Faculty of Engineering – Credit hour system CMP N 301 – Computer Architecture

Sheet (6)_part1 Chapter 5 – Memory

1) [5.3] For Direct-Mapped Cache design with a 32-bit address, the following bits of the address are used to access the cache

Tag	Index	Offset
31–10	9–5	4–0

- What is the cache block size (in words)?
- How many entries does the cache have?
- What is the ratio between total bits required for such a cache implementation over the data storage bits?
- 2) Starting from power on, the following byte-addressed cache references are recorded.

Address											
0	4	16	132	232	160	1024	30	140	3100	180	2180

- How many blocks are replaced?
- What is the hit ratio?
- List the final state of the cache, with each valid entry represented as a record of <index, tag, data>
- 3) Consider the following program and cache behaviors.

	Data Writes per 1000 instructions				
250	100	0.30%	2%	64	

- For a write-through, write-allocate cache, what are the minimum read and write bandwidths (measured by byte per cycle) needed to achieve a CPI of 2?
- For a write-back, write-allocate cache, assuming 30% of replaced data cache blocks are dirty, what are the minimal read and write bandwidths needed for a CPI of 2?
- What are the minimal bandwidths needed to achieve the performance of CPI=1.5?