Counters

by Prof. Sujata Wakchaure

Introduction

- In digital logic and computing, a **counter** is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal
- Counters are a specific type of sequential circuit
- Counters can act as simple clocks to keep track of "time."
- Counters are special case of a finite state machine
- Applications: System Clock, Timer, Watches, Alarms, Protocols, Frequency Division, etc.

Working of Counter

- It is a flipflop as divide by 2 circuit
- Clock is not same here

- Now JA = KA = JB = KB = 1
- That means there is Toggling.
- Toggling is very imp in counters

• Initially $\mathbf{Q}\mathbf{A} = \mathbf{0}$

• As Toggling is there QA will become as follows:

$$\mathbf{Q}\mathbf{A} = \mathbf{1}$$

• Then for next interval 1 will become 0

$$QA = 0$$

• Now Qa is acting as a Clock for next FF

So now consider QB as Low

$$QB = 0$$

- Frequency (fc):
 - Time Period Tc is for Clock
 - Time Period Ta is for QB
 - Here Ta is Twice of Tc

$$TA = 2TC$$

• Relation between Time Period and Frequency:

$$F=1/T$$

• I can write as,

$$TA = 1/FA$$

$$TA = 2/fc$$

Now Frequency is half

OR
$$F_A = f_c/2$$

• Similarly we can check for **F**B

$$\begin{array}{ccc}
\mathbf{TB} = \mathbf{2TA} & \mathbf{1/FB} &= \mathbf{2/FA} \\
\mathbf{OR} & \mathbf{FB} = \mathbf{FA/2} = \mathbf{Fc/4} \\
\mathbf{FB} = \mathbf{Fc/4}
\end{array}$$

• This particular circuit is counting from 0 to 3

CLK	QB	QA
0	0	0
1	0	1
2	1	0
3	1	1

Types of Counters

1. Asynchronous Counter (Ripple Counter)

2. Synchronous Counter

Asynchronous Counter (Ripple Counter)

- Here only the 1st Flip-Flop is clocked by external clock
- All the subsequent flip-flops are clocked by the O/P of the preceding flip-flop

Synchronous Counters

• All the flip-flop receive the external clock pulse simultaneously

Asynchronous Vs. Synchronous Counter

Asynchronous Counter	Synchronous Counter
Flip-flops are connected in such a way that the O/P of 1st ff drives the clock of next ff	There is no connection between O/P of 1st ff & clock of the next ff
FF are not clocked simultaneously	FF are clocked simultaneously
FF ckt is simple for more no. of states	Ckt becomes complicated as no. of states increases
Speed is slow as clock is propagated through no. of stages	Speed is high as clock is given at a same time

3-Bit Asynchronous Up Counter

Up counter Means, it will start counting from lower value (0-1-2-....) i.e. 000

111

for Toggling we have to make JA=KA=JB=KB=JC=KC=1

Timing Diagram

Timing Diagram (Contd..)

Clock	Qc	QB	QA	Decimal Equivalent
Initially	0	0	0	0
1 st ↓	0	0	1	1
2 nd ↓	0	1	0	2
3 rd ↓	0	1	1	3
4 th ↓	1	0	0	4
5 th ↓	1	0	1	5
6 th ↓	1	1	0	6
7th ↓	1	1	1	7
8th	0	0	0	0

Total 8 States

$$2^n = 2^3 = 8$$

Where, n = No. of flip-flops

• Maximum Count = 2^n -1

$$= 8 - 1$$

= 7

Synchronous Counter

- How to design Synchronous Counter?
- Step 1: Decide Type of FF and No. of FF
- Step 2: Excitation Table of FF
- Step 3: State diagram & ckt excitation table
- Step 4: Obtain simplified equation using K-Map
- Step 5: Draw the logic diagram

2 – Bit Synchronous Up Counter

• Step 1: Decide Type of FF and No. of FF **i.e. JK FF

• Step 2: Excitation table of JK FF

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

• Step 3: State dia and ckt Excitation table

$$^{\circ} 2^n = 2^2 = 4$$

» Max Count =
$$2^n$$
-1 = 4-1 = 3

Circuit Excitation Table:

Presen	t State	Next	State				
Q1	Q2	Q1*	Q2*	J1	K1	J2	K2
0	0	0	1	0	Х	1	Х
0	1	1	0	1	Х	Х	1
1	0	1	1	Х	0	1	Х
1	1	0	0	Х	1	Х	1

Step 4: Obtain simplified equation using
 K-Map

Step 5: Draw the Logic Diagram:

3 – Bit Synchronous Up Counter

Step 1: Decide Type of FF and No. of FF
 » 3-Bit => 3 FF => T FF

• Step 2: Excitation table of T FF

Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

Step 3: State dia and ckt Excitation table

»
$$2^n = 2^3 = 8$$

» Max Count = 2^n -1 = 8-1
= 7

Circuit Excitation Table:

Present State	Next State

Qc	QB	QA	Qc*	QB*	QA*	TC	Тв	ТА
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

$$TC = QBQA$$

$$TB = QA$$

$$TA = 1$$

• Step 5: Logic Diagram

3 – Bit Asynchronous Down Counter

3 – Bit Asynchronous Down Counter (Contd..)

3 – Bit Asynchronous Down Counter (Contd..)

	Up	Countir	ng	Down Counting			
Clock	Qc	QB	QA	QC	QB	QA	Decimal Equivalent
Initially	0	0	0	1	1	1	7
1 st	0	0	1	1	1	0	6
2 nd	0	1	0	1	0	1	5
3 rd	0	1	1	1	0	0	4
4 th	1	0	0	0	1	1	3
5 th	1	0	1	0	1	0	2
6 th	1	1	0	0	0	1	1
7th	1	1	1	0	0	0	0

3 – Bit Asynchronous Down Counter (Contd..)

