Fields in the vertex	Variational derivative of Lagrangian by fields
A_{μ} A_{ν}	$-p_1^{ ho}p_1^{ ho}g^{\mu u}$
\bar{b}_{ap} b_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_b \cdot \delta_{ab})$
\bar{c}_{ap} c_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_c \cdot \delta_{ab})$
$ar{d}_{ap}$ d_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + Md \cdot \delta_{ab})$
\bar{e}_a e_b	$-p_1^\mu \gamma_{ac}^\mu \delta_{cb}$
$\bar{\mu}_a$ μ_b	$-(p_1^{\mu}\gamma_{ab}^{\mu} + M_{\mu} \cdot \delta_{ab})$
$ar{ au}_a$ $ au_b$	$-(p_1^{\mu}\gamma_{ab}^{\mu} + M_{\tau} \cdot \delta_{ab})$
$G_{\mu p}$ $G_{\nu q}$	$-p_1^{ ho}p_1^{ ho}g^{\mu u}\delta_{pq}$
H H	$-(M_H{}^2 - p_1^\mu p_1^\mu)$
$\bar{ u}^e{}_a$ $\nu^e{}_b$	$-p_1^{\mu}\gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$	$-p_1^{\mu}\gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ $\nu^{\tau}{}_{b}$	$-p_1^{\mu}\gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$ar{s}_{ap}$ s_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_s \cdot \delta_{ab})$
\bar{t}_{ap} t_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_t \cdot \delta_{ab})$
$ \bar{u}_{ap} u_{bq} $	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + Mu \cdot \delta_{ab})$
$W^+_{\mu} W^{\nu}$	$-g^{\mu\nu}(p_1^{\rho}p_1^{\rho}-M_W^2)$
W_F^+ W_F^-	$(p_1^{\mu}p_1^{\mu} - M_W^2)$
Z_{μ} $Z_{ u}$	$-\frac{1}{c_w^2}g^{\mu\nu}(c_w^2 \cdot p_1^{\rho}p_1^{\rho} - M_W^2)$
$oxed{Z_F} oxed{Z_F}$	$\frac{1}{c_w^2} (c_w^2 \cdot p_1^\mu p_1^\mu - M_W^2)$
	$-\frac{1}{e^2}(2M_W^2 \cdot s_w^2 \cdot \lambda_2 \cdot g^{\mu\nu} - e^2 \cdot M_V^2 \cdot g^{\mu\nu} + e^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - e^2 \cdot p_1^{\mu} p_1^{\nu})$
$\sim V_{1\mu} \sim V_{1\nu}$	$-\frac{1}{e^2}(2M_W^2 \cdot s_w^2 \cdot \lambda_2 \cdot g^{\mu\nu} + 2M_W^2 \cdot s_w^2 \cdot \lambda_3 \cdot g^{\mu\nu} + 2M_W^2 \cdot s_w^2 \cdot \lambda_4 \cdot g^{\mu\nu})$
	$-e^2 \cdot M_V^2 \cdot g^{\mu\nu} + e^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - e^2 \cdot p_1^{\mu} p_1^{\nu})$
$\sim V_{2\mu} \sim V_{2\nu}$	$-\frac{1}{e^2}(2M_W^2 \cdot s_w^2 \cdot \lambda_2 \cdot g^{\mu\nu} + 2M_W^2 \cdot s_w^2 \cdot \lambda_3 \cdot g^{\mu\nu} - 2M_W^2 \cdot s_w^2 \cdot \lambda_4 \cdot g^{\mu\nu})$
	$-e^2 \cdot M_V^2 \cdot g^{\mu\nu} + e^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - e^2 \cdot p_1^{\mu} p_1^{\nu})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-e(p_2^{\rho}g^{\mu\nu} - p_2^{\mu}g^{\nu\rho} - p_3^{\nu}g^{\mu\rho} + p_3^{\mu}g^{\nu\rho} + p_1^{\nu}g^{\mu\rho} - p_1^{\rho}g^{\mu\nu})$

Fields in the vertex	Variational derivative of Lagrangian by fields
A_{μ} W^{+}_{ν} W^{-}_{F}	$i \cdot e \cdot M_W \cdot g^{\mu\nu}$
$A_{\mu} W_F^+ W^{\ \nu}$	$-i \cdot e \cdot M_W \cdot g^{\mu\nu}$
$A_{\mu} W_F^+ W_F^-$	$e(p_3^\mu-p_2^\mu)$
$A_{\mu} \sim V^{+}_{\nu} \sim V^{-}_{\rho}$	$-e(p_3^{\mu}g^{\nu\rho}-p_2^{\mu}g^{\nu\rho}-p_3^{\nu}g^{\mu\rho}+p_2^{\rho}g^{\mu\nu}-p_1^{\rho}g^{\mu\nu}+p_1^{\nu}g^{\mu\rho})$
\bar{C}^A C^{W+} W^{μ}	$-e\cdot p_1^\mu$
\bar{C}^A C^{W-} W^+_{μ}	$e\cdot p_1^\mu$
\bar{b}_{ap} b_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{b}_{ap} b_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{b}_{ap} b_{bq} H	$-rac{1}{2}rac{e\cdot M_b}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ar{b}_{ap}$ b_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
$ar{b}_{ap}$ b_{bq} Z_F	$-\frac{1}{2}\frac{i\cdot e\cdot M_b}{M_W\cdot s_w}\delta_{pq}\cdot \gamma_{ab}^5$
$ \bar{b}_{ap} t_{bq} W^{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{b}_{ap} t_{bq} W_F^-	$-\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(M_b \cdot \frac{(1 - \gamma^5)_{ab}}{2} - M_t \cdot \frac{(1 + \gamma^5)_{ab}}{2} \right)$
\bar{c}_{ap} c_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{c}_{ap} c_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^{\mu}$
\bar{c}_{ap} c_{bq} H	$-rac{1}{2}rac{e\cdot M_c}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{c}_{ap} c_{bq} Z_{μ}	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - \frac{(1-\gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right) $
\bar{c}_{ap} c_{bq} Z_F	$\frac{1}{2} \frac{i \cdot e \cdot M_c}{M_W \cdot s_w} \delta_{pq} \cdot \gamma_{ab}^5$
$ \bar{c}_{ap} s_{bq} W^+_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} s_{bq} W_F^+	$\frac{\frac{1}{2}\frac{i\cdot e\cdot\sqrt{2}}{M_W\cdot s_w}\delta_{pq}(M_s\cdot\frac{(1+\gamma^5)_{ab}}{2}-M_c\cdot\frac{(1-\gamma^5)_{ab}}{2})$
\bar{d}_{ap} d_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{d}_{ap} d_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
$ \bar{d}_{ap} d_{bq} H$	$-rac{1}{2}rac{e\cdot Md}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ar{d}_{ap}$ d_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
$ar{d}_{ap}$ d_{bq} Z_F	$-\frac{1}{2}\frac{i\cdot e\cdot Md}{M_W\cdot s_w}\delta_{pq}\cdot\gamma_{ab}^5$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{d}_{ap} u_{bq} W^{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{d}_{ap} u_{bq} W_F^-	$-\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(Md \cdot \frac{(1-\gamma^5)_{ab}}{2} - Mu \cdot \frac{(1+\gamma^5)_{ab}}{2} \right)$
$\bar{e}_a e_b A_\mu$	$e\gamma^{\mu}_{ac} \cdot \delta_{cb}$
$ar{e}_a$ e_b Z_μ	$-\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$\bar{e}_a \nu^e_b W^{\ \mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a$ μ_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\bar{\mu}_a$ μ_b H	$-rac{1}{2}rac{e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \delta_{ab}$
$\bar{\mu}_a$ μ_b Z_μ	$ -\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
$\bar{\mu}_a$ μ_b Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \gamma_{ab}^5$
$\bar{\mu}_a \nu^{\mu}{}_b W^{-}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a \nu^{\mu}{}_b W_F^-$	$-\frac{1}{2}\frac{i\cdot e\cdot M_{\mu}\cdot\sqrt{2}}{M_{W}\cdot s_{w}}\cdot\frac{(1-\gamma^{5})_{ab}}{2}$
$\bar{\tau}_a$ τ_b A_μ	$e\gamma^{\mu}_{ac} \cdot \delta_{cb}$
$\bar{ au}_a$ τ_b H	$-rac{1}{2}rac{e\cdot M_ au}{M_W\cdot s_w}\cdot\delta_{ab}$
$ar{ au}_a$ $ au_b$ Z_μ	$-\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2c_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$\bar{ au}_a$ $ au_b$ Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_ au}{M_W\cdot s_w}\cdot \gamma_{ab}^5$
$\bar{\tau}_a \nu^{\tau}_b W^{-}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\tau}_a \nu^{\tau}_b W_F^-$	$-\frac{1}{2}\frac{i\cdot e\cdot M_{\tau}\cdot\sqrt{2}}{M_W\cdot s_w}\cdot\frac{(1-\gamma^5)_{ab}}{2}$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$	$g_s f_{pqr} (p_3^{\nu} g^{\mu\rho} - p_3^{\mu} g^{\nu\rho} + p_1^{\rho} g^{\mu\nu} - p_1^{\nu} g^{\mu\rho} - p_2^{\rho} g^{\mu\nu} + p_2^{\mu} g^{\nu\rho})$
$\bar{C}^G_{\ p}$ $C^G_{\ q}$ $G_{\mu r}$	$g_s \cdot p_2^\mu f_{pqr}$
H H H	$-rac{3}{2}rac{e\cdot M_H{}^2}{M_W{}^*s_w}$
$H W^+_{\mu} W^{\nu}$	$rac{e \cdot M_W}{s_w} \cdot g^{\mu u}$
H W^+_{μ} W^F	
$H W_F^+ W^{\ \mu}$	
H W_F^+ W_F^-	$-rac{1}{2}rac{e\cdot M_H{}^2}{M_W{}\cdot s_w}$
H Z_{μ} $Z_{ u}$	$\frac{e \cdot M_W}{c_w^2 \cdot s_w} \cdot g^{\mu u}$

Fields in the vertex	Variational derivative of Lagrangian by fields
H Z_{μ} Z_{F}	$-\frac{1}{2}\frac{i \cdot e}{c_w \cdot s_w}(p_1^{\mu} - p_3^{\mu})$
H Z_F Z_F	$-rac{1}{2}rac{e\cdot M_H{}^2}{M_W{}^*s_w}$
$ H \sim V^+_{\mu} \sim V^{\nu} $	
$H \sim V_{1\mu} \sim V_{1\nu}$	$-2\frac{M_W \cdot s_w}{e} g^{\mu\nu} (\lambda_2 + \lambda_3 + \lambda_4)$
$H \sim V_{2\mu} \sim V_{2\nu}$	$-2\frac{M_W \cdot s_w}{e} g^{\mu\nu} (\lambda_2 + \lambda_3 - \lambda_4)$
$\bar{\nu}^e{}_a e_b W^+{}_\mu$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^e{}_a \nu^e{}_b Z_\mu$	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\left \bar{\nu}^{\mu}{}_{a} \mu_{b} W^{+}{}_{\mu} \right $	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} W_{F}^{+}	$\frac{1}{2} \frac{i \cdot e \cdot M_{\mu} \cdot \sqrt{2}}{M_W \cdot s_w} \cdot \frac{(1 + \gamma^5)_{ab}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} $W^{+}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} W_{F}^{+}	$\frac{1}{2} \frac{i \cdot e \cdot M_{\tau} \cdot \sqrt{2}}{M_W \cdot s_w} \cdot \frac{(1 + \gamma^5)_{ab}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ $\nu^{\tau}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W^{-}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W_F^-	$-\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(M_s \cdot \frac{(1 - \gamma^5)_{ab}}{2} - M_c \cdot \frac{(1 + \gamma^5)_{ab}}{2} \right)$
\bar{s}_{ap} s_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{s}_{ap} s_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{s}_{ap} s_{bq} H	$-rac{1}{2}rac{e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{s}_{ap} s_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
\bar{s}_{ap} s_{bq} Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot \gamma_{ab}^5$
\bar{t}_{ap} b_{bq} W^{+}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{t}_{ap} b_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(M_b \cdot \frac{(1+\gamma^5)_{ab}}{2} - M_t \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & A_{\mu} \end{array}$	$-rac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{t}_{ap}$ t_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{t}_{ap} t_{bq} H	$-rac{1}{2}rac{e\cdot M_t}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$ar{t}_{ap}$ t_{bq} Z_{μ}	$-\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - \frac{(1-\gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}\right)$
$ar{t}_{ap}$ t_{bq} Z_F	$\frac{1}{2} \frac{i \cdot e \cdot M_t}{M_W \cdot s_w} \delta_{pq} \cdot \gamma_{ab}^5$
\bar{u}_{ap} d_{bq} W^{+}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{u}_{ap} d_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2}}{M_W \cdot s_w} \delta_{pq} \left(Md \cdot \frac{(1+\gamma^5)_{ab}}{2} - Mu \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
\bar{u}_{ap} u_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{u}_{ap} u_{bq} $G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
\bar{u}_{ap} u_{bq} H	$-rac{1}{2}rac{e\cdot Mu}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{u}_{ap} u_{bq} Z_{μ}	$-\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - \frac{(1-\gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2}\right)$
\bar{u}_{ap} u_{bq} Z_F	$rac{1}{2}rac{i\cdot e\cdot Mu}{M_W\cdot s_w}\delta_{pq}\cdot \gamma_{ab}^5$
$W^+_{\mu} W^{\nu} Z_{\rho}$	$-\frac{c_w \cdot e}{s_w} (p_1^{\nu} g^{\mu\rho} - p_1^{\rho} g^{\mu\nu} - p_2^{\mu} g^{\nu\rho} + p_2^{\rho} g^{\mu\nu} + p_3^{\mu} g^{\nu\rho} - p_3^{\nu} g^{\mu\rho})$
W^+_{μ} W^F Z_{ν}	$-rac{i\cdot e\cdot M_W\cdot s_w}{c_w}\cdot g^{\mu u}$
$W^+_{\mu} W^F Z_F$	$-rac{1}{2}rac{e}{s_w}(p_2^\mu-p_3^\mu)$
$W^+_{\mu} \sim V^{\nu} \sim V_{1\rho}$	$-\frac{1}{2}\frac{i \cdot e}{s_w}(p_2^{\mu}g^{\nu\rho} - p_3^{\mu}g^{\nu\rho} - p_2^{\rho}g^{\mu\nu} + p_3^{\nu}g^{\mu\rho} - p_1^{\nu}g^{\mu\rho} + p_1^{\rho}g^{\mu\nu})$
	$\frac{1}{2} \frac{e}{s_w} (p_2^{\mu} g^{\nu\rho} - p_3^{\mu} g^{\nu\rho} - p_2^{\rho} g^{\mu\nu} + p_3^{\nu} g^{\mu\rho} - p_1^{\nu} g^{\mu\rho} + p_1^{\rho} g^{\mu\nu})$
\bar{C}^{W+} C^Z W^{μ}	$e\cdot p_1^\mu$
\bar{C}^{W+} C^Z W_F^-	$-i\cdot e\cdot M_W$
\bar{C}^{W+} C^{W-} A_{μ}	$-e\cdot p_1^\mu$
\bar{C}^{W+} C^{W-} H	$-rac{1}{2}rac{e\cdot M_W}{s_w}$
\bar{C}^{W+} C^{W-} Z_{μ}	$-rac{c_w\cdot e}{s_w}\cdot p_1^\mu$
\bar{C}^{W+} C^{W-} Z_F	$\frac{1}{2} \frac{i \cdot e \cdot M_W}{s_w}$
\bar{C}^{W+} C^Z W^{μ}	$rac{c_w \cdot e}{s_w} \cdot p_1^\mu$
\bar{C}^{W+} C^Z W_F^-	$\frac{1}{2} \frac{i \cdot (1 - 2c_w^2) \cdot e \cdot M_W}{c_w \cdot s_w}$
$W_F^+ W_\mu^- Z_\nu$	$rac{i\cdot e\cdot M_W\cdot s_w}{c_w}\cdot g^{\mu u}$
W_F^+ $W_\mu^ Z_F$	$-rac{1}{2}rac{e}{s_w}(p_3^\mu-p_1^\mu)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-rac{1}{2}rac{(1-2c_w^2)\cdot e}{c_w\cdot s_w}(p_2^\mu-p_1^\mu)$

Fields in the vertex	Variational derivative of Lagrangian by fields
$W_F^+ \sim V_{\mu}^- \sim V_{1\nu}$	$-\frac{M_W \cdot s_w}{e} g^{\mu\nu} (\lambda_3 + \lambda_4)$
$W_F^+ \sim V^{\mu} \sim V_{2\nu}$	$-rac{i\cdot M_W\cdot s_w}{e}g^{\mu u}(\lambda_3-\lambda_4)$
$W^{\mu} \sim V^+_{\nu} \sim V_{1\rho}$	$\frac{1}{2} \frac{i \cdot e}{s_w} (p_3^{\mu} g^{\nu \rho} - p_2^{\mu} g^{\nu \rho} - p_3^{\nu} g^{\mu \rho} + p_2^{\rho} g^{\mu \nu} - p_1^{\rho} g^{\mu \nu} + p_1^{\nu} g^{\mu \rho})$
$W^{\mu} \sim V^+_{\nu} \sim V_{2\rho}$	$\frac{1}{2} \frac{e}{s_w} (p_3^{\mu} g^{\nu\rho} - p_2^{\mu} g^{\nu\rho} - p_3^{\nu} g^{\mu\rho} + p_2^{\rho} g^{\mu\nu} - p_1^{\rho} g^{\mu\nu} + p_1^{\nu} g^{\mu\rho})$
\bar{C}^{W-} C^Z W^+_{μ}	$-e\cdot p_1^\mu$
\bar{C}^{W-} C^Z W_F^+	$i \cdot e \cdot M_W$
\bar{C}^{W-} C^{W+} A_{μ}	$e\cdot p_1^\mu$
\bar{C}^{W-} C^{W+} H	$-rac{1}{2}rac{e\cdot M_W}{s_W}$
\bar{C}^{W-} C^{W+} Z_{μ}	$\frac{c_w \cdot e}{s_w} \cdot p_1^{\mu}$
\bar{C}^{W-} C^{W+} Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_W}{s_w}$
\bar{C}^{W-} C^Z W^+_{μ}	$-rac{c_w\cdot e}{s_w}\cdot p_1^\mu$
\bar{C}^{W-} C^Z W_F^+	$-rac{1}{2}rac{i\cdot(1-2c_w^{2})\cdot e\cdot M_W}{c_w\cdot s_w}$
$W_F^- \sim V_{\mu}^+ \sim V_{1\nu}$	$-rac{M_W\cdot s_w}{e}g^{\mu u}(\lambda_3+\lambda_4)$
$W_F^- \sim V_{\mu}^+ \sim V_{2\nu}$	$rac{i \cdot M_W \cdot s_w}{e} g^{\mu u} (\lambda_3 - \lambda_4)$
$Z_{\mu} \sim V^{+}_{\nu} \sim V^{-}_{\rho}$	$\left \frac{1}{2} \frac{(1 - 2c_w^2) \cdot e}{c_w \cdot s_w} (p_3^{\mu} g^{\nu \rho} - p_2^{\mu} g^{\nu \rho} - p_3^{\nu} g^{\mu \rho} + p_2^{\rho} g^{\mu \nu} - p_1^{\rho} g^{\mu \nu} + p_1^{\nu} g^{\mu \rho}) \right $
$Z_{\mu} \sim V_{1\nu} \sim V_{2\rho}$	$\frac{1}{2} \frac{i \cdot e}{c_w \cdot s_w} (p_2^{\mu} g^{\nu\rho} - p_3^{\mu} g^{\nu\rho} - p_2^{\rho} g^{\mu\nu} + p_3^{\nu} g^{\mu\rho} - p_1^{\nu} g^{\mu\rho} + p_1^{\rho} g^{\mu\nu})$
\bar{C}^Z C^{W+} W^{μ}	$-rac{c_w\cdot e}{s_w}\cdot p_1^\mu$
\bar{C}^Z C^{W+} W_F^-	$rac{1}{2}rac{i\cdot e\cdot M_W}{c_w\cdot s_w}$
\bar{C}^Z C^{W-} W^+_{μ}	$\frac{c_w \cdot e}{s_w} \cdot p_1^{\mu}$
\bar{C}^Z C^{W-} W_F^+	$-rac{1}{2}rac{i\cdot e\cdot M_W}{c_w\cdot s_w}$
\bar{C}^Z C^Z H	$-rac{1}{2}rac{e\cdot M_W}{c_w{}^2\cdot s_w}$
$Z_F \sim V_{1\mu} \sim V_{2\nu}$	$-2\frac{M_W \cdot s_w \cdot \lambda_4}{e} \cdot g^{\mu\nu}$
$A_{\mu} A_{\nu} W^{+}{}_{\rho} W^{-}{}_{\sigma}$	$-e^2(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} A_{\nu} W_F^+ W_F^-$	$2e^2 \cdot g^{\mu\nu}$
$A_{\mu} A_{\nu} \sim V^{+}_{\rho} \sim V^{-}_{\sigma}$	$-e^2(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$

Fields in the vertex	Variational derivative of Lagrangian by fields
A_{μ} H W^{+}_{ν} W^{-}_{F}	$rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} H W_F^+ W^{\ \nu}$	$-rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{+}_{\ \nu} W^{-}_{\ \rho} Z_{\sigma}$	$-\frac{c_w \cdot e^2}{s_w} (2g^{\mu\sigma}g^{\nu\rho} - g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma})$
$A_{\mu} W^{+}_{\nu} W^{-}_{F} Z_{F}$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{+}_{\nu} \sim V^{-}_{\rho} \sim V_{1\sigma}$	$-\frac{1}{2}\frac{i\cdot e^2}{s_w}(g^{\mu\nu}g^{\rho\sigma} - 2g^{\mu\sigma}g^{\nu\rho} + g^{\mu\rho}g^{\nu\sigma})$
$A_{\mu} W^{+}_{\nu} \sim V^{-}_{\rho} \sim V_{2\sigma}$	$\frac{1}{2} \frac{e^2}{s_w} (g^{\mu\nu} g^{\rho\sigma} - 2g^{\mu\sigma} g^{\nu\rho} + g^{\mu\rho} g^{\nu\sigma})$
$A_{\mu} W_F^+ W^{\ \nu} Z_F$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W_F^+ W_F^- Z_{\nu}$	$-rac{(1-2c_w^2)\cdot e^2}{c_w\cdot s_w}\cdot g^{\mu u}$
$A_{\mu} W^{-}_{\nu} \sim V^{+}_{\rho} \sim V_{1\sigma}$	$\frac{1}{2} \frac{i \cdot e^2}{s_w} (g^{\mu\nu} g^{\rho\sigma} - 2g^{\mu\sigma} g^{\nu\rho} + g^{\mu\rho} g^{\nu\sigma})$
$A_{\mu} W^{-}_{\nu} \sim V^{+}_{\rho} \sim V_{2\sigma}$	$\frac{1}{2} \frac{e^2}{s_w} (g^{\mu\nu} g^{\rho\sigma} - 2g^{\mu\sigma} g^{\nu\rho} + g^{\mu\rho} g^{\nu\sigma})$
$A_{\mu} Z_{\nu} \sim V^{+}{}_{\rho} \sim V^{-}{}_{\sigma}$	$\frac{1}{2} \frac{(1 - 2c_w^2) \cdot e^2}{c_w \cdot s_w} (2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma})$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$ $G_{\sigma s}$	$g_s^2 (g^{\mu\rho}g^{\nu\sigma}f_{pqt}f_{rst} - g^{\mu\sigma}g^{\nu\rho}f_{pqt}f_{rst} + g^{\mu\nu}g^{\rho\sigma}f_{prt}f_{qst})$
	$-g^{\mu\sigma}g^{\nu\rho}f_{prt}f_{qst} + g^{\mu\nu}g^{\rho\sigma}f_{pst}f_{qrt} - g^{\mu\rho}g^{\nu\sigma}f_{pst}f_{qrt})$
H H H	$-\frac{3}{4}\frac{e^2 \cdot M_H^2}{M_W^2 \cdot s_w^2}$
H H W^+_{μ} W^{ν}	$\left[rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u} ight]$
$H ext{ } H ext{ } W_F^+ ext{ } W_F^-$	$-\frac{1}{4}\frac{e^2 \cdot M_H^2}{M_W^2 \cdot s_w^2}$
H H Z_{μ} Z_{ν}	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
H H Z_F Z_F	$-\frac{1}{4}\frac{e^2 \cdot M_H{}^2}{M_W{}^2 \cdot s_w{}^2}$
$ H H \sim V^{+}_{\mu} \sim V^{-}_{\nu} $	$-\lambda_2 \cdot g^{\mu u}$
$H H \sim V_{1\mu} \sim V_{1\nu}$	$-g^{\mu u}(\lambda_2+\lambda_3+\lambda_4)$
· ·	$-g^{\mu\nu}(\lambda_2 + \lambda_3 - \lambda_4)$
	$-rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u}$
$H W_F^+ W_\mu^- Z_\nu$	$\left[egin{array}{c} rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u} \end{array} ight.$
$ H W_F^+ \sim V^-{}_{\mu} \sim V_{1\nu} $	$-rac{1}{2}g^{\mu u}(\lambda_3+\lambda_4)$
$H W_F^+ \sim V_{\mu}^- \sim V_{2\nu}$	$-rac{1}{2}ig^{\mu u}(\lambda_3-\lambda_4)$

Fields in the vertex	Variational derivative of Lagrangian by fields
$H W_F^- \sim V^+_{\ \mu} \sim V_{1\nu}$	$-\frac{1}{2}g^{\mu\nu}(\lambda_3+\lambda_4)$
$ H W_F^- \sim V_{\mu}^+ \sim V_{2\nu} $	$rac{1}{2}ig^{\mu u}(\lambda_3-\lambda_4)$
H Z_F $\sim V_{1\mu}$ $\sim V_{2\nu}$	$-\lambda_4 \cdot g^{\mu u}$
$W^{+}_{\mu} W^{+}_{\nu} W^{-}_{\rho} W^{-}_{\sigma}$	$\frac{e^2}{s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
$W^{+}_{\mu} W^{+}_{F} W^{-}_{\nu} W^{-}_{F}$	$rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u}$
$W^+_{\mu} W^{\nu} Z_{\rho} Z_{\sigma}$	$-\frac{c_w^2 \cdot e^2}{s_w^2} \left(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho}\right)$
$W^+_{\mu} W^{\nu} Z_F Z_F$	$\left[rac{1}{2}rac{e^2}{s_w^2}\cdot g^{\mu u} ight]$
$ W^+_{\mu} W^{\nu} \sim V^+_{\rho} \sim V^{\sigma} $	$-\frac{1}{2} \frac{e^2}{s_w^2} (g^{\mu\nu} g^{\rho\sigma} - 2g^{\mu\rho} g^{\nu\sigma} + g^{\mu\sigma} g^{\nu\rho})$
$W^+_{\mu} W^{\nu} \sim V_{1\rho} \sim V_{1\sigma}$	$-\frac{1}{4}\frac{e^2}{s_w^2}(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
$W^+_{\mu} W^{\nu} \sim V_{1\rho} \sim V_{2\sigma}$	$\frac{\frac{3}{4}\frac{i\cdot e^2}{s_w^2}(g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})}{\frac{1}{4}\frac{i\cdot e^2}{s_w^2}(g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})}$
$W^+_{\mu} W^{\nu} \sim V_{2\rho} \sim V_{2\sigma}$	$-\frac{1}{4}\frac{e^2}{s_w^2}(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
$W^{+}_{\mu} Z_{\nu} \sim V^{-}_{\rho} \sim V_{1\sigma}$	$\frac{1}{4} \frac{i \cdot e^2}{c_w \cdot s_w^2} (2s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma} + 4c_w^2 \cdot g^{\mu\rho} g^{\nu\sigma} - g^{\mu\rho} g^{\nu\sigma} - 2c_w^2 \cdot g^{\mu\sigma} g^{\nu\rho})$
	$-g^{\mu\sigma}g^{ u ho}$)
$W^{+}_{\mu} Z_{\nu} \sim V^{-}_{\rho} \sim V_{2\sigma}$	$ \left -\frac{1}{4} \frac{e^2}{c_w \cdot s_w^2} (2s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma} + 4c_w^2 \cdot g^{\mu\rho} g^{\nu\sigma} - g^{\mu\rho} g^{\nu\sigma} - 2c_w^2 \cdot g^{\mu\sigma} g^{\nu\rho}) \right $
	$-g^{\mu\sigma}g^{ u ho}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-rac{1}{2}rac{e^2 \cdot M_H{}^2}{M_W{}^2 \cdot s_w{}^2}$
$W_F^+ W_F^+ \sim V_{\mu}^- \sim V_{\nu}^-$	$-2\lambda_4 \cdot g^{\mu\nu}$
$W_F^+ W_\mu^- Z_\nu Z_F$	$rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} \frac{(1-2c_w^2)^2 \cdot e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
W_F^+ $W_F^ Z_F$ Z_F	$-\frac{1}{4}\frac{e^2 \cdot M_H{}^2}{M_W{}^2 \cdot s_W{}^2}$
$W_F^+ W_F^- \sim V_{\mu}^+ \sim V_{\nu}^-$	$-g^{\mu\nu}(\lambda_2 + \lambda_3)$
$W_F^+ W_F^- \sim V_{1\mu} \sim V_{1\nu}$	
$\begin{array}{ccc} W_F^+ & W_F^- & \sim V_{2\mu} & \sim V_{2\nu} \end{array}$	$-\lambda_2 \cdot g^{\mu u}$
$W_F^+ Z_F \sim V_{\mu}^- \sim V_{1\nu}$	$\frac{1}{2}ig^{\mu\nu}(\lambda_3-\lambda_4)$

Fields in the vertex	Variational derivative of Lagrangian by fields
$W_F^+ Z_F \sim V_{\mu}^- \sim V_{2\nu}$	$-\frac{1}{2}g^{\mu\nu}(\lambda_3+\lambda_4)$
$W^{-}_{\mu} Z_{\nu} \sim V^{+}_{\rho} \sim V_{1\sigma}$	$ -\frac{1}{4} \frac{i \cdot e^2}{c_w \cdot s_w^2} (2s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma} - 2c_w^2 \cdot g^{\mu\sigma} g^{\nu\rho} - g^{\mu\sigma} g^{\nu\rho} + 4c_w^2 \cdot g^{\mu\rho} g^{\nu\sigma}) $
	$-g^{\mu\rho}g^{\nu\sigma}$
$W^{\mu} Z_{\nu} \sim V^+_{\rho} \sim V_{2\sigma}$	$ -\frac{1}{4} \frac{e^2}{c_w \cdot s_w^2} (2s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma} - 2c_w^2 \cdot g^{\mu\sigma} g^{\nu\rho} - g^{\mu\sigma} g^{\nu\rho} + 4c_w^2 \cdot g^{\mu\rho} g^{\nu\sigma}) $
	$-g^{\mu\rho}g^{\nu\sigma}$
$W_F^- W_F^- \sim V_{\mu}^+ \sim V_{\nu}^+$	$-2\lambda_4 \cdot g^{\mu\nu}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{1}{2}ig^{\mu\nu}(\lambda_3-\lambda_4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{1}{2}g^{\mu\nu}(\lambda_3+\lambda_4)$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
$Z_{\mu} Z_{\nu} \sim V^{+}{}_{\rho} \sim V^{-}{}_{\sigma}$	$-\frac{1}{4} \frac{(1-2c_w^2)^2 \cdot e^2}{c_w^2 \cdot s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
Z_{μ} Z_{ν} $\sim V_{1\rho}$ $\sim V_{1\sigma}$	$-\frac{1}{4} \frac{e^2}{c_w^2 \cdot s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
Z_{μ} Z_{ν} $\sim V_{2\rho}$ $\sim V_{2\sigma}$	$-\frac{1}{4} \frac{e^2}{c_w^2 \cdot s_w^2} (2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma})$
$oxed{Z_F} oxed{Z_F} oxed{Z_F} oxed{Z_F}$	$-\frac{3}{4} \frac{e^2 \cdot M_H^2}{M_W^2 \cdot s_w^2}$
$Z_F Z_F \sim V^+_{ \mu} \sim V^{ \nu}$	$-\lambda_2 \cdot g^{\mu\nu}$
Z_F Z_F $\sim V_{1\mu}$ $\sim V_{1\nu}$	$-g^{\mu\nu}(\lambda_2 + \lambda_3 - \lambda_4)$
Z_F Z_F $\sim V_{2\mu}$ $\sim V_{2\nu}$	$-g^{\mu\nu}(\lambda_2 + \lambda_3 + \lambda_4)$
$\bigg \sim V^{+}{}_{\mu} \sim V^{+}{}_{\nu} \sim V^{-}{}_{\rho} \sim V^{-}{}_{\sigma}$	$-2(\alpha_2 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_2 \cdot g^{\mu\sigma}g^{\nu\rho} + \alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho})$
$ \sim V^+{}_{\mu} \sim V^-{}_{\nu} \sim V_{1\rho} \sim V_{1\sigma}$	$-(2\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho})$
$ \sim V^+{}_{\mu} \sim V^-{}_{\nu} \sim V_{1\rho} \sim V_{2\sigma}$	$i \cdot \alpha_3 (g^{\mu\sigma} g^{\nu\rho} - g^{\mu\rho} g^{\nu\sigma})$
$ \sim V^+{}_{\mu} \sim V^-{}_{\nu} \sim V_{2\rho} \sim V_{2\sigma} $	$-(2\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho})$
	$ -2(\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_2 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_2 \cdot g^{\mu\sigma}g^{\nu\rho}) $
	$+\alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho}$
$\sim V_{1\mu} \sim V_{1\nu} \sim V_{2\rho} \sim V_{2\sigma}$	$-2g^{\mu\nu}g^{\rho\sigma}(\alpha_2+\alpha_3)$
$\sim V_{2\mu} \sim V_{2\nu} \sim V_{2\rho} \sim V_{2\sigma}$	$ -2(\alpha_2 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_3 \cdot g^{\mu\nu}g^{\rho\sigma} + \alpha_2 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_3 \cdot g^{\mu\rho}g^{\nu\sigma} + \alpha_2 \cdot g^{\mu\sigma}g^{\nu\rho}) $
	$+\alpha_3 \cdot g^{\mu\sigma}g^{\nu\rho}$