CAN 总线系统智能节点设计

华东地质学院信息工程系 邹继军 饶运涛

摘要: CAN 总线上的节点是网络上的信息接收和发送站;智能节点能通过编程设置工作方式、ID 地址、波特率等参数。它主要由单片机和可编程的 CAN 通信控制器组成。本文介绍这类节点的硬件设计和软件设计;其中软件设计包括 SJA1000 的初始化、发送和接收等应用中的最基本的模块子程序。

关键词: 总线 节点 CAN 控制器

引言

CAN (Controller Area Network) 总线,又称控制器局域网,是 Bosch 公司 在现代汽车技术中领先推出的一种多主机局部网,由于其卓越的性能,极高的可靠性,独特灵活的设计和低廉的价格,现已广泛应用于工业现场控制、智能大厦、小区安防、交通工具、医疗仪器、环境监控等众多领域。CAN 已被公认为几种最有前途的现场总线之一。CAN 总线规范已被 ISO 国际标准组织制订为国际标准,CAN 协议也是建立在国际标准组织的开放系统互连参考模型基础上的,主要工作在数据链路层和物理层。用户可在其基础上开发适合系统实际需要的应用层通信协议,但由于 CAN 总线极高的可靠性,从而使应用层通信协议得以大大简化。

CAN 总线与其它几种现场总线比较而言,是最容易实现、价格最为低廉的的一种,但其性能并不比其它现场总线差。这也是目前 CAN 总线在众多领域被广泛采用的原因。节点是网络上信息的接收和发送站,所谓智能节点是由微处理器和可编程的 CAN 控制芯片组成,它们有两者合二为一的,如芯片 P8XC592;也有如本文介绍的,独立的通信控制芯片与单片机接口,后者的优点是比较灵活。当然,也有不要微处理器的节点。下面以 CAN 通信控制器 SJA1000 为例,对 CAN 总线系统智能节点硬件和软件设计作一个全面的介绍。

一、 CAN 通信控制器 SJA1000 功能简介

CAN的通信协议主要由CAN控制器完成。CAN控制器主要由实现CAN总线协议的部分和实现与微处理器接口部分的电路组成。对于不同型号的CAN总线通信控制器,实现CAN协议部分电路的结构和功能大多相同,而与微处理器接口部分的结构和方式存在一些差异。这里主要以SJA1000为代表对CAN控制器的功能作一个简单介绍。

SJA1000是一种独立CAN控制器,它是PHILIPS公司的PCA82C200 CAN控制器的替代产品。SJA1000具有BasicCAN和PeliCAN两种工作方式,PeliCAN工作方式支持具有很多新特性的CAN 2.0B协议。

SJA1000在软件和引脚上都是与它的前一款PCA82C200 独立CAN控制器兼容的(SJA1000引脚功能如表1所示),在此基础上增加了很多新的功能。为了实现软件兼容,SJA1000 采用了两种工作方式: BasicCAN方式(PCA82C200兼容方式), PeliCAN方式(扩展特性方式)。工作方式通过时钟分频寄存器中的CAN方式位来选择。上电复位默认工作方式是BasicCAN方式。BasicCAN和PeliCAN方式的区别如下。

在PeliCAN 方式下,SJA1000有一个重新设计的含很多新功能的寄存器组。SJA1000包含PCA82C200中的所有位,同时增加了一些新的功能位。PeliCAN 方式支持CAN2.0B协议规定的所有功能(29位的标识符)。

SJA1000 的主要新功能如下:

- 标准结构和扩展结构报文的接收和发送
- 64字节的接收FIFO
- 标准和扩展帧格式都具有单/双接收滤波器(含接收屏蔽和接收码寄存器)
- 可进行读/写访问的错误计数器
- 可编程的错误报警限制
- 最近一次的错误代码寄存器

- 每一个CAN总线错误都可以产生错误中断
- 具有丢失仲裁定位功能的丢失仲裁中断
- 单发方式(当发生错误或丢失仲裁时不重发)
- 只听方式(监听CAN总线, 无应答, 无错误标志)
- 支持热插拔 (无干扰软件驱动位速率检测)
- 硬件禁止CLKOUT输出

表 1 SJA1000 引脚功能

符 号	引脚	功能
AD0∼AD7	2,1,28~23	地址/数据复用总线
ALE	3	ALE 信号(INTEL 方式)或 AS 信号(Motorola 方式)
/CS	4	片选输入,低电平允许访问 SJA1000
/RD	5	微控制器的读信号(Intel 方式)或 E 信号(Motorola 式)
/WR	6	微控制器的写信号(Intel 方式)或读写信号(Motorola 方式)
CLKOUT	7	SJA1000产生的提供给微控制器的时钟输出信号,此信号由内部振荡器经可编程分
		频器得到。可编程禁止该引脚
VSS1	8	逻辑电路地
XTAL1	9	振荡放大器输入,外部振荡放大器信号经此引脚输入
XTAL2	10	振荡放大器输出,使用外部振荡信号时此引脚必须开路
MODE	11	方式选择输入端: 1=Intel 方式, 0=Motorola 方式
VDD3	12	输出驱动器 5V 电源
TX0	13	由输出驱动器 0 至物理总线的输出端
TX1	14	由输出驱动器 1 至物理总线的输出端
VSS3	15	输出驱动器地
/INT	16	中断输出端,用于向微控制器提供中断信号
/RST	17	复位输入端,用于重新启动 CAN 接口(低电平有效)
VDD2	18	输入比较器 5V 电源
RX0, RX1	19, 20	由物理总线至SJA1000输入比较器的输入端。显性电平将唤醒处于睡眠方式的
		SJA1000。当RX0高于RX1时,读出为隐性电平,否则为显性电平
VSS2	21	输入比较器地
VDD1	22	逻辑电路 5V 电源

二、CAN总线系统智能节点硬件电路设计

本文中所设计的 CAN 总线系统智能节点,采用 89C51 作为节点的微处理器,在 CAN 总线通信接口中,采用 PHILIPS 公司的 SJA1000 和 82C250 芯片。SJA1000 是独立 CAN 通信控制器,82C250 为高性能 CAN 总线收发器。

如图 1 所示为 CAN 总线系统智能节点硬件电路原理图。从图中可以看出,电路主要由四部分所构成: 微控制器 89C51、独立 CAN 通信控制器 SJA1000、CAN 总线收发器 82C250 和高速光电耦合器 6N137。微处理器 89C51 负责 SJA1000 的初始化,通过控制 SJA1000 实现数据的接收和发送等通信任务。

SJA1000 的 AD0~AD7 连接到 89C51 的 P0 口, \overline{CS} 连接到 89C51 的 P2.0,P2.0 为 0 的 CPU 片外存贮器 地址可选中 SJA1000,CPU 通过这些地址可对 SJA1000 执行相应的读写操作。SJA1000 的 \overline{RD} 、 \overline{WR} 、ALE 分别与 89C51 的对应引脚相连, \overline{INT} 接 89C51 的 $\overline{INT0}$,89C51 也可通过中断方式访问 SJA1000。

为了增强 CAN 总线节点的抗干扰能力, SJA1000 的 TX0 和 RXO 并不是直接与 82C250 的 TXD 和 RXD 相连, 而是通过高速光耦 6N137 后与 82C250 相连, 这样就很好的实现了总线上各 CAN 节点间的电气隔离。不过, 应该特别说明的一点是光耦部分电路所采用的两个电源 VCC 和 VDD 必须完全隔离, 否则采用光耦也就失去了意义。电源的完全隔离可采用小功率电源隔离模块或带多 5V 隔离输出的开关电源模块实现。这些部分虽然增加了节点的复杂, 但是却提高了节点的稳定性和安全性。

82C250 与 CAN 总线的接口部分也采用了一定的安全和抗干扰措施。82C250 的 CANH 和 CANL 引脚各自通过一个 5 Ω 的电阻与 CAN 总线相连,电阻可起到一定的限流作用,保护 82C250 免受过流的冲击。CANH 和

CANL 与地之间并联了两个 30P 的小电容,可以起到滤除总线上的高频干扰和一定的防电磁辐射的能力。另外在两根 CAN 总线接入端与地之间分别反接了一个保护二极管,当 CAN 总线有较高的负电压时,通过二极管的短路可起到一定的过压保护作用。82C250 的 Rs 脚上接有一个斜率电阻,电阻大小可根据总线通讯速度适当调整,一般在 16K~140K 之间。

图 1 CAN 总线系统智能节点硬件电路原理图

三、 CAN 总线系统智能节点软件设计

CAN 总线节点的软件设计主要包括三大部分: CAN 节点初始化、报文发送和报文接收。熟悉这三部分程序的设计,就能编写出利用 CAN 总线进行通信的一般应用程序。当然要将 CAN 总线应用于通信任务比较复杂的系统中,还需详细了解有关 CAN 总线错误处理、总线脱离处理、接收滤波处理、波特率参数设置和自动检测以及 CAN 总线通信距离和节点数的计算等方面的内容。下面仅就前面提到的三部分程序的设计作一个描述,以供大家在实际应用中参考。

1、初始化子程序

SJA1000 的初始化只有在复位模式下才可以进行,初始化主要包括工作方式的设置、接收滤波方式的设置、接收屏蔽寄存器(AMR)和接收代码寄存器(ACR)的设置、波特率参数设置和中断允许寄存器(IER)的设置等。在完成 SJA1000 的初始化设置以后,SJA1000 就可以回到工作状态,进行正常的通信任务。下面提供了 SJA1000 初始化的 51 汇编源程序,程序中寄存器符号表示的是 SJA1000 相应寄存器占用的片外存贮器地址,这 些符号可在程序的头部用伪指令 EQU 进行定义。后文对这一点不再作特别说明。

CANINI:

MOV DPTR, #MOD ; 方式寄存器

MOV A, #09H ; 进入复位模式, 对 SJA1000 进行初始化.

MOVX @DPTR, A

MOV DPTR, #CDR ; 时钟分频寄存器

MOV A, #88H ; 选择 PeliCAN 模式, 关闭时钟输出(CLKOUT)

MOVX @DPTR, A

MOV DPTR, #IER : 中断允许寄存器

MOV A, #0DH ; 开放发送中断、超载中断和错误警告中断

MOVX @DPTR, A

MOV DPTR, #AMR ;接收屏蔽寄存器

MOV R6, #4

MOV R0, #DAMR ; 接收屏蔽寄存器内容在片内 RAM 中的首址

AMR: MOV A, @R0

MOVX @DPTR, A ; 接收屏蔽寄存器赋初值

INC DPTR

DJNZ R6, AMR

MOV DPTR, #ACR ;接收代码寄存器

MOV R6, #4

MOV R0, #DACR ;接收代码寄存器内容在片内 RAM 中的首址

ACR: MOV A, @R0

MOVX @DPTR, A ;接收代码寄存器赋初值

INC DPTR

DJNZ R6, ACR

MOV DPTR, #BTR0 ; 总线定时寄存器 0

MOV A, #03H

MOVX @DPTR, A

MOV DPTR, #BTR1 ; 总线定时寄存器 1

MOV A, #0FFH ; 16MHz 晶振情况下,设置波特率为 80kbps.

MOVX @DPTR, A

MOV DPTR, #OCR ; 输出控制寄存器

MOV A, #0AAH

MOVX @DPTR, A

MOV DPTR, #RBSA ;接收缓存器起始地址寄存器

MOV A, #0 ; 设置接收缓存器 FIFO 起始地址为 0

MOVX @DPTR, A

MOV DPTR, #TXERR ; 发送错误计数寄存器.

MOV A, #0; 清除发送错误计数寄存器

MOVX @DPTR, A

MOV DPTR, #ECC ; 错误代码捕捉寄存器

MOVX A, @DPTR ; 清除错误代码捕捉寄存器

MOV DPTR, #MODE ; 方式寄存器

MOV A, #08H : 设置单滤波接收方式, 并返回工作状态

MOVX @DPTR, A

RET

2、发送子程序

发送子程序负责节点报文的发送。发送时用户只需将待发送的数据按特定格式组合成一帧报文,送入 SJA1000 发送缓存区中,然后启动 SJA1000 发送即可。当然在往 SJA1000 发送缓存区送报文之前,必须先作一些判断(如下文程序所示)。发送程序分发送远程帧和数据帧两种,远程帧无数据场。下面以发送数据帧为例对 发送子程序作一个说明。

TDATA: MOV DPTR, #SR ; 状态寄存器

MOVX A, @DPTR ; 从 SJA1000 读入状态寄存器值

JB ACC.4, TDATA ; 判断是否正在接收,正在接收则等待

TS0: MOVX A, @DPTR

JNB ACC.3, TSO ; 判断上次发送是否完成,未完成则等待发送完成

TS1: MOVX A, @DPTR

JNB ACC.2, TS1 ; 判断发送缓冲区是否锁定,锁定则等待

TS2: MOV DPTR, #CANTXB ; SJA1000 发送缓存区首址

MOV A, #88H ; 发送数据长度为 8 个字节的扩展帧格式报文

MOVX @DPTR, A

INC DPTR

MOV A, #ID0 ; 4 个字节的标识符(ID0-ID3), 依据实际情况赋值

MOVX @DPTR, A

INC DPTR

MOV A, #ID1

MOVX @DPTR, A

INC DPTR

MOV A, #ID2

MOVX @DPTR, A

INC DPTR

MOV A,#ID3

MOVX @DPTR, A

MOV RO, #TRDATA ; CPU 发送数据区首址,数据内容由用户定义

MTBF: MOV A, @R0

INC DPTR

MOVX @DPTR, A

INC R0

CJNE R0, #TRDATA+8, MTBF; 向发送缓冲区写 8 个字节

MOV DPTR, #CMR ; 命令寄存器地址

MOV A, #01H

MOVX @DPTR, A ; 启动 SJA1000 发送

RET

3、查询方式接收子程序

接收子程序负责节点报文的接收以及其它情况处理。接收子程序比发送子程序要复杂一些,因为在处理接收报文的过程中,同时要对诸如总线脱离、错误报警、接收溢出等情况进行处理。SJA1000 报文的接收主要有两种方式:中断接收方式和查询接收方式,如果对通信的实时性要求不是很强,建议采用查询接收方式。两种接收方式编程的思路基本相同。下面仅以查询方式接收报文为例对接收子程序作一个说明。

SEARCH:

MOV DPTR, #SR ; 状态寄存器地址

MOVX A, @DPTR

ANL A, #0C3H ; 读取总线脱离、错误状态、接收溢出、有数据等位

JNZ PROC

RET ; 无上述状态,结束

PROC: JNB ACC.7, PROCI

BUSERR:

MOV DPTR, #IR ; IR 中断寄存器; 出现总线脱离 MOVX A, @DPTR ; 读中断寄存器,清除中断位. MOV DPTR, #MODE ; 方式寄存器地址 MOV A, #08H MOVX @DPTR, A ;将方式寄存器复位请求位清0 LCALL ALARM. : 调用报警子程序 RET NOP PROCI: MOV DPTR, #IR ; 总线正常 ; 读取中断位 MOVX A, @DPTR JNB ACC.3, OTHER OVER: MOV DPTR, #CMR ;数据溢出中断置位. MOV A, #0CH ; 在命令寄存器中清除数据溢出和释放接收缓冲区 MOVX @DPTR, A RET NOP OTHER: JB ACC.0, RECE ; IR.0=1,接收 FIFO 未满或接收中断使能 LJMP RECOUT : IR.0=0,接收缓冲区无数据,退出接收 NOP RECE: MOV DPTR, #CANRXB ;接收缓冲区首地址(16);准备读取数据 MOVX ; 首字节是接收帧格式字 A, @DPTR JNB ACC.6, RDATA ; RTR=1 是远程请求帧, 无数据 MOV DPTR, #CMR MOV A, #04H ; CMR.2=1 释放接收缓冲区 @DPTR, A ; 只有接收了数据才能释放接收缓冲区 MOVX TDATA ; 发送对方请求的数据 LCALL RECOUT ; 退出接收 LJMP NOP RDATA: MOV DPTR, #CANRXB ; 读取并保存接收缓冲区的数据 MOV R1, #CPURBF ; CPU 片内接收缓冲区首址 MOVX A, @DPTR ; 读取读取 CAN 缓冲区的 2 号字节 MOV @R1, A ; 保存 ANL A, #0FH ; 截取低 4 位是数据长度(0~8) A, #4 ADD ; 加 4 个字节的标识符(ID) MOV R6, A RDATA: INC DPTR INC R1 MOVX A, @DPTR MOV @R1, A DJNZ R6, RDATA0 ;循环读取与保存

MOV

DPTR, #CMR

广州周立功单片机发展有限公司 Tel: (020) 38730976 38730977 38730916 Fax: 38730925 http://www.zlgmcu.com

MOV A, #04H

;释放 CAN 接收缓冲区

MOVX @DPTR, A

RECOUT: MOV DPTR, #ALC

; 释放仲裁丢失捕捉寄存器和错误捕捉寄存器

MOVX A, @DPTR

MOV DPTR, #ECC

MOVX A, @DPTR

NOP

RET

结束语

上述介绍的是 SJA1000 工作在 PeliCAN 模式下的三种最基本的操作子程序。 由于篇幅的关系,这里没有列出和解释 SJA1000 内部寄存器的地址和位定义。有关接收屏蔽寄存器(AMR)和接收编码寄存器(ACR)的使用在以往的文章中已有介绍。至于其它一些寄存器或位功能的使用,没有在上述例程中体现出来,需要视实际情况而定。

参考文献

- 1 PHILIPS SJA1000 stand-alone CAN controller product specification 2000 Jan 04
- 2 邬宽明 CAN 总线原理和应用系统设计 北京航空航天大学出版社 1996