龙格-库塔方法与亚当姆斯方法相结合求解常微分方程

第七小组:任浩辰 刘阳 科目:数值分析

日期: 2020年5月2日

1 实验目的

通过编程实践,熟练掌握龙格-库塔和亚当姆斯方法如何求解常微分方程,验证亚当姆斯方法求解的正确性,以及亚当姆斯预报-矫正系统的作用。

2 实验步骤

- 1. 验证亚当姆斯方法求解常微分方程的正确性
- 2. 验证亚当姆斯预报-校正系统的作用

3 实验内容

3.1 四阶龙格-库塔方法

四阶龙格-库塔经典格式如下:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_{n+\frac{1}{2}}, y_n + \frac{h}{2}K_1) \\ K_3 = f(x_{n+\frac{1}{2}}, y_n + \frac{h}{2}K_2) \\ K_3 = f(x_{n+1}, y_n + hK_3) \end{cases}$$
(1)

在 $[x_n, x_{n+1}]$ 区间上多预报几个点的斜率,然后将他们加权平均作为平均斜率,则可以构造出更高精度的公式,这就是四阶龙格库塔方法的设计思想。

3.2 亚当姆斯方法

亚当姆斯方法的设计思想是充分利用计算 y_{n+1} 之前已得到一系列结点 x_n, x_{n_1}, \ldots 上的斜率 值来减少计算量。譬如,可以用 x_n, x_{n-1} 两点的斜率的加权平均作为区间 $[x_n, x_{n+1}]$ 上的平均斜率,于是可以设计出如下二阶亚当姆斯格式:

$$y_{n+1} = y_n + \frac{h[3y'_n - y'_{n-1}]}{2}$$

类似的,可以得到三阶、四阶亚当姆斯格式:

$$y_{n+1} = y_n + \frac{h[23y'_n - 16y'_{n-1} + 5y'_{n-2}]}{12}$$
$$y_{n+1} = y_n + \frac{h[55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3}]}{24}$$

同样,也可导出如下隐式的二阶、三阶和四阶亚当姆斯格式:

$$y_{n+1} = y_n + \frac{h[y'_{n+1} + y'_n]}{2}$$

$$y_{n+1} = y_n + \frac{h[5y'_{n+1} + 8y'_n - y'_{n-1}]}{12}$$

$$y_{n+1} = y_n + \frac{h[9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2}]}{24}$$

将显式和隐式两种亚当姆斯格式相匹配,可构成下列亚当姆斯预报-校正系统

4 实验过程及主要代码

4.1 验证亚当姆斯方法求解常微分方程的正确性

首先选择偏微分方程: $y' = y - \frac{2x}{y}$,此方程具有解析解: $y = \sqrt{1 + 2x}$ 。首先完成龙格-库塔方法的函数编写,作为亚当姆斯方法的启动值,然后按照亚当姆斯格式的方程计算出结果,与精确值相比较。

4.2 验证亚当姆斯预报-校正系统的作用

按照亚当姆斯校正公式,计算亚当姆斯方法的校正值,并比较预测值、校正值与精确值之间的差距大小,得出结论。

4.3 主要代码

偏微分方程的计算函数如下:

```
9
10 ans = y - 2 * x / y;
11
12 return ans;
13 }
```

龙格库塔方法的函数编写如下:

```
1
    /**
2
     * 龙格-库塔方法
     * @param x0 初始条件
3
     * @param x1 表示xn+1
4
     * @param y0 初始条件
5
     * @return 表示yn+1
6
7
     */
8
     double Runge_Kutta(double x0, double x1, double y0){
       double K1, K2, K3, K4;
9
10
       double h = x1-x0;
11
       double ans;
12
       K1 = f(x0, y0);
13
       K2 = f(x0 + h/2.0, y0 + h/2.0 * K1);
14
       K3 = f(x0 + h/2.0, y0 + h/2.0 * K2);
15
       K4 = f(x1, y0 + h * K3);
16
17
18
       ans = y0 + h/6.0 * (K1 + 2*K2 + 2*K3 + K4);
19
20
       return ans;
21
```

亚当姆斯方法即输出结果函数如下:

```
/**
1
2
     * 亚当姆斯方法
3
     * @param a x属于(a, b)
     * @param b x属于(a, b)
4
     * @param y0 初始值
     * @param h 步长
6
7
8
     void Adams(double a, double b, double y0, double h){
9
       double x[100],y[100];
       x[0] = a; // 储存x值
10
       y[0] = y0; // 储存预测值
11
12
       double ans [100]; // 储存校正值
       ans[0] = y0;
13
14
       int n = (int)((b - a) / h);
15
       for (int i = 1; i < 4; ++i) {</pre>
16
17
         x[i] = a + i * h;
```

```
ans[i] = Runge_Kutta(x[i - 1], x[i], ans[i - 1]);// 龙格库塔方法求前四个值
18
19
        y[i] = ans[i];
20
       }
21
22
       for(int i = 4; i <= n; i++){</pre>
23
24
        x[i] = a + i * h;
25
        y[i] = y[i-1] + h/24.0 * (55 * f(x[i-1], y[i-1]) - 59 * f(x[i-2],
26
         y[i-2]) + 37 * f(x[i-3], y[i-3]) - 9 * f(x[i-4], y[i-4]));//计算预测值
27
28
       }
29
30
       for(int i = 4; i <= n; i++){</pre>
31
        ans[i] = ans[i-1] + h/24.0 * (9 * f(x[i], y[i]) + 19 * f(x[i-1],
32
        y[i-1]) - 5 * f(x[i-2], y[i-2]) + f(x[i-3], y[i-3])); // 计算校正值
33
       }
34
35
       // 输出结果
36
       cout << endl;</pre>
       cout << "Xn | 预测 | 校正 | 真实" << endl;
37
       cout << "-----
                                             ----" << endl;
38
39
       for(int i = 0; i <= n; i++) {</pre>
40
        if (i == 4) cout << "-----
            << endl;
         cout << fixed << setprecision(1) << x[i] << " | ";</pre>
41
42
43
         cout << fixed << setprecision(8) << y[i] << " | \t";
44
         else
45
         cout << "\t\t\t";
         cout << fixed << setprecision(8) << ans[i] << " | " << sqrt(1 + 2 * (a
46
            + i * h)) << endl;
47
48
       cout << "----
49
                                                     ----" << endl;
50
     }
       主函数如下:
```

```
1
   int main() {
2
      double a = 0, b = 1.0;
                                    //x属于(a, b)
3
      double h = 0.1, y0 = 1.0;
                                     //h 步长, y0 = f(x0)
4
5
       cout << "偏微分方程: y'=y-(2x/y)" << endl;
6
       cout << "M \neq M \neq M = Sqrt(1+2x)" << endl;
8
       Adams(a, b, y0, h);
9
      return 0;
10
```

5 实验结果及分析

程序运行结果如图

偏微分方程: y'= y-(2x/y) 解析解: y=sqrt(1+2x)					
Xn	预测		校正		真实
0.0			1.00000000		1.00000000
0.1			1.09544553		1.09544512
0.2			1.18321675		1.18321596
0.3			1.26491223		1.26491106
0.4	1.34155176		1.34164136		1.34164079
0.5	1.41404642		1.41419688		1.41421356
0.6	1.48301891		1.48319449		1.48323970
0.7	1.54891887		1.54911043		1.54919334
0.8	1.61211643		1.61232061		1.61245155
0.9	1.67291703		1.67312947		1.67332005
1.0	1.73156975		1.73178751		1.73205081

在计算中,偏微分方程为 $y' = y - \frac{2x}{y}$,此方程的解析解为 $y = \sqrt{1 + 2x}$ 。计算了区间 [0,1] 上,以 x=0 时的函数值作为 y_0 初始值,步长 h=0.1 的 11 个点的值。表格从左到右每一列分别为: x_n 的值,预测值,校正值,真实值。

从运行结果可以看出,亚当姆斯方法精确度较高,比较接近真实值。而当使用亚当姆斯预报-校正系统时,可以得到比预测值更加精确的计算值,在结果中列为校正值一栏。

6 实验体会

在这次的实验过程中,利用 c++ 编写了龙格-库塔算法和亚当姆斯算法的有关代码,增加了编程能力,也进一步理解了这两种常微分方程的计算方法。

龙格-库塔方法是显式的自开始方法,而且精度比较高,具有易于改变步长等优点。但使用 龙格-库塔方法时,每一步需要多次计算函数 f(x,y) 的值,计算量大。而且由于龙格-库塔方法 的导出基于泰勒展开,所以要求函数具有较高的光滑性。对于光滑性不太好的解,最好采用低 阶算法而将步长 h 取小。

亚当姆斯方法的计算量比龙格-库塔方法少,却具有同样的精度,但必须用龙格库塔方法提供开头几个函数值。