Name: SOLUTIONS Date: 04/26/2018

M20580 L.A. and D.E. Tutorial Quiz 10

1. Find the solution of the initial value problem

$$y'' + y' = 6y$$
, $y(0) = 1$, $y'(0) = -8$

Solution: $y'' + y' = 6y \iff y'' + y' - 6y = 0$. The characteristic equation is $r^2 + r - 6 = 0$, which is equivalent to (r+3)(r-2) = 0. So, all the roots are r = -3, 2. The general solution is $y(t) = c_1 e^{-3t} + c_2 e^{2t}$.

Now, we use the initial conditions y(0) = 1, y'(0) = -8 to find c_1 and c_2 . Note, $y'(t) = -3c_1e^{-3t} + 2c_2e^{2t}$. So, we have the system of linear equations

$$c_1 + c_2 = 1$$
$$-3c_1 + 2c_2 = -8$$

Solving for c_1 and c_2 in the equations above we obtain $c_1 = 2$ and $c_2 = -1$.

In conclusion, the solution to the initial value problem is

$$y(t) = 2e^{-3t} - e^{2t}$$

2. Solve the differential equation

$$(2xy+3) + (x^2-2)\frac{dy}{dx} = 0.$$

Solution: This is an exact equation: M = 2xy + 3 and $N = x^2 - 2$. $M_y = 2x = N_x$. To solve this exact equation, we want to find $\psi(x,y)$ satisfies $\psi_x = 2xy + 3$ and $\psi_y = x^2 - 2$.

First $\psi_x = 2xy + 3 \implies \psi = \int (2xy + 3) dx = x^2y + 3x + h(y)$. Then $\psi_y = \frac{\partial}{\partial y}(x^2y + 3x + h(y)) = x^2 + h'(y)$. And $x^2 + h'(y)$ must equal $x^2 - 2$ from above. Thus, h'(y) = -2 and so h(y) = -2y + C. It suffices to choose $\psi(x, y) = x^2y + 3x - 2y$.

And the solutions take the form

$$x^2y + 3x - 2y = c$$