第4回 ARMA 過程 (7.2.1)

村澤 康友

2022年10月18日

今日のポイント			2.5	自己相関	4	
			2.6	偏自己相関	4	
1.	任意の t について $\mathbf{L} y_t := y_{t-1}$ なら \mathbf{L} を		3	MA 過程	4	
	ラグ演算子という. ラグ演算子の多項式	:	3.1	MA(1) 過程(p. 135)	4	
	をラグ多項式という.		3.2	MA(q) 過程(p. 135)	4	
2.	p次の自己回帰 (AR) 過程は, 任意の t に		3.3	Wold 分解(p. 135)	6	
	ついて $\phi(L)(y_t - \mu) = w_t$, ただし $\phi(L)$ は		3.4	自己共分散	6	
	ラグ多項式で $\{w_t\}$ は WN. Yule–Walker		3.5	自己相関	7	
	方程式は AR 係数と ACF の関係を与え		3.6	反転可能性	7	
	3.		3.7	偏自己相関	7	
3.	q次の移動平均 (MA) 過程は, 任意の t に				_	
	ついて $y_t = \mu + \theta(\mathbf{L})w_t$, ただし $\theta(\mathbf{L})$ は		4	ARMA 過程	7	
	ラグ多項式で $\{w_t\}$ は WN. 共分散定常過		4.1	ARMA(1,1) 過程(p. 136)	7	
	程は $MA(\infty)$ で表現できる(Wold 分解).		4.2	ARMA(p,q) 過程(p. 136)	8	
	AR(∞) で表現できる MA 過程を反転可		5	今日のキーワード	8	
	能という。					
4.	(p,q) 次の自己回帰移動平均 (ARMA) 過		6	次回までの準備	8	
	程は、任意の t について $\phi(L)(y_t - \mu) =$		1 漸化式とラグ演算子			
	$\theta(\mathbf{L})w_t$.					
			1.1 漸化式			
目次			$\{y_t\}, \{w_t\}$ を数列とする.			
1	漸化式とラグ演算子	1		. $\{y_t\}$ の p 階漸化式は,任意の $t\geq 1$ k	こつ	
1.1	漸化式	1	いて $y_t = f(y_{t-1}, \dots, y_{t-p}, w_t)$			
1.2	ラグ演算子	2		$g_t - f(g_{t-1}, \ldots, g_{t-p}, \omega_t)$		
			注 1. 礼	切期値 $y_0,\dots,y_{-(p-1)}$ と非斉次項 $\{w_t\}$	で	
2	AR 過程	2	$\{y_t\}$ が一意に定まる.			
2.1	AR(1) 過程(p. 135)	2	定義 2. $\{y_t\}$ の p 階線形漸化式 t , 任意の $t \ge 1$ について			
2.2	AR(p) 過程(p. 135)	2				
2.3	共分散定常性	2				
2.4	自己共分散	3		$y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + w_t$		

1.2 ラグ演算子

定義 3. 任意の t について $Ly_t := y_{t-1}$ なら L をラグ演算子という.

定義 4. ラグ演算子の多項式をラグ多項式という.

注 2. p次のラグ多項式は

$$\phi(\mathbf{L}) := 1 - \phi_1 \mathbf{L} - \dots - \phi_p \mathbf{L}^p$$

任意のtについて

$$\phi(\mathbf{L})y_t = (1 - \phi_1 \mathbf{L} - \dots - \phi_p \mathbf{L}^p) y_t$$
$$= y_t - \phi_1 \mathbf{L} y_t - \dots - \phi_p \mathbf{L}^p y_t$$
$$= y_t - \phi_1 y_{t-1} - \dots - \phi_p y_{t-p}$$

したがって $\{y_t\}$ の p 階線形漸化式は,任意の $t \ge 1$ について

$$\phi(\mathbf{L})y_t = w_t$$

2 AR 過程

2.1 AR(1) 過程 (p. 135)

 $\{y_t\}$ を確率過程とする.

定義 5. 1 次の自己回帰 (autoregressive, AR) 過程は、任意の t について

$$\phi(L)(y_t - \mu) = w_t$$
$$\{w_t\} \sim WN(\sigma^2)$$

ただし $\phi(L) := 1 - \phi L$.

注 3. AR(1) と書く.

注 4. すなわち任意の t について

$$y_t - \mu = \phi(y_{t-1} - \mu) + w_t$$

または

$$y_t = c + \phi y_{t-1} + w_t$$

ただし $c := (1 - \phi)\mu$.

例 1. $\mu:=0, \ \phi:=0.9\ {\it O}\ {\rm AR}(1)\ {\it O}$ コレログラム (図 1).

定理 1. $\{y_t\}$ が $\mathrm{AR}(1)$ で $|\phi|<1$ なら任意の t に ついて

$$E(y_t) = \mu$$

証明.逐次代入により、任意のtについて

$$y_{t} - \mu = \phi(y_{t-1} - \mu) + w_{t}$$

$$= \phi[\phi(y_{t-2} - \mu) + w_{t-1}] + w_{t}$$

$$= \dots$$

$$= w_{t} + \phi w_{t-1} + \phi^{2} w_{t-2} + \dots$$

$$= \sum_{s=0}^{\infty} \phi^{s} w_{t-s}$$

これは $|\phi| < 1$ なら収束.両辺の期待値をとると,任意の t について $\mathbf{E}(w_t) = 0$ なので

$$E(y_t - \mu) = E\left(\sum_{s=0}^{\infty} \phi^s w_{t-s}\right)$$
$$= \sum_{s=0}^{\infty} \phi^s E(w_{t-s})$$
$$= 0$$

すなわち $E(y_t - \mu) = 0$ より $E(y_t) = \mu$.

2.2 AR(p) 過程 (p. 135)

定義 6. p 次の AR 過程は、任意の t について

$$\phi(L)(y_t - \mu) = w_t$$
$$\{w_t\} \sim WN(\sigma^2)$$

ただし $\phi(L) := 1 - \phi_1 L - \cdots - \phi_n L^p$.

注 5. AR(p) と書く.

注 6. すなわち任意の t について

$$y_t - \mu = \phi_1(y_{t-1} - \mu) + \dots + \phi_p(y_{t-p} - \mu) + w_t$$

または

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + w_t$$

ただし $c := (1 - \phi_1 - \cdots - \phi_p)\mu$.

2.3 共分散定常性

 $\{y_t\}$ \mathcal{E} AR(p) \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} .

定理 2. p 次方程式 $\phi(z)=0$ の p 個の根がすべて 絶対値で 1 より大きいことが, $\mathrm{AR}(p)$ が共分散定 常であるための必要十分条件.

証明. 省略(大学院レベル). □

例 2. p := 1 なら $\phi(z) := 1 - \phi z$ より $\phi(z) = 0$ の 根は $z = 1/\phi$. したがって $|z| > 1 \Longleftrightarrow |\phi| < 1$.

自己相関係数(ACF) y

偏自己相関係数(PACF) y

図 1 $\mu := 0$, $\phi := 0.9$ の AR(1) のコレログラム

2.4 自己共分散

 $\{y_t\}$ を自己共分散関数 $\gamma(.)$ の共分散定常な $\mathrm{AR}(p)$ とする.

補題 1. 任意の t と $s \ge 1$ について

$$cov(y_{t-s}, w_t) = 0$$

証明.逐次代入により、任意のtについて

$$\begin{aligned} y_t &- \mu \\ &= \phi_1(y_{t-1} - \mu) + \dots + \phi_p(y_{t-p} - \mu) + w_t \\ &= \phi_1[\phi_1(y_{t-2} - \mu) + \dots + \phi_p(y_{t-p-1} - \mu) + w_{t-1}] \\ &+ \dots + \phi_p(y_{t-p} - \mu) + w_t \\ &= \dots \\ &= w_t + \phi_1 w_{t-1} + \dots \end{aligned}$$

任意の t と $s \neq 0$ について $cov(w_t, w_{t-s}) = 0$ なので、s > 1 について

$$cov(y_{t-s}, w_t) = cov(w_{t-s} + \phi_1 w_{t-s-1} + \cdots, w_t)$$

$$= cov(w_{t-s}, w_t) + \phi_1 cov(w_{t-s-1}, w_t) + \cdots$$

$$= 0$$

補題 2. 任意の t について

$$cov(y_t, w_t) = \sigma^2$$

証明. 任意の t について $\mathrm{var}(w_t) = \sigma^2$ なので、前補題より

$$cov(y_{t}, w_{t})$$

$$= cov(c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + w_{t}, w_{t})$$

$$= cov(\phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p} + w_{t}, w_{t})$$

$$= \phi_{1} cov(y_{t-1}, w_{t}) + \dots + \phi_{p} cov(y_{t-p}, w_{t})$$

$$+ var(w_{t})$$

$$= \sigma^{2}$$

定理 3.

$$\gamma(0) = \phi_1 \gamma(1) + \dots + \phi_p \gamma(p) + \sigma^2$$

$$\gamma(1) = \phi_1 \gamma(0) + \dots + \phi_p \gamma(p-1)$$

$$\vdots$$

$$\gamma(p) = \phi_1 \gamma(p-1) + \dots + \phi_p \gamma(0)$$

$$\gamma(s) = \phi_1 \gamma(s-1) + \dots + \phi_p \gamma(s-p), \quad s \ge p+1$$

証明. 前補題より

$$\gamma(0) := var(y_t)
= cov(y_t, y_t)
= cov(y_t, c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + w_t)
= cov(y_t, \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + w_t)
= \phi_1 cov(y_t, y_{t-1}) + \dots + \phi_p cov(y_t, y_{t-p})
+ cov(y_t, w_t)
= \phi_1 \gamma(1) + \dots + \phi_p \gamma(p) + \sigma^2$$

前々補題より

$$\gamma(1) := \cos(y_t, y_{t-1})$$

$$= \cos(c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + w_t, y_{t-1})$$

$$= \cos(\phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + w_t, y_{t-1})$$

$$= \phi_1 \cos(y_{t-1}, y_{t-1}) + \dots$$

$$+ \phi_p \cos(y_{t-p}, y_{t-1}) + \cos(w_t, y_{t-1})$$

$$= \phi_1 \gamma(0) + \dots + \phi_p \gamma(p-1)$$

 $\gamma(2)$ 以降も同様.

2.5 自己相関

 $\{y_t\}$ of ACF $\delta \rho(.)$ とする.

定理 4 (Yule-Walker 方程式).

$$\rho(1) = \phi_1 \rho(0) + \dots + \phi_p \rho(p-1)$$

$$\vdots$$

$$\rho(p) = \phi_1 \rho(p-1) + \dots + \phi_p \rho(0)$$

証明. $s \ge 0$ について $\rho(s) = \gamma(s)/\gamma(0)$ なので、前 定理より結果が得られる.

注 7. (ϕ_1,\ldots,ϕ_p) と $\rho(1),\ldots,\rho(p)$ の関係を与える連立方程式.

系 1. $s \ge p+1$ について

$$\rho(s) = \phi_1 \rho(s-1) + \dots + \phi_p \rho(s-p)$$

証明. 前定理と同じ.

注 8. すなわち $\{\rho(s)\}$ は初期値 $\rho(1),\ldots,\rho(p)$ の p 階線形漸化式.

2.6 偏自己相関

 $\{y_t\}$ of PACF $\delta \alpha(.)$ とする.

定理 5. $\{y_t\}$ が AR(p) なら $s \ge p+1$ について $\alpha(s) = 0$.

証明. AR(p) は p+1 次以上の AR 係数が 0 の $AR(\infty)$. 偏回帰係数=0 ⇔ 偏相関係数=0 より AR 係数が 0 なら $\alpha(s)=0$.

3 MA 過程

3.1 MA(1) 過程 (p. 135)

定義 7. 1 次の移動平均 (moving average, MA) 過程は、任意の t について

$$y_t = \mu + \theta(\mathbf{L})w_t$$

 $\{w_t\} \sim \text{WN}(\sigma^2)$

ただし $\theta(L) := 1 - \theta L$.

注 9. MA(1) と書く.

注 10. すなわち任意の t について

$$y_t = \mu + w_t - \theta w_{t-1}$$

例 3. $\mu := 0$, $\theta := 0.9$ の MA(1) のコレログラム (図 2) と $\mu := 0$, $\theta := -0.9$ の MA(1) のコレログラム (図 3).

3.2 MA(q) 過程 (p. 135)

定義 8. q 次の MA 過程は、任意の t について

$$y_t = \mu + \theta(L)w_t$$

 $\{w_t\} \sim \text{WN}(\sigma^2)$

ただし $\theta(L) := 1 - \theta_1 L - \cdots - \theta_q L^q$.

注 11. MA(q) と書く.

注 12. すなわち任意の t について

$$y_t = \mu + w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q}$$

定理 6. $\{y_t\}$ が $\mathrm{MA}(q)$ なら任意の t について

$$E(y_t) = \mu$$

自己相関係数(ACF) y

偏自己相関係数(PACF) y

図 2 $\mu:=0$, $\theta:=0.9$ の MA(1) のコレログラム

自己相関係数(ACF) y

偏自己相関係数(PACF) y

図 3 $\mu:=0$, $\theta:=-0.9$ の $\operatorname{MA}(1)$ のコレログラム

証明. 任意の t について $\mathrm{E}(w_t)=0$ なので

$$E(y_t)$$

$$= E(\mu + w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q})$$

$$= \mu + E(w_t) - \theta_1 E(w_{t-1}) - \dots - \theta_q E(w_{t-q})$$

$$= \mu$$

3.3 Wold 分解 (p. 135)

定理 7 (Wold 分解). $\{y_t\}$ が平均 θ で共分散定常なら、任意の t について

$$y_t = d_t + \sum_{s=0}^{\infty} \psi_s w_{t-s}$$

ただし $\{d_t\}$ は決定的, $\{w_t\}$ はホワイト・ノイズで $\{d_t\}$ と無相関.

系 2. 純粋に非決定的な共分散定常過程は $\mathrm{MA}(\infty)$ として表現できる.

3.4 自己共分散

 $\{y_t\}$ を自己共分散関数 $\gamma(.)$ の $\mathrm{MA}(q)$ とする.

補題 3. 任意の t について

$$\operatorname{var}(y_t) = (1 + \theta_1^2 + \dots + \theta_q^2) \sigma^2$$

証明. 任意の t について $\mathrm{var}(w_t) = \sigma^2$ かつ $s \neq 0$ について $\mathrm{cov}(w_t, w_{t-s}) = 0$ なので

$$\operatorname{var}(y_t)$$

$$= \operatorname{var}(\mu + w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q})$$

$$= \operatorname{var}(w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q})$$

$$= \operatorname{var}(w_t) + \theta_1^2 \operatorname{var}(w_{t-1}) + \dots + \theta_q^2 \operatorname{var}(w_{t-q})$$

$$= (1 + \theta_1^2 + \dots + \theta_q^2) \sigma^2$$

補題 4. $\{y_t\}$ が $\operatorname{MA}(q)$ なら任意の t と $s=1,\ldots,q$ について

$$cov(y_t, y_{t-s}) = (-\theta_s + \theta_{s+1}\theta_1 + \dots + \theta_d\theta_{d-s})\sigma^2$$

証明. 任意の t について $var(w_t) = \sigma^2$ かつ $s \neq 0$ について $cov(w_t, w_{t-s}) = 0$ なので

$$\begin{aligned} & \operatorname{cov}(y_t, y_{t-1}) \\ & = \operatorname{cov}(\mu + w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q}, \\ & \mu + w_{t-1} - \theta_1 w_{t-2} - \dots - \theta_q w_{t-1-q}) \\ & = \operatorname{cov}(w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q}, \\ & w_{t-1} - \theta_1 w_{t-2} - \dots - \theta_q w_{t-1-q}) \\ & = \operatorname{cov}(w_t, w_{t-1} - \theta_1 w_{t-2} - \dots - \theta_q w_{t-1-q}) \\ & - \theta_1 \operatorname{cov}(w_{t-1}, w_{t-1} - \theta_1 w_{t-2} - \dots - \theta_q w_{t-1-q}) \\ & - \dots \\ & - \theta_q \operatorname{cov}(w_{t-q}, w_{t-1} - \theta_1 w_{t-2} - \dots - \theta_q w_{t-1-q}) \\ & = -\theta_1 \operatorname{var}(w_{t-1}) + \theta_2 \theta_1 \operatorname{var}(w_{t-2}) + \dots \\ & + \theta_q \theta_{q-1} \operatorname{var}(w_{t-q}) \\ & = (-\theta_1 + \theta_2 \theta_1 + \dots + \theta_q \theta_{q-1}) \sigma^2 \\ & s = 2, \dots, q \ \ \mathbb{Z} \supset \mathbb{V} \subset \mathbb{S} \ \, \mathbb{R} \, \mathbb{K}. \end{aligned}$$

補題 5. $\{y_t\}$ が $\operatorname{MA}(q)$ なら任意の t と $s \geq q+1$ について

$$cov(y_t, y_{t-s}) = 0$$

証明. 任意のtと $s \neq 0$ について $cov(w_t, w_{t-s}) = 0$ なので, $s \geq q+1$ より

$$\begin{aligned} & \operatorname{cov}(y_t, y_{t-s}) \\ & = \operatorname{cov}(\mu + w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q}, \\ & \mu + w_{t-s} - \theta_1 w_{t-s-1} - \dots - \theta_q w_{t-s-q}) \\ & = \operatorname{cov}(w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q}, \\ & w_{t-s} - \theta_1 w_{t-s-1} - \dots - \theta_q w_{t-s-q}) \\ & = \operatorname{cov}(w_t, w_{t-s} - \theta_1 w_{t-s-1} - \dots - \theta_q w_{t-s-q}) \\ & - \theta_1 \operatorname{cov}(w_{t-1}, w_{t-s} - \theta_1 w_{t-s-1} - \dots - \theta_q w_{t-s-q}) \\ & - \dots \\ & - \theta_q \operatorname{cov}(w_{t-q}, w_{t-s} - \theta_1 w_{t-s-1} - \dots - \theta_q w_{t-s-q}) \\ & = 0 \end{aligned}$$

定理 8. $\mathrm{MA}(q)$ の自己共分散関数は

$$\gamma(0) = (1 + \theta_1^2 + \dots + \theta_q^2) \sigma^2$$

$$\gamma(1) = (-\theta_1 + \theta_2\theta_1 + \dots + \theta_q\theta_{q-1})\sigma^2$$

$$\vdots$$

$$\gamma(q) = -\theta_q\sigma^2$$

$$\gamma(s) = 0, \quad s > q+1$$

証明.前3補題より結果が得られる.

3.5 自己相関

 $\{y_t\}$ \mathcal{O} ACF \mathcal{E} $\rho(.)$ \mathcal{E} \mathcal{F} \mathcal{E} \mathcal{E} \mathcal{E} .

系 3.

$$\rho(1) = \frac{-\theta_1 + \theta_2 \theta_1 + \dots + \theta_q \theta_{q-1}}{1 + \theta_1^2 + \dots + \theta_q^2}$$

$$\vdots$$

$$\rho(q) = \frac{-\theta_q}{1 + \theta_1^2 + \dots + \theta_q^2}$$

$$\rho(s) = 0, \quad s \ge q + 1$$

証明. $s \ge 0$ について $\rho(s) = \gamma(s)/\gamma(0)$ なので、前 定理より結果が得られる.

3.6 反転可能性

定理 9. 次の 2つの MA(1) は同じ自己共分散関数をもつ.

1. 任意の t について

$$y_t = \mu + w_t - \theta w_{t-1}$$
$$\{w_t\} \sim \text{WN}(\sigma^2)$$

2. 任意の t について

$$y_t^* = \mu + w_t^* - \theta^{-1} w_{t-1}^*$$

 $\{w_t^*\} \sim \text{WN}(\theta^2 \sigma^2)$

証明, 前者の自己共分散関数は

$$\gamma(0) = (1 + \theta^2) \sigma^2$$
$$\gamma(1) = -\theta \sigma^2$$
$$\gamma(s) = 0, \quad s \ge 2$$

 θ を θ^{-1} に、 σ^2 を $\theta^2\sigma^2$ に置き換えると

$$\gamma^*(0) = (1 + \theta^{-2}) \theta^2 \sigma^2$$
$$= (1 + \theta^2) \sigma^2$$
$$\gamma^*(1) = -\theta^{-1} \theta^2 \sigma^2$$
$$= -\theta \sigma^2$$
$$\gamma^*(s) = 0, \quad s \ge 2$$

したがって $\gamma(.) = \gamma^*(.)$.

定理 10. $|\theta| < 1$ なら MA(1) は $AR(\infty)$ で表現できる.

証明. 逐次代入により、任意のtについて

$$w_{t} = y_{t} - \mu + \theta w_{t-1}$$

$$= y_{t} - \mu + \theta (y_{t-1} - \mu + \theta w_{t-2})$$

$$= \dots$$

$$= \sum_{s=0}^{\infty} \theta^{s} (y_{t-s} - \mu)$$

すなわち任意の t について

П

$$y_t - \mu = -\sum_{s=1}^{\infty} \theta^s (y_{t-s} - \mu) + w_t$$

右辺の収束の必要十分条件は $|\theta| < 1$.

定義 9. AR(∞) で表現できる MA 過程を**反転可** 能という.

定理 11. q 次方程式 $\theta(z) = 0$ の q 個の根がすべて 絶対値で 1 より大きいことが,MA(q) が反転可能 であるための必要十分条件.

証明. 省略(大学院レベル).

3.7 偏自己相関

 $\{y_t\}$ of PACF $\delta \alpha(.)$ とする.

定理 12. $\{y_t\}$ が反転可能なら一般に $\alpha(s) \neq 0$.

証明. 反転可能な MA 過程は $AR(\infty)$ で表現できる. 偏回帰係数=0 \iff 偏相関係数=0 より AR 係数が 0 でない限り $\alpha(s) \neq 0$.

4 ARMA 過程

4.1 ARMA(1,1) 過程 (p. 136)

定義 10. (1,1) 次の自己回帰移動平均 (autoregressive moving average, ARMA) 過程は、任意のt について

$$\phi(\mathbf{L})(y_t - \mu) = \theta(\mathbf{L})w_t$$

 $\{w_t\} \sim \text{WN}(\sigma^2)$

ただし $\phi(L) := 1 - \phi L$, $\theta(L) := 1 - \theta L$.

注 13. ARMA(1,1) と書く.

注 14. すなわち任意の t について

$$y_t - \mu = \phi(y_{t-1} - \mu) + w_t - \theta w_{t-1}$$

または

$$y_t = c + \phi y_{t-1} + w_t - \theta w_{t-1}$$

ただし $c := (1 - \phi)\mu$.

注 15. $\phi=\theta$ なら両辺を $\phi(\mathbf{L})=\theta(\mathbf{L})$ で割ると、任意の t について

$$y_t - \mu = w_t$$

例 4. $\mu := 0$, $\phi := 0.9$, $\theta := 0.9$ の ARMA(1,1) の コレログラム (図 4) と $\mu := 0$, $\phi := 0.9$, $\theta := -0.9$ の ARMA(1,1) のコレログラム (図 5).

4.2 ARMA(p,q) 過程 (p. 136)

定義 11. (p,q) 次の ARMA 過程は、任意の t について

$$\phi(L)(y_t - \mu) = \theta(L)w_t$$

 $\{w_t\} \sim WN(\sigma^2)$

ただし $\phi(L) := 1 - \phi_1 L - \dots - \phi_p L^p, \ \theta(L) := 1 - \theta_1 L - \dots - \theta_a L^q.$

注 16. ARMA(p,q) と書く.

5 今日のキーワード

漸化式,線形漸化式,ラグ演算子,ラグ多項式,自己回帰(AR)過程,Yule—Walker 方程式,移動平均(MA)過程,Wold分解,反転可能性,自己回帰移動平均(ARMA)過程

6 次回までの準備

提出 宿題 4

復習 教科書第7章2.1節,復習テスト4

予習 教科書第7章 1.3, 2.2-2.3 節

自己相関係数(ACF) y

偏自己相関係数(PACF) y

図 4 $~\mu:=0,~\phi:=0.9,~\theta:=0.9$ の ARMA(1,1) のコレログラム

自己相関係数(ACF) y

偏自己相関係数(PACF) y

図 5 $\mu:=0, \ \phi:=0.9, \ \theta:=-0.9$ の ARMA(1,1) のコレログラム