CHƯƠNG 1: KHÁI NIỆM VÀ HIỆU SUẤT MÁY TÍNH

Lô Hoàng Bảo - 2252066 - CN01

Bài Tập 1

• Sự giống/khác nhau giữa compiler và asembler:

Sự Giống Nhau: Đều chuyển đổi từ ngôn ngữ này sang ngôn ngữ khác

Sự Khác Nhau:

Compiler	Assembler
Chuyển đổi từ ngôn ngữ cấp cao	Chuyển đổi từ hợp ngữ sang
sang hợp ngữ	ngôn ngữ máy
Input là Source code	Input là Assembly language
	code
Có thể chuyển cả 1 đoạn ngôn	Không thể chuyển cả 1 đoạn
ngữ dài trong 1 lần	ngôn ngữ dài trong 1 lần
Thời gian chuyển đổi chậm	Thời gian chuyển đổi nhanh
Xuất hiện tất cả lỗi sau khi chạy cả 1 đoạn code	Xuất hiện lỗi ở giai đoạn đầu,
	sửa nó thì giaiđoạn sau mới
	được thực hiện
Độ thông minh cao	Độ thông minh thấp hơn
	Compiler
Mất 7 bước để thực hiện	Mất 3 bước để thực hiện
Output là 1 dạng mã nhớ của	Output là mã nhị phân
mã máy	
Ví dụ: C, C++, Java,	Ví dụ: GNU, GAS

• Sự giống/khác nhau giữa Operating system và Application software.

Sự Giống Nhau: Đều là chương trình máy tinh giúp người dùng tương tác với phần cứng và hướng dẫn máy tinh thực hiện một tác vụ nào đó Sự Khác Nhau:

Application software	Operating system
Phần mềm ứng dụng là phần mềm được thiết kế để thực hiện một nhóm các chức năng, nhiệm vụ hoặc hoạt động phối hợp vì lợi ích của người dùng	Hệ điều hành là một phần mềm hệ thống quản lý tài nguyên phần cứng và phần mềm máy tính và cung cấp các dịch vụ chung cho các chương trình máy tính
Được tải về từ Internet	Thường được cài đặt sẵn khi mua máy tính
Nhiều ngôn ngữ khác nhau	C++,C và Assembly
Thực hiện các nhiệm vụ nhất	Thực quản lý tài nguyên phần
định	cứng một cách hiệu quả
Kích thước thường ở Megabytes (MB)	Kích thước thường ở Gigabytes (GB)
Chỉ được khởi động khi click chuột vào	Luôn chạy khi con người bật máy tính
Phụ thuộc vào hệ điều hành	Không phụ thuộc vào phần mềm ứng dụng
Ví dụ: Photoshop, VLC player,	Ví dụ: Microsoft Windows, Linux, Unix,

- Sắp xếp theo sự tăng dần mức độ trừu trượng (dưới góc nhìn người lập trình): Machine language \to Assembly language \to High-level language.
- Liệt kê các điểm khác nhau của các loại máy tính:
 - supercomputer:
 - \ast Tính toán các phép tính khoa học và kỹ thuật cao cấp.
 - * Khả năng tính toán cao nhất nhưng chỉ chiếm một phần nhỏ thị trường máy tính tổng thể.

- low-end server

- $\ast\,$ Được sử dụng trong các ứng dụng lưu trữ, ứng dụng cho doanh nghiệp nhỏ, dịch vụ web.
- * Có thể không kèm màn hình và bàn phím, chi phí thấp.

- Server:

- * Dựa trên Netword.
- * Công suất, hiệu suất, độ tin cậy cao.
- \ast Phạm vi từ các máy chủ nhỏ đến kích thước cực lớn.

- desktop computer:

- * Mục đích chung, nhiều loại phần mềm.
- $\ast\,$ Phụ thuộc vào sự đánh đổi chi phí/hiệu suất.

Bài Tập 2

Cho thông số của hệ thống hiển thị màu: mỗi màu được biểu diễn 8-bit, mỗi pixel gồm 3 màu cơ bản (red, green, blue). Đô phân giải 1280x1024.

a) Tổng số pixel trong mỗi khung hình = $1280 \times 1024 = 1310720$ Mỗi màu được biểu diễn 8-bit và mỗi pixel gồm 3 màu cơ bản. Vậy mỗi pixel sẽ sử dụng 24-bit.

Vậy dung lượng tối thiểu của mỗi khung hình là = 1310720 * 24 = 31457280 bit = 3932160 byte = 3840KB.

b) Tốc độ mạng = 100Mbit/s = 12500000byte/s
Thời gian truyền =
$$\frac{framesize}{networkspeed} = \frac{3932160}{12500000} = \approx 0.3146(s)$$

Bài Tập 3

a)
$$CPU_{time} = \frac{IC*CPI}{ClockRate}$$

 $CPU_{time_{P1}} = \frac{IC*1.5}{3*10^9} = IC*0.5*10^{-9}$
 $CPU_{time_{P2}} = \frac{IC*2.5}{1*10^9} = IC*2.5*10^{-9}$
 $CPU_{time_{P3}} = \frac{IC*4}{2.2*10^9} = IC*\frac{20}{11}*10^{-9}$
Vậy Processor $P1$ có hiệu suất cao nhất khi tính theo số lệnh trên giây (IPS)
b) $10 = CPU_{time_{P1}} = \frac{IC*1.5}{3*10^9} = IC*0.5*10^{-9} \rightarrow IC = 2*10^{10}$
Vây nếu Processor $P1$ thực thi một chương trình mất 10 giây thì tổng số lệnh

Vậy nếu Processor P1 thực thi một chương trình mất 10 giây thì tổng số lệnh thực thi là $2*10^{10}$ và tổng số chu kỳ đã thực thi là $2*10^{10}*1.5=3*10^{10}$ $10=CPU_{time_{P2}}=\frac{IC*2.5}{1*10^9}=IC*2.5*10^{-9} \rightarrow IC=4*10^9$

Vậy nếu Processor P2 thực thi một chương trình mất 10 giây thì tổng số lệnh thực thi là $4*10^9$ và tổng số chu kỳ đã thực thi là $4*10^9*1=4*10^9$ $10 = CPU_{time_{P3}} = \frac{IC*2.2}{4*10^9} = IC*\frac{20}{11}*10^{-9} \rightarrow IC = 55*10^8$

Vậy nếu Processor P3 thực thi một chương trình mất 10 giây thì tổng số lệnh thực thi là $55 * 10^8$ và tổng số chu kỳ đã thực thi là $55 * 10^8 * 2.2 = 1.21 * 10^{10}$ c)

$$\begin{array}{l} 70\%*CPU_{time_{old}} = 70\%*\frac{IC*CPI_{old}}{ClockRate_{old}} = CPU_{time_{new}} \\ \leftrightarrow 70\%*\frac{IC*CPI_{old}}{ClockRate_{old}} = \frac{IC*1.2*CPI_{old}}{ClockRate_{new}} \\ \leftrightarrow ClockRate_{new} = \frac{12}{7}*ClockRate_{old} \end{array}$$

Vậy
$$ClockRate_{P1} = \frac{12}{7} * 3 = \frac{36}{7} \approx 5.14 GHz$$
 $ClockRate_{P2} = \frac{12}{7} * 2.5 = \frac{30}{7} \approx 4.29 GHz$ $ClockRate_{P1} = \frac{12}{7} * 4 = \frac{48}{7} \approx 6.86 GHz$

Bài Tập 4

$$CPU_{time} = \frac{IC*CPI}{ClockRate}$$

$$IPC = \frac{1}{CPI} = \frac{IC}{ClockRate*CPU_{time}}$$

a)
$$IPC_{P1} = \frac{2*10^{10}}{7*3*10^9} = \frac{20}{21}$$

 $IPC_{P2} = \frac{3*10^{10}}{10*2.5*10^9} = 1.2$
 $IPC_{P3} = \frac{9*10^{10}}{9*4*10^9} = 0.25$
b) $7 = \frac{IC}{ClockRate*IPC} = \frac{2*10^{10}}{ClockRate*1.2} \rightarrow ClockRate = 2380952381Hz$
c) $9 = \frac{IC}{ClockRate*IPC} = \frac{IC}{4*10^9*0.25} \rightarrow IC = 9*10^9$

Bài Tập 5

a)
$$CPU_{time_{P1}} = \frac{CPI_A*IC_A+CPI_B*IC_B+CPI_C*IC_C+CPI_D*IC_D}{ClockRate} = \frac{10\%*10^6*1+20\%*10^6*2+50\%*10^6*3+20\%*10^6*3}{2.5*10^9} = \frac{1.04*10^{-3}(s)}{CPU_{time_{P2}}} = \frac{CPI_A*IC_A+CPI_B*IC_B+CPI_C*IC_C+CPI_D*IC_D}{ClockRate} = \frac{10\%*10^6*2+20\%*10^6*2+50\%*10^6*2+20\%*10^6*2}{3*10^9} = \frac{1}{1500}(s)$$
 Vậy bộ xử lý $P2$ thực thi chương trình nhanh hơn.

$$\frac{CPU_{time} = \frac{IC*CPI}{ClockRate}}{\rightarrow \overline{CPI} = \frac{CPU_{time}*ClockRate}{IC}}$$

$$\frac{\overline{CPI_{P1}}}{\overline{CPI_{P2}}} = \frac{CPU_{time_{P1}} * ClockRate_{P1}}{IC_{P1}} = \frac{1.04 * 10^{-3} * 2.5 * 10^{-9}}{10^{6}} = 2.6$$

$$\frac{\overline{CPI_{P2}}}{\overline{CPI_{P2}}} = \frac{CPU_{time_{P2}} * ClockRate_{P1}}{IC_{P2}} = \frac{\frac{1}{1500} * 3 * 10^{-9}}{10^{6}} = 2$$

c) Tổng số chu kỳ thực thi chương trình của Processor $P1 = CPI_A * IC_A + CPI_B * IC_B + CPI_C * IC_C + CPI_D * IC_D = 10^6 * (10\% * 1 + 20\% * 2 + 50\% * 3 + 20\% * 3) = 2600000$

Tổng số chu kỳ thực thi chương trình của Processor $P2 = CPI_A*IC_A + CPI_B*IC_B + CPI_C*IC_C + CPI_D*IC_D = 10^6*(10\%*2 + 20\%*2 + 50\%*2 + 20\%*2) = 2000000$

Bài Tập 6

a)
$$CPU_{time} = \frac{IC*CPI}{ClockRate} = \frac{650*1+100*5+600*5+50*2}{2*10^9} = 2.125*10^{-6}$$

b) $\overline{CPI} = \frac{CPU_{time}*ClockRate}{IC} = \frac{2.125*10^{-6}*2*10^9}{1400} = \frac{85}{28} \approx 3.0357$
c) $CPU_{time_{new}} = \frac{IC*CPI}{ClockRate} = \frac{650*1+100*5+50\%*600*5+50*2}{2*10^9} = 1.375*10^{-6}$
 $Speedup = \frac{CPU_{time_{old}}}{CPU_{time_{new}}} = \frac{1.375*10^{-6}}{2.125*10^{-6}} = \frac{17}{11} \approx 1.54545$
 $CPI_{speedup} = \frac{CPU_{time}*ClockRate}{IC} = \frac{1.375*10^{-6}*2*10^9}{1100} = 2.5$