Chương 4 Đại số quan hệ

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Giới thiệu

- Xét một số xử lý trên quan hệ NHANVIEN
 - Thêm mới một nhân viên
 - Chuyển nhân viên có tên là "Tùng" sang phòng số 1
 - Cho biết họ tên và ngày sinh các nhân viên có lương trên 20000

TENNV	HONV	NGSINH	DCHI	PHAI	LUONG	PHONG
Tung	Nguyen	12/08/1955	638 NVC Q5	Nam	40000	5
Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4
Nhu	Le	06/20/1951	291 HVH QPN	Nu	43000	4
Hung	Nguyen	09/15/1962	Ba Ria VT	Nam	38000	5
Quang	Pham	11/10/1937	450 TV HN	Nam	55000	1

Giới thiệu (tt)

- Có 2 loại xử lý
 - Làm thay đổi dữ liệu (cập nhật)
 - Thêm mới, xóa và sửa
 - Không làm thay đổi dữ liệu (rút trích)
 - Truy vấn (query)
- Thực hiện các xử lý
 - Đại số quan hệ (Relational Algebra)
 - Biểu diễn câu truy vấn dưới dạng biểu thức
 - Phép tính quan hệ (Relational Calculus)
 - Biểu diễn kết quả
 - SQL (Structured Query Language)

Nhắc lại

- Đại số
 - Toán tử (operator)
 - Toán hạng (operand)
- Trong số học
 - Toán tử: +, -, *, /
 - Toán hạng biến (variables): x, y, z
 - Hằng (constant)
 - Biểu thức
 - (x+7) / (y-3)
 - (x+y)*z and/or (x+7) / (y-3)

Đại số quan hệ

- Biến là các quan hệ
 - Tập hợp (set)
- Toán tử là các phép toán (operations)
 - Trên tập hợp
 - Hội ∪ (union)
 - Giao ∩ (intersec)
 - Trù (difference)
 - Rút trích 1 phần của quan hệ
 - Chọn σ (selection)
 - Chiếu π (projection)
 - Kết hợp các quan hệ
 - Tích Cartesian × (Cartesian product)
 - Kết ⋈ (join)
 - Đổi tên ρ

Đại số quan hệ (tt)

- Hằng số là thể hiện của quan hệ
- Biểu thức
 - Được gọi là câu truy vấn
 - Là chuỗi các phép toán đại số quan hệ
 - Kết quả trả về là một thể hiện của quan hệ

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép chọn

- Được dùng để lấy ra các bộ của quan hệ R
- Các bộ được chọn phải thỏa mãn điều kiện chọn P
- Ký hiệu

$$\sigma_{P}(R)$$

- P là biểu thức gồm các mệnh đề có dạng
 - <tên thuộc tính> <phép so sánh> <hằng số>
 - <tên thuộc tính> <phép so sánh> <tên thuộc tính>
 - <phép so sánh> gồm < , > , ≤ , ≥ , ≠ , =
 - Các mệnh đề được nối lại nhờ các phép ∧ , ∨ , ¬

Phép chọn (tt)

- Kết quả trả về là một quan hệ
 - Có cùng danh sách thuộc tính với R
 - Có số bộ luôn ít hơn hoặc *bằng* số bộ của R
- Ví dụ

R	Α	В	С	D
	α	α	1	7
	α	β	5	7
	β	β	12	3
	β	β	23	10

$$\sigma_{(A=B)\land (D>5)}(R)$$

Α	В	С	D
α	α	1	7
β	β	23	10

Phép chọn (tt)

Phép chọn có tính giao hoán

$$\mathbf{O}_{p1}(\mathbf{O}_{p2}(R)) = \mathbf{O}_{p2}(\mathbf{O}_{p1}(R)) = \mathbf{O}_{p1 \wedge p2}(R)$$

Ví dụ 1

- Cho biết các nhân viên ở phòng số 4
 - Quan hệ: NHANVIEN
 - Thuộc tính: PHG
 - Điều kiện: PHG=4

O PHG=4 (NHANVIEN)

Ví dụ 2

- Tìm các nhân viên có lương trên 25000 ở phòng 4 hoặc các nhân viên có lương trên 30000 ở phòng 5
 - Quan hệ: NHANVIEN
 - Thuộc tính: LUONG, PHG
 - Điều kiện:
 - LUONG>25000 và PHG=4 hoặc
 - LUONG>30000 và PHG=5

 $\sigma_{\text{(LUONG>25000 \land PHG=4) \lor (LUONG>30000 \land PHG=5)}}$ (NHANVIEN)

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép chiếu

- Được dùng để lấy ra một vài cột của quan hệ R
- Ký hiệu $\pi_{A1, A2, ..., Ak}(R)$
- Kết quả trả về là một quan hệ
 - Có k thuộc tính
 - Có số bộ luôn ít hơn hoặc bằng số bộ của R
- Ví dụ

R	Α	В	С
	α	10	1
	α	20	1
	β	30	1
	β	40	2

$$\pi_{\text{A,C}}(\text{R})$$

	Α	С
	α	1
_	α	1
	β	1
	β	2

Phép chiếu (tt)

Phép chiếu không có tính giao hoán

$$\pi_{X,Y}(R) = \pi_X(\pi_Y(R))$$

$$\pi_{A1, A2, ..., An}(\pi_{A1, A2, ..., Am}(R)) = \pi_{A1, A2, ..., An}(R)$$
, với $n \le m$

Ví dụ 3

- Cho biết họ tên và lương của các nhân viên
 - Quan hệ: NHANVIEN
 - Thuộc tính: HONV, TENNV, LUONG

 $\pi_{\text{HONV,TENNV,LUONG}}$ (NHANVIEN)

Phép chiếu tổng quát

- Mở rộng phép chiếu bằng cách cho phép sử dụng các phép toán số học trong danh sách thuộc tính
- Ký hiệu π_{F1, F2, ..., Fn} (Ε)
 - E là biểu thức ĐSQH
 - F₁, F₂, ..., F_n là các biểu thức số học liên quan đến
 - Hằng số
 - Thuộc tính trong E

Phép chiếu tổng quát (tt)

- Ví dụ
 - Cho biết họ tên của các nhân viên và lương của họ sau khi tăng 10%

 $\pi_{\text{HONV, TENNV, LUONG}*1.1}$ (NHANVIEN)

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép tích Cartesian

- Được dùng để kết hợp các bộ của các quan hệ lại với nhau
- Ký hiệu
 R × S
- Kết quả trả về là một quan hệ Q
 - Mỗi bộ của Q là <u>tổ hợp</u> giữa 1 bộ trong R và 1 bộ trong S
 - Nếu R có u bộ và S có v bộ thì Q sẽ có u × v bộ
 - Nếu R có n thuộc tính và Q có m thuộc tính thì Q sẽ có n + m thuộc tính (R⁺ ∩ Q⁺ ≠ Ø)

Phép tích Cartesian (tt)

Ví dụ

R	Α	В
	α	1
	β	2

S	B	С	D
	α	10	+
	β	10	+
	β	20	-
	γ	10	ı

$$\rho_{(X,C,D)}(S)$$

 $R \times S$

Α	В	X	С	D
α	1	α	10	+
α	1	β	10	+
α	1	β	20	-
α	1	γ	10	-
β	2	α	10	+
β	2	β	10	+
β	2	β	20	-
β	2	γ	10	-

Phép tích Cartesian (tt)

Ví dụ

R	Α	В
	α	1
	β	2

S	В	С	D
	α	10	+
	β	10	+
	β	20	-
	γ	10	-

unambiguous

R×S	Α	R.B	S.B	С	D
	α	1	α	10	+
	α	1	β	10	+
	α	1	β	20	-
	α	1	γ	10	-
	β	2	α	10	+
	β	2	β	10	+
	β	2	β	20	-
	β	2	γ	10	-

Phép tích Cartesian (tt)

Thông thường theo sau phép tích Cartesian là phép chọn

$$R \times S$$

Α	R.B	S.B	С	D	
α	1	α	10	+	
α	1	β	10	+	
α	1	β	20	-	
α	1	γ	10	-	
β	2	α	10	+	
β	2	β	10	+	
β	2	β	20	-	
β	2	γ	10	ı	

$$\sigma_{A=S,B}(R \times S)$$

Α	R.B	S.B	C	D
α	1	α	10	+
β	2	β	10	+
β	2	β	20	-

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép toán tập hợp

- Quan hệ là tập hợp các bộ
 - Phép hội R∪S
 - Phép giao R ∩ S
 - Phép trừ R S
- Tính khả hợp (Union Compatibility)
 - Hai lược đồ quan hệ R(A₁, A₂, ..., A_n) và S(B₁, B₂, ..., B_n)
 là khả hợp nếu
 - Cùng bậc n
 - Và có $DOM(A_i)=DOM(B_i)$, $1 \le i \le n$
- Kết quả của ∪, ∩, và là một <u>quan hệ</u> có cùng tên thuộc tính với quan hệ đầu tiên (R)

Phép toán tập hợp (tt)

Ví dụ

NHANVIEN	TENNV	NGSINH	PHAI
	Tung	12/08/1955	Nam
	Hang	07/19/1968	Nu
	Nhu	06/20/1951	Nu
	Hung	09/15/1962	Nam

THANNHAN	TENTN	NG_SINH	PHAITN
	Trinh	04/05/1986	Nu
	Khang	10/25/1983	Nam
	Phuong	05/03/1958	Nu
	Minh	02/28/1942	Nam
	Chau	12/30/1988	Nu

Bậc n=3 DOM(TENNV) = DOM(TENTN) DOM(NGSINH) = DOM(NG_SINH) DOM(PHAI) = DOM(PHAITN)

Phép hội

- Cho 2 quan hệ R và S khả hợp
- Phép hội của R và S
 - Ký hiệu R ∪ S
 - Là một quan hệ gồm các bộ thuộc R hoặc thuộc S, hoặc cả hai (các bộ trùng lắp sẽ bị bỏ)

$$R \cup S = \{ t / t \in R \lor t \in S \}$$

Ví dụ

R	Α	В
	α	1
	α	2
	β	1

S	Α	В
	α	2
	β	3

$R \cup S$	Α	В	
	α	1	
		2	
	α β	1	
	α		
	β	3	

Phép giao

- Cho 2 quan hệ R và S khả hợp
- Phép giao của R và S
 - Ký hiệu R ∩ S
 - Là một quan hệ gồm các bộ thuộc R đồng thời thuộc S

$$R \cap S = \{ t / t \in R \land t \in S \}$$

Ví dụ

R	Α	В
	α	1
	α	2
	β	1

S	Α	В
	α	2
	β	3

$R \cap S$	Α	В
	α	2

Phép trừ

- Cho 2 quan hệ R và S khả hợp
- Phép giao của R và S
 - Ký hiệu R S
 - Là một quan hệ gồm các bộ thuộc R và không thuộc S

$$R - S = \{ t / t \in R \land t \notin S \}$$

Ví dụ

R	Α	В
	α	1
	α	2
	β	1

S	Α	В
	α	2
	β	3

R – S	Α	В
	α	1
	β	1

Các tính chất

Giao hoán

$$R \cup S = S \cup R$$

$$R \cap S = S \cap R$$

Kết hợp

$$R \cup (S \cup T) = (R \cup S) \cup T$$

$$R \cap (S \cap T) = (R \cap S) \cap T$$

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
 - Kết tự nhiên (Natural join)
 - Kết có điều kiện tổng quát (Theta join)
 - Kết bằng (Equi join)
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép kết

 \bowtie

- Được dùng để tổ hợp 2 bộ có liên quan từ 2 quan hệ thành 1 bộ
- Ký hiệu R S
 - $R(A_1, A_2, ..., A_n)$ và $(B_1, B_2, ..., B_m)$
- Kết quả của phép kết là một quan hệ Q
 - Có n + m thuộc tính Q(A₁, A₂, ..., A_n, B₁, B₂, ..., B_m)
 - Mỗi bộ của Q là tổ hợp của 2 bộ trong R và S, thỏa mãn một số <u>điều kiện kết</u> nào đó
 - Có dạng A_i θ B_i
 - A_i là thuộc tính của R, B_j là thuộc tính của S
 - A_i và B_j có cùng miền giá trị
 - θ là phép so sánh ≠, =, <, >, ≤, ≥

Phép kết (tt)

- Phân loại
 - Kết theta (theta join) là phép kết có điều kiện
 - Ký hiệu R ⋈_C S
 - C gọi là điều kiện kết trên thuộc tính
 - Kết bằng (equi join) khi C là điều kiện so sánh bằng
 - Kết tự nhiên (natural join)
 - Ký hiệu R⊠S hay R∗S
 - $R^+ \cap Q^+ \neq \emptyset$
 - Kết quả của phép kết bằng bỏ bớt đi 1 cột giống nhau

Phép kết (tt)

Ví dụ phép kết theta

$$R \bowtie_{B < D} S$$

Α	В	С	D	Е
1	2	3	3	1
1	2	3	6	2
4	5	6	6	2

$$R \bowtie_C S = \sigma_C(R \times S)$$

Phép kết (tt)

Ví dụ phép kết bằng

R	Α	В	С
	1	2	3
	4	5	6
	7	8	9
•			

S	D	Е
	3	1
	6	2

$$\rho_{(S.C,D)}\,\mathsf{S}$$

$$R\bowtie_{C=D} S$$

Α	В	С	D	Е
1	2	3	3	1
4	5	6	6	2

$$R\bowtie_{C=S.C} S$$

Α	В	С	S.C	D
1	2	3	3	1
4	5	6	6	2

Phép kết (tt)

Ví dụ phép kết tự nhiên

R	Α	В	С
	1	2	3
	4	5	6
	7	8	9

S	C	D
	3	1
	6	2

Α	В	С	D
1	2	3	1
4	5	6	2

Phép kết ngoài

- Mở rộng phép kết để tránh mất mát thông tin
 - Thực hiện phép kết
 - Lấy thêm các bộ không thỏa điều kiện kết
- Có 3 hình thức
 - Mở rộng bên trái
 - Mở rộng bên phải ⋉
 - Mở rộng 2 bên ⊤

- Cho biết họ tên nhân viên và tên phòng ban mà họ phụ trách nếu có
 - Quan hệ: NHANVIEN, PHONGBAN
 - Thuộc tinh: TENNV, TENPH

R1
$$\leftarrow$$
 NHANVIEN \implies MANV=TRPHG PHONGBAN KQ \leftarrow $\pi_{\text{HONV,TENNV, TENPHG}}$ (R1)

TENNV	HONV	TENPHG	
Tung	Nguyen	Nghien cuu	
Hang	Bui	null	
Nhu	Le	null	
Vinh	Pham	Quan ly	

- Cho biết nhân viên có lương hơn lương của nhân viên 'Tùng'
 - Quan hệ: NHANVIEN
 - Thuộc tính: LUONG

NHAN_VIEN(HONV, TENNV, MANV, ..., **LUONG**, PHG)

$$R1(LG) \leftarrow \pi_{LUONG}(\sigma_{TENNV=`Tung'}(NHANVIEN))$$

$$KQ \leftarrow NHAN_VIEN \bowtie_{LUONG>LG} R1$$

KQ(HONV, TENNV, MANV, ..., LUONG, LG)

- Với mỗi nhân viên, hãy cho biết thông tin của phòng ban mà họ đang làm việc
 - Quan hệ: NHANVIEN, PHONGBAN

NHANVIEN(HONV, TENNV, MANV, ..., **PHG**)
PHONGBAN(TENPHG, **MAPHG**, TRPHG, NG NHANCHUC)

KQ ← NHANVIEN ⋈ PHG=MAPHG PHONGBAN

KQ(HONV, TENNV, MANV, ..., PHG, TENPHG, MAPHG, ...)

- Với mỗi phòng ban hãy cho biết các địa điểm của phòng ban đó
 - Quan hệ: PHONGBAN, DDIEM_PHG

PHONGBAN(TENPHG, **MAPHG**, TRPHG, NGAY_NHANCHUC)
DDIEM_PHG(**MAPHG**, DIADIEM)

 $KQ \leftarrow PHONGBAN \bowtie DDIEMPHG$

KQ(TENPHG, MAPHG, TRPHG, NGAY_NHANCHUC, DIADIEM)

Tập đầy đủ các phép toán ĐSQH

- Tập các phép toán σ, π, ×, −, ∪ được gọi là tập đầy đủ các phép toán ĐSQH
 - Nghĩa là các phép toán có thể được biểu diễn qua chúng
 - Ví dụ
 - $R \cap S = R \cup S ((R S) \cup (S R))$
 - $R\bowtie_{C}S = \sigma_{C}(R\times S)$

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép chia

- Được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với <u>tất cả</u> các bộ trong quan hệ S
- Ký hiệu R ÷ S
 - R(Z) và S(X)
 - Z là tập thuộc tính của R, X là tập thuộc tính của S
 - X ⊂ Z
- Kết quả của phép chia là một quan hệ T(Y)
 - Với Y=Z-X
 - Có t là một bộ của T nếu <u>với mọi bộ</u> t_S∈S, tồn tại bộ t_R∈R thỏa 2 điều kiện
 - $t_R(Y) = t$
 - $t_R(X) = t_S(X)$

Phép chia (tt)

Ví dụ

D.	•	
1/	•	<u>ر</u>

R	Α	В	С	D	Е
	α	а	α	а	1
	α	а	γ	а	1
	α	а	γ	b	1
	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	a	γ	b	1
	γ	a	β	b	1

S	D	Е
	а	1
	b	1

Α	В	С
α	а	γ
γ	a	γ

Phép chia (tt)

 Biểu diễn phép chia thông qua tập đầy đủ các phép toán ĐSQH

$$Q1 \leftarrow \pi_{Y}(R)$$
 $Q2 \leftarrow Q1 \times S$
 $Q3 \leftarrow \pi_{Y}(Q2 - R)$
 $T \leftarrow Q1 - Q3$

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
 - Hàm kết hợp (Aggregation function)
 - Phép gom nhóm (Grouping)
 - Phép kết ngoài (Outer join)
- Các thao tác cập nhật trên quan hệ

Hàm kết hợp

- Nhận vào tập hợp các giá trị và trả về một giá trị đơn
 - AVG
 - MIN
 - MAX
 - SUM
 - COUNT

Hàm kết hợp (tt)

Ví dụ

R	Α	В
	1	2
	3	4
	1	2
	1	2

$$SUM(B) = 10$$

$$AVG(A) = 1.5$$

$$MIN(A) = 1$$

$$MAX(B) = 4$$

$$COUNT(A) = 4$$

Phép gom nhóm

- Được dùng để phân chia quan hệ thành nhiều nhóm dựa trên điều kiện gom nhóm nào đó
- Ký hiệu $G1, G2, ..., Gn \mathcal{J}_{F1(A1), F2(A2), ..., Fn(An)}(E)$
 - E là biểu thức ĐSQH
 - G1, G2, ..., Gn là các thuộc tính gom nhóm
 - F1, F2, ..., Fn là các hàm
 - A1, A2, ..., An là các thuộc tính tính toán trong hàm F

Phép gom nhóm (tt)

Ví dụ

R	Α	В	С	
	α	2	7	
	α	4	7	
	β	2	3	
	γ	2	10	<u> </u>

SUM_C
27

$${}_{\mathsf{A}}\mathcal{J}_{\mathsf{SUM}(\mathsf{C})}\!(\mathsf{R})$$

SUM_C
14
3
10

Nội dung chi tiết

- Giới thiệu
- Đại số quan hệ
- Phép toán tập hợp
- Phép chọn
- Phép chiếu
- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Các thao tác cập nhật

- Nội dung của CSDL có thể được cập nhật bằng các thao tác
 - Thêm (insertion)
 - Xóa (deletion)
 - Sửa (updating)
- Các thao tác cập nhật được diễn đạt thông qua phép toán gán

 $R_{new} \leftarrow các phép toán trên <math>R_{old}$

Thao tác thêm

Được diễn đạt

$$R_{new} \leftarrow R_{old} \cup E$$

- R là quan hệ
- E là một biểu thức ĐSQH
- Ví dụ
 - Phân công nhân viên có mã 123456789 làm thêm đề án mã số 20 với số giờ là 10

PHANCONG \leftarrow PHANCONG \cup ('123456789', 20, 10)

Thao tác xóa

Được diễn đạt

$$R_{new} \leftarrow R_{old} - E$$

- R là quan hệ
- E là một biểu thức ĐSQH
- Ví dụ
 - Xóa các phân công đề án của nhân viên 123456789

PHANCONG \leftarrow PHANCONG - $\sigma_{MANV='123456789'}$ (PHANCONG)

Thao tác sửa

Được diễn đạt

$$R_{\text{new}} \leftarrow \pi_{\text{F1, F2, ..., Fn}} (R_{\text{old}})$$

- R là quan hệ
- Fi là biểu thức tính toán cho ra giá trị mới của thuộc tính
- Ví dụ
 - Tăng thời gian làm việc cho tất cả nhân viên lên 1.5 lần

PHANCONG $\leftarrow \pi_{MA NVIEN, SODA, THOIGIAN*1.5}$ (PHANCONG)

