A Uniform Analysis of Combinatorial Markov Chains via Hopf Algebras

Amy Pang, LaCIM

Motivation: a Dynamic Storage Allocation Problem

- ullet You have n files, arranged in a list.
- You request files one-by-one independently, removing one from the list and returning it in a possibly different position.
- You request file i with a fixed, unknown, probability p_i .
- Each time you make a request, you search from the front of the list for the file you need.

Motivation: a Dynamic Storage Allocation Problem

- ullet You have n files, arranged in a list.
- You request files one-by-one independently, removing one from the list and returning it in a possibly different position.
- You request file i with a fixed, unknown, probability p_i .
- Each time you make a request, you search from the front of the list for the file you need.

Question: where should you return a file to minimise the average search time?

Starting list

Stationary distribution:

$$p^4p^3p^2p$$

$$\frac{p}{1} \frac{p}{1-p} \frac{p}{1-p-p} \frac{p}{1-p-p-p}$$

Stationary distribution:

$$p^4p^3p^2p$$

$$\frac{p}{1} \frac{p}{1-p} \frac{p}{1-p-p} \frac{p}{1-p-p-p}$$

Rivest (1976): lower average search time when in stationary distribution

Stationary distribution:

$$p^4p^3p^2p$$

$$\frac{p}{1} \frac{p}{1-p} \frac{p}{1-p-p} \frac{p}{1-p-p}$$

Rivest (1976): lower average search time when in stationary distribution

Bitner (1979): reaches stationary distribution earlier

Markov Chains

- ullet $\mathcal X$ a (finite) state space. all possible orders of n files
- X_t a random variable taking values in \mathcal{X} , for each $t \in \mathbb{N}$. the order of the files after t requests
- The process $\{X_t\}$ is memoryless, in that $\operatorname{Prob}(X_{t+1}=y|X_t=x)=K(x,y)$, a number independent of $X_1,X_2,...X_{t-1}$ and of t.

Markov Chains

- ullet $\mathcal X$ a (finite) state space. all possible orders of n files
- X_t a random variable taking values in \mathcal{X} , for each $t \in \mathbb{N}$. the order of the files after t requests
- The process $\{X_t\}$ is memoryless, in that $\operatorname{Prob}(X_{t+1}=y|X_t=x)=K(x,y)$, a number independent of $X_1,X_2,...X_{t-1}$ and of t.
- It follows that $Prob(X_{t+r} = y | X_t = x) = K^r(x, y)$.

Markov Chains

- ullet $\mathcal X$ a (finite) state space. all possible orders of n files
- X_t a random variable taking values in \mathcal{X} , for each $t \in \mathbb{N}$. the order of the files after t requests
- The process $\{X_t\}$ is memoryless, in that $\operatorname{Prob}(X_{t+1}=y|X_t=x)=K(x,y)$, a number independent of $X_1,X_2,...X_{t-1}$ and of t.
- It follows that $Prob(X_{t+r} = y | X_t = x) = K^r(x, y)$.

Important questions:

• Stationary distribution: $\sum_{x \in \mathcal{X}} \pi_x K(x, y) = \pi_y$.

eigenvector of eigenvalue 1

Convergence rate. subdominant eigenvalue (spectral gap)

More applications of Markov Chains

To model a process:

- Exclusion process (Quastel 1992, Diaconis, Saloff-Coste 1993)
- DNA sequencing (Ching, Fung, Ng 2004)

To sample from a given distribution:

- Configurations of particles in a liquid (Allen, Tildesley 1989)
- Contingency tables (Hernek 1998)

To obtain good approximations to optimisation problems:

- Data augmentation (Tanner, Wong 1987)
- Decoding prisoner communication (Connor 2003)

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

For example:

Aldous-Diaconis (1986): convergence rate is $n \log n$. (~ 205 when n = 52).

Cut the deck with symmetric binomial distribution;

$$i\left\{\begin{array}{c} \\ \\ \\ \end{array}\right\}_n \quad \mathsf{Prob} = 2^{-n} \binom{n}{i}$$

• Cut the deck with symmetric binomial distribution;

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$Prob = \frac{3}{5}$$

$$Prob = \frac{2}{5}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$\mathsf{Prob} = \frac{2}{3}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$\mathsf{Prob} = \frac{1}{2} \quad \mathsf{Prob} = \frac{1}{2}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$\mathsf{Prob} = \frac{1}{1}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

Bayer-Diaconis (1992): convergence rate is $\frac{3}{2} \log n$. (~ 7 when n = 52).

Top-to-random Riffle

Theorem: (2015) (+Diaconis, Ram 2014)

extensions of Diaconis-Fill- Bayer-Diaconis (1992), results by: Pitman (1992) Hanlon (1990)

The unique stationary distribution is the uniform distribution.

Top-to-random

Riffle

Theorem:

(2015)

(+Diaconis, Ram 2014)

extensions of results by:

Diaconis-Fill-Pitman (1992)

Bayer-Diaconis (1992), Hanlon (1990)

The unique stationary distribution is the uniform distribution.

Eigenvalues:

$$0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1.$$
 $2^{-n+1}, \dots, 2^{-1}, 1.$

Top-to-random Riffle

Theorem: (2015) (+Diaconis, Ram 2014)

extensions of Diaconis-Fill- Bayer-Diaconis (1992), results by: Pitman (1992) Hanlon (1990)

The unique stationary distribution is the uniform distribution.

Eigenvalues: $0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1.$ $2^{-n+1}, \dots, 2^{-1}, 1.$

Top-to-random

Riffle

Theorem:

(2015)

(+Diaconis, Ram 2014)

extensions of results by:

Diaconis-Fill-Pitman (1992) Bayer-Diaconis (1992), Hanlon (1990)

The unique stationary distribution is the uniform distribution.

Eigenvalues:

$$0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1.$$
 $2^{-n+1}, \dots, 2^{-1}, 1.$

$$2^{-n+1}, \dots, 2^{-1}, 1.$$

Multiplicities of eigenvalues, for all cards distinct

number of permutations of ncards with j fixed points.

number of permutations of ncards with j cycles.

An algorithm to compute an eigenbasis.

Corollary: Start with n distinct cards in ascending order. After t top-to-random shuffles:

Prob (descent at the bottom)=
$$\left(1-\left(\frac{n-2}{n}\right)^t\right)\frac{1}{2}$$
.

big card on small card

Prob (peak at the bottom)= $\left(1-\left(\frac{n-3}{n}\right)^t\right)\frac{1}{3}$.

triple of cards with biggest in middle

An algorithm to compute an eigenbasis.

Corollary: Start with n distinct cards in ascending order. After t riffle shuffles:

Expect (number of descents)=
$$\left(1-\left(\frac{1}{2}\right)^t\right)\frac{n-1}{2}$$
.

Expect (number of peaks)=
$$\left(1-\left(\frac{1}{4}\right)^t\right)\frac{n-2}{3}$$
.

A new Connection: Ree's Shuffle (Hopf) Algebra

• \mathcal{H}_n is the vector space with basis all decks of n cards.

A new Connection: Ree's Shuffle (Hopf) Algebra

- \mathcal{H}_n is the vector space with basis all decks of n cards.
- "deconcatenation" coproduct $\Delta_{i,j}: \mathcal{H}_{i+j} \to \mathcal{H}_i \otimes \mathcal{H}_j$

$$\Delta_{1,3}$$
 = \otimes ; $\Delta_{2,2}$ = \otimes

A new Connection: Ree's Shuffle (Hopf) Algebra

- \mathcal{H}_n is the vector space with basis all decks of n cards.
- "deconcatenation" coproduct $\Delta_{i,j}: \mathcal{H}_{i+j} \to \mathcal{H}_i \otimes \mathcal{H}_j$

$$\Delta_{1,3}$$
 = \otimes ; $\Delta_{2,2}$ = \otimes

• "interleaving" product $\operatorname{mult}: \mathcal{H}_i \otimes \mathcal{H}_j \to \mathcal{H}_{i+j}$

- ullet \mathcal{H}_n is the vector space with basis all decks of n cards.
- "deconcatenation" coproduct $\Delta_{i,j}: \mathcal{H}_{i+j} \to \mathcal{H}_i \otimes \mathcal{H}_j$

$$\Delta_{1,3}$$
 = \otimes ; $\Delta_{2,2}$ = \otimes

• "interleaving" product $\operatorname{mult}: \mathcal{H}_i \otimes \mathcal{H}_j \to \mathcal{H}_{i+j}$

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\Delta_{1,3}$$
 =

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\mathrm{mult} \circ \Delta_{1,3} = \mathrm{mult} \otimes = + + + + + +$$

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\frac{1}{4} \text{ mult } \circ \Delta_{1,3} = \frac{1}{4} \text{ mult} \otimes = \frac{1}{4} \text{ mult}$$

$$= \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{$$

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\frac{1}{4} \text{ mult} \circ \Delta_{1,3} = \frac{1}{4} \text{ mult} \otimes = \frac{1}{4} \text{ mult}$$

$$= \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1$$

Riffle:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{2^n} \operatorname{mult} \circ \sum_{i=0}^n \Delta_{i,n-i}(x).$

Chains on Other Combinatorial Objects

Markov chain	Hopf al
shuffling	shuffle
inverse-shuffling	free ass
edge-removal	\mathcal{G}
edge-removal	G
restriction-then-induction	represe
rock-breaking	symmet
tree-pruning	Connes
descent-set-under-shuffling	quasisy
jeu-de-tacquin	Poirer-P
shuffle with standardisation	Malven

bas	is
wor	ds / decks of cards
wor	ds / decks of cards
unla	abelled graphs
labe	elled graphs
irre	ducible representations
eler	mentary or complete
roo	ted forests
fun	damental (compositions)
star	dard Young tableaux
fun	damental (permutations)

stationary distribution
uniform
uniform
absorbing at empty graph
absorbing at empty graph
plancherel
absorbing at $(1,1,\ldots,1)$
absorbing at disconnected for
proportion of permutations w
proportion of standard tableau
uniform

Chains on Other Combinatorial Objects

Markov chain	Hopf alg	basis
shuffling	shuffle a	words / decks of cards
inverse-shuffling	free asso	words / decks of cards
edge-removal	\mathscr{G}	unlabelled graphs
edge-removal	\mathscr{G}	labelled graphs
restriction-then-induction	represe	irreducible representations
rock-breaking	symmet	elementary or complete
tree-pruning	Connes-	rooted forests
descent-set-under-shuffling	quasisy	fundamental (compositions)
jeu-de-tacquin	Poirer-R	standard Young tableaux
shuffle with standardisation	Malven	fundamental (permutations)

stationary distribution
uniform
uniform
absorbing at empty graph
absorbing at empty graph
plancherel
absorbing at $(1,1,\ldots,1)$
absorbing at disconnected fore
proportion of permutations wi
proportion of standard tableau
uniform

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

Taking the transition probabilities from $\frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}$ gives this variant of the hook-walk of Sagan-Yeh (1987):

Uniformly choose a vertex

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Hopf algebra of trees: Butler (1972), Connes-Kreimer (1998)

Taking the transition probabilities from $\frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}$ gives this variant of the hook-walk of Sagan-Yeh (1987):

- Uniformly choose a vertex
- Uniformly choose one of its descendants, and repeat until it reaches a leaf
- Remove the leaf

Theorem (2015, 2016+): The eigenvalues are $0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1$.

Let f_j be the number of j-tuples of vertices on different "branches". Then $(n-i)^t$

Expect
$$(f_j(X_t)) = \left(\frac{n-j}{n}\right)^t f_j(X_0).$$

The Future

- More combinatorial objects (e.g. phylogenetic trees)
- More linear maps (e.g. move-to-front with arbitrary request probabilities)
- Use probability to understand Hopf algebras (+Josuat-Verges, 2016+)

The Future

- More combinatorial objects (e.g. phylogenetic trees)
- More linear maps (e.g. move-to-front with arbitrary request probabilities)
- Use probability to understand Hopf algebras (+Josuat-Verges, 2016+)

Thank you!

Reader-friendly summary: "Card-Shuffling via Convolutions of Projections on Combinatorial Hopf Algebras" arXiv:1503.08368

Beyond eigen-information: "A Hopf-Algebraic Lift of the Down-Up Markov Chain on Partitions to Permutations" arXiv:1508.01570