
- 4. Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

dollabando il motodo dono mappo di ira							
	x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$		
	0	0	0	0	1		
	0	0	0	1	_		
	0	0	1	0	1		
	0	0	1	1	-		
	0	1	0	0	1		
	0	1	0	1	-		
	0	1	1	0	0		
	0	1	1	1	_		
	1	0	0	0	1		
	1	0	0	1	0		
	1	0	1	0	1		
	1	0	1	1	0		
	1	1	0	0)er		
	1	1	0	1	1		
	1	1	1	0	0		
	1	1	1	1	0		

SOF

5. Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = x_3 \cdot (\overline{x_1} \cdot \overline{x_4}) + \overline{x_3} \cdot (\overline{x_2} \cdot \overline{x_1} \cdot \overline{x_4})$) facendo uso di un solo multiplexer con 2 linee di controllo (selezione).

6. Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 1, 4, 7 ... e in generale j=3i+1 per $i\geq 0, z_j=1$ se la somma dei bit finora letti è pari.

Steti 95,7 con

- 5 = istente J shi una generica fase
di 3 istenti consecutivi

- 12 = resto della divisione stella somma
dei bit letti fino al passo precedente
incluso e del numero Z

7. Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0	0	1	0	idem	1	comp	1
0	0	1	0	1	0	4000	. AUTO	0	1
0	1	0	· Marie	*,9400-	******	Attone	James	Kaango	équina
0	1	1	0	0	- Water	1	,matrix	1	0
1	0	0	Ð	0	0	-Cappa	0	-	0
1	0	1	1	1	1	dist	- Applies	0	1
1	1	0	tom	· Alconop	E-22-	whents	- Parameter	egaple)	c)-equa
1	1	1	1	4	-1000	0	(majo	0	0

j_1 : -	X1/2							
i_2 : _	56							
~ .	241 + 41 /2	ohmura	X /2 + 4 /2					

 $k_1:$ $X_2:$ $X_3:$ $X_4:$ $X_4:$ $X_5:$ $X_5:$

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.