2. Pushdown Automata

<u>Definition</u> A PDA A is a 7-tuple

 $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where

Q: a finite set of states;

 Σ : input alphabet;

 Γ : stack alphabet;

 $\delta \ : \ Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \times Q \times \Gamma^* \ \mathbf{transition}$ relation;

 $q_0 \in Q$: the initial state;

 $Z_0 \in \Gamma$: the bottom-of-stack symbol;

 $F \subseteq Q$: set of final states;

By Final State : $\{a^ib^j \mid i \geq j \geq 1\}$

Instantaneous descriptions (IDs)

$$\underbrace{\left(\begin{array}{c}q\\\text{current state}\end{array},\begin{array}{c}\text{remaining part of the input}\\\hline x\\\text{current content of the stack}\end{array}\right)}_{\text{current content of the stack}$$

An ID describes a configuration of a PDA.

Example

ID for the initial configuration

$$\begin{array}{ll}
(q_0, aab, Z_0) & \vdash (q_0, ab, AZ_0) \vdash (q_0, b, AAZ_0) \\
\vdash (q_1, \varepsilon, AZ_0)
\end{array}$$

ID for an accepting configuration

Acceptance methods of PDA:

(1) by final state

$$T(A) = \{ w \mid (q_0, w, Z_0) \vdash^* (q_f, \varepsilon, \alpha), \ q_f \in F \}$$

(2) by empty stack

$$N(A) = \{ w \mid (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon) \}$$

(3) by both final state and empty stack

$$L(A) = \{ w \mid (q_0, w, Z_0,) \vdash^* (q_f, \varepsilon, \varepsilon), \ q_f \in F \}$$

Example

$$N(B) = \{a^i b^i \mid i > 0\} \cup \{a^{2i} b^i \mid i > 0\}$$

$$L(B) = \{a^i b^i \mid i > 0\}$$

$$T(B) = \{a^i b^j \mid i \ge j > 0\}$$

Deterministic Context-free Languages

<u>Definition</u> A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is deterministic if

- 1) for each q in Q, a in $\Sigma \cup \{\varepsilon\}$, and $X \in \Gamma$, $\delta(q, a, X)$ contains at most one element,
- 2) whenever $\delta(q, a, X)$ is nonempty for some $a \in \Sigma$, then $\delta(q, \varepsilon, X)$ is empty.

Note that

- **DPDA** allow $\varepsilon transitions$.
- Each transition is determined by the <u>current state</u>, the <u>input symbol</u>, and the top-of-stack symbol.

So, for each pair of a state and an input symbol, there can be several transitions, one for each stack symbol.

— $\delta(q, \varepsilon, X)$ should not be defined if $\delta(q, a, X)$ is defined for any $a \in \Sigma$.

Let \mathcal{T}_{DPDA} , \mathcal{N}_{DPDA} , and \mathcal{L}_{DPDA} denote the sets of languages accepted by DPDA with acceptance by "final state", "empty stack", and "final state and empty stack", respectively.

Then
$$\mathcal{N}_{DPDA} = \mathcal{L}_{DPDA} \subset \mathcal{T}_{DPDA}$$

Example

$$L = \{a^m b^n | m \le n, \text{ and } m, n > 0\}$$

Then $L = T(A)$ where A :

But $L \notin \mathcal{N}_{DPDA}$

<u>Definition</u> The family of <u>deterministic</u> <u>context-free languages</u> is the set of all languages accepted by DPDA with acceptance by final state. The family of DCFLs is a proper subset of the family of CFLs.

Examples

The following CFLs are not DCFLs

1.
$$\{a^nb^n \mid n \ge 0\} \cup \{a^nb^{2n} \mid n \ge 0\}$$

2.
$$\{ww^R \mid w \in Z^*\}$$

3.
$$\overline{\{ww \mid w \in Z^*\}}$$

The family of DCFLs is closed under

- (1) complementation,
- (2) intersection with regular sets,

not closed under

- (1) union
- (2) intersection.

\triangle Closure Properties

We show that \mathcal{L}_{CF} is closed under \cup , \bullet , *, but not under \cap and $\overline{\ }$.

1. Union

 $L_1, L_2 \in \mathcal{L}_{CF}$ (i.e L_1, L_2 are CFLs).

Show that $L = L_1 \cup L_2$ is CF.

Proof:

$$G_1 = (N_1, \Sigma_1, P_1, S_1), G_2 = (N_2, \Sigma_2, P_2, S_2)$$

Assume $N_1 \cap N_2 = \emptyset$. Construct

$$G =$$

$$(N_1 \cup N_2 \cup \{S\}), \Sigma_1 \cup \Sigma_2, P_1 \cup P_2 \cup \{S \to S_1 | S_2\}, S).$$

Then
$$L(G) = L(G_1) \cup L(G_2)$$

2. Catenation

$$L_1, L_2 \in \mathcal{L}_{CF} \Rightarrow L_1 L_2 \in \mathcal{L}_{CF}$$
 $G_1 = (N_1, \Sigma_1, P_1, S_1), G_2 = (N_2, \Sigma_2, P_2, S_2)$
 $G = (N_1 \cup N_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, P_1 \cup P_2 \cup \{S \to S_1 S_2\}, S))$
 $L(G) = L(G_1) \bullet L(G_2)$

3. *

$$L_1 \in \mathcal{L}_{CF} \Rightarrow L_1^* \in \mathcal{L}_{CF}$$
 $(L(G_1))^*$
 $S \to S_1 S | \varepsilon$

4. Intersection

$$L_1, L_2 \in \mathcal{L}_{CF} \not\Rightarrow L_1 \cap L_2 \in \mathcal{L}_{CF}$$

$$L = \{a^i b^i c^i \mid i \ge 0\} \text{ is not in } \mathbf{CF}$$

$$L_1 = \{a^i b^j c^k \mid i = j, i, j, k \ge 0\}$$

$$L_2 = \{a^i b^j c^k \mid j = k, i, j, k \ge 0\}$$

$$L_1 \cap L_2 = L$$

5. Complementation

$$L_1 \in \mathcal{L}_{CF} \not\Rightarrow \overline{L_1} \in \mathcal{L}_{CF}$$

Proof:

Assume \mathcal{L}_{CF} is closed under $\bar{\ }$.

Consider two arbitrary CFLs L_1, L_2 .

$$L = L_1 \cap L_2 = \overline{L_1 \cup L_2}$$
.

L is CF

 \mathcal{L}_{CF} is closed under \cap .

This is a contradition.