Accuracy: how close a measurement is to its **true value** Precision: How close a measurement is to **one another**

The difference between the experimental result and the true value

 $percentage\ error = \frac{|theoretical\ value - experimental\ value|}{theoretical\ value} (100\%)$

theoretical value

Percentage error:

accuracy: high precision: high

Magazzina tendina

	ring lenths		
	Meter ruler & tape measure	Vernier caliper How to Read a Metric Vernier Caliper	Micrometer Screw Gauge
Purpose		Often used to measure the external/internal diameter of an object	
Precision	0.1 cm	0.01 cm	0.001 cm
Image		IMPERIAL SCALE IMPERIAL SCALE	

	hits		
Checking for zero error	Observed reading	Actual reading = observed reading – zero error	
Two zero marks coincide	Reading = 1.2 + 0.03 = 1.23 cm	1.23 cm as no zero error correction required.	
Zero mark on the vernier scale is slightly to the right of the zero mark on the main scale => positive zero error Reading = + 0.03 cm (count from 0)	Reading = 1.2 + 0.06 = 1.26 cm	1.26 – (+0.03) = 1.23 cm	
Zero mark on the vernier scale is slightly to the left of the zero mark on the main scale => negative zero error Reading = - 0.03 cm (count from 10).	Reading = 1.20 cm	1.20 – (- 0.03) = 1.23 cm	

SI units

Physical quantities —

- Quantities that can be measured

Based quantities —

- Base Quantities: lead to a complete description of physics in the simplest terms
- Based on international agreement by scientists

Derived quantities —

- Obtained from 1 or more base quantities through a <u>defining equation</u>
 All these quantities have an SI unit (International System)

SI Base units: simplest form

	•	
Length	m	metre
Mass	kg	kilogram
Time	S	second
Electric current	Α	ampere
Temperature	K	kelvin
Amount of substance	mol	mole

		I
Prefix	Symbol	Sub-multiple
Tera	Т	10 ¹²
Giga	G	109
Mega	М	106
Kilo	k	10 ³
Deci	d	10-1
Centi	С	10-2
Milli	m	10 ⁻³
Micro	μ	10-6
Nano	n	10 ⁻⁹
Pico	р	10 ⁻¹²

SI derived units: made of SI base units

Derived	Defining	Base SI	Derived
Quantities	Equation	Units	unit
Volume	Vol = 1 ³	m ³	-
Velocity	v = d/t	ms ⁻¹	-
Force	F = ma	kgms ⁻²	N
Moment	F×d	kgm²s-²	Nm
Energy	$E = mg\Delta h \text{ or}$ $E = \frac{1}{2}mv^2$	kgm²s-²	J

Standard Index form: $1 \le x \le 10 \times 10^n$

1. Instruments where reading is recorded to the smallest division.

Instruments	Smallest division/ precision	Examples of readings	
metre rule		20.00 20.00 20.40	
half-metre rule	0.1cm/ 0.001m	29.9cm, 30.0cm, 30.1cm	
measuring tape		0.299m, 0.300m, 0.301m	
vernier calipers	0.01cm	3.21cm, 3.22cm, 3.23cm	
micrometer screw gauge	0.01mm	4.56mm, 4.57mm, 4.58mm	
protractor	1°	2°, 57°, 90°	
digital stopwatch	0.01s	9.87s, 9.88s, 9.99s	
electronic balance	0.01g	1.74g, 1.75g, 1.76g	

highlighted in yellow = super common

2. Instruments where reading is recorded to half of the smallest division.

Instruments	smallest division	precision	examples of readings
thermometer	1°C	0.5°C	29.0°C, 29.5°C, 30.0°C
ammeter (0-1A)	0.02A	0.01A	0.25A, 0.26A, 0.27A
voltmeter (0-1V)	0.02V	0.01V	0.25V, 0.26V, 0.27V
measuring cylinder (100cm³)	1cm³	0.5cm ³	18.0cm³, 18.5cm³, 19.0cm³
spring balance (0-10N)	0.1N	0.05N	6.05N, 6.10N, 6.15N