Separable Equations: Separable Equations have general form: = dx = f(+) . 9 (y) where t(+), g(y) ore given known functions From here, we separate variables by moving everything with y to the left, everything with t to the right. Such that: dx = fit odt Now take the integral of both sides: $\int \frac{dy}{g(y)} = \int f(t)dt \quad or \quad G(y) + C = F(t)$ where 6/4 = 9(4) and f'(+) = f(+) Provided we computed the integrals, we now have implicit form: G(y) + C = F(t)Though we might try to solve this equation in terms of y such that, $\gamma(t) = G^{-1}(F(t) - C)$ this may be difficult or impossible. Example #1:

Given
$$\frac{dy}{dt} = ay$$
, where $a = constant$,

then, $\frac{dy}{y} = adt$, integrate, $\int \frac{dy}{y} = \int adt$
 $log(|y|) = at - C$, $|y|t| = e^{at} \cdot e^{-C}$,

 $y(t) = e^{at} \cdot C$, where C is an arbitrary constant

 $Excomple #2$:

 $Given \frac{dy}{dt} = -ty$, $\int \frac{dy}{y} = -\int \frac{t}{dt}$,

 $log(|y|) = -\frac{1}{2}t^2 - C$, $y(t) = e^{-t^2/2}C$,

 $IVP: y(0) = yo$, find $y(t) = y_0 e^{-t^2/2}$, $t \in (-\infty, +\infty)$

Autonomous Separable Equations;

Notice $\frac{dy}{dt} = g(y)$, meaning $f(t) = 1$, this is

 $Colled$ autonomous since the right side doesn't depend on t . After integrating:

 $\int \frac{dy}{g(y)} = t - C$

Example #3:
$$\frac{dy}{dt} = \frac{1}{y^2} = \int \frac{dy}{y^2} = \int \frac{dy}{y}$$

$$\int \frac{dy}{y^2} = -\frac{1}{y}, \quad -\frac{1}{y} = t - c, \quad y(t) = \frac{1}{c - t}$$

IVP: $y(0) = y_0, \quad 1 = y_0, \quad An interesting feature$

of these solutions is the fact that the interval of existence depends on the initial data y_0 . We can draw the phase portrait of the solutions i.e. on the (t,y) coordinate axes we draw the family of solutions $y(t)$ with initial data $y(0) = y_0$.

Example #4: Consider $y' = 1 + y^2$, solve by

Separating variables: $\frac{dy}{dt} = 1 + y^2$, $\frac{dy}{1 + y^2} = \frac{dt}{t}$,

$$\int \frac{dy}{1 + y^2} = t - c, \quad \arctan(y) = t - c,$$

Coneral Solution: $y(t) = \tan(t - c)$

If $IVP: y(0) = y_0, \quad c = \arctan(y_0) + ancc$

$$y^2 = 2c - t^2$$
, $y^2 + t^2 = 2c$, $2c > 0$

$$2c = c^{2}, y^{2} + t^{2} = c^{2}, y(t) = \pm \sqrt{c^{2} - t^{2}},$$

$$C=5$$
 and $y(t)=\sqrt{25-t^2}$, $\cdot \cdot \cdot t_{E}(-5,5)$

The implicit form solution for this problem is:

We can then draw the family of solutions for various choices of C^2 , such level sets,

$$f(t,y)$$
:= $f^2 + y^2$, which we know to be

circles centered at the origin of the coordinate

axes

Example #6:
$$\frac{3y}{4t} = \frac{3++ty^2}{y++2y} = \frac{3+y^2}{y}$$
. $\frac{t}{1+t^2}$

Separate variables and integrate:

$$\int \frac{y \, dy}{3 + y^2} = \int \frac{d^{1} + 1}{1 + t^2} \int \log(3 + y^2) = \log(1 + t^2) - C$$

$$3+v^2=\left(\left(1+t^2\right), C=e^{-C}>0, \\ y(t)=\pm\sqrt{C(1+t^2)}-3, y(1)=-3, \\ 3+9=C(1+9)=12=C\cdot\left(1+1^2\right), C=6$$
thus: $y(t)=-\sqrt{6t^2+3}, \pm yet$ chose the negative answer as it will soft is ty $y(1)=-3$

$$Example \#7: dy = 1|y-y^3, \int \frac{dy}{1|y-y^3} = \int dt$$
By way of Partial Fraction Expansion:
$$\frac{1}{8}\log\left(\frac{y^2}{14-y^2}\right)=\pm-C, 14|-y^2|=e^{8(t-C)}$$
3 cases: i) $y^2 < 4$, ii) $y^2 > 4$, iii) $4y-y^3=0$

$$Example \#8: \frac{dy}{dt}=3y^{2/3}, \int \frac{1}{3}y^{-2/3} = \int dt$$

$$y''^3=\pm-C, y(t)=(t-c)^3=General\ Solution\ y'(t)=t^3, however there is more than one solution with initial data $y(0)=0$, thus we do not have a unique$$

Solution to this IVP. We actually have intinitely
many solutions that all sotisfy y(0)=0.
Consider: \(\langle (\tau+c)^3 \div \dagger \langle 2-c \)
$\gamma(f) = \gamma 0 \text{if } f \leq c <$
$-(t-c)^3 if +> c$
All of those are solutions to $y = 3y^{2/3}$
and all of them satisfy y (w) = 0. The
reason for this bad behaivor of the ODE is
because $\partial_{\gamma}(3\gamma^{2/3}) = 2\gamma'$ is not continuous
at y=0. We will see this when we discuss
the Existence and Uniqueness Theorem for
ODEs.
Example #9: dy = e ^y cos(t) separate dt = 1+y variables; integrate
dt 1+4 variables integrate
$\int (1+y)e^{-y}dy = \int \cos(t)dy, -(2+y)e^{-y} = \sin(t)-c$
Solution in Implicit Formi
$(2+y)e^{-y} + Sin(H) = C,$

but it we are interested in an IVP we have to avoid $Y_0 = -1$, why? $Y(1_0) = Y_0$; $Y_0 \neq -1$, $C = \sin(1_0) + (2 + Y_0)e^{-Y_0}$

$$(2+y) \cdot e^{-y} = -\sin(t) + \sin(t_0) + (2+y_0)e^{-y_0}$$

We do not know how to solve for y using Simple algebra! However, we can use MATLAB in order to draw the level sets of the function.

$$H(+,y):=(2+y)e^{-y}+sin(+)$$

Each level set of this function represents a solution curve. This constant c is determined by the initial conditions $y(t_s) = y_s$. See LVRM notes!