Syntax Analysis Part I

Chapter 4

Position of a Parser in the Compiler Model

The Parser

- A parser implements a C-F grammar
- The role of the parser is twofold:
- 1. To check syntax (= string recognizer)
 - And to report syntax errors accurately
- 2. To invoke semantic actions
 - For static semantics checking, e.g. type checking of expressions, functions, etc.
 - For syntax-directed translation of the source code to an intermediate representation

Syntax-Directed Translation

- One of the major roles of the parser is to produce an intermediate representation (IR) of the source program using syntax-directed translation methods
- Possible IR output:
 - Abstract syntax trees (ASTs)
 - Control-flow graphs (CFGs) with triples, three-address code, or register transfer list notation
 - WHIRL (SGI Pro64 compiler) has 5 IR levels!

Error Handling

- A good compiler should assist in identifying and locating errors
 - Lexical errors: important, compiler can easily recover and continue
 - *Syntax errors*: most important for compiler, can almost always recover
 - Static semantic errors: important, can sometimes recover
 - Dynamic semantic errors: hard or impossible to detect at compile time, runtime checks are required
 - Logical errors: hard or impossible to detect

Viable-Prefix Property

- The *viable-prefix property* of LL/LR parsers allows early detection of syntax errors
 - Goal: detection of an error as soon as possible without further consuming unnecessary input
 - How: detect an error as soon as the prefix of the input does not match a prefix of any string in the languators is

```
the languager is

where the language is the language is detected here

Prefix { for (;)}

Prefix { DO 10 I = 1;0}
```

Error Recovery Strategies

- Panic mode
 - Discard input until a token in a set of designated synchronizing tokens is found
- Phrase-level recovery
 - Perform local correction on the input to repair the error
- Error productions
 - Augment grammar with productions for erroneous constructs
- Global correction
 - Choose a minimal sequence of changes to obtain a global least-cost correction

Grammars (Recap)

- Context-free grammar is a 4-tuple G = (N, T, P, S) where
 - T is a finite set of tokens (terminal symbols)
 - N is a finite set of nonterminals
 - *P* is a finite set of *productions* of the form $\alpha \rightarrow \beta$ where α ∈ $(N \cup T)^* N (N \cup T)^*$ and β ∈ $(N \cup T)^*$
 - $-S \in N$ is a designated start symbol

Notational Conventions Used

Terminals

$$a,b,c,... \in T$$
 specific terminals: **0**, **1**, **id**, +

Nonterminals

$$A,B,C,... \in N$$
 specific nonterminals: $expr$, $term$, $stmt$

• Grammar symbols

$$X,Y,Z \in (N \cup T)$$

• Strings of terminals

$$u, v, w, x, y, z \in T^*$$

• Strings of grammar symbols

$$\alpha, \beta, \gamma \in (N \cup T)^*$$

Derivations (Recap)

- The *one-step derivation* is defined by $\alpha A \beta \Rightarrow \alpha \gamma \beta$ where $A \rightarrow \gamma$ is a production in the grammar
- In addition, we define
 - \Rightarrow is *leftmost* \Rightarrow_{lm} if α does not contain a nonterminal
 - \Rightarrow is $rightmost \Rightarrow_{rm}$ if β does not contain a nonterminal
 - Transitive closure \Rightarrow^* (zero or more steps)
 - Positive closure \Rightarrow + (one or more steps)
- The *language generated by G* is defined by $L(G) = \{ w \in T^* \mid S \Rightarrow w \}$

Derivation (Example)

Grammar
$$G = (\{E\}, \{+, *, (,), -, \mathbf{id}\}, P, E)$$
 with productions $P = E \rightarrow E + E$

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$E \rightarrow - E$$

$$E \rightarrow \mathbf{id}$$

Example derivations:

$$E \Rightarrow -E \Rightarrow -id$$

$$E \Rightarrow_{rm} E + E \Rightarrow_{rm} E + id \Rightarrow_{rm} id + id$$

$$E \Rightarrow^* E$$

$$E \Rightarrow^* id + id$$

$$E \Rightarrow^+ id * id + id$$

Chomsky Hierarchy: Language Classification

- A grammar G is said to be
 - Regular if it is right linear where each production is of the form $A \to w B$ or $A \to w$ or left linear where each production is of the form $A \to B w$ or $A \to w$
 - Context free if each production is of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
 - *Context sensitive* if each production is of the form $\alpha A \beta \rightarrow \alpha \gamma \beta$ where $A \in N$, $\alpha, \gamma, \beta \in (N \cup T)^*$, $|\gamma| > 0$
 - Unrestricted

Chomsky Hierarchy

 $L(regular) \subset L(context\ free) \subset L(context\ sensitive) \subset L(unrestricted)$

Where $L(T) = \{ L(G) \mid G \text{ is of type } T \}$ That is: the set of all languages generated by grammars G of type T

Examples:

Every finite language is regular! (construct a FSA for strings in L(G))

 $L_1 = \{ \mathbf{a}^n \mathbf{b}^n \mid n \ge 1 \}$ is context free $L_2 = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \ge 1 \}$ is context sensitive

Parsing

- *Universal* (any C-F grammar)
 - Cocke-Younger-Kasimi
 - Earley
- *Top-down* (C-F grammar with restrictions)
 - Recursive descent (predictive parsing)
 - LL (Left-to-right, Leftmost derivation) methods
- *Bottom-up* (C-F grammar with restrictions)
 - Operator precedence parsing
 - LR (Left-to-right, Rightmost derivation) methods
 - SLR, canonical LR, LALR

Top-Down Parsing

• LL methods (Left-to-right, Leftmost derivation) and recursive-descent parsing

Left Recursion (Recap)

Productions of the form

$$A \rightarrow A \alpha$$
 $\mid \beta$
 $\mid \gamma$

are left recursive

• When one of the productions in a grammar is left recursive then a predictive parser loops forever on certain inputs

General Left Recursion Elimination Method

Arrange the nonterminals in some order $A_1, A_2, ..., A_n$

for
$$i = 1, ..., n$$
 do
for $j = 1, ..., i-1$ do

replace each

$$A_i \rightarrow A_j \gamma$$

with

$$A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \dots \mid \delta_k \gamma$$

where

$$A_j \rightarrow \delta_1 \mid \delta_2 \mid \dots \mid \delta_k$$

enddo

eliminate the *immediate left recursion* in A_i

enddo

Immediate Left-Recursion Elimination Method

Rewrite every left-recursive production

$$A \rightarrow A \alpha$$

$$\mid \beta$$

$$\mid \gamma$$

$$\mid A \delta$$

into a right-recursive production:

$$A \to \beta A_R$$

$$| \gamma A_R$$

$$A_R \to \alpha A_R$$

$$| \delta A_R$$

$$| \epsilon$$

Example Left Recursion Elim.

$$A \rightarrow B \ C \mid \mathbf{a}
B \rightarrow C \ A \mid A \mid \mathbf{b}
C \rightarrow A \ B \mid C \ C \mid \mathbf{a}$$
Choose arrangement: A, B, C

$$i = 1:$$
 nothing to do
$$i = 2, j = 1:$$
 $B \rightarrow CA \mid \underline{A} \mid \mathbf{b}$

$$\Rightarrow B \rightarrow CA \mid \underline{B} \mid \mathbf{C} \mid \mathbf{b} \mid \mathbf{a} \mid \mathbf{b}$$

$$\Rightarrow_{(imm)} B \rightarrow CA \mid \underline{B} \mid \mathbf{C} \mid \mathbf{b} \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \mathbf{c} \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{b} \mid \mathbf{c} \mid \mathbf{c} \mid \mathbf{c} \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \mathbf{c} \mid \mathbf{c} \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \mathbf{c}$$

Left Factoring

- When a nonterminal has two or more productions whose right-hand sides start with the same grammar symbols, the grammar is not LL(1) and cannot be used for predictive parsing
- Replace productions

$$A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma$$

with

$$A \to \alpha A_R \mid \gamma$$

$$A_R \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

Predictive Parsing

- Eliminate left recursion from grammar
- Left factor the grammar
- Compute FIRST and FOLLOW
- Two variants:
 - Recursive (recursive calls)
 - Non-recursive (table-driven)

FIRST (Revisited)

• FIRST(α) = { the set of terminals that begin all strings derived from α }

```
FIRST(a) = {a} if a \in T

FIRST(\epsilon) = {\epsilon}

FIRST(A) = \bigcup_{A \to \alpha} FIRST(\alpha) for A \to \alpha \in P

FIRST(X_1 X_2 ... X_k) =

if for all j = 1, ..., i-1 : \epsilon \in \text{FIRST}(X_j) then

add non-\epsilon in FIRST(X_i) to FIRST(X_i X_2 ... X_k)

if for all j = 1, ..., k : \epsilon \in \text{FIRST}(X_j) then

add \epsilon to FIRST(X_1 X_2 ... X_k)
```

FOLLOW

• FOLLOW(A) = { the set of terminals that can immediately follow nonterminal A }

```
FOLLOW(A) =

for all (B \rightarrow \alpha A \beta) \in P do

add FIRST(\beta)\{\varepsilon} to FOLLOW(A)

for all (B \rightarrow \alpha A \beta) \in P and \varepsilon \in FIRST(\beta) do

add FOLLOW(B) to FOLLOW(A)

for all (B \rightarrow \alpha A) \in P do

add FOLLOW(B) to FOLLOW(A)

if A is the start symbol S then

add $ to FOLLOW(A)
```

LL(1) Grammar

• A grammar *G* is LL(1) if it is not left recursive and for each collection of productions

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$

for nonterminal A the following holds:

- 1. FIRST(α_i) \cap FIRST(α_i) = \emptyset for all $i \neq j$
- 2. if $\alpha_i \Rightarrow^* \epsilon$ then
 - 2.a. $\alpha_i \not \Rightarrow^* \varepsilon$ for all $i \neq j$
 - 2.b. $FIRST(\alpha_j) \cap FOLLOW(A) = \emptyset$ for all $i \neq j$

Non-LL(1) Examples

Grammar	Not LL(1) because:
$S \rightarrow S \mathbf{a} \mid \mathbf{a}$	Left recursive
$S \rightarrow \mathbf{a} \ S \mid \mathbf{a}$	$FIRST(\mathbf{a} S) \cap FIRST(\mathbf{a}) \neq \emptyset$
$S \rightarrow \mathbf{a} R \mid \varepsilon$	
$R \rightarrow S \mid \varepsilon$	For $R: S \Rightarrow^* \varepsilon$ and $\varepsilon \Rightarrow^* \varepsilon$
$S \rightarrow \mathbf{a} R \mathbf{a}$	For <i>R</i> :
$R \to S \mid \varepsilon$	$FIRST(S) \cap FOLLOW(R) \neq \emptyset$

Recursive Descent Parsing (Recap)

- Grammar must be LL(1)
- Every nonterminal has one (recursive) procedure responsible for parsing the nonterminal's syntactic category of input tokens
- When a nonterminal has multiple productions, each production is implemented in a branch of a selection statement based on input look-ahead information

Using FIRST and FOLLOW to Write a Recursive Descent Parser

```
procedure rest();
                                        begin
expr \rightarrow term \ rest
                                          if lookahead in <u>FIRST(+ term rest)</u> then
                                             match('+'); term(); rest()
rest \rightarrow + term \ rest
                                          else if lookahead in FIRST(- term rest) then
        - term rest
                                             match('-'); term(); rest()
         3
                                          else if lookahead in FOLLOW(rest) then
term \rightarrow id
                                             return
                                          else error()
                                        end:
                      FIRST(+ term rest) = \{ + \}
                      FIRST(-term rest) = \{ - \}
                      FOLLOW(rest) = \{ \$ \}
```

Non-Recursive Predictive Parsing: Table-Driven Parsing

• Given an LL(1) grammar G = (N, T, P, S) construct a table M[A,a] for $A \in N$, $a \in T$ and use a *driver program* with a *stack*

Constructing an LL(1) Predictive Parsing Table

```
for each production A \rightarrow \alpha do
         for each a \in FIRST(\alpha) do
                  add A \to \alpha to M[A,a]
         enddo
        if \varepsilon \in FIRST(\alpha) then
                 for each b \in FOLLOW(A) do
                           add A \rightarrow \alpha to M[A,b]
                  enddo
         endif
enddo
Mark each undefined entry in M error
```

Example Table

 $E \to T E_{R}$ $E_{R} \to + T E_{R} \mid \varepsilon$ $T \to F T_{R}$ $T_{R} \to *F T_{R} \mid \varepsilon$ $F \to (E) \mid \mathbf{id}$

	id	+	*	()	\$
E	$E \to T E_R$			$E \to T E_R$		
E_R		$E_R \rightarrow + T E_R$			$E_R \rightarrow \varepsilon$	$E_R \rightarrow \varepsilon$
T	$T \rightarrow F T_R$			$T \to F T_R$		
T_R		$T_R \rightarrow \varepsilon$	$T_R \to *FT_R$		$T_R \to \varepsilon$	$T_R \rightarrow \varepsilon$
$oxed{F}$	$F \rightarrow id$			$F \rightarrow (E)$		

LL(1) Grammars are Unambiguous

Ambiguous grammar

$$S \rightarrow \mathbf{i} E \mathbf{t} S S_R \mid \mathbf{a}$$

$$S_R \rightarrow \mathbf{e} S \mid \mathbf{\epsilon}$$

$$E \rightarrow \mathbf{b}$$

$A \rightarrow \alpha$	FIRST(α)	FOLLOW(A)
$S \to \mathbf{i} E \mathbf{t} S S_R$	i	e \$
$S \rightarrow \mathbf{a}$	a	e \$
$S_R \to \mathbf{e} S$	e	e \$
$S_R \to \varepsilon$	3	e \$
$E \rightarrow \mathbf{b}$	b	t

Error: duplicate table entry

	a	b	e	i	t	\$
S	$S \rightarrow \mathbf{a}$			$S \rightarrow \mathbf{i} E \mathbf{t} S S_R$		
S_R		($S_R \to \varepsilon$ $S_R \to e S$			$S_R \rightarrow \varepsilon$
E		$E \rightarrow \mathbf{b}$				

Predictive Parsing Program (Driver)

```
push($)
push(S)
a := lookahead
repeat
        X := pop()
        if X is a terminal or X = $ then
                match(X) // moves to next token and a := lookahead
        else if M[X,a] = X \rightarrow Y_1 Y_2 \dots Y_k then
                push(Y_k, Y_{k-1}, ..., Y_2, Y_1) // such that Y_1 is on top
                ... invoke actions and/or produce IR output ...
        else
                error()
        endif
until X = $
```

Example Table-Driven Parsing

Stack	Input	Production applied
\$ <u>E</u>	id+id*id\$	$E \to T E_R$
$\$E_R\underline{T}$	<u>id</u> +id*id\$	$T \rightarrow F T_R$
$\$E_RT_R\underline{F}$	<u>id</u> +id*id\$	$F \rightarrow \mathbf{id}^{\kappa}$
$\$E_RT_R$ id	<u>id</u> +id*id\$	- · · - •
$\$E_R\underline{T}_R$	<u>+</u> id*id\$	$T_R \rightarrow \varepsilon$
$\$\underline{E}_R$	<u>+</u> id*id\$	$E_R \rightarrow + T E_R$
	<u>+</u> id*id\$	\boldsymbol{L}_R , if \boldsymbol{L}_R
$$E_R T \pm$	<u>id</u> *id\$	$T \rightarrow F T$
$\$E_R\underline{T}$	<u>id</u> *id\$	$T \rightarrow F T_R$
$\$E_RT_R\underline{F}$	<u>id</u> *id\$	$F \rightarrow \mathbf{id}$
$E_R T_R id$	<u>*</u> id\$	
$\$E_R\underline{T}_R$	<u>*</u> id\$	$T_R \to *FT_R$
$\$E_RT_RF^*$	<u>id</u> \$	
$\$E_RT_R\underline{F}$	<u>id</u> \$	$F \rightarrow \mathbf{id}$
	<u>\$</u>	
$$E_R T_R \underline{id}$	<u>\$</u>	$T_R \rightarrow \varepsilon$
$\$E_R\underline{T}_R$	<u>\$</u>	$E_R \rightarrow \varepsilon$

Panic Mode Recovery

Add synchronizing actions to undefined entries based on FOLLOW

Pro: Can be automated

Cons: Error messages are needed

FOLLOW(E) = {) \$ } FOLLOW(E_R) = {) \$ } FOLLOW(T) = { +) \$ } FOLLOW(T_R) = { +) \$ } FOLLOW(T) = { + *) \$ }

	id	+	*	(\$
$\mid E \mid$	$E \to T E_R$			$E \to T E_R$	synch	synch
E_R		$E_{\scriptscriptstyle R} \to + T E_{\scriptscriptstyle R}$			$E_{R} \rightarrow \varepsilon$	$E_{R} \rightarrow \varepsilon$
T	$T \rightarrow F T_R$	synch		$T \to F T_R$	synch	synch
T_R		$T_R \rightarrow \varepsilon$	$T_R \to FT_R$		$T_R \rightarrow \epsilon$	$T_R \rightarrow \varepsilon$
$oxed{F}$	$F \rightarrow id$	synch	synch	$F \rightarrow (E)$	synch	. synch

synch: the driver pops current nonterminal A and skips input till synch token or skips input until one of FIRST(A) is found

Phrase-Level Recovery

Change input stream by inserting missing tokens

For example: id id is changed into id * id

Pro: Can be automated

Cons: Recovery not always intuitive

Can then continue here id * \$ + $E \to T E_R$ $E \to T E_R$ Esynch synch E_{R} $E_R \rightarrow + T E_R$ $E_R \rightarrow \varepsilon$ $E_R \to \varepsilon$ synch $T \to F T_R$ synch synch T T_{R} insert * $T_{R} \rightarrow \varepsilon$ $T_R \rightarrow *FT_R$ $T_R \rightarrow \varepsilon$ $T_R \to \varepsilon$ Fsynch $F \rightarrow (E)$ $F \rightarrow id$ synch synch synch

insert *: driver inserts missing * and retries the production

Error Productions

$$E \rightarrow T E_R$$
 $E_R \rightarrow + T E_R \mid \varepsilon$
 $T \rightarrow F T_R$
 $T_R \rightarrow * F T_R \mid \varepsilon$
 $F \rightarrow (E) \mid \mathbf{id}$

Add "error production":

$$T_R \to F T_R$$

to ignore missing *, e.g.: id id

Pro: Powerful recovery method

Cons: Cannot be automated

	id	+	*	()	\$
E	$E \to T E_R$			$E \to T E_R$	synch	synch
E_R		$E_R \to + T E_R$			$E_R \rightarrow \varepsilon$	$E_R \to \varepsilon$
T	$T \rightarrow F T_{\kappa}$	synch		$T \to F T_R$	synch	synch
T_R	$T_R \to F T_R$	$T_R \to \varepsilon$	$T_R \rightarrow *FT_R$		$T_R \rightarrow \varepsilon$	$T_R \rightarrow \varepsilon$
$oxed{F}$	$F \rightarrow id$	synch	synch	$F \rightarrow (E)$	synch	synch