CAP5510 Fall 2019, HW#3

Question no 1:

(1) The formula of Pearson's correlation coefficient is:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Calculating Pearson's correlation coefficient r for gene P53 and Mdm2:

Condition	P53 (X)	Mdm2 (Y)	X_iY_i	X_i^2	Y_i^2
1	10	9	90	100	81
2	4	1	4	16	1
3	2	1	2	4	1
4	8	7	56	64	49
5	6	5	30	36	25
Total	$\sum X = 30$	$\sum Y = 23$	$\sum XY = 182$	$\sum X_i^2 = 220$	$\sum Y_i^2 = 157$

Pearson's correlation coefficient for gene P53 and Mdm2,
$$r = \frac{5*182 - (30*23)}{\sqrt{[5*220 - 900][5*157 - 529]}}$$

$$r = \frac{910 - 690}{\sqrt{51200}}$$

$$r = 0.97$$

Similarly, after calculating the correlation coefficient for other genes, the resultant matrix is:

	P53	Mdm2	Bcl2	CyclinE	Caspase 8
P53	1	0.97	-0.43	0.89	-0.7
Mdm2	0.97	1	-0.54	0.79	-0.795
Bcl2	-0.43	-0.54	1	-0.21	0.93
CyclinE	0.89	0.79	-0.21	1	-0.45
Caspase 8	-0.7	-0.795	0.93	-0.45	1

(2) Clustering genes using Hierarchical clustering based on Euclidean distance and Centroid linkage:

Suppose, P53 = G1, Mdm2 = G2, Bcl2 = G3, CyclinE = G4, Caspase 8 = G5. Initially there are five clusters (each gene forms a cluster)

Step1:

Calculating Euclidean distance between each cluster:

Example: Distance between C1 (G1) and C2 (G2):

$$d(C1,C2) = \sqrt{(10-9)^2 + (4-1)^2 + (2-1)^2 + (8-7)^2 + (6-5)^2}$$

$$= \sqrt{1+9+1+1+1}$$

$$= \sqrt{13}$$

$$= 3.6$$

Similarly, after calculating the Euclidean distance between other clusters, the distance matrix is:

	C1 = G1	C2 = G2	C3 = G3	C4 = G4	C5 = G5
C1 = G1	0	-	-	-	-
C2 = G2	3.61	0	-	1	-
C3 = G3	11.05	12.61	0	1	-
C4 = G4	5.1	6.9	7.2	0	-
C5 = G5	11.67	13.15	2.45	7.07	0

Here, the smallest distance is between cluster C3 and C5, so they form a new cluster together.

So new set of clusters, S = {C1, C2, C3, C4}

$$S = \{(G3, G5), G1, G2, G4\}$$

Centroid of new cluster C1 =
$$\{(2+2)/2, (10+10)/2, (4+6)/2, (5+4)/2, (9+8)/2\}$$

= $\{2, 10, 5, 4.5, 8.5\}$

Step2:

	C1 = G3, G5	C2 = G1	C3 = G2	C4 = G4
C1 = G3, G5	0	-	-	-
C2 = G1	11.29	0	-	-
C3 = G2	12.83	3.61	0	-
C4 = G4	7.04	4.24	6.86	0

Here, the smallest distance is between cluster C2 and C3, so they form a new cluster together. So new set of clusters, **S** = {C1, C2, C3 }

$$S = \{(G3, G5), (G1, G2), G4\}$$

Centroid of new cluster C2 =
$$\{(10+9)/2, (4+1)/2, (2+1)/2, (8+7)/2, (6+5)/2\}$$

= $\{9.5, 2.5, 1.5, 7.5, 5.5\}$

Step3:

	C1 = G3, G5	C2 = G1, G2	C3 = G4
C1 = G3, G5	0	ı	ı
C2 = G1, G2	11.95	0	-
C3 = G4	7.04	5.77	0

Here, the smallest distance is between cluster C2 and C3, so they form a new cluster together.

So new set of clusters, S = {C1, C2}

$$S = \{(G3, G5), (G1, G2, G4)\}$$

Centroid of new cluster,
$$C2 = \{(10+9+7)/3, (4+1+6)/3, (2+1+5)/3, (8+7+6)/3, (6+5+6)/3\}$$

= $\{8.67, 3.67, 2.67, 7, 5.67\}$

Step4:

	C1 = G3, G5	C2 = G1, G2, G4
C1 = G3, G5	0	-
C2 = G1, G2, G4	10.21	0

Here, cluster C1 and C2 form a new cluster together.

So new set of clusters, **S** = {C1}

$$S = \{(G1, G2, G3, G4, G5)\}$$

(3) Suppose, P53 = G1, Mdm2 = G2, Bcl2 = G3, CyclinE = G4, Caspase 8 = G5. Here, k = 2; means there will be 2 clusters, C1 and C2. Initial vectors are p53 (G1) and bcl2 (G3).

So, initially,
$$C1 = G1 = \{10, 4, 2, 8, 6\}$$

 $C2 = G3 = \{2, 10, 4, 5, 9\}$

Round-1:

Here, G1 belongs to C1 and G3 belongs to C2.

Calculating Euclidean distance for G2:

Distance between C1 and G2:

$$d(C1,G2) = \sqrt{(10-9)^2 + (4-1)^2 + (2-1)^2 + (8-7)^2 + (6-5)^2}$$

$$= \sqrt{1+9+1+1+1}$$

$$= \sqrt{13}$$

$$= 3.6$$

Distance between C2 and G2:

$$d(C2,G2) = \sqrt{(2-9)^2 + (10-1)^2 + (4-1)^2 + (5-7)^2 + (9-5)^2}$$

$$= \sqrt{49 + 81 + 9 + 4 + 16}$$

$$= \sqrt{159}$$

$$= 12.61$$

As, d(C1,G2) < d(C2,G2), so, G2 will go to cluster C1.

Calculating Euclidean distance for G4:

Distance between C1 and G4:

$$d(C1,G4) = \sqrt{(10-7)^2 + (4-6)^2 + (2-5)^2 + (8-6)^2 + (6-6)^2}$$

= 5.1

Distance between C2 and G4:

$$d(C2,G4) = \sqrt{(2-7)^2 + (10-6)^2 + (4-5)^2 + (5-6)^2 + (9-6)^2}$$

= 7.21

As, d(C1,G4) < d(C2,G4), so, G4 will go to cluster C1.

Calculating Euclidean distance for G5:

> Distance between C1 and G5:

$$d(C1,G5) = \sqrt{(10-2)^2 + (4-10)^2 + (2-6)^2 + (8-4)^2 + (6-8)^2}$$

= 11.67

> Distance between C2 and G5:

$$d(C2,G5) = \sqrt{(2-2)^2 + (10-10)^2 + (4-6)^2 + (5-4)^2 + (9-8)^2}$$

$$= 2.45$$

As, d(C2,G5) < d(C1,G5), so, G5 will go to cluster C2.

Finally, C1 = {G1, G2, G4}, Centroid = {
$$(10+9+7)/3$$
, $(4+1+6)/3$, $(2+1+5)/3$, $(8+7+6)/3$, $(6+5+6)/3$ } = {8.67, 3.67, 2.67, 7, 5.67}
C2 = {G3, G5}, Centroid = { $(2+2)/2$, $(10+10)/2$, $(4+6)/2$, $(5+4)/2$, $(9+8)/2$ } = {2, 10, 5, 4.5, 8.5}

Round-2:

Calculating Euclidean distance for G1:

Distance between C1 and G1:

$$d(C1,G1) = \sqrt{(8.67 - 10)^2 + (3.67 - 4)^2 + (2.67 - 2)^2 + (7 - 8)^2 + (5.67 - 6)^2}$$

= 1.85

Distance between C2 and G1:

$$d(C2,G1) = \sqrt{(2-10)^2 + (10-4)^2 + (5-2)^2 + (4.5-8)^2 + (8.5-6)^2}$$

= 11.3

As, d(C1,G1) < d(C2,G1), so, G1 will go to cluster C1.

Calculating Euclidean distance for G2:

Distance between C1 and G2:

$$d(C1,G2) = \sqrt{(8.67 - 9)^2 + (3.67 - 1)^2 + (2.67 - 1)^2 + (7 - 7)^2 + (5.67 - 5)^2}$$

= 3.24

Distance between C2 and G2:

$$d(C2,G2) = \sqrt{(2-9)^2 + (10-1)^2 + (5-1)^2 + (4.5-7)^2 + (8.5-5)^2}$$

= 12.83

As, d(C1,G2) < d(C2,G2), so, G2 will go to cluster C1.

Calculating Euclidean distance for G3:

Distance between C1 and G3:

$$d(C1,G3) = \sqrt{(8.67 - 2)^2 + (3.67 - 10)^2 + (2.67 - 4)^2 + (7 - 5)^2 + (5.67 - 9)^2}$$

= 10.07

Distance between C2 and G4:

$$d(C2,G3) = \sqrt{(2-2)^2 + (10-10)^2 + (5-4)^2 + (4.5-5)^2 + (8.5-9)^2}$$

= 1.22

As, d(C2,G3) < d(C1,G3), so, G3 will go to cluster C2.

Calculating Euclidean distance for G4:

Distance between C1 and G4:

$$d(C1,G4) = \sqrt{(8.67-7)^2 + (3.67-6)^2 + (2.67-5)^2 + (7-6)^2 + (5.67-6)^2}$$

$$= 3.84$$

Distance between C2 and G4:

$$d(C2,G4) = \sqrt{(2-7)^2 + (10-6)^2 + (5-5)^2 + (4.5-6)^2 + (8.5-6)^2}$$

= 7.04

As, d(C1,G4) < d(C2,G4), so, G4 will go to cluster C1.

Calculating Euclidean distance for G5:

> Distance between C1 and G5:

$$d(C1,G5) = \sqrt{(8.67 - 2)^2 + (3.67 - 10)^2 + (2.67 - 6)^2 + (7 - 4)^2 + (5.67 - 8)^2}$$

= 10.5

> Distance between C2 and G4:

$$d(C2,G5) = \sqrt{(2-2)^2 + (10-10)^2 + (5-6)^2 + (4.5-4)^2 + (8.5-8)^2}$$

= 1.22

As, d(C2,G5) < d(C1,G5), so, G5 will go to cluster C2.

Finally, C1 =
$$\{G1, G2, G4\}$$
, Centroid = $\{(10+9+7)/3, (4+1+6)/3, (2+1+5)/3, (8+7+6)/3, (6+5+6)/3\}$
= $\{8.67, 3.67, 2.67, 7, 5.67\}$
C2 = $\{G3, G5\}$, Centroid = $\{(2+2)/2, (10+10)/2, (4+6)/2, (5+4)/2, (9+8)/2\}$
= $\{2, 10, 5, 4.5, 8.5\}$

As C1 and C2 remain unchanged, the loop will break here.

Final Result:

$$C1 = \{G1, G2, G4\}, C2 = \{G3, G5\}$$

Question 2:

ALDC (automatical local density clustering) algorithm is a recently proposed algorithm which has been proposed by Xuanzuo et al. in 2017 [1]. It is based on the concept of LDC (local density clustering) [2] and DBSCAN [3]. The steps of this algorithm [1] are given below:

Steps:

- Step I: Calculating the Euclidean distance between every point in data set
- Step II: Calculating the local density and the distance deviation of every points
- Step III: Calculating the product of local density and distance deviation
- Step IV: Expanding the difference between the potential cluster center and the remaining points to solve the problem of getting wrong number of cluster centers
- Step V: Using the measure criterion to capture the cluster center

 Step VI: Assigning the remaining points to their nearest neighbor which has higher density

Implementation:

Step1:

Euclidean distance matrix:

	P1	P2	Р3	P4	P5	P6	P7
P1	0						
P2	1	0					
Р3	9.22	8.6	0				
P4	12.21	11.66	3.16	0			
P5	11.67	11.01	2.5	1.8	0		
P6	11.4	10.8	2.24	1	1.12	0	
Р7	0.5	1.5	9.6	12.5	12.02	11.7	0

Step2:

Consider cut-off value, $d_c = 1.5$

Local density calculation:

$$ho_i = \sum_{j \in I_U \setminus \{i\}} \chi(d_{ij} - d_c)$$

$$\chi(a) = \begin{cases} 1 & a < 0 \\ 0 & a \ge 0 \end{cases}$$

For P1,
$$\rho_1$$
 = $\chi(1-1.5) + \chi(9.22-1.5) + \chi(12.21-1.5) + \chi(11.67-1.5) + \chi(11.4-1.5) + \chi(0.5-1.5)$ = 1 + 0 + 0 + 0 + 0 + 1

For P2,
$$\rho_2 = 1 + 0 + 0 + 0 + 0 + 0 = 1$$

For P3, $\rho_3 = 0 + 0 + 0 + 0 + 0 + 0 = 0$
For P4, $\rho_4 = 0 + 0 + 0 + 0 + 1 + 0 = 1$

For P5,
$$\rho_5 = 0 + 0 + 0 + 0 + 1 + 0 = 1$$

For P6, $\rho_6 = 0 + 0 + 0 + 1 + 1 + 0 = 2$
For P7, $\rho_7 = 1 + 0 + 0 + 0 + 0 + 0 = 1$

Distance deviation calculation:

$$\delta_i = \left\{egin{array}{ll} \sum_{j:
ho_j >
ho_i}^{\min} \left(d_{ij}
ight) & i ext{ is not the highest density point} \\ \max_{j} \left(d_{ij}
ight) & i ext{ is the highest density point} \end{array}
ight.$$

 δ_{1} = 12.21 ; P1 highest density point, so considering maximum distance

 δ_2 = 1 ; P2 not highest density point, so considering minimum distance from highest density points

 δ_3 = 2.23 ; P3 not highest density point

 δ_4 =1; P4 not highest density point

 δ_{5} = 1.12 ; P5 not highest density point

 δ_6 = 11.72 ; P6 highest density point

 δ_7 = 0.5 ; P7 not highest density point

Step3:

Product of local density and distance deviation calculation:

$$\gamma_i = \rho_i * \delta_i$$

$$\gamma_1$$
 = 24.42, γ_2 = 1, γ_3 = 0 , γ_4 = 1, γ_5 = 1.12 , γ_6 = 23.44 , γ_7 = 0.5

Step4:

Expanding the difference between the potential cluster center:

$$E_i = \sum_{j \in I_U \setminus \{i\}} \sqrt{(\gamma_i - \gamma_j)^2}$$

$$E_1 = \sqrt{(24.42 - 1)^2 + (24.42 - 0)^2 + (24.42 - 1)^2 + (24.42 - 1.12)^2 + (24.42 - 23.44)^2 + (24.42 - 0.5)^2}$$

= 119.46

Similarly,

$$E_2 = 47.48$$
, $E_3 = 119.46$, $E_4 = 47.48$, $E_5 = 119.46$, $E_6 = 47.48$, $E_7 = 47.48$

Step5:

Measure criterion calculation:

$$Z_i = e^{-E_i}$$

 $Z_1 = 1.32E-52$, $Z_2 = 2.39717E-21$, $Z_3 = 4.39056E-23$, $Z_4 = 2.39717E-21$, $Z_5 = 2.12609E-21$, $Z_6 = 1.77E-50$, $Z_7 = 5.35E-22$

Let dividing line = 1E-40; all the points below dividing line are considered as cluster center. So here we have two cluster centers.

So, for 1st cluster C1, center = P1 and for 2nd cluster C2, center = P6

Step6:

After assigning the remaining points to their nearest cluster center (using Euclidean distance matrix), we get:

 1^{st} Cluster, C1 = {P1, P2, P7} and 2^{nd} Cluster, C2 = {P3, P4, P5, P6}

References:

- [1] https://ieeexplore.ieee.org/document/7978726
- [2] https://science.sciencemag.org/content/344/6191/1492
- [3] https://dl.acm.org/citation.cfm?id=3001507
- (2) Advantages and disadvantages of Automatical local density clustering algorithm is given below:

Advantages:

- i) Number of clusters doesn't have to be predefined like K-means algorithm
- ii) Like k-means algorithm, here initially cluster centers are not considered arbitrarily, the centers are calculated based on local density.
- iii) It doesn't need to iterate again and again and calculate the center of newly formed clusters like K-means and Hierarchical; it assigns the remaining points without any iteration.
- iv) Unlike k-means and Hierarchical, order of data has not effect on the result.
- v) Time complexity less than k-means and hierarchical.

Disadvantages:

- i) Result depends on the consideration of cut-off value and divide-line value
- ii) K-means and hierarchical easier to implement
- iii) Input parameters difficult to determine and result can be sensitive to input parameters