왜 샘플링이 필요한가?

Rejection sampling 강의내용에서

- 우리는 확률분포 혹은 확률분포로 표현될 수 있는 p(x)알고 있음
- p(x)를 evoloped 하는 함수 q(x)를 정의하여 sampling을 수행

궁금증: p(x)를 아는데 굳이 따로 Sampling을 해야하나?

샘플링(sampling) 이란 무엇일까?

간단하게 말해, 샘플링은 어떤 자료에서 일부 값을 추출하는 것을 의미한다. 통계에서의 샘플링은 다른 말로 "표집"이라고 불린다.

즉, 샘플링은 모집단에서 표본을 추출하는 일인 것이다.

예시)

10000개 원소를 가진 모집단 가우시안 정규분포를 따르고 있을때 100개의 샘플로 표본집단을 만들어라.

아래와 같은 사고 흐름이 생김

- x in [-inf, inf] ~= [-10sigma, 10sigma]
- [-10sigma, 10sigma]에서 100개를 uniform하게 뽑음
- 이때 해당 분포가 모집단을 잘 표현할 수 있을까?

그 분포로 histogram(a.k.a. PMF)를 그리면 uniform distribution이 나올 것임 따라서 확률분포(빈도)를 고려하여 sampling을 수행했다고 볼 수 없음.

그럼 확률분포로 sampling을 수행한다는 것은 무슨 의미일까?

$$y = f(x)$$

위와 같은 분포를 알고 있을때 우리는 y 즉, f(x)를 알고 있음. 따라서 x를 알고 싶다는 것은 $f^{-1}(y)$ 를 알고 있다는 것과 동치하지만 모든 분포 아니, 대부분의 분포가 역함수가 존재하지 않음

Rejection sampling

Rejection Sampling은 우리가 Target function의 PDF는 알고 있지만, 그 함수에서 직접 샘플링 하는것이 매우 어렵거나 불가능할때(항상 어려움) 효율적으로 샘플링 하기 위해 사용되는 방법이다.

예시)

아래와 같은 함수를 알고 있을때,

$$f(x) = 0.3 \exp(-0.2x^2) + 0.7 \exp(-0.2(x-10)^2)$$

해당 분포를 target distrubtion이라고 부름

Step 1. 제안분포

처음 우리가 쉽게 분포를 생성할 수 있는 분포를 가정하여 g(x)라고 생각해보자.

보통은 uniform distribution이 가장 분포를 만들기 편하다.

또한, 일반적으로 타겟 분포는 무한대의 정의역을 가지니, 유의미한 범위에서의 정의역을 새로 정의해야 한다.

$$x = \{x | -7 \le x < 17\}$$

그러면 제안분포는 아래와 같이 생긴다.

또한 임의의 적당한 상수배를 취하여 타겟 분포를 모두 포함할 수 있도록 해주자

Step 2. 샘플링 과정

$$\frac{f(x_0)}{(Mg(x_0))}$$

샘플링 하나(initial sample, x_0)를 추출함.

$$r=rac{f(x_0)}{(Mg(x_0))}$$

Step 3. 비교

위의 값을 랜덤하게 형성되는 $u=\{u|0\leq u<1\}$ 의 값과 비교함

Vola!

위와 같은 방법은 다음과 같은 문제점들을 가지고 있음

- 적절한 제안분포와 상수배(M) 찾기
- 이전에 관측치와 새로운 관측치가 서로 무관하여 불필요한 과정을 반복함

Markov chain Monte Carlo (MCMC)

Monte Carlo

• 통계적인 특성을 이용해 무수히 많이 시도하여 원하는 수치적 모델링의 결과를 얻어내는 방식

Markov chain

현재 상태가 다음 상태에만 영향을 받는 확률 과정 예시)

- 애플을 사용하던 사람이 그대로 애플을 사용할 확률은 71.4%, 그렇지 않은 경우는 모두 갤럭시로 이동
- 갤럭시를 사용하던 사람이 그대로 갤럭시를 사용할 확률을 63.7% 그렇지 않은 경우는 모두 애플로 이동
- 초기 시장 점유율은 애플과 삼성이 각각 49.2%, 50.8%

 $P(X_1=$ 애플 $)=P(X_0=$ 애플 $)*P(X_1=$ 애플 $)|X_0=$ 애플 $)+P(X_0=$ 애플 $)*P(X_1=$ 애플 $)|X_0=$ 삼성)이런식으로 기존 스테이트에만 영향을 받게 됌 여기서

$$\begin{array}{ccc} Apple & Sam & Current \ state \\ Apple & Sam & \begin{bmatrix} 0.714 & 0.363 \\ 0.286 & 0.637 \end{bmatrix} = M \end{array}, \begin{bmatrix} 0.492 \\ 0.508 \end{bmatrix} = u \end{array}$$

위와 같이 수식을 전개 할 수 있고, 연속적인 시간의 흐름으로 생각하면,

$$\begin{bmatrix} 0.492 \\ 0.508 \end{bmatrix} = u_0 \xrightarrow{\begin{bmatrix} 0.714 & 0.363 \\ 0.286 & 0.637 \end{bmatrix}} = M \xrightarrow{\begin{bmatrix} 0.535 \\ 0.464 \end{bmatrix}} = u_1 \xrightarrow{\begin{bmatrix} 0.714 & 0.363 \\ 0.286 & 0.637 \end{bmatrix}} = M \xrightarrow{\begin{bmatrix} 0.551 \\ 0.449 \end{bmatrix}} = u_2$$
February

March

위의 그림처럼 표현이 가능함.

일반화하면

$$S_i = M^i * S_0$$

Markov Chain Monte Carlo

무작위 하게 샘플링을 하여 원하는 테스크를 수행하지만, 샘플링하는 과정에서 전 단계의 샘플링이 뒷 단계의 샘플링에 영향을 준다는 의미.

다양한 알고리즘이 사용되지만 (Metropolis)이 주로 사용 됌

Metropolis 알고리즘

강의내용 뒤에서 배울 내용임

$$f(x) = 0.3 {\rm exp}(-0.2x^2) + 0.7 {\rm exp}(-0.2(x-10)^2)$$

위와 같은 함수를 알고 있다고 가정

1. 초기화 과정 변수를 아무거나 하나 먼저 고름

2. 제안분포로부터 다음 포인트를 추천받기

Metropolis는 synmmetric한 분포를 사용하여 제안분포를 만드는 것을 고안함.

g(x)를 제안분포로 정의. 제안분포는 시작점을 평균으로 갖고 너비는 임의의 설정된 값을 갖는 정규분포

제안분포에서 임의의 값을 설정하여 그 값을 수용할지 승낙할지 결정한다.

왼쪽 그림에서는 제안 분포의 값이 더 신뢰가 높기 때문에 거절하고, 오른쪽 그림에서는 기존 분포의 값이 더 신뢰가 높기 때문에 승낙함 즉, 수용 기준은 아래와 같다

$$\frac{f(x_{i+1})}{f(x_i)} > 1$$

해당 조건으로만 수용조건을 만들면, 제안분포가 타겟분포를 envoloped 하게 만들어지면 모두 수용하지 못함.

따라서 제안분포에 대한 불확실성 문제를 해소하기 위해서 다음 단계에서 수용할 수 있는 방법을 마련함 3. 패자부활전

[0,1] 사이에 값에서 uniform distribution을 따르는 u에서 아래 조건을 만족하면 수용

$$rac{f(x_{i+1})}{f(x_i)}>u$$

2~3 과정을 무한히 반복하면 결국 수렴함.

MCMC를 활용한 Bayesian estimation

표본집단에서 모집단의 특성(평균, 분산 등)을 설명하는 파라미터를 추정하는데에도 MCMC가 사용 될 수 있음

예시)

모집단은 30000개의 원소로 이루어진 평균 10, 표준편차가 3인 정규분포를 따름 표본집단은 1000개의 표본만 추출함

자세한 설명은 아래 링크 참조....

 $\underline{https://angeloyeo.github.io/2020/09/16/rejection_sampling.html}$

https://www.secmem.org/blog/2019/01/11/mcmc/

https://untitledtblog.tistory.com/134

https://m.blog.naver.com/jinis_stat/221648406160