'Circlize' Package:: CHEAT SHEET

R Studio

Intro

Welcome to the 'circlize' library!

Circlize is a useful data visualization tool when we have huge amounts of information.

First, it elegantly represents information with long axes or large amounts of categories.

Second, it intuitively shows data with multiple tracks focusing on the same object.

Third, it easily demonstrates relations between elements.

How might we have encountered a circlize plot?

Circlize has many practical applications. It can not only reflect the interaction relationship between the two variables, but also reflect the intensity of interaction.

For example, it can be used to plot trade flows between countries, flights between cities, and to visualize cellular and genetic data, etc.

Let's get started

CODE

install.packages('circlize')
library(circlize)

A quick glance

Function

Functions to draw plots

add points to a plotting region circos.points circos.lines add lines to a plotting region circos.boxplot draw boxplots circos.text draw text in a cell add points to the plotting circos.trackPoints regions in a same track add points to the plotting circos.heatmap regions in a same track draw segments through circos.segments pairwise of points circos.barplot draw barplots

Functions to arrange circular layout

draw x-axis

egions for a
ack
with two
ots
circular layo

Arguments

circos.axis

X	data points on x-axis
у	data points on y-axis
pch	point/line type
col	point/line color
cex	point size
bg	background of points
lwd	line width
lty	line style
labels	labels for each point
track.index	index for the track which is going to be updated.
track.height	height of the track

More Circlize Plots

In this part, I've created a brief and simple dataset. I hope to show the steps and magic of 'circlize' through the example.

Creat a dataset

CODE

```
n <- 1000
df <- data.frame(
   sectors = sample(letters[1:8], n,
replace = TRUE),
   x = rnorm(n), y = runif(n)
)</pre>
```

Initialize the circular layout(omit)

Add scatterplots

CODE

col <- rep(c("#e41a1c", "#4daf4a"), 4)
circos.trackPoints(df\$sectors, df\$x,
df\$y, col = col, pch = 16, cex = 0.5)
circos.text(-1, 0.5, "text",
sector.index = "a", track.index = 1)</pre>

Add histograms

CODE

```
bgcol <- rep(c("#fb8072", "#80b1d3"),
4)
circos.trackHist(df$sectors, df$x,
bin.size = 0.2, bg.col = bgcol,
col = NA)</pre>
```

Add line charts

CODE

CODE

CODE

```
circos.track(df$sectors, x = df$x, y =
df$y,panel.fun = function(x, y) {ind =
sample(length(x), 12)
x2 = x[ind] y2 = y[ind] od = order(x2)
circos.lines(x2[od], y2[od], col =
"#ff7f00")
})
```

Add heatmaps

circos.track(ylim = c(0, 1), panel.fun = function(x, y) {xlim = CELL_META\$xlim ylim = CELL_META\$ylim breaks = seq(xlim[1], xlim[2], by = 0.1) n_breaks = length(breaks) circos.rect(breaks[-n_breaks], rep(ylim[1], n_breaks - 1),breaks[1], rep(ylim[2], n_breaks1),col=rainbow(n_breaks),border= NA) })

Add links or ribbons

