TEKNIK MANAJEMEN PROYEK (PERT dan CPM)

Berbagai organisasi yang mempunyai tujuan jangka panjang dan rencana strategis, suatu saat tentunya akan merealisasikan rencana tsb melalui proyek-proyek yang telah dijadwalkan

Karena manajemen proyek bersifat sementara, artinya proyek akan dimulai pada suatu kegiatan tertentu dan waktu tertentu, serta selesai dan diakhiri oleh suatu kegiatan dan waktu tertentu pula

MANAJEMEN PROYEK

- Manajemen proyek berarti kegiatan perencanaan, koordinasi dan pengawasan dari suatu proyek yang merupakan suatu sistem yang kompleks
- Ada tiga fase dalam manajemen proyek

 PERT dan CPM adalah suatu alat manajemen proyek yang digunakan untuk melakukan penjadwalan, mengatur dan mengkoordinasi bagian-bagian pekerjaan yang ada didalam suatu proyek.

- ♣ PERT (Program Evaluation and Review Technique) / Teknik evaluasi dan pengulasan program
- **CPM** (Critical Path Method) / Metode jalur kritis

DEFINISI PERT dan CPM

PERT (Program Evaluation and Review Technique)

- Teknik manajemen proyek yang menggunakan tiga perkiraan waktu untuk setiap aktivitas
- Metode PERT memasukkan unsur ketidakpastian yaitu dengan menyatakan perhitungan varians dan probalilitas penyelesain proyek

CPM (Critical Path Method)

- Teknik manajemen proyek yang menggunakan hanya satu faktor per aktivitas
- Metode CPM ini menganalisis suatu proyek dan jaringan kegiatan secara keseluruhan, dimana waktu untuk melaksanakan kegiatan diasumsikan sudah

ENAM LANGKAH DASAR PERT dan CPM

Mengidentifkasikan proyek dan menyiapkan struktur pecahan kerja,

Membangun hubungan antara aktivitas-aktivitas.

Menggambarkan jaringan yang menghubungkan keseluruhan aktivitas

Menetapkan perkiraan waktu dan/atau biaya untuk tiap aktivitas

Menghitung jalur waktu terpanjang melalui jaringan. Ini yang disebut jalur kritis

Menggunakan jaringan untuk membantu perencanaan, penjadwalan, dan pengendalian proyek.

PROSES DALAM PERT dan CPM

1. KOMPONEN JARINGAN (NETWORK COMPONENT)

- Jaringan CPM/PERT menunjukkan saling berhubungnya antara satu aktivitas dengan aktivitas lainnya dalam suatu proyek
- Ada dua pendekatan untuk menggambarkan jaringan proyek yakni kegiatan pada <u>titik</u> (activity on node – AON) dan kegiatan pada <u>panah</u> (activity on arrow – AOA).
- Pada konvensi, <u>AON</u> titik menunjukan aktivitas, sedangkan pada <u>AOA</u> panah menunjukan aktivitas.

Simbol-simbol yang digunakan

Anak panah (arrow), menyatakan sebuah kegiatan atau aktivitas. Kegiatan di sini didefinisikan sebagai hal yang memerlukan jangka waktu tertentu dalam pemakaian sejumlah sumber daya (sumber tenaga, peralatan, material, biaya)

Lingkaran kecil (node), menyatakan sebuah kejadian atau peristiwa atau event. Kejadian didefinisikan sebagai ujung atau pertemuan dari satu atau beberapa kegiatan.

Anak panah terputus-putus, menyatakan kegiatan semu atau *dummy* .

Dummy tidak mempunyai jangka waktu tertentu, karena tidak memakai sejumlah sumber daya.
— — — ▶

PERBANDINGAN PEMAKAIAN JARINGAN AON dan AOA

Activity on Arti dari Activity on Node (AON) Aktivitas Arrow (AOA)

A datang sebelum B, yang datang sebelum C

A dan B keduanya harus diselesaikan sebelum C dapat dimulai

B dan C tidak dapat di mulai sebelum A selesai

Arti dari Aktivitas Activity on Arrow (AOA)

C dan D tidak dapat dimulai hingga A dan B keduanya selesai

C tidak dapat dimulai setelah A dan B selesai, D tidak dapat dimulai sebelum B selesai. Kegiatan Dummy ditunjukan pada AOA

Arti dari Aktivitas Activity on Arrow (AOA)

B dan C tidak dapat dimulai hingga A selesai. D tidak dapat dimulai sebelum B dan C selesai. Kegiatan dummy ditunjukan pada AOA.

DUMMY

- Aktivitas *dummy* adalah aktivitas yang sebenarnya tidak ada, sehingga tidak memerlukan pemakaian sumber daya.
- Dummy adalah aktivitas yang tidak mempunyai waktu pelaksanaan dan hanya diperlukan untuk menunjukan kaitan dengan aktivitas pendahulu. Dummy diperlukan untuk menggambarkan adanya hubungan diantara dua kegiatan. Mengingat dummy merupakan kegiatan semu maka lama kegiatan dummy adalah nol.

Dummy terjadi karena terdapat lebih dari satu kegiatan yang mulai dan selesai pada event yang sama.

1

Untuk membedakan ketiga kegiatan tersebut, maka harus digunakan dummy seperti berikut:

Apabila suatu kegiatan, misal A dan B. Harus selesai sebelum kegiatan C dapat dimulai, tetapi kegiatan D sudah dapat dimulai bila kegiatan B sudah selesai, maka:

Contoh:

Pemerintah akan membangun rumah sakit berstandar internasional, rumah sakit tersebut akan di bangun dan harus melalui delapan kegiatan yakni: membangun komponen internal, memodifikasi atap dan lantai, membangun tumpukan, menuangkan beton dan memasang rangka, membangun pembakar temperatur tinggi, memasang sistem kendali polusi, membangun alat pencegah polusi udara, dan kegiatan terakhir yaitu pemerikasaan dan pengujian.

Kegiatan tersebut dapat di lihat pada tabel di bawah ini berikut penjelasan susunan kegiatannya:

Kegiatan	Penjelasan	Pendahulu langsung
А	membangun komponen internal	-
В	memodifikasi atap dan lantai	-
С	membangun tumpukan	А
D	menuangkan beton dan memasang rangka	A,B
Е	membangun pembakar temperatur tinggi	С
F	memasang sistem kendali polusi	С
G	membangun alat pencegah polusi udara	D,E
Н	pemerikasaan dan pengujian	F,G

Gambar AON untuk proyek rumah sakit tersebut:

Gambar AOA untuk proyek rumah sakit tersebut:

2. JADWAL AKTIVITAS (ACTIVITY SCHEDULING)

- Menentukan jadwal proyek atau jadwal aktivitas artinya kita perlu mengidentifikasi waktu mulai dan waktu selesai untuk setiap kegiatan
- Kita menggunakan proses two-pass, terdiri atas forward pass dan backward pass untuk menentukan jadwal waktu untuk tiap kegiatan.
- ES (earlist start) dan EF (earlist finish) selama forward pass.
 LS (latest start) dan LF (latest finish) ditentukan selama backward pass.

FORWARD PASS, merupakan indentifikasi waktu-waktu terdahulu

Aturan mulai terdahulu:

- Sebelum suatu aktivitas dapat dimulai, aktivitas pendahulu langsungnya harus selesai.
- Jika suatu aktivtas hanya mempunyai satu pendahulu langsung, ES nya sama dengan EF pendahulunya.
- Jika satu aktivitas mempunyai satu pendahulu langsung, ES nya adalah nilai maximum dari semua EF pendahulunya, yaitu ES = max [EF semua pendahulu langsung]

Aturan selesai terdahulu:

Waktu selesai terdahulu (EF) dari suatu aktivitas adalah jumlah dari waktu mulai terdahulu (ES) dan waktu aktivitas , EF = ES + waktu aktivitas

BACKWARD PASS, merupakan indentifikasi waktu-waktu terakhir

Aturan waktu selesai terakhir:

- Jika suatu kegiatan adalah pendahulu langsung bagi hanya satu kegiatan, LF nya sama dengan LS dari kegiatan yang secara langsung mengikutinya.
- Jika suatu kegiatan adalah pendahulu langsung bagi lebih dari satu kegiatan, maka LF adalah minimum dari seluruh nilai LS dari kegiatan-kegiatan yang secara langsung mengikutinya, yaitu LF = Min [LS dari seluruh kegiatan langsung yang mengikutinya]

Aturan waktu mulai terakhir.

 Waktu mulai terakhir (LS) dari suatu kegiatan adalah perbedan antar waktu selesai terakhir (LF) dan waktu kegiatannya, yaitu LS = LF – waktu kegiatan.

Contoh:

Hitunglah waktu mulai dan selesai terdahulu, untuk proyek rumah sakit berstandar internasional yang di bangun pemerintah. Dan berikut menunjukan jaringan proyek lengkap untuk proyek rumah sakit tersebut, bersama dengan nilai ES dan EF untuk semua kegiatan.

Kegiatan	Penjelasan	Waktu (minggu)
А	membangun komponen internal	2
В	memodifikasi atap dan lantai	3
С	membangun tumpukan	2
D	menuangkan beton dan memasang rangka	4
E	membangun pembakar temperatur tinggi	4
F	memasang sistem kendali polusi	3
G	membangun alat pencegah polusi udara	5
Н	pemerikasaan dan pengujian	2
	TOTAL (minggu)	25

Hasil perhitungan ES, EF, LS dan LF

Kegiatan	Waktu	ES	EF	LS	LF
А	2	0	2	0	2
В	3	0	3	1	4
С	2	2	4	2	4
D	4	3	7	4	8
Е	4	4	8	4	8
F	3	4	7	10	13
G	5	8	13	8	13
Н	2	13	15	13	15

Chart untuk ES-EF	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A. membangun komponen internal																
B. memodifikasi atap dan lantai																
C. membangun tumpukan																
D. menuangkan beton dan memasang rangka																
E. membangun pembakar temperatur tinggi																
F. memasang sistem kendali polusi																
G. membangun alat pencegah polusi udara																
H. pemerikasaan dan pengujian																

Chart untuk ES-EF	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A. membangun komponen internal B. memodifikasi atap dan lantai C. membangun tumpukan D. menuangkan beton dan memasang rangka E. membangun pembakar temperatur tinggi F. memasang sistem kendali polusi G. membangun alat pencegah polusi udara H. pemerikasaan dan																

3. <u>HAMBATAN AKTIVITAS</u> (SLACK ACTIVITY) DAN <u>JALUR KRIRTIS</u> (CRITICAL PATH)

- Waktu slack (slack time) yaitu waktu bebas yang dimiliki oleh setiap aktivitas untuk bisa diundur tanpa menyebabkan keterlambatan proyek keseluruhan.
- Jalur kritis adalah aktivitas yang tidak mempunyai waktu tenggang (Slack=0), artinya kegiatan tersebut harus dimulai tepat pada ES agar tidak mengakibatkan bertambahnya waktu penyelesaian proyek.
- Kegiatan dengan slack = 0 disebut sebagai kegiatan kritis dan berada pada jalur kritis.

Contoh:

Hitunglah slack dan jalur kritis untuk kegiatan-kegiatan pada proyek rumah sakit pemerintah yang berstandar internasional.

Kegiatan	ES	EF	LS	LF	Slack LS – ES	Critical Path
Α	0	2	0	2	0	Ya
В	0	3	1	4	1	-
С	2	4	2	4	0	Ya
D	3	7	4	8	1	-
E	4	8	4	8	0	Ya
F	4	7	10	13	6	-
G	8	13	8	13	0	Ya
Н	13	15	13	15	0	Ya

4. KEMUNGKINAN <u>WAKTU PENYELESAIAN AKTIVITAS</u> (PROBABILISTIC ACTIVITY TIMES)

- Waktu optimis (optimistic time) [a]
- Waktu pesimis (pessimistic time) [b]
- Waktu realistis (most likely time) [m]

Expected time (waktu yang diharapkan)

$$t = (a + 4m + b)/6$$

Variance of times

$$v = [(b - a)/6]^2$$

<u>Varians proyek</u> = $S^2 = \sum$ (varians kegiatan pada jalur kritis)

Standard deviasi proyek (S) = √ Varians proyek

Nilai deviasi normal (Z) = [batas waktu (n) – waktu penyelesaian yang diharapkan]/s

Contoh:

Suatu perusahaan sepatu akan membuat proyek pembuatan sepatu model baru, dan harus melalui delapan tahap kegiatan. Perusahaan membuat perkiraan waktu dan hasilnya sebagai berikut:

Untuk mencari waktu yang diharapkan perusahaan dan variansnya, maka dilakukan perhitungan sebagai berikut:

Kegiatan	(a)	(b)	(m)	Jalur kritis	Waktu yang diharapkan t = (a + 4m + b)/6	Varians [(b-a)/6] ²
Α	1	3	2	Ya	2	0.11
В	2	4	3	-	3	0.11
С	1	3	2	Ya	2	0.11
D	2	6	4	-	4	0.44
E	1	7	4	Ya	4	1.00
F	1	9	2	-	3	1.78
G	3	11	4	Ya	5	1.78
#	1	3	2	Ya	2	0.11

Kegiatan	Waktu optimis (a)	Waktu pesimis (b)	Waktu realistis (m)	Jalur kritis
А	1	3	2	Ya
В	2	4	3	-
С	1	3	2	Ya
D	2	6	4	-
E	1	7	4	Ya
F	1	9	2	-
G	3	11	4	Ya
Н	1	3	2	Ya

Varians proyek = \sum (varians kegiatan pada jalur kritis)

= varians A + varians C + varians E + varians G + varians H

$$= 0.11 + 0.11 + 1.00 + 1.78 + 0.11$$

= 3.11

Standard deviasi proyek (s) = √ Varians proyek

 $= \sqrt{3.11}$

= 1.76 minggu

Kemudian perusahaan menetapkan batas waktu penyelesaian proyek yakni selama 26 minggu, maka:

Nilai deviasi normal (Z) = [batas waktu (n) – waktu penyelesaian yang diharapkan]/S

$$= (26 \text{ minggu} - 25 \text{ minggu})/1.76$$

$$= 1/1.76$$

$$= 0.57$$

Kemudian merujuk pada Tabel Normal, kita dapat mendapat peluang 0.7157, artinya ada peluang sebesar 71.57% untuk perusahaan menyelesaikan proyek tersebut dalam kurun waktu 26 minggu atau kurang dari itu

KELEBIHAN CPM/PERT

- 1. Sangat bermanfaat untuk menjadwalkan dan mengendalikan proyek besar.
- 2. Konsep yang lugas (secara langsung) dan tidak memerlukan perhitungan matematis yang rumit.
- 3. Network dapat untuk melihat hubungan antar kegiatan proyek secara cepat.
- 4. Analisa jalur kritis dan slack membantu menunjukkan kegiatan yang perlu diperhatikan lebh dekat.
- 5. Dokumentasi proyek dan gambar menunjukkan siapa yang bertanggung jawab untuk berbagai kegiatan.
- 6. Dapat diterapkan untuk proyek yang bervariasi
- Berguna dalam pengawasan biaya dan jadwal.

KETERBATASAN CPM/PERT

- 1. Kegiatan harus jelas dan hubungan harus bebas dan stabil.
- Hubungan pendahulu harus dijelaskan dan dijaringkan bersama-sama.
- 3. Perkiraan waktu cenderung subyektif dan tergantung manajer.
- 4. Ada bahaya terselubung dengan terlalu banyaknya penekanan pada jalur kritis, maka yang nyaris kritis perlu diawasi.