File d'attente et chantier routier

Lecordier Alexis Candidat: 26969

Mise en contexte

Fig. 1: Schéma du chantier routier

1er Approche

Fig.2: Route à une voie

 V_{2n} : Nombre moyen de voitures restantes (après feu rouge)

 V_{2n+1} : Nombre moyen de voitures restantes (après feu vert)

 N_{2n+1} : Nombre moyen de voitures évacuées au feu vert (durant l'étape 2n + 1)

On montre les relations:

$$\begin{split} V_{2n} &= \lambda_1 t_{rouge} + V_{2n-1} \text{, } pour \ n > 0 \\ V_{2n+1} &= \lambda_1 t_{vert} + V_{2n} - N_{2n+1} \\ N_{2n+1} &= (t_{vert} - 5 \frac{V_{2n}}{v_a}) \frac{v_a}{200} \end{split}$$

Or la théorie des files d'attentes donne une condition de stabilité du système:

 $\lambda_1 \leq \mu_n$ quelque soit n non nul.

$$\underline{\text{DONC}} \qquad \frac{\lambda_1 t_v}{N_{2n+1}} \le 1$$

DONC (par croissance de (N_{2n+1})): La condition est $v_a \ge 200 \lambda_1$

Sous cette hypothèse de stabilité:

$$\begin{split} l_{V_{2n}} &= \lambda_1 t_{rouge} + l_{V_{2n+1}} \\ l_{V_{2n+1}} &= \lambda_1 t_{vert} + l_{V_{2n}} - l_{N_{2n+1}} \\ l_{N_{2n+1}} &= (t_{vert} - 5\frac{l_{V_{2n}}}{v_a})\frac{v_a}{200} \end{split}$$

$$\begin{split} l_{V_{2n}} &= \frac{1}{5} (v_a t_{vert} - 200 \lambda_1 (t_{vert} + t_{rouge})) \\ l_{V_{2n+1}} &= \frac{1}{5} (v_a t_{vert} - 200 \lambda_1 (t_{vert} + t_{rouge})) - \lambda_{1t_{rouge}} \\ l_{N_{2n+1}} &= \lambda_1 (t_{vert} + t_{rouge}) \end{split}$$

Par positivité des limites:

$$t_{vert} \ge \lambda_1 \frac{205t_{rouge}}{v_a - 200\lambda_1}$$

Puis, à cause de la taille de la voie:

$$t_{vert} \le \frac{200(1 + \lambda_1 t_{rouge})}{v_a - 200\lambda_1}$$

Recherche d'une solution optimale

Déterminé auparavant

Fig. 3: Schéma du chantier routier (après feu)

Recherche d'une solution optimale

Fig. 3: Schéma du chantier routier avec fréquence μ

Condition de stabilité(D'après la théorie):

$$\mu = \frac{l_{N_{2n+1}}}{t_{vert}} < \mu_2$$

$$\operatorname{Or} \mu_2 = \frac{v_b}{50}$$

Donc:
$$v_b > 50 \lambda_1 (1 + \frac{t_{rouge}}{t_{vert}})$$

A MINIMISER

11/3

Cahier des charges/Contexte

```
v_a=90 km/h=25m/s> 200 \lambda_1 (\lambda_1=0,1 (data.gouv.fr)) v_b < v_a Pas d'engorgement t_{vert} \ge 30 s t_{rouge} \ge 30 s
```

Recherche optimale

$$(v_a - 200\lambda_1)t_{vert} \le 200(1 + \lambda_1 t_{rouge})$$

 $(v_a - 200\lambda_1)t_{vert} \ge \lambda_1 205t_{rouge}$
 $v_b > 50 \lambda_1 (1 + \frac{t_{rouge}}{t_{vert}})$
 $20 > v_b$
 $t_{vert} \ge 30 \text{ s}$

Toutes les variables sont <u>positives</u> et entières λ_1 =0,1 s-1 (data.gouv.fr)

Méthode du Simplexe Linéaire

Minimiser
$$Z=50\lambda_1(t_{rouge}+t_{vert})$$

 $-200 = (200\lambda_1 - v_a)t_{vert} + \lambda_1 t_{rouge}) - X_1$
 $0 = +(v_a - 200\lambda_1)t_{vert} - 205\lambda_1 t_{rouge} - X_2$
 $0= -t_{vert} + t_{rouge} - X_3$
 $30=t_{vert} - X_4$
 $X_1, X_2, X_3, X_4 \ge 0$

Toutes les variables sont <u>positives</u> et entières λ_1 =0,1 s-1 (data.gouv.fr)

Programmation

Le code en Annexe donne comme solution optimale:

```
>>> L=0.1
>>> (executing lines 1 to 47 of "Tipe Chantier routier.py")
Valeur optimale de Z : 299.9999999896189
Variables optimales : [3.000000000e+01 3.00000000e+01 2.65800354e-01 2.65800354e-01 3.04489073e+01 4.66746641e-11 0.000000000e+00 6.24734200e+02]
```

Donc t_{vert} =30s= t_{rouge} est une solution optimale.

On a aussi Z=300, donc: $v_b > 10$

Réponse au cahier des charges

$$v_b$$
=11 m/s=36 km/h < v_a
 $t_{vert} \ge 30$ s
 $t_{rouge} \ge 30$ s
Pas d'engorgement

Arrivée variable de clients

On suppose ici que λ_1 évolue <u>au cours de la journée</u>

Fig 4- Vinci-Autoroute.com

$$Or v_a \ge 200\lambda_1$$

Donc $\lambda_1 \le 25/200$

Arrivée variable de clients-Réponse

ET t_{vert} =30= t_{rouge} quelque soit le temps.

Arrivée variable de clients-Réponse

On peut même prédire le nombre moyen de véhicules évacués au feu vert

$$l_{N_{2n+1}} = \lambda_1(t_{vert} + t_{rouge})$$

Conclusion

La stratégie optimale consiste à faire varier la vitesse sur le chantier de manière à éviter les bouchons. Or on a trouvé comment faire varier cette vitesse.

Limites du Modèle

Pas de temps de freinage Pas de temps de démarrage Pas de poids lourds Chantier étudié en régime stationnaire Pas de véhicule en panne ...

```
from scipy.optimize import minimize
 3 def objectif(x):
       return 50 * L * (x[0] + x[1])
  def contraintel(x):
       return 200 * L * x[0] - x[2] - x[7] + 25
9 def contrainte2(x):
       return 200 * L * x[1] - 205 * L * x[2] - x[3] + x[4] - x[7]
10
11
12 def contrainte3(x):
       return -x[2] + x[3] - x[5]
13
14
15 def contrainte4(x):
16
       return x[0] - 30
17
18 def contrainte5(x):
19
       return x[1] - 30
20
21 def contrainte6(x):
22
       return x[0] - x[1]
23
24 def contrainte7(x):
25
       return x[2] - L
```

```
27 # Conditions initiales
28 \times 0 = [0, 0, 0, 0, 0, 0, 0, 0]
29
30 # Contraintes
31 contraintes = [{'type': 'eq', 'fun': contrainte1},
32
                   { 'type': 'eq', 'fun': contrainte2},
33
                   { 'type': 'eq', 'fun': contrainte3},
                   { 'type': 'ineq', 'fun': contrainte4},
34
                   {'type': 'ineq', 'fun': contrainte5},
35
36
                   { 'type': 'ineq', 'fun': contrainte6},
37
                  { 'type': 'ineq', 'fun': contrainte7}]
38
39 # Contraintes de non-négativité
40 bornes = [(0, None), (0, None), (0, None), (0, None), (0, None), (0, None),
   (0, None), (0, None)
41
42 # Appel à la fonction minimize
43 resultat = minimize(objectif, x0, method='SLSQP', bounds=bornes,
   constraints=contraintes)
44
45 # Affichage des résultats
46 print("Valeur optimale de Z :", resultat.fun)
47 print("Variables optimales :", resultat.x)
```

```
49 y1=[]
50 import numpy as np
52 import matplotlib.pyplot as plt
54 # Définition de la fonction gaussienne étalée
55 # Paramètres de la gaussienne étalée
56 mu = 18 # Moyenne
57 sigma = 6 # Écart-type
58 def f(x, mu, sigma):
59
60
       return (25/200)*np.exp(-((x-mu)/sigma)**2)
61 # Génération des valeurs de x
62 x = np.arange(8,21)
64 # Paramètres de la gaussienne étalée
65 mu = 18 # Moyenne
66 sigma = 6 # Écart-type
68 # Calcul des valeurs de y correspondantes
69 y = f(x, mu, sigma)
70
71 # Création du graphique en barres
72 plt.bar(x, y)
74 # Définition des labels des axes
75 plt.xlabel('temps')
76 plt.ylabel('Fréquence d arrivée')
```

```
78 # Affichage du graphique
79 plt.show()
80
81 \times 1 = np.arange(1,24)
83 print(len(x 1))
84 plt.bar(x 1, y1)
85 plt.xlabel('temps')
86 plt.ylabel('vitesse vb minimale en m/s')
87 plt.show()
88 ##Nombre moyen de clients au sortir du feu vert
89 y2=[f(x, mu, sigma)*60 for x in range(1,24)]
90 plt.bar(x_1, y2)
91 plt.xlabel('temps')
92 plt.ylabel('Nombre de voitures au sortir du feu vert')
94 plt.show()
```