ASSIGNMENT 3

- (1) Let A be a square matrix with entries from the set of complex numbers \mathbb{C} . A is said to be Hermitian if $A = \overline{A}^T$ (A is equal to its conjugate transpose). A is said to be skew-Hermitian if $A = -\overline{A}^T$. Which of the following statements are true. Justify your answer.
 - ***(a) set of Hermitian matrices of order n is a vector space over \mathbb{C} under usual matrix addition and scalar multiplication;
 - ***(b) set of Hermitian matrices of order n is vector space over set of real numbers \mathbb{R} under usual matrix addition and scalar multiplication;
 - (c) set of skew-Hermitian matrices of order n is a vector space over \mathbb{C} under usual matrix addition and scalar multiplication;
 - (d) set of skew-Hermitian matrices of order n is a vector space over \mathbb{R} under usual matrix addition and scalar multiplication;
- (2) *** In \mathbb{R} , consider the addition $x \oplus y = x + y 1$ and the scalar multiplication $\lambda . x = \lambda(x-1) + 1$. Prove that \mathbb{R} is a vector space with respect to these operations and the additive identity is 1.
- (3) Which of the followings are true:
 - ***(i) $\{(x,y) \in \mathbb{R}^2 : x \ge 0\}$ is a subspace of \mathbb{R}^2 ,
 - (ii) $\{(x,y) \in \mathbb{R}^2 : y = x^2\}$ is a subspace of \mathbb{R}^2 ,
 - ***(iii) the set $\mathcal{P}_n(X)$ of all single variable polynomials of degree at most n is a subspace of vector space $\mathcal{P}(X)$ of all single variable polynomials.
 - (iv) x + y + z = 1 is a subspace of \mathbb{R}^3 .
 - ***(v) $\{A \in M_2(\mathbb{R}) : det(A) = 0\}$ is a subspace of $M_2(\mathbb{R})$, where $M_2(\mathbb{R})$ is vector space of real 2×2 matrices under usual matrix addition and scalar multiplication,
 - (vi) Let C([0,1]) be vector space of real valued continuous functions on [0,1] and let $a \in [0,1]$. The set $M_a = \{f \in C([0,1]) : f(a) = 0\}$ is a subspace of C([0,1]).
 - ***(vii) the space of all upper triangular matrices of order n is a subspace of $M_n(\mathbb{R})$, where $M_n(\mathbb{R})$ is vector space of real $n \times n$ matrices under usual matrix addition and scalar multiplication
 - (viii) the set of all orthogonal matrices of order 2 is a subspace of $M_2(\mathbb{R})$. (A square martix A is said to be orthogonal if $AA^T = I$)
- (4) Show that $W = \{(x_1, x_2, x_3, x_4) : x_4 x_3 = x_2 x_1\}$ is a subspace of \mathbb{R}^4 spanned by vectors (1, 0, 0, -1), (0, 1, 0, 1), (0, 0, 1, 1).
- (5) Let W_1 and W_2 be two subspaces of a vector space V such that $W_1 \cup W_2$ is a subspace of V. Prove that either $W_1 \subset W_2$ or $W_2 \subset W_1$.
- (6) *** Find all subspaces of \mathbb{R}^3 .

- (7) *** Let V be a vector space over \mathbb{C} and $\{u_1, u_2, ..., u_n\}$ be a linearly independent set of vectors in V. Prove that $\{u_1, u_2, ..., u_n, iu_1, iu_2, ..., iu_n\}$ is a set of linearly independent vectors when considered V as a vector space over \mathbb{R} .
- (8) Discuss the linear dependence/independence of following set of vectors:
 - (i) $\{(1,0,0),(1,1,0),(1,1,1)\}$ in \mathbb{R}^3 ,
 - ***(ii) $\{(1,0,0,0),(1,1,0,0),(1,1,1,0),(3,2,1,0)\}$ in \mathbb{R}^4 ,
 - ***(iii) $\{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$, in $\mathbb{C}^3(\mathbb{C})$ (\mathbb{C}^3 considered as a vector space over \mathbb{C}),
 - (iv) $\{(1, i, 0), (1, 0, 1), (i+2, -1, 2)\}$, in $\mathbb{C}^3(\mathbb{R})$ (\mathbb{C}^3 considered as a vector space over \mathbb{R}),
 - (v) $\{u+v,v+w,w+u\}$ in a vector space V given that $\{u,v,w\}$ is linearly independent.