

$Ann\'{e} \ universitaire \ 2020-2021$ Licence $1^{\'{e}re}$ ann\'{e} - Mention MI - Ma0102

Chapitre 4

Applications - Injections - Surjections - Bijections

	Liste des paragraphes	
Ι	- Définitions et exemples	1
II	- Composition d'applications	3
III	- Injections - Surjections - Bijections	4
IV	- Fonctions réciproques en analyse	7

I - Définitions et exemples

Définition 1 :

1/ Une application f est la donnée de deux ensembles E et F non vides et une façon d'associer à chaque élément $x \in E$ un unique élément $y \in F$, noté f(x).

On dit alors que f est une application de <math>E vers <math>F et on la note :

$$f: E \longrightarrow F$$
 ou bien $f: E \longrightarrow F, x \longmapsto f(x)$
 $x \longmapsto f(x)$

On peut également la noter plus simplement : $f:E\longrightarrow F$ ou bien encore $E\stackrel{f}{\longrightarrow} F$

- 2/E s'appelle l'ensemble de départ de f, F l'ensemble d'arrivée de f.
- 3/ Pour tout $x \in E$, f(x) s'appelle l'**image de** x **par** f.
- 4/ Pour $y \in F$, on appelle **antécédent de** y **par** f, tout élément $x \in E$ tel que y = f(x).
- 5/ On appelle **image de** f (noté $\mathrm{Im} f$) l'ensemble défini par : $\mathrm{Im} f = \{f(x) \mid x \in E\}$

Représentation sagittale :

Remarques:

 $1/\operatorname{Im} f \subset F \text{ et } \operatorname{Im} f \neq \emptyset$

$$2/$$
 On a : $\forall y \in F$, $\left[y \in \operatorname{Im} f \iff \left(\exists x \in E, f(x) = y \right) \right]$

EXEMPLES 1:

1/ Soit E un ensemble non vide et A une partie de E. Alors :

$$\varphi \ : \mathscr{P}(E) \ \longrightarrow \ \mathscr{P}(E)$$

$$X \ \longmapsto X \cap A$$

est une application. On a $\text{Im}\varphi = \mathscr{P}(A)$

2/
$$\sin : \mathbb{R} \longrightarrow \mathbb{R}$$
 est une application et $\operatorname{Im}(\sin) = [-1, 1]$.
 $x \longmapsto \sin x$

- 1 - T.S.V.P.

3/ Si on désigne par $\mathscr P$ un plan et par $\mathscr C$ l'ensemble des cercles de ce plan, on peut définir l'application notée par exemple g, de $\mathscr C$ vers $\mathscr P$, qui à chaque cercle associe le centre de ce cercle. On a :

On a $\text{Im}(g) = \mathscr{P}$

- 4/ $h: \mathbb{R} \longrightarrow \mathbb{R}$ n'est pas une application. $x \longmapsto h(x) = \ln x$
- 5/ $k: \mathbb{R}^+ \longrightarrow \mathbb{R}$ n'est pas non plus une application. $x \longmapsto k(x) = y$ où $y \in \mathbb{R}$ et $y^2 = x$

NOTATIONS:

1/ Si E est un ensemble non vide, on note Id_E l'application suivante :

$$Id_{\mathcal{E}} : E \longrightarrow E$$

$$x \longmapsto Id_{\mathcal{E}}(x) = x$$

2/ Si E et F sont deux ensembles non vides, l'ensemble de toutes les applications de E vers F se note : F^E . Autrement dit :

$$f \in F^E \iff \Big[f \text{ est une application de } E \text{ vers } F\Big]$$

EXEMPLES 2:

- 1/ Écrire $f=\mathrm{Id}_{[0,1]}$ signifie que $\ f:[0,1] \longrightarrow [0,1]$ $x \longmapsto f(x)=x$
- 2/ Si $f:[0,1] \longrightarrow \mathbb{R}^+$, on écrira : $f \in (\mathbb{R}^+)^{[0,1]}$. $x \longmapsto f(x) = x^4$

DÉFINITION 2 :

Soient $f_1: E_1 \longrightarrow F_1$ et $f_2: E_2 \longrightarrow F_2$ des applications. On dit que f_1 et f_2 sont **égales** et on écrit $f_1 = f_2$ si :

$$\left[\widehat{E_1 = E_2}\right] \underbrace{\text{et}} \left[\widehat{F_1 = F_2}\right] \underbrace{\text{et}} \left[\forall x \in E_1, \ \widehat{f_1(x) = f_2(x)}\right]$$

REMARQUE : On a $f_1 \neq f_2$ si $E_1 \neq E_2$ ou bien si $F_1 \neq F_2$ ou bien si $E_1 = E_2$ et $F_1 = F_2$ et $\exists x \in E_1$ tel que $f_1(x) \neq f_2(x)$.

EXEMPLES 3:

1/Les applications f et g suivantes sont distinctes :

2/ Même résultat pour les deux <u>application</u>s suivantes :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = \sin x$$

$$g: (0, 2\pi) \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) = \sin x$$

$$g: (0, 2\pi] \longrightarrow \mathbb{R}$$

$$x \longmapsto q(x) = \sin x$$

$$f: \overline{\mathbb{R}} \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto f(x) = \sqrt{x^2}$$

$$\underbrace{g} : \mathbb{R} \longrightarrow \mathbb{R} \\
\underline{x} \longmapsto g(x) = |x|$$

II - Composition d'applications

$$x \longmapsto f(x) = \sin x \qquad x \longmapsto g(x) = \sin x$$

$$3 \text{ Les applications } f \text{ et } g \text{ suivantes sont egales}$$

$$f : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = \sqrt{x^2}$$

$$x \longmapsto g(x) = |x|$$

DÉFINITION 3

Soient deux applications f $E \longrightarrow F$ et g. $F' \longrightarrow G$ telles que $F \subset F'$. On appelle **application** ${\color{red} composée}$ de f ${\color{red} par}$ g, que l'on note $g\circ f,$ l'application définie par :

$$\underbrace{g \circ f} : E \longrightarrow G$$

$$x \longmapsto \underbrace{(g \circ f)(x)} = \underbrace{g(f(x))}$$

 $\frac{\text{Remarque}}{2} : \mathcal{E}^{\prime}$

1/ Cette définition est justifiée par le fait que : $\forall x \in E, f(x) \in F'$ car $f(x) \in F$ et $F \subset F'$ et donc g(f(x)) a un sens.

2/ On retient la définition de $g \circ f$ grâce au schéma suivant : $x = f \circ f(x) = g \circ f(x)$)

3/ En général $g \circ f \neq f \circ g$

Théorème 1 Associativité de la composition des applications)

Soient $f: E \longrightarrow F$ et $g: F' \longrightarrow G$ et $h: G' \longrightarrow H$ des applications. On suppose que $F \subset F'$ et $G \subset G'$. Alors $h \circ g \circ f = h \circ (g \circ f)$ Cette application est alors simplement notée $h \circ g \circ f$ et on a :

$$h \circ g \circ f : E \longrightarrow H$$

 $x \longmapsto (h \circ g \circ f)(x) = h(g(f(x)))$

<u>NOTATION</u>: Si f est une application de E vers E et $n \in \mathbb{N}^*$, on notera (si aucune confusion n'est possible) par f^n l'application $\underbrace{f \circ f \circ \ldots \circ f}_{f}$ et par convention, on pose $f^0 = \mathrm{Id}_E$.

III - Injections - Surjections - Bijections

Définition 4:

Soit une application $f: E \longrightarrow F$.

- On dit que f est injective (ou que : f est une injection), si tout élément de F admet au plus un antécédent par f.
- On dit que f est surjective (ou que : f est une surjection), si tout élément de F admet au moins un antécédent par f.
- 3/ On dit que f est **bijective** (ou que : f est une **bijection**), si tout élément de F admet un et un seul antécédent par f.

<u>Illustrations</u>:

EXEMPLES 4:

- $2/ \text{ L'application } \begin{vmatrix} \mathbb{R} & \longrightarrow & [-1,1] \\ x & \longmapsto & \sin x \end{vmatrix} \text{ est surjective, mais n'est ni injective, ni bijective. }$
- 3/ L'application $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \longrightarrow [-1, 1]$ est injective, surjective et bijective.

Théorème 2:

Soit une application $f: E \longrightarrow F$. Les assertions suivantes sont équivalentes :

i) f est injective.

Exemples 41

$$\frac{1}{2} \quad f: \left[-W_{2}, W_{2} \right] \longrightarrow \mathbb{R}$$

$$\chi_{1} \longrightarrow f(x) = \sin \chi$$

2) g: R ->[-11]

3) A: [-72, 72] -> [-1,1] $x \mapsto h(x) = smx$

ii)
$$\forall (x, x') \in E^2, [f(x) = f(x') \Longrightarrow x = x']$$

iii)
$$\forall (x,x') \in E^2, \ [x \neq x' \Longrightarrow f(x) \neq f(x')]$$
 (contraposes de ii))

COROLLAIRE 1:

Soit une application $f: E \longrightarrow F$. Alors:

$$[f \text{ n'est pas injective}] \iff [\exists (x, x') \in E^2, x \neq x' \text{ et } f(x) = f(x')]$$

Théorème 3:

Soit une application $f: E \longrightarrow F$. Les assertions suivantes sont équivalentes :

- i) f est surjective.
- ii) $\forall y \in F, \exists x \in E, y = f(x)$
- iii) **Maff**

COROLLAIRE 2:

Soit une application $f: E \longrightarrow F$. Alors:

$$f$$
 n'est pas surjective \iff $\exists y \in F, \forall x \in E, f(x) \neq y$

Théorème 4:

Soit une application $f: E \longrightarrow F$. Les propositions suivantes sont équivalentes :

- i) f est bijective.
- ii) $\forall y \in F, \exists ! x \in E, y = f(x)$
- iii) f est surjective et f est injective.

COROLLAIRE 3:

Soit une application $f: E \longrightarrow F$. Alors:

$$f$$
 n'est pas bijective \iff f n'est pas surjective ou f n'est pas injective

<u>Proposition - Définition</u> : (Application réciproque)

Si $f: E \longrightarrow F$ est une application bijective, on peut définir l'application notée f^{-1} , appelée **application réciproque de** f et définie de F dans E par :

$$f^{-1}: F \longrightarrow E$$

$$y \longmapsto f^{-1}(y) = \text{l'unique ant\'ec\'edent de } y \text{ par } f$$

- **5** - T.S.V.P.

Autrement dit:

$$\forall y \in F, \, \forall x \in E, \, \left[f^{-1}(y) = x \Longleftrightarrow y = f(x) \right]$$

<u>Illustrations</u>:

Représentation de f

Représentation de f^{-1}

EXEMPLES 5:

- 1/ Si E est un ensemble non vide, l'application $A \longmapsto \mathcal{C}_E A$ est bijective. Elle est égale à son application réciproque.
- 2/ L'application $\ln: \mathbb{R}^{*+} \longrightarrow \mathbb{R}$ est bijective et sa réciproque est l'application $\exp: \mathbb{R} \longrightarrow \mathbb{R}^{*+}$ $x \longmapsto \ln x$

Proposition 1:

Soit une application $f: E \longrightarrow F$ bijective. Alors:

$$f^{-1} \circ f = \mathrm{Id}_E$$
 et $f \circ f^{-1} = \mathrm{Id}_F$

Autrement dit:

$$\forall x \in E, \ f^{-1}(f(x)) = x \text{ et } \forall y \in F, \ f(f^{-1}(y)) = y$$

<u>Proposition 2</u>: (Caractérisation fonctionnelle de la bijectivité)

Soit une application $f: E \longrightarrow F$. S'il existe une application $g: F \longrightarrow E$ telle que $g \circ f = \mathrm{Id}_E$ et $f \circ g = \mathrm{Id}_F$, alors f est bijective et $g = f^{-1}$.

 $\underbrace{\texttt{Exemple}}_{6}: \texttt{Considérons l'application } f \text{ définie par :}$

$$f: \mathbb{R}^{*-} \longrightarrow \mathbb{R}^{*+}$$

$$x \longmapsto \frac{1}{x^2}$$

Définissons l'application g par :

$$g: \mathbb{R}^{*+} \longrightarrow \mathbb{R}^{*-}$$
$$x \longmapsto -\frac{1}{\sqrt{x}}$$

On a alors : $g \circ f = \mathrm{Id}_{\mathbb{R}^{*-}}$ et $f \circ g = \mathrm{Id}_{\mathbb{R}^{*+}}$. Par conséquent, l'application f est bijective et f^{-1} et donnée par: $f^{-1}: \mathbb{R}^{*+} \longrightarrow \mathbb{R}^{*-}$ $x \longmapsto -\frac{1}{\sqrt{x}}$

COROLLAIRE 4:

Si $f: E \longrightarrow F$ est bijective, alors f^{-1} est bijective et $(f^{-1})^{-1} = f$

$\underline{\text{COROLLAIRE 5}}$:

Si $f: E \longrightarrow F$ et $g: F \longrightarrow G$ sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

IV - Fonctions réciproques en analyse

Soit I un intervalle ayant pour bornes a et b, où a et b sont des nombres réels ou bien l'un des deux symboles $-\infty$ ou $+\infty$ $E \times 13$; $G: [-1,1] \longrightarrow \mathbb{R}$ (I=[-1,1], a=-1, b=1) Soit $f:I \longrightarrow \mathbb{R}$ une application continue et strictement monotone sur I. Alors :

- 1) a) f(I) est un intervalle. (g(I) = Img = [-1,1])
 - b) Les bornes de l'intervalle f(I) sont $\lim_{a} f$ et $\lim_{b} f$. (ling = g(-1) = -1, lim g = g(-1) = 1)
 - c) Si I est fermé en a (resp : b) alors f(I) est fermé en $\lim_a f$ (resp : $\lim_b f$) et si I est ouvert en a(resp : b) alors f(I) est ouvert en $\lim_a f$ (resp : $\lim_b f)$
- 2) L'application f réalise une bijection de l'intervalle I sur l'intervalle f(I).

 (a byection de I = (-1,1))

 Sur g(I) = (-1,1)
- 3) L'application réciproque f^{-1} est définie sur f(I) par :

$$f^{-1}: f(I) \longrightarrow I$$
 $y \longmapsto x = f^{-1}(y)$ où y et x sont liés par la relation $y = f(x)$

- 4) f^{-1} est continue sur f(I), strictement monotone et de même sens de variation que f.
- 5) Soit $x_0 \in I$ et $y_0 = f(x_0)$.
 - a) Si f est dérivable en x_0 et si :
 - i) $f'(x_0) \neq 0$, alors f^{-1} est dérivable en y_0 et : $\left(f^{-1}\right)'(y_0) = \frac{1}{f'(x_0)}$ (que l'on peut également écrire $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$
 - ii) $f'(x_0) = 0$, alors f^{-1} n'est pas dérivable en y_0 .
 - b) Si f n'est pas dérivable en x_0 et si :
 - i) $\lim_{x \to x_0} \left| \frac{\overline{f}(x) f(x_0)}{x x_0} \right| = +\infty$ alors f^{-1} est dérivable en y_0 et : $(f^{-1})'(y_0) = 0$. ii) $\lim_{x \to x_0} \left| \frac{f(x) f(x_0)}{x x_0} \right|$ n'existe pas alors f^{-1} n'est pas dérivable en y_0 .