

# 教育部教改計畫開發課程模組

# eXtreme Gradient Boosting Introduction

Professor Chien-Mo James Li 李建模 Graduate Institute of Electronics Engineering National Taiwan University

NTUEE 1

# **Outline**

- Introduction
- Installation
- Get Started
- Basic Functions

# **Boosting**

- Often use when training models
  - With decision-tree algorithms
- Train decision tree in a sequence
  - Each decision tree is often weak
- Focus on the misclassified cases
  - Give the incorrect classifications from the first tree a higher weight then input to the next tree
- Combine the weak trees
  - Become a single powerful tree

NTUEE 3

# **Boosting (cont.)**



2

# **Types of Boosting**

- Adaptive boosting (AdaBoost)
  - Give same weight to each dataset
  - Misclassified cases get higher weight in the next round
  - Stop when the residual error is smaller than threshold
- Gradient boosting (GB)
  - Does not give misclassified cases higher weight
  - Fit a weak learner to the opposite of the gradient of the current fitting error in each iteration
- Extreme gradient boosting (XGBoost)
  - Introduce in next page

NTUEE 5

# **Extreme Gradient Boosting (XGBoost)**

- XGBoost: A Scalable Tree Boosting System
  - Tianqi Chen, Carlos Guestrin, (2016)
- Using gradient descent
  - Concept similar to GB but different from AdaBoost
- Implements parallel processing
  - 10 times faster than gradient boosting
- Implements regularization to reduce overfitting
- Allows users to define custom optimization objectives and evaluation criteria

#### Installation

- For Windows and MAC
- Download Python
  - Download link (https://www.python.org/downloads/)
  - Choose the package for your OS
- Install Python
  - Open the exe file
  - Check add Python to PATH
  - Click Install Now



7

NTUEE

# **Installation (cont.)**

- Check Python version
  - \* \$python --version
  - \$python3 --version for MAC

PS C:\Users\User> python --version Python 3.8.2

- Install XGBoost
  - \$pip install xgboost
  - \$pip3 install xgboost for MAC
- Check package
  - \$pip show xgboost

PS C:\Users\User> pip show xgboost
Name: xgboost
Version: 1.5.2
Summary: XGBoost Python Package
Home-page: https://github.com/dmlc/xgboost
Author:
Author-email:
License: Apache-2.0
Location: c:\python38\lib\site-packages
Requires: numpy, scipy
Required-by:

NTUEE 8

4

#### **Get Started**

- Train your model
  - Using sample data



#### **Convert Data to Dmatrix**

- dtrain = xgb.DMatrix('agaricus.txt.train')
  - Input: file path and name
  - Output: data can be used for the model
- dtrain=xgb.DMatrix(data, label=label, missing=-999.0)
  - Select specific labels
  - Handle missing data

# **Input Format**

Input format example

#### Instance label Instance feature: feature value

```
1 101:1.2 102:0.03
2 0 1:2.1 10001:300 10002:400
3 0 0:1.3 1:0.3
4 1 0:0.01 1:0.3
5 0 0:0.2 1:0.3
```

# Each line represent a single instance

```
1 0.9480876326559999 0:205.96 1:99.8199999999999 2:3.76 3 1.4 0.948038578 0:264.48 1:150.22 2:0.76 3:1.4 0.9480254385950001 0:222.68 1:144.62 2:0.76 3:1.4 0.9480059146879999 0:151.24 1:158.62 2:0.76 3:1.4 0.9480303525920001 0:143.45 1:164.22 2:0.76 3:1.4
```

NTUEE 11

# **Important Training Parameters**

- booster: default = gbtree
  - which booster to use
- nthread: maximum available threads
  - number of threads to run XGBoost
- eta: default = 0.3, range[0, 1]
  - learning rate
- max\_depth: default = 6, range[0,∞]
  - Maximum depth of a tree

NTUEE 12

6

# **Important Training Parameters (cont.)**

- gamma: default = 0, range[0,∞]
  - Minimum loss to make a partition on leaf node of tree
- subsample: default = 1, range(0, 1]
  - Subsample ratio of training data
- lambda: default = 1, range[1,∞]
  - L2 regularization term on weights
- tree\_method: exact, approx, hist, gpu\_hist
  - Tree building method

NTUEE 13

# **Important Training Parameters (cont.)**

- objective: default = reg:squarederror
  - reg:squarederror: regression with squared loss
  - binary:logistic: logistic regression for binary classification, output probability
- eval\_metric: default according to objective
  - rmse: root mean square error
  - mae: mean square error
  - mape: mean absolute percentage error

#### **Train and Predict**

- model = xgb.train( param, dtrain, round )
  - param: Booster parameter
  - dtrain: Training data
  - round: Number of boosting iterations
  - model: a trained model
- preds = model.predict( dtest )
  - model: your trained model
  - dtest: testing data
  - preds: prediction of testing data

NTUEE 15

#### Save and Load Model

- model.save model('name.model')
  - model: your trained model
  - name: file name of your model
- model = xgb.Booster()
  - Function to init model
- model.load\_model("name.model")
  - model: the model variable you declare
  - name: file name of your model

# **Reference Link**

- https://xgboost.readthedocs.io/en/stable/
- https://zhuanlan.zhihu.com/p/31182879
- https://ithelp.ithome.com.tw/articles/10273094