1 Variables

2 root

	var	symbol	documentation	type	units	eqs
8	$F_{N,A}$	F_N_A	fudamental incidence matrix	network		
5	t	t	time	frame	s	
6	t^o	to	starting time	frame	s	4
7	t^e	te	end time	frame	s	5
1	#	value	numerical value	constant		
2	1	one	numerical value one	constant		1
3	0	zero	numerical value zero	constant		2
4	0.5	onehalf	numerical value one half	constant		3

3 physical

	var	symbol	documentation	type	units	eqs
9	$P_{N,A}$	P_N_A	projection from node to arc for arc properties	projection		
32	$P_{NS,AS}$	P_NS_AS	projection node species to arc species	projection		
33	$P_{K,NK}$	P_K_NK	projection of conversion to node conversion	projection		
34	$P_{S,NS}$	P_S_NS	projection species to node species	projection		
35	$P_{N,NK}$	P_N_NK	projection node to node conversion	projection		
36	$P_{NS,KS}$	P_NS_KS	projection node species to conversion species	projection		
37	$P_{A,NS}$	P_A_NS	projection arc to node species for conductivity	projection		
65	$P_{NK,KS}$	P_NK_KS	projection node conversion to conversion species	projection		
162	$P_{N,NS}$	P_N_NS	projection of nodes onto the node species	projection		
10	r_{xN}	r_x	x-coordinate	frame	$\mid m \mid$	
11	r_{yN}	r_y	y-coordinate	frame	m	
12	r_{zN}	r_z	z coordinate	frame	$\mid m \mid$	
13	U_N	U	fundamental state – internal energy	state	$kg m^2 s^{-2}$	
14	S_N	S	fundamental state – entropy	state	$kg m^2 K^{-1} s^{-2}$	
15	V_N	V	fundamental state – volume	state	m^3	
16	n_{NS}	n	fundamental state – molar mass	state	mol	86
20	H_N	Н	enthalpy	state	$kg m^2 s^{-2}$	9 87
21	A_N	A	Helmholtz energy	state	$kg m^2 s^{-2}$	10
22	G_N	G	Gibbs free energy	state	kgm^2s^{-2}	11
23	C_N	charge	fundamental state – charge	state	As	
24	A^v	Avogadro	Avogadro number	constant	mol^{-1}	
165	Bo_N	Во	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	132
166	R_N	R	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	133

	var	symbol	documentation	type	units	eqs
17	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	6
18	T_N	Т	temperature	effort	K	7
19	μ_{NS}	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	8 136
27	Ue_N	Ue	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	14 95
28	v_{xN}	_x_	velocitiy in x-direction	secondaryState	ms^{-1}	15
29	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	16
30	v_{zN}	V_Z	velocity in z-direction	secondaryState	ms^{-1}	17

4 control

	var	symbol	documentation	type	units	eqs
136	x_N	х	state	state		111
137	xo_N	xo	initial state	state		109
129	$A_{N,D}$	A	dynamic matrix	constant	s^{-1}	
130	$B_{A,D}$	В	input matrix	constant	s^{-1}	
131	$C_{N,A}$	C	measurement matrix	constant		
132	D_A	D	diagonal event matrix (no dimensional problems)	constant		
133	$y^o{}_A$	setPoint	set point	constant		119
134	m_A	meas	measurements	constant		
135	e_A	е	control error	constant		108
139	$1_{N,D}$	I_N_D	space transformation D to N	constant		
138	\dot{x}_D	dxdt	differential state (ABCD) model	diffState	s^{-1}	110
141	\check{I}_N	Imeasured	measured current	algebraic	A	113
143	$\check{U}^e{}_N$	UeMeasured	measured electrical potential	algebraic	$kg m^2 A^{-1} s^{-3}$	115
144	$\check{\xi}$	addMeasured	measured additive fraction	algebraic		116
145	R_N	RComputed	measured resistance	algebraic	$kg m^2 A^{-2} s^{-3}$	117
146	S	store	quantities to be stored	algebraic		118
154	y_A	у	output equation	algebraic		126
171	switch	switch	switches at to	algebraic		138

5 reactions

	var	symbol	documentation	type	units	eqs
147	P_{NK}	P_NK	reactions per node	projection		
38	$K^o{}_K$	Ко	Arrhenius frequency factor	constant	$m^{-3} mol s^{-1}$	
62	$E^a{}_{NK}$	Ea	Arrhenius activation energy	constant	$kg m^2 mol^{-1} s^{-2}$	41
63	K_{NK}	K_NK	Arrhenius reaction 'constant'	constant	$m^{-3} mol s^{-1}$	42
155	B	Boltzmann	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	
157	R	GasConstant	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	127
158	$N_{K,KS}$	N_K_KS	stoichiometry	constant		
159	$N_{NK,KS}$	N_NK_KS	extended stoichiometrix matrix	constant		128
60	T_{NK}	T_NK	temperature of the reactive system	effort	K	39
151	$c_{NK,KS}$	С	concentration matrix reaction per node and species per reaction	secondaryState	$m^{-3} mol$	123
152	$c^o{}_{NK,KS}$	со	norming concentration	${\bf secondary State}$	$m^{-3} mol$	124
153	$x_{NK,KS}$	x	matrix of normed, dimensionless mole fractions	${\bf secondary State}$		125
160	ϕ_{NK}	phi	probability function for reactions	${\bf secondary State}$		129
163	$ ilde{n}_{NS}$	nProd	the species production term	${\bf secondary State}$	$mol s^{-1}$	130

6 material

	var	symbol	documentation	type	units	eqs
40	λ_S	Mm	species molecular mass	constant	$kg mol^{-1}$	
112	ξ	additive	fraction of additives	constant		88
42	C_{pN}	Ср	total heat capacity at constant pressure	property	$kg m^2 K^{-1} s^{-2}$	21
43	C_{VN}	Cv	total heat capacity at constant volume	property	$kg m^2 K^{-1} s^{-2}$	22
44	k_{xN}^q	kq_x	thermal conductivity in x-direction	property	$kg K^{-1} s^{-3}$	23
45	k_{yN}^q	kq_y	thermal conductivity in y-direction	property	$kg K^{-1} s^{-3}$	24
46	k_{zN}^q	kq_z	thermal conductivity in z-direction'	property	$kg K^{-1} s^{-3}$	25
47	$k^q{}_N$	kq	thermal conductivity	property	$kg K^{-1} s^{-3}$	26
48	k_{xN}^c	kc_x	convecitve mass conductivity in x-direction	property	$m^{-1} s$	27
49	k_{yN}^c	kc_y	convecitve mass conductivity in y-direction	property	$m^{-1} s$	28
50	k_{zN}^c	kc_z	convecitve mass conductivity in z-direction	property	$m^{-1} s$	29
51	$k^c{}_N$	kc	convective mass conductivity	property	$m^{-1} s$	30
52	k_{xNS}^d	kd_x	diffusional mass conductivity in x-direction	property	$kg^{-1} m^{-4} mol^2 s$	31
53	k_{yNS}^d	kd_y	diffusional mass conductivity in y-direction	property	$kg^{-1} m^{-4} mol^2 s$	32
54	k_{zNS}^d	kd_z	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	33
55	k^d_{NS}	kd	diffusional mass condctivity	property	$kg^{-1} m^{-4} mol^2 s$	34
56	h_{NS}	h	partial molar enthalpies	property	$kg m^2 mol^{-1} s^{-2}$	35
59	$ ho_N$	density	density	property	$kg m^{-3}$	38
115	$R^e{}_N$	elResist	electrical resistant	property	$kg m^2 A^{-2} s^{-3}$	91 92
116	$k^{e,\xi}{}_N$	elConductC	simple model for the electrical conductivity as a function of the additive	property	$kg^{-1} m^{-2} A^2 s^3$	93

7 macroscopic

	var	symbol	documentation	type	units	eqs
92	\hat{V}_A	fV	volumetric flow	transport	$m^3 s^{-1}$	67 140
93	$\hat{n}^d{}_{AS}$	fnd_AS	diffusional mass flow in a given stream	transport	$mol s^{-1}$	68
94	$\hat{n}^d{}_{NS}$	fnd	net diffusional mass flow	transport	$mol s^{-1}$	69
95	$\hat{H}^d{}_A$	fHd_A	enthalpy flow per diffusional mass stream	transport	$kg m^2 s^{-3}$	70
96	$\hat{H}^d{}_N$	fHd	net enthaply stream due to diffusion	transport	$kg m^2 s^{-3}$	71
97	d_A	d	flow direction of convectional flow	transport		72
102	$\hat{H}^c{}_A$	fHc_A	convective enthalpy flow for given stream	transport	kgm^2s^{-3}	77
103	$\hat{H}^c{}_N$	fHc	net convectional enthalpy stream	transport	kgm^2s^{-3}	78
104	\hat{w}_A	fw_A	sample work stream	transport	$kg m^2 s^{-3}$	79
105	\hat{w}_N	fw	net work stream	transport	kgm^2s^{-3}	80
106	\hat{q}_{xA}	fq_A_x	heat flow in x-direction for given stream	transport	kgm^2s^{-3}	81
107	\hat{q}_N	fq	net heat flow	transport	kgm^2s^{-3}	82
71	A_{yzN}	Ayz	cross sectional area yz	geometry	m^2	48
72	A_{xzN}	Axz	cross sectional area xz	geometry	m^2	49
73	A_{xyN}	Axy	cross sectional area xy	geometry	m^2	50
70	$F_{NS,AS}$	F_NS_AS	species related incidence matrix	network		
90	$D_{N,A}$	D	difference operator	${\it difference Operator}$		
91	$D_{NS,AS}$	D_NS_AS	difference operator for species topology	${\it difference Operator}$		
109	$H^o{}_N$	Но	initial enthalpy	state	kgm^2s^{-2}	84
110	$n^o{}_{NS}$	no	initial species	state	mol	85
127	1_S	one_S	a vector of ones with the length of the ordinal number of S	constant		
57	m_N	m	total mass	secondaryState	kg	36

	var	symbol	documentation	type	units	eqs
66	c_{NS}	С	molar composition	secondaryState	$m^{-3} mol$	44
98	c_{AS}	c_AS	concentration in convectional flow	secondaryState	$m^{-3} mol$	73
99	$\hat{n}^c{}_{AS}$	fnc_AS	molar convetional mass flow in the given stream	secondaryState	$\mod s^{-1}$	74
100	$\hat{n}^c{}_{NS}$	fnc	net molar convectional mass flow	secondaryState	$\mod s^{-1}$	75
126	ϕ	intensities	collected intensities	secondaryState		106
128	$n^t{}_N$	nTotal	total number of moles	secondaryState	mol	107
168	nt_N	nt	total number of species in a node	secondaryState	mol	134
169	xi_{NS}	xi	mole fraction	secondaryState		135
170	$nProd_{NS}$	nProd	production term	conversion	$\mod s^{-1}$	137
101	\dot{n}_{NS}	dndt	differential species balance	diffState	$\mod s^{-1}$	76
108	\dot{H}_N	dHdt	differential enthalpy balance	diffState	$kg m^2 s^{-3}$	83
118	$\dot{U}^e{}_N$	dUedt	Kirkhoff first law	diffState	$kg m^2 A^{-1} s^{-3}$	96 97 98
113	I_N	i	electrical current definition	internalTransport	A	89

8 solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

9 fluid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

10 liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

11 gas

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

12 control-control

var symbol documentation type units eqs			symbol	documentation	type	units	eqs
---	--	--	--------	---------------	------	-------	-----

13 gas-liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

14 gas-gas

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

15 liquid-liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

16 gas-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

17 solid-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

18 liquid-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

19 material-material

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

20 reactions—reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

21 control-reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

22 reactions-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

23 control-material

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

24 material-control

	var	symbol	documentation	type	units	eqs
124	$\mapsto \xi$	_additive	link variable additive to interface material $\gg > { m control}$	get		104

${\bf 25} \quad {\bf control-macroscopic}$

	var	symbol	documentation	type	units	eqs
172	$_switch$	_switch	switches at to	get		139

26 macroscopic-control

	var	symbol	documentation	type	units	eqs
119	I_N	_i	link variable i to interface macroscopic »> control	get	A	99
125	T_N	_T	link variable T to interface macroscopic »> control	get	K	105
142	Ue_N	_Ue	link variable Ue to interface macroscopic »> control	get	$kg m^2 A^{-1} s^{-3}$	114

27 reactions-material

	var	symbol	documentation	type	units	eqs	
--	-----	--------	---------------	------	-------	-----	--

28 material-reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

29 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
164	$ ilde{n}_{NS}$	_nProd	link variable nProd to interface reactions \gg macroscopic	get	$mol s^{-1}$	131

macroscopic-reactions

	var	symbol	documentation	type	units	eqs
67	c_{NS}	_c	link variable c to interface macroscopic $\gg >$ reactions	get	$m^{-3} mol$	45

material-macroscopic

	var	symbol	documentation	type	units	eqs
41	λ_S	_Mm	link variable Mm to interface material »> macroscopic	get	$kgmol^{-1}$	20
74	$ ho_N$	_density	link variable density to interface material $\gg >$ macroscopic	get	$kg m^{-3}$	51
75	hNS	_h	link variable h to interface material »> macroscopic	get	$kg m^2 mol^{-1} s^{-2}$	52
76	k_{xN}^q	_kq_x	$\begin{array}{ c c c c c } \hline link \ variable \ kq \ x \ to \ interface \ material \ >> \ macroscopic \\ \hline \end{array}$	get	$kg K^{-1} s^{-3}$	53
77	$C^{U}N$	_Cv	$\begin{tabular}{ll} link variable Cv to interface material $*>$ macroscopic \\ \end{tabular}$	get	$kg m^2 K^{-1} s^{-2}$	54
78	k_{yN}^q	_kq_y	link variable kq y to interface material »> macroscopic	get	$kg K^{-1} s^{-3}$	55
79	k_{zN}^q	_kq_z	link variable kq z to interface material »> macroscopic	get	$kg K^{-1} s^{-3}$	56
80	$k^q{}_N$	_kq	$\label{eq:link_variable_kq} \mbox{link variable kq to interface material $ > $ macroscopic $ }$	get	$kg K^{-1} s^{-3}$	57
81	k_{xN}^c	_kc_x	link variable kc x to interface material »> macroscopic	get	$m^{-1} s$	58
82	Cp_N	_Cp	$\begin{tabular}{ll} link variable Cp to interface material $> $ macroscopic \\ \end{tabular}$	get	$kg m^2 K^{-1} s^{-2}$	59
83	k_{yN}^c	_kc_y	link variable kc y to interface material »> macroscopic	get	$m^{-1} s$	60
84	k_{zN}^c	_kc_z	link variable kc z to interface material »> macroscopic	get	$m^{-1} s$	61
85	$k^c{}_N$	_kc	link variable kc to interface material »> macroscopic	get	$m^{-1} s$	62
86	k_{xNS}^d	_kd_x	$\begin{array}{ c c c c c c } \hline link \ variable \ kd \ x \ to \ interface \ material \ >> \ macroscopic \\ \hline \end{array}$	get	$kg^{-1} m^{-4} mol^2 s$	63
87	k_{yNS}^d	_kd_y	link variable kd y to interface material »> macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	64
88	k_{zNS}^d	_kd_z	link variable kd z to interface material »> macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	65

	var	symbol	documentation	type	units	eqs
89	k^d_{NS}	_kd	link variable kd to interface material \gg macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	66
117	$R^e{}_N$	_elConductC	link variable elConductC to interface material »> macroscopic	get	$kg^{-1} m^{-2} A^2 s^3$	94
140	ξ	_additive	$\begin{array}{c} \mbox{link variable additive to interface material } > \mbox{macroscopic} \\ \mbox{scopic} \end{array}$	get		112

32 macroscopic-material

	var	symbol	documentation	type	units	eqs
58	m_N	_m	link variable m to interface macroscopic $\gg >$ material	get	kg	37
114	I_N	_i	link variable i to interface macroscopic »> material	get	A	90

33 Equations

34 Generic

no	equation	documentation	layer
6	$p_N := \left(-\frac{\partial U_N}{\partial V_N} \right)$	thermodynamic pressure	physical
7	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
8	$\mu_{NS} := rac{\partial U_N}{\partial n_{NS}}$	chemical potential	physical
9	$H_N := U_N - p_N \cdot V_N$	enthalpy	physical
10	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	physical
11	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	physical
14	$Ue_N := \left(C_N\right)^{-1} . U_N$	electrical potential – voltage	physical
15	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocitiy in x-direction	physical
16	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y direction	physical
17	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	physical
21	$C_{pN} := \frac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	material
22	$C_{VN} := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	material
23	$k_{xN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{xN}$	thermal conductivity in x-direction	material
24	$k_{yN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{yN}$	thermal conductivity in y-direction	material
25	$k_{zN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{zN}$	thermal conductivity in z-direction'	material
26	$k^{q}{}_{N} := \operatorname{Stack}\left(k^{q}_{xN}, k^{q}_{yN}, k^{q}_{zN}\right)$	thermal conductivity	material

no	equation	documentation	layer
27	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	convective mass conductivity in x-direction	material
28	$k_{yN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN}$	convecitve mass conductivity in y-direction	material
29	$k_{zN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN}$	convecitve mass conductivity in z-direction	material
30	$k^c{}_N := \operatorname{Stack}\left(k^c_{xN}, k^c_{yN}, k^c_{zN}\right)$	convective mass conductivity	material
31	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in x-direction	material
32	$k_{yNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{yN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in y- direction	material
33	$k_{zNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{zN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in z- direction	material
34	$k^{d}_{NS} := \operatorname{Stack}\left(k^{d}_{xNS}, k^{d}_{yNS}, k^{d}_{zNS}\right)$	diffusional mass condctivity	material
35	$h_{NS} := H_N \odot \left(n_{NS} \right)^{-1}$	partial molar enthalpies	material
36	$m_N := \lambda_S \overset{S \in NS}{\star} n_{NS}$	total mass	macroscopic
38	$\rho_N := m_N \cdot (V_N)^{-1}$	density	material
39	$T_{NK} := P_{N,NK} \stackrel{N}{\star} T_N$	temperature of the reactive system	reactions
42	$K_{NK} := K^o{}_K \odot exp((-E^a{}_{NK}) \cdot (R \cdot T_{NK})^{-1})$	Arrhenius reaction 'constant'	reactions
44	$c_{NS} := (V_N)^{-1} \odot n_{NS}$	molar composition	macroscopic
48	$A_{yzN} := r_{yN} \cdot r_{zN}$	cross sectional area yz	macroscopic

no	equation	documentation	layer
49	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional area xz	macroscopic
50	$A_{xyN} := r_{xN} \cdot r_{yN}$	cross sectional area xy	macroscopic
67	$\hat{V}_A := \left(\rho_N\right)^{-1} \cdot k_{xN}^c \cdot A_{yzN} \cdot D_{N,A} \stackrel{N}{\star} p_N$	volumetric flow	macroscopic
68	$\hat{n}^d{}_{AS} := A_{yzN} \odot \left(-k^d_{xNS} \right) . D_{NS,AS} \overset{NS}{\star} \mu_{NS}$	diffusional mass flow in a given stream	macroscopic
69	$\hat{n}^d{}_{NS} := F_{NS,AS} \stackrel{AS}{\star} \hat{n}^d{}_{AS}$	net diffusional mass flow	macroscopic
70	$\hat{H}^d{}_A := \left(F_{NS,AS} \overset{NS}{\star}{}_{hNS}\right) \overset{S \in AS}{\star} \hat{n}^d{}_{AS}$	enthalpy flow per diffusional mass stream	macroscopic
71	$\hat{H}^d{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^d{}_A$	net enthaply stream due to diffusion	macroscopic
72	$d_A := \operatorname{sign}\left(F_{N,A} \stackrel{N}{\star} p_N\right)$	flow direction of convectional flow	macroscopic
73	$c_{AS} := (0.5 \cdot (F_{NS,AS} - d_A \odot F_{NS,AS})) \overset{NS}{\star} c_{NS}$	concentration in convectional flow	macroscopic
74	$\hat{n}^c{}_{AS} := \hat{V}_A \odot c_{AS}$	molar convetional mass flow in the given stream	macroscopic
75	$\hat{n}^c{}_{NS} := F_{NS,AS} \stackrel{AS}{\star} \hat{n}^c{}_{AS}$	net molar convectional mass flow	macroscopic
76	$\dot{n}_{NS} := \hat{n}^c{}_{NS} + \hat{n}^d{}_{NS} + \tilde{n}_{NS}$	differential species balance	macroscopic
77	$\hat{H}^{c}{}_{A} := \left(F_{NS,AS} \overset{NS}{\star}{}_{hNS} \right) \overset{S \in AS}{\star} \hat{n}^{c}{}_{AS}$	convective enthalpy flow for given stream	macroscopic
78	$\hat{H}^c{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^c{}_A$	net convectional enthalpy stream	macroscopic
80	$\hat{w}_N := F_{N,A} \overset{A}{\star} \hat{w}_A$	net work stream	macroscopic
81	$\hat{q}_{xA} := A_{yzN} \cdot k_{xN}^q \cdot D_{N,A} \stackrel{N}{\star} T_N$	heat flow in x-direction for given stream	macroscopic
82	$\hat{q}_N := F_{N,A} \stackrel{A}{\star} \hat{q}_{xA}$	net heat flow	macroscopic

no	equation	documentation	layer
83	$\dot{H}_N := \hat{H}^c{}_N + \hat{H}^d{}_N + \hat{q}_N + \hat{w}_N$	differential enthalpy balance	macroscopic
86	$n_{NS} := \int_{t^o}^{t^e} \dot{n}_{NS} \ dt$	fundamental state – molar mass	macroscopic
87	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt$	enthalpy	macroscopic
89	$I_N := \frac{d C_N}{d t}$	electrical current definition	macroscopic
93	$k^{e,\xi}{}_N := (R^e{}_N)^{-1} \cdot \xi$	simple model for the electrical conductivity as a function of the additive	material
95	$Ue_N := \left(R^e{}_N\right)^{-1} . I_N$	electrical potential – voltage	macroscopic
96	$\dot{U}^e{}_N := 1 . Ue_N$	Kirkhoff first law	macroscopic
97	$\dot{U}^e{}_N := Root\left(Ue_N\right)$	Kirkhoff first law	macroscopic
106	$\phi := \operatorname{MixedStack}(p_N, T_N, \mu_{NS}, c_{NS}, Ue_N)$	collected intensities	macroscopic
107	$n^t{}_N := 1_S \stackrel{S \in NS}{\star} n_{NS}$	total number of moles	macroscopic
108	$e_A := m_A - y^o{}_A$	control error	control
110	$\dot{x}_D := A_{N,D} \overset{N}{\star} x_N + B_{A,D} \overset{A}{\star} e_A$	differential state (ABCD) model	control
111	$x_N := \int_{t^o}^{t^e} 1_{N,D} \stackrel{D}{\star} \dot{x}_D \ dt$	state	control
113	$\check{I}_N := I_N$	measured current	control

no	equation	documentation	layer
115	$\check{U}^e{}_N := Ue_N$	measured electrical potential	control
116	$ \xi := \mapsto \xi$	measured additive fraction	control
117	$R_N := \left(\check{I}_N ight)^{-1} . \check{U}^e{}_N$	measured resistance	control
118	$S := \operatorname{MixedStack}\left(\check{I}_N, \check{U}^e{}_N, R_N, \check{\xi} ight)$	quantities to be stored	control
123	$c_{NK,KS} := P_{NK} \cdot \left(P_{NS,KS} \overset{NS}{\star} c_{NS} \right)$	var doc :	reactions
125	$x_{NK,KS} := (c^o_{NK,KS})^{-1} \cdot c_{NK,KS}$	matrix of normed, dimensionless mole fractions	reactions
126	$y_A := C_{N,A} \stackrel{N}{\star} x_N + D_A \cdot e_A$	output equation	control
127	$R:=A^v \cdot B$	gas constant	reactions
128	$N_{NK,KS} := P_{K,NK} \stackrel{K}{\star} N_{K,KS}$	extended stoichiometrix matrix	reactions
129	$\phi_{NK} := \prod_{KS} x_{NK,KS}^{N_{NK,KS}}$	probability function for reactions	reactions
130	$\tilde{n}_{NS} := V_N \overset{N}{\star} \left(P_{N,NK} \overset{NK}{\star} \left((K_{NK} \cdot \phi_{NK}) \cdot \left(P_{NS,KS} \overset{KS}{\star} N_{NK,KS} \right) \right) \right)$	the species production term	reactions
132	$Bo_N := \operatorname{Instantiate}(S_N, \#)$	Boltzmann constant	physical

no	equation	documentation	layer
133	$R_N := A^v \cdot Bo_N$	gas constant	physical
134	$nt_N := 1_S \overset{S \in NS}{\star} n_{NS}$	total number of species in a node	macroscopic
135	$xi_{NS} := (nt_N)^{-1} \odot n_{NS}$	mole fraction	macroscopic
136	$\mu_{NS} := (R_N . T_N) \odot ln(xi_{NS})$	chemical potential	macroscopic
137	$nProd_{NS} := \tilde{n}_{NS}$	production term	macroscopic
138	$switch := 0.5 . (1 + sign(t^o))$	switches at to	control
139	switch := switch	switches at to	control -> macro- scopic

35 Instantiate

no	equation	documentation	layer
1	1 := Instantiate(#, #)	numerical value 1	root
2	0 := Instantiate(#, #)	numerical value zero	root
3	0.5 := Instantiate(#, #)	numerical value one half	root
4	$t^o := \operatorname{Instantiate}(t, \#)$	starting time	root
5	$t^e := \operatorname{Instantiate}(t, \#)$	end time	root
41	$E^{a}_{NK} := \text{Instantiate}(R.T_{NK}, \#)$	Arrhenius activation energy	reactions
79	$\hat{w}_A := \text{Instantiate}(\hat{H}^c{}_A, \#)$	sample work stream	macroscopic
84	$H^o{}_N := \operatorname{Instantiate}(H_N, \#)$	initial enthalpy	macroscopic
85	$n^o_{NS} := \text{Instantiate}(n_{NS}, \#)$	initial species	macroscopic
88	$\xi := \operatorname{Instantiate}(\xi, \#)$	fraction of additives	material
91	$R^e_N := (I_N)^{-1} \cdot Ue_N$	electrical resistant	material
92	$R^e_N := \text{Instantiate}(R^e_N, \#)$	electrical resistant	material
98	$\dot{U}^e{}_N := \operatorname{Instantiate}(\dot{U}^e{}_N, 0)$	Kirkhoff first law	macroscopic
109	$xo_N := \operatorname{Instantiate}(x_N, \#)$	initial state	control
119	$y^o{}_A := \text{Instantiate}(y^o{}_A, \#)$	set point	control

no	equation	documentation	layer
124	$c^o{}_{NK,KS} := \text{Instantiate}(c_{NK,KS}, \#)$	norming concentration	reactions

36 Instantiation Equation

no	equation	documentation	layer
140	$\hat{V}_A := \text{Instantiate}(\hat{V}_A, \#)$	instantiation equation	macroscopic

37 Interface Link Equation

no	equation	documentation	layer
20	$\lambda_S := \lambda_S$	interface equation	material -> macro- scopic
37	$m_N := m_N$	interface equation	macroscopic -> material
45	$c_{NS} := c_{NS}$	interface equation	macroscopic -> re- actions
51	$ ho_N := ho_N$	interface equation	material -> macro- scopic
52	$h_{NS} := h_{NS}$	interface equation	material -> macro- scopic
53	$k_{xN}^q := k_{xN}^q$	interface equation	material -> macro- scopic
54	$_{C}v_{N}:=C_{VN}$	interface equation	material -> macro- scopic
55	$k_{yN}^q := k_{yN}^q$	interface equation	material -> macro- scopic
56	$k_{zN}^q := k_{zN}^q$	interface equation	material -> macro- scopic
57	$k^q{}_N := k^q{}_N$	interface equation	material -> macro- scopic
58	$k_{xN}^c := k_{xN}^c$	interface equation	material -> macro- scopic

no	equation	documentation	layer
59	$_{C}p_{N}:=C_{pN}$	interface equation	material -> macro- scopic
60	$k_{yN}^c := k_{yN}^c$	interface equation	material -> macro- scopic
61	$k_{zN}^c := k_{zN}^c$	interface equation	material -> macro- scopic
62	$k^c{}_N := k^c{}_N$	interface equation	material -> macro- scopic
	$k_{xNS}^d := k_{xNS}^d$	interface equation	material -> macro- scopic
64	$k_{yNS}^d := k_{yNS}^d$	interface equation	material -> macro- scopic
65	$k_{zNS}^d := k_{zNS}^d$	interface equation	material -> macro- scopic
66	$k^d{}_{NS} := k^d{}_{NS}$	interface equation	material -> macro- scopic
90	$I_N:=I_N$	interface equation	macroscopic -> material
94	$R^e{}_N := k^{e,\xi}{}_N$	interface equation	material -> macro- scopic
99	$I_N:=I_N$	interface equation	macroscopic -> control
104	$\mapsto \xi := \xi$	interface equation	material -> control

no	equation	documentation	layer
105	$T_N := T_N$	interface equation	macroscopic -> control
112	$\xi:=\xi$	interface equation	material -> macro- scopic
114	$Ue_N := Ue_N$	interface equation	macroscopic -> control
131	$ ilde{n}_{NS} := ilde{n}_{NS}$	interface equation	reactions -> macroscopic