

FCC Test Report

FCC EVALUAT	FCC EVALUATION REPORT FOR CERTIFICATION				
Project Reference No.	268417				
Product	Remote Training System				
Brand Name	motorola				
Model	SCOUTTRAINER100				
Alternate Model	N/A				
Tested according to	FCC Rules and Regulations Part 15 Subpart C 2014 15.249, ANSI C63.4-2009				

Tested in period	2014.08.28 to 2014.10.17				
Issued date	2014.09.15				
Name and address	Nemko				
of the Test House	Nemko Shanghai Ltd. Shenzhen Branch Unit CD, Floor 10, Tower 2, Kefa Road 8#, Hi-Technology Park, Nanshan District, Shenzhen, China				
	Phone: +86 755 8221 0420	Fax: +86 755 8221 3363			
Tested by	Zone Peng				
		2014-10-17			
	Zone Peng	date			
Verified by	Daven Low	22444247			
		2014-10-17			
	Daria Liu	date			

This form is only for use by Nemko, or by others according to special agreement with Nemko. The report may be reproduced infull. Partial reproduction may only be made with the written content of Nemko Shanghai. This report applies only to the sample(s) tested. It is the manufacturer's responsibility to assure the additional production units of this product are manufactured with identical electrical and mechanical components.

Reference No.: 268417

Contents of This Report

1. Client Information	4
1.1 Applicant	4
1.2 Manufacturer	4
1.3 Scope	4
2. Equipment under Test (EUT)	5
2.1 Identification of EUT	5
2.2 Detail spec:	5
2.3 Additional Information Related to Testing	6
3. General Test Conditions	6
3.1 Location	6
3.2 Operating Environment	6
3.2 Operating During Testing	6
3.4 Test Equipment	6
4. Measurement Uncertainty	7
5. Radiated Electromagnetic Disturbances	8
5.1 Test Procedure	8
5.2 Measurement Equipment	8
5.3 Test Result	8
5.3.1 Diagram 5-1	11
5.3.2 Diagram 5-2	12
5.3.3 Diagram 5-3	13
5.3.4 Diagram 5-4	14
5.3.5 Diagram 5-5	15
5.3.6 Diagram 5-6	16
5.3.7 Diagram 5-7	17
5.3.8 Diagram 5-8	18
5.3.10 Diagram 5-10	20
5.3.11 Diagram 5-11	21
5.3.12 Diagram 5-12	22
5.3.13 Diagram 5-13	23
5.3.14 Diagram 5-14	24
5.3.15 Diagram 5-15	25
5.3.16 Diagram 5-16	26
5.3.17 Diagram 5-17	27
5.3.18 Diagram 5-18	28
5.3.19 Diagram 5-19	29
5.3.20 Diagram 5-20	30
5.3.21 Diagram 5-21	31
5.3.22 Diagram 5-22	32
6. 20 dB bandwidth Test	33
6.1 Test Procedure	33
6.2 Measurement Equipment	33
6.3 Test Result:	33
7. Ducty Cycle Correction factor TEST	37

7.1 Test Procedure	37
7.2 Measurement Equipment	37
7.3 Test Result	37
7.3.1 Diagram 7-1	38
8 Antenna requirement	39
8.1 Requirement	39
8.2 Result	
Appendix A Sample Label	40
Appendix B EUT external photo	41
Appendix C EUT internal photo	44
Appendix D setup photo	47

1. Client Information

1.1 Applicant

Company Name: Binatone Electronics International Ltd.

Company Address: Floor 23A, 9 Des Voeux Road West, Sheung Wan,

Hong Kong

1.2 Manufacturer

Company Name: Foshan Shunde Alford Electronics Co., Ltd.

Company Address: Xinjiao Industrial Park, DaLiang, ShunDe, Foshan City,

Guangdong Province, China

1.3 Scope

•Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Reference No.: 268417

2. Equipment under Test (EUT)

2.1 Identification of EUT

Category: Remote Training System

Model Name: SCOUTTRAINER100

Alternate model: N/A

Brand name: M motorola

Technical data

(Rating, etc.): As below

2.2 Detail spec:

Carrier Frequency: : 915.5MHz-921.26MHz

Number of Channel: 25

Channel step: 240kHz

Channels List:

- 1. 915.5
- 2. 915.74
- 3. 915.98
- 4. 916.22
- 5. 916.46
- 6. 916.70
- 7. 916.94
- 8. 917.18
- 9. 917.42
- 10. 917.66
- 11. 917.90
- 12. 918.14
- 13. 918.38
- 14. 918.62
- 15. 918.86
- 16. 919.10
- 17. 919.34
- 18. 919.58
- 19. 919.82
- 20. 920.06
- 21. 920.30
- 22. 920.54
- 23. 920.78
- 24. 921.02
- 25. 921.26

Reference No.: 268417

Modulation Type: MSK

Mode of operation (duplex, simplex, half duplex): <u>duplex</u>

Antenna Type: Intergral Antenna

Antenna gain: 0 dBi

Remote control unit:

Input: 3Vdc, by 2 x AAA 1.5V alkaline batteries

2.3 Additional Information Related to Testing

CHL: 915.5MHz

CHM: 918.38MHz

CHH: 921.26MHz

3. General Test Conditions

3.1 Location

Global United Technology Services Co., Ltd. -- Nemko ELA 632

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

FCC Registration No.:600491 IC Registration No.9079A-1

Note: all test are witnessed by NEMKO engineer

3.2 Operating Environment

All tests and measurements were performed in a shielded enclosure or a controlled environment suitable for the tests conducted. The climatic conditions in the test area are automatically controlled and recorded continuously.

Parameters	Recording during test	Accepted deviation
Ambient temperature	20-25°C	15 – 35 °C
Relative humidity	45-55%	30 - 60%
Atmospheric pressure	101.2 kPa -101.3kPa	86-106kPa

3.2 Operating During Testing

TM1: CHL keeping TX mode TM2: CHM keeping TX mode TM3: CHH keeping TX mode TM4: Keeping TX mode

Remark: X,Y,Z 3 axis of EUT all have been tested, only the worse case is reported Only choose the worse mode to be the representative test mode

NEW BATTERY IS USED DURING ALL TEST.

3.4 Test Equipment

The test equipments used in testing are calibrated on a regular basis. For most of the testing equipments accredited calibration is conducted once a year. For certain equipment the calibration

Reference No.: 268417

interval is longer. Between the calibrations all test equipment are controlled and verified on a regular basis. The test equipments used are defined in each test section of this report.

4. Measurement Uncertainty

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95 %.

Radiated Emission: 30MHz~1000MHz 4.50dB

1GHz-18GHz 4.70dB

Reference No.: 268417

5. Radiated Electromagnetic Disturbances

5.1 Test Procedure

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast.

The EUT were rotated 0 to 360 degree and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. The test result are reported as below.

For below 1GHz

RBW=100kHz; VBW=300KHz.The frequency range from 30MHz to 1000MHz is checked using PK detector .

For above 1GHz. The frequency range from 1GHz to 10GHz(10th harmonics) is checked.

RBW=1MHz; VBW=1MHz,PK detector for peak emissions measurement above 1GHz

Duty cycle correction factor is used for average evaluation by peak measurenment.

5.2 Measurement Equipment

Equipment	Model No.	Serial No.	Cal. Due	Manufacturer
EMI Test Receiver	ESU26	GTS203	Jul. 04 2015	R&S
BiConiLog Antenna	VULB9163	GTS214	Feb. 26 2015	SCHWARZBECK
Horn Antenna	BBHA9120D	GTS215	Feb. 26 2015	SCHWARZBECK
Horn Antenna	BBHA9170	GTS216	Feb. 26 2015	SCHWARZBECK
Coaxial Cable	N/A	GTS213	Apr. 01 2015	GTS
Coaxial Cable	N/A	GTS211	Apr. 01 2015	GTS
Coaxial cable	N/A	GTS210	Apr. 01 2015	GTS
Coaxial Cable	N/A	GTS212	Apr. 01 2015	GTS
Amplifier	8347A	GTS204	Jul. 04 2015	HP

5.3 Test Result

Harmonics emission:

Center Frequency	Connect mode	Antenna Polarity	Remark	Test Data	Test Result
921.26MHz	TX mode	Vertical	1-10GHz	Diagram 5-1	Pass
921.20WITZ	1 A mode	Horizontal	1-10GHz	Diagram 5-2	Pass
915.5MHz	TV mode	Horizontal	1-10GHz	Diagram 5-3	Pass
915.5WHZ	5.5MHz TX mode		1-10GHz	Diagram 5-4	Pass
918.38MHz	TV mode	Vertical	1-10GHz	Diagram 5-5	Pass
910.301/1172	TX mode	Horizontal	1-10GHz	Diagram 5-6	Pass

Center Frequency	Connect mode	Antenna Polarity	Test Data	Test Result
915.5MHz	TX mode	Vertical	Diagram 5-7	Pass
913.31/11/12	915.5IVITZ IX IIIOGE		Diagram 5-8	Pass
918.38MHz	TV mode	Vertical	Diagram 5-9	Pass
918.38MHz TX mode		Horizontal	Diagram 5-10	Pass
921.26MHz	TV mode	Horizontal	Diagram 5-11	Pass
921.20NIPZ	1.26MHz TX mode		Diagram 5-12	Pass

Reference No.: 268417

Spurious emission:

Center Frequency	Connect mode	Antenna Polarity	Remark	Test Data	Test Result
915.5MHz	TX mode	Vertical	30 – 1000MHz	Diagram 5-13	Pass
915.510172	1 × mode	Horizontal	30 - 1000MHz	Diagram 5-14	Pass
918.38MHz	TX mode	Vertical	30 – 1000MHz	Diagram 5-15	Pass
910.301/11/2	1 × mode	Horizontal	30 – 1000MHz	Diagram 5-16	Pass
921.26MHz	TX mode	Vertical	30 – 1000MHz	Diagram 5-17	Pass
921.20101112	1 × mode	Horizontal	30 – 1000MHz	Diagram 5-18	Pass

Remark:

If PK value is lower than QP/AV limit, then PK, QP and AV deem to comply their own limit.

1) All modes of operation were investigated and the worst -case emission mode are reported.

Band Edge:

IJ	~ -				
	Frequency	Connect mode	Antenna Polarity	Test Data	Test Result
	915.5MHz	TX mode	Vertical	Diagram 5-19	Pass
	913.3141172	1 × mode	Horizontal	Diagram 5-20	Pass
Ī	921.26MHz	TV made	Horizontal	Diagram 5-21	Pass
	921.20NITZ	TX mode	Vertical	Diagram 5-22	Pass

Remark:

1) All restriction band have been tested. Only worst case is reported.

NOTES:

- 1.All modes were measured and the worst case emission was reported.
- 2. H =Horizontal V=Vertical
- 3. Emission = Reading +Antenna Factor + Cable Loss -Amp Factor(if exist)
- 4. Emission level dB μ V = 20 log Emission level μ V/m
- 5. The lower limit shall apply at the transition frequencies
- 6. All the emissions outside of band should comply with 15.209 limits.

Reference No.: 268417

Remark:

The limit of 15.209 of 3 meter distance is

Frequency	Distance	Field strength		Distance	Field strength
MHz	m	μV/m	dBµV/m(QP)	m	dBμV/m(QP)
30-88	3	100	40.0	10	30.0
88-216	3	150	43.5	10	33.5
216-960	3	200	46.0	10	36.0
960-1000	3	500	54.0	10	44.0
Above 1000	3	74.0 dBµV/m (PK)		/	/
		54.0 dBµV/m (AV)			

15.205 Restricted bands of operation:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150. 0 5	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

5.3.1 Diagram 5-1

CF: 921.26MHz Ant. : Vertical

Harmonics Emission

	Freq		Antenna Factor				Remark
	MHz	dBu∜	dB/m	 <u>ab</u>	dBuV/m	dBuV/m	
_	1837.000 2764.000			 			

Remark: The AV result is = Peak - |dutycycle factor|.

AV value of 1837MHz:

59.47-10.34=49.13dBuV/m<54dBuV/m

5.3.2 Diagram 5-2

CF: 921.26MHz Ant. : Horizontal Harmonics Emission

Freq		Antenna Factor					
MHz	dBu∜	dB/m	 <u>dB</u>	dBuV/m	dBuV/m	dB	
1837.000 2764.000							

Remark: The AV result is = Peak - |dutycycle factor|.

AV value of 1837MHz:

55.65-10.34=45.31dBuV/m<54dBuV/m

5.3.3 Diagram 5-3

CF: 915.5MHz Ant. : Horizontal Harmonics Emission

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	1828.000	63.52	25.42	4.87	38.45	55.36	74.00	-18.64	Peak

Remark: The AV result is = Peak - |dutycycle factor|.

AV value of 1828MHz:

55.36-10.34=45.02dBuV/m<54dBuV/m

5.3.4 Diagram 5-4

CF: 915.5MHz Ant. : Vertical

Harmonics Emission

Freq		Antenna Factor						Remark
MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1828.000	67.28	25.42	4.87	38.45	59.12	74.00	-14.88	Peak

Remark: The AV result is = Peak - |dutycycle factor|.

AV value of 1828MHz:

1

59.12-10.34=48.78dBuV/m<54dBuV/m

5.3.5 Diagram 5-5

CF: 918.38MHz Ant. : Vertical

Harmonics Emission

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
_	1837.000 2755.000								

Remark: The AV result is = Peak - |dutycycle factor|.

AV value of 1837MHz:

61.57-10.34=51.23dBuV/m<54dBuV/m

5.3.6 Diagram 5-6

CF: 918.38MHz Ant. : Horizontal Harmonics Emission

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>qp</u>	$\overline{dBuV/m}$	dBuV/m	<u>qp</u>	
1	1837, 000	65, 78	25, 45	4.88	38, 45	57, 66	74.00	-16, 34	Peak

Remark: The AV result is = Peak - |dutycycle factor|.

AV value of 1837MHz:

57.66-10.34=47.32dBuV/m<54dBuV/m

5.3.7 Diagram 5-7

CF: 915.5MHz Ant. : Vertical

5.3.8 Diagram 5-8

CF: 915.5MHz Ant. : Horizontal

5.3.9 Diagram 5-9

CF: 918.38MHz Ant. : Vertical

Reference No.: 268417

5.3.10 Diagram 5-10

CF: 918.38MHz Ant. : Horizontal

5.3.11 Diagram 5-11

CF: 921.26MHz Ant. : Horizontal

Reference No.: 268417

5.3.12 Diagram 5-12

CF: 921.26MHz Ant. : Vertical

5.3.13 Diagram 5-13

CF: 915.5MHz Ant. : Vertical Spurious Emission

5.3.14 Diagram 5-14

CF: 915.5MHz Ant. : Horizontal Spurious Emission

5.3.15 Diagram 5-15

CF: 918.38MHz Ant. : Vertical Spurious Emission

5.3.16 Diagram 5-16

CF: 918.38MHz Ant. : Horizontal Spurious Emission

Reference No.: 268417

5.3.17 Diagram 5-17

CF: 921.26MHz Ant. : Vertical Spurious Emission

5.3.18 Diagram 5-18

CF: 921.26MHz Ant. : Horizontal Spurious Emission

Reference No.: 268417

5.3.19 Diagram 5-19

915.5MHz Ant. : Vertical Band Edge

	Freq		Antenna Factor						Remark
	MHz	<u>dBu</u> V	<u>dB</u> /m	dB	<u>qp</u>	dBuV/m	dBuV/m	dB	
1	902.000	48.40	23.12	4.87	31.18	45.21	46.00	-0.79	Peak

Reference No.: 268417

5.3.20 Diagram 5-20

915.5MHz

Ant. : Horizontal Band Edge

	Freq					Level			
	MHz	dBu∜	<u>dB</u> /m	<u>ав</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1	902.000	46.70	23.12	4.87	31.18	43.51	46.00	-2.49	Peak

5.3.21 Diagram 5-21

921.26MHz

Ant. : Horizontal Band Edge

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m		<u>qp</u>	$\overline{dB} \overline{uV}/\overline{m}$	dBuV/m		
1	928.000	46.50	23.28	4.96	31.20	43.54	46.00	-2.46	Peak

5.3.22 Diagram 5-22

921.26MHz Ant. : Vertical Band Edge

	Freq		Antenna Factor						Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>qp</u>	dBuV/m	dBuV/m	<u>qp</u>	
1	928.000	48.60	23.28	4.96	31.20	45.64	46.00	-0.36	Peak

Remark : only worse case is reported

Reference No.: 268417

6. 20 dB bandwidth Test 6.1 Test Procedure

Clause 15.215(c) 20dB Bandwidth:

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

6.2 Measurement Equipment

	Equipment	Last Calibration	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum	Jul. 04 2015	FSP30	GTS208	RS

6.3 Test Result:

Modulation	Channel	20dB bandwidth
	CHL	840.000KHz
MSK	CHM	780.000KHz
	CHH	840.000KHz

MSK diagrams are as below:

Reference No.: 268417

7. Ducty Cycle Correction factor TEST

7.1 Test Procedure

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 s. As an alternative (provided the unlicensed wireless device operates for longer than 0.1 s) or in cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval while the field strength is at its maximum value.

When the average value of the pulsed emissions from an EUT must be determined, the average can be found by measuring the peak pulse amplitude and determining the duty cycle correction factor of the pulse modulation.

7.2 Measurement Equipment

	Equipment	Last Calibration	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum	Jul. 04 2015	FSP30	GTS208	RS

7.3 Test Result

Duty Cycle factor correction factor = 20 log (dwell time / 100ms)

Ducy Cycle correction factor = 20 log (4x7.6ms / 100ms) = -10.34 dB

Refer to below results for detail.

Reference No.: 268417

7.3.1 Diagram 7-1

Ducy cycle correction factor = 20 log (4x7.6ms/100ms) = -10.34dB

Reference No.: 268417

8 Antenna requirement

8.1 Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2 Result

The antenna used for this product is Internal Patch antenna that no antenna other than that furnished by the responsible party shall be used with the device, The maximum peak gain of this antenna is 0dBi.

Reference No.: 268417

Appendix A Sample Label

Labelling Requirements

The sample label shown shall be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

*** The following paragraph specified in the label.

FCC ID: VLJ-T100T

Appendix B EUT external photo

Appendix C EUT internal photo

Appendix D setup photo

Radiated emission

Radiated emission

*****END OF REPORT*****