翔文学习 xiangwenjy@gmail.com

2006年"新知杯"上海市初中数学竞赛

答案详解

一、填空题

1、【答案】 3

【解析】 如图,

连结 B′B, 并延长交 C′A′于点 D, 交 AC 于点 E。由题设 C′B=BC, A′B=BA, AC \perp A′C′,且 BB′ \perp AC, B′E=BE, 得 B′D=3BE, 故 $S_{\triangle A'B'C}=\frac{1}{2}$ B′D·A′C′=3× $\frac{1}{2}$ BE·AC=3S $_{\triangle ABC}$ =3

2、【答案】420

【解析】⑥-⑤+④-③+②-①,得 f-e+d-c+b-a=610-320+160-80+40-20=420

3、【答案】
$$\frac{125}{24}$$

【解析】连接 AC 与 EF 交于点 G, 易证 EF \perp AC, EG=GF, 在 Rt \triangle AEG 中, 因为 AE=5, EG= $\frac{1}{2}$ EF=3,

所以,AG=4,在Rt \triangle AEC中,因为AE 2 =AG · AC, \angle ACE= \angle AEF, 所以,AC= $\frac{25}{4}$,且 \triangle BAC \hookrightarrow \triangle

4、【答案】-6≤a<1/2

【解析】由题设知,二次方程 x^2 -x+a=0 有两个不相等的实根 x_1 、 x_2 ,则 \triangle =1-4a>0,即 a< $\frac{1}{4}$, $|x_1|$ + $|x_2|$ ≤ 5 ,故($|x_1|$ + $|x_2|$) 2 = x_1^2 + x_2^2 +2 $|x_1x_2|$ = $(x_1+x_2)^2$ +2 $|x_1x_2|$ $-2x_1x_2$ =1+2 |a| -2a ≤ 25

而
$$\begin{cases} a < \frac{1}{4} \\ 1+2|a|-2a \le 25 \end{cases} \Leftrightarrow \begin{cases} 0 \le a < \frac{1}{4} \\ 1 \le 25 \end{cases} \begin{cases} a < 0 \\ -4a \le 24 \end{cases} \Leftrightarrow 0 \leqslant a < \frac{1}{4}$$
 或-6 \le a < 0 \le -6 \le a < \frac{1}{4}

5、【答案】5

【解析】由题设有 $n^{2006}+2006=(-1)^{2006}+2006=2007\equiv0[mod(n+1)]$.而 $2007=3\times3\times223$,则 n+1=3,9,223,669,2007,故 n=2,8,222,668,2006.

6、【答案】
$$\frac{13}{16}$$
, $\frac{17}{16}$

【解析】由 $2x-1<[2x] \le 2x$, $3x-1<[3x] \le 3x$ 及已知方程得

$$5x-2 < 8x - \frac{7}{2} \le 5x \Leftrightarrow \frac{1}{2} < x \le \frac{7}{6} \Leftrightarrow \frac{1}{2} < 8x - \frac{7}{2} \le \frac{35}{6}$$

因为 $8x - \frac{7}{2} = [2x] + [3x]$ 为整数,所以, $8x - \frac{7}{2} = 1,2,3,4,5$,解得 $x = \frac{9}{16}, \frac{11}{16}, \frac{13}{16}, \frac{15}{16}, \frac{17}{16}$

经检验,只有 $x = \frac{13}{16}, \frac{17}{16}$ 是已知方程的解。

7、【答案】 √3 -1

【解析】设 AB=BC=a, AM=MD=DA=x, CD=y, 则

$$\begin{cases} \sqrt{x^2 - a^2} + \sqrt{x^2 - y^2} = a.....(1) \\ (a - y)^2 + a^2 = x^2.....(2) \end{cases}$$

由式(2)知 $x^2-a^2=(a-y)^2$,则 $x^2-y^2=2a^2-2ay$,由图可见 x>y>0,故 $2a^2-2ay>0$,a>y>0,于是,

代入方程 (1) 得 a-y+
$$\sqrt{2a^2-2ay} = a \Leftrightarrow \sqrt{2a^2-2ay} = y \Leftrightarrow y^2+2ay-2a^2=0$$

取正根, y= (
$$\sqrt{3}-1$$
) a, 即 $\frac{CD}{AB} = \sqrt{3}-1$

8、【答案】
$$(1+\frac{ph}{2S})$$
 p, $(1+\frac{ph}{2S})$ 2S

【解析】易见直线 AA' 同时平分 $\angle A'$ 和 $\angle BAC$,故 $\triangle A'B'C'$ 与 $\triangle ABC$ 的内心是相同的。

设
$$\triangle$$
A'B'C'、 \triangle ABC 的内切圆半径分别为 \mathbf{r}' 、 \mathbf{r} 、则 \mathbf{r}' =r+h,且 \mathbf{r} = $\frac{2S}{p}$

由于Δ A'B'C' \hookrightarrow ΔABC,且相似比为 $\frac{r'}{r} = \frac{r+h}{r} = 1 + \frac{ph}{2S}$,因此,Δ A'B'C'的周长为($1 + \frac{ph}{2S}$)

p,而面积为(
$$1+\frac{ph}{2S}$$
) 2 S。

9、【答案】 5

【解析】由 $a_1a_2\cdots a_n=2007$,知 a_1 , a_2 ,… a_n 都是奇数,又 $a_1+a_2+\cdots+a_n=2007$ 为奇数,则 n 为奇数。若 n=3,即 $a_1+a_2+a_3=a_1a_2a_3=2007$,不妨设 $a_1\geqslant a_2\geqslant a_3$,则

$$a_1 \ge \frac{a_1 + a_2 + a_3}{3} = 669, \quad a_2 a_3 \le \frac{2007}{a_1} \le 3$$

若 $a_1 > 669$,只能 $a_1 = 2007$, $a_2 a_3 = 1$,且 $a_2 + a_3 = 0$,这也不可能

由此知 $n \ge 5$,又 2007+1+1+ (-1) + (-1) =2007×1×1× (-1) × (-1) =2007,故 n 的最小值为 5.

10、【答案】6999

【解析】首先,易见偶数中不是 4 的倍数的整数不可能是两整数的平方差,易知 $a_1=3, a_2=5, a_3=7.$ 当 $k \ge 2$ 时,有

$$4k=(k+1)^2-(k-1)^2,4k+1=(2k+1)^2-(2k)^2,4k+3=(2k+2)^2-(2k+1)^2$$

且 4k+(4k+1)+(4k+3)=12k+4.故

 $a_4+a_5+a_6=12\times2+4$, $a_7+a_8+a_9=12\times3+4$

٠...

 $a_{97}+a_{98}+a_{99}=12\times 33+4$ $a_{100} = 4 \times 34$ $\mathbb{Q} \| \mathbf{a}_1 + \mathbf{a}_2 + \cdots + \mathbf{a}_{100} = 3 + 5 + 7 + 12 (2 + 3 + \cdots + 33) + 4 \times 32 + 4 \times 34 = 6999.$

二、【答案】
$$\frac{5\pm\sqrt{7}}{2}$$

【解析】如图,

连接 OC、OD 作 OE LAD, 垂足为 E, 交 BC 于点 F, 设正方形的边长为 2x, 显然, E、F 分 别是 AD、BC 的中点。由勾股定理有 $0E = \sqrt{4-x^2}$

因为 OF=|OE-EF|=|
$$\sqrt{4-x^2}$$
-2x|, CF²+OF²=OC², 所以, $x^2+(\sqrt{4-x^2}$ -2x)²=1,即

 $4x^2+3=4x\sqrt{4-x^2}$.两边平方并整理得 $32x^4-40x^2+9=0$,解得 $x^2=\frac{5\pm\sqrt{7}}{2}$ 。故正方形 ABCD 的

面积为
$$4x^2 = \frac{5 \pm \sqrt{7}}{2}$$

三、【答案】 √23

【解析】由第一个方程得 3x+2y=a-z,由第二个方程得

$$xy=6-z(3x+2y)=6-z(a-z)=z^2-az+6$$

 $xy=6-z(3x+2y)=6-z(a-z)=z^2-az+6$ 由(3x+2y) $^2 \ge 4 \times 3x \times 2y$,得(a-z) $^2 \ge 24$ (z^2-az+6),即 $23z^2-22az+144-a^2 \le 0$,可见开 口向上的抛物线 $y=23x^2-22ax+144-a^2$ 经过不在 x 轴上方的点 $(z, 23z^2-22az+144-a^2)$,从而,

该抛物线与 x 轴有公共点,故 $\triangle/4$ = $(11a)^2$ -23 $(144-a^2) \ge 0$,即 $a^2 \ge 23$, $a \ge \sqrt{23}$ (因 a > 0).

当
$$a=\sqrt{23}$$
 时,取 $x=\frac{2}{\sqrt{23}}$, $y=\frac{3}{\sqrt{23}}$, $z=\frac{11}{\sqrt{23}}$,所以 a 的最小值为 $\sqrt{23}$

四、【解答】(1)设 a, b, c是某个直角三角形的三边长, a, b, c都是有理数,且 $a^2+b^2=c^2$, $\frac{1}{2}$ ab=A,若 a=b,则 $2a^2=c^2$, $\frac{c}{a}=\sqrt{2}$,这与 a,c 都是有理数的假定矛盾,故 a≠b。

不妨设 a < b ,取 $x = \frac{a+b}{2}$, $y = \frac{c}{2}$, $z = \frac{b-a}{2}$,则 x ,y ,z 都是正有理数,且

$$x^2-y^2 = \frac{(a+b)^2-c^2}{4} = \frac{1}{2}ab = A$$

$$y^2-z^2=\frac{c^2-(b-a)^2}{4}=\frac{1}{2}ab=A$$

(2)设三个正有理数 x,y,z 满足 $x^2-y^2=y^2-z^2=A$,则 x>y>z,取 a=x-z,b=x+z,c=2y,则 a,b,c 都是正有理数,且

$$a^2+b^2=2(x^2+z^2)=4y^2=c^2$$
, $\frac{1}{2}ab=\frac{1}{2}(x^2-z^2)=\frac{1}{2}[(x^2-y^2)+(y^2-z^2)]=A$

即存在一个三边长 a、b、c 都是正有理数的直角三角形,它的面积等于 A

翔文学习 数学频道

QQ: 2254 2374 33

Email: xiangwenjy@gmail.com