

STIC Search Report

EIC 1700

STIC Database Tracking Number: 135882

To: Lien Tran
Location: REM 8A39
Art Unit : 1761
October 27, 2004
Case Serial Number: 09/965113

From: John Calve
Location: CP 3/4; 3D62
Phone: 2-3519
John.Calve@uspto.gov

Search Notes

Hi Lien,

I searched 5 files: HCA, Derwent, Agricola (agriculture) and two food files: FSTA and FROSTI. I searched the claims as broadly as possible, and printed out quite a few records.

You requested that polyglycerol was esterified not more than 40%. Just so you know, it is impossible to search for something like this. I searched for glycerols being esterified and also the fatty acids esterified. But I couldn't search the degree to which the esterification took place.

If you have any questions, please feel free to call me.

John

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: LIEN TRAN Examiner #: 70684 Date: 10/22/01
 Art Unit: 1761 Phone Number 301-27404 Serial Number: 291965113
 Mail Box and Bldg/Room Location: REM Results Format Preferred (circle): PAPER DISK E-MAIL
8A39

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and Registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc., if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Emulsifier System

Inventors (please provide full names): _____

Earliest Priority Filing Date: 9/26/2007 US 20020061354 proprietary

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Please search: colloid? suspension? gel?
 emulsifier comprising: 50-99% polyglycerol ester wherein not more than 40%
 of the hydroxyl group (OH group)
 are esterified with fatty acid.
 Reg# → HCA

- free polyol → polyenized glycol.
 - polyglycerol backbone + fatty acid → ester. + monoglyceride
 - PEG - polyglycerol ester. w/ P/A.
 - glycerol/polyglycerol/sorbitol/sorbitan (ester)
 - ethanediol? propanediol +
 - Oleic / linoleic, linolenic, Octadecadienoic, eicosanoic,
 - glycerols, triacylglycerols

STAFF USE ONLY

	Type of Search	Vendors and cost where applicable
Searcher: <u>J. Calle</u>	NA Sequence (#)	STN _____
Searcher Phone #:	AA Sequence (#)	Dialog _____
Searcher Location:	Structure (#)	Questel/Orbit _____
Date Searcher Picked Up: <u>10/27/04</u>	Bibliographic	Dr. Link _____
Date Completed: <u>10/27/04</u>	Litigation	Lexis/Nexis _____
Searcher Prep & Review Time:	Fulltext	Sequence Systems _____
Clerical Prep Time:	Patent Family	WWW/Internet _____
Online Time:	Other	Other (specify) _____

=> d his nofile

(FILE 'HOME' ENTERED AT 10:20:23 ON 27 OCT 2004)

FILE 'LREGISTRY' ENTERED AT 10:21:28 ON 27 OCT 2004

L1 STR

L2 STR

L3 23 SEA SSS SAM L1 AND L2

FILE 'REGISTRY' ENTERED AT 10:24:18 ON 27 OCT 2004

L4 50 SEA SSS SAM L1 AND L2

L5 16 SEA ABB=ON PLU=ON L4 AND 2-4/NC
D SCAN

FILE 'HCA' ENTERED AT 10:25:44 ON 27 OCT 2004

E US20020061354/PN

L6 1 SEA ABB=ON PLU=ON US2002061354/PN
SEL L6 RN

FILE 'REGISTRY' ENTERED AT 10:26:02 ON 27 OCT 2004

L7 8 SEA ABB=ON PLU=ON (12441-09-7/BI OR 112-80-1/BI OR 121854-29-
3/BI OR 1310-73-2/BI OR 1338-43-8/BI OR 143-19-1/BI OR
155215-70-6/BI OR 26266-57-9/BI)
D SCAN

FILE 'LREGISTRY' ENTERED AT 10:26:13 ON 27 OCT 2004

L8 SCR 2043

L9 SCR 1918

FILE 'REGISTRY' ENTERED AT 10:26:59 ON 27 OCT 2004

L10 50 SEA SSS SAM L1 AND L2 NOT L8

L11 50 SEA SSS SAM L1 AND L2 NOT (L8 OR L9)

FILE 'LREGISTRY' ENTERED AT 10:27:50 ON 27 OCT 2004

L12 SCR 2036

L13 19 SEA SSS SAM L1 AND L2 NOT (L8 OR L9 OR L12)
D QUE STAT L13

FILE 'REGISTRY' ENTERED AT 10:30:05 ON 27 OCT 2004

L14 50 SEA SSS SAM L1 AND L2 NOT (L8 OR L9 OR L12)
D QUE STAT L14

L15 STR L2

L16 15 SEA SSS SAM L1 AND L15 NOT (L8 OR L9 OR L12)
D QUE STAT L16

FILE 'LREGISTRY' ENTERED AT 10:34:29 ON 27 OCT 2004

FILE 'REGISTRY' ENTERED AT 10:54:44 ON 27 OCT 2004
D SCAN L7

FILE 'LREGISTRY' ENTERED AT 10:55:07 ON 27 OCT 2004
E POLYGLYCEROL/CN

L17 1 SEA ABB=ON PLU=ON POLYGLYCEROL/CN
D SCAN
D L17 RN

FILE 'REGISTRY' ENTERED AT 10:55:54 ON 27 OCT 2004
L18 374 SEA ABB=ON PLU=ON 25618-55-7/CRN

Tran

09/965,113

10/27/2004

L19 258 SEA ABB=ON PLU=ON L18 AND 1-3/NC
E POLYGLYCEROL/CN
L20 1 SEA ABB=ON PLU=ON POLYGLYCEROL/CN
D SCAN

FILE 'LREGISTRY' ENTERED AT 10:57:59 ON 27 OCT 2004

FILE 'LCA' ENTERED AT 11:14:35 ON 27 OCT 2004
L21 713 SEA ABB=ON PLU=ON POLYOL? OR GLYCEROL? OR POLYGLYCEROL? OR
POLY(W) GLYCEROL## OR ?ETHANEDIOL? OR ?ETHANETRIOL? OR ?PROPANE
IOL? OR ?PROPANETRIOL? OR ?BUTANEDIOL? OR ?BUTANETRIOL?
L22 951 SEA ABB=ON PLU=ON FATTY#(2A)ACID#### OR OLEIC# OR LINOLEIC#
OR OCTADECatrienoic# OR OCTADECADienoic# OR OCTADECANOIC# OR
SEPTADECANOIC# OR HEPTADECANOIC# OR PENTADECANOIC#
L23 365 SEA ABB=ON PLU=ON ESTERIF?
L24 209 SEA ABB=ON PLU=ON GLYCERIDE#
L25 786 SEA ABB=ON PLU=ON L21 OR SORBITOL# OR SORBITAN#
L26 2834 SEA ABB=ON PLU=ON (COMP# OR COMPOSIT? OR DISPERS? OR
SUSPENS? OR MIXTURE? OR BLEND? OR ADMIX? OR COMMIX? OR COMMIX?
OR INTERMIX? OR COMPSN# OR COMPN# OR FORMULAT? OR INTERSPER?) /T
I
L27 2934 SEA ABB=ON PLU=ON EMULS? OR DISPERS? OR SUSPENS? OR COLLOID?
OR ADMIX? OR COMMIX? OR COMMIX? OR INTERMIX? OR INTERSPER?

FILE 'REGISTRY' ENTERED AT 11:22:46 ON 27 OCT 2004

E SORBITOL/CN
L28 1 SEA ABB=ON PLU=ON SORBITOL/CN
D SCAN
E ETHANEDIOL/CN
E ETHANETRIOL/CN
L29 1 SEA ABB=ON PLU=ON ETHANETRIOL/CN
D SCAN
E PROPANEDIOL/CN
L30 1 SEA ABB=ON PLU=ON PROPANEDIOL/CN
E PROpanetriol/CN
L31 2 SEA ABB=ON PLU=ON PROpanetriol/CN
E OLEIC/CN
L32 1 SEA ABB=ON PLU=ON "OLEIC ACID"/CN
E LINOLEIC ACID/CN
L33 1 SEA ABB=ON PLU=ON "LINOLEIC ACID"/CN
L34 3 SEA ABB=ON PLU=ON L7 AND ACID
D SCAN
E SORBITAN TRIOLEATE/CN
E SORBITAN STEARATE/CN
L35 1 SEA ABB=ON PLU=ON "SORBITAN STEARATE"/CN
E SORBITAN TRISTEARATE/CN
L36 1 SEA ABB=ON PLU=ON "SORBITAN TRISTERATE"/CN
E POLYSORBATE/CN

FILE 'LCA' ENTERED AT 11:28:27 ON 27 OCT 2004

FILE 'HCA' ENTERED AT 11:29:36 ON 27 OCT 2004
L37 18077 SEA ABB=ON PLU=ON L28 OR L29 OR L30
L38 318210 SEA ABB=ON PLU=ON POLYOL? OR GLYCEROL? OR POLYGLYCEROL? OR
POLY(W) GLYCEROL## OR ?ETHANEDIOL? OR ?ETHANETRIOL? OR ?PROPANE
IOL? OR ?PROPANETRIOL? OR ?BUTANEDIOL? OR ?BUTANETRIOL?
L39 330071 SEA ABB=ON PLU=ON L37 OR L38 OR GLCEROL
L40 113332 SEA ABB=ON PLU=ON L31 OR L32 OR L33

Tran

09/965, 113

10/27/2004

L41 336167 SEA ABB=ON PLU=ON FATTY#(2A)ACID##### OR OLEIC# OR LINOLEIC#
OR OCTADECatrienoic# OR OCTADECADienoic# OR OCTADECANOIC# OR
SEPTADECANOIC# OR HEPTADECANOIC# OR PENTADECANOIC#
L42 387593 SEA ABB=ON PLU=ON L40 OR L41 OR FATTY(W)ACID
L43 50908 SEA ABB=ON PLU=ON L34 OR L35 OR L36
D SCAN L6
L44 63405 SEA ABB=ON PLU=ON L43 OR SORBITAN#
L45 8010 SEA ABB=ON PLU=ON L44(L)ESTER?

FILE 'LCA' ENTERED AT 11:34:03 ON 27 OCT 2004

FILE 'HCA' ENTERED AT 11:35:56 ON 27 OCT 2004
L46 66441 SEA ABB=ON PLU=ON L39(L)?ESTER?
L47 304860 SEA ABB=ON PLU=ON L41(L)(FATTY? OR ESTER?)
L48 299036 SEA ABB=ON PLU=ON (L40 OR L42)(L)FATTY?
L49 109047 SEA ABB=ON PLU=ON (L40 OR L42)(L)?ESTER?
L50 98727 SEA ABB=ON PLU=ON L48 AND L49
L51 12784 SEA ABB=ON PLU=ON L46 AND L50
L52 11569 SEA ABB=ON PLU=ON L51 AND 1907-2000/PY, PRY
L53 1756 SEA ABB=ON PLU=ON L52 AND L44
L54 480 SEA ABB=ON PLU=ON L26 AND L53
L55 1141483 SEA ABB=ON PLU=ON EMULS? OR DISPERS? OR SUSPENS? OR COLLOID?
OR ADMIX? OR COMMIX? OR COMMIX? OR INTERMIX? OR INTERSPER?
L56 210 SEA ABB=ON PLU=ON L54 AND L55
L57 29681 SEA ABB=ON PLU=ON PEG#
L58 12 SEA ABB=ON PLU=ON L56 AND L57
L59 510779 SEA ABB=ON PLU=ON 17/SX, SC
L60 45 SEA ABB=ON PLU=ON L56 AND L59
L61 17824 SEA ABB=ON PLU=ON MONOGLYCERIDE? OR (MONO# OR DI#)(2A)GLYCERI
DE## OR DIGLYERIDE##
L62 19 SEA ABB=ON PLU=ON L60 AND L61
L63 3 SEA ABB=ON PLU=ON L58 AND L61
L64 269 SEA ABB=ON PLU=ON DATEM# OR PGME# OR DGME#
L65 1 SEA ABB=ON PLU=ON L60 AND L64
L66 1 SEA ABB=ON PLU=ON L56 AND L64
L67 1 SEA ABB=ON PLU=ON L54 AND L64
L68 57 SEA ABB=ON PLU=ON L58 OR L60 OR L62 OR L63 OR L65 OR L66 OR
L67

FILE 'LCA' ENTERED AT 11:44:53 ON 27 OCT 2004

FILE 'WPIX' ENTERED AT 11:48:27 ON 27 OCT 2004
L69 77119 SEA ABB=ON PLU=ON L22 OR FATTY(W)ACID
L70 25547 SEA ABB=ON PLU=ON ESTERIF?
L71 6741 SEA ABB=ON PLU=ON L24 OR GLYCERIDE#
L72 149796 SEA ABB=ON PLU=ON L21 OR SORBITOL##
L73 8051 SEA ABB=ON PLU=ON SORBITAN#
L74 772087 SEA ABB=ON PLU=ON (COMP# OR COMPOSIT? OR DISPERS? OR
SUSPENS? OR MIXTURE? OR BLEND? OR ADMIX? OR COMMIX? OR COMMIX?
OR INTERMIX? OR COMPSN# OR COMPNN# OR FORMULAT? OR INTERSPER?) /T
I
L75 122060 SEA ABB=ON PLU=ON L 27 OR EMULSION
L76 19613 SEA ABB=ON PLU=ON PEG# OR DATEM# OR PGME# OR DGME#
L77 30396 SEA ABB=ON PLU=ON L69(3A)ESTER? OR L72(3A)ESTER?
L78 1790 SEA ABB=ON PLU=ON L77 AND L71
L79 383 SEA ABB=ON PLU=ON L78 AND L73
L80 206 SEA ABB=ON PLU=ON L79 AND L72
L81 63 SEA ABB=ON PLU=ON L80 AND L75

L82 63 SEA ABB=ON PLU=ON L81 AND L75
 L83 14 SEA ABB=ON PLU=ON L82 AND L76
 L84 4314 SEA ABB=ON PLU=ON MONOGLYCERIDE? OR (MONO# OR DI#) (2A) GLYCERI
 DE## OR DIGLYERIDE##
 L85 8 SEA ABB=ON PLU=ON L83 AND L84
 L86 35 SEA ABB=ON PLU=ON L82 AND L84
 L87 20 SEA ABB=ON PLU=ON L86 AND L74
 L88 7 SEA ABB=ON PLU=ON L85 AND L74
 L89 20 SEA ABB=ON PLU=ON L88 OR L87

FILE 'LCA' ENTERED AT 11:55:27 ON 27 OCT 2004

FILE 'WPIX' ENTERED AT 11:56:38 ON 27 OCT 2004
 E A23L001/IC

L90 89800 SEA ABB=ON PLU=ON A23L001/IC
 L91 1 SEA ABB=ON PLU=ON L89 AND L90
 L92 10 SEA ABB=ON PLU=ON L82 AND L90
 L93 18 SEA ABB=ON PLU=ON L80 AND L90
 L94 8 SEA ABB=ON PLU=ON (L91 OR L92 OR L93) AND L74
 L95 18 SEA ABB=ON PLU=ON (L91 OR L92 OR L93)
 L96 18 SEA ABB=ON PLU=ON L94 OR L95
 L97 7 SEA ABB=ON PLU=ON L96 AND EMUL?/TI
 D SCAN
 L98 64756 SEA ABB=ON PLU=ON EMUL?/TI
 L99 10 SEA ABB=ON PLU=ON L89 AND L98
 L100 16 SEA ABB=ON PLU=ON L97 OR L99
 L101 11 SEA ABB=ON PLU=ON L95 NOT L100

FILE 'AGRICOLA' ENTERED AT 12:01:02 ON 27 OCT 2004

L102 30294 SEA ABB=ON PLU=ON L22 OR FATTY(W)ACID
 L103 2251 SEA ABB=ON PLU=ON ESTERIF?
 L104 379 SEA ABB=ON PLU=ON L24 OR GLYCERIDE#
 L105 5774 SEA ABB=ON PLU=ON L21 OR SORBITOL##
 L106 70 SEA ABB=ON PLU=ON SORBITAN#
 L107 71882 SEA ABB=ON PLU=ON (COMP# OR COMPOSIT? OR DISPERS? OR
 SUSPENS? OR MIXTURE? OR BLEND? OR ADMIX? OR COMMIX? OR COMMIX?
 OR INTERMIX? OR COMPSN# OR COMPNN# OR FORMULAT? OR INTERSPER?) /T
 I
 L108 2736 SEA ABB=ON PLU=ON L 27 OR EMULSION
 L109 859 SEA ABB=ON PLU=ON PEG# OR DATEDM# OR PGME# OR DGME#
 L110 406 SEA ABB=ON PLU=ON (L102 OR L105) (3A) L103
 L111 21 SEA ABB=ON PLU=ON L110 AND L107
 L112 1 SEA ABB=ON PLU=ON L111 AND L108
 D SCAN
 L113 0 SEA ABB=ON PLU=ON L111 AND L109
 L114 4560 SEA ABB=ON PLU=ON EMUL?
 L115 1 SEA ABB=ON PLU=ON L111 AND L114
 D SCAN

FILE 'FSTA, FROSTI' ENTERED AT 12:04:20 ON 27 OCT 2004

L116 60423 SEA ABB=ON PLU=ON L22 OR FATTY(W) ACID
 L117 6136 SEA ABB=ON PLU=ON ESTERIF?
 L118 4456 SEA ABB=ON PLU=ON L24 OR GLYCERIDE#
 L119 15100 SEA ABB=ON PLU=ON L21 OR SORBITOL##
 L120 714 SEA ABB=ON PLU=ON SORBITAN#
 L121 53633 SEA ABB=ON PLU=ON L26
 L122 14624 SEA ABB=ON PLU=ON L 27 OR EMULSION
 L123 686 SEA ABB=ON PLU=ON PEG# OR DATEDM# OR PGME# OR DGME#

Tran

09/965,113

10/27/2004

L124 72948 SEA ABB=ON PLU=ON L116 OR L119
L125 2951 SEA ABB=ON PLU=ON L124 AND L117
L126 363 SEA ABB=ON PLU=ON L125 AND L118
L127 30 SEA ABB=ON PLU=ON L125 AND L120
L128 57 SEA ABB=ON PLU=ON L126 AND L121
L129 8 SEA ABB=ON PLU=ON L128 AND EMUL?
L130 20 SEA ABB=ON PLU=ON L127 AND EMUL?
L131 28 SEA ABB=ON PLU=ON L130 OR L129
E EMULSIFIER/CT
L132 6675 SEA ABB=ON PLU=ON (EMULSIFIER/CT OR "EMULSIFIER # ADVANTAGES"
/CT OR "EMULSIFIER AGENT"/CT OR "EMULSIFIER BEADS"/CT OR
"EMULSIFIER BLENDS"/CT OR "EMULSIFIER E"/CT OR "EMULSIFIER
FREE"/CT OR "EMULSIFIER FREE FAT EMULSIONS"/CT OR "EMULSIFIER
MACHINE"/CT OR "EMULSIFIER MONOLAYERS"/CT OR "EMULSIFIER
PREPARATIONS"/CT OR "EMULSIFIER PREPARATIONS # STORED"/CT OR
"EMULSIFIER YN"/CT OR EMULSIFIER-BASED/CT OR "EMULSIFIER-SOLVEN
T # COMPOSITION"/CT OR "EMULSIFIER-SOLVENT COMPOSITION"/CT OR
"EMULSIFIER-STARCH-SPICE # READY-TO-EAT"/CT OR "EMULSIFIER.
PATENT"/CT OR EMULSIFIERS/CT OR "EMULSIFIERS FOR FOODS"/CT OR
"EMULSIFIERS PROCESSING PLANTS"/CT OR "EMULSIFIERS USE IN ICE
CREAM"/CT OR "EMULSIFIERS USE IN MARGARINE"/CT OR "EMULSIFIERS-
CONTAINING MODEL"/CT OR "EMULSIFIERS-CORN # QUALITY"/CT OR
"EMULSIFIERS-CUTTER AIDS QUALITY # CANNED"/CT OR EMULSIFIERS-EG
GS/CT OR "EMULSIFIERS-FATS # RAPID-COOKING"/CT OR "EMULSIFIERS-
GROUNDNUT # QUALITY"/CT OR EMULSIFIERS-HUMECTANTS/CT OR
EMULSIFIERS-HYDRATED/CT OR "EMULSIFIERS-MODIFIED STARCH-GUAR
GUM # QUALITY"/CT OR EMULSIFIERS-STABILIZATION/CT OR EMULSIFIER
S-STABILIZERS/CT)
L133 7 SEA ABB=ON PLU=ON L128 AND L132
L134 23 SEA ABB=ON PLU=ON L131 AND L132
L135 28 SEA ABB=ON PLU=ON L133 OR L134 OR L131

FILE 'HCA, FSTA, FROSTI, WPIX' ENTERED AT 12:09:43 ON 27 OCT 2004
L136 109 DUP REM L68 L135 L100 L101 (3 DUPLICATES REMOVED)

FILE 'HCA' ENTERED AT 12:10:14 ON 27 OCT 2004

=> d 168 1-57 cbib abs hitind hitrn

L68 ANSWER 1 OF 57 HCA COPYRIGHT 2004 ACS on STN
139:337234 Emulsifier compositions containing

sorbitan monoesters. Lin, Peter Yau Tak; Seiden, Paul; Gruber,
David Cammiade; Sanders, Robert Alan (The Procter & Gamble Company, USA).
U.S. Pat. Appl. Publ. US 2003203070 A1 20031030, 17 pp., Cont.-in-part of
U.S. Ser. No. 965,113. (English). CODEN: USXXCO. APPLICATION: US
2003-396916 20030325. PRIORITY: US 2000-PV235291 20000926; US
2000-PV235290 20000926; US 2000-PV235449 20000926; US 2000-PV235298
20000926; US 2000-PV235289 20000926; US 2001-965113 20010926; US
2002-PV367622 20020326.

AB Described are sorbitan-containing emulsifying compns.
comprising relatively high levels of sorbitan monoesters. Such
compns. have numerous applications, including uses in cosmetics, hard
surface cleaners, shampoos, hair conditioners, personal cleaning products,
lotions, fabric softeners, pharmaceutical compns., ice creams, whip
creams, other whipped toppings, confectioneries, frostings, breads, baked
goods, sauces, salad dressings, snacks, and dehydrated starch ingredients.

IC ICM A21D002-14

NCL 426025000

CC 17-6 (Food and Feed Chemistry)
ST **sorbitan monoester emulsifier** food cosmetic drug
cleaning agent
IT **Monoglycerides**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(C16-18; **emulsifier** compns. containing **sorbitan**
monoesters)
IT Solanum tuberosum
(French fry; **emulsifier** compns. containing **sorbitan**
monoesters)
IT Sunflower oil
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(Nu-Sun Oil; **emulsifier** compns. containing **sorbitan**
monoesters)
IT Bakery products
(cakes, mixes; **emulsifier** compns. containing **sorbitan**
monoesters)
IT Detergents
(cleaning compns.; **emulsifier** compns. containing **sorbitan**
monoesters)
IT Hair preparations
(conditioners; **emulsifier** compns. containing **sorbitan**
monoesters)
IT Solanum tuberosum
(dehydrated products; **emulsifier** compns. containing
sorbitan monoesters)
IT Bakery products
Bread
Confectionery
Cosmetics
Deodorization
Detergents
Dough
Drug delivery systems
Drugs
 Emulsifying agents
 Esterification
 Fabric softeners
 Flours and Meals
 Food
 Food functional properties
 Food texture
 Frozen desserts
 Ice cream
 Potato chips
 Salad dressings
 Sauces (condiments)
 Scouring agents
 Shampoos
 Solanum tuberosum
 Surfactants
 (**emulsifier** compns. containing **sorbitan** monoesters)
IT Bakery products
(frostings; **emulsifier** compns. containing **sorbitan**
monoesters)
IT Dairy products
(frozen desserts; **emulsifier** compns. containing **sorbitan**
monoesters)

IT Syrups (sweetening agents)
 (high-fructose hydrolyzed starch, Isomerose 100; **emulsifier**
 compns. containing **sorbitan** monoesters)

IT Cosmetics
 (lotions; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT Solanum tuberosum
 (mashed; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT Dough
 (potato; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT Fatty acids, biological studies
RL: COS (Cosmetic use); FFD (Food or feed use); NUU (Other use,
unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (saturated, **sorbitan** esters; **emulsifier**
 compns. containing **sorbitan** monoesters)

IT Food
 (snack; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT Lecithins
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
 (soya; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT Fats and Glyceridic oils, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
 (vegetable; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT Cream substitutes
 (whipped; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT Cream
 (whipping; **emulsifier** compns. containing **sorbitan**
 monoesters)

IT 9005-25-8, Starch, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
 (dehydrated compns.; **emulsifier** compns. containing
 sorbitan monoesters)

IT 1310-73-2, Sodium hydroxide, uses
RL: CAT (Catalyst use); USES (Uses)
 (**emulsifier** compns. containing **sorbitan** monoesters)

IT 26266-57-9, Sorbitan palmitate
RL: COS (Cosmetic use); FFD (Food or feed use); NUU (Other use,
unclassified); PEP (Physical, engineering or chemical process); PYP
(Physical process); THU (Therapeutic use); BIOL (Biological study); PROC
(Process); USES (Uses)
 (**emulsifier** compns. containing **sorbitan** monoesters)

IT 652-67-5D, Isosorbide, saturated fatty acid esters
12441-09-7, Sorbitan 12441-09-7D, Sorbitan, saturated
fatty acid esters 37318-79-9,
Sorbitan oleate 56451-84-4, Sorbitan stearate
93907-64-3, Sorbitan linoleate
RL: COS (Cosmetic use); FFD (Food or feed use); NUU (Other use,
unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (**emulsifier** compns. containing **sorbitan**
 monoesters)

IT 57-55-6D, Propylene glycol, monoesters 1338-43-8, Span 80
121854-29-3, Olean 155215-70-6, Panodan 205 617692-79-2, Aldo DO

617693-00-2, 2,3-1-O
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(emulsifier compns. containing sorbitan monoesters)
IT 50-70-4, Sorbitol, reactions 112-80-1, Oleic
acid, reactions 143-19-1, Sodium oleate 26855-43-6, Paniplus
504
RL: RCT (Reactant); RACT (Reactant or reagent)
(emulsifier compns. containing sorbitan
monoesters)
IT 56451-84-4, Sorbitan stearate
RL: COS (Cosmetic use); FFD (Food or feed use); NUU (Other use,
unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(emulsifier compns. containing sorbitan monoesters)
IT 1338-43-8, Span 80
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(emulsifier compns. containing sorbitan monoesters)
IT 50-70-4, Sorbitol, reactions 112-80-1, Oleic
acid, reactions 143-19-1, Sodium oleate
RL: RCT (Reactant); RACT (Reactant or reagent)
(emulsifier compns. containing sorbitan
monoesters)

L68 ANSWER 2 OF 57 HCA COPYRIGHT 2004 ACS on STN

139:90461 Pharmaceutical compositions of modafinil compounds.
Jacobs, Martin J.; McIntyre, Bradley T.; Parikh, Alpa; Patel, Piyush R.
(USA). U.S. Pat. Appl. Publ. US 2003125391 A1 20030703, 9 pp.,
Cont.-in-part of U.S. Ser. No. 974,473. (English). CODEN: USXXCO.
APPLICATION: US 2002-286573 20021101. PRIORITY: US 2000-PV239488
20001011; US 2001-974473 20011010.

AB Pharmaceutical compns. of modafinil compds., i.e., modafinil, its racemic mixts., individual isomers, acid addition salts, polymorphs, analogs, etc., and their use in the treatment of nervous system disorders are described. The compns., providing a modafinil compound's blood serum level of about 0.05-30 g/mL in a subject, include non-aqueous compns. in organic solvents and compns. in solid dispersions. For example, a mixture of 95 mL of PEG-400 and 5 mL of benzyl alc. was stirred at room temperature until homogeneous. To a sep. container, 0.1 g of modafinil was weighed and 1 mL of the mixed solvent was added with stirring and heating to 55-60°. The solution was allowed to cool to room temperature and any undissolved solid

was removed by filtration. In the case of a viscous solution or a solution that solidifies at room temperature, warming until a freely flowing solution was obtained and then filtration gave a solution free of particulate matter. The solubility of modafinil was 61 mg/mL, as measured by HPLC.

IC ICM A61K031-165
NCL 514618000
CC 63-6 (Pharmaceuticals)
Section cross-reference(s): 1
ST modafinil soln solid dispersion nervous system disorder
IT Nervous system, disease
(central; modafinil solns. and solid dispersions for
treatment of nervous system disorders)
IT Surfactants
(modafinil solns. and solid dispersions for treatment of
nervous system disorders)
IT Lecithins
Polyoxyalkylenes, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(modafinil solns. and solid **dispersions** for treatment of nervous system disorders)

IT Drug delivery systems
(solid **dispersions**; modafinil solns. and solid **dispersions** for treatment of nervous system disorders)

IT Drug delivery systems
(solns.; modafinil solns. and solid **dispersions** for treatment of nervous system disorders)

IT 68693-11-8, Modafinil
RL: PKT (Pharmacokinetics); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(modafinil solns. and solid **dispersions** for treatment of nervous system disorders)

IT 56-81-5D, **Glycerol, esters, polyglycolized**
63-42-3, Lactose 100-51-6, Benzyl alcohol, biological studies
151-21-3, Sodium dodecyl sulfate, biological studies 9003-39-8,
Polyvinylpyrrolidone 9004-54-0, Dextran, biological studies 9004-64-2,
Hydroxypropyl cellulose 9004-65-3, Hydroxypropyl methyl cellulose
9004-67-5, Methyl cellulose 10182-91-9, Dodecyltrimethylammonium
12441-09-7D, **Sorbitan, fatty acid esters**, ethoxylated 25322-68-3, Polyethylene glycol
106392-12-5, Ethylene oxide-propylene oxide block copolymer
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(modafinil solns. and solid **dispersions** for treatment of nervous system disorders)

IT 56-81-5D, **Glycerol, esters, polyglycolized**
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(modafinil solns. and solid **dispersions** for treatment of nervous system disorders)

L68 ANSWER 3 OF 57 HCA COPYRIGHT 2004 ACS on STN

138:1668 Purification and characterization of an autoclavable superoxide dismutase (SOD) isozyme from Potentilla atrosanguinea, and use of the SOD in cosmetic, food and pharmaceutical **compositions**. Kumar, Sanjay; Sahoo, Rashmita; Ahuja, Paramvir Singh (Council of Scientific & Industrial Research (CSIR), India). U.S. US 6485950 B1 20021126, 30 pp. (English). CODEN: USXXAM. APPLICATION: US 2000-617118 20000714.

AB The invention relates to a novel purified isoenzyme of an autoclavable superoxide dismutase extracted from the plant Potentilla atrosanguinea Lodd. variety argyrophylla. The superoxide dismutase has the following characteristics: O₂-scavenging activity remains same before and after autoclaving; scavenges O₂- from sub-zero temperature of -20° C. to high temperature of +80°.; O₂- scavenging activity at 25° for 30 days without adding any stabilizing agent such as polyols or sugars; O₂- scavenging activity in the presence of saline (0.9% sodium chloride) to 61.8% of the control (without 0.9% sodium chloride), stable at 4° for at least 8 mo; contamination free and infection free from any living micro- and/or macro-organism after autoclaving. The enzyme possesses temperature optima at 0°; possesses a mol. weight of 33 kD under non-denaturing conditions; possesses a mol. weight of 36 kD under denaturing conditions; has clear peaks in UV range at 268 and 275 nm; has an enzyme turnover number of 19.53+104% per nmol per min at 0°; and requires Cu/Zn as a co-factor. The invention also relates to a process for the extraction of the superoxide dismutase and its use in preparing cosmetic, pharmaceutical and food compns. The method for the preparation of the purified isoenzyme of autoclavable superoxide dismutase and formulations containing the said autoclavable superoxide dismutase are disclosed.

IC ICM C12N009-02
ICS C12N009-00; A61K038-44
NCL 435189000; 435183000; 424094400
CC 7-2 (Enzymes)
Section cross-reference(s): 17, 62, 63
IT **Monoglycerides**
RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use);
BIOL (Biological study); USES (Uses)
(acetates, gums containing; purification and characterization of
autoclavable
superoxide dismutase (SOD) isoenzyme from Potentilla atrosanguinea, and
use of SOD in cosmetic, food and pharmaceutical compns.)
IT Amphiphiles
Analgesics
Anti-inflammatory agents
Antibacterial agents
Antibiotics
Antimicrobial agents
Antioxidants
Beeswax
Carriers
Coloring materials
Emulsifying agents
Feed additives
Flavoring materials
Hemostatics
Perfumes
Preservatives
Radical scavengers
Surfactants
Vaccines
(compns. containing; purification and characterization of autoclavable
superoxide dismutase (SOD) isoenzyme from Potentilla atrosanguinea, and
use of SOD in cosmetic, food and pharmaceutical compns.)
IT Castor oil
Coconut oil
Corn oil
Essential oils
Fats and Glyceridic oils, biological studies
Fatty acids, biological studies
Glycerides, biological studies
Hormones, animal, biological studies
Hydrocarbon oils
Melanins
Olive oil
Palm oil
Paraffin oils
Phosphatidylcholines, biological studies
Phosphatidylethanolamines, biological studies
Polyoxyalkylenes, biological studies
Soybean oil
Steroids, biological studies
Sulfites
Thiols (organic), biological studies
Tocopherols
Vitamins
RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use);
BIOL (Biological study); USES (Uses)

(compns. containing; purification and characterization of autoclavable superoxide dismutase (SOD) isoenzyme from *Potentilla atrosanguinea*, and use of SOD in cosmetic, food and pharmaceutical compns.)

IT Drug delivery systems

(**emulsions**; purification and characterization of autoclavable superoxide dismutase (SOD) isoenzyme from *Potentilla atrosanguinea*, and use of SOD in cosmetic, food and pharmaceutical compns.)

IT Fatty acids, biological studies

RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(lanolin, compns. containing; purification and characterization of autoclavable

superoxide dismutase (SOD) isoenzyme from *Potentilla atrosanguinea*, and use of SOD in cosmetic, food and pharmaceutical compns.)

IT Drug delivery systems

(**suspensions**; purification and characterization of autoclavable superoxide dismutase (SOD) isoenzyme from *Potentilla atrosanguinea*, and use of SOD in cosmetic, food and pharmaceutical compns.)

IT Drug delivery systems

(vesicular dispersions; purification and characterization of autoclavable superoxide dismutase (SOD) isoenzyme from *Potentilla atrosanguinea*, and use of SOD in cosmetic, food and pharmaceutical compns.)

IT **50-70-4D, Sorbitol, esters** 50-81-7, Vitamin C, biological studies 52-90-4, L-Cysteine, biological studies 57-10-3, Palmitic acid, biological studies 57-10-3D, Palmitic acid, glycerides 57-11-4, Stearic acid, biological studies 57-41-0, Phenytoin 57-50-1, Sucrose, biological studies 57-55-6, Propylene glycol, biological studies 58-08-2, Caffeine, biological studies 58-95-7, Tocopherol acetate 59-02-9, α -Tocopherol 60-33-3, Linoleic acid, biological studies 60-33-3D, Linoleic acid, glycerides 62-53-3, Aniline, biological studies 63-42-3, Lactose 63-68-3, L-Methionine, biological studies 64-17-5, Ethanol, biological studies 67-56-1, Methanol, biological studies 67-63-0, Isopropanol, biological studies 69-93-2, Uric acid, biological studies 70-18-8, Reduced glutathione, biological studies 71-23-8, Propanol, biological studies 71-36-3, Butanol, biological studies 74-79-3, L-Arginine, biological studies 77-09-8, Phenolphthalein 87-99-0, Xylitol 90-05-1, Guaiacol 106-69-4, 1,2,6-Hexanetriol 107-21-1, Ethylene glycol, biological studies 107-35-7, Taurine 108-95-2, Phenol, biological studies 110-27-0, Isopropyl myristate 110-36-1, Butyl myristate 112-53-8, Lauryl alcohol 112-72-1, Myristyl alcohol 112-80-1, Oleic acid, biological studies 112-80-1D, Oleic acid, glycerides 112-85-6, Behenic acid 112-86-7, Erucic acid 112-92-5, Stearyl alcohol 122-99-6, Phenoxyethanol 124-07-2D, Caprylic acid, glycerides 124-07-2D, Octanoic acid, hydroxylated polyisobutanyl derivs. 127-17-3, biological studies 127-82-2, Zinc phenol sulfonate 128-44-9, Sodium saccharinate 141-22-0, Ricinoleic acid 142-91-6, Isopropyl palmitate 143-07-7, Lauric acid, biological studies 143-07-7D, Lauric acid, glycerides 143-28-2, Oleyl alcohol 302-04-5, Thiocyanate, biological studies 334-48-5D, Capric acid, glycerides 364-98-7, Diazoxide 404-86-4, Capsaicin 463-40-1, Linolenic acid 463-40-1D, Linolenic acid, glycerides 506-30-9, Arachidic acid 526-84-1, Dihydroxymaleic acid 527-60-6, Mesitol 538-23-8, Octanoic acid triglyceride 540-11-4, Ricinoleyl alcohol 544-63-8, Myristic acid, biological studies 544-63-8D, Myristic acid, alkyl esters 544-63-8D, Myristic acid, glycerides 546-46-3, Zinc citrate 553-72-0, Zinc benzoate 557-34-6, Zinc acetate 585-86-4, Lactitol 616-91-1, N-Acetyl-L-cysteine

621-71-6 628-97-7, Ethyl palmitate 629-98-1, Erucyl alcohol
661-19-8, Behenyl alcohol 1300-26-1, Zinc glycerophosphate 1314-13-2,
Zinc oxide, biological studies 1314-22-3, Zinc peroxide 1330-70-7,
Hydroxystearic acid 1332-07-6, Zinc borate 1406-18-4, Vitamin E
1464-42-2, Selenomethionine 2599-01-1, Cetyl myristate 2724-58-5,
Isostearic acid 2814-60-0 3068-00-6, 1,2,4-Butanetriol 3460-37-5,
Hexyl stearate 3486-35-9, Zinc carbonate 3614-08-2, Selenocysteine
4345-03-3 4468-02-4, Zinc gluconate 5333-42-6, 2-Octyl-dodecanol
7235-40-7, β -Carotene 7631-86-9, Silica, biological studies
7646-85-7, Zinc chloride, biological studies 7681-49-4, Sodium fluoride,
biological studies 7699-45-8, Zinc bromide 7733-02-0, Zinc sulfate
7779-88-6, Zinc nitrate 7782-49-2, Selenium, biological studies
9001-48-3, Glutathione reductase 9003-20-7, Polyvinyl acetate
9003-99-0, Peroxidase 9004-61-9, Hyaluronic acid 9005-00-9, Steareth-2
9005-63-4D, Polyoxyethylenesorbitan, fatty acid
esters 9007-43-6, Cytochrome c, biological studies 9013-66-5,
Glutathione peroxidase 10191-41-0, DL- α -Tocopherol 10401-55-5,
Cetyl ricinoleate 11103-57-4, Vitamin A 11126-29-7, Zinc silicate
12441-09-7D, Sorbitan, fatty acid
esters 12651-25-1, Zinc titanate 13463-41-7, Zinc pyrithione
13826-88-5, Zinc tetrafluoroborate 14281-83-5, Zinc glycinate
16283-36-6, Zinc salicylate 16871-71-9, Zinc hexafluorosilicate
16887-00-6, Chloride, biological studies 16984-48-8, Fluoride,
biological studies 18312-31-7, Stearyl octanoate 20461-54-5, Iodide,
biological studies 24959-67-9, Bromide, biological studies 25231-21-4,
Polypropylene glycol stearyl ether 25265-75-2, Butylene glycol
25322-68-3, Polyethylene glycol 25322-69-4, Polypropylene glycol
25618-55-7D, Polyglycerin, fatty acid esters
26281-43-6, 3,5-Dichloro-2-hydroxybenzenesulfonic acid 27458-93-1,
Isostearyl alcohol 32797-18-5, 1,3-Butadien-1-ol 36653-82-4, Hexadecyl
alcohol 38304-91-5, Minoxidil 39467-17-9, Zinc stannate 51744-92-4,
 α -Tocopheryl linoleate 52225-20-4 52296-98-7, Octadecanediol
71276-50-1, α -Tocopherol phosphate 77752-14-8, Purcellin oil
476494-41-4

RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use);
BIOL (Biological study); USES (Uses)
(compns. containing; purification and characterization of autoclavable
superoxide dismutase (SOD) isoenzyme from Potentilla atrosanguinea, and
use of SOD in cosmetic, food and pharmaceutical compns.)

IT 50-70-4D, Sorbitol, esters 112-80-1, Oleic
acid, biological studies 112-80-1D, Oleic acid, glycerides
RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use);
BIOL (Biological study); USES (Uses)
(compns. containing; purification and characterization of autoclavable
superoxide dismutase (SOD) isoenzyme from Potentilla atrosanguinea, and
use of SOD in cosmetic, food and pharmaceutical compns.)

L68 ANSWER 4 OF 57 HCA COPYRIGHT 2004 ACS on STN

137:19759 Pourable fat-based emulsified frying composition

. Fabian, Juergen Heinz; Sein, Arjen; Verheij, Jan Adranius; Williams,
Andrea (Unilever N.V., Neth.; Unilever PLC; Hindustan Lever Ltd.). PCT
Int. Appl. WO 2002045519 A1 20020613, 27 pp. DESIGNATED STATES: W: AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG,
MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI,

FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG, TR.
(English). CODEN: PIXXD2. APPLICATION: WO 2001-EP13310 20011114.

PRIORITY: EP 2000-310907 20001207.

- AB Water continuous, pourable compns. comprising >50-80 wt% fat, an **emulsifier** having a hydrophilic/lipophilic balance value of at least 7, an antispattering composition and optionally a biopolymer in an amount of ≤0.3 wt% on total composition weight are suitable frying compns.
- IC ICM A23D007-00
ICS A23D007-02
- CC 17-9 (Food and Feed Chemistry)
ST frying compn pourable fat **emulsion**
IT Food functional properties
(antispattering; pourable fat-based **emulsified** frying composition)
- IT Diglycerides
Monoglycerides
RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process);
USES (Uses)
(diacetyl tartaric acid esters; pourable fat-based **emulsified** frying composition)
- IT Cooking
(frying; pourable fat-based **emulsified** frying composition)
- IT Diglycerides
Monoglycerides
RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process);
USES (Uses)
(mixed **monoglycerides** and diglycerides, esters with diacetyl tartaric acid; pourable fat-based **emulsified** frying composition)
- IT **Emulsifying** agents
Food emulsions
Hydrophile-lipophile balance value
(pourable fat-based **emulsified** frying composition)
- IT Biopolymers
Fats and Glyceridic oils, biological studies
Lecithins
Sunflower oil
RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process);
USES (Uses)
(pourable fat-based **emulsified** frying composition)
- IT 25618-55-7D, **Polyglycerol, esters**
RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process);
USES (Uses)
(Triodan; pourable fat-based **emulsified** frying composition)
- IT 7647-14-5, Sodium chloride, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(pourable fat-based **emulsified** frying composition)
- IT 50-21-5D, Lactic acid, glyceride esters 57-50-1D, Sucrose, esters
77-92-9D, Citric acid, glyceride esters 110-15-6D, Succinic acid,
glyceride esters 9000-30-0, Guar gum 9000-69-5D, Pectin, acetylated
9005-63-4D, **Polyoxyethylene sorbitan, fatty acid esters** 9005-67-8, Tween 60 11138-66-2, Xanthan
gum 24634-61-5, Potassium sorbate 25383-99-7, Sodium stearoyl
laurylate 182176-97-2, Admulf **Datem** 1935 225111-87-5,
Grindsted Citrem N 12

RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process); USES (Uses)
(pourable fat-based emulsified frying composition)

L68 ANSWER 5 OF 57 HCA COPYRIGHT 2004 ACS on STN

137:5449 Acidic oil-in-water type emulsion composition.

Shiiba, Daisuke; Asou, Yoshihide; Kawai, Shigeru; Nakajima, Yoshinobu (Kao Corporation, Japan). Eur. Pat. Appl. EP 1214886 A1 20020619, 15 pp.
DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR. (English). CODEN: EPXXDW. APPLICATION: EP 2001-129299 20011213. PRIORITY: JP 2000-381596 20001215.

AB The invention provides an acidic oil-in-water type emulsion composition which has an oil phase containing at least 20 % by weight of diacylglycerol and 0.5 to 5.0 % by weight of a crystallization inhibitor, and has excellent shelf stability at low temps. though it contains diacylglycerol at a high concentration, also good in appearance and flavor and useful as a diet or food for improving lipid metabolism

IC ICM A23D007-00

ICS A61K007-48; A23L001-24; A61K047-14

CC 17-6 (Food and Feed Chemistry)

ST acid emulsion health food

IT Health food

(acidic oil-in-water type emulsion composition for food)

IT Fatty acids, biological studies

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)

(esters; acidic oil-in-water type food emulsion containing)

IT Crystallization

(inhibitors; acidic oil-in-water type food emulsion containing)

IT Emulsions

(oil-in-water; acidic oil-in-water type emulsion composition for food)

IT 56-81-5D, Glycerol, diacyl derivs.

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)

(acidic oil-in-water type emulsion containing)

IT 57-50-1D, Sucrose, esters with fatty acids

12441-09-7D, Sorbitan, esters with fatty acids 25618-55-7D, Polyglycerol, esters with fatty acids

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(acidic oil-in-water type food emulsion containing)

L68 ANSWER 6 OF 57 HCA COPYRIGHT 2004 ACS on STN

136:262338 Method for dispersing plant sterol for beverage and a

plant sterol-dispersed beverage, of which particle size is nanometer-scale in dispersed beverage. Yoon, Won-Tae; Kim,

Kab-Sig; Kim, Bo-Chun; Han, Jung-Hee; Hong, Hyung-Pyo (Eugene Science Inc., S. Korea). PCT Int. Appl. WO 2002028204 A1 20020411, 34 pp.

DESIGNATED STATES: W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH,

CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2001-KR1640 20010928. PRIORITY: KR 2000-57652 20000930.

AB Disclosed are a method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage. The **dispersion** of plant sterols starts with the **admixing** of plant sterol to at least one **emulsifier** selected from the group consisting of sucrose fatty acid ester, sorbitan fatty acid ester and polyglycerin fatty acid ester, followed by melting the admixt. by heating at 60 to 200°C. Afterwards, the molten substance is mixed with an aqueous beverage alone or an **emulsifier**-containing aqueous beverage. This resulting mixture is stirred at a high speed to give a **dispersion** of plant sterols in an aqueous beverage. The beverage is superior in bioavailability, having good mouth feel, transparent aspect and no influence on the characteristic taste, flavor and color of the beverage.

IC ICM A23L002-38

CC 17-13 (Food and Feed Chemistry)

Section cross-reference(s): 63

ST beverage **dispersing** agent phytosterol; sterol plant beverage
dispersing agent anticholesteremic

IT Tea products

(beverages, green; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Coffee products

(beverages; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Beverages

(carbonated; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Lipoproteins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (cholesterol; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Beverages

(fruit drinks; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Beverages

(grain-based; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Beverages

(health; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Temperature effects, biological

(heat; method for **dispersing** plant sterol for beverage and a plant sterol-**dispersed** beverage, of which particle size is nanometer-scale in **dispersed** beverage)

IT Lipoproteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(low-d., cholesterol; method for **dispersing** plant sterol for
beverage and a plant sterol-**dispersed** beverage, of which
particle size is nanometer-scale in **dispersed** beverage)

IT Alcoholic beverages
Anticholesteremic agents
Beverages
 Dispersing agents
 Dispersion (of materials)
Drinking waters
Drying
 Emulsifying agents
Food additives
Food functional properties
Freeze drying
Fruit and vegetable juices
Homogenization
Hydrophile-lipophile balance value
Milk
Orange juice
Sonication
 (method for **dispersing** plant sterol for beverage and a plant
 sterol-**dispersed** beverage, of which particle size is
 nanometer-scale in **dispersed** beverage)

IT Sterols
RL: FFD (Food or feed use); PEP (Physical, engineering or chemical
process); PYP (Physical process); THU (Therapeutic use); BIOL (Biological
study); PROC (Process); USES (Uses)
 (phyto-; method for **dispersing** plant sterol for beverage and
 a plant sterol-**dispersed** beverage, of which particle size is
 nanometer-scale in **dispersed** beverage)

IT Glycine max
 (soybean milk; method for **dispersing** plant sterol for
 beverage and a plant sterol-**dispersed** beverage, of which
 particle size is nanometer-scale in **dispersed** beverage)

IT Drying
 (spray; method for **dispersing** plant sterol for beverage and a
 plant sterol-**dispersed** beverage, of which particle size is
 nanometer-scale in **dispersed** beverage)

IT Mixing
 (stirring; method for **dispersing** plant sterol for beverage
 and a plant sterol-**dispersed** beverage, of which particle size
 is nanometer-scale in **dispersed** beverage)

IT 57-88-5, Cholesterol, biological studies
RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (blood and lipoprotein; method for **dispersing** plant sterol
 for beverage and a plant sterol-**dispersed** beverage, of which
 particle size is nanometer-scale in **dispersed** beverage)

IT 57-50-1D, Sucrose, fatty acid esters
83-45-4, Sitostanol 83-46-5 83-48-7, Stigmasterol 474-60-2,
Campestanol 474-62-4, Campesterol 1337-30-0, **sorbitan**
laurate 12441-09-7D, **Sorbitan, fatty acid**
esters 25618-55-7D, **Polyglycerol, fatty**
acid esters 37318-31-3, Sucrose stearate 37349-34-1,
Polyglycerol monostearate
RL: FFD (Food or feed use); PEP (Physical, engineering or chemical
process); PYP (Physical process); THU (Therapeutic use); BIOL (Biological
study); PROC (Process); USES (Uses)

(method for dispersing plant sterol for beverage and a plant sterol-dispersed beverage, of which particle size is nanometer-scale in dispersed beverage)

L68 ANSWER 7 OF 57 HCA COPYRIGHT 2004 ACS on STN

- 134:339855 **Compositions** comprising edible oils or fats and phytosterols and/or phytostanols substantially dissolved therein, method of making the same, and use thereof in treating or preventing cardiovascular disease and its underlying conditions. Zawistowski, Jerzy (Forbes Medi-Tech Inc., Can.). PCT Int. Appl. WO 2001032029 A2 20010510, 22 pp. DESIGNATED STATES: W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2000-CA1298 20001103. PRIORITY: US 1999-434356 19991103.
- AB A composition comprises an edible oil or fat and one or more phytosterols and/or phytostanols, wherein the phytosterols and/or phytostanols are substantially completely dissolved therein by a method in which the phytosterols and/or phytostanols are heated to form a molten material which is then added to a heated oil or fat and the composition so formed is cooled to room temperature
- IC ICM A23D
- CC 17-9 (Food and Feed Chemistry)
Section cross-reference(s): 18, 63
- IT Anticholesteremic agents
Atherosclerosis
Beverages
Bread
Drugs
 Emulsifying agents
Hypercholesterolemia
Surfactants
 (compsns. comprising edible oils or fats with dissolved phytosterols and/or phytostanols, and their manufacture and use in treating or preventing atherosclerosis)
- IT **Fatty acids, biological studies**
RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (esters, polyoxyethylated; compsns. comprising edible oils or fats with dissolved phytosterols and/or phytostanols, and their manufacture and use in treating or preventing atherosclerosis)
- IT Carboxylic acids, biological studies
RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (glycerol fatty acid esters;
 compsns. comprising edible oils or fats with dissolved phytosterols and/or phytostanols, and their manufacture and use in treating or preventing atherosclerosis)
- IT **Fatty acids, biological studies**
RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (saturated; compsns. comprising edible oils or fats with dissolved phytosterols and/or phytostanols, and their manufacture and use in treating or preventing atherosclerosis)
- IT 56-81-5D, Glycerol, fatty acid

esters 57-50-1D, Sucrose, **fatty acid**
esters 57-55-6D, Propylene glycol, **fatty acid**
esters 57-88-5, Cholest-5-en-3-ol (3 β)-, biological studies
83-45-4, Sitostanol 83-46-5 83-47-6, Clionasterol 83-48-7,
Stigmasterol 102-71-6D, Triethanolamine, difatty alkyl, biological
studies 107-43-7D, Betaine, alkyl derivs. 110-15-6D, Succinic acid,
sulfo salts 313-04-2, Desmosterol 474-60-2, Campestanol 474-62-4,
Campesterol 474-63-5, Chalinasterol 474-67-9, Brassicasterol
481-16-3, Poriferasterol 9005-71-4, Tween 65 9016-45-9 9036-19-5,
Octylphenoxy-polyethoxyethanol 11138-66-2, Xanthan gum 12441-09-7D,
Sorbitan, esters 12441-09-7D, **Sorbitan**, **fatty acid esters**
25322-68-3, Polyethylene glycol
25322-69-4D, Polypropylene glycol, alkyl and polyethoxylated derivs.
25618-55-7, Polyglycerol 26636-37-3 34344-66-6, Polysorbic acid
36422-25-0, Brassicastanol 55529-51-6, Poriferastanol 59113-36-9D,
Diglycerol, **fatty acid esters**
106392-12-5D, Poloxamer, derivs. 252055-09-7, Phytrol
RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological
study); USES (Uses)
(compns. comprising edible oils or fats with dissolved phytosterols
and/or phytostanols, and their manufacture and use in treating or preventing
atherosclerosis)

IT **56-81-5D, Glycerol, fatty acid**
esters
RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological
study); USES (Uses)
(compns. comprising edible oils or fats with dissolved phytosterols
and/or phytostanols, and their manufacture and use in treating or preventing
atherosclerosis)

L68 ANSWER 8 OF 57 HCA COPYRIGHT 2004 ACS on STN
134:105846 Clear aqueous **dispersions** of triglycerides and
surfactants for delivery of drugs and nutrients. Chen, Feng-Jing; Patel,
Mahesh V. (Lipocene, Inc., USA). PCT Int. Appl. WO 2001001960 A1
20010111, 103 pp. DESIGNATED STATES: W: AE, AG, AL, AM, AT, AU, AZ, BA,
BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO,
RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH,
CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE,
NL, PT, SE, SN, TD, TG. (English). CODEN: PIXXD2. APPLICATION: WO
2000-US15133 20000602. PRIORITY: US 1999-345615 19990630.

AB The present invention relates to drug and nutrient delivery systems, and
in particular to pharmaceutical compns. and methods for improved
solubilization of triglycerides and improved delivery of therapeutic
agents. Compns. of the present invention include a triglyceride and a
carrier, where the carrier is formed from a combination of at least two
surfactants, at least one of which is hydrophilic. Upon dilution with an
aqueous solvent, the composition forms a clear, aqueous **dispersion** of the
triglyceride and surfactants. An optional therapeutic agent can be
incorporated into the composition, or can be co-administered with the
composition.

The invention also provides methods of enhancing triglyceride solubility and
methods of treatment with therapeutic agents using these compns. Several
formulations were presented of compns. that can be prepared according to the
present invention using a variety of therapeutic agents. Examples of aqueous

dispersions include: (1) Cremophor RH-40 0.75, Peceol 0.25, corn oil 0.40, and fenofibrate 0.10; (2) Cremophor RH-40 0.57, Crovol M-40 0.43, corn oil 0.40, and Rofecoxib 0.15; (3) Tween 80 0.70, Tween 85 0.35, Miglyol 812 0.30, Paclitaxel 0.10, and PEG 400 0.25; or (4) Kessco PEG 400 MO 0.33, corn oil 0.30, and Terbinafine 0.25 parts, resp.

IC ICM A61K009-08
ICS A61K009-10; A61K009-12; A61K009-14; A61K009-16; A61K009-20;
A61K009-28; A61K009-48; A61K009-66

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 18

ST glyceride surfactant **dispersion** drug nutrient delivery system

IT **Monoglycerides**

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(C6-22, acetylated; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Diglycerides

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(C6-22; clear aqueous **dispersions** of triglyceride and surfactants
for delivery of drugs and nutrients)

IT Glycerides, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(C8-10, ethoxylated; clear aqueous **dispersions** of triglyceride
and surfactants for delivery of drugs and nutrients)

IT Glycerides, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(C8-10; clear aqueous **dispersions** of triglyceride and surfactants
for delivery of drugs and nutrients)

IT Glycerides, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(C8-12, Captec 350; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Amino acids, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(N-fatty acyl; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT **Monoglycerides**

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(acetates; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Drug delivery systems

(aerosols; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Phenols, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(alkyl, ethoxylated; clear aqueous **dispersions** of triglyceride
and surfactants for delivery of drugs and nutrients)

IT Glycosides

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(alkyl; clear aqueous **dispersions** of triglyceride and surfactants
for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(almond; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(animal; clear aqueous **dispersions** of triglyceride and

surfactants for delivery of drugs and nutrients)

IT Beverages
(aqueous; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(babassu; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(beads; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Decomposition
(biodegrdn., enzymic, prevention of; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(borage seed; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(capsules; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Gelatins, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(capsules; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Antifoaming agents

Binders

Buffers

Chelating agents

Coloring materials

Compression

Cosmetics

Encapsulation

Flavoring materials

Freeze drying

Granulation

Homogenization

Hydrophile-lipophile balance value

Melting

Mixing

Molding

Nutrients

Odor and Odorous substances

Opacifiers

Peptidomimetics

Plasticizers

Preservatives

Size reduction

Solubilization

Solubilizers

Sonication

Spraying

Surfactants
(clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Alcohols, biological studies

Amides, biological studies

Bile salts

Canola oil
Castor oil
Coconut oil
Corn oil
Cottonseed oil
DNA
Diglycerides
Esters, biological studies
Glycerides, biological studies
Lecithins
Lysophosphatidic acids
Lysophosphatidylcholines
Lysophosphatidylethanolamines
Lysophosphatidylserines
Lysophospholipids
 Monoglycerides
Oligodeoxyribonucleotides
Oligonucleotides
Olive oil
Palm kernel oil
Palm oil
Peanut oil
Peptides, biological studies
Phosphatidic acids
Phosphatidylcholines, biological studies
Phosphatidylethanolamines, biological studies
Phosphatidylglycerols
Phosphatidylserines
Phospholipids, biological studies
Polyoxyalkylenes, biological studies
Proteins, general, biological studies
Quaternary ammonium compounds, biological studies
RNA
Rape oil
Safflower oil
Soybean oil
Sterols
Sunflower oil
Vitamins
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (clear aqueous **dispersions** of triglyceride and surfactants for
 delivery of drugs and nutrients)

IT Glycerides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (coco, Pureco 76; clear aqueous **dispersions** of triglyceride and
 surfactants for delivery of drugs and nutrients)

IT Glycerides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (corn, ethoxylated; clear aqueous **dispersions** of triglyceride and
 surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (currant, Ribes nigrum seed; clear aqueous **dispersions** of
 triglyceride and surfactants for delivery of drugs and nutrients)

IT Tackifiers
 (detackifiers; clear aqueous **dispersions** of triglyceride and
 surfactants for delivery of drugs and nutrients)

IT Bath preparations

(douches; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(drops; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(elixirs; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(emulsions; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT **Fatty acids**, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(esters, salts; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Polyoxyalkylenes, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(esters; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Castor oil
Corn oil
Fatty acids, biological studies

Sterols
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(ethoxylated; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(evening primrose; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(fish; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(gels; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(granules; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(grape seed; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Castor oil
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(hydrogenated, ethoxylated; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Castor oil
Coconut oil
Cottonseed oil
Lecithins
Palm oil
Soybean oil
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(hydrogenated; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)

IT Enzymes, biological studies

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(inhibitors; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Surfactants
(ionic; clear aqueous **dispersions** of triglyceride and surfactants
for delivery of drugs and nutrients)

IT Drug delivery systems
(liqs., **dispersions**; clear aqueous **dispersions** of
triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(liqs.; clear aqueous **dispersions** of triglyceride and surfactants
for delivery of drugs and nutrients)

IT Glycerides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(long-chain; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(lotions; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(lozenges; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Lysophosphatides
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(lysophosphatidylglycerols; clear aqueous **dispersions** of
triglyceride and surfactants for delivery of drugs and nutrients)

IT Glycerides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(medium-chain; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(mustard; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(ointments, creams; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(ointments; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Peptides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(oligopeptides; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Glycerides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(palm kernel-oil, ethoxylated; clear aqueous **dispersions** of
triglyceride and surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(pastes; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Antioxidants
(pharmaceutical; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Alcohols, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(polyhydric; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

- IT Drug delivery systems
(powders; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Phosphatidylethanolamines, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(reaction products, with polyvinylpyrrolidone; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(sesame; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(shark-liver oil; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(solids; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(solns.; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Sterols
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(soya, ethoxylated; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(sprays; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Carbohydrates, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(sugar esters; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Carbohydrates, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(sugar ethers; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Diet
(supplements; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(suppositories, vaginal; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(suppositories; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(suspensions; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(syrups; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Drug delivery systems
(tablets; clear aqueous **dispersions** of triglyceride and surfactants for delivery of drugs and nutrients)
- IT Glycosides
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(thioglycosides, alkyl; clear aqueous **dispersions** of triglyceride

and surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(vegetable, ethoxylated, hydrogenated; clear aqueous **dispersions**
of triglyceride and surfactants for delivery of drugs and nutrients)

IT Fats and Glyceridic oils, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(vegetable, hydrogenated; clear aqueous **dispersions** of
triglyceride and surfactants for delivery of drugs and nutrients)

IT Glycerides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(vegetable-oil; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT Drug delivery systems
(wafers; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT 9005-25-8, Starch, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(capsules; clear aqueous **dispersions** of triglyceride and
surfactants for delivery of drugs and nutrients)

IT 50-21-5D, Lactic acid, acyl esters 50-70-4D, Sorbitol,
esters 50-99-7D, D-Glucose, alkyl esters, biological studies
56-81-5, Glycerol, biological studies 57-10-3, Hexadecanoic acid,
biological studies 57-11-4, Octadecanoic acid, biological studies
57-55-6, Propylene glycol, biological studies 57-55-6D, Propylene
glycol, esters and ethers 57-83-0, Progesterone, biological studies
57-88-5, Cholesterol, biological studies 60-33-3, 9,12-Octadecadienoic
acid (9Z,12Z)-, biological studies 64-17-5, Ethanol, biological studies
67-63-0, Isopropanol, biological studies 69-65-8, Mannitol 69-79-4D,
Maltose, alkyl esters 71-36-3, Butanol, biological studies 77-89-4,
Acetyl triethylcitrate 77-90-7, Acetyl tributyl citrate 77-92-9D,
Citric acid, esters 77-93-0, Triethylcitrate 77-94-1, Tributylcitrate
81-24-3, Taurocholic acid 81-25-4, Cholic acid 83-44-3, Deoxycholic
acid 87-69-4D, Tartaric acid, esters, biological studies 100-51-6,
Benzyl alcohol, biological studies 102-76-1, Triacetin 105-37-3, Ethyl
propionate 105-54-4, Ethyl butyrate 105-60-2, ϵ -Caprolactam,
biological studies 105-60-2D, Caprolactam, N-alkyl derivs. 106-32-1,
Ethyl caprylate 107-21-1D, Ethylene glycol, esters 107-88-0,
1,3-Butanediol 110-15-6D, Succinic acid, esters 110-27-0, Isopropyl
myristate 111-62-6, Ethyl oleate 111-90-0, Transcutol 112-80-1
, Oleic acid, biological studies 115-77-5, Pentaerythritol, biological
studies 115-77-5D, Pentaerythritol, esters 115-83-3, Pentaerythritol
tetraesteareate 118-71-8, Maltol 122-32-7, Glyceryl trioleate
124-07-2, Caprylic acid, biological studies 127-19-5, Dimethylacetamide
128-13-2, Ursodeoxycholic acid 141-22-0 142-62-1, Caproic acid,
biological studies 142-91-6, Isopropyl palmitate 143-07-7, Lauric
acid, biological studies 151-41-7, Lauryl sulfate 302-79-4, Retinoic
acid 334-48-5, Capric acid 360-65-6, Glycodeoxycholic acid 434-13-9,
Lithocholic acid 463-40-1 474-25-9, Chenodeoxycholic acid 475-31-0,
Glycocholic acid 502-44-3, ϵ -Caprolactone 516-35-8,
Taurochenodeoxycholic acid 516-50-7, Taurodeoxycholic acid 537-40-6,
Glyceryl trilinoleate 538-23-8, Glyceryl tricaprylate 538-24-9,
Glyceryl trilauroate 541-15-1D, Carnitine, fatty esters, salts
542-28-9, 8-Valerolactone 544-35-4, Ethyl linoleate 544-63-8,
Myristic acid, biological studies 577-11-7, Sodium docusate 616-45-5,
2-Pyrrolidone 616-45-5D, Pyrrolidone, N-alkyl and N-hydroxyalkyl derivs.
621-70-5, Glyceryl tricaproate 621-71-6, Glyceryl tricaprate 623-84-7,
Propylene glycol diacetate 640-79-9, Glycochenodeoxycholic acid

675-20-7, 2-Piperidone 872-50-4, N-Methylpyrrolidone, biological studies
1331-12-0, Propylene glycol monoacetate 1335-71-3, Propylene glycol
oleate 1338-39-2, **Sorbitan** monolaurate 1338-41-6,
Sorbitan monostearate 1338-43-8, **Sorbitan**
monooleate 1935-18-8, Palmitoyl carnitine 1972-08-3, Dronabinol
2466-77-5, Lauroyl carnitine 2687-91-4, N-Ethylpyrrolidone 2687-94-7,
N-Octylpyrrolidone 2687-96-9, N-Lauryl-2-pyrrolidone 3008-50-2,
Pentaerythritol tetracaprylate 3068-88-0, β -Butyrolactone
3445-11-2 5306-85-4, Dimethyl isosorbide 6990-06-3, Fusidic acid
7664-93-9D, Sulfuric acid, alkyl esters, biological studies 8007-43-0,
Sorbitan sesquioleate 9002-89-5, Polyvinylalcohol 9002-92-0,
Polyethylene glycol lauryl ether 9002-96-4 9003-39-8,
Polyvinylpyrrolidone 9003-39-8D, Polyvinylpyrrolidone, reaction products
with phosphatidylethanolamine 9004-34-6D, Cellulose, ethers, biological
studies 9004-57-3, Ethylcellulose 9004-65-3, Hydroxypropyl
methylcellulose 9004-67-5, Methylcellulose 9004-74-4,
Methoxy-polyethylene glycol 9004-81-3, Polyethylene glycol laurate
9004-95-9, Polyethylene glycol cetyl ether 9004-96-0, Polyethylene
glycol oleate 9004-98-2, Polyethylene glycol oleyl ether 9004-99-3,
Polyethylene glycol stearate 9005-00-9, Polyethylene glycol stearyl
ether 9005-02-1, Polyethylene glycol dilaurate 9005-07-6, Polyethylene
glycol dioleate 9005-08-7, Polyethylene glycol distearate 9005-32-7D,
Alginic acid, salts 9005-37-2, Propylene glycol alginate 9005-63-4D,
Polyoxyethylene **sorbitan**, esters with fatty
acids 9005-64-5, Polysorbate 20 9005-65-6, Polysorbate 80
9005-66-7, Tween 40 9005-67-8, Tween 60 9005-70-3, Tween 85
9007-48-1, Polyglyceryl oleate 9009-32-9, Polyglyceryl stearate
9011-29-4 9016-45-9 9041-08-1, Heparin sodium 9050-36-6,
Maltodextrin 9062-73-1, Polyethylene glycol **sorbitan** laurate
9062-90-2, Polyethylene glycol **sorbitan** oleate 11140-04-8,
Imwitor 988 12619-70-4, Cyclodextrin 12619-70-4D, Cyclodextrin,
propanediol and sulfobutyl ethers 13081-97-5, Pentaerythritol
tetracaprate 14440-80-3, Stearoyl-2-lactylate 14465-68-0, Glyceryl
trilinolenate 14605-22-2, Taurooursodeoxycholic acid 19321-40-5,
Pentaerythritol tetraoleate 22882-95-7, Isopropyl linoleate
25168-73-4, Sucrose monostearate 25265-75-2, Butanediol 25322-68-3D,
Polyethylene glycol, esters 25322-69-4, Polypropylene glycol
25339-99-5, Sucrose monolaurate 25496-72-4, Glyceryl monooleate
25618-55-7D, Polyglycerol, esters with fatty
acids 25637-84-7, Glyceryl dioleate 25637-97-2, Sucrose
dipalmitate 26264-14-2D, Propanediol, ethers with cyclodextrin
26266-57-9, **Sorbitan** monopalmitate 26266-58-0,
Sorbitan trioleate 26402-22-2, Glyceryl monocaprate
26402-26-6, Glyceryl monocaprylate 26446-38-8, Sucrose monopalmitate
26658-19-5, **Sorbitan** tristearate 27154-43-4D,
Piperidone, N-alkyl derivs. 27195-16-0, Sucrose distearate 27215-38-9,
Glyceryl monolaurate 27321-96-6, Polyethylene glycol cholesterol
27638-00-2, Glyceryl dilaurate 29874-09-7, Myristoyl carnitine
31692-85-0, Glycofurool 31694-55-0D, Polyoxyethylene **glycerol**,
esters with fatty acids 33069-62-4,
Paclitaxel 36354-80-0, Glyceryl dicaprylate 37220-82-9, Peceol
37321-62-3, Propylene glycol laurate 37348-65-5, Linoleic acid glyceride
42924-53-8, Nabumetone 49562-28-9, Fenofibrate 51192-09-7 51852-65-4
51938-44-4, **Sorbitan** sesquistearate 53988-07-1, Glyceryl
dicaprate 54392-26-6, **Sorbitan** monoisostearate 59865-13-3,
Cyclosporin A 62125-22-8, Pentaerythritol tetraisostearate 64480-66-6,
Glycoursodeoxycholic acid 68958-64-5, Polyethylene glycol glyceryl

trioleate 69070-98-0 76009-37-5 77944-79-7, Softisan 378
79665-94-4 83138-62-9, Polyglyceryl isostearate 91161-71-6,
Terbinafine 93790-70-6, Cholylsarcosine 93790-72-8 94423-19-5
102051-00-3 106392-12-5, Polyoxyethylene-polyoxypropylene block
copolymer 110540-43-7 129318-43-0, Alendronate sodium 150372-93-3,
Polyethylene glycol glycerol laurate 162011-90-7, Rofecoxib
301524-91-4, Captex 810

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(clear aqueous dispersions of triglyceride and surfactants for
delivery of drugs and nutrients)

IT 50-70-4D, Sorbitol, esters 112-80-1, Oleic
acid, biological studies 1338-43-8, Sorbitan
monooleate 26658-19-5, Sorbitan tristearate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(clear aqueous dispersions of triglyceride and surfactants for
delivery of drugs and nutrients)

L68 ANSWER 9 OF 57 HCA COPYRIGHT 2004 ACS on STN

133:334360 Oil and fat compositions with controlled contents of
medium-chain fatty acids in constituent fatty
acids and cooking oils containing the compositions.

Takeuchi, Hiroyuki; Itakura, Megumi; Kubota, Fumie; Taguchi, Nobuo
(Nisshin Oil Mills Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 2000309794 A2
20001107, 9 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP
1999-316243 19991108. PRIORITY: JP 1998-323665 19981113; JP 1999-49300
19990226.

AB The compns., which hardly become body fat and have cooking properties
similar to those of usual edible oils, show content of medium-chain
fatty acids in the total constituent fatty
acids 5-23% and content of triglycerides having 2 medium-chain
fatty acids in the total triglycerides 1-20%. Cooking
oils containing the above compns. are also claimed. The oil and fat compns.
preferably show content of glycerides having 3 medium-chain fatty
acids in the total triglycerides ≤3% and content of
long-chain saturated fatty acids in the total constituent
long-chain fatty acids ≤20%. The oil and fat
compns. may contain (a) ≥1 selected from sucrose fatty
acid esters and polyglycerin fatty
acid esters 0.1-3, (b) succinic acid
monoglycerides 0.01-2, and (c) ≥1 selected from
monoglycerides, diglycerides, sorbitol fatty
acid esters, and sorbitan fatty
acid esters 0.1-3 at total content of (a), (b), and (c)
0.3-5%. A mixture of 80 parts purified rapeseed oil and 20 parts
medium-chain triglycerides (caprylic acid:capric acid 3:1) was treated
with MeONa at 120° for 30 min for random
transesterification, and the resulting oil composition showing
triglyceride composition. The composition was mixed with Ryoto Sugar Ester
(sucrose fatty acid ester) 170 2.5, Poem B
10 (succinic acid monoglyceride) 0.1, and Poem O 80 (sorbitan fatty acid ester) 1% to
give a cooking oil composition. Preventive effect of the composition against
accumulation of body fat was shown in rats. The composition was used to frying
vegetables and deep-frying of shrimp, croquettes, and chicken.

IC ICM C11C003-10

ICS A23D009-00; C11B005-00

CC 17-9 (Food and Feed Chemistry)

ST cooking oil compn medium chain fatty acid content;

emulsifier sucrose fatty acid ester
cooking oil compn; polyglycerin **fatty acid**
emulsifier cooking oil compn; sorbitol fatty
acid ester emulsifier cooking oil compn;
sorbitan fatty acid ester
emulsifier cooking oil compn

IT Glycerides, biological studies
RL: FFD (Food or feed use); PNU (Preparation, unclassified); BIOL (Biological study); PREP (Preparation); USES (Uses)
(C6-12, saturated; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Emulsifying agents
(antifoaming agents; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Fats and Glyceridic oils, biological studies
RL: FFD (Food or feed use); PNU (Preparation, unclassified); BIOL (Biological study); PREP (Preparation); USES (Uses)
(cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Edible oils
RL: FFD (Food or feed use); RCT (Reactant); BIOL (Biological study); RACT (Reactant or reagent); USES (Uses)
(cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Antifoaming agents
(**emulsifiers**; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Fatty acids, biological studies
RL: FFD (Food or feed use); MOA (Modifier or additive use); BIOL (Biological study); USES (Uses)
(**esters** with polyhydric alcs., antifoaming agents; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Cooking
(frying; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Glycerides, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(long-chain, controlled content of; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT Corn oil
Palm oil
Rape oil
Soybean oil
RL: RCT (Reactant); RACT (Reactant or reagent)
(transesterification with caprylic acid- and capric acid-containing triglycerides; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT 37318-79-9, Poem O 80 52683-61-1, Ryoto Sugar Ester O 170
55840-14-7, Poem B 10

RL: FFD (Food or feed use); MOA (Modifier or additive use); BIOL (Biological study); USES (Uses)
(antifoaming agent; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT 50-70-4D, Sorbitol, **fatty acid esters**
57-50-1D, Sucrose, **fatty acid esters**
110-15-6D, Succinic acid, **esters with monoglycerides**
12441-09-7D, **Sorbitan, fatty acid esters**
25618-55-7D, Polyglycerin, **fatty acid esters**

RL: FFD (Food or feed use); MOA (Modifier or additive use); BIOL (Biological study); USES (Uses)
(antifoaming agents; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

IT 50-70-4D, Sorbitol, **fatty acid esters**

RL: FFD (Food or feed use); MOA (Modifier or additive use); BIOL (Biological study); USES (Uses)
(antifoaming agents; cooking oil compns. with controlled contents of medium-chain **fatty acids** in constituent **fatty acids**)

L68 ANSWER 10 OF 57 HCA COPYRIGHT 2004 ACS on STN
133:213151 Pharmaceutical **compositions** and methods for improved delivery of hydrophobic therapeutic agents. Patel, Manesh V.; Chen, Feng-Jing (Lipocene, Inc., USA). PCT Int. Appl. WO 2000050007 A1 20000831, 98 pp. DESIGNATED STATES: W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG. (English). CODEN: PIXD2. APPLICATION: WO 2000-US165 20000105. PRIORITY: US 1999-258654 19990226.

AB The present invention relates to triglyceride-free pharmaceutical compns. for delivery of hydrophobic therapeutic agents. Compns. of the present invention include a hydrophobic therapeutic agent and a carrier, where the carrier is formed from a combination of a hydrophilic surfactant and a hydrophobic surfactant. Upon dilution with an aqueous solvent, the composition forms a clear, aqueous **dispersion** of the surfactants containing the therapeutic agent. The invention also provides methods of treatment with hydrophobic therapeutic agents using these compns. A pharmaceutical composition contained cyclosporin 0.14, Cremophor RH-40 0.41, Arlacell186 0.29, sodium taurocholate 0.26, and propylene glycol 0.46 mg.

IC ICM A61K009-127
ICS A61K009-107; A61K038-13

CC 63-6 (Pharmaceuticals)

IT **Monoglycerides**
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(acetates; pharmaceutical compns. and methods for improved delivery of hydrophobic therapeutic agents)

IT **Fatty acids, biological studies**
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(essential; pharmaceutical compns. and methods for improved delivery of hydrophobic therapeutic agents)

IT Corn oil
 Fatty acids, biological studies
 Glycerides, biological studies
 Olive oil
 Palm kernel oil
 Peanut oil
 Sterols
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (ethoxylated; pharmaceutical compns. and methods for improved delivery
 of hydrophobic therapeutic agents)

IT Amino acids, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (**fatty acid** derivs.; pharmaceutical compns. and
 methods for improved delivery of hydrophobic therapeutic agents)

IT Alcohols, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (lower, **fatty acids esters**;
 pharmaceutical compns. and methods for improved delivery of hydrophobic
 therapeutic agents)

IT Alcohols, biological studies
Amides, biological studies
Bile acids
Corticosteroids, biological studies
Diglycerides
Esters, biological studies
 Fatty acids, biological studies
 Glycerides, biological studies
 Lecithins
 Lysophosphatidic acids
 Lysophosphatidylcholines
 Lysophosphatidylethanolamines
 Lysophosphatidylserines
 Lysophospholipids
 Monoglycerides
 Peptides, biological studies
 Phosphatidic acids
 Phosphatidylcholines, biological studies
 Phosphatidylethanolamines, biological studies
 Phosphatidylglycerols
 Phosphatidylserines
 Phospholipids, biological studies
 Polyoxyalkylenes, biological studies
 Salts, biological studies
 Sex hormones
 Sterols
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (pharmaceutical compns. and methods for improved delivery of
 hydrophobic therapeutic agents)

IT **Fatty acids**, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (salts; pharmaceutical compns. and methods for improved delivery of
 hydrophobic therapeutic agents)

IT 50-14-6, Ergocalciferol 50-21-5D, Lactic acid, glycerides 50-24-8,
Prednisolone 50-28-2, Estradiol, biological studies 50-70-4, Sorbitol,
biological studies 51-48-9, L-Thyroxine, biological studies 52-01-7,
Spironolactone 55-98-1, Busulphan 56-81-5, 1,2,3-Propanetriol,
biological studies 56-81-5D, Glycerol, polyethylene
fatty acid esters 57-10-3, Hexadecanoic

acid, biological studies 57-11-4, Octadecanoic acid, biological studies 57-55-6, 1,2-Propanediol, biological studies 57-55-6D, Propylene glycol, ethers 57-83-0, Progesterone, biological studies 57-88-5, Cholesterol, biological studies 57-88-5D, Cholesterol, polyoxyethylene derivs. 60-33-3, 9,12-Octadecadienoic acid (9Z,12Z)-, biological studies 64-17-5, Ethanol, biological studies 66-76-2, Dicoumarol 67-20-9, Nitrofurantoin 67-45-8, Furazolidone 67-63-0, Isopropanol, biological studies 67-96-9, Dihydrotachysterol 67-97-0, Cholecalciferol 69-65-8, Mannitol 71-36-3, Butanol, biological studies 76-57-3, Codeine 76-99-3, Methadone 77-89-4, Acetyl triethylcitrate 77-90-7, Acetyl tributyl citrate 77-92-9D, Citric acid, diglycerides 77-93-0, Triethylcitrate 77-94-1, Tributylcitrate 81-24-3 81-25-4 83-44-3 87-33-2, Isosorbide dinitrate 87-69-4D, Tartaric acid, glycerides, biological studies 90-82-4, Pseudoephedrine 100-51-6, Benzenemethanol, biological studies 102-76-1, Triacetin 104-31-4, Benzonatate 105-37-3, Ethyl propionate 105-54-4, Ethyl butyrate 105-60-2, biological studies 105-60-2D, Caprolactam, N-Alkyl derivs. 106-32-1, Ethyl caprylate 107-21-1, 1,2-Ethanediol, biological studies 110-27-0, Isopropyl myristate 111-03-5, Glyceryl monooleate 111-62-6, Crodamol EO 111-90-0, Transcutol 112-80-1, 9-Octadecenoic acid (9Z)-, biological studies 113-15-5, Ergotamine 113-92-8, Chlorpheniramine 115-77-5, biological studies 115-83-3, Pentaerythrityl Tetra stearate 124-07-2, Octanoic acid, biological studies 125-84-8, Aminoglutethimide 126-07-8, Griseofulvin 127-19-5, Dimethylacetamide 128-13-2 141-22-0 142-18-7, Glyceryl monolaurate 142-62-1, Hexanoic acid, biological studies 142-91-6, Isopropyl palmitate 143-07-7, Dodecanoic acid, biological studies 151-41-7, Lauryl sulfate 155-97-5, Pyridostigmine 298-46-4, 5H-Dibenz[b,f]azepine-5-carboxamide 298-57-7, Cinnarizine 298-81-7, Methoxsalen 300-62-9, Amphetamine 302-79-4, Tretinoil 303-49-1, Clomipramine 321-64-2, Tacrine 334-48-5, Decanoic acid 359-83-1, Pentazocine 360-65-6 378-44-9, Betamethasone 404-86-4, Capsaicin 437-38-7, Fentanyl 443-48-1, Metronidazole 463-40-1 474-25-9 475-31-0 511-12-6, Dihydroergotamine 516-35-8 516-50-7 520-85-4, Medroxyprogesterone 542-28-9, 8-Valerolactone 544-35-4, Ethyl linoleate 544-63-8, Tetradecanoic acid, biological studies 577-11-7, Sodium docusate 595-33-5 616-45-5, Pyrrolidone 616-45-5D, Pyrrolidone, N-Alkyl derivs. 623-84-7, Propylene glycol diacetate 640-79-9 675-20-7, 2-Piperidone 872-50-4, N-Methylpyrrolidone, biological studies 1134-47-0, Baclofen 1331-12-0, Propylene glycol monoacetate 1335-71-3, Propylene glycol oleate 1338-39-2, Arlacel 20 1338-43-8, Span 80 1397-89-3, Amphotericin B 1406-16-2, Vitamin D 1406-18-4, Vitamin E 1951-25-3, Amiodarone 1972-08-3, Tetrahydrocannabinol 2687-91-4, N-Ethylpyrrolidone 2687-94-7 2687-96-9 3068-88-0, β -Butyrolactone 3445-11-2 4419-39-0, BeclomethAsone 4759-48-2, Isotretinoin 5104-49-4, Flurbiprofen 5306-85-4, Dimethyl isosorbide 7261-97-4, Dantralene 7488-99-5, α Carotene 7664-93-9D, Sulfuric acid, salts alkyl derivs., biological studies 7689-03-4, Camptothecin 8007-43-0, Sorbitan sesquioleate 9002-89-5, Polyvinylalcohol 9002-92-0, Brij 30 9002-96-4 9003-39-8, Polyvinylpyrrolidone 9004-65-3, Hydroxypropyl methylcellulose 9004-74-4, Methoxy polyethylene glycol 9004-81-3, Polyoxyethylene laurate 9004-95-9, Polyoxyethylene cetyl ether 9004-96-0, PEG-32 oleate 9004-98-2, Polyoxyethylene oleyl ether 9004-99-3, Polyoxyethylene stearate 9005-00-9, Polyoxyethylene stearyl ether 9005-02-1, Polyoxyethylene dilaurate 9005-07-6, Polyoxyethylene dioleate 9005-08-7, Polyoxyethylene distearate 9005-32-7D, Alginic acid, salts 9005-37-2, Propylene glycol alginate 9005-63-4D, Polyoxyethylene sorbitan

, derivs. 9005-63-4D, Polyoxyethylene sorbitan, fatty acid esters 9005-64-5, Tween 20 9005-65-6, Polysorbate 80 9005-66-7, Tween 40 9005-67-8, Tween 60 9007-48-1, PLUROLOLEIQUECC497 9011-21-6, Polyoxyethylene glyceryl stearate 9016-45-9 9036-19-5 10238-21-8, Glyburide 10540-29-1, Tamoxifen 11103-57-4, Vitamin A 11140-04-8, Imwitor 988 12001-79-5, Vitamin K 12619-70-4, Cyclodextrin 12619-70-4D, Cyclodextrin, derivs. 12619-70-4D, Cyclodextrin, hydroxypropyl ethers 13081-97-5, Pentaerythrityl di stearate 14440-80-3, Stearoyl-2-lactylate 14605-22-2 15307-86-5, Diclofenac 15574-96-6, Pizotifen 15686-51-8, Clemastine 15687-27-1, Ibuprofen 18559-94-9, Albuterol 19356-17-3, Calcifediol 20594-83-6, Nalbuphine 20830-75-5, Digoxin 21256-18-8, Oxaprozin 21829-25-4, Nifedipine 22882-95-7, Isopropyl linoleate 22916-47-8, Miconazole 23288-49-5, Probucon 25168-73-4, Sucrose monostearate 25265-75-2, Butanediol 25322-68-3 25322-69-4, Polypropylene glycol 25339-99-5, Sucrose monolaurate 25523-97-1, Dexchlorpheniramine 25618-55-7D, **Polyglycerol, fatty acid esters** 25637-84-7, Glyceryl dioleate 25637-97-2, Sucrose dipalmitate 25812-30-0, Gemfibrozil 26266-57-9, **Sorbitan** monopalmitate 26266-58-0, **Sorbitan** Trioleate 26402-22-2, Glyceryl monocaprate 26402-26-6, Glyceryl monocaprylate 26446-38-8, Sucrose monopalmitate 27154-43-4D, Piperidone, N-Alkyl derivs. 27195-16-0, Sucrose distearate 27203-92-5, TRamadol 27638-00-2, Glyceryl dilaurate 29094-61-9, Glipizide 29767-20-2, Teniposide 31692-85-0, Glycofurool 32222-06-3, Calcitriol 33069-62-4, Paclitaxel 33419-42-0, Etoposide 34911-55-2, Bupropion 36354-80-0, Glyceryl dicaprylate 37321-62-3, Lauroglycol 38304-91-5, Minoxidil 41340-25-4, Etodolac 42924-53-8, Nabumetone 43200-80-2, Zopiclone 49562-28-9, Fenofibrate 49697-38-3, Rimexolone 51333-22-3, Budesonide 51481-61-9, Cimetidine 51938-44-4, **Sorbitan** sesquistearate 52581-71-2, Volpo 3 53123-88-9, Sirolimus 53168-42-6, Myvacet 9-45 53179-11-6, Loperamide 53230-10-7, Mefloquine 53988-07-1, Glyceryl dicaprate 54392-26-6, **Sorbitan** monoisostearate 54965-21-8, Albendazole 55079-83-9, Acitretin 55142-85-3, Ticlopidine 57107-97-8, Polyoxyethylene glyceryl oleate 59467-70-8, Midazolam 59865-13-3, Cyclosporine 60142-96-3, Gabapentin 61379-65-5, Rifapentine 61869-08-7 62013-04-1, Dirithromycin 62356-64-3 63590-64-7, Terazosin 63612-50-0, Nilutamide 63675-72-9, Nisoldipine 65271-80-9, Mitoxantrone 65277-42-1, Ketoconazole 68506-86-5, Vigabatrin
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(pharmaceutical compns. and methods for improved delivery of hydrophobic therapeutic agents)

IT 56-81-5D, **Glycerol, polyethylene fatty acid esters** 112-80-1, 9-Octadecenoic acid (9Z)-, biological studies 1338-43-8, Span 80
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(pharmaceutical compns. and methods for improved delivery of hydrophobic therapeutic agents)

L68 ANSWER 11 OF 57 HCA COPYRIGHT 2004 ACS on STN
133:119461 Propolis food compositions and their manufacture.
Hamanaka, Hiroyoshi; Midorikawa, Toshi (Nippon Propolis K. K., Japan).
Jpn. Kokai Tokkyo Koho JP 2000201634 A2 20000725, 7 pp.
(Japanese). CODEN: JKXXAF. APPLICATION: JP 1999-6335 19990113.
AB The food compns. are manufactured by mixing and heating propolis in H2O or mixts. of H2O with water-soluble solvents capable of forming hydrogen bonds with H2O, containing dissolved or dispersed organic acids having

≥2 CO₂H groups or those having CO₂H and amino groups and optionally containing micellar **polyol fatty acid ester-type emulsifying agents** and removing insol. propolis residues from the mixts. to give soluble propolis components dissolved in H₂O or mixts. of H₂O with the water-soluble solvents. The food compns. show good storage stability, improved texture, and antibacterial properties and are useful for treatment of chronic rhinitis and pollen allergy.

- IC ICM A23L001-076
CC 17-14 (Food and Feed Chemistry)
Section cross-reference(s): 1, 63
ST propolis food aq solvent carboxylate **emulsifier; polyol fatty ester emulsifier** propolis food; amino acid water soluble propolis food; rhinitis treatment propolis food carboxylate; pollen allergy treatment propolis food carboxylate
IT Pollen
(allergy; manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT Fatty acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(esters, with **polyols**; manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT Solvents
(hydrophilic; manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT Allergy inhibitors
Anti-inflammatory agents
Health food
Propolis
(manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT Amino acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT Emulsifying agents
(nonionic; manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT Carboxylic acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(polycarboxylic; manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT Nose
(rhinitis, chronic; manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional **polyol fatty acid ester emulsifiers**)
IT 50-70-4, D-Sorbitol, biological studies 56-40-6, Glycine, biological studies 56-41-7, L-Alanine, biological studies 56-81-5, 1,2,3-Propanetriol, biological studies

56-84-8, Aspartic acid, biological studies 56-86-0, Glutamic acid, biological studies 57-55-6, 1,2-Propanediol, biological studies 58-86-6, D-Xylose, biological studies 64-17-5, Ethanol, biological studies 77-92-9, biological studies 124-04-9, Hexanedioic acid, biological studies 1330-80-9, Propylene glycol monooleate 1338-39-2, Sorbitan monolaurate 6915-15-7 7732-18-5, Water, biological studies 25339-99-5, Sucrose monolaurate 25496-92-8, Sucrose monooleate 27215-38-9, Glycerin monolaurate 71012-10-7, Tetraglycerin monooleate 83707-54-4, Sorbitan monoricinoleate 123609-87-0 285556-97-0 285556-98-1
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional polyol fatty acid ester emulsifiers)

IT 50-70-4, D-Sorbitol, biological studies 56-81-5, 1,2,3-

Propanetriol, biological studies

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(manufacture of storage-stable propolis foods dissolved in aqueous solvents containing carboxylic acids and optional polyol fatty acid ester emulsifiers)

L68 ANSWER 12 OF 57 HCA COPYRIGHT 2004 ACS on STN

133:63580 Method for producing nanoparticle dispersions. Schroeder, Christine; Dolhaine, Hans; Hempelmann, Rolf; Roth, Marcel (Henkel K.-G.a.A., Germany). PCT Int. Appl. WO 2000035577 A1 20000622, 22 pp. DESIGNATED STATES: W: JP; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE. (German). CODEN: PIXXD2. APPLICATION: WO 1999-EP9406 19991202. PRIORITY: US 1998-PV111859 19981211.

AB Nanoparticle dispersions with particle diams. of 10-300 nm are produced by (1) dissolving organic active substances in a suitable primary solvent; (2) introducing the solution into a 2nd solvent which is not miscible with the primary solvent and adding emulsifiers; (3) introducing the resulting macroemulsion into a 3rd solvent which is heated to 30-120°, evaporating the primary solvent at the same time; and optionally (4) distilling off the liquid components of the resulting nanoscale dispersion completely or in part. Thus, a solution of 0.26 g phytosterol in 10 g Et₂O was dispersed in a mixture of PEG -20 sorbitan monopalmitate 5 and H₂O 50 g to produce a macroemulsion with a particle size of 50-500 nm. This emulsion was added dropwise to 300 mL H₂O at 90° with stirring; during this process the Et₂O distilled off, leaving 25 g of a milky dispersion with a particle size of 40-200 nm containing 1 weight% phytosterol.

IC ICM B01J013-06

CC 62-1 (Essential Oils and Cosmetics)

Section cross-reference(s): 63

ST nanoparticle dispersion cosmetic pharmaceutical

IT Fatty acids, biological studies

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(alkoxylated, emulsifiers; method for producing nanoparticle dispersions)

IT Glycosides

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(alkyl oligoglycosides, emulsifiers; method for producing nanoparticle dispersions)

IT Glycosides

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (alkyl polyglycosides, **esters with fatty acids, emulsifiers**; method for producing nanoparticle dispersions)

IT Phenols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (alkyl, alkoxylated, **emulsifiers**; method for producing nanoparticle dispersions)

IT Glycosides
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (alkyl, **emulsifiers**; method for producing nanoparticle dispersions)

IT Phenols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (alkyl, ethoxylated, **emulsifiers**; method for producing nanoparticle dispersions)

IT Carboxylic acids, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (aromatic, esters, with fatty alcs.; method for producing nanoparticle dispersions)

IT Alcohols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (branched, solvents; method for producing nanoparticle dispersions)

IT Carboxylic acids, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (dicarboxylic, esters, with fatty alcs.; method for producing nanoparticle dispersions)

IT Diglycerides
 Monoglycerides
Polyoxyalkylenes, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (**emulsifiers**; method for producing nanoparticle dispersions)

IT Fatty acids, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (epoxy, ring opening products with polyols; method for producing nanoparticle dispersions)

IT Alditols
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (**esters, with fatty acids, emulsifiers**; method for producing nanoparticle dispersions)

IT Carboxylic acids, biological studies
 Fatty acids, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (**esters, with fatty alcs.**; method for producing

nanoparticle dispersions)

IT Castor oil
Fatty acids, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(ethoxylated, emulsifiers; method for producing nanoparticle dispersions)

IT Epoxides
Epoxides
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(fatty alkyl, carboxy, ring opening products with polyols; method for producing nanoparticle dispersions)

IT Alcohols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(fatty, alkoxylated, emulsifiers; method for producing nanoparticle dispersions)

IT Alcohols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(fatty, ethoxylated, emulsifiers; method for producing nanoparticle dispersions)

IT Alcohols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(fatty, propoxylated, emulsifiers; method for producing nanoparticle dispersions)

IT Alcohols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(fatty; method for producing nanoparticle dispersions)

IT Castor oil
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(hydrogenated, ethoxylated, emulsifiers; method for producing nanoparticle dispersions)

IT Carboxylic acids, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(hydroxy, esters, with fatty alcs.; method for producing nanoparticle dispersions)

IT Alcohols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(lanolin, emulsifiers; method for producing nanoparticle dispersions)

IT Drug delivery systems
(liqs., dispersions; method for producing nanoparticle dispersions)

IT Antioxidants
Cosmetics
Dyes
Emulsifying agents
Evaporation
Perfumes
Solvents
Sunscreens

(method for producing nanoparticle **dispersions**)
IT Enzymes, biological studies
Flavones
Sterols
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(method for producing nanoparticle **dispersions**)
IT Fatty acids, biological studies
Glycerides, biological studies
Soaps
Waxes
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(method for producing nanoparticle **dispersions**)
IT Polyoxyalkylenes, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(mono(fatty acyl)-terminated, **emulsifiers**; method for producing nanoparticle **dispersions**)
IT Emulsions
(nanoparticle **dispersions** production from; method for producing nanoparticle **dispersions**)
IT Drug delivery systems
(nanoparticles; method for producing nanoparticle **dispersions**)
IT Polysiloxanes, biological studies
Polysiloxanes, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(polyether-, **emulsifiers**; method for producing nanoparticle **dispersions**)
IT Alcohols, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(polyhydric, esters, **emulsifiers**; method for producing nanoparticle **dispersions**)
IT Polyethers, biological studies
Polyethers, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(siloxane-, **emulsifiers**; method for producing nanoparticle **dispersions**)
IT Essential oils
Ethers, biological studies
Hydrocarbons, biological studies
Naphthenes
Polysiloxanes, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(solvents; method for producing nanoparticle **dispersions**)
IT 77-92-9D, Citric acid, mixed **esters** with fatty acids and **fatty** alcs. and pentaerythritol 106-14-9D, 12-Hydroxystearic acid, **esters** with polyols 115-77-5D, Pentaerythritol, **esters** with fatty acids 126-58-9D, Dipentaerythritol, **esters** with fatty acids 141-22-0D, Ricinoleic acid, **esters** with polyols 3149-68-6D, Methyl glucoside, mixed

esters with fatty acids and polyols

7664-38-2D, Phosphoric acid, alkyl esters, biological studies

12441-09-7D, Sorbitan, esters with fatty

acids 25322-68-3D, PEG, mono(fatty acyl)-terminated

25322-69-4D, Polypropylene glycol, mono(fatty acyl)-terminated

25618-55-7D, Polyglycerin, esters with fatty

acids 31694-55-0D, mono- and diesters with

fatty acids

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)(emulsifiers; method for producing nanoparticle
dispersions)IT 1338-39-2, Sorbitan monolaurate 9005-66-7 9012-76-4,
Chitosan 29463-06-7D, Tris(2-hydroxyethyl)methylammonium methosulfate,
dicocoyl esters 109972-90-9
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)

(method for producing nanoparticle dispersions)

IT 60-29-7, Diethyl ether, biological studies 64-17-5, Ethanol, biological
studies 71-23-8, n-Propanol, biological studies 110-54-3, Hexane,
biological studies 111-65-9, Octane, biological studies 142-82-5,
Heptane, biological studies 629-82-3, Dioctyl ether 9004-98-2, Oleth-2
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)

(solvent; method for producing nanoparticle dispersions)

IT 65-85-0D, Benzoic acid, esters with fatty
alcs., biological studies 110-82-7D, Cyclohexane, derivs., biological
studies 463-79-6D, Carbonic acid, esters with
fatty alcs., biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)

(solvents; method for producing nanoparticle dispersions)

L68 ANSWER 13 OF 57 HCA COPYRIGHT 2004 ACS on STN

132:171126 Flocculated suspension of megestrol acetate. Ragunathan,
Narayan; Chao, James C.; Femia, Robert A.; Ross, Malcolm S. F.
(Pharmaceutical Resources, Inc., USA). U.S. US 6028065 A
20000222, 5 pp. (English). CODEN: USXXAM. APPLICATION: US
1998-63241 19980420.AB A novel oral antineoplastic composition comprises a stable flocculated
suspension in water containing megestrol acetate, ≥ 1 of
PEG, propylene glycol, glycerol, and sorbitol, and a surfactant,
provided polysorbate and PEG are not simultaneously present.
Any surfactant, regardless of the length of the hydrophobic contact area
on its hydrophobic group, can effectively wet megestrol acetate and form a
stable flocculated suspension, provided ≥ 1 of the other
named compds. is present. Thus, a suspension was prepared containing
megestrol acetate 4.000, glycerol 5.000, sorbitol 15.000, docusate Na
(surfactant) 0.002, xanthan gum 0.250, NaOBz 0.200, citric acid 0.300, Na
citrate 0.060, sucrose 5.000, lemon flavoring 0.080, and H₂O 70.108 weight%.

IC ICM A61K009-10

ICS A61K031-56

NCL 514178000

CC 63-6 (Pharmaceuticals)

ST megestrol acetate oral suspension PEG; propylene
glycol megestrol acetate suspension; glycerol megestrol acetate
oral suspension; sorbitol megestrol acetate oral
suspension

IT Amides, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(N-(hydroxyalkyl), surfactants; flocculated suspension of
megestrol acetate)

IT Polyoxyalkylenes, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(esters, surfactants; flocculated suspension of megestrol
acetate)

IT Alcohols, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(ethoxylated, surfactants; flocculated suspension of
megestrol acetate)

IT **Dispersing agents**
Wetting agents
(flocculated suspension of megestrol acetate)

IT Polyoxyalkylenes, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(flocculated suspension of megestrol acetate)

IT Alcohols, biological studies
Alkaline earth salts
Amines, biological studies
Carboxylic acids, biological studies
Phenols, biological studies
Quaternary ammonium compounds, biological studies
Sulfonates
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(surfactants; flocculated suspension of megestrol acetate)

IT Drug delivery systems
(suspensions, oral; flocculated suspension of
megestrol acetate)

IT 595-33-5, Megestrol acetate
RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES
(Uses)
(flocculated suspension of megestrol acetate)

IT 50-70-4, Sorbitol, biological studies 56-81-5, Glycerol, biological
studies 57-55-6, Propylene glycol, biological studies 25322-68-3,
Polyethylene glycol
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(flocculated suspension of megestrol acetate)

IT 124-03-8, Cetyltrimethylammonium bromide 577-11-7, Docusate sodium
9004-99-3, PEG stearate
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(surfactant; flocculated suspension of megestrol acetate)

IT 56-81-5D, Glycerol, esters 107-35-7D,
Taurine, N-acyl derivs... 107-97-1D, Sarcosine, N-acyl derivs..
5138-18-1D, Sulfosuccinic acid, esters with
fatty alcs. 7664-38-2D, Phosphoric acid, esters, biological
studies 12441-09-7D, Sorbitan, esters 25322-68-3D,
PEG, esters
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(surfactants; flocculated suspension of megestrol acetate)

IT 56-81-5D, Glycerol, esters
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(surfactants; flocculated suspension of megestrol acetate)

L68 ANSWER 14 OF 57 HCA COPYRIGHT 2004 ACS on STN
132:97871 Sunscreen composition containing an anionic surfactant,

compositions filtering ultraviolet radiation and an amphiphilic cationic or dipolar ion compound. Allard, Delphine; Candau, Didier; Morgantini, Luc (L'Oreal, Fr.). PCT Int. Appl. WO 2000002529 A1 20000120, 38 pp. DESIGNATED STATES: W: AU, BR, CA, CN, CZ, HU, JP, KR, MX, PL, RU, US; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE. (French). CODEN: PIXD2. APPLICATION: WO 1999-FR1608 19990705. PRIORITY: FR 1998-8828 19980709.

AB A cosmetic composition, in particular for skin and/or hair protection, in the form of a **dispersion** comprise two non-miscible phases stabilized by at least an anionic surfactant selected among the salts of **fatty acid** and of monovalent or polyvalent metals, of ammonium or organic bases, a compound filtering UV radiation capable of being adsorbed at the interface of said non-miscible phases, derived from benzylidene camphor and comprising at least a sulfonic acid function partially or completely neutralized, a metal oxide nanopigment coated with hydrocarbon hydrophobic agents and an amphiphilic cationic or dipolar ion compound which leads with the anionic surfactant to the formation of a compound capable of lowering the water/paraffin oil interfacial tension at 40° by more than 14 mN.m-1 for an anionic surfactant concentration of 0.1 mmole/100g, by more than 26mN.m-1 for an anionic surfactant concentration of

0.5 mmole/100g and by more than 33 mN.m-1 for an anionic surfactant concentration of

1 mmole/100g. A sunscreen **emulsion** contained Arlacel 165 2, stearic acid 2.5, cetyl alc. 0.5, polydimethylsiloxane 5.5, **fatty acid** triglycerides 4, isoparaffin 3, karite butter 1.5, jojoba oil 1.5, titanium oxide nanopigment 5, Uvinul N 539 10, Parsol-1789 2, glycerin 4, propylene glycol 4, benzene 1,4-[di(3-methylidenedecampho-10-sulfonic)] acid 0.5%. cocobetaine 2, Pemulen TR1 0.12, hydroxypropylmethyl cellulose 0.1, triethanolamine 0.83, preservatives q.s., perfume q.s., and water q.s. 100%.

IC ICM A61K007-42

CC 62-4 (Essential Oils and Cosmetics)

IT **Fatty acids**, biological studies

Glycols, biological studies

Polyoxyalkylenes, biological studies

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(**esters**; sunscreen composition containing anionic surfactant, compns. filtering UV radiation and amphiphilic cationic or dipolar ion compound)

IT **Fatty acids**, biological studies

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(**salts**; sunscreen composition containing anionic surfactant, compns.

filtering

UV radiation and amphiphilic cationic or dipolar ion compound)

IT **56-81-5D, Glycerol, esters** 57-09-0,

Cetyltrimethylammonium bromide 57-50-1D, Saccharose, esters 96-55-9, Decyl betaine 104-74-5, Laurylpyridinium chloride 107-43-7D, Betaine, cocoacyl derivs. 112-00-5, Dodecyltrimethylammonium chloride 112-03-8, Stearyltrimethylammonium chloride 122-18-9, Cetalkonium chloride 122-19-0, Stearalkonium chloride 138-32-9, Cetyltrimethylammonium tosylate 593-81-7, Trimethylammonium chloride 593-81-7D, Trimethylammonium chloride, cocoacyl derivs. 683-10-3, Lauryl betaine 693-33-4, Cetyl betaine 820-66-6 871-37-4, Oleyl betaine 1119-94-4, Dodecyltrimethylammonium bromide 1314-13-2, Zinc oxide, biological studies 1314-23-4, Zirconium oxide, biological studies 1332-37-2, Iron oxide, biological studies 1406-18-4, Vitamine 2601-33-4 4292-10-8,

Lauramidopropyl betaine 6179-44-8 6197-30-4, Uvinul N 539
6917-36-8D, Pentitol, esters 7541-59-5D, Tetritol, esters 9005-63-4D,
Polyoxyethylene sorbitan, esters 11129-18-3, Cerium oxide
12441-09-7D, **Sorbitan, fatty acid**
esters 13463-67-7, Titanium dioxide, biological studies
16766-82-8D, benzalkonium salts 16841-14-8, Behenalkonium chloride
17301-53-0, Behenyltrimethylammonium chloride 25054-76-6, Oleamidopropyl
betaine 25322-68-3D, **Peg**, esters 25618-55-7D,
Polyglycerol, esters 26920-62-7, Behenyl betaine
32954-43-1 37139-99-4, Olealkonium chloride 45007-61-2D, Hexitol,
esters 59272-84-3, Myristamidopropyl betaine 62281-04-3 65060-02-8,
Cetyltrimethylammonium methosulfate 70356-09-1 71850-81-2
81646-13-1, Behenyltrimethylammonium methosulfate 84750-06-1, Arlacel
165 138789-85-2, Pemulen TR1 157101-46-7, Lauralkonium bromide
191226-60-5
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
(sunscreen composition containing anionic surfactant, compns. filtering UV
radiation and amphiphilic cationic or dipolar ion compound)

IT 56-81-5D, **Glycerol, esters**
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
(sunscreen composition containing anionic surfactant, compns. filtering UV
radiation and amphiphilic cationic or dipolar ion compound)

L68 ANSWER 15 OF 57 HCA COPYRIGHT 2004 ACS on STN
131:350549 Water-in-oil **emulsified fat composition**
containing diglycerides for food use. Mori, Hideki; Masui, Kenji; Tanaka,
Yukitaka; Yasukawa, Takuji (Kao Corporation, Japan). PCT Int. Appl. WO
9959422 A1 19991125, 20 pp. DESIGNATED STATES: W: BR, CA, CN,
SG; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE. (English). CODEN: PIXXD2. APPLICATION: WO 1998-JP2227 19980521.

AB A W/O type **emulsified fat composition** has an oily phase and an aqueous
phase, wherein the oily phase contains 40% to <95% by weight of diglycerides
and 5% to <60% by weight of triglycerides. The diglycerides have 0.5% to <20
% by weight of SS components, 20% to <55% by weight of SU components, and 25%
to
<70% by weight of UU components (where S is a C14-22 saturated **fatty**
acid and U is a C14-22 unsatd. **fatty acid**).
The weight ratio of the C14 and C16 saturated **fatty acid**
groups contained in the diglycerides to the C18, C20, and C22 saturated
fatty acid groups contained in the diglycerides is 1.0
to 8.0. Use as a margarine with excellent stability and satisfactory
spreadability is indicated. Thus, suitable diglyceride fractions may be
obtained by using a com. lipase to obtain **fatty acid**
fractions from hardened rapeseed oil and palm oil, the mixed **fatty**
acids then being **esterified** with **glycerol** in
the presence of a lipase with 1,3-position selectivity.

IC ICM A23D007-00
CC 17-9 (Food and Feed Chemistry)
ST fat spread diglyceride **emulsion**; margarine fat spread
diglyceride **emulsion**
IT **Fatty acids**, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(esters, with **sorbitan** or sucrose or
polyglycerol; water-in-oil **emulsified fat composition**
containing diglycerides for food use)
IT Fats and Glyceridic oils, biological studies

RL: BPR (Biological process); BSU (Biological study, unclassified); FFD (Food or feed use); BIOL (Biological study); PROC (Process); USES (Uses)
(rice bran; water-in-oil **emulsified** fat composition containing
diglycerides for food use)

IT **Fatty acids**, biological studies
RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
BIOL (Biological study); OCCU (Occurrence)
(saturated; water-in-oil **emulsified** fat composition containing
diglycerides for food use)

IT Condiments
(seasonings; water-in-oil **emulsified** fat composition containing
diglycerides for food use)

IT **Fatty acids**, biological studies
RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
BIOL (Biological study); OCCU (Occurrence)
(unsatd.; water-in-oil **emulsified** fat composition containing
diglycerides for food use)

IT Antioxidants

Dairy products
Emulsifying agents

Flavor

Flavoring materials

Food **emulsions**

Margarine
(water-in-oil **emulsified** fat composition containing diglycerides for
food use)

IT Coconut oil

Corn oil

Palm oil

Rape oil

Safflower oil

Soybean oil

Sunflower oil

Tallow
RL: BPR (Biological process); BSU (Biological study, unclassified); FFD
(Food or feed use); BIOL (Biological study); PROC (Process); USES (Uses)
(water-in-oil **emulsified** fat composition containing diglycerides for
food use)

IT Diglycerides

Lecithins
Monoglycerides
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(water-in-oil **emulsified** fat composition containing diglycerides for
food use)

IT **Emulsions**
(water-in-oil; fat composition containing diglycerides for food use)

IT 57-50-1D, Sucrose, **fatty acid esters**
7647-14-5, Sodium chloride, biological studies 9001-62-1, Lipase
12441-09-7D, **Sorbitan, fatty acid esters** 25618-55-7D, **Polyglycerol, fatty acid esters**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(water-in-oil **emulsified** fat composition containing diglycerides for
food use)

L68 ANSWER 16 OF 57 HCA COPYRIGHT 2004 ACS on STN
131:342026 Use of nanodispersions in pharmaceutical **compositions**.
Supersaxo, Andreas Werner; Weder, Hans Georg; Hueglin, Dietmar; Roeding,

Joachim Friedrich (Ciba Specialty Chemicals Holding Inc., Switz.; Vesifact A.-G.). Eur. Pat. Appl. EP 956853 A2 19991117, 16 pp.
DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO. (German). CODEN: EPXXDW.
APPLICATION: EP 1999-810383 19990504. PRIORITY: EP 1998-810422 19980511.

AB Nanodispersions containing a membrane-forming mol. (e.g. a phospholipid or ceramide), an oil-in-water coemulsifier, and a lipophilic component are useful as drug delivery vehicles. The nanodispersions are prepared by mixing these 3 components to form a homogeneous clear liquid, and adding this liquid to an aqueous phase at room temperature, which approximates the phase inversion temperature; the nanodispersion (mean particle size <50 nm) forms with no further energy expenditure for homogenization, sonication, etc. Thus, vitamin A palmitate 4.50, Miglyol 812 30.00, and Polysorbate 80 34.00 weight parts were combined and mixed with a solution of soybean lecithin 17.30 in EtOH 14.20 weight parts to produce a homogeneous clear liquid. This liquid was mixed 1:9 with 10 mM phosphate buffer (pH 7.4) at 50° with stirring to produce a nanodispersion.

IC ICM A61K009-107
ICS A61K009-48

CC 63-6 (Pharmaceuticals)

ST pharmaceutical nanodispersion phospholipid emulsifier; vitamin A nanodispersion phospholipid emulsifier; dispersion vitamin A phospholipid emulsifier

IT Fatty acids, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(C8-20, salts, coemulsifiers; use of nanodispersions in pharmaceutical compns.)

IT Drug delivery systems
(emulsions; use of nanodispersions in pharmaceutical compns.)

IT Carbohydrates, biological studies
Fatty acids, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(ethoxylated, coemulsifiers; use of nanodispersions in pharmaceutical compns.)

IT Drug delivery systems
(liqs., dispersions, nanodispersions; use of nanodispersions in pharmaceutical compns.)

IT Carbohydrates, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(sugar esters, with fatty acids,
coemulsifiers; use of nanodispersions in pharmaceutical compns.)

IT Drug delivery systems
(suspensions; use of nanodispersions in pharmaceutical compns.)

IT Anti-infective agents
Anti-inflammatory agents
Antioxidants
Antitumor agents
Cardiovascular agents
Emulsifying agents
Kidney, disease
Mouthwashes
Musculoskeletal diseases
Skin, disease
(use of nanodispersions in pharmaceutical compns.)

IT 50-21-5D, Lactic acid, esters with fatty

acids 57-55-6D, Propylene glycol, **esters with fatty acids** 1406-18-4D, Vitamin E, ethoxylated derivs.
7664-38-2D, Phosphoric acid, alkyl esters, biological studies
7664-93-9D, Sulfuric acid, alkyl and alkenyl esters, biological studies
12441-09-7D, **sorbitan, esters with fatty acids**
25322-68-3D; PEG, derivs. 25618-55-7D,
Polyglycerol, esters with fatty acids
31694-55-0D, **triesters with fatty acids**
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(coemulsifiers; use of nanodispersions in pharmaceutical compns.)

L68 ANSWER 17 OF 57 HCA COPYRIGHT 2004 ACS on STN

131:342025 Use of nanodispersions in cosmetic formulations.

Hueglin, Dietmar; Roeding, Joachim Friedrich; Supersaxo, Andreas Werner; Weder, Hans Georg (Ciba Specialty Chemicals Holding Inc., Switz.; Vesifact A.-G.). Eur. Pat. Appl. EP 956851 A1 19991117, 28 pp.

DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO. (German). CODEN: EPXXDW.

APPLICATION: EP 1999-810382 19990504. PRIORITY: EP 1998-810421 19980511.

AB Nanodispersions containing a membrane-forming mol. (e.g. a phospholipid or ceramide), an oil-in-water coemulsifier, and a lipophilic component are useful in cosmetic formulations. The nanodispersions are prepared by mixing these 3 components to form a homogeneous clear liquid, and adding this liquid to an aqueous phase at room temperature, which approximates the phase inversion temperature; the nanodispersion (mean particle size <50 nm) forms with no further energy expenditure for homogenization, sonication, etc. Thus, Parsol MCX 2.59, Parsol 5000 1.11, Miglyol 812 1.30, soybean lecithin 0.50, Polysorbate 80 3.40, and EtOH 1.10 weight parts were combined to produce a homogeneous clear liquid; this liquid was stirred into H₂O at 50° to provide a nanodispersion.

IC ICM A61K007-00

CC 63-6 (Pharmaceuticals)

ST cosmetic nanodispersion phospholipid emulsifier; sunscreen nanodispersion phospholipid emulsifier; dispersion

cosmetic phospholipid emulsifier

IT **Fatty acids**, biological studies

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(C8-20, salts, coemulsifiers; use of nanodispersions in cosmetic formulations)

IT Carbohydrates, biological studies

Fatty acids, biological studies

Glycerides, biological studies

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(ethoxylated, coemulsifiers; use of nanodispersions in cosmetic formulations)

IT **Disperse systems**

(nano-; use of nanodispersions in cosmetic formulations)

IT Carbohydrates, biological studies

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(sugar esters, with **fatty acids**, coemulsifiers; use of nanodispersions in cosmetic formulations)

IT Antioxidants

Cosmetics

Emulsifying agents

Hair preparations

Sunscreens

(use of nanodispersions in cosmetic formulations)

IT 57-11-4, Octadecanoic acid, biological studies 1338-41-6,
Sorbitan monostearate 1338-43-8, Sorbitan
monooleate 9004-82-4, Sodium lauryl ether sulfate 9005-64-5
36653-82-4, Cetyl alcohol 106392-12-5, Ethylene oxide/propylene oxide
block copolymer

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)

(coemulsifier; use of nanodispersions in cosmetic formulations)

IT 50-21-5D, Lactic acid, esters with fatty
acids 57-55-6D, Propylene glycol, esters with
fatty acids 1406-18-4D, Vitamin E, ethoxylated derivs.
7664-38-2D, Phosphoric acid, alkyl esters, biological studies
7664-93-9D, Sulfuric acid, alkyl and alkenyl esters, biological studies
12441-09-7D, **Sorbitan, esters with fatty**
acids 25322-68-3D, PEG, derivs. 25618-55-7D,
Polyglycerol, esters with fatty acids
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)

(coemulsifiers; use of nanodispersions in cosmetic formulations)

IT **1338-43-8, Sorbitan monooleate**
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)

(coemulsifier; use of nanodispersions in cosmetic formulations)

L68 ANSWER 18 OF 57 HCA COPYRIGHT 2004 ACS on STN

131:285707 **Emulsifier dispersion compositions**

for beverages.. Nakamura, Shingo; Muratsubaki, Yasutaka (Daiichi Kogyo Seiyaku Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 11290040 A2
19991026 Heisei, 5 pp. (Japanese). CODEN: JKXXAF. APPLICATION:
JP 1998-102575 19980414.

AB The invention relates to an **emulsifier dispersion**
composition, suitable for use in a beverage, especially a beverage containing
CaCO₃,
wherein the composition is obtained by drying a solution or **dispersion**
containing sucrose **fatty acid ester** having HLB
of ≥ 11 and saccharides. A dried **emulsifier**
dispersion composition was prepared from a sucrose **fatty**
acid ester having HLB = 15 35, lecithin powder 15,
dextrin 55, and water 30 kg. The dried composition 4.2 kg was combined with
water 23,3 kg and CaCO₃ slurry 30 kg. and homogenized. The obtained CaCO₃
dispersion showed no ppt. during storage for 8 wk.

IC ICM A23L002-62

ICS A23L002-52; A23L002-44

CC 17-6 (Food and Feed Chemistry)

ST **emulsifier dispersion compn beverage fatty**
acid ester

IT Lecithins

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)

(emulsifier dispersion compns. containing sucrose
fatty acid esters and saccharides and
lecithins for beverages)

IT Beverages

Emulsifying agents

Food additives

(emulsifier dispersion compns. containing sucrose
fatty acid esters and saccharides for

- beverages)
- IT Carbohydrates, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides for
beverages)
- IT **Fatty acids**, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**esters; emulsifier dispersion** compns.
containing, for beverages)
- IT **56-81-5D**, Glycerin, **fatty acid esters**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides and
glycerin **fatty acid esters** for beverages)
- IT 25618-55-7D, Polyglycerine, **fatty acid esters**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides and
polyglycerin **fatty acid esters** for
beverages)
- IT 12441-09-7D, **Sorbitan, fatty acid esters**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides and
sorbitan fatty acid esters for
beverages)
- IT **50-70-4**, Sorbitol, biological studies 50-99-7, Glucose,
biological studies 57-50-1, Sucrose, biological studies 57-50-1D,
Sucrose, **fatty acid esters** 9004-53-9,
Dextrin
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides for
beverages)
- IT 471-34-1, Calcium carbonate, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides for
beverages containing)
- IT **56-81-5D**, Glycerin, **fatty acid esters**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides and
glycerin **fatty acid esters** for beverages)
- IT **50-70-4**, Sorbitol, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**emulsifier dispersion** compns. containing sucrose
fatty acid esters and saccharides for
beverages)

L68 ANSWER 19 OF 57 HCA COPYRIGHT 2004 ACS on STN
128:294216 Foaming **emulsified oil compositions** for cakes
with good volume and taste. Fujimura, Masaki; Hashimoto, Shinichi; Kato,
Shoichi (Kanegafuchi Chemical Industry Co., Ltd., Japan). Jpn. Kokai
Tokkyo Koho JP 10088184 A2 19980407 Heisei, 9 pp. (Japanese).
CODEN: JKXXAF. APPLICATION: JP 1996-245813 19960918.

AB The oil-in-water compns. contains 0.2-3 parts processed chicken egg and 0.03-3 parts (based on 100 parts total compns.) milk protein. A composition contained an oil phase containing rapeseed oil 20, glycerol monostearate 5, PG behenic acid ester 5.2 and sorbitan fatty acid monoester 2.8 part and an aqueous phase containing water 20, 70% sorbitol 40, fatty acid sugar monoester 40, enzyme-treated egg 3.0, and enzyme-decomposed casein 0.2 part.

IC ICM C11C003-00
ICS A21D013-08; A23D007-00; A23J003-10; A23J003-34; A23L001-19;
A23L001-32

CC 17-9 (Food and Feed Chemistry)

ST foaming emulsified oil compn cake; egg foaming emulsified oil cake; milk protein emulsified oil cake

IT Bakery products
(cakes; oil-in-water foaming emulsified oil compns. for cakes with good volume and taste)

IT Proteins, general, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses) (milk; oil-in-water foaming emulsified oil compns. for cakes with good volume and taste)

IT Caseins, biological studies
Rape oil
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses) (oil-in-water foaming emulsified oil compns. for cakes with good volume and taste)

IT Emulsions
(oil-in-water; oil-in-water foaming emulsified oil compns. for cakes with good volume and taste)

IT Egg, poultry
(processed; oil-in-water foaming emulsified oil compns. for cakes with good volume and taste)

IT Caseins, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses) (sodium complexes; oil-in-water foaming emulsified oil compns. for cakes with good volume and taste)

IT Proteins, specific or class
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses) (whey; oil-in-water foaming emulsified oil compns. for cakes with good volume and taste)

L68 ANSWER 20 OF 57 HCA COPYRIGHT 2004 ACS on STN
128:270002 Mineral composition containing lecithins exhibits improved dispersibility in aqueous phase. Nanbu, Hironobu; Nakata, Katsuyasu; Sakaguchi, Noboru; Yamazaki, Yoshifumi (Taiyo Kagaku Co., Ltd., Japan). PCT Int. Appl. WO 9814072 A1 19980409, 38 pp. DESIGNATED STATES: W: AU, CA, CN, JP, KR, US; RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE. (Japanese). CODEN: PIXXD2. APPLICATION: WO 1997-JP3540 19971002. PRIORITY: JP 1996-283018 19961003; JP 1997-54134 19970221.

AB Disclosed is a mineral composition containing enzymically digested lecithins and, optionally, a non-ionic surfactant to improve the mineral dispersibility without the need to add large amount of cellulose, oils, etc. The composition also improves in vivo absorption of the minerals and poses minimal stimulation to the digestive tracts. Thus, a tetrasodium pyrophosphate solution is reacted with a mixture solution containing

FeCl₃.6H₂O and Sunlecithin (enzyme-digested lecithins; by Taiyo Chemical Co.) to obtain ferric pyrophosphate-lecithins complex, from which a 10% ferric pyrophosphate slurry in water was prepared. Precipitation of the 10% ferric pyrophosphate slurry 100 g suspended in 900 g milk was not seen even after storage for 500 h. The excellent **dispersibility** of the composition allows its applicability in wide fields such as foods and cosmetic industries.

- IC ICM A23L001-304
ICS A61K031-685; A61K033-00; A61K033-26; A61K033-10; A61K033-06
CC 18-1 (Animal Nutrition)
Section cross-reference(s): 17, 62
ST lecithin mineral compn **dispersibility**; iron pyrophosphate
lecithin milk **dispersibility**; food cosmetic mineral compn
lecithin
IT Lysophosphatides
RL: BPN (Biosynthetic preparation); FFD (Food or feed use); BIOL
(Biological study); PREP (Preparation); USES (Uses)
(lysophosphatidylglycerols; mineral composition containing lecithins
exhibits
improved **dispersibility** in aqueous phase)
IT Lysophosphatidylcholines
Lysophosphatidylethanolamines
Lysophosphatidylinositols
Lysophosphatidylserines
Phosphatidic acids
Phosphatidylglycerols
RL: BPN (Biosynthetic preparation); FFD (Food or feed use); BIOL
(Biological study); PREP (Preparation); USES (Uses)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)
IT Lecithins
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)
IT Minerals, biological studies
RL: FFD (Food or feed use); PNU (Preparation, unclassified); BIOL
(Biological study); PREP (Preparation); USES (Uses)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)
IT Surfactants
RL: NUU (Other use, unclassified); USES (Uses)
(nonionic, mineral **dispersibility** improved by; mineral composition
containing lecithins exhibits improved **dispersibility** in aqueous
phase)
IT 9001-84-7, Phospholipase A
RL: CAT (Catalyst use); NUU (Other use, unclassified); USES (Uses)
(lecithins digested with; mineral composition containing lecithins exhibits
improved **dispersibility** in aqueous phase)
IT 9001-87-0, Phospholipase D
RL: CAT (Catalyst use); NUU (Other use, unclassified); USES (Uses)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)
IT 471-34-1, Calcium carbonate, biological studies 10086-45-0, Calcium
pyrophosphate 10103-46-5, Calcium phosphate 205537-92-4, Sunlecithin L
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)
IT 56-81-5D, 1,2,3-Propanetriol, fatty

acid ester, uses 57-50-1D, fatty
acid ester 57-55-6D, 1,2-Propanediol,
fatty acid ester, uses 12441-09-7D,
Sorbitan, fatty acid ester
25618-55-7D, Polyglycerin, fatty acid ester
205537-70-8, Sunsoft A 12E
RL: NUU (Other use, unclassified); USES (Uses)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)

IT 7722-88-5, Tetrasodium pyrophosphate 10025-77-1, Iron chloride (FeCl₃)
hexahydrate
RL: RCT (Reactant); RACT (Reactant or reagent)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)

IT 10058-44-3, Ferric pyrophosphate
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(water-insol. mineral; mineral composition containing lecithins exhibits
improved **dispersibility** in aqueous phase)

IT 56-81-5D, 1,2,3-Propanetriol, fatty
acid ester, uses
RL: NUU (Other use, unclassified); USES (Uses)
(mineral composition containing lecithins exhibits improved
dispersibility in aqueous phase)

L68 ANSWER 21 OF 57 HCA COPYRIGHT 2004 ACS on STN

128:60922 A cellulose **composition**, its preparation, and its use in
foods. McGinley, Emanuel J.; Krawczyk, Gregory R. (FMC Corporation, USA).
PCT Int. Appl. WO 9745024 A1 **19971204**, 74 pp. DESIGNATED
STATES: W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,
DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, AM, AZ, BY, KG, KZ,
MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK, ES, FI,
FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG.
(English). CODEN: PIXXD2. APPLICATION: WO 1997-US9015 19970527.

PRIORITY: US 1996-683513 19960528.
AB Disclosed is an invention directed to a cellulose composition used as a
texturizing, thickening, stabilizing, gelling or bulking agent for
aqueous-based food systems comprising a combination of: (1) a finely divided
cellulose component and (2) a surfactant component comprising one or more
surfactants, in powder aggregate form; and the use of this agent in
reduced fat foods; and the method of making the agent.

IC ICM A23L001-0534

CC 17-6 (Food and Feed Chemistry)

IT Diglycerides

Lecithins

Monoglycerides

RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); FFD (Food or feed use); PEP (Physical, engineering
or chemical process); BIOL (Biological study); PROC (Process); USES (Uses)
(cellulose composition, its preparation, and its use in foods)

IT Meat
(emulsified; cellulose composition, its preparation, and its use in
foods)

IT Diglycerides

Monoglycerides

RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); FFD (Food or feed use); PEP (Physical, engineering

- or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (esters; cellulose composition, its preparation, and its use in foods)
- IT **Monoglycerides**
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); PEP (Physical, engineering or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (ethoxylated; cellulose composition, its preparation, and its use in foods)
- IT **Monoglycerides**
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); PEP (Physical, engineering or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (palm-oil; cellulose composition, its preparation, and its use in foods)
- IT **Monoglycerides**
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); PEP (Physical, engineering or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (sunflower-oil; cellulose composition, its preparation, and its use in foods)
- IT 50-21-5D, Lactic acid, mono or diglyceride ester deriv 57-11-4D,
Octadecanoic acid, ester deriv, biological studies
57-50-1D, ester deriv 57-55-6D, **1,2-Propanediol, ester**
deriv, biological studies 64-19-7D, Acetic acid, mono or diglyceride ester deriv, biological studies 110-15-6D, Butanedioic acid, mono or diglyceride ester deriv, biological studies 1323-39-3, Myverol P 06 1338-41-6, Polycon S60K 9004-34-6, Cellulose, biological studies 9005-66-7, Durfax 60 12441-09-7D, **Sorbitan**, ester deriv 25383-99-7, **Emulsilac SK** 25618-55-7D, **Polyglycerol, fatty acid ester** deriv 34344-66-6D,
Polysorbic acid, ester deriv 51591-38-9D, Diacetyltauric acid, mono or diglyceride ester deriv 58740-44-6, Myverol SMG 93907-32-5, Myvatex Texture Light 100843-08-1, Kaomel 113355-71-8, Panodan 150 115536-98-6, Ryoto Sugar Ester ER 290 123759-95-5, Triodan R 90 200414-99-9, Atmul 84K 200415-06-1, Myvatex Mighty Soft 200415-11-8, Lactodan P 22K
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); PEP (Physical, engineering or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (cellulose composition, its preparation, and its use in foods)
- L68 ANSWER 22 OF 57 HCA COPYRIGHT 2004 ACS on STN
127:267829 Color cosmetic **composition** containing alcohol modified wax. Rokitowski, Karen Lee (Unilever Plc, UK; Unilever N.V.). Eur. Pat. Appl. EP 795312 A1 19970917, 14 pp. DESIGNATED STATES: R: CH, DE, ES, FR, GB, IT, LI, NL, SE. (English). CODEN: EPXXDW. APPLICATION: EP 1997-301498 19970305. PRIORITY: US 1996-616793 19960315; US 1997-795096 19970205.
- AB A color mascara comprising from about 1 to about 99 weight% of a natural wax modified with a C20-C40 alkanol to substantially **esterify** C12-C60 free **fatty acids** of the wax to form an **esterified** wax; from about 0.001 to about 20 weight% of a colorant; and an effective of a pharmaceutically acceptable carrier. A mascara contained behenyl beeswax 17.4, deionized water 52.5, hydroxyethyl cellulose 1.0, iron oxide 8.1, Me paraben and Pr paraben 0.5, triethanolamine 1.5, isostearic acid 1.0, stearic acid 2.0, glyceryl stearate 0.6, PEG-20 sorbitan beeswax 1.5, talc 0.90, urea 0.2, panthenol 0.05, acrylate copolymer 3.5, dimethicone copolymer 0.3, EDTA 0.1, carnauba wax 3.15, PVP 1.0, Pecogel H-12 4.0, and polyhydroxystearic acid 1.00%.

IC ICM A61K007-032
CC 62-4 (Essential Oils and Cosmetics)
ST color cosmetic alc **fatty acid wax**; mascara behenyl
beeswax iron oxide
IT **Fatty acids, reactions**
RL: RCT (Reactant); RACT (Reactant or reagent)
(C12-60; color cosmetic composition containing alc. modified wax)
IT Beeswax
 Emulsifying agents
 Thickening agents
 (color cosmetic composition containing alc. modified wax)
IT **56-81-5D, 1,2,3-Propanetriol, esters**
102-71-6, biological studies 1308-38-9, Chromium oxide (Cr₂O₃),
biological studies 1332-37-2, Iron oxide, biological studies
1390-65-4, Carmine 9003-39-8 10101-66-3 12001-99-9, C.I. Pigment
Green 18 12769-96-9, C.I. Pigment Violet 15 13463-67-7, Titanium oxide
(TiO₂), biological studies 25869-00-5 57455-37-5, C.I. Pigment Blue 29
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (color cosmetic composition containing alc. modified wax)
IT **56-81-5D, 1,2,3-Propanetriol, esters**
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
 (color cosmetic composition containing alc. modified wax)

L68 ANSWER 23 OF 57 HCA COPYRIGHT 2004 ACS on STN

127:160960 Starch-**emulsifier composition** and manuf.

methods. Yuan, Chienkuo Ronnie (Opta Food Ingredients, Inc., USA; Yuan,
Chienkuo Ronnie). PCT Int. Appl. WO 9726296 A1 19970724, 41 pp.
DESIGNATED STATES: W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN,
CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO,
RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK,
ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD,
TG. (English). CODEN: PIXXD2. APPLICATION: WO 1997-US354 19970115.

PRIORITY: US 1996-10061 19960116.

AB A method of producing starch-**emulsifier** compns. comprises
heating a starch in the presence of an **emulsifier** to form a
complex with unique properties. The product can be further treated to
obtain greater than about 20 % short chain amylose. Starch-
emulsifier compns. (e.g., powders, gels, pastes) produced by this
method and food products containing the starch-**emulsifier** composition are
also described.

IC ICM C08L003-02
ICS C08B030-14; A23L001-00; A23L002-00
CC 17-6 (Food and Feed Chemistry)
ST starch **emulsifier** manuf food
IT Cheese
 (Cream; starch-**emulsifier** composition and manufacture methods)
IT Bakery products
 (brownies; starch-**emulsifier** composition and manufacture methods)
IT Bakery products
 Bakery products
 (cakes, low-calorie; starch-**emulsifier** composition and manufacture
 methods)
IT Bakery products
 (cakes; starch-**emulsifier** composition and manufacture methods)

IT Bakery products
(cookies; starch-**emulsifier** composition and manufacture methods)
IT Bakery products
(crackers; starch-**emulsifier** composition and manufacture methods)
IT Enzymes, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(debranching enzymes; starch-**emulsifier** composition and manufacture methods)
IT Food
(dietetic; starch-**emulsifier** composition and manufacture methods)
IT Food
(dips; starch-**emulsifier** composition and manufacture methods)
IT Confectionery
(fudge; starch-**emulsifier** composition and manufacture methods)
IT Bakery products
(graham crackers; starch-**emulsifier** composition and manufacture methods)
IT Chocolate
Chocolate
(low-calorie, spreads; starch-**emulsifier** composition and manufacture methods)
IT Food
Ice cream
Ice cream
Mayonnaise
(low-calorie; starch-**emulsifier** composition and manufacture methods)
IT Bakery products
(pies; starch-**emulsifier** composition and manufacture methods)
IT Bakery products
(pretzels; starch-**emulsifier** composition and manufacture methods)
IT Food
(snack; starch-**emulsifier** composition and manufacture methods)
IT Cream
(sour; starch-**emulsifier** composition and manufacture methods)
IT Food
(spreads; starch-**emulsifier** composition and manufacture methods)
IT Bakery products
Bread
Candy
Cheese
Confectionery
Cooking
Dairy products
Emulsifying agents
Food
Food functional properties
Food gels
Food rheology
Food viscosity
Frozen desserts
Ice cream
Margarine
Mayonnaise
Milk
Pasta
Peanut butter
Puddings
Sauces (condiments)

(starch-**emulsifier** composition and manufacture methods)

IT **Monoglycerides**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(starch-**emulsifier** composition and manufacture methods)

IT Milk preparations
(yogurt; starch-**emulsifier** composition and manufacture methods)

IT 9075-68-7, Pullulanase
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(Promozyme 200 L; starch-**emulsifier** composition and manufacture methods)

IT 9005-25-8, Starch, biological studies 9037-22-3, Amylopectin
RL: BPR (Biological process); BSU (Biological study, unclassified); FFD
(Food or feed use); BIOL (Biological study); PROC (Process); USES (Uses)
(starch-**emulsifier** composition and manufacture methods)

IT 9005-82-7, Amylose
RL: BSU (Biological study, unclassified); FFD (Food or feed use); MFM
(Metabolic formation); BIOL (Biological study); FORM (Formation,
nonpreparative); USES (Uses)
(starch-**emulsifier** composition and manufacture methods)

IT 57-50-1D, **fatty acid esters** 57-55-6D, 1,2-
Propanediol, esters, biological studies 5793-94-2,
Calcium stearoyl lactylate 9000-01-5, Gum arabic 9000-07-1,
Carrageenan 9000-30-0, Guar gum 9000-40-2, Locust bean gum
9000-92-4, Amylase 9004-32-4 9004-34-6, Cellulose, biological studies
9004-67-5, Methylcellulose 9004-81-3, Polyethylene glycol monolaurate
9005-32-7, Alginic acid 9005-67-8, Polyoxyethylene **sorbitan**
monostearate 11121-34-9, Myverol 11138-66-2, Xanthan gum
12441-09-7D, **sorbitan**, esters 25168-73-4, Sucrose monostearate
25383-99-7, Sodium stearoyl-2-lactylate 26446-38-8, Sucrose
monopalmitate 31566-31-1, Glyceryl monostearate 34344-66-6D,
Polysorbic acid, salts 51591-38-9D, Diacetyl tartaric acid,
monoglyceride esters
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(starch-**emulsifier** composition and manufacture methods)

L68 ANSWER 24 OF 57 HCA COPYRIGHT 2004 ACS on STN

126:329876 Correction of: 126:224529 A **fatty acid**

esters composition of a polyglycerin, a process for the preparation thereof, a process for the preparation of a highly-purified **fatty esters composition** of a polyglycerin, a highly-purified **fatty esters composition** of a polyglycerin, an additive for food-stuffs, a resin **composition**, and a **composition** for cosmetics or detergents. Endo, Toshio; Daito, Terumasa (Japan). Eur. Pat. Appl. EP 758641 A1 19970219, 96 pp. DESIGNATED STATES: R: DE, FR, GB. (English). CODEN: EPXXDW. APPLICATION: EP 1996-400562 19960318. PRIORITY: JP 1995-227073 19950811; JP 1995-233180 19950821; JP 1995-344844 19951206; JP 1996-6743 19960118; JP 1996-8372 19960122; JP 1996-8373 19960122; JP 1996-10831 19960125; JP 1996-10832 19960125; JP 1996-16343 19960201; JP 1996-16344 19960201; JP 1996-16345 19960201; JP 1996-18579 19960205; JP 1996-18580 19960205; JP 1996-18581 19960205; JP 1996-22642 19960208; JP 1996-22643 19960208; JP 1996-22644 19960208; JP 1996-22645 19960208.

AB Disclosed are a **fatty acid ester** composition of a polyglycerin containing more than 70% of **fatty acid monoester** which is defined by a specified anal. method, a process for the preparation thereof, a process for the preparation of a highly-purified **fatty acid ester** composition of a polyglycerin, and a highly-purified **fatty acid** composition of a polyglycerin

having an oxirane oxygen concentration of below 100 ppm which is defined by a specified anal. method. The **fatty acid esters** of a polyglycerin are useful as additives for a variety of food-stuffs, additives for a variety of thermoplastic resins, and as additives for a variety of cosmetics or detergents.

- IC ICM C07C069-33
ICS C07C067-26; A61K007-00; C08K005-103; C11D001-66; A23L001-03
CC 17-9 (Food and Feed Chemistry)
Section cross-reference(s): 46, 62, 63
IT Agglomeration
 (agents; **fatty acid ester** composition of a polyglycerin)
IT Cocoa products
Coffee products
Tea products
 (beverages; **fatty acid ester** composition of a polyglycerin)
IT Bakery products
 (cakes; **fatty acid ester** composition of a polyglycerin)
IT Bakery products
 (cookies; **fatty acid ester** composition of a polyglycerin)
IT Anti-inflammatory agents
Beeswax
Bread
Butter
Cheese
Coloring materials
Cosmetics
Dairy products
Dentifrices
Detergents
Disks
Fish
Foaming agents
Magnetic tapes
Meat
Pasta
Perfumes
Thickening agents
Viscosity
Wetting agents
 (**fatty acid ester** composition of a polyglycerin)
IT Fats and Glyceridic oils, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
 (**fatty acid ester** composition of a polyglycerin)
IT Bentonite, uses
RL: MOA (Modifier or additive use); USES (Uses)
 (**fatty acid ester** composition of a polyglycerin)
IT Enzymes, uses
RL: MOA (Modifier or additive use); USES (Uses)
 (**fatty acid ester** composition of a polyglycerin)
IT Silicates, uses

RL: MOA (Modifier or additive use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Zeolites (synthetic), uses
RL: MOA (Modifier or additive use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Polyoxyalkylenes, uses
RL: POF (Polymer in formulation); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Alkali metal hydroxides
RL: RCT (Reactant); RACT (Reactant or reagent)
(**fatty acid ester** composition of a
polyglycerin)

IT Alkaline earth hydroxides
RL: RCT (Reactant); RACT (Reactant or reagent)
(**fatty acid ester** composition of a
polyglycerin)

IT **Fatty acids**, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(**fatty acid ester** composition of a
polyglycerin)

IT Lanolin
RL: TEM (Technical or engineered material use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Olive oil
RL: TEM (Technical or engineered material use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Paraffin waxes, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Petrolatum
RL: TEM (Technical or engineered material use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Polysiloxanes, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Waxes
RL: TEM (Technical or engineered material use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT Amines, uses
RL: POF (Polymer in formulation); USES (Uses)
(hindered; **fatty acid ester** composition of a
polyglycerin)

IT Jets
Nozzles
(jet nozzles, ink; **fatty acid ester**
composition of a polyglycerin)

IT Acetals
RL: POF (Polymer in formulation); USES (Uses)
(polymers; **fatty acid ester** composition of a

polyglycerin)

IT Carboxylic acids, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(salt deriv; **fatty acid ester** composition of a
polyglycerin)

IT Plastics, uses
RL: POF (Polymer in formulation); USES (Uses)
(thermoplastics; **fatty acid ester** composition
of a polyglycerin)

IT Fats and Glyceridic oils, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(vegetable; **fatty acid ester** composition of a
polyglycerin)

IT Emulsions
(water-in-oil; **fatty acid ester** composition of
a polyglycerin)

IT 7664-38-2D, Phosphoric acid, **ester** derivs, uses
RL: CAT (Catalyst use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT 34406-66-1, Sunsoft Q 12S 71012-10-7 74504-64-6 79665-93-3
125622-15-3, Poem J 0021 149175-65-5, Poem J 6021 188132-58-3, Unigly
GO 106
RL: FFD (Food or feed use); MOA (Modifier or additive use); THU
(Therapeutic use); BIOL (Biological study); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT 25618-55-7D, Polyglycerin, monofatty **acid ester** deriv
34406-66-1, Decaglycerin monolaurate 51033-38-6, Hexaglycerin
monolaurate 75719-57-2, Octaglycerol monostearate 79777-30-3,
Decaglycerol monostearate 163633-72-5
RL: FFD (Food or feed use); NUU (Other use, unclassified); POF (Polymer in
formulation); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT 64-17-5, Ethanol, uses 67-63-0, 2-Propanol, uses 68-04-2, Sodium
citrate 71-23-8, 1-Propanol, uses 112-53-8, Lauryl alcohol 112-72-1,
Myristyl alcohol 112-92-5, Stearyl alcohol 143-28-2, Oleyl alcohol
471-34-1, Calcium carbonate, uses 497-19-8, Sodium carbonate, uses
661-19-8, Behenyl alcohol 676-46-0, Sodium malate 5064-31-3
7487-88-9, Magnesium sulfate, uses 7647-14-5, Sodium chloride, uses
7722-88-5 7757-82-6, Sodium sulfate, uses 7758-29-4, Sodium
tripolyphosphate 7758-87-4, Calcium phosphate 7789-77-7, Calcium
phosphate dihydrate 9003-04-7, Sodium polyacrylate 9004-32-4, Sodium
carboxymethyl cellulose 9005-38-3, Sodium alginate 10043-52-4, Calcium
chloride, uses 28874-51-3 36653-82-4, Cetyl alcohol 50813-16-6,
Sodium metaphosphate
RL: MOA (Modifier or additive use); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

IT 77-92-9, Citric acid, uses 87-69-4, Tartaric acid,
uses 110-15-6, Succinic acid, uses 110-16-7, Maleic
acid, uses 110-94-1, Glutaric acid 124-04-9, Adipic
acid, uses 6915-15-7, Malic acid 51591-38-9,
Diacetyltauric acid
RL: NUU (Other use, unclassified); USES (Uses)
(**fatty acid ester** composition of a
polyglycerin)

- IT 115-77-5, Pentaerythritol, uses 9002-86-2, Polyvinylchloride
9003-53-6, Polystyrene 25034-86-0, Methylmethacrylate styrene copolymer
25213-88-1, Acrylonitrile methylmethacrylate styrene copolymer 27233-87-
0, Methylacrylate methylmethacrylate styrene copolymer 118570-01-7
RL: POF (Polymer in formulation); USES (Uses)
(fatty acid ester composition of a
polyglycerin)
- IT 57-11-4, Stearic acid, reactions 143-07-7, Lauric acid
, reactions 556-52-5, Glycidol
RL: RCT (Reactant); RACT (Reactant or reagent)
(fatty acid ester composition of a
polyglycerin)
- IT 50-70-4, Sorbitol, uses 50-99-7, D-Glucose, uses 56-81-5
, Glycerin, uses 57-50-1, Saccharose, uses 57-55-6, Propylene glycol,
uses 77-99-6, Trimethylol propane 107-88-0, 1,3-Butanediol
110-27-0, Isopropyl myristate 111-02-4, Squalene 111-46-6, Diethylene
glycol, uses 149-32-6, Erythritol 538-23-8, Trioctanoin 585-88-6,
Maltitol 621-71-6, Tricaprin 2568-33-4, Isopreneglycol 7360-38-5
12441-09-7, Sorbitan 12441-09-7D, Sorbitan,
fatty acid esters 25265-71-8, Dipropylene
glycol 25322-68-3, Polyethylene glycol 25322-68-3D, alkyl ether deriv
25322-68-3D, alkylphenyl ether 25322-68-3D, sorbitan deriv
29710-31-4, Cetyl octanoate 59113-36-9, Diglycerin
RL: TEM (Technical or engineered material use); USES (Uses)
(fatty acid ester composition of a
polyglycerin)
- IT 13463-67-7, Titanium dioxide, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(fibrous; fatty acid ester composition of a
polyglycerin)
- IT 50-70-4, Sorbitol, uses 56-81-5, Glycerin, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(fatty acid ester composition of a
polyglycerin)

L68 ANSWER 25 OF 57 HCA COPYRIGHT 2004 ACS on STN

126:224529 A fatty acid esters

composition of a polyglycerin, a process for the preparation
thereof, a process for the preparation of a highly-purified fatty
esters composition of a polyglycerin, a highly-purified
fatty esters composition of a polyglycerin, an
additive for food-stuffs, a resin composition, and a
composition for cosmetics or detergents. (Japan). Eur. Pat. Appl.
EP 758641 A1 19970219, 96 pp. DESIGNATED STATES: R: DE, FR,
GB. (English). CODEN: EPXXDW. APPLICATION: EP 1996-400562 19960318.
PRIORITY: JP 1995-227073 19950811; JP 1995-233180 19950821; JP 1995-344844
19951206; JP 1996-6743 19960118; JP 1996-8372 19960122; JP 1996-8373
19960122; JP 1996-10831 19960125; JP 1996-10832 19960125; JP 1996-16343
19960201; JP 1996-16344 19960201; JP 1996-16345 19960201; JP 1996-18579
19960205; JP 1996-18580 19960205; JP 1996-18581 19960205; JP 1996-22642
19960208; JP 1996-22643 19960208; JP 1996-22644 19960208; JP 1996-22645
19960208.

AB Disclosed are a fatty acid ester composition of a
polyglycerin containing more than 70% of fatty acid
monoester which is defined by a specified anal. method, a process
for the preparation thereof, a process for the preparation of a highly-purified
fatty acid ester composition of a polyglycerin, and
a highly-purified fatty acid composition of a polyglycerin

having an oxirane oxygen concentration of below 100 ppm which is defined by a specified anal. method. The **fatty acid esters** of a polyglycerin are useful as additives for a variety of food-stuffs, additives for a variety of thermoplastic resins, and as additives for a variety of cosmetics or detergents.

- IC ICM C07C069-33
ICS C07C067-26; A61K007-00; C08K005-103; C11D001-66; A23L001-03
CC 17-9 (Food and Feed Chemistry)
Section cross-reference(s): 62
ST food **fatty acid ester** polyglycerin; cosmetic
fatty acid ester polyglycerin; resin
fatty acid ester polyglycerin; detergent
fatty acid ester polyglycerin
IT Cocoa products
Coffee products
Tea products
(beverages; compns. of **fatty acid esters** of polyglycerins)
IT Bakery products
(cakes; compns. of **fatty acid esters** of polyglycerins)
IT Bread
Butter
Cheese
Cosmetics
Dairy products
Dentifrices
Detergents
Fish
Foaming agents
Pasta
Wetting agents
(compns. of **fatty acid esters** of polyglycerins)
IT Fats and Glyceridic oils, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of polyglycerins)
IT Zeolites (synthetic), uses
RL: MOA (Modifier or additive use); USES (Uses)
(compns. of **fatty acid esters** of polyglycerins)
IT **Fatty acids**, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(compns. of **fatty acid esters** of polyglycerins)
IT Beeswax
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of polyglycerins)
IT Bentonite, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of polyglycerins)
IT Lanolin
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of polyglycerins)

IT Olive oil
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT Paraffin oils
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT Silicates, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT Bakery products
(cookies; compns. of **fatty acid esters** of
polyglycerins)

IT Polyoxyalkylenes, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(**fatty acid ester** derivs; compns. of
fatty acid esters of polyglycerins)

IT Amines, uses
RL: MOA (Modifier or additive use); USES (Uses)
(hindered; compns. of **fatty acid esters**
of polyglycerins)

IT Cosmetics
(lotions; compns. of **fatty acid esters** of
polyglycerins)

IT Emulsions
(oil-in-water; compns. of **fatty acid esters**
of polyglycerins)

IT Acetals
RL: FFD (Food or feed use); MOA (Modifier or additive use); SPN (Synthetic
preparation); THU (Therapeutic use); BIOL (Biological study); PREP
(Preparation); USES (Uses)
(polymers; compns. of **fatty acid esters**
of polyglycerins)

IT Meat
(processed; compns. of **fatty acid esters**
of polyglycerins)

IT Plastics, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(thermoplastics; compns. of **fatty acid
esters** of polyglycerins)

IT 104-15-4, uses 124-41-4, Sodium methylate 7664-38-2D, Phosphoric acid,
ester derivs, uses
RL: CAT (Catalyst use); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT 115-77-5DP, **fatty acid ester** derivs
9009-32-9P, Polyglycerol stearate 25618-55-7DP, Polyglycerin,
fatty acid esters 34406-66-1P, Decaglycerol
monolaurate 74504-64-6P, Polyglycerol laurate 75719-57-2P,
Octaglycerin monostearate 163633-72-5P
RL: FFD (Food or feed use); MOA (Modifier or additive use); SPN (Synthetic
preparation); THU (Therapeutic use); BIOL (Biological study); PREP
(Preparation); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT 7360-38-5 34406-66-1, Sunsoft Q 12S 49553-76-6 51033-38-6,

SY-Glyster ML 500 54392-26-6, **Sorbitan** monoisostearate
71012-10-7, SY-Glyster MO 310 75798-42-4, SY-Glyster ML 310
79665-93-3, SY-Glyster MO 750 95461-65-7, SY-Glyster MS 500
125622-15-3, Poem J 0021 149175-65-5, Poem J 6021 188132-58-3, Unigly
GO 106

RL: FFD (Food or feed use); MOA (Modifier or additive use); THU
(Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT 64-17-5, Ethanol, uses 67-63-0, Isopropanol, uses 68-04-2, Sodium citrate 71-23-8, 1-Propanol, uses 77-92-9, Citric acid, uses 87-69-4, uses 110-15-6, Butanedioic acid, uses 110-16-7, 2-Butenedioic acid (Z)-, uses 110-94-1, Pentanedioic acid 112-53-8, 1-Dodecanol 112-72-1, Myristyl alcohol 112-92-5, 1-Octadecanol 124-04-9, Hexanedioic acid, uses 143-28-2, Oleyl alcohol 497-19-8, Sodium carbonate, uses 661-19-8, Behenyl alcohol 676-46-0, Sodium malate 2082-80-6, Tristearyl phosphite 6915-15-7 7487-88-9, Magnesium sulfate, uses 7647-14-5, Sodium chloride (NaCl), uses 7722-88-5 7757-82-6, Sodium sulfate, uses 7758-29-4, Sodium tripolyphosphate 9003-04-7, Sodium polyacrylate 10043-52-4, Calcium chloride, uses 36653-82-4, 1-Hexadecanol 51591-38-9
RL: MOA (Modifier or additive use); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT 9002-86-2, Polyvinyl chloride 9003-53-6, Polystyrene 25034-86-0, Methylmethacrylate styrene copolymer 25035-81-8 25213-88-1, Acrylonitrile methylmethacrylate styrene copolymer 118570-01-7
RL: POF (Polymer in formulation); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT 57-11-4, **Octadecanoic** acid, reactions 143-07-7, Dodecanoic acid, reactions 556-52-5, Oxiranemethanol
RL: RCT (Reactant); RACT (Reactant or reagent)
(compns. of **fatty acid esters** of
polyglycerins)

IT 50-70-4, D-Glucitol, biological studies 50-99-7, D-Glucose, biological studies 56-81-5D, 1,2,3-**Propanetriol**, **fatty acid ester** derivs, biological studies 57-50-1, Saccharose, biological studies 57-55-6, 1,2-**Propanediol**, biological studies 77-99-6 107-88-0, 1,3-**Butanediol** 110-27-0, Isopropyl myristate 111-01-3, Squalane 111-46-6, biological studies 149-32-6 471-34-1, Calcium carbonate, biological studies 538-23-8, Glycerin trioctanoate 585-88-6, Maltitol 621-71-6, Tricaprin 2568-33-4, Isopreneglycol 7758-87-4, Calcium phosphate 7789-77-7, Calcium phosphate dihydrate 9004-32-4, Sodium carboxymethyl cellulose 9005-38-3, Sodium alginate 12441-09-7D, **Sorbitan**, **fatty acid ester** derivs 25265-71-8, Dipropylene glycol 25322-68-3D, **fatty acid ester** derivs 25618-55-7, Polyglycerin 28874-51-3 29710-31-4, Cetyl octanoate 50813-16-6, Sodium meta-phosphate 59113-36-9, Diglycerin 87390-32-7, Decaglyceryl monomyristate 145053-72-1
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(compns. of **fatty acid esters** of
polyglycerins)

IT 50-70-4, D-Glucitol, biological studies 56-81-5D, 1,2,3-**Propanetriol**, **fatty acid ester** derivs, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(compns. of fatty acid esters of
polyglycerins)

- L68 ANSWER 26 OF 57 HCA COPYRIGHT 2004 ACS on STN
126:170759 Oil-in-water-type foaming **emulsified** lipid
compositions for foods. Oota, Hiroaki (Taiyo Oil & Fat Mfg. Co.,
Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 09010579 A2 **19970114**
Heisei, 5 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1995-161624
19950628.
- AB The compns., especially useful in cake baking, contain **diesters** of C16-22 saturated **fatty acids** with propylene glycol (I) and edible fats/oils. Cake ingredients were whipped with an **emulsified** composition containing rapeseed oil, **fatty acid monoglyceride**, I **diesters** with **fatty acids**, I **monoesters** with **fatty acids**, **sorbitan fatty acid esters**, sucrose **fatty acid esters**, etc. and baked to give cake showing a fine texture.
- IC ICM B01J013-00
ICS A21D013-08; A23D007-00; A23L001-19; A61K009-107; B01F017-00;
B01F017-56
- CC 17-9 (Food and Feed Chemistry)
- ST propylene glycol fatty ester **emulsion** cake; edible oil **emulsion** fatty ester cake; rapeseed oil **emulsion** fatty ester cake; satd fatty ester oil food **emulsion**
- IT **Fatty acids**, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**esters**, C16-18, saturated, **esters** with **sorbitan**, **glycerin**, or **sucrose**; oil/water-type foaming **emulsions** containing edible fats/oils and saturated **fatty acid propylene glycol diesters**)
- IT **Fatty acids**, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(**esters**, C16-22, saturated, **diesters** with propylene glycol; oil/water-type foaming **emulsions** containing edible fats/oils and saturated **fatty acid propylene glycol diesters**)
- IT **Emulsifying agents**
Food emulsions
(oil/water-type foaming **emulsions** containing edible fats/oils and saturated **fatty acid propylene glycol diesters**)
- IT Edible oils
Monoglycerides
Rape oil
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(oil/water-type foaming **emulsions** containing edible fats/oils and saturated **fatty acid propylene glycol diesters**)
- IT Carboxylic acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(salts; oil/water-type foaming **emulsions** containing edible fats/oils and saturated **fatty acid propylene glycol diesters**)
- IT Bakery products
(sponge cakes; oil/water-type foaming **emulsions** containing edible fats/oils and saturated **fatty acid propylene glycol diesters**)

IT 57-50-1D, Sucrose, **monoesters** with C16-18 saturated **fatty acid esters** 57-55-6D, 1,2-**Propanediol**, **diesters** with C16-22 saturated **fatty acids**, biological studies 68-04-2, Sodium citrate 12441-09-7D, **Sorbitan, monoesters** with C16-18 saturated **fatty acid esters**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(oil/water-type foaming **emulsions** containing edible fats/oils and saturated **fatty acid propylene glycol diesters**)

L68 ANSWER 27 OF 57 HCA COPYRIGHT 2004 ACS on STN
125:299771 Food release **compositions** with organic fluidizing agents.
Clapp, Clarence P.; Torrey, George S. (Creative Products Inc., USA). U.S. US 5567456 A 19961022, 11 pp., Cont.-in-part of U.S. 5,374,434. (English). CODEN: USXXAM. APPLICATION: US 1994-270632 19940701. PRIORITY: US 1991-787193 19911104.

AB A composition for facilitating the release of foods from cooking utensils contains an edible oil, lecithin, water and a carbonaceous, non-soap fluidizing agent. The water is present in an amount sufficient to partially, but not fully, hydrate the lecithin so as to render the partially hydrated lecithin insol. in the edible oil. The composition, which may further include a suitable normally gaseous propellant to discharge the composition from a conventional aerosol spray can, provides a substantially clear and smooth spray coating on cooking utensils at ambient temps., without the need for Et alc. in the composition. The composition may optionally include conventional modifying agents such as suspending agents, antioxidants, preservatives or flavorants. The fluidizing agent is either a **glycerol ester of a fatty acid** or a free **fatty acid** material, and fluidizes the lecithin so that if the lecithin settles, it easily can be re-dispersed in the oil.

IC ICM A23D009-00
ICS A23J007-00

NCL 426116000

CC 17-4 (Food and Feed Chemistry)

IT **Fatty acids**, biological studies

Lecithins

Phosphatides

Phosphatidylethanolamines

Phosphatidylinositols

RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (food release comps. with organic fluidizing agents)

IT 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid, biological studies 60-33-3, Linoleic acid, biological studies 112-80-1, Oleic acid, biological studies 143-07-7, Lauric acid, biological studies 544-63-8, Myristic acid, biological studies 9007-48-1, Polyglycerol oleate

RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (food release comps. with organic fluidizing agents)

IT 112-80-1, Oleic acid, biological studies

RL: FFD (Food or feed use); PEP (Physical, engineering or chemical process); BIOL (Biological study); PROC (Process); USES (Uses) (food release comps. with organic fluidizing agents)

L68 ANSWER 28 OF 57 HCA COPYRIGHT 2004 ACS on STN

124:287669 Aerosol-dispensable lecithin composition containing organic fluidizing agents to prevent sticking of food to cooking utensils.
Clapp, Clarence P.; Torrey, George S. (USA). Can. Pat. Appl. CA 2128174
AA 19960116, 38 pp. (English). CODEN: CPXXEB. APPLICATION: CA
1994-2128174 19940715.

- AB A parting composition for facilitating the release of foodstuffs from cooling utensils contains an edible oil, lecithin, water, and a carbonaceous, non-soap fluidizing agent. The water is present in an amount sufficient to partially, but no fully, hydrate the lecithin so as to render the partially hydrated lecithin insol. in the edible oil. The composition, which may further include a suitable normally gaseous propellant to discharge the composition from a conventional aerosol spray can, provides a substantially clear and smooth spray coating on cooking utensils at ambient temps., without the need for EtOH in the composition. The composition may optionally include conventional modifying agents such as suspending agents, antioxidants, preservatives, flavorants, etc. The fluidizing agent, either a glycerol ester of a fatty acid or a free fatty acid material, fluidizes the lecithin so that if the lecithin settles, it can easily be re-dispersed in the oil.
- IC ICM A23J007-00
ICS A23D009-00
- CC 17-6 (Food and Feed Chemistry)
- IT Fatty acids, biological studies
Glycerides, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(fluidizing agent; aerosol-dispensable lecithin/edible oil composition containing organic fluidizing agents to prevent sticking of food to cooking utensils)
- IT Fatty acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(C12-20, fluidizing agent; aerosol-dispensable lecithin/edible oil composition containing organic fluidizing agents to prevent sticking of food to cooking utensils)
- IT Fatty acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(animal-oil, fluidizing agent; aerosol-dispensable lecithin/edible oil composition containing organic fluidizing agents to prevent sticking of food to cooking utensils)
- IT Fatty acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(coco, fluidizing agent; aerosol-dispensable lecithin/edible oil composition containing organic fluidizing agents to prevent sticking of food to cooking utensils)
- IT Glycerides, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(mono-, acetates, fluidizing agent; aerosol-dispensable lecithin/edible oil composition containing organic fluidizing agents to prevent sticking of food to cooking utensils)
- IT Fatty acids, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(soya, fluidizing agent; aerosol-dispensable lecithin/edible oil composition containing organic fluidizing agents to prevent sticking of food to cooking utensils)

IT **Fatty acids, biological studies**

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(vegetable-oil, fluidizing agent; aerosol-dispensable lecithin/edible
oil composition containing organic fluidizing agents to prevent sticking of
food to cooking utensils)

IT 57-10-3, Palmitic acid, biological studies 57-11-4, Octadecanoic acid,
biological studies 60-33-3, 9,12-Octadecadienoic acid (Z,Z)-, biological
studies 112-80-1, Oleic acid, biological studies 143-07-7,
Dodecanoic acid, biological studies 544-63-8, Myristic acid, biological
studies 9007-48-1, Polyglycerol oleate 53168-42-6, Myvacet 9-45
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(fluidizing agent; aerosol-dispensable lecithin/edible oil composition
containing organic fluidizing agents to prevent sticking of food to cooking
utensils)

IT 112-80-1, Oleic acid, biological studies

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(fluidizing agent; aerosol-dispensable lecithin/edible oil composition
containing organic fluidizing agents to prevent sticking of food to cooking
utensils)

L68 ANSWER 29 OF 57 HCA COPYRIGHT 2004 ACS on STN

124:174258 Food release **compositions** with organic fluidizing agents.

Clapp, Clarence P.; Torrey, George S. (Creative Products Inc., USA). PCT
Int. Appl. WO 9601056 A1 19960118, 41 pp. DESIGNATED STATES: W:
AU, CN, NO; RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE. (English). CODEN: PIXXD2. APPLICATION: WO 1994-US9800 19940829.
PRIORITY: US 1994-270632 19940701.

AB A parting composition for facilitating the release of foodstuffs from cooking
utensils contains an edible oil, lecithin, water, a carbonaceous, non-soap
fluidizing agent. The water is present in an amount sufficient to
partially, but not fully, hydrate the lecithin so as to render the
partially hydrated lecithin insol. in the edible oil. The composition, which
may further include a suitable normally gaseous propellant to discharge
the composition from a conventional aerosol spray can, provides a substantially
clear and smooth spray coating on cooking utensils at ambient temps.,
without the need for Et alc. in the composition. The coating, which may be used
in lieu of oils, grease, butter, etc. to lubricate the food-contacting
surfaces of cooking utensils such as frying and baking pans, facilitates
separation of the cooked foodstuffs from the cooking surfaces. The
composition may

optionally include conventional modifying agents such as suspending
agents, anti-oxidants, preservatives, flavors, etc. The fluidizing agent
is either a **glycerol ester** of a **fatty**
acid or a free **fatty acid** material, fluidizes
the lecithin so that if the lecithin settles, it can easily be re-
dispersed in the oil.

IC ICM A23D009-00

ICS A23J007-00

CC 17-9 (Food and Feed Chemistry)

IT Fats and Glyceridic oils

Fatty acids, biological studies

Lecithins

RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(in food release compns. with organic fluidizing agents for cooking
utensils)

IT 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid,
biological studies 60-33-3, Linoleic acid, biological studies

112-80-1, Oleic acid, biological studies 143-07-7, Lauric acid, biological studies 544-63-8, Myristic acid, biological studies
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(in food release compns. with organic fluidizing agents for cooking utensils)

IT **112-80-1, Oleic acid, biological studies**
RL: FFD (Food or feed use); BIOL (Biological study); USES (Uses)
(in food release compns. with organic fluidizing agents for cooking utensils)

L68 ANSWER 30 OF 57 HCA COPYRIGHT 2004 ACS on STN
121:17740 Eye liner cosmetics containing isoparaffins and Berlin blue and **dispersants**. Kirita, Kazuhisa; Chikatsune, Keizo (Mitsubishi Pencil K. K., Japan). Eur. Pat. Appl. EP 596465 A1 19940511, 12 pp. DESIGNATED STATES: R: DE, FR, IT. (English). CODEN: EPXXDW.

APPLICATION: EP 1993-117800 19931103. PRIORITY: JP 1992-317976 19921104.

AB Oily reservoir type eye liner cosmetics are disclosed which comprise, as essential components, 35-95 wt% of a light liquid iso-paraffin having 8-15 carbon atoms, 3-40 wt% of a Berlin blue having a particle diameter of 0.2 μm or less, and 2-40 wt% of a **dispersant** which is a mixture of three components, each of which is selected from each of the three groups of (A) a betaine-based surface active agent or the like, (B) a polyoxyethylene-based nonionic surface active agent or the like, and (C) a lecithin or an N-acylamino acid. Aqueous Berlin blue **dispersion** 91.2, lauryldimethylaminoacetic acid betaine 8.8% were stirred for 60 min, then centrifuged and heated to obtain a **dispersant**-adsorbed powder containing 80.50% pigment. A cosmetic eye liner contained above powder 32.0, **sorbitan** sesquioleate 7.0, polyoxyethylene nonyl Ph ether 2.0, soybean phospholipid 4.0, light liquid iso-paraffin 55.0%.

IC ICM A61K007-032

ICS C09C001-26

CC 62-4 (Essential Oils and Cosmetics)

ST cosmetic eye liner isoparaffin **dispersant**; Berlin blue lauryldimethylaminoacetate betaine eye liner

IT **Dispersing** agents

Lecithins

RL: BIOL (Biological study)

(cosmetic eye liners containing isoparaffins and Berlin blue and)

IT **Fatty acids**, biological studies

RL: BIOL (Biological study)

(esters, with PEG, cosmetic eye liners containing isoparaffins and Berlin blue and)

IT Cosmetics

(eye liners, isoparaffins and Berlin blue and **dispersants** in)

IT Alkanes, biological studies

RL: BIOL (Biological study)

(iso-, cosmetic eye liners containing Berlin blue and **dispersants** and)

IT **56-81-5D, 1,2,3-Propanetriol, fatty acid esters** 57-50-1D, Sucrose, fatty

acid esters 683-10-3, Lauryldimethylaminoacetic acid

betaine 1338-43-8, Sorbitan monooleate 1462-54-0

7664-38-2D, Phosphoric acid, polyoxyethylene alkyl ethers 8007-43-0,

Sorbitan sesquioleate 9004-81-3, Polyoxyethylene monolaurate

9004-95-9, Polyoxyethylene cetyl ether 9004-98-2, Polyoxyethylene oleyl

ether 9004-99-3, Polyoxyethylene monostearate 9016-45-9,

Polyoxyethylene nonyl phenyl ether 12441-09-7D, Sorbitan,

fatty acid esters 25322-68-3D, fatty

acid esters 26658-19-5, Sorbitan
tristearate 31566-31-1, Glycerin monostearate 37663-66-4
RL: BIOL (Biological study)
(cosmetic eye liners containing isoparaffins and Berlin blue and)
IT 12240-15-2, Berlin blue
RL: BIOL (Biological study)
(cosmetic eye liners containing isoparaffins and dispersants and)
IT 56-81-5D, 1,2,3-Propanetriol, fatty
acid esters 1338-43-8, Sorbitan
monooleate 26658-19-5, Sorbitan tristearate
RL: BIOL (Biological study)
(cosmetic eye liners containing isoparaffins and Berlin blue and)

L68 ANSWER 31 OF 57 HCA COPYRIGHT 2004 ACS on STN
120:268803 Fat substitute compositions having reduced laxative effects.. Meyer, Richard S.; Campbell, Michael L. (Curtice-Burns, Inc., USA). U.S. US 5294451 A 19940315, 11 pp. Cont.-in-part of U.S. Ser. No. 677,553, abandoned. (English). CODEN: USXXAM. APPLICATION: US 1992-857063 19920324. PRIORITY: US 1991-677553 19910329.

AB Antilaxative agents are included in fat substitute compns. to reduce or eliminate anal leakage in mammals of fat substitutes having a m.p. $\leq 37^\circ$. The antilaxative agents are emulsifiers such as polyglyceryl esters of fatty acids, mono- and di-glycerides, microcryst. cellulose, ethoxylated mono- and di-glycerides, sorbitan esters of fatty acids, glyceryl-lacto esters of fatty acids, acetylated monoglycerides, polyglycerol lactic acid ester, and propylene glycol mono stearate, or gums such as xanthan gum. Addition of acetylated monoglycerides to sucrose polyester fat substitute inhibited anal leakage in rats fed this substitute.

IC ICM A23D009-00
NCL 426611000
CC 17-9 (Food and Feed Chemistry)
IT Fatty acids, esters
RL: BIOL (Biological study)
(Cl-18, esters, antilaxative additives, to fat substitutes)
IT Glycerides, compounds
RL: BIOL (Biological study)
(mixed mono- and di-, ethoxylated, antilaxative additives, to fat substitutes)
IT Glycerides, compounds
RL: BIOL (Biological study)
(mono-, acetates, antilaxative additive, to fat substitutes)
IT 1323-39-3, Propylene glycol monostearate 11138-66-2, Xanthan gum 12441-09-7D, Sorbitan, esters with Cl-18 fatty acids 146104-70-3
RL: BIOL (Biological study)
(antilaxative additive, to fat substitutes)

L68 ANSWER 32 OF 57 HCA COPYRIGHT 2004 ACS on STN
118:146587 Suspensions of micron-sized ascorbic acid particles and their use as antioxidants. Todd, Paul H., Jr. (Kalamazoo Holdings, Inc., USA). PCT Int. Appl. WO 9300015 A1 19930107, 44 pp. DESIGNATED STATES: W: JP, KR; RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE. (English). CODEN: PIXXD2. APPLICATION: WO 1992-US4874 19920610. PRIORITY: US 1991-717926 19910620.

AB Particles of ascorbic acid with a diameter $\leq 38 \mu\text{m}$ are used as an antioxidant for foods in which ascorbic acid is insol. (e.g. fats and oils). These particles are prepared by wet-milling of ascorbic acid in a solvent in which it is insol. The use of the powder to stabilize fats and glyceridic oils, paprika oleoresin, and chicken fat against oxidation is demonstrated.

IC ICM A23B004-00

CC 17-6 (Food and Feed Chemistry)
Section cross-reference(s): 62

IT **Glycerides, uses**

RL: USES (Uses)
(di-, in microparticulate ascorbic acid-containing antioxidants for fatty foods)

IT **Fatty acids, esters**

RL: BIOL (Biological study)
(esters, with **sorbitan** and propylene glycol, in microparticulate ascorbic acid-containing antioxidants for **fatty** foods)

IT **Glycerides, uses**

RL: USES (Uses)
(mono-, in microparticulate ascorbic acid-containing antioxidants for fatty foods)

IT 50-21-5D, glycerides 77-92-9D, glycerides 87-69-4D, Tartaric acid, glycerides 1338-41-6, **Sorbitan** monostearate 1338-43-8, **Sorbitan** monooleate 25496-72-4, Glycerol monooleate 25618-55-7D, **Polyglycerol, fatty acid esters** 26266-58-0, **Sorbitan** trioleate 75719-56-1, Octaglycerol monooleate 146599-38-4

RL: BIOL (Biological study)
(in microparticulate ascorbic acid-containing antioxidants for **fatty** foods)

IT 1338-43-8, **Sorbitan** monooleate

RL: BIOL (Biological study)
(in microparticulate ascorbic acid-containing antioxidants for **fatty** foods)

L68 ANSWER 33 OF 57 HCA COPYRIGHT 2004 ACS on STN

117:169731 The influence of food **emulsifiers** on fat and sugar **dispersions** in oils. II. Rheology, colloidal forces. Johansson, Dorota; Bergenstaahl, Bjoern (Inst. Surf. Chem., Stockholm, S-114 85, Swed.). Journal of the American Oil Chemists' Society, 69(8), 718-27 (English) 1992. CODEN: JAOCAT. ISSN: 0003-021X.

AB The influence of food **emulsifiers** on the viscoelastic properties (storage modulus and yield value) of fat and sugar **dispersions** in vegetable oils has been investigated. It was found that almost all of the **emulsifiers** tested influence the rheol. of the **dispersions**. The magnitude and the direction of the rheol. changes depend on both the type and the amount of **emulsifier**. In most cases, the changes are relatively small, especially for fat crystals. Generally, the largest changes are caused by lecithins and saturated **monoglycerides**. The magnitudes of **colloidal** forces and equilibrium distances between the particles have been estimated from the rheol. network model of van den Tempel (1964) and from the correlation of the yield value to the interaction energy by T.J. Gillespie (1960) and Th.F. Tadros (1985; 1990). The results indicate that van der Waals forces alone cannot be responsible for the interparticle interaction in fat or sugar **dispersions**. The formation of water bridges is discussed as a probable source of interaction in both cases. Furthermore, the validity

of the network model for fat and sugar **dispersions** in oils is questionable.

CC 17-2 (Food and Feed Chemistry)

ST oil fat sugar **emulsifier colloid rheol**

IT Phosphatidylcholines, properties

Phospholipids, properties

RL: PRP (Properties)

(fat and sugar **dispersions** in soybean oil interaction with, rheol. and **colloidal forces** in relation to)

IT Fats and Glyceridic oils

Soybean oil

RL: BIOL (Biological study)

(food **emulsifiers** interaction with fat and sugar **dispersions** in, rheol. and **colloidal forces** in relation to)

IT **Emulsifying agents**

(for food, fat and sugar **dispersions** in soybean oil interaction with, rheol. and **colloidal forces** in relation to)

IT **Glycerides**, properties

RL: PRP (Properties)

(mono-, fat and sugar **dispersions** in soybean oil interaction with, rheol. and **colloidal forces** in relation to)

IT **Glycerides**, properties

RL: PRP (Properties)

(mono-, unsatd., fat and sugar **dispersions** in soybean oil interaction with, rheol. and **colloidal forces** in relation to)

IT Food functional properties

(rheol., of fat and sugar **dispersions** in soybean oil, food **emulsifiers** interactions in relation to)

IT 50-21-5D, Lactic acid, esters with **monoglycerides** 57-55-6D, Propylene glycol, **fatty acid esters** 111-03-5, Monoolein 12441-09-7D, Sorbitan, **fatty acid esters** 25618-55-7D, Polyglycerol, **fatty acid esters** 51591-38-9D, Diacetyl tartaric acid, esters with **monoglycerides**

RL: BIOL (Biological study)

(fat and sugar **dispersions** in soybean oil interaction with, rheol. and **colloidal forces** in relation to)

IT 57-50-1, Sucrose, biological studies 555-43-1, Tristearin

RL: BIOL (Biological study)

(food **emulsifiers** interaction with **dispersions** of, in soybean oil, rheol. and **colloidal forces** in relation to)

L68 ANSWER 34 OF 57 HCA COPYRIGHT 2004 ACS on STN

117:33699 **Dispersion of water-dispersible or alcohol-soluble substances in low cloud point lipoidal materials.** Hemker, Wilfred J. (Unilever UK Central Resources Ltd., USA). Can. CA 1292692 A1 19911203, 19 pp. (English). CODEN: CAXXA4. APPLICATION: CA 1987-539048 19870608. PRIORITY: US 1986-873802 19860613.

AB A clear carrier for polar water-dispersible or alc.-soluble compds. comprises (1) a highly stable liquid oil or wax and (2) a combination of surfactants dispersed in the oil. The polar substances include FD&C dyes, flavorants, pigments, emollients, etc. The solubility of Et vanillin, ethanol, and benzyl alc. was tested in a carrier composition containing Durkex 500 (winterized vegetable oil) 92, octaglycerol pentaoleate 6, and triglycerol dioleate 2 %.

IC ICM A61K047-44
ICS A61K007-00
CC 63-6 (Pharmaceuticals)
Section cross-reference(s): 17, 62
IT Flavoring materials
(dispersion of, in surfactant-containing oils)
IT Surfactants
(oils containing, for dispersion of polar compds.)
IT Cottonseed oil
Waxes and Waxy substances
RL: BIOL (Biological study)
(surfactant-containing, for dispersion of polar compds.)
IT Soybean oil
RL: BIOL (Biological study)
(hydrogenated, surfactant-containing, for dispersion of polar compds.)
IT Fats and Glyceridic oils
RL: BIOL (Biological study)
(vegetable, hydrogenated, surfactant-containing, for dispersion of polar compds.)
IT 1934-21-0 25956-17-6, FD&C red number 40 68921-42-6 64-17-5, Ethanol,
uses 100-51-6, Benzyl alcohol, uses 121-32-4, Ethyl vanillin
RL: PROC (Process)
(dispersion of, in surfactant-containing oils)
IT 50-70-4D, Sorbitol, fatty acid esters
57-50-1D, Sucrose, fatty acid esters
1338-43-8, Sorbitan monooleate 9007-48-1, Polyglycerol
oleate 66524-58-1 79665-94-4, Triglycerol dioleate 148464-04-4
RL: BIOL (Biological study)
(oils containing, for dispersion of polar compds.)
IT 50-70-4D, Sorbitol, fatty acid esters
1338-43-8, Sorbitan monooleate
RL: BIOL (Biological study)
(oils containing, for dispersion of polar compds.)

L68 ANSWER 35 OF 57 HCA COPYRIGHT 2004 ACS on STN
116:150443 Activated ascorbic acid antioxidant compositions and
carotenoids, fats, and foods stabilized therewith. Todd, Paul H., Jr.
(Kalamazoo Holdings, Inc., USA). PCT Int. Appl. WO 9200019 A1
19920109, 49 pp. DESIGNATED STATES: W: JP, KR; RW: AT, BE, CH,
DE, DK, ES, FR, GB, GR, IT, LU, NL, SE. (English). CODEN: PIXXD2.
APPLICATION: WO 1991-US4503 19910624. PRIORITY: US 1990-544248 19900626.
AB An activated ascorbic acid product with increased antioxidant activity,
especially in fats, oils, and fatty foods comprises ascorbic acid in a
solution of propylene glycol or a nonionic surface-active agent. The
nonionic surface-active agent is selected from mono- and diglycerides;
polyglyceride esters of fatty acids; mono-
and diglycerides further esterified with citric or lactic acid;
acetylated mono- and diglycerides further esterified with citric
or lactic acid; sorbitan esters of fatty
acids; and propylene glycol esters of fatty
acids. The ascorbic acid is dissolved in the surface-active agent
in the presence of a solubilizing medium, i.e. MeOH, EtOH, iPrOH, or
water, then the solubilizing medium is removed. The ascorbic acid product
may addnl. contain a natural antioxidant selected from Labiateae extract, tea
extract, and tocopherol. In these products, the antioxidant activity of the
components is synergistic. An antioxidant was prepared by dissolving
ascorbic acid in MeOH-H₂O and adding this solution to glycerol

monooleate. The solvent mixture was removed by rotary evaporation at 70°. The resulting antioxidant product was more effective than ascorbyl palmitate and rosemary in preventing oxidation of soybean oil.

- IC ICM A23L003-3499
ICS C11B005-00; A23K003-00; A23G003-30
CC 17-6 (Food and Feed Chemistry)
ST antioxidant ascorbate propylene glycol; **emulsifier** nonionic ascorbic acid antioxidant
IT Tocopherols
RL: BIOL (Biological study)
(ascorbic acid-propylene glycol/nonionic **emulsifier** solution containing, synergistic antioxidant activity of)
IT Labiateae
Rosemary
Sage
Tea products
Thyme
(extract, ascorbic acid-propylene glycol/nonionic **emulsifier** solution containing, synergistic antioxidant activity of)
IT Resins
RL: BIOL (Biological study)
(oleo-, paprika, oxidation of, inhibition of, ascorbic acid-propylene glycol/nonionic **emulsifier** solution for)
IT Feed
Food
(oxidation of, inhibition of, ascorbic acid-propylene glycol/nonionic **emulsifier** solution for)
IT Canola oil
Carotenes and Carotenoids, reactions
Soybean oil
RL: RCT (Reactant); RACT (Reactant or reagent)
(oxidation of, inhibition of, ascorbic acid-propylene glycol/nonionic **emulsifier** solution for)
IT Glycerides, biological studies
RL: BIOL (Biological study)
(di-, ascorbic acid in, antioxidant activity of)
IT Fatty acids, esters
RL: BIOL (Biological study)
(esters, with sorbitan or propylene glycol, ascorbic acid in, antioxidant activity of)
IT Glycerides, compounds
RL: BIOL (Biological study)
(mixed mono- and di-, esters with lactic or citric acid and acetic acid, ascorbic acid in, antioxidant activity of)
IT Glycerides, biological studies
RL: BIOL (Biological study)
(mono-, ascorbic acid in, antioxidant activity of)
IT Emulsifying agents
(nonionic, ascorbic acid in, antioxidant activity of)
IT 9041-07-0D, Decaglycerol, c8_10-acyl ester 25496-72-4, Glycerol monooleate 25618-55-7D, Polyglycerol, fatty acid esters 26266-58-0, Sorbitan trioleate 75719-56-1, Octaglycerol monooleate
RL: BIOL (Biological study)
(ascorbic acid in, antioxidant activity of)
IT 64-17-5, Ethanol, properties 67-56-1, Methanol, properties 67-63-0, Isopropanol, properties 7732-18-5, Water, properties
RL: BIOL (Biological study)

(in activated ascorbic acid-propylene glycol/nonionic emulsifier solution preparation, antioxidant activity in relation to)
IT 6983-79-5, Bixin 7235-40-7, β -Carotene
RL: RCT (Reactant); RACT (Reactant or reagent)
(oxidation of, inhibition of, ascorbic acid-propylene glycol/nonionic emulsifier solution for)
IT 50-81-7, Ascorbic acid, properties
RL: PRP (Properties)
(propylene glycol or nonionic emulsifier solution of, antioxidant activity of)

L68 ANSWER 36 OF 57 HCA COPYRIGHT 2004 ACS on STN
116:104829 Whipping creams containing emulsifier mixtures.
Kudo, Satoshi; Mori, Yoko; Watanabe, Takao (Yakult Honsha Co., Ltd., Japan; Niigata Engineering Co., Ltd.). Jpn. Kokai Tokkyo Koho JP 03240438 A2 19911025 Heisei, 6 pp. (Japanese). CODEN: JKXXAF.

APPLICATION: JP 1990-33936 19900216.
AB Whipping creams contain emulsifier mixts. comprising phosphatidylglycerol-enriched lecithins, glycerin fatty acid esters, and ≥ 1 compds. chosen from fatty acid esters of polyglycerin, sucrose, and sorbitan. Lecithins containing 50% phosphatidylglycerol 0.2, Santone 3-1-S (polyglycerin fatty acid ester) 0.5, and Emalsy MS (glycerin fatty acid ester) 0.3 weight parts were dissolved into 41 weight parts coconut oil and mixed with 59 weight parts 6% skim milk solution at 70° to manufacture a cream with good whipping property.

IC ICM A23C013-12

ICS A23L001-19

CC 17-8 (Food and Feed Chemistry)

ST cream whipping emulsifier lecithin; glycerin fatty ester whipping cream; polyglycerin fatty ester whipping cream; sucrose fatty ester whipping cream; sorbitan fatty ester whipping cream

IT Glycerides, biological studies

RL: BIOL (Biological study)
(fatty acids of, whipping creams containing, as emulsifiers)

IT Emulsifying agents

(modified lecithin and polyol fatty acid esters as, for whipping creams)

IT Lecithins

Lysophosphatidylglycerols

Phosphatidylglycerols

RL: BIOL (Biological study)

(whipping creams containing, as emulsifiers)

IT Fatty acids, esters

RL: BIOL (Biological study)

(esters, with polyols, whipping creams containing, as emulsifiers)

IT Glycerides, biological studies

RL: BIOL (Biological study)

(tallow mono-, hydrogenated, whipping creams containing, as emulsifiers)

IT Fatty acids, esters

RL: BIOL (Biological study)

(tallow, esters, with sucrose, whipping creams containing, as emulsifiers)

IT Cream substitutes

(whipped, modified lecithin and **polyol fatty acid esters** in, as **emulsifiers**)

IT 57-50-1D, Sucrose, **fatty acid esters**
1338-41-6, Emasol S 10 12441-09-7D, **Sorbitan, fatty acid esters** 25618-55-7D, Polyglycerin, **fatty acid esters** 26855-43-6, Santone 3-1S
RL: BIOL (Biological study)
(whipping creams containing, as **emulsifiers**)

L68 ANSWER 37 OF 57 HCA COPYRIGHT 2004 ACS on STN

116:27846 Cosmetic and pharmaceutical **composition** containing hydrated microspheres of hydrophilic lipids. Kauffmann, Myriam (Oreal S. A., Fr.). Eur. Pat. Appl. EP 452202 A1 19911016, 13 pp.
DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, GB, GR, IT, LI, NL, SE. (French). CODEN: EPXXDW. APPLICATION: EP 1991-400933 19910405.
PRIORITY: FR 1990-4387 19900405.

AB An aqueous cosmetic or pharmaceutical composition contains a **suspension** of hydrated microspheres (mean diameter 50-10,000 μm) of hydrophilic lipids. Microspheres with mean diameter 1000 μm were prepared containing perfumes 30, glycerol monodipalmitoyl stearate 54, PEG monodipalmitoyl stearate 15.75, BHT 0.05, and preservatives 0.2 g. A perfumed gel contained above microspheres 5, Carbopol 940 0.3, triethanolamine q.s. to pH 6.5, methylparaben 0.2, glycerin 4, and water q.s. to 100 g.

IC ICM A61K007-00

ICS A61K009-16; A61K009-50; A61K007-48

CC 62-4 (Essential Oils and Cosmetics)
Section cross-reference(s): 63

IT **Fatty acids**, biological studies

RL: BIOL (Biological study)

(C12-24, microspheres containing, in pharmaceutical and cosmetic compns.)

IT **Fatty acids, esters**

RL: BIOL (Biological study)

(C12-24, **esters**, microspheres containing, in pharmaceutical and cosmetic compns.)

IT Cosmetics

(**emulsions**, hydrated microspheres manufactured from hydrophilic lipids in)

IT **Fatty acids, esters**

RL: BIOL (Biological study)

(ethoxylated, microspheres containing, in pharmaceutical and cosmetic compns.)

IT 56-81-5D, 1,2,3-**Propanetriol**, C16-18-alkyl

monoesters 112-72-1, Myristic alcohol 1338-41-6,
Sorbitan monostearate 9005-00-9, Brij 72 25322-68-3D,
C16-18-alkyl monoesters 124364-46-1, Labrafil M 2735CS

RL: BIOL (Biological study)

(microspheres containing, in pharmaceutical and cosmetic compns.)

IT 56-81-5D, 1,2,3-**Propanetriol**, C16-18-alkyl

monoesters

RL: BIOL (Biological study)

(microspheres containing, in pharmaceutical and cosmetic compns.)

L68 ANSWER 38 OF 57 HCA COPYRIGHT 2004 ACS on STN

115:206600 Water-in-oil **emulsions** containing **suspensions** of hydrophilic solids. Toshio, Takemori; Toshinobu, Tsurumi; Masahiro, Takagi; Masaharu, Tanabe (Lotte Co., Ltd., Japan). Eur. Pat. Appl. EP 440203 A1 19910807, 5 pp. DESIGNATED STATES: R: BE, CH, DE,

FR, GB, IT, LI, NL. (English). CODEN: EPXXDW. APPLICATION: EP
1991-101219 19910130. PRIORITY: JP 1990-20381 19900201.

AB Novel food **emulsions** containing an aqueous solution and a hydrophilic anhydrous solid independently suspended in an oil phase are described. The composition of such an **emulsion**, including limitations on particle sizes are described. Hardened soybean oil (mp 34°) 39.5, sugar 25, powdered milk 25, and soybean phospholipid 0.5 parts were mixed and ground to a particle size ≤40 µm (preparation 1). Hardened soybean oil 5, 5-fold concentrated apple juice 4.5, and **polyglycerol** condensed ricinoleic acid **ester** 0.5 parts were homogenized to make an **emulsion** of particle size ≤ 2 µm (preparation 2). Preps. 1 and 2 were mixed to produce an apple-flavored cream filling.

IC ICM A23L001-00

ICS A23L001-48; A23G001-00

CC 17-9 (Food and Feed Chemistry)

ST **emulsion** food water in oil

IT Bakery products
(apple-flavored filling for, preparation of, as water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Apple juice
Palm oil
RL: BIOL (Biological study)
(in water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Milk
(powdered, in water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Confectionery
(yogurt-like filling for, preparation of, as water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Oils, glyceridic
RL: BIOL (Biological study)
(butter, in water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Food
(**emulsions**, water-in-oil, aqueous solution and hydrophilic solid independently suspended in, preparation of)

IT Fatty acids, esters
RL: PREP (Preparation)
(esters, with sucrose or sorbitan, as **emulsifying** agents in preparation water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Soybean oil
RL: BIOL (Biological study)
(hydrogenated, in water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Phospholipids, uses and miscellaneous
RL: USES (Uses)
(soya, **emulsifying** agent, in water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT Emulsions
(water-in-oil, aqueous solution and hydrophilic solid independently suspended
in, preparation of)

IT Milk preparations
(yogurt, in water-in-oil **emulsions** containing independently suspended aqueous solution and hydrophilic solid)

IT 25618-55-7D, **Polyglycerol, fatty acid esters** 68936-89-0D, **fatty acid esters**
RL: BIOL (Biological study)
(**emulsifying** agent, in water-in-oil **emulsions**
containing independently suspended aqueous solution and hydrophilic solid)
IT 7732-18-5P
RL: PREP (Preparation)
(**emulsions**, water-in-oil, aqueous solution and hydrophilic solid
independently suspended in, preparation of)
IT 57-50-1, Sucrose, biological studies 115536-98-6
RL: BIOL (Biological study)
(in water-in-oil **emulsions** containing independently suspended aqueous
solution and hydrophilic solid)

L68 ANSWER 39 OF 57 HCA COPYRIGHT 2004 ACS on STN
115:99326 Pharmaceutical **compositions** containing 4,6-dioxoheptanoic
acid or its derivatives and solubilizers. Hora, Maninder Singh; Jackson,
Eugene, Jr. (Cetus Corp., USA). PCT Int. Appl. WO 9104734 A1
19910418, 18 pp. DESIGNATED STATES: W: JP; RW: AT, BE, CH, DE,
DK, ES, FR, GB, IT, LU, NL, SE. (English). CODEN: PIXXD2. APPLICATION:
WO 1990-US5275 19900917. PRIORITY: US 1989-414944 19890929.

AB The present invention is a pharmaceutically acceptable formulation of
succinylacetone or ≥1 of its pharmaceutically active analogs. The
formulation can include ≥1 base (NaOH, arginine, lysine, or
glutamine) to produce a pH of 3.0-8.0. A different formulation can
include a solubilizer (EtOH; cosolvents such as **PEG** or propylene
glycol; nonionic surfactants (polyoxyethylene **sorbitan**
fatty acid esters, polyethylene glycol
esters, polyethylene **fatty acid esters**
, block copolymers of ethylene oxide and propylene oxide, ethylated
fatty alc. ethers, and octylphenoxy polyethoxyethanol compds. An
alternative formulation can comprise a covalent conjugate between the
succinylacetone or analog thereof and **PEG**, polypropylene glycol,
polyoxyethylene **polyol**, or polyproline. The present invention
provides methods for manufacturing stable and soluble formulations of
succinylacetone or its analogs, which themselves are insol. Thus, a
pharmaceutical solution contained Et 4-cetyl-5-oxohexanoate (213.1 mg/mL) in
PEG-400 50, EtOH 2, and H2O 28%. The solution was stable for
≥7 days at room temperature

IC ICM A61K031-19
ICS A61K009-00; A61K047-02; A61K047-18; A61K047-48

CC 63-6 (Pharmaceuticals)

ST succinylacetone pharmaceutical solv stability; ethylcetoxyhexanoate
pharmaceutical **PEG** ethanol

IT Pharmaceutical dosage forms
(**emulsions**, succinylacetone or analogs in stable, pH adjuster
and solubilizer and polymers in)
IT 64-17-5D, Ethanol, fatty ethers 9005-63-4D, Polyoxyethylene
sorbitan, **fatty acid esters**
9036-19-5D, Octylphenoxy polyethoxy ethanol, derivs. 25322-68-3D,
Polyethylene glycol, esters
RL: BIOL (Biological study)
(as solubilizers, in pharmaceutical compns. containing succinylacetone or
analogs)

L68 ANSWER 40 OF 57 HCA COPYRIGHT 2004 ACS on STN
115:90999 A foam-forming **formulation** and its use in food

preparation. Yokoyama, Kazuaki; Taniguchi, Kyomi; Sekiguchi, Toshio; Kaneko, Tomiatsu (Miyoshi Oil and Fat Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 03098528 A2 19910424 Heisei, 6 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1989-236518 19890912.

AB A foam-forming composition comprised of edible oils, polysaccharide, **emulsifiers**, and water is described for use in preparing food such as cakes or breads to give homogeneous foam space or to avoid an undesirable texture caused by filling of the foam. A series of composition containing oils such as hardened fish oil, hardened soy bean oil, etc., polysaccharides such as corn starch, guar gum, etc., and **emulsifiers** such as glycerin monofatty acid esters, lecithins, etc. were described were used in baking soft rolls.

IC ICM A21D002-16

ICS A21D002-18; A21D002-32

CC 17-13 (Food and Feed Chemistry)

IT **Emulsifying agents**

Lecithins

Oils, glyceridic

Polysaccharides, uses and miscellaneous

Tallow

RL: BIOL (Biological study)

(in foam-forming composition, for food preparation)

IT 56-81-5, 1,2,3-Propanetriol, biological studies 57-50-1D, Sucrose, **fatty acid esters** 57-55-6D, 1,2-

Propanediol, fatty acid esters

9000-01-5, Gum arabic 9000-07-1, Carrageenan 9000-30-0, Guar gum

9000-40-2, Locust bean gum 9000-69-5, Pectin 9005-32-7, Alginic acid

9005-38-3, Sodium alginate 11138-66-2, Xanthan gum 12441-09-7D,

Sorbitan, fatty acid esters

RL: BIOL (Biological study)

(in foam-forming composition, for food preparation)

L68 ANSWER 41 OF 57 HCA COPYRIGHT 2004 ACS on STN

114:162818 Propolis food compositions containing **polyols**

and **polyol fatty acid esters**, and

their manufacture. Hamanaka, Hiroyoshi; Harada, Mika (Nippon Proparisu K.

K., Japan). Jpn. Kokai Tokkyo Koho JP 02245159 A2 19900928

Heisei, 10 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1989-68895 19890320.

AB Propolis food compns. are manufactured by mixing (1) monoalc. extract of propolis,

(2) monoalc.-soluble propolis, or (3) propolis (at 50-100°) with **polyols**. in which 0.01-25 weight parts (based on 100 weight parts total of propolis and the **polyols**) **polyol fatty acid ester** surfactants are uniformly dissolved or dispersed (and separation of **polyol-insol.** propolis).

Tetraglycerin monooleate (1 weight part) was dispersed in 95 weight parts glycerin, mixed with 50 weight parts EtOH extract (10 weight%) of propolis,

and EtOH was removed at 80-85° in vacuo to manufacture propolis food, which improved symptoms of hangover, asthma, and allergy in patients.

IC ICM A23L001-30

ICS A23L002-38

CC 17-13 (Food and Feed Chemistry)

Section cross-reference(s): 1

ST propolis **polyol fatty ester** food; hangover asthma
allergy treatment propolis; surfactant **polyol fatty ester** propolis

IT Propolis
(foods containing **polyols** and **polyol fatty acid esters** and)
IT Surfactants
(**polyol fatty acid esters**, for propolis)
IT **Fatty acids, esters**
RL: BIOL (Biological study)
(esters, with **polyols**, foods containing propolis and **polyols** and)
IT 50-70-4, D-Glucitol, biological studies 56-81-5, 1,2,3-
Propanetriol, biological studies 57-50-1, Sucrose, biological studies 57-55-6, 1,2-**Propanediol**, biological studies 58-86-6, D-Xylose, biological studies 90-80-2, Glucono- δ -lactone 526-95-4, Gluconic acid
RL: BIOL (Biological study)
(foods containing propolis and **polyol fatty acid esters** and)
IT 1330-80-9, Propylene glycol monooleate 1338-39-2, **Sorbitan** monolaurate 1338-43-8, **Sorbitan** monooleate 25339-99-5, Sucrose monolaurate 27215-38-9, Glycerin monolaurate 33940-99-7, Decaglycerin dioleate 71012-10-7, Tetraglycerin monooleate 75798-42-4, Tetraglycerin monolaurate 96499-68-2 121074-76-8 123609-87-0 133136-57-9 133176-73-5
RL: BIOL (Biological study)
(foods containing propolis and polyols and)
IT 64-17-5, Ethanol, biological studies
RL: BIOL (Biological study)
(propolis extracted with, foods containing **polyols** and **polyol fatty acid esters** and)
IT 50-70-4, D-Glucitol, biological studies 56-81-5, 1,2,3-
Propanetriol, biological studies
RL: BIOL (Biological study)
(foods containing propolis and **polyol fatty acid esters** and)
IT 1338-43-8, **Sorbitan** monooleate
RL: BIOL (Biological study)
(foods containing propolis and polyols and)

L68 ANSWER 42 OF 57 HCA COPYRIGHT 2004 ACS on STN
112:177289 Fat and oil containing **emulsifying** agent
compositions for bakery products. Sugihara, Hiroshi; Kiyama, Tsukasa; Ide, Shushiro (Fuji Oil Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 01240133 A2 19890925 Heisei, 4 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1988-66305 19880318.
AB Fat and oil compns. that are **emulsifying** agents for bakery products (e.g. sponge cakes, butter cakes) contain fats and oils 20-40, glycerin saturated **fatty acid esters** 4-12, propylene glycol **fatty acid esters** 1-10, **sorbitan fatty acid esters** 1-7, sucrose **fatty acid esters** 0.5-2, polyalcs. 10-40, and H₂O 10-30 weight% as essential ingredients. The compns. are used in all-in-mix type cake manufacturing and have long-lasting foaming ability (sic.). An **emulsifying** fat and oil composition was manufactured by mixing rape oil 30, glycerin monostearate (\geq 90% **monoglyceride**, 95% monostearate) 8, propylene glycol behenate 5, **sorbitan fatty acid esters** 2, decaglycerol monomyristate 1, **sugaresters** (HLB 11) 1.2, 70% sorbitol 30, H₂O

20.8, and EtOH 2 weight% at .apprx.70-75°. A cake baked using the composition showed good texture.

IC ICM A21D002-16
ICS A21D002-14; A21D002-18; A23D005-00
CC 17-9 (Food and Feed Chemistry)
ST emulsifying fat oil bakery fatty; glycerin glycol sorbitan emulsifying bakery; sucrose polyalc oil emulsifying bakery
IT Emulsifying agents
(containing fats and oils and **fatty acid esters** and polyalcs. and water, for bakery products)
IT Rape oil
RL: BIOL (Biological study)
(emulsifying compns. containing **fatty acid esters** and polyalcs. and water and, for bakery products)
IT Bakery products
(cakes, emulsifying compns. containing fats and oils and **fatty acid esters** and polyalcs. and water for)
IT Fatty acids, esters
RL: BIOL (Biological study)
(esters, emulsifying compns. containing fats and oils and polyalcs. and water and, for bakery products)
IT Alcohols, biological studies
RL: BIOL (Biological study)
(polyhydric, emulsifying compns. containing fats and oils and **fatty acid esters** and water and, for bakery products)
IT 57-50-1D, Sucrose, **fatty acid esters**
12441-09-7D, **Sorbitan, fatty acid esters** 31566-31-1, Glycerin monostearate 87390-32-7,
Decaglycerol monomyristate 100214-87-7, Propylene glycol behenate
RL: BIOL (Biological study)
(emulsifying compns. containing fats and oils and **fatty acid esters** and polyalcs. and water and, for bakery products)
IT 50-70-4, Sorbitol, biological studies
RL: BIOL (Biological study)
(emulsifying compns. containing fats and oils and **fatty acid esters** and water and, for bakery products)
IT 50-70-4, Sorbitol, biological studies
RL: BIOL (Biological study)
(emulsifying compns. containing fats and oils and **fatty acid esters** and water and, for bakery products)

L68 ANSWER 43 OF 57 HCA COPYRIGHT 2004 ACS on STN
111:132946 Mold-releasing oils containing enzyme-treated lecithins and dispersants for confectionery and breads. Shimizu, Teruo (Nippon Oils & Fats Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 63296649 A2 19881202 Showa, 4 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1987-134615 19870529.

AB Edible fats and oils blended with phospholipase-treated lecithins, polyglycerin poly(ricinoleic acid) **esters**, and/or polyglycerin **fatty acid esters** [hydrophile-lipophile balance (HLB) 3-8] as **dispersants** are useful as mold-releasing oils in manufacture of breads and confectionery. Thus, a cake baked in a mold coated with corn oil containing 5% Elmizer A (monoacylphospholipid) and 5% hexaglycerin pentastearate (HLB 4.5) was easy to release from the mold.

IC ICM A23D005-00
CC 17-11 (Food and Feed Chemistry)
IT **Dispersing agents**
 (polyglycerin esters, mold-release oils containing, for breads and confectionery)
IT **Fatty acids, esters**
RL: BIOL (Biological study)
 (esters, with polyols, dispersants, mold-release oils containing, for breads and confectionery)
IT 57-50-1D, **fatty acid esters** 57-55-6D, 1,2-
 Propanediol, fatty acid esters
 12441-09-7D, **Sorbitan, fatty acid esters** 25618-55-7D, Polyglycerin, **fatty acid esters** 31566-31-1 68936-89-0 71185-87-0, Hexaglycerin tristearate 94336-22-8 99734-30-2, Hexaglycerin pentastearate 114355-43-0
RL: BIOL (Biological study)
 (dispersants, mold-release oils containing, for breads and confectionery)

L68 ANSWER 44 OF 57 HCA COPYRIGHT 2004 ACS on STN
110:191534 **Composition** and method for producing vitamin-enriched milk. Karinen, Timothy J. (PPG Industries, Inc., USA). U.S. US 4803087 A 19890207, 5 pp. (English). CODEN: USXXAM. APPLICATION: US 1987-76109 19870721.

AB A method for enriching milk with vitamin A and/or D comprises adding to raw milk an aqueous **emulsion** of edible oil, e.g. soybean oil, a source of vitamin A and/or D, and an **emulsifying agent** which is a combination of (a) polyoxyethylene **sorbitans** oleate and/or -stearate and (b) **glycerol-, sucrose-, or sorbitol mono-oleate, polyglycerol esters of fatty acids,** or polyoxyethylene glycerates, the ratio of a:b being (2:5)-(5:2). Vitamins introduced by this method remain with the milk fluid throughout its processing.

IC A23L009-20; A23L005-00
 ICM A23L001-303
NCL 426073000
CC 17-8 (Food and Feed Chemistry)
ST milk vitamin enrichment aq **emulsion**
IT Coconut oil
 Corn oil
 Cottonseed oil
 Oils, glyceridic
 Peanut oil
 Soybean oil
RL: BIOL (Biological study)
 (aqueous **emulsion** containing vitamin A and/or D and **emulsifier** and, for vitamin-enriched milk manufacture)
IT **Emulsifying agents**
 (aqueous **emulsion** containing vitamin A and/or D and oil and, for vitamin-enriched milk manufacture)
IT Oils, glyceridic
RL: BIOL (Biological study)
 (vegetable, aqueous **emulsion** containing vitamin A and/or D and **emulsifier** and, for vitamin-enriched milk manufacture)
IT 1333-68-2, Sorbitol mono-oleate 9005-65-6, Polyoxyethylene sorbitan mono-oleate 9062-90-2 9063-46-1 25496-72-4, Glycerol mono-oleate 25496-92-8, Sucrose mono-oleate 25618-55-7D,

Polyglycerol, fatty acid esters

RL: BIOL (Biological study)

(aqueous emulsion containing vitamin A and/or D and oil and, for
vitamin-enriched milk manufacture)

IT 11103-57-4P, Vitamin A

RL: PREP (Preparation)

(milk enriched with, manufacture of, aqueous vitamin-containing emulsion
addition to raw milk for)

L68 ANSWER 45 OF 57 HCA COPYRIGHT 2004 ACS on STN

109:169873 Preparation of polyglycerin fatty acid
esters with high HLB value as emulsifying,
dispersing, and solubilizing agents. Miyamoto, Atsushi (Sakamoto
Yakuhin Kogyo Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 63023837 A2
19880201 Showa, 5 (Japanese). CODEN: JKXXAF. APPLICATION: JP
1986-167393 19860715.AB The title esters, useful as emulsifying,
dispersing, and solubilizing agents for food, cosmetic, and other
industries, were prepared by removing unreacted polyglycerin (I) from an
esterification product of 1.0 mol part I with \leq 1.0 mol part
fatty acids with a solvent and distilling off the solvent,
if necessary. I (average d.p. = 10) (5 mol) was treated with 0.75 mol stearic
acid (II) and NaOH at 230-240° for 3 h, the reaction product was
dissolved in EtOH containing H₂O, mixed with C₆H₆, the mixture was kept at
normal temperature for 1 h, and then the upper layer was evaporated to give585 g I
stearate (III) of HLB value 14.3. III was dissolved in H₂O and thick malt
syrup with mixing, a mixture of tocopherol (IV) and soybean oil was added
and kept at normal temperature to stabilize IV without separation or turbidity
even
after 7 days, whereas the control ester of HLB value 11.0,
prepared from 1.0 mol I and 1.1 mol II, showed separation into 2 layers.

IC ICM C07C069-22

CC 23-17 (Aliphatic Compounds)

Section cross-reference(s): 17, 35, 62

ST polyglycerin fatty ester high HLB; polyglycerol
stearate prepn emulsifying agent; dispersing agent
polyglycerin fatty ester; solubilizing agent polyglycerin fatty
ester

IT Cosmetics

Food

(emulsifying, dispersing and solubilizing agents,
polyglycerides as)

IT Dispersing agents

Emulsifying agents

Solubilizers

(polyglycerin fatty acid esters)

IT Tocopherols

RL: PROC (Process)

(solubilization of, with polyglycerin fatty acid
esters)

IT Glycerides, polymers

RL: RCT (Reactant); RACT (Reactant or reagent)

(polymers, emulsifying and dispersing and
solubilizing agents)

IT 25618-55-7, Polyglycerin

RL: RCT (Reactant); RACT (Reactant or reagent)

(esterification of, with fatty acids)

IT 57-10-3, Palmitic acid, reactions 57-11-4, reactions 112-80-1,
Oleic acid, reactions 143-07-7, Lauric acid, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(esterification of, with polyglycerin)
IT 9007-48-1P, Polyglycerin oleate 9009-32-9P 51330-20-2P
RL: SPN (Synthetic preparation); PREP (Preparation)
(oligomeric, preparation of, as emulsifying and dispersing
and solubilizing agent)
IT 74504-64-6P
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of, as emulsifying and dispersing and
solubilizing agent)
IT 112-80-1, Oleic acid, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(esterification of, with polyglycerin)

L68 ANSWER 46 OF 57 HCA COPYRIGHT 2004 ACS on STN

108:149144 Improved surfactant composition containing
monoacylglycerophospholipids. Fujita, Satoshi; Nakai, Eiji; Noike, Akira
(Asahi Denka Kogyo K. K., Japan; Nippon Shoji Co., Ltd.). Eur. Pat. Appl.
EP 245871 A2 19871119, 31 pp. DESIGNATED STATES: R: AT, BE,
CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE. (English). CODEN: EPXXDW.
APPLICATION: EP 1987-107069 19870515. PRIORITY: JP 1986-113245 19860516;
JP 1986-113246 19860516; JP 1986-141624 19860618; JP 1986-141625 19860618;
JP 1986-141627 19860618; JP 1986-141628 19860618.

AB A surfactant composition useful in food, cosmetics, etc. comprises a
monoacylglycerophospholipid and ≥1 polyglycerol-, and
sucrose-, sorbitan-, or glycerol fatty
acid esters. The composition exhibits excellent acid- and
salt-resistance, permeability, emulsification and
dispersion capabilities, and hydrophilicity. A composition containing
lysophosphatidylcholine 94 and lysophosphatidylethanolamine 3% was mixed
with a polyglycerol fatty acid ester
(Sun Soft Q-17-U; HLB 15) at various weight ratios (e.g. 5:95 - 90:10) and an
aqueous paste containing this mixture 50 weight% was prepared. These compns.
displayed

improved emulsification stability (e.g., with corn oil and soy
sauce), β-carotene solubilization, and surface activity (decreased
surface tension and permeation periods), relative to compns. containing no
monoacylglycerophospholipid.

IC ICM B01F017-00

CC 17-6 (Food and Feed Chemistry)

Section cross-reference(s): 46, 62

ST surfactant polyol ester glycerophospholipid monoacyl

IT Surfactants

(polyol fatty acyl esters- and
monoacylglycerophospholipid-containing, effect on emulsion
stability of)

IT Lysophosphatidic acids

Lysophosphatidylethanolamines

Lysophosphatidylinositols

Lysophosphatidylserines

RL: BIOL (Biological study)

(surfactants containing lysophosphatidylcholine and polyol
esters and, effect on emulsion stability of)

IT Lysophosphatidylcholines

Lysophosphatidylglycerols

RL: BIOL (Biological study)

(surfactants containing **polyol fatty acyl esters** and,
effect on **emulsion stability** of)

- IT 50-70-4D, Sorbitol, **fatty acid esters**
56-81-5D, Glycerol, **fatty acid**
esters 57-50-1D, Sucrose, **fatty acid**
esters 12441-09-7D, Sorbitan, **fatty**
acid esters 25618-55-7D, Polyglycerol,
fatty acid esters 40854-78-2D, Sorbide,
fatty acid esters
RL: BIOL (Biological study)
(surfactants containing monoacylglycerophospholipids and, effect on
emulsion stability of)
- IT 50-70-4D, Sorbitol, **fatty acid esters**
56-81-5D, Glycerol, **fatty acid**
esters
RL: BIOL (Biological study)
(surfactants containing monoacylglycerophospholipids and, effect on
emulsion stability of)

L68 ANSWER 47 OF 57 HCA COPYRIGHT 2004 ACS on STN

108:96649 **Dispersion** of higher alcohols. Noguchi, Yasuhisa; Funada,
Tadashi (Nippon Oils & Fats Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP
62099334 A2 19870508 Showa, 5 pp. (Japanese). CODEN: JKXXAF.

APPLICATION: JP 1985-240212 19851026.

AB Aqueous **dispersions** useful in food, pharmaceuticals, and cosmetics
are prepared by mixing solns. of fatty alcs. in lower alcs. with water to
precipitate fatty alcs., distilling the lower alcs., and **dispersing** the
fatty alcs. with surfactants. Fatty alcs. from rice bran wax were
dissolved (10 g) in 300 g EtOH at .apprx.60°, mixed with 500 g
water over 30 min, distilled at .apprx.40° in vacuo to give 286 g aqueous
dispersion, and stirred with 1 g sucrose fatty ester in 214 g H₂O
to give a **dispersion** with particle size 1-3 μ and no
coagulation or ptn. after >6 mo.

IC ICM C07C031-02

ICS A23L001-03; A23P001-04; B01J013-00; C07C029-00

CC 45-5 (Industrial Organic Chemicals, Leather, Fats, and Waxes)
Section cross-reference(s): 17, 62, 63

ST fatty alc **dispersion** aq; food fatty alc **dispersion**;
pharmaceutical fatty alc **dispersion**; cosmetic fatty alc
dispersion; sucrose fatty ester **dispersant**

IT **Fatty acids, esters**

RL: USES (Uses)

(**esters** with sucrose, **dispersants** for **fatty**
alcs. in water)

IT **Dispersing agents**

(**fatty acid polyol esters**, for
fatty alcs. in water)

IT Alcohols, uses and miscellaneous

RL: USES (Uses)

(**fatty**, aqueous **dispersions**, manufacture of, **dispersing**
agents for)

IT 57-50-1D, Sucrose, **fatty acid esters**

26658-19-5 31566-31-1

RL: USES (Uses)

(**dispersants**, for **fatty** alcs. in water)

IT 26658-19-5

RL: USES (Uses)

(**dispersants**, for **fatty** alcs. in water)

- L68 ANSWER 48 OF 57 HCA COPYRIGHT 2004 ACS on STN
107:216465 Foaming cream compositions. Hayashi, Toshihiro; Kono, Hiroshige; Sugie, Masayuki (Asahi Denka Kogyo K. K., Japan). Jpn. Tokkyo Koho JP 62036649 B4 19870807 Showa, 8 pp. (Japanese). CODEN: JAXXAD. APPLICATION: JP 1977-59570 19770523.
- AB Acidic foods, **emulsifiers** containing **sorbitan** unsatd.
fatty acid esters and/or lecithins, sucrose
fatty acid esters and **glycerol**
fatty acid esters, **sorbitan** saturated
fatty acid esters and/or propylene
glycerol fatty acid esters (0.2-20)
weight%), fats and oils (18-35 weight%), and an aqueous protein stabilizer solution
(65-82 weight%) are mixed to form a stable foaming cream composition (toppings, fillings, etc.). Thus, hardened soybean oil 20, corn oil 3 and coconut oil 2 parts were mixed, followed by mixing with **sorbitan** oleate 0.4, **glycerol** monostearate-**glycerol** monooleate 0.1, defatted milk powder 4.9, corn syrup solids 10, sugar 5, maltose 5, Na hexametaphosphate 0.07, CM-cellulose 0.15, and sucrose **fatty acid esters** 0.1 part. The mixture was homogenized, sterilized at 80° for 2 min, cooled to 10°, kept at 5° for 18 h for aging, mixed with a strawberry jam and stirred for foaming to give a product which was cooled to -20° within 8 h, frozen for 2 days, and thawed at 5°. The resultant product was stable at 15° for 2 h.
- IC A23L001-19
ICA A23C009-12
CC 17-9 (Food and Feed Chemistry)
ST foaming cream food; topping manuf **emulsifier** oil fat; filling manuf **emulsifier** oil fat; **emulsifier** filling topping manuf; fat filling topping manuf; oil filling topping manuf
IT Butter
 Emulsifying agents
 Food
 Jams and Jellies
 Stabilizing agents
 Coconut oil
 Corn oil
 Fats, biological studies
 Palm oil
 RL: BIOL (Biological study)
 (acidic, in filling and topping and other foaming cream compns. manufacture)
IT Condiments
 ,toppings and fillings, manufacture of, acidic foods and **emulsifiers** and fats and oils and protein stabilizers in)
IT 50-70-4, biological studies 50-99-7, Glucose, biological studies 56-81-5D, **Glycerol, esters with fatty acids** 57-50-1, biological studies 57-50-1D, **esters with fatty acids** 57-55-6D, **esters with fatty acids** 69-79-4, Maltose 9000-07-1, Carrageenan 12441-09-7D, **Sorbitan, esters with unsatd.**
 fatty acids 25190-52-7 25496-72-4 31566-31-1,
 Glycerol monostearate 37318-79-9, **Sorbitan oleate**
 RL: BIOL (Biological study)
 (acidic, in filling and topping and other foaming cream compns. manufacture)
IT 56-81-5D, **Glycerol, esters with fatty**

acids

RL: BIOL (Biological study)

(acidic, in filling and topping and other foaming cream
compsns. manufature)

L68 ANSWER 49 OF 57 HCA COPYRIGHT 2004 ACS on STN

107:57727 Stable synthetic whipping cream composition. Murata,
Kiyoshi; Koshimizu, Shigeru (Taiyo Yushi Co., Ltd., Japan). Jpn. Tokkyo
Koho JP 62014257 B4 19870401 Showa, 12 pp. (Japanese). CODEN:
JAXXAD. APPLICATION: JP 1979-49394 19790419.AB Synthetic whipping cream compsns. are formulated from oils and fats 40-50,
milk, skimmed milk, or milk solids-containing liquid 50-60, lecithins 0.2-0.7,
self-emulsifiable sorbitan fatty acid esters <0.3, self-emulsifiable glycerol fatty acid esters <0.1, 1/2 of lecithin + self-emulsifiable glycerol fatty acid esters ≤1.05, lecithins + self-emulsifiable sorbitan fatty acid esters + emulsifiable glycerol fatty acid esters ≤2.5, emulsifiable sorbitan fatty acid esters + emulsifiable glycerol fatty acid esters ≤0.5%. The addition of the self- **emulsifiable sorbitan fatty acid esters and self-emulsifiable glycerol fatty acid esters** markedly increases the stability of the synthetic whipping cream composition to temperature changes and vibration during transportation

and

storage. The product has high foaming and form-holding capacities. Thus, an example composition contained hydrogenated rape oil 90, hydrogenated palm oil 10, **self-emulsifiable sorbitan fatty acid ester 1.6, self-emulsifiable glycerol fatty acid ester 0.2, soybean lecithins 0.5, and synthetic cream fat 40%**. The composition was more stable to heat and vibration, and had a higher over-run value and better foam-holding characteristics as compared with the control containing non-self-**emulsifiable sorbitan fatty acid esters and non-self-emulsifiable glycerol fatty acid esters.**

IC A23L001-19

CC 17-9 (Food and Feed Chemistry)

IT Lecithins

RL: BIOL (Biological study)

(whipping cream composition containing self-**emulsifiable sorbitan fatty acid esters and glycerol fatty acid esters and, stability in relation to**)

IT Cream substitutes

(whipped, stability enhancement in, **sorbitan fatty acid esters and glycerol fatty acid esters for**)

IT 56-81-5D, Glycerol, fatty acid esters 12441-09-7D, Sorbitan, fatty acid esters

RL: BIOL (Biological study)

(self-**emulsifiable, synthetic whipping cream composition containing, stability in relation to**)

IT 56-81-5D, Glycerol, fatty acid

esters

RL: BIOL (Biological study)
(self-emulsifiable, synthetic whipping cream composition containing, stability in relation to)

L68 ANSWER 50 OF 57 HCA COPYRIGHT 2004 ACS on STN

105:23354 Oil-in-water-type **emulsion compositions**.

Ochiai, Kazuo; Ihara, Kiyoshi (Kanegafuchi Chemical Industry Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 61054230 A2 19860318 Showa, 4 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1984-174252 19840822.

AB Oil/water-type **emulsion** compns. for food processing (coffee cream, whipped cream, mayonnaise, dressings, etc.) comprise casein (<0.3%), and citric acid **monoglyceride** and(or) lactic acid **monoglyceride** (0.01-0.9%) as **emulsifiers**. The viscosity remained unchanged at a wide range of pH values (2-9). Thus, corn oil was melted at 80° and mixed with 0.2% citric acid **monoglyceride** and 0.3% **sorbitan fatty acid esters**

. Sep., a protein solution was prepared containing whey protein 0.1, phosphate salt 0.1, and **polyglycerol fatty acid esters** 0.3%. The oil composition (4.7 kg) and the protein composition (5.3 kg) were homogenized at 100 kg/cm² and sterilized at 140° for 2 s. The flavor and thickness remained unchanged at a pH range of 2-9.

IC ICM B01J013-00

ICS A23L001-035; A23L001-19; A23L001-24; A23L001-314; B01F017-38

ICA A23C013-14; A23G003-00; A23G009-02

CC 17-8 (Food and Feed Chemistry)
Section cross-reference(s): 62

ST food **emulsion**

IT Caseins, uses and miscellaneous

RL: BIOL (Biological study)
(**emulsion** food containing)

IT Cream

Cream substitutes

Food

Mayonnaise

Salad dressings

(**emulsions** containing casein and **monoglycerides** for)

IT Fatty acids, esters

RL: BIOL (Biological study)

(**esters** with polyglycerides, **emulsion** food containing)

IT Emulsions

(oil-in-water, for foods, casein and **monoglycerides** in)

IT Whey

(proteins of, **emulsion** foods containing)

IT Cream substitutes

(whipped, **emulsions** containing casein and **monoglycerides** for)

IT 25618-55-7D, ester with fatty acid

26855-41-4 36291-32-4

RL: BIOL (Biological study)

(**emulsion** food containing)

L68 ANSWER 51 OF 57 HCA COPYRIGHT 2004 ACS on STN

100:101826 The control of citrus storage disease by a sodium bicarbonate formulation. Homma, Y.; Arimoto, Y.; Misato, T. (Inst. Phys. Chem. Res., Wako, 351, Japan). Proceedings of the International Society of Citriculture, Volume Date 1981, 2, 823-5 (English) 1983.
CODEN: PICIDM.

AB NaHCO₃ (I) had an inhibitory effect against citrus green mold and cucumber powdery mildew. However, the inhibitory effect of I did vary by replicated results. I combined with emulsifier of some food additives, such as soybean lecithin, glycerol fatty acid ester, Na chondroitin sulfate, or sucrose fatty acid ester, strongly inhibited citrus common green mold and cucumber powdery mildew. Further, formulated I had an inhibitory effect on thiophanate-Me or thiabendazol-resistant Penicillium decay in mandarin orange.

CC 17-10 (Food and Feed Chemistry)

IT Fatty acids, biological studies

RL: BIOL (Biological study)

(glycerol or sorbitan or sucrose esters,
sodium bicarbonate inhibition of Penicillium of orange enhancement by)

IT 56-81-5D, esters with fatty acids

57-50-1D, esters with fatty acids 577-11-7

8061-51-6 9016-45-9 9082-07-9 12441-09-7D, esters with
fatty acids 25155-30-0 25324-14-5 34398-05-5

RL: BIOL (Biological study)

(sodium bicarbonate inhibition of Penicillium of mandarin orange
enhancement by)

IT 56-81-5D, esters with fatty acids

RL: BIOL (Biological study)

(sodium bicarbonate inhibition of Penicillium of mandarin orange
enhancement by)

L68 ANSWER 52 OF 57 HCA COPYRIGHT 2004 ACS on STN

100:66986 Feed composition for eel farming. (Nihon Nosan Kogyo K.

K., Japan). Jpn. Kokai Tokkyo Koho JP 58183045 A2 19831026

Showa, 3 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1982-65365
19820421.

AB Addition of ≥1 of the emulsifiers: glycerol
fatty acid esters, sucrose fatty
acid esters, sorbitol fatty acid
esters, propylene glycol fatty acid
esters, polyoxyethylene sorbitan fatty
acid esters, and polyoxyethylene glycol fatty
acid esters, to conventional eel feeds markedly improves
phys. properties in water, feeding preference, and feed efficiency.

IC A23K001-18

CC 17-12 (Food and Feed Chemistry)

ST eel feed emulsifier

IT Fatty acids, compounds

RL: BIOL (Biological study)
(emulsifiers containing, for eel feed)

IT Feed

(fatty acid esters emulsifiers
for, for eel)

IT Emulsifying agents

(fatty acid esters, for eel feed)

IT Eel and Moray

Fish

(feed for, fatty acids ester
emulsifiers for)

IT 50-70-4D, esters with fatty acids

56-81-5D, esters with fatty acids

57-55-6D, esters with fatty acids

9005-63-4D, esters with fatty acids

- 25322-68-3D, esters with fatty acids
RL: BIOL (Biological study)
(emulsifier, for eel feed)
- IT 50-70-4D, esters with fatty acids
56-81-5D, esters with fatty acids
RL: BIOL (Biological study)
(emulsifier, for eel feed)
- L68 ANSWER 53 OF 57 HCA COPYRIGHT 2004 ACS on STN
93:148475 Food additive composition and process for preparation thereof. Inamine, Shigeo; Matsuda, Toshio; Shimomura, Takeo (Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo, Japan). Can. CA 1076874 19800506, 24 pp. (English). CODEN: CAXXA4. APPLICATION: CA 1977-279553 19770531.
- AB A surfactant preparation for food consists of a hydrophilic powdery colloidal solid with a particle size <20 mesh and composed of, preferably, 70-98% of a sugar or sugar alc. dispersing medium, 1-15% of a surface-active agent (fatty acid esters of glycerol, propylene glycol, sucrose, sorbitan, or a lecithin), and 0-20% of an edible oil or fat. Thus, 3572 g 70% sorbitol [50-70-4] was heated to 70° and 120 g cottonseed-oil fatty acid monoglycerides and 80 g sorbitan monostearate [1338-41-6] were added, stirred, heated to 95°, dehydrated under reduced pressure, 1500 g sorbitol powder was added as seed crystals, and the mixture was cooled, crystallized, and ground to pass 35 mesh. The surfactant was added to minced fish (pollack) at 4.2% along with other additives to form kamaboko with improved whiteness and storage stability.
- IC A23L001-34
- CC 17-2 (Foods)
- ST emulsifier sorbitol food; monoglyceride sorbitol emulsifier; kamaboko emulsifier
- IT Cottonseed oil
Lecithins, biological studies
Rape oil
Soybean oil
RL: BIOL (Biological study)
(emulsifiers containing sorbitol and, for food)
- IT Bread
(emulsifiers for)
- IT Emulsifying agents
(sorbitol-containing, for food)
- IT Bakery products
(cakes, sponge, emulsifiers for)
- IT Glycerides, biological studies
RL: BIOL (Biological study)
(mono-, emulsifiers containing sorbitol and, for food)
- IT Fish
(paste, emulsifiers for)
- IT Meat
(sausage, emulsifiers for)
- IT 50-70-4, biological studies 50-99-7, biological studies 56-81-5, biological studies 57-48-7, biological studies 57-50-1, biological studies 57-55-6, biological studies 63-42-3 69-65-8 69-79-4 585-88-6 1323-39-3 1338-41-6 9005-64-5 26266-58-0 26402-26-6 26545-74-4 31566-31-1 37318-31-3 39300-95-3
RL: BIOL (Biological study)

(emulsifiers containing, for food)

- L68 ANSWER 54 OF 57 HCA COPYRIGHT 2004 ACS on STN
92:145278 Low-fat, whipped cream **composition**. Yamaguchi, Masayuki; Kubota, Hayato; Minami, Yasuo (Fuji Seiyu K. K., Japan). Jpn. Tokkyo Koho JP 54039459 B4 19791128 Showa, 7 pp. (Japanese). CODEN: JAXXAD. APPLICATION: JP 1973-19022 19730215.
- AB Low-fat, whipped cream is formulated from oils or fats, phospholipids, **fatty acid monoglycerides**, skim or whole milk, sucrose **fatty acid esters**, casein salts, and gums. The product has high over-run, favorable mouthfeel, and is low in calories. Thus, 28 parts hydrogenated palm oil (m.p. 33.5°) containing 0.4% lecithin, 0.3% sorbitan [12441-09-7] **fatty acid ester**, and 0.2% glycerol monostearate [31566-31-1] was mixed with 72 parts skim milk containing 1.1% sucrose [57-50-1] **fatty acid ester**. The mixture was heated at 65-70°, mixed with 0.5 and 0.1% Na caseinate and gum, resp., homogenized, and pasteurized to yield whipped cream.
- IC A23L001-19
- CC 17-3 (Foods)
- ST whipped cream substitute prep; **emulsifier** whipped cream
- IT Lecithins, biological studies
- RL: BIOL (Biological study)
(**emulsifier**, for whipped cream substitutes)
- IT Cream substitutes
(whipped, **emulsifiers** for)
- IT 57-50-1D, **fatty acid esters** 12441-09-7D,
fatty acid esters 31566-31-1
RL: BIOL (Biological study)
(**emulsifier**, for whipped cream substitute)
- L68 ANSWER 55 OF 57 HCA COPYRIGHT 2004 ACS on STN
81:24426 Stable liquid **emulsifier compositions**. Langhans, Roy K.; Sunshine, Gary A. (ICI Americas, Inc.). U.S. US 3795627 19740305, 4 pp. (English). CODEN: USXXAM. APPLICATION: US 1971-150194 19710604.
- AB A temperature-stable, clear liquid **emulsifier** for continuous metering into bakery shortening or directly into bread dough or sponge for batch methods of baking was prepared by mixing 5-90% **fatty acid monoesters** of propylene glycol, 0-85% **monoglyceride**, 10-80% polyoxyethyleneated **fatty acid esters** of **glycerol**, hexitol, hexitan, or isohexide. The preferred hexitol, hexitan, or isohexide is sorbitol or its derivs. Thus, an **emulsifier** was prepared from 48% **glycerol esters** of unsatd. tallow acids (54% α- **monoester** and 89% unsatd.), 12% Prodendro Emersol 233LL, and 40% polyoxyethylene(20) **sorbitan monostearate**.
- IC B01F
- NCL 252356000
- CC 17-2 (Foods)
- ST **emulsifier** bread dough
- IT Dough
(**emulsifiers** for)
- IT **Emulsifying** agents
(glyceride and polyethylene oxide condensation products of unsatd. acids, for dough)
- IT Linseed oil
- RL: BIOL (Biological study)

(glycerides of **fatty acids** of, of dough
emulsifiers)

- IT Corn oil
RL: BIOL (Biological study)
(glycerides of unsatd. acids of, of dough **emulsifiers**)
- IT Glycerides, biological studies
RL: BIOL (Biological study)
(of unsatd. **fatty acids**, as **emulsifiers**
for dough)
- IT Cottonseed oil
Soybean oil
RL: BIOL (Biological study)
(propylene glycol esters of unsatd. acids of, of dough
emulsifiers)
- IT 9005-67-8 9063-33-6 53026-26-9 53026-27-0
RL: BIOL (Biological study)
(of dough **emulsifiers**)

L68 ANSWER 56 OF 57 HCA COPYRIGHT 2004 ACS on STN

80:26078 **Composite** preventing α -starch strings from adhering
together. Katsumi, Mamoru (Kao Soap Co., Ltd.). Jpn. Tokkyo Koho JP
48007341 B4 19730305 Showa, 5 pp. (Japanese). CODEN: JAXXAD.

APPLICATION: JP 1968-64793 19680909.

AB Adhesion between cooked vermicelli strings may be prevented by dipping the
strings into a cooling bath containing 0.2-1.0% of a mixture of an
emulsifier (**sucrose fatty acid ester**
or **polyoxyethylene sorbitan ester**) and an antiadhesion
compound (mixts. of **glycerol fatty acid**
esters, propylene glycol **fatty acid**
esters, and **sorbitan fatty acid**
esters). Thus, vermicelli was dipped into a solution containing 0.5% of
a composite consisting of 80 parts **glycerol monostearate** and 20
parts of **sucrose palmitate-stearate esters**. The
emulsion was satisfactory and the vermicelli improved.

IC A23L

CC 17-2 (Foods)

ST vermicelli adhesion prevention; starch adhesion prevention; alimentary
paste adhesion prevention; **glycerol stearate** starch adhesion;
sucrose stearate starch adhesion; propylene glycol **ester** starch
adhesion

IT **Fatty acids, esters**

Glycerides, biological studies
RL: BIOL (Biological study)
(adhesion of alimentary paste strings prevention by)

IT Alimentary pastes

Vermicelli
(adhesion prevention in, **fatty acid esters**
for)

IT α -D-Glucopyranoside, β -D-fructofuranosyl, **fatty**
acid esters

RL: BIOL (Biological study)
(adhesion of alimentary paste strings prevention by)

IT 1,2-Propanediol, **fatty acid esters**

Sorbitan, esters with **fatty acids**,
polyoxyethylene derivs.

RL: BIOL (Biological study)
(adhesion prevention of alimentary paste strings by)

IT 9005-25-8, biological studies

RL: BIOL (Biological study)
(food products, adhesion prevention in, fatty acid
esters for)

- L68 ANSWER 57 OF 57 HCA COPYRIGHT 2004 ACS on STN
75:33984 Nonionic **emulsives** in food products. 1. Establishment of
the **composition** of several currently used **emulsives** by
thin-layer chromatography and ir spectrophotometry. Srebrnik, S.; Charon,
C. (Inst. Hyg. Epidemiol., Brussels, Belg.). Mitteilungen aus dem Gebiete
der Lebensmitteluntersuchung und Hygiene, 61(3-4), 220-54 (French)
1970. CODEN: MGLHAE. ISSN: 0026-6841.
- AB An extensive study is described in detail. The **emulsifiers**
studied were **monoglycerides**, **sucrose esters**,
sorbitan fatty acid esters,
fatty acid esters of sorbitan
polyoxyethylene, fatty acid esters of
propylene glycol. A preliminary examination with ir photometry is discussed.
Various chromatog. sepsns. are described. The complicated composition of the
emulsifiers tested was partly explored. An anal. scheme is
proposed and tabulated. 31 refs.
- CC 17 (Foods)
- ST nonionic **emulsifier** food; review **emulsifiers** food;
chromatog **emulsifiers**; thin layer chromatog **emulsifiers**
; IR photometry **emulsifiers**; photometry IR **emulsifiers**
- IT **Emulsifying agents**
(anal. by thin-layer chromatog. and ir spectrophotometry)
- IT **Glycerides**, analysis
RL: ANST (Analytical study)
(mono, by ir spectrophotometry and thin-layer chromatog.)
- IT 57-50-1D, Sucrose, **esters with fatty acids**
57-55-6D, 1,2-Propanediol, **esters with fatty**
acids 12441-09-7D, Sorbitan, **esters with**
fatty acids 12441-09-7D, **Sorbitan**,
esters with fatty acids, polyoxyethylene
derivs.
- RL: BIOL (Biological study)
(**emulsifying** agents, anal. of)

=> file wpix
FILE 'WPIX' ENTERED AT 12:11:12 ON 27 OCT 2004
COPYRIGHT (C) 2004 THE THOMSON CORPORATION

FILE LAST UPDATED: 26 OCT 2004 <20041026/UP>
MOST RECENT DERWENT UPDATE: 200468 <200468/DW>
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
PLEASE VISIT:
[<<<](http://www.stn-international.de/training_center/patents/stn_guide.pdf)

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE
<http://thomsonderwent.com/coverage/latestupdates/> <<<

>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER
GUIDES, PLEASE VISIT:
<http://thomsonderwent.com/support/userguides/> <<<

>>> NEW! FAST-ALERTING ACCESS TO NEWLY-PUBLISHED PATENT DOCUMENTATION NOW AVAILABLE IN DERWENT WORLD PATENTS INDEX FIRST VIEW - FILE WPIFV.
FOR FURTHER DETAILS: [<<<](http://www.thomsonderwent.com/dwpifv)

>>> NEW DISPLAY FORMAT HITSTR ADDED ALLOWING DISPLAY OF HIT STRUCTURES WITHIN THE BIBLIOGRAPHIC DOCUMENT <<<

>>> SMILES and ISOSMILES strings are no longer available as Derwent Chemistry Resource display fields <<<

=> d 1100 1-16 all

L100 ANSWER 1 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 2004-580488 [56] WPIX

DNC C2004-211535

TI Composition useful in treatment of protozoal infections e.g. equine protozoal myeloencephalitis, comprises diclazuril dissolved in mixture of alcohol based solvent, emulsifier and base.

DC A96 B03 C02

IN DE SPIEGELEER, B; DOSOGNE, H

PA (JANC) JANSSEN PHARM NV

CYC 108

PI WO 2004062673 A1 20040729 (200456)* EN 22 A61K031-53

RW: AT BE BG BW CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE
LS LU MC MW MZ NL OA PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW
W: AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE
DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG
KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ
OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG
US UZ VC VN YU ZA ZM ZW

ADT WO 2004062673 A1 WO 2004-EP147 20040109

PRAI WO 2003-EP398 20030116

IC ICM A61K031-53

ICS A61K009-08; A61K047-10; A61K047-18; A61K047-32; A61P033-02

AB WO2004062673 A UPAB: 20040901

NOVELTY - A composition comprises diclazuril dissolved in a mixture comprising an alcohol based solvent (A), an emulsifier (E) and a base (B) (0.5 - 3 mol equivalents).

ACTIVITY - Protozoacide; Antiparasitic.

MECHANISM OF ACTION - None given.

USE - In the treatment of protozoal infections e.g. Equine Protozoal Myeloencephalitis (claimed) and coccidiose; for treatment of parasitic protozoa.

ADVANTAGE - The composition avoid the use of solvents with a relatively high toxic profile such as dimethylsulfoxide, dimethylformamide or tetrahydrofuran which upon dilution with aqueous systems can cause precipitation of the active drug substance. The solvent systems have good bioavailability and can be tailored for oral, transdermal or parenteral administration. The composition is stable upon dilution with aqueous system such as artificial gastric fluid and artificial intestinal fluid. (A) Has low toxicity and is resistant to precipitation upon dilution with aqueous system thus reduces the risk of low and variable bioavailability as well as local irritation after parenteral administration. Effective plasma concentration can be attained within a short time period after administration of the composition leading to rapid entry of diclazuril into infected tissue thus the period of treatment is shorter. Smaller quantities of diclazuril were required thus the cost of drug is less. The

composition is stable below 25 deg. C and the amount of keto-degradation products of diclazuril can be maintained below 3 %.

Dwg.0/0

FS CPI

FA AB; DCN

MC CPI: A12-V01; B04-B01C1; B04-C03C; B05-A01A; B05-A01B; B05-C01; B05-C04; B07-D13; B10-A07; B10-B01B; B10-B03B; B10-B04B; B10-E04C; B10-E04D; B12-M03; B14-A03; B14-A03C; B14-S12; C04-B01C1; C04-C03C; C05-A01A; C05-A01B; C05-C01; C05-C04; C07-D13; C10-A07; C10-B01B; C10-B03B; C10-B04B; C10-E04C; C10-E04D; C12-M03; C14-A03; C14-A03C; C14-S12

L100 ANSWER 2 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 2004-224100 [21] WPIX

DNC C2004-088335

TI **Composition** useful in cosmetic skin or hair preparation comprises oil-soluble UV absorber, solid lipid, **emulsifier** and liquid lipid or oil-miscible UV absorber.

DC A96 D21 E19

IN HERZOG, B

PA (CIBA) CIBA SPECIALTY CHEM HOLDING INC; (HERZ-I) HERZOG B

CYC 32

PI US 2003235540 A1 20031225 (200421)* 16 A61K007-42
EP 1378231 A1 20040107 (200421) EN A61K007-42
R: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LT LU LV
MC MK NL PT RO SE SI SK TR

ADT US 2003235540 A1 US 2003-460945 20030613; EP 1378231 A1 EP 2003-405419
20030611

PRAI EP 2002-405497 20020617

IC ICM A61K007-42

ICS A61K007-00

AB US2003235540 A UPAB: 20040326

NOVELTY - A solid lipid nanoparticle composition comprises (weight%) oil-soluble UV absorber (a1) (1 - 40), solid lipid (a2) (20 - 98.9), emulsifier (a3) (0.1 - 20) and liquid lipid or oil-miscible UV absorber (a4) (0 - 40).

ACTIVITY - Dermatological.

MECHANISM OF ACTION - None given.

USE - In cosmetic skin or hair preparation (claimed); as cosmetic and dermatological light-protective formulation; as light protective agent in cosmetic, dermatological, pharmaceutical and veterinary medicine preparation.

ADVANTAGE - The compositions containing lipid or lipid-like material or its mixture have a diameter of 10 nm - 10 pgm and are solid at room temperature and biologically degradable and in addition contain components that exhibit little or no toxicity. The compositions increase the solubility of moderately soluble UV absorbers that are soluble in cosmetic oils (i.e. UV absorbers have a solubility of greater than 1%) and enable a good cosmetic formulation. The compositions enhance the solubility behavior of oil-soluble UV filters in cosmetic in formulation and thus improve their effectiveness. The penetration of the skin by the UV absorbers is thus reduced, resulting in a positive effect on the toxicological potential of the UV absorbers by incorporating UV absorbers in solid lipid nanoparticle incorporated. The compositions are stable even at relatively high temperatures, can very easily be incorporated into cosmetic and dermatological formulations by replacing a portion of the aqueous phase with the aqueous SLN dispersion.

Dwg.0/0

FS CPI

FA AB; GI; DCN
MC CPI: A12-V04A; A12-V04C; D08-B01; D08-B03; D08-B09A1; E05-E01; E05-E02B;
E06-A01; E06-D05; E06-D08; E07-A02D; E07-A02H; E07-D13B; E10-A15C;
E10-A22D; E10-C04H; E10-C04L2; E10-F02A2; E10-G02F1; E10-G02F2;
E10-G02G2; E10-G02H2A

L100 ANSWER 3 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 2001-484035 [53] WPIX

DNC C2001-145309

TI Cosmetic and/or pharmaceutical **formulations**, used as sun screen
formulations, contain ultraviolet light filter and oil component
and/or **emulsifier** with specified polarity.

DC A96 B07 D21 E19

IN EGGER, A; KAWA, R

PA (COGN-N) COGNIS DEUT GMBH

CYC 94

PI DE 19956601 A1 20010531 (200153)* 12 A61K007-42
AU 2001013942 A 20010604 (200153) A61K007-42
WO 2001037798 A1 20010531 (200153) GE A61K007-42
RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
NL OA PT SD SE SL SZ TR TZ UG ZW
W: AE AG AL AM AU AZ BA BB BG BR BY BZ CA CN CR CU CZ DM DZ EE GD GE
GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD
MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT TZ UA
UG US UZ VN YU ZA ZW

ADT DE 19956601 A1 DE 1999-1056601 19991125; AU 2001013942 A AU 2001-13942
20001116; WO 2001037798 A1 WO 2000-EP11338 20001116

FDT AU 2001013942 A Based on WO 2001037798

PRAI DE 1999-19956601 19991125

IC ICM A61K007-42

AB DE 19956601 A UPAB: 20010919

NOVELTY - Cosmetic and/or pharmaceutical formulations contain:
(a) ultraviolet light filter selected from cinnamic esters and/or
their water-soluble derivatives, 3,3-diphenylacrylates,
3-benzylidene camphor and its derivatives and/or benzoylmethane
derivatives; and
(b) oil components and/or emulsifiers with a polarity in the 1.0-4.0
debye range.

USE - The formulations are used as photodegradation inhibitors
(claimed), i.e. as sun screen formulations.

ADVANTAGE - Sun screen formulations usually contain organic
ultraviolet (UV) light filters. Butyl methoxydibenzoylmethane is a very
effective UV-A filter but has only slight photostability and forms
degradation products of unknown phototoxic potential and possible
sensitization potential. Combinations with certain UV-B filters, e.g.
diphenylacrylates, benzylidene-camphor derivatives and cinnamic ester
derivatives, have high photostability but not the required 100% level. The
present formulations, based on known filters, have over 98%
photostability. The combination of special UV filters with cosmetic
components of defined polarity is more effective than the filters alone
and makes the formulations more stable, whereas mixtures with substances
of lower polarity makes the photostability even lower.

Dwg.0/0

FS CPI

FA AB; DCN

MC CPI: A12-V01; A12-V04C; B10-F02; B10-G02; B14-R05; D08-B09A; E05-G09C;
E05-G09D; E07-A02A; E07-A02D; E07-A02H; E10-A07; E10-A11B2; E10-E04G;
E10-E04J; E10-E04K; E10-E04L; E10-E04M1; E10-E04M3; E10-F02A1;

E10-F02A2; E10-G02F1; E10-G02G2; E10-G02H2; E10-H01E; E10-J02A2

L100 ANSWER 4 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 2001-410023 [44] WPIX
DNC C2001-124368
TI Surfactant **composition**, used as **emulsifier** or
dispersant, additive to conventional anionic surfactants or
additive to shampoo and skin cleansing **formulations**, comprises
combination or gemini surfactant and co-amphiphilic.
DC A25 A82 A96 A97 B07 C07 D21 E19 G02
IN DAHMS, G H; KWETKAT, K
PA (SASO-N) SASOL GERMANY GMBH; (SASO-N) SASOL DEUT CO LTD; (RHWL) RWE-DEA
MINERALOEL & CHEM AG; (DAHM-I) DAHMS G H; (KWET-I) KWETKAT K
CYC 30
PI DE 19943668 A1 20010315 (200144)* 27 C11D001-83
AU 2000076444 A 20010417 (200144) C11D001-28
WO 2001019945 A1 20010322 (200144) GE C11D001-28
RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
W: AU BR CN JP US
EP 1141187 A1 20011010 (200167) GE C11D001-28
R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
RO SE SI
BR 2000007147 A 20011016 (200170) C11D001-28
CN 1327474 A 20011219 (200226) C11D001-28
JP 2003509571 W 20030311 (200319) 63 C11D001-00
US 6710022 B1 20040323 (200421) C11D001-00
US 2004176266 A1 20040909 (200459) D06L001-00
ADT DE 19943668 A1 DE 1999-1043668 19990913; AU 2000076444 A AU 2000-76444
20000913; WO 2001019945 A1 WO 2000-DE3162 20000913; EP 1141187 A1 EP
2000-965841 20000913, WO 2000-DE3162 20000913; BR 2000007147 A BR
2000-7147 20000913, WO 2000-DE3162 20000913; CN 1327474 A CN 2000-802220
20000913; JP 2003509571 W WO 2000-DE3162 20000913, JP 2001-523717
20000913; US 6710022 B1 WO 2000-DE3162 20000913, US 2001-831796 20010813;
US 2004176266 A1 Cont of WO 2000-DE3162 20000913, Cont of US 2001-831796
20010813, US 2004-798164 20040310
FDT AU 2000076444 A Based on WO 2001019945; EP 1141187 A1 Based on WO
2001019945; BR 2000007147 A Based on WO 2001019945; JP 2003509571 W Based
on WO 2001019945; US 6710022 B1 Based on WO 2001019945; US 2004176266 A1
Cont of US 6710022
PRAI DE 1999-19943668 19990913
IC ICM C11D001-00; C11D001-28; C11D001-83; D06L001-00
ICS A61K007-00; A61K007-075; A61K007-50; B01F017-00; C11D001-04;
C11D001-10; C11D001-34; C11D001-52; C11D001-90; C11D003-26;
C11D003-30; C11D003-43; C11D003-44
AB DE 19943668 A UPAB: 20020306
NOVELTY - Surfactant composition contains 1-70, preferably 10-60 weight%
gemini (dimeric) surfactant(s) (I) and the rest co-amphiphilic(s) (II),
with an HLB (hydrophilic-lipophilic balance) value less than or equal to
6, with respect to the sum of components (I) and (II).
ACTIVITY - Dermatological.
MECHANISM OF ACTION - None given.
USE - The composition is used as emulsifier or dispersant, as
additive to conventional anionic surfactants or as additive to shampoo and
skin cleansing formulations (all claimed). It is useful for formulating
oil/water, water/oil and micro-emulsions, e.g. for use in a wide
range of cosmetics and personal cleansers, dermatological formulations,
agrochemicals, lacquers, paints, primers, (printing) inks and
pharmaceuticals, e.g. controlled release formulations.

ADVANTAGE - Direct substitution of conventional surfactants with gemini surfactants does not yield the expected large increase in surface activity and does not warrant the additional cost. Combinations with co-amphiphilics not also optimize the application properties but also have a high multifunctionality and are even more effective than mixtures of conventional (non-gemini) surfactants and co-amphiphilics. As an example, the mixture makes it possible to disperse a hydrophilic pigment in an oil phase and also an aqueous phase or a hydrophobic pigment in an oil phase or aqueous phase.

Dwg.0/2

FS CPI
 FA AB; DCN
 MC CPI: A10-E01; A12-V04A; A12-V04B; A12-W12B; A12-W12C; B04-C03C; B04-C03D;
 B05-B01G; B06-H; B07-H; B10-A07; B10-A09A; B10-A10; B10-A21;
 B10-B01B; B10-B02B; B10-B02J; B10-E04C; B12-M09; B14-N17; B14-R01;
 C04-C03C; C04-C03D; C05-B01G; C06-H; C07-H; C10-A07; C10-A09A;
 C10-A10; C10-A21; C10-B01B; C10-B02B; C10-B02J; C10-E04C; C12-M09;
 C14-N17; C14-R01; D08-B04; D08-B09A; E05-G03D; E05-G09B; E05-G09D;
 E07-A02D; E10-A07; E10-A09B8; E10-A12C2; E10-A19B; E10-B01E; E10-C03;
 E10-C04; E10-C04C; E10-D03A; E10-E04G; E10-E04K; E10-E04L4;
 E10-E04L5; E10-G02G2; G02-A03

L100 ANSWER 5 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 2001-080926 [09] WPIX

DNC C2001-023369

TI Oral micro-emulsion composition comprises Carduus marianus extract, silybin or its derivative, organic solvent, surfactant and oil and provides high in vivo bioavailability of silybin and protects liver cells from harmful effects.

DC A96 B02

IN SUH, H J; WOO, J S; SEO, H J; SUH, H; WOO, J

PA (HANM-N) HANMI PHARM CO LTD; (SUHH-I) SUH H; (WOOJ-I) WOO J; (HANM-N)
 HANMY PHARM CO LTD

CYC 29

PI WO 2001001961 A1 20010111 (200109)* EN 14 A61K009-107

RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
 W: CN JP US

EP 1109532 A1 20010627 (200137) EN A61K009-107
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI

US 2001005726 A1 20010628 (200138) A61K035-78

KR 2001008804 A 20010205 (200152) A61K035-78

CN 1316898 A 20011010 (200207) A61K009-107

US 6428821 B2 20020806 (200254) A61K035-78

KR 342942 B 20020702 (200302) A61K035-78

JP 2003503441 W 20030128 (200309) 17 A61K009-107

ADT WO 2001001961 A1 WO 2000-KR720 20000705; EP 1109532 A1 EP 2000-941017-
 20000705, WO 2000-KR720 20000705; US 2001005726 A1 Cont of WO 2000-KR720
 20000705, US 2001-775704 20010202; KR 2001008804 A KR 1999-26809 19990705;
 CN 1316898 A CN 2000-801319 20000705; US 6428821 B2 Cont of WO 2000-KR720
 20000705, US 2001-775704 20010202; KR 342942 B KR 1999-26809 19990705; JP
 2003503441 W WO 2000-KR720 20000705, JP 2001-507456 20000705

FDT EP 1109532 A1 Based on WO 2001001961; KR 342942 B Previous Publ. KR
 2001008804; JP 2003503441 W Based on WO 2001001961

PRAI KR 1999-26809 19990705

IC ICM A61K009-107; A61K035-78

ICS A01N037-18; A01N065-00; A61K031-357; A61K047-10; A61K047-12;
 A61K047-16; A61K047-20; A61K047-22; A61K047-24; A61K047-28;

A61K047-34; A61K047-44; A61P001-16

AB WO 200101961 A UPAB: 20010213

NOVELTY - An oral micro-emulsion composition comprises *Carduus Marianus* extract, a silybin or its derivative, an organic solvent, a surfactant and an oil and provides high in vivo bioavailability of silybin and is useful for protecting liver cells from harmful effects.

USE - The composition is useful for protecting the liver cells from harmful effects of drinking, smoking, overworking, environmental contaminants, stress or liver damage drugs.

ADVANTAGE - The oral composition provides improved in vivo bioavailability of silybin which has excellent liver cells protecting effect.

Dwg.0/1

FS CPI

FA AB; DCN

MC CPI: A12-V01; B04-B01B; B04-B01C; B04-C03C; B05-B01P; B06-A01; B06-A02; B07-A02A; B07-A04; B10-E04C; B10-E04D; B12-M03; B12-M09; B14-N12

L100 ANSWER 6 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 2000-039238 [03] WPIX

DNC C2000-010237

TI Water-in-oil (W/O) type emulsified fat composition for use as a margarine, fat spread.

DC D13 E13 E17

IN MASUI, K; MORI, H; TANAKA, Y; YASUKAWA, T

PA (KAOS) KAO CORP

CYC 22

PI WO 9959422 A1 19991125 (200003)* EN 20 A23D007-00

RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
W: BR CA CN SG

BR 9815821 A 20010130 (200110) A23D007-00

EP 1079699 A1 20010307 (200114) EN A23D007-00

R: DE DK FI FR GB IT NL SE

CN 1292644 A 20010425 (200143) A23D007-00

EP 1079699 B1 20020109 (200211) EN A23D007-00

R: DE DK FI FR GB IT NL SE

DE 69803491 E 20020228 (200223) A23D007-00

ADT WO 9959422 A1 WO 1998-JP2227 19980521; BR 9815821 A BR 1998-15821

19980521, WO 1998-JP2227 19980521; EP 1079699 A1 EP 1998-921745 19980521,

WO 1998-JP2227 19980521; CN 1292644 A CN 1998-814052 19980521, WO

1998-JP2227 19980521; EP 1079699 B1 EP 1998-921745 19980521, WO

1998-JP2227 19980521; DE 69803491 E DE 1998-603491 19980521, EP

1998-921745 19980521, WO 1998-JP2227 19980521

FDT BR 9815821 A Based on WO 9959422; EP 1079699 A1 Based on WO 9959422; EP 1079699 B1 Based on WO 9959422; DE 69803491 E Based on EP 1079699, Based on WO 9959422

PRAI WO 1998-JP2227 19980521

IC ICM A23D007-00

AB WO 9959422 A UPAB: 20000118

NOVELTY - The oily phase of an emulsified fat composition contains a high concentration of diglycerides containing a solid fat, and which is stable and has excellent spreadability.

DETAILED DESCRIPTION - A water-in-oil emulsified fat composition comprises an oily phase and an aqueous phase. The oily phase comprises 40 weight% (weight%) to less than 95 weight% of diglycerides and 5 weight% to less than 60 weight% of triglycerides and satisfies both the requirements (1) and (2):

(1) the glycerides comprise 0.5 weight% to less than 20 weight% of SS components, 20 weight% to less than 55 weight% of SU components

S = 14-22C saturated fatty acid;

U = 14-22C unsaturated fatty acid

;

and (2) a weight ratio of total 14C and 16C saturated fatty acid contained in the glycerides to total 18C, 20C, and 22C saturated fatty acid contained in the diglycerides is 1-8, preferably 2-7.

The total of %SS + %SU + %UU = 100.

USE - The invention is used as margarine, fat spread, etc.

ADVANTAGE - The composition is stable and has excellent spreadability. The composition is also effective in inhibiting body fat accumulation, in a high concentration.

Dwg.0/0

FS CPI

FA AB; DCN

MC CPI: D03-C; D03-C01; D03-C02; E10-E04K; E10-G02G2

L100 ANSWER 7 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1999-602295 [52] WPIX

DNC C1999-175402

TI Cosmetic and/or pharmaceutical compositions which allow formation of stable emulsions, enhance skin-care and protect the compositions against oxidative degradation.

DC A96 B04 D16 D21 E19

IN HOERNER, V; KUEHNE, S; WACHTER, R

PA (HENK) HENKEL KGAA; (COGN-N) COGNIS DEUT GMBH; (COGN-N) COGNIS DEUT GMBH & CO KG

CYC 20

PI DE 19815090 A1 19991014 (199952)* 12 A61K007-48

WO 9951200 A1 19991014 (199952) GE A61K007-48

RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
W: JP US

EP 1069884 A1 20010124 (200107) GE A61K007-48

R: DE ES FR IT

JP 2002510610 W 20020409 (200227) 37 A61K007-48

EP 1069884 B1 20020925 (200271) GE A61K007-48
R: DE ES FR IT

DE 59902845 G 20021031 (200279) A61K007-48

ES 2183534 T3 20030316 (200325) A61K007-48

ADT DE 19815090 A1 DE 1998-1015090 19980406; WO 9951200 A1 WO 1999-EP2115 19990327; EP 1069884 A1 EP 1999-913311 19990327, WO 1999-EP2115 19990327; JP 2002510610 W WO 1999-EP2115 19990327, JP 2000-541972 19990327; EP 1069884 B1 EP 1999-913311 19990327, WO 1999-EP2115 19990327; DE 59902845 G DE 1999-502845 19990327, EP 1999-913311 19990327, WO 1999-EP2115 19990327; ES 2183534 T3 EP 1999-913311 19990327

FDT EP 1069884 A1 Based on WO 9951200; JP 2002510610 W Based on WO 9951200; EP 1069884 B1 Based on WO 9951200; DE 59902845 G Based on EP 1069884, Based on WO 9951200; ES 2183534 T3 Based on EP 1069884

PRAI DE 1998-19815090 19980406

IC ICM A61K007-48

ICS A61K007-00; A61K007-027; A61K031-7105; A61K031-711; A61P017-00

AB DE 19815090 A UPAB: 19991210

NOVELTY - Cosmetic and/or pharmaceutical compositions contain nucleic acids, emulsifiers and oils.

ACTIVITY - None given.

MECHANISM OF ACTION - None given.

USE - None given.

ADVANTAGE - The nucleic acids are stated to allow formation of stable **emulsions**, to enhance the skin-care and moisture binding properties of natural substances, to protect the skin from inflammatory reactions, and to protect the compositions against oxidative degradation (no data given).

Dwg.0/0

FS CPI
 FA AB; DCN
 MC CPI: A12-V01; A12-V04C; B04-B01B; B04-B01C1; B04-C02X; B04-C03C; B04-C03D;
 B04-E01; B05-B01P; B07-A02; B10-A11B; B10-A22; B10-E04C; B10-E04D;
 B10-G02; B10-H01; B10-J02; B12-M09; B14-N17; B14-R01; D05-H12;
 D08-B09A; E07-A02; E07-A02D; E10-A07; E10-A11B2; E10-C04; E10-E04;
 E10-G02; E10-J02A2

L100 ANSWER 8 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1999-571590 [48] WPIX

DNC C1999-166760

TI **Composition** in form of oral (micro)**emulsion**
 preconcentrate used to treat e.g. autoimmune or inflammatory conditions.

DC A23 A25 A28 A96 B03 B05

IN AMBUEHL, M; HAEBERLIN, B; LUECKEL, B; MEINZER, A; RICHTER, F; AMBUHL, M;
 HABERLIN, B; LUCKEL, B

PA (NOVS) NOVARTIS AG; (NOVS) NOVARTIS-ERFINDUNGEN VERW GES MBH; (NOVS)
 NOVARTIS PHARMA GMBH; (AMBU-I) AMBUHL M; (HABE-I) HABERLIN B; (LUCK-I)
 LUCKEL B; (MEIN-I) MEINZER A; (RICH-I) RICHTER F

CYC 86

PI WO 9944584 A1 19990910 (199948)* EN 50 A61K009-107

RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
 OA PT SD SE SL SZ UG ZW
 W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD
 GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV
 MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT
 UA UG US UZ VN YU ZW

FR 2775596	A1 19990910 (199948)	A61K009-107
ZA 9901789	A 19991027 (199951)	46 A61K000-00
AU 9928361	A 19990920 (200007)	A61K009-107
BE 1012400	A5 20001003 (200053)	A61K000-00
NO 2000004299	A 20000829 (200058)	A61K009-107
BR 9908597	A 20001114 (200064)	A61K009-107
GB 2350791	A 20001213 (200066)	A61K038-13
CZ 2000003222	A3 20001213 (200103)	A61K009-107
EP 1059913	A1 20001220 (200105) EN	A61K009-107
R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT RO SE SI		
DE 19983012	T 20010201 (200108)	A61K009-107
SK 2000001319	A3 20010212 (200112)	A61K009-107
FR 2800277	A1 20010504 (200128)	A61K009-107
CN 1292684	A 20010425 (200143)	A61K009-107
HU 2001001080	A2 20010828 (200157)	A61K009-107
KR 2001041657	A 20010525 (200168)	A61K009-107
MX 2000008735	A1 20010301 (200170)	A61K031-435
JP 2002505271	W 20020219 (200216)	60 A61K038-00
BE 1013423	A5 20020115 (200236)	A61K000-00
BE 1013648	A5 20020507 (200241)	A61K000-00
AU 749217	B 20020620 (200252)	A61K009-107
IT 1313550	B 20020909 (200305)	A61K009-00
GB 2350791	B 20030402 (200325)	A61K038-13
GB 2380673	A 20030416 (200328)	A61K038-13
GB 2380674	A 20030416 (200328)	A61K038-13

GB 2380673 B 20030528 (200336) A61K038-13
 GB 2380674 B 20030528 (200336) A61K038-13
 EP 1354582 A2 20031022 (200370) EN A61K009-107
 R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT RO SE SI
 US 2003216303 A1 20031120 (200377) A61K038-13
 NZ 506644 A 20040227 (200418) A61K009-107
 JP 2004189753 A 20040708 (200445) 29 A61K031-436
 EP 1059913 B1 20040929 (200464) EN A61K009-107
 R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT RO SE SI
 FR 2853546 A1 20041015 (200467) A61K009-107
 RU 2235554 C2 20040910 (200468) A61K038-13
 ADT WO 9944584 A1 WO 1999-EP1415 19990304; FR 2775596 A1 FR 1999-2748
 19990304; ZA 9901789 A ZA 1999-1789 19990305; AU 9928361 A AU 1999-28361
 19990304; BE 1012400 A5 BE 1999-153 19990304; NO 2000004299 A WO
 1999-EP1415 19990304, NO 2000-4299 20000829; BR 9908597 A BR 1999-8597
 19990304, WO 1999-EP1415 19990304; GB 2350791 A WO 1999-EP1415 19990304,
 GB 2000-21495 20000901; CZ 2000003222 A3 WO 1999-EP1415 19990304, CZ
 2000-3222 19990304; EP 1059913 A1 EP 1999-908952 19990304, WO 1999-EP1415
 19990304; DE 19983012 T DE 1999-1083012 19990304, WO 1999-EP1415 19990304;
 SK 2000001319 A3 WO 1999-EP1415 19990304, SK 2000-1319 19990304; FR
 2800277 A1 Div ex FR 1999-2748 19990304, FR 2000-13782 20001025; CN
 1292684 A CN 1999-803746 19990304; HU 2001001080 A2 WO 1999-EP1415
 19990304, HU 2001-1080 19990304; KR 2001041657 A KR 2000-709861 20000906;
 MX 2000008735 A1 MX 2000-8735 20000906; JP 2002505271 W WO 1999-EP1415
 19990304, JP 2000-534187 19990304; BE 1013423 A5 BE 1999-732 19991109; BE
 1013648 A5 BE 2000-520 20000818; AU 749217 B AU 1999-28361 19990304; IT
 1313550 B IT 1999-MI452 19990305; GB 2350791 B WO 1999-EP1415 19990304, GB
 2000-21495 20000901; GB 2380673 A Div ex GB 2000-21495 20000901, GB
 2002-29284 20021216; GB 2380674 A Div ex GB 2000-21495 20000901, GB
 2002-29289 20021216; GB 2380673 B Div ex GB 2000-21495 20000901, GB
 2002-29284 20021216; GB 2380674 B Div ex GB 2000-21495 20000901, GB
 2002-29289 20021216; EP 1354582 A2 Div ex EP 1999-908952 19990304; EP
 2003-13016 19990304; US 2003216303 A1 Cont of WO 1999-EP1415 19990304,
 Cont of US 2000-623267 20001101, US 2003-465697 20030619; NZ 506644 A NZ
 1999-506644 19990304, WO 1999-EP1415 19990304; JP 2004189753 A Div ex JP
 2000-534187 19990304, JP 2004-62679 20040305; EP 1059913 B1 EP 1999-908952
 19990304, WO 1999-EP1415 19990304, Related to EP 2003-13016 19990304; FR
 2853546 A1 FR 2004-3163 20040326; RU 2235554 C2 WO 1999-EP1415 19990304,
 RU 2000-125560 19990304
 FDT AU 9928361 A Based on WO 9944584; BR 9908597 A Based on WO 9944584; GB
 2350791 A Based on WO 9944584; CZ 2000003222 A3 Based on WO 9944584; EP
 1059913 A1 Based on WO 9944584; DE 19983012 T Based on WO 9944584; HU
 2001001080 A2 Based on WO 9944584; JP 2002505271 W Based on WO 9944584; AU
 749217 B Previous Publ. AU 9928361, Based on WO 9944584; GB 2350791 B
 Based on WO 9944584; EP 1354582 A2 Div ex EP 1059913; NZ 506644 A Based on
 WO 9944584; EP 1059913 B1 Related to EP 1354582, Based on WO 9944584; RU
 2235554 C2 Based on WO 9944584
 PRAI GB 1998-5199 19980311; GB 1998-4742 19980306;
 GB 1998-5104 19980310
 IC ICM A61K000-00; A61K009-00; A61K009-107; A61K031-435; A61K031-436;
 A61K038-00; A61K038-13
 ICS A61K009-48; A61K031-201; A61K031-225; A61K031-23; A61K031-25;
 A61K031-4015; A61K031-7048; A61K047-10; A61K047-12; A61K047-14;
 A61K047-22; A61K047-34; A61P029-00; A61P031-04; A61P035-00;
 A61P037-02; A61P037-06; A61P041-00; C07K000-00
 AB WO 9944584 A UPAB: 20030813
 NOVELTY - Composition in the form of an emulsion or
 microemulsion pre-concentrate comprises a cyclosporin or macrolide and

carrier medium comprising a lipophilic component, surfactant and e.g. triethyl citrate or acetyl triethyl citrate.

DETAILED DESCRIPTION - Composition in the form of an emulsion or microemulsion pre-concentrate comprises a cyclosporin or macrolide and a carrier medium comprising a second component, lipophilic component and surfactant.

The second component comprises triethyl citrate or acetyl triethyl citrate, polyethylene glycol glycerol 6-10C fatty acid ester, glyceryl di 6-16C fatty acid ester, glyceryl mono 6-14C fatty acid ester, a mixture of mono- and di-glycerides of 6-16C fatty acids, propylene glycol mono 6-12C fatty acid ester, N-methyl pyrrolidone, fatty acids and alcohols, glycerol triacetate, benzyl alcohol and alkylene polyol ether or ester.

The composition is free of ethanol when the second component comprises triethyl citrate or is free of 6-12C fatty acid triglyceride when the second component comprises a mixture of mono- and di-glycerides of 8-10C fatty acids.

ACTIVITY - Antitumour; antifungal; antiinflammatory.

USE - Used to reduce variability of bioavailability levels of a cyclosporin or macrolide for patients during cyclosporin or macrolide therapy (claimed) and for treatment and prevention of autoimmune or inflammatory conditions and transplant rejection, and for treatment of multi-drug resistance (claimed). The composition is used to treat and prevent organ or tissue transplant rejection e.g. in recipients of heart, lung, combined heart-lung, liver, kidney, pancreatic, skin or corneal transplants, for prevention of graft-versus-host disease such as after bone-marrow transplantation, treatment and prevention of autoimmune diseases and inflammatory conditions, particularly those with etiology including autoimmune component, e.g. arthritis (rheumatoid arthritis, arthritis chronic progradient, arthritis deformans) and rheumatic diseases. The composition is also used as an anti-tumor and antifungal agent when a macrolide is used.

ADVANTAGE - The composition has good bioavailability characteristics and reduced variability in inter- and intra-patient bioavailability. The cyclosporine or macrolide has high solubility e.g. 20-50% in the second component. Absorption and blood levels are more predictable, reducing or eliminating problems in administration with erratic absorption. The composition is effective with tenside materials e.g. bile salts, present in the gastrointestinal tract, so that it is fully dispersible in aqueous systems comprising natural tensides can form a microemulsion system in vivo and does not exhibit precipitation of active ingredient or other disruption of fine particulate structure.

Dwg.0/0

FS CPI

FA AB; DCN

MC CPI: A05-E01D; A05-H01B; A10-E07; A12-V01; B02-Z; B04-B01C1; B04-C01C; B04-C03C; B04-N03A; B07-D03; B10-C04E; B10-E04; B10-G02; B12-M03; B12-M09; B14-A04; B14-C03; B14-C06; B14-C09; B14-G02C; B14-G02D; B14-H01

L100 ANSWER 9 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1998-152778 [14] WPIX

DNC C1998-049169

TI Foaming type oil in water type emulsified composition
- contains fat containing mixed acid group tri glyceride and emulsifier comprising sorbitan fatty

acid ester and/or poly-glycerine fatty ester, etc..

DC D13

PA (KAOS) KAO CORP

CYC 1

PI JP 10023873 A 19980127 (199814)* 6 A23L001-19 <--

ADT JP 10023873 A JP 1996-180481 19960710

PRAI JP 1996-180481 19960710

IC ICM A23L001-19

ICS A23D007-00

AB JP 10023873 A UPAB: 19980406

Foaming type oil in water type emulsified composition contains fat containing 5-70 weight% mixed acid group triglyceride containing at least 1 18C unsaturated fatty acid residue and 1 at least 20C saturated fatty acid residue and emulsifier comprising 0.001-1 weight% sorbitan fatty acid ester and/or polyglycerine fatty acid ester, 0.05-1 weight% lecithin and/or 0.01-1 weight% glycerine fatty acid monoester.

USE - The product is used as whipped cream, topping or filling in producing bread or confectionery.

ADVANTAGE - The product has good whipping property. It can be preserved by freezing without damaging the flavour, texture and appearance.

Dwg.0/0

FS CPI

FA AB

MC CPI: D03-H01N

L100 ANSWER 10 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1997-364271 [34] WPIX

CR 2000-292468 [25]

DNC C1997-116764

TI Composition used as shortening substitute in bakery - comprises emulsion having water and konjac in the aqueous phase and lipid and emulsifiers in the lipid phase and gives low fat products with same characteristics as conventional products.

DC A97 D11

IN CROSBY, G A; YOUNG, T J

PA (FMCC) FMC CORP

CYC 1

PI CA 2188331 A 19970420 (199734)* 41 A23L001-307 <--

ADT CA 2188331 A CA 1996-2188331 19961021

PRAI US 1995-545414 19951019

IC ICM A23L001-307

ICS A23D009-00; A23L001-035

AB CA 2188331 A UPAB: 20000524

A composition (I) comprises an emulsion having an aqueous phase containing water and konjac as gelling agent, and a lipid phase containing lipid and emulsifier.

Also claimed are: (i) a bakery product containing (I); and (ii) method of preparing (I).

Preferably, the konjac is used with a hydrocolloid or equivalent, such as microcrystalline cellulose, xanthan, sodium, calcium or potassium alginate, locust bean gum, carageenan, propylene glycol alginate, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, guar gum, karaya gum, gum arabic, starch, pectin, inulin, maltodextrin or gelatin. The lipid is vegetable or animal fat or oil or a mixture and forms 1-30 weight% of the emulsion. The emulsifiers are selected from mono- and di-glycerides of fatty acids,

ethoxylated monglycerides, polyglycerol fatty acid esters, sucrose fatty acid ester esters or polyesters, sorbitan fatty acid esters, ethoxylated sorbitan fatty acid esters or proteinaceous emulsifiers.

USE - The composition is useful as shortening substitute in bakery applications (claimed).

ADVANTAGE - Low fat bakery products obtained using (I) as shortening substitute have physical and sensory characteristics of products made using conventional shortening. (Konjac is a neutral polysaccharide, a glucomannan polymer).

Dwg.0/0

FS CPI

FA AB

MC CPI: A12-W09; D01-B

L100 ANSWER 11 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1995-254409 [33] WPIX

CR 1992-365895 [44]; 1994-263240 [32]; 1995-005785 [01]

DNC C1995-116276

TI Fat substitute compsn. used as anti laxative agent - comprising edible non digestible fat substitute and emulsifier as anti-laxative agent, used in food to reduce calories and cholesterol.

DC D13

IN CAMPBELL, M L; MEYER, R S

PA (CURT-N) CURTICE BURNS FOODS INC

CYC 1

PI US 5431949 A 19950711 (199533)* EN 10 A23D007-005

ADT US 5431949 A CIP of US 1991-677553 19910329, CIP of US 1992-857063 19920324, CIP of US 1992-941711 19920908, Cont of US 1993-138630 19931015, US 1994-298024 19940829

FDT US 5431949 A CIP of US 5294451, CIP of US 5338564, Cont of US 5366753

PRAI US 1993-138630 19931015; US 1991-677553 19910329; US 1992-857063 19920324; US 1992-941711 19920908; US 1994-298024 19940829

IC ICM A23D007-005

AB US 5431949 A UPAB: 19950824

Fat substitute compsn. comprises: (a) an edible, non-digestible fat substitute material having a m pt. of at most 37deg.C; in combination with (b) an anti-laxative agent selected from non-liq., polyglyceryl esters, non-liquid 1-18C fatty acid mono- and di-glycerides; ethoxylated mono- and di-glycerides, sorbitan esters of at least one 1-18C fatty acid, glycetyl-lacto esters of at least one 1-18C fatty acid and digestible polyol fatty acid polyesters having up to 3 fatty acid gps. The polyol is a 4-8 hydroxy sugar or sugar alcohol. Each acid gp. has 8-18C atoms. The anti-laxative agent is present in an amount to reduce leakage of the non-digestible fat substitute material through the anal sphincter of a mammal. Also claimed is a method of reducing anal leakage in a mammal after ingesting a food compsn. comprising an edible, non-digestible fat substitute material having a m. pt. of at most 37deg.C, which comprises incorporating into the food compsn. emulsifier selected from non-liquid polyglyceryl esters, non-liquid 1-18C fatty acid mono- and di-glycerides, ethoxylated 1-18C fatty acid mono- and di-glycerides, sorbitan esters of at least one 1-18C fatty acid, glycetyl-lacto esters of

at least one 1-18C fatty acid and digestible polyol fatty acid polyesters having up to 3 fatty acid gps. The polyol is a 4-8 hydroxyl sugar or sugar alcohol. Each acid gp. has 8-18C atoms.

The anti-laxative agent is pref. a non-liquid 1-18C fatty acid mono- or di-glyceride. It forms more than 5-10 weight% of the substitute material.

ADVANTAGE - The compsn. reduces calories and cholesterol and is therefore healthier to eat. It has a relatively low solids content so it does not feel waxy in the mouth. The compsn. also has a reduced laxative effect.

Dwg.0/0

FS CPI

FA AB

MC CPI: D03-C

L100 ANSWER 12 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1991-353119 [48] WPIX

DNC C1992-000023

TI Preparation of particulate flowable flavours - by chilling a blend of an encapsulating agent and emulsifier mixture with an aqueous flavour compsn. and texture conditioning agent mixture.

DC A97 D13

IN KANG, Y C; KING, C K; SCHULMAN, M; SUDOL, M A; TAN, C T

PA (INFL) INT FLAVORS & FRAGRANCES INC

CYC 1

PI US 5064669 A 19911112 (199148)*

ADT US 5064669 A US 1991-681479 19910403

PRAI US 1989-407356 19890914; US 1991-681479 19910403

IC A23L001-22

AB US 5064669 A UPAB: 19930928

Flavouring powders are prepared by: (a) melting and mixing a mixture of a solid encapsulating material (I) (m.pt. 130-195 deg.F) and 1 or more emulsifiers (II); (b) mixing the melt with a blend of 1 or more H2O-containing flavour compsns. (III) (at least 15% H2O) and a texture conditioning agent (IV); and (c) chilling the resulting homogeneous emulsion to provide the above particulate flavouring powder. (IV) is SiO₂, powdered cellulose, puffed dextrin, maltodextrin, or pregelatinised starch.

Pref. (I) are fats or waxes, especially hydrogenated or partially hydrogenated vegetable oil, stearin, fatty glyceride ester or partial ester, or edible wax, partic. a partially hydrogenated cottonseed or soybean or palm oil, a glyceryl monostearate or monopalmitate, a propylene glycol monostearate, a polyglycerol stearate, a polyoxyethylene sorbitol, a fatty acid ester of polyoxyethylene sorbitan, a polyglycerol ester of a fatty acid, beeswax or carnauba wax. Pref. (II) are mono- or diglycerides of fatty acids. Pref. (III) compsns. contain 15-50%, especially 30-50% H2O, and amount

is 20-40% of the (I)-(IV) mixture Amount of (IV) is pref. 0.1-1 times the amount of

(III) compsn. Chilling in step (c) is pref. by spraying into a gas stream of temperature 40-116 deg.F (e.g. through a centrifugal atomiser), or by contact

with a surface of temperature less than the m.pt. of (I) to form flakes (which are then pref. passed through a No.10 screen).

USE/ADVANTAGE - The method allows aqueous flavours to be converted into readily usable powder form, while the prod. retains the flavour and most of the H2O. No thermal damage is done to subtle flavour compsns. and it

retains its original stability. No caking of the flavour powder occurs.
The prod. is useful for providing flavour for microwave foods.
(Previously notified in week 9148) @ (12pp Dwg.No.0/9)@

FS CPI
FA AB
MC CPI: A03-A01; A12-W09; D03-H01C; D03-H01D; D06-H

L100 ANSWER 13 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 1990-235417 [31] WPIX
DNC C1990-101817
TI New oil-water **emulsion** - is obtd. by mixing edible-oil fatty acid tri **glyceride**, **glycerol fatty acid ester**, stabiliser and natural tocopherol.
DC D13 D23
PA (UNOS-N) UNO SHOYU KK
CYC 1
PI JP 02163197 A 19900622 (199031)* 10
JP 2701897 B2 19980121 (199808) 10 C11B005-00
ADT JP 02163197 A JP 1988-316339 19881216; JP 2701897 B2 JP 1988-316339 19881216
FDT JP 2701897 B2 Previous Publ. JP 02163197
PRAI JP 1988-316339 19881216
IC **A23L001-00**; A23L003-35; C11B005-00
ICM C11B005-00
ICS A23L003-35; B01J013-00; C09K015-08
ICA A23D007-00; A23L001-00; A23L001-24; A23L001-31; A23L001-325; A23L001-40
AB JP 02163197 A UPAB: 19930928
New O/W **emulsion** contg. natural tocopherol is made by mixing, with stirring, 5.75-14.60 weight% (based on amount of natural tocopherol) of edible-oil middle-chain fatty acid triglyceride, 3.0-9.9 weight% of **polyglycerol**-, **glycerol**- and **sorbitan**-**fatty acid ester**(s), 0.3-1.0 weight% of **emulsion** stabiliser, 1.9-4.8 weight% of sucrose **fatty acid ester**, and 3.8-9.8 weight% of ethyl alcohol with 5-40 wt.pts. of natural tocopherol. **Emulsion** pref. also contains 9.5-11.8 weight% of plant fat and oil and more pref. 29-55 weight pts. of D-**sorbitol** and starch-decomposed sugar prod(s). and 22-40 pts. of sterilised pure water.
USE/ADVANTAGE - **Emulsion** is small as 3 microns or smaller in size of dispersed particles, allowing dispersion in water, alcohols, acids, alkalis, salts and hot water. It has good **emulsion** stability and high oxidation resistance.

0/0
FS CPI
FA AB
MC CPI: D03-C; D10-A

L100 ANSWER 14 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 1988-199316 [29] WPIX
DNC C1988-088936
TI Powdery compound **emulsifier** - formed from crystalline alpha-maltose and at least 2 of sucrose-, glycerine-and **sorbitan**-**fatty acid ester**(s).
DC B07 D13 D21 E13 E17
IN OKUMURA, M
PA (HAYB) HAYASHIBARA SEIBUTSU KAGAKU; (MITS-N) MITSUWA FOODS KK
CYC 6
PI EP 274812 A 19880720 (198829)* EN 8

AU 8775211 A 19880630 (198834)
JP 63171629 A 19880715 (198834)
US 4857358 A 19890815 (198941) 5
CA 1295248 C 19920204 (199212)
EP 274812 B1 19930203 (199305) EN 11 B01F017-00
DE 3784046 G 19930318 (199312) B01F017-00
JP 05073454 B 19931014 (199344) 6 B01F017-38
KR 9411564 B1 19941221 (199643) B01F017-38
ADT EP 274812 A EP 1987-306141 19870710; JP 63171629 A JP 1986-313324
19861229; US 4857358 A US 1987-70139 19870629; EP 274812 B1 EP 1987-306141
19870710; DE 3784046 G DE 1987-3784046 19870710, EP 1987-306141 19870710;
JP 05073454 B JP 1986-313324 19861229; KR 9411564 B1 KR 1987-7418 19870710
FDT DE 3784046 G Based on EP 274812; JP 05073454 B Based on JP 63171629
PRAI JP 1986-313324 19861229
REP A3...9005; EP 178665; FR 2353234; FR 2566409; JP 61035800; No-SR.Pub; US
2929723; US 3764346; US 3889008
IC ICM B01F017-38
ICS A21D002-16; A21D002-18; A21D010-00; A23G003-00; **A23L001-03;**
A23L001-035; A61K007-00; A61K009-10; A61K047-14; B01F017-56
AB EP 274812 A UPAB: 19930923
A powdery compound emulsifier is obtd. by (a) adding crystalline alpha-maltose (AM) to a liquid or paste cpd. emulsifier containing 2 or more members selected from sucrose **fatty acid ester**, glycerine **fatty acid ester** and **sorbitan fatty acid ester** and (b) converting the crystalline AM into crystalline beta-maltose hydrate (BMH) to effect pulverisation.
The liquid or paste cpd. emulsifier pref. contains water and either of ethyl alcohol, maltose, oil and fat. The amount of crystalline AM is pref. 0.5-15 fold by weight of that of the liquid or paste cpd. emulsifier.
USE/ADVANTAGE - The powdery cpd. emulsifier has sufficient emulsifying and foaming powers and excellent storage stability. The cpd. emulsifier is in stable and nonhygroscopic form and can be used in food prods., cosmetics and pharmaceuticals. In food prods., the emulsifier improves the emulsifying and foaming powders of oil and fat, the mechanical processability of food materials, such as starch and wheat flour and the quality and shelf life of the final prods. In cosmetics, the emulsifier improves the emulsifying and cleansing powers, the dispersibility of oil-soluble substances in water and the affinity of the cosmetic ingredients to the skin, as well as imparting appropriate gloss and texture. In pharmaceuticals, the emulsifier improves the affinity and absorption of the effective ingredients to or by cells and tissues, as well as improving the mechanical processability.
0/0
FS CPI
FA AB; DCN
MC CPI: B04-C03C; B07-A02; B10-E04C; B12-J01; B12-L02; B12-M03; D03-H01N;
D08-B; E07-A02D; E07-A02H; E10-E04G

L100 ANSWER 15 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 1987-145178 [21] WPIX
DNC C1987-060477
TI Storage stable cake premix for microwave cooking - containing flour of low moisture content, sugar, baking powder and **emulsifier**.
DC D11
IN KUBO, T; KUNIMOTO, Y; YAMAMOTO, M
PA (HOUF) HOUSE FOOD IND CO LTD
CYC 5

PI GB 2182835 A 19870528 (198721)*
AU 8664271 A 19870430 (198723)
JP 62096032 A 19870502 (198723)
JP 62096033 A 19870502 (198723)
JP 62096034 A 19870502 (198723)
JP 62096035 A 19870502 (198723)
GB 2182835 B 19900221 (199008)
KR 8903911 B 19891012 (199040)
US 5084288 A 19920128 (199207)

ADT GB 2182835 A GB 1986-25167 19861021; JP 62096032 A JP 1985-236077
19851022; JP 62096033 A JP 1985-236078 19851022; JP 62096034 A JP
1985-236079 19851022; JP 62096035 A JP 1985-236085 19851022; US 5084288 A
US 1989-318500 19890303

PRAI JP 1985-236077 19851022; JP 1985-236078 19851022;
JP 1985-236079 19851022; JP 1985-236080 19851022

IC A21D010-00; A23G003-00; **A23L001-02**

AB GB 2182835 A UPAB: 19930922
Premix for microwave cooking comprises flour of moisture content 1-9.5
(3-7.5) weight%, sugar; baking powder and emulsifier. The compsn. may also
include at least one of **sorbitol**, powdered albumen, powdered
milk, edible fats, oils and salt.
More specifically the baking powder is 1-4.5 weight%; the emulsifier
0.3-3 weight% and the opt. **sorbitol** 7-30 weight%. The baking powder
(especially 1.5-4 weight%) is NaHCO₃ plus tartaric acid, H₃PO₄ or
glucono-delta-lactone. The emulsifier (especially 0.8-1.2 weight%) is at least
one
of sugar **ester**, **sorbitan fatty acid ester** and **glyceride**.
The premix is placed in a package (paper, plastic or a composite) at
0.15-0.32 g/ml of package volume and with ratio package height (cm):bottom
area (sq.cm) 0.02-0.35 (0.08-0.35):1. The compsn. may contain solid pieces
(dried fruit, vegetable flakes and sliced nuts) of maximum particle size not
over 4000 (1400-3500) microns of specific weight not over 1.1(1.05).
USE/ADVANTAGE - This premix has good storage properties, ie reduced
deterioration of oil, colour and taste, without caking or gas generation.
Cakes prepared from the premix have good moisture retention; are soft,
spongy and elastics; have a fine texture and rise well.

O/O

FS CPI
FA AB
MC CPI: D01-B02B

L100 ANSWER 16 OF 16 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 1985-272337 [44] WPIX
DNC C1985-117963
TI Water-oil-water **emulsion** mfr. - using **ester** made from
unsatd. **fatty acid** and **glycerine** as **emulsifier**
for water-oil type **emulsion**.
DC D13
PA (MEIP) MEIJI MILK PROD CO LTD
CYC 2
PI JP 60183031 A 19850918 (198544)* 4
US 4714566 A 19871222 (198801)
JP 03038887 B 19910612 (199127)
ADT JP 60183031 A JP 1984-38667 19840302; US 4714566 A US 1984-610465
19840803; JP 03038887 B JP 1984-38667 19840302
PRAI JP 1984-38667 19840302
IC A23C011-00; A23C013-12; A23G009-02; **A23L001-19**; A61K007-00;

B01F017-34; B01J013-00

AB JP 60183031 A UPAB: 19930925

When manufacturing W/O/W type cpd. **emulsion**, an **ester** made from unsatd. **fatty acid** and glycerine is used as an emulsifier for preparing W/O type **emulsion**.

Specifically the W/O/W type cpd. **emulsion** is mfd. by converting O/W type **emulsion** to W/O type **emulsion** by agitation. Then the obtd. W/O type **emulsion** is added to aqueous phase to produce the W/O/W type **emulsion**. The **glyceride** of unsatd. fatty acid is one or more of monoelcin, dielcin, monolinolein, dilinolein. The emulsifier opt. contains, a small quantity of lecithin and/or fatty acid diglyceride.

USE/ADVANTAGE - Usually, the W/O/W type cpd. **emulsion** is prepared by using a Span series emulsifier such as **sorbitan** mono-oleate in an amount of 20% or more, to oil, at the prim. emulsifying stage. Therefore, these prods. could not be used for foods because of the high content of emulsifier. A stabilised W/O/W type **emulsion** having very fine water particles, can be prepared. Based on this effect, a thick mayonnaise, dressing, ice cream etc. can be made.

O/1

FS CPI

FA AB

MC CPI: D03-E08; D03-H01H; D03-H01N; D08-B

=> d 1101 1-11 ti

L101 ANSWER 1 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

TI Food product, e.g. salad dressings, coffee whiteners, nutritional drinks or beverages, sauces, gravies, marinades, rubs, nutritional bars, baked goods, caramel, confections, and yogurt, comprises di-acyl **glycerol** oil.

L101 ANSWER 2 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

TI Uniformly coloring dragees used in pharmaceutical or confectionery applications, by spray coating with aqueous dispersion containing polymer, plasticizer and dye.

L101 ANSWER 3 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

TI Stable salad dressings which contain a cholesterol lowering amount of a sterol or stanol ester and which are stable at room temperatures and when refrigerated.

L101 ANSWER 4 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

TI Flavored nut spread with desired sweetness.

L101 ANSWER 5 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

TI Granular lipid compsn. for food, feed and drug industries - consists of lipid, surfactant and porous granular sugar.

L101 ANSWER 6 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

TI Fat substitute compsn. having reduced laxative effect - comprises fat substitute material in combination with digestible fatty acid polyester anti-laxative effect.

L101 ANSWER 7 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

TI Whippable, non-dairy cream based on liquid oil - has good whipping time, overrun, viscosity and firmness and healthier than known non-dairy creams.

L101 ANSWER 8 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
TI Seamless capsules containing hydrophilic substances - have lower **fatty acid ester(s)** of sucrose between contents and covering films.

L101 ANSWER 9 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
TI Preparation of blends of meals or flours for fodder mfr. - using surfactant and anti-dust additive.

L101 ANSWER 10 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
TI Porous expanded cereal powder compsn. production - by irradiating briefly with IR radiation at an elevated temperature and for a few minutes at a lower temperature.

L101 ANSWER 11 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
TI Heating protein to give porous expanded prod. - using infrared rays in presence of surfactants, **polyols** and foaming agents.

=> d l101 1-8 all

L101 ANSWER 1 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 2003-877592 [81] WPIX
DNC C2003-247966
TI Food product, e.g. salad dressings, coffee whiteners, nutritional drinks or beverages, sauces, gravies, marinades, rubs, nutritional bars, baked goods, caramel, confections, and yogurt, comprises di-acyl glycerol oil.
DC D13
IN BOICE, B; EGBERT, R; SIKORSKI, D M; STUCHELL, Y M; WIDLAK, N
PA (ARCH) ARCHER-DANIELS MIDLAND CO; (BOIC-I) BOICE B; (EGBE-I) EGBERT R;
(SIKO-I) SIKORSKI D M; (STUC-I) STUCHELL Y M; (WIDL-I) WIDLAK N
CYC 103
PI WO 2003094634 A1 20031120 (200381)* EN 88 A23L001-24 <--
RW: AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE LS
LU MC MW MZ NL OA PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW
W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK
DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR
KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL
PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA
ZM ZW
US 2004009284 A1 20040115 (200406) A23D007-00
AU 2003228860 A1 20031111 (200442) A23L001-24 <--
ADT WO 2003094634 A1 WO 2003-US13978 20030505; US 2004009284 A1 Provisional US
2002-380121P 20020506, Provisional US 2003-453722P 20030502, US
2003-429260 20030505; AU 2003228860 A1 AU 2003-228860 20030505
FDT AU 2003228860 A1 Based on WO 2003094634
PRAI US 2003-453722B 20030502; US 2002-380121P 20020506;
US 2003-429260 20030505
IC ICM A23D007-00; **A23L001-24**
ICS A23D009-00; **A23L001-30; A23L001-307;**
A23L001-39
AB WO2003094634 A UPAB: 20031216
NOVELTY - A food product comprises di-acyl glycerol (DAG) oil used in place of at least some triacylglycerol (TAG) oil/fat.
USE - As food product, e.g. salad dressings, i.e. spoonable salad dressing without enzyme-modified egg yolks or pourable salad dressing;

coffee whiteners; nutritional drinks or beverages, i.e. soy-based milk; sauces; gravies; marinades; rubs; nutritional bars; baked goods; caramel, i.e. protein-fortified; confections; and yogurt (claimed).

ADVANTAGE - The invention provides unique health and nutritional advantages to TAG oils. It provides health, nutritional, and even organoleptic properties.

DESCRIPTION OF DRAWING(S) - The figure shows a investigation of functional properties of DAG vs. TAG high hydrophilic-lipophilic balance (HLB) emulsifiers.

Dwg.1A/14

FS CPI

FA AB; GI

MC CPI: D03-B14; D03-H01H

L101 ANSWER 2 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 2003-803787 [75] WPIX

DNC C2003-221798

TI Uniformly coloring dragees used in pharmaceutical or confectionery applications, by spray coating with aqueous dispersion containing polymer, plasticizer and dye.

DC A96 B05 D13

IN MALANDAIN, M; MOUTIER, E

PA (SEPP) SEPPIC SOC EXPL PROD IND CHIM

CYC 27

PI WO 2003071882 A1 20030904 (200375)* FR 20 A23L001-275 <--
RW: AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GR HU IE IT LU MC NL PT
SE SI SK TR

W: PL

FR 2836333 A1 20030829 (200375) A23G003-28

ADT WO 2003071882 A1 WO 2003-FR349 20030205; FR 2836333 A1 FR 2002-2342
20020225

PRAI FR 2002-2342 20020225

IC ICM A23G003-28; A23L001-275

ICS A23G003-00; A23G003-26; A23G003-30; A23P001-08; A61K009-30

AB WO2003071882 A UPAB: 20031120

NOVELTY - Coloring dragees involves at least one step of spraying with a colored aqueous dispersion (A) containing at least one film-forming polymer (I), a plasticizer (II) and a dye (III).

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

(1) a composition (A') for coloring dragees, which comprises 40-93 weight% water, 4-15 weight% polymer (I') for food or pharmaceutical use, 3-15 weight% sparingly water soluble plasticizer (II') having a hydrocarbon chain of at least 12C, 0.1-15 weight% dyes (III) and optionally upto 15 weight% fillers, additives, sweeteners and/or aromas for food or pharmaceutical use, and

(2) a solid composition (A'') for coloring dragees, which comprises 25-75 weight % (I'), 5-25 weight % (II') and optionally upto 70 weight % fillers,

additives, sweeteners and/or aromas for food or pharmaceutical use.

USE - Used for coloring dragees used in the pharmaceutical or food (specifically confectionery) industry, typically comprising an almond, dried fruit, piece of chocolate or drug-containing mini-tablet enclosed in a thick, sugar-based protective coating.

ADVANTAGE - A uniform, aesthetically acceptable coloration is obtained (even on dragees based on non-cariogenic sugars, which are difficult to coat conventionally), by film coating using a dilute aqueous dispersion.

Dwg.0/0

FS CPI
FA AB; DCN
MC CPI: A07-B04; A08-E01; A08-P01; A12-V01; A12-W09; B04-C02A; B04-C02D;
B04-C03B; B04-C03D; B12-M11B; D03-E02; D03-H01E

L101 ANSWER 3 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 2000-239189 [21] WPIX
DNC C2000-072926
TI Stable salad dressings which contain a cholesterol lowering amount of a sterol or stanol ester and which are stable at room temperatures and when refrigerated.
DC A97 D13 E13 E17
IN BRUCE, R D; BURRUANO, B T; DARTEY, C K; HIGGINS, J D
PA (MCNI) MCNEIL-PPC INC; (JOHJ) JOHNSON & JOHNSON
CYC 33
PI EP 986962 A1 20000322 (200021)* EN 11 A23L001-24 <--
R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
RO SE SI
NO 9904195 A 20000301 (200022) A23L001-24 <--
AU 9944636 A 20000316 (200024) A23L001-035 <--
JP 2000102361 A 20000411 (200029) 8 A23L001-24 <--
CA 2281128 A1 20000229 (200033) EN A23L001-24 <--
BR 9903979 A 20000905 (200048) A23L001-30 <--
US 6123978 A 20000926 (200051) A23D009-007
MX 9908019 A1 20000901 (200139) A23L001-24 <--
US 6399137 B1 20020604 (200242) A23D009-007
NZ 337359 A 20030530 (200341) A23L001-24 <--
NO 316204 B1 20031219 (200404) A23L001-24 <--
MX 214894 B 20030623 (200419) A23D009-007
ADT EP 986962 A1 EP 1999-306841 19990827; NO 9904195 A NO 1999-4195 19990830;
AU 9944636 A AU 1999-44636 19990820; JP 2000102361 A JP 1999-243164
19990830; CA 2281128 A1 CA 1999-2281128 19990830; BR 9903979 A BR
1999-3979 19990830; US 6123978 A US 1998-143817 19980831; MX 9908019 A1 MX
1999-8019 19990830; US 6399137 B1 Cont of US 1998-143817 19980831, US
2000-625667 20000726; NZ 337359 A NZ 1999-337359 19990819; NO 316204 B1 NO
1999-4195 19990830; MX 214894 B MX 1999-8019 19990830
FDT US 6399137 B1 Cont of US 6123978; NO 316204 B1 Previous Publ. NO 9904195
PRAI US 1998-143817 19980831; US 2000-625667 20000726
IC ICM A23D009-007; **A23L001-035; A23L001-24;**
A23L001-30
ICS A23D007-01; **A23L001-03; A23L001-29**
AB EP 986962 A UPAB: 20000502
NOVELTY - Stable foodstuffs which contain:
(1) a cholesterol lowering amount of a sterol or stanol ester,
(2) an emulsifier or a hydrocolloid;
(3) a crystal fat inhibitor.
The foodstuffs, including salad dressings are stable even when refrigerated.
DETAILED DESCRIPTION - An INDEPENDENT CLAIM is made for a method of preparing the stable food **emulsion** comprising:
(1) providing an aqueous system;
(2) providing a food grade acceptable oil;
(3) providing a stanol ester;
(4) providing a crystal fat inhibitor and an emulsifier;
(5) admixing these ingredients;
(6) heating the mixture to 100 - 150 deg. F to form a heated oil; and
(7) adding the heated oil to the aqueous system.
USE - As a stable foodstuff which lowers cholesterol levels. An

actual claimed EMBODIMENT is as a salad dressing.

ADVANTAGE - The foodstuff remains stable at different temperatures. It is stable both at room temperature and when refrigerated. This is useful for foodstuffs such as salad dressings that are sold at room temperature but which are refrigerated once opened.

Dwg.0/0

FS CPI
FA AB; DCN
MC CPI: A12-W09; D03-H01H; D03-H01N; D03-H01Q; D03-H01T2; E01; E07-A02A;
E07-A02D; E10-E04G; E10-E04K

L101 ANSWER 4 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 1999-228504 [19] WPIX
CR 2003-851280 [79]
DNC C1999-067160
TI Flavored nut spread with desired sweetness.
DC A28 A97 D13
IN SACKENHEIM, R J; WONG, V Y
PA (PROC) PROCTER & GAMBLE CO
CYC 83
PI US 5885646 A 19990323 (199919)* 9 A23L001-38 <--
WO 9921440 A1 19990506 (199925) EN
RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
OA PT SD SE SZ UG ZW
W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE
GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG
MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG
UZ VN YU ZW
AU 9898092 A 19990517 (199939)
EP 1026964 A1 20000816 (200040) EN A23L001-38 <--
R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE
BR 9813883 A 20000926 (200051) A23L001-38 <--
CN 1278147 A 20001227 (200123) A23L001-38 <--
MX 2000004092 A1 20010101 (200166) A23L001-38 <--
JP 2001520872 W 20011106 (200203) 34 A23L001-38 <--
ADT US 5885646 A US 1997-958349 19971027; WO 9921440 A1 WO 1998-US22059
19981019; AU 9898092 A AU 1998-98092 19981019; EP 1026964 A1 EP
1998-952374 19981019, WO 1998-US22059 19981019; BR 9813883 A BR 1998-13883
19981019, WO 1998-US22059 19981019; CN 1278147 A CN 1998-810658 19981019;
MX 2000004092 A1 MX 2000-4092 20000427; JP 2001520872 W WO 1998-US22059
19981019, JP 2000-517614 19981019
FDT AU 9898092 A Based on WO 9921440; EP 1026964 A1 Based on WO 9921440; BR
9813883 A Based on WO 9921440; JP 2001520872 W Based on WO 9921440
PRAI US 1997-958349 19971027
IC ICM A23L001-38
AB US 5885646 A UPAB: 20031208
NOVELTY - A flavored nut spread has a spreadability value of 500-1400 gram force and comprises a flavorant, 20-55 (preferably 25-40)% of nut solids, 30-60 (preferably 35-50)% of total fat and 15-50 (preferably 20-35)% of sugar.
DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a process for preparing a nut spread as above which comprises forming a homogeneous blend of:
(a) a fluid suspension which consists of:
(i) an intimate mixture of sugar and an edible liquid oil in a sugar:oil ratio of 0.7:1 or more; and
(ii) edible surfactant capable of imparting increased fluidity to the mixture;

- (b) a nut solids-containing mixture which comprises:
(i) 20-55 (preferably 30-45)% nut solids;
(ii) 30-60 (preferably 40-55)% fat; and
(iii) optionally (preferably 5-10%) sugar.

The ratio of (a) to (b) is such that the resulting spread has a sugar level of 15-50%.

USE - Used as a spread with desired sweetness.

ADVANTAGE - The spread is easily spreadable, has a high level of sugar, does not require high shear equipment to make and has the flexibility to provide different flavored products.

Dwg.0/0

FS CPI
FA AB
MC CPI: A10-E08A; A12-W09; A12-W12C; D03-C02

L101 ANSWER 5 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1993-131473 [16] WPIX

DNC C1993-058712

TI Granular lipid compsn. for food, feed and drug industries - consists of lipid, surfactant and porous granular sugar.

DC B05 B07 D13 E19

PA (NISS-N) NISSEI BADEISHIE KK

CYC 1

PI JP 05070793 A 19930323 (199316)* 5 C11B015-00

ADT JP 05070793 A JP 1991-257244 19910910

PRAI JP 1991-257244 19910910

IC ICM C11B015-00

ICS A23D009-00; A23L001-035; A61K009-14; B01J002-00

AB JP 05070793 A UPAB: 19930924

Compsn. consists of up to 22 weight% lipid, 3-25 weight% surfactant and 75-79 weight% porous granular sugar. Another new granular compsn. consists of less than 18 weight% lipid, 3-21 weight% surfactant, 75-79 weight% porous granular sugar

and diluent, with a combined ratio of lipid plus surfactants of less than 21 weight% and a combined ratio of lipid, surfactants and diluents of 21-25 weight%.

Lipids include **fatty acid glycerides**, **fatty acid esters** with higher alcohols, vitamin A and its **fatty acid esters**, Vitamin E and its **fatty acid esters**, phospholipids, glycolipids and lipid precursors, such as fatty acids, higher alcohols, steroids and terpenoids. Available porous granular sugars include sucrose, glucose, fructose, oligosaccharides and hydrolysed starch. The surfactant is typically a **glycerol fatty acid ester** and/or a **sorbitan fatty acid ester**.

USE/ADVANTAGE - The compsn. is stabilised to oxygen, heat and light and has high fluidity. It gives a stable aqueous dispersion or solution of the granular compsn. available in food, feed and drug industries.

0/0

FS CPI
FA AB; DCN

MC CPI: B03-A; B03-H; B04-B01B; B04-B02B1; B04-C02B; B05-B01P; B07-A02; B10-A07; B10-C04E; B10-E04C; B10-E04D; B12-J01; B12-M11D; D03-G; D03-H; E01; E05-G09D; E06-A01; E07-A02A; E07-A02D; E07-A02H; E10-A07; E10-E04G; E10-E04K; E10-E04M1; E10-G02G

L101 ANSWER 6 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1992-365895 [44] WPIX
CR 1994-263240 [32]; 1995-005785 [01]; 1995-254409 [33]
DNC C1992-162413
TI Fat substitute compsn. having reduced laxative effect - comprises fat substitute material in combination with digestible fatty acid polyester anti-laxative effect.
DC D13
IN CAMPBELL, M L; MEYER, R S
PA (CURT-N) CURTICEBURNS INC; (CURT-N) CURTICE BURNS INC
CYC 37
PI WO 9217077 A2 19921015 (199244)* EN 24 A23L001-308 <--
RW: AT BE CH DE DK ES FR GB GR IT LU MC NL OA SE
W: AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW
NL NO PL RO RU SD SE US
AU 9216767 A 19921102 (199305) A23L001-308 <--
EP 577726 A1 19940112 (199402) EN
R: AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE
US 5294451 A 19940315 (199411) 11 A23D009-00
JP 06506113 W 19940714 (199432) 10 A23L001-307 <--
WO 9217077 A3 19930708 (199513) A23L001-308 <--
ADT WO 9217077 A2 WO 1992-US2463 19920326; AU 9216767 A AU 1992-16767
19920326, WO 1992-US2463 19920326; EP 577726 A1 EP 1992-909374 19920326,
WO 1992-US2463 19920326; US 5294451 A CIP of US 1991-677553 19910329, US
1992-857063 19920324; JP 06506113 W JP 1992-508928 19920326, WO
1992-US2463 19920326; WO 9217077 A3 WO 1992-US2463 19920326
FDT AU 9216767 A Based on WO 9217077; EP 577726 A1 Based on WO 9217077; JP
06506113 W Based on WO 9217077
PRAI US 1992-857063 19920324; US 1991-677553 19910329
REP No-SR.Pub; EP 311154; EP 352907; EP 368534; EP 375031; EP 69412; EP 86527;
US 3600186; US 4005195; US 4005196
IC ICM A23D009-00; A23L001-307; A23L001-308
ICS A61K031-23; A61K031-70; A61K037-22
AB WO 9217077 A UPAB: 19950904
Compsn. comprises an edible non-digestible fat substitute material having a m.pt. of 37 deg.C or less, in combination with anti-laxative agent (I) which is a digestible polyol fatty acid polyester having at most 3 fatty acid ester gps. The polyol is a sugar or sugar alcohol containing 4-8 hydroxyl gps. with each fatty acid containing 8-18C atoms. The agent is contained in the compsn. in sufficient amts. to reduce leakage of the fat substitute through the anal sphincter. Also claimed is a fat substitute containing an emulsifier as (I). (I) (opt. ethoxylated or acrylated) mono- or di-glyceride, polyglyceryl ester, xanthan gum, microcrystalline cellulose etc.
USE/ADVANTAGE - The fat substitute compsn. overcomes the laxative side effects associated with fat substitute materials of prior art. The food compsns. provide the benefits of low caloric content while causing reduced or no laxative side effects in mammals, after ingestion of the fat compsns.
O/O
Dwg.0/0
FS CPI
FA AB
MC CPI: D03-C; D03-H01T

L101 ANSWER 7 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

AN 1992-351237 [43] WPIX

DNC C1992-155864

TI Whippable, non-dairy cream based on liquid oil - has good whipping time,

overrun, viscosity and firmness and healthier than known non-dairy creams.

DC A97 D13

IN CAMPBELL, I J; LIPS, A; MORLEY, W G

PA (UNIL) UNILEVER PLC; (UNIL) UNILEVER NV; (UNIL) UNILEVER LTD; (UNIL) UNILEVER PATENT HOLDINGS BV

CYC 20

PI EP 509579 A1 19921021 (199243)* EN 7 A23L001-19 <--
 R: AT BE CH DE DK ES FR GB GR IT LI NL PT SE
 AU 9214884 A 19921022 (199250) A23D007-02
 CA 2066345 A 19921018 (199302) A23L001-19 <--
 FI 9201638 A 19921018 (199304) A23L001-19 <--
 JP 05146267 A 19930615 (199328) 5 A23L001-19 <--
 ZA 9202768 A 19931229 (199405) 13 A23L000-00
 US 5290581 A 19940301 (199409) 4 A23D007-00
 EP 509579 B1 19941228 (199505) EN 7 A23L001-19 <--
 R: AT BE CH DE DK ES FR GB GR IT LI NL PT SE
 DE 69200997 E 19950209 (199511) A23L001-19 <--
 AU 662518 B 19950907 (199544) A23D007-02
 FI 107509 B1 20010831 (200157) A23L001-19 <--
 CA 2066345 C 20031209 (200404) EN A23L001-19 <--

ADT EP 509579 A1 EP 1992-200969 19920406; AU 9214884 A AU 1992-14884 19920414;
 CA 2066345 A CA 1992-2066345 19920416; FI 9201638 A FI 1992-1638 19920413;
 JP 05146267 A JP 1992-119626 19920413; ZA 9202768 A ZA 1992-2768 19920415;
 US 5290581 A US 1992-869939 19920417; EP 509579 B1 EP 1992-200969
 19920406; DE 69200997 E DE 1992-600997 19920406, EP 1992-200969 19920406;
 AU 662518 B AU 1992-14884 19920414; FI 107509 B1 FI 1992-1638 19920413; CA
 2066345 C CA 1992-2066345 19920416

FDT DE 69200997 E Based on EP 509579; AU 662518 B Previous Publ. AU 9214884;
 FI 107509 B1 Previous Publ. FI 9201638

PRAI EP 1991-303439 19910417

REP 1.Jnl.Ref; EP 191545; FR 2248791; GB 1458568; JP 55124442; US 3628968; US
 3702768; US 3935324; US 3944680; 01Jnl.Ref

IC ICM A23D007-02; A23L001-19

ICS A23D007-04

AB EP 509579 A UPAB: 19931115
 Whippable non-dairy cream (I) comprises an emulsion of a water-continuous phase (II) and a fat phase (III). (I) contains 15-60 weight% globular vegetable fat of which at least 85 weight% is liquid oil and the rest hard fat. It contains 0.005-3.0 weight% food acceptable salt of a 2-4 valent or alkaline earth metal ions. It is whippable within 6 mins. with a domestic electric whipper. (II) opt. contains protein(s) and/or thickener(s). (III) is fat and opt. an emulsifier system.
 (I) is whippable within 4 minutes. It contains 25-50 weight% fat. At least 95 weight% of the fat is a liquid oil. The salt is of Mg, Ca, Al, Mn or Fe, especially CaCl₂, MgCl₂, MnCl₂, FeCl₂ or FeCl₃. The hard fat is (hardened) palm kernel, (hardened) coconut, hardened rapeseed oil, hardened palm oil, hardened soybean oil and/or butterfat. It is especially a 25:75-75:25 mixture of
 pK 38 and CN. The thickener is guar gum, locust bean gum, carageenan, xanthan gum, alginate, and/or cellulose ether and is at 0.05-2.0 weight%. The protein is a caseinate. (I) contains less than 10 weight% butterfat. The emulsifier is a monoglyceride acetate (Lactodan), lecithin, polyglycerol ester, mono- or di-glyceride diacetyl tartarate, polyoxyethylene sorbitan ester and/or monoglyceride, especially Triodan, lecithin or Hymon derived from unsatd. fatty acid or fats.
 ADVANTAGE - (I) are rich in polyunsaturated fatty acids (PUFA) making them healthier than known non-dairy creams. They have good whipping time,

overrun, viscosity and firmness
Dwg.0/0

FS CPI
FA AB
MC CPI: A12-W09; D03-B11

L101 ANSWER 8 OF 11 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN
AN 1991-112527 [16] WPIX
DNC C1991-048214

TI Seamless capsules containing hydrophilic substances - have lower **fatty acid ester(s)** of sucrose between contents and covering films.

DC B07 D13 D21 J04

IN KAMAGUCHI, R; SUZUKI, T

PA (MORI-N) MORISHITA JINTAN KK

CYC 2

PI JP 03052639 A 19910306 (199116)* 4

US 5362564 A 19941108 (199444)# 4 B32B005-16

JP 2806564 B2 19980930 (199844) 4 B01J013-14

ADT JP 03052639 A JP 1989-188047 19890720; US 5362564 A US 1992-846949
19920306; JP 2806564 B2 JP 1989-188047 19890720

FDT JP 2806564 B2 Previous Publ. JP 03052639

PRAI JP 1989-188047 19890720

IC A23L001-00; A23P001-04; B01J013-02

ICM B01J013-14; B32B005-16

ICS A23L001-00; A23P001-04; A61K009-50; B01J013-02; B32B009-02

AB JP 03052639 A UPAB: 19930928

Seamless capsules containing hydrophilic substances and consist of the contents and films covering them are characterised by that the contents are hydrophilic substances and that lower **fatty acid esters** of sucrose are included between the contents and the films.

Seamless capsules containing water were prepared using triple concentric nozzles. Water, a sucrose acetate isobutyrate (SAIB) solution as a lower **fatty acid ester** of sucrose heated at 80 deg.C and a mixture consisting of 20 weight% gelatin, 5 weight% D-sorbitol and 75 weight% water heated at 60 deg.C were jetted simultaneously from the inner, medium and outer nozzles of the triple concentric nozzles respectively into a vegetable oil kept at 12 deg.C flowing down at a rate of 0.18 m/s to form seamless capsules.

USE/ADVANTAGE - The contents of the seamless capsules obtained can be drug aqueous solns., foods, cosmetics, perfumes and industrial chemicals. Seamless capsules containing hydrophilic substances, partic. aqueous solns.,

can

be produced easily. Since the lower **fatty acid esters** of sucrose protecting the hydrophilic substances are colourless, the colour design of the seamless capsules can be made easily.

0/0

FS CPI

FA AB; DCN

MC CPI: B07-A02; B10-A07; B12-J01; B12-L02; B12-L07; B12-M11C; D03-H02F;
D08-B; J04-A06

=> => file fsta, frosti

FILE 'FSTA' ENTERED AT 12:12:39 ON 27 OCT 2004

COPYRIGHT (C) 2004 International Food Information Service

FILE 'FROSTI' ENTERED AT 12:12:39 ON 27 OCT 2004

COPYRIGHT (C) 2004 Leatherhead Food Research Association

=> d 1135 1-28 ti

L135 ANSWER 1 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Efficient **esterification** of **sorbitan** oleate by lipase
in a solvent-free system.

L135 ANSWER 2 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Simultaneous analysis of four kinds of **emulsifiers** in beverages
by GC/MS.

L135 ANSWER 3 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Solubilization patterns of lutein and lutein esters in food grade nonionic
microemulsions.

L135 ANSWER 4 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Investigating the molecular heterogeneity of polysorbate
emulsifiers by MALDI-TOF MS.

L135 ANSWER 5 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI **Emulsifiers**.

L135 ANSWER 6 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI [Hydrophilic homogeneous monoglyceride **formulations** and process
for their manufacture.]

L135 ANSWER 7 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Enzymatic synthesis of **sorbitan** esters using a low-boiling-point
azeotrope as a reaction solvent.

L135 ANSWER 8 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Interesterification of triglyceride and **fatty acid** in
a microaqueous reaction system using lipase-surfactant complex.

L135 ANSWER 9 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI [Finely-commинuted liver sausage. II. Action and optimization of
emulsifiers.]
Feinzerkleinerte Leberwurst. II. Wirkungsweise und Optimierung von
Emulgatoren.

L135 ANSWER 10 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Process for preparation of triglyceride and triglyceride
composition.

L135 ANSWER 11 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Chemical interesterification of olive-tristearin **blends** for
margarines.

L135 ANSWER 12 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI Analysis of **polyglycerols** and other **polyols** from
emulsifiers by HPLC.

L135 ANSWER 13 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI [Method for preparing a fat **composition**.]

L135 ANSWER 14 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
TI [Method for preparing a basic powder **mixture** for ice cream

manufacture.]

L135 ANSWER 15 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Pourable fatty **dispersions**.

L135 ANSWER 16 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Solubilization patterns of lutein and lutein esters in food grade
non-ionic microemulsions.

L135 ANSWER 17 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Pourable fatty **dispersions**.

L135 ANSWER 18 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Synthesis and commercial preparations of surfactants for the food
industry.

L135 ANSWER 19 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Lecithin and co. - diverse and indispensable.

L135 ANSWER 20 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Process for the selective preparation of derivatives of monosaccharides
and **polyols** which are partially acylated.

L135 ANSWER 21 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Lipid chemistry - fat substitutes.

L135 ANSWER 22 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Sisterna reveals all about its sucro-esters.

L135 ANSWER 23 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Process for preparing nonionic surfactant **sorbitan**
fatty acid esters with and without previous
sorbitan cyclization.

L135 ANSWER 24 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Oil-in-water type **emulsified** fat and oil composition.

L135 ANSWER 25 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI The fractionation of **glyceride mixtures** by
extraction.

L135 ANSWER 26 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Finely comminuted liver sausage. Mode of action and optimization of
emulsifiers, part 2.

L135 ANSWER 27 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI Processing of fats and oils.

L135 ANSWER 28 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
TI **Emulsifiers**.

=> => d 1135 1 all

L135 ANSWER 1 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
AN 2004:B0187 FSTA
TI Efficient **esterification** of **sorbitan oleate** by lipase
in a solvent-free system.

AU Yan Xu; Dong Wang; Xiao Qing Mu; Yong Quan Ni
CS Key Lab. of Ind. Biotech. of Min. of Education, Sch. of Biotech., S.
Yangtze Univ., Wuxi 214036, China. E-mail yxu(a)sytu.edu.cn
SO Journal of the American Oil Chemists' Society, (2003), 80 (7) 647-651, 19
ref.
ISSN: 0003-021X
DT Journal
LA English
AB **Esterification of sorbitan with oleic acid**
catalysed by lipase in a solvent-free system to form **sorbitan**
oleate (commercial name Span80) was studied as a feasible approach aimed
at meeting the demand for sugar alcohol-based surfactants. Results
obtained from enzymic synthesis of **sorbitan** oleate indicated
that Novozym 435 (immobilized lipase from *Candida antarctica*) had highest
catalytic activity in a solvent-free system. Introduction of a
reduced-pressure system increased production of **sorbitan** oleate
to a maximum of 95% of theoretical yield, obtained from 0.2 mol
sorbitan, 0.1 mol **oleic acid** and 2.0 g lipase (6 weight% of
sorbitan) in a solvent-free reaction mixture under optimal
reaction conditions. Results obtained from lipase-catalysed batch
esterification reactions showed that >90% conversion of
sorbitan oleate was maintained after 10 batches of
esterification reactions, indicating good enzyme stability.
Subsequent analysis by HPLC indicated that the product of the
esterification catalysed by the immobilized lipase contained a
significantly greater amount of monoester (approx. 80%) compared to the
composition obtained by chemical synthesis (approx. 50%).
CC B (Biotechnology)
CT CANDIDA; EMULSIFIERS; ESTERIFICATION; IMMOBILIZED
ENZYMES; LIPASES; OLEIC ACID; SURFACTANTS; CANDIDA ANTARCTICA;
SORBITAN
TN Novozym 435

=> d 1135 3-11,13-17,19-28 all

L135 ANSWER 3 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
AN 2003:A1709 FSTA
TI Solubilization patterns of lutein and lutein esters in food grade nonionic
microemulsions.
AU Amar, I.; Aserin, A.; Garti, N.
CS Correspondence (Reprint) address, N. Garti, Casali Inst. of Applied Chem.,
Hebrew Univ. of Jerusalem, 91904 Jerusalem, Israel. Tel. 972 2 6586574/5.
Fax 972 2 6520262. E-mail garti(a)vms.huji.ac.il
SO Journal of Agricultural and Food Chemistry, (2003), 51 (16) 4775-4781, 12
ref.
ISSN: 0021-8561
DT Journal
LA English
AB Lutein, a naturally occurring carotenoid, is widely distributed in fruits
and vegetables and is particularly concentrated in the *Tagetes erecta*
flower. Epidemiological studies suggest that a high lutein intake (6
mg/day) increases serum levels that are associated with a lower risk of
cataract and age-related macular degeneration. Lutein can either be free
or **esterified** (myristate, palmitate or stearate). Both are
practically insoluble in aqueous systems, and their solubility in food
grade solvents (oils) is very limited, resulting in low bioavailability.
To improve its solubility and bioavailability, free and **esterified**

lutein were solubilized in U-type food grade microemulsions based on ethoxylated **sorbitan fatty acid esters**, **glycerol**, R-(+)-limonene and ethanol. Some of the main findings were as follows: reverse micellar and water in oil (W/O) compositions solubilized both luteins better than an oil in water (O/W) microemulsion, and maximum solubilization was obtained within the bicontinuous phase; free lutein was solubilized better than the **esterified** one in the W/O microemulsion, whereas the **esterified** lutein was better accommodated within the O/W microemulsion; vegetable oils decreased solubilization of free lutein; **glycerol** and alcohol enhanced solubilization of both luteins; and solubilization was surfactant-dependent in all mesophase structures, but its strongest effect was in the bicontinuous phase.

CC A (Food Sciences)

CT BIOAVAILABILITY; CAROTENOIDS; EMULSIONS; SOLUBILITY; LUTEIN; MICROEMULSIONS; SOLUBILIZATION

L135 ANSWER 4 OF 28 FSTA COPYRIGHT 2004 IFIS on STN

AN 2001(10):T0945 FSTA

TI Investigating the molecular heterogeneity of polysorbate **emulsifiers** by MALDI-TOF MS.

AU Frison-Norrie, S.; Sporns, P.

CS Correspondence (Reprint) address, P. Sporns, Dep. of Agric., Food & Nutr. Sci., Univ. of Alberta, Edmonton, Alta. T6G 2P5, Canada. Tel. 780 492 0375. Fax 780 492 4265. E-mail psporns(a)afns.ualberta.ca

SO Journal of Agricultural and Food Chemistry, (2001), 49 (7) 3335-3340, 24 ref.

ISSN: 0021-8561

DT Journal

LA English

AB MALDI-TOF MS was used to determine the molecular composition of polysorbate **emulsifiers**, polysorbate 60 and polysorbate 80, which are commonly used as food additives. The technique was able to provide polysorbate mass profiles in <2 min. 2',4',6'-trihydroxyacetophenone monohydrate was chosen to be the matrix, as it easily facilitated desorption and ionization, provided good resolution, and allowed for fast and simple preparation of the sample. By addition of aqueous 0.01M potassium chloride, species were resolved exclusively as K adducts in the positive ion mode. MALDI-TOF MS analysis before and after saponification indicated the presence of unbound ethylene oxide polymers, as well as free and **esterified sorbitan-** and **sorbide-based species**. Some evidence for the presence of disorbitan-based species was provided. Also illustrated were the polydispersity of the oxethylene chains, the degree of **esterification**, and the identity of **esterified fatty acids**.

CC T (Additives, Spices and Condiments)

CT **EMULSIFIERS**; MASS SPECTROSCOPY; MS; POLYSORBATE 60

L135 ANSWER 5 OF 28 FSTA COPYRIGHT 2004 IFIS on STN

AN 2001(10):T0918 FSTA

TI **Emulsifiers**.

AU Gaupp, R.

CS Gruenau - Ingredients for Lipids & Antioxidants, Illertissen, Germany. Tel. +49 7303 13 516. Fax +49 7303 13 203. E-mail lipids.group(a)cognis.de

SO World of Food Ingredients, (2001), June/July, 72-73

ISSN: 1566-6611

DT Journal

LA English

AB Use of **emulsifiers** in the food industry to guarantee consistent quality of raw materials and foods, thereby allowing manufacturers to meet consumer demands for high quality foods at attractive prices, is discussed. Aspects considered include: commonly used **emulsifiers** (lecithin (E322), mono- and diglycerides of edible **fatty acids** (E471), mono- and diglycerides of edible **fatty acids esterified** with natural organic acids (E472), polyoxyethylene **sorbitan**-monooleate (E433), **glycerol**-polyethylenglycol-ricinoleate (E476)); effects of **emulsifiers** during production, storage and consumption of foods; and actions of **emulsifiers** in food **emulsions** (ice cream and bread).

CC T (Additives, Spices and Condiments)

CT **EMULSIFIERS**; FOOD INDUSTRY; FOODS; QUALITY

L135 ANSWER 6 OF 28 FSTA COPYRIGHT 2004 IFIS on STN

AN 1999(06):T0458 FSTA

TI [Hydrophilic homogeneous monoglyceride **formulations** and process for their manufacture.]

IN Heidlas, J.; Zirzow, K. H.; Wiesmueller, J.; Ober, M.; Graefe, J.

PA SKW Trostberg AG; SKW Trostberg, 83308 Trostberg, Germany

SO German Federal Patent Application, (1998)

PI DE 19724605 A1

PRAI DE 1997-19724605 19970611

DT Patent

LA German

AB Hydrophilic, homogeneous monoglyceride preparations suitable for use as **emulsifiers** contain a **glyceride** component with >40% monoglycerides and a water-free liquid formulation aid, preferably a diol or triol, with good water solubility. This diol or triol component is present at a ratio of 1:0.1-1:1 relative to the monoglyceride fraction of the **glyceride** component. The **glyceride** component preferably contains **esterified** saturated and unsaturated C12-C24 **fatty acids**, which may optionally be substituted **fatty acids**. A process for manufacture of these **emulsifiers** is described. [From summ.]

CC T (Additives, Spices and Condiments)

CT **EMULSIFIERS**; MONOGLYCERIDES; PATENTS

L135 ANSWER 7 OF 28 FSTA COPYRIGHT 2004 IFIS on STN

AN 1998(06):B0735 FSTA

TI Enzymatic synthesis of **sorbitan** esters using a low-boiling-point azeotrope as a reaction solvent.

AU Sarney, D. B.; Barnard, M. J.; Virto, M.; Vulfson, E. N.

CS Correspondence (Reprint) address, E. N. Vulfson, Biotransformations Sect., Inst. of Food Res., Earley Gate, Whiteknights Rd., Reading RG6 6BZ, UK. Tel. +44 1734 357000. Fax +44 1734 267917. E-mail jenya.vulfson(a)bbsrc.ac.uk

SO Biotechnology and Bioengineering, (1997), 54 (4) 351-356, 30 ref. ISSN: 0006-3592

DT Journal

LA English

AB **Sorbitan** esters, which are a group of surfactants of interest as **emulsifiers** in foods, were synthesized enzymically by lipase-catalysed **esterification** of **sorbitan** in organic solvents. **Sorbitan** was itself prepared chemically by dehydration of molten **sorbitol**. The enzymic reaction was performed using Novozyme® 435 (*Candida antarctica* lipase from Novo

Nordisk A/S, Bagsvaerd, Denmark). The reaction was carried out in azeotropic mixtures of tert-butanol and n-hexane, and a partial phase diagram was used to determine the temperature necessary for distillation of the azeotrope at a given concentration of solvents. Effects of varying concentration of the

2 solvents on overall esterification rate and the monoester-diester ratio in the final product were determined.

CC B (Biotechnology)

CT CANDIDA; EMULSIFIERS; ESTERIFICATION; ESTERS; LIPASES; SOLVENTS; ORGANIC SOLVENTS; SORBITAN

TN Novo Nordisk A/S; Novozyme 435

L135 ANSWER 8 OF 28 FSTA COPYRIGHT 2004 IFIS on STN

AN 1996(02):B0057 FSTA

TI Interesterification of triglyceride and fatty acid in a microaqueous reaction system using lipase-surfactant complex.

AU Isono, Y.; Nabetani, H.; Nakajima, M.

CS Correspondence (Reprint) address, M. Nakajima, Nat. Food Res. Inst., Min. of Agric., Forestry & Fisheries, 2-1-2, Kannondai, Tsukuba, Ibaraki 305, Japan

SO Bioscience, Biotechnology, and Biochemistry, (1995), 59 (9) 1632-1635, 33 ref.

DT Journal

LA English

AB Enzymic interesterification in organic solvents can be used to modify the properties of oils and fats. Use of a lipase-surfactant complex (LSC) for interesterification in an organic solvent system was investigated. LSC was prepared by mixing an aqueous solution of lipase MF30 (EC 3.1.1.3) derived from Pseudomonas sp. and an ethanol solution of sorbitan mono-stearate. The LSC, which has 1,3-positional specificity, was used to catalyse the interesterification of triglyceride (tripalmitin) and fatty acid (stearic acid) in an organic solvent system with hexane or in a solvent-free system. Optimum reaction temperature for the LSC was 50°C. The LSC also had catalytic activity in a solvent-free system at 80-100°C. The optimum water content at which the enzyme had maximum activity was 100 mmol H₂O/(g-LSC) for various substrates and enzyme concentration, indicating that the amount of water

required is dependent on the amount of enzyme. Ethanol and diethylene glycol could be used as water substitutes, and the optimum hydroxyl group content was 100 mmol [OH]/(g-LSC). [From En summ.]

CC B (Biotechnology)

CT ACIDS; BACTERIA; EMULSIFIERS; ENZYMES; ESTERIFICATION; ESTERS; FATTY ACIDS; LIPASES; LIPIDS; PSEUDOMONAS; SOLVENTS; TRIGLYCERIDES; INTERESTERIFICATION; ORGANIC SOLVENTS; STEARIC ACID

L135 ANSWER 9 OF 28 FSTA COPYRIGHT 2004 IFIS on STN

AN 1992(06):S0162 FSTA

TI [Finely-commинuted liver sausage. II. Action and optimization of emulsifiers.]

Feinzerkleinerte Leberwurst. II. Wirkungsweise und Optimierung von Emulgatoren.

AU Cheong, S. H.; Fischer, A.

CS Inst. fuer Lebensmitteltech., Fachgebiet Fleischtech., Univ. Hohenheim, D-7000 Stuttgart 70, Federal Republic of Germany

SO Fleischwirtschaft, (1992), 72 (2) 142, 144-149, 159, 20 ref.

ISSN: 0015-363X

DT Journal

LA German
SL English
AB Effects of **emulsifiers** on the stability of finely-commminuted liver sausage with a liver content of 15% were investigated. Variables studied were: **emulsifier** type (monoglycerides, citric acid esters of monoglycerides, mono- and diacetyltaartaric acid esters of monoglycerides, **sorbitan tristearate**); the degree of **esterification** of monoglycerides with citric acid (citric acid content 7.5 or 20%); form of addition of the **emulsifiers** (as a powder or a dispersion); **emulsifier** dose (3 or 5 g/kg); and **fatty acid** chain length of the monoglycerides (C12-C22).
Batches of liver sausage were prepared with fat contents of 40, 45 or 50%. The 45 and 50% fat samples had relatively high levels of fat separation, and onset of fat separation was rapid. Stability was improved by addition of **emulsifiers**. Jelly separation was always least for the samples made with citric acid esters of monoglycerides. Sensory quality differed little between batches made with the various **emulsifiers** studied. pH was higher (approx. 6.0) for samples made with diacetyltaartaric esters than in those made with the other **emulsifiers** (pH 6.2-6.3). Fat separation was lower when **emulsifier** was added as a dispersion than when it was added as a powder. Excessive **emulsifier** concentration increased fat separation. Monoglycerides with a **fatty acid** chain length of C18 gave the best results. [See FSTA (1992) 24 3S137 for part I.]

CC S (Meat, Poultry and Game)
CT ADDITIVES; **EMULSIFIERS**; LIVERS; MEAT PRODUCTS; SAUSAGES;
STABILITY; LIVER SAUSAGES

L135 ANSWER 10 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
AN 1992(06):N0052 FSTA
TI Process for preparation of triglyceride and triglyceride composition.
IN Haraldsson, G. G.; Svanholm, H.; Hjaltason, B.
PA Novo Nordisk A/S; Novo Nordisk, DK 2880 Bagsvaerd, Denmark
SO PCT International Patent Application, (1991)
PI WO 9116443
PRAI DK 1990-954 19900418
DT Patent
LA English
AB Preparation of a triglyceride where all 3 **fatty acids** are C.sub.2.sub.0.sub.+ polyunsaturated (with at least 3 double bonds) is described. The triglyceride is prepared by **esterification** of **glycerol** with free polyunsaturated **fatty acid** or its C.sub.1.sub.-.sub.4 lower alkyl ester in the presence of a lipase. Polyunsaturated **fatty acids** used may include eicosapentaenoic acid or docosahexaenoic acid or combinations thereof. Triglyceride yield can be increased and levels of mono- and diglyceride decreased by removing water or lower alcohol formed during the reaction, using positionally non-specific lipase and/or using an immobilized lipase. [From En summ.]

CC N (Fats, Oils and Margarine)
CT **EMULSIFIERS**; GLYCERIDES; LIPIDS; PATENTS;
TRIGLYCERIDES; WORLD

L135 ANSWER 11 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
AN 1992(03):N0014 FSTA
TI Chemical interesterification of olive-tristearin blends for margarines.

AU Gavriilidou, V.; Boskou, D.
CS Dep. of Chem., Lab. of Organic Chem. Tech. & Food Chem., Univ. of Thessaloniki, Thessaloniki 54006, Greece
SO International Journal of Food Science & Technology, (1991), 26 (5) 451-456, 19 ref.
DT Journal
LA English
AB [The possibility of using chemical interesterification as an alternative to isoselective hydrogenation to obtain zero-trans-olive oil products with good functional and nutritional properties was investigated.] Refined olive oil-glycerol tristearate blends were interesterified using methoxide as catalyst. The glyceride structure of the randomized fats was studied and the relationship between the structure and physical properties was examined. The rearranged fats were investigated for Solid Fat Index, melting behaviour, consistency and spreadability and the values obtained were compared to those of zero-trans margarines or commercially available products prepared from hydrogenated olive oil and other vegetable oils. The 80:20 and 75:25 olive oil-tristearin blends after randomization have properties very close to those of soft tub and packet margarines. [From En summ.]
CC N (Fats, Oils and Margarine)
CT EMULSIFIERS; ESTERIFICATION; FATS; GLYCERIDES ; LIPIDS; MARGARINES; OILS; OLIVE OILS; OLIVES; INTERESTERIFICATION; MARGARINE

L135 ANSWER 13 OF 28 FSTA COPYRIGHT 2004 IFIS on STN
AN 1976(04):N0149 FSTA
TI [Method for preparing a fat composition.]
PA Unilever NV
SO Netherlands Patent Application, (1975)
PI NL 7411482
DT Patent
LA Dutch
AB A fat composition for margarine manufacture is obtained by mixing a liquid vegetable oil containing ≥40% polyunsaturated fatty acids with a smaller proportion of a hard fat in an amount such that the composition contains 0.2-5% H._{sub.3} triglycerides (where H is C16-C24 saturated fatty acids). The hard fat component used should contain 25-60% H._{sub.3}- and H._{sub.2T}- triglycerides where T is mono-trans-unsaturated C16-C24 saturated fatty acids) 35-70% H-fatty acids, 10-45% T-fatty acids, 0-25% M-fatty acids (where M is C12-C14 saturated fatty acids), 15-45% M- plus T-fatty acids and the remainder L-fatty acids (where L is any other glyceride component). Preferably, H._{sub.2T} is >H._{sub.3} and ≥50% of the hard fat components are randomly transesterified, i.e. the hard fat used may be obtained by randomly transesterifying a mixture of 2 or 3 fats, of which ≥1 is a hydrogenated fat containing T-fatty acids. The hard fat may also be obtained by esterifying a suitable mixture of fatty acids with glycerol. Margarines are prepared by emulsifying the fat composition with a suitable aqueous phase at a temperature above the mp of the fatty phase, with subsequent rapid cooling. The margarines obtained, in spite of a low content of hard fat are sufficiently hard for packaging in tubs or for wrapping, have the desired high content of polyunsaturated fatty acids, and are easily spreadable at refrigerator temperature of 3-8°C.
CC N (Fats, Oils and Margarine)

CT FATS; MARGARINES; PATENTS; MARGARINE; NETHERLANDS; PATENT

L135 ANSWER 14 OF 28 FSTA COPYRIGHT 2004 IFIS on STN

AN 1971(08):P1365 FSTA

TI [Method for preparing a basic powder **mixture** for ice cream manufacture.]

PA Cosmonda Voedingsmiddelen NV

SO Netherlands Patent Application, (1970)

PI NL 6904091

DT Patent

LA Dutch

AB An **emulsifier** consisting of a mono- or di-glyceride esterified with an aliphatic hydroxy acid, or a partial ester of glycol and a **fatty acid**, is used in ice cream mixes containing vegetable or animal fat, dried milk, stabilizers, sweeteners, flavouring, colouring, possibly fillers, and ≥1 **emulsifiers**. Glycerol lacto-palmitate and/or glycerol lacto-stearate are preferably used, optionally in combination with glycerol lacto-oleate. In an example, vegetable fat, glycerol mono-stearate, dried milk and glycerol lacto-palmitate are homogenized and spray-dried, after which further ingredients are added.

CC P (Milk and Dairy Products)

CT COLORANTS; DRIED FOODS; **EMULSIFIERS**; FATS ANIMAL; FATS VEGETABLE; FLAVOUR; FLAVOURINGS; HOMOGENIZATION; ICE CREAM; INSTANT FOODS; MILK; SPRAY DRYING; STABILIZERS; SWEETENERS; ANIMAL FATS; DRIED; DRIED MILK; FATS (ANIMAL); FATS (VEGETABLE); ICE CREAM MIXES; MIX; MIXES; SKIM MILK; SKIM-MILK; SPRAY-DRYING; VEGETABLE FATS

L135 ANSWER 15 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN

AN 649387 FROSTI

TI Pourable fatty **dispersions**.

IN Gude M.; Laan J.A.M.; Floeter E.

PA Unilever NV; Unilever plc

SO European Patent Application

PI EP 1455586 A2

WO 2003051134 20030626

AI 20021125

PRAI European Patent Office 20011219

DT Patent

LA English

SL English

AB A non-hydrogenated hardstock fat for pourable and stable liquid dispersions such as liquid margarine is described. The fat composition consists of **fatty acid** residues from plant waxes. The hardstock fat is prepared by **esterifying glycerol** or a partial **glyceride** in such ratio with a reactive **fatty acid** derivative or with a mixture of such derivatives. The fat may contain monoacylglycerides having identical acyl residues such as **glyceride** tribehenate. The invention effectively structures liquid oil in contrast to prior arts that show phase separation due to poor hardstock fat.

SH FATS

CT **EMULSIFIERS**; EUROPEAN PATENT; FAT PRODUCTS; FAT SPREADS; FATS; **GLYCERIDES**; **GLYCEROL**; LIPIDS; LIQUID FOODS; MARGARINE; OIL PRODUCTS; PATENT; SPREADS; STABILITY; SURFACTANTS; YELLOW FATS

DED 28 Sep 2004

L135 ANSWER 16 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN

AN 619115 FROSTI
TI Solubilization patterns of lutein and lutein esters in food grade non-ionic microemulsions.
AU Amar I.; Aserin A.; Garti N.
SO Journal of Agricultural and Food Chemistry, 2003, (July 30), 51 (16), 4775-4781 (12 ref.)
Published by: American Chemical Society. Address: 2540 Olentangy River Road, PO Box 3330, Columbus, OH 43210, USA. Telephone: +1 (614) 447 3665. Fax: +1 (614) 447 3745. Email: acsproof@acs.org Web: <http://pubs.acs.org/jafc>
ISSN: 0021-8561
DT Journal
LA English
SL English
AB A high intake of the carotenoid lutein is thought to increase serum levels and reduce the risk of cataract and age-related macular degeneration. To improve its solubility, the ability of L-phase, Winsor-IV food-grade microemulsions, based on ethoxylated **sorbitan fatty acid esters**, to solubilize free lutein and lutein diester was investigated. Phase diagrams were constructed and free and **esterified** lutein were solubilized. Free lutein was solubilized better than **esterified** lutein in water/oil **emulsions**, but the reverse was observed with oil/water **emulsions**. Vegetable oils decreased the solubilization of free lutein.
SH ADDITIVES
CT CAROTENOIDS; CHEMICAL PROPERTIES; **ESTERIFICATION**; ETHOXYLATED **SORBITAN FATTY ACID ESTERS**; LUTEIN; MICROEMULSIONS; PHASE DIAGRAMS; SOLUBILITY; SOLUBILIZATION
DED 26 Sep 2003

L135 ANSWER 17 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 616074 FROSTI
TI Pourable fatty **dispersions**.
IN Gude M.; Laan J.A.M.; Floeter E.
PA Unilever PLC; Unilever NV
SO PCT Patent Application
PI WO 2003051134 A2
AI 20021125
PRAI European Patent Office 20011219
DT Patent
LA English
SL English
AB A non-hydrogenated hardstock fat for pourable and stable liquid dispersions such as liquid margarine is described. The fat composition consists of **fatty acid** residues from plant waxes. The hardstock fat is prepared by **esterifying glycerol** or a partial **glyceride** in such ratio with a reactive **fatty acid** derivative or with a mixture of such derivatives. The fat may contain monoacylglycerides having identical acyl residues such as **glyceride** tribehenate. The invention effectively structures liquid oil in contrast to prior arts that show phase separation due to poor hardstock fat.
SH FATS
CT **EMULSIFIERS**; FAT PRODUCTS; FAT SPREADS; FATS; GLYCERIDES; GLYCEROL; LIPIDS; LIQUID FOODS; MARGARINE; OIL PRODUCTS; PATENT; PCT PATENT; SPREADS; STABILITY; SURFACTANTS; YELLOW FATS

DED 6 Aug 2003

L135 ANSWER 19 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 530487 FROSTI
TI Lecithin and co. - diverse and indispensable.
AU Niederauer T.
SO Zucker und Susswaren Wirtschaft (ZSW), 2000, (June), 53 (6), 159-161 (0
ref.)
ISSN: 1430-2446
DT Journal
LA German
AB This basic guide to the structure and properties of **emulsifiers**
lists the main characteristics and applications of lecithin and other
commonly used **emulsifiers**, such as oleic and palmitic
acid and their salts; mono- and diglycerides of **fatty**
acids esterified with organic acids such as tartaric or
citric acid; DATEM; sugar esters of **fatty acids** and
sugar glycerides; polyglycerin esters; ammonium phosphatide;
polyoxyethylene stearate; **sorbitan fatty acid**
esters and polysorbates; and polyoxyethylene products.
SH ADDITIVES
CT ANTIOXIDANTS; APPLICATIONS; BASIC GUIDE; **EMULSIFIERS**; LECITHIN;
PHOSPHOLIPIDS; PROPERTIES; STRUCTURE; SURFACTANTS; TYPES
DED 18 Aug 2000

L135 ANSWER 20 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 512747 FROSTI
TI Process for the selective preparation of derivatives of monosaccharides
and **polyols** which are partially acylated.
IN Arcos Jiminez J.A.
PA Consejo Superior de Investigaciones Cientificas
SO European Patent Application
PI EP 945516 A1
AI 19971001
PRAI Spain 19961004
DT Patent
LA English
SL English
AB The invention relates to an enzymic process using lipases for producing
polyol (e.g. **sorbitol**) and monosaccharide esters, such
as **esterified sorbitan** derivatives (Spans) and
Tweens, which are non-ionic surfactants usable as **emulsifiers**
or thickeners in the food and other industries. The enzymic process is
more environmentally friendly and requires less extreme processing
conditions than traditional organic synthesis. The **fatty**
acids used in the process may be obtained from olive, coconut or
palm oil, etc. The process is claimed to be an environmentally
acceptable way of using vegetable oils produced in surplus in the EU.
SH ADDITIVES
CT ADDITIVES; APPLICATIONS; CARBOHYDRATES; **EMULSIFIERS**; ENZYMES;
EUROPEAN PATENT; **FATTY ACIDS**; LIPIDS;
MONOSACCHARIDES; OILS; ORGANIC ACIDS; PATENT; POLYOLS;
PRODUCTION; REACTIONS; SPANS; SUGARS; SURFACTANTS; TWEENS; VEGETABLE OILS
DED 28 Jan 2000

L135 ANSWER 21 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 508930 FROSTI
TI Lipid chemistry - fat substitutes.

AU Linden G.; Lorient D.
SO New ingredients in food processing: biochemistry and agriculture.,
Published by: Woodhead Publishing Ltd., Cambridge, 1999, 289-314 (0 ref.)
Linden G.; Lorient D.
ISBN: 1-85573-443-5
DT Book Article
LA English
AB The principles of lipid crystallization are outlined. The chapter describes the structure, functional properties, modification, and applications of **fatty acids**, glycerides (monoglycerides, **polyglycerol esters of fatty acids**, and esters of **sorbitans** and polysorbates), phospholipids (lecithins), **emulsifiers**, and fat substitutes (modified lipids, carbohydrate-based fat substitutes, and protein-based fat substitutes). The physico-chemical properties of the esters of **sorbitans** and polysorbates are tabulated, and figures are presented that illustrate lipid crystallization, the structure of **esterified** monoglycerides, the fractionation of soya phospholipids, the structure of lecithin, and the structures of fat substitutes.
SH ADDITIVES
CT APPLICATIONS; CHEMICAL STRUCTURE; EMULSIFIERS; FAT SUBSTITUTES; FATTY ACIDS; FUNCTIONAL PROPERTIES; GLYCERIDES; LIPIDS; MODIFICATIONS; MOLECULAR STRUCTURE; ORGANIC ACIDS; PHOSPHOLIPIDS; PROPERTIES; SURFACTANTS
DED 30 Nov 1999

L135 ANSWER 22 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 497046 FROSTI
TI Sisterna reveals all about its sucro-esters.
AU Millet P.
SO Aromes Ingredients Additifs, 1999, (April-May), 5 (21), 46-47 (0 ref.)
ISSN: 0337-3029
DT Journal
LA French
AB This article describes sucro-esters from Sisterna. Sucro-esters are additives that are neither chemical nor natural. They are non-ionic **emulsifiers** produced through **esterification**. The sucro-esters obtained have a hydrophile/lipophile balance in the range of 1-16, compared with 2-8 for **sorbitan** esters, 3-5 for mono- and diglycerides, and 22-5 for **glycerol** esters. Sucro-esters are biodegradable and digestible by humans. They are a powder without flavour or odour, and are stable to temperature and pH. Their applications include egg-based patisserie, frozen dough, and low-fat biscuits.
SH CEREAL PRODUCTS
CT BAKERY ADDITIVES; BAKERY PRODUCTS; BISCUITS; DOUGH; EMULSIFIERS ; FROZEN BAKERY PRODUCTS; FROZEN DOUGH; FROZEN FOODS; FUNCTIONAL PROPERTIES; LOW CALORIE BAKERY PRODUCTS; LOW CALORIE BISCUITS; LOW FAT BAKERY PRODUCTS; LOW FAT BISCUITS; PASTRY PRODUCTS; PATISSERIE; SUCROSE ESTERS; SUGAR ESTERS; SURFACTANTS
DED 30 Jun 1999

L135 ANSWER 23 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 428603 FROSTI
TI Process for preparing nonionic surfactant **sorbitan** **fatty acid** esters with and without previous **sorbitan** cyclization.
AU Giacometti J.; Milin C.; Wolf N.; Giacometti F.

SO Journal of Agricultural and Food Chemistry, 1996, 44 (12), 3950-3954 (21 ref.)
DT Journal
LA English
SL English
AB **Sorbitan fatty acid esters** are non-ionic surfactants, which can be used as **emulsifiers** and stabilisers. The course of the **esterification** reaction of hexitols and a long-chain **fatty acid** at different temperatures was investigated. The reaction course was followed by determining the acid value after 15-150 minutes. Sorbital esters of lauric acid were prepared in the presence of p-toluenesulfonic acid as catalyst. The results showed that the conversion of lauric acid was improved if sorbital was previously cyclised.
SH BIOCHEMISTRY
CT CYCLISING; ESTERIFICATION; FATTY ACIDS;
LAURIC ACID; MECHANISMS; REACTIONS; SORBITAN; SURFACTANTS
DED 13 Feb 1997

L135 ANSWER 24 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 378198 FROSTI
TI Oil-in-water type **emulsified** fat and oil composition.
IN Kameoka T.
PA Snow Brand Milk Products Co. Ltd
SO Japanese Patent Application
PI JP 06209704 A 19940802
AI 19930114
NTE 19940802
DT Patent
LA Japanese
SL English
AB An **emulsified** fat and oil composition containing animal or vegetable fats, stable at ambient temperature even after heating, is described. This **emulsion** does not cause feathering and oil separation even when added to coffee, black tea, etc. Animal or vegetable fats and oils with a specified solid fat index are blended with water and a **sorbitan fatty acid triester** or a **polyglycerol saturated fatty acid ester** of specified degree of **esterification**. The blend is **emulsified** to obtain an oil-in-water **emulsion** with the desired properties.
CT COFFEE; EMULSIONS; HIGH; OIL IN WATER; PATENTS; STABILITY; TEA
DED 17 Jul 1995

L135 ANSWER 25 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 306973 FROSTI
TI The fractionation of **glyceride mixtures** by extraction.
AU Weidner E.; Czech B.; Ender U.; Peter S.
SO Fett Wissenschaft Technologie, 1992, 94 (12), 467-8
NTE Summary of a paper presented at the 48th Annual Meeting of the German Society for Fat Science, Essen, Germany, 1992.
DT Conference Article
LA German
AB Monoglycerides are widely used as **emulsifiers** in the food industry. Mixtures of mono-, di- and triglycerides are obtained by **glycerolysis** of triglycerides, **esterification** of **fatty acids** with glycerin or enzymic splitting of fats.

In this paper, the fractionation of mono-, di- and triglyceride mixtures by supercritical fluid extraction with propane is reported. The separation of glycerin from stearates, oleates, cocoates and **glycerides** of palm oil was investigated using a continuous countercurrent mixer-settler apparatus.

SH ADDITIVES
CT EMULSIFIERS; GLYCERIDES; PRODUCTION; SEPARATION
DED 23 Mar 1993

L135 ANSWER 26 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 285317 FROSTI
TI Finely comminuted liver sausage. Mode of action and optimization of emulsifiers, part 2.
AU Cheong S.H.; Fischer A.
SO Fleischwirtschaft, 1992, 72 (2), 142-9+159 (8pp.) (20 ref.)
DT Journal
LA German
SL German; English
AB The influence of monoglycerides of edible **fatty acids**, citric acid esters of monoglycerides, monoacetyl and diacetyl tartaric acid esters of monoglycerides and **sorbitan** tristearate on the stability of finely comminuted liver sausage was investigated. The effects of adding the **emulsifier** as a powder or hydrated dispersion, the amount added and the length of the monoglyceride **fatty acid** chains were also examined. Lipophilic **emulsifiers** extended the waiting time and reduced fat deposition. As degree of **esterification** increased, the fat deposit increased and jelly deposit decreased: waiting time was extended. Stearic acid monoglycerides had the best effect on stability and sensory quality.
SH PROTEINS
CT EMULSIFIERS; LIVER SAUSAGES; MEAT PRODUCTS; QUANTITY; SAUSAGES; STABILITY; TYPE
DED 6 May 1992

L135 ANSWER 27 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN
AN 152706 FROSTI
TI Processing of fats and oils.
AU Young F.V.K.; Poot C.; Biernoth E.; Krog N.; O'Neill L.A.; Davidson N.G.J.
SO The lipid handbook, edited by F.D. Gunstone. London: Chapman and Hall, 181-247 (257 ref. En). REFERENCE ONLY., 1986
DT Book Article
CT ADDITIVES; APPLICATIONS; BUTTER; CATALYSTS; CITRIC ACID; COLOUR; COLOUR COMPOUNDS; COMPOSITION; COMPOUNDS; COMPUTERS; CONDITIONING; CONTINUOUS; CONTINUOUS EXTRACTION; CONTROL; DAILY INTAKE; DAIRY PRODUCTS; DEGRADATION; DETERIORATION; DIACETYL TARTARIC ACID ESTERS; EMULSIFIERS; ENZYMES; EQUATIONS; ESTERIFICATION; ESTERS; EXTRACTION; EXTRACTION EQUIPMENT; EXTRACTION SYSTEMS; FATS; FATTY ACID ESTERS; FRACTIONATION; FRUITS; GUMS; H L B VALUE; HANDLING; HEXANE; HYDROGENATION; HYDROLYSIS; INTAKE; INTERESTERIFICATION; LACTIC ACID; LECITHIN; LEGISLATION; MARGARINE; MODIFICATION; MONOGLYCERIDE ESTERS; MONOGLYCERIDES; NEUTRALIZATION; NEW PRODUCTS; ODOUR; ODOUR COMPOUNDS; OILS; OILSEED OILS; OILSEEDS; PACKAGING; PALM FRUITS; PALM OILS; POLYGLYCEROL ESTERS; PRE; PREPROCESSING; PRESSING; PROCESS CONTROL; PROCESSING; PRODUCTION; PROPERTIES; PROPYLENE GLYCOL; PURIFICATION; PURIFICATION EQUIPMENT; PURIFICATION SYSTEMS; RAW MATERIALS; RECOMMENDED; RENDERING; REVIEW; SOLVENTS; SORBITAN ESTERS; SOYA OIL; SPOILAGE; STANDARDS;

STEAROYL LACTYLATES; STORAGE; SUCCINIC ACID; SUCROSE ESTERS; SURFACTANTS;
SYSTEMS; WATER; WAXES; WINTERIZATION

DED 7 Sep 1987

L135 ANSWER 28 OF 28 FROSTI COPYRIGHT 2004 LFRA on STN

AN 93396 FROSTI

TI **Emulsifiers.**

AU Food and Agriculture Organisation.

SO FAO Food and Nutrition paper, No. 4, Specifications for identity of
purity, thickening agents, anticaking agents, antimicrobials,
antioxidants, emulsifiers, 243-323 . . , 1978

DT Book Article

LA English

CT ACETIC ACID; AMMONIUM PHOSPHATIDATE; CALCIUM STEAROYL LACTYLATE; CHOLIC
ACID; CITRIC ACID; DESOXYCHOLIC ACID; DETERMINATION; DIACETYL TARTARIC
ACID ESTERS; DIGLYCERIDES; DIOCTYL SODIUM SULPHOSUCCINATE;
EMULSIFIERS; **ESTERIFIED;** ESTERS; FAO; **FATTY**
ACID ESTERS; GLYCERYL ESTERS; INTERESTERIFIED; LACTIC ACID;
LECITHIN; MONOGLYCERIDES; PHOSPHATIDATE; **POLYGLYCEROL** ESTERS;
POLYOXYETHYLENE 40 STEARATE; POLYOXYETHYLENE 8 STEARATE; POLYOXYETHYLENE
SORBITAN MONOLAURATE; POLYOXYETHYLENE **SORBITAN**
MONOOLEATE; POLYOXYETHYLENE **SORBITAN** MONOPALMITATE;
POLYOXYETHYLENE **SORBITAN** MONOSTEARATE; POLYOXYETHYLENE
SORBITAN TRISTEARATE; POLYOXYETHYLENE STEARATE; POLYSORBATES;
PROPYLENE GLYCOL; PURITY; RECOMMENDED; RICINOLEIC ACID; SODIUM STEAROYL
LACTYLATE; **SORBITAN** MONOPALMITATE; **SORBITAN**
MONOSTEARATE; **SORBITAN** TRISTEARATE; STEARYL CITRATE;
SUCROGLYCERIDE; SUGAR ESTERS; TYPE

DED 16 Jun 1982

=>