MANIFOLD LEARNING

DISTANCE PRESERVATION

Master Informatique Parcours MALIA

Plan

1. Metrics

2. MDS

3. Sammon's nonlinear mapping

4. Isomap

Metrics

Definition (distance or metric)

A distance over the set \mathcal{Y} is an application $d: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}$ satisfying the following properties $(x, y, z \in \mathcal{Y})$

$$d(x,y) \ge 0$$
 (positive definite)
 $d(x,y) = 0$ iff $x = y$ (identity)
 $d(x,y) = d(y,x)$ (symmetry)
 $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)

Over \mathbb{R}^D , the most usual ones are derived from Minkowski (or L_v) norms (see Lab x001 of PC4DS).

Similarity

Definition (similarity)

A similarity over the set \mathcal{Y} is an application $s: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}$ satisfying the following property $(x, y \in \mathcal{Y})$

$$s(x,y) \leq s(x,x)$$

A way to convert a similarity s into a distance d is by setting

$$d(x,y) = (s(x,x) + s(y,y) - 2s(x,y))^2$$

MDS

Multidimensional Scaling (MDS)

- Not a single method but a family of methods
- Aim: construct a configuration of points into a target metric (e.g. euclidean) space from interpoint distances
- Metric MDS: Young and Householder (1938), Torgerson (1952), Nonmetric MDS: Shepard (1962), Kruskal (1964)
- Several application on human sciences

Classical metric multidimensional scaling

Modèle : $y = \mathbf{W}x$

- $y \in \mathbb{R}^D$ observed
- $\bigcirc x \in \mathbb{R}^s$ latent (unobserved)
- \bigcirc **W** unknown $D \times s$ matrix W such that $W^TW = I$
- Call $\mathbf{Y} = [y_1, \dots y_i, \dots y_N]$ the (coordinates) data matrix ($D \times N$ constructed by concatenation of y_i 's)

Definition (Gramm's matrix)

$$\mathbf{S} = \mathbf{Y}^T \mathbf{Y} = \mathbf{X}^T \mathbf{X}$$

Spectral decomposition of Gramm matrix

Since **S** is a $N \times N$ square symmetric matrix, we have (through the SVD of **Y**)

$$\mathbf{S} = \mathbf{U}\Lambda\mathbf{U}^{T}$$

$$= (\mathbf{U}\Lambda^{1/2})(\Lambda^{1/2}\mathbf{U}^{T})$$

$$= (\Lambda^{1/2}\mathbf{U}^{T})^{T}(\Lambda^{1/2}\mathbf{U}^{T})$$

where U is a $N \times N$ orthonormal matrix and Λ is a diagonal matrix with the eigenvalues arranged in decreasing order.

Then, the configuration set of points is

$$\breve{\mathbf{X}} = \mathbf{I}_{\mathbf{s} \times \mathbf{N}} \Lambda^{1/2} \mathbf{U}^T$$

If coordinates are not available

- When coordinates are available: equivalence between from MDS & PCA
- O If they are not, MDS can still be used from distance matrix **D** where the general term is $d(y_i, y_i)^2$
- Then, we obtain **S** from **D** using

$$\mathbf{S} = -\frac{1}{2} \left\{ \mathbf{D} - \frac{1}{N} \mathbf{D} 1_N 1_N^T - \frac{1}{N} 1_N 1_N^T \mathbf{D} + \frac{1}{N^2} 1_N 1_N^T \mathbf{D} 1_N 1_N^T \right\}$$

The MDS algo

- If available data consists of vectors gathered in Y, then center them, compute the pairwise scalar products
 S = Y^TY, and go to step 3.
- 2. If available data consists of pairwise Euclidean distance, transform them into scalar products:
 - Square the distances and build D
 - \circ Perform the double centering of **D**, this yields **S**
- 3. Compute the eigenvalue decomposition $S = U\Lambda U^T$
- 4. A s-dimensional representation is obtained by computing the product $\mathbf{\breve{X}} = \mathbf{I_{s \times N}} \Lambda^{1/2} \mathbf{U}^T$

Two benchmark manifolds

Fig. 1.3. Two benchmark manifold: the 'Swiss roll' and the 'open box'.

Sampled versions

MDS-based projection on the plan

Fig. 4.2. Two-dimensional embeddings of the "Swiss roll" and "open box" data sets (Fig. 1.4), found by metric MDS.

Metric & nonparametric MDS

Metric MDS: preserve distances (instead of <...>)

Stress function (used as objective function)

$$E_{\text{mMDS}} = \frac{1}{2} \sum_{i,j=1}^{N} w_{i,j} (d_y(i,j) - d_x(i,j))^2$$

Nonparametric MDS: introduce disparities

$$E_{\text{nMDS}} = \sqrt{\frac{\sum_{i,j=1}^{N} w_{i,j} |f(\delta_{i,j}) - d_{x}(i,j)|}{c}}$$

SAMMON'S NONLINEAR MAPPING

Stress function

O Related to metric MDS, looks for configuration minimizing

$$E_{\text{NLM}} = \frac{1}{c} \sum_{i=1,i < j}^{N} \frac{(d_y(i,j) - d_x(i,j))^2}{d_y(i,j)}$$

where $c = \sum_{i=1,i < j}^{N} d_y(i,j)$ and d_x will be Euclidean.

- Optimization problem solved with quasi-Newton optimization
- \bigcirc Initialize with MDS, then use the update rule (α is call the magic number)

$$x_k(i) \leftarrow x_k(i) - \alpha \frac{\frac{\partial E_{\text{NLM}}}{\partial x_k(i)}}{\left| \frac{\partial^2 E_{\text{NLM}}}{\partial x_k(i)^2} \right|}$$

MDS-based projection on the plan

- 1. Compute all pairwise distances $d_{\mathbf{y}}(i,j)$ in the *D*-dimensional data space.
- 2. Initialize the P-dimensional coordinates of all points $\mathbf{x}(i)$, either randomly or on the hyperplane spanned by the first P principal components of the data set (after PCA or MDS).
- Compute the right-hand side of Eq. (4.68) for the coordinates of all points x(i).
- 4. Update the coordinates of all points $\mathbf{x}(i)$.
- 5. Return to step 3 until the value of the stress function no longer decreases.

MDS-based projection on the plan

Fig. 4.4. Two-dimensional embeddings of the 'Swiss roll' and 'open box' data sets (Fig. 1.4), found by Sammon's NLM.

How to de generalize PCA or MDS?

Aim

- O Avoid globally linearity, euclidean distances or normality
- + Find a new representation where linearity is a reasonable assumption
- + a fully non parametric approach is desireable

3 approaches to be studied (partially) based on graphs

- ISOMAP : extension of MDS to geodesic
- $\, \bigcirc \,$ LLE (Local linear embeddings) : conserve local geometry
- O Laplacian Eigenmaps: based on spectral techniques

Global distance and manifolds identifiées par uns

Recall:

- we need a more general notion than euclidean distance
- global vs local

A *manifold* is a space regular enough so that **LOCALLY** has all the properties of a linear space. Its *dimension* can be view as as the number of free coordinates needed to navigate along the manifold.

Geodesic distance

Graph distance

Isomap

KEY IDEA perform a non metric MDS only replacyng the euclidean by the geodesic distance

- Build a graph with either the K-rule or the ε-rule.
- Weight the graph by labeling each edge with its Euclidean length.
- Compute all pairwise graph distances with Dijkstra's algorithm, square them, and store them in matrix D.
- Convert the matrix of distances D into a Gram matrix S by double centering.
- 5. Once the Gram matrix is known, compute its spectral decomposition $S = U\Lambda U^T$.
- A P-dimensional representation of Y is obtained by computing the product X = I_{P×N} Λ^{1/2}U^T.

Isomap on benchmark

