V61

Der He-Ne-Laser

Alexander Froch Alexander.Froch@tu-Dortmund.de

Stephan Abbing Stephan.Abbing@tu-Dortmund.de

Durchführung: 23.04.2018 Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	1
2	Theorie	1
3	Durchführung	1
4	Auswertung4.1Fehlerrechnung4.2Überprüfung der Stabilitätsbedingung4.3TEM-Moden4.3.1TEM ₀₀ -Mode	1
5	Diskussion	3

- 1 Ziel
- 2 Theorie

3 Durchführung

4 Auswertung

4.1 Fehlerrechnung

Zur Fehlerrechnung werden die Fehlerpfortpflanzung nach Gauß

$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2} \tag{1}$$

und die Standardabweichung vom Mittelwert

$$\sigma_{\bar{x}} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \bar{x})^2}$$
 (2)

mit

$$\bar{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{3}$$

verwendet.

4.2 Überprüfung der Stabilitätsbedingung

Als erstes wird die Stabilitätsbedingung untersucht. Der Laser ist stabil wenn

$$0 \le g_1 \cdot g_2 < 1 \tag{4}$$

gilt. Die Resonatorparameter werden nach

$$g_i = 1 - \frac{L}{r_i} \tag{5}$$

Abbildung 1: Theoretische Stabilitätsbedingung für die drei Anordnungen.

berechnet. In Abbildung 1 werden die theoretischen Kurven der drei Anordnungen dargestellt.

Experimentell wurden die Werte der Anordnung 1 und 3 gemessen. Dabei ergaben sich für L_1 und L_3 folgende Werte:

$$L_1 = 138.9 \,\mathrm{cm}$$
 (6)

$$L_3 = 102.8 \,\mathrm{cm}$$
 (7)

4.3 TEM-Moden

$\textbf{4.3.1} \;\; \textbf{TEM}_{00}\textbf{-Mode}$

Die Intensitätsverteilung der $\mathrm{TEM}_{00}\text{-}\mathrm{Mode}$ kann als Gaußverteilung der Form

$$I_{00}(r) = I_0 \cdot \exp\left(\frac{2r^2}{\omega^2}\right) \tag{8}$$

dargestellt werden. Die Messwerte der Intensitätsverteilung sind in Tabelle 1 dargestellt.

 Tabelle 1: Intensitätsverteilung der $\mathrm{TEM}_{00}\text{-Mode}$ in Abhängigkeit zum Abstand.

r in mm	$I(r)$ in μA
0,000	0,013
0,500	$0,\!260$
1,000	0,950
1,500	0,950
2,000	1,880
2,500	2,500
3,000	2,400
3,500	1,300
4,000	$0,\!400$
4,500	0,090

5 Diskussion