

MLLNVLRICI IVCLVNDGAG KHSEGRERTK TYSLNSRGYF 40
RKERGARRSK ILLVNTKG**L**D EPHIGHGDFG LVAELFDSTR 80
THTNRKEPDM NKVKLFSTVA HGNKSARRKA YNGSRRNIFS 120
RRSFDKRNTE VTEKPGAKMF WNNFLVKMNG APQNTSHGSK 160
AQEIMKEACK TLPFTQNIVH ENCDRMVIQN NLCFGKCISL 200
HVPNQQDRRN TCSHCLPSKF TLNHLTLNCT GSKNVVKVVM 240
MVEECTCEAH KSNFHQTAQF NMDTSTTLHH 270

Figure 1. Deduced amino acid sequence of Xenopus cerberus protein. SEQ ID NO:1.

Figure 2. Nucleotide sequence of the full-length cerberus DNA derived from the *Xenopus* organizer. The sense strand is on top (in the 5' to 3' direction) and the antisense strand on the bottom line (on the opposite direction). SEQ ID NO:2.

GAATTCCCG AGAACACTG CAGGGTCTAG ATATCATACA ATGTTACTAA	60
CTTAAGGGTC GTTCAGCGAG TCTTGTGAC GTCCCAGATC TATAGTATGT TACAATGATT	
ATGTA CTAGACATAA TAGCAGACGG AACACTTACT ACCTCGTCCT TTTGTGAGTC	120
AAGGACGAGA AAGGACAAAA ACATATTCAC TAAACAGCAG AGGTTACTTC AGAAAAGAAA	180
TTCCTGCTCT TTCCGTGTTT TGTATAAGTG AATTGTGTC TCCAATGAAG TCTTTCTTT	
GAGGAGCACG TAGGAGCAAG ATTCTGCTGG TGAATACTAA AGGTCTTGAT GAACCCACAA	240
CTCCTCGTGC ATCCTCGTTC TAAGACGACC ACTTATGATT TCCAGAACTA CTTGGGGTGT	
TTGGGCATGG TGATTTTCGC TTAGTAGCTG AACTATTTGA TTCCACCCAGA ACACATACAA	300
AACCCGTACC ACTAAAAGCG AATCATCGAC TTGATAAAACT AAGGTGGTCT TGTGTATGTT	
ACAGAAAAGA GCCAGACATG AACAAAGTCA AGCTTTCTC AACAGTTGCC CATGGAAACAA	360
TGTCTTTCT CGGTCTGTAC TTGTTTCAGT TCGAAAAGAG TTGTCAACGG GTACCTTTGT	
AAAGTGAAG AAGAAAAGCT TACAATGGTT CTAGAAGGAA TATTTTCCT CGCCGTTCTT	420
TTTCACGTTT TCCTTTTCGA ATGTTACCAA GATCTCCTT ATAAAAGGA GCGGCAAGAA	
TTGATAAAAAG AAATACAGAG GTTACTGAAA AGCCTGGTGC CAAGATGTTG TGGAAACAATT	480
AACTATTTTC TTTATGTCTC CAATGACTTT TCGGACCACG GTTCTACAAG ACCTTGTAA	
TTTGGTTAA AATGAATGGA GCCCCACAGA ATACAAGCCA TGGCAGTAA GCACAGGAAA	540
AAAACCAATT TTACTTACCT CGGGGTGTT TATGTCGGT ACCGTCATT CGTGTCTTT	
TAATGAAAAGA AGCTTGCAAA ACCTTGTTT TCACTCAGAA TATTGTACAT GAAAAGTGTG	600
ATTACTTCT TCGAACGTTT TGGAACAAA AGTGA GTCT TTTGACAC	
ACAGGATGGT GATACAGAAC AATCTGCTT TTGGTAAATG CATCTCTCTC CATGTTCCAA	660
TGTCTTACCA CTATGTCTTG TTAGACACGA AACCAATTAC GTAGAGAGAG GTACAAGGTT	
ATCAGCAAGA TCGACGAAAT ACTTGTCCCC ATTGCTTGCC GTCCAAATT ACCCTGAACC	720
TAGTCGTTCT AGCTGTTTA TGAACAAGGG TAACGAACGG CAGGTTAAA TGGGACTTGG	
ACCTGACGCT GAATTGTACT GGATCTAAGA ATGTA GTGTTGTCATG ATGGTAGAGG	780
TGGACTGCGA CTTAACATGA CCTAGATTCT TACATCATT CCAACAGTAC TACCATCTCC	
AATGCACGTG TGAAGCTCAT AAGAGCAACT TCCACCAAAC TGCACAGTTT AACATGGATA	840
TTACGTGCAC ACTTCGAGTA TTCTCGTTGA AGGTGGTTG ACGTGTCAAA TTGTACCTAT	
CATCTACTAC CCTGCACCAT TAAAGGACTG CCATACAGTA TGGAAATGCC CTTTGTGTTGG	900
GTAGATGATG GGACGTGGTA ATTTCTGAC GGTATGTCAT ACCTTACGG GAAAACAACC	
AATATTGTT ACATACTATG CATCTAAAGC ATTATGTTGC CTTCTATTTC ATATAACCAC	960
TTATAAACAA TGTATGATAC GTAGATTCG TAATACAACG GAAGATAAAG TATATTGGTG	
ATGGAATAAG GATTGTATGA ATTATAATTAA ACAAAATGGCA TTTTGTGTA CATGCAAGAT	1020
TACCTTATTC CTAACATACT TAATATTAAT TGTGTACCGT AAAACACATT GTACGTTCTA	

CTCTGTTCCA TCAGTTGCAA GATAAAAGGC AATATTTGTT TGACTTTTT TCTACAAAAT 1080
GAGACAAGGT AGTCAACGTT CTATTTCCG TTATAAACAA ACTGAAAAAA AGATGTTTA

GAATACCCAA ATATATGATA AGATAATGGG GTCAAAACTG TTAAGGGTA ATGTAATAAT 1140
CTTATGGGTT TATATACTAT TCTATTACCC CAGTTTGAC AATTCCCCAT TACATTATTA

AGGGACTAAG TTTGCCAGG AGCAGTGACC CATAACAACC AATCAGCAGG TATGATTTAC 1200
TCCCTGATTC AAACGGGTCC TCGTCACTGG GTATTGTTGG TTAGTCGTCC ATACTAAATG

TGGTCACCTG TTTAAAAGCA AACATTTAT TGTTGCTAT GGGTTACTGC TTCTGGCAA 1260
ACCAGTGGAC AAATTTTCGT TTGTAGAATA ACCAACGATA CCCAATGACG AAGACCCGTT

AATGTGTGCC TCATAGGGGG GTTAGTGTGT TGTGTACTGA ATAAATTGTA TTTATTCAT 1320
TTACACACGG AGTATCCCC CAATCACACA ACACATGACT TATTTAACAT AAATAAAGTA

TGTTACAAA AAAAAAAA
ACAATGTTT TTTTTTTT

Fig. 2. (Continuation page 2, SEQ ID NO:2).

MSRTRKVDSL LLLAIPGLAL LLLPNAYCAS CEPVRIPMCK SMPWNMTKMP NHLHHSTQAN 60
AILAIEQFEG LLTTECSQDL LFFLCAMYAP ICTIDFQHEP IKPCKSVcer ARAGCEPILI 120
KYRHTWPESL ACEELPVYDR GVCISPEAIV TVEQGTDsMP DFSMDSNNGN CGSGREHCKC 180
KPMKATQKTY LKNNNYNYVIR AKVKEVKVKC HDATAIVEVK EILKSSLVNI PKDTVTLYTN 240
SGCLCPQLVA NEEYIIMGYE DKERTRLLLV EGSLAEKWRD RLAKKVKRWD QKLRRPRKSK 300
DPVAPIPNKN SNSRQARS

Figure 3. Dduced amino acid sequence of Xenopus frazzled protein. SEQ ID NO:3.

Figure 4. Nucleotide sequence of the full-length frazzled cDNA derived from the Xenopus organizer. The sense strand of the DNA on top (5' to 3' direction) and the antisense strand on the bottom line (opposite direction). SEQ ID NO:4.

GAATTCCCTT TCACACAGGA CTCCCTGGCAG AGGTGAATGG TTAGCCCTAT GGATTTGGTT CTTAAGGGAA AGTGTGTCTT GAGGACCGTC TCCACTTACC AATCGGGATA CCTAAACCAA	60
TGTTGATTT GACACATGAT TGATTGCTTT CAGATAGGAT TGAAGGACTT GGATTTTTAT ACAACAAAAA CTGTGTACTA ACTAACGAAA GTCTATCCTA ACTTCCTGAA CCTAAAAATA	120
CTAATTCTGC ACTTTTAAAT TATCTGAGTA ATTGTTCATT TTGTATTGGA TGGGACTAAA GATTAAGACG TGAAAATTAA ATAGACTCAT TAACAAGTAA AACATAACCT ACCCTGATTT	180
GATAAACTTA ACTCCTTGCT TTTGACTTGC CCATAAACTA TAAGGTGGGG TGAGTTGTAG CTATTGAAT TGAGGAACGA AAACTGAACG GGTATTTGAT ATTCCACCCC ACTCAACATC	240
TTGCTTTAC ATGTGCCAG ATTTCCCTG TATTCCCTGT ATTCCCTCTA AAGTAAGCCT AACGAAAATG TACACGGGTC TAAAAGGGAC ATAAGGGACA TAAGGGAGAT TTCATTGGA	300
ACACATACAG GTTGGGCAGA ATAACAATGT CTCGAACAAG GAAAGTGGAC TCATTACTGC TGTGTATGTC CAACCCGTCT TATTGTTACA GAGCTTGTTC CTTTCACCTG AGTAATGACG	360
TACTGGCCAT ACCTGGACTG GCGCTTCTCT TATTACCCAA TGCTTACTGT GCTTCGTGTG ATGACCGGTA TGGACCTGAC CGCGAAGAGA ATAATGGGTT ACGAATGACA CGAACGACAC	420
AGCCTGTGCG GATCCCCATG TGCAAATCTA TGCCATGGAA CATGACCAAG ATGCCCAACC TCGGACACGC CTAGGGGTAC ACGTTTAGAT ACGGTACCTT GTACTGGTTC TACGGGTTGG	480
ATCTCCACCA CAGCACTCAA GCCAATGCCA TCCTGGCAAT TGAACAGTTT GAAGGTTTGC TAGAGGTGGT GTCGTGAGTT CGGTTACGGT AGGACCGTTA ACTTGTCAAA CTTCCAAACG	540
TGACCACTGA ATGTAGCCAG GACCTTTGT TCTTCTGTG TGCCATGTAT GCCCCCCATTT ACTGGTGACT TACATCGGTC CTGGAAAACA AGAAAGACAC ACGGTACATA CGGGGGTAAA	600
GTACCATCGA TTTCCAGCAT GAACCAATTAA AGCCTTGCAA GTCCGTGTGC GAAAGGGCCA CATGGTAGCT AAAGGTGCTA CTTGTTAAT TCGGAACGTT CAGGCACACG CTTTCCCCTG	660
GGGCCGGCTG TGAGCCCATT CTCATAAAAGT ACCGGCACAC TTGGCCAGAG AGCTGGCAT CCCGGCCGAC ACTCGGTAA GAGTATTCA TGGCCGTGTG AACCGGTCTC TCGGACCGTA	720
GTGAAGAGCT GCCCCATAT GACAGAGGAG TCTGCATCTC CCCAGAGGCT ATCGTCACAG CACTTCTCGA CGGGCATATA CTGTCCTCTC AGACGTAGAG GGGTCTCCGA TAGCAGTGTG	780
TGGAAACAAGG AACAGATTCA ATGCCAGACT TCTCCATGGA TTCAAAACAAT GGAAATTGCG ACCTTGTTC TTGTCTAAGT TACGGTCTGA AGAGGTACCT AAGTTGTTA CCTTTAACGC	840
GAAGCGGCAG GGAGCACTGT AAATGCAAGC CCATGAAGGC AACCCAAAAG ACGTATCTCA CTTCGCCGTC CCTCGTGTACA TTTACGTTCG GGTACTTCCG TTGGGTTTTC TGCAATAGAGT	900
AGAATAATTAA CAATTATGTA ATCAGAGCAA AAGTGAAGAGA GGTGAAAGTG AAATGCCACG TCTTATTAAT GTTAATACAT TAGTCTCGTT TTCACTTCTC CCACCTTCAC TTTACGGTGC	960
ACGCCAACAGC AATTGTGGAA GTAAAGGAGA TTCTCAAGTC TTCCCTAGTG AACATTCCCTA TGGCGTTGTGCG TTAACACCTT CATTCCCTCT AAGAGTTCAAGGGATCAC TTGTAAGGAT	1020

AAGACACAGT GACACTGTAC ACCAACTCAG GCTGCTTGTG CCCCCAGCTT GTGCCAATG TTCTGTGTCA CTGTGACATG TGGTTGAGTC CGACGAACAC GGGGGTCAAA CAACGGTTAC	1080
AGGAATAACAT AATTATGGGC TATGAAGACA AAGAGCGTAC CAGGCTTCTA CTAGTGGAAAG TCCTATGTA TTAATACCCG ATACTTCTGT TTCTCGCATG GTCCGAAGAT GATCACCTTC	1140
GATCCTGGC CGAAAAATGG AGAGATCGTC TTGCTAAGAA AGTCAAGCGC TGGGATCAAA CTAGGAACCG GCTTTTACCG TCTCTAGCAG AACGATTCTT TCAGTTCGCG ACCCTAGTTT	1200
AGCTCGACG TCCCAGGAAA AGCAAAGACC CCGTGGCTCC AATTCCCAAC AAAAACAGCA TCGAAGCTGC AGGGTCCTT TCGTTCTGG GGCACCGAGG TTAAGGGTTG TTTTGTCGT	1260
ATTCCAGACA AGCGCGTAGT TAGACTAACG GAAAGGTGTA TGGAAACTCT ATGGACTTTG TAAGGTCTGT TCGCGCATCA ATCTGATTGC CTTTCCACAT ACCTTTGAGA TACCTGAAAC	1320
AAACTAAGAT TTGCATTGTT GGAAGAGCAA AAAAGAAATT GCACTACAGC ACGTTATATT TTTGATTCTA AACGTAACAA CCTTCTCGTT TTTCTTTAA CGTGATGTCG TGCAATATAA	1380
CTATTGTTA CTACAAGAAG CTGGTTAGT TGATTGAGT TCTCCTTCC TTCTTTTT GATAACAAAT GATGTTCTTC GACCAAATCA ACTAACATCA AGAGGAAAGG AAGAAAAAAA	1440
TTATAACTAT ATTTGCACGT GTTCCCAGGC AATGTTTTA TTCAACTTCC AGTGACAGAG AATATTGATA TAAACGTGCA CAAGGGTCCG TTAACAAAAT AAGTTGAAGG TCACTGTCTC	1500
CAGTGACTGA ATGTCTCAGC CAAAGAAGC TCAATTCAATT TCTGATCAAC TAATGGTGAC GTCACTGACT TACAGAGTCG GATTCTTCG AGTTAAGTAA AGACTAGTTG ATTACCACTG	1560
AAGTGTGTTGA TACTTGGGGA AAGTGAACTA ATTGCAATGG TAAATCAGAG AAAAGTTGAC TTCACAAACT ATGAACCCCT TTCACTTGAT TAACTTACCT ATTTAGTCTC TTTCAACTG	1620
CAATGTTGCT TTTCTGTAG ATGAACAAGT GAGAGATCAC ATTTAAATGA TGATCACTT GTTACAACGA AAAGGACATC TACTTGTCA CTCTCTAGTG TAAATTTACT ACTAGTGAAA	1680
CCATTTAATA CTTTCAGCAG TTTTAGTTAG ATGACATGTA GGATGCACCT AAATCTAAAT GGTAAATTAT GAAAGTCGTC AAAATCAATC TACTGTACAT CCTACGTGGA TTTAGATTTA	1740
ATTTATCAT AAATGAAGAG CTGGTTAGA CTGTATGGTC ACTGTTGGGA AGGTAAATGC TAAAATAGTA TTACTTCTC GACCAAATCT GACATACCG TGACAACCCCT TCCATTTACG	1800
CTACTTTGTC AATTCTGTTT TAAAATTCG CAAATTAAT ATTAAAGTCCT AAATAAAAAA GATGAAACAG TTAAGACAAA ATTTTAACG GATTTATTAA TAATTCAAGGA TTTATTTTTT	1860
 AAAAAAAAAA AAAA TTTTTTTTT TTTT	

Fig. 4. (Continuation page 2, SEQ ID NO:4).

MLLLFR ^A IPM LLLG ^B LMV ^C IQT DCEIAQYYID EEEPPGT ^D VIA VLSQHSIFNT TDIPATNFRL	60
MKQFNNSLIG VRESDGQLSI MERIDREQIC RQSLHCNLAL DVVSFSKGHF KLLNVKVEVR	120
DINDHSPHFP SEIMHVEVSE SSSVGTRIPL EIAIDEDVGS NSIQNFQISN NSHFSIDVLT	180
RADGVKYADL VLMRELDREI QPTYIMELLA MDGGVPSLSG TAVVNIRVLD FNDNSPVFER	240
STIAVDLVED APIGYLLLEL HATDDDEGVN GEIVYGFSTL ASQEVRLFK INSRTGSVTL	300
EGQVDFETKQ TYEF ^E EVQAQD LGPNPLTATC KVTVHILDVN DNTPAITITP LTTVNAGVAY	360
IPETATKENF IALISTTDRA SG ^F SNGQVRCT LY ^G GHEHFKLQ QAYEDSYMIV TTSTLDRENI	420
AAYSLTVVAE DLGFP ^H SLKTK KYYTVKVSDE NDNAPVFSKP QYEASILENN APGSYITT ^I VI	480
ARDSDSDQNG KVNYRLVDAK VMGQSLTTFV SLDADSGVLR AVRSLDYEKL KQLDFEIEAA	540
DNGIPQLSTR VQLNLRIVDQ NDNC ^J PVITNP LLNNNGS ^K GEVL LPISAPQNYL VFQLKAEDSD	600
EGHNSQLFY ^L T ILRDPSRLFA INKESGEVFL KKQLNSDHSE DLSTVVAVYD LGRPSLSTNA	660
TVKFILTDSF PSNVEVVILQ PSAEEQHQID MSIIFI ^M AVLA GGCALLLLAI FFVACTCKKK	720
AGEFKQVPEQ HGTCNEERLL STPSPQS ^N VSS SLSQSESQL SINTESENCS VSSNQE ^O HQO	780
TGIKHSISVP SYHTSGWHLD NCAMSISGHS HMGHISTKVQ WAKEIVTSMT VTLILVENQK	840
RRALSSQCRH KPVLNTQM ^P NQ QGSDMPITIS ATESTRVQKM GTAHCNMKRA IDCLTL	

Figure 5. Deduced amino acid sequence of the Xenopus PAPC (paraxial protocadherin) protein. It encodes a member of the cadherin family of transmembrane proteins that has dorsalizing activity when constructs are injected into Xenopus embryos. SEQ ID NO:5.

Figure 6. Nucleotide sequence of the full-length PAPC cDNA derived from the Xenopus organizer. The sense strand of the DNA is shown in the top line (in the 5' to 3' direction), and the bottom line shows the antisense strand (opposite orientation). SEQ ID NO:6.

GAATTCCCAG AGATGAACTC CTTGAGATTG TTTTAAATGA CTGCAGGTCT GGAAGGATTG CTTAAGGGTC TCTACTTGAG GAACTCTAAC AAAATTTACT GACGTCCAGA CCTTCCTAAG	60
ACATTGCCAC ACTGTTTCTA GGCAATGAAAA AACTGCAAGT TTCAACTTG TTTTGGTGC TGTAACGGTG TGACAAAGAT CCGTACTTT TTGACGTTCA AAGTTGAAAC AAAACCCACG	120
AACTTGATT CTTCAAGATG CTGCTTCTCT TCAGAGCCAT TCCAATGCTG CTGTTGGAC TTGAAACTAA GAAGTTCTAC GACGAAGAGA AGTCTCGGTA AGGTTACGAC GACAACCTG	180
TGATGGTTT ACAAAACAGAC TGTGAAATTG CCCAGTACTA CATAGATGAA GAAGAACCCC ACTACCAAAA TGTTTGTCTG ACACTTTAACG GGGTCATGAT GTATCTACTT CTTCTGGGG	240
CTGGCACTGT AATTGCAGTG TTGTCAACAC ACTCCATATT TAACACTACA GATATACTG GACCGTGACA TTAACGTCAC AACAGTGTG TGAGGTATAA ATTGTGATGT CTATATGGAC	300
CAACCAATTG CCGTCTAATG AAGCAATTG ATAATTCCCT TATCGGAGTC CGTGAGAGTG GTTGGTTAAA GGCAGATTAC TTCGTTAAAT TATAAGGGAA ATAGCCTCAG GCACCTCAC	360
ATGGGCAGCT GAGCATCATG GAGAGGATTG ACCGGGAGCA AATCTGCAGG CAGTCCTTC TACCCGTCGA CTCGTAGTAC CTCTCCTAAC TGGCCCTCGT TTAGACGTC GTCAGGGAAAG	420
ACTGCCAACCT GGCTTTGGAT GTGGTCAGCT TTTCAAAGG ACACCTCAAG CTTCTGAACG TGACGTTGGA CCGAAACCTA CACCAGTCGA AAAGGTTCC TGTGAAGTTC GAAGACTTGC	480
TGAAAAGTGGG GGTGAGAGAC ATTAATGACC ATAGCCCTCA CTTTCCCAGT GAAATAATGC ACTTCACCT CCACTCTCTG TAATTACTGG TATCAGGAGT GAAAGGGTCA CTTTATTACG	540
ATGTGGAGGT GTCTGAAAGT TCCTCTGTGG GCACCAAGGAT TCCTTTAGAA ATTGCAATAG TACACCTCCA CAGACTTTCA AGGAGACACC CGTGGTCCTA AGGAAATCTT TAACGTTATC	600
ATGAAGATGT TGGGTCCAAC TCCATCCAGA ACTTTCAAGAT CTCAAATAAT AGCCACTTCA TACTTCTACA ACCCAGGTG AGGTAGGTCT TGAAAGTCTA GAGTTTATTA TCGGTGAAGT	660
GCATTGATGT GCTAACCAAGA GCAGATGGGG TGAAATATGC AGATTTAGTC TTAATGAGAG CGTAACTACA CGATTGGTCT CGTCTACCCCC ACTTTATACG TCTAAATCAG AATTACTCTC	720
AACTGGACAG GGAAATCCAG CCAACATACA TAATGGAGCT ACTAGCAATG GATGGGGGTG TTGACCTGTC CCTTTAGGTC GGTTGTATGT ATTACCTCGA TGATCGTTAC CTACCCCCAC	780
TACCATCACT ATCTGGTACT GCAGTGGTTA ACATCCGAGT CCTGGACTTT AATGATAACA ATGGTAGTGA TAGACCATGA CGTCACCAAT TGTAGGCTCA GGACCTGAAA TTACTATTGT	840
GCCCAGTGTG TGAGAGAAGC ACCATTGCTG TGGACCTAGT AGAGGATGCT CCTCTGGGAT CGGGTCACAA ACTCTCTTCG TGGTAACGAC ACCTGGATCA TCTCCTACGA GGAGACCCCTA	900
ACCTTTGTT GGAGTTACAT GCTACTGACG ATGATGAAGG AGTGAATGGA GAAATTGTTT TGGAAAACAA CCTCAATGTA CGATGACTGC TACTACTTCC TCACTTACCT CTTAACAAA	960
ATGGATTCAAG CACTTTGGCA TCTCAAGAGG TACGTCAAGCT ATTTAAAATT AACTCCAGAA TACCTAACGTC GTGAAACCGT AGAGTTCTCC ATGCAGTCGA TAAATTTAA TTGAGGTCTT	1020

CTGGCAGTGT TACTCTTGAA GGCCAAGTTG ATTTGAGAC CAAGCAGACT TACGAATTTG GACCGTCACA ATGAGAACCTT CCGGTTCAAC TAAAACCTTG GTTCGTCGAA ATGCTTAAAC	1080
AGGTACAAGC CCAAGATTG GGCCCCAACCC CACTGACTGC TACTTGTAAA GTAAGTGTTC TCCATGTTCG GGTTCTAAAC CGGGGGTTGG GTGACTGACG ATGAACATT CATTGACAAG	1140
ATATACTTGA TGTAATGAT AATACCCCCAG CCATCACTAT TACCCCCTCTG ACTACTGTAA TATATGAAC TACATTTACTA TTATGGGTC GGTAGTGATA ATGGGGAGAC TGATGACATT	1200
ATGCAGGAGT TGCCTATATT CCAGAAACAG CCACAAAGGA GAACTTTATA GCTCTGATCA TACGTCCCTCA ACGGATATAAA GGTCTTGTC GGTGTTCCCT CTTGAAATAT CGAGACTAGT	1260
GCACACTGAA CAGAGCCTCT GGATCTAATG GACAAGTTCG CTGTAACCTT TATGGACATG CGTGATGACT GTCTCGGAGA CCTAGATTAC CTGTTCAAGC GACATGAGAA ATACCTGTAC	1320
AGCACTTAA ACTACAGCAA GCTTATGAGG ACAGTTACAT GATAGTTACC ACCTCTACTT TCGTGAAATT TGATGTCGTT CGAATACTCC TGTCAATGTA CTATCAATGG TGGAGATGAA	1380
TAGACAGGGA AAACATAGCA GCGTACTCTT TGACAGTAGT TGCAGAAGAC CTTGGCTTCC ATCTGTCCTT TTTGTATCGT CGCATGAGAA ACTGTCATCA ACGTCTTCTG GAACCGAAGG	1440
CCTCATTGAA GACCAAAAAG TACTACACAG TCAAGGTTAG TGATGAGAA GACAATGCAC GGAGTAACCTT CTGGTTTTTC ATGATGTCG AGTTCCAATC ACTACTCTTA CTGTTACGTG	1500
CTGTATTTTC TAAACCCCCAG TATGAAGCTT CTATTCTGGA AAATAATGCT CCAGGCTCTT GACATAAAAG ATTTGGGTC ATACTTCGAA GATAAGACCT TTTATTACGA GGTCCGAGAA	1560
ATATAACTAC AGTGATAGGCC AGAGACTCTG ATAGTGATCA AAATGGCAA GTAAATTACA TATATTGATG TCACTATCGG TCTCTGAGAC TATCACTAGT TTTACCGTTT CATTAAATGT	1620
GACTTGTGGA TGCAAAAGTG ATGGGCCAGT CACTAACAAAC ATTTGTTCT CTTGATGCGG CTGAACACCT ACGTTTCAC TACCCGGTCA GTGATTGTTG TAAACAAAGA GAACTACGCC	1680
ACTCTGGAGT ATTGAGAGCT GTTAGGTCTT TAGACTATGAA AAAACTTAA CAACTGGATT TGAGACCTCA TAACTCTCGA CAATCCAGAA ATCTGATACT TTTTGAATT GTGACCTAA	1740
TTGAAATTGA AGCTGCAGAC AATGGGATCC CTCAACTCTC CACTCGCGTT CAACTAAATC AACTTTAACT TCGACGTCTG TTACCCCTAGG GAGTTGAGAG GTGAGCGCAA GTTGATTTAG	1800
TCAGAAATGT TGATCAAAAT GATAATTGCC CTGTGATAAC TAATCCTCTT CTTAATAATG AGTCTTATCA ACTAGTTTTA CTATTAACGG GACACTATTG ATTAGGAGAA GAATTATTAC	1860
GCTCGGGTGA AGTTCTGCTT CCCATCAGCG CTCCCTAAAA CTATTTAGTT TTCCAGCTCA CGAGCCCCACT TCAAGACGAA GGGTAGTCGC GAGGAGTTT GATAAATCAA AAGGTCGAGT	1920
AAGCCGAGGA TTCAGATGAA GGGCACAACT CCCAGCTGTT CTATACCATCA CTGAGAGATC TTCGGCTCCT AAGTCTACTT CCCGTGTTGA GGGTCGACAA GATATGGTAT GACTCTCTAG	1980
CAAGCGAGATT GTTTGCCATT AACAAAGAAA GTGGTGAAAGT GTTCCTGAAA AAACAATTAA GTTCGTCTAA CAAACGGTAA TTGTTCTTT CACCACTTCA CAAGGACTTT TTTGTTAATT	2040
ACTCTGACCA TTCAGAGGAC TTGAGCATAG TAGTTGCACT GTATGACTTG GGAAGACCTT TGAGACTGGT AAGTCTCCTG AACTCGTATC ATCAACGTCA CATACTGAAC CCTTCTGGAA	2100
CATTATCCAC CAATGCTACA GTTAAATTCA TCCTCACCGA CTCTTTCCCT TCTAACGTTG GTAATAGGTG GTTACGATGT CAATTAAAGT AGGAGTGGCT GAGAAAAGGA AGATTGCAAC	2160

Fig. 6. (Continuation page 2, SEQ ID NO:6).

AAGTCGTTAT TTTGCAACCA TCTGCAGAAG AGCAGCACCA GATCGATATG TCCATTATAT TTCAGCAATA AAACGTTGGT AGACGTCTC TCGTCGTGGT CTAGCTATAC AGGTAATATA	2220
TCATTCGAGT GCTGGCTGGT GGTTGTGCTT TGCTACTTTT GGCCATCTTT TTTGTGGCCT AGTAACGTCA CGACCGACCA CCAACACGAA ACGATGAAAA CCGGTAGAAA AACACCGGA	2280
GTACTTGTAA AAAGAAAGCT GGTGAATTAA AGCAGGTACC TGAACAACAC GGAACATGCA CATGAACATT TTTCTTCGA CCACTTAAAT TCGTCCATGG ACTTGTTGTG CCTTGTACGT	2340
ATGAAGAACG CCTGTTAACG ACCCCATCTC CCCAGTCGGT CTCTTCTCT TTGTCCTCAGT TACTTCTTGC GGACAATTGAG TGGGGTAGAG GGGTCAGCCA GAGAAGAAGA AACAGAGTCA	2400
CTGAGTCATG CCAACTCTCC ATCAAACTTG AATCTGAGAA TTGCAGCGTG TCCTCTAAC GACTCAGTAC GGTTGAGAGG TAGTTATGAC TTAGACTCTT AACGTCGCAC AGGAGATTGG	2460
AAGAGCAGCA TCAGCAAACA GGCATAAAAGC ACTCCATCTC TGTACCATCT TATCACACAT TTCTCGTCGT AGTCGTTGT CCGTATTTCG TGAGGTAGAG ACATGGTAGA ATAGTGTGTA	2520
CTGGTTGGCA CCTGGACAAT TGTGCAATGA GCATAAGTGG ACATTCTCAC ATGGGGCACA GACCAACCGT GGACCTGTTA ACACGTTACT CGTATTCAAC TGTAAGAGTG TACCCGTGT	2580
TTAGTACAAA GGTACAGTGG GCAAAGGGAGA TAGTGACTTC AATGACAGTG ACTCTGATAC AATCATGTTT CCATGTCACC CGTTCCCTCT ATCACTGAAG TTACTGTCAC TGAGACTATG	2640
TAGTGGAGAA TCAGAAAAGA AGAGCATTGA GCAGCCAATG CAGGCACAAG CCAGTGCTCA ATCACCTCTT AGTCTTTCT TCTCGTAAC CGTCGGTTAC GTCCGTGTTG GGTCAACGAGT	2700
ATACACAGAT GAATCAGCAG GGTTCCGACA TGCCGATAAC TATTCAGCC ACCGAATCAA TATGTGTCTA CTTAGTCGTC CCAAGGCTGT ACGGCTATTG ATAAAGTCGG TGGCTTAGTT	2760
CAAGGGTCCA GAAAATGGGA ACTGCACATT GCAATATGAA AAGGGCTATA GACTGTCTTA GTTCCCAGGT CTTTACCCCT TGACGTGAA CGTTATACTT TTCCGATAT CTGACAGAAT	2820
CTCTGTAGCT CCTGTATATT ACAATAACCA CCATGCAAGA ATGCCTAACCC TGACACATACC GAGACATCGA GGACATATAA TGTTATGGAT GGTACGTTCT TACGGATTGG ACGTGTATGG	2880
GAACCATAACC CTTAGAGACC CTTATTACCA TATCAATAAT CCTGTTGCTA ATCGGATGCA CTTGGTATGG GAATCTCTGG GAATAATGGT ATAGTTATTA GGACAACGAT TAGCTACGT	2940
GGCGGAATAT GAAAGAGATT TAGTCAACAG AAGTGCAACG TTATCTCCGC AGAGATCGTC CCGCCTTATA CTTTCTCTAA ATCAGTTGTC TTCACGTTGC AATAGAGGGC TCTCTAGCAG	3000
TAGCAGATAAC CAAGAATTCA ATTACAGTCC GCAGATATCA AGACAGCTTC ATCCTTCAGA ATCGTCTATG GTTCTTAAGT TAATGTCAGG CGTCTATAGT TCTGTCGAAG TAGGAAGTCT	3060
AATTGCTACA ACCTTTAAT CATTAGGCAT GCAAGTGAGA ATGCACAAAG GCAAGTGCTT TTAACGATGT TGGAAAATTA GTAATCGTA CGTTCACTCT TACGTGTTTC CGTTCACGAA	3120
TAGCATGAAA GCTAAATATA TGGAGTCTCC CCTTTCCCTC TGATGGATGG GGGGAGACAC ATCGTACTTT CGATTTATAT ACCTCAGAGG GGAAAGGGAG ACTACCTACC CCCCTCTGTG	3180
AGGACAGTGC ATAAATATAC AGCTGTTTC TATTTGCATT TCACTGGGA ATTTTTGTT TCCTGTCACG TATTTATATG TCGACGAAAG ATAAACGTAA AGTGAACCT TAAAAAACAA	3240
TTTTTACAT ATTTATTTT CCTGAATTGA ATGTGACATT GTCTGTCAC CTAACTAGCA AAAAATGTA TAAATAAAA GGACTTAAC TACACTGTAA CAGGACAGTG GATTGATCGT	3300

Fig. 6. (Continuation page 3, SEQ ID NO:6).

ATTAATCCA CAGACCTACA GTCAAATATT TGAGGGCCCC TGAAACAGCA CATCAGTCAG TAATTTAGGT GTCTGGATGT CAGTTATAA ACTCCCGGGG ACTTTGTCGT GTAGTCAGTC	3360
GACCTAAAGT GGCCTTTTA CTTTAGCAG CTCTGGTC TGCCCTCTGT GTTAATCAGC CTGGATTCA CGGGAAAAT GAAAATCGTC GAGGACCCAG ACGGGAGACA CAATTAGTCG	3420
CCCTGGTCAA GTCTGAGTA GGATCATGGC GTTTTATAT GCATCTCAC TACTTTGGAC GGGACCAAGT CAGGACTCAT CCTAGTACCG CAAAAATATA CGTAGAGTGG ATGAAACCTG	3480
GTGATTTACA CATAATAGGA AACGCTGGT TTCAGTGAAG TCTGTGTTGT ATATATTCTG CACTAAATGT GTATTATCCT TTGCGAACCA AAGTCACTTC AGACACAACA TATATAAGAC	3540
TTATATACAC GCATTTGTG TTTGTGTATA TATTCAAGT CCATTCAGAT ATGTGTATAT AATATATGTG CGTAAACAC AAACACATAT ATAAAGTTCA GGTAAGTCTA TACACATATA	3600
AGTGCAGACC TTGTAATTAA AATATTCTGA TACTTTTCC TCAATAAATA TTTAAAT TCACGTCTGG AACATTTAAT TTATAAGACT ATGAAAAGG AGTTATTAT AAATTTA	

Fig. 6. (Continuation page 4, SEQ ID NO:6).

MVCCGPGRML LGWAGLLVLA ALCLLQVPGA QAAACEPVRI PLCKSLPWNM TKMPNHLHHS	60
TQANAILAME QFEGLLGTHC SPDLLFFLCA MYAPICTIDF QHEPIKPCKS VCERARQGCE	120
PILIKYRHSHW PESLACDELP VYDRGVCISP EAIVTADGAD FPMDSSSTGHC RGASSERCKC	180
KPVRATQKTY FRNNNYNYVIR AKVKEVKMKC HDVTAVVEVK EILKASLVNI PRDTVNLYTT	240
SGCLCPPLTV NEEYVIMGYE DEERSRLLLV EGSIAEKWKD RLGKKVKRWD MKLRHLGLGK	300
TDASDSTQNQ KSGRNSNPRP ARS.	

Figure 7. Dduced amino acid sequence of mouse FRZB-1 protein. SEQ ID NO:7.

Figure 8. Nucleotide sequence of the full-length mouse FRZB-1 cDNA. SEQ ID NO:8.

AAGCCTGGGA CCATGGTCTG CTGCGGCCCG GGACGGATGC TGCTAGGATG GGCCGGGTTG TTCGGACCT GGTACCAGAC GACGCCGGC CCTGCCTACG ACGATCCTAC CGGGCCCCAAC	60
CTAGTCCTGG CTGCTCTCTG CCTGCTCCAG GTGCCCGGAG CTCAGGCTGC AGCCTGTGAG GATCAGGACC GACGAGAGAC GGACGAGGTC CACGGGCCTC GAGTCCGACG TCGGACACTC	120
CCTGTCCGCA TCCCCTGCTGTG CAAGTCCCTT CCCTGGAAACA TGACCAAGAT GCCCAACCAC GGACAGGCCT AGGGCGACAC GTTCAGGGAA GGGACCTTGT ACTGGTTCTA CGGGTTGGTG	180
CTGCACCAACA GCACCCAGGC TAACGCCATC CTGGCCATGG AACAGTCGA AGGGCTGCTG GACGTGGTGT CGTGGGTCCG ATTGCGGTAG GACCGGTACC TTGTCAAGCT TCCCAGCGAC	240
GGCACCCACT GCAGCCCGGA TCTTCTCTTC TTCCCTGTG CAATGTACGC ACCCATTG CCGTGGGTGA CGTCGGGCCT AGAAGAGAAC AGGAGACAC GTTACATGCG TGGGTAAACG	300
ACCATCGACT TCCAGCACGA GCCCATCAAG CCCTGCAAGT CTGTGTGTGA GCGCGCCCGA TGGTAGCTGA AGGTCGTGCT CGGGTAGTTC GGGACGTTCA GACACACACT CGCGCGGGCT	360
CAGGGCTGCG AGCCCATTCT CATCAAGTAC CGCCACTCGT GGCCGGAAAG CTTGGCCTGC GTCCCGACGC TCGGGTAAGA GTAGTTCATG GCGGTGAGCA CCGGCCTTTC GAACCGGACG	420
GACGAGCTGC CGGTGTACGA CCGCGCGTG TGCATCTCTC CTGAGGCCAT CGTCACCGCG CTGCTCGACG GCCACATGCT GGCGCCGCAC ACGTAGAGAG GACTCCGGTA GCAGTGGCGC	480
GACGGAGCGG ATTTTCCTAT GGATTCAAGT ACTGGACACT GCAGAGGGGC AAGCAGCGAA CTGCCTCGCC TAAAAGGATA CCTAAGTTCA TGACCTGTGA CGTCTCCCCG TTCGTGCTT	540
CGTTGCAAAT GTAAGCCTGT CAGAGCTACA CAGAAGACCT ATTTCCGGAA CAATTACAAC GCAACGTTA CATTGGACA GTCTCGATGT GTCTTCTGGAA TAAAGGCCTT GTTAATGTTG	600
TATGTCATCC GGGCTAAAGT TAAAGAGGTA AAGATGAAAT GTCATGATGT GACCGCCGTT ATACAGTAGG CCCGATTCA ATTTCTCCAT TTCTACTTTA CAGTACTACA CTGGCGCAA	660
GTGGAAGTGA AGGAAATTCT AAAGGCATCA CTGGTAAACA TTCCAAGGGAA CACCGTCAAT CACCTCACT TCCTTTAAGA TTTCCGTAGT GACCATTGT AAGGTTCCCT GTGGCAGTTA	720
CTTTATACCA CCTCTGGCTG CCTCTGTCCCT CCACTTACTG TCAATGAGGA ATATGTCATC GAAATATGGT GGAGACCGAC GGAGACAGGA GGTGAATGAC AGTTACTCCT TATAACAGTAG	780
ATGGGCTATG AAGACGAGGA ACGTTCCAGG TTACTCTTGG TAGAAGGCTC TATAGCTGAG TACCCGATAC TTCTGCTCCT TGCAAGGTCC AATGAGAACC ATCTTCCGAG ATATCGACTC	840
AAGTGGAAAGG ATCGGCTTGG TAAGAAAGTC AAGCGCTGGG ATATGAAACT CCGACACCTT TTCACCTTCC TAGCCGAACC ATTCTTCAG TTCGCGACCC TATACTTGA GGCTGTGGAA	900
GGACTGGGTA AAACTGATGC TAGCGATTCC ACTCAGAACAGAAGTCTGG CAGGAACCT CCTGACCCAT TTTGACTACG ATCGCTAAGG TGAGTCTTAG TCTTCAGACC GTCCTTGAGA	960

AATCCCCGGC CAGCACGCAG CTAAATCCTG AAATGTAAAA GGCCACACCC ACGGACTCCC TTAGGGGCCG GTCGTGCGTC GATTAGGAC TTTACATTTT CCGGTGTGGG TGCGTGAGGG	1020
TTCTAAGACT GGCGCTGGTG GACTAACAAA GGAAAACCGC ACAGTTGTGC TCGTGACCGA AAGATTCTGA CGCGACAC CTGATTGTTT CCTTTGGCG TGTCAACACG AGCACTGGCT	1080
TTGTTTACCG CAGACACCGC GTGGCTACCG AAGTTACTTC CGGTCCCTT TCTCCTGCTT AACAAATGGC GTCTGTGGCG CACCGATGGC TTCAATGAAG GCCAGGGAA AGAGGACGAA	1140
CTTAATGGCG TGGGTTAGA TCCTTTAATA TGTTATATAT TCTGTTTCAT CAATCACGTG GAATTACCGC ACCCCAATCT AGGAAATTAT ACAATATATA AGACAAAGTA GTTAGTGCAC	1200
GGGACTGTTC TTTTGCAACC AGAATAGTAA ATTAAATATG TTGATGCTAA GGTTCTGTA CCCTGACAAG AAAACGTTGG TCTTATCATT TAATTTATAC AACTACGATT CCAAAGACAT	1260
CTGGACTCCC TGGGTTTAAT TTGGTGTCT GTACCCGTAT TGAGAATGCA ATGTTTCATG GACCTGAGGG ACCCAAATTA AACACACAAGA CATGGGACTA ACTCTTACGT TACAAAGTAC	1320
TAAAGAGAGA ATCCTGGTCA TATCTCAAGA ACTAGATATT GCTGTAAGAC AGCCTCTGCT ATTCTCTCT TAGGACCAGT ATAGAGTTCT TGATCTATAA CGACATTCTG TCGGAGACGA	1380
GCTGCGCTTA TAGTCTTGTG TTTGTATGCC TTTGTCCATT TCCCTCATGC TGTGAAAGTT CGACGCGAAT ATCAGAACAC AAACATACGG AAACAGGTAA AGGGAGTAGC ACACTTCAA	1440
ATACATGTTT ATAAAGGTAG AACGGCATT TGAAATCAGA CACTGCACAA GCAGAGTAGC TATGTACAAA TATTTCCATC TTGCCGTAAA ACTTTAGTCT GTGACGTGTT CGTCTCATCG	1500
CCAACACCAG GAAGCATTAA TGAGGAAACG CCACACAGCA TGACTTATT TCAAGATTGG GGTTGTGGTC CTTCGTAAAT ACTCCCTTGC GGTGTGCGT ACTGAATAAA AGTTCTAAC	1560
CAGGCAGCAA AATAAAATAGT GTTGGGAGCC AAGAAAAGAA TATTTTGCCT GGTTAAGGGG GTCCGTCGTT TTATTTATCA CAACCCCTCGG TTCTTTCTT ATAAAACGGA CCAATTCCCC	1620
CACACTGGAA TCAGTAGCCC TTGAGCCATT AACAGCAGTG TTCTTCTGGC AAGTTTTGA GTGTGACCTT AGTCATCGGG AACTCGGTAA TTGTCGTCAC AAGAAGACCG TTCAAAACT	1680
TTTGTTCATA AATGTATTCA CGAGCATTAG AGATGAACCT ATAACTAGAC ATCTGTTGTT AAACAAGTAT TTACATAAGT GCTCGTAATC TCTACTTGAA TATTGATCTG TAGACAACAA	1740
ATCTCTATAG CTCTGCTTCC TTCTAAATCA AACCCATTGT TGGATGCTCC CTCTCCATTG TAGAGATATC GAGACGAAGG AAGATTTAGT TTGGGTAAACA ACCTACGAGG GAGAGGTAAG	1800

ATAAATAAAT TTGGCTTGCT GTATTGGCCA GGAAAAGAAA GTATTAAAGT ATGCATGCAT 1860
TATTTATTTA AACCGAACGA CATAACCGGT CCTTTCTTT CATAATTCA TACGTACGTA

GTCGACCAGG GTGTTATTTA ACAGAGGTAT GTAACTCTAT AAAAGACTAT AATTACAGG 1920
CACGTGGTCC CACAATAAAT TGTCTCCATA CATTGAGATA TTTTCTGATA TTAAATGTCC

ACACGGAAAT GTGCACATTT GTTACTTTT TTTCTCCTT TTGCTTGAG CTTGTGATTT 1980
TGTGCCTTTA CACGTGTAAA CAAATGAAAA AAAGAAGGAA AACGAAACCC GAACACTAAA

TGGTTTTTGG TGTGTTATG TCTGTATTTT GGGGGGTGGG TAGGTTTAAG CCATTGCACA 2040
ACCAAAAACC ACACAAATAC AGACATAAAA CCCCCCACCC ATCCAAATTG GGTAACGTGT

TTCAAGTTGA ACTAGATTAG AGTAGACTAG GCTCATTGGC CTAGACATTA TGATTGAAT 2100
AAGTTCAACT TGATCTAACATC TCATCTGATC CGAGTAACCG GATCTGTAAT ACTAAACTTA

TTGTGTTGTT TAATGCTCCA TCAAGATGTC TAATAAAAGG AATATGGTG TCAACAGAGA 2160
AACACAAACAA ATTACGAGGT AGTTCTACAG ATTATTTCC TTATACCAAC AGTTGTCTCT

CGACAACAAC AACAAA
GCTGTTGTTG TTGTTT

MVCGSPGGML LLRAGLLALA ALCLLRVPGA RAAACEPVRI PLCKSLPWNM TKMPNHLHHS	60
TQANAILAIE QFEGLLGTHC SPDLLFFLCA MYAPICTIDF QHEPIKPCKS VCERARQGCE	120
PILIKYRHSHW PENLACEELP VYDRGVCISP EAIVTADGAD FPMDSNGNC RGASSERCKC	180
KPIRATQKTY FRNNNYNYVIR AKVKEIKTKC HDVTAVVEVK EILKSSLVNI PRDTVNLYTS	240
SGCLCPPLNV NEEYIIMGYE DEERSRLLL V EGSI AEKW KD RLGKKV KRWD MKLRHLGLSK	300
SDSSNSDSTQ SQKSGRNSNP RQARN.	

Figure 9. Deduced amino acid sequence of human FRZB-1 protein. SEQ ID NO:9.

Figure 10. Nucleotide sequence of the full-length human FRZB-1 cDNA. SEQ ID NO:10.
 This sequence was assembled from public ESTs from the Genbank database
 (accession numbers: H18848, R63748, W38677, W44760, H38379 and N71244).

GGCGGAGCGG GCCTTTGGC GTCCACTGCG CGGCTGCACC CTGCCCCATC TGCCGGGATC CCGCCTCGCC CGGAAAACCG CAGGTGACGC GCCGACGTGG GACGGGGTAG ACGGCCCTAG	60
ATGGTCTGCG GCAGCCCGGG AGGGATGCTG CTGCTGCGGG CCGGGCTGCT TGCCCTGGCT TACCAAGACGC CGTCGGGCC CCCCCTACGAC GACGACGCC GGCCCGACGA ACGGGACCGA	120
GCTCTCTGCC TGCTCCGGT GCCCGGGGCT CGGGCTGCAG CCTGTGAGGCC CGTCCGCATC CGAGAGACGG ACGAGGCCA CGGGCCCCGA GCCCGACGTC GGACACTCGG GCAGGGTAG	180
CCCCTGTGCA AGTCCCTGCC CTGGAACATG ACTAAGATGC CCAACCACCT GCACCCACAGC GGGGACACGT TCAGGGACGG GACCTTGAC TGATTCTACG GGTTGGTGGA CGTGGTGTGCG	240
ACTCAGGCCA ACGCCATCCT GCCCATCGAG CAGTCGAAG GTCTGCTGGG CACCCACTGC TGAGTCCGGT TGCGGTAGGA CCGGTAGCTC GTCAAGCTTC CAGACGACCC GTGGGTGACG	300
AGCCCCGATC TGCTCTCTT CCTCTGTGCC ATGTACGCGC CCATCTGCAC CATTGACTTC TCGGGGCTAG ACGAGAAAGAA GGAGACACGG TACATGCGCG GGTAGACGTG GTAAGTGAAG	360
CAGCACGAGC CCATCAAAGCC CTGTAAGTCT GTGTGCGAGC GGGCCCGGCA GGGCTGTGAG GTCGTGCTCG GGTAGTCGG GACATTAGA CACACGCTCG CCCGGGCCGT CCCGACACTC	420
CCCATACTCA TCAAGTACCG CCACTCGTGG CCGGAGAACCC TGGCCTGCCA GGAGCTGCCA GGGTATGAGT AGTTCATGGC GGTGAGCACC GGCCTCTTGG ACCGGACGCT CCTCGACGGT	480
GTGTACGACA GGGCGTGTG CATCTCTCCC GAGGCCATCG TTACTGCGGA CGGAGCTGAT CACATGCTGT CCCCCCACAC GTAGAGAGGG CTCCGGTAGC AATGACGCC GCCTCGACTA	540
TTTCCTATGG ATTCTAGTAA CGGAAACTGT AGAGGGCAA GCAGTGAACG CTGTAAATGT AAAGGATAACC TAAGATCATT GCCTTTGACA TCTCCCCGTT CGTCACTTGC GACATTACA	600
AAGCCTATTA GAGCTACACA GAAGACCTAT TTCCGGAACA ATTACAACCA TGTCATTGG TTCGGATAAT CTCGATGTGT CTTCTGGATA AAGGCCCTGT TAATGTTGAT ACAGTAAGCC	660
GCTAAAGTTA AAGAGATAAA GACTAAGTGC CATGATGTGA CTGCAGTAGT GGAGGTGAAG CGATTTCAAT TTCTCTATTCT GTGATTCAAG GTACTACACT GACGTCATCA CCTCCACTTC	720
GAGATTCTAA AGTCCTCTCT GGTAAACATT CCACGGGACA CTGTCAACCT CTATACCAGC CTCTAAGATT TCAGGAGAGA CCATTGTAA GGTGCCCTGT GACAGTTGGA GATATGGTCG	780
TCTGGCTGCC TCTGCCCTCC ACTTAATGTT AATGAGGAAT ATATCATCAT GGGCTATGAA AGACCGACGG AGACGGGAGG TGAATTACAA TTACTCCTTA TATAGTAGTA CCCGATACTT	840

GATGAGGAAC GTTCCAGATT ACTCTTGGTG GAAGGCTCTA TAGCTGAGAA GTGGAAGGAT	900
CTACTCCTTG CAAGGTCTAA TGAGAACAC CTTCCGAGAT ATCGACTCTT CACCTTCCTA	
CGACTCGGTA AAAAAGTTAA GCGCTGGGAT ATGAAGCTTC GTCATCTTGG ACTCAGTAAA	960
GCTGAGCCAT TTTTCATT CGCGACCCTA TACTTCGAAG CAGTAGAACCG TGAGTCATTT	
AGTGATTCTA GCAATAGTGA TTCCACTCAG AGTCAGAAGT CTGGCAGGAA CTCGAACCCC	1020
TCACTAAGAT CGTTATCACT AAGGTGAGTC TCAGTCTTCA GACCGTCCTT GAGCTTGGGG	
CGGCAAGCAC GCAACTAAAT CCCGAAATAC AAAAAGTAAC ACAGTGGACT TCCTATTAAG	1080
GCCGTTCGTG CGTTGATTAA GGGCTTTATG TTTTCATTG TGTCACCTGA AGGATAATTG	
ACTTACTTGC ATTGCTGGAC TAGCAAAGGA AAATTGCAC TATGCACATC ATATTCTATT	1140
TGAATGAACG TAACGACCTG ATCGTTTCCT TTTAACGTGA TAACGTGTAG TATAAGATAA	
GTAACTATA AAAATCATGT GATAACTGAT TATTACTTCT GTTTCTCTTT TGGTTTCTGC	1200
CAAATGATAT TTTTAGTACA CTATTGACTA ATAATGAAGA CAAAGAGAAA ACCAAAGACG	
TTCTCTCTTC TCTCAACCCC TTTGTAATGG TTTGGGGCA GACTCTTAAG TATATTGTGA	1260
AAGAGAGAAG AGAGTTGGGG AAACATTACC AAACCCCCGT CTGAGAACATC ATATAACACT	
GTTTCTATT TCACTAATCA TGAGAAAAAC TGTTCTTTG CAATAATAAT AAATTAAACA	1320
CAAAAGATAA AGTGATTAGT ACTCTTTTG ACAAGAAAAC GTTATTATTA TTTAATTGTG	
TGCTGTTACC AGAGCCTCTT TGCTGAGTCT CCAGATGTTA ATTTACTTTTC TGCAACCCAA	1380
ACGACAATGG TCTCGGAGAA ACCACTCAGA GGTCTACAAT TAAATGAAAG ACGTGGGTT	
TTGGGAATGC AATATTGGAT GAAAAGAGAG GTTTCTGGTA TTCACAGAAA GCTAGATATG	1440
AACCCCTTACG TTATAACCTA CTTTCTCTC CAAAGACCAT AAGTGTCTTT CGATCTATAC	
CCTTAAAACA TACTCTGCCG ATCTAATTAC AGCCTTATTT TTGTATGCCT TTTGGCATT	1500
GGAAATTGTG ATGAGACGGC TAGATTAATG TCGGAATAAA AACATACGGAA AAACCGTAA	
CTCCTCATGC TTAGAAAGTT CCAAATGTTT ATAAAGGTAA AATGGCAGTT TGAAGTCAAA	1560
GAGGAGTACG AATCTTCAA GGTTTACAAA TATTTCCATT TTACCGTCAA ACTTCAGTTT	
TGTCACATAG GCAAAGCAAT CAAGCACCAG GAAGTGTGTTA TGAGGAAACA ACACCCAAGA	1620
ACAGTGTATC CGTTTCGTTA GTTCGTGGTC CTTCACAAAT ACTCCTTGT TGTGGTTCT	
TGAATTATTT TTGAGACTGT CAGGAAGTAA AATAAATAGG AGCTTAAGAA AGAACATTAA	1680
ACTTAATAAA AACTCTGACA GTCCTTCATT TTATTTATCC TCGAATTCTT TCTTGTAAAA	
GCCTGATTGA GAAGCACAAAC TGAAACCAGT AGCCGCTGGG GTGTTAATGG TAGCATTCTT	1740
CGGACTAACT CTTCGTGTG ACTTTGGTCA TCGGCGACCC CACAATTACC ATCGTAAGAA	
CTTTGGCAA TACATTGAT TTGTTCATGA ATATATTAAT CAGCATTAGA GAAATGAATT	1800
GAAAACCGTT ATGTAACACTA AACAAAGTACT TATATAATTA GTCGTAATCT CTTTACTTAA	
ATAAACTAGAC ATCTGCTGTT ATCACCATAG TTTGTTTAA TTTGCTTCCT TTTAAATAAA	1860
TATTGATCTG TAGACGACAA TAGTGGTATC AAAACAAATT AACCGAAGGA AAATTATTT	
CCCATTGGTG AAAGTCAAAA AAAAAAAAAA AAA	
GGGTAAACCAC TTTCAGTTTT TTTTTTTTTT TTT	