Demonstration Results Report NRECA for GRIP

By David.Pinney@NRECA.coop on 30 Sept. 2020

Overview

- This report describes Anticipate/Absorb/Recover models deployed as part of GRIP.
- Results include validation scores, user acquisition, and feedback.
- The supporting platform features were integrated with the PresencePG platform via the OMF HTTP API.
- Other models were not selected for platform integration, but are available for future integration under their <u>open source license</u>.
- This report assumes familiarity with the features of the various models, which were described in our <u>alpha</u>, <u>beta</u>, and <u>release</u> reports.

Technology Deployed

<u>Area</u>	<u>Application</u>	Source	Production	Maturity
Antici pate	<u>Distribution Load Disaggregator</u> , identification of control opportunities	https://github.com/dpinney/omf/blob/master/ omf/models/disaggregation.py	https://omf.coop/newModel/dissag regation/dep_disagg	Users
Antici pate	Solar Disaggregator, identification of undeclared DERs for safety	https://github.com/dpinney/omf/blob/master/ omf/models/solarDisagg.py	https://omf.coop/newModel/solarDisagg/dep_soldis	Validated
Antici pate	Phase identification of AMI meters, enhanced control effectiveness	https://github.com/dpinney/omf/blob/master/ omf/models/phaseld.py	https://omf.coop/newModel/phase ld/dep_phase	Users
Absor b	Load and Storage Forecaster, DER dispatch during extreme events	https://github.com/dpinney/omf/blob/master/ omf/models/forecastLoad.py	https://omf.coop/newModel/foreca stLoad/dep_forec	Users
Reco ver	Anomaly Detector, find anomalies to detect system and hardware failures	https://github.com/dpinney/omf/blob/master/ omf/models/anomalyDetector.py	https://omf.coop/newModel/anomalyDetector/dep_anom	Validated
*	Supporting Platform Technologies	Various	Various	Validated

Distribution Load Disaggregator - Detail

- Conclusion:
 - Ridge regressor trained on GLD-based simulation set outperforms NILMTK
- Validation:
 - Summary results at right
 - Full validation report: link
- Users:
 - wipco.com
 - pvrea.coop
 - mondo.com.au
- Feedback:
 - Interest in testing via utility sub-meter (sense.io), availability low

96 houses with random variation (48 types), 50/50 train/test split, 24 hour chunks compared to baseline

Solar Disaggregator - Detail

- Conclusion:

LBNL solar disagg model capable of operation using data coops have on hand

- Validation:

- RMSE under 5%, fully reliable given typical installations >4kW
- Full validation report: link

Users:

- None.

Feedback:

 Low interest in model due to low rooftop solar penetrations among coops, usage increase expected as this changes

Phase identification - Detail

- Conclusion:

- Meter phase identification through correlation with voltage at substation highly reliable

Validation:

- 100% accuracy on Tanzania and taxonomic feeder test sets.

- Users:

- swrea.com
- horryelectric.com
- precorp.coop

Feedback:

- Recent NREL <u>publication</u> suggests this method not as effective in the presence of DG
- Method can be enhanced by initiating voltage regulator tap changes at known times

Load and Storage Forecaster - Detail

- Conclusion:

- Neural network methods provide a competitive load forecasting capability for demand dispatch

- Validation:

- Day-ahead hourly MAPE under 4%
- Full validation report: link

Users:

- capitalelec.com
- cbpower.coop
- ceca.coop
- delaware.coop
- irea.coop
- mycentral.coop
- pvrea.coop
- unitedpower.com

Feedback:

- Detailed export needed (implemented)
- SCADA integration remains a one-off challenge

Anomaly Detector - Detail

- Conclusion:

 Decision tree methods provide good anomaly detection on GLD-based sim-trained anomalies

Validation:

- 92% accuracy (see right)
- Full validation report: <u>link</u>

Users:

- ntecpower.com
- ncsu.edu

Feedback

- User acceptance relies on high accuracy, consider sacrificing false-negative rate
- Model might be best applied to meters with known high bill complaints

6 months simulation time, Olin Barre GH, all anomalies mixed (1% chance each per time step), 90/10% train/test

Supporting Platform Technologies - Overview

OMF.coop enhanced to provide comprehensive feature set to GRIP platform:

- Circuit visualization scalable to full distribution sizes (c. 10k buses)
- Geospatial visualization and simplification
- Weather data ingest from NOAA sources (solar, wind, historical, forecast)
- Enhancements to data import (Cymedist, Windmil)

Supporting Platform Technologies - Circuit Import

- Circuit import/conversion a key platform feature.
- Pre-GRIP, conversion success rate for Windmil was 5%, i.e. only 5% of circuits ran powerflow after conversion.
- Test suite enhanced and automated for 100 representative circuits.
- Current success rate 94%.
- Cymedist conversion testing limited by lack of data. Existing code was extensively refactored in anticipation of data partner recruitment.

