Frames en geldigheid

Maria Aloni
ILLC-University of Amsterdam
M.D.Aloni@uva.nl

Logica en de Linguistic Turn 2012

3/12/13

Plan voor vandaag

- 1. Modale logica: geldigheid van formules in modellen en op frames
- 2. Opgaven modale logica
- 3. Nat Ded

Huiswerk:

- Syllabus, 4.3 incl. opgaven.
- ▶ NatDed: Gamut, opg. 4.9; extra opg. 7,8.
- Tekst Frege lezen en vragen beantwoorden.

Nieuws

- Wittgenstein filmavond: woensdag 4 dec om 19.30, Doelenzaal, UB
- ▶ Wiki: nieuwe deadline definitieve versie lemma's: 5 dec
- ➤ Stemmen voor het beste lemma via email naar mij deadline 9-12 (graag "wiki" noemen mail header)

Geldige principes

Mogelijke principes voor de modale logica. Zijn de volgende altijd waar (geldig)?

(1) a.
$$\Box p \rightarrow p$$

b. $\Box p \rightarrow \Diamond p$
c. $\Box p \rightarrow \Box \Box p$
d. $p \rightarrow \Box \Diamond p$

- ► Klassieke filosofische vragen die met behulp van de modale logica scherper geformuleerd kunnen worden.
- Intuïtieve waarheid (geldigheid) van principes afhankelijk van interpretatie van □ en ⋄.

Geldigheid

- ▶ In modale logica worden verschillende noties van geldigheid onderscheiden:
 - 1. Geldigheid in een model,
 - 2. Geldigheid op een frame,
 - 3. Logisch geldig.
- Eerder geldigheid van redeneringen, hier geldigheid van een formule.

Kripke modellen, modellen en frames

- ▶ Drie noties:
 - ▶ Kripke model $\mapsto \mathcal{K} = (W, R, V, w)$
 - ▶ Model \mapsto $\mathcal{M} = (W, R, V)$
 - ▶ Frame \mapsto $\mathcal{F} = (W, R)$
- ▶ Vorige keer: waarheid in een Kripke model
- Vandaag:
 - Geldigheid in een model
 - Geldigheid op een frame

Herhaling: waarheid in een Kripke model

- 1. $\langle W, R, V, w \rangle \models p \text{ desda } V_w(p) = 1;$
- 2. $\langle W, R, V, w \rangle \models \neg \phi \text{ desda } \langle W, R, V, w \rangle \not\models \phi$;
- 3. ...
- 4. $\langle W, R, V, w \rangle \models \Diamond \phi$ desda er is een $v \in W$ zodanig dat Rwv en $\langle W, R, V, v \rangle \models \phi$;
- 5. $\langle W, R, V, w \rangle \models \Box \phi$ desda voor elke $v \in W$ zodanig dat Rwv geldt $\langle W, R, V, v \rangle \models \phi$.

Geldigheid in een model

Een formule ϕ is geldig in een model $\mathcal{M} = \langle W, R, V \rangle$, $\mathcal{M} \models \phi$, desda $\langle W, R, V, w \rangle \models \phi$ voor alle werelden $w \in W$.

Voorbeeld: $\mathcal{M} \models \Diamond p$, maar $\mathcal{M} \not\models \Box p$, voor \mathcal{M} als in (2):

(2)
$$\mathcal{M} = \langle W, R, V \rangle$$
, voor $L = \{p\}$

- a. $W = \{w_1, w_2\},\$
- b. $R = \{\langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle \},$
- c. $V_{w_1}(p) = 1$ en $V_{w_2}(p) = 0$

Voor $P = \{p, q\}$, beschouw het model $\mathcal{M} = (W, R, V)$ met

- $V = \{w_1, w_2, w_3\}$
- $V_{w_1}(p) = 1, V_{w_2}(p) = 0, V_{w_3}(p) = 0,$ $V_{w_1}(q) = 0, V_{w_2}(q) = 1, V_{w_3}(q) = 0.$

Laat zien dat de volgende formules niet geldig zijn in \mathcal{M} :

(3) a.
$$p \lor q$$

b. $\Box\Box p \lor \Diamond\Box p$

Onthoud: Om te laten zien dat een formule ϕ *niet geldig is in een model* $\mathcal{M} = \langle W, R, V \rangle$ moet een wereld $w \in W$ worden gegeven waarvoor de formule onwaar is, *i.e.*, $\langle W, R, V, w \rangle \not\models \phi$.

Geldigheid op een frame

- ▶ Een structuur $\mathcal{F} = \langle W, R \rangle$ noemen wij een *frame*.
- ▶ Een formule ϕ is geldig op een frame $\mathcal{F} = \langle W, R \rangle$, $\mathcal{F} \models \phi$, desda voor alle valuaties V geldt dat $\mathcal{M} = \langle W, R, V \rangle \models \phi$.
- ▶ Voorbeeld: $\mathcal{F} \models \Box p \rightarrow \Diamond p$, maar $\mathcal{F} \not\models \Box p \rightarrow p$, voor \mathcal{F} als in (4):

$$\begin{array}{ll} \text{(4)} & \mathcal{F} = \langle W, R \rangle \\ & \text{a.} & W = \{w_1, w_2\}, \\ & \text{b.} & R = \{\langle w_1, w_1 \rangle, \langle w_2, w_1 \rangle\} \end{array}$$

Beschouw de frame F = (W, R) met

$$V = \{w_1, w_2, w_3\}$$

Laat zien dat de volgende formules niet geldig zijn op \mathcal{F} :

(5) a.
$$\Box p \rightarrow \Diamond p$$

b. $\Box p \rightarrow p$
c. $\Diamond \Diamond p \rightarrow \Diamond p$
d. $p \rightarrow \Box \Diamond p$

Onthoud: Om te laten zien dat een formule ϕ niet geldig is op een frame $\mathcal{F} = \langle W, R \rangle$ moet een valuatie V en een wereld $w \in W$ worden gegeven waarvoor de formule onwaar is, i.e., $\langle W, R, V, w \rangle \not\models \phi$.

Voor $P = \{p, q\}$, beschouw het Kripke model K = (W, R, V, w)

$$V = \{w, w_1, w_2, w_3\}$$

$$V_w(p) = 1, V_{w_1}(p) = 1, V_{w_2}(p) = 0, V_{w_3}(p) = 0, V_w(q) = 1, V_{w_1}(q) = 0, V_{w_2}(q) = 1, V_{w_3}(q) = 0.$$

Teken dit model, en ga nu na of de volgende formules waar zijn in K:

- (6) a. $\Diamond p \land \Diamond q$ b. $\Box (q \lor p)$ c. $\Box \Diamond p$ d. $\Diamond \Box q$ e. $\Diamond (\Diamond p \land \Diamond \neg p)$
 - f. $\Box(p \leftrightarrow \Diamond q)$
 - g. $p \rightarrow \Diamond \Box \neg a$
 - g. $\rho \rightarrow \lor \Box \lor q$
 - $\mathsf{h.} \quad \Diamond (p \leftrightarrow \Box p)$

Vertaal de volgenden zinnen in ML, en definieer K-modellen waarin ze waar zijn, en waarin ze onwaar zijn:

- (7) Als het mogelijk waar is dat a is b dan is het ook noodzakelijk waar.
 - a. Modale basis: alle logische mogelijkheden
 - b. Vertalingsleutel: p : a is b
 - c. Vertaling: $\Diamond p \rightarrow \Box p$
- (8) Als Peter niet binnen mag komen, dan moeten Jan en Bea ook weg.
 - Modale basis: alle deontische mogelijkheden (of alle mogelijkheden binnen de regels van de spreker)
 - b. Vertalingsleutel: p : P komt binnen, q : J gaat weg, r : B gaat weg.
 - c. Vertaling: $\neg \Diamond p \rightarrow \Box (q \land r)$
- (9) Sherlock acht het mogelijk dat Thelma niet vermoord is, en gelooft dat als zij wel vermoord is, dan heeft Louise het gedaan.
 - Modale basis: Alle mogelijkheden gegeven de beschikbare informatie van Sherlock.
 - b. Vertalingsleutel: p: T is vermoord, q: L heeft het gedaan
 - c. Vertaling: $\Diamond \neg p \land \Box(p \rightarrow q)$

Voor ieder zin in (10) definieer een K-model waarin de zin waar is, en een waarin ze onwaar is:

- (10) a. $\Diamond \Diamond p \rightarrow \Diamond p$
 - b. $p \rightarrow \Box \Diamond p$
 - c. $\Diamond p \rightarrow \Box \Diamond p$
 - d. $\Diamond p \leftrightarrow \Diamond \Diamond p$
 - e. $p \leftrightarrow \Diamond \Box p$