Natural Language Processing & Word Embeddings

	5	
1.	. Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors dimensional, so as to capture the full range of variation and meaning in those words.	should be 10000 1 point
	○ True	
	○ False	
2.	. What is t-SNE?	1 point
	A linear transformation that allows us to solve analogies on word vectors	
	A non-linear dimensionality reduction technique	
	A supervised learning algorithm for learning word embeddings	
	An open-source sequence modeling library	
3.	. Suppose you download a pre-trained word embedding which has been trained on a huge corpus of twoord embedding to train an RNN for a language task of recognizing if someone is happy from a short using a small training set.	
	x (input text) y (happy?)	
	I'm feeling wonderful today! I'm bummed my cat is ill. 0	
	Really enjoying this!	Activate
	Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonab recognize "I'm ecstatic" as deserving a label $y=1$.	y be expected to
	4. Which of these equations do you think should hold for a good word embedding? (Check all the $e_{boy} - e_{girl} \approx e_{brother} - e_{sister}$ $e_{boy} - e_{girl} \approx e_{sister} - e_{brother}$ $e_{boy} - e_{brother} \approx e_{girl} - e_{sister}$ $e_{boy} - e_{brother} \approx e_{girl} - e_{sister}$ $e_{boy} - e_{brother} \approx e_{sister} - e_{girl}$ 5. Let E be an embedding matrix, and let σ_{1234} be a one-hot vector corresponding to word 1234 of word 1234, why don't we call $E * o_{1234}$ in Python? It is computationally wasteful. The correct formula is $E^T * o_{1234}$.	
	This doesn't handle unknown words (<unk>).</unk>	
	None of the above: calling the Python snippet as described above is fine.	A

	 When learning word embeddings, we create an artificial task of estimating P(target context). It is okay if we do poorly 1 point on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. 	
	○ True	
	○ False	
	7. In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. $\bigcirc c$ and t are chosen to be nearby words.	
	\bigcirc c is a sequence of several words immediately before $t.$	
	$\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$	
	$\bigcirc \ c$ is the one word that comes immediately before $t.$	
	8. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:	
	$P(t \mid c) = rac{e^{i t} \cdot c}{\sum_{\ell=1}^{n coll} e^{i t^2 \cdot c}}$	
	Which of these statements are correct? Check all that apply.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	tiva
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	to Se
	$\hfill \qquad \theta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.	
	$\hfill \square$ After training, we should expect θ_t to be very close to e_c when t and c are the same word.	
	9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: 1 point	
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j$ ' $- log X_{ij})^2$	
	Which of these statements are correct? Check all that apply.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings of a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?	
	$\bigcirc m_1 >> m_2$	
	$\bigcirc m_1 << m_2$	tiva
e en linear dime	ancionality reduction technique	
THEIRIDAY CIMA	ansionality reduction reconnique	

- 1. False
- ${\bf 2.} \quad {\bf A} \ non-linear \ dimensionality \ reduction \ technique.$
- 3. True
- 4.

a.
$$e_{boy} - e_{girl} \approx e_{brother} - e_{sister}$$

b.
$$e_{boy} - e_{broher} \approx e_{girl} - e_{sister}$$

- 5. <u>It is computationally wasteful.</u>
- 6. True
- 7. c and t are chosen to be nearby words.

8.

- a. θ_t and e_c are both 500 dimensional vectors.
- b. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent.

9.

- a. The weighting function f(.) must satisfy f(0)=0.
- b. X_{ij} is the number of times word j appears in the context of word i.
- c. θ_i and e_j should be initialized randomly at the beginning of training.

10. $m_1 >> m_2$