EECS 592 Homework 3

Haoming Shen

October 17, 2017

Problem 1: Evaluating Logical Statements

- a) $M := (A \land B) \models S := (A \Leftrightarrow B)$ is **true**:
 - 1. The assignments for which $(A \wedge B)$ is true are: A = 1, B = 1.
 - 2. When A = 1, B = 1, $(A \Leftrightarrow B)$ is true. i.e., A = 1, B = 1, $S = (A \Leftrightarrow B)$ is true.
 - 3. $M \models S$ is true because for all models that evaluate M to be true S is also true.
- b) $M := (A \Leftrightarrow B) \models S := (A \lor B)$ is **false**:
 - 1. Consider A = 0, B = 0 which evaluates $M := (A \Leftrightarrow B)$ to be true.
 - 2. However, $A = 0 \lor B = 0$ is evaluated to be false.
 - 3. Therefore $M \models S$ is false because there exists an assignment of A and B which makes M to be true and S is false.
- c) $M := (A \land B) \Rightarrow C \models S := (A \Rightarrow C) \lor (B \Rightarrow C)$ is **true**:
 - 1. $S = (\neg A \lor C) \lor (\neg B \lor C) = \neg A \lor \neg B \lor C$.
 - 2. $M = \neg (A \land B) \lor C = (\neg A \lor \neg B) \lor C = S$.
- d) $M := (A \vee B) \wedge (\neg C \vee \neg D \vee E) \models S := (A \vee B) \wedge (\neg D \vee E)$ is **false**.
 - 1. Consider A = 1, B = 1, C = 0, D = 1, E = 0 which evaluates M to be true.
 - 2. However, S is evaluated to be false.
 - 3. Therefore $M \models S$ is false because there exists an assignment of M which makes M to be true but S to be false.
- e) $M := (C \lor (\neg A \land \neg B)) \equiv S := ((A \Rightarrow C) \land (B \Rightarrow C))$ is true.
 - 1. $S \equiv (\neg A \lor C) \land (\neg B \lor C)$.
 - 2. $M \equiv (C \vee \neg A) \wedge (C \vee \neg B)$.
 - 3. Therefore $M \equiv S$.
- f) The statement, $\alpha \models \beta \Leftrightarrow \alpha \Rightarrow \beta$ is valid, is **true**.
 - 1. Denote $M(\alpha) = \{x \mid \alpha(x) = 1\}$ to be the set of all assignment x such that α is true; $M(\beta)$ is similarly defined.
 - 2. If $\alpha \models \beta$, then $M(\alpha) \subseteq M(\beta)$. Consider an arbitrary assignment x_0 . If $x_0 \in M(\alpha)$ then $x_0 \in M(\beta)$, i.e. if $\alpha(x_0) = 1$, $\beta(x_0) = 1$, $\alpha \Rightarrow \beta$ is true, $\forall x_0 \in M(\alpha)$. If $x_0 \notin M(\alpha)$, then $\alpha(x_0) = 0$, $\forall x_0 \notin M(\alpha)$, i.e. $\alpha(x_0) \Rightarrow \beta(x_0)$ is true, $\forall x_0 \notin M(\alpha)$. Therefore $\alpha(x_0) \Rightarrow \beta(x_0)$, $\forall x_0$.
 - 3. If $\alpha(x_0) \Rightarrow \beta(x_0)$, $\forall x_0$ then $\alpha(x_0) = 1$, $\beta(x_0) = 1$, $\forall x_0 \in M(\alpha)$. This implies that $x_0 \in M(\beta)$. Therefore $M(\alpha) \subseteq M(\beta)$, i.e. $\alpha \models \beta$.
- g) The statement, $\alpha \equiv \beta \Leftrightarrow (\neg(\alpha \Leftrightarrow \beta))$ is unsatisfiable) is **true**.
 - 1. $\alpha \equiv \beta \Leftrightarrow (\alpha \models \beta) \land (\beta \models \alpha)$. By the conclusion above, $\alpha \equiv \beta \Leftrightarrow (\alpha \Rightarrow \beta \text{ is valid}) \land (\beta \Rightarrow \alpha \text{ is valid})$.
 - 2. $\alpha \equiv \beta \Leftrightarrow (\alpha(x) \Leftrightarrow \beta(x), \ \forall x)$. Thus $\alpha \equiv \beta \Leftrightarrow (\neg(\alpha \Leftrightarrow \beta)$ is unsatisfiable).
- h) $(\neg B \Rightarrow A) \Rightarrow (\neg A \Rightarrow B)$ is **true**.
 - 1. $(\neg B \Rightarrow A) = \neg(\neg B) \lor A = B \lor A; \neg A \Rightarrow B = A \lor B.$
 - 2. Since for all models that make $(\neg B \Rightarrow A)$ true, $(\neg A \Rightarrow B)$ is also true, the above statement is

true.

i) The claim that $(A \wedge B) \wedge \neg (A \Rightarrow B)$ is satisfiable is **false**.

1.
$$\neg (A \Rightarrow B) = \neg (\neg A \lor B) = A \land \neg B$$

2.
$$(A \land B) \land \neg (A \Rightarrow B) = (A \land B) \land (A \land \neg B) = A \land B \land A \land \neg B = A \land B \land \neg B$$
. This is unsatisfiable.

j) The claim that $(A \Leftrightarrow B) \land (\neg A \lor B)$ is unsatisfiable is **false**.

1.
$$(A \Leftrightarrow B) \land (\neg A \lor B) = (A \Leftrightarrow B) \land (A \Rightarrow B)$$
. This is valid for all models.

Conjunctive Normal Form and Resolution

A. Convert the following sentences into CNF

$$D \wedge \neg B \Rightarrow E$$
 $\neg (D \wedge \neg B) \vee E$
 $\neg D \vee B \vee F$

$$A \land C \land D \Rightarrow F$$
$$\neg (A \land C \land D) \lor F$$
$$\neg A \lor \neg C \lor \neg D \lor F$$

$$A \wedge (D \vee F) \Rightarrow C$$

$$\neg (A \wedge (D \vee F)) \vee C$$

$$(\neg A \vee \neg (D \vee F)) \vee C$$

$$(\neg A \vee (\neg D \wedge \neg F)) \vee C$$

$$\neg A \vee C \vee (\neg D \wedge \neg F)$$

$$(\neg A \vee C \vee \neg D) \wedge (\neg A \vee C \vee \neg F)$$

d)

$$F \Leftrightarrow \neg B$$
$$(F \Rightarrow \neg B) \land (\neg B \Rightarrow F)$$
$$(\neg F \lor \neg B) \land (\neg (\neg B) \lor F)$$
$$(\neg F \lor \neg B) \land (B \lor F)$$

B. Prove that E is true using resolution.

1.
$$\frac{(\neg A \lor C \lor \neg D) \land A \land D}{C}$$
. C is added to KB.

1.
$$\frac{(\neg A \lor C \lor \neg D) \land A \land D}{C}. C \text{ is added to KB.}$$
2.
$$\frac{(\neg A \lor \neg C \lor \neg D \lor \neg F) \land A \land D \land C}{F}. F \text{ is added to KB.}$$
3.
$$\frac{(\neg F \lor \neg B) \land F}{\neg B}. \neg B \text{ is added to KB.}$$
4.
$$\frac{(\neg D \lor B \lor E) \land \neg B \land D}{E}. E \text{ is true.}$$

3.
$$\frac{(\neg F \lor \neg B) \land F}{\neg B}$$
. $\neg B$ is added to KB

4.
$$\frac{(\neg D \lor B \lor E) \land \neg B \land D}{E}$$
. E is true.

First-Order Logic Quantifiers

Translate sentences into FOL:

- a) $\forall y, Crust(y) \land GoesWith(Peperoni, y)$.
- b) $\exists x, Topping(x) \land GoesWith(x, Stuffed)$.
- c) $\forall y \exists x \ Topping(x) \land Crust(y) \land GoesWith(x, y)$.

Translate FOL into English:

- d) Ann does not like curst mushrooms no matter what topping comes with it.
- e) Everyone likes thin pizza with some topping.
- f) There are some people love thick pizza no matter what topping comes with it.

First-Order Logic Semantics

- a) $WorthMore(quarter, penny) \land WorthMore(quarter, Nickel) \land WorthMore(quarter, dime)$.
- b) WorthMore(quarter, penny) \land WorthMore(quarter, nickel) \land WorthMore(quarter, dime) \land penny \neq nickel \land nickel \neq dime \land penny \neq dime \land \forall x UScoins(x) \land x \neq quarter \land x \neq penny \land x \neq nickel \land x \neq dime \land WorthMore(x, quarter).

Unification

- a) x = A, y = B, z = B.
- b) Fail. To unify this two expressions, x, y need to satisfy:
 - y = G(x, x) and y = G(A, B). Since there does not exist x such that G(x, x) = G(A, B) therefore no x, y can satisfy the above condition.
- c) x = A, y = A.
- d) x = A, y = A, z = G(B).

Resolution Refutation

- 1) All wolves howl.
- 2) Anyone who has cats as pets will not have mice.
- 3) Anyone who is a light sleeper can't live near anything that howls.
- 4) Frank either has cats or lives near wolves.
- 5) If Frank is a light sleeper, Frank has mice.

Write all the sentences above in FOL

- 1) $\forall w \text{ Wolf}(w) \Rightarrow \text{Howl}(w)$.
- 2) $\forall x(\exists y \ \mathsf{Cat}(y) \land \mathsf{Have}(x,y) \Rightarrow \sim (\exists z \ \mathsf{Mouse}(z) \land \mathsf{Have}(x,z))).$
- 3) $\forall x LS(x) \Rightarrow \sim (\exists y Howl(y) \land Near(x, y)).$
- 4) $\exists x \operatorname{Cat}(x) \land \operatorname{Have}(\operatorname{Frank}, x) \lor \exists w \operatorname{Wolf}(w) \land \operatorname{Near}(\operatorname{Frank}, w)$.
- 5) LS(Frank) $\Rightarrow \exists m \text{ Mouse}(m) \land \text{Have}(\text{Frank}, m)$.

Convert all the FOL to CNF

- 1) $\sim \text{Wolf}(w) \vee \text{Howl}(w)$.
- 2) $\sim \mathsf{Cat}(y) \lor \sim \mathsf{Have}(x,y) \lor \sim \mathsf{Mouse}(z) \lor \sim \mathsf{Have}(x,z)$.
- 3) $\sim \mathsf{LS}(x) \lor \sim \mathsf{Howl}(y) \lor \sim \mathsf{Near}(x, y)$.
- 4) $(Cat(X_1) \lor Wolf(W_0)) \land (Cat(X_1) \lor Near(Frank, W_0)) \land (Have(Frank, X_1) \lor Wolf(W_0)) \land (Have(Frank, X_1) \lor Near(Frank, W_0)).$
- 5) $(\sim LS(Frank) \vee Mouse(M)) \wedge (\sim LS(Frank) \vee Have(Frank, M)).$

Prove "Frank is not a light sleeper" using Resolution Refutation.

- 1) Convert "Frank is not a light sleeper" to CNF: \sim LS(Frank).
- 2) Add LS(Frank) to KB and try to find controversy.
- 3) $\frac{(\sim \mathsf{LS}(F) \lor \mathsf{Mouse}(M)) \land \mathsf{LS}(\mathsf{Frank})}{\mathsf{Mouse}(M)}. \ \mathsf{Add} \ \mathsf{Mouse}(M) \ \mathsf{to} \ \mathsf{KB}. \ \frac{(\sim \mathsf{LS}(F) \lor \mathsf{Have}(\mathsf{Frank}, M)) \land \mathsf{LS}(\mathsf{Frank})}{\mathsf{Have}(\mathsf{Frank}, M)}. \\ \mathsf{Add} \ \mathsf{Have}(\mathsf{Frank}, M) \ \mathsf{to} \ \mathsf{KB}.$
- 4) $\frac{(\sim \mathsf{Cat}(y) \lor \sim \mathsf{Have}(x,y) \lor \sim \mathsf{Mouse}(z) \lor \sim \mathsf{Have}(x,z)) \land \mathsf{Mouse}(M) \land \mathsf{Have}(\mathsf{Frank},M)}{\sim \mathsf{Cat}(y) \lor \sim \mathsf{Have}(\mathsf{Frank},y)}.$ Add $^{\sim} \mathsf{Cat}(y) \lor \sim \mathsf{Have}(\mathsf{Frank},y) \text{ to KB}.$
- 5) $\frac{(\mathsf{Cat}(X_1) \vee \mathsf{Wolf}(W_0)) \wedge (\sim \mathsf{Cat}(y) \vee \sim \mathsf{Have}(\mathsf{Frank}, y))}{\mathsf{Wolf}(W_0) \vee \sim \mathsf{Have}(\mathsf{Frank}, X_1)}. \quad \mathsf{Add} \ \ \mathsf{Wolf}(W_0) \vee \sim \ \mathsf{Have}(\mathsf{Frank}, X_1) \ \ \mathsf{to} \ \ \mathsf{KB}.$
- 6) $\frac{(\mathsf{Have}(\mathsf{Frank}, X_1) \vee \mathsf{Near}(\mathsf{Frank}, W_0)) \wedge (\mathsf{Wolf}(W_0) \vee \sim \mathsf{Have}(\mathsf{Frank}, X_1))}{\mathsf{Near}(\mathsf{Frank}, W_0) \vee \mathsf{Wolf}(W_0)}. \quad \mathsf{Add} \ \mathsf{Near}(\mathsf{Frank}, W_0) \vee \mathsf{Wolf}(W_0) \mathsf{to} \ \mathsf{KB}.$
- 7) $\frac{\left(\sim \mathsf{Wolf}(w) \lor \mathsf{Howl}(w)\right) \land \left(\mathsf{Near}(\mathsf{Frank}, W_0) \lor \mathsf{Wolf}(W_0)\right)}{\mathsf{Near}(\mathsf{Frank}, W_0) \lor \mathsf{Howl}(w)}. \quad \mathsf{Add} \ \ \mathsf{Near}(\mathsf{Frank}, W_0) \lor \mathsf{Howl}(wW_0) \ \ \mathsf{to} \ \ \mathsf{KB}.$
- 8) $\frac{(\sim \mathsf{LS}(x) \lor \sim \mathsf{Howl}(y) \lor \sim \mathsf{Near}(x,y)) \land (\mathsf{Near}(\mathsf{Frank}, W_0) \lor \mathsf{Howl}(W_0))}{\sim \mathsf{LS}(\mathsf{Frank})}. \sim \mathsf{LS}(\mathsf{Frank}) \text{ contradict with our assumption LS}(\mathsf{Frank}). Therefore Frank is not a light sleeper.}$