大数据分析
Scalable Machine Learning least square regression 刘盛华

Warnings about the Class

"There is nothing more practical than a good theory"

Lewin (1952)

Linear Regression

Sketching

Massive data sets

- Examples
 - Internet traffic logs
 - Financial data
 - etc.
- Algorithms
 - Want nearly linear time or less
 - Usually at the cost of a randomized approximation

Regression analysis

- Regression analysis
 - Statistical method to study dependencies between variables in the presence of noise.

Regression analysis

- Linear Regression
 - Statistical method to study linear dependencies between variables in the presence of noise.
- Example
 - Ohm's law V = R ⋅ I

Regression analysis

- Linear Regression
 - Statistical method to study linear dependencies between variables in the presence of noise.
- Example
 - Ohm's law V = R · I
 - Find linear function that best fits the data

Regression analysis

- Linear Regression
 - Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting

- One measured variable b
- A set of predictor variables a₁,..., a_d
- Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

- ε is assumed to be noise and the x_i are model parameters we want to learn
- Can assume x₀ = 0
- Now consider n observations of b

Regression analysis

Matrix form

Input: n×d-matrix A and a vector b=(b₁,..., b_n)
n is the number of observations; d is the number of predictor variables

Output: x* so that Ax* and b are close

- Consider the over-constrained case, when n ≫ d
- Can assume that A has full column rank

Regression analysis

Least Squares Method

- Find x* that minimizes $|Ax-b|_2^2 = \sum (b_i \langle A_{i^*}, x \rangle)^2$
- A_{i*} is i-th row of A
- Certain desirable statistical properties

Regression analysis

Geometry of regression

- We want to find an x that minimizes |Ax-b|₂
- The product Ax can be written as

$$A_{*1}X_1 + A_{*2}X_2 + ... + A_{*d}X_d$$

where A_{*i} is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in I₂-norm

Time Complexity

- Solving least squares regression via the normal equations
 - Need to compute x = A⁻b
 - Moore-Penrose Pseudoinverse A = $V\Sigma^{-1}U^T$
 - Naively this takes nd² time
 - Can do nd^{1.376} using fast matrix multiplication
 - But we want much better running time!

Sketching to solve least squares regression

- How to find an approximate solution x to min_x |Ax-b|₂?
- Goal: output x' for which |Ax'-b|₂ ≤ (1+ε) min_x |Ax-b|₂ with high probability
- Draw S from a k x n random family of matrices, for a value k << n
- Compute S*A and S*b
- Output the solution x' to min_{x'} |(SA)x-(Sb)|₂
 - x' = (SA)-Sb

How to choose the right sketching matrix S?

- Recall: output the solution x' to min_{x'} |(SA)x-(Sb)|₂
- Lots of matrices work
- S is d/ε² x n matrix of i.i.d. Normal random variables
- S is a subspace embedding

For all x, $|SAx|_2 = (1\pm\epsilon)|Ax|_2$

* poof skipped

ref: David P. Woodruff, Sketching as a Tool for Numerical Linear Algebra, Foundations and Trends in Theoretical Computer Science, vol 10, issue 1-2, pp. 1-157 (ref to 10-40)

Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \le (1+\epsilon) \min_v |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \varepsilon) |Ax-b|_2$ for all x
- Solve argmin_v |(SA)y (Sb)|₂
- Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd2) time

Faster Subspace Embeddings S

- CountSketch matrix
- Define k x n matrix S, for $k = O(d^2/\epsilon^2)$
- S is really sparse: single randomly chosen nonzero entry per column

00100100 10000000 000-110-10 0-1000001 Can compute
S · A in nnz(A) << nd < nd²
time!

nnz(A) is number of non-zero entries of A

High Probability and Complexity

- **Theorem 2.5.** ([27]) For **S** a sparse embedding matrix with $r = O(d^2/\varepsilon^2 \text{poly}(\log(d/\varepsilon)))$ rows, for any fixed $n \times d$ matrix **A**, with probability .99, **S** is a $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding for **A**. Further, **S** · **A** can be computed in $O(\text{nnz}(\mathbf{A}))$ time.
- **Theorem 2.14.** The ℓ_2 -Regression Problem can be solved with probability .99 in $O(\text{nnz}(A)) + \text{poly}(d/\varepsilon)$ time.