

# Modelagem Empírica de Processos Industriais



# **A Pentagro**





## **MISSÃO**

Prover ganho operacional nos processos agroindustriais através de soluções tecnológicas, inovações e serviços especializados.

## **VISÃO**

Ser a maior referência mundial em soluções para Indústria 4.0 em plantas agroindustriais.

### **VALORES**

Garantir o valor
ao cliente;
Valorização
e respeito às
pessoas; Ser melhor
que ontem;
Pensar sempre
como um time;
responsabilidade
aos compromissos
firmados.

# **A Pentagro**



| Pre-Seed/ Seed<br>(2006-2009)                                                                        | MVP<br>(2009 –<br>2011)                                                | Early Stage (2012 – 2018)                                                                                                                                          | Scale Up (2019-2022)                                                                                                                                                       | Expansão (2023-2026)                                                                                                                                                                | Consolidação (2027-2032)                                                                                          |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <ul><li>Ideação</li><li>Projetos</li><li>Investigação</li><li>Preparação</li><li>Subvenção</li></ul> | <ul><li>Validação<br/>Subvenção</li><li>MVPs</li><li>Ajustes</li></ul> | <ul> <li>Operação</li> <li>Primeiras Vendas</li> <li>Market Prod. Fit</li> <li>Verticalização</li> <li>Modelo de<br/>Negócios SAAS</li> <li>Smart Money</li> </ul> | <ul> <li>Receitas     Crescentes</li> <li>Lucro Crescente</li> <li>Verticalização</li> <li>Reestruturação     societária</li> <li>Início de novas     verticais</li> </ul> | <ul> <li>Estruturação de Processos</li> <li>Aumentar Escala</li> <li>Posição Expressiva no Mercado</li> <li>Consolidação em novas verticais</li> <li>Internacionalização</li> </ul> | <ul> <li>Busca por<br/>Eficiência</li> <li>Aumentar<br/>Posição no<br/>Mercado Global</li> <li>M&amp;A</li> </ul> |





DIGITALIZAÇÃO DE PROCESSOS INTEGRAÇÃO DE DADOS

AUTOMAÇÃO

IOT + INTELIGÊNCIA ARTIFICIAL





RÉPLICA DIGITAL EXATA

PREDIÇÃO DE FALHAS

**OTIMIZAÇÃO** 

**PREVISIBILIDADE** 



#### Veículo convencional

Motorista define destino, rota e dirige carro segundo suas decisões

### Veículo com sistema de navegação

Motorista define destino. Sistema de navegação informa melhor rota. Motorista dirige segundo indicações do sistema

### Veículo Autônomo

Motorista define destino. Veículo vai até esse destino escolhendo rotas ótimas.









### **Simulador Pentagro**



### Pentagro PGDI/GDI



### **Pentagro Everest**









## **Descrição do Problema**



Otimização em Tempo Real

Respostas muito demoradas com o uso do gêmeo digital.



## **Objetivos do Projeto**



Criar um modelo empírico do processo, utilizando I.A.

O modelo deve dar respostas em milissegundos.

O erro máximo do modelo em relação ao gêmeo digital deve ser de 0,2%



### **Materiais e Métodos**



DOE ~72.900 simulações Modelo da Geração de Vapor





### **Dados Gerados**

### Dados de Entrada do Modelo:

- Vazão do vapor gerado pelas caldeiras.
- Pressão do vapor gerado pelas caldeiras.
- Temperatura do vapor gerado pelas caldeiras.
- Vazão de vapor na entrada da turbina 1 1.
- Vazão de vapor na entrada da turbina 2\_1.
- Status turbinas 1\_1/1\_2 (On/Off)
- Status turbinas 2\_1/2\_2 (On/Off)

### Dados de Saída do Modelo:

- Consumo específico turbina 1 1.
- Consumo específico turbina 1 2.
- Consumo específico turbina 2\_1.
- Consumo específico turbina 2 2.
- Potencia gerada turbina 1 1.
- Potencia gerada turbina 1 2.
- Potencia gerada turbina 2 1.
- Potencia gerada turbina 2\_2.
- Vazão total de vapor de escape gerada.
- Pressão de vapor de escape gerada.
- Temperatura de vapor de escape gerada.

### **Dados Auxiliares do experimento:**

- Step corrente.
- Status da simulação.

Podem ser desconsiderados.



## **Descrição dos dados**

#### Dados de Entrada do Modelo:

- vazaoVapor: vazão do vapor gerado pelas caldeiras [273.0, 416.0] 8 steps.
- pressaoVapor: pressão do vapor gerado pelas caldeiras [57.0, 63.0] 4 steps.
- temperatura Vapor: temperatura do vapor gerado pelas caldeiras (Kelvin) [718.0, 877.0] 4 steps.
- cargaVaporTG1: vazão de vapor na entrada da turbina 1\_1 [107.0, 271.0] 8 steps.
- cargaVaporTG2: vazão de vapor na entrada da turbina 2 1 [53.0, 120.0] 8 steps.
- habilitaTG1: status turbinas 1\_1/1\_2 (On/Off) [0, 1] 1 step.
- habilitaTG2: status turbinas 2\_1/2\_2 (On/Off) [0, 1] 1 step

A ordem da variação dos steps indica a sequencia da variação das variáveis de entrada para gerar as combinações.

Ordem da variação dos steps



## **Descrição dos dados**

#### Dados de Saída do Modelo:

- consumoEspecificoTG1 1: consumo específico turbina 1 1.
- consumoEspecificoTG1 2: consumo específico turbina 1 2.
- consumoEspecificoTG2 1: consumo específico turbina 2 1.
- consumoEspecificoTG2\_2: consumo específico turbina 2\_2.
- potenciaGeradaTG1 1: potencia gerada turbina 1 1.
- potenciaGeradaTG1 2: potencia gerada turbina 1 2.
- potenciaGeradaTG2 1: potencia gerada turbina 2 1.
- potenciaGeradaTG2\_2: potencia gerada turbina 2\_2.
- vazaoVaporEscape: vazão total de vapor de escape gerada.
- pressaoVaporEscape: pressão de vapor de escape gerada.
- temperatura Vapor Escape: temperatura de vapor de escape gerada.



## **Descrição dos dados**

Vetor de objetos Json no qual cada objeto tem o formato abaixo:

```
"step": 0,
                     "vazaoVapor": 273.0,
                     "pressaoVapor": 57.0,
                     "temperaturaVapor": 718.0,
Entradas
                     "cargaVaporTG1": 107.0,
                     "cargaVaporTG2": 53.0,
                     "habilitaTG1": 0.0,
                     "habilitaTG2": 0.0,
                     "potenciaGeradaTG1 2": 0.0,
                     "potenciaGeradaTG2 2": 0.0,
                     "potenciaGeradaTG2_1": 0.0,
                     "potenciaGeradaTG1 1": 0.0,
                     "vazaoVaporEscape": 298.992329,
 Saídas
                     "temperaturaVaporEscape": 403.15,
                     "pressaoVaporEscape": 2.3,
                     "consumoEspecificoTG2 2": 0,
                     "consumoEspecificoTG2 1": 0,
                    "consumoEspecificoTG1 2": 0,
                     "consumoEspecificoTG1 1": 0,
                                                               Somente dados
                     "status": "OK"
                                                             com simulação OK
                                                               estão no vetor.
```



### **Desafios**

Criar um modelo empírico do processo, utilizando I.A.

O modelo deve dar respostas em milissegundos.

O erro máximo do modelo em relação ao gêmeo digital deve ser de 0,2%



# **MUITO OBRIGADO!**

