

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Seminar in *Artificial Intelligence* Word embedding

Marcin Trebunia, Dominik Rygiel, Konrad Adamczyk

Department of Telecommunications

27.05.2019

Agenda

- Introduction
 - Why do we need word embedding
 - Types of encoding
 - General concept
- 2 Learning approaches
 - CBOW
 - Skip-gram
- Word embedding models
 - Word2Vec
 - GloVe
 - FastText
- Applications
 - Natural Language Processing

Agenda (cont.)

5 Problems and limitations

Seminar Word embedding 3/42

Introduction

What is word embedding?

Word embedding Seminar

Introduction

Word embeddings are one of the few currently successful applications of unsupervised learning. Their main benefit arguably is that they don't require expensive annotation, but can be derived from large unannotated corpora that are readily available.

Pre-trained embeddings can then be used in downstream tasks that use small amounts of labeled data.

NLP Research Scientist, Sebastian Ruder

Seminar Word embedding 5/42

Introduction

What a **lovely** day. What a **nice** day.

6/42 Seminar Word embedding

Encoding text

• Machine learning models take vectors (arrays of numbers) as input.

•

Seminar Word embedding 7/42

One hot encoding

Seminar Word embedding 8/42

One hot encoding (cont.)

- Words completely independent of each other
- Inefficient approach: vector is sparse

Seminar Word embedding 9/42

One hot encoding (cont.)

Example:

- Dictionary of 10,000 words
- One hot encode each word
- Each vector's elements are 99.99% zeros!

Seminar Word embedding 10/42

Unique number encoding

What
$$= [1]$$
 $a = [2]$
lovely $= [3]$
nice $= [4]$
day $= [5]$

Unique number encoding (cont.)

- + Efficient dense vector
- Encoding arbitrary does not catch relationships between words
- Can be challenging for a model to interpret

Seminar Word embedding 12/42

What =
$$\begin{bmatrix} 1.2 & -0.1 & 4.3 & 3.2 \end{bmatrix}$$

a = $\begin{bmatrix} 0.4 & 2.5 & -0.9 & 0.5 \end{bmatrix}$
lovely = $\begin{bmatrix} 2.1 & 0.3 & 0.1 & 0.4 \end{bmatrix}$
nice = $\begin{bmatrix} 2.0 & 0.4 & 0.3 & 0.5 \end{bmatrix}$
day = $\begin{bmatrix} 3.0 & -0.6 & 3.5 & -0.8 \end{bmatrix}$

Seminar Word embedding 13/42

- Words with similar context occupy close spatial positions
- The cosine of the angle between words' vectors should be close to 1 (angle close to 0)

Seminar Word embedding 14/42

Caption of the figure

Words are synonyms

Words are antonyms

Slide with a Figure from a File

Words are value on a scale

Seminar Word embedding 18/42

Words are hyponym - hypernym

Seminar Word embedding 19/42

Words appear in similar context

Word embedding models

- Training approaches
- word2vec
- GloVe
- FastText

Seminar Word embedding 21/42

How to train my embedding model?

- CBOW
- Skip-gram

Seminar Word embedding 22/42

CBOW

Words representation

- Continuous Bag-of-Words
- Prediction of current words based on context
- Context is determined by surrounding words

Seminar Word embedding 23/42

CBOW

Words representation

Figure: Simple CBOW model with one word in the context

Seminar Word embedding 24/42

CBOW

Words representation

$$p(w_j|w_I) = \frac{\exp\left(\mathbf{v}_{w_j}^{\prime T} \mathbf{v}_{w_I}\right)}{\sum_{j'=1}^{V} \exp\left(\mathbf{v}_{w_{j'}}^{\prime T} \mathbf{v}_{w_I}\right)}$$

Seminar Word embedding 25/42

Skip-gram Words representation

- Continuous Skip-gram
- Predicting the surrounding words based on the context
- Context is the current word

Seminar Word embedding 26/42

CBOW vs Skip-gram

Words representation

Figure: CBOW vs Skip-gram

Word2Vec

Word embedding models

- Created by researchers at Google in 2013
- Can use either CBOW or skip-gram
- Input is a corpus of text
- Produces vector space with unique word

Seminar Word embedding 28/42

Word2Vec

Interesting parameters

- Dimensionality!
- Training algorithm softmax vs negative sampling
- Context window

Seminar Word embedding 29/42

GloVe

Word embedding models

- Global Vectors for Word Representation
- Comes from Stanford University, open-source
- Kind of extension of word2vec
- Training performed on aggregated, global word-word co-occurence statistics

Seminar Word embedding 30/42

GloVe Word embedding models

Figure: Co-occurence statistics of words

Seminar Word embedding 31/42

FastText

Word embedding models

- Incorporate sub-word information!
- Naturally support out-of-vocabulary words
- Uses skip-gram with negative sampling

Seminar Word embedding 32/42

FastText

Word embedding models

Figure: FastText subwords example

Seminar Word embedding 33/42

How can we use it?

Seminar Word embedding 34/42

Natural Language Processing

- If user search for "Dell notebook battery size" we would like to match it also with "Dell laptop battery capacity"
- If user search for "Cracow Motel" we would like to match it also with "Krakow Hotel"

Seminar Word embedding 35/42

Natural Language Processing

- Analyzing survey responses
- Analyzing comments

Seminar Word embedding 36/42

Other domains

- Word2vec can catch relationships and contexts in songs the user listens to
- Data can be used for real-time music recommendation

Seminar Word embedding 37/42

Problems and limitations

- Multiple meanings of a word: solution Sense embeddings
- Inability to handle unknown or out-of-vocabulary (OOV) words
- Scaling to new languages
- No shared representations at sub-word levels

Seminar Word embedding 38/42

Thank you for your attention!

Seminar Word embedding 39/42

Q & A

Seminar Word embedding 40/42

References

Intro to word embeddings.

https://www.tensorflow.org/alpha/tutorials/text/word_embeddings.

Accessed: 2019-05-11.

Introduction to word embedding and word2vec.

https://towardsdatascience.com/

introduction-to-word-embedding-and-word2vec-652d0c2060fbclid=IwAR3c2RpZOmbWC84_

mKFtRI6PwTD7vJRxiquKPp2Y3en3_OfDpBsWjjSinv8.

Accessed: 2019-05-11.

Seminar Word embedding 41/42

References (cont.)

Word embeddings and their challenges.

http://blog.aylien.com/word-embeddings-and-their-challenges/.

Accessed: 2019-05-12.

Seminar Word embedding 42/42