ULB Université Libre de Bruxelles

Thin strip graphs

Characterization and complexity

Jean Cardinal Abdeselam El-Haman Abdeselam

Table of contents

Introduction

State of the art

Results

Conclusion

An *intersection graph* is a graph $G = (\zeta, E)$ where ζ is a collection of objects. Two vertices of the graph are adjacent if the objects *intersect*.

An intersection graph is a graph $G=(\zeta,E)$ where ζ is a collection of objects. Two vertices of the graph are adjacent if the objects intersect.

An intersection graph is a graph $G=(\zeta,E)$ where ζ is a collection of objects. Two vertices of the graph are adjacent if the objects intersect.

A forbidden subgraph/minor characterization is a description of a family of graphs based on the graphs that do not belong to that family.

A forbidden subgraph/minor characterization is a description of a family of graphs based on the graphs that do not belong to that family.

Example (Kuratowski)

A graph G is planar if it does not contain $K_{3,3}$ or K_5 as a minor.

State of the art: interval graphs

An *interval graph* is an intersection graph of closed intervals in the real line. If the length of the intervals are the same, then it is an *unit interval graph*.

There exists a characterization of unit interval graphs for interval graphs.

Theorem (Roberts)

An interval graph is an unit interval graph if and only if it has no induced subgraph $K_{1,3}$.

A *mixed unit interval graph* is an intersection graph of unitary intervals in the real line. The interval of mixed unit interval graphs can be open, closed, open-closed or closed-open.

A *mixed unit interval graph* is an intersection graph of unitary intervals in the real line. The interval of mixed unit interval graphs can be open, closed, open-closed or closed-open.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The graph *F*.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family \mathcal{R} .

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family S.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family S''.

Joos characterizes mixed unit interval graphs with an exhaustive list of families of forbidden subgraphs.

Figure: The family \mathcal{T} .

This class has been completely characterized by its structure.

Theorem (Hayashi)

A graph G is a unfettered unit interval graph if and only if it has a level structure where every level is a clique.

Definition

A level structure of a graph G = (V, E) is a partition $L = \{L_i : i \in \{1, ..., t\}\}$ of V such that

$$v \in L_k \Rightarrow N(v) \subseteq L_{k-1} \cup L_k \cup L_{k+1}$$

where $L_0 = L_{t+1} = \emptyset$.

State of the art: unit disk graphs

A *disk graph* is an intersection graph of closed intervals in the real line. If the length of the intervals are the same, then it is an *unit disk graph*.

State of the art: *c***-strip graphs**

A *c-strip graph* - or SG(*c*) is a unit disk graph such that the centers of each disk belong to $\{(x,y): -\infty < x < \infty, 0 \le y \le c\}$

State of the art: *c***-strip graphs**

A *c-strip graph* - or SG(c) is a unit disk graph such that the centers of each disk belong to $\{(x,y): -\infty < x < \infty, 0 \le y \le c\}$

Remark

SG(0) = UIG.

Remark

 $SG(\infty) = UDG$.

Remark

 $SG(k) \subseteq SG(I)$ with k < I.

The class of *thin strip graphs* is the intersection of every *c*-strip graph with c>0. Thus, a ε -strip graph with ε arbitrarily small.

Hayashi *et al.* introduced the class of *thin strip graphs*. They also found these important results about *c*-strip graphs and thin strip graphs.

Theorem

There is no constant t such that SG(t) = TSG.

Theorem

There is no constant t such that SG(t) = UDG.

Hayashi *et al.* introduced the class of *thin strip graphs*. They also found these important results about *c*-strip graphs and thin strip graphs.

Theorem

There is no constant t such that SG(t) = TSG.

Theorem

There is no constant t such that SG(t) = UDG.

In order to prove these theorems, they proved that a forbidden subgraph of MUIG is also forbidden in TSG.

Hayashi *et al.* introduced the class of *thin strip graphs*. They also found these important results about *c*-strip graphs and thin strip graphs.

Theorem

Mixed unit interval graphs is a subclass of thin strip graphs.

Theorem

Thin strip graphs is a subclass of unfettered unit interval graphs.

The main result of this thesis is the representation of the forbidden subgraphs of MUIG as TSG. However, it has been proven that \mathcal{R} is a forbidden subgraph family of TSG. However, we know that TSG \subset UUIG.

The main result of this thesis is the representation of the forbidden subgraphs of MUIG as TSG. However, it has been proven that \mathcal{R} is a forbidden subgraph family of TSG. However, we know that TSG \subseteq UUIG.

Theorem

 ${\cal R}$ is a family of forbidden subgraphs of UUIG.

Theorem

 ${\cal R}$ is a family of forbidden subgraphs of UUIG.

Proof.

By induction on i.

Figure: The graph R_0 .

Theorem

 ${\cal R}$ is a family of forbidden subgraphs of UUIG.

Proof.

By induction on i.

Figure: The graph R_{i+1} . You can see that the red edges and vertices are what differ from R_i .

Thanks for listening.