Step	Algorithm: $C = AB^T + BA^T + C$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\frac{A_T}{A_B}\right), B \to \left(\frac{B_T}{B_B}\right), C \to \left(\frac{C_{TL}}{C_{BL}}\right)$ where A_T has 0 rows, B_T has 0 rows, C_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) $
3	while $m(C_{TL}) < m(C)$ do
2,3	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land m(C_{TL}) < m(C) $
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \begin{vmatrix} C_{TR} \\ C_{BR} \end{vmatrix}\right) \to \left(\frac{C_{00}}{c_{01}} \begin{vmatrix} c_{01} & C_{02} \\ C_{10} & c_{11} & c_{12} \\ C_{20} & c_{21} & C_{22} \end{vmatrix}\right) $ where a_1 has 1 row, b_1 has 1 row, γ_{11} is 1×1
6	$ \left\{ \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0 B_0^T + B_0 A_0^T + \hat{C}_{00} & \hat{c}_{01} & \hat{C}_{02} \\ a_1^T B_0^T + \hat{c}_{10}^T & \hat{\gamma}_{11} & \hat{c}_{12}^T \\ A_2 B_0^T + \hat{C}_{20} & \hat{c}_{21} & \hat{C}_{22} \end{pmatrix} $
8	$c_{01} = A_0(b_1^T)^T + B_0(a_1^T)^T + c_{01}^T$ $\gamma_{11} = a_1^T(b_1^T)^T + b_1^T(a_1^T)^T + \gamma_{11}$ $c_{10}^T = b_1^T A_0^T + c_{10}^T$ $C_{20} = A_2(b_1^T)^T + C_{20}^T$ $c_{21} = A_2 B_0^T + a_1^T B_0^T + C_{20}^T$
7	$ \left\{ \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0 B_0^T + B_0 A_0^T + \widehat{C}_{00} & A_0 (b_1^T)^T + B_0 (a_1^T)^T + \widehat{c}_{01} & \widehat{C}_{02} \\ a_1 B_0^T + b_1^T A_0^T + \widehat{c}_{10}^T & a_1^T (b_1^T)^T + b_1^T (a_1^T)^T + \widehat{\gamma}_{11} & \widehat{c}_{12}^T \\ A_2 (b_1^T)^T + A_2 B_0^T + \widehat{C}_{20} & A_2 B_0^T + a_1^T B_0^T + \widehat{c}_{21} & \widehat{C}_{22} \end{pmatrix} $
5b	$\left(\frac{A_{T}}{A_{B}}\right) \leftarrow \left(\frac{A_{0}}{a_{1}^{T}}\right), \left(\frac{B_{T}}{B_{B}}\right) \leftarrow \left(\frac{B_{0}}{b_{1}^{T}}\right), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10}^{T} \gamma_{11} c_{12}^{T}}\right)$
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{TL}) < m(C))$
1b	$\{C = AB^T + BA^T + \widehat{C} $ }

Step	Algorithm: $C = AB^T + BA^T + C$
1a	{
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$ \left\{ \begin{array}{c} \wedge \neg (\\ \end{array} \right.)$
1b	{

Step	Algorithm: $C = AB^T + BA^T + C$		
1a	$\{C=\widehat{C}$		}
4	where		
2			
3	while do		
2,3		\wedge	
5a	where		
6			
8			
7			
5b			
2			
	endwhile		
2,3		∧¬(
1b	$\{C = AB^T + BA^T + \widehat{C}$		}

Step	Algorithm: $C = AB^T + BA^T + C$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$
3	while do
2,3	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge \right.$
5a	where
6	
8	
7	
5b	
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land \neg () $
1b	$\left\{ C = AB^T + BA^T + \widehat{C} \right\}$

Step	Algorithm: $C = AB^T + BA^T + C$
1a	$\{C = \widehat{C}$
4	where
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$
3	while $m(C_{TL}) < m(C)$ do
2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge m(C_{TL}) < m(C) \end{array} \right\}$
5a	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge \neg (m(C_{TL}) < m(C)) \right\}$
1b	$\{C = AB^T + BA^T + \widehat{C} $ }

Step	Algorithm: $C = AB^T + BA^T + C$
1a	$\{C = \widehat{C}\}$
4	$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right), C o \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right)$ where A_T has 0 rows, B_T has 0 rows, C_{TL} is $0 imes 0$
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$
3	while $m(C_{TL}) < m(C)$ do
2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge m(C_{TL}) < m(C) \end{array} \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \right.$
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{TL}) < m(C))$
1b	$\{C = AB^T + BA^T + \widehat{C} $

Step	Algorithm: $C = AB^T + BA^T + C$	
1a	$\{C=\widehat{C}$	}
4	$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right), C o \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right)$ where A_T has 0 rows, B_T has 0 rows, C_{TL} is $0 imes 0$	
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$	
3	while $m(C_{TL}) < m(C)$ do	
2,3	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge m(C_{TL}) < m(C)$	
5a	$ \begin{pmatrix} A_T \\ A_B \end{pmatrix} \rightarrow \begin{pmatrix} A_0 \\ a_1^T \\ A_2 \end{pmatrix}, \begin{pmatrix} B_T \\ B_B \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \\ b_1^T \\ B_2 \end{pmatrix}, \begin{pmatrix} C_{TL} & C_{TR} \\ C_{BL} & C_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{pmatrix} $ where a_1 has 1 row, b_1 has 1 row, γ_{11} is 1 × 1	
6		
8		
7		$\left.\begin{array}{c} \\ \end{array}\right\}$
5b	$ \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10}^T \gamma_{11} c_{12}^T}\right) $	
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) $	
	endwhile	
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{TL}) < m(C))$	$\left. \right\}$
1b	$\{C = AB^T + BA^T + \widehat{C}$	}

Step	Algorithm: $C = AB^T + BA^T + C$
1a	$\{C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right), B \to \left(\frac{B_T}{B_B}\right), C \to \left(\frac{C_{TL}}{C_{BL}}\right)$ where A_T has 0 rows, B_T has 0 rows, C_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$
3	while $m(C_{TL}) < m(C)$ do
2,3	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge m(C_{TL}) < m(C)$
5a	where a_1 has 1 row, b_1 has 1 row, γ_{11} is 1×1
6	$ \left\{ \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0 B_0^T + B_0 A_0^T + \hat{C}_{00} & \hat{c}_{01} & \hat{C}_{02} \\ a_1^T B_0^T + \hat{c}_{10}^T & \hat{\gamma}_{11} & \hat{c}_{12}^T \\ A_2 B_0^T + \hat{C}_{20} & \hat{c}_{21} & \hat{C}_{22} \end{pmatrix} $
8	
7	
5b	$ \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10} \gamma_{11} c_{12}^T}\right) \\ \frac{c_{10} c_{12} c_{12}}{C_{20} c_{21} c_{22}}\right) $
2	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{TL}) < m(C)) $
1b	$\{C = AB^T + BA^T + \widehat{C} $ }

Step	Algorithm: $C = AB^T + BA^T + C$	
1a	$\{C=\widehat{C}$	}
4	$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right), C o \left(\frac{C_{TL}}{C_{BL}}\right)$ where A_T has 0 rows, B_T has 0 rows, C_{TL} is 0 × 0	
2	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$	$\left. \right\}$
3	while $m(C_{TL}) < m(C)$ do	
2,3	$ \left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge m(C_{TL}) < m(C) $	$\left. ight\}$
5a	$ \left(\begin{array}{c} A_T \\ \overline{A_B} \end{array}\right) \rightarrow \left(\begin{array}{c} A_0 \\ \overline{a_1^T} \\ A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \overline{B_B} \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \overline{b_1^T} \\ B_2 \end{array}\right), \left(\begin{array}{c} C_{TL} & C_{TR} \\ \overline{C_{BL}} & C_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c} C_{00} & c_{01} & C_{02} \\ \overline{c_{10}} & \gamma_{11} & c_{12}^T \\ \overline{C_{20}} & c_{21} & C_{22} \end{array}\right) $ where a_1 has 1 row, b_1 has 1 row, γ_{11} is 1 × 1	
6	$ \begin{cases} \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0 B_0^T + B_0 A_0^T + \hat{C}_{00} & \hat{c}_{01} & \hat{C}_{02} \\ a_1^T B_0^T + \hat{c}_{10}^T & \hat{\gamma}_{11} & \hat{c}_{12}^T \\ A_2 B_0^T + \hat{C}_{20} & \hat{c}_{21} & \hat{C}_{22} \end{pmatrix} $	$\left. \right\}$
8		
7	$ \begin{cases} \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0 B_0^T + B_0 A_0^T + \widehat{C}_{00} & A_0 (b_1^T)^T + B_0 (a_1^T)^T + \widehat{c}_{01} & \widehat{C}_{02} \\ a_1 B_0^T + b_1^T A_0^T + \widehat{c}_{10}^T & a_1^T (b_1^T)^T + b_1^T (a_1^T)^T + \widehat{\gamma}_{11} & \widehat{c}_{12}^T \\ A_2 (b_1^T)^T + A_2 B_0^T + \widehat{C}_{20} & A_2 B_0^T + a_1^T B_0^T + \widehat{c}_{21} & \widehat{C}_{22} \end{pmatrix} $	$\left. \right\}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10}^T \gamma_{11} c_{12}^T}\right)$	
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$	igg
	endwhile	
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{TL}) < m(C))$	$\left. \right\}$
1b	$\{C = AB^T + BA^T + \widehat{C}$	}

Step	Algorithm: $C = AB^T + BA^T + C$
1a	$\{C = \widehat{C}$
4	$A \to \begin{pmatrix} A_T \\ A_B \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_{TL} & C_{TR} \\ C_{BL} & C_{BR} \end{pmatrix}$ where A_T has 0 rows, B_T has 0 rows, C_{TL} is 0×0
2	$\left\{ \begin{pmatrix} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{pmatrix} \right\}$
3	while $m(C_{TL}) < m(C)$ do
2,3	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \wedge m(C_{TL}) < m(C) $
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \to \left(\frac{C_{00} c_{01} C_{02}}{c_{10}^T \gamma_{11} c_{12}^T}\right) $
6	$ \begin{cases} $
8	$c_{01} = A_0(b_1^T)^T + B_0(a_1^T)^T + c_{01}^T$ $\gamma_{11} = a_1^T(b_1^T)^T + b_1^T(a_1^T)^T + \gamma_{11}$ $c_{10}^T = b_1^T A_0^T + c_{10}^T$ $C_{20} = A_2(b_1^T)^T + C_{20}^T$ $c_{21} = A_2 B_0^T + a_1^T B_0^T + C_{20}^T$
7	$ \left\{ \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_0 B_0^T + B_0 A_0^T + \widehat{C}_{00} & A_0 (b_1^T)^T + B_0 (a_1^T)^T + \widehat{c}_{01} & \widehat{C}_{02} \\ a_1 B_0^T + b_1^T A_0^T + \widehat{c}_{10}^T & a_1^T (b_1^T)^T + b_1^T (a_1^T)^T + \widehat{\gamma}_{11} & \widehat{c}_{12}^T \\ A_2 (b_1^T)^T + A_2 B_0^T + \widehat{C}_{20} & A_2 B_0^T + a_1^T B_0^T + \widehat{c}_{21} & \widehat{C}_{22} \end{pmatrix} $
	$ \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10}^T \gamma_{11} c_{12}^T}\right) \\ \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{C_{20} c_{21} C_{22}}\right) $
2	$\left\{ \begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right)$
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & * \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} A_T B_T^T + B_T A_T^T + \widehat{C}_{TL} & * \\ \hline A_B B_T^T + \widehat{C}_{BL} & \widehat{C}_{BR} \end{array} \right) \land \neg (m(C_{TL}) < m(C)) \right\}$
1b	$\{C = AB^T + BA^T + \widehat{C} $

Algorithm: $C = AB^T + BA^T + C$
$A \to \left(\frac{A_T}{A_B}\right), B \to \left(\frac{B_T}{B_B}\right), C \to \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \begin{vmatrix} C_{BR} \\ C_{BL} \end{vmatrix} \right)$ where A_T has 0 rows, B_T has 0 rows, C_{TL} is 0×0
while $m(C_{TL}) < m(C)$ do
$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \begin{vmatrix} C_{BR} \\ C_{BR} \end{vmatrix}\right) \to \left(\frac{C_{00}}{c_{01}} \begin{vmatrix} c_{01} & C_{02} \\ C_{10} & c_{11} & c_{12} \\ C_{20} & c_{21} & C_{22} \end{vmatrix}\right) $ where a_1 has 1 row, b_1 has 1 row, γ_{11} is 1 × 1
$c_{01} = A_0(b_1^T)^T + B_0(a_1^T)^T + c_{01}^T$ $\gamma_{11} = a_1^T(b_1^T)^T + b_1^T(a_1^T)^T + \gamma_{11}$ $c_{10}^T = b_1^T A_0^T + c_{10}^T$ $C_{20} = A_2(b_1^T)^T + C_{20}^T$ $c_{21} = A_2 B_0^T + a_1^T B_0^T + C_{20}^T$
$ \left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10}^T \gamma_{11} c_{12}^T}\right) \\ \frac{c_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10} \gamma_{11} c_{12}^T}\right) \\ \frac{c_{TL} c_{TR}}{C_{DL} c_{DR}}\right) \leftarrow \left(\frac{C_{00} c_{01} c_{02}}{c_{10} c_{12}}\right) \\ \frac{c_{TL} c_{TR}}{C_{DL} c_{DR}}\right) \leftarrow \left(\frac{C_{00} c_{01} c_{02}}{c_{10} c_{12}}\right) \\ \frac{c_{TL} c_{TR}}{C_{DL} c_{DR}}\right) \leftarrow \left(\frac{C_{00} c_{01} c_{02}}{c_{10} c_{12}}\right) \\ \frac{c_{TL} c_{TR}}{C_{DL} c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \\ \frac{c_{TL} c_{TR}}{C_{DL} c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \\ \frac{c_{TL} c_{TR}}{c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \\ \frac{c_{TL} c_{TR}}{c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \leftarrow \left(\frac{C_{DL} c_{DR}}{c_{DR}}\right) \\ \frac{c_{TL} c_{TR}}{c_{TL}}\right) \leftarrow \left(\frac{C_{DL} c_{TR}}{c_{TL}}\right) \\ \frac{c_{TL} c_{TR}}{c_{TL}}\right) \leftarrow \left(\frac{C_{DL} c_{TR}}{c_{TL}}\right) \\ \frac{c_{TL} c_{TR}}{c_{TL}}\right) \leftarrow \left(\frac{C_{DL} c_{TR}}{c_{TL}}\right) \\ \frac{c_{TL} c_{TR}}{c_{TL}}$
endwhile

Algorithm: $C = AB^T + BA^T + C$

$$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right), C o \left(\frac{C_{TL} | C_{TR}}{C_{BL} | C_{BR}}\right)$$

where A_T has 0 rows, B_T has 0 rows, C_{TL} is 0×0

while $m(C_{TL}) < m(C)$ do

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} | C_{TR}}{C_{BL} | C_{BR}}\right) \to \left(\frac{C_{00} | c_{01} | C_{02}}{c_{10}^T | c_{12}^T}\right)$$

where a_1 has 1 row, b_1 has 1 row, γ_{11} is 1×1

$$c_{01} = A_0(b_1^T)^T + B_0(a_1^T)^T + c_{01}^T$$

$$\gamma_{11} = a_1^T (b_1^T)^T + b_1^T (a_1^T)^T + \gamma_{11}$$

$$c_{10}^T = b_1^T A_0^T + c_{10}^T$$

$$C_{20} = A_2(b_1^T)^T + C_{20}^T$$

$$c_{21} = A_2 B_0^T + a_1^T B_0^T + C_{20}^T$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_{TL} | C_{TR}}{C_{BL} | C_{BR}}\right) \leftarrow \left(\frac{C_{00} | c_{01} | C_{02}}{c_{10}^T | \gamma_{11} | c_{12}^T}\right)$$

endwhile