Data Science Final Project MODEL 1B: SVM

Kjay O. Coca

2022-12-14

```
# Helper packages
library(dplyr) # for data wrangling
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2) # for awesome graphics
library(rsample) # for data splitting
library(readr)
# Modeling packages
library(caret) # for classification and regression training
## Loading required package: lattice
library(kernlab) # for fitting SVMs
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
##
       alpha
library(modeldata) #for Failure.binary data
library(forcats)
# Model interpretability packages
library(pdp) # for partial dependence plots, etc.
library(vip) # for variable importance plots
```

Load Failure.binary data

```
radiomics_data$Failure.binary=as.factor(radiomics_data$Failure.binary)
```

SPLITTING FOR TRAINING AND TESTING

```
set.seed(123) # for reproducibility
for_split <- initial_split(radiomics_data, prop = 0.8, strata = "Failure.binary")
radiomicsdata_train <- training(for_split)
radiomicsdata_test <- testing(for_split)</pre>
```

In this case, I set 80 percent for training data and 20 percent for testing data. There are 39 observation for testing and 158 observation for training and both have 413 variables.

Linear

Polynomial kernel

```
caret::getModelInfo("svmPoly")$svmPoly$parameters
```

```
## parameter class label
## 1 degree numeric Polynomial Degree
## 2 scale numeric Scale
## 3 C numeric Cost
```

Radial basis kernel

```
caret::getModelInfo("svmRadial")$svmRadial$parameters

## parameter class label
## 1 sigma numeric Sigma
## 2 C numeric Cost
```

Run SVM Model in Training phase

```
set.seed(1854)
svm_split <- train(
  Failure.binary ~ .,
  data = radiomicsdata_train,
  method = "svmRadial",
  preProcess = c("center", "scale"),
  trControl = trainControl(method = "cv", number = 10),
  tuneLength = 10
)</pre>
```

Using split_train() function, tuning SVM model with radial basis kernel. Using split_train() function, we can tune an SVM model with radial basis kernel.

Plot results

```
ggplot(svm_split) + theme_light()
```


Print results

```
svm_split$results
```

```
C Accuracy
                                       Kappa AccuracySD
##
            sigma
                                                          KappaSD
## 1
     0.001998749
                    0.25 0.6627451 0.0000000 0.01891300 0.0000000
     0.001998749
                    0.50 0.7378922 0.2715440 0.06418046 0.2198366
## 3
     0.001998749
                    1.00 0.7779902 0.4565954 0.07142465 0.1608304
## 4
     0.001998749
                    2.00 0.8023039 0.5196491 0.09057479 0.2186000
                    4.00 0.7889216 0.5030643 0.07639949 0.1942976
     0.001998749
## 5
     0.001998749
                    8.00 0.7697059 0.4653629 0.07092559 0.1830668
     0.001998749 16.00 0.7763725 0.4861127 0.06283611 0.1498343
## 8 0.001998749
                  32.00 0.7826716 0.4985015 0.07602914 0.1806382
## 9  0.001998749  64.00  0.7960049  0.5248585  0.07147503  0.1670975
## 10 0.001998749 128.00 0.8018873 0.5429164 0.08701199 0.2010434
```

Control parameters for SVM

```
class.weights = c("No" = 1, "Yes" = 10)
ctrl <- trainControl(
  method = "cv",</pre>
```

```
number = 10,
  classProbs = TRUE,
  summaryFunction = twoClassSummary
)

radiomicsdata_train$Failure.binary <- fct_recode(radiomicsdata_train$Failure.binary, No="0", Yes="1")</pre>
```

Print the AUC values during Training

```
# Tune an SVM
set.seed(123) # for reproducibility
train_svm_auc <- train(
   Failure.binary ~ .,
   data = radiomicsdata_train,
   method = "svmRadial",
   preProcess = c("center", "scale"),
   metric = "ROC", # area under ROC curve (AUC)
   trControl = ctrl,
   tuneLength = 10
)

# Print results
train_svm_auc$results</pre>
```

```
##
            sigma
                       C
                               ROC
                                        Sens
                                                  Spec
                                                           ROCSD
                                                                     SensSD
## 1 0.001769054
                    0.25 0.8054545 0.8636364 0.5233333 0.1315912 0.13483997
## 2 0.001769054
                    0.50 0.8034545 0.8536364 0.5400000 0.1328426 0.12708861
## 3 0.001769054 1.00 0.8197879 0.8927273 0.5400000 0.1282824 0.09984377
## 4 0.001769054 2.00 0.8577576 0.9200000 0.5933333 0.1013829 0.11352924
## 5 0.001769054 4.00 0.8736061 0.9509091 0.6100000 0.1005268 0.05181730
## 6  0.001769054  8.00  0.8756061  0.9118182  0.6700000  0.1099644  0.10816526
## 7  0.001769054  16.00  0.8607879  0.8718182  0.6866667  0.1190518  0.13281234
## 8  0.001769054  32.00  0.8623636  0.9018182  0.6666667  0.1077055  0.10363459
## 9  0.001769054  64.00  0.8652424  0.9118182  0.6500000  0.1014671  0.09735246
## 10 0.001769054 128.00 0.8743939 0.9027273 0.6500000 0.1000568 0.07937427
##
## 1 0.3344611
## 2 0.3184841
## 3 0.2734327
## 4 0.2688797
## 5 0.2183270
## 6 0.2710064
## 7 0.2644351
## 8 0.2449490
## 9 0.2625845
## 10 0.2625845
```

```
confusionMatrix(train_svm_auc)
```

Cross-Validated (10 fold) Confusion Matrix

```
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction No Yes
## No 60.5 11.5
## Yes 5.7 22.3
##
## Accuracy (average) : 0.828
```

The average accuracy of the trained model is 0.828 or 82.8 percent.

Print the Top 20 important features during Training

```
prob_yes <- function(object, newdata) {
   predict(object, newdata = newdata, type = "prob")[, "Yes"]
}

# Variable importance plot
set.seed(2827) # for reproducibility
vip(train_svm_auc, method = "permute", nsim = 5, train = radiomicsdata_train,
   target = "Failure.binary", metric = "auc", reference_class = "Yes",
   pred_wrapper = prob_yes)</pre>
```


This are the top 20 important variable during Training. Failure variable is the most important. And next is Entrophy_cooc.W.ADC.

Print the AUC values during Testing

```
radiomicsdata_test$Failure.binary=fct_recode(radiomicsdata_test$Failure.binary,No="0",Yes="1")
# Tune an SVM with radial
set.seed(5628) # for reproducibility
test_svm_auc <- train(
   Failure.binary ~ .,
   data = radiomicsdata_test,
   method = "svmRadial",
   preProcess = c("center", "scale"),</pre>
```

```
metric = "ROC", # area under ROC curve (AUC)
  trControl = ctrl,
  tuneLength = 10
)
# Print results
test_svm_auc$results
##
             sigma
                                  ROC
                                             Sens Spec
                                                            ROCSD
                                                                       SensSD SpecSD
     0.001959001
                      0.25 0.6750000 0.9666667
                                                      0 0.2872013 0.1054093
## 1
      0 0.3320577 0.1405457
## 3 0.001959001 1.00 0.6250000 1.0000000 0 0.3148829 0.0000000
                                                                                    0
## 4 0.001959001 2.00 0.3083333 0.9000000 0 0.3168372 0.2249829

      0.001959001
      4.00
      0.3500000
      0.9000000
      0 0.4021547
      0.2249829

      0.001959001
      8.00
      0.3916667
      0.9000000
      0 0.3889881
      0.2249829

## 5
                                                                                    0
## 7 0.001959001 16.00 0.3083333 0.9000000 0 0.3514740 0.2249829
                                                                                    0
## 8 0.001959001 32.00 0.4250000 0.8333333 0 0.3976202 0.2832789
## 9 0.001959001 64.00 0.3750000 0.9333333
                                                     0 0.3833937 0.1405457
                                                                                    0
## 10 0.001959001 128.00 0.4083333 0.8666667
                                                     0 0.3937200 0.2810913
```

confusionMatrix(test_svm_auc)

```
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction No Yes
## No 62.5 35.0
## Yes 2.5 0.0
##
## Accuracy (average) : 0.625
```

The accuracy of test data in this model is 0.625 or just 62.5 percent. It smaller compare to trained data.