

Liberté Égalité Fraternité

Navigation Magnétique

Étalonnage en ligne de magnétomètre aéroporté

Nathan Laoué

Direction générale de l'armement 1 17/09/2022

1. Qu'est-ce que la navigation magnétique?

- a. La navigation magnétique
- b. Problématique actuelle
- c. Solution actuelle

2. L'IA, une nouvelle solution?

- a. L'apport de l'IA
- b. Challenge du MIT
- c. Modèles d'IA

3. Résultats

- a. Prétraitement des données
- b. Résultats des différentes méthodes
- c. Visualisation en profondeur du CNN

17/09/2022

Carte des Implantations de la Direction générale de l'armement

DGA - Maîtrise de l'information

Missions de la DGA:

- Équiper les armées de façon souveraine
- Préparer le futur des systèmes de défense
- Soutenir les exportations
- Promouvoir la coopération européenne
- Développer la BITD française et européenne

Direction générale de l'armement 3 17/09/2022

Qu'est-ce que la Navigation Magnétique ?

1. Qu'est-ce que la navigation magnétique?

a. Navigation magnétique

La Navigation Magnétique

La navigation magnétique est une technique consistant à obtenir une position grâce au champ magnétique terrestre. C'est l'une des plus anciennes formes de navigation.

On peut utiliser une simple boussole pour connaître la direction du nord, ou bien des magnétomètres pour connaître la mesure précise du champ magnétique que l'on corrèle à une carte d'anomalies magnétiques pour obtenir une position.

Avantages:

- > Permets de naviguer par tout temps
- Non soumis au brouillage
- > Disponible partout dans le monde
- Varie peu dans le temps

Direction générale de l'armement 5 17/09/2022

1. Qu'est-ce que la navigation magnétique?

b. Problématique actuelle

Problématique actuelle

Trois éléments nécessaires à la navigation magnétique:

- ✓ Carte d'anomalies de bonne qualité on est actuellement capable de créer des cartes de très bonne qualité
- ✓ Précision des capteurs les meilleurs capteurs atteignent une justesse de précision de l'ordre du nanotesla
- ➤ Mesure non bruitée du champ magnétique la compensation des effets du porteur est trop imprécise

Forte perturbation magnétique sur les mesures due aux différents éléments du porteur

1. Qu'est-ce que la navigation magnétique ?

c. Solution actuelle

Solution actuelle

Pour réduire le champ magnétique de l'avion :

- > Perche sur la queue de l'avion (2-3 m)
- ➤ Compensation de Tolles-Lawson

Problème:

- > Peu pratique d'avoir une perche
- > Tolles-Lawson est une compensation linéaire insuffisante dans le cas d'effets dépendants du temps

Tolles-Lawson:

$$B_{measured} \approx B_{earth} + B_{aircraftdist}$$

avec

$$B_{earth} = B_{core} + B_{crustal} + B_{sq}$$

$$B_{aircraft} = B_{permanent} + B_{induced} + B_{eddy}$$

$$B_{permanent} = a_1 \cos \theta + a_2 \cos \phi + a_3 \cos \psi$$

$$B_{induced} = Bt(a_4 \cos^2 \theta + a_5 \cos \theta \cos \phi + a_6 \cos \theta \cos \psi + a_7 \cos^2 \phi + a_8 \cos \phi \cos \psi + a_9 \cos^2 \psi)$$

$$\begin{split} &B_{eddy} \\ &= Bt(a_{10}\cos\theta\,(\cos\theta)' + a_{11}\cos\theta\,(\cos\phi)' + a_{12}\cos\theta\,(\cos\psi)' \\ &+ a_{13}\cos\phi\,(\cos\theta)' + a_{14}\cos\phi\,(\cos\phi)' + a_{15}\cos\phi\,(\cos\psi)' \\ &+ a_{16}\cos\psi\,(\cos\theta)' + a_{17}\cos\psi\,(\cos\phi)' + a_{18}\cos\psi\,(\cos\psi)') \end{split}$$

$$y_{measured} = Ax$$

 $bpf(y_{earth} + y_{aircraft}) = bpf(Ax)$
 $y_{aircraft} \cong Ax$

A Modified Tolles-Lawson Model Robust to the Errors of the Three-Axis Strapdown Magnetometer

L'IA, une nouvelle solution?

2. L'IA, une nouvelle solution?

a. L'apport de l'IA

L'apport de l'IA

Compensation avec Tolles-Lawson

Time (s)

100

Compensation par IA à l'aide d'un perceptron multicouche. Nette différence entre les deux compensations.

Mitchel Hezel – Improving aeromagnetic calibration using artificial neural networks

L'IA permet d'ajouter de la non-linéarité dans la modélisation et donc de prendre en compte plus d'effets pour effectuer la compensation, cela permettrait d'atteindre 10 nT d'erreur de compensation.

20

b. Challenge du MIT

Challenge du MIT

Pour étudier le problème, on se base sur un challenge du MIT/USAF dont le but est de compenser les mesures magnétiques de capteurs situés à l'intérieur d'un Cessna 208B Grand Caravan. La « vérité » est fournie grâce à une perche à l'arrière de l'avion.

Données à disposition :

MIT

- 6 vols différents
- 37 capteurs différents dont 8 magnétomètres scalaires et vectoriels
- Données de cartes magnétiques précises de la zone de vol
- Événements en vol

b. Challenge du MIT

Sélection des données

			Pearson	correl	ation coe	fficient					Spe	arman's	rank c	orrelation	coeffic	ient	
INS_VEL_W	0.241	0.116	0.747	-0.001	-0.862	-0.229	-0.520	0.390	INS_VEL_W	0.176	0.112	0.759	0.111	-0.865	-0.201	-0.441	0.391
INS_VEL_V	-0.095	-0.090	0.115	-0.124	-0.077	-0.050	0.069	-0.080	INS_VEL_V	-0.089	-0.051	0.053	-0.023	-0.068	-0.019	0.069	-0.056
INS_VEL_N	0.941	0.195	-0.004	0.125	0.068	-0.030	-0.942		INS_VEL_N -	0.926	0.181	0.072	0.022	0.024	0.037	-0.933	
ТОРО	0.162		-0.090	0.539	0.009	0.590	-0.171	0.013	TOPO -	0.223		-0.049	0.614	0.044		-0.231	0.072
CUR_ACHI	-0.182	0.100	-0.119	0.106	0.086	0.287	0.172	-0.152	CUR_ACHI -	-0.220	0.099	-0.304	0.213	0.263	0.278	0.276	-0.311
CUR_ACLo	-0.043	-0.121	-0.856	0.063	0.960	0.190	0.328	-0.212	CUR_ACLo -	-0.033	-0.114	-0.885	-0.061	0.973	0.207	0.304	-0.237
CUR_ACPWR	-0.090	-0.141	-0.067	0.146	-0.143	0.021	-0.007	-0.021	CUR_ACPWR -	-0.100	-0.161	-0.036	0.115	-0.129	-0.004	-0.006	0.023
CUR_BAT1	-0.059	-0.051	-0.022	0.071	-0.070	0.041	0.015	-0.031	CUR_BAT1 -	-0.057	-0.056	-0.007	0.080	-0.066	0.031	0.011	-0.015
CUR_BAT2	0.024	0.033	0.011	-0.027	0.034	-0.002	-0.001	0.005	CUR_BAT2 -	0.025	0.035	0.006	-0.026	0.031	0.001	-0.001	-0.004
CUR_COM1	0.186	0.359	-0.055	0.346	-0.008	0.251	-0.229	0.136	CUR_COM1 -	0.326	0.575	-0.023	0.478	0.041	0.496	-0.342	0.180
CUR_FLAP		-0.014	0.044	-0.003	-0.059	0.007	0.096	-0.080	CUR_FLAP	-0.593	0.015	0.332	0.045	-0.406	-0.010	0.476	-0.392
CUR_IHTR	-0.170	-0.320	-0.030	0.163	-0.318	-0.113	0.003	-0.047	CUR_IHTR -	-0.202	-0.343	-0.007	0.103	-0.279	-0.131	0.007	0.067
CUR_OUTPWR	-0.089	-0.139	-0.065	0.143	-0.141	0.020	-0.007	-0.021	CUR_OUTPWR -	-0.098	-0.158	-0.035	0.113	-0.128	-0.003	-0.006	0.023
CUR_SRVO_I	-0.050	-0.044	-0.089	-0.025	0.109	0.028	0.081	-0.068	CUR_SRVO_I -	-0.036	-0.039	-0.092	-0.022	0.102	0.029	0.057	-0.100
CUR_SRVO_M	0.147	0.014	-0.035	0.001	0.059	0.012	-0.124	0.125	CUR_SRVO_M -	0.150	0.012	-0.036	-0.005	0.055	0.015	-0.126	0.114
CUR_SRVO_O	-0.176	0.035	0.203	-0.050	-0.207	0.005	0.132	-0.133	CUR_SRVO_O -	-0.163	0.035	0.176	0.005	-0.198	-0.004	0.127	-0.119
CUR_STRB		0.116	0.002	0.305	-0.249	0.134	-0.103	0.022	CUR_STRB -		0.146	0.774	0.158	-0.923	-0.149	-0.118	0.104
CUR_TANK	0.173	-0.307	-0.124	0.026	-0.072	-0.266	-0.264	0.242	CUR_TANK -	0.502	-0.176	0.041	-0.122	-0.116	-0.228	-0.607	0.587
DIURNAL	-0.050	-0.078	0.284	-0.248	-0.179	-0.075	0.056	-0.098	DIURNAL -	-0.019	-0.177	0.293	-0.193	-0.275	-0.117	-0.011	-0.118
INS_ACC_X		-0.051	-0.033	0.060	0.138	-0.025	0.099	0.009	INS_ACC_X -	-0.158	-0.026	-0.027	0.069	0.027	-0.000	0.117	0.009
INS_ACC_Y	-0.004	-0.052	-0.030	-0.014	0.104	-0.029	-0.013	0.003	INS_ACC_Y	0.056	-0.036	-0.017	-0.011	0.033	-0.024	-0.076	0.022
INS_ACC_Z		0.001	0.006	0.006	-0.013	0.001	0.013	-0.018	INS_ACC_Z -		0.014	0.011	0.014	-0.014	0.011	0.012	-0.008
AZIMUTH	0.360	0.108	0.588	0.070	-0.750	-0.139	-0.561	0.319	AZIMUTH -	0.342	0.061	0.614	0.070	-0 690	-0.113	-0.553	0.273
	-0.194	-0.173	0.158	-0.125	-0.191	-0.101	0.130	-0.152		-0.197	-0.120	0.097	0.002	-0.184	-0.059	0.133	-0.097
ROLL	-0.015	0.146	0.323	-0.016	-0:344	0.047	-0.041	-0.019	ROLL -	-0.055	0.087	0.260	-0.022	-0.279	-0.010	0.004	-0.014
V_ACCn		-0.104	-0.161	0.141	-0.017	-0.058	-0.115	0.075	V_ACCn -		-0.133	-0.115	-0.031	0.018	-0.075	-0.090	0.104
V_ACCp		0.341	0.167	-0.082	0.095	0.236	0.127	-0.090	V_ACCp -		0.378	0.126	0.135	0.064	0.261	0.103	-0.167
V_ACPWR		-0.041	0.085	-0.215	0.065	-0.153	0.014	0.014	V_ACPWR -		-0.018	0.047	-0.195	0.058	-0.127	0.016	-0.015
V_BACK		0.106	0.015	-0.056	0.099	0.030	0.005	0.013	V_BACK -		0.116	0.002	-0.033	0.089	0.043	0.002	-0.017
V_BACKn		-0.317	-0.084	-0.073	-0.040	-0.259	-0.034	0.045	V_BACKn ·		-0.294	-0.060	-0.194	-0.025	-0.241	-0.025	0.075
V_BACKp		0.424	0.088	0.045	0.131	0.306	0.044	-0.038	V_BACKp -	2.200.000.000	0.434	0.063	0.201	0.109	0.320	0.033	-0.109
V_BAT1		-0.770	0.087	-0.437	-0.213	0.628	0.096	-0.004	V_BAT1 -		0.754	0.059	0.535	-0.230	0.642	0.067	0.077
V_BAT2		-0.497	-0.126	-0.069	-0.121	-0.438	-0.122	0.111	V_BAT2 -	***************************************	-0.561	-0.103	-0.354	-0.076	-0 485	-0.086	0.183
V_BLOCK		0.061	0.050	-0.066	0.044	-0.052	0.020	0.002	V_BLOCK -		0.098	0.043	-0.047	0.056	-0.009	0.025	-0.020
V_CABT		0.069	0.053	-0.151	0.117	-0.047	0.008	0.019	V_CABT -		0.088	0.024	-0.122	0.103	-0.025	0.005	-0.020
0.	0.002	0.100	0.035	-0.084	0.098	0.032	0.055	-0.023	V_FAN -		0.115	0.017	-0.033	0.082	0.043	0.048	-0.055
V_GYRO1		0.242	0.120	-0.069	0.078	0.165	0.097	-0.069	V_GYRO1 -		0.288	0.094	0.100	0.054	0.198	0.084	-0.134
V_GYRO2		0.245	0.060	0.031	0.069	0.214	0.091	-0.070	V_GYRO2 -		0.253	0.046	0.166	0.041	0.219	0.073	-0.110
V_OUTPWR		-0.021	0.080	-0.204	0.073	-0.136	0.014	0.014	V_OUTPWR -		0.001	0.044	-0.184	0.066	-0.112	0.015	-0.016
V_RESn		0.018	-0.013	-0.000	0.026	0.002	-0.025	0.022	V_RESn -		-0.029	-0.019	-0.016	0.002	-0.018	-0.039	0.034
V_RESp		0.040	0.037	-0.057	0.032	0.010	0.029	-0.012	V_RESp -		0.024	0.049	-0.017	-0.013	0.004	0.043	-0.042
V_SERVO	0.039	0.333	0.092	-0.086	0.187	0.186	0.082	-0.043	V_SERVO -	0.074	0.367	0.061	0.060	0.152	0.216	0.064	-0.121
	res_MAGS	MAG5_tlcl	MAG4	MAG4 ticl	MAG3	MAG3_ttcl	es_MAG2	MAG2 ticl		res_MAG5	MAG5_tlcl	MAG4	MAG4 tici	MAG3	MAG3_ticl	es_MAG2	MAG2_ttcl
	ES.	res_MA	E.	ES MA	SE.	Res_MA	Ð	Res MA		Ē.	res_MA	55,	Me MA	5	Res_MA	SE	res_MA

	Pearson	Spearman	
V_BAT1 -	0.557	0.608	-V BAT1
DEM -	0.554	0.531	- DEM
TOPO -	0.543	0.502	- TOPO
DRAPE -	0.432	0.413	- DRAPE
RADAR -	0.303		- RADAR
CUR_TANK -	0.289	0.327	- CUR_FLAP
TOT_P -	0.257	0.310	- CUR_COM1
STATIC_P -	0.241	0.264	- BARO
BARO -	0.240	0.264	- STATIC_P
INS_VEL_N -	0.231	0.260	-LONG ACC
PITCH -	0.194	0.235	- PITCH
LONG_ACC -	0.192	0.232	- TOT_P
V_BAT2 -	0.188	0.193	- V BAT2
V_ACPWR -	0.139	0.163	- INS VEL N
CUR_ACLo -	0.137	0.162	- CUR_TANK

Afin d'obtenir plus d'informations sur le dataset ainsi que sur les données nécessaires à l'entrainement, plusieurs méthodes d'analyses ont été utilisées.

Variables retenues:

- Magnétomètres 4 et 5 de l'avion
- Vélocités de l'avion
- · Attitude de l'avion
- Altitude barométrique
- Données électriques des batteries, réservoir et volets de l'avion

c. Modèles d'IA

Modèles d'IA

Les modèles que nous étudions sont des modèles de deep learning, c'est-à-dire à base de réseaux de neurones. Le problème est supervisé (on connaît la vérité-terrain).

Les MLP supposent que toutes les données sont liées entres elles

Les CNN cherchent des relations locales entres les données

Les RNN cherchent des relations séquentielles entre les données

Résultats actuels

Direction générale de l'armement 13 17/09/2022

3. Résultats

a. Prétraitement des données

Prétraitement des données

Pour passer de la donnée brute à l'anomalie magnétique, il y a 2 principales corrections à prendre en compte:

- Correction des variations temporelles (Cycle jour nuit, aurores boréales, ...)
- Correction du champ magnétique principal de la Terre à l'aide du modèle IGRF

Le modèle n'a plus qu'à réduire les erreurs faites lors de la compensation de Tolles-Lawson.

Direction générale de l'armement 14 17/09/2022

Résultats avec Tolles-Lawson

Magnétomètre 5 compensé par la méthode de Tolles-Lawson sur le vol 1007

Direction générale de l'armement 15 17/09/2022

Résultats pour les MLP

Prédictions du modèle pour le vol 1007

Direction générale de l'armement 16 17/09/2022

Résultats pour les CNN

Prédictions du modèle pour le vol 1007

Direction générale de l'armement 17 17/09/2022

Résultats pour les RNN

Prédictions du modèle pour le vol 1007

Direction générale de l'armement 18 17/09/2022

b. Résultats des différentes méthodes

Comparaison des modèles

Line number	RMSE [nT]
1007.01	26.38
1007.02	25.51
1007.03	28.47
1007.05	21.92
1007.06	25.46
1007.07	25.54

1007.07	25
RMSE par	
sections pour l	e
MLP	

Line number	RMSE [nT]
1007.01	19.54
1007.02	21.63
1007.03	29.70
1007.05	19.90
1007.06	23.00
1007.07	19.30

	RMSE par
e	sections pour le
	CNN

Line number	RMSE [nT]
1007.01	36.50
1007.02	34.75
1007.03	39.46
1007.05	31.40
1007.06	35.80
1007.07	34.14

RMSE par sections pour le LSTM

Le CNN semble être le modèle le plus prometteur, sa RMSE globale sur le vol 1007 est la meilleure parmi tous les modèles. De plus c'est celui qui a les meilleures performances sur la section 1007.06.

Visualisation en profondeur du CNN

Direction générale de l'armement 20 17/09/2022

c. Résultats des différentes méthodes

Visualisation en profondeur du CNN

Le réseau utilise principalement le magnétomètre 5 (le moins bruité) mais également d'autres données comme la vélocité de l'avion ou la mesure du courant des volets de l'avion

Direction générale de l'armement 21 17/09/2022

Conclusion et perspectives

Les modèles à base d'IA permettent d'améliorer les performances par rapport a Tolles-Lawson.

Cependant ils ne sont pas suffisants pour atteindre une erreur de compensation proche de 10 nT.

Pistes d'améliorations possibles :

- Données de différents types d'avions, ainsi qu'a différentes zones pour évaluer la robustesse des modèles
- Test d'autres modèles sur les données
- Transformation des données électriques en données magnétiques

