(21) Application No. 50487/72 (22) Filed 2 Nov. 1972

(44) Complete Specification published 16 April 1975

(51) INT CL² B01J 31/14 C07C 3/10

(52) Index at acceptance

B1E 302 360 36Y 421 422 42Y 462 463 491 49Y 549 552 55Y 578 579 580 584 61X 650 702 705 70Y 750 753 754 756 75X 75Y

C5E 7A1 7AY 8A8A1B 8A8A1C 8A8B1 8A8B2 8A8B3 8A8B4 8A8Y

(72) Inventors WOLFGAND SCHULZ, HERMANN MIX ERHARD KURRAS, FRIEDRICH-WILHELLM WILCKE

JONATHAN REIHSIG, HANS FUHRMANN and INGRID GRASSERT

(54) OLIGOMERISATION AND CO OLIGOMERISATION CATALYSTS

(71) We, AKADEMIE DER WISSEN-SCHAFTEN DER DDR OF RUDOWER CHAUSSE, Berlin, German Democratic Republic, a Corporation organised under the laws of the German Democratic Republic, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention is concerned with a process for the production of heterogeneous catalysts suitable for the oligomerisation and co-oligomerisation of olefins, which catalysts have a good selectivity and a high activity.

It is known that olefins, especially propene, can be oligomerised with the help of solid catalysts which, as catalytically active components, contain cobalt or nickel or the oxides thereof. As carrier material, there are used various activated charcoals, aluminosilicates, optionally with the admixture of magnesium oxide, as well as aluminium oxides and zeolites. However, even when using comparatively high pressures and temperatures, the activity is scarcely satisfactory.

It is also known that aluminium oxide, silicon dioxide or alumosilicate carriers which have been impregnated with a divalent nickel salt and a complex former or with monovalent nickel complexes and subsequently treated with an organo-aluminium compound or with an organo-metallic alkylating agent, can also be used to oligomerise olefins.

35 Because of the low reactivity of these catalysts, it is necessary to use increased pressures and comparatively long reaction times.

Another group of known heterogeneous oligomerisation catalysts contain alkali metals as effective components. As carriers, there are used magnesium silicates, magnesium oxide, aluminium oxide, potassium carbonate, [Price 33p]

activated charcoal or graphite, on to which are deposited the alkali metals or their hydrides or organo compounds, in finely-divided form. Since the activity of the catalysts thus obtained is low, they can also only be used at high pressures and reaction temperatures and with long residence times.

It is an object of the present invention to provide heterogeneous oligomerisation catalysts for olefins which do not suffer from the above-mentioned deficiencies and disadvantages and which show, under normal conditions, a high activity and good selectivity.

Thus, according to the present invention, there is provided a process for the production of heterogeneous oligomerisation and cooligomerisation catlaysts for olefins, wherein a completely hydrated aluminium oxide or a partially dehydrated aluminium hydroxide or hydroxide group-containing aluminium oxide carrier material is first thermally pretreated, then reacted with at least one halogen-containing organo-aluminium compound and subsequently impregnated with at least one divalent nicket and/or divalent cobalt complex in which ligand atoms include oxygen, nitrogen, phosphorus, arsenic and/or antimony, the reaction and subsequent impregnation being carried out at a temperature of -50 to 150°C. and preferably of 0 to 60°C.

If desired, a divalent nickel and/or cobalt complex can be used in which one or two coordination positions of the central atom is occupied by an imino nitrogen atom.

As carrier materials, there can be used,

As carrier materials, there can be used, for example, bayerite, hydrargillite, böhmite and y-aluminium oxide.

For the reaction with the thermally pretreated carrier materials, there can be used, for example, halogen-containing organo-

[03 Ni

aluminium compounds of the general formula

R. AIX R,AI,X, or R_AIX,

wherein X is a flu rine, chlorine, bromine or iodine atom and R is an alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, aralkyl or aralkenyl radical, triethyl aluminium sesquichloride or diethyl aluminium chloride being preferably used.

The reaction advantageously takes place in the temperature range of −50 to 100°C, and preferably at about 0°C, whereby, for 30 ml. of carrier material, there are used 20-50 ml. of halogen-containing organo-aluminium compound. The halogen-contain-15 ing organo-aluminium compound can be applied to the carrier in indiluted form or dissolved in an inert solvent. As solvent for the halogen-containing organo-aluminium compounds, there can be used, for example, 20 not only aliphatic but also aromatic halogenated hydrocarbons, as well as pure aromatic, aliphatic or cycloaliphatic hydrocarbons.

The thermally pre-treated carrier materials reacted with the halogen-containing organoaluminium compounds are loaded with divalent nickel and/or divalent cobalt complexes. As solvents, there can here also be used the above-mentioned hydrocarbons or

halogenated hydrocarbons.

As divalent nickel complexes, there can be used, for example, bis - (salicylidene - iminato) nickel, bis - (N - n - butyl - salicylidene iminato) nickel, bis - (N - n - dodecylsalicylidene - iminato) nickel, bis - (N - cyclohexyl - salicylidene - iminato) nickel, bis -(N - phenyl - salicylidene - iminato) nickel, bis - (N - o - chlorophenyl - calicylidene - iminato) nickel, bis - N - o - pyridyl - salicylidene - iminato) nickel, bis - (2 - aminobenzylidene - iminato) nickel, bis - [(N - n butyl) - 2 - aminobenzylidene - iminato] nickel, bis - ([N - phenyl) - 2 - amino-benzylidene - iminator] nickel, bis - [(N o - pyridyl) - 2 - aminobenzylidene - iminato] nickel, bis - ([N - n - butyl) - 2 - diphenyl-phosphine - benzylidene - iminato] nickel, bis - <math>[(N - phenyl) - 2 - diphenylarsino benzylidene - iminato] nickel, bis(2 - 50 pyrrolidene - iminato) nickel, bis - [(0 chlorophenyl) - 2 - pyrrolidene - iminato] nickel, bis – (2 – hydroxy – azobenzene) nickel, $[(N - \beta - hydroxyethyl) - salicylidene –$ iminato] nickel, [(N - o - hydroxyphenyl) -55 salicylidene - iminato] nickel, [(N - β methylaminoethyl) - 2 - pyrrolidene - iminato] nickel, 2,2' - dihydroxyazobenzene nickel, N,N' - bis - (salicylidene) - ethylenediamino nickel, N,N' - bis - (salicylidene) - o - phenylenediamino nickel, N,N' - bis - (o aminobenzylidene) - ethylenediamine nickel, N,N' - bis - (2 - pyrrolidene) - o - phenyldiamino nickel, N,N' - bis - (2 - pyrrolidene) -

1,2 - diphenyl - ethylenediamino nickel and nickel acetyl acetonate, as well as the complex formed between nickel acetyl acetonate and triphenyl phosphine.

In the same way, there can also be used the corresponding divalent cobalt complexes.

Furthermore, mixtures of divalent nickel and/or divalent cobalt complexes can be used. The divalent nickel complexes can, in general, be prepared quickly and simply and are easy to purify. The o-substituted arylaldimine or aryl-ketimine nickel complexes, for

example, the salicylaldimine, o-aminobenzaldimine, pyrrole - α - aldimine or o - hydroxy-acetophenoneimine nickel complexes can be obtained by reacting a slight excess of primary amine in a polar solvent, such as ethanol or a halogenated aliphatic hydrocarbon, with the bis - o - hydroxy- or bis - o - aminobenzaldehyde or bis - o - hydroxy- or bis - o aminoaryl ketone nickel complex. The metal ion can also be homogeneously reacted in

aqueous or alcoholic solution with the appropriate Schiff base in the presence of hydroxyl or acetate ions or ammonia. The crude products can be recrystallised from an appropriate alcohol or from an aromatic hydrocarbon.

The o-hydroxyazobenzene nickel complexes, which can be derived from the corresponding o - hydroxyphenolazomethines by replacement of the methine group thereof by a nitrogen atom, are also easily obtainable. The organic compnents of these complexes have been known for a long time as dyestuffs and are thus large-scale products which can be reacted in a simple manner with nickel hydroxide or nickel salts and ammonia to 100 give the corresponding di- or trichelates and which can be obtained in pure form by crystallisation. In the same way as the ohydroxy- and similarly to the o-aminobenzaldimines, the c-amino and o-pyrrole-azo 105 compounds give poly-chelate divalent nickel complexes. The production thereof does not differ fundamentally from that of the other

complexes mentioned. The divalent cobalt complexes can be pro- 110 duced in an analogous manner but, in this case, it is necessary to work under an atmo-

sphere of inert gas.

The catalysts can be very easily regenerated. Thus, a thermally inactivated catalyst 115 can again be impregnated with a divalent nickel or cobalt complex and subsequently with a small amount of a halogen-containing organo-aluminium compound.

A slight drop in activity occurring after a 120 comparatively long period of working can easily be compensated merely by applying small amounts of halogen-containing organoaluminium compound to the catalyst

The heterogeneous catalysts according to the 125 present invention can be used, for example, for the oligomerisation of ethylene, propene, butene, isoprene and butadiene. Furthermore,

95

they can be used for carrying out a cooligomerisation between mono-olefins and between mono- and diolefins.

Heterogeneous catalysts produced accord-5 ing to the present invention for olefins are simple to produce and are based upon cheap carrier materials. They can be used at ambient temperature and atmospheric pressure and exhibit a high reaction velocity and, in many cases, display a good selectivity. A further advantage of these catalysts is their good activity over long periods of time and the ease with which they can be regener-

The oligomerisation or co-oligomerisation of the olefins can be carried out in a solid bed reactor. This can consist, for example, of a vertical glass tube, provided with a cooling jacket, with a length of about 30 cm. and a diameter of about 2 cm. with a fused-in glass sinter plate, The packing level of the catalyst, through which the reactants flow from above, can be 10-15 cm, depending upon the carrier material. The carrier material is preferably used with a particle size of 0.3—0.6 mm. The temperature can be measured by means of displaceable thermo-elements. All working steps up to the impregnation of the catalysts should be carried out under argon, the impregnation process itself preferably being complete at a temperature of about 0°C. in an atmosphere of the olefin which is to be oligomerised.

The following Examples are given for the purpose of illustrating the present invention: -

Example 1.

30 g. böhmite are heated to 45°C. within the course of 1 hour, thereafter heated slowly 40 to 110°C, within the course of 6 hours and subsequently maintained at this temperature for 3 hours.

The böhmite thermally pre-treated in this manner is mixed at 50°C, within the course of 3 hours, with a solution of 20 ml. triethyl aluminium sesquichloride in chlorobenzene (1:2). After washing out with chlorobenzene and drying at 40°C, the carrier is impregnated at 0°C, with a solution of 123 mg. bis - (N - n - butyl - salicylideneiminato) nickel in 11 ml. chlorobenzene and subsequently dried at 40°C. Thereafter, the catalyst is treated at 0°C. in an atmosphere of propene, within the course of 1 hour, with 55 1 ml. triethylaluminium sesquichloride. The propene conversion at 20°C. is 660 v/v.h. Composition of the reaction product:

72% dimers of which 16.5% n-hexenes 20% trimers 20% trimers 8% higher oligomers. 60

> Example 2 30 g. böhmite, which has been pre-treated

in the manner described in Example 1, are mixed with 30 ml. of a solution of triethyl aluminium sesquichloride. After drying the carrier at 70°C, it is impregnated at 0°C. with a solution of 124 mg. bis - (N - n - n)butył - salicylideneiminato) nickel in 35 ml. n-hexane. Subsequently, a mixture of propene and argon (1:1) is allowed to flow through at 0°C. The reaction temperature thereby increases to 45°C., in spite of intensive cooling. The prepene conversion at 30°C. is 1000 v/v.h. Composition of the reaction pro-

70% dimers of which 27% n-hexenes 23.4% trimers 6.6% higher oligomers

The catalyst can be used for several days on end with somewhat reduced effectiveness. If it is stored in an atmosphere of argon, then, even after several weeks, it can still be activated with a small amount of triethyl aluminium sesquichloride to give the initial degree of activity.

Example 3

The böhmite catalyst according to Example 2, inactivated due to an increased reaction temperature, is impregnated with 62 mg. bis -(N - n - butyl - salicylideneiminato) nickel in 50 ml. n-hexane, activated with 0.25 ml. triethyl aluminium sesquichloride and again used for the conversion of propene. The propene conversion at 30°C. is 1000 v/v.h. Composition of the reaction product:

52% dimers of which 10.8% n-hexenes 32% trimers 15% higher oligomers.

Example 4.

30 g. bayerite are continuously heated to 100 a temperature of 95°C, within the course of 4 hours. Thereafter, it is maintained at this temperature for a further 3 hours. The bayerite thermally pre-treated in this manner is mixed with a solution of 40 ml. triethyl 105 aluminium sesquichloride, care being taken that the temperature does not exceed 20°C. In the course of 5 hours, the catalyst bed is dried at a temperature of up to 30°C. After impregnation with a solution of 250 mg. bis -(N - n - butyl - salicylidene - iminato) nickel in 80 ml. n-hexane, the catalyst obtained is used for the conversion of propene. The propene conversion at 50°C. is 2000 v/v.h. Composition of the reaction product: 115

60-65% dimers of which 20-24% nhexenes 21-25% trimers 10-19% higher oligomers.

The catalyst has an outstandingly pro-

120

25

40

longed activity which remains substantially	7
constant over the course of several days. If	
after use and drying, the catalyst is stored in	Ď,
an atmosphere of argon, then it can be used	ł
again after quite a long time, without a re	_
duction of activity.	

Example 5

30 g. of the bayerite thermally treated and mixed with triethyl aluminium sesquichloride according to Example 4 are impregnated with a solution of 155 mg. nickel acetyl acetonate in 30ml. toluene and subsequently washed out with 100 ml. toluene. Activation takes place with triethyl aluminium sesquichloride, which is introduced together with the propene which is to be oligomerised. For this purpose, the propene flows through a wash bottle containing triethyl aluminium sesquichloride which is inserted directly before the reaction. The propene conversion at 45°C. after 5 hours is 1330 v/v.h. Composition of the reaction product:

61% dimers of which 20% n-hexenes 25% trimers 14% higher oligomers.

Example 6

Bayerite thermally pre-treated and mixed with triethyl aluminium sesquichloride according to Example 4, is reacted at 0°C., in an atmosphere of propene, with a mixture of 1 mMol nickel acetyl acetonate and 1 mMol triphenyl phosphine and, after drying at 0°C., activated with 1 ml. triethyl aluminium sesquichloride. The propene conversion at 45°C. is 1100 v/v.h. Composition of the reaction product:

76% dimers of which 19.1% n-hexenes 18% trimers 6% higher oligomers.

Example 7

30 g. γ-aluminium oxide are heated within the course of 8 hours, by a continuous increase of temperature, to 450°C. and subsequently maintained for 16 hours at this temperature.

The γ-aluminium oxide thermally treated in this manner is mixed at 0°C, in an atmosphere of argon, with 30 ml. triethyl aluminium sesquichloride, heated for 1 hour under argon at 20°C, and then for 2 hours under argon at 30°C.

After impregnation with a solution of 125 mg. bis - (N - n - butyl - salicylidene - iminato) nickel in 80 ml. hexane, the catalyst obtained is used for the conversion of propene. Propene conversion at 45°C. is 1300 v/v.h. Composition of the reaction product:

63% dimers of which 19% n-hexenes 26% trimers 60 11% higher oligomers.

In the case of operating at 65°C, the reaction product had the following composition:

71.5% dimers of which 25.8% *n*-hexenes 65 trimers 5.5% higher oligomers

The propene conversion is 650 v/v.h.

Example 8
The bayerite catalyst according to Example 70
4 is used for the oligomerisation of ethylene.
The ethylene conversion at 55°C. is 2000
v/v.h. (a).

v/v.h. (a).

After throttling the supply of ethylene to an ethylene conversion of 1500 v/v.h. (b) or to 1000 v/v.h. (c) at 40°C., the reaction products obtained have the following compositions:

a)
55% butenes
80
35% hexenes of which 15% n-hexenes
10% higher oligomers, preponderantly
octenes

29 % butene 85
19.8% hexenes of which 28% n-hexenes
31.1% octenes of which 8.7% n-octenes
12.7% decenes
5.8% dodecenes
1.8% tetradecenes
90

15.0% butenes
22.9% hexenes of which 28% n-hexenes
28.5% octenes of which 10.5% n-octenes
18.5% decenes of which 4% n-decenes
10.9% dodecenes
4.2% tetradecenes.

Bxample 9
Bayerite thermally pre-treated and mixed with triethyl aluminium sesquichloride according to Bxample 4, is impregnated with a solution of 126 mg. N - (2 - diphenyl-phosphine - ethyl) - salicylidene - iminato nickel chloride in 100 ml. chlorobenzene and the catalyst so obtained used for the conversion at 65°C. is 3000 v/v.h. Composition of the reaction product:

50% butenes 50% hexenes.

When the conversion rate is lowered to 1000 v/v.h. by throttling the supply of ethylene and the temperature of the reactor

is maintained at 30°C, then the reaction product obtained has the following composition:

26% butenes

38% hexenes of which 10.5% n-hexenes 36% octenes.

Example 10

Bayerite thermally pre-treated and mixed with triethyl aluminium sesquichloride according to Example 4, is impregnated with 10 a solution of 250 mg. bis - (N - n - butyl salicylidene - iminato) cobalt in 35 ml. chlorobenzene and the catalyst obtained is used for the conversion of ethylene.

Bthylene conversion at 20°C.: 70 v/v.h. 15 ethylene conversion at 50°C: 120 v/v.h. ethylene conversion at 90°C: 150 v/v.h.

Composition of the reaction product: 100% butenes of which 30-50% but-1-ene.

Example 11

20 Bayerite thermally pre-treated according to Example 4 is mixed with 50 ml. diethyl aluminium chloride. After removing excess organo-aluminium compound, finally by 25 warming to 30°C in an atmosphere of argon, the carrier is impregnated at 0°C., in an atmosphere of ethylene, with a solution of 160 mg. bis - (N - n - butyl - salicylideneiminato) cobalt in 20 ml. toluene. Subsequently, the catalyst is dried at 0°C. in an atmosphere of argon, the argon first being passed through a wash bottle containing triethyl aluminium sesquichloride. In the temperature range of 10 to 60°C, the catalyst has an ethylene oligomerisation activity of 170 v/v.h. The reaction product obtained consists exclusively of butenes.

Example 12

Bayerite thermally pre-treated and mixed 40 with triethyl aluminium sesquichloride according to Example 4 is impregnated with a solution of 575 mg. bis - (N - n - butylsalicylidene - iminato) cobalt and 41 mg. bis - (N - n - butyl - salicylidene - iminato) 45 nickel in 50 ml. chlorobenzene. The ethylene conversion at 10°C. is 200 v/v.h. Composition of the reaction product:

9.0% butenes

20.9% hexenes of which 50% n-hexenes 15.0% octenes of which 8% n-octenes 54.2% decenes of which 3% n-decenes remainder higher oligomers.

WHAT WE CLAIM IS:-

1. Process for the preparation of heterogeneous oligomerisation and co-oligomerisation catalysts for olefins, wherein a completely hydrated aluminium oxide or a

partially dehydrated aluminium hydroxide or a hydroxide group-containing aluminium oxide carrier material is first thermally pretreated, then reacted with ar least one halogen-containing organo-aluminium compound and subsequently impregnated with at least one divalent nickel and/or divalent cobalt complex in which ligand atoms include oxygen, nitrogen, phosphorus arsenic and/or antimony, the reaction and subsequent impregnation being carried out at a temperature of -50 to 150°C.

2. Process according to claim 1, wherein one or two coordination positions of the central atom of the divalent nickel and/or divalent cobalt complex is occupied by an imino nitrogen atom,

3. Process according to claim 1 or 2, wherein the carrier material is bayerite, hydrargillite, böhmite or γ -aluminium oxide.

4. Process according to any of the preceding claims, wherein the thermally pre-treated carrier material is reacted with at least one halogen-containing organo-aluminium compound of the general formula

 $R.Ai.X_2$, $R_3.Ai_2X_3$ or $R_2 \cdot Al \cdot X$

in which X is a fluorine, chlorine, bromine or iodine atom and R is an alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, aralkyl or aralkenyl

5. Process according to any of the preceding claims, wherein the reaction and subsequent impregnation are carried out at a temperature of 0 to 60°C.

6. Process according to any of claims 1 to 4, wherein the reaction with the halogencontaining organo-aluminium compound is carried out at a temperature of -50 to 100°C

7. Process according to claim 6, wherein the reaction with the halogen-containing organo-aluminium compound is carried out at a temperature of about 0°C.

8. Process according to any of the preceding claims, wherein, for each 30 ml. of carrier material, there are used 20-50 ml. halogen-containing organo-aluminium compound.

9. Process according to any of the preceding claims, wherein the halogen-containing organo-aluminium compound is used either in undiluted form or dissolved in an inert solvent.

10. Process according to any of the pre-ceding claims, wherein the nickel and/or cobalt complex is applied in the form of a solution in an inert solvent.

11. Process according to claim 9 or 10, 115 wherein the inert solvent is an aromatic, aliphatic or cycloaliphatic hydrocarbon or a halogenated aliphatic or aromatic hydrocarbon.

12. Process according to claim 1 for the 120

105

110

preparation of heterogeneous oligomerisation and co-oligomerisation catalysts, substantially as hereinbefore described and exemplified.

13. Heterogeneous oligomerisation and cooligomerisation catalysts, whenever prepared by the process according to any of claims 1 to 11.

14. Process for the regeneration of a catalyst according to claim 13 which has
10 become thermally inactivated, wherein said catalyst is impregnated with at least one divalent nickel and/or cobalt complex as defined in claim 1 or 2 and subsequently impregnated with a small amount of a halogentomaining organo-aluminium compound.

Process for the reactivation of a catalyst according to claim 13 which has undergone a small drop in activity, wherein a small amount of at least one halogen-containing organo-aluminium compound is applied to said catalyst.

16. Process for the oligomerisation or cooligomerisation of at least one mono-olefin and/or at least one diolefin, wherein the reaction is carried out with the use of a catalyst according to claim 13.

17. Process of oligomerisation or cooligomerisation according to claim 16, substantially as hereinbefore described and examplified.

18. Oligomers and co-oligomers, whenever produced by the process according to claim 16 or 17.

> VENNER, SHIPLEY & CO., Chartered Patent Agents, Rugby Chambers, 2, Rugby Street, London, WC1N 3QU. Agents for the Applicants.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1975. Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained. 30