Indian Institute of Technology, Delhi

Fundamentals of Dielectrics and Semiconductors (PYL201)

Minor 2

Max. marks 20

- 1. (a) Define excitons and categorise Mott and Frankel excitons (with at least 5 important points with possible diagrams) (b) Estimate the first and second order exciton peaks in a 4 marks pure GaAs semiconductor*.
- 2. Prove that the cross-over energy between Urbach tail and direct band absorption edge is temperature sensitive. Why this is not true in indirect bandgap materials?3 marks
- 3. Explain, with the help of schematic representations, variation of carrier drift velocity in typical semiconductors under the influence of electric field. Specify various regions of interest. ... 4 marks
- 4. Short Answers only
 - (a) In a compensated n-type silicon, the conductivity is $16 (\Omega\text{-cm})^{-1}$ at room temperature. If the acceptor concentration is 10^{17}cm^{-3} , then estimate donor concentration and electron diffusion coefficient. If required, you may use the graph shown here.

(b) GaAs and Si absorption coefficients close to the band edge are 10⁴ and 10³cm⁻¹ respectively. Find the minimum thickness required to have 90% transmission from the respective samples.

...... 4 marks

5. In two (say A and B) atoms per basis primitive cell, briefly explain the phonon energy (b) Explain various possible scattering mechanisms involved in the carrier mobility of a doped semiconductor in low (or zero) electric field region. . 5 marks

^{*} For GaAs: E_g =1.424V, m_h *=0.51 m_0 , m_e *=0.063 m_0 ; static dielectric constant = 12.9); k_b = 8.617.10⁻⁵ eVK⁻¹., Electron rest mass m_0 = 9.1·10⁻³¹ kg, \hbar = 1.05.10⁻³⁴J-s For Si,: n_i (at 300K) = 1.5x10¹⁰cm⁻³; E_d (for P) =0.045eV; E_g =1.12eV; m_e * =1.08 m_0 ; m_h * (valance)=0.55mo