

- **59.** 17 s⁻¹
- 61. 61.90 kJ/mol
- **63.** $E_a = 251$ kJ/mol, $A = 7.93 \times 10^{11}$ s⁻¹ **65.** $E_a = 23.0$ kJ/mol, $A = 8.05 \times 10^{10}$ s⁻¹
- 67. a. 122 kJ/mol
 - **b.** 0.101 s^{-1}
- 69. 47.85 kJ/mol
- **73.** The mechanism is valid.
- 75. a. $Cl_2(g) + CHCl_3(g) \longrightarrow HCl(g) + CCl_4(g)$
 - **b.** Cl(g), $CCl_3(g)$
 - **c.** Rate = $k[Cl_2]^{1/2}[CHCl_3]$
- 77. Heterogeneous catalysts require a large surface area because catalysis can only happen at the surface. A greater surface area means greater opportunity for the substrate to react, which results in a faster reaction.
- **79.** 10¹²
- **81. a.** first order, $k = 0.0462 \text{ hr}^{-1}$
 - **b.** 15 hr
 - **c.** $5.0 \times 10^{1} \text{ hr}$
- **83.** 0.0531 M/s
- **85.** rate = $4.5 \times 10^{-4} [\text{CH}_3\text{CHO}]^2$, $k = 4.5 \times 10^{-4}$, 0.37 atm
- **87.** 219 torr
- **89.** 1×10^{-7} s
- **91.** 1.6×10^2 seconds
- **93.** a. 2

- c. first step
- d. exothermic
- **95. a.** 5.41 s
 - **b.** 2.2 s for 25%, 5.4 s for 50%
 - **c.** 0.28 at 10 s, 0.077 at 20 s
- **97. a.** $E_{\rm a}=89.5~{\rm kJ/mol}, A=4.22\times10^{11}~{\rm s^{-1}}$ **b.** $2.5\times10^{-5}~{\rm M^{-1}~s^{-1}}$

 - **c.** $6.0 \times 10^{-4} \text{ M/s}$
- **99.** a. No
 - b. No bond is broken, and the two radicals attract each
 - **c.** Formation of diatomic gases from atomic gases.

- **101.** 1.35×10^4 years
- **103.** a. Both are valid. For both, all steps sum to overall reaction and the predicted rate law is consistent with experimental data.
 - **b.** Buildup of I(g)
- **105.** rate = $k_2[(k_1/k_{-1})[Br_2]]^{1/2}[H_2]$

The rate law is 3/2 order overall.

- **107. a.** 0%
 - **b.** 25%
 - c. 33%
- **109.** 174 kJ

111. **a.** second order **b.**
$$CH_3NC + CH_3NC \xrightarrow{k_1} CH_3NC^* + CH_3NC$$
 (fast)

$$CH_3NC^* \xrightarrow{k_3} CH_3CN$$
 (slow)

Rate =
$$k_3[CH_3NC^*]$$

$$k_1[CH_3NC]^2 = k_2[CH_3NC^*][CH_3NC]$$

$$[CH_3NC^*] = \frac{k_1}{k_2}[CH_3NC]$$

Rate =
$$k_3 \times \frac{k_1}{k_2}$$
[CH₃NC]

Rate =
$$k[CH_3NC]$$

113. Rate = $k[A]^2$

$$Rate = -\frac{d[A]}{dt}$$

$$\frac{d[A]}{dt} = -k[A]^2$$

$$-\frac{d[A]}{[A]^2} = k \, dt$$

$$\int_{[A]_0}^{[A]} -\frac{1}{[A]^2} d[A] = \int_0^t k \, dt$$

$$\left[\frac{1}{[A]}\right]_{[A]_0}^{[A]} = k [t]_0^t$$

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$

$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

- **115.** Rate = k [CO][Cl₂] $\frac{1}{2}$
- **117.** $[Cl_2] = 0.0084 \text{ mol/L}, [NO] = 0.017 \text{ mol/L}$
- **119.** B is first order and A is second order. B will be linear if you plot ln[B] versus time; A will be linear if you plot 1/[A] versus time.

Chapter 14

21. a.
$$K = \frac{[SbCl_3][Cl_2]}{[SbCl_5]}$$
 b. $K = \frac{[NO]^2[Br_2]}{[BrNO]^2}$
c. $K = \frac{[CS_2][H_2]^4}{[CH_4][H_2S]^2}$ **d.** $K = \frac{[CO_2]^2}{[CO]^2[O_2]}$

c.
$$K = \frac{[CS_2][H_2]^4}{[CH_4][H_2S]^2}$$
 d. $K = \frac{[CO_2]^2}{[CO]^2[O_2]}$

23. The concentration of the reactants will be greater. No, this is not dependent on initial concentrations; it is dependent on the value of K_c .

A-35

- b. The change in the decrease of reactants and increase of products would be faster.
- **c.** No, catalysts affect kinetics, not equilibrium.
- 27. a. 4.42×10^{-5} , reactants favored
 - **b.** 1.50×10^2 , products favored
 - c. 1.96×10^{-9} , reactants favored
- **29.** 1.3×10^{-29}
- **31. a.** 2.56×10^{-23}
 - **b.** 1.3×10^{22}
 - **c.** 81.9

33. a.
$$K_c = \frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]}$$

- **b.** $K_c = [O_2]^3$
- **c.** $K_{c} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]}$ **d.** $K_{c} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$
- **35.** 136

37.	T (K)	$[N_2]$	[H ₂]	[NH ₃]	K _c
	500	0.115	0.105	0.439	1.45×10^{-3}
	575	0.110	0.249	0.128	9.6
	775	0.120	0.140	4.39×10^{-3}	0.0584

- **39.** 234 torr
- **41.** 18
- **43.** 3.3×10^2
- **45.** 764
- **47.** More solid will form.
- **49.** Additional solid will not dissolve.
- **51.** a. [A] = 0.20 M, [B] = 0.80 M
 - **b.** [A] = 0.33 M, [B] = 0.67 M
 - **c.** [A] = 0.38 M, [B] = 1.2 M
- **53.** $[N_2O_4] = 0.0115 \text{ M}, [NO_2] = 0.0770 \text{ M}$
- **55.** 0.199 M
- **57.** $1.9 \times 10^{-3} \,\mathrm{M}$
- **59.** 7.84 torr
- **61.** a. [A] = 0.38 M, [B] = 0.62 M, [C] = 0.62 M
 - **b.** [A] = 0.90 M, [B] = 0.095 M, [C] = 0.095 M
 - **c.** [A] = 1.0 M, [B] = $3.2 \times 10^{-3} \text{ M}$, $[C] = 3.2 \times 10^{-3} \text{ M}$
- 63. a. shift left
- **b.** shift right
- c. shift right
- 65. a. shift right
- **b.** no effect
- c. no effect
- d. shift left
- 67. a. shift right
- **b.** shift left
- c. no effect
- **69.** Increase temperature \longrightarrow shift right, decrease temperature \longrightarrow shift left. Increasing the temperature will increase the equilibrium constant.
- 71. b, d
- **73. a.** 1.7×10^2

b.
$$\frac{[Hb-CO]}{[Hb-O_2]} = 0.85 \text{ or } 17/20$$

CO is highly toxic, as it blocks O₂ uptake by hemoglobin. CO at a level of 0.1% will replace nearly half of the O_2 in blood.

- **75. a.** 1.68 atm
 - **b.** 1.41 atm
- **77.** 0.406 g
- 79. b, c, d
- **81.** 0.0144 atm
- **83.** 3.1×10^2 g, 20% yield
- **85.** 0.12 atm
- **87.** 0.72 atm
- **89.** 0.017 g
- **91.** 0.226
- **93. a.** 29.3
 - **b.** 86.3 torr
- **95.** $P_{\text{NO}} = P_{\text{Cl}_2} = 429 \text{ torr}$ **97.** 1.27×10^{-2}
- **99.** $K_{\rm P} = 5.1 \times 10^{-2}$
- **101.** Yes, because the volume affects Q.
- **103.** a = 1, b = 2

Chapter 15

- 33. a. acid, $HNO_3(aq) \longrightarrow H^+(aq) + NO_3^-(aq)$
 - **b.** acid, $NH_4^+(aq) \rightleftharpoons H^+(aq) + NH_3(aq)$
 - c. base, $KOH(aq) \longrightarrow K^{+}(aq) + OH^{-}(aq)$
 - **d.** acid, $HC_2H_3O_2(aq) \rightleftharpoons H^+(aq) + C_2H_3O_2^-(aq)$
- 35. a. $H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$ acid base conj. acid conj. base
 - **b.** $NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$ acid base conj. acid conj. base
 - c. $HNO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NO_3^-(aq)$ base conj. acid
 - **d.** $C_5H_5N(aq) + H_2O(l) \rightleftharpoons C_5H_5NH^+(aq) + OH^-(aq)$ base conj. acid acid conj. base
- **37. a.** Cl^- **b.** HSO_3^- **c.** $CHO_2^$ **d.** F
- **39.** $H_2PO_4^-(aq) + H_2O(l) \Longrightarrow HPO_4^{2-}(aq) + H_3O^+(aq)$ $H_2PO_4^-(aq) + H_2O(l) \rightleftharpoons H_3PO_4(aq) + OH^-(aq)$
- **41. a.** strong
- **b.** strong
- c. strong
- **d.** weak, $K_a = \frac{[H_3O^+][HSO_3^-]}{[H_2SO_3]}$
- 43. a, b, c

5

- **45.** a. F⁻ **b.** $NO_2^$ **c.** ClO⁻
- **47. a.** 8.3×10^{-7} , basic **b.** 1.2×10^{-10} , acidic **c.** 2.9×10^{-13} , acidic
- **49. a.** pH = 7.77, pOH = 6.23
 - **b.** pH = 7.00, pOH = 7.00
 - **c.** pH = 5.66, pOH = 8.34

١.	$[H_30^+]$	[OH ⁻]	рН	Acidic or Basic		
	7.1×10^{-4}	1.4×10^{-11}	3.15	Acidic		
	3.7×10^{-9}	2.7×10^{-6}	8.43	Basic		
	7.9×10^{-12}	1.3×10^{-3}	11.1	Basic		
	6.3×10^{-4}	1.6×10^{-11}	3.20	Acidic		

- **53.** $[H_3O^+] = 1.5 \times 10^{-7} \text{ M}, \text{ pH} = 6.81$
- **55.** pH = 1.36, 1.35, 1.34. A difference of 1 in the second significant digit in a concentration value produces a difference of 0.01 in pH. Therefore, the second significant digit in value of the concentration corresponds to the hundredths place in a pH value.

```
57. a. [H_3O^+] = 0.25 \text{ M}, [OH^-] = 4.0 \times 10^{-14} \text{ M}, pH = 0.60
```

b.
$$[H_3O^+] = 0.015 \text{ M}, [OH^-] = 6.7 \times 10^{-13} \text{ M}, pH = 1.82$$

c.
$$[H_3O^+] = 0.072 \text{ M}, [OH^-] = 1.4 \times 10^{-13} \text{ M}, pH = 1.14$$

d.
$$[H_3O^+] = 0.105 \text{ M}, [OH^-] = 9.5 \times 10^{-14} \text{ M}, pH = 0.979$$

61. 2.21

63.
$$[H_3O^+] = 2.5 \times 10^{-3} \text{ M}, \text{ pH} = 2.59$$

- **b.** 2.18 (approximation breaks down)
- **c.** 2.72 (approximation breaks down)

67. 2.75

69.
$$6.8 \times 10^{-6}$$

71. 0.0063%

75. 3.61×10^{-5}

77. a. pH =
$$2.03$$
, percent ionization = 3.7%

b. pH =
$$2.24$$
, percent ionization = 5.7%

c. pH =
$$2.40$$
, percent ionization = 8.0%

$$a \cdot pH = 2.40$$
 percent ionization = 8.0%

81. a.
$$[OH^-] = 0.15 \text{ M}, [H_3O^+] = 6.7 \times 10^{-14} \text{ M},$$

pH = 13.17, pOH = 0.83

b.
$$[OH^+] = 0.003 \text{ M}, [H_3O^+] = 3.3 \times 10^{-12} \text{ M},$$

pH = 11.48, pOH = 2.52

c.
$$[OH^-] = 9.6 \times 10^{-4} \text{ M}, [H_3O^+] = 1.0 \times 10^{-11} \text{ M},$$

pH = 10.98, pOH = 3.02

d.
$$[OH^-] = 8.7 \times 10^{-5} \text{ M}, [H_3O^+] = 1.1 \times 10^{-10} \text{ M}, pH = 9.93, pOH = 4.07$$

83. 13.842

85. 0.104 L

87. a.
$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq),$$

$$K_{\rm b} = \frac{[{\rm NH_4}^+][{\rm OH}^-]}{[{\rm NH_3}]}$$

b.
$$HCO_3^-(aq) + H_2O(l) \rightleftharpoons$$

$$H_2CO_3(aq) + OH^-(aq), K_b = \frac{[H_2CO_3][OH^-]}{[HCO_3^-]}$$

c. $CH_3NH_2(aq) + H_2O(l) \rightleftharpoons$

$$CH_3NH_3^+(aq) + OH^-(aq), K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}$$

89.
$$[OH^-] = 1.6 \times 10^{-3} \text{ M}, \text{ pOH} = 2.79, \text{ pH} = 11.21$$

91. 7.48

93.
$$6.7 \times 10^{-7}$$

95. a. neutral

b. basic.

$$ClO^{-}(aq) + H_2O(l) \Longrightarrow HClO(aq) + OH^{-}(aq)$$

$$CN^{-}(aq) + H_2O(l) \rightleftharpoons HCN(aq) + OH^{-}(aq)$$

d. neutral

97.
$$[OH^{-}] = 2.0 \times 10^{-6} \text{ M}, \text{ pH} = 8.30$$

99. a. acidic,

$$NH_4^+(aq) + H_2O(l) \Longrightarrow NH_3(aq) + H_3O^+(aq)$$

b. neutral

c. acidic,
$$Co(H_2O)_6^{3+}(aq) + H_2O(l) \rightleftharpoons$$

$$Co(H_2O)_5(OH)^{2+}(aq) + H_3O^+(aq)$$

d. acidic, $CH_2NH_3^+(aq) + H_2O(l) \Longrightarrow$

$$CH_2NH_2(aq) + H_3O^+(aq)$$

101. a. acidic

b. basic

c. neutral

d. acidic e. acidic

103. NaOH, NaHCO₃, NaCl, NH₄ClO₂, NH₄Cl

107.
$$[K^+] = 0.15 \text{ M}, [F^-] = 0.15 \text{ M}, [HF] = 2.1 \times 10^{-6} \text{ M}, [OH^-] = 2.1 \times 10^{-6} \text{ M}; [H_3O^+] = 4.8 \times 10^{-9} \text{ M}$$

109.
$$H_3PO_4(aq) + H_2O(l) \Longrightarrow H_2PO_4^-(aq) + H_3O^+(aq),$$

$$K_{a_i} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]}$$

$$\mathrm{H_2PO_4}^-(aq) + \mathrm{H_2O}(l) \Longrightarrow \mathrm{HPO_4}^{2-}(aq) + \mathrm{H_3O}^+(aq),$$

$$K_{\rm a_2} = \frac{[{\rm H_3O}^+][{\rm HPO_4}^2]}{[{\rm H_2PO_4}^-]}$$

$$HPO_4^{2-}(aq) + H_2O(l) \Longrightarrow PO_4^{3-}(aq) + H_3O^+(aq),$$

$$K_{a_3} = \frac{[H_3O^+][PO_4^{\ 3^-}]}{[HPO_4^{\ 2^-}]}$$

111. a.
$$[H_3O^+] = 0.048 \text{ M}, \text{ pH} = 1.32$$

b.
$$[H_3O^+] = 0.12 \text{ M}, \text{ pH} = 0.92$$

113.
$$[H_2SO_3] = 0.418 \text{ M}$$

$$[HSO_3^-] = 0.082 \text{ M}$$

$$[SO_3^{2-}] = 6.4 \times 10^{-8} \text{ M}$$

$$[H_3O^+] = 0.082 \text{ M}$$

115. a.
$$[H_3O^+] = 0.50 \text{ M}, \text{ pH} = 0.30$$

b.
$$[H_3O^+] = 0.11 \text{ M}, \text{ pH} = 0.96 (x \text{ is small approximation breaks down)}$$

c.
$$[H_3O^+] = 0.059 \text{ M}, \text{ pH} = 1.23$$

117. a. HCl, weaker bond

b. HF, bond polarity

c. H₂Se, weaker bond

119. a. H₂SO₄, more oxygen atoms bonded to S

b. HClO₂, more oxygen atoms bonded to Cl

c. HClO, Cl has higher electronegativity

d. CCl₃COOH, Cl has higher electronegativity

121. S^{2-} , its conjugate acid (H₂S), is a weaker acid than H₂S

123. a. Lewis acid

b. Lewis acid

c. Lewis base

d. Lewis base

125. a. acid: Fe³⁺, base: H₂O

b. acid: Zn²⁺, base: NH₃

c. acid: BF₃, base: (CH₃)₃N

127. a. weak

b. strong

c. weak

d. strong

c. 12.95

129. If blood became acidic, the H⁺ concentration would increase. According to Le Châtelier's principle, equilibrium would be shifted to the left and the concentration of oxygenated Hb would decrease.

131. All acid will be neutralized.

133. $[H_3O^+]$ (Great Lakes) = 3×10^{-5} M, $[H_3O^+]$ (West Coast) = 4×10^{-6} M. The rain over the Great Lakes is about eight times more concentrated.

135. 2.7

137. a. 2.000

b. 1.52

e. 5.03

d. 11.12

- **139. a.** 1.260
- **b.** 8.22
- **c.** 0.824

- **d.** 8.57
- **e.** 1.171
- **141.** a. $CN^{-}(aq) + H^{+}(aq) \Longrightarrow HCN(aq)$
 - **b.** $NH_4^+(aq) + OH^-(aq) \Longrightarrow NH_3(aq) + H_2O(l)$
 - c. $CN^{-}(aq) + NH_4^{+}(aq) \Longrightarrow HCN(aq) + NH_3(aq)$
 - **d.** $HSO_4^-(aq) + C_2H_3O_2^-(aq) \rightleftharpoons$

$$SO_4^{2-}(aq) + HC_2H_3O_2(aq)$$

- e. no reaction between the major species
- **143.** 0.794
- **145.** $K_{\rm a} = 8.3 \times 10^{-4}$
- **147.** 6.79
- **149.** 2.14
- **151.** $[A^-] = 4.5 \times 10^{-5} \text{ M}$ $[H^+] = 2.2 \times 10^{-4} \text{ M}$ $[HA_2^-] = 1.8 \times 10^{-4} \text{ M}$
- **153.** 9.28
- **155.** 50.1 g NaHCO₃
- 157. b
- 159. CH₃COOH < CH₂CICOOH < CHCl₂COOH < CCl₃COOH

Chapter 16

- 27. d
- **29. a.** 3.62
 - **b.** 9.11
- **31.** pure water: 2.1%, in NaC₇H₅O₂: 0.065%. The percent ionization in the sodium benzoate solution is much smaller because the presence of the benzoate ion shifts the equilibrium to the left.
- **33. a.** 2.14
- **b.** 8.32
- **c.** 3.46
- 35. $HCl + NaC_2H_3O_2 \longrightarrow HC_2H_3O_2 + NaCl$ $NaOH + HC_2H_3O_2 \longrightarrow NaC_2H_3O_2 + H_2O$
- **37. a.** 3.62
- **b.** 9.11
- **39. a.** 7.60
- **c.** 4.61 **b.** 11.18
- **41. a.** 3.86
- **b.** 8.95
- **43.** 3.5
- **45.** 3.7 g
- **47. a.** 4.74
- **b.** 4.68 **c.** 4.81
- **49. a.** initial 7.00 after 1.70
 - **b.** initial 4.71 after 4.56
 - **c.** initial 10.78 after 10.66
- **51.** 1.2 g; 2.7 g
- **53. a.** yes
- **b.** no
- c. yes
- d. no
- e. no
- **55. a.** 7.4 **b.** 0.3 g
- **c.** 0.14 g
- **57.** KClO/HClO = 0.79
- **59.** a. does not exceed capacity
 - **b.** does not exceed capacity
 - c. does not exceed capacity
 - d. does not exceed capacity
- **61.** i. (a) pH = 8, (b) pH = 7
 - ii. (a) weak acid, (b) strong acid
- **63. a.** 40.0 mL HI for both
 - **b.** KOH: neutral, CH₃NH₂: acidic
 - c. CH₃NH₂

d. Titration of KOH with HI:

Titration of CH₃NH₂ with HI:

- **65. a.** pH = 9, added base = 30 mL
 - **b.** 0 mL
- **c.** 15 mL
- **d.** 30 mL
- e 30 mL
- **67. a.** 0.757 **d.** 7
- **b.** 30.6 mL
- e 12.15
- **69. a.** 13.06
- **b.** 28.8 mL
- **d.** 7 **71. a.** 2.86
- **e.** 2.07
- **b.** 16.8 mL
- **d.** 4.74
- **e.** 8.75
- **c.** 4.37 **f.** 12.17

- **73. a.** 11.94

- **d.** 10.64
- **b.** 29.2 mL **e.** 5.87
- **c.** 11.33 **f.** 1.90

c. 1.038

c. 12.90

- **75. i.** (a) **ii.** (b)
- **77.** $pK_a = 3$, 82 g/mol
- 79. First equivalence: 22.7 mL
- Second equivalence: 45.4 mL **81.** The indicator will appear red. The pH range is 4 to 6.
- **83.** a. phenol red, *m*-nitrophenol
 - **b.** alizarin, bromothymol blue, phenol red
 - c. alizarin yellow R

- **85. a.** $BaSO_4(s) \Longrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq),$ $K_{sp} = [Ba^{2+}][SO_4^{2-}]$
 - **b.** PbBr₂(s) \Longrightarrow Pb²⁺(aq) + 2 Br⁻(aq),

$$K_{\rm sp} = [{\rm Pb}^{2+}][{\rm Br}^{-}]^2$$

c. $Ag_2CrO_4(s) \rightleftharpoons 2 Ag^+(aq) + CrO_4^{2^-}(aq)$,

$$K_{\rm sp} = [{\rm Ag}^+]^2 [{\rm CrO_4}^{2-}]$$

- **87.** a. $7.31 \times 10^{-7} \text{ M}$
- **b.** $3.72 \times 10^{-5} \,\mathrm{M}$
- c. $3.32 \times 10^{-4} \,\mathrm{M}$
- **89. a.** 1.07×10^{-21}
- **b.** 7.14×10^{-7}
- **c.** 7.44×10^{-11}
- **91.** AX₂
- **93.** $2.07 \times 10^{-5} \text{ g/}100 \text{ mL}$
- **95. a.** 0.0183 M
- **b.** 0.00755 M
- **c.** 0.00109 M
- **97.** a. $5 \times 10^{14} \,\mathrm{M}$
- **b.** $5 \times 10^8 \, \text{M}$
- **c.** $5 \times 10^4 \, \text{M}$
- **99.** a. more soluble, CO_3^{2-} is basic
 - **b.** more soluble, S^{2-} is basic
 - c. not, neutral
 - d. not, neutral
- 101. precipitate will form, CaF₂
- **103.** precipitate will form, Mg(OH)₂
- **105. a.** 0.018 M
- **b.** $1.4 \times 10^{-7} \text{ M}$
- **c.** $1.1 \times 10^{-5} \text{ M}$
- **107. a.** BaSO₄, 1.1×10^{-8} M
 - **b.** $3.0 \times 10^{-8} \text{ M}$
- **109.** $8.7 \times 10^{-10} \text{ M}$
- **111.** 5.6×10^{16}
- **113.** 4.03
- **115.** 3.57
- **117.** HCl, 4.7 g
- 119. a. NaOH(aq) + KHC₈H₄O₄(aq) \longrightarrow Na⁺(aq) + K⁺(aq) + C₈H₄O₄²⁻(aq) + H₂O(l)
 - **b.** 0.1046 M
- **121.** 4.73
- **123.** 176 g/mol; 1.0×10^{-4}
- **125.** 14.2 L
- **127.** $1.6 \times 10^{-7} \text{ M}$
- **129.** $8.0 \times 10^{-8} \text{ M}$
- **131.** 6.29
- **133.** 0.172 M
- **135.** The ratio by mass of dimethyl ammonium chloride to dimethyl amine needed is 3.6.
- 137. 0.18 M benzoic acid, 0.41 M sodium benzoate
- **139.** 51.6 g
- **141.** 1.8×10^{-11} (based on this data)
- **143.** a. 5.5×10^{-25} M
- **b.** $5.5 \times 10^{-4} \text{ M}$
- **145.** 1.38 L
- **147.** 12.97
- **149.** a. pH < p K_a
- **b.** $pH > pK_a$
- c. $pH = pK_a$
- **d.** pH > p K_a

- 151. b
- 153. a. no difference
- **b.** less soluble
- c. more soluble

- 27. a, c
- 29. System B has the greatest entropy. There is only one energetically equivalent arrangement for System A. However, the particles of System B may exchange positions for a second energetically equivalent arrangement.
- **31. a.** $\Delta S > 0$
- **b.** $\Delta S < 0$
- c. $\Delta S < 0$
- **d.** $\Delta S < 0$
- 33. a. $\Delta S_{\rm sys} > 0$, $\Delta S_{\rm surr} > 0$, spontaneous at all temperatures
 - **b.** $\Delta S_{\rm sys} < 0$, $\Delta S_{\rm surr} < 0$, nonspontaneous at all temperatures
 - **c.** $\Delta S_{\rm sys} < 0$, $\Delta S_{\rm surr} < 0$, nonspontaneous at all temperatures
 - **d.** $\Delta S_{\rm sys} > 0$, $\Delta S_{\rm surr} > 0$, spontaneous at all temperatures
- **35. a.** $1.29 \times 10^3 \text{ J/K}$
- **b.** $5.00 \times 10^3 \text{ J/K}$
- c. $-3.83 \times 10^2 \text{ J/K}$
- **d.** $-1.48 \times 10^3 \text{ J/K}$
- 37. a. -649 J/K, nonspontaneous
 - **b.** 649 J/K, spontaneous
 - c. 123 J/K, spontaneous
 - **d.** -76 J/K, nonspontaneous
- **39. a.** 1.93×10^5 J, nonspontaneous
 - **b.** -1.93×10^5 J, spontaneous
 - c. -3.7×10^4 J, spontaneous
 - **d.** 4.7×10^4 J, nonspontaneous
- **41.** -2.247×10^6 J, spontaneous

_	Δ H	Δ S	Δ G	Low Temperature	High Temperature
	_	+	_	Spontaneous	Spontaneous
	_	-	Temperature dependent	Spontaneous	Nonspontaneous
	+	+	Temperature dependent	Nonspontaneous	Spontaneous
	+	_	+	Nonspontaneous	Nonspontaneous

- **45.** It increases.
- **47.** a. $CO_2(g)$, greater molar mass and complexity
 - **b.** $CH_3OH(g)$, gas phase
 - **c.** $CO_2(g)$, greater molar mass and complexity
 - **d.** SiH₄(g), greater molar mass
 - e. $CH_3CH_2CH_3(g)$, greater molar mass and complexity
 - **f.** NaBr(aq), aqueous
- **49. a.** He, Ne, SO₂, NH₃, CH₃CH₂OH. From He to Ne there is an increase in molar mass; beyond that, the molecules increase in complexity.
 - **b.** $H_2O(s)$, $H_2O(l)$, $H_2O(g)$; increase in entropy in going from solid to liquid to gas phase.
 - c. CH₄, CF₄, CCl₄; increasing entropy with increasing molar mass.
- **51. a.** -120.8 J/K, decrease in moles of gas
 - **b.** 133.9 J/K, increase in moles of gas
 - **c.** -42.0 J/K, small change because moles of gas stay constant
 - **d.** -390.8 J/K, decrease in moles of gas

A-39

- 53. -89.3 J/K, decrease in moles of gas
- **55.** $\Delta H_{\text{rxn}}^{\circ} = -1277 \text{ kJ}, \ \Delta S_{\text{rxn}}^{\circ} = 313.6 \text{ J/K}, \ \Delta G_{\text{rxn}}^{\circ} = -1.370 \times 10^3 \text{ kJ}; \text{ yes}$
- **57. a.** $\Delta H_{\rm rxn}^{\circ} = 57.2 \, \rm kJ, \ \Delta S_{\rm rxn}^{\circ} = 175.8 \, \rm J/K,$ $\Delta G_{\rm rxn}^{\circ} = 4.8 \times 10^3 \, \rm J/mol;$ nonspontaneous, becomes spontaneous at high temperatures
 - **b.** $\Delta H_{\rm rxn}^{\circ} = 176.2 \text{ kJ}, \ \Delta S_{\rm rxn}^{\circ} = 285.1 \text{ J/K}, \ \Delta G_{\rm rxn}^{\circ} = 91.2 \text{ kJ}; \text{ nonspontaneous, becomes spontaneous at high temperatures}$
 - **c.** $\Delta H_{\rm rxn}^{\rm o} = 98.8 \text{ kJ}, \ \Delta S_{\rm rxn}^{\rm o} = 141.5 \text{ J/K}, \ \Delta G_{\rm rxn}^{\rm o} = 56.6 \text{ kJ}; \text{ nonspontaneous, becomes spontaneous at high temperatures}$
 - **d.** $\Delta H_{\rm rxn}^{\circ} = -91.8 \text{ kJ}, \ \Delta S_{\rm rxn}^{\circ} = -198.1 \text{ J/K},$ $\Delta G_{\rm rxn}^{\circ} = -32.8 \text{ kJ}; \text{ spontaneous}$
- **59. a.** 2.8 kJ
 - **b.** 91.2 kJ
 - c. 56.4 kJ
 - **d.** -32.8 kJ

Values are comparable. The method using ΔH° and ΔS° can be used to determine how ΔG° changes with temperature.

- **61.** a. -72.5 kJ, spontaneous
 - **b.** -11.4 kJ, spontaneous
 - c. 9.1 kJ, nonspontaneous
- **63.** −29.4 kJ
- **65. a.** 19.3 kJ
 - **b.** (i) 2.9 kJ
- (ii) -2.9 kJ
- **c.** The partial pressure of iodine is very low.
- **67.** 11.9 kJ
- **69. a.** 1.48×10^{90}
- **b.** 2.09×10^{-26}
- **71. a.** −24.8 kJ
- **b.** 0
- c. 94 kI

- **73. a.** 1.90×10^{47}
- **b.** 1.51×10^{-13}
- 75. $\Delta H^{\circ} = 50.6 \text{ kJ}$ $\Delta S^{\circ} = 226 \text{ J} \cdot \text{K}$
- **77.** 4.8
- **79.** a. +

- c.
- **81.** a. $\Delta G^{\circ} = 175.2 \text{ kJ}, K = 1.95 \times 10^{-31},$ nonspontaneous
 - **b.** 133 kJ, yes
- **83.** Cl₂: $\Delta H_{\text{rxn}}^{\circ} = -182.1 \text{ kJ}, \ \Delta S_{\text{rxn}}^{\circ} = -134.4 \text{ J/K},$ $\Delta G_{\text{rxn}}^{\circ} = -142.0 \text{ kJ}$ $K = 7.94 \times 10^{24}$

Br₂:
$$\Delta H_{\text{rxn}}^{\circ} = -121.6 \text{ kJ}$$
, $\Delta S_{\text{rxn}}^{\circ} = -134.2 \text{ J/K}$, $\Delta G_{\text{rxn}}^{\circ} = -81.6 \text{ kJ}$ $K = 2.02 \times 10^{14}$

I₂:
$$\Delta H_{\text{rxn}}^{\circ} = -48.3 \text{ kJ}, \ \Delta S_{\text{rxn}}^{\circ} = -132.2 \text{ J/K},$$

 $\Delta G_{\text{rxn}}^{\circ} = -8.9 \text{ kJ} \qquad K = 37$

Cl₂ is the most spontaneous, I₂ is the least. Spontaneity is determined by the standard enthalpy of formation of the dihalogenated ethane. Higher temperatures make the reactions less spontaneous.

- **85. a.** 107.8 kJ
- **b.** 5.0×10^{-7} atm
- **c.** spontaneous at higher temperatures, T = 923.4 K
- **87. a.** 2.22×10^5
- **b.** 94.4 mol

- 89. a. $\Delta G^{\circ} = -689.6$ kJ, ΔG° becomes less negative
 - **b.** $\Delta G^{\circ} = -665.2 \text{ kJ}, \ \Delta G^{\circ} \text{ becomes less negative}$
 - c. $\Delta G^{\circ} = -632.4 \text{ kJ}$, ΔG° becomes less negative
 - **d.** $\Delta G^{\circ} = -549.3$ kJ, ΔG° becomes less negative
- 91. With one exception, the formation of any oxide of nitrogen at 298 K requires more moles of gas as reactants than are formed as products. For example, 1 mol of N₂O requires 0.5 mol of O₂ and 1 mol of N₂, 1 mol of N₂O₃ requires 1 mol of N₂ and 1.5 mol of O₂, and so on. The exception is NO, where 1 mol of NO requires 0.5 mol of O₂ and 0.5 mol of N₂:

$$\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \longrightarrow NO(g)$$

This reaction has a positive ΔS because what is essentially mixing of the N and O has taken place in the product.

- **93.** 15.0 kJ
- **95. a.** Positive, the process is spontaneous. It is slow unless a spark is applied.
 - **b.** Positive, although the change in the system is not spontaneous; the overall change, which includes such processes as combustion or water flow to generate electricity, is spontaneous.
 - c. Positive, the acorn-oak tree system is becoming more ordered, so the processes associated with growth are not spontaneous. But they are driven by spontaneous processes such as the generation of heat by the sun and the reactions that produce energy in the cell.
- **97.** At 18.3 mmHg $\Delta G = 0$, at 760 mmHg $\Delta G^{\circ} = 55.4 \text{ kJ}$
- **99.** a. 3.24×10^{-3}

b. NH₃ + ATP + H₂O
$$\longrightarrow$$
 NH₃ \longrightarrow P_i + ADP
NH₃ \longrightarrow P_i + C₅H₈O₄N⁻ \longrightarrow C₅H₉O₃N₂ + P_i + H₂O
NH₃ + C₅H₈O₄N⁻ + ATP \longrightarrow C₅H₉O₃N₂ + ADP + P_i
 $\Delta G^{\circ} = -16.3 \text{ kJ}, K = 7.20 \times 10^{2}$

- **101. a.** -95.3 kJ/mol. Since the number of moles of reactants and products are the same, the decrease in volume affects the entropy of both equally, so there is no change in ΔG .
 - **b.** 102.8 kJ/mol. The entropy of the reactants (1.5 mol) is decreased more than the entropy of the product (1 mol). Since the product is relatively more favored at lower volume, ΔG is less positive.
 - c. 204.2 kJ/mol. The entropy of the product (1 mol) is decreased more than the entropy of the reactant (0.5 mol). Since the product is relatively less favored, ΔG is more positive.
- **103.** $\Delta H^{\circ} = -93 \text{ kJ}, \ \Delta S^{\circ} = -2.0 \times 10^2 \text{ J/K}$
- **105.** ΔS_{vap} diethyl ether = 86.1 J/mol K, ΔS_{vap} acetone = 88.4 J/mol K,
 - ΔS_{vap} benzene = 87.3 J/mol K,
 - ΔS_{vap} chloroform = 88.0 J/mol K

Because water and ethanol hydrogen bond they are more ordered in the liquid and we expect ΔS_{vap} to be more positive. Ethanol 38600/351.0 = 110 J/mol K, $H_2O = 40700/373.2 = 109$ J/mol K

107. c

109. b

111. c

113. $\Delta G_{\rm rxn}^{\circ}$ is negative and $\Delta G_{\rm rxn}$ is positive.

Chapter 18

37. a.
$$3 \text{ K}(s) + \text{Cr}^{3+}(aq) \longrightarrow \text{Cr}(s) + 3 \text{ K}^{+}(aq)$$

b. 2 Al(s) + 3 Fe²⁺(aq)
$$\longrightarrow$$
 2 Al³⁺(aq) + 3 Fe(s)

c.
$$2 \text{ BrO}_3^-(aq) + 3 \text{ N}_2 \text{H}_4(g) \longrightarrow$$

$$2 Br^{-}(aq) + 3 N_{2}(g) + 6 H_{2}O(l)$$

39. a. PbO₂(s) + 2
$$I^{-}(aq)$$
 + 4 $H^{+}(aq)$ \longrightarrow

$$Pb^{2+}(aq) + I_2(s) + 2 H_2O(l)$$

b.
$$5 \text{ SO}_3^{2-}(aq) + 2 \text{ MnO}_4^{-}(aq) + 6 \text{ H}^+(aq) \longrightarrow$$

$$5 SO_4^{2-}(aq) + 2 Mn^{2+}(aq) + 3 H_2O(l)$$

c.
$$S_2O_3^{2-}(aq) + 4 Cl_2(g) + 5 H_2O(l) \longrightarrow$$

$$2 SO_4^{2-}(aq) + 8 Cl^{-}(aq) + 10 H^{+}(aq)$$

41. a.
$$H_2O_2(aq) + 2 ClO_2(aq) + 2 OH^-(aq) \longrightarrow$$

$$O_2(g) + 2 ClO_2^-(aq) + 2 H_2O(l)$$

b. Al(s) + MnO₄⁻(aq) + 2 H₂O(l)
$$\longrightarrow$$

$$Al(OH)_4(aq) + MnO_2(s)$$

c.
$$Cl_2(g) + 2 OH^-(aq) \longrightarrow$$

$$Cl^-(aq) + ClO^-(aq) + H_2O(l)$$

45. a. 0.93 V

b. 0.41 V

c. 1.99 V

47. a, c, d

b. $Cr(s) + Fe^{3+}(aq) \longrightarrow Cr^{3+}(aq) + Fe(s), E_{cell}^{\circ} = 0.69 \text{ V}$ **49. a.** $Pb(s) | Pb^{2+}(aq) | Ag^{+}(aq) | Ag(s)$

b. Pt(s), $I_2(s) | I^-(aq) | ClO_2^-(aq) | ClO_2(g) | Pt(s)$

c. $\operatorname{Zn}(s) | \operatorname{Zn}^{2+}(aq) | \operatorname{H}_2\operatorname{O}(l) | \operatorname{H}^+(aq) | \operatorname{O}_2(g) | \operatorname{Pt}(s)$

 $3 \operatorname{Sn}(s) + 2 \operatorname{NO}_3^-(aq) + 8 \operatorname{H}^+(aq) \longrightarrow$

 $3 \operatorname{Sn}^{2+}(aq) + 2 \operatorname{NO}(g) + 4 \operatorname{H}_2 O(l), E_{\text{cell}}^{\circ} = 1.10 \text{ V}$

53. b, c occur spontaneously in the forward direction

55. aluminum

A-41

c. yes,
$$Pb(s) + 2 H^{+}(aq) \longrightarrow Pb^{2+}(aq) + H_{2}(g)$$

59. a. yes, 3 Cu(s) + 2 NO₃⁻(aq) + 8 H⁺(aq)
$$\longrightarrow$$
 3 Cu²⁺(aq) + 2 NO(g) + 4 H₂O(l)

b. no

61. a. −1.70 V, nonspontaneous **b.** 1.97 V, spontaneous $\mathbf{c.}$ -1.51 V, nonspontaneous

63. a

c.
$$-1.7 \times 10^2 \text{ kJ}$$

67. a.
$$5.31 \times 10^{75}$$

b.
$$7.7 \times 10^{-10}$$
 c. 6.3×10^{29}

c.
$$-1.7 \times 10^2 \text{ kJ}$$

67. a.
$$5.31 \times 10^{11}$$
 69. 5.6×10^5

71.
$$\Delta G^{\circ} = -7.97$$
 kJ, $E_{\text{cell}}^{\circ} = 0.041$ V **73. a.** 1.04 V **b.** 0.97 V

c.
$$[Ni^{2+}] = 0.003 \text{ M}, [Zn^{2+}] = 1.60 \text{ M}$$

79.

81.
$$\frac{[\text{Sn}^{2+}](ox)}{[\text{Sn}^{2+}](red)} = 4.2 \times 10^{-4}$$

83. 0.3762

85. 1.038 V

87. a, c would prevent the corrosion of iron

minimum voltage = 0.17 V

91. oxidation: $2 \operatorname{Br}^{-}(l) \longrightarrow \operatorname{Br}_{2}(g) + 2 \operatorname{e}^{-}$

reduction: $K^+(l) + e^- \longrightarrow K(l)$

93. oxidation: $2 \operatorname{Br}^-(l) \longrightarrow \operatorname{Br}_2(g) + 2 \operatorname{e}^-$

reduction: $K^+(l) + e^- \longrightarrow K(l)$

95. a. anode: $2 \text{ Br}^- \longrightarrow \text{Br}_2(l) + 2 \text{ e}^-$

cathode: $2 \text{ H}_2\text{O}(l) + 2 \text{ e}^- \longrightarrow \text{H}_2(g) + 2 \text{ OH}^-(aq)$

b. anode: $2 \text{ I}^-(aq) \longrightarrow \text{I}_2(s) + 2 \text{ e}^-$

cathode: $Pb^{2+}(aq) + 2 e^{-} \longrightarrow Pb(s)$

c. anode: 2 H₂O(l) \longrightarrow O₂(g) + 4 H⁺(aq) + 4 e⁻

cathode: $2 \text{ H}_2\text{O}(l) + 2 \text{ e}^- \longrightarrow \text{H}_2(g) + 2 \text{ OH}^-(aq)$

97.

99. $1.8 \times 10^2 \text{ s}$

101. 1.2×10^3 A

103. 2 MnO₄⁻(aq) + 5 Zn(s) + 16 H⁺(aq) \longrightarrow $2 \text{ Mn}^{2+}(aq) + 5 \text{ Zn}^{2+}(aq) + 8 \text{ H}_2\text{O}(l)$

105. The drawing should show that several Al atoms dissolve into solution as Al3+ ions and that several Cu²⁺ ions are deposited on the Al surface as solid Cu.

107. a. 68.3 mL

b. cannot be dissolved

c. cannot be dissolved

111. There are no paired reactions that produce more than about 5 or 6 V.

113. a. 2.83 V

b. 2.71 V

c. 16 hr

115. 176 hr

117. 0.71 V

119. a. $\Delta G^{\circ} = 461 \text{ kJ}, K = 1.4 \times 10^{-81}$ **b.** $\Delta G^{\circ} = 2.7 \times 10^{2} \text{ kJ}, K = 2.0 \times 10^{-48}$

121. MCl₄

123. 51.3%

125. pH = 0.85

127. 0.83 M

129. $4.1 \times 10^5 \text{ L}$

131. 435 s

- 133. 8.39% U
- **135.** The overall cell reaction for both cells is $2 \operatorname{Cu}^+(aq) \longrightarrow \operatorname{Cu}^{2+}(aq) + \operatorname{Cu}(s)$. The difference in E° is because n = 1 for the first cell and n = 2 for the second cell. For both cells, $\Delta G^{\circ} = -35.1 \text{ kJ}.$
- 137. a
- **139.** $\Delta G_{\text{rxn}}^{\circ}$ is positive and E_{cell}° is negative.

Chapter 19

- 31. a. $^{234}_{92}U \longrightarrow ^{4}_{2}He + ^{230}_{90}Th$
 - **b.** $^{230}_{90}$ Th $\longrightarrow ^{4}_{2}$ He + $^{226}_{88}$ Ra
 - c. $^{214}_{82}$ Pb $\longrightarrow ^{0}_{-1}e + ^{214}_{83}$ Bi
 - **d.** ${}^{13}_{7}N \longrightarrow {}^{0}_{+1}e + {}^{13}_{6}C$
 - e. ${}^{51}_{24}$ Cr + ${}^{0}_{-1}$ e $\longrightarrow {}^{51}_{23}$ V
- 33. $^{232}_{90}$ Th $\longrightarrow ^{4}_{2}$ He + $^{228}_{88}$ Ra
 - $^{228}_{88}$ Ra $\longrightarrow ^{0}_{-1}e + ^{228}_{89}$ Ac
 - $^{228}_{89}$ Ac $\longrightarrow ^{0}_{-1}e + ^{228}_{90}$ Th
 - $^{228}_{90}$ Th $\longrightarrow ^{4}_{2}$ He + $^{224}_{88}$ Ra
- **35. a.** ²²¹₈₇Fr
 - **b.** $_{-1}^{0}$ e
 - **c.** $^{0}_{+1}$ e
 - **d.** $_{-1}^{0}$ e
- **37.** a. stable, N/Z ratio is close to 1, acceptable for low
 - **b.** not stable, N/Z ratio is much too high for low
 - c. not stable, N/Z ratio is less than 1, much too low
 - **d.** stable, N/Z ratio is acceptable for this Z
- **39.** Sc, V, and Mn, each have odd numbers of protons. Atoms with an odd number of protons typically have less stable isotopes than those with an even number of protons.
- 41. a. beta decay
 - b. positron emission
 - c. positron emission
 - **d.** positron emission
- **43. a.** Cs-125
 - **b.** Fe-62
- **45.** 2.34×10^9 years
- **47.** 0.57 g
- **49.** 10.8 hrs
- **51.** $2.66 \times 10^3 \text{ yr}$
- **53.** $2.4 \times 10^4 \text{ yr}$
- **55.** $2.7 \times 10^9 \text{ yr}$
- 57. $^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{144}_{54}Xe + ^{90}_{38}Sr + 2 ^{1}_{0}n$
- **59.** ${}_{1}^{2}H + {}_{1}^{2}H \longrightarrow {}_{2}^{3}He + {}_{0}^{1}n$
- **61.** $^{238}_{92}U + ^{1}_{0}n \longrightarrow ^{239}_{92}U$
 - $^{239}_{92}U \longrightarrow ^{239}_{93}Np + ^{0}_{-1}e$
 - $^{239}_{93}$ Np $\longrightarrow ^{239}_{94}$ Pu $+ ^{0}_{-1}$ e
- **63.** $^{249}_{98}$ Cf + $^{12}_{6}$ C \longrightarrow $^{257}_{104}$ Rf + 4 $^{1}_{0}$ n **65.** 9.0×10^{13} J

- **67. a.** mass defect = 0.13701 amu binding energy = 7.976 MeV/nucleon
 - **b.** mass defect = 0.54369 amu binding energy = 8.732 MeV/nucleon
 - c. mass defect = 1.16754 amu binding energy = 8.431 MeV/nucleon
- **69.** $7.228 \times 10^{10} \text{ J/g U-}235$
- **71.** $7.84 \times 10^{10} \text{ J/g H-2}$
- 73. radiation: 25 J, fall: 370 J
- **75.** 68 mi
- 77. a. ${}^{1}_{1}p + {}^{9}_{4}Be \longrightarrow {}^{6}_{3}Li + {}^{4}_{2}He$ $1.03 \times 10^{11} \text{ J/mol}$
 - **b.** $^{209}_{83}$ Bi + $^{64}_{28}$ Ni $\longrightarrow ^{272}_{111}$ Rg + $^{1}_{0}$ n
 - 1.141 × 10¹³ J/mol c. $^{179}_{74}W + ^{0}_{-1}e \longrightarrow ^{179}_{73}Ta$ $7.59 \times 10^{10} \text{ J/mol}$
- **79.** a. $^{114}_{44}$ Ru $\longrightarrow ^{'0}_{-1}$ e + $^{114}_{45}$ Rh
 - **b.** $^{216}_{88}$ Ra $\longrightarrow ^{0}_{+1}$ e + $^{216}_{87}$ Fr
 - c. ${}_{30}^{58}$ Zn $\longrightarrow {}_{+1}^{0}$ e + ${}_{20}^{58}$ Cu
 - **d.** $^{31}_{10}$ Ne $\longrightarrow ^{0}_{-1}$ e + $^{31}_{11}$ Na
- **81.** 2.9×10^{21} beta emissions, 3700 Ci
- **83.** $1.6 \times 10^{-5} \, \text{L}$
- **85.** $4.94 \times 10^7 \text{ kJ/mol}$
- 87. 7.72 MeV
- **89.** ¹⁴N
- **91.** 0.15%
- **93.** 1.24×10^{21} atoms
- **95.** $2.42 \times 10^{-12} \,\mathrm{m}$
- **97.** -0.7 MeV, there is no coulombic barrier for collision with a neutron.
- **99. a.** $1.164 \times 10^{10} \text{ kJ}$
 - **b.** 0.1299 g
- **101.** U-235 forms Pb-207 in seven α -decays and four β -decays and Th-232 forms Pb-208 in six α -decays and four β -decays.
- **103.** $3.0 \times 10^2 \,\mathrm{K}$
- **105.** ${}_{9}^{21}F \longrightarrow {}_{10}^{21}Ne + {}_{-1}^{0}e$
- **107.** Nuclide A is more dangerous because the half-life is shorter (18.5 days) and so it decays faster.
- **109.** Iodine is used by the thyroid gland to make hormones. Normally we ingest iodine in foods, especially iodized salt. The thyroid gland cannot tell the difference between stable and radioactive iodine and will absorb both. KI tablets work by blocking radioactive iodine from entering the thyroid. When a person takes KI, the stable iodine in the tablet gets absorbed by the thyroid. Because KI contains so much stable iodine, the thyroid gland becomes "full" and cannot absorb any more iodine-either stable or radioactive—for the next 24 hours.

- 35. a. alkane
 - b. alkene
 - c. alkyne
 - d. alkene

$$\begin{array}{c} CH_{3} \\ | \\ H_{3}C - C - CH_{2} - CH_{2} - CH_{3} \\ | \\ CH_{3} \end{array}$$

39. a. no

b. yes

c. yes

d. no

41. a. enantiomers

b. same

c. enantiomers

43. a. pentane

b. 2-methylbutane

c. 4-isopropyl-2-methylheptane

d. 4-ethyl-2-methylhexane

47. a.
$$CH_3CH_2CH_3 + 5 O_2 \longrightarrow 3 CO_2 + 4 H_2O$$

b.
$$CH_3CH_2CH = CH_2 + 6 O_2 \longrightarrow 4 CO_2 + 4 H_2O$$

c.
$$2 \text{ CH} \equiv \text{CH} + 5 \text{ O}_2 \longrightarrow 4 \text{ CO}_2 + 2 \text{ H}_2\text{O}$$

49. a. CH₃CH₂Br

b. CH₃CH₂CH₂Cl, CH₃CHClCH₃

c. CHCl₂Br

 $CH_3-CH_2-CH=CH-CH_2-CH_3$

53. a. 1-butene

b. 3,4-dimethyl-2-pentene

c. 3-isopropyl-1-hexene **d.** 2,4-dimethyl-3-hexene

b. CH₃—CH₂—CH

55. a. 2-butyne

b. 4,4-dimethyl-2-hexyne **c.** 3-isopropyl-1-hexyne **d.** 3,6-dimethyl-4-nonyne

57. a.
$$CH_3 - CH_2 - CH - C \equiv C - CH_2 - CH_2 - CH_3$$

b.
$$CH_3 - CH_2 - CH$$
 $CH - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$
 CH_3
c. $CH \equiv C - CH_2 - CH_2 - CH_3$
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5

c.
$$CH \equiv C - CH_2 - CH_2 - CH_3$$

$$CH_3$$

61. a.
$$CH_2 = CH - CH_3 + H_2 \longrightarrow CH_3 - CH_2 - CH_3$$

b.
$$CH_3$$
— CH — CH = CH_2 + H_2 \longrightarrow CH_3 — CH — CH_2 — CH_3
 CH_3

63. a. methylbenzene or toluene

- b. bromobenzene
- c. chlorobenzene

65. a. 3,5-dimethyl-7-phenylnonane

- **b.** 2-phenyl-3-octene
- **c.** 4,5-dimethyl-6-phenyl-2-octyne

67. a. 1,4-dibromobenzene or *p*-dibromobenzene

- **b.** 1,3-diethylbenzene or *m*-diethylbenzene
- **c.** 1-chloro-2-fluorobenzene or *o*-chlorofluorobenzene

69. a. CH₃—CH—CH₃ **b.** ĊH₂

73. a. 1-propanol

b. 4-methyl-2-hexanol

+ HCl

c. 2,6-dimethyl-4-heptanol d. 3-methyl-3-pentanol

75. a.
$$CH_3CH_2CH_2Br + H_2O$$
 b. $CH_3 - C = CH_2 + H_2O$

$$\begin{array}{c}
CH_{3}-C=CH_{2}+H_{2}C\\
CH_{3}
\end{array}$$

c.
$$CH_3CH_2ONa + \frac{1}{2}H_2$$

77. a. butanone

b. pentanal

c. 3,5,5-trimethylhexanal

d. 4-methyl-2-hexanone

79.
$$CH_3 - CH_2 - CH_2 - C = N$$
H

81. a. methylbutanoate

b. propanoic acid

c. 5-methylhexanoic acid

d. ethylpentanoate

85. a. ethyl propyl ether

b. ethyl pentyl ether

c. dipropyl ether

d. butyl ethyl ether

87. a. diethylamine

b. methylpropylamine

c. butylmethylpropylamine

89. a. acid-base, $(CH_3)_2NH_2^+(aq) + Cl^-(aq)$

b. condensation, CH₃CH₂CONHCH₂CH₃(aq) + H₂O

c. acid-base, $CH_3NH_3^+(aq) + HSO_4^-(aq)$

95. a. ester, methyl 3-methylbutanoate

b. ether, ethyl 2-methylbutyl ether

c. aromatic, 1-ethyl-3-methylbenzene or *m*-ethylmethylbenzene

d. alkyne, 5-ethyl-4-methyl-2-heptyne

e. aldehyde, butanal

f. alcohol, 2-methyl-1-propanol

97. a. 5-isobutyl-3-methylnonane

b. 5-methyl-3-hexanone

c. 3-methyl-2-butanol

d. 4-ethyl-3,5-dimethyl-1-hexyne

99. a. isomers

b. isomers

c. same

101. 558 g

103. a. combustion

b. alkane substitution

c. alcohol elimination

d. aromatic substitution

Can exist as a stereoisomer

b.
$$CH_3$$
 CH_3 H_3 CH_3 CH_3 CH_3 CH_4 CH_4 CH_4 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 $CH_$

c.
$$H_3C-CH=C-CH_2-CH_2-CH_3$$
 $CH_2CH_2CH_3$

Can exist as a stereoisomer

Alkene, ether

4.
$$H_2C = CH - O - CH_2 - CH_3$$

Alkene, ether

5.
$$H_2C = CH - CH_2 - O - CH_3$$

Alkene, ether

Alkene, alcohol

Alkene, alcohol

Alkene, alcohol

Alkene, alcohol

Alkene, alcohol

- **109.** In the acid form of the carboxylic acid, electron withdrawal by the C=O enhances acidity. The conjugate base, the carboxylate anion, is stabilized by resonance so the two O atoms are equivalent and bear the negative charge equally.
- 111. a.

b.

$$CH_{2}-CH$$

$$CH_{3}-CH-CH_{2}-CH-CH_{3} \xrightarrow{H_{2}SO_{4}} CH_{2}$$

$$CH_{2}-CH_{3} \xrightarrow{CH_{2}-CH-CH_{2}-C-CH_{3}}$$

$$CH_{3}-CH-CH_{2}-C-CH_{3}$$

$$CH_{2}-CH_{3}$$

c.
$$CH_3-CH_2-C=CH_2+HBr \longrightarrow CH_3-CH_2-C-CH_3$$

- **113. a.** 3 : 1
 - **b.** 2° hydrogen atoms are more reactive. The reactivity of 2° hydrogens to 1° hydrogens is 11 : 3.
- 115. Cl Cl Cl—CH₂—CH—CH₂—CH₃
 CH₃—C—C—CH₃ Cl
 H H
 Chiral

 Cl—CH₂—CH₂—CH—CH—CH

- 117. The first propagation step for F is very rapid and exothermic because of the strength of the H—F bond that forms. For I the first propagation step is endothermic and slow because the H—I bond that forms is relatively weak.
- 119.

Cl₂CHCH₃

Dipole moment

- 121. CH₃ CH₃ CH₃ | | | H₃C—C—C—
 - CH₃ CH₃
 2,2,3,3-tetramethylbutane

Chapter 21

- **31. c.** saturated fatty acid;
- **d.** steroid
- 33. a. saturated fatty acid
- **b.** not a fatty acid
- c. not a fatty acid
- d. monounsaturated fatty acid
- 35.

OH
$$H_2C$$
 $(CH_2)_4$ — $(CH=CHCH_2)_2$ O
 H_2C $(CH_2)_4$ — $(CH=CHCH_2)_6$ OH
 H_3C $(CH_2)_6$ — C —OH H_2C H_2C H_2C H_3 OH

$$\begin{array}{c} O \\ H_2C-O-C-(CH_2)_6-(CH_2CH=CH)_2-(CH_2)_4-CH_3 \\ & O \\ H-C-O-C-(CH_2)_6-(CH_2CH=CH)_2-(CH_2)_4-CH_3 \\ & O \\ & H_2C-O-C-(CH_2)_6-(CH_2CH=CH)_2-(CH_2)_4-CH_3 \end{array}$$

Triglyceride is expected to be an oil.

- 37. a. monosaccharide;
 - c. disaccharide
- 39. a. aldose, hexose
 - **b.** aldose, pentose
 - c. ketose, tetrose
 - d. aldose, tetrose
- **41. a.** 5

b. 3

- **c.** 1
- **d.** 3

43.

45. H₂C—OH HO H H H H

ÓН

ÓН

47.

$$\begin{array}{c} O \\ \parallel \\ \text{d. } H_3N^+-CH-C-O^- \\ \mid \\ CH_2 \\ \mid \\ NH_2 \end{array}$$

53. 6, Ser-Gly-Cys, Ser-Cys-Gly, Gly-Ser-Cys, Gly-Cys-Ser, Cys-Ser-Gly, Cys-Gly-Ser

55.
$$H_2N - C - C - OH + H_2N - C - C - OH$$
 \longrightarrow CH_2 CH_2 CH_2 OH

 $+ H_2O$

c.
$$H_2N-C-C-NH-C-C-NH-C-C-OH$$

$$CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$$

$$CH_3 CH_3 CH_3$$

59. tertiary

61. primary

63. a. A;

c. T

67. A C A T G C G

69. 154 codons, 462 nucleotides

71. a. protein

b. carbohydrate

c. lipid

73. A codon is composed of three nucleotides. A codon codes for a specific amino acid while a gene codes for an entire protein.

77. valine, leucine, isoleucine, phenylalanine

79. Gly-Arg-Ala-Leu-Phe-Gly-Asn-Lys-Trp-Glu-Cys

- **83.** As the temperature increases the favorable entropy for uncoiling a chain becomes dominant. On cooling the favorable enthalpy of forming hydrogen bonds between paired bases is dominant.
- 85. When the fake thymine nucleotide is added to the replicating DNA, the chain cannot continue to form, because the $-N=N^+=NH$ group on the sugar prevents future phosphate linkages.
- **87.** $V_{\text{max}} = 47.6, K_{\text{t}} = 1.68$
- 89. $H_3N^+CH_2COO^- + H^+ \rightleftharpoons$ $(H_3N^+CH_2COOH [HA]/[A^-] = 2,$

$$H_3N^+CH_2COO^- \rightleftharpoons$$

c. +4

 $H_2NCH_2COO^- + H^+ [HA]/[A^-] = 0.4, pH = 6.0$ 91. A three-base codon codes for a single amino acid. If there are only three bases, there could be 27 different three-base codon arrangements. Therefore, you could theoretically code for the 20 different amino acids needed.

Chapter 22

- **17. a.** +4
- **19.** $Ca_3Al_2(SiO_4)_3$ **21.** 4
- 23. tetrahedrons stand alone, orthosilicates
- 25. amphibole or double-chain structure; Ca²⁺, Mg²⁺, Fe²⁺, Al³⁺
- 29. NCl₃ has a lone pair that BCl₃ lacks, giving it a trigonal pyramidal shape, as opposed to BCl₃'s trigonal planar shape.
- **31. a.** 6 vertices, 8 faces **b.** 12 vertices, 20 faces
- 33. closo-Boranes have the formula $B_n H_n^{2-}$ and form fully closed polyhedra, nido-boranes have the formula B_nH_{n+4} and consist of a cage missing a corner, and arachno-boranes have the formula B_nH_{n+6} and consist of a cage missing two or three corners.
- **35.** Graphite consists of covalently bonded sheets that are held to each other by weak interactions, allowing them to slip past each other. Diamond is not a good lubricant, because it is an extremely strong network covalent solid, where all of the carbon atoms are covalently bonded.

- **37.** Activated charcoal consists of fine particles, rather than a lump of charcoal, and subsequently has a much higher surface area.
- **39.** Ionic carbides are composed of carbon, generally in the form of the carbide ion, C_2^{2-} , and lowelectronegativity metals, such as the alkali and alkaline earth metals. Covalent carbides are composed of carbon and low-electronegativity nonmetals or metalloids, such as silicon.
- **41.** a. solid \longrightarrow gas
 - **b.** gas \longrightarrow liquid \longrightarrow solid
 - $\mathbf{c.}$ solid \longrightarrow gas
- **43.** a. $CO(g) + CuO(s) \longrightarrow CO_2(g) + Cu(s)$
 - **b.** $SiO_2(s) + 3 C(s) \longrightarrow SiC(s) + 2 CO(g)$
 - **c.** $S(s) + CO(g) \longrightarrow COS(g)$
- **45. a.** +2 **b.** +4 c. +4/3
- 47. Fixing nitrogen refers to converting N₂ to a nitrogencontaining compound.
- **49.** White phosphorus consists of P₄ molecules in a tetrahedral shape with the atoms at the corners of the tetrahedron. This allotrope is unstable because of the strain from the bond angles. Red phosphorus is much more stable because one bond of the tetrahedron is broken, allowing the phosphorus atoms to make chains with bond angles that are less strained.
- **51.** saltpeter: 13.86% N by mass Chile saltpeter: 16.48% N by mass
- **53.** HN₃ has a positive $\Delta G_{\rm f}^{\circ}$, meaning that it spontaneously decomposes into H2 and N2 at room temperature. There are no temperatures at which HN₃ will be stable. $\Delta H_{\rm f}$ is positive and ΔS_f is negative, so ΔG_f will always be negative.
- 55. a. $NH_4NO_3(aq) + heat \longrightarrow N_2O(g) + 2 H_2O(l)$ **b.** 3 NO₂(g) + H₂O(l) \longrightarrow 2 HNO₃(l) + NO(g) **c.** 2 PCl₃(l) + O₂(g) \longrightarrow 2 POCl₃(l)
- **57.** NO₃⁻, NO₂⁻, N₃⁻, N₂H₅⁺, NH₄⁺

Trigonal pyramidal Trigonal bipyramidal

- **61.** $CO(NH_2)_2 + 2 H_2O \longrightarrow (NH_4)_2CO_3$
- 63. P₄O₆ forms if there is only a limited amount of oxygen available, while P₄O₁₀ will form with greater amounts of oxygen.
- **65.** The major source of oxygen is the fractionation of air by which air is cooled and liquefied and oxygen is separated from the other components.
- 67. a. superoxide **b.** oxide **c.** peroxide
- 69. Initially, liquid sulfur becomes less viscous when heated because the S₈ rings have greater thermal energy, which overcomes intermolecular forces. Above 150 °C the rings break and the broken rings entangle one another, causing greater viscosity.

71. a. 4×10^{-22} g **b.** 4.0×10^{-19} g

73. 2 FeS₂(s) $\xrightarrow{\text{heat}}$ 2 FeS(s) + S₂(g) 510 L

75. a. +2, linear **b.** +6, octahedral **c.** +6, square pyramidal

77. $Cl_2(g) + 2 Br^-(aq) \longrightarrow 2 Cl^-(aq) + Br_2(l)$ Oxidizing agent: Cl_2 Reducing agent: Br^-

79. No, there is not enough HF to dissolve all of the SiO_2 . HF is the limiting reagent. 1.6 g SiO_2 .

81. 8 kg from lignite, 40 kg from bituminous

83. Chlorine is much more electronegative than iodine, allowing it to withdraw an electron and ionize in solution much more easily.

85. a. $rate_{HCl}/rate_{Cl_2} = 1.395$ **b.** $rate_{HCl}/rate_{HF} = 0.7407$ **c.** $rate_{HCl}/rate_{HI} = 1.873$

87. 4 Na₂O₂ + 3 Fe \longrightarrow 4 Na₂O + Fe₃O₄

89. The bond length of the O_2 species increases as electrons are added because they are added to the π^* antibonding orbital. $O_2^{2^-}$ is diamagnetic.

91. 2.0 mol of C—C bonds, 715 kJ/mol, 6.9 × 10² kJ/mol, This value calculated from the bond energy is too low because it doesn't include van der Waals attractions between C atoms not directly bonded to each other.

93. -50 kJ/mol

95. a. -13.6 kJ/mol **b.** -11.0 kJ/mol **c.** -24.8 kJ/mol

Fe₂O₃ is the most exothermic because it has the highest oxidation state and is therefore able to oxidize the most CO per mol Fe.

97. a. Ö=C=C=Ö **b.** *sp*

c. −92 kJ/mol

99. a. 7.6×10^{-22} **b.** 1.2×10^{-8} **c.** $[N_2H_4] = 0.009$ M, $[N_2H_5^+] = 0.0025$ M,

 $[N_2H_4] = 0.009 \text{ M}, [N_2H_5] = 0.0025 \text{ M}$ $[N_2H_6^{2+}] = 7.0 \times 10^{-13} \text{ M}$

101. The acid is

а. HO Й≤N OH

and the base is

 \mathbf{b} . $\mathbf{H}_{2}\mathbf{N}$

The acid is weaker than nitrous acid because of electron donation by resonance in contributing structures such as

с. HO—<u>й</u>—й—он

The base is weaker than ammonia because of electron withdrawal by the electronegative nitro group.

103. The triple bond in nitrogen is much stronger than the double bond in oxygen, so it is much harder to break. This makes it less likely that the bond in nitrogen will be broken.

105. Sodium dinitrogen phosphate (NaH₂PO₄) can act as a weak base or a weak acid. A buffer can be made by mixing it with either Na₂HPO₄ or with Na₃PO₄, depending on the desired pH of the buffer solution.

107. F is extremely small and so there is a huge driving force to fill the octet by adding an electron, giving a -1 oxidation state. Other halogens have access to d orbitals, which allows for more hybridization and oxidation state options.

109. SO₃ cannot be a reducing agent, because the oxidation state of S is +6, the highest possible oxidation state for S. Reducing agents need to be able to be oxidized. SO₂ can be a reducing agent or an oxidizing agent, because the oxidation state of S is +4.

Chapter 23

15. Metals are typically opaque, are good conductors of heat and electricity, and are ductile and malleable, meaning they can be drawn into wires and flattened into sheets.

17. aluminum, iron, calcium, magnesium, sodium, potassium

19. Fe: hematite (Fe₂O₃), magnetite (Fe₃O₄) Hg: cinnabar (HgS) V: vanadite $[Pb_5(VO_4)Cl]$, carnotite $[K_2(UO_2)_2(VO_4)_2 \cdot 3 H_2O]$ Nb: columbite $[Fe(NbO_3)_2]$

21. $MgCO_3(s) + heat \longrightarrow MgO(s) + CO_2(g)$ $Mg(OH)_2(s) + heat \longrightarrow MgO(s) + H_2O(g)$

23. The flux is a material that will react with the gangue to form a substance with a low melting point. MgO is the flux.

25. Hydrometallurgy is used to separate metals from ores by selectively dissolving the metal in a solution, filtering out impurities, and then reducing the metal to its elemental form.

27. The Bayer process is a hydrometallurgical process by which Al_2O_3 is selectively dissolved, leaving other oxides as solids. The soluble form of aluminum is $Al(OH)_4$.

29. Sponge powdered iron contains many small holes in the iron particles due to the escaping of the oxygen when the iron is reduced. Water atomized powdered iron has much smoother and denser particles as the powder is formed from molten iron.

31. a. 50% Cr, 50% V by moles; 50.5% Cr, 49.5% V by mass **b.** 25% Fe, 75% V by moles; 26.8% Fe, 73.2% V by mass **c.** 25% Cr, 25% Fe, 50% V by moles; 24.8% Cr, 26.6% Fe, 48.6% V by mass

33. Cr and Fe are very close to each other in mass, so their respective atomic radii are probably close enough to form an alloy. Also, they both form body-centered cubic structures.

35. A: solid, 20% Cr, 80% Fe B: liquid, 50% Cr, 50% Fe

37. A: solid (20% Co and 80% Cu overall. Two phases; one is the Cu structure with 4% Co, and the other is the Co structure with 7% Cu. There will be more of the Cu structure).

B: solid (Co structure), 90% Co, 10% Cu

c. +4

- 39. C would fill interstitial holes; Mn and Si would substitute for Fe.
- **41. a.** Mo₂N
- **b.** CrH₂
- **43.** a. zinc
- b. copper
- c. manganese
- **45.** −19.4 kJ/mol
- **47.** When Cr is added to steel it reacts with oxygen in steel to prevent it from rusting. A Cr steel alloy would be used in any situation where the steel might be easily oxidized, such as when it comes in contact with water.
- **49.** rutile: 33.3% Ti by moles, 59.9% Ti by mass ilmenite: 20.0% Ti by moles, 31.6% Ti by mass
- 51. Titanium must be arc-melted in an inert atmosphere because the high temperature and flow of electrons would cause the metal to oxidize in a normal atmosphere.
- **53.** TiO₂ is the most important industrial product of titanium and it is often used as a pigment in white paint.
- **55.** The Bayer process is a hydrometallurgical process used to separate Al₂O₃ from other oxides. The Al₂O₃ is selectively dissolved by hot, concentrated NaOH. The other oxides are removed as solids and the Al₂O₃ precipitates out of solution when the solution is neutralized.
- 57. cobalt and tungsten
- **59.** 3.3 kg Fe, 2.0 kg Ti
- 61. Four atoms surround a tetrahedral hole and six atoms surround an octahedral hole. The octahedral hole is larger because it is surrounded by a greater number of atoms.
- 63. Mn has one more electron orbital available for bonding than does chromium.
- 65. Ferromagnetic atoms, like paramagnetic ones, have unpaired electrons. However, in ferromagnetic atoms, these electrons align with their spin oriented in the same direction, resulting in a permanent magnetic field.
- **67.** The nuclear charge of the last three is relatively high because of the lanthanide series in which the 4f subshell falls between them and the other six metals of the group.
- **69. a.** 16.0 cm
- **b.** 4.95 cm
- c. 14%

- **71.** 92%
- **73.** 5.4×10^7
- **75.** First, roast to form the oxide.

$$4 \operatorname{CoAsS}(s) + 9 \operatorname{O}_2(g) \longrightarrow$$

$$4 \text{ CoO}(s) + 4 \text{ SO}_2(g) + \text{As}_4 \text{O}_6(s)$$

Then reduce the oxide with coke.

$$CoO(s) + C(s) \longrightarrow Co(s) + CO(g)$$

The oxides of arsenic are relatively volatile and can be separated, but they are poisonous.

77. Au and Ag are found in elemental form because of their low reactivity. Na and Ca are group 1 and group 2 metals, respectively, and are highly reactive as they readily lose their valence electrons to obtain octets.

Chapter 24

- **17. a.** [Ar] $4s^23d^8$, [Ar] $3d^8$
 - **b.** [Ar] $4s^23d^5$, [Ar] $3d^3$
 - **c.** [Kr] $5s^24d^1$, [Kr] $5s^14d^1$
 - **d.** [Xe] $6s^24f^{14}5d^3$, [Xe] $4f^{14}5d^3$
- **19.** a. +5
- **b.** +7
- **21. a.** +3, 6
- **b.** +2, 6
- c. +2, 4
- **d.** +1, 2
- 23. a. hexaaquachromium(III)
 - **b.** tetracyanocuprate(II)
 - c. pentaaminebromoiron(III) sulfate
 - d. aminetetraaquahydroxycobalt(III) chloride
- **25. a.** $[Cr(NH_3)_6]^{3+}$
 - **b.** $K_3[Fe(CN)_6]$
 - c. $[Cu(en)(SCN)_2]$
 - **d.** $[Pt(H_2O)_4][PtCl_6]$
- 27. a. [Co(NH₃)₃(CN)₃], triaminetricyanocobalt(III)
 - **b.** [Cr(en)₃]³⁺, tris(ethylenediamine)chromium(III)

31. [Fe(H₂O)₅Cl]Cl · H₂O, pentaaquachloroiron(II) chloride monohydrate

[Fe(H₂O)₄Cl₂] • 2 H₂O, tetraaquadichloroiron(II) dihydrate

- 33. b, c, e
- **35. a.** 3
- **b.** No geometric isomers.

- **39.** *cis* isomer is optically active
- 41. a. 11 11
 - 11 11 1

 - 11 11 1

43. 163 kJ/mol

45. $[Co(CN)_6]^{3-} \longrightarrow 290 \text{ nm, colorless}$ $[Co(NH_3)_6]^{3+} \longrightarrow 440 \text{ nm, yellow}$ $[CoF_6]^{3-} \longrightarrow 770 \text{ nm, green}$

47. weak

49. a. 4

b. 3

c. 1

51. 3

53. porphyrin

55. Water is a weak field ligand that forms a high-spin complex with hemoglobin. Because deoxyhemoglobin is weak field it absorbs large wavelength light and appears blue. Oxyhemoglobin is a low-spin complex and absorbs small wavelength light, so O2 must be a strong field ligand.

57. a. [Ar] $4s^13d^5$, [Ar] $3d^5$, [Ar] $3d^4$, [Ar] $3d^3$

b. [Ar] $4s^13d^{10}$, [Ar] $3d^{10}$, [Ar] $3d^9$

59. a. H—N—H

61. [MA₂B₂C₂] all cis; A trans and B and C cis; B trans and A and C cis; C trans and A and B cis; all trans.

[MA₂B₃C] will have fac-mer isomers.

[MAB₂C₃] will have fac-mer isomers.

[MAB₃C₂] will have fac-mer isomers.

[MA₃B₂C] will have fac-mer isomers.

[MA₂BC₃] will have fac-mer isomers.

[MA₃BC₂] will have fac-mer isomers.

[MABC₂] will have AB cis–trans isomers.

[MAB₄C] will have AC cis–trans isomers.

[MA₄BC] will have BC cis-trans isomers.

[MABC₄] will have AB cis–trans isomers.

65.

67.

1.
$$H_2O$$
 NH_3
 $|Cl^-|NH_3$
 $|Cl^-|NH_3$

Only structure 3. is chiral. This is its mirror image.

$$H_2O$$
 H_3
 $|$
 H_2O
 H_3
 $|$
 H_2O
 $|$
 H_2O
 $|$
 H_2O

69.

$$\begin{array}{c} \text{Cl} & \text{P(CH}_3)_3 \\ \text{Cl} & \text{P(CH}_3)_3 \end{array}$$

cis-dichlorobis (trimethyl phosphine) platinum(II)

$$Cl$$
 $P(CH_3)_3$ Pt Cl Cl

trans-dichlorobis (trimethyl phosphine) platinum(II)

73. **a.** 2×10^{-8} M d_{xz} and d_{yz}

b. $6.6 \times 10^{-3} \text{ M}$

- c. NiS will dissolve more easily in the ammonia solution because the formation of the complex ion is favorable, removing Ni²⁺ ions from the solution and allowing more NiS to dissolve.
- **75.** Prepare a solution that contains both $[MCl_6]^{3-}$ and $[MBr_6]^{3-}$ and see if any complex ions that contain both Cl and Br form. If they do it would demonstrate that these complexes are labile.

77. pH = 10.1

79. Au

Appendix IV:

Answers to In-Chapter Practice Problems

Chapter 1

- **1.1. a.** The composition of the copper is not changing; thus, being hammered flat is a physical change that signifies a physical property.
 - **b.** The dissolution and color change of the nickel indicate that it is undergoing a chemical change and exhibiting a chemical property.
 - **c.** Sublimation is a physical change indicative of a physical property.
 - **d.** When a match ignites, a chemical change begins as the match reacts with oxygen to form carbon dioxide and water. Flammability is a chemical property.
- **1.2. a.** 29.8 °C
 - **b.** 302.9 K
- **1.3.** 21.4 g/cm^3 . This matches the density of platinum.
- **1.3.** For More Practice 4.50 g/cm³ The metal is titanium.
- **1.4.** The thermometer shown has markings every 1 °F; thus, the first digit of uncertainty is 0.1. The answer is 103.1 °F.
- **1.5. a.** Each figure in this number is significant by rule 1: three significant figures.
 - **b.** This is a defined quantity that has an unlimited number of significant figures.
 - **c.** Both 1's are significant (rule 1) and the interior zero is significant as well (rule 2): three significant figures
 - **d.** Only the two 9's are significant, the leading zeroes are not (rule 3): two significant figures.
 - **e.** There are five significant figures because the 1, 4, and 5 are nonzero (rule 1) and the trailing zeroes are after a decimal point so they are significant as well (rule 4).
 - **f.** The number of significant figures is ambiguous because the trailing zeroes occur before an implied decimal point (rule 4). Assume two significant figures.
- **1.6. a.** 0.381
 - **b.** 121.0
 - **c.** 1.174
 - **d.** 8
- **1.7.** 3.15 yd
- **1.8.** 2.446 gal
- **1.9.** $1.61 \times 10^6 \,\mathrm{cm}^3$
- **1.9.** For More Practice 3.23×10^3 kg
- **1.10.** 1.03 kg
- **1.10.** For More Practice 2.9×10^{-2} cm³
- **1.11.** 0.855 cm
- **1.12.** 2.70 g/cm^3

Chapter 2

2.1. For the first sample:

$$\frac{\text{mass of oxygen}}{\text{mass of carbon}} = \frac{17.2 \text{ g O}}{12.9 \text{ g C}} = 1.33 \text{ or } 1.33:1$$

For the second sample:

$$\frac{\text{mass of oxygen}}{\text{mass of carbon}} = \frac{10.5 \text{ g O}}{7.88 \text{ g C}} = 1.33 \text{ or } 1.33:1$$

The ratios of oxygen to carbon are the same in the two samples of carbon monoxide, so these results are consistent with the law of definite proportions.

2.2. $\frac{\text{mass of hydrogen to 1 g of oxygen in hydrogen peroxide}}{\text{mass of hydrogen to 1 g of oxygen in water}}$

$$=\frac{0.250}{0.125}=2.00$$

The ratio of the mass of hydrogen from one compound to the mass of hydrogen in the other is equal to 2. This is a simple whole number and therefore consistent with the law of multiple proportions.

- **2.3. a.** Z = 6, A = 13, ${}_{6}^{13}$ C
 - b. 19 protons, 20 neutrons
- **2.4.** a. N^{3-}
- **b.** Rb⁺
- **2.5.** 24.31 amu
- 2.5. For More Practice 70.92 amu
- **2.6.** $4.65 \times 10^{-2} \text{ mol Ag}$
- **2.7.** 0.563 mol Cu
- 2.7. For More Practice 22.6 g Ti
- **2.8.** 1.3×10^{22} C atoms
- **2.8.** For More Practice 6.87 g W
- **2.9.** l = 1.72 cm
- **2.9.** For More Practice 2.90×10^{24} Cu atoms

- **3.1. a.** C₅H₁₂
 - b. HgCl
 - c. CH₂O
- 3.2. a. molecular element
 - **b.** molecular compound
 - c. atomic element
 - d. ionic compound
 - e. ionic compound
- **3.3.** K₂S
- **3.4.** AlN
- **3.5.** silver nitride
- **3.5.** For More Practice Rb₂S

- 3.6. iron(II) sulfide
- **3.6.** For More Practice RuO₂
- 3.7. tin(II) chlorate
- **3.7.** For More Practice $Co_3(PO_4)_2$
- 3.8. dinitrogen pentoxide
- **3.8.** For More Practice PBr₃
- **3.9.** hydrofluoric acid
- 3.10. nitrous acid
- 3.10. For More Practice HClO₄
- 3.11. sulfurous acid
- **3.12.** 164.10 amu
- **3.13.** $5.839 \times 10^{20} \, C_{13} H_{18} O_2$ molecules
- **3.13.** For More Practice 1.06 g H₂O
- **3.14.** 53.29%
- **3.14.** For More Practice 74.19% Na
- **3.15.** 83.9 g Fe₂O₃
- 3.15. For More Practice 8.6 g Na
- **3.16.** 4.0 g O
- **3.16.** For More Practice 3.60 g C
- **3.17.** CH₂O
- **3.18.** C₁₃H₁₈O₂
- **3.19.** C₆H₆
- **3.19.** For More Practice C₂H₈N₂
- **3.20.** C₂H₅
- **3.21.** C₂H₄O
- **3.22.** $SiO_2(s) + 3 C(s) \longrightarrow SiC(s) + 2 CO(g)$
- **3.23.** $2 C_2 H_6(g) + 7 O_2(g) \longrightarrow 4 CO_2(g) + 6 H_2O(g)$
- **3.24.** $Pb(NO_3)_2(aq) + 2 KCl(aq) \longrightarrow$

 $PbCl_2(s) + 2 KNO_3(aq)$

Chapter 4

- 4.1. 4.08 g HCl
- **4.2.** 22 kg HNO₃
- **4.3.** H₂ is the limiting reagent, since it produces the least amount of NH₃. Therefore, 29.4 kg NH₃ is the theoretical yield.
- **4.4.** CO is the limiting reagent, since it only produces 114 g Fe. Therefore, 114 g Fe is the theoretical yield: percentage yield = 63.4% yield
- **4.5.** 0.214 M NaNO₃
- **4.5.** For More Practice 44.6 g KBr
- **4.6.** 402 g C₁₂H₂₂O₁₁
- **4.6.** For More Practice 221 mL of KCl solution
- **4.7.** 667 mL
- **4.7.** For More Practice 0.105 L
- **4.8.** 51.4 mL HNO₃ solution
- **4.8.** For More Practice 0.170 g CO₂
- 4.9. a. insoluble
 - **b.** insoluble
 - c. soluble
 - **d.** soluble
- **4.10.** $NH_4Cl(aq) + Fe(NO_3)_3(aq) \longrightarrow NOREACTION$
- **4.11.** 2 NaOH(aq) + CuBr₂(aq) —

 $Cu(OH)_2(s) + 2 NaBr(aq)$

4.12.
$$2 \text{ H}^+(aq) + 2 \text{ I}^-(aq) + \text{Ba}^{2+}(aq) + 2 \text{ OH}^-(aq) \longrightarrow 2 \text{ H}_2\text{O}(l) + \text{Ba}^{2+}(aq) + 2 \text{ I}^-(aq)$$

$$H^+(aq) + OH^-(aq) \longrightarrow H_2O(l)$$

- **4.13.** $H_2SO_4(aq) + 2 LiOH(aq) \longrightarrow 2 H_2O(l) + Li_2SO_4(aq)$ $H^+(aq) + OH^-(aq) \longrightarrow H_2O(aq)$
- **4.14.** $9.03 \times 10^{-2} \,\mathrm{MH_2SO_4}$
- 4.14. For More Practice 24.5 mL NaOH solution
- **4.15.** 2 HBr(aq) + K₂SO₃(aq) \longrightarrow

$$H_2O(l) + SO_2(g) + 2 KBr(aq)$$

- **4.15.** For More Practice $2 H^+(aq) + S^{2-}(aq) \longrightarrow H_2S(g)$
- **4.16.** a. Cr = 0
 - **b.** $Cr^{3+} = +3$
 - c. $Cl^- = -1, C = +4$
 - **d.** Br = -1, Sr = +2
 - **e.** O = -2, S = +6
 - **f.** O = -2, N = +5
- **4.17.** Sn is oxidized and N is reduced.
- **4.17.** *For More Practice* **b.** Reaction b is the only redeox reaction. Al is oxidized and O is reduced.
- **4.18. a.** This is a redox reaction in which Li is the reducing agent (it is oxidized) and Cl₂ is the oxidizing reagent (it is reduced).
 - **b.** This is a redox reaction in which Al is the reducing agent and Sn²⁺ is the oxidizing agent.
 - **c.** This is not a redox reaction because no oxidation states change.
 - **d.** This is a redox reaction in which C is the reducing agent and O_2 is the oxidizing agent.

4.19.
$$2 C_2 H_5 SH(l) + 9 O_2(g) \longrightarrow 4 CO_2(g) + 2 SO_2(g) + 6 H_2O(g)$$

- **5.1.** 15.0 psi
- **5.1.** For More Practice 80.6 kPa
- **5.2.** 2.1 atm at a depth of approximately 11 m.
- **5.3.** 123 mL
- **5.4.** 11.3 L
- **5.5.** 1.63 atm, 23.9 psi
- **5.6.** 16.1 L
- **5.6.** For More Practice 976 mmHg
- **5.7.** d = 4.91 g/L
- **5.7.** For More Practice 44.0 g/mol
- **5.8.** 70.7 g/mol
- **5.9.** 0.0610 mol H₂
- **5.10.** 4.2 atm
- **5.11.** 12.0 mg H₂
- **5.12.** 82.3 g Ag₂O
- **5.12.** For More Practice 7.10 g Ag₂O
- **5.13.** 6.53 L O₂
- **5.14.** $u_{\rm rms} = 238 \, \text{m/s}$
- **5.15.** $\frac{\text{rate}_{\text{H}_2}}{\text{rate}_{\text{Kr}}} = 6.44$

Chapter 6

- **6.1.** $\Delta E = 71 \text{ J}$
- **6.2.** $C_{\rm s} = 0.38 \frac{\rm J}{\rm g \cdot ^{\circ}C}$

The specific heat capacity of gold is $0.128 \text{ J/g} \cdot ^{\circ}\text{C}$; therefore, the rock cannot be pure gold.

- **6.2.** For More Practice $T_f = 42.1 \,^{\circ}\text{C}$
- **6.3.** 37.8 grams Cu
- **6.4.** −122 J
- **6.4.** For More Practice $\Delta E = -998 \text{ J}$
- **6.5.** $\Delta E_{\text{reaction}} = -3.91 \times 10^3 \text{ kJ/mol C}_6 \text{H}_{14}$
- **6.5.** For More Practice $C_{\text{cal}} = 4.55 \frac{\text{kJ}}{^{\circ}\text{C}}$
- **6.6. a.** endothermic, positive ΔH
 - **b.** endothermic, positive ΔH
 - **c.** exothermic, negative ΔH
- **6.7.** $-2.06 \times 10^3 \text{ kJ}$
- **6.7.** For More Practice 33 g C_4H_{10} 99 g CO_2
- **6.8.** $\Delta H_{\rm rxn} = -68 \, \text{kJ}$
- **6.9.** $N_2O(g) + NO_2(g) \longrightarrow 3 NO(g), \Delta H_{rxn} = +157.6 \text{ kJ}$
- **6.9.** For More Practice $3 \text{ H}_2(g) + O_3(g) \longrightarrow 3 \text{ H}_2O(g), \Delta H_{\text{rxn}} = -868.1 \text{ kJ}$
- **6.10.** a. Na(s) + $\frac{1}{2}$ Cl₂(g) \longrightarrow

NaCl(s), $\Delta H_f^{\circ} = -411.2 \text{ kJ/mol}$

b. $Pb(s) + N_2(g) + 3 O_2(g) \longrightarrow$

 $Pb(NO_3)_2(s), \Delta H_f^{\circ} = -451.9 \text{ kJ/mol}$

- **6.11.** $\Delta H_{\rm rxn}^{\circ} = -851.5 \text{ kJ}$
- **6.12.** $\Delta H_{\text{rxn}}^{\circ} = -1648.4 \text{ kJ}$

111 kJ emitted (-111 kJ)

6.13. $1.2 \times 10^2 \text{ kg CO}_2$

Chapter 7

- 7.1. $5.83 \times 10^{14} \,\mathrm{s}^{-1}$
- **7.2.** 2.64×10^{20} photons
- **7.2.** For More Practice 435 nm
- **7.3. a.** blue < green < red
 - **b.** red < green < blue
 - c. red < green < blue
- **7.4.** $6.1 \times 10^6 \,\mathrm{m/s}$
- **7.5.** For the 5*d* orbitals:

$$n = 5$$

$$l = 2$$

$$m_l = -2, -1, 0, 1, 2$$

The 5 integer values for m_l signify that there are five 5d orbitals.

- **7.6. a.** *l* cannot equal 3 if n = 3. l = 2
 - **b.** m_l cannot equal -2 if l = -1. Possible values for $m_l = -1, 0, \text{ or } 1$
 - **c.** *l* cannot be 1 if n = 1. l = 0
- **7.7.** 397 nm
- **7.7.** For More Practice n = 1

Chapter 8

- **8.1. a.** Cl $1s^2 2s^2 2p^6 3s^2 3p^5$ or [Ne] $3s^2 3p^5$
 - **b.** Si $1s^22s^22p^63s^23p^2$ or [Ne] $3s^23p^2$
 - **c.** Sr $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^2$ or [Kr] $5s^2$
 - **d.** O $1s^2 2s^2 2p^4$ or [He] $2s^2 p^4$
- **8.2.** There are no unpaired electrons.

- **8.3.** $1s^22s^22p^63s^23p^3$ or [Ne] $3s^23p^3$. The 5 electrons in the $3s^23p^3$ orbitals are the valence electrons, while the 10 electrons in the $1s^22s^22p^6$ orbitals belong to the core.
- **8.4.** [Xe] $6s^24f^{14}5d^{10}6p^3$
- **8.4.** For More Practice [Kr] $5s^24d^{10}5p^5$
- **8.5.** a. Sn
 - b. cannot predict
 - c. W
 - d. Se
- **8.5.** For More Practice Rb > Ca > Si > S > F
- **8.6. a.** [Ar] $4s^0 3d^7$. Co²⁺ is paramagnetic.

- **b.** [He] $2s^22p^6$. N³⁻ is diamagnetic.
- **c.** [Ne] $3s^23p^6$. Ca²⁺ is diamagnetic.

- 8.7. a. K
- **b.** F⁻
- **c.** Cl⁻
- **8.7.** For More Practice $Cl^- > Ar > Ca^{2+}$
- **8.8.** a. I

- **b.** Ca
- c. cannot predict
- **d.** F
- **8.8.** For More Practice F > S > Si > Ca > Rb
- **8.9.** a. Sn
 - **b.** cannot predict based on simple trends (Po is larger)
 - c. Bi
 - **d.** B
- **8.9.** For More Practice Cl < Si < Na < Rb
- **8.10.** a. $2 \operatorname{Al}(s) + 3 \operatorname{Cl}_2(g) \longrightarrow 2 \operatorname{AlCl}_3(s)$
 - **b.** $2 \operatorname{Li}(s) + 2 \operatorname{H}_2 O(l) \longrightarrow$

$$2 \operatorname{Li}^{+}(aq) + 2 \operatorname{OH}^{-}(aq) + \operatorname{H}_{2}(g)$$

c. $H_2(g) + Br_2(l) \longrightarrow 2 HBr(g)$

- **9.1.** Mg_3N_2
- 9.2. KI < LiBr < CaO

- **9.2.** For More Practice MgCl₂
- 9.3. a. pure covalent
 - **b.** ionic
 - c. polar covalent
- **9.4.** :C \equiv O:

- 9.7. $\begin{bmatrix} \ddot{\mathbf{0}} = \ddot{\mathbf{N}} \ddot{\ddot{\mathbf{0}}} \end{bmatrix}^{-} \longleftrightarrow \begin{bmatrix} \ddot{\ddot{\mathbf{0}}} \ddot{\ddot{\mathbf{N}}} = \ddot{\ddot{\mathbf{0}}} \end{bmatrix}^{-}$
- 9.8.

7.0.									
Structure		Α			В			C	
	:N	_N	=ö:	:N	= N -	− <u>ö</u> :	:N	— N ≡	≡0:
number of valence e	5	5	6	5	5	6	5	5	6
number of nonbonding e	-4	-0	-4	-2	-0	-6	-6	-0	-2
1/2(number of bonding e ⁻)	-2	-4	-2	-3	-4	-1	-1	-4	-3
Formal charge	-1	+1	0	0	+1	-1	-2	+1	+1

Structure B contributes the most to the correct overall structure of N₂O.

- **9.8.** For More Practice The nitrogen is +1, the singly bonded oxygen atoms are -1, and the double-bonded oxygen atom has no formal charge.
- 9.9. H H $\stackrel{\text{H}}{\underset{\text{H-C}=N=N}{\overset{\text{-1}}{=}}}$ $\stackrel{\text{H}}{\underset{\text{H-C}=N=N}{\overset{\text{-1}}{=}}}$ $\stackrel{\text{...}}{\underset{\text{H}}{=}}$ $\stackrel{\text{H}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H}}{=}}$ $\stackrel{\text{H}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H}}{=}}$ $\stackrel{\text{H}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H}}{=}}$ $\stackrel{\text{H}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H}}{=}}$ $\stackrel{\text{...}}{\underset{\text{H$
- 9.10. :F: :F: Xe - F: :F:
- 9.10. For More Practice

- **9.11.** $CH_3OH(g) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$ $\Delta H_{rxn} = -641 \text{ kJ}$
- **9.11.** For More Practice $\Delta H_{\rm rxn} = -8.0 \times 10^1 \, \rm kJ$

Chapter 10

10.1. tetrahedral

- **10.2.** bent
- **10.3.** linear

10.4.

Atom	Number of Electron Groups	Number of Lone Pairs	Molecular Geometry		
Carbon (left)	4	0	Tetrahedral		
Carbon (right)	3	0	Trigonal planar		
Oxygen	4	2	Bent		

- **10.5.** The molecule is nonpolar.
- **10.6.** The xenon atom has six electron groups and therefore has an octahedral electron geometry. An octahedral electron geometry corresponds to sp^3d^2 hybridization (refer to Table 10.3).

10.7. Since there are only two electron groups around the central atom (C), the electron geometry is linear. According to Table 10.3, the corresponding hybridization on the carbon atom is *sp*.

10.8. Since there are only two electron groups about the central atom (C), the electron geometry is linear. The hybridization on C is *sp* (refer to Table 10.3).

- **10.8.** For More Practice There are five electron groups about the central atom (I); therefore, the electron geometry is trigonal bipyramidal and the corresponding hybridization of I is sp^3d (refer to Table 10.3).
- **10.9.** H_2^+ bond order = $+\frac{1}{2}$

Since the bond order is positive, the ${\rm H_2}^+$ ion should be stable; however, the bond order of ${\rm H_2}^+$ is lower than the bond order of ${\rm H_2}$ (bond order =1). Therefore, the bond in ${\rm H_2}^+$ is weaker than in ${\rm H_2}$.

10.10. The bond order of N_2^+ is 2.5, which is lower than that of the N_2 molecule (bond order =3); therefore, the bond is weaker. The MO diagram shows that the N_2^+ ion has one unpaired electron and is therefore paramagnetic.

- **10.10.** For More Practice The bond order of Ne₂ is 0, which indicates that dineon does not exist.
- **10.11.** The bond order of NO is +2.5. The MO diagram shows that the ion has one unpaired electron and is therefore paramagnetic.

Chapter 11

- 11.1. b, c
- 11.2. HF has a higher boiling point than HCl because, unlike HCl, HF is able to form hydrogen bonds. The hydrogen bond is the strongest of the intermolecular forces and requires more energy to break.
- **11.3.** $5.83 \times 10^3 \text{ kJ}$
- **11.3.** For More Practice 49 °C
- 11.4. 33.8 KJ/mol
- **11.5.** 7.04×10^3 torr
- **11.6.** 29.4°
- 11.7. $7.18 \frac{g}{cm^3}$

Chapter 12

- 12.1. a. not soluble
 - **b.** soluble
 - c. not soluble
 - d. not soluble
- **12.2.** $2.7 \times 10^{-4} \,\mathrm{M}$
- **12.3.** 42.5 g $C_{12}H_{22}O_{11}$
- **12.3.** For More Practice 3.3×10^4 L
- **12.4.** a. $M = 0.415 \,\mathrm{M}$
 - **b.** m = 0.443 m
 - **c.** % by mass = 13.2%
 - **d.** $\chi C_{12}H_{22}O_{11} = 0.00793$
 - e. mole percent = 0.793%
- **12.5.** 0.600 M
- **12.5.** For More Practice 0.651 m
- 12.6. 22.5 torr
- **12.6.** For More Practice 0.144

- **12.7. a.** $P_{benzene} = 26.6 \text{ torr}$ $P_{toluene} = 20.4 \text{ torr}$
 - **b.** 47.0 torr
 - **c.** 52.5% benzene; 47.5% toluene The vapor will be richer in the more volatile component, which in this case is benzene.
- **12.8.** $T_f = -4.8 \, ^{\circ}\text{C}$
- **12.9.** 101.84 °C
- **12.10.** 11.8 atm
- **12.11.** −0.60 °C
- 12.12. 0.014 mol NaCl

Chapter 13

- 13.1. $\frac{\Delta[H_2O_2]}{\Delta t} = -4.40 \times 10^{-3} \,\mathrm{M/s}$ $\frac{\Delta[I_3^-]}{\Delta t} = 4.40 \times 10^{-3} \,\text{M/s}$
- **13.2.** a. Rate = k [CHCl₃][Cl₂]^{1/2}. (Fractional-order reactions are not common but are occasionally observed.)
 - **b.** $3.5 \text{ M}^{-1/2} \cdot \text{s}^{-1}$
- 13.3. $5.78 \times 10^{-2} \,\mathrm{M}$
- **13.4.** 0.0277 M
- **13.5.** $1.64 \times 10^{-3} \,\mathrm{M}$
- **13.6.** 79.2 s
- 13.7. $2.07 \times 10^{-5} \frac{L}{\text{mol} \cdot \text{s}}$
- **13.8.** $6.13 \times 10^{-4} \frac{L}{\text{mol} \cdot \text{s}}$ **13.9.** $2 \text{ A} + \text{B} \longrightarrow \text{A}_2 \text{B}$
- Rate = $k[A]^2$

- **14.1.** $K = \frac{[CO_2]^3 [H_2O]^4}{[C_3H_8][O_2]^5}$
- **14.2.** 2.1×10^{-13}
- **14.2.** For More Practice 1.4×10^2
- **14.3.** 6.2×10^2
- **14.4.** $K_{\rm c} = \frac{[{\rm Cl}_2]^2}{[{\rm HCl}]^4[{\rm O}_2]}$
- **14.5.** 9.4
- **14.6.** 1.1×10^{-6}
- **14.7.** $Q_c = 0.0196$ Reaction proceeds to the left.
- **14.8.** 0.033 M
- **14.9.** $[N_2] = 4.45 \times 10^{-3} \,\mathrm{M}$ $[O_2] = 4.45 \times 10^{-3} \,\mathrm{M}$
 - $[NO] = 1.1 \times 10^{-3} M$
- **14.10.** $[N_2O_4] = 0.005 M$ $[NO_2] = 0.041 \text{ M}$

14.11. $P_{\rm I_2} = 0.0027$ atm

 $P_{\rm Cl_2} = 0.0027 \text{ atm}$

 $P_{\rm ICl_2} = 0.246 \, {\rm atm}$

14.12. $1.67 \times 10^{-7} \,\mathrm{M}$

14.13. $6.78 \times 10^{-6} \,\mathrm{M}$

14.14. Adding Br₂ increases the concentration of Br₂, causing a shift to the left (away from the Br₂). Adding BrNO increases the concentration of BrNO, causing a shift to the right.

14.15. Decreasing the volume causes the reaction to shift right. Increasing the volume causes the reaction to shift left.

14.16. If we increase the temperature, the reaction shifts to the left. If we decrease the temperature, the reaction shifts to the right.

Chapter 15

15.1. a. H₂O donates a proton to C₅H₅N, making it the acid. The conjugate base is therefore OH⁻. Since C₅H₅N accepts the proton, it is the base and becomes the conjugate acid C₅H₅NH⁺.

b. Since HNO₃ donates a proton to H₂O, it is the acid, making NO₃⁻ the conjugate base. Since H₂O is the proton acceptor, it is the base and becomes the conjugate acid, H₃O⁺.

15.2. a. Since $[H_3O^+] < [OH^-]$ the solution is basic.

b. $[H_3O^+] = 1.0 \times 10^{-7} M$

Neutral solution.

c. $[H_3O^+] = 1.2 \times 10^{-5} \text{ M}$ Since $[H_3O^+] > [OH^-]$ the solution is acidic.

15.3. a. 8.02 (basic)

b. 11.85 (basic)

15.4. $4.3 \times 10^{-9} \,\mathrm{M}$

15.5. $9.4 \times 10^{-3} \,\mathrm{M}$

15.6. 3.28

15.7. 2.72

15.8. 1.8×10^{-6}

15.9. 0.85%

15.10. $4.0 \times 10^{-7} \,\mathrm{M}$

15.11. $[OH^{-}] = 0.020 \text{ M}$ pH = 12.30

15.12. $[OH^-] = 1.2 \times 10^{-2} \text{ M}$ pH = 12.08

15.13. a. weak base

b. pH-neutral

b. weak acid

15.14. 9.07

15.15. a. pH-neutral

c. weak acid

15.16. a. basic **b.** acidic

c. pH-neutral

d. acidic

15.17. 3.83

15.18. $[SO_4^{2-}] = 0.00386 \text{ M}$

pH = 1.945

15.19. $5.6 \times 10^{-11} \,\mathrm{M}$

Chapter 16

16.1. 4.44

16.1. *For More Practice* 3.44

16.2. 9.14

16.3. 4.87

16.3. *For More Practice* 4.65

16.4. 9.68

16.4. For More Practice 9.56

16.5. hypochlorous acid (HClO); 2.4 g NaClO

16.6. 1.74

16.7. 18.08

16.8. $2.30 \times 10^{-6} \,\mathrm{M}$

16.9. 5.3×10^{-13}

16.10. $1.21 \times 10^{-5} \,\mathrm{M}$

16.11. FeCO₃ will be more soluble in an acidic solution than PbBr₂ because the CO₃²⁻ ion is a basic anion, whereas Br⁻ is the conjugate base of a strong acid (HBr) and is therefore pH-neutral.

16.12. $Q > K_{\rm sp}$; therefore, a precipitate forms.

16.13. $2.9 \times 10^{-6} \,\mathrm{M}$

16.14. a. AgCl precipitates first; [NaCl] = 7.1×10^{-9} M

b. $[Ag^+]$ is 1.5×10^{-8} M when PbCl₂ begins to precipitate, and $[Pb^{2+}]$ is 0.085 M.

16.15. $9.6 \times 10^{-6} \,\mathrm{M}$

Chapter 17

17.1. a. positive

b. negative

c. positive

17.2. a. -548 J/K

b. $\Delta S_{\rm sys}$ is negative.

c. ΔS_{univ} is negative, and the reaction is not spontaneous.

17.2. For More Practice 375 K

17.3. $\Delta G = -101.6 \times 10^3 \,\mathrm{J}$

Therefore, the reaction is spontaneous. Since both ΔH and ΔS are negative, as the temperature increases ΔG will become more positive.

17.4. -153.2 J/K

17.5. $\Delta G_{\text{rxn}}^{\circ} = -36.3 \text{ kJ}$

Since $\Delta G_{\rm rxn}^{\circ}$ is negative, the reaction is spontaneous at this temperature.

17.6. $\Delta G_{\rm rxn}^{\circ} = -42.1 \text{ kJ}$

Since the value of $\Delta G_{\rm rxn}^{\circ}$ at the lowered temperature is more negative (or less positive) (which is -36.3 kJ), the reaction is more spontaneous.

17.7. $\Delta G_{\rm rxn}^{\circ} = -689.6 \, \text{kJ}$

Since $\Delta G_{\rm rxn}^{\circ}$ is negative, the reaction is spontaneous at this temperature.

17.7. For More Practice $\Delta G_{\rm rxn}^{\circ} = -689.7 \text{ kJ (at } 25^{\circ})$ The value calculated for $\Delta G_{\rm rxn}^{\circ}$ from the tabulated values (-689.6 kJ) is the same, to within 1 in the least significant digit, as the value calculated using the equation for $\Delta G_{\rm rxn}^{\circ}$.

$$\Delta G_{\rm rxn}^{\circ} = -649.7 \text{ kJ (at 500.0 K)}$$

You could not calculate $\Delta G_{\rm rxn}^{\circ}$ at 500.0 K using tabulated $\Delta G_{\rm f}^{\circ}$ values because the tabulated values of free energy are calculated at a standard temperature of 298 K, much lower than 500 K.

17.9.
$$\Delta G_{\rm rxn} = -129 \text{ kJ}$$

The reaction is more spontaneous under these conditions than under standard conditions because $\Delta G_{\rm rxn}$ is more negative than $\Delta G_{\rm rxn}^{\circ}$.

Chapter 18

18.1.
$$2 \operatorname{Cr}(s) + 4 \operatorname{H}^{+}(aq) \longrightarrow 2 \operatorname{Cr}^{2+}(aq) + 2 \operatorname{H}_{2}(g)$$

18.2.
$$Cu(s) + 4 H^{+}(aq) + 2 NO_{3}^{-}(aq) \longrightarrow Cu^{2+}(aq) + 2 NO_{2}(g) + 2 H_{2}O(l)$$

18.3.
$$3 \text{ CIO}^-(aq) + 2 \text{ Cr}(OH)_4^-(aq) + 2 \text{ OH}^-(aq) \longrightarrow 3 \text{ CI}^-(aq) + 2 \text{ Cr}O_4^{2-}(aq) + 5 \text{ H}_2O(l)$$

18.6.
$$\Delta G^{\circ} = -3.63 \times 10^5 \,\mathrm{J}$$

Since
$$\Delta G^{\circ}$$
 is negative, the reaction is spontaneous.

18.7.
$$4.5 \times 10^3$$

18.9. Anode:
$$2 \text{ H}_2\text{O}(l) \longrightarrow \text{O}_2(g) + 4 \text{ H}^+(aq) + 4 \text{ e}^-$$

Cathode: $2 \text{ H}_2\text{O}(l) + 2 \text{ e}^- \longrightarrow \text{H}_2(g) + 2 \text{ OH}^-(aq)$

18.10.
$$6.0 \times 10^1 \, \text{min}$$

Chapter 19

19.1.
$$^{216}_{84}$$
Po $\longrightarrow ^{212}_{82}$ Pb $+ ^{4}_{2}$ He

19.2. a.
$$^{235}_{92}\text{U} \longrightarrow ^{231}_{90}\text{Th} + ^{4}_{2}\text{He}$$
 $^{231}_{90}\text{Th} \longrightarrow ^{231}_{91}\text{Pa} + ^{0}_{-1}\text{e}$
 $^{231}_{91}\text{Pa} \longrightarrow ^{227}_{89}\text{Ac} + ^{4}_{2}\text{He}$
b. $^{221}_{11}\text{Na} \longrightarrow ^{220}_{10}\text{Ne} + ^{0}_{-1}\text{e}$

c.
$$_{36}^{76}$$
Kr + $_{-1}^{0}$ e \longrightarrow $_{35}^{76}$ Br

19.2. For More Practice Positron emission

$$\binom{40}{19}K \longrightarrow \frac{40}{18}Ar + \frac{0}{19}e$$
) or electron capture $\binom{40}{19}K + \frac{0}{19}e \longrightarrow \frac{40}{18}Ar$)

19.3. a. positron emission

c. positron emission

19.5.
$$t = 964 \text{ yr}$$

No, the C-14 content suggests that the scroll is from about A.D. 1000, not 500 B.C.

19.6.
$$1.0 \times 10^9 \text{ yr}$$

Chapter 20

20.1.

20.2. 3-methylhexane

20.3. 3,5-dimethylheptane

20.4. 2,3,5-trimethylhexane

20.5. a. 4,4-dimethyl-2-pentyne

b. 3-ethyl-4,6-dimethyl-1-heptene

20.6. a. 2-methylbutane

b. 2-chloro-3-methylbutane

20.7. a. Alcohol reacting with an active metal.

$$CH_3CH_2OH + Na \longrightarrow CH_3CH_2ONa + \frac{1}{2}H_2$$

b. dehydration reaction

Chapter 21

21.1. Fructose exhibits optical isomerism. It contains three chiral carbons.

Chapter 22

22.2.
$$x = 2$$

22.3. Orthosilicate (or neosilicate): each of the two Be ions has a charge of 2+ for a total of 4+, and the SiO_4 unit has a charge of 4-.

- **22.4.** Inosilicate (or pyroxene): Ca and Mg each have a charge of 2+ for a total of 4+, and the Si_2O_6 unit has a charge of 4- (two SiO_3^{2-} units).
- **22.5.** $2 \text{ H}_2\text{S}(g) + 3 \text{ O}_2(g) \longrightarrow 2 \text{ H}_2\text{O}(g) + \text{SO}_2(g)$ S changes from the -2 to +4 oxidation state.
- **22.6.** The oxidation state for Cl is +7 in ClO_4^- and -1 in Cl^- .
- **22.7.** $I_2(s) + 5 F_2(g) \longrightarrow 2 IF_5(g)$
- **22.8.** The electron geometry is tetrahedral and the shape is bent for ICl_2^+ .
- **22.9.** The electron geometry is octahedral for BrF₅, and the molecular geometry is square pyramidal.
- **22.10.** The oxidation number changes from -1 to 0 for the oxidation of the Cl in HCl to Cl₂ and from +5 to +4 for the reduction of the Cl in NaClO₃ to ClO₂. The oxidizing agent is NaClO₃, and the reducing agent is HCl.

Chapter 23

- **23.1.** At 50 mol % Ni and 1000 °C this is a solid phase with half of the atoms each Ni and Cu.
- **23.2.** At 50 mol % Ni and 1400 °C this is a liquid phase with half of the atoms each Ni and Cu.
- **23.3.** At 900 °C and 60 mol % Cr this is a two-phase region with more Ni-rich face-centered cubic crystals than Cr-rich body-centered cubic crystals. The Ni-rich phase is about 42 mol % Cr and 58 mol % Ni. The Cr-rich phase is about 94 mol % Cr and 6 mol % Ni.
- **23.4.** At 900 °C and 98 mol % Cr this is a single-phase region with 100 mol % of the Cr-rich body-centered cubic crystals that contains 2% Ni.

Chapter 24

- **24.1.** [Xe] $6s^2 4f^{14}5d^6$
- **24.2.** [Kr] $5s^04d^3$ or [Kr] $4d^3$
- 24.3. pentaamminecarbonylmanganese(II) sulfate
- **24.4.** sodium tetrachloroplatinate(II)

24.5. The complex ion [Cr(H₂O)₃Cl₃]⁺ fits the general formula MA₃B₃, which results in fac and mer isomers.

$$\begin{bmatrix} Cl \\ H_2O \\ \hline \\ H_2O \\ \hline \\ H_2O \end{bmatrix}^+ \begin{bmatrix} H_2O \\ \hline \\ Cl \\ \hline \\ H_2O \\ \hline \\ H_2O \end{bmatrix}^+$$
Fac
$$\begin{bmatrix} H_2O \\ \hline \\ Cl \\ \hline \\ H_2O \\ \hline \\ Cl \end{bmatrix}^+$$

24.6. The oxalate ligand is a small bidentate ligand, so it will have to occupy two adjacent (cis) positions of the octahedron. There are three ways to arrange the two NH₃ and two Cl⁻ ligands in the four remaining positions. One has both NH₃ and both Cl⁻ in cis positions (cis isomer). Another has the NH₃ ligands in a trans arrangement with both Cl⁻ in cis positions (*trans*-ammine isomer). The third has both NH₃ ligands cis and the Cl⁻ ligands trans (*trans*-chloro isomer).

$$\begin{bmatrix} \text{Cl} & \text{NH}_3 & \text{Cl} \\ \text{Cl} & \text{NH}_3 & \text{Ox} \\ \text{Cl} & \text{NH}_3 & \text{Cl} \end{bmatrix}$$

$$\text{Trans (in NH}_3) \qquad \text{Trans (in Cl}^-)$$

- **24.7.** Both the fac and mer isomers are superimposable (by rotating 180°) on their mirror images, so neither one is optically active.
- **24.8.** 288 kJ/mol
- **24.9.** five unpaired electrons
- **24.10.** one unpaired electron

Glossary

accuracy A term that refers to how close a measured value is to the actual value. (1.7)

acid A molecular compound that is able to donate an H^+ ion (proton) when dissolved in water, thereby increasing the concentration of H^+ . (3.6)

acid ionization constant (K_a) The equilibrium constant for the ionization reaction of a weak acid; used to compare the relative strengths of weak acids. (15.4)

acid-base reaction (neutralization reaction) A reaction in which an acid reacts with a base and the two neutralize each other, producing water. (4.8)

acid-base titration A laboratory procedure in which a basic (or acidic) solution of unknown concentration is reacted with an acidic (or basic) solution of known concentration, in order to determine the concentration of the unknown. (16.4)

acidic solution A solution containing an acid that creates additional H_3O^+ ions, causing $[H_3O^+]$ to increase. (15.4)

activated carbon Very fine carbon particles with high surface area. (22.5)

activated complex (transition state) A high-energy intermediate state between reactant and product. (13.5)

activation energy An energy barrier in a chemical reaction that must be overcome for the reactants to be converted into products. (13.5)

active site The specific area of an enzyme at which catalysis occurs. (13.7)

actual yield The amount of product actually produced by a chemical reaction. (4.3)

addition polymer A polymer in which the monomers simply link together without the elimination of any atoms. (20.14)

addition reaction A type of organic reaction in which two substituents are added across a double bond. (20.10)

alcohol A member of the family of organic compounds that contain a hydroxyl functional group (—OH). (3.11, 20.9)

aldehyde A member of the family of organic compounds that contain a carbonyl functional group (C = O) bonded to two R groups, one of which is a hydrogen atom. (20.10)

aldose A sugar that is an aldehyde. (21.3)

aliphatic hydrocarbons Organic compounds in which carbon atoms are joined in straight or branched chains. (20.3)

alkali metals Highly reactive metals in group 1A of the periodic table. (2.7)

alkaline battery A dry-cell battery that employs slightly different half-reactions in a basic medium. (18.7)

alkaline earth metals Fairly reactive metals in group 2A of the periodic table. (2.7)

alkaloid Organic bases found in plants; they are often poisonous. (15.2)

alkane A hydrocarbon containing only single bonds. (3.11)

alkene A hydrocarbon containing one or more carbon–carbon double bonds. (3.11)

alkyne A hydrocarbon containing one or more carbon–carbon triple bonds. (3.11)

alloy A metallic material that contains more than one element. (23.4)

alpha (α) **decay** The form of radioactive decay that occurs when an unstable nucleus emits a particle composed of two protons and two neutrons. (19.3)

alpha (α) **particle** A low-energy particle released during alpha decay; equivalent to a He-4 nucleus. (19.3)

 α -helix A pattern in the secondary structure of a protein that occurs when the amino acid chain is wrapped tightly in a coil with the side chains extending outward. (21.5)

aluminosilicates Members of a family of compounds in which aluminum atoms substitute for silicon atoms in some of the silicon lattice sites of the silica structure. (22.3)

amino acids Organic compounds that contain a carbon atom, called the α -carbon, bonded to four different groups: an amine group, an R group, a carboxylic acid group, and a hydrogen atom. (21.4)

ammonia NH₃, the strong smelling compound in which nitrogen displays its lowest oxidation state (-3). (22.6)

amorphous solid A solid in which atoms or molecules do not have any long-range order. (1.3, 11.2)

ampere (A) The SI unit for electrical current; 1 A = 1 C/s. (18.3)

amphoteric Able to act as either an acid or a base. (15.3)

amplitude The vertical height of a crest (or depth of a trough) of a wave; a measure of wave intensity. (7.2)

angular momentum quantum number (l) An integer that determines the shape of an orbital. (7.5)

anion A negatively charged ion. (2.6)

anode The electrode in an electrochemical cell where oxidation occurs; electrons flow away from the anode. (18.3)

antibonding orbital A molecular orbital that is higher in energy than any of the atomic orbitals from which it was formed. (10.8)

aqueous solution A solution in which water acts as the solvent. (4.4, 12.2)

arachno-boranes Boranes with the formula B_nH_{n+6} , consisting of a cage of boron atoms that is missing two or three corners. (22.4)

arc-melting A method in which the solid metal is melted with an arc from a high-voltage electric source in a controlled atmosphere to prevent oxidation. (23.5)

Arrhenius definitions (of acids and bases) The definitions of an acid as a substance that produces H^+ ions in aqueous solution and a base as a substance that produces OH^- ions in aqueous solution. (4.8, 15.3)

Arrhenius equation An equation that relates the rate constant of a reaction to the temperature, the activation energy, and the frequency factor; $k = Ae^{\frac{-E_*}{RT}}$. (13.5)

Arrhenius plot A plot of the natural log of the rate constant ($\ln k$) versus the inverse of the temperature in kelvins (1/T) that yields a straight line with a slope of $-E_a/R$ and a y-intercept of $\ln A$. (13.5)

atmosphere (atm) A unit of pressure based on the average pressure of air at sea level; 1 atm = 101,325 Pa. (5.2)

atom A submicroscopic particle that constitutes the fundamental building block of ordinary matter; the smallest identifiable unit of an element. (1.1)

atomic element Those elements that exist in nature with single atoms as their basic units. (3.4)

atomic mass (atomic weight) The average mass in amu of the atoms of a particular element based on the relative abundance of the various isotopes; it is numerically equivalent to the mass in grams of one mole of the element. (2.8)

atomic mass unit (amu) A unit used to express the masses of atoms and subatomic particles, defined as 1/12 the mass of a carbon atom containing 6 protons and 6 neutrons. (2.6)

atomic number (Z) The number of protons in an atom; the atomic number defines the element. (2.6)

atomic solids Solids whose composite units are atoms; they include nonbonding atomic solids, metallic atomic solids, and network covalent solids. (11.12)

atomic theory The theory that each element is composed of tiny indestructible particles called atoms, that all atoms of a given element have the same mass and other properties, and that atoms combine in simple, whole-number ratios to form compounds. (1.2, 2.3)

aufbau principle The principle that indicates the pattern of orbital filling in an atom. (8.3)

autoionization The process by which water acts as an acid and a base with itself. (15.4)

Avogadro's law The law that states that the volume of a gas is directly proportional to its amount in moles $(V \propto n)$. (5.3)

Avogadro's number The number of 12 C atoms in exactly 12 g of 12 C; equal to 6.0221421×10^{23} . (2.9)

balanced see chemical equation (3.10)

ball-and-stick model A representation of the arrangement of atoms in a molecule that shows how the atoms are bonded to each other and the overall shape of the molecule. (3.3)

band gap An energy gap that exists between the valence band and conduction band of semiconductors and insulators. (11.13)

band theory A model for bonding in atomic solids that comes from molecular orbital theory in which atomic orbitals combine and become delocalized over the entire crystal. (11.13)

barometer An instrument used to measure atmospheric pressure. (5.2)

base ionization constant (K_b) The equilibrium constant for the ionization reaction of a weak base; used to compare the relative strengths of weak bases. (15.7)

basic solution A solution containing a base that creates additional OH⁻ ions, causing the [OH⁻] to increase. (15.4)

beta (β) decay The form of radioactive decay that occurs when an unstable nucleus emits an electron. (19.3)

beta (β) **particle** A medium-energy particle released during beta decay; equivalent to an electron. (19.3)

 β -pleated sheet A pattern in the secondary structure of a protein that occurs when the amino acid chain is extended and forms a zigzag pattern. (21.5)

bidentate Describes ligands that donate two electron pairs to the central metal. (24.3)

bimolecular An elementary step in a reaction that involves two particles, either the same species or different, that collide and go on to form products. (13.6)

binary acid An acid composed of hydrogen and a nonmetal. (3.6)

binary compound A compound that contains only two different elements. (3.5)

biochemistry The study of the chemistry occurring in living organisms. (21.1)

biological effectiveness factor (RBE) A correction factor multiplied by the dose of radiation exposure in rad to obtain the dose in rem. (19.11)

black phosphorus An allotrope of phosphorus with a structure similar to that of graphite; the most thermodynamically stable form. (22.6)

body-centered cubic A unit cell that consists of a cube with one atom at each corner and one atom at the center of the cube. (11.11)

boiling point The temperature at which the vapor pressure of a liquid equals the external pressure. (11.5)

boiling point elevation The effect of a solute that causes a solution to have a higher boiling point than the pure solvent. (12.7)

bomb calorimeter A piece of equipment designed to measure $\Delta E_{\rm rxn}$ for combustion reactions at constant volume. (6.4)

bond energy The energy required to break 1 mol of the bond in the gas phase. (9.10)

bond length The average length of a bond between two particular atoms in a variety of compounds. (9.10)

bond order For a molecule, the number of electrons in bonding orbitals minus the number of electrons in nonbonding orbitals divided by two; a positive bond order implies that the molecule is stable. (10.8)

bonding orbital A molecular orbital that is lower in energy than any of the atomic orbitals from which it was formed. (10.8)

bonding pair A pair of electrons shared between two atoms. (9.5)

boranes Compounds composed of boron and hydrogen. (22.4)

Born–Haber cycle A hypothetical series of steps based on Hess's law that represents the formation of an ionic compound from its constituent elements. (9.4)

Boyle's law The law that states that volume of a gas is inversely proportional to its pressure $\left(V \propto \frac{1}{P}\right)$. (5.3)

brass A widely used alloy that contains copper and zinc. (23.5)

Brønsted-Lowry definitions (of acids and bases) The definitions of an acid as a proton $(H^+ \text{ ion})$ donor and a base as a proton acceptor. (15.3)

bronze An alloy of copper and tin that has been used for thousands of years. (23.5)

buffer A solution containing significant amounts of both a weak acid and its conjugate base (or a weak base and its conjugate acid) that resists pH change by neutralizing added acid or added base. (16.2)

buffer capacity The amount of acid or base that can be added to a buffer without destroying its effectiveness. (16.3)

calcination The heating of an ore in order to decompose it and drive off a volatile product. (23.3)

calorie (cal) A unit of energy defined as the amount of energy required to raise one gram of water 1 °C; equal to 4.184 J. (6.1)

Calorie (Cal) Shorthand notation for the kilocalorie (kcal), or 1000 calories; also called the nutritional calorie, the unit of energy used on nutritional labels. (6.1)

calorimetry The experimental procedure used to measure the heat evolved in a chemical reaction. (6.4)

capillary action The ability of a liquid to flow against gravity up a narrow tube due to adhesive and cohesive forces. (11.4)

carbohydrate A polyhydroxyl aldehyde or ketone. (21.3)

carbon black A fine powdered form of carbon. (22.5)

carbonyl group A functional group consisting of a carbon atom double-bonded to an oxygen atom (C=O). (20.10)

carboxylic acid An organic acid containing the functional group — COOH. (15.2, 20.11)

catalyst A substance that is not consumed in a chemical reaction but increases the rate of the reaction by providing an alternate mechanism in which the rate-determining step has a smaller activation energy. (13.7)

cathode The electrode in an electrochemical cell where reduction occurs; electrons flow toward the cathode. (18.3)

cathode rays A stream of electrons produced when a high electrical voltage is applied between two electrodes within a partially evacuated tube. (2.4)

cation A positively charged ion. (2.6)

cell potential (cell emf) (E_{cell}) The potential difference between the cathode and the anode in an electrochemical cell. (18.3)

cellulose A polysaccharide that consists of glucose units bonded together by β -glycosidic linkages; the main structural component of plants, and the most abundant organic substance on Earth. (21.3)

Celsius (°C) **scale** The temperature scale most often used by scientists (and by most countries other than the United States), on which pure water freezes at 0 °C and boils at 100 °C (at atmospheric pressure). (1.6)

chain reaction A series of reactions in which previous reactions cause future ones; in a fission bomb, neutrons produced by the fission of one uranium nucleus induce fission in other uranium nuclei. (19.7)

charcoal A fuel similar to coal made by heating wood in the absence of air. (22.5)

Charles's law The law that states that the volume of a gas is directly proportional to its temperature $(V \propto T)$. (5.3)

 ${\bf chelate}$ A complex ion that contains either a bi- or polydentate ligand. (24.3)

chelating agent The coordinating ligand of a chelate. (24.3)

chemical bond The sharing or transfer of electrons to attain stable electron configurations for the bonding atoms. (9.3)

chemical change A change that alters the molecular composition of a substance; see also *chemical reaction*. (1.4)

chemical energy The energy associated with the relative positions of electrons and nuclei in atoms and molecules. (6.1)

chemical equation A symbolic representation of a chemical reaction; a balanced equation contains equal numbers of the atoms of each element on both sides of the equation. (3.10)

chemical formula A symbolic representation of a compound that indicates the elements present in the compound and the relative number of atoms of each. (3.3)

chemical property A property that a substance displays only by changing its composition via a chemical change. (1.4)

chemical reaction A process by which one or more substances are converted to one or more different substances; see also *chemical change*. (3.10)

chemical symbol A one- or two-letter abbreviation for an element that is listed directly below its atomic number on the periodic table. (2.6)

chemistry The science that seeks to understand the behavior of matter by studying the behavior of atoms and molecules. (1.1)

chiral molecule A molecule that is not superimposable on its mirror image and thus exhibits optical isomerism. (20.3)

chromosome The DNA-containing structures that occur in the nuclei of living cells. (21.6)

cis-trans isomerism Another term for geometric isomerism; cis-isomers have the same functional group on the same side of a bond and trans-isomers have the same functional group on opposite sides of a bond. (20.5)

Claus process An industrial process for obtaining sulfur through the oxidation of hydrogen sulfide. (22.8)

Clausius-Clapeyron equation An equation that displays the exponential relationship between vapor pressure and temperature;

$$\ln(P_{\text{vap}}) = \frac{-\Delta H_{\text{vap}}}{R} \left(\frac{1}{T}\right) + \ln \beta. (11.5)$$

*closo-*boranes Boranes that have the formula $B_{12}H_{12}^{2-}$ and form the full icosohedral shape. (22.4)

coal A solid, black fuel with high carbon content, the product of the decomposition of ancient plant material. (22.5)

codon A sequence of three bases in a nucleic acid that codes for one amino acid. (21.6)

coffee-cup calorimeter A piece of equipment designed to measure $\Delta H_{\rm rxn}$ for reactions at constant pressure. (6.5)

coke A solid formed by heating coal in the absence of air that consists primarily of carbon and ash. (22.5)

colligative property A property that depends on the amount of a solute but not on the type. (12.7)

collision model A model of chemical reactions in which a reaction occurs after a sufficiently energetic collision between two reactant molecules. (13.5)

colloidal dispersion (colloid) A mixture in which a dispersed substance is finely dived but not truly dissolved in a dispersing medium. (12.8)

combustion analysis A method of obtaining empirical formulas for unknown compounds, especially those containing carbon and hydrogen, by burning a sample of the compound in pure oxygen and analyzing the products of the combustion reaction. (3.9)

combustion reaction A type of chemical reaction in which a substance combines with oxygen to form one or more oxygen-containing compounds; the reaction often causes the evolution of heat and light in the form of a flame. (3.10)

common ion effect The tendency for a common ion to decrease the solubility of an ionic compound or to decrease the ionization of a weak acid or weak base. (16.2)

common name A traditional name of a compound that gives little or no information about its chemical structure; for example, the common name of NaHCO₃ is "baking soda." (3.5)

complementary Capable of precise pairing; in particular, the bases of nucleic acids. (21.6)

complementary properties Those properties that exclude one another, that is, the more you know about one, the less you know about the other. For example, the wave nature and particle nature of the electron are complementary. (7.4)

complete ionic equation An equation that lists individually all of the ions present as either reactants or products in a chemical reaction. (4.7)

complex carbohydrate Another term for a polysaccharide based on the fact that it is made up of many simple sugars. (21.3)

complex ion An ion that contains a central metal ion bound to one or more ligands. (16.8, 24.3)

 ${\bf compound}$ A substance composed of two or more elements in fixed, definite proportions. (1.3)

concentrated solution A solution that contains a large amount of solute relative to the amount of solvent. (4.4, 12.5)

condensation The phase transition from gas to liquid. (11.5)

condensation polymer A polymer formed by elimination of an atom or small group of atoms (usually water) between pairs of monomers during polymerization. (20.14)

condensation reaction A reaction in which two or more organic compounds are joined, often with the loss of water or some other small molecule. (20.11)

conjugate acid–base pair Two substances related to each other by the transfer of a proton. (15.3)

constructive interference The interaction of waves from two sources that align with overlapping crests, resulting in a wave of greater amplitude. (7.2)

contact process An industrial method for the production of sulfuric acid. (22.8)

conversion factor A factor used to convert between two different units; a conversion factor can be constructed from any two quantities known to be equivalent. (1.8)

coordinate covalent bond The bond formed when a ligand donates electrons to an empty orbital of a metal in a complex ion. (24.3)

coordination compound A neutral compound made when a complex ion combines with one or more counterions. (24.3)

coordination isomers Isomers of complex ions that occur when a coordinated ligand exchanges places with the uncoordinated counter-ion. (24.4)

coordination number (secondary valence) The number of molecules or ions directly bound to the metal atom in a complex ion. (24.3)

coordination number The number of atoms with which each atom in a crystal lattice is in direct contact. (11.11)

core electrons Those electrons in a complete principal energy level and those in complete d and f sublevels. (8.4)

corrosion The gradual, nearly always undesired oxidation of metals that occurs when they are exposed to oxidizing agents in the environment. (18.9)

covalent bond A chemical bond in which two atoms share electrons that interact with the nuclei of both atoms, lowering the potential energy of each through electrostatic interactions. (3.2, 9.2)

covalent carbides Binary compounds composed of carbon combined with low-electronegativity nonmetals or metalloids. (22.5)

covalent radius (bonding atomic radius) Defined in nonmetals as one-half the distance between two atoms bonded together, and in metals as one-half the distance between two adjacent atoms in a crystal of the metal. (8.6)

critical mass The necessary amount of a radioactive isotope required to produce a self-sustaining fission reaction. (19.7)

critical point The temperature and pressure above which a supercritical fluid exists. (11.8)

critical pressure The pressure required to bring about a transition to a liquid at the critical temperature. (11.5)

critical temperature The temperature above which a liquid cannot exist, regardless of pressure. (11.5)

crystalline lattice The regular arrangement of atoms in a crystalline solid. (11.11)

crystalline solid (crystal) A solid in which atoms, molecules, or ions are arranged in patterns with long-range, repeating order. (1.3, 11.2)

cubic closest packing A closest-packed arrangement in which the third layer of atoms is offset from the first; the same structure as the face-centered cubic. (11.11)

cyclotron A particle accelerator in which a charged particle is accelerated in an evacuated ring-shaped tube by an alternating voltage applied to each semi-circular half of the ring. (19.10)

Dalton's law of partial pressures The law stating that the sum of the partial pressures of the components in a gas mixture must equal the total pressure. (5.6)

de Broglie relation The observation that the wavelength of a particle is inversely proportional to its momentum $\lambda = \frac{h}{mv}$. (7.4)

decanting A method of separating immiscible liquids by pouring the top layer into another container. (1.3)

degenerate A term describing two or more electron orbitals with the same value of n that have the same energy. (8.3)

density (d) The ratio of an object's mass to its volume. (1.6)

deposition The phase transition from gas to solid. (11.6)

derived unit A unit that is a combination of other base units. For example, the SI unit for speed is meters per second (m/s), a derived unit. (1.6) **destructive interference**. The interaction of waves from two

destructive interference The interaction of waves from two sources aligned so that the crest of one overlaps the trough of the other, resulting in cancellation. (7.2)

deterministic A characteristic of the classical laws of motion, which imply that present circumstances determine future events. (7.4)

dextrorotatory Capable of rotating the plane of polarization of light clockwise. (20.3)

diamagnetic The state of an atom or ion that contains only paired electrons and is, therefore, slightly repelled by an external magnetic field. (8.7, 10.8)

diamond An elemental form of carbon with a crystal structure that consists of carbon atoms connected to four other carbon atoms at the corners of a tetrahedron, creating a strong network covalent solid. (22.5)

diffraction The phenomena by which a wave emerging from an aperture spreads out to form a new wave front. (7.2)

diffusion The process by which a gas spreads through a space occupied by another gas. (5.9)

dilute solution A solution that contains a very small amount of solute relative to the amount of solvent. (4.4, 12.5)

dimensional analysis The use of units as a guide to solving problems. (1.8)

dimer The product that forms from the reaction of two monomers. (20.14)

diode A device that allows the flow of electrical current in only one direction. (11.13)

dipeptide Two amino acids linked together. (21.4)

dipole moment A measure of the separation of positive and negative charge in a molecule. (9.6)

dipole–dipole force An intermolecular force exhibited by polar molecules that results from the uneven charge distribution. (11.3)

disaccharide An acid that contains two ionizable protons. (4.8, 15.4) **disaccharide** A carbohydrate composed of two monosaccharides. (21.3)

dispersion force (**London force**) An intermolecular force exhibited by all atoms and molecules that results from fluctuations in the electron distribution. (11.3)

distillation The process by which mixtures of miscible liquids are separated by heating the mixture to boil off the more volatile liquid. The vaporized component is then recondensed and collected in a separate flask. (1.3)

disubstituted benzene A benzene in which two hydrogen atoms have been replaced by other atoms. (20.7)

double bond The bond that forms when two electrons are shared between two atoms. (9.5)

dry-cell battery A battery that does not contain a large amount of liquid water, often using the oxidation of zinc and the reduction of MnO₂ to provide the electrical current. (18.7)

duet A Lewis structure with two dots, signifying a filled outer electron shell for the elements H and He. (9.3)

dynamic equilibrium The point at which the rate of the reverse reaction or process equals the rate of the forward reaction or process. (11.5, 12.4, 14.2)

effective nuclear charge ($Z_{\rm eff}$) The actual nuclear charge experienced by an electron, defined as the charge of the nucleus plus the charge of the shielding electrons. (8.3)

effusion The process by which a gas escapes from a container into a vacuum through a small hole. (5.9)

electrical charge A fundamental property of certain particles that causes them to experience a force in the presence of electric fields. (2.4)

electrical current The flow of electric charge. (18.3)

electrochemical cell A device in which a chemical reaction either produces or is carried out by an electrical current. (18.3)

electrolysis The process by which electrical current is used to drive an otherwise nonspontaneous redox reaction. (18.8)

electrolyte A substance that dissolves in water to form solutions that conduct electricity. (4.5)

electrolytic cell An electrochemical cell that uses electrical current to drive a nonspontaneous chemical reaction. (18.3)

electromagnetic radiation A form of energy embodied in oscillating electric and magnetic fields. (7.2)

electromagnetic spectrum The range of the wavelengths of all possible electromagnetic radiation. (7.2)

electrometallurgy The use of electrolysis to produce metals from their compounds. (23.3)

electromotive force (emf) The force that results in the motion of electrons due to a difference in potential. (18.3)

electron A negatively charged, low-mass particle found outside the nucleus of all atoms that occupies most of the atom's volume but contributes almost none of its mass. (2.4)

electron affinity (**EA**) The energy change associated with the gaining of an electron by an atom in its gaseous state. (8.7)

electron capture The form of radioactive decay that occurs when a nucleus assimilates an electron from an inner orbital. (19.3)

electron configuration A notation that shows the particular orbitals that are occupied by electrons in an atom. (8.3)

electron geometry The geometrical arrangement of electron groups in a molecule. (10.3)

electron groups A general term for lone pairs, single bonds, multiple bonds, or lone electrons in a molecule. (10.2)

electron spin A fundamental property of electrons; spin can have a value of $\pm \frac{1}{2}$. (7.5)

electronegativity The ability of an atom to attract electrons to itself in a covalent bond. (9.6)

element A substance that cannot be chemically broken down into simpler substances. (1.3)

elementary step An individual step in a reaction mechanism. (13.6)

emission spectrum The range of wavelengths emitted by a particular element; used to identify the element. (7.3)

empirical formula A chemical formula that shows the simplest whole number ratio of atoms in the compound. (3.3)

empirical formula molar mass The sum of the masses of all the atoms in an empirical formula. (3.9)

enantiomers (optical isomers) Two molecules that are nonsuperimposable mirror images of one another. (20.3, 24.4)

endothermic reaction A chemical reaction that absorbs heat from its surroundings; for an endothermic reaction, $\Delta H > 0$. (6.5)

endpoint The point of pH change where an indicator changes color. (16.4)

energy The capacity to do work. (1.5, 6.1)

English system The system of units used in the United States and various other countries in which the inch is the unit of length, the pound is the unit of force, and the ounce is the unit of mass. (1.6)

enthalpy (H) The sum of the internal energy of a system and the product of its pressure and volume; the energy associated with the breaking and forming of bonds in a chemical reaction. (6.5)

entropy A thermodynamic function that is proportional to the number of energetically equivalent ways to arrange the components of a system to achieve a particular state; a measure of the energy randomization or energy dispersal in a system. (12.2, 17.3)

enzyme A biochemical catalyst made of protein that increases the rates of biochemical reactions. (13.7, 21.4)

equilibrium constant (K) The ratio, at equilibrium, of the concentrations of the products of a reaction raised to their stoichiometric coefficients to the concentrations of the reactants raised to their stoichiometric coefficients. (14.3)

equivalence point The point in a titration at which the added solute completely reacts with the solute present in the solution; for acidbase titrations, the point at which the amount of acid is stoichiometrically equal to the amount of base in solution. (4.8, 16.4)

ester A family of organic compounds with the general structure R - COO - R. (20.11)

ester linkage The bonds that form between a carboxylic acid and an alcohol to form an ester, such as those in triglycerides. (21.2)

ether A member of the family of organic compounds of the form R - O - R'. (20.12)

exact numbers Numbers that have no uncertainty and thus do not limit the number of significant figures in any calculation. (1.7)

exothermic reaction A chemical reaction that releases heat to its surroundings; for an exothermic reaction, $\Delta H < 0$. (6.5)

experiment A highly controlled procedure designed to generate observations that may support a hypothesis or prove it wrong. (1.2)

exponential factor A number between zero and one that represents the fraction of molecules that have enough energy to make it over the activation barrier on a given approach. (13.5)

extensive property A property that depends on the amount of a given substance, such as mass. (1.6)

extractive metallurgy The process by which an elemental metal must be extracted from the compounds in which it is found. (23.3)

face-centered cubic A crystal structure whose unit cell consists of a cube with one atom at each corner and one atom in the center of every face. (11.11)

Fahrenheit (${}^{\circ}$ **F**) **scale** The temperature scale that is most familiar in the United States, on which pure water freezes at 32 ${}^{\circ}$ F and boils at 212 ${}^{\circ}$ F. (1.6)

family A group of organic compounds with the same functional group. (3.11)

family (group) Columns within the main group elements in the periodic table that contain elements that exhibit similar chemical properties. (2.7)

Faraday's constant (*F*) The charge in coulombs of 1 mol of electrons: $F = \frac{96,485 \text{ C}}{\text{mol e}^-}$. (18.5)

fatty acid A carboxylic acid with a long hydrocarbon tail. (21.2)

ferromagnetic The state of an atom or ion that is very strongly attracted by an external magnetic field. (23.5)

fertilizer A material containing large amounts of nitrogen or phosphorus that is used to increase plant growth. (22.6)

fibrous protein A protein with a relatively linear structure; fibrous proteins tend to be insoluble in aqueous solutions. (21.5)

film-badge dosimeter A device for monitoring exposure to radiation consisting of photographic film held in a small case that is pinned to clothing. (19.5)

filtration A procedure used to separate a mixture composed of an insoluble solid and a liquid by pouring it through filter paper or some other porous membrane or layer. (1.3)

first law of thermodynamics The law stating that the total energy of the universe is constant. (6.2)

flux In pyrometallurgy, material that will react with the gangue to form a substance with a low melting point. (23.3)

formal charge The charge that an atom in a Lewis structure would have if all the bonding electrons were shared equally between the bonded atoms. (9.8)

formation constant (K_f) The equilibrium constant associated with reactions for the formation of complex ions. (16.8)

formula mass The average mass of a molecule of a compound in amu. (3.7)

formula unit The smallest, electrically neutral collection of ions in an ionic compound. (3.4)

Frasch process An industrial process for the recovery of sulfur that uses superheated water to liquefy sulfur deposits in Earth's crust and bring the molten sulfur to the surface. (22.8)

free energy of formation ($\Delta G_{\mathbf{f}}^{\circ}$) The change in free energy when 1 mol of a compound forms from its constituent elements in their standard states. (17.7)

free radical A molecule or ion with an odd number of electrons in its Lewis structure. (9.9)

freezing The phase transition from liquid to solid. (11.6)

freezing point depression The effect of a solute that causes a solution to have a lower melting point than the pure solvent. (12.7)

frequency (ν) For waves, the number of cycles (or complete wavelengths) that pass through a stationary point in one second. (7.2)

frequency factor The number of times that reactants approach the activation energy per unit time. (13.5)

fuel cell A voltaic cell that uses the oxidation of hydrogen and the reduction of oxygen, forming water, to provide electrical current. (18.7)

fullerenes Carbon clusters, such as C_{60} , bonded in roughly spherical shapes containing from 36 to over 100 carbon atoms. (22.5)

functional group A characteristic atom or group of atoms that imparts certain chemical properties to an organic compound. (3.11)

gamma (γ) **rays** The form of electromagnetic radiation with the shortest wavelength and highest energy. (7.2, 19.3)

gamma (γ) ray emission The form of radioactive decay that occurs when an unstable nucleus emits extremely high frequency electromagnetic radiation. (19.3)

gangue The undesirable minerals that are separated from specific ores. (23.3)

gas A state of matter in which atoms or molecules have a great deal of space between them and are free to move relative to one another; lacking a definite shape or volume, a gas conforms to those of its container. (1.3)

gas-evolution reaction A reaction in which two aqueous solutions are mixed and a gas forms, resulting in bubbling. (4.8)

Geiger-Müller counter A device used to detect radioactivity that uses argon atoms that become ionized in the presence of energetic particles to produce an electrical signal. (19.5)

gene A sequence of codons within a DNA molecule that codes for a single protein. (21.6)

geometric isomerism A form of stereoisomerism involving the orientation of functional groups in a molecule that contains bonds incapable of rotating. (20.5)

geometric isomers For complex ions, isomers that result when the ligands bonded to the metal have a different spatial arrangement. (24.4)

Gibbs free energy (G) A thermodynamic state function related to enthalpy and entropy by the equation G = H - TS; chemical systems tend toward lower Gibbs free energy, also called the *chemical potential*. (17.5)

globular protein A protein that folds into a roughly spherical shape so that its polar side chains are oriented outward and its nonpolar side chains toward the interior; globular proteins tend to be soluble in water. (21.5)

glycogen A highly branched form of starch. (21.3)

glycolipid A triglyceride composed of a fatty acid, a hydrocarbon chain, and a sugar molecule as the polar section. (21.2)

glycosidic linkage A bond between carbohydrates that results from a dehydration reaction. (21.3)

graphite An elemental form of carbon consisting of flat sheets of carbon atoms, bonded together as interconnected hexagonal rings held together by intermolecular forces, that can easily slide past each other. (22.5)

Haber-Bosch process The industrial process for producing ammonia from nitrogen gas and hydrogen gas. (22.6)

half-cell One half of an electrochemical cell where either oxidation or reduction occurs. (18.3)

half-life $(t_{1/2})$ The time required for the concentration of a reactant or the amount of a radioactive isotope to fall to one-half of its initial value. (13.4)

halogens Highly reactive nonmetals in group 7A of the periodic table. (2.7)

heat (q) The flow of energy caused by a temperature difference. (6.1)

heat capacity (*C*) The quantity of heat required to change a system's temperature by 1 °C. (6.3)

heat of fusion (ΔH_{fus}) The amount of heat required to melt 1 mole of a solid. (11.6)

heat of hydration ($\Delta H_{\text{hydration}}$) The enthalpy change that occurs when 1 mole of gaseous solute ions are dissolved in water. (12.3)

heat of reaction (ΔH_{rxn}) The enthalpy change for a chemical reaction. (6.5)

heat of vaporization (ΔH_{vap}) The amount of heat required to vaporize one mole of a liquid to a gas. (11.5)

Heisenberg's uncertainty principle The principle stating that due to the wave-particle duality, it is fundamentally impossible to precisely determine both the position and velocity of a particle at a given moment in time. (7.4)

Henderson-Hasselbalch equation An equation used to easily calculate the pH of a buffer solution from the initial concentrations of the buffer components, assuming that the "x is small" approximation

is valid: pH = p
$$K_a$$
 + log $\frac{[\text{base}]}{[\text{acid}]}$. (16.2)

Henry's law An equation that expresses the relationship between solubility of a gas and pressure: $S_{\rm gas} = k_{\rm H} P_{\rm gas}$. (12.4)

Hess's law The law stating that if a chemical equation can be expressed as the sum of a series of steps, then ΔH_{rxn} for the overall equation is the sum of the heats of reactions for each step. (6.7)

heterogeneous catalysis Catalysis in which the catalyst and the reactants exist in different phases. (13.7)

heterogeneous mixture A mixture in which the composition varies from one region to another. (1.3)

hexagonal closest packing A closest-packed arrangement in which the atoms of the third layer align exactly over those in the first layer. (11.11)

hexose A six-carbon sugar. (21.3)

high-spin complex A complex ion with weak field ligands that have the same number of unpaired electrons as the free metal ion. (24.5)

homogeneous catalysis Catalysis in which the catalyst exists in the same phase as the reactants. (13.7)

homogeneous mixture A mixture with the same composition throughout. (1.3)

Hund's rule The principle stating that when electrons fill degenerate orbitals, they first fill them singly with parallel spins. (8.3)

hybrid orbitals Orbitals formed from the combination of standard atomic orbitals that correspond more closely to the actual distribution of electrons in a chemically bonded atom. (10.7)

hybridization A mathematical procedure in which standard atomic orbitals are combined to form new, hybrid orbitals. (10.7)

hydrate An ionic compound that contains a specific number of water molecules associated with each formula unit. (3.5)

hydrazine N_2H_4 , a nitrogen and hydrogen compound in which nitrogen has a negative oxidation state (-2). (22.6)

hydrocarbon An organic compound that contains only carbon and hydrogen. (3.11)

hydrogen azide A nitrogen and hydrogen compound with a higher hydrogen-to-nitrogen ratio than ammonia or hydrazine. (22.6)

hydrogen bond A strong dipole–dipole attractive force between a hydrogen bonded to O, N, or F and one of these electronegative atoms on a neighboring molecule. (11.3)

hydrogenation The catalyzed addition of hydrogen to alkene double bonds to make single bonds. (13.7)

hydrolysis The splitting of a chemical bond with water, resulting in the addition of H and OH to the products. (21.3)

hydrometallurgy The use of an aqueous solution to extract metals from their ores. (23.3)

hydronium ion H_3O^+ , the ion formed from the association of a water molecule with an H^+ ion donated by an acid. (4.8, 15.3)

hypothesis A tentative interpretation or explanation of an observation. A good hypothesis is *falsifiable*. (1.2)

hypoxia A physiological condition caused by low levels of oxygen, marked by dizziness, headache, shortness of breath, and eventually unconsciousness or even death in severe cases. (5.6)

ideal gas constant The proportionality constant of the ideal gas law, R, equal to $8.314 \text{ J/mol} \cdot \text{K}$ or $0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$. (5.4)

ideal gas law The law that combines the relationships of Boyle's, Charles's, and Avogadro's laws into one comprehensive equation of state with the proportionality constant R in the form PV = nRT. (5.4)

ideal solution A solution that follows Raoult's law at all concentrations for both solute and solvent. (12.6)

indeterminacy The principle that present circumstances do not necessarily determine future evens in the quantum-mechanical realm. (7.4)

indicator A dye whose color depends on the pH of the solution it is dissolved in; often used to detect the endpoint of a titration. (4.8, 16.4)

infrared (IR) radiation Electromagnetic radiation emitted from warm objects, with wavelengths slightly larger than those of visible light. (7.2)

insoluble Incapable of dissolving in water or being extremely difficult of solution. (4.5)

integrated rate law A relationship between the concentrations of the reactants in a chemical reaction and time. (13.4)

intensive property A property such as density that is independent of the amount of a given substance. (1.6)

interference The superposition of two or more waves overlapping in space, resulting in either an increase in amplitude (constructive interference) or a decrease in amplitude (destructive interference). (7.2)

interhalogen compounds A class of covalent compounds that contain two different halogens. (22.9)

internal energy (E) The sum of the kinetic and potential energies of all of the particles that compose a system. (6.2)

International System of Units (SI) The standard unit system used by scientists, based on the metric system. (1.6)

interstitial alloy An alloy in which small, usually nonmetallic atoms fit between the metallic atoms of a crystal. (23.4)

ion An atom or molecule with a net charge caused by the loss or gain of electrons. (2.6)

ion product constant for water (K_w) The equilibrium constant for the autoionization of water. (15.5)

ion–dipole force An intermolecular force between an ion and the oppositely charged end of a polar molecule. (11.3)

ionic bond A chemical bond formed between two oppositely charged ions, generally a metallic cation and a nonmetallic anion, that are attracted to one another by electrostatic forces. (3.2, 9.2)

ionic carbides Binary compounds composed of carbon combined with low-electronegativity metals. (22.5)

ionic compound A compound composed of cations and anions bound together by electrostatic attraction. (3.4)

ionic solids Solids whose composite units are ions; they generally have high melting points. (11.12)

ionization energy (IE) The energy required to remove an electron from an atom or ion in its gaseous state. (8.7)

ionizing power The ability of radiation to ionize other molecules and atoms. (19.3)

irreversible reaction A reaction that does not achieve the theoretical limit of available free energy. (17.7)

isotopes Atoms of the same element with the same number of protons but different numbers of neutrons and consequently different masses. (2.6)

joule (J) The SI unit for energy: equal to $1 \text{ kg} \cdot \text{m}^2/\text{s}^2$. (6.1)

kelvin (**K**) The SI standard unit of temperature. (1.6)

Kelvin scale The temperature scale that assigns 0 K (-273 °C or -459 °F) to the coldest temperature possible, absolute zero, which is the temperature at which molecular motion virtually stops: 1 K = 1 °C. (1.6)

ketone A member of the family of organic compounds that contain a carbonyl functional group (C = O) bonded to two R groups, neither of which is a hydrogen atom. (20.10)

ketose A sugar that is a ketone. (21.3)

kilogram (kg) The SI standard unit of mass defined as the mass of a block of metal kept at the International Bureau of Weights and Measures at Sèvres, France. (1.6)

kilowatt-hour (kWh) An energy unit used primarily to express large amounts of energy produced by the flow of electricity; equal to $3.60 \times 10^6 \, \text{J}$. (6.1)

kinetic energy The energy associated with motion of an object. (1.5, 6.1)

kinetic molecular theory A model of an ideal gas as a collection of point particles in constant motion undergoing completely elastic collisions. (5.8)

lanthanide contraction The trend toward leveling off in size of the atoms in the third and fourth transition rows due to the ineffective shielding of the f sublevel electrons. (24.2)

lattice energy The energy associated with forming a crystalline lattice from gaseous ions. (9.4)

law see scientific law

law of conservation of energy A law stating that energy can neither be created nor destroyed, only converted from one form to another. (1.5, 6.1)

law of conservation of mass A law stating that matter is neither created nor destroyed in a chemical reaction. (1.2)

law of definite proportions A law stating that all samples of a given compound have the same proportions of their constituent elements. (2.3)

law of mass action The relationship between the balanced chemical equation and the expression of the equilibrium constant. (14.3)

law of multiple proportions A law stating that when two elements (A and B) form two different compounds, the masses of element B that combine with one gram of element A can be expressed as a ratio of small whole numbers. (2.3)

Le Châtelier's principle The principle stating that when a chemical system at equilibrium is disturbed, the system shifts in a direction that minimizes the disturbance. (14.9)

leaching The process by which a metal is separated out of a mixture by selectively dissolving it into solution. (23.3)

lead–acid storage battery A battery that uses the oxidation of lead and the reduction of lead(IV) oxide in sulfuric acid to provide electrical current. (18.7)

lever rule The rule that states that in a two-phase region, whichever phase is closest to the composition of the alloy is the more abundant phase. (23.4)

levorotatory Capable of rotating the polarization of light counterclockwise. (20.3)

Lewis acid An atom, ion, or molecule that is an electron pair acceptor. (15.11)

Lewis base An atom, ion, or molecule that is an electron pair donor. (15.11)

Lewis electron-dot structures (Lewis structures) A drawing that represents chemical bonds between atoms as shared or transferred electrons; the valence electrons of atoms are represented as dots. (9.1)

Lewis theory A simple model of chemical bonding using diagrams that represent bonds between atoms as lines or pairs of dots. In this theory, atoms bond together to obtain stable octets (eight valence electrons). (9.1)

ligand A neutral molecule or an ion that acts as a Lewis base with the central metal ion in a complex ion. (16.8, 24.3)

limiting reactant The reactant that has the smallest stoichiometric amount in a reactant mixture and consequently limits the amount of product in a chemical reaction. (4.3)

linear accelerator A particle accelerator in which a charged particle is accelerated in an evacuated tube by a potential difference between the ends of the tube or by alternating charges in sections of the tube. (19.10)

linear geometry The molecular geometry of three atoms with a 180° bond angle due to the repulsion of two electron groups. (10.2)

linkage isomers Isomers of complex ions that occur when some ligands coordinate to the metal in different ways. (24.4)

lipid A member of the class of biochemical compounds that are insoluble in water but soluble in nonpolar solvents, including fatty acids, triglycerides, and steroids. (21.2)

lipid bilayer A double-layered structure made of phospholipids or glycolipids, in which the polar heads of the molecules interact with the environment and the nonpolar tails interact with each other; a component of many cellular membranes. (21.2)

liquid A state of matter in which atoms or molecules pack about as closely as they do in solid matter but are free to move relative to each other, giving a fixed volume but not a fixed shape. (1.3)

liter (L) A unit of volume equal to 1000 cm³ or 1.057 qt. (1.6)

lithium ion battery A battery that produces electrical current in the form of motion of lithium ions from the anode to the cathode. (18.7)

lone pair A pair of electrons associated with only one atom. (9.5)

low-spin complex A complex ion with strong field ligands that have fewer unpaired electrons than the free metal ion. (24.5)

magic numbers Certain numbers of nucleons (N or Z = 2, 8, 20, 28, 50, 82, and <math>N = 126) that confer unique stability. (19.4)

magnetic quantum number (m_1) An integer that specifies the orientation of an orbital. (7.5)

main-group elements Those elements found in the s or p blocks of the periodic table, whose properties tend to be predictable based on their position in the table. (2.7, 22.2)

manometer An instrument used to determine the pressure of a gaseous sample, consisting of a liquid-filled U-shaped tube with one end exposed to the ambient pressure and the other end connected to the sample. (5.2)

mass A measure of the quantity of matter making up an object. (1.6) mass defect The difference in mass between the nucleus of an atom and the sum of the separated particles that make up that nucleus. (19.8) mass number (A) The sum of the number of protons and neutrons in an atom. (2.6)

mass percent composition (mass percent) An element's percentage of the total mass of a compound containing the element. (3.8)

mass spectrometry An experimental method of determining the precise mass and relative abundance of isotopes in a given sample using an instrument called a *mass spectrometer*. (2.8)

matter Anything that occupies space and has mass. (1.3)

mean free path The average distance that a molecule in a gas travels between collisions. (5.9)

melting (fusion) The phase transition from solid to liquid. (11.6)

melting point The temperature at which the molecules of a solid have enough thermal energy to overcome intermolecular forces and become a liquid. (11.6)

metals A large class of elements that are generally good conductors of heat and electricity, malleable, ductile, lustrous, and tend to lose electrons during chemical changes. (2.7)

metallic atomic solids Atomic solids held together by metallic bonds; they have variable melting points. (11.12)

metallic bonding The type of bonding that occurs in metal crystals, in which metal atoms donate their electrons to an electron sea, delocalized over the entire crystal lattice. (9.2)

metallic carbides Binary compounds composed of carbon combined with metals that have a metallic lattice with holes small enough to fit carbon atoms. (22.5)

metalloids A category of elements found on the boundary between the metals and nonmetals of the periodic table, with properties intermediate between those of both groups; also called *semimetals*. (2.7)

metallurgy The part of chemistry that includes all the processes associated with mining, separating, and refining metals and the subsequent production of pure metals and mixtures of metals called alloys. (23.1)

meter (m) The SI standard unit of length; equivalent to 39.37 inches. (1.6)

metric system The system of measurements used in most countries in which the meter is the unit of length, the kilogram is the unit of mass, and the second is the unit of time. (1.6)

microwaves Electromagnetic radiation with wavelengths slightly longer than those of infrared radiation; used for radar and in microwave ovens. (7.2)

milliliter (mL) A unit of volume equal to 10^{-3} L or 1 cm³. (1.6)

millimeter of mercury (mmHg) A common unit of pressure referring to the air pressure required to push a column of mercury to a height of 1 mm in a barometer; 760 mmHg = 1 atm. (5.2)

mineral A homogenous, naturally occurring, crystalline inorganic solid. (22.2)

miscibility The ability to mix without separating into two phases. (11.3)

miscible The ability of two or more substances to be soluble in each other in all proportions. (12.2)

 $\begin{array}{ll} \textbf{mixture} & A \text{ substance composed of two or more different types} \\ of atoms or molecules that can be combined in variable proportions. (1.3) \end{array}$

molality (*m*) A means of expressing solution concentration as the number of moles of solute per kilogram of solvent. (12.5)

molar heat capacity The amount of heat required to raise the temperature of one mole of a substance by $1 \, ^{\circ}$ C. (6.3)

molar mass The mass in grams of one mole of atoms of an element; numerically equivalent to the atomic mass of the element in amu. (2.9) molar solubility The solubility of a compound in units of moles per

liter. (16.5)

molar volume The volume occupied by one mole of a gas; the molar volume of an ideal gas at STP is 22.4 L. (5.5)

molarity (M) A means of expressing solution concentration as the number of moles of solute per liter of solution. (4.4, 12.5)

mole (mol) A unit defined as the amount of material containing 6.0221421×10^{23} (Avogadro's number) particles. (2.9)

mole fraction (χ_A) The number of moles of a component in a mixture divided by the total number of moles in the mixture. (5.6)

mole fraction (χ_{solute}) A means of expressing solution concentration as the number of moles of solute per moles of solution. (12.5)

mole percent A means of expressing solution concentration as the mole fraction multiplied by 100%. (12.5)

molecular compound Compounds composed of two or more covalently bonded nonmetals. (3.4)

molecular element Those elements that exist in nature with diatomic or polyatomic molecules as their basic unit. (3.4)

molecular equation An equation showing the complete neutral formula for each compound in a reaction. (4.7)

molecular formula A chemical formula that shows the actual number of atoms of each element in a molecule of a compound. (3.3)

molecular geometry The geometrical arrangement of atoms in a molecule. (10.3)

molecular orbital theory An advanced model of chemical bonding in which electrons reside in molecular orbitals delocalized over the entire molecule. In the simplest version, the molecular orbitals are simply linear combinations of atomic orbitals. (10.8)

molecular solids Solids whose composite units are molecules; they generally have low melting points. (11.12)

molecularity The number of reactant particles involved in an elementary step. (13.6)

molecule Two or more atoms joined chemically in a specific geometrical arrangement. (1.1)

monodentate Describes ligands that donate only one electron pair to the central metal. (24.3)

monoprotic acid An acid that contains only one ionizable proton. (15.4)

monosaccharide The simplest carbohydrates, with three to eight carbon atoms and only one aldehyde or ketone group. (21.3)

nanotubes Long, tubular structures consisting of interconnected C_6 rings. (22.5)

natural abundance The relative percentage of a particular isotope in a naturally occurring sample with respect to other isotopes of the same element. (2.6)

Nernst equation The equation relating the cell potential of an electrochemical cell to the standard cell potential and the reaction

quotient;
$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0592 \text{ V}}{n} \log Q$$
. (18.6)

net ionic equation An equation that shows only the species that actually change during the reaction. (4.7)

network covalent atomic solids Atomic solids held together by covalent bonds; they have high melting points. (11.12)

neutral The state of a solution where the concentrations of H_3O^+ and OH^- are equal. (15.4)

neutron An electrically neutral subatomic particle found in the nucleus of an atom, with a mass almost equal to that of a proton. (2.5)

nickel-cadmium (**NiCad**) **battery** A battery that consists of an anode composed of solid cadmium and a cathode composed of NiO(OH)(s) in a KOH solution. (18.7)

nickel-metal hydride (**NiMH**) **battery** A battery that uses the same cathode reaction as the NiCad battery but a different anode reaction, the oxidation of hydrogens in a metal alloy. (18.7)

nido-boranes Boranes that have the formula B_nH_{n+4} and consist of a cage of boron atoms missing one corner. (22.4)

nitrogen narcosis A physiological condition caused by an increased partial pressure of nitrogen, resulting in symptoms similar to those of intoxication. (5.6)

noble gases The group 8A elements, which are largely unreactive (inert) due to their stable filled p orbitals. (2.7)

node A point where the wave function (ψ) , and therefore the probability density (ψ^2) and radial distribution function, all go through zero (7.6)

nonbonding atomic solids Atomic solids held together by dispersion forces; they have low melting points. (11.12)

nonbonding orbital An orbital whose electrons remain localized on an atom. (10.8)

nonelectrolyte A compound that does not dissociate into ions when dissolved in water. (4.5)

nonmetal A class of elements that tend to be poor conductors of heat and electricity and usually gain electrons during chemical reactions. (2.7)

nonvolatile Not easily vaporized. (11.5)

normal boiling point The temperature at which the vapor pressure of a liquid equals 1 atm. (11.5)

n-type semiconductor A semiconductor that employs negatively charged electrons in the conduction band as the charge carriers. (11.13)

nuclear binding energy The amount of energy that would be required to break apart the nucleus into its component nucleons. (19.8)

nuclear equation An equation that represents nuclear processes such as radioactivity. (19.3)

nuclear fission The splitting of the nucleus of an atom, resulting in a tremendous release of energy. (19.7)

nuclear fusion The combination of two light nuclei to form a heavier one. (19.9)

nuclear theory The theory that most of the atom's mass and all of its positive charge is contained in a small, dense nucleus. (2.5)

nucleons The particles that compose the nucleus and that are protons and neutrons. (19.4)

nucleotides The individual units composing nucleic acids; each consists of a phosphate group, a sugar, and a nitrogenous base. (21.6)

nucleus The very small, dense core of the atom that contains most of the atom's mass and all of its positive charge; it is composed of protons and neutrons. (2.5)

nuclide A particular isotope of an atom. (19.3)

octahedral arrangement The molecular geometry of seven atoms with 90° bond angles. (10.2)

octahedral hole A space that exists in the middle of six atoms on two adjacent close-packed sheets of atoms in a crystal lattice. (23.4)

octet A Lewis structure with eight dots, signifying a filled outer electron shell for s and p block elements. (9.3)

octet rule The tendency for most bonded atoms to possess or share eight electrons in their outer shell to obtain stable electron configurations and lower their potential energy. (9.3)

optical isomers Two molecules that are nonsuperimposable mirror images of one another. (20.3, 24.4)

orbital A probability distribution map, based on the quantum mechanical model of the atom, used to describe the likely position of an electron in an atom; also an allowed energy state for an electron. (7.5)

orbital diagram A diagram that gives information similar to an electron configuration but symbolizes an electron as an arrow in a box representing an orbital, with the arrow's direction denoting the electron's spin. (8.3)

ore A rock that contains a high concentration of a specific mineral. (23.2)

organic chemistry The study of carbon-based compounds. (20.1)

organic molecule A molecule containing carbon combined with several other elements including hydrogen, nitrogen, oxygen, or sulfur. (20.1)

orthosilicates Silicates in which tetrahedral ${\rm SO_4}^{4-}$ ions stand alone. (22.3)

osmosis The flow of solvent from a solution of lower solute concentration to one of higher solute concentration. (12.7)

osmotic pressure The pressure required to stop osmotic flow. (12.7)

Ostwald process An industrial process used for commercial preparation of nitric acid. (22.6)

overall order The sum of the orders of all reactants in a chemical reaction. (13.3)

oxidation The loss of one or more electrons; also the gaining of oxygen or the loss of hydrogen. (4.9)

oxidation state (oxidation number) A positive or negative whole number that represents the "charge" an atom in a compound would have if all shared electrons were assigned to the atom with a greater attraction for those electrons. (4.9)

oxidation–reduction (**redox**) **reaction** Reactions in which electrons are transferred from one reactant to another and the oxidation states of certain atoms are changed. (4.9)

oxidizing agent A substance that causes the oxidation of another substance; an oxidizing agent gains electrons and is reduced. (4.9)

oxyacid An acid composed of hydrogen and an oxyanion. (3.6)

oxyanion A polyatomic anion containing a nonmetal covalently bonded to one or more oxygen atoms. (3.5)

oxygen toxicity A physiological condition caused by an increased level of oxygen in the blood, resulting in muscle twitching, tunnel vision, and convulsions. (5.6)

ozone O_3 , an allotrope of oxygen that is a toxic blue diamagnetic gas with a strong odor. (22.7)

packing efficiency The percentage of volume of a unit cell occupied by the atoms, assumed to be spherical. (11.11)

paramagnetic The state of an atom or ion that contains unpaired electrons and is, therefore, attracted by an external magnetic field. (8.7, 10.8)

partial pressure (P_n) The pressure due to any individual component in a gas mixture. (5.6)

parts by mass A unit for expressing solution concentration as the mass of the solute divided by the mass of the solution multiplied by a multiplication factor. (12.5)

parts by volume A unit for expressing solution concentration as the volume of the solute divided by the volume of the solution multiplied by a multiplication factor. (12.5)

parts per billion (ppb) A unit for expressing solution concentration in parts by mass where the multiplication factor is 10^9 . (12.5)

parts per million (ppm) A unit for expressing solution concentration in parts by mass where the multiplication factor is 10^6 . (12.5)

pascal (Pa) The SI unit of pressure, defined as 1 N/m². (5.2)

Pauli exclusion principle The principle that no two electrons in an atom can have the same four quantum numbers. (8.3)

penetrating power The ability of radiation to penetrate matter. (19.3) **penetration** The phenomenon of some higher-level atomic orbitals having significant amounts of probability within the space occupied by orbitals of lower energy level. For example, the 2s orbital penetrates into the 1s orbital. (8.3)

peptide bond The bond that forms between the amine end of one amino acid and the carboxylic end of another. (21.4)

percent by mass A unit for expressing solution concentration in parts by mass with a multiplication factor of 100%. (12.5)

percent ionic character The ratio of a bond's actual dipole moment to the dipole moment it would have if the electron were transferred completely from one atom to the other, multiplied by 100%. (9.6)

percent ionization The concentration of ionized acid in a solution divided by the initial concentration of acid multiplied by 100%. (15.6)

percent yield The percentage of the theoretical yield of a chemical reaction that is actually produced; the ratio of the actual yield to the theoretical yield multiplied by 100%. (4.3)

periodic law A law based on the observation that when the elements are arranged in order of increasing mass, certain sets of properties recur periodically. (2.7)

periodic property A property of an element that is predictable based on an element's position in the periodic table. (8.1)

permanent dipole A permanent separation of charge; a molecule with a permanent dipole always has a slightly negative charge at one end and a slightly positive charge at the other. (11.3)

pH The negative log of the concentration of H_3O^+ in a solution; the pH scale is a compact way to specify the acidity of a solution. (15.4)

phase With regard to waves and orbitals, the phase is the sign of the amplitude of the wave, which can be positive or negative. (7.6)

phase diagram A map of the phase of a substance as a function of pressure and temperature. (11.8)

phenyl group A benzene ring treated as a substituent. (20.7)

phosphine PH₃, a colorless, poisonous gas that smells like decaying fish and has an oxidation state of -3 for phosphorus. (22.6)

phospholipid Compound similar in structure to a triglyceride but with one fatty acid replaced by a phosphate group. (21.2)

phosphorescence The long-lived emission of light that sometimes follows the absorption of light by certain atoms and molecules. (19.2)

photoelectric effect The observation that many metals emit electrons when light falls upon them. (7.2)

photon (quantum) The smallest possible packet of electromagnetic radiation with an energy equal to $h\nu$. (7.2)

physical change A change that alters only the state or appearance of a substance but not its chemical composition. (1.4)

physical property A property that a substance displays without changing its chemical composition. (1.4)

pi (π) **bond** The bond that forms between two p orbitals that overlap side to side. (10.7)

p–n junctions Tiny areas in electronic circuits that have p-type semiconductors on one side and n-type on the other. (11.13)

polar covalent bond A covalent bond between two atoms with significantly different electronegativities, resulting in an uneven distribution of electron density. (9.6)

polyatomic ion An ion composed of two or more atoms. (3.5)

polydentate Describes ligands that donate more than one electron pair to the central metal. (24.3)

polypeptide A chain of amino acids joined together by peptide bonds. (21.4)

polyprotic acid An acid that contains more than one ionizable proton and releases them sequentially. (4.8, 15.9)

polysaccharide A long, chainlike molecule composed of many monosaccharide units bonded together. (21.3)

positron The particle released in positron emission; equal in mass to an electron but opposite in charge. (19.3)

positron emission The form of radioactive decay that occurs when an unstable nucleus emits a positron. (19.3)

positron emission tomography (PET) A specialized imaging technique that employs positron-emitting nuclides, such as fluorine-18, as a radiotracer. (19.12)

potential difference A measure of the difference in potential energy (usually in joules) per unit of charge (coulombs). (18.3)

potential energy The energy associated with the position or composition of an object. (1.5, 6.1)

powder metallurgy A process by which metallic components are made from powdered metal. (23.3)

precipitate A solid, insoluble ionic compound that forms in, and separates from, a solution. (4.6)

precipitation reaction A reaction in which a solid, insoluble product forms upon mixing two solutions. (4.6)

precision A term that refers to how close a series of measurements are to one another or how reproducible they are. (1.7)

prefix multipliers Multipliers that change the value of the unit by powers of ten. (1.6)

pressure A measure of force exerted per unit area; in chemistry, most commonly the force exerted by gas molecules as they strike the surfaces around them. (5.1)

pressure–volume work The work that occurs when a volume change takes place against an external pressure. (6.3)

primary structure The sequence of amino acids in a protein chain. (21.5)

primary valence The oxidation state on the central metal atom in a complex ion. (24.3)

principal level (shell) The group of orbitals with the same value of n. (7.5)

principal quantum number (n) An integer that specifies the overall size and energy of an orbital. The higher the quantum number n, the greater the average distance between the electron and the nucleus and the higher its energy. (7.5)

probability density The probability (per unit volume) of finding the electron at a point in space as expressed by a three-dimensional plot of the wave function squared (ψ^2) . (7.6)

products The substances produced in a chemical reaction; they appear on the right-hand side of a chemical equation. (3.10)

proton A positively charged subatomic particle found in the nucleus of an atom. (2.5)

p-type semiconductor A semiconductor that employs positively charged "holes" in the valence band as the charge carriers. (11.13)

pure substance A substance composed of only one type of atom or molecule. (1.3)

pyrometallurgy A technique of extractive metallurgy in which heat is used to extract a metal from its mineral. (23.3)

pyrosilicates Silicates in which two SO_4^{4-} tetrahedral ions share a corner. (22.3)

pyroxenes Silicates in which SO_4^{4-} tetrahedral ions bond together to form chains. (22.3)

qualitative analysis A systematic way to determine the ions present in an unknown solution. (16.7)

quantitative analysis A systematic way to determine the amounts of substances in a solution or mixture. (16.7)

quantum number One of four interrelated numbers that determine the shape and energy of orbitals, as specified by a solution of the Schrödinger equation. (7.5)

quantum-mechanical model A model that explains the behavior of absolutely small particles such as electrons and photons. (7.1)

quartz A silicate crystal that has a formula unit of SiO₂. (22.3)

quaternary structure The way that subunits fit together in a multimeric protein. (21.5)

racemic mixture An equimolar mixture of two optical isomers that does not rotate the plane of polarization of light at all. (20.3)

radio waves The form of electromagnetic radiation with the longest wavelengths and smallest energy. (7.2)

radioactive The state of those unstable atoms that emit subatomic particles or high-energy electromagnetic radiation. (19.1)

radioactivity The emission of subatomic particles or high-energy electromagnetic radiation by the unstable nuclei of certain atoms. (2.5, 19.1)

radiocarbon dating A form of radiometric dating based on the C-14 isotope. (19.6)

radiometric dating A technique used to estimate the age of rocks, fossils, or artifacts that depends on the presence of radioactive isotopes and their predictable decay with time. (19.6)

radiotracer A radioactive nuclide that has been attached to a compound or introduced into a mixture in order to track the movement of the compound or mixture within the body. (19.12)

random coils Sections of a protein's secondary structure that have less-regular patterns than α -helixes or β -pleated sheets. (21.5)

random error Error that has equal probability of being too high or too low. (1.7)

Raoult's law An equation used to determine the vapor pressure of a solution; $P_{\text{soln}} = X_{\text{solv}} P_{\text{solv}}^{\circ}$. (12.6)

rate constant (k) A constant of proportionality in the rate law. (13.3)

rate law A relationship between the rate of a reaction and the concentration of the reactants. (13.3)

rate-determining step The step in a reaction mechanism that occurs much more slowly than any of the other steps. (13.6)

reactants The starting substances of a chemical reaction; they appear on the left-hand side of a chemical equation. (3.10)

reaction intermediates Species that are formed in one step of a reaction mechanism and consumed in another. (13.6)

reaction mechanism A series of individual chemical steps by which an overall chemical reaction occurs. (13.6)

reaction order (*n*) A value in the rate law that determines how the rate depends on the concentration of the reactants. (13.3)

reaction quotient (Q_c) The ratio, at any point in the reaction, of the concentrations of the products of a reaction raised to their stoichiometric coefficients to the concentrations of the reactants raised to their stoichiometric coefficients. (14.7)

recrystallization A technique used to purify solids in which the solid is put into hot solvent until the solution is saturated; when the solution cools, the purified solute comes out of solution. (12.4)

red phosphorus An allotrope of phosphorus similar in structure to white phosphorus but with one of the bonds between two phosphorus atoms in the tetrahedron broken; red phosphorus is more stable than white. (22.6)

reducing agent A substance that causes the reduction of another substance; a reducing agent loses electrons and is oxidized. (4.9)

reduction The gaining of one or more electrons; also the gaining of hydrogen or the loss of oxygen. (4.9)

refine To purify, particularly a metal. (23.3)

refining A process in which the crude material is purified. (23.3)

rem A unit of the dose of radiation exposure that stands for roentgen equivalent man, where a roentgen is defined as the amount of radiation that produces 2.58×10^{-4} C of charge per kg of air. (19.11)

resonance hybrid The actual structure of a molecule that is intermediate between two or more resonance structures. (9.8)

resonance structures Two or more valid Lewis structures that are shown with double-headed arrows between them to indicate that the actual structure of the molecule is intermediate between them. (9.8)

reversible As applied to a reaction, the ability to proceed in either the forward or the reverse direction. (14.2)

reversible reaction A reaction that achieves the theoretical limit with respect to free energy and will change direction upon an infinitesimally small change in a variable (such as temperature or pressure) related to the reaction. (17.7)

roasting Heating that causes a chemical reaction between a furnace atmosphere and a mineral in order to process ores. (23.3)

salt An ionic compound formed in a neutralization reaction by the replacement of an H^+ ion from the acid with a cation from the base. (4.8)

salt bridge An inverted, U-shaped tube containing a strong electrolyte such as KNO₃ that connects the two half-cells, allowing a flow of ions that neutralizes the charge build-up. (18.3)

saturated fat A triglyceride with no double bonds in the hydrocarbon chain; saturated fats tend to be solid at room temperature. (21.2)

saturated hydrocarbon A hydrocarbon containing no double bonds in the carbon chain. (20.4)

saturated solution A solution in which the dissolved solute is in dynamic equilibrium with any undissolved solute; any added solute will not dissolve. (12.4)

scientific law A brief statement or equation that summarizes past observations and predicts future ones. (1.2)

scientific method An approach to acquiring knowledge about the natural world that begins with observations and leads to the formation of testable hypotheses. (1.2)

scintillation counter A device for the detection of radioactivity using a material that emits ultraviolet or visible light in response to excitation by energetic particles. (19.5)

second (s) The SI standard unit of time, defined as the duration of 9,192,631,770 periods of the radiation emitted from a certain transition in a cesium-133 atom. (1.6)

second law of thermodynamics A law stating that for any spontaneous process, the entropy of the universe increases ($\Delta S_{\rm univ} > 0$). (17.3)

secondary structure The regular periodic or repeating patterns in the arrangement of protein chains. (21.5)

secondary valence The number of molecules or ions directly bound to the metal atom in a complex ion; also called the *coordination number*. (24.3)

seesaw The molecular geometry of a molecule with trigonal bipyramidal electron geometry and one lone pair in an axial position. (10.3)

selective precipitation A process involving the addition of a reagent to a solution that forms a precipitate with one of the dissolved ions but not the others. (16.6)

semiconductor A material with intermediate electrical conductivity that can be changed and controlled. (2.7)

semipermeable membrane A membrane that selectively allows some substances to pass through but not others. (12.7)

shielding The effect on an electron of repulsion by electrons in lower-energy orbitals that screen it from the full effects of nuclear charge. (8.3)

sigma (σ) **bond** The resulting bond that forms between a combination of any two s, p, or hybridized orbitals that overlap end to end. (10.7)

significant figures (significant digits) In any reported measurement, the non-place-holding digits that indicate the precision of the measured quantity. (1.7)

silica A silicate crystal that has a formula unit of SiO_2 , also called *quartz*. (22.3)

silicates Covalent atomic solids that contain silicon, oxygen, and various metal atoms. (22.3)

simple cubic A unit cell that consists of a cube with one atom at each corner. (11.11)

slag In pyrometallurgy, the waste liquid solution that is formed between the flux and gangue; usually a silicate material. (23.3)

smelting A form of roasting in which the product is liquefied, which aids in the separation. (23.3)

solid A state of matter in which atoms or molecules are packed close to one another in fixed locations with definite volume. (1.3)

solubility The amount of a substance that will dissolve in a given amount of solvent. (12.2)

solubility product constant (K_{sp}) The equilibrium expression for a chemical equation representing the dissolution of a slightly to moderately soluble ionic compound. (16.5)

soluble Able to dissolve to a significant extent, usually in water. (4.5)

solute The minority component of a solution. (4.4, 12.1)

solution A homogenous mixture of two substances. (4.4, 12.1)

solvent The majority component of a solution. (4.4, 12.1)

space-filling molecular model A representation of a molecule that shows how the atoms fill the space between them. (3.3)

specific heat capacity (C_s) The amount of heat required to raise the temperature of 1 g of a substance by 1 °C. (6.3)

spectator ion Ions in a complete ionic equation that do not participate in the reaction and therefore remain in solution. (4.7)

spin quantum number (m_s) The fourth quantum number, which denotes the electron's spin as either $\frac{1}{2}$ (up arrow) or $-\frac{1}{2}$ (down arrow). (8.3)

spontaneous process A process that occurs without ongoing outside intervention. (17.2)

square planar The molecular geometry of a molecule with octahedral electron geometry and two lone pairs. (10.3)

square pyramidal The molecular geometry of a molecule with octahedral electron geometry and one lone pair. (10.3)

standard cell potential (standard emf) (E_{cell}°) The cell potential for a system in standard states (solute concentration of 1 M and gaseous reactant partial pressure of 1 atm). (18.3)

standard change in free energy (ΔG_{rxn}°) The change in free energy for a process when all reactants and products are in their standard states. (17.7)

standard enthalpy change (ΔH°) The change in enthalpy for a process when all reactants and products are in their standard states. (6.8)

standard enthalpy of formation ($\Delta H_{\rm f}^{\circ}$) The change in enthalpy when 1 mol of a compound forms from its constituent elements in their standard states. (6.8)

standard entropy change (ΔS_{rxn}) The change in entropy for a process when all reactants and products are in their standard states. (17.6)

standard entropy change for a reaction (ΔS_{rxn}°) The change in entropy for a process in which all reactants and products are in their standard states. (17.6)

Standard Hydrogen Electrode (**SHE**) The half-cell consisting of an inert platinum electrode immersed in 1 M HCl with hydrogen gas at 1 atm bubbling through the solution; used as the standard of a cell potential of zero. (18.4)

standard molar entropy (S°) A measure of the energy dispersed into one mole of a substance at a particular temperature. (17.6)

standard state For a gas the standard state is the pure gas at a pressure of exactly 1 atm; for a liquid or solid the standard state is the pure substance in its most stable form at a pressure of 1 atm and the temperature of interest (often taken to be 25 °C); for a substance in solution the standard state is a concentration of exactly 1 M. (6.8)

standard temperature and pressure (STP) The conditions of T = 0 °C (273 K) and P = 1 atm; used primarily in reference to a gas. (5.5)

starch A polysaccharide that consists of glucose units bonded together by α -glycosidic linkages; the main energy storage medium for plants. (21.3)

state A classification of the form of matter as a solid, liquid, or gas. (1.3)

state function A function whose value depends only on the state of the system, not on how the system got to that state. (6.2)

stereoisomers Molecules in which the atoms are bonded in the same order but have a different spatial arrangement. (20.3, 24.4)

steroid A lipid composed of four fused hydrocarbon rings. (21.2)

stock solution A highly concentrated form of a solution used in laboratories to make less concentrated solutions via dilution. (4.4)

stoichiometry The numerical relationships between amounts of reactants and products in a balanced chemical equation. (4.2)

strong acid An acid that completely ionizes in solution. (4.5, 15.4) **strong base** A base that completely dissociates in solution. (15.7)

strong electrolyte A substance that completely dissociates into ions when dissolved in water. (4.5)

strong force Of the four fundamental forces of physics, the one that is the strongest but acts over the shortest distance; the strong force is responsible for holding the protons and neutrons together in the nucleus of an atom. (19.4)

strong-field complex A complex ion in which the crystal field splitting is large. (24.5)

structural formula A molecular formula that shows how the atoms in a molecule are connected or bonded to each other. (3.3, 20.3)

structural isomers Molecules with the same molecular formula but different structures. (20.3, 24.4)

sublevel (subshell) Those orbitals in the same principle level with the same value of n and l. (7.5)

sublimation The phase transition from solid to gas. (11.6)

substitutional alloy An alloy in which one metal atom substitutes for another in the crystal structure. (23.4)

substrate The reactant molecule of a biochemical reaction that binds to an enzyme at the active site. (13.7)

supersaturated solution An unstable solution in which more than the equilibrium amount of solute is dissolved. (12.4)

surface tension The energy required to increase the surface area of a liquid by a unit amount; responsible for the tendency of liquids to minimize their surface area, giving rise to a membrane-like surface. (11.4)

surroundings In thermodynamics, everything in the universe that exists outside the system under investigation. (6.1)

system In thermodynamics, the portion of the universe that is singled out for investigation. (6.1)

systematic error Error that tends toward being consistently either too high or too low. (1.7)

systematic name An official name for a compound, based on well-established rules, that can be determined by examining its chemical structure. (3.5)

temperature A measure of the average kinetic energy of the atoms or molecules that compose a sample of matter. (1.6)

termolecular An elementary step of a reaction in which three particles collide and go on to form products. (13.6)

tertiary structure The large-scale bends and folds produced by interactions between the R groups of amino acids that are separated by large distances in the linear sequence of a protein chain. (21.5)

tetrahedral geometry The molecular geometry of five atoms with 109.5° bond angles. (10.2)

tetrahedral hole A space that exists directly above the center point of three closest-packed metal atoms in one plane and a fourth metal located directly above the center point in the adjacent plane in a crystal lattice. (23.4)

theoretical yield The greatest possible amount of product that can be made in a chemical reaction based on the amount of limiting reactant. (4.3)

theory A proposed explanation for observations and laws, based on well-established and tested hypotheses, that presents a model of the way nature works and predicts behavior beyond the observations and laws on which it was based. (1.2)

thermal energy A type of kinetic energy associated with the temperature of an object, arising from the motion of individual atoms or molecules in the object; see also *heat*. (1.5, 6.1)

thermal equilibrium The point at which there is no additional net transfer of heat between a system and its surroundings. (6.3)

thermochemistry The study of the relationship between chemistry and energy. (6.1)

thermodynamics The general study of energy and its interconversions. (6.2)

third law of thermodynamics The law stating that the entropy of a perfect crystal at absolute zero (0 K) is zero. (17.6)

titration A laboratory procedure in which a substance in a solution of known concentration is reacted with another substance in a solution of unknown concentration in order to determine the unknown concentration; see also *acid–base titration*. (4.8)

transition elements (transition metals) Those elements found in the d block of the periodic table whose properties tend to be less predictable based simply on their position in the table. (2.7)

transmutation The transformation of one element into another as a result of nuclear reactions. (19.10)

triglyceride Triesters composed of glycerol with three fatty acids attached. (21.2)

trigonal bipyramidal The molecular geometry of six atoms with 120° bond angles between the three equatorial electron groups and 90° bond angles between the two axial electron groups and the trigonal plane. (10.2)

trigonal planar geometry The molecular geometry of four atoms with 120° bond angles in a plane. (10.2)

trigonal pyramidal The molecular geometry of a molecule with tetrahedral electron geometry and one lone pair. (10.3)

triple bond The bond that forms when three electron pairs are shared between two atoms. (9.5)

triple point The unique set of conditions at which all three phases of a substance are equally stable and in equilibrium. (11.8)

triprotic acid An acid that contains three ionizable protons. (15.4)

T-shaped The molecular geometry of a molecule with trigonal bipyramidal electron geometry and two lone pairs in axial positions. (10.3)

two-phase region The region between the two phases in a metal alloy phase diagram, where the amount of each phase depends upon the composition of the alloy. (23.4)

Tyndall effect The scattering of light by a colloidal dispersion. (12.8)

ultraviolet (UV) radiation Electromagnetic radiation with slightly smaller wavelengths than visible light. (7.2)

unimolecular Describes a reaction that involves only one particle that goes on to form products. (13.6)

unit cell The smallest divisible unit of a crystal that, when repeated in three dimensions, reproduces the entire crystal lattice. (11.11)

units Standard quantities used to specify measurements. (1.6)

unsaturated fat A triglyceride with one or more double bonds in the hydrocarbon chain; unsaturated fats tend to be liquid at room temperature. (21.2)

unsaturated hydrocarbon A hydrocarbon that includes one or more double or triple bonds. (20.5)

unsaturated solution A solution containing less than the equilibrium amount of solute; any added solute will dissolve until equilibrium is reached. (12.4)

valence bond theory An advanced model of chemical bonding in which electrons reside in quantum-mechanical orbitals localized on individual atoms that are a hybridized blend of standard atomic orbitals; chemical bonds result from an overlap of these orbitals. (10.6)

valence electrons Those electrons that are important in chemical bonding. For main-group elements, the valence electrons are those in the outermost principal energy level. (8.4)

valence shell electron pair repulsion (VSEPR) theory A theory that allows prediction of the shapes of molecules based on the idea that electrons—either as lone pairs or as bonding pairs—repel one another. (10.2)

van der Waals equation The extrapolation of the ideal gas law that considers the effects of intermolecular forces and particle volume in a

nonideal gas:
$$P + a\left(\frac{n}{V}\right)^2 \times (V - nb) = nRT. (5.9)$$

van der Waals radius (nonbonding atomic radius) Defined as one-half the distance between the centers of adjacent, nonbonding atoms in a crystal. (8.6)

van't Hoff factor (i) The ratio of moles of particles in a solution to moles of formula units dissolved. (12.7)

vapor pressure The partial pressure of a vapor in dynamic equilibrium with its liquid. (5.6, 11.5)

vaporization The phase transition from liquid to gas. (11.5)

viscosity A measure of the resistance of a liquid to flow. (11.4)

visible light Those frequencies of electromagnetic radiation that can be detected by the human eye. (7.2)

volatile Tending to vaporize easily. (1.3, 11.5)

voltaic (galvanic) cell An electrochemical cell that produces electrical current from a spontaneous chemical reaction. (18.3)

volume (V) A measure of space. Any unit of length, when cubed (raised to the third power), becomes a unit of volume. (1.6)

washing soda The hydrated crystal of sodium carbonate, $Na_2CO_3 \cdot 10 \, H_2O. (22.5)$

wave function (ψ) A mathematical function that describes the wavelike nature of the electron. (7.5)

wavelength (λ) The distance between adjacent crests of a wave. (7.2) weak acid An acid that does not completely ionize in water. (4.5, 15.4) weak base A base that only partially ionizes in water. (15.7)

weak electrolyte A substance that does not completely ionize in water and only weakly conducts electricity in solution. (4.5)

weak-field complex A complex ion in which the crystal field splitting is small. (24.5)

white phosphorus An unstable allotrope of phosphorus consisting of P_4 molecules in a tetrahedral shape, with the phosphorus atoms at the corners of the tetrahedron. (22.6)

work (w) The result of a force acting through a distance. (1.5, 6.1) **X-rays** Electromagnetic radiation with wavelengths slightly longer than those of gamma rays; used to image bones and internal organs. (7.2) **X-ray diffraction** A powerful laboratory technique that allows for the determination of the arrangement of atoms in a crystal and the

measuring of the distance between them. (11.10)

Photo and Text Credits

Chapter 1 Page xxxviii: Albert Einstein (1879-1955). Page 3 center right: Tomas Abab/ Alamy, Page 3: Lavoisier, A. Traité élémentaire de chimie, présenté dans un ordre nouveau et d'aprés les découvertes modernes, 2 vols. Paris: Chez Cuchet, 1789. Reprinted Bruxelles: Cultures et Civilisations, 1965. Page 5: Thomas Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, 1965. Page 6 center left: oneo/Fotolia. Page 7 left: tomprout/iStockphoto. Page 7 center left: Fotolia. Page 7 center right: YinYang/ iStockphoto. Page 7 right: DenisLarkin/iStockphoto. Page 9 bottom left: zoom-zoom/ iStockphoto.com. Page 9 bottom right: Siede Preis/Getty Images. Page 10 top: Charles D. Winters/Photo Researchers, Inc. Page 10 center: Renn Sminkey/Pearson Education. Page 10 bottom: Clark Brennan/Alamy. Page 13: NASAs metric confusion caused Mars orbiter loss, CNN Tech. Page 13 bottom: NASA. Page 14: The International Bureau of Weights and Measures. Page 14 top left: Dorling Kindersley Media Library. Page 14 center left: Icon Sports Media 465/Newscom. Page 14 center: Siede Preis/Getty Images. Page 14 bottom left: Richard Megna/Fundamental Photographs. Page 16 left: Marty Honig/Getty Images. Page 16 center left: teekaygee/iStockphoto. Page 16 center right: AndrazG /iStockphoto. Page 16 right: Byron W Moore/Shutterstock. Page 20: National Osteoporosis Foundation. Page 20 top right: ETH Zurich/IBM Research Division. Page 20 center right: Kristiana007/Dreamstime. Page 20 bottom: (Long Beach Site 060374002) Environmental Protection Agency. Page 21 top right: Richard Megna/Fundamental Photographs. Page 21 center right: Richard Megna/Fundamental Photographs. Page 21 top right: Richard Megna/ Fundamental Photographs. Page 21 center right: Pearson Education/Stacey Stambaugh. Page 21 bottom right: Richard Megna/Fundamental Photographs. Page 36 center: ETH Zurich/IBM Research Division. Page 39 top: Richard Megna/Fundamental Photographs. Page 39 center: zoom-zoom/iStockphoto. Page 39 bottom: Pearson Education/Stacey Stambaugh. Page 40 top left: Pearson Education/Stacey Stambaugh. Page 40 top center: Warren Rosenberg/Fundamental Photographs. Page 40 top right: Warren Rosenberg/ Fundamental Photographs. Page 41 Question 126: Science 2.0: http://www.science20.com/ news_articles/how_fast_can_human_run_100_meter_sprint. Page 41 Question 127: U.S. Food and Drug Administration. Page 42 Question 136: A New Class of Black Holes? NASA Science News, NASA. Page 42 center: NASA. Chapter 2 Page 44: John Dalton, A New System of Chemical Philosophy. 3 vols. Manchester, 1808, 1810, 1827. Page 45: G. Binnig, H. Rohrer (1986). "Scanning tunneling microscopy". IBM Journal of Research and Development 30. Page 46 bottom left: Veeco Instruments, Inc. Page 46 bottom right: IBM Research Division. Page 47: Democritus (460-370 B.C.). Page 48: Joseph Proust (1754-1826). Page 48 bottom left: Charles D. Winters/Photo Researchers, Inc. Page 48 bottom center: Charles D Winters/Photo Researchers, Inc. Page 48 bottom right: Joseph Calev/ Shutterstock. Page 51: Feynman, Richard (1964). The Feynman Lectures on Physics; Volume 1. U.S.A: Addison Wesley. Page 51 bottom right: Richard Megna/Fundamental Photographs. Page 53 top: Adapted from Millikan, R.A. 1913, On the Elementary Electric charge and the Avogadro Constant. Page 54: Adapted from The Scattering of a and β Particles by Matter and the Structure of the Atom. Page 56 top left: Richard Megna/ Fundamental Photographs, NYC. Page 56 bottom right: Jeremy Woodhouse/Getty Images. Page 57 top left: Steve Cole/Getty Images. Page 57 top right: Pearson Education. Page 58 bottom left: Library of Congress. Page 60: NASA. Page 62 center: noonika/iStockphoto. com. Page 63 left: Matthias Zepper/Wikimedia Commons. Page 63 2nd from left: Charles D. Winters/Photo Researchers, Inc. Page 63 3rd from left: Steffen Foerster Photography/ Shutterstock. Page 63 4th from left: Clive Streeter/Dorling Kindersley Publishing. Page 63 5th from left: Pearson Education. Page 63 6th from left: Enricoros. Page 63 7th from left: Harry Taylor/Dorling Kindersley. Page 63 8th from left: Gary Ombler/Dorling Kindersley. Page 63 top right: iStockphoto. Page 63 center right: Charles D. Winters/Photo Researchers, Inc. Page 63 bottom right: Perennou Nuridsany/Photo Researchers, Inc. Page 64 top left: Richard Megna/Fundamental Photographs. Page 64 2nd from top left: Martyn F. Chillmaid/ Photo Researchers, Inc. Page 64 3rd from top left: Charles D. Winters/Photo Researchers, Inc. Page 64 bottom left: Charles D. Winters/Photo Researchers, Inc. Page 69: Pure Appl. Chem. 83(2) p. 359-396, 2011. Page 69 bottom: Copyright © 2012 International Union of Pure and Applied Chemistry. Page 70 top: Pearson Education/Stacey Stambaugh. Page 70 bottom: Pearson Education/Stacey Stambaugh. Page 78 top: Jeremy Woodhouse/Getty Images. Page 78 center: Charles D. Winters/Photo Researchers, Inc. Page 78 bottom: Pearson Education/Stacey Stambaugh. Page 81 Copyright 1993-2012 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved. Page 82 Copyright 1993-2012 Mark Winter [The University of Sheffield and WebElements Ltd, UK]. All rights reserved. Page 82 top right: IBM Corporation. Chapter 3 Page 86 top: Francis Harry Compton Crick, What Mad Pursuit: A personal View of Scientific Discovery (1988) p. 61, Basic Books. Page 88: malerapaso/iStockphoto.Page 89 bottom left: Richard Megna/ Fundamental Photographs. Page 89 bottom center: Charles Falco/Photo Researchers, Inc. Page 89 bottom right: Charles D. Winters/Photo Researchers, Inc. Page 93 center right: Charles D. Winters/Photo Researchers, Inc. Page 94 top: Charles Falco/Photo Researchers, Inc. Page 94 bottom left: Pearson Education.Page 95 bottom: Pearson Education/Renn Sminkey. Page 96 top left: Sydney Moulds/Photo Researchers, Inc. Page 96 top right: Basement Stock/Alamy. Page 100 bottom left: Richard Megna/Fundamental Photographs. Page 102 bottom left: Shutterstock. Page 103 top: Richard Megna/Fundamental Photographs. Page 104: Clean Air Act, Environmental Protection Agency. Page 104 bottom left: Andre Jenny Stock Connection Worldwide/Newscom. Page 104 bottom right: Richard Megna/Fundamental Photographs. Page 109 center right: NASA. Page 111 bottom right: Richard Megna/Fundamental Photographs. Page 114: U.S. Food and Drug Administration. Page 114 top right: David R. Frazier Photolibrary, Inc./Alamy. Page 123 center left:

Sinelyov/Shutterstock. Page 124 center left: Lightpoet/Fotolia. Page 125 bottom right: Renn Sminkey/CDV LLC, Creative Digital Visions/Pearson Education. Page 129 center: Pearson Education/Renn Sminkey. Page 129 bottom: Shutterstock. Chapter 4 Page 140 bottom left: NCDC/NESDIS/NOAA. Page 140 bottom right: NCDC/NESDIS/National Oceanic and Atmospheric Administration (NOAA). Page 142: Gerlach, T. M., Present-day emissions from volcanoes; Eos, Transactions, American Geophysical Union, Vol. 72, No. 23, June 4, 1991, pp. 249 and 254-255. Page 151: U.S. Environmental Protection Agency. Page 151 bottom right: Robert W. Ginn/PhotoEdit. Page 160 bottom left: Richard Megna/ Fundamental Photographs. Page 161: Richard Megna/Fundamental Photographs. Page 162: Martyn F. Chillmaid/Photo Researchers, Inc. Page 163: Dorling Kindersley Publishing. Page 164: Richard Megna/Fundamental Photographs. Page 168: Chip Clark/Fundamental Photographs. Page 169 center right: Eric Schrader/Pearson Education. Page 169 bottom right: Eric Schrader/Pearson Education. Page 170: Richard Megna/Fundamental Photographs. Page 172: Richard Megna/Fundamental Photographs. Page 174: Richard Megna/Fundamental Photographs. Page 176 top left: Tom Bochsler/Pearson Education. Page 176 top right: Charles D. Winters/Photo Researchers, Inc. Page 177: Richard Megna/ Fundamental Photographs. Page 181: ImageShop/Corbis. Page 185 2nd from bottom: Chip Clark/Fundamental Photographs. Page 185 bottom: Charles D. Winters/Photo Researchers, Inc. Chapter 5 Page 194: In W.D. Niven (ed.) 'Illustrations of the Dynamical Theory of Gases,' The Scientific Papers of James Clerk Maxwell, Vol 1, 377. Page 199: Patrick Watson/Pearson Education. Page 203: Hanna-Barbera Productions, Inc, CBS, 1960-1966. Page 204 top left: Carlos Caetano/Shutterstock. Page 204 bottom left: Dorling Kindersley. Page 207 bottom right: Renn Sminkey/Pearson Education. Page 237 2nd from top: Renn Sminkey/Pearson Education. Page 242 bottom: Tom Bochsler/Pearson Education. Chapter 6 Page 251: The Franklin Institute. Page 257 bottom: Larry Brownstein/Getty Images. Page 266 top left: Tom Bochsler/Pearson Education. Page 266 top right: Stan Fellerman/ Corbis. Page 277 bottom: Richard Megna/Fundamental Photographs. Page 280 top: U.S. Energy Information Administration, Annual Energy Report, 2010. Page 281 top right: Source: EPA's 2010 National Air Quality and Emissions Trends Report. Page 282 bottom: American Honda Motor Co. Page 283 center left: National Geophysical Data Center. Page 283 center: Sandia National Laboratories. Page 283 center right: Randy Montoya/ Sandia National Laboratories. Page 283 top right: Getty Images. Page 286 bottom: Tom Bochsler/Pearson Education. Page 290: iStockphoto. Page 291: md8speed/Shutterstock. Chapter 7 Page 297 center: YegorPiaskovsky/iStockphoto. Page 298 bottom left: Comstock Stock Photography. Page 298 bottom right: Uluc Ceylani/Shutterstock. Page 300 top: Poznyakov/Shutterstock. Page 300 center: Person Education. Page 300 bottom: iStockphoto. Page 301 top right: Bob Richards/Sierra Pacific Innovations Corporation. Page 301 center right: Bonita R. Cheshier/Shutterstock. Page 306 top: Karin Hildebrand Lau/ Shutterstock. Page 306 bottom: Tom Bochsler/Pearson Education. Page 307 top: Richard Megna/Fundamental Photographs. Page 307 center: Wabash Instrument Corp/Fundamental Photographs. Page 308 center: American National Standards Institute/Pearson Education. Page 308 top: mjs1973/iStockphoto. Page 309 top left: Jerry Mason/Photo Researchers, Inc. Page 309 top 2nd from left: Andrew Lambert Photography/Photo Researchers, Inc. Page 309 top 3rd from left: Andrew Lambert Photography/Photo Researchers, Inc. Page 309 top right: Andrew Lambert Photography/Photo Researchers, Inc. Page 309 bottom: American National Standards Institute/Pearson Education. Page 313 top: Segre Collection/AIP/Photo Researchers, Inc. Page 314 center: Stephen Dunn/Getty Images. Page 314 bottom: Reuters/ Tim Sharp. Page 329: Bob Richards/Sierra Pacific Innovations Corporation. Chapter 8 Page 336 bottom: Ilya Yefimovich Repin. Page 337 top left: Charles D Winters/Photo Researchers, Inc. Page 337 top right: Richard Megna/Fundamental Photographs. Page 365 2nd from left: Richard Megna/Fundamental Photographs. Page 365 3rd from left: http:// images-of-elements.com/aluminium.php. Page 365 5th from left: Charles D Winters/Photo Researchers, Inc. Page 365 6th from left: Dorling Kindersley Publishing. Page 365 7th from left: Charles D Winters/Photo Researchers, Inc. Page 365 1st from top: Dorling Kindersley. Page 365 2nd from top: Charles D Winters/Photo Researchers, Inc. Page 365 3rd from top: Dorling Kindersley. Page 365 4th from top: Manamana/Shutterstock. Page 365 5th from top: Charles D Winters/Photo Researchers, Inc. Page 367 bottom: Andrew Lambert Photography/SPL/Photo Researchers, Inc. Page 368 top: Richard Megna/Fundamental Photographs. Page 369 top: Richard Megna/Fundamental Photographs. Page 370 top: Nukepills.com. Page 370 bottom: Glenn Grant/National Science Foundation and US Antarctic Program. Chapter 9 Page 382 top: The Bancroft Library/Photo Researchers, Inc. Page 383 top left: Madlen/Shutterstock. Page 383 top right: John A Rizzo/Getty Images. Page 383 center: Dorling Kindersley. Page 390 bottom: Richard Megna/Fundamental Photographs. Page 391 top: Allies Interactive Services Pvt. Ltd./Shutterstock. Page 407 top: Chubykin Arkady/Shutterstock. Page 407 bottom: Michael Newman/PhotoEdit. Page 414 bottom: robeo/iStockphoto. Chapter 10 Page 428 top: Renn Sminkey/Pearson Education. Page 428 center: Renn Sminkey/Pearson Education. Page 429 top right: Renn Sminkey/ Pearson Education. Page 429 bottom right: Renn Sminkey/Pearson Education. Page 442 top center: Kip Peticolas/Fundamental Photographs. Page 442 top right: Richard Megna/ Fundamental Photographs. Page 442 center right: blueee/Fotolia. Page 467 center: Richard Megna/Fundamental Photographs. Chapter 11 Page 483 top: Eric Isselee/iStockphoto. Page 483 bottom: Andrew Syred/Photo Researchers, Inc. Page 491 bottom: Richard Megna/ Fundamental Photographs. Page 497 top right: Douglas Allen/iStockphoto. Page 497 bottom right: Kuzmik/Shutterstock. Page 498 top left: NASA Johnson Space Center. Page 498 bottom right: Pearson Education. Page 499 top right: Iris Sample Processing. Page 499 center right: Richard Megna/Fundamental Photographs. Page 499 bottom right: Richard Megna/Fundamental Photographs. Page 501 top right: Maridav/Fotolia. Page 504 bottom left: Michael Dalton/Fundamental Photographs. Page 508 bottom: Dr. P.A. Hamley. Page 509 bottom right: Reika/Shutterstock. Page 511 bottom left: Pearson Education. Page 511 bottom center: Tim Ridley/Dorling Kindersley. Page 511 bottom right: Can Balcioglu/ Shutterstock. Page 516 top left: JPL/NASA. Page 517 center right: Renn Sminkey/Pearson Education. Page 517 bottom: Reuters/Amit Dave. Page 518 top left: Karl J Blessing/ Shutterstock. Page 518 bottom right: Ted Kinsman/Photo Researchers, Inc. Page 520 top: Science Source/Photo Researchers, Inc. Page 526 bottom left: Photos.com/ Jupiterimages. Page 526 bottom 2nd from left: Andrew Syred/Photo Researchers, Inc. Page 526 bottom center: Mark J Winter. Page 526 bottom 2nd from right: Shutterstock. Page 526 bottom right: Shutterstock. Page 528 bottom left: Charles D Winters/Photo Researchers, Inc. Page 528 bottom right: bagi1998/iStockphoto. Page 529 top: Harry Taylor/Dorling Kindersley. Page 537 top left: Image source/Photolibrary. Page 537 top right: Harry Taylor/Dorling Kindersley. Page 537 bottom: Nivaldo Jose Tro. Chapter 12 Page 546 top left: Mana Photo/ Shutterstock. Page 546 bottom left: Taro Yamada/Photolibrary. Page 556 top: Richard Megna/Fundamental Photographs. Page 557 top right: Richard Megna/Fundamental Photographs. Page 557 bottom right: Stacey Stambaugh/Pearson Education. Page 560 top left: Eric Bouvet/Gamma-Rapho via Getty Images. Page 560 bottom right: University of Savoie. Page 564 top right: Robert Brook/Alamy. Page 564 bottom right: Péter Gudella/ Shutterstock. Page 567 top right: Ollo/iStockphoto. Page 574 bottom left: Clark Brennan/ Alamy. Page 577 top right: Masonjar/Shutterstock. Page 581 bottom: Sam Singer/Pearson Education. Page 582 top left: RubberBall/Alamy. Page 582 top right: dtimiraos/ iStockphoto. Page 582 bottom left: Richard Megna/Fundamental Photographs. Page 583 first row: directorspence/iStockphoto. Page 583 second row: Shutterstock. Page 583 third row: nanjan/iStockphoto. Page 583 forth row: nanjan/iStockphoto. Page 583 fifth row: alicat/ iStockphoto. Page 584 top: Kip Peticolas/Fundamental Photographs. Page 584 center left: LightWork Design. Chapter 13 Page 629 center right: Mark R Schoeberi/NASA. Page 630 top left: NASA. Page 630 top left: NASA. Page 633 top left: Pearson Education. Chapter 14 Page 648: Le Châtelier, Henry. (1888). "Title", Annales des Mines, 13 (2), 157. Page 650 top: Ken Eward/Kenneth Eward Illustration. Page 652: http://en.wikipedia.org/ wiki/File:Dynamic_equilibrium.png. Page 656 bottom: CDC. Page 683 top: Richard Megna/Fundamental Photographs. Chapter 15 Page 696: James E. Huheey, Inorganic Chemistry: Principles of Structure and Inactivity, Chapter 6, pg 207, Prentice Hall; 4 edition, January 17, 1997. Page 710 bottom: Warren, J.R.; Barry Marshall (1983). "Unidentified curved bacilli on gastric epithelium in active chronic gastritis". Lancet 1 (8336): 1273-5. Page 698: Phillips, a Division of Bayer Healthcare, LLC. Page 699 center right: Clive Streeter/Dorling Kindersley. Page 699 bottom left: IgorDutina/iStockphoto. Page 699 bottom right: Mitch Hrdlicka/Getty Images. Page 700 top left: Stacey Stambaugh/Pearson Education. Page 710: TUMS® is a registered trademark of GlaxoSmithKline. Page 710 bottom: CNRI/Photo Researchers, Inc. Page 710: Warren, J.R.; Barry Marshall (1983). "Unidentified curved bacilli on gastric epithelium in active chronic gastritis". Lancet 1 (8336): 1273-5. Page 724: Registered Trademark of Phillips, a division of Bayer Healthcare, LLC. Page 724 top right: Creative Digital Vision/Pearson Education. Page 739 bottom right: U.S. Energy Information Administration, Annual Energy Review 2010, Tables 1.3, 2.1b-2.1f, 10.3, and 10.4. Page 740 top: National Atmospheric Deposition Program, National Trends Network. Page 740 bottom left: Adam Hart-Davis/Photo Researchers, Inc. Page 740 bottom right: Nipik. Page 741: Clean Air Act, United States Environmental Protection Agency. Page 741 center: EPA-454/R-12-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Page 749 center right: Eco Images/ Universal Image Group/Getty Images. Chapter 16 Page 752: Joseph W. Mellor, Modern inorganic chemistry, Longman, 1912. Page 756 top left: Richard Megna/Fundamental Photographs. Page 756 top center: Richard Megna/Fundamental Photographs. Page 756 top right: Richard Megna/Fundamental Photographs. Page 768 center right: Ronen/Fotolia. Page 769 bottom left: Richard Megna/Fundamental Photographs. Page 769 bottom center: Richard Megna/Fundamental Photographs. Page 769 bottom right: Richard Megna/ Fundamental Photographs. Page 781 bottom right: Tom Bochsler Photography Limited/ Pearson Education. Page 782 bottom left: Tom Bochsler Photography Limited/Pearson Education. Page 783 top: *Trademark of Ciba Geigy Corp. Page 785 bottom left: Bernhard Edmaier/Photo Researchers, Inc. Page 785 bottom right: Astrid & Hanns-Frieder Michler/ SPL/Photo Researchers, Inc. Page 788 center: Peter Jones/National Park Service. Page 789 top right: Richard Megna/Fundamental Photographs. Page 789 bottom left: Charles D. Winters/Timeframe Photography Inc./Photo Researchers, Inc. Page 789 bottom right: Charles D. Winters/Timeframe Photography Inc./Photo Researchers, Inc. Page 794 top: Charles D. Winters/Photo Researchers, Inc. Page 794 bottom left: Jerry Mason/Photo Researchers, Inc. Page 794 bottom right: Jerry Mason/Photo Researchers, Inc. Page 797 bottom row top: Richard Megna/Fundamental Photographs. Page 797 bottom row bottom: Richard Megna/Fundamental Photographs. Page 799 top row top: Richard Megna/ Fundamental Photographs. Page 799 top row center: Richard Megna/Fundamental Photographs. Page 799 top row bottom: Richard Megna/Fundamental Photographs. Page 802 bottom: Richard Megna/Fundamental Photographs. Chapter 17 Page 814 top left: KtD/Fotolia. Page 814 bottom left: Eryrie/Alamy. Page 815 top row: Arthur S. Aubry Photography/Getty Images. Page 815 center row left: Zurijeta/Shutterstock. Page 815 center row center: Getty Images. Page 815 center row right: tunart/iStockphoto. Page 815 bottom row left: Siemens AG. Page 815 bottom row right: Scott T. Baxter/Getty Images. Page 815 bottom left: Dave King/Dorling Kindersley. Page 815 bottom right: Shubroto Chattopadhyay/ Corbis. Page 816 bottom right: Daniel Schwen. Page 816 bottom left: BlackJack3D/ iStockphoto. Page 817 bottom left: John A. Rizzo/Getty Images. Page 818 top right:

paradoxdes/Fotolia. Page 818 bottom left: Richard Megna/Fundamental Photographs. Page 819 top right: Johan Kocur. Page 823 bottom left: Jan Will/Fotolia. Page 843 top right: Ryan McVay/Getty Images. Chapter 18 Page 862 top left: Carla Browning/University of Alaska Fairbanks, Page 862 center left; Reuters/Mario Anzuoni, Page 866 top left; Richard Megna/ Fundamental Photographs. Page 866 top right: Richard Megna/Fundamental Photographs. Page 867 bottom left: Alejandro Diaz Diez/AGE Fotostock. Page 877 center: Richard Megna/Fundamental Photographs. Page 887 center right: Dave King/Dorling Kindersley. Page 888 center: Pearson Education. Page 890 top right: imagebroker/Niels Poulsen/ Newscom. Page 894 top left: Charles Winters/Photo Researchers, Inc. Page 898 bottom left: Lusoimages/Shutterstock. Page 899 top right: Donovan Reese/Getty Images. Page 899 bottom left: Alan Pappe/Getty Images. Page 900 top left: busypix/iStockphoto. Page 900 top right: Pearson Science. Chapter 19 Page 910: As quoted in Madame Curie: A Biography (1937) by Eve Curie Labouisse, as translated by Vincent Sheean, p. 341, copyright renewed 2001. Page 912 bottom: SPL/Photo Researchers, Inc. Page 912 center left: photovideostock/ iStockphoto. Page 913 top right: Stringer/AFP/Getty Images. Page 913 bottom right: Klaus Guldbrandsen/Photo Researchers, Inc. Page 920 bottom: Tech. Sgt. Parker Gyokeres/U.S. Air Force. Page 921 top right: Hank Morgan/Photo Researchers, Inc. Page 924 bottom: Reuters/Baz Ratner. Page 925 center: sierrarat/iStockphoto. Page 926: P. E. Damon, et al.; Radiocarbon Dating and the Shroud of Turin, Nature 337, 611-615 (16 February 1989) Page 926 bottom: Antonia Calanni/Associated Press. Page 928: NASA/WMAP Science Team, National Aeronautics and Space Administration. Page 929 center right: Charles Scribner's Sons, New York/American Institute of Physics/Emilio Segre Visual Archives. Page 929 center bottom: StockTrek/Getty Images. Page 930 top: Franklin D. Roosevelt Library. Page 931 top right: Marlee90/iStockphoto. Page 931 bottom right: Associated Press/STR. Page 935 bottom: General Atomics MS 15-124. Page 936 top left: Fox Photos/ Stringer/Getty Images. Page 937 top right: David Parker/Photo Researchers, Inc. Page 937 bottom right: Fermilab Visual Media Services. Page 939 top: NCRP Report No. 160 (2009), United States Nuclear Regulatory Commission. Page 940 top: CMSP/Nescom. Page 941 top right: Wellcome Dept. of Cognitive Neurology/Science Photo Library/Photo Researchers, Inc. Page 941 center right: Centre Oscar Lambret/Photo Researchers, Inc. Page 941 bottom right: Cordelia Molloy/Photo Researchers, Inc. Page 944 bottom: Reuters/Baz Ratner, Page 949 top: Craig Ellenwood/Alamy. Chapter 20 Page 950: Letter to Berlize, 28 January, 1835. Page 952 top: CDV LLC/Pearson Education. Page 953 center right: Photos.com. Page 964 bottom left: cekoski/iStockphoto. Page 965 bottom right: John Casey/Fotolia. Page 970 bottom left: Maxwellartandphoto/Pearson Education. Page 972: A. J. Rocke (1985). "Hypothesis and Experiment in Kekulé's Benzene Theory," Annals of Science 42 (4): 355-81. Page 979 bottom center: Lyudmila Suvorova /Shutterstock. Page 980 top center: Andreas Von Einsiedel/Dorling Kindersley. Page 982 top center: felinda/iStockphoto. Page 982 center left: Yasonya/Shutterstock, Page 985 bottom left: PackShot/Fotolia, Page 985 bottom right: Comstock Images/Jupiter Images. Page 990 bottom: cekoski/iStockphoto. Chapter 21 Page 1000: Francis H. C. Crick (1916-2004). Page 1002: Sanger F: Chemistry of insulin. Science 129:1340-44, 1959, 1955. Page 1004 center left: Maxwellartandphoto / Pearson Education. Page 1004 bottom left: David Murray/Dorling Kindersley. Page 1016 top left: Oliver Meckes & Nicole Ottawa/Photo Researchers, Inc. Page 1021 center right: Adrian T Sumner/Getty Images. Page 1022 center left: National Cancer Institute. Page 1022: Watson JD, Crick FH (April 1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid" (PDF), Nature 171 (4356); 737-73, Page 1027 bottom left; Oliver Meckes & Nicole Ottawa/Photo Researchers, Inc. Chapter 22 Page 1024: R. Buckminster Fuller, Editor James Meller Publisher Penguin Books, 1972. Page 1040 top left: SciMAT/Photo Researchers, Inc. Page 1040 center left: Chip Clark/Fundamental Photographs. Page 1046 top left: klikk/Fotolia. Page 1046 bottom right: Lijuan Guo/Fotolia. Page 1047 center: Y. Shirai/Rice University Office of News and Media Relations. Page 1048 bottom left: ASM International. Page 1049 bottom right: Veer Incorporated. Page 1056 bottom left: UVIC-Verena Tunnicliffe/AFP/Newscom. Page 1059 center: Richard Megna/ Fundamental Photographs. Page 1059 bottom right: Chris Eisenger. Page 1060 top left: Richard Megna/Fundamental Photographs. Page 1062 top left: Martyn F. Chillmaid/Photo Researchers, Inc. Page 1063: International Society For Molecular and Cell Biology and Biotechnology Protocols and Researches, 1992. Chapter 23 Page 1076 top left: Science Photo Library/Photo Researchers, Inc. Page 1077 top left: Harry Taylor/Dorling Kindersley. Page 1077 top right: Robert Harding Picture Library Ltd/Alamy. Page 1081 top: Metal Powder Industries Federation. Page 1087 bottom: Richard Megna/Fundamental Photographs. Page 1088 bottom left: Joseph P. Sinnot/Fundamental Photographs. Page 1089 bottom: sci122/Fotolia. Page 1090 top left: Demetrio Carrasco/Dorling Kindersley. Page 1090 center left: Dirk Hoffmann/Fotolia. Page 1090 bottom left: Vaclav Janousek/Fotolia. Page 1091 center: Heatbath Corporation. Chapter 24 Page 1098: Alfred Werner (1866-1919). Page 1100 top left: Harry Taylor/Dorling Kindersley. Page 1100 bottom left: Harry Taylor/ Dorling Kindersley. Page 1100 center 1st: Harry Taylor/Dorling Kindersley. Page 1100 center 2nd: Harry Taylor/Dorling Kindersley. Page 1100 center 3rd: aist1974/Shutterstock. Page 1110 center left: Richard Megna/Fundamental Photographs. Page 1110 center right: Richard Megna/Fundamental Photographs, Page 1115 bottom left; Richard Megna/ Fundamental Photographs. Page 1115 bottom right: Richard Megna/Fundamental Photographs. Page 1116 center left: Richard Megna/Fundamental Photographs. Page 1119 bottom: Richard Megna/Fundamental Photographs. Page 1121 center: Research Collaboratory for Structural Bioinformatics (RCSB). Page 1124 bottom left: Richard Megna/Fundamental Photographs. Page 1124 bottom right: Richard Megna/Fundamental

Index

A	definitions of, 700–703	Adhesive forces, 499
A. O. Smith Company, 1081	equations, 171	Adipic acid, 986
Absolute scale (Kelvin scale), 15	net ionic, 168, 170	Aerosol, 583
Absolute zero, 203	heartburn and, 697-698	Aerosol cans, 207
of entropy, 832	Lewis model of, 738–739	Air
Absorption spectra, 308–309	molecular structure, 736–737	composition of dry, 213
Accuracy, 25–26	binary acids, 736	fractionation of, 1057
Acetaldehyde (ethanal), 126, 979, 981	oxyacids, 737	Air pollution, 280–281
Acetate, 99	nature of, 698–700	Alanine, 1010, 1012
Acetic acid, 124, 126, 160, 169, 698, 699, 704,	neutralization reactions, 982–983	Alaska, 257
755–756, 981	pOH and other p scales, 709–710	Alchemists, 936
acid ionization constant for, 705	polyprotic acids, 731–735	Alcohol(s), 126, 976–978
reaction between salicylic acid and, 983	acid ionization constants for, 731–732	boiling point of, 501
Acetone, 500, 548, 550, 979, 981	concentration of anions for weak diprotic	elimination (dehydration) reactions of, 977
boiling point of, 501	acid solution, 734–735 dissociation of, 735	functional group of, 975 general formula for, 126
heat of fusion of, 510	ionization of, 731–732	heat of fusion of, 510
heat of vaporization of, 501	pH of, 732–734	heat of rusion of, 510
Acetonitrile, 616–617	salt solutions as acidic, basic, or neutral,	naming, 976
Acetylene (Ethyne), 124, 453–454, 965,	729–731	reactions, 977–978
966, 1047	Acid-base titration, 171–173, 769–783	solubility in hexane, 551
representations of, 92	endpoint of, 780–782	solubility in water, 551
Acetylide ion, 1047	indicators, 780–783	Alcoholic beverages, ethanol in, 976
Acetylsalicylic acid, 477, 983 Acid(s), 160. See also Acid-base chemistry;	of polyprotic acid, 779–780	Aldehydes, 978–981
Acid-base titration	of strong acid with strong base, 770–773	functional group of, 975
binary, 103	equivalence point, 770	general formula for, 126
dilution of, 154	overall pH curve, 772	naming, 979
diprotic, 169, 704, 731	titration curve or pH curve, 769–770	reactions of, 980–981
anions in weak, 734–735	of weak acid with strong base, 773–779	Aldohexose, 1007
titration with strong base, 779–780	equivalence point, 774	Aldose, 1007
inorganic nomenclature flowchart, 105–106	overall pH curve, 777	Aldrin, 564
ionization of, 160	Acid dissociation constant. See Acid ionization	Aliphatic hydrocarbons, 954. See also Alkanes;
metals dissolved in, 103, 877	constant(s) (K _a)	Alkenes; Alkynes
naming, 102–103	Acidic solution, 706–707	Aliquot, 602
polyprotic, 169	Acid ionization constant(s) (K_a) , 705, 726	Alizarin, 783
rusting promoted by, 899	for polyprotic acids, 731–732 for weak acids, 711	Alizarin yellow R, 783
strong, 160	Acidity of blood, 754	Alkali metals. See Group 1A metals (alkali metals)
weak, 160	Acidosis, 754	Alkaline batteries, 887
Acid anhydride, 983	Acid rain, 104, 143, 280, 739–741, 1054	Alkaline earth metals. See Group 2A metals
Acid-base chemistry, 168–173, 696–751. See	effects of, 739–741	(alkaline earth metals)
also Buffers; pH	fossil fuels and, 739	Alkaloids, 700
acid-base properties of ions, 724–731	legislation on, 741	Alkanes, 124, 954, 960–964
anions as weak bases, 725–728	sulfur dioxide and, 1061	boiling points of, 488-489
cations as weak acids, 728–729 acid ionization constant (Ka), 705	Acid rebound, 724	<i>n</i> -alkanes, 960–961
acid rain, 739–741	Acid reflux, 697	naming, 961–964
effects of, 739–741	Actinides (inner transition elements), 346, 348	reactions of, 969–970
fossil fuels and, 739	electron configurations of, 347–348	viscosity of, 498
legislation on, 741	Activated carbon (activated charcoal), 1046	Alkenes, 124, 954, 964–969
acid strength, 703–706, 736–737	Activated complex (transition state), 616–617	geometric (cis–trans) isomerism in, 970–971
strong acid, 703	Activation energy (activation barrier), 615–620	hydrogenation of double bonds within, 630
weak acids, 704-706	Arrhenius plots of, 618–620	naming, 965–967
addition to buffer, 760–764	catalysis and, 627–628	reactions of, 970–971
Arrhenius model of, 168-169, 700-701	enzymes and, 631–632	Alkyl groups, 961–962
autoionization of water, 706-707	Active metals, reaction of alcohols with, 977	Alkynes, 124, 954, 964–969 naming, 965–967
base solutions, 720–724	Active site, 381, 426, 631, 633 Actual yield, 146	reactions of, 970–971
hydroxide ion concentration and pH of,	Acute concern (acid rain), 741	Allotropes, 834, 1042
722–723	Acute radiation damage, 937	phosphorus, 1050–1051
strong bases, 720	Addition polymer, 985, 986	sulfur, 1059
weak bases, 720–722	Addition reactions	Alloys, 1076, 1082–1086
Brønsted-Lowry model of, 701–702, 736, 738	of aldehydes and ketones, 980–981	copper, 1090
conjugate acid–base pair, 701–703	of alkenes and alkynes, 970–971	defined, 1082
cations in, 728	Adduct, 738	interstitial, 1082, 1085-1086
strength of, 725	Adenine, 496, 1019–1020	with limited solubility, 1083-1084

nickel, 1090–1091	Anhydrous compounds, 100	Arrhenius plots, 618–620
steel, 1087, 1089	Aniline, 973	Arsenic, 62, 63
substitutional, 1082–1083	Anion(s), 61, 96	Arsenic pentafluoride, 408, 454
zinc, 1091	as conjugate base of acid, 725–726	Artificial sweeteners, 425–426
Alpha (α) decay, 913, 914–915, 918	electrolysis of mixture of cations and, 893	Asbestos, 1040
Alpha (α) particles, 54, 55, 914	Lewis structure of, 384, 385	Ascorbic acid, 732
Altitude, 251–252	periodic table and, 64	Asimov, Isaac, 334
Aluminosilicates, 1038–1039	radii of, 358	Asparagine, 1012
Aluminum, 58, 93	in salts, 729–730	Aspartame (Nutrasweet), 425–426
charge of, 97 density of, 19	as weak bases, 725–728	Aspartic acid, 1011, 1012
Hall process to obtain, 1079–1080	in weak diprotic acid solutions, 734–735 Anionic ligands, naming, 1107, 1108	Aspirin, 477, 710, 983 Atmosphere, 280–282
ionization energies of, 362, 363	Anode, 51–52, 867–868	air pollution, 280–281
specific heat of, 257	in batteries, 887–890	Earth's early, 1056–1057
Aluminum acetate, 730	in electrolytic cell, 891–893	hydrocarbons released into, 407
Aluminum-based antacids, 724	in voltaic cell, 867–868	nitrogen in, 1050
Aluminum chloride, 102	Anodic regions, 899	oxygen in, 1056–1057
Aluminum hydroxide, 798–799	Antacids, 168, 698, 710, 724	ozone in, 1058
Aluminum ion, 739	Antarctica, ozone hole over, 109, 629-630	Atmosphere (atm), 197
Aluminum nitrate, 730	Anthracene, 974	Atom(s), 1-3, 44-85. See also Periodic table;
Aluminum oxide crystals, 1099	Anthracite, 1045	Quantum-mechanical model of atom
Amines, 721, 984	Antibodies, radioactively tagged, 911-912	diamagnetic, 355-356
functional group of, 975	Antibonding orbital, 459–460	early ideas about, 47
reactions of, 984	σ_{2p}^{*} , 464	electron, discovery of, 51-53
Amino acids, 477, 632–633, 698, 1002,	Antifluorite structure, 528	cathode rays and, 51–52
1010-1014	Antifreeze, 574–577, 753–754	Millikan's oil drop experiment, 52–53
as building blocks of proteins, 1010–1013	in frogs, 577	elements and, 47
common, 1012	Antiparticle, 916	humans and, 51
genetic code identifying, 1020–1021	Apatite, 1050	imaging of, 45–47
peptide bonding between, 1013–1014	Appalachian red spruce, 104	interaction energy of, 443–444
protein synthesis and, 1023–1024	Appendicitis, diagnosing, 911–912	interactions among, 382–383
L-Amino acids, 1011	Apples, pH of, 708	modern atomic theory, 47–51
Ammonia, 169, 680–681, 700, 701, 720–721,	Aqueous (aq), 102	Dalton and, 50–51
721, 1050, 1051 buffer containing, 764	Aqueous reactions, 152–182 Aqueous reactions, enthalpy of reaction	law of conservation of mass and, 47–48 law of definite proportions and, 48–49
Haber–Bosch process for making, 1052	measured for, 269	law of multiple proportions and, 49–50
Lewis acid–base model and, 738	Aqueous solution(s), 152, 158–162, 545–546.	molar mass, 70–75
molecular geometry of, 430–431	See also Acid-base chemistry;	moving individual, 45–47
molecular representation of, 92	Buffers; Solubility equilibria;	nuclear theory of, 54–55
nitrogen orbitals in, 448	Solution stoichiometry	paramagnetic, 355
nitrogen-to-hydrogen mass ratio of, 49	electrolysis in, 894–896	plum-pudding model of, 54–55
pH of, 708	aqueous sodium chloride and overvoltage,	properties of matter and, 1–3
reaction between boron trifluoride and, 738	895–896	radioactive, 912
reaction between silver ion and, 1104	electrolyte and nonelectrolyte, 159-160	size of. See Atomic radius/radii
in water, Henry's law constants for, 558-559	heats of hydration and, 553-555	structure of, 54–56
Ammonia ligand, 1104	hydroxide and hydronium ions in, 706-707	subatomic particles, 56–61
Ammonium, 99	of ionic compounds, 495	Atomic bomb, 928–930
in gas-evolution reactions, 175	solubility of ionic compounds, 160-162	Atomic elements, 93–94
Ammonium bromide, 730	Arachno-boranes, 1044	Atomic machines, 46
Ammonium chloride, 764	Arc-melting, 1087	Atomic mass, 66–69, 107
Ammonium dichromate, 1088	Arginine, 1012	calculation of, 67
Ammonium ion, 794	Argon, 58, 63, 371, 547–548	and IUPAC (International Union of Pure and
Ammonium nitrate, 99, 552, 1053, 1054	in air, 213	Applied Chemistry), 69
Ammonium nitrite, 730	ionization energies of, 363	mass spectrometry and, 67–68
Ammonium salts, 984	molar volume under pressure, 231	variations in, 69
Amorphous solid, 5, 485	properties of, 371 van der Waals constants for, 232	Atomic mass unit (amu), 56
Ampere (A), 867, 897 Amphiboles, 1040		Atomic number (Z), 56, 913 atomic radius vs., 350–351
Amphogel, 724	Aristotle, 3, 47 Aromatic hydrocarbons, 954, 972–974	beta decay and, 915
Amphotericity, 706–707	naming, 972–974	electron capture and, 917
Amphoteric substances, 701	reactions of aromatic compounds, 974	first ionization energy vs., 359
metal hydroxide solubility, 798–799	Arrhenius, Svante, 168, 615, 700	instability of all atomic nuclei beyond 83
Amplitude, 297–298	Arrhenius, Svante, 106, 015, 700 Arrhenius acids and bases, 168–169, 700–701	(bismuth), 921
Amylopectin, 1010	Arrhenius equation, 615–622	positron emission and, 916
Amylose, 1010	activation energy (activation barrier), 615–620	Atomic orbitals, 316–318
Anemia, sickle-cell, 1016	Arrhenius plots, 618–620	atomic radius and, 350
Angle of reflection, 519	collision model of, 620–622	degenerate, 338–339, 341
Angular momentum, orbital, 467	exponential factor, 615, 617	electron configuration and, 337
Angular momentum quantum number,	frequency factor (pre-exponential factor), 615–620	energy ordering of for multielectron atoms, 341
315–316, 321	rate constant and, 615	hybridized. See Hybridization

periodic table and, 346–347	Battery(-ies), 886-890	Biological systems
shapes of, 321–327	dry-cell, 886–887	entropy and, 828
Atomic radius/radii, 350-354	energy loss in, 842	nonspontaneous reactions coupled with highly
of alkali metals, 367	lead-acid storage, 887	spontaneous ones in, 840
atomic number vs., 350-351	rechargeable, 814, 887-889	Biomolecules, 1120-1122
effective nuclear charge and, 352-353	Bauxite, 1079	Bisulfate (hydrogen sulfate), 99
electronegativity and, 394	Bayer process, 1079	Bisulfite (hydrogen sulfite), 99
of halogens, 368	B-Class F-Cell (fuel-cell vehicle), 862	in gas-evolution reactions, 175
of main-group elements, 1036	Becquerel, Antoine-Henri, 54, 912–913	Bituminous coal, 1045
of noble gases, 371	Beers, pH of, 708	Black holes, 42
of nonmetals, 1036	Bent geometry, 431, 434, 437	Black phosphorus, 1051
period trends in, 350–354	Benzaldehyde, 979	Black smoker vents, 1056
transition elements and, 353–354	Benzene, 471	Bleached hair, 181
of transition metals, 1102	disubstituted, 973	Blood, human
Atomic solids, 526, 528–530	freezing point depression and boiling point	acidity of, 754
Atomic spectroscopy	elevation constants for, 575	buffer effectiveness in, 768
Bohr model and, 306–309	molecular representation of, 92	pH of, 708, 754, 768
described, 318–321	monosubstituted, 972–973	Blood pressure, 199
Atomic theory, 3, 5	ring structure of, 972	Body-centered cubic unit cell, 521–522
Atomos, 47	substitution reactions of, 974	Bohr, Neils, 294, 307
Atto prefix, 17	Benzoic acid, 705	Bohr model, 315, 323
Attractive strong force among nucleons, 918	Berkelium, 58	emission spectra and, 307–308
Aufbau principle, 342	Beryllium, 58	Boiling, 9
Autoionization of water, 706–707, 711	charge of, 97	Boiling point(s)
Average rate of reaction, 600	effective nuclear charge for, 353	defined, 504
Avogadro, Amedeo, 70, 205	electron configuration for, 343	dipole moment and, 490–491
Avogadro's law, 205–206, 226	incomplete octets of, 406–408	of group 4A and 6A compounds, 493–494
kinetic molecular theory and, 224	ionization energy of, 362	of halogens, 368
Avogadro's number, 70, 75	Lewis structure of, 384	of hydrides, 516
Axial positions, 429	MO diagram for, 463	of molecular compounds, 393
Azimuthal quantum number, 315–316	orbital diagram for, 343	of <i>n</i> -alkanes, 488–489
	Beryllium aluminum silicate crystals, 1099	of noble gases, 371, 488
	Beta (β) decay, 913, 915, 918	normal, 504
В	Beta (β) particles, 54, 915	temperature dependence of, 504–505
Bacon, Francis, 47	β-pleated sheet, 1015, 1017	of water at different altitudes, 505
Bacterial infection, ulcers from, 710	Bicarbonate ion, 698, 721, 724, 754	Boiling point elevation, 574–576
Baking powder, 1049	Bicarbonates, 99	Boltzmann, Ludwig, 818–819
Baking soda (sodium bicarbonate), 94, 391,	in gas-evolution reactions, 175	Boltzmann constant, 818–819
700, 724, 1049	Bidentate ligands, 1104–1105, 1106	Bomb calorimeter, 262–264
reaction between hydrochloric acid and,	Big Bang Theory, 60	Bond(s), 88–90, 380–423
174–175	Bimolecular elementary step, 622, 623	AIDS drugs and models of, 381–382
Balancing equations, 119–123	Binary acids, 103, 736	covalent. See Covalent bond(s)
oxidation–reduction equations, 862–865	Binary compounds, 97–99	double. See Double bond(s)
polyatomic ionic compounds, 122–123	Binary phase diagram, 1082	electronegativity difference and, 396–398
procedure for, 120–121	chromium and vanadium, 1083	electron sea model of, 383, 413-414, 528, 530,
Ball-and-stick models, 91–92	copper and nickel, 1082	1076
Band gap, 531	Binding energy per nucleon, 933–935	formation of, 382–383
Band theory, 530–531, 1076	Binnig, Gerd, 45–46	ionic. See Ionic bond(s)
Bar codes, 308–309	Bioamplification, 564	Lewis theory, 380, 382–386, 450
Barium	Biochemistry, 1000–1033	bond polarity and, 394–398
charge of, 97	carbohydrates, 1006–1010	bond types, 449–450
emission spectrum of, 306, 307	complex, 1009–1010	bond types under, 382–383
flame tests for, 309	simple, 1007–1009	of covalent bonding, 391–393
Barium chloride hexahydrate, 100	structure of, 1006	electronegativity and, 394–395
Barium fluoride, 784	defined, 1002	formal charge and, 403–405
Barium hydroxide, 169	diabetes and the synthesis of human insulin,	of ionic bonding, 382–390
Barium sulfate, 391, 784	1001–1002	of molecular compounds, 398–399
Barometer, 197	lipids, 1002–1006	octet rule exceptions, 406–409
Base(s), 168. See also Acid-base chemistry;	fats and oils, 1004–1005	of polyatomic ions, 400
Acid-base titration	fatty acids, 1002–1003	resonance and, 400–402
Arrhenius definition of, 168–169, 700–701	proteins, 1002, 1010–1014	valence electrons represented with dots, 384
complementary, 1020, 1022–1023	amino acids as building blocks of, 1002,	metallic, 382, 383, 528
in nucleic acids, 1020	1010–1013	in metals, 413–414
organic, 496	nucleic acids as blueprints for, 1018–1021	molecular orbital theory, 380, 424, 458–471, 530
purine, 1019–1020	peptide bonding between amino acids,	linear combination of atomic orbitals
pyrimidine, 1019–1020	1013–1014	(LCAO), 459–463, 470–471
Base ionization constant (K_h) , 721, 726	structure of, 1014–1018	period two homonuclear diatomic
Base-pairing in DNA, 1020	synthesis of, 1023–1024	molecules, 463-468
	Biological effectiveness factor (RBE), 938	polyatomic molecules, 470-471
Basic solution, 707		

second-period heteronuclear diatomic	Bond order, 461–463, 466–467	equilibrium calculation for, 760–763
molecules, 469-470	Bone density, 20	equilibrium calculation of changes in,
trial mathematical functions in, 459	Bone scan, 940	760–763
peptide, 632–633, 1013, 1023	Boranes, 1043–1044	Henderson–Hasselbalch equation for,
between amino acids, 1012–1014	Borax, 1042	757–760
pi (π), 450	Born-Haber cycle, 386–388	stoichiometry calculation of changes in,
polar, 438–439, 736 rotation about, 451	Boron, 1042–1044 boron–halogen compounds, 1042–1043	760–763 Burning, 10
sigma (σ) , 450	boron–hydrogen compounds, 1042–1043 boron–hydrogen compounds, 1043–1044	Butanal, 979
single, 90, 391–392, 410, 452	boron–oxygen compounds, 1043	Butane, 954, 955
strength of, 736	electron configuration for, 343	condensed structural formula for, 955
triple. See Triple bond(s)	elemental, 1042	n-Butane, 960
valence bond theory, 380, 424, 443-458	incomplete octet formation by, 406, 408	common uses of, 125
hybridization of atomic orbitals, 445-458	ionization energy of, 362	molecular formula for, 125
orbital overlap as chemical bonds, 443-445	Lewis structure of, 384	space-filling model of, 125
valence shell electron pair repulsion (VSEPR)	orbital diagram for, 343, 465–467	structural formula for, 125
theory, 424, 426–442, 1065	sources of, 1042	Butanoic acid, 981
bent geometry, 431, 434, 437	uses for, 1042	1-Butanol, 976
linear geometry, 426–427, 433–434, 437 lone pairs effect, 430–435	Boron nitride, 1035–1036	2-Butanol, 980 Butanol
molecular shape and polarity, 438–442	Boron nitride nanotubes, 1035–1036 Boron trifluoride, 738	solubility in hexane, 551
octahedral geometry, 433–434, 436, 437, 455	Boyle, Robert, 47, 200	solubility in water, 551
predicting molecular geometries with, 435–438	Boyle's law, 200–202, 205, 226	Butanone, 979
seesaw geometry, 432, 436, 437	kinetic molecular theory and, 224	2-Butanone, 980
square planar geometry, 433–434, 436, 437	Brand, Henning, 1050	1-Butene, 965
square pyramidal geometry, 433–434, 436	Brass, 1090	Butyl substituent, 962
summary of, 434	Breathalyzer, fuel-cell, 890	1-Butyne, 966
tetrahedral geometry, 427–428, 430–431,	Breathing, 195–196	Butyric acid, 1003
433–434, 437, 446–447	Bridging hydrogens, 398	
trigonal bipyramidal geometry, 429,	Bromide, 98	C
433–434, 436, 437, 454	Bromine, 63, 64	Cadmium, in batteries, 888
trigonal planar geometry, 427, 428, 433–434, 437, 448	properties of, 368, 1062 reaction between fluorine and, 369	Caffeine, 477, 509
trigonal pyramidal geometry, 430–431,	reaction between potassium and, 621	Calamine (zinc silicate), 1091
433–434, 437	Bromine pentafluoride, 432	Calcination, 1078, 1079
T-shaped geometry, 432, 436	1-Bromo-2-chlorobenzene, 973	Calcite, 96
writing hybridization and bonding schemes,	Bromobenzene, 972	Calcium
455–458	Bromocresol green, 783	charge of, 97
Bond energy(-ies), 443	Bromocresol purple, 783	reaction between water and, 862
average, 410	Bromphenol blue, 783	Calcium acetate, 729
bond type and, 410	Bromthymol blue, 783	Calcium-based antacids, 724
defined, 410	Brønsted–Lowry acids and bases, 701–702,	Calcium borate, 1042
enthalpy changes of reaction estimated from, 411–412	736, 738 Bronze, 1090	Calcium carbide, 1047–1048 Calcium carbonate, 94, 95, 96, 162, 785, 788
Bonding	Brownian motion, 582, 583	solubility product constant for, 784
of carbon, 952–953	Buckminsterfullerene, 1046	Calcium fluoride, 528, 784, 786–787, 789
ability to form double and triple bonds, 952	Buckyballs (fullerenes), 1046, 1047	solubility product constant for, 784
tendency to form four covalent bonds, 952	Buffers, 754–765	Calcium hydroxide, 169, 720
in coordination compounds, 1113–1119	acid-base titration, 769-783	solubility product constant for, 784
color of complex ions and crystal field,	endpoint of, 780–782	Calcium nitrate, 729
1115–1117	indicators, 780–783	Calcium oxide, 1047
crystal field theory, 1114–1119	of polyprotic acid, 779–780	Calcium phosphate, 1055
magnetic properties, 1117–1118	of strong acid with strong base, 770–773	Calcium sulfate, 391
octahedral complexes, 1114–1115 tetrahedral and square planar complexes,	titration curve or pH curve, 769–770	solubility product constant for, 784 Calcium sulfate hemihydrate, 100
1118–1119	of weak acid with strong base, 773–779 action of, 762	Calculations, significant figures in, 23–25
valence bond theory, 1113–1114	adding acid or base to, 760–764	Californium, 937
ionization energies and, 363	containing a base and its conjugate acid,	calorie (cal), 250
peptide bonding between amino acids,	764–765	Calorimetry, 262, 269–271
1013–1014	effectiveness of, 765–768	bomb, 262–264
Bonding atomic radius (covalent radius), 350	absolute concentrations of acid and	coffee-cup, 269-270
Bonding electrons, 391	conjugate base and, 766	constant-pressure, 269–271
Bonding electrons (lone pair), 391–392	buffer capacity, 768	constant-volume, 262–264, 271
Bonding orbital, 459–460	capacity, 768	Cancer(s)
$\pi_2 p$, 464, 465 $\sigma_2 p$, 464, 465	in human blood, 768 range, 767	cisplatin as anticancer agent, 1122 from radiation, 370, 938
<i>σ</i> ₂ <i>ρ</i> , 464, 463 Bonding pair, 391–393	relative amounts of acid and base and,	radiotherapy for, 300, 941
Bonding theories of metals, 1076	765–766	radiotracers to locate, 940
Bond length	formation of, 755	skin, 300
average, 412–413	importance of, 752	thyroid, 370
equilibrium, 443	pH of, 756–765	Capillary action, 499

Caproic acid, 1003	Carboxylic acids, 699, 981–983	determining from experimental data, 114-119
Carbaloy, 1089	functional group of, 975	combustion analysis, 117-119
Carbides, 1047–1048	general formula for, 126	for compounds, 116–117
Carbohydrates, 1006-1010	naming, 981	elemental composition and, 113
complex, 1009-1010	reactions of, 982–983	for ionic compounds, 96-97
simple, 1007–1009	Carlsbad Caverns National Park, 788	from mass percent composition, 110-111
structure of, 1006	Carnotite, 1077	Chemical gradient, 335
Carbon, 57, 63, 1044–1050. See also	Cars, hybrid, 251	Chemical kinetics. See Reaction rate(s)
Hydrocarbons; Organic chemistry	Carvone, 980	Chemical potential, 815–816
ability to form double and triple bonds, 952	Cassiterite, 1077	Gibbs free energy, 828–832
chemistry of life and, 66	Catalysis, 627–632	Chemical property, 9
electron configuration for, 342	enzymes, 631–632	Chemical quantities, 138–151
elemental, 1044–1047	homogeneous and heterogeneous, 629-631	Chemical reactions. See Reaction(s)
hybridization in, 446–447	Catalytic converter, 628–629	Chemical symbol, 56–57
Lewis structure of, 384	Cataracts, 300	Chemistry, defined, 3
molar entropies of allotropes of, 834	Catenation of carbon, 953	Chernobyl nuclear accident (1986), 370, 931
orbital diagram for, 342, 466	Cathode, 867–868	Cherries, pH of, 708, 709
organic compounds, 123-124	in electrolytic cell, 891-893	Chiral, 1112
reactions of	in voltaic cell, 867–868	Chiral complex, 1112
with oxygen, 252–253	Cathode rays, 51–52	Chiral environment, chemical behavior in, 959
with sulfur, 179	Cathode ray tube, 51-52	Chiral molecule, 958
with water, 272	Cathode reaction in batteries, 887-890	Chlorate, 99
tendency to catenate, 953	Cathodic regions, 899	Chlordane, 564
tendency to form four covalent bonds, 952	Cation(s), 61, 89	Chloride ion, 1105
uniqueness of, 950, 952–953	as conjugate acids of weak bases, 728	Chloride minerals, 1077
λ-Carbon, 1010–1011	as counterions of strong bases, 728	Chlorides, 98
Carbon-14 dating, 924–925	electrolysis of mixture of anions and, 893	insoluble, 793
Carbonate(s), 99, 740, 1049–1050	electron configuration and, 349, 355	Chlorine, 57, 58, 64, 396
in gas-evolution reactions, 175	as Lewis acids, 739	catalytic ozone destruction and, 628-629
solubilities of, 788	metal, 728–729	dipole moment of, 397
Carbonate ion, 721, 768	periodic table and, 64	electron affinity of, 363
solubility and, 162	radii of, 357	electron configuration of, 347, 358
Carbon black, 1046	in salts, 729–730	electron configuration of anion, 358
Carbon dioxide, 2, 49–50, 1048	as weak acids, 728–729	elemental, 1064
atmospheric, 213, 281–282	Cell diagram, 867	ionization energies of, 360, 363
chemical formula for, 90	Cell potential (E_{cell}) or cell emf, 868	Lewis structure of, 392
formula mass of, 107	concentration and, 881–886	mass spectrum of, 68
from fossil fuel combustion, 139–141, 281–282	Cells, taste, 426	properties of, 88, 368, 1062
as greenhouse gas, 139, 140	Cellular fluids, 546	reactions of
molar mass of, 107	Cellulose, 1009-1010	with chloromethane, 969
molecular geometry of, 427, 439	Celsius (°C) scale, 15–16	with ethene, 970
phase diagrams of, 515	Cementite, 1048	with hydrogen, 176
reaction between water and, 740, 1121	Centipoise (cP), 498	with iron, 368
solid (dry ice), 291, 509, 527, 1048	Centi prefix, 17	with ozone, 241
sublimation of, 10	Cesium	with potassium, 384–385
solubility of, 1049	charge of, 97	with sodium, 48, 176, 386
supercritical, 509	properties of, 357	van der Waals constants for, 232
van der Waals constants for, 232	Cesium chloride, 1.498	Chlorine dioxide, 1066
from volcanoes, 140, 142	CFCs. See Chlorofluorocarbons	Chlorine fluoride, dipole moment of, 397
in water, Henry's law constants for, 558	Chadwick, James, 55	Chlorine oxides, 1066
Carbonic acid, 698, 704, 740, 754, 768, 1049	Chain reaction in fission of uranium-235,	Chlorite, 99
ionization constants for, 732	928–929	Chlorobenzene, 972
Carbonic anhydrase, 768, 1121–1122	Chalcopyrite, 1090	Chloroethane, 969, 970
Carbonization, 1045	extracting copper from, 1080	Chloroethene, 985
Carbon monoxide, 1–2, 20–21, 49–50, 628,	Champagne, 195	1-Chloro-3-ethylbenzene, 973
629, 1049	Charcoal, 1045–1046	Chlorofluorocarbons (CFCs), 109, 607–608,
reaction between hydroxyl radical and, 407	density of, 19	629, 1058
reaction between nitrogen dioxide and, 624–625	Charles, J. A. C., 203	Chloroform, 548
Carbon monoxide ligand, 1105	Charles's law, 202–205, 222	freezing point depression and boiling point
Carbon nanotubes, 1035–1036	kinetic molecular theory and, 224	elevation constants for, 575
Carbon oxides, 1048–1049	Chelate, 1106	Chloromethane, 969
Carbon tetrachloride, 550	Chelating agents, 1106, 1119	reaction between chlorine and, 969
chemical formula for, 90	Chemical analysis, coordination compounds	Chlorophyll, 1121
freezing point depression and boiling point	used in, 1119	1-Chloropropane, 971
elevation constants for, 575	Chemical bonds. See Bond(s); Bonding	2-Chloropropane, 971
van der Waals constants for, 232	Chemical changes, 9–11. See also Reaction(s)	Chlorous acid, 705
Carbonyl chloride (phosgene), 1049	Chemical energy, 13, 248	Cholesterol, 1005–1006
Carbonyl chloride (phosgene), 1049 Carbonyl group in aldehydes and ketones,	Chemical equations. See Equation(s)	Chromate, 99
978, 981	Chemical formula(s), 90–92	Chromate compounds, 1088
charge density plots of, 981	composition of compounds from, 112–113	Chromate ion, 1088
Carbonyl sulfide, 1049	conversion factors from, 112–113	Chromite, 1087–1088
· · · · · · · · · · · · · · · · · · ·		,

CI (A	G 1 (1 2 1055	611 1 670
Chromium, 62	Combustion, 3, 1057	of ideal gas, 659
cations formed by, 98	bomb calorimetry for, 262–264	Le Châtelier's principle on change in, 677–684
chromium–vanadium phase diagram, 1083	conservation of energy in, 813–814	reaction rate and. See Rate law
colors of compounds of, 1087	empirical formula from analysis of, 117–119	time and. See Integrated rate law
functions in human body, 1120	of fossil fuel. See Fossil fuel combustion	Concentration cells, 884–886
nickel-chromium phase diagram, 1083-1084	hydrocarbon, 969	Cu/Cu ²⁺ , 884–885
oxidation states of, 1088	as redox reaction, 182	in human nerve cells, 886
sources, properties, and products of, 1087-1088	Combustion reaction, 119	Concentration units, converting between, 566
Chromosomes, 1021, 1024	Common ion effect, 756	Conceptual plan, 28, 32
in genetic structure, 1021	Common names, 101	Condensation, 500, 501–502
Chymotrypsin in digestion, 632–633	Complementary base pairing, 496	of amines, 984
Cinnabar, 1077	Complementary bases, 1020, 1022–1023	of carboxylic acids, 982
Cinnamaldehyde, 123, 979	Complementary color, 1115–1116	entropy of surroundings increased by, 824–825
Cisplatin, 1122	Complementary properties, 313, 315	Condensation polymers, 986, 987
Cis–trans (geometric) isomerism, 451–452,	Complete ionic equations, 167–168	Condensed phase(s), 482, 487–495. See also
968–969, 1109–1112	Complete protein, 1023	Liquid(s); Solid(s)
in alkenes, 968–969	Complex carbohydrates, 1009–1010	intermolecular forces and, 482
	- · · · · · · · · · · · · · · · · · · ·	
Citric acid, 698, 699, 982	Complex ion(s), 795, 1104	Conduction band, 531
ionization constants for, 732	color of, crystal field strength and, 1115–1117	Conductivity
Citrus fruits, 710	common geometries of, 1106–1107	of copper, 1090
Classical physics, 313	coordination compound and, 1104	of ionic compounds, 389–390
Clausius, Rudolf, 812	naming, 1107–1108	of semiconductors, 531
Clausius-Clapeyron equation, 505-508	valence bond model hybridization schemes	Conductors, 531
Claus process, 1060	in, 1114	metals as, 1076
Clean Air Act, 20, 104, 151, 741	Complex ion equilibria, 795-799	Cones, 452
Closest-packed crystal structures, 524–526, 528	effect on solubility, 797–798	Conformation of protein, 1014–1018
cubic, 525–526	formation constant (K_f) , 795	Coniine, 700
hexagonal, 525	solubility of amphoteric metal hydroxides,	Conjugate acid-base pair, 701-703
Closo-boranes, 1043	798–799	cations in, 728
Clostridium botulinum, 1054	Compound(s)	strength of, 725
Clouds, polar stratospheric (PSCs), 629–630	atomic-level view of, 93–95	Conservation
Club soda, 547, 557	binary, 97–99	of energy, 12, 248–249, 813–814. See also
Coal, 279, 280, 739–740, 1045	classification of, 93	
		First law of thermodynamics
composition of main types of, 1045	composition of, 109–113	of mass, 3, 47–48
Cobalt	from chemical formulas, 112–113	Constant-pressure calorimetry, 269–271
cations formed by, 98	mass percent determination of, 109–111	Constant-volume calorimetry, 262–264, 271
sources, properties, and products of, 1089	coordination. See Coordination compound(s)	Constructive interference, 301, 302, 460, 518
Cobalt(II) chloride hexahydrate, 100	defined, 7	Consumer products, radiation exposure
Cobaltite, 1089	formula mass for, 107	from, 939
Codon(s), 1020–1021, 1023–1024	inorganic, 123, 953	Contact process, 1062
gene as sequence of, 1021	insoluble, 160	Contaminants, 517
in genetic structure, 1020–1021	interhalogen, 369	Contractile and motile proteins, 1011
Coffee-cup calorimeter, 269-270	ionic. See Ionic compound(s)	Controlled disequilibrium, 656
Cohesive forces, 499	mixtures vs., 88	Conversion factor(s), 27
Coke, 1045	molar mass of, 107-108	coefficients of equations as, 219-220
reaction between silicon oxide and, 1047	mole concept for, 107-108	density as, 31
reaction of calcium oxide with, 1047	molecular. See Molecular compound(s)	from formulas, 112–113
Cold pack, chemical, 265-266	molecular formulas for, 116–117	mass percent composition as, 110–111
Collagen, 1015	organic. See Organic compound(s)	Coordinate covalent bond, 443, 1104,
Colligative properties, 567, 579–582	properties of, 88	1113–1114
defined, 567	Proust's observations on, 48	Coordination compound(s), 1098, 1100,
medical solutions and, 581–582	representing, 90–92	1104–1108
of strong electrolyte solutions, 579–582	chemical formulas, 90–92	applications of, 1119–1122
•		**
Collision(s)	molecular models, 91–92	bonding in, 1113–1119
elastic, 223–224	soluble, 160	color of complex ions and crystal field,
inelastic, 223–224	specific heat of, 257	1115–1117
intermolecular forces and, 232	standard enthalpy of formation for, 274–275	crystal field theory, 1114–1119
mean free path, 229	undergoing gas-evolution reactions, 175	magnetic properties, 1117–1118
Collision frequency, 620–621	volatile organic (VOCs), 951	octahedral complexes, 1114–1115
Collision model, 222–224	Compressibility of gases, 6	tetrahedral and square planar complexes,
Colloids (colloidal dispersion), 582–584	Concentrated solution, 152, 559, 568–569	1118–1119
Color, 298	Concentration(s), 152–153	valence bond theory, 1113–1114
absorption of light energy and, 1099,	cell potential and, 881-886	complex ion and, 1104
1115–1116	at equilibrium. See Equilibrium constant (K)	defined, 1104
complementary, 1115-1116	from equilibrium constant, 662–665	naming, 1107-1108
of complex ions, crystal field strength and,	given all but one of equilibrium concent, 668	structure and isomerization in, 1109–1113
1115–1117	given initial concentrations or pressure,	stereoisomerism, 1110-1113
of gemstones, 1099-1100	669–673	structural isomerism, 1109–1110
Coloring agents, 1120	simplifying approximations, 673–676	Coordination isomers, 1109
Color wheel, 1116	equilibrium constant in terms of, 653–654	Coordination numbers, 520–523, 1104,
Columbite, 1077	finding equilibrium constant from, 662–665	1106–1107
	J 1	

Copernicus, Nicolaus, 47	Cubic closest packing, 525–526	Diamond, 6, 529, 1044-1045
	Cubic measure, 17–18	
Copolymers, 986		molar entropies of, 834
Copper, 62	Cubic unit cells, 520–523	structure, 1044–1045
cations formed by, 98	body-centered, 521–522	Diastolic blood pressure, 199
crystal structure of, 1081	face-centered, 521, 522–523, 525–526	Diatomic molecule(s), 93
density of, 19	simple, 520–521	bond order of, 461
functions in human body, 1120	Curie, Marie Sklodowska, 54, 58, 913, 936	heteronuclear, 469–470
nickel and copper alloy, 1082–1083	Curie, Pierre, 913	homonuclear, 463–468
refinement of, 1080	Curie (Ci), 938	Diborane, 398
sources, properties, and products of, 1089-1090	Curium, 58	Dichlorobenzene, 973
specific heat of, 257	Current, tunneling, 45–46	Dichlorodifluoromethane, 608
Copper(II) sulfate pentahydrate, 100	Cyanide, 99	Dichloroethane, 970
Copper(II) sulfide, 784	Cyanide ion, 1105	1,2-Dichloroethane, 451-452, 968
Copper electrolysis cell, 1080	Cycles per second (cycle/s), 298	physical properties of cis- and trans-, 968–969
Copper ion, 865–869	Cyclohexane, 123, 953	1,2-Dichlorotetrafluoroethane, 608
Copper plating, 897	Cyclooctasulfur, 1059	Dichromate, 99
Core electrons, 345, 353	Cyclotron, 936, 937	Dichromate compounds, 1088
	· ·	- · · · · · · · · · · · · · · · · · · ·
Corrosion, 898–900	Cysteine, 1012	Dichromate ion, 1088
nickel's resistance to, 1090–1091	Cytochrome c, 1120	Dieldrin, 564
preventing, 900	Cytosine, 496, 1019–1020	Diet, nature's heat tax and, 814
zinc as anticorrosion coating, 1091		Diethyl ether, 126, 550, 983–984
Coulomb's law, 315, 339–340, 352, 382, 487	D	boiling point of, 501
Counterions, 728, 1104		Clausius–Clapeyron plot for, 506
Covalent bond(s), 89–90, 383	Dalton, John, 3, 5, 44, 46, 47, 49, 58, 66	freezing point depression and boiling point
carbon's tendency to form four, 952	atomic theory of, 50–51	elevation constants for, 575
coordinate, 444, 1104, 1113-1114	Dalton's law of partial pressures, 213	heat of fusion for, 510
directionality of, 393	kinetic molecular theory and, 224	heat of vaporization of, 501
double, 392	Data gathering, integrity in, 26	vapor pressure of, 504
Lewis model of, 382	Daughter nuclide, 914	Differential rate law, 608. See also Integrated
Lewis theory of, 391–393	Davisson-Germer experiment, 309	rate law
nonpolar, 396	DDT, 564	Diffraction, 301–302
polar, 394	Dead Sea Scrolls, 924–928	Diffraction patterns, 519
* -		- '
shapes of atomic orbitals and, 321–327	De Broglie, Louis, 294, 309	Diffusion, 229
single, 391–392	De Broglie relation, 311	Digestion
triple, 392	De Broglie wavelength, 310–311	chymotrypsin in, 632–633
Covalent carbides, 1048	Debye (D), 397	of disaccharides by hydrolysis, 1009
Covalent radius (bonding atomic radius), 350	Decane, 955	of fats and oils, 1004
o-Cresolphthalein, 783	n-Decane, 961	Dihydrogen phosphate, 99
Crick, Francis H. C., 86, 496, 520, 1000, 1022	Decanting, 8	Dihydrogen sulfide (hydrogen sulfide), 444–445,
Critical mass, 929	Deci prefix, 17	1059, 1060
Critical point, 508–509, 513, 514	Decomposition, standard heat of formation for,	Dilute solution, 152, 559
Critical pressure, 508	275–276	Dimensional analysis, 27
Critical temperature, 508	Deep-freezing, 509	Dimer, 986, 987
Cryogenic liquids, 370	Deep-sea diving, partial pressures and, 215–217	Dimethyl ether, 983
Crystal field, 1099	Definite proportions, law of, 48–49, 88	hydrogen bonding in, 1.464
Crystal field splitting energy, 1114–1117	Degenerate orbitals, 338–339, 341	Dimethylglyoxime, 1119
Crystal field theory, 1100, 1114–1119	Dehydrating agent, sulfuric acid as, 1061–1062	Dinitrogen monoxide (nitrous oxide), 101, 1053
basic principles of, 1114–1115	Dehydration reactions of alcohols, 977	Dinitrogen trioxide, 1053
* *	•	,
color of complex ions and crystal field strength,	Democritus, 47	2,4-Dinitrophenol, 783
1115–1117	Density(-ies)	Diodes, 531
magnetic properties of transition metal	of alkali metals, 367	Dioxin, 564
complex and, 1117–1118	of bone, 20	Dipeptide, 1013
Crystalline lattice, 89, 518, 520	calculating, 18–19	Dipolar ion, 1013
Crystalline solid(s), 5, 5–6, 485, 518–531	as conversion factor, 31	Dipole(s)
band theory of, 530–531	of gas, 210–211	permanent, 490
fundamental types, 526–530	of noble gases, 371	temporary (instantaneous), 488
atomic solids, 526, 528-530	probability, 321–324	Dipole-dipole forces, 490-492, 495, 548
ionic solids, 527–528	SI unit for, 18	Dipole moment (μ), 397–398, 403
molecular solids, 527	Deoxyribonucleic acid. See DNA	boiling point and, 490–491
structures of, 518-520, 520-526	Deoxyribose, 1019	molecule polarity and, 439–441
closest-packed, 524-526, 528	Deposition, 509	as vector quantities, 439
unit cells, 520–526	Derived unit, 17–18	Diprotic acid(s), 169, 703, 704, 731
body-centered cubic, 521–522	Destructive interference, 301, 302, 460, 518	anions in weak, 734–735
for closest-packed structures, 525–526	Detergents, 1056	titration with strong base, 779–780
face-centered cubic, 521, 522–523, 525–526	Deterministic laws, 313–314	Dirac, P. A. M., 294, 312
for ionic solids, 527–528	Deuterium-tritium fusion reaction, 935	
		Dirty dozon chamicals (persistent organic
simple cubic, 520–521	Dextrorotatory isomer, 958	Dirty dozen chemicals (persistent organic
X-ray crystallography of, 518–520	Diabetes, 1001–1002	pollutants), 564
Crystallography, X-ray, 381, 518–520	Diagnostic medical procedures, radioactivity	Disaccharide, 1008–1009
Crystal structure of metal, 1081	in, 940–941	Diseases, water quality and, 517
Crystal violet, 783	Diamagnetism, 355–356, 467	Disequilibrium, controlled, 656

Dispersion force, 487–489	metals in core of, 1076–1077	Electrolyte(s), 159
Dispersion forces, 487–489, 495, 548, 549	uranium/lead radiometric dating to estimate	rusting promoted by, 899
Disproportionation, 1054	age of, 927–928	strong, 159, 703
Dissociation constant for water. See Ion	Earth metals, 1076–1077	weak, 160, 703
product constant for water (K_w)	Ectotherms, 597–598	Electrolyte solutions, 159–160
Dissociation of polyprotic acids, 735	EDTA ligand, 1105–1106	Electrolytic cells, 866, 890–898
Dissolution, 10	Effective nuclear charge (Z_{eff}),	for copper plating, 897
entropy and, 817–818	340, 352–353	for silver plating, 891
relative standard entropies and, 835	Effusion, 229–230	solar-powered, 891
Distillation, 8	Egg-white lysozyme, 1016, 1021	voltaic versus, 892
Disubstituted benzenes, 973	Egg whites, pH of, 708	Electromagnetic radiation, 296–297, 915.
Disulfide linkages, 1016	Einstein, Albert, 58, 294, 303, 305, 929–930	See also Light
Diving, 200–201	energy equation of, 932–933	atomic spectroscopy and, 306–309
DNA, 520, 1018–1020	Einsteinium, 58	Electromagnetic spectrum, 299–301
base-pairing in, 1020	Eka-aluminum, 336, 337	Electrometallurgy, 1079–1080
bases in, 1019–1020	Eka-silicon, 62, 336, 337	Electromotive force (emf), 867
discovery of, 1022	Elastic collision, 223–224	Electron(s)
hydrogen bonding in, 496	Eldrin, 564	bonding pair, 391
short strand of, 1020	Electrical charge, 52	charge of, 52–53, 56
structure of, 1018–1020	properties of, 52	charge-to-mass ratio of, 52
sugars in, 1018–1020	of subatomic particles, 56	
E .	÷	core, 345, 353
DNA polymerase, 1023	Electrical current, 865	delocalization of, 401
DNA replication, 1022–1023	amperes (A), measuring electron flow, 867	discovery of, 51–53
Dörbereiner, Johann, 336	driving force for, 867–868	cathode rays and, 51–52
DOE. See U.S. Department of Energy	Electrical resistivity of metals, 1076	Millikan's oil drop experiment, 52–53
Dopants, 531	Electric field, 52, 296	excitation of, 318–321
Doping, 531	Electricity	ions and, 59–61
d orbitals, 316–318, 325	driving nonspontaneous chemical reactions	Lewis acid–base model and, 738–739
gemstone color and splitting of, 1099–1100	with, 890–898	lone pair (bonding electrons), 391–392
Double bond(s), 91, 392	generating	mass and size of, 295–296
bond energy of, 410	with batteries, 886–890	observation of, 295–296
carbon's ability to form, 952	with fission, 930–932	orbitals for. See Orbital(s)
hydrogenation of, 630–631	from spontaneous chemical reactions,	outermost, 353
in Lewis theory, 450	865–869	photon release by, 319
rotation about, 968	heating home with natural gas vs., 815	position of, 313
single bond vs., 452, 968	power grid distributing, 861–862	positron as antiparticle of, 916
sp^2 hybridization and, 448–450	Electrochemical cell, 865–869	shielding and penetration of, 339–340
in structural formulas, 956	concentration cells, 884–886	valence, 345, 345–346
in valence bond theory, 448–451	predicting spontaneous redox reactions and	chemical properties and, 348–349
Double helix, 1022–1023	sketching, 876	velocity of, 313
Double silicate chains, 1040	standard free energy change for, 878	wave nature of, 309–314
Dowager's hump, 20	standard potential of, 870-874	de Broglie wavelength and, 310–311
Drug(s)	Zn/Cu ²⁺ , under standard and nonstandard	indeterminacy and probability distribution
acidic, 710	conditions, 882	maps, 313–314
coordination compounds, 1122	Electrochemical cell notation, 869	uncertainty principle and, 311-313
ionic compounds as, 391	Electrochemistry, 860–909	Electron affinity(-ies) (EA), 363–364, 382
knowledge of human genome and development	balancing oxidation-reduction equations,	of halogens, 368
of, 1024	862–865	Electron capture, 913, 916, 917
Dry-cell batteries, 886–887	batteries, 886–890	Electron cloud, dispersion force and,
Dry ice, 291, 509, 527, 1048	cell potential, free energy, and the equilibrium	487–489
sublimation of, 10	constant, 877–881	Electron configuration(s), 337–344
Ductility , 62, 364	cell potential and concentration, 881–886	of alkali metals, 367
Duet, 384	corrosion, 898–900	chemical properties and, 345–346
Dynamic equilibrium. See also Equilibrium/	electrolysis, 890–898	electron spin and Pauli exclusion principle, 338
equilibria	applications of, 891	of halogens, 368
concept of, 651–653	in electrometallurgy, 1079–1080	inner, 343, 347
defined, 651	predicting products of, 893–896	of inner transition elements, 347–348
population analogy for, 652–653	stoichiometry of, 897–898	for multielectron atoms, 342–344
in solution, 555–556	of water, 891	of noble gases, 371
vapor pressure of solution and, 567–568	standard reduction potentials, 870–877	orbital blocks in periodic table, 346–347
vapor pressure or solution and, 507 500	voltaic (galvanic) cells, 865–869	outer, 347
	Electrode	sublevel energy splitting in multielectron
E	defined, 866	atoms, 338–342
E. coli, irradiation of foods to kill, 941		
	inert platinum, 869	of transition metals, 347–348, 1100–1102
Eagle Nebula, 60 Fore pressure imbalance and 106, 107	sacrificial, 900	valence electrons, 345
Ears, pressure imbalance and, 196–197	Electrolysis, 890–898	writing, from periodic table, 347–348
Earth	applications of, 891	Electron diffraction experiment, 311–312
crust of	in electrometallurgy, 1079–1080	Electronegativity, 394–395
major elements in, 1036–1037	predicting products of, 893–896	of halogens, 1062
metals in, 1076–1077	stoichiometry of, 897–898	oxyacids and, 737
silicates as most abundant matter in, 1038	of water, 891	of transition metals, 1103

heterogeneous, 661-662

Electronegativity difference (ΔEN),	entropy of surroundings decreased by, 825	second law of thermodynamics and, 817–824
396–398	spontaneous, 817–818	solutions and, 547–548, 568–569
Electron geometry, 430	Endothermic reaction(s), 265–267, 682, 831	as state function, 819
hybridization scheme from, 455–458	bond energies and, 411	of surroundings, 824–828
linear, 433–434, 456	Endpoint of titration, 780–782	quantifying, 826–827 temperature dependence of, 825–826
octahedral, 436, 456 tetrahedral, 433–434, 456	Energy(-ies), 12–13. <i>See also</i> Chemical energy; Kinetic energy; Potential energy;	temperature, 825–826
trigonal bipyramidal, 436, 456	Thermal energy; Thermochemistry	Environment
trigonal planar, 433–434, 456	change in, 251–256	acid rain, 104, 739–741
Electron groups	from combustion reactions, 182	energy use and, 279–283
defined, 426	conservation of, 12, 248–249, 813–814.	free radicals and, 407
five, 429	See also First law of thermodynamics	Lake Nyos carbon dioxide accumulation, 560
with lone pairs, 432–433	conversion factors, 250	MTBE in gasoline, 151
four, 427–428	defined, 12, 248	ozone, Lewis structure of, 414
hybridization scheme and, 455-458	fission to generate electricity, 930–932	persistent organic pollutants (POPs), 564
with lone pairs, 430–435	greatest dispersal of	renewable energy, 282–283
repulsion between, 426	entropy change associated with change in,	water pollution, 517
variation in, 431	822–824	Enzymes, 598, 631-632, 1010
six, 429	interaction, of atoms, 443-444	EPA. See U.S. Environmental Protection
with lone pairs, 433	internal (<i>E</i>), 251–256	Agency
three, 427	ionization. See Ionization energy(-ies) (IE)	Epsom salts (magnesium sulfate
two, 426–427	lattice, 386–390	heptahydrate), 100
Electron pairs, nonbonding vs. bonding, 431	ion charge and, 388–389	Equation(s), 27
Electron sea model, 176, 383, 528, 530	ion size and, 388	for acid–base reactions, 171
Electron spin, 338	loss in most energy transactions, 814	for aqueous reactions, 163
Electron symbol, 913	manifestations of, 248	coefficients as conversion factors, 219–220
Electron transfer, ionic bonding and,	nature of, 248–250	complete ionic, 167–168
382–383	nature's heat tax and, 813–814	equilibrium constant and changes in, 656–658
Electron volt (eV), 933–934	nuclear fusion as sun's source of, 935	for gas-evolution reactions, 175
Electrostatic forces, 52	of photon, 303–304, 308 "places" for in gaseous NO, 834–835	molecular, 166
Element(s) absorption spectra of, 308–309	renewable, 282–283	net ionic, 167–168 nuclear, 914–917
atomic, 93–94	rotational, 823, 834–835	for fission reaction, 928
atomic-level view of, 93–95	total, 12	for precipitation reactions, 165–166
atomic mass of, 66–67	transfer of, 248, 248–249	problems involving, 32–33
	transformation of, 248–249	thermochemical, 267–268
atoms and, 47		
atoms and, 47 classification of, 93		
atoms and, 47 classification of, 93 defined, 7	translational, 823 units of, 250	writing and balancing, 120–123 procedure for, 120–121
classification of, 93	translational, 823	writing and balancing, 120-123
classification of, 93 defined, 7	translational, 823 units of, 250	writing and balancing, 120–123 procedure for, 120–121
classification of, 93 defined, 7 electron configurations for, 342	translational, 823 units of, 250 and velocity as complementary properties, 315	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure-volume work by, 260–262 English system of measurement, 13	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658.
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure-volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s)	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (<i>K</i>), 648, 653–658. See also Acid ionization constant(s) (<i>K</i> _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (<i>K</i>), 648, 653–658. See also Acid ionization constant(s) (<i>K</i> _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies)	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (<i>K</i>), 648, 653–658. See also Acid ionization constant(s) (<i>K</i> _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure,
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (<i>K</i>), 648, 653–658. See also Acid ionization constant(s) (<i>K</i> _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (<i>K</i>), 648, 653–658. See also Acid ionization constant(s) (<i>K</i> _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes,	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s)	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (<i>K</i>), 648, 653–658. See also Acid ionization constant(s) (<i>K</i> _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations,
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings,	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution (ΔH _{soln}), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution (ΔH _{soln}), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661 units of, 660
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308 Empirical formula, 90–91	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268 total energy change vs., 265	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308 Empirical formula, 90–91 from combustion analysis, 117–119	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268 total energy change vs., 265 Entropy(-ies), 812, 817–828	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661 units of, 660 Equilibrium/equilibria, 648–695. See also Acid–base chemistry; Buffers;
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308 Empirical formula, 90–91 from combustion analysis, 117–119 from experimental data, 114–115 molecular formula from, 116–117 Empirical formula molar mass, 116	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268 total energy change vs., 265 Entropy(-ies), 812, 817–828 absolute zero of, 832 biological systems and, 828 change in, 817–818	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661 units of, 660 Equilibrium/equilibria, 648–695. See also Acid–base chemistry; Buffers; Complex ion equilibria;
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308 Empirical formula, 90–91 from combustion analysis, 117–119 from experimental data, 114–115 molecular formula from, 116–117 Empirical formula molar mass, 116 Emulsion, 583	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268 total energy change vs., 265 Entropy(-ies), 812, 817–828 absolute zero of, 832 biological systems and, 828 change in, 817–818 associated with change in state, 822–824	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661 units of, 660 Equilibrium/equilibria, 648–695. See also Acid–base chemistry; Buffers; Complex ion equilibria; Dynamic equilibrium; Solubility
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308 Empirical formula, 90–91 from combustion analysis, 117–119 from experimental data, 114–115 molecular formula from, 116–117 Empirical formula molar mass, 116 Emulsion, 583 Enantiomers, 958, 1112	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268 total energy change vs., 265 Entropy(-ies), 812, 817–828 absolute zero of, 832 biological systems and, 828 change in, 817–818 associated with change in state, 822–824 effect on spontaneity, 829–832	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661 units of, 660 Equilibrium/equilibria, 648–695. See also Acid–base chemistry; Buffers; Complex ion equilibrium; Solubility equilibria
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308 Empirical formula, 90–91 from combustion analysis, 117–119 from experimental data, 114–115 molecular formula from, 116–117 Empirical formula molar mass, 116 Emulsion, 583 Enantiomers, 958, 1112 in chiral environment, 959	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268 total energy change vs., 265 Entropy(-ies), 812, 817–828 absolute zero of, 832 biological systems and, 828 change in, 817–818 associated with change in state, 822–824 effect on spontaneity, 829–832 standard, for reaction ($\Delta S_{\rm rxn}^{\circ}$), 832–836	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661 units of, 660 Equilibrium/equilibria, 648–695. See also Acid–base chemistry; Buffers; Complex ion equilibrium; Solubility equilibria acid strength and, 703
classification of, 93 defined, 7 electron configurations for, 342 electronegativities of, 396 emission spectra of, 306, 308 family (group) of, 63 of life, 66 main-group. See Main-group elements molecular, 93 origin of, 60 properties of, 87–88 periodic. See Periodic property(-ies) proton number as definitive of, 56–57 specific heat of, 257 standard enthalpy of formation for, 274 transition. See Transition metal(s) transuranium, 937 Elementary steps, 622, 623 rate laws for, 623 Elimination reactions of alcohols, 977 Emeralds, color of, 1099–1100 Emf (electromotive force), 867 Emission spectra, 307 Bohr model and, 307–308 Empirical formula, 90–91 from combustion analysis, 117–119 from experimental data, 114–115 molecular formula from, 116–117 Empirical formula molar mass, 116 Emulsion, 583 Enantiomers, 958, 1112	translational, 823 units of, 250 and velocity as complementary properties, 315 wavelength, amplitude, and, 297–298 Energy use, environment and, 279–283 Engine, pressure–volume work by, 260–262 English system of measurement, 13 Enthalpy(-ies) (H), 265–268, 817. See also Heat(s) defined, 265 exothermic and endothermic processes, 266–267 of solution ($\Delta H_{\rm soln}$), 552–555 Enthalpy change (ΔH), 265 bond energies to estimate, 411–412 effect on spontaneity, 829–832 exothermic and endothermic processes, 266–267 magnitude or absolute value of, 554–555 measuring, 271–273 to quantify change in entropy for surroundings, 826–827 of reaction ($\Delta H_{\rm rxn}$), 265–268, 411–412 relationships involving, 271–273 from standard heats of formation, 273–279 stoichiometry involving, 267–268 total energy change vs., 265 Entropy(-ies), 812, 817–828 absolute zero of, 832 biological systems and, 828 change in, 817–818 associated with change in state, 822–824 effect on spontaneity, 829–832	writing and balancing, 120–123 procedure for, 120–121 Equatorial positions, 429 Equilibrium, thermal, 256 Equilibrium constant (K), 648, 653–658. See also Acid ionization constant(s) (K _a) chemical equations and, 656–658 defined, 650, 654 equilibrium concentrations from, 662–665 given all but one of equilibrium concentration, 668 given initial concentrations or pressure, 669–673 simplifying approximations, 673–676 expressing, 654 for fetal vs. adult hemoglobin, 650 free energy and, 845–848 from measured equilibrium concentrations, 662–665 reaction quotient vs., 665–667 for redox reaction, 880–881 significance of, 655 temperature and, 662, 847–848 in terms of concentrations, 653–654 in terms of pressure, 658–661 units of, 660 Equilibrium/equilibria, 648–695. See also Acid–base chemistry; Buffers; Complex ion equilibrium; Solubility equilibria

relative standard, 833-835

Endothermic processes

La Châtaliar's principle 677, 684	Ethyl substituent, 962	discovery of, 928–932
Le Châtelier's principle, 677–684	•	•
concentration change, 677–684	Ethyne, 124	atomic bomb and, 928–930
population analogy for, 677–678	Ethyne. See Acetylene	nuclear power to generate electricity,
temperature change, 682–684	Ethyne:	930–932
volume (or pressure) change, 680–681	common uses of, 125	Flame tests, 309, 794
life and, 656	molecular formula for, 125	Flash freezing, 517
reaction quotient, 665–667	space-filling model of, 125	Flintstones, The (TV show), 203
Equivalence point, 171, 172, 769	structural formula for, 125	Flowing water analogy and electrical
Eriochrome Black T, 783	Europium, 58	current, 867
Error	Evaporation, 500-501	Fluid(s)
random, 25	entropy and, 817–818	cellular, 546
	Exact numbers, 22–23	
systematic, 26		intravenous, 70
Erythrosin B, 783	Exa prefix, 17	supercritical, 508–509
Esophageal sphincter, 698	Exothermic process(es)	Fluoride, 98
Ester(s), 981–983	entropy of surroundings increased by, 825, 826	Fluoride ion, electron configuration of, 355
functional group of, 975	spontaneity and, 826	Fluorine, 60–61, 64
general formula for, 126	Exothermic reaction(s), 247–248, 266, 682, 831	electron configuration of, 343, 355
naming, 981	bond energies and, 411	elemental, 1063–1064
reactions, 982–983	Expanded octets, 408–409, 454	high reactivity of, 1063–1064
Ester linkages, 1004	Experiment, 3, 4	Lewis structure of, 384
Estimation	Exponential factor, 615, 617	MO diagram for, 466
	• • • • • • • • • • • • • • • • • • • •	•
order of magnitude, 31–32	Extensive property, 18	orbital diagram for, 343
in weighing, 21	External arrangement (macrostate), 818–822	oxidation state for, 177
β-Estradiol, 1005–1006	Extractive metallurgy, 1077	properties of, 368
Ethanal (acetaldehyde), 126, 979, 980		reaction between bromine and, 369
Ethane, 952, 960	T.	reaction with noble gases, 371
dipole-dipole forces in, 490	\mathbf{F}	selected properties of, 1062
Ethanoic acid. See Acetic acid	Face-centered cubic unit cell, 521, 522-523, 526	Fluorine-18, 940
Ethanol, 126, 546–547, 754, 976, 977	Fac-mer isomerism, 1111	PET scan using, 940–941
breathalyzer to measure, 890	Fahrenheit (°F) scale, 15	Fluorite (CaF ₂) structure, 528
•		· -
density of, 19	Falsifiability, 3	Fluorspar, 1062, 1063
freezing point depression and boiling point	Family(-ies), 126	Flux, 1079
elevation constants for, 575	of elements, 63. See also specific groups	Foam, 583
hydrogen bonding in, 493	of organic compounds, 126	Fog, 582–584
oxidized to acetic acid, 977	Faraday, Michael, 860	Food(s)
oxidized to ethanal, 980	Faraday's constant (F), 878, 897	acidic, 710
reaction between hydrobromic acid and, 977	Fats, 1004–1005	caloric value of, 425
reaction between oxygen and, 182	Fatty acids, 1002–1003	irradiation of, 941
solubility in hexane, 551	structure for, 1002	preservatives in, 1054
•	FCX Clarity (fuel-cell vehicle), 282–283	taste of, 426
solubility in water, 551	• •	
specific heat of, 257	FDA. See U.S. Food and Drug Administration	Food industry, phosphoric acid and phosphate
vapor pressure of, 504	Feldspar, 1038	used in, 1056
Ethene, 124, 964, 965, 985	Femto prefix, 17	f orbital, 326
common uses of, 125	Fermi, Enrico, 928	Force(s)
molecular formula for, 125	Ferrochrome, 1087	adhesive, 499
reactions of	Ferromagnetic materials, 1089	cohesive, 499
with chlorine gas, 970	Ferromanganese, 1089	defined, 41
with hydrogen, 621, 630	Fertilizers	dispersion, 487–489, 495, 548
with hydrogen chloride, 970	ammonium nitrate, 1054	electrostatic, 52
space-filling model of, 125	nitrogen-containing, 1051, 1052	intermolecular. See Intermolecular force(s)
structural formula for, 125	phosphoric acid and production of, 1056	intramolecular, 393
Ethers, 983–984	Fetal hemoglobin (HbF), 649–651	SI unit of, 197
functional group of, 975	Fetuses, mercury exposure and, 114	Forests, acid rain damage to, 104
general formula for, 126	Feynman, Richard P., 51, 246	Formal charge, Lewis structures and, 403–405
naming, 983–984	Fibrous proteins, 1014–1015, 1017	Formaldehyde, 978, 979, 981
Ethyl alcohol. See Ethanol	Film-badge dosimeters, 920	dipole-dipole forces in, 490-491
Ethylamine, 126, 721, 984	Filtration, 8	molecular geometry of, 427
Ethylbenzene, 972	Fireworks, 308	Formalin, 979
Ethyl butanoate, 982	First ionization energy (E), 359–362	Formation constant (K_f) , 795
•		
Ethylene. See Ethene	First law of thermodynamics, 250–256,	Formic acid (methanoic acid), 704, 773–779,
Ethylenediamine ligand, 1105, 1106	813–814	981–982
Ethylenediaminetetraacetate ion, 1119	internal energy (E), 251–256	acid ionization constant for, 705
Ethylenediaminetetraacetate (EDTA) ligand,	First-order integrated rate law, 608-610, 615	Formula mass, 107
1105–1106	First-order reaction, 603, 604, 615	Formulas. See Chemical formula(s)
Ethylene glycol, 574–577, 753–754	First-order reaction half-life, 612-613	Formula unit, 93, 94, 107
vapor pressure of, 504	Fish, methylmercury in, 114	Fossil fuel combustion, 139–140
Ethylmethylamine, 984	Fission, nuclear	energy from, 279–280
	converting mass to energy, 932–935	•
Ethyl methyl ether, 983		environmental problems associated with,
Ethyl pentanoate, 981	mass defect and, 933–935	280–282
Ethyl propanoate, 981	nuclear binding energy, 933–934	acid rain, 104, 142, 280, 739–741, 1054, 1061

carbon dioxide emission, 139-141	Galvanized nails, 900	Gemstones, color of, 1099–1100
global climate change, 280–282	Galvanizing steel, 1091	Gene(s), 1002, 1020-1021, 1024
Fossils, radiocarbon dating of, 924	Gamma (γ) rays, 54, 299, 300, 913, 915–916, 917	expression of, 1022
Fractionation of air, 1057	Gangue, 1077–1078	in genetic structure, 1021
Fragrances, 951–952	Garnet, 1100	Genentech, 1002
Franklin, Rosalind, 520	Gas(es), 194–245	Genetic code, 1020–1021
Franklinite, 1091	Avogadro's law, 205–206, 224, 226	Genetic defects, radiation exposure and, 938
Frasch process, 1059	Boyle's law, 200–202, 205, 224, 226	Genetic structure, 1021
Free energy of formation (ΔG°_{f}), 838–839	Charles's law, 202–205, 222, 224 in chemical reactions, 219–222	Geometric (cis-trans) isomerism, 451–452, 968–969, 1109–1112
Gibbs (G), 828–832	collecting, over water, 217–219	in alkenes, 968–969
theoretical limit of available, 841–842	compressibility of, 6	Geometry
why it is "free,", 841–842	density of, 210–211	electron, 430
Free energy change of reaction	diffusion of, 229	hybridization scheme from, 455-458
under equilibrium conditions, 844	effusion of, 229–230	linear, 433–434, 456
under nonstandard conditions (ΔG_{rxn}), 842–845	entropy change associated with change in state	octahedral, 436, 456
standard (ΔG°_{rxn}), 836–842, 881	of, 822–824	tetrahedral, 433–434, 456
calculating, 836–842	greenhouse, 139–140, 281	trigonal bipyramidal, 436, 456
equilibrium constant (<i>K</i>) and, 845–848	ideal. See Ideal gas(es)	trigonal planar, 433–434, 456
standard cell potential and, 877–881	kinetic molecular theory of, 222–228	molecular bent, 431, 434, 437
Free radical(s), 407 chlorine, 970	ideal gas law and, 224–226 postulates of, 223	electron group repulsion and, 426
Freezer burn, 509	pressure and, 223–224	linear, 426–427, 433–434, 437
Freezing, 510, 517	simple gas laws and, 222–224	lone pairs effect, 430–435
energetics of, 510	temperature and molecular velocities, 226–228	octahedral, 433–434, 436, 437, 455
of water, entropy of surroundings increased by,	mass of, 6	polarity and, 438-442
825–826	mean free path of, 229	predicting, with VSEPR, 435–438
Freezing point depression, 574–576, 580	mixtures of, 213-219	seesaw, 432, 436, 437
Frequency (v), 298	molecular comparison with other phases,	square planar, 433–434, 436, 437
threshold, 303, 305	484–486	square pyramidal, 433–434, 436
Frequency factor(A), 615–620	natural, 119, 279, 280	tetrahedral, 427–428, 430–431, 433–434,
Arrhenius plots of, 618–620	heating home with electricity vs., 815	437, 446–447
collision model and, 620–622 Friction, 254	reaction between oxygen and, 182 noble. See Noble gas(es)	trigonal bipyramidal, 429, 433–434, 436, 437, 454
Frogs, antifreeze in, 577	partial pressures, 213–217	trigonal planar, 427, 433–434, 437, 448
Fructose, 631–632, 1007–1009	deep-sea diving and, 215–217	trigonal pyramidal, 430–431, 433–434, 437
conversion of sucrose to glucose and, 598, 602	vapor pressure, 218–219	T-shaped, 432, 436
formation of glycosidic linkage with	physical properties of, 199	Germanium, 62, 337
glucose, 1009	pressure, 196–199	German or silver brass, 1091
molecular formula for, 116	blood, 199	Gibbs free energy (<i>G</i>), 828–832
Fuel(s). See also Fossil fuel combustion	defined, 196	change in (ΔG) , 828
hydrocarbons as, 954	manometer to measure, 198	Gibbsite, 95
oxygenated, 151	particle density and, 196	Giga prefix, 17
Fuel cell, 283, 861–862, 889–890 Fuel-cell breathalyzer, 890	temperature and, 207–208 total, 208	Given information, 28 Glass, 5, 529, 530, 1038
Fuel-cell power plants, 861–862	units of, 197–198	boron used in manufacture of, 1042
Fuel-cell vehicles, 282–283, 862	volume and, 200–202	density of, 18
Fuel fragments in exhaust, 629	properties of, 485	etching, 1064
Fukushima Daiichi nuclear accident (2011),	real, 230–234	reaction between hydrofluoric acid and,
931–932	finite volume of gas particles and, 230-234	1063–1064
Fuller, R. Buckminster, 1034, 1036, 1046	intermolecular forces and, 232–233	specific heat of, 257
Fullerenes (buckyballs), 1046, 1047	molar volumes of, 231	Global climate change, 280–282
Fulton, Robert, 251	van der Waals constants for, 232	fossil fuels and, 281–282
Functional groups, 124–126, 975 common, 975	van der Waals equation for, 233 relative standard entropies of, 833	Global warming, 139–140 Globular proteins, 1015, 1017
Functionalized hydrocarbons, 124–126	solubility in water, 557–559	Glucose, 631–632, 1006–1007
Furan, 564	standard state for, 274	conversion of sucrose to, 598, 602
Fusion, 510–511. See also Melting	Gas chromatograph, 603	formation of glycosidic linkage with
energetics of, 510–511	Gaseous matter, 6	fructose, 1009
nuclear, 60, 935	Gaseous solution, 547	molecular representation of, 92
Fusion curve, 513, 514, 515	Gas-evolution reactions, 173–175	oxidation of, 840
	Gasoline, 13	rearrangement to form ring, 1008
G	combustion of, 260–261	Glutamic acid, 1012
	MTBE in, 151 Costric inica pH of 708	Glutamine, 1012
Galactose, 1008 Galena, 1077	Gastric juice, pH of, 708 Gastroesophageal reflux disease (GERD), 698	Glycerol, 1004 Glycine, 1011, 1012
Galileo Galilei, 47	Gauge pressure, 208	molecular geometry of, 437
Gallium, 62, 337, 531	Gay-Lussac's law, 207, 224	Glycogen, 1009, 1010
ionization energy of, 362	Geckos, 482–483	Glycolic acid, 754
Galvanic cells. See Voltaic (galvanic) cells	Geiger-Müller counter, 920–921	Glycolipids, 1005

Glycosidic linkage, α and, β , 1009	Halogen oxides, 1066	Hemoglobin, 1-2, 584
Gold, 63, 1077	Halogens, 64, 346, 1062–1066	fetal (HbF), 649–651
density of, 19	boron-halogen compounds, 1042-1043	as globular protein, 1015
electronegativity of, 1103	compounds, 1064–1066	oxygen and carbon monoxide binding to, 2
leaching process to obtain, 1079	diatomic molecules formed by, 392	oxygen-carrying site on, 1098, 1120–1121
specific heat of, 257	electron affinities for, 364	sickle-cell anemia and, 1016
Gold foil experiment, 54–55	electron configurations of, 367	subunits, 1018
Gout, 809	electronegativity of, 1062	Henderson–Hasselbalch equation, 757–760
Gradient, chemical, 335	oxidation states of, 1062–1063	Henry, William, 1074
Graham, Thomas, 229	properties of, 368–369, 1062	Henry's law, gas solubility and, 558–559
Graham's law of effusion, 229–230	reaction between phosphorus and, 1055 reactions of alkali metals with, 369	Henry's law constant, 558–559 Heptachlor, 564
Granite, specific heat of, 257	reactivity of, 350	Heptane, 548, 549
Graphite, 529, 1044–1045 molar entropies of, 834	Halogen substitution reactions, 970	n-Heptane, 498, 960, 961
structure, 1044–1045	Hamiltonian operator, 315	2-Heptanone, 980
Graphs, A5-A6	Hand warmers, chemical, 247–248	Hertz (Hz), 298
Gravitational potential energy, 12	Hard water, 162, 785	Hess's law, 271–273
Gravitational pull, 14	Hardystonite, 1039	Heterogeneous catalysis, 629–631
Gray (Gy), 938	Harpoon mechanism, 621	Heterogeneous equilibria, 661–662
Greenhouse effect, 140	Hausmannite, 1088	Heterogeneous mixtures, 7–8
Greenhouse gas, 139–140, 281	Hawaii, 257	Heteronuclear diatomic molecules, 469–470
Ground state, 337	Heartburn, 697-698	Hexachlorobenzene, 564
Group (family) of elements, 63	Heat(s), 15, 256–260. See also Enthalpy(-ies) (H)	Hexagonal closest packing, 525
Group 1 metals, 335–336	absorbed by or lost from the solution (q_{soln}) ,	Hexamethylenediamine, 986
Group 1A metals (alkali metals), 64, 347, 794	269	Hexane, 548, 549, 550, 551, 955
electron configurations of, 367	from combustion reactions, 119, 182	<i>n</i> -Hexane, 498, 960, 961
ion formation by, 65	at constant volume, 262	3-Hexanone, 979
periodic, 367–368	defined, 256	1-Hexene, 965
properties of, 367	energy transferred through, 248-249	Hexose, 1007, 1008
reactivity of, 349	of fusion (ΔH_{fus}), 510–511	1-Hexyne, 966
as reducing agents, 180	heat capacity and thermal energy transfer,	High-spin complexes, 1117–1118
Group 2A metals (alkaline earth metals),	256–260	Hinshelwood, Cyril N., 596
64, 347	of hydration ($\Delta H_{\text{hydration}}$), 553–555	Histidine, 1012
reactivity of, 349	internal energy change and, 254–256	HIV-protease, 381–382
as reducing agents, 180	as product or reactant in reaction, 682–684	Hoffmann, Roald, 482, 499
Group 4A compounds, boiling points of,	of reaction. See Enthalpy change (ΔH)	Homogeneous catalysis, 629–631
493–494	temperature vs., 256	Homogeneous mixtures, 7–8. See also
Group 5A elements, oxidation state for, 177	of vaporization (ΔH_{vap}), 501–502, 512	Solution(s)
Group 6A compounds	Clausius—Clapeyron equation to determine, 506–507	Homonuclear diatomic molecules, 463–468
acidity trends of hydrides, 736	Heat capacity (C), temperature changes and,	Honda FCX Clarity (fuel-cell vehicle), 282–283
boiling points of, 493–494 Group 6A elements, oxidation state for, 177	256–258	Hooke, Robert, 200
Group 7A elements, oxidation state 101, 177 Group 7A elements. See Halogens	Heating curve, 505	Hormones, 1011
Group 7A hydrides, acidity trends of, 736	for water, 511–513	Hot-air balloon, 204
Group 8A elements. See Noble gas(es)	Heating with natural gas vs. electricity, 815	Huheey, James E., 696
Guanine, 496, 1019–1020	Heat tax, 842	Human Genome Project, 1000, 1024
Guarante, 190, 1019 1020	nature's, 813–814	Human immunodeficiency virus (HIV),
	Heat transfer	381–382
H	changes in entropy of surroundings and,	Humans. See also Blood, human; Medicine
H ₃ O ⁺ . See Hydronium ion; Hydronium ion	824–828	atoms and, 51
concentration	Heavy metal poisoning, medical	elemental composition of, 66
Haber, Fritz, 1052	treatment of, 1119	nerve cells of, 886
Haber-Bosch process, 1052	Heisenberg, Werner, 294, 313	transition metals in, 1120
Hahn, Otto, 928	Heisenberg's uncertainty principle, 313	Hund's rule, 342, 343, 1117
Hair, bleached, 181	Heliox, 216	Hwang Woo Suk, 26
Half-cell, 866	Helium, 57, 58, 63, 93	Hybrid cars, 251
Half-cell potential, 870–872	electron configuration of, 338, 384	Hybridization, 401–402, 445–458
measuring with SHE, 870–872	emission spectrum of, 306, 307	defined, 445
standard, 870–874	Lewis structure of, 384	sp, 452–454, 456
Half-life of reaction, 612–614, 921–922	liquid, 370	sp^2 , 448–450, 456
first-order, 612–613	MO diagram for, 461–462	sp ³ , 446–448, 456
second-order, 613–614	properties of, 370	sp^3d and sp^3d^2 , 454–455, 456
zero-order, 614	real gas behavior of, 233–234	writing, 455–458
Half-reaction method of balancing, 862–865	van der Waals constants for, 232	Hybrid orbitals 445
Halides hydrogen, 369	in water, Henry's law constants for, 558 Helium ion, 352	Hybrid orbitals, 445 Hydrated ionic compounds, 100
metal, 368–369	α-helix, 1015, 1016	Hydrates, 100
Halite. See Sodium chloride	Hematite, 1077	Hydration
Hall process, 1079–1080	Heme, 1120	heat of $(\Delta H_{\text{hydration}})$, 553–555
Halogen-nitrogen single bonds, 413	Hemlock, 700	waters of, 100
· ·		

Intermediates, reaction, 622, 625-626

Hydrazine, 1052	with ethene, 621, 630	Hypothesis, 3
Hydride(s)	with iodine, 606, 651	Hypoxia, 215
acidity trends of, 736	with iodine monochloride, 622	,
boiling points of, 516	with nitrogen, 682-683	T
Hydriodic acid, 703	with nitrogen monoxide, 606, 625-626	I
Hydrobromic acid, 169, 703	as reducing agent, 180	Ice, 527
reaction between ethanol and, 977	Schrödinger equation for, 315–317	density of, 19
Hydrocarbons, 124–126, 954–974	transitions in, 319–321	melting of, 817
alkanes (saturated hydrocarbons), 124, 954,	weighted linear sum of molecular orbitals for,	ICE table, 663, 669
960–964	459–462	Icosahedron, 1042
boiling points of, 488–489	Hydrogenation	Ideal gas(es), 207
geometric (cis–trans) isomerism, 969–970	of alkenes and alkynes, 970	concentration of, 659
<i>n</i> -alkanes, 960–961	of double bonds, 630–631	solution of, 547–548
naming, 961–964	Hydrogen azide, 1052–1053	Ideal gas constant, 207
reactions of, 969–970	Hydrogen bonding, 492–494, 517, 548, 1017	Ideal gas law, 206–209, 659
viscosity of, 498	in DNA, 496	breakdown of, 230
alkenes and alkynes (unsaturated	Hydrogen carbonate, 99, 721	corrected for intermolecular forces, 233
hydrocarbons), 124, 954, 964–969 geometric (cis–trans) isomerism in alkenes,	Hydrogen chloride, 700 reaction between ethene and, 970	corrected for volume of gas particles, 232 density of gas, 210–211
968–969	reaction between propene and, 971	kinetic molecular theory and, 224–226
hydrogenation of double bonds within,	Hydrogen fluoride, 493	molar mass of gas, 211–212
630–631	dipole moment of, 397	molar volume at standard temperature and
naming, 965–967	MO diagram for, 469, 469–470	pressure, 209–210
reactions of, 970–971	polar bonding in, 394–395	partial pressure computed from, 213–214
aromatic, 954, 972–974	Hydrogen gas	simple gas laws and, 207
naming, 972–974	reaction between propene and, 970	Ideal solution, 571
reactions of compounds, 974	van der Waals constants for, 232	Igneous rocks, uranium/lead dating of,
functional groups, 975	Hydrogen halides, 369	926–928
functionalized, 124–126	Hydrogen ions, 102	Ilmenite, 191, 1086-1087
names for, 124	Hydrogen-oxygen fuel cell, 861, 862, 889-890	Inches of mercury (in Hg), 197
polarity of, 442	Hydrogen peroxide, 2, 90, 181, 393	Incomplete octets, 406–408
reactions of, 969–971	Hydrogen phosphate, 99	Indeterminacy, 313–314
released into the atmosphere, 407	Hydrogen sulfate (bisulfate), 99	Indicators, 171, 172, 769, 780–783
stereoisomerism and optical isomerism of,	Hydrogen sulfide (dihydrogen sulfide),	Indinavir, 381
957–959	444–445, 1059, 1060	Inelastic collision, 223–224
structures, 954–957	Hydrogen sulfite (bisulfite), 99	Inert platinum electrode, 869
uses of, 954, 961	in gas-evolution reactions, 175	Infection, radiotracers to locate, 940
viscosity of, 498	Hydroiodic acid, 169	Infrared waves, 299, 300
Hydrocarbon tails of fatty acids, 1003	Hydrolysis, 1009	Initial rates, method of, 604–605
Hydrochloric acid, 154, 160, 169, 438, 697, 698,	of disaccharides, 1009 Hydrometallurgy, 1079	Inner electron configuration, 343, 347 Inner transition elements (actinides), 346, 348
700, 703, 704 mixed with weak acid, 717–718	Hydronium ion, 169, 392–393	electron configurations of, 347–348
reactions of	Hydronium ion concentration, 700–701,	Inorganic chemistry, 1034
with metal sulfides, 1061	706–707	Inorganic compounds, 123, 953
with metal sundes, 1001 with methylamine, 984	of mixture of acids, 717–719	Inorganic nomenclature flowchart, 105–106
with sodium bicarbonate, 174–175	strong–weak mixture, 717–718	Inosilicates (pyroxenes), 1039–1040
with sodium hydroxide, 169	weak-weak mixture, 718–719	Insoluble compounds, 160
with zinc, 877	of strong acids, 711	Instantaneous dipole (temporary dipole), 488
titration with sodium hydroxide, 770–773	of weak acids, 711–715, 717	Instantaneous rate of reaction, 600-601
Hydrocyanic acid, acid ionization constant	Hydrophilic molecule, 1005	Insulated nanowires, 1035-1036
for, 705	Hydrophobic interactions, 1017	Insulators, 531
Hydroelectric power, 283	Hydrophobic molecule, 1005	Insulin, 1001–1002
Hydrofluoric acid, 169, 698, 704, 725,	Hydroxide ion (OH ⁻) concentration, 701,	as globular protein, 1015
1063-1064	706–707	synthesis of human, 1001–1002
acid ionization constant for, 705	of weak bases, 723	Insulin receptors, 1014
reaction between glass and, 1063–1064	Hydroxides, 99	Integrated rate law, 607–615, 923–934
Hydrogen, 86–88	base-insoluble, 794	first-order, 608–610, 615
bond order for, 461	solubilities of, 788	half-life of reaction, 612–614
boron–hydrogen compounds, 1043–1044	Hydroxyl group, 976	second-order, 610–611, 615
bridging, 398	Hydroxyl radical (atmospheric vacuum	zero-order, 612, 615
electron configuration for, 337	cleaner), 407	Integrity in data gathering, 26
emission spectrum of, 306, 307	Hyperbaric oxygen therapy, 1057	Intensive properties, 18 Interaction energy of atoms, 443–444
as fuel, 113 interaction energy of two atoms of, 443–444	Hyperosmotics, 592 Hyperosmotic solutions, 581	Interference, 301–302, 518, 519
Lewis structure of, 391	Hypertension, 199	constructive, 301, 302, 460, 518
nonmetallic behavior of, 367	Hypochlorite, 99, 100	destructive, 301, 302, 460, 518
oxidation state for, 177	Hypochlorite ion, 94	Interference pattern, 302, 309–310, 312, 518
properties of, 87	Hypochlorous acid, acid ionization constant	Interhalogen compounds (interhalides), 369,
reactions of	for, 705	1064–1065

Hyposmotic solutions, 581

with chlorine, 176

Intermolecular force(s), 393, 482–498	Ionic compound(s), 89, 94-95, 105-106	Iron sponge, 1081
bonding forces vs., 487	aqueous solutions of, 495	Irradiation of foods, 941
capillary action, 499	dissolution of, 158	Irreversible reactions, 842
condensed phases and, 482, 487–495	as drugs, 391	Isobutane, 123, 953
dipole-dipole, 490-492, 495, 548	formulas for, 95–97	Isobutyl substituent, 962
dispersion, 487–489, 495, 548, 549	hydrated, 100	Isoleucine, 1012
in DNA, 496	identifying, 97	Isomerism
geckos and, 482–483	inorganic nomenclature flowchart, 105–106	cis-trans, 451-452, 968-969, 1109-1112
hydrogen bonding, 492–494, 495, 517, 548	lattice energy of, 386–390	in alkenes, 968–969
ion-dipole, 494–495, 548, 554–555	melting of, 389–390	in coordination compounds, 1109–1113
molecular solids and, 527	naming, 97–100	stereoisomerism, 1110–1113
real gases and, 232–233	containing metal that forms more than one	structural, 1109–1110
solutions and, 548–551	kind of cation, 98–99	optical, 957–958, 1112, 1112–1113
surface tension and, 497–498	containing metal that forms only one type of	carbohydrates and, 1007–1008
temperature and, 487	cation, 97–98	defined, 957
viscosity, 498	containing polyatomic ions, 99–100	in hydrocarbons, 957–959
		· ·
Internal energy (E), 251–256	solubility of, 160–162, 752, 783	Isomerization, 451–452
Internal energy change (ΔE), 251–256	common ion effect on, 786–787	Isomers, 451–452
for chemical reactions (ΔE_{rxn}), 265–267	pH and, 788	coordination, 1109
enthalpy change vs., 265	solubility product constant $(K_{\rm sp})$, 783–786,	geometric, 1109–1112
International Bureau of Weights and Measure	789–790	optical, 1112, 1112–1113
at Sèvres, France, 14	types of, 97	structural, 955, 1007
International System of Units (SI), 13–14.	Ionic equations	Isopropyl alcohol, 125, 975, 976
See also SI unit(s)	complete, 167–168	heat of fusion for, 510
International Union of Pure and Applied	net, 167–168	oxidized to 2-propanone, 980
Chemistry (IUPAC) nomenclature	Ionic solids, 527–528	properties of, 38
system, 69, 961	Ionization	Isopropyl substituent, 962
Internuclear distance, 443–444	of acids, 703	Isosmotic (isotonic) solutions, 581–582
Interstitial alloys, 1082, 1085–1086	of polyprotic acids, 731–732	Isotones, 82
Intramolecular forces, 393	of strong base, 720	Isotope(s), 58–59, 359
Intravenous fluids, 70	of weak acid, 716–717	mass of, 68
Intravenous solutions, 582	of weak base, 720–722	natural abundance of, 58-59
Intrinsic capacity, 257	Ionization energy(-ies) (IE), 359-363, 382	notation for symbolizing, 913
Iodide, 98	of alkali metals, 367	radioactive, as radiotracers, 940
Iodine, 63, 64	bonding and, 363	relative abundance of, 68
phase diagrams of, 515	defined, 359	IUPAC nomenclature system, 69, 961
properties of, 368, 1062	first, 359–362	Terrie nomeneurale system, 02,201
reaction between hydrogen and, 606, 651	of noble gases, 371	T
Iodine-131, 940	second and successive, 362–363	J
Iodine monochloride, 622	of transition metals, 1102–1103	Joliot-Curie, Irène and Frédéric, 936
	Ionizing power, 915	Joule, James, 250
Ion(s), 59–61, 355–363. See also Anion(s);		Joule (J), 250
Cation(s)	of alpha radiation, 915	J-tube, 200
acetylide, 1047	of beta radiation, 915	-
acid-base properties of, 724–731	of gamma rays, 916	K
anions as weak bases, 725–728	Ionizing radiation, 300	K
cations as weak acids, 728–729	Ionone, 980	Kekulé, Friedrich August, 972
complex, 795	Ion pairing, 579	Kelvin (K), 15
electrolysis of mixture of, 893	Ion product constant for water (K_w) , 706–707, 726	Kelvin scale (absolute scale), 15
electron configurations of, 355–356	Ion pumps, 335	Kepler, Johannes, 47
formation of, with predictable charges, 350	Iron, 92, 528–529	Keratin, 1015, 1016
ionic radii, 357–358	cations formed by, 98	Kernite, 1042
ionization energy, 359-363	charge of, 1.89	Ketohexose, 1007
isoelectronic series of, 358	corrosion of (rusting), 899–900	Ketones, 978–981, 1007–1009
magnetic properties of, 355-356	density of, 19	functional group of, 975
periodic table and, 64–65	functions in human body, 1120	general formula for, 126
polyatomic, 94, 99–100	reactions of, with chlorine, 368	naming, 979
Lewis structure for, 398–400	specific heat of, 257	reactions, 980–981
oxidation numbers in, 179	Iron(II) carbonate, 786	Ketose, 1007
solubility and, 162	solubility product constant for, 784	Kilocalorie (kcal), 250
spectator, 167	Iron(II) disulfide (iron pyrite), 1060	
Ion channels, 335	Iron(II) hydroxide, solubility product constant	Kilogram (kg), 14
Ion-dipole forces, 494–495, 548, 554–555	for, 784	Kilojoules (kJ), 250
Ionic bond(s), 88–89, 94, 382–383, 394	Iron(II) sulfate, 99	Kilo prefix, 17
dipole moment of, 397	Iron(II) sulfide, solubility product constant	Kilowatt-hour (kWh), 250
directionality of, 393	for, 784	Kinetic energy, 12, 248
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	defined, 250
electron transfer and, 382–383	Iron(III) chloride, 730	of ejected electron, 305
lattice energy and, 386–390	Iron(III) fluoride, 730	temperature and, 223, 226–228
Lewis model of, 382–390	Iron-59, 940	transformation of, 249
model for, 389–390	Iron blue, 1120	Kinetic molecular theory, 222–228
Ionic carbides, 1047–1048	Iron chloride, 368	ideal gas law and, 224–226

postulates of, 223	Lewis electron-dot structures (Lewis	Liquid(s), 482
pressure and, 223–224	structures), 382	cryogenic, 370
simple gas laws and, 222–224	Lewis theory, 862	entropy change associated with change in state
temperature and molecular velocities, 226–228	bond polarity and, 394–398	of, 822–824
Kinetics, chemical. See Reaction rate(s)	bond types under, 382–383	equilibria involving, 661–662
Knowledge, scientific approach to, 3–5	of covalent bonding, 391–393	molecular comparison with other phases,
Krypton, 63, 350 properties of, 371	double bonds in, 450 electronegativity and, 394–395	484–486 nonvolatile, 500
reaction between fluorine and, 371	formal charge and, 403–405	properties of, 485
van der Waals constants for, 232	of ionic bonding, 382–390	relative standard entropies of, 833
Kuhn, Thomas S., 5, 424	of molecular compounds, 398–399	standard state for, 274
	octet rule exceptions, 406–409	volatile, 500
L	of polyatomic ions, 400	Liquid helium, 370
	resonance and, 400-402	Liquid matter, 5–6
Lactic acid, 768, 982 Lakes, acid rain and, 741	valence bond theory and, 456	Liquid solution, 547
Lanthanide contraction, 1102	valence electrons represented with dots, 384	Liter (L), 18
Lanthanides, 346, 348	Libby, Willard, 924	Lithium, 60–61, 64
Lattice energy(-ies), 386–390	Life	charge of, 97
ion charge and, 388–389	as controlled disequilibrium, 656	effective nuclear charge for, 352
ion size and, 388	effects of radiation on, 937–939	electron configuration for, 342, 355
Lattice point, 520	elements of, 66 Life of Pi (Martel), 544–545	energy levels of molecular orbitals in, 530–531 flame tests for, 309
Laughing gas, 101	Ligand(s), 1104	Lewis structure for, 384
Lavoisier, Antoine, 3, 47, 1057	bidentate, 1105, 1106	orbital diagram for, 342, 463
Lavoisier, Marie, 3	capable of linkage isomerization, 1109–1110	properties of, 367–368
Law(s)	common, 1105	Lithium bromide, 554
of conservation of energy, 12, 248–249,	names and formulas of, 1107-1108	Lithium carbonate, 391
813–814	coordination isomerization and, 1109	Lithium dichromate, 100
of conservation of mass, 3, 47–48	geometric isomerism and, 1109-1112	Lithium fluoride, dipole moment of, 397
of definite proportions, 48–49, 88 deterministic, 313–314	monodentate, 1104	Lithium hydroxide, 169, 720
of mass action, 654, 657, 659, 843	naming, 1107	Lithium ion, electron configuration of, 339, 355
of multiple proportions, 49–50	nitro, 1109	Lithium ion battery, 888–889
scientific, 3	polydentate, 1105, 1106	Lithium sulfide, reaction between sulfuric acid
Leaching, 1079	strong-field, 1117	and, 173
Lead, 62	used in chemical analysis, 1119 weak-field, 1117	Litmus paper, 700 Lizards, 597–598
cations formed by, 98	Light, 296–306	Logarithm, 708
density of, 19	absorption of, by elements, 308–309	London, Fritz, 487
specific heat of, 257	diffraction, 301–302	London force, 487
Lead(II) bromide, solubility product constant	electromagnetic spectrum, 299–301	London force. See Dispersion forces
for, 784	interference, 301–302	Lone pairs
Lead(II) chloride, solubility product constant for, 784	packet of. See Photon(s)	electron groups with, 430-435
Lead(II) nitrate, reaction between potassium	particle nature of, 302–306	five, 432–433
iodide and, 162–165	rotation of polarized, 958–959	four, 430–431
Lead(II) sulfate, solubility product constant	visible, 298–300	hybridization and, 448
for, 784	wave nature of, 296–299	in weak bases, 722
Lead(II) sulfide	wave–particle duality of, 296, 306 Lightning, 56	Lone pairs (bonding electrons), 391–392 Los Angeles County, carbon monoxide
roasting, 1078	Ligniting, 30 Lignite, 1045	concentrations in, 20
solubility product constant for, 784	Like dissolves like, 550	Low-spin complexes, 1117–1118
Lead-acid storage batteries, 887	Limes, pH of, 708, 709	Lukens, Isaiah, 251
Le Châtelier, Henri, 648	Limestone, 95, 104, 741, 785	Lysine, 1011, 1012
Le Châtelier's principle, 503, 677–684, 717,	Limiting reactant, 145–151	Lysozyme, egg-white, 1016, 1021
881–882	Linear accelerator, 936-937	
concentration change, 677–684 free energy changes and, 845	Linear combination of atomic orbitals (LCAO),	M
population analogy for, 677–678	459–463, 469–470	
temperature change, 682–684	Linear geometry	Maalox, 724
volume (or pressure) change, 680–681	of complex ions, 1106–1107	Machines
Lemons, pH of, 708	electron, 433–434, 456	atomic, 46
Length, SI unit of, 14, 18	molecular, 426–427, 433–434, 437 Line formulas, 955	perpetual motion, 251, 814 Macromolecules, 1002
Leucine, 1012	Line notation, 869	Macrostate (external arrangement), 818–822
Leucippus, 47	Linkage isomers, 1109–1110	Magic numbers, 920
Lever rule, 1084	Linoleic acid, 1003	Magnesium
Levorotatory isomer, 958	Linolenic acid, 1003	charge of, 97
Lewis, G. N., 382, 738	Lipid bilayer, 1006	electron configuration of, 362
Lewis acid-base adduct, metal-ligand complex	Lipids, 1002–1006	ionization energies of, 363
as, 1104 Lewis acids and bases, 738–739	fats and oils, 1004–1005	Magnesium-based antacids, 724
boron trihalides as strong Lewis acids, 1043	fatty acids, 1002-1003	Magnesium carbonate, 162, 785
The state of the s		solubility product constant for, 784

Magnesium hydroxide, 391, 786, 788	Measurement, 13–26	mineral sources for, 1076–1077
solubility product constant for, 784	reliability of, 20–26	name in anionic complex, 1108
Magnesium sulfate, 391	exact numbers, 22–23	noble, 1077
Magnesium sulfate heptahydrate (Epsom		oxidation (corrosion) of, 899–900
	precision and accuracy, 22, 25–26	
salts), 100	significant figures, 22–25	properties of, 62
Magnetic field, 296	units of, 13–19. See also SI unit(s)	reaction between nonmetals and, 89–90,
Magnetic quantum number, 315, 316	derived units, 17–18	176–177. See also Oxidation–reduction
Magnetism	English system, 13	reaction(s)
cobalt and, 1089	metric system, 13	reaction of alcohols with active, 977
unpaired electrons and, 467	prefix multipliers, 17	structures of, 1081
Main-group elements, 63, 64, 1034, 1036–1037	Mechanical potential energy, 815–816	transition. See Transition metal(s)
atomic radii of, 1036	Medicine	Metal chlorides, lattice energies of, 388
trends in, 351–352	antacids, 724	Metal halides, 368–369
effective nuclear charge for, 353	blood pressure, 199	Metal hydride, in batteries, 888
electron affinities for, 364	bone density, 20	Metal hydroxides, 720
ion formation by, 64	buffer effectiveness in human blood, 768	amphoteric, 798–799
ionization energy of, 360	chelating agents used in, 1119	Metallic atomic solids, 528–529
valence electrons for, 345, 347	chymotrypsin in digestion, 632–633	Metallic bond(s), 382, 383, 528
Malachite, 1090	colligative properties and, 581–582	electron sea model of, 383
Malic acid, 699	coordination compounds used in, 1122	Metallic carbides, 1048
	*	•
Malleability, 62, 364	definition of life, 656	Metallic character, periodic trends in, 364–366
of metals, 1076	elements of life, 66	Metalloid(s), 63
Manganese	ionic compounds as drugs, 391	covalent carbides composed of carbon and, 1048
functions in human body, 1120	methylmercury in fish, 114	properties of, 63
sources, properties, and products of, 1088–1089	nuclear, 911–912	Metallurgy, 1074, 1076–1081
Manganese oxides, 1088–1089	oxygen used in, 1057	defined, 1076
Manhattan Project, 929	potassium iodide in radiation emergencies, 370	electrometallurgy, 1079-1080
Manometer, 198	radiation exposure from diagnostic medical	extractive, 1077
Maps, probability distribution, 313–314	procedures, 940–941	hydrometallurgy, 1079
Markovnikov's rule, 971	radioactivity in, 911–912, 940–941	powder, 1081
Mars, 139	radiotherapy in, 300, 941	pyrometallurgy, 1078–1079
water on, 517	ulcers, 710	separation, 1077–1078
Mars Climate Orbiter, 13	Megaelectron volt (MeV), 933–934	Metal nitrates, 1054
•		
Marshall, Barry J., 710	Mega prefix, 17	Metal nitrides, 1050
Martel, Yann, 544	Meitner, Lise, 928–929	Metal oxides, electrolysis of, 891
Mass(es)	Melanin, 181	Metal sulfides, 1060–1061
atomic, 66–69, 107	Melting, 510–511. See also Fusion	common, 1061
calculation of, 67	of ice, 817	reaction between hydrochloric acid and, 1061
mass spectrometry and, 67–68	of ionic compounds, 389–390	Meter (m), 14
conservation of, 3, 47–48	of ionic compounds, 389–390 Melting point(s), 510	Meter (m), 14 Methanal. See Formaldehyde
*	*	* **
conservation of, 3, 47–48	Melting point(s), 510	Methanal. See Formaldehyde
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935	Melting point(s), 510 of alkali metals, 367	Methanal. See Formaldehyde Methane, 126, 952, 960, 975
conservation of, 3, 47–48 converted to energy by nuclear fission,	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of,	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys;	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals);	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals)	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methyl acetate, 126
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methyl acetate, 126 Methylamine, 721
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methyl acetate, 126 Methylamine, 721 reaction between hydrochloric acid and, 984
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s)	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methyl acetate, 126 Methylamine, 721 reaction between hydrochloric acid and, 984 Methylammonium chloride, 984
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s) physical and chemical changes in, 9–11	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077 electrolysis to plate metals onto other, 891	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methyl acetate, 126 Methylamine, 721 reaction between hydrochloric acid and, 984 Methylammonium chloride, 984 Methyl butanoate, 982
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s) physical and chemical changes in, 9–11 properties of, 1–3	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077 electrolysis to plate metals onto other, 891 electron affinities for, 364–366	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methyl acetate, 126 Methylamine, 721 reaction between hydrochloric acid and, 984 Methylammonium chloride, 984 Methyl butanoate, 982 3-Methylhexane, optical isomers of, 958
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s) physical and chemical changes in, 9–11 properties of, 1–3 states of, 5–6, 9	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077 electrolysis to plate metals onto other, 891 electron affinities for, 364–366 forming more than one kind of cation, 98–99	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methyl acetate, 126 Methylamine, 721 reaction between hydrochloric acid and, 984 Methylammonium chloride, 984 Methyl butanoate, 982 3-Methylhexane, optical isomers of, 958 Methyl isonitrile, 616–617
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s) physical and chemical changes in, 9–11 properties of, 1–3 states of, 5–6, 9 entropy change associated with change in,	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077 electrolysis to plate metals onto other, 891 electron affinities for, 364–366 forming more than one kind of cation, 98–99 forming only one type of cation, 97–98	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methyl acetate, 126 Methylamine, 721 reaction between hydrochloric acid and, 984 Methylammonium chloride, 984 Methyl butanoate, 982 3-Methylhexane, optical isomers of, 958 Methyl isonitrile, 616–617 Methylmercury in fish, 114
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s) physical and chemical changes in, 9–11 properties of, 1–3 states of, 5–6, 9 entropy change associated with change in, 822–824	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077 electrolysis to plate metals onto other, 891 electron affinities for, 364–366 forming more than one kind of cation, 98–99 forming only one type of cation, 97–98 general properties and natural distribution of,	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methyl butanoate, 981 Methyl acetate, 126 Methylamine, 721 reaction between hydrochloric acid and, 984 Methyl butanoate, 982 3-Methylhexane, optical isomers of, 958 Methyl isonitrile, 616–617 Methylmercury in fish, 114 Methyl propanoate, 981
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s) physical and chemical changes in, 9–11 properties of, 1–3 states of, 5–6, 9 entropy change associated with change in, 822–824 Maximum contaminant levels (MCLs), 517, 564	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077 electrolysis to plate metals onto other, 891 electron affinities for, 364–366 forming more than one kind of cation, 98–99 forming only one type of cation, 97–98 general properties and natural distribution of, 1076–1077	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methyl butanoate, 981 Methylamine, 721 reaction between hydrochloric acid and, 984 Methylammonium chloride, 984 Methyl butanoate, 982 3-Methylhexane, optical isomers of, 958 Methyl isonitrile, 616–617 Methylmercury in fish, 114 Methyl propanoate, 981 Methyl red, 782, 783
conservation of, 3, 47–48 converted to energy by nuclear fission, 932–935 converting between moles and, 71–73 of gas, 6 of isotope, 68 molar. See Molar mass SI unit of, 14, 18, 250 Mass action, law of, 654, 657, 659, 843 Mass defect, 933–935 Mass number (A), 58–59, 913 binding energy per nucleon as function of, 934–935 Mass percent composition, 109–111 chemical formula from, 110–111 as conversion factor, 110–111 Mass spectrometry, 67–68, 602 Matter classification of, 5–8 by composition, 7–8 by state, 5–6 defined, 5 phases of. See Gas(es); Liquid(s); Solid(s) physical and chemical changes in, 9–11 properties of, 1–3 states of, 5–6, 9 entropy change associated with change in, 822–824	Melting point(s), 510 of alkali metals, 367 of fatty acids, 1003 of halogens, 368 of ionic compounds, 389–390 of molecular compounds, 393 Mendeleev, Dmitri, 61–62, 334, 336–337, 345 Mercury, 58 absorption spectrum of, 309 cations formed by, 98 density of, 19 emission spectrum of, 306, 309 in fish, 114 meniscus of, 499 Messenger rNA (mRNA), 1023–1024 Metal(s), 62, 1074–1097. See also Alloys; Group 1A metals (alkali metals); Group 2A metals (alkaline earth metals) bonding atomic radii for, 350 bonding theories of, 1076 closest-packed crystal structures in, 528–529 dissolved in acids, 103, 877 earth, 1076–1077 electrolysis to plate metals onto other, 891 electron affinities for, 364–366 forming more than one kind of cation, 98–99 forming only one type of cation, 97–98 general properties and natural distribution of,	Methanal. See Formaldehyde Methane, 126, 952, 960, 975 combustion of, 119, 407 standard heat of reaction for, 275–276 common uses of, 125 molecular formula for, 91–92, 125 molecular geometry for, 428, 445 space-filling model for, 123, 125 standard enthalpy of formation for, 274 structural formula for, 123, 125 van der Waals constants for, 232 Methanoic acid. See Formic acid Methanol, 125, 126, 550, 975, 976 reaction between sodium and, 977 solubility in hexane, 551 solubility in water, 551 Methionine, 1012 Method of successive approximations, 674 Methy butanoate, 981 Methylamine, 721 reaction between hydrochloric acid and, 984 Methylammonium chloride, 984 Methyl butanoate, 982 3-Methylhexane, optical isomers of, 958 Methyl isonitrile, 616–617 Methylmercury in fish, 114 Methyl propanoate, 981

N/Z ratio and, 918-919

Mr. 4. 2 4 12	. 101 105	Mr
Metric system, 13	naming, 101–105	Monomeric proteins, 1018
Meyer, Julius Lothar, 336	acids, 102–103	Monomers, 985, 986
Mica, 1040	binary acids, 103	Monoprotic acids, 703, 705, 716
Micelles, 583–584	oxyacids, 104–105	Monosaccharides, 1007–1009
	*	
Michaelis–Menten equation, 1024	Molecular elements, 93	Monosubstituted benzenes, 972–973
Micro prefix, 17	Molecular equation, 166, 167	Monoun, Lake, 560
Microscope, scanning tunneling (STM),	Molecular formula, 90, 91	Monounsaturated fat, 1004–1005
45–46	Molecular geometry	Monounsaturated fatty acids, 1003
Microwaves, 299, 301	bent, 431, 434, 437	Moseley, Henry, 336
Milk, 582, 583	electron group repulsion and, 426	Motile proteins, 1011
Milk of magnesia, 168, 697, 698, 710, 724	linear, 426–427, 433–434, 437	Motion
pH of, 708	lone pairs effect, 430–435	Brownian, 582, 583
Milligrams solute/per liter, 562	octahedral, 433–434, 436, 437, 455	Newton's laws of, 313
Millikan, Robert, 52–53	polarity and, 438–442	Motor oil, 500
	± •	
Millikan's oil drop experiment, 52–53	predicting, with VSEPR, 435–438	viscosity of, 498
Milliliter (mL), 18	seesaw, 432, 436, 437	mRNA, 1023–1024
Millimeter of mercury (mmHg), 197	square planar, 433–434, 436, 437	MTBE in gasoline, 151
Milli prefix, 17	square pyramidal, 433–434, 436	Multimeric proteins, 1018
- · · · ·	* **	- · · · · · · · · · · · · · · · · · · ·
Minerals, 1077	tetrahedral, 427–428, 430–431, 433–434, 437,	Multiple proportions, law of, 49–50
chloride, 1077	446–447	Multiwalled nanotubes (MWNT), 1046–1047
extracting metal from, 1077-1081	trigonal bipyramidal, 429, 433–434, 436,	Mylanta, 168, 698, 724
•		•
oxide, 1077	437, 454	Myristic acid, 1002–1003
separating from gangue, 1077–1078	trigonal planar, 427, 428, 433–434, 437, 448	
Mirex, 564	trigonal pyramidal, 430-431, 433-434, 437	N
Miscibility, 491	T-shaped, 432, 436	11
• *		Names. See Nomenclature
Miscible solid solutions, 1083–1084	Molecularity, 623	Nanomachines, 1047
Mixing	Molecular mass. See Formula mass	,
spontaneous, 547	Molecular models, 91–92	Nano prefix, 17
<u>.</u>	· ·	Nanotechnology, 42, 46
tendency toward, 568–569	size of molecules and, 109	Nanotubes, 1046–1047
Mixture(s)	Molecular orbitals	boron nitride, 1035–1036
of cations or anions, electrolysis of, 893	antibonding, 459–460, 464	
compounds vs., 88	bonding, 459–460, 464, 465	carbon, 1035–1036, 1046–1047
	•	Nanowires, insulated, 1035–1036
defined, 7	nonbonding, 470	Naphthalene, 974
of gas, 213–219	Molecular orbital theory, 380, 424, 445,	_
homogeneous. See Solution(s)	458–471, 530	National Institutes of Health (NIH), 1024
	linear combination of atomic orbitals (LCAO),	Natural abundance of isotopes, 58–59
separating, 8		Natural gas, 119, 279, 280
Models, theories as, 5	459–463, 469–470	heating home with electricity vs., 815
Moissanite, 1048	period two homonuclear diatomic molecules,	•
Molality (m) , 561–562	463–468	reaction between oxygen and, 181
* * * * * * * * * * * * * * * * * * * *		Natural radiation exposure, 939
Molar heat capacity, 257	polyatomic molecules, 470–471	Nature of Chemical Bond, The (Pauling),
Molar heat capacity. See Specific heat	second-period heteronuclear diatomic	394–395
capacity (C_s)	molecules, 469-470	
Molarity (M), 152–153, 154–155, 560–561	trial mathematical functions in, 459	Nature's heat tax, 813–814
* * * * * * * * * * * * * * * * * * * *		Negative charge, 868
in calculations, 153–154	Molecular solids, 527	Neon, 63, 547–548
Molar mass, 70–75, 107–108, 833–834	Molecular structure, acid strength and, 736-737	, ,
defined, 71	binary acids, 736	electron configuration for, 343
dispersion force and, 488–489	oxyacids, 737	emission spectrum of, 308
•	· ·	isotopes of, 58–59
empirical formula, 116–117	Molecular velocities, temperature and, 226–228	Lewis structure of, 384
of gas, 211–212	Molecular weight. See Formula mass	
variation of velocity distribution with, 227	Molecule(s), 1–3	MO diagram for, 466
•	diatomic. See Diatomic molecule(s)	orbital diagram for, 343
viscosity and, 498		properties of, 371
Molar solubility, 783–786	formula mass, 107	van der Waals constants for, 232
Molar volume	as Lewis acids, 738–739	
at standard temperature and pressure, 209-210	mass spectrum of, 68	Neopentane, 488–489
	*	Nernst equation, 882, 885
stoichiometry and, 221-222	organic, 952	Nerve cells, 335–336
Mole(s), 70–71, 75	polar, 490–491	
for compounds, 107–108	polyatomic, 93	concentration cells in human, 886
converting between mass and, 71–73	molecular orbital theory applied to, 470–471	Nerve signal transmission, 335–336
•	• • •	Nesosilicates (orthosilicates), 1039, 1041
converting between number of atoms and	properties of matter and, 1–3	Net ionic equations, 167–168
number of, 71	shapes of, 426. See also Molecular geometry	
mole concept, 73–75	dispersion force and, 489	Network covalent atomic solids, 529–530
•	*	Neutralization reactions of carboxylic acids,
Mole concept, 73–75	temperature and motion of, 15	982–983
Molecular complexity, relative standard	Mole fraction(X _{solute}), 213, 561, 563, 565	Neutral ligands, naming, 1107, 1108
entropies and, 834–835	Mole percent (mol %), 561, 563, 565	
Molecular compound(s), 90, 94–95, 101–102	Molybdenite, 1077	Neutral solution, 706–707
• ***	•	Neutron(s), 55, 918
formulas for, 101	Molybdenum, functions in human body, 1120	actual number of, 919–920
identifying, 101	Mond process, 1090	
inorganic nomenclature flowchart, 105–106	Monel (alloy), 1090–1091	charge of, 56
•	• • • • • • • • • • • • • • • • • • • •	mass of, 56
Lewis structures for, 398–400	Monochloropentafluoroethane, 608	number of, 913
melting and boiling points of, 393	Monodentate ligands, 1104	N/7 ratio and 018 010

Noble metals, 1077

Neutrons, 82	Nomenclature	Nuclear energy industry
Neutron stars, 55, 83	for acids, 102–103	boron used in, 1042
Neutron symbol, 913	common names, 97	interhalide used in, 1066
Newlands, John, 336	for hydrocarbons, 124	Nuclear equation(s), 914–917
Newton, Isaac, 47	inorganic nomenclature flowchart, 105–106	for fission reaction, 928
Newtons (N), 197	for ionic compounds, 97–100	Nuclear fission, 928–932
Newton's laws of motion, 313	containing metal that forms more than one	converting mass to energy in, 932–935
Nickel, 528	kind of cation, 98–99	mass defect and, 933–935
nickel–chromium phase diagram, 1083–1084	containing metal that forms only one type of	nuclear binding energy and, 933–934
nickel-copper alloy, 1082–1083	cation, 97–98	discovery of, 928–932
sources, properties, and products of,	containing polyatomic ions, 99–100	Nuclear fusion, 60, 935
1090–1091	IUPAC system, 961	Nuclear medicine, 911–912
Nickel-cadmium (NiCad) battery, 888	for molecular compounds, 101–105	Nuclear power, 930–932
Nickel-metal hydride (NiMH) battery, 888	acids, 102–103	Nuclear power, 930–932
Nido-boranes, 1043–1044	binary acids, 103	Nuclear stability, 918–920
NIH, 1024	oxyacids, 104–105	magic numbers and, 920
Niobium, 1077	for neutral ligands, 1107, 1108	ratio of neutrons to protons (N/Z) and, 918–919
Nitrate, 99	systematic names, 97	Nuclear theory of atom, 54–55
Nitrate ion, solubility and, 161–162	<i>n</i> -Nonane, 498, 961	Nuclear transmutation, 936–937
		Nuclear waste disposal, 932
Nitrates, 1053–1054 Nitric acid, 104, 144, 151, 169, 698, 699, 703,	Nonbonding atomic radius (van der Waals	Nuclear waste disposal, 932 Nuclear weapons, 928–930
739–740, 1053–1054	radius), 350	- · · · · · · · · · · · · · · · · · · ·
reduction half-reaction oxidizing metals, 877	Nonbonding atomic solids, 528	Nucleic acids basic structure of, 1018–1020
	Nonbonding orbitals, 470	,
Nitric oxide (nitrogen monoxide), 151, 406, 628,	Nonelectrolyte solutions, 160	as blueprints for proteins, 1018–1021
1050, 1053	Nonmetal(s), 62–63, 364, 1034–1073. See also	genetic code and, 1020–1021
electron density map of, 469	Boron; Carbon; Main-group elements;	mass spectrum of, 68
MO diagram for, 469	Nitrogen; Oxygen; Phosphorus; Sulfur	Nucleon(s)
reaction between hydrogen and, 606, 625–626	atomic size, 1036–1037	attractive strong force among, 918
Nitride, 98	bonding atomic radii for, 350	binding energy per, 933–935
Nitrite, 99, 1054	bonds, types of, 1036–1037	number of stable nuclides with even and odd
Nitrogen, 1050–1054	carbides, 1047–1048	numbers of, 919–920
in air, 213	carbonates, 1049–1050	Nucleotide(s), 496, 1018–1020
compounds, 1051–1054	carbon oxides, 1048–1049	fake, viral drug therapies using, 1024
electron configuration for, 343	electron affinities of, 382	in genetic structure, 1021
elemental, 1050	halogens. See Halogens	Nucleus, 55
ionization energy of, 362	insulated nanowires, 1035–1036	predicting the mode of decay for, 918–920
Lewis structure of, 384	ion formation by, 64	strong force binding, 918
MO diagram for, 466	ionization energies of, 382	Nuclide(s), 913
orbital diagram for, 343	main-group elements. See Main-group	binding energy per nucleon for, 933–935
reaction between hydrogen and, 682–683	elements	daughter, 914
sources for, 1050	nitrogen. See Nitrogen	half-lives of selected, 922
in water, Henry's law constants for, 558	oxidation states for, 177	Nutrasweet (aspartame), 425–426
Nitrogen compounds, oxidation states of, 1051	properties of, 62–63	Nylon 6,6, 986, 987
Nitrogen dioxide, 101, 1053	reaction between metal and, 89, 176–177.	Nyos, Lake, carbon dioxide accumulation in, 560
reaction between carbon monoxide and,	See also Oxidation–reduction reaction(s)	N/Z ratio, 918–919
624–625	reactions of alkali metals with, 369	
reaction with water, 151	silicates, 1037–1041	0
Nitrogen gas, van der Waals constant for, 232	Nonpolar covalent bond, 396	
Nitrogen-halogen single bonds, 413	Nonpolar solvents, 550	Observation, 3
Nitrogen hydrides, 1051–1053	Nonspontaneous process, 815–816, 825	Octahedral complexes
Nitrogen monoxide. See Nitric oxide (nitrogen	increase in Gibbs free energy and, 828	cis–trans isomerism in, 1111
monoxide)	made spontaneous, 840	d orbital energy changes for, 1114–1115
Nitrogen narcosis (rapture of the deep),	Nonvolatile liquids, 500	fac–mer isomerism in, 1111
215–216	Normal boiling point, 504	high-spin, 1117–1118
Nitrogen oxides, 739–740, 1053	Normal science, 5	low-spin, 1117–1118
Nitrogen tetroxide, 678–683	n-type semiconductor, 531	optical isomerism in, 1112–1113
Nitrogen trichloride, 102	Nuclear binding energy, 933–934	Octahedral geometry
Nitro ligand, 1109	Nuclear charge, 339–342	of complex ions, 1106–1107
m-Nitrophenol, 783	Nuclear chemistry. See also Radioactivity	electron, 436, 456
Nitrosamines, 1054	effects of radiation on life, 937–939	molecular, 433–434, 436, 437, 455
Nitrosyl chloride, 621	fission, 928–932	Octahedral hole, 1085–1086
Nitrous acid, acid ionization constant for, 705	atomic bomb and, 928–930	<i>n</i> -Octane, 498, 960, 961
Nitrous oxide (dinitrogen monoxide), 101, 1053	converting mass to energy, 932–935	Octane, combustion of, 139–141, 151
Noble gas(es), 63, 346, 349	mass defect and, 933–935	Octet(s), 384
boiling points of, 488	nuclear binding energy, 933–934	expanded, 454
electron configurations of, 367	nuclear power, to generate electricity,	Octet rule, 384, 393, 406–409
ionization energy and, 359	930–932	expanded, 408–409
properties of, 370–371	nuclear fusion, 935	incomplete, 406–408
standard entropies of, 833–834	nuclear transmutation and transuranium	odd-electron species, 406

elements, 936-937

Odd-electron species, 406

Odors, 951-952, 979-980. See also Aromatic	Ostwald process, 1053–1054	with natural gas, 181
hydrocarbons	Outer electron configuration, 347	with sodium, 176
OH ⁻ . See Hydroxide ion (OH ⁻) concentration	Outermost electrons, 353	with white phosphorus, 1055
OH ⁻ functional group, 125	Overvoltage, electrolysis of aqueous sodium	redox reactions with, 175-176
Oil(s), 1004–1005	chloride and, 895-896	redox reactions without, 176, 177
motor, 498, 500	Oxalate ion, 1105	silicon and, in silicate tetrahedron, 1038
vanadium contamination in, 1075-1076	Oxalic acid, ionization constants for, 732	uses for, 1057
Oil drop experiment, Millikan's, 52-53, 56	Oxidation, definition of, 176, 862	van der Waals constants for, 232
Oleic acid, 1003	Oxidation-reduction reaction(s), 175-182	in water, Henry's law constants for, 558
Oleum, 1062	of alcohols, 977, 980	Oxygenated fuel, 151
Oligopeptides, 1013	in aqueous solutions, balancing, 862-865	Oxygen toxicity, 215
Olivines, 1039	acidic solution, 863-864	Oxygen transport, vanadium compounds used
On the Revolution of the Heavenly Orbs	basic solution, 864-865	for, 1076
(Copernicus), 47	in batteries, 886–890	Ozone, 1058
Opal, 583	combustion reactions, 182	from fuel fragments in exhaust, 629
Opaque, metals as, 1076	corrosion as undesirable, 899–900	Lewis structure of, 414, 470–471
Oppenheimer, J. R., 929	fuel cells based on, 862	molecular orbital model of, 470-471
Optical isomerism, 957-958, 1112-1113	identifying, 179-181	photodecomposition of, 407
carbohydrates and, 1007-1008	through changes in oxidation states, 862	properties of, 38
defined, 957	with oxygen, 175–176	use of, 1058
in hydrocarbons, 957–959	with partial electron transfer, 176	valence bond model of, 470-471
Orbital(s)	periodic trends and the direction of spontaneity	Ozone layer, 607, 1058
atomic, 316-318	for, 879	
atomic radius and, 350	predicting the spontaneous direction of,	P
degenerate, 338-339, 341	874–876	Packet of light. See Photon(s)
electron configuration and, 337	spontaneous, generating electricity from,	Packing efficiency, 520–523
energy ordering of, for multielectron at, 341	865–869	Palmitic acid, 291, 1003
hybridized. See Hybridization	without oxygen, 176, 177	Pancreas, 632
periodic table and, 346–347	Oxidation state(s) (oxidation number(s)),	,
shapes of, 321–327	176–179, 862	Parabolic troughs, 283
molecular	fractional, 179	Paramagnetism, 355, 467
antibonding, 459–460, 464	to identify redox reactions, 179–181	Parent nuclide, 914
bonding, 459–460, 464, 465	of polyatomic ions, 179	Partially hydrogenated vegetable oil, 970
nonbonding, 470	rules for assigning, 177–178	Partial pressures, 213–217, 658–660
phase of, 326–327	of transition metals, 1103–1104	Dalton's law of, 213, 224
Orbital angular momentum, 467	Oxidation states, of nitrogen compounds, 1051	deep-sea diving and, 215–217
Orbital diagram, 338	Oxide(s), 98, 1057–1058	vapor pressure, 218–219
Orbital overlap. See Valence bond theory	halogen, 1066	Particle nature of light, 302–306
Order of magnitude estimations, 31–32	nitrogen, 739–740, 1053	Parts by mass, 561, 562–563
Ores, 1077	phosphorus, 1055	Parts by volume, 562–563
chromium, 1087	types of, 1057–1058	Parts per billion by mass (ppb), 561, 562
cobalt, 1089	Oxide minerals, 1077	Parts per million by mass (ppm), 561, 562
copper, 1090	Oxidizing agents, 180, 1053, 1058, 1064,	Pascal (Pa), 197
processing metal-containing, 1077–1081	1066, 1088	Patchouli alcohol, 951
zinc, 1091	nonmetals as, 1037	Patina, 1090
Organic bases, 496	positive reduction half-cell potentials of,	Pauli, Wolfgang, 338
Organic chemistry, 66, 950–999. See also	873–874	Pauli exclusion principle, 338, 342
Hydrocarbons	Oxyacids (oxoacids), 737	Pauling, Linus, 138, 394–395
alcohols, 976–978	naming, 104–105	Peaches, pH of, 708
aldehydes, 978–981	Oxyanions, 100	Penetrating power, 915
amines, 984	Oxygen, 57, 86–88, 1056–1058	of alpha radiation, 915
carbon and, uniqueness of, 950, 952–953	in air. 213	of gamma rays, 916
carboxylic acids, 981–983	boron–oxygen compounds, 1043	Penetration, 340
esters, 981–983	electron configuration for, 343	Pentaamminebromocobalt(II), 1109
ethers, 983–984	elemental, 1056–1057	Pentaamminechlorocobalt(II), 1109
ketones, 978–981	emission spectrum of, 308	Pentaamminenitritocobalt(III), 1109, 1110
polymers, 985–987	ionization energy of, 362	Pentaamminenitrocobalt(III), 1109, 1110
Organic compound(s), 123–126, 953	Lewis structure of, 384, 391	Pentagonal bipyramidal geometry, 1065
carbon and, 123–124	liquid, 467	Pentanal, 979
	•	Pentane, 491, 549, 955
decomposition of, 123 families of, 126	orbital diagram for, 343, 466 oxidation state for, 177	<i>n</i> -Pentane, 489, 498, 960
hydrocarbons. See Hydrocarbons	as oxidizing agent, 180–181	common uses of, 125
•	paramagnetism of, 467	critical point transition for, 508
properties of, 123		dynamic equilibrium in, 503
Organic molecules, 952 Orientation factor, 620–621	partial pressure limits of, 215	molecular formula for, 125
	production of, 1056–1057 properties of, 87	space-filling model of, 125
Orthosilicates (nesosilicates), 1039, 1041 Osmosis, defined, 577	DIODEIUES OI, O /	atmost and formando for 125
Osmosis, ucinicu, 3//	* *	structural formula for, 125
	reactions of	Pentanoic acid, 981
Osmosis cell, 577 Osmotic pressure, 577–579	* *	

with hemoglobin, 49-51

solubility in water, 551

Osteoporosis, 20

2-Pentanone, 979	equilibrium calculation for, 760–763	Phosphorus-30, 916
1-Pentene, 965	equilibrium calculation of changes in,	Phosphorus-32, 940
1-Pentyne, 966	760–763	Phosphorus halides, 1055
Peptide bond(s), 632–633, 1013, 1023	Henderson–Hasselbalch equation for,	Phosphorus oxides, 1055
between amino acids, 1013–1014	757–760	Phosphorus oxychloride, 1055
Percent by mass (%), 561, 562	stoichiometry calculation of changes in, 760–763	Phosphorus pantachlarida 420
Percent ionic character, 397, 398 Percent ionization of weak acid, 716–717	of mixture of acids, 717–719	Phosphorus pentachloride, 429
	pH curve, 769–770. See also Acid–base	Photoelectric effect, 302–306 Photon(s), 303–305
Percent mass to volume, 582 Percent yield, 146–148	titration	electron relaxation and release of, 319
Perchlorate, 99, 100	pH meter, 780	energy of, 308
Perchloric acid, 169, 703	pH scale, 696	Photosynthesis, 143, 1048
Peridot, 1100	of polyprotic acids, 732–734	atmospheric oxygen from, 1056–1057
Periodic law, 62–64, 337	of salt solutions, 729–731	chlorophyll and, 1121
Periodic property(-ies), 334–379	solubility and, 788	Phyllosilicates, 1040–1041
of alkali metals (group 1A), 367-368	of solution with anion acting as weak base,	Physical changes, 9–11
defined, 336	725–728	Physical property, 9
electron affinities, 363-366	of solution with conjugate acid of weak base,	Physics, classical, 313
electron configurations and, 337-344, 355-356	728	$\pi 2p$ bonding orbital, 464, 465
electron spin and the Pauli exclusion	of strong acid solutions, 711	Pi (π) bond, 450
principle, 338	of weak acid solutions, 711-715, 717	Pickling fluids, 710
element's properties and, 345-346	of weak bases, 722–723	Pico prefix, 17
for multielectron atoms, 342–344	Phase (of orbitals), 326–327	pKa scale, 710
orbital blocks in periodic table, 346–347	Phase changes. See Phase transition(s)	Planck, Max, 294, 303
sublevel energy splitting in multielectron	Phase diagram(s), 513–516	Planck's constant, 303
atoms, 338–342	binary, 1082, 1083	Plane-polarized light, 958–959
valence electrons, 345–346	chromium and nickel, 1083–1084	Plastic products, 985–986
writing, from periodic table, 347–348	major features of, 513–514	Platinum
of halogens (group 7A), 368–369	navigation within, 514–515	density of, 19
of ions, 355–363	of other substances, 515	inert electrode of, 869
electron configurations of, 355–356	for water, 513–515	Plato, 3, 47
ionic radii, 357–358	Phases of matter, molecular comparison of,	Plum-pudding model, 54–55
ionization energy, 359–363 magnetic properties, 355–356	484–486. See also Gas(es); Liquid(s); Solid(s)	Plums, pH of, 708, 709 p-n junctions, 531
metallic character, 364–366	Phase transition(s), 486. See also Condensation;	p-H junctions, 551 pOH scale, 709–710
nerve signal transmission and, 335–336	Vaporization	Poise (P), 498
of noble gases (group 8A), 370–371	critical point, 508–509	Polar bonds, 438–439
periodic trends in size of atoms, 350–354	deposition, 509	Polar covalent bond, 394
effective nuclear charge and, 352–353	entropy and, 822–824	Polarimetry, 602
transition elements and, 353–354	freezing, 510, 517	Polarity
Periodic table, 61–66, 334, 1037. See also	melting or fusion, 510–511	bond, 394–398, 736
specific elements; specific families or	sublimation, 10, 509, 604	molecular shape and, 438-442
groups	Phenol, 1.924	Polarized light, 602
atomic mass, 66	acid ionization constant for, 705	defined, 602
development of, 336-337	Phenolphthalein, 781, 783	rotation of, 958–959
groups 3A-7A, 1036	Phenol red, 783	Polar molecules, 490–491
ions and, 64–65	4-Phenyl-1-hexene, 973	Polar solvents, 550
metalloids, 63	Phenylalanine, 1011, 1012	Polar stratospheric clouds (PSCs), 629-630
metals, 62	Phenyl group, 973	Pollutant(s), 104
modern, 62, 64	3-Phenylheptane, 973	persistent organic (POPs), 564
noble gases, 63	Phosgene (carbonyl chloride), 1049	sulfuric acid as, 1061
nonmetals, 62–63	Phosphate(s), 99, 1055–1056	Pollution, 1
orbital blocks in, 346–347	in food industry, 1056	air, 280–281
organization of, 57, 61–64	insoluble, 794	catalytic converters and, 628–629
quantum-mechanical theory and, 334, 337–344	Phosphate links, in nucleic acids, 1020	water, 517
transition elements or transition metals, 63, 64	Phosphatidylcholine, 1005	Polonium, 58, 913
writing electron configuration from, 347–348	Phosphide, 98	Polyatomic ion(s), 94, 99–100
Permanent dipoles, 490	Phosphine, 1054	Lewis structures for, 400
Permanganate, 99	Phospholipids, 1005–1006	oxidation numbers in, 179
Permanganate ion, 1089	Phosphorescence, 912	solubility and, 162
Peroxide, 99, 1058	Phosphoric acid, 698, 704, 1055–1056	Polyatomic molecules, 93
Perpetual motion machine, 251, 814 Persistent organic pollutants (POPs), 564	ionization constants for, 732	Polychlorinated biphenyls (PCBs), 564 Polycyclic aromatic hydrocarbons, 974
Perturbation theory, 443	Phosphorus, 93, 1050 black, 1051	Polydentate ligands, 1105, 1106
PET, 940–941	compounds, 1054–1056	Polyethylene, 985, 986
Peta prefix, 17	elemental, 1050–1051	Polyethylene terephthalate, 986
Petroleum, 279	ionization energies of, 363	Polymer(s), 985–987
pH. See also Acid-base chemistry; Buffers	red, 1051	addition, 985, 986
of blood, 754, 768	silicon doped with, 531	coiled, 498
of buffers, 756–765	white, 1050–1051, 1054	of commercial importance, 986

condensation, 986, 987	Pre-exponential factor. See Frequency factor (A)	structural formula of, 956
Polypeptides, 1013	Prefixes	Property
Polypropylene, 986	for base names of alkane chains, 962	extensive, 18
Polyprotic acids, 169	hydrate, 100	intensive, 18
acid ionization constants for, 731–732	in naming molecular compounds, 101	Propyl substituent, 962
concentration of anions for weak diprotic acid	Prefix multipliers, 17	Propyne, 966
solution, 734–735	Pressure(s), 195–199. See also Gas(es)	structural formula of, 956
dissociation of, 735	blood, 199	Protactinium-234, 920
ionization of, 731–732	calculating, 225–226	Protease inhibitors, 381–382
pH of, 732–734	critical, 508	Protective proteins, 1011
•	defined, 195	- · · · · · · · · · · · · · · · · · · ·
Polysaccharides, 1009–1010		Protein(s), 381, 1002, 1010–1014. See also
Polystyrene, 986	dynamic equilibrium and, 503	Amino acids
Polyunsaturated fatty acids, 1003	equilibrium constant in terms of, 658–661	active site of, 426
Polyurethane, 986	gas solubility in water and, 557–559	classes of, 1011
Polyvinyl chloride (PVC), 985, 986	gauge, 208	complete, 1023
Popper, Karl, 380	kinetic molecular theory and, 223–224	digestion of, 632–633
p orbitals, 316–318, 325	Le Châtelier's principle on change in, 680–681	fibrous, 1014–1015
2p, 325, 326, 340	manometer to measure, 198	functions, 1011
Porphyrin, 1098, 1120, 1121	osmotic, 577–579	globular, 1015
Position	partial, 213-217, 658-660	mass spectrum of, 68
in classical mechanics, 313	Dalton's law of, 213, 224	monomeric, 1018
and velocity as complementary properties, 315	deep-sea diving and, 215–217	multimeric, 1018
Positive charge, 868	vapor pressure, 218–219	nucleic acids as blueprints for, 1018–1021
Positron, 916	particle density and, 196	structure of, 1014–1018
Positron emission, 913, 916, 917	phase changes and, 486	synthesis of, 1023–1024
Positron emission tomography (PET), 940–941	reaction and, 221–222	Proton(s), 41, 55, 56
Potassium	reaction rates and, 602	actual number of, 919–920
	•	•
charge of, 97	SI unit of, 197	Brønsted–Lowry definition of acids and bases
flame tests for, 309	temperature and, 207–208	and, 701–702, 736, 738
properties of, 367–368	total, 208	charge of, 56
reaction between bromine and, 621	units of, 197–198	ionizable, 704
reaction between chlorine and, 384–385	vapor, 218–219	mass of, 56
Potassium bromide, 729	volume and, 200–202	number of, as definitive of element, 56–57
Potassium chloride, 95, 97	Pressure–volume work, 260–262	N/Z ratio and, 918–919
Potassium chloride (sylvite), 1077	Priestley, Joseph, 1057	repulsive electrostatic force among, 918
Potassium hydroxide, 169, 554, 700, 720	Primary structure of protein, 1016, 1018	Proton symbol, 913–914
1 0000510111 113 011 0111 02 , 102 1, 7 00 , 7 20		
reaction between sulfuric acid and, 171	Primary valence, 1104	Proust, Joseph, 48
•	Primary valence, 1104 Principal level (principal shell), 316–318	Proust, Joseph, 48 Pseudogout, 809
reaction between sulfuric acid and, 171	•	
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360	Pseudogout, 809 p-type semiconductor, 531
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and,	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and,	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium nitrite, 729 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862 Power plants, fuel-cell, 861–862	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981 reaction between sodium hydroxide and, 982	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794 alkali metals and NH4+, 794
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862 Power plants, fuel-cell, 861–862 Precipitate, 162	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981 reaction between sodium hydroxide and, 982 2-Propanol. See Isopropyl alcohol	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794 alkali metals and NH4+, 794 base-insoluble sulfides and hydroxides, 794
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862 Power plants, fuel-cell, 861–862 Precipitate, 162 Precipitation, 162–166, 789–792	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981 reaction between sodium hydroxide and, 982 2-Propanol. See Isopropyl alcohol Propanol	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794 alkali metals and NH4+, 794 base-insoluble sulfides and hydroxides, 794 general scheme for, 793–794
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862 Power plants, fuel-cell, 861–862 Precipitate, 162 Precipitation, 162–166, 789–792 reaction quotient and, 789–790	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981 reaction between sodium hydroxide and, 982 2-Propanol. See Isopropyl alcohol Propanol solubility in hexane, 551	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794 alkali metals and NH4+, 794 base-insoluble sulfides and hydroxides, 794 general scheme for, 793–794 insoluble chlorides, 793
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862 Power plants, fuel-cell, 861–862 Precipitate, 162 Precipitation, 162–166, 789–792 reaction quotient and, 789–790 selective, 790–792	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981 reaction between sodium hydroxide and, 982 2-Propanol. See Isopropyl alcohol Propanol solubility in hexane, 551 solubility in water, 551	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794 alkali metals and NH4+, 794 base-insoluble sulfides and hydroxides, 794 general scheme for, 793–794 insoluble chlorides, 793 insoluble phosphates, 794
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862 Power plants, fuel-cell, 861–862 Precipitate, 162 Precipitation, 162–166, 789–792 reaction quotient and, 789–790	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981 reaction between sodium hydroxide and, 982 2-Propanol. See Isopropyl alcohol Propanol solubility in hexane, 551	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794 alkali metals and NH4+, 794 base-insoluble sulfides and hydroxides, 794 general scheme for, 793–794 insoluble chlorides, 793 insoluble phosphates, 794 Quantitative analysis, 309, 792
reaction between sulfuric acid and, 171 Potassium iodide, 391, 790 in radiation emergencies, 370 reaction between lead(II) nitrate and, 162–165 reaction between sodium chloride and, 163–164 Potassium ions, nerve signal transmission and, 335–336 Potassium nitrate, 556–557 Potassium permanganate, 391 Potential difference, 867–868, 878 SI unit of, 867 Potential energy, 12, 13, 248 of charged particles, 382, 383 Coulomb's law and, 487 exothermic chemical reaction and, 267 solution formation and, 547–548 stability of covalent bond and, 90 transformation of, 249 Potential energy per unit charge, difference of, 878 Pounds per square inch (psi), 197 Powder metallurgy, 1081 Power grid, 861–862 Power plants, fuel-cell, 861–862 Precipitate, 162 Precipitation, 162–166, 789–792 reaction quotient and, 789–790 selective, 790–792	Principal level (principal shell), 316–318 Principal quantum numbers (n), 315, 360 Principles, 3 Probability density, 321–324 radial distribution function vs., 323, 324 Probability distribution maps, 313–314 for electron states, 315 Problem solving, 27–33 general strategy for, 28–29 involving equations, 27, 32–33 order of magnitude estimations, 31–32 unit conversion problems, 27–28, 29–30 units raised to a power, 30 Products, 119, 120, 138 Proline, 1012 Propanal, 979 Propane, 94, 123, 953, 960, 970 burning of, 10 common uses of, 125 liquid, 486 molecular formula for, 125 space-filling model of, 125 structural formula for, 125 Propanoic acid, 981 reaction between sodium hydroxide and, 982 2-Propanol. See Isopropyl alcohol Propanol solubility in hexane, 551 solubility in water, 551	Pseudogout, 809 p-type semiconductor, 531 Pump, ion, 335–336 Pure compounds, standard enthalpy of formation for, 274 Pure elements, standard enthalpy of formation for, 274 Pure substances, 7 Purine bases, 1019–1020 PVC, 985, 986 Pyrene, 974 Pyrex, specific heat of, 257 Pyridine, 721 Pyrimidine bases, 1019–1020 Pyrolusite, 1088–1089 Pyrometallurgy, 1078–1079 Pyrosilicates (sorosilicates), 1039, 1041 Pyroxenes (inosilicates), 1039–1040 Q Quadratic equations, 669 Qualitative chemical analysis, 309, 792–794 acid-insoluble sulfides, 793–794 alkali metals and NH4+, 794 base-insoluble sulfides and hydroxides, 794 general scheme for, 793–794 insoluble chlorides, 793 insoluble phosphates, 794

reaction between hydrogen gas and, 970

and atomic spectroscopy, 318-321

Precision, 22, 25-26

atomic spectroscopy, Bohr model and, 306-309	Radiometric dating, 924–928	half-life of, 612–614
explanatory power of, 349–350	radiocarbon dating, 924–926	first-order, 612–613
light, 296–306	uranium/lead dating, 926–928	second-order, 613-614
diffraction, 301–302	Radiotherapy in medicine, 941	zero-order, 614
electromagnetic spectrum, 299-301	Radiotracer, 940	heat evolved in, at constant pressure, 265-266
interference, 301–302	Radio waves, 299, 301	internal energy change for $(\Delta E_{\rm rxn})$, 262–264,
particle nature of, 302–306	Radium, 913, 1077	265–267
visible, 298–300	Radium-228, nuclear equation for beta decay	pressure and, 221–222
wave nature of, 296–299	of, 915	rates of. See Reaction rate(s)
wave-particle duality of, 296	Radon-220, decay of, 922	reversible, 651, 842
nodes and wave functions, 323	Rain, acid. See Acid rain	side, 151
periodic table and, 345–349	Rainwater, pH of, 708	spontaneity of, 815–816
Schrödinger equation for hydrogen atom,	Rana sylvatica (wood frogs), 577	standard enthalpy change for, 275–279
315–317	Random coils, 1017	Reaction coefficients, and stoichiometry, 141
shapes of atomic orbitals, 321–327	Random error, 25	Reaction intermediates, 622, 625–626
d orbitals, 325	Raoult, François-Marie, 544	Reaction mechanisms, 622–627
f orbitals, 326	Raoult's law, 569, 571–574	defined, 622
p orbitals, 325	deviations from, 571–573	with fast initial step, 625-626
s orbitals, 321–324	ideal solution and, 571	rate-determining steps and overall reaction rate
wave nature of electron, 309-314	Rapture of the deep (nitrogen narcosis), 215–216	laws, 623–625
de Broglie wavelength and, 310-311	Rate constant(s) (k), 603-604	rate laws for elementary steps, 623
indeterminacy and probability distribution	for second-order reactions, 605	Reaction order (<i>n</i>), 603–604
maps, 313–314	temperature dependence of, 615	determining, 604–605
uncertainty principle and, 311–313	for zero-order reaction, 605	for multiple reactants, 606–607
* * *		
Quantum-mechanical strike zone, 314	Rate-determining steps, 623–625	Reaction quotient (Q), 665–667
Quantum mechanics, 62	Rate law, 603–607, 623–625	precipitation and, 789–790
periodic table and, 334	containing intermediates, 625–626	Reaction rate(s), 596–647, 651
Quantum numbers, 315–318	determining order of reaction, 604–605	average, 600
Pauli exclusion principle and, 338	differential, 608	catalysis, 627–632
Quartz, 529–530	for elementary steps, 623	enzymes, 631–633
structure of, 1038	first-order reaction, 603, 604, 615	homogeneous and heterogeneous, 629-631
Quaternary structure of protein, 1018	integrated, 607-615, 923-924	instantaneous, 600-601
	first-order, 608–610, 615	integrated rate law, 607-615
_	half-life of reaction, 612-614	first-order, 608–610, 615
R	second-order, 610-611, 615	half-life of reaction, 612–614
Racemic mixture, 958	zero-order, 612, 615	second-order, 610-611, 615
Radial distribution function, 323, 324	overall, 623–625	zero-order, 612, 615
Radiation	reaction order for multiple reactants, 606–607	measuring, 601–603
in cancer treatment, 300	-	_
•	second-order reaction, 603–605, 615	of radioactive decay and radiometric dating,
electromagnetic, 296–297. See also Light	zero-order reaction, 603–605, 615	921–929
of hydrogen energy, 319–321	RBE, 938	rate law, 603–607, 623–625
ionizing, 300	Reactant(s), 119, 120, 138	containing intermediates, 625–626
Radiation emergencies, potassium iodide in,	in excess, 146	determining the order of reaction, 604–605
370	limiting, 145–151	differential, 608
Radiation exposure	reaction order for multiple, 606–607	first-order reaction, 603, 604, 615
effects of, 937–939	Reaction(s), 119–120, 138–193. See also	reaction order for multiple reactants,
measuring, 938–939	Equilibrium/equilibria; specific kinds	606–607
by source, in U.S., 939	of reactions	second-order reaction, 603–605, 615
Radicals. See Free radical(s)	acid-base, 168-173	zero-order reaction, 603-605, 615
Radioactive atoms, 912	equations for, 171	reaction mechanisms and, 622-627
Radioactive decay, kinetics of, 921-929	titrations, 171–173	with respect to product, 599-600
Radioactive decay series, 920	calculating standard changes in entropy,	with respect to reactant, 599–600
Radioactivity, 910. See also Nuclear chemistry	832–836	with respect to time, 598–599
defined, 912	combustion. See Combustion	temperature effect on (Arrhenius equation),
detecting, 920–921	direction of, 665–667	
•	*	615–622
discovery of, 54, 912–913	endothermic, 265–266, 682, 831	activation energy (activation barrier),
kinetics of radioactive decay and radiometric	bond energies and, 411	615–620
dating, 921–929	enthalpy change for (ΔH_{rxn}) , 265–268, 411–412	Arrhenius plots, 618–620
integrated rate law, 923–924	measuring, 269–271	collision model of, 620–622
radiocarbon dating, 924–926	relationships involving, 271–273	exponential factor, 615, 617
uranium/lead dating, 926–928	enthalpy(-ies) of (ΔH_{rxn}) , 265–268	frequency factor (pre-exponential factor),
in medicine, 911–912, 940–941	constant-pressure calorimetry to measure,	615, 617–620
other applications, 941	269–271	rate constant and, 615
types of, 913–918	relationships involving, 271–273	thermodynamics and, 817
alpha (α) decay, 914–915, 917	from standard heats of formation,	Reaction stoichiometry, 140–145
beta (β) decay, 915, 917	273–279	actual yield, 146
electron capture, 916, 917	stoichiometry involving, 267–268	gases, 219–222
gamma (γ) ray emission, 915–916, 917	exothermic, 266, 682, 831	limiting reactant, 145–151
positron emission, 916, 917	bond energies and, 411	mass-to-mass conversions, 142–144
predicting, 918–920		
predicting, 710-720	gas-evolution, 173–175	mole-to-mole conversions, 141

. 11 146 140	D 11 1 6 1000 1100	C.1
percent yield, 146–148	Rubies, color of, 1099–1100	Selenium, 58
reactant in excess, 146	Rusting, 9	Semiconductor(s), 63, 531
theoretical yield, 145–151	of iron, 900	conductivity of, 531
Reactive elements, halogens as, 1063–1064	Rutherford, Ernest, 54–55, 58, 913, 936	n-type, 531
Real gas(es), 230–234	Rutherfordium, 58	p-type, 531
finite volume of gas particles and, 230–234	Rutile, 1077, 1086, 10087	Semipermeable membrane, 577–579
intermolecular forces and, 232–233	Rydberg, Johannes, 307	Serine, 1011, 1012, 1021
molar volumes of, 231	Rydberg constant, 307, 315	Setae, 483
van der Waals constants for, 232	Rydberg equation, 315	SHE half-cell, 870–872
van der Waals equation for, 233		—SH groups, 181
Rechargeable batteries, 814, 887–889	S	Shielding (screening), 339–340
Recrystallization, 557	S	effective nuclear charge and, 352–353
Redheffer, Charles, 251	Saccharin, 425	types of, 353–354
Redheffer's perpetual motion machine, 251	Sacramento, California, 257	Shroud of Turin, radiocarbon dating and, 926
Redox reactions. See Oxidation-reduction	Sacrificial electrode, 900	Sickle-cell anemia, 1016
reaction(s)	SAE scale, 498	Side reactions, 151
Red phosphorus, 1051	Safe Drinking Water Act (SDWA), 517, 592	σ_{2p}^{*} antibonding orbital, 464, 465
Reducing agents, 180	Salicylic acid, reaction between ethanoic acid	σ_{2p} bonding orbital, 464, 465
negative reduction half-cell potentials of,	and, 983	Sigma σ bond, 450
873–874	Salmonella, irradiation of foods to kill, 941	Significant figures, 22–25
Reduction	Salt(s), 123, 527	in calculations, 23–25
of aldehydes and ketones, 980	acid-base properties of, 724–731	Silica, 529, 1038
definition of, 176, 862	from acid–base reactions, 171	Silicates, 529, 1037–1041
Reductionism, 51	density of, 19	aluminosilicates, 1038–1039
	electrolysis of molten, 893	
Refining, 1077		quartz and glass, 1038
of copper, 1080	solutions as acidic, basic, or neutral, 729–731	types of silicate structures, 1039–1041
Reflection, angle of, 519	table. See Sodium chloride	Silicon, 63
Relative solubility, 786	Salt bridges, 868, 1017	doping of, 531
Relative standard entropies, 833–835	Salt water, 158–159	electron configuration of, 345
Reliability of measurement, 20–26	Sand, specific heat of, 257	ionization energies of, 363
exact numbers, 22–23	San Francisco, California, 257	Silicon carbide, 1048
precision and accuracy, 25–26	Sanger, Frederick, 1002	Silicon dioxide, 529
significant figures, 22–25	Saturated fat, 1004–1005	Silicon oxide, reaction between coke and, 1048
Rem (roentgen equivalent man), 938	Saturated fatty acid, 1003	Silver
Renewable energy, 283	Saturated hydrocarbons. See Alkanes	charge of, 97
Repulsive electrostatic force among protons, 918	Saturated solution, 556, 789	magnetic properties of, 355
Resonance, Lewis structures and, 400–402	Scandium, charge of, 97	specific heat of, 257
Resonance hybrid, 401–402	Scanning tunneling microscope (STM), 45–46	Silver bromide, solubility product constant
Resonance stabilization, 401	Schrödinger, Erwin, 294, 296	for, 784
Resonance structures, 401, 972	Schrödinger equation, 315	Silver chloride, 160, 783-784
benzene as hybrid of two, 972	for hydrogen atom, 315–317	solubility product constant for, 784
Respiration, water-carbon dioxide reaction	for molecules, 459	Silver chromate, solubility product constant
in, 1121	for multielectron atoms, 337	for, 784
Resting potential, 886	Schrödinger's cat, 295–296	Silver iodide, solubility product constant
Retina, 452	Science, 5	for, 784
Retinal isomers, 452	Scientific approach to knowledge, 3–5	Silver ions, 795
Reversible reaction, 651, 842	Scientific law, 3	reaction between ammonia and, 1104
R group (side chains) of amino acids, 1010–1011	Scientific method, 4, 222	Silver nitrate, 160, 391, 789
Rhodochrosite, 1088	Scientific notation, 17	Silver plating, 891
Ribonucleic acid (RNA), 1019	Scientific revolution, 5, 47	Simple carbohydrates, 1007–1009
Ribose, 1019	Scientific theory, 226	Simple cubic structure, 520–521
Ribosomes, 1023–1024	Scintillation counter, 920	Simple cubic unit cell, 520–521
Ripening agent, ethene as, 964	SCN ⁻ ligand, chemical analysis with, 1119	Single bond, 90
RNA, 1019	Screening (shielding), 339–340	bond energy of, 410
Roasting, 1078–1079	effective nuclear charge and, 352–353	covalent, 391–392
Rock candy, 557	types of, 353–354	double bond vs., 452, 968
Rocks, uranium/lead dating of, 926–928	Scuba diving, 200–201, 215	Single-nucleotide polymorphisms (SNPs), 1024
Rock salt structure, 527	Seawater, 544–546, 790–791	Single-walled nanotubes (SWNT), 1046–1047
Rods, 452	Second (s) (unit), 14	SI unit(s)
Roentgen equivalent man (rem), 938	Secondary structure of protein, 1016–1017	base units, 13–14
Rohrer, Heinrich, 45-46	Secondary valence, 1104	of density, 18
Roosevelt, Franklin, 929–930	Second ionization energy (IE ₂), 359, 362–363	derived units, 17-18
Root mean square velocity, 226–228	Second law of thermodynamics, 814	of energy, 250
Rotational energy, 823, 834–835	entropy and, 817–824	of length, 14, 17, 18
Rotation of polarized light, 958–959	Second-order integrated rate law, 610–611, 615	of mass, 14, 18, 250
Ru-92, 916	Second-order reaction, 603–605, 615	prefix multipliers, 17
Rubbing alcohol. See Isopropyl alcohol	Second-order reaction half-life, 613–614	of pressure, 197
Rubidium	Seesaw geometry, 432, 436, 437	of speed, 17
charge of, 97	Selective precipitation, 790–792	of speed, 17 of temperature, 15–16
properties of, 367	qualitative analysis by, 792–794	of time, 14–15
properties or, 501	quantative anaryono by, 174-174	or unic, 1 - 13

Skin, wrinkling of, 300	Sodium iodide solution, electrolysis of, 894	concentrated, 152, 559, 568-569
Skin cancer, 300	Sodium ion(s)	concentration of, 559-566
Skunk, smell of, 952	electron configuration of, 357	molality, 561-562
SLAC, 936-937	nerve signal transmission and, 335-336	molarity, 560-561
Slag, 1079	solubility and, 161–162	mole fraction and mole percent, 561,
Smell, sense of, 951–952	Sodium methoxide, 977	563, 565
Smelting, 1079	Sodium nitrite, 94, 99, 1054	parts by mass and parts by volume, 562–563
Smithsonite, 1091	Sodium oxide, 176	defined, 152, 545
Smoke, 582, 583	formula mass of, 107	dilute, 152
Snowflake, 518	Sodium phosphate compounds, 1056	dilution of, 154–156
SNPs, 1024	Soft drinks, pH of, 708	energetics of formation, 551–555
Soap, 442, 582–584	Solar power, 282–283	entropy and, 547–548, 568–569
Socrates, 700	Solar-powered electrolytic cell, 891	equilibrium processes in, 555–556
Soda ash, 95	Solid(s), 482. See also Crystalline solid(s)	examples of, 544
Sodium, 58	amorphous, 485	freezing point depression, 574–576, 580
charge of, 97	crystalline, 485	gaseous, 547
electron affinity of, 364	entropy change associated with change in state	hyperosmotic, 581
electron configuration of, 357, 362	of, 822–824	hyposmotic, 581
emission spectrum of, 309	equilibria involving, 661–662	ideal, 571
flame tests for, 309	molecular comparison with other phases,	intermolecular forces in, 548–551
ionization energies of, 360, 363	484–486	intravenous, 582
properties of, 88, 367–368	properties of, 485	isosmotic (isotonic), 581–582
reactions of	relative standard entropies of, 833	liquid, 547
with chlorine, 48, 176, 386	solubility of, temperature dependence of,	miscible solid, 1083–1084
with methanol, 977	556–557	molarity of, 152–153, 154–155
with oxygen, 176	standard state for, 274	neutral, 706–707
with sulfur, 385	vapor pressure of, 509	nonelectrolyte, 160
with water, 977	Solid aerosol, 583	nonideal, 571–572
second ionization energy of, 359	Solid emulsion, 583	osmotic pressure, 577–579
Sodium acetate, 556, 755, 789	Solid matter, 5–6	saturated, 556, 789
Sodium bicarbonate (baking soda), 94, 391,	Solid solution, 547	seawater, 545–546
700, 724, 1049	Solubility	solid, 547
reaction between hydrochloric acid and,	alloys with limited, 1083–1084	stock, 154
174–175	of amphoteric metal hydroxides, 798–799	supersaturated, 556, 789
Sodium borates, 1042	complex ion equilibria and, 797–798	thirsty, 545, 546, 568–569
Sodium carbide, reaction between water	defined, 547	transition metal ions in. See Complex ion
and, 1047	of gases in water, 557–559	equilibria
Sodium carbonate, 162, 700	molar, 783–786	unsaturated, 556, 789
Sodium chloride, 88, 95, 176, 177, 729, 1077	precipitation reactions and, 162–165	vapor pressure of, 567–573
Born–Haber cycle for production of, 386–388	relative, 786	nonvolatile solute and, 574
chemical formula for, 90	of solids, temperature dependence of, 556–557	Raoult's law, 569, 571–574
density of, 19	Solubility equilibria, 752, 783–788	with volatile solutes, 571–574
electrical conductivity of, 389–390	common ion effect on, 786–787	Solution concentration, 152–153
electrolysis of aqueous, overvoltage and,	pH and, 788	Solution stoichiometry, 152–158
895–896	solubility product constant (K_{sp}) , 783–786,	acid-base reactions, 168–173
electrolysis of molten, 893	789–790	aqueous solutions and solubility, 158–162
formation of, 89	molar solubility and, 783-786	gas-evolution reactions, 173-175
formula unit for, 94	relative solubility and, 786	precipitation reactions, 165–166
lattice energy of, 386–390	Solubility product constant $(K_{\rm sp})$, 783–786,	representing aqueous reactions, 166–168
melting of, 390	789–790	Solvent(s), 152, 545–546
mixed with water, 495	molar solubility and, 783-786	intermolecular forces acting on, 548–549, 571
reaction between potassium iodide and,	relative solubility and, 786	laboratory, 550
163–164	Solubility rules, 161–162, 783	nonpolar, 550
in seawater, 547	Soluble compounds, 160–162	polar, 550
solubility in water, 547	Solute(s), 152, 545, 546	Solvent–solute interactions, 158, 548–549
solute and solvent interactions in solution, 158	intermolecular forces acting on, 548–549, 571	Solvent–solvent interactions, 548–549, 571
unit cell for, 527	van't Hoff factors for, 579	Soot, 1046
in water, 495, 552, 555–556	Solute-solute interactions, 158, 548-549	s orbitals, 316–318, 321–324
Sodium fluoride, 391, 729, 786–787	Solute–solvent interactions, 571	1s, 321–323, 326
Sodium hydroxide, 154, 169, 552, 700,	Solution(s), 544–595. See also Acid-base	2s, 324, 340
720, 977	chemistry; Aqueous solution(s)	3s, 324
pH of, 708	acidic, 706–707	Sorosilicates (pyrosilicates), 1039, 1041
reactions of	aqueous, 152, 158-162	Sound, speed of, 297
with hydrochloric acid, 170	electrolyte and nonelectrolyte, 159-160	<i>sp</i> hybridization, 452–454, 456
with propanoic acid, 982	solubility of ionic compounds, 160-162	sp^2 hybridization, 448–450, 456
with sulfurous acid, 779-780	basic, 706–707	sp^3d and sp^3d^2 , hybridization, 454–455, 456
titrations of	boiling point elevation, 574–576	<i>sp</i> ³ hybridization, 446–448, 456
with formic acid, 773-779	colligative properties of, 574, 579–582	Space-filling molecular models, 91, 92
with hydrochloric acid, 770-773	colloids, 582–584	Space Shuttle, 498
Sodium hypochlorite, 94	components of, 545–546	Spatulae, 483

Specific heat capacity (C_s) , 257	Starch, 1009, 1010	titration of diprotic acid with, 779–780
Spectator ions, 167	Stars, neutron, 55, 83	titration with strong acid, 770–773
Spectrochemical series, 1117	State function, 251–252	equivalence point, 770
Spectrometer, 602	entropy as, 819	overall pH curve, 772
Spectroscopy, 602	States of matter, 5–6, 9	titration with weak acid, 773–779
Speed, SI unit for, 17	entropy change associated with change in,	equivalence point, 774
Sphalerite, 1077, 1091	822–824 Stationary state 207, 208, 210	overall pH curve, 777
Sphygmomanometer, 199	Stationary states, 307–308, 310	Strong electrolytes, 159, 579–582, 703
Spin-pairing, 444–445	Steam burn, 501	Strong-field complexes, 1114
Spin quantum number, 338	Stearic acid, 1003	Strong-field ligands, 1117
Spin quantum number (m_s) , 315, 316	Steel	Strong force, 918–919
Spin up and spin down, 338	galvanizing, 1091	Strontium, 62
Spontaneity	stainless, 1087–1088	charge of, 97
change in Gibbs free energy as criterion for,	Steel alloys, 1087–1088	Strontium hydroxide, 720
828–829	Steel production	Structural formula, 90–91, 955
effect of change in entropy (ΔS), change in	cobalt and, 1089	of hydrocarbons, 954–957
enthalpy (ΔH), and temperature on, 829–832	oxygen used in, 1057	Structural isomers, 955, 1007, 1109
in oxidation–reduction reactions, 865–869, 879	phosphoric acid used in, 1055–1056	Structural proteins, 1011
Spontaneous process(es), 814–817	Stepwise reaction, determining standard	Structure of Scientific Revolutions, The (Kuhn), 5
decrease in Gibbs free energy and, 828	change in free energy for, 840–841	Styrene, 973
endothermic, 817–818	Stereoisomerism, 1110–1113	Subatomic particles, 56–61. See also
exothermic processes as, 826	geometric (or cis-trans) isomerism, 968-969,	Electron(s); Neutron(s); Proton(s)
mixing, 547	1110–1113	Sublevels (subshells), 316–317
nonspontaneous process made, 840	optical isomerism, 957–958, 1007–1008, 1112,	energy splitting in multielectron atoms,
in voltaic (or galvanic) cells, 865–869	1112–1113	338–342
Square planar complex(es)	in hydrocarbons, 957–959	Sublimation, 10, 509
cis-trans isomerism in, 1110-1111	Stereoisomers, 1109	as zero-order reaction, 604
d orbital energy changes for, 1118–1119	defined, 957	Sublimation curve, 513, 514
low-spin, 1119	Stern-Gerlach experiment, 355	Substance(s)
Square planar geometry	Steroids, 1006	distillation of, 8
of complex ions, 1106–1107	Stock solutions, 154	filtration of, 8
molecular, 433-434, 436, 437	Stoichiometry, 138, 140–145	pure, 7
Square pyramidal geometry, molecular,	defined, 141	in solution, standard state for, 274
433–434, 436	of electrolysis, 897–898	Substituents, 961–962
Stability, valley (or island) of, 918–919	involving enthalpy change, 267-268	Substitutional alloys, 1082–1083
Stainless steels, 1087–1088	molar volume and, 221–222	Substitution reactions
Stalactites, 788	oxidation-reduction reactions, 175-182	alcohol, 977
Stalagmites, 788	combustion reactions, 182	of alkanes, 969–970
Standard cell potential (E°_{cell} or standard	identifying, 179–181	of aromatic compounds, 974
emf), 868	oxidation states (oxidation number), 176-179	Substrate, 631
relationship between equilibrium constant (K)	with oxygen, 175–176	Successive approximations, method of, 674
for redox reaction and, 880-881	with partial electron transfer, 176	Sucrase, 631–632
relationship between ΔG° and, 878–879	without oxygen, 176, 177	Sucrose, 425, 1009
Standard change in free energy (ΔG°)	reaction, 140-145	catalytic breakup of, 631–632
free energy (ΔG) and, 881	actual yield, 146	density of, 19
for reaction (ΔG_{fxn}°), 836–842, 881	gases, 219–222	hydrolysis of, 603
calculating, 836–842	limiting reactant, 145–151	sulfuric acid and dehydration of, 1062
equilibrium constant (K) and, 845–848	mass-to-mass conversions, 147-151	Sugar(s), 123
free energy change of reaction under	mole-to-mole conversions, 141	density of, 19
nonstandard conditions, 843-845	percent yield, 146-148	dissolution of, 10
standard cell potential and, 878-879	reactant in excess, 146	in nucleic acids, 1018-1020
Standard electrode potential, 870–877	theoretical yield, 145-151	and water, 159–160
Standard enthalpy change (ΔH°) , 274	solution, 152–158	Sugar water, 159–160
for reaction $(\Delta H_{\rm rxn}^{\circ})$, 275–279	acid-base reactions, 168-172	Sulfate, 99
Standard enthalpy of formation (ΔH°_{f}) ,	aqueous solutions and solubility, 158-162	Sulfide(s), 97, 1077
273–279	gas-evolution reactions, 173–175	acid-insoluble, 793-794
Standard entropy change (S° _{rxn})	precipitation reactions, 165–166	base-insoluble, 794
calculating, 835–836	representing aqueous reactions, 166–168	in gas-evolution reactions, 175
for reaction (ΔS°_{rxn}), 832–836	Storage proteins, 1011	solubilities of, 788
Standard heat of formation, 274	Strassmann, Fritz, 928	Sulfite, 99
Standard hydrogen electrode (SHE) half-cell,	Strong acid(s), 160, 703	Sulfites, in gas-evolution reactions, 175
870–872	hydronium ion sources in, 711	Sulfonic acid groups, 181
Standard molar entropies (S°), 832–836	pH of, mixed with weak acid, 717–718	Sulfur, 57, 63, 1058-1062
Standard molar free energies of formation,	titration with strong base, 770–773	elemental, 1059-1060
838–839	equivalence point, 770	ionization energies of, 363
Standard reduction potentials, 870–877	overall pH curve, 772	production, sources of, 1059–1060
Standard state, 274	titration with weak base, 779	reactions of
Standard temperature and pressure (STP),	Strong base(s), 720	with carbon, 179
molar volume at, 209–210	cations as counterions of, 728	with sodium, 385

hydroxide ion concentration and pH of, 722

 $Stanford\ Linear\ Accelerator\ (SLAC),\ 936-937$

Sulfur dioxide, 741, 1062

Sulfur fluoride	kinetic energy and, 223, 226-228	Thermodynamics. See also
electron geometry of, 432	Le Châtelier's principle on change in, 682–684	Equilibrium/equilibria
molecular geometry of, 432	molecular velocities and, 226–228	defined, 250
Sulfur hexafluoride, 408, 429, 455	phase changes and, 486	first law of, 250-256, 813-814
Sulfuric acid, 104, 143–144, 169, 408–409, 698,	pressure and, 207–208	internal energy (E), 251–256
699, 703, 739–740, 1061–1062	reaction rate and. See Arrhenius equation	goal of predicting spontaneity, 814-817
ionization constants for, 732	scale conversions, 17	kinetics and, 817
reactions of	SI unit of, 15–16	reversible reaction in, 842
with calcium phosphate, 1055-1056	solubility of solids and, 556-557	second law of, 814
with fluorspar, 1063	vapor pressure and, 504–505	entropy and, 817-824
with lithium sulfide, 173	viscosity and, 498	third law of, 832–836
with potassium hydroxide, 171	volume and, 202–205	Thiocyanate ion, 1105
Sulfurous acid, 104, 704, 731	water's moderating effect on, 517	Third ionization energy (IE_3), 359
ionization constants for, 732	Temporary dipole (instantaneous dipole), 488	Third law of thermodynamics, 832-836
titration with sodium hydroxide, 779–780	10W-40 oil, 498	Thirsty solution, 545, 546, 568–569
Sulfur oxides, 739–740	Tera prefix, 17	Thomson, J. J., 51–54
Sun, 282–283	Termolecular steps, 623	Thorium-232, decay of, 921
power of, 935	Terrorist strikes, 370	Threonine, 1012, 1021
Sunburns, 300	tert-Butyl substituent, 962	Threshold frequency, 303, 305
Suntans, 300	Tertiary structure of protein, 1017, 1018	Thymine, 496, 1019–1020
Supercritical fluid, 508–509	Testosterone, 1006	Thymol blue, 783
Superoxide, 1058	Tetracene, 974	Thymolphthalein, 783
Supersaturated solution, 556, 789	Tetrahedral complex(es)	Thyroid cancers, 370
Surface tension, 497–498	d orbital energy changes for, 1118–1119	Thyroid gland, radiotracer used for, 940
Surroundings. See also System-surroundings	high-spin, 1118	Thyroxine, 370
energy exchange; Thermochemistry	optical isomerism in, 1112–1113	Time
energy flow in, 249, 252–255	Tetrahedral geometry, 92	concentration and. See Integrated rate law
entropy of, 824–828	electron, 433–434, 456	SI unit of, 14–15
Suspensions, 724	molecular, 427–428, 430–431, 433–434, 437,	Tin, 58
Sweating, 501	446–447	alloy of copper and (bronze), 1090
SWNT, 1046–1047	Tetrahedral geometry of complex ions,	cations formed by, 98
Sylvite (potassium chloride), 1077	1106–1107	Titanium
System(s):	Tetrahedral hole, 528, 1085–1086	density of, 19
energy flow in, 249, 252–255	Tetrahedron, 428	sources, properties, and products of, 1086–1087
internal energy change of, 252–255	silicate (SiO ₄), 1038	Titanium dioxide, 1087
state of, 251–252	Tetraphegylamya dagaayida 1055	Titanium oxide, 1087
Systematic error, 26 Systematic names, 97	Tetraphosphorus decaoxide, 1055 Tetraphosphorus hexaoxide, 1055	Titration, 602. See also Acid-base titration Titration curve, 769–770
System–surroundings energy exchange.	Thallium-201, 940	Tokamak fusion reactor, 935
See also Thermochemistry	Theoretical yield, 145–151	Toluene, 550, 973
heat, 252–254	Theories	Torr, 197
pressure–volume work, 260–262	testing, 3–4	Torricelli, Evangelista, 197
Systolic blood pressure, 199	as true models, 5	Total pressure, 208
systolic blood pressure, 199	Therapeutic agents, coordination	Toxaphene, 564
	compounds, 1122	Trajectory, classical vs. quantum concepts of,
Γ	Therapeutic techniques, use of radioactivity	313–314
Γ1r3 protein, 426	in, 941	Trans-cis isomers. See Cis-trans (geometric)
Гаlс, 1040–1041	Thermal conductivity of metals, 1076, 1077	isomerism
Tantalite, 1077	Thermal energy, 12, 15, 248, 256, 267, 484, 596.	Transition(s), 307–308, 318
Fantalum, 1077	See also Heat(s)	in hydrogen atom, 319–321
Tastant, 426	dispersal of, 548	Transition elements, valence electrons for, 345
Taste cells, 426	distribution of, 617	Transition metal(s), 63, 97, 1077, 1098–1128,
Taste of food, 426	transfer of, 258–260	1.326
Taste receptors, 426	vaporization and, 499–502	atomic radii and, 353–354
Fechnetium-99m, 940	Thermal equilibrium, 256	coordination compounds, 1104–1108
Tellurium, 336	Thermochemical equations, 267–268	applications of, 1119–1122
Temperature(s)	Thermochemistry, 246–293. See also	bonding in, 1113–1119
absolute zero, 203	Energy(-ies)	naming, 1107–1108
boiling point and, 504–505	defined, 247	structure and isomerization in, 1109–1113
critical, 508	enthalpy. See Enthalpy(-ies) (H)	crystal structures for, 1081
defined, 256	first law of thermodynamics, 250–256,	functions in human body, 1120
effect on spontaneity, 829–832	813–814	in host crystals, colors of, 1099–1100, 1115
entropy of surroundings and, 825–826	internal energy (<i>E</i>), 251–256	inner, 1.326
equilibrium constant and, 662, 847–848	heat, 256–260	ion formation by, 65
gas solubility in water and, 557	defined, 256	properties of, 1100–1104
global, 140	temperature vs., 256	atomic size, 1102
heat vs. 256	internal energy change for chemical reactions	electron configurations, 347–348, 355–356,
heat vs., 256 intermolecular forces and, 487	$(\Delta E_{\rm IXB})$, 265–267	1100–1102 electronegativity, 1103
mermorecular forces and, 407	pressure–volume work, 260–262	electronegativity, 1103

ionization energy, 1102-1103	Uncertainty principle, 311–313	tetrahedral geometry, 427-428, 430-431,
oxidation states, 1103–1104	Unimolecular elementary step, 623	433–434, 437, 446–447
sources, properties, and products of some of	Unit cells, 520–526	theory, 424, 426–442, 1065
3d, 1086–1091	body-centered cubic, 521–522	trigonal bipyramidal geometry, 429, 433–434,
chromium, 1086–1091	for closest-packed structures, 524–526	436, 437, 454
cobalt, 1089	face-centered cubic, 522–523, 526	trigonal planar geometry, 427, 428, 433–434,
copper, 1089–1090	for ionic solids, 527–528	437, 448
manganese, 1088–1089 nickel, 1090–1091	simple cubic, 520–521	trigonal pyramidal geometry, 430–431,
titanium, 1086–1087	Unit conversion problems, 27–28, 29–30 units raised to a power, 30	433–434, 437 T-shaped geometry, 432, 436
zinc, 1091	United States, energy consumption in, 279, 739	Valine, 1012
Transition metal ions. See also Complex ion	Units of measurement, 13–19. See also	Valley (or island) of stability, 918–919
equilibria	SI unit(s)	Vanadinite, 1077
electron configuration of cations, 355–356	derived units, 17–18	Vanadium, 1075–1076
magnetic properties of, 355–356	English system, 13	chromium-vanadium phase diagram, 1083
Transition state (activated complex), 616–617	metric system, 13	electron configuration of, 355
Franslational energy, 823	prefix multipliers, 17	mineral sources for, 1077
Translational motion, energy in form of,	Unsaturated fat, 1004–1005	Vanadium ion, electron configuration of, 355
834–835	Unsaturated fatty acids, 1003	Van der Waals, Johannes, 231
Transmutation, nuclear, 936–937	Unsaturated hydrocarbons, 964–969. See also	Van der Waals constants, 232
Transport proteins, 1011	Alkenes; Alkynes	Van der Waals equation, 233
Transuranium elements, 937	Unsaturated solutions, 556, 789	Van der Waals radius (nonbonding atomic
Fremolite, 1040	Unsaturation, effect of, 1003	radius), 350
1,1,2-Trichloro-1, 2, 2-trifluoroethane, 608	Uracil, 1019	Vanillin, 979
Frichlorofluoromethane, 608	Uranic rays, 913	Van't Hoff factor (i), 579
Friglycerides, 1004–1005	Uranium, 57, 1077	Vaporization, 11, 499–509
Frigonal bipyramidal geometry, 1065	Uranium-235, 928–929	Clausius–Clapeyron equation and, 505–508
electron, 436, 456	energy produced per mole of, 933	critical point, 508–509
molecular, 429, 433–434, 436, 437, 454	nuclear-powered electricity generation using,	energetics of, 500–502
Frigonal planar geometry	930–931	heat of (ΔH_{vap}) , 501–502
electron, 433–434, 456 molecular, 427, 427–428, 433–434, 437, 448	self-amplifying chain reaction in fission of, 929 Uranium-238	process of, 500 vapor pressure and dynamic equilibrium,
Frigonal pyramidal geometry, 430–431,	nuclear equation for alpha decay of, 914	502–508
433–434, 437	radioactive decay series, 920	Vaporization curve, 513, 514
Frihalides, 1042–1043	Uranium fuel rods, 930–931	Vapor pressure, 218–219
Frimethylamine, 984	Uranium/lead dating, 926–928	defined, 503
Friolein, 1004	Urea, 953	lowering of, 567–570
Tripeptide, 1013	,	of solid, 509
Triple bond(s), 392	T 7	of solutions, 567–573
bond energy of, 410	V	nonvolatile solute and, 574
carbon's ability to form, 952	Valence	Raoult's law, 569, 571-574
sp hybridization and, 452-454	primary, 1104	with volatile solutes, 571–574
in structural formulas, 956	secondary, 1104	temperature and, 504–505
Triple point, 513, 514	Valence band, 531	temperature dependence of, 504–505
Triprotic acids, 704, 731–732	Valence bond theory, 380, 424, 443–458	Variational method, 459
Tristearin, 1004–1005	bonding in coordination compounds and,	Vector addition, 440
Frona, 96	1113–1114	Vector quantities, 439
Tryptophan, 1012	double bonds in, 448–451	Vegetarian diet, nature's heat tax and, 814
Γ-shaped geometry, 432, 436 Fums, 698, 710, 724	hybridization of atomic orbitals, 445–458 in carbon, 446–447	Velocity(-ies)
Fungsten carbide, 1048	sp, 446–449, 452–454, 456	in classical mechanics, 313
Funneling current, 45–46	sp, 440–449, 452–454, 450 sp^2 , 448–450, 456	of electron, 313 and energy as complementary properties, 315
Furquoise, 1100	sp ³ , 446–448, 456	molecular, 226–228
Fwo-phase region, 1083–1084	sp^3d and sp^3d^2 , 454–455, 456	and position as complementary property, 315
lever rule and, 1084	writing, 455–458	root mean square, 216–218
Γyndall effect, 584	Lewis theory and, 450, 456	Venus, 139
Γyrosine, 1012	orbital overlap as chemical bonds, 443–445	Vibrational motion, energy in form of, 834–835
	Valence electrons, 345–346	Vinegar, 699
•	chemical properties and, 348–349	Viscosity, 498
U	Valence shell electron pair repulsion (VSEPR)	Visible light, 298–300
U.S. Department of Agriculture (USDA), 941	bent geometry, 431, 434, 437	Vision, 452
U.S. Department of Energy (DOE), 142, 279, 1024	linear geometry, 426-427, 433-434, 437	Vital force, 953
U.S. Environmental Protection Agency (EPA),	lone pairs effect, 430–435	Vitalism, 953
114, 517, 564	molecular shape and polarity, 438-442	Vitamins, 478
U.S. Food and Drug Administration (FDA),	octahedral geometry, 433-434, 436, 437, 455	Volatility, 8, 500
370, 941, 1005	predicting molecular geometries with, 435–438	Volcanoes, carbon dioxide emitted by, 140
U.S. Food and Drug Administration (FDA)	seesaw geometry, 432, 436, 437	Volt (V), 867
action level, 114	square planar geometry, 433–434, 436, 437	Voltaic (galvanic) cells, 865–869
Ulcers, 710	square pyramidal geometry, 433–434, 436	batteries as, 886–890
Ultraviolet (UV) radiation, 299, 300, 414	summary of, 434	concentration cells, 884–886

electrolytic cells vs., 892–893	real gas behavior of, 233–234	Wilkins, Maurice, 520
Volume	in seawater, 545–546	Willemite, 1039
gas amount and, 205-206	sodium chloride in, 495, 552, 555–556	Wind, 196
Le Châtelier's principle on change in, 680-681	solubility of alcohol in, 551	Wind power, 283
molar, 209–210	solubility of gases in, 557–559	Wines, pH of, 708
stoichiometry and, 221–222	solubility of sodium chloride in, 547	Winkler, Clemens, 62
pressure and, 200–202	as solvent, 550	Witt, Otto N., 752
SI unit for, 17–18	specific heat of, 257	Wöhler, Friedrich, 950, 953
temperature and, 202–205	and sugar, 159–160	Wood alcohol. See Methanol
VSEPR. See Valence shell electron pair	•	
-	thermal energy distributions for, 500	Wood frogs (Rana sylvatica), 577 Work
repulsion (VSEPR)	van der Waals constants for, 232	
	vapor pressure of, 504	defined, 12, 248, 260
\mathbf{W}	viscosity of, 498	internal energy change and, 254–256
	Water pollution, 517	pressure–volume, 260–262
Warren, J. Robin, 710	Waters of hydration, 100	
Washing soda, 1049	Water vapor, condensation of, 501	X
Water, 2, 86–88, 516–517	Watson, James, 496, 520, 1000, 1022	Λ
amphotericity of, 706–707	Watt (W), 250	Xenon, 63, 528
Arrhenius definition of acids and bases and,	Wave, electromagnetic, 296–298	non-ideal behavior of, 232–233
700–701	Wave function (ψ) , 315	properties of, 371
atomization of, 1081	Wavelength (λ) , 297–299	reaction between fluorine and, 370
autoionization of, 706–707, 711	de Broglie, 310–311	van der Waals constants for, 232
boiling point at different altitudes, 505	frequency and, 298–299	Xenon difluoride, 433
boiling point of, 501	Wave nature	<i>x is small</i> approximation, 674–676, 713–714,
normal, 504	of electron, 309–314	735, 757–759
charge distribution in, 158	de Broglie wavelength and, 310–311	X-ray crystallography, 381, 518
chemical formula for, 90		of crystalline solids, 518–520
	indeterminacy and probability distribution	•
collecting gases over, 217–219	maps, 313–314	X-rays, 299, 300, 912
decomposition of, 48–49, 283	uncertainty principle and, 311–313	
density of, 19	of light, 296–299	Y
electrolysis of, 891	Wave–particle duality of light, 296, 306	
in aqueous solutions, 894–896	Weak acid(s), 160, 704–706	Yield of reactions, 145–151
electron geometry of, 431	acid ionization constants for, 711–712	actual, 146
empirical formula for, 114–115	in buffer solution, 754–755	percent, 146–148
from fossil fuel combustion, 280	cations as, 728–729	theoretical, 145–151
free energy versus pressure for, 843	hydronium ion sources in, 711–715, 717	Yucca Mountain nuclear waste disposal site,
freezing of, entropy of surroundings increased	percent ionization of, 716–717	932
by, 825–826	pH of, mixed with weak acid, 718–719	
freezing point depression and boiling point	titration with strong base, 773–779	Z
elevation constants for, 575	equivalence point, 774	L
hard, 162, 785	overall pH curve, 777	Zeolites, 1050
heat capacity of, 258	Weak base(s), 720-722	Zero entropy, 832
heating curve for, 511–513	anions as, 725–728	Zero-order integrated rate law, 612, 615
heat of fusion for, 510–511	in buffer solution, 754–755	Zero-order reaction, 603-605, 615
heat of vaporization of, 501	hydroxide ion concentration and pH of,	Zero-order reaction half-life, 614
hexane mixed with, 550	722–723	Zinc, 357, 528
hydrogen bonding in, 493, 517	titration with strong acid, 779	alloy of copper and (brass), 1091
Lewis structure of, 391–393	Weak electrolytes, 160, 703	charge of, 97
as ligand, 1105	Weak-field complexes, 1114	in dry-cell batteries, 886–887
on Mars, 517	Weak-field ligands, 1117	functions in human body, 1120
meniscus of, 499	Weather, 196	galvanized nails coated with thin layer of, 900
molecular geometry of, 431, 439	Weighing, estimation in, 21	reaction between hydrochloric acid and, 877
phase diagram for, 513–515	Weight, 14	sources, properties, and products of, 1091
phases of, 484	Werner, Alfred, 1098, 1104, 1107	in spontaneous redox reaction with copper
polarity of, 158, 439, 442, 491	Western bristlecone pine trees, calibrating	ions, 865–869
properties of, 87, 516–517	radiocarbon dating with age of, 925	Zinc blende structure, 527
reactions of	Wet chemistry, 792	Zinc ion, magnetic properties of, 356
	**	Zinc oxide, 391
with alkali metals, 368	Wetting agent, 1078	
with calcium, 862	Whipped cream, 582, 583	smelting of, 1079
with carbon, 272	White light spectrum, 298, 306–307	Zinc phosphate, 1091
with carbon dioxide, 740, 1121	White phosphorus, 1050–1051	Zinc silicate (calamine), 1091
with nitrogen dioxide, 151	disproportionation of, 1054	Zinc sulfide, 527
with sodium, 977	reaction between oxygen and, 1055	Zwitterion, 1013
with sodium carbide, 1047	Wilhelmy, Ludwig, 598, 602, 603	

_	Main g	groups	7										Main groups					
-	1 A ^a		ı									!						8 A 18
1	1 H 1.008	2A 2			Metals	s	Me	talloids		Nonm	etals		3A 13	4A 14	5A 15	6A 16	7A 17	2 He 4.003
2	3 Li	4 Be					T	. 1					5 B	6 C	7 N	8 O	9 F	10 Ne
-	6.94	9.012					Transitio	n metals					10.81	12.01	14.01	16.00	19.00 17	18
3	Na	Mg	3B	4B	5B	6B	7B		— 8B —		1B	2B	Al	Si	P	S	Cl	Ar
	22.99	24.31	3	4	5	6	75	8	9	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.96	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
-	132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[208.98]	[209.99]	[222.02]
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106	107 Bh	108 Hs	109 Mt	110 Ds	111 P.a	112 Cn	113	114 Fl	115	116 Lv	117*	118
1	[223.02]	[226.03]	[227.03]	[261.11]	[262.11]	Sg [266,12]	[264.12]	[269.13]	[268.14]	[271]	Rg [272]	[285]		[289]		[292]		
L	[223.02]	[220.03]	[227.03]	[201.11]	[202.11]	[200.12]	[204.12]	[209.13]	[200.14]	[2/1]	[2/2]	[203]		[207]		[272]		
			58	59	60	61	62	63	64	65	66	67	68	69	70	71		
	Lanthanide series		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
					140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
					90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Act	tinide seri	ies	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
					232.04	231.04	238.03	[237.05]	[244.06]	[243.06]	[247.07]	[247.07]	[251.08]	[252.08]	[257.10]	[258.10]	[259.10]	[262.11]

^aThe labels on top (1A, 2A, etc.) are common American usage. The labels below these (1, 2, etc.) are those recommended by the International Union of Pure and Applied Chemistry.

Atomic masses in brackets are the masses of the longest-lived or most important isotope of radioactive elements.

^{*}Element 117 is currently under review by IUPAC.

List of Elements with Their Symbols and Atomic Masses

	LIST OF ER	Fillelits v	vitii iiieii	Syllib
Element	Symbol	Atomic Number	Atomic Mass	Elen
Actinium	Ac	89	227.03 ^a	Meit
Aluminum	Al	13	26.98	Men
Americium	Am	95	243.06 ^a	Mer
Antimony	Sb	51	121.76	Moly
Argon	Ar	18	39.95	Neo
Arsenic	As	33	74.92	Neo
Astatine	At	85	209.99 ^a	Nep
Barium	Ba	56	137.33	Nick
Berkelium	Bk	97	247.07 ^a	Niob
Beryllium	Be	4	9.012	Nitro
Bismuth	Bi	83	208.98	Nob
Bohrium	Bh	107	264.12 ^a	Osm
Boron	В	5	10.81	Оху
Bromine	Br	35	79.90	Palla
Cadmium	Cd	48	112.41	Phos
Calcium	Ca	20	40.08	Plati
Californium	Cf	98	251.08 ^a	Plute
Carbon	С	6	12.01	Polo
Cerium	Ce	58	140.12	Pota
Cesium	Cs	55	132.91	Pras
Chlorine	CI	17	35.45	Pron
Chromium	Cr	24	52.00	Prot
Cotalt	Со	27	58.93	Rad
Copernicium	Cn	112	285 ^a	Rad
Copper	Cu	29	63.55	Rhei
Curium	Cm	96	247.07 ^a	Rho
Darmstadtium	Ds	110	271 ^a	Roei
Dubnium	Db	105	262.11 ^a	Rub
Dysprosium	Dy	66	162.50	Ruth
Einsteinium	Es	99	252.08 ^a	Ruth
Erbium 	Er	68	167.26	Sam
Europium	Eu	63	151.96	Scar
Fermium	Fm	100	257.10 ^a	Seal
Flerovium	FI	114	289 ^a	Sele
Fluorine	F	9	19.00	Silic
Francium	Fr	87	223.02 ^a	Silve
Gadolinium	Gd	64	157.25	Sod
Gallium	Ga	31	69.72	Stro
Germanium	Ge	32	72.63	Sulf
Gold	Au	79	196.97	Tant
Hafnium	Hf	72	178.49	Tech
Hassium	Hs	108	269.13 ^a	Tellu
Helium	He	2	4.003	Terb
Holmium	Но	67	164.93	Thal
Hydrogen	H	1	1.008	Thor
Indium	<u>In</u>	49	114.82	Thul
lodine	<u> </u>	53	126.90	Tin
Iridium	lr -	77	192.22	Titar
Iron	Fe	26	55.85	Tung
Krypton	Kr	36	83.80	Urar
Lanthanum	La	57	138.91	Vana
Lawrencium	Lr	103	262.11 ^a	Xeno
Lead	Pb	82	207.2	Ytter
Lithium	<u>Li</u>	3	6.94	Yttriu
Livermorium	Lv	116	292 ^a	Zinc
Lutetium	Lu	71	174.97	Zirco
Magnesium	Mg	12	24.31	*b
Manganese	Mn	25	54.94	*b

iibuis ailu Atuili	ic iviass	G 3					
Element	Symbol	Atomic Number	Atomic Mass				
Meitnerium	Mt	109	268.14 ^a				
Mendelevium	Md	101	258.10 ^a				
Mercury	Hg	80	200.59				
Molybdenum	Мо	42	95.96				
Neodymium	Nd	60	144.24				
Neon	Ne	10	20.18				
Neptunium	Np	93	237.05 ^a				
Nickel	Ni	28	58.69				
Niobium	Nb	41	92.91				
Nitrogen	N	7	14.01				
Nobelium	No	102	259.10 ^a				
Osmium	0s	76	190.23				
Oxygen	0	8	16.00				
Palladium	Pd	46	106.42				
Phosphorus	P	15	30.97				
Platinum	Pt	78	195.08				
Plutonium	Pu	94	244.06 ^a				
Polonium	Po	84	208.98 ^a				
Potassium	K	19	39.10				
Praseodymium	Pr	59	140.91				
Promethium	Pm	61	145 ^a				
Protactinium	Pa	91	231.04				
Radium	Ra	88	226.03 ^a				
Radon	Rn	86	220.03 222.02 ^a				
Rhenium	Re	75	186.21				
Rhodium	Rh	45	100.21				
		111	272 ^a				
Roentgenium Rubidium	Rg Rb	37	85.47				
Ruthenium	Ru	44	101.07				
Rutherfordium	Rf	104	261.11 ^a				
Samarium	Sm	62	150.36				
Scandium	Sc	21	44.96				
Seaborgium	Sg	106	266.12 ^a				
Selenium	Se	34	78.96				
Silicon	Si	14	28.09				
Silver	Ag	47	107.87				
Sodium	Na	11	22.99				
Strontium	Sr	38	87.62				
Sulfur	S	16	32.06				
Tantalum	Ta	73	180.95				
Technetium	Tc	43	98ª				
Tellurium	Te	52	127.60				
Terbium	Tb	65	158.93				
Thallium	TI	81	204.38				
Thorium	Th	90	232.04				
Thulium 	Tm	69	168.93				
Tin	Sn	50	118.71				
Titanium	Ti	22	47.87				
Tungsten	W	74	183.84				
Uranium	U	92	238.03				
Vanadium	V	23	50.94				
Xenon	Xe	54	131.293				
Ytterbium							
Yttrium	Υ	39	88.91				
Zinc Zn 30 65							
Zirconium	Zr	40	91.22				
*b		113	284 ^a				
*p		115	288 ^a				

^aMass of longest-lived or most important isotope.

 $[\]ensuremath{^{b}}\xspace$ The names of these elements have not yet been decided.

Conversion Factors and Relationships

Length

SI unit: meter (m) 1 m = 1.0936 yd 1 cm = 0.39370 in 1 in = 2.54 cm (exactly) 1 km = 0.62137 mi 1 mi = 5280 ft = 1.6093 km $1 \text{ Å} = 10^{-10} \text{ m}$

Temperature

SI unit: kelvin (K) 0 K = -273.15 °C = -459.67 °F K = °C + 273.15 $°C = \frac{(°F - 32)}{1.8}$ °F = 1.8 (°C) + 32

Energy (derived)

SI unit: joule (J) $1 J = 1 \text{kg} \cdot \text{m}^2/\text{s}^2$ = 0.23901 cal $= 1 \text{ C} \cdot \text{V}$ $= 9.4781 \times 10^{-4} \text{ Btu}$ 1 cal = 4.184 J $1 \text{ eV} = 1.6022 \times 10^{-19} \text{ J}$

Pressure (derived)

 $\begin{array}{lll} SI \ unit: \ pascal \ (Pa) \\ 1 \ Pa &= 1 \ N/m^2 \\ &= 1 \ kg/(m \cdot s^2) \\ 1 \ atm &= 101,325 \ Pa \\ &= 760 \ torr \\ &= 14.70 \ lb/in^2 \\ 1 \ bar &= 10^5 \ Pa \\ 1 \ torr &= 1 \ mmHg \end{array}$

Volume (derived)

SI unit: cubic meter (m³) $1L = 10^{-3} \text{ m}^3$ $= 1 \text{ dm}^3$ $= 10^3 \text{ cm}^3$ = 1.0567 qt 1 gal = 4 qt = 3.7854 L $1 \text{ cm}^3 = 1 \text{ mL}$ $1 \text{ in}^3 = 16.39 \text{ cm}^3$ 1 qt = 32 fluid oz

Mass

Nass
SI unit: kilogram (kg) 1 kg = 2.2046 lb 1 lb = 453.59 g = 16 oz $1 \text{ amu} = 1.66053873 \times 10^{-27} \text{ kg}$ 1 ton = 2000 lb = 907.185 kg 1 metric ton = 1000 kg = 2204.6 lb

Geometric Relationships

 π = 3.14159... Circumference of a circle = $2\pi r$ Area of a circle = πr^2 Surface area of a sphere = $4\pi r^2$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Volume of a cylinder = $\pi r^2 h$

Fundamental Constants

Atomic mass unit	1 amu	$= 1.66053873 \times 10^{-27} \text{kg}$
	1 g	$= 6.02214199 \times 10^{23} \text{amu}$
Avogadro's number	$N_{\!A}$	$= 6.02214179 \times 10^{23} / \text{mol}$
Bohr radius	a_0	$= 5.29177211 \times 10^{-11} \mathrm{m}$
Boltzmann's constant	k	$= 1.38065052 \times 10^{-23} \text{J/K}$
Electron charge	e	$= 1.60217653 \times 10^{-19} \text{C}$
Faraday's constant	F	$= 9.64853383 \times 10^4 \text{ C/mol}$
Gas constant	R	= $0.08205821 (L \cdot atm/(mol \cdot K))$ = $8.31447215 J/(mol \cdot K)$
Mass of an electron	m_e	$= 5.48579909 \times 10^{-4} \text{amu}$ $= 9.10938262 \times 10^{-31} \text{kg}$
Mass of a neutron	m_n	$= 1.00866492 \text{amu}$ $= 1.67492728 \times 10^{-27} \text{kg}$
Mass of a proton	m_p	$= 1.00727647 \text{amu}$ $= 1.67262171 \times 10^{-27} \text{kg}$
Planck's constant	h	$= 6.62606931 \times 10^{-34} J \cdot s$
Speed of light in vacuum	С	$= 2.99792458 \times 10^8 \text{m/s} (\text{exactly})$

SI Unit Prefixes

a	f	p	n	μ	m	c	d	k	M	G	Т	P	Е
atto	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga	tera	peta	exa
10^{-18}	10^{-15}	10^{-12}	10 ⁻⁹	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸

Selected Key Equations

Density (1.6)

$$d = \frac{m}{V}$$

Solution Dilution (4.4)

$$\mathbf{M}_1 V_1 = \mathbf{M}_2 V_2$$

Ideal Gas Law (5.4)

PV = nRT

Dalton's Law (5.6)

$$P_{\text{total}} = P_{\text{a}} + P_{\text{b}} + P_{\text{c}} + \dots$$

Mole Fraction (5.6)

$$\chi_{\rm a} = \frac{n_{\rm a}}{n_{\rm total}}$$

Average Kinetic Energy (5.8)

$$KE_{\text{avg}} = \frac{3}{2}RT$$

Root Mean Square Velocity (5.8)

$$u_{\rm rms} = \sqrt{\frac{3 RT}{M}}$$

Effusion (5.9)

$$\frac{\text{rate A}}{\text{rate B}} = \sqrt{\frac{\mathcal{M}_B}{\mathcal{M}_A}}$$

Van der Waals Equation (5.10)

$$\left[P + a\left(\frac{n}{V}\right)^2\right] \times [V - nb] = nRT$$

Kinetic Energy (6.2)

$$KE = \frac{1}{2}mv^2$$

Internal Energy (6.3)

$$\Delta E = q + w$$

Heat Capacity (6.4)

$$q = m \times C_s \times \Delta T$$

Pressure-Volume Work (6.4)

$$w = -P \, \Delta V$$

Change in Enthalpy (6.6)

$$\Delta H = \Delta E + P \, \Delta V$$

Standard Enthalpy of Reaction (6.9)

$$\Delta H_{\rm rxn}^{\circ} = \sum n_{\rm p} \Delta H_{\rm f}^{\circ}({\rm products}) -$$

 $\sum n_{\rm r} \Delta H_{\rm f}^{\circ}$ (reactants)

Frequency and Wavelength (7.2)

$$\nu = \frac{c}{\lambda}$$

Energy of a Photon (7.2)

$$E = h\nu$$

$$E = \frac{hc}{\lambda}$$

De Broglie Relation (7.4)

$$\lambda = \frac{h}{m\nu}$$

Heisenberg's Uncertainty Principle (7.4)

$$\Delta x \times m \; \Delta v \ge \frac{h}{4\pi}$$

Energy of Hydrogen Atom Levels (7.5)

$$E_n = -2.18 \times 10^{-18} \text{ J} \left(\frac{1}{n^2}\right) (n = 1, 2, 3...)$$

Coulomb's Law (8.3)

$$E = \frac{1}{4 \pi \varepsilon_0} \frac{q_1 q_2}{r}$$

Dipole Moment (9.6)

 $\mu = qr$

Clausius-Clapeyron Equation (11.5)

$$\ln P_{\rm vap} = \frac{-\Delta H_{\rm vap}}{RT} + \ln \beta$$

$$\ln \frac{P_2}{P_1} = \frac{-\Delta H_{\text{vap}}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Henry's Law (12.4)

$$S_{\rm gas} = k_{\rm H} P_{\rm gas}$$

Raoult's Law (12.6)

 $P_{\text{solution}} = \chi_{\text{solvent}} P_{\text{solvent}}^{\circ}$

Freezing Point Depression (12.6)

 $\Delta T_{\rm f} = m \times K_{\rm f}$

Boiling Point Elevation Constant (12.6)

$$\Delta T_{\rm b} = m \times K_{\rm b}$$

Osmotic Pressure (12.6)

 $\Pi = MRT$

The Rate Law (13.3)

Rate = $k[A]^n$ (single reactant)

Rate = $k[A]^m[B]^n$ (multiple reactants)

Integrated Rate Laws and Half-Life (13.4)

Order	Integrated Rate Law	Half-Life Expression
0	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$	$t_{1/2} = \frac{[A]_0}{2k}$
1	$\ln[\mathbf{A}]_t = -kt + \ln[\mathbf{A}]_0$	$t_{1/2} = \frac{0.693}{k}$
2	$\frac{1}{[\mathbf{A}]_t} = kt + \frac{1}{[\mathbf{A}]_0}$	$t_{1/2} = \frac{1}{k[A]_0}$

Arrhenius Equation (13.5)

$$k = A e^{\frac{-E_a}{RT}}$$

$$\ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A$$
 (linearized form)

$$k = pz e^{\frac{-E_s}{RT}}$$
 (collision theory)

$K_{\rm c}$ and $K_{\rm p}$ (14.4)

$$K_{\rm p} = K_{\rm c}(RT)^{\Delta n}$$

pH Scale (15.5)

$$pH = -log[H3O+]$$

Henderson-Hasselbalch Equation (16.2)

$$pH = pK_a + \log \frac{[base]}{[acid]}$$

Entropy (17.3)

$$S = k \ln W$$

Change in the Entropy of the Surroundings (17.4)

$$\Delta S_{\rm surr} = \frac{-\Delta H_{\rm sys}}{T}$$

Change in Gibbs Free Energy (17.5)

 $\Delta G = \Delta H - T \Delta S$

The Change in Free Energy: Nonstandard Conditions (17.8)

$$\Delta G_{\rm rxn} = \Delta G_{\rm rxn}^{\circ} + RT \ln Q$$

$\Delta G_{\rm rxn}^{\circ}$ and K (17.9)

$$\Delta G_{\rm ryn}^{\circ} = -RT \ln K$$

Temperature Dependence of the Equilibrium Constant (17.9)

$$\ln K = -\frac{\Delta H_{\rm rxn}^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S_{\rm rxn}^{\circ}}{R}$$

ΔG° and $E_{\mathrm{cell}}^{\circ}$ (18.5)

$$\Delta G^{\circ} = -nFE_{\text{cell}}^{\circ}$$

E_{cell}° and K (18.5)

$$E_{\text{cell}}^{\circ} = \frac{0.0592 \text{ V}}{n} \log K$$

Nerst Equation (18.6)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0592 \,\text{V}}{n} \log Q$$

Einstein's Energy-Mass Equation (19.8)

$$E = mc^2$$