# Trading Card Authenticator

ML2 Final Project
26<sup>th</sup> April 2022
Ashwin Dixit
Jose Garcia

#### Introduction

- Authentication is the process of verifying the originality or genuineness of a trading card.
   This task involves evaluating and inspecting whether a card is original or fake. A general job description of a card authenticator found in PSA Grader website is:
- "Individual should be detail oriented, have good organization skills, and be able to focus on cards over long periods of time."

#### Dataset

- Kaggle Sourced https://www.kaggle.com/datasets/ongshujian/real-and-fake-pokemoncards
- Pre-defined train-test split (85:15) 451 images
- Added additional training dataset for 3<sup>rd</sup> class (invalid input class) 52 images
- Created a stratified validation dataset from the train dataset (90:10)

# Classes







Fake Real Invalid Input

#### **Custom CNN Model**

- Developed a custom CNN model 4 Conv2D Layers with AvgPooling and Dropouts and 1 Dense Layer
- Model Architecture
- Hyperparameters:
  - ➤ Learning Rate 0.0001
  - ➤ Batch Size 32
  - Optimizer Adam
  - > Epochs 200
  - ➤ Patience 40 epochs
  - > Dropout 0.2
  - ➤ Kernel Size (3, 3)
  - ➤ Pool Size (2, 2)

| Model: "sequential"                                                   |                      |         |  |  |
|-----------------------------------------------------------------------|----------------------|---------|--|--|
| Layer (type)                                                          | Output Shape         | Param # |  |  |
| conv2d (Conv2D)                                                       | (None, 254, 254, 16) | 448     |  |  |
| average_pooling2d (AverageP<br>ooling2D)                              | (None, 127, 127, 16) | 0       |  |  |
| dropout (Dropout)                                                     | (None, 127, 127, 16) | 0       |  |  |
| conv2d_1 (Conv2D)                                                     | (None, 125, 125, 32) | 4640    |  |  |
| average_pooling2d_1 (Averag<br>ePooling2D)                            | (None, 62, 62, 32)   | 0       |  |  |
| dropout_1 (Dropout)                                                   | (None, 62, 62, 32)   | 0       |  |  |
| conv2d_2 (Conv2D)                                                     | (None, 60, 60, 64)   | 18496   |  |  |
| average_pooling2d_2 (Averag<br>ePooling2D)                            | (None, 30, 30, 64)   | 0       |  |  |
| dropout_2 (Dropout)                                                   | (None, 30, 30, 64)   | 0       |  |  |
| conv2d_3 (Conv2D)                                                     | (None, 28, 28, 64)   | 36928   |  |  |
| average_pooling2d_3 (Averag<br>ePooling2D)                            | (None, 14, 14, 64)   | 0       |  |  |
| dropout_3 (Dropout)                                                   | (None, 14, 14, 64)   | 0       |  |  |
| flatten (Flatten)                                                     | (None, 12544)        | 0       |  |  |
| dense (Dense)                                                         | (None, 3)            | 37635   |  |  |
| Total params: 98,147 Trainable params: 98,147 Non-trainable params: 0 |                      |         |  |  |

## Result

• Overall Accuracy: 96.62%

• Overall F1-score: 0.9719

Confusion Matrix

|                  | Fake | Real | Invalid<br>Input |
|------------------|------|------|------------------|
| Fake             | 26   | 2    | 0                |
| Real             | 1    | 49   | 0                |
| Invalid<br>Input | 0    | 0    | 11               |

#### Demo

- We created an application to deploy our model
- Streamlit is an open source app framework in Python language
- Demo



The model predicted this card is Real

### Conclusion

- Model is successfully able to identify Fake/Real Cards and Invalid Inputs
- We can visualize important areas in the image for image classification using Grad CAM
- Future Scope: Building an ensemble model with front-side images of cards so that the model can decide based on both front and backside of the cards
- Ideas: Detecting other counterfeit items like currency notes and have a real-world impact