

A. Karnevaalikenraali

Tehtävän nimi	Karnevaalikenraali
Aikaraja	1 sekunti
Muistiraja	1 gigatavu

Joka neljäs vuosi Lundin opiskelijat järjestävät yhdessä Lund-karnevaalin. Muutaman päivän ajan eräs puisto täyttyy teltoista, joissa voi osallistua monituisiin juhlahulinoihin. Karnevaalin järjestämisestä vastaa karnevaalikenraali.

Karnevaaleja on järjestetty yhteensä N ja jokaisella on ollut eri kenraali. Kenraalit on numeroitu 0:sta N-1:een kronologisessa järjestyksessä. Jokainen kenraali i on arvioinut kuinka hyviä heidän edeltäjänsä ovat olleet julkaisemalla paremmuusjärjestyksen kenraaleista $0,1,\ldots,i-1$ parhaimmasta huonoimpaan.

Seuraava Lund-karnevaali järjestetään vuonna 2026. Odotellessa kaikki aikaisemmat karnevaalikenraalit kokoontuvat yhteiskuvaa varten. Olisi kuitenkin kiusallista jos kenraalit i ja j (kun i < j) päätyisivät kuvaan vierekkäin jos i on **aidosti** j:n laatiman paremmuusjärjestyksen jälkimmäisellä puoliskolla.

Esimerkiksi:

- Jos kenraali 4 on arvioinut edeltäjänsä $3\ 2\ 1\ 0$, niin 4:n vieressä voi seistä 3 tai 2, mutta ei 1 tai 0.
- Jos kenraali 5 on arvioinut edeltäjänsä 4 3 2 1 0, niin 5:n vieressä voi seistä 4,3 tai 2, mutta ei 1 tai 0. Huomioi, että ei haittaa, että kenraalin sijoitus on tasan keskellä paremmuusjärjestystä.

Seuraava kuva havainnollistaa esimerkkiä 1. Kuvassa kenraali5 seisoo kenraalien 2 ja 3 vieressa, ja kenraali4 seisoo vain kenraalin 2 vieressä.

Sinulle annetaan kenraalien laatimat paremmuusjärjestykset. Tehtäväsi on järjestää kenraalit $0,1,\ldots,N-1$ riviin niin, että i ja j (i< j) ovat vierekkäin kun i **ei** ole aidosti kenraalin j laatiman paremmuusjärjestyksen jälkimmäisellä puoliskolla.

Syöte

Ensimmäisellä rivillä on positiivinen kokonaisluku N: kenraalien määrä.

Tämän jälkeen seuraa N-1 riviä: jokaisen kenraalin arvio edeltäjiensä paremmuusjärjestyksestä. Ensimmäisellä rivillä on kenraalin 1 arviot, toisella rivillä on kenraalin 2 arviot ja niin edespäin kenraaliin N-1 asti. Kenraali 0 puuttuu, koska hänellä ei ollut ketään edeltäjää arvioitavana.

Kenraalin i laatima paremmuusjärjestys on i pituinen lista kokonaislukuja $p_{i,0},p_{i,1},\ldots,p_{i,i-1}$, jossa jokainen kokonaisluku väliltä 0:sta i-1:een esiintyy täsmälleen kerran. Tässä $p_{i,0}$ on paras ja $p_{i,i-1}$ on huonoin kenraalin i mielestä.

Tuloste

Tulosta lista kokonaisluvuista $0,1,\ldots N-1$ niin, että jokaiselle vierekkäiselle lukuparille pätee, että kumpikaan ei ole aidosti toisen arvioinnin loppupuoliskossa.

Voidaan osoittaa, että ratkaisu on aina olemassa. Jos ratkaisuja on useita, voit tulostaa niistä minkä tahansa.

Rajat ja pisteytys

- $2 \le N \le 1000$.
- $0 \leq p_{i,0}, p_{i,1}, \ldots p_{i,i-1} \leq i-1$ kaikille $i=0,1,\ldots,N-1$.

Ratkaisu testataan testiryhmillä, joista kullakin on oma pistemäärä. Jokainen testiryhmä sisältää joukon testitapauksia. Ryhmän pisteet saa vain, jos ratkaisee kaikki sen testitapaukset.

Ryhmä	Pisteet	Rajat
1	11	Kenraalin i laatima paremmuusjärjestys on $i-1,i-2,\dots,0$ kaikille i , joilla $1\leq i\leq N-1$
2	23	Kenraalin i laatima paremmuusjärjestys on $0,1,\dots,i-1$ kaikille i , joilla $1 \leq i \leq N-1$
3	29	$N \leq 8$
4	37	Ei muita rajoituksia

Esimerkki

Ensimmäinen testitapaus vastaa testiryhmän 1 ehtoa. Tässä tapauksessa kenraalit 2 ja 3 eivät kumpikaan voi seistä kenraalin 0 vieressä ja kenraalit 4 ja 5 eivät kumpikaan voi seistä kenraalien 0 ja 1 vieressä (aiempi kuva havainnollistaa tapausta).

Toinen testitapaus vastaa testiryhmän 2 ehtoa. Tässä tapauksessa kenraali 2 ei voi seistä kenraalin 1 vieressä, kenraali 3 ei voi seistä kenraalin 2 vieressä ja kenraali 4 ei voi seistä kenraalien 3 ja 2 vieressä.

Kolmas testitapaus vastaa testiryhmän 3 ehtoa. Tässä tapauksessa ainoat kenraalit, jotka eivät voi seistä vierekkäin ovat (1,3) ja (0,2). Siis järjestys voi olla 3 0 1 2. Toinen mahdollinen vastaus on 0 1 2 3.

Syöte	Tuloste
6 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0	4 2 5 3 1 0
5 0 0 1 0 1 2 0 1 2 3	2 0 4 1 3
4 0 1 0 0 2 1	3 0 1 2