Offline POMDP Algorithms

Last time: POMDP Value Iteration (horizon d)

$$\Gamma^0 \leftarrow \emptyset$$
 for $n \in 1 \dots d$ Construct Γ^n by expanding with Γ^{n-1} Prune Γ^n

Finite Horizon POMDP Value Iteration

Finite Horizon POMDP Value Iteration

b (I failed)

Infinite-Horizon POMDP Lower Bound Improvement

Infinite-Horizon POMDP Lower Bound Improvement (I-yTa) Ra Improvement (always execute Same action

 $\Gamma \leftarrow \mathsf{blind} \mathsf{lower} \mathsf{bound}$

loop

 $\Gamma \leftarrow \Gamma \cup \mathrm{backup}(\Gamma)$

 $\Gamma \leftarrow \operatorname{prune}(\Gamma)$

A survey of point-based POMDP solvers

$$D(|\Gamma||A||O||S|^{2}+|A||S||\Gamma|^{lol)}$$
backup
$$\Gamma' = U\Gamma^{\alpha}$$

$$\alpha \in A$$

$$\Gamma = \bigoplus_{\alpha \in A} \Gamma^{\alpha, \alpha}$$

$$\rho \in O$$

$$\Gamma^{\alpha, \alpha} = \underbrace{\sum_{i=1}^{l} R_{\alpha} + \alpha^{\alpha, \alpha}}_{Si} : \alpha \in \Gamma^{3}$$

$$|\alpha^{\alpha, \alpha}[S]] = \underbrace{\sum_{i=1}^{l} C_{i}(\alpha_{i}, s_{i})}_{Si} T(s_{i}^{i}|S_{i}, \alpha_{i}) \alpha \in S^{i}}$$

 $\Gamma'(\mathcal{A})\Gamma^2 = \{\alpha_1 + \alpha_2 : \alpha_1 \in \Gamma' \mid \alpha_n \in \Gamma^2 \}$

Point-Based Value Iteration (PBVI)

```
point_backup(\Gamma, b)
    for a \in A
        for o \in O
            b' \leftarrow 	au(b, a, o)
           lpha_{a,o} \leftarrow rgmax_{lpha \in \Gamma} lpha^	op b'
        for s \in S
            lpha_a[s] = R(s,a) + \gamma \sum_{s',o} T(s' \mid s,a) \, Z(o' \mid a,s') \, lpha_{a,o}[s']
    return \operatorname{argmax} \alpha_a^{\top} b
```

Original PBVI

How do we choose B

$$egin{aligned} B \leftarrow b_0 \ & \mathsf{loop} \ & \mathsf{for} \ b \in B \ & \Gamma \leftarrow \Gamma \cup \{\mathsf{point_backup}(\Gamma, b)\} \ B' \leftarrow \emptyset \ & \mathsf{for} \ b \in B \ & ilde{B} \leftarrow \{\tau(b, a, o) : a \in A, o \in O\} \ & B' \leftarrow B' \cup \left\{ egin{aligned} \operatorname{argmax} \ \|B, b'\| \ b' \in ilde{B} \end{aligned}
ight.$$

PERSEUS: Randomly Selected Beliefs

Two Phases:

- 1. Random Exploration
- 2. Value Backup

Random Exploration:

$$B \leftarrow \emptyset$$
 $b \leftarrow b_0$
 $| b \leftarrow b_0 |$
 $| a \leftarrow \text{population}(|B| = n)$
 $| a \leftarrow \text{population}(A) |$
 $| a \leftarrow \text{population}(A) |$
 $| b \leftarrow \text{population}(A, a) |$
 $| b \leftarrow \tau(b, a, o) |$
 $| B = B \cup \{b\} |$

Heuristic Search Value Iteration (HSVI)

while $\overline{V}(b_0) - \underline{V}(b_0) > \epsilon$

 $explore(b_0,0)$

explore(b, t)

if
$$\overline{V}(b) - \underline{V}(b) > \epsilon \gamma^t$$

 $a^* = \operatorname{argmax} \overline{Q}(b, a)$

$$\Gamma = \left\{ \alpha_{1}, \alpha_{2}, \dots \alpha_{n} \right\}$$

$$\nabla - \left\{ b_{1}, b_{2}, \dots b_{m} \right\}$$

$$V - \left\{ b_{n}, b_{2}, \dots b_{m} \right\}$$

observations
$$o^* = \underset{\text{Z. lots of uncertainty}}{\operatorname{argmax}} P(o \mid b, a^*) \left(\overline{V}(\tau(b, a^*, o)) - \underline{V}(\tau(b, a^*, o)) - \epsilon \gamma^t \right)$$

 $\mathsf{explore}(au(b, a^*, o^*), t+1)$

$$\underline{\Gamma} \leftarrow \underline{\Gamma} \cup \mathrm{point_backup}(\underline{\Gamma}, b)$$

$$\overline{V}(b) = \overline{\overline{B}_b} [\overline{V}(b)]$$

Weighted Excess Uncertainty

How do we represent an upper bound with alpha vectors

$$V \times V(b) = \min_{\alpha \in \Gamma} \alpha b$$

$$V(b) = \max_{\alpha \in \Gamma} \alpha b$$

Sawtooth Upper Bounds

for each
$$b \in B$$
 store $V(b)$
and the vertices
 $V(b)$ for bf BU vertices

$$B_{b}[V](b) = \max \left\{ R(b,a) + \gamma \sum_{o} P(o|b,a) V(\tau(b,a,o)) \right\}$$

SARSOP

Successive Approximation of Reachable Space under Optimal Policies

Similar to HSVI

HSVI

BCR

Creachable

Creachable

Abeliefs

reachable

under optimal

policy

if
$$\overline{Q}(b,a') < \overline{Q}(b,a^2)$$

then remove all b below (b,a') from B

Witness: ~20 states

SARSP: 10,000-100,000 states

Offline POMDP Algorithms

Policy Graphs

Monte Carlo Value Iteration (MCVI)