Attendance

Please use the following QR code to check in and record your attendance

CS 1027
Fundamentals of Computer
Science II

Trees ADT (cont.)

Ahmed Ibrahim

```
_mod = modifier
  mirror object to mi
mirror_mod.mirror_obj
 peration == "MIRROR
mirror_mod.use_x = Tr
mirror_mod.use_y = Fa
mirror_mod.use_z = Fa
 operation == "MIRRO
 irror_mod.use_x = Fa
 lrror_mod.use_y = Tr
 lrror_mod.use_z = Fa
  operation == "MIRRO
  irror_mod.use_x = Fa
  rror_mod.use_y = Fa
  lrror_mod.use_z = Tr
 election at the end
   ob.select= 1
   er ob.select=1
   ntext.scene.objects
   "Selected" + str(mo
    irror ob.select = 0
  bpy.context.select
   lata.objects[one.nam
  int("please select
  --- OPERATOR CLASSES
 ontext):
ext.active_object
```

Recall: Complete Binary Tree

- A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
- This means that:
 - All levels above the last level are fully filled.
 - The last level may not be fully filled, but if it has missing nodes, those nodes are only on the right side (i.e., all leaf nodes lean to the left).

Min Heap

• A min-heap is a **binary tree** with the following properties:

• The value stored in each node, except the root, is larger than or equal to the value stored in its parent.

Heap Properties

- A heap is a complete binary tree, which means that every level of the tree is fully filled,
 except possibly the last level, which is filled from left to right.
- The heap property (max or min) must hold TRUE for the root and all subtrees.
- Heap property ensures efficient operations:
 - Elements can be inserted and deleted efficiently in O(log n) time.
 - Accessing the largest (in max-heap) or smallest (in min-heap) element is O(1) –
 constant time.

Example of Min Heap

• Note that the smallest value in the min heap is stored in the root.

6

9
7

8

Example of Min Heap

- Is this a min heap?
- Is this a complete tree?
- Does the root have a minimum value?

Example of Min Heap

- Is this a min heap?
- Is this a complete tree?
- Does the root have a minimum value?

Max Heap

- A max-heap is similar to a min-heap, except each node stores a value, and the root is greater than or equal to the value stored in its children.
- The following is an example of a max heap

Note that the largest value in the max heap is stored in the root.

Heap Implementation with Arrays

- Since max heaps and min heaps are complete trees, then they can be efficiently implemented using arrays and without the need to use linked structures:
 - Store the root in position 0 of the array, the left child of the root is stored in position 1 and the right child in position 2
 - For a node stored in position i of the array its left child is stored in position 2*i+1 and its right child in position 2*i+2

Note that the links connecting nodes to their children do not need to be implicitly stored

Heap Implementation with Arrays

- Note that in this representation, the links connecting nodes to their children and to their parents do not need to be implicitly stored. For the node stored in position i of the array:
 - its left child is in position 2*i+1
 - its right child is in position 2*i + 2
 - its parent is in position [(i-1)/2]

Floor function

• This implementation is very memory efficient.

• The **floor function** takes a real number as input and returns the greatest integer less than or equal to that number. In simpler terms, it "rounds down" a number to the nearest whole number.

Making a Min Heap

```
public void makeHeap(T[] arr, int n) {
Comparable<T> childComp; // This variable will hold the value of the child node being compared
T swap;
                        // Temporary variable for swapping values
// Start from the second element (index 1) and process each element up to index n-1
for (int i = 1; i < n; ++i) {
  int parent = (i - 1) / 2; // Find the parent index of the current element
  int child = i:
                     // Current child index
   childComp = (Comparable<T>) arr[child]; // The child node's value, cast to Comparable for comparison
  // Bubble up: while the child is smaller than the parent, swap them
  while (parent >= 0 && childComp.compareTo(arr[parent]) < 0) {</pre>
                                                                               13
                                                                                                                 15
    swap = arr[child];
                                                                                1
    arr[child] = arr[parent];
    arr[parent] = swap;
    child = parent; // Update child and parent indices for the next comparison
    parent = (parent - 1) / 2; } // Move up to the parent's parent
```

Making a Min Heap

To create a heap storing a given set of values, we first store the values

in an array.

- Then, for each position, *i*:
 - Check that the parent $\lfloor (i-1)/2 \rfloor$ stores a value smaller, and if not swap the values and recursively check for this property for position $\lfloor (i-1)/2 \rfloor$

Complete Binary Tree

Making a Min Heap

```
public void makeHeap(T[] arr, int n) {
Comparable<T> childComp; // This variable will hold the value of the child node being compared
T swap;
                        // Temporary variable for swapping values
// Start from the second element (index 1) and process each element up to index n-1
                                                                                            Now: i = 3
for (int i = 1; i < n; ++i) {
  int parent = (i - 1) / 2; // Find the parent index of the current element
  int child = i;
                    // Current child index
   childComp = (Comparable<T>) arr[child]; // The child node's value, cast to Comparable for comparison
  // Bubble up: while the child is smaller than the parent, swap them
  while (parent >= 0 && childComp.compareTo(arr[parent]) < 0) {</pre>
    swap = arr[child];
    arr[child] = arr[parent];
    arr[parent] = swap;
    child = parent; // Update child and parent indices for the next comparison
    parent = (parent - 1) / 2; } // Move up to the parent's parent
```

The Process of Heapifying

Min heap completed

Removing Minimum Value

- The minimum value of a heap is stored in the root (index 0 in the array representation). To remove it:
 - Save it in some variable and replace the value in the root with the value in the last node (with index n-1)
 - Delete the last node and recursively check that the heap property holds for the root and its children.

Removing Minimum Value

Removing Minimum Value Algorithm

```
public T removeMin(T[] arr, int n) {
Comparable<T> childComp; T swap;
T result = arr[0]; arr[0] = arr[n - 1]; n = n - 1;
// Start reheapifying from the root (parent) of the heap
int parent = 0; int child = 1;
while (child < n) {</pre>
   childComp = (Comparable<T>) arr[child];
  if ((child + 1 < n) && childComp.compareTo(arr[child + 1]) > 0) // Check if the parent has two children and the right child is smaller
    {child = child + 1;}
  if (childComp.compareTo(arr[parent]) < 0) {swap = arr[child]; // If the child is smaller than the parent, swap them</pre>
   arr[child] = arr[parent];
   arr[parent] = swap;
   parent = child; // Move down the heap: update parent and child indices
   child = 2 * parent + 1; // Left child of the new parent
   } else {break;}
return result;}
```

Sorting with Heaps

- To sort a set of values stored in an array:
 - First, convert the array into a heap
 - Repeatedly use the removeMin operation to store the values in increasing order in a second, sorted array
- This is called heapsort.
- In heapsort, we repeatedly extract the root (the largest or smallest element, depending on whether it's a max-heap or min-heap) and reconstruct the heap.

Heapsort

Input array

Heapsort

Heapsort

Sorting

Sorting Problem

• The sorting problem involves arranging the elements of a given list (or array) in a specific order, such as ascending or descending order.

Why Sorting is Important?

- Sorting is a key operation because it facilitates
 - Searching: Many algorithms, such as binary search, require sorted data.
 - Data Organization: Sorting makes datasets easier to analyze and interpret.
 - **Optimization**: In some problems (e.g., scheduling), sorting helps optimize solutions.
 - **Preprocessing**: Sorting is a prerequisite for many algorithms, such as mergebased techniques or partitioning methods.

Types of Sorting Problems

Sorting problems can be classified into:

Comparison-Based Sorting:

- Sorting based on pairwise comparisons of elements.
- Examples: Quick Sort, Merge Sort,
 Heap Sort, Insertion Sort, Selection
 Sort

Non-Comparison-Based Sorting:

- Sorting without directly comparing elements.
- Uses properties like digit positions or buckets.
- Examples: Radix Sort, Counting Sort, Bucket Sort.

Insertion Sort

- Insertion Sort orders a sequence of values by repeatedly taking each value and inserting it in its proper position within a sorted subset of the sequence.
- More specifically:

6 5 3 1 8 7 2 4

Insertion Sort in Action

In-Place Insertion Sort

6 5 3 1 8 7 2 4

- An in-place sorting algorithm does not use auxiliary data structures, so in-place sorting algorithms are memory efficient.
- Consider that the input sequence is stored in an array.
- In-place insertion sort works as follows:
 - the sub-array containing the first value is sorted
 - add the second value to the sorted sub-array shifting values as needed to get a sorted subarray of size 2
 - add the third value to the sorted sub-array shifting values as needed to get a sorted sub-array of size 3
 - keep doing this until the entire array is sorted

Insertion Sort

```
public void insertionSort (T[] A, int n) {
for (int i = 1; i < n; ++i) {</pre>
 // Insert A[i] in the sorted sub-array A[0..i-1]
 T \text{ temp = } A[i];
 Comparable<T> tempComp = (Comparable<T>)temp;
 int j = i - 1;
 while ((j \ge 0) \&\& (tempComp.compareTo(A[j]) < 0)) {
 A[j+1] = A[j];
  j = j - 1;
  A[j+1] = temp;
```

Another method for implementing insertion sort is to use an auxiliary array.

- Use two temporary stacks called sorted and temp,
 both of which are initially empty.
- The contents of the sorted will always be in order,
 with the smallest item on the top of the stack.
- This will be the "sorted subsequence"
- temp will temporarily hold items that need to be "shifted" out to insert the new item in the proper place in the stack sorted.

Since 12 > 5, we need to move the values from sorted to temp, push 12 into sorted and move the values back from temp to sorted

Since 6 > 5, we need to move 5 from sorted to temp, push 6 into sorted and move 5 back from temp to sorted


```
Algorithm insertionSort (A,n)
Input: Array A storing n elements
Output: Sorted array
sorted = empty stack
temp = empty stack
for i = 0 to n-1 do {
 while (sorted is not empty) and (sorted.peek() < A[i]) do</pre>
 temp.push (sorted.pop())
 sorted.push (A[i])
 while temp is not empty do sorted.push (temp.pop())
for i = 0 to n-1 do
   A[i] = sorted.pop()
return A
```


Selection Sort

- This is perhaps the most natural sorting algorithm:
 - Find the smallest value in the sequence
 - Switch it with the value in the first position
 - Find the next smallest value in the sequence
 - Switch it with the value in the second position
 - Repeat until all values are in their proper places

Yellow is smallest number found Blue is current item Green is sorted list

In-Place Selection Sort

```
public void selectionSort (T[] A, int n) {
for (int i = 0; i <= n-2; ++i) {
  // Find the smallest value in unsorted subarray A[i..n-1]
  int smallest = i;
  for (int j = i + 1; j <= n - 1; ++j) {
   Comparable<T> tempComp = (Comparable<T>) A[j];
   if (tempComp.compareTo(A[smallest]) < 0) smallest = j;}</pre>
   // Swap A[smallest] and A[i]
  T temp = A[smallest];
  A[smallest] = A[i];
  A[i] = temp;
```

