МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МАИ)

Отчёт о выполнении практического задания по курсу «Метрология, Стандартизация, Сертификация»

Оценка влияния погрешности входного сопротивления на вольтметр в сценарии ограничения напряжения между 3 и 10 В

Отчёт и материалы:	студент студент
	Пример Автора Отчёта «» 2017 г.
	Принимал работу: Ст.преп. каф. 303
	Капырин Н.И. «» 2017 г.

Содержание

1	Задание	2
2	Описание задачи	2
3	Математические модели	3
	3.1 Модель вольтметра	. 3
	3.2 Модель погрешности входного сопротивления	. 3
	3.3 Модель погрешности	. 3

1 Задание

Оценить влияние погрешности входного сопротивления на вольтметр в сценарии ограничения напряжения между 3 и 10 В.

2 Описание задачи

Вольтметр — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии. Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

При изготовлении вольтметра, входное сопротивление подбирается из условия соблюдения класса точности прибора. Здесь используется линейная модель погрешности изготовления, учитывающая масштабный коэффициент и смещение.

При воздействии погрешности входного сопротивления на вольтметр возникает погрешности измерения, охарактеризованная исходя из математических моделей, приведённых в следующем разделе.

3 Математические модели

3.1 Модель вольтметра

Модель вольтметра задана следующим уравнением (зависимость индикации вольтметра U_out от входного напряжения U_in, масштаба шкалы k_ind и погрешности связанной с входным сопротивлением R_inp):

$$U_{out} = \frac{U_{inp}k_{ind}}{R_{inp}} \tag{1}$$

3.2 Модель погрешности входного сопротивления

Модель погрешности входного сопротивления задана следующим уравнением (зависимость входного сопротивления от теоретического значения R, масштабного коэффициента а и коэффициента смещения b):

$$R_{inp} = Ra + b (2)$$

При взаимодействии, модели явлений, описанных в предыдущих разделах, приводят к модели погрешностей, приведенной в следующем разделе.

3.3 Модель погрешности

Модель погрешности измерений, полученная путём взятия градиента от модели уравнений, приведённых в прошлом разделе.

$$\Delta_{Uout} = -\frac{\Delta_R U_{inp} a k_{ind}}{(Ra+b)^2} - \frac{\Delta_a R U_{inp} k_{ind}}{(Ra+b)^2} - \frac{\Delta_b U_{inp} k_{ind}}{(Ra+b)^2}$$
(3)

