Открытая студенческая олимпиада по математике Казахстанского филиала МГУ 19 декабря 2015

- 1. a_n, b_n, x_n, y_n четыре арифметические прогрессии. Известно, что $a_n b_n = x_n y_n$ для трёх различных натуральных n. Доказать, что $a_n b_n = x_n y_n$ для всех натуральных n.
- 2. Пусть f(n) вещественнозначная функция, определённая на множестве натуральных чисел и удовлетворяющая следующему условию: для любого n>1 существует такой его простой делитель p, что $f(n)=f\left(\frac{n}{p}\right)-f(p)$. Известно, что f(2015)=2015. Найдите f(2016).
- 3. Найдите все дифференцируемые функции $f: \mathbb{R} \to \mathbb{R}$, удовлетворяющие следующим двум условиям:
 - а) f'(x) = 0 для всех $x \in \mathbb{Z}$;
 - б) если для некоторого $x_0 \in \mathbb{R}$ справедливо равенство $f'(x_0) = 0$, то для него справедливо также равенство $f(x_0) = 0$.
- 4. На параболе выбраны 4 точки: A_1 , A_2 , A_3 и A_4 . Через эти точки к параболе проведены 4 касательные l_1 , l_2 , l_3 и l_4 соответственно. l_1 пересекает l_2 в точке M. l_3 пересекает l_4 в точке N. Докажите, что MN, A_1A_3 и A_2A_4 пересекаются в одной точке.
- 5. Решить в вещественных числах уравнение

$$4x + 2\sin x + \sin(2x + \sin x) + 12\pi = 0.$$

- 6. Дано n натуральных чисел a_1, a_2, \ldots, a_n , при этом все они не превосходят n. Доказать, что существует непустое подмножество $P = \{p_1, \ldots, p_k\}$ множества $\{1, 2, \ldots, n\}$ такое, что множества P и $\{a_{p_1}, a_{p_2}, \ldots, a_{p_n}\}$ совпадают.
- 7. Найдите все матрицы A, которые обладают следующими свойствами:
 - а) имеет всего одно собственное значение (без учёта кратности);
 - б) ранг равен 1;
 - в) след равен 1.