

1. Hypothesis Testing

Setup:

Suppose we have n observations (\mathbf{X}_i, Y_i) , where $Y_i \in \mathbb{R}$ is the dependent variable, $\mathbf{X}_i \in \mathbb{R}^p$ is the **column** $p \times 1$ vector of deterministic explanatory variables, and the relation between Y_i and \mathbf{X}_i is given by

$$Y_i = \mathbf{X}_i^T eta + \epsilon_i, \qquad i = 1, \dots, n.$$

where ϵ_i are i.i.d. $\mathcal{N}\left(0,\sigma^2
ight)$. As usual, let \mathbb{X} denote the n imes p matrix whose rows are \mathbf{X}_i^T .

Unless otherwise stated, assume $\mathbb{X}^T\mathbb{X} = \tau \mathbf{I}$ and that τ , σ^2 are known constants.

(a)

2.0/2 points (graded)

Recall that under reasonable assumptions (which is certainly satisfied in linear regression with Gaussian noise), the Fisher Information of a parameter θ given a family of distributions \mathbf{P}_{θ} can be computed via the following formula:

$$I\left(heta
ight) = -\sum_{i=1}^{n} H_{ heta} \ln f\left(Y_{i}; heta
ight)$$

where $H_ heta$ denotes the Hessian differentiation operator with respect to heta. (Recall the definition in <u>lecture 9</u>).

In terms of \mathbb{X} , σ^2 , compute the Fisher $I(\beta)$ information of β .

(Type **X** for \mathbb{X} , **trans(X)** for the transpose \mathbb{X}^T of a matrix \mathbb{X} , and $\mathbb{X}^{\wedge}(-1)$ for the inverse \mathbb{X}^{-1} of a matrix \mathbb{X} .)

Plugging in $\mathbb{X}^T \mathbb{X} = \tau \mathbf{I}$, then the Fisher Information simplifies to a scalar multiple of \mathbf{I} , so that it is a matrix of the form $\lambda \mathbf{I}$. Find the multiplicative constant λ , in terms of τ and σ .

STANDARD NOTATION

Solution:

Notice that Y is a Gaussian random variable, so plug the Gaussian pdf directly into the suggested formula. Let $\ell(y|\beta)$ denote the log-likelihood function for a single observation x:

$$egin{align} \ell\left(y|eta
ight) &= \lnrac{1}{2\pi\sigma^2} - rac{1}{2\sigma^2}(y-\mathbf{x}^Teta)^2 \ &= \lnrac{1}{2\pi\sigma^2} - rac{1}{2\sigma^2}(y^2-2y\mathbf{x}^Teta+eta^T\mathbf{x}\mathbf{x}^Teta) \ \implies
abla_eta\ell\left(y|eta
ight) &= -rac{1}{2\sigma^2}(-2y\mathbf{x}+2\mathbf{x}\mathbf{x}^Teta) \ \end{aligned}$$

$$=rac{1}{\sigma^2}(y\mathbf{x}-\mathbf{x}\mathbf{x}^Teta)$$

$$\implies H_{eta}\ell\left(y|eta
ight) \ = rac{-\mathbf{x}\mathbf{x}^T}{\sigma^2}$$

Therefore, $I(\beta)$ is the sum

$$egin{align} I\left(eta
ight) &= -\sum_{i=1}^{n} \mathbb{E}_{Y}\left[-rac{1}{\sigma^{2}}\mathbf{X}_{i}\mathbf{X}_{i}^{T}
ight] \ &= rac{1}{\sigma^{2}}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}^{T} \ &= rac{1}{\sigma^{2}}\mathbb{X}^{T}\mathbb{X} \end{aligned}$$

The outer product $\mathbf{X}_i \mathbf{X}_i^T$ is a matrix, and summing over them gives the matrix $\mathbb{X}^T \mathbb{X}$. The transposes are switched due to the convention that the rows of \mathbb{X} are \mathbf{X}_i^T , since \mathbf{X}_i are column vectors.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

(b)

3/3 points (graded)

Instructions: Fill in the blank in terms of σ and τ .

Based on the calculation of the Fisher Information (or by other means), we can conclude that the Maximum Likelihood Estimator $\hat{\beta}$ has entries $\hat{\beta}_1,\ldots,\hat{\beta}_p$ that are independent Gaussians, with variance:

$$\operatorname{Var}(\hat{eta}_i) = \begin{bmatrix} & & & \\ & & &$$

Suppose we wish to test the hypotheses

$$H_0:eta_1=eta_2, \qquad H_1:eta_1
eqeta_2.$$

Based on the observation made above, a suitable test statistic is $T_n=rac{\hat{eta}_1-\hat{eta}_2}{\sqrt{{\sf Var}(\hat{eta}_1-\hat{eta}_2)}}.$

Find the denominator $\sqrt{{\sf Var}\,(\hat{eta}_1-\hat{eta}_2)}$ (including the square root) in terms of σ and au.

$$\sqrt{\operatorname{Var}(\hat{\beta}_1 - \hat{\beta}_2)} = \operatorname{sqrt}(2*\operatorname{sigma^2/tau})$$
 \checkmark Answer: $\operatorname{sqrt}(2*\operatorname{sigma^2/tau})$

What is the appropriate test at significance level lpha=0.01?

(Let q_lpha denote the standard normal lpha-quantile for each respective choice below.)

$$\quad \quad \quad \quad \quad \quad \quad \quad \psi = \mathbf{1}\left(T_n > q_{0.01}\right)$$

$$\circ \; \psi = \mathbf{1} \left(T_n > q_{0.005}
ight)$$

$$\psi = \mathbf{1} \left(|T_n| > q_{0.01}
ight)$$

 $ullet \ \psi = \mathbf{1} \left(|T_n| > q_{0.005}
ight)$

STANDARD NOTATION

Solution:

Recall that the Fisher Information matrix is the inverse of the Covariance of the Maximum likelihood estimator, $\hat{\beta}$. This tells us that the $\hat{\beta}$ has covariance $\frac{\sigma^2}{\tau}I$, which also means that the coordinates of $\hat{\beta}$ are i.i.d.

To design the test, observe that the statement $\beta_1=\beta_2$ should be re-written as $\beta_1-\beta_2=0$. The difference of two i.i.d. Gaussians is a Gaussian, with twice the variance. Thus, the correct answer for the denominator in the test statistic T_n is $\sqrt{2\sigma^2/\tau}$.

Finally, the test T_n suggests that we are trying to determine whether $\beta_1-\beta_2=0$, by calculating/re-scaling $\hat{\beta}_1-\hat{\beta}_2$. Intuitively, the null hypothesis should be rejected if $\hat{\beta}_1-\hat{\beta}_2$ happens to be large (far away from zero). Therefore, we ought to apply the two-sided test $\psi=\mathbf{1}$ ($|T_n|>q_{0.005}$).

Submit

You have used 3 of 3 attempts

Answers are displayed within the problem

(c)

1/2 points (graded)

Suppose we instead wish to test the hypotheses $H_0:(\beta_1,\beta_2,\beta_3)=(0,0,0)$, $H_1:(\beta_1,\beta_2,\beta_3)\neq(0,0,0)$.

Let γ be some appropriate value corresponding to the significance level, to be determined later. Choose all ψ that correctly represents the Bonferroni Test of H_0 against H_1 .

$$\psi=\mathbf{1}\left\{rac{|\hat{eta}_1+\hat{eta}_2+\hat{eta}_3|}{3}>q_\gamma
ight\}$$

$$\psi = \mathbf{1} \left\{ rac{\max(|\hat{eta}_1|,|\hat{eta}_2|,|\hat{eta}_3|)}{\sqrt{\sigma^2/ au}} > q_\gamma
ight\}$$
 🗸

$$\psi = \prod_{i=1}^3 \mathbf{1} \left\{ rac{|eta_i|}{\sqrt{\sigma^2/ au}} > q_\gamma
ight\}$$

$$lacksquare \psi = \mathbf{1}\left\{|\hat{eta}_1 - \hat{eta}_2 - \hat{eta}_3| > q_\gamma
ight\}$$

$$\psi = \mathbf{1}\left\{\left(|\hat{eta}_1/\sqrt{\sigma^2/ au}| > q_\gamma
ight) \;\; ext{or} \; \left(|\hat{eta}_2/\sqrt{\sigma^2/ au}| > q_\gamma
ight) \;\; ext{or} \;\; \left(|\hat{eta}_3/\sqrt{\sigma^2/ au}| > q_\gamma
ight)
ight\} ullet$$

In the Bonferroni test of significance level $\alpha=0.01$ for testing this particular H_0 against H_1 , what is the numerical value of γ ? Input a fraction or round to the nearest 10^{-5} , if necessary.

0.01/6

✓ Answer: 0.01/6

Solution:

The Bonferroni test is used in this setting, because we are simultaneously testing three hypotheses: $eta_1=0$, $eta_2=0$, $eta_3=0$. If even one of these is false, then we would hope that H_0 is rejected. The correct choice here is $\psi=\mathbf{1}\{\frac{\max(|\hat{\beta}_1|,|\hat{\beta}_2|,|\hat{\beta}_3|)}{\sqrt{\sigma^2/\tau}}>q_\gamma\}$, which is

equal to the logical or (V) of the three conditions $\beta_i/\sqrt{\sigma^2/\tau} > q_\gamma$. In contrast, the product formula is the same as the logical and (and), which rejects only if all three mini-tests reject simultaneously. That is not what we want from our test.

When testing at significance level $\alpha=0.01$, notice that all three tests on β_1,β_2,β_3 must be performed individually at level $\alpha/3$. Since each of these three tests is a two-sided test (e.g. $|\hat{\beta}_1|>q_\gamma$), the quartile we are looking for is the $\alpha/6$ -quartile, or $\gamma=\frac{0.01}{6}\approx 0.00167$.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

(d)

5.0/5 points (graded)

Instructions: For an arbitrary significance level $\alpha \in (0,1)$, compute an order $(1-\alpha)$ confidence interval for $\beta_1=0$ by filling in the blanks. (In other words, find a confidence interval with confidence level $1-\alpha$.) Unless otherwise specified, express your answers in terms of σ^2 , τ , α and the quantile q.

(Type $q\left(lpha
ight)$ to denote q_{lpha} , the 1-lpha-th quantile of the standard Gaussian.)

• The random variable $\hat{\beta}_1 - \beta_1$ is a Gaussian RV, with a variance that we computed earlier. Find the value of C such that $\mathbf{P}(-C \leq \hat{\beta}_1 - \beta_1 \leq C) = 1 - \alpha$.

This gives us the confidence interval $I=[\hat{eta}_1-C,\hat{eta}_1+C]$.

• Revisit part (b). If $\mathbb{X}^T\mathbb{X}$ were not diagonal, then in terms of σ and \mathbb{X} , the covariance matrix of $\hat{m{eta}}$ is

• The variance of $\hat{\beta}_1$ can be expressed in terms of a particular (i,j) entry of this matrix (the answer to the previous part), where the row-column ordered pair (i,j) is:

Let $\delta^2=\mathrm{Var}\,(\hat{eta}_1)$ be this matrix entry. The new value of C becomes (in terms of δ , and q):

New value of C: q(alpha/2)*delta \checkmark Answer: delta*q(alpha/2)

STANDARD NOTATION

Solution:

- Since \hat{eta}_1 is gaussian with mean eta_1 and variance σ^2/ au , we will take (as suggested by the provided inequality) a quantile corresponding to a two-sided test. The quantile is $q_{lpha/2}$, scaled by the variance, so that $C=\sqrt{\frac{\sigma^2}{ au}}q_{lpha/2}$.
- If $\mathbb{X}^T\mathbb{X}$ were not diagonal, then the covariance matrix of \hat{eta} is $\sigma^2(\mathbb{X}^T\mathbb{X})^{-1}$.
- By definition, $\operatorname{Var}(\hat{\beta}_1)$ is the first diagonal entry of the covariance matrix, $\sigma^2(\mathbb{X}^T\mathbb{X})^{-1}$. The entry that should be entered is the ordered pair "(1,1)".
- Instead of the answer from the first part of this problem, we scale by the new standard deviation δ : $C=\delta q_{lpha/2}$.

Submit You have

You have used 2 of 4 attempts

Answers are displayed within the problem