$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt}$$

$$P_{tb} = \frac{1}{T} \int_{0}^{T} p(t) dt$$

$$Tuyến tính (xếp chồng)$$

$$i(e_1, e_2) = i_1(e_1) + i_2(e_2)$$

$$= \left(\frac{dw}{dq}\right) \cdot \left(\frac{dq}{dt}\right) = ui$$

$$w = \int_{t_0}^{t} p dt = \int_{t_0}^{t} u i dt \quad u(e_1, e_2) = u_1(e_1) + u_2(e_2)$$

$$P_{tb} = \frac{1}{T} \int_{0}^{T} p(t) dt$$

K1=d-1

Dòng vòng 👡

$$I_1$$
 R_1 d

$$w = \int_{t_0}^t p dt = \int_{t_0}^t u i dt$$

$$u(c_1, c_2) = u_1(c_1) + u_2(c_2)$$

$$I_1 = I_a$$

$$I_3 = I_a - I_b$$

$$I_1 = I_a$$

$$I_3 = I_a - I_b$$

$$I_4 = -I_b$$

RLC

Phương trình mô tả:
$$\psi = \psi(i)=Li$$

$$u_L = \frac{d\psi}{dt}$$
 $u = L\frac{di}{dt}$ $U = \omega LI = X_L I$

$$U = \omega LI = X_{L}$$

$$u = Ri$$
 $U=RI$

$$u = \frac{1}{C} \int idt$$
 $U = \frac{1}{\omega C} I = X_C I$

Gặp hỗ cảm Zm, bonus – I.Zm

$$-\frac{E_{1}-\varphi_{a}}{R_{1}}+\frac{\varphi_{a}}{R_{3}}-\frac{E_{4}-\varphi_{a}}{R_{4}}-J_{2}=0$$
 E_{1}

Not use when có hỗ cảm

Extensions

$$e^{j\varphi} = \cos\varphi + j\sin\varphi$$

$$\dot{V_1} = V_1 e^{j\psi_1} = V_1 / \psi_1$$

$$\dot{V_2} = V_2 e^{j\psi_2} = V_2 / \psi_2$$

$$\dot{V}.V^* = Ve^{j\psi}.Ve^{-j\psi} = V^2$$

$$i(t) = \sqrt{2}I\sin\left(\omega t + \varphi_i\right)$$

$$u(t) = \sqrt{2}U\sin\left(\omega t + \varphi_u\right) \leftrightarrow \dot{U} = U/\varphi_u$$

$$e(t) = \sqrt{2}E\sin(\omega t + \varphi_e) \leftrightarrow \dot{E} = E/\varphi_e$$

$$j(t) = \sqrt{2}J\sin\left(\omega t + \varphi_j\right) \longleftrightarrow \dot{J} = J/\varphi_j$$

$$i(t) = \sqrt{2}I\sin(\omega t + \varphi_i) \iff \dot{I} = I/\underline{\varphi_i} \qquad \dot{U}_R = R\dot{I} \qquad \dot{U}_L = i\int \omega L\dot{I} \qquad \dot{U}_C = \frac{1}{j\omega C}\dot{I}$$

$$(t) = \sqrt{2}U\sin(\omega t + \varphi_u) \iff \dot{U} = U/\varphi_u \qquad \qquad \dot{I} = Ie^{j\varphi_i}$$

$$I^*$$
 là liên hợp phức của \dot{I} $I^* = I / -\varphi_i$

$$\tilde{S} = \dot{U}I^* = ZI^2$$

Nguồn áp:

+ Nguồn áp cùng chiều với dòng qua nó :

$$\tilde{S}_E = \dot{E}J^*$$

+ Nguồn áp ngược chiều với dòng qua nó :

$$\tilde{S}_{E} = -\dot{E}.I^{*}$$

Nguồn dòng:

$$\tilde{S}_{J} = \left(\dot{\varphi}_{\dot{J}\,vao} - \dot{\varphi}_{\dot{J}\,ra}\right).J^{*}$$

$$\sum P_{phat} = \sum P_{thu}$$

$$\Rightarrow \sum P_{phat} + j \sum Q_{phat} = \sum P_{thu} + j \sum Q_{thu}$$

$$\sum Q_{phat} = \sum Q_{thu}$$

$$\Leftrightarrow \sum \tilde{S}_{phat} = \sum \tilde{S}_{thu}$$

Thế nút (bonus)

Biểu diễn thế nút dạng chính tắc:

$$\tilde{S}_E = -\dot{E}.I^* \qquad egin{cases} rac{\sum Y_{aa}\dot{\phi}_a - \sum Y_{ab}\dot{\phi}_b = \sum \dot{J}_a}{-\sum Y_{ba}\dot{\phi}_a + \sum Y_{bb}\dot{\phi}_b = \sum \dot{J}_b} \end{cases}$$

Tổng các tổng dẫn các nhánh gặp nhau tại nút a

 ΣY_{bb} Tổng các tổng dẫn các nhánh gặp nhau tại nút b

 $\Sigma Y_{ab} = \Sigma Y_{ba}$ Tổng các tổng dẫn các nhánh nối giữa a và b

 $\Sigma \dot{J}_a$ Tổng đại số các nguồn dòng tại nút nút a (vào mang dấu +, ra mang dấu -)

 $\sum \dot{J}_b$ Tổng đại số các nguồn dòng tại nút nút b (vào mang dấu +, ra mang dấu -)

$$Y=1/Z$$

Not use when có hỗ cảm

$Y \rightarrow \Delta$:

$$Z_{ab} = Z_a + Z_b + \frac{Z_a Z_b}{Z_c}$$

$$Z_{bc} = Z_b + Z_c + \frac{Z_b Z_c}{Z_c}$$

$$Z_{ca} = Z_c + Z_a + \frac{Z_c Z_a}{Z_b}$$

\Leftrightarrow

 $\Delta \rightarrow Y$:

 $Z_a = \frac{Z_{ca}Z_{ab}}{Z_{ab} + Z_{bc} + Z_{ca}}$

 $Z_b = \frac{Z_{ab}Z_{bc}}{Z_{ab} + Z_{bc} + Z_{ca}}$

 $Z_c = \frac{Z_{bc}Z_{ca}}{Z_{ab} + Z_{bc} + Z_{ca}}$

\dot{U}

$$Z_{ab} = \frac{\dot{U}_{abho}}{\dot{I}_{abngan}} = \frac{\dot{E}_{Th}}{\dot{J}_{N}}$$

Thevenin

$$\dot{U} = Z_{ab}\dot{I} + \dot{E}_{Th}$$
 $\dot{E}_{Th} = \dot{U}_{abho}$
 Z_{ab} Tổng trở

Norton

$$\dot{I} = -Y_{ab}\dot{U} + \dot{J}_{N}$$

$$\dot{J}_{N} = \dot{I}_{N}$$

$$Y_{ab} = \frac{1}{Z_{ab}}$$
: Tổng dẫn

$$Z_t = Z_{Th}^* \quad \text{Công suất lớn nhất}$$

$$\dot{I}_t = \frac{\dot{E}_{Th}}{Z_{Th} + Z_t} = \frac{\dot{E}_{Th}}{2R_{Th}} \quad = I_{th}$$

$$P_t = R_{Th}I_{Th}^2 = \frac{E_{Th}^2}{4R_{Th}}$$

$$\begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 \end{bmatrix} = \mathbf{Z} \begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{U}_1 \\ \dot{I}_1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \dot{U}_2 \\ \dot{I}_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{U}_1 \\ \dot{I}_2 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \dot{I}_1 \\ \dot{U}_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \end{bmatrix} = \mathbf{Y} \begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{U}_2 \\ \dot{I}_2 \end{bmatrix} = \mathbf{B} \begin{bmatrix} \dot{U}_1 \\ \dot{I}_1 \end{bmatrix}$$

$$\begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \end{bmatrix} = \mathbf{Y} \begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 \end{bmatrix} \qquad \begin{bmatrix} \dot{U}_2 \\ \dot{I}_2 \end{bmatrix} = \mathbf{B} \begin{bmatrix} \dot{U}_1 \\ \dot{I}_1 \end{bmatrix} \qquad \begin{bmatrix} \dot{I}_1 \\ \dot{U}_2 \end{bmatrix} = \mathbf{G} \begin{bmatrix} \dot{U}_1 \\ \dot{I}_2 \end{bmatrix}$$

$$\qquad \Longleftrightarrow \qquad$$

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = m \begin{bmatrix} K_1 \\ K_2 \end{bmatrix}$$
 $X_1 = m_{11}K_1 + m_{12}K_2$
 $X_2 = m_{21}K_1 + m_{22}K_2$

Cho K_x=0 để tính các K còn lại

Nếu $Z_{12} = Z_{21}$: mạng hai cửa tương hỗ

Lưu ý: nếu dấu của dòng cửa ra hướng ra ngoài

Nếu $Z_{12} = -Z_{21}$: mạng hai cửa tương hỗ

 $\begin{bmatrix} U_1 \\ \dot{U}_2 \end{bmatrix} = \mathbf{Z} \begin{bmatrix} I_1 \\ \dot{I}_2 \end{bmatrix} \qquad \begin{bmatrix} \dot{U}_1 \\ \dot{I}_1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \dot{U}_2 \\ \dot{I}_2 \end{bmatrix} \qquad \begin{bmatrix} \dot{U}_1 \\ \dot{I}_2 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \dot{I}_1 \\ \dot{U}_2 \end{bmatrix} \qquad \mathbf{Z} = \mathbf{Y}^{-1} \quad \text{Hàm truyền đạt áp} \qquad K_u = \frac{\dot{U}_2}{\dot{U}_1}$ $\mathbf{B} = \mathbf{A}^{-1}$

Hàm truyền đạt dòng $K_i = \frac{\dot{I}_2}{i}$

$$K_i = \frac{\dot{I}_2}{\dot{I}_1}$$

Hàm truyền đạt lai: $K_z = \frac{\dot{U}_2}{\dot{I}}$ $K_y = \frac{\dot{I}_2}{\dot{I}\dot{I}}$

$$K_z = \frac{\dot{U}_2}{\dot{I}_1} \qquad K_y = \frac{\dot{I}_2}{\dot{U}}$$

Hàm truyền công suất: $K_S = \frac{\tilde{S}_2}{\tilde{S}_.} = \frac{\dot{U}_2 \dot{I}_2^*}{\dot{U}_. \dot{I}_.^*} = \frac{\dot{U}_2}{\dot{U}_.} \frac{\dot{I}_2^*}{\dot{I}_.^*} = K_u K_u^*$

Mạch có cả DC và AC (w khác nhau)

Thì xét riêng các thành phần w (các thành phần có w khác coi như ngắn mạch), xong stack

Nguồn một chiều nên cuộn dây coi như ngắn mạch, tụ điện coi như hở mạch, rồi giải như bthg

MBA là mạch có w khác nhau , áp dụng slide trên

Mạch điện ba pha nối Y-Y không có dây trung tính

Mạch điện ba pha nối Y-Y có dây trung tính

Sử dụng chuyển tam giác thành sao ở slide trên

ng thế

Đo công suất mạch điện ba pha (1)

Công thức ba wattmet

$$\tilde{S} = \dot{U}_A I_A^* + \dot{U}_B I_B^* + \dot{U}_C I_C^* = P + jQ$$

$$P = P_A + P_B + P_C$$

$$Q = Q_A + Q_B + Q_C$$

Công thức hai wattmet

$$P_{t} = P_{E1} + P_{E2} = \text{Re}\left\{\dot{U}_{AC}I_{A}^{*}\right\} + \text{Re}\left\{\dot{U}_{BC}I_{B}^{*}\right\}$$

Fortescue (sử dụng khi pha lệch ≠ + - 120°)

toán tử quay: $a = e^{jl20^{\circ}}$ Công thức phân tích:

Thành phần thứ tự thuận:

Thành phần thứ tự nghịch:

$$\dot{I}_{A2} = \frac{\dot{E}_{A2}}{Z_{2ng} + Z_{2t}}$$

$$\dot{I}_{A0} = \frac{\dot{E}_{A0}}{Z_{0ng} + Z_{0t} + 3Z_{N}}$$

B1: phân tích

Nguồn

 $B2: với pha X có <math>X_{A1}$ trong dây A

Tải

X_{A2} trong dây B ,... tách riêng r

tính X_A như tính I_A ở trên

B3: chuyển pha thành X_B , X_C

B4 : stack $X_{k} = X_{k1} + X_{k2} + X_{k3}$

Chuyển pha ABC

