ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Подкидышев Алексей Сергеевич Студент факультета инноваций и высоких технологий (группа 790)

Лабораторная работа 2.1.1

«Измерение удельной теплоемкости воздуха при постоянном давлении»

Долгопрудный 12 июня 2018 г.

1 Описание работы

1.1 Цель работы

- 1. Измерение повышения температуры воздуха в результате подвода тепла при стационарном течении через стеклянную трубку.
- 2. Вычисление по результатам измерений теплоемкости воздуха при постоянном давлении.

1.2 Оборудование

Теплоизолированная трубка; электронагреватель; газовый счетчик; источник питания; термопара; вольтметр; амперметр; секундомер.

1.3 Теория

1.4 Течение газа по трубе

Рис. 1: Нагрев газа при течении по трубе

Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{\Delta T} \qquad (1)$$

В общем случае дав-

ление на входе может заметно превышать таковое на выходе (например, если труба доста-точно узкая и длинная). Рассмотрим течение газа более детально, чтобы выяснить пределы применимости соотношения $\frac{N-N_{\text{пот}}}{q\Delta T}$.

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно — масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры. (отмечено серым на рис. 1.5) и применим к ней закон сохранения энергии. Пусть за время d газ сместился слева направо на малое расстояние вдоль трубки, такое что через левую границу прошёл газ объёмом dV_1 , а через правую V_2 . В силу закона сохранения массы имеем:

$$dm = \rho_1 dV_1 = \rho_2 dV_2 \tag{2}$$

В условии опыта измеряется именно удельная теплоемкость при постоянном давлении C_p :

$$C_p = \frac{N - N_{\text{not}}}{q \cdot \Delta T} \tag{3}$$

1.5 Схема установки

Рис. 2: Схема формирования потока газа в трубе круглово сечения

Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. Нагреватель в виде намотанной на пенопласт нихромовой проволоки рас-положен внутри калориметра непосредственно в воздушном потоке.

$$N = UI \tag{4}$$

Для измерения разности температур \triangle T служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй в струе выходящего нагретого воздуха.

$$\varepsilon = \beta \cdot \Delta T \tag{5}$$

где $\beta=40.7~\frac{\text{мкB}}{C_{\circ}}$ чувствительность медно-константановой термопары в рабочем диапазоне температур (20–30 C°)ЭДС регистрируется с помощью микровольтметра. Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком Γ С. Для регулировки расхода служит кран K.

Объёмный расход равен $\Delta V/\Delta t$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{6}$$

где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева—Клапейрона:

$$\rho_0 = \frac{\mu \cdot P_0}{R \cdot T_0}$$

2 Ход работы

2.1 Подготовка

- Измерим расход воздуха(объемный) при максимально открытом кране
- Используя термометр, определим температуру и влажность воздуха. С помощью этих данных, определим значение $C_{\rm p}$ воздуха
- Посчитаем мощность нагревателя, приняв значения сопротивления проволоки(которая используется в нагревателе) - 35 Ом

\mathbb{Q} - расход воздуха, kg/s	C_p воздуха, $\frac{Дж}{kg*C^{\circ}}$	N, B _T	I_0 , A
9,52E-05	1119	0,107	0,055

Таблица 1: Оценка значения I_0 для $\Delta T = 1$ C° (Необходимо чтобы определить ток, с которого мы начнем делать измерения)

Итого:

$$I_0 pprox 0.055 \; \mathrm{A} = 55 \; \mathrm{mA}$$

2.2 Измерения(1-ая серия)

2.2.1 Таблица

Измереним $\triangle T(U)$ при максимальном расхдоде $\mathbf{Q} = \mathbf{0.074} \ \frac{l}{s}$:

I, mA	U, B	Напряжение на термопаре, mV	$\Delta T, C^{\circ}$	N, 10^-3
51,5	1,477	0,01	0,246	91,50263
79	2,2	0,032	0,786	215,3145
104,2	2,9	0,083	2,039	374,5886
135,9	3,9	0,138	3,391	637,1739
160,2	4,601	0.2	4,914	885,4094
211,9	6,083	0,367	9,017	1549,106

Таблица 2: Таблица измерений ΔT - разности температур воздуха на разных участ-ках(Холодного и теплового воздуха, N - мощности нагревателя. При максимальном расходе воздуха

Рис. 3: График зависимости $N(\Delta T)$ - Мощности нагревателя(Разности температур), коэффициент наклона прямой, необходим для расчета C_p . При максимальном расход воздуха

2.2.2 Измерение угла наклона

Для того чтобы посчитать C_p необходимо знать график угла наклона графика. В том случае погрешность измеряется по формуле:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \tag{7}$$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
 (8)

Итогове значение для к:

$$k = \frac{P}{\Delta T} = 0.165 \pm 0.005$$

2.2.3 Результат

По измеренным данным определим значение C_p , по формуле:

$$C_p = \frac{P}{\Delta T \cdot q} - \frac{\alpha}{q}$$

$$C_p = 1732 \pm 70 \frac{\text{Дж}}{kg * C^{\circ}}$$

2.3 Измерения. 2-ая серия

Измерим
$$\triangle T(U)$$
 при ${\bf Q}={\bf 0,0385}\ \frac{l}{s}$:

I, mA	U, B	Напряжение на термопаре, mV	$\Delta T, C^{\circ}$	$N, 10^{-3}, B_T$
91,3	2,621	0,09	2,211	287,5813
134,5	3,861	0,203	4,988	624,1136
162,3	4,662	0,316	7,764	908,7745
207,3	5,953	0,531	13,047	1482,579

Таблица 3: Таблица измерений ΔT - разности температур воздуха на разных участ-ках(Холодного и теплового воздуха, N - мощности нагревателя. При расходе воздуха = $0.0385 \ \frac{l}{s}$

Рис. 4: График зависимости $N(\Delta T)$ - Мощности нагревателя(Разности температур), коэффициент наклона прямой, необходим для расчета C_p . При расходе воздуха = $0.0385~\frac{l}{s}$

Аналогично первой серии измерений посчитаем погрешности и значение C_p (пользуясь формулами 7.8):

$$C_p = 1145 \pm 60 \frac{\text{Дж}}{kg * C^{\circ}}$$

2.4 Доля теплопотерь в установке

Мы получили $C_{\rm фактическая}=1400\pm200~\frac{\rm Дж}{kg\cdot C^{\circ}}$ (что отличается от табличного значения - $1119~\frac{\rm Дж}{\rm Kr\cdot C^{\circ}}$)

$$N = \alpha * \Delta T = C_{p \text{ фактическая}} * \Delta T - C_{p \text{ теоритическая}} * \Delta T$$

$$\alpha = C_{p \text{ фактическая}} - C_{p \text{ теоритическая}}$$

$$\frac{P}{N} = \frac{C_{p \text{ теоритическая}} + \alpha}{\alpha} = \frac{C_{p \text{ фактическая}}}{C_{p \text{ фактическая}} - C_{p \text{ теоритическая}}} \simeq 2.9$$

3 Вывод

- Теоретическая теплоемкость воздуха и его экспериментальная теплоемкость, искаженная тепловыми потерями **отличаются примерно на** 2σ, что говорит о больших тепловых потерях, не учтенных в погрешности. В пользу этого говорит возрастание ошибки определения теплоемкости при уменьшении скорости потока, воздух проводит в термостате больше времени, теряет больше тепла
- Оценка средней доли теплопотерь подтвердила предположения: в среднем воздух теряет около **трети** полученного от нагревателя тепла через стенки термостата.