Probability Review

©Prakash Ishwar

Department of Electrical and Computer Engineering Boston University

September 6, 2015

focus on 22-28 30-32 34-42 45-52

Probability Space (Ω, \mathcal{F}, P)

- Sample space Ω : nonempty set of outcomes ω of an experiment.
- Family of events \mathcal{F} : a collection of subsets of Ω that is:
 - A.1 **Nonempty:** $\mathcal{F} \neq \emptyset$, i.e., $\exists A \subseteq \Omega$ such that (s.t.) $A \in \mathcal{F}$,
 - A.2 Closed under complementation: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$,
 - A.3 Closed under countable union: $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$. Members of \mathcal{F} are called **events**.
- Probability measure P: real-valued function on \mathcal{F} , i.e., $P: \mathcal{F} \to \mathbb{R}$, satisfying the probability axioms:
 - P.1 Nonnegativity: $\forall A \in \mathcal{F}, P(A) \geq 0$,
 - P.2 Normalization: $P(\Omega) = 1$ (\mathcal{F} contains Ω)
 - P.3 Countable additivity: If A_1, A_2, \ldots are mutually exclusive, i.e., pairwise disjoint, events in \mathcal{F} , then $P(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

Probability measure examples

Example 1 Let $\Omega=\{\omega_1,\omega_2,\ldots\}$ be any countable set, e.g., the set of natural (counting) numbers $\mathbb N$ or the set of all rational numbers $\mathbb Q$. Let $p(\omega_1),p(\omega_2),\ldots$, be any sequence of nonnegative numbers that sum to one, e.g., $p(\omega_i)=2^{-i}$. For any event A, if we define $P(A):=\sum_{\omega\in A}p(\omega)$, then P is a valid probability measure.

Example 2 Let $\Omega=\mathbb{R}^n$, the n-dimensional real Euclidean space. Let f(x) be any nonnegative integrable function of $x\in\mathbb{R}^n$ that integrates to one, e.g., f(x)=1 for all $x\in B$ and zero otherwise, where B is any unit-volume subset of \mathbb{R}^n . For any event A, if we define $P(A):=\int_{\omega\in A}f(x)dx$, then P is a valid probability measure.

Indicator function: A function that takes the value 1 over a set B and the value 0 outside B is called the indicator function of the set B and is denoted by $1_B(x)$ or $1(x \in B)$ or $I_{\{x \in B\}}$.

Properties of probability measure P

- $P(A^c) = 1 P(A)$.
- $P(\emptyset) = 0$.
- Monotonicity: if $A \subseteq B$ then $P(A) \le P(B)$.
- Unions:
 - $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1 \cap A_2).$
 - $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) P(A_1A_2) P(A_1A_3) P(A_2A_3) + P(A_1A_2A_3).$
 - General case (via inclusion-exclusion principle): $P(\cup_i A_i) = \sum_i P(A_i) \sum_{i \neq j} P(A_i A_j) + \sum_{i \neq j \neq k} P(A_i A_j A_k) \dots (-1)^n P(\cap_i A_i).$
 - Union bound:

$$P(\cup_i A_i) \le \sum_i P(A_i).$$

- Continuity:
 - If $A_1 \subseteq A_2 \subseteq \ldots$ then $\lim_{j \to \infty} P(A_j) = P(\lim_{j \to \infty} \bigcup_{i=1}^j A_i)$.
 - If $A_1 \supseteq A_2 \supseteq \dots$ then $\lim_{j \to \infty} P(A_j) = P(\lim_{j \to \infty} \bigcap_{i=1}^j A_i)$.

Conditional probability

- If A and B are events and P(B) > 0 then the **conditional** probability of A given B is $P(A|B) := P(A \cap B)/P(B)$.
- Let (Ω, \mathcal{F}, P) be a probability space and B an event with P(B) > 0. For each event $A \in \mathcal{F}$, define $P_B(A) := P(A|B)$. Then $(\Omega, \mathcal{F}, P_B)$ is a probability space.
- Bayes' rule: P(B|A) = P(A|B)P(B)/P(A) if P(A), P(B) > 0.
- Law of total probability: Let B_1,\ldots,B_n form a partition of Ω meaning that they are mutually exclusive and $\Omega=\cup_{i=1}^n B_i$. If for each $i,\ P(B_i)>0$, then for any event A

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i).$$

Independence and conditional independence of events

• Events A_1, \ldots, A_n are independent if for all $\mathcal{I} \subseteq \{1, \ldots, n\}$,

$$P(\cap_{i\in\mathcal{I}}A_i)=\prod_{i\in\mathcal{I}}P(A_i),$$

and we write $\perp \!\!\! \perp (A_1, \ldots, A_n)$. This requires a total of $2^n - n - 1$ equations to hold (for all the n + 1 subsets \mathcal{I} of size 0 or 1, the equations are trivially satisfied).

Note: If $A \perp \!\!\! \perp B$ and P(B) > 0 then P(A|B) = P(A).

• Events A_1, \ldots, A_n are **conditionally independent** given an event B with P(B) > 0, if for all $\mathcal{I} \subseteq \{1, \ldots, n\}$,

$$P_B(\cap_{i\in\mathcal{I}}A_i) = \prod_{i\in\mathcal{I}}P_B(A_i), \text{ i.e., } P(\cap_{i\in\mathcal{I}}A_i|B) = \prod_{i\in\mathcal{I}}P(A_i|B)$$

and we write $\perp \!\!\!\perp (A_1, \ldots, A_n) \mid B$.

Pairwise independence of events

• Events A_1, \ldots, A_n are pairwise independent if for all $i, j \in \{1, \ldots, n\}, \ i \neq j$,

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j),$$

and we write $A_i \perp \!\!\! \perp A_j$. This requires a total of n(n-1)/2 equations to hold.

• Events A_1, \ldots, A_n are conditionally pairwise independent given an event B with P(B) > 0, if for all $i, j \in \{1, \ldots, n\}$, $i \neq j$,

$$P(A_i \cap A_j|B) = P(A_i|B) \cdot P(A_j|B).$$

- Independence (respectively conditional independence) implies pairwise (resp. conditional pairwise) independence but the reverse assertions do not, in general, hold.
- Notation: $ABC \equiv A \cap B \cap C$

A key property of independent events

• Suppose \bot (A_1,A_2,\ldots,A_n) . Let $n=n_1+n_2+\ldots+n_k$ where $n_1,\ldots,n_k\in\mathbb{N}$. Suppose B_1 is defined by Boolean operations (intersections, complements, and unions) of the first n_1 events $A_1,\ldots,A_{n_1},\ B_2$ is defined by Boolean operations on the next n_2 events $A_{n_1+1},\ldots,A_{n_1+n_2}$, and so on. Then B_1,B_2,\ldots,B_k are independent.

One random variable (RV)

- Informally, a random variable is a function mapping outcomes to real numbers.
- Formally, let (Ω, \mathcal{F}, P) be a probability space. A random variable X is function from Ω to $\mathbb R$ such that for all $x \in \mathbb R$, the set of outcomes $X^{-1}((-\infty,x]) := \{\omega : X(\omega) \leq x\}$ is a valid event, i.e., $X^{-1}((-\infty,x]) \in \mathcal{F}$.
- Cumulative Distribution Function (CDF) of random variable X:

$$\forall x \in \mathbb{R}, \quad F_X(x) := P(\{\omega : X(\omega) \le x\}) = P(X \le x).$$

- Properties of CDF:
 - F.1 F is nondecreasing.
 - F.2 $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$.
 - F.3 F is right continuous: $\lim_{x\downarrow a} F(x) = F(a)$.
- For a < b, $F_X(b) F_X(a) = P(a < X \le b)$.

Discrete random variable

- A random variable X is discrete (or simple) if there is a countable subset $\{x_1, x_2, \ldots\}$ of real numbers s.t. $P(X \in \{x_i : i \in \mathbb{N}\}) = 1$.
- The **probability mass function** (pmf) of a discrete RV X, denoted $p_X(x)$, is defined for $x \in \mathbb{R}$ as $p_X(x) := P(X = x)$.
- If X has only finitely many mass points in any finite interval, then ${\cal F}_X$ is a piecewise constant function.
- If X is discrete then $\forall x \in \mathbb{R}$, $F_X(x) = \sum_{y:y \le x} p_X(y)$.
- **Example 3** A Geometric random variable with parameter $q \in (0,1]$, denoted $\operatorname{Geom}(q)$, has pmf $p_X(i) = q(1-q)^{i-1}, i \in \mathbb{N}$. This models the number of independent coin flips until the first heads appears with $P(\operatorname{Heads}) = q$.

Continuous random variable

 A random variable X is called continuous if its CDF can be expressed as the integral of a nonnegative function:

$$F_X(x) = \int_{-\infty}^x f_X(y) dy.$$

• f_X is called the **probability density function** (pdf) of X and if f_X is continuous at x,

$$\frac{d}{dx}F_X(x) = f_X(x)$$

• For any subset A of \mathbb{R} ,

$$P(X \in A) = \int_A f_X(x) dx.$$

• Example 4 A standard Gaussian (or Normal) random variable, denoted $\mathcal{N}(0,1)$, has the pdf $f_X(x)=\frac{1}{\sqrt{2\pi}}\exp\{-x^2/2\}$.

Additional remarks on discrete and continuous RVs

- The **probability distribution** of X (or induced by X), denoted P_X , is defined as $P_X(A) := P(X \in A)$ where A is a subset of \mathbb{R} .
- A discrete random variable X may be viewed as having a generalized pdf made up of Diracs (impulse functions):

$$f_X(x) = \sum_{y: p_X(y) > 0} p_X(y)\delta(x - y)$$

 \bullet A random variable which is neither discrete nor continuous is called mixed. Example, a random variable X with pdf

$$f_X(x) = 0.2\delta(x-3) + 0.8\mathcal{N}(0,1)(x).$$

Function of a random variable

- Let X be an RV on a probability space (Ω, \mathcal{F}, P) . Then X is a function from Ω to \mathbb{R} .
- ullet Suppose g is a function from $\mathbb R$ to $\mathbb R$ such that

$$g^{-1}((-\infty, y]) = \{x : g(x) \le y\}$$

is an event for all y.

- Then $Y(\omega)=g(X(\omega))$ is a function from Ω to $\mathbb R$ and therefore an RV.
- The CDF of Y = g(X) is given by

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in g^{-1}((-\infty, y])).$$

Function of a random variable (cont.)

Example 5 Let U be a continuous RV with pdf $f_U(u) = 1_{[0,1]}(u)$. This RV is uniformly distributed over [0,1] and is denoted $\mathsf{Unif}(0,1)$. It's CDF is given by

$$F_U(u) = \int_{-\infty}^u 1_{[0,1]}(x) dx = \begin{cases} 0 & u < 0 \\ u & u \in [0,1) \\ 1 & u \ge 1 \end{cases}$$

Let X = g(U) with $g(u) = u^2$. Then

$$F_X(x) = P(X \le x) = P(g(U) \le x) = P(U^2 \le x)$$

$$= P(U \le \sqrt{x}) \text{ since } U \ge 0$$

$$= F_U(\sqrt{x})$$

$$= \begin{cases} 0 & x < 0 \\ \sqrt{x} & x \in [0, 1) \\ 1 & x \ge 1 \end{cases}$$

Differentiate to get $f_X(x) = \frac{1}{2\sqrt{x}} \mathbf{1}_{(0,1]}(x)$.

Function of a random variable (cont.)

- If
 - (i) X is continuous,
 - (ii) g has a continuous derivative g' (which is therefore bounded),
 - (iii) the inverse image set $g^{-1}(y):=\{x:g(x)=y\}$ is **countable** for all y in the range of g and
 - (iv) $\inf_{x \neq \tilde{x} \in g^{-1}(y)} |x \tilde{x}| > 0$,

then Y = g(X) is continuous with pdf

$$f_Y(y) = \sum_{x:g(x)=y} \frac{f_X(x)}{|g'(x)|}.$$

• Intuition: Conservation of probability: If $g^{-1}(y) = \{x_1, x_2, \ldots\}$ then for all sufficiently small Δy

$$f_Y(y)\Delta y \approx P(Y \in (y - \Delta y, y + \Delta y))$$

= $P(X \in \cup_i (x_i - \Delta x_i, x_i + \Delta x_i))$
 $\approx \sum_i f_X(x_i)\Delta x_i$

where the ratios $\Delta y/\Delta x_i \to |g'(x_i)|$ as $\Delta y, \Delta x_i \to 0$.

Application: generating RVs with a specified CDF

- Given: Target CDF F and $U \sim \mathsf{Unif}(0,1)$.
- Find: function g so that X := g(U) has specified CDF F.
- Solution: Define $g(u) := \min\{x : F(x) \ge u\}$.
- Intuition: If F is strictly increasing and continuous, it is invertible and $g(u) = F^{-1}(u)$. Then

$$F_X(x) = P(X \le x) = P(F^{-1}(U) \le x)$$

= $P(F(F^{-1}(U)) \le F(x)) = P(U \le F(x))$
= $F(x)$.

- F is not invertible at u if its graph is either flat at u or u is within a jump. In either case the solution works (verify!).
- This technique is used in computer simulations of random systems.

Expectation of a random variable

• Expectation, expected-value, mean, or mean value of a random variable X, denoted E[X] or μ_X , on a probability space (Ω, \mathcal{F}, P) with CDF F_X and probability distribution P_X is defined as:

$$\begin{split} E[X] &= \int_{\Omega} X(\omega) P(d\omega) \\ &= \int_{-\infty}^{\infty} x P_X(dx) \\ &= \int_{-\infty}^{\infty} x dF_X(x) \\ &= \sum_{x>0} x p_X(x) + \sum_{x<0} x p_X(x) \\ & \text{(for X discrete, at least one sum finite)} \\ &= \int_{x>0} x f_X(x) dx + \int_{x<0} x f_X(x) dx \\ & \text{(for X continuous, at least one integral finite)} \end{split}$$

Properties of expectation

- **1 Linearity:** If E[X], E[Y], and E[X] + E[Y] are well defined, then E[X + Y] is well defined and E[X + Y] = E[X] + E[Y]. Also, for all $a \in \mathbb{R}$, E[aX] = aE[X].
- **Q Order preservation:** If $P(X \ge Y) = 1$ and E[Y] is well defined then E[X] is well defined and $E[X] \ge E[Y]$.
- 3 Expectation via CDF:

$$E[X] = \int_0^\infty (1 - F_X(x)) dx - \int_{-\infty}^0 F_X(x) dx$$

whenever at least one of the two integrals is finite.

4 If Y = g(X),

$$\begin{split} E[Y] &= E[g(X)] &= \int_{\Omega} g(X(\omega)) P(d\omega) = \int_{-\infty}^{\infty} g(x) dF_X(x) \\ &= \int_{-\infty}^{\infty} g(x) f_X(x) dx \quad \big(X \text{ continuous} \big) \\ &= \sum_x g(x) p_X(x) \quad \big(X \text{ discrete} \big). \end{split}$$

Quantities defined via expectation

- $E[1_A(X)] = P(X \in A)$ for any subset A.
- Variance: If $\mu_X:=E[X]$ is finite, the variance of X, denoted ${\rm var}(X)$, is defined by

$$\begin{aligned} \operatorname{var}(X) &:= & E[(X - E[X])^2] \\ &= & E[X^2 - 2X\mu_X + \mu_X^2] \\ &= & E[X^2] - (E[X])^2 \quad \text{(linearity of expectation)}. \end{aligned}$$

- Standard Deviation: The standard deviation of X, denoted σ_X , is defined by $\sigma_X = +\sqrt{\text{var}(X)}$.
- Markov inequality: If Y is a nonnegative RV then for any c>0,

$$P(Y \ge c) \le \frac{E[Y]}{c}$$
.

Proof: $c1_{[c,\infty)}(Y) \leq Y$ and take expectations on both sides.

• Chebychev inequality: If X has finite mean μ_X and variance σ_X^2 then for any d>0,

$$P(|X - \mu_X| \ge d) \le \frac{\sigma_X^2}{d^2}.$$

Characteristic function

• The characteristic function of an RV X, denoted $\Phi_X(v)$ is defined by

$$\Phi_X(v) = E[e^{jvX}], \quad v \in \mathbb{R}, \ j = \sqrt{-1}.$$

If X has pdf f_X then

$$\Phi_X(v) = \int_{-\infty}^{\infty} \exp(jvx) f_X(x) dx,$$

which is 2π times the inverse Fourier transform (in radians) of f_X .

- Two RVs have the same probability distribution if, and only if (iff) they have the same characteristic function.
- If $E[X^k]$, the k-th moment of X, exists and is finite for an integer $k \geq 1$, then the derivatives of Φ_X up to order k exist and are continuous, and

$$\Phi_X^{(k)}(0) = \frac{d^k}{dv^k} \Phi(v) \Big|_{v=0} = j^k E[X^k].$$

Frequently used distributions

- Discrete RVs: Bernoulli, Binomial, Geometric, Poisson, etc.
- Continous RVs: Uniform, Exponential, Rayleigh, Gamma, Gaussian, etc.
- Gaussian (Normal): with mean μ and variance σ^2 is denoted by $\mathcal{N}(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma \geq 0$. Characteristic function:

$$\Phi_X(v) = \exp\left(jv\mu - \frac{1}{2}v^2\sigma^2\right).$$

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) & \sigma > 0, X \text{ continuous} \\ \delta(x-\mu) & \sigma = 0, X \text{ discrete.} \end{cases}$$

The so called Q-function is defined as the **tail probability**:

$$Q(x) := \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = 1 - F_{X}(x), \quad X \sim \mathcal{N}(0, 1).$$

Jointly distributed random variables

• Let X_1, X_2, \dots, X_m be RVs on the same probability space (Ω, \mathcal{F}, P) . The **joint CDF** is a function on \mathbb{R}^m defined by

$$F_{X_1 X_2 \dots X_m}(x_1, x_2, \dots, x_m) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_m \le x_m)$$

• Notation: comma $\equiv \cap$, i.e., logical AND. $P(X_1 \leq x_1, X_2 \leq x_2) = P(\{X_1 \leq x_1\} \cap \{X_2 \leq x_2\}).$

$$F_{X_1X_2}(x_1, +\infty) = \lim_{x_2 \to \infty} F_{X_1X_2}(x_1, x_2) = F_{X_1}(x_1),$$

where $F_{X_1}(x_1)$ is the marginal CDF of X_1 .

$$F_{X_1X_2}(x_1, -\infty) := \lim_{x_2 \to -\infty} F_{X_1X_2}(x_1, x_2) = 0.$$

Jointly distributed random variables (cont.)

• The RVs are **jointly continuous** if there exists a function $f_{X_1X_2...X_m}$ called the **joint pdf** such that

$$F_{X_1...X_m}(x_1,...,x_m) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_m} f_{X_1...X_m}(u_1,...,u_m) du_1 \dots du_m.$$

• If X_1, X_2 are jointly continuous, then

$$F_{X_1}(x_1) = F_{X_1X_2}(x_1, +\infty) = \int_{-\infty}^{x_1} \left[\int_{-\infty}^{\infty} f_{X_1X_2}(u_1, u_2) du_2 \right] du_1$$
$$= \int_{-\infty}^{x_1} f_{X_1}(u_1) du_1.$$

- $f_{X_1}, f_{X_2}, \dots, f_{X_m}$ are called the **marginal pdfs** and can be obtained by integrating out other coordinates of the joint pdf.
- If $f_{X_1...X_m}$ is continuous at $(x_1, ..., x_m)$ then

$$\frac{\partial^m}{\partial x_1 \partial x_m} F_{X_1 \dots X_m}(x_1, \dots, x_m) = f_{X_1 \dots X_m}(x_1, \dots, x_m).$$

Jointly distributed random variables (cont.)

• If X_1,\dots,X_m are each discrete RVs, then they have a **joint pmf** $p_{X_1X_2\dots X_m}$ defined by

$$p_{X_1...X_m}(x_1,...,x_m) = P(\{X_1 = x_1\} \cap \{X_2 = x_2\} \cap ... \cap \{X_m = x_m\})$$
 or in short $P(X_1 = x_1,...,X_m = x_m)$,

ullet For any subset A of \mathbb{R}^m ,

$$P((X_1, ..., X_m) \in A) = \sum_{(u_1, ..., u_m) \in A} p_{X_1, ..., X_m}(u_1, ..., u_m)$$

• The **marginal pmf**s can be obtained by summing out other coordinates of the joint pmf, e.g.,

$$p_{X_1}(x_1) = \sum p_{X_1 X_2}(x_1, u_2)$$

• Joint characteristic function:

$$\Phi_{X_1...X_m}(v_1,\ldots,v_m) := E[e^{j(v_1X_1+\ldots+v_mX_m)}].$$

Independence via CDF, expectation, ch.fn., pmf, and pdf

- Random variables X_1, \ldots, X_m are independent, denoted by $\bot\!\!\!\!\bot (X_1, \ldots, X_m)$, if for **all** subsets B_1, \ldots, B_m of \mathbb{R} , the events $A_1 := \{X \in B_1\}, \ldots, A_m := \{X \in B_m\}$ are independent.
- \Leftrightarrow the joint CDF is separable, i.e., it factorizes into the product of all the marginal CDFs:

$$F_{X_1...X_m}(x_1,...,x_m) = F_{X_1}(x_1) \cdots F_{X_m}(x_m).$$

• \Leftrightarrow for all functions g_1, \ldots, g_m , from $\mathbb R$ to $\mathbb R$,

$$E[g_1(X_1)\cdots g_m(X_m)] = E[g_1(X_1)]\cdots E[g_1(X_m)].$$

• \Leftrightarrow the joint characteristic function is separable:

$$\Phi_{X_1, X_m}(v_1, \dots, v_m) = \Phi_{X_1}(v_1) \cdots \Phi_{X_m}(v_m).$$

• \Leftrightarrow (if X_1, \dots, X_m are each discrete):

$$p_{X_1} \quad \chi_{-}(x_1,\ldots,x_m) = p_{X_1}(x_1)\cdots p_{X_m}(x_m).$$

• \Leftrightarrow (if X_1, \ldots, X_m are jointly continuous):

$$f_{X_1...X_m}(x_1,...,x_m) = f_{X_1}(x_1) \cdots f_{X_m}(x_m).$$

Conditional densities

• Let X and Y be jointly continuous random variables with joint pdf $f_{XY}(x,y)$. For all y s.t. $f_Y(y)>0$ the conditional density of X given Y is defined by

$$f_{X|Y}(x|y) := \frac{f_{XY}(x,y)}{f_Y(y)}.$$

Note: If X, Y and jointly continuous and independent, then $f_{X|Y}(x|y) = f_X(x)$ for all $y: f_Y(y) > 0$.

- If y is fixed and $f_Y(y) > 0$, then as a function of x, $f_{X|Y}(x|y)$ is itself a pdf.
- If $f_Y(y) > 0$ and A is a subset,

$$P(X \in A|Y = y) := \int_A f_{X|Y}(x|y)dx.$$

Conditional expectation

• The expectation of the conditional pdf is called the conditional expectation (or conditional mean) of X given Y=y:

$$E[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx.$$

- g(y) := E[X|Y = y] is a number; a deterministic function of y.
- Substituting y=Y in g makes g(Y)=E[X|Y] a random variable. It is in fact a function of the random variable Y. (Note: a function of a random variable is a random variable).
- Discrete RVs: $E[\psi(X)|Y=y] = \sum_x \psi(x) p_{X|Y}(x|y)$.
- Continuous RVs: $E[\psi(X)|Y=y] = \int_{-\infty}^{\infty} \psi(x) f_{X|Y}(x|y) dx$.

Law of iterated expectations

• Law of iterated expectations, total expectation, tower rule, or smoothing rule: If g(Y) = E[X|Y], then

$$E[g(Y)] = E[E[X|Y]] = E[X].$$

The inner expectation E[X|Y] in a conditional expectation with respect to (w.r.t.) $f_{X|Y}$. The outer expectation in E[E[X|Y]] is w.r.t. f_Y .

• Similarly, if X, Y, Z have a joint pdf then

$$E[X|Z] = E[E[X|Y,Z]|Z]$$

where the inner expectation is w.r.t. $f_{X\mid YZ}$ and the outer w.r.t. $f_{Y\mid Z}$.

Conditional independence and Markov chain

• RVs X and Z are conditionally independent given RV Y if for all y with $p_Y(y) > 0$ (discrete RV) or $f_Y(y) > 0$ (continuous RV):

$$\begin{split} p_{XZ|Y}(x,z|y) &= p_{X|Y}(x|y)p_{Z|Y}(z|y) \quad \text{(discrete RVs)} \\ f_{XZ|Y}(x,z|y) &= f_{X|Y}(x|y)f_{Z|Y}(z|y) \quad \text{(continuous RVs)} \end{split}$$

and we say X - Y - Z is a Markov chain.

Note: $X - Y - Z \Leftrightarrow Z - Y - X$.

• Equivalently, X - Y - Z if

$$p_{XYZ}(x,y,z)p_Y(y) = p_{XY}(x,y)p_{ZY}(z,y) \qquad \text{(discrete RVs)}$$

$$f_{XYZ}(x,y,z) = f_{XY}(x,y)f_{ZY}(z,y) \qquad \text{(continuous RVs)}$$

• Equivalently, X-Y-Z if for all (x,y) with $p_{X,Y}(x,y)>0$ (discrete) or $f_{X,Y}(x,y)>0$ (continuous):

$$\begin{split} p_{Z|Y,X}(z|y,x) &= p_{Z|Y}(z|y) \quad \text{(discrete RVs)} \\ f_{Z|Y,X}(z|y,x) &= f_{Z|Y}(z|y) \quad \text{(continuous RVs)} \end{split}$$

Cross moments of 2 random variables

- Correlation: $R_{XY} := E[XY]$.
- Covariance:

$$\operatorname{Cov}(X,Y) := E[(X-E[X])(Y-E[Y])] = R_{XY} - \mu_X \mu_Y$$
. Also denoted by σ_{XY} , C_{XY} , K_{XY} , and Σ_{XY} in the literature.

- Correlation coefficient: $\rho_{XY} := \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{var}(X)\mathsf{var}(Y)}}$, $\mathsf{var}(X), \mathsf{var}(Y) > 0$.
- Cauchy-Schwarz inequality:

$$|E[XY]| \le \sqrt{E[X^2]E[Y^2]}.$$

If $E[Y^2] > 0$ then equality holds, iff P(X = cY) = 1 for some constant c.

- $|\rho_{XY}| \leq 1$ (follows from Cauchy-Schwarz).
- L^2 Triangle inequality: (follows from Cauchy-Schwarz)

$$\sqrt{E[(X+Y)^2]} \le \sqrt{E[X^2]} + \sqrt{E[Y^2]}.$$

Cross moments of 2 random variables (cont.)

- Orthogonal: X and Y are called orthogonal if their correlation $R_{XY} = E[XY] = 0$ and we write $X \perp Y$.
- Uncorrelated: X and Y are called uncorrelated if their covariance $\operatorname{Cov}(X,Y)=0$.
- $X \perp \!\!\! \perp Y \Rightarrow \mathsf{Cov}(X,Y) = 0$ but in general $X \perp \!\!\! \perp Y \not \in \mathsf{Cov}(X,Y) = 0$.
- Properties of Cov:

 - **2** Cov(X,Y) = E[X(Y E[Y])] = E[(X E[X])Y]

 - 4 If X_1,\ldots,X_m are (pairwise) uncorrelated each with mean μ and variance σ^2 and $S_m:=\sum_{i=1}^m X_i$ then $E[S_m]=m\mu$, $\operatorname{Cov}(S_m)=m\sigma^2$, and $\frac{1}{\sqrt{m\sigma^2}}(S_m-m\mu)$ has zero mean and unit variance.

Random vectors

- A random vector X of dimension m is an **ordered tuple** of m random variables on the same probability space arranged as an $m \times 1$ column vector $(X_1, \ldots, X_m)^T$, where T denotes transpose.
- The CDF of X, is the joint CDF of the m component RVs: $F_X(x) = P(X_1 \le x_1, \dots, X_m \le x_m), x = (x_1, \dots, x_m)^T$.
- The expectation or mean of X is the $m \times 1$ vector $\mu_X := E[X] = (E[X_1], \dots, E[X_m])^T$.
- Let $X=(X_1,\ldots,X_m)^T$ and $Y=(Y_1,\ldots,Y_n)^T$ be two random vectors, of dimensions m and n respectively, on the same probability space. Their joint CDF is $F_{XY}(x,y)=P(X_1\leq x_1,\ldots,X_m\leq x_m,Y_1\leq y_1,\ldots,Y_n\leq y_n),$ $x=(x_1,\ldots,x_m)^T,\ y=(y_1,\ldots,y_n)^T.$ The marginal CDFs are $F_X(x)$ and $F_Y(y)$.
- If $X_1,\ldots,X_m,Y_1,\ldots,Y_n$ are jointly continuous, the joint pdf of X,Y is denoted by $f_{XY}(x,y)$, the marginals by $f_X(x)$ and $f_Y(y)$, and for $f_Y(y)>0$, the conditional pdf of X given Y by $f_{X|Y}(x|y)=f_{XY}(x,y)/f_Y(y)$.

Transformation of random vectors

- Let $X \in \mathbb{R}^n$ be continuous with pdf $f_X(x)$. Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one mapping. Let $y = g(x) = (g_1(x), \dots, g_n(x))^T$ where for $i = 1, \dots, n, g_i : \mathbb{R}^n \to \mathbb{R}$.
- If the $n \times n$ Jacobian matrix of partial derivatives of g:

$$\frac{\partial y}{\partial x}(x) = \frac{\partial g}{\partial x}(x) = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(x) & \cdots & \frac{\partial g_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1}(x) & \cdots & \frac{\partial g_n}{\partial x_n}(x) \end{pmatrix}$$

exists, is continuous at x, and nonsingular for all x, then the RV Y := g(X) is continuous and for all y in the range of g,

$$f_Y(y) = \frac{f_X(x)}{\left|\frac{\partial y}{\partial x}(x)\right|} = f_X(x) \left|\frac{\partial x}{\partial y}(y)\right|,$$

where $x=g^{-1}(y), \ |\cdot|:=|\det(\cdot)|$, and $\frac{\partial x}{\partial y}(y)=\left(\frac{\partial y}{\partial x}(x)\right)^{-1}$ is the inverse of the Jacobian of matrix of g.

Auto and cross correlation/covariance matrices

 $X \in \mathbb{R}^m, Y \in \mathbb{R}^n$ two random vectors on same probability space.

- Cross correlation matrix: $R_{XY} := E[XY^T]$ is an $m \times n$ matrix of correlations whose ij-th entry is $E[X_iY_j] = R_{X_iY_j}$.
- Cross covariance matrix: Denoted by Cov(X,Y), C_{XY} , K_{XY} , and Σ_{XY} . $Cov(X,Y) := E[(X-E[X])(Y-E[Y])^T]$ is an $m \times n$ matrix of covariances whose ij-th entry is $Cov(X_i,Y_i)$.
- $Cov(X,Y) = R_{XY} E[X](E[Y])^T$. Thus if E[X] or E[Y] is zero, $Cov(X,Y) = R_{XY}$.
- (Auto) correlation matrix: $R_{XX} = E[XX^T]$ the correlation matrix of X with itself. Often the prefix 'auto' and suffix 'matrix' are omitted and R_{XX} is shortened to R_X .
- (Auto) covariance matrix: Cov(X,X) often shortened to Cov(X) with prefix 'auto' and suffix 'matrix' omitted.
- **Note:** (auto) correlation and covariance matrices are square but cross correlation and cross covariance matrices need not be.

Conditional mean, correlation, covariance

Let $X \in \mathbb{R}^m, Y \in \mathbb{R}^n, Z \in \mathbb{R}^k$ be three jointly continuous random vectors on the same probability space.

- Conditional mean: $\mu_{X|z}=E[X|Z=z]:=\int x f_{X|Z}(x|z)dx$. $\mu_{Y|z}$ is similarly defined.
- Conditional cross correlation:

$$R_{XY|z} := E[XY^T|Z=z] = \int xy^T f_{XY|Z}(x,y|z) dx dy.$$

- Conditional cross covariance:
 - $\operatorname{Cov}(X,Y|z) := \int (x \mu_{X|z})(y \mu_{Y|z})^T f_{XY|Z}(x,y|z) dxdy$. Also denoted by $C_{XY|z}$, $K_{XY|z}$, and $\Sigma_{XY|z}$.
- Conditional (auto) correlation:

$$R_{X|z}:=E[XX^T|Z=z]=\int xx^Tf_{X|Z}(x|z)dx.$$
 Similarly for $R_{Y|z}.$

- Conditional (auto) covariance:
 - $\operatorname{Cov}(X,X|z) := \int (x \mu_{X|z})(x \mu_{X|z})^T f_{X|Z}(x|z) dx$. Also denoted by $\operatorname{Cov}(X|z)$, $C_{X|z}$, $K_{X|z}$, and $\Sigma_{X|z}$.
- **Note:** Can define above quantities even when X,Y,Z are not jointly continuous.

Orthogonal, uncorrelated, independent random vectors

- Orthogonal: X and Y are called orthogonal if their cross correlation matrix $R_{XY} = E[XY^T] = 0$ and we write $X \perp Y$. Note: there are no conditions on R_X and R_Y .
- Uncorrelated: X and Y are called uncorrelated if their cross covariance matrix $\operatorname{Cov}(X,Y)=0$. Note-1: there are no conditions on $\operatorname{Cov}(X)$ and $\operatorname{Cov}(Y)$. Note-2: The components of a random vector X are uncorrelated or decorrelated if $\operatorname{Cov}(X)$ is a diagonal matrix.
- Independent: X and Y are independent if $F_{XY}(x,y) = F_X(x)F_Y(y)$ (or corresponding conditions for pdfs/pmfs).
 - **Note:** the components of X (respectively Y) need not be independent.
- $X \perp \!\!\! \perp Y \Rightarrow \mathsf{Cov}(X,Y) = 0$ but in general $X \perp \!\!\! \perp Y \not \Leftarrow \mathsf{Cov}(X,Y) = 0$.

Properties of auto/cross correlation/covariance matrices

For A, C nonrandom matrices and b, d nonrandom vectors,

1
$$E[AX + b] = AE[X] + b$$

$$\mathbf{3} \ E[(AX)(CY)^T] = AE[XY^T]C^T$$

$$\mathbf{G} \operatorname{Cov}(AX + b) = A\operatorname{Cov}(X)A^{T}$$

$$\operatorname{cov}(\mathbf{v}, \mathbf{v}, \mathbf{v}) + \operatorname{cov}(\mathbf{v}, \mathbf{v}) + \operatorname{cov}(\mathbf{v}, \mathbf{v})$$

$$\operatorname{Cov}(W + X, Y + Z) = \operatorname{Cov}(W, Y) + \operatorname{Cov}(W, Z)$$

$$+\mathsf{Cov}(X,Y)+\mathsf{Cov}(X,Z).$$

Properties of auto/cross correlation/covariance matrices

- $\mathsf{Cov}(X,Y) = (\mathsf{Cov}(Y,X))^T \colon ij$ -th element of $\mathsf{Cov}(X,Y)$ = $\mathsf{Cov}(X_i,Y_j) = \mathsf{Cov}(Y_j,X_i) = ji$ -th element of $\mathsf{Cov}(Y,X)$.
- Auto correlation/covariance matrices are symmetric: for all i, j, $Cov(X_i, X_j) = Cov(X_j, X_i)$. Therefore $Cov(X) = (Cov(X))^T$.
- The diagonal elements of auto correlation/covariance matrices are nonnegative since for all i, $Cov(X_i, X_i) = var(X_i) \ge 0$.
- For all i, j, $|\mathsf{Cov}(X_i, X_j)| \leq \sqrt{\mathsf{Cov}(X_i, X_i)\mathsf{Cov}(X_j, X_j)}$ (Cauchy-Schwarz inequality).

Linear Algebra Facts

Let A be an $n \times n$ real square matrix.

- $u \neq 0$ is an **eigenvector** of A with **eigenvalue** λ if $Au = \lambda u$.
- The eigenvalues of an $n \times n$ matrix A are the roots of its degree-n characteristic polynomial: $p(\lambda) := \det(\lambda I A) = 0$.
- All the eigenvalues of a real symmetric matrix are real-valued.
- For any real symmetric matrix there is an orthonormal basis made up of its eigenvectors (which are real-valued).
- Real Spectral Theorem (eigendecomposition): Every $n \times n$ real symmetric matrix K can be decomposed as

$$K = U\Lambda U^T = \begin{pmatrix} u_1 & \cdots & u_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} u_1^T \\ \vdots \\ u_n^T \end{pmatrix} = \sum_{i=1}^n \lambda_i u_i u_i^T$$

where U is an $n \times n$ real **orthonormal** matrix, i.e., $UU^T = U^TU$ = I_n , whose columns are orthonormal eigenvectors of K, i.e., $\forall i$, $Ku_i = \lambda_i u_i$, and Λ is an $n \times n$ real diagonal matrix of eigenvalues.

Linear Algebra Facts (cont.)

- The matrix square root of an $n \times n$ real symmetric matrix K with eigendecomposition $U\Lambda U^T$ is given by $\sqrt{K} = U\sqrt{\Lambda}U^T$ where $\sqrt{\Lambda} := \mathrm{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$.
- An $n \times n$ real matrix K is called positive semidefinite (or nonnegative definite) if $\forall a \in \mathbb{R}^n$, $a^T K a \geq 0$. It is called **positive** definite if for all **nonzero** $a \in \mathbb{R}^n$, $a^T K a > 0$.
- A real symmetric matrix is positive semidefinite (resp. positive definite) iff all its eigenvalues are nonnegative (resp. strictly positive).
- Sylvester's test: A real symmetric matrix is positive semidefinite (resp. positive definite) iff all its leading principal minors are nonnegative (resp. strictly positive). The j-th leading principal minor of a matrix K is the determinant of its upper-left $j \times j$ sub-matrix.

Characterization of auto correlation/covariance matrices

- Result: Any $m \times n$ matrix A is a valid cross covariance matrix: Proof: Let $Y = (Y_1, \dots, Y_n)^T$ where Y_1, \dots, Y_n are Independent and Identically Distributed (IID) with zero mean and unit variance. Then $Cov(Y) = I_n$ the $n \times n$ identity matrix. If X := AY then $Cov(X, Y) = ACov(Y) = AI_n = A$.
- Result: Auto correlation/covariance matrices are real, symmetric, and positive semidefinite. Conversely, if K is a real, symmetric, positive semidefinite matrix, then K is the correlation/covariance matrix of some zero-mean random vector X.

Proof: Auto correlation/covariance matrices are clearly real and symmetric by definition. They are also positive semidefinite because $\forall a \in \mathbb{R}^n, \ a^T E[XX^T]a = E[(a^TX)^2] \geq 0$. Conversely, if K is real, symmetric, and positive semidefinite, it has an eigendecomposition $K = U\Lambda U^T$. If Y is any zero-mean random vector with $R_Y = I_n$ and we set $X := U\sqrt{\Lambda}Y$ then $R_X = \operatorname{Cov}(X) = U\sqrt{\Lambda}R_Y\sqrt{\Lambda}U^T = K$.

Decorrelating linear transformation

- Let X be a random vector with $E[X] = \mu_X$ and Cov(X) = K.
- Let $K = U\Lambda U^T$ be the eigendecomposition of K.
- Define a new random vector Y via the following "change of coordinates": $Y = U^T(X \mu_X)$.

Note-1: Subtracting the mean shifts the origin to the mean. **Note-2:** Multiplying by U^T is like rotating the coordinate system: If $b_1 = U^T a_1$ and $b_2 = U^T a_2$ then since $UU^T = I$ (U is an orthonormal matrix), $b_1^T b_2 = a_1^T a_2$, i.e., U^T preserves angles and lengths.

- Then E[Y]=0 and $R_Y=\operatorname{Cov}(Y)=U^TKU=\Lambda$ a diagonal matrix.
- The components of Y are uncorrelated!
- U^T called the (Kosambi) Karhunen-Loeve transform (KLT).
- Application: Principal Component Analysis (PCA) in statistical signal processing and machine learning.

Covariance singularity and determistic linear dependency

- A covariance matrix is nonsingular/invertible iff it is positive definite.
- $X=(X_1,\ldots,X_n)^T$ has a **deterministic linear dependency** if $a_01+\sum_{i=1}^n a_iX_i=0$ with probability one for some constants a_0,a_1,\ldots,a_n , not all zero. Compactly, $a_01+a^TX=0$ where $a=(a_1,\ldots,a_n)^T$.
- \bullet $\mbox{\bf Result: } X$ has a deterministic linear dependency iff $\mbox{\rm Cov}(X)$ is singular.

Proof: Exercise.

• **Example 6** The covariance matrix of a 2-dimensional random vector $W = (X, Y)^T$ is of the form:

$$\Sigma_W = \begin{pmatrix} \sigma_X^2 & \sigma_X \sigma_Y \rho_{XY} \\ \sigma_X \sigma_Y \rho_{XY} & \sigma_Y^2 \end{pmatrix}$$

where ρ_{XY} is the correlation coefficient of X and Y. If $\sigma_X, \sigma_Y > 0$, Σ_W is singular iff $\det(\Sigma_W) = (1 - \rho_{XY}^2)\sigma_X^2\sigma_Y^2 = 0 \Leftrightarrow \rho_{XY} = \pm 1 \Leftrightarrow X = aY + b, \ a \neq 0, b \text{ const.}$

Covariance singularity and determistic linear dependency

 Caution: If the covariance matrix of a random vector is nonsingular, it is still possible that there is a deterministic nonlinear dependency among the component random variables as the following example shows:

Example 7 Let
$$X_1 \sim \mathcal{N}(0,1)$$
 and $X_2 = X_1^2$. Then since $E[X_1] = E[X_1^3] = 0$, $E[X_2] = E[X_1^2] = 1$, and $E[X_2^2] = E[X_1^4] = 3$,

$$\mathsf{Cov}((X_1, X_2)^T) = \begin{pmatrix} 1 & 0 \\ 0 & 3 - 1 \end{pmatrix}$$

which is nonsingular even though there is a deterministic **nonlinear** dependency between X_1 and X_2 .

• A collection of random variables $(X_i:i\in\mathcal{I})$ is **jointly** Gaussian \Leftrightarrow every finite linear combination is a scalar Gaussian random variable:

For all
$$n$$
, all $i_1, i_2, \ldots, i_n \in \mathcal{I}$, and all $a = (a_1, \ldots, a_n)^T \in \mathbb{R}^n$, $\sum_{j=1}^n a_j X_{i_j} \sim \mathcal{N}(\mu, \sigma^2)$ where $\mu = \sum_{j=1}^n a_j E[X_{i_j}]$ and $\sigma^2 = a^T \mathsf{Cov}((X_{i_1}, \ldots, X_{i_n})^T)a$.

- A collection of random vectors is jointly Gaussian
 ⇔ the collection of all components of all vectors is jointly Gaussian.
- If $(X_i : i \in \mathcal{I})$ is jointly Gaussian then so is:
 - **1** $(X_j: j \in \mathcal{J})$ for all $\mathcal{J} \subseteq \mathcal{I}$. In particular, each X_i is Gaussian.
 - 2 The collection of all finite linear combinations of X_i 's.
 - **3** The collection of all limits of sequences of X_i 's.
- If each X_i is Gaussian and $(X_i:i\in\mathcal{I})$ are independent then they are jointly Gaussian. Without the independence condition the result may not be true.

• $X = (X_1, \dots, X_n)^T$ Gaussian \Leftrightarrow

$$\Phi_X(v) = E[e^{jv^T X}] = e^{jv^T E[X] - \frac{1}{2}v^T \mathsf{Cov}(X)v}.$$

Thus the distribution of a collection of jointly Gaussian random variables is completely specified by their means and covariances.

- We say that X is a $\mathcal{N}(\mu, K)$ random vector if X is a Gaussian random vector with mean vector μ and covariance matrix K.
- If $X = (X_1, \dots, X_n)^T$ is Gaussian then

$$\mathsf{Cov}(X)$$
 diagonal $\Leftrightarrow \perp \!\!\! \perp (X_1,\ldots,X_n).$

• If X, Y are jointly Gaussian random vectors then

$$X \perp \!\!\! \perp Y \Leftrightarrow \mathsf{Cov}(X,Y) = 0.$$

• If $X = (X_1, \dots, X_n)^T$ is Gaussian and Cov(X) > 0 (non-singular), then X is continuous with pdf

$$f_X(x) = \frac{\exp\left\{-\frac{1}{2}\left(x - E[X]\right)^T \left(\mathsf{Cov}(X)\right)^{-1} \left(x - E[X]\right)\right\}}{\sqrt{(2\pi)^n \det(\mathsf{Cov}(X))}}.$$

• The contours of constant pdf value $\{x \in \mathbb{R}^n : f_X(x) = \text{constant}\}$ are given by the equation:

$$(x-\mu_X)^T \Sigma_X^{-1} (x-\mu_X) = \text{constant}$$

which are concentric ellipsoids centered at μ_X with principal axes given by the eigenvectors of Cov(X).

- Σ_X is a diagonal matrix iff the principal axes are aligened with the coordinate axes and then the components are all independent.
- $Cov(X) = \sigma^2 I_n$ iff the contours are concentric spheres. Then X is called a **spherical/white Gaussian** random vector.

If $X\in\mathbb{R}^m$ and $Y\in\mathbb{R}^n$ are jointly Gaussian random vectors then X|Y=y is also a Gaussian random vector with

• (Conditional) mean vector $\mu_{X|y}$:

$$\mu_{X|y} = E[X|Y = y] = E[X] + Cov(X,Y)(Cov(Y))^{-1}(y - E[Y])$$

= $\mu_X + \Sigma_{XY}\Sigma_Y^{-1}(y - \mu_Y).$

• (Conditional) covariance matrix $\Sigma_{X|y}$:

$$\begin{split} \Sigma_{X|y} &= \operatorname{Cov}(X - \mu_{X|y}|Y = y) \\ &= \operatorname{Cov}(X) - \operatorname{Cov}(X,Y)(\operatorname{Cov}(Y))^{-1}\operatorname{Cov}(Y,X) \\ &= \Sigma_X - \Sigma_{XY}\Sigma_Y^{-1}\Sigma_{YX}. \end{split}$$

Note: $\mu_{X|y}$ depends on the value of y but $\Sigma_{X|y}$ does not.

Individually Gaussian ⇒ jointly Gaussian

- If X is a Gaussian random vector and $\mathrm{Cov}(X)>0$ (positive definite) then its pdf, being of exponential form, cannot be zero anywhere.
- Let $X = (X_1, X_2)^T$ with joint pdf:

$$f_X(x) = f_{X_1 X_2}(x_1, x_2) = \begin{cases} 0 & x_1 \cdot x_2 < 0 \\ \frac{2}{2\pi} e^{-\frac{1}{2}(x_1^2 + x_2^2)} & \text{otherwise.} \end{cases}$$

- $f_X(x)=0$ in quadrants 2, 4 of the x_1 - x_2 plane and $f_X(x)=2\mathcal{N}(0,I_2)$ in quadrants 1, 3. It is as if the probability mass of $\mathcal{N}(0,I_2)$ from the second quadrant has been "folded" into the first and all the mass from the fourth into the third.
- From this and a little thought it follows that the marginal pdfs of both X_1 and X_2 are $\mathcal{N}(0,1)$.
- Since the joint pdf is symmetric about the origin: $f_X(x) = f_X(-x)$, $Cov(X_1, X_2) = 0$. Thus $Cov(X) = I_2$.
- Since Cov(X)>0 and the pdf is zero in quadrants 2, 4, X_1,X_2 cannot be jointly Gaussian, yet each of them are individually!

Laws of large numbers

Weak Law of Large Numbers (WLLN):

- Let X_1, X_2, \ldots be a sequence of IID random variables with finite mean $\mu = E[X_i] < \infty$.
- Let $\widehat{\mu}_n = \frac{1}{n} \Big(X_1 + \ldots + X_n \Big)$ denote the sample mean.
- For any $\epsilon > 0$, the WLLN implies that

$$\lim_{n \to \infty} P(|\widehat{\mu}_n - \mu| \ge \epsilon) = 0.$$

 That is, the sample mean converges (in probability) to the true mean.

Laws of large numbers

Central Limit Theorem (CLT):

- Let X_1, X_2, \ldots be a sequence of IID random variables with finite mean μ and finite variance σ^2 .
- Let

$$Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{(X_i - \mu)}{\sigma}$$

denote the normalized sum which has zero mean and unit variance for each n.

• The CLT implies that for all $z \in (-\infty, \infty)$,

$$\lim_{n \to \infty} P(Z_n \le z) = \lim_{n \to \infty} F_{Z_n}(z) = 1 - Q(z)$$

where 1 - Q(z) is the CDF of a $\mathcal{N}(0,1)$ RV.

 That is, the normalized sum converges (in distribution) to a standard Gaussian (normal) RV.

Confidence intervals

- Let X_1, X_2, \ldots be a sequence of IID random variables with finite mean μ and finite variance σ^2 .
- Let $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $\widehat{\sigma^2}_n = \frac{1}{n} \sum_{i=1}^n \left(X_i \widehat{\mu}_n \right)^2$ denote the empirical estimates of the mean and variance respectively.
- $\bullet \ \ \text{Then, } E\Big[\widehat{\mu}_n\Big] = \mu, \quad \ \text{var}\Big(\widehat{\mu}_n\Big) = \frac{1}{n}\sigma^2, \quad \ E\Big[\widehat{\sigma^2}_n\Big] = \frac{n-1}{n}\sigma^2$
- ullet The CLT implies that for all sufficiently large n,

$$P(|\widehat{\mu}_n - \mu| \ge \tau) \approx 2Q(\frac{\tau}{\sigma}\sqrt{n})$$

$$\Rightarrow P(\widehat{\mu}_n \in (\mu - \tau, \mu + \tau)) > \begin{cases} 0.68 & \text{if } \tau = \sigma/\sqrt{n} \\ 0.95 & \text{if } \tau = 2\sigma/\sqrt{n} \\ 0.99 & \text{if } \tau = 3\sigma/\sqrt{n}. \end{cases}$$

In practice, σ is replaced by $\widehat{\sigma}_n$ or $\widehat{\sigma}_n \sqrt{n/(n-1)}$ (if n>1).

Distribution-free bounds

• Hoeffding's inequality: Let X_1,\ldots,X_n be independent RVs with $X_i\in [a_i,b_i]$ with certainty for each i. If $S_n=\sum_{i=1}^n X_i$ then for all $\epsilon>0$,

$$P(S_n - E[S_n] \ge \epsilon) \le e^{-2\epsilon^2 / \sum_{i=1}^n (b_i - a_i)^2}$$

$$P(E[S_n] - S_n \le -\epsilon) \le e^{-2\epsilon^2 / \sum_{i=1}^n (b_i - a_i)^2}$$

• McDiarmid's inequality: Let X_1, \ldots, X_n be independent RVs and g a function of n variables whose value does not change by more than c_i if only the i-th variable is changed keeping others fixed. Then for all $\epsilon > 0$,

$$P(g(X_1,...,X_n) - E[g(X_1,...,X_n)] \ge \epsilon) \le e^{-2\epsilon^2/\sum_{i=1}^n c_i^2}$$

 $P(E[g(X_1,...,X_n)] - g(X_1,...,X_n) \le -\epsilon) \le e^{-2\epsilon^2/\sum_{i=1}^n c_i^2}$