# Transport of jets and heavy quarks in the glasma pre-equilibrium stage



Showcasing results done in collaboration with

T. Lappi, H. Mäntysaari U. Jyväskylä, HIP A. Ipp, D. Müller

V. Greco, M. Ruggieri U. Catania, INFN-LNS C. Lamas, M. Li, C. A. Salgado IGFAE, U. Santiago de Compostela











#### Outline

Introduction

Stages • Initial stage • Hard probes

Glasma fields

CGC • Features • Frameworks

Transport in glasma

Classical transport • Field correlators

Results

Transport coefficients • Observables

Open questions

#### Heavy-ion collisions



Stages at weak coupling



#### **Collision stages**

- ▶ Before collision  $\tau \le 0 \, \mathrm{fm/c}$ Gluon field of high-energy nucleus
- ▶ Initial stage  $\tau \lesssim 0.3 \, \mathrm{fm/c}$ Glasma strong classical gluon fields
- ► Thermalization  $\tau \lesssim 1 \, \mathrm{fm/c}$ Effective kinetic theory
- ► Equilibration  $\tau \lesssim 10 \, \mathrm{fm/c}$ Relativistic hydrodynamics
- Final stages  $\tau \ge 10 \, \mathrm{fm/c}$ Particlization, hadronization

### Initial stage of collision





#### Glasma initial stage

- Color glass condensate

  QCD in the high-energy limit
- Weakly coupled  $\alpha_s \ll 1$
- ► Classical gluon fields Occupation number  $\sim 1/\alpha_s \gg 1$
- ► Non-perturbative
- ► Lattice gauge theory

  Numerical solution
- Out-of-equilibrium

### Jets as probes



Heavy quarks as probes

## CGC and glasma

## \_\_\_

Features of glasma fields

Frameworks for glasma

## Wong's equations

# Correlator method



Transport coefficients









### Phenomenology

## Open questions

