	Práctico 3 - Números aleatorios y método de Montecarlo
C	domingo, 9 de abril de 2023 13:30
	Ejercicio 1. Para el estudio mediante simulación es necesario generar muchos números aleatorios en la
	computadora. Estos corresponden a variables aleatorias uniformemente distribuidas en el intervalo (0,1). Existen en la literatura varias rutinas portables, optimizadas para generar enormes cantidades de números
	pseudo-aleatorios con velocidad razonable.
	a) Calcular los diez primeros números de la secuencia de von Neumann a partir de la semilla:
	i) 3792 ii) 1004 iii) 2100 iv) 1234
	b) Calcular los diez primeros elementos de la secuencia generada por el generador congruencial
	$y_{i+1} = 5y_i + 4 \mod(2^5),$
	para $y_0 = 4$ y para $y_0 = 50$. ¿Cuál es el período de la secuencia en cada caso?
	c) Indicar en cuáles de los siguientes casos el generador
	$y_{i+1} = ay_i + c \mod(M)$
	genera una secuencia de período máximo. Puede utilizar resultados teóricos o implementarlo en Python y calcular el período de la secuencia.
	$-a = 125, c = 3, M = 2^9$
	$-a = 123, c = 3, M = 2^9$ $-a = 123, c = 3, M = 2^9$
	-a = 5, c = 0, M = 71
	-a=7, c=0, M=71
	d) aprender a utilizar Mersenne Twister, version de la biblioteca standard de python (random.random).
	a) i) 3792
	3792, 3792, 3.
	ii) 1004
	1004, 80, 64, 40, 16, 2, 0, 0,
	iii) 2100
	2100, 4100, 8100, 6100, 2100, 4100, 8100,
	iv) 1234
	1234, 5227, 3215, 3362, 3030, 1809, 2724, 4201, 6484, 422
	b) y ₀ = 4
	4, 24, 28, 16, 20, 8, 12, 0, 4, 24
	El período es 8
	y ₀ = 50
	50, 30, 26, 6, 2, 14, 10, 22, 18, 30
	El período es 8
	c) - a = 125, c = 3, M = 2 ⁹
	Se cumple que m.c.d(c, M) = m.c.d(3, 2 ⁹) = 1 Se cumple que para cada primo p que divide a M, a mod p = 1 (Sólo el primo 2 divide a M y 125 mod 2 = 1)
	Se cumple que 4 M y a mod 4 = 1 (125 mod 4 = 1)
	El período es M
	- a = 123, c = 3, M = 2 ⁹
	Se cumple que m.c.d(c, M) = m.c.d(3, 2 ⁹) = 1
	Se cumple que para cada primo p que divide a M, a mod p = 1 (Sólo el primo 2 divide a M y 123 mod 2 = 1)
	Se cumple que 4 M pero no se cumple que a mod 4 = 1 (123 mod 4 = 3)
	El período va a ser menor a M
	- a = 5, c = 0, M = 71
	No se cumple que m.c.d(c, M) = m.c.d(0, 71) = 1 ya que m.c.d(0, 71) = 71
	El período va a ser menor a M
	- a = 7, c = 0, M = 71
	No se cumple que m.c.d(c, M) = m.c.d(0, 71) = 1 ya que m.c.d(0, 71) = 71

Ejercicio 2. Se propone el siguiente juego en el cual todas las variables aleatorias que se generan son **independientes** e idénticamente distribuidas $\mathcal{U}(0,1)$: Se simula la variable aleatoria U. Si $U<\frac{1}{2}$, se suman dos nuevos números aleatorios W_1+W_2 . Pero si $U\geq\frac{1}{2}$, se suman tres números aleatorios. El resultado de la suma, en cualquiera de los casos, es una variable aleatoria X. Se gana en el juego si $X\geq 1$.

- a) ¿Cuál es la probabilidad de ganar?.
- b) Implementar un algoritmo en computadora que estime la probabilidad de ganar, esto es, la fracción de veces que se gana en n realizaciones del juego. Completar la siguiente tabla:

de veces que se gana en n realizaciones del juego. Completar la siguiente tabla:	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
a) $P(x \ge 1) = P(U \le \frac{1}{2}, W + Wz \ge 1) + P(U \ge \frac{1}{2}, Y W + Wz \ne 0 \le 1)$	
$= P\left(\sqrt{2} \right) \cdot P\left(\sqrt{2} \right) + P\left(\sqrt{2} \right) \cdot P\left(\sqrt{2} \right) \cdot P\left(\sqrt{2} \right)$	
= P(v===) . P(watw2 za) + (1 - P(v===)), P(watw2+W3>.	
$= F(\frac{1}{2}), P(w_1 + w_2 \ge 1) + (1 - F(\frac{1}{2})) \cdot P(w_1 + w_2 + w_3 \ge 1)$	1)
= F(1/2). (1-P(W1+W2 \le 1))+(1-F(1/2)). (1-P(W1+W2+W	2 < 9))
Como todas la variables tienen distribución Uto, 1) entonus:	
$f(x) = \begin{cases} 1 & 0 < x < 4 \\ 0 & c < c \end{cases} \begin{cases} 0 & x < 0 \\ x & 0 < x < 4 \end{cases}$	
$ \begin{array}{lll} P\left(w_{1}+w_{2}=t\right) = \left(f_{0,1}^{x} f_{2}\right) \left(t\right) = \int_{-\infty}^{\infty} f_{w_{1}}\left(w_{2}\right) \cdot \frac{\pi}{\left(o_{1}\right)}\left(w_{2}\right) \cdot f_{w_{2}}\left(t-w_{2}\right) \cdot \prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2} \\ = \int_{0}^{\infty} f_{w_{1}}\left(w_{2}\right) \cdot f_{w_{2}}\left(t-w_{2}\right) \cdot \prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2} = \int_{0}^{\infty} \frac{\prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2}}{\left(o_{1}\right)} dw_{2} dw_{2} \\ = \int_{0}^{\infty} f_{w_{1}}\left(w_{2}\right) \cdot f_{w_{2}}\left(t-w_{2}\right) \cdot \prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2} = \int_{0}^{\infty} \frac{\prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2}}{\left(o_{1}\right)} dw_{2} dw_{2} \\ = \int_{0}^{\infty} f_{w_{1}}\left(w_{2}\right) \cdot \prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2} = \int_{0}^{\infty} \frac{\prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2}}{\left(o_{1}\right)} dw_{2} dw_{2} \\ = \int_{0}^{\infty} f_{w_{1}}\left(w_{2}\right) \cdot \prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2} = \int_{0}^{\infty} \frac{\prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2}}{\left(o_{1}\right)} dw_{2} dw_{2} \\ = \int_{0}^{\infty} f_{w_{1}}\left(w_{2}\right) \cdot \prod_{\left(o_{1}\right)}\left(t-w_{2}\right) dw_{2} dw_{2}$	
	-0 -0 u=t -∞ -0 u=-∞
$= \begin{cases} t & s? & 0 < t - w_1 < 1 = P & 0 < w_2 < t < 1 \end{cases}$	
$P(w_1 + w_2 \le 1) = \int_0^1 t dt = \left(\frac{t^2}{2}\right)^1 = \frac{1}{2}$	
$P(w_1 + w_2 + w_3 = t) = (f_{w_1 + w_2} + f_{w_3})(t) = \int_{-\infty}^{\infty} f_{w_1 + w_2}(w_3) \cdot f_{w_3}(t - w_3) dw_3$	
$= \int_{\omega_1 + \omega_2}^{\infty} (\omega_2) \cdot \int_{\omega_2}^{\omega_2} (t - \omega_3) d\omega_3 = \int_{\omega_1 + \omega_2}^{\omega_2} (\omega_2) \cdot \int_{\omega_2}^{\omega_2} (t - \omega_3) d\omega_3$	

$$= \int_{0}^{\infty} f_{w_{1}+w_{2}}(w_{3}) \cdot f_{w_{3}}(t-w_{3}) dw_{3} = \int_{0}^{t} f_{w_{1}+w_{2}}(w_{2}) \cdot f_{w_{3}}(t-w_{3}) dw_{3}$$

$$= \begin{cases} \frac{t^2}{z} & 0 < \omega_3 < \Lambda \\ 0 & c.c \end{cases}$$
 $\begin{cases} \frac{t^2}{z} & 0 < \omega_3 < \Lambda \\ 0 & c.c \end{cases}$

$$P(w_{q}+w_{2}+w_{3}\leq 2)=\int_{0}^{1}\frac{t^{2}}{z}dt-\left[\frac{t^{3}}{6}\right]_{0}^{1}=\frac{1}{6}$$

$$P(\chi \geq 1) = \frac{1}{2} \cdot \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{6}\right)$$

$$= \frac{1}{4} + \frac{5}{12} = \frac{3+5}{12} = \frac{8}{12} + \frac{7}{12} \cdot \frac{2}{3} \stackrel{?}{=} 0,666$$

Ejercicio 3. Las maquinas tragamonedas usualmente generan un premio cuando hay un acierto. Supongamos que se genera el acierto con el siguiente esquema: se genera un número aleatorio, y

- i) si es menor a un tercio, se suman dos nuevos números aleatorios
- ii) si es mayor o igual a un tercio, se suman tres números aleatorios .

Si el resultado de la suma es menor o igual a 2, se genera un acierto.

- a) ¿Cuál es la probabilidad de acertar?.
- b) Implementar un algoritmo en computadora que estime la probabilidad de acertar, esto es, la fracción de veces que se acierta en n realizaciones del juego. Completar la siguiente tabla:

n	100	1000	10000	100000	1000000
P[X < 2]					

Vamos a asunic que to das las variables tienen dishibución U(0,1)
Llaments X a la variable aludoria que representa la suma wiscon los
variables aleatorias que se suman y u es la variable aludoria que generante
al minúpio del quego

a)
$$P(X=2) = P(U < 1/3, W_{A}+W_{2}=2) + P(U \ge 1/3, W_{A}+W_{2}+W_{3}=2)$$

$$= P(U = 1/3) \cdot P(W_{A}+W_{2}=2) + (A - P(U = 1/3)) \cdot P(W_{A}+W_{2}+W_{3}=2)$$

$$= F(1/3) \cdot P(W_{A}+W_{2}=2) + (A - F(1/3)) \cdot P(W_{A}+W_{2}+W_{3}=2)$$

$$P(W_1+W_2+W_3 \le \frac{1}{2}) = (-(W_1+W_2+W_3) \ge -2) = (3-(W_1+W_2+W_3) \ge 1)$$

$$= ((1-W_1) + (1-W_2) + (1-W_3) \ge 1)$$

$$\times 1$$

$$P(X_{1}+X_{2}+X_{3}\geq 1)=1-P(X_{1}+X_{2}+X_{3}\leq n)$$

$$A=1$$

																_N	ιw	ww		um u	י א	וע						
		ρ	(x,	1 +)	2 +	X3 3	≥1)	=		L - 1	P (x	1 + X 2	1/3	<u>د</u> ۸)						,							
										- <u>1</u>																		
										6																		
								=	5																			
									6																			
																								<<<<				
		p(X	ι).	=	1.	1	+ /	11	-1	١.	5	_	1	+ .	2.	5	. 1	+	5	٠,	3 H S		Q 1	รัก ช	£ 8		
						3			(3) •	6		3	,	3	6	3		9		9		9	,,,			
	b					n		100	1 1	000	10	000	10	0000	1	100	0000											
					P	$X \leq X$	[2]	0,96	4 5		0,80			8837			9186											
																		_										
	\$100 Y 100 Y						The second	State of the state of			iales, p																	
											el 28% on med				a				ona									
	a)	¿Cuá	l es	la pro	babil	idad d	e que	un clie	ente e	spere	menos	de 4 n	ninuto	s para	ser a	tend	ido?											
	15-16-1				Olas Portion	ue esp las ca		más de	4 m	inuto	s. ¿Cua	ál es la	a prob	abilida	ad de	e que	el cl	ente l	aya									
		1000						proba	bilida	ades a	nteriore	es con	1000	iteracio	ones.													
		Ρ(<i>C. i</i>)_	۸	.40			N _A	ع د	(1/3)																
				1		,40 ,32					(/4																	
						,28					د (ا/ /')ع	,																
		'		<i>5' -</i>	. 0	, 20			1,	ο ·	C(1	5/																
a	L 16) P(M										1ep 10 P (p;					'	'	,				nte						
			=	0,	40	x (<u>7</u>	e	- 1/3.1)	+ 0	·32 x	(1-	ē 1/4	۱٠٩)	+ (0.7	8 X	(1-	ē	116	1)							
			~			102			Ì																			
	b)	(ω	a 1																								
		ρ	- J ((. 1	M > /	ı)		Р(с	1 1	za) =	2(0	۸).	P(r	1≥a	١٥	4)	90	`) .	. 4) (N) ₄ >	4)				
				7	, , -	,		P	(1				0(1 <u>2 4</u>)	Ť		-				1 ≥ A		,				
							_			n Λο	xe	1/3-4									. (.							
						,			1-	P(H	< 4)	-																
							~	0,30			,																	
								,-																				
			(ωa	2:																							
		ρ	(,	ا در ا در	M =	۲۵	P	C	2, M	24) _	P(C	2) • 1	P(H=	۱۵<	(-) _	P((₂)) ,	PI	Ŋ,	2 A)				
		1	('	- <i>L</i> 1	. 1 =	- J	- '	9(H 2	۳)	=		ρſĸ	4 6 1)	-				_								
							ح.	0,3				3	·) 17.	1 - 4,						1 -	1 (1	1 - 4	,					
								1-0	_	_																		
								0,3																				
							Ŧ	0)2,	15																			
			1	^ .	3 -																							
			~ (x 3:			21			1			201		_		ın		1		01.						

$P_{01} MC.$ $\int_{0}^{1} (1-x^{2})^{3/2} dx = \int_{0}^{1} (1-x^{2})^{3/2} L_{(0,1)}(x) dx = E L_{9}(u) = 0$
Sean Un-Mlo,n) variables alcutorios:
$\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^{\infty} g(u_i) = 0$
Entonus con $g = (1-x^2)^{3/2}$ y $N = 10000$ fenemos:
$\int_{0}^{1} (1-x^{2})^{3/2} dx$
result = IntegralMonteCarlo((lambda x: pow((1-pow(x, 2)), 3/2)), 0, 1, 100000) print(result) 0.5885492546613968
b) $\int_{2}^{3} \frac{x}{x^{2}-1} dx = \int_{3}^{8} \frac{x}{u} \cdot \frac{du}{2x} = \frac{1}{2} \int_{3}^{8} \frac{1}{u} du = \frac{4}{2} \cdot \left(\ln(u) \right)_{3}^{8} = \frac{1}{2} \cdot \left(3\ln(z) - \ln(3) \right) \approx 0,44041$
$u = x^{2} - 1 \qquad x \rightarrow 2 \qquad u \rightarrow 3$ $du = 2x dx \qquad x \rightarrow 3 \qquad u \rightarrow 8$
$\int_{2}^{3} \frac{x}{x^{2}-1} dx = \int_{0}^{2} \frac{y+2}{(y+2)^{2}-1} dy$
y=X-2 $X=y+2$ entonus generamos 10000 V.A wn distribución U-(0,1) $dy=dx$ $X\to 2$ $Y\to 0$ Y calcularmos 10000 $X\to 3$ $Y\to 1$ $Y\to 1$ $Y\to 1$ $Y\to 1$ $Y\to 1$ $Y\to 1$
tenemo: $\frac{10000 \ i=1 \ (U_i + z)-1}{1}$
$\int_2^3 \frac{x}{x^2-1} dx$ $result = IntegralMonteCarlo((lambda x: x/(pow(x, 2) - 1)), 2, 3, 100000)$ $print(result)$
e.4992972586172403
c) $\int_{0}^{\infty} \chi(1+\chi^{2})^{-2} dx = \int_{1}^{n} \chi(u)^{-2} \cdot du = \underbrace{1}_{2} \int_{1}^{n} u^{-2} du = \underbrace{1}_{2} \cdot [u^{-1}]_{1}^{n} = \underbrace{1}_{2} - \lim_{n \to \infty} 1 = \underbrace{1}_{2}$
$u = \Delta + x^2$ $x \rightarrow 0$ $u \rightarrow 1$
du=2xdx x-00 u-00
$\int_{0}^{\infty} x(1+x^{2})^{-1} dx = \int_{1}^{0} \left(\frac{1}{y}-1\right)^{1/2} \left(\frac{1}{y}-1\right)^{2/2} - \frac{1}{y^{2}} \int_{0}^{1/2} \left(\frac{1}{y}-1\right)^{1/2} \left(\frac{1}{y}-1\right)^{2/2} \frac{dy}{y^{2}}$

$y = \underline{1} \qquad x = \underline{1} - 1 \qquad x \rightarrow 0 \qquad y \rightarrow 1$
$\frac{dy = -\frac{1}{2} dx}{(x+4)^2} \frac{dx = \frac{1}{2} dy}{y^2}$ $\frac{1}{2} \cdot \left(\frac{1}{2} - 1\right) \left(1 + \left(\frac{1}{2} - 1\right)^2\right) \cdot 1$
$dx = -(x+1)^2 dy$ $dx = -(x+1)^1 dy$ 10000 $i=1$ Ui / Ui / Ui
Y tenemos:
$\int_{-\infty}^{\infty} x(1+x^2)^{-2} dx$
Jo : result = IntegralMonteCarlo((lambda x: x*pow((1+pow(x, 2)), -2)), 0, np.inf, 100000) print(result)
$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$
$0 \approx (x^2 - 1)^2$
$\int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-x^2} dx + \int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-(-y)^2} - dy + \int_{-\infty}^{\infty} e^{-(-y)$
$y = -x$ $x \rightarrow -\infty$ $y \rightarrow \infty$ $u \rightarrow 1$ $x \rightarrow \infty$ $u \rightarrow 0$
$y = -x \qquad x \rightarrow \infty \qquad x \rightarrow 1 \qquad x \rightarrow \infty \qquad u \rightarrow 0$ $x = -y \qquad x \rightarrow 0 \qquad y \rightarrow 0 \qquad x \rightarrow 1 \qquad x \rightarrow 0 \qquad u \rightarrow 0$ $dx = -dy \qquad du = -1 \qquad dx \qquad (x \rightarrow 1)^{2}$
$(x+1)^{2}$
$\int_{-\infty}^{\infty} e^{-x^2} dx$
<pre>In [281]: result = IntegralMonteCarlo(lambda x: math.exp(-pow(x, 2)), -np.inf, np.inf, 100000) print(result)</pre>
1.7704294684129893
$0 \wedge C C^{1} (y \downarrow y)^{2} + \gamma$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Uamemos g(x,y) = e(x+y)2. Entonus
θ= E[g(Vi, Xi)] con V, X vanables deutories uniformes en el rango (0,1)
Entones generamo 10000 mustras independientes de cada variable y tenemos
que:
$ \frac{\partial}{\partial x} = \frac{1}{10000} $ $ \frac{\partial}{\partial z} = \frac{1}{10000} $ $ \frac{\partial}{\partial z} = \frac{1}{10000} $
10000
y tenemos:

```
\int_{0}^{1} \int_{0}^{1} e^{(x+y)^{2}} dy dx
    In [30]: Integral = 0
                 funciong = (lambda x, y: math.exp(pow(x+y, 2)))
                for _ in range(Nsim):
    Integral += funciong(a + (b-a) * random.random(), a + (b-a) * random.random())
result = Integral * (b-a)/Nsim
    f) \int_0^\infty \left[ \int_0^x e^{-(x+y)} dy \right] dx = \frac{1}{4} = 0,26
        Paru aplica montecalo hacemos un cambio de variable primero
       z = y - a = y y - 0 z - 0 z - 0 z - 0
     y=z·x
dy= dz·x
      \int_{0}^{\infty} \left[ \int_{0}^{1} e^{-(x+2x)^{2}} dz \cdot x \right] dx
    du = -\frac{1}{(x+1)^2}dx
    dx = -(x+1)^2 du
          \int_{0}^{\infty} \left[ \int_{0}^{1} e^{-(x+2x)^{2}} x \, dz \right] dx = \int_{1}^{0} \left[ \int_{0}^{1} e^{-\left(\left(\frac{1}{u}-1\right)+2\cdot\left(\frac{1}{u}-1\right)\right)^{2}} \cdot \left(\frac{1}{u}-1\right) dz \right] - \left(\frac{1}{u}-1+n\right)^{2} dy
= - \left( \frac{1}{2} \left( \frac{1}{u} - 1 \right) + \frac{2}{2} \cdot \left( \frac{1}{u} - 1 \right) \right)^{2} du
= \left( \int_{0}^{1} \left( \left( \frac{1}{u} - 1 \right) + 2 \cdot \left( \frac{1}{u} - 1 \right) \right)^{2} \cdot \left( \frac{1}{u} - 1 \right) dt \right) \cdot \left( \frac{1}{u} \right)^{2} du
Ahora llum emos g(u, z) = \left(\frac{1}{u}\right)^2 \cdot \left(\frac{1}{u}-1\right) \cdot e^{-\left(\left(\frac{1}{u}-1\right)+2\cdot\left(\frac{1}{u}-1\right)\right)^2}
               podemos aproximor el resultado de la integral con
                         θ~ 1 E g(νί, ε;) ν, ε~ U(0,1)
```

N=10000 generamos N V.A U; y Z? y tenemos il signimite resultado: $\int_0^\infty \int_0^x e^{-(x+y)^2} dy dx$ In [61]: Integral = 0 Nsim = 10000 funciong = (lambda x, y: (1/x - 1) * math.exp(-pow(1/x-1+y*(1/x-1), 2)) * pow(1/x, 2))for _ in range(Nsim): Integral += funciong(a + (b-a) * random.random(), a + (b-a) * random.random()) result = Integral * (b-a)/Nsim print(result) 0.2502497868943337 (d) (f) integral (a) (e) 100 6,5820 0,2696 0,4787 0,5361 2,7424 9,9374 1000 0, 5917 0,4917 8,4911 1,75 0,2577 4,5937 0,5885 10000 0,4908 0,6013 1,7586 0,2426 4,855 100000 0,5886 0,4902 0,4968 1,7713 0,2506 4,9162 1000000 | 0,5883 1,7743 0,4904 0,5003 0,2500 4,8917 Ejercicio 6. Para U_1, U_2, \ldots variables aleatorias uniformemente distribuídas en el intervalo (0, 1), se define: $N = \text{Mínimo} \left\{ n : \sum_{i=1}^{n} U_i > 1 \right\}$ Es decir, N es igual a la cantidad de números aleatorios que deben sumarse para exceder a 1. a) Estimar E[N] generando n valores de N y completar la siguiente tabla: b) Calcular el valor exacto de E[N]100 1000 10000 100000 1000000 E[N] 2,73 2,645 2,7209 2,71524 2,719445 N es una variable aliatoria discreta que toma valores enteros no negativos, ode mais N ≥ 2, ya que cada Uj es un número positivo menos que 4, entonas: E[N]: \(\sum_n \ P(N=n) \) Para (alula P(N=n) notemos que N=n si y solo si $\sum_{i=1}^{n-1} V_i > 1$ simplificar la notación llamemos Sna Za Vi bien, Sn>2 sii Sn-1>2 ó (Sn-1=1 y Sn>1) Por lo tanto: P(5,71) = P(5,-1>1) + P(N=n) $P(N=n) = P(S_n > 1) - P(S_{n-n} > 1)$

Ahora debe mos envontrar la función de densidad de Sn.
Sea In la función de densidad de la vanable aleatoria sn, nz 1. Entonus
$f_{n}(x) = \frac{x^{n-1}}{(n-1)!}$ $0 < x < n$
Problemar eto por inducción
Para n=1, tenemos que S1=Un y sahemos que su densidad es I(0,1)(x), por lo
que la afimación es cierta en este caso Para n=z, tenemos que Sz = Un+Uz Sea fu; la densidad de la V.A Vi, con i=3, z Por la fórmula de convolvición tenemos que
Para n=z, tenemos que Sz = Un+Uz Sea tu; la densidad de la V.A Vi, won
i=3,2 Por la formula de lanvolución Tenemor que
$\int_{-\infty}^{\infty} \int_{U_{1}}(t) \int_{U_{2}}^{\infty} \left(x-t\right) dt = \int_{-\infty}^{\infty} \mathcal{I}_{(0,1)}(t) \mathcal{I}_{(0,1)}(x-t) dt = \int_{0}^{x} dt = x$
por la afirmación es vierta.
Supergamer ahous que $f_{n}(x) = \frac{x^{n-1}}{(n-1)!}$
$f_n^{(x)} = \frac{x}{(n-1)!}$
para un cierto n, y para todo ocxen y veamos que la afimación se cumple para n+2
comple para hts
Tenemo, que f _{n+1} = f _{sn+Un+1} y utilizando la fórmula de la densidad para la puna de variables alcatorias tenemos:
$f_{n+1}(x) = \int_{-\infty}^{\infty} f_{n}(t) f_{0n+1}(x-t) dt = \int_{-\infty}^{\infty} f_{n}(t) I_{(0,n)}(x-t) dt = \int_{0}^{\infty} \frac{t^{n-1}}{(n-1)!} dt = \frac{x^{n}}{n!}$
$\int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{(n-1)!}{(n-1)!} = n!$
Ahora podemos calcula E[N]
$P(S_{n}>1) = 1 - P(S_{n} \le 1) = 1 - \int_{0}^{1} f_{n}(t) dt = 1 - \frac{1}{n!}$
$P(N=n) = \left(\frac{1-\frac{1}{n!}}{n!} \right) - \left(\frac{1-\frac{1}{n!}}{n!} \right) = \frac{n-1}{n!}$
(n-1)!/
y as lo trata:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$E[N] = \sum_{n} n \cdot P(N=n) = \sum_{n} \frac{n(n-1)}{n(n-1)} = \sum_{n} \frac{n(n-1)}{n(n-1)}$
$P = \begin{cases} n = \zeta \\ \infty \end{cases} \qquad \begin{cases} n = \zeta \\ n = \zeta \end{cases} \qquad \begin{cases} n = \zeta \\ (n-1) \cdot (n-2)! \end{cases}$
<u> </u>

	$= \sum_{n=2}^{n=2} \frac{1}{(n-2)!} = \sum_{n=0}^{\infty} \frac{1}{n!} = e$
	$= \sum_{n=2}^{\infty} \frac{1}{(n-2)!} \qquad n=0 \qquad n!$
icio 7. Pa	ra U_1, U_2, \ldots números aleatorios, se define:
	$N = \operatorname{Maximo}\left\{n: \prod_{i=1}^n U_i \geq e^{-3}\right\}$
E-1001	
$: \prod_{i=1}^{0} U_{i} =$	1. Mediante n simulaciones determinar:
<i>t</i> =1	
	n 100 1000 10000 100000 1000000
P(N=i)	para $i = 0, 1, 2, 3, 4, 5, 6$, usando $n = 1000000$.
a)	
	n = 100 = 1000 = 10000 = 1000000
	E[N] 3,91 4,054 3,9986 4,00175 4,00 03
_o)	(0, 1) $(0, 1)$ $(0, 1)$ $(0, 1)$
	P(N=1) = 0.049972 $P(N=2) = 0.14933$
	P(N=2) = 0,14933 $P(N=3) = 0,2242$
	P(N=4) = 0,2246 $P(N=4) = 0,2246$
	P(N=5) = 0,1676
	P(N=6) = 0,1015
	1 (4-5) 2 0,1015
	O University of the second Englishment of the second of th
o tira un n irada; pero ountaje la a) Real	8. Un juego consiste en dos pasos. En el primer paso se tira un dado convencional. Si sale 1 o uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. me la probabilidad de que un jugador gane mediante una simulación.
o tira un n irada; pero ountaje la a) Real	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane.
o tira un n irada; pero ountaje la a) Real	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane.
b tira un n irada; percountaje la a) Real b) Estir	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. me la probabilidad de que un jugador gane mediante una simulación.
b tira un n irada; percountaje la a) Real b) Estir	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane.
b tira un n irada; persountaje la a) Real b) Estin	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. ne la probabilidad de que un jugador gane mediante una simulación. damemos X ₂ X ₂ y X ₃ a las V.A de la primera, segunda y fercerar ada respectivamente y llamemos V a la V.A al printage Anal.
b tira un n irada; persountaje la a) Real b) Estin	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. ne la probabilidad de que un jugador gane mediante una simulación. lamemos X _A X _Z y X ₃ a las V.A de la primera, segunda y fercera ada respectivament e y llamemos V a la V.A al puntage Anal. 26) = P(X ₁ = 6) · P(2X ₂ > 6) + P(X ₁ =1) · P(2X ₂ >6) + P(X ₁ =2)· P(X ₁ =2)· P(X ₂ + X ₃ 76)
b tira un n irada; persountaje la a) Real b) Estin	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. ne la probabilidad de que un jugador gane mediante una simulación. damemos X ₂ X ₂ y X ₃ a las V.A de la primera, segunda y fercerar ada respectivamente y llamemos V a la V.A al printage Anal.
b tira un n irada; pero untaje la a) Real b) Estin	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. me la probabilidad de que un jugador gane mediante una simulación. damemos Xa, Xz, y X3, a las V.A de la primera, segunda y fercera ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w.
a) Real b) Estin	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. ne la probabilidad de que un jugador gane mediante una simulación. damemos Xa , Xz , X3 a lus V.A de lu primera, segunda y fercera ada respectivamente y llumemos V a la V.A del puntage final. 76) = P(X1 = 6) . P(2X276) + P(X1=1) . P(2X276) + P(X1=2). P(X1+X376) + P(X1=3) . P(X2+X376) + P(X1-4) . P(X2+X376) + P(X1=5) . P(X2+X376) W X1, X2, X3 son V.A de tiradas de dado enton us tienen una distribución
a) Real b) Estin	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. me la probabilidad de que un jugador gane mediante una simulación. damemos Xa, Xz, y X3, a las V.A de la primera, segunda y fercera ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w. Ada respectivamente y llamemos V a la V.A del puntaje ha w.
o tira un n irada; pero puntaje la a) Real b) Estin Com unl h	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva os sisale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gan
o tira un n irada; pero puntaje la a) Real b) Estin Com unl h	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva os sisale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gane. The la probabilidad de que un jugador gane mediante una simulación. The la probabilidad de que un jugador gan
o tira un n irada; pero puntaje la a) Real b) Estin Com unl h	uevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva o si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana. izar un cálculo teórico de la probabilidad de que un jugador gane. ne la probabilidad de que un jugador gane mediante una simulación. damemos Xa , Xz , X3 a lus V.A de lu primera, segunda y fercera ada respectivamente y llumemos V a la V.A del puntage final. 76) = P(X1 = 6) . P(2X276) + P(X1=1) . P(2X276) + P(X1=2). P(X1+X376) + P(X1=3) . P(X2+X376) + P(X1-4) . P(X2+X376) + P(X1=5) . P(X2+X376) W X1, X2, X3 son V.A de tiradas de dado enton us tienen una distribución

		- u		341	1 ^3~	, . -	1 75.	1 1 4 3	-		امد	1^:	3	9	_	1 72 '	[X 2]	. 1		
				1 1 1													>			
		= 1	-	5- (1	-)2+	4-11	_) ² t	- 3.	11	\ \ \	2.	(1)	+(1)	2					
					2		61	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6	'		(b)		61	7					
		J	1 - \	$\left(\frac{1}{6}\right)$	· 15															
			L	(6)																
		=	7 - 1																	
			3	6																
		Ξ	21 36																	
			36																	
20.1	2		<i>(</i>	, ,	.)				2.)											
P(176	s) =	$\frac{1}{\epsilon}$	1- PI	(X2E3,)	1 · (1	- P(X2 6 3)/+	1	.57	+)	.21	+7	·51 +	T .5	1			
		6		. 2.2		6		,)	1	6	36) (36	6	36	6 3	36			
	Ξ	7.(7 - FX	(3)	+ 1.	(1)-	FXL13)) +	<u>x</u> -	2]										
		6		_	6				7	316	9 9									
	Ξ	1 . (1 - 3	3) t	1 . (1 - 3) t	21	- '											
							' /	34	18											
	=	1 -	3	t L .	$\left(\frac{3}{4}\right)$	† 7														
				-	6)	18														
	=	1 1	12 12	7																
					2 4	0 -	\odot													
	=	2	t 7	= 12	0 2	0, 59	55													
		12	1.5		16															
b)		Fie	rcicio	8																
9)	Tn [126			_8(Nsim):																
	111 [120		vict = 0																	
			if d	= random ado == 6	or dado	== 1:														
			else							1:-1/4	5 \									
			if r	result = esult > 6 vict += 1	5:	andint(1	, 6) +	randor	n.rand	iint(i	, 6)									
				ict/Nsim																
			o_ej_8(1	00000)																
	Out[124]: 0.55	485																	