Positions of Nova Persei and 159 Stars within 25' distance from it. From a Photograph taken at the University Observatory, Oxford. By F. A. Bellamy, F.R. Met. Soc.

After the receipt of the telegram announcing the discovery of the new star in *Perseus* the weather in Oxford was unfavourable, but on February 25, though very cloudy, there were rifts in the clouds, during which I saw *Nova* at its full brilliancy, and though the star was invisible to the eye most of the time the exposures were made, I was able to secure two plates with seven exposures, between $10^{\rm s}$ and $13^{\rm m}$ exposure, the star being visible all the time in the $12\frac{1}{4}$ -inch refractor, used as a guiding telescope for astrographic work, sometimes as faint as a third or fourth magnitude star.

The plates taken were—

1727. Exposures, 10^s, 2^m, 2^m, 15^s between Oxf. Sid. T. 5^h 13^m 7^s and 5^h 21^m 17^s.

1728. Exposures, 220s, 8m, $13\frac{1}{4}$ m between Oxf. Sid. T. 6^{h} 20m 7^{s} and 6^{h} 56^{m} 42s.

On the second plate a trail for ten minutes was also given.

Plate 1728 was measured by Mr. E. A. Gray, with the glass scale micrometer, in one of the instruments used for the astrographic catalogue, first in the direct, then in the reversed position, so as to eliminate personality, and all three exposures were measured for the stars used in determining the plate constants and the *Nova*; but for the other stars given in the subjoined catalogue only the second and third exposures were measured, the majority of the faint stars not being visible with the short exposure, owing to cloud.

The places of all stars which could be found in the Bonn A.G. Catalogue ($+40^{\circ}$ to $+50^{\circ}$) within the area covered by the plate were brought to the epoch 1900.0, and standard coordinates (ξ and η), with reference to the adopted plate centre R.A. $3^{\rm h}$ $25^{\rm m}$ $+44^{\circ}$ o', were computed by means of the formulæ given in *Monthly Notices*, liv. 11.*

The Oxford measures x, y (reckoned from the *corner* of the réseau, not the centre) were compared with these coordinates, equations formed and solved in the usual way, and the constants were found to be—

$$a$$
 b c d e f R.I. $+ \cdot 00031 + \cdot 00539 - 14 \cdot 3491$ $- \cdot 00528 + \cdot 00031 - 14 \cdot 3797$

where $\xi = x(1+a) + by + c$, $\dot{\eta} = dx + (1+e)y + f$.

In Table I. are collected these computed R.A.'s and Dec.'s, the corrections deduced from this plate, and the Oxford standard coordinates ξ' and η' . This information may be useful to others.

* Tables for simplifying the use of these formulæ for 0° to 75° have been prepared and will soon be printed.

TABLE I.

Bonn A.G.C.	Mag.	R.A. 1900'0.	Oxf - Bonn.	N. Dec. 1900'o.	Oxf Bonn.	ξ'=ξ+13.	$\eta'=\eta+13.$
2883	7.9	h m s 3 20 8.46	s 0'04	43° 18′ 19″0	÷ 0.7	в.і. 2 ·3894	R.I. 4 [.] 7425
2892	9.0	3 20 32. 68	-0.09	43 22 27.4	÷ 1.8	3.5801	5.2618
2895	8.6	3 20 54.84	-0.03	43 49 37.7	- I 'O	4.1226	10.9769
2898	8.3	3 21 13.98	+0.12	44 2 31.5	+0'4	4'8816	13.5527
2899	9·0	3 21 14.69	+0.04	43 59 31.6	-2'2	4.8964	12.9441
2906	7.2	3 21 29.67	+0'12	44 I 43 [.] 7	÷0'3	5.4429	13:3870
2907	8.9	3 21 34.92	0 .00	43 38 39.2	+0.3	5.5797	8·769 7
2911	7.7	3 21 46.67	0.00	43 24 21.3	-0.4	5.9765	5.9035
2913	8.3	3 21 52.65	+0.01	44 18 3.0	-0.3	6.2959	16.6410
2919	8.4	3 22 22.44	+ 0.08	44 42 9.6	-0.7	7:4030	21.4528
2 944	8.7	3 23 44.27	0.00	44 29 19.3	-0.I	10.2986	18.8692
2 948	9.0	3 24 3'23	-0.06	43 38 29.4	÷ 0.2	10.9438	8.4031
2953	6.0	3 24 17.74	-0.12	43 51 59.1	- I.0	11.4713	11.3923
2956	8.7	3 24 29.11	-0.04	44 18 43.0	÷ 0.2	11.8935	16 [.] 7457
2964	8.2	3 24 47:37	+0.03	44 11 29.7	+0.4	12.5482	15.3013
2968	8.9	3 25 1.70	-0.03	44 3 34.5	÷0'2	13.0599	13.7156
2970	9.5	3 25 12.46	-0.03	44 28 18.5	0.0	13.4437	18.6618
297 I	6.0	3 25 12.72	+0'12	44 3 7 16 [.] 6	+ O.1	13.4569	20.4556
2972	8.8	3 25 14.39	+0.22	43 19 56.2	-1.3	13.2434	4.9831
2973	7.6	3 25 24.80	-0.09	44 29 58.7	÷0°2	13.8813	18.9969
2979	6.2	3 25 47.09	+0.04	44 30 56.4	-0.I	14.6804	19.1899
2982	8.9	3 25 58.20	-0.09	43 53 43 4	+0.4	15.0939	11.7500
2983	8.9	3 26 4.87	+0.33	43 25 16.5	+0.4	15.3680	6.0598
2986	8.9	3 26 13.77	-0.03	43 15 45.8	-0.4	15.6855	4.1558
2996	9.1	3 27 3.65	-0.19	43 30 45.2	÷ 0.8	17·478 1	7.1669
3004	6.1	3 27 24.91	-0.01	43 24 19.9	-0.3	18.2637	5.8846
3008	9.0	3 27 45 33	-0.12	44 14 52.7	-0.4	18.9162	15.9991
3009	6.9	3 27 50.20	-0.14	44 28 2.0	- I.2	19.0686	18.6283
3016	8.2	3 28 31.81	-o.18	43 30 46.1	+ 1.1	20.6743	7.1978
3021	8.9	3 28 51 01	+ 0.04	42 57 22.2	-O·2	21.4566	0.203
3034	8.9	3 29 56.53	-0.09	43 44 41.3	÷ 0.4	23.7084	10.0184

When two exposures only are used (as in the case of 159 stars in the annexed catalogue) the constants c and f become

a, b, d, e remaining sensibly unchanged.

B B 2

These mean measures were corrected for the plate constants, the quantities being carried to the fourth decimal place throughout, and were converted into differences of R.A. and Dec. A

catalogue of these stars is given at the end of this paper.

Owing to the great diameter of the image of Nova on the plate (35" to 50") special care was taken to render the mean measures in x and y as exact as possible. Each image was bisected and two contact measures made in both positions of the plate by Professor Turner, H. F. Mullis, B. Gray, E. A. Gray, and myself. The mean of the whole series of 45 measures each in x and y was taken. The resulting means for 1900 o are

which, corrected for constants already mentioned for the mean of three exposures, give

R.A.
$$3^h 24^m 24^{s} 12$$
 Dec. $+43^{\circ} 33' 39'' 51$

There appears not to be any star brighter than about the 12th mag., or nearer to the Nova than 4', unless the brilliancy of the star, approximately equal to Aldebaran, obliterated some faint stars within 30" of Nova. Photographs when Nova is below the 6th mag. would soon decide this point. It may be mentioned that photographs taken on February 27 and March 5 do not show other stars nearer.

Some estimations of magnitude have been made, and the

following notes are extracted from the note-book.

Feb. 25. 8^h . To the eye the colour was white, with possibly a tinge of yellow. In the $12\frac{1}{4}$ -inch refractor the colour appeared as emerald or young grass green. Mag. about 1.3.

Feb. 27. $7\frac{1}{2}$ h. Nova= β Tauri, also equal to the brightest

star in Orion's belt, nearly $\frac{1}{2}$ mag. brighter than a Persei.

Feb. 28. 10h. Nova certainly brighter than a Persei.

Mar. 1. 7^h . Nova=a Persei and β Aurigæ, slightly fainter than β Tauri; colour slightly orange; had not seen this tinge on other nights Plate taken in a small camera to locate the position of Nova in the constellations Perseus.

Mar. 5. 7^h Nova=δ Cassiopeiæ.

Mar. 6. 8h Nova = e Persei, or o'l or o'2 fainter; orange.

Mar. 7. 12^{h} Nova= γ and δ Persei, less orange in colour.

I should like to express my thanks to Mr. H. F. Mullis, Mr. B. Gray, and Mr. E. A. Gray for assistance they have given beyond the usual hours at the observatory, thus making it possible to get these results completed in so short a time.

The stars in Table II. are situated within about five réseau intervals of the *Nova*, and may serve as points of reference should the star decrease to a fainter magnitude than the tenth. On account of the cloud it is not easy to decide what is the limit of magnitude of these 159 stars; probably, judging from the

number of stars on the whole plate (over 1200), stars of less than the 12th mag. are on the plate.

- Col. 1. The catalogue number: those with * are independent measures of two exposures of Bonn stars.
- 2. The measured diameter of the star's image, the quantity given being the mean of four separate measures; unit '001 of a réseau interval.
- 3-4. The standard coordinates, ξ' , η' , for 19000; i.e. from the (S.W.) corner of the plate, with centre 3^h $25^m + 44^\circ$.

5-6. The deduced R.A.'s and Dec.'s for 1900.

rm		-	-
'I'A	BLE	- 1	١.

			TABLE 11.		
Ref. No.	Oxford Measured Mag.	ξ' 1900°ο R.I.	η' 1900'0. R.I.	Deduc R.A. 15000. h m s	N. Dec. 1900.
I	7	6·7173	5.2152	h m s 3 22 7.22	43 20 56.6
2	6	6.7805	6.8797	22 8 56	29 16·o
3	7	6.8289	2.6972	22 10.88	8 21.6
4	5	6.8762	2.6530	22 12.19	8 8.5
5	12	7.0318	11.2263	22 14'49	51 0.2
6	10	7.1473	8.9722	22 18.20	39 44.6
7	10	7.1594	4.4411	22 19.55	17 5.4
8	6	7.1752	5.1646	22 19.82	20 42.5
9	10	7.2800	2.6128	22 23.26	7 57.4
10	8	7.4228	9.0376	22 25.80	40 4.8
11	11	7.4178	4.7023	22 26.59	18 24.4
12	6	7.7115	2.7717	22 35.05	8 46.0
13	9	7.7523	4.1082	22 35.90	15 27.1
14	7	7.8908	12.1423	22 38.12	55 37.2
15	7	7.8472	4.6643	22 38.40	18 14.0
1 6	10	7.9722	10.1809	22 40.77	45 48.9
17	7	8.0104	6.2116	22 42.53	27 28.4
18	9	7.9932	2.8825	22 42.75	9 19.8
19	7	8 0550	6.6181	22 43 74	28 o· 5
20	9	8.2079	11.8330	22 4 6·99	54 5.1
21	12	8 2567	5.8006	22 49 ⁻ 44	23 55 6
. 22	. 5	8.3181	11.7280	22 50.06	53 33.8
23	12	8.3504	8.3742	22 51.56	36 47 8
24	7	8.3684	4·16 99	22 52-81	15 46.7
_ 25	5	8.3830	3.7626	3 22 53.28	43 13 44.6

344

JTT		7/1/1	secuciny, Fos	wons of	LXI. 5,
Ref. No.	Oxford Measured	<i>ξ'</i>	η'	Dedu	
110.	Mag.	1900'0. R.I.	1900 ° 0. R.I.	R.A. 1900°0.	N. Dec. 1900.
26	8	8.4671	5.9987	h m s 3 22 55·20	43° 24′ 55″5
27	11	8.6731	9.6113	23 0.27	42 59 ·5
2 8	8	8.6678	3.4991	23 1.09	13 56.0
29	9	8.7229	11.4830	23 1.34	52 21.1
30	11	8.7189	9.0120	23 1.64	40 0.7
31	8	8.7840	9.6431	2 3 3.34	43 9.2
32	12	8.7982	11.0677	23 3.20	50 16.6
33	11	8•9406	11.1344	23 7.43	50 36.9
34	11	9.2346	11.6606	23 15.21	53 15.2
35	6	9.1902	3.0031	23 15.55	10 0.0
36	6	9.2458	3.5278	23 16.99	12 35.6
37	12	9.3510	8.4360	23 19.19	37 8.1
38	9	9•4696	11.5707	23 22.04	52 48.6
39	8	9.4789	5.9639	23 23.06	24 46·7
40	8	9.2321	11.4722	23 23.87	52 19.1
41	10	9.8003	2.6865	23 32.31	8 24.1
42	9	9.8423	10.2063	23 32.21	47 29.8
43	5	9.8394	6.0751	23 32.97	25 20.6
44	7	9.9197	10.5003	23 34.69	45 58·1
45	7	9.9569	12.2492	23 35.45	57 42.8
46	13	9:9266	4.4235	23 35 57	17 5.2
47	7	9.9629	12.9249	23 35.57	5 9 35·6
48	11	10.0351	5.8032	23 38.31	23 59.2
49	6	10.0384	3.8849	23 38.70	14 23.8
50	7	10.0676	7.5783	23 39.09	32 51.8
5 1	7	10.0662	7:0465	23 39.12	30 12:2
52	6	10.1162	2.0122	23 40.96	9 33.2
53	IO	10.3230	3.444I	23 47.93	12 12.0
54	7	10.4252	4.3222	23 49.27	16 35.6
55	. 8	10.2363	3.6787	23 52.39	13 22.5
56	8	10.6322	3.1002	23 55.07	10 29.2
57	9	10.6929	5.2312	23 56.55	21 8.4
58	8	10.8065	12.7476	23 59.04	58 43.3
59	10	10.8263	7.4506	24 0.03	32 12.7
60	6	10.9199	12.7604	3 24 2.19	43 58 47:2

Mar	11 1901.	210000 =			
Ref.	Oxford	<i>ا</i> غ	η'	Deduce	ed N. Dec. 1900.
No.	Measured Mag.	1900'0.	1900'0. B.I.	R.A. 1900'0. h m s	
61 *	23	r.i. 10'9444	8.7044	3 24 3.19	43 38 30.5
62	8	10.9546	6.9584	24 361	29 46.7
63	11	10 [.] 9 804	3.3903	24 4 [.] 60	11 56.2
64	10	11.0330	8.1445	24 5'41	35 42.6
65	19	11.1991	2.4820	24 10.66	7 24.2
		*****	2.2920	24 10 [.] 84	7 58·1
66	4	11·2059 11·2278	3.8169	24 11.35	14 4 [.] 6
67	8		11.3942	24 17.62	51 57·9
68*	21	11.4723	3.4237	24 17.92	12 6.8
69	8	11.4663	11.6873	24 19 69	53 ² 5' 7
70	8	11.5474	11 00/3	-4 -7 7	
71	11	11.6986	5.6089	24 24.19	23 2.4
, 72	8	11.7661	3.2378	24 26.16	11 11.3
73	8	11.7940	10.0326	24 26.61	43 45 10.4
74	12	11.8456	13.2607	24 27.89	44 I 17.9
75	8	11.9859	12.8550	24 31.81	43 59 16.3
7 6	11	12.0012	12.3662	24 32.26	56 49 .7
77	10	12.0193	11.6728	24 32.78	53 21.6
7 8	6	12.0584	4.6838	24 34.15	18 25.1
79	10	12.1098	11.5389	24 35.3I	21 11.2
80	7	12.2113	12.9048	24 38.07	29 31.3
81	7	12.4278	11.3322	24 44.13	51 39.6
82	18	12.4578	2.5827	24 45.14	7 55.0
83	8	12.2403	12.9355	24 47.22	59 40.6
84	6	12.2770	3.0904	24 48.40	10 27.3
85	6	12.7788	3.4829	24 53.93	12 25'1
86	14	12.7893	11.6964	24 54.15	53 2 8·9
87	6	12.7890	6·6892	24 54.18	28 26.8
88	10	12.8008	3.7202	24 54.53	13 36.2
89	7	12.8111	10.0030	24 54.77	45 0.9
90	6	12.8862	6.8995	24 56.86	29 2 9'9
91	8	12.8892	8.0304	24 56 94	35 9.2
92	12	12.9841	7.7705	24 59.56	33 51.3
93	9	12.9968	11.6668	24 59.91	53 20'0
94	14	13.2595	9.4534	25 7.18	42 16.0
95	9	13.3642	2.3603	3 25 9.98	43 6 48'3
23	,				

Ref.	Oxford Measured	ξ'	η'	. Th	educed
No.	Mag.	1900'0.	1900 0.	R.A. 1900'o.	N. Dec. 1900.
96	14	13.3811	R.I. 4 ' 4926	h m s 3 25 10 47	43 17 27.9
97	6	13.3843	4.0044	25 10.55	15 1.4
98*	24	13.2432	4.9816	25 14.94	19 54.5
99	7	13.5778	4.9449	25 15.89	19 43.5
100	6	13.5923	12.4022	25 16 45	57 0.6
101	10	13 6359	10.0676	25 17.61	45 20.2
102	11	13.7104	12.5763	25 19.74	57 52.8
103	10	13.9074	6.7923	25 25.01	28 57.6
104	9	13.9659	12.9999	2 5 26.86	59 59 8
105	6	14.0401	2.5359	25 29.32	43 7 40.8
106	6	14.0610	13.1492	25 29.51	44 0 44.5
107	7	14.0800	2.6106	25 29.60	43 8 3.2
108	20	14.2295	3 ·25 84	25 33.72	11 17.4
109	. 7	14.2716	5.7370	25 35.00	23 40.8
110	5	14.3264	12.8717	25 36.87	59 21.2
III	8	14.3598	5.3492	25 37:40	43 21 44·5
112	12	14.3856	13.0664	25 38.53	44 0 19.5
113	9	14.4394	4.4720	25 39.55	43 17 21.3
114	15	14.212	3.0429	25 41.55	10 12.6
115	. 8	14.5236	3.9149	25 41.83	14 34 1
1 16	6	14.2929	11:0541	25 44.17	50 15.7
117	8	14.6687	4.1886	25 45.83	15 56.2
118	6	14.7698	3.6912	25 48.57	13 27 ·0
119	8	14.7985	4.8313	² 5 49 [.] 44	19 8.8
120	12	14.8120	3.2903	25 49.72	12 56.6
121	6	14.8178	6.8969	25 50.11	29 28.4
122	9	14.8286	4.1124	25 50.21	15 33.2
123	12	14.9275	10.8343	2 5 53.43	49 9.5
124	11	14.9971	2.5778	25 54.72	7 52.8
125	9	14.9949	8.2309	25 55.10	36 8.5
126	9	15.1115	4.3140	²⁵ 57 [.] 99	16 33.4
127*	23	15.0928	11.7507	25 58.17	53 44.3
128	11	15.1287	8.1836	25 58·79	35 54.2
129	7	15.1304	7 6805	25 58.79	33 23 3
130	7,7	15.1230	12.0526	3 25 58 95	43 55 14 8

Ref. No.	Oxford Measured	ξ' 1900 `0 ,	η' 1900 `0 .	Deduc R.A. 1900'o.	ced N. Dec. 1900.
	Mag.	r.i. 15·1675	R.I. 3 [.] 2436	h m s 3 25 59.45	43 11 12.3
131		-	5°0602	26 5.20	25 17.0
132*	15 6	15.3678	4.4407	26 8.13	17 11.1
133		15.4797	7·2063	26 8·30	31 0.7
134	10	15.4767	• =	26 8.37	43 21.1
135	6	15.4705	9 [.] 6744	20 8 37	45 21 1
136	8	15.5793	7.6033	26 11.17	3 2 59·6
137	14	15.2873	5.6428	26 11.30	23 11.2
138	6	15 [.] 6301	7.9657	26 12 .61	34 48·3
139	11	15.6248	12.4511	26 12:92	57 13.9
140	8	15.6418	9.6890	26 13.11	43 25.3
				-66-	40.0016
141	11	15.6509	12.9037	26 13.69	59 29.6
142*	22	15.6853	4.1253	26 13.74	15 45.2
143	8	15.7943	3.6361	26 16.68	13 9.4
144	12	15.7959	10.3846	26 17:45	46 53.8
145	8	15.8216	4.8806	26 17.56	19 22.7
146	10	15.8024	12.8268	26 17:90	59 6.4
147	7	15.8594	12.6533	26 19.46	58 14.3
148	19	15.9696	10.8286	26 22.31	49 6 [.] 8
149	9	16.0421	8.3544	26 24:03	36 44 [.] 4
150	8	16.1822	4.7090	26 27:46	18 30.8
151	6	16.2940	8.3478	2 6 3 0 [.] 99	36 42·1
152	9	16:3105	11.5055	26 31.81	50 58.4
153	9	16.3634	9.6309	26 33.07	43 6.9
154	12	16.4251	4.9172	26 34.19	19 32.9
_	6	16:4982	3.9712	26 36.04	14 46.0
155	v	10 4902	3 9/12	20 30 04	
156	6	16.4896	9.0373	26 36 48	40 8.7
157	9	16.2912	8.2546	26 39.19	36 13.8
158	6	16.7032	9.7561	2 6 42 .49	43 44.0
159	7	16 [.] 7079	12.4399	3 26 43.01	43 57 9.1

Some years ago I was engaged in making estimations of Nova Aurigæ when it fell below the ninth to the 13.5 magnitude; the accurate or even approximate positions of the surrounding stars were not to be found in any catalogue, the faintness of most of the stars used for comparison rendered their observation with the transit circle impossible; one had thus to resort to the

less accurate and very tedious process of determining their positions by means of a lower power eyepiece furnished with a ring, letter N, or cross-bar micrometer, which would permit observation of faint stars in a dark field. I remember giving many fine nights, spread over some weeks, to approximately fixing the positions of a comparatively small number of stars about the Nova, and I likewise spent a good deal of time for the same purpose in the region surrounding the supposed position of Tycho Brahe's Nova of 1572, and intended to proceed in a similar way with other regions about "new" stars; but the tediousness of those methods of observation did not seem to justify one, in view of other and more important work, in expending more time over it, so it was never completed.

With modern methods which have rendered such work so easy I could not let pass the opportunity of securing photographs of Nova Persei and neighbouring stars at the earliest

possible moment.

Observations of the New Star in Perseus made at the Radcliffe Observatory, Oxford.

(Communicated by Arthur A. Rambaut, M.A., Sc.D., F.R.S., Radcliffe Observer.)

Since the receipt of the telegram announcing its discovery, observations have been made of Dr. Anderson's new star at the Radcliffe Observatory on every evening that the weather permitted.

On February 23 and 24 the sky was almost continuously overcast, and the star was not seen by us until the evening of the 25th. At this time its magnitude appeared to be 0.9.

The observations include transit-circle determinations of the position of the star on four afternoons, a spectroscopic examination of the light on two evenings, measures of its brightness made with a wedge photometer, and eye-estimates of its brightness as compared with several of the brighter stars.

The transit-circle observations and photometric measures will be published in due time when they have been more fully discussed. The present notice is chiefly concerned with the eye-

estimates of magnitude.

In making these comparisons the magnitudes of the Harvard Photometry have been adopted, and the observers have estimated the difference between the *Nova* and each comparison star in tenths of a magnitude. In the results given below no correction has been applied for the atmospheric absorption of light, but as, for the most part, the comparison stars have been taken at various altitudes both above and below the *Nova*, the effect of the absorption