不

内

密

. . .

. . . 密

. . .

. . .

封

诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《数据库系统》试卷

注意事项: 1. 考前请将密封线内填写清楚;

- 所有答案请答在答题纸上;
- . 考试形式:闭卷;
- 两 大题,满分 100分, 考试时间 120分钟。

题 号	 	总分
得 分		
评卷人		

Part I [20 pts.] (1pt each) Fill in the blanks with the best answer. 1. The collection of information stored in the database at a particular moment is called an _____ of the database. The overall design of the data base is called the database _ 2. A relation schema \mathbb{R} is in _____ normal from if for all $\mathbb{Q} \to \mathbb{R}$ in $\mathbb{F}+$, at least one of the following holds: $\square \rightarrow \beta$ is _____; \square is a superkey for \rceil ; Each attribute \rceil in is contained in a candidate key for \mathbb{R} . 3. Let eals relation be a relation schema , eals relation and eals relation from a decomposition of eals relation. Decomposition is a ______ if for all legal database instances Γ of Γ , $\Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) = r$. 4. In E-R model, on entity is represented by a set of _____. A ____ is an association among several entities. 5. Assume relation T has b blocks and relation S has b blocks, therefore, in the best case, only block transfers would be required for \[\mathbb{N} \mathbb{S} _____ and ____, the former require that each bucket is assigned An ideal hash function is _ the same number of search-key values form the set of all possible values. 7. To generate query-evaluation plans for an expression we have to generate logically equivalent expressions using _____. 8. Consider a 1+- tree of order 1 ,if there are 1 search-key values in the file , the path form the root to the leaf mode is no longer than _____.

> 《数据库系统》试卷 (A) 第1 页 共5 页

committed state. After a transaction has been rolled back and the database has been restored to its

9. A transaction has the following properties: _____, , ____, isolation and durability.

previous state, the transaction enter the _____ state.

10. When the final statement of a transaction has been executed, the transaction enters the ______

11. A sch	nedule 🦒 is if a trar	nsaction 🋂 in 🥈 needs a data item previ	ously written by a
trans	saction $ I_{\!i} $, then the commit ope	eration of $\ \ I_i$ appears before the commit op	eration of $\mathit{T_{j}}$.
12	attribute values or	_ attribute values are not atomic .	
13. A relat	tion schema may have an attribu	te that corresponds to the primary key of anot	her relation .
The a	attribute is called a		
Answer :			
1		8	
2		9	
3			
4		11	
5		12	
6		13	
7		_	

Part [80 pts.] Answer the following question.

- 1. [16 points] Database design : Consider the following conditions
 - i. The STUDENT may be taught by one and only one teacher . The TEACHER may be instructor of one or more STUDENT .
 - ii. The TEACHERmay be responsible for one and only one CLASS. The CLASSmay be the responsibility of one and only one TEACHER.
 - iii. The CLASSmay be made of one of one or more STUDENT. The STUDENT must be a member of one and only one CLASS.
 - iv. The CLASSmust have one and only are ROOM. The ROOM may belong to one or more CLASS.

Notes: Assume entity CLASShas the following attributes: CID and CNAME, entity ROOM has the following attributes: RID and LOCATION, entity STUDENT has the following attributes: SID, LASTNAME, and FIRSTNAME, entity TEACHER has following attributes: TID, TEACHERNAME, and TITLE.

- a) [8 points] Construct an E-R diagram showing these relationships.
- b) [4 points] Construct appropriate relation schemas for the above E-R diagrams.
- c) [4 points] Create an index std_index on the **student** relation with **SID** as the search_key.

2. [6 points] In database design, how to represent relationship set as relational schemas?

- 3. [14 points] Let R = (A,B,C,D,E,F) be a relation with functional dependency $F = \{A \rightarrow CB,E \rightarrow FA\}$
 - a) [2 points] Compute the candidate keys for \mathbb{R} ;
 - b) [6 points] Is \mathbb{R} in 3NF ? If it is , justify your answer . If not , produce a decomposition of \mathbb{R} into 3NF .
 - c) [6 points] Is \mathbb{R} in BCNF ? If it is , justify your answer . If not , produce a decomposition of into BCNF .

PUBLISHER (Publishername , Address , Phone) BOOK_COPIES (Bookid, Branchid, No_Of_Copies) LIBRARY_BRANCH (Branchid , Branchname , Address) BOOK_LOANS (Bookid, Branchid, Cardno, DataOut, Duedata) BORROWER (Cardno, Name, Address, Phone) [3 points] Write appropriate SQL DDL statements for declaring the BOOK_AUTHORS relation. a) [6 points] Give an expressions in **relational algebra** to express the following queries: Retrieve the name of all borrowers who do not have any books checked out. Q1: " sharpstown " branch and whose DueDate i Q2: For each book that is loaned out from the 's address. today, retrieve the book title, the borrower 's name, and the borrower [16 points] Give an expressions in SQL to express the following queries : Q1: How many copies of the book titled The Lost Tribe are owned by the library branch " sharpstown whose name is Q2: For each library branch, retrieve the branch name and that the total number of books loaned out rom that branch. Q3: Retrieve the name, address, and number of books checked out for all borrowers who have more than five books checked out. " Stephen King ", retrieve the title and Q4: For each book authored (or co-authored) by

the number of copies owned by the library branch whose name is

《数据库系统》试卷 (A)

" T&G "

第4页共5页

[3 points] Record the fact that the manager didn

" T&G " ,i.e. remove information about

" central

't maintain information about the book named

4. [28 points]

BOOK (Bookid, Title, Publishername)

BOOK AUTHORS (Bookid, Authorname)

5.	[16 points]	Query	Processing,	Optimization	and	Transaction
----	-------------	-------	-------------	--------------	-----	-------------

- [4 points] please describe the implementation process of selection operation $\sigma_{A=c}(r)$, where l is a relation . l is an attribute and is not a candidate key, r has a primary index on l . If there are l matching records, the l+ tree index is of height l, and each disk block contains at most l records, please analyze the overhead in the best case.
- b) [4 points] Describe the process of Indexed nested-loop join .
- c) [4 points] please describe the two-phase looking protocol and prove that it ensures conflict-serializable schedules and does not ensure freedom from deadlocks.
- d) [4 points]