

EE-490(h) - Lab In Data Science

Robust Journey Planning

Firas Kanoun, Sami Ben Hassen, Zeineb Sahnoun

Contents

- 1. Motivation
- 2. Assumptions & Simplifications
- 3. Data Cleaning
- 4. Graph Construction & Shortest Path
- 5. Probabilistic Model
- 6. Validation & Visualization

1. Motivation

- Multi-modal journey planning is becoming increasingly popular
- However nowadays, most used models use a deterministic approach.
- In real life, transport networks feature uncertainty.
- Journey plans should be able to handle such unexpected situations without compromising the journey duration beyond some acceptable level.

2. Assumptions & Simplifications

- We only consider stations within a range of 10kms from Zürich HB.
- A given journey will take time at most 1h, which is reasonable considering the 10km constraint.
- We assume statistical independence between the observed transportation delays.
- Walking time at different connections takes 2mins.
- Walking speed for a random user of the system is 4km/h.

3. Data Cleaning

- We only consider rows where the actual times of arrival and departure were measured (AN_PROGNOSE_STATUS is set to GESCHAETZT)
- We chose to use data from 04/2018 because actual measures times were most frequent than other more recent months.
- We only keep useful columns (namely date, trip_id, train_id, station_id, stop_name, arrival_time, actual_arrival_time, departure_time, actual_departure_time)

16	date	trip_id	train_id	BPUIC	stop_name	arrival_time	actual_arrival_time	departure_time	actual_departure_time
0	20.04.2018	85:11:1255:001	1255	8503000	Zürich HB	20.04.2018 08:26	20.04.2018 08:27:41	20.04.2018 08:37	20.04.2018 08:39:43
1	20.04.2018	85:11:1258:001	1258	8503000	Zürich HB	20.04.2018 21:23	20.04.2018 21:25:19	20.04.2018 21:34	20.04.2018 21:34:51
2	20.04.2018	85:11:1507:002	1507	8503000	Zürich HB	20.04.2018 06:30	20.04.2018 06:30:14	20.04.2018 06:39	20.04.2018 06:39:52
3	20.04.2018	85:11:1507:002	1507	8503016	Zürich Flughafen	20.04.2018 06:49	20.04.2018 06:49:43	20.04.2018 06:51	20.04.2018 06:52:01
4	20.04.2018	85:11:1509:003	1509	8503000	Zürich HB	20.04.2018 07:30	20.04.2018 07:31:24	20.04.2018 07:39	20.04.2018 07:39:36

4. Graph Construction & Shortest Path

- We reconstruct the transportation system by grouping by trip_id, removing redundant itineraries and taking the longest one.
- We then create a graph where each node represents a station, and edges represent a segment of an itinerary with departure/arrival times and durations.
- We run Dijkstra's algorithm to compute the shortest path from station A to station B.

	trip_id	departure	departure_time	arrival	arrival_time	time
0	85:11:20453:001	Bassersdorf	1900-01-01 13:56:00	Zürich Flughafen	1900-01-01 14:01:00	5
1	85:11:20453:001	Zürich Flughafen	1900-01-01 14:03:00	Zürich Oerlikon	1900-01-01 14:07:00	4
2	85:11:20453:001	Zürich Oerlikon	1900-01-01 14:08:00	Zürich Wipkingen	1900-01-01 14:10:00	2
3	85:11:20453:001	Zürich Wipkingen	1900-01-01 14:10:00	Zürich HB	1900-01-01 14:16:00	6
4	85:11:20453:001	Zürich HB	1900-01-01 14:21:00	Zürich Wiedikon	1900-01-01 14:24:00	3

5. Probabilistic Model

- We use an exponential distribution to model the probability of a missed connection between two itinerary segments.
- We use the mean of previous delays of the given trip_id.

$$F(x;\lambda) = egin{cases} 1 - e^{-\lambda x} & x \geq 0 \ 0 & x < 0 \end{cases}$$

 The resulting Robustness parameter will be equal to "the bottleneck" probability of successful connection in our itinerary.

6. Validation & Visualization

We use the itinerary from Zürich HB to Zürich Affoltern as a validation example.

Comparing our itinerary to the one we get from Google Maps, both take 17mins but our algorithm displays a Robustness score equal to 0.83 which will help the user determine how likely he will arrive on time.

Our output:

start at Zürich HB at time 12:00

train from Zürich HB at 12:01:00 arrives in Zürich Oerlikon at 12:07:00 85:11:2640:001 with probability 1

train from Zürich Oerlikon at 12:09:00 arrives in Zürich Seebach at 12:11:00 85:11:18644:001 with probability 0.83098 66845939339

train from Zürich Seebach at 12:11:00 arrives in Zürich Affoltern at 12:14:00 85:11:18644:001 with probability 1

train from Zürich Affoltern at 12:14:00 arrives in Regensdorf-Watt at 12:18:00 85:11:18644:001 with probability 1

Robustness of this journey is 0.8309866845939339

Google Maps output:

12:01 PM-12:18 PM

17 min

12:01 PM from Zurich Main Station

DETAILS

