

Inhalt

Basics

Th $(\mathbb{N},+)$ – A Decidable Theory

Th $(\mathbb{N}, +, \times)$ – An Undecidable Theory

Gödel's Incompleteness Theorem

Conclusion

References

Automata

Example automaton that accepts all binary strings containing "00" source: [1]

Automata

Example automaton that accepts all binary strings containing an even number of "1" source: [1]

Turing Machines

Example turing machine source: [2]

$$\forall q \; \exists p \; \forall x,y \; [p>q \land (x,y>1 \rightarrow xy \neq p)]$$

$$\forall q \; \exists p \; \forall x, y \; [p > q \land (x, y > 1 \rightarrow xy \neq p)]$$

"There are infinitely many prime numbers."

$$\forall q \; \exists p \; \forall x,y \; [p>q \land (x,y>1 \rightarrow xy \neq p)]$$

"There are infinitely many prime numbers."

- universe U
 - set of assignable variable values
 - here ℕ

$$\forall q \; \exists p \; \forall x,y \; [p > q \land (x,y > 1 \rightarrow xy \neq p)]$$

$$= \quad \forall q \; \exists p \; \forall x,y \; \left[R_1(p,q) \land \left(\left(R_1(x,1) \land R_1(y,1) \right) \rightarrow R_2(x,y,p) \right) \right]$$
"There are infinitely many prime numbers."

- universe U
 - set of assignable variable values
 - here \mathbb{N}

- model M
 - universe with assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

$$\forall q \; \exists p \; \forall x,y \; [p > q \land (x,y > 1 \rightarrow xy \neq p)]$$

"There are infinitely many prime numbers."

- universe U
 - set of assignable variable values
 - here N
- model M
 - universe with assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

- language L(M)
 - sentences that make sense in ${\mathcal M}$
 - here L($\mathbb{N}, >_2, (\times \neq)_3$)

$$\forall q \; \exists p \; \forall x,y \; [p > q \land (x,y > 1 \rightarrow xy \neq p)]$$

"There are infinitely many prime numbers."

- universe U
 - set of assignable variable values
 - here $\mathbb N$
- model M
 - universe with assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

- language L(M)
 - sentences that make sense in ${\mathcal M}$
 - here L($\mathbb{N}, >_2, (\times \neq)_3$)
- *theory* $Th(\mathcal{M})$
 - true sentences formed with ${\cal M}$
 - here Th $(\mathbb{N}, >_2, (\times \neq)_3)$

What Is Decidability?

Generally:

- $M, N \text{ sets, } \varphi \in M$
- *N* decidable := there is an algorithm that decides whether $\varphi \in N$

What Is Decidability?

Generally:

- $M, N \text{ sets, } \varphi \in M$
- *N* decidable := there is an algorithm that decides whether $\varphi \in N$

For logic:

- \mathcal{M} model, $\varphi \in L(\mathcal{M})$
- Th (\mathcal{M}) decidable := there is an algorithm that decides whether φ is true in \mathcal{M}

Theorem 1

Th $(\mathbb{N}, +)$ is decidable

Theorem 1

Th $(\mathbb{N}, +)$ is decidable

i.e., there is an algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N},+)$ is true or false.

Let $i \in \mathbb{N} \setminus \{0\}$ and define

$$\Sigma_{i} := \left\{ \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix} \right\} \subset \left\{0, 1\right\}^{i}$$

and $\Sigma_0 := \{()\}$. An example for a word in Σ_2 :

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \sim \quad \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

Now, let

- $i \in \{1, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi] \in \mathsf{L}(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_i \coloneqq Q_{i+1} x_{i+1} \dots Q_l x_l [\psi]$ and by convention $\varphi_l \coloneqq \psi$

Now, let

- $i \in \{1, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi] \in \mathsf{L}(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_i \coloneqq Q_{i+1} x_{i+1} \dots Q_l x_l [\psi]$ and by convention $\varphi_l \coloneqq \psi$

Also, for $a_1, \ldots, a_i \in \mathbb{N}$, let $\varphi_i(a_1, \ldots, a_i)$ be φ_i with all occurrences of x_j replaced by a_j for $j \in \{1, \ldots, l\}$.

 $\implies \varphi_l$ is only a Boolean expression.

Take

- an automaton that accepts simple addition (a + b = c)
- an automaton that accepts boolean "and" expressions $(p \land q)$
- an automaton that accepts boolean "or" expressions ($p \lor q$)
- an automaton that accepts boolean "not" expressions ($\neg p$)

Take

- an automaton that accepts simple addition (a + b = c)
- an automaton that accepts boolean "and" expressions ($p \wedge q$)
- ullet an automaton that accepts boolean "or" expressions (pee q)
- an automaton that accepts boolean "not" expressions ($\neg p$)

Combine them (closure, union, intersection, complementation) to get the automaton A_l that accepts tuples $(a_1, \ldots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \ldots, a_l)$ is true.

Take

- an automaton that accepts simple addition (a + b = c)
- an automaton that accepts boolean "and" expressions ($p \wedge q$)
- an automaton that accepts boolean "or" expressions ($p \lor q$)
- an automaton that accepts boolean "not" expressions ($\neg p$)

Combine them (closure, union, intersection, complementation) to get the automaton A_l that accepts tuples $(a_1, \ldots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \ldots, a_l)$ is true.

Important: There is an algorithm that constructs A_I from $\varphi_I = \psi$.

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying all states
- adding a new start state
- making A_i guess the right a_{i+1} indeterministically

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying all states
- adding a new start state
- making A_i guess the right a_{i+1} indeterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying all states
- adding a new start state
- making A_i guess the right a_{i+1} indeterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

$$\implies$$
 A_i accepts input $(a_1,\ldots,a_i)\in\mathbb{N}^i$ \Leftrightarrow φ_i is true

◆ロト→御ト→草ト→草 りゅ@

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying all states
- adding a new start state
- making A_i guess the right a_{i+1} indeterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

$$\implies$$
 A_i accepts input $(a_1,\ldots,a_i)\in\mathbb{N}^i$ \Leftrightarrow φ_i is true

$$\implies$$
 A_0 accepts input () \Leftrightarrow $\varphi_0 = \varphi$ is true

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying all states
- adding a new start state
- making A_i guess the right a_{i+1} indeterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

$$\implies$$
 A_i accepts input $(a_1,\ldots,a_i)\in\mathbb{N}^i$ \Leftrightarrow φ_i is true

$$\implies$$
 A_0 accepts input () \Leftrightarrow $\varphi_0 = \varphi$ is true

Let the algorithm return " $\varphi \in \text{Th}(\mathbb{N},+)$ " \Leftrightarrow A_0 accepts input ()

◆ロト→御ト→草ト→草 りゅ@

Theorem 2

Th $(\mathbb{N}, +, \times)$ is undecidable

Decidability of Logical Theories Lucas Waclawczyk Dresden, May 4, 2020

Theorem 2

Th $(\mathbb{N}, +, \times)$ is undecidable

i.e., there is no algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N},+)$ is true or false.

• The word problem for Turing machines is undecidable.

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*
 - to a formula $\varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ that contains only one free variable x, such that

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*
 - to a formula $\varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

 \implies The formulas $\exists x \varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ are decidable.

Proof Idea for Theorem 2

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w} \in \mathsf{Th}\,(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

- \implies The formulas $\exists x \varphi_{M,w} \in \mathsf{Th}(\mathbb{N},+,\times)$ are decidable.
- → The word problem for Turing machines is decidable.

Proof Idea for Theorem 2

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*
 - to a formula $\varphi_{M,w} \in \mathsf{Th}\,(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

- \implies The formulas $\exists x \varphi_{M,w} \in \mathsf{Th}\left(\mathbb{N},+,\times\right)$ are decidable.
- → The word problem for Turing machines is decidable.
- \implies 2

Thinking further...

Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Thinking further...

Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Lemmas:

1. The provable statements of Th $(\mathbb{N}, +, \times)$ are Turing recognizable. **Proof idea:** Just try all possible (suitably encoded) proofs.

Thinking further...

Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Lemmas:

- 1. The provable statements of Th $(\mathbb{N}, +, \times)$ are Turing recognizable. **Proof idea:** Just try all possible (suitably encoded) proofs.
- 2. There is a true statement in Th $(\mathbb{N}, +, \times)$ that is not provable. **Proof idea:** Contradiction to Theorem 2 by using 1.

A True, Unprovable Statement

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

A True, Unprovable Statement

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

Construction: Let *M* be a Turing machine that operates as follows.

- Delete the input
- Look for proof of $\neg \exists x [\varphi_{M,0}] \in \mathsf{Th}\,(\mathbb{N},+,\times)$
- Accept on proof, reject if no proof can be found

A True, Unprovable Statement

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

Construction: Let *M* be a Turing machine that operates as follows.

- Delete the input
- Look for proof of $\neg \exists x [\varphi_{M,0}] \in \mathsf{Th}\,(\mathbb{N},+,\times)$
- Accept on proof, reject if no proof can be found
- $\implies \neg \exists x [\varphi_{M,0}]$ is the wanted statement.

Gödel's Method

• Construct the statement "This statement cannot be proved by the axioms."

Gödel's Method

- Construct the statement "This statement cannot be proved by the axioms."
- Argue against just adding this statement to the axiom.

Gödel's Method

- Construct the statement "This statement cannot be proved by the axioms."
- Argue against just adding this statement to the axiom.
- ⇒ Incompleteness ②

Conclusion

⇒ There are (very simple) indecidable logical theories.

Conclusion

- \implies There are (very simple) indecidable logical theories.
- → Mathematics cannot be mechanized.

Conclusion

- \implies There are (very simple) indecidable logical theories.
- → Mathematics cannot be mechanized.
- \implies No sound logical system can be complete.

References

- [1] Martin Alessandro Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=75082873
- [2] https://www.inf-schule.de/grenzen/berechenbarkeit/turingmaschine/station_turingmaschine
- [3] Michael Sipser: Introduction to the Theory of Computation. Thomson Course Technology, 2006
- [4] https://www.youtube.com/watch?v=04ndIDcDSGc
- [5] Prof. Dr. Franz Baader: Skript Theoretische Informatik und Logik (Sommersemester 2020), TU Dresden

