		NOU	<u> </u>
		I	II
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN	5		
Fakultät für Mathematik	6		
Studienbegleitende Fachprüfung, Wiederholung Mathematik für Physik 2	7		
$({ m Analysis}1)$	8		
Prof. Dr. S. Warzel	9		
6. April 2009, 9:00 – 10:30 Uhr	10		
Hörsaal: Reihe: Platz:	11		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 11 Aufgaben Bearbeitungszeit: 90 min	\sum		
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.	I	 Erstkorrel	 ktur
]II	$\mathbf{Z}_{ ext{weitkorr}}$	ektur
Nur von der Aufsicht auszufüllen:			
Hörsaal verlassen von bis			
Vorzeitig abgegeben um			

 $Be sondere\ Bemerkungen:$

	1	
1. Vollständige Induktion Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage	:	[8 Punkte]
$\sum_{k=1}^{n-1} k!k = n! - 1$		
k=1		

2. Komplexe Zahlen

[6 Punkte]

[3]

[3]

(a) Geben Sie $z = \frac{1}{2}i + \frac{2-i}{(1+i)^2}$ in Polardarstellung, $re^{i\phi}$, $r \in \mathbb{R}^+$, $\phi \in (-\pi, \pi]$, an.

z =

(b) Geben Sie Real- und Imaginärteil von $\sqrt[3]{i}$ an.

 $\sqrt[3]{i} =$ $+\mathrm{i}$

3. Konvergenz von Folgen und Reihen	[7 Punkte]
(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\sqrt{n^2+n}-n\right)$	[2]
$\Box = -\infty \qquad \Box = 0 \qquad \Box = \frac{1}{2} \qquad \Box = 1$	$\Box = \infty$ \Box existiert nicht
(b) $\lim_{n \to \infty} \sin\left(\frac{n^2+1}{n+5}\right) \log\left(\frac{n^2+5}{n^2+3}\right)$	[3]
$\square = -\infty \qquad \square = -1 \qquad \square = 0 \qquad \square = 1$	$\Box = \infty$ \Box existiert nicht
(c) Welchen Wert besitzt die Reihe $\sum_{n=0}^{\infty} \frac{2^n - 1}{3^n}$?	[2]
$\Box \ -\frac{3}{2} \qquad \Box \ -1 \qquad \Box \ 0 \qquad \Box \ 1 \qquad \Box \ \frac{3}{2}$	$\square \ 3 \square \ \infty \square \ \text{undefiniert}$

4. Potenzreihen $\sim (1 - n^2)$	6 Punkte]
Gegeben ist die Potenzreihe $P(z) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right)^{-n^2} z^n$. Bestimmen Sie ihren Konverger	nzradius.

5. Grenzwerte von Funktionen, stetige Fortsetzbarkeit	$[4 \; \mathrm{Punkte}]$
(a) Welchen Wert hat $\lim_{x\to\infty} x^2 \log \left(1 + \frac{1}{x^2}\right)$?	[2]
$\square - \infty \qquad \square - 1 \qquad \square - \frac{1}{2} \qquad \square \ 0 \qquad \square \ \frac{1}{2} \qquad \square \ 1 \qquad \square \ 2 \qquad \square \ \infty$	\square existiert nicht
(b) Durch welchen Wert ist die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = x \cos \frac{1}{x}$ bei x	= 0 stetig fortsetzbar? [2]
\square -1 \square $-\frac{1}{2}$ \square 0 \square $\frac{1}{2}$ \square 1 \square 2 \square ni	cht stetig fortsetzbar

Stetige und differenzierbare Funktionen	[6 Punkte
Sei $f:[0,1]\to\mathbb{R}$ stetig, $F(x)=\int\limits_0^x f(t)dt,F(\frac{1}{2})=1.$ Beweisen Sie: es gibt ein	$t \in [0, \frac{1}{2}] \text{ mit } f(t) = 2.$
0	_

7	
7. Maximale Fläche Unter den Rechtecken in der <i>xy</i> -Ebene, für welche	[10 Punkte]
\bullet eine Seite auf der x -Achse liegt, und	
• zwei Ecken in der oberen Halbebene auf dem Graph der Funktion $f(x) = 9 - x$	² liegen,
soll dasjenige bestimmt werden, welches den größten Flächeninhalt hat.	
(a) Welche Beziehung besteht zwischen der Höhe h und der Breite b des Rechtecks	?
(b) Bestimmen Sie, mit Begründung, die Breite b desjenige Rechtecks mit dem größte	n Flächeninhalt.

8. Integration		
o. Integration		

[6 Punkte]

(a) Bestimmen Sie

[2]

$$\int \frac{1}{x \log x} \, dx =$$

- (b) Das Integral $\int_{0}^{1} \frac{e^{-x} \cos x}{\sqrt{x}} dx$ ist [2]
 - \square konvergent, \square absolut konvergent, \square undefiniert.
- (c) Das Integral $\int_{1}^{\infty} \frac{e^{-x} \cos x}{\sqrt{x}} dx$ ist
 - \square konvergent, \square absolut konvergent, \square undefiniert.

9.	Integration $_{\infty}$	[7 Punkte]
	Für welche Werte von $a,b\in\mathbb{R}$ konvergiert das Integral $\int\limits_{-\infty}^{\infty}\frac{1}{(x-a)^2+b^2}dx$?	
	Bestimmen Sie im Konvergenzfall seinen Wert.	

10. Taylorentwicklung

[8 Punkte]

Wir betrachten die Funktion $f: \mathbb{R} \to \mathbb{R}, f(x) = \int_{0}^{x} e^{-\frac{1}{2}t^{2}} dt$.

(a) Bestimmen Sie das Taylorpolynom fünfter Ordnung, $T_{f,5}(x)$, von f(x) um den Entwicklungspunkt 0. [5]

 $T_{f,5}(x) =$

(b) Welchen Konvergenzradius hat die Taylorreihe von f um den Entwicklungspunkt 0? [3]

 $\square \quad 0 \quad \ \, \square \quad \frac{1}{e} \quad \ \, \square \quad \frac{1}{2} \quad \ \, \square \quad 1 \qquad \quad 2 \quad \ \, \square \quad e \quad \ \, \square \quad \infty \qquad \ \, \square \quad \text{existiert nicht}$

11. Matrixexponential

[7 Punkte]

Gegeben ist die Matrix $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

(a) Berechnen Sie A^n , $n \in \mathbb{N}$.

[2]

$$A^n =$$

(b) Berechnen Sie $\exp(tA)$, $t \in \mathbb{R}$.

[3]

$$\exp(tA) = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

(c) Berechnen Sie die Lösung x(t) des Anfangswertproblems $\dot{x} = Ax$, $x(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. [2]

$$x(t) =$$