58. Sean $a, b, c, d \in \mathbb{R}$. Demuestra:

- (1) si a < b y c < d, entonces a + c < b + d;
- (2) si 0 < a < b y $0 \le c \le d$, entonces $0 \le ac \le bd$.

Solución. (1) Basta observar

donde hemos usado que $\alpha, \beta \in \mathbb{P} \implies \alpha + \beta \in \mathbb{P}$ (1er.ax.).

(2) Se prueba de manera análoga pero usando el 2do.ax.

59. Sean $a, b, c, d \in \mathbb{R}$. Demuestra:

- (1) si a > 0, entonces 1/a > 0 y 1/(1/a) = a;
- (2) si a < b, entonces a < (a + b)/2 < b.

Solución. (1.i) Si a > 0, entonces $a \neq 0$ por la Tricotomía, luego 1/a existe.

Si 1/a = 0, entonces $1 = a \cdot (1/a) = a \cdot 0 = 0$, contradicción.

Si 1/a < 0, entonces $1 = a \cdot (1/a) < 0$, contradicción.

Por ello, necesariamente 1/a > 0.

(1.ii) Denotemos $\xi := 1/(1/a)$, de forma que $\xi \cdot (1/a) = 1$ por definición de inverso de 1/a. Entonces:

$$\xi = \xi \cdot 1 = \xi \cdot \left(\frac{1}{a} \cdot a\right) = \left(\xi \cdot \frac{1}{a}\right) \cdot a = 1 \cdot a = a.$$

(2) Supongamos que $b - a \in \mathbb{P}$. Entonces:

$$b-\frac{a+b}{2}=\frac{a+b}{2}-a=\frac{b-a}{2}=(b-a)\cdot\frac{1}{2}\in\mathbb{P}$$

donde hemos usado (1.i), que $\frac{1}{2} > 0$ pues 2 > 0.

60. Sean $a, b, c, d \in \mathbb{R}$ tales que 0 < a < b y c < d < 0. Proporciona un ejemplo en el que ac < bd y uno en el que bd < ac.

Solución. (1) a = 1, b = 2, c = -3, d = -1, entonces ac = -3 < -2 = bd.

(2)
$$a = 1, b = 3, c = -1 \text{ y } d = -1/2, \text{ entonces } bd = -3/2 < -1 = ac.$$

61. Sean $a, b \in \mathbb{R}$. Demuestra que $a^2 + b^2 = 0$ si y solo si a = b = 0.

Solución. (\Rightarrow) Cualesquiera que sean $a, b \in \mathbb{R}$, sabemos que $a^2, b^2 > 0$ (2do.ax.).

Si $a^2 = b^2 = 0$ necesariamente a = b = 0, y ya estaría.

Supongamos por reducción al absurdo que $a^2 > 0$, de forma que $1/a^2 > 0$ por el Ej. 59.

Dado que $a^2 + b^2 = 0$ por hipótesis, multiplicando por $1/a^2$ obtendríamos que $1 + b^2/a^2 = 0$,

es decir, $(b/a)^2 = -1 < 0$, lo cual es absurdo.

Por ende $a^2 = 0$.

- (\Leftarrow) Recíprocamente, es claro que si a=b=0, $a^2=b^2=0$ y necesariamente $a^2+b^2=0,$ y esto concluye la demostración.
- **62.** Sean $a, b \in \mathbb{R}$ tales que $0 \le a < b$. Demuestra que $a^2 \le ab < b^2$. Proporciona un ejemplo que muestre que no se sigue que $a^2 < ab < b^2$.

Solución. De la desigualdad a < b deducimos que $a^2 \le ab$, tras multiplicar por $a \ge 0$.

De la misma desigualdad, a < b, deducimos que $ab < b^2$, tras multiplicar por b > 0.

Combinando ambas desigualdades, $a^2 \le ab < b^2$.

Basta considerar a = 0, b = 1, de forma que $a^2 = 0 \nleq ab = 0$.

63. Sean $a, b \in \mathbb{R}$ con 0 < a < b. Prueba que $a < \sqrt{ab} < b$ y 1/b < 1/a.

Solución. Supongamos que $a, b, b - a \in \mathbb{P}$.

(1) Dado que a, b > 0, la existencia de raíces nos decía que $\sqrt{a}, \sqrt{b} > 0$.

Por el Ej. 62 aplicado a \sqrt{a} y \sqrt{b} , deducimos (a=) $\sqrt{a^2}<\sqrt{a}\sqrt{b}$ ($=\sqrt{ab}$) $< b^2$ (=b).

$$(2) \ a,b \in \mathbb{P} \implies ab \in \mathbb{P} \stackrel{\text{Ej.59}}{\Longrightarrow} 1/ab \in \mathbb{P} \stackrel{\text{2do.ax.}}{\Longrightarrow} \frac{1}{a} - \frac{1}{b} = (b-a)\frac{1}{ab} \in \mathbb{P}.$$

64. Determina todos los números reales $x \in \mathbb{R}$ que satisfacen las siguientes desigualdades:

(1) $x^2 > 3x + 4$;

(3) 1/x < x;

(2) $1 < x^2 < 4$;

(4) $1/x < x^2$.

Solución. (1) Es equivalente a $x^2 - 3x - 4 = (x+1)(x-4) > 0$. Esto solo es posible si (x+1), (x-4) > 0, es decir, $x > -1 \land x > 4$, esto es, $x \ge 4$; o bien si (x+1), (x-4) < 0, es decir, $x < -1 \land x < 4$, esto es, x < -1.

- (2) $1 < x^2$ si y solo si $x < -1 \lor x > 1$; mientras que $x^2 < 4$ si y solo si $-2 < x \lor x < 2$. La solución es entonces $x \in (-2, -1) \cup (1, 2)$.
- (3) 1/x < x (implicitamente $x \neq 0$).

Supongamos que x > 0, entonces equivale a $1 < x^2$ y por ende $x \in (1, \infty)$

Supongamos ahora que x < 0, entonces equivale a $1 > x^2$ (por el signo de x), y por ende $x \in (-1,0)$.

65. Sea $a \in \mathbb{R}$ con la propiedad de que $0 \le a \le \varepsilon$ para todo número real $\varepsilon > 0$. Demuestra que a = 0 necesariamente.

Solución. Supongamos, por reducción al absurdo, que a > 0 (el caso en el que a < 0 contradice directamente que $0 \le a \le 1$, por ejemplo).

Entonces, para la elección $\varepsilon_0 = a/2 > 0$ se verifica que $0 \le \varepsilon_0 \le a$, lo cual es absurdo, contradice que $0 \le a \le \varepsilon$ para todo $\varepsilon > 0$.

66. Sean $a,b \in \mathbb{R}$ y supongamos que para todo $\varepsilon > 0$ se verifica que $a \leq b + \varepsilon$. Demuestra que $a \leq b$ necesariamente.

Solución. Supongamos, por reducción al absurdo, que a > b, de forma que a - b > 0

y para la elección $\varepsilon_0 = (a-b)/2 > 0$ se verifica que

$$a \le b + \varepsilon_0 = \frac{a+b}{2} < \frac{a+a}{2} = a,$$

lo cual es contradictorio.

67. Demuestra que $[(a+b)/2]^2 \le (a^2+b^2)/2$ para cualesquiera $a,b \in \mathbb{R}$. Demuestra que la igualdad se verifica si y solo si a=b.

Solución.

$$\left(\frac{a+b}{2}\right)^2 = \frac{a^2 + 2ab + b^2}{4} \le \frac{a^2 + b^2}{2} \iff a^2 + 2ab + b^2 \le 2(a^2 + b^2)$$
$$\iff 2ab \le a^2 + b^2 \iff 0 \le a^2 - 2ab + b^2 \iff 0 \le (a-b)^2,$$

lo cual es trivialmente cierto.

- 68. Demuestra las siguientes afirmaciones:
 - (1) si 0 < c < 1, entonces $0 < c^2 < c < 1$;

(2) si 1 < c, entonces $1 < c < c^2$.

Solución. (1)

$$\begin{aligned} 0 < c &\iff c \in \mathbb{P} \overset{\text{2do. ax.}}{\Longrightarrow} c \cdot c = c^2 \in \mathbb{P} \iff \boxed{0 < c^2} \\ 0 < c < 1 &\iff c, 1 - c \in \mathbb{P} \overset{\text{2do. ax.}}{\Longrightarrow} c \cdot (1 - c) = c - c^2 \in \mathbb{P} \iff \boxed{c^2 < c} \\ \text{ya teníamos} \boxed{c < 1} \end{aligned}$$

(2)
$$0 < 1 < c \implies c, c-1 \in \mathbb{P} \stackrel{\text{2do.ax.}}{\Longrightarrow} c \cdot (c-1) = c^2 - c \in \mathbb{P} \iff \boxed{c < c^2}$$
 ya teníamos $\boxed{1 < c}$

20