| Started on   | Friday, 26 April 2024, 8:47 PM          |
|--------------|-----------------------------------------|
| State        | Finished                                |
| Completed on | Friday, 26 April 2024, 8:56 PM          |
| Time taken   | 8 mins 53 secs                          |
| Grade        | <b>1.00</b> out of 1.00 ( <b>100</b> %) |

## Question $\bf 1$

Correct

Mark 1.00 out of 1.00

Assuming the Gauss-Seidel parallel implementation on a distributed memory machine shown in the video with:

- Row-wise distribution of the matrix to P processors where each processor gets n/P consecutive rows;
- Task definition = Block of n/P consecutive rows, i.e. each processor executes a single (coarse grain) task.

Match each contribution to the parallel execution time on P processors (Tp) with the appropriate expression.

$$T_p = T_{calculations} + T_{communications}$$

In the video:  $T_{communications} = T_{overheads}$  We could also call it  $T_{datasharing}$ 

Notation: Since the section for defining answers does not allow the usage of subscripts and superscripts,

- The underscore "\_" in the answers is used for introducing a subscript.
- The circumflex "^" in the answers is used for introducing a superscript.

Your answer is correct.

The correct answer is:

$$T_{calc} = \rightarrow n^2 x \ t\_body,$$

$$T_U = \rightarrow (t_s + n \times t_w) \times (P-1),$$

$$T_L = \rightarrow (t_s + n \times t_w),$$

 $T_{communications} = \rightarrow T_L + T_U$ 

## Task definition = block of n/P consecutive rows



## Data sharing time per segment?

 $T_{overhead} = \{ transfer cost in a task with rows not from the border \} = \{ lower boundary at the beginning!$  $upper boundary during execution \}$  $<math>T_{overhead} = (t_s + n \times t_w) + (t_s + n \times t_w) \times (P-1) - > T_{comm} = T_L + T_U$ 

$$T_{calc} = P \times (n \times n/P) \times t_{body} = n^2 \times t_{body}$$