

TM1630是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU 数字接口、数据锁存器、LED 驱动、键盘扫描等电路。本产品质量可靠、稳定性好、抗干扰能力 强。主要适用于家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、机顶盒、电子称、智 能电表等数码管或LED显示设备。

二、 特性说明

- · 采用CMOS工艺
- 多种显示模式 (7 段×5 位 ~ 8 段×4 位)
- 最大支持矩阵按键7×1
- 辉度调节电路(8 级占空比可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: 内置RC振荡
- 内置上电复位电路
- 内置数据锁存电路
- 内置针对LED反偏漏电导致暗亮问题优化电路
- 抗干扰能力强
- 封装形式: DIP18

三、 管脚定义:

				*
DIO	10		18	GRID1
CLK	2		17	GRID2
STB	3		16	GND
K2	4	TM1630 (TOP VIEW)	15	GRID3
VDD	5	(101 /12")	14	GRID4
SEG2/KS2	6		13	GRID5/SEG14
SEG3/KS3	7		12	KS8/SEG8
SEG4/KS4	8		11	KS7/SEG7
SEG5/KS5	9		10	KS6/SEG6

- 2 -

四、管脚功能定义:

符号	管脚名称	管脚号	说明
DIO	数据输出输入	1	在时钟上升沿输入串行数据,从低位 开始。在时钟下降沿输出串行数据,从 低位开始。输出时为P管开漏输出
CLK	时钟输入	2	在上升沿读取串行数据,下降沿输出数据。
STB	片选输入	3	在下降沿初始化串行接口,随后等待接收指令。STB为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB为高时,CLK被忽略。
K2	键扫数据输入	4	输入该脚的数据在显示周期结束后被 锁存
SGE2/KS2~ SEG8/KS8	输出(段)	6~11	段输出(也用作键扫描输出),P管开 漏输出
GRID1∼ GRID4	输出(位)	17~18 14~15	位输出,N管开漏输出
SEG14/DRID5	输出(段/位)	13	段/位复用输出,只能选段或位输出
VDD	逻辑电源	5	接电源正
GND	逻辑地	14	接系统地

TM1630

五、指令说明

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIN输入的第一个字节作为指令。经过译码, 取最高B7、B6两位比特位以区别不同的指令。

В7	В6	指令
0	0	显示模式命令设置
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送 的指令或数据保持有效。

(1) 显示模式命令设置:

该指令用来设置选择段和位的个数(4~5位,8~7段)。当该指令被执行时,显示被强制关闭。在显 示模式不变时,显存内的数据不会被改变,显示控制命令控制显示开关。

MSB						LSB				
В7	В6	В5	B4	В3	В2	B1	В0	显示模式		
0	0		工子位	页,填0		0	0	4位8段		
0	0		九大功	尺 , - 块 U ↓		1	1	5位7段		

(2) 数据命令设置:

该指令用来设置数据写和读, B1和B0位不允许设置01或11。

MSB LSB

В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
0	1					0	0	数据读写模式	写数据到显示寄存器
0	1					1	0	设置	读键扫数据
0	1	无关项,			0			地址增加模式	自动地址增加
0	1	填	į 0		1			设置	固定地址
0	1			0				测试模式设置	普通模式
0	1			1				(内部使用)	测试模式

显示控制命令设置: (3)

该指令用来设置显示的开关以及显示亮度调节。共有8级辉度可供选择进行调节。

MSB LSB

В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
1	0	无关项,				0	0		设置脉冲宽度为 1/16
1	0				0	0	1	显示辉度设置	设置脉冲宽度为 2/16
1	0	填	填 0		0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1		设置脉冲宽度为 10/16

TM1630

1	0		1	0	0		设置脉冲宽度为11/16
1	0		1	0	1		设置脉冲宽度为 12/16
1	0		1	1	0		设置脉冲宽度为 13/16
1	0		1	1	1		设置脉冲宽度为 14/16
1	0	0				显示开关设置	显示关
1	0	1				业小月大以且	显示开

(4) 地址命令设置:

该指令用来设置显示寄存器的地址。芯片实际最多有效地址为10位(00H~09H)。上电时,首地址默认设 为00H。

MSB				LSB						
В7	В6	В5	B4	В3	B2	B1	В0	显示地址		
1	1			0	0	0	0	00Н		
1	1			0	0	0	1	01H		
1	1			0	0	1	0	02H		
1	1			0	0	1	1	03Н		
1	1	无关	·项,	0	1	0	0	04H		
1	1	填	0	0	1	0	1	05H		
1	1			0	1	1	0	06Н		
1	1			0	1	1	1	07H		
1	1			1	0	0	0	08H		
1	1			1	0	0	1	09Н		

六、 显示寄存器地址:

该寄存器存储通过串行接口接收从外部器件传送到TM1630的数据,实际最多有效地址为00H~09H,分别与芯 片SEG和GRID管脚对应,具体分配如图(2):

写LED显示数据的时候,按照显示地址从低位到高位,数据字节从低位到高位操作。

X E </th
R0 R1 R2 R3 R4 R5 R6 R7 R0 R1 R2 R3 R4 R5 R6 R7
B0 B1 B2 B0 B1 B0 B0 B1 B0 B1 B0 B1 B0 B1
00HL 00HU 01HL 01HU GRID
02HL 02HU 03HL 03HU GRID
04HL 04HU 05HL 05HU GRID
06HL 06HU 07HL 07HU GRID
08HL 08HU 09HL 09HU GRID

图 (2)

▲注意: 芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令, 将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作,即上电后向10位显存地址 (00H~09H)中全部写入数据0x00。

显示:

驱动共阴数码管:

图 (7)

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",只需要向00H(GRID1)地址中从低位开始 写入0x7E数据即可,此时00H对应每一个SEG2-SEG8的数据如下表格。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	X	
0	1	1	1	1	1	1	X	GRID1 (00H)
В7	В6	В5	B4	В3	B2	B1	В0	

注意: 驱动共阴极数码管, SEG引脚只能接LED的阳极, GRID只能接LED的阴极, 不可反接。

键扫描和键扫数据寄存器:

该芯片最大支持的键扫矩阵为7×1bit,如下所示:

键扫数据储存地址如下所示,先发读按键命令后,开始读取4字节的按键数据BYTE1-BYTE4,读数据从低位 开始输出,其中B7和B6位为无效位固定输出为0。芯片K和KS引脚对应的按键按下时,相对应的字节内的BIT位为 1。

В0	B1	B2	В3	B4	В5	В6	В7	
X	K2	X	X	K2	X	X	X	
	0		KS2			0	0	BYTE1
	KS3			KS4			0	BYTE2
	KS5			KS6			0	ВҮТЕЗ
	KS7			KS8		0	0	BYTE4

图 (4)

▲注意: 1、TM1630最多可以读4个字节, 不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE4读取,不可跨字节读。例如:硬件上的K2与KS8对应按 键按下时,此时想要读到此按键数据,必须需要读到第4节的第5BIT位,才可读出数据。

九、按键:

(1) 按键扫描:键扫描由TM1630自动完成,不受用户控制,用户只需要按照时序读键值。完成一次键扫 需要2个显示周期,一个显示周期大概需要T=4ms,在8ms内先后按下了2个不同的按键,2次读到的键值都是先按下 的那个按键的键值。TM1630有效输出为SEG2-SEG8, IC在上电后内部扫描形如图(10)。

图 (10)

如图(10)可知, 芯片按键扫描原理如下: 芯片从SEG2/KS2开始逐渐扫描到SEG8/KS8结束, 并且 SEG2/KS2-SEG8/KS8在一个周期内完成。实际中,发送读按键指令时,如果SEG2/KS2-SEG8/KS8 端的按键扫描高 ©Titan Micro Electronics www.titanmec.com

电平通过按键引入K2引脚中,芯片内部会识别该高电平并且在读4个字节的按键数据时,相应的BIT位会被置高。

▲注意: 显示周期和IC工作的振荡频率有关,振荡频率不完全一致,以上数据仅供参考,以实际测量为准。

十、串行数据传输格式:

©Titan Micro Electronics

读取和接收1个BIT都在时钟的上升沿操作。

▲注意: 1、读取数据时,从串行时钟CLK的第8个上升沿开始设置指令到CLK下降沿读数据之间需要一个等 待时间Twait(最小2µS)。具体参数见时序特性表。

- 7 -

www.titanmec.com

TM1630

应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据, 最多10BYTE, 数据传送完毕才将"STB"置高。

CLK									
DIO	Command1	Command2	Command3	Data1	Data2	*****	Data n	Command4	
STB									

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多10bvtes)

Command4:显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不 需要置高, 紧跟着传1BYTE数据, 数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址, 最多 10BYTE数据传送完毕, "STB"置高。

CLK						ШШ		
DIO	Command1	Command2	Command3	Data1	Command4	Data2	******	Command5
STB								

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5:显示控制命令

(3) 读按键时序

CLK			1				
DIO	Command1	Datal		Data2	Data3	Data4	
STB							

Command1: 设置读按键命令 Data1~4:读取按键数据

(4) 采用地址自动加一和固定地址方式的程序设计流程图:

采用自动地址加一的程序设计流程图:

采用固定地址的程序设计流程图:

十二、应用电路:

TM1630驱动共阴数码屏硬件电路图(18):

▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1630芯片放置,加强滤波效果。

- 2、连接在DIO、CLK、STB通讯口上下拉三个100pF电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V, 因此TM1630供电应选用5V。

极限参数 (Ta = 25℃, Vss = 0V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	-0.5 \sim VDD + 0.5	V
LED SEG 驱动输出电流	101	-50	mA
LED GRID 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ∼ +80	°C
储存温度	Tstg	−65 ~+150	$^{\circ}$
ESD	MM(机器模式)	200	V
EON	HBM(人体模式)	2000	V

正常工作范围 (Ta = -20 ~ +80℃, Vss = 0V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD) -	5	_	V	-
高电平输入电压	VIH	0.7 VDD	-	VDD	V	_
低电平输入电压	VIL	0	-	0.3 VDD	V	_

电气特性 (Ta = -20 ~ +80℃, VDD = 5V, V_{ss} = 0V)

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	20	35	60	mA	SEG2∼SEG8, Vo = VDD -3V
低电平输入电流	${ m I}_{ m OL}$	80	120	-	mA	GRID1∼GRID5 Vo=0.3V
低电平输出电流	Idout	3	-	-	mA	Vo = 0.4V, Dout
高电平输出电流容 许量	Itolsg	_	_	5	%	Vo = VDD − 3V, SEG2∼SEG8
高电平输入电压	VIH	0. 7 VDD	ı		V	CLK, DIO, STB
低电平输入电压	VIL	_	_	0. 3 VDD	v	CLK, DIO, STB

开关特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件		
	$t_{\mathtt{PLZ}}$		-	300	ns		CLK → DIO	
传输延迟时间	t _{PZL}	-	-	100	ns	CL = 15pF, RL = 10K Ω		
	t _{TZH} 1		_	2	μs		SEG2~SEG8	
上升时间	t _{TZH} 2	ı	1	0. 5	μs	CL = 300p F	SEG14/GRID5	
下降时间	$t_{\mathtt{THZ}}$	-	_	1. 5	μs	CL =	300pF, SEGn, GRIDn	
最大输入时钟频 率	Fmax	-	-	1	MHz	占空比50%		
输入电容	CI	_	_	15	pF		_	

- 14 -

时序特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PW _{CLK}	500	-	-	ns	-
选通脉冲宽度	PW _{STB}	1	_	_	μs	_
数据建立时间	tsetup	100	_	_	ns	-
数据保持时间	t _{HOLD}	100	_	_	ns	_
CLK →STB 时间	t _{CLK-STB}	1	_	_	μs	CLK↑→STB↑

时序波形图:

十四、IC 封装示意图: DIP18 封装尺寸:

Symbol	Dimensions In	n Millimeters	Dimensions In	Inches	
	Min	Max	Min	Max	
Α	3. 710	4. 310	0. 146	0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524	(BSC)	0. 060 (BSC)		
C	0. 204	0. 360	0. 008	0. 014	
D	22. 640	23. 040	0. 891	0. 907	
E	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
е	2. 540	(BSC)	0. 100 (BS	C)	
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)