Linguagens, autômatos e gramáticas

Teoria da computação

Prof. Allan Rodrigo Leite

Linguagens, autômatos e gramáticas

- Linguagem é um conceito fundamental na teoria da computação
 - Deve ser capaz de expressar problemas de forma precisa
 - Permite o desenvolvimento formal ao estudo da computabilidade

Exemplo

- Analisar a existência de um algoritmo que determine se uma palavra pertence ou não à linguagem (objeto de estudo)
- Determinar se uma palavra pertence ou não (solução)
- Uma palavra (entrada)
- Linguagem (definição do problema)

Linguagens, autômatos e gramáticas

Hierarquia de Chomsky (1959)

Alfabeto

- Alfabeto
 - Representa um conjunto finito de símbolos ou caracteres
 - Conjunto infinito não é um alfabeto
 - Conjunto vazio é um alfabeto
- Exemplos de alfabeto
 - { a, b, c }
 - Ø (conjunto vazio)
- Não são exemplos de alfabeto
 - { a,b,aa, ab, ba, bb, aaa, ... }
 - N (conjunto dos números naturais)

Símbolos e palavras

- Cadeia de símbolos
 - Sequência de zero ou mais símbolos (do conjunto) justapostos
- Palavra
 - Cadeia de símbolos finita
 - Comprimento ou tamanho de uma palavra W é representado por | W |
 - Ou seja, | w | corresponde ao número de símbolos que compõe a palavra w

Símbolos e palavras

- Palavra (cont.)
 - ε representa uma cadeia vazia ou palavra vazia
 - Σ representa um alfabeto
 - Σ^* representa todas as palavras do alfabeto Σ
 - Σ + é o conjunto não vazio de palavras do alfabeto Σ , isto é, Σ * { ϵ }
- Exemplo
 - abcb é uma palavra sobre o alfabeto { a, b, c }
 - Se Σ = { a, b }, então • Σ + = { a, b, aa, ab, ba, bb, aaa, ... } • Σ * = { ϵ , a, b, aa, ab, ba, bb, aaa, ... }
 - |abcb| = 4

Símbolos e palavras

- Palavra (cont.)
 - Prefixo é qualquer sequência inicial de símbolos de uma palavra
 - Sufixo é qualquer sequência final de símbolos de uma palavra
 - Qualquer prefixo ou sufixo de uma palavra é uma subpalavra

Exemplo

- Em relação à palavra abcb, temos
 - ε, a, ab, abc, abcb são os prefixos
 - ε, b, cb, bcb, abcb são os sufixos

- Linguagem formal
 - Descreve o conjunto de palavras de um alfabeto
 - Linguagem formal ou L sobre um alfabeto Σ (L $\subseteq \Sigma^*$)
- Exemplo
 - Dado alfabeto $\Sigma = \{a, b\}$, exemplos de palíndromos são:
 - { ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa,... }
 - O exemplo acima representa as palavras desta linguagem

- Concatenação de palavras
 - Operação binária definida sobre uma linguagem
 - Associa a cada par de palavras uma palavra formada pela justaposição da primeira com a segunda
- Operação de concatenação seguem as propriedades:
 - Associatividade
 - v(wt) = (vw)t = vwt
 - Elemento neutro à esquerda ou direita
 - $\epsilon W = W = W\epsilon$

- Concatenação de palavras (cont.)
 - Suponha o alfabeto $\Sigma = \{a, b\}$
 - Para as palavras V = baaaaew = bb, temos:
 - vw = baaaabb
 - $v\epsilon = v = baaaa$
 - Suponha a linguagem L de palíndromos sobre o alfabeto $\Sigma = \{a, b\}$
 - A concatenação das palavras aba e bbb resulta em ababbb
 - ababbb não é palíndromo
 - Portanto, a operação de concatenação não é fechada sobre L

- Concatenação sucessiva de palavras
 - Representada por um expoente após a palavra
 - Dada a palavra p, uma concatenação sucessiva é dada por pⁿ onde n representa o número de concatenações sucessivas
 - $p^0 = \epsilon$
 - $p^n = pp^{n-1}$, para n > 0
- Exemplo
 - $W^3 = WWW$
 - $W^1 = W$
 - $a^n = aaaaa ... a (o símbolo a repetido n vezes)$

- Concatenação de linguagens
 - A concatenação também vale para as linguagens

```
L<sub>1</sub> = { a, bc }
L<sub>2</sub> = { aa, cb, bb }
L<sub>1</sub> o L<sub>2</sub> = { x o y | x ∈ L<sub>1</sub> e y ∈ L<sub>2</sub> }
L<sub>1</sub> o L<sub>2</sub> = { a o aa, a o cb, a o bb, bc o aa, ... }
L<sub>1</sub> o L<sub>2</sub> = { aaa, acb, abb, bcaa, ... }
```

- Demais operações sobre linguagens
 - Como uma linguagem é definida como um conjunto, são permitidas as operações: união, intersecção, diferença e complemento

Exemplo

- $L_1 = \{a,b,aa,ab,abb,aab,aaa\} e L_2 = \{a,aa,aaa,aaaa\}$
- União: $L_1 \cup L_2 = \{a,b,aa,ad,abb,aab,aaa,aaaa\}$
- Intersecção: $L_1 \cap L_2 = \{a,aa,aaa\}$
- Diferença: $L_1 L_2 = \{b, ab, abb, aab\}$

Autômato

- Modelo abstrato de um computador digital composto por:
 - Fita ou cadeia de entrada
 - Fita de saída ou cadeia resultante
 - Memória auxiliar utilizada para armazenamento temporário de símbolos
 - Unidade de controle
- A cadeia a ser tratada fica armazenada na fita de entrada onde a unidade de controle realiza operações como
 - Ler um símbolo da fita de entrada por vez
 - Mudar o estado conforme as funções de transição determinadas
 - Escrever na memória ou na fita de saída

Autômato

Autômato

- Autômato finito
 - Reconhecedor de linguagens simples que:
 - Não possui memória auxiliar
 - Não altera a fita (apenas a utiliza para leitura de símbolos)
 - A unidade de controle desloca-se em apenas um sentido
 - A fita tem um comprimento pré-determinado
 - Basicamente consiste de um sistema de estados finitos
- Autômato finito determinístico
 - Cada movimento resulta em uma única transição

- Implementa um sistema de estados finitos
 - Modelo matemático de sistema com entradas e saídas discretas
 - Número finito e predefinido de estados
 - Podem ser definidos antes de iniciar o processamento

Estado

- Baseia-se em somente informações do passado
- Necessárias para determinar as ações para a próxima entrada
- Transição
 - Ação que realiza uma mudança de estado

- Definição formal: $M = \langle Q, \Sigma, \delta, q_0, F \rangle$
 - M: identificador do autômato
 - Q: conjunto de estados finitos
 - Σ: alfabeto de entrada (ou conjunto finito de símbolos)
 - δ : função de transição definida por δ : Q x $\Sigma \rightarrow$ Q
 - q_0 : estado inicial ($q_0 \in Q$)
 - F: conjunto de estados finais (F ∈ Q)

- Crie linguagens com o alfabeto $\Sigma = \{x, y\}$ que aceitem as palavras:
 - 1. somente xy
 - Aceita: xy
 - Não aceita: x, y, yx, xyx, ...
 - 2. que comecem com uma sequencia não vazia de x e terminem com y
 - Aceita: xy, xxy, xxxy, ...
 - Não aceita: y, yxy, yy, xyxy, ...
 - 3. com uma sequencia não vazia de xy
 - Aceita: xy, xyxy, xyxyxy, ...
 - Não aceita: x, y, yx, xyx, ...
 - 4. que comecem com uma sequencia $(\neg \emptyset)$ de x e terminem com sequencia $(\neg \emptyset)$ de y
 - Aceita: xy, xxy, xxyy, xyy ...
 - Não aceita: y, yxy, yy, xyxy, ...
 - 5. que termine com xy
 - Aceita: xy, xxy, yxy, xyxy, ...
 - Não aceita: x, y, yx, xyx, xyy, ...

• Crie linguagens com o alfabeto $\Sigma = \{x, y\}$ que aceitem as palavras:

- Exemplo 1
 - Crie uma linguagem L com o alfabeto $\Sigma = \{ 0, 1 \}$
 - As palavras contidas em L devem terminar com um número ímpar de 1
 - Aceita
 - 1, 01, 111, 0111, 010111
 - Não aceita
 - 0, 10, 011, 0011, 1011

- Exemplo 1 (cont.)
 - AFD < Q, Σ , δ ,q₀,F >
 - Q: { q_0 , q_1 , q_2 }
 - Σ : { 0, 1 }
 - δ: funções de transição
 - $\bullet \ \delta(q_0,0) = q_0$
 - $\delta(q_0,1) = q_1$
 - $\bullet \ \delta(q_1,0) = q_0$
 - $\delta(q_1,1) = q_2$
 - $\delta(q_2,0) = q_2$
 - $\delta(q_2,1) = q_1$
 - q₀: estado inicial
 - F: { q₁ }

Exemplo 2

```
• AFD < Q,\Sigma,\delta,q<sub>0</sub>,F >
```

• Q: {
$$q_0$$
, q_1 , q_2 , q_3 }

- Σ: { a, b }
- δ: funções de transição
 - $\delta(q_0, a) = q_1$
 - $\delta(q_0,b) = q_2$
 - $\delta(q_1, a) = q_3$
 - $\delta(q_1,b) = q_2$
 - $\delta(q_2, a) = q_1$
 - $\delta(q_2,b) = q_3$
 - $\delta(q_3, a) = q_3$
 - $\delta(q_3,b) = q_3$
- q₀: estado inicial
- F: $\{q_3\}$

- Função de transição estendida
 - Representa uma sequência de transições dada uma cadeia (parcial ou não)
 - δ^* : Q x $\Sigma^* \rightarrow Q$
- Exemplo
 - Já que $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1 e \delta(q_1, 1) = q_2$, então:
 - $\delta^*(q_0, 011) = q_2$

- Linguagem e autômato
 - Uma linguagem associada a um autômato refere-se ao conjunto de todas as cadeias aceitas pelo autômato
 - L(M) = { $W \in \Sigma^* : \delta^*(q_0, W) \in F$ }
- Equivalência entre autômatos
 - Dois autômatos finitos M_1 e M_2 são equivalentes se reconhecerem uma mesma linguagem
 - $\bullet L(M_1) = L(M_2)$

Linguagem regular

- Uma linguagem L é dita como regular se e somente se existir um autômato finito determinístico M
 - L = L(M)
- É uma linguagem mais simples, utilizada para desenvolver algoritmos de reconhecimento ou de geração de pouca complexidade, grande eficiência e de fácil implementação
- Formas de estudo de linguagens regulares
 - Operacional ou reconhecedor: uso de autômatos finitos
 - Axiomático ou gerador: gramática regular
 - Denotacional: expressão regular

Linguagem regular

Exemplo

```
• Considere a linguagem L = \{ w \mid w \text{ possui um número ímpar de } a \in b \}
```

```
• M-impar < Q, \Sigma, \delta, q_0, F >
```

```
• Q: ???
```

- Σ: { a, b }
- δ: ???
- q₀: estado inicial
- F: ???

Linguagem regular

- Exemplo (cont.)
 - Considere a linguagem L = { W | W possui um número ímpar de a e b }
 - M-impar < $Q, \Sigma, \delta, q_0, F >$
 - Q: { q₀, q₁, q₂, q₃ }
 Σ: { a, b }

 - δ: funções de transição
 - $\delta(q_0, a) = q_1$
 - $\delta(q_0, b) = q_2$
 - $\delta(q_1, a) = q_0$
 - $\delta(q_1, b) = q_3$
 - $\delta(q_2, a) = q_3$
 - $\delta(q_2,b) = q_0$
 - $\delta(q_3, a) = q_2$
 - $\delta(q_3, b) = q_1$
 - q₀: estado inicial
 - F: { q₃ }

- Definição formal: $M = \langle Q, \Sigma, \delta, q_0, F \rangle$
 - M: identificador do autômato
 - Q: conjunto de estados finitos
 - Σ : alfabeto de entrada (ou conjunto finito de símbolos)
 - δ : função de transição definida por δ : Q x $\Sigma \rightarrow 2^Q$
 - q_0 : estado inicial ($q_0 \in Q$)
 - F: conjunto de estados finais (F ∈ Q)
- 2^Q representa um subconjunto de Q

Exemplo

- Considere a linguagem $L = \{ w \mid w \text{ possui aaa como sufixo } \}$ dado alfabeto $\Sigma = \{a,b\}$
- M: $\{\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\}\}$
- δ: função de transição
 - $\delta(q_0, a) = \{q_0, q_1\}$
 - $\delta(q_0,b) = \{q_0\}$
 - $\delta(q_1, a) = \{q_2\}$
 - $\delta(q_2,a) = \{q_3\}$

- Equivalência entre AFD e AFN
 - É possível transformar um AFN em um AFD para que a linguagem lida pelo AFN seja do tipo regular
 - Consiste em transformar as funções δ : Q x $\Sigma \rightarrow 2^Q$, onde $|2^Q| = 1$

Exemplo

- Transforme o autômato abaixo em determinístico
- M: $\{\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\}\}$
- δ: função de transição
 - $\delta(q_0, a) = \{q_0, q_1\}$
 - $\delta(q_0, b) = \{q_0\}$
 - $\delta(q_1, a) = \{q_2\}$
 - $\delta(q_2, a) = \{q_3\}$

- Exemplo (cont.)
 - Transforme o autômato abaixo em determinístico
 - M: $\{\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\}\}$
 - δ: função de transição
 - $\delta(q_0, a) = q_1$
 - $\delta(q_0,b) = q_0$
 - $\delta(q_1, a) = q_2$
 - $\delta(q_1,b) = q_0$
 - $\delta(q_2, a) = q_3$
 - $\delta(q_2,b) = q_0$
 - $\delta(q_3,a) = q_3$
 - $\delta(q_3,b) = q_0$

Expressão regular

- Modo de descrever conjuntos regulares
 - Amplamente utilizado em compiladores, editores, processadores de texto, sistemas operacionais, protocolos, etc.
 - Se r é uma expressão regular, então L(r) é uma linguagem regular
- Uma expressão regular sobre um alfabeto Σ é definido como:
 - φ: representa uma linguagem vazia
 - λ : representa uma linguagem exclusivamente com a palavra vazia, isto é, $\{\lambda\}$
 - x: símbolo do alfabeto Σ contendo a palavra $\{x\}$
 - Se r e S são expressões regulares e denotam as linguagens R e S, então:
 - (r) é uma expressão regular
 - (r+s) é uma expressão regular e denota a linguagem R U S
 - (r.s) é uma expressão regular e denota a linguagem RS = $\{uv \mid u \in Rev \in S\}$
 - r* é uma expressão regular e denota a linguagem R*

Expressão regular

- Precedência de operadores
 - Concatenação sucessiva (*)
 - Concatenação (.)
 - União (+)
- Exemplo
 - Dada linguagem $L = \{ a^n b^m \mid n \ge 0, m \ge 0 \}$
 - L = $\{\lambda, a, b, aa, bb, ab, aab, ...\}$
 - ER = a^*b^*

Expressão regular

- Mais exemplos
 - aa: somente a cadeia aa
 - ba*: cadeias que iniciam com b seguida por zero ou mais a
 - (a+b)*: todas as cadeias sobre {a,b}
 - (a+b)*aa(a+b)*: todas as cadeias contendo aa como subcadeia
 - a*ba*ba*: todas as cadeias contendo dois b
 - (a+b)*(aa+bb): todas as cadeias que terminam com aa ou bb
 - $(a+\lambda)(b+ba)^*$: todas as cadeias que não possuem dois a consecutivos

- Linguagem de programação
 - Definida pelo conjunto de todos os programas (isto é, palavras)

- Linguagem de propósitos gerais
 - Conjunto de todos os programas é infinito
 - Não é uma definição adequada para implementação em computador

- Propósito da gramática
 - Maneira de especificar de forma finita linguagens (eventualmente) infinitas

- Gramática é um conjunto finito de regras
 - As regras geram palavras quando aplicadas sucessivamente
 - O conjunto de todas as palavras geradas pela gramática define a linguagem
- Gramáticas para linguagens naturais
 - Exemplo: português
 - A ideia é a mesma para linguagens artificiais como Java, Python, C
- Gramáticas também são usadas para definir semântica
 - Mas em geral são usados outros formalismos

- Componentes de uma gramática
 - Terminais: conjunto finito de símbolos que formam as palavras da linguagem, isto é, o alfabeto
 - Variáveis ou não terminais: conjunto finito de variáveis onde cada uma representa uma linguagem, isto é, um conjunto de palavras
 - Símbolo de início: variável utilizada para representar a linguagem sendo definida
 - Regras de produção: conjunto finito de produções ou regras que representam a definição recursiva de uma linguagem
 - Lado esquerdo (LHS): representa o símbolo de produção
 - Lado direito (RHS): representa o corpo da produção

- Definição de gramática de Chomsky, gramática irrestrita ou gramática
 - G = (V, T, P, S)
 - V: conjunto finito de símbolos variáveis ou não-terminais
 - T: conjunto finito de símbolos terminais disjunto de V
 - P: relação finita de produções conforme (V ∪ T)⁺ → (V ∪ T)^{*}
 - Chamado de regras de produção
 - S: elemento distinguido de V que representa o símbolo inicial ou variável inicial
- Representação de uma regra de produção (α, β)
 - $\alpha \rightarrow \beta$
 - Abreviação de:
 - $\alpha \rightarrow \beta_1$, $\alpha \rightarrow \beta_2$, ..., $\alpha \rightarrow \beta_n$ $\alpha \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$

- Derivação
 - Aplicação de uma regra de produção é denominada derivação
 - Aplicação sucessiva de regras de produção
 - Determina o fecho transitivo da relação de derivação
 - Permite derivar palavras da linguagem
- Exemplo de derivação
 - $G = \langle V, T, P, N \rangle$
 - $\bullet V = \{N,D\}$
 - $T = \{0,1,2,\ldots,9\}$
 - P = regras de produção
 - N → D
 - N → DN
 - D → 0 | 1 | ... | 9

• Exemplo de derivação (cont.)

```
• G = \langle V, T, P, N \rangle
```

- $\bullet V = \{N,D\}$
- T = $\{0,1,2,\ldots,9\}$
- $P = \{N \rightarrow D, N \rightarrow DN, D \rightarrow 0 | 1 | ... | 9\}$

• Derivação de 243

- 1) N: $N \rightarrow DN$ 5) 24N: $N \rightarrow D$
- 2) DN: D \rightarrow 2 6) 24D: D \rightarrow 3
- 3) $2N: N \rightarrow DN 7) 243$
- 4) 2DN: $D \rightarrow 4$

Gramática

- Permite definir tanto linguagens regulares como n\u00e3o regulares
- Convenções
 - A,B,C,...,S,T para símbolos variáveis
 - a,b,c,...,s,t para símbolos terminais
 - u, v, w, x, y, z para palavras de símbolos terminais

• Gramática regular

- Adiciona restrições nas regras de produção
- Existem diferentes formas de restringir as regras de produção
- Gramáticas lineares é um exemplo

Gramática regular

- Gramática linear à direita (GLD)
 - Regras de produção A → WB ou A → W
- Gramática linear à esquerda (GLE)
 - Regras de produção A → BW ou A → W
- Gramática linear unitária à direita (GLUD)
 - Como na gramática linear à direita, porém, $|w| \leq 1$
- Gramática linear unitária à esquerda (GLUE)
 - Como na gramática linear à esquerda, porém, $|w| \leq 1$

Gramática regular

- Exemplo 1
 - $G = \langle \{S\}, \{x,y\}, P,S \rangle$
 - $S = \{S \rightarrow XyS, S \rightarrow X\}$
- Exemplo 2
 - $G = \langle \{S,A,B\}, \{a,b\}, P,S_1 \rangle$
 - $S = \{S \rightarrow Aab, A \rightarrow Aab \mid B, B \rightarrow a\}$
- Exemplo 3
 - $G = \langle \{S,A,B\},\{a,b\},P,S \rangle$
 - S = {S \rightarrow A, A \rightarrow aB | λ , B \rightarrow Ab}

Gramática regular

- Exemplo 1 é uma GLD
 - $G = \langle \{S\}, \{x,y\}, P,S \rangle$
 - $S = \{S \rightarrow xyS, S \rightarrow x\}$
- Exemplo 2 é uma GLE
 - $G = \langle \{S,A,B\}, \{a,b\}, P,S_1 \rangle$
 - $S = \{S \rightarrow Aab, A \rightarrow Aab \mid B, B \rightarrow a\}$
- Exemplo 3 não é uma gramática linear
 - $G = \langle \{S,A,B\},\{a,b\},P,S \rangle$
 - S = {S \rightarrow A, A \rightarrow aB | λ , B \rightarrow Ab}

Linguagens regulares

- Exemplos de linguagens regulares
 - Autômatos finitos determinísticos
 - Autômatos finitos não determinísticos
 - Expressões regulares
 - Gramáticas regulares

