Laboratorio di Amministratore di Sistema

3. Progettazione di una rete

3C: Reti wireless

Università di Venezia – Facoltà di Informatica feb-mag 2014 - A. Memo

ver 2.2

Sommario

- 1. Tecnologia delle onde radio
- 2. Terminologia e architetture
- 3. Standard 802.11
- 4. 802.11: cenni sul livello MAC
- 5. Sicurezza
- 6. Bluetooth (cenni)

1. Tecnologia delle onde radio

- Frequenze e canali
- Normativa
- Spettro distribuito

Frequenze e canali (1)

il campo elettromagnetico

la rappresentazione dei segnali nel dominio spazio/tempo

la rappresentazione dei segnali nel dominio della

Frequenze e canali (2)

i concetti di canale, frequenza centrale, banda, spettro

Frequenze e canali (3)

• caratterizzate da frequenza f e lunghezza d'onda λ [c = 299.792.458 m/sec]

$$f \bullet \lambda = c$$

 hanno una interazione differente con i vari materiali in base alla loro lunghezza d'onda

Normativa (1)

in Italia:

- il DPR 30/01/2002 ha modificato il rapporto precedente tra stato e cittadino, basato sulla concessione, passando a quello di licenza individuale e autorizzazione globale di servizi di telecomunicazione
- non più solo all'interno di un edificio di proprietà privata, ma anche all'interno del proprio fondo e di collegamento tra due siti (per ora dello stesso proprietario)

Normativa (2)

nel mondo:

- organismi (l'americano FCC e l'europeo ETSI)
- frequenze ISM (Industriale, Scientifico, Medicale): utilizzo senza licenza ma a potenza irradiata limitata ed in ambito locale
 - UHF ISM 902 928 MHz
 - S-Band ISM 2,4 2,5 GHz [microonde e cell]
 - C-Band ISM 5,725 5,875 GHz [satelliti]
- lo standard 802.11 divide la S-Band (2.412-2.484 MHz) in 14 canali

Spettro distribuito

- le trasmissioni in banda ISM sono a spettro distribuito (Spread Spectrum)
- il trasmettitore distribuisce il segnale su un numero elevato di frequenza, al fine di ridurre l'effetto del rumore

2. Terminologia ed architetture

- Glossario wireless LAN
- Architettura reti wireless
- Posizionamento WLAN
- Vantaggi e svantaggi delle reti WLAN

Glossario wireless LAN (1)

- BSA, Basic Service Area: ogni cella wireless
- AP, Access Point: interfaccia le aree wiredwireless della LAN, agisce come stazione base per ogni cella
- STA, Station: una postazione del BSA, detta anche WT, Wireless Terminal
- **DS**, *Distribution System*: interconnette più BSA
- BSS, Basic Service Set: il gruppo di stazioni che operano in un BSA
- ESS, Extended Service Set: un gruppo di BSS collegate ad una wired LAN tramite AP

Architettura wireless LAN (1)

- si basa su una struttura cellulare simile al GSM
- le reti wireless possono essere divise in
 - AD HOC LAN, stazioni in grado di comunicare direttamente tra loro senza Access Point (dette anche IBSS, da *Indipendent BSS* o *peer-topeer*)
 - INFRASTRUCTURED WIRELESS LAN, stazioni che comunicano tra loro utilizzando uno o più Access Point, collegati da un Distribution System

Architettura wireless LAN (2)

compiti degli Access Point:

- collegamento tra rete wireless e rete cablata
- autenticazione, associazione e riassociazione (*roaming*)
- gestione del risparmio energetico delle stazioni (Power Save Mode)
- sincronizzazione, in modo che tutte le stazioni agganciate ad un AP siano agganciate ad un clock comune

Architettura wireless LAN (3)

Ad Hoc wireless LAN

N.B.: gli host delle reti Ad Hoc devono volgere anche funzioni di router (instradamento distribuito e dinamico)

Posizionamento WLAN (1)

Elementi da considerare:

- Access Point baricentrico e a mezza altezza
- utenti allineati otticamente all'Access Point
- attenzione alle schermature metalliche
- analisi delle riflessioni
- analisi degli attraversamenti strutturali

Vantaggi delle reti WLAN

- costi e tempi della messa in opera
- non sensibile a degradazione e rottura dei media
- motivazioni di natura logistica
- facilità di riorganizzazione, reti temporanee
- mobilità
- scalabilità
- flessibilità

Svantaggi delle reti WLAN

- inaffidabilità del mezzo
- sicurezza
- gestione del roaming
- multipath fading in ricezione
- consumo energetico
- limitata estensione
- limitata standardizzazione
- inquinamento elettromagnetico

3. Standard 802.11

- Standard 802 per le reti LAN
- ◆ Evoluzione dell'802.11

Evoluzione dell'802.11 (1) 802.11 (legacy) approvato nel 1997, revisionato nel 1999 banda da 2,4 GHz, da 1 a 2 Mbps nel '99 si è evoluto in due rami 802.11a rilasciato nel 1999, PHY per WLAN a 5,2 / 5,4 / 5,8 GHz, fino a 54 Mbps approvato nel 1999, PHY più veloce, 2,4 GHz, da 5,5 802.11b ad 11 Mbps rilasciato nel 2002, PHY per WLAN a 2,4 GHz, fino a 802.11g 54 Mbps avviato nel 2004, draft nel 2007, approvato 2009, dual 802.11n band se usa sia 2,4 che 5,4 Mbps, fino a 300 Mbps tratta il miglioramento della sicurezza 802.11i

Evoluzione dell'802.11 (2)

Specification	Connection Speed	Radio Frequency		
802.11	1 or 2 Mbps	2.4 GHz		
802.11a	Up to 54 Mbps	5.2-5.4-5.8 GHz		
802.11b	5.5 and 11 Mbps	2.4 GHz WiFi		
802.11g	Up to 54 Mbps	2.4 GHz		
802.11n	Up to 300 Mbps	2.4 e/o 5.4 GHz		

La Sicurezza (1)

- Il wireless è un sistema intrinsecamente insicuro
- le onde radio possono attraversare i limiti fisici ambientali ed essere intercettate

La Sicurezza (2)

Tecniche di protezione:

- sicurezza fisica (limitazione del campo)
- disabilitazione del DHCP
- Access Point con indirizzo dinamico
- autenticazione dell'accesso
- controllo dell'accesso ai dati
- riservatezza dei dati accessibili

La Sicurezza (3)

Protocolli utilizzabili:

SSID - Service Set Identifier

- etichetta identificativa della rete
- comune a tutti i dispositivi di una WLAN

Cifratura dei messaggi: WEP, WPA, WPA2

WEP – Wired Equivalent Privacy (1999)

- chiave di codifica dei dati in trasmissione lunga 64 o 128 bit (40 o 104 + *Initial Vector*)
- schema di crittografia a chiave simmetrica
- non sicuro (decifrato nel 2003), ora considerato un sottogruppo di WAP

La Sicurezza (4)

WPA – WiFi Protected Access (2003)

- Usa il protocollo TKIP (Temporal Key Integrity Protocol) che cambia dinamicamente ad ogni pacchetto la chiave di cifratura in uso combinata con l'Initial Vector.
- Utilizzato per l'autenticazione degli utenti
- Autenticazione a chiave unica condivisa, chiamata preshared key (lunga 128 bit + 48 bit di Initial Vector)
- non sicuro, è stato decifrato nel 2009

WPA2 AES – WiFi Protected Access v2 (2008)

- Adotta un diverso schema di crittografia (AES, da Advanced Encryption Standard)
- Attualmente ritenuto sicuro

Autenticazione (1)

- L'autenticazione può avvenire in tre modi:
 - autenticazione aperta (senza autenticazione)
 - a chiave pre-condivisa (PSK, da Pre-Shared Key), in cui client ed AP vengono configurati con la stessa chiave. L'AP invia una stringa casuale al client, che la cifra con la chiave preimpostata e la restituisce all'AP. Se la stringa ricevuta è decifrabile con la stessa chiave, il client è autenticato
 - ad autenticazione estensibile (EAP)

Autenticazione (2)

 ad autenticazione estensibile (EAP), quando l'utente comunica con un server di autenticazione interno (backend), ad esempio RADIUS

Cifratura (1)

Wired Equivalency Protocol (WEP)

- si basa su una autenticazione del tipo a chiave precondivisa
- La chiave è una stringa di numeri o caratteri lunga 64 o 128 bit
- alcuni usano il MAC address del client come chiave (devono essere inseriti manualmente nell'AP)

Wi-Fi Protected Access (WPA)

- ♦ La chiave è ancora lunga da 64 a 256 bit
- Ora però viene generata automaticamente e rimane valida solo per una connessione (TKIP)

Cifratura (2)

Wi-Fi Protected Access (WPA2-AES)

 adotta l'algoritmo di cifratura a blocchi AES, da Advanced Encryption Standard che garantisce un maggior livello di sicurezza del precedente DES (Data Encryption Standard)

La Sicurezza ambientale

- ci sono pareri discordanti sull'influenza dei campi elettromagnetici nell'uomo
- l'A.P. di norma non è classificabile come dannoso (installazione distante dall'uomo, consigliata almeno di 3 m)
- la vera fonte 'pericolosa' è la scheda dell'WT (si pensi ad un laboratorio wireless)
- un cordless DECT funziona tra i 1880 e 1900 MHz, ed ha una potenza media di 10-20 mW, di picco di 250-600 mW
- un cellulare GSM ha una potenza di picco di 250 mW se opera a 900 MHz o di 125 mW se opera a 1800 MHz
- Un AP ha una potenza di picco di 100 mW ed opera alle frequenze tra 2412 e i 2472 MHz.
- La dannosità delle emissioni radio diminuisce con l'aumentare della frequenza

Qualcosa sta cambiando

- Riconosciuti solo riscaldamenti corporei temporanei
- Gli effetti dipendono dalla frequenza, dall'intensità e dal tempo di esposizione
- Francia ed Inghilterra vietano l'uso dei cellulari nelle scuole primar
- Le ditte di telefonini stanno introducendo avvertenze

48.

Exposure of the general public		ublic	Occupational exposure limits		
Power frequency (50)	Hz) ELF		Power frequency (50 Hz)	ELF	
 Electric Field strength 	-,	V/m	Electric Field strength:	1000 V/m	
Magnetic flux density:	3	μΤ	Magnetic flux density:	500 μΤ	
Radiofrequency 1 (900 MHz)		occostoccostoc	Radiofrequency 1 (900 MHz)		
 Electric Field strength: 	6	V/m	Electric Field strength:	90 V/m	
Magnetic flux density:	0,02	μТ	Magnetic flux density:	0,30 μΤ	
Power density:	0,1	W/m ²	Power density:	22,5 W/m ²	
Radiofrequency 2 (1.800 MHz))	Radiofrequency 2 (1.800 MHz)		
 Electric Field strength: 	6	V/m	Electric Field strength:	127 V/m	
Magnetic flux density:	0,02	μТ	Magnetic flux density:	0,42 μΤ	
Power density:	0,1	W/m ²	Power density:	45 W/m ²	
Radiofrequency 3 (2.100 MHz))	Radiofrequency 3 (2.100 MHz)		
 Electric Field strength: 	6	V/m	Electric Field strength:	137 V/m	
Magnetic flux density:	0,02	μΤ	Magnetic flux density:	0,45 μΤ	
Power density:	0,1	W/m ²	Power density:	50 W/m ²	

Bluetooth (2)

- operano nella banda dei 2,4 GHz (interferenze con 802.11x !!!)
- utilizza la tecnica FHSS
- throughput massimo di 1 Mbps
- utilizzano la tecnica TDD, Time Division Duplex
- potenze emesse divise per classe
 - classe 1 = 100 mW USB pen
 - classe 2 = 2,5 mW agenda elettronica
 - classe 3 = 1 mW vivavoce

Bluetooth (3)

- si creano piccole reti wireless dette WPAN, Wireless Personal Area Network
- nello standard Bluetooth vengono chiamate piconet, e possono collegare fino a 8/16 dispositivi
- più piconet possono collegarsi tra loro, formando una scatternet
- gestiscono sia dati che voce
- per determinare i servizi disponibili in un dispositivo si utilizza il protocollo SDP, Service Discovery Protocol

Bluetooth (4)

Adotta due possibili tecniche di comunicazione:

- ACL, Asynchronous ConnectionLess, trasmissione asincrona di solo dati alla velocità di
 - 434 Kbps (simmetrica)
 - 723 Kbps / 57,6Kbps (asimmetrica)
- SCO, Synchronous Connection Oriented, trasmissione sincrona bidirezionale di 64 Kbps di dati e fonia

Infrarossi

- lunghezza d'onda tra 850 e 950 nm
- luce diffusa
- distanza massima di 10 m
- solo per uso interno
- migliora la sicurezza, dato che diminuiscono le possibilità di intrusione
- ♦ banda più ampia ⇒ maggiori prestazioni
- una minore copertura e mobilità
- normalmente sfrutta la riflessione del soffitto