

12 ATAR Physics

Electromagnetism Investigation

	F	Part 2 - Quiz	Mark:	 50
Nam	e:			
	You should have your resea	rch section of the investigat	ion with	you.
1.	State what the betatron is mainly	used for.		[3 marks]
2.	What is the value of the speed me light? Give your answer to 5 signi		ere c is	the speed of [2 marks]
3.	Show that 1.0 Volt = 1.0 Weber/s	econd.		[3 marks]

4.	Explain why an electron-volt can be considered to be a unit of energy.	[2 marks]
5.	Can an induced current ever establish a magnetic field B that is in the san as the magnetic field inducing the current? Justify your answer.	ne direction [3 marks]
6.	Suggest a suitable material for the magnetic core of the betatron. Justify y answer.	our [2 marks]
7.	In the betatron, the magnetic core is made of laminated sheets rather than material. Explain why this is so.	of solid [3 marks]

8	(a)	Explain how the magnetic field guides the electrons in a circular path	[2 marks]
	(b)	Explain how the changing magnetic field produces an induced electric the electron chamber.	c field in [2 marks]
9.	magr	want to increase the radius of the circular path by imposing an additionetic flux $\Delta\Phi$. Should the lines of ${\it B}$ associated with this increase be in tion as the lines shown in the figure or in the opposite direction? Explayer.	the same
10.	(a)	State the direction of the force acting on the electron on the right-han the betatron (See Fig. 1 of the research handout).	d side of [1 mark]
	(b)	Explain how you arrived at your answer.	[2 marks]

11.	In a 100 MeV betatron, the orbit radius \boldsymbol{R} is 84.0 cm. Assume that the orbit The magnetic field in the region enclosed by the orbit rises periodically (60 second) from zero to a maximum value $\boldsymbol{B}_{max} = 0.800 \mathrm{T}$ in an accelerating in one-fourth of a period, or 4.20 ms.		times per
	(a)	What is the maximum magnetic flux, Φ_{max} , attained during the accelinterval?	erating [2 marks]
	(b)	Using the answer to (a), determine the rate of change of flux (induced during the time interval of acceleration.	d EMF) [2 marks]
	(c)	Given that 1.00 eV (electron volt) is the energy gained by an electron across a potential difference of 1.00 V, show that the number of revolved required for an electron to reach its final energy of 100 MeV is approx 238,000 revolutions.	lutions
	(d)	Find the total distance travelled by an electron along its circular path reaching its full energy of 100 MeV.	before [2 marks]
	(e)	Calculate the average speed of the electron as it travels the total dist needed to reach 100 MeV during the acceleration time interval of 4.2	

12. The varying magnetic field in the betatron can be represented by the graph below.

On the axis below, sketch the shape of a corresponding graph of induced EMF versus time as the B field varies. [3 marks]

13. Once accelerated, the electrons are directed out of the doughnut chamber, or inwards, towards a metal target to produce x-rays. X-rays are a form of electromagnetic radiation. They have a wavelength ranging from 0.0100 to 10.0 nm. What are the highest and lowest frequencies of x-rays? [3 marks]

14.	seco	ondary coil. The magnetic field is changed by passing alternating curre ary coil. A current is induced in the secondary coil by Faraday's Law.	•
	•		[2 marks]
	(a)	State which part of the betatron behaves like the primary coil of a transfer (See Fig. 1 of the research handout.)	nsformer.
	(b)	State which part of the betatron behaves like the secondary coil of a transformer.	
15.		erring to the values given in Question 11, suggest TWO strengths of the tatron as a particle accelerator.	e design of [2 marks]
16.		cribe <i>TWO</i> ways that you can increase the energy of radiation emitted tron?	by the [2 marks]