《iBoard 电子学堂》第六讲 STM32 微处理器及接口技术(下)

关于 《iBoard 电子学堂》……

《iBoard 电子学堂》是一个综合型的电子研发开发平台,适合在校学生、一线工程师及电子爱好者等。

交流方式:

官方博客: XiaomaGee.cnblogs.com

官方论坛: www.oshcn.com

官方淘宝店铺:i-Board.taobao.com

QQ群:

《iBoard 电子学堂 群【A】》: 204255896 (500 人,已满) 《iBoard 电子学堂 群【B】》: 165201798 (500 人,已满) 《iBoard 电子学堂 群【C】》: 215053598 (200 人高级群) 《iBoard 电子学堂 群【D】》: 215054675 (200 人高级群) 《iBoard 电子学堂 群【E】》: 215055211 (200 人高级群) 《iBoard 电子学堂 群【F】》: 78538605 (200 人高级群) 《iBoard 电子学堂 群【G】》: 158560047 (500 人高级群) 王紫豪-XiaomaGee(15959622) 20:36:04

现在就正式开始了,这一节课接着上一次讲;上次课我们讲了《stm32 微处理器及接口技术》 (上)

王紫豪-XiaomaGee(15959622) 20:36:43

讲了 STM32 最小系统、系统时钟、复位以及 GPIO 等等。

王紫豪-XiaomaGee(15959622) 20:38:01

对于一个微处理器来说,一般都包含了很多外设;这样才能连接不同的器件、应用于不同的 场合,今天这节课,我们就接着说一下常用的外设。

王紫豪-XiaomaGee(15959622) 20:38:48

上一次我们说过; cortex 内核是一种非常先进、性能又非常高的内核, 他是 arm 公司近期主推的产品。

王紫豪-XiaomaGee(15959622) 20:39:24

我们授课的对象 stm32f103vc, 就是基于 CORTEX-M3 内核的一个微控制器。

王紫豪-XiaomaGee(15959622) 20:40:02

细心的网友也许会发现,我有的时候说"微处理器",有的时候说"微控制器"

王紫豪-XiaomaGee(15959622) 20:40:50

从大的概念上讲,他们区别不是很大;如果非要区分的话,我们可以认为微处理器,做"数据处理"多一点;微控制器,做"控制"多一点。

王紫豪-XiaomaGee(15959622) 20:41:35

stm32f103vc,一般人都把他叫做微控制器,因为他的确做控制多一点

王紫豪-XiaomaGee(15959622) 20:42:00

下面我们说的外设: FSMC, 就能体现到这一点

王紫豪-XiaomaGee(15959622) 20:43:03

FSMC, 乍一听挺陌生的, 其实吧, 他就是我们常说的总线(BUS)而已。全称为: 可配置的静态存储器控制器。

王紫豪-XiaomaGee(15959622) 20:43:29

我们就把它理解成总线就行了。

王紫豪-XiaomaGee(15959622) 20:44:18

有的网友就着急了,我刚才说的"控制"、"数据处理",跟 FSMC 有啥关系啊?表面上是没有关系的;有关系的是内涵。

王紫豪-XiaomaGee(15959622) 20:45:10

大家都知道,STM32 主频为 72MHz,按理说,他的总线速度也不太低;其实不然,FSMC 的速度其实非常低,真正应用,也就是几兆的速度而已。

王紫豪-XiaomaGee(15959622) 20:46:19

这个速度,其实连老的 arm7 的水平都达不到的。但是如果把它定位成"微控制器",就可以接收了,毕竟这个速度也还是可以的,例如我们刷液晶、读写 flash 等等。

王紫豪-XiaomaGee(15959622) 20:47:43

请大家打开刚才下载的原理图。

王紫豪-XiaomaGee(15959622) 20:48:09

第四页

王紫豪-XiaomaGee(15959622) 20:48:44

王紫豪-XiaomaGee(15959622) 20:49:33

这些引脚,就是连接到 FSMC 的;《iBoard 电子学堂》里,stm32 与 FPGA、CPLD 这两个器件,通过 FSMC 连接

王紫豪-XiaomaGee(15959622) 20:50:20

其中 DB[0..15] 是 15 根数据线, AB[16..18] 是三根地址线; WR 是写使能, RD 是读使能, CS 是片选

王紫豪-XiaomaGee(15959622) 20:50:44

有的同学就问了,为啥使用 AB[16..18] 中间的三根地址线呢?

王紫豪-XiaomaGee(15959622) 20:52:23

其实 100 脚 的 STM32,它不包含全功能的 FSMC 接口,低位的地址线是跟数据线共享的, 就跟 51 单片机一样,如果使用,还需要增加一个地址锁存芯片

王紫豪-XiaomaGee(15959622) 20:53:17

下面我说一下地址译码技术

王紫豪-XiaomaGee(15959622) 20:54:09

由于 100 脚的 stm32,只包含了一个 静态存储器的片选,但是我们需要连接 CPLD 和 fpga 两个外设,所以我们需要译码出来两个空间

王紫豪-XiaomaGee(15959622) 20:54:55

王紫豪-XiaomaGee(15959622) 20:55:26

我们通过一个译码器, 译码出来两个片选空间

王紫豪-XiaomaGee(15959622) 20:56:02

这样,当 AB19 为低电平时,fpga_CS 动作,当 AB19 为高电平时,TFT_CS 也就是 CPLD 的片选动作。

王紫豪-XiaomaGee(15959622) 20:56:25

为了达到良好的观看效果,大家可以把 QQ 群窗口最大化!

王紫豪-XiaomaGee(15959622) 20:57:12

SN74LVC1G19 是一个 1-2 译码器, 我们常用的是 74HC138, 是 3-8 译码器。这些器件都很便宜, 几毛钱, 但是用处很大

王紫豪-XiaomaGee(15959622) 20:58:31

通过空间译码技术,我们使用三根地址线,就能译出来八个片选空间,这样,就能连接八个器件,所以,100脚的 stm32用起来也不受限了。

王紫豪-XiaomaGee(15959622) 20:59:07

说到了 FSMC 总线,这里我说一下,他在《iboard 电子学堂》里的作用

王紫豪-XiaomaGee(15959622) 20:59:52

stm32 通过 fsmc 跟 fpga 连接,用于读/写 数字存储示波器、任意波发生器的数据,

王紫豪-XiaomaGee(15959622) 21:00:35

stm32 通过 fsmc 总线跟 cpld 连接,用于驱动 4.3 寸真彩液晶屏,虽然速度不快,但是一秒钟也能刷几十次,效果相当好。

王紫豪-XiaomaGee(15959622) 21:01:05

FSMC 的硬件就说到这里,下面我们看一下它对应的软件。

王紫豪-XiaomaGee(15959622) 21:01:37

大家打开刚才下载的 iboard infinity 软件包

王紫豪-XiaomaGee(15959622) 21:03:24

打开 include 里面的 fpga.h

王紫豪-XiaomaGee(15959622) 21:03:42

```
#define FPGA CTLO
                                *((volatile unsigned short int *)(0x60000000))
#define FPGA_CTL1
                                *((volatile unsigned short int *)(0x60020000))
#define FPGA_WR2
                                *((volatile unsigned short int *)(0x60040000))
#define FPGA_WR3
                                *((volatile unsigned short int *)(0x60060000))
#define FPGA_WR4
                                *((volatile unsigned short int *)(0x60080000))
#define FPGA_WR5
                                *((volatile unsigned short int *)(0x600A0000))
#define FPGA_WR6
                                *((volatile unsigned short int *)(0x600C0000))
#define FPGA_WR7
                                *((volatile unsigned short int *)(0x600E0000))
```

王紫豪-XiaomaGee(15959622) 21:04:15

这段宏定义,就是刚才 AB[16..18] 对 fpga 的空间映射

王紫豪-XiaomaGee(15959622) 21:05:12

同样的道理,

```
#define LCD_DATA *((volatile unsigned short int *)(0x60100000))
#define LCD_ADDX *((volatile unsigned short int *)(0x60120000))
#define LCD_ADDY *((volatile unsigned short int *)(0x60140000))
#define LCD_CTL *((volatile unsigned short int *)(0x60160000))
```

这段代码,就是对 CPLD 的空间映射,大家可以看到,其实就是用了两根地址线(共四个

空间)

王紫豪-XiaomaGee(15959622) 21:05:42

四个空间,分别代表 液晶的数据、x 轴地址、y 轴地址以及控制寄存器。

王紫豪-XiaomaGee(15959622) 21:06:05

这个代码在 evtft.h 里面。

王紫豪-XiaomaGee(15959622) 21:07:37

FSMC 就说完了。最后说一句我的感受,其实不管什么 cpu,他的总线操作都是类似的,我曾经使用 linux (基于 arm9 总线连接 fpga),也是这样驱动外设,做出相应的功能。

王紫豪-XiaomaGee(15959622) 21:08:20

下面我说一下 usart, 这个外设。

王紫豪-XiaomaGee(15959622) 21:09:20

stm32 里面, usart 被赋予"通用同步/异步收发器"的名字,这里我们着重说一下异步,这个更具有代表性。

王紫豪-XiaomaGee(15959622) 21:10:10

我们暂且把它叫做 uart; 这个名字更通用写。uart 几乎是所有的微处理器,最常用的通信端口,不是之一。的确是最常用的,

王紫豪-XiaomaGee(15959622) 21:10:57

只要是微处理器,几乎都包含有 uart 接口,可见它是一个成熟的接口技术。

王紫豪-XiaomaGee(15959622) 21:11:37

uart 被叫做异步收发器,为什么叫"异步",这里有一个常识性的概念。

王紫豪-XiaomaGee(15959622) 21:12:53

所谓通信,就是指在两个或者两个以上的设备之间进行信息交换。

王紫豪-XiaomaGee(15959622) 21:13:49

我们把他们是否基于"同源"时钟,作为同步、异步的依据。

王紫豪-XiaomaGee(15959622) 21:14:34

也可以理解成, 通信过程中, 是否有时钟线。

王紫豪-XiaomaGee(15959622) 21:15:31

有时钟线的情况下,主机产生时钟,从机使用时钟,这样大家的"采样标准"是一样的,所以没有波特率误差。

王紫豪-XiaomaGee(15959622) 21:16:51

uart,在电路中,使用的引脚一般为 TXD,rxd 分别表示发送、接收;他们没有时钟连接。 所以叫异步通信。

王紫豪-XiaomaGee(15959622) 21:17:49

每种接口都有他的优缺点,异步通信优点是物理连接较少,使用方便;当然,他的缺点就是 数据速率不宜过大。

王紫豪-XiaomaGee(15959622) 21:19:28

基于 uart 接口的协议,通过改变物理层,他就很方便地变成了 RS-232/RS-485/RS-422/LIN 等总线行形式。

王紫豪-XiaomaGee(15959622) 21:20:28

当然, RS-232 是最常用的, 而 rs-485 工业上是最常用的, 他仅需要两根线, 就能实现大面积组网, 应用较广泛。

王紫豪-XiaomaGee(15959622) 21:20:58

课间休息 10 分钟

王紫豪-XiaomaGee(15959622) 21:33:42

接着讲课吧

王紫豪-XiaomaGee(15959622) 21:34:08

刚才说到了 uart 接口,一句话,它很常用。

王紫豪-XiaomaGee(15959622) 21:34:54

stm32 这一点挺给力的,它提供了 5 个 uart 接口。

王紫豪-XiaomaGee(15959622) 21:35:48

《iboard 电子学堂》里,我们使用了一个 uart 接口与 51 通信;用于读键值,另外外扩了一个 uart 接口。

王紫豪-XiaomaGee(15959622) 21:36:14

方便通过计算机控制这个设备。

王紫豪-XiaomaGee(15959622) 21:37:13

电路很简单,就留出来三根的连接器。

王紫豪-XiaomaGee(15959622) 21:38:02

既然说到了 UART, 我就把跟他相关的内容提一下。

王紫豪-XiaomaGee(15959622) 21:38:50

电子工程师, 日常接触的最多的恐怕就是 RS-232 和 RS-485、RS-422 这几种接口了。

王紫豪-XiaomaGee(15959622) 21:39:23

他们的协议层的核心部分都是 uart 模块,

王紫豪-XiaomaGee(15959622) 21:40:19

rs-232, 也就是我们计算机后面那个 db9 的接头,不知道现在的台式机还提不提供;反正老的台式机都是有的。

王紫豪-XiaomaGee(15959622) 21:41:07

9针的连接器,定义如下:

脚位	简写	意义	说明
Pin1	CD	Carrier Detect	调制解调器通知电脑有载波配侦测到。
Pin2	RXD	Receiver	接收资料。
Pin3	TXD	Transmit	传送资料。
Pin4	DTR	Data Terminal Ready	电脑告诉调制解调器可以进行传输。
Pin5	GND	Ground	地线。
Pin6	DSR	Data Set Ready	调制解调器告诉电脑一切准备就绪。
Pin7	RTS	Request To Send	电脑要求调制解调器将资料送出。
Pin8	CTS	Clear To Send	调制解调器通知电脑可以传资料过来。
Pin9	RI	Ring Indicator	调制解调器通知电脑有电话进来。

王紫豪-XiaomaGee(15959622) 21:42:27

这里需要注意的是,它的逻辑电平跟单片机不能直接相连的,他的电压是正负十几伏的;我们通常使用 max232 等芯片做电平转换才能连接。

王紫豪-XiaomaGee(15959622) 21:43:59

RS-485,基于差分总线的半双工通信接口,由于他能长距离通信(基于差分接口,抗共模干扰),而且由于他的半双工特性,很适合组网,所以应用很广泛

王紫豪-XiaomaGee(15959622) 21:45:04

目前为止,很多设备(例如变频器)的主要对外接口还是 RS-485的,

王紫豪-XiaomaGee(15959622) 21:46:07

RS-422 这个东西,结合了 RS-232 和 RS-485 两个的特征,它是具有差分总线的全双工接口, 所以有四根线。AB/YZ 两对差分线。

王紫豪-XiaomaGee(15959622) 21:46:40

作为设计者,我们会根据不同的应用需要,来选择不同的接口类型;这是一项基本技能。

王紫豪-XiaomaGee(15959622) 21:47:05

下面我说说 SPI, 这个接口。

王紫豪-XiaomaGee(15959622) 21:47:26

SPI 即串行外设接口,是一个同步总线

王紫豪-XiaomaGee(15959622) 21:47:54

在我的理解中,他跟刚刚我们说的 RS-232/RS-485 等等有两点的区别:

王紫豪-XiaomaGee(15959622) 21:48:42

①它是基于同步通信的,他包含了时钟线(一般叫做 sck)

②它一般用于板内通信(就是放在同一个 pcb 板子上)

王紫豪-XiaomaGee(15959622) 21:49:19

很少见人用 spi 总线,扯了几米玩的;当然,如果你想这样搞,也是可以的。

王紫豪-XiaomaGee(15959622) 21:49:48

SPI 好像是摩托罗拉提出来的吧,没太大印象了。

王紫豪-XiaomaGee(15959622) 21:50:22

对于用户来说, spi 的优点就是速度高, 一般上个几十兆没有关系。

王紫豪-XiaomaGee(15959622) 21:50:52

SPI 总线,一般包含了 CS/MOSI/MISO/SCK 这四根线

王紫豪-XiaomaGee(15959622) 21:51:30

定义成四根线,是由于 SPI 总线分主从机的概念。也就是时钟是由主机发起的,从机接受时钟。

王紫豪-XiaomaGee(15959622) 21:52:26

CS , 这个不用说, 就是片选 (chip select), MOSI 和 MISO 分别代表主出从入和主入从出 王紫豪-XiaomaGee(15959622) 21:52:51

SCK 就是双方使用的时钟线,由主机输出。

王紫豪-XiaomaGee(15959622) 21:53:23

由于存在 cs 信号(低电平有效), 所以 SPI 总线可以进行 一主多从的形式通信。

王紫豪-XiaomaGee(15959622) 21:54:13

打个比方,我通过微控制器的一个接口 SPI,使用不同的 CS,可以与外围的 FLASH/ADC/DAC等通信,可以连接多个器件。

王紫豪-XiaomaGee(15959622) 21:55:05

目前来讲, spi 接口的芯片非常丰富。

王紫豪-XiaomaGee(15959622) 21:56:30

《iboard 电子学堂》里面 flash (M25P16) 就是基于 SPI 接口的,它提供 2M 字节的存储空间,仅仅采用 so8 那么大;

王紫豪-XiaomaGee(15959622) 21:57:00

王紫豪-XiaomaGee(15959622) 21:57:30

甚至很多处理器,都可以通过 SPI 接口的 flash 启动,例如很懂 arm9、11、bf531 dsp 等等。 日期:2012/5/13

王紫豪-XiaomaGee(15959622) 21:58:38

这里说一下,其实 spi 接口中的片选可以通过一般的 IO 去实现,这样,就不受片选个数的限制了。

王紫豪-XiaomaGee(15959622) 21:59:53

STM32F103VC 提供了三个 独立的 SPI 总线,速度上有点不给力,只能到 18M; ST 后期

的产品 M4 内核的, 提高了许多。

王紫豪-XiaomaGee(15959622) 22:01:02

其实, 前几年, 我经常使用 spi 总线跟 cpld 和 fpga 实现高速通信,

王紫豪-XiaomaGee(15959622) 22:01:24

这样,即减少了连线,又保证了速度。

王紫豪-XiaomaGee(15959622) 22:01:52

我们后期的 fpga 课程中,会有相关的内容,请大家关注我们的群课。

王紫豪-XiaomaGee(15959622) 22:02:49

SPI 总线就说到这里,下面我用一小段时间,说一下 I2C 接口,

王紫豪-XiaomaGee(15959622) 22:04:10

I2C 总线, 英文名字叫做 (inter integrated circuit),

其实也是用于微处理器和外设之间互联的一种常用的总线

对于 SPI 来说,他连接更简洁,仅仅需要 SDA 和 SCL 两根线

王紫豪-XiaomaGee(15959622) 22:05:06

SDA 是数据线, SCL 是时钟线, 有时钟线, 说明他也是同步通信的。

王紫豪-XiaomaGee(15959622) 22:05:50

但是由于他没有 片选(CS)信号; 所以他只能通过器件地址去寻址。

王紫豪-XiaomaGee(15959622) 22:06:43

I2C 规范中,规定 I2C 引脚必须是开漏输出,这是为了保证不同电平的器件,能组网通信。

王紫豪-XiaomaGee(15959622) 22:07:23

但是由于是开漏的,所以必须要加上拉电阻,这也是新手们最容易忽略的问题。

王紫豪-XiaomaGee(15959622) 22:07:35

王紫豪-XiaomaGee(15959622) 22:07:53

这个图,就是一个典型的 I2C 总线拓扑结构。

王紫豪-XiaomaGee(15959622) 22:08:58

这里需要说明,SDA 线是双向的,记得上一节课,我们讲 GPIO 的时候,讲到双向电平转换,

那个原理就是出自于 I2C 规范。我再给大家贴一下,很有用

王紫豪-XiaomaGee(15959622) 22:10:25

这个是我产品中的一个电路,通过 3.3V 的单片机,驱动一个 5V 的 I2C DAC,所以需要使用电平转换。

王紫豪-XiaomaGee(15959622) 22:11:57

I2C 的软件协议很简单,只需要按照他们协议规范拉高拉低两个引脚的电平,或者读取 SDA 线的电平,既可实现了。这里我就不罗嗦了,下面接着讲别的。

王紫豪-XiaomaGee(15959622) 22:12:54

对了,忘记说了,由于 I2C 总线包含了应答机制,所以导致他的通信速度不是很快,平常 也就是 几百 k 而已。速度上,比 SPI 差了一个档次。

王紫豪-XiaomaGee(15959622) 22:13:26

剩下一段时间,我们说一下 STM32 的 ADC 和 DAC 两个跟模拟电路有关的外设。

王紫豪-XiaomaGee(15959622) 22:14:49

STM32F103VC 包含了两个独立的 ADC,而且他可以有多通道选择输入;

王紫豪-XiaomaGee(15959622) 22:15:13

位数为 12位,要求不高的情况下,已经可以了。

王紫豪-XiaomaGee(15959622) 22:15:34

DAC 方面,也有两个,也是 12bit 的,

王紫豪-XiaomaGee(15959622) 22:15:54

其实,光这两个东西,就值 CPU 的价格了,模拟器件一般都很贵的。

王紫豪-XiaomaGee(15959622) 22:16:16

参考电压方面,100脚的有独立的参考电压输入。

王紫豪-XiaomaGee(15959622) 22:16:52

《iBoard 电子学堂》使用了独立的参考电压, 电压值为 2.5V

王紫豪-XiaomaGee(15959622) 22:17:11

可以是可以,但是误差较大。玩玩可以,做测试测量的,这样做的很少

王紫豪-XiaomaGee(15959622) 22:17:40

王紫豪-XiaomaGee(15959622) 22:18:08

这个就是参考电压的输入脚, VREF-接地。我的图上, ACOM 是模拟地。

王紫豪-XiaomaGee(15959622) 22:18:38

王紫豪-XiaomaGee(15959622) 22:18:53

参考电压来源于这个。

王紫豪-XiaomaGee(15959622) 22:20:15

我们通过两个 ADC 的输入通道;分别实现了直流、交流电压表(500V量程),稳定度很好。

王紫豪-XiaomaGee(15959622) 22:22:13

STM32 的 ADC, 很多人反映读出的数据跳字, 其实, 作为微处理器自带的 ADC, 不可能达到独立 ADC 的效果。其实, 有两个办法可以解决这个问题。

王紫豪-XiaomaGee(15959622) 22:22:48

第一: 从硬件上, 我们要做到模拟电路的供电跟数字电路隔离, 布线也要注意 王紫豪-XiaomaGee (15959622) 22:23:47

第二:由于这个 ADC 的速度较高(可以到 1M 采样率),所以我们可以通过软件滤波的形式对数据进行处理。

王紫豪-XiaomaGee(15959622) 22:24:23

《iboard 电子学堂》上 STM32 的 VDDA 通过磁珠隔离供电。

王紫豪-XiaomaGee(15959622) 22:24:55

王紫豪-XiaomaGee (15959622) 22:26:40

在这个系统里,DAC 的作用更大,通过一路 DAC,分时复用技术,输出了 7路 DAC, 王紫豪-XiaomaGee(15959622) 22:27:03

用来控制 示波器的触发点、直流电平、任意波发生器的幅度、直流偏置等等参数。

王紫豪-XiaomaGee (15959622) 22:28:08

电路请看第六页,这一整页就是 DAC 的扩展。

王紫豪-XiaomaGee (15959622) 22:29:04

这里需要说明一下,DAC 输出能力很有限,使用的时候,很有必要增加电压跟随器

王紫豪-XiaomaGee(15959622) 22:29:21

王紫豪-XiaomaGee(15959622) 22:30:00

不要使能 stm32 内部的 DAC 缓冲器,因为他不是 rail-rail 的,所以是使能后,输出不能到 OV

王紫豪-XiaomaGee(15959622) 22:31:20

今天的群课就到这里吧,关于微处理器的外设,还需要大家多实践才能更深刻地理解。

王紫豪-XiaomaGee (15959622) 22:32:02 下课了