

O idealnom plinu

Obilježja idealnog plina

Energijske tehnologije FER 2008.

Gdje

- 1. Organizacija i sadržaj predmeta
- smo: 2. Uvodna razmatranja
 - 3. O energiji
 - 4. Energetske pretvorbe i procesi u termoelektranama
 - 5. Energetske pretvorbe i procesi u hidroelektranama
 - 6. Energetske pretvorbe i procesi u nuklearnim el.
 - 7. Energija Sunca
 - 8. Energija vjetra
 - 9. Geotermalna energija
 - 10. Biomasa
 - 11. Gorivne ćelije i ostale neposredne pretvorbe
 - 12. Potrošnja električne energije
 - 13. Prijenos i distribucija električne energije
 - 14. Skladištenje energije
 - 15. Energija, okoliš i održivi razvoj

Sadržaj

- Jednadžbe stanja idealnog plina
- Unutrašnja kalorička energija idealnog plina
- Specifične topline idealnog plina

Što je idealni plin

 idealni je plin (nepostojeća) tvar, u plinovitom agregatnom stanju, koja se ponaša sukladno s predviđanjima naših matematičkih modela

Jednadžba stanja idealnog plina

- jednadžba stanja idealnog plina opisuje i predviđa ponašanje (idealnog) plina kojemu se istodobno mijenjaju tri veličine stanja: tlak, volumen i temperatura
- pokazuje se, stanje je (idealnog) plina određeno poznajemo li vrijednosti dvije (od tri) veličine stanja jer je vrijednost treće veličine stanja za svako ravnotežno stanje funkcija dviju veličina stanja

Jednadžba stanja idealnog plina - Boyle - Mariotteov zakon

Boyle - Mariotteov zakon:

"produkt je tlaka i volumena zraka konstantan pri konstantnoj temperaturi":

6

Jednadžba stanja idealnog plina - Gay-Lussacov zakon

Gay-Lussacov zakon:

"specifični je volumen plinova pri konstantnom tlaku proporcionalan temperaturi":

$$v = \phi(p) \bullet T = konst. \bullet T (za p = konst.)$$

Jednadžba je prikazana je u v, 9– dijagramu snopom pravaca koji se sijeku u točki -273,15 °C.

Jednadžba stanja idealnog plina – analitički oblik za 1kg plina

- kombinirajući zakone dobivamo:
- $pv = p\phi(p)T = f(T)$ jer je $v = \phi(p)T$, a pv = f(T)
- pφ(p) je funkcija tlaka koju možemo ovako označiti:

$$p\phi(p) = \psi(p)$$

dobivamo:

$$pv = \psi(p)T = f(T)$$

- zaključujemo: ψ(p)T može biti jednako funkciji temperature, ψ(p)T = f(T), samo ako ψ(p) nije funkcija tlaka već neka konstanta. Označimo tu konstantu s R i nazovimo je plinskom konstantom
- dobivamo relaciju:

$$pv = RT [J/kg]$$

koja je **jednadžba stanja idealnog plina** za 1kg plina

Jednadžba stanja idealnog plina – analitički oblik za m kg plina

- za masu od m kg jednadžba će stanja biti
 pV = mRT [J] (mv = V)
- jednadžba je stanja jednadžba površine u p,v,T prostoru (koordinatnom sustavu), a stanje je plina određeno točkom te površine
- jednadžba opisuje i predviđa ponašanje plina kada se sve tri varijable, dakle sva tri svojstva odnosno veličine stanja, mijenjaju istodobno

Plinska konstanta

 fizikalno se značenje plinske konstante može uočiti iz njezine dimenzije:

$$[R] = \left[\frac{pv}{T}\right] = \frac{Nm^{-2}m^3kg^{-1}}{K} = \frac{Nm}{kgK} = \frac{J}{kgK}$$

 plinska je konstanta prema tome rad koji obavi 1kg (idealnog) plina kada mu se, kod konstantnog tlaka, temperatura promijeni za 1K:

$$w_{12} = \int_{v_1}^{v_2} p dv = p(v_2 - v_1) \ (p = konst.)$$

• $pv_2 - pv_1 = RT_2 - RT_1 = R(T_2 - T_1)$; $\delta T = T_2 - T_1 = 1K$

Pogodniji oblik jednadžbe stanja idealnog plina – definicija kilomola

- $m = \mu kg$
- μ je toliko kilograma plina kolika je relativna atomska ili molekularna masa plina. Ta se količina plina naziva kilomol (kmol): 1 kmol = μ kg
- 1 kmol višekratnik je jedinice za količinu tvari Međunarodnog sustava jedinica (SI), mola:

 $1 \text{ kmol} = 10^3 \text{ mol}$

- mol je količina tvari onog sustava koji sadrži toliko jedinki (elektrona, atoma, molekula, itd.) koliko ima atoma u 0,012 kg najlakšeg izotopa ugljika C-12
- 0,012 kg C-12 sadrži 6,022•10²³ atoma (Avogadrov broj), pa dakle 12 kg C-12 (1 kmol C-12) sadrži 6,022•10²⁶ atoma. Dijeljenjem se mase od 0,012 kg C-12 Avogadrovim brojem dobiva masa atoma C-12

Pogodniji oblik jednadžbe stanja idealnog plina – masa kilomola tvari

- relativnu atomsku masu definiramo kao broj (neimenovani broj) koji pokazuje koliko je puta masa nekog elementa veća od 1/12 mase atoma ugljika C-12
- posljedično, budući da se mol (kmol) svake tvari sastoji od 6,022•10²³ (6,022•10²⁶) atoma, ili molekula, masa mola (kilomola) tvari iznosi upravo toliko grama (kilograma) koliko iznosi relativna atomska masa, ili relativna molekularna masa kad je riječ o molekulama: npr., uzmemo li 1kmol vode (H₂O), uzeli smo 18 kg vode, 1 kmol CO₂ = 44 kg CO₂ itd.

Pogodniji oblik jednadžbe stanja idealnog plina – kilomolni volumen

• jer vrijedi Avogadrov zakon (i taj zakon vrijedi samo za idealni plin, ne i za realne plinove): "isti volumeni različitih plinova pod istim tlakom i na istoj temperaturi sadrže isti broj čestica", to slijedi da će 1 kmol bilo kojeg plina pri jednakom tlaku i jednakoj temperaturi zauzimati isti volumen (jer sadrži isti broj čestica). Taj se volumen naziva kilomolnim volumenom, v_{μ} . Određen je mjerenjima i za temperaturu 0°C (273,15 K) i tlak od 1 atm (1,01325 bar): $v_{11} = 22,4 \text{ m}^3/\text{kmol}$

Pogodniji oblik jednadžbe stanja idealnog plina

 napišu li se jednadžbe stanja za n različitih plinova mase 1 kmol, pri jednakim tlakovima i temperaturama, dobiva se:

$$p v_{\mu} = \mu_{1}R_{1}T$$

$$p v_{\mu} = \mu_{2}R_{2}T$$

$$p v_{\mu} = \mu_{i}R_{i}T$$

$$p v_{\mu} = \mu_{n}R_{i}T$$

$$p v_{\mu} = \mu_{n}R_{n}T$$

Pogodniji oblik jednadžbe stanja idealnog plina – opća plinska konstanta

$$\mu_1 R_1 = \mu_2 R_2 = \mu_3 R_3 = ... = \mu_n R_n = R_\mu$$

- prema tome, uzmemo li 1 kmol bilo kojeg plina,
 R_μ je konstanta za sve plinove. To je **opća plinska konstanta.**
- vrijednost joj je (kod temperature 0°C (273,15 K) i tlaka od 1 atm /1,01325 bar/) određena mjerenjem:

 $R_u = 8314,3 \text{ J/kmol K}$

Opća plinska konstanta jednaka je radu što ga obavi 1 kmol idealnog plina kad mu se kod konstantnog tlaka temperatura promijeni za 1K.

Pogodniji oblik jednadžbe stanja idealnog plina – Boltzmannova konstanta

 dobivamo dakle da za 1kilomol bilo kojeg plina vrijedi jednadžba stanja u obliku:

$$pv_{\mu} = R_{\mu}T [J/kmol]$$

odnosno za n kilomolova

$$pnv_{\mu} = pV_{\mu} = nR_{\mu}T [J]$$

• dijeljenjem opće plinske konstante R_{μ} Avogadrovim brojem za 1 kmol (6,022•10²⁶) dobiva se opća plinska konstanta po molekuli koja iznosi: $k_{B} = 1,381•10^{-23}$ J/K a to je Boltzmannova konstanta

Normalni ili normirani kubični metar

Pomoću kilomolnog volumena definira se još jedna jedinica za **količinu tvari**, **normalni ili normirani kubični metar (nm³)**, relacijom:

$$1 \text{ nm}^3 = \frac{1}{22,4} \text{ kmol} = \frac{\mu}{22,4} \text{ kg}$$

Dakle je normalni (normirani) kubični metar količina plina koja zauzima volumen od jednog metra kubičnog (1 m³) pri spomenutoj temperaturi i tlaku (0°C /273,15 K/, 1,01325 bar).

Unutrašnja kalorička energija idealnog plina

$$\delta u = u_2 - u_1 = q_{12} - w_{12} = 0$$
, $u = konst$.

$$\left(\frac{\partial u}{\partial v}\right)_{T} = 0 \text{ i } \left(\frac{\partial u}{\partial p}\right)_{T} = 0$$

$$u = f(T)$$

Specifična toplina idealnog plina

Ovisnost se unutrašnje kaloričke energije o temperaturi mogla odrediti tek nakon uvođenjem pojma "specifični toplinski kapacitet" ili "specifična toplina".

Specifična je toplina (c [J/kgK]) neke tvari, kako to definira "Fizika", ona količina toplinske energije koju treba dovesti jednom kilogramu tvari kako bi joj se temperatura povećala za jedan stupanj Kelvina:

$$c = \frac{dQ}{mdT} = \frac{dq}{dT} \text{ [J/kgK]}$$

(Relacija ne vrijedi za procese promjene agregatnih stanja.)

Specifična toplina idealnog plina

Definicija specifične topline opisuje činjenicu da tvari kojoj dovodimo toplinsku energiju obično (može i opadati ili ostati konstantnom) raste temperatura. Lako je utvrditi da je količina toplinske energije koju sustav primi proporcionalna njegovoj masi i razlici temperatura prije dovođenja i nakon prestanka dovođenja toplinske energije:

$$Q_{12} = k \cdot m \cdot (T_2 - T_1) = k \cdot m \cdot \delta T [J]$$

Faktor proporcionalnosti k nazvan je specifična toplina.

Ovisnost specifične topline o ...

Specifična toplina ovisi o svojstvima tvari (građi tvari), o temperaturi i o načinu dovođenja toplinske energije. Posebno je nezgodna ovisnost o temperaturi, slika, budući da je nelinearna: takva bi funkcionalna ovisnost, uključena u proračune, znatno otežala energetske analize. Zbog toga se u svim proračunima računa sa srednjom specifičnom toplinom među temperaturama T₁ i T₂, temperaturama između kojih se odvija promatrani proces.

Ovisnost specifične topline o temperaturi

$$q_{12} = [c]_{T_1}^{T_2} [T_2 - T_1] = \int_{T_1}^{T_2} cdT \implies [c]_{T_1}^{T_2} = \frac{\int_{T_1}^{T_2} cdT}{T_2 - T_1}$$
Exercisely tabalactic: O idealness place.

Ovisnost specifične topline o uvjetima u dovođenja toplinske energije

Budući da toplinska energija nije veličina stanja, to količina toplinske energije koja se dovodi u sustav ne ovisi samo o promjeni temperature sustava nego i o procesu dovođenja toplinske energije. Posljedično će i vrijednost specifične topline ovisiti o načinima dovođenja toplinske energije.

Specifična toplina uz konstantni volumen

$$c = \frac{dq}{dT}$$
 i dalje, jer je dq = du + pdv,

$$c = \frac{dq}{dT} = \frac{du}{dT} + \frac{pdv}{dT}$$

Ako se promatraju prilike uz konstantni volumen (v = konst, dv = 0), dobiva se (sa c_v označavamo specifičnu toplinu uz konstantni volumen /kod konstantnog volumena/):

$$\mathbf{c}_{v} = \left(\frac{\partial q}{\partial T}\right)_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} = \frac{du}{dT} \left[J/\text{kgK}\right]$$

Funkcionalna veza UKE i temperature

Nađena je tako funkcionalna veza između unutrašnje kaloričke energije i temperature, odnosno kako se može izračunati promjena unutrašnje kaloričke energije:

$$du = c_v dT [J/kg]$$

Specifična toplina uz konstantni tlak

Ako se toplinska energija dovodi uz konstantni tlak (p = konst, dp = 0), dobiva se (sa c_p označavamo specifičnu toplinu uz konstantni tlak /kod konstantnog tlaka/):

$$c = \frac{dq}{dT}$$
 i dalje, jer možemo pisati da je dq = dh - vdp,

$$c_p = \left(\frac{\partial q}{\partial T}\right)_p = \left(\frac{\partial h}{\partial T}\right)_p = \frac{dh}{dT} \text{ (dp = 0) [J/kgK]}$$

Nađena je tako i funkcionalna veza između entalpije i temperature, odnosno kako se može izračunati promjena entalpije:

$$dh = c_p dT [J/kg]$$

Odnos između specifičnih toplina

$$c_{p} = \frac{dh}{dT} = \frac{d}{dT} (u + pv) = \frac{d}{dT} (u + RT) = \frac{du}{dT} + R = c_{v} + R$$

$$c_p - c_v = R$$
 $\frac{c_p}{c_v} = \kappa$

$$c_v = \frac{R}{\kappa - 1} i$$
 $c_p = \frac{\kappa R}{\kappa - 1}$

Ovisnost specifične topline o građi tvari

 za plinove s jednoatomnim molekulama kilomolne specifične topline iznose

$$c_{\mu\rho} = \frac{5}{2} R_{\mu} i c_{\mu\nu} = \frac{3}{2} R_{\mu}$$

s tim da ne ovise o temperaturi

• za plinove s dvoatomnim molekulama, pri temperaturama između 0 i 200°C, kilomolne su specifične topline

$$c_{\mu\rho} = \frac{7}{2} R_{\mu} i c_{\mu\nu} = \frac{5}{2} R_{\mu}$$

(Za dvoatomne je plinove navedeno temperaturno područje jer specifične topline ovise o temperaturi. Za plinove s većim brojem molekula ne vrijede tako jednostavne zakonitosti.)

Ovisnost k o broju atoma u molekuli

- za jednoatomne plinove $\kappa = 1,667$
- za dvoatomne plinove $\kappa = 1,400$
- za dvoatomne plinove vrijednost se κ odnosi samo na navedeno temperaturno područje; s porastom temperature ona opada
- za troatomne plinove može se u prvoj aproksimaciji postaviti da je $\kappa = 1,3$
- za čvrste i kapljevite tvari specifična toplina normalno raste s temperaturom, ali je razlika između c_n i c_v zanemariva

Manjkavosti definicije specifične topline

 promatramo dva procesa s jednim kilogramom idealnog plina smještenim u spremniku krutih (čvrstih) stijenki
 (A)

slučaj (A):

 $q_{12} = u_2 - u_1 + w_{12}$ pa jer je $w_{12} = 0$ (mehanički se rad ne dovodi) dobivamo:

$$q_{12} = u_2 - u_1 = 100 \text{ kJ/kg};$$

Manjkavosti definicije specifične topline

slučaj (B):

 $q_{12} = u_2 - u_1 + w_{12}$ pa jer je $q_{12} = 0$ (toplinska se energija ne dovodi) dobivamo:

$$-w_{12} = u_2 - u_1 = 100 \text{ kJ/kg}.$$

$$d\mathbf{T} = \frac{du}{c_v} \qquad \mathbf{c_v} \equiv \left(\frac{\partial u}{\partial T}\right)_v \qquad \mathbf{c_p} \equiv \left(\frac{\partial h}{\partial T}\right)_p$$

$$c_{zvuka} = \sqrt{\kappa pv} = \sqrt{\kappa RT}$$

Koliko puta treba povećati motor pumpe (crpke) želimo li da u istom vremenu pumpamo (crpimo) dvostruku količinu vode?

Proces pumpanja (crpljenja) smatrajte idealnim (zanemarite trenje, promjenu gustoće vode, povećana naprezanja) stacionarnim strujnim procesom uz nepromijenjene dimenzije pumpe.

Rj.

$$\dot{m} = \rho Ac[kg/s] \Rightarrow 2\dot{m} = \rho A2c[kg/s] \Leftrightarrow$$

dvostruka brzina strujanja vode da bi se pumpala dvostruka količina uz nepromijenjene dimenzije pumpe.

Potrebna energija

$$\frac{mc^2}{2} \Rightarrow \frac{2m \cdot (2c)^2}{2} = \frac{8mc^2}{2} = 8 \cdot \frac{mc^2}{2} \Rightarrow$$

8 puta.

Benzinski motor razvija snagu od 50 kW. Maseni je protok benzina pritom 15 kg/h, a zraka 215 kg/h. Temperatura je smjese goriva i zraka 15 °C na ulazu u motor, a 900 °C temperatura je plinova izgaranja na izlazu iz motora. Motor je hlađen vodom. Odredite iznos toplinske energije odvedene u jednoj sekundi vodom ukoliko se svako drugo odvođenje toplinske energije može zanemariti. Poznata je razlika specifičnih vrijednosti entalpija smjese zraka i goriva na ulazu u motor i plinova izgaranja na izlazu iz motora: 1.675 kJ/kg.

Rj.

$$\begin{aligned} q_{12} + h_1 + \frac{1}{2}c_1^2 + gz_1 &= w_{t12} + h_2 + \frac{1}{2}c_2^2 + gz_2 \\ \delta e_{kin} &\approx 0; \delta e_{pot} \approx 0 \Rightarrow \\ q_{12} &= w_{t12} + h_2 - h_1 / \cdot m \\ Q_{12} &= W_{t12} + (h_2 - h)m / : t(s) \\ \dot{Q}_{12} &= P_{t12} + (h_2 - h)\dot{m} = \\ &= 50.000 \frac{J}{s} + (-1675) \frac{10^3 J}{kg} \cdot (215 + 15) \frac{kg}{h} \cdot \frac{1h}{3.600s} \approx \\ &\approx -57 \frac{kJ}{s}. \end{aligned}$$

Idealni plin, R = 287 J/kgK, struji konstantnom brzinom, 10 m/s, kroz cijev promjera 0,2 m u veliki spremnik. Kolika je količina plina što u jednom satu ustrujava u spremnik ako je temperatura plina 25 °C a tlak 150 kPa? Zanemarite sve otpore strujanju.

Rj.

$$pv = RT \Rightarrow v = \frac{RT}{p} = \frac{287 \frac{J}{kgK} \cdot 298,15K}{150 \cdot 10^3 \frac{N}{m^2}} = 0,57 \frac{m^3}{kg}$$

$$\dot{m} = \rho A c = \frac{Ac}{v} = \frac{0.2^2 \cdot \frac{\pi}{4} \cdot 10 \frac{m}{s}}{0.57 \frac{m^3}{kg}} = 0.53 \frac{kg}{s}$$

$$m = \dot{m} \cdot t = 0,53 \frac{kg}{s} \cdot 3.600s = 1908kg.$$

Za koliko će se kilograma povećati masa jedne tone vode što se zagrijava od 0 °C da vrelišta (100 °C)?

Računajte s konstantnom specifičnom toplinom vode $c_p = 4,1868 \text{ kJ/kgK}$.

Rj.

Q (E, energija) = $mc_p \delta T = 1000$ kg·4.186,8J/kgK·100K = 4,1868·10⁸ J.

Povećanje je mase vode:

$$\delta m = \frac{E}{c_{sv}^2} = \frac{4,1868 \cdot 10^8 \frac{kgm^2}{s^2}}{(3 \cdot 10^8)^2 \frac{m^2}{s^2}} = 0,47 \cdot 10^{-8} kg.$$

U parovodu se konstantnog presjeka temperatura pare što struji smanjuje od 800 °C na 750 °C. Ukoliko strujanje pare promatramo kao izobarno (tlak pare je konstantan) stacionarno strujanje idealnog plina, za koliko se smanjuje brzina strujanja pare u parovodu?

Rj.

$$\frac{c_1 A}{v_1} = \frac{c_2 A}{v_2} = \dots = \frac{c A}{v} = \dot{m} = konst.$$

$$p = konst. \Rightarrow \frac{pv_1 = RT_1}{pv_2 = RT_2} \Rightarrow \frac{v_2}{v_1} = \frac{T_2}{T_1} =$$

$$=\frac{750+273,15}{800+273,15}=0,95$$

$$\frac{c_1 A}{v_1} = \frac{c_2 A}{v_2} \Rightarrow \frac{c_2}{c_1} = \frac{v_2}{v_1} = 0,95.$$

Gustoća je zraka tlaka 1, 013251·10⁵ N/m² i temperature 273,15 K 1 kg/m³. Odredite broj molekula zraka u 1 cm³ zraka te masu "molekule zraka".

Rj.

$$v_{\mu} = \frac{R_{\mu}T}{p} = \frac{8.314, 3\frac{J}{kmolK} \cdot 273, 15K}{1,01325 \cdot 10^{5}} = 22,414 \frac{m^{3}}{kmol}$$

Broj je kilomolova u 1 cm³:

$$n = \frac{V}{v_{\mu}} = \frac{10^{-6} m^{3}}{22,414 \frac{m^{3}}{kmol}} = \frac{10^{-6}}{22,414} kmol$$

Ako imamo n kilomolova, njihov je volumen $V = n \cdot v_{\mu}$. (v_{μ} je volumen 1 kilomola pri tlaku p i temperaturi T.)

1 kilomol sadrži 6,023·10²⁶ (Avogadrov broj) molekula (čestica).

Dakle će 1 cm³ sadržati

 $6,023 \cdot 10^{26} : 22,414 \text{ m}^3/\text{kmol} = x : 10^{-6} \text{ m}^3/\text{kmol}$

$$x = \frac{6,023 \cdot 10^{26} \cdot 10^{-6}}{22,414} = 2,687 \cdot 10^{19} \, molekula.$$

Molekulska masa zraka pri zadanim uvjetima iznosi:

 $m_z = \rho v_{\mu} = 1 \text{ kg/m}^3 \cdot 22,414\text{m}^3/\text{kmol} = 22,414 \text{ kg/kmol}.$

Masa je zraka u 1 cm³

 $m_z = 10^{-6} \text{ kg (jer je } \rho = 1 \text{kg/m}^3),$

pa je masa jedne "molekule zraka":

$$m_{m_z} = \frac{m_z}{2,687 \cdot 10^{19}} kg = \frac{10^{-6}}{2,687} \cdot 10^{-19} =$$

$$= 3,72 \cdot 10^{-26} kg.$$

Promatrani sustav cilindar je sa stapom, zanemarive mase, koji se giba bez trenja. Promjer je cilindra 0,5 m, a stap je opterećen stalnom silom, okomitom na stap, iznosa 2000 N. U cilindru se nalazi idealni plin (R = 287 J/kgK, κ = 1,4) temperature 20 0 C . Tlak je okolice (atmosfere) 1 bar, a stap je udaljen 1 m od dna cilindra.

Koliko tehničkog rada, posredstvom rotirajuće lopatice (rada trenja), treba dovesti u cilindar da bi se stap, svladavajući spomenutu silu, pomaknuo za 0,5 m?

1. glavni stavak za zatvoreni sustav:

$$Q_{12} = \delta U + W_{12}$$

 $Q_{12} = 0$ (adijabatski sustav),
 $W_{12} = W_{t12} +$ mehanički rad promjene volumena
(W_{12} je ukupni rad koji se izmjenjuje između
zatvorenog sustava i okolice za vrijeme procesa)
Dobivamo:

 $\delta U = -W_{12} = -pA\delta s - W_{t12};$ $\delta U = c_v m(T_2 - T_1)$

- ukupni je tlak što djeluje na stap:

$$p = \frac{F}{A} + p_{ok} = \frac{2000N}{0.25^2 m^2 \pi} + 100000 \frac{N}{m^2} = 110.185.9 \frac{N}{m^2}$$

- masa idealnog plina

$$m = \frac{pV_1}{RT_1} = \frac{110.185,9 \frac{N}{m^2} \cdot 0,25^2 m^2 \cdot \pi \cdot 1m}{287 \frac{J}{kgK} \cdot 293,15K} = 0,257kg$$

 temperatura plina porasla je zbog dovedenog tehničkog rada

$$T_2 = \frac{pV_2}{mR} = \frac{110.185,9 \frac{N}{m^2} \cdot 0,25^2 m^2 \cdot \pi \cdot 1,5m}{0,257 kg \cdot 287 \frac{J}{kgK}} = \frac{110.185,9 \frac{N}{m^2} \cdot 0,25^2 m^2 \cdot \pi \cdot 1,5m}{0,257 kg \cdot 287 \frac{J}{kgK}}$$

$$=439,98K$$

dovedeni tehnički rad (rad trenja)

$$W_{t12} = -pA \delta s - c_v m (T_2 - T_1) =$$

$$= -pA \delta s - \frac{R}{\kappa - 1} m (T_2 - T_1) =$$

$$= -110.185,9 \frac{N}{m^2} \cdot 0,25^2 m^2 \cdot \pi \cdot 0,5m -$$

$$0,257 kg \cdot \frac{J}{kgK} (439,98 - 293,15) K =$$

$$= -37.888,87 J$$

(Negativni predznak upućuje na činjenicu da se tehnički rad dovodi u sustav.)

Koristan rad sustava (plina), rad predan u okolicu za vrijeme procesa:

$$W_{koristan} = F \cdot s = 2000 N \cdot 0.5 m = 1000 J$$

Ukratko

Upoznali smo fizikalna svojstva hipotetičke tvari, koju zovemo idealnim plinom, i izveli jednadžbu što opisuje i predviđa ponašanje idealnog plina kome se istodobno mijenjaju i tlak i temperatura i volumen (obujam): jednadžbu stanja. Odredili smo funkcionalnu ovisnost unutrašnje kaloričke energije i entalpije o temperaturi, upoznali pojam specifične topline i upozorili na manjkavosti "klasične" definicije tog pojma.