Wyhtad 12. Prysitad. Kategoria Veet p ; prestneri Mni oraych/R. Fundtor sprezience ; *: Veet_ -> Vect_ $V \longmapsto V^* = Hom(V, IR)$ Ob (Veetige) Ob (Veetige). Na morfizmach: Hom(V,W) = f + +> f* & Hom(W*, V*) (zmiana kveruntu stratu) V + W mts W+ + V* e $V \xrightarrow{f} W$ f*(φ)= φ of yR / φ ∈ W* Falt 12.10, * jest funktivem kontravaniantnym Vectir Vectir $\frac{f_{3} \vee g}{g \circ f} \sim \frac{f^{*} \vee g^{*}}{\sqrt{g \circ f}} \frac{g^{*}}{\sqrt{g \circ f}} \frac{g^{*}}{\sqrt{g \circ f}} \frac{g^{*}}{\sqrt{g \circ g \circ g}}$

Dowld:(t) Nich yeU* g+(4) € W* $(g \circ f)^*(\varphi) = \varphi \circ (g \circ f) = (\varphi \circ g) \circ f = g^*(\varphi) \circ f =$ $= \int_{0}^{+} \left(g^{*}(\varphi)\right) = \left(f^{*} \circ g^{*}\right) (\varphi).$

Alg I/12

Wtasności sprzema * w Vectip:

Nech f, g & Hom(V, W) V + 19 W

V* = 1.9* W*

(a)
$$(f+g)^* = f^* + g^*$$

$$(f+g)^*(\varphi) = \varphi \circ (f+g) = (\varphi \circ f) + (\varphi \circ g) =$$

= $f^*(\varphi) + g^*(\varphi) = (f^* + g^*)(\varphi)$

(c)
$$(f^{-1})^{+} \circ f^{+} = (f \circ f^{-1})^{+} = (id_{W})^{+} = id_{W}^{+}$$

 $f_{alst} = 2.10$ $f_{alst} = 2.10$

Komentan. Zatoring, ve D: A -> B funktor z kategorii A do kategorii B. (ko-lub kontrawariantny). Wedy:

(kowan'antun) $(^{\alpha}) \Phi(id_{A}) = id_{\Phi(A)}$ AlgI/12 dla A E () B(A) # (id (6) Jehi w A: A + B, to if: izomorfizm, to w B: Q(A) Q(B) (howenianty) lub $\overline{Q}(B) \xrightarrow{Q(F)} \overline{Q}(A)$ (kontrawaniantun) $i \ D(f)$: izomorfizm. (c) (defruye) $(A \xrightarrow{f} B)$, $f: izomorfism <math>\in$) J B 3 A t. 26 fog=idA i gof=idB. <u>D-d</u> (9): Enjannie W dewdrej hategorii A, Dla AEOB(A) $\forall g \in Mor(A,A) (gef = g : f \cdot g = g)$ [tzn: ida jest jæly upn elementern neutralmyn

elle (Tourego) driatanie ou Mor(A,A)].

• •

an e je jajanan jejtor e e e

TW. 12.11. Nech fe Hom (V, W), AGI/12 BEV, CCW: bary skonerone var f*:W* ->V*: sprgieme f C+ B* bay sprejone Wedy me+8* (f*) = mge(f)* (transponeurana). Nuch mge (f) = [aij] mxn m=dim(W), n=dim(V)blinging $m_{C+S+}(f^*) = [aij]_{n \times m}$ $B = \{b_1, \dots, b_n\} \subseteq V$, $C = \{c_1, \dots, c_m\} \subseteq W$ B*= { b*, ..., b* 4 = V*, C*= {c*, ..., cm 4 = W* [f*(cj*)]_{B*} = j-ta holumna macieny m (f*). $f^*(c_j^*) = \sum_{i=1}^n a_{ij}^* b_i^* \in V^* \implies f^*(c_j^*)(b_i^*) = a_{ij}^*.$ Ale: $f^*(c_j^*)(b_i) \stackrel{def}{=} (c_j^* \circ f)(b_i) = c_j^*(f(b_i)) =$ $= c_j^* \left(\sum_{t=1}^m a_{ti} c_t \right) = a_{ji} \quad (bo \ c_j^* (c_t) = \delta_{jt})$ $= c_j^* \left(\sum_{t=1}^m a_{ti} c_t \right) = a_{ji} \quad (bo \ c_j^* (c_t) = \delta_{jt})$ $= c_j^* \left(\sum_{t=1}^m a_{ti} c_t \right) = a_{ji} \quad (bo \ c_j^* (c_t) = \delta_{jt})$

```
Ag 1/12
  Cryli a*; = aji
Wm. 12.12
                             *: Hom(V, W) \longrightarrow Hom(W, V^*)
Jeóli dim V, dim W < 00, to
 jet izomerfiznem hintavym.
D-d. *: linioure (uTasnosai aprogrania)
· ker (*) = {09, bo:
 Zat, ic f E Hom (V, W) ovar f=0.
Whedy ten: mBe (f) = (mexB* (f*)) = 0, wisc
                        macer zerowa
· stand *: 1-1
*: "na", bo:
  \dim(Hom(V, W)) = \dim(Hom(W^*, V^*)) =
                            Mmxm (R
        M<sub>m×n</sub> (IR)
```

= dim V × dim W.

Alg I/12 Niech GEV*. Kerq<V · Ker $\varphi = V$, gely $\varphi = 0$ · dim Ker $\varphi = \dim V - 1$, gely $\varphi \neq 0$, bo dim V = dim Kery+dim Emp gly q t O . IR W < V

codimy W = dim V - dim W Kommiar W w V gdy dim V skonneny Oghnej: codin W = din U, gdie V=WDU wynniar podpnestnemi depeturej de WwV. (= dim V/W) pretren ilorazowa.

Izomorfizm Frecheta-Riesza

Zat, ze V: prestren euthides ours, dim $V < \infty$. Okreslamy $\varphi: V \longrightarrow V^*$ w zonem: $dla v \in V \qquad \varphi(v) \in V^*: \varphi(v)(w) = \langle w, v \rangle.$

Uwaga 12.13. φ: V=>V* izomovfizm Frecheta-Riesza. D-d: q: linioure (Cw.) < tapotrobuse CP(W) (V) - COUNTY · q:1-1, bo: Kery = £09: Zat, ie v + O. Wedy $\forall \varphi(v)(v) = \langle v, v \rangle \neq 0$ uig (φ(v) ∈ V* \ {09. i v & Ker φ. dim V = dim V * < 0, viec stad: φ: V → V*. Uwaga 12.13!. Gdy V: unitarna, dim V<0, to φ j.w.: antyizomerfizm (izomorfizm polliniowy) (Frecheta-Riesza), • $\varphi(v_1+v_2)=\varphi(v_1)+\varphi(v_2)$, • $\varphi(\lambda v)=\lambda \varphi(v)$ Be Satisfaction VAX

544046

Alg I/12 Zat. ie V: cerlelidesowa [unitarna] $\langle v_1, v_2 \rangle$ $\frac{\varphi(v_1)}{\varphi(v_2)}$ $\frac{\varphi(v_2)}{\varphi(v_2)_1}\varphi(v_1)$ Indukowany ilonyn shalarny w V*: dla w, w EV* ortogoname. [unitarne] Wtely: V + W komutuje (jest premenny) (1) Diagram ten: q=f*Yf 91 24 14 gdare: 4, V: Eantylizamentizmy F.-R. (2) f*: W* -> V* tei ortogoname (unitarne)

PD-2 (1) Prypomnienie: Nied v & V V* V - F > W (el: $\varphi(v) = (f^* \circ \psi \circ f)(v)$ Niech WEV $(f^*\circ \gamma \circ f)(v)(w) = f^*(\gamma(f(w)))(w) = \gamma(f(v))(f(w)) =$ det Y $= \langle f(\omega), f(v) \rangle = \langle \omega, v \rangle = \varphi(v)(\omega),$ (2) f: ortogonalne [unitarne]: Nech a, BEW. $\langle f^*(\alpha), f^*(\beta) \rangle_{V^*} = \langle \varphi^{-1}(f^*(\beta)), \varphi^{-1}(f^*(\alpha)), \rangle_{V^*} = \langle \varphi^{-1}(f^*(\alpha)), \varphi^{-1}(f^*(\alpha)), \rangle_{V^*} = \langle \varphi^{-1}(f^*(\alpha)), \varphi^{-1}(f^*(\alpha)), \rangle_{V^*} = \langle \varphi^{-1}(f^*(\alpha)), \varphi^{-1}(f^*(\alpha)), \varphi^{-1}(f^*(\alpha)), \rangle_{V^*} = \langle \varphi^{-1}(f^*(\alpha)), \varphi^{-1}(f^*(\alpha)), \varphi^{-1}(f^*(\alpha)), \rangle_{V^*} = \langle \varphi^{-1}(f^*(\alpha)), \varphi^{-1}(f^*(\alpha)),$ $=\varphi(\mathfrak{O})(\mathfrak{D})=$ $= f^*(\alpha) \left[\varphi^{-1}(f^*(\beta)) \right] = \alpha \left[f(\varphi^{-1}(f^*(\beta))) \right] = 0$ $\text{def } f^* \qquad \text{we positive } f^*$ $= \lambda \left[\overline{\psi'(\beta)} \right] = \langle \psi'(\beta), \psi'(\alpha) \rangle_{W} = \langle \alpha, \beta \rangle_{W^{*}}$

Alg 1/10 $f \circ \varphi^{-1} \circ f^{*} = \psi^{-1}, bo$: V = W V = W = A1 # Ty - Cisinenie. V* = V* W* Gyelije V* = V* W* #: "konutuje" f* tei Gij elija Nadal: V, W: eublidesoure [unitarne], din V, din W<0. Def. 12.15. Dla f: V -> W liniowego, V* = W* PV, Yw: Fresheta Riesza Uwaga 12.16. Nien f: V -> W, g: W -> V linéave. <u>NWSR</u>; (1) g = ft (trn. diagram (t) z g w miejsce ft Komutuje) $(2)\left(\forall N \in V, W \in W\right) \langle f(v), W \rangle = \langle N, g(W) \rangle_{V}$ Wn. ft: W-V: pelyne takie, 22 (FvoV, woll) $\langle f(v), w \rangle = \langle v, f^{\dagger}(w) \rangle_{V}$

 $\underline{\mathbb{D}}_{-d}(1) \Rightarrow (2):$ V = S W tzn: YweW: ev 1 # Lew $\varphi_V(g(w)) = f^*(\varphi_W(w)) (x)$ V* F* Dlatego dla v E V, w E W: $\langle v, g(w) \rangle_{V} = \xi + \xi + (\varphi_{V}(g(w))(v)) = f^{*}(\varphi_{W}(w))(v) =$ = $\varphi_{W}(w)(f(v)) = \langle f(v), w \rangle_{W}$ def f^* def. Q_W (2) \Rightarrow (1) Na may (1) \Rightarrow (2): f^+ spelmia waruneh (2) g teri $11 - \dots (2)$ Nech well dowdne. When $\forall v \in V \langle v, g(w) \rangle = \langle f(v), w \rangle = \langle v, f^{\dagger}(w) \rangle$ $g(w) = f^{\dagger}(w)$, Wigo $g = f^{\dagger}$. W tasnosci sponsienia hermitowskieso: '(f + a)+ n+ $(f+g)^+ = f^+ + g^+, \quad (\alpha f)^+ = \alpha f^+ \quad (\alpha \in \mathbb{R}, \mathcal{C})$ $\circ (g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger} \qquad \circ (id_{V})^{\dagger} = id_{V}$ (gdy zToienie ma sens)

 $(fv, w \in V) = -f$ $(f(v), w) = -\langle v, f(w) \rangle$ (2) fantybermitousli [antysymetrycruy] Na macie rach: Def. 12.18. Nech $A \in M_{m \times n}(K)$, K = R lub C. (1) A*: sprezenie hermitowskie macieny A Itan: transponeuranie A + sprisie nie wyrazdu. [konflikt notacyjny: crasami prez A* ornacra sis sprogrense hermitourlise A, trn. A=AT]
(ale nie tu) (2) A hermitoarska [symetryona], gdy A = A. (3) A antyhermitocske [antysymetry one], gdy A=-A. Falt 12.19. Zat, re f: V -> W linioure, dim V=n, dim W=m B & bary o.n. Wtelly: (1) $m_{\mathcal{C}\mathcal{B}}(f^+) = m_{\mathcal{B}\mathcal{C}}(f)^*$

(2) Gdy V=W, B=E:

f hermitowski: [symetryany] (=) m (f)=m (f) *

Samospresiony

AGI/12 (3)[V=W,B=C]fantyhermitowski [antysymetroyenny] (=) m (f)=-m (f)* (4) sprziente hermitowskie maweny ma viasnosci paralelne do sprogrenia hermitoushese funkcji liniowych $\frac{D-d}{Be}(f) = [aij]_{m \times n}$ $m_{CB}(f^+) = [a'_{ij}]_{n \times m}$ $a_{ij} = \langle f(b_j), c_i \rangle$ $a'_{ji} = \langle f^{\dagger}(c_i), b_j \rangle =$ $=\langle b_j, f^+(c_i) \rangle = \overline{\langle f(b_j), c_i \rangle} = \overline{a_{ij}}$. f: ortogonalne * f symetry one (06 roty nie major maciery) · chroty: antysymetryone · adbicia: symetryone

f: unitarne \$\footnote f hermitoushie, np. [i 0]
jest antyhermitoushie.

Alg 1/12 Uwaga 12,20. Zal, re V: p. enthidesoura [unitama], dim V<0 i f & End(V). Weely] 19, h & End(V) f=g+h. [Symetry cry] antyherentashi [autosymatyy] $\frac{D-d}{2} g = \frac{1}{2} (f + f^{+}), h = \frac{1}{2} (f - f^{+}) \text{ olobre.}$ jedyność: f = g' + h' =) $f^{+} = g' - h'$ symetrymy antysymetryczny $\begin{cases} g' = \frac{1}{2}(f + f^{+}) \\ h' = \frac{1}{2}(f - f^{+}) \end{cases}$ Endomorfizmy hermitowskie [samospasione]

symetryczne

17.1222 2.21 Uwage 2.21. Jeóli f E End (V) hermitowski i d: wartość własnef to $\lambda \in \mathbb{R}$. D-d. Nech $0 \neq v \in V$ welter who say f dla λ . f: hormitoushi $\lambda(v,v) = \langle \lambda v, v \rangle = \langle f(v), v \rangle = \langle v, f(v) \rangle =$

 $=\langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle, \Rightarrow \lambda = \overline{\lambda} \ i \ \lambda \in \mathbb{R}.$

Lemat 2.22. Jesti f E End(V) samospresiony, V: enklide-AlgI/12 sava, dim V<00, to: Ye(X) rozletada sis nad IR na docryn crynników liniowych. Zatem f ma velitor wtasug w V. D-d. Wystavery pohozoć, je kojde miejsce zerowe of w C jest neavourite, (n=dim V) Ned $B \subseteq V$ as $A = m(f) \in M_{n \times n}(R)$ baza o.n. 1 - n + 1 p = 1 $A = A^* (faht 12.19(2)).$ $f \sim F_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $\widehat{F}_A:\mathbb{C}^n\longrightarrow\mathbb{C}^n$ TW. 2.23. [Veullidesceva [unitarna], dim V<00]. Jesti f & End (V) hermitoushi [symetry any], to BEV zToiona z wektorder wTas mych f. 10aza o.n. (usc f: diagonalize walne) D-d. Indukya urglædem dim V.

```
Alg I/12
Lemat 12.22, Uwage 12.21 =)
 J vo € V weleter wasing f
O mormowany
                                                      Nech W=Lin(v)
· V = Lin(v) D W
· W: f-niermienniera, bo dla WEW:
 \langle f(\omega), v \rangle = \langle \omega, f(\omega) \rangle = \langle \omega, \lambda v \rangle = \overline{\lambda} \langle \omega, v \rangle = 0,
     mscf(w)&W.
Z zatosenia indukcyjnego istmieje baza o.n. B' \subseteq W

z welstavou własych f, B = B' \cup Evjs: dobra.
 Uwaga 2.24. [f & End(V) hermitowski [symetrycrny)
 New Spec(f) = {\lambda: \lambda wartori wharmof (\subseteq R!)

Spectrum f

dle \lambda, V^{\lambda} = \{v \in V : f(v) = \lambda v \}.
 Wheely V = \bigoplus V^{\lambda} oraz dla \lambda \neq M \in Spec(f)
\lambda \in Spec(f)
V^{\lambda} \perp V^{M} (*)
 D-d Wystarcy pokazai (*), Nech v, w.
  \langle f(v), w \rangle = \langle v, f(w) \rangle \Rightarrow \lambda \langle v, w \rangle = \mu \langle v, w \rangle

\lambda v Club ir \mu w \forall \lambda \neq \mu

Wh. 2.25. John A \in M_{n \times n}(K) hermuto wake, \langle v, w \rangle = 0 iv \downarrow V^n
   to JB E Mnxn (K) BAB-1: diagonalma recryonsta
ortogonalma
Cunitarna) BAB*.
```