### Natural Language Processing

Lecture 8: Information Theory;
Spelling, Edit Distance, and Noisy
Channels

### A Taste of Information Theory

- Shannon Entropy, H(p)
- Cross-entropy, H(p; q)
- Perplexity

| Horse    | Code |
|----------|------|
| Clinton  | 000  |
| Edwards  | 001  |
| Kucinich | 010  |
| Obama    | 011  |
| Huckabee | 100  |
| McCain   | 101  |
| Paul     | 110  |
| Romney   | 111  |

| Horse    | Code | Probability |
|----------|------|-------------|
| Clinton  | 000  | 1/4         |
| Edwards  | 001  | 1/16        |
| Kucinich | 010  | 1/64        |
| Obama    | 011  | 1/2         |
| Huckabee | 100  | 1/64        |
| McCain   | 101  | 1/8         |
| Paul     | 110  | 1/64        |
| Romney   | 111  | 1/64        |

| Horse    | Probability | New Code |
|----------|-------------|----------|
| Clinton  | 1/4         | 10       |
| Edwards  | 1/16        | 1110     |
| Kucinich | 1/64        | 111100   |
| Obama    | 1/2         | 0        |
| Huckabee | 1/64        | 111101   |
| McCain   | 1/8         | 110      |
| Paul     | 1/64        | 111110   |
| Romney   | 1/64        | 111111   |

| Horse    | Probability | New Code | <b>Estimated Probability</b> | Code |
|----------|-------------|----------|------------------------------|------|
| Clinton  | 1/4         | 10       |                              |      |
| Edwards  | 1/16        | 1110     |                              |      |
| Kucinich | 1/64        | 111100   |                              |      |
| Obama    | 1/2         | 0        |                              |      |
| Huckabee | 1/64        | 111101   |                              |      |
| McCain   | 1/8         | 110      |                              |      |
| Paul     | 1/64        | 111110   |                              |      |
| Romney   | 1/64        | 111111   |                              |      |

# Three Spelling Problems

- 1. Detecting isolated non-words
- 2. Fixing isolated non-words
- 3. Fixing errors in context

#### Levenshtein Distance

$$D_{0,0} = 0$$

$$D_{i,j} = \min \begin{cases} D_{i-1,j} + \operatorname{inscost}(t_i) \\ D_{i,j-1} + \operatorname{delcost}(s_j) \\ D_{i-1,j-1} + \operatorname{substcost}(t_i, s_j) \end{cases}$$

### **Levenshtein** Hamming Distance

$$D_{0,0} = 0$$

$$D_{i,j} = \min \begin{cases} D_{i-1,j} + \infty \\ D_{i,j-1} + \infty \\ D_{i-1,j-1} + \text{substcost}(t_i, s_j) \end{cases}$$

# Levenshtein Distance with Transposition

$$D_{0,0} = 0$$

$$D_{i,j} = \min \begin{cases} D_{i-1,j} + \text{inscost}(t_i) \\ D_{i,j-1} + \text{delcost}(s_j) \\ D_{i-1,j-1} + \text{substcost}(t_i, s_j) \\ D_{i-2,j-2} + \text{transcost}(s_{j-1}, s_j) \text{if } s_{j-1} = t_i \text{ and } s_j = t_{i-1} \end{cases}$$

## Three Spelling Problems

- ✓ Detecting isolated non-words
- ✓ Fixing isolated non-words
- 3. Fixing errors in context

### Kernighan's Model: A Noisy Channel



#### acress

| С       | freq(c) | $p(t \mid c)$         | %  |
|---------|---------|-----------------------|----|
| actress | 1343    | p(delete t)           | 37 |
| cress   | 0       | p(delete a)           | 0  |
| caress  | 4       | p(transpose a & c)    | 0  |
| access  | 2280    | p(substitute r for c) | 0  |
| across  | 8436    | p(substitute e for o) | 18 |
| acres   | 2879    | p(delete s)           | 21 |
| acres   | 2879    | p(delete s)           | 23 |

# Noisy Channel Model (General)

