Force-Displacement Curve

For a 1x2x1 SC-BCC Column

With ABAQUS and Python Graphing

Presented By: Alec Perkins

working under Dr. Patrick Ziemke

Contents

O 1 Units and Material

O4 Step and Tracked Data

O2 Parts and Assembly

O5 Mesh and Job

Boundary Conditions

O6 Results

Units and Material

Intended Units

Material - Titanium Ti-6Al-4V

Units Used:

Mass: kg

Length: Millimeters Stress: MPa - Newton*m-2 Force: Newtons

Time: Seconds

Material Property:

Titanium Ti-6Al-4V (Grade 5), Annealed:

Data Used:

Density: 4.43e-6 kg*mm-3

Elastic: Youngs = 113.8e3 MPa, 0.342

Plastic: Yield = 880 MPa, Plastic Strain = 0, Ultimate = 950

MPa, Ultimate Strain = 0.14

Part Descriptions

SCBCC 1 x 2 Column Assembly

Parts and Assembly

Simple Cubic Body Centered Cubic, Unit Cell:

Strut Part Dimension Lengths:

- Horizontal Strut Lengths: 100mm
- Total Diagonal Strut Length: 173.21mm
- Strut Radius: 10mm Rounded Corner Part:
- Sphere Diameter: 10mm

Assembly Instructions:

- Linear Pattern horizontal and vertical struts
- Rotate Diagonal Strut about the vertical axis
- Translate Sphere Part to one corner coincident with a horizontal strut end center
- Linear Pattern Sphere Part to all corners of unit cell
- Merge all Instances into one SCBCC Unit Cell Part
- Linear Pattern and Merge the new SCBCC Unit Cell into a 1x2x1 Column Part

Boundary Conditions

BCs and Reference Points

Constraints

Boundary Conditions:

- Displacement applied to top center RP with B.C. for top surface
- Top Center RP at (50, 200, 50)
- Fixed Base in all translational and rotational directions
- Fixed Top in directions U1, U2

Displacement Constraint:

- Apply displacement to Top Center RP and Rigid Body Tie Constraint to the top surface set
- Ensure the BC applied allow the top surface of the column to move rigidly with the Top Center RP compression displacement

Time and Displacement Step

History

Step and Tracked Data

Step Parameters:

- Loading Step: Static, general
- Non-linear geometry
- 10,000 increments, 0.01s initial, 1e-8s smallest, 0.1s max

History Output:

• At load RP set: RF1, RF2, RF3, U1, U2, U3

Mesh and Job

Meshing and Seeding

Creating the Job

Create a Job for a 30mm Vertical Displacement:

- Relocate as many processors that are available to run the Simulation (duration can vary depending on processor allocation)
- Monitor job for distortion errors or nonlinear warnings

Watch Videos of 30mm Displacement Results:

Results

Bottom ISO View

Top ISO View

XY- Plane Perspective

Example Reactionary Force vs. Displacement Data:

Plot Data for Reactionary Force vs. Displacement with Python:

```
main.py data.csv
                                                                                                             + 1
<>
     import pandas as pd
      import matplotlib.pyplot as plt
      # Replace 'path_to_your_file.csv' with the actual path to your CSV file
      csv_file_path = 'data.csv'
      # Read the CSV file
      data = pd.read_csv(csv_file_path)
  10 # Assuming the CSV file has two columns: 'Displacement' and 'ReactionaryForce'
  11 displacement = data['Displacement']
  12 reactionary_force = data['ReactionaryForce']
 13
  14 # Basic data validation
  15 • if len(displacement) != 150 or len(reactionary_force) != 150:
          raise ValueError("The CSV file must contain exactly 150 values for both displacement and reactionary force.")
  16
  17
  18 # Plotting the data
 19 plt.figure(figsize=(10, 5))
 20 plt.plot(displacement, reactionary_force, marker='o')
  21 plt.xlabel('Displacement')
  22 plt.ylabel('Reactionary Force')
  23 plt.title('Displacement vs Reactionary Force')
 24 plt.grid(True)
  25 plt.show()
  26
  27 # Print the first few rows of data for verification
     print(data.head())
  29
  30 # Save the processed data to a new CSV file if needed
  31 output_csv_path = 'processed_data.csv'
  32 data.to_csv(output_csv_path, index=False)
  33 print(f"Processed data saved to {output_csv_path}")
 34
```

Resulting Graph

Reactionary Force vs Displacement Graph

Credits

Thank you for your time!

Contact the following Email with any questions:

AlecPerkins@UCSB.edu

Displacing a 2x1 SCBCC Column -20mm in the y-axis and no rotation ODB: NoRotate-20mm-yaxis-displacement-Copy1725052632.316.odb Abaqus/Standard 2022 Mon May 27 07:42:30 Pacific Daylight Time 2024

Step: Displacement, -30mm displacement in the y-axis of the top surface of the 1x2 SC-BCC Column Increment 0: Step Time = 0.000 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00