Corrigé de la feuille d'exercices 16

Triangle, droites, cerlces 1

Exercice 1. Notons $S = \left\{ z \in \mathbb{C} \setminus \{-1\} \ / \ \left| \frac{2iz-1}{z+1} \right| = 1 \right\}$. Soit M un point d'affixe $z \neq -1$. On écrit z = x + iysous forme algébrique avec $(x, y) \in \mathbb{R}^2$.

$$z \in S \iff \left| \frac{2iz - 1}{z + 1} \right| = 1$$

$$\iff |2iz - 1| = |z + 1|$$

$$\iff |2iz - 1|^2 = |z + 1|^2 \quad (un \ module \ est \ positif)$$

$$\iff (1 - 2y)^2 + 4x^2 = (1 + x)^2 + y^2$$

$$\iff 4y^2 - 4y + 1 + 4x^2 = x^2 + 2x + 1 + y^2$$

$$\iff 3x^2 + 3y^2 - 4y - 2x = 0$$

$$\iff 3\left(\left(x - \frac{1}{3}\right)^2 - \frac{1}{9} + \left(y - \frac{2}{3}\right)^2 - \frac{4}{9}\right) = 0$$

$$\iff \left(x - \frac{1}{3}\right)^2 + \left(y - \frac{2}{3}\right)^2 = \left(\frac{\sqrt{5}}{3}\right)^2$$

On reconnait une équation cartésienne d'un cercle de centre $\Omega(1/3,2/3)$ et de rayon $\frac{\sqrt{5}}{3}$.

Exercice 2.

- 1. Notons respectivement A, B et C les points du plan d'affixe a, b et c.
 - (a) Le triangle ABC est équilatéral si et seulement si les points d'affixes a, b et c forment un triangle équilatéral. Par suite,

$$ABC$$
 est équilatéral \iff $AB = AC = BC$
 \iff $|b-a| = |c-a| = |c-b|$

(b) D'après le théorème de Pythagore, ABC est un triangle rectangle en A si et seulement si $BC^2 = AB^2 + AC^2$. Par définition, on peut aussi affirmer que ABC est un triangle rectangle en A si et seulement si l'angle orienté $(AB, AC) \equiv \frac{\pi}{2}[\pi]$. Autrement écrit,

$$ABC \text{ est un triangle rectangle en } A \iff |c-b|^2 = |b-a|^2 + |c-a|^2$$

$$\iff \arg\left(\frac{c-a}{b-a}\right) \equiv \frac{\pi}{2}[\pi]$$

$$\iff c-a = i(b-a) \text{ ou } c-a = -i(b-a)$$

$$\iff a(i-1) = ib-c \text{ ou } a(i+1) = ib+c$$

$$\iff a = \frac{ib-c}{i-1} \text{ ou } a = \frac{ib+c}{i+1}$$

- 2. Soit $z \in \mathbb{C}$.
 - (a) Soient A(1), B(z) et $C(z^2)$. Le triangle ABC est rectangle s'il est rectangle en A ou en B ou en C. Cela revient à résoudre les équations du second degré

$$\begin{cases} 1 \times (i-1) = iz - z^2 & \text{ou} & 1 \times (i+1) = iz + z^2 \\ z(i-1) = iz^2 - 1 & \text{ou} & z(i+1) = iz^2 + 1 \\ z^2(i-1) = iz - 1 & \text{ou} & z^2(i+1) = iz + 1 \end{cases}$$

- (b) z, $\frac{1}{z}$ et -i sont alignés. (c) z, z^2 et z^4 sont alignés.

Exercice 3.

1. Soient A et B les points d'affixe respective -i et 1.

$$|z+i| = |z-1| \iff AM = BM$$

 $\iff M \in \text{med}[AB]$

2. Supposons que z, $\frac{1}{z}$ et 1+z aient le même module. On en déduit que

$$|z| = \left| \frac{1}{z} \right|,$$

et donc $|z|^2 = 1$. De plus puisque que $|z| \ge 0$, on a |z| = 1. Ainsi, M appartient au cercle de centre O et de rayon 1. De plus |z| = |1+z| = |z-(-1)| = 1. Donc M appartient au cercle de centre d'affixe -1 et de rayon 1. Il y a donc au plus deux candidats pour le point M (intersection de deux cercles). On écrit z = x + iy avec $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ de sorte que M(x,y). Par l'analyse précédente, on obtient donc

$$\begin{cases} x^2 + y^2 = 1\\ (x - 1)^2 + y^2 = 1 \end{cases},$$

c'est-à-dire

$$\begin{cases} y^2 = 1 - x^2 \\ x = \frac{1}{2} \end{cases},$$

et donc x=-1/2 et $y=\frac{\sqrt{3}}{2}$ ou $y=-\frac{\sqrt{3}}{2}$. Autrement dit, on a $z=e^{i\frac{2\pi}{3}}$ ou $z=e^{-i\frac{2\pi}{3}}$.

Réciproquement, supposons que $z=e^{i\frac{2\pi}{3}}$ ou $z=e^{-i\frac{2\pi}{3}}$. Alors |z|=1 et donc |1/z|=|z|=1. D'autre part, puisque $|1+z|=|\overline{1+z}|$, en factorisant par l'angle moitié,

$$|1+z| = \left|1 + e^{i\frac{2\pi}{3}}\right|$$

$$= \left|e^{i\frac{\pi}{3}}\left(e^{-i\frac{\pi}{3}} + e^{i\frac{\pi}{3}}\right)\right|$$

$$= \left|2\cos\left(\frac{\pi}{3}\right)\right|$$

$$= 1.$$

Finalement, les points M(z) tel que z, 1/z et |1+z| aient le même module sont les points d'affixe

$$e^{-i\frac{2\pi}{3}}$$
 et $e^{i\frac{2\pi}{3}}$.

3. On a les équivalences suivantes

$$\frac{z+1}{z-1} \in \mathbb{R} \iff \operatorname{Im}\left(\frac{z+1}{z-1}\right) = 0$$

$$\iff \frac{z+1}{z-1} = \frac{\overline{z+1}}{\overline{z-1}}$$

$$\iff (z+1)(\overline{z}-1) = (\overline{z}+1)(z-1)$$

$$\iff |z|^2 - z + \overline{z} - 1 = |z|^2 + z - \overline{z} - 1$$

$$\iff z - \overline{z} = 0$$

$$\iff Im(z) = 0$$

$$\iff z \in \mathbb{R}.$$

Finalement l'ensemble des points M(z) tels que $\frac{z+1}{z-1} \in \mathbb{R}$ est la droite des abscisses.

Exercice 4. On rappelle qu'un cercle est caractérisé par un centre et la donnée d'un rayon. Notons A, B et C trois points non alignés. Supposons qu'il existe un cercle $\mathcal C$ passant par les points A, B et C. Soit Ω le centre du cercle $\mathcal C$ et R son rayon. On a alors $\Omega A = \Omega B = \Omega C = R$ et donc les triangles $A\Omega B$ et $B\Omega C$ sont isocèles en Ω . On en déduit que $\Omega \in \operatorname{med}([AB]) \cap \operatorname{med}([BC])$. À l'aide de cette analyse on vient de caractériser le cercle $\mathcal C$.

Réciproquement, les points A, B et C ne sont pas alignés donc les deux droites $\operatorname{med}([AB])$ et $\operatorname{med}([BC])$ ne sont pas parallèles et se coupent donc en un seul point. Notons $\in \operatorname{med}([AB]) \cap \operatorname{med}([BC])$. Alors, par définition, $\Omega A = \Omega B = \Omega C$. Soit $\mathcal C$ le cercle de centre Ω et de rayon $R = \Omega A$. Alors $A, B, C \in \mathcal C$.

Finalement par trois points non alignés il passe un unique cerlce.

Exercice 5. Soient A(1,1), B(4,3) et C(2,5). Déterminer l'aire du triangle ABC.

En notant $D = C + \overrightarrow{AB}$, le produit mixte $[\overrightarrow{AB}, \overrightarrow{AC}]$ est l'aire du parallélogramme ABCD et donc le double de l'aire du triangle ABC. En notant \mathcal{A} l'aire du triangle ABC, on a

$$\mathcal{A} = [(3,2), (1,4)] = 12 - 2 = 10.$$

Exercice 6. Soit M un point intérieur au triangle ABC. En considérant l'aire des triangles ABC, AMB, BMC et AMC, on obtient,

$$\mathcal{A}_{ABC} = \mathcal{A}_{AMB} + \mathcal{A}_{AMC} + \mathcal{A}_{BMC}$$

$$= \frac{1}{2} (AB \times MH_C + AC \times MH_B + BC \times MH_A)$$

$$= \frac{1}{2} AB (MH_C + MH_B + MH_A)$$

$$= \frac{1}{2} AB \times f(M).$$

Finalement puisque $AB \neq 0$, on a $f(M) = \frac{2A_{ABC}}{AB}$.

2 Produit scalaire et produit mixte

Exercice 7. Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} des vecteurs.

1. On munit le plan d'un repère orthonormé. En notant $a = \operatorname{aff}(\overrightarrow{u})$ et $b = \operatorname{aff}(\overrightarrow{v})$, on a

$$a\overline{b} = (\overrightarrow{u} \cdot \overrightarrow{v}) + i[\overrightarrow{u}, \overrightarrow{v}]$$

Ainsi,

$$\begin{split} \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 &= |a|^2 |b|^2 \\ &= |a\overline{b}|^2 \\ &= (\overrightarrow{u} \cdot \overrightarrow{v})^2 + [\overrightarrow{u}, \overrightarrow{v}]^2. \end{split}$$

2. Soit ABCD un parallélogramme. Par définition, $\overrightarrow{AB} = \overrightarrow{DC}$. La somme des carrés des longueurs des quatre côtés est $AB^2 + BC^2 + CD^2 + AD^2$, ce qui s'écrit vectoriellement

$$2\|\overrightarrow{AB}\|^2 + 2\|\overrightarrow{AD}\|^2.$$

Les deux diagonales du parallélogramme ABCD sont AC et BD. Ainsi

$$AC^{2} + BD^{2} = \|\overrightarrow{AC}\|^{2} + \|\overrightarrow{BD}\|^{2}$$

$$= \|\overrightarrow{AB} + \overrightarrow{BC}\|^{2} + \|\overrightarrow{BA} + \overrightarrow{AD}\|^{2} \qquad (Chasles)$$

$$= \|\overrightarrow{AB} + \overrightarrow{AD}\|^{2} + \|-\overrightarrow{AB} + \overrightarrow{AD}\|^{2}$$

$$= \|\overrightarrow{AB}\|^{2} + \|\overrightarrow{AD}\|^{2} + 2(\overrightarrow{AB} \cdot \overrightarrow{AD}) + \|\overrightarrow{AB}\|^{2} + \|\overrightarrow{AD}\|^{2} - 2(\overrightarrow{AB} \cdot \overrightarrow{AD})$$

$$= 2\|\overrightarrow{AB}\|^{2} + 2\|\overrightarrow{AD}\|^{2}$$

$$= AB^{2} + BC^{2} + CD^{2} + AD^{2}.$$

3. En développant les expressions $\|\overrightarrow{w} - \overrightarrow{u}\|^2$ et $\|\overrightarrow{w} - \overrightarrow{v}\|^2$, on a

$$\|\overrightarrow{w} - \overrightarrow{u}\|^2 = \|\overrightarrow{w}\|^2 + \|\overrightarrow{u}\|^2 - 2(\overrightarrow{w} \cdot \overrightarrow{u}) \quad \text{et} \quad \|\overrightarrow{w} - \overrightarrow{v}\|^2 = \|\overrightarrow{w}\|^2 + \|\overrightarrow{v}\|^2 - 2(\overrightarrow{w} \cdot \overrightarrow{v})$$

D'autre part,

$$\begin{split} \frac{1}{2} \|\overrightarrow{u} - \overrightarrow{v}\|^2 &= \frac{1}{2} \left(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} \right) \\ &= \frac{1}{2} \|\overrightarrow{u}\|^2 + \frac{1}{2} \|\overrightarrow{v}\|^2 - \overrightarrow{u} \cdot \overrightarrow{v}, \end{split}$$

et

$$\begin{split} \left\|\overrightarrow{w} - \frac{\overrightarrow{u} + \overrightarrow{v}}{2}\right\|^2 &= \|\overrightarrow{w}\|^2 + \|\frac{\overrightarrow{u} + \overrightarrow{v}}{2}\|^2 - 2\overrightarrow{w} \cdot (\frac{\overrightarrow{u} + \overrightarrow{v}}{2}) \\ &= \|\overrightarrow{w}\|^2 + \frac{1}{4} \left(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v}) \right) - \overrightarrow{w} \cdot \overrightarrow{u} - \overrightarrow{w} \cdot \overrightarrow{v}. \end{split}$$

En sommant les deux égalité précédentes,

$$\frac{1}{2} \|\overrightarrow{u} - \overrightarrow{v}\|^{2} + 2 \|\overrightarrow{w} - \frac{\overrightarrow{u} + \overrightarrow{v}}{2}\|^{2} = \left(\frac{1}{2} \|\overrightarrow{u}\|^{2} + \frac{1}{2} \|\overrightarrow{v}\|^{2} - \overrightarrow{u} \cdot \overrightarrow{v}\right)
+ 2 \left(\|\overrightarrow{w}\|^{2} + \frac{1}{4} \left(\|\overrightarrow{u}\|^{2} + \|\overrightarrow{v}\|^{2} + 2(\overrightarrow{u} \cdot \overrightarrow{v})\right) - \overrightarrow{w} \cdot \overrightarrow{u} - \overrightarrow{w} \cdot \overrightarrow{v}\right)
= \|\overrightarrow{u}\|^{2} + \|\overrightarrow{v}\|^{2} + 2\|\overrightarrow{w}\|^{2} - \overrightarrow{u} \cdot \overrightarrow{v} + 2\frac{2}{4}\overrightarrow{u} \cdot \overrightarrow{v} - 2\overrightarrow{w} \cdot \overrightarrow{u} - 2\overrightarrow{w} \cdot \overrightarrow{v}
= \|\overrightarrow{u}\|^{2} + \|\overrightarrow{v}\|^{2} + 2\|\overrightarrow{w}\|^{2} - 2\overrightarrow{w} \cdot \overrightarrow{u} - 2\overrightarrow{w} \cdot \overrightarrow{v}
= \|\overrightarrow{w}\|^{2} + \|\overrightarrow{u}\|^{2} - 2\overrightarrow{w} \cdot \overrightarrow{u} + \|\overrightarrow{w}\|^{2} + \|\overrightarrow{v}\|^{2} - 2\overrightarrow{w} \cdot \overrightarrow{v}
= \|\overrightarrow{w} - \overrightarrow{u}\|^{2} + \|\overrightarrow{w} - \overrightarrow{v}\|^{2}$$

Géométriquement, si ABCD est un parallélogramme et que I est le milieu de BC alors

$$AB^2 + AC^2 = \frac{1}{2}BC^2 + 2AI^2.$$

C'est une reformulation de l'identité du parallélogramme.

Exercice 8. Soit $x \in \mathbb{R}$. Soient $\overrightarrow{u} = \overrightarrow{M_1 M_2}$ et $\overrightarrow{v} = \overrightarrow{M_1 M_3}$.

$$M_1, M_2$$
 et M_3 sont alignés. $\iff \overline{M_1M_2} /\!\!/ \overline{M_1M_3}$ $\iff [\overline{M_1M_2}, \overline{M_1M_3}] = 0$ $\iff 1 \times (x^3 - x) - 3 \times (x^2 - x) = 0$ $\iff x^3 - x - 3x^2 + 3x = 0$ $\iff x (x^2 + 2 - 3x) = 0$ $\iff x(x - 1)(x - 2) = 0$ $\iff x = 0 \text{ ou } x = 1 \text{ ou } x = 2.$

Exercice 9. Notons R > 0 le rayon du cercle C et Ω son centre. Soit H le projeté orthogonal de M sur la droite d. D'après le cours, on distingue trois cas.

- Cas n°1: $d \cap C = \emptyset$. Les points P et P' n'existent donc pas.
- Cas n $^{\circ}$ 2 : $d \cap C = \{P\}$. Les points P et P' sont donc confondus et les droites (ΩP) et (MP) sont perpendiculaires. Ainsi en considérant le triangle ΩPM rectangle en P, on a

$$\overrightarrow{MP} \cdot \overrightarrow{MP'} = \|\overrightarrow{MP}\|^2$$

$$= \|\overrightarrow{\Omega M}\|^2 - \|\overrightarrow{\Omega P}\|^2$$

$$= \|\overrightarrow{\Omega M}\|^2 - R^2.$$

Ce dernier nombre étant indépendant du choix de la droite d.

• Cas n ° 3 : $d \cap C = \{P, P'\}$ et $P \neq P'$. Soit I = m([PP']) le milieu du segment [PP']. Les points Ω et I sont donc sur la médiatrice du segment [PP']. Ainsi $(\Omega I) \perp (PP')$ et donc

$$\begin{split} \overrightarrow{MP} \cdot \overrightarrow{MP'} &= \left(\overrightarrow{MI} + \overrightarrow{IP} \right) \cdot \left(\overrightarrow{MI} + \overrightarrow{IP'} \right) \\ &= \|\overrightarrow{MI}\|^2 + \overrightarrow{MI} \cdot \overrightarrow{IP'} + \overrightarrow{IP} \cdot \overrightarrow{MI} + \overrightarrow{IP} \cdot \overrightarrow{IP'} \\ &= \|\overrightarrow{MI}\|^2 - \|\overrightarrow{IP}\|^2 \quad (car \ I = m([PP'])) \\ &= \left(\|\overrightarrow{\Omega M}\|^2 - \|\overrightarrow{\Omega I}\|^2 \right) - \left(\|\overrightarrow{\Omega P}\|^2 - \|\overrightarrow{\Omega I}\|^2 \right) \\ &= \|\overrightarrow{\Omega M}\|^2 - \|\overrightarrow{\Omega P}\|^2 \\ &= \|\overrightarrow{\Omega M}\|^2 - R^2 \end{split}$$

Ce dernier nombre étant encore indépendant du choix de la droite d.

Exercice 10. Soit M le point d'intersection des hauteurs du triangles ABC issues de A et B. Montrons que M est aussi un point de la hauteur issue de C dans le même triangle ABC.

$$\overrightarrow{MC} \cdot \overrightarrow{AB} = \overrightarrow{MA} \cdot \overrightarrow{AB} + \overrightarrow{AC} \cdot \overrightarrow{AB}$$

$$= \overrightarrow{MA} \cdot \overrightarrow{AC} + \overrightarrow{MA} \cdot \overrightarrow{CB} + \overrightarrow{AC} \cdot \overrightarrow{AB}$$

$$= \overrightarrow{MA} \cdot \overrightarrow{AC} + \overrightarrow{AC} \cdot \overrightarrow{AB}$$

$$= \overrightarrow{MB} \cdot \overrightarrow{AC} + \overrightarrow{BA} \cdot \overrightarrow{AC} + \overrightarrow{AC} \cdot \overrightarrow{AB}$$

$$= \overrightarrow{0} .$$

On en déduit que $(MC) \perp (AB)$ et donc la droite (MC) et la hauteur issue de C dans le triangle ABC sont confondues. Par suite les hauteurs du triangle ABC sont concourantes.

Exercice 11.

1. On trace les données de l'énoncé.

- 2. Par construction le point B' appartient à la droite (AC). Ainsi, son absicce est nulle et donc il existe $\beta \in \mathbb{R}$ tel que $B'(0,\beta)$. De même $C' \in (AB)$ donc $\exists \gamma \in \mathbb{R}, C'(\gamma,0)$.
- 3. Soit M(x,y) un point du plan. On a

$$M \in (d) \iff [\overrightarrow{B'M}, \overrightarrow{B'C'}] = 0$$
$$\iff -\beta x - \gamma (y - \beta) = 0$$
$$\iff \beta x + \gamma y - \beta \gamma = 0.$$

De même,

$$\begin{aligned} M \in (BC) &\iff & [\overrightarrow{BM}, \overrightarrow{BC}] = 0 \\ &\iff & x + y = 1. \end{aligned}$$

4. Le point $A'(x_{A'}, y_{A'})$ étant l'intersection des droites (d) et (BC), on en déduit que $y_{A'} = 1 - x_{A'}$ et $\beta x_{A'} + \gamma (1 - x_{A'}) - \beta \gamma = 0$. Autrement dit,

$$x_{A'} = \frac{\gamma(1-\beta)}{\gamma-\beta}$$
 et $y_{A'} = \frac{\beta(\gamma-1)}{\gamma-\beta}$.

Pour le point $D(x_D, y_D)$, on utilise les parallélismes de l'énoncé. D'une part $(AD) /\!\!/ (BC)$ et d'autre part $(A'D) /\!\!/ (AB)$. On obtient alors $[\overrightarrow{AD}, \overrightarrow{BC}] = 0$ c'est-à-dire $x_D + y_D = 0$ et $y_D - y_{A'} = 0$. Ainsi,

$$x_D = \frac{\beta(1-\gamma)}{\gamma-\beta}$$
 et $y_D = \frac{\beta(\gamma-1)}{\gamma-\beta}$.

Pour le point $E(x_E, y_E)$, on a (AE) / (BC) et (A'E) / (AC) et donc

$$x_E = \frac{\gamma(1-\beta)}{\gamma-\beta}$$
 et $y_E = \frac{\gamma(\beta-1)}{\gamma-\beta}$.

5. On souhaite montrer que (B'D) et (C'E) sont parallèles. Autrement dit, il suffit de montrer que $[\overrightarrow{B'D}, \overrightarrow{C'E}] = 0$. En développant, ce calcul de produit mixte, on obtient le parallélisme des droites (B'D) et (C'E).

Exercice 12.

- 1. On remarque que $BC^2 = 4a^2$ et que $AC^2 + AB^2 = a^2 + 3a^2 = BC^2$. AInsi à l'aide du théorème de Pythagore, on en déduit que ABC est un triangle rectangle en A.
- 2. Soit M un point du plan. En introduisant un point intermédiaire avec la relation de Chalses, on a

$$-4MA^{2} + 3MB^{2} + MC^{2} = -4MA^{2} + 3(\overrightarrow{MA} + \overrightarrow{AB})^{2} + (\overrightarrow{MA} + \overrightarrow{AC})^{2}$$

$$= (-4 + 3 + 1)MA^{2} + 3AB^{2} + AC^{2} + 6\overrightarrow{MA} \cdot \overrightarrow{AB} + 2\overrightarrow{MA} \cdot \overrightarrow{AC}$$

$$= 3a^{2} + 3a^{2} + \overrightarrow{MA} \cdot \left(6\overrightarrow{AB} + 2\overrightarrow{AC}\right)$$

$$= 6a^{2} + \overrightarrow{MA} \cdot \left(6\overrightarrow{AB} + 2\overrightarrow{AC}\right).$$

Ainsi,

$$-4MA^2 + 3MB^2 + MC^2 = 6a^2 \quad \Longleftrightarrow \quad \overrightarrow{MA} \cdot \left(6\overrightarrow{AB} + 2\overrightarrow{AC} \right) = 0.$$

L'ensemble recherché est donc la droite passant par A dont un vecteur normal est $6\overrightarrow{AB} + 2\overrightarrow{AC}$.

3. Soit M un point du plan. En introduisant le point intermédiaire C,

$$\begin{array}{rcl} -4MA^2 + 3MB^2 + MC^2 & = & -4(\overrightarrow{MC} + \overrightarrow{CA})^2 + 3(\overrightarrow{MC} + \overrightarrow{CB})^2 + MC^2 \\ & = & (-4+3+1)MC^2 - 4CA^2 + 3CB^2 - 8\overrightarrow{MC} \cdot \overrightarrow{CA} + 6\overrightarrow{MC} \cdot \overrightarrow{CB} \\ & = & -4 \times 3a^2 + 12a^2 + \overrightarrow{MC} \cdot \left(8\overrightarrow{AC} + 6\overrightarrow{CB} \right) \\ & = & \overrightarrow{MC} \cdot \left(8\overrightarrow{AC} + 6\overrightarrow{CB} \right). \end{array}$$

Ainsi,

$$-4MA^2 + 3MB^2 + MC^2 = 0 \iff \overrightarrow{MC} \cdot \left(8\overrightarrow{AC} + 6\overrightarrow{CB} \right) = 0.$$

L'ensembe des points recherchés est donc la droite passant par C dont un vecteur normal est $8\overrightarrow{AC} + 6\overrightarrow{CB}$.

3 Transformations

Exercice 13.

- 1. Le module de a est 2 et à l'aide de la forme exponentielle, on a $a=2e^{-i\frac{\pi}{6}}$, on en déduit qu'un argument de a est $-\frac{\pi}{6}$.
- 2. Soit $z \in \mathbb{C}$. D'après le cours, on peut dire que $f(z) = e^{i\frac{\pi}{4}}z$.
- 3. Si B=r(A) est d'affixe b, alors $b=f(a)=e^{i\frac{\pi}{4}}a=2e^{i\frac{\pi}{12}}.$ Par ailleurs,

$$b = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)(\sqrt{3} - i)$$
$$= \frac{\sqrt{2}}{2}(1+i)(\sqrt{3} - i)$$
$$= \frac{\sqrt{6} + \sqrt{2}}{2} + i\frac{\sqrt{6} - \sqrt{2}}{2}.$$

4. D'après la question précédente, en identifiant la partie réelle et la partie imaginaire de b, on a

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{2}$$
 et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{2}$

Exercice 14. En appliquant les formules du cours, on obtient directement les résultats demandés.

1. f est représentée par $z \mapsto \frac{-1}{3}(z-4i)+4i$.

- 2. g est représentée par $z \mapsto e^{i\frac{3\pi}{4}}(z+2) 2$.
- 3. h est représentée par $z \mapsto z + (4-2i)$.

 $r_{\theta} \circ t \circ r_{-\theta} = s$. Par suite

Exercice 15.

1. **Méthode géométrique.** Soit d une droite formant un angle θ avec l'axe des abscisses. On note r_{θ} la rotation d'angle θ dans le plan, $r_{-\theta}$ la rotation d'angle $-\theta$, t la symétrie d'axe d et s la symétrie d'axe (Ox). Par définition $r_{-\theta}$ transforme d en l'axe des abscisses et r_{θ} transforme l'axe des abscisses en la droite d. Ainsi,

$$t = r_{-\theta} \circ s \circ r_{\theta},$$

et donc t est représentée par l'application $z\mapsto e^{i\theta}\overline{e^{-i\theta}z}$ autrement dit

$$z \longmapsto e^{2i\theta}\bar{z}$$

Méthode analytique. On se place dans le repère $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$. On considère les vecteurs

$$\overrightarrow{u}_{\theta} = \cos(\theta)\overrightarrow{i} + \sin(\theta)\overrightarrow{j}$$
 et $\overrightarrow{v}_{\theta} = -\sin(\theta)\overrightarrow{i} + \cos(\theta)\overrightarrow{j}$

Par un calcul (ou bien une interprétation géométrique en terme de rotation), on obtient

$$\overrightarrow{i} = \cos(\theta) \overrightarrow{u}_{\theta} - \sin(\theta) \overrightarrow{v}_{\theta} \quad \text{et} \quad \overrightarrow{j} = \sin(\theta) \overrightarrow{u}_{\theta} + \cos(\theta) \overrightarrow{v}_{\theta}$$

Soit M un point du plan tel que $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j}$. Dans ce cas

$$\overrightarrow{OM} = (x\cos(\theta) + y\sin(\theta)) \overrightarrow{u}_{\theta} + (-x\sin(\theta) + y\cos(\theta)) \overrightarrow{v}_{\theta}.$$

Or $\overrightarrow{u}_{\theta}$ est un vecteur directeur de la droite d et $\overrightarrow{v}_{\theta}$ est un vecteur orthogonal à $\overrightarrow{u}_{\theta}$. En notant M' le symétrique de M par la droite d, on a donc

$$\overrightarrow{OM'} = (x\cos(\theta) + y\sin(\theta)) \overrightarrow{u}_{\theta} - (-x\sin(\theta) + y\cos(\theta)) \overrightarrow{v}_{\theta}$$

$$= (x\cos(\theta) + y\sin(\theta)) \overrightarrow{u}_{\theta} + (x\sin(\theta) - y\cos(\theta)) \overrightarrow{v}_{\theta}$$

$$= (x\cos(\theta) + y\sin(\theta)) \left(\cos(\theta) \overrightarrow{i} + \sin(\theta) \overrightarrow{j}\right)$$

$$+ (x\sin(\theta) - y\cos(\theta)) \left(-\sin(\theta) \overrightarrow{i} + \cos(\theta) \overrightarrow{j}\right)$$

$$= \left[x\cos^{2}(\theta) + y\sin(\theta)\cos(\theta)$$

$$-x\sin^{2}(\theta) + y\cos(\theta)\sin(\theta)\right] \overrightarrow{i}$$

$$+ \left[x\cos(\theta)\sin(\theta) + y\sin^{2}(\theta)$$

$$+x\sin(\theta)\cos(\theta) - y\cos^{2}(\theta)\right] \overrightarrow{j}$$

$$= (x\cos(2\theta) - y\sin(2\theta)) \overrightarrow{i} + (x\sin(2\theta) - y\cos(2\theta)) \overrightarrow{j}.$$

Finalement, dans le repère \mathcal{R} , si M est d'affixe z alors M' est d'affixe $e^{2i\theta}\bar{z}$.

2. En notant d_1 une droite passant par l'origine formant un angle θ_1 avec l'axe des abscisses et d_2 une droite passant par l'origine formant un angle θ_2 avec l'axe des abscisses. La transformation du plan $t = s_1 \circ s_2$ est donc représentée d'après la question précédente par $z \mapsto e^{2i\theta_1} \overline{e^{2i\theta_2}\overline{z}}$, c'est-à-dire par l'application

$$z \mapsto e^{2i(\theta_1 - \theta_2)}z,$$

3. Soit A le point d'intersection des droites. Quitte à effectuer une translation de vecteur \overrightarrow{OA} , on est ramené au problème précédent. En notant a l'affixe du point A dans le repère canonique, θ_1 et θ_2 respectivement l'angle formé par la première (respectivement la seconde) droite avec la droite parallèle à l'axe des abscisses passant par A, on obtient une représentation complexe définie par

$$z \mapsto e^{2i(\theta_1 - \theta_2)}(z - a) + a$$

Exercice 16. À l'aide des propriétés du cours, on obtient les représentations complexe des transformations du plan

- $h: z \mapsto -\sqrt{2}(z-3+i) + 3 i$.
- $r: z \mapsto e^{i\frac{3\pi}{4}} (z 2i) + 2i$.
- $t: z \mapsto z 2i$.

On en déduit que pour tout $z \in \mathbb{C}$,

$$\begin{split} s(z) &= t \circ r(h(z)) \\ &= t \circ r(-\sqrt{2}(z-3+i)+3-i) \\ &= t \left(e^{i\frac{3\pi}{4}}(-\sqrt{2}(z-3+i)+3-i-2i)+2i\right) \\ &= -\sqrt{2}e^{i\frac{3\pi}{4}}(z-3+i)+3(1-i)e^{i\frac{3\pi}{4}} \\ &= -\sqrt{2}e^{i\frac{3\pi}{4}}(z-3+i)+3\sqrt{2}e^{-i\frac{\pi}{4}}e^{i\frac{3\pi}{4}} \\ &= -\sqrt{2}e^{i\frac{3\pi}{4}}(z-3+i)+3\sqrt{2}i \\ &= -(-1+i)(z-3+i)+3\sqrt{2}i \\ &= (1-i)z-2+4i+3\sqrt{2}i. \end{split}$$

Soit M un point du pan d'affixe complexe $z \in \mathbb{C}$.

$$s(M) = O \iff (1-i)z - 2 + 4i + 3\sqrt{2}i = 0$$
$$\iff z = \frac{2 - 4i - 3\sqrt{2}i}{1 - i}.$$

De même

$$s(M) = M \iff (1-i)z - 2 + 4i + 3\sqrt{2}i = z$$

$$\iff z = \frac{-2 + 4i + 3\sqrt{2}i}{i}$$

$$\iff z = 2i + 4 + 3\sqrt{2}.$$

Exercice 17. En toute généralité, on considère $t: z \mapsto z + a$ et $h: z \mapsto \lambda(z-a) + a$, avec $(a, \lambda) \in \mathbb{C} \times \mathbb{R}^*$. Soient $z_1 = r_1 e^{i\theta_1}, z_2 = r_2 e^{i\theta_2}$ et *u* trois nombres complexes. On a alors

$$\frac{t(z_1) - t(u)}{t(z_2) - t(u)} = \frac{z_1 - u}{z_2 - u}.$$

Ainsi l'angle formé par les points d'affixe z_1 , u et z_2 est le même que celui formé par les points $t(z_1)$, t(u) et $t(z_2)$. De plus,

$$\frac{h(z_1) - h(u)}{h(z_2) - h(u)} = \frac{\lambda(z_1 - u)}{\lambda(z_2 - u)}.$$

Ainsi l'angle formé par les points d'affixe z_1, u et z_2 est le même que celui formé par les points $h(z_1), h(u)$ et $h(z_2)$.

1. Montrons que f est bien définie. Soit $M \in \mathcal{P}^*$. Soit (r, θ) d'un point $\in \mathcal{P}^*$. La difficulté ici est de Exercice 18. prouver que le point dont un système de coordonnées polaire est $(\frac{k}{r},\theta)$ ne dépend pas du choix de (r,θ) . Soit (r',θ') un autre système de coordonnées polaires du point M. Alors on a

$$\theta = \theta'[\pi]$$
 et $|r| = |r'|$.

Ainsi,

$$\left\{ \begin{array}{l} \theta = \theta' + \pi[2\pi] \\ r = -r' \end{array} \right. \quad \text{ou} \quad \left\{ \begin{array}{l} \theta = \theta'[2\pi] \\ r = r' \end{array} \right.$$

- Dans les deux cas, on obtient que $(\frac{k}{r'}, \theta')$ est aussi un système de coordonnées polaire du point M'. 2. Soit $M \in \mathcal{P}^*$ un point dont un système de coordonnées polaire est (r, θ) . Un système de coordonnées polaire du point M' = f(M) est $(\frac{k}{r}, \theta)$. On remarque alors qu'un système de coordonnées polaire du point M'' = f(M')est $\left(\frac{k}{\underline{k}},\theta\right)$ c'est-à-dire (r,θ) . Ainsi M''=M et donc $f\circ f(M)=M$. Comme ceci est vrai pour tout $M\in\mathcal{P}^*$ on a $f \circ f = \operatorname{Id}_{\mathcal{P}^*}$. On a donc montré que f est bijective et que sa bijection réciproque est elle-même. 3. Un point $M \in \mathcal{P}^*$ est invariant par f si et seulement si f(M) = M. Ainsi si (r, θ) est un système de coordonnées
- polaire de M alors M est invariant par f si et seulement si $\frac{k}{r}e^{i\theta} = re^{i\theta}$ (égalité des affixes) donc si et seulement si $r^2 = k$. Les points invariants par f sont les points du cercle de centre O et de rayon \sqrt{k} . On dit que ce cercle est le cercle d'inversion de f.

Attention à ne pas écrire $\left(\frac{k}{r},\theta\right)=(r,\theta)$ car un point M peut avoir plusieurs systèmes de coordonnées polaires différents. C'est pour cela qu'on travaille avec les affixes qui sont uniques.

4. Soit $M \in \mathcal{P}^*$ d'affixe z. Un système de coordonnées polaires de M est (r,θ) où $z = re^{i\theta}$. L'affixe z' de f(M) est

$$z' = \frac{k}{r}e^{i\theta} = \frac{k}{re^{-i\theta}} = \frac{k}{\bar{z}}.$$

Notons a, b, a' et b' les affixes des points A, B, A' et B'. On a $a' = \frac{k}{\bar{a}}$ et $b' = \frac{k}{\bar{b}}$. On obtient alors

$$A'B' = |b' - a'|$$

$$= \left|\frac{k}{\bar{b}} - \frac{k}{\bar{a}}\right|$$

$$= k \left|\frac{1}{\bar{b}} - \frac{1}{\bar{a}}\right| \quad \operatorname{car} k \in \mathbb{R}^{+*}$$

$$= k \left|\left(\frac{1}{b} - \frac{1}{a}\right)\right|$$

$$= k \left|\left(\frac{1}{b} - \frac{1}{a}\right)\right|$$

$$= k \left|\frac{a - b}{ab}\right|$$

$$= k \frac{|a - b|}{|a| |b|}$$

$$= k \frac{AB}{OA \times OB}$$

5. Soient $M \in \mathcal{P}^*$ et M' = f(M). En notant $z = re^{i\theta}$ l'affixe de M, on en déduit que M' est d'affixe $\frac{k}{r}e^{i\theta}$. On en déduit que barzz' = k. Ainsi, \overrightarrow{OM} et $\overrightarrow{OM'}$ sont colinéaires et

$$\overrightarrow{OM} \cdot \overrightarrow{OM'} = \operatorname{Re}(barzz')$$

= k .

- 6. (a) On note $\Delta' = \Delta \setminus \{O\}$. Si M est un point de Δ' alors M' = f(M) est (d'après la question précédente) un point de la droite (OM) tel que $\overrightarrow{OM} \cdot \overrightarrow{OM'} = k$. Or $\Delta = (OM)$ donc $M' \in \Delta'$. Ceci prouve que $f(\Delta') \subset \Delta'$. En appliquant f, puisque $f \circ f = \mathrm{Id}_{\mathcal{P}^*}$, on obtient $\Delta' \subset f(\Delta')$ et donc l'égalité souhaitée.
 - (b) Soit ax + by + c = 0 une équation cartésienne de la droite Δ . Puisque $O \not\in \Delta$, on en déduit que $(a, b) \neq (0, 0)$ et que $c \neq 0$.
 - Si $M(x,y) \in \Delta$ et M'(x',y') = f(M) alors f(f(M)) = M et donc

$$x = \frac{x'}{x'^2 + y'^2}$$
 et $y = \frac{y'}{x'^2 + y'^2}$.

Ainsi puisque $M \in \Delta$, on obtient

$$ax' + by' + c(x'^2 + y'^2) = 0,$$

c'est-à-dire

$$x'^{2} + y'^{2} + \frac{a}{c}x' + \frac{b}{c}y' = 0.$$

Il s'agit de l'équation d'un cercle passant par O qu'on notera \mathcal{C} .

• Réciproquement, si $M'(x', y') \in \mathcal{C} \setminus \{O\}$, son antécédent M(x, y) par f vérifie ax + by + c = 0.

Finalement, $f(\Delta) = \mathcal{C}$.

- (c) En utilisant le fait que $f \circ f = \operatorname{Id}_{\mathcal{P}^*}$, on obtient le résultat souhité. (d) L'image du cercle $\mathcal{C} \mid x^2 + y^2 + ax + by + c = 0$ avec $c \neq 0$ est le cercle $\mathcal{C}' \mid 1 + ax + by + c(x^2 + y^2) = 0$.
- 7. Soient trois points distincts A, B et C. On sait que f transforme un cercle passant par O en une droite ne passant pas par O. On définit

$$A' = f(A), B' = f(B)$$
 et $C' = f(C)$.

OA BC, OB AC et OC AB D'après l'étude précédente,

$$A'B' = k \frac{AB}{OA \times OB},$$

et donc

$$OC \ AB = OA \ BC + OB \ AC \iff \frac{AB}{OA \ OB} = \frac{BC}{OB \ OC} + \frac{AC}{OA \ OC}$$

$$\iff A'B' = B'C' + A'C'.$$

Ainsi les points O, A, B et C sont cocycliques si et seulement B', C', D' sont alignés c'est-à-dire si et seulement si parmi els trois quantité A'B', B'C' et A'C' l'une est la somme des deux autres.

4 Distances

Exercice 19. Soit $\Omega(2,4)$ le centre du cercle \mathcal{C} . On calcule la distance du point Ω à la droite d. On obtient

$$d(\Omega, d) = \frac{|2+4-4|}{\sqrt{1^2+1^2}} = \sqrt{2}.$$

Ainsi

- Si $R > \sqrt{2}$ alors $\mathcal{C} \cap d = \emptyset$.
- Si $R = \sqrt{2}$ alors d est tangente au cercle \mathcal{C} et le coupe en un unique point.
- Si $R < \sqrt{2}$ alors d coupe le cerlce \mathcal{C} en deux points distincts.

Exercice 20. On sait que d est dirigée par le vecteur $\overrightarrow{AB}(2,1)$ et passe par A. Ainsi on peut écrire

$$d \mid x - 2y - 1 = 0.$$

Pour déterminer la distance de M à la droite d on utilise l'égalité

$$d(M,d) = \frac{|1-2-1|}{\sqrt{1^2+2^2}} = \frac{2\sqrt{5}}{5}.$$

Exercice 21. On a $\mathcal{D} \mid 3x - 4y + 4 = 0$ et $\mathcal{D}' \mid 12x + 5y - 5 = 0$. Soit M(x, y) un point du plan. On a alors

$$d(M, \mathcal{D}) = \frac{|3x - 4y + 4|}{\sqrt{9 + 16}} = \frac{|3x - 4y + 4|}{5}$$

et

$$d(M, \mathcal{D}') = \frac{|12x + 5y - 5|}{\sqrt{144 + 25}} = \frac{|12x + 5y - 5|}{13}.$$

On en déduit que

$$M \in \mathcal{E} \iff \frac{|3x - 4y + 4|}{5} = \frac{|12x + 5y - 5|}{13}$$

$$\iff 13|3x - 4y + 4| = 5|12x + 5y - 5|$$

$$\iff 39x - 52y + 52 = 60x + 25y - 25 \text{ ou } 39x - 52y + 52 = -60x - 25y + 25$$

$$\iff 21x + 77y - 77 = 0 \text{ ou } 99x - 27y + 27 = 0$$

$$\iff 3x + 11y - 11 = 0 \text{ ou } 11x - 3y + 3 = 0.$$

Par suite \mathcal{E} est l'union des droites d_1 et d_2 définies par

$$d_1 \mid 3x + 11y - 11 = 0$$
 et $d_2 \mid 11x - 3y + 3 = 0$.

Exercice 22. Soit M(x, y) un point du plan. Pour tout nombre réel λ , on définit $f(\lambda) = d(M, \mathcal{D}_{\lambda})$. Par une formule du cours,

$$f(\lambda) = \frac{\left| (1 - \lambda^2)x + 2\lambda y - 4\lambda - 2 \right|}{\sqrt{(1 - \lambda^2)^2 + 4\lambda^2}}$$
$$= \frac{\left| (1 - \lambda^2)x + 2\lambda y - 4\lambda - 2 \right|}{1 + \lambda^2}.$$

On procède par analayse synthèse en supposant que M est équidistant de toutes les droites $(\mathcal{D}_{\lambda})_{\lambda \in \mathbb{R}}$. Ainsi f est une application constante. Or

$$f(1) = \frac{|2y - 6|}{2}$$
 et $f(2) = f(1) = \frac{|-2y + 2|}{2}$,

donc

$$|y-3| = |y-1|$$
.

On a donc y qui est un nombre réel équidistant de 1 et 3 donc y=2 et donc f(1)=1. De même en évaluant f en 0 et $\sqrt{3}$, on obtient

$$|x-2| = f(1) = 1$$
 et $\frac{|x+1|}{2} = 1$.

On en déduit l'égalité x = 1.

Finalement si M est équidistant de toutes les droites $(\mathcal{D}_{\lambda})_{\lambda \in \mathbb{R}}$ alors M(1,2). Réciproquement, si M(1,2) alors pour tout $\lambda \in \mathbb{R}$,

$$f(\lambda) = \frac{\left| (1 - \lambda^2) \times 1 + 2\lambda \times 2 - 4\lambda - 2 \right|}{1 + \lambda^2}$$
$$= \frac{\left| 1 - \lambda^2 - 2 \right|}{1 + \lambda^2}$$
$$= \frac{\left| -\lambda^2 - 1 \right|}{1 + \lambda^2}$$
$$= 1$$

Donc l'application f est constante. Par définiton de f cela signifie que M est équidistant de toutes les droites $(\mathcal{D}_{\lambda})_{\lambda \in \mathbb{R}}$.

Exercice 23.

1. Soit M(x,y) un point du plan. Soit $m \in \mathbb{R} \setminus \{-1\}$. L'équation donnée pour définir \mathcal{C}_m est une expression polynômiale de degré deux. On met cette expression sous forme canonique.

$$M \in \mathcal{C}_m \iff x^2 + y^2 - 4mx - 2my + \frac{9m^2}{2} - m - \frac{1}{2} = 0$$

$$\iff (x - 2m)^2 - 4m^2 + (y - m)^2 + m^2 + \frac{9m^2}{2} - m - \frac{1}{2} = 0$$

$$\iff (x - 2m)^2 + (y - m)^2 = \frac{m^2}{2} + m + \frac{1}{2}$$

$$\iff (x - 2m)^2 + (y - m)^2 = \frac{1}{2}(m + 1)^2.$$

On est donc en présence d'une équation cartésienne du cercle de centre $\Omega_m(2m,m)$ et de rayon $R_m = \frac{|m+1|}{\sqrt{2}}$.

- 2. Dans le cas où m=-1, le rayon du cercle \mathcal{C}_m est nul et donc \mathcal{C}_m est un cercle réduit à un point.
- 3. Soit $\mathcal{D} \mid y = x + 1$. Soit $m \in \mathbb{R} \setminus \{-1\}$. On a

$$d(\Omega_m, \mathcal{D}) = \frac{|2m+1-m|}{\sqrt{2}} = R_m.$$

Ainsi la droite \mathcal{D} est tangente au cercle \mathcal{C}_m .

4. Soit $T \mid ax + by + c = 0$ une droite du plan où $a, b, c \in \mathbb{R}$. EN procédant par analyse synthèse, on cherche des conditions sur a, b et c pour que T soit une droite tangente à tous les cercles $(\mathcal{C}_m)_{m \in \mathbb{R} \setminus \{-1\}}$. Pour tout $m \in \mathbb{R} \setminus \{-1\}$, on note

$$f(m) = d(\Omega_m, T) = \frac{|2am + bm + c|}{\sqrt{a^2 + b^2}}.$$

À l'aide de f, pour tout $m \in \mathbb{R} \setminus \{-1\}$, T est tangente à \mathcal{C}_m si et seulement si $f(m) = R_m$.

De plus,

$$f(m) = R_m \iff \frac{|2am + bm + c|}{\sqrt{a^2 + b^2}} = R_m$$

$$\iff \frac{|2am + bm + c|}{\sqrt{a^2 + b^2}} = \frac{|m + 1|}{\sqrt{2}}$$

$$\iff \frac{2am + bm + c}{\sqrt{a^2 + b^2}} = \frac{m + 1}{\sqrt{2}} \text{ ou } \frac{2am + bm + c}{\sqrt{a^2 + b^2}} = -\frac{m + 1}{\sqrt{2}}$$

$$\iff \begin{cases} 2a + b = \sqrt{\frac{a^2 + b^2}{2}} \\ c = \sqrt{\frac{a^2 + b^2}{2}} \end{cases} \text{ ou } \begin{cases} 2a + b = -\sqrt{\frac{a^2 + b^2}{2}} \\ c = \sqrt{\frac{a^2 + b^2}{2}} \end{cases}$$

$$\iff \begin{cases} 2a + b = \sqrt{\frac{a^2 + b^2}{2}} \\ c = \sqrt{\frac{a^2 + b^2}{2}} \end{cases} \text{ ou } 2a + b = -\sqrt{\frac{a^2 + b^2}{2}}$$

$$\iff \begin{cases} (2a + b)^2 = \frac{a^2 + b^2}{2} \\ c = \sqrt{\frac{a^2 + b^2}{2}} \end{cases}$$

$$\iff \begin{cases} 7a^2 + 8ba + b^2 = 0 \\ c = \sqrt{\frac{a^2 + b^2}{2}} \end{cases} .$$

On reconnait une équation du second degré en a. On a $64b^2 - 28b^2 = (6b)^2 > 0$. D'où

$$7a^{2} + 8ba + b^{2} = 0 \iff a = \frac{-8b - 6b}{14} \text{ ou } a = \frac{-8b + 6b}{14}$$

 $\iff b = -a \text{ ou } b = -7a.$

Ainsi,

$$f(m) = R_m \iff \begin{cases} b = -a \\ c = |a| \end{cases} \text{ ou } \begin{cases} b = -7a \\ c = 2|a| \end{cases}$$

$$\iff T \mid ax - ay + |a| = 0 \text{ ou } T \mid ax - 7ay + 2|a| = 0.$$

Les droites tangente à tous les cercles sont donc de la forme

$$T \mid ax - ay + |a| = 0$$
 ou $T \mid ax - 7ay + 2|a| = 0$.

On remarque que la droite \mathcal{D} est bine de la première forme avec a=1.