Practica de Aula – 3 Ingeniería del Software

GUSTAVO SOBRADO ALLER
UO286277
71777616K

Universidad de Oviedo

TABLA DE CONTENIDO

1.	INT	RODUCCIÓN	.3
		EÑO DEL SISTEMA	
		ARQUITECTURA GENERAL	
	2.2.	DECISIONES DEL DISEÑO	.4
3.	DES	CRIPCIÓN DE LOS COMPONENTES	.4
	3.1.	SERVIDOR DE APLICACIONES	.4
	3.2.	BASE DE DATOS	.4
	3.3.	ESTACIONES DE TRABAJO	.5
	3.4.	SERVIDOR DEPARTAMENTO	.5
	3.5.	IMPRESORA LÁSER	.5
	3.6.	OTROS MÓDULOS	.5
4.	FLU.	JO DE DATOS	.5
5.	5. CONCLUSIÓN6		

1. INTRODUCCIÓN

El presente documento describe el diseño e implementación de un sistema para la gestión de centros de salud, orientado a la administración de citas médicas, historiales clínicos y la gestión de urgencias. Este sistema está diseñado para garantizar la modularidad, escalabilidad y seguridad, cumpliendo con los requisitos de un entorno médico con múltiples usuarios y dispositivos.

El objetivo principal es proporcionar una solución que facilite tanto las operaciones diarias del personal sanitario como la interacción de los pacientes con el sistema.

2. DISEÑO DEL SISTEMA

2.1. ARQUITECTURA GENERAL

La arquitectura del sistema está basada en un enfoque modular que permite la distribución eficiente de las tareas entre diferentes componentes, garantizando su independencia y facilidad de mantenimiento.

En este diseño, cada módulo tiene un rol definido:

- El Servidor de Aplicaciones centraliza la lógica de negocio.
- Las estaciones de trabajo se utilizan para interactuar con el sistema según el perfil del usuario.
- La gestión de impresión es realizada exclusivamente por el Servidor Departamento.

2.2. DECISIONES DEL DISEÑO

Las principales decisiones tomadas para el diseño incluyen:

1. Seguridad:

- Implementación de HTTPS sobre TCP para proteger las comunicaciones entre los nodos.
- Uso de una zona DMZ para proteger la red interna.

2. Modularidad:

 Separación de responsabilidades entre los módulos principales, como el Servidor de Aplicaciones, Servidor Departamento y Módulo SAC.

3. Gestión de impresión:

• Centralización de las solicitudes de impresión a través del Servidor Departamento para mantener la modularidad.

4. Escalabilidad:

 Diseño modular que permite la adición de nuevos nodos sin afectar a los componentes existentes.

5. Protocolos y comunicación:

- Uso de SQL sobre TCP para el acceso a la base de datos.
- IPP sobre TCP para la comunicación con las impresoras.

3. DESCRIPCIÓN DE LOS COMPONENTES

3.1. SERVIDOR DE APLICACIONES

Rol: Actúa como el núcleo de la lógica de negocio, gestionando solicitudes de los usuarios y comunicándose con los demás componentes.

Funciones:

- Procesar solicitudes de las estaciones de trabajo.
- Enviar y recibir datos de la base de datos.
- Coordinar la impresión a través del Servidor Departamento.

3.2. BASE DE DATOS

Rol: Almacenar información crítica del sistema, como historiales médicos, citas y datos de los pacientes.

Interacción: Solo accesible desde el Servidor de Aplicaciones mediante SQL sobre TCP.

3.3. ESTACIONES DE TRABAJO

Facultativos:

- Consultar y actualizar historiales médicos.
- Enviar solicitudes de impresión.

Recepción/Admin.:

- Gestionar citas y datos administrativos.
- Coordinar tareas con el Servidor Departamento.

3.4. SERVIDOR DEPARTAMENTO

Rol: Gestionar tareas administrativas internas, como la impresión y el almacenamiento de documentos operativos.

Conexión: Procesa solicitudes de impresión enviadas desde el Servidor de Aplicaciones y las transmite a la impresora.

3.5. IMPRESORA LÁSER

Rol: Realizar las tareas de impresión solicitadas por el sistema.

Protocolo: Comunicación con el Servidor Departamento mediante IPP sobre TCP.

3.6. OTROS MÓDULOS

- Servidor Web (DMZ): Intermediario entre los pacientes externos y la red interna.
- **Módulo SAC**: Gestiona urgencias médicas en horarios extendidos.
- Servidor de Agenda y Horarios: Responsable de la disponibilidad y gestión de citas.

4. FLUJO DE DATOS

El flujo de datos sigue un modelo centralizado para garantizar la seguridad y eficiencia:

- 1. Los pacientes realizan solicitudes de citas a través del Servidor Web en la DMZ.
- 2. El Servidor Web comunica estas solicitudes al Servidor de Aplicaciones.
- 3. Las estaciones de trabajo envían datos administrativos o solicitudes de impresión al Servidor de Aplicaciones.
- 4. El Servidor Departamento procesa las tareas de impresión y las transmite a la impresora.
- 5. Toda la información crítica es almacenada y recuperada desde la base de datos.

5. CONCLUSIÓN

El diseño del sistema de gestión de centros de salud implementa una arquitectura modular, segura y escalable, que facilita la interacción entre los pacientes y el personal administrativo. Cada decisión tomada asegura que el sistema sea fácil de mantener y pueda adaptarse a cambios futuros.

La centralización de la lógica de negocio y la segmentación de roles reducen el acoplamiento entre los módulos y garantizan la seguridad de los datos sensibles. El diseño presentado cumple con los objetivos propuestos y puede ampliarse con nuevas funcionalidades según las necesidades del sistema.