Curtains Statistics Update

29 January 2020

Mykhaylo Shumko

Curtain detections

- Used Paul's burst parameter to identify microburst-like spikes in the AC6 data
- Cross-correlated spikes observed at the same time and position
- Looked through events that had a high (> 0.8) correlation at the same position
- Identified and confirmed 933 curtains

Some stats: L-MLT distribution

In the normalized case the white L-MLT bins had less than 20k good 10 Hz samples so the normalized number of curtains is not shown Shumko | Curtain Update

Some stats: lat-lon distribution

- Blue dots = curtain detections
- Green area shows the BLC/open field lines assuming the OPQ77 field model.
- Curtains are observed inside the BLC region

Examples of curtains observed in the BLC

Case study – can choose a nicer example

- Observed when AC6 was separated by 9 s
- Near Iceland
- Lm OPQ = 5.6
- MLT OPQ = 10
- AE = 271 nT

Case study - mirror point altitude

- Found that the mirror point of locally mirroring electrons to be 34 km in the SAA
- Electrons must have been lost. Other examples have mirror points below Earth's surface
- Since these electrons are lost, what can be driving this precipitation for at least 9 seconds?
- We need a DC potential to continuously accelerate electrons
- Question What is the minimum DC potential necessary to lower the mirror point from just trapped (defined as 100 km altitude mirror point in the SAA) to AC6's altitude?

Case study – DC potential

Paul's idea to use adiabatic invariants. Kinetic energy of a prticle at the mirror point is $W = \mu B_0$ with no potential. Then you accelerate the particle with a potential Φ and the particle will keep going until it reaches a new mirror point at $\mu B_1 = \mu B_0 + q\Phi$. Then the potential is just

$$q\Phi = \frac{W}{B_0}(B_1 - B_0),$$

where W is the electron's kinetic energy.

- q*Phi = 1 kV for this example. One other example I looked at had a 4.5 kV potential
- Seems reasonable to be accelerated by an auroral potential
- The mystery continues are curtains related to microbursts or aurora? We now know at least some can't be related to microbursts.

Paths forward

- Look at the MLT of curtains in the BLC
- Look at auroral imagers when AC6 is overhead in Canada
- What other curtain stats do you want to see?
- More work can be done but maybe this is enough work for a short JRL, followed by a more comprehensive study?