Logistic Regression

Max Turgeon

DATA 2010-Tools and Techniques in Data Science

Lecture Objectives

- Fit logistic regression models using **R** and Python.
- Understand the output and interpret the coefficients.
- Evaluate the model using different metrics.

Motivation i

- In the last module, we discussed linear regression.
 - Measure differences in averages between different subgroups.
 - · For continuous outcome variables.
- Logistic regression is a way to model the relationship between a binary outcome variable and a set of covariates.
 - It's still a regression model, but it can be turned into a classifier.

Motivation ii

Main definitions

• Y is a binary outcome variable (i.e. Y=0 or Y=1).

$$\operatorname{logit}\left(E(Y\mid X_1,\ldots,X_p)\right) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p.$$

- Note: logit(t) = log(t/(1-t)).
- The coefficients β_i represent comparisons of \log odds for different values of the covariates (i.e. for different subgroups).

5

Comments i

- If Y is a binary random variable, then E(Y) = P(Y = 1).
- The **odds** is the ratio P(Y=1)/P(Y=0).
 - \cdot E.g. if the odds is 2, then Y=1 is twice as likely than Y=0.
 - In other words, P(Y=1)=0.66.
- The logit function takes probabilities (which are between 0 and 1) and transforms them to a real number (from $-\infty$ to ∞)

Comments ii

Example i

- Assume we have one covariate X: height in inches.
- \cdot The covariate Y: whether someone is a good basketball player (or not).
- Let's look at the effect of β on the relationship between X and $P(Y=1\mid X).$

Example ii

Example i

· Consider the following 2x2 table:

	Right-handed	Left-handed	Total
Male	43	9	52
Female	44	4	48
Total	87	13	100

- \cdot Let Y be handedness, and let X be sex.
- Note: The odds for female is (44/48)/(4/48) = 11; the odds for male is (43/52)/(9/52) = 4.78.

Example ii

```
library(tidyverse)
# Create dataset
dataset <- bind rows(
  data.frame(Y = rep("right", 43),
             X = rep("male", 43)),
  data.frame(Y = rep("right", 44),
             X = rep("female", 44)),
  data.frame(Y = rep("left", 9),
             X = rep("male", 9)),
  data.frame(Y = rep("left", 4),
             X = rep("female", 4)))
```

Example iii

glimpse(dataset)

```
## Rows: 100
## Columns: 2
## $ Y <chr> "right", "right", "right", "right",
"right", "right", "right", "righ~
## $ X <chr> "male", "male", "male", "male",
"male", "male", "male", "male"
```

Example iv

```
# Outcome must be 0 or 1
dataset <- mutate(dataset, Y = as.numeric(Y=="right"))</pre>
glm(Y ~ X, data = dataset,
    family = "binomial")
##
## Call: glm(formula = Y ~ X, family =
"binomial", data = dataset)
##
## Coefficients:
```

Example v

```
## (Intercept) Xmale
## 2.3979 -0.8339
##
## Degrees of Freedom: 99 Total (i.e. Null); 98
Residual
## Null Deviance: 77.28
## Residual Deviance: 75.45 AIC: 79.45
# Relationship with odds?
log(11)
## [1] 2.397895
```

Example vi

Interpreting coeffficients i

- The regression coefficients in logistic regression measure differences in log odds.
 - Or put another way: they measure ratios of odds on the log scale.
 - Very common to take the exponential of coefficients (and confidence intervals).
- \cdot Let's start with the example of a single binary covariate X.

Interpreting coeffficients ii

• If X=0, we have

$$\log \frac{P(Y=1 \mid X=0)}{P(Y=0 \mid X=0)} = \beta_0.$$

• In other words, the intercept term β_0 corresponds to the log-odds when all covariates are equal to zero.

17

Interpreting coeffficients iii

 \cdot Now, let's look at X=1

$$\log \frac{P(Y=1 \mid X=1)}{P(Y=0 \mid X=1)} = \beta_0 + \beta_1.$$

- . Therefore, β_1 is the difference in log-odds between X=1 and X=0.
- Using logarithm rules, the difference in log-odds is the same as the log of the odds ratio.

Exercise

The dataset case2001 from the Sleuth3 package contains information about members of the Donner party who got trapped by snow on their way to California.

Using logistic regression, fit a model predicting the survival probability as a function of age. *Hint*: You'll need to transform the variable **Status** from **Died/Survived** to **0/1** (with 1 corresponding to survival).

Solution i

```
library(Sleuth3)
library(tidyverse)
# First transform outcome to 0/1
dataset <- mutate(case2001,</pre>
                  Y = as.numeric(Status == "Survived"))
fit <- glm(Y ~ Age, data = dataset,
           family = "binomial")
```

Solution ii

coef(fit)

```
## (Intercept) Age
## 1.81851831 -0.06647028
```

- We can't interpret the intercept, as it would correspond to age
 0.
- The coefficient for age is -0.07, which means for two groups whose age differ by 1 year, the log odds differ by -0.07.
- Alternatively, the odds ratio is $\exp(-0.07) = 0.94$.
 - · Sometimes you'll see "odds decreased by 6%".

Logistic regression and splines i

· We can also use splines with logistic regression!

Logistic regression and splines ii

```
dataset |>
    mutate(.fitted = fitted(fit),
           .fitted2 = fitted(fit2)) |>
    ggplot(aes(x = Age)) +
    geom\ point(aes(v = Y)) +
    geom line(aes(v = .fitted),
              col = "blue", size = 1) +
    geom line(aes(v = .fitted2),
              col = "red", size = 1)
```

Logistic regression and splines iii

Evaluating logistic regression models

- We can use the same metrics as for linear regression, except for MAPE (why?).
 - But MSE is instead called the **Brier score**.
- · Logistic regression models can also be turned into a classifier.
 - · Choose a threshold t.
 - If the fitted value (i.e. estimated probability) is greater than t, classify as positive. Otherwise, classify as negative.
- \cdot For a fixed t, we can compute accuracy, precision, etc.
- Alternatively, we can compute these metrics for all thresholds
 t. This is typically summarized using:
 - · Receiver Operating Characteristic (ROC) curve.
 - · Precision-Recall curve.

ROC curve i

- The ROC curve is defined by plotting the **true positive rate** (TPR) against the **false positive rate** (FPR) for each value of t.
 - TPR is also called the recall
 - FPR is 1 Specificity.
- When t=0, every observation is called positive. We get TPR=FPR=1.
- When t=1, every observation is called negative. We get TPR=FPR=0.
- As t changes, it draws a curve from the lower-left to the upper-right corner of the unit square.

ROC curve ii

 The closer the curve to the upper-left corner, the better the model.

```
# First create dataset with predictions
data_pred <- bind_rows(</pre>
    tibble(truth = factor(dataset$Y),
           estimate = fitted(fit),
           model = "linear"),
    tibble(truth = factor(dataset$Y),
           estimate = fitted(fit2),
           model = "splines")
```

ROC curve iii

ROC curve iv

ROC curve v

- The second model (with splines) is considered better because it gets closer to the upper-left corner.
 - · Careful: This is on the training data.
- This can be summarized by a single number, called the Area Under the Curve (AUC).
- Perfect classification would give AUC=1, so higher is better.
- We typically want AUC>0.5; otherwise we can get a better classifier by flipping the predictions (positive to negative).

ROC curve vi

```
data_pred |>
   group_by(model) |>
   roc auc(truth, estimate,
           event level = "second")
## # A tibble: 2 x 4
    model .metric .estimator .estimate
##
## <chr> <chr> <chr>
                                   < fdb>
## 1 linear roc_auc binary
                                   0.681
## 2 splines roc_auc binary
                                   0.785
```

Precision-Recall curve i

- As the name suggests, it's a plot of the precision (on the y-axis) against the recall (on the x-axis), as we change the threshold t_{\cdot}
- When t=0, every observation is called positive. We get Recall = 1, but Precision is the proportion of positive observations in the data.
- When t=1, every observation is called negative. We get Recall = 0 and Precision = 1.
- The closer the curve to the horizontal line Precision = 1, the better the model.

Precision-Recall curve ii

Precision-Recall curve iii

Precision-Recall curve iv

```
## # A tibble: 2 x 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <chr> ## 1 linear pr_auc binary 0.629
## 2 splines pr_auc binary 0.700
```

Summary

- Logistic regression is an extension of linear regression for binary outcomes.
 - · Easily extended to any binomial outcome.
- Instead of measuring differences in means, regression coefficients measure differences in log-odds.
 - But $\beta=0$ still corresponds to no association!
- We can measure performance using either regression or classification metrics.
- You can also apply regularization to logistic regression.
- As a prediction model, logistic regression is surprisingly powerful.
 - · Neural networks can be seen as a generalization.