CSE 417T Introduction to Machine Learning

Lecture 6

Instructor: Chien-Ju (CJ) Ho

Recap

Discussion on the VC Bound

- Think about the high-level tradeoff of choosing d_{VC} and its dependency on N
- The approximation-generalization trade-off

How well g approximates f in training data

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Bias-Variance Decomposition

Another theory of generalization

Real-Value Target and Squared Error

- So far, we focus on binary target function and binary error
 - Binary target function $f(\vec{x}) \in \{-1,1\}$
 - Binary error $e(h(\vec{x}), f(\vec{x})) = \mathbb{I}[h(\vec{x}) \neq f(\vec{x})]$

- Real-value target functions ["regression"] and squared error?
 - Real-value target function $f(\vec{x}) \in \mathbb{R}$
 - Squared error $e(h(\vec{x}), f(\vec{x})) = (h(\vec{x}) f(\vec{x}))^2$

Real-Value Target and Squared Error

- Real-value target functions [called "regression"] and squared error?
 - Real-value target function $f(\vec{x}) \in \mathbb{R}$
 - Squared error $e(h(\vec{x}), f(\vec{x})) = (h(\vec{x}) f(\vec{x}))^2$

• Errors:

- In-sample error: $E_{in}(g) = \frac{1}{N} \sum_{n=1}^{N} e(h(\vec{x}_n), f(\vec{x}_n)) = \frac{1}{N} \sum_{n=1}^{N} (h(\vec{x}_n) f(\vec{x}_n))^2$
- Out-of-sample error: $E_{out}(g) = \mathbb{E}_{\vec{x}}[e(h(\vec{x}), f(\vec{x}))] = \mathbb{E}_{\vec{x}}[(g(\vec{x}) f(\vec{x}))^2]$
- Theory of generalization: What can we say about $E_{out}(g)$?

- Note that g is learned by some algorithm on the dataset D
 - We'll make the dependency on D explicit and write it as $g^{(D)}$ here.
 - [In VC theory, we consider the worst-case D through the definition of growth function $m_H(N)$]

•
$$E_{out}(g^{(D)}) = \mathbb{E}_{\vec{x}}[(g^{(D)}(\vec{x}) - f(\vec{x}))^2]$$

• $\mathbb{E}_D[E_{out}(g^{(D)})]$

$$= \mathbb{E}_D \left[\mathbb{E}_{\vec{x}} \left[\left(g^{(D)}(\vec{x}) - f(\vec{x}) \right)^2 \right] \right]$$

$$= \mathbb{E}_{\vec{x}} \left| \mathbb{E}_D \left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) + \bar{g}(\vec{x}) - f(\vec{x}) \right)^2 \right] \right|$$

$$= \mathbb{E}_{\vec{x}} \left[\mathbb{E}_D \left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) + \bar{g}(\vec{x}) - f(\vec{x}) \right)^2 \right] \right]$$

$$= \mathbb{E}_{\vec{x}} \left[\mathbb{E}_{D} \left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) \right)^{2} + \left(\bar{g}(\vec{x}) - f(\vec{x}) \right)^{2} + 2 \left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) \right) \left(\bar{g}(\vec{x}) - f(\vec{x}) \right) \right] \right]$$

• Note that
$$\mathbb{E}_D\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)\left(\bar{g}(\vec{x}) - f(\vec{x})\right)\right] = \left(\bar{g}(\vec{x}) - f(\vec{x})\right)\mathbb{E}_D\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)\right] = 0$$

Define "expected" hypothesis $\bar{g}(\vec{x}) = \mathbb{E}_D[g^{(D)}(\vec{x})]$

$\bar{g}(\vec{x}) = \mathbb{E}_D \big[g^{(D)}(\vec{x}) \big]$

Finishing Up

•
$$\mathbb{E}_{D}\left[E_{out}(g^{(D)})\right]$$

$$= \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2} + \left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right]\right]$$

$$= \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right]$$

- $= \mathbb{E}_{\vec{x}} \left[\text{Variance of } g^{(D)}(\vec{x}) + \text{Bias of } \bar{g}(\vec{x}) \right]$
- = Variance + Bias

Bias-Variance Decomposition

X: a random variable μ : the mean of X

Variance of X: $Var(X) = \mathbb{E}[(X - \mu)^2]$

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- This is a conceptual decomposition
 - Both \bar{g} and f are unknown
 - We can't really calculate bias and variance in practice
- However, it provides a conceptual guideline in decreasing E_{out}

- Fitting a sine function
 - $f(x) = \sin(\pi x)$
 - x is drawn uniformly at random from [0,2]
- Two hypothesis set
 - H_0 : h(x) = b
 - H_1 : h(x) = ax + b

Assume our algorithm finds g with minimum in-sample error

$$H_0$$
: $h(x) = b$

$$H_1$$
: $h(x) = ax + b$

$$\mathbb{E}_{D}\left[E_{out}\left(g^{(D)}\right)\right] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

Discussion:

If N = 2, would you choose H_0 or H_1 ? Why?

If N = 50, would you choose H_0 or H_1 ? Why?

What's the change of biases/variances for H_0/H_1 from N=2 to N=50.

$$H_0$$
: $h(x) = b$

$$H_1: h(x) = ax + b$$

$$H_0: h(x) = b$$

$$H_1: h(x) = ax + b$$

$$\mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}} \left[\left(\bar{g}(\vec{x}) - f(\vec{x}) \right)^{2} \right] + \mathbb{E}_{\vec{x}} \left[\mathbb{E}_{D} \left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x}) \right)^{2} \right] \right]$$

$$H_0$$
: $h(x) = b$

N=2

Bias of
$$\bar{g}(\vec{x}) \approx 0.50$$

Variance of $g_{\mathcal{D}}(\vec{x}) \approx 0.25$
 $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 0.75$

$$H_1$$
: $h(x) = ax + b$

Bias of $\bar{g}(\vec{x}) \approx 0.21$ Variance of $g_{\mathcal{D}}(\vec{x}) \approx 1.74$ $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 1.95$

$\mathbb{E}_{D}\big[E_{out}\big(g^{(D)}\big)\big] = \mathbb{E}_{\vec{x}}\left[\frac{\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}}{\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$

What if we increase N to 5?

$$H_0$$
: $h(x) = b$

Bias of $\bar{g}(\vec{x}) \approx 0.50$ Variance of $g_{\mathcal{D}}(\vec{x}) \approx 0.10$ $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 0.60$

$$H_1$$
: $h(x) = ax + b$

Bias of $\bar{g}(\vec{x}) \approx 0.21$ Variance of $g_{\mathcal{D}}(\vec{x}) \approx 0.21$ $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] \approx 0.42$

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- Increasing the number of data points N
 - Biases roughly stay the same
 - Variances decrease
 - Expected E_{out} decreases

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- Increasing the complexity of H
 - Bias goes down (more likely to approximate f)
 - Variance goes up (The stability of $g^{(D)}$ is worse)

Very small model

Very large model

$$\operatorname{Bias}(\vec{x}) \qquad \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- This is a conceptual decomposition
 - Both \bar{g} and f are unknown
 - We can't really calculate bias and variance for practical problems
- However, it provides a conceptual guidelines in decreasing E_{out}

Example

- Will talk about this in details in the 2nd half of the semester
- Decision tree
 - A low bias but high variance hypothesis set
 - Practical performance is not ideal

- Random forest
 - Trying to reduce the variance while not sacrificing bias
 - Idea: Generate many trees randomly and average them

Two Theories of Generalization

VC Generalization Bound

$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

Bias-Variance Tradeoff

$$\mathbb{E}_{D}\left[E_{out}\left(g^{(D)}\right)\right] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

Bias-Variance Analysis

Number of Data Points, N

Linear Models

Linear Models

This is why it's called linear models

• *H* contains hypothesis $h(\vec{x})$ as some function of $\vec{w}^T\vec{x}$

	Domain	Model	
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$	
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$	
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}$	

Credit Card Example

Approve or not

Credit line

Prob. of default

- Linear models:
 - Simple models => Good generalization error

 $\theta(s) = \frac{e^s}{1 + e^s}$

- Reminder:
 - We will interchangeably use h and \vec{w} to represent a hypothesis in linear models

Learning Algorithm?

• Goal of the algorithm: Find $g \in H$ that minimizes $E_{out}(g)$ (We don't know E_{out})

- Common algorithms:
 - $g = argmin_{h \in H} E_{in}(h)$
 - Works well when the model is simple (generalization error is small)
 - Will focus on this in the discussion of linear models
 - $g = argmin_{h \in H} \{E_{in}(h) + \Omega(h)\}$
 - $\Omega(h)$: penalty for complex h
 - Will discuss this when we get to LFD Section 4

VC Bound:
$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

Optimization is a key component in machine learning