## Data Models

- A Data Model in DBMS is the concept of tools that are developed to summarize the description of the database.
- It defines how the logical structure of a database is modeled.
- Data Models are fundamental entities to introduce abstraction in a DBMS.
- It defines how data is connected to each other and how they are processed and stored inside the system.
- A Data Model is collection of conceptual tools for describing:
  - Data
  - Data Relationships
  - Data Semantics
  - Consistency Constraints



## Data Models

- Data models describes a set of concepts
  - Structure of a database
    - Elements and their data types
    - Records consisting of groups of elements
    - Relationships among the records
  - Operations for manipulating these structures
    - Retrievals and updates
  - Certain constraints that the database should obey



## Categories of Data Models

- Conceptual (high-level) data models:
  - Provide concepts that are close to the way many users perceive data.
  - Entity Relationship (ER) Diagram comes under this model.
- Implementation (representational) data models:
  - Provide concepts that fall between the above two
  - It is used by many commercial DBMS implementations (e.g. relational data models)
- Physical (low-level, internal) data models:
  - Describe details of how data is stored in the computer.
  - These are usually specified in an ad-hoc manner through DBMS design



## Types of Data Model

- Relational Model
- Entity-Relationship Model
- Object-based Data Model
- Hierarchical Model
- Network Model

## Relational Model

- Relational Model is the most widely used model.
- In this model, the data is maintained in the form of a two-dimensional **tables** called *Relation*.
- All the information is stored in the form of rows and columns where columns represents attributes and row represents records or tuples.

#### Features:

- Simple
- Scalable
- Structural Independence

| Emp_id    | Emp_name | Job_name | Salary | Mobile_no  | Dep_id | Project_id |
|-----------|----------|----------|--------|------------|--------|------------|
| AfterA001 | John     | Engineer | 100000 | 9111037890 | 2      | 99         |
| AfterA002 | Adam     | Analyst  | 50000  | 9587569214 | 3      | 100        |
| AfterA003 | Kande    | Manager  | 890000 | 7895212355 | 2      | 65         |

**EMPLOYEE TABLE** 

### Relational Model

In this model, data is organized in two-dimensional tables and the relationship is maintained by storing a common attribute.



## E-R Model

- Entity-Relationship Model or simply ER
  Model is a high-level data model diagram.
- In this model, we represent the real-world problem in the pictorial form.
- It is also very easy for the developers to understand the system by just looking at the ER diagram.
- We use the ER diagram as a visual tool to represent an ER Model.

#### Features:

- Graphical Representation for Better Understanding
- Helps to Design Database



## **Entity-relationship Model**

In this database model, relationships are created by dividing object of interest into entity and its characteristics into attributes.



## Object-Based Model

- Real-world problems are more closely represented through the object-based i.e. object-oriented data model.
- Both the data and relationship are present in a single structure known as an object.
- In this model, two are more objects are connected through links. We use this link to relate one object to other objects.



Object\_Oriented\_Model

## Hierarchical and Network Model



Hierarchical Model

- Organizes the data in the hierarchical tree structure
- Hierarchy starts from the root and expands in the form of a tree
- Features:
  - One-to-many relationship
  - Parent-Child Relationship
  - Deletion Problem
  - Pointers



- Extension of the hierarchical model
- Record can have more than one parent.
- Features:
  - Ability to Merge more Relationships
  - Many paths
  - Circular Linked List

- Integrity constraints are a set of rules. It is used to maintain the quality of information.
- Integrity constraints ensure that the data insertion, updating, and other processes have to be performed in such a way that data integrity is not affected.
- ▶ Thus, integrity constraint is used to guard against accidental damage to the database.
- Various Integrity Constraints are:
  - → Check
  - → Not null
  - → Unique
  - → Primary key
  - Foreign key

### Check

- This constraint defines a business rule on a column. All the rows in that column must satisfy this rule.
- → Limits the data values of variables to a specific set, range, or list of values.
- → The constraint can be applied for a single column or a group of columns.
- → E.g. value of SPI should be between 0 to 10.

### Not null

- This constraint ensures all rows in the table contain a definite value for the column which is specified as not null. Which means a **null value** is not allowed.
- → E.g. name column should have some value.

### Unique

- → This constraint ensures that a column or a group of columns in each row have a distinct (unique) value.
- → A column(s) can have a null value but the values cannot be duplicated.
- ➤ E.g. "enrollmentno" column should have unique value.

- Primary key
  - This constraint defines a column or combination of columns which uniquely identifies each row in the table.
  - → Primary key = Unique key + Not null
  - ➤ E.g. enrollmentno column should have unique value as well as can't be null.
- Foreign key (referential integrity constraint)
  - → A referential integrity constraint (foreign key) is specified between two tables.

Foreign Key

In the referential integrity constraints, if a foreign key column in table 1 refers to the primary key column of table 2, then every value of the foreign key column in table 1 must be null or be available in primary key column of table 2.

| <u>DeptID</u> |  | Dept_Name | HOD   |  |  |
|---------------|--|-----------|-------|--|--|
| 1             |  | Computer  | Doshi |  |  |
| 2             |  | IT        | Vyash |  |  |

| RollNo | Student_Name | DeptID |
|--------|--------------|--------|
| 101    | Raj Patel    | 1      |
| 102    | Meet Shah    | 2      |