ECE 210/211 Spring 2022

University of Illinois

Alvarez, Mironenko, Mironov, Schmitz

Analog Signal Processing

Thursday, April 21, 8:45-10pm

Exam III

Last Name:		
First Name:		
UIN:	netID:	

instructions:

- Clearly PRINT your name in CAPITAL LETTERS.
- Clearly write your UIN and netID.
- This is a closed book and closed notes exam.
- Calculators are not allowed.
- To get credit, you must SHOW ALL your work and/or reasoning. Answers without any work or reasoning may receive no credit.
- To get full credit, simplify your answers.
- Write your final answers in the spaces provided or points may be deducted.
- All answers should INCLUDE UNITS whenever appropriate.
- The exam is printed **double-sided**.

- 1. (25 pts) The three parts of this problem can be solved independently of each other.
 - (a) [15 pts] Find the Fourier Transform of the signal f(t) plotted below. Full credit is awarded only if your solution is expressed as the sum of two terms.

$$\Omega_{3dB} =$$

(c) [5 pts] A filter has an impulse response h(t) with Fourier transform $H(\omega)$, whose amplitude is given by $|H(\omega)| = \sqrt{3}e^{-\frac{|\omega|}{2}}$. Find its 95% energy bandwidth, $\Omega_{95\%}$. If convenient, you may leave your answer as a function of the natural logarithm (base-e), $\ln(x)$.

 $\Omega_{95\%} = \underline{\hspace{1cm}}$

2. (25 pts) The input f(t) with the frequency spectrum $F(\omega)$ goes through the system below.

Plot $Z(\omega)$, $R(\omega)$, $Y(\omega)$, $M(\omega)$, and $P(\omega)$ between $-50 < \omega < 50 \,\text{rad/s}$, labeling all important points. You may plot with complex-valued amplitudes, or plot real and imaginary parts separately, or plot magnitude and phase separately. If needed,

$$|\cos(\omega_0 t)| = \frac{2}{\pi} + \sum_{n=1}^{\infty} \frac{1}{\pi \left(n^2 - \frac{1}{4}\right)} \cos(2n\omega_0 t + (1-n)\pi)$$

There is space for the plots on the next page.

3.	(25)	pts)	The	four	parts	of t	his	problem	are	unrelated
· ·	(20	P^{0D}	1110	LOUL	paras	OI C	TIL	problem	CLI C	anicial

(a) [5 pts] Simplify the following expression:
$$f(t) = (1+t)(\delta(t) - 2\delta(4-t))$$

$$f(t) = \underline{\hspace{1cm}}$$

(b) [10 pts] Find
$$g(t) = e^{-|t|} * cos(2t)$$

 $f_{LO} = \underline{\qquad} f_{IM} = \underline{\qquad}$

(d) [5 pts] Let signal x(t) be a low-pass signal with a bandwidth of 500 rad/s. Determine the minimum sampling frequency in Hz needed to sample signal z(t) = x(t)cos(500t) without causing aliasing error.

- 4. (25 pts) The two parts of this problem are not related. Although you are welcome to use a Fourier-based solution to check your answers, all graded calculations and plotting (if needed) must be clearly performed in the time domain.
 - (a) Functions f(t) and g(t) are given below and y(t) = f(t) * g(t).

i. [6 pts] Determine y(4.5)

$$y(4.5) =$$

ii. [10 pts] Find a mathematical expression for y(t) for 0 < t < 7. You may leave your answer as a piecewise function.

(b) [9 pts] Functions h(t) and g(t) are given below and z(t) = h(t) * g(t). Plot z(t) for 7 < t < 12 and indicate all critical points of the graph. It is not necessary to write a mathematical expression for y(t).

