Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 16 du mercredi 21 avril 2021

Exercice 1.

Notons

$$S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\},\tag{1}$$

la sphère de \mathbb{R}^3 de rayon 1 centrée en l'origine.

- 1) Identifier les points $(x_0, y_0, z_0) \in S$ au voisinage (ouvert) U desquels on peut décrire S comme le graphe d'une fonction Z définie, pour tout $(x, y) \in U \subset \mathbb{R}^2$, par $Z = \Gamma(x, y)$. Pour les points où une telle fonction Γ existe, écrire Γ explicitement. Pour les autres points, prouver qu'une telle fonction n'existe pas.
- 2) Donner l'équation du plan tangent à S en un point quelconque $(x_0,y_0,z_0)\in S$.

Exercice 2.

Considérons l'équation

$$-1 + x^{2} + yz^{5} + \arctan(xyz) + \ln\frac{\sqrt{1+x+z}}{3z} + \ln\sqrt[3]{y^{2} + z^{3}} = 0$$
 (2)

- 1) Montrer que (2) définit, au voisinage du point (1,0), une fonction implicite $z=\phi(x,y)$ telle que $\phi(1,0)=7$.
- 2) Donner l'équation du plan tangent à la surface $z = \phi(x, y)$ au point (1, 0).

Exercice 3.

Considérons le système d'équations

$$\begin{cases} x - y^3 + z + 8 = 0, \\ x^3 + y^4 - z^5 - 16 = 0. \end{cases}$$
 (3)

- 1) Montrer que (3) définit, au voisinage du point x=0, deux fonctions implicites $y=\phi_1(x)$ et $z=\phi_2(x)$, telles que $(\phi_1(0),\phi_2(0))=(2,0)$.
- 2) Donner l'équation de la tangente au point d'abscisse 0 de chacune des deux courbes $y=\phi_1(x)$ et $z=\phi_2(x)$.
- 3) Quelle autre paire de fonctions implicites (3) définit-il :
 - a) $x=\phi_1(y)$ et $z=\phi_2(y)$ au voisinage de 2, avec $(\phi_1(2),\phi_2(2))=(0,0),$ ou bien
 - b) $x=\phi_1(z)$ et $y=\phi_2(z)$ au voisinage de 0, avec $(\phi_1(0),\phi_2(0))=(0,2)$?

Exercice 4.

Soit $\boldsymbol{h}:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ une fonction définie par

$$\boldsymbol{h}(\boldsymbol{u},\boldsymbol{w}) = \begin{pmatrix} u_1^2 + u_2 + w_1^2 \\ e^{u_1} - 1 + u_2 + w_2 \end{pmatrix}. \tag{4}$$

- 1) Montrer que $\boldsymbol{h}(\boldsymbol{0},\boldsymbol{0}) = (0,0)^{\top}$ et que $\boldsymbol{h} \in \mathrm{C}^1(\mathbb{R}^2 \times \mathbb{R}^2, \mathbb{R}^2)$.
- 2) Soit $\epsilon > 0$; notons $B(\mathbf{0}, \epsilon) \subset \mathbb{R}^2$ la boule ouverte de rayon ϵ centrée sur $\mathbf{0}$. Montrer que, si $\epsilon > 0$ est suffisamment petit, $\exists \mathbf{f} \in C^2(B(\mathbf{0}, \epsilon), \mathbb{R}^2)$ telle que, $\forall \mathbf{w} \in B(\mathbf{0}, \epsilon), \mathbf{h}(\mathbf{f}(\mathbf{w}), \mathbf{w}) = \mathbf{0}$.
- 3) Calculer D f(0).