Pull Up and Pull Down Registor

 Pull-up and Pull-down resistors are used to correctly bias the inputs of digital gates to **prevent** them from floating about randomly when there is no input condition

Calculating Pull-Up Resistor Value

• TTL 74LSxxx series:

- Input high: $V_{IH(min)} = 2.0V$, $I_{IH(max)} = 20\mu A$
- Input low: $V_{IL(max)} = 0.8V$, $I_{IL(max)} = 0.4mA$

Single Gate Pull-up Resistor Value

$$R_{MAX} = \frac{V_{CC} - V_{IH(MIN)}}{I_{IH}} = \frac{5 - 2}{20 \times 10^{-6}} = 150 \text{K}\Omega$$

Multiple Gate Pull-up Resistor Value (10 inputs)

$$R_{MAX} = \frac{V_{CC} - V_{IH(MIN)}}{10 \times I_{IH}} = \frac{5 - 2}{10 \times 20 \times 10^{-6}} = 15 K\Omega$$

Calculating Pull-Up Resistor Value

• A *Pull-down resistor* works in the same way as the previous pull-up resistor, except this time the logic gates input is tied to ground, logic level "0" (LOW)

$$R_{MAX} = \frac{V_{IL(MAX)} - 0}{I_{IL}} = \frac{0.8 - 0}{400 \times 10^{-6}} = 2K\Omega$$

Example

- TTL 74LS00 NAND Gates along with a single-pole double-throw switch are to be used to make a simple set-reset bistable circuit signal. Calculate:
 - 1). The maximum pull-up resistor values if the voltage representing a logic HIGH input is to be held at 4.5 volts when the switch is open, and
 - 2). The current flowing through the resistor when the switch is closed (assume zero contact resistance). Also draw the circuit.
- Data given: Vcc = 5V, V_{IH} = 4.5V, and $I_{IH(max)}$ = 20 μ A

Answer

Set-Reset Bistable Circuit

$$R_{MAX} = \frac{V_{CC} - V_{IH}}{I_{IH}} = \frac{5 - 4.5}{20 \times 10^{-6}} = 25 K\Omega$$

$$I_{R} = \frac{V_{CC}}{R} = \frac{5V}{25k\Omega} = 200\mu A \text{ or } 0.2mA$$

CO2015

Diode & Its Applications

Diode and Its Applications

- Introduction to semiconductor
- Diode
- Applications

Semiconductor

- Semiconductors are a special class of elements having a conductivity between that of a good conductor and that of an insulator.
- Two classes: single-crystal and compound
- The three semiconductors used most frequently in the construction of electronic devices are Ge, Si, and GaAs.

Germanium (Ge)

- The discovery of the diode in 1939 and the transistor in 1947 germanium was used almost exclusively
- Advantages
 - Easy to find
 - Fairly large quantities
 - Easy to refine to obtain very high levels of purity
- Disadvantage
 - Sensitivity to changes in temperature

Silicon (Si)

- 1954 the first silicon transistor was introduced
- Advantages
 - Less temperature sensitive
 - The most abundant materials on earth
 - High levels of purity
- Disadvantage
 - Sensitive to issues of speed.

Gallium Arsenide (GaAs)

- The first GaAs transistor in the early 1970s.
- New transistor had speeds of operation up to five times that of Si.
- GaAs was more difficult to manufacture at high levels of purity, was more expensive.
- Today, it is often used as the base material for new high-speed, very large scale integrated (VLSI) circuit designs.

Diode

The diode is the simples and most fundamental non-linear circuit element

Like a resistor, it has two terminals

 Unlike a resistor, it has a non-linear current-voltage characteristics.

 Its use in rectifiers is the most common application

Diode

• Diode is an electric device which allows current to flow only in one direction.

Short circuit

- The voltage applied to the semiconductor diode is referred to as bias voltage
- There are two types of bias voltage
 - Forward biased
 - Reversed biased

PN Junction and Diode

PN Junction and Diode

- One end of a silicon or germanium crystal can be doped as a ptype material and the other end as an n-type material.
- At the p-n junction, the excess conduction-band electrons on the n-type side are attracted to the valence-band holes on the p-type side.

Diode – No Bias

- No external voltage is applied: $V_D = 0 \text{ V}$
- There is no diode current: $I_D = 0$ A
- Only a modest depletion region exists

Diode – Forward Bias

- External voltage is applied across the p-n junction in the same polarity as the p- and n-type materials.
- The forward voltage causes the depletion region to narrow.
- The electrons and holes are pushed toward the p-n junction.
- The electrons and holes have sufficient energy to cross the p-n junction

Diode – Reverse Bias

- External voltage is applied across the pn junction in the opposite polarity of the p- and n-type materials.
- The reverse voltage causes the depletion region to widen.
- The electrons in the *n*-type material are attracted toward the positive terminal of the voltage source.
- The holes in the *p*-type material are attracted toward the negative terminal of the voltage source.

Diode Equivalent Circuit

Figure 1.32 Components of the piecewise-linear equivalent circuit.

Ideal Diode Model

- Works as a switch
 - Forward bias (switch is close)
 - Reverse bias (switch is open)
- Threshold battery voltage and internal resistance are ignored.

$$I_{F} = \frac{V_{\text{BIAS}}}{R_{\text{LIMIT}}}$$

Forward bias

Reverse bias

Practical Diode Model

$$I_{F} = \frac{V_{BIAS} - V_{F}}{R_{LIMIT}}$$

Forward bias

Reverse bias

Constants

- Silicon Diode: $V_F = 0.7V$ ($V_F = V_{BIAS}$ if $V_{BIAS} < 0.7V$)
- Germanium Diode: $V_F = 0.3V$ ($V_F = V_{BIAS}$ if $V_{BIAS} < 0.3V$)

Complete Diode Model

$$I_{F} = \frac{V_{BIAS} - 0.7V}{R_{LIMIT} + r'_{d}}$$

$$I_{R} = \frac{V_{BIAS}}{R_{LIMIT} + r'_{R}}$$

Forward bias

Reverse bias

Exercise 3

- Given circuit
 - Forward bias voltage $V_F = 0.7V$
 - Internal resistance $\mathbf{r'_d} = \mathbf{10}\Omega$
- Determine V_F , I_F and V_{RLIMIT} for three diode models
 - Ideal diode model
 - Practical diode model
 - Complete diode model

Solution 3

Ideal diode model

$$\begin{aligned} &V_F = 0 V \\ &I_F = \frac{V_{BIAS}}{R_{LIMIT}} = \frac{10 V}{1 k \Omega} = 10 mA \\ &V_{R_{LIMIT}} = I_F \bullet R_{LIMIT} = \left(10 mA\right) \bullet \left(1 k \Omega\right) = 10 V \end{aligned}$$

Practical diode model

$$\begin{split} &V_F = 0,7 \, V \\ &I_F = \frac{V_{BIAS} - V_R}{R_{LIMIT}} = \frac{10 \, V - 0,7 \, V}{1 k \Omega} = 9,3 \, \text{mA} \\ &V_{R_{LIMIT}} = I_F \bullet R_{LIMIT} = \left(9,3 \, \text{mA}\right) \bullet \left(1 k \Omega\right) = 9,3 \, V \end{split}$$

Complete diode model

$$\begin{split} I_F &= \frac{V_{BIAS} - 0.7}{R_{LIMIT} + r'_d} = \frac{10 \, V - 0.7 \, V}{1 k \Omega + 10 \, \Omega} = \frac{9.3 \, V}{1010 \, \Omega} = 0.00921 \, A = 9.21 mA \\ V_F &= 0.7 \, V + r'_d \, .I_F = 0.7 \, V + \left(10 \, \Omega\right) \bullet \left(9.21 mA\right) = 792 \, mV \\ V_{R_{LIMIT}} &= I_F \bullet R_{LIMIT} = \left(9.21 mA\right) \bullet \left(1 k \Omega\right) = 9.21 V \end{split}$$

Load-Line Analysis

The load line plots all possible combinations of diode current (I_D) and voltage (V_D) for a given circuit. The maximum I_D equals E/R, and the maximum V_D equals E.

The point where the load line and the characteristic curve intersect is the Q-point, which identifies I_D and V_D for a particular diode in a given circuit.

Exercise

• Determine V_D , I_D and V_R based on the characteristic of the diode given in the following figure.

Solution

$$V_R = E - V_D = 10 \text{ V} - 0.78 \text{ V} = 9.22 \text{ V}$$

Diode Symbol and Packaging

- The anode is abbreviated A
- The cathode is abbreviated K

Diode Testing

- Diodes are commonly tested using one of these types of equipment:
 - Diode checker
 - Ohmmeter
 - Curve tracer

Ohmmeter

 An ohmmeter set on a low Ohms scale can be used to test a diode. The diode should be tested out of circuit.

Diode Checker

- Many digital multimeters have a diode checking function. The diode should be tested out of circuit.
- A normal diode exhibits its forward voltage:
 - Gallium arsenide ≈ 1.2 V
 - Silicon diode ≈ 0.7 V
 - Germanium diode ≈ 0.3 V

Exercise 2

- Determine
 - I₁, I_{D1}, I_{D2}

Curve Tracer

 A curve tracer displays the characteristic curve of a diode in the test circuit. This curve can be compared to the specifications of the diode from a data sheet.

Other Types of Diodes

- There are several types of diodes besides the standard p-n junction diode. Three of the more common are:
 - Zener diodes
 - Light-emitting diodes
 - Diode arrays

Zener Diode

• A Zener diode is one that is designed to safely operate in its zener region; i.e., biased at the Zener voltage (VZ).

Common zener diode voltage ratings are between 1.8 V and

200 V

Light-Emitting Diode (LED)

- An LED emits light when it is forward biased, which can be in the infrared or visible spectrum.
- The forward bias voltage is usually in the range of 2 V to 3
 V.

Diode Arrays

 Multiple diodes can be packaged together in an integrated circuit (IC).

A variety of diode configurations are available.

DC Adapter Circuits

Diode Application - Reverse Current Protection

- Mandatory design for any system
- Drawback: around 0.7V loss because of the forward voltage drop.
- Schottky diodes an excellent choice for reverse protection diodes.

Diode Application – Reverse Current Protection

SIM800L: 4.3V

Diode and Its Application

Half-wave Rectification

Full-ware Rectification

Half-Wave Rectification

Convert AC to DC using one Diode

Half-Wave Rectification (cont.)

Full-Wave Rectification

Convert AC to DC using two or four diodes

Bridge Rectifier

Ripple in Rectification

Diode Application - AC to DC Converter

Complete AC/DC Power Circuit

Logic Gates

OR

AND

Exercise 5

Analyze and validate the value of the voltmeter in case of

using ideal diode model?

