Семинар 3. ОБРАТНАЯ МАТРИЦА

Обратная матрица: определение; алгоритм вычисления. Критерий обратимости матрицы.

Решение матричных уравнений с помощью обратной матрицы.

Решение систем линейных уравнений с помощью обратной матрицы.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ: Перед рассмотрением примеров и решением задач необходимо ознакомиться с материалами Лекции 3. Обратная матрица.

Алгоритм вычисления обратной матрицы A^{-1}

- 1. Вычислить определитель матрицы A. Если |A| = 0, то матрица A вырожденная и A^{-1} не существует. Если $|A| \neq 0$, то переходим к п.2.
 - 2. Составить матрицу A * из алгебраических дополнений.
- 3. Транспонировать матрицу из алгебраических дополнений получить присоединенную матрицу $(A^*)^T = \tilde{A}$.
 - 4. Вычислить A^{-1} по формуле $A^{-1} = \frac{1}{|A|} \cdot \tilde{A}$.

Пример 1. Для матрицы $A = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix}$ найти обратную матрицу A^{-1} . Сделать проверку.

Решение.

Воспользуемся алгоритмом.

- 1. Вычислим определитель матрицы A: $|A| = 2 \neq 0$, значит матрица A не вырожденная и существует A^{-1} .
- 2. Найдем алгебраические дополнения к каждому элементу матрицы A и составим из них матрицу A^*

$$A_{11} = (-1)^{1+1} \cdot 3 = 3,$$
 $A_{12} = (-1)^{1+2} \cdot 2 = -2,$
 $A_{21} = (-1)^{2+1} \cdot 5 = -5,$ $A_{22} = (-1)^{2+2} \cdot 4 = 4.$
 $A^* = \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}.$

3.
$$\tilde{A} = (A^*)^T = \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}^T = \begin{pmatrix} 3 & -5 \\ -2 & 4 \end{pmatrix}$$
.

4.
$$A^{-1} = \frac{1}{|A|} \cdot \tilde{A} = \frac{1}{2} \cdot \begin{pmatrix} 3 & -5 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & \frac{-5}{2} \\ -1 & 2 \end{pmatrix}$$
.

Проверка $AA^{-1} = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{2} & \frac{-5}{2} \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E - A^{-1}$ найдена верно.

Ответ:
$$A^{-1} = \begin{pmatrix} \frac{3}{2} & \frac{-5}{2} \\ -1 & 2 \end{pmatrix}$$
.

Пример 2. Для матрицы $A = \begin{pmatrix} 3 & 6 \\ -2 & -4 \end{pmatrix}$ найти обратную матрицу A^{-1} . Сделать проверку.

Решение.

Воспользуемся алгоритмом.

1. Вычислим определитель матрицы A: |A| = 0, значит матрица A – вырожденная и A^{-1} не существует.

Пример 3. Для матрицы $A = \begin{pmatrix} 5 & -4 & 6 \\ -2 & 1 & -3 \\ 3 & 2 & 1 \end{pmatrix}$ найти обратную матрицу A^{-1} . Сделать проверку.

Решение.

1. Найдем |A|. Для нахождения определителя воспользуемся элементарными преобразованиями строк. На первом шаге прибавим к первой строке две вторых строки.

Затем из второй и третьей строки вычитаем первую, умноженную на соответствующий коэффициент.

$$\begin{vmatrix} 5 & -4 & 6 \\ -2 & 1 & -3 \\ 3 & 2 & 1 \end{vmatrix} + 2R2 = \begin{vmatrix} 1 & -2 & 0 \\ -2 & 1 & -3 \\ 3 & 2 & 1 \end{vmatrix} + 2R1 = \begin{vmatrix} 1 & -2 & 0 \\ -2 + 2 & 1 - 4 & -3 \\ 3 - 3 & 2 + 6 & 1 \end{vmatrix} =$$

 $egin{bmatrix} 1 & -2 & 0 \\ 0 & -3 & -3 \\ 0 & 8 & 1 \end{bmatrix}$ Вынесем за определитель общий множитель 3 из второй строки. После

чего, прибавим к третьей строке вторую, умноженную на соответствующий коэффициент.

$$= 3 \cdot \begin{vmatrix} 1 & -2 & 0 \\ 0 & -1 & -1 \\ 0 & 8 & 1 \end{vmatrix} + 8R2 = 3 \cdot \begin{vmatrix} 1 & -2 & 6 \\ 0 & -1 & 5 \\ 0 & 0 & -7 \end{vmatrix} = 3 \cdot (1 \cdot (-1) \cdot (-7)) = 21$$

 $|A| = 21 \neq 0$, значит матрица A – не вырожденная и существует A^{-1} .

2. Найдем алгебраические дополнения к каждому элементу матрицы A и составим из них матрицу A^*

$$A_{11} = (-1)^{1+1} \cdot 7 = 7, A_{12} = (-1)^{1+2} \cdot 7 = -7, A_{13} = (-1)^{1+3} \cdot (-7) = -7,$$

$$A_{21} = (-1)^{2+1} \cdot (-16) = 16, A_{22} = (-1)^{2+2} \cdot (-13) = -13, A_{23} = (-1)^{2+3} \cdot 22 = -22,$$

$$A_{13} = (-1)^{1+3} \cdot 6 = 6, A_{32} = (-1)^{3+2} \cdot (-3) = 3, A_{33} = (-1)^{3+3} \cdot (-3) = -3.$$

$$A^* = \begin{pmatrix} 7 & -7 & -7 \\ 16 & -13 & -22 \\ 6 & 3 & -3 \end{pmatrix}.$$

$$3. \tilde{A} = (A^*)^T = \begin{pmatrix} 7 & -7 & -7 \\ 16 & -13 & -22 \\ 6 & 3 & -3 \end{pmatrix}^T = \begin{pmatrix} 7 & 16 & 6 \\ -7 & -13 & 3 \\ -7 & -22 & -3 \end{pmatrix}.$$

4.
$$A^{-1} = \frac{1}{|A|} \cdot \tilde{A} = \frac{1}{21} \cdot \begin{pmatrix} 7 & 16 & 6 \\ -7 & -13 & 3 \\ -7 & -22 & -3 \end{pmatrix} = \begin{pmatrix} 1/3 & 16/21 & 2/7 \\ -1/3 & -13/21 & 1/7 \\ -1/3 & -22/21 & -1/7 \end{pmatrix}$$

Проверка
$$A^{-1}A = \frac{1}{21} \cdot \begin{pmatrix} 7 & 16 & 6 \\ -7 & -13 & 3 \\ -7 & -22 & -3 \end{pmatrix} \cdot \begin{pmatrix} 5 & -4 & 6 \\ -2 & 1 & -3 \\ 3 & 2 & 1 \end{pmatrix} = \frac{1}{21} \cdot$$

$$\begin{pmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \Rightarrow$$

 A^{-1} найдена верно.

Ответ:
$$A^{-1} = \begin{pmatrix} 1/3 & 16/21 & 2/7 \\ -1/3 & -13/21 & 1/7 \\ -1/3 & -22/21 & -1/7 \end{pmatrix}$$

Решение матричных уравнений с помощью обратной матрицы

Пусть заданы матричные уравнения вида $A \cdot X = B$ и $Y \cdot A = B$, где A - квадратная невырожденная матрица. Тогда

$$A \cdot X = B$$
 $Y \cdot A = B$ $Y = B \cdot A^{-1}$

Пример 4. Решить матричное уравнение $X \cdot \begin{pmatrix} 2 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 6 \\ 2 & -3 \\ 0 & -3 \end{pmatrix}$. Сделать проверку.

Решение.

Пусть
$$A = \begin{pmatrix} 2 & 3 \\ 2 & 4 \end{pmatrix}, B = \begin{pmatrix} -2 & 6 \\ 2 & -3 \\ 0 & 3 \end{pmatrix}.$$

$$X = B \cdot A^{-1}.$$

Найлем A^{-1} .

1. $|A| = 2 \neq 0$, значит A^{-1} существует.

$$2. A^* = \begin{pmatrix} 4 & -2 \\ -3 & 2 \end{pmatrix}.$$

3.
$$\tilde{A} = \begin{pmatrix} 4 & -2 \\ -3 & 2 \end{pmatrix}^T = \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$$
.

4.
$$A^{-1} = \frac{1}{|A|} \cdot \tilde{A} = \frac{1}{2} \cdot \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$$
.

Проверка $A^{-1} \cdot A = \frac{1}{2} \cdot \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 2 & 4 \end{pmatrix} = \frac{1}{2} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = E$ - A^{-1} найдена верно.

$$X = B \cdot A^{-1} = \begin{pmatrix} -2 & 6 \\ 2 & -3 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix} \cdot \frac{1}{2} = \begin{pmatrix} -10 & 9 \\ 7 & -6 \\ -3 & 3 \end{pmatrix}.$$

Проверка
$$\begin{pmatrix} -10 & 9 \\ 7 & -6 \\ -3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 6 \\ 2 & -3 \\ 0 & 3 \end{pmatrix}$$
- верно.

Ответ:
$$X = \begin{pmatrix} -10 & 9 \\ 7 & -6 \\ -3 & 3 \end{pmatrix}$$
.

Пример 5. Решить матричное уравнение $\begin{pmatrix} 5 & 6 \\ -2 & -3 \end{pmatrix} \cdot X = \begin{pmatrix} -1 & 7 & 0 \\ 1 & 2 & -6 \end{pmatrix}$. Сделать проверку.

Решение.

Пусть
$$A = \begin{pmatrix} 5 & 6 \\ -2 & -3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 7 & 0 \\ 1 & 2 & -6 \end{pmatrix}$.

$$X = A^{-1} \cdot B.$$

Найдем A^{-1} :

1. |A| = -3 ≠ 0, значит A^{-1} существует.

2.
$$A^* = \begin{pmatrix} -3 & 2 \\ -6 & 5 \end{pmatrix}$$
.

3.
$$\tilde{A} = \begin{pmatrix} -3 & 2 \\ -6 & 5 \end{pmatrix}^T = \begin{pmatrix} -3 & -6 \\ 2 & 5 \end{pmatrix}$$
.

4.
$$A^{-1} = \frac{1}{|A|} \cdot \tilde{A} = \frac{1}{-3} \cdot \begin{pmatrix} -3 & -6 \\ 2 & 5 \end{pmatrix}$$

Проверка $A^{-1}A = \frac{1}{-3} \cdot \begin{pmatrix} -3 & -6 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5 & 6 \\ -2 & -3 \end{pmatrix} = \frac{1}{-3} \cdot \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E - A^{-1}$ найдена верно.

$$X = A^{-1} \cdot B = \frac{1}{-3} \cdot \begin{pmatrix} -3 & -6 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} -1 & 7 & 0 \\ 1 & 2 & -6 \end{pmatrix} = \frac{1}{-3} \begin{pmatrix} -3 & -33 & 36 \\ 3 & 24 & -30 \end{pmatrix} = \begin{pmatrix} 1 & 11 & -12 \\ -1 & -8 & 10 \end{pmatrix}.$$

Проверка
$$\begin{pmatrix} 5 & 6 \\ -2 & -3 \end{pmatrix}$$
 $\underbrace{\begin{pmatrix} 1 & 11 & -12 \\ -1 & -8 & 10 \end{pmatrix}}_{\hat{X}} = \begin{pmatrix} -1 & 7 & 0 \\ 1 & 2 & -6 \end{pmatrix}$ - верно.

Ответ:
$$X = \begin{pmatrix} 1 & 11 & -12 \\ -1 & -8 & 10 \end{pmatrix}$$
.

Пример 6. Решить матричное уравнение $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix} =$

$$\begin{pmatrix} 2 & 1 \\ -3 & -1 \\ -3 & 2 \end{pmatrix}$$
. Сделать проверку.

Решение.

Пусть
$$A = \begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ $C = \begin{pmatrix} 2 & 1 \\ -3 & -1 \\ -3 & 2 \end{pmatrix}$.

Наше матричное уравнение перепишется в виде: $B \cdot X \cdot A = C$. Домножим <u>обечасти</u> слева на B^{-1} , а справа на A^{-1} . Получим:

$$\underbrace{B^{-1} \cdot B}_{E} \cdot X \cdot \underbrace{A \cdot A^{-1}}_{E} = B^{-1} \cdot C \cdot A^{-1} \Rightarrow X = B^{-1} \cdot C \cdot A^{-1}$$

Найдем A^{-1} и B^{-1} .

1. |A| = -2 ≠ 0, значит A^{-1} существует.

2.
$$A^* = \begin{pmatrix} 3 & -4 \\ -2 & 2 \end{pmatrix} \Rightarrow 3$$
. $\tilde{A} = \begin{pmatrix} 3 & -2 \\ -4 & 2 \end{pmatrix} \Rightarrow 4$. $A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} 3 & -2 \\ -4 & 2 \end{pmatrix}$.

Проверка
$$A^{-1}A = \frac{1}{-2} \cdot \begin{pmatrix} 3 & -2 \\ -4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E - A^{-1}$$
 найдена верно.

1.
$$|B| = 3 ≠ 0$$
, значит B^{-1} существует.

2.
$$B^* = \begin{pmatrix} -3 & 2 & 2 \\ 3 & -1 & -1 \\ -3 & 2 & -1 \end{pmatrix} \Rightarrow 3. \tilde{B} = \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix}$$
.

4.
$$B^{-1} = \frac{1}{3} \cdot \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix}$$
.

Проверка
$$B^{-1}B = \frac{1}{3} \cdot \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

 $E \Rightarrow$

 B^{-1} найдена верно.

$$X = B^{-1} \cdot C \cdot A^{-1} = -\frac{1}{6} \cdot \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -3 & -1 \\ -3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ -4 & 2 \end{pmatrix} =$$

$$= \frac{1}{-6} \cdot \begin{pmatrix} -6 & -12 \\ 1 & 7 \\ 10 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ -4 & 2 \end{pmatrix} = \frac{1}{-6} \cdot \begin{pmatrix} 30 & -12 \\ -25 & 12 \\ 26 & -18 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{6} \end{pmatrix} \cdot \begin{pmatrix} 30 & -12 \\ -25 & 12 \\ 26 & -18 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} \end{pmatrix} \cdot \begin{pmatrix} 6 & -6 \\ -15 & 12 \\ -51 & 30 \end{pmatrix}.$$

Проверка

$$\begin{pmatrix} 2 & 2 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -3 & -1 \\ -3 & 2 \end{pmatrix}$$
- верно.

Ответ:
$$X = \frac{1}{-6} \cdot \begin{pmatrix} 30 & -12 \\ -25 & 12 \\ 26 & -18 \end{pmatrix}$$
.

Решение систем линейных уравнений с помощью обратной матрицы

Пример 7. Решить систему линейных уравнений с помощью обратной матрицы

$$\begin{cases} x_1 + x_2 - x_3 = -4 \\ -2x_1 - 3x_2 + x_3 = 3 \\ x_1 + x_2 = 1 \end{cases}$$

Решение.

Пусть
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -3 & 1 \\ 1 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}.$$

1.
$$|A| = \begin{vmatrix} 1 & 1 & -1 \\ -2 & -3 & 1 \\ 1 & 1 & 0 \end{vmatrix} = -1 \neq 0$$
, значит A^{-1} существует.

$$2. A^* = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 1 & 0 \\ -2 & 1 & -1 \end{pmatrix} \Rightarrow 3. \tilde{A} = \begin{pmatrix} -1 & -1 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}.$$

$$4. A^{-1} = -1 \cdot \begin{pmatrix} -1 & -1 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & 1 \end{pmatrix}.$$

$$\mathbf{I}_{\mathbf{D}\mathbf{O}\mathbf{B}\mathbf{e}\mathbf{p}\mathbf{k}\mathbf{a}} \qquad A^{-1}A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & -1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ -2 & -3 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \Rightarrow A^{-1}$$

найдена верно.

$$X = A^{-1} \cdot B = \begin{pmatrix} 1 & 1 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}.$$

Проверка $\begin{pmatrix} 1 & 1 & -1 \\ -2 & -3 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}$ - верно.

Ответ: (1; 0; 5).

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

В заданиях 1-6 для заданных матриц найти обратные матрицы. Сделать проверку.

1.
$$A = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix}$$
. **Ответ**: $A^{-1} = \begin{pmatrix} \frac{3}{2} & \frac{-5}{2} \\ -1 & 2 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} -3 & 5 \\ 6 & -10 \end{pmatrix}$$
. **Ответ**: A^{-1} не существует.

3.
$$A = \begin{pmatrix} -11 & 7 \\ 5 & -3 \end{pmatrix}$$
. **Ответ**: $A^{-1} = \begin{pmatrix} \frac{3}{2} & \frac{7}{2} \\ \frac{5}{2} & \frac{11}{2} \end{pmatrix}$.

4.
$$A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
. **Ответ**: A^{-1} не существует.

5.
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & -3 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
. **Ответ**: $A^{-1} = \begin{pmatrix} -1 & -2 & 4 \\ 0 & -0.5 & 0.5 \\ 1 & 1.5 & -2.5 \end{pmatrix}$.

5.
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & -3 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
. Other: $A^{-1} = \begin{pmatrix} -1 & -2 & 4 \\ 0 & -0.5 & 0.5 \\ 1 & 1.5 & -2.5 \end{pmatrix}$.

6. $A = \begin{pmatrix} -2 & 1 & 2 \\ -1 & 3 & 1 \\ 2 & -1 & -3 \end{pmatrix}$. Other: $A^{-1} = \frac{1}{5} \cdot \begin{pmatrix} -8 & 1 & -5 \\ -1 & 2 & 0 \\ -5 & 0 & -5 \end{pmatrix}$.

7.
$$X \cdot \begin{pmatrix} 1 & -3 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} -10 & 10 \\ 22 & -21 \end{pmatrix}$$
. **ОТВЕТ:** $X = \begin{pmatrix} 2 & 4 \\ -5 & -9 \end{pmatrix}$.

8.
$$\begin{pmatrix} 1 & 2 \\ 7 & 0 \end{pmatrix} \cdot X = \begin{pmatrix} 5 & -6 \\ 7 & -28 \end{pmatrix}$$
. **Other:** $X = \begin{pmatrix} 1 & -4 \\ 2 & -1 \end{pmatrix}$

9.
$$\begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 1 & -3 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -5 & 15 \\ -2 & -10 \end{pmatrix}$$
. **Ответ:** $X = \begin{pmatrix} 1 & 4 \\ -3 & -2 \end{pmatrix}$.

10.
$$\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \cdot X = \begin{pmatrix} -10 & 2 & -7 \\ -16 & 3 & -13 \end{pmatrix}$$
. **OTBET:** $X = \begin{pmatrix} -4 & 1 & -1 \\ 2 & 0 & 5 \end{pmatrix}$.

11.
$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 2 & 0 \\ -2 & 5 & -1 \end{pmatrix} \cdot X = \begin{pmatrix} -3 & 2 \\ 14 & -8 \\ 21 & -17 \end{pmatrix}$$
. Otber: $X = \begin{pmatrix} 2 & -1 \\ 5 & -3 \\ 0 & 4 \end{pmatrix}$.

В примерах 7-13 решить матричные уравнения. Сделать проверку 7.
$$X \cdot \begin{pmatrix} 1 & -3 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} -10 & 10 \\ 22 & -21 \end{pmatrix}$$
. Ответ: $X = \begin{pmatrix} 2 & 4 \\ -5 & -9 \end{pmatrix}$. 8. $\begin{pmatrix} 1 & 2 \\ 7 & 0 \end{pmatrix} \cdot X = \begin{pmatrix} 5 & -6 \\ 7 & -28 \end{pmatrix}$. Ответ: $X = \begin{pmatrix} 1 & -4 \\ 2 & -1 \end{pmatrix}$. 9. $\begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 1 & -3 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -5 & 15 \\ -2 & -10 \end{pmatrix}$. Ответ: $X = \begin{pmatrix} 1 & 4 \\ -3 & -2 \end{pmatrix}$. 10. $\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \cdot X = \begin{pmatrix} -10 & 2 & -7 \\ -16 & 3 & -13 \end{pmatrix}$. Ответ: $X = \begin{pmatrix} -4 & 1 & -1 \\ 2 & 0 & 5 \end{pmatrix}$. 11. $\begin{pmatrix} 1 & -1 & 0 \\ 2 & 2 & 0 \\ -2 & 5 & -1 \end{pmatrix} \cdot X = \begin{pmatrix} -3 & 2 \\ 14 & -8 \\ 21 & -17 \end{pmatrix}$. Ответ: $X = \begin{pmatrix} 2 & -1 \\ 5 & -3 \\ 0 & 4 \end{pmatrix}$. 13. $\begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix} \cdot X \cdot \begin{pmatrix} -2 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 20 & 10 & 4 \\ 21 & 9 & 2 \end{pmatrix}$. Ответ: $X = \begin{pmatrix} -3 & 2 & 0 \\ 1 & 4 & 3 \end{pmatrix}$. В примерах 14-19 решить системы линейных уравнений с помощью обратн

В примерах 14-19 решить системы линейных уравнений с помощью обратной

матрицы. Сделать проверку.
14.
$$\begin{cases} 7x_1 + 4x_2 = 16 \\ 3x_1 + 2x_2 = 6 \end{cases}$$
. **Ответ:** $X = (4; -3)$.

15.
$$\begin{cases} x_1 - 4x_2 = -18 \\ 2x_1 - x_2 = -1 \end{cases}$$
. **Ответ:** $X = (2; 5)$.

15.
$$\begin{cases} x_1 - 4x_2 = -18 \\ 2x_1 - x_2 = -1 \end{cases}$$
 Other: $X = (2; 5)$.
$$\begin{cases} 2x_1 - x_2 + x_3 = -1 \\ x_1 + x_3 = -1 \end{cases}$$
 Other: $X = (1; 1; -2)$.
$$\begin{cases} 2x_1 - x_2 - 3x_3 = 7 \\ 2x_1 - x_2 - 3x_3 = 5 \end{cases}$$
17.
$$\begin{cases} x_1 + 2x_2 - x_3 = 5 \\ -2x_1 - 3x_2 + x_3 = -3 \end{cases}$$

$$(x_1 + 2x_2 - x_3 = 5)$$

17.
$$\begin{cases} x_1 + 2x_2 & x_3 \\ -2x_1 - 3x_2 + x_3 = -3. \\ x_1 + x_2 & -1 \end{cases}$$

Ответ: система не может быть решена с помощью обратной матрицы.

18.
$$\begin{cases} x_1 + 5x_2 - x_3 = 12 \\ x_1 - x_2 + x_3 = 2 \\ 2x_1 - x_2 + 3x_3 = 7 \end{cases}$$
 Other: $X = (3; 2; 1)$.
19.
$$\begin{cases} x_1 + 5x_2 - x_3 = -6 \\ x_1 + 5x_2 - x_3 = -6 \\ x_1 + 4x_2 + x_3 = -2 \end{cases}$$
 Other: $X = (5; -2; 1)$.
$$\begin{cases} x_1 + 5x_2 - x_3 = 12 \\ x_1 + 5x_2 - x_3 = -6 \\ x_1 + 5x_2 - x_3 = -6 \end{cases}$$