# Research on Image Encoding Techinques for Multivariate Time Series Data from Human Activity Recognition

Yairi Laboratory

A1777489 Dong Hyeon Park

## **Table of Contents**

INTRODUCTION

METHODOLOGY

EXPERIMENT

CONCLUSION

## **Table of Contents**

INTRODUCTION

METHODOLOGY

EXPERIMENT

CONCLUSION

#### INTRODUCTION

Human Activity Recognition (HAR)

Application for Sensor Based HAR

Objective

# **Human Activity Recognition (HAR)**

HAR refers to sets of technology predicting human current actions

#### **Pros**

- Affordable and easy to collect
- Intensive history of studies

#### Cons

- Limited mobility only within camera coverage
- Computationally expensive

Vision Based

















#### **Pros**

- Better mobility with conitnuous moinitoring
- Less outer environmental intervention

#### Cons

- Requires user to wear sensors
- Not much study performed

This Study



Sensor Based



# **Approaches for Sensor Based HAR**



# **Objective**

- Comparison of classification performance of each image encoding method against conventional raw plot
- Comparison of classification performance of various approaches tackling multivariate time series data

## **Table of Contents**

INTRODUCTION

METHODOLOGY

EXPERIMENT

CONCLUSION

#### **METHODOLOGY**

Dataset

Image Encoding

Model Architecture

Evaluation Metrics

Leave One Subject Out (LOSO)

#### **Dataset - WISDM**

➤ Number of subjects: 29

- Number of activities: 6(Walking, Jogging, Upstairs, Downstairs, Sitting, Standing)
- > Collected data in a controlled laboratory environment
- Subjects performed instructed activity continually with smartphone in pockets

#### **Dataset – Wheelchair Acceleration Data**

- > Number of subjects: 3 electric wheelchair + 3 manual wheelchair
- Number of labels: 5(Slope, Stop, Curb, Smooth, TI->Braille Blocks)
- > Collected data recorded through sensor attached on wheelchair
- ➤ Subjects took total of 3 round trips (~1.4km/trip) around Yotsuya

station

# Image Encoding – Gramian Angular Fields (GAF)



A matrix that represents the angular relationships between the different components of a time series.

$$\sigma^{(c)} \begin{cases} \phi = \arccos{(\tilde{x_i})}, -1 \leq \tilde{x_i} \leq 1, \tilde{x_i} \in \tilde{X} \\ r = \frac{t_i}{N}, t_i \in \mathbb{N} \end{cases}$$

⇒A time series X is encoded as the angular cosine and the time stamp as the radius

c) 
$$GASF = [\cos(\phi_i + \phi_j)]$$

$$= \tilde{X}' \cdot \tilde{X} - \sqrt{I - \tilde{X}^2}' \cdot \sqrt{I - \tilde{X}^2}$$

$$GADF = [\sin(\phi_i - \phi_j)]$$

$$= \sqrt{I - \tilde{X}^2}' \cdot \tilde{X} - \tilde{X}' \cdot \sqrt{I - \tilde{X}^2}$$
 $\Rightarrow i, j$  each are positions in the original time series array.







# Image Encoding – Markov Transition Fields (MTF)

MTF



A matrix that represents the transition probabilities between different states of a time series.

Q × Q weighted adjacency matrix is constructed by counting transitions among Q pre- assigned quantile bins in the manner of a first-order Markov chain along the time axis.

$$M = \begin{bmatrix} w_{ij}|_{x_1 \in q_i, x_1 \in q_j} & \cdots & w_{ij}|_{x_1 \in q_i, x_n \in q_j} \\ w_{ij}|_{x_2 \in q_i, x_1 \in q_j} & \cdots & w_{ij}|_{x_2 \in q_i, x_n \in q_j} \\ \vdots & \ddots & \vdots \\ w_{ij}|_{x_n \in q_i, x_1 \in q_j} & \cdots & w_{ij}|_{x_n \in q_i, x_n \in q_j} \end{bmatrix}$$

 $\Rightarrow q_i \rightarrow q_j$  transitional probability consists the MTF matrix M.



# Image Encoding – Recurrence Plot (RP)



A plot showing the reccurence of points in a time series data.

x(t) is sepereated into several bins by time-delay embedding.  $x(t), x(t+\tau), and \ x(t+2\tau)$  with a temporal seperation of  $\tau$  are represented within the phase space.

e) 
$$R_{ij} = \begin{cases} 1 & \text{if } ||\mathbf{X}_i - \mathbf{X}_j|| \le \varepsilon \\ 0 & \text{if } ||\mathbf{X}_i - \mathbf{X}_j|| > \varepsilon. \end{cases}$$

 $\Rightarrow$   $\|\cdot\|$  refers to Euclidean distance and  $\epsilon$  a small radius within which two points will be considered equal.

Such visualization of reccurent system is referred as Reccurence Plot.



# **Image Encoding – Others**



Red Channel

Green

Channel

Blue

Channel

## **Model Architectures - Kadota**



## **Model Architectures - Multihead**



#### **Model Architectures – Others**



#### **Evaluation Metrics**

- > Recall: Ability of the model to correctly identify positive instances
- ⇒ True Positives / (True Positives + False Negatives)
- ➤ Precision: Accuracy of the model's positive predictions
- ⇒ True Positives / (True Positives + False Positives)
- >Accuracy: Overall correctness of the model's predictions
- ⇒(True Positives + True Negatives) / (True Positives + True Negatives + False Positives + False Negatives)
- ➤F1 score: Balanced measure of precision and recall, particularly useful when dealing with imbalanced classes



# Leave One Subject Out (LOSO)

> Splitting the test data on a subject basis to evaluate the accuracy of the model

#### **Pros**

- Maximization of data utilization
- Reduction of bias

#### Cons

- High computational cost
- Possible biases due to data dependency
- Limited averaging





## **Table of Contents**

INTRODUCTION

METHODOLOGY

EXPERIMENT

CONCLUSION

## **EXPERIMENT**

Study 1

Study 2

Discussion

| Data | Wheelchair  |            | WISDM       |            |  |
|------|-------------|------------|-------------|------------|--|
|      | Accuracy[%] | F-score[%] | Accuarcy[%] | F-score[%] |  |
| RAW  | 83.8        | 70.1       | 88.6        | 78.7       |  |
| GADF | 35.01       | 35.99      | 81.68       | 82.09      |  |
| GASF | 62.59       | 60.32      | 83.04       | 83.43      |  |
| MTF  | 52.34       | 49.72      | 73.89       | 73.37      |  |
| RP   | 30.14       | 28.76      | 72.41       | 70.67      |  |









| Approach        | Encoding       | Wheelchair  |            | WISDM       |            |
|-----------------|----------------|-------------|------------|-------------|------------|
|                 |                | Accuracy[%] | F-score[%] | Accuarcy[%] | F-score[%] |
| Multihead Model | GASF           | 52.31       | 50.64      | 78.87       | 78.68      |
| Kadota          | GASF           | 62.59       | 60.32      | 83.04       | 83.43      |
| RGB Concat      | GASF           | 59.95       | 59.72      | 73.97       | 72.94      |
| Fusion          | Fusion1 (GADF) | 56.95       | 54.98      | 74.63       | 73.64      |









#### **Discussion**

- > WISDM is collected in controlled laboratory environment.
- > Wheelchiar Acceelration is collected on the real road surface.



Smooth: 60%

Curbing Stone: 50%

Stop: 30%



## **Table of Contents**

INTRODUCTION

METHODOLOGY

EXPERIMENT

CONCLUSION

#### Conclusion

- ➤ GASF has shown the best performance compared to other image encoding methods combined with simple CNN multichannel method.
- Through various investigations of encoding multivariate time series data as images, GASF is re-confirmed to perform better than RP and MTF.
- 1 Not enough amount of dataset2 Class imbalance
  - Due to the above two issues, the noise has been amplified hindering better performance.
- > Data augmentation technique could be employed in order to overcome the nature of datasets.

Thank you for listening!

Yairi Laboratory

A1777489 Dong Hyeon Park