T149

Часть 9. Анализ алгоритмов.

Задание 9.2

1. Дан алгоритм:

```
Алгоритм Secret(A) // Входные данные: массив вещественных чисел A [0...n-1] M \leftarrow A[0] for i \in [0...n-1] do for j \in [i...n-1] do S \leftarrow 0 for k \in [i...j] do S \leftarrow S + A[k] if S > M M \leftarrow S return M
```

- а) Алгоритм находит максимально возможную сумму элементов подмножеств из множества А и возвращает это число.
- б) Основная операция сложение

B)
$$C(n)=\sum_{i=0}^{n-1}\sum_{j=i}^{n-1}\left(j-i+1
ight)=\sum_{i=0}^{n-1}rac{(n-i+1)(n-i)}{2}=rac{n(n+1)(n+2)}{6}$$

- г) Эффективность $O(n^3)$
- д) Существует алгоритм Кадане, который выполняет ту же операцию с эффективностью O(n)

```
Функция Кадане(А):
1
         Вход: массив А[0..n-1] вещественных чисел
 2
         Выход: максимальная сумма непрерывного подмассива
 3
4
         max_current ← A[0] // текущая максимальная сумма
5
         \max_{global} \leftarrow A[0] // глобальная максимальная сумма
6
7
         Для і от 1 до n-1 выполнить:
8
9
             // Выбираем максимум между текущим элементом и суммой предыдущих
             max_current ← maκcumym(A[i], max_current + A[i])
10
11
             // Обновляем глобальный максимум при необходимости
12
             Eсли max_current > max_global:
13
14
                 max_global ← max_current
15
         Вернуть max_global
16
```

Задание 9.4

1. Рекурсивный алгоритм вычисления (2ⁿ)

а) Разработка алгоритма:

Рекурсивный алгоритм на основе формулы ($2^n = 2^{n-1} + 2^{n-1}$):

```
Aлгоритм PowerOfTwo(n)

Входные данные: целое неотрицательное число п

Выходные данные: значение 2^n

если n == 0

вернуть 1

иначе

вернуть PowerOfTwo(n-1) + PowerOfTwo(n-1)
```

б) Рекуррентное уравнение:

Основная операция — сложение.

Количество операций (C(n)):

$$C(n)=2\cdot C(n-1)+1$$
 при $C(0)=0$

Решение методом обратной подстановки:

$$C(n)=2^n-1\in\Theta(2^n)$$

в) Дерево рекурсивных вызовов:

Каждый вызов с аргументом (n) порождает 2 вызова с (n-1).

• Общее количество вызовов: $(2^{n+1}-1)$ (экспоненциальный рост).

г) Оценка алгоритма:

Алгоритм крайне неэффективен из-за экспоненциального времени работы. Лучше использовать итеративный метод (умножение) или возведение в степень через квадраты $(O(\log n))$.

2. Aлгоритм Min1

а) Что вычисляет:

Находит минимальный элемент в массиве (А).

б) Основная операция:

Сравнение элементов $(m \le A[n-1])$.

в) Рекуррентное уравнение:

$$C(n)=C(n-1)+1$$
 при $C(1)=0$

Решение:

$$C(n) = n - 1 \in \Theta(n)$$

3. **Алгоритм** Min2

а) Рекуррентное уравнение:

Основная операция — сравнение $(a \le b)$.

Для массива длины $(n=2^k)$:

$$C(n) = 2 \cdot C(n/2) + 1$$
 при $C(1) = 0$

Решение:

$$C(n) = n - 1 \in \Theta(n)$$

(Аналогично линейному проходу, но с дополнительными накладными расходами на рекурсию.)

Задание 9.6

Определение класса эффективности по времени выполнения:

Размер данных ((n))	Время выполнения (ms)
1000	12
2000	15
3000	18
4000	22
5000	25
6000	27
7000	29
8000	30

Анализ:

- Время растет примерно линейно с увеличением (n).
- Отношение $(\frac{T(n)}{n})$ стремится к константе (примерно (0.00375) ms/элемент).

Вывод:

Алгоритм имеет **линейную сложность** (O(n)).