ĆWICZENIE 4

Kompresja sygnałów mowy w oparciu o kwantyzację wektorową

1. Analiza budowy drzewa decyzyjnego.

Zmiany w sposobie rozmieszczenia wektorów decyzyjnych na poszczególnych poziomach w drzewie r=1,2...8 na podstawie obserwacji graficznej ilustracji przy pomocy skryptu centroidy.m.

Tabela 1. Rozmieszczenie centroidów dla poszczególnych poziomów r.

r- numer poziomu			
w decyzyjnym	Opis rozmieszczenia centroidów		
drzewie binarnym			
1	2 centroidy rozmieszczone prawie symetrycznie wokół punktu		
	(0,0) w I i III ćwiartce układu współrzędnych		
2	4 centroidy rozmieszczone współliniowo		
3	8 centroidów rozmieszczonych współliniowo		
4	16 centroidów rozmieszczonych "prawie" współliniowo		
5	32 centroidy – utrata współliniowości, niewielkie zagęszczenie		
	wokół punktu (0, 0)		
6	64 centroidy – duże zagęszczenie centroidów wokół punktu		
	(0,0), rozrzedzenie reprezentacji w miarę oddalania się od		
	punktu (0,0), kwantyzer wektorowy zaczyna wykazywać cechy		
	nieliniowego kwantyzera 2D dla sygnału mowy		
7	128 centroidów – dalsze zagęszczanie się reprezentacji		
	wektorów wokół punktu (0, 0), widoczne rozrzedzenie się tej		
	reprezentacji w miarę oddalania się od punktu (0, 0).		
8	256 centroidów – bardzo duże zagęszczenie się reprezentacji		
	wokół punktu (0, 0) i znaczące się rozrzedzanie tej reprezentacji		
	w miarę oddalania się od punktu (0, 0)		

Dla r≤4 centroidy rozkładają się w sposób liniowy lub współliniowy. Dla wartości r=5 rozmieszczenie centroidów traci współliniowość. Dla wartości od r=6 do r=8 obserwujemy zagęszczenie centroidów przy punkcie (0,0).

Wykres 1. Rozmieszczenie centroidów w drzewie decyzyjnym dla r=4.

Na wykresie1 widać 16 centroidów rozmieszczonych w sposób zbliżony do współliniowego.

Wykres 2. Rozmieszczenie centroidów w drzewie decyzyjnym r=6.

Na wykresie 2 widać 64 centroidów, wykres charakteryzuje duże zagęszczenie wokół punktu (0,0), ilość centroidów zmniejsza się w miarę oddalania się od punktu 0,0.

Każdy punkt na wykresach to wektor, algorytm działa bez nadzoru. Drzewo na poziomie 4 ma 16 reprezentantów po 62 500 każdy, natomiast drzewo na poziomie 6 ma 64 reprezentantów każdy po 15 625.

2. Badanie kodeka (koder-dekoder) opartego o kwantyzację wektorową w dziedzinie czasu.

W tym podpunkcie użyty został skrypt kodek.m w celu zbadania zależność **SQNR(r)** dla r=1,2...8 długości sygnału dl = 10000 (5000 wektorów dwuwymiarowych),

gdzie r jest ilością poziomów w strukturze drzewa z wektorami wzorcowymi, liczba 2r jest całkowitą liczbą dostępnych wektorów wzorcowych w procesie kodowania.

Wykres 3. SQNR = f(r) dla kwantyzera wektorowego, N=2.

Akceptowalna jakość SQNR dla punktu 7 i 8. Punkt 6 jest poniżej normy. Za normę przyjmujemy SQNR na poziomie 20 dB.

$$v = \frac{f_s}{N} * r = \frac{f_s}{N} \log_2 L,$$

gdzie N określa ilość wektorów na wejściu koderka na 1s (szybkość wektorową),

log₂ L – ilość bitów potrzebna do zakodowania L centroidów

Otrzymany wykres został przeskalowany na kb/s w celu odczytania szybkości transmisji na wyjściu kodera w zależności do parametru r.

Wykres 4. SQNR = f(v) dla kwantyzera wektorowego, N=2.

W naszym przypadku fs=8000 próbek/s, N=2, można z tej zależności wyprowadzić wzór na v i obliczyć v(r):

$$v = \frac{8000 \frac{pr \acute{o}bek}{s}}{2} * r$$

$$\frac{f_s}{N} * r = \frac{f_s}{N} * \log_2 L \rightarrow r = \log_2 L$$

$$v(r_7) = \frac{f_s}{N} * r = \frac{8000 \frac{pr \acute{o}bek}{s}}{2} * 7 = 28000 \frac{b}{s} = 28kb/s$$

$$v(r_8) = \frac{f_s}{N} * r = \frac{8000 \frac{pr \acute{o}bek}{s}}{2} * 8 = 32000 \frac{b}{s} = 32kb/s$$

3. Wyznaczenie stopnia kompresji

Określenie stopnia kompresji przy założeniu, że sygnał oryginalny podlegał kwantyzacji z rozdzielczościa **R=12** bitów.

$$\eta = \frac{I_{we}}{I_{wy}} = \frac{KRN}{K \log_2 L} = \frac{RN}{\log_2 L} = \frac{12*2}{\log_2 L},$$

 I_{we} oznacza ilość informacji na wejściu,

 I_{wy} oznacza ilość informacji na wyjściu,

R oznacza rozdzielczość kwantyzacji,

K oznacza ilość wektorów na wejściu, ilość słów kodowych na wyjściu, $\log_2 L$ oznacza ilość bitów potrzebnych do zaadresowania L wektorów w książce kodowej

$$r = \log_2 L$$

$$\eta(6) = \frac{12 * 2}{6} = \frac{24}{6} = 4$$

$$\eta(7) = \frac{12 * 2}{7} = \frac{24}{7} = 3,43$$

$$\eta(8) = \frac{12 * 2}{8} = \frac{24}{8} = 3$$

Rosnący parametr r $(\log_2 L)$ powoduje zmniejszenie stopnia kompresji η .

4. Zadanie własne:

a) kwantyzerem dynamicznym 4-bitowym (v=32 kb/s, SQNR=21.12 dB, 16 000 operacji/s) przy SQNR~=const i kodekami.

Wykres 5. SQNR=f(v) dla kwantyzera wektorowego porównanego z kwantyzerem dynamicznym 4 bitowym.

Tabela 2. Porównanie kwantyzera dynamicznego z wektorowym(r=7).

Kwantyzer	SQNR [dB]	Szybkość transmisji na wyjściu kodera [kb/s]
Wektorowy	21,36	28
Dynamiczny 4 bitowy	21,12	32

Kwantyzer wektorowy zapewnia szybkość 28 kb/s zachowując porównywalnie taki sam SQNR jak kwantyzer dynamiczny zapewniający szybkość 32 kb/s. Różnica szybkości transmisji wynosi 4 kb/s.

b) **ADPCM 3 bity** (v=24 kb/s, **SQNR**=22.7 dB dla długości filtru adaptacyjnego **M**=5, 160 000 operacji/s) przy **SQNR~=const** (r=7)

Wykres 5. SQNR=f(v) dla kwantyzera wektorowego porównanego z kwantyzerem ADPCM 3bitowym.

Tabela 3. Porównanie kwantyzera ADPCM 3 bitowego z wektorowym(r=7).

Kwantyzer	SQNR [dB]	Szybkość transmisji na wyjściu kodera [kb/s]
Wektorowy	21,36	28
ADPCM 3 bitowy	24,00	24

Kwantyzer ADPCM 3 bitowy zapewnia szybkość transmisji na poziomie 24kb/s przy SQNR = 24 dB, natomiast kwantyzer wektorowy (r=7) prędkość transmisji na poziomie 28 kb/s przy SQNR = 21,36 dB. Różnica prędkości pomiędzy kwantyzerami wynosi 4 kb/s. Problemem kodeka ADPCM jest duża obliczeniowość, wykonuje on 160 000 operacji/s, czyli 48 000 więcej niż kwantyzer wektorowy (r=7).

c) **ADPCM 4 bity** (v=32 kb/s, **SQNR**=27.5 dB dla **M**=5, 160 000 operacj/s) przy v=32 kb/s=const.

Wykres 6. SQNR=f(v) dla kwantyzera wektorowego porównanego z kwantyzerem ADPCM 4bitowym.

Tabela 4. Porównanie kwantyzera ADPCM 4 bitowego z wektorowym (r=8).

Kwantyzer	SQNR [dB]	Szybkość transmisji na wyjściu kodera [kb/s]	
Wektorowy	23,92	32	
ADPCM 4 bitowy	27,5	32	

Kwantyzer ADPCM 4 bitowy zapewnia prędkość transmisji na poziomie 32 kb/s przy SQNR = 27,5 dB, natomiast kwantyzer wektorowy (r=8) osiąga tą samą szybkość przy SQNR = 23,92 dB. Różnica pomiędzy SQNR wynosi ~3,5 dB. Kodek ADPCM wykonuje 160 000 operacji/s, czyli 32 000 więcej niż kwantyzer wektorowy (r=8).

5. Wnioski końcowe

Rozmieszczenie centroidów w zależności od numeru poziomu w drzewie decyzyjnym ("r"):

- r≤4 centroidy rozkładają się w sposób liniowy lub współliniowy
- r=5 rozmieszczenie centroidów traci współliniowość
- od r=6 do r=8 obserwujemy zagęszczenie centroidów przy punkcie (0,0)

Kwantyzer wektorowy rozpatrywany w tym ćwiczeniu (N=2, fs=8kHz) przyjmuje ponad akceptowalną jakość (SQNR>20 dB) dla 7 i większego poziomu decyzyjnego drzewa binarnego ("r"). Szybkość transmisji na wyjściu kodera dla przypadku r=7 wynosi 28 kb/s, natomiast dla r=8 prędkość wynosi 32 kb/s.

Stopień kompresji zmniejsza się wraz ze zwiększającym się poziomem decyzyjnego drzewa binarnego ("r"). Dla r=6 stopień kompresji wynosi η =4, dla r=7 stopień kompresji wynosi η =3,43, natomiast dla r=8 stopień kompresji wynosi η =3.

Porównanie kwantyzererów względem kwantyzera wektorowego dla r=7:

Tabela 4. Porównanie kwantyzerów: wektorowego dla r=7, dynamicznego 4 bitowego i ADPCM 3 bitowego.

Kwantyzer	SQNR [dB]	Szybkość transmisji na wyjściu kodera [kb/s]	Ilość operacji/s
Wektorowy	21,36	28	112 000
Dynamiczny 4	21,12	32	16 000
bitowy			
Dynamiczny 4bitowy	0,24	-4	96 000
względem			
kwantyzera			
wektorowego			
ADPCM 3 bitowy	24,00	24	160 000
ADPCM 3 bitowy	-2,64	4	-48 000
względem			
kwantyzera			
wektorowego			

Porównując trzy kwantyzery (wektorowy (r=7), dynamiczny i ADPCM 3 bitowy) najlepiej wypada kwantyzer dynamiczny wykonuje on najmniej operacji/sekundę nie tracąc przy tym SQNR i zapewniając szybkość o 4 kb/s większą niż kwantyzer wektorowy. W zestawieniu najgorzej wypada kodek ADPCM 3 bitowy który zyskuje 2,64 dB jakości sygnału kosztem 4 kb/s szybkości, wykonuje on także 48 000 operacji na sekundę więcej niż kwantyzer wektorowy.

Porównanie kwantyzera ADPCM 4 bitowego względem kwantyzera wektorowego dla r=8:

Tabela 4. Porównanie kwantyzerów: wektorowego dla r=8,i ADPCM 4 bitowego.

Kwantyzer	SQNR [dB]	Szybkość transmisji na wyjściu kodera [kb/s]	Ilość operacji/s
Wektorowy	24,00	32	128 000
ADPCM 4 bitowy	27,5	32	160 000
ADPCM 4 bitowy	-3,5	0	-32 000
względem			
kwantyzera			
wektorowego			

Kwantyzer wektorowy (r=8) posiada taką samą szybkość transmisji na wyjściu kodeka jak ADPCM 4 bitowy. Kwantyzer wektorowy (r=8) względem ADPCM 4 bitowego traci 3,5 dB SQNR, wykonuje jednak 32 000 mniej operacji/s.