ENGR 145 Fall 2023 Homework Set #2 Due Wednesday, Sept. 13

CR Ch. 3

- **3.9** Calculate the radius of a palladium (Pd) atom, given that Pd has an FCC crystal structure, a density of 12.0 g/cm³, and an atomic weight of 106.4 g/mol.
- **3.46** List the point coordinates for all atoms that are associated with the FCC unit cell (Figure 3.1).

Figure 3.1 For the face-centered cubic crystal structure, (a) a hard-sphere unit cell representation, (b) a reduced-sphere unit cell, and (c) an aggregate of many atoms. [Figure (c) adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. I, *Structure*, p. 51. Copyright © 1964 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.]

3.69 Determine the Miller indices for the planes shown in the following unit cell:

- **3.80 (a)** Derive linear density expressions for FCC [100] and [111] directions in terms of the atomic radius *R*.
 - **(b)** Compute and compare linear density values for these same two directions for copper (Cu).
- **3.95** The metal rhodium (Rh) has an FCC crystal structure. If the angle of diffraction for the (311) set of planes occurs at 36.12° (first-order reflection) when monochromatic x-radiation having a wavelength of 0.0711 nm is used, compute the following:
 - (a) The interplanar spacing for this set of planes
 - (b) The atomic radius for a Rh atom

Thought question: In addition to x-rays, crystalline materials can be studied by electron diffraction. What does this say about the properties of an electron beam?