```
In [5]: import numpy as np
    import pandas as pd
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import scale

from numpy import set_printoptions
    from sklearn.feature_selection import SelectKBest
    from sklearn.feature_selection import chi2
    from sklearn.feature_selection import RFE
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier

import warnings
warnings.filterwarnings('ignore')
```

In [6]: test = pd.read_csv('SalaryData_Test(1).csv')
test

Out[6]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	
15055	33	Private	Bachelors	13	Never- married	Prof- specia l ty	Own-child	White	
15056	39	Private	Bachelors	13	Divorced	Prof- specia l ty	Not-in-family	White	Fŧ
15057	38	Private	Bachelors	13	Married-civ- spouse	Prof- specia l ty	Husband	White	
15058	44	Private	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	
15059	35	Self-emp- inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	

15060 rows × 14 columns

In [7]: test.head()

Out[7]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex	Cŧ
(25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	
	I 38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male	
2	2 28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male	
;	3 44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male	
4	1 34	Private	10th	6	Never- married	Other- service	Not-in-family	White	Male	

4

Out[8]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	1
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	N
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	N
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	M
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	M
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specia l ty	Wife	Black	Ferr
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Ferr
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	M
30158	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Ferr
30159	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	White	M
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Ferr

30161 rows × 14 columns

In [9]: train.head()

Out[9]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specia l ty	Wife	Black	Female
4									•

In [10]: #Checking for null values & data types test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15060 entries, 0 to 15059
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	15060 non-null	int64
1	workclass	15060 non-null	object
2	education	15060 non-null	object
3	educationno	15060 non-null	int64
4	maritalstatus	15060 non-null	object
5	occupation	15060 non-null	object
6	relationship	15060 non-null	object
7	race	15060 non-null	object
8	sex	15060 non-null	object
9	capitalgain	15060 non-null	int64
10	capitalloss	15060 non-null	int64
11	hoursperweek	15060 non-null	int64
12	native	15060 non-null	object
13	Salary	15060 non-null	object

dtypes: int64(5), object(9)

memory usage: 1.6+ MB

```
In [11]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 30161 entries, 0 to 30160
         Data columns (total 14 columns):
             Column
                            Non-Null Count Dtype
         ---
              -----
          0
                            30161 non-null
                                            int64
             age
          1
                            30161 non-null object
             workclass
          2
             education
                            30161 non-null object
          3
             educationno
                            30161 non-null int64
          4
             maritalstatus 30161 non-null object
          5
                            30161 non-null object
             occupation
          6
             relationship
                            30161 non-null object
          7
                            30161 non-null object
             race
          8
                            30161 non-null object
             sex
          9
             capitalgain
                            30161 non-null int64
          10 capitalloss
                            30161 non-null int64
          11 hoursperweek
                            30161 non-null int64
          12 native
                            30161 non-null object
          13 Salary
                            30161 non-null object
         dtypes: int64(5), object(9)
```

In [12]: # one hot encoding

memory usage: 3.2+ MB

```
In [13]: train1 = train.iloc[:,0:13]
    train1 = pd.get_dummies(train1)
    train1
```

Out[13]:

	age	educationno	capitalgain	capitalloss	hoursperweek	workclass_ Federal- gov	workclass_ Local-gov	workclas: Priva
0	39	13	2174	0	40	0	0	_
1	50	13	0	0	13	0	0	
2	38	9	0	0	40	0	0	
3	53	7	0	0	40	0	0	
4	28	13	0	0	40	0	0	
30156	27	12	0	0	38	0	0	
30157	40	9	0	0	40	0	0	
30158	58	9	0	0	40	0	0	
30159	22	9	0	0	20	0	0	
30160	52	9	15024	0	40	0	0	

30161 rows × 102 columns

4

```
In [14]: test1 = test.iloc[:,0:13]
    test1 = pd.get_dummies(test1)
    test1
```

	age	educationno	capitalgain	capitalloss	hoursperweek	workclass_ Federal- gov	workclass_ Local-gov	workc Pı		
0	25	7	0	0	40	0	0			
1	38	9	0	0	50	0	0			
2	28	12	0	0	40	0	1			
3	44	10	7688	0	40	0	0			
4	34	6	0	0	30	0	0			
			•••							
15055	33	13	0	0	40	0	0			
15056	39	13	0	0	36	0	0			
15057	38	13	0	0	50	0	0			
15058	44	13	5455	0	40	0	0			
15059	35	13	0	0	60	0	0			
15060 rows × 102 columns										
4								•		

PCA to decide best features

```
In [15]: # min max scaler
    from sklearn.preprocessing import MinMaxScaler
    trans = MinMaxScaler()
    train_scaler = pd.DataFrame(trans.fit_transform(train1))
    test_scaler = pd.DataFrame(trans.fit_transform(test1))
```

```
In [16]: pca train = PCA(n components = 102)
         pca train values = pca train.fit transform(train scaler)
         var = pca_train.explained_variance_ratio
         var1 = np.cumsum(np.round(var,decimals = 4)*100)
         var1
Out[16]: array([19.42, 27.36, 34.3 , 40.13, 45. , 49.69, 53.89, 57.2 , 60.27,
                62.99, 65.66, 68.19, 70.45, 72.53, 74.44, 76.26, 77.9 , 79.45,
                80.74, 81.95, 83.09, 84.15, 85.19, 86.17, 87.08, 87.91, 88.71,
                89.49, 90.23, 90.97, 91.68, 92.38, 93.04, 93.64, 94.12, 94.56,
                94.97, 95.37, 95.73, 96.06, 96.37, 96.67, 96.96, 97.24, 97.49,
                97.69, 97.88, 98.06, 98.19, 98.31, 98.42, 98.53, 98.62, 98.7,
                98.78, 98.85, 98.92, 98.99, 99.06, 99.12, 99.17, 99.22, 99.27,
                99.32, 99.37, 99.41, 99.45, 99.49, 99.53, 99.57, 99.6, 99.63,
                99.66, 99.68, 99.7, 99.72, 99.74, 99.76, 99.78, 99.8, 99.82,
                99.83, 99.84, 99.85, 99.86, 99.87, 99.88, 99.89, 99.9, 99.91,
                99.92, 99.93, 99.94, 99.94, 99.94, 99.94, 99.94, 99.94,
                99.94, 99.94, 99.94])
In [17]:
         pca_test = PCA(n_components = 102)
         pca_test_values = pca_test.fit_transform(test_scaler)
```

Best Columns

```
In [18]: finaltrain = pd.concat([pd.DataFrame(pca train values[:,0:50]),
                              train[['Salary']]], axis = 1)
         finaltrain
```

Out[18]:

	0	1	2	3	4	5	6	7	
0	0.511884	-0.570399	0.985410	0.869147	0.301768	-0.160966	-0.069890	-0.248351	0.292
1	-1.186474	0.389451	0.805358	0.407706	0.380658	-0.302254	-0.106618	0.209061	0.920
2	0.327319	-0.448965	-0.614483	1.019098	-0.704198	0.351374	0.014607	0.297586	0.005
3	-0.872767	-0.017105	-0.213117	-0.454347	0.086417	0.047109	1.242660	-0.134197	-0.038
4	0.371012	1.147050	0.312747	-0.460719	0.180534	-1.024316	1.292872	-0.349665	-0.469
30156	0.294538	0.952058	-0.098474	-0.531724	-0.213346	-0.469396	-0.279332	-0.316085	-0.17§
30157	-1.001348	-0.091425	-0.831089	0.003952	-0.135485	-0.197470	-0.096730	-0.126849	-0.024
30158	0.942438	0.867860	-0.980524	-0.022298	-0.026156	-0.069330	-0.277006	0.235377	0.019
30159	0.532346	-1.046443	-0.611753	-0.193523	0.522283	-0.205924	-0.417356	0.253337	0.130
30160	0.105998	1.214254	-0.426850	0.260569	0.577362	-0.251165	-0.574298	-0.385188	908.0

30161 rows × 51 columns

```
In [19]: finaltest = pd.concat([pd.DataFrame(pca_test_values[:,0:50]),
                               test[['Salary']]], axis = 1)
         finaltest
Out[19]:
                       0
                                1
                                         2
                                                  3
                                                                                      7
              0 0.544139 -1.082697
                                   0.043718 -0.638660
                                                     0.600414 -0.037211
                                                                        1.117301
                                                                                0.303058
                                                                                         980.0
              1 -1.017577 -0.173468 -0.721000 0.034038 -0.051207 -0.169266 -0.173861 -0.133687 -0.010
              2 -1.079069 0.331812
                                  0.385397
                                            0.156170 0.541402
                                                              0.179608 -0.124271 -0.014775 -0.098
              3 -0.846450 -0.012312 -0.003005 -0.778263 -0.161833
                                                              0.679751
                                                                       1.182308 -0.408033
                                                                                        0.064
                 0.613603 -0.980319
                                   0.315324
                                            0.309863 -0.254993
                                                              0.026711
                                                                        0.039416 -0.213736 -0.160
                 0.392559 -0.799233
                                   0.857450 -0.224953
                                                     0.264490 -0.949432
                                                                       0.035834
                                                                                0.698898 -0.383
          15055
          15056
                1.064367 0.803553
                                   0.497037 0.719569
                                                     -0.820526 -0.579177
                                                                       0.120411
                                                                                0.287500 -0.512
          15057 -1.022440 0.211868
                                   0.552672 -0.053465 -0.327323 -0.844022
                                                                       0.221308
                                                                                0.212895 -0.480
          15058 0.346779 -0.164803
                                   0.224122 -0.087735 -0.083448 -0.185222 0.845949
                                                                                0.963429 0.287
          15059 -1.165265 0.443859
                                   0.127963 0.971
          15060 rows × 51 columns
                                                                                            •
In [20]:
         # will use some part of data as comands are taking really long time to execute wi
         array = finaltrain.values
         X = array[0:2000:,0:50]
         Y = array[0:2000:,50]
          KNN Model
In [21]: # Grid search CV to find best value for K
In [22]: from sklearn.model selection import KFold
         from sklearn.model selection import cross val score
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model selection import GridSearchCV
         n neighbors = np.array(range(1,40))
In [23]:
         param_grid = dict(n_neighbors=n_neighbors)
         model = KNeighborsClassifier()
         grid = GridSearchCV(estimator=model, param grid=param grid)
         grid.fit(X, Y)
Out[23]: GridSearchCV(estimator=KNeighborsClassifier(),
                       param_grid={'n_neighbors': array([ 1,  2,  3,  4,  5,  6,
                                                                                   7,
         9, 10, 11, 12, 13, 14, 15, 16, 17,
```

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39])})

```
In [24]:
         print(grid.best_score_)
         print(grid.best_params_)
         0.8284999999999998
         {'n_neighbors': 29}
In [25]: # Visualizing the CV results
In [26]:
         import matplotlib.pyplot as plt
         %matplotlib inline
         # choose k between 1 to 41
         k_range = range(1, 41)
         k_scores = []
         # use iteration to caclulator different k in models, then return the average accu
         for k in k_range:
             knn = KNeighborsClassifier(n_neighbors=k)
             scores = cross_val_score(knn, X, Y, cv=5)
             k_scores.append(scores.mean())
         # plot to see clearly
         plt.plot(k_range, k_scores)
         plt.xlabel('Value of K for KNN')
         plt.ylabel('Cross-Validated Accuracy')
         plt.show()
            0.83
            0.82
```

```
Cross-Validated Accuracy
    0.81
    0.80
    0.79
    0.78
    0.77
    0.76
                       5
                                10
                                          15
                                                    20
                                                                        30
                                                                                           40
                                                             25
                                                                                  35
                                          Value of K for KNN
```

```
In [27]: #KNN Classification
    num_folds = 10
    kfold = KFold(n_splits=10)
    model = KNeighborsClassifier(n_neighbors=29)
    results = cross_val_score(model, X, Y, cv=kfold)
    print(results.mean())
```

0.823999999999998

SVM Classification

```
In [28]: from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
         from sklearn.preprocessing import StandardScaler
         from sklearn import svm
         from sklearn.svm import SVC
         from sklearn.model_selection import GridSearchCV
         from sklearn.metrics import classification_report
In [29]: | from sklearn.metrics import accuracy_score, confusion_matrix
         from sklearn.model_selection import train_test_split, cross_val_score
In [30]: | clf = SVC()
         param_grid = [{'kernel':['rbf'],'gamma':[50,5,10,0.5],'C':[15,14,13,12,11,10,0.1]
         gsv = GridSearchCV(clf,param_grid,cv=10)
         gsv.fit(X,Y)
Out[30]: GridSearchCV(cv=10, estimator=SVC(),
                      param grid=[{'C': [15, 14, 13, 12, 11, 10, 0.1, 0.001],
                                    'gamma': [50, 5, 10, 0.5], 'kernel': ['rbf']}])
In [31]: gsv.best_params_ , gsv.best_score_
Out[31]: ({'C': 11, 'gamma': 0.5, 'kernel': 'rbf'}, 0.7875)
In [32]: # using some part of test data
         array1 = finaltest.values
         x = array1[0:2000:,0:50]
         y = array1[0:2000:,50]
In [33]: | clf = SVC(C= 15, gamma = 50)
         clf.fit(x , y)
         y_pred = clf.predict(x)
         acc = accuracy_score(y, y_pred) * 100
         print("Accuracy =", acc)
         confusion_matrix(y, y_pred)
         Accuracy = 98.45
Out[33]: array([[1500,
                         6],
                [ 25, 469]], dtype=int64)
```

SVM gives higher accuracy i.e 98.45 than of knn

Bagging

```
In [35]: # Bagged Decision Trees for Classification
    from sklearn.ensemble import BaggingClassifier
    seed = 7
    kfold = KFold(n_splits=15)
    cart = DecisionTreeClassifier()
    num_trees = 100
    model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_staresults = cross_val_score(model, x, y, cv=kfold)
    print(results.mean())
```

0.8110013840571578

Random Forest

```
In [36]: from sklearn.ensemble import RandomForestClassifier
    num_trees = 200
    max_features = 4
    kfold = KFold(n_splits=15)
    model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features)
    results = cross_val_score(model, x, y, cv=kfold)
    print(results.mean())
```

0.8115213406650956

Boosting

```
In [37]: # AdaBoost Classification
    from sklearn.ensemble import AdaBoostClassifier
    num_trees = 200
    seed=7
    kfold = KFold(n_splits=15)
    model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
    results = cross_val_score(model, x, y, cv=kfold)
    print(results.mean())
```

0.8150226312048778

Stacking

```
In [38]: # Stacking Ensemble for Classification
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.svm import SVC
    from sklearn.ensemble import VotingClassifier
```

```
In [39]: # create the sub models
    estimators = []
    model1 = LogisticRegression(max_iter=500)
    estimators.append(('logistic', model1))
    model2 = DecisionTreeClassifier()
    estimators.append(('cart', model2))
    model3 = SVC()
    estimators.append(('svm', model3))

# create the ensemble model
    ensemble = VotingClassifier(estimators)
    results = cross_val_score(ensemble, x, y, cv=kfold)
    print(results.mean())
```

0.82600531178693

```
In [ ]:
```