	ϕ	w	$b(\theta)$	$c(y,\phi)$	$\mu = b'(\theta)$	$b''(\theta)$
Normal						
$Y \sim N(\theta, \phi)$	ϕ	1	$\theta^2/2$	$-(y^2/\phi + \log(2\pi\phi))/2$	heta	1
Poisson						
$Y \sim Po(e^{\theta})$	1	1	$e^{ heta}$	$-\log(y!)$	$e^{ heta}$	μ
Binomial:						
$nY \sim Bi(n, e^{\theta}/(1+e^{\theta}))$	1	n	$\log(1+e^{\theta})$	$\log \binom{n}{ny}$	$e^{\theta}/(1+e^{\theta})$	$\mu(1-\mu)$
Gamma				$\nu \log \nu + (\nu - 1) \log y$		
$Y \sim Ga(\nu, \lambda)^{\dagger}$	ϕ	1	$-\log(-\theta)$	$-\log\Gamma(\nu)$	$-1/\theta$	μ^2

†pdf $f(y) = \lambda^{\nu} y^{\nu-1} e^{-\lambda y} / \Gamma(\nu)$ where $\lambda = -\theta/\phi$ and $\nu = 1/\phi$.