Exercises for Chapter 3

- **3.1** Consider the time series (920, 980, 1.03, 950, 990).
 - a) Which stochastic and deterministic errors does this time series seem to contain? Stochustic wors noise II deterministic wors outlier 1.03
 - b) What may be reasons for these errors? Stochastic errors measurement noise.

 Roterministic cross wrong format 1.03 4020
 - c) Compute the output of an asymmetric median filter with window length 3 for this time series. (920, 950, 950) Hedian of 3 values
 - d) Which effect does this filter have on the observed errors? Noise is reduced.
- 3.2 Which of these filters are FIR, IIR, or none of these?
 - a) $x_k + x_{k-1} + y_k = 0$ FIR, because it is linear but does not consider previous values of y
 - b) $x_k + x_{k-1} + x_{k-2} = 0$ none, because it does not contain y
 - c) $x_k + y_{k-1} + y_k = 0$ IIR, because it is linear and does consider previous values of y
- **3.3** Consider the IIR filter $y_k = 2y_{k-1} y_{k-2} + x_k + x_{k-1}$, $k = 3, 4, ..., y_1 = y_2 = 0$.
 - a) What is the filter output sequence y for the input sequence x = (0, 0, 1, 0, 0, 0, 0, 0, 0)?
 - b) What is the filter output sequence y for the input sequence $x=(0,0,1,a,b,0,0,0),\ a,b\in\mathbb{R}?$
 - c) Give a formula for the filter output y_k , k = 8, 9, 10, ..., for $x = (0, 0, 1, a, b, 0, 0, 0, ...), a, b \in \mathbb{R}!$
 - d) For which finite values of a and b will the filter be unstable?
 - e) For which finite values of a and b will the filter converge to $\lim_{k\to\infty} y_k = 0$?

- **3.3** Consider the IIR filter $y_k = 2y_{k-1} y_{k-2} + x_k + x_{k-1}, k = 3, 4, ..., y_1 = y_2 = 0.$
 - a) What is the filter output sequence y for the input sequence x = (0,0,1,0,0,0,0,0)?

$$y_1 = y_2 = 0$$

 $y_3 = 0 - 0 + 1 + 0 = 1$ | $|y_4 = 3|$ | $y_5 = 5$ | $|y_6 = 7|$ | $|y_7 = 9|$ | $|y_8 = 11$
 $y = (0,0,1,3,5,7,9,11)$

b) What is the filter output sequence y for the input sequence $x=(0,0,1,a,b,0,0,0),\ a,b\in\mathbb{R}?$

$$y_2 = 7z = 0$$

 $y_3 = 0 - 0 + 1 + 0 = 1$ | $1/y_4 = 2 - 0 + 9 + 1 = 3 + 9$
 $y = [0,0,1,3 + 9,5 + 3 + 3 + 3 + 9,4 + 9 + 7,5 + 1,4 + 9 + 7,6]$

c) Give a formula for the filter output y_k , $k=8,9,10,\ldots$, for $x=(0,0,1,a,b,0,0,0,\ldots), a,b\in\mathbb{R}!$

- d) For which finite values of a and b will the filter be unstable?
- e) For which finite values of a and b will the filter converge to $\lim_{k\to\infty} y_k = 0$?

d)
$$y_{K} = 2K - 5 + 2Ku - 7c + 2Kb - 9b$$

 $y_{K} = 2K (1 + a + b) - 5 - 7c - 9b$ not finite for $k \rightarrow \infty$
if $1 + a + b \neq 0$

e)
for
$$1+a+b=0 = 0 = -1-a: \lim_{k\to\infty} 1/2 = -5-7a-9b = 0$$

 $1+2a=0$ for $a=-2$, $b=-1+2=1$