**Case-Control Association Testing** 

Association Testing with Quantitative Traits

# Session 01 - Exercises

## Deepika



Before you begin:

- Make sure that R is installed on your computer
- For this lab, we will use a few R libraries:

Set your working directory to your home directory using in R\*

The data files are in the folder /data/SISG2022M15/data/.

# **Case-Control Association Testing**

## Introduction

We will be using the LHON dataset

(https://raw.githubusercontent.com/joellembatchou/SISG2022\_Association\_Mapping/master/data/LHON.txt) covered in the lecture notes for this portion of the exercises. The LHON dataset is from a case-control study and includes both phenotype and genotype data for a candidate gene.

Let's first load the LHON data file into the R session.

```
vars
                  mean
                           sd median trimmed
                                                mad min max range
                                                                    skew kurtosis
IID*
          1 328 164.50 94.83 164.5
                                                               327
                                                                            -1.21
                                     164.50 121.57
                                                       1 328
                                                                    0.00
GEN0*
          2 328
                  2.68 0.56
                                 3.0
                                        2.78
                                               0.00
                                                           3
                                                                 2 - 1.54
                                                                              1.38
                                                       1
PHEN0*
          3 328
                  1.73 0.45
                                 2.0
                                        1.78
                                               0.00
                                                       1
                                                           2
                                                                 1 - 1.02
                                                                            -0.95
         se
IID*
       5.24
GENO* 0.03
PHFN0* 0.02
```

## **Exercises**

Here are some things to look at:

- 1. Examine the variables in the dataset:
- How many observations?

```
[1] 328
```

How many cases/controls?

## CASE CONTROL 89 239

• What is the distribution of the genotypes across cases/controls?

### Cell Contents

| 1          |     | N            |
|------------|-----|--------------|
| Chi-square | e ( | contribution |
| 1          | N   | / Row Total  |
| 1          | N   | / Col Total  |
| N          | /   | Table Total  |
|            |     |              |

Total Observations in Table: 328

|              | GEN0  |       |       |           |
|--------------|-------|-------|-------|-----------|
| PHEN0        | l cc  | CT    | TT    | Row Total |
|              |       |       |       |           |
| CASE         | [ 6   | 8     | 75    | 89        |
|              | 0.634 | 7.267 | 1.682 |           |
|              | 0.067 | 0.090 | 0.843 | 0.271     |
|              | 0.375 | 0.108 | 0.315 |           |
|              | 0.018 | 0.024 | 0.229 |           |
|              |       |       |       |           |
| CONTROL      | 10    | 66    | 163   | 239       |
|              | 0.236 | 2.706 | 0.626 |           |
|              | 0.042 | 0.276 | 0.682 | 0.729     |
|              | 0.625 | 0.892 | 0.685 |           |
|              | 0.030 | 0.201 | 0.497 |           |
|              |       |       |       |           |
| Column Total | 16    | 74    | 238   | 328       |
|              | 0.049 | 0.226 | 0.726 |           |
|              |       |       |       |           |

Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.

i Please use `after\_stat(count)` instead.

This warning is displayed once every 8 hours.

Call `lifecycle::last\_lifecycle\_warnings()` to see where this warning was generated.



• What about for allele types?

## Cell Contents

| N                       |
|-------------------------|
| Chi-square contribution |
| N / Row Total           |
| N / Col Total           |
| N / Table Total         |
|                         |

Total Observations in Table: 656

|              | I     |           |           |  |
|--------------|-------|-----------|-----------|--|
| PHEN0        | C     | T         | Row Total |  |
| CASE         |       | <br>  158 | <br>  178 |  |
|              | 2.669 | 0.514     | İ         |  |
|              | 0.112 | 0.888     | 0.271     |  |
|              | 0.189 | 0.287     | l İ       |  |
|              | 0.030 | 0.241     | l I       |  |
|              |       |           |           |  |
| CONTROL      | 86    | 392       | 478       |  |
|              | 0.994 | 0.192     | l I       |  |
|              | 0.180 | 0.820     | 0.729     |  |
|              | 0.811 | 0.713     | l I       |  |
|              | 0.131 | 0.598     | l I       |  |
|              |       |           |           |  |
| Column Total | 106   | 550       | 656       |  |
|              | 0.162 | 0.838     | l I       |  |
|              |       |           |           |  |



2. Perform a logistic regression analysis for this data with CC as the reference genotype using the glm() function. (Hint: make sure to convert the phenotype to a binary O/1 variable and specify family = binomial(link = "logit") in the glm call)

```
CASE CONTROL
0 0 239
1 89 0
```

```
Call:
glm(formula = BinPheno ~ GENO, family = binomial(link = "logit"),
    data = LHON.df)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5108
                         0.5164 - 0.989
                                          0.3226
GENOCT
             -1.5994
                         0.6378
                                -2.508
                                          0.0122 *
GENOTT
             -0.2654
                         0.5349
                                -0.496
                                          0.6197
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 383.49
                                   degrees of freedom
                           on 327
Residual deviance: 368.48 on 325
                                   degrees of freedom
AIC: 374.48
Number of Fisher Scoring iterations: 4
```

3. Obtain odds ratios and confidence intervals for the CT and TT genotypes relative to the CC reference genotype. Interpret.

```
(Intercept) GENOCT GENOTT 0.6000000 0.2020202 0.7668712
```

```
2.5 % 97.5 % (Intercept) 0.20413356 1.6156811 GENOCT 0.05710635 0.7223515 GENOTT 0.27431485 2.3258908
```

4. Is there evidence of differences in odds of being a case for the CT and TT genotypes (compared to CC)?

```
OR 2.5 % 97.5 % p_value
(Intercept) 0.6000000 0.20413356 1.6156811 0.32256061
GENOCT 0.2020202 0.05710635 0.7223515 0.01215534
GENOTT 0.7668712 0.27431485 2.3258908 0.61973850
```

*Extra*: 5. Perform the logistic regression analysis with the additive genotype coding. Obtain odds ratios and confidence intervals. Is there evidence of an association? How does it compare with the 2-parameter model?

```
Call:
glm(formula = BinPheno ~ Dosage, family = binomial(link = "logit"),
    data = LHON.df)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                        0.4554 -3.970 7.2e-05 ***
(Intercept) -1.8077
Dosage
             0.4787
                        0.2505
                                 1.911
                                         0.0559 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 383.49 on 327 degrees of freedom
Residual deviance: 379.47 on 326 degrees of freedom
AIC: 383.47
Number of Fisher Scoring iterations: 4
```

```
(Intercept) Dosage
0.1640322 1.6140439
```

```
Waiting for profiling to be done...
```

```
2.5 % 97.5 % (Intercept) 0.06293774 0.3801326 Dosage 1.01029266 2.7133859
```

```
Waiting for profiling to be done...
```

```
OR 2.5 % 97.5 % p_value
(Intercept) 0.1640322 0.06293774 0.3801326 7.201892e-05
Dosage 1.6140439 1.01029266 2.7133859 5.594566e-02
```

# **Association Testing with Quantitative Traits**

## Introduction

We will be using the Blood Pressure dataset

(https://raw.githubusercontent.com/joellembatchou/SISG2022\_Association\_Mapping/master/data/bpdata.csv) for this portion of the exercises. This dataset contains diastolic and systolic blood pressure measurements for 1000 individuals, and genotype data at 11 SNPs in a candidate gene for blood pressure. Covariates such as gender (sex) and body mass index (bmi) are included as well.

Let's first load the file into R.

```
vars
                    mean
                              sd median trimmed
                                                     mad min
                                                               max range
                                                                           skew
٧1
          1 1000 500.50 288.82
                                  500.5
                                          500.50 370.65
                                                            1 1000
                                                                     999
                                                                           0.00
                                                                        1 - 0.13
           2 1000
                    1.53
sex*
                            0.50
                                     2.0
                                            1.54
                                                    0.00
                                                            1
                                                                 2
sbp
          3 1000 141.42
                          18.47
                                  140.0
                                          140.72
                                                  17.79
                                                          87
                                                               202
                                                                     115
                                                                          0.35
          4 1000
                   82.61
                           10.84
                                   82.0
                                           82.60
                                                   10.38
                                                          47
                                                               117
                                                                      70 -0.03
dbp
          5
             988
                    2.31
                            0.67
                                     2.0
                                            2.39
                                                           1
                                                                 3
                                                                        2 - 0.46
snp1*
                                                    1.48
             978
                    2.65
                            0.54
                                     3.0
                                            2.72
                                                    0.00
                                                            1
                                                                 3
                                                                        2 - 1.19
snp2*
          6
          7
             960
                                     1.0
                                                            1
                                                                 3
                                                                        2
                                                                           1.07
snp3*
                    1.39
                            0.56
                                            1.32
                                                    0.00
             928
                    1.75
                            0.70
                                     2.0
                                                    1.48
                                                            1
                                                                 3
                                                                        2
                                                                           0.38
snp4*
          8
                                            1.69
          9
             916
                                                                 3
                                                                        2
snp5*
                    1.20
                            0.43
                                     1.0
                                            1.11
                                                    0.00
                                                            1
                                                                           1.94
snp6*
         10
             929
                    1.52
                            0.64
                                     1.0
                                            1.42
                                                    0.00
                                                            1
                                                                 3
                                                                        2
                                                                          0.84
snp7*
         11
             986
                    2.44
                            0.65
                                     3.0
                                            2.53
                                                    0.00
                                                            1
                                                                 3
                                                                        2 - 0.73
                                                                 3
snp8*
         12
             984
                    1.35
                            0.55
                                     1.0
                                            1.26
                                                    0.00
                                                            1
                                                                        2
                                                                          1.29
         13
snp9*
             966
                    2.69
                            0.53
                                     3.0
                                            2.78
                                                    0.00
                                                           1
                                                                 3
                                                                        2 - 1.45
         14
snp10*
             978
                    1.91
                            0.71
                                    2.0
                                            1.89
                                                    1.48
                                                            1
                                                                 3
                                                                        2 0.13
                                            2.76
         15
              979
                            0.51
                                    3.0
                                                    0.00
                                                           1
                                                                 3
                                                                        2 - 1.28
snp11*
                    2.69
bmi
         16
             999
                   30.26
                            6.23
                                   29.0
                                           29.74
                                                    5.93
                                                          16
                                                                51
                                                                      35
                                                                          0.83
       kurtosis
٧1
           -1.209.13
sex*
          -1.990.02
sbp
            0.15 0.58
dbp
           0.32 0.34
snp1*
          -0.800.02
snp2*
            0.42 0.02
snp3*
           0.14 0.02
snp4*
           -0.92 0.02
snp5*
           2.91 0.01
snp6*
          -0.35 0.02
          -0.51 0.02
snp7*
snp8*
           0.67 0.02
snp9*
           1.15 0.02
snp10*
          -1.030.02
snp11*
            0.59 0.02
bmi
            0.70 0.20
```

## **Exercises**

Here are some things to try:

- 1. Perform a linear regression of systolic blood pressure (sbp) on SNP3 using the lm() function. Compare the estimates, confidence intervals and p-values you get using:
- additive (linear) model

```
CC TC TT
621 304 35
```

```
Call:
lm(formula = sbp ~ snp3Dosage, data = BP.df)
Residuals:
   Min
            1Q Median
                            30
                                   Max
-55.974 -12.418 -0.974 10.582 60.582
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 140.4179
                        0.7219 194.506
                                         <2e-16 ***
snp3Dosage
             2.5556
                        1.0615
                                 2.407
                                         0.0163 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.33 on 958 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared: 0.006014, Adjusted R-squared: 0.004976
F-statistic: 5.796 on 1 and 958 DF, p-value: 0.01625
```

```
(Intercept) snp3Dosage
140.417909 2.555635
```

```
2.5 % 97.5 % (Intercept) 139.0011786 141.834639 snp3Dosage 0.4724342 4.638837
```

```
Estimate 2.5 % 97.5 % p_value (Intercept) 140.417909 139.0011786 141.834639 0.000000000 snp3Dosage 2.555635 0.4724342 4.638837 0.01625073
```

dominant model

```
Call:
lm(formula = sbp ~ snp3Dom, data = BP.df)
Residuals:
           1Q Median
   Min
                         30
                                 Max
-56.218 -12.428 -0.823 10.572 60.572
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 140.428
                        0.736 190.801 <2e-16 ***
snp3Dom
            2.790
                       1.238 2.253
                                       0.0245 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.34 on 958 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared: 0.005269, Adjusted R-squared: 0.00423
F-statistic: 5.074 on 1 and 958 DF, p-value: 0.02451
```

```
(Intercept) snp3Dom
140.428341 2.789948
```

```
2.5 % 97.5 % (Intercept) 138.9839938 141.872689 snp3Dom 0.3593814 5.220514
```

```
Estimate 2.5 % 97.5 % p_value (Intercept) 140.428341 138.9839938 141.872689 0.000000000 snp3Dom 2.789948 0.3593814 5.220514 0.02450948
```

#### recessive model

```
Call:
lm(formula = sbp ~ snp3Rec, data = BP.df)
Residuals:
   Min
           1Q Median
                          30
                                 Max
-54.251 -12.501 -1.251 10.749 59.749
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 141.251 0.604 233.854 <2e-16 ***
snp3Rec
            4.463
                        3.163 1.411 0.159
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.37 on 958 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared: 0.002074, Adjusted R-squared: 0.001032
F-statistic: 1.991 on 1 and 958 DF, p-value: 0.1586
```

```
(Intercept) snp3Rec
141.250811 4.463475
```

```
2.5 % 97.5 %
(Intercept) 140.065471 142.43615
snp3Rec -1.744423 10.67137
```

```
Estimate 2.5 % 97.5 % p_value (Intercept) 141.250811 140.065471 142.43615 0.00000000 snp3Rec 4.463475 -1.744423 10.67137 0.1585706
```

### • 2 parameter model

CC TC TT 621 304 35

```
Call:
lm(formula = sbp \sim snp3, data = BP.df)
Residuals:
   Min
             10 Median
                             30
                                   Max
-55.931 -12.428 -0.931 10.572 60.572
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 140.4283
                        0.7361 190.773
                                         <2e-16 ***
snp3TC
              2.5026
                         1.2840
                                  1.949
                                         0.0516 .
                                         0.0975 .
snp3TT
              5.2859
                         3.1868
                                  1.659
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.34 on 957 degrees of freedom
  (40 observations deleted due to missingness)
Multiple R-squared: 0.006019, Adjusted R-squared: 0.003942
F-statistic: 2.898 on 2 and 957 DF, p-value: 0.05563
```

```
(Intercept) snp3TC snp3TT
140.428341 2.502580 5.285944
```

```
2.5 % 97.5 %
(Intercept) 138.98378278 141.872900
snp3TC -0.01723871 5.022398
snp3TT -0.96798634 11.539875
```

```
Estimate 2.5 % 97.5 % p_value (Intercept) 140.428341 138.98378278 141.872900 0.000000000 snp3TC 2.502580 -0.01723871 5.022398 0.05158487 snp3TT 5.285944 -0.96798634 11.539875 0.09750441
```

(Hint: for each case, first add a new column to the data frame, containing the 'predictor' variable you need. Then do the regression using  $\mbox{lm()}$ 

2. Provide a plot illustrating the relationship between sbp and the three genotypes at SNP3.



For question 3 and 4 below, R also has a 'formula' syntax, frequently used when specifying regression models with many predictors. To regress an outcome y on several covariates, the syntax is:

```
outcome ~ covariate1 + covariate2 + covariate3
```

3. Now redo the linear regression analysis of sbp from question 1 for the additive model, but this time adjust for sex and bmi. Do the results change?

```
Call:
lm(formula = sbp \sim snp3Dosage + sex + bmi, data = BP.df)
Residuals:
  Min
          1Q Median
                        3Q
                             Max
-58.83 -12.81 -0.82 11.58 57.80
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 145.85380 3.00271 48.574 < 2e-16 ***
                                         0.0126 *
                        1.05434 2.500
snp3Dosage
            2.63566
            -4.77580 1.17642 -4.060 5.32e-05 ***
sexMALE
bmi
            -0.09837
                        0.09481 -1.038 0.2997
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.19 on 955 degrees of freedom
  (41 observations deleted due to missingness)
Multiple R-squared: 0.02402, Adjusted R-squared: 0.02096
F-statistic: 7.836 on 3 and 955 DF, p-value: 3.608e-05
```

```
(Intercept) snp3Dosage sexMALE bmi
145.85379689 2.63566473 -4.77580021 -0.09837466
```

```
2.5 % 97.5 %
(Intercept) 139.9611289 151.74646484
snp3Dosage 0.5665706 4.70475889
sexMALE -7.0844766 -2.46712378
bmi -0.2844395 0.08769022
```

#### **Results with Covariates**

```
Estimate 2.5 % 97.5 % p_value (Intercept) 145.85379689 139.9611289 151.74646484 2.761186e-260 snp3Dosage 2.63566473 0.5665706 4.70475889 1.259244e-02 sexMALE -4.77580021 -7.0844766 -2.46712378 5.318310e-05 bmi -0.09837466 -0.2844395 0.08769022 2.997326e-01
```

#### **Results without Covariates**

```
Estimate 2.5 % 97.5 % p_value (Intercept) 140.417909 139.0011786 141.834639 0.000000000 snp3Dosage 2.555635 0.4724342 4.638837 0.01625073
```

4. What proportion of the heritability of sbp is explained by all 11 SNPs combined? (contrast categorical coding vs additive coding for the genotypes)

### **Categorical Coding**

```
Call:
lm(formula = sbp \sim snp1 + snp2 + snp3 + snp4 + snp5 + snp6 +
   snp7 + snp8 + snp9 + snp10 + snp11, data = BP.df
Residuals:
   Min
            1Q Median
                           30
                                 Max
-50.722 -11.967 -0.703 11.021 61.704
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 133.1726 12.4033 10.737
                                       <2e-16 ***
                       4.5991 -0.371
                                        0.711
snp1CT
           -1.7048
snp1TT
            1.9319
                       8.2839 0.233
                                        0.816
snp2AT
             0.7347
                       5.5923
                              0.131
                                        0.896
snp2TT
            -0.5118
                       6.9317 -0.074
                                        0.941
snp3TC
            4.7672
                       5.0211
                               0.949
                                        0.343
snp3TT
             6.6913
                       9.7904 0.683
                                        0.495
                       3.5501 -0.135
                                        0.893
snp4CT
            -0.4778
                       6.4874 0.361
                                        0.718
snp4TT
            2.3431
                       3.0462 0.391
                                        0.696
snp5CT
             1.1896
snp5TT
            -2.2787
                       7.5490 -0.302
                                        0.763
            -3.0266
                       2.0697 -1.462
                                        0.144
snp6AG
            2.1230
                       4.6650 0.455
                                        0.649
snp6GG
            -3.0873
                       3.9148 -0.789
                                        0.431
snp7AT
                       4.3146 -0.610
                                        0.542
snp7TT
            -2.6319
snp8CT
            -1.5509
                       3.6318 -0.427
                                        0.669
snp8TT
            -2.5507
                       7.3228 -0.348
                                        0.728
                       7.6170 0.797
                                        0.426
snp9CT
            6.0693
                       7.4517
                                        0.525
snp9TT
             4.7385
                               0.636
             1.4330
                       1.6466
                               0.870
                                        0.384
snp10CT
snp10TT
             1.9810
                       2.0699
                               0.957
                                        0.339
snp11CT
             4.8005
                       6.5175
                               0.737
                                        0.462
```

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' ' 1

0.434

0.665

9.2775

Residual standard error: 18.2 on 707 degrees of freedom (270 observations deleted due to missingness)

4.0226

snp11TT

Multiple R-squared: 0.02633, Adjusted R-squared: -0.003965

F-statistic: 0.8691 on 22 and 707 DF, p-value: 0.6372

```
Estimate
                             2.5 %
                                       97.5 %
                                                   p_value
(Intercept) 133.1725671 108.820890 157.524245 5.131083e-25
snp1CT
             -1.7048318 -10.734443
                                     7.324779 7.109834e-01
snp1TT
              1.9318980 -14.332013
                                    18.195809 8.156641e-01
snp2AT
              0.7346616 -10.244868
                                    11.714191 8.955201e-01
snp2TT
             -0.5118275 -14.121058
                                    13.097403 9.411599e-01
snp3TC
              4.7671827 -5.090918
                                    14.625283 3.427288e-01
snp3TT
              6.6912706 -12.530460
                                    25.913001 4.945449e-01
             -0.4777530 -7.447752
                                     6.492246 8.929866e-01
snp4CT
snp4TT
              2.3430912 -10.393724
                                    15.079906 7.180747e-01
snp5CT
              1.1896284 -4.791101
                                     7.170358 6.962657e-01
             -2.2787219 -17.099774
                                    12.542330 7.628481e-01
snp5TT
             -3.0265667 -7.090080
                                     1.036946 1.440994e-01
snp6AG
snp6GG
              2.1230367 -7.035788
                                    11.281861 6.491746e-01
snp7AT
             -3.0872887 -10.773220
                                     4.598642 4.305930e-01
snp7TT
             -2.6319274 -11.102829
                                     5.838974 5.420516e-01
             -1.5509162 -8.681351
                                     5.579519 6.694831e-01
snp8CT
snp8TT
             -2.5507399 -16.927782
                                    11.826302 7.276973e-01
snp9CT
              6.0693019 -8.885403
                                    21.024006 4.258307e-01
snp9TT
              4.7385208 -9.891650
                                    19.368692 5.250505e-01
snp10CT
              1.4329754 -1.799872
                                     4.665823 3.844573e-01
                                     6.044793 3.388680e-01
snp10TT
              1.9809712 -2.082851
                                    17.596510 4.616364e-01
              4.8005159 -7.995478
snp11CT
              4.0225845 -14.192153
                                    22.237323 6.647219e-01
snp11TT
```

Let's check the model if we had used additive coding for all SNPs.

```
SNP 1
 0 1 2
CC 119 0
CT 0 444
TT 0 0 425
SNP 2
   0
      1 2
AA 30 0 0
AT 0 285 0
TT 0 0 663
SNP 3
0 1 2
CC 621 0
TC 0 304
TT 0 0 35
SNP 4
 0
          2
      1
CC 368 0
 CT 0 421
 TT 0 0 139
SNP 5
   0 1
         2
CC 742 0
         0
CT 0 162
         0
 TT 0 0 12
SNP 6
 0
      1
         2
AA 521
AG 0 335 0
GG 0 0 73
SNP 7
   0 1 2
AA 85 0
AT 0 381
          0
TT 0 0 520
SNP 8
          2
   0 1
CC 678 0
          0
CT 0 271
         0
 TT 0 0 35
SNP 9
      1
    0
          2
CC 30 0
CT 0 239
 TT 0 0 697
SNP 10
```

```
CC 296
              0
 \mathsf{CT}
      0 475
              0
 TT
          0 207
      0
SNP 11
              2
      0
          1
     20
          0
              0
 CC
 \mathsf{CT}
      0 264
              0
 TT
      0
          0 695
Call:
lm(formula = sbp ~ snp1Dosage + snp2Dosage + snp3Dosage + snp4Dosage +
    snp5Dosage + snp6Dosage + snp7Dosage + snp8Dosage + snp9Dosage +
    snp10Dosage + snp11Dosage, data = BP.df.dos)
Residuals:
   Min
            10 Median
                            30
                                   Max
-53.638 -12.849 -0.522 11.032 61.683
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 137.36286
                        9.09141 15.109
                                         <2e-16 ***
snp1Dosage
             1.88456
                        4.03838
                                  0.467
                                          0.641
snp2Dosage
            -1.95639
                        2.96674 -0.659
                                          0.510
snp3Dosage
            4.60730
                        4.65652
                                  0.989
                                          0.323
snp4Dosage
                        3.11138
                                          0.985
           0.05946
                                  0.019
2.58719 -0.102
                                          0.918
                        1.80185 -0.651
                                          0.515
snp6Dosage -1.17284
snp7Dosage -0.28939
                        1.78362 -0.162
                                          0.871
snp8Dosage
           0.70702
                        2.78030
                                  0.254
                                          0.799
snp9Dosage 2.17197
                        2.54774
                                  0.853
                                          0.394
                                  0.599
snp10Dosage
             0.60685
                        1.01229
                                          0.549
snp11Dosage -0.39009
                        4.15347 -0.094
                                          0.925
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.17 on 718 degrees of freedom
  (270 observations deleted due to missingness)
Multiple R-squared: 0.01418,
                              Adjusted R-squared: -0.0009268
F-statistic: 0.9386 on 11 and 718 DF, p-value: 0.5022
```

1

2

```
97.5 %
                Estimate
                              2.5 %
                                                    p_value
(Intercept) 137.36286195 119.513941 155.211783 5.463978e-45
snp1Dosage
                                      9.812996 6.408836e-01
              1.88455556
                         -6.043884
snp2Dosage
             -1.95638699
                          -7.780906
                                      3.868132 5.098245e-01
snp3Dosage
                          -4.534719
                                     13.749316 3.227861e-01
              4.60729872
snp4Dosage
                                      6.167953 9.847589e-01
              0.05945758
                          -6.049037
snp5Dosage
            -0.26493620
                          -5.344303
                                      4.814431 9.184654e-01
snp6Dosage
             -1.17284174
                          -4.710367
                                      2.364684 5.153132e-01
snp7Dosage
             -0.28939265
                          -3.791133
                                      3.212348 8.711547e-01
snp8Dosage
              0.70701756
                         -4.751477
                                      6.165512 7.993403e-01
snp9Dosage
              2.17196761
                         -2.829934
                                      7.173869 3.942159e-01
snp10Dosage
              0.60685115
                          -1.380549
                                      2.594251 5.490393e-01
snp11Dosage
            -0.39009298
                          -8.544499
                                      7.764313 9.251992e-01
```

Session information