1623РТ2А.Б

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА ПЗУ С ВОЗМОЖНОСТЬЮ ОДНОКРАТНОГО ПРОГРАМИРОВАНИЯ

бКО.347.630-02ТУ

Информационная ёмкость 65536 бит Организация 8192 x 8 бит Зарубежный аналог НМ6664 Изготавливается в корпусе 4119.28-6 Предназначена для применения в аппаратуре специального назначения. Категория качества ВП.

Номер вывода	Назначение	Номер вывода	Назначение	
01	-	15	Выход информационный D3	
02	Вход адреса А12	16	Выход информационный D4	
03	Вход адреса А7	17	Выход информационный D5	
04	Вход адреса А6	18	Выход информационный D6	
05	Вход адреса А5	19	Выход информационный D7	
06	Вход адреса А4	20	Вход выбора микросхем CS	
07	Вход адреса А3	21	Вход адреса А10	
08	Вход адреса А2	22	Вход разрешения выхода Е0	
09	Вход адреса А1	23	Вход адреса А11	
10	Вход адреса А0	24	Вход адреса А9	
11	Выход информационный D0	25	Вход адреса А8	
12	Выход информационный D1	26	Вход разрешения выхода Е0	
13	Выход информационный D2	27	Вход разрешения програмирования кристал- ла EPR	
14	Общий вывод OV	28	Вывод питания от источника напряжения U	

ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ (Токр.ср.=25°C)

Параметры	Обозна-	Ед. из-	Режимы измерения	Min	Max
	чение	мер			
Выходное напряжение низкого уровня	U_{OL}	В	$U_{cc}=5B\pm10\%$ $I_{OL}=3,2MA$	-	0,4
Выходное напряжение высокого уровня	U_{OH}	В	$U_{cc} = 5B \pm 10\%$ $I_{OH} = /-0.8/\text{MA}$ $I_{OH} = /-2/\text{MA}$	U _{cc} -0,4 2,4	-
Ток утечки низкого уровня на входе	I_{LIL}	мкА	$U_{cc} = 5B \pm 10\% \ U_{IL} = 0$	-	/-2/
Ток утечки высокого уровня на входе	${ m I}_{ m LIH}$	мкА	$U_{cc} = 5B \pm 10\% \ U_{IH} = U_{cc}$	-	2
Ток утечки низкого уровня на выходе	I_{LOL}	мкА	$U_{cc} = 5B \pm 10\% \ U_{IL} = 0.8 \ B \ U_{OI} = 0 \ B$ $U_{IH} = U_{cc} - 0.8 \ B$	-	/-5/
Ток утечки высокого уровня на выходе	I_{LOH}	мкА	$U_{cc} = 5B \pm 10\% \ U_{IL} = 0.8 \ B \ U_{OI} = U_{cc}$ $U_{IH} = U_{cc} - 0.8 \ B$	-	5
Ток потребления в режиме хранения	I_{CCS}	мкА	U_{cc} =5B±10% U_{IL} =0 B U_{IH} = U_{cc}	-	40
Динамический ток потребления	I_{CCO}	мА	U_{cc} =5B±10% f=2MГц	-	50
Коэффициент программируемости	N_{PR}			0,6	-
Выходная ёмкость	C_{O}	пФ	$U_{cc} = 5B \pm 10\%$	-	9

9 -	110 - 140
$\Pi\Phi$ U _{cc} =5B±10%	$U_{cc}=5B\pm 10\%~U_{IH}=0,8~B$ $C_{L}\le 50~n\Phi~U_{IH}=~U_{cc}-~U_{IL}$ $t_{LH}\le 10~Hc$ $t_{HI}\le 10~Hc$
Фп	нс
$C_{\rm I}$	t_{cs}
Входная ёмкость	Время выбора 1623РТ2A 1623РТ2Б