Intro Datenanalyse mit R - dritter Teil

Jan-Philipp Kolb

09 Mai, 2019

DIE LINEARE REGRESSION

DIE LINEARE REGRESSION

JOHN H. MAINDONALD AND W. JOHN BRAUN - Data Analysis and Graphics Data and Functions

- Einführung in R
- Datenanalyse
- Statistische Modelle
- ▶ Inferenzkonzepte
- Regression mit einem Prädiktor
- ► Multiple lineare Regression
- Ausweitung des linearen Modells

Lineare Regression in R - Beispieldatensatz

data(mtcars)

HILFE FÜR DEN MTCARS DATENSATZ:

?mtcars

	mp	g cy	l dis	p hp	drat	wt model	
21.0	6	160	110	3.90	2.620	Mazda RX4	
21.0	6	160	110	3.90	2.875	Mazda RX4 Wa	ag
22.8	4	108	93	3.85	2.320	Datsun 710	
21.4	6	258	110	3.08	3.215	Hornet 4 Drive	
18.7	8	360	175	3.15	3.440	Hornet Sportab	out
18.1	6	225	105	2.76	3.460	Valiant	

VARIABLEN DES MTCARS DATENSATZES

- mpg Miles/(US) gallon
- cyl Number of cylinders
- disp Displacement (cu.in.)
- hp Gross horsepower
- drat Rear axle ratio
- wt Weight (1000 lbs)
- qsec 1/4 mile time
- vs Engine (0 = V-shaped, 1 = straight)
- ightharpoonup am Transmission (0 = automatic, 1 = manual)
- gear Number of forward gears
- carb Number of carburetors

VERTEILUNGEN FÜR ZWEI VARIABLEN VON MTCARS

par(mfrow=c(1,2))
plot(density(mtcars\$wt)); plot(density(mtcars\$mpg))

EIN EINFACHES REGRESSIONSMODELL

ABHÄNGIGE VARIABLE - MEILEN PRO GALLONE (MPG)

Unabhängige Variable - Gewicht (wt)

```
m1 <- lm(mpg ~ wt,data=mtcars)
m1

##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344</pre>
```

DIE MODELLFORMEL

Modell ohne Achsenabschnitt

```
m2 <- lm(mpg ~ - 1 + wt,data=mtcars)
summary(m2)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## wt 5.291624 0.5931801 8.920771 4.55314e-10
```

Weitere Variablen hinzufügen

```
m3 <- lm(mpg ~ wt + cyl,data=mtcars)
summary(m3)$coefficients
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.686261 1.7149840 23.140893 3.043182e-20
## wt -3.190972 0.7569065 -4.215808 2.220200e-04
## cyl -1.507795 0.4146883 -3.635972 1.064282e-03
```

Summary des Modells

summary(m3)

```
##
## Call:
## lm(formula = mpg ~ wt + cyl, data = mtcars)
##
## Residuals:
##
      Min 1Q Median
                             3Q
                                    Max
## -4.2893 -1.5512 -0.4684 1.5743 6.1004
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 39.6863
                          1.7150 23.141 < 2e-16 ***
## wt.
             -3.1910 0.7569 -4.216 0.000222 ***
              -1.5078 0.4147 -3.636 0.001064 **
## cyl
```

Jan-Philipp Kole

R ARBEITET MIT OBJEKTEN

- m3 ist nun ein spezielles Regressions-Objekt
- Auf dieses Objekt können nun verschiedene Funktionen angewendet werden

predict(m3) # Vorhersage

##	Mazda RX4	Mazda RX4 Wag	Datsun
##	22.27914	21.46545	26.25
##	Hornet 4 Drive	Hornet Sportabout	Val:
##	20.38052	16.64696	19.59
##	Duster 360	Merc 240D	Merc
##	16.23213	23.47588	23.60
##	Merc 280	Merc 280C	Merc 49
##	19.66255	19.66255	14.63
##	Merc 450SL	Merc 450SLC	Cadillac Fleet
##	15.72158	15.56203	10.87

RESIDUENPLOT

- Sind Annahmen des linearen Regressionsmodells verletzt?
- ▶ Dies ist der Fall, wenn ein Muster abweichend von einer Linie zu erkennen ist. (Hier ist der Datensatz sehr klein)

plot(m3,1)

RESIDUENPLOT

▶ Wenn Residuen normalverteilt sind sollten sie auf Linie sein.

plot(m3,2)

WEITERE MÖGLICHKEITEN DIE FORMEL ZU SPEZIFIZIEREN

Interaktionseffekt

```
# effect of cyl and interaction effect:
m3a<-lm(mpg~wt*cyl,data=mtcars)

# only interaction effect:
m3b<-lm(mpg~wt:cyl,data=mtcars)</pre>
```

DEN LOGARITHMUS NEHMEN

```
m3d<-lm(mpg~log(wt),data=mtcars)</pre>
```

EIN MODELL MIT INTERAKTIONSEFFEKT

DISP - HUBRAUM

```
m3d<-lm(mpg~wt*disp,data=mtcars)
m3dsum <- summary(m3d)
m3dsum$coefficients
```

```
## (Intercept) 44.08199770 3.123062627 14.114990 2.955567e-
## wt -6.49567966 1.313382622 -4.945763 3.216705e-
## disp -0.05635816 0.013238696 -4.257078 2.101721e-
## wt:disp 0.01170542 0.003255102 3.596022 1.226988e-
```

Interaktionen untersuchen

```
install.packages("jtools")
```

```
library(jtools)
interact_plot(m3d, pred = "wt", modx = "disp")
```

 Mit einem kontinuierlichen Moderator (in unserem Fall Disp) erhält man drei Zeilen - 1 Standardabweichung über und unter dem Mittelwert und der Mittelwert selbst.

DAS PAKET INTERPLOT

library(interplot)

```
interplot(m = m3d, var1 = "disp", var2 = "wt", hist = TRUE
  aes(color = "pink") + theme(legend.position="none") +
  geom_hline(yintercept = 0, linetype = "dashed")
```


Noch ein interplot

► Effekt wird auf die y-Achse geplottet - wt auf der x-Achse

300

CI(Max - Min): [2,007, 7,396]

Eine detailliertere Beschreibung ist in der interplot
 Vignette zu bekommen.

-10.0 -

100

Beispiel: Objektorientierung

- m3 ist nun ein spezielles Regressionsobjekt
- Verschiedene Funktionen können auf dieses Objekt angewendet werden

```
predict(m3) # Prediction
resid(m3) # Residuals
```

##	Mazda	RX4	Mazda R	K4 Wag	Datsun 710
##	22.27	914	21	. 46545	26.25203
##	Hornet Sportab	out	Va	aliant	
##	16.64	696	19	.59873	
##	Mazda	DΥΛ	Mazda Pi	VA Was	Dateur 710
##	Mazda	RX4	Mazda R	X4 Wag	Datsun 710
## ##	Mazda -1.2791			K4 Wag 654468	Datsun 710 -3.4520262
##		447	-0.46	_	

EINE MODELLVORHERSAGE MACHEN

```
pre <- predict(m1)
head(mtcars$mpg)</pre>
```

[1] 21.0 21.0 22.8 21.4 18.7 18.1

head(pre)

##	Mazda RX4	Mazda RX4 Wag	Datsun 710
##	23.28261	21.91977	24.88595
## H	ornet Sportabout	Valiant	
##	18.90014	18.79325	

Residuenplot - Modellannahmen verletzt?

Gibt es ein Muster in der Abweichung von der Linie

plot(m3,1)

RESIDUENPLOT

plot(m3,2)

Bei Normalverteilung liegen Residuen auf gleicher Linie

REGRESSIONSDIAGNOSTIK MIT BASIS-R

```
plot(mtcars$wt,mtcars$mpg)
abline(m1)
segments(mtcars$wt, mtcars$mpg, mtcars$wt, pre, col="red")
```


DAS VISREG-PAKET

install.packages("visreg")

library(visreg)

DAS VISREG-PAKET

- ▶ Das Default-Argument für type ist conditional.
- Scatterplot von mpg und wt mit Regressionslinie und Konfidenzbändern

```
visreg(m1, "wt", type = "conditional")
```


Visualisierung mit visreg

- Zweites Argument Spezifikation der Kovariaten in der Graphik
- Das Diagramm zeigt die Auswirkung auf den erwarteten Wert des Regressors, wenn die Variable x von einem Referenzpunkt auf der x-Achse wegbewegt wird (bei numerischen Variablen der Mittelwert).

```
visreg(m1, "wt", type = "contrast")
```


REGRESSION MIT FAKTOREN

▶ Die Effekte von Faktoren k\u00f6nnen auch mit visreg visualisiert werden:

```
mtcars$cyl <- as.factor(mtcars$cyl)
m4 <- lm(mpg ~ cyl + wt, data = mtcars)
# summary(m4)</pre>
```

```
## (Intercept) 33.990794 1.8877934 18.005569 6.257246e-17
## cyl6 -4.255582 1.3860728 -3.070244 4.717834e-03
## cyl8 -6.070860 1.6522878 -3.674214 9.991893e-04
## wt -3.205613 0.7538957 -4.252065 2.130435e-04
```

Effekte von Faktoren

```
par(mfrow=c(1,2))
visreg(m4, "cyl", type = "contrast")
visreg(m4, "cyl", type = "conditional")
```


DAS PAKET VISREG - INTERAKTIONEN

```
m5 <- lm(mpg ~ cyl*wt, data = mtcars)
# summary(m5)</pre>
```

```
## (Intercept) 39.571196 3.193940 12.3894599 2.058359e-1

## cyl6 -11.162351 9.355346 -1.1931522 2.435843e-0

## cyl8 -15.703167 4.839464 -3.2448150 3.223216e-0

## wt -5.647025 1.359498 -4.1537586 3.127578e-0

## cyl6:wt 2.866919 3.117330 0.9196716 3.661987e-0

## cyl8:wt 3.454587 1.627261 2.1229458 4.344037e-0
```

DEN GRAPHIKOUTPUT MIT LAYOUT KONTROLLIEREN

Das Paket visreg - Interaktionseffekte übereinander legen

```
m6 <- lm(mpg ~ hp + wt * cyl, data = mtcars)
visreg(m6, "wt", by="cyl", overlay=TRUE, partial=FALSE</pre>
```


DAS PAKET VISREG - VISREG2D

DAS PAKET VISREG - SURFACE

visreg2d(m6, "wt", "hp", plot.type = "persp")

B3A AUFGABE LINEARE REGRESSION

Der Datensatz toycars beschreibt die Route von drei Spielzeugautos, die Rampen in verschiedenen Winkeln runterfahren.

- angle: Rampenwinkel
- distance: Entfernung die von dem Spielzeugauto zurück gelegt wird.
- car: Autotyp (1, 2 or 3)
- A) Lese den Datensatz toycars ein und konvertiere die Variable car des Datensatzes in einen Faktor (as.factor).
- (B) Erstelle drei Box-Plots, in denen die von den Autotypen zurückgelegte Strecke visualisiert wird.

AUFGABE LINEARE REGRESSION II

(C) Schätze für jeden Autotyp die Parameter des folgenden linearen Modell; nutze dafür die Funktion lm()

$$distance_i = \beta_0 + \beta_1 \cdot angle_i + \epsilon_i$$

(D) Überprüfe die Anpassung des Modells indem Du die drei Regressionslinien in den Scatterplot einzeichnest (distance gegen angle). Spricht das \$ R^2 \$ für eine gute Modellanpassung?

EINEN SCHÖNEN OUTPUT MIT DEM PAKET stargazer

erzeugen

```
library(stargazer)
stargazer(m3, type="html")
```

BEISPIEL HTML OUTPUTS:

	Dependent variable.
	mpg
wt	-3.125***
	(0.911)
cyl	-1.510***
	(0.422)
am	0.176
	(1.304)
Constant	39.418***

SHINY APP - DIAGNOSTIKEN FÜR DIE EINFACHE LINEARE REGRESSION

https://gallery.shinyapps.io/slr_diag/

Diagnostics for simple linear regression

Links - Lineare Regression

- Regression r-bloggers
- Das komplette Buch von Faraway- sehr intuitiv geschriebenes Buch
- Gute Einführung auf Quick-R
- Multiple Regression
- ▶ 15 Arten von Regressionen die man kennen sollte
- ggeffects Erzeuge saubere Datensätze mit marginellen Effekten für 'ggplot' aus Modell Outputs