MA3202

Algebra II

Spring 2022

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1 Rings 1 1.1 Basic definitions 1
1 Rings
1.1 Basic definitions
Definition 1.1. A ring is a set R equipped with two binary operations, namely addition and multiplication, such that
1. $(R,+)$ is an abelian group.
 (a) a + b ∈ R for all a, b ∈ R. (b) (a + b) + c = a + (b + c) for all a, b, c ∈ R. (c) a + b = b + a for all a, b ∈ R. (d) There exists 0 ∈ R such that a + 0 = a for all a ∈ R. (e) For each a ∈ R, there exists -a ∈ R such that a + (-a) = 0.
2. (R,\cdot) is a semi-group.
(a) $a \cdot b \in R$ for all $a, b \in R$. (b) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
3. Multiplication distributes over addition.
(a) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$. (b) $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in R$.
Remark. The following properties follow immediately,
 0 ⋅ a = 0 for all a ∈ R. (-a) ⋅ b = -(a ⋅ b) = a ⋅ (-b) for all a, b ∈ R. (na) ⋅ b = n(a ⋅ b) = a ⋅ (nb) for all a, b ∈ R.

MA3202: Algebra II 1 RINGS

Example. The integers \mathbb{Z} form a ring, under the usual addition and multiplication.

Example. All fields, for instance the rational numbers \mathbb{Q} or the real numbers \mathbb{R} , are rings.

Example. The integers modulo n, namely $\mathbb{Z}/n\mathbb{Z}$, form a ring.

Example. If R is a ring, then the algebra of polynomials R[X] with coefficients from R form a ring.

Example. If R is a ring, then the $n \times n$ matrices $M_n(R)$ with entries from R form a ring.

Definition 1.2. If R is a ring and (R, \cdot) is a monoid i.e. has an identity, then this identity is unique and called the unity of the ring R. Such a ring R is called a unit ring. Note that we typically demand that this identity is distinct from the zero element.

Example. The even integers $2\mathbb{Z}$ form a ring, but do not contain the identity.

Example. The trivial ring $\{0\}$ is typically not considered to be a unit ring, since must serve as the additive identity as well as the multiplicative identity.

Definition 1.3. If R is a ring and (R, \cdot) is commutative, then R is called a commutative ring.

Definition 1.4. Let R be a unit ring. An element $a \in R$ is called a unit if there exists $b \in R$ such that $a \cdot b = 1 = b \cdot a$. This $b \in R$ is unique, and denoted by a^{-1} .

Example. The units in \mathbb{Z} are $\{1, -1\}$.

Definition 1.5. Let R be a ring, and let $S \subseteq R$. We say S is a subring of R if the structure $(S, +, \cdot)$ is a ring, with addition and multiplication inherited from R.

Example. The rings $n\mathbb{Z}$ for $n \in \mathbb{N}$ are all subrings of \mathbb{Z} .

MA3202: Algebra II 1 RINGS

Lemma 1.1. Let S be a subring of R. Since (R, +) is an abelian group, (S, +) is a normal subgroup of (R, +). Thus, we can make sense of the quotient group (R/S, +).

Lemma 1.2. Let S be a subring of R. Then, the quotient $(R/S, +, \cdot)$ is a ring with multiplication $(a+S) \cdot (b+S) = ab+S$ if and only if $ab-xy \in S$ for all $a,b,x,y \in R$ such that the cosets a+S=x+S, b+S=y+S.

Example. Consider the ring $\mathbb Z$ and the subring $n\mathbb Z$. Then, the quotient $\mathbb Z/n\mathbb Z$ is indeed a ring.

Example. Consider the ring \mathbb{Q} and the subring \mathbb{Z} . It call be shown that \mathbb{Q}/\mathbb{Z} is not a ring under the 'natural' multiplication.

Definition 1.6. Let R be a ring and let I be a subset of R. We say that I is an ideal of R if (I, +) is a subgroup of (R, +), and $rx, xr \in I$ for all $r \in R$, $x \in I$.

Example. Consider the ring \mathbb{Z} , and the subring $n\mathbb{Z}$. This is an ideal of \mathbb{Z} , since $m(n\mathbb{Z}) \subseteq n\mathbb{Z}$. Indeed, every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$. This will follow from Euclid's Division Lemma.

Example. The subsets $\{0\}$ and R of any ring R are trivial ideals.

Lemma 1.3. Let R be a ring, and I be an ideal of R. Then, the quotient R/I is a ring.

Proof. Note that whenever $a - x \in I$, $b - y \in I$, we demand that $ab - xy \in I$. This can be rewritten as $(a - x)b + x(b - y) \in I$, which is clearly true by the properties of the ideal I. \square

Definition 1.7. An ideal $I \subset R$ is called finitely generated if there exist $x_1, x_2, \ldots, x_n \in I$ such that every element of I can be written as a finite linear combination

$$x = r_1 x_1 + \dots + r_n x_n,$$

where $r_i \in R$. We denote $I = (x_1, x_2, \dots, x_n)$.

Definition 1.8. An ideal generated by a single element is called a principal ideal.

MA3202: Algebra II 1 RINGS

Example. Every ideal of \mathbb{Z} is a principal ideal.

Definition 1.9. Let R be a ring and $a, b \in R$, $a, b \neq 0$. If ab = 0, we call a a left zero divisor and b a right zero divisor.

Example. Consider $2, 3 \in \mathbb{Z}/6\mathbb{Z}$; then $2 \cdot 3 = 6 \equiv 0$.

Definition 1.10. A commutative ring R is called an integral domain if it has no zero divisors.

Example. When p is prime, the rings $\mathbb{Z}/p\mathbb{Z}$ are integral domains. Note that this set is a group under both + and \cdot .