Diskrete Mathematik 2

FS 2013

Contents

1	Erste Woche	1
	1.1 Semesterablauf	1
	1.2 Quantifizierung	1
	1.3 Semantik	3
	Zweite Woche 2.1 Freie/Gebundene Variablen	4
_	Dritte Woche 3.1 Saetze zur Quantifizierung	6

1 Erste Woche

1.1 Semesterablauf

- Arithmetik in $\mathbb Z$
- Modulares Rechnen
- Gruppen
- RSA
- Quantifizierung
- Induktion
 - Rekurision
 - Invarianten
- Kein Laptop
- Zwischenpruefung: 30.04.2013 (1 Stunde)
- 5. Maerz 2013 Unterricht nur bis 18:20
- Buecher:
 - Gries/Schneider A logical approach to Discrete Math Springer, 1993
 - Jean Gallier Discrete Math Springer, 2010
 - Struckermann/Waetiger Mathematik fuer Informatiker Spektrum, 2007

1.2 Quantifizierung

$$\mathbb{N} = \begin{cases} \{\underline{0}, 1, 2, \dots\} \ (?) \\ \{1, 2, \dots\} \ (?) \end{cases}$$
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2$$

$$\begin{split} \sum_{i=1}^{-1} i^2 &= \begin{cases} ungueltig \ (?) \\ 1^2 \ (?) \\ 1^2 + 0^2 + (-1)^2 \ (?) \\ 0 \ (\rightarrow ja, \ Neutrales \ Element) \end{cases} \\ \sum_{i=1}^{n} i^2 + 1 &= 1^2 + 2^2 + \ldots + n^2 + 1 \ (?) \\ \sum_{i=1}^{n} (i^2 + 1) &= (1^2 + 1) + (2^2 + 1) + \ldots + (n^2 + 1) \ (?) \\ \sum_{\substack{i=1 \ odd(i)}}^{n} i^2 &= 1^2 + 3^2 + \ldots + n^2 \ , \ \text{falls} \ odd(n), \ \text{sonst} \ (n-1)^2 \end{split}$$

$$\prod_{i=1}^{n} i^2 = 1^2 * 2^2 * \dots * n^2$$

 $\prod_{i=1}^{-1} i^2 = 1 \text{ (neutrales Element)}$

(Java ==)

$$\forall_{i=0}^{n-1}(b[i] == 0) = (b[0] == 0) \land (b[1] == 0) \land \dots \land (b[n-1] == 0)$$

$$\exists_{i=0}^{n-1}(b[i] == 0) = (b[0] == 0) \lor (b[1] == 0) \lor \dots \lor (b[n-1] == 0)$$

$$\sum_{i=1}^{n} i^{2} = \left(\sum i : \mathbb{N} \mid 1 \leqslant i \leqslant n : i^{2}\right)$$

$$\left(\sum i : \mathbb{N}, j : \mathbb{N} \mid 1 \leqslant i \leqslant 2 \land 1 \leqslant j \leqslant 3 : i^{j}\right)$$

 $(\circ v_1: T_1, ..., v_n: T_n \mid R: P)$

- $\circ: T \times T \to T$ (wobei T ein Typ ist)

Bsp: $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ +(3,4) = 7

 $a \circ b = b \circ a$ fuer alle a,b : T (Symmetrie)(Kommutativitaet) — ABELSCHES MONOID $(a \circ b) \circ c = a \circ (b \circ c)$ fuer alle a,b,c : T (Assoziativitaet)

 $u \circ a = a = a \circ u$

es gibt ein u : T, so dass fuer alle a : T (neutrales Element) — MONOID

$$\begin{array}{cccc} \circ & T & u \\ +\sum & \mathbb{Z} & 0 \\ *\prod & \mathbb{Z} & 1 \\ \forall & \mathbb{B} & true \\ \exists & \mathbb{B} & false \end{array}$$

String mit Konkatenation nicht-abelsches Monoid

$$("a" + "b") + "c" equals "a" + ("b" + "c")$$
"a" + "" equals "a"

"
$$a$$
" + " b " !equals " b " + " a " (nicht equals)

- $T_1, ..., T_n$ Datentypen
- $V_1, ..., V_n$ Variablen

alle paarweise verschieden

 V_i vom Typ: T_i

- R : boolescher Ausdruck, kann $V_1...V_n$ enthalten, Bereich (Range)
- P : beliebiger Ausdruck vom Typ T, kann $V_1...V_n$ enthalten, Koerper (Body)

Typ der Quantifizierung: T

$$(\forall i: \mathbb{N} \mid 0 \leqslant i \leqslant n: b[i] = 0)$$
 und das Ganze ist : \mathbb{B} $(\circ V_1: T_1 \mid R: P)$ wobei $T_1: \mathbb{N}, P: \mathbb{B}$

$$\wedge: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$

$$P: T_1 \times T_2 \times ... \times T_n \to T$$

1.3 Semantik

Bsp:
$$(+i : \mathbb{Z} \mid -1 \leqslant i \leqslant 2 : i^2)$$

1. Fall $(Topf \neq \emptyset)$

Von \mathbb{Z} alle Zahlen ausfiltern (-1,0,1,2) (Menge)

$$\to^{1^2} ((-1)^2,1^2,0^2,2^2)(1,1,0,4) \text{ (Multimenge)}$$

$$\rightarrow 2^2 + 1^2 + (-1)^2 + 0^2$$

- 2. Fall (Topf = 0)
- \rightarrow Topf leer \rightarrow Resultat: Neutrales Element (von +) \rightarrow 0

Beispiele:

1)
$$(+i: \mathbb{N} \mid 0 \le i < 4: i*8) = (0*8) + (1*8) + \dots$$

2)
$$(*i: \mathbb{N} \mid 0 \le i < 3: i+1) = (0+1)*(1+1)*...$$

3)
$$(\land i : \mathbb{N} \mid 0 \le i < 2 : i * d \ne 6) = ((0 * d) \ne 6) \land ((1 * d) \ne 6) \land \dots$$

4)
$$(\forall i : \mathbb{N} \mid 0 \le i < 21 : b[i] = 0) = (b[0] == 0) \lor (b[1] == 0) \lor \dots$$

5)
$$(\sum k : \mathbb{N} \mid k^2 = 4 : k^2) = 2$$

6)
$$(\sum k : \mathbb{Z} \mid k^2 = 4 : k^2) = 2 + (-2) = 0$$

2 Zweite Woche

2.1 Freie/Gebundene Variablen

$$(\circ v_1: T_1, ..., v_n: T_n \mid R: P)$$

E1:
$$(\sum i : \mathbb{Z} \mid 0 \leqslant i < n : i^2)$$

- Wert haengt von n ab, nicht von i

$$n = 3$$
:

$$0^2 + 1^2 + 2^2 = 5$$

$$n=0$$
: kein i

$$0 \text{ (neutral } +)$$

E2:
$$(\sum j : \mathbb{Z} \mid 0 \leqslant j < n : j^2)$$

$$n=3 \rightarrow 5$$

$$n = 0 \rightarrow 0$$

E3: $(\sum i(1) : \mathbb{Z} \mid 0 \le i(2) < n : i^{2}(3)) + 1(4)$

 $(\leftarrow \rightarrow)$: Gueltigkeitsbereich von i (scope)

i tritt hier 4 mal auf (occurs)

Auftreten (occurances) (1), (2), (3) gebunden

Auftreten (4) frei

- 2 und 3 gebunden an 1
- 2 und 3 angewandte Auftreten (applied)
- (1) bindende, deklarierende Auftreten (binding)

Eine Variable heisst frei in einem Ausdruck E (expresion), falls sie in E frei vorkommt.

FV(E) = Menge der freie Variablen von E

 $FV(E_3) = \{'n', 'i'\}$ (Die Variablennamen und nicht die Werte der Variablen)

$$x, y : \mathbb{Z}$$

 $x = 3, y = 5$
 $\{x, y\} = \{3, 5\}$

$$x = y = 3$$
$$\{x, y\} = \{3\}$$

$$x + y * 2$$

$$y, 2: * Operator$$

dann das Resultat mit x und + Operator

E4:
$$(\sum i : \mathbb{Z} \mid 0 \leqslant i < n : i^2) * (\sum i : \mathbb{Z} \mid 0 \leqslant i < n : i^3)$$

$$FV(E_4) = \{'n'\}$$

E5:
$$(\prod n \mid k \le n \le l : (\sum i : \mathbb{Z} \mid 0 \le i < n : i^2) * (\sum i : \mathbb{Z} \mid 0 \le i < n : i^3))$$

$$FV(E_5) = \{'k', 'l'\}$$

E6:
$$(\sum i : \mathbb{Z} \mid 0 \le i \le (\sum i : \mathbb{Z} \mid 2 \le i < 3 : i^2) : i^2)$$

$$FV(E_6) = \emptyset$$

Ein Ausdruck E ohne freie Variablen $(FV(E) = \emptyset \text{ oder } \{\})$ heisst geschlossen

 $(\sum i : \mathbb{Z} \mid 1 \leqslant i < 2 : (\sum j : \mathbb{Z} \mid 1 \leqslant j < 3 : i + j))$

i zuerst:

$$i$$
 :
$$(\sum j: \mathbb{Z} \mid 1 \leqslant j < 3: 1+j) + (\sum j: \mathbb{Z} \mid 1 \leqslant j < 3: 2+j)$$

$$j: \quad 1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3 \\ ((1+1)+(1+2)+(1+3))+((2+1)+(2+2)+(2+3))$$

j zuerst:

$$j: \qquad \qquad 1 \qquad 2 \qquad 3 \\ (\sum i: \mathbb{Z} \mid 1 \leqslant i < 2: ((i+1)+(i+2)+(i+3)))$$

$$i:$$
 2 $((1+1)+(1+2)+(1+3))+((2+1)+(2+2)+(2+3))$

3 Dritte Woche

3.1 Saetze zur Quantifizierung

Satz (Dummy renaming)

$$(\circ v \mid R : P) = (\circ w \mid R[v \leftarrow w] : P[v \leftarrow w])$$

Voraussetzung: $w \notin FV(R) \cup FV(P)$

Dabei: $E[v \leftarrow F]$ bezeichnet exakt denselben Ausdruck wie E, aber alle freien Auftreten von v ersetzt durch (F).

wobei E, F: Ausdruck, v: Variable

Bsp:
$$(i+5)[i \leftarrow j+3] = (j+3)+5$$

wobei
$$(i + 5) : E, [i : v, j + 3 : F]$$

$$(i*5)[i \leftarrow j+3] = (j+3)*5$$

$$(\sum i \mid true : i^2)[i \leftarrow j + 3] = (\sum i \mid true : i^2)$$

$$(\sum i \mid true : i^2) = (\sum j \mid true : j^2)$$

$$= (\sum j \mid true[i \leftarrow j] : i^2[i \leftarrow j])$$

$$= (\sum j \mid true:j^2)$$

 $42[i \leftarrow j+3] = 42$ "Man kann die Bedeutung des Universums nicht aendern."

Bsp: $(\sum i | 1 \le i < n : i^2)$

wobei
$$i: v, (1 \le i < n): R, i^2: P$$

$$= (\sum j \mid (1 \leqslant i < n)[i \leftarrow j] : i^2[i \leftarrow j])$$

wobei j:w

$$= (\sum j \mid 1 \leqslant j < n : j^2)$$

Aber: Vorsicht:

$$\begin{array}{l} (\sum i: \mid 1 \leqslant i < n:i^2) \\ n = 0: 0 (neutral +) \end{array}$$

$$n = 0: 0(neutral+)$$

$$n = 1 : 1$$

haengt von \boldsymbol{n} ab

$$(\sum n: \mid 1 \leqslant n < n: n^2)$$

 ∞ undefiniert

haengt nicht vom n ab