

Paper

Object-aware Monocular Depth Prediction with Instance Convolutions

Enis Simsar*, Evin Pınar Örnek*, Fabian Manhardt, Helisa Dhamo, Nassir Navab, Federico Tombari

TLDR

- Monocular depth prediction performs poorly on local geometric details (planar surfaces, object boundaries)
- This is often overlooked because not directly visible in
- Occlusion boundaries are very important for robotic grasping and navigation

We propose an object-aware MDP method to solve this problem!

To avoid aggregation of features appertaining to

different image layers, we thus propose to leverage

superpixels in an effort to guide convolution operator.

Approach - Instance Convolution

Error maps

Why superpixels?

- Semantic segmentation does not consider intra object discontinuities (highlighted in white-circles).
- Thus, we leverage super-pixels to account for any discontinuities based on the RGB input.

Absolute Relative Difference (Abs. Rel.)

Metrics & Loss functions

(Abs. $\sum_{i \in N} \frac{|d_i - d_i^*|}{d_i^*}$ Accuracies

Accuracies DBE Completeness igodots $\max(rac{d_i}{d_i^*},rac{d_i^*}{d_i})=\delta < threshold$ $\epsilon_{com}=rac{1}{\sum_i Y_i}\sum_i \hat{E}_i \cdot Y_i$

$$\delta_i < 1.25^i$$

$$L_1(d,d^{GT}) = rac{1}{N} \sum_{i=1}^N |d_i^{GT} - d_i| \qquad \qquad L_{normal}(n,n^{GT}) = rac{1}{N} \sum_{i=1}^N \Biggl(1 - rac{\langle n_i, n_i^{GT}
angle}{||n_i|| \cdot ||n_i^{GT}||} \Biggr)$$

DBE Accuracy

 $igg| \epsilon_{acc} = rac{1}{\sum_i \hat{Y_i}} \sum_i E_i \cdot \hat{Y_i}$

$$L_{grad}(d,d^{GT}) = rac{1}{N} \sum_{i=1}^{N} |
abla_i| \quad L_{normal}(n,n^-) = rac{1}{N} \sum_{i=1}^{N} \left(1 - rac{||n_i|| \cdot ||n_i^{GT}||}{||n_i|| \cdot ||n_i^{GT}||}
ight)
onumber \ L_{grad}(d,d^{GT}) = rac{1}{N} \sum_{i=1}^{N} |
abla_h d_i -
abla_h d_i^{GT}| + |
abla_v d_i -
abla_v d_i^{GT}|
onumber \ L = L_1 + L_{grad} + L_{normal}
onumber \ L = L_1 + L_{grad} + L_{normal}
onumber \ L = L_1 + L_{grad} + L_{grad}
onumber \ L = L_1 + L_{grad} + L_{grad}
onumber \ L = L_1 + L_1 + L_1 + L_2 + L_2 + L_2 + L_2 + L_2 + L_3 + L_$$

Comparison on iBims

Method	Error \downarrow		Accuracy ↑			PE (in $cm/^{\circ}$) \downarrow		DBE (in px) \downarrow		DDE (in $\%$)			
j	absrel	log_{10}	rmse	δ_1	δ_2	δ_3	ϵ^{plan}	$\epsilon^{ m orie}$	$\epsilon^{ m acc}$	ϵ^{comp}	$\epsilon^0 \uparrow$	$\epsilon^-\downarrow$	ϵ^+ \downarrow
Eigen [21]	0.32	0.17	1.55	0.36	0.65	0.84	7.70	24.91	9.97	9.99	70.37	27.42	2.22
Laina [23]	0.26	0.13	1.20	0.50	0.78	0.91	6.46	19.13	6.19	9.17	81.02	17.01	1.97
Liu [50]	0.30	0.13	1.26	0.48	0.78	0.91	8.45	28.69	2.42	7.11	79.70	14.16	6.14
Li [52]	0.22	0.11	1.09	0.58	0.85	0.94	7.82	22.20	3.90	8.17	83.71	13.20	3.09
Liu [53]	0.29	0.17	1.45	0.41	0.70	0.86	7.26	17.24	4.84	8.86	71.24	28.36	0.40
SharpNet [25]	0.26	0.11	1.07	0.59	0.84	0.94	9.95	25.67	3.52	7.61	84.03	9.48	6.49
with Instance Conv.	0.29	0.12	1.14	0.55	0.82	0.92	9.83	25.88	3.11	7.83	81.84	8.27	9.88
BTS [27]	0.24	0.12	1.08	0.53	0.84	0.94	7.24	20.51	2.50	5.81	82.24	15.50	2.27
with Instance Conv.	0.22	0.11	1.11	0.57	0.86	0.94	6.76	19.39	3.71	8.01	84.04	13.3	2.67
VNL [13]	0.24	0.11	1.06	0.54	0.84	0.93	5.73	16.91	3.64	7.06	82.72	13.91	3.36
with Instance Conv.	0.23	0.10	1.06	0.58	0.85	0.93	5.62	16.53	3.03	7.68	83.85	13.26	2.87

Results on NYU

	Method	Error ↓		Accuracy ↑			DB		
		absrel	rmse	δ_1	δ_2	δ_3	ϵ_{acc}	ϵ_{com}	
	SharpNet	0.116	0.448	0.853	0.970	0.993	3.041	8.692	
	+ Instance Conv.	0.124	0.456	0.847	0.971	0.993	1.961	6.489	
	VNL	0.112	0.417	0.880	0.975	0.994	1.854	7.188	
	+ Instance Conv.	0.117	0.425	0.863	0.970	0.991	1.780	6.059	
	BTS	0.110	0.392	0.885	0.978	0.994	2.090	5.820	
	+ Instance Conv.	0.121	0.467	0.848	0.964	0.993	1.817	6.197	
RGB Input	Segments	GT	s	harpNet	Shar	pNet + IC		VNL	VNL + IC
		4				Ŧ	E		
RGB Input	Segments	GT		BTS	В	TS + IC		VNL	VNL + IC
						36		-0	

Qualitatives on KITTI

- Our method also works for outdoor scenes.
- It provides sharper edges for the objects and finds hidden objects (highlighted in green).

Ablation Study

Method	Erro	or ↓	DB	$\mathbf{E}\downarrow$	Runtime		
	absrel	rmse	$ \epsilon_{acc} $	ϵ_{com}	FPS	FPS*	
SharpNet [25]	0.12	0.45	3.04	8.69	16.7	16.7	
GT Masks	0.12	0.46	2.05	6.49	13.5	13.5	
PointRend [55]	0.13	0.45	2.21	6.76	13.5	3.64	
BASS [40]	0.12	0.46	2.19	6.63	13.2	0.59	
IC 16	0.14	0.47	2.07	6.59	13.5	3.08	
IC 32	0.14	0.47	2.09	6.66	13.6	3.04	
IC 64	0.12	0.46	1.96	6.48	13.4	2.97	
SC 64	0.12	0.45	2.18	6.63	15.2	3.05	
IC 128	0.13	0.46	1.92	6.57	13.3	2.89	

Ablation study on NYUv2

- comparing usage of different masks (ground truth, PointRend, and BASS)
- super-pixels with Standard Convolutions (SC)
- different # of segments (16-32-64-128) with Instance Convolutions (IC)

Conclusion

- We propose InstanceConv, provides sharp depth values around object boundaries.
- We show comprehensive evaluation on NYU depth v2. iBims, and KITTI, demonstrating the method's effectiveness without compromising the quality in edges and remaining regions.
- InstanceConv can be incorporated into other domains such as semantic segmentation to similarly improve sharpness.