Proprietà dei codici a blocco

Peso di Hamming e distanza minima di un codice

- ▶ Il peso di Hamming w(x) di una parola di codice x è costituito dal numero di '1' presenti in x.
- ▶ Il peso di una parola di codice $\mathbf{x} \in \mathcal{C}(k, n)$ è la sua distanza dalla n-upla di tutti '0'

$$w(\mathbf{x}) = d_H(\mathbf{x}, \mathbf{0}_{1,n}) \tag{2}$$

- Per i codici lineari vale la proprietà che ciascuna parola di codice ha lo stesso insieme di distanze dalle altre parole di codice.
- La distanza minima di un codice si può calcolare a partire da una qualsiasi parola di codice.

Peso di Hamming e distanza minima di un codice

Teorema 3: La distanza minima del codice a blocco $\mathcal{C}(k,n)$ si può calcolare come il peso di Hamming minimo tra tutte le parole di codice

$$d_{min}(\mathcal{C}) = \min_{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{C}} d_{H}(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= \min_{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{C}} d_{H}(\mathbf{x}_{i} + \mathbf{x}_{j}, \mathbf{x}_{j} + \mathbf{x}_{j}) = \min_{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{C}} d_{H}(\mathbf{x}_{i} + \mathbf{x}_{j}, \mathbf{0}_{1,n})$$

$$[\mathbf{x}_{i} + \mathbf{x}_{j} \in \mathcal{C}(k, n)]$$

$$= \min_{\mathbf{x}_{i} \in \mathcal{C}} w(\mathbf{x}_{i})$$
(3)

Rivelazione e decodifica degli errori

➤ Su un canale BSC senza memoria, la *n*-upla **y** a valle del decisore può essere rappresentata

$$\mathbf{y} = \mathbf{x} + \mathbf{e} \tag{4}$$

dove e è il vettore di errori introdotto dal canale.

▶ Se il canale non introduce errori \implies **e** = **0**_{1,n}.

Capacità di rivelare errori (error detection)

Sia \mathbf{x} la parola di codice trasmessa e $\mathbf{y} = \mathbf{x} + \mathbf{e}$ la corrispondente sequenza di n bit ricevuta. Supponiamo che il canale introduca un certo numero di errori, i.e. $w(\mathbf{e}) > 0$.

- ▶ Se y non è una parola di codice, si è verificato un errore rivelabile;
- Se **y** è una parola di codice ma non quella trasmessa, si è verificato un errore *non rivelabile* $(w(\mathbf{e}) \ge d_{min})$.

Capacità di rivelare errori (error detection)

Il codice C(k, n) rivela un errore quando la parola ricevuta $\mathbf{y} \notin C(k, n)$.

Teorema 4: Il codice C(k, n) è in grado di rivelare con certezza fino a $d_{min} - 1$ errori.

- ▶ Se $d_H(\mathbf{x}, \mathbf{y}) < d_{min} \implies \mathbf{y}$ non può essere una parola di codice, perché altrimenti vorrebbe dire che esistono due parole di codice la cui distanza è minore di d_{min} .
- Viceversa, se $d_H(\mathbf{x}, \mathbf{y}) = d_{min} \implies$ esiste almeno una parola di codice $\mathbf{c} \in \mathcal{C}(k, n), \mathbf{c} \neq \mathbf{x}$ tale che $d_H(\mathbf{x}, \mathbf{c}) = d_{min}$ e se $\mathbf{y} = \mathbf{c}$, l'errore non può essere rivelato.

Strategia di decodifica a massima verosimiglianza

Sia \mathbf{y} il vettore ricevuto a seguito della trasmissione su BSC, la strategia di decodifica a massima verosimiglianza (ML, maximum likelihood) consiste nel trovare il vettore $\hat{\mathbf{x}}$ che, fra tutte le 2^k possibili parole di codice \mathbf{x} , massimizza la probabilità condizionata $P(\mathbf{y}|\mathbf{x})$, ie

$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{C}(k,n)} P(\mathbf{y}|\mathbf{x})$$
 (5)

▶ Poichè gli eventi di errore sono indipendenti da bit a bit, si può scrivere la probabilità condizionata come il prodotto delle probabilità condizionate ottenute per ciascun bit trasmesso

$$P(\mathbf{y}|\mathbf{x}) = \prod_{\ell=1}^{n} P(y_{\ell}|x_{\ell})$$
 (6)

Strategia di decodifica a massima verosimiglianza

Poiché siamo in GF(2), la probabilità $P(y_{\ell}|x_{\ell})$ può assumere due soli valori

$$P(y_{\ell}|x_{\ell}) = \begin{cases} 1 - p & \text{if } P(y_{\ell} = x_{\ell}|x_{\ell}) \\ p & \text{if } P(y_{\ell} \neq x_{\ell}|x_{\ell}) \end{cases}$$
 (7)

- La distanza di Hamming $d_H(\mathbf{x}, \mathbf{y})$ misura il numero di posizioni diverse tra \mathbf{x} e \mathbf{y} e quindi $n d_H(\mathbf{x}, \mathbf{y})$ misura il numero posizioni uguali tra \mathbf{x} e \mathbf{y} .
- La probabilità $P(\mathbf{y}|\mathbf{x})$ si calcola

$$P(\mathbf{y}|\mathbf{x}) = p^{d_H(\mathbf{x},\mathbf{y})} (1-p)^{n-d_H(\mathbf{x},\mathbf{y})} = (1-p)^n \left(\frac{p}{1-p}\right)^{d_H(\mathbf{x},\mathbf{y})}$$
(8)

Decisione a massima verosimiglianza

La parola di codice decisa $\hat{\mathbf{x}}$ è quella che che minimizza la distanza dalla parola \mathbf{y} ricevuta

$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{C}(k,n)} P(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}(k,n)} d_H(\mathbf{y},\mathbf{x})$$
(9)

- ▶ Il ricevitore ML ottimo è il ricevitore a distanza minima: il ricevitore che associa alla sequenza di n bit ricevuta \mathbf{y} , la parola di codice \mathbf{x} che minimizza la $d_H(\mathbf{x}, \mathbf{y})$.
- ▶ Il ricevitore ML è in grado di correggere *con successo* tutti quegli errori **e** per cui la parola ricevuta **y** = **x** + **e** è comunque più vicina alla parola trasmessa **x** che a qualsiasi altra parola del codice.

Decisione a massima verosimiglianza

Per ogni vettore $\mathbf{v} \in \mathcal{V}_n$ e un raggio r esiste una 'sfera' di raggio r i cui elementi sono tutti quei vettori in \mathcal{V}_n che hanno distanza di Hamming da \mathbf{v} minore o uguale a r.

Assumendo di adottare un ricevitore ML, il numero massimo t di errori che il codice $\mathcal{C}(k,n)$ è in grado di correggere è il massimo raggio t per cui le sfere centrate nelle parole di codice di $\mathcal{C}(k,n)$ sono tutte tra loro disgiunte.

Capacità di correggere errori (error correction)

Teorema 5: Un codice lineare a blocco può correggere fino a $t_{max} = \lfloor \frac{d_{min}-1}{2} \rfloor$ errori, i.e. $2t_{max}+1 \leq d_{min} \leq 2t_{max}+2$.

La condizione per cui le sfere di raggio t che circondano le parole di codice siano disgiunte è che $2t_{max} < d_{min} \implies t_{max} < d_{min}/2$. Altrimenti, se fosse $2t_{max} \ge d_{min}$ ci sarebbero almeno due parole \mathbf{x}_1 e \mathbf{x}_2 la cui distanza $d(\mathbf{x}_1,\mathbf{x}_2)=d_{min}\le 2t_{max}$ e le due sfere di raggio t avrebbero almeno un punto in comune.

Capacità di correggere errori (error correction)

Consideriamo il codice $\mathcal{C}(k,n)$ che ha una certa d_{min} e t_{max} tale che $2t_{max}+1 \leq d_{min}$. Sia $\mathbf{x} \in \mathcal{C}(k,n)$ la parola trasmessa, $\mathbf{y}=\mathbf{x}+\mathbf{e}$ la corrispondente sequenza di n bit ricevuta e $\mathbf{c} \in \mathcal{C}(k,n)$ un'altra generica parola di codice. Grazie alla disuguaglianza triangolare si ha

$$d_{H}(\mathbf{x},\mathbf{y}) + d_{H}(\mathbf{c},\mathbf{y}) \ge d_{H}(\mathbf{x},\mathbf{c}) \implies d_{H}(\mathbf{c},\mathbf{y}) \ge d_{H}(\mathbf{x},\mathbf{c}) - d_{H}(\mathbf{x},\mathbf{y})$$
(10)

Per ipotesi si ha anche

$$d_{H}(\mathbf{x}, \mathbf{c}) \ge d_{min} \ge 2t_{max} + 1 \tag{11}$$

Supponiamo che il canale introduca un certo numero di errori $t \leq t_{max}$, così da avere $d_H(\mathbf{x}, \mathbf{y}) = t$.

$$d_{H}(\mathbf{c}, \mathbf{y}) \ge 2t_{max} + 1 - t > t_{max} \ge t = d_{H}(\mathbf{x}, \mathbf{y}) \tag{12}$$

I codici di Hamming: definizione e proprietà

▶ I codici di Hamming sono definiti a partire a da un parametro $m \ge 2$

$$n = 2^m - 1, k = 2^m - m - 1 \tag{13}$$

- Poiché la matrice di controllo di parità **H** ha dimensione $(n-k) \times n$, per i codici di Hamming la matrice **H** ha dimensione $m \times (2^m 1)$.
- Per un codice di Hamming sistematico, la matrice di parità \mathbf{P} viene costruita così che le colonne di $\mathbf{H} = [\mathbf{P}^T, \mathbf{I}_{n-k}]$ siano tutte le possibili $2^m 1$ combinazioni (escluso l'n-upla di tutti 0) di m bit.
- La distanza minima di un qualsiasi codice di Hamming $C_H(m)$ è $d_{min}(C_H(m)) = 3$. Dimostrazione.

I codici di Hamming: il codice $C_H(2)$

- ▶ il codice a ripetizione R = 1/3 è il codice di Hamming con m = 2 con $n = 2^2 1 = 3$, e $k = 2^2 2 1 = 1$.
- La matrice di controllo di parità per il codice a ripetizione con R=1/3 è

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \tag{14}$$

▶ Poiché la matrice **H** ha 2 righe e 3 colonne e rappresenta tutte le possibili combinazioni di 2 bit (esclusa la n-upla di tutti 0) \Longrightarrow **H** è la matrice di controllo di parità per il codice di Hamming $\mathcal{C}_H(2)$.

I codici di Hamming: il codice $C_H(3)$

▶ Se $m = 3 \implies n = 7, k = 4$. La matrice di controllo di parità \mathbf{H} per $\mathcal{C}_H(3)$ ha 3 righe e 7 colonne. In forma sistematica una possibile coppia \mathbf{H} e \mathbf{G} è

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \implies \mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Si fanno controlli di parità su combinazioni diverse di bit di ingresso.

$$p_1 = u_1 + u_2 + u_4$$

$$p_2 = u_1 + u_3 + u_4$$

$$p_3 = u_2 + u_3 + u_4$$

