QUANTITATIVE METHODS

The New School Aaron Hill

CENTRAL TENDENCY

Week Two

Mean

- The mean is the point of the distribution around which the variation of the scores is minimized. The mean is closer to all of the values than the other measures of central tendency.
- Least squares principle

Characteristics of the Mean

 Least squares principle: the mean is the point in a distribution around which the variation of the scores is minimized

Variable X:

X	Mean	X - Mean
1	2	-1
2	2	0
3	2	1
Mean=2		Sum=0

"The average tax cut is \$1,586."

White House estimate in 2003, on the then-proposed tax cuts

Characteristics of the Mean

Characteristics of the Mean

Every score in the distribution affects it

X

"The average tax cut is \$1,586."

White House estimate in 2003, on the then-proposed tax cuts

The median tax cut is \$470.

Combined Effect of 2003 Tax Cuts

Income (in thousands)	Percent of Households	Average Tax Change
Less than 10	23.7	-\$8
10-20	16.6	-\$307
20-30	13.3	-\$638
30-40	9.7	-\$825
40-50	7.6	-\$1,012
50-75	13.0	-\$1,403
75-100	6.8	-\$2,543
100-200	6.6	-\$3,710
200-500	1.6	-\$7,173
500-1,000	0.3	-\$22,485
More than 1,000	0.1	-\$112,925

Source: <u>Tax Policy Center table T03-0123</u>

Some Flaws of Averages

- Outliers have strong influence on the mean
- Aggregated data is sometimes misleading

DISTRIBUTIONS AND DISPERSION

Exam Scores

- Exam Scores
- 88, 48, 60, 51, 57, 85, 69, 75, 97, 72, 71, 79, 65, 63, 73

Bar Chart of Exam Scores

Histogram: A Better Graph for Interval-Ratio

Exam Grades

Score	Coun
[40-50)	1
[50-60)	2
[60-70)	4
[70-80)	5
[80-90)	2
[90-100]	1

Histogram

 a graphical display of the distribution of a quantitative variable. It plots the number (count) of observations that fall in intervals of values.

Histogram: A Better Graph for Interval-Ratio

Symmetric, Single-peaked (Unimodal) Distribution

Symmetric, Double-peaked (Bimodal) Distribution

Symmetric, Uniform, Distribution

Skewed-Right Distribution

Skewed-Left Distribution

MEASURES OF DISPERSION

What does the mean tell us?

• The mean age is 30.

What does the mean tell us?

• The mean income is \$60,000

Measures of Dispersion

- Tell us more about the distribution.
- Specifically, how consistently or inconsistently the data disperse around the mean.

Measures of Dispersion

 Would you walk across a river that is, on average, 3 feet deep?

The infamous tax cuts

- The Bush tax cuts were justified with the following rationale:
 - The average family would save \$1,586 in taxes.
- Technically correct, but misleading. The *typical* family would save less than \$650.

How do the distributions differ?

- 50 50 50 50 (mean=50)
- 10 20 50 80 90 (mean=50)

Measures of Dispersion

- Min & Max the minimum and maximum values
- Range the minimum value subtracted from the maximum value
- Interquartile Range the first quartile subtracted from the third quartile
- Standard Deviation a measure of deviation from the mean

Best Actress Oscar Winners 1970-2001

Academy Award for Best Actress

1970 - 2010

Average age: 37.4

Standard Deviation

 Quantifies the spread of a distribution by measuring how far the observations are from their mean. The standard deviation gives the average (or typical distance) between a data point and the mean.

Standard Deviation

- The Standard Deviation Rule:
 - Approximately 68% of the observations fall within 1 standard deviation of the mean
 - Approximately 95% of the observations fall within 2 standard deviations of the mean
 - Approximately 99.7% (or virtually all) of the observations fall within 3 standard deviations of the mean

Calculating Standard Deviation

$$s = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N - 1}}$$

n

$$Mean(X) = \frac{\sum_{i=1}^{n} x_i}{n}$$

The mean: A Perfect Fit

FIGURE 2.4

Graph showing the difference between the observed number of friends that each statistics lecturer had, and the mean number of friends

Calculating 'Error'

- A deviation is the difference between the mean and an actual data point.
- Deviations can be calculated by taking each score and subtracting the mean from it:

Deviation =
$$x_i - \bar{x}$$

Use the Total Error?

 We could just take the error between the mean and the data and add them.

Score	Mean	Deviation
1	2.6	-1.6
2	2.6	-0.6
3	2.6	0.4
3	2.6	0.4
4	2.6	1.4
	Total =	0

$$\sum (X - \overline{X}) = 0$$

Sum of Squared Errors

- We could add the deviations to find out the total error.
- Deviations cancel out because some are positive and others negative.
- Therefore, we square each deviation.
- If we add these squared deviations we get the Sum of Squared Errors (SS).

Score	Mean	Deviation	Squared Deviation
1	2.6	-1.6	2.56
2	2.6	-0.6	0.36
3	2.6	0.4	0.16
3	2.6	0.4	0.16
4	2.6	1.4	1.96
		Total	5.20

$$SS = \sum (X - \overline{X})^2 = 5.20$$

Variance

- The sum of squares is a good measure of overall variability, but is dependent on the number of scores.
- We calculate the average variability by dividing by the number of scores (n).
- This value is called the variance (s^2).

variance
$$(s^2) = \frac{SS}{N-1} = \frac{\sum (x_i - \overline{x})^2}{N-1} = \frac{5.20}{4} = 1.3$$

Standard Deviation

- The variance has one problem: it is measured in units squared.
- This isn't a very meaningful metric so we take the square root value.
- This is the Standard Deviation (s).

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{\frac{5.20}{4}} = 1.14$$

Important Things to Remember

- The Sum of Squares, Variance, and Standard Deviation represent the same thing:
 - The 'Fit' of the mean to the data
 - The variability in the data
 - How well the mean represents the observed data
 - Error

Same Mean, Different SD

FIGURE 2.5

Graphs
illustrating data
that have the
same mean but
different standard
deviations

Exam Scores

88, 48, 60, 51, 57, 85, 69, 75, 97, 72, 71, 79, 65, 63, 73

Which ambulance service do you prefer?

• Variable: number of minutes between 911 call and arrival of ambulance

Ambulance Service	A	В
Mean	7.1	7.1

Ambulance Response Time at Two Hospitals

Histograms

Statistical humor

Aggregated Averages

- In October 2009, the jobless rate was 10.2%
- In 1982 the jobless rate was 10.8%
- Which recession was worse?

Adding Up

Jobless rates for workers at each education level have passed peaks reached in the recession of the early 1980s. But the combined unemployment rate hasn't eclipsed its prior peak. The work force now includes more workers with college diplomas, who have the lowest unemployment of any group.

Quarterly unemployment rate for workers 25 and older, by education level

Source: Henry Farber of Princeton University, analyzing Bureau of Labor Statistics data

The SD and the Shape of a Distribution

FIGURE 2.6 Two distributions with the same mean, but large and small standard deviations

 Visualizing data doesn't have to be constrained by the limitations of Excel, PowerPoint, SPSS, or any other 'tool'

www.youtube.com/watch?v=jbkSRLYSojo

Next:

PROBABILITY