Factors and powers

- Writing a number as a product of primes
- Writing fractions and square and cube roots using index notation
- Calculating approximate values for square roots and cube roots
- Simplifying expressions that involve surds

Keywords

You should know

explanation 1a

explanation 1b

- **1** Which of the numbers in the box is *not* a factor of the given number?
 - 120

24 12 4 48 **b** 252

53 21 126

- **2** Which of the numbers in the box is *not* a multiple of the given number?
 - 12 a

24 84 158 228 **b** 15

45 90 180 365

- **3** Find the first number greater than 25 that is a multiple of 6 and a factor of 96.
- **4** For each list, write down the numbers that are *not* prime numbers.

 - **a** 1, 3, 7, 17, 27, 31, 33, 47, 51, 67 **b** 11, 28, 43, 53, 77, 83, 93, 101, 153, 179
- **5** Why is 2 the only even number that is a prime number?
- **6** Find values for these without using a calculator.
 - $a 4^3$
- $(-6)^2$

- **e** $(-3)^4$ **f** 5×2^2 **g** $-2^3 \times 3^2$ **h** $(-7)^2 \times 2$

explanation 2a

explanation 2b

explanation 2c

- 7 Colin started to find 72 as the product of prime factors using a table.
- 2 72 2 36 18

- a Copy and complete the table.
- **b** Write 72 as a product of prime factors using index notation.
- **8** Use a factor tree or a table to express each number as a product of primes. Write the product of prime factors using index notation.
 - **a** 84

- **b** 252
- **c** 450

d 3168

- **9** Find the HCF of each pair of numbers.
 - **a** 32 and 144
- **b** 45 and 210
 - c 28 and 350
- **d** 84 and 252

- **10** Find the LCM of each pair of numbers.
 - **a** 12 and 18
- **b** 30 and 75
- 15 and 24 C
- **d** 84 and 252
- 11 Two numbers have a HCF of 8 and a LCM of 480.

What might they be? Find all possible answers.

12 Suzie used a Venn diagram to find the HCF of two algebraic expressions, 4xyz and 2ax.

$$HCF = 2x$$

Use Venn diagrams to find the HCFs of these expressions.

- **a** 2xy and 6y
- **b** 4ab and 8bc
- **c** 5abc and $10b^2$ **d** $12xy^2z$ and $4x^2y$

explanation 3

- 13 Use index laws to multiply these expressions. Leave your answers in index form.
- **a** $4^4 \times 4^5$ **b** $6^2 \times 6^4$ **c** $3^5 \times 3^7$ **d** $5^5 \times 5^6$

- **e** $8^3 \times 8^6$ **f** $3^3 \times 3^0$ **g** $3^5 \times 5^2 \times 3^2$ **h** $3^2 \times 4^3 \times 3^2 \times 4^4$

14 Use index laws to divide these expressions. Leave your answers in index form.

a $4^8 \div 4^5$ **b** $7^7 \div 7^4$ **c** $9^5 \div 9^2$ **d** $5^5 \div 5^3$

e $\frac{3^5}{3^0}$ f $\frac{3^9}{3^2}$ g $2^9 \div 2^2 \div 2^5$ h $3^{12} \div 3^2 \div 3^4$

15 Use index laws to simplify these.

Leave your answers in index form.

a $2^5 \times 2^4 \div 2^3$ **b** $5^4 \div 5^3 \times 5^6$

c $10^7 \times 10^8 \div 10^6$

d $5^6 \times 3^4 \div 5^4$ **e** $7^5 \times 6^5 \times 7^2 \div 6^4$ **f** $\frac{3^7 \div 4^5 \times 4^6}{3^3}$

- **16** To simplify $(3^2)^3$ Jaydeep wrote $3^2 \times 3^2 \times 3^2 = 3^6$.
 - a Simplify these powers in a similar way.

 $\mathbf{i} (4^3)^2 \quad \mathbf{ii} (5^3)^3 \quad \mathbf{iii} (4^3)^4 \quad \mathbf{iv} (3^4)^2$

- **b** What relationship do you notice between the powers in the question and the answer?
- **c** Copy and complete this law. $(a^n)^m = a^{m \square n}$

explanation 4a

explanation 4b

explanation 4c

17 Copy and complete the bottom row of this table with fractions or whole numbers.

5^{-3}	5^{-2}	5^{-1}	5 ⁰	5 ¹	5 ²	5 ³
						125

18 Copy and complete these.

a $\frac{1}{6^2} = 6^{\square}$ **b** $4^{-5} = \frac{1}{4^{\square}}$ **c** $\frac{1}{25} = \frac{1}{5^{\square}} = 5^{\square}$ **d** $\frac{1}{81} = 9^{\square}$

19 Without using a calculator write these without powers.

a 2^{-3} **b** 3^{-2} **c** 5^{-1} **d** 4^{-2} **e** 6^{-2} **f** 5^{-3}

20 Write these fractions using negative powers.

a $\frac{1}{2^2}$ **b** $\frac{1}{4^5}$ **c** $\frac{1}{6^3}$ **d** $\frac{1}{4^4}$

e $\frac{1}{4}$ f $\frac{1}{36}$ g $\frac{1}{27}$ h $\frac{1}{16}$

For parts e to h first write the denominator as a power of another number.

21 Copy and complete these.

a
$$\sqrt{36} = 36^{\square}$$

b
$$\sqrt{28} = 28^{\square}$$

$$\sqrt{100} = 100^{\square}$$

d
$$\sqrt[3]{64} = 64^{\square}$$

e
$$\sqrt[3]{125} = 125^{\square}$$

22 Without using a calculator find these.

a
$$4^{\frac{1}{2}}$$

b
$$16^{\frac{1}{2}}$$
 c $9^{\frac{1}{2}}$

d
$$100^{\frac{1}{2}}$$

e
$$49^{\frac{1}{2}}$$

f
$$81^{\frac{1}{2}}$$

$$\mathbf{g} \quad 144^{\frac{1}{2}}$$

h
$$8^{\frac{1}{3}}$$

$$2.7^{\frac{1}{3}}$$

j
$$125^{\frac{1}{3}}$$

explanation 5a

explanation 5b

23 Find these positive and negative roots.

$$a \pm \sqrt{25}$$

b
$$\pm \sqrt{121}$$

$$\pm \sqrt{144}$$

d
$$\pm\sqrt{400}$$

e
$$\pm \sqrt{10000}$$

24 Find the answers to these. Use a calculator if necessary.

a
$$\sqrt[3]{27}$$

b
$$\sqrt[3]{-27}$$

$$c$$
 $\sqrt[3]{-125}$

d
$$\sqrt[3]{64}$$

$$e^{-3\sqrt{-216}}$$

25 Which of these are true?

A
$$\sqrt{9} + \sqrt{25} = \sqrt{9 + 25}$$

B
$$\sqrt{25} - \sqrt{9} = \sqrt{25 - 9}$$

$$\mathbf{C} \quad \sqrt{9} \times \sqrt{25} = \sqrt{9 \times 25}$$

D
$$\sqrt{9} \div \sqrt{4} = \sqrt{9 \div 4}$$

26 The square root of some numbers can be can be found by factorising.

Find these square roots by factorising.

b
$$\sqrt{256}$$

$$\sqrt{324}$$

$$\sqrt{225} = \sqrt{9 \times 25}$$
$$= \sqrt{9} \times \sqrt{25}$$
$$= 3 \times 5$$
$$= 15$$

27 a Copy and complete these statements about $\sqrt{42}$.

i 42 lies between the consecutive square numbers \square and \square .

ii This can be written as $\square < 42 < \square$.

iii So
$$6 < \sqrt{42} < \square$$
.

b Find an approximate value for $\sqrt{42}$ to two decimal places.

Write your answer in the form $a < \sqrt{42} < b$.

Do not use the $\sqrt{}$ key on your calculator.

28 Find approximations for these to two decimal places.

 $\mathbf{a} \quad \sqrt{8}$

b $\sqrt{32}$

 $c \sqrt{90}$

 $d \sqrt{24}$

explanation 6a

explanation 6b

29 Which of these are surds? Use a calculator if necessary.

 $\mathbf{a} = \sqrt{4}$

 \mathbf{b} $\sqrt{7}$

 $\mathbf{c} = \sqrt{17}$

 $d\sqrt{25}$

 $e \sqrt{58}$

 $\mathbf{f} = \sqrt{144}$

 $\mathbf{g} = \sqrt{20.25}$

h $\sqrt{5.68}$

i $\sqrt{4.84}$

 $\sqrt{70.56}$

 $k \sqrt{110.25}$

 $\sqrt{218.12}$

30 Find an exact answer or simplified surd form for each of these.

a $\sqrt{7} \times \sqrt{7}$

b $\sqrt{3} \times \sqrt{3} \times \sqrt{3}$

c $\sqrt{9} \times \sqrt{9}$

d $\sqrt{13} \times \sqrt{13} \times \sqrt{13}$ e $\sqrt{8} \times \sqrt{8}$

f $\sqrt{20} \times \sqrt{20}$

 $\mathbf{g} \quad \sqrt{4} \times \sqrt{4} \times \sqrt{4} \times \sqrt{4}$

h $\sqrt{4} \times \sqrt{4} \times \sqrt{4} \times \sqrt{4} \times \sqrt{4}$

 $\sqrt{3} \times \sqrt{3} \times \sqrt{3}$

31 What is the exact area of each square?

 $\sqrt{27}$ cm

32 What is the length of one side of a square with these areas?

Where appropriate leave answers in surd form.

 \mathbf{a} 81 cm²

 $b 28 \text{ cm}^2$

 $c = 50 \,\mathrm{m}^2$

d $56.25\,\mathrm{mm}^2$

33 Find an exact answer for these. Do not use a calculator.

a $\sqrt{4} \times \sqrt{9}$

 $\sqrt{32} \times \sqrt{2}$

c $\sqrt{2} \times \sqrt{50}$

d $\sqrt{3} \times \sqrt{27}$

 $e \sqrt{8} \times \sqrt{18}$

f $\sqrt{10} \times \sqrt{2} \times \sqrt{5}$

 $\mathbf{g} \quad \sqrt{5} \times \sqrt{10} \times \sqrt{8}$

h $\sqrt{5} \times \sqrt{45}$

i $\sqrt{5} \times \sqrt{10} \times \sqrt{18}$

 $\sqrt{5} \times \sqrt{10} \times \sqrt{50}$

 $k \sqrt{8} \times \sqrt{10} \times \sqrt{20}$

 $\sqrt{5} \times \sqrt{125}$