CS CM 182 Homework 5

Name: Sum Yi Li

Student ID: 505146702

I completed this written part of the homework, lab report, or exam entirely on my own.

Suli

Exercise 7.1 - Specifying State Variables, Parameters & v Fluxes for MC Models

Part (a) & Part (b)

1. Figure 7.4 - Blood / Urine Measurement MC Submodel

Let Compartment 1 = X in Blood

Let Compartment 2 = X in Urine

Let 0 = environment outside of blood and urine

a. State Variables:

- i. q_R (compartment of X in blood), number of substance X in blood
- ii. q_{II} (compartment of X in urine), number of substances X in urine
- iii. q_O (outside environment), number of substances X in outside environment

b. V fluxes:

- i. $u k_u$ (influx of substance X to blood)
- ii. $k_{UR}q_R$ (rate of exchange of X from blood to urine)
- iii. $k_{RO}q_O$ (rate of exchange of X from other compartments to blood)
- iv. $k_{OB}q_B$ (rate of exchange of X from blood to other compartments)

c. Parameter:

- i. k_u
- ii. k_{UB}
- iii. k_{BO}
- iv. k_{OR}

2. Figure 7.5 - Hormone metabolism MC submodel

Let Compartment 1 = T4 in Cell

Let Compartment 2 = T3 in Cell

Let 0 = environment outside of T4 and T3 in Cell

a. State Variables:

- i. q_{T4} (compartment of T4 in cell), number of T4 in cell
- ii. q_{T3} (compartment of T3 in cell), number of T3 in cell
- iii. $q_{outside}$ (outside environment)

b. V fluxes:

- i. $u k_u$ (influx of T4 to cell u)
- ii. $k_{34}q_{T4}$ (metabolic flux from T4 in cell to T3 in cell)
- iii. $k_{4CO}q_{outside}$ (flux of T4 from other compartment to cell)
- iv. $k_{AOC}q_{TA}$ (flux of T4 from cell to other compartment)

c. Parameter

- i. k_u
- ii. k_{34}
- iii. k_{4CO}
- iv. k_{4QC}

3. Figure 7.6 - MC model with metabolism of X1 in liver

Let Compartment 1 = X1 in Blood

Let Compartment 2 = X1 in Liver

Let Compartment 3 = X2 in Liver

Let Compartment 4 = X2 in Gut

Let Compartment 5 = X2 in Feces

Let Compartment 0 = environment outside of all blood, liver, gut and feces compartments

a. State Variables:

- i. q_{1B} (number of substance X1 in blood)
- ii. q_{1L} (number of substance X1 in liver)
- iii. q_{2I} (number of substance X2 in liver)
- iv. q_{2G} (number of substances X2 in Gut)
- v. q_{2F} (number of substances X2 in Feces)
- vi. $q_{outside}$ (outside environment)

b. V fluxes:

- i. u k_{u1} (input flux of substances X1)
- ii. $k_{O1B}q_{1B}$ (rate of exchange of X1 from blood to other compartments)
- iii. $k_{1BO}q_{outside}$ (rate of exchange of X1 from other compartment to blood)
- iv. $k_{1L1B}q_{1B}$ (rate of exchange of X1 from blood to liver)
- v. $k_{1B1L}q_{1L}$ (rate of exchange of X1 from liver to blood)
- vi. $k_{2L1L}q_{1L}$ (rate of exchange from X1 in liver to X2 in liver)
- vii. $k_{2G2L}q_{2L}$ (rate of exchange from X2 in liver to X2 in gut)

viii. $k_{2F2G}q_{2G}$ (rate of exchange from X2 in gut to X2 in feces)

c. Parameters:

- i. k_{u1}
- ii. k_{O1B}
- iii. k_{1RO}
- iv. k_{1L1B}
- v. k_{1B1L}
- vi. k_{2L1L}
- vii. k_{2G2L}

4. Figure 7.7 - X1 in blood & X1 in liver as one lumped "central compartment"

Let Compartment 1 = X1 in Blood

Let Compartment 2 = X1 in Liver

Let Compartment 3 = X1 in Blood and X1 in Liver together

Let Compartment 0 = environment outside of blood and liver compartments

1. Left Diagram

a. State variables:

- i. q_{1B} (number of substances X1 in blood)
- ii. q_{1L} (number of substances X1 in liver),
- iii. $q_{outside}$ (outside environment)

b. Fluxes:

- i. $k_{u1}u_1$ (input flux of substances X1)
- ii. $k_{O1B}q_{1B}$ (rate of exchange of X1 from blood to outside environment)
- iii. $k_{1BO}q_{outside}$ (rate of exchange of X1 from outside environment to blood)
- iv. $k_{1L1B}q_{1B}$ (rate of exchange of X1 from blood to liver)
- v. $k_{1B1L}q_{1L}$ (rate of exchange of X1 from liver to blood)
- vi. $k_{O1L}q_{1L}$ (rate of exchange of X1 from liver to outside environment)

c. Parameters:

- i. k_{u1}
- ii. k_{O1B}
- iii. k_{1BO}
- iv. k_{1L1B}
- v. k_{1B1L}

vi. k_{O1L}

2. Right Diagram

a. State variables:

i. q_{1B1L} (number of substances X1 in blood and liver)

b. Fluxes:

- i. $k_{u1} u_1$ (input flux of substances X1)
- ii. $k_{O1BL}q_{1B1L}$ (rate of exchange of X1 from blood and liver to outside environment)
- iii. $k_{1BLO}q_{outside}$ (rate of exchange of X1 from outside environment to blood and liver)
- iv. $k_{O1BL \, (metabolism \, pathway)} q_{1B+1L}$ (rate of exchange of X1 from blood and liver to outside environment, the metabolic pathway)

c. Parameter:

- i. k_{u1}
- ii. k_{O1BL}
- iii. k_{1BLO}
- iv. $k_{O1BL (metabolism pathway)}$

Part (c)

Figure 7.4 - Blood / Urine Measurement MC Submodel

Let Compartment 1 = X in Blood

Let Compartment 2 = X in Urine

Let 0 = environment outside of blood and urine

Figure 7.5 - Hormone metabolism MC submodel

Let Compartment 1 = T4 in Cell

Let Compartment 2 = T3 in Cell

Let 0 = environment outside of T4 and T3 in Cell

(E) cont. (Figure 7.5) Based from assumption from part (C)

Given the primary v flux are not linear

$$\frac{d q_{74}}{dt} = u - V_{21} - V_{01} + V_{10}$$

$$= \left[u - \frac{C_{21}}{K_{21} + Q_{74}} q_{74} - K_{01} q_{74} + K_{10} q_{outside} \right]$$

$$\frac{d973}{dt} = V_{21} = \frac{C_{21}}{k_{21} + 974} 974$$
metabolism pathway

Part (d)

Figure 7.4 - Blood / urine measurement MC submodel (Based from ODE from part c)

Parameter: C_{21} , K_{21} (constants from the non-linear elimination rate from all the compartment)

State Variable: q_{blood} (compartment of X in blood), q_{urine} (compartment of X in urine), $q_{outside}$ (outside environment)

Figure 7.5 - Hormone metabolism MC submodel

Parameter : C_{21} , K_{21} (constants from the non-linear elimination rate from all the compartment)

State Variable : q_{T4} (compartment of T4 in cell), q_{T3} (compartment of T3 in cell), $q_{outside}$ (outside environment)

Part (e)

Let Compartment 1 = X1 in Blood

Let Compartment 2 = X1 in Liver

Let Compartment 3 = X2 in Liver

Let Compartment 4 = X2 in Gut

Let Compartment 5 = X2 in Feces

Let Compartment 0 = environment outside of all blood, liver, gut and feces compartments

Exercise 1. Specifying state Variables, Parameters 2

V Fluxes for MC Models (Figure 7.6)

(e)
$$\rightarrow$$
 Essed from relation 2 assumption from part (a)

$$\frac{dq_{blood 1}}{dt} = u_1 - V_{01} + V_{10} - V_{21} + V_{12}$$

$$= \left[u_1 - K_{01}q_{blood 1} + K_{10}q_{outside} - K_{21}q_{blood 1} + K_{12}q_{blood 1}\right]$$

$$\frac{dq_{blood 1}}{dt} = V_{21} - V_{12} - V_{32}$$

$$= \left[K_{21}q_{blood 1} - K_{12}q_{blood 1} - K_{32}q_{blood 1}\right]$$

$$\frac{dq_{blood 1}}{dt} = V_{32} - V_{43}$$

$$= \left[K_{32}q_{blood 1} - K_{43}q_{blood 2}\right]$$

$$\frac{dq_{blood 2}}{dt} = V_{32} - V_{43}$$

$$= \left[K_{32}q_{blood 1} - K_{43}q_{blood 2}\right]$$

$$\frac{dq_{blood 3}}{dt} = V_{34} - K_{43}q_{blood 2}$$

Part (f)

1. Models in Part C (Figure 7.4 and Figure 7.5)

a. Figure 7.4 - Blood/Urine measurement

Let q_{blood} = concentration/masses of X in blood

Let $V_b = \text{volume of X in blood}$

Let q_{urine} = concentration/masses of X in urine

Let V_u = volume of X in feces

$$y_{Blood} = \frac{q_{blood}}{V_b}$$
 $y_{Urine} = \frac{q_{urine}}{V_u}$

b. Figure 7.5 - Hormone metabolism MC submodel

Let $q_{4 cell}$ = concentration/masses of T4 in cell

Let $V_{4 cell}$ = volume of T4 in cell

Let $q_{3 cell}$ = concentration/masses of T3 in cell

Let $V_{3 cell}$ = volume of T3 in cell

$$y_{4 cell} = \frac{q_{4 cell}}{V_{4 cel}}$$
$$y_{3 cell} = \frac{q_{3 cell}}{V_{3 cell}}$$

2. Models in Part E (Figure 7.6 - MC model with metabolism of X1 in liver)

Let $q_{blood 1}$ = concentration/masses of X1 in blood

Let V_1 = volume of X1 in blood

Let $q_{feces 2}$ = concentration/masses of X2 in feces

Let V_2 = volume of X2 in feces

a.
$$y_1 = \frac{q_{blood 1}}{V_1}$$

b.
$$y_2 = \frac{q_{feces 2}}{V_2}$$

Exercise 2 = Measuring and Unknown Doses (a) According to lecture, let the injected drug dose into the bloodstream be an impulse function Let the function be represented as $u(t) = Q_0 \delta(t)$ After drug dose Do get into the bloodstream, the measured concentration at time is 0 (t = 0)is yblood (ot) = Ro Vblood reasurement volume of blood of output y The measurement take place by assuming the drug immediate dissolve 2 mix with the blood once it get in. In order to estimate the volume of the blood, place very close to t=0. \$\mathfrak{g}_{blood}(0^+)\$ This means that Yolood (t) still haven't change that much Voloud ~ y Hood (0+)

(b) The experiment could collect the patient urine for a period of time until the patient body has completely eliminated the injected drug dose X. We are able to measure the concentration of substance X sequentially because we know when it become zero we know the drug is completely eliminated from the body.

Mary = Cany × Vary

mass of concentration > volume of drug

drug of drug eliminated from

through the body

measurement

Exercise 3

Part (a)

Exercise 3: Mammillary Compartment Model

(a) Here the ODES

$$\frac{d93}{dt} = V_{31} - V_{13} - V_{03} = \begin{bmatrix} k_{31}9_1 - k_{13}9_3 - k_{03}9_3 \\ k_{31}9_1 - k_{13}9_3 - k_{03}9_3 \end{bmatrix}$$

$$\frac{d91}{dt} = u_1 - V_{01} + V_{13} - V_{31} + V_{12} - V_{21}$$

$$= \begin{bmatrix} u_1 - k_{01}9_1 + k_{13}9_3 - k_{31}9_1 + k_{12}9_2 - k_{21}9_1 \\ k_{21}9_1 - k_{12}9_2 - k_{02}9_2 \end{bmatrix}$$

$$\frac{d92}{dt} = V_{21} - V_{12} - V_{02}$$

$$= \begin{bmatrix} k_{21}9_1 - k_{12}9_2 - k_{02}9_2 \\ V_{1} - V_{12} - V_{02} \end{bmatrix}$$

Part (b) Simulink

Graph

Q2 and Q3 overlap with each other

Part (c)

According to the simulink diagram and the corresponding scope graph, compartment 2 and 3 can be combined into one single compartment. The reason behind the similar property is both compartment 2 and 3 have a single influx from compartment 1 and a single outflux to compartment 1. They also have a leak to the outside environment. Under consumption that all rate constants equal to one, all of the parameters from compartment 2 are the same as the parameters from compartment 3.

Here is the new model:

Part (b) - All models are linear compartmental (Based from notation in Part a)

1. Blood / Urine measurement MC submodel

Let Compartment 1 = X in Blood Let Compartment 2 = X in Urine Let 0 = environment outside of blood and urine

a. Parameter: u(input flux, influx), k_{21} (rate of exchange of X from blood to urine, efflux), k_{01} (rate of exchange of X from blood to outside environment, efflux), k_{10} (rate of exchange of X from outside environment to blood, influx)

2. Hormone metabolism MC submodel

Let Compartment 1 = T4 in Cell Let Compartment 2 = T3 in Cell Let 0 = environment outside of T4 and T3 in Cell

a. Parameter: u(input flux, influx), k_{21} (rate of exchange from T4 in Cell to T3 in Cell, efflux), k_{01} (rate of exchange from T4 in Cell to outside environment, efflux), k_{10} (rate of exchange from outside environment to T4 in Cell, influx)

3. MC model with metabolism of X1 in liver

Let Compartment 1 = X1 in Blood

Let Compartment 2 = X1 in Liver

Let Compartment 3 = X2 in Liver

Let Compartment 4 = X2 in Gut

Let Compartment 5 = X2 in Feces

Let Compartment 0 = environment outside of all blood, liver, gut and feces compartments

a. Parameter: u (input flux, influx), k_{01} (rate of exchange of X1 from blood to outside environment, efflux), k_{10} (rate of exchange of X1 from outside environment to blood, influx), k_{21} (rate of exchange of X1 from blood to liver, efflux), k_{12} (rate of exchange of X1 from liver to blood, influx), k_{32} (rate of exchange from X1 in liver to X2 in liver, efflux), k_{43} (rate of exchange from X2

in liver to X2 in gut, efflux), k_{54} (rate of exchange from X2 in gut to X2 in feces, efflux)

4. X1 in blood and X1 in liver as one lumped "central" compartment

Let Compartment 1 = X1 in Blood

Let Compartment 2 = X1 in Liver

Let Compartment 3 = X1 in Blood and X1 in Liver together

Let Compartment 0 = environment outside of blood and liver compartments

a. Parameter: u_1 (input flux, influx), k_{21} (rate of exchange of X1 from blood to liver, efflux), k_{12} (rate of exchange of X1 from liver to blood, influx), k_{01} (rate of exchange of X1 from blood to outside environment, efflux), k_{10} (rate of exchange of X1 from outside environment to blood, influx), k_{02} (rate of exchange of X1 from liver to outside environment, efflux), k_{03} (other compartment exchanges) (rate of exchange of X1 from blood and liver to outside environment, efflux), k_{30} (other compartment exchanges) (rate of exchange of X1 from outside environment to blood and liver, influx), k_{03} (metabolism pathway) (rate of exchange of X1 from blood and liver to outside environment, efflux, the metabolism pathway)