ARITHMETIC Chapter 3

Teoría de conjuntos II

OPERACIONES ENTRE CONJUNTOS

Ejemplo:

A partir de este ejemplo explicaremos las operaciones entre conjuntos

1. UNIÓN O REUNIÓN (U)

 $A \cup B = \{x / x \in A \lor x \in B\}$

RECORDAR: $A=\{1;2;3\}$ $B=\{2;5\}$ $C=\{6;8\}$ $D=\{1;2;3;4\}$

$$A \cup B = \{1; 2; 3; 5\}$$

$$n(A \cup B) = n(A) + n(B) - (A \cap B)$$
 $n(A \cup C) = n(A) + n(C)$

 $A \cup C = \{1; 2; 3; 6; 8\}$

$$n(A \cup C) = n(A) + n(C)$$

$$A \cup D = D$$

$$n(A \cup D) = n(D)$$

2. INTERSECCIÓN (∩)

$$A \cap B = \{x / x \in A \land x \in B\}$$

$$n(A \cap D) = n(A)$$

3. DIFERENCIA (-)

Elementos del conjunto A, pero no de B; luego por comprensión tenemos

$$A - B = \{x / x \in A \land x \notin B\}$$

4. DIFERENCIA SIMÉTRICA(△)

Elementos pertenecientes a (A – B)

o (B -A); luego por comprensión

tenemos:

$$A \triangle B = \{x / x \in (A - B) \lor x \in (B - A)\}$$

$$A \triangle B = \{1; 3; 5\}$$

$$n(A \triangle B) = n(A \cup B) - n(A \cap B)$$

$$A \Delta C = A \cup C$$

$$n(A \Delta C) = n(A) + n(C)$$

$$A \triangle D = \{4\} = D - A$$

RECORDAR:

 $A=\{1;2;3\}$

 $B=\{2;5\}$

$$n(A \triangle D) = n(D - A)$$

5. COMPLEMENTO (A)

$$U - A = A' = \{x / x \in U \land x \notin A\}$$

RECORDAR:

 $A = \{1; 2; 3\}$

U={1;2;3;4;5;6;7;8}

1. Dado el siguiente gráfico:

Calcule la suma de elementos de $(A' \cap B)$.

$$A' = \{2\}\{5\} \ 10; \ 13\}$$
 $B = \{2\}\{5\} \ 6; \ 8\}$
 $(A' \cap B) = \{2; 5\}$

RPTA: 7

2. Dados los conjuntos

$$U = \{x / x \in \mathbb{N}; 5 < x < 16\}$$

$$A = \{6; 8; 9; 11; 13\}$$

$$B = \{7; 8; 13; 14\}$$

Calcule la suma de elementos de $(A' \cap B')$.

```
U = \{\emptyset; 7; \$; 9; 10; 1/1; 12; 13; 1/4; 15\}
A' = \{7; 10, 12, 14; 15\}
B' = \{6; 9; 10, 11; 12; 15\}
(A' \cap B') = \{10; 12; 15\}
```


Carlos debe almorzar pollo y/o pescado en su almuerzo de cada día del mes de marzo. Si 19 días almorzó pollo y 25 días almorzó pescado, determine el número de días que almorzó pollo y pescado (UNMSM 2001)

$$n(U) = 31$$
$$n(Po) = 19$$

$$n(Pe) = 25$$

Gráficamente

$$n(Po \cup Pe) = n(Po) + n(Pe) - n(Po \cap Pe)$$

 $31 = 19 + 25 - n(Po \cap Pe)$

De 45 estudiantes universitarios se observó que 22 son hombres, 25 estudian medicina y 8 mujeres no estudian medicina. ¿Cuántos hombres no estudian medicina?

Total = 45 estudiantes

= 25

RPTA:

12 hombres no estudian medicina

U (56)

5.

En un grupo de 56 deportistas se observó que

7 son boxeadores que practican karate y atletismo.

36 son boxeadores.

23 son atletas.

Todos los karatecas son boxeadores y 15 son deportistas que solo practican el boxeo.

8 deportistas no practican ninguno de los deportes mencionados.

¿Cuántos deportistas son boxeadores y atletas pero no karatecas?

$$7 + x + 12 = 23$$

RPTA:

4

En una escuela de 55 alumnos; 25 aprobaron física, 18 aprobaron química; 26 aprobaron geometría. Si 3 alumnos aprobaron los tres cursos y 6 no aprobaron curso alguno, ¿cuántos alumnos aprobaron solo dos de estos cursos?

RESOLUCIÓN

$$55 = 26 + 22 - X - Y + X + 15 - X - Z + 6$$

$$55 = -Y - X - Z + 69$$

$$55 = -Y - X - Z + 69$$

$$X + Y + Z = 69 - 55$$

$$X + Y + Z = 14$$

RPTA:

14 alumnos aprobaron solo dos de esos cursos

01

En la semana de evaluación del

Helicoreto se observó en un salón que de los 41 alumnos, 19 de ellos no repasaron Aritmética, 24 no repasaron Álgebra y 9 no repasaron ninguno de los dos cursos. ¿Cuántos alumnos repasaron ambos cursos?

Gráficamente

RESOLUCIÓN

$$n(U) = 41$$

$$41 = 15 + n + 10 + 9$$

$$41 = 34 + n$$

$$\cdot$$
 7 = n