Годовой проект: «Классификация объектов на изображении в машинном обучении»

Промежуточный этап

Магистерская программа «Машинное обучение и высоконагруженные системы»

Дарьин Николай Артемович

Студент 1-го года обучения

04.03.2024

Описание набора исходных данных и основные результаты проведенного разведочного анализа

Описание набора исходных данных и основные результаты проведенного разведочного анализа (EDA)

Исходный набор данных – 21 000 изображений

Основные результаты EDA

- проведена проверка на соответствие параметров изображений в датасете заявленному значению 224 x 224 пикселя
- не выявлено дисбаланса классов

HOG (Histogram Oriented Gradient)

Гистограмма ориентированных градиентов – это дескриптор особых точек, которые используются в компьютерном зрении и обработке изображений с целью распознавания объектов.

Этапы:

- 1) Рассчитываются значения градиентов при помощи дифференцирующей маски;
- 2) Вычисляются гистограммы ячеек каждый пиксель учувствует во взвешенном голосовании для каналов гистограммы направлений, основанном на значении градиентов;
- 3) Для учета яркости/контрастности локальная нормировка по более крупным связным блокам.

HOG (Histogram Oriented Gradient)

Support Vector Machine (SVM)

Метод опорных векторов – это классификатор, имеющий наиболее широкую разделяющую полосу среди всех возможных линейных классификаторов.

$$\frac{1}{2}||w||^2 + C \cdot \sum_{i=1}^{l} \max(0, 1 - M_i) \xrightarrow{w} \min$$

Результаты обучения моделей

Модель sklearn.svm.LinearSVC

Validation Accuracy: 0.7371581054036024					Test Accuracy: 0.7369123041013671				
	precision		f1-score	support		precision	recall	f1-score	support
0.0	0.76	0.65	0.70	200	0.0	0.69	0.66	0.67	200
1.0	0.70	0.84	0.76	200	1.0	0.72	0.86	0.78	200
2.0	0.79	0.87	0.83	200	2.0	0.85	0.90	0.87	200
3.0	0.76	0.73	0.75	200	3.0	0.68	0.67	0.68	200
4.0	0.75	0.81	0.77	200	4.0	0.69	0.80	0.74	200
5.0	0.64	0.58	0.61	200	5.0	0.56	0.59	0.58	200
6.0	0.76	0.69	0.72	200	6.0	0.78	0.74	0.76	200
7.0	0.80	0.83	0.82	200	7.0	0.82	0.81	0.81	200
8.0	0.61	0.69	0.65	200	8.0	0.65	0.66	0.65	200
9.0	0.75	0.77	0.76	200	9.0	0.74	0.81	0.78	200
10.0	0.81	0.86	0.83	198	10.0	0.87	0.84	0.86	199
11.0	0.74	0.66	0.69	200	11.0	0.78	0.67	0.72	200
12.0	0.65	0.61	0.63	200	12.0	0.69	0.58	0.63	200
13.0	0.86	0.80	0.83	200	13.0	0.85	0.82	0.83	200
14.0	0.70	0.68	0.69	200	14.0	0.70	0.65	0.67	200
accuracy			0.74	2998	accuracy			0.74	2999
macro avg	0.74	0.74	0.74	2998	macro avg	0.74	0.74	0.74	2999
weighted avg	0.74	0.74	0.74	2998	weighted avg	0.74	0.74	0.74	2999

Результаты обучения моделей

Модель sklearn.svm.SVC

Validation Accuracy: 0.8589059372915276					Test Accuracy: 0.865621873957986				
	precision	recall	f1-score	support		precision	recall	f1-score	support
0.0	0.81	0.79	0.80	200	0.0	0.80	0.83	0.82	200
1.0	0.88	0.92	0.90	200	1.0	0.90	0.88	0.89	200
2.0	0.92	0.94	0.93	200	2.0	0.91	0.95	0.93	200
3.0	0.81	0.84	0.83	200	3.0	0.80	0.84	0.82	200
4.0	0.89	0.84	0.87	200	4.0	0.88	0.88	0.88	200
5.0	0.73	0.84	0.78	200	5.0	0.73	0.89	0.80	200
6.0	0.82	0.93	0.87	200	6.0	0.86	0.92	0.89	200
7.0	0.90	0.88	0.89	200	7.0	0.96	0.82	0.89	200
8.0	0.78	0.85	0.82	200	8.0	0.81	0.80	0.80	200
9.0	0.92	0.88	0.90	200	9.0	0.93	0.88	0.90	200
10.0	0.93	0.86	0.90	198	10.0	0.95	0.88	0.92	199
11.0	0.84	0.84	0.84	200	11.0	0.80	0.89	0.84	200
12.0	0.80	0.70	0.74	200	12.0	0.85	0.75	0.80	200
13.0	0.96	0.92	0.94	200	13.0	0.94	0.93	0.93	200
14.0	0.94	0.84	0.89	200	14.0	0.93	0.84	0.88	200
accuracy			0.86	2998	accuracy			0.87	2999
macro avg	0.86	0.86	0.86	2998	macro avg	0.87	0.87	0.87	2999
weighted avg	0.86	0.86	0.86	2998	weighted avg	0.87	0.87	0.87	2999

Разработка web-сервиса

Что сделано?

Написан бот в Telegram

- интегрирована ml-модель;
- реализован feedback от пользователя;
- ведение статистики

Хостинг приложения на render.com

Что планируется сделать?

Добавление streamlit-приложения

Расширение функционала бота

Итоги проделанной работы

- Проведен разведочный анализ данных проверка соответствия объектов датасета заявленным параметрам: размер изображений, доля объектов каждого класса;
- Для классификации объектов датасета использовался метод опорных векторов;
- Для выделения характерных признаков изображений использовался дескриптор HOG;
- С помощью объекта GridSearchCV библиотеки sklearn произведен поиск параметров модели, дающих наилучшие результаты (accuracy = 0.87 на тестовых данных);
- Для взаимодействия с пользователем был написан телеграм-бот с помощью библиотеки Aiogram в связке с FastAPI;
- Хостинг приложения осуществляется с помощью сервиса Render.com

Спасибо за внимание

