STAT 3220 Final Project Sukanya Barman

Sukanya Barman Arjun Ganesh Theo O'Neill Disha Patel

Background

- Life expectancy has long been a critical measure in assessing the quality of life across the globe.
- The United Nations (UN) has estimated a global life expectancy of 72.6 years for 2019, but there are large variations globally.

Research Question

- How can we predict life expectancy outcomes based on the situation of a country?
- What factors are the most important in this prediction?

Data Summary

- Life expectancy and health data pulled from 193 countries between 2000 and 2015.
- From the Global Health
 Observatory and the World Health
 Organization (corresponding
 economic data from the UN)
- Focused on 5 explanatory variables: adult mortality, infant deaths, gov expenditures on health, alcohol consumption, and status.

E(x) = Life?

How can we predict the length of life?

Analysis

Stage 1

Life Expectancy = β_0 + β_1 (Adult Mortality) + β_2 (Infant Deaths) + β_3 (Alcohol) + β_4 (Expenditures)

# of Predictors	4
P-value, Global F	<0.001
R_{adi}^2	0.5645
RMSE	6.287

Stage 2

Life Expectancy = β_0 + β_1 (Adult Mortality) + β_2 (Infant Deaths) + β_3 (Alcohol) + β_4 (Expenditures) + β_5 (Status)

# of Predictors	5
P-value, Global F	<0.001
R _{adi} ²	0.5841
RMSE	6.144

Stage 3

Life Expectancy = β_0 + β_1 (Adult Mortality) + β_2 (Infant Deaths) + β_3 (Alcohol) + β_4 (Expenditures) + β_5 (Status) + β_6 (Status*Infant Deaths)

# of Predictors	6
P-value, Global F	<0.001
R_{adi}^{2}	0.5924
RMSE	6.089

EDA

Regression Assumptions

Assumptions violated (QQ plot), transformations attempted (failed)

Influential Points

Shows highly influential observations. Removed obs. 1098 – 1112 (ex. circles).

Methodology

- Data was cleaned.
 - Final: 2698 observations.
- MLR analysis EDA, 3 Stage,
 Regression (see right)
- Stepwise fitting removed none of the variables (at alpha = 0.1)
- Influential point/leverage analysis
 - Removed obs. 1098–1112
- External Model Validation

Conclusions

- Final Model:
 - Life Expectancy = 85.29 0.044(Adult Mortality) -0.028(Infant Deaths) 0.307 (Alcohol) + 0.046(Expenditures) -11.535(Status) + 0.767 (Status*Infant Deaths)
- Model is flawed
 - $R_{adj}^2 = 0.6125$, RMSE = 5.944
- Future Research:
 - Other health indicators (BMI, rate of smoking, exercise)
 - Other economic indicators
 (GDP per capita, education)

References

Roser, Max, Ortiz-Ospina, Esteban, and Ritchie, Hannah. "Life Expectancy." *Our World in Data*, 2019, https://ourworldindata.org/life-expectancy

"U.S. Health Care Spending Highest Among Developed Countries." Johns Hopkins Bloomberg School of Public Health, 2019, https://www.jhsph.edu/news/news-releases/2019/us-health-care-spending-highest-among-developed-countries.html