

# Machine Learning projects

A. Pau, O.Sauter and collaborators

EPFL-SPC, Lausanne





REF: [Pau et al NF 2019]

Tokamak disruption prediction: Supervised learning with Random Forests

# CENERATIVE LATENT MODEL Latent space Latent space x<sub>2</sub> x<sub>1</sub> REF: [Pau et al | IEEE 2018]

1) GTM 2D-MAPPING OF JET-ILW 7D INPUT SPACE (NonDisruptive vs Disruptive)



- 1) 2D GTM Map: modes of the posterior probability distribution in the latent space, obtained by 'reversing' the mapping (*Bayes'* theorem) from the 7D [input] data-space to the 2D [output] latent space.
- 2) GTM component planes: distribution of the input parameters associated with the mapping and allow to analyze patterns and not straightforward relations among the different features.

# Swiss Plasma Center

# 2) GTM input parameters component planes





54

56

58

Time [s]

# Tokamak disruption prediction: Supervised learning with Random Forests





# Machine Learning supporting HDL studies (1)

### AUTOMATIC CLASSIFICATION OF PLASMA CONFINEMENT STATES:

- DEEP LEARNING model based on a convolutional-RNN (LSTM)
  - Probability of the plasma of being in a given confinement state (accounting for temporal evolution)
  - Preliminary RT implementation

Input Signa  $\frac{\chi_{t+n-}}{\chi_{t+n}}$  $\frac{\chi_{t+n+}}{\chi_{t+n+}}$ Convolutions + Max Pooling + Dropout Conv Input n Conv Input 1 Conv Input 2 Conv Input 11 **Feature Feature Feature Feature** Extraction 1 Extraction 11 Extraction n Extraction 2  $z_{t+5}$   $z_{t+6}$   $z_{t+7}$   $z_{t+8}$   $z_{t+9}$   $z_{t+10}$  $\frac{Z_{t+11}}{Z_{t+12}}$ 

REF: [Matos et al NF 2020]



Swiss
Plasma
Center



# Machine Learning supporting HDL studies (2)

# **AUTOMATIC CLASSIFICATION OF PLASMA CONFINEMENT STATES:**

### SEQUENCE 2 SEQUENCE MODEL:

- Model not constrained to have same source/target resolutions.
- Decoder was extended with an attention layer to capture larger context of long input sequences.



## ▶ UTIME MODEL:

- Multi-scale convolutional structure of UTime allows to capture patterns at different scales present in the plasma.
- UTime processes the whole signal at once (offline) with the ability to see at large context.



Swiss
Plasma
Center

REF: [Marceca et al NEURIPS 2020]

# EPFL Unsupervised Clustering of fast transient MHD events

TPIV – ML project

# **UNSUPERVISED CLUSTERING OF SAWTOOTH AND THERMAL QUENCH CRASHES**







(a) Minor disruptions pro- (b) Normal operation profiles files



c) Sawtooth profiles

### Unsupervised clustering

- **spline fitting** of difference between «post» and «pre» crash profiles;
- Clustering with **GMM** of spline coefficients -> classification



**Swiss** Plasma Center



# EPFL Unsupervised Clustering of fast transient MHD events

TPIV – ML project

# **MARFE** ONSET PREDICTION VIA SUPERVISED LEARNING



COMPARISON OF SEVERAL CLASSIFICATION **ALGORITHMS WITH FOCUS ON ENSEMBLES** 

Labeling of H-mode Density Limit with MARFE onset characterization

| Hyperparameter        | Range       |
|-----------------------|-------------|
| Boosted Tree          |             |
| N Learning Cycles     | 483         |
| Learn Rate            | 0.9546      |
| Min Leaf Size         | 46          |
| Max Number Splits     | 10          |
| $SubSpace\ KNN$       |             |
| Distance              | mahalanobis |
| Distance Weight       | equal       |
| Number of Neighbors   | 13          |
| N Variables to Sample | 9           |
| N Learning Cycles     | 40          |
| SubSpace Discriminant |             |
| N Variables to Sample | 11          |
| N Learning Cycles     | 30          |
| Delta                 | 1.0124e-06  |
| Gamma                 | 0.0120      |
| Discriminant Type     | linear      |
| Gaussian Kernel SVM   |             |
| Coding                | onevsall    |
| Box Constraint        | 0.001       |
| Kernel Scale          | 0.0011      |
| Kernel Function       | gaussian    |



Probability density functions of engineering and physics quantities



**Swiss** Plasma Center



# EPFL Unsupervised Clustering of fast transient MHD events

TPIV – ML project

### > TCV DISRUPTION PREDICTION WITH XGBOOST CLASSIFIER

«BUILT-IN» Hyperparameter optimization and feature extraction (over thousands of disruptive & non-disruptive TCV discharges)





(e) Tuning the number of trees and learning rate







(f) Tuning the number of trees and the tree depth







# Some References on Tokamaks "disruptions prediction" 1

[Cannas NF 2007] B. Cannas, A. Fanni, P. Sonato, K. Zedda (2007) A prediction tool for real-time application in the disruption protection system, Nucl. Fusion 47 1559–69

[Ratta NF 2010] G.A. Rattá, J. Vega, A. Murari, G. Vagliasindi, M.F. Johnson, P.C. de Vries (2010) An advanced disruption predictor for JET tested in a simulated real-time environment, Nuclear Fusion, Volume 50, Number 2

[Strait NF 2019] E.J. Strait, J.L. Barr, M. Baruzzo, J.W. Berkery, R.J. Buttery, P.C. de Vries, N.W. Eidietis, R.S. Granetz, J.M. Hanson, C.T. Holcomb, D.A. Humphreys, J.H. Kim, E. Kolemen, M. Kong, M.J. Lanctot, M. Lehnen, E. Lerche, N.C. Logan, M. Maraschek, M. Okabayashi, J.K. Park, A. Pau, G. Pautasso, F.M. Poli, C. Rea, S.A. Sabbagh, O. Sauter, E. Schuster, U.A. Sheikh, C. Sozzi, F. Turco, A.D. Turnbull, Z.R. Wang, W.P. Wehner and L. Zeng, Progress in disruption prevention for ITER, Nucl. Fusion 59 (2019) 112012.

[Montes NF 2019] K.J. Montes, C. Rea, R.S. Granetz, R.A. Tinguely, N. Eidietis, O.M. Meneghini, D.L. Chen, B. Shen, B.J. Xiao, K. Erickson and M.D. Boyer, Machine learning for disruption warnings on Alcator C-Mod, DIII-D, and EAST, Nucl. Fusion 59 (2019) 096015.

[Kates-Harbeck Nature 2019] J. Kates-Harbeck, A. Svyatkovskiy and W. Tang (2019) Predicting disruptive instabilities in controlled fusion plasmas through deep learning, Nature 568 526.

[Rea FST 2020] C. Rea and K. J. Montes and A. Pau and R. S. Granetz and O. Sauter (2020) Progress Toward Interpretable Machine Learning-Based Disruption Predictors Across Tokamaks, Fusion Science and Techn. 76, <a href="https://doi.org/10.1080/15361055.2020.1798589">https://doi.org/10.1080/15361055.2020.1798589</a>.

[Murari NF 2020] A. Murari,, R. Rossi, E. Peluso, M. Lungaroni, P. Gaudio, M. Gelfusa, G. Ratta, J. Vega (2020) On the transfer of adaptive predictors between different devices for both mitigation and prevention of disruptions, Nucl. Fusion 60 056003.





# Some References on Tokamaks "disruptions prediction" 2

[Zheng NF 2018] W. Zheng, F.R. Hu, M. Zhang, Z.Y. Chen, X.Q. Zhao, X.L. Wang, P. Shi, X.L. Zhang, X.Q. Zhang, Y.N. Zhou, Y.N. Wei, Y. Pan (2018) Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak Nucl. Fusion 58 056016

[Pau NF 2019] A. Pau, A. Fanni, S. Carcangiu, B. Cannas, G. Sias, A. Murari, F. Rimini (2019) "A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET" Nucl. Fusion 59 106017

# [Pau FED2017]

A.Pau, B. Cannas, A. Fanni, G. Sias, M. Baruzzo, A. Murari, G. Pautasso, M. Tsalas (2017) "A tool to support the construction of reliable disruption databases" Fusion Eng. Des. 125 139–53

[EUROfusion DDBs] https://users.euro-fusion.org/iterphysicswiki/index.php/Database

[MDSplus] https://www.mdsplus.org/index.php/Introduction

[de Vries NF 2014] P. C. de Vries, M. Baruzzo, G. M. D. Hogeweij, S. Jachmich, E. Joffrin, P. J. Lomas, G. F. Matthews, A. Murari, I. Nunes, T. Pütterich, C. Reux, J. Vega (2014) Physics of Plasmas 21, 056101

[Pau IEEE 2018] A. Pau; A. Fanni; B. Cannas; S. Carcangiu; G. Pisano; G. Sias; P. Sparapani; M. Baruzzo; A. Murari; F. Rimini; M. Tsalas, P.C. de Vries "A First Analysis of JET Plasma Profile-Based Indicators for Disruption Prediction and Avoidance," in IEEE Transactions on Plasma Science, vol. 46, no. 7, pp. 2691-2698, July 2018, doi: 10.1109/TPS.2018.2841394.

