

Introductory Phylogenetic Analysis

IMS Workshop

Ramon Lorenzo-Redondo, Ph.D.

Assistant Professor of Medicine, Division of Infectious Diseases Bioinformatics Director, Center for Pathogen Genomics and Microbial Evolution (CPGME)

Genome Sequencing can provide insights into the molecular epidemiology of pathogens

Pybus, O., Rambaut, A. *Nat Rev Genet* **10,** 540–550 (2009)

The context is important (e.g., HIV-1 vs SARS-CoV-2)

SARS-CoV-2 Chicago 2020-2021

The context is important (e.g., HIV-1 vs SARS-CoV-2)

SARS-CoV-2 Chicago 2020-2021

What does a phylogenetic tree represent?

Phylogenetic Tree Components

- Taxon: elements whose relationships we are studying. Can be species, groups, genes, alleles.
- **Node**: branch ramification point (likely an ancestral taxon).
- Branch: defines relationships between taxa according to descending ancestors
- **Topology:** branching pattern
- Branch length: represents number of changes or change probability. Root: most recent common ancestor (MRCA).
- Clade: group of taxa that includes the common ancestor and all descendants.

Types of Trees

Rooting methods

Outgroup Rooting

8

TCG || ACG

- 1 differences
- 2 matches

Substitution TCG ACG 1AT time past **ACG**

ATCG
| | | |
A-CG

- 0 differences
- 3 matches
- 1 gap

ATCG
| | | |
A-CG

- 0 differences
- 3 matches
- 1 gap

Optimal Alignment

Optimal alignment is the one that minimizes differences and gaps

...but depends on the cost of events

Alignment Penalties

- To compare gaps and mismatches:
 - Gap penalty
 - Mismatch penalty
- Dissimilarity Index:

 y_i = number of changes type i m_i = penalty of changes type i z_k = number of gaps length k w_k = length k gap penalty

$$D = \sum m_i y_i + \sum w_k z_k$$

Nucleotide substitution penalties

There can be different costs for different nucleotide substitutions, for example:

	A C G T				ACGTA				A	
A	0	1	1	1		С	0	2	1	2
C		0	1	1		G		0	2	1
G			0	1		Т			0	2
Т				0						0

Progressive Alignment with MAFFT

Iterative Refinement in MAFFT

Tree Building

Phylogenetic Tree Inference

Table 1.5 Classification of phylogenetic analysis methods and their strategies

	Optimality search criterion	Clustering
Character state	Maximum parsimony (MP) Maximum likelihood (ML) Bayesian inference	
Distance matrix	Fitch-Margoliash	UPGMA Neighbor-joining (NJ)

Phylogenetic Tree Inference

Types of data used in phylogenetic inference:

Character-based methods: Use the aligned characters, such as DNA or protein sequences, directly during tree inference.

Taxa	Characters	
Species A	ATGGCTATTCTTATAGTACG	
Species B	ATCGCTAGTCTTATATTACA	<i>ব</i> শস
Species C	TTCACTAGACCTGTGGTCCA	
Species D	TTGACCAGACCTGTGGTCCG	
Species E	TTGACCAGTTCTCTAGTTCG	

Distance-based methods: Transform the sequence data into pairwise distances (dissimilarities), and then use the matrix during tree building.

	A	В	С	D	E		
Species A		0.20	0.50	0.45	0.40		Example 1: Uncorrected
Species B	0.23		0.40	0.55	0.50		
Species C	0.87	0.59		0.15	0.40		"p" distance (=observed percent
Species D	0.73	1.12	0.17		0.25		sequence difference)
Species E	0.59	0.89	0.61	0.31			

How many trees are there?

For *n* species there are

$$T_n = 1 \times 3 \times 5 \times \cdots \times (2n-3) = \frac{(2n-3)!}{(n-2)!2^{n-2}}$$

rooted, tip-labelled binary trees:

n	#trees						
4	15	enumerable by hand					
5	105	enumerable by hand on a rainy day					
6	945	enumerable by computer					
7	10395	still searchable very quickly on computer					
8	135135 about the number of hairs on your head						
9	2027025 greater than the population of Auckland						
10	34459425	pprox upper limit for exhaustive search					
20	8.20×10^{21}	pprox upper limit of branch-and-bound searching					
48	3.21×10^{70}	pprox the number of particles in the Universe					
136	2.11×10^{267}	number of trees to choose from in the "Out of					
		Africa" data (Vigilant <i>et al</i> . 1991)					

Trees Landscape

Searching Movements

MAXIMUM LIKELIHOOD (ML)

L = P(D|H) = Probability of the data given a hypothesis

If we throw a coin 11 times and we obtain:

What's the expected probability p to obtain when we throw the coin?

$$L = P(D \mid p) = pp(1-p)(1-p)p(1-p)pp(1-p)(1-p)(1-p) = p^{5}(1-p)^{6}$$

$$\frac{dL}{dp} = \left(\frac{5}{p} - \frac{6}{1-p}\right) p^5 (1-p)^6 = 0$$

$$5 - 11p = 0$$

$$\hat{\rho} = \frac{5}{11} = 0.454$$

$$5 - 11p = 0$$

$$\hat{p} = \frac{5}{11} = 0.454$$

$$\ln L = 5 \ln p + 6 \ln(1 - p)$$

$$\frac{d(\ln L)}{dp} = \frac{5}{p} - \frac{6}{1 - p} = 0$$

$$5 - 11p = 0$$

$$\hat{p} = \frac{5}{11} = 0.454$$

ML in phylogenies

- It evaluates a hypothesis about evolutionary history in terms of the probability that the proposed model and the hypothesized history would give rise to the observed data set.
- The supposition is that a history with a higher probability of reaching the observed state is preferred to a history with a lower probability.
- The method searches for the tree with the highest probability or likelihood.

Joe Felsenstein

ML in phylogenies

The Likelihood (L) is proportional to the probability of the data (D) given an evolutionary model (M), a vector θ of K parameters of the evolutionary model, topology τ and a vector ν of tree lengths:

$$L = P(D|M,\theta,\tau,\nu)$$

Substitution Rate

• Substitution probability along a branch of length t ($\mu \times time$)

$$P_{t} = e^{Qt}$$

$$P_{t} = \begin{bmatrix} p_{AA} & p_{AC} & p_{AG} & p_{AT} \\ p_{CA} & p_{CC} & p_{CG} & p_{CT} \\ p_{GA} & p_{GC} & p_{GG} & p_{GT} \\ p_{TA} & p_{TC} & p_{TG} & p_{TT} \end{bmatrix}$$
t

Jukes and Cantor (JC69)

$$\mathbf{P}_{t} = \begin{bmatrix} \cdot & \alpha & \alpha & \alpha \\ \alpha & \cdot & \alpha & \alpha \\ \alpha & \alpha & \cdot & \alpha \\ \alpha & \alpha & \alpha & \cdot \end{bmatrix},$$

$$\mathbf{f} = \left[\frac{1}{4} \, \frac{1}{4} \, \frac{1}{4} \, \frac{1}{4} \right]$$

Kimura 2 parameters (K80)

$$\mathbf{P}_{t} = \begin{bmatrix} . & \beta & \alpha & \beta \\ \beta & . & \beta & \alpha \\ \alpha & \beta & . & \beta \\ \beta & \alpha & \beta & . \end{bmatrix}, \qquad \mathbf{f} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}.$$

$$ti:tv=\kappa$$

Felsenstein 1981 (F81)

$$\mathbf{P}_t = \begin{bmatrix} . & \pi_{\text{C}}\alpha & \pi_{\text{G}}\alpha & \pi_{\text{T}}\alpha \\ \pi_{\text{A}}\alpha & . & \pi_{\text{G}}\alpha & \pi_{\text{T}}\alpha \\ \pi_{\text{A}}\alpha & \pi_{\text{C}}\alpha & . & \pi_{\text{T}}\alpha \\ \pi_{\text{A}}\alpha & \pi_{\text{C}}\alpha & . & \pi_{\text{G}}\alpha & . \end{bmatrix}, \qquad \mathbf{f} = [\pi_{\text{A}} \ \pi_{\text{C}} \ \pi_{\text{G}} \ \pi_{\text{T}}]$$

Hasegawa-Kishino-Yano (HKY85)

$$\mathbf{P}_{t} = \begin{bmatrix} . & \pi_{C}\beta & \pi_{G}\alpha & \pi_{T}\beta \\ \pi_{A}\beta & . & \pi_{G}\beta & \pi_{T}\alpha \\ \pi_{A}\alpha & \pi_{C}\beta & . & \pi_{T}\beta \\ \pi_{A}\beta & \pi_{C}\alpha & \pi_{G}\beta & . \end{bmatrix}, \qquad \mathbf{f} = [\pi_{A} \ \pi_{C} \ \pi_{G} \ \pi_{T}]$$

General time reversible (GTR or REV)

$$\mathbf{P}_{t} = \begin{bmatrix} . & \pi_{C}a & \pi_{G}b & \pi_{T}c \\ \pi_{A}a & . & \pi_{G}d & \pi_{T}e \\ \pi_{A}b & \pi_{C}d & . & \pi_{T}f \\ \pi_{A}c & \pi_{C}e & \pi_{G}f & . \end{bmatrix}, \qquad \mathbf{f} = [\pi_{A} \pi_{C} \pi_{G} \pi_{T}]$$

Additional parameters

Proportion of invariant sites (p-inv)

• Gamma distribution (Γ) (alpha)

ML Tree

Bootstrap

Confidence interval

Confidence interval

Baron Munchausen tells, "In pursuit of a hare, I wanted to set my horse over a swamp ... [I jumped] ... too short and fell into the mud not far from the other bank up to my neck. Here I would have died infallibly if the strength of my arm had not pulled me out again by my own plait of hair, together with the horse, which I locked firmly between my knees. Rudolf Erich Raspe

Bootstrapping

- Used to generate the pool of plausible trees in ML
- Resamples CHARACTERS

Bootstrapping

- Used to generate the pool of plausible trees in ML
- Resamples CHARACTERS

Bootstrapping

- Used to generate the pool of plausible trees in ML
- Resamples CHARACTERS

Selection Analysis

Selection

Molecular signatures of selection

- Because synonymous substitutions do not alter the protein, we often <u>posit</u> that they are neutral
- The rate of accumulation of synonymous substitutions (dS) gives the neutral background
- We can compare the rate of accumulation of non-synonymous substitutions (dN), which alter the protein sequence, to classify the nature of the evolutionary process

 $dS \sim \frac{\text{number of fixed synonymous mutations}}{\text{proportion of random mutations that are synonymous}}$ $dN \sim \frac{\text{number of fixed non-synonymous mutations}}{\text{proportion of random mutations that are non-synonymous}}$

Selective Processes

Episodic diversifying selection results

Codon 21

Phylodynamics

Molecular clock

- Proposed by Zuckerkandl and Pauling (1965) from hemoglobin data.
- Sequences accumulate changes at a constant rate.
- There's a linear relationship between molecular and temporal.

Evolutionary Rates

 $\mu = d_i / (t_i - t_{root})$

• can be rearranged:

$$d_i = \mu (t_i - t_{root})$$

$$\mathsf{E}[d_i] = \mu \cdot t_i - \mu \cdot t_{\mathsf{root}}$$

gradient is: μ

y-intercept is: - μ . t_{root}

x-intercept is: **t**root

Drummond A.J. & Rambaut A. BMC Evolutionary Biology 2007; 7:214

Time to Most Recent Common Ancestor (TMRCA)

HIV-1 group M origin estimated at around 1930

Changing population size alters coalescent rate

Estimation of demographic history

Classic skyline

- Obtain estimate of genealogy
- Divide into coalescent intervals
- Estimate population size for each coalescent interval by:

$$N_i = \gamma_i i(i-1)/2$$

Skyline model shows seasonality in flu

Phylogeography

Phylogeography

Lorenzo-Redondo et al. 2020

Phylogeographic analyses

Faria et al. 2014

Phylodynamics

HEALTH • CORONAVIRUS

BA.4 and BA.5, two new Omicron variants sweeping South Africa, detected in U.S.

