Quantum Software Development

Lecture 10: Shor's Factorization Algorithm

April 10, 2024

Integer factorization is thought to be intractable on a classical computer.

Multiplication is easy.

$$53 \times 71 = ?$$

$$\begin{array}{r}
 53 \\
 \times 71 \\
 \hline
 53 \\
 + 371 \\
 = 3763
\end{array}$$

$$O\left((\log N)^2\right)$$

Factorization is hard.

$$3763 = ? \times ?$$

$$3763 \mod 2 \neq 0$$

$$3763 \bmod 3 \neq 0$$

$$3763 \mod 53 = 0$$

$$O(\sqrt{N})$$

Shor's algorithm works by reducing the problem to finding the period of a modular exponentiation function.

- 1. Guess a number g between 1 and the number to factor N.
- 2. Check if g and N share a common factor; ______ if they do, we're done!
- Use Euclid's GCD algorithm, $O(\log N)$

- 3. Find the period p of the function $f(x) = g^x \mod N$.
- 4. If p is odd or $\left(g^{\frac{p}{2}}+1\right) \operatorname{mod} N=0$, go back to step 1.
- 5. Otherwise, $g^{\frac{p}{2}} + 1$ or $g^{\frac{p}{2}} 1$ are guaranteed to share a common factor with N.

Modular exponentiation is periodic if the base and modulus are relatively prime.

x	5 ^x mod 21	
0	1	
1	5	
2	4	
3	20	
4	16	
5	17	
6	1	Cycle repeats
7	5	at $x=6$
•	:	

Finding the period p of $f(x) = g^x \mod N$ gives $g^p \mod N = 1$.

This implies $g^p - 1 = mN$, for some integer m.

Factoring using the difference of squares gives $\left(g^{\frac{p}{2}}+1\right)\left(g^{\frac{p}{2}}-1\right)=mN$.

Assuming p is even and $g^{\frac{p}{2}} + 1$ is not a multiple of N, one of the terms must share a common factor with N.

How might a quantum computer be used to find the period of the modular exponentiation function?

Inputs having the same output are grouped; each group of input values has period p.

Each input group produces frequency bins at* multiples of $\frac{1}{p}$

*approximately

Example: $f(x) = 5^x \mod 21$

Period-Finding Subroutine

- 1. Set up two registers of length n such that $N^2 \le 2^n < 2N^2$. (Alternatively, $n = \lceil 2 \log_2 N \rceil$.)
- 2. Put the input register into a uniform superposition.
- 3. Apply modular exponentiation as a quantum operation.
- 4. Apply the inverse QFT to the input register.
- 5. Measure the input register.
- 6. Use continued fraction expansion to approximate p. If this fails, go back to step 1.

Modular exponentiation is the bottleneck. It is roughly as hard as multiplication, $O((\log N)^2)$.

epeat until success

Shor's Factorization Algorithm

- 1. Pick some integer g such that 1 < g < N, where N is the number to factor
- 2. Compute GCD(g, N); if the result is > 1, it's a factor of N and we're done
- 3. Find the period p of the function $f(x) = g^x \mod N$, giving $g^p \mod N = 1$
 - A. Set up two registers $|I,O\rangle = |0^{\otimes n}, 0^{\otimes n}\rangle$, where $N^2 \leq 2^n < 2N^2$
 - B. Apply $H^{\otimes n}$ to put $|I\rangle$ into a uniform superposition
- C. Apply f(x) as a quantum operation that maps $|x, 0\rangle \rightarrow |x, f(x)\rangle$
 - D. Apply QFT^{\dagger} to $|I\rangle$
 - E. Measure $|I\rangle$ and obtain some value X
- **F.** Use continued fraction expansion on $\frac{X}{2^n}$ to find candidates for p
- 4. If p is odd or $\left(g^{\frac{p}{2}}+1\right) \mod N=0$, fail
- 5. Compute $GCD\left(g^{\frac{p}{2}}\pm 1,N\right)$; guaranteed to get at least one factor of N

repeat until success

The Euclidean algorithm can find the greatest common divisor of two numbers efficiently.

$$GCD(A, B)$$
:

 $if B = 0, return A$;

 $return GCD(B, A \mod B)$;

In Shor's algorithm, if we find an integer A such that 1 < GCD(A, N) < N, then GCD(A, N) is a factor of N!

Modular exponentiation can be performed efficiently using the binary substitution method.

How do we compute $f(x) = g^x \mod N$?

Express x in little-endian binary notation:

$$x = x_0 2^0 + x_1 2^1 + \dots + x_{n-1} 2^{n-1}$$

• Break g^x up into n terms:

$$g^{x_0 2^0 + x_1 2^1 + \dots + x_{n-1} 2^{n-1}} = g^{x_0 2^0} \cdot g^{x_1 2^1} \cdot \dots \cdot g^{x_{n-1} 2^{n-1}}$$

■ Compute each term one-at-a-time under mod *N*:

$$g^{x} \bmod N = \left(g^{x_0 2^{0}} \bmod N\right) \cdot \left(g^{x_1 2^{1}} \bmod N\right) \cdot \dots \cdot \left(g^{x_{n-1} 2^{n-1}} \bmod N\right)$$

Modular Exponentiation Procedure

- 1. Initialize $f_{temp} = 1$
- 2. Iterate over the bits in x starting with the LSB; if $x_i = 1$ do:
 - A. Multiply f_{temp} by $g^{2^i} \mod N$
 - B. Set f_{temp} to f_{temp} mod N
- 3. Now, $f_{temp} = f(x)$

 f_{temp} never exceeds N^2

The binary substitution method is straightforward to implement as a quantum operation.

Any rational number can be represented as a continued fraction.

$$rac{P}{Q} = a_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{a_3 + \cdots}}}$$

Continued Fraction Expansion Procedure

- 1. Initialize $P_i = P$, $Q_i = Q$, i = 0
- 2. Perform integer division $P_i \div Q_i$; the quotient is a_i and the remainder is r_i
- 3. If $r_i = 0$, we're done
- 4. Repeat with $P_{i+1} = Q_i$, $Q_{i+1} = r_i$, i = i + 1

$$\frac{13}{16} = 0 + \frac{1}{1 + \frac{1}{4 + \frac{1}{3}}}$$

i	$\boldsymbol{P_i}$	Q_i	$\setminus a_i$	r_i
0	13	16	0	_ 13
1	16	13	1	3
2	13	3	4	1
3	3	1	3	0

Continued fraction expansion can approximate the period p based on the measured inverse QFT result.

In Shor's algorithm, measuring a value $|X\rangle$ implies a frequency bin of $\frac{X}{2^n}$, which is close to a multiple of $\frac{1}{n}$.

This (surprisingly) works:

- Do continued fraction expansion with P = X, $Q = 2^n$.
- Check the approx. value "so far" after each iteration:

$$v_i = \frac{m_i}{d_i} = a_0 + \frac{1}{a_1 + \frac{1}{\dots + \frac{1}{a_i}}}$$
 $m_i = a_i \cdot m_{i-1} + m_{i-2}$ $d_i = a_i \cdot d_{i-1} + d_{i-2}$

$$m_i = a_i \cdot m_{i-1} + m_{i-2}$$

 $d_i = a_i \cdot d_{i-1} + d_{i-2}$

■ Stop when $d_i \ge N$ and take d_{i-1} as a candidate for p.

13	= 0 + 1		1		
$\frac{1}{16} = 0 + \frac{1}{2}$	1+	1			
		1 T	4		1
			T	T	3

i	a_i	m_i	d_i	v_i
0	0	0	1	$\frac{0}{1}$
1	1	1	1	$\frac{1}{1}$
2	4	4	5	<u>4</u> 5
3	3	13	16	$\frac{13}{16}$

Example: Factor 143 using Shor's algorithm.

- 1. Pick g = 10
- 2. Compute $GCD(10, 143) = 1 \dots 10$ and 143 are coprime
- 3. Find the period p of the function $f(x) = 10^x \mod 143$, giving $10^p \mod 143 = 1$
 - $n = [2 \log_2 143] = 15$
 - Likely to measure some X such that $\frac{X}{2^{15}} \approx \frac{m}{p}$
 - Suppose we measure X = 27307
 - Do continued fraction expansion on $\frac{27307}{32768}$
 - $\frac{27307}{32768} \approx \frac{5}{6}$, so 6 is a candidate for p
 - Check $10^6 \mod 143 = 1$ ✓
- 4. Check $(10^{\frac{6}{2}} + 1) \mod 143 = 0 \dots 1001 = 143 \cdot 7$ so try again ...

x	$10^x \pmod{143}$
0	1
1	10
2	100
3	142
4	133
5	43
6	1
•	•

Example: Factor 143 using Shor's algorithm (take 2).

- 1. Pick g = 12
- 2. Compute $GCD(12, 143) = 1 \dots 12$ and 143 are coprime
- 3. Find the period p of the function $f(x) = 12^x \mod 143$, giving $12^p \mod 143 = 1$
 - $n = [2 \log_2 143] = 15$
 - Likely to measure some X such that $\frac{X}{2^{15}} \approx \frac{m}{p}$
 - Suppose we measure X = 16384
 - $\frac{16384}{32768} = \frac{1}{2}$, so 2 is a candidate for *p*
 - Check $12^2 \mod 143 = 1$
- 4. Check $(12^{\frac{2}{2}} + 1) \mod 143 = 0 \dots 13 \mod 143 = 13$
- 5. Compute $GCD(13, 143) = 13 \dots 13$ is a factor of 143!

x	12 ^x (mod 143)
0	1
1	12
2	1
3	12
4	: