ロジスティック回帰について

まず、斎藤さんが行った方法をたどった。

• 全体のデータに対してlinear modelのパラメータ推定を行った。

• pythonのスクリプトとほぼ同じbeta0,beta1の値が得られた。

非線形混合効果を用いた個人間変動の反映

- Emaxモデルではnlme関数がエラーを起こしたのでlinearモデルでのみ検証した。
- 次の3パターンについて考えた
 - o model_l1 : logit=beta0+beta1*x+eta2
 - o model_l2 : =beta0+(beta1+eta1)*x
 - \circ model_I3 : = beta0 + (beta1+eta1)*x + eta2

model	AIC	BIC	eta1_sd	eta2_sd
model_l1	953.6393	978.1181	NA	0.06726019
model_l2	952.8982	977.3770	0.1716304	NA
model_l3	954.8981	985.4966	0.1716722280	0.0001267666

- model_l1とmodel_l2がAIC,BICともに同じぐらいでmodel_l3より小さい
 - model_l1とmodel_l2を用いて次の検証へ

阻害率と改善確率の対応

• 二値データをプロットしているだけだと味気ないので、阻害率0.1ごとにTRUEになる確率を計算し、阻害率ごとの目安的な改善確率を算出した。

• 黒:全体の改善確率

得られたmodelの状態

• model_l1のそれぞれのモデル。ほとんど動かない。

大体の予測区間の見積もり

- 現状のモデルでシミュレーションをしたらどういった分布になるかを見積もるため、モンテカルロシミュレーション的なものを行った。
- 斎藤さんがlinear modelが誤差項のsdを計算したモデル、model_l1、model_l2で実行
- 阻害率0.01ずつ100個仮想データを生成した。
- 青色:シミュレーション、黒色:全体の改善確率(目安の)

結果

• 斎藤さんの見積もり

• model_l1

• model_l2

• それぞれの患者さんについて最尤法により誤差項のSDを求めるよりも非線形混合効果の nlme関数を用いると推定される誤差項のSDが小さくなる。

○ どの誤差の分布を選ぶべきか