DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON

ARCHITECTURAL DESIGN SPECIFICATION CSE 4316: SENIOR DESIGN I SPRING 2016

TEAM HAWT WHEELS SMART CART

DAVID HARVEY
DENNIS OTIENO
PEGGY SOH
BRIAN WONG
OR ZOARETS

REVISION HISTORY

Revision	Date	Author(s)	Description
0.1	03.11.2016	DH, DO, PS, BW,	document creation
		OZ	
0.2	04.08.2016	DH, DO, PS, BW,	complete draft
		OZ	

CONTENTS

1	Introduction	5
2	System Overview 2.1 Layer X Description	6 6 6
3	Subsystem Definitions & Data Flow	7
4	X Layer Subsystems	8
	4.1 Subsystem 1	8
	4.2 Subsystem 2	
	4.3 Subsystem 3	
5	Y Layer Subsystems	9
	5.1 Subsystem 1	9
	5.2 Subsystem 2	
	5.3 Subsystem 3	9
6	Z Layer Subsystems	10
	6.1 Subsystem 1	10
	6.2 Subsystem 2	10
	6.3 Subsystem 3	10

LIST OF FIGURES

1	A simple architectural layer diagram	6
2	A simple data flow diagram	7
3	Example subsystem description diagram	8
4	Example subsystem description diagram	9
5	Example subsystem description diagram	10
List	OF TABLES	
2	Subsystem interfaces	8
3	Subsystem interfaces	9
4	Subsystem interfaces	10

1 Introduction

Your introduction should describe your product concept in sufficient detail that the architectural design will be easy to follow. The introduction may include information used in the first sections of your SRS for this purpose. At a minimum, ensure that the product concept, scope and key requirements are described.

2 System Overview

This section should describe the overall structure of your software system. Think of it as the strategy for how you will build the system. An architectural "layer" is the top-level logical view, or an abstraction, of your design. Layers should be composed of related elements of similar capabilities, and should be highly independent of other layers, but should have very clearly defined interfaces and interactions with other layers. Each layer should be identified individually and should be unique as to its function and purpose within the system. This section should also contain the high-level block diagram of the layers, as shown in the example below, as well as detailed descriptions of the functions of each layer.

Figure 1: A simple architectural layer diagram

2.1 LAYER X DESCRIPTION

Each layer should be described separately in detail. Descriptions should include the features, functions, critical interfaces and interactions of the layer. The description should clearly define the services that the layer provides. Also include any conventions that your team will use in describing the structure: naming conventions for layers, subsystems, modules, and data flows; interface specifications; how layers and subsystems are defined; etc.

2.2 LAYER Y DESCRIPTION

Each layer should be described separately in detail. Descriptions should include the features, functions, critical interfaces and interactions of the layer. The description should clearly define the services that the layer provides. Also include any conventions that your team will use in describing the structure: naming conventions for layers, subsystems, modules, and data flows; interface specifications; how layers and subsystems are defined; etc.

2.3 LAYER Z DESCRIPTION

Each layer should be described separately in detail. Descriptions should include the features, functions, critical interfaces and interactions of the layer. The description should clearly define the services that the layer provides. Also include any conventions that your team will use in describing the structure: naming conventions for layers, subsystems, modules, and data flows; interface specifications; how layers and subsystems are defined; etc.

3 Subsystem Definitions & Data Flow

This section breaks down your layer abstraction to another level of detail. Here you grapically represent the logical subsystems that compose each layer and show the interactions/interfaces between those subsystems. A subsystem can be thought of as a programming unit that implements one of the major functions of the layer. It, therefore, has data elements that serve as source/sinks for other subsystems. The logical data elements that flow between subsystems need to be explicitly defined at this point, beginning with a data flow-like diagram based on the block diagram.

Figure 2: A simple data flow diagram

4 X LAYER SUBSYSTEMS

In this section, the layer is described in some detail in terms of its specific subsystems. Describe each of the layers and its subsystems in a separate chapter/major subsection of this document. The content of each subsystem description should be similar. Include in this section any special considerations and/or trade-offs considered for the approach you have chosen.

4.1 Subsystem 1

This section should be a general description of a particular subsystem for the given layer. For most subsystems, an extract of the architectural block diagram with data flows is useful. This should consist of the subsystem being described and those subsystems with which it communicates.

Figure 3: Example subsystem description diagram

4.1.1 ASSUMPTIONS

Any assumptions made in the definition of the subsystem should be listed and described. Pay particular attention to assumptions concerning interfaces and interactions with other layers.

4.1.2 RESPONSIBILITIES

Each of the responsibilities/features/functions/services of the subsystem as identified in the architectural summary must be expanded to more detailed responsibilities. These responsibilities form the basis for the identification of the finer-grained responsibilities of the layer's internal subsystems. Clearly describe what each subsystem does.

4.1.3 SUBSYSTEM INTERFACES

Each of the inputs and outputs for the subsystem are defined here. Create a table with an entry for each labelled interface that connects to this subsystem. For each entry, describe any incoming and outgoing

data elements will pass through this interface.

Table 2: Subsystem interfaces

ID	Description	Inputs	Outputs
#xx	Description of the interface/bus	input 1 input 2	output 1
#xx	Description of the interface/bus	N/A	output 1

4.2 Subsystem 2

Repeat for each subsystem

4.3 Subsystem 3

Repeat for each subsystem

5 Y LAYER SUBSYSTEMS

In this section, the layer is described in some detail in terms of its specific subsystems. Describe each of the layers and its subsystems in a separate chapter/major subsection of this document. The content of each subsystem description should be similar. Include in this section any special considerations and/or trade-offs considered for the approach you have chosen.

5.1 Subsystem 1

This section should be a general description of a particular subsystem for the given layer. For most subsystems, an extract of the architectural block diagram with data flows is useful. This should consist of the subsystem being described and those subsystems with which it communicates.

Figure 4: Example subsystem description diagram

5.1.1 Assumptions

Any assumptions made in the definition of the subsystem should be listed and described. Pay particular attention to assumptions concerning interfaces and interactions with other layers.

5.1.2 RESPONSIBILITIES

Each of the responsibilities/features/functions/services of the subsystem as identified in the architectural summary must be expanded to more detailed responsibilities. These responsibilities form the basis for the identification of the finer-grained responsibilities of the layer's internal subsystems. Clearly describe what each subsystem does.

5.1.3 Subsystem Interfaces

Each of the inputs and outputs for the subsystem are defined here. Create a table with an entry for each labelled interface that connects to this subsystem. For each entry, describe any incoming and outgoing

data elements will pass through this interface.

Table 3: Subsystem interfaces

ID	Description	Inputs	Outputs
#xx	Description of the interface/bus	input 1 input 2	output 1
#xx	Description of the interface/bus	N/A	output 1

5.2 Subsystem 2

Repeat for each subsystem

5.3 Subsystem 3

Repeat for each subsystem

6 Z LAYER SUBSYSTEMS

In this section, the layer is described in some detail in terms of its specific subsystems. Describe each of the layers and its subsystems in a separate chapter/major subsection of this document. The content of each subsystem description should be similar. Include in this section any special considerations and/or trade-offs considered for the approach you have chosen.

6.1 Subsystem 1

This section should be a general description of a particular subsystem for the given layer. For most subsystems, an extract of the architectural block diagram with data flows is useful. This should consist of the subsystem being described and those subsystems with which it communicates.

Figure 5: Example subsystem description diagram

6.1.1 Assumptions

Any assumptions made in the definition of the subsystem should be listed and described. Pay particular attention to assumptions concerning interfaces and interactions with other layers.

6.1.2 RESPONSIBILITIES

Each of the responsibilities/features/functions/services of the subsystem as identified in the architectural summary must be expanded to more detailed responsibilities. These responsibilities form the basis for the identification of the finer-grained responsibilities of the layer's internal subsystems. Clearly describe what each subsystem does.

6.1.3 Subsystem Interfaces

Each of the inputs and outputs for the subsystem are defined here. Create a table with an entry for each labelled interface that connects to this subsystem. For each entry, describe any incoming and outgoing

data elements will pass through this interface.

Table 4: Subsystem interfaces

ID	Description	Inputs	Outputs
#xx	Description of the interface/bus	input 1 input 2	output 1
#xx	Description of the interface/bus	N/A	output 1

6.2 Subsystem 2

Repeat for each subsystem

6.3 Subsystem 3

Repeat for each subsystem