ĐỀ CƯƠNG ÔN TẬP GIỮA KÌ 1 TOÁN 11 **NĂM HOC 2022-2023**

TRẮC NGHIÊM

Câu 1: Tập xác định của hàm số
$$y = \sin \frac{1}{x} + 2x$$
 là

A.
$$D = \mathbb{R} \setminus \{k\pi\}$$

A.
$$D = \mathbb{R} \setminus \{k\pi\}$$
. **B.** $D = [-1;1] \setminus \{0\}$. **C.** $D = \mathbb{R}$.

C.
$$D = \mathbb{R}$$

D.
$$D = \mathbb{R} \setminus \{0\}$$
.

Câu 2: Tập xác định của hàm số
$$y = 2 \cot x + \sin 3x$$
 là

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$$
. **B.** $D = \mathbb{R} \setminus \{k\pi\}$. **C.** $D = \mathbb{R}$.

B.
$$D = \mathbb{R} \setminus \{k\pi\}$$
.

C.
$$D = \mathbb{R}$$
.

$$\mathbf{D.} \ D = \mathbb{R} \setminus \left\{ k2\pi \right\}.$$

Câu 3: Tập xác định của hàm số
$$y = 2023 \tan^{2022} 2x$$
 là

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$$
. **B.** $D = \mathbb{R} \setminus \left\{ k\frac{\pi}{2} \right\}$. **C.** $D = \mathbb{R}$.

B.
$$D = \mathbb{R} \setminus \left\{ k \frac{\pi}{2} \right\}$$

C.
$$D = \mathbb{R}$$

D.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k \frac{\pi}{2} \right\}.$$

Câu 4: Tập xác định của hàm số
$$y = 3 \tan x + 2 \cot x + x$$
 là

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}.$$

$$\mathbf{B.} \ D = \mathbb{R} \setminus \left\{ k \frac{\pi}{2} \right\}.$$

C.
$$D = \mathbb{R}$$

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$$
. **B.** $D = \mathbb{R} \setminus \left\{ k\frac{\pi}{2} \right\}$. $\mathbb{C}. D = \mathbb{R}$. $\mathbb{D}. D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \right\}$

Câu 5: Tập xác định của hàm số
$$y = \frac{2023 \tan 2x}{\sin^2 x - \cos^2 x}$$
 là

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$$
. **B.** $D = \mathbb{R} \setminus \left\{ k\frac{\pi}{2} \right\}$. **C.** $D = \mathbb{R}$.

$$\mathbf{B.} \ D = \mathbb{R} \setminus \left\{ k \, \frac{\pi}{2} \right\}$$

C.
$$D = \mathbb{R}$$
.

$$\mathbf{D.} \ D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k \frac{\pi}{2} \right\}.$$

Câu 6: Tập xác định của hàm số
$$y = \sqrt{\frac{2 + \sin x}{1 - \cos x}}$$
 là

A.
$$D = \mathbb{R} \setminus \{k\pi\}$$

B.
$$D = \mathbb{R} \setminus \{k2\pi\}$$

A.
$$D = \mathbb{R} \setminus \{k\pi\}$$
. **B.** $D = \mathbb{R} \setminus \{k2\pi\}$. **C.** $D = \mathbb{R} \setminus \left\{\frac{\pi}{2} + k\pi\right\}$. **D.** $D = \mathbb{R} \setminus \left\{k\frac{\pi}{2}\right\}$.

Câu 7: Hàm số nào sau đây có tâp xác định là
$$\mathbb{R}$$
?

$$\mathbf{A.} \ \ y = \sin \sqrt{x} \ .$$

B.
$$y = \tan 2x$$
.

C.
$$y = \cot 2x$$
.

D.
$$y = x + \sin x$$
.

Câu 8: Hàm số
$$y = \sin x \cdot \cos x$$
 là

A. hàm số không lẻ.

B. hàm số chẵn.

C. hàm số không chẵn.

D. hàm số lẻ.

Mệnh đề nào sau đây là mệnh đề đúng? Câu 9:

A. Hàm số $y = \sin x \cdot \cos 3x$ là hàm số lẻ.

B. Hàm số $y = \cos x - \sqrt{2} \sin x$ là hàm số chẵn.

C. Hàm số $y = 3(\cot^2 x + \cos x)$ là hàm số lẻ.

D. Cả 3 mênh đề trên đều sai.

Câu 10: Hàm số
$$y = 2 - \sin x \cos \left(\frac{5\pi}{2} - 2x \right)$$
 là

A. hàm số vừa chẵn, vừa lẻ.

C. hàm số chẵn.

B. hàm số không chẵn, không lẻ. D. hàm số lẻ.

Câu 11: Giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = 7 - 2\cos\left(x + \frac{\pi}{4}\right)$ lần lượt là

D. 4 và 7.

Câu 12: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = \sqrt{2\sin x + 3}$ là

A. max
$$y = \sqrt{5}$$
, min $y = 1$.

B. max
$$y = \sqrt{5}$$
, min $y = 2\sqrt{5}$.

C. max
$$y = \sqrt{5}$$
, min $y = 2$.

D. max
$$y = \sqrt{5}$$
, min $y = 3$.

Câu 13: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = \frac{4}{1 + 2\sin^2 x}$ là

A. min
$$y = \frac{4}{3}$$
, max $y = 4$.

B. min
$$y = \frac{4}{3}$$
, max $y = 3$.

C. min
$$y = \frac{4}{3}$$
, max $y = 2$.

D. min
$$y = \frac{1}{2}$$
, max $y = 4$.

Câu 14: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = \cos^4 x + \sin^4 x$ trên \mathbb{R} lần lượt là

B. 1 và
$$\frac{1}{2}$$

B. 1 và
$$\frac{1}{2}$$
. C. $\sqrt{2}$ và 0. **D.** $\sqrt{2}$ và 1.

D.
$$\sqrt{2}$$
 và 1.

Câu 15: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = \sin\left(2x + \frac{\pi}{4}\right)$ trên $\left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$ lần lượt là

A. 1 và
$$-\sqrt{2}$$
.

B. 1 và
$$\frac{\sqrt{2}}{2}$$
.

B. 1 và
$$\frac{\sqrt{2}}{2}$$
. **C.** $\frac{\sqrt{2}}{2}$ và -1. **D.** 1 và $-\frac{\sqrt{2}}{2}$.

D. 1 và
$$-\frac{\sqrt{2}}{2}$$
.

Câu 16: Giá trị nhỏ nhất của hàm số $y = \sin^2 x - 4\sin x - 5$ là

Câu 17: Chọn mệnh đề đúng trong các mệnh đề sau.

A. Hàm số $y = \cot x$ đồng biến trên khoảng $\left(\frac{\pi}{2}; \pi\right)$.

B. Hàm số $y = \sin x$ nghịch biến trên khoảng $\left(\frac{\pi}{2}; \pi\right)$.

C. Hàm số $y = \tan x$ đồng biến trên $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ và $y = \cot x$ nghịch biến trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

D. Hàm số $y = \sin x$ và $y = \cos x$ cùng đồng biến trên khoảng $\left[0; \frac{\pi}{2}\right]$.

Câu 18: Nếu chu kì tuần hoàn của hàm số $y = \sin \frac{\pi x}{a}$ là 4 thì

A.
$$a = \pm 2$$
.

B.
$$a = \pm 4$$
.

C.
$$a = 2$$
.

D.
$$a = \pm 1$$
.

Câu 19: Khẳng định nào sau đây đúng với hàm số $y = 2\cos\frac{x}{2}$?

A. Chu kì là π .

B. Chu kì là 3π .

C. Chu kì là 2π .

D. Chu kì là 4π .

Câu 20: Đồ thị trong hình vẽ dưới đây là của hàm số nào?

- **B.** $y = \sin 3x$.
- \mathbb{C} . $y = \cos 2x$.
- **D.** $y = \cos 3x$.

Câu 21: Phương trình $(\sin x + 1)(\sin x - \sqrt{2}) = 0$ có nghiệm là

A.
$$x = -\frac{\pi}{2} + k2\pi$$
.

B.
$$x = \pm \frac{\pi}{4} + k2\pi$$
, $x = -\frac{\pi}{8} + k\pi$.

C.
$$x = \frac{\pi}{2} + k2\pi$$

D.
$$x = \pm \frac{\pi}{2} + k2\pi$$
.

Câu 22: Phương trình $\sin\left(\frac{2x}{3} - \frac{\pi}{3}\right) = 0$ (với $k \in \mathbb{Z}$) có nghiệm là

A.
$$x = k\pi$$
.

B.
$$x = \frac{2\pi}{3} + \frac{k3\pi}{2}$$
. **C.** $x = \frac{\pi}{3} + k\pi$. **D.** $x = \frac{\pi}{2} + \frac{k3\pi}{2}$.

C.
$$x = \frac{\pi}{3} + k\pi$$
.

D.
$$x = \frac{\pi}{2} + \frac{k3\pi}{2}$$

Câu 23: Phương trình $\sin x = \frac{1}{2}$ có nghiệm thỏa mãn $\frac{-\pi}{2} \le x \le \frac{\pi}{2}$ là

A.
$$x = \frac{5\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$x = \frac{\pi}{6}$$
.

$$\mathbf{C.} \ \ x = \frac{\pi}{3} + k2\pi, k \in \mathbb{Z}.$$

D.
$$x = \frac{\pi}{3}$$
.

Câu 24: Phương trình $2\cos x + \sqrt{2} = 0$ có nghiệm là

A.
$$x = \frac{\pi}{4} + k2\pi$$

$$x = \frac{3\pi}{4} + k2\pi$$
 $k \in \mathbb{Z}$.

B.
$$\begin{vmatrix} x = \frac{3\pi}{4} + k2\pi \\ x = \frac{-3\pi}{4} + k2\pi \end{vmatrix}, k \in \mathbb{Z}.$$

$$\mathbb{C}. \begin{cases} x = \frac{5\pi}{4} + k2\pi \\ x = \frac{\pi}{4} + k2\pi \end{cases}, k \in \mathbb{Z}.$$

D.
$$x = \frac{\pi}{4} + k2\pi$$

$$x = \frac{-\pi}{4} + k2\pi$$
 $k \in \mathbb{Z}$

Câu 25: Phương trình $2\cos\frac{x}{2} + \sqrt{3} = 0$ có nghiệm là

$$\mathbf{A}. \ \ x = \pm \frac{5\pi}{3} + k2\pi, k \in \mathbb{Z} \ .$$

B.
$$x = \pm \frac{5\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

C.
$$x = \pm \frac{5\pi}{6} + k4\pi, k \in \mathbb{Z}$$
.

D.
$$x = \pm \frac{5\pi}{3} + k4\pi, k \in \mathbb{Z}$$
.

Câu 26: Phương trình $\cos 3x = \cos \frac{\pi}{15}$ có nghiệm là

A.
$$x = \pm \frac{\pi}{15} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$x = \pm \frac{\pi}{45} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$
.

$$\mathbb{C}. \ x = -\frac{\pi}{45} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$

D.
$$x = \frac{\pi}{45} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$
.

Câu 27: Phương trình $\cos^2 x = \frac{1}{2}$ có nghiệm là

$$\mathbf{A.} \ \ x = \frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}.$$

B.
$$x = -\frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
.

C.
$$x = \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$$
.

D.
$$x = \pm \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$$
.

Câu 28: Phương trình $\cos 2x = \cos x$ có cùng tập nghiệm với phương trình

A.
$$\sin \frac{3x}{2} = 0$$
.

B.
$$\sin x = 1$$
.

C.
$$\sin 4x = 1$$
.

C.
$$\sin 4x = 1$$
. **D.** $\sin 2x = 1$.

Câu 29: Số nghiệm của phương trình $\sqrt{2}\cos\left(x+\frac{\pi}{3}\right)=1$ với $0 \le x \le 2\pi$ là

D. 3.

Câu 30: Gọi X là tập nghiệm của phương trình $\cos\left(\frac{x}{2} + 15^{\circ}\right) = \sin x$. Khi đó

A.
$$290^{\circ} \in X$$
.

B.
$$250^{\circ} \in X$$
.

C.
$$220^{\circ} \in X$$
.

D. $240^{\circ} \in X$.

Câu 31: Nghiệm của phương trình $\sin x \cdot \cos x = 0$ là

A.
$$x = \frac{\pi}{2} + k2\pi$$
. **B.** $x = k\frac{\pi}{2}$.

B.
$$x = k \frac{\pi}{2}$$

C.
$$x = k2\pi$$

C.
$$x = k2\pi$$
. **D.** $x = \frac{\pi}{6} + k2\pi$.

Câu 32: Tất cả các nghiệm của phương trình $\sqrt{3} \tan x + 3 = 0$ là

A.
$$x = \frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$.

B.
$$x = -\frac{\pi}{3} + k2\pi, k \in \mathbb{Z}$$
.

$$\mathbf{C.} \ \ x = \frac{\pi}{6} + k\pi \ , k \in \mathbb{Z} \ .$$

D.
$$x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

Câu 33: Tất cả các nghiệm của phương trình $\tan^2 x = 3$ là

A.
$$x = -\frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$.

B.
$$x = \pm \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

C. Vô nghiệm.

D.
$$x = \frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$.

Câu 34: Nghiệm của phương trình $\tan x = -\tan \frac{\pi}{5}$ trong khoảng $\left(\frac{\pi}{2}; \pi\right)$ là

A.
$$\frac{4\pi}{5}$$

$$\mathbf{B}.\ \frac{2\pi}{2}$$

C.
$$\frac{3\pi}{5}$$

D.
$$\frac{2\pi}{5}$$
.

Câu 35: Tất cả các nghiệm của phương trình $3\cot x - \sqrt{3} = 0$ là

$$\mathbf{A.} \ \ x = \frac{\pi}{6} + k\pi \ , \ k \in \mathbb{Z} \ .$$

B.
$$x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

$$\mathbf{C}. \ \ x = \frac{\pi}{3} + k2\pi \ , k \in \mathbb{Z} \ .$$

D. Vô nghiệm.

Câu 36: Phương trình lượng giác $\sqrt{2} \tan \left(\frac{\pi}{4} - 2x \right) - \sqrt{2} = 0$ có nghiệm là

A.
$$x = k \frac{\pi}{2}, k \in \mathbb{Z}$$
.

B.
$$x = \frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}$$
.

C.
$$x = k\pi$$
, $k \in \mathbb{Z}$.

D.
$$x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

Câu 37: Phương trình $\sin\left(\frac{5\pi}{3}\cos\pi x\right) = \frac{1}{2}$ có bao nhiều họ nghiệm?

A. 1 ho nghiêm.

B. 4 ho nghiêm.

C. 6 ho nghiệm. **D.** 2 họ nghiệm.

Câu 38: Nghiệm của phương trình $tan(x+15^\circ)=1$ với $90^\circ < x < 270^\circ$ là

A.
$$x = 210^{\circ}$$
.

B.
$$x = 135^{\circ}$$

C.
$$x = 60^{\circ}$$
.

D.
$$x = 120^{\circ}$$
.

Câu 39: Phương trình $\tan\left(\frac{\pi}{4}\sin 4x\right) = \frac{3}{2}$ có bao nhiều họ nghiệm?

A. 2 ho nghiêm.

B. 6 ho nghiêm.

C. Vô nghiêm.

D. 4 ho nghiêm.

Câu 40: Nghiệm âm lớn nhất và nghiệm dương nhỏ của phương trình $\sin 4x + \cos 5x = 0$ theo thứ tự là:

A.
$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{2}$

A.
$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{2}$. **B.** $x = -\frac{\pi}{18}$; $x = \frac{2\pi}{9}$. C. $x = -\frac{\pi}{18}$; $x = \frac{\pi}{6}$. **D.** $x = -\frac{\pi}{18}$; $x = \frac{\pi}{3}$.

C.
$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{6}$

D.
$$x = -\frac{\pi}{18}$$
; $x = \frac{\pi}{3}$

Câu 41: Tìm tổng các nghiệm của phương trình $\sin\left(5x + \frac{\pi}{3}\right) = \cos\left(2x - \frac{\pi}{3}\right)$ trên $[0; \pi]$

A.
$$\frac{7\pi}{18}$$

B.
$$\frac{4\pi}{18}$$
.

C.
$$\frac{47\pi}{8}$$
.

D.
$$\frac{47\pi}{18}$$
.

Câu 42: Số nghiệm của phương trình $\frac{\sin 2x}{1-\cos x} = 0$ trên đoạn $[0;3\pi]$ là

Câu 43: Phương trình $\cot x \cdot \cot 2x - 1 = 0$ có nghiệm là

A.
$$x = \frac{\pi}{4} + k\pi$$
, $k \in \mathbb{Z}$.

B.
$$\begin{bmatrix} x = \frac{\pi}{6} + k\pi \\ x = \frac{5\pi}{6} + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

$$\mathbf{C.} \ \ x = \frac{\pi}{6} + k\pi \ , k \in \mathbb{Z} \ .$$

D.
$$x = \frac{\pi}{2} + k \frac{\pi}{3}, k \in \mathbb{Z}$$
.

Câu 44: Nghiệm của phương trình $\tan 3x \cdot \cot 2x = 1$ là

A.
$$k\frac{\pi}{2}, k \in \mathbb{Z}$$
.

A.
$$k\frac{\pi}{2}, k \in \mathbb{Z}$$
. **B.** $-\frac{\pi}{4} + k\frac{\pi}{2}, k \in \mathbb{Z}$. **C.** $k\pi, k \in \mathbb{Z}$.

C.
$$k\pi, k \in \mathbb{Z}$$
.

Câu 45: Cho phương trình $\sin \frac{x}{3} = m^2 + 9$, m là tham số. Với giá trị nào của m thì phương trình vô nghiêm?

A.
$$-3 < m < 3$$
.

B.
$$m < 3$$

C.
$$\forall m \in \mathbb{R}$$
.

D. Không tồn tai giá tri của m.

Câu 46: Cho phương trình $\cot\left(x+\frac{3\pi}{4}\right)=m^2-4$, m là tham số. Với giá trị nào của m thì phương trình trên vô nghiệm?

A. $m \neq \pm 2$.

B. -2 < m < 2

 \mathbb{C} . $\forall m \in \mathbb{R}$.

- **D.** Không tồn tại giá trị của m.
- Câu 47: Cho phương trình $\sin(x+\pi) = \frac{m+2}{m-1}$, m là tham số. Với giá trị nào của m thì phương trình có nghiêm?

A.
$$m \le -\frac{1}{4}$$

B.
$$m \le -\frac{1}{2}$$
.

- **D.** Không tồn tại giá trị của m.
- **Câu 48:** Nghiệm của phương trình $\sin^4 x \cos^4 x = 0$ (với $k \in \mathbb{Z}$) là

A.
$$x = -\frac{\pi}{4} + k\pi$$
.

B.
$$x = \frac{\pi}{4} + k \frac{\pi}{2}$$

- **Câu 49:** Nghiệm của phương trình $\sin x \cdot \cos x \cdot \cos 2x = 0$ (với $k \in \mathbb{Z}$) là

A.
$$x = k\pi$$
.

B.
$$x = k \frac{\pi}{2}$$
.

C.
$$x = k \frac{\pi}{8}$$
.

- **D.** $x = k \frac{\pi}{4}$.
- **Câu 50:** Nghiệm của phương trình $\cos x \cos 5x = \frac{1}{2}\cos 6x$ (với $k \in \mathbb{Z}$) là

A.
$$x = \frac{\pi}{8} + k\pi$$
. **B.** $x = \frac{k\pi}{2}$

B.
$$x = \frac{k\pi}{2}$$

C.
$$x = \frac{k\pi}{3}$$

D. $x = \frac{\pi}{2} + \frac{k\pi}{4}$.

Câu 51: Nghiệm của phương trình $2\sin x + 1 = 0$ là

A.
$$x = \pm \frac{2\pi}{3} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$\begin{bmatrix} x = -\frac{\pi}{6} + k2\pi \\ x = \frac{7\pi}{6} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

C.
$$x = \pm \frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

$$\mathbb{D}. \quad x = \frac{\pi}{3} + k2\pi \\ x = \frac{2\pi}{3} + k2\pi$$

$$k \in \mathbb{Z}.$$

Câu 52: Phương trình $2\sin x - 1 = 0$ có tập nghiệm là

A.
$$S = \left\{ \frac{\pi}{6} + k2\pi; \frac{5\pi}{6} + k2\pi, k \in \mathbb{Z} \right\}.$$

B.
$$S = \left\{ \frac{\pi}{3} + k2\pi; -\frac{2\pi}{3} + k2\pi, k \in \mathbb{Z} \right\}.$$

C.
$$S = \left\{ \frac{\pi}{6} + k2\pi; -\frac{\pi}{6} + k2\pi, k \in \mathbb{Z} \right\}.$$

D.
$$S = \left\{ \frac{1}{2} + k2\pi, k \in \mathbb{Z} \right\}.$$

Câu 53: Phương trình $\cot x + \sqrt{3} = 0$ có nghiệm là

$$\mathbf{A.} \ \ x = \frac{\pi}{9} + k2\pi \ \left(k \in \mathbb{Z} \right)$$

B.
$$x = \frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$$

$$\mathbb{C}. \ x = -\frac{\pi}{6} + k2\pi \ \left(k \in \mathbb{Z}\right).$$

D.
$$x = -\frac{\pi}{6} + k\pi \ \left(k \in \mathbb{Z}\right)$$
.

Câu 54: Phương trình $\sin x = \cos x$ có số nghiệm thuộc đoạn $\left[-\pi;\pi\right]$ là

Α.		
Λ	- '-2'	
\leftarrow	 .)	

B. 5.

D. 4.

Câu 55: Số nghiệm trên đoạn $[0; 2\pi]$ của phương trình $\sin 2x - 2\cos x = 0$ là

A. 4.

B. 3.

C. 2.

D. 1.

Câu 56: Gọi α là nghiệm trong khoảng $(\pi; 2\pi)$ của phương trình $\cos x - \frac{\sqrt{3}}{2} = 0$, nếu biểu diễn $\alpha = \frac{a\pi}{1}$ với a, b là hai số nguyên dương và $\frac{a}{b}$ là phân số tối giản thì tích ab bằng

B. ab = 6.

C. ab = 66.

D. ab = 30.

Câu 57: Cho phương trình $2\sin^2 x - 3\sin x + 1 = 0$. Nếu đặt $t = \sin x$, $(|t| \le 1)$ thì phương trình đã cho thành phương trình (theo $\sin t$) nào sau đây?

A. $2t^2 + 3t - 3 = 0$. **B.** $-t^2 - 3t + 3 = 0$.

C. $2t^2 - 3t + 1 = 0$.

Phương trình $\cos^2 x + \cos x - 2 = 0$ tương đương với phương trình nào sau đây? **Câu 58:**

A. $\cos x = 1$.

B. $\tan x = 1$.

C. $\cot x = 1$.

Câu 59: Nghiệm của phương trình lượng giác: $2\sin^2 x - 3\sin x + 1 = 0$ thỏa điều kiện $0 \le x < \frac{\pi}{2}$ là

A. $x = \frac{\pi}{6}$.

C. $x = \frac{\pi}{2}$

D. $x = \frac{5\pi}{100}$

Câu 60: Tập nghiệm S của phương trình $\cos^2 x - 3\cos x = 0$ là

A. $S = \left\{-\frac{\pi}{2}\right\}$

B. $S = \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}$

C. $S = \left\{ \frac{\pi}{2} \right\}$.

D. $S = \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$

Câu 61: Tập nghiệm của phương trình $\sin^2 x - 5\sin x + 4 = 0$ là

A. $S = \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$

B. $S = \{k2\pi, k \in \mathbb{Z}\}.$

C. $S = \{k\pi, k \in \mathbb{Z}\}$.

 $\mathbf{D}. \ S = \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$

Câu 62: Nghiệm của phương trình $\sqrt{3} \cdot \cot^2 x - 2 \cot x - \sqrt{3} = 0$ là

A. $x = -\frac{\pi}{6} + k2\pi$; $x = \frac{\pi}{2} + k2\pi$, $(k \in \mathbb{Z})$. **B.** $x = -\frac{\pi}{6} + k\pi$; $x = \frac{\pi}{2} + k\pi$, $(k \in \mathbb{Z})$.

C. $x = \frac{\pi}{6} + k\pi$; $x = -\frac{\pi}{3} + k\pi$, $(k \in \mathbb{Z})$. **D.** $x = -\frac{\pi}{3} + k2\pi$; $x = \frac{\pi}{6} + k2\pi$, $(k \in \mathbb{Z})$.

Câu 63: Nghiệm của phương trình $\cos^2 x - \sin x + 1 = 0$ là

A. $x = -\frac{\pi}{2} + k\pi$. **B.** $x = \frac{\pi}{2} + k\pi$. **C.** $x = -\frac{\pi}{2} + k2\pi$. **D.** $x = \frac{\pi}{2} + k2\pi$.

Câu 64: Trên đoạn $[0; 2\pi]$, phương trình $2\cos^2 x - \sqrt{3}\cos x = 0$ có bao nhiều nghiệm?

A. 4.

C. 3.

D. 5.

Câu 65: Nghiệm của phương trình: $2\cos 2x + 3\sin x - 1 = 0$ là

$$x = \frac{\pi}{2} + k\pi$$

$$x = \arcsin\left(-\frac{1}{4}\right) + k\pi \qquad (k \in \mathbb{Z}).$$

$$x = \pi - \arcsin\left(-\frac{1}{4}\right) + k\pi$$

$$x = \frac{\pi}{2} + k\frac{2\pi}{2} \qquad (k \in \mathbb{Z})$$

$$x = \pi - \arcsin\left(-\frac{1}{4}\right) + k\frac{\pi}{2} \qquad (k \in \mathbb{Z})$$

$$x = \pi - \arcsin\left(-\frac{1}{4}\right) + k\frac{\pi}{2}$$

$$x = \frac{\pi}{2} + k2\pi$$

$$x = \arcsin\left(-\frac{1}{4}\right) + k2\pi \qquad (k \in \mathbb{Z})$$

$$x = \arcsin\left(-\frac{1}{4}\right) + k2\pi \qquad (k \in \mathbb{Z})$$

$$x = \frac{\pi}{2} + k \frac{\pi}{2}$$

$$x = \arcsin\left(-\frac{1}{4}\right) + k \frac{\pi}{2} \qquad (k \in \mathbb{Z})$$

$$x = \pi - \arcsin\left(-\frac{1}{4}\right) + k \frac{\pi}{2}$$

$$x = \frac{\pi}{2} + k2\pi$$

$$\mathbf{D.} \quad x = \frac{\pi}{2} + k2\pi$$

$$x = \arcsin\left(-\frac{1}{4}\right) + k2\pi \qquad (k \in \mathbb{Z}).$$

$$x = \pi - \arcsin\left(-\frac{1}{4}\right) + k2\pi$$

Câu 66: Nghiệm dương bé nhất của phương trình $2\sin^2 x + 5\sin x - 3 = 0$ là

A.
$$x = \frac{\pi}{6}$$
.

B.
$$x = \frac{\pi}{12}$$

C.
$$x = \frac{\pi}{3}$$
.

D.
$$x = \frac{5\pi}{6}$$

Câu 67: Nghiệm của phương trình: $\cos 2x + \cos x + 1 = 0$ là

$$x = \frac{\pi}{2} + k2\pi$$

$$x = \frac{2\pi}{3} + k\pi \quad (k \in \mathbb{Z}).$$

$$x = -\frac{2\pi}{3} + k\pi$$

$$\mathbb{B}. \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x = \frac{2\pi}{3} + k2\pi \end{bmatrix} \quad (k \in \mathbb{Z}).$$

$$x = \frac{\pi}{2} + k3\pi$$

$$x = \frac{2\pi}{3} + k\frac{7\pi}{2} \quad (k = \mathbb{Z}).$$

$$x = -\frac{2\pi}{3} + k\frac{7\pi}{2}$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x = \frac{2\pi}{3} + k2\pi & (k \in \mathbb{Z}) \\ x = -\frac{2\pi}{3} + k2\pi \end{bmatrix}$$

Câu 68: Nghiệm của phương trình $\cos x + \sin x = 1$ là

$$\mathbf{A.} \quad x = \frac{\pi}{4} + k\pi$$
$$x = k\pi$$

A.
$$\begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = k\pi \end{bmatrix}$$
B.
$$\begin{bmatrix} x = \frac{\pi}{4} + k2\pi \\ x = k2\pi \end{bmatrix}$$
C.
$$\begin{bmatrix} x = \frac{\pi}{2} + k2\pi \\ x = k2\pi \end{bmatrix}$$
D.
$$\begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x = k\pi \end{bmatrix}$$

$$\mathbf{C.} \begin{bmatrix} x = \frac{\pi}{2} + k2\pi \\ x = k2\pi \end{bmatrix}$$

$$\mathbf{D.} \quad x = \frac{\pi}{2} + k\pi$$

$$x = k\pi$$

Câu 69: Biến đổi phương trình $\sin x + \sqrt{3}\cos x = 1$ về dạng $\sin(x+a) = \sin b$ với a, b thuộc khoảng $\left(0;\frac{\pi}{2}\right)$. Tính a+b.

A.
$$a + b = \frac{\pi}{4}$$

A.
$$a+b=\frac{\pi}{4}$$
. **B.** $a+b=\frac{\pi}{3}$. **C.** $a+b=\frac{\pi}{2}$. **D.** $a+b=\frac{\pi}{6}$.

C.
$$a+b=\frac{\pi}{2}$$

D.
$$a+b=\frac{\pi}{6}$$
.

Câu 70: Phương trình $\sqrt{3}\sin 3x - \sqrt{2}\cos 2x = \cos 3x + \sqrt{2}\sin 2x$ tương đương với phương trình nào sau

$$\mathbf{A.} \sin\left(3x - \frac{\pi}{6}\right) = \cos\left(2x + \frac{\pi}{4}\right).$$

B.
$$\sin\left(3x - \frac{\pi}{6}\right) = \cos\left(2x - \frac{\pi}{4}\right)$$
.

C.
$$\sin\left(3x + \frac{\pi}{6}\right) = \sin\left(2x + \frac{\pi}{4}\right)$$
.

$$\mathbf{D.} \, \sin\left(3x - \frac{\pi}{6}\right) = \sin\left(2x - \frac{\pi}{4}\right).$$

Câu 71: Nghiệm của phương trình $\sin x + \sqrt{3}\cos x = \sqrt{2}$ là

A.
$$x = -\frac{\pi}{4} + k2\pi$$
; $x = \frac{3\pi}{4} + k2\pi$.

B.
$$x = -\frac{\pi}{12} + k2\pi$$
; $x = \frac{5\pi}{12} + k2\pi$.

C.
$$x = \frac{\pi}{3} + k2\pi$$
; $x = \frac{2\pi}{3} + k2\pi$.

D.
$$x = -\frac{\pi}{4} + k2\pi; x = -\frac{5\pi}{4} + k2\pi;$$

Câu 72: Giải phương trình $\sqrt{3} \sin 2x - \cos 2x + 1 = 0$.

$$\mathbf{A}. \begin{bmatrix} x = k\pi \\ x = \frac{\pi}{3} + k\pi \end{bmatrix}, (k \in \mathbb{Z}).$$

$$\mathbf{R}, \begin{bmatrix} x = k\pi \\ \frac{2\pi}{3} + k2\pi \end{bmatrix}, (k \in \mathbb{Z}).$$

$$C = \frac{2\pi}{3} + k2\pi$$

D.
$$x = k\pi$$

$$x = \frac{2\pi}{3} + k\pi, (k \in \mathbb{Z}).$$

Câu 73: Phương trình $\sqrt{3}\cos x + \sin x = -1$ tương đương với phương trình nào sau đây?

A.
$$\sin\left(x-\frac{\pi}{3}\right) = \frac{1}{2}$$
.

A.
$$\sin\left(x - \frac{\pi}{3}\right) = -\frac{1}{2}$$
. **B.** $\sin\left(x + \frac{\pi}{3}\right) = -\frac{1}{2}$. **C.** $\cos\left(x - \frac{\pi}{6}\right) = \frac{1}{2}$. **D.** $\cos\left(x + \frac{\pi}{6}\right) = -\frac{1}{2}$.

$$\mathbf{C.} \, \cos\left(x - \frac{\pi}{6}\right) = \frac{1}{2} \, .$$

D.
$$\cos\left(x + \frac{\pi}{6}\right) = -\frac{1}{2}$$

 $\sqrt{3}\cos x + \sin x = 3$ (1); $\sin x + \cos x = \sqrt{2}$ (2); Câu 74: Xét các phương trình lượng giác $\cos x + 2\sin x = -1$ (3). Trong các phương trình trên, phương trình nào vô nghiệm?

Câu 75: Phương trình nào dưới đây có nghiệm?

$$\mathbf{A.} \ 2\sin x - \cos x = 3.$$

B.
$$\sqrt{2} \sin x + 3\cos x = 4$$
.

C.
$$3\sin x - 5\cos x = 5$$
.

D.
$$\sin x - 3\cos x = 4$$
.

Câu 76: Họ nghiệm của phương trình: $\sin 3x - \sqrt{3}\cos 3x = 2\cos 5x$ là

A.
$$x = \frac{5\pi}{48} + k \frac{\pi}{48}, (k \in \mathbb{Z}).$$
$$x = -\frac{5\pi}{12} - k\pi$$
$$5\pi + k \pi$$

$$13. \qquad x = -\frac{\pi}{12} - k2\pi$$

C.
$$x = \frac{5\pi}{48} + k\frac{\pi}{4}$$
$$x = -\frac{5\pi}{12} - k\frac{\pi}{2}$$

D.
$$x = \frac{5\pi}{48} + k\frac{\pi}{4}, (k \in \mathbb{Z}).$$
$$x = -\frac{5\pi}{12} - k\pi$$

Câu 77: Cho phương trình $\sin x + \cos x = 1$ có các nghiệm dạng $x = a + k2\pi$ và $x = b + k2\pi$, $0 \le a, b < \pi$. Khẳng định nào sau đây đúng?

A.
$$a+b = \frac{\pi}{2}$$

A.
$$a+b=\frac{\pi}{2}$$
. **B.** $a+b=\frac{2\pi}{3}$. **C.** $a+b=\pi$. **D.** $a+b=\frac{3\pi}{5}$

C.
$$a + b = \pi$$

D.
$$a+b = \frac{3\pi}{5}$$

Câu 78: Phương trình $\sin x - \sqrt{3}\cos(x+\pi) = 2\sin 2x$ có nghiệm là

$$\mathbf{A.} \begin{bmatrix} x = \frac{\pi}{3} + k\pi \\ x = \frac{2\pi}{3} + k\pi \end{bmatrix}.$$

A.
$$\begin{bmatrix} x = \frac{\pi}{3} + k\pi \\ x = \frac{2\pi}{9} + k\pi \end{bmatrix}$$
B.
$$\begin{bmatrix} x = \frac{\pi}{3} + k2\pi \\ x = \frac{2\pi}{9} + \frac{k2\pi}{3} \end{bmatrix}$$
C.
$$\begin{bmatrix} x = \frac{\pi}{9} + k2\pi \\ x = \frac{2\pi}{3} + \frac{k\pi}{3} \end{bmatrix}$$
D.
$$\begin{bmatrix} x = \frac{\pi}{9} + k\pi \\ x = \frac{2\pi}{3} + k\pi \end{bmatrix}$$

$$\mathbf{C.} \quad x = \frac{\pi}{9} + k2\pi$$

$$x = \frac{2\pi}{3} + \frac{k\pi}{3}$$

$$\mathbf{D.} \quad x = \frac{\pi}{9} + k\pi$$

$$x = \frac{2\pi}{3} + k\pi$$

Câu 79: Phương trình $\sin x + m\cos x = \sqrt{10}$ có nghiệm khi

A.
$$\begin{bmatrix} m > 3 \\ m < -3 \end{bmatrix}$$

B.
$$-3 \le m \le 3$$
. **C.** $\begin{bmatrix} m \ge 3 \\ m \le -3 \end{bmatrix}$. **D.** $\begin{bmatrix} m \ge 3 \\ m \le -3 \end{bmatrix}$.

$$\mathbf{C.} \begin{bmatrix} m \ge 3 \\ m \le -3 \end{bmatrix}$$

$$\mathbf{D}. \begin{bmatrix} m \ge 3 \\ m < -3 \end{bmatrix}$$

Câu 80: Điều kiên để phương trình: $3\sin x + m\cos x = 5$ vô nghiêm là

$$\mathbf{A.} \quad m \le -4 \\ m \ge 4$$

B.
$$m > 4$$
.

C.
$$m < -4$$
.

D.
$$-4 < m < 4$$
.

Câu 81: Tập hợp tất cả các giá trị của m để phương trình $(m+1)\sin x - 3\cos x = m+2$ có nghiệm là

A.
$$(3;+\infty)$$
.

B.
$$(-\infty;3)$$
.

B.
$$(-\infty;3)$$
. **C.** $[3;+\infty)$.

D.
$$(-\infty;3]$$
.

Câu 82: Điều kiện của m để phương trình $m\sin x - 3\cos x = 5$ có nghiệm là

A.
$$m \ge \sqrt{34}$$
.

B.
$$-4 \le m \le 4$$
.

C.
$$m \le -4$$
 $m \ge 4$

$$\mathbb{D}$$
. $m \ge 4$.

Câu 83: Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [0;10] để phương trình $(m+1)\sin x - \cos x = 1 - m$ có nghiệm.

Câu 84: Tìm tất cả các giá trị của m để phương trình $2m\sin^2 x + 3\sin 2x = 4$ vô nghiệm.

A.
$$m > -\frac{9}{8}$$
.

B.
$$m < \frac{7}{8}$$
.

B.
$$m < \frac{7}{8}$$
. $\mathbb{C}. -\frac{\sqrt{7}}{2} \le m \le \frac{\sqrt{7}}{2}$. $m \le -\frac{\sqrt{7}}{2}$

$$m \le -\frac{\sqrt{7}}{2}$$

$$m \ge \frac{\sqrt{7}}{2}$$

Câu 85: Khi đặt $t = \tan x$ thì phương trình $2\sin^2 x + 3\sin x \cos x - 2\cos^2 x = 1$ trở thành phương trình nào sau đâv?

A.
$$2t^2 - 3t - 1 = 0$$

A.
$$2t^2 - 3t - 1 = 0$$
. **B.** $3t^2 - 3t - 1 = 0$. **C.** $2t^2 + 3t - 3 = 0$. **D.** $t^2 + 3t - 3 = 0$.

$$\mathbf{C.} \ 2t^2 + 3t - 3 = 0$$

D.
$$t^2 + 3t - 3 = 0$$
.

Câu 86: Nghiệm của phương trình $\sin^2 x + \sin x \cos x = 1$ là

$$\mathbf{A.} \begin{bmatrix} x = -\frac{\pi}{4} + k\pi \\ k \in \mathbb{Z} \\ x = \frac{\pi}{2} + k\pi \end{bmatrix}$$

B.
$$x = \frac{\pi}{4} + k\pi$$
 $k \in \mathbb{Z}$.
$$x = \frac{\pi}{2} + k\pi$$

C.
$$x = -\frac{\pi}{4} + k2\pi$$
$$k \in \mathbb{Z}.$$
$$x = \frac{\pi}{2} + k2\pi$$

$$x = \frac{\pi}{4} + k2\pi$$

$$x = \frac{\pi}{4} + k2\pi$$

$$x = \frac{\pi}{2} + k2\pi$$

Câu 87: Có bao nhiều điểm biểu diễn nghiệm của phương trình $\sin^2 x - 4\sin x \cdot \cos x - 2 \cdot \cos^2 x = 2$ trên đường tròn lương giác?

D. 4.

Câu 88: Giải phương trình $2\cos^2 x + 6\sin x \cos x + 6\sin^2 x = 1$.

A.
$$x = -\frac{\pi}{4} + k\pi$$
; $x = \arctan\left(-\frac{1}{5}\right) + k\pi$.

B.
$$x = -\frac{\pi}{4} + k \frac{2\pi}{3}$$
; $x = \arctan\left(-\frac{1}{5}\right) + k \frac{2\pi}{3}$.

C.
$$x = -\frac{\pi}{4} + k \frac{\pi}{4}$$
; $x = \arctan\left(-\frac{1}{5}\right) + k \frac{\pi}{4}$.

D.
$$x = -\frac{\pi}{4} + k2\pi$$
; $x = \arctan\left(-\frac{1}{5}\right) + k2\pi$.

Câu 89: Giải phương trình $\cos^2 x - \sqrt{3} \sin 2x = 1 + \sin^2 x$.

$$\mathbf{A.} \begin{bmatrix} x = k2\pi \\ x = \frac{\pi}{3} + k2\pi \end{bmatrix}.$$

$$\mathbf{B.} \begin{bmatrix} x = k\pi \\ x = -\frac{\pi}{3} + k\pi \end{bmatrix}$$

A.
$$\begin{bmatrix} x = k2\pi \\ x = \frac{\pi}{3} + k2\pi \end{bmatrix}$$
B.
$$\begin{bmatrix} x = k\pi \\ x = -\frac{\pi}{3} + k\pi \end{bmatrix}$$
C.
$$\begin{bmatrix} x = k\frac{2\pi}{3} \\ x = -\frac{\pi}{3} + k\frac{2\pi}{3} \end{bmatrix}$$
D.
$$\begin{bmatrix} x = k\frac{\pi}{2} \\ x = \frac{\pi}{3} + k\frac{\pi}{2} \end{bmatrix}$$

Câu 90: Nghiệm của phương trình $\cos^2 x - \sin x \cos x = 0$ là

A.
$$x = \frac{\pi}{4} + k\pi; x = \frac{\pi}{2} + k\pi$$
.

B.
$$x = \frac{\pi}{2} + k\pi$$
.

C.
$$x = \frac{\pi}{2} + k\pi$$
.

D.
$$x = \frac{5\pi}{6} + k\pi; x = \frac{7\pi}{6} + k\pi$$

Câu 91: Nghiệm dương nhỏ nhất của phương trình $2 \sin x + 2\sqrt{2} \sin x \cos x = 0$ là

A.
$$x = \frac{3\pi}{4}$$
.

B.
$$x = \frac{\pi}{4}$$
.

C.
$$x = \frac{\pi}{3}$$
.

D.
$$x = \pi$$

Câu 92: Nghiệm của phương trình: $\sin\left(2x + \frac{5\pi}{2}\right) - 3\cos\left(x - \frac{7\pi}{2}\right) = 1 + 2\sin x$ là

$$\mathbf{A.} \begin{bmatrix} x = k2\pi \\ x = \frac{\pi}{6} + k2\pi & (k \in \mathbb{Z}) \\ x = \frac{5\pi}{6} + k\pi \end{bmatrix}$$

$$\mathbf{B.} \quad x = k\frac{\pi}{2}$$

$$\mathbf{B.} \quad x = \frac{\pi}{6} + k\pi \qquad (k \in \mathbb{Z}).$$

$$x = \frac{5\pi}{6} + k2\pi$$

$$\mathbf{C.} \begin{bmatrix} x = k\pi \\ x = \frac{\pi}{6} + k2\pi & (k \in \mathbb{Z}) \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$$

$$\mathbf{D.} \quad x = k2\pi$$

$$x = \frac{\pi}{6} + k2\pi \quad (k \in \mathbb{Z}).$$

$$x = \frac{5\pi}{6} + k2\pi$$

Câu 93: Tìm số nghiệm $x \in \left[-\frac{3\pi}{2}; -\frac{\pi}{2} \right]$ của phương trình $\sqrt{3} \sin x = \cos \left(\frac{3\pi}{2} - 2x \right)$.

Câu 94: Nghiệm của phương trình $\sin 3x + \cos 2x = 1 + 2\sin x \cos 2x$ là

$$\mathbf{A.} \begin{bmatrix} x = k\pi \\ x = \frac{\pi}{6} + k2\pi \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} x = k\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$$

C.
$$x = \frac{\pi}{6} + k2\pi$$
$$x = \frac{5\pi}{6} + k2\pi$$

A.
$$\begin{bmatrix} x = k\pi \\ x = \frac{\pi}{6} + k2\pi \end{bmatrix}$$
B.
$$\begin{bmatrix} x = k\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$$
C.
$$\begin{bmatrix} x = k\pi \\ x = \frac{\pi}{6} + k2\pi \end{bmatrix}$$

$$x = \frac{\pi}{6} + k2\pi$$

$$x = \frac{5\pi}{6} + k2\pi$$

$$x = \frac{\pi}{6} + k2\pi$$

Câu 95: Phương trình $2\sin x + \cos x - \sin 2x - 1 = 0$ có nghiệm là

$$\mathbf{A.} \quad x = \frac{\pi}{6} + k\pi$$

$$\mathbf{A.} \quad x = \frac{5\pi}{6} + k\pi , \ k \in \mathbb{Z}.$$

$$x = k\pi$$

$$\mathbf{B.} \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi , \ k \in \mathbb{Z} \\ x = k2\pi \end{bmatrix}$$

$$\mathbf{C.} \quad x = \frac{\pi}{6} + k2\pi$$

$$\mathbf{C.} \quad x = -\frac{\pi}{6} + k2\pi , \ k \in \mathbb{Z}.$$

$$x = k2\pi$$

$$x = \frac{\pi}{6} + k2\pi$$

$$x = -\frac{\pi}{6} + k2\pi, \ k \in \mathbb{Z}.$$

$$x = k\pi$$

Câu 96: Giải phương trình $1+\sin x + \cos x + \tan x = 0$.

A.
$$x = \pi + k2\pi$$
$$x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$

B.
$$\begin{bmatrix} x = \pi + k2\pi \\ x = \frac{\pi}{4} + k2\pi \\ x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z} \end{bmatrix}$$

$$\mathbf{D.} \begin{bmatrix} x = \pi + k2\pi \\ x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z} \end{bmatrix}$$

$$x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$

$$x = \pi + k2\pi$$

$$x = \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}$$

$$\mathbf{D.} \begin{bmatrix} x = \pi + k2\pi \\ x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z} \end{bmatrix}.$$

Câu 97: Phương trình $2\sin x + \cot x = 1 + 2\sin 2x$ tương đương với phương trình

A.
$$\begin{bmatrix} 2\sin x = -1 \\ \sin x - \cos x - 2\sin x \cos x = 0 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} 2\sin x = 1 \\ \sin x + \cos x - 2\sin x \cos x = 0 \end{bmatrix}.$$

C.
$$\begin{bmatrix} 2\sin x = -1 \\ \sin x + \cos x - 2\sin x \cos x = 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2\sin x = 1 \\ \sin x + \cos x - 2\sin x \cos x = 0 \end{bmatrix}$$
D.
$$\begin{bmatrix} 2\sin x = 1 \\ \sin x - \cos x - 2\sin x \cos x = 0 \end{bmatrix}$$

Câu 98: Phương trình $4\sin x \cos x \cos 2x = 1$ có nghiệm là

A.
$$x = -\frac{\pi}{8} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

B.
$$x = \frac{\pi}{8} + k\pi, k \in \mathbb{Z}$$
.

C.
$$x = -\frac{\pi}{8} + k\pi, k \in \mathbb{Z}$$
.

D.
$$x = \frac{\pi}{8} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

Câu 99: Nghiệm dương nhỏ nhất của phương trình $(2\sin x - \cos x)(1 + \cos x) = \sin^2 x$ là

A.
$$x = \frac{5\pi}{6}$$

B.
$$x = \frac{\pi}{12}$$
. **C.** $x = \frac{\pi}{6}$. **D.** $x = \pi$.

C.
$$x = \frac{\pi}{6}$$

D.
$$x = \pi$$
.

Câu 100: Nghiệm của phương trình: $\cos 2x - 3\cos x = 4\cos^2 \frac{x}{2}$.

Câu 112:	Cô dâu và chú rể mời ớ xếp sao cho cô dâu, chú		niệm, người thợ chụp l	nình có bao nhiêu cách sắp
	A. 8!– 7!.	B. 2.7!.	C. 6.7!.	D. 2! +6!.
Câu 113:	2 đặt cạnh nhau.	20 cuốn sách khác nha B. 20! – 19!.		ắp xếp sao cho tập 1 và tập D. 19!.2!.
Cân 114.	Có bao nhiêu cách sắp x			
Cau 114.	A. 12.	B. 24.	C. 4.	D. 6.
Câu 115:		_		ình, Hùng, Dũng cùng ngồi iết nam và nữ ngồi xen kẽ
	A. 576.	B. 144.	C. 2880.	D. 1152.
Câu 116:	Từ các số tự nhiên 1, 2, A. 4 ⁴ .	3, 4 có thể lập được bac B. 24.	nhiêu số tự nhiên có 4 C. 1.	chữ số khác nhau?
O^ 115	_			
Cau 117:	Có bao nhiêu cách xếp k A. 15.	B. 720.	c. 30.	D. 360.
Câu 118:	Có bao nhiều cách cắm bông)?	3 bông hoa khác nhau v	ào 5 lọ khác nhau (mội	lọ cắm không quá một một
	A. 60.	B. 10.	C. 15.	D. 720.
Câu 119:	Có bao nhiêu cách mắc	nối tiếp 4 bóng đèn đượ	c chọn từ 6 bóng đèn kl	nác nhau?
	A. 15.	B. 360.	C. 24.	D. 17280.
Câu 120:	Trong mặt phẳng cho n điểm đầu và điểm cuối t		=	iêu vecto khác vecto $\vec{0}$ có
	A. 15.	B. 12.	C. 1440.	D. 30.
Câu 121:	viên mỗi đội cần trình v	với trọng tài một danh s	ách sắp thứ tự 5 cầu th	ân lưu 11 mét. Huấn luyện ủ trong số 11 cầu thủ để đá ao nhiêu cách lập danh sách
	A. 462.	B. 55.	C. 55440.	D. 11!.5!.
Câu 122:	Giả sử có 8 vận động v đích cùng lúc thì có bao A. 336.		. •	ợp có hai vận động viên về nất, nhì, ba? D. 120.
Câu 123:	chọn ban thường vụ gồr chọn?	n ba chức vụ Bí thư, Ph	nó bí thư, Ủy viên thườn	ào ban thường vụ. Nếu cần ng vụ thì có bao nhiêu cách
	A. 210.	B. 200.	C. 180.	
Câu 124:	Một cuộc thi có 15 người kết quả của cuộc thi là v A. 2730.	_		ào có điểm bằng nhau. Nếu êu kết quả có thể? D. 2370.
Câu 125:	•	ó 4 giải: 1 giải nhất, 1 g	iải nhì, 1 giải ba, 1 giải	xổ số đánh số từ 1 đến 100 tư. Kết quả là việc công bố thể?

	A. 94109040.	B. 94109400.	C. 94104900.	D. 94410900.
Câu 126:	cho 100 người. Xổ số c ai trúng giải nhất, giải n vé số 47 trúng một trong	ó 4 giải: 1 giải nhất, 1 g hì, giải ba, giải tư. Hỏi c g bốn giải?	iải nhì, 1 giải ba, 1 giải có bao nhiêu kết quả có	xổ số đánh số từ 1 đến 100 tư. Kết quả là việc công bố thể nếu biết rằng người giữ
	A. 3766437.		C. 3764367.	D. 3764376.
Câu 127:	Có bao nhiều số tự nhiề A. 15120.	n gồm 5 chữ số khác nh B. 9 ⁵ .	au được lập từ các số 1, C. 5 ⁹ .	D. 126.
Câu 128:	Cho tập $A = \{0;1;2;3;4;$	5;6;7;8;9}. Số các số tụ	r nhiên có 5 chữ số đôi	một khác nhau lấy ra từ tập
	A là A. 30420.	B. 27162.	C. 27216.	D. 30240.
Câu 129:	Có bao nhiều số tự nhiề chữ số 1 và 3?	_	_	chữ số 2 đứng liền giữa hai
	A. 249.	B. 7440.	C. 3204.	D. 2942.
Câu 130:	Một lớp học có 40 học s toàn trường, hỏi có bao A. 9880.	=		tham gia vệ sinh công cộng D. 455.
GA 404				
Câu 131:	cách lập?		_	n 5 người, hỏi có bao nhiêu
	A. 25.	B. 252.	C. 50.	D. 455.
Câu 132:	Một hộp đựng 5 viên bi A. 665280.	màu xanh, 7 viên bi mà B. 924.	u vàng. Có bao nhiều ca C. 7.	ách lấy ra 6 viên bi bất kỳ? D. 942.
Câu 133:	Có bao nhiêu cách lấy h		•	D 0650
	A. 104.	B. 450.	C. 1326.	D. 2652.
Câu 134:	Có bao nhiều cách cắm bông)?	3 bông hoa giống nha	u vào 5 lọ khác nhau (mỗi lọ cắm không quá một
	A. 10.	B. 30.	C. 6.	D. 60.
Câu 135:	Trong mặt phẳng cho ta đầu mút thuộc P ?	ập hợp P gồm 2018 điể	m phân biệt. Hỏi có ba	o nhiêu đoạn thẳng mà hai
	A. $\frac{2018!}{2016!}$.	$\mathbb{B}. \frac{2016!}{2!}.$	C. $\frac{2018!}{2!}$.	D. $\frac{2018!}{2016! 2!}$.
Câu 136:	Cho 10 điểm, không có trong 10 điểm nói trên?	3 điểm nào thẳng hàng.	Hỏi có bao nhiêu đườn	g thẳng khác nhau tạo bởi 2
	A. 90.	B. 20.	C. 45.	D. 30.
Câu 137:	Trong mặt phẳng, cho được bao nhiều tam giác	-	-	thẳng hàng. Hỏi có thể lập
	A. 15.	B. 20.	C. 60.	D. 18.
Câu 138:	Cho 10 điểm phân biệt hàng. Hỏi có bao nhiêu	•		không có 3 điểm nào thẳng ?
	A. 120 tam giác.	B. 100 tam giác.		

Câu 139:	Cho hai đường thẳng sơ phân biệt. Tính số tam g A. 5690.		-	n biệt, trên d_2 lấy 20 điểm D. 5590.
Câu 140:	Với đa giác lồi 10 cạnh A. 90.	thì số đường chéo là B. 45.	C. 35.	D. Một số khác.
Câu 141:	Trong mặt phẳng có ba song với nhau và năm đ A. 60.			đường thẳng phân biệt song g thẳng song song đó. D. 36.
Câu 142:	Một lớp có 15 học sinh trong đó có đúng 3 học s A. 110790.	sinh nữ?	r. Có bao nhiêu cách cl C. 117900.	họn 5 bạn học sinh sao cho D. 110970.
Câu 143:	Có bao nhiều số tự nhiê chữ số chẵn và hai chữ s		nu và khác 0 mà trong r	nỗi số luôn luôn có mặt hai
	A. $4 C_4^1 \cdot C_5^1$.	B. $3!C_3^2 \cdot C_5^2$.	C. $4!C_4^2 \cdot C_5^2$.	D. $3!C_4^2 \cdot C_5^2$.
Câu 144 :	Một túi đựng 6 bi trắng, bi lấy ra có đủ hai màu.	, 5 bi xanh. Lấy ra 4 viê	en bi từ túi đó. Hỏi có ba	ao nhiêu cách lấy mà 4 viên
	A. 300.	B. 310.	C. 320.	D. 330.
Câu 145:	Một nhóm học sinh có c có cả nam và nữ?	ố bạn nam và 5 bạn nữ.	Hỏi có bao nhiều cách	chọn ra 5 học sinh trong đó
	A. 455.	B. 7.	C. 456.	D. 462.
Câu 146:				ần chọn 3 học sinh tham gia nh trong đó có nhiều nhất 1
	A. 2625.	B. 455.	C. 2300.	D. 3080.
Câu 147:	Từ 20 người cần chọn ra Hỏi có bao nhiêu cách c A. 4651200.	họn đoàn đại biểu?	m 1 trưởng đoàn, 1 phó C. 4651400.	đoàn, 1 thư kí và 3 ủy viên.
Câu 148:	Một nhóm đoàn viên th	anh niên tình nguyện v iên nữ. Hỏi có bao nhi	về sinh hoạt tại một xã ều cách phân chia nhón	nông thôn gồm có 21 đoàn n về 3 ấp để hoạt động sao
	$A. C_{36}^{12}$.	B. $3C_{36}^{12}$.	C. $3C_{21}^7 \cdot C_{15}^5$.	D. $C_{21}^7 \cdot C_{15}^5 \cdot C_{14}^7 \cdot C_{10}^5$.
Câu 149:	đủ cả ba màu. Số cách c	họn là		nhiên 5 viên bi sao cho có
	A. 2170.	B. 3843.	C. 3003.	D. 840.
Câu 150:	Tìm tất cả các giá trị $x \in$			
	A. $x = 2$.	B. $x = 3$.	C. $x = 2$; $x = 3$.	B. $x = 5$.
Câu 151:	Tính tổng S các giá trị			D 0
~.	A. $S = -4$.			D. $S = 3$.
Câu 152:	Số các số tự nhiên n tho A . 0 .	oả mãn $A_n^3 + 5A_n^2 = 2(n + 1)$	+15) là C. 2.	D. 3.
	INO U.	1.70 1.	V. 2.	D , J.

Câu 153	Tìm $n \in \mathbb{N}$ thỏa mãn C	$C_{n+1}^{1} + 3C_{n+2}^{2} = C_{n+1}^{3}$.		
	A. $n = 12$.	B. $n = 9$.	C. $n = 16$.	D. $n = 2$.
Câu 154	Tìm $n \in \mathbb{N}$ thỏa mãn C			
	A. $n = 15$.	B. $n = 18$.	C. $n = 16$.	D. $n = 12$.
Câu 155	Cho hình bình hành AE			
	$\mathbf{A.} \ B = T_{\overline{AD}}(C).$	$\mathbf{B.} \ B = T_{\overline{DA}}(C).$	$C. B = T_{\overline{CD}}(A).$	$D. B = T_{\overline{AB}}(C).$
Câu 156	Trong mặt phẳng Oxy,	cho $\vec{v} = (-7;5)$ và điển	n $M(-2;2)$. Phép tịnh t	tiến theo vector \vec{v} biến điểm
	M thành điểm M' có A . $M'(-5;7)$.		C . M'(9;7).	D . $M'(5;-3)$.
Câu 157	Trong mặt phẳng tọa đợ	Oxy, tìm phép quay bi	iến điểm $A(-1;5)$ thành	n điểm $B(5;1)$.
	A. $Q_{(O,-90^\circ)}$.	B. $Q_{(O,30^{\circ})}$.	C. $Q_{(I,90^\circ)}$ với $I(1;1)$.	D. $Q_{(I,30^\circ)}$ với $I(1;1)$.
Câu 158	Cho $\overrightarrow{AB} = -2\overrightarrow{AC}$. Khẳi	ng định nào sau đây là đ	úng?	
		B. $V_{(A,-2)}(B) = C$.	=	D. $V_{(A,-2)}(C) = B$.
Câu 159	: Cho tam giác ABC có	trọng tâm G , $T_{\overline{AG}}(G)$ =	M . Mệnh đề nào là đú	ng?
	A. M là trung điểm của R M trùng với A	BC.		
		a hình bình hành <i>BGCN</i> a hình bình hành <i>BCGN</i>		
Câu 160	Trong mặt phẳng Oxy	, cho đường tròn (C)	có phương trình $(x-1)$	$(1)^2 + (y-2)^2 = 4$. Hỏi phép
Câu 160	,	, cho đường tròn (C) (C) thành đường tròn cơ		$(1)^2 + (y-2)^2 = 4$. Hỏi phép đây?
Câu 160	,	(C)thành đường tròn co		đây?
Câu 160	$V_{\scriptscriptstyle (O,-2)}$ biến đường tròn	(C)thành đường tròn co 4	ố phương trình nào sau c	đây? =16 .
	$V_{(0,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 =$ C. $(x-4)^2 + (y-2)^2 =$	(C)thành đường tròn co 4 .	6 phương trình nào sau 6 B. $(x+2)^2 + (y+4)^2 = 0$ D. $(x+2)^2 + (y+4)^2 = 0$	đây? =16 .
	$V_{(O,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 = C$. $(x-4)^2 + (y-2)^2 = C$. Trong mặt phẳng Oxy	(C) thành đường tròn co A .	6 phương trình nào sau 6 B. $(x+2)^2 + (y+4)^2 = (x+2)^2 + (x+$	đây? =16. =16. $(2)^2 + (y-2)^2 = 4$. Hỏi phép
	$V_{(O,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 =$ C. $(x-4)^2 + (y-2)^2 =$ Trong mặt phẳng Oxy đồng dạng có được bằn	(C) thành đường tròn co A .	ố phương trình nào sau c B. $(x+2)^2 + (y+4)^2 = 0$ Có phương trình $(x-2)^2 + 0$ ốp phép vị tự tâm O , tỉ	đây? =16. =16. $(2)^2 + (y-2)^2 = 4$. Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm
	$V_{(O,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 =$ C. $(x-4)^2 + (y-2)^2 =$ Trong mặt phẳng Oxy đồng dạng có được bằn	(C) thành đường tròn co A . 16. 2, cho đường tròn (C) 18 g cách thực hiện liên tiết tròn (C) thành đường t	ố phương trình nào sau c B. $(x+2)^2 + (y+4)^2 = 0$ Có phương trình $(x-2)^2 + 0$ ốp phép vị tự tâm O , tỉ	đây? =16. =16. $(2)^2 + (y-2)^2 = 4$. Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm
	$V_{(O,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 =$ C. $(x-4)^2 + (y-2)^2 =$ Trong mặt phẳng Oxy đồng dạng có được bằn O góc 90° biến đường	(C) thành đường tròn co A . 16. 2, cho đường tròn (C) 18 g cách thực hiện liên tiết tròn (C) thành đường A	ố phương trình nào sau c B. $(x+2)^2 + (y+4)^2 = 0$ Có phương trình $(x-2)^2 + 0$ ốp phép vị tự tâm O , tỉ	đây? =16. $(2)^{2} + (y-2)^{2} = 4$. Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm to sau đây?
Câu 161	$V_{(o,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 =$ C. $(x-4)^2 + (y-2)^2 =$: Trong mặt phẳng Oxy đồng dạng có được bằn O góc 90° biến đường A. $(x+2)^2 + (y-1)^2 =$ C. $(x+1)^2 + (y-1)^2 = 1$	(C) thành đường tròn co A . 16. 2, cho đường tròn (C) ag cách thực hiện liên tiết tròn (C) thành đường A .	ố phương trình nào sau ố \mathbf{B} . $(x+2)^2 + (y+4)^2 = \mathbf{D}$. $(x+2)^2 + \mathbf{D}$ có phương trình $(x-2)^2$ tròn có phương trình nào tròn có phương trình nào \mathbf{D} $(x-1)^2 + (y-1)^2 = \mathbf{D}$. $(x-1)^2 + (y-1)^2 = \mathbf{D}$	đây? =16. $(2)^{2} + (y-2)^{2} = 4$. Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm to sau đây?
Câu 161	$V_{(o,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 =$ C. $(x-4)^2 + (y-2)^2 =$: Trong mặt phẳng Oxy đồng dạng có được bằn O góc 90° biến đường A. $(x+2)^2 + (y-1)^2 =$ C. $(x+1)^2 + (y-1)^2 = 1$	(C) thành đường tròn co A . 16. 2, cho đường tròn (C) thành đường tròn (C) thành đường tròn A .	ố phương trình nào sau ố \mathbf{B} . $(x+2)^2 + (y+4)^2 = \mathbf{D}$. $(x+2)^2 + \mathbf{D}$ có phương trình $(x-2)^2$ tròn có phương trình nào tròn có phương trình nào \mathbf{D} $(x-1)^2 + (y-1)^2 = \mathbf{D}$. $(x-1)^2 + (y-1)^2 = \mathbf{D}$	đây? =16. $(2)^{2} + (y-2)^{2} = 4$. Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm to sau đây?
Câu 161	$V_{(O,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 = C$. $(x-4)^2 + (y-2)^2 = C$. Trong mặt phẳng Oxy đồng dạng có được bằn O góc 90° biến đường A. $(x+2)^2 + (y-1)^2 = C$. $(x+1)^2 + (y-1)^2 = C$. Trong mặt phẳng tọa đơ biến B thành C . Khi đ	(C) thành đường tròn co A . 16. 17. cho đường tròn (C) thành đường tròn (C) thành đường tròn A . 18. A . 19. A . 10. A . 10. A . 11. A . 10. A . 10. A . 10. A . 10. A .	ố phương trình nào sau ố \mathbf{B} . $(x+2)^2 + (y+4)^2 = \mathbf{D}$. $(x+2)^2 + \mathbf{D}$ có phương trình $(x-2)^2$ tròn có phương trình nào tròn có phương trình nào \mathbf{D} $(x-1)^2 + (y-1)^2 = \mathbf{D}$. $(x-1)^2 + (y-1)^2 = \mathbf{D}$	đây? $=16.$ $=16.$ $2)^{2} + (y-2)^{2} = 4.$ Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm to sau đây? $= \frac{1}{2} \cdot $
Câu 161	$V_{(o,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 = C$. $(x-4)^2 + (y-2)^2 = C$. Trong mặt phẳng Oxy đồng dạng có được bằn O góc 90° biến đường A. $(x+2)^2 + (y-1)^2 = C$. $(x+1)^2 + (y-1)^2 = 1$. Trong mặt phẳng tọa đơ biến B thành C . Khi đ. A. $k = -\frac{1}{2}$.	(C) thành đường tròn co A . 16. 17. cho đường tròn (C) A . 18. cách thực hiện liên tiết A . 19. A . 10. A . 11. A . 12. A . 13. A . 14. A . 15. A . 16. A . 17. A . 18. A . 19. A .	6 phương trình nào sau c B. $(x+2)^2 + (y+4)^2 =$	đây? $=16.$ $=16.$ $2)^{2} + (y-2)^{2} = 4.$ Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm to sau đây? $= \frac{1}{2} \cdot $
Câu 161	$V_{(O,-2)}$ biến đường tròn A. $(x-4)^2 + (y-2)^2 = C$. $(x-4)^2 + (y-2)^2 = C$. Trong mặt phẳng Oxy đồng dạng có được bằn O góc 90° biến đường A. $(x+2)^2 + (y-1)^2 = C$. $(x+1)^2 + (y-1)^2 = 1$. Trong mặt phẳng tọa đơ biến B thành C . Khi đ A . $k = -\frac{1}{2}$.	(C) thành đường tròn co A . 16. 17. cho đường tròn (C) A . 18. cách thực hiện liên tiết A . 19. A . 10. A . 11. A . 12. A . 13. A . 14. A . 15. A . 16. A . 17. A . 18. A . 19. A .	6 phương trình nào sau 6 B. $(x+2)^2 + (y+4)^2 = D$ Có phương trình $(x-2)^2 + C$ có phương trình $(x-2)^2 + C$ có phương trình nào tròn có phương trình nào $D = (x-1)^2 + (y-1)^2 = C$	đây? $=16.$ $=16.$ $2)^{2} + (y-2)^{2} = 4.$ Hỏi phép số $k = \frac{1}{2}$ và phép quay tâm to sau đây? $= \frac{1}{2} \cdot $

$$\mathbf{A.} \ \ Q_{(I,180^\circ)}(\Delta IBC) = \Delta IDA \ .$$

$$\mathbf{C.} \ \ Q_{(I,-90^\circ)}(\Delta IBC) = \Delta IAB \ .$$

$$\mathbf{D.} \ \ Q_{(I,360^\circ)}(\Delta IBC) = \Delta IDA \ .$$

Câu 170: Cho hình vuông ABCD tâm O, gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Phép dời hình nào sau đây biến $\triangle AMO$ thành $\triangle CPO$?

A. Phép tinh tiến vector \overline{AM} .

B. Phép đối xứng truc MP.

C. Phép quay tâm A góc quay 180° .

D. Phép quay tâm O góc quay 180°.

Câu 171: Cho tam giác ABC, $Q_{(O,30^\circ)}(A) = A'$, $Q_{(O,30^\circ)}(B) = B'$, $Q_{(O,30^\circ)}(C) = C'$, với O khác A, B, C. Kết luận nào sau đây đúng?

A. Δ*ABC* đều.

B. $\triangle AOA'$ đều.

C. $\triangle ABC$ cân.

D. $\triangle AOA'$ cân.

Câu 172: Trong mặt phẳng tọa độ Oxy, cho hai điểm M(0;2), N(-2;1) và vécto $\vec{v} = (1;2)$. Phép tịnh tiến theo vécto \vec{v} biến M, N thành hai điểm M', N' tương ứng. Tính độ dài M'N'.

A.
$$M'N' = \sqrt{5}$$
. **B.** $M'N' = \sqrt{7}$. **C.** $M'N' = 1$.

D. M'N' = 3.

Câu 173: Cho $\triangle ABC$ có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Phép vị tự nào sau đây biến $\triangle ABC$ thành $\triangle NPM$?

A.
$$(C'):(x+2)^2+(y-4)^2=10$$
.

B.
$$(C'):(x+2)^2+(y-4)^2=20$$
.

C.
$$(C'):(x-2)^2+(y-4)^2=10$$
.

D.
$$(C'):(x-2)^2+(y-4)^2=20$$
.

Câu 185: Trong các mênh đề sau, mênh đề nào đúng?

A. Phép tịnh tiến biến tam giác thành tam giác không bằng nó.

B. Phép vị tự biển mọi điểm thành chính nó.

C. Phép quay biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

D. Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

Câu 186: Trong các mệnh đề sau, mệnh đề nào sai?

A. Hai đường thẳng bất kì luôn đồng dạng.

B. Hai đường tròn bất kì luôn đồng dạng.

C. Hai hình vuông bất kì luôn đồng dạng.

D. Hai hình chữ nhật bất kì luôn đồng dạng.

Câu 187: Khẳng định nào sai?

A. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kỳ.

B. Phép quay bảo toàn khoảng cách giữa hai điểm bất kỳ.

C. Nếu M' là ảnh của M qua phép quay $Q_{(Q,\alpha)}$ thì $OM \neq OM'$.

D. Phép quay biến đường tròn thành đường tròn có cùng bán kính.

Câu 188: Cho $\triangle ABC$ có độ dài các cạnh là a=3,b=5,c=7. Phép đồng dạng tỉ số k=2 biến $\triangle ABC$ thành $\triangle A'B'C'$ có diện tích là

A.
$$\frac{15\sqrt{3}}{2}$$

B.
$$15\sqrt{3}$$
.

C.
$$\frac{15\sqrt{3}}{4}$$
.

D.
$$\frac{15\sqrt{3}}{8}$$

Câu 189: Phép biến hình F là phép dời hình thì

A. F biến đường thẳng thành đường thẳng song song với nó.

 ${\bf B}.$ F biến đường thẳng thành chính nó.

 \mathbb{C} . F biến đường thẳng thành đường thẳng cắt nó.

 ${f D}$. F biến tam giác thành tam giác bằng nó.

Câu 190: Giả sử phép biến hình F biến $\triangle ABC$ thành $\triangle A'B'C'$. Xét các mệnh đề sau:

(1) Trọng tâm $\triangle ABC$ biến thành trọng tâm $\triangle A'B'C'$.

(2) Trực tâm $\triangle ABC$ biến thành trực tâm $\triangle A'B'C'$.

(3) Tâm đường tròn ngoại tiếp, nội tiếp ΔABC lần lượt biến thành tâm đường tròn ngoại tiếp, nội tiếp $\Delta A'B'C'$.

Số mệnh đề đúng trong 3 mệnh đề trên là:

A. 0.

B. 1.

C. 2.

D. 3.

Câu 191: Hãy tìm khẳng định sai trong các khẳng định sau:

A. Phép tinh tiến là phép đời hình.

B. Phép đồng nhất là phép dời hình.

C. Phép quay là phép doi hình.

D. Phép vị tự là phép dời hình.

Câu 192: Trong các mệnh đề sau, mệnh đề nào sai?

A. Phép dời hình là một phép đồng dạng.

B. Phép vị tự là một phép đồng dạng.

C. Phép quay là một phép đồng dạng.

D. Phép đồng dạng là phép dời hình.

Câu 193: Trong các mệnh đề sau, mệnh đề nào sai?

B. Phép dời hình là phép đồng dạng tỉ số 1.

A. Phép vị tự là phép đồng dạng.

C. Phép dời hình là phép vị tự.

D. Phép quay là phép dòi hình.

Câu 194: Phép vị tự tỉ số k = -2 là phép đồng dạng tỉ số bằng bao nhiều?

B.
$$-1$$

II. TỰ LUẬN

Câu 1. Giải phương trình:

a.
$$\sin 2x + \sqrt{3} \cdot \cos 2x + 1 = 0$$

b. $\sin(x + 25^{\circ}) + \sqrt{3} \cdot \cos(x + 25^{\circ}) + 2 = 0$
c. $\sin^{2} x + 2\cos^{2} x + 1 = 0$
d. $\cot x = \tan x + \frac{2\cos 4x}{\sin 2x}$
e. $5\sin x - 2 = 3(1 - \sin x) \tan^{2} x$
f. $(2\cos x - 1)(2\sin x + \cos x) = \sin 2x - \sin x$
g. $\sin x + \sin 2x = \sqrt{3}(\cos x + \cos 2x)$
h. $\sqrt{1 - \sin x} + \sqrt{1 - \cos x} = 1$
i. $4(\sin^{3} x + \cos^{3} x) = \cos x + 3\sin x$
j. $\frac{1}{\cos x} - \frac{1}{\sin x} = 2\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)$

Câu 2. Trong mặt phẳng Oxy, cho đường thẳng d:3x-4y+4=0. Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k=-2 và phép tịnh tiến theo vector $\vec{v}=(-1;2)$.

Câu 3. Trong mặt phẳng Oxy, cho đường thẳng d: x+y+3=0. Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay O góc 45 độ và k=2 và phép tịnh tiến theo vector $\vec{v}=(-1;2)$.

Câu 4. Trong mặt phẳng Oxy, cho đường tròn $(C):(x-1)^2+(y-1)^2=16$. Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k=2 và phép tịnh tiến theo vector $\vec{v}=(-2;1)$.

Câu 5. Từ các chữ số 0,1,2,3,4,5,6 có thể lập được bao nhiều số tự nhiên có 4 chữ số đôi một khác nhau và chia hết cho 5.

Câu 6. Từ các chữ số 0,1,3,4,5,7,8,9 có thể lập được bao nhiều số tự nhiên có 3 chữ số đôi một khác nhau và chia hết cho 9.

Câu 7. Từ các chữ số 0,1,2,3,5,8,9 có thể lập được bao nhiều số tự nhiên có 3 chữ số đôi một khác nhau và chia hết cho 3.

Câu 8. Tìm tất cả các giá trị thực của tham số m để phương trình $2\sin^2 x + (3+m)\cos x + m - 2 = 0$

- a. Có nghiệm
- b. có đúng 1 nghiệm thuộc khoảng $(0;2\pi)$.

Câu 9. Tìm tất cả các giá trị thực của tham số m để phương trình $(\cos x + 1)(\sin^2 3x + (3 - m)\cos 3x - 2) = 0$

- a. Có nghiệm
- b. có đúng 1 nghiệm thuộc khoảng $(0;2\pi)$.