Step-1

The matrix A is of size 5 by 4 and rank 4

That means we can make the 5th row completely zero using the elementary row operations on A.in other words, 5th row is linearly dependent of the previous rows. $\hat{a} \in \hat{a} \in (1)$

On the other hand, the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$ of the system of non homogeneous equations

Ax = b is of order 5 by 5 and is invertible.

We have the following facts.

- (i) A matrix is invertible if and only if it is non singular
- (ii) A matrix is non singular if and only if the determinant is not zero.
- (iii) The determinant of a matrix is not zero if and only if its rank = size

Step-2

Now, The size of $\begin{bmatrix} A & b \end{bmatrix}$ is 5 by 5 and so, rank $\begin{bmatrix} A & b \end{bmatrix}$ is 5.

That means by elementary row operations we cannot make any row completely zero.

So, the 5th entry of the column b in the matrix $\begin{bmatrix} A & b \end{bmatrix}$ cannot be made zero while the 5th row in A is already made zero by (1).

If we write non homogeneous equation using this row, we get

 $0x_1 + 0x_2 + 0x_3 + 0x_4 = k$ where k is non zero.

 $\Rightarrow 0 = k$ and k is non zero.

This is an absurdity.

Step-3

In view of the entire discussion, we must have rank $A = \text{rank} \begin{bmatrix} A & b \end{bmatrix} = 4$

While $\begin{bmatrix} A & b \end{bmatrix}$ is of size 5, its rank is 4 confirms that $\begin{bmatrix} A & b \end{bmatrix}$ is a singular matrix.

Thus, Ax = b is solvable only when $\begin{bmatrix} A & b \end{bmatrix}$ is a singular matrix.