COMP108 Data Structures and Algorithms

Pseudo code (Part II)

Professor Prudence Wong

pwong@liverpool.ac.uk

2022-23

- Suppose x & y are both +ve integers.
- Write a while loop to output all factors of x which are not factors of y.

Examples of expected results:

וג	ill lactors of x writer are flor factors of y.					
	Х	У	factors of x	output		
	6	3	(1) 2.(3) 6	2,6		
	30	9	1, 2 (3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30		
	3	6	1, 3	-		

- Suppose x & y are both +ve integers.
- Write a while loop to output all factors of x which are not factors of y.

Examples of expected results:

				•
	Х	У	factors of x	output
٠.	6	3	1, 2, 3, 6	2,6
S:	30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
	3	6	1, 3	-

- Suppose x & y are both +ve integers.
- Write a while loop to output all factors of x which are not factors of y.

Examples of expected results:

				<u> </u>
	Х	У	factors of x	output
	6	3	1, 2, 3, 6	2, 6
•	30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
	3	6	1, 3	-

- Suppose x & y are both +ve integers.
- Write a while loop to output all factors of x which are not factors of y.

Examples of expected results:

				,
	Х	У	factors of x	output
	6	3	1, 2, 3, 6	2, 6
•	30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
	3	6	1, 3	-

- Suppose x & y are both +ve integers.
- Write a while loop to output all factors of x which are not factors of y.

Examples of expected results:

				•
	Х	У	factors of x	output
	6	3	1, 2, 3, 6	2, 6
•	30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
	3	6	1, 3	-

Steps:

- If x is divisible by i, then i is a factor of x
- If y is not divisible by i, then i is not a factor of y
- We need both conditions to hold and then we output i

Steps:

- If x is divisible by i, then i is a factor of x
- If y is not divisible by i, then i is not a factor of y
- We need both conditions to hold and then we output i

Steps:

```
 \begin{array}{c} \text{i} \leftarrow 1 \\ \text{while i} \leq x \text{ do} \\ \text{begin} \\ \text{i} \leftarrow \text{i+1} \\ \text{end} \\ \end{array}
```


- If x is divisible by i, then i is a factor of x
- If y is not divisible by i, then i is not a factor of y
- ▶ We need both conditions to hold and then we output i

Steps:

```
\begin{array}{l} \text{i } \leftarrow 1 \\ \text{while } \text{i} \leq \text{x do} \\ \text{begin} \\ \text{i} \leftarrow \text{i+1} \\ \text{end} \end{array}
```

- If x is divisible by i, then i is a factor of x

 if x%i == 0 then
- If y is not divisible by i, then i is not a factor of y
- We need both conditions to hold and then we output in

Steps:

```
\begin{array}{l} \text{i} \leftarrow 1 \\ \text{while i} \leq x \text{ do} \\ \text{begin} \\ \text{i} \leftarrow \text{i+1} \\ \text{end} \end{array}
```

- If x is divisible by i, then i is a factor of x

 if x%i == 0 then
- If y is not divisible by i, then i is not a factor of y if y%i \neq 0 then
- We need both conditions to hold and then we output i

Steps:

- Factor of x must be between 1 and x
 - $\begin{aligned} \mathbf{i} &\leftarrow \mathbf{1} \\ \text{while } \mathbf{i} &\leq \mathbf{x} \text{ do} \\ \text{begin} \\ \mathbf{i} &\leftarrow \mathbf{i+1} \\ \text{end} \end{aligned}$
- If x is divisible by i, then i is a factor of x

 if x%i == 0 then
- If y is not divisible by i, then i is not a factor of y if y%i \neq 0 then
- We need both conditions to hold and then we output i

```
if x%i == 0 \text{ AND} y%i \neq 0 then output i
```

Summarizing:		

Summarizing:

```
\begin{aligned} & i \leftarrow 1 \\ & \text{while } i \leq x \text{ do} \\ & \text{begin} \end{aligned} & i \leftarrow i+1 \\ & \text{end} \end{aligned}
```

Summarizing:

```
i \leftarrow 1
while i \le x do
begin
if x\%i == 0 AND y\%i \ne 0 then
output i
i \leftarrow i+1
end
```

Suppose 0 < x < y & both are +ve integers.

Suppose 0 < x < y & both are +ve integers.

- So we want
 - lcm%x to be 0
 - lcm%y to be 0
 - lcm to be as small as possible

Suppose 0 < x < y & both are +ve integers.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - lcm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.

Suppose 0 < x < y & both are +ve integers.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - lcm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.
 - we can start lcm from y, increase by 1 every time, and then check if lcm is multiple of both x and y

Suppose 0 < x < y & both are +ve integers.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.
 - we can start lcm from y, increase by 1 every time, and then check if lcm is multiple of both x and y
 - we can start lcm from y, increase by y every time, and then check if lcm is multiple of x (we don't need to check if lcm is multiple of y because it is already)

Suppose 0 < x < y & both are +ve integers.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.
 - we can start lcm from y, increase by 1 every time, and then check if lcm is multiple of both x and y
 - we can start lcm from y, increase by y every time, and then check if lcm is multiple of x (we don't need to check if lcm is multiple of y because it is already)
 - once we find the smallest one, we should stop

end

output Icm

```
lcm \leftarrow , found \leftarrow false
while lcm \le AND found \ne true do
begin
                  ____ then
     found \leftarrow true
    else lcm \leftarrow lcm +
end
output Icm
lcm \leftarrow , found \leftarrow false
while lcm \le AND found \ne true do
beain
    if then
        found \leftarrow true
    else lcm \leftarrow lcm + ____
```

```
lcm \leftarrow y , found \leftarrow false
while lcm \le x^*y AND found \ne true do
begin
                                       then
        found \leftarrow true
     else lcm \leftarrow lcm + 1
end
output Icm
lcm \leftarrow , found \leftarrow false
while lcm \le AND found \ne true do
begin
```

end

output Icm

 $lcm \leftarrow y$, found \leftarrow false while $lcm \le x^*y$ AND found $\ne true do$ begin if lcm%x==0 AND lcm%y==0 then found \leftarrow true else $lcm \leftarrow lcm + 1$ end output Icm $\label{eq:local_local_problem} \begin{aligned} & \operatorname{lcm} \leftarrow & \underbrace{\hspace{.1cm} \bigvee}_{}, \operatorname{found} \leftarrow \operatorname{false} \\ & \operatorname{while} \operatorname{lcm} & \underbrace{\hspace{.1cm} \bigvee}_{} \operatorname{found} \neq \operatorname{true} \operatorname{do} \end{aligned}$ begin then found \leftarrow true else lcm ← lcm +

output Icm

 $lcm \leftarrow y$, found \leftarrow false while $lcm \le x^*y$ AND found $\ne true do$ begin if Icm%x==0 AND Icm%y==0 then found \leftarrow true else $lcm \leftarrow lcm + 1$ end output Icm $lcm \leftarrow y$, found \leftarrow false

output Icm

```
\begin{array}{l} \text{lcm} \leftarrow \underline{\quad y\quad }, \text{found} \leftarrow \text{false} \\ \text{while lcm} \leq \underline{\quad x^*y\quad } \text{ AND found} \neq \text{true do} \\ \text{begin} \\ \text{if} \underline{\quad \text{lcm}\%x == 0 \text{ AND lcm}\%y == 0 \ } \text{ then} \\ \text{found} \leftarrow \text{true} \\ \text{else lcm} \leftarrow \text{lcm} + \underline{\quad 1\quad } \\ \text{end} \\ \text{output lcm} \end{array}
```

```
lcm \leftarrow v, found \leftarrow false
while lcm < x^*y AND found \neq true do
begin'
    if Icm%x==0 AND Icm%y==0 then
         found ← true
    else lcm \leftarrow lcm + 1
end
output Icm
lcm \leftarrow y, found \leftarrow false
```

 $\begin{array}{l} \text{lcm} \leftarrow \underline{\quad y \quad} \text{, found} \leftarrow \text{false} \\ \text{while lcm} \leq \underline{\quad x^*y \quad} \text{ AND found} \neq \text{true do} \\ \text{begin} \\ \text{if } \underline{\quad \text{lcm}\%x == 0 \quad} \text{then} \\ \text{found} \leftarrow \text{true} \\ \text{else lcm} \leftarrow \text{lcm} + \underline{\quad y \quad} \\ \text{end} \\ \text{output lcm} \end{array}$

Questions

- Is the condition "lcm ≤ x*y" necessary?
- Why do we need to use the flag variable found?
- What happens if we remove the keyword "else"?

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

		1	
i ← 1			
while i ≤	do		
begin			
if			then
output	i		
i ← i+1			
end			

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

Examples of expected results:

	Х	У	factors of x	factors of y	output
:	3	6	1, 3	1, 2, 3, 6	2,6
	5	7	1, 5	1, 7	5, 7

x%iORi%x?

í ← 1	
while i \leq do	
begin	
if	then
output i	
i ← i+1	
end	

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

factors of x factors of y output Х У Examples of expected results: 3 1,3 1, 2, 3, 6 2.6 6 5 7 1,5 1,7 5, 7

(i ← 1		
$\begin{array}{c} \text{while i} \leq \underline{\hspace{1cm}} \text{do} \\ \text{begin} \end{array}$		
begin		
if	OR	then
output i		
i ← i+1		
end		

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

factors of x factors of y output Х У Examples of expected results: 3 1, 3 1, 2, 3, 6 2.6 6 5 7 1,5 1,7 5, 7

(i ← 1		
while i \leq <u>y</u> do begin		
if	OR	then
output i i ← i+1		
end		

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

Examples of expected results:

	Х	У	factors of x	factors of y	output
:	3	6	1, 3	1, 2, 3, 6	2,6
	5	7	1,5	1, 7	5, 7

$$\begin{array}{c} \text{i} \leftarrow 1 \\ \text{while i} \leq \underline{\quad y \quad } \text{do} \\ \text{begin} \\ \text{if } \underline{\quad (x\% \text{i==0 AND } y\% \text{i} \neq \text{0}) \quad } \text{OR} \\ \underline{\quad \text{output i}} \\ \text{i} \leftarrow \text{i+1} \\ \text{end} \end{array}$$

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

Examples of expected results:

	х	У	factors of x	factors of y	output
:	3	6	1, 3	1, 2, 3, 6	2,6
	5	7	1,5	1,7	5, 7

$$\begin{array}{c} \text{i} \leftarrow 1 \\ \text{while i} \leq \underline{\quad y \quad } \text{do} \\ \text{begin} \\ \text{if } \underline{\quad (x\% \text{i==0 AND } y\% \text{i} \neq \text{0}) \quad } \text{OR} \underline{\quad (y\% \text{i==0 AND } x\% \text{i} \neq \text{0}) \quad } \text{then} \\ \underline{\quad \text{output i}} \\ \text{i} \leftarrow \text{i+1} \\ \text{end} \end{array}$$

Suppose 0 < x < y & both are +ve integers. Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

factor of y	output?
T	F
F	T
T	T
F	F
	T F

Do you remember what this is?

Suppose 0 < x < y & both are +ve integers. Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

factor of x	factor of y	output?
T	Т	F
Т	F	T
F	T	T
F	F	F

Do you remember what this is? It's XOR.

COMP108-02-Pseudo-Code-02

Summary: Developing pseudo code

More Exercises on pseudo code in Weekly Practice Quiz and next week's tutorial

Next week: Algorithm Efficiency, Use of Arrays

For note taking