CS 381 Homework 3 – Syntax

Submit a pdf for problems 1-4 and a Haskell *.hs file for problem 5.

1. Using the grammar below, show a parse tree and a leftmost derivation for the sentence

A = B * (C+A)

$$\rightarrow =
 \ \rightarrow *

$$| < term>
 + < term> | -

$$| < factor>
 \ \rightarrow ()
$$| \ \rightarrow A | B | C$$$$$$$$

Parse tree:

Lefmost derivation:

assign
$$\Rightarrow < id > = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + > * < f \times P + >$$

$$\Rightarrow A = < £ \times P + > * < f \times P + >$$

$$\Rightarrow A = < £ \times P + > * < f \times P + >$$

$$\Rightarrow A = < £ \times P + > * < f \times P + >$$

$$\Rightarrow A = < £ \times P + > * < f \times P + >$$

$$\Rightarrow A = < £ \times P + > * < f \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = < £ \times P + >$$

$$\Rightarrow A = <$$

2. Rewrite the following BNF to add the prefix ++ and -- unary operators of Java.

$$<$$
assign $> \rightarrow <$ id $> = <$ expr $>$
 $<$ expr $> \rightarrow <$ expr $> * <$ term $>$
 $|<$ term $>$
 $<$ term $> \rightarrow <$ factor $> + <$ term $> |<$ factor $> - <$ term $>$
 $|<$ factor $>$
 $<$ factor $> \rightarrow (<$ expr $>)$
 $|<$ id $>$
 $<$ id $> \rightarrow A | B | C$

added the prefix and -- unary opercors :

<id> -> AIBIC

3. Show that the following grammar is ambiguous

Let me generate two parse trees for the sentence: U OR V == V AND W

Parse tree 3:

The first parse tree represents the sentence U OR V == V AND W and the second parse tree represents sentence

V AND W == U OR V. Therefor, The grammer is ambiguous, Because the same iput sontonce could be parsed in two different ways.

4. Write a grammar G for the language L consisiting of strings of 0's and 1's that are the binary representation of odd integers greater that 4. For example $11 \notin L$, $101 \in L$, $110 \notin L$. Draw parse trees for the strings 1011 and 1101

Let $G = \{\{y\}, \{0,1\}, P, S\}$, where S is the start symbol, $Y = \{S,A\}$ is set variable, $\{0,1\}$ is set set of terminals, and P is the set of production rules defined QS: $S \to 1A$ $A \to 0A$ $A \to 1$

This grammar genemates binary representation of odd integers greater than 4, where the first character is always 1, followed by zero or more 1's and 0's alternating, ending with a 0.

parse tree for the stray '1011" | parse tree for the stry '1101"

