NSR Search Results Page 1 of 6

Visit the **Isotope Explorer** home page!

36 reference(s) found:

Keynumber: 1997VE03

Reference: Appl.Radiat.Isot. 48, 493 (1997) **Authors:** L.Venturini, B.R.S.Pecequilo

Title: Thermal Neutron Capture Cross-Section of ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr and ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr, ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n,γ),E=thermal;

measured E γ ,I γ ; deduced capture σ .

Keynumber: 1994CO09

Reference: Nuovo Cim. 107A, 85 (1994)

Authors: C.Coceva

Title: Radiative Transitions from Neutron Capture in ⁵³Cr Resonances

Keyword abstract: NUCLEAR REACTIONS 53 Cr(n, γ),E=white source; measured E γ ,I γ . 54 Cr deduced

resonance, J, π , E1 transition radiative reduced widths.

Keynumber: 1992KU17

Reference: Nucl. Phys. A549, 59 (1992)

Authors: A.Kuronen, J.Keinonen, H.G.Borner, J.Jolie, S.Ulbig

Title: Molecular Dynamics Simulations Applied to the Determination of Nuclear Lifetimes from

Dopler-Broadened γ-Ray Line Shapes Produced in Thermal Neutron Capture Reactions

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 48 Ti, 53 Cr, 56 Fe, 60 , 58 Ni(n, γ),E=thermal; analyzed

Doppler broadened γ -ray line shapes. ³⁶Cl levels deduced $T_{1/2}$,M1,E2 transition matrix

elements, branching ratio. 49 Ti, 54 Cr, 57 Fe, 61 , 59 Ni levels deduced $T_{1/2}$. Molecular dynamics simulations.

Keynumber: 1991KOZY

Reference: Program and Thesis, Proc.41st Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Minsk, p.48

(1991)

Authors: S.A.Kovalenko, Yu.E.Koshutsky, V.T.Kupryashkin, N.S.Kravets, V.A.Stepanenko,

N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurement of Lifetimes of 54 Cr Levels in the (n, γ) Reaction

Keyword abstract: NUCLEAR REACTIONS 53 Cr(n, γ),E=thermal; measured DSA. 54 Cr levels

 $deduced \ T_{1/2}.$

Kevnumber: 1991KO44

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2156 (1991); Bull.Acad.Sci.Ussr, Phys.Ser. 55, No.11,

73 (1991)

Authors: S.A.Kovalenko, Yu.E.Koshutsky, V.T.Kupryashkin, N.S.Kravets, N.V.Strilchuk,

A.I.Feoktistov, I.P.Shapovalova

Title: Lifetime of the Levels of ⁵⁴Cr in (nγ) Reaction with Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁵³Cr(n,γ),E=thermal; measured γγ-coin,DSA. ⁵⁴Cr levels

deduced $T_{1/2}$.

Keynumber: 1989HO15

NSR Search Results Page 2 of 6

Reference: Nucl. Phys. A500, 111 (1989)

Authors: C.Hofmeyr

Title: 53 Cr(n, γ); Transition energies and levels excited in thermal neutron capture

Keyword abstract: NUCLEAR REACTIONS ⁵³Cr(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁴Cr deduced

levels, branching ratios. Enriched target.

Keynumber: 1989CO01

Reference: J.Phys.(London) G15, 321 (1989)

Authors: S.P.Collins, S.A.Eid, S.A.Hamada, W.D.Hamilton, F.Hoyler **Title:** A Search for Mixed-Symmetry States in the Mass $A \approx 50$ Region

Keyword abstract: RADIOACTIVITY ⁵⁶Mn(β -); measured $\gamma(\theta)$. ⁵⁶Fe levels deduced δ. Cryogenically

oriented nuclei.

Keyword abstract: NUCLEAR REACTIONS ⁴⁷Ti, ⁵³Cr, ⁵⁷Fe(n, γ),E=thermal; measured $\gamma \gamma(\theta)$. ⁴⁸Ti, 54 Cr, 58 Fe levels deduced δ,μ,B(λ). Enriched target,on-line directional correlations.

Kevnumber: 1988LI30

Reference: Phys.Lett. 215B, 50 (1988)

Authors: K.P.Lieb, H.G.Borner, M.S.Dewey, J.Jolie, S.J.Robinson, S.Ulbig, Ch.Winter

Title: Doppler Shift Attenuation Lifetime Measurements in ⁵⁴Cr following Thermal Neutron Capture **Keyword abstract:** NUCLEAR REACTIONS 53 Cr(n, γ),E=thermal; measured Doppler broadened γ -

line shapes. ⁵⁴Cr levels deduced T_{1/2},B(M1).

Keyword abstract: NUCLEAR STRUCTURE ⁵²Ti, ⁵⁴Cr, ⁵⁶Fe; calculated 2⁺ states,B(M1).

Keynumber: 1986BR12

Reference: Radiat.Eff. 93, 297 (1986)

Authors: A.Brusegan, R.Buyl, F.Corvi, L.Mewissen, F.Poortmans, G.Rohr, R.Shelley, T.Van Der

Veen, I.Van Marcke

Title: High Resolution Neutron Capture and Total Cross Section Measurements of 50 Cr, 52 Cr and 53 Cr

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr(n, γ), (n,X),E \leq 800 keV; measured

transmission, capture γ yield. ⁵¹, ⁵³, ⁵⁴Cr deduced resonances, J, L, g Γ n, g $\Gamma\gamma$.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹. 30Si, 31P, 32, 33, 34, 36S, 35, 37Cl, 36, 38, 40Ar, 39, 40, 41K, 40, 42, 43, 44, 46, 48Ca, 45Sc, 46, 47, 48, 49, 50Ti, 50, 51V, 50, 52, 53, 54Cr, 55Mn, 54, 56, 57, 58Fe, 59Co, 58, 60, 61, 62, 64Ni, 63, 65Cu, 64, 66, 67Zn(n,γ), $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), \\ ^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), \\ E=low;$

compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1982RA32

Reference: Indian J.Pure Appl.Phys. 20, 627 (1982) Authors: S.K.Rathi, V.P.Varshney, H.M.Agrawal

Title: Calculations of Neutron Capture Cross-Sections for some Nuclei using Bilpuch Formula

Keyword abstract: NUCLEAR REACTIONS ⁴⁰, ⁴³Ca, ⁵², ⁵³Cr, ⁵⁴, ⁵⁶Fe, ⁸⁸Sr, ⁹⁰, ⁹¹, ⁹², ⁹⁴Zr, ⁹³Nb,

NSR Search Results Page 3 of 6

92, 94, 95, 96, 97, 98, 100 Mo, 138 Ba, 139 La, 140 Ce, 203 Tl(n, γ),E=24 keV; calculated σ (capture). Experimental parameters,Bilpuch formula.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

Keynumber: 1979ASZZ

Reference: NEANDC(J)-61/U, p.14 (1979)

Authors: T.Asami, N.Sekine

Title: Evaluation of Cr Neutron Cross Sections for JENDL-2

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 , $^{54}Cr(n,\gamma)$, (n,n), (

•

Keynumber: 1975BE07

Reference: Nucl.Phys. A240, 29 (1975)

Authors: H.Beer, R.R.Spencer

Title: keV Neutron Radiative Capture and Total Cross Section of ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, and ⁶², ⁶⁴Ni **Keyword abstract:** NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n, γ),E=5-200 keV; ⁵⁰, ⁵²Cr, ⁵⁴Fe, ⁶², ⁶⁴Ni(n,t),E=10-300 keV; measured σ (E,E γ), σ (E,Et). ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni deduced resonances,J,L,n-width, γ -width. Enriched targets.

Keynumber: 1974KEZR

Coden: REPT INDC(SWT)-5/L

Keyword abstract: RADIOACTIVITY ²², ²⁴Na, ⁴⁶Sc, ⁵¹Cr, ⁵⁴Mn, ⁵⁶, ⁵⁷, ⁶⁰Co, ⁸⁸Y, ⁹⁴Nb, ¹⁴⁰La, ²⁰³Hg, ²⁰⁷Bi, ²⁰⁸Tl, ²⁴¹Am, ¹⁸²Ta, ¹⁹²Ir, ^{110m}Ag, ^{180m}Hf; measured nothing, compiled Εγ. ⁵⁶Co, ^{180m}Hf, ¹³⁷Cs, ¹⁹⁸Au, ⁵⁷Co, ^{108m}Ag, ²²Na, ²⁴Na, ⁴⁶Sc, ⁶⁰Co, ²²⁸Th; measured nothing, compiled Ιγ.

Keyword abstract: NUCLEAR REACTIONS 53 Cr(n, γ), 48 Ti(n, γ), 52 Cr(n, γ); measured

nothing,compiled Εγ,Ιγ.

Keynumber: 1974BEXF Coden: REPT KFK-2063,CRL

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 Cr, 54 , 57 Fe, 62 , 64 Ni(n, γ),E <300 keV;

NSR Search Results Page 4 of 6

measured $\sigma(E,E\gamma)$. ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni deduced resonances.

Keynumber: 1973SP06

Reference: Nucl. Phys. A215, 260 (1973) **Authors:** A.M.J.Spits, J.A.Akkermans

Title: Investigation of the Reaction ${}^{37}\text{Cl}(n,\gamma){}^{38}\text{Cl}$

Keyword abstract: NUCLEAR REACTIONS ³⁷Cl, ³²S, ⁵⁰, ⁵², ⁵³Cr, ⁵⁶Fe(n,γ),E=thermal; measured

Eγ, Iγ; deduced Q. 38 Cl deduced levels, γ-branching.

Keyword abstract: RADIOACTIVITY ³⁸Cl; measured Eγ,Iγ. Deduced β- branching, ³⁸Ar deduced

transitions. Natural, ³⁷Cl enriched target.

Keynumber: 1973LAYM Coden: REPT LF-42 P1

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 Cr(n, γ), measured σ (E γ). 51 , 53 , 54 Cr deduced

Keynumber: 1973BEWY

Coden: REPT EANDC(E)157-U,P1

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁷Fe, ⁵⁰, ⁵², ⁵³Cr, ⁶², ⁶⁴Ni(n, γ),E=5-200 keV;

measured σ .

Keynumber: 1972LO26

Reference: Nucl.Instrum.Methods 105, 453 (1972)

Authors: G.D.Loper, G.E.Thomas

 $\textbf{Title:} \ Gamma-Ray \ Intensity \ Standards: \ the \ Reactions \ ^{14}N(n,\gamma)^{15}N, \ ^{35}Cl(n,\gamma)^{36}Cl \ and \ ^{53}Cr(n,\gamma)^{54}Cr$

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁵⁰, ⁵², ⁵³Cr, ¹⁴N, ²⁰⁷Pb(n,γ);E=thermal; ³⁶Cl, ⁵¹,

⁵³. ⁵⁴Cr measured Eγ.Ιγ.

Keynumber: 1972LAYI

Coden: REPT NP-19337,P1

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr(n, γ); ⁵¹, ⁵³, ⁵⁴Cr deduced levels.

Keynumber: 1972BEVV Coden: REPT KFK-1676 P3

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 Cr, 54 , 57 Fe, 62 , 64 Ni(n, γ); measured σ (E).

Keynumber: 1971STZR

Coden: REPT RPI-328-218,P33,9/10/71

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁶⁰Ni,V(n, γ),E <200 keV; measured σ

(Eγ). ⁵¹, ⁵³, ⁵⁴, ⁵⁵Cr, ⁶¹Ni, ⁵²V deduced resonance parameters.

Kevnumber: 1971ST07

Reference: Nucl.Phys. A163, 592 (1971)

Authors: R.G.Stieglitz, R.W.Hockenbury, R.C.Block

Title: keV Neutron Capture and Transmission Measurements on ⁵⁰Cr, ⁵²Cr, ⁵³Cr, ⁵⁴Cr, ⁶⁰Ni and V

Keyword abstract: NUCLEAR REACTIONS V, ⁵⁰Cr, ⁵²Cr, ⁵³Cr, ⁵⁴Cr, ⁶⁰Ni(n,γ),En=0.1 to 200 keV,

(n,t), En=0.1 to 350 keV; measured capture yield, transmission versus En; deduced $\sigma(n\gamma)$, $\sigma(nT)$,n-

NSR Search Results Page 5 of 6

width,level spacing, R'. ⁵¹, ⁵³, ⁵⁴, ⁵⁵Cr, ⁶¹Ni deduced resonances J,L,n-width,γ-width,Αγ. Enriched targets.

Keynumber: 1971BR19

Reference: Yad.Fiz. 13, 233 (1971); Sov.J.Nucl.Phys. 13, 129 (1971)

Authors: D.L.Broder, A.F.Gamalii, B.V.Zemtsev, B.V.Nesterov, L.P.Khamyanov

Title: γ Radiation in the Capture of Thermal Neutrons by Cr Isotopes

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr(n,γ),E=thermal; measured Eγ,Iγ. ⁵¹, ⁵³, ⁵⁴Cr

deduced levels, J, π, γ -branching. Ge(Li) detector.

Kevnumber: 1971BR08

Reference: Yad.Fiz. 13, 3 (1971); Sov.J.Nucl.Phys. 13, 1 (1971)

Authors: D.L.Broder, A.F.Gamalii, B.V.Zemtsev, B.V.Nesterov, L.P.Khamyanov **Title:** Measurement of γ-Ray Spectra from Capture of Intermediate Neutrons

Keyword abstract: NUCLEAR REACTIONS 53 Cr(n, γ),E=thermal,2,25 keV; measured σ (E γ). 54 Cr

deduced transitions.

Keynumber: 1971BLZS

Coden: CONF CONF-710301(Knoxville), Vol2, P889, 11/2/71

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,V, ⁶⁰Ni(n,γ),E=resonance; analyzed

available data. ⁵¹, ⁵³, ⁵⁴, ⁵⁵Cr, ⁵²V, ⁶¹Ni deduced resonance parameters.

Keynumber: 1970STZY

Coden: THESIS R G Stieglitz, RPI, DABBB 31B 6822

Keyword abstract: NUCLEAR REACTIONS V, 60 Ni, 50 , 52 , 53 , 54 Cr(n,X), (n, γ),E <300 keV;

measured transmission, σ(E;Eγ). ⁶¹Ni, ⁵¹, ⁵³, ⁵⁴, ⁵⁵Cr deduced resonance parameters.

Keynumber: 1970BRZJ

Coden: REPT FEI-205,D Broder,5/29/72

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 Cr, 54 , 56 Fe(n, γ); measured E γ ,I γ . 51 , 53 , 54 Cr

deduced levels, y-branching.

Kevnumber: 1970BLZS

Coden: REPT RPI-328-222, R C Block, 10/13/71

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,V, ⁶⁰Ni(n,X), (n,γ),E=resonance;

measured $\sigma(E)$, $\sigma(E,E\gamma)$. 51, 53, 54, 55Cr deduced resonances, level-width.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn,

⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average \gamma multiplicity.

Kevnumber: 1969BE53

Reference: Yadern.Fiz. 9, 100 (1969); Soviet J.Nucl.Phys. 9, 60 (1969)

Authors: V.I.Belousova, E.A.Rudak, E.I.Firsov

NSR Search Results Page 6 of 6

Title: 'Direct' Capture of Thermal Neutrons by Nuclei with A Approx. 50

Keyword abstract: NUCLEAR REACTIONS ⁴¹, ⁴⁷Ca, ⁵³Cr, ⁵⁷Fe(n, γ), E = thermal; calculated σ .

Woods-Saxon potential.

Keynumber: 1968WH03

Reference: Nucl.Instr.Methods 66, 70 (1968) **Authors:** D.H.White, D.J.Groves, R.E.Birkett

Title: Precision Measurements of Gamma Rays from 60 Co, 41 Ar and 53 Cr(n, γ) 54 Cr

Keyword abstract: NUCLEAR REACTIONS 53 Cr(n, γ), E= thermal; measured E γ ; deduced Q.

Keyword abstract: RADIOACTIVITY ⁶⁰Co, ⁴¹Ar; measured Ey.

Keynumber: 1967KA27

Reference: Nucl.Instr.Methods 56, 189 (1967)

Authors: W.R.Kane, M.A.Mariscotti

Title: An Empirical Method for Determining the Relative Efficiency of a Ge(Li) Gamma-Ray Detector **Keyword abstract:** NUCLEAR REACTIONS 53 Cr(n, γ),E=thermal; measured I γ ,E γ . 54 Cr deduced

transitions. Ge(Li) detector.

Keyword abstract: RADIOACTIVITY ²²⁸Th; measured Iγ. ²², ²⁴Na, ^{108m}Ag, ^{180m}Hf; reevaluated Iγ.

Ge(Li) detector.

Keynumber: 1966WAZY

Reference: Proc.Intern.Conf.Study of Nucl.Struct.With Neutrons, Antwerp, Belgium (1965), M.N.de Mevergnies, P.Van Assche, J.Vervier, Eds., North-Holland Publishing Co., Amsterdam, p.536 (1966);

EANDC-50-S, Paper 99 (1966)

Authors: R. Wagner, W.M. Good, D. Paya

Title: s-Wave Neutron Strength Functions of Isotopes in the 3s-Resonance Region 40 <A <70

Keyword abstract: NUCLEAR REACTIONS ⁴³Ca, ⁴⁷, ⁴⁹Ti, ⁵³Cr, ⁵⁷Fe, ⁶¹Ni(n, γ),E=2-60 keV; σ (nt)

(E). ⁴⁴Ca, ⁴⁸, ⁵⁰Ti, ⁵⁴Cr, ⁵⁸Fe, ⁶²Ni deduced resonances, level spacings, strength functions.
