WO 2004/056983 64

Sequence Information:

SEQ ID NO: 1 (INSP005A nucleotide sequence exon 1)

1 ATGGGTGGTA GTGGTGTCGT GGAGGTCCCC TTCCTGCTCT CCAGCAAGTA 5

SEQ ID NO: 2 (INSP005A protein sequence exon 1)

1 MGGSGVVEVP FLLSSKYD

10

51 CG

SEO ID NO: 3 (INSP005A nucleotide sequence exon 2)

- 1 ATGAGCCCAG CCGCCAGGTC ATCCTGGAGG CTCTTGCGGA GTTTGAACGT
- 51 TCCACGTGCA TCAGGTTTGT CACCTATCAG GACCAGAGAG ACTTCATTTC 15
 - 101 CATCATCCCC ATGTATGG

SEQ ID NO: 4 (INSP005A protein sequence exon 2)

1 EPSRQVILEA LAEFERSTCI RFVTYQDQRD FISIIPMYG

20

25

SEQ ID NO: 5 (INSP005A nucleotide sequence exon 3)

- 1 GTGCTTCTCG AGTGTGGGGC GCAGTGGAGG GATGCAGGTG GTCTCCCTGG
- 51 CGCCCACGTG TCTCCAGAAG GGCCGGGGCA TTGTCCTTCA TGAGCTCATG
 - 101 CATGTGCTGG GCTTCTGGCA CGAGCACACG CGGGCCGACC GGGACCGCTA
 - 151 TATCCGTGTC AACTGGAACG AGATCCTGCC AG

30 SEQ ID NO: 6 (INSP005A protein sequence exon 3)

- 1 CFSSVGRSGG MQVVSLAPTC LQKGRGIVLH ELMHVLGFWH EHTRADRDRY
- 51 IRVNWNEILP G

35 SEO ID NO: 7 (INSP005A nucleotide sequence exon 4)

- 1 GCTTTGAAAT CAACTTCATC AAGTCTCAGA GCAGCAACAT GCTGACGCCC
- 51 TATGACTACT CCTCTGTGAT GCACTATGGG AG

40 SEQ ID NO: 8 (INSP005A protein sequence exon 4)

1 FEINFIKSOS SNMLTPYDYS SVMHYGR

SEQ ID NO: 9 (INSP005A nucleotide sequence exon 5)

- 1 GCTCGCCTTC AGCCGGCGTG GGCTGCCCAC CATCACACCA CTTTGGGCCC 45
 - 51 CCAGTGTCCA CATCGGCCAG CGATGGAACC TGAGTGCCTC GGACATCACC
 - 101 CGGGTCCTCA AACTCTACGG CTGCAGCCCA AGTGGCCCCA GGCCCCGTGG
- 50 151 GAGAG

5

20

SEO ID NO: 10 (INSP005A protein sequence exon 5)

1 LAFSRRGLPT ITPLWAPSVH IGQRWNLSAS DITRVLKLYG CSPSGPRPRG 51 RG

SEQ ID NO: 11 (INSP005A nucleotide sequence exon 6)

- 1 GGTCCCATGC CCACAGCACT GGTAGGAGCC CCGCCCCGGC CTCCCTATCT
- 51 CTGCAGCGGC TTTTGGAGGC ACTGTCGGCG GAATCCAGGA GCCCCGACCC
- 101 CAGTGGTTCC AGTGCGGGAG GCCAGCCCGT TCCTGCAGGG CCTGGGGAGA
 - 151 GCCCACATGG GTGGGAGTCC CCTGCCCTGA AAAAGCTCAG TGCAGAGGCC
- 15 201 TCGGCAAGGC AGCCTCAGAC CCTAGCTTCC TCCCCAAGAT CAAGGCCTGG
 - 251 AGCAGGTGCC CCCGGTGTTG CTCAGGAGCA GTCCTGGCTG GCCGGAGTGT
 - 301 CCACCAAGCC CACAGTCCCA TCTTCAGAAG CAGGAATCCA GCCAGTCCCT
 - 351 GTCCAGGGAA GCCCAGCTCT GCCAGGGGGC TGTGTACCTA GAAATCATTT
 - **401 CAAGGGGATG TCCGAAGAT**

25 SEQ ID NO: 12 (INSP005A protein sequence exon 6)

- 1 SHAHSTGRSP APASLSLQRL LEALSAESRS PDPSGSSAGG QPVPAGPGES
- 51 PHGWESPALK KLSAEASARQ PQTLASSPRS RPGAGAPGVA QEQSWLAGVS
- 30 101 TKPTVPSSEA GIQPVPVQGS PALPGGCVPR NHFKGMSED

SEQ ID NO: 13 (INSP005A full nucleotide sequence)

- 1 ATGGGTGGTA GTGGTGTCGT GGAGGTCCCC TTCCTGCTCT CCAGCAAGTA
- 35 51 CGATGAGCCC AGCCGCCAGG TCATCCTGGA GGCTCTTGCG GAGTTTGAAC
 - 101 GTTCCACGTG CATCAGGTTT GTCACCTATC AGGACCAGAG AGACTTCATT
- 151 TCCATCATCC CCATGTATGG GTGCTTCTCG AGTGTGGGGC GCAGTGGAGG
 - 201 GATGCAGGTG GTCTCCCTGG CGCCCACGTG TCTCCAGAAG GGCCGGGGCA
- 251 TTGTCCTTCA TGAGCTCATG CATGTGCTGG GCTTCTGGCA CGAGCACACG
- 45 301 CGGGCCGACC GGGACCGCTA TATCCGTGTC AACTGGAACG AGATCCTGCC
 - 351 AGGCTTTGAA ATCAACTTCA TCAAGTCTCA GAGCAGCAAC ATGCTGACGC
- 401 CCTATGACTA CTCCTCTGTG ATGCACTATG GGAGGCTCGC CTTCAGCCGG 50
 - 451 CGTGGGCTGC CCACCATCAC ACCACTTTGG GCCCCCAGTG TCCACATCGG
 - 501 CCAGCGATGG AACCTGAGTG CCTCGGACAT CACCCGGGTC CTCAAACTCT
- 55 551 ACGGCTGCAG CCCAAGTGGC CCCAGGCCCC GTGGGAGAGG GTCCCATGCC
 - 601 CACAGCACTG GTAGGAGCCC CGCCCCGGCC TCCCTATCTC TGCAGCGGCT
- 651 TTTGGAGGCA CTGTCGGCGG AATCCAGGAG CCCCGACCCC AGTGGTTCCA
- 701 GTGCGGGAGG CCAGCCCGTT CCTGCAGGGC CTGGGGAGAG CCCACATGGG

- 751 TGGGAGTCCC CTGCCCTGAA AAAGCTCAGT GCAGAGGCCT CGGCAAGGCA
- 801 GCCTCAGACC CTAGCTTCCT CCCCAAGATC AAGGCCTGGA GCAGGTGCCC
- 5 851 CCGGTGTTGC TCAGGAGCAG TCCTGGCTGG CCGGAGTGTC CACCAAGCCC
 - 901 ACAGTCCCAT CTTCAGAAGC AGGAATCCAG CCAGTCCCTG TCCAGGGAAG
 - 951 CCCAGCTCTG CCAGGGGGCT GTGTACCTAG AAATCATTTC AAGGGGATGT
- 1001 CCGAAGAT

SEO ID NO: 14 (INSP005A full protein sequence)

- 1 MGGSGVVEVP FLLSSKYDEP SRQVILEALA EFERSTCIRF VTYQDQRDFI
- 51 SIIPMYGCFS SVGRSGGMQV VSLAPTCLQK GRGIVLHELM HVLGFWHEHT
 - 101 RADRDRYIRV NWNEILPGFE INFIKSQSSN MLTPYDYSSV MHYGRLAFSR
- 20 151 RGLPTITPLW APSVHIGQRW NLSASDITRV LKLYGCSPSG PRPRGRGSHA
 - 201 HSTGRSPAPA SLSLQRLLEA LSAESRSPDP SGSSAGGQPV PAGPGESPHG
- 251 WESPALKKLS AEASARQPQT LASSPRSRPG AGAPGVAQEQ SWLAGVSTKP
 - 301 TVPSSEAGIQ PVPVQGSPAL PGGCVPRNHF KGMSED

SEO ID NO: 15 (INSP005B nucleotide sequence exon 1)

1 ATGGAGGGTG TAGGGGGTCT CTGGCCTTGG GTGCTGGGTC TGCTCTCTT

51 GCCAG

35

50

SEQ ID NO: 16 (INSP005B protein sequence exon 1)

1 MEGVGGLWPW VLGLLSLPG

SEQ ID NO: 17 (INSP005B nucleotide sequence exon 2)

- 1 GTGTGATCCT AGGAGCGCCC CTGGCCTCCA GCTGCGCAGG AGCCTGTGGT
- 51 ACCAGCTTCC CAGATGGCCT CACCCCTGAG GGAACCCAGG CCTCCGGGGA
- 40 101 CAAGGACATT CCTGCAATTA ACCAAG

SEQ ID NO: 18 (INSP005B protein sequence exon 2)

1 VILGAPLASS CAGACGTSFP DGLTPEGTQA SGDKDIPAIN QG

45
SEQ ID NO: 19 (INSP005B nucleotide sequence exon 3)

- 1 GGCTCATCCT GGAAGAAACC CCAGAGAGCA GCTTCCTCAT CGAGGGGGAC
- 51 ATCATCCGGC CG

SEQ ID NO: 20 (INSP005B protein sequence exon 3)

1 LILEETPESS FLIEGDIIRP

SEQ ID NO: 21 (INSP005B nucleotide sequence exon 4)

55 1 AGTCCCTTCC GACTGCTGTC AGCAACCAGC AACAAATGGC CCATGGGTGG

67

51 TAGTGGTGTC GTGGAGGTCC CCTTCCTGCT CTCCAGCAAG TACG

SEQ ID NO: 22 (INSP005B protein sequence exon 4)

5 1 SPFRLLSATS NKWPMGGSGV VEVPFLLSSK YD

SEQ ID NO: 23 (INSP005B nucleotide sequence exon 5)

- 1 ATGAGCCCAG CCGCCAGGTC ATCCTGGAGG CTCTTGCGGA GTTTGAACGT
- 10 51 TCCACGTGCA TCAGGTTTGT CACCTATCAG GACCAGAGAG ACTTCATTTC
 - 101 CATCATCCCC ATGTATGG

SEQ ID NO: 24 (INSP005B protein sequence exon 5)

15 1 EPSRQVILEA LAEFERSTCI RFVTYQDQRD FISIIPMYG

SEQ ID NO: 25 (INSP005B nucleotide sequence exon 6)

- 1 GTGCTTCTCG AGTGTGGGGC GCAGTGGAGG GATGCAGGTG GTCTCCCTGG
- 20 51 CGCCCACGTG TCTCCAGAAG GGCCGGGGCA TTGTCCTTCA TGAGCTCATG
 - 101 CATGTGCTGG GCTTCTGGCA CGAGCACACG CGGGCCGACC GGGACCGCTA
 - 151 TATCCGTGTC AACTGGAACG AGATCCTGCC AG

SEQ ID NO: 26 (INSP005B protein sequence exon 6)

- 1 CFSSVGRSGG MOVVSLAPTC LOKGRGIVLH ELMHVLGFWH EHTRADRDRY
- 51 IRVNWNEILP G

25

SEQ ID NO: 27 (INSP005B nucleotide sequence exon 7)

- 1 GCTTTGAAAT CAACTTCATC AAGTCTCGGA GCAGCAACAT GCTGACGCCC
- 51 TATGACTACT CCTCTGTGAT GCACTATGGG AG

SEQ ID NO: 28 (INSP005B protein sequence exon 7)

1 FEINFIKSRS SNMLTPYDYS SVMHYGR

SEQ ID NO: 29 (INSP005B nucleotide sequence exon 8)

- 40 1 GCTCGCCTTC AGCCGGCGTG GGCTGCCCAC CATCACACCA CTTTGGGCCC
 - 51 CCAGTGTCCA CATCGGCCAG CGATGGAACC TGAGTGCCTC GGACATCACC
- 101 CGGGTCCTCA AACTCTACGG CTGCAGCCCA AGTGGCCCCA GGCCCCGTGG
 - 151 GAGAG

SEQ ID NO: 30 (INSP005B protein sequence exon 8)

- 1 LAFSRRGLPT ITPLWAPSVH IGQRWNLSAS DITRVLKLYG CSPSGPRPRG 50
 - 51 RG

68

SEQ ID NO: 31 (INSP005B nucleotide sequence exon 9)

- 1 GGTCCCATGC CCACAGCACT GGTAGGAGCC CCGCTCCGGC CTCCCTATCT
- 51 CTGCAGCGGC TTTTGGAGGC ACTGTCGGCG GAATCCAGGA GCCCCGACCC
- 101 CAGTGGTTCC AGTGCGGGAG GCCAGCCCGT TCCTGCAGGG CCTGGGGAGA
 - 151 GCCCACATGG GTGGGAGTCC CCTGCCCTGA AAAAGCTCAG TGCAGAGGCC
- 10 201 TCGGCAAGGC AGCCTCAGAC CCTAGCTTCC TCCCCAAGAT CAAGGCCTGG
 - 251 AGCAGGTGCC CCCGGTGTTG CTCAGGAGCA GTCCTGGCTG GCCGGAGTGT
 - 301 CCACCAAGCC CACAGTCCCA TCTTCAGAAG CAGGAATCCA GCCAGTCCCT
 - 351 GTCCAGGGAA GCCCAGCTCT GCCAGGGGGC TGTGTACCTA GAAATCATTT
 - 401 CAAGGGGATG TCCGAAGAT

15

20 SEQ ID NO: 32 (INSP005B protein sequence exon 9)

- 1 SHAHSTGRSP APASLSLQRL LEALSAESRS PDPSGSSAGG QPVPAGPGES
- 51 PHGWESPALK KLSAEASARQ PQTLASSPRS RPGAGAPGVA QEQSWLAGVS
- 25 101 TKPTVPSSEA GIQPVPVQGS PALPGGCVPR NHFKGMSED

SEQ ID NO: 33 (INSP005B full nucleotide sequence)

- 1 ATGGAGGGTG TAGGGGGTCT CTGGCCTTGG GTGCTGGGTC TGCTCTCCTT
- 30 51 GCCAGGTGTG ATCCTAGGAG CGCCCCTGGC CTCCAGCTGC GCAGGAGCCT
 - 101 GTGGTACCAG CTTCCCAGAT GGCCTCACCC CTGAGGGAAC CCAGGCCTCC
- 151 GGGGACAAGG ACATTCCTGC AATTAACCAA GGGCTCATCC TGGAAGAAAC
- 201 CCCAGAGAGC AGCTTCCTCA TCGAGGGGGA CATCATCCGG CCGAGTCCCT
- 251 TCCGACTGCT GTCAGCAACC AGCAACAAAT GGCCCATGGG TGGTAGTGGT
- 40 301 GTCGTGGAGG TCCCCTTCCT GCTCTCCAGC AAGTACGATG AGCCCAGCCG
 - 351 CCAGGTCATC CTGGAGGCTC TTGCGGAGTT TGAACGTTCC ACGTGCATCA
- 401 GGTTTGTCAC CTATCAGGAC CAGAGAGACT TCATTTCCAT CATCCCCATG
 - 451 TATGGGTGCT TCTCGAGTGT GGGGCGCAGT GGAGGGATGC AGGTGGTCTC
 - 501 CCTGGCGCCC ACGTGTCTCC AGAAGGGCCG GGGCATTGTC CTTCATGAGC
- 50 551 TCATGCATGT GCTGGGCTTC TGGCACGAGC ACACGCGGGC CGACCGGGAC
 - 601 CGCTATATCC GTGTCAACTG GAACGAGATC CTGCCAGGCT TTGAAATCAA
- 651 CTTCATCAAG TCTCGGAGCA GCAACATGCT GACGCCCTAT GACTACTCCT
 - 701 CTGTGATGCA CTATGGGAGG CTCGCCTTCA GCCGGCGTGG GCTGCCCACC
 - 751 ATCACACCAC TTTGGGCCCC CAGTGTCCAC ATCGGCCAGC GATGGAACCT
- 60 801 GAGTGCCTCG GACATCACCC GGGTCCTCAA ACTCTACGGC TGCAGCCCAA
 - 851 GTGGCCCCAG GCCCCGTGGG AGAGGGTCCC ATGCCCACAG CACTGGTAGG
 - 901 AGCCCCGCTC CGGCCTCCCT ATCTCTGCAG CGGCTTTTGG AGGCACTGTC

951 GGCGGAATCC AGGAGCCCCG ACCCCAGTGG TTCCAGTGCG GGAGGCCAGC

1001 CCGTTCCTGC AGGGCCTGGG GAGAGCCCAC ATGGGTGGGA GTCCCCTGCC

1051 CTGAAAAAGC TCAGTGCAGA GGCCTCGGCA AGGCAGCCTC AGACCCTAGC

1101 TTCCTCCCCA AGATCAAGGC CTGGAGCAGG TGCCCCCGGT GTTGCTCAGG

10 1151 AGCAGTCCTG GCTGGCCGGA GTGTCCACCA AGCCCACAGT CCCATCTTCA

1201 GAAGCAGGAA TCCAGCCAGT CCCTGTCCAG GGAAGCCCAG CTCTGCCAGG

1251 GGGCTGTGTA CCTAGAAATC ATTTCAAGGG GATGTCCGAA GAT

SEQ ID NO: 34 (INSP005B full protein sequence)

15

20

30

1 MEGVGGLWPW VLGLLSLPGV ILGAPLASSC AGACGTSFPD GLTPEGTQAS

51 GDKDIPAINQ GLILEETPES SFLIEGDIIR PSPFRLLSAT SNKWPMGGSG

101 VVEVPFLLSS KYDEPSRQVI LEALAEFERS TCIRFVTYQD QRDFISIIPM

151 YGCFSSVGRS GGMQVVSLAP TCLQKGRGIV LHELMHVLGF WHEHTRADRD

25 201 RYIRVNWNEI LPGFEINFIK SRSSNMLTPY DYSSVMHYGR LAFSRRGLPT

251 ITPLWAPSVH IGORWNLSAS DITRVLKLYG CSPSGPRPRG RGSHAHSTGR

301 SPAPASLSLQ RLLEALSAES RSPDPSGSSA GGQPVPAGPG ESPHGWESPA

351 LKKLSAEASA RQPQTLASSP RSRPGAGAPG VAQEQSWLAG VSTKPTVPSS

401 EAGIQPVPVQ GSPALPGGCV PRNHFKGMSE D

35 SEO ID NO: 35 (INSP005bmature nucleotide sequence)

1 GCGCCCTGG CCTCCAGCTG CGCAGGAGCC TGTGGTACCA GCTTCCCAGA 51 TGGCCTCACC CCTGAGGGAA CCCAGGCCTC CGGGGACAAG GACATTCCTG 101 CAATTAACCA AGGGCTCATC CTGGAAGAAA CCCCAGAGAG CAGCTTCCTC 151 ATCGAGGGG ACATCATCCG GCCGAGTCCC TTCCGACTGC TGTCAGCAAC 201 CAGCAACAAA TGGCCCATGG GTGGTAGTGG TGTCGTGGAG GTCCCCTTCC 40 251 TGCTCTCCAG CAAGTACGAT GAGCCCAGCC GCCAGGTCAT CCTGGAGGCT 301 CTTGCGGAGT TTGAACGTTC CACGTGCATC AGGTTTGTCA CCTATCAGGA 351 CCAGAGAGAC TTCATTTCCA TCATCCCCAT GTATGGGTGC TTCTCGAGTG 401 TGGGGCGCAG TGGAGGGATG CAGGTGGTCT CCCTGGCGCC CACGTGTCTC 45 451 CAGAAGGCC GGGGCATTGT CCTTCATGAG CTCATGCATG TGCTGGGCTT 501 CTGGCACGAG CACACGCGGG CCGACCGGGA CCGCTATATC CGTGTCAACT 551 GGAACGAGAT CCTGCCAGGC TTTGAAATCA ACTTCATCAA GTCTCGGAGC 601 AGCAACATGC TGACGCCCTA TGACTACTCC TCTGTGATGC ACTATGGGAG 651 GCTCGCCTTC AGCCGGCGTG GGCTGCCCAC CATCACACCA CTTTGGGCCC 50 701 CCAGTGTCCA CATCGGCCAG CGATGGAACC TGAGTGCCTC GGACATCACC 751 CGGGTCCTCA AACTCTACGG CTGCAGCCCA AGTGGCCCCA GGCCCCGTGG 801 GAGAGGGTCC CATGCCCACA GCACTGGTAG GAGCCCCGCT CCGGCCTCCC

851 TATCTCTGCA GCGCCTTTTG GAGGCACTGT CGGCGGAATC CAGGAGCCCC

901 GACCCCAGTG GTTCCAGTGC GGGAGGCCAG CCCGTTCCTG CAGGGCCTGG
951 GGAGAGCCCA CATGGGTGGG AGTCCCCTGC CCTGAAAAAG CTCAGTGCAG
1001 AGGCCTCGGC AAGGCAGCCT CAGACCCTAG CTTCCTCCCC AAGATCAAGG
1051 CCTGGAGCAG GTGCCCCCGG TGTTGCTCAG GAGCAGTCCT GGCTGGCCGG
1101 AGTGTCCACC AAGCCCACAG TCCCATCTTC AGAAGCAGGA ATCCAGCCAG
1151 TCCCTGTCCA GGGAAGCCCA GCTCTGCCAG GGGGCTGTGT ACCTAGAAAT

SEQ ID NO: 36 (INSP005b mature polypeptide sequence)

1201 CATTTCAAGG GGATGTCCGA AGAT

10 1 APLASSCAGA CGTSFPDGLT PEGTQASGDK DIPAINQGLI LEETPESSFL
51 IEGDIIRPSP FRLLSATSNK WPMGGSGVVE VPFLLSSKYD EPSRQVILEA
101 LAEFERSTCI RFVTYQDQRD FISIIPMYGC FSSVGRSGGM QVVSLAPTCL
151 QKGRGIVLHE LMHVLGFWHE HTRADRDRYI RVNWNEILPG FEINFIKSRS
201 SNMLTPYDYS SVMHYGRLAF SRRGLPTITP LWAPSVHIGQ RWNLSASDIT
15 251 RVLKLYGCSP SGPRPRGRGS HAHSTGRSPA PASLSLQRLL EALSAESRSP
301 DPSGSSAGGQ PVPAGPGESP HGWESPALKK LSAEASARQP QTLASSPRSR
351 PGAGAPGVAQ EQSWLAGVST KPTVPSSEAG IQPVPVQGSP ALPGGCVPRN
401 HFKGMSED

20 SEQ ID NO: 37 (INSP005 Predicted Polypeptide Sequence)

25

1 MLRLWDFNPG GALSDLALGL RGMEEGGYSC AGACGTSFPD GLTPEGTQAS GDKDIPAINQ
61 GLILEETPES SFLIEGDIIR PSPFRLLSAT SNKWPMGGSG VVEVPFLLSS KYDEPSHQVI
121 LEALAEFERS TCIRFVTYQD QRDFISIIPM YGCFSSVGRS GGMQVVSLAP TCLQKGRGIV
181 LHELMHVLGF WHEHTRADRD RYIRVNWNEI LPGFEINFIK SQSSNMLTPY DYSSVMHYGR
241 LAFSRGLPT ITPLWAPSVH IGORWNLSAS DITRVLKLYG CSPSGPRPRG RGEWHGRKVT

SEQ ID NO: 38 (pCR4 TOPO IPAAA78836-1 plasmid nucleotide sequence)

AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC
61 ACGACAGGTT TCCCGACTGG AAAGCGGCCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC
30 121 TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA
181 TTGTGAGCGG ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTCA
241 GAATTAACCC TCACTAAAGG GACTAGTCCT GCAGGTTTAA ACGAATTCGC CCTTAGCCAC
301 AGGCTTAATC TTCGGACATC CCCTTGAAAT GATTTCTAGG TACACAGCCC CCTGGCAGAG
361 CTGGGCTTCC CTGGACAGGG ACTGGCTGGA TTCCTGCTTC TGAAGATGGG ACTGTGGGCT
35 421 TGGTGGACAC TCCGGCCAGC CAGGACTGCT CCTGAGCAAC ACCGGGGGCA CCTGCTCCAG
481 GCCTTGATCT TGGGGAGGAA GCTAGGGTCT GAGGCTGCCT TGCCGAGGCC TCTGCACTGA
541 GCTTTTCAG GGCAGGGGAC TCCCACCCAT GTGGGCTTCC CCCAGGCCCT GCAGGAACGG
601 GCTGGCCTCC CGCACTGGAA CCACTGGGT CGGGGCTCCT GGATTCCGCC GACAGTGCCT
661 CCAAAAGCCG CTGCAGAGAT AGGGAGGCCG GGGCGGGCT CCTACCAGTG CTGTGGGCAT

	721	GGGACCCTCT	CCCACGGGGC	CTGGGGCCAC	TTGGGCTGCA	GCCGTAGAGT	TTGAGGACCC
	781	GGGTGATGTC	CGAGGCACTC	AGGTTCCATC	GCTGGCCGAT	GTGGACACTG	GGGGCCCAAA
	841	GTGGTGTGAT	GGTGGGCAGC	CCACGCCGGC	TGAAGGCGAG	CCTCCCATAG	TGCATCACAG
	901	AGGAGTAGTC	ATAGGGCGTC	AGCATGTTGC	TGCTCTGAGA	CTTGATGAAG	TTGATTTCAA
5	961	AGCCTGGCAG	GATCTCGTTC	CAGTTGACAC	GGATATAGCG	GTCCCGGTCG	GCCCGCGTGT
	1021	GCTCGTGCCA	GAAGCCCAGC	ACATGCATGA	GCTCATGAAG	GACAATGCCC	CGGCCCTTCT
	1081	GGAGACACGT	GGGCGCCAGG	GAGACCACCT	GCATCCCTCC	ACTGCGCCCC	ACACTCGAGA
	1141	AGCACCCATA	CATGGGGATG	ATGGAAATGA	AGTCTCTCTG	GTCCTGATAG	GTGACAAACC
	1201	TGATGCACGT	GGAACGTTCA	AACTCCGCAA	GAGCCTCCAG	GATGACCTGG	CGGCTGGGCT
10	1261	CATCGTACTT	GCTGGAGAGC	AGGAAGGGGA	CCTCCACGAC	ACCACTACCA	CCCATGGGCC
	1321	ATTTGTTGCT	GGTTGCTGAC	AGAAGGGCGA	ATTCGCGGCC	GCTAAATTCA	ATTCGCCCTA
	1381	TAGTGAGTCG	TATTACAATT	CACTGGCCGT	CGTTTTACAA	CGTCGTGACT	GGGAAAACCC
	1441	TGGCGTTACC	CAACTTAATC	GCCTTGCAGC	ACATCCCCCT	TTCGCCAGCT	GGCGTAATAG
	1501	CGAAGAGGCC	CGCACCGATC	GCCCTTCCCA	ACAGTTGCGC	AGCCTATACG	TACGGCAGTT
15	1561	TAAGGTTTAC	ACCTATAAAA	GAGAGAGCCG	TTATCGTCTG	TTTGTGGATG	TACAGAGTGA
	1621				GATCCCCCTG		
	1681				GGTGCATATC		
	1741				CTCCGTTATC		
•	1801				CATTAACCTG		
20	1861				CACCTAGATC		
	1921				TGTCAGCTAC		
	1981				TTGCAGTGGG		
	2041				GGAATTGCCA		
25	2101				GGCTTTCTCG		
25	2161				ATGAGGATCG		
	2221				GGTGGAGAGG		
	2281				CGTGTTCCGG		
	2341				TGCCCTGAAT	•	
30	2401 2461				TCCTTGCGCA		
30	2521				CGAAGTGCCG		
	2581				CATGGCTGAT CCAAGCGAAA		
	2641				GGATGATCTG		
	2701				GGCGAGCATG		
35	2761				TATCATGGTG		
	2821				GGACCGCTAT		
	2881				ATGGGCTGAC		
	2941				CTTCTATCGC		
40	3001				GTATTTTCTC		
	3061				GGAAATGTGC		
	3121				CTCATGAGAC		
	- -				CICHIONONC		VIVUVIQC11

72

	3181	CAATAATATT	GAAAAAGGAA	GAGTATGAGT	ATTCAACATT	TCCGTGTCGC	CCTTATTCCC
	3241	TTTTTTGCGG	CATTTTGCCT	TCCTGTTTTT	GCTCACCCAG	AAACGCTGGT	GAAAGTAAAA
	3301	GATGCTGAAG	ATCAGTTGGG	TGCACGAGTG	GGTTACATCG	AACTGGATCT	CAACAGCGGT
	3361	AAGATCCTTG	AGAGTTTTCG	CCCCGAAGAA	CGTTTTCCAA	TGATGAGCAC	TTTTAAAGTT
5	3421	CTGCTATGTG	GCGCGGTATT	ATCCCGTATT	GACGCCGGGC	AAGAGCAACT	CGGTCGCCGC
	3481	ATACACTATT	CTCAGAATGA	CTTGGTTGAG	TACTCACCAG	TCACAGAAAA	GCATCTTACG
	3541	GATGGCATGA	CAGTAAGAGA	ATTATGCAGT	GCTGCCATAA	CCATGAGTGA	TAACACTGCG
	3601	GCCAACTTAC	TTCTGACAAC	GATCGGAGGA	CCGAAGGAGC	TAACCGCTTT	TTTGCACAAC
	3661	ATGGGGGATC	ATGTAACTCG	CCTTGATCGT	TGGGAACCGG	AGCTGAATGA	AGCCATACCA
10	3721	AACGACGAGC	GTGACACCAC	GATGCCTGTA	GCAATGGCAA	CAACGTTGCG	САААСТАТТА
	3781	ACTGGCGAAC	TACTTACTCT	AGCTTCCCGG	CAACAATTAA	TAGACTGGAT	GGAGGCGGAT
	3841	AAAGTTGCAG	GACCACTTCT	GCGCTCGGCC	CTTCCGGCTG	GCTGGTTTAT	TGCTGATAAA
	3901	TCTGGAGCCG	GTGAGCGTGG	GTCTCGCGGT	ATCATTGCAG	CACTGGGGCC	AGATGGTAAG
	3961	CCCTCCCGTA	TCGTAGTTAT	CTACACGACG	GGGAGTCAGG	CAACTATGGA	TGAACGAAAT
15	4021	AGACAGATCG	CTGAGATAGG	TGCCTCACTG	ATTAAGCATT	GGTAACTGTC	AGACCAAGTT
	4081	TACTCATATA	TACTTTAGAT	TGATTTAAAA	CTTCATTTTT	AATTTAAAAG	GATCTAGGTG
	4141				ATCCCTTAAC		
	4201	GCGTCAGACC	CCGTAGAAAA	GATCAAAGGA	TCTTCTTGAG	ATCCTTTTTT	TCTGCGCGTA
	4261	ATCTGCTGCT	TGCAAACAAA	AAAACCACCG	CTACCAGCGG	TGGTTTGTTT	GCCGGATCAA
20	4321				GGCTTCAGCA		
	4381				CACTTCAAGA		
	4441				GCTGCTGCCA		
	4501				GATAAGGCGC		
	4561				ACGACCTACA		
25	4621				GAAGGGAGAA		
	4681				AGGGAGCTTC		
	4741						GTGATGCTCG
	4801						GTTCCTGGGC
	4861						TGTGGATAAC
30	4921	CGTATTACCC	CCTTTGAGTG	AGCTGATACO	GCTCGCCGCA	GCCGAACGAC	CGAGCGCAGC
	4981	GAGTCAGTG	GCGAGGAAGC	GGAAG			

SEQ ID NO: 39 (XpCR4TOPO IPAAA78836-2 plasmid nucleotide sequence)

AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC

61 ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC

121 TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA

181 TTGTGAGCGG ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTCA

241 GAATTAACCC TCACTAAAGG GACTAGTCCT GCAGGTTTAA ACGAATTCGC CCTTAGCCAC

301 AGGCTTAATC TTCGGACATC CCCTTGAAAT GATTTCTAGG TACACAGCCC CCTGGCAGAG

40 361 CTGGGCTTCC CTGGACAGGG ACTGGCTGGA TTCCTGCTTC TGAAGATGGG ACTGTGGGCT

	421	TGGTGGACAC	TCCGGCCAGC	CAGGACTGCT	CCTGAGCAAC	ACCGGGGGCA	CCTGCTCCAG
	481		TGGGGAGGAA				
	541	GCTTTTTCAG	GGCAGGGGAC	TCCCACCCAT	GTGGGCTCTC	CCCAGGCCCT	GCAGGAACGG
	601	GCTGGCCTCC	CGCACTGGAA	CCACTGGGGT	CGGGGCTCCT	GGATTCCGCC	GACAGTGCCT
5	661	CCAAAAGCCG	CTGCAGAGAT	AGGGAGGCCG	GAGCGGGGCT	CCTACCAGTG	CTGTGGGCAT
	721	GGGACCCTCT	CCCACGGGGC	CTGGGGCCAC	TTGGGCTGCA	GCCGTAGAGT	TTGAGGACCC
	781	GGGTGATGTC	CGAGGCACTC	AGGTTCCATC	GCTGGCCGAT	GTGGACACTG	GGGGCCCAAA
	841	GTGGTGTGAT	GGTGGGCAGC	CCACGCCGGC	TGAAGGCGAG	CCTCCCATAG	TGCATCACAG
	901	AGGAGTAGTC	ATAGGGCGTC	AGCATGTTGC	TGCTCCGAGA	CTTGATGAAG	TTGATTTCAA
10	961	AGCCTGGCAG	GATCTCGTTC	CAGTTGACAC	GGATATAGCG	GTCCCGGTCG	GCCCGCGTGT
	1021	GCTCGTGCCA	GAAGCCCAGC	ACATGCATGA	GCTCATGAAG	GACAATGCCC	CGGCCCTTCT
	1081	GGAGACACGT	GGGCGCCAGG	GAGACCACCT	GCATCCCTCC	ACTGCGCCCC	ACACTCGAGA
	1141	AGCACCCATA	CATGGGGATG	ATGGAAATGA	AGTCTCTCTG	GTCCTGATAG	GTGACAAACC
	1201	TGATGCACGT	GGAACGTTCA	AACTCCGCAA	GAGCCTCCAG	GATGACCTGG	CGGCTGGGCT
15	1261	CATCGTACTT	GCTGGAGAGC	AGGAAGGGGA	CCTCCACGAC	ACCACTACCA	CCCATGGGCC
	1321	ATTTGTTGCT	GGTTGCTGAC	AGCAGTCGGA	AGGGACTCGG	CCGGATGATG	TCCCCCTCGA
	1381	TGAGGAAGCT	GCTCTCTGGG	GTTTCTTCCA	GGATGAGCCC	TTGGTTAATT	GCAGGAATGT
	1441	CCTTGTCCCC	GGAGGCCTGG	GTTCCCTCAG	GGGTGAGGCC	ATCTGGGAAG	CTGGTACCAC
	1501	AGGCTCCTGC	GCAGCTGGAG	GCCAGGGGCG	CTCCTAGGAT	CACACCTGGC	AAGGAGAGCA
20	1561	GACCCAGCAC	CCAAGGCCAG	AGACCCCCTA	CACCCTCCAT	GGTAGAAAGG	GCGAATTCGC
	1621	GGCCGCTAAA	TTCAATTCGC	CCTATAGTGA	GTCGTATTAC	AATTCACTGG	CCGTCGTTTT
	1681	ACAACGTCGT	GACTGGGAAA	ACCCTGGCGT	TACCCAACTT	AATCGCCTTG	CAGCACATCC
	1741	CCCTTTCGCC	AGCTGGCGTA	ATAGCGAAGA	GGCCCGCACC	GATCGCCCTT	CCCAACAGTT
	1801	GCGCAGCCTA	TACGTACGGC	AGTTTAAGGT	TTACACCTAT	AAAAGAGAGA	GCCGTTATCG
25	1861	TCTGTTTGTG	GATGTACAGA	GTGATATTAT	TGACACGCCG	GGGCGACGGA	TGGTGATCCC
	1921	CCTGGCCAGT	GCACGTCTGC	TGTCAGATAA	AGTCTCCCGT	GAACTTTACC	CGGTGGTGCA
	1981		GAAAGCTGGC				
	2041		GAAGTGGCTG				
20	2101						TCTTCACCTA
30	2161		ACGTAGAAAG				
	2221		ATCTGGACAA				
	2281						AACCGGAATT
	2341		GCGCCCTCTG				
25	2401		AGGATCTGAT				
35	2461						CTTGGGTGGA
	2521			_			CCGCCGTGTT
	2581						CCGGTGCCCT
	2641						GCGTTCCTTG
40	2701		_				TGGGCGAAGT
40	2761						CCATCATGGC
	2821	TGATGCAATG	CGGCGGCTGC	ATACGCTTGA	TCCGGCTACC	TGCCCATTCG	ACCACCAAGC

	2881	GAAACATCGC	ATCGAGCGAG	CACGTACTCG	GATGGAAGCC	GGTCTTGTCG	ATCAGGATGA
	2941		GAGCATCAGG				
	3001	CATGCCCGAC	GGCGAGGATC	TCGTCGTGAC	CCATGGCGAT	GCCTGCTTGC	CGAATATCAT
	3061	GGTGGAAAAT	GGCCGCTTTT	CTGGATTCAT	CGACTGTGGC	CGGCTGGGTG	TGGCGGACCG
5	3121	CTATCAGGAC	ATAGCGTTGG	CTACCCGTGA	TATTGCTGAA	GAGCTTGGCG	GCGAATGGGC
	3181	TGACCGCTTC	CTCGTGCTTT	ACGGTATCGC	CGCTCCCGAT	TCGCAGCGCA	TCGCCTTCTA
	3241	TCGCCTTCTT	GACGAGTTCT	TCTGAATTAT	TAACGCTTAC	AATTTCCTGA	TGCGGTATTT
	3301	TCTCCTTACG	CATCTGTGCG	GTATTTCACA	CCGCATACAG	GTGGCACTTT	TCGGGGAAAT
	3361	GTGCGCGGAA	CCCCTATTTG	TTTATTTTC	TAAATACATT	CAAATATGTA	TCCGCTCATG
10	3421	AGACAATAAC	CCTGATAAAT	GCTTCAATAA	TATTGAAAAA	GGAAGAGTAT	GAGTATTCAA
	3481	CATTTCCGTG	TCGCCCTTAT	TCCCTTTTTT	GCGGCATTTT	GCCTTCCTGT	TTTTGCTCAC
	3541	CCAGAAACGC	TGGTGAAAGT	AAAAGATGCT	GAAGATCAGT	TGGGTGCACG	AGTGGGTTAC
	3601	ATCGAACTGG	ATCTCAACAG	CGGTAAGATC	CTTGAGAGTT	TTCGCCCCGA	AGAACGTTTT
	3661	CCAATGATGA	GCACTTTTAA	AGTTCTGCTA	TGTGGCGCGG	TATTATCCCG	TATTGACGCC
15	3721	GGGCAAGAGC	AACTCGGTCG	CCGCATACAC	TATTCTCAGA	ATGACTTGGT	TGAGTACTCA
	3781	CCAGTCACAG	AAAAGCATCT	TACGGATGGC	ATGACAGTAA	GAGAATTATG	CAGTGCTGCC
	3841	ATAACCATGA	GTGATAACAC	TGCGGCCAAC	TTACTTCTGA	CAACGATCGG	AGGACCGAAG
	3901	GAGCTAACCG	CTTTTTTGCA	CAACATGGGG	GATCATGTAA	CTCGCCTTGA	TCGTTGGGAA
	3961	CCGGAGCTGA	ATGAAGCCAT	ACCAAACGAC	GAGCGTGACA	CCACGATGCC	TGTAGCAATG
20	4021	GCAACAACGT	TGCGCAAACT	ATTAACTGGC	GAACTACTTA	CTCTAGCTTC	CCGGCAACAA
	4081	TTAATAGACT	GGATGGAGGC	GGATAAAGTT	GCAGGACCAC	TTCTGCGCTC	GGCCCTTCCG
	4141	GCTGGCTGGT	TTATTGCTGA	TAAATCTGGA	GCCGGTGAGC	GTGGGTCTCG	CGGTATCATT
	4201	GCAGCACTGG	GGCCAGATGG	TAAGCCCTCC	CGTATCGTAG	TTATCTACAC	GACGGGGAGT
	4261	CAGGCAACTA	TGGATGAACG	AAATAGACAG	ATCGCTGAGA	TAGGTGCCTC	ACTGATTAAG
25	4321	CATTGGTAAC	TGTCAGACCA	AGTTTACTCA	TATATACTTT	AGATTGATTT	AAAACTTCAT
	4381	ATTTAATTTT	AAAGGATCTA	GGTGAAGATC	CTTTTTGATA	ATCTCATGAC	CAAAATCCCT
	4441		TTTCGTTCCA				
	4501		TTTTTCTGCG				
	4561		GTTTGCCGGA				
30	4621		AGATACCAAA				
	4681						AGTGGCTGCT
	4741						ACCGGATAAG
	4801						GCGAACGACC
	4861						TCCCGAAGGG
35	4921						CACGAGGGAG
	4981						CCTCTGACTT
	5041						CGCCAGCAAC
	5101						CTTTCCTGCG
	5161						A TACCGCTCGC
40	5221	CGCAGCCGA	A CGACCGAGCG	CAGCGAGTCA	GTGAGCGAGG	AAGCGGAAG	