Constraint Particles

Outline

- Constraint force
 - Single implicit constraint
 - Multiple implicit constraint
- Parametric constraint

A Simple Example

A bead on a wire

 The bead can slide freely along the wire but cannot come off it

 How do we simulate the motion of the bead when arbitrary forces applied to it

Penalty Constraints

 Why not use a spring to hold the bead on the wire?

- Problems:
 - Weak spring won't do the job
 - Strong springs results in stiff systems

Constraint Force

What is legal acceleration?

Depends on both n and v

 Compute f such that the net force f + f only generates legal acceleration

Constraint Force

 Need to compute constraint forces that cancel the illegal applied forces

Need to know what legal acceleration is

- Constraint force
 - -Single implicit constraint
 - -Multiple implicit constraint
- Parametric constraint

Constraints

Implicit

$$C(\mathbf{x}) = |\mathbf{x}| - r = 0$$

Parametric

$$\mathbf{x} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix}$$

Legal Acceleration

• What is the legal position?

$$C(\mathbf{x}) = \frac{1}{2} (\mathbf{x} \cdot \mathbf{x} - 1)$$

inner product assume unit circle

What is the legal velocity

$$\dot{C}(\mathbf{x}) = \mathbf{x} \cdot \dot{\mathbf{x}} = 0$$

$$\ddot{C}(\mathbf{x}) = \dot{\mathbf{x}} \cdot \dot{\mathbf{x}} + \mathbf{x} \cdot \ddot{\mathbf{x}} = 0$$

Legal Conditions

 If we start with legal position and velocity

$$C(\mathbf{x}) = 0$$

$$\dot{C}(\mathbf{x}) = 0$$

 We only need ensure the legal acceleration

$$\ddot{C}(\mathbf{x}) = 0$$

Constraint Force

 Use the legal condition to compute the constraint force f

$$\ddot{C}(\mathbf{x}) = \dot{\mathbf{x}} \cdot \dot{\mathbf{x}} + \mathbf{x} \cdot \ddot{\mathbf{x}} = 0$$

• Substitute $\ddot{\mathbf{x}}$ with $\ddot{\mathbf{x}} = \frac{\mathbf{f} + \hat{\mathbf{f}}}{m}$

$$\ddot{C}(\mathbf{x}) = \dot{\mathbf{x}} \cdot \dot{\mathbf{x}} + \mathbf{x} \cdot \frac{\mathbf{f} + \hat{\mathbf{f}}}{m} = 0$$

$$\hat{\mathbf{f}} \cdot \mathbf{x} = -\mathbf{f} \cdot \mathbf{x} - m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}$$

Constraint Force

$$\hat{\mathbf{f}} \cdot \mathbf{x} = -\mathbf{f} \cdot \mathbf{x} - m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}$$

We have one equation and two variables

 Need one more condition to solve the constraint force

Virtual Work

- Constraint force is passive—no energy gain or loss
- Kinetic energy of the system $T = \frac{1}{2}m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}$

$$\dot{T} = \frac{1}{2}m(\ddot{\mathbf{x}} \cdot \dot{\mathbf{x}} + \dot{\mathbf{x}} \cdot \ddot{\mathbf{x}}) = m\dot{\mathbf{x}} \cdot \ddot{\mathbf{x}} = \dot{\mathbf{x}}(\mathbf{f} + \hat{\mathbf{f}})$$

which is virtual work done by f and $\hat{\mathbf{f}}$

• Make sure does no work for every legal velocity $\hat{\mathbf{f}} \cdot \dot{\mathbf{x}} = 0, \forall \dot{\mathbf{x}} \in {\{\dot{\mathbf{x}} \mid \mathbf{x} \cdot \dot{\mathbf{x}} = 0\}}$

Virtual Work

$$\hat{\mathbf{f}} \cdot \dot{\mathbf{x}} = 0, \forall \dot{\mathbf{x}} \in {\{\dot{\mathbf{x}} \mid \mathbf{x} \cdot \dot{\mathbf{x}} = 0\}}$$

The virtual work condition can be rewritten as

$$\hat{\mathbf{f}} = \lambda \mathbf{x}$$

• Substituting for $\hat{\mathbf{f}}$ in $\hat{\mathbf{f}} \cdot \mathbf{x} = -\mathbf{f} \cdot \mathbf{x} - m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}$

$$\lambda = \frac{-\mathbf{f} \cdot \mathbf{x} - m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}}{\mathbf{x} \cdot \mathbf{x}}$$

Geometric Interpretation

Constraint force

$$\hat{\mathbf{f}} = \lambda \mathbf{x} = \frac{-\mathbf{f} \cdot \mathbf{x} - m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x}$$

If the system is at rest

Normal component of
$$\hat{\mathbf{f}} = -\frac{\mathbf{f} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}$$
 the applied force

 Only the tangent component of the applied force is kept

- Constraint force
 - -Single implicit constraint
 - -Multiple implicit constraint
- Parametric constraint

Generalization to Particle System

 We know how to simulate a bead on a wire now

 Apply the same idea, we can create a constrained particle system

Constraint Particles

- Particles: each particle represents a point in the phase space
- Forces: each force affects the acceleration of certain particles
- Constraints:
 - Each is a function $C_i(x_1, x_2,...)$
 - Legal state: $C_i(x_1, x_2, ...) = 0$, for all i
 - Constraint force: linear combination of constraint gradients $\underline{\partial \mathbf{C}_i}_{,\forall i}$

Motion Equation in General Case

For a system of n particles

$$\begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{1}{m_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{m_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

$$\ddot{\mathbf{q}} = \mathbf{W}\mathbf{Q}$$

Constraint Equation in General Case

• System of constraint equation C(q) = 0

$$\dot{\mathbf{C}} = \frac{\partial \mathbf{C}}{\partial \mathbf{q}} \frac{d\mathbf{q}}{dt} = \mathbf{J}\dot{\mathbf{q}} = 0 \qquad \ddot{\mathbf{C}} = \dot{\mathbf{J}}\dot{\mathbf{q}} + \mathbf{J}\ddot{\mathbf{q}} = 0$$
Jacobian

To compute the legal acceleration:

Let
$$\ddot{\mathbf{q}} = \mathbf{W}(\mathbf{Q} + \hat{\mathbf{Q}})$$
 Constraint forces we can get

$$\ddot{\mathbf{C}} = \dot{\mathbf{J}}\dot{\mathbf{q}} + \mathbf{J}\mathbf{W}(\mathbf{Q} + \hat{\mathbf{Q}}) = 0$$
$$\mathbf{J}\mathbf{W}\hat{\mathbf{Q}} = -\dot{\mathbf{J}}\dot{\mathbf{q}} - \mathbf{J}\mathbf{W}\mathbf{Q}$$

Principle of Virtual Work

 To ensure the constraint force does not produce work

$$\hat{\mathbf{Q}}\dot{\mathbf{q}} = 0, \forall \dot{\mathbf{q}} \in {\{\dot{\mathbf{q}} \mid \mathbf{J}\dot{\mathbf{q}} = 0\}}$$

All vectors satisfy the condition can be expressed as

$$\hat{\mathbf{Q}} = \mathbf{J}^T \boldsymbol{\lambda}$$
 vector

Two Conditions for Constraint Forces

Legal acceleration

$$JW\hat{Q} = -\dot{J}\dot{q} - JWQ$$

Principle of virtual work

$$\hat{\mathbf{Q}} = \mathbf{J}^T \boldsymbol{\lambda}$$

 Constraint forces obtained by solving the linear system

$$\mathbf{J}\mathbf{W}\mathbf{J}^{\mathrm{T}}\boldsymbol{\lambda} = -\dot{\mathbf{J}}\dot{\mathbf{q}} - \mathbf{J}\mathbf{W}\mathbf{Q}$$

Constraint Gradients (cont.)

$$\hat{\mathbf{Q}} = \mathbf{J}^T \boldsymbol{\lambda}$$
 Normal of \mathbf{C}_1 : $\frac{\partial C_1}{\partial \mathbf{q}}$

$$= \begin{bmatrix} \frac{\partial C_1}{\partial q_1} & \frac{\partial C_1}{\partial q_2} & \cdots & \frac{\partial C_1}{\partial q_n} \\ \frac{\partial C_2}{\partial q_1} & \frac{\partial C_2}{\partial q_2} & \cdots & \frac{\partial C_2}{\partial q_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial C_m}{\partial q_1} & \frac{\partial C_m}{\partial q_2} & \cdots & \frac{\partial C_m}{\partial q_n} \end{bmatrix}$$

Normal of
$$C_m : \frac{\partial C_m}{\partial \mathbf{q}}$$

Constraint Gradients (cont.)

- Legal states: the intersection of two planes
- Normal of legal states

$$\hat{\mathbf{Q}} = \mathbf{J}^T \boldsymbol{\lambda} \longrightarrow \sum_{i=1}^m \lambda_i \frac{\partial C_i}{\partial \mathbf{q}}$$
• Constraint forces are aligned

- Constraint forces are aligned with the normal of legal states
- Work done by constraint forces is zero

Impress your friends

 The requirement that constraints not add or remove energy is called the Principle of Virtual Work

The λ's are called Lagrangain Multipliers

Side Note on Lagrange Multiplier

 Finds the local maxima/minima of a function subject to equality constraints

Maximize f(x,y)

Sub. to g(x,y)=0

Constraints

Implicit

$$C(\mathbf{x}) = |\mathbf{x}| - r = 0$$

Parametric

$$\mathbf{x} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix}$$

Parametric Constraints

Constraint is always met exactly

- 1 degree of freedom:
 - Solve for $\ddot{\theta}$

$$\mathbf{x} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix}$$

Parametric Constraints

Constraint is always met exactly

$$\dot{\mathbf{x}} = \frac{\partial \mathbf{x}}{\partial \theta} \frac{d\theta}{dt} = \mathbf{T}\dot{\theta}, \quad \mathbf{T} = \frac{\partial \mathbf{x}}{\partial \theta}$$

$$\ddot{\mathbf{x}} = \dot{\mathbf{T}}\dot{\theta} + \mathbf{T}\ddot{\theta} = \frac{\mathbf{f} + \hat{\mathbf{f}}}{m}$$
Multiply both sides by T
$$\ddot{\mathbf{f}} - \mathbf{T} \cdot \dot{\mathbf{T}}\dot{\theta}$$

$$\ddot{\theta} = \frac{\mathbf{T} \cdot \mathbf{T} \cdot \dot{\mathbf{T}}\dot{\theta}}{\mathbf{T} \cdot \mathbf{T}}$$

$$\ddot{\mathbf{f}} \cdot \mathbf{T} = 0$$
virtual work principle
$$\ddot{\theta} = \frac{\mathbf{T} \cdot \mathbf{T} \cdot \dot{\mathbf{T}}\dot{\theta}}{\mathbf{T} \cdot \mathbf{T}}$$

Lagrangian Dynamics

- See Witkin & Baraff's note for generalization to a system of n-particles using parametric constraints
- This type of method is called Lagrangian Dynamics
 - Instead of working on unconstrained q
 - We work on a constrained space \mathbf{u} and solve for \mathbf{u} through the parametric function $\mathbf{q}(\mathbf{u})$

Generalized coordinate

Parametric Constraints

- Advantages
 - Fewer degrees of freedom
 - Constraints are always met

- Disadvantages
 - Hard to find a parametric function that captures the desired constraints
 - Hard to combine constraints