© EPODOC / EPO

PN - JP2000112030 A 20000421

OPD - 1998-10-08

TI - PROJECTION TYPE PICTURE DISPLAY DEVICE

FI - H04N9/31&Z; H04N9/73&A; G03B21/14&A

PA - MINOLTA CO LTD

IN - KAMIYAMA MASAYUKI; KAWABATA AKIRA; OSADA HIDEKI; SAWAI YASUMASA

AP - JP19980286179 19981008 **PR** - JP19980286179 19981008

DT - |

© WPI / DERWENT

AN - 2000-354162 [31]

PN - JP2000112030 A 20000421 DW200031 G03B21/14 011pp

- US6467911 B1 20021022 DW200273 G03B21/00 000pp

OPD - 1998-10-08

Projection type image display device for color TV, changes modulation of light and white balance of color image is kept constant irrespective of size of the output of lamp

- JP2000112030 NOVELTY - Color image is displayed by performing the modulation of light emitted by a metal halide lamp (81), based on the color component of image. Modulation of the light is changed and white balance of color image, is kept constant irrespective of size of output of lamp.

- USE - For color TV.

- ADVANTAGE - Since the output of a lamp is easily changed by changing applied voltage, special circuit is not needed in order to change the output.

- DESCRIPTION OF DRAWING(S) - The figure shows installation of lamp unit of projection type image display device.

- Metal halide lamp 81

- (Dwg.3/9)

- PROJECT TYPE IMAGE DISPLAY DEVICE COLOUR TELEVISION CHANGE MODULATE LIGHT WHITE BALANCE COLOUR IMAGE KEEP CONSTANT IRRESPECTIVE SIZE OUTPUT LAMP

IC - G03B21/00 ;G03B21/14 ;H04N9/31 ;H04N9/73

MC - W03-A05C5 W04-P01D1 W04-Q01

DC - P81 P82 W03 W04 X26

PA - (MIOC) MINOLTA CAMERA KK

- (MIOC) MINOLTA COLTD

IN - KAWABATA A; NAGATA H; SAWAI Y; UEYAMA M

AP - JP19980286179 19981008;US19990413311 19991006

PR - JP19980286179 19981008;JP19980286152 19981008;JP19980286153 19981008;JP19980286154 19981008;JP19980286181 19981008;JP19980286183 19981008;JP19980303659 19981026;JP19980303715 19981026;JP19980303726 19981026;JP19980303730 19981026;JP19980303733 19981026

ORD - 2000-04-21

© PAJ / JPO

PN - JP2000112030 A 20000421

TI - PROJECTION TYPE PICTURE DISPLAY DEVICE

- PROBLEM TO BE SOLVED: To obtain a projection type picture display device having a simple constitution capable of keeping the white balance of a color picture constant even when brightness is changed by varying the modulation of light in accordance with output from a lamp and keeping the white balance of the color picture nearly constant regardless of the magnitude of the output from the lamp.

THIS PAGE BLANK (USPTO)

- SOLUTION: Voltage(hereinafter referred to as stationary voltage) applied to the lamp 81 from a lighting circuit 61 is made variable, and an instruction to set brightness, which is given from a user through an operation part 70, is detected by a controller 71, and the brightness is changed in accordance with the instruction. The emitted light quantity of the lamp 81 is changed in accordance with the magnitude of the stationary voltage, and the quantity of light projected to the screen 50 is changed, so that the brightness of the picture is changed. Relation between the output and color temperature is stored in a memory 85, and is read out by the controller 71 so that it is utilized to control the adjustment of the white balance by a WB adjusting part 67. Therefore, the picture having a proper color hue can be always displayed even when the lamp 81 having different wattage is used.
- G03B21/14 ;H04N9/31 ;H04N9/73
- PA MINOLTA CO LTD
- IN KAMIYAMA MASAYUKI;SAWAI YASUMASA;OSADA HIDEKI;KAWABATA AKIRA

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2000-112030 (P2000-112030A)

(43)公開日 平成12年4月21日(2000.4.21)

(51) Int.Cl.7		識別記号	FΙ			テーマコート*(参考)
G03B	21/14		G 0 3 B	21/14	Α	5 C O 6 O
H04N	9/31		H04N	9/31	Z	5 C O 6 6
	9/73			9/73	Α	

審査請求 未請求 請求項の数1 OL (全 11 頁)

(21)出廢番号	特顏平10-286179	(71)出顧人	000006079
			ミノルタ株式会社
(22)出顧日	平成10年10月8日(1998.10.8)		大阪府大阪市中央区安土町二丁目 3 番13号 大阪国際ビル
		(72)発明者	上山 雅之
			大阪市中央区安土町二丁目3番13号 大阪
			国際ピル ミノルタ株式会社内
		(72)発明者	澤井 靖昌
			大阪市中央区安土町二丁目3番13号 大阪
			国際ピル ミノルタ株式会社内
		(74)代理人	100085501
			弁理士 佐野 静夫
			最終頁に続く

(54) 【発明の名称】 投射型画像表示装置

(57)【要約】

【課題】 表示する画像の明るさを変えることが可能で、明るさを変えても画像のホワイトバランスを一定に保ち得る簡素な構成の投射型画像表示装置を提供する。【解決手段】 画像投射用の光源としてメタルハライドランプを使用し、ランプへの印加電圧を変化させてランプの出力すなわち発光量を変化させ、これにより表示する画像の明るさを変える。ランプが発する光から得る3原色の光の変調をランプの出力の変化に応じて変えることで、出力の変化に伴うランプの発する光の色温度の変化を補償し、表示する画像のホワイトバランスを略一定に保つ。

J

.

【特許請求の範囲】

【請求項1】 ランプが発する光を画像の色成分に応じて変調し、変調後の光を投射することによりカラー画像を表示する投射型画像表示装置であって、前記ランプの出力を変え得るようにしたものにおいて、

前記ランプが発する光の変調を前記ランプの出力に応じて変化させることにより、表示するカラー画像のホワイトバランスを前記ランプの出力の大小にかかわらず略一定とすることを特徴とする投射型画像表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は投射型の画像表示装置に関し、特に、表示する画像の明るさが可変の投射型画像表示装置に関する。

[0002]

【従来の技術】画像に応じて光を変調し、変調後の光をスクリーンに投射して画像を表示する投射型の画像表示装置がある。このような投射型画像表示装置は、一度に多数の人に画像を提示するために利用され、近年では、比較的大画面のカラーテレビにも用いられるようになっ 20ている。

【0003】投射型画像表示装置で表示する画像の明るさは、画像の観易さおよび電力消費の低減の観点から、環境の明るさに応じて変え得るようにするのが好ましく、これを実現した装置が特開平9-96786号公報に提案されている。この装置では、画像投射用の光源として複数のランプを備え、同時に点灯させるランプの数を変えることにより画像の明るさを変えるようにしている。

【発明が解決しようとする課題】ところが、上記公報の

方法では、複数のランプを配置するための広い空間を確

[0004]

保する必要がある上、複数のランプからの光を混合する ための光学系が必要になって、装置が大型化する。ま た、表示する画像の明るさは段階的になるから、明るさ を細かく調節するためには多数のランプを備える必要が 生じて、装置は一層大型化する。しかも、画像の明暗に かかわらず画像全体にわたって明るさが均一になるよう にするためには、個々のランプを点灯するときも消灯す るときも混合後の光が均一になるようにしなければなら ず、そのためにランプの配置位置を工夫し、あるいは特 殊な光学系を備える必要が生じて、装置が複雑化する。 【0005】メタルハライドランプのように印加電圧の 髙低に応じて出力すなわち発光量が変化するランプもあ り、このようなランプを画像投射用の光源として使用す れば、唯1つのランプを備えてその印加電圧を変化させ るだけで、容易にかつ連続的に画像の明るさを調節する ことができる。しかしながら、出力可変のランプは発す る光の色温度が出力に応じて変化するという性質も併せ もっており、単に出力を変化させるだけでは、表示する 画像のホワイトバランスがその明るさに応じて変化して しまい、常時良好な色合いの画像を表示することができ なくなるという新たな不都合が生じる。

【0006】本発明は、上記問題点に鑑みてなされたもので、表示する画像の明るさを変えることが可能で、しかも明るさを変えても画像のホワイトバランスを一定に保ち得る簡素な構成の投射型画像表示装置を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するために、本発明では、ランプが発する光を画像の色成分に応じて変調し、変調後の光を投射することによりカラー画像を表示する投射型画像表示装置であって、ランプの出力を変え得るようにしたものにおいて、ランプが発する光の変調をランプの出力に応じて変化させることにより、表示するカラー画像のホワイトバランスをランプの出力の大小にかかわらず略一定とする。

【0008】表示する画像のホワイトバランスは、ランプが発する光から得られる3色の光、例えば赤(R)、緑(G)、青(B)の3原色の光の変調に際して、それらの光量の比率を変化させることで調整することができる。この調整をランプの出力に応じて行うことで、ランプの発する光の色温度が出力の変化に伴って変化しても、ホワイトバランスを略一定にすることができる。例えば、画像の明るさを下げるために出力を小さくすると色温度は上昇するが、このとき短波長のB光に対する長波長のR光の光量の比率を高めることで、画像が青みを帯びることが防止される。

[0009]

【発明の実施の形態】本発明の投射型画像表示装置の一実施形態について、図面を参照しながら説明する。図1 に本実施形態の投射型画像表示装置(以下、単に投射表示装置ともいう)1の画像の表示に関する構成の概略を示す。投射表示装置1は、テレビジョン信号を受信してそのRGB信号によって光源からの光を変調し、変調後の光を背面側からスクリーンに投射して、スクリーン上にカラー画像を表示する背面投射型テレビとして構成されている。

【0010】投射表示装置1は、画像を表示するためのスクリーン50、画像投射用の光を供給する光源部20、光源部20からの光をRGB信号によって変調する変調部30、変調後の光を拡大してスクリーン50に投射し結像させる投射部40、およびこれら全てを収容する筐体10より成る。投射表示装置1は画像投射用の光源として、アーク放電ランプの一種であるメタルハライドランプ81を使用する。ランプ81は交換可能であり白色光を発する。

【0011】光源部20には、ランプ81を装着するための装着部21が2つ備えられており、2つのランプ8 50 1を同時に装着することができる。ただし、装着された 2つのランプ81を同時に点灯させるのではなく、符号Aで示した位置にある装着部21に装着されているランプ81のみを点灯させ、符号Bで示した位置にある装着部21に装着されているランプは点灯させない。位置Aを点灯位置、位置Bを非点灯位置という。非点灯位置Bにあるランプは予備のランプである。

【0012】点灯位置Aと変調部30の間には、点灯したランプ81の光をP偏光またはS偏光の一方に揃える偏光変換器28が配置されている。これにより、光源部20からの光は全て、後述する変調部30の液晶パネル 10に適合する偏光とされて、変調部30に導かれる。

【0013】筐体10のうち前面下部の非点灯位置Bに対向する部位には、開閉自在の扉11が設けられている。扉11を開くことによりその開口を通して、非点灯位置Bにある装着部21からランプを取り外し、またその装着部21にランプを装着することができる。図1は非点灯位置Bにある装着部21に予備のランプを装着する直前の状態を表しており、予備のランプは示されていない。装着部21が点灯位置Aにあるとき、その装着部21のランプ81に触れることはできず、当然、そのラ 20ンプ81の交換もできない。

【0014】2つの装着部21は、点灯位置Aと非点灯位置Bとに交互に配置されるように、可動に構成されている。具体的には、装着部21は回転軸23を有する保持部22に保持されており、光源部20には保持部22を回転させるためのモータ24が備えられている。保持部22の回転軸23およびモータ24の回転軸25にはそれぞれ、互いに噛み合うギア26およびギア27が固定されており、モータ24の回転により、保持部22が回転して装着部21も回転する。2つの装着部21のうちの一方が点灯位置Aにあるときに他方が非点灯位置Bにあるようにするために、点灯位置Aおよび非点灯位置Bならびに2つの装着部21は、回転軸23に関して対称に配設されている。

【0015】なお、装着部21を3つ以上備えるとともに非点灯位置Bを2以上に設定して、予備のランプを複数装着しておくようにしてもよい。その場合、扉11は全ての非点灯位置Bに対向するように大きく形成してもよく、唯1つの非点灯位置Bに対向するだけの大きさとしてもよい。装着部21を3つ以上備える構成でも、点40灯位置Aおよび非点灯位置Bならびに装着部21を回転軸23に関して回転対称に配設する。

【0016】変調部30は光源部20から供給される白色光をR、G、Bの3原色の光に分解するとともに、分解後の3色の光をそれぞれ個別に変調し、変調後の3色の光を合成して、投射部40に導く。変調部30には、光源部20からの光を分解するための3つのカラーフィルター31、32、33、分解後の光を変調するための3つの透過型液晶パネル(LCD)36、37、38、変調後の光を合成するためのクロスプリズム39が備え 50

られている。

【0017】フィルター31、32、33は、R光を反射して他の光を透過させるもの、G光を反射して他の光を透過させるもの、およびB光を反射して他の光を透過させるものである。これらのフィルター31、32、33は、光源部20から入射する光の光路上に、その光路に対して45 傾けて配置されており、同じ方向に平行に光を反射する。クロスプリズム39は、中央のフィルター32の反射光を直接受ける位置に配置されている。クロスプリズム39の側方には、フィルター31および33の反射光をクロスプリズム39に導くための全反射ミラー34aおよび34bが配設されている。

【0018】LCD36、37、38は、RGB信号のうちのR信号によってR光を変調するもの、G信号によってB光を変調するもの、B信号によってB光を変調するものであり、クロスプリズム39に略接して、それぞれミラー34a、フィルター32、ミラー34bからの反射光に対して垂直に配置されている。フィルター31、32、33とLCD36、37、38は、光と信号とが対応するように配列すればよく、それらの配列順序に他の制約はない。

【0019】クロスプリズム39は直角二等辺三角柱である4つのプリズムを接合して成る正四角柱である。各プリズムの接合面はハーフミラーとされており、入射する3色の光それぞれに対して45 傾いている。クロスプリズム39が、LCD37からの光を透過させ、LCD36からの光としCD38からの光とを反射することによって、変調後の3色の光が合成されて投射部40に導かれる。

【0020】フィルター31とフィルター32の距離、フィルター32とフィルター33の距離、フィルター31とミラー34aの距離およびフィルター33とミラー34bの距離は全て等しく設定されており、また、フィルター32とLCD37の距離、ミラー34aとLCD36の距離およびミラー34bとLCD38の距離も全て等しく設定されている。したがって、フィルター31からミラー34aを経てLCD36に至る光路長と、フィルター31からフィルター32を経てLCD37に至る光路長は等しい。

【0021】一方、フィルター31からフィルター32、33およびミラー34bを経てLCD38に至る光路は上記の両光路よりも長く、実質の光路長を両光路と同じにするために、フィルター32とフィルター33の間およびフィルター33とミラー34bの間には、それぞれリレーレンズ35aおよび35bが配設されている。なお、リレーレンズは必ずしも2つ配設する必要はなく、2つのリレーレンズ35a、35bに相当する1つのリレーレンズを、フィルター32からLCD38までの光路上の何処かに配設するようにしてもよい。

【0022】投射部40は、投射レンズ41と全反射ミ

ラー42より成る。投射レンズ41はクロスプリズム3 9によって合成された変調後の光を上方に向けて射出 し、ミラー42は投射レンズ41からの光を前方のスク リーン50に向けて反射する。これにより、3色の画像 を表す光がスクリーン50に結像して、スクリーン50 上にカラー画像が表示される。

【0023】投射表示装置1はテレビとして構成されて いるため、スクリーン50の大きさやクロスプリズム3 9からスクリーン50までの光路長は一定不変であり、 したがって、投射レンズ41には焦点調節の機能を備え る必要はない。ただし、微小な組み立て誤差による表示 画像のぼけを防止するために、投射レンズ41は焦点の 微調節を行うことができるように設定されている。

【0024】投射レンズ41から投射される光を全反射 ミラー42で反射させる構成とすることにより、投射表 示装置1の大きさを小さく保ちながら、投射レンズ41 からスクリーン50までの光路を長くして画像を大きく 表示することができる。全反射ミラー42は平面として もよく、表示画像をより大きくするために凸面としても よい。なお、変調部30や投射レンズ41の配設位置と 20 してメモリ85の記憶内容を書き換える。 向きを変えて、投射レンズ41の光軸がスクリーン50 に対して垂直になるように設定し、ミラー42を省略す ることも可能である。

【0025】スクリーン50は表面に微細な凹凸が均一 に形成されて半透明になっており、スクリーン50の背 面側から投射されて結像した光は、正面側に導かれかつ 拡散する。したがって、スクリーン50の正面側に位置 する観察者は、スクリーン50の正面側のあらゆる方向 からスクリーン50上の画像を観ることができる。

【0026】投射表示装置1では、前述のように光源と して交換可能なランプ81を用いるが、ランプ81単体 を交換するのではなく、ランプ81を組み込んだランプ ユニットを使用して、ランプユニットを交換する。メタ ルハライドランプは点灯時に高温になり、ランプのガラ スの表面に脂分等の可燃性の汚れが付着していると破裂 することがある。ランプ単体でなくランプユニットを交 換することで、使用者がランプに直接触れて皮脂がガラ スに付着する可能性が大きく低下し、破裂の危険性が防 止される。

【0027】メタルハライドランプは発光量が大きいと いう特長を有する反面、点灯時間が増すにつれてガラス が劣化していき、劣化が進んだ状態で使用すると破裂す るという欠点も有している。このため、メタルハライド ランプには、点灯時間と劣化の程度の関係を考慮して、 安全に使用し得る点灯時間を保証する寿命が製造時に定 められる。投射表示装置1およびこれに使用するランプ ユニットには、寿命を大きく超えてランプを点灯させる 危険性への対策が講じられている。

【0028】投射表示装置1で使用するランプユニット 80 および装着部21の構成を図2に示し、ランプユニ 50 は接続端子とされて点灯位置Aに露出しており、点灯位

ット80を装着した状態の装着部21を図3に示す。ラ ンプユニット80は、メタルハライドランプ81、放物 面状の全反射ミラー(反射傘)82、ランプ81とミラ 一82を一体に保持しランプ81の端子84が設けられ たランプ保持部83、およびランプ81に関する様々な 情報を記憶しておくためのメモリ85より成る。ランプ 81はミラー82の焦点位置に配置されており、ミラー 82によって反射された光は略平行な光となる。

【0029】メモリ85は不揮発性で書き換え可能なE EPROMであり、入出力用の端子86を備え、ランプ 保持部83に固着されている。メモリ85には、ランプ ユニット80の製造時に、ランプ81の定格出力、発光 効率、定格出力で点灯したときの寿命、出力と劣化速度 の関係、出力と発する光の色温度の関係、およびランプ 81の温度と点灯に必要なイグニッション電圧の関係が 書き込まれる。投射表示装置1は、メモリ85からラン プ81に関するこれらの情報を読み出して動作の制御に 利用する。特に、ランプ81の寿命については、ランプ 81を点灯させたときに、点灯時間から残り寿命を算出

【0030】装着部21は円筒状に形成されており、前 端に開口21aを有し、後端には扉21hが備えられて いる。扉21bには、ランプ81への電力供給用の端子 21cと、メモリ85の入出力用の端子21dが設けら れている。ランプユニット80は、図2に矢印で示した ように後方から装着部21に挿入され、放物面状のミラ -82の前端縁が開口21aの周辺部に当接し、閉じら れた扉21bの端子21cおよび21dに端子84およ び端子86がそれぞれ当接することにより、装着部21 内に固定される。

【0031】扉21bを閉じた状態に保つために、扉2 1bの端部には爪21eが形成され、装着部21の外周 面には爪21eと係合する溝21fが形成されている。 扉21bは弾性を有しており、端部を指先で軽く操作す ることにより爪21eと溝21fの係合が解除されて、 扉21bは開く。したがって、装着部21へのランプユ ニット80の着脱は容易である。

【0032】投射表示装置1の画像の表示に関する回路 構成の概略を図4に示す。投射表示装置1は、装着部2 1に電力を供給してランプ81を点灯させる点灯回路6 **1、点灯位置Aにある装着部21に装着されたランプ8** 1の温度を検出する温度センサ62、非点灯位置Bに対 向して設けられた扉11の開閉状態を検出する扉開閉セ ンサ63、モータ24を駆動するドライバ64、装着部 2 1 が点灯位置Aおよび非点灯位置Bにあるときに閉 じ、点灯位置Aと非点灯位置Bの間にあるときに開くス イッチ65を備えている。

【0033】点灯回路61からは電力供給用の配線61 aが点灯位置Aまで設けられている。配線61aの端部 置Aに移動してきた装着部21の端子21cに自動的に 接続される。一方、点灯回路61から非点灯位置Bに は、電力供給用の配線は設けられておらず、非点灯位置 Bの装着部21には電力は供給されない。

7

- 4], a

【0034】投射表示装置1は、また、R信号、G信 号、B信号に応じてLCD36、37、38を駆動し て、R光、G光、B光を変調させるLCDドライバ6 6、LCDドライバ66にR信号、G信号、B信号を供 給するとともに、これら3信号の強度を変えて表示され る画像のホワイトバランス (WB) を調整するWB調整 10 部67、警告用の2つの発光ダイオード(LED)6 8、69、使用者によって操作される操作部70および コントローラ71を備えている。

【0035】投射表示装置1は、テレビジョン信号を受 信してRGB信号を生成するために、テレビジョン技術 では周知の信号処理回路(不図示)も備えており、WB 調整部67にはその信号処理回路からRGB信号が供給 される。なお、ビデオ再生装置で再生したRGB信号を WB調整部67に供給することもできる。

【0036】コントローラ71はマイクロコンピュータ より成り、点灯回路61によるランプ81の点灯、ドラ イバ64によるモータ24の駆動、LCDドライバ66 によるLCD36、37、38の駆動、WB調整部67 によるホワイトバランスの調整、および図外の信号処理 回路の動作を制御する。コントローラ71はランプ81 を点灯させた時間を計るためのタイマ71 cを備えてお り、コントローラ71から点灯位置Aおよび非点灯位置 Bには、ランプユニット80のメモリ85の入出力用の 配線71aおよび71bがそれぞれ設けられている。配 線71a、71bの端部はそれぞれ接続端子とされて点 30 灯位置A、非点灯位置Bに露出しており、点灯位置A、 非点灯位置Bに移動してきた装着部21の端子21dに 自動的に接続される。

【0037】コントローラ71は、ランプ破裂の危険を 避けるために、ランプ81の残り寿命があるランプユニ ット80が装着されている装着部21を、点灯位置Aに 自動的に配置する。このために、画像の表示を行う前に 各ランプユニット80のメモリ85からランプ81の残 り寿命を読み出す。残り寿命がないときすなわち残り寿 命が0以下のときは、その装着部21を「点灯不可」と 40 し、また、ランプユニット80が装着されていないとき も、その装着部21を「点灯不可」とする。ランプ81 の残り寿命があるランプユニット80が装着されている 装着部21は、「点灯可」とする。

【0038】点灯位置Aにある装着部21が点灯不可の ときは、非点灯位置Bの装着部21が点灯可であるか否 かを判定し、点灯可であればその装着部21を点灯位置 Aに配置する。点灯位置Aと点灯位置Bのいずれの装着 部21も点灯不可のときには、LED68を点灯させて 警告を発する。

【0039】画像の表示を終了する時すなわち点灯位置 Aにあるランプ81を消灯する時、コントローラ71は 点灯前の残り寿命からタイマ71cで計った点灯時間を 減じて残り寿命の最新値を算出し、算出した値をそのラ ンプユニット80のメモリ85に書き込んで、記憶して いる残り寿命を更新する。その際、表示終了の指示が操 作部70を介して使用者から与えられた時点で残り寿命。 を算出し、算出した残り寿命が所定時間H以下のとき は、非点灯位置Bの装着部21が点灯可であるか否かを 判定する。そして、非点灯位置Bの装着部21が点灯不 可であれば、ランプ81の残り寿命があるランプユニッ ト80を非点灯位置Bの装着部21に装着すべきこと告 げるメッセージを、スクリーン50に数秒程度の短時間 表示させる。その後ランプ81を消灯する。

【0040】この表示は、例えば、「ランプの寿命が近 づいています。予備ランプホルダーに新しい予備ランプ を装着して下さい。」とする。この表示を見た使用者 は、適当な時期に、新しいランプユニット80を非点灯 位置Bの装着部21に装着することになる。

【0041】所定時間日は1回の画像表示の時間の平均 的な値の2倍程度以上とする。テレヒとして構成されて いる本実施形態の投射表示装置しでは、3~4時間が適 当である。これは、新しいランプユニット80か装着さ れなかったときでも、残り寿命を確保して次回の画像表 示を可能にするためである。なお、ランプ81を点灯さ せている間に残り寿命がなくなっても、そのランプ81 の点灯を継続する。残り寿命がなくなっても直ちにラン プが破裂する訳ではなく、また、非点灯位置 B にあるう ンプ81を点灯位置Aに配置するために画像の表示を中 断しなければならなくなるという不都台を回避するため である。寿命を超えて点灯する時間をできるだけ短くす るためにも、所定時間日は1回の画像表示の時間の平均 的な値の2倍程度以上とするのがよい。

【0042】使用者は扉11を開けて新しいランフユニ ット80を非点灯位置Bの装着部21に装着するが、コ ントローラ71は、点灯回路61が点灯位置Aにあるラ ンプ81を点灯させている間、および温度センサ62に よって検出された点灯位置Aにあるランプ81の温度が 所定温度以上である間は、モータ24の駆動を禁じる。 これにより、消灯後間もない高温のランプ 8 1 が非点灯 位置Bに移動し、使用者がこれに触れて火傷する危険が 防止される。

【0043】コントローラ71は、また、扉開閉センサ 63によって扉11が開いていることが検出されている 間はモータ24の駆動を禁じ、モータ24の駆動中に扉 11が開いたことが検出されたときは直ちにモータ24 を停止させる。これにより、扉11が閉じている間のみ に装着部21が回転することになり、使用者の指先が回 転する装着部21や保持部22に挟まれる危険が防止さ 50 れる。 扉 1 1 が開いている間は、 LED69 を点灯させ

i is

٠,

て閉め忘れを警告する。

【0044】なお、装着部21を回転させるためのモータ24の駆動は、スイッチ65が閉状態になった時点で停止される。したがって、扉11が開かれたことによりモータ24の駆動を中断して、装着部21の位置が判らなくなっても、モータ24の駆動を再開することで、装着部21を点灯位置Aと点灯位置Bに確実に位置させることができる。

9

【0045】アーク放電管であるメタルハライドランプは、点灯を開始するためのイグニッション電圧が、ラン 10 プが低温であるか高温であるかによって異なる。低温時には、封入されているガスがイオン化し易く、低いイグニッション電圧で点灯することができる。一方、高温時には、封入されているガスがイオン化し難く、低いイグニッション電圧の2~10倍程度の高いイグニッション電圧を印加しなければ点灯することができない。

【0046】投射表示装置1では、画像表示の終了直後に画像表示を再開することを可能にするために、点灯回路61は高低2つのイグニッション電圧を出力し得るように構成されている。コントローラ71は、温度センサ 2062で検出した点灯位置Aにあるランプ81の温度が所定温度以下であるか否かに応じて、いずれか一方のイグニッション電圧を出力するように点灯回路61に指示を与える。検出された温度が所定温度以下のときに低いイグニッション電圧を印加することにより、ランプ81の電極の損傷を防止しながら点灯させることができ、高温のときに高いイグニッション電圧を印加することにより、消灯直後でも確実にランプを点灯させることができる。

【0047】なお、検出した温度に応じてイグニッショ 30 ン電圧を選択することに代えて、消灯からの経過時間に応じてイグニッション電圧を選択することも可能である。例えば、消灯後80秒と超えていれば低いイグニッション電圧を選択する。また、高低2つのイグニッション電圧の間の中間のイグニッション電圧を設定して、ランプ81の温度またはその消灯からの経過時間に応じて、いずれかのイグニッション電圧を選択するようにしてもよい。さらに、最低電圧とその10倍程度の最高電圧の範囲でイグニッション電圧を連続可変として、ラン 40 ブ81の状態に応じたイグニッション電圧を印加するようにしてもよい。

【0048】点灯位置Aにあるランプ81が高温のときに、非点灯位置Bにある低温の予備のランプ81を点灯位置Aに移動させるようにすれば、低いイグニッション電圧のみを出力する構成であっても、画像表示の終了直後に画像表示を再開することは可能である。しかしながら、非点灯位置Bに予備のランプが装着されているとは限らず、装着されていても残り寿命があるとは限らず、確実性に欠ける制御となる。しかも、消灯直後の高温の

ランプ81を非点灯位置Bに配置することになって、使用者がこれに触れて火傷する危険性も生じる。高低2つのイグニッション電圧を用意して点灯位置Aにあるランプ81を再点灯する上記の制御の方が、確実性および安全性の両面で好ましい。

【0049】画像の観易さの向上および電力消費の低減 のために、表示する画像の明るさは環境の明るさに応じ て変えられるようにするのが望ましい。このために、投 射表示装置 1 では、点灯を継続するために点灯回路 6 1 からランプ81に印加する電圧(以下、定常電圧とい う)を可変とし、操作部70を介して使用者から与えら れる明るさ設定の指示をコントローラ71で検出して、 その指示に応じて変えるようにしている。定常電圧の髙 低に応じてランプ81の発光量が変わり、スクリーン5 〇に投射される光量が変化して画像の明るさが変わる。 【0050】メタルハライドランプでは、発光量すなわ ち出力ワット数が変化すると発する光の色温度も変化す る。出力ワット数と色温度の関係を図りに例示する。出 カワット数が高いときは色温度は低く、出カワット数が 低いときは色温度は高くなる。光は色温度が低いと赤味 を帯びて、高いと青味を帯びて観察される。したがっ て、表示する画像の色合いをその明るさに関わらず一定 に保つためには、ランプ81に印加する定常電圧に応じ て、ホワイトバランスの設定を調整しなければならな 64

【0051】そこで、コントローラ7 1は、点灯回路6 1に指示する定常電圧値に応じて、LCDドライバ66 に出力するR、G、Bの各信号の強度を変えるようにW B調整部67に指示を与える。具体的には、R信号に対 30 するB信号の強度を、定常電圧を高くするときは相対的 に大きくさせ、定常電圧を低くするときは相対的に小さ くさせる。これにより、ランプ81の発光量が多く画像 を明るく表示するときに赤味を減じ、発光量が少なく画 像を暗く表示するときに青味を減じて、常に一定の色合 いの画像を表示することができる。

【0052】前述のように、出力と色温度の関係はランプユニット80のメモリ85に記憶されており、コントローラ71はこれを読み出して、WB調整部67によるホワイトバランスの調整の制御に利用する。したがって、ワット数の異なるランプ81を使用しても、常に適正な色合いの画像を表示することができる。個々のランプユニット80に出力ワット数と色温度の関係を記憶することに代えて、コントローラ71がメタルハライドランプの出力ワット数と色温度の一般的な関係を記憶しておき、これをホワイトバランスの調整の制御に利用するようにしてもよい。

【0053】なお、操作部70には色合いの設定を指示する操作部材が備えられており、コントローラ71は、出力ワット数と色温度の関係から求めたR、G、B信号 の比率を使用者からの指示に応じて補正する。したがっ

て、使用者は好みに応じて表示する画像の色合いを設定、することもできる。

11

【0054】ランプ81の劣化速度は点灯時の出力によって変動するから、残り寿命を正しく求めるためには、ランプ81を点灯状態に保った時間だけでなくその時の出力を考慮する必要がある。そこで、投射表示装置1では、ランプ81の点灯時間を計るためのタイマ71cの計時速度を可変としている。前述のように、ランプ81の出力と劣化速度の関係はランプユニット80のメモリ85に記憶されており、コントローラ71はこの情報を10参照して、点灯回路61に指示する定常電圧値に応じてタイマ71cの計時速度を変化させる。これにより、環境の明るさに応じてランプ81の出力を変化させても、残り時間を正しく算出することができる。

【0055】投射表示装置1における画像表示の動作の制御について、図5~図8を参照して説明する。図5は制御動作全体の概略を示すフローチャートである。電源スイッチが操作されて投射表示装置1の各部への電力供給が開始されると(ステップ#5)、コントローラ71はまず、装着部21へのランプユニット80の装着の有20無およびメモリ85に記憶されているランプ81の残り寿命に基づいて、各装着部21のランプを点灯させることが可能か否かを調べるランプチェックを行い、点灯可の装着部21を点灯位置Aに配置する(#10)。

【0056】次いで、操作部70に設けられた表示の開始と終了を指示するスイッチにより、表示の開始が指示されているか否かを判定する(#15)。表示の開始が指示されていなければ、その指示があるのを待つ。指示があると、イグニッション電圧を印加して点灯位置Aのランプ81を点灯させる点灯開始処理を行う(#20)。これで、テレビジョン信号に応じたカラー画像がスクリーン50に表示される。

【0057】表示は、表示の開始と終了を指示するスイッチにより、終了が指示されるまで継続される(#30)。この間、使用者からの指示に応じて、ランプ81に印加する定常電圧を変えて画像の明るさを変える処理を行う(#25)。画像の明るさを変えるときには、同時に、ホワイトバランス調整の処理とタイマ71cの計時速度の変更の処理も行う。

【0058】表示終了の指示があると(#30)、ラン 40 プ81の残り寿命を算出し、必要なときにはランプユニット80の交換を促す処理を行う(#35)。そして、ランプ81を消灯し(#40)、算出した残り寿命を点灯位置Aのランプユニット80のメモリ85に書き込む(#45)。さらに、次回の表示に備えて、ステップ#10と同じランプチェックの処理をし(#50)、電源スイッチの操作により電力供給が断たれることにより全処理を終了する(#55)。

【0059】ステップ#10および#50におけるランプチェックの処理の流れを図6のフローチャートに示

す。まず、点灯位置Aおよび点灯位置Bの装着部21に装着されているランプユニット80のメモリ85から、残り寿命をはじめとするランプ81に関する諸情報を読み出す(ステップ#105)。そして、装着部21にランプユニット80が装着されていたか否かおよびランプ81の残り寿命があるか否かに応じて、前述のように、装着部21が点灯可であるか点灯不可であるかを決定する(#110)。

【0060】次いで、点灯位置Aの装着部21が点灯可であるか否かを判定し(#115)、点灯可のときは図5の処理に戻る。点灯位置Aの装着部21が点灯不可のときは、非点灯位置Bの装着部21が点灯可であるか否かを判定する(#120)。非点灯位置Bの装着部21も点灯不可のときは、LED68を点灯することにより、残り寿命のあるランプ81が装着されていないことを警告して(#125)、全処理を終了する。

【0061】非点灯位置Bの装着部21が点灯可のときは、温度センサ62で検出される点灯位置Aのランプ81の温度が所定温度以上であるか否かを判定し(#130)、所定温度以上であれば所定温度よりも低くなるのを待つ。点灯位置Aのランプ81の温度が所定温度よりも低ければ、扉開閉センサ63によって検出される尿11の状態を判定する。扉11が開いているときは、LED69を点灯することによりランプユニット80の切り替えをしないことを警告をして(#140)、扉11が閉じられるのを待つ。

【0062】扉11が閉じられているときは、モータ24の駆動により保持部22を回転させて、点灯位置Aにあった装着部21を非点灯位置Bに、非点灯位置Bにあった装着部21を点灯位置Aに移動させて、ランプ81を切り替える(#145)。これで残り寿命のあるランプ81が点灯位置Aに配置されて、いつでも表示を開始できる状態となり、処理は図5に戻る。

【0063】図5のステップ#20における点灯開始処理の流れを図7のフローチャートに示す。まず、温度センサ62で検出される点灯位置Aのランプ81の温度から、消灯直後の再点灯であるか否かを判定する(ステップ#205)。検出された温度が所定温度以下で消灯直後の再点灯でないときは、低いイグニッション電圧を点灯回路61からランプ81に印加する標準イグニッションを行い(#210)、逆に、検出された温度が所定温度を超え消灯直後の再点灯のときには、高いイグニッション電圧を印加する高圧イグニッションを行う(#215)。そして、残り寿命の算出に用いる点灯時間を計測するために、タイマ71cを起動して(#220)、図5の処理に戻る。

【0064】図5のステップ#35におけるランプ81 の残り寿命の算出とランプユニット80の交換要求の処理の流れを図8のフローチャートに示す。まず、図5の ステップ#10(図6、ステップ#105)で読み出し

្រំប៉

t

た残り寿命からステップ#20(図7、ステップ#22 0)で起動したタイマ72cの計測時間を減じて、点灯 位置Aにある点灯したランプ81の残り寿命を算出する (ステップ#305)。次いで、算出した残り寿命が所 定時間Hを超えるか否かを判定し(#310)、超えて いるときは図5の処理に戻る。

13

【0065】残り寿命が所定時間H以下のときは、非点 灯位置Bの装着部21が点灯可であるか否かを判定する (#315)。非点灯位置Bの装着部21が点灯可のと の残り寿命があるランプユニット80を非点灯位置Bの 装着部21に装着すべきことを告げる前述のメッセージ を表示して(#320)、図5の処理に戻る。

【0066】このメッセージは使用者が読み取るに足る 時間だけ表示すればよく、表示時間は数秒程度と短いか ら、図5のステップ#45でメモリ85に書き込む残り 時間に誤差はほとんど生じない。より厳密な残り時間を メモリ85に書き込む必要がある場合には、ステップ# 305で算出した残り時間からこのメッセージの表示時 間を減じればよい。

【0067】以上説明したように、本実施形態の投射型 画像表示装置1では、ランプの残り寿命をランプユニッ トに記憶させて、残り寿命のあるランプのみを点灯させ るとともに、ランプ単体ではなくランプユニットを交換 するようにして使用者がランプに直接触れるのを防止し ているので、ランブ破裂の危険性がほとんどない。ま た、非点灯位置のランプのみを交換可能とし、髙温のラ ンプを非点灯位置に移動させず、ランプ交換用の扉が開 いているときはランプ移動用の機構を駆動しないように しているので、使用者が火傷等の怪我をするおそれもな 30 です。

【0068】しかも、環境条件に応じて表示画像の明る さを調節することが可能であり、表示画像の明るさに応 じたホワイトバランス調整がなされるので、観易い明る さで自然な色合いの画像を提供することができる上、無 駄な電力消費も避けられる。また、高いイグニッション 電圧の印加が可能であり、画像表示の終了直後に容易に 画像の表示を再開することができる。さらに、ランプ交 換の必要性をあらかじめ判断して適切な時期にその旨を 表示するので、予備のランプを準備し易い。

【0069】このような特徴により、投射型画像表示装 置1は安全性がきわめて高く、表示画像の質も高く、操 作性に優れ、低電力消費の装置となっており、家庭用の テレビとして適している。なお、環境の明るさを検出す るためのセンサを備えて、環境の明るさに応じて表示画 像の明るさを調節するようにしてもよく、その構成では さらに電力消費の低減を図ることができる。その場合 も、表示する画像の明るさに応じてホワイトバランスを 調整する。

【0070】また、ここでは背面投射型テレビの例を示 50 21a

したが、本発明はスクリーンを別体とした投射型画像表 示装置にも適用することができる。例えば、前面投射型 のデータプロジェクターにも好適である。その場合、ス クリーンまでの距離に応じて投射光の結像位置を変えら れるように、また、スクリーンの大小に応じて表示範囲 の大きさを変えられるようにするために、投射部に焦点 調節機能とズーム機能を備えるのが望ましい。

14

[0071]

【発明の効果】本発明の投射型画像表示装置によるとき きは図5の処理に戻り、点灯不可のときは、ランプ81 10 は、ランプの出力を変えることで表示する画像の明るさ を変えるから、ランプを唯1つ備えるだけで画像の明る さを変えることができる。ランプの出力は印加電圧を変 えることで容易に変えることができ、出力を変えるため に特殊な回路が必要になることもない。また、ランプが 発する光の色温度が出力の変化に伴って変化しても、光 の変調をランプの出力に応じて変化させることで、色温 度の変化を補償して表示する画像のホワイトバランスを 略一定にするから、表示する画像の明るさを変えてもそ の色合いは変化しない。このため、簡素な構成でありな 20 がら、色合いの変化を招くことなく画像の明るさを環境 の明るさに応じて変化させ得る投射型画像表示装置とな る。

【図面の簡単な説明】

【図1】 背面投射型テレビとして構成された本発明の 投射型画像表示装置の一実施形態の画像の表示に関する 構成の概略を示す図。

【図2】 上記投射型画像表示装置の装着部およびこれ に装着して使用するランプユニットの構成を示す図。

【図3】 上記投射型画像表示装置のランプユニットを 装着した状態の装着部を示す図。

【図4】 上記投射型画像表示装置の画像の表示に関す る回路構成の概略を示す図。

【図5】 上記投射型画像表示装置の画像の表示に関す る制御動作全体の概略を示すフローチャート。

【図6】 上記投射型画像表示装置のランプチェックの 処理を示すフローチャート。

【図7】 上記投射型画像表示装置の点灯開始の処理を 示すフローチャート。

【図8】 上記投射型画像表示装置のランプの残り寿命 40 の算出とランプユニットの交換要求の処理を示すフロー チャート。

【図9】 メタルハライドランプの出力ワット数と色温 度の関係の例を示す図。

【符号の説明】

- 背面投射型テレビ(投射型画像表示装置) 1
- 筐体 10
- 筐体扉 1 1
- 20 光源部
- 2 1 装着部
- 開口

	_
7	5
•	3

r)

2 1 b	装着 部扉	k	k 6 2	温度センサ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2 1 c	電力供給用端子		6 3	扉開閉センサ
2 1 d	入出力用端子		6 4	モータドライバ
2 2	保持部		6 5	スイッチ
2 3	保持部回転軸		6 6	LCDドライバ
2 4	モータ		6 7	ホワイトバランス調整部
2 5	モータ回転軸		68,69	発光ダイオード
3 0	変調部		7 0	操作部
31,32,	33 カラーフィルター		7 1	コントローラ
34a, 34	4 b 全反射ミラー	10	71a,7	1 b 入出力用配線
35a, 35	5 b リレーレンズ		8 0	ランプユニット
36, 37,	38 透過型液晶パネル(LCD)		8 1	メタルハライドランプ
3 9	クロスプリズム		8 2:	全反射ミラー
4 0	投射部		8 3	ランプ保持部
4 1	投射レンズ		8 4	ランプ端子
4 2	全反射ミラー		8 5	メモリ
5 0	スクリーン		8 6	メモリ端子
6 1	点灯回路		Α	点灯位置
6 1 a	電力供給用配線	*	В	非点灯位置

[図1]

[図2]

【図3】

【図8】

(図9)
6300
6200
温度 6100
6000
×
×
×
5900
40 60 80 100 120
出力フット数 (%)

フロントページの続き

(72)発明者 長田 英喜

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタ株式会社内

(72)発明者 川端 明

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタ株式会社内

Fターム(参考) 5C060 BA04 BA09 BC05 DB00 EA00

GA02 GB02 GB06 GC03 HB26

HD00 HD02 JA11 JA14 JB06

5C066 AA03 BA20 CA27 EA14 GA01

KE09 KM00 KM11 I.A02

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	BLURRED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
•	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK MEDTO