ECONOMETRICS PROJECT

Forecasting Danish GDP growth

GROUP 10

MARIANO DE MARTINO - 3269418

MARIASOLE OLIVETTA - 3116086

FRANCESCO PALLUDA - 3268615

1. Descriptive analysis

Country: Denmark

Period: 1973-2019

Dependent variable: GDP growth (real terms): stationary

• Initial regressors (percentage change between t and t-1):

- «Central Bank Policy Rate»
- «CPI»
- «Economic Activity, Industrial Production, Manufacturing, Index»
- « Net Export»
- « Unemployment rate»
- « Population»
- «International liquidity, Total Reserves Excluding Gold (\$)» \Rightarrow

	GDP GROWTH REAL
Mean	0.018454
Median	0.019570
Maximum	0.059246
Minimum	-0.049065
Std. Dev.	0.019937
Skewness	-0.631600
Kurtosis	4.339033
Jarque-Bera	6.636167
Probability	0.036222
Sum	0.867318
Sum Sq. Dev.	0.018285
Observations	47

2. Alternative model specification

1. LASSO Regression Model (Table 1)

- Plug the 7 regressors into the model
- Coefficient on «Net Export» shrinked to 0→ removed from the model

$$y_t = \beta_1 cb_t + \beta_2 pop_t + \beta_3 int_t + \beta_4 un_t + \beta_5 eco_t + \beta_6 cpi_t$$

2. STATIC Model (Table 2)

- *General to specific*: from 7 regressors to 4 : «CPI», «Economic Activity», «Unemployment», « Population».
- Apparently better model: higher Adj.R^2 and lower Information Criteria

$$y_t = \beta_1 cpi_t + \beta_2 pop_t + \beta_3 un_t + \beta_4 Economic_t + \varepsilon_t$$

3. **DYNAMIC Model** (Table 3)

- ARDL Automatic selection process: ran 4 times, each time with different selection criteria (AIC, BIC, Hannan-Quinn and Adj.R^2), and also considered the MAPEs resulting from forecasting
- The model minimizing the **AIC** was chosen: 1 lag for unemployment rate and AR(1)

$$y_t = \beta_1 y_{t-1} + \beta_2 cpi_t + \beta_3 pop_t + \beta_4 un_t + \beta_5 un_{t-1} + \beta_6 cb_t + \varepsilon_t$$

2. Alternative model specification

Table 1: LASSO Model

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI ECONOMIC CB POPULATION UNEMPLOYMENT INTERNATIONAL	0.098706 0.339536 0.004312 2.684924 -0.016815	0.057226 0.064088 0.010002 0.790279 0.009809 0.006029	1.724853 5.297930 0.431168 3.397439 -1.714232	0.0948 0.0000 0.6694 0.0019 0.0968
INTERNATIONAL	0.005761	0.000029	0.955644	0.3469
R-squared	0.748623	Mean depen		0.017989
Adjusted R-squared	0.706726	S.D. dependent var		0.022082
S.E. of regression Sum squared resid	0.011958 0.004290	Akaike info criterion Schwarz criterion		-5.863762 -5.599842
Log likelihood	111.5477	Hannan-Quinn criter.		-5.771647
Durbin-Watson stat	1.897692	riaman gai		0.77 1047

Table 2: Static Model

Coefficient	Std. Error	t-Statistic	Prob.
0.121858 0.319773 2.885553 -0.021136	0.050954 0.054770 0.731163 0.008568	2.391535 5.838510 3.946524 -2.466810	0.0228 0.0000 0.0004 0.0192
0.740841 0.716545 0.011756 0.004423 110.9990 1.851218	S.D. depend Akaike info d Schwarz cri	dent var criterion terion	0.017989 0.022082 -5.944387 -5.768441 -5.882977
	0.121858 0.319773 2.885553 -0.021136 0.740841 0.716545 0.011756 0.004423 110.9990	0.121858	0.121858

INTERPRETATION: a 1% increase in X leads to an average β% increase in real GDP growth, ceteris paribus

2. Alternative model specification

Table 3: Dynamic Model

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
GDP GROWTH REAL(-1)	0.144238	0.125248	1.151626	0.2596
ECONOMIC	0.222024	0.054987	4.037746	0.0004
POPULATION	0.871752	1.357916	0.641978	0.5263
UNEMPLOYMENT	-0.042962	0.011040	-3.891565	0.0006
UNEMPLOYMENT (-1)	0.020972	0.009396	2.232043	0.0341
CPI	-0.287835	0.145290	-1.981111	0.0578
CPI (-1)	0.300636	0.166178	1.809127	0.0816
С	0.009047	0.006026	1.501437	0.1448
R-squared	0.851379	Mean depen	dent var	0.018824
Adjusted R-squared	0.812848	S.D. dependent var		0.021820
S.E. of regression	0.009440	Akaike info criterion		-6.290145
Sum squared resid	0.002406	Schwarz criterion		-5.934637
Log likelihood	118.0775	Hannan-Quinn criter.		-6.167424
F-statistic	22.09582	Durbin-Wats	2.431130	
Prob(F-statistic)	0.000000			

^{*}Note: p-values and any subsequent tests do not account for model selection.

Comment: Adjusted R^2 improves, ICs decrease

3. Diagnostic checks

STATIC

• Normality of errors: Histogram

Series: Residuals					
Sample 1974	2009				
Observations	36				
Mean	0.001340				
Median	0.002479				
Maximum 0.023966					
Minimum -0.021776					
Std. Dev. 0.011159					
Skewness -0.238781					
Kurtosis 2.990068					
Jarque-Bera 0.342247					
Probability 0.842718					

• Serial Correlation: Breusch-Godfray Test

Ho: No serial correlation at up to 1 lags: p-value: 0.6524

• Homoskedasticity: Breusch-Pagan Test

Ho: Homoskedasticity: p-value: 0.25

DYNAMIC

Normality of errors: Histogram

	Series: Residuals					
	Sample 1975	2009				
	Observations	35				
	Mean	-2.60e-18				
	Median	0.000687				
	Maximum 0.019603					
	Minimum -0.015882					
	Std. Dev.	0.008412				
	Skewness	0.109720				
	Kurtosis	2.683027				
	Jarque-Bera	0.216747				
2	Probability	0.897293				

• Serial Correlation: Breusch-Godfray Test

Ho: No serial correlation at up to 1 lag: p-value: 0.1363

Homoskedasticity: Breusch-Pagan Test

Ho: Homoskedasticity: p-value: <u>0.9095</u>

4. Economic Hypotheses

Variable 1: CPI

Hypotheses:

- Moderate inflation (moderate CPI increase) → Positive GDP growth (increased consumer spending)
- High inflation (large CPI increase) → Negative GDP growth (reduced purchasing power)
- Deflation (negative CPI change) → Negative GDP growth (consumers delay spending, businesses reduce investment)

Variable 2: Danish population

• **Hypothesis:** Increase in population growth → Positive GDP growth (more workforce participation and economic activity)

Variable 3: Central Bank Policy Rate

Hypothesis:

- Decrease in policy rate → Positive GDP growth (lower borrowing costs stimulate investment and spending)
- Increase in policy rate → Negative GDP growth (higher borrowing costs dampen investment and spending)

4. Economic Hypotheses

Variable 4: Unemployment

- Hypothesis: Increase in unemployment → Negative GDP growth (less consumer spending and reduced economic output)
- Variable 5: Economic activity, industrial production, Manufacturing index
 - **Hypothesis:** Increase in the index → Increase in GDP growth (Economic performance and progress in these three sectors)
- Variable 6: International liquidity, total reserves excluding gold
 - Hypothesis: Increase in liquidity
 — Increase in GDP growth (International reserves, excluding gold, tend to
 provide economic stability, improve import capacity, and support investor confidence)

• **Training Sample: 1973-2009**

• Evaluation sample: 2010-2019

LASSO

--- ± 2 S.E.

Forecast: GDP GROWTHF Actual: GDP_GROWTH_REAL Forecast sample: 2010 2019 Included observations: 10 Root Mean Squared Error 0.009320 0.007954 Mean Absolute Error Mean Abs. Percent Error 105.0668 Theil Inequality Coef. 0.201029 **Bias Proportion** 0.728314 0.046174 Variance Proportion 0.225512 Covariance Proportion Theil U2 Coefficient 1.376675 Symmetric MAPE 46.44822

STATIC

----- ± 2 S.E.

Forecast: GDP_GROWTHF Actual: GDP_GROWTH_REAL Forecast sample: 2010 2019 Included observations: 10 Root Mean Squared Error 0.010684 Mean Absolute Error 0.009319 Mean Abs. Percent Error 131.3060 Theil Inequality Coef. 0.224681 **Bias Proportion** 0.760759 Variance Proportion 0.060387 0.178854 Covariance Proportion Theil U2 Coefficient 1.522918 Symmetric MAPE 50.77956

Forecast: GDP_GROWTHF Actual: GDP_GROWTH_REAL Forecast sample: 2010 2019 Included observations: 10 Root Mean Squared Error 0.011505 Mean Absolute Error 0.009334 Mean Abs. Percent Error 143.0008 Theil Inequality Coef. 0.250885 **Bias Proportion** 0.472164 Variance Proportion 0.139642 **Covariance Proportion** 0.388194 Theil U2 Coefficient 2.422465 Symmetric MAPE 51.15429

Evaluation statistics

DIEBOLD MARIANO test

LASSO vs Static

RMSE MAE MAPE SMAPE Theil U1 Theil U2 Forecast STATICMODEL 0.010684 0.009319 131.3060 50.77956 0.224681 1.522918 STATICFROMLASSO 0.009320 0.007954 105.0668 46.44822 0.201029 1.376675 Mean square error 0.009969 0.008626 117.9864 48.66852 0.212383 1.447952

LASSO vs **Dynamic**

Evaluation statistics						
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
STATICFROMLASSO DYNAMICMODELAIC Mean square error	0.009320 0.011505 0.010540	0.007954 0.009334 0.008535	105.0668 143.0008 128.4074	46.44822 51.15429 48.40536	0.201029 0.250885 0.229460	1.376675 2.422465 2.053897

LASSO vs AR(2)

Lasso regression's forecast is better in MAPE sense.

Evaluation statistics						
Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
AR2MODEL STATICFROMLASSO Mean square error	0.010812 0.009320 0.008686	0.009062 0.007954 0.006854	132.1587 105.0668 105.6764	55.80130 46.44822 42.60186	0.276595 0.201029 0.194743	1.340452 1.376675 1.358236

6. Comparison with AR(2)

Table 4: AR(2) Model

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDP GROWTH REAL(-1) GDP_GROWTH_REAL(-2)	0.017202 0.252255 -0.160193	0.006664 0.195262 0.197222	2.581354 1.291876 -0.812249	0.0146 0.2057 0.4227
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.064971 0.006531 0.021749 0.015137 85.89187 1.111762 0.341353	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	0.018824 0.021820 -4.736678 -4.603363 -4.690658 1.816135

Final comments

- To increase our sample size and improve our forecast and estimates, we could employ quarterly data (not found for all variables)
- Denmark joined the EU in 1973 the starting period of our sample
- The ending year is 2019, as Covid-19 hit thereafter
- Data taken from: IMF International Financial Statistic, Macrotrend, World Bank.