Differential Equations

Ikhan Choi

May 24, 2024

Contents

Ι	Ordinary differential equations	2	2
1	Initial value problems1.1 Homogeneous problems1.2 Inhomogeneous problems1.3 Analytic solutions1.4 Nonlinear equations		3 3 3
2	Boundary value problems	!	5
	2.1 Second order linear equations		5
	2.2 Orthogonal polynomials		5
	2.3 Sturm-Liouville theory		5
3	Dynamical systems		6
	3.1 Equillibrium and stability		6
	3.2 Autonomous systems		6
	3.3 Hamiltonian systems		6
	3.4 Planar systems		6
	3.5 Chaos		6
II	Partial differential equations	•	7
4	Sobolev spaces	;	8
5	Linear partial differential equations	9	9
	5.1 Laplace's equation		9
	5.2 Eigenvalue problems		C
	5.3 Heat equation	10	C
	5.4 Wave equation	1	1
6	Nonlinear partial differential equations	1:	2
	6.1 Geometric PDEs	1	2
	6.2 Fluid dynamics	$\dots $ 1	2

Part I Ordinary differential equations

Initial value problems

1.1 Homogeneous problems

Constant coefficient equations: existence uniqueness system of equations characteristic equations complex roots repeated roots

Variable coefficient equations: existence uniqueness

1.2 Inhomogeneous problems

Method of undetermined coefficients Variation of parameters Laplace transform discontinuous data gluing

1.3 Analytic solutions

Frobenius method Fuch's theorem series solution

1.4 Nonlinear equations

1.1 (Picard-Lindelöf theorem). Consider the following initial value problem:

$$x'(t) = f(t, x(t)),$$
 $x(0) = x_0.$

Construct an approximate solution $(x_n)_{n=0}^{\infty}$ defined inductively such that $x_0(t) \equiv x_0$ and

$$x'_{n+1}(t) = f(t, x_n(t)), \quad x_{n+1}(0) = x_0.$$

Suppose f satisfies

$$|f(t,x)| \le \frac{R}{T}, \qquad |f(t,x) - f(t,y)| \lesssim |x - y|$$

on the cylinder $[0, T] \times \overline{B(x_0, R)}$.

- (a) x_n is in $C^1([0,T], \overline{B(x_0,R)})$.
- (b) x_n is Cauchy in $C^1([0,T], \overline{B(x_0,R)})$.
- (c) The equation has a unique solution in $C^1([0,T],\overline{B(x_0,R)})$.

Proof. (a) It clearly follows from the explicit formula

$$x_{n+1}(t) = x_0 + \int_0^t f(s, x_n(s)) ds.$$

(b) Since

$$|x_1(t) - x_0(t)| \le \int_0^t |f(s, x_0)| ds \le Mt$$

and

$$|x_{n+1}(t) - x_n(t)| \le \int_0^t |f(s, x_n(s)) - f(s, x_{n-1}(s))| \, ds$$

$$\le K \int_0^t |x_n(s) - x_{n-1}(s)| \, dx$$

$$\le MK^n \int_0^t \frac{s^n}{n!} \, ds$$

$$= MK^n \frac{t^{n+1}}{(n+1)!},$$

we have the convergent series

$$\sum_{n=0}^{\infty} \|x_{n+1} - x_n\|_{\infty} \le TM \frac{e^{KT} - 1}{KT}.$$

Also,

$$|x'_{n+1}(t) - x'_n(t)| \le |f(t, x_n(t)) - f(t, x_{n-1}(t))| \le K|x_n(t) - x_{n-1}(t)| \le MK^{n+1} \frac{t^{n+1}}{(n+1)!}.$$

- (c) Limiting check. \Box
- 1.2 (Cauchy-Peano theorem).
- 1.3 (Carathéodory existence theorem).

Implicit equations: integrating factor, separable equations, exact equations

- 1.4 (Gronwall's inequality).
- 1.5 (A priori estimate).

Exercises

1.6 (Damped oscillation).

Boundary value problems

2.1 Second order linear equations

Helmholtz Bessel Legendre Hermite Laguerre

2.2 Orthogonal polynomials

 L^2 space

2.3 Sturm-Liouville theory

Eigenvalue problems boundary conditions

Exercises

2.1 (Rayleigh-Ritz principle).

Dynamical systems

3.1 Equillibrium and stability

Bifurcations

Stability theory Lyapunov, invariant set

- 3.2 Autonomous systems
- 3.3 Hamiltonian systems
- 3.4 Planar systems

periodic orbit

3.1 (Poincaré-Bendixon).

Exercises

3.2 (Undamped pendulum).

$$x''(t) + \sin x(t) = 0$$

3.3 (Approximated pendulum).

$$x''(t) + x(t) - \frac{1}{6}x(t)^3 = \alpha$$

3.4 (Van der Pol oscillator).

$$x''(t) - \mu(1 - x(t)^2)x'(t) + x(t) = 0$$

3.5 (Lotka-Volterra model). Also known as predator-prey equations.

3.5 Chaos

Attractors

Part II Partial differential equations

Sobolev spaces

Linear partial differential equations

5.1 Laplace's equation

Harmonic functions

- 5.1 (Mean value property).
- 5.2 (Maximum principle).
- **5.3** (Newtonian potential).
- **5.4** (Dirichlet problem for half space).
- **5.5** (Dirichlet problem for open ball).

Poisson equation

- 5.6 (Weak derivative).
- **5.7** (Dirac delta function). Let Ω be an open subset of \mathbb{R}^d . The *Dirac delta function* is a linear functional $\delta: C_c^{\infty}(\Omega) \to \mathbb{R}$ defined by $\delta(\varphi) := \varphi(0)$. We conventionally use the function-like notation $\delta(x)$ to denote $\varphi(0)$ by

$$\int \delta(x)\varphi(x)dx.$$

5.8 (Fundamental solution of the Laplace equation). Let $d \ge 2$. The Fundamental solution of the Laplace equation is a function $\Phi : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ that solves the boundary value problem

$$\begin{cases} -\Delta \Phi(x) = \delta(x) & \text{in } \mathbb{R}^d, \\ \Phi(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$

(a) The funcdamental solution is given by

$$\Phi(x) := \begin{cases} -\frac{1}{2\pi} \log |x| & \text{if } d = 2\\ \frac{1}{(d-2)\omega_d} \frac{1}{|x|^{d-2}} & \text{if } d \ge 3 \end{cases}.$$

In particular, Φ and $\nabla \Phi$ are locally integrable on \mathbb{R}^d but $\nabla^2 \Phi$ is not.

(b) For $u \in C_0^2(\mathbb{R}^d)$,

$$u(x) = -\int \Phi(x - y) \Delta u(y) \, dy.$$

Proof. Note that $\nabla \Phi(y) \cdot \nabla u(x-y)$ is integrable in y. Then,

$$\begin{split} -\int \Phi(y)\Delta u(x-y)\,dy &= -\int \nabla \Phi(y)\cdot \nabla u(x-y)\,dy \\ &= -\lim_{\varepsilon \to \infty} \int_{|y| \ge \varepsilon} \nabla \Phi(y)\cdot \nabla u(x-y)\,dy \\ &= -\lim_{\varepsilon \to \infty} \int_{|y| = \varepsilon} \nabla \Phi(y)u(x-y)\cdot v\,dS. \end{split}$$

Since

$$\nabla \Phi(x) = -\frac{1}{\omega_d} \frac{x}{|x|^d}, \quad v = \frac{x}{|x|},$$

we get

$$-\int \Phi(y)\Delta u(x-y)\,dy = \lim_{\varepsilon \to \infty} \frac{1}{\omega_d \varepsilon^{d-1}} \int_{|y|=\varepsilon} u(x-y)\,dS_y = u(x).$$

5.9 (Green's function of the Poisson equation). Let Ω be a bounded open subset of \mathbb{R}^d for $d \geq 2$. *Green's function of the Poisson equation* is a function $G: \Omega^2 \setminus \{(x,x) \in \Omega\} \to \mathbb{R}$ that solves the boundary value problem

$$\begin{cases} -\Delta_y G(x, y) = \delta(x - y) & \text{in } y \in \Omega \setminus \{x\}, \\ G(x, y) = 0 & \text{on } y \in \partial \Omega. \end{cases}$$

for each $x \in \Omega$.

Define $\phi:\Omega^2\to\mathbb{R}$ to be a function that solves the boundary value problem

$$\begin{cases} -\Delta_y \phi(x, y) = 0 & \text{in } y \in \Omega, \\ \phi(x, y) = \Phi(x - y) & \text{on } y \in \partial \Omega. \end{cases}$$

for each $x \in \Omega$. Assume for the domain Ω that there exists a unique ϕ .

(a) Green's function is given by

$$G(x, y) = \Phi(x - y) - \phi(x, y).$$

where Φ is the fundamental solution of the Laplace equation. Physically, $y \mapsto -\phi(x,y)$ has a meaning of the electric potential generated by the induced surface charge of a grounded conductor provided a point charge is at x.

(b) The Green representation formula holds: for $u \in C^2(\Omega) \cap C(\overline{\Omega})$,

$$u(x) = -\int_{\Omega} G(x, y) \Delta u(y) \, dy - \int_{\partial \Omega} u(y) \nabla_{y} G(x, y) \cdot \nu \, dS_{y}.$$

5.10 (Existence and uniqueness of Poisson equation). representation formulas describe the solution assuming

5.2 Eigenvalue problems

5.3 Heat equation

Heat kernel Duhamel's principle Separation of variables

5.4 Wave equation

First order partial differential equations and characteristic method Initial value problems: d'Alambert Kirchhoff odd reflection Boundary value problems: Dirichlet, Neumann, Mixed

Dispersive equations

Nonlinear partial differential equations

6.1 Geometric PDEs

gradient flow curvature flow

6.2 Fluid dynamics

Conservation laws Euler and Burger equation Non-linear waves Nonlinear diffusion? Navier-Stokes equation