# Turbulence and Transport in Fusion Plasmas Part XI



M.J. Pueschel



Ruhr-Universität Bochum, February 27 - March 10, 2023

## Wednesday Recap

#### Yesterday, we

- constructed and deployed quasilinear models based on drift-kinetics and our fluid model
- learned what transport modeling and, more generally, integrated modeling means
- derived transport equations
- saw how integrated modeling can help us understand experiments better

Next step: write our own transport code

## **Group Work: Integrated Modeling**

#### 0.5 days group work:

- [optional, if using IDL template] Install gnudatalanguage, be set up to run Tsolve.pro
- Using either ITER-like parameters in SI or appropriate normalized units, implement ion temperature balance

$$\frac{3}{2}\frac{\partial rn_{i}T_{i}}{\partial t} - \frac{\partial}{\partial r}\left(rn_{i}\chi\frac{\partial T_{i}}{\partial r}\right) = rP_{\text{ext}}$$

(assume constant-in-time  $n_i$  and  $\chi$  profiles, Gaussian power deposition)

- 3 Think up sensible boundary conditions
- 4 Test what happens when  $\Delta t$  chosen too large
- Does the behavior match expectations? Qualitative & time scale?
- 6 How sensitive is the fusion power to  $T_i(r = a)$ ?

## **Group Work: Integrated Modeling**

- **7** Get Artaud NF 2010 (good source for research project), implement  $T_{\rm e}$  equation and  $Q_{\rm ie,ei}$  energy exchange
- Implement a more realistic diffusivity model,  $\chi = \chi_{\rm gyroBohm}(\omega_T \omega_{T,\rm crit})^2 \quad \text{ponder ITG vs. TEM modifier}$  (take above  $\omega_{T,\rm crit}$  from Guo PoFB 1993, Eq. (22))
- $oxed{9}$  Add a small mock-up neoclassical flux, can be constant in r
- 10 Add current, q,  $\hat{s}$  profiles according to Wesson, Tokamaks

current density 
$$j(r)=j_0\left(1-\frac{r^2}{a^2}\right)^3$$
 current  $I(r)=2\pi\int\limits_0^r j(r')r'\mathrm{d}r'$  safety factor  $q(r)=\frac{2\pi r^2B_\phi}{\mu_0I(r)R}$ 

Explore the impact of all these improvements

## Group Work: Journal Club

#### 0.5 days group work:

Pick a turbulence paper, read, digest, present; suggestions:

- M. Albergante et al., Microturbulence driven transport of energetic ions in the ITER steady-state scenario, Nucl. Fusion 50, 084013 (2010)
- R.E. Waltz et al., Gyrokinetic simulation tests of quasilinear and tracer transport, Phys. Plasmas 16, 072303 (2009)
- P. Mantica et al., Progress and challenges in understanding core transport in tokamaks in support to ITER operations, Plasma Phys. Control. Fusion 62, 014021 (2020)
- F. Merz and F. Jenko, Nonlinear Saturation of Trapped Electron Modes via Perpendicular Particle Diffusion, Phys. Rev. Lett. 100, 035005 (2008)

## Research Project Suggestions I

#### Pick one of these or come up with your own

#### **Turbulence topics**

- Write and deploy an eigenvalue solver, test against initial-value or theory, investigate stable modes
- Perform and interpret scans over physical parameters with an upgraded version of our Vlasov code
- Write a drift-kinetic dispersion relation solver including the plasma Z function
- Analytically produce a closed fluid model for slab ITG and compare it to the results from the drift-kinetic Vlasov code

## Research Project Suggestions II

#### Pick one of these or come up with your own

#### **Transport topics**

Study core predictions and pedestal scaling impact on scenario performance, comparing to literature; focus on one of

- scalings of magnetic field and machine size
- impact of total current and current profile
- $lue{}$  coupling/decoupling of  $T_{\rm i}$  and  $T_{\rm e}$  in strongly electron-heated discharges