1 | Filters & Games

Moving away from the pure theory of the virtual large cardinals from Chapter ??, we now move to connections between these large cardinals and common set-theoretic objects of study. In this chapter those objects are filters and games, with the next chapter dealing with connections to ideals. This chapter covers the content of the paper [?], which started out as a further analysis of the results in [?] and somewhat surprisingly we ended up in the realm of virtual large cardinals.

We will in this section be dealing with many properties of \mathcal{M} -measures¹, so we start with a couple of definitions.

DEFINITION 1.1. Let κ be a cardinal, $\mathcal M$ a weak κ -model and μ an $\mathcal M$ -measure. Then μ is...

- \mathcal{M} -normal if $(\mathcal{M}, \in, \mu) \models \forall \vec{X} \in {}^{\kappa}\mu : \triangle \vec{X} \in \mu$;
- genuine if $|\triangle \vec{X}| = \kappa$ for every κ -sequence $\vec{X} \in {}^{\kappa}\mu$;
- normal if $\triangle \vec{X}$ is stationary in κ for every κ -sequence $\vec{X} \in {}^{\kappa}\mu$;
- 0-good, or simply good, if it has a well-founded ultrapower when applied to
 M:
- α -good for $\alpha > 0$ if it is weakly amenable and has α -many well-founded iterated ultrapowers when applied to \mathcal{M} .

We emphasise that the main difference between \mathcal{M} -normality and normality (and genuineness) is that the former is local and the latter are global.

We note a few basic relations between these properties.

Question: Are normal measures always \mathcal{M} -normal?

Proposition 1.2. Let κ be a cardinal, \mathcal{M} a weak κ -model. Then

- (i) Every genuine \mathcal{M} -measure on κ is countably complete;
- (ii) Every countably complete weakly amenable \mathcal{M} -measure on κ is α -good for all ordinals α .

 $^{^1}$ See Section ?? for the definitions of weak κ -models ${\cal M}$ and their associated ${\cal M}$ -measures.

PROOF. (i): Let μ be a genuine \mathcal{M} -measure on κ . To show countable completeness, let $\vec{X} \in {}^{\omega}\mu$ be an ω -sequence of measure one sets and define a κ -sequence $\vec{Y} \in {}^{\kappa}\mu$ as $Y_n := X_n$ for $n < \omega$ and $Y_{\alpha} := \kappa$ for $\alpha \in [\omega, \kappa)$. Then $\left| \triangle \vec{Y} \right| = \kappa$ as μ is genuine, so letting $\alpha \in \triangle \vec{Y} - \omega$ we get that $\alpha \in \bigcap \vec{X}$, making μ countably complete.

(ii): Now let μ be a countably complete weakly amenable \mathcal{M} -measure on κ . Firstly note that countable completeness implies that the ultrapower $\mathrm{Ult}(\mathcal{M},\mu)$ is well-founded. Next, weak amenability implies that $X:=\{\alpha<\kappa\mid X_\alpha\in\mu\}\in\mathcal{M}$ for every $\vec{X}\in{}^\kappa\mu\cap\mathcal{M}$ since we can rewrite the set as

$$X = \{ \alpha < \kappa \mid X_{\alpha} \in \{X_{\alpha} \mid \alpha < \kappa\} \cap \mu \}$$

and weak amenability ensures that $\{X_{\alpha} \mid \alpha < \kappa\} \cap \mu \in \mathcal{M}$. From this we can form iterated ultrapowers as in Chapter 19 of [?], which will all be well-founded by countable completeness of the measure.

In [?] they provide the following characterisation of the normal measures.

Lemma 1.3 (Holy-Schlicht). Let \mathcal{M} be a weak κ -model and μ an \mathcal{M} -measure. Then μ is normal iff $\triangle \vec{X}$ is stationary for some enumeration \vec{X} of μ .

PROOF. (\Rightarrow) is trivial since $\left| \vec{X} \right| = |\mu| \leq |\mathcal{M}| = \kappa$, so assume that \vec{X} is an enumeration of μ such that $\triangle \vec{X}$ is stationary. Let $\vec{Y} \in {}^{\kappa}\mu$ be a κ -sequence and define $g \colon \kappa \to \kappa$ such that $Y_{\alpha} = X_{g(\alpha)}$ for $\alpha < \kappa$. Letting $C_g \subseteq \kappa$ be the club of closure points of g we get that $\triangle \vec{X} \cap C_g \subseteq \triangle \vec{Y} \cap C_g$, making $\triangle \vec{Y}$ stationary.

We next move on to the games. All of our games will be two-player games with perfect information; see e.g. [?, Chapter 27] for an introduction to set-theoretic game theory. We will also, mostly for convenience, use the following *game equivalence* notion.

DEFINITION 1.4. Two games \mathcal{G}_0 and \mathcal{G}_1 are said to be **game equivalent**, or simply **equivalent**, if player I has a winning strategy in \mathcal{G}_0 iff they have one in \mathcal{G}_1 , and

player II has a winning strategy in \mathcal{G}_0 iff they have one in \mathcal{G}_1 . We will also denote such an equivalence as $\mathcal{G}_0 \sim \mathcal{G}_1$.

The following is a game which was introduced in [?] and led to their notion of α -Ramsey cardinals.

DEFINITION 1.5 (Holy-Schlicht). For an uncountable cardinal $\kappa = \kappa^{<\kappa}$, a regular cardinal $\gamma \le \kappa$ and a regular cardinal $\theta > \kappa$ define the game $wfG_{\gamma}^{\theta}(\kappa)$ of length γ as follows.

Here $\mathcal{M}_{\alpha} \prec H_{\theta}$ is a κ -model and μ_{α} is an \mathcal{M}_{α} -measure, the \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing and $\langle \mathcal{M}_{\xi} \mid \xi < \alpha \rangle, \langle \mu_{\xi} \mid \xi < \alpha \rangle \in \mathcal{M}_{\alpha}$ for every $\alpha < \gamma$. Letting $\mu := \bigcup_{\alpha < \gamma} \mu_{\alpha}$ and $\mathcal{M} := \bigcup_{\alpha < \gamma} \mathcal{M}_{\alpha}$, player II wins iff μ is an \mathcal{M} -normal good \mathcal{M} -measure.

We will also be using the following fact from [?, Lemma 3.3], that the games $wfG^{\theta}_{\gamma}(\kappa)$ do not depend upon the values of θ .

Lemma 1.6 (Holy-Schlicht). For a fixed κ and γ , $wfG_{\gamma}^{\theta_0}(\kappa)$ and $wfG_{\gamma}^{\theta_1}(\kappa)$ are equivalent for any regular $\theta_0, \theta_1 > \kappa$.

See the proof of Proposition ?? below for an idea of the proof strategy of this lemma.

We will be working with the following variant of the $wfG_{\gamma}(\kappa)$ games in which we require less of player I and more of player II. It will turn out that this change of game is innocuous, as Proposition ?? will show that they are (game) equivalent.

DEFINITION 1.7 (Holy-N.-Schlicht). Let $\kappa = \kappa^{<\kappa}$ be an uncountable cardinal, $\gamma \le \kappa$ and ζ ordinals and $\theta > \kappa$ a regular cardinal. Then define the following filter game $\mathcal{G}_{\gamma}^{\theta}(\kappa,\zeta)$ with $(\gamma+1)$ -many rounds.