3.2 函数极限的性质

一、唯一性

性质1: 若 $\lim_{x\to x_0} f(x)$ 存在,则它是唯一的.

二、局部有界性

性质2: 若 $\lim_{x\to x_0} f(x)$ 存在,则 $\exists \delta > 0$ 及 M > 0,使得

 $\forall x \in U(x_0, \delta), \ f(x) \leq M.$

三、局部保号性

性质3: 若 $\lim_{x \to x_0} f(x) = A \perp A > 0$,则 $\forall r \in (0, A)$, $\exists \delta > 0$, $\exists x \in U(x_0, \delta)$ 时, f(x) > r > 0.

三、局部保号性

性质3: 若 $\lim_{x \to x_0} f(x) = A \perp A < 0, \text{则} \forall r \in (A,0),$ $\exists \delta > 0, \text{当} x \in U(x_0, \delta) \text{时}, f(x) < r < 0.$

四、保不等式性

性质4: 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$, 且 $\exists U(x_0)$,

当 $x \in U(x_0)$,有 $f(x) \ge g(x)$,则

 $A \geq B$.

推论: 设 $\lim_{x \to x_0} f(x) = A$,且 $\exists U(x_0)$,当 $x \in U(x_0)$ 时, $f(x) \ge 0$,则 $A \ge 0$.

五、迫敛性

性质5: 设
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = A$$
,且当 $x \in \overset{\circ}{U}(x_0)$ 时,有
$$f(x) \le h(x) \le g(x)$$
, 则 $\lim_{x \to x_0} h(x) = A$.

六、四则运算

性质6: 设 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$,则

- (1) $\lim_{x\to x_0} [f(x)\pm g(x)] = A\pm B$.
- (2) $\lim_{x \to x_0} [f(x) \cdot g(x)] = A \cdot B$.
- (3) 若 $B \neq 0$,则 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}$.

例1、求
$$\lim_{x\to 0} x[\frac{1}{x}]$$
.

例2、求
$$\lim_{x\to +\infty} \frac{\arctan x}{x}$$
.

例3、求
$$\lim_{x\to\infty} \frac{5x^3 - 3x + 7}{3x^3 + 2x^2 + 5}$$
.

一般地: 当 $a_n b_n \neq 0$, m 和 n 为非负整数时有

例4、求
$$\lim_{x\to 1} \frac{1+x+\cdots+x^n-n-1}{x-1}$$
.

业

习题3-2: 1(3)(5)(6)、2(1)、8(3)