

Structural variant analysis using NGS

Structural variation

- Accumulated mutations over time cause cancer.
- Structural variation:
 - Genomic rearrangements of DNA.
 - Cause amplification, deletion or reordering of chromosomal regions.
 - Affect single gene/short stretches of DNA to entire chromosomes.

Identifying structural variants

The sequencing data comes from the tumor genome NOT the reference genome but is mapped to the reference genome

Deletion Normal reference genome В C Deletion in the tumor genome Paired-end reads Tumor reads are represented in the reference genome C Α soft-clipped reads

Deletion Normal reference genome В C Deletion in the tumor genome Paired-end reads Tumor reads are represented in the reference genome C Α В soft-clipped reads soft-clipped reads map here Clinical Cancer Genomics – vt 2022

Deletion Normal reference genome В C Deletion in the tumor genome Paired-end reads Tumor genome but using a "normal" reference Tumor reads are represented in the reference genome C Α В soft-clipped reads soft-clipped reads map here Clinical Cancer Genomics – vt 2022

An example, the androgen receptor in advanced prostate cancer

Deletion

An example, the androgen receptor in advanced prostate cancer

Deletion

Translocation – similar as for deletions but on different chromosomes

A B C D Inversion in the tumor genome Paired-end reads A C B D Tumor reads represented in the reference genome A B C D

An example, the androgen receptor in advanced prostate cancer

Inversion Inversion in the tumor genome Paired-end reads Tumor reads represented in the reference genome 254 kb 600 bp

An example, the androgen receptor in advanced prostate cancer

Identifying structural variants

Table 1. SV detection methods and example SV callers

Method	Detection resolution	Detectable SV types	Detectable SV sizes	Example SV callers	References
Read-pair	Rough	All	Median size SV	BreakDancer	Chen et al. [14]
Split-read	Base pair	All	Small size SV	Pindel	Ye et al. [24]
Read-pair and	Base pair	All	Depend on	Delly	Rausch et al. [29]
split-read			filtering/scoring	Lumpy	Layer et al. [30]
Read-pair, split-read	Base pair	All	Depend on	Manta	Chen et al. [33]
and local-assembly			filtering/scoring	GRIDSS	Cameron et al. [26]
				SvABA	Wala et al. [27]

Detection of somatic structural variants from short-read next-generation sequencing data, Briefings in Bioinformatics, 2020

Figure via google

Structural rearrangement paper from ICGC

- WGS of 2658 cancers across 38 tumour types.
- Pattern and signature analysis of structural variants.
- Propose classification and annotation scheme.

Article

Patterns of somatic structural variation in human cancer genomes

https://doi.org/10.1038/s41586-019-1913-9
Received: 22 September 2017
Accepted: 18 November 2019

Published online: 5 February 2020

Yilong Li^{1,2,14}, Nicola D. Roberts^{1,14}, Jeremiah A. Wala^{3,4,5,14}, Ofer Shapira^{3,4,5,14}, Steven E. Schumacher^{3,4,5}, Kiran Kumar^{3,4,5}, Ekta Khurana⁶, Sebastian Waszak⁷, Jan O. Korbel⁷, James E. Haber⁸, Marcin Imielinski⁸, PCAWG Strucrusl Variation Working Group¹⁰, Joachim Weischenfeldt^{11*}, Rameen Beroukhim^{3,4,5*}, Peter J. Campbell^{1,12*} & PCAWG Consortium¹³

Structural rearrangement paper from ICGC

Patterns of somatic structural variation in human cancer genomes

Disturbingly many short ones ..

Structural rearrangements as signatures

Hard to pick up with targeted sequencing!

Flagship paper from the ICGC

- Whole genome sequencing (wgs) of 2,605 primary tumours and 173 metastases or local recurrences
- RNA-sequencing data were available for 1,222 donors
- Mean age: 56 years
- Largest data set so far with "no compromises"

- Chromoplexy
 - Repair of co-occurring double-stranded DNA breaks are glued together by the DNA repair machinery to create shuffled chains of rearrangements
- 17.8% of all cases

Kataegis

- focal hypermutation process that leads to locally clustered nucleotide substitutions, biased towards a single DNA strand and often cooccurring with structural variants.
- 60 % of all cases
- APOBEC signature accounted for 81.7% of kataegis events and correlated positively with APOBEC3B expression levels, somatic SV burden and age at diagnosis
- Beware can give false tumor mutational burden estimates

- Chromotripsis: Catastrophic event in which tens to hundreds of DNA breaks occur simultaneously and are glued back together randomly.
- 22.3% of all cases
- Correlated to whole genome duplications and TP53 alterations.
 - Pan-can OR: 3.22; *P:* 8.3 × 10−35;

Often lead to driver events

Co-occurrence of individual event types

The end