

Actividad 8.1

Elias Guerra Pensado A01737354 22 de Mayo del 2025

Implementación de Robótica Inteligente
Alfredo García Suárez

Objetivo

Evaluar el desempeño de un robot diferencial en el seguimiento de trayectorias definidas mediante waypoints, en presencia de obstáculos, utilizando los mapas exampleMap y complexMap. Se aplican técnicas de control Pure Pursuit y evasión de obstáculos mediante el algoritmo Vector Field Histogram (VFH).

Metodología

- 1. Se utilizaron ocho scripts de simulación en MATLAB divididos entre dos mapas: exampleMap (mapa simple) y complexMap (mapa con zonas estrechas).
- 2. Cada script configura el robot, el sensor Lidar, los waypoints y ejecuta un bucle de simulación que emplea controladores Pure Pursuit y VFH.
- 3. Se analizaron trayectorias, obstáculos y parámetros clave como velocidad, distancia de anticipación, sectores angulares y distancia de seguridad.

Análisis de Resultados

- example1.m a example4.m: Evaluación sobre el mapa simple. Ajustes en LookaheadDistance, velocidad y sectores muestran que una mayor suavidad y retorno al punto inicial se logra en example4.m.
- complex1.m a complex4.m: Evaluación en mapa complejo. Se validan respuestas ante muros estrechos y múltiples curvas. En complex4.m se mejora el rendimiento con velocidad baja, Lookahead moderado y alta resolución angular.

Conclusiones

- Ajustar parámetros como LookaheadDistance, MaxAngularVelocity, NumAngularSectors y SafetyDistance mejora notablemente la navegación.
- example4.m y complex4.m ofrecieron el mejor rendimiento general.
- En entornos complejos, velocidades moderadas y radios de giro amplios son recomendables.

- Las simulaciones permiten validar estrategias de evasión de obstáculos antes de implementarlas en robots reales.

Resultado

