Workshop 1: Complexity Notation

Workshop 1 will take place in week 2. You should prepare solutions, but you don't have to hand them in and they won't get marked.

Exercise 1 Complexity Notation

Solve Exercise 10 and 11 in the book of Mehlhorn/Sanders (Chapter 2.1).

Exercise 2 Complexity Notation

Is it true that if $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $h(n) = \Theta(f(n))$?

Exercise 3 Complexity Notation

Is it true that if f(n) = O(g(n)) and g(n) = O(h(n)), then $h(n) = \Omega(f(n))$?

Exercise 4 Complexity Notation

Is it true that a $\Theta(n^2)$ algorithm always takes longer to run than a $\Theta(logn)$ algorithm?

Exercise 5 Complexity Notation

For each pair of functions given below, point out the asymptotic relationships that apply: $f = O(g), f = \Theta(g), f = \Omega(g).$

•
$$f(n) = \sqrt{n}$$
 and $g(n) = log(n)$ $f(n) \ge g(n) \longrightarrow f = \Omega(g)$
• $f(n) = 1$ and $g(n) = 2$ $f = O(g)$
• $f(n) = 1000 \cdot 2^n$ and $g(n) = 3^n$ $f = O(g)$
• $f(n) = 4^{n+4}$ and $g(n) = 2^{2n+2}$ $f = \Omega(g)$ $f(n) = 5nlog(n)$ and $g(n) = nlog(5n)$ $f = O(g)$ $f(n) = n!$ and $g(n) = (n+1)!$ $f = O(g)$ $f(n) = n!$ and $f(n) = (n+1)!$ $f = O(g)$ $f(n) = n!$ $f(n) = n!$

Exercise 6 Complexity Notation

Prove that $n^k = o(c^n)$ for any integer k and any c > 1.

Ans Exercise | Ex.10: a) $n^2 + 10^6 n \in O(n^2)$ b) $n \log(n) \in O(n)$ c) $n \log(n) \in \Omega(n)$ d) log(n) ∈ o(n)

<u>Ex. || :</u>

<u>Lemma 6</u>

1.
$$c \cdot f(n) = \Theta(f(n))$$
 for $\forall c > 0$.

$$2. f(n) + g(n) = \Omega(f(n))$$

1.
$$c \cdot f(n) = \Theta(f(n))$$
 for $\forall c > 0$.
2. $f(n) + g(n) = \Omega(f(n))$.
3. $f(n) + g(n) = O(f(n))$ if $g(n) = O(f(n))$.
4. $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$.

$$4. \quad O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$$

Proof: 1) For
$$n \ge 1$$
, $c \cdot f(n) \ge f(n)$
For $n \le 1$, $c \cdot f(n) \le f(n)$
Since, $n = 1$ satisfies upper a lower bound, $\Theta(f(n)) = c \cdot f(n)$

2)
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$

- L'Hopital's Rule:

 1) Take derivative until get out of 'O' or 'O' or 'O')
- 2) Make sure that after subbing in n → ∞ that the ratio is no longer '∞ or 0

Exercise 4

$$\lim_{n\to\infty} \frac{n^2}{\log(n)} \longrightarrow \frac{2n}{n} \longrightarrow 2n^2$$