Geographic Data and Mapping

GEOG380 FA 2018

Statistical foundation

- Numerical approaches for map analysis
 - Methods for analyzing spatial data
 - Numeric summaries for analyzing data
 - Measures of central tendency, outliers, ranges
 - Stem-and-leaf plot & histogram
 - Variance & standard deviation
 - Rates, proportions, and percentages
 - Standardizing data

Numerical approaches for map analysis

: Methods for analyzing spatial data

Graphs

- Histogram
 - Class: a group between multiple values
 - Height: amount of the values in each class
 - Normal distribution
 - Most of the observations locate near the mean (middle of the distribution)
 - □ Fewer observations locate in both tails
 - Positively / negatively skewed distributions (where are the tails?)
 - □ Examples: figure 3.2 (p.39, next slide)

FIGURE 3.2 Histograms for the data presented in Table 3.1.

Methods for analyzing spatial data

▶ Tables

- Raw table
 - ▶ Table 3.1 (p.36)

City	Murder Rate*	Families below Poverty Level (%)	High School Graduates (%)	Drug Arrest Rate [†]	Population Density ‡	Total Population (in Thousands)
Irvine, CA	0.0	2.6	95.1	780	2607	110
Cedar Rapids, IA	0.9	6.6	84.5	110	2034	109
Overland Park, KS	0.9	1.9	94.1	255	2007	112
Livonia, MI	1.0	1.7	84.7	665	2823	101
Lincoln, NE	1.6	6.5	88.3	294	3033	192
Madison, WI	1.6	6.6	90.6	57	3311	191
Glendale, CA	1.7	12.3	77.2	452	5882	180
Allentown, PA	1.9	9.3	69.4	1078	5934	105
Tempe, AZ	2.1	7.0	89.9	295	3590	142
Boise City, ID	2.4	6.3	88.6	512	2726	126
Lakewood, CO	2.4	5.2	88.2	216	3100	126
Mesa, AZ	3.1	6.9	84.8	223	2653	288
Pasadena, TX	3.4	11.1	69.8	370	2727	119
San Jose, CA	4.5	6.5	77.2	1289	4568	782
Waterbury, CT	4.6	9.9	66.8	1326	3815	109
Springfield, MO	5.0	11.6	77.0	446	2068	140
Chula Vista, CA	5.2	8.6	75.7	808	4661	135

Numeric summaries

2.6, 6.6, 1.9, 1.7, 6.5, 6.6, 12.3, 9.3

- If you use some kind of numeric information as data, you should also provide an explanation for that numeric such as...
 - Central tendency measurement
 - ▶ Mode: the most frequently occurring value (=6.6)
 - Median: the middle value in an ordered set of data
- (=6.55) (1.7, 1.9, 2.6, 6.5, 6.6, 6.6, 9.3, 12.3)
 - Mean: the average of the data (=5.938)
- (=3.749) Standard deviation (SD): average of distance between each value and the mean of the data
 - □ ±1 SD from mean, ±2 SD from mean (later in details)

FIGURE 3.3 An example of a normal curve. Histograms will approximate this shape if the data are normal. For a perfectly normal data set, approximately 68 percent and 95 percent of the observations will fall within 1 and 2 standard deviations, respectively, of the mean.

Two types of statistics:

Descriptive

- Reducing lots of data to manageable and digestible pieces of information — this is what most mapping is all about
- e.g., generalization, shorelines

Inferential

- Understanding what conclusions can be drawn from limited information. Often in the form of samples of a population
 - e.g. sampling, geostatistics

The problem: LOTS of data:

Number of deer-vehicle accidents between counties in Ohio

COUNTY_NAME	DEERVEH02	DEERVEH03	DEERVEH04					
MONROE	32	36	26	HOUTOOHEDY		005	005	
CHAMPAIGN	79	56	98	MONTGOMERY		395	325	
LAWRENCE	202	135	101	UNION	332	364	333	
HOCKING	146	127	112	MIAMI	327	390	342	
MADISON	149	147	121	BROWN	382	359	351	
BELMONT	160	185	149	WOOD	294	337	357	
OTTAWA	167	151	154	LICKING	338	324	364	
VINTON	229	233	155	COLUMBIANA	381	447	372	
PREBLE	214	214	158	GEAUGA	425	443	374	
VAN WERT	118	194	158	ALLEN	404	405	376	
PIKE	146	119	162	HIGHLAND	399	394	376	
PAULDING	159	181	177	DEFIANCE	335	354	378	
MERCER	179	177	182	GREENE	493	445	391	
PUTNAM	121	130	183	SHELBY	339	373	393	
NOBLE	228	213	186	SENECA	308	381	399	
CLARK	265	218	191	MEDINA	389	426	400	
HARRISON	220	219	191	GUERNSEY	475	435	410	
FAYETTE	195	223	195	HOLMES	392	383	416	
HENRY	170	186	201	WAYNE	434	506	440	
MORGAN	186	191	204	COSHOCTON	612	577	455	
GALLIA	361	261	206	STARK	519	591	455	
CARROLL	245	279	214	HANCOCK	373	500	460	
PERRY	279	243	218	PORTAGE	494	500	461	
MEIGS	204	207	220	ASHTABULA	554	583	464	
FULTON	181	190	234	WILLIAMS	378	453	472	
JEFFERSON	270	253	238	ASHLAND	432	488	473	
SCIOTO	252	206	238	MAHONING	443	516	476	
AUGLAIZE	238	266	259	WARREN	425	482	478	
HARDIN DARKE	199 224	275 272	262 267	BUTLER	484	498	483	
		286	268	CUYAHOGA	476	525	485	
CRAWFORD ERIE	238 219	286 318	268	FAIRFIELD	493	505	485	
WASHINGTON	312	336	275	TRUMBULL	477	482	506	
	244	322	277	FRANKLIN	489	511	515	
WYANDOT ATHENS	413	388	280	ROSS	518	555	518	
PICKAWAY	302	336	283	TUSCARAWAS	502	591	529	
ADAMS	323	332	287	CLERMONT	561	541	537	
CLINTON	295	290	290	LORAIN	419	517	540	
MARION	296	308	297	DELAWARE	547	577	560	
SANDUSKY	256	320	299	KNOX	632	612	576	
HURON	320	359	302	LOGAN	561	449	612	
JACKSON	376	318	305	SUMMIT	674	642	618	
UACROOM		310		 				

Ordering the numbers

```
26,98,101,112,121,149,154,155,158,158,162,177,
182, 183, 186, 191, 191, 195, 201, 204, 206, 214, 218, 220,
234,238,238,259,262,267,268,268,275,277,280,
283,287,290,297,299,302,305,308,308,310,325,333,
342,351,357,364,372,374,376,376,378,391,393,
399,400,410,416,440,455,455,460,461,464,472,473,
476,478,483,485,485,506,515,518,529,537,540,
560,576,612,618,670,714,718
```


Measures of central tendency

- ▶ The mean
 - Add all the values
 - Divide by the number of values

$$\frac{\sum x}{n}$$

339

- ▶ The median
 - Rank all the values 26,98,101,112,121,149,154,155,158,158,162,177,182,183,186,191,191,195, 201,204,206,214,218,220,234,238,238,259,262,267,268,268,275,277,280, 283,287,290,297,299,302,305,308,308,310,325,333,342,351,357,364,372, 374,376,376,378,391,393,399,400,410,416,440,455,455,460,461,464,472,473,476,478,483,485,485,506,515,518,529,537,540,560,576,612,618,670,714,718

309

- Find the middle value(s) (between the $44^{th} \sim the 45^{th}$ values from 88 observations)
- ▶ The mode (more useful for class/category data)
 - ▶ The most common value/class

158, 191, 238, 268, 376, 455, 485

Outliers

An outlier is an extreme value a long way from the mean or median

- ▶ To identify outliers and other types of characteristics that relate to the distribution of data, we need measures of data spread, variation, or dispersion such as...
 - Range, Inter-quartile range (IQR)
 - Variance, Standard Deviation (next slides)

Ranges

Range

Maximum value – minimum value718 - 26 = 692

Quantiles

- Divides ranked observations into equally-large sets
 - Percentiles...into 100 sets (88 observations in total)
 - Deciles...into 10 sets
 - Quartiles...into 4 sets

Inter Quartile Range (IQR)

A range that includes the middle-half of the ranked data or...

$$IQR = P_{75} - P_{25} = 460 - 214 = 246$$

Stem-and-leaf plot: a graphical summary

- This gives a good visual summary of the data, without too much graphical efforts
- Useful for just getting a rough idea of the whole data

```
0 | 2698

1 | 01122149545558586277828386919195

2 | 01040614182034383859626768687577808387909799

3 | 02050808102533425157647274767678919399

4 | 00101640555560616472737678838585

5 | 0615182937406076

6 | 121870

7 | 1418
```


From Stem-and-leaf plot to Histogram

Turn the stem-and-leaf plot 90 degrees counterclockwise

recap: Histograms

- A more refined form of stem-and-leaf plots
- Divide the range of the data into a series of equal intervals (ex. 0 to 100,100 to 200, and so on)
- Count how many cases lie in each interval
- Plot the counts (or frequencies) as vertical bars

More about Histograms

- Some important points about the intervals:
 - Use simple bounds (i.e., 0.5-1.0, NOT 0.46-0.98)
 - Respect natural breakpoints (i.e., 0 °C, pH 7, 50%)
 - No overlaps (mutually-exclusive categories) between classes (i.e., NOT 0~10, 9~20)
 - ▶ Cover all values (i.e., NOT 0~10, 12~20)
 - ▶ Same interval-widths between classes (i.e., NOT 0~10, 11~15)
 - Appropriate number of classes (3 classes, 100 classes)

ALWAYS LABEL EVERYTHING in a histogram!

Variance and Standard Deviation

Variance

 Calculates an average of how much each value differs from the mean in squared

$$\frac{\sum_{i=1}^{n} \left(x_i - \overline{X}\right)^2}{n-1}$$

- 1) Sum all differences
- 2) Use a square to avoid negative values
- 3) Divide by the number of values (n-1 for a sample, n≥2) ← Q. why n≥2?
- Standard Deviation (SD or Std. Dev., σ, sigma)
 - A measure of how dispersed numbers are
 - Square root of the variance

$$\sqrt{\frac{\sum_{i=1}^{n} \left(x_{i} - \overline{X}\right)^{2}}{n-1}}$$

- Ex) the deer-vehicle accident data
 - Variance = 22405, Standard deviation = about 150
 - Variance shows much bigger and positive numbers than std. dev.

Standard Deviation (SD or Std.Dev.)

- So what does the SD mean to us?
- Measure the SD and add/subtract from the mean, and you get a range of deviation from the mean
- Then often you can apply the statistical empirical rule
 - Given a set of *n* measurements of a normally distributed variable,
 - ► The mean ± ISD includes roughly 68% of the observations
 - The mean ± 2SD includes roughly 95% of the observations
 - The mean ± 3SD includes roughly 99.7% of the observations

FIGURE 3.3 An example of a normal curve. Histograms will approximate this shape if the data are normal. For a perfectly normal data set, approximately 68 percent and 95 percent of the observations will fall within 1 and 2 standard deviations, respectively, of the mean.

Std.Dev. continued...

- For the deer-vehicle accidents data we have mean=158, SD=150, then...
 - ▶ 158 (mean) \pm 1 x 150 (ISD) = 8 ~ 308 (should be ≈ 68% of all counties if the data shows normal distribution)
 - ▶ 158 (mean) \pm 2 x 150 (2SD) = 0 ~ 458 (should be ≈ 95%)
 - ► 158 (mean) \pm 3 x 150 (3SD) = 0 ~ 608 (should be \approx 99.7%)
- Was this close in the real data?
 - The range was 692 (|26-718|), so...
 - ▶ 8 ~ 308 is $\approx 50\%$ of the observations
 - ▶ $0 \sim 458 \approx 74\%$ of the observations
 - ▶ $0 \sim 608 \approx 94\%$ of the observations
 - → Data does not show normal distribution but dispersed

Mean Center and Dispersion Measures (p.51)

Central tendency

Mean center

$$\bar{\mathbf{s}} = \left(\mu_{x}, \mu_{y}\right) = \left(\frac{\sum_{i=1}^{n} x_{i}}{n}, \frac{\sum_{i=1}^{n} y_{i}}{n}\right)$$

- Dispersion (measure of spread)
 - ▶ How much is the data dispersed?
 - → use standard distance d from the mean center larger d: the data are more dispersed

$$d = \sqrt{\frac{\sum_{i=1}^{n} \left(\left(x_i - \mu_x \right)^2 + \left(y_i - \mu_y \right)^2 \right)}{n}}$$
Similar to Std.Dev. =
$$\sqrt{\frac{\sum_{i=1}^{n} \left(x_i - \overline{X} \right)^2}{n-1}}$$

Exercise

What is the mean center of the given points in the figure below?

What is the dispersion measure?

(map not to scale)

Derived indices

- Rates make data more comparable than raw values
 - E.g. Rate of vehicle accidents per population
- You often hear rates reported as an index
 - Often an index expresses each value as a percentage of some base value, or as standardized z-scores (in details later)
 - Aspatial examples
 - ▶ Dow Jones, Consumer Price, Poverty, Sustainability, GNP, ...
 - Spatial examples
 - Location quotient (local economy VS. reference economy), Heat, Wetness, UV, Normalized Difference Vegetation Index (NDVI), The Average Watershed Nitrogen Leaching Index (AWNLI), ...

Rates, Proportions, and Percentages

Rates are a way of standardization of data to a common measure for comparison purposes

State	Population	Robbery	Total offenses	Robbery / I 000 p.	Robbery / all offenses
Colorado	4,417,714	3,555	186,379	0.80	1.9 %
Delaware	796,165	1,156	32,267	1.45	3.6 %

Source: U.S. Department of Justice

Geographically... (LA county Vs. San Bernadino county)

Rate calculations – general notes

- Choose some basis of the unit value
 - Usually population, area, total income, or number of households... of an areal unit
 - ▶ However, some variables are relevant for total count
 - ▶ For example, ...?
- Decide how to express the unit of the results
 - ▶ Per person, per 100,000 people, per unit area, etc.
 - ▶ The calculation is:

Rate = Count / Basis & Unit

ex. 10people/mi²

ALWAYS LABEL THE UNIT!

September 23rd, 2009

Map of the day, McDonald's edition

Posted by: Felix Salmon Tags: consumption, charts

Post a comment
 (3)

Are you happy with the map...?

This beautiful map comes from Stephen Von Worley, who has mapped the

September 24th, 2009 5:05 am GMT [permalink] If you normalised this by dividing by population density I'd imagine it's pretty smooth. Cool that you can see the highways in the West (route 80, 84 and 15).

Posted by Nic Fulton

For next time

- Readings
 - ▶ Ch. 3
- Worksheet I