CS521 Midterm Cheat-Sheet

Insertion Sort:

Each element is pushed as far as possible to the left (sorted) part of the array. Running time: $O(n^2)$ worst-case (when sorted in reverse), $\Omega(n)$ best-case (when already sorted). Sorts **in-place**, space complexity O(n).

Asymptotic Notations:

Big-O notation:

 $f(n) = O(g(n)) \Leftrightarrow \exists c, n_0 > 0 \forall n \ge n_0$: $0 \le f(n) \le c \cdot g(n)$

Or: $\lim_{n\to\infty} \overline{g(n)/f(n)} > 0$

Small-o notation:

 $f(n) = o(g(n)) \Leftrightarrow \exists c, n_0 > 0 \forall n \ge n_0$: $o \leq f(n) < c \cdot g(n)$

Or: $\lim_{n\to\infty} g(n)/f(n) = \infty$

Big- Ω notation:

 $f(n) = \Omega(g(n)) \Leftrightarrow \exists c, n_0 > 0 \forall n \ge n_0$:

 $0 \le c \cdot g(n) \le f(n)$

Or: $\lim_{n\to\infty} g(n)/f(n) = c \ge 0$ (non-negative constant) Note that $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$

Small- ω notation:

 $f(n) = \omega(g(n)) \Leftrightarrow \exists c, n_0 > 0 \forall n \ge n_0$:

 $0 \le c \cdot g(n) < f(n)$

Or: $\lim_{n\to\infty} g(n)/f(n) = 0$

Note that $f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$

Big-O notation:

 $f(n) = \Theta(g(n)) \Leftrightarrow \exists c_1, c_2, n_0 \forall n \geq n_0$: $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$

Or: $\lim_{n\to\infty} g(n)/f(n) = c$ (some constant)

Notes:

 $f(n) = \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \cap \Omega(g(n))$

 $f(n) = O(g(n)) \land g(n) = O(f(n)) \Rightarrow f(n) = O(g(n))$

 $f(n) = \Omega(g(n)) \land g(n) = \Omega(f(n)) \Rightarrow f(n) = \Theta(g(n))$

Divide and Conquer - recurrences:

Break a problem into sub-problems, solve sub problems and merge solutions.

Hanoi-tower: $T(n) = 2T(n-1) + 1 = O(2^n)$

Merge-sort:

Divide the sequence into two n/2 sequences, apply the algorithm recursively and merge solutions.

 $T(n) = 2T(n/2) + O(n) = O(n \lg n)$ divide merge

Solving Recurrences:

Substitution method:

T(n) = aT(n/b) + f(n) =

 $a[aT(n/b^2) + f(n/b)] + f(n) =$

 $a^2T(n/b^2) + af(n/b) + f(n) = \cdots$

 $\underbrace{a^{\lg_b n}} \cdot T(n/b^{\lg_b n}) + \sum_{k=0}^{\lg_b n-1} a^k f(n/b^k) =$

 $=\Theta(n^{\lg_b a})$ $=T(1)=\Theta(1)$

<last row> <all other rows>

Recursion tree:

Build a tree from the levels in the substitution:

Level 0: f(n)

Level 1: α elements, each costs f(n/b)

Level k: a^k elements, each costs $f(n/b^k)$

Last level: $n^{\lg_b a}$ elements, each costs $\Theta(1)$

The Master Theorem:

For $a \ge 1, b > 1$, f(n) function over non-negative integers and T(n) the recurrence:

T(n) = aT(n/b) + f(n)

 $\exists \epsilon > 0: f(n) = O(n^{\lg_b a - \epsilon}) \Rightarrow T(n) = O(n^{\lg_b a})$

 $f(n) = \Theta(n^{\lg_b a}) \Rightarrow T(n) = O(n^{\lg_b a} \lg n)$

 $\exists n_0, \epsilon > 0, c < 1: f(\overline{n}) = \Omega(n^{\lg_b a + \epsilon})$ and $\forall n \ge n_0$: $af(n/b) \le c \cdot f(n) \Rightarrow$ $T(n) = \Theta(f(n))$

Notes for MT:

The ϵ addition/subtraction denotes **polynomial** difference in running time between f(n) and $n^{\lg_b a}$.

Cases (1) and (2) derive Θ for some relation between a, b.

Quick Sort:

Partition(A, p, r): linear procedure that partitions A inplace around x = A[r] s.t.: $\leq x |x| > x$ and

returns the index of x – the pivot.

Preferable over merge-sort, as it sorts in-place. General recurrence: $T(n) = T(k) + T(n - k - 1) + \Theta(n)$

W.C.: array already sorted, partition at the beginning:

 $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$

Note: for any *n*-proportional division we get $\Theta(n \lg n)$:

 $T(n) = T(n/\alpha) + T((\alpha - 1)n/\alpha) + \Theta(n)$

For $\alpha = 2$ we will get a balanced tree.

Expected running time:

$$E[T(n)] = \sum_{k} \Pr[k - split] \cdot T(n|k - split) = 2/n \cdot \sum_{k=1}^{n-1} (T(k) + \Theta(n)) = \boxed{\Theta(n \lg n)}$$

Left filled structure that satisfies partial order (node > its children, no particular relation between children). For node i: left child at 2i, right at 2i + 1, parent $\lfloor i/2 \rfloor$ Height is $\lg n$ – the cost of **insertion**, **extract-max**, **delete**. **Insert**: put node x at the end and heapify up (switch with parent(x) until x < parent(x) or x is root.

Remove-max: remove root and put last node of the heap in its place. Heapify it down, each level switching with the greater child of the two until satisfies heap properties.

Build-heap: for node n/2 down to 1, heapify down. Amortized analysis – each level k but lowest will be visited at most $k \cdot (n+1)/2^k$. Total: $(n+1) \sum_{k=0}^{\lg(n+1)} (k/2^k)$. The sum part is $O(1) \Rightarrow \text{total}$: O(n).

Heap-sort:

Build a heap and then run $\sim n$ times: Swap the max with the last element, decrease heap size by 1 and heapify the new root down. Result: the array is sorted. Running time: $O(n \lg n)$, sorts in-place.

Selection problems:

The Select algorithm for finding the ith o.s.:

Select(A, p, q, i):

Divide A into n/5 groups of size 5.

Find the median for each group and store in A'. Call select(A', 1, n/5, n/10) to find x = median(A'). Let k = partition(A, x):

If i = k return x.

If i < k return Select(A, p, k - 1, i)

If i > k return Select(A, k, q, i - k)

Running time: O(n).

Select's recurrence:

T(n) = T([n/5]) + T(7n/10 + 6) + O(n) = O(n) (proof by induction for upper bound.

Simplified Master Theorem:

For T(1) = d, T(n) = aT(n/b) + cn:

 $a < b \Rightarrow T(n) = O(n)$

 $a = b \Rightarrow T(n) = O(n \lg n)$

 $a > b \Rightarrow T(n) = O(n^{\lg_b a})$

Binary Search Trees:

Satisfy: $left(x) \le key(x) < right(x)$

Unbalanced trees: all operations cost O(h), where h is the height of the tree, between $\lg n$ and n.

Successor of *x*:

- Left most leaf of x's right subtree.
- If doesn't have one, then the lowest ancestor with left subtree.

Deletion:

Case 1,2:

No left/right child. Put sole child instead.

Successor is right child. Put successor instead.

Case 4:

Successor is not direct right child. Swap successor with its sole (right) child, and then swap deleted node with successor.

Red-Black Trees:

- Every node is either red or black
- Root and leafs (NIL) are black
- If a node is red, its children will be black
- All black paths have same # of blacks (black height)

Height: maximum $2 \lg n$

Insertion:

Create new red node with 2 black leafs and put in place. Corrections (a inserted):

Case 1: a's uncle is red:

Color father and uncle black, and grandfather red. Problem moved up 2 levels to grandfather.

Case 2: a's uncle is black, a is a right child: Rotate left around father and continue to case 3.

Case 3: a's uncle is black, a is left child: Rotate right around grandfather, switch colors between father and new sibling.

Deletion:

Delete as for any BST. If successor was black, leave behind "extra" black and correct:

Case 1: a's sibling is red:

Rotate left around father, switch colors between father and grandfather and continue with circled subtree to other case.

Case 2: a's sibling and nephews are black: Take blacks from a and c and move problem up.

Case 3: a's sibling is black with left red and right black:

Rotate right around sibling, switch colors between new sibling and old sibling and continue to case 4.

Case 4: a's sibling is black with right red:

Rotate left around father, color grandfather with father's color, color father with extra black, color

Examples:

Some hierarchies: > is "o", = is " Θ " $2^{2^{n+1}} > 2^{2^n} > (n+1)! > n! > e^n > n \cdot 2^n > 2^n >$ $(3/2)^n > (\lg n)^{\lg n} = n^{\lg \lg n} > (\lg n)! > n^3 > n^2$ $> n \lg n = \lg(n!) > n = 2^{\lg n} > (\sqrt{2})^{\lg n} > 2^{\sqrt{2 \lg n}} >$ $\lg^2 n > \ln n > \sqrt{\lg n} > \ln \ln n > 2^{\lg^* n} > \lg^* \lg n = \lg^* n$ $> \lg \lg^* n > 1 = n^{1/\lg n}$ Some recurrences: Binary search: $T(n) = T(n/2) + 1 = O(\lg n)$ Linear search: T(n) = T(n-1) + 1 = O(n) $T(n) = 4T(n/3) + n \lg n \Rightarrow \Theta(n^{\lg_3 4}) \text{ (MT case 1)}$ $T(n) = 3T(n/3) + n/\lg n \Rightarrow \Theta(n \lg \lg n)$ (tree) $T(n) = 4t(n/2) + n^2 \sqrt{n} \Rightarrow \Theta(n^{2.5})$ (MT case 3) $T(n) = 3T(n/3 - 2) + n/2 \Rightarrow \Theta(n \lg n) \text{ (bounds)}$ $T(n) = 2T(n/2) + n/\lg n \Rightarrow \Theta(n \lg \lg n)$ (tree) $T(n) = T(n/2) + T(n/4) + T(n/8) + n \Rightarrow \Theta(n)$ (bounds) $T(n) = T(n-1) + 1/n \Rightarrow \Theta(\lg n)$ (substitution)

$T(n) = \sqrt{n}T(\sqrt{n}) + n \Rightarrow T(n) = \Theta(n \lg \lg n)$ (tree) Math stuff:

$$\frac{\sum_{i=1}^{n} i = n(n+1)/2 = \Theta(n^2)}{a^{\lg_b c} = c^{\lg_b a}}$$

$$\sum_{k=1}^{n} \frac{1}{\nu} = \Theta(\lg n) - \text{harmonic series}$$

 $T(n) = T(n-1) + \lg n \Rightarrow \Theta(n \lg n)$ (bounds) $T(n) = T(n-2) + 1/\lg n \Rightarrow \Theta(n/\lg n)$ (bounds)