Fisheries and Oceans Canada

Sciences

Science

SCCS

CSAS

Secrétariat canadien de consultation scientifique

Canadian Science Advisory Secretariat

Document de recherche 2004/060

Research Document 2004/060

Ne pas citer sans Autorisation des auteurs * Not to be cited without permission of the authors *

côte ouest de Terre-Neuve (Division 4R) (NAFO Division 4R) in 2002 de l'OPANO) en 2002

Évaluation analytique et analyses de Analytical assessment and risk analyses for risque pour les stocks de hareng the herring (Clupea harengus harengus L.) (Clupea harengus harengus L.) de la stocks of the west coast of Newfoundland

François Grégoire¹, Louise Lefebvre¹ et / and Jerry Lavers²

¹Direction des poissons et des mammifères marins / Marine Fish Mammals Branch Ministère des Pêches et des Océans / Department of Fisheries and Oceans Institut Maurice-Lamontagne / Maurice Lamontagne Institute 850 Route de la Mer Mont-Joli, Québec G5H 3Z4

²Ministère des Pêches et des Océans / Department of Fisheries and Oceans C.P. 112, Port Saunders, Terre-Neuve / P.O. Box 112, Port Saunders, Newfoundland **A0K 4H0**

- La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.
- * This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

Research documents are produced in the official language in which they are provided to the Secretariat.

Ce document est disponible sur l'Internet à:

This document is available on the Internet at:

http://www.dfo-mpo.gc.ca/csas/

ISSN 1480-4883 (Imprimé/Printed) © Sa majesté la Reine, Chef du Canada, 2004 © Her Majesty the Queen in Right of Canada, 2004

TABLE DES MATIÈRES / TABLE OF CONTENTS

Rés	sumé / Abstract	iii
1.0	INTRODUCTION	1
2.0	MATÉRIEL ET MÉTHODES / MATERIAL AND METHODS	1
	2.1 ESTIMATION DES PARAMÈTRES DES STOCKS / ESTIMATION OF STOCKS PARAMETERS	1
	2.1.1 Données de la pêche commerciale / <i>Commercial fishery data</i>	1
	2.1.3 Calibrage des Analyses Séquentielles de Populations (ASP) / Calibration of the Sequential Population Analyses (SPA)	3
	2.2 ANALYSES RÉTROSPECTIVES / RETROSPECTIVE ANALYSES	5
	2.3 PROJECTIONS DES CAPTURES EN 2003 / CATCH PROJECTIONS FOR 2003	5
	2.4 ANALYSES DE RISQUE / RISK ANALYSES	6
	2.5 APPROCHE DE PRÉCAUTION / PRECAUTIONARY APPROACH	7
3.0	RÉSULTATS / RESULTS	7
	3.1 REPRODUCTEURS DE PRINTEMPS / SPRING SPAWNERS	7
	3.1.1 Description du stock / Stock description	
	3.1.3 État du stock / Stock status	
	3.1.3.1 ASP: Mesures d'erreurs, résidus et corrélations / SPA: Error measurements, residuals and correlations	10
	3.1.3.2 Analyses rétrospectives / Retrospective analyses	11
	3.1.3.3 Résultats de l'ASP / SPA results	11

TABLE DES MATIÈRES (Suite) / TABLE OF CONTENTS (Continued)

3.2 REPRODUCTEURS D'AUTOMNE / FALL SPAWNERS	12
3.2.1 Description du stock / Stock description	12
3.2.2 Indice d'abondance / <i>Abundance index</i>	
3.2.3 État du stock / <i>Stock status</i>	
3.2.3.1 ASP: Mesures d'erreurs, résidus et corrélations / SPA: Error measurements, residuals and correlations	14 15 15
3.3.1 Reproducteurs de printemps / Spring spawners	16
3.3.2 Reproducteurs d'automne / <i>Fall spawners</i>	
4.0 DISCUSSION	17
5.0 REMERCIEMENTS / ACKNOWLEDGEMENTS	18
6.0 RÉFÉRENCES / REFERENCES	18
Tableaux / Tables	20
Figures	41
Annexe / Annex	88
·	

Résumé

Des Analyses Séquentielles de Populations (ASP) ont été réalisées en 2003 sur les stocks des harengs (Clupea harengus harengus L.) reproducteurs de printemps et d'automne de la côte ouest de Terre-Neuve (Division 4R de l'**OPANO**). Les résultats de ces analyses ont indiqué que la biomasse reproductrice du stock de printemps serait passée de 35 011 t en 1997 à 67 851 t en 2002 et à 58 921 t en 2003. Cette dernière valeur est supérieure à la limite minimale acceptable \mathbf{B}_{LIM} de 37 834 t mais près de la limite tampon \mathbf{B}_{BUF} de 57 468 t. La mortalité par la pêche sur les plus vieux individus (8 ans et plus) aurait dépassé $\mathbf{F}_{0,1}$ à quelques reprises à la fin des années 1960 et au début des années 1980 et pendant presque toutes les années 1990. Pour ce même stock, les probabilités de dépasser $\mathbf{F}_{0,1}$ seraient inférieures à 50 % pour des captures en 2003 de moins de 11 000 t. Pour le stock des harengs reproducteurs d'automne, la biomasse reproductrice serait passée de 71 412 t en 1994 à 53 373 t en 2002 et à 48 481 t en 2003. Cette dernière valeur est légèrement plus élevée que celle du \mathbf{B}_{LIM} de 47 953 t mais inférieure à la limite tampon \mathbf{B}_{BUF} de 61 074 t. Pour ce stock, les probabilités de dépasser $\mathbf{F}_{0,1}$ seraient inférieures à 50 % pour des captures en 2003 de moins de 11 600 t. Les résultats des ASP révèlent aussi des imprécisions importantes dans le calcul de certains paramètres et la présence d'un patron rétrospectif dénotant une tendance à sous-estimer l'abondance réelle de ces deux stocks. Par conséquent, les résultats des ASP doivent être utilisés avec prudence et un niveau plus élevé d'incertitude doit être associé aux projections déterminées par les analyses de risque. Nous recommandons donc une augmentation progressive du **TAC** qui ne devrait pas dépasser 20 000 t en 2003.

Abstract

Sequential Population Analyses (SPA) were realized in 2003 on the spring-spawning and fallspawning stocks of herring (Clupea harengus harengus L.) of the west coast of Newfoundland (NAFO Division 4R). The results of these analyses revealed that the spawning biomass of the spring stock appears to have risen from 35,011 t in 1997 to 67,851 t in 2002, and to 58,921 t in 2003. This last value is greater than the minimum acceptable limit ${\bf B}_{\rm LIM}$ of 37,834 t, but close to the buffer limit \mathbf{B}_{BUF} of 57,468 t. Fishing mortality among the oldest individuals (age 8 and older) would have exceeded the $\mathbf{F}_{0.1}$ threshold on a few occasions in the late 1960s and the early 1980s and almost continuously throughout the 1990s. For this same stock, the probabilities of exceeding $\mathbf{F}_{0.1}$ in 2003 would be less than 50 % for catches of less than 11,000 t. For the fall-spawning herring stock, the spawning biomass appears to have fallen from 71,412 t in 1994 to 53,373 t in 2002 and to 48,481 t in 2003. This last value is slightly greater than the \mathbf{B}_{LIM} value of 47,953 t, but lower than the \mathbf{B}_{BUF} limit of 61,074 t. For this stock, the probabilities of exceeding $\mathbf{F}_{0.1}$ in 2003 would be less than 50 % for catches of less than 11,600 t. Results of the SPA reveal also important impreciseness in the calculation of some parameters and the presence of a retrospective pattern denoting a tendency to underestimate the real abundance of these two stocks. Consequently, the results of the SPA must be used with caution, and greater uncertainty must be ascribed to the projections derived from the risk analyses. Therefore, we are recommending a gradual increase in the TAC which should not exceed 20,000 t in 2003.

1.0 INTRODUCTION

1.0 INTRODUCTION

commerciale qui qui se reproduisent respectivement au spring and the fall, respectively. est tiré des données d'une pêche au filet Bay (Figure 1). maillant qui est pratiquée dans la baie St-George (Figure 1).

L'évaluation analytique d'exploitation différents taux pour la saison de pêche 2003.

En eaux canadiennes, le hareng (Clupea In Canadian waters, the Atlantic herring harengus harengus L.) est l'objet d'une (Clupea harengus harengus L.) is harvested se pratique commercially mainly southwest of Nova principalement dans la baie de Fundy, le Scotia, in the Bay of Fundy, in the southern sud-ouest de la Nouvelle-Écosse, le sud du Gulf of St. Lawrence, on the North Shore of golfe du Saint-Laurent, la Côte Nord du Ouebec and on the west coast of Québec et la côte ouest de Terre-Neuve. À Newfoundland. At this last location, the ce dernier endroit, l'espèce est caractérisée species is characterized by the simultaneous par la présence simultanée de deux stocks presence of two stocks that reproduce in the printemps et à l'automne. L'abondance de abundance is measured by an acoustic ces stocks est mesurée à l'aide d'un relevé survey conducted every two or three years in acoustique automnale qui est conduit à tous the fall. For the spring spawners, a second les deux ou trois ans. Pour les reproducteurs abundance index is derived from the data of de printemps, un second indice d'abondance a gillnet fishery conducted in St. George's

(Analyse The analytical assessment (Sequential Séquentielle de Populations ou ASP) de Population Analysis or SPA) of the l'abondance des deux stocks de hareng de la abundance of the two herring stocks along côte ouest de Terre-Neuve représentait le the west coast of Newfoundland represented premier objectif du présent document. Un the first objective of the present document. second objectif consistait à déterminer les A second objective was to determine the niveaux acceptables des captures selon acceptable catch levels assuming various et exploitation rates and changes in the changements dans la biomasse reproductrice spawning stock biomass for the 2003 fishing season.

2.0 MATÉRIEL ET MÉTHODES

2.0 MATERIAL AND METHODS

2.1 ESTIMATION DES PARAMÈTRES DES **STOCKS**

2.1 ESTIMATION OF STOCKS PARAMETERS

2.1.1 Données de la pêche commerciale

2.1.1 Commercial fishery data

a été mise à jour en incluant les données de was updated with the data from the 2002 la saison de pêche 2002 (Grégoire et al. fishing season (Grégoire et al. 2003), so that 2003) de sorte que pour les groupes d'âge 2 for age groups 2 to 11⁺ inclusively, the à 11⁺ ans inclusivement, la période couverte period covered by the two **SPA** now extends par les deux ASP s'étend maintenant de from 1965 to 2002 (Tables 1 and 12). The 1965 à 2002 (Tableaux 1 et 12). Les poids weights of the catch at age (Tables 2 and 13)

La capture à l'âge des deux stocks de hareng The catch at age of the two stocks of herring

permis de convertir la capture à l'âge qui est into catch at age in weight. habituellement exprimée en nombre, en poids capturé à l'âge.

de la capture à l'âge (Tableaux 2 et 13) ont were taken from the mean weights at age in été tirés des poids moyens à l'âge provenant the commercial samples (McQuinn, 1987; des échantillons commerciaux (McQuinn, Grégoire et al. 2003). These weights were 1987; Grégoire et al. 2003). Ces poids ont used to convert the catch at age in numbers

par l'échantillonnage commercial (McQuinn 1999). et al. 1999).

Les poids moyens à l'âge des échantillons The mean weights at age of the samples provenant de la pêche automnale (quatrième from the fall (fourth quarter) purse seine trimestre) à la senne bourse (Tableaux 3 et fishery (Tables 3 and 14) were used to 14) ont permis de convertir les nombres à convert the population numbers at age, a l'âge, un résultat de l'ASP, en biomasse de result from the SPA, into biomass at age. la population à l'âge. La période automnale The fall was chosen because it is the time of a été choisie puisqu'elle représente le year for which the commercial sampling moment de l'année qui est le mieux couvert provides the best coverage (McQuinn et al.

La maturité à l'âge (Tableaux 4 et 15) a The statistics on maturity at age (Tables 4 la population à l'âge en biomasses figures for spawning stock biomass at age. reproductrices à l'âge.

aussi été mise à jour en incluant les données and 15) were also updated by including the biologiques recueillies à quai en 2002 biological data collected at dockside in 2002 (Grégoire et al. 2003). Ces données ont été (Grégoire et al. 2003). These data were tirées des débarquements de la pêche à la taken from the purse seine fishery landings senne bourse réalisée lors du second made during the second quarter (April-June). trimestre (avril-juin). La maturité à l'âge a The maturity at age was used to convert the été utilisée pour convertir les biomasses de population figures for biomass at age into

2.1.2 Indices d'abondance

2.1.2 Abundance indices

Le premier indice d'abondance à être inséré The first abundance index to be inserted into dans les ASP concerne les nombres à l'âge the SPA concerns the spring and fall des reproducteurs de printemps et d'automne spawners numbers at age measured by an mesurés par un relevé acoustique dont les acoustic survey for which the characteristics caractéristiques sont McQuinn et Lefebvre (1999). La période (1999). The period used to calibrate the SPA utilisée pour le calibrage des ASP s'étend de runs from 1991 to 2002 and includes ages 2 1991 à 2002 et comprend les âges 2 à 11⁺ to 11⁺ (Tables 5 and 16). (Tableaux 5 et 16).

présentées dans are presented in McQuinn and Lefebvre

Le second indice d'abondance utilisé dans The second abundance index used in the l'ASP des reproducteurs de printemps est spring spawners SPA consists of catch rates constitué par les taux de capture à l'âge at age (measured in arbitrary units) for a (unités arbitraires) d'une pêche commerciale commercial gillnet fishery conducted every aux filets maillants qui est pratiquée year in St. George's Bay. These catch rates

annuellement dans la baie St-George. Ces were calculated from fishing data from ten (Annexe 1). La période utilisée pour le groups 3 to 11⁺ (Table 6). calibrage s'étend de 1985 à 2002 et inclut les groupes d'âge 3 à 11⁺ (Tableau 6).

taux de capture ont été calculés à partir des or so logbooks (kept by index and données de pêche provenant d'une dizaine commercial fishermen) and standardised by de livres de bord (pêcheurs repères et de a multiplicative model (Gavaris 1980). The l'industrie) et uniformisés selon un modèle grouping variables used in this model are the multiplicatif (Gavaris 1980). Les variables year, the month, and the fishing area (Annex de regroupement utilisées dans ce modèle 1). The period used for the calibration sont l'année, le mois et la région de pêche extends from 1985 to 2002 and includes age

2.1.3 Calibrage des Analyses Séquentielles de Populations (ASP)

évaluations Grégoire et Lefebvre 2002). principaux éléments de cette formulation spawners are as follows: pour les reproducteurs de printemps sont :

2.1.3 Calibration of the Sequential Population Analyses (SPA)

Les **ASP** ont été réalisées à l'aide du logiciel The **SPA** were performed using ADAPT ADAPT, version 3.0 (Gavaris 1999) et des software Version 3.0 (Gavaris 1999) and the indices d'abondance à l'âge des relevés abundance at age indices from the acoustic acoustiques (RV) et de la pêche aux filets surveys (RV) and the gillnet fishery (PUE). maillants (PUE). La formulation utilisée The same formulation was used as in the last demeure la même que celle employée lors analytical assessment concerning these two analytiques stocks (McQuinn et al. 1999; Grégoire and concernant ces stocks (McQuinn et al. 1999; Lefebvre 2002). This formulation assumes Cette that the measurement error associated with formulation assume que l'erreur de mesure the catch at age is negligible and that the associée à la capture à l'âge est négligeable errors associated with the two abundance et que les erreurs reliées aux deux indices indices (natural logarithms) are independent d'abondance (logarithmes naturels) sont and have the same distribution. The main indépendantes et de même distribution. Les elements in this formulation for the spring

1) Paramètres:

- Population en nombres en 2003 : $N_{i,t}$ (i=âges 3-11⁺; t=2003)
- Coefficients de calibration : $q(PUE)_i (i=3-11^+)$ $q(RV)_i$ (i=2-11⁺)
- Nombre de paramètres: 28, dont 9 N_{i.t.}, $9 q(PUE)_i$ et $10 q(RV)_i$

2) Structure imposée:

Mortalité naturelle (M): Fixée à 0.2 pour tous les âges et toutes les années

1) Parameters:

- Population in numbers in 2003: $N_{i,t}$ (i=ages 3-11 $^+$; t=2003)
- Calibration coefficients: $q(PUE)_i (i=3-11^+)$ $q(RV)_i$ (i=2-11⁺)
- Number of parameters: 28 including 9 N_{i.t.}, 9 q(PUE)_i , and 10 q(RV)_i

2) Structure imposed:

Natural mortality (M): Set at 0.2 for all ages and years

Mortalité par la pêche (F) :

F à l'âge 11^+ = F à l'âge 10 et calculée selon la méthode des FRATIO (Gavaris 1999)

Recrutement:

Fixé à l'âge 2 pour la classe d'âge 2001 et égal au niveau moyen du recrutement

Ordonnée à l'origine :

Terme non inclus dans le modèle

3) Données d'entrée:

Capture à l'âge :

 $C_{i,t}$ (i=2-11⁺; t=1965-2002)

PUE de la pêche :

PUE_{i,t} (i=3-11⁺; t=1985.4-2002.4)

Abondance (N) du relevé acoustique:

RV_{i,t} (i=2-11⁺; t=1991.9, 1993.9, 1995.8, 1997.8, 1999.8 et 2002.8)

Nombre total d'observations : 222, dont 162 PUE et 60 RV

4) Fonction à minimiser:

La même formulation a été employée pour The same formulation was used for the fall le relevé acoustique, le nombre total observations is 60. d'observations est de 60.

l'ASP selon le modèle proportionnel de and **ADAPT** comme étant des manquantes.

Fishing mortality (F):

F at age 11^+ = F at age 10 and calculated using FRATIO method (Gavaris 1999)

Recruitment:

Set at age 2 for the 2001 year-class and equal to the mean level of recruitment

Ordinate at origin:

Term not included in the model

3) Input data:

Catch at age:

 $C_{i,t}$ (i=2-11⁺; t=1965-2002)

PUE from the fishery:

PUE_{i,t} (i=3-11⁺; t=1985.4-2002.4)

Abundance (N) from the acoustic survey: RV_{i,t} (i=2-11⁺; t=1991.9, 1993.9, 1995.8,

1997.8, 1999.8, and 2002.8)

Total number of observations: 222 including

162 PUE and 60 RV

4) Function to be minimised:

$$\sum_{i} \sum_{t} (\ln PUE_{i,t} - \ln (q(PUE)_{i} N_{i,t}))^{2} + \sum_{i} \sum_{t} (\ln RV_{i,t} - \ln (q(RV)_{i} N_{i,t}))^{2}$$

les reproducteurs d'automne à l'exception spawners with the exception that there is no du fait qu'il n'y a pas d'indice d'abondance index of abundance from the fishery. With de la pêche pour ce stock. Avec seulement the acoustic survey only, the total number of

Le calibrage des ASP a été réalisé à l'aide The SPA were calibrated using Marquardt's de l'algorithme de Marquardt (Gavaris algorithm (Gavaris 1988), minimising the 1988) en minimisant la somme des carrés sum of the squares between the "observed" entre les valeurs "observées" des indices values from the abundance indices and the d'abondance et les valeurs "prédites" par "predicted" values derived from the SPA according to the proportional capturabilité. Les valeurs 0 associées aux catchability model. The ADAPT software indices d'abondance ont été traitées par treated the values of 0 associated with the données abundance indices as missing data.

Les paramètres estimés par ADAPT sont The parameters estimated by ADAPT are

bootstrap (Gavaris 1999).

2.2 ANALYSES RÉTROSPECTIVES

d'âge 2⁺ et finalement pour les classes d'âge that have dominated the fishery since 1965. qui ont dominé la pêche depuis 1965.

2.3 PROJECTIONS DES CAPTURES EN 2003

de la population $(N_{i,2003})$ déterminés et population numbers bootstrap), du recrutement partiel, et des bootstrap version of ADAPT, 2004 par la relation suivante :

$$N_{i,2004} = N_{i,2003} \bullet e^{-(F+M)}$$

Les captures projetées ont été déterminées N_{i,2004}. par le produit des mortalités totales par la determined by

probablement biaisés puisque le calibrage de probably biased, because the calibration of l'ASP implique un modèle non linéaire. Des the SPA assumes a non-linear model. corrections ont donc été apportées en Therefore, corrections were made by calculant ce biais selon une approche calculating this bias using an analytical analytique, c'est-à-dire à l'aide d'une approach, that is, by means of a linear approximation linéaire lors d'une procédure approximation and the use of a bootstrap procedure (Gavaris 1999).

2.2 RETROSPECTIVE ANALYSES

Des analyses rétrospectives (Sinclair et al. Retrospective analyses (Sinclair et al. 1991) 1991) ont été réalisées dans le but de were performed to measure the possible mesurer les divergences possibles entre les discrepancies between the results from the résultats des ASP (version analytique SPA (analytical version only) and those seulement) et ceux obtenus au cours des obtained in the preceding assessments. The évaluations précédentes. La présence d'un presence of a retrospective pattern was patron rétrospectif a été examinée pour les examined for numbers at age, spawning nombres à l'âge, la biomasse reproductrice biomass, and fishing mortality for age et la mortalité par la pêche des groupes groups 2⁺, and finally, for the year-classes

2.3 CATCH PROJECTIONS FOR 2003

Les captures projetées selon F_{0.1} pour 2003 The projected catches at fishing mortality ont été obtenues à partir des nombres à l'âge level F_{0.1} for 2003 were obtained from the at age $(N_{i,2003})$, ajustés pour le biais par ADAPT (version determined and adjusted for bias by the mortalités par la pêche (F) et naturelle (M). recruitment, fishing mortality (F), and Ces paramètres ont permis de calculer les natural mortality (M). These parameters nombres à l'âge de la population au début de were used to calculate the numbers at age for the population at the start of 2004 by the following equation:

$$N_{i,2004} = N_{i,2003} \bullet e^{-(F+M)}$$

et les mortalités totales au cours de l'année and the total mortalities in the course of 2003, par la différence entre $N_{i,2003}$ et $N_{i,2004}$. 2003 by the difference between $N_{i,2003}$ and The projected catches multiplying proportion de mortalité attribuée à la pêche, mortalities by the proportion of mortality c'est-à-dire le produit du recrutement partiel attributed to fishing, that is, by multiplying par $F_{0,1}$, ce paramètre ayant déjà été estimé à partial recruitment by $F_{0,1}$, this parameter 0.3 (McQuinn et al. 1999). Le recrutement having already been estimated at 0.3 partiel a été déterminé à partir des mortalités (McQuinn et al. 1999). Partial recruitment ADAPT.

Les rendements calculés pour 2003 ont été The calculated yields for 2003 were obtained moyens à l'âge des échantillons recueillis collected in the fourth quarter of 2002. lors du quatrième trimestre de 2002.

pour différentes valeurs de mortalité par la various fishing mortality values. These pêche. Ces valeurs ont été converties en values were converted into exploitation taux d'exploitation ce qui a permis rates, allowing us d'examiner les changements correspondants corresponding differences in biomass at the de biomasse en début de 2004.

2.4 ANALYSES DE RISQUE

ou TAC (Total Admissible des Captures).

bootstrap d'ADAPT. l'âge de la population par le ré-estimated by resampling the residuals aux poids à l'âge et au recrutement partiel.

Les nombres à l'âge de la population en The numbers at age of the population at the pour différentes valeurs de TAC. Les TAC. The results were used to estimate the

moyennes par la pêche à l'âge produites par was determined from the mean fishing mortalities at age generated by ADAPT.

obtenus par le produit entre les captures by multiplying the projected catches in 2003 projetées en 2003 et les poids moyens by the mean weights (1998-2002) at age (1998-2002) à l'âge tirés des échantillons de taken from the commercial samples. The la pêche commerciale. Les nombres à l'âge numbers at age for the population at the start de la population en début de 2003 ont été of 2003 were converted into biomass using convertis en biomasse à l'aide des poids the mean weights at age from the samples

Les captures en 2003 ont aussi été projetées The 2003 catches were also projected for to examine start of 2004.

2.4 RISK ANALYSES

Un certain niveau d'imprécision est associé A certain degree of imprecision is associated aux projections des captures et des with the catch and biomass projections, biomasses en raison des incertitudes reliées because of uncertainties about the actual size à la taille réelle des classes d'âge. Ces of the year-classes. These uncertainties have incertitudes ont été exprimées par le risque been expressed as the risk of not attaining de ne pas atteindre certains niveaux de certain reference levels according to a référence selon un choix de différents quotas choice of different quotas or TAC (Total Allowable Catches).

Des analyses de risque (Gavaris et Sinclair Some risk analyses (Gavaris and Sinclair 1998) ont été réalisées par la procédure 1998) have been performed using the Cette procédure ADAPT bootstrap procedure, in which new permet d'estimer de nouveaux nombres à numbers at age for the population are échantillonnage des résidus obtenus lors de obtained in the first estimate. Such risk la première estimation. Les analyses de analyses do not, however, take any account risque ne tiennent cependant pas compte des of the uncertainties associated with natural incertitudes reliées à la mortalité naturelle, mortality, weights at age, and partial recruitment.

début de 2003 ont été estimés à 1000 start of 2003 were estimated 1,000 times, reprises, et à chaque itération, des and on each iteration, projected catches were projections des captures ont été calculées calculated assuming various values for probabilités suivantes : (a) que la biomasse will be lower in 2004 than in 2003, (b) that de 2004 est inférieure à celle de 2003, (b) fishing mortalities will not exceed F_{0.1}. que les mortalités par la pêche ne dépassent pas $F_{0.1}$.

résultats obtenus ont permis d'estimer les following probabilities: (a) that the biomass

2.5 APPROCHE DE PRÉCAUTION

2.5 PRECAUTIONARY APPROACH

La loi sur les Océans du Canada signée en Canada's Oceans Act, signed in 1997, 1997 promulgue l'utilisation de l'Approche promotes the use of a precautionary de Précaution dans la conservation, la approach to the conservation, management, gestion et l'exploitation des ressources and use of marine resources. In order to halieutiques. Son application nécessite la enforce this legislation, objectives must be mise en place d'objectifs qui tiennent established compte de la conservation des stocks, des conservation requirements; environmental, conditions environnementales et socio-social, and economic conditions; the need to économiques, de l'identification de résultats identify adverse impacts; and the need to néfastes et d'une plus grande prudence en exercise greater caution in the presence of présence d'incertitude. Son application uncertainty. Enforcement of this Act also développement de requires requière aussi le stratégies correctives par l'établissement de implemented through the establishment of points de références. Jusqu'à présent, reference points. To date, the precautionary l'approche de précaution n'a pas réellement approach has not really been applied. This été appliquée ce qui a permis la présence de has resulted in situations where stocks have situations où des stocks ont été poussés à la been pushed to the limit of over-exploitation limite de la surexploitation et à la and where certain fisheries have been réouverture de certaines pêcheries sur des reopened for collapsed stocks, even though stocks effondrés sans que ces derniers they have not shown sufficient signs of n'aient montré suffisamment de signes de rebuilding (Shelton and Rice, 2002). reconstruction (Shelton et Rice, 2002).

Des points de références ont déjà été établis Some reference points have already been pour le hareng de la côte ouest de Terre- established for the herring of the west coast Neuve (McQuinn et al. 1999). Ces derniers of Newfoundland (McQuinn et al. 1999). ont été examinés en fonction des résultats de These points have been examined in light of la présente évaluation analytique.

3.0 RÉSULTATS

3.0 RESULTS

3.1 REPRODUCTEURS DE PRINTEMPS

3.1 SPRING SPAWNERS

assessment.

3.1.1 Description du stock

3.1.1 Stock description

de 2002 a été caractérisée par la dominance was characterized by the dominance of the de la classe d'âge de 1996 (Tableau 1, 1996 year-class (Table 1, Figure 2A), Figure 2A). Cette dernière est suivie des followed by the 1997 and 1999 year-classes.

La capture à l'âge des harengs de printemps The catch at age of spring herring in 2002

the results of the present analytical

7

that

corrective

take

into

strategies

account

be

celles de 1959, 1968, 1974, 1980, 1982, (Figure 2B). 1987, 1990 et 1994 (Figure 2B).

classes d'âge de 1997 et 1999. À elles These 3 year-classes, combined, account for seules, ces 3 classes d'âge comptent pour 71% of the entire 2002 catch. Other 71 % de toutes les captures réalisées en dominant year-classes have been observed in 2002. D'autres classes d'âge dominantes the past, including those of 1959, 1968, ont été observées dans le passé, en incluant 1974, 1980, 1982, 1987, 1990 and 1994

Les captures (t) de hareng ont grandement The herring catches (t) have fluctuated fluctué au cours des ans (Figure 3A). Des greatly baisses importantes ont été observées au Significant decreases were observed at the périodes sont aussi caractérisées par une periods, the mean age of the catch also diminution de l'âge moyen des captures declined (Figure 3B). The herring catches (Figure 3B). Les captures de hareng sont à have been increasing since 1999 and reached la hausse depuis 1999 et en 2002, elles 8,106 t in 2002. atteignaient 8 106 t.

over the years début des années 1980 et 1990. Ces deux start of the 1980s and 1990s. During both

biologiques échantillons senneurs du quatrième trimestre (Tableau 3, Figure 4B).

Des variations annuelles sont observées dans Annual variations can be seen in the mean les poids moyens à l'âge calculés à partir des weights at age calculated from the biological (Tableau 2, samples (Table 2, Figure 4A). The highest Figure 4A). Les poids moyens à l'âge les mean weights at age were measured in the plus élevés ont été mesurés dans les années 1980s. The same conclusion applies for the 1980. La même conclusion s'applique pour mean weights obtained from the samples les poids moyens associés aux échantillons that covered only the purse seine landings couvrant uniquement les débarquements des from the fourth quarter (Table 3, Figure 4B).

à la maturité sexuelle a diminué par rapport with the 1960s and 1970s. aux années 1960 et 1970.

À 5 ans, la maturité sexuelle est atteinte chez At age 5, almost all of the spring herring presque tous les harengs de printemps have attained sexual maturity (Table 4, (Tableau 4, Figure 4C). En 2002, pour les Figure 4C). In 2002, for age groups 3 and 4, groupes d'âge 3 et 4, elle se situait à plus de the figure was over 95%. In recent years, age 95 %. Au cours des dernières années, l'âge at sexual maturity has decreased compared

3.1.2 Indices d'abondance

3.1.2 Abundance indices

L'abondance des harengs de printemps, telle The abundance of spring herring, as que mesurée par les relevés acoustiques, a measured by the acoustic surveys, fell graduellement chuté entre 1991 et 1995 gradually from 1991 to 1995 (Table 5, (Tableau 5, Figure 5A). Cette diminution a Figure 5A). This decrease was due both to a été causée à la fois par le déclin des classes decline in the 1980, 1982, and 1987 yeard'âge de 1980, 1982 et 1987 qui étaient très classes, which were very important in 1991, importantes en 1991, et l'absence par la suite and the subsequent absence of any new de nouvelles classes d'âge abondantes abundant year-classes (Figure 5B). The changement significatif de biomasse n'est biomass have been observed since 1995. observé depuis 1995.

(Figure 5B). L'abondance de ce stock abundance of this spawning stock increased reproducteur a légèrement augmenté entre slightly from 1997 to 1999, thanks to the 1997 et 1999 grâce à la présence des classes presence of the 1994, 1995, and 1996 yeard'âge de 1994, 1995 et 1996. Une très classes. A very high variability is associated grande variabilité est associée à l'estimation with the estimate of biomass for 1991 de biomasse de 1991 (Figure 5C) et aucun (Figure 5C), and no significant changes in

L'analyse de variance réalisée sur les taux The analysis of variance performed on the variance totale. pêche se fait lorsque les poissons qui la in the index from the acoustic survey. 4 ou atteignent 5 ans composent comparativement aux âges 2 et 3 ans pour le relevé acoustique.

de capture des filets maillants s'est avérée gillnet catch rates was found to be significative tout comme la contribution de significant, as was the contribution of each chacune des variables de regroupement à la of the grouping variable to the multiple régression multiple (p<0.0001) (Annexe 1). regression (p<0.0001) (Annex 1). The model Le modèle explique à lui seul 49.56 % de la on its own explains 49.56% of the total Les taux de capture variance. The catch rates display a clear présentent une tendance nette à la baisse downward trend from 1985 to 1998 (Table entre 1985 et 1998 (Tableau 6, Figure 6A). 6, Figure 6A), attributable chiefly to the Cette baisse est principalement attribuable decline of the dominant 1980 and 1982 yearaux déclins des classes d'âge dominantes de classes, which were never really replaced in 1980 et 1982 qui n'ont pas réellement été the ensuing years (Figure 6B). On the other remplacées au cours des années suivantes hand, the recent increase in the catch rates (Figure 6B). Par contre, l'augmentation seems to have been caused by the arrival of récente des taux de capture semble avoir été the 1994, 1995, and 1996 year-classes, causée par l'arrivée des classes d'âge de which are more abundant than the year-1994, 1995 et 1996 dont l'abondance est classes that have been observed since the supérieure à celle des classes d'âge qui ont late 1980s. A given year-class gets included été observées depuis la fin des années 1980. in this fishery when the fish composing it L'arrivée d'une classe d'âge dans cette reach age 4 or 5, compared with age 2 or 3

3.1.3 État du stock

3.1.3.1 ASP: Mesures d'erreurs, résidus et corrélations

des filets maillants, 34.9 % à 40.6 %, sont associées aux coefficients de capturabilité des relevés acoustiques.

suite (Tableau 7). pourraient traduire une dépendance entre by the SPA (Table 8). certains des paramètres estimés par l'ASP (Tableau 8).

les plus jeunes et les plus vieux groupes age groups (Figure 7C). d'âge (Figure 7C).

3.1.3 Stock status

3.1.3.1 SPA: Error measurements, residuals and correlations

Les estimations d'abondance des groupes The abundance estimates for age groups 3 to d'âge 3 à 6 ans en 2003 ont des coefficients 6 in 2003 have high coefficients of variation de variation élevés et supérieurs à 52 % with values greater than 52% (Table 7). For (Tableau 7). Pour les autres groupes d'âge, the other age groups, the coefficients of les coefficients de variation varient entre variation range from 30.4% to 45.0%. For 30.4 % et 45.0 %. Pour les coefficients de the gillnet catchability coefficients, the le highest coefficient of variation is 35.1%, for coefficient de variation le plus élevé est de age group 3. The coefficients of variation for 35.1 % pour le groupe d'âge 3. Chez les the other age groups range from 19.6% to autres groupes d'âge, les coefficients de 20.6%. The catchability coefficients from variation varient entre 19.6 % et 20.6 %. the acoustic surveys have higher coefficients Des valeurs plus élevées, de l'ordre de of variation, on the order of 34.9% to 40.6%.

Les coefficients de capturabilité des filets The gillnet catchability coefficients increase maillants augmentent rapidement entre les rapidly from ages 5 to 9, then remain steady âges 5 et 9 ans et demeurent constants par la (Table 7). Those from the acoustic surveys Ceux des relevés increase very slightly from age 2 to age 9, acoustiques augmentent très légèrement but double at ages 10 and 11⁺. The entre 2 et 9 ans mais doublent aux âges 10 et correlation matrix does not contain any high 11⁺ ans. La matrice des corrélations ne values that might reflect a dependency présente pas de valeurs élevées qui between certain of the parameters estimated

Pour les deux indices d'abondance, les For the two abundance indices, the residuals résidus ne présentent pas de patrons annuels do not show any major annual patterns importants (Figure 7A). L'indice du relevé (Figure 7A). However, the acoustic survey acoustique présente cependant des résidus index shows high residuals for age 5 in 1991 élevés pour l'âge 5 en 1991 et l'âge 2 en and age 2 in 1997 (Figure 7B). For the years 1997 (Figure 7B). Pour les années précédant preceding the acoustic surveys, high ce relevé, l'indice des filets maillants residuals are observed in the gillnet catch présentent des résidus élevés à la fois chez rates both for the youngest and for the oldest

9). Ces caractérisent par l'absence de relation entre observed and predicted abundance values. les valeurs d'abondance observées et prédites.

Malgré la présence de résidus élevés, les Despite the presence of high residuals, the valeurs d'abondance observées et prédites abundance values observed and predicted by par le relevé acoustique sont assez similaires the acoustic survey are fairly similar Les valeurs d'abondance (Figure 8). The abundance values from the associées aux filets maillants s'accordent gillnet data match fairly closely, except for assez bien sauf pour le groupe d'âge 3 qui age group 3, which is poorly estimated by est mal évalué par l'ASP, de même que l'âge the SPA, as is age 10 in 1987 and age group 10 en 1987 et le groupe d'âge 11⁺ en 1989 et 11⁺ in 1989 and 1990 (Figure 9). For these groupes se groups, there is no relationship between the

3.1.3.2 Analyses rétrospectives

Les estimations successives de l'abondance The successive estimates of the abundance estimations rétrospectives réalisées pour group (Figure 12). chaque groupe d'âge (Figure 12).

reproductrices entre 1997 et 2001 (Figure biomasses 13A). Les plus importantes différences sont (Figure 13A). (Figure 14B) ont été surévalués.

3.1.3.3 Résultats de l'ASP

L'ASP révèle que la fin des années 1960 de The SPA reveals that the spring-spawning même que le milieu des années 1980 ont été herring became significantly more abundant caractérisés par une

3.1.3.2 Retrospective analyses

et de la biomasse des classes d'âge (à l'âge and biomass (at age 2) of the year-classes 2) qui ont dominé la pêche depuis 1965 that have dominated the fishery since 1965 présentent des résultats identiques quelque yield identical results regardless of the year soit l'année de l'évaluation (Figures 10A et of the assessment (Figures 10A and 10B). 10B). Cependant, une tendance importante à However, a high tendency to underestimate sous-estimer les nombres (totaux) réels est the real total numbers is seen from 1997 mesurée entre 1997 et 2001 inclusivement through 2001 (Figure 11A). The highest Les plus importantes differences in the abundance are observed différences d'abondance sont observées en for 1998, 1999 and 2000 (Figure 11B). No 1998, 1999 et 2000 (Figure 11B). Aucun particular patterns were observed, and no patron particulier n'est observé et aucune errors in age readings were detected for the erreur de lecture d'âge n'est décelée pour les retrospective estimates performed by age

L'analyse rétrospective révèle aussi une The retrospective analysis reveals also a tendance à sous-estimer les biomasses tendency to underestimate the spawning between 1997 The important most observées en 1998, 1999 et 2000 avec des differences are observed in 1998, 1999 and valeurs respectives de 12 845 t, 17 639 t et 2000 with values of 12,845 t, 17,639 t and 19 031 t (Figure 13B). Au cours de la même 19,031 t, respectively (Figure 13B). For the période, la mortalité par la pêche (Figure same period, fishing mortality (Figure 14A) 14A) de même que les taux d'exploitation and exploitation rates (Figure 14B) were overestimated.

3.1.3.3 SPA results

augmentation in the late 1960s and the mid-1980s (Tables

significative de l'abondance des harengs 9 and 10, Figure 15A). Both of these periods élevés caractérisent ces deux périodes 1969, 1980, de la biomasse reproductrice qui est passée 10). de 35 011 t en 1997 à 67 851 t en 2002 (Tableau 10).

reproducteurs de printemps (Tableaux 9 et were characterized by high recruitment rates 10, Figure 15A). Des taux de recrutement (Figure 15B), associated with the 1968, and 1982 (Figure 15B) et sont associés aux classes (Figure 15C). At age 2, the abundance of the d'âge de 1968, 1969, 1980 et 1982 (Figure 1994, 1995, 1996, and 1997 year-classes 15C). À deux ans, l'abondance des classes was slightly higher than the average and of d'âge de 1994, 1995, 1996 et 1997 était the same order of magnitude as that of the légèrement plus élevée que la moyenne et du 1963, 1966, 1974, 1987, and 1990 yearmême ordre de grandeur que celle des classes. The 1994 to 1997 year-classes have classes d'âge de 1963, 1966, 1974, 1987 et also been responsible for the recent increase 1990. Les classes d'âge de 1994 à 1997 sont in spawning stock biomass, which rose from aussi responsables de l'augmentation récente 35,011 t in 1997 to 67,851 t in 2002 (Table

L'ASP révèle aussi que la mortalité par la The SPA also reveals that fishing mortality individus âgés que pour les plus jeunes.

pêche sur les plus vieux individus (8 ans et among the oldest individuals (age 8 and plus) a dépassé le seuil du $F_{0.1}$ au milieu des older) exceeded the $F_{0.1}$ threshold in the années 1960, en 1982, 1983, 1989 et pendant mid-1960s, in 1982, 1983, 1989 and presque toutes les années 1990 (Tableau 11, throughout almost the entire 1990s (Table Figure 16). En réponse aux mesures sévères 11, Figure 16). In response to the strict de gestion appliquées depuis 1998, une management measures that have been chute importante de la mortalité par la pêche applied since 1998, fishing mortality fell a été enregistrée en 1999, autant pour les substantially in 1999, among both the oldest and the youngest individuals.

Le déclin de l'abondance des classes d'âge The abundance of the dominant year-classes parmi les classes d'âge dont abundance fell most rapidly. l'abondance a décliné le plus rapidement.

dominantes est très rapide entre les âges 2 et declines very rapidly from ages 2 to 5 and in 5 ans et dans certains cas, il se poursuit some cases even continues to do so until age même jusqu'à l'âge 7 (Figure 17). Les 7 (Figure 17). The 1968 (Figure 17A), 1974 classes d'âge de 1968 (Figure 17A), 1974 (Figure 17B), 1980, and 1982 (Figure 17C) (Figure 17B), 1980 et 1982 (Figure 17C) et and finally 1990, 1994 and 1996 (Figure finalement 1990, 1994 et 1996 (Figure 17D) 17D) year-classes are among those whose

3.2 REPRODUCTEURS D'AUTOMNE

3.2 FALL SPAWNERS

3.2.1 Description du stock

3.2.1 Stock description

La capture à l'âge des harengs d'automne de The catch at age of fall herring in 2002 was 2002 a été caractérisée par la dominance de characterized by the dominance of the 1998 la classe d'âge de 1998 (Tableau 12, Figure year-class (Table 12, Figure 18A), followed 18A). Cette dernière est suivie des classes by the 1995 and 1996 year-classes. These 3 d'âge de 1995 et 1996. À elles seules, ces 3 year-classes, combined, account for 76 % of les captures réalisées en 2002. D'autres classes have been observed in the past, classes d'âge dominantes ont été observées including those of 1979, 1990, and 1995 dans le passé, dont celles de 1979, 1990 et (Figure 18B). 1995 (Figure 18B).

classes d'âge comptent pour 76 % de toutes the entire 2002 catch. Other dominant year-

Pour ce stock reproducteur, la période 1973- For this spawner stock, the period 1973commerciaux échantillons de provenant du sud du Golfe (Ian McQuinn, Lawrence Institut Maurice-Lamontagne, comm. pers.). Lamontagne Institute, pers. comm.).

1980 a été caractérisée par la présence d'un 1980 was characterized by the presence of a très grand nombre de poissons âgés de 11 great many fish aged 11 or over. The ans et plus. L'abondance de ces poissons abundance of these fish might be explained s'expliquerait par les faibles niveaux by the low exploitation rates directed at this d'exploitation qui étaient dirigés à l'époque stock during the period in question, or by the sur ce stock ou par la présence dans les presence in the commercial samples of hareng herring from the southern Gulf of St (Ian McQuinn, Maurice

chuté de 1973 à 1974 (Figure 19A). Par la greatly from 1973 to 1974 (Figure 19A). jusqu'en 2000, et elles sont à la baisse up to 2000, and have been decreasing since. 19B).

Les captures (t) de hareng ont rapidement The herring catches (t) have decreased suite, elles ont graduellement augmenté After that, catches have gradually increased depuis. L'âge moyen des captures a diminué The mean age of the catch has decreased entre 1973 et 1985 et depuis 1990 (Figure between 1973 and 1985, and since 1990 (Figure 19B).

échantillons biologiques Figure 20A). échantillons uniquement les débarquements des senneurs Figure 20B). trimestre (Tableau du quatrième Figure 20B).

Des variations annuelles sont observées dans Annual variations can be seen in the mean les poids moyens à l'âge calculés à partir des weights at age calculated from the biological (Tableau 13, samples (Table 13, Figure 20A). As in the Comme dans le cas des case of the spring-spawning herring, the harengs reproducteurs de printemps, les highest mean weights at age were measured poids moyens à l'âge les plus élevés ont été in the 1980s. The same conclusion applies mesurés dans les années 1980. La même for the mean weights obtained from the conclusion s'applique pour les poids moyens samples that covered only the purse seine couvrant landings from the fourth quarter (Table 14,

presque tous les harengs reproducteurs herring have attained sexual maturity (Table d'automne (Tableau 15, Figure 20C). En 15, Figure 20C). In 2002, sexual maturity 2002, la maturité sexuelle était atteinte chez was reached for 80 % and 90 % respectively 80 % et 90 % respectivement des individus for the fish of age 4 and 5. d'âge 4 et 5.

À 5 ans, la maturité sexuelle est atteinte chez At age 5, almost all of the fall-spawning

3.2.2 Indice d'abondance

L'abondance du stock demeurée stable en 2002 (Tableau 16, 2002 (Table 16, Figure 21A). l'estimation biomasse de (Figure 21C). aurait légèrement augmenté depuis 1997.

3.2.3 État du stock

3.2.3.1 ASP: Mesures d'erreurs, résidus et corrélations

Pour les coefficients de the et 82.6 %. sont aussi observés entre chacun des N2 and gRV11, etc...). paramètres estimés par l'ASP (ex: N1 et qRV10, N2 et qRV11, etc....).

importants (Figure annuels

3.2.2 Abundance index

des harengs The abundance of the fall stock rose d'automne a augmenté de 1997 à 1999 et est between 1997 and 1999 and held steady in Figure 21A). La classe d'âge de 1990 a population measured by the acoustic survey dominé la population mesurée par le relevé in 1993, 1995, and 1997 was characterized acoustique en 1993, 1995 et 1997 by the dominance of the 1990 year-class comparativement à la classe d'âge 1995 pour compared to the 1995 year-class for the les relevés de 1999 et 2002 (Figure 21B). 1999 and 2002 surveys (Figure 21B). A Une très grande variabilité est associée à very high variability is associated with the 1991 estimate of biomass for 1991 (Figure 21C). La biomasse de ce stock The biomass of this stock would have slightly increased since 1997.

3.2.3 Stock status

3.2.3.1 SPA: Error measurements, residuals and correlations

Les estimations d'abondance des groupes The abundance estimates for age groups 3 to d'âge 3 à 5 ans en 2003 ont des coefficients 5 in 2003 have coefficients of variation with de variation supérieurs à 100 % (Tableau values greater than 100 % (Table 17). For Pour les autres groupes d'âge, les the other age groups, the coefficients of coefficients de variation varient entre 54.1 % variation range from 54.1 % to 82.6 %. For acoustic surveys catchability capturabilité de l'indice acoustique, le coefficients, the highest coefficient of coefficient de variation le plus élevé est de variation is 50.8 %, for age group 2. The 50.8 % pour le groupe d'âge 2. Chez les coefficients of variation for the other age autres groupes d'âge, les coefficients de groups range from 32.7 % to 37.4 %. The variation varient entre 32.7 % et 37.4 %. La correlation matrix does contain high and matrice des corrélations présente des valeurs negatives values between all the surveys élevées et négatives entre tous les catchability coefficients and the abundance coefficients de capturabilité des relevés et estimates for age group 11⁺ (Table 18). les estimations d'abondance pour le groupe High and negative correlation coefficients d'âge 11⁺ (Tableau 18). Des coefficients de are also observed between the parameters corrélation élevés et de valeurs négatives estimated by the SPA (ex: N1 and qRV10,

Les résidus ne présentent pas de patrons The residuals do not show any major annual 22A). patterns by year (Figure 22A). However, the Cependant, le relevé acoustique présente des acoustic survey shows high residual for age résidus élevés pour l'âge 2 en 1997 (Figure 2 in 1997 (Figure 22B). Despite that, the 22B). Les valeurs d'abondance observées et abundance values observed and predicted by similaires (Figure 23).

prédites par le relevé acoustique sont assez the acoustic survey are fairly similar (Figure

3.2.3.2 Analyses rétrospectives

âges 4 et 6 ans et la classe d'âge de 1995 aux and 5 were underestimated (Figure 26). âges 2, 3 et 5 ont été sous-estimées (Figure 26).

(Figure 28B) ont largement été surévalués.

3.2.3.3 Résultats de l'ASP

L'abondance et la biomasse Des taux de recrutement élevés periods were characterized 2000. La mortalité par la pêche n'aurait Fishing mortality would jamais dépassé le seuil du $F_{0.1}$.

rapidement. Un déclin beaucoup moins declines rapidly. The year-classes of the

3.2.3.2 Retrospective analyses

Les estimations successives de l'abondance The successive estimates of the abundance des classes d'âge (à l'âge 2) qui ont dominé (at age 2) of the year-classes that have la pêche depuis le milieu des années 1980 dominated the fishery since 1980 yield présentent des résultats différents selon different results regardless of the year of the l'année de l'évaluation (Figures 24A et assessment (Figures 24A and 24B). A high Une tendance importante à sous- tendency to underestimate the real (total) estimer les nombres (totaux) réels est numbers is seen in 1998 and 2000 (Figures mesurée en 1998 et 2000 (Figures 25A et 25A and 25B). The retrospective estimates Les estimations rétrospectives performed by age group show that the 1993 réalisées par groupe d'âge révèlent que les year-class at age 5, the 1994 year-class at 4 classes d'âge de 1993 à l'âge 5 et 1994 aux and 6, and the 1995 year-class at ages 2, 3,

L'analyse rétrospective révèle aussi une The retrospective analysis reveals also a tendance à sous-estimer les biomasses tendency to underestimate the spawning reproductrices en 1997 et 1999 (Figures 27A biomasses in 1997 and 1999 (Figures 27A et 27B). La mortalité par la pêche (Figure and 27B). Fishing mortality (Figure 28A) 28A) de même que les taux d'exploitation and exploitation rates (Figure 28B) were largely overestimated.

3.2.3.3 **SPA** results

des The abundance and biomass of the fall reproducteurs d'automne a augmenté en spawners have increased in 1981 and in the 1981 et au début des années 1990 (Figure early 1990s (Figure 29A). Both of these caractérisent ces deux périodes (Figure 29B) recruitment rates (Figure 29B) because of et sont associés aux classes d'âge de 1979 et the important 1979 and 1990 year-classes 1990 (Figure 29C). La mortalité par la (Figure 29C). Fishing mortality increased pêche a augmenté entre 1985 et 1998, en from 1985 to 1998, in particular, among the particulier chez les plus vieux poissons oldest fish (Figure 30). This has been (Figure 30), puis a subi une baisse depuis followed by a decrease since the year 2000. have exceeded the $F_{0,1}$ threshold.

Les classes d'âge de 1979 (Figure 31A) et The abundance of the 1979 (Figure 31A) 1990 (Figure 31C) sont parmi les classes and 1990 (Figure 31C) year-classes are d'âge dont l'abondance a décliné le plus among the year-classes that the abundance

marqué caractérise les classes d'âge des 1980s are characterised by a smaller decline années 1980 (Figure 31B).

(Figure 31B).

3.3 PERSPECTIVES

3.3 OUTLOOK

3.3.1 Reproducteurs de printemps

3.3.1 Spring spawners

harengs de printemps, selon l'ASP, serait biomass of the spring herring stock rose passée d'un minimum historique de 35 011 t from an all-time low of 35 011 t in 1997 to en 1997 à 67 851 t en 2002 (Tableau 10). 67,851 t Les probabilités de dépasser F_{0,1} seraient probabilities of exceeding F_{0,1} in 2003 would inférieures à 50 % pour des captures de be less than 50% for catches of less than moins de 11 000 t en 2003 (Figure 32). 11,000 t (Figure 32). Cependant, à ce niveau des captures, il n'y catches level, no increase in the spawning aura aucune augmentation de la biomasse biomass would occur between 2003 and reproductrice entre 2003 et 2004.

La biomasse reproductrice du stock des According to the SPA, the spawning in 2002 (Table 10). However, at this 2004.

améliorée depuis la dernière évaluation improved produit la dernière classe d'âge abondante abundant year-class (McQuinn et al. 1999). (McQuinn et al. 1999).

La situation de ce stock reproducteur s'est. The state of the spring spawning stock has since the last analytical analytique (Grégoire et Lefebvre, 2002). La assessment (Grégoire and Lefebvre, 2002). biomasse reproductrice de 58 921 t (Tableau Its biomass was calculated at 58,921 t (Table 10) calculée pour 2003 se situe maintenant 10) in 2003, so it now exceeds the minimum au-delà de la limite minimale acceptable acceptable limit (\mathbf{B}_{LIM}) of 37,834 t and the $(\mathbf{B_{LIM}})$ de 37 834 t et de la limite tampon established buffer limit $(\mathbf{B_{BUF}})$ of 57,468 t $(\mathbf{B}_{\mathbf{BUF}})$ fixée à 57 468 t (Figure 33). Dans le (Figure 33). In this case, $\mathbf{B}_{\mathbf{LIM}}$ has been cas présent, B_{LIM} correspond à 20 % de la defined as 20 % of the largest spawning biomasse reproductrice maximale de toute la stock biomass in the entire time series and série historique et \mathbf{B}_{BUF} à la biomasse \mathbf{B}_{BUF} as the spawning stock biomass reproductrice (supérieure à B_{LIM}) qui a (superior to B_{BLIM}) that produced the last

3.3.2 Reproducteurs d'automne

3.3.2 Fall spawners

maximale de la décennie 1990, à 53 373 t en 1990s) to 53,373 t in 2002.

Selon l'ASP, la biomasse reproductrice du According to the SPA, the spawning stock des harengs d'automne aurait passé de biomass of the fall herring stock would fell 71 412 t en 1994, c'est-à-dire la valeur from 71,412 t in 1994 (the peak value for the Les probabilités de dépasser F_{0,1} probabilities of exceeding F_{0,1} in 2003 would seraient inférieures à 50 % pour des captures be less than 50% for catches of less than de moins de 11 600 t en 2003 (Figure 34). À 11,600 t (Figure 34). At this catches level, ce niveau des captures, les probabilités de the probabilities of having an increase in the voir une augmentation de la biomasse spawning biomass between 2003 and 2004 reproductrice entre 2003 et 2004 sont are in the order of 20%. The spawning d'environ 20 %. La biomasse reproductrice biomass was calculated at 48,481 t (Table de 48 481 t (Tableau 20) calculée en 2003 se 20) in 2003, so it now exceeds the minimum situe maintenant au-delà de la limite acceptable limit (\mathbf{B}_{LIM}) of 47,953 t but is minimale acceptable (\mathbf{B}_{LIM}) de 47 953 t mais lower than the established buffer limit sous la limite tampon (**B**_{BUF}) fixée à 61 074 t (**B**_{BUF}) of 61,074 t (Figure 35). (Figure 35).

4.0 DISCUSSION

4.0 DISCUSSION

acoustique. reproducteurs d'automne. estimer l'abondance des risque. Par conséquent nous recommandons not exceed 20,000 t in 2003. une augmentation progressive du TAC qui ne devrait pas dépasser 20 000 t en 2003.

spatio-temporelle couverture capacité évaluer avec l'abondance des deux stocks reproducteurs.

Pour favoriser la conservation de ces deux To promote the conservation of the two de données, le présent avis recommande : (1) the present advice recommends:

Une divergence est maintenant observée A discrepancy is now observed between the entre l'indice des filets maillants des gillnet index and the acoustic survey for the reproducteurs de printemps et le relevé spring stock. Examination of the SPA results Les diagnostics des ASP indicates some problems with the fit of the dénotent aussi des problèmes d'ajustement models, in particular for the fall spawners. des modèles, en particulier pour les These analyses also indicated the presence De plus, ces of a retrospective pattern showing a analyses indiquent la présence d'un patron tendency to underestimate the abundance of rétrospectif démontrant une tendance à sous- the two spawning stocks. Given this high deux stocks level of uncertainty, the results of the SPA reproducteurs. Compte tenu des incertitudes must be used with caution, and greater très élevées, les résultats des ASP doivent uncertainty must be ascribed to the être utilisés avec prudence et un niveau plus projections derived from the risk analyses. élevé d'incertitude doit être associé aux Consequently, we are recommending a projections déterminées par les analyses de gradual increase in the TAC which should

La faible fréquence du relevé acoustique Our ability to accurately estimate the (aux deux ou trois ans), le manque abundance of the two spawner stocks is d'information (livre de bord) concernant la being reduced further and further by the long pêche d'automne aux filets maillants et une (two- to three-year) intervals between the parfois acoustic surveys, as well as by the lack of insuffisante de l'échantillonnage de la pêche information on the fall gillnet fishery (for commerciale réduisent de plus en plus notre which no logbooks are maintained) and the précision sometimes inadequate geographic temporal coverage of the commercial fishery sampling.

stocks reproducteurs et améliorer nos bases spawner stocks and improve our databases, le maintien des mesures de gestion maintaining the management measures in St concernant la baie St-George pour continuer George's Bay to continue protecting spring à protéger la ponte des reproducteurs de spawning activity, (2) dispersing the fishing printemps, (2) une dispersion de l'effort de effort along the entire coast and throughout pêche le long de la côte et sur toute l'année, the year, (3) increasing fishers' participation (3) une participation accrue des pêcheurs du in the index fishers' program and the

programme des pêcheurs repères et des industry logbook program for the spring livres de bord provenant de l'industrie pour spawners, and lastly (4) having fall gillnet les reproducteurs de printemps, et finalement fishers maintain logbooks. (4) l'utilisation de livres de bord pour les pêcheurs de filet maillant à l'automne.

5.0 REMERCIEMENTS

5.0 ACKNOWLEDGEMENTS

l'analyse de risque ainsi qu'à Johanne Johanne Gauthier and Hugo Bourdages for document. conseils l'utilisation d'ADAPT. De plus, plusieurs document are based on figures presented in figures du présent document sont basées sur his research documents. des figures présentées dans ses documents de recherche.

Des remerciements vont à Ian McQuinn Thanks go to Ian McQuinn for all his advice pour tous ses conseils concernant l'ASP et concerning SPA and risk analysis and to Gauthier et Hugo Bourdages pour la révision their reviews of this document. Very sincere sincères thanks also go to Stratis Gavaris for his remerciements vont aussi à Stratis Gavaris advice concerning the utilisation of ADAPT. concernant Moreover, several figures of the present

6.0 RÉFÉRENCES / REFERENCES

- Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.
- Gavaris, S. 1988. An adaptive framework for the estimation of population size. CAFSAC Res. Doc. 88/29: 12p.
- Gavaris, S. 1999. ADAPT (ADAPTive Framework) User's Guide. DFO. St. Andrews Biological Station, St. Andrews, N.B., Canada. 25p.
- Gavaris, S., et/and A. Sinclair. 1998. From Fisheries Assessment Uncertainty to Risk Analysis for Immediate Management Actions In: F. Funk, T.J. Quinn II, J. Heifetz, J.N. Ianelli, J.E. Powers, J.F. Schweigert, P.J. Sullivan, and C.-I. Zhang (Editors), Fishery Stock Assessment Models. University of Alaska Sea Grant, AK-SG-98-01, Fairbanks. 1054p.
- Grégoire, F., et/and L. Lefebvre. 2002. Analytical assessment and risk analyses for the stock of spring-spawning herring (Clupea harengus harengus L.) on the west coast of Newfoundland (NAFO Division 4R) in 2001. CSAS Res. Doc. 2002/059. 59p.
- Grégoire, F., L. Lefebvre, J. Guérin, J. Hudon et/and J. Lavers. 2003. Atlantic herring (Clupea harengus harengus L.) on the west coast of Newfoundland (NAFO Division 4R) in 2002. CSAS Research Document 2003/90, 55p.

- McQuinn, I. H. 1987. Revisions to the 4R herring catch-at-age matrices. CAFSAC Res. Doc. 87/68, 23p.
- McQuinn, I. H., et/and L. Lefebvre. 1999. An evaluation of the western Newfoundland herring acoustic abundance index from 1989 to 1997. DFO Atl. Fish. Res. Doc. 99/120, 20p.
- McQuinn, I. H., M. Hammil, et/and L. Lefebvre. 1999. An assessment and risk projections of the west coast of Newfoundland (NAFO Division 4R) herring stocks (1965 to 2000). CSAS Research Document 99/119, 94p.
- Rivard, D., et/and J. Rice. 2002. Atelier national sur les points de référence concernant les gadidés, Ottawa, 5-8 novembre 2002. SCCS Doc. Rech. 2002/033. 16p.
- Shelton, P.A., et/and J. C. Rice. 2002. Limits to overfishing: reference points in the context of the Canadian perspective on the precautionary approach. CSAS Res. Doc. 2002/084. 29p.
- Sinclair, A., D. Gascon, R. O'Boyle, D. Rivard et/and S. Gavaris. 1991. Consistency of some northwest Atlantic groundfish stock assessments. Northwest Atlantic Fisheries Organization Scientific Council Studies 16: 59-77.

Tableau 1. Capture commerciale à l'âge en nombre (000's) pour les harengs reproducteurs de **printemps** de la division 4R de l'OPANO.

Table 1. Commercial catch at age in number (000's) for the <u>spring</u> spawner herring of NAFO Division 4R.

1966 1967 1968 1969 1970 1 1971 1972 1973 1 1974 1975 1976 1977 1978	2 630 1115 0 84 366 1067 0 284 1833 141 57	73 283 18 163 1730 570 2527 220 435	13 276 459 302 2778 297 303	5 693 520 139 549 1026 435	6 1602 1822 318 203 500	7 1293 4176 3403	8 651 2090	9 461 1652	305 382	509	6230
1966 1967 1968 1969 1970 1 1971 1972 1973 1 1974 1975 1976 1977 1978	115 0 84 366 1067 0 284 1833	283 18 163 1730 570 2527 220	276 459 302 2778 297 303	520 139 549 1026	1822 318 203	4176	2090			509	6230
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978	115 0 84 366 1067 0 284 1833	283 18 163 1730 570 2527 220	276 459 302 2778 297 303	520 139 549 1026	1822 318 203	4176	2090			309	0230
1967 1968 1969 1970 1 1971 1972 1973 1 1974 1975 1976 1977 1978 1979	0 84 366 1067 0 284 1833	18 163 1730 570 2527 220	459 302 2778 297 303	139 549 1026	318 203			1032		638	1195
1968 1969 3 1970 1 1971 1972 3 1973 1 1974 1975 1976 4 1977 1978	84 366 1067 0 284 1833	163 1730 570 2527 220	302 2778 297 303	549 1026	203	3403	2745	1265	742	847	993
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	366 1067 0 284 1833	1730 570 2527 220	2778 297 303	1026		569	1120	2049	420	358	581
1970 1 1971 1 1972 2 1973 1 1974 1 1975 1 1976 4 1977 1 1978 1 1979	1067 0 284 1833 141	570 2527 220	297 303			264	703	1259	1185	117	992
1971 1972 1973 1974 1975 1976 1977 1978	0 284 1833 141	2527 220	303	433	182	75		565			498
1972 1973 1974 1975 1976 1977 1978 1979	284 1833 141	220					116		1615	61	
1973 1 1974 1 1975 1 1976 4 1977 1 1978 1	1833 141		0100	841	720	651	340	350	2412	255	840
1974 1975 1976 1977 1978 1979	141	435	8189	1308	1461	1245	1115	1377	1034	2013	1824
1975 1976 1977 1978 1979		2.1	1063	27872	2570	3222	3232	2598	4789	5696	5331
1976 1977 1978 1979	57	261	130	371	9445	318	851	774	490	2175	1495
1977 1978 1979		996	420	100	1063	8431	317	336	244	665	1262
1978 1979	484	680	846	201	350	2802	15567	759	3136	3588	284
1979	10	534	541	409	304	348	4362	15959	1694	6003	3010
	0	47	1987	207	679	241	2162	8208	15260	5062	3385
1980	167	25	214	10828	617	1075	547	2772	7404	14032	3768
	300	854	106	355	13872	407	1344	247	1427	20574	394
1981	40	417	2114	129	354	8872	188	515	283	13181	2609
1982	594	2374	693	2452	421	2153	6488	704	950	12863	2969
1983	34	2965	3562	1131	1091	293	713	2990	798	7975	215
1984	198	433	7773	3809	595	814	209	672	755	4226	1948
1985	362	4587	787	21642	3993	445	381	255	380	1764	3459
1986	323	2348	13762	3349	28781	5241	465	167	260	1661	563
1987	455	329	2781	15257	3507	12952	1736	182	37	806	380
1988	702	539	402	2461	15064	3677	13616	2527	423	2060	414
1989	305	574	763	461	3036	18704	3072	10910	779	1380	399
1990	114	2136	670	405	997	5010	16296	3773	6432	2187	380
1991	577	2233	9849	1285	768	3018	6955	21327	2366	6579	5493
1992	90	1243	1707	8538	998	998	2781	2168	11879	3902	3430
1993	79	1592	3802	3409	6784	1509	2102	2727	2800	8804	3360
1994	14	332	2597	3183	3762	3434	1642	1589	1757	1945	2025
	12	247	1219	5750	5807	2152	7126	185	3083	4577	301:
	1347	248	1156	4056	7712	4211	551	3291	419	1597	2458
	36	1006	131	259	1303	6598	1684	580	2554	1588	1574
	80	859	7836	393	579	2143	7683	1146	994	3174	2488
	152	1815	3501	4583	202	156	749	1532	378	943	140
2000	0	3106	7182	2207	3971	108	248	765	857	773	192
		195	3685	6265	3794	3456	137	282	582	1139	192
2001	126	193	2002	0203	3/94	3430	13/				

Tableau 2. Poids commerciaux (kg) de la capture à l'âge des harengs reproducteurs de **printemps** de la division 4R de l'OPANO.

Table 2. Commercial weight (kg) at age for the spring spawner herring of NAFO Division 4R.

ANNÉE /				GROU	PE D'ÂG	E / AGE (GROUP			
YEAR	2	3	4	5	6	7	8	9	10	11+
1965	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.42
1966	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.42
1967	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.42
1968	0.128	0.169	0.244	0.312	0.327	0.328	0.338	0.357	0.381	0.37
1969	0.128	0.107	0.233	0.259	0.287	0.328	0.323	0.357	0.371	0.37
1970	0.106	0.189	0.259	0.280	0.296	0.353	0.375	0.380	0.377	0.37
1971	0.100	0.159	0.229	0.257	0.271	0.289	0.308	0.332	0.339	0.3
1972	0.098	0.139	0.178	0.203	0.250	0.279	0.305	0.310	0.313	0.3
1973	0.101	0.158	0.224	0.222	0.268	0.303	0.322	0.333	0.350	0.36
1974	0.101	0.172	0.223	0.222	0.262	0.300	0.324	0.353	0.335	0.38
1975	0.127	0.172	0.197	0.242	0.243	0.279	0.324	0.331	0.350	0.38
1976	0.069	0.130	0.197	0.242	0.252	0.269	0.299	0.335	0.334	0.38
1977	0.064	0.122	0.193	0.247	0.232	0.262	0.299	0.313	0.334	0.35
1978	0.103	0.130	0.228	0.275	0.305	0.202	0.230	0.313	0.362	0.39
1979	0.103	0.134	0.228	0.273	0.303	0.313	0.318	0.366	0.302	0.40
1980	0.113	0.121	0.234	0.298	0.319	0.343	0.380	0.398	0.373	0.40
1981	0.117	0.201	0.247	0.298	0.321	0.334	0.380		0.389	0.4
1981								0.430		
	0.095	0.216	0.263	0.290	0.357	0.386	0.395	0.423	0.434	0.43
1983	0.142	0.190	0.263	0.305	0.337	0.385	0.424	0.434	0.492	0.47
1984	0.134	0.206	0.239	0.297	0.348	0.379	0.406	0.431	0.437	0.48
1985	0.109	0.168	0.247	0.283	0.329	0.373	0.404	0.434	0.425	
1986	0.142	0.171	0.230	0.268	0.315	0.338	0.413	0.415	0.449	0.45
1987	0.165	0.235	0.250	0.289	0.349	0.370	0.390	0.428	0.422	0.5
1988	0.153	0.192	0.223	0.261	0.302	0.338	0.371	0.385	0.457	0.49
1989	0.149	0.193	0.233	0.301	0.307	0.350	0.384	0.399	0.408	0.48
1990	0.120	0.180	0.257	0.270	0.301	0.343	0.373	0.409	0.417	0.40
1991	0.154	0.159	0.203	0.276	0.318	0.332	0.374	0.401	0.408	0.4
1992	0.103	0.115	0.214	0.246	0.276	0.366	0.368	0.399	0.411	0.42
1993	0.115	0.149	0.194	0.251	0.277	0.323	0.383	0.401	0.420	0.43
1994	0.112	0.158	0.192	0.223	0.273	0.320	0.354	0.380	0.390	0.4
1995	0.106	0.174	0.179	0.216	0.258	0.272	0.326	0.336	0.377	0.40
1996	0.107	0.149	0.217	0.244	0.284	0.326	0.335	0.389	0.413	0.46
1997	0.107	0.173	0.153	0.233	0.277	0.296	0.329	0.347	0.370	0.42
1998	0.082	0.141	0.171	0.222	0.275	0.283	0.315	0.363	0.376	0.4
1999	0.094	0.158	0.195	0.216	0.266	0.298	0.333	0.357	0.415	0.42
2000	0.109	0.183	0.200	0.239	0.267	0.328	0.324	0.385	0.362	0.44
2001	0.121	0.213	0.226	0.240	0.278	0.295	0.350	0.356	0.382	0.41
2002	0.101	0.184	0.212	0.251	0.282	0.319	0.328	0.374	0.419	0.45

Tableau 3. Poids moyens (kg) à l'âge des échantillons provenant de la pêche automnale (quatrième trimestre) à la senne bourse des harengs de **printemps** de la division 4R de l'OPANO.

Table 3. Mean weight (kg) at age of the samples from the fall (fourth quarter) purse seine fishery of <u>spring</u> spawner herring of NAFO Division 4R.

ANNÉE /				GROU	PE D'ÂG	E / AGE (GROUP			
YEAR	2	3	4	5	6	7	8	9	10	11+
1965	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.425
1966	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.425
1967	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.425
1968	0.128	0.166	0.244	0.312	0.327	0.348	0.340	0.358	0.423	0.42
1969	0.128	0.100	0.237	0.265	0.308	0.333	0.323	0.357	0.370	0.39
1970	0.146	0.165	0.255	0.203	0.292	0.313	0.323	0.388	0.370	0.39
1971	0.123	0.144	0.205	0.252	0.258	0.287	0.291	0.315	0.339	0.39
1972	0.129	0.176	0.205	0.232	0.295	0.323	0.316	0.313	0.399	0.39
1973	0.118	0.170	0.206	0.238	0.263	0.323	0.347	0.343	0.349	0.39
1974	0.118	0.169	0.223	0.241	0.281	0.320	0.336	0.357	0.374	0.39
1975	0.133	0.180	0.215	0.239	0.272	0.315	0.341	0.350	0.362	0.39
1976	0.138	0.209	0.229	0.252	0.272	0.280	0.306	0.340	0.302	0.34
1977	0.138	0.206	0.229	0.293	0.270	0.230	0.329	0.356	0.374	0.39
1978	0.142	0.226	0.244	0.293	0.333	0.354	0.359	0.376	0.374	0.42
1979	0.142	0.227	0.253	0.295	0.336	0.365	0.365	0.403	0.396	0.43
1980	0.143	0.229	0.291	0.334	0.382	0.411	0.445	0.463	0.458	0.50
1981	0.157	0.225	0.271	0.354	0.372	0.411	0.445	0.442	0.453	0.30
1982	0.137	0.198	0.273	0.338	0.400	0.411	0.443	0.442	0.463	0.47
1983	0.130	0.138	0.280	0.329	0.368	0.399	0.417	0.437	0.462	0.48
1984	0.148	0.190	0.252	0.310	0.353	0.400	0.442	0.437	0.445	0.48
1985	0.113	0.190	0.252	0.310	0.333	0.381	0.442	0.471	0.447	0.47
1986	0.107	0.173	0.241	0.300	0.328	0.351	0.433	0.445	0.447	0.47
1987	0.142	0.173	0.253	0.301	0.358	0.331	0.388	0.445	0.479	0.52
1988	0.137	0.215	0.268	0.288	0.334	0.373	0.396	0.402	0.524	0.32
1989	0.144	0.203	0.252	0.304	0.340	0.373	0.406	0.430	0.324	0.47
1990	0.137	0.214	0.232	0.304	0.340	0.351	0.396	0.409	0.451	0.45
1991	0.122	0.183	0.250	0.307	0.347	0.369	0.390	0.434	0.439	0.43
1992	0.103	0.151	0.230	0.273	0.311	0.369	0.394	0.425	0.410	0.46
1993	0.103	0.173	0.231	0.272	0.299	0.309	0.394	0.423	0.431	0.40
1994	0.113	0.173	0.213	0.237	0.299	0.314	0.385	0.431	0.431	0.50
1995	0.111	0.149	0.182	0.237	0.293	0.332	0.383	0.424	0.451	0.49
1995	0.111	0.168	0.182	0.241	0.293	0.332	0.364	0.424	0.439	0.49
1997	0.107	0.142	0.224	0.236	0.300	0.343	0.344	0.412	0.382	0.40
1997	0.107	0.183	0.211	0.236	0.263	0.309	0.323	0.340	0.382	0.40
1999	0.101	0.141	0.173	0.203	0.285	0.237	0.323	0.392	0.419	0.45
2000	0.094	0.130	0.191	0.224	0.283	0.311	0.328	0.333	0.385	0.45
2000	0.101	0.196	0.214	0.231	0.280	0.322	0.328	0.333	0.383	0.43
2001	0.101	0.216	0.237	0.249	0.308	0.346	0.337	0.408	0.400	0.43

Tableau 4. Proportion annuelle de la maturité à l'âge (deuxième trimestre) des harengs reproducteurs de **printemps** de la division 4R de l'OPANO (senne bourse).
 Table 4. Annual proportion of the maturity at age (second quarter) for the <u>spring</u> spawner herring of NAFO Division 4R (purse seine).

ANNÉE /				GROU	JPE D'AG	E / AGE	<i>GROUP</i>			
YEAR	2	3	4	5	6	7	8	9	10	11+
1965	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1966	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1967	0.000	0.174	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1968	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1969	0.000	0.174	0.714	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1970	0.000	0.500	0.778	0.936	1.000	1.000	1.000	1.000	1.000	1.000
1971	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1972	0.000	0.016	0.808	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1973	0.000	0.143	0.667	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1974	0.000	0.143	0.900	0.938	1.000	1.000	1.000	1.000	1.000	1.000
1975	0.000	0.350	0.571	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1976	0.000	0.278	0.727	0.917	1.000	1.000	1.000	1.000	1.000	1.000
1977	0.000	0.114	0.913	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1978	0.000	0.436	0.706	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1979	0.000	0.436	0.891	0.986	1.000	1.000	1.000	1.000	1.000	1.000
1980	0.000	0.837	0.909	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1981	0.053	0.898	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1982	0.000	0.625	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1983	0.000	0.130	0.940	0.968	1.000	1.000	1.000	1.000	1.000	1.000
1984	0.000	0.167	0.706	0.961	1.000	1.000	1.000	1.000	1.000	1.000
1985	0.000	0.052	0.875	0.996	1.000	1.000	1.000	1.000	1.000	1.000
1986	0.000	0.500	0.918	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1987	0.000	0.286	0.813	0.991	1.000	1.000	1.000	1.000	1.000	1.000
1988	0.000	0.429	0.857	0.962	1.000	1.000	1.000	1.000	1.000	1.000
1989	0.000	0.436	0.891	0.986	1.000	1.000	1.000	1.000	1.000	1.000
1990	0.000	0.667	0.818	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1991	0.000	0.429	0.844	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1992	0.000	0.300	0.583	0.818	1.000	1.000	1.000	1.000	1.000	1.000
1993	0.000	0.438	0.938	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1994	0.000	0.652	0.929	0.991	1.000	1.000	1.000	1.000	1.000	1.000
1995	0.000	0.714	0.905	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1996	0.000	0.533	0.836	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1997	0.000	0.546	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1998	0.000	0.667	0.911	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1999	0.185	0.587	0.944	0.990	1.000	1.000	1.000	1.000	1.000	1.000
2000	0.000	0.774	0.976	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2001	0.000	0.643	1.000	0.991	1.000	1.000	1.000	1.000	1.000	1.000
2002	0.000	0.961	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Tableau 5. Abondance totale à l'âge (nombre en 000's) des harengs reproducteurs de **printemps** calculée à partir des relevés acoustiques réalisés dans la division 4R de l'OPANO depuis 1991.

Table 5. Total abundance at age (number in 000's) for the <u>spring</u> spawner herring calculated from the acoustic survey realised in NAFO Division 4R since 1991.

ANNÉE /	GROUPE D'ÂGE / AGE GROUP										
YEAR	2	3	4	5	6	7	8	9	10	11+	2+
1991.9	5252	14241	78462	216	13484	43972	26318	48683	8773	44080	28348
1993.9	15591	36865	32008	26686	41341	1567	6965	6965	5398	12879	18626
1995.8	1000	4627	5587	32838	12184	6786	18560	5301	12356	14334	11357
1997.8	128	18951	2380	4341	17636	29299	12529	343	27038	5618	1182
1999.8	4597	44622	24176	29285	725	0	988	8243	1786	8323	1227
2002.8	1217	8112	909	16287	33965	23812	19822	238	4709	1190	11025

Tableau 6. Taux de capture à l'âge (unité arbitraire) calculés à partir des livres de bord des pêcheurs repères et de l'industrie de la Baie St-George depuis 1985.
 Table 6. Catch rates at age (arbitrary unit) calculated from the gillnet index-fishermen and industry logbooks of St George's Bay since 1985.

ANNÉE /	GROUPE D'ÂGE / AGE GROUP													
YEAR	3	4	5	6	7	8	9	10	11+	3+				
1005.4	2.52	24.16	2166.06	10.45.02	150.50	202.25	176.10	241.24	1022 11	6120.6				
1985.4	2.52	34.16	3166.06	1046.03	158.73	282.25	176.19	241.24	1032.44	6139.6				
1986.4	0.00	154.19	66.35	3090.49	1110.39	127.53	113.44	81.03	583.25	5326.6				
1987.4	0.00	21.37	1882.01	580.05	3926.01	355.24	35.21	1.47	179.50	6980.8				
1988.4	0.00	2.52	82.42	1430.50	442.79	1704.17	302.32	46.52	109.05	4120.2				
1989.4	2.90	47.83	62.14	411.05	1760.09	270.36	667.54	88.55	63.95	3374.4				
1990.4	9.02	31.65	51.23	77.89	275.63	1229.96	315.28	600.30	45.08	2636.0				
1991.4	0.00	21.51	45.18	55.87	307.52	663.85	1072.29	209.53	970.60	3346.3				
1992.4	3.66	85.01	676.42	129.87	145.02	347.52	436.91	696.53	419.13	2940.0				
1993.4	0.00	9.14	83.44	478.24	147.21	339.51	319.13	352.98	500.00	2229.6				
1994.4	0.00	20.39	46.77	158.86	526.75	105.74	204.22	256.92	307.95	1627.5				
1995.4	0.00	8.24	125.79	220.93	85.42	517.86	61.37	140.06	441.36	1601.0				
1996.4	0.00	3.61	37.69	568.00	352.25	108.24	482.47	37.10	187.30	1776.6				
1997.4	0.00	0.99	15.49	150.47	1051.56	418.46	149.52	349.29	240.74	2376.5				
1998.4	0.00	16.40	17.56	48.54	83.22	390.65	66.85	42.69	288.46	954.3				
1999.4	0.51	43.64	203.82	28.35	57.15	221.18	536.18	160.17	233.36	1484.3				
2000.4	0.00	97.98	449.92	882.81	49.11	76.26	172.76	451.89	287.52	2468.2				
2001.4	0.00	36.02	309.91	590.01	1298.65	59.00	81.67	244.08	483.19	3102.5				
2002.4	8.21	1.73	457.91	1454.52	1088.62	704.15	41.90	84.67	481.24	4322.9				

Tableau 7. Propriétés statistiques* des estimations d'abondance (en nombre 000's) pour le début de l'année 2003 et des constantes de calibration des taux de capture (pas d'unité) et du relevé acoustique pour les harengs reproducteurs de **printemps** de la Division 4R de l'OPANO.

Table 7. Statistical properties* of the population estimates for the beginning of 2003 (numbers in '000) and of the catch rates (unitless) and survey calibration constants for the <u>spring</u> spawner herring of NAFO Division 4R.

Age	Estimations /	Erreur-Type /	Coefficient	Biais /	Biais Relatif /	Biais Corrigé /
	Estimates	Standard Error	variation	Bias	Relative Bias	Corrected Bias
	Abondan	ce de la Populatio	n en 2003 / <i>Popu</i>	lation Abunda	nce in 2003	
3	20800	31000	1.492	9380	0.451	11420
4	66600	53100	0.798	16700	0.251	49900
5	1950	1620	0.829	408	0.209	1542
6	51900	27000	0.520	5030	0.097	46870
7	40400	18200	0.450	3780	0.094	36620
8	16900	7510	0.444	1620	0.096	15280
9	19100	8640	0.452	1730	0.091	17370
10	645	283	0.439	54.9	0.085	590.1
11 ⁺	5030	1530	0.304	151	0.03	4879
	Constantes de Ca	libration des Tau	x de Captures / (Catch Rates Ca	alibration Constan	ats
3	0.000	0.000	0.351	0.000	0.04	0.000
4	0.000	0.000	0.196	0.000	0	0.000
5	0.004	0.001	0.206	0.000	0.021	0.004
6	0.013	0.003	0.196	0.000	0.003	0.013
7	0.023	0.005	0.206	0.001	0.025	0.023
8	0.035	0.007	0.199	0.001	0.021	0.034
9	0.039	0.008	0.200	0.001	0.027	0.038
10	0.040	0.008	0.204	0.001	0.021	0.039
11 ⁺	0.042	0.009	0.211	0.002	0.036	0.041
	Constante	es de Calibration	des relevés / <i>Sur</i> v	eys Calibratio	n Constants	
2	0.056	0.023	0.406	0.004	0.067	0.053
3	0.304	0.115	0.379	0.011	0.036	0.293
4	0.596	0.208	0.349	0.034	0.057	0.562
5	0.364	0.131	0.360	0.024	0.066	0.340
6	0.849	0.306	0.361	0.039	0.046	0.810
7	1.120	0.451	0.404	0.074	0.067	1.046
8	1.050	0.382	0.363	0.064	0.061	0.986
9	0.794	0.282	0.355	0.047	0.060	0.747
10	2.790	1.010	0.364	0.225	0.081	2.565
11 ⁺	1.850	0.662	0.358	0.107	0.058	1.743

^{*} Provenant d'une analyse bootstrap avec n=1000 itérations / Obtained from a bootstrap analysis with n=1000 replications

Tableau 8. Matrice des corrélations entre les paramètres estimés par l'ASP pour les harengs reproducteurs de **printemps**.

**Table 8. Correlations matrix for the estimated parameters by the SPA for the **spring* spawner herring.

PARAMÈTRES /	ÂGE /			NON	ABRE /	NUMI	BER ('0	00s)			IND	ICE D	ES FIL	ETS M	AILLA	NTS /	GILLN.	ET INL)EX
PARAMETERS	AGE	3	4	5	6	7	8	9	10	11	3	4	5	6	7	8	9	10	11
N 1	3	1.000	0.003	0.010	0.097	0.010	0.072	0.013	0.055	0.036	-0.003	-0.027	-0.028	-0.017	-0.018	-0.012	-0.013	-0.010	-0.010
N 2	4	0.003	1.000	0.005	0.010	0.104	0.010	0.049	0.014	0.053	-0.310	-0.021	-0.022	-0.024	-0.014	-0.015	-0.013	-0.014	-0.014
N 3	5	0.010	0.005	1.000	0.031	0.026	0.070	0.024	0.055	0.048	-0.006	-0.183	-0.023	-0.021	-0.021	-0.015	-0.016	-0.013	-0.013
N 4	6	0.097	0.010	0.031	1.000	0.039	0.068	0.066	0.057	0.084	-0.010	-0.145	-0.153	-0.030	-0.029	-0.026	-0.023	-0.023	-0.023
N 5	7	0.010	0.104	0.026	0.039	1.000	0.043	0.061	0.065	0.090	-0.178	-0.117	-0.125	-0.136	-0.028	-0.027	-0.025	-0.024	-0.024
N 6	8	0.072	0.010	0.070	0.068	0.043	1.000	0.050	0.076	0.093	-0.011	-0.118	-0.116	-0.119	-0.132	-0.027	-0.027	-0.025	-0.025
N 7	9	0.013	0.049	0.024	0.066	0.061	0.050	1.000	0.055	0.127	-0.026	-0.104	-0.111	-0.113	-0.119	-0.131	-0.032	-0.034	-0.034
N 8	10	0.055	0.014	0.055	0.057	0.065	0.076	0.055	1.000	0.129	-0.016	-0.101	-0.100	-0.105	-0.109	-0.113	-0.128	-0.035	-0.035
N 9	11 ⁺	0.036	0.053	0.048	0.084	0.090	0.093	0.127	0.129	1.000	-0.048	-0.143	-0.149	-0.156	-0.170	-0.193	-0.223	-0.270	-0.270
q PR 10	3	-0.003	-0.310	-0.006	-0.010	-0.178	-0.011	-0.026	-0.016	-0.048	1.000	0.026	0.028	0.030	0.011	0.012	0.012	0.013	0.013
q PR 11	4	-0.027	-0.021	-0.183	-0.145	-0.117	-0.118	-0.104	-0.101	-0.143	0.026	1.000	0.069	0.057	0.050	0.044	0.040	0.038	0.038
q PR 12	5	-0.028	-0.022	-0.023	-0.153	-0.125	-0.116	-0.111	-0.100	-0.149	0.028	0.069	1.000	0.058	0.051	0.045	0.041	0.040	0.040
q PR 13	6	-0.017	-0.024	-0.021	-0.030	-0.136	-0.119	-0.113	-0.105	-0.156	0.030	0.057	0.058	1.000	0.053	0.047	0.043	0.042	0.042
q PR 14	7	-0.018	-0.014	-0.021	-0.029	-0.028	-0.132	-0.119	-0.109	-0.170	0.011	0.050	0.051	0.053	1.000	0.050	0.047	0.046	0.046
q PR 15	8	-0.012	-0.015	-0.015	-0.026	-0.027	-0.027	-0.131	-0.113	-0.193	0.012	0.044	0.045	0.047	0.050	1.000	0.052	0.052	0.052
q PR 16	9	-0.013	-0.013	-0.016	-0.023	-0.025	-0.027	-0.032	-0.128	-0.223	0.012	0.040	0.041	0.043	0.047	0.052	1.000	0.060	0.060
q PR 17	10	-0.010	-0.014	-0.013	-0.023	-0.024	-0.025	-0.034	-0.035	-0.270	0.013	0.038	0.040	0.042	0.046	0.052	0.060	1.000	0.073
q PR 18	11 ⁺	-0.010	-0.014	-0.013	-0.023	-0.024	-0.025	-0.034	-0.035	-0.270	0.013	0.038	0.040	0.042	0.046	0.052	0.060	0.073	1.000
q RV 19	2	-0.424	-0.007	-0.024	-0.229	-0.024	-0.169	-0.032	-0.130	-0.084	0.007	0.063	0.065	0.040	0.043	0.029	0.031	0.023	0.023
q RV 20	3	-0.007	-0.323	-0.012	-0.024	-0.190	-0.023	-0.144	-0.032	-0.138	0.125	0.048	0.051	0.054	0.037	0.041	0.032	0.037	0.037
q RV 21	4	-0.020	-0.007	-0.315	-0.028	-0.024	-0.169	-0.025	-0.131	-0.084	0.007	0.087	0.039	0.040	0.043	0.028	0.031	0.023	0.023
q RV 22	5	-0.028	-0.015	-0.016	-0.244	-0.028	-0.033	-0.163	-0.036	-0.156	0.011	0.064	0.067	0.040	0.043	0.046	0.036	0.042	0.042
q RV 23	6	-0.012	-0.027	-0.016	-0.021	-0.221	-0.025	-0.029	-0.150	-0.106	0.042	0.047	0.049	0.053	0.032	0.034	0.037	0.029	0.029
q RV 24	7	-0.018	-0.006	-0.018	-0.020	-0.015	-0.227	-0.019	-0.025	-0.085	0.006	0.035	0.035	0.036	0.040	0.019	0.020	0.023	0.023
q RV 25	8	-0.007	-0.016	-0.010	-0.023	-0.023	-0.021	-0.207	-0.026	-0.145	0.011	0.037	0.039	0.040	0.043	0.048	0.033	0.039	0.039
q RV 26	9	-0.015	-0.009	-0.016	-0.020	-0.023	-0.025	-0.025	-0.203	-0.140	0.009	0.035	0.036	0.038	0.040	0.044	0.050	0.038	0.038
q RV 27	10	-0.009	-0.013	-0.012	-0.021	-0.023	-0.024	-0.032	-0.033	-0.254	0.012	0.036	0.038	0.039	0.043	0.049	0.057	0.068	0.068
q RV 28	11 ⁺	-0.009	-0.013	-0.012	-0.021	-0.023	-0.024	-0.032	-0.033	-0.254	0.012	0.036	0.038	0.039	0.043	0.049	0.057	0.068	0.068

PARAMÈTRES /	ÂGE /			INDIC	E DU I	RELEV	É / SU	RVEYI	NDEX		
PARAMETERS	AGE	2	3	4	5	6	7	8	9	10	11
N 1	3	-0.424	-0.007	-0.020	-0.028	-0.012	-0.018	-0.007	-0.015	-0.009	-0.009
N 2	4	-0.007	-0.323	-0.007	-0.015	-0.027	-0.006	-0.016	-0.009	-0.013	-0.013
N 3	5	-0.024	-0.012	-0.315	-0.016	-0.016	-0.018	-0.010	-0.016	-0.012	-0.012
N 4	6	-0.229	-0.024	-0.028	-0.244	-0.021	-0.020	-0.023	-0.020	-0.021	-0.021
N 5	7	-0.024	-0.190	-0.024	-0.028	-0.221	-0.015	-0.023	-0.023	-0.023	-0.023
N 6	8	-0.169	-0.023	-0.169	-0.033	-0.025	-0.227	-0.021	-0.025	-0.024	-0.024
N 7	9	-0.032	-0.144	-0.025	-0.163	-0.029	-0.019	-0.207	-0.025	-0.032	-0.032
N 8	10	-0.130	-0.032	-0.131	-0.036	-0.150	-0.025	-0.026	-0.203	-0.033	-0.033
N 9	11 ⁺	-0.084	-0.138	-0.084	-0.156	-0.106	-0.085	-0.145	-0.140	-0.254	-0.254
q PR 10	3	0.007	0.125	0.007	0.011	0.042	0.006	0.011	0.009	0.012	0.012
q PR 11	4	0.063	0.048	0.087	0.064	0.047	0.035	0.037	0.035	0.036	0.036
q PR 12	5	0.065	0.051	0.039	0.067	0.049	0.035	0.039	0.036	0.038	0.038
q PR 13	6	0.040	0.054	0.040	0.040	0.053	0.036	0.040	0.038	0.039	0.039
q PR 14	7	0.043	0.037	0.043	0.043	0.032	0.040	0.043	0.040	0.043	0.043
q PR 15	8	0.029	0.041	0.028	0.046	0.034	0.019	0.048	0.044	0.049	0.049
q PR 16	9	0.031	0.032	0.031	0.036	0.037	0.020	0.033	0.050	0.057	0.057
q PR 17	10	0.023	0.037	0.023	0.042	0.029	0.023	0.039	0.038	0.068	0.068
q PR 18	11 ⁺	0.023	0.037	0.023	0.042	0.029	0.023	0.039	0.038	0.068	0.068
q RV 19	2	1.000	0.017	0.047	0.066	0.028	0.043	0.016	0.034	0.021	0.021
q RV 20	3	0.017	1.000	0.016	0.041	0.053	0.014	0.044	0.022	0.035	0.035
q RV 21	4	0.047	0.016	1.000	0.020	0.028	0.043	0.015	0.034	0.021	0.021
q RV 22	5	0.066	0.041	0.020	1.000	0.021	0.017	0.050	0.025	0.040	0.040
q RV 23	6	0.028	0.053	0.028	0.021	1.000	0.012	0.018	0.041	0.027	0.027
q RV 24	7	0.043	0.014	0.043	0.017	0.012	1.000	0.014	0.015	0.022	0.022
q RV 25	8	0.016	0.044	0.015	0.050	0.018	0.014	1.000	0.022	0.037	0.037
q RV 26	9	0.034	0.022	0.034	0.025	0.041	0.015	0.022	1.000	0.036	0.036
q RV 27	10	0.021	0.035	0.021	0.040	0.027	0.022	0.037	0.036	1.000	0.064
q RV 28	11 ⁺	0.021	0.035	0.021	0.040	0.027	0.022	0.037	0.036	0.064	1.000

Tableau 9. Abondance de la population (nombre en 000's) calculée selon une Analyse Séquentielle de Populations* pour les harengs reproducteurs de **printemps** de la Division 4R de l'OPANO.

Table 9. Population abundance (number in 000's) calculated from a Sequential Population Analysis* for the <u>spring</u> spawner herring of NAFO Division 4R.

ANNÉE /				GROU	PE D'ÂG	E / AGE (GROUP				
YEAR	2	3	4	5	6	7	8	9	10	11+	2+
1965	123259	52977	101971	28732	19232	7252	4503	1696	1080	1802	342504
1966	55248	100347	43308	83475	22898	14301	4774	3101	975	1628	330055
1967	78408	45129	81901	35208	67874	17104	7961	2040	1067	1218	337910
1968	157499	64195	36932	66641	28701	55283	10942	4057	548	467	425265
1969	74531	128873	52411	29965	54065	23315	44748	7949	1495	148	417500
1970	802360	60690	103950	40404	23607	43813	18850	36002	5374	203	1135253
1971	335956	655953	49174	84839	32687	19163	35803	15328	28966	3062	1260931
1972	61143	275058	534767	39987	68701	26112	15102	29006	12234	23817	1085927
1973	16139	49803	225000	430435	31558	54928	20255	11359	22505	26768	888750
1974	34688	11561	40382	183254	327263	23519	42064	13673	6964	30912	714280
1975	25194	28273	9230	32945	149700	259413	18969	33671	10496	28606	596497
1976	142666	20576	22249	7178	26883	121604	204778	15244	27264	31193	619635
1977	31734	116368	16232	17452	5695	21693	97031	153617	11796	41800	513418
1978	15573	25972	94791	12801	13919	4388	17447	75505	111383	36948	408727
1979	19663	12750	21222	75814	10294	10783	3375	12336	54420	103136	323793
1980	19333	15948	10417	17182	52318	7871	7859	2271	7608	109684	250491
1981	79860	15557	12286	8433	13747	30375	6077	5225	1637	76232	249429
1982	374296	65348	12361	8156	6788	10935	16905	4806	3813	51634	555042
1983	84308	305911	51359	9495	4477	5177	7016	8033	3301	32985	512062
1984	450954	68995	247781	38836	6754	2685	3974	5101	3899	21823	850802
1985	98092	369031	56097	195849	28362	4994	1468	3065	3571	16578	777107
1986	74726	79984	297995	45217	140839	19624	3687	860	2280	14564	679776
1987	56637	60889	63365	231557	34000	89420	11359	2600	554	12059	562440
1988	28070	45960	49554	49369	175818	24675	61545	7737	1964	9566	454258
1989	147188	22348	37142	40209	38199	130362	16891	38146	4068	7207	481760
1990	45166	120232	17779	29720	32504	28536	89884	11064	21437	7289	403611
1991	62242	36876	96509	13951	23967	25712	18854	58924	5677	15784	358496
1992	114480	50439	28177	70135	10264	18929	18331	9207	29138	9571	358671
1993	39785	93647	40173	21529	49728	7503	14597	12504	5589	17575	302630
1994	19112	32502	75234	29463	14557	34602	4786	10058	7785	8618	236717
1995	6320	15635	26311	59252	21253	8538	25234	2446	6804	10101	181894
1996	128700	5163	12578	20441	43327	12186	5057	14262	1836	6998	250548
1997	82360	104154	4004	9256	13087	28532	6203	3644	8718	5421	265379
1998	147568	67398	84365	3160	7344	9540	17428	3566	2461	7858	350688
1999	127798	120746	54405	62006	2233	5490	5884	7403	1892	4719	392576
2000	3885	104495	97220	41384	46632	1646	4354	4142	4683	4224	312665
2001	83355	3181	82749	73117	31891	34597	1250	3341	2703	5825	322009
2002	13925	68075	2438	64475	54055	22464	24905	892	2431	4812	258472
2003**	68749	11401	49893	1547	46915	36576	15292	17368	590	4881	253212

^{*} Ajustée pour le biais par une analyse bootstrap / Bias adjusted by a bootstrap analysis

^{**} Recrutement moyen attribué à l'âge 2 de la classe d'âge de 2001 / Mean recruitment attributed to age 2 of the 2001 year-class

Tableau 10. Biomasse (t) reproductrice de la population calculée selon une Analyse Séquentielle de Populations* pour les harengs reproducteurs de **printemps** de la Division 4R de l'OPANO.

Table 10. Population spawning biomass (t) calculated from a Sequential Population Analysis* for the **spring** spawner herring of NAFO Division 4R.

ANNÉE /	ANNÉE / GROUPE D'ÂGE / AGE GROUP										
YEAR	2	3	4	5	6	7	8	9	10	11+	2+
1965	0	1532	20768	8743	6284	2525	1626	656	459	766	43359
1966	0	2901	8820	25401	7482	4980	1724	1199	414	692	53614
1967	0	1305	21823	10980	22179	5956	2874	789	453	518	66877
1968	0	1856	6888	19017	8826	18432	3719	1454	210	182	60583
1969	0	4263	8885	7945	15500	7334	14442	2840	553	58	61821
1970	0	4992	20577	10418	6893	15690	7293	13981	2040	79	81963
1971	0	16412	7708	20863	8435	5490	10419	4827	9816	1194	85165
1972	0	771	88704	9898	20232	8434	4772	10367	4879	9290	157347
1973	0	1358	30873	102388	8291	17055	7023	3891	7852	10441	189171
1974	0	279	8112	41328	91830	7522	14127	4876	2607	12118	182798
1975	0	1779	1131	7881	40668	81757	6474	11770	3795	11186	166442
1976	0	1197	3701	1661	7253	34053	62588	5186	8927	10763	135328
1977	0	2735	3400	5122	1673	7171	31891	54643	4417	16464	127517
1978	0	2558	16314	3930	4632	1553	6260	28360	44030	15821	123457
1979	0	1264	4791	22088	3462	3937	1232	4974	21530	44787	108066
1980	0	3057	2758	5743	19991	3238	3494	1052	3482	55487	98302
1981	670	3138	3352	3019	5110	12474	2701	2311	741	36387	69904
1982	0	8076	3499	2683	2717	4533	7053	2253	1764	24890	57468
1983	0	7450	13525	3017	1648	2066	3039	3508	1524	16016	51793
1984	0	2190	44094	11569	2385	1075	1756	2231	1736	10587	77623
1985	0	3576	12805	58481	9804	1903	596	1443	1597	7822	98026
1986	0	6917	65913	12812	46149	6885	1597	383	1044	6623	148322
1987	0	3746	13031	68979	12184	34732	4412	1235	265	6344	144928
1988	0	4038	11368	13676	58641	9201	24350	3110	1029	4760	130172
1989	0	2085	8326	12072	12976	50073	6863	16413	1833	3688	114328
1990	0	14674	3906	9115	11273	10013	35557	4530	9835	3347	102250
1991	0	3024	20395	4083	8627	9483	8032	25569	2360	7631	89203
1992	0	2344	3800	15615	3189	6982	7221	3915	12556	4402	60025
1993	0	7093	8025	5506	14889	2353	5710	5386	2448	8399	59809
1994	0	3167	14757	6923	4349	13366	1840	4374	3358	4345	56478
1995	0	1875	4331	14293	6226	2831	9661	1036	3124	4979	48356
1996	0	392	2359	5218	13004	4205	1839	5882	767	3502	37168
1997	0	10535	844	2184	3706	8816	2136	1260	3329	2202	35011
1998	0	6328	13325	648	1935	2453	5623	1397	1031	3396	36136
1999	2224	10614	9826	13764	637	1706	2057	2854	875	2162	46718
2000	0	15852	20306	10387	13057	530	1426	1379	1803	1913	66654
2001	0	442	19612	18042	8961	10621	423	1363	1097	2540	63101
2002	0	12822	734	17795	16649	7773	8393	333	1048	2305	67851
2003	0	2147	15018	427	14450	12655	5153	6478	254	2338	58921
2000	3	217/	15010	127	11750	12000	5155	0770	237	2550	30721

^{*} Ajustée pour le biais par une analyse bootstrap / Bias adjusted by a bootstrap analysis

Tableau 11. Taux instantanés de mortalité par la pêche calculés selon une Analyse Séquentielle de Populations* pour les harengs reproducteurs de **printemps** de la Division 4R de l'OPANO ($F_{0.1}$ =0.3).

Table 11. Instantaneous rate of fishing mortality calculated from a Sequential Population Analysis* for the <u>spring</u> spawner herring of NAFO Division 4R ($F_{0.1}$ =0.3).

ANNÉE /		GROUPE D'ÂGE / AGE GROUP											
YEAR	2	3	4	5	6	7	8	9	10	11+	4+ **	8+**	
1965	0.006	0.002	0.000	0.027	0.096	0.218	0.173	0.354	0.371	0.371	0.040	0.27	
1966	0.002	0.003	0.007	0.007	0.092	0.386	0.650	0.867	0.559	0.559	0.090	0.69	
1967	0.000	0.000	0.006	0.004	0.005	0.247	0.474	1.114	1.387	1.387	0.067	0.75	
1968	0.001	0.003	0.009	0.009	0.008	0.011	0.120	0.798	1.729	1.729	0.040	0.39	
1969	0.005	0.015	0.060	0.038	0.010	0.013	0.017	0.191	1.891	1.891	0.049	0.09	
1970	0.001	0.010	0.003	0.012	0.009	0.002	0.007	0.017	0.400	0.400	0.015	0.04	
1971	0.000	0.004	0.007	0.011	0.025	0.038	0.011	0.026	0.096	0.096	0.025	0.04	
1972	0.005	0.001	0.017	0.037	0.024	0.054	0.085	0.054	0.098	0.098	0.027	0.08	
1973	0.134	0.010	0.005	0.074	0.094	0.067	0.193	0.289	0.266	0.266	0.073	0.25	
1974	0.004	0.025	0.004	0.002	0.032	0.015	0.023	0.064	0.081	0.081	0.024	0.05	
1975	0.002	0.040	0.051	0.003	0.008	0.036	0.019	0.011	0.026	0.026	0.024	0.01	
1976	0.004	0.037	0.043	0.031	0.014	0.026	0.087	0.056	0.135	0.135	0.069	0.09	
1977	0.000	0.005	0.037	0.026	0.061	0.018	0.051	0.121	0.172	0.172	0.095	0.10	
1978	0.000	0.002	0.023	0.018	0.055	0.062	0.147	0.127	0.163	0.163	0.108	0.15	
1979	0.009	0.002	0.011	0.171	0.068	0.116	0.196	0.283	0.162	0.162	0.154	0.17	
1980	0.017	0.061	0.011	0.023	0.344	0.059	0.208	0.128	0.231	0.231	0.223	0.22	
1981	0.001	0.030	0.210	0.017	0.029	0.386	0.035	0.115	0.211	0.211	0.208	0.19	
1982	0.002	0.041	0.064	0.400	0.071	0.244	0.544	0.176	0.319	0.319	0.303	0.35	
1983	0.000	0.011	0.079	0.141	0.311	0.064	0.119	0.523	0.308	0.308	0.191	0.31	
1984	0.000	0.007	0.035	0.114	0.102	0.404	0.060	0.157	0.239	0.239	0.067	0.20	
1985	0.004	0.014	0.016	0.130	0.168	0.103	0.335	0.096	0.125	0.125	0.113	0.13	
1986	0.005	0.033	0.052	0.085	0.254	0.347	0.149	0.240	0.134	0.134	0.124	0.14	
1987	0.009	0.006	0.050	0.075	0.121	0.174	0.184	0.080	0.077	0.077	0.098	0.12	
1988	0.028	0.013	0.009	0.057	0.099	0.179	0.278	0.443	0.270	0.270	0.128	0.29	
1989	0.002	0.029	0.023	0.013	0.092	0.172	0.223	0.376	0.236	0.236	0.154	0.31	
1990	0.003	0.020	0.042	0.015	0.034	0.214	0.222	0.467	0.399	0.399	0.189	0.28	
1991	0.010	0.069	0.119	0.107	0.036	0.138	0.517	0.504	0.607	0.607	0.269	0.52	
1992	0.001	0.028	0.069	0.144	0.113	0.060	0.183	0.299	0.590	0.590	0.223	0.43	
1993	0.002	0.019	0.110	0.191	0.163	0.250	0.172	0.274	0.789	0.789	0.253	0.48	
1994	0.001	0.011	0.039	0.127	0.333	0.116	0.471	0.191	0.285	0.285	0.132	0.28	
1995	0.002	0.017	0.052	0.113	0.356	0.323	0.370	0.087	0.682	0.682	0.247	0.47	
1996	0.011	0.052	0.104	0.245	0.217	0.475	0.127	0.292	0.288	0.288	0.247	0.26	
1997	0.000	0.010	0.035	0.030	0.115	0.292	0.352	0.192	0.386	0.386	0.236	0.34	
1998	0.001	0.013	0.101	0.139	0.088	0.280	0.652	0.431	0.578	0.578	0.229	0.60	
1999	0.001	0.015	0.068	0.078	0.098	0.031	0.149	0.254	0.244	0.244	0.092	0.22	
2000	0.000	0.028	0.077	0.055	0.089	0.069	0.062	0.222	0.219	0.219	0.084	0.18	
2001	0.002	0.049	0.041	0.091	0.134	0.113	0.124	0.112	0.356	0.356	0.093	0.27	
2002	0.000	0.065	0.161	0.093	0.160	0.157	0.133	0.183	0.180	0.180	0.132	0.14	

^{*} Ajustée pour le biais par une analyse bootstrap / Bias adjusted by a bootstrap analysis

^{**} Les taux aux âges 4+ et 8+ sont pondérés par les abondances en nombre / Rates at ages 4+ and 8+ are weighted by population numbers

Tableau 12. Capture commerciale à l'âge en nombre (000's) pour les harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO.

Table 12. Commercial catch at age in number (000's) for the <u>fall</u> spawner herring of NAFO Division 4R.

ANNÉE /	GROUPE D'ÂGE / AGE GROUP												
YEAR	2	3	4	5	6	7	8	9	10	11+	2+		
1973	0	1798	1180	1114	2626	1527	2631	3830	8265	17653	4062		
1974	0	20	393	530	325	592	258	308	313	5610	8349		
1975	0	19	40	865	925	107	157	147	218	3371	5849		
1976	0	48	272	290	422	561	325	253	88	4818	7077		
1977	0	3	169	134	404	721	405	342	293	6646	9117		
1978	0	10	27	545	393	1108	1689	503	341	6051	1066		
1979	0	7	116	345	2689	520	1287	1847	468	6286	1356		
1980	15	181	136	86	176	1729	250	675	308	5243	8799		
1981	0	33	524	245	90	295	1234	153	124	3369	606		
1982	101	567	1824	956	509	140	377	972	315	2609	8370		
1983	15	83	2330	1356	1309	506	159	467	618	2824	966		
1984	0	55	668	6259	1147	908	220	146	268	3091	1276		
1985	15	235	1340	1907	9678	902	622	115	36	468	1531		
1986	35	426	1431	2671	2292	8421	794	384	66	227	1674		
1987	0	156	487	1354	2009	1728	5927	474	163	196	1249		
1988	484	207	511	481	1240	1740	1667	4165	705	777	1197		
1989	43	599	539	923	807	749	828	961	2873	983	930		
1990	27	530	1568	424	306	429	384	839	481	4718	970		
1991	73	832	1278	5763	674	1501	919	649	2144	7124	2095		
1992	0	337	1446	1448	1236	775	543	779	390	3928	1088		
1993	21	210	672	1957	1015	1661	558	911	877	4608	1249		
1994	0	61	994	2777	4032	3104	2435	1630	1179	3999	2021		
1995	65	91	1419	6159	3512	3905	1211	3189	411	4246	2420		
1996	0	1969	1358	2531	8573	2304	3927	828	1968	3130	2658		
1997	0	593	1726	877	1086	7649	2193	4949	562	4200	2383		
1998	0	597	4802	8820	2995	2029	13268	1251	4289	4493	4254		
1999	0	989	10785	4245	4103	1178	858	4238	1096	2222	2971		
2000	572	359	3154	10673	3175	2854	998	352	5329	3807	3127		
2001	83	2503	589	4829	9608	3647	2607	532	546	2265	2720		
2002	0	216	6476	831	2147	3660	958	502	110	1305	1620		

Tableau 13. Poids commerciaux (kg) de la capture à l'âge des harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO.

Table 13. Commercial weight (kg) at age for the <u>fall</u> spawner herring of NAFO Division 4R.

ANNÉE /				GROU	PE D'ÂG	E / <i>AGE</i> (GROUP			
YEAR	2	3	4	5	6	7	8	9	10	11+
1973	0.100	0.105	0.156	0.231	0.274	0.297	0.329	0.334	0.346	0.38
1974	0.122	0.171	0.218	0.259	0.265	0.284	0.307	0.355	0.378	0.42
1975	0.122	0.120	0.188	0.266	0.297	0.352	0.323	0.370	0.391	0.46
1976	0.122	0.107	0.155	0.282	0.271	0.287	0.277	0.308	0.426	0.45
1977	0.122	0.250	0.229	0.250	0.255	0.301	0.321	0.308	0.330	0.42
1978	0.122	0.161	0.238	0.282	0.316	0.345	0.367	0.366	0.390	0.47
1979	0.122	0.218	0.216	0.281	0.308	0.355	0.381	0.405	0.408	0.45
1980	0.122	0.222	0.242	0.360	0.341	0.404	0.419	0.461	0.468	0.53
1981	0.144	0.204	0.280	0.328	0.358	0.406	0.436	0.485	0.498	0.51
1982	0.166	0.150	0.252	0.306	0.328	0.449	0.441	0.444	0.485	0.50
1983	0.105	0.205	0.218	0.268	0.309	0.338	0.374	0.430	0.462	0.50
1984	0.078	0.164	0.209	0.249	0.293	0.343	0.359	0.429	0.450	0.49
1985	0.050	0.155	0.202	0.258	0.292	0.326	0.347	0.374	0.444	0.43
1986	0.105	0.157	0.214	0.240	0.280	0.317	0.340	0.356	0.363	0.46
1987	0.110	0.187	0.235	0.272	0.319	0.334	0.363	0.364	0.392	0.51
1988	0.115	0.139	0.216	0.259	0.281	0.310	0.354	0.377	0.398	0.42
1989	0.115	0.139	0.216	0.259	0.281	0.310	0.354	0.377	0.398	0.42
1990	0.088	0.161	0.200	0.231	0.282	0.313	0.356	0.377	0.400	0.43
1991	0.068	0.104	0.220	0.204	0.299	0.322	0.363	0.381	0.415	0.42
1992	0.070	0.158	0.189	0.227	0.276	0.295	0.346	0.384	0.420	0.44
1993	0.072	0.121	0.188	0.197	0.252	0.296	0.324	0.369	0.410	0.43
1994	0.080	0.124	0.174	0.210	0.254	0.305	0.349	0.385	0.402	0.43
1995	0.089	0.127	0.197	0.207	0.242	0.303	0.331	0.355	0.397	0.43
1996	0.089	0.116	0.164	0.221	0.253	0.289	0.320	0.377	0.377	0.45
1997	0.089	0.143	0.193	0.217	0.269	0.303	0.318	0.374	0.430	0.45
1998	0.089	0.131	0.176	0.195	0.227	0.251	0.302	0.302	0.340	0.42
1999	0.089	0.134	0.173	0.222	0.244	0.295	0.314	0.360	0.358	0.41
2000	0.076	0.125	0.174	0.207	0.262	0.276	0.301	0.360	0.346	0.41
2001	0.086	0.143	0.187	0.225	0.262	0.302	0.320	0.353	0.392	0.42
2002	0.085	0.151	0.200	0.238	0.268	0.290	0.339	0.341	0.416	0.44

Tableau 14. Poids moyens (kg) à l'âge des échantillons provenant de la pêche automnale (quatrième trimestre) à la senne bourse des harengs d'automne de la division 4R de l'OPANO.
 Table 14. Mean weight (kg) at age of the samples from the fall (fourth quarter) purse seine fishery of fall spawner herring of NAFO Division 4R.

ANNÉE /				GR	OUPE D'	ÂGE / AC	GE GROU	P		
YEAR	2	3	4	5	6	7	8	9	10	11+
1973	0.112	0.163	0.203	0.224	0.267	0.278	0.330	0.303	0.331	0.377
1974	0.112	0.161	0.216	0.234	0.257	0.267	0.267	0.345	0.339	0.385
1975	0.112	0.179	0.219	0.230	0.257	0.267	0.272	0.312	0.294	0.371
1976	0.112	0.197	0.221	0.225	0.259	0.267	0.277	0.278	0.294	0.357
1977	0.112	0.179	0.196	0.244	0.279	0.331	0.314	0.315	0.294	0.408
1978	0.112	0.161	0.242	0.263	0.301	0.335	0.345	0.355	0.337	0.419
1979	0.122	0.218	0.238	0.262	0.292	0.351	0.360	0.332	0.382	0.431
1980	0.122	0.217	0.236	0.276	0.343	0.367	0.460	0.424	0.455	0.486
1981	0.122	0.215	0.275	0.288	0.342	0.395	0.411	0.401	0.480	0.483
1982	0.091	0.173	0.233	0.297	0.335	0.367	0.422	0.414	0.440	0.473
1983	0.091	0.172	0.226	0.272	0.305	0.320	0.331	0.408	0.414	0.474
1984	0.084	0.151	0.223	0.257	0.306	0.330	0.348	0.361	0.439	0.483
1985	0.057	0.154	0.216	0.258	0.293	0.318	0.344	0.361	0.377	0.441
1986	0.105	0.156	0.215	0.239	0.281	0.312	0.333	0.349	0.367	0.428
1987	0.100	0.180	0.228	0.257	0.311	0.333	0.361	0.384	0.403	0.499
1988	0.095	0.127	0.214	0.257	0.281	0.325	0.357	0.378	0.406	0.425
1989	0.089	0.169	0.212	0.249	0.303	0.332	0.372	0.391	0.416	0.456
1990	0.088	0.164	0.199	0.226	0.259	0.324	0.362	0.382	0.391	0.431
1991	0.068	0.166	0.214	0.243	0.289	0.336	0.375	0.398	0.416	0.441
1992	0.070	0.160	0.189	0.228	0.275	0.303	0.357	0.378	0.435	0.434
1993	0.072	0.127	0.174	0.201	0.258	0.295	0.315	0.361	0.363	0.415
1994	0.083	0.120	0.154	0.199	0.245	0.291	0.353	0.372	0.388	0.420
1995	0.094	0.125	0.174	0.193	0.225	0.276	0.299	0.330	0.370	0.421
1996	0.085	0.119	0.167	0.219	0.241	0.271	0.308	0.364	0.355	0.436
1997	0.076	0.127	0.159	0.190	0.225	0.262	0.286	0.326	0.349	0.391
1998	0.076	0.131	0.169	0.187	0.209	0.239	0.285	0.282	0.310	0.402
1999	0.076	0.131	0.157	0.137	0.228	0.265	0.283	0.282	0.339	0.402
2000	0.076	0.128	0.137	0.214	0.228	0.250	0.277	0.317	0.325	0.386
2000	0.081		0.186	0.207	0.248	0.230	0.279			
2001	0.079	0.141 0.143	0.171	0.207	0.254	0.275	0.303	0.332 0.313	0.356 0.404	0.370 0.418

Tableau 15. Proportion annuelle de la maturité à l'âge (deuxième trimestre) des harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO (senne bourse).

Table 15. Annual proportion of the maturity at age (second quarter) for the <u>fall</u> spawner herring of NAFO Division 4R (purse seine).

ANNÉE /				GROU	PE D'ÂG	E / AGE (GROUP			
YEAR	2	3	4	5	6	7	8	9	10	11+
1052	0.000	0.000	0.200	0.050	1 000	1 000	1.000	1.000	1.000	1.00
1973	0.000	0.000	0.308	0.850	1.000	1.000	1.000	1.000	1.000	1.00
1974	0.000	0.000	0.500	0.882	1.000	1.000 1.000	1.000	1.000	1.000	1.00
1975 1976	0.000	0.000	0.714	0.932	1.000 1.000	1.000	1.000 1.000	1.000	1.000 1.000	1.00
			0.893	1.000				1.000		1.00
1977	0.000	0.000	0.914	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1978	0.000	0.000	0.914	0.973	1.000	1.000	1.000	1.000	1.000	1.00
1979	0.000	0.000	0.914	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1980	0.000	0.108	0.871	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1981	0.000	0.400	0.972	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1982	0.000	0.400	0.969	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1983	0.000	0.048	0.867	0.990	1.000	1.000	1.000	1.000	1.000	1.00
1984	0.000	0.154	0.732	0.979	1.000	1.000	1.000	1.000	1.000	1.00
1985	0.000	0.000	0.543	0.990	1.000	1.000	1.000	1.000	1.000	1.00
1986	0.000	0.000	0.649	0.985	1.000	1.000	1.000	1.000	1.000	1.00
1987	0.000	0.143	0.867	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1988	0.000	0.000	0.563	0.938	1.000	1.000	1.000	1.000	1.000	1.00
1989	0.000	0.047	0.682	0.857	0.974	1.000	1.000	1.000	1.000	1.00
1990	0.000	0.048	0.727	0.667	1.000	1.000	1.000	1.000	1.000	1.00
1991	0.000	0.069	0.880	0.944	0.941	1.000	1.000	1.000	1.000	1.00
1992	0.000	0.325	0.824	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1993	0.000	0.077	0.947	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1994	0.000	0.500	0.694	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1995	0.000	0.500	0.884	0.959	1.000	1.000	1.000	1.000	1.000	1.00
1996	0.000	0.208	0.810	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1997	0.000	0.273	0.778	1.000	1.000	1.000	1.000	1.000	1.000	1.00
1998	0.000	0.025	0.878	0.953	1.000	1.000	1.000	1.000	1.000	1.00
1999	0.000	0.086	0.639	0.958	1.000	1.000	1.000	1.000	1.000	1.00
2000	0.000	0.400	0.667	0.980	1.000	1.000	1.000	1.000	1.000	1.00
2001	0.000	0.000	0.750	0.985	1.000	1.000	1.000	1.000	1.000	1.00
2002	0.000	0.000	0.828	0.947	1.000	1.000	1.000	1.000	1.000	1.00

Tableau 16. Abondance totale à l'âge (nombre en 000's) des harengs reproducteurs d'<u>automne</u> calculée à partir des relevés acoustiques réalisés dans la division 4R de l'OPANO depuis 1991.

Table 16. Total abundance at age (number in 000's) for the <u>fall</u> spawner herring calculated from the acoustic survey realised in NAFO Division 4R since 1991.

2										
	3	4	5	6	7	8	9	10	11+	2+
0	8841	37546	29664	12515	4207	12515	16616	4101	106938	232942
3054	42610	25955	33590	14213	36785	9533	5601	8996	31228	211566
0	7365	15411	59905	12296	20719	8609	16702	5713	36515	183236
119	3334	29209	12209	13805	69256	7892	17097	1849	36207	190978
838	19431	83377	42889	44183	10165	4585	52314	7335	26596	291712
1422	4451	66684	4943	24607	85516	32926	20979	3156	17721	262405
	3054 0 119 838	3054 42610 0 7365 119 3334 838 19431	3054 42610 25955 0 7365 15411 119 3334 29209 838 19431 83377	3054 42610 25955 33590 0 7365 15411 59905 119 3334 29209 12209 838 19431 83377 42889	3054 42610 25955 33590 14213 0 7365 15411 59905 12296 119 3334 29209 12209 13805 838 19431 83377 42889 44183	3054 42610 25955 33590 14213 36785 0 7365 15411 59905 12296 20719 119 3334 29209 12209 13805 69256 838 19431 83377 42889 44183 10165	3054 42610 25955 33590 14213 36785 9533 0 7365 15411 59905 12296 20719 8609 119 3334 29209 12209 13805 69256 7892 838 19431 83377 42889 44183 10165 4585	3054 42610 25955 33590 14213 36785 9533 5601 0 7365 15411 59905 12296 20719 8609 16702 119 3334 29209 12209 13805 69256 7892 17097 838 19431 83377 42889 44183 10165 4585 52314	3054 42610 25955 33590 14213 36785 9533 5601 8996 0 7365 15411 59905 12296 20719 8609 16702 5713 119 3334 29209 12209 13805 69256 7892 17097 1849 838 19431 83377 42889 44183 10165 4585 52314 7335	3054 42610 25955 33590 14213 36785 9533 5601 8996 31228 0 7365 15411 59905 12296 20719 8609 16702 5713 36515 119 3334 29209 12209 13805 69256 7892 17097 1849 36207 838 19431 83377 42889 44183 10165 4585 52314 7335 26596

Tableau 17. Propriétés statistiques* des estimations d'abondance (en nombre 000's) pour le début de l'année 2003 et des constantes de calibration des taux de capture (pas d'unité) et du relevé acoustique pour les harengs reproducteurs d'automne de la Division 4R de l'OPANO.

Table 17. Statistical properties* of the population estimates for the beginning of 2003 (numbers in '000) and of the catch rates (unitless) and survey calibration constants for the <u>fall</u> spawner herring of NAFO Division 4R.

Age	Estimations /	Erreur-Type /	Coefficient	Biais /	Biais Relatif /	Biais Corrigé /
	Estimates	Standard Error	variation	Bias	Relative Bias	Corrected Bias
	Abondan	ce de la Populatio	n en 2003 / <i>Popu</i>	lation Abundo	ince in 2003	
3	116000	137000	1.182	45500	0.392	70500
4	28100	35000	1.244	10800	0.382	17300
5	82000	87000	1.061	28300	0.345	53700
6	15700	13000	0.826	4160	0.265	11540
7	36800	27700	0.753	8100	0.22	28700
8	23400	19100	0.816	4560	0.195	18840
9	17000	11100	0.655	3490	0.205	13510
10	13300	9490	0.711	2120	0.159	11180
11 ⁺	21000	11400	0.541	2130	0.101	18870
	Constante	es de Calibration	des relevés / <i>Sur</i> v	eys Calibratio	on Constants	
2	0.012	0.006	0.508	0.001	0.081	0.011
3	0.152	0.057	0.374	0.004	0.029	0.148
4	0.771	0.271	0.352	0.032	0.042	0.739
5	0.622	0.203	0.327	0.003	0.005	0.619
6	0.907	0.324	0.357	0.031	0.035	0.876
7	1.090	0.372	0.342	0.041	0.037	1.049
8	1.180	0.415	0.352	0.057	0.048	1.123
9	1.440	0.483	0.336	0.071	0.049	1.369
10	1.270	0.450	0.353	0.065	0.051	1.205
11 ⁺	1.770	0.623	0.352	0.089	0.050	1.681

^{*} Provenant d'une analyse bootstrap avec n=1000 itérations / Obtained from a bootstrap analysis with n=1000 replications

Tableau 18. Matrice des corrélations entre les paramètres estimés par l'ASP pour les harengs reproducteurs d'<u>automne</u>. *Table 18. Correlations matrix for the estimated parameters by the SPA for the <u>fall</u> spawner herring.*

PARAMÈTRES /	ÂGE /		•	NON	MBRE /	NUMI	BER ('0	00s)				•	INDI	CE DU	RELE	VÉ / SU	RVEY	INDEX	7	
PARAMETERS	AGE	3	4	5	6	7	8	9	10	11	2	3	4	5	6	7	8	9	10	11
N 1	3	1.000	0.035	0.049	0.273	0.051	0.207	0.080	0.068	0.196	-0.575	-0.076	-0.109	-0.150	-0.087	-0.138	-0.104	-0.093	-0.115	-0.115
N 2	4	0.035	1.000	0.030	0.051	0.171	0.054	0.147	0.063	0.167	-0.060	-0.460	-0.067	-0.089	-0.112	-0.079	-0.110	-0.080	-0.097	-0.097
N 3	5	0.049	0.030	1.000	0.056	0.051	0.147	0.057	0.138	0.176	-0.086	-0.066	-0.454	-0.074	-0.096	-0.112	-0.089	-0.105	-0.103	-0.103
N 4	6	0.273	0.051	0.056	1.000	0.069	0.191	0.157	0.085	0.255	-0.475	-0.110	-0.124	-0.401	-0.113	-0.155	-0.149	-0.119	-0.148	-0.148
N 5	7	0.051	0.171	0.051	0.069	1.000	0.082	0.144	0.155	0.247	-0.088	-0.371	-0.112	-0.115	-0.401	-0.118	-0.143	-0.137	-0.144	-0.144
N 6	8	0.207	0.054	0.147	0.191	0.082	1.000	0.108	0.141	0.313	-0.359	-0.117	-0.323	-0.161	-0.145	-0.433	-0.160	-0.157	-0.182	-0.182
N 7	9	0.080	0.147	0.057	0.157	0.144	0.108	1.000	0.104	0.315	-0.139	-0.319	-0.125	-0.341	-0.156	-0.151	-0.409	-0.147	-0.183	-0.183
N 8	10	0.068	0.063	0.138	0.085	0.155	0.141	0.104	1.000	0.311	-0.118	-0.136	-0.303	-0.127	-0.350	-0.160	-0.158	-0.405	-0.181	-0.181
N 9	11*	0.196	0.167	0.176	0.255	0.247	0.313	0.315	0.311	1.000	-0.342	-0.363	-0.388	-0.400	-0.430	-0.470	-0.502	-0.461	-0.583	-0.583
q RV 10	2	-0.575	-0.060	-0.086	-0.475	-0.088	-0.359	-0.139	-0.118	-0.342	1.000	0.131	0.189	0.261	0.151	0.241	0.180	0.161	0.199	0.199
q RV 11	3	-0.076	-0.460	-0.066	-0.110	-0.371	-0.117	-0.319	-0.136	-0.363	0.131	1.000	0.146	0.194	0.244	0.172	0.239	0.174	0.212	0.212
q RV 12	4	-0.109	-0.067	-0.454	-0.124	-0.112	-0.323	-0.125	-0.303	-0.388	0.189	0.146	1.000	0.164	0.211	0.246	0.196	0.232	0.226	0.226
q RV 13	5	-0.150	-0.089	-0.074	-0.401	-0.115	-0.161	-0.341	-0.127	-0.400	0.261	0.194	0.164	1.000	0.178	0.199	0.261	0.185	0.233	0.233
q RV 14	6	-0.087	-0.112	-0.096	-0.113	-0.401	-0.145	-0.156	-0.350	-0.430	0.151	0.244	0.211	0.178	1.000	0.206	0.222	0.261	0.251	0.251
q RV 15	7	-0.138	-0.079	-0.112	-0.155	-0.118	-0.433	-0.151	-0.160	-0.470	0.241	0.172	0.246	0.199	0.206	1.000	0.237	0.221	0.274	0.274
q RV 16	8	-0.104	-0.110	-0.089	-0.149	-0.143	-0.160	-0.409	-0.158	-0.502	0.180	0.239	0.196	0.261	0.222	0.237	1.000	0.232	0.293	0.293
q RV 17	9	-0.093	-0.080	-0.105	-0.119	-0.137	-0.157	-0.147	-0.405	-0.461	0.161	0.174	0.232	0.185	0.261	0.221	0.232	1.000	0.269	0.269
q RV 18	10	-0.115	-0.097	-0.103	-0.148	-0.144	-0.182	-0.183	-0.181	-0.583	0.199	0.212	0.226	0.233	0.251	0.274	0.293	0.269	1.000	0.340
q RV 19	11 ⁺	-0.115	-0.097	-0.103	-0.148	-0.144	-0.182	-0.183	-0.181	-0.583	0.199	0.212	0.226	0.233	0.251	0.274	0.293	0.269	0.340	1.000

Tableau 19. Abondance de la population (nombre en 000's) calculée selon une Analyse Séquentielle de Populations* pour les harengs reproducteurs d'<u>automne</u> de la Division 4R de l'OPANO.

Table 19. Population abundance (number in 000's) calculated from a Sequential Population Analysis* for the <u>fall</u> spawner herring of NAFO Division 4R.

ANNÉE /				GROU	PE D'ÂG	E / AGE C	GROUP				
YEAR	2	3	4	5	6	7	8	9	10	11+	2+
1973	18236	28086	20414	13850	13048	5940	15890	14905	70270	150088	35072
1974	18517	14931	21373	15649	10335	8320	3491	10641	8763	157055	26907
1975	41887	15160	12206	17144	12334	8168	6278	2626	8434	130414	25465
1976	12032	34295	12395	9957	13255	9264	6591	4998	2017	110438	21524
1977	6244	9851	28035	9903	7891	10472	7078	5103	3864	87642	17608
1978	17463	5112	8063	22800	7986	6096	7923	5430	3869	68660	15340
1979	50112	14297	4176	6577	18175	6184	3994	4968	3992	53618	16609
1980	75673	41028	11699	3315	5073	12459	4594	2115	2413	41080	19944
1981	385586	61942	33427	9456	2636	3995	8643	3536	1127	30607	54095
1982	55836	315691	50684	26895	7520	2077	3005	5964	2757	22833	49326
1983	96201	45623	257954	39850	21157	5698	1574	2120	4008	18316	49250
1984	36034	78749	37278	209090	31402	16141	4209	1146	1316	15177	43054
1985	45130	29503	64425	29918	165538	24675	12395	3247	806	10482	38611
1986	56345	36936	23942	51536	22774	126798	19388	9587	2555	8787	35864
1987	27686	46099	29856	18311	39784	16579	96216	15157	7503	9022	30621
1988	105976	22667	37602	24004	13771	30759	12016	73427	11981	13205	34540
1989	39429	86329	18371	30325	19219	10156	23614	8336	56359	19283	31142
1990	136600	32243	70139	14554	23994	15006	7640	18586	5959	58451	38317
1991	75896	111814	25920	56009	11533	19369	11899	5908	14459	48045	38085
1992	242097	62073	90794	20068	40661	8835	14504	8913	4252	42827	53502
1993	50595	198212	50516	73030	15124	32174	6534	11384	6595	34651	47881
1994	30449	41404	162092	40752	58025	11467	24843	4847	8499	28828	41120
1995	109173	24929	33844	131812	30860	43869	6600	18144	2507	25896	42763
1996	94158	89325	20328	26428	102360	22100	32396	4314	11985	19061	42245
1997	136866	77090	71355	15418	19355	76073	16017	22984	2787	20828	45877
1998	99398	112056	62580	56862	11832	14867	55387	11138	14367	15050	45353
1999	28803	81381	91204	46904	38609	6996	10343	33419	7991	16201	36185
2000	112490	23582	65736	64949	34573	27910	4667	7694	23541	16817	38195
2001	26315	91582	18983	50973	43561	25442	20277	2923	5982	24824	31086
2002	86284	21470	72721	15010	37376	27016	17542	14250	1913	22687	
2003**	49287	70643	17383	53694	11539	28663	18818	13498	11214	18863	29360

^{*} Ajustée pour le biais par une analyse bootstrap / Bias adjusted by a bootstrap analysis

^{**} Recrutement moyen attribué à l'âge 2 de la classe d'âge de 2001 / Mean recruitment attributed to age 2 of the 2001 year-class

Tableau 20. Biomasse (t) reproductrice de la population calculée selon une Analyse Séquentielle de Populations* pour les harengs reproducteurs d<u>'automne</u> de la Division 4R de l'OPANO.

Table 20. Population spawning biomass (t) calculated from a Sequential Population Analysis* for the <u>fall</u> spawner herring of NAFO Division 4R.

ANNÉE /	GROUPE D'ÂGE / AGE GROUP											
YEAR	2	3	4	5	6	7	8	9	10	11+	2+	
1973	0	0	1277	2639	3480	1654	5240	4513	23228	56585	9861	
1974	0	0	2313	3235	2658	2219	933	3668	2968	60493	7848	
1975	0	0	1907	3668	3172	2179	1708	818	2476	48395	6432	
1976	0	0	2447	2239	3437	2477	1826	1391	592	39427	5383	
1977	0	0	5026	2416	2205	3471	2223	1607	1135	35725	5380	
1978	0	0	1786	5836	2402	2040	2734	1928	1304	28788	4681	
1979	0	0	907	1726	5309	2169	1437	1651	1525	23135	3785	
1980	0	960	2401	914	1741	4569	2112	897	1099	19977	3467	
1981	0	5327	8936	2725	902	1578	3552	1416	540	14782	3975	
1982	0	21862	11433	8001	2520	763	1269	2467	1214	10808	6033	
1983	0	375	50523	10737	6452	1821	522	864	1659	8687	8163	
1984	0	1834	6098	52711	9604	5322	1465	414	577	7329	8535	
1985	0	0	7542	7627	48493	7846	4264	1172	304	4623	8187	
1986	0	0	3345	12127	6401	39547	6461	3345	938	3759	7592	
1987	0	1189	5911	4712	12354	5521	34775	5821	3025	4505	7781	
1988	0	0	4533	5782	3867	9989	4284	27734	4869	5607	6666	
1989	0	678	2655	6462	5663	3374	8787	3259	23424	8788	6309	
1990	0	251	10133	2194	6210	4867	2766	7102	2332	25219	6107	
1991	0	1280	4876	12853	3134	6502	4457	2349	6018	21206	6267	
1992	0	3230	14130	4578	11175	2679	5172	3371	1850	18593	6477	
1993	0	1939	8348	14648	3894	9482	2059	4105	2391	14368	6123	
1994	0	2474	17322	8096	14192	3334	8775	1804	3297	12118	7141	
1995	0	1561	5207	24351	6943	12106	1975	5986	926	10894	6994	
1996	0	2208	2744	5798	24640	5986	9973	1568	4254	8303	6547	
1997	0	2669	8845	2935	4348	19906	4587	7485	973	8145	5989	
1998	0	367	9293	10112	2474	3560	15769	3136	4456	6049	5521	
1999	0	900	9137	9600	8800	1853	3072	10607	2706	6461	5313	
2000	0	1443	8155	13176	8574	6978	1302	2408	7651	6491	5617	
2001	0	0	2435	10393	11064	6997	6144	970	2130	9185	4931	
2002	0	0	12344	3355	10017	7240	5701	4460	773	9483	5337	
2003	0	0	2951	12000	3092	7682	6116	4225	4530	7885	4848	

^{*} Ajustée pour le biais par une analyse bootstrap / Bias adjusted by a bootstrap analysis

Tableau 21. Taux instantanés de mortalité par la pêche calculés selon une Analyse Séquentielle de Populations* pour les harengs reproducteurs d'<u>automne</u> de la Division 4R de l'OPANO (F_{0.1}=0.3).

Table 21. Instantaneous rate of fishing mortality calculated from a Sequential Population Analysis* for the <u>fall</u> spawner herring of NAFO Division 4R ($F_{0.1} = 0.3$).

ANNÉE /			GF	ROUPE	D'ÂG	E/AGI	E GRO	U P				
YEAR	2	3	4	5	6	7	8	9	10	11+	4+ **	8+**
1973	0.000	0.073	0.066	0.093	0.250	0.331	0.201	0.331	0.139	0.139	0.153	0.154
1974	0.000	0.001	0.020	0.038	0.035	0.082	0.085	0.032	0.040	0.040	0.040	0.040
1975	0.000	0.001	0.004	0.057	0.086	0.015	0.028	0.064	0.029	0.029	0.033	0.030
1976	0.000	0.002	0.024	0.033	0.036	0.069	0.056	0.057	0.049	0.049	0.047	0.050
1977	0.000	0.000	0.007	0.015	0.058	0.079	0.065	0.077	0.087	0.087	0.065	0.085
1978	0.000	0.002	0.004	0.027	0.056	0.223	0.267	0.108	0.102	0.102	0.096	0.118
1979	0.000	0.001	0.031	0.060	0.178	0.097	0.435	0.522	0.138	0.138	0.164	0.184
1980	0.000	0.005	0.013	0.029	0.039	0.166	0.062	0.430	0.151	0.151	0.124	0.155
1981	0.000	0.001	0.017	0.029	0.038	0.085	0.171	0.049	0.129	0.129	0.075	0.131
1982	0.002	0.002	0.040	0.040	0.077	0.077	0.149	0.197	0.134	0.134	0.073	0.146
1983	0.000	0.002	0.010	0.038	0.071	0.103	0.118	0.277	0.186	0.186	0.032	0.189
1984	0.000	0.001	0.020	0.034	0.041	0.064	0.059	0.151	0.253	0.253	0.047	0.210
1985	0.000	0.009	0.023	0.073	0.066	0.041	0.057	0.040	0.050	0.050	0.055	0.052
1986	0.001	0.013	0.068	0.059	0.117	0.076	0.046	0.045	0.029	0.029	0.070	0.04
1987	0.000	0.004	0.018	0.085	0.057	0.122	0.070	0.035	0.024	0.024	0.060	0.060
1988	0.005	0.010	0.015	0.022	0.104	0.064	0.165	0.064	0.067	0.067	0.059	0.076
1989	0.001	0.008	0.033	0.034	0.047	0.084	0.039	0.135	0.058	0.058	0.053	0.060
1990	0.000	0.018	0.025	0.033	0.014	0.032	0.057	0.051	0.093	0.093	0.049	0.08
1991	0.001	0.008	0.056	0.119	0.066	0.089	0.089	0.128	0.177	0.177	0.122	0.160
1992	0.000	0.006	0.018	0.082	0.034	0.101	0.042	0.101	0.106	0.106	0.052	0.092
1993	0.000	0.001	0.014	0.030	0.076	0.058	0.098	0.092	0.157	0.157	0.061	0.138
1994	0.000	0.002	0.007	0.076	0.079	0.350	0.113	0.456	0.164	0.164	0.071	0.166
1995	0.001	0.004	0.044	0.051	0.130	0.102	0.222	0.212	0.196	0.196	0.094	0.205
1996	0.000	0.022	0.074	0.103	0.094	0.117	0.140	0.232	0.195	0.195	0.117	0.17
1997	0.000	0.007	0.024	0.063	0.058	0.113	0.155	0.262	0.243	0.243	0.109	0.22
1998	0.000	0.005	0.076	0.162	0.312	0.145	0.288	0.124	0.376	0.376	0.199	0.29
1999	0.000	0.010	0.122	0.088	0.102	0.191	0.083	0.138	0.150	0.150	0.118	0.13
2000	0.003	0.011	0.040	0.166	0.086	0.093	0.240	0.043	0.249	0.249	0.124	0.213
2001	0.001	0.016	0.022	0.075	0.205	0.127	0.107	0.186	0.086	0.086	0.113	0.099
2002	0.000	0.004	0.048	0.038	0.040	0.091	0.041	0.024	0.050	0.050	0.049	0.04

^{*} Ajustée pour le biais par une analyse bootstrap / Bias adjusted by a bootstrap analysis

^{**} Les taux aux âges 4+ et 8+ sont pondérés par les abondances en nombre / Rates at ages 4+ and 8+ are weighted by population numbers

Figure 1. Carte des zones unitaires de la division 4R de l'OPANO (zone colorée) de la côte ouest de Terre-Neuve / Map of unit areas of NAFO Division 4R (coloured area) on the west coast of Newfoundland.

Figure 2. Capture à l'âge (%) commerciale en 2002 (A) et classes d'âge dominantes observées chez les harengs reproducteurs de **printemps** depuis 1965 (B) / Commercial catch at age (%) in 2002 (A) and dominant year-classes observed for the **spring** spawner herring since 1965 (B).

Figure 3. Capture (t) commerciale totale (A) et âge moyen (B) de la capture pour les harengs reproducteurs de **printemps** de la division 4R de l'OPANO / *Total commercial catch (t) (A) and mean age of the catch (B) for the spring spawner herring of NAFO Division 4R*.

Figure 4. Poids moyens (kg) à l'âge de la pêche (A) et du quatrième trimestre (B) et maturité à l'âge (C) pour les harengs reproducteurs de **printemps** de la division 4R de l'OPANO / Mean weight (kg) at age from the fishery (A) and fourth quarter (B) and maturity at age (C) for the **spring** spawner herring of NAFO Division 4R.

Figure 4. (Suite / Continued).

(A) RELEVÉ DE RECHERCHE -ABONDANCE EN NOMBRES-/ RESEARCH SURVEY -ABUNDANCE IN NUMBERS-

(B) NOMBRE À L'ÂGE / NUMBER AT AGE (000's)

Figure 5. Résultats des relevés acoustiques pour les harengs reproducteurs de **printemps** de la division 4R: A- Nombre total (000's), B- Nombre (000's) à l'âge (les classses d'âge dominantes sont présentées) et C- Biomasse totale (t) et erreur-types / Results of the Acoustic surveys for the **spring** spawner herring of NAFO Division 4R: A- Total number (000's), B- Number (000's) at age (strong year-classes indicated), and C- Total biomass (t) and standard errors.

Figure 5. (Suite / Continued).

(A) LIVRES DE BORD DES FILETS MAILLANTS / GILLNET LOGBOOKS

Figure 6. Taux de capture normalisés (unité arbitraire) et erreur-types par année (A) et à l'âge (B) pour les harengs reproducteurs de **printemps** de la baie St-George (les classes d'âges dominantes sont aussi indiquées) / Normalized catch rates (arbitrary unit) and standard errors by year (A) and age (B) for the **spring** spawner herring of St George's Bay (dominant year-classes are also indicated).

Figure 7. Résidus annuels (A) et par groupe d'âge des harengs reproducteurs de **printemps** pour les indices reliés au relevé de recherche (B) et à la pêche aux filets maillants (C) (les cercles foncés représentent les valeurs positives, et les cercles blancs les valeurs négatives; la taille des valeurs est représentée par le diamètre des cercles) / **Spring** spawner herring annual (A) and by age-group residuals for the research survey (B) and gillnet fishery (C) (dark circles indicate positive values, and white negative values; circles diameter is proportional to the values magnitude).

Figure 8. Graphiques par groupe d'âge des valeurs observées et prédites des Ln de l'indice d'abondance du relevé de recherche versus les Ln de la population en nombre pour les harengs reproducteurs de **printemps** de la Division 4R de l'OPANO (les années sont aussi représentées) / Age by age plots of the observed and predicted Ln abundance index from the research survey versus Ln population numbers for the spring spawner herring of NAFO Division 4R (years are also indicated).

Figure 8. (Suite / Continued).

Figure 9. Graphiques par groupe d'âge des valeurs observées et prédites des Ln de l'indice d'abondance des filets maillants versus les Ln de la population en nombre pour les harengs reproducteurs de **printemps** de la Division 4R de l'OPANO (les années sont aussi représentées) / Age by age plots of the observed and predicted Ln abundance index from the gillnet fishery versus Ln population numbers for the **spring** spawner herring of NAFO Division 4R (years are also indicated).

ÂGE/AGE 9

ÂGE / AGE 10

$\hat{A}GE/AGE$ 11⁺

Figure 9. (Suite / Continued).

Figure 10. Estimations successives de l'abondance en nombre (A) et en tonnes (B) des classes d'âge (à l'âge 2) qui ont dominé depuis 1965 la pêche des harengs reproducteurs de **printemps** dans la division 4R de l'OPANO / Successive estimates of the abundance in numbers (A) and in tonnes (B) of the year-classes (at age 2) that have dominated the **spring** spawner herring fishery in NAFO Division 4R since 1965.

Figure 11. Estimations rétrospectives de l'abondance en nombres (000's) des groupes d'âge 2+ (A) et estimations successives des nombres (B) pour les harengs reproducteurs de **printemps** de la division 4R de l'OPANO / Retrospective estimates of the age groups 2+ numbers (A) and successive estimates of the numbers (B) for the **spring** spawner herring of NAFO Division 4R.

Figure 12. Estimations rétrospectives par groupe d'âge de l'abondance en nombres (000's) des harengs reproducteurs de **printemps** de la division 4R de l'OPANO (les classes d'âge abondantes sont aussi représentées) / Retrospective estimates by age group of the abundance in numbers (000's) of the **spring** spawner herring of NAFO Division 4R (dominant year-classes are also indicated).

Figure 12. (Suite / Continued).

Figure 13. Estimations rétrospectives de la biomasse reproductrives des groupes d'âge 2+ (A) et estimations successives de la biomasse (B) pour les harengs reproducteurs de **printemps** de la division 4R de l'OPANO / Retrospective estimates of the age groups 2+ spawning biomass (A) and successive estimates of the biomass (B) for the **spring** spawner herring of NAFO Division 4R.

MORTALITÉ PAR LA PÊCHE / FISHING MORTALITY

TAUX D'EXPLOITATION / EXPLOITATION RATE

Figure 14. Estimations rétrospectives des taux instantanés de mortalité par la pêche F (A) et d'exploitation (B) pour les groupes d'âge 2+ des harengs reproducteurs de <u>printemps</u> de la division 4R de l'OPANO (les taux de mortalité ont été pondérés par l'abondance de la population en nombres) / Retrospective estimates of the instantaneous rates of fishing mortality F (A) and exploitation (B) for the age groups 2+ of the <u>spring</u> spawner herring of NAFO Division 4R (mortality rates have been weighted by the population numbers).

Figure 15. Biomasse reproductrice, nombre total (A), taux de recrutement (B) et recrutement (C) à l'âge 2 des harengs reproducteurs de **printemps** de la division 4R de l'OPANO calculés selon l'ASP pour la période de 1965 à 2003 (préliminaire pour 2003) / Spawning biomass, total numbers (A), recruitment rates (B) and recruitment at age 2 (C) for the **spring** spawner herring of NAFO Division 4R calculated by the SPA for the years 1965 to 2003 (preliminary data for 2003).

Note: Les lignes horizontales représentent 3 niveaux de recrutement: bas, moyen, et élevé (un recrutement moyen a été attribué à la classe d'âge de 2001) / The horizontal lines represent three levels of recruitment: low, average and high (the 2001 year-class has been set at an average recruitment level).

Figure 15. (Suite / Continued).

Figure 16. Taux instantanés de mortalité par la pêche (âges 4+ et 8+ pondérés par les nombres à l'âge) pour les harengs reproducteurs de **printemps** de la division 4R de l'OPANO / Instantaneous fishing mortality rates (ages 4+ and 8+ weighted by the numbers at age) for the **spring** spawner herring of NAFO Division 4R.

Figure 17. Déclin de l'abondance en nombre (000's) des harengs reproducteurs de **printemps** des classes d'âge suivantes: (A) 1963 à 1969, (B) 1970 à 1979, (C) 1980 à 1989, et (D) 1990 à 1999 / Decay of the abundance in number (000's) of the following **spring** spawner herring year-classes: (A) 1963 to 1969, (B) 1970 to 1979, (C) 1980 to 1989, and (D) 1990 to 1999.

Note: Les classes d'âge les plus importantes sont aussi identifiées / *The most important year-classes are also specified.*

Figure 17. (Suite / Continued).

Figure 18. Capture à l'âge (%) commerciale en 2002 (A) et classes d'âge dominantes observées chez les harengs reproducteurs <u>d'automne</u> depuis 1973 (B) / Commercial catch at age (%) in 2002 (A) and dominant year-classes observed for the <u>fall</u> spawner herring since 1973 (B).

Figure 19. Capture (t) commerciale totale (A) et âge moyen (B) de la capture pour les harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO / *Total commercial catch (t) (A) and mean age of the catch (B) for the <u>fall</u> spawner herring of NAFO Division 4R.*

Figure 20. Poids moyens (kg) à l'âge de la pêche (A) et du quatrième trimestre (B) et maturité à l'âge (C) pour les harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO / Mean weight (kg) at age from the fishery (A) and fourth quarter (B) and maturity at age (C) for the <u>fall</u> spawner herring of NAFO Division 4R.

Figure 20. (Suite / Continued).

(A) RELEVÉ DE RECHERCHE -ABONDANCE EN NOMBRES-/ RESEARCH SURVEY -ABUNDANCE IN NUMBERS-

(B) NOMBRE À L'ÂGE / NUMBER AT AGE (000's)

Figure 21. Résultats des relevés acoustiques pour les harengs reproducteurs d'<u>automne</u> de la division 4R: A- Nombre total (000's), B- Nombre (000's) à l'âge (les classses d'âge dominantes sont présentées) et C- Biomasse totale (t) et erreur-types / Results of the Acoustic surveys for the <u>fall</u> spawner herring of NAFO Division 4R: A- Total number (000's), B- Number (000's) at age (strong year-classes indicated), and C-Total biomass (t) and standard errors.

Figure 21. (Suite / Continued).

Figure 22. Résidus annuels (A) et par groupe d'âge des harengs reproducteurs <u>d'automne</u> pour l'indice du relevé de recherche (B) (les cercles foncés représentent les valeurs positives, et les cercles blancs les valeurs négatives; la taille des valeurs est représentée par le diamètre des cercles) / <u>Fall</u> spawner herring annual (A) and by age-group residuals for the research survey (B) (dark circles indicate positive values, and white negative values; circles diameter is proportional to the values magnitude).

Figure 23. Graphiques par groupe d'âge des valeurs observées et prédites des Ln de l'indice d'abondance du relevé de recherche versus les Ln de la population en nombre pour les harengs reproducteurs d'automne de la Division 4R de l'OPANO (les années sont aussi représentées) / Age by age plots of the observed and predicted Ln abundance index from the research survey versus Ln population numbers for the fall spawner herring of NAFO Division 4R (years are also indicated).

Figure 23. (Suite / Continued).

Figure 24. Estimations successives de l'abondance en nombre (A) et en tonnes (B) des classes d'âge (à l'âge 2) qui ont dominé depuis 1973 la pêche des harengs reproducteurs d'<u>automne</u> dans la division 4R de l'OPANO / Successive estimates of the abundance in numbers (A) and in tonnes (B) of the year-classes (at age 2) that have dominated the <u>fall</u> spawner herring fishery in NAFO Division 4R since 1973.

Figure 25. Estimations rétrospectives de l'abondance en nombres (000's) des groupes d'âge 2+ (A) et estimations successives des nombres (B) pour les harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO / Retrospective estimates of the age groups 2+ numbers (A) and successive estimates of the numbers (B) for the <u>fall</u> spawner herring of NAFO Division 4R.

Figure 26. Estimations rétrospectives par groupe d'âge de l'abondance en nombres (000's) des harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO (les classes d'âge abondantes sont aussi représentées) / Retrospective estimates by age group of the abundance in numbers (000's) of the <u>fall</u> spawner herring of NAFO Division 4R (dominant year-classes are also indicated).

Figure 26. (Suite / Continued).

Figure 27. Estimations rétrospectives de la biomasse reproductrives des groupes d'âge 2+ (A) et estimations successives de la biomasse (B) pour les harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO / Retrospective estimates of the age groups 2+ spawning biomass (A) and successive estimates of the biomass (B) for the <u>fall</u> spawner herring of NAFO Division 4R.

MORTALITÉ PAR LA PÊCHE / FISHING MORTALITY

TAUX D'EXPLOITATION / EXPLOITATION RATE

Figure 28. Estimations rétrospectives des taux instantanés de mortalité par la pêche F (A) et d'exploitation (B) pour les groupes d'âge 2+ des harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO (les taux de mortalité ont été pondérés par l'abondance de la population en nombres) / Retrospective estimates of the instantaneous rates of fishing mortality F (A) and exploitation (B) for the age groups 2+ of the <u>fall</u> spawner herring of NAFO Division 4R (mortality rates have been weighted by the population numbers).

Figure 29. Biomasse reproductrice, nombre total (A), taux de recrutement (B) et recrutement (C) à l'âge 2 des harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO calculés selon l'ASP pour la période de 1973 à 2003 (préliminaire pour 2003) / Spawning biomass, total numbers (A), recruitment rates (B) and recruitment at age 2 (C) for the <u>fall</u> spawner herring of NAFO Division 4R calculated by the SPA for the years 1973 to 2003 (preliminary data for 2003).

Note: Les lignes horizontales représentent 3 niveaux de recrutement: bas, moyen, et élevé (un recrutement moyen a été attribué à la classe d'âge de 2001) / The horizontal lines represent three levels of recruitment: low, average and high (the 2001 year-class has been set at an average recruitment level).

Figure 29. (Suite / Continued).

Figure 30. Taux instantanés de mortalité par la pêche (âges 4+ et 8+ pondérés par les nombres à l'âge) pour les harengs reproducteurs d'<u>automne</u> de la division 4R de l'OPANO / Instantaneous fishing mortality rates (ages 4+ and 8+ weighted by the numbers at age) for the <u>fall</u> spawner herring of NAFO Division 4R.

Figure 31. Déclin de l'abondance en nombre (000's) des harengs reproducteurs d'<u>automne</u> des classes d'âge suivantes: (A) 1973 à 1979, (B) 1980 à 1989, et (C) 1990 à 1999 / Decay of the abundance in number (000's) of the following <u>fall</u> spawner herring year-classes: (A) 1973 to 1979, (B) 1980 to 1989, and (C) 1990 to 1999.

Figure 32. Analyse de risques pour des changements de biomasse mature (SSB) des harengs reproducteurs de **printemps** selon le niveau des captures de 2003 (la probabilité de dépasser F_{0,1} pour un TAC donné est indiquée par la ligne pointillée) / Risk analysis for changes in mature biomass (SSB) of **spring** spawning herring, by 2003 catch level (probability of exceeding F_{0.1} for a given TAC is indicated by the dotted line).

Figure 33. Relation stock-recrutement pour les harengs reproducteurs de **printemps** (la biomasse de 2003 est indiquée de même que \mathbf{B}_{LIM} et \mathbf{B}_{BUF}) / Stock-recruitment ratio for **spring** spawner herring (2003 biomass is indicated, as well as \mathbf{B}_{LIM} and \mathbf{B}_{BUF}).

Figure 34. Analyse de risques pour des changements de biomasse mature (SSB) des harengs reproducteurs d'<u>automne</u> selon le niveau des captures de 2003 (la probabilité de dépasser F_{0,1} pour un TAC donné est indiquée par la ligne pointillée) / Risk analysis for changes in mature biomass (SSB) of <u>fall</u> spawning herring, by 2003 catch level (probability of exceeding F_{0.1} for a given TAC is indicated by the dotted line).

Figure 35. Relation stock-recrutement pour les harengs reproducteurs d'<u>automne</u> (la biomasse de 2003 est indiquée de même que $\mathbf{B_{LIM}}$ et $\mathbf{B_{BUF}}$ / Stock-recruitment ratio for <u>fall</u> spawner herring (2003 biomass is indicated, as well as $\mathbf{B_{LIM}}$ and $\mathbf{B_{BUF}}$).

Annexe 1. Résultats du modèle multiplicatif pour la standardisation des taux de capture* de la pêche commerciale aux filets maillants sur la côte ouest de Terre-Neuve pour 1985-2002 (reproducteurs de printemps).

Annex 1. Results of the multiplicative model used for the standardization of the catch rates** from the commercial gillnet fishery on the west coast of Newfoundland for 1985-2002 (spring spawners).

MOIS / MONTH	Fréquence / Frequency	Pourcentage / Percent	Fréquence Cumulative / Cumulative Frequency	Pourcentage Cumulatif Cumulative Percent
4	386	7.6	386	7.6
5	2108	41.8	2494	49.4
6	972	19.3	3466	68.7
7	279	5.5	3745	74.2
8	873	17.3	4618	91.5
9	377	7.5	4995	99.0
10	43	0.9	5038	99.8
11	10	0.2	5048	100.0

			Fréquence	Pourcentage
			Cumulative /	Cumulatif
ZONE DE PÊCHE /	Fréquence /	Pourcentage /	Cumulative	Cumulative
FISHING AREA	Frequency I	Percent	Frequency	Percent
ROBINSONS	375	7.4	375	7.4
FISCHELLS	255	5.1	630	12.5
JOURNOIS	85	1.7	715	14.2
MIDDLE BROOK	21	0.4	736	14.6
ST.TERESA	168	3.3	904	17.9
SANDY POINT	801	15.9	1705	33.8
ST-GEORGES	280	5.5	1985	39.3
KIPPENS	67	1.3	2052	40.6
SHIP COVE	7	0.1	2059	40.8
LOWER COVE	8	0.2	2067	40.9
BARACHOIS BROOK	134	2.7	2201	43.6
LOURDES	415	8.2	2616	51.8
BLACK DUCK BROOK	449	8.9	3065	60.7
LONG PT. (BAY)	442	8.8	3507	69.5
CASTOR RIVER	43	0.9	3550	70.3
FERROLE POINT	793	15.7	4343	86.0
WHALE ISLAND	12	0.2	4355	86.3
EDDIES COVE E	693	13.7	5048	100.0

			Frèquence	Pourcentage
			Cumulative /	Cumulatif
ANNÉE /	Fréquence / Pource	entage /	Cumulative	Cumulative
YEAR	Frequency Percent		Frequency	Percent
1985	204	4.0	204	4.0
1986	225	4.5	429	8.5
1987	307	6.1	736	14.6
1988	355	7.0	1091	21.6
1989	303	6.0	1394	27.6
1990	267	5.3	1661	32.9
1991	227	4.5	1888	37.4
1992	247	4.9	2135	42.3
1993	290	5.7	2425	48.0
1994	274	5.4	2699	53.5
1995	337	6.7	3036	60.1
1996	294	5.8	3330	66.0
1997	268	5.3	3598	71.3
1998	130	2.6	3728	73.9
1999	403	8.0	4131	81.8
2000	375	7.4	4506	89.3
2001	309	6.1	4815	95.4
2002	233	4.6	5048	100.0

^{*} Capture / (Surface x heures) ** Catch / (Surface x hours)

Source	$\mathrm{DL}/\!DF$	Carrés / Squares	SC / SS	F Moyen / Mean F	Pr > F
Modèle / Model	41	12266.48887	299.18266	119.99	0.0001
Erreur / Error	5006	12481.73586	2.49336		
Total Corrigé /	5047	24748.22473			
Corrected Total	R-Carré / R-Square	c.v.	Racine MEC / Root MSE	CATRAT	E Moyenne / Mean
	0.495651	-19.35741	1.579036		-8.157271
			Carré Moyen /	Valeur de F /	
Source	DL/DF	Type III SS	Mean Square	F Value	Pr > F
MOIS / MONTH	7	1294.171690	184.881670	74.15	0.0001
ZONE / AREA	17	1311.180759	77.128280	30.93	0.0001
ANNÉE / YEAR	17	966.301224	56.841248	22.80	0.0001
Paramètre /		Estimation /	T Pour / For H0:	Pr > T	ET. /
Parameter Parameter		Estimate	Par.=0	11 > 1	S.E.
		-16.58333715 B	-23.77	0.0001	0.69757076
ORDON./INT.	4	5.62288689 B	9.68	0.0001	0.58095500
MOIS /	5	6.19007166 B	10.78	0.0001	0.57437826
MONTH	6	5.02919953 B	8.75	0.0001	0.57462424
	7	2.93833511 B	5.69	0.0001	0.51615103
	8	2.38810652 B	4.68	0.0001	0.50983666
	9	2.83249823 B	5.51	0.0001	0.51413757
	10 11	3.24655691 B 0.00000000 B	5.75	0.0001	0.56451713
ZONE DE	BARACHOIS BROOK	3.58993117 B	6.43	0.0001	0.55858999
PÊCHE /	BLACK DUCK BROOK	4.17957896 B	7.66	0.0001	0.54539171
FISHING	CASTOR RIVER	3.06722332 B	5.84	0.0001	0.52497990
AREA	EDDIES COVE E	4.53197311 B	9.70	0.0001	0.46702465
	FERROLE POINT	4.09919809 B	8.76	0.0001	0.46780223
	FISCHELLS	4.36637531 B	7.98	0.0001	0.54712010
	JOURNOIS	4.06459795 B	7.06	0.0001	0.57541856
	KIPPENS	4.55206959 B	7.82	0.0001	0.58246835
	LONG PT. (BAY)	4.34608077 B	7.97	0.0001	0.54530797
	LOWER COVE	3.49938535 B	6.43	0.0001	0.54436618
	LOWER COVE MIDDLE BROOK	2.04695621 B 2.36234476 B	2.61 3.62	0.0091 0.0003	0.78406466 0.65192492
	ROBINSONS	2.74709196 B	5.02	0.0003	0.63192492
	SANDY POINT	3.98856806 B	7.32	0.0001	0.54461533
	SHIP COVE	6.59954739 B	8.14	0.0001	0.81101963
	ST-GEORGES	4.67467961 B	8.47	0.0001	0.55212312
	ST.TERESA	4.01517308 B	7.17	0.0001	0.55985896
,	WHALE ISLAND	0.00000000 B			
ANNÉE /	1985	0.36351128 B	2.27	0.0233	0.16014257
YEAR	1986	0.21304058 B	1.37	0.1723	0.15607360
	1987 1988	0.46607345 B -0.01027413 B	3.22 -0.07	0.0013 0.9427	0.14472839
	1989	-0.16861115 B	-1.15	0.2506	0.14294453 0.14673983
	1990	-0.34195647 B	-2.25	0.0246	0.15212098
	1991	-0.05823529 B	-0.37	0.7082	0.15557521
	1992	-0.26833815 B	-1.75	0.0804	0.15345208
	1993	-0.53310987 B	-3.65	0.0003	0.14614711
	1994	-0.90710853 B	-6.14	0.0001	0.14777294
	1995	-0.97919427 B	-6.93	0.0001	0.14129833
	1996	-0.88752384 B	-6.02	0.0001	0.14740037
	1997	-0.56188699 B	-3.79	0.0002	0.14827094
	1998	-1.39769278 B	-7.82	0.0001	0.17864740
	1999	-1.01842081 B	-7.57	0.0001	0.13461452
	2000	-0.57768108 B	-4.20 2.56	0.0001	0.13760807
	2001 2002	-0.35486973 B	-2.56	0.0106	0.13879656
	2002	0.00000000 B			