Securitatea Sistemelor Information

- Curs 6.1 - Padding-oracle attack

Adela Georgescu

Facultatea de Matematică și Informatică Universitatea din București Anul universitar 2022-2023, semestrul I

In cursul anterior am discutat despre securitate CCA

- ► In cursul anterior am discutat despre securitate CCA
- Motivăm importanța securității CCA arătând un atac devastator din viața reală

- In cursul anterior am discutat despre securitate CCA
- Motivăm importanța securității CCA arătând un atac devastator din viața reală
- Mai mult, atacul cere ca un adversar să poata afla numai dacă un text criptat modificat este unul valid (care se poate decripta corect), nefiind necesară întreaga funcționalitate a unui oracol de decriptare (care întoarce textul clar corespunzător unui text criptat).

- In cursul anterior am discutat despre securitate CCA
- Motivăm importanța securității CCA arătând un atac devastator din viața reală
- Mai mult, atacul cere ca un adversar să poata afla numai dacă un text criptat modificat este unul valid (care se poate decripta corect), nefiind necesară întreaga funcționalitate a unui oracol de decriptare (care întoarce textul clar corespunzător unui text criptat).
- Acest fapt poate fi exploatat pentru aflarea întregului text clar

► Am văzut cum funcționeaza modul CBC când lungimea mesajului clar este multiplu de lungimea L blocului de criptat (suportat de F_k) in octeți

► Am văzut cum funcționeaza modul CBC când lungimea mesajului clar este multiplu de lungimea L blocului de criptat (suportat de F_k) in octeți

$$m_1 = F_k^{-1}(c_1) \oplus IV$$

$$m_2 = F_k^{-1}(c_2) \oplus c_1$$

$$m_3 = F_k^{-1}(c_3) \oplus c_2$$

► Am văzut cum funcționeaza modul CBC când lungimea mesajului clar este multiplu de lungimea L blocului de criptat (suportat de F_k) in octeți

► Ce se întâmplă când $|m| \neq L$?

$$m_1 = F_k^{-1}(c_1) \oplus IV$$

 $m_2 = F_k^{-1}(c_2) \oplus c_1$
 $m_3 = F_k^{-1}(c_3) \oplus c_2$

► Am văzut cum funcționeaza modul CBC când lungimea mesajului clar este multiplu de lungimea L blocului de criptat (suportat de F_k) in octeți

$$m_1 = F_k^{-1}(c_1) \oplus IV$$

 $m_2 = F_k^{-1}(c_2) \oplus c_1$
 $m_3 = F_k^{-1}(c_3) \oplus c_2$

- ► Ce se întâmplă când $|m| \neq L$?
- ► Folosim padding-ul *PKCS*#7 :
 - Fie b numărul de octeți de adăugat la ultimul bloc pentru a avea |m| multiplu de L $(1 \le b \le L)$

 Am văzut cum funcționeaza modul CBC când lungimea mesajului clar este multiplu de lungimea L blocului de criptat (suportat de F_k) in octeți

$$m_1 = F_k^{-1}(c_1) \oplus IV$$

 $m_2 = F_k^{-1}(c_2) \oplus c_1$
 $m_3 = F_k^{-1}(c_3) \oplus c_2$

- ► Ce se întâmplă când $|m| \neq L$?
- ► Folosim padding-ul *PKCS*#7 :
 - Fie b numărul de octeți de adăugat la ultimul bloc pentru a avea |m| multiplu de L $(1 \le b \le L)$
 - ► Se adaugă b octeți la ultimul bloc din *m*, fiecare reprezentând

Considerăm situația în care un client trimite mesaje criptate în modul CBC către un server.

 în urma decriptării se obțin m₁||m₂

- în urma decriptării se obțin $m_1||m_2$
- ► se citește octetul final b

- în urma decriptării se obțin m₁||m₂
- se citește octetul final b
- dacă ultimii b octeți au toți valoarea b, atunci se scoate padding-ul și se obține mesajul original m

- ightharpoonup în urma decriptării se obțin $m_1||m_2|$
- se citește octetul final b
- dacă ultimii b octeți au toți valoarea b, atunci se scoate padding-ul și se obține mesajul original m
- altfel întoarce mesajul padding gresit şi cere retransmiterea mesajului

Considerăm situația în care un client trimite mesaje criptate în modul CBC către un server.

- în urma decriptării se obțin m₁||m₂
- se citește octetul final b
- dacă ultimii b octeți au toți valoarea b, atunci se scoate padding-ul și se obține mesajul original m
- altfel întoarce mesajul padding gresit și cere retransmiterea mesajului

Server-ul acționeaza ca un oracol de padding - adversarul îi trimite texte criptate și află dacă padding-ul este corect sau nu

Unui text criptat (IV, c) îi corespunde textul clar cu padding $m' = F_{\iota}^{-1}(c) \oplus IV$

- ▶ Unui text criptat (IV, c) îi corespunde textul clar cu padding $m' = F_k^{-1}(c) \oplus IV$
- ▶ Dacă un adversar modifică octetul i din IV atunci modificarea se va reflecta şi în octetul i din m'

- ▶ Unui text criptat (IV, c) îi corespunde textul clar cu padding $m' = F_k^{-1}(c) \oplus IV$
- ▶ Dacă un adversar modifică octetul i din IV atunci modificarea se va reflecta şi în octetul i din m'

Adversarul modifica primul octet din IV

Modificarea se reflectă în primul octet din mesajul cu padding; apoi trimite mesajul (IV',c) și verifică dacă primește eroare

In caz contrar, adversarul modifică al 2-lea octet din IV

Modificarea se reflectă în al 2-lea octet din mesajul cu padding; apoi trimite mesajul (IV',c) și verifică dacă primește eroare

In caz contrar, adversarul continua cu al 3-lea octet din IV

In caz contrar, adversarul continuă și cu al 4-lea octet din IV

► Eroare la decriptare

- ► Eroare la decriptare
- adversarul deduce ca oracolul verifica ultimii 5 octeti, care au valoarea 05

Primii 3 octeti din mesajul cu padding sunt încă necunoscuți atacatorului

Adversarul încearcă să găsească primii 3 octeți din mesajul cu padding

Adversarul încearcă să găsească primii 3 octeți din mesajul cu padding

El modifica cel mai din dreapta octet din IV

- Adversarul încearcă să găsească primii 3 octeți din mesajul cu padding
- Modificarea se va reflecta in cel mai din dreapta octet din mesajul cu padding

Adversarul va proceda similar pentru ceilalti octeti

Dacă adversarul trimite acest IV împreună cu c, sunt șanse mici să nu primească eroare la decriptare

 $\mbox{\sc Va}$ incerca pe rand to ate valorile posibile pentru al 3-lea octet din $\mbox{\sc IV}$

 $\mbox{\sc Va}$ încerca pe rând toate valorile posibile pentru al 3-lea octet din $\mbox{\sc IV}$

Până cand decriptarea va funcționa; când aceasta se întâmplă, al 3-lea octet din mesajul cu padding este 06 (doar atunci decriptarea funcționează)

Acum A cunoaște $xx \oplus 04 = 06$ și deci el poate calcula $xx \oplus A7$ (valoarea inițială a mesajului cu padding pe octetul 3).

Adversarul poate repeta același proces pentru a afla al doilea octet și apoi primul din mesajul cu padding.

Complexitatea atacului cu oracol de padding

▶ sunt necesare cel mult L incercări pentru a afla b

Complexitatea atacului cu oracol de padding

- sunt necesare cel mult L incercări pentru a afla b
- cel mult 2⁸ = 256 încercări pentru a afla fiecare octet din mesajul inițial

Complexitatea atacului cu oracol de padding

- sunt necesare cel mult L incercări pentru a afla b
- cel mult 2⁸ = 256 încercări pentru a afla fiecare octet din mesajul inițial
- ▶ în total sunt necesare 256 * bt încercări (unde bt reprezintă numărul de octeți din mesajul original) pentru a găsi întregul text clar