Aymptotic (Large Sample) Theory

A random sequence A_n is:

(a)
$$o_p(1)$$
 if $A_n \stackrel{p}{\to} 0$

(b)
$$o_p(B_n)$$
 if $A_n/B_n \xrightarrow{p} 0$

(c)
$$O_p(1)$$
 if $\forall \epsilon > 0, \exists M : \lim_{n \to \infty} \mathbb{P}(|A_n| > M) < \epsilon$

(d)
$$O_p(B_n)$$
 if $A_n/B_n = O_p(1)$ (4)

If
$$Y_n \to Y \implies Y_n = O_p(1)$$

If $\sqrt{n}(Y_n - c) \rightsquigarrow Y \implies Y_n = O_p(1/\sqrt{n})$ Distances Between Distributions

For distributions P and Q with pdfs p and q:

(a)
$$V(P,Q) = \sup_{A} |P(A) - Q(A)|$$
 total variation distance (5)

(b)
$$K(P,Q) = \int p\log(p/q)$$
 Kullback-Leibler divergence (6)

(c)
$$d_2(P,Q) = \int (p-q)^2 \mathbf{L_2}$$
 distance

A model is **identifiable** if: $\theta_1 \neq \theta_2 \implies K(\theta_1, \theta_2) > 0$.

Consistency

$$\hat{\theta}_n = T(X^n)$$
 is **consistent** for θ if $\hat{\theta}_n \xrightarrow{p} \theta$ (ie if $\hat{\theta}_n - \theta = o_p(1)$).

To show consistency, can show:
$$\operatorname{Bias}^2(\hat{\theta}_n) + \operatorname{Var}(\hat{\theta}_n) \to 0$$
.

The MLE is consistent under regularity conditions.

MLE not consistent when number of params (or support?) grows.

Score and Fisher Information

The score function is $S(\theta) = \frac{\partial}{\partial \theta} l(\theta) = \frac{\partial}{\partial \theta} \sum_i \log p(x_i | \theta)$. The **Fisher information** is defined as

$$I_n(\theta) = \mathbb{E}_{\theta} \left[S(\theta)^2 \right] = \operatorname{Var}_{\theta} \left[S(\theta) \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} l(\theta) \right]$$
 (8)

and
$$I_n(\theta) = -n\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2}\log p(X_1;\theta)\right] = nI_1(\theta).$$

The observed information $\hat{I}_n(\theta) = -\sum_i \frac{\partial^2}{\partial \theta^2} \log p(X_i; \theta)$.

Vector case:
$$S(\theta) = \left[\frac{\partial l(\theta)}{\partial \theta_i}\right]_{i=1,...,K}$$
 $I_{ij} = -\mathbb{E}_{\theta} \left[\frac{\partial^2 l(\theta)}{\partial \theta_i \partial \theta_j}\right]_{i,j=1,...,K}$

Efficiency and Robustness

For an estimator $\hat{\theta}_n(X^n)$ of θ , where $X^n \stackrel{\text{iid}}{\sim} p(x|\theta)$:

If
$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow \mathcal{N}(0, v^2)$$
, then v^2 is the **asymptotic-Var** $(\hat{\theta}_n)$.

E.g. for
$$\hat{\theta}_n = \overline{X}_n$$
: $v^2 = \sigma^2 = \operatorname{Var}(X_i) = \lim_{n \to \infty} n \operatorname{Var}(\overline{X}_n)$.

In general, asymptotic- $\operatorname{Var}(\hat{\theta}_n) \neq \lim_{n \to \infty} n \operatorname{Var}(\hat{\theta}_n)$

For param $\tau(\theta)$, $v(\theta) = \frac{|\tau'(\theta)|^2}{I(\theta)}$ is the **Cramer-Rao lower bound**.

since, for most estimators $\hat{\theta}_n$, the asymptotic-Var $(\hat{\theta}_n) \ge v(\theta)$.

If $\sqrt{n}(\hat{\theta}_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta))$ (hits C-R bound) $\Longrightarrow \hat{\theta}_n$ efficient.

(usually) $\sqrt{n}(\tau(\hat{\theta}_{mle}) - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta)) \implies \text{MLE efficient.}$

The standard error of $\hat{\theta}$ is $se = \sqrt{\frac{1}{nI(\theta)}} = \sqrt{\frac{1}{I_n(\theta)}}$.

The estimated standard error of $\hat{\theta}$ is $\hat{se} = \sqrt{\frac{1}{I_n(\hat{\theta})}}$

For
$$\hat{\tau} = \tau(\hat{\theta})$$
, $se = \sqrt{\frac{|\tau'(\theta)|}{I_n(\theta)}}$, and $\hat{se} = \sqrt{\frac{|\tau'(\hat{\theta})|}{I_n(\hat{\theta})}}$.

If
$$\sqrt{n}(W_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_W^2)$$
 and $\sqrt{n}(V_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_V^2)$

 \implies asymptotic relative efficiency ARE $(V_n, W_n) = \frac{\sigma_W^2}{\sigma_n^2}$.

Often there is a tradeoff between efficiency and robustness. (?)

Hypothesis Testing

Null hypothesis $H_0: \theta \in \Theta_0$, alternative $H_1: \theta \in \Theta_1$.

Type I error: If H_0 true but we reject H_0 .

- 1. Choose a test statistic $W = W(X_1, \ldots, X_n)$
- 2. Choose a rejection region R

3. If $W \in \mathbb{R}$, reject H_0 otherwise retain H_0

For rejection region R, the **power function** $\beta(\theta) = \mathbb{P}_{\theta}(X^n \in R)$. Want to maximize $\beta(\theta_1)$ s.t. $\beta(\theta_0) \leq \alpha$.

A test is **level-** α if $\sup_{\theta \in \Theta_0} \beta(\theta) \leq \alpha$.

(1)A level- α test with power fn β is uniformly most powerful if: $\beta(\theta) \ge \beta'(\theta) \ \forall \theta \in \Theta_1.$ (2)

Neyman-Pearson Test

For simple $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, reject $H_0: \frac{L(\theta_1)}{L(\theta_0)} > k$. where k chosen s.t. $\mathbb{P}(X^n \in R) = \alpha$.

Wald Test

(3)

(9)

For $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$, reject H_0 if $\left| \frac{\hat{\theta}_n - \theta_0}{se} \right| > z_{\alpha/2}$. where $z_{\alpha/2}$ is the inverse standard-normal CDF of $1-\frac{\alpha}{2}$. and $\hat{\theta}_n$ is an unbiased estimator for θ .

and
$$se = \sqrt{\operatorname{Var}(\hat{\theta}_n)}$$

Evaluating Tests

Neyman-Pearson Test

Wald Test

Likelihood Ratio Test (LRT)

p-values

Permutation Test