KGISL INSTITUTE OF TECHNOLOGY

PROJECT

FERTILIZER RECOMMENDATION SYSTEMFOR DISEASE PREDICTION

DONE BY

TEAM ID: PNT2022TMID31712

RUPAVARSHINI P (711719106042)

KEERTHANA V(711719106022)

DURGA E (711719106012)

MONISHA G (711719106022)

INDEX

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule

7. CODING & SOLUTIONING

- 7.1 Feature 1
- 7.2 Feature 2

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10.ADVANTAGES & DISADVANTAGES

11.CONCLUSION

12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

Prediction of plant diseases aids in disease detection and identification. The photos of the plants are taken and subjected to computer vision and image processing to look for certain symptoms. Finding the illness allows for the discovery of the nutritional deficiencies that cause the sickness. The essential nutrient-rich fertilizers are advised based on the information that is currently accessible about fertilizers.

1.2 Purpose

Plant illnesses may cause anomalous functions that ultimately might result in plant mortality. The goal of the study is to identify the symptoms at an early stage. The study also intends to assist farmers in making the appropriate fertilizer choices that are necessary to combat the nutritional deficiencies that lead to illness.

2. LITERATURE SURVEY

2.1 Existing problem

Project Title	Algorithms used	Advantages	Disadvantages
semi-automatic leaf disease detection and classification system for soybean culture	This paper mainly focuses on the detecting and classifying the leaf disease of soybean plant. Using SVM the proposed system classifies the leaf disease in 3 classes	The system helps to compute the disease severity.	The system uses leaf images taken from an online dataset, so cannot implementation in real time
Cloud Based Automated Irrigation And Plant Leaf Disease Detection System Using An Android Application.	For monitoring irrigation system they use soil moisture and temperature sensor and sensor data send to the cloud.	It is simple and cost effective system for plant leaf disease detection.	

Detection of	The disease	The system detects	System only able to
Leaf Diseases	classification done	the diseases on	detect the disease
and	through the SVM	citrus leaves with	from citrus leaves
Classification	classifier.	90% accuracy.	
using Digital	Gray-Level Co-	j	
Image	Occurrence Matrix		
Processing	(GLCM) features,		
	SVM, K-Means		
	Clustering.		
	_		
Fertilizers	Support Vector	Recommend the	The proposed
Recommendation	Machine (SVM)	fertilizer for	algorithm cannot be
System for	algorithm classifies	affected leaves and	used to identify the
Disease	the leaf image as	its measurement or	disease that affects
Prediction in	normal or affected.	quantity are	the other plant organs
Tree Leaves	And it is used to	suggested based on	such as stems and
	identify a function Fx	severity level of the	fruits.
	which obtain the	disease.	
	hyper-plane.		
Farmer's	Extreme Gradient	It is expected that	This model performs
Assistant: A	Boosting (XGBoost),	boosting (Random	well only on the
Machine	is a scalable,	Forest) and bagging	images which are
Learning Based	distributed gradient-	(XG Boost) models	from those classes
Application for	boosted decision tree	will usually perform	that the model
Agricultural	(GBDT) machine	and generalize	already knows and it
Solutions	learning library. It	better than non-	will not be able to
	provides parallel tree	ensemble methods.	detect the correct
	boosting and is the		class for any data that
	leading machine		is out of the domain.
	learning library for		
	regression,		
	classification, and		
	ranking problems.		

Cloud Based	K-means clustering	It is simple and	Any H/w failures
Automated	is used for feature	cost-effective	may affect the system
Irrigation and	extraction.	system for plant leaf	performance.
Plant Leaf		disease detection.	
Disease			
Detection			
System Using an			
Android			
Application.			

2.2 References

- [1]. G. Preethi, P. Rathi, S. M. Sanjula, S. D. Lalitha, B. V. Bindhu, "Agro based crop and fertilizer recommendation system using machine learning", European Journal of Molecular & Clinical Medicine, 7, 4, 2020, 2043-2051 https://deepai.org/publication/farmer-s-assistant-a-machine-learning-based-application-for-agricultural-solutions
- [2]. International Journal of Engineering Applied Sciences and Technology, 2019 Vol. 4, Issue 5, ISSN No. 2455-2143, Pages 371-376 https://www.ijeast.com/papers/371-376, Tesma405, IJEAST.pdf
- [3]. Plant Disease Detection Using Image Processing and Machine Learning Pranesh Kulkarni1, Atharva Karwande1, Tejas Kolhe1, Soham Kamble1, Akshay Joshi1, Medha Wyawahare1 1 Department of Electronics and Telecommunication, Vishwakarma Institute of Technology. https://arxiv.org/ftp/arxiv/papers/2106/2106.10698.pdf
- [4]. Plant Infection Detection Using Image Processing Senthilkumar Meyyappan, Nalla Malla Reddy Engineering college, Corresponding Author: Dr. Sridhathan C

 https://www.researchgate.net/publication/326803995 Plant Infection Det ection Using Image Processing
- [5]. Plant Disease Detection Using Image Processing

DOI-10.1109/ICCUBEA.2015.153

https://ieeexplore.ieee.org/document/7155951

- [6]. Metrics for Performance Measurements

 https://www.mathworks.com/matlabcentral/answers/418986-how-to-calculate-true-positive-true-negative-false-positive-and-false-negative-aswe-have-segment
- [7]. International journal of scientific & technology research volume 8, issue 11, November 2019 ISSN 2277-8616 3343 Fertilizers

 Recommendation System for Disease Prediction in Tree Leaf

 http://www.ijstr.org/final-print/nov2019/Fertilizers-Recommendation-System-For-Disease-Prediction-In-Tree-Leave.pdf
- [8]. Farmer's Assistant: A Machine Learning Based Application for Agricultural Solutions Shloka Gupta, Nishit Jain, Akshay Chopade, Aparna Bhonde, Department of Information Technology Datta Meghe College of Engineering Navi Mumbai, India. https://arxiv.org/pdf/2204.11340.pdf
- [9]. S. D. Khirade, A. B. Patil, "Plant Disease Detection Using Image Processing", 2015 International Conference on Computing Communication Control and Automation, 2015, pp. 768-771, doi:

10.1109/ICCUBEA.2015.153

https://www.semanticscholar.org/paper/Plant-Disease-Detection-Using-Image-Processing-Khirade-

Patil/575467ca9dc8d7f687fe2f490f6b18932b5c45b

2.3 Problem Statement Definition

I AM	I AM TRYING TO	BUT	BECAUSE	WHICH MAKES ME FEEL
An agriculturalist, IO adhere to organic farming standards	Improve my yield organically	I am unable to choose fertilizers based on the nutrients required	I don't have any technical support to suggest fertilizers.	I should get recommendations for each type of plant for better results
A cultivator ,my crops have been infected lately	Figure out the disease that affects the crops	Without identifying the disease I' am unable to save my crops	I lack knowledge on plant disease	Completely helpless and I'll be in debt without proper yield
A gardener, few plants are having abnormal appearance.	Identify the reason for such abnormality.	I am unable to identify the root cause	The plants die when few hours after appearing certain way	That I need to identify it to prevent the same abnormality in my future plants.
A plant pathologist I study plant diseases.	Diagnose the disease looking at the images alone	I need a system which can predict plant diseases using images	Being new to the job, I need to ensure my predictions are right	Only with more practice will I be able to predict precisely

In order to combat the nutrient deficiencies that lead to various infections and diseases, this project aims to provide a system to assist cultivators in selecting the appropriate fertilizers for their plants. The issues that various users encounter are described in the blocks below, along with the system's

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

To learn more about how customers engage with the system, an empathy map is employed. It provides insight into the user's emotions and experiences while utilizing the system, as well as any worries the user may have in relation to the system. Additionally, it describes how welcoming the system environment is and what the users may learn about the system's operation from those around them.

3.2 Ideation & Brainstorming

Ideation and Brainstorming are performed to generate ideas and solutions.

Brainstorming is a group activity unlike ideation.

3.3 Proposed Solution

By examining the symptoms present on the plant's leaves, an automated system that accepts photos of plant components as input may recognize several plant diseases. To identify ailments and recommend fertilizers that can help treat them, deep learning algorithms are applied. The user does not require the assistance of an expert to identify leaf-related problems or to propose fertilizers.

FERTILIZER RECOMMENTATION SYSTEM FOR DISEASE PREDICTON

★ INTRODUCTION

A technique for recommending fertilizers in cases of illness A straightforward website called Prediction uses machine learning and deep learning to suggest the best crops to produce, the fertilizers to use, and the illnesses your crops are likely to contract

★ PROBLEM STATEMENT

The agriculture sector is incredibly important and necessary for economic, social, and employment growth in India Nearly 48% of the people in India relies on the agriculture industry for their livelihood. According to the 2019–2020 Economic Survey, the median salary for Indian farmers is Rs. 2500 in 16 states.

The majority of Indians rely on agriculture for their livelihood. Villagers in India are given the chance to work in agriculture, which helps the country's economy grow and expand on a vast scale Most farmers struggle with the issue of selecting the wrong crop for their plot of land based on a conventional or non-scientific approach. For a nation like India, where agriculture provides food for over 42% of the population, this is a difficult undertaking .And the consequences for the farmer of selecting the incorrect crop for the land include migrating to a big city for work, committing suicide, giving up farming, and leasing out the property to an industrialist or using it for purposes unrelated to agriculture. The result of poor crop selection is a lower yield and lower revenue.

In accordance with the soil nutrition value and local climate, crop suggestion will advise you on the ideal crop to cultivate on your property. It's also difficult to provide the optimal fertilizer for each specific crop. Additionally, the most significant problem is when a plant contracts a disease that affects both the quantity and quality of

★ IDEA DESCRIPTION

One of the things that can solve these issues is machine learning Artificial intelligence.

agriculture produce This suggestion has been made in order to resolve all of these problems. In the field of smart and contemporary agriculture, a lot of study and effort is now being done. A nitrogen, phosphorus, and potassium-rich soil database serves as the basis for crop recommendations. A recommendation model is created using the ensembles approach by combining the predictions of several machine learning techniques. models to suggest the best crop based on the value of the soil and the usage of the best fertilizer.

UNIQUENESS

Farmer
Ordinary People
Sellers
Buyers
Employees
Industrial People

★ VALUE FOR SOCIETY

Consumers Farming is one of the major sectors that influences a country's economic growth. In country like India, majority of the population is dependent on agriculture for their livelihood. Many new technologies, such as Machine Learning and Deep Learning, are being implemented into agriculture so that it is easier for farmers to grow and maximize their yield.

SOCIAL IMPACT

- The crop suggestion program allows the user to input their own soil data and predicts which crop the user should produce.
- The user may input soil information and the sort of crop they
 are growing into the fertilizer suggestion application, and the
 program will anticipate what the soil lacks or has too much of
 and suggest adjustments.
- The user may input soil information and the sort of crop they are growing into the fertilizer suggestion application, and the program will anticipate what the soil lacks or has too much of and suggest adjustments.

★ BUISNESS MODEL

Farmers' lives may be made easier with the help of predictive fertilizer analysis and disease analysis in a tap, and the organization would get a respectable return on its investment. This deed greatly enhances the company's and the business's standing in society.

★ FORM FACTORS

Our disease-specific fertilizer recommendation system The prediction is in the form of a web application to offer this beneficial service to society and the environment.

★ IT IS AN OPPOURTUNITY? (By public review)

3.4 Problem Solution fit

The Problem-Solution Fit means that the solution that is realized can actually solve the problem that the customer faces.

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Functional Requirements specify the features and functions of the proposed system.

Project Design Phase-II Solution Requirements (Functional & Non-functional)

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registering through Gmail
FR-2	User confirmation	Confirmation is done through Email
FR-2	Image Capture	Take a picture of a leaf and verify that the leaf was captured using the specified criteria.
FR-3	Image Processing	Upload the image of the leaf for detecting the diseases that is present in the leaf.
FR-4	Leaf Prediction	Determine the parameter that should be taken into account for disease identification for identifying the leaf and predicting the disease in it.
FR-5	Image Description	Show the prescribed fertilizer that has to be used for the diseased leaf
FR-6	Providing Dataset	Training the datasets Testing the datasets
FR-7	Adding Datasets	Datasets for fruits and vegetables are added.

4.2 Non-Functional requirements

Non functional requirements specify the general properties of the proposed system.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Data sets can be prepared according to the leaf. Leaf datasets can be used for detection of all kind of leaf's Datasets can be reusable to detect diseases present in leaf.
NFR-2	Security	User information and leaf data are secured The employed algorithms are more secure.
NFR-3	Reliability	The leaf quality is more for predicting the disease in leaf. The datasets and image capture consistently performs well.
NFR-4	Performance	The leaf problem is specified when the leaf is detected. Performs well according to the quality of the leaf and provides a specific cure to it by showing recommendation of fertilizer.
NFR-5	Availability	The quality of the leaf will be used again for detection. Datasets will be made available and easily accessible. It is available to all users to predict plant disease.
NFR-6	Scalability	Increasing the accuracy of disease prediction in the leaf.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A data flow diagram or DFD(s) maps out the flow of information for any process or system. DFDs help you better understand process or system operation to discover potential problems, improve efficiency, and develop better processes.

5.2 Solution & Technical Architecture

Solution Architecture:

Solution architecture is the process of developing solutions based on predefined processes, guidelines and best practices with the objective that the developed solution fits within the enterprise architecture in terms of information architecture, system portfolios, integration requirements, etc.

Technical Architecture:

Technical architecture involves the development of a technical blueprint regarding the arrangement, interaction, and interdependence of all elements so that system-relevant requirements are met.

5.3 User Stories

An informal, generic explanation of a software feature written from the viewpoint of the end user is known as a user story. Its objective is to explain how a software feature will benefit the user.

USER STORIES:

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by providing my email address, password, and confirming my password.	I have access to my profile/dashboard.	High	Sprint-1
		USN-2	Once I have registered for the application, I will receive a confirmation email.	I can receive a confirmation email and click the confirm button.	High	Sprint-1
		USN-3	As a user, I can sign up for the application using Gmail.	I can use Gmail to access the application.	Medium	Sprint-1
	Login	USN-4	As a user, I can access the application by entering my email address and password.	I can make use of the Application for Disease Prediction	High	Sprint-1
Customer (Web user)	Registration	USN-5	As a Web user, I can register on the System with a User ID.	I can access the app like a website.	High	Sprint-1
Customer Care Executive	Customer Support	USN-6	As a supporter, I can see how customers use the product.	I can develop Customer Guidelines and Practices.	Low	Sprint-2
Administrator	Analyst	USN-7	As an admin, I can update several datasets about plant diseases.	I can store a significant amount of data.	High	Sprint-1
Customer Purpose	Prediction	USN-8	It use artificial intelligence to identify plant diseases in captured photographs and provides a live view of prediction.	I can predict plant disease.	High	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

The purpose of sprint planning is to define what can be delivered in the sprint and how that work will be achieved. Sprint planning is done in collaboration with the whole team.

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Image Processing.	USN-1	As a user, I can retrieve useful information about the images.	1	Low	Rupavarshini Durga Keerthana Monisha
Sprint-2	Model Building for Fruit Disease Prediction.	USN-2	As a user, I can able to predict fruit disease using this model.	1	Medium	Rupavarshini Durga Keerthana Monisha
Sprint-2	Model Building for Vegetable Disease Prediction.	USN-3	As a user, I can able to predict vegetable disease using this model.	2	Medium	Rupavarshini Durga Keerthana Monisha
Sprint-3	Application Building.	USN-4	As a user, I can see a web page for Fertilizers Recommendation System for Disease Prediction	2	High	Rupavarshini Durga Keerthana Monisha
Sprint-4	Train The Model on IBM Cloud.	USN-5	As a user, I can save the information about Fertilizers and crops on IBM cloud	2	High	Rupavarshini Durga Keerthana Monisha

6.2 Sprint Delivery Schedule

Agile sprints typically last from one week to one month. The goal of sprints is to put pressure on teams to innovate and deliver more quickly, hence the shorter the sprint, the better.

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	1 Nov 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	5 Nov2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	10 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	15 Nov 2022

Burndown Chart:

7. CODING & SOLUTIONING

Python – app.py:

```
import os
import numpy as np
import pandas as pd
from tensorflow.keras.models import load_model
# from tensorflow.keras.preprocessing import image
from werkzeug.utils import secure_filename

from flask import Flask, render_template, request

app = Flask(_name__)

#load both the vegetable and fruit models
model = load_model("vegetable.h5")
model1=load_model("fruit.h5")

#home page
```

```
@app.route('/')
def home():
    return render_template('home.html')
#prediction page
@app.route('/prediction')
def prediction():
    return render_template('predict.html')
@app.route('/predict',methods=['POST'])
def predict():
    if request.method == 'POST':
        # Get the file from post request
        f = request.files['image']
        # Save the file to ./uploads
        basepath = os.path.dirname(_file_)
        file_path = os.path.join(
            basepath, 'uploads', secure_filename(f.filename))
        f.save(file path)
        img = image.load_img(file_path, target_size=(128, 128))
        x = image.img_to_array(img)
        x = np.expand dims(x, axis=0)
        plant=request.form['plant']
        print(plant)
        if(plant=="vegetable"):
            preds = model.predict(x)
            preds=np.argmax(preds)
            print(preds)
            df=pd.read_excel('precautions - veg.xlsx')
            print(df.iloc[preds]['caution'])
        else:
            preds = model1.predict(x)
            preds=np.argmax(preds)
            df=pd.read_excel('precautions - fruits.xlsx')
            print(df.iloc[preds]['caution'])
        return df.iloc[preds]['caution']
if_name_== "_main_":
    app.run(debug=False)
```

Feature 1:

home.html:

```
<!DOCTYPE html>
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title> Plant Disease Prediction</title>
  <link href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet'</pre>
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'</pre>
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet'</pre>
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300'</pre>
rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
<link href='https://fonts.googleapis.com/css?family=Merriweather'</pre>
rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Josefin Sans'</pre>
rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet'>
<script type="text/javascript" src="https://gc.kis.v2.scr.kaspersky-</pre>
labs.com/FD126C42-EBFA-4E12-B309-
BB3FDD723AC1/main.js?attr=AMFGethlf4Q6r2IdpTrTqcDQGNLDU5Cbc3diYnUdLkg5mQrVB td220
HUAsBJSd0oo80R0zM3rIPeFWfnEY4XCxQu4K0xMSqlshEoIB0zvYw0SsMYpyUv4fnvKEjmJoj Y6cI4ov
-6AMOkz3Sh3epkfq0gltfnAPvvQBRdXqRmdqePVjlvvqL28ONZCiS0Qr5t0XGxJ0bSiWVT-
rH3cqaKCk05eP1Dx04mieTcjsA_TtFLx15PUu0ed6soaj-F006-
1d40QxbJYBXUBefiUhzmOYCpsGIs10yQvA0huo8AUYwYB72dvs07U3O2hq8BmYBv98h13sSo8iXKxyKx4
FUsOMkixjxYP6hu0wwi7yv1E2rei3GHtPl5YwHkWioQIPqvAmrlmaPtFZmF-
jE4_UUCi9IEKws8IduDiqQIFkxf03YT_sUC9gWmxKSpGbiebwCgV-
wvdGEnbUxY18p9Db6jC6FVKRhqdMBianq63qv-
zZRMZbEpjzQT0DQAH3Yho4o4A00FIW2004q8Q80xt2kV928P_nBgS9H0gHI5EZxenbjfqANTs1rh8GGhB
d7RJaE8-
2AaqT6zbLf2tILJ8j4fk3bV1qsdw0fPmp6foJbDu4343XH36a0VGHsMLeVqcc30PSsE1pJbGE4_C_ExQd
0 uRSA40mRjnFwHdLo9SJc1qghyc5YGQil utG48olMy9cC6z-iyKg1EeLKB43u-
q4SlUimRnuUsZW7drNWaijSfJPDmkm7lUJ0POwQXPfnLa2 spc3FisWCOZ7dFuIgDciIu0yF8rio2X0Pz
6pZkGQW4Fwl6vWKrLplmHagJElKXg58YSWwAT2DILilBjuSPiTwCHR9Ya_mAXW4C03v7xzJlaSK9jneEC
qctvKnH3RFgDS8ocfDcY651XNRkq6v1hrcdv5sM2ek4Kjq40FgX-wijr-0JdpSDpZlbIK00sPb4-
u1B8c7MaCqBcbJAhfmg4utLU67fn5GLoCX_-5TAWV0ID-_sC1Vs9glWRPkKmmktJMbVy98XqC5-
DhtE3yd5I9ZM1SEH1gGYLlRjxwzPjWwHE-YH1Nx9lm-
Esq27TK7M86uT8iAe7LgtviO2YsCB0buShHWmjh3RzwMGqNqeymFSxPRK sDmTFoVjcaYpGa0kaMwhmmF
```

```
9AtPwGmFaGglv3rryVg0X0bGoXRetnrPpDG7jUoq5zQuXQSedBf9hmNwEqWsSZtI4zNTxjiEkxU0djhPX
qByZbnelp 3z6pqqniLzqj9jzAkvX6wD0W7ZycfDz0t-
zNgTxWdtf41P6ZjVu8EWSf65Wqgen5jD4IPXgXGtxkjrSbrqiX-
NxxxfKVJU0o0cE00F6n3DWD0BMWS8UG0Q08gZZeXCfpuTIGYTD6okyD91kLk5AmhaNTJVKjkH0-
dHZqMHxikVhdK6C2PIfg4lEY0yuE3Fjj_5NNX5ZalIpOl3LN6YQ8Jqis_UmC_OXmjW2F5Y4p8VRRKc1HW
2DFaUxBrEgfSwe keyaofodrjde pfPuDQDryEgGy9DNIhpGUV bQJ8jlPxRL7WSpmPU7-
IZ1mVN onhqq2oI-WTl7ep-8w0GsJH3OhSRyyJC0XC9xtetqVjIHzcbKYFsxOaXT-
LLe7U9oHaXHzjDK3hn-ZNFYwzV_aoq8180eb" charset="UTF-8"></script><style>
.header {
     top:0;
     margin:0px;
     left: 0px;
     right: 0px;
      position: fixed;
      background-color: #28272c;
      color: white;
      box-shadow: 0px 8px 4px grey;
      overflow: hidden;
      padding-left:20px;
      font-family: 'Josefin Sans';
      font-size: 2vw;
     width: 100%;
     height:8%;
     text-align: center;
    .topnav {
 overflow: hidden;
  background-color: #333;
.topnav-right a {
 float: left;
 color: #f2f2f2;
 text-align: center;
  padding: 14px 16px;
 text-decoration: none;
  font-size: 18px;
.topnav-right a:hover {
 background-color: #ddd;
  color: black;
.topnav-right a.active {
```

```
background-color: #565961;
  color: white;
.topnav-right {
  float: right;
  padding-right:100px;
body {
  background-color:#ffffff;
  background-repeat: no-repeat;
  background-size:cover;
  background-position: 0px 0px;
  .button {
  background-color: #28272c;
  border: none;
  color: white;
  padding: 15px 32px;
  text-align: center;
  text-decoration: none;
  display: inline-block;
  font-size: 16px;
  border-radius: 12px;
.button:hover {
  box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0 rgba(0,0,0,0.19);
form {border: 3px solid #f1f1f1; margin-left:400px;margin-right:400px;}
input[type=text], input[type=password] {
  width: 100%;
  padding: 12px 20px;
  display: inline-block;
  margin-bottom:18px;
  border: 1px solid #ccc;
  box-sizing: border-box;
button {
  background-color: #28272c;
  color: white;
  padding: 14px 20px;
```

```
margin-bottom:8px;
  border: none;
  cursor: pointer;
  width: 15%;
  border-radius:4px;
button:hover {
  opacity: 0.8;
.cancelbtn {
 width: auto;
  padding: 10px 18px;
  background-color: #f44336;
.imgcontainer {
  text-align: center;
  margin: 24px 0 12px 0;
img.avatar {
 width: 30%;
  border-radius: 50%;
.container {
  padding: 16px;
span.psw {
  float: right;
  padding-top: 16px;
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
  span.psw {
     display: block;
     float: none;
  .cancelbtn {
     width: 100%;
```

```
.home{
  margin:80px;
 width: 84%;
 height: 500px;
  padding-top:10px;
  padding-left: 30px;
.login{
  margin:80px;
  box-sizing: content-box;
 width: 84%;
 height: 420px;
 padding: 30px;
  border: 10px solid blue;
.left,.right{
 box-sizing: content-box;
height: 400px;
margin:20px;
border: 10px solid blue;
.mySlides {display: none;}
img {vertical-align: middle;}
/* Slideshow container */
.slideshow-container {
 max-width: 1000px;
 position: relative;
 margin: auto;
/* Caption text */
.text {
 color: #f2f2f2;
  font-size: 15px;
  padding: 8px 12px;
  position: absolute;
 bottom: 8px;
 width: 100%;
 text-align: center;
```

```
/* The dots/bullets/indicators */
.dot {
  height: 15px;
  width: 15px;
  margin: 0 2px;
  background-color: #bbb;
  border-radius: 50%;
  display: inline-block;
  transition: background-color 0.6s ease;
.active {
  background-color: #717171;
/* Fading animation */
.fade {
  -webkit-animation-name: fade;
  -webkit-animation-duration: 1.5s;
  animation-name: fade;
  animation-duration: 1.5s;
@-webkit-keyframes fade {
  from {opacity: .4}
  to {opacity: 1}
@keyframes fade {
  from {opacity: .4}
  to {opacity: 1}
/* On smaller screens, decrease text size */
@media only screen and (max-width: 300px) {
  .text {font-size: 11px}
</style>
</head>
<body style="font-family:'Times New Roman', Times, serif;background-</pre>
color:#C2C5A8;">
<div class="header">
```

```
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:white;</pre>
padding-top:1%">Plant Disease Prediction</div>
  <div class="topnav-right"style="padding-top:0.5%;">
    <a class="active" href="{{ url_for('home')}}">Home</a>
    <a href="{{ url for('prediction')}}">Predict</a>
  </div>
</div>
<div style="background-color:#ffffff;">
<div style="width:60%;float:left;">
<div style="font-size:50px;font-family:Montserrat;padding-left:20px;text-</pre>
align:center;padding-top:10%;">
<b>Detect if your plant<br> is infected!!</b></div><br>
<div style="font-size:20px;font-family:Montserrat;padding-left:70px;padding-</pre>
right:30px;text-align:justify;">Agriculture is one of the major sectors worls
wide. Over the years it has developed and the use of new technologies and
equipment replaced almost all the traditional methods of farming. The plant
diseases effect the production. Identification of diseases and taking necessary
precautions is all done through naked eye, which requires labour and laboratries.
This application helps farmers in detecting the diseases by observing the spots
on the leaves, which inturn saves effort and labor costs.</div><br><br>
</div>
</div>
<div style="width:40%;float:right;"><br><br>
<img src="{{url for('static',filename='images/12456.png')}}" style="max-</pre>
height:100%;max-width:100%;">
</div>
</div>
<div class="home">
<br>
</div>
<script>
var slideIndex = 0;
showSlides();
function showSlides() {
  var i;
  var slides = document.getElementsByClassName("mySlides");
  var dots = document.getElementsByClassName("dot");
```

```
for (i = 0; i < slides.length; i++) {
    slides[i].style.display = "none";
}
slideIndex++;
if (slideIndex > slides.length) {slideIndex = 1}
for (i = 0; i < dots.length; i++) {
    dots[i].className = dots[i].className.replace(" active", "");
}
slides[slideIndex-1].style.display = "block";
dots[slideIndex-1].className += " active";
setTimeout(showSlides, 2000); // Change image every 2 seconds
}
</script>
</body>
</html>
```

Feature 2:

Predict.html:

```
<!DOCTYPE html>
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title> Plant Disease Prediction</title>
  <link href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet'</pre>
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'</pre>
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet'</pre>
type='text/css'>
<link href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"</pre>
rel="stylesheet">
    <script type="text/javascript" src="https://gc.kis.v2.scr.kaspersky-</pre>
labs.com/FD126C42-EBFA-4E12-B309-
BB3FDD723AC1/main.js?attr=3wvf44XdejigWHFj22ANQmgfA-L5oa67wZhZwPtEITSot6t8o-
DPZwNcHRFhpa2tgGpDJGis4-1IHYyxyIAN2GE0-kSZKkCLRkbKttCLVN9mKhGFVtGJ3auoiiByn_jJ-
mA447x4TmdjGgz8XvMdLSPF4Gu5xwt0joGxWDXu0EF18Sa5usZGgj4TdDiTfDHpElX3P1eH-
lsevFhUJQEZe3981VXjRKYRn2FrxsYwXGSMBn0sRR9IYup35XYNQkvA6DLQV1lwLc4XuAo0BlJYAfI75R
405LwTWuT-uaft0DEQeuV_f3rKvkrcBkalcpWnyXVLeLyjMz5CqpZ1aSCy1MgVAzWxGb-
GX3eQb0F5q0ksANddV vhz1Ai4RgptuAfB8mVyuz0nWZzpmwam34lc4NL4tfyWGncKz2taMyGfsK4Mrn0
zfPlY9 n9FP0lMlAX0IQ8TfbVp4B1vbwnA-
```

```
RVJq8mxoTjgMgqhKhp6NQY 8gZULkbqqA0pqUMvfL3 fZC1PFipLNjCyCGe9YOaU9L7QF4CXeKsRhJXmI
898FhpxB1oI7z0xvndsDLPRsqbNuse eGL9tz0Te5HLGhtoXSn508pHC99 XHYofrlismcByzZlmVqVkC
NfmbnMjaD9IQf6xAACyjkQ927AOvyDVCZKr-
tV6wRZyv z7Z1J9AG7SGSLoB34AkMytkYXvpgGn21pGFNhv13YSmyKYc2XJs89zHbp5fSyXsfasogSEYL
bpxCmuvzZKO4haaqouKDcLwBGMFp Br095f-
AlhhWOdPDx1ezvTMx1NgS4QO970mbyQCqHUFWWZLYNgjQ8zpfdBXB17L v lfmrUWhUiUVc9tRcJy-
lpchFJe8Gz7TUOKCRDjbIWtiqXryDeENrJgQ31laXp-
VVYp0I1L55pek2fgk50CGNzVges5oG4PpMyCIXtJpv32E5r1PTktG4hD8eXmYQECVU1HvSmEiKvuY6T6i
9wdpqg AnycRzUXmYdahFT3W7zToIn2RXzNfd0U0zbYBvtJ70TpR4PjfU751J0FsnphDuCnero3UY0ak7
vYvGYD9YV2md5v-3AmP-eOor2m55JZRH Hxpn28x-nDNCOHqVBC6leYuYFBVV vL51-
E8n92uWUqwMEzdZPZtAyRaCfz3D2Y0IYn-
ZrnfNTg2M zVJePmUu1xdjYh7d1dx7nwclm7wJrBPb3JnX2kvEGYs9SM17MlwzoY1VJq4UzJ2D6oEvhQw
HvG4e1etlS6iLWzhy8RVMfBlTa4DPD0HmTlHhsKbn0UaMyFFCppe79rtIVRctcomnVmQysUwU0hjzlAq3
0-hXJCTqdCWJe2xnxjAuUHVqHSiHiZllZaoOWNCV5Ypx eqzn-KyZS3u-
2 hGLHHNA2AVBWn hF3Gz16dw6zA4QSmWZSfDUcNObLJGOSTaDS3Z8jPTloYPFmu8oES6TL1dL1EK5Yhc
SGaX4iv6o95drsZGb6bBcWgT7sNFHW6dVE9wdjoDFuBergPIAm0sKaZQ2Ex6j150WCbE6UaPg-
VNfziA2FEPpJaI9hEPI2gdaSuHqov1EOt5mjuFBBOxpK0t8kOZRtsVzqUuJw3VcLjaP6SfG_KZfgX_g8T
Ps6CcFh1LRz63oXMQFPW6AA7eudWfygndazedq5B-
6DqSkOT04GTUJNqLcElg6KEEWqxd88BzoQoK28jrAf-xWHNIZv5HmQQYEnyX0U cW8HX-
hde54TuY fY3e5QYu4be-JxTkA4JxWLEagSa7-zs" charset="UTF-8"></script><script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
    <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300'</pre>
rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Merriweather'</pre>
rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Josefin Sans'</pre>
rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet'>
<link href="{{ url_for('static', filename='css/final.css') }}" rel="stylesheet">
<style>
.header {
            top:0;
            margin:0px;
            left: 0px;
            right: 0px;
            position: fixed;
            background-color: #28272c;
            color: white;
            box-shadow: 0px 8px 4px grey;
            overflow: hidden;
            padding-left:20px;
            font-family: 'Josefin Sans';
```

```
font-size: 2vw;
            width: 100%;
            height:8%;
            text-align: center;
        .topnav {
  overflow: hidden;
  background-color: #333;
.topnav-right a {
  float: left;
  color: #f2f2f2;
  text-align: center;
  padding: 14px 16px;
  text-decoration: none;
  font-size: 18px;
.topnav-right a:hover {
  background-color: #ddd;
  color: black;
.topnav-right a.active {
  background-color: #565961;
  color: white;
.topnav-right {
  float: right;
  padding-right:100px;
.login{
margin-top:-70px;
body {
  background-color:#ffffff;
  background-repeat: no-repeat;
  background-size:cover;
  background-position: 0px 0px;
 login{
```

```
margin-top:100px;
.container {
 margin-top:40px;
  padding: 16px;
select {
   width: 100%;
   margin-bottom: 10px;
    background: rgba(255,255,255,255);
    border: none;
   outline: none;
    padding: 10px;
    font-size: 13px;
    color: #000000;
    text-shadow: 1px 1px 1px rgba(0,0,0,0.3);
    border: 1px solid rgba(0,0,0,0.3);
    border-radius: 4px;
    box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px
rgba(255,255,255,0.2);
    -webkit-transition: box-shadow .5s ease;
    -moz-transition: box-shadow .5s ease;
   -o-transition: box-shadow .5s ease;
    -ms-transition: box-shadow .5s ease;
    transition: box-shadow .5s ease;
</style>
</head>
<body style="font-family:Montserrat;overflow:scroll;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:white;</pre>
padding-top:1%">Plant Disease Prediction</div>
  <div class="topnav-right" style="padding-top:0.5%;">
  </div>
</div>
<div class="container">
        <div id="content" style="margin-top:2em">
        <div class="container">
```

```
<div class="row">
            <div class="col-sm-6 bd" >
              <br>
                <img src="{{url_for('static',filename='images/789.jpg')}}"</pre>
style="height:450px;width:550px"class="img-rounded" alt="Gesture">
            </div>
            <div class="col-sm-6">
                <div>
                    <h4>Drop in the image to get the prediction </h4>
            <form action = "" id="upload-file" method="post"</pre>
enctype="multipart/form-data">
                <select name="plant">
                       <option value="select" selected>Select plant type</option>
                       <option value="fruit">Fruit</option>
                       <option value="vegetable">Vegetable</option>
        </select><br>
                <label for="imageUpload" class="upload-label" style="background:</pre>
#28272c;">
                    Choose...
                </label>
                <input type="file" name="image" id="imageUpload" accept=".png,</pre>
.jpg, .jpeg">
            </form>
            <div class="image-section" style="display:none;">
                <div class="img-preview">
                    <div id="imagePreview">
                    </div>
                </div>
                <div>
                     <button type="button" class="btn btn-info btn-lg " id="btn-</pre>
predict" style="background: #28272c;">Predict!</button>
                </div>
            </div>
            <div class="loader" style="display:none;"></div>
                <span id="result" style="font-size:17px; "> </span>
            </h3>
```

final.css:

```
.img-preview {
   width: 256px;
    height: 256px;
    position: relative;
    border: 5px solid #F8F8F8;
    box-shadow: 0px 2px 4px 0px rgba(0, 0, 0, 0.1);
   margin-top: 1em;
   margin-bottom: 1em;
.img-preview>div {
   width: 100%;
    height: 100%;
    background-size: 256px 256px;
    background-repeat: no-repeat;
    background-position: center;
input[type="file"] {
    display: none;
.upload-label{
    display: inline-block;
   padding: 12px 30px;
    background: #28272c;
    color: #fff;
   font-size: 1em;
```

```
transition: all .4s;
   cursor: pointer;
}

.upload-label:hover{
   background: #C2C5A8;
   color: #39D2B4;
}

.loader {
   border: 8px solid #f3f3f3; /* Light grey */
   border-top: 8px solid #28272c; /* Blue */
   border-radius: 50%;
   width: 50px;
   height: 50px;
   animation: spin 1s linear infinite;
}

@keyframes spin {
    0% { transform: rotate(0deg); }
    100% { transform: rotate(360deg); }
}
```

main.js:

```
$("#imageUpload").change(function () {
    $('.image-section').show();
    $('#btn-predict').show();
    $('#result').text('');
    $('#result').hide();
    readURL(this);
});
// Predict
$('#btn-predict').click(function () {
    var form_data = new FormData($('#upload-file')[0]);
    // Show loading animation
    $(this).hide();
    $('.loader').show();
    // Make prediction by calling api /predict
    $.ajax({
        type: 'POST',
        url: '/predict',
        data: form_data,
        contentType: false,
        cache: false,
        processData: false,
        async: true,
        success: function (data) {
            // Get and display the result
            $('.loader').hide();
            $('#result').fadeIn(600);
            $('#result').text('Prediction: '+data);
            console.log('Success!');
        },
   });
});
```

8. TESTING

8.1 Test Cases

Test cases are a set of actions performed on a system to determine if it satisfies software requirements and functions correctly as it claimed to perform.

8.2 User Acceptance Testing

Before deploying the software application to a production environment

Date	17 November 2022	
	water is	
Team ID	PNT2022TMID31712	
Project Name	Fertilisers recommendation System for disease prediction	
Maximum Marks	4 Marks	

the end user or client performs a type of testing known as user acceptance testing, or UAT to ensure whether the software functionalities serve the purpose of development.

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
Leaf spots	10	4	2	3	19
Mosaic leaf pattern	9	6	3	6	24
Blights	4	5	2	1	12
Yellow leaves	11	4	3	20	38
Fruit rots	3	2	1	0	6

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Leaf spots	18	0	0	18
Fruit spots	5	0	0	5
Mosaic leaf pattern	43	0	0	43
Blights	2	0	0	2
Misshapen leaves	25	0	0	25
Yellow leaves	7	0	0	7
Fruit rots	9	0	0	9

9. RESULTS

Performance Metrics

metrics are a baseline for performance tests. Monitoring the correct parameters will help you detect areas that require increased attention and find ways to improve them.

S.No.	Parameter	Values	Screenshot		
1.	Section (Section 1976)		The State of the Control of the Cont		
2.	Accuracy	Training Accuracy – 97.55 Validation Accuracy – 96.45	The international process of the control of the con		

10. ADVANTAGES & DISADVANTAGES

Advantages:

- Early detection of plant diseases.
- Proper fertilizer recommendation to prevent or cure the plant infection or disease.
- No need to consult any specialists.
- Fully automated system.

Disadvantages:

- Requires training the system with large dataset.
- Works only on the pretrained diseases.
- When a plant is infected with multiple diseases the system may not predict all the diseases due to the mixed symptoms.
- Requires a good device connected to the internet.

11. CONCLUSION

As a result, a system that accepts user-provided photos, analyses them for certain symptoms, recognizes the ailment, and then suggests fertilizer to make up for nutritional deficiencies is developed and put into practice.

12. FUTURE SCOPE

Several photos of plant disease signs must be used to train the system. If there are several illnesses present, it is necessary to classify them properly in order to precisely anticipate each condition and suggest different fertilisers as treatments for each infection or deficiency.

13. APPENDIX

Source Code

Home.html:

```
<!DOCTYPE html>
<html>
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title> Plant Disease Prediction</title>
  k href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' rel='stylesheet'
type='text/css'>
k rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
<link href='https://fonts.googleapis.com/css?family=Merriweather' rel='stylesheet'>
k href='https://fonts.googleapis.com/css?family=Josefin Sans' rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet'>
<script type="text/javascript" src="https://gc.kis.v2.scr.kaspersky-labs.com/FD126C42-EBFA-4E12-</p>
BB3FDD723AC1/main.js? attr=AMFGethlf4Q6r2IdpTrTqcDQGNLDU5Cbc3diYnUdLkg5mQrVB\ tdrefted the control of the con
22OHUAsBJSd0oo8OR0zM3rIPeFWfnEY4XCxQu4KOxMSqlshEoIBOzvYw0SsMYpyUv4fnvKEjm
Joj_Y6cI4ov-
6AMOkz3Sh3epkfq0gltfnAPvvQBRdXqRmdqePVjlvvqL28ONZCiS0Qr5t0XGxJ0bSiWVT-
rH3cqaKCk05eP1Dx04mieTcjsA TtFLx15PUu0ed6soaj-FOO6-
1d4OQxbJYBXUBefiUhzmOYCpsGIs1OyQvA0huo8AUYwYB72dvs07U3O2hq8BmYBv98h13sSo8
iXKxyKx4FUsOMkixjxYP6hu0wwi7yv1E2rei3GHtPl5YwHkWioQIPqvAmrlmaPtFZmF-
jE4 UUCi9IEKws8IduDiqQIFkxfO3YT sUC9gWmxKSpGbiebwCgV-
wvdGEnbUxY18p9Db6jC6FVKRhqdMBianq63qv-
zZRMZbEpjzQT0DQAH3Yho4o4A00FIW2004q8Q80xt2kV928P nBgS9HOgHI5EZxenbjfqANTs1r
h8GGhBd7RJaE8-
2AaqT6zbLf2tILJ8j4fk3bV1qsdw0fPmp6foJbDu4343XH36a0VGHsMLeVqcc30PSsE1pJbGE4_C_E
xOd0 uRSA40mRjnFwHdLo9SJc1qghyc5YGOil utG48olMy9cC6z-iyKg1EeLKB43u-
q4SlUimRnuUsZW7drNWaijSfJPDmkm7lUJ0POwQXPfnLa2_spc3FisWCOZ7dFuIgDciIu0yF8rio2X
0Pz6pZkGQW4Fwl6vWKrLplmHagJElKXg58YSWwAT2DILilBjuSPiTwCHR9Ya_mAXW4C03v7x
zJlaSK9jneECqctvKnH3RFgDS8ocfDcY651XNRkq6v1hrcdv5sM2ek4Kjq4OFgX-wijr-
0JdpSDpZlbIK00sPb4-u1B8c7MaCqBcbJAhfmg4utLU67fn5GLoCX_-5TAWV0ID-
sC1Vs9glWRPkKmmktJMbVy98XqC5-DhtE3yd5I9ZM1SEH1gGYLlRjxwzPjWwHE-YH1Nx9lm-
Esq27TK7M86uT8iAe7LgtviO2YsCB0buShHWmjh3RzwMGqNqeymFSxPRK sDmTFoVjcaYpGa0
kaMwhmmF9AtPwGmFaGglv3rryVg0X0bGoXRetnrPpDG7jUoq5zQuXQSedBf9hmNwEqWsSZtI4z
NTxjiEkxU0djhPXqByZbnelp_3z6pqqniLzqj9jzAkvX6wDOW7ZycfDzOt-
zNgTxWdtf41P6ZjVu8EWSf65Wqgen5jD4IPXgXGtxkjrSbrqiX-
NxxxfKVJUOoOcEO0F6n3DWD0BMWS8UGOQO8gZZeXCfpuTIGYTD6okyD91kLk5AmhaNTJV\\
KikHO-
dHZqMHxikVhdK6C2PIfg4lEY0yuE3Fjj_5NNX5ZalIpOl3LN6YQ8Jqis_UmC_OXmjW2F5Y4p8VR
RKc1HW2DFaUxBrEgfSwe_keyaofodrjde_pfPuDQDryEgGy9DNIhpGUV_bQJ8jlPxRL7WSpmPU7
-IZ1mVN_onhqq2oI-WTl7ep-8w0GsJH3OhSRyyJC0XC9xtetqVjIHzcbKYFsxOaXT-
LLe7U9oHaXHzjDK3hn-ZNFYwzV_aoq8180eb" charset="UTF-8"></script><style>
.header {
                                top:0:
                                margin:0px;
```

```
left: 0px;
                      right: 0px;
                      position: fixed;
                      background-color: #28272c;
                      color: white;
                      box-shadow: 0px 8px 4px grey;
                      overflow: hidden;
                      padding-left:20px;
                      font-family: 'Josefin Sans';
                      font-size: 2vw;
                      width: 100%;
                      height:8%;
                      text-align: center;
             .topnav {
 overflow: hidden;
 background-color: #333;
.topnav-right a {
 float: left;
 color: #f2f2f2;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 18px;
.topnav-right a:hover {
 background-color: #ddd;
 color: black;
.topnav-right a.active {
background-color: #565961;
 color: white;
.topnav-right {
 float: right;
padding-right:100px;
body {
 background-color:#ffffff;
 background-repeat: no-repeat;
 background-size:cover;
 background-position: 0px 0px;
 .button {
 background-color: #28272c;
 border: none;
 color: white;
 padding: 15px 32px;
 text-align: center;
```

```
text-decoration: none;
 display: inline-block;
 font-size: 16px;
 border-radius: 12px;
.button:hover {
 box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0 rgba(0,0,0,0.19);
form {border: 3px solid #f1f1f1; margin-left:400px;margin-right:400px;}
input[type=text], input[type=password] {
 width: 100%;
 padding: 12px 20px;
 display: inline-block;
 margin-bottom:18px;
 border: 1px solid #ccc;
 box-sizing: border-box;
button {
 background-color: #28272c;
 color: white;
 padding: 14px 20px;
 margin-bottom:8px;
 border: none;
 cursor: pointer;
 width: 15%;
 border-radius:4px;}
button:hover {
 opacity: 0.8;}
.cancelbtn {
 width: auto;
 padding: 10px 18px;
 background-color: #f44336;}
.imgcontainer {
 text-align: center;
 margin: 24px 0 12px 0;}
img.avatar {
 width: 30%;
 border-radius: 50%;}
.container {
 padding: 16px;}
span.psw {
 float: right;
 padding-top: 16px;}
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
 span.psw {
   display: block;
```

```
float: none;}
 .cancelbtn {
   width: 100%;}}
.home{
    margin:80px;
 width: 84%;
 height: 500px;
 padding-top:10px;
 padding-left: 30px;}
.login{
    margin:80px;
    box-sizing: content-box;
 width: 84%;
 height: 420px;
 padding: 30px;
 border: 10px solid blue;
.left,.right{
box-sizing: content-box;
height: 400px;
margin:20px;
border: 10px solid blue;
.mySlides {display: none;}
img {vertical-align: middle;}
/* Slideshow container */
.slideshow-container {
 max-width: 1000px;
 position: relative;
 margin: auto;
/* Caption text */
.text {
 color: #f2f2f2;
 font-size: 15px;
 padding: 8px 12px;
 position: absolute;
 bottom: 8px;
 width: 100%;
 text-align: center;
/* The dots/bullets/indicators */
.dot {
 height: 15px;
 width: 15px;
 margin: 0 2px;
 background-color: #bbb;
 border-radius: 50%;
 display: inline-block;
 transition: background-color 0.6s ease;
```

```
}
.active {
 background-color: #717171;
/* Fading animation */
.fade {
 -webkit-animation-name: fade;
 -webkit-animation-duration: 1.5s;
 animation-name: fade:
 animation-duration: 1.5s;
@-webkit-keyframes fade {
 from {opacity: .4}
 to {opacity: 1}
@keyframes fade {
 from {opacity: .4}
 to {opacity: 1}
/* On smaller screens, decrease text size */
@media only screen and (max-width: 300px) {
 .text {font-size: 11px}
}
</style>
</head>
<br/><body style="font-family: Times New Roman', Times, serif;background-color:#C2C5A8;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:white; padding-top:1%">Plant
Disease Prediction</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a class="active" href="{{ url_for('home')}}">Home</a>
  <a href="{{ url_for('prediction')}}">Predict</a>
 </div>
</div>
<div style="background-color:#ffffff;">
<div style="width:60%;float:left;">
<div style="font-size:50px;font-family:Montserrat;padding-left:20px;text-align:center;padding-</p>
top:10%:">
<br/>b>Detect if your plant<br/>br> is infected!!</br/div><br/>br>
<div style="font-size:20px;font-family:Montserrat;padding-left:70px;padding-right:30px;text-</p>
align:justify;">Agriculture is one of the major sectors worls wide. Over the years it has developed and
the use of new technologies and equipment replaced almost all the traditional methods of farming. The
plant diseases effect the production. Identification of diseases and taking necessary precautions is all
done through naked eye, which requires labour and laboratries. This application helps farmers in
detecting the diseases by observing the spots on the leaves, which inturn saves effort and labor
costs.</div><br><br>
</div>
```

```
</div>
<div style="width:40%;float:right;"><br><br>
<img src="{{url_for('static',filename='images/12456.png')}}" style="max-height:100%;max-</pre>
width:100%;">
</div>
</div>
<div class="home">
</div>
<script>
var slideIndex = 0;
showSlides();
function showSlides() {
 var slides = document.getElementsByClassName("mySlides");
 var dots = document.getElementsByClassName("dot");
 for (i = 0; i < \text{slides.length}; i++)
  slides[i].style.display = "none";
 slideIndex++;
 if (slideIndex > slides.length) \{ slideIndex = 1 \}
 for (i = 0; i < dots.length; i++)
  dots[i].className = dots[i].className.replace(" active", "");
 slides[slideIndex-1].style.display = "block";
 dots[slideIndex-1].className += " active";
 setTimeout(showSlides, 2000); // Change image every 2 seconds
</script>
</body>
</html>
```

Predict.html:

```
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title> Plant Disease Prediction</title>
 k href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet' type='text/css'>
<link href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css" rel="stylesheet">
  <script type="text/javascript" src="https://gc.kis.v2.scr.kaspersky-labs.com/FD126C42-EBFA-</pre>
4E12-B309-BB3FDD723AC1/main.js?attr=3wvf44XdejigWHFj22ANQmgfA-
L5oa67wZhZwPtEITSot6t8o-DPZwNcHRFhpa2tgGpDJGis4-1IHYyxyIAN2GE0-
kSZKkCLRkbKttCLVN9mKhGFVtGJ3auoiiByn iJ-
lsevFhUJQEZe3981VXjRKYRn2FrxsYwXGSMBn0sRR9IYup35XYNQkvA6DLQV1lwLc4XuAo0B
1JYAfI75R4O5LwTWuT-
```

```
GX3eQb0F5qOksANddV vhz1Ai4RgptuAfB8mVyuz0nWZzpmwam34lc4NL4tfyWGncKz2taMyGfs
K4Mrn0zfPlY9 n9FP0lMlAX0IQ8TfbVp4B1vbwnA-
RVJq8mxoTjgMgqhKhp6NQY_8gZULkbqqA0pqUMvfL3_fZC1PFipLNjCyCGe9YOaU9L7QF4CXe
KsRhJXmI898FhpxB1oI7z0xvndsDLPRsqbNuse eGL9tz0Te5HLGhtoXSn5O8pHC99 XHYofrlismc
ByzZlmVqVkCNfmbnMjaD9IQf6xAACyjkQ927AOvyDVCZKr-
tV6wRZyv_z7Z1J9AG7SGSLoB34AkMytkYXvpgGn21pGFNhvl3YSmyKYc2XJs89zHbp5fSyXsfas
ogSEYLbpxCmuvzZKO4haaqouKDcLwBGMFp Br095f-
AlhhWOdPDx1ezvTMx1NgS4QO97OmbyQCqHUFWWZLYNgjQ8zpfdBXB17L_v_lfmrUWhUiUV
c9tRcJy-lpchFJe8Gz7TUOKCRDjbIWtiqXryDeENrJgQ31laXp-
VVYpOI1L55pek2fgk5OCGNzVges5oG4PpMyCIXtJpv32E5rlPTktG4hD8eXmYQECVU1HvSmEiK
vuY6T6i9wdpqg AnycRzUXmYdahFT3W7zToIn2RXzNfdOU0zbYBvtJ70TpR4PjfU75lJ0FsnphDu
Cnero3UYOak7vYvGYD9YV2md5v-3AmP-eOor2m55JZRH Hxpn28x-
nDNCOHqVBC6leYuYFBVV vL51-E8n92uWUqwMEzdZPZtAyRaCfz3D2Y0IYn-
ZrnfNTg2M zVJePmUu1xdjYh7d1dx7nwclm7wJrBPb3JnX2kvEGYs9SM17MlwzoY1VJq4UzJ2D6o
EvhOwHvG4e1etlS6iLWzhy8RVMfBlTa4DPDOHmTlHhsKbn0UaMyFFCppe79rtIVRctcomnVmOy
sUwUOhjzlAq30-hXJCTqdCWJe2xnxjAuUHVqHSiHiZllZaoOWNCV5Ypx_eqzn-KyZS3u-
2_hGLHHNA2AVBWn_hF3Gz16dw6zA4QSmWZSfDUcNObLJGOSTaDS3Z8jPTloYPFmu8oES6T
L1dLlEK5YhcSGaX4iv6o95drsZGb6bBcWgT7sNFHW6dVE9wdjoDFuBergPIAm0sKaZQ2Ex6j15O
WCbE6UaPg-
VNfziA2FEPpJaI9hEPI2gdaSuHqovlEOt5mjuFBBOxpK0t8kOZRtsVzqUuJw3VcLjaP6SfG_KZfgX_
g8TPs6CcFhlLRz63oXMQFPW6AA7eudWfygndazedq5B-
6DqSkOT04GTUJNqLcElg6KEEWqxd88BzoQoK28jrAf-xWHNIZv5HmQQYEnyX0U cW8HX-
hde54TuY fY3e5OYu4be-JxTkA4JxWLEagSa7-zs" charset="UTF-8"></script><script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
           src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
  <script src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
k href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' rel='stylesheet'
type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Merriweather' rel='stylesheet'>
k href='https://fonts.googleapis.com/css?family=Josefin Sans' rel='stylesheet'>
k href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet'>
<link href="{{ url for('static', filename='css/final.css') }}" rel="stylesheet">
<style>
.header {
                  top:0;
                  margin:0px;
                  left: 0px;
                  right: 0px;
                  position: fixed;
                  background-color: #28272c;
                  color: white;
                  box-shadow: 0px 8px 4px grey;
                  overflow: hidden;
                  padding-left:20px;
                  font-family: 'Josefin Sans';
                  font-size: 2vw:
                  width: 100%;
                  height:8%;
                  text-align: center;
           .topnav {
 overflow: hidden:
 background-color: #333;
```

uaft0DEQeuV_f3rKvkrcBkalcpWnyXVLeLyjMz5CqpZ1aSCy1MgVAzWxGb-

```
.topnav-right a {
 float: left:
 color: #f2f2f2;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 18px;
.topnav-right a:hover {
 background-color: #ddd;
 color: black;
.topnav-right a.active {
 background-color: #565961;
 color: white;
.topnav-right {
 float: right;
 padding-right:100px;
.login{
margin-top:-70px;
body {
 background-color:#ffffff;
 background-repeat: no-repeat;
 background-size:cover;
 background-position: 0px 0px;
.login{
    margin-top:100px;
.container {
 margin-top:40px;
 padding: 16px;
select {
    width: 100%;
    margin-bottom: 10px;
    background: rgba(255,255,255,255);
    border: none;
    outline: none;
    padding: 10px;
    font-size: 13px;
    color: #000000;
    text-shadow: 1px 1px 1px rgba(0,0,0,0.3);
    border: 1px solid rgba(0,0,0,0.3);
    border-radius: 4px;
    box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px rgba(255,255,255,0.2);
    -webkit-transition: box-shadow .5s ease;
```

```
-moz-transition: box-shadow .5s ease;
    -o-transition: box-shadow .5s ease;
    -ms-transition: box-shadow .5s ease:
    transition: box-shadow .5s ease;
}
</style>
</head>
<body style="font-family:Montserrat;overflow:scroll;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:white; padding-top:1%">Plant
Disease Prediction</div>
 <div class="topnav-right" style="padding-top:0.5%;">
 </div>
</div>
<div class="container">
     <div id="content" style="margin-top:2em">
             <div class="container">
              <div class="row">
                      <div class="col-sm-6 bd" >
                       <br>
                              <img src="{{url_for('static',filename='images/789.jpg')}}"
style="height:450px;width:550px"class="img-rounded" alt="Gesture">
                      </div>
                      <div class="col-sm-6">
                              <div>
                                       <h4>Drop in the image to get the prediction </h4>
                      <form action = "" id="upload-file" method="post" enctype="multipart/form-
data">
                              <select name="plant">
                                        <option value="select" selected>Select plant type</option>
                                        <option value="fruit">Fruit</option>
                                        <option value="vegetable">Vegetable</option>
             </select><br>
                              <label for="imageUpload" class="upload-label" style="background:</pre>
#28272c;">
                                       Choose...
                              </label>
                              <input type="file" name="image" id="imageUpload" accept=".png,</pre>
.jpg, .jpeg">
                      </form>
                      <div class="image-section" style="display:none;">
                              <div class="img-preview">
                                       <div id="imagePreview">
                                       </div>
                              </div>
                              <div>
```

```
<button type="button" class="btn btn-info btn-lg " id="btn-
predict" style="background: #28272c;">Predict!</button>
                               </div>
                      </div>
                      <div class="loader" style="display:none;"></div>
                       <span id="result" style="font-size:17px; "> </span>
             </div>
                      </div>
              </div>
             </div>
             </div>
  </div>
</body>
<footer>
  <script src="{{ url_for('static', filename='js/main.js') }}" type="text/javascript"></script>
</footer>
</html>
main.js:
$(document).ready(function() {
  // Init
  $('.image-section').hide();
  $('.loader').hide();
  $('#result').hide();
        Upload
                     Preview
  function readURL(input) {
     if (input.files && input.files[0]) {
       var reader = new FileReader();
       reader.onload = function (e) {
          $('#imagePreview').css('background-image', 'url(' + e.target.result + ')');
          $('#imagePreview').hide();
          $('#imagePreview').fadeIn(650);
       reader.readAsDataURL(input.files[0]);
  $("#imageUpload").change(function () {
     $('.image-section').show();
     $('#btn-predict').show();
     $('#result').text(");
     $('#result').hide();
     readURL(this);
  });
  // Predict
  $('#btn-predict').click(function () {
     var form_data = new FormData($('#upload-file')[0]);
     // Show loading animation
     $(this).hide();
```

```
$('.loader').show();
     // Make prediction by calling api /predict
     $.ajax({
       type: 'POST',
       url: '/predict',
       data: form_data,
       contentType: false,
       cache: false,
       processData: false,
       async: true,
       success: function (data) {
          // Get and display the result
          $('.loader').hide();
          $('#result').fadeIn(600);
          $('#result').text('Prediction: '+data);
          console.log('Success!');
       },
     });
  });
});
Final.css:
.img-preview {
  width: 256px;
  height: 256px;
  position: relative;
  border: 5px solid #F8F8F8;
  box-shadow: 0px 2px 4px 0px rgba(0, 0, 0, 0.1);
  margin-top: 1em;
  margin-bottom: 1em;
.img-preview>div {
  width: 100%;
  height: 100%;
  background-size: 256px 256px;
  background-repeat: no-repeat;
  background-position: center;
}
input[type="file"] {
  display: none;
.upload-label{
  display: inline-block;
  padding: 12px 30px;
  background: #28272c;
  color: #fff;
  font-size: 1em:
  transition: all .4s;
  cursor: pointer;
}
```

```
.upload-label:hover{
  background: #C2C5A8;
  color: #39D2B4;
.loader {
  border: 8px solid #f3f3f3; /* Light grey */
  border-top: 8px solid #28272c; /* Blue */
  border-radius: 50%;
  width: 50px;
  height: 50px;
  animation: spin 1s linear infinite;
@keyframes spin {
  0% { transform: rotate(0deg); }
  100% { transform: rotate(360deg); }
Python – app.py:
import os
import numpy as np
import pandas as pd
from tensorflow.keras.models import load_model
# from tensorflow.keras.preprocessing import image
from werkzeug.utils import secure_filename
from flask import Flask, render_template, request
app = Flask(_name_)
#load both the vegetable and fruit models
model = load model("vegetable.h5")
model1=load_model("fruit.h5")
#home page
@app.route('/')
def home():
  return render_template('home.html')
#prediction page
@app.route('/prediction')
def prediction():
  return render_template('predict.html')
@app.route('/predict',methods=['POST'])
def predict():
  if request.method == 'POST':
    # Get the file from post request
    f = request.files['image']
    # Save the file to ./uploads
    basepath = os.path.dirname( file )
    file_path = os.path.join(
```

```
basepath, 'uploads', secure_filename(f.filename))
     f.save(file_path)
     img = image.load img(file path, target size=(128, 128))
    x = image.img to array(img)
    x = np.expand\_dims(x, axis=0)
    plant=request.form['plant']
    print(plant)
    if(plant=="vegetable"):
       preds = model.predict(x)
       preds=np.argmax(preds)
       print(preds)
       df=pd.read_excel('precautions - veg.xlsx')
       print(df.iloc[preds]['caution'])
       preds = model1.predict(x)
       preds=np.argmax(preds)
       df=pd.read_excel('precautions - fruits.xlsx')
       print(df.iloc[preds]['caution'])
    return df.iloc[preds]['caution']
if__name__ == "_main_":
  app.run(debug=False)
```

DEPLOYMENT MODEL CODE:

Fruit model:

```
ls
sample_data/
pwd
'/home/wsuser/work'
!pip install keras==2.7.0
!pip install tensorflow==2.5.0
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab</a>
wheels/public/simple/
Requirement already satisfied: keras==2.7.0 in /usr/local/lib/python3.7/dist-packages (2.7.0)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab
wheels/public/simple/
Requirement already satisfied: tensorflow==2.5.0 in /usr/local/lib/python3.7/dist-packages
(2.5.0)
Requirement already satisfied: h5py~=3.1.0 in /usr/local/lib/python3.7/dist-packages (from
tensorflow==2.5.0) (3.1.0)
Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from
tensorflow == 2.5.0) (3.19.6)
Requirement already satisfied: typing-extensions~=3.7.4 in /usr/local/lib/python3.7/dist packages
(from tensorflow==2.5.0) (3.7.4.3)
```

Requirement already satisfied: keras-nightly~=2.5.0.dev in /usr/local/lib/python3.7/dist packages (from tensorflow==2.5.0) (2.5.0.dev2021032900)

Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.12)

Requirement already satisfied: gast==0.4.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.4.0)

Requirement already satisfied: absl-py \sim =0.10 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.15.0)

Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.6.3)

Requirement already satisfied: tensorflow-estimator<2.6.0,>=2.5.0rc0 in

/usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (2.5.0) Requirement already satisfied: tensorboard~=2.5 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (2.9.1)

Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (3.3.0)

Requirement already satisfied: six~=1.15.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.15.0)

Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.2.0)

Requirement already satisfied: grpcio~=1.34.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.34.1)

Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.12.1)

Requirement already satisfied: termcolor~=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.1.0)

Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.7/dist packages (from tensorflow==2.5.0) (1.1.2)

Requirement already satisfied: wheel \sim =0.35 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.38.3)

Requirement already satisfied: numpy~=1.19.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.19.5)

Requirement already satisfied: cached-property in /usr/local/lib/python3.7/dist-packages (from h5py~=3.1.0->tensorflow==2.5.0) (1.5.2)

Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist packages (from tensorboard~=2.5->tensorflow==2.5.0) (2.14.1)

Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in

/usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (0.6.1)

Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in

/usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (1.8.1)

Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in

/usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (0.4.6)

Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (1.0.1)

Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (3.4.1)

```
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist packages (from tensorboard~=2.5->tensorflow==2.5.0) (2.23.0)
```

Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (57.4.0)

Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (4.9) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist packages (from google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (0.2.8) Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.7/dist packages (from google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (5.2.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.5->tensorflow==2.5.0) (1.3.1)

Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist packages (from markdown>=2.6.8->tensorboard~=2.5->tensorflow==2.5.0) (4.13.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard~=2.5->tensorflow==2.5.0) (3.10.0)

Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (0.4.8)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (1.24.3)

Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (2.10)

Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (2022.9.24) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.5->tensorflow==2.5.0) (3.2.2)

Image Augmentation

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=False) test_datagen=ImageDataGenerator(rescale=1./255) ls pwd

/content import os, types import pandas as pd from botocore.client import Config import ibm_boto3

def__iter_(self): return 0

```
# @hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your crede
ntials.
# You might want to remove those credentials before you share the notebook.
client 4ff9f1114db24196a9abd4f5c1f0b60a = ibm boto3.client(service name='s3',
ibm_api_key_id='j4lNXssktSSxQiDx3pbNR_eFi1SMCDE6MFnBQ_EmNCDM',
ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
config=Config(signature_version='oauth'),
endpoint url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
streaming_body_1 = client_4ff9f1114db24196a9abd4f5c1f0b60a.get_object(Bucket='trainm')
odel-donotdelete-pr-cbqe37eh8gzesa', Key='fruit-dataset.zip')['Body']
# Your data file was loaded into a botocore.response.StreamingBody object. # Please read the
documentation of ibm_boto3 and pandas to learn more about the possibil ities to load the data.
# ibm boto3 documentation: https://ibm.github.io/ibm-cos-sdk-python/ # pandas documentation:
http://pandas.pydata.org/
from io import BytesIO
import zipfile
unzip = zipfile.ZipFile(BytesIO(streaming_body_1.read()), "r")
file paths = unzip.namelist()
for path in file_paths:
unzip.extract(path)
pwd
'/home/wsuser/work'
import os
filenames = os.listdir('/home/wsuser/work/fruit-dataset/train')
x train=train datagen.flow from directory("/home/wsuser/work/fruit
dataset/train",target_size=(128,128),class_mode='categorical',batch_size=24) Found 5384
images belonging to 6 classes.
x_test=test_datagen.flow_from_directory(r"/home/wsuser/work/fruit
dataset/test",target size=(128,128),
class_mode='categorical',batch_size=24)
Found 1686 images belonging to 6 classes.
x_train.class_indices
{'Apple___Black_rot': 0, 'Apple___healthy': 1, 'Corn_(maize)___Northern_Leaf_Blight': 2,
'Corn_(maize) healthy': 3, 'Peach Bacterial_spot': 4, 'Peach healthy': 5}
CNN
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Convolution 2D, Max Pooling 2D, Flatten
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Flatten())
model.summary()
Model: "sequential_1"
```

```
Layer (type)
```

```
Output Shape Param #
______
conv2d_1 (Conv2D) (None, 126, 126, 32) 896
max_pooling2d (MaxPooling2D (None, 63, 63, 32) 0
flatten (Flatten) (None, 127008) 0
Total params: 896
Trainable params: 896
Non-trainable params: 0
32*(3*3*3+1)
896
#Hidden Layers
model.add(Dense(300,activation='relu'))
model.add(Dense(150,activation='relu'))
Output Layers
model.add(Dense(6,activation='softmax'))
model.compile(loss='categorical crossentropy',optimizer='adam',metrics=['accuracy'])
len(x_train)
225
1238/24
51.58333333333333
model.fit_generator(x_train,steps_per_epoch=len(x_train),validation_data=x_test,validatio
n_steps=len(x_test),epochs=10)
/tmp/wsuser/ipykernel_164/1582812018.py:1: UserWarning: `Model.fit_generator` is
deprecated and will be removed in a future version. Please use `Model.fit`, which supports
generators.
model.fit_generator(x_train,steps_per_epoch=len(x_train),validation_data=x_test,validation
steps=len(x test),epochs=10)
Epoch 1/10
accuracy: 0.8094 - val_loss: 0.2273 - val_accuracy: 0.9235
Epoch 2/10
accuracy: 0.9179 - val_loss: 0.2056 - val_accuracy: 0.9324
Epoch 3/10
accuracy: 0.9337 - val loss: 0.4972 - val accuracy: 0.8754
Epoch 4/10
```

```
accuracy: 0.9422 - val loss: 0.2279 - val accuracy: 0.9217
Epoch 5/10
accuracy: 0.9487 - val_loss: 0.1685 - val_accuracy: 0.9484
Epoch 6/10
accuracy: 0.9556 - val_loss: 0.1176 - val_accuracy: 0.9662
Epoch 7/10
accuracy: 0.9590 - val loss: 0.5466 - val accuracy: 0.8387
Epoch 8/10
accuracy: 0.9597 - val loss: 0.1194 - val accuracy: 0.9620
Epoch 9/10
accuracy: 0.9616 - val_loss: 0.1478 - val_accuracy: 0.9508
Epoch 10/10
accuracy: 0.9695 - val_loss: 0.0772 - val_accuracy: 0.9751
<keras.callbacks.History at 0x7f71e8184070>
```

Saving Model

ls
fruit-dataset/
model.save('fruit.h5')
!tar -zcvf Train-model_new.tgz fruit.h5
fruit.h5
ls -1
fruit-dataset/
fruit.h5
Train-model_new.tgz

IBM Cloud Deployment Model

!pip install watson-machine-learning-client –upgrade
Collecting watson-machine-learning-client
Downloading watson_machine_learning_client-1.0.391-py3-none-any.whl (538 kB)

Requirement already satisfied: tqdm in /opt/conda/envs/Python-3.9/lib/python3.9/site packages
(from watson-machine-learning-client) (4.62.3)

Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site packages
(from watson-machine-learning-client) (2022.9.24)

Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (2.26.0)

Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (0.8.9)

Requirement already satisfied: ibm-cos-sdk in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (2.11.0) Requirement already satisfied: pandas in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (1.3.4)

Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (0.3.3)

Requirement already satisfied: boto3 in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (1.18.21)

Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (1.26.7)

Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from boto3->watson-machine-learning-client) (0.10.0)

Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from boto3->watson-machine-learning-client) (0.5.0)

Requirement already satisfied: botocore<1.22.0,>=1.21.21 in /opt/conda/envs/Python

3.9/lib/python3.9/site-packages (from boto3->watson-machine-learning-client) (1.21.41)

Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from botocore<1.22.0,>=1.21.21->boto3->watson machine-learning-client) (2.8.2)

Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from python-dateutil<3.0.0,>=2.1->botocore<1.22.0,>=1.21.21->boto3->watson machine-learning-client) (1.15.0)

Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from ibm-cos-sdk->watson-machine-learning-client) (2.11.0) Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from ibm-cos-sdk->watson-machine-learning-client) (2.11.0) Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from requests->watson-machine-learning-client) (2.0.4) Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from requests->watson-machine-learning-client) (3.3) Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from pandas->watson-machine-learning-client) (2021.3) Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from pandas->watson-machine-learning-client) (1.19.5) Installing collected packages: watson-machine-learning-client Successfully installed watson-machine-learning-client-1.0.391 from ibm_watson_machine_learning import APIClient

from ibm_watson_machine_learning import APIClient wml_credentials = {

```
"url": "https://us-south.ml.cloud.ibm.com",
"apikey":"0P3XkyCFYqABnc48BNG2ReoGAJy-oDXDRuULl4Y_zFxa"
}
```

client = APIClient(wml_credentials)
def guid from space name(client, space name):

```
space = client.spaces.get_details()
return(next(item for item in space['resources'] if item['entity']["name"]==space_name)['m
etadata']['id'])
space_uid = guid_from_space_name(client, 'Trainmodel')
print("Space UID = " + space uid)
Space UID = 616c7d74-e99b-4c09-9922-27394a62c2d0
client.set.default space(space uid)
'SUCCESS'
client.software specifications.list()
NAME ASSET_ID TYPE
default py3.6 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base kernel-spark3.2-scala2.12
020d69ce-7ac1-5e68-ac1a-31189867356a base pytorch-onnx_1.3-py3.7-edt 069ea134-3346-
5748-b513-49120e15d288 base scikit-learn_0.20-py3.6 09c5a1d0-9c1e-4473-a344-
eb7b665ff687 base spark-mllib_3.0-scala_2.12 09f4cff0-90a7-5899-b9ed-1ef348aebdee base
pytorch-onnx_rt22.1-py3.9 0b848dd4-e681-5599-be41-b5f6fccc6471 base ai-function_0.1-py3.6
0cdb0f1e-5376-4f4d-92dd-da3b69aa9bda base shiny-r3.6 0e6e79df-875e-4f24-8ae9-
62dcc2148306 base
tensorflow 2.4-py3.7-horovod 1092590a-307d-563d-9b62-4eb7d64b3f22 base pytorch 1.1-
py3.6 10ac12d6-6b30-4ccd-8392-3e922c096a92 base tensorflow_1.15-py3.6-ddl 111e41b3-
de2d-5422-a4d6-bf776828c4b7 base runtime-22.1-py3.9 12b83a17-24d8-5082-900f-
0ab31fbfd3cb base scikit-learn 0.22-py3.6 154010fa-5b3b-4ac1-82af-4d5ee5abbc85 base
default r3.6 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 base pytorch-onnx 1.3-py3.6 1bc6029a-
cc97-56da-b8e0-39c3880dbbe7 base kernel-spark3.3-r3.6 1c9e5454-f216-59dd-a20e-
474a5cdf5988 base pytorch-onnx rt22.1-py3.9-edt 1d362186-7ad5-5b59-8b6c-9d0880bde37f
base tensorflow_2.1-py3.6 1eb25b84-d6ed-5dde-b6a5-3fbdf1665666 base spark-mllib_3.2
20047f72-0a98-58c7-9ff5-a77b012eb8f5 base tensorflow_2.4-py3.8-horovod 217c16f6-178f-
56bf-824a-b19f20564c49 base runtime-22.1-py3.9-cuda 26215f05-08c3-5a41-a1b0-
da66306ce658 base do py3.8 295addb5-9ef9-547e-9bf4-92ae3563e720 base autoai-ts 3.8-py3.8
2aa0c932-798f-5ae9-abd6-15e0c2402fb5 base tensorflow_1.15-py3.6 2b73a275-7cbf-420b-
a912-eae7f436e0bc base kernel-spark3.3-py3.9 2b7961e2-e3b1-5a8c-a491-482c8368839a base
pytorch 1.2-py3.6 2c8ef57d-2687-4b7d-acce-01f94976dac1 base spark-mllib 2.3 2e51f700-
bca0-4b0d-88dc-5c6791338875 base pytorch-onnx 1.1-py3.6-edt 32983cea-3f32-4400-8965-
dde874a8d67e base spark-mllib_3.0-py37 36507ebe-8770-55ba-ab2a-eafe787600e9 base spark-
mllib 2.4 390d21f8-e58b-4fac-9c55-d7ceda621326 base xgboost 0.82-py3.6 39e31acd-5f30-
41dc-ae44-60233c80306e base pytorch-onnx_1.2-py3.6-edt 40589d0e-7019-4e28-8daa-
fb03b6f4fe12 base default r36py38 41c247d3-45f8-5a71-b065-8580229facf0 base
autoai-ts_rt22.1-py3.9 4269d26e-07ba-5d40-8f66-2d495b0c71f7 base autoai-obm_3.0
42b92e18-d9ab-567f-988a-4240ba1ed5f7 base pmml-3.0 4.3 493bcb95-16f1-5bc5-bee8-
81b8af80e9c7 base spark-mllib 2.4-r 3.6 49403dff-92e9-4c87-a3d7-a42d0021c095 base
xgboost 0.90-py3.6 4ff8d6c2-1343-4c18-85e1-689c965304d3 base pytorch-onnx 1.1-py3.6
50f95b2a-bc16-43bb-bc94-b0bed208c60b base autoai-ts_3.9-py3.8 52c57136-80fa-572e-8728-
a5e7cbb42cde base spark-mllib_2.4-scala_2.11 55a70f99-7320-4be5-9fb9-9edb5a443af5 base
spark-mllib 3.0 5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9 base autoai-obm 2.0 5c2e37fa-80b8-
5e77-840f-d912469614ee base spss-modeler 18.1 5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b base
cuda-py3.8 5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e base autoai-kb_3.1-py3.7 632d4b22-10aa-
5180-88f0-f52dfb6444d7 base pytorch-onnx 1.7-py3.8 634d3cdc-b562-5bf9-a2d4-
```

```
ea90a478456b base spark-mllib_2.3-r_3.6 6586b9e3-ccd6-4f92-900f-0f8cb2bd6f0c base
tensorflow_2.4-py3.7 65e171d7-72d1-55d9-8ebb-f813d620c9bb base spss-modeler_18.2
687eddc9-028a-4117-b9dd-e57b36f1efa5 base
Note: Only first 50 records were displayed. To display more use 'limit' parameter.
software_space_uid = client.software_specifications.get_uid_by_name("tensorflow_rt22.1-
py3.9")
software spec uid
'1eb25b84-d6ed-5dde-b6a5-3fbdf1665666'
fruit-dataset/ fruit.h5 Train-model new.tgz
model details = client.repository.store model(model= 'Train-model new.tgz', meta props={
client.repository.ModelMetaNames.NAME:"CNN",
client.repository.ModelMetaNames.TYPE:"tensorflow_2.7",
client.repository.ModelMetaNames.SOFTWARE SPEC UID:software space uid})
model_id = client.repository.get_model_id(model_details)
model id
'd0aeb6a2-e89c-4f8d-bf2f-a28ca4ea3cca'
fruit-dataset/ fruit.h5 Train-model_new.tgz
Test The Model
import numpy as np
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image
model=load model('fruit.h5')
#@title
img=image.load img(r"C:\Users\LENOVO\Desktop\fruit-dataset\fruit dataset\test\00fca0da-
2db3-481b-b98a
9b67bb7b105c___RS_HL 7708.JPG",target_size=(128,128))
img=image.load_img(r"C:\Users\LENOVO\Desktop\ibm\Dataset Plant Disease\fruit
dataset\fruit-dataset\test\Apple__healthy\0adc1c5b-8958-47c0-a152-f28078c214f1___RS_HL
7825.JPG",target_size=(128,128))
img
```


x=image.img_to_array(img) X array([[[99., 86., 106.], [101., 88., 108.], [118., 105., 125.],

```
[ 92., 83., 102.],
[ 93., 84., 103.],
[ 89., 80., 99.]],
[[ 96., 83., 103.],
[ 87., 74., 94.],
[102., 89., 109.],
[ 88., 79., 98.],
[89., 80., 99.],
[83., 74., 93.]],
[[ 86., 73., 93.],
[ 88., 75., 95.],
[ 98., 85., 105.],
[107., 98., 117.],
[ 96., 87., 106.],
[ 96., 87., 106.]],
[[172., 175., 194.],
[173., 176., 195.],
[175., 178., 197.],
[179., 180., 198.],
[184., 185., 203.],
[179., 180., 198.]],
[[172., 175., 194.],
[170., 173., 192.],
[173., 176., 195.],
[178., 179., 197.],
[182., 183., 201.],
[178., 179., 197.]],
[[169., 172., 191.],
[166., 169., 188.],
[168., 171., 190.],
[187., 188., 206.],
[185., 186., 204.],
[186., 187., 205.]]], dtype=float32) x=np.expand_dims(x,axis=0)
array([[[ 99., 86., 106.],
[101., 88., 108.],
[118., 105., 125.],
[ 92., 83., 102.],
```

```
[ 93., 84., 103.],
[89., 80., 99.]],
[[ 96., 83., 103.],
[87., 74., 94.],
[102., 89., 109.],
[88., 79., 98.],
[89., 80., 99.],
[ 83., 74., 93.]],
[[ 86., 73., 93.],
[ 88., 75., 95.],
[ 98., 85., 105.],
[107., 98., 117.],
[ 96., 87., 106.],
[ 96., 87., 106.]],
[[172., 175., 194.],
[173., 176., 195.],
[175., 178., 197.],
[179., 180., 198.],
[184., 185., 203.],
[179., 180., 198.]],
[[172., 175., 194.],
[170., 173., 192.],
[173., 176., 195.],
[178., 179., 197.],
[182., 183., 201.],
[178., 179., 197.]],
[[169., 172., 191.],
[166., 169., 188.],
[168., 171., 190.],
[187., 188., 206.],
[185., 186., 204.],
[186., 187., 205.]]]], dtype=float32)
y=np.argmax(model.predict(x),axis=1)
                                   =======] - 0s 105ms/step
1/1 [=====
x_train.class_indices
{'Apple Black_rot': 0, 'Apple healthy': 1, 'Corn_(maize) Northern_Leaf_Blight': 2,
'Corn_(maize) healthy': 3, 'Peach Bacterial_spot': 4, 'Peach healthy': 5}
index=['Apple Black_rot','Apple healthy','Corn_(maize) Northern_Leaf_Blight','Corn
_(maize) __healthy','Peach __Bacterial_spot','Peach __healthy']
index[y[0]]
```

```
'Apple healthy'
img=image.load_img(r"C:\LENOVO\Desktop\ibm\Dataset Plant Disease\fruit-dataset\fruit
dataset\test\Peach healthy\0a2ed402-5d23-4e8d-bc98-
b264aea9c3fb___Rutg._HL 2471.JPG",target_size=(128,128))
x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
y=np.argmax(model.predict(x),axis=1)
index=['Apple__Black_rot','Apple__healthy"Peach__Bacterial_spot','Peach__healthy']
index[y[0]]
1/1 [=====
                  'Peach healthy'
import os
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image
from flask import Flask,render_template,request
app=Flask( name )
model=load_model("fruit.h5")
@app.route('/')
def index():
return render_template("index.html")
@app.route('/predict',methods=['GET','POST'])
def upload():
if request.method=='POST':
f=request.files['image']
basepath=os.path.dirname(' file ')
filepath=os.path.join(basepath,'uploads',f.filename)
f.save(filepath)
img=image.load img(filepath,target size=(128,128))
x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
pred=np.argmax(model.predict(x),axis=1)
index=['Apple Black_rot','Apple healthy',
,'Peach___Bacterial_spot','Peach___healthy']
text="The Classified Fruit disease is: " +str(index[pred[0]])
return text
if name ==' main ':
app.run(debug=False)
```

vegetable model:

```
ls
sample_data/
pwd
'/home/wsuser/work'
!pip install keras==2.7.0
```

!pip install tensorflow==2.5.0

Looking in indexes: https://us-python.pkg.dev/colab wheels/public/simple/

Requirement already satisfied: keras==2.7.0 in /usr/local/lib/python3.7/dist-packages (2.7.0)

Looking in indexes: https://us-python.pkg.dev/colab wheels/public/simple/

Requirement already satisfied: tensorflow==2.5.0 in /usr/local/lib/python3.7/dist-packages (2.5.0)

Requirement already satisfied: h5py~=3.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (3.1.0)

Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (3.19.6)

Requirement already satisfied: typing-extensions~=3.7.4 in /usr/local/lib/python3.7/dist packages (from tensorflow==2.5.0) (3.7.4.3)

Requirement already satisfied: keras-nightly~=2.5.0.dev in /usr/local/lib/python3.7/dist packages (from tensorflow==2.5.0) (2.5.0.dev2021032900)

Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.12)

Requirement already satisfied: gast==0.4.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.4.0)

Requirement already satisfied: absl-py~=0.10 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.15.0)

Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.6.3)

Requirement already satisfied: tensorflow-estimator<2.6.0,>=2.5.0rc0 in

/usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (2.5.0) Requirement already satisfied: tensorboard~=2.5 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (2.9.1)

Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (3.3.0)

Requirement already satisfied: six~=1.15.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.15.0)

Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.2.0)

Requirement already satisfied: grpcio~=1.34.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.34.1)

Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.12.1)

Requirement already satisfied: termcolor~=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.1.0)

Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.7/dist packages (from tensorflow==2.5.0) (1.1.2)

Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (0.38.3)

Requirement already satisfied: numpy~=1.19.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow==2.5.0) (1.19.5)

```
Requirement already satisfied: cached-property in /usr/local/lib/python3.7/dist-packages (from h5py~=3.1.0->tensorflow==2.5.0) (1.5.2)
```

Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist packages (from tensorboard~=2.5->tensorflow==2.5.0) (2.14.1)

Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in

/usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (0.6.1)

Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in

/usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (1.8.1)

Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in

/usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (0.4.6)

Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (1.0.1)

Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (3.4.1)

Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist packages (from tensorboard~=2.5->tensorflow==2.5.0) (2.23.0)

Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow==2.5.0) (57.4.0)

Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (4.9) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist packages (from google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (0.2.8) Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.7/dist packages (from google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (5.2.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.5->tensorflow==2.5.0) (1.3.1)

Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist packages (from markdown>=2.6.8->tensorboard~=2.5->tensorflow==2.5.0) (4.13.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard~=2.5->tensorflow==2.5.0) (3.10.0)

Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard~=2.5->tensorflow==2.5.0) (0.4.8)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (1.24.3)

Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (2.10)

Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow==2.5.0) (2022.9.24) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5.>=0.4.1->tensorboard~=2.5->tensorflow==2.5.0)

(3.2.2)

Image Augmentation

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train datagen=ImageDataGenerator(rescale=1./255,zoom range=0.2,horizontal flip=True,v
ertical flip=False)
test_datagen=ImageDataGenerator(rescale=1./255)
ls
pwd
/content
import os, types
import pandas as pd
from botocore.client import Config
import ibm boto3
def iter (self): return 0
# @hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your crede
# You might want to remove those credentials before you share the notebook.
client 4ff9f1114db24196a9abd4f5c1f0b60a = ibm boto3.client(service name='s3',
ibm_api_key_id='j4lNXssktSSxQiDx3pbNR_eFi1SMCDE6MFnBQ_EmNCDM',
ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
config=Config(signature_version='oauth'),
endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
streaming_body_1 = client_4ff9f1114db24196a9abd4f5c1f0b60a.get_object(Bucket='trainm')
odel-donotdelete-pr-cbqe37eh8gzesa', Key='vegetable-dataset.zip')['Body']
# Your data file was loaded into a botocore.response.StreamingBody object. # Please read the
documentation of ibm boto3 and pandas to learn more about the possibil ities to load the data.
# ibm_boto3 documentation: https://ibm.github.io/ibm-cos-sdk-python/ # pandas documentation:
http://pandas.pydata.org/
from io import BytesIO
import zipfile
unzip = zipfile.ZipFile(BytesIO(streaming_body_1.read()), "r")
file_paths = unzip.namelist()
for path in file_paths:
unzip.extract(path)
pwd
'/home/wsuser/work'
import os
filenames = os.listdir('/home/wsuser/work/vegetable-dataset/train')
x_train=train_datagen.flow_from_directory("/home/wsuser/work/vegetable
dataset/train",target_size=(128,128),class_mode='categorical',batch_size=24) Found 5384
images belonging to 6 classes.
x_test=test_datagen.flow_from_directory(r"/home/wsuser/work/vegetable
dataset/test",target size=(128,128),
class_mode='categorical',batch_size=24)
Found 1686 images belonging to 6 classes.
x train.class indices
```

```
{'Tomato___Blight': 0, 'Tomato___healthy': 1, 'Corn_(maize)___Northern_Leaf_Blight': 2, 'Corn_(maize)___healthy': 3, 'Potato___Blight': 4, 'Potato___healthy': 5}
```

CNN

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Convolution 2D, Max Pooling 2D, Flatten
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.summary()
Model: "sequential_1"
                                                                            Layer (type)
Output Shape Param #
conv2d_1 (Conv2D) (None, 126, 126, 32) 896
max_pooling2d (MaxPooling2D (None, 63, 63, 32) 0
flatten (Flatten) (None, 127008) 0
Total params: 896
Trainable params: 896
Non-trainable params: 0
32*(3*3*3+1)
896
#Hidden Layers
model.add(Dense(300,activation='relu'))
model.add(Dense(150,activation='relu'))
```

Output Layers

```
model.add(Dense(6,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
len(x_train)
225
1238/24
51.58333333333333
model.fit_generator(x_train,steps_per_epoch=len(x_train),validation_data=x_test,validatio
n_steps=len(x_test),epochs=10)
```

/tmp/wsuser/ipykernel_164/1582812018.py:1: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.

```
model.fit_generator(x_train,steps_per_epoch=len(x_train),validation_data=x_test,validation
_steps=len(x_test),epochs=10)
Epoch 1/10
accuracy: 0.8094 - val loss: 0.2273 - val accuracy: 0.9235
Epoch 2/10
accuracy: 0.9179 - val_loss: 0.2056 - val_accuracy: 0.9324
Epoch 3/10
accuracy: 0.9337 - val_loss: 0.4972 - val_accuracy: 0.8754
Epoch 4/10
accuracy: 0.9422 - val_loss: 0.2279 - val_accuracy: 0.9217
Epoch 5/10
accuracy: 0.9487 - val loss: 0.1685 - val accuracy: 0.9484
Epoch 6/10
accuracy: 0.9556 - val loss: 0.1176 - val accuracy: 0.9662
Epoch 7/10
accuracy: 0.9590 - val_loss: 0.5466 - val_accuracy: 0.8387
Epoch 8/10
accuracy: 0.9597 - val loss: 0.1194 - val accuracy: 0.9620
Epoch 9/10
accuracy: 0.9616 - val_loss: 0.1478 - val_accuracy: 0.9508
Epoch 10/10
accuracy: 0.9695 - val loss: 0.0772 - val accuracy: 0.9751
<keras.callbacks.History at 0x7f71e8184070>
```

Saving Model

ls
vegetable-dataset/
model.save('vegetable.h5')
!tar -zcvf Train-model_new.tgz vegetable.h5
vegetable.h5

ls -1 vegetable-dataset/ vegetable.h5 Train-model_new.tgz

IBM Cloud Deployment Model

!pip install watson-machine-learning-client –upgrade Collecting watson-machine-learning-client

Downloading watson_machine_learning_client-1.0.391-py3-none-any.whl (538 kB)

| 538 kB 21.2 MB/s eta 0:00:01

Requirement already satisfied: tqdm in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (4.62.3)

Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (2022.9.24)

Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (2.26.0)

Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (0.8.9)

Requirement already satisfied: ibm-cos-sdk in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (2.11.0) Requirement already satisfied: pandas in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (1.3.4)

Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (0.3.3)

Requirement already satisfied: boto3 in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (1.18.21)

Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from watson-machine-learning-client) (1.26.7)

Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python

3.9/lib/python 3.9/site-packages~(from~boto 3-> watson-machine-learning-client)~(0.10.0)

Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /opt/conda/envs/Python

3.9/lib/python 3.9/site-packages~(from~boto 3-> watson-machine-learning-client)~(0.5.0)

Requirement already satisfied: botocore<1.22.0,>=1.21.21 in /opt/conda/envs/Python

3.9/lib/python 3.9/site-packages~(from~boto 3-> watson-machine-learning-client)~(1.21.41)

Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Python

3.9/lib/python3.9/site-packages (from botocore<1.22.0,>=1.21.21->boto3->watson machine-learning-client) (2.8.2)

Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site packages (from python-dateutil<3.0.0,>=2.1->botocore<1.22.0,>=1.21.21->boto3->watson machine-learning-client) (1.15.0)

Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from ibm-cos-sdk->watson-machine-learning-client) (2.11.0) Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from ibm-cos-sdk->watson-machine-learning-client) (2.11.0)

```
Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python
3.9/lib/python3.9/site-packages (from requests->watson-machine-learning-client) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python 3.9/lib/python3.9/site-
packages (from requests->watson-machine-learning-client) (3.3) Requirement already satisfied:
pytz>=2017.3 in /opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from pandas->watson-
machine-learning-client) (2021.3) Requirement already satisfied: numpy>=1.17.3 in
/opt/conda/envs/Python 3.9/lib/python3.9/site-packages (from pandas->watson-machine-
learning-client) (1.19.5) Installing collected packages: watson-machine-learning-client
Successfully installed watson-machine-learning-client-1.0.391
from ibm_watson_machine_learning import APIClient
wml credentials = {
"url": "https://us-south.ml.cloud.ibm.com",
"apikey":"0P3XkyCFYqABnc48BNG2ReoGAJy-oDXDRuULl4Y_zFxa"
client = APIClient(wml_credentials)
def guid_from_space_name(client, space_name):
space = client.spaces.get_details()
return(next(item for item in space['resources'] if item['entity']["name"]==space_name)['m
etadata']['id'])
space_uid = guid_from_space_name(client, 'Trainmodel')
print("Space UID = " + space_uid)
Space UID = 616c7d74-e99b-4c09-9922-27394a62c2d0
client.set.default_space(space_uid)
'SUCCESS'
client.software_specifications.list()
NAME ASSET ID TYPE
default_py3.6 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base kernel-spark3.2-scala2.12
020d69ce-7ac1-5e68-ac1a-31189867356a base pytorch-onnx 1.3-py3.7-edt 069ea134-3346-
5748-b513-49120e15d288 base scikit-learn_0.20-py3.6 09c5a1d0-9c1e-4473-a344-
eb7b665ff687 base spark-mllib_3.0-scala_2.12 09f4cff0-90a7-5899-b9ed-1ef348aebdee base
pytorch-onnx rt22.1-py3.9 0b848dd4-e681-5599-be41-b5f6fccc6471 base ai-function 0.1-py3.6
0cdb0f1e-5376-4f4d-92dd-da3b69aa9bda base shiny-r3.6 0e6e79df-875e-4f24-8ae9-
62dcc2148306 base
tensorflow 2.4-py3.7-horovod 1092590a-307d-563d-9b62-4eb7d64b3f22 base pytorch 1.1-
py3.6 10ac12d6-6b30-4ccd-8392-3e922c096a92 base tensorflow_1.15-py3.6-ddl 111e41b3-
de2d-5422-a4d6-bf776828c4b7 base runtime-22.1-py3.9 12b83a17-24d8-5082-900f-
0ab31fbfd3cb base scikit-learn_0.22-py3.6 154010fa-5b3b-4ac1-82af-4d5ee5abbc85 base
default r3.6 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 base pytorch-onnx 1.3-py3.6 1bc6029a-
cc97-56da-b8e0-39c3880dbbe7 base kernel-spark3.3-r3.6 1c9e5454-f216-59dd-a20e-
474a5cdf5988 base pytorch-onnx_rt22.1-py3.9-edt 1d362186-7ad5-5b59-8b6c-9d0880bde37f
base tensorflow_2.1-py3.6 1eb25b84-d6ed-5dde-b6a5-3fbdf1665666 base spark-mllib_3.2
20047f72-0a98-58c7-9ff5-a77b012eb8f5 base tensorflow_2.4-py3.8-horovod 217c16f6-178f-
56bf-824a-b19f20564c49 base runtime-22.1-py3.9-cuda 26215f05-08c3-5a41-a1b0-
da66306ce658 base do py3.8 295addb5-9ef9-547e-9bf4-92ae3563e720 base autoai-ts 3.8-py3.8
2aa0c932-798f-5ae9-abd6-15e0c2402fb5 base tensorflow_1.15-py3.6 2b73a275-7cbf-420b-
a912-eae7f436e0bc base kernel-spark3.3-py3.9 2b7961e2-e3b1-5a8c-a491-482c8368839a base
```

```
pytorch_1.2-py3.6 2c8ef57d-2687-4b7d-acce-01f94976dac1 base spark-mllib_2.3 2e51f700-
bca0-4b0d-88dc-5c6791338875 base pytorch-onnx_1.1-py3.6-edt 32983cea-3f32-4400-8965-
dde874a8d67e base spark-mllib_3.0-py37 36507ebe-8770-55ba-ab2a-eafe787600e9 base spark-
mllib_2.4 390d21f8-e58b-4fac-9c55-d7ceda621326 base xgboost_0.82-py3.6 39e31acd-5f30-
41dc-ae44-60233c80306e base pytorch-onnx_1.2-py3.6-edt 40589d0e-7019-4e28-8daa-
fb03b6f4fe12 base default_r36py38 41c247d3-45f8-5a71-b065-8580229facf0 base
autoai-ts rt22.1-py3.9 4269d26e-07ba-5d40-8f66-2d495b0c71f7 base autoai-obm 3.0
42b92e18-d9ab-567f-988a-4240ba1ed5f7 base pmml-3.0_4.3 493bcb95-16f1-5bc5-bee8-
81b8af80e9c7 base spark-mllib 2.4-r 3.6 49403dff-92e9-4c87-a3d7-a42d0021c095 base
xgboost_0.90-py3.6 4ff8d6c2-1343-4c18-85e1-689c965304d3 base pytorch-onnx_1.1-py3.6
50f95b2a-bc16-43bb-bc94-b0bed208c60b base autoai-ts 3.9-py3.8 52c57136-80fa-572e-8728-
a5e7cbb42cde base spark-mllib_2.4-scala_2.11 55a70f99-7320-4be5-9fb9-9edb5a443af5 base
spark-mllib 3.0 5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9 base autoai-obm 2.0 5c2e37fa-80b8-
5e77-840f-d912469614ee base spss-modeler 18.1 5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b base
cuda-py3.8 5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e base autoai-kb_3.1-py3.7 632d4b22-10aa-
5180-88f0-f52dfb6444d7 base pytorch-onnx_1.7-py3.8 634d3cdc-b562-5bf9-a2d4-
ea90a478456b base spark-mllib_2.3-r_3.6 6586b9e3-ccd6-4f92-900f-0f8cb2bd6f0c base
tensorflow_2.4-py3.7 65e171d7-72d1-55d9-8ebb-f813d620c9bb base spss-modeler_18.2
687eddc9-028a-4117-b9dd-e57b36f1efa5 base _____
Note: Only first 50 records were displayed. To display more use 'limit' parameter.
software_space_uid = client.software_specifications.get_uid_by_name("tensorflow_rt22.1-
py3.9")
software_spec_uid
'1eb25b84-d6ed-5dde-b6a5-3fbdf1665666'
vegetable-dataset/ vegetable.h5 Train-model new.tgz
model_details = client.repository.store_model(model= 'Train-model_new.tgz', meta_props={
client.repository.ModelMetaNames.NAME:"CNN",
client.repository.ModelMetaNames.TYPE:"tensorflow_2.7",
client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_space_uid} )
model_id = client.repository.get_model_id(model_details)
model id
'd0aeb6a2-e89c-4f8d-bf2f-a28ca4ea3cca'
vegetable-dataset/ vegetable.h5 Train-model_new.tgz
Test The Model
import numpy as np
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image
model=load_model('vegetable.h5')
#@title
img=image.load_img(r"C:\Users\LENOVO\Desktop\vegetable-dataset\vegetable
dataset\test\00fca0da-2db3-481b-b98a
9b67bb7b105c RS_HL 7708.JPG",target_size=(128,128))
img
```


 $img=image.load_img(r"C:\Users\LENOVO\Desktop\ibm\Dataset\ Plant\ Disease\vegetable\ dataset\vegetable-dataset\test\Tomato__healthy\Oadc1c5b-8958-47c0-a152-f28078c214f1__RS_HL\ 7825.JPG", target_size=(128,128))$

img

x=image.img_to_array(img) X array([[[99., 86., 106.], [101., 88., 108.], [118., 105., 125.], [92., 83., 102.], [93., 84., 103.], [89., 80., 99.]], [[96., 83., 103.], [87., 74., 94.], [102., 89., 109.], [88., 79., 98.], [89., 80., 99.], [83., 74., 93.]], [[86., 73., 93.], [88., 75., 95.], [98., 85., 105.],

```
[107., 98., 117.],
[ 96., 87., 106.],
[ 96., 87., 106.]],
[[172., 175., 194.],
[173., 176., 195.],
[175., 178., 197.],
[179., 180., 198.],
[184., 185., 203.],
[179., 180., 198.]],
[[172., 175., 194.],
[170., 173., 192.],
[173., 176., 195.],
[178., 179., 197.],
[182., 183., 201.],
[178., 179., 197.]],
[[169., 172., 191.],
[166., 169., 188.],
[168., 171., 190.],
[187., 188., 206.],
[185., 186., 204.],
[186., 187., 205.]]], dtype=float32) x=np.expand_dims(x,axis=0)
X
array([[[ 99., 86., 106.],
[101., 88., 108.],
[118., 105., 125.],
[ 92., 83., 102.],
[ 93., 84., 103.],
[89., 80., 99.]],
[[ 96., 83., 103.],
[87., 74., 94.],
[102., 89., 109.],
[ 88., 79., 98.],
[89., 80., 99.],
[ 83., 74., 93.]],
[[ 86., 73., 93.],
[ 88., 75., 95.],
[ 98., 85., 105.],
[107., 98., 117.],
```

```
[ 96., 87., 106.],
[ 96., 87., 106.]],
[[172., 175., 194.],
[173., 176., 195.],
[175., 178., 197.],
[179., 180., 198.],
[184., 185., 203.],
[179., 180., 198.]],
[[172., 175., 194.],
[170., 173., 192.],
[173., 176., 195.],
...,
[178., 179., 197.],
[182., 183., 201.],
[178., 179., 197.]],
[[169., 172., 191.],
[166., 169., 188.],
[168., 171., 190.],
[187., 188., 206.],
[185., 186., 204.],
[186., 187., 205.]]]], dtype=float32)
y=np.argmax(model.predict(x),axis=1)
1/1 [======] - 0s 105ms/step
x_train.class_indices
{'Tomato Blight': 0, 'Tomato healthy': 1, 'Corn (maize) Northern Leaf Blight': 2,
'Corn_(maize) healthy': 3, 'Potato Blight': 4, 'Potato healthy': 5}
index=['Tomato___Blight','Tomato___healthy','Corn_(maize)___Northern_Leaf_Blight','Cor
n_(maize) healthy','Potato Blight','Potato healthy']
index[y[0]]
'Tomato healthy'
img=image.load img(r"C:\LENOVO\Desktop\ibm\Dataset Plant Disease\vegetable
dataset\vegetable-dataset\test\Potato healthy\0a2ed402-5d23-4e8d-bc98-
b264aea9c3fb Rutg. HL 2471.JPG",target size=(128,128))
x=image.img_to_array(img)
x=np.expand dims(x,axis=0)
y=np.argmax(model.predict(x),axis=1)
index=['Tomato___Blight','Tomato___healthy''Potato___Blight','Potato___healthy'] index[y[0]]
1/1 [======] - 0s 26ms/step
'Potato healthy'
import os
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image
from flask import Flask, render template, request
```

```
app=Flask( name )
model=load_model("vegetable.h5")
@app.route('/')
def index():
return render_template("index.html")
@app.route('/predict',methods=['GET','POST'])
def upload():
if request.method=='POST':
f=request.files['image']
basepath=os.path.dirname('_file_')
filepath=os.path.join(basepath,'uploads',f.filename)
f.save(filepath)
img=image.load_img(filepath,target_size=(128,128))
x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
pred=np.argmax(model.predict(x),axis=1)
index=['Tomato___Blight','Tomato___healthy', ,'Potato___Blight','Potato___healthy']
text="The Classified Vegetable disease is: " +str(index[pred[0]]) return text
if__name_ =='__main__ ':
app.run(debug=False)
ibmapp.py
import requests
from tensorflow.keras.preprocessing import image from tensorflow.keras.models import
load model
import numpy as np
import pandas as pd
import tensorflow as tf
from flask import Flask, request, render_template, redirect, url_for import os
from werkzeug.utils import secure_filename
app = Flask(\_name\_)
#load both the vegetable and fruit models
model = load model("IBM-vegetable.h5")
model1=load_model("IBM-fruit.h5")
#home page
@app.route('/')
def home():
return render_template('home.html')
#prediction page
@app.route('/prediction')
def prediction():
return render_template('predict.html')
@app.route('/predict',methods=['POST'])
def predict():
if request.method == 'POST':
# Get the file from post request
f = request.files['image']
```

```
# Save the file to ./uploads
basepath = os.path.dirname(_file_)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename)) f.save(file_path)
img = image.load_img(file_path, target_size=(128, 128))
x = image.img\_to\_array(img)
x = np.expand\_dims(x, axis=0)
plant=request.form['plant']
print(plant)
if(plant=="vegetable"):
preds = model.predict(x)
preds=np.argmax(preds)
print(preds)
df=pd.read_excel('precautions - veg.xlsx') print(df.iloc[preds]['caution'])
preds = model1.predict(x)
preds=np.argmax(preds)
df=pd.read_excel('precautions - fruits.xlsx') print(df.iloc[preds]['caution']
return df.iloc[preds]['caution']
if _name_ == "_main_":
app.run(debug=False)
```

GitHub Link:

IBM-EPBL/IBM-Project-47003-1660795827