

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$= \frac{6 \sin A}{b^{2}c^{3}} \int_{o}^{b} \int_{o}^{x'} \int_{o}^{x} \left\{ \int_{o}^{u} \int_{o}^{z'} (x-y)(u-v) dv dz + \int_{o}^{b} \int_{o}^{z'} (x-y)(v-u) dv dz \right\} du dx dy$$

$$= \frac{6 \sin A}{b^{3}c^{2}} \int_{o}^{b} \int_{o}^{x'} \int_{o}^{x} \left\{ \int_{o}^{u} (x-y)(uv-v^{2}) dv + \int_{o}^{b} (x-y)(v^{2}-uv) dv \right\} du dx dy$$

$$= \frac{\sin A}{b^{3}c^{2}} \int_{o}^{b} \int_{o}^{x'} \int_{o}^{x} (2u^{3} + 2b^{3} - 3b^{2}u)(x-y) du dx dy$$

$$= \frac{\sin A}{2b^3 c^2} \int_{0}^{b} \int_{0}^{x'} (2u^3 + 2b^3 - 3b^2 u) x^2 du dx$$

$$= \frac{c \sin A}{6b^6} \int_0^b (2u^6 + 2b^3u^3 - 3b^2u^4) du$$

$$= \frac{13bc \sin A}{420} = \frac{13}{210} \frac{1}{2} (bc \sin A) = \frac{13}{210} \text{ (area of given triangle)}$$

 Proposed by H. C. WHITAKER, B. S., M. E., Professor of Mathematics, Manual Training School, Philadelphia, Pennsylvania.

Four numbers taken at random are multiplied together. What is the probability that the last digit, will be 0?

I. Solution by H. W. DRAUGHON, Clinton, Louisiana.

The probability that the final digit will be odd is $\binom{6}{10}^4 = \frac{6}{10}\frac{6}{10}\frac{6}{10}$; the probability that it will be 2, 4, 6, or 8, is $\binom{4}{10}^4 + 4\binom{4}{10}(\binom{4}{10})^3 + 6\binom{4}{10}^2\binom{4}{10}^2 + 4\binom{4}{10}^3$ $\binom{4}{10} = \frac{1}{10}\frac{6}{10}\frac{4}{10}^4 = \frac{3}{10}\frac{6}{10}\frac{4}{10}^5$. \therefore the probability that it will be 0 is, $P = 1 - \frac{3}{10}\frac{8}{10}\frac{4}{10}\frac{6}{10}^5 = \frac{1}{10}\frac{6}{10}\frac{6}{10}\frac{6}{10}^5 = \frac{1}{10}\frac{6}{10}\frac{6}{10}^5 = \frac{1}{10}$

II. Solution by F P. MATZ, M. Sc., Ph. D.. Professor of Mathematics and Astronomy in New Windsor College, New Windsor, Maryland.

We know from Hall and Knight's Higher Algebra if n integers be taken at random and multiplied together, the probability that the last digit of the product is 1, 3, 7, or 9, is $P_1 = \frac{4^n}{10^n}$; also, the probability that the last digit of the product is 2, 4, 6, or 8, is $P_2 = \frac{8^n - 4^n}{10^n}$; and, finally, the probability that the last digit of this product is 5, is $P_3 = \frac{5^n - 4^n}{10^n}$. Consequently the probability that the last digit of this product is zero, when n=4, is $P_4 = 1 - (P_1 + P_2 + P_3)$; that is, $P_4 = \frac{10^4 - 8^4 - 5^4 + 4^4}{10^4} = \frac{(5^4 - 4^4)(2^4 - 1)}{5^4 \times 2^4} = \frac{1107}{2000}$.

Solutions to this problem were also received from $Hon.\ JOSIAH\ DRUMMOND,\ P.\ H.\ PHILBRICK$ and $J.\ F.\ W.\ SCHEFFER,$

PROBLEMS.

 Proposed by F. P. MATZ, M. Sc., Ph. D., Professor of Mathematics and Astronomy in New Windsor College, New Windsor, Maryland.