Autore: Prof. Gabriel Rovesti

1. INTRODUZIONE ALLE RETI

1.1 Ripasso Topologie e Modelli ISO/OSI - TCP/IP

Le topologie di rete definiscono la disposizione fisica o logica dei dispositivi di rete:

- Stella: tutti i nodi sono collegati a un nodo centrale
- Anello: ogni nodo è collegato a due nodi adiacenti formando un circuito chiuso
- Bus: tutti i nodi sono collegati a un unico canale di comunicazione
- Maglia (mesh): ogni nodo è collegato a tutti gli altri (completa) o ad alcuni (parziale)
- Albero: struttura gerarchica con nodi che si diramano da un nodo radice

1.2 Definizione di Rete e Modelli

Una rete di computer è un insieme di dispositivi interconnessi che condividono risorse e comunicano tra loro.

Modello ISO/OSI (International Organization for Standardization/Open Systems Interconnection):

- 1. **Livello fisico**: trasmissione di bit grezzi tramite il mezzo fisico
- Livello data link: framing e controllo degli errori
- 3. Livello rete: routing e indirizzamento dei pacchetti
- 4. **Livello trasporto**: trasferimento dati affidabile end-to-end
- 5. **Livello sessione**: gestione delle sessioni di comunicazione
- 6. **Livello presentazione**: rappresentazione e crittografia dei dati
- 7. **Livello applicazione**: interfaccia con le applicazioni utente

Modello TCP/IP (Transmission Control Protocol/Internet Protocol):

- 1. Livello accesso alla rete: corrisponde ai livelli 1 e 2 del modello OSI
- 2. Livello internet: corrisponde al livello 3 del modello OSI
- 3. Livello trasporto: corrisponde al livello 4 del modello OSI
- 4. Livello applicazione: corrisponde ai livelli 5, 6 e 7 del modello OSI

1.3 Differenze tra i Modelli

Caratteristica	ISO/OSI	TCP/IP
Numero di livelli	7	4

Caratteristica	ISO/OSI	TCP/IP
Approccio	Teorico	Pratico
Sviluppo	Prima il modello, poi i protocolli	Prima i protocolli, poi il modello
Flessibilità	Più rigido	Più flessibile
Adozione	Principalmente teorica	Standard de facto di Internet
Separazione	Chiara distinzione tra servizi, interfacce e protocolli	Meno distinzione

1.4 Enti di Standardizzazione

- ISO (International Organization for Standardization): sviluppa e pubblica standard internazionali
- **IEEE** (Institute of Electrical and Electronics Engineers): definisce standard per reti locali e metropolitane (802.x)
- **IETF** (Internet Engineering Task Force): sviluppa e promuove standard Internet, principalmente TCP/IP

1.5 Architetture di Rete

Client/Server:

- Server centralizzati forniscono servizi ai client
- Facile gestione e sicurezza
- Possibile collo di bottiglia e single point of failure
- Esempi: web, email, database

Peer-to-Peer (P2P):

- Ogni nodo può fungere sia da client che da server
- Decentralizzato, più resiliente
- Più difficile da gestire e proteggere
- Esempi: BitTorrent, blockchain, alcune VolP

1.6 Introduzione al Physical Layer

Il livello fisico è il livello più basso del modello OSI, responsabile della trasmissione di bit grezzi.

- LLC (Logical Link Control):
 - Sottolivello superiore del livello data link
 - Fornisce interfaccia al livello rete
 - Indipendente dal tipo di rete fisica

- Controllo di flusso, rilevamento errori
- MAC (Media Access Control):
 - Sottolivello inferiore del livello data link
 - Gestisce l'accesso al mezzo condiviso
 - Indirizzamento hardware (MAC address)
 - Protocolli specifici per ogni tipo di rete (Ethernet, WiFi, ecc.)

2. LIVELLO FISICO

2.1 Livello LLC, HDLC, MAC ed Ethernet

- LLC (Logical Link Control):
 - IEEE 802.2
 - Multiplazione dei protocolli di livello superiore
 - Tipi di servizio: connectionless e connection-oriented
 - Frame: DSAP, SSAP, Control
- HDLC (High-level Data Link Control):
 - Protocollo di livello data link orientato ai bit
 - Modalità: NRM (Normal Response Mode), ARM (Asynchronous Response Mode),
 ABM (Asynchronous Balanced Mode)
 - Tipi di frame: Information, Supervisory, Unnumbered
 - Controllo di flusso e rilevamento errori
- MAC (Media Access Control):
 - Controllo accesso al canale condiviso
 - Indirizzo MAC: 48 bit (6 byte), univoco globalmente
 - Formato: OUI (Organizationally Unique Identifier, 24 bit) + NIC (Network Interface Controller, 24 bit)
- Ethernet (IEEE 802.3):
 - Standard dominante per LAN
 - Velocità: da 10 Mbps a 400 Gbps
 - CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - Frame: Preambolo, SFD, MAC dest/src, Lunghezza/Tipo, Dati, FCS

2.2 Tipologie di Cavo

- Cavi in rame:
 - Doppino intrecciato (Twisted Pair):
 - UTP (Unshielded Twisted Pair): senza schermatura
 - STP (Shielded Twisted Pair): con schermatura
 - Categorie: Cat5e (1 Gbps), Cat6 (10 Gbps), Cat7 (100 Gbps)
 - Vantaggio: economico, facile da installare

Svantaggio: sensibile a interferenze, distanza limitata

Cavo coassiale:

- · Conduttore centrale, isolante, schermatura, guaina
- Tipi: thick Ethernet (10Base5), thin Ethernet (10Base2)
- Vantaggio: buona immunità alle interferenze
- Svantaggio: meno flessibile, più costoso

Cavi in silicio:

- Utilizzati principalmente in circuiti integrati
- Altissima velocità di trasmissione
- Distanze estremamente ridotte

Cavi ottici:

Fibra ottica:

- Monomodale: core piccolo (8-10µm), lunga distanza
- Multimodale: core grande (50-62.5µm), distanze più brevi
- Materiali: silice, plastica
- Vantaggio: alta velocità, immune a interferenze, lunga distanza
- Svantaggio: costo, fragilità, installazione complessa

2.3 Mezzi Trasmissivi, Caratteristiche e Segnali

Mezzi trasmissivi:

- Guidati (via cavo): rame, fibra ottica
- Non guidati (wireless): radio, microonde, infrarossi, laser

Caratteristiche dei segnali:

- Ampiezza: intensità del segnale
- Frequenza: numero di cicli al secondo (Hz)
- Fase: spostamento relativo della forma d'onda
- Larghezza di banda: intervallo di frequenze utilizzabili
- Attenuazione: perdita di potenza del segnale
- Distorsione: alterazione della forma del segnale
- Rumore: interferenze elettromagnetiche

2.4 Modulazioni e Multiplexing

Modulazioni:

Analogiche:

- AM (Amplitude Modulation): varia l'ampiezza
- FM (Frequency Modulation): varia la frequenza
- PM (Phase Modulation): varia la fase

Digitali:

ASK (Amplitude Shift Keying): varia l'ampiezza

- FSK (Frequency Shift Keying): varia la frequenza
- PSK (Phase Shift Keying): varia la fase
- QAM (Quadrature Amplitude Modulation): combina ampiezza e fase

• Multiplexing:

- FDM (Frequency Division Multiplexing): suddivisione in frequenza
- TDM (Time Division Multiplexing): suddivisione temporale
- WDM (Wavelength Division Multiplexing): per fibra ottica, multiple lunghezze d'onda
- CDM (Code Division Multiplexing): codici unici per ogni canale
- SDM (Space Division Multiplexing): canali fisicamente separati

2.5 Continuazione Tipologie di Cavo e Conclusione Multiplexing

Doppini:

- Coppie di fili intrecciati per ridurre le interferenze
- Categorie in base alla velocità supportata
- RJ-45: connettore standard per doppini
- Standard di cablaggio: T568A e T568B

Fibra ottica:

- Principio: riflessione totale interna
- Componenti: core (nucleo), cladding (mantello), buffer (rivestimento)
- Connettori: SC, LC, ST, FC
- FTTH (Fiber To The Home): fibra fino all'abitazione
- Vantaggi: alta larghezza di banda, bassa attenuazione, sicurezza

2.6 Codici di Correzione Errore

Codifiche di linea:

- NRZ (Non-Return-to-Zero):
 - Usa due livelli di tensione
 - Problemi con lunghe sequenze dello stesso bit
- RZ (Return-to-Zero):
 - Ritorna a zero dopo ogni bit
 - Auto-sincronizzazione migliore
 - Richiede maggiore larghezza di banda

• Manchester:

- Transizione a metà bit: alto-basso per 0, basso-alto per 1
- Auto-sincronizzazione
- Utilizzato in Ethernet 10Base-T
- CRC (Cyclic Redundancy Check):

- Algoritmo di rilevamento errori
- Polinomio generatore
- Divisione in modulo-2
- Standard: CRC-16, CRC-32
- Efficace per burst error

2.7 Tipi di Trasmissione

Simplex:

- Comunicazione unidirezionale
- Es: radio, televisione

• Half-duplex:

- Comunicazione bidirezionale alternata
- Un dispositivo alla volta può trasmettere
- Es: walkie-talkie

• Full-duplex:

- Comunicazione bidirezionale simultanea
- Canali separati per trasmissione e ricezione
- Es: telefono, Ethernet moderno

2.8 Dispositivi di Rete

• Hub:

- Dispositivo di livello 1 (fisico)
- Ripete il segnale su tutte le porte
- Crea un unico dominio di collisione
- Obsoleto, sostituito da switch

Switch:

- Dispositivo di livello 2 (data link)
- Inoltra frame basandosi su indirizzi MAC
- Crea domini di collisione separati
- Mantiene tabella MAC-porta

Router:

- Dispositivo di livello 3 (rete)
- Inoltra pacchetti tra reti diverse
- Determina il percorso migliore (routing)
- Separa domini di broadcast

3. LIVELLO DI RETE IP

3.1 Topologie e Introduzione al Livello IP

Topologie fisiche:

A stella, ad anello, a bus, a maglia, ad albero

Topologie logiche:

- Broadcast: tutti i nodi ricevono tutti i messaggi
- Token passing: trasmissione gestita da un token

• **IP** (Internet Protocol):

- Protocollo di livello 3
- Connectionless: ogni pacchetto indipendente
- Best-effort: nessuna garanzia di consegna
- Versioni: IPv4 (32 bit), IPv6 (128 bit)

Caratteristiche del frame IP:

- Header: informazioni di controllo
- · Payload: dati utente
- Non include informazioni di controllo fisico (preambolo, FCS)

3.2 Classi di Indirizzi IP e Subnetting

- Indirizzo IPv4: 32 bit (4 byte), notazione decimale puntata (es: 192.168.1.1)
- Classi di indirizzi:
 - Classe A: 0.0.0.0 127.255.255.255 (8 bit rete, 24 bit host)
 - Classe B: 128.0.0.0 191.255.255.255 (16 bit rete, 16 bit host)
 - Classe C: 192.0.0.0 223.255.255.255 (24 bit rete, 8 bit host)
 - Classe D: 224.0.0.0 239.255.255.255 (multicast)
 - Classe E: 240.0.0.0 255.255.255.255 (riservata/sperimentale)

Indirizzi speciali:

- Rete: tutti i bit host a 0 (es: 192.168.1.0)
- Broadcast: tutti i bit host a 1 (es: 192.168.1.255)
- Loopback: 127.0.0.1
- Private:
 - 10.0.0.0/8 (Classe A)
 - 172.16.0.0/12 (Classe B)
 - 192.168.0.0/16 (Classe C)

Subnetting:

- Divisione di una rete in sottoreti
- Utilizzo di una subnet mask
- Notazione CIDR (Classless Inter-Domain Routing): /n (n = numero di bit di rete)
- Esempio: 192.168.1.0/24 (subnet mask 255.255.255.0)

3.3 Esempi Pratici di Subnetting

Calcolo subnet:

- 1. Identificare la classe e la subnet mask
- 2. Determinare il numero di sottoreti necessarie
- 3. Calcolare la subnet mask estesa
- 4. Calcolare indirizzi di rete, host validi e broadcast

Esempio:

Rete: 192.168.1.0/24 (Classe C)

Necessità: 4 subnet

Bit necessari: 2 (2² = 4)

Nuova subnet mask: 255.255.255.192 (/26)

Sottoreti:

• 192.168.1.0/26 (host: 192.168.1.1 - 192.168.1.62, broadcast: 192.168.1.63)

• 192.168.1.64/26 (host: 192.168.1.65 - 192.168.1.126, broadcast: 192.168.1.127)

• 192.168.1.128/26 (host: 192.168.1.129 - 192.168.1.190, broadcast: 192.168.1.191)

• 192.168.1.192/26 (host: 192.168.1.193 - 192.168.1.254, broadcast: 192.168.1.255)

3.4 Routing e Tipi

Concetto di routing:

- Processo di determinazione del percorso migliore per i pacchetti
- Basato su tabelle di routing
- Metriche: hop count, latenza, larghezza di banda, costo

Tipi di routing:

Routing statico:

- Configurato manualmente dall'amministratore
- Non si adatta ai cambiamenti topologici
- Basso overhead, alta sicurezza
- Adatto a reti piccole e stabili

Routing dinamico:

- Protocolli automatici che aggiornano le tabelle
- Si adatta ai cambiamenti topologici
- Maggiore overhead, ma più flessibile
- Tipi:

Distance vector: RIP, EIGRP

Link state: OSPF. IS-IS

Path vector: BGP

Esempi di codice per routing statico (in Cisco IOS):

3.5 Tipi di Indirizzamento Avanzati

- VLSM (Variable Length Subnet Mask):
 - Permette subnet di dimensioni diverse
 - Assegna subnet in base alle reali necessità
 - Riduce lo spreco di indirizzi
 - Esempio:
 - Rete: 192.168.0.0/24
 - Subnet 1 (100 host): 192.168.0.0/25 (126 host utilizzabili)
 - Subnet 2 (50 host): 192.168.0.128/26 (62 host utilizzabili)
 - Subnet 3 (20 host): 192.168.0.192/27 (30 host utilizzabili)
- CIDR (Classless Inter-Domain Routing):
 - Supera i limiti delle classi
 - Aggregazione di rotte (route summarization)
 - Notazione /n per la subnet mask
 - Esempio:
 - 192.168.0.0/23 include 192.168.0.0/24 e 192.168.1.0/24
 - 172.16.0.0/12 include tutte le reti da 172.16.0.0 a 172.31.255.0

3.6 Algoritmi di Routing

- Bellman-Ford (Distance Vector):
 - Ogni router condivide la propria tabella con i vicini
 - Calcola il percorso più breve basandosi sulla distanza
 - Problemi: count-to-infinity, convergenza lenta
 - Utilizzato in RIP
- Dijkstra (Link State):
 - Ogni router costruisce una mappa completa della rete
 - Calcola il percorso più breve basandosi sul costo
 - Vantaggi: convergenza rapida, no count-to-infinity
 - Utilizzato in OSPF

3.7 Traffic Shaping

- Leaky Bucket:
 - Regola il flusso come un secchio che perde
 - Rata di uscita costante
 - Traffico in eccesso viene scartato o accodato

Riduce burst di traffico

Token Bucket:

- Genera token a velocità costante
- Un pacchetto può essere trasmesso solo con un token
- Consente burst controllati
- Più flessibile del leaky bucket

Choke Packet:

- Il router congestionato invia pacchetti di "strozzamento"
- Le sorgenti riducono la velocità di trasmissione
- Permette una risposta rapida alla congestione

3.8 Problemi MAC

- Stazione nascosta (Hidden Terminal):
 - Due stazioni non si "sentono" ma interferiscono su un terzo nodo
 - Problema tipico delle reti wireless
 - Soluzione: RTS/CTS (Request to Send/Clear to Send)
- Stazione esposta (Exposed Terminal):
 - Una stazione si astiene dal trasmettere perché "sente" un'altra trasmissione
 - La trasmissione non interferirebbe con il ricevitore reale
 - Causa inefficienza nell'uso del canale

3.9 Conclusione Routing e Sicurezza

- CNLS (Connectionless Network Service):
 - Ogni pacchetto indipendente
 - Nessuna connessione preliminare
 - Usato in IP
- CONS (Connection-Oriented Network Service):
 - Stabilisce una connessione prima della trasmissione
 - Mantiene lo stato della connessione
 - Usato in X.25, Frame Relay
- Accenni a sicurezza e crittografia:
 - Minacce: intercettazione, modifica, denial of service
 - Meccanismi di difesa: autenticazione, crittografia, firewall
 - Principi crittografici: confidenzialità, integrità, autenticità

3.10 Algoritmi di Contesa

- CSMA (Carrier Sense Multiple Access):
 - Ascolta prima di trasmettere

- Varianti:
 - 1-persistente: trasmette immediatamente se canale libero
 - Non-persistente: attende un tempo casuale e riprova
 - p-persistente: trasmette con probabilità p se canale libero
- CSMA/CD (CSMA with Collision Detection):
 - Rileva le collisioni durante la trasmissione
 - In caso di collisione: abort, jam signal, backoff
 - Utilizzato in Ethernet tradizionale

4. PROTOCOLLI E APPLICAZIONI

4.1 Tecniche di Accesso Multiplo al Canale

- TDMA (Time Division Multiple Access):
 - Suddivide il tempo in slot
 - Ogni utente ha slot dedicati
 - Utilizzato in GSM
- FDMA (Frequency Division Multiple Access):
 - Suddivide lo spettro in canali
 - Ogni utente ha frequenze dedicate
 - Utilizzato in radio AM/FM
- CDMA (Code Division Multiple Access):
 - Utenti condividono frequenza e tempo
 - Differenziati da codici unici
 - Maggiore capacità e sicurezza
 - Utilizzato in 3G

4.2 Problemi dell'Accesso Multiplo

- Collisioni:
 - Due o più stazioni trasmettono contemporaneamente
 - Segnali si corrompono a vicenda
 - Necessità di meccanismi di rilevamento e risoluzione
- Fairness (equità):
 - Garantire a tutte le stazioni opportunità equivalenti
 - Evitare starvation (fame) di alcuni nodi
- Overhead:
 - Costo di gestione del protocollo
 - Bilanciamento tra efficienza e robustezza

4.3 ALOHA e Varianti

ALOHA puro:

- Trasmissione immediata quando ci sono dati
- In caso di collisione: ritrasmissione dopo tempo casuale
- Throughput massimo: 18.4%

Slotted ALOHA:

- · Tempo diviso in slot discreti
- Trasmissione solo all'inizio di uno slot
- Riduce probabilità di collisione
- Throughput massimo: 36.8%

4.4 ARP e ICMP

- ARP (Address Resolution Protocol):
 - Mappa indirizzi IP in indirizzi MAC
 - Broadcast: "Chi ha l'IP x.x.x.x?"
 - Risposta unicast: "lo ho x.x.x.x, il mio MAC è xx:xx:xx:xx:xx:xx"
 - Cache ARP per ridurre traffico broadcast
 - Vulnerabilità: ARP poisoning/spoofing
- ICMP (Internet Control Message Protocol):
 - Protocollo di controllo per IP
 - Funzioni:
 - Echo request/reply (ping)
 - Destination unreachable
 - Time exceeded
 - Redirect
 - Router advertisement/solicitation

4.5 Esercizi di Subnetting

Processo di subnetting:

- 1. Identificare classe e subnet mask iniziale
- 2. Determinare requisiti (n° subnet, host per subnet)
- 3. Calcolare bit necessari per subnet e host
- 4. Determinare nuova subnet mask
- 5. Calcolare indirizzi di rete, range di host, broadcast

Esempio:

- Data rete 172.16.0.0/16, creare 14 subnet
- Bit necessari: 4 (2⁴=16 > 14)
- Nuova subnet mask: 255.255.240.0 (/20)
- Prima subnet: 172.16.0.0/20 (host: 172.16.0.1 172.16.15.254)
- Seconda subnet: 172.16.16.0/20 (host: 172.16.16.1 172.16.31.254)

E così via...

5. LIVELLO DI TRASPORTO

5.1 Ripasso Indirizzi IP e Routing

Struttura indirizzo IP:

- 32 bit (IPv4) divisi in porzione rete e host
- Notazione decimale puntata (es: 192.168.1.1)
- Subnet mask per identificare la porzione di rete

Funzioni livello rete:

- Indirizzamento logico
- Routing
- Frammentazione e riassemblaggio
- Controllo congestione

Funzioni livello data link:

- Framing
- Controllo errori
- Controllo flusso
- Accesso al mezzo

5.2 Introduzione a TCP e UDP

- TCP (Transmission Control Protocol):
 - Orientato alla connessione
 - · Affidabile: ordinamento, rilevamento errori, ritrasmissione
 - Controllo di flusso e congestione
 - Comunicazione stream-based
 - Applicazioni: web (HTTP), email (SMTP), file transfer (FTP)
- UDP (User Datagram Protocol):
 - · Non orientato alla connessione
 - Non affidabile: no garanzie di consegna o ordine
 - Nessun controllo di flusso o congestione
 - Comunicazione message-based
 - Basso overhead, alta velocità
 - Applicazioni: DNS, streaming, VoIP, online gaming

5.3 Quality of Service (QoS)

- Definizione: capacità di fornire diversi livelli di servizio a diversi tipi di traffico
- Parametri QoS:
 - Bandwidth (larghezza di banda): quantità di dati trasmissibili per unità di tempo

- Delay (ritardo): tempo necessario ai pacchetti per attraversare la rete
- Jitter: variazione del ritardo
- Packet loss (perdita di pacchetti): percentuale di pacchetti persi
- Throughput: quantità di dati effettivamente trasmessi per unità di tempo
- Meccanismi QoS:
 - Classificazione traffico: identificazione e categorizzazione
 - Marking: etichettatura pacchetti con priorità
 - Policing/Shaping: controllo velocità traffico
 - Queuing: gestione code in base a priorità
 - Congestion avoidance: prevenzione congestione

5.4 Struttura Pacchetti TCP e UDP

- Header TCP (20-60 byte):
 - Source Port (16 bit)
 - Destination Port (16 bit)
 - Sequence Number (32 bit)
 - Acknowledgment Number (32 bit)
 - Data Offset (4 bit)
 - Reserved (6 bit)
 - Control Flags (6 bit): URG, ACK, PSH, RST, SYN, FIN
 - Window Size (16 bit)
 - Checksum (16 bit)
 - Urgent Pointer (16 bit)
 - Options (variabile)
- Header UDP (8 byte):
 - Source Port (16 bit)
 - Destination Port (16 bit)
 - Length (16 bit)
 - Checksum (16 bit)

5.5 Meccanismi di Trasmissione TCP

- Three-way handshake (apertura connessione):
 - 1. Client → Server: SYN
 - 2. Server → Client: SYN+ACK
 - 3. Client → Server: ACK
- Four-way handshake (chiusura connessione):
 - 1. Client → Server: FIN
 - 2. Server → Client: ACK
 - 3. Server → Client: FIN

4. Client → Server: ACK

Parametri di connessione:

- RTT (Round Trip Time): tempo di andata e ritorno
- RTO (Retransmission Timeout): tempo prima di ritrasmettere
- MSS (Maximum Segment Size): dimensione massima segmento
- Window Size: numero di byte che possono essere inviati senza ACK
- Fairness: equa distribuzione della banda tra flussi concorrenti

5.6 Problemi TCP

Slow Start:

- All'inizio la finestra di congestione è piccola
- Aumenta esponenzialmente fino alla soglia
- Poi aumenta linearmente (congestion avoidance)

Slow Start:

- All'inizio la finestra di congestione è piccola
- Aumenta esponenzialmente fino alla soglia
- Poi aumenta linearmente (congestion avoidance)

Fast Retransmit:

- Non attende il timeout per ritrasmettere
- Se riceve 3 ACK duplicati, ritrasmette immediatamente
- Migliora significativamente le prestazioni

5.7 Tecniche di Controllo di Flusso

Stop-and-wait:

- Sender invia un pacchetto e attende ACK
- Semplice ma inefficiente
- Utilizzo basso della banda

Sliding Window:

- Permette l'invio di più pacchetti prima di ricevere ACK
- Dimensione finestra determina quanti pacchetti possono essere in transito
- Varianti:
 - Go-Back-N: in caso di errore ritrasmette tutti i pacchetti da N in poi
 - Selective Repeat: ritrasmette solo i pacchetti persi

5.8 Altri Protocolli di Livello Trasporto

- DHCP (Dynamic Host Configuration Protocol):
 - Assegna dinamicamente indirizzi IP
 - Processo: Discover → Offer → Request → Acknowledge

- Fornisce anche subnet mask, gateway, DNS
- Usa porte UDP 67/68
- ARP (Address Resolution Protocol):
 - Mappa indirizzi IP in indirizzi MAC
 - Essenziale per la comunicazione in LAN
 - Cache ARP per memorizzare mappature recenti
 - Vulnerabilità: ARP spoofing

6. SICUREZZA NELLE RETI

6.1 Introduzione alla Crittografia

- Definizione: trasformazione di dati per renderli incomprensibili senza apposita chiave
- Obiettivi:
 - Confidenzialità: protezione da accessi non autorizzati
 - Integrità: garanzia che i dati non siano alterati
 - Autenticità: verifica dell'identità del mittente
 - Non ripudio: impossibilità di negare azioni compiute
- Tipi di crittografia:
 - Simmetrica: stessa chiave per cifrare e decifrare
 - Asimmetrica: coppia di chiavi correlate (pubblica e privata)
 - Ibrida: combina entrambe le tecniche

6.2 Crittografia Simmetrica

- Caratteristiche:
 - Una sola chiave per cifrare e decifrare
 - Veloce ed efficiente
 - Problema della distribuzione sicura delle chiavi
- Algoritmi:
 - DES (Data Encryption Standard):
 - Sviluppato negli anni '70
 - Blocchi di 64 bit, chiave di 56 bit
 - Considerato insicuro oggi (brute force possibile)
 - 3DES (Triple DES):
 - Applica DES tre volte con chiavi diverse
 - Blocchi di 64 bit, chiave effettiva 112/168 bit
 - Più sicuro ma più lento di DES
 - AES (Advanced Encryption Standard):
 - Standard attuale
 - Blocchi di 128 bit, chiavi di 128/192/256 bit

- Sicuro e relativamente veloce
- Altri: Blowfish, Twofish, RC4, ChaCha20

6.3 Crittografia Asimmetrica

Caratteristiche:

- Coppia di chiavi: pubblica (cifratura) e privata (decifratura)
- Più lenta della simmetrica
- Risolve il problema della distribuzione delle chiavi

Algoritmi:

- RSA (Rivest-Shamir-Adleman):
 - Basato sulla difficoltà di fattorizzare numeri grandi
 - Ampiamente utilizzato
 - Chiavi tipicamente 2048-4096 bit
 - Esempio di funzionamento:
 - 1. Generazione chiavi: scelta di p, q primi; $n = p \times q$; $\varphi(n) = (p-1)(q-1)$
 - 2. Scelta e (coprimo con $\varphi(n)$); calcolo d (inverso moltiplicativo di e modulo $\varphi(n)$)
 - 3. Chiave pubblica: (n, e); chiave privata: (n, d)
 - 4. Cifratura: c = m^e mod n
 - 5. Decifratura: m = c^d mod n
- Altri: ElGamal, ECC (Elliptic Curve Cryptography), DSA

6.4 Trasposizione e Firma Digitale

Cifrari a trasposizione:

- Cesare: sostituzione con shift fisso dell'alfabeto
 - Es: shift 3: A→D, B→E, C→F, ecc.
 - Facilmente decifrabile (26 possibilità)
- Vigenère: sostituzione polialfabetica con chiave
 - Usa una tabella e una parola chiave
 - Più sicuro di Cesare ma comunque vulnerabile

• Firma digitale:

- Garantisce autenticità e non ripudio
- Processo:
 - 1. Hash del documento
 - 2. Cifratura dell'hash con chiave privata del mittente
 - Verifica con chiave pubblica del mittente
- Applicazioni: PEC, documenti XML, certificati digitali

6.5 Funzioni di Hash

Caratteristiche:

- Trasformano input di lunghezza arbitraria in output di lunghezza fissa
- Idealmente: piccoli cambi nell'input creano grandi cambi nell'output
- Unidirezionali: impossibile risalire all'input dall'output
- Resistenti alle collisioni: difficile trovare due input con stesso output

Algoritmi:

- MD5 (Message Digest 5):
 - Output di 128 bit
 - Considerato insicuro (collisioni trovate)
 - Ancora usato per checksum (non per sicurezza)
- SHA (Secure Hash Algorithm):
 - SHA-1: output di 160 bit (vulnerabile)
 - SHA-2: include SHA-256, SHA-384, SHA-512
 - SHA-3: nuovo standard, approccio diverso
 - Ampiamente utilizzati per sicurezza

6.6 HTTPS (Livello 7)

HTTP Secure:

- HTTP su connessione crittografata (SSL/TLS)
- Garantisce confidenzialità e integrità
- Autenticazione del server mediante certificati

Funzionamento:

- Client richiede connessione sicura
- 2. Server invia certificato con chiave pubblica
- 3. Client verifica certificato con CA (Certificate Authority)
- 4. Client genera chiave di sessione e la cifra con chiave pubblica del server
- 5. Server decifra la chiave di sessione
- 6. Comunicazione crittografata con chiave di sessione (simmetrica)

6.7 Attacchi di Sicurezza

Man in the Middle:

- L'attaccante si interpone tra due comunicanti
- Può intercettare, modificare, iniettare messaggi
- Contromisure: autenticazione forte, crittografia, certificati
- DoS (Denial of Service):
 - Sovraccarico di un servizio per renderlo indisponibile
 - Tecniche: SYN flood, ICMP flood, UDP flood, amplification
 - Contromisure: filtraggio, rate limiting, ridondanza
- DDoS (Distributed Denial of Service):

- DoS da molteplici sorgenti (botnet)
- Più difficile da contrastare
- · Contromisure: CDN, servizi anti-DDoS, traffic scrubbing

6.8 Bluetooth

- Caratteristiche generali:
 - Tecnologia wireless a corto raggio (PAN)
 - Frequenza: 2.4 GHz ISM
 - Versioni: da 1.0 a 5.3, con miglioramenti in velocità, range, consumo
 - · Sicurezza: pairing, crittografia
- Architettura:
 - Beacon: segnali periodici per sincronizzazione e discovery
 - Piconet: rete di dispositivi Bluetooth (1 master + fino a 7 slave)
 - Scatternet: interconnessione di più piconet
- Profili: specificano come usare Bluetooth per specifiche applicazioni (A2DP, HFP, OBEX, ecc.)

6.9 VPN e Firewall

- VPN (Virtual Private Network):
 - Estende rete privata su rete pubblica
 - Sicurezza: crittografia, autenticazione, tunneling
 - Tipi:
 - Site-to-site: collega intere reti
 - Remote access: collega utenti singoli a rete
 - Protocolli: IPsec, SSL/TLS, OpenVPN, WireGuard

Tunneling:

- Incapsulamento di un protocollo in un altro
- Permette trasporto attraverso reti con restrizioni
- Nasconde dettagli del traffico interno

• Firewall:

- Sistema di sicurezza che monitora e filtra traffico di rete
- Tipi:
 - Packet filter: filtro basato su header
 - Stateful inspection: tiene traccia dello stato delle connessioni
 - Application layer: analizza il traffico a livello applicativo
 - Next-gen: include IDS/IPS, antivirus, DLP
- Posizionamento: perimetrale, interno, host-based

6.10 Politiche di Accesso e Sicurezza

- DAC (Discretionary Access Control):
 - Il proprietario della risorsa decide chi può accedervi
 - Flessibile ma potenzialmente meno sicuro
 - Esempio: permessi file in sistemi operativi desktop
- MAC (Mandatory Access Control):
 - Il sistema impone regole di accesso basate su policy
 - Più rigido ma più sicuro
 - Esempio: SELinux, sistemi militari

HTTPS e SSL/TLS:

- SSL (Secure Sockets Layer): predecessore di TLS
- TLS (Transport Layer Security): versioni 1.0-1.3
- Handshake: scambio di chiavi e parametri
- Record protocol: trasferimento dati crittografati
- Certificati X.509 per autenticazione
- IPsec (IP Security):
 - Suite di protocolli per sicurezza a livello IP
 - Componenti:
 - AH (Authentication Header): integrità e autenticazione
 - ESP (Encapsulating Security Payload): confidenzialità, integrità, autenticazione
 - IKE (Internet Key Exchange): gestione chiavi

7. LIVELLO APPLICATIVO

7.1 Sicurezza Wireless

- WEP (Wired Equivalent Privacy):
 - Primo standard di sicurezza 802.11
 - Cifrario RC4 con chiavi statiche
 - Gravemente vulnerabile, non utilizzare
 - Problemi: vettori di inizializzazione deboli, gestione chiavi, integrità
- WPA (Wi-Fi Protected Access):
 - Sostituto temporaneo di WEP
 - TKIP (Temporal Key Integrity Protocol)
 - Più sicuro di WEP ma comunque vulnerabile
 - Autenticazione: PSK o 802.1X/EAP

WPA2:

- Standard dal 2004
- Cifrario AES-CCMP
- Sicurezza significativamente migliore

Vulnerabilità: KRACK (Key Reinstallation Attack)

WPA3:

- Standard più recente (2018)
- Miglioramenti: Simultaneous Authentication of Equals, forward secrecy
- Protezione contro attacchi offline, improved handshake
- Modalità personale (SAE) e enterprise (802.1X)

7.2 Protocolli di Livello Applicativo

- DNS (Domain Name System):
 - Risolve nomi di dominio in indirizzi IP
 - Struttura gerarchica (root, TLD, domain, subdomain)
 - Record: A, AAAA, MX, CNAME, TXT, NS, ecc.
 - Porte: UDP/TCP 53
 - Vulnerabilità: cache poisoning, DDoS, tunneling

HTTPS:

- HTTP su TLS/SSL
- Porte: TCP 443
- Certificati: X.509, validati da CA
- HSTS: forza connessioni HTTPS
- HTTP/2, HTTP/3: miglioramenti prestazioni

7.3 Architetture di Rete e Problemi

Client/Server:

- Server centralizzati forniscono servizi
- Client richiedono servizi
- Vantaggi: gestione centralizzata, controllo
- Svantaggi: single point of failure, scalabilità

Peer-to-Peer (P2P):

- Nodi fungono sia da client che da server
- Decentralizzato, distribuito
- Vantaggi: resilienza, scalabilità
- Svantaggi: gestione complessa, sicurezza

Microservizi:

- Applicazioni come suite di servizi indipendenti
- Ogni servizio è un processo distinto
- Comunicazione via API (spesso REST)
- Vantaggi: scalabilità, resilienza, sviluppo agile
- Svantaggi: complessità, overhead comunicazione

7.4 Protocolli di Posta Elettronica

- SMTP (Simple Mail Transfer Protocol):
 - Per invio email
 - Porta: TCP 25 (non sicura), 587 (TLS), 465 (SSL)
 - Comandi: HELO/EHLO, MAIL FROM, RCPT TO, DATA, QUIT
 - Estensioni: ESMTP (autenticazione, crittografia)
- POP3 (Post Office Protocol v3):
 - Per scaricamento email
 - Porta: TCP 110 (non sicura), 995 (SSL)
 - · Semplice, scarica e-mail sul client
 - Comandi: USER, PASS, LIST, RETR, DELE
 - Limiti: non sincronizzazione multi-dispositivo
- IMAP (Internet Message Access Protocol):
 - Per gestione email sul server
 - Porta: TCP 143 (non sicura), 993 (SSL)
 - Mantiene email sul server, sincronizzazione
 - Supporta cartelle, flag, ricerca
 - Vantaggi: multi-dispositivo, accesso parziale

7.5 Connessione Remota

- SSH (Secure Shell):
 - Protocollo per connessione sicura
 - Porta: TCP 22
 - Autenticazione: password, chiavi pubbliche/private
 - Tunneling: port forwarding, SOCKS proxy
 - Utilizzi: terminale remoto, SCP, SFTP, X11 forwarding

Telnet:

- Predecessore di SSH, non sicuro
- Trasmissione in chiaro (incluse credenziali)
- Porta: TCP 23
- Da evitare, preferire SSH

API e Microservizi:

- API (Application Programming Interface):
 - Interfaccia per interazione tra componenti software
 - Tipi: SOAP, REST, GraphQL, gRPC

Microservizi:

- Architettura con servizi indipendenti
- Comunicazione via API

- Scalabilità individuale dei componenti
- Container e orchestrazione (Docker, Kubernetes)

7.6 API REST e HTTP

- REST (Representational State Transfer):
 - Architettura per sistemi distribuiti
 - Principi:
 - Stateless: ogni richiesta è indipendente
 - Resource-based: URI identificano risorse
 - Rappresentazioni: JSON, XML, ecc.
 - Interfaccia uniforme: metodi HTTP standard
- HTTP (Hypertext Transfer Protocol):
 - Protocollo application layer per il web
 - Metodi: GET, POST, PUT, DELETE, PATCH, ecc.
 - Codici stato: 1xx (info), 2xx (successo), 3xx (redirect), 4xx (client error), 5xx (server error)
 - Header: content-type, authorization, cache-control, ecc.
 - HTTP/1.1, HTTP/2, HTTP/3: evoluzione del protocollo

7.7 Scambio File e Peer-to-Peer

- FTP (File Transfer Protocol):
 - Protocollo per trasferimento file
 - Porte: TCP 21 (controllo), TCP 20 (dati) o porte dinamiche
 - Modalità: attiva e passiva
 - Comandi: USER, PASS, LIST, CWD, STOR, RETR
 - Non sicuro: credenziali in chiaro
- FTPS (FTP Secure):
 - FTP su SSL/TLS
 - Porte: varie, spesso TCP 990
 - Sicurezza significativamente migliore
- Protocolli P2P:
 - Gnutella:
 - Rete P2P completamente decentralizzata
 - Query flooding per ricerca
 - Scalabilità limitata
 - BitTorrent:
 - Protocollo per condivisione file
 - File divisi in pezzi (chunks)
 - Tracker o DHT per coordinamento

- Algoritmi: rarest first, tit-for-tat
- Swarm: seeders (completi) e leechers (parziali)

7.8 Concetto di File Torrent

File .torrent:

- Metafile con informazioni per download
- Contiene:
 - Announce: URL tracker
 - Info hash: identificatore univoco
 - Piece length: dimensione dei pezzi
 - Pieces: hash SHA-1 di ogni pezzo
 - Nome, dimensione, struttura file

Processo BitTorrent:

- 1. Client scarica file .torrent
- 2. Contatta tracker o DHT
- 3. Riceve lista di peer
- 4. Connessione ai peer e scambio pezzi
- 5. Diventa seeder dopo download completo
- Magnet link: alternativa al file .torrent, contiene info hash e tracker

8. SICUREZZA DELLE RETI

8.1 Sicurezza Software

Vulnerabilità software:

- Buffer overflow
- Injection (SQL, XSS, CSRF)
- Errori logici, race condition
- Configurazioni insicure
- Dipendenze vulnerabili

Pratiche sicure:

- Secure coding
- Code review
- Testing (SAST, DAST, IAST)
- Patch management
- Principle of least privilege

8.2 Tipi di File Dannosi

Virus:

- Si replica inserendo codice in altri file
- Richiede azione utente per diffondersi
- Tipi: file, boot, macro, polimorfici

Worm:

- Si diffonde autonomamente via rete
- Non richiede intervento umano
- Consumo risorse, backdoor

Trojan:

- Appare legittimo ma contiene malware
- Non si auto-replica
- Tipi: backdoor, downloader, banking, RAT

Ransomware:

- Cifra dati e chiede riscatto
- Propagazione via phishing, vulnerabilità
- Impatto severo su organizzazioni

Spyware:

- Raccoglie informazioni senza consenso
- Keylogger, screen capture, data exfiltration
- Privacy breach

8.3 Misure di Prevenzione

Hardware:

- Firewall hardware
- IDS/IPS fisici
- Dispositivi di autenticazione (token, smartcard)
- Airgap per sistemi critici

Software:

- Antivirus/antimalware
- Firewall software
- Patch management
- Whitelisting applicazioni

Sociali:

- Formazione utenti
- Security awareness
- Policy e procedure
- Social engineering testing

9. AUDITING E COMPLIANCE

9.1 Tipi di Audit

Audit interno:

- Condotto da personale dell'organizzazione
- Scopo: miglioramento continuo
- Generalmente meno formale
- Preparazione per audit esterni

Audit esterno:

- Condotto da terze parti indipendenti
- Maggiore credibilità e imparzialità
- Può essere richiesto per conformità normativa
- Risulta in report formale con findings

Certificazione:

- Verifica conformità a standard specifici
- Rilascio di certificato ufficiale
- Esempi: ISO 27001, PCI DSS, SOC 2
- · Periodicità: iniziale e mantenimento

9.2 Penetration Testing e Vulnerability Assessment

Vulnerability Assessment:

- Identificazione sistematica vulnerabilità
- Approccio ampio ma meno profondo
- Tool automatizzati + analisi manuale
- Output: lista vulnerabilità con severità e rimedio

Penetration Testing:

- Simulazione attacchi reali
- Sfrutta vulnerabilità per dimostrare impatto
- Tipi: black box, white box, grey box
- Fasi: reconnaissance, scanning, exploitation, post-exploitation, reporting

9.3 Gestione delle Non Conformità

Identificazione:

- Audit, controlli, incident
- Classificazione per gravità
- Documentazione dettagliata

Analisi cause:

- Root cause analysis
- Tecniche: 5 Why, fishbone, fault tree
- Identificazione cause sistemiche

Azioni correttive:

- Piano di remediation
- Responsabilità assegnate
- Timeline definite
- Verifica efficacia

• Prevenzione:

- Misure per evitare ricorrenza
- Miglioramento processi
- Formazione
- Aggiornamento controlli

9.4 Security Operation Center (SOC)

Struttura:

- Team dedicate alla cybersecurity
- Monitoring 24/7
- Livelli: L1 (triage), L2 (analisi), L3 (risposta avanzata)
- Integrazione con CERT/CSIRT

Funzionamento:

- Monitoraggio continuo
- Detection eventi sospetti
- Analisi e correlazione
- Risposta agli incidenti
- Intelligence e threat hunting

Tecnologie:

- SIEM (Security Information and Event Management)
- EDR (Endpoint Detection and Response)
- NDR (Network Detection and Response)
- SOAR (Security Orchestration, Automation and Response)
- TIP (Threat Intelligence Platform)

10. EVOLUZIONE DEI SISTEMI DI AUTENTICAZIONE

10.1 Fattori di Autenticazione

- Conoscenza (something you know):
 - Password, PIN, pattern
 - Domande di sicurezza
 - Frasi segrete
 - Vantaggi: facili da implementare
 - Svantaggi: vulnerabili a phishing, social engineering

- Possesso (something you have):
 - Token fisici, smartcard
 - Mobile device (OTP via app o SMS)
 - Chiavi di sicurezza (FIDO2, YubiKey)
 - Vantaggi: difficili da duplicare
 - Svantaggi: possono essere persi o rubati
- Inerenza (something you are):
 - · Biometria: impronte, volto, iride, retina
 - Comportamentale: digitazione, firma, voce
 - Vantaggi: unici per ogni persona
 - Svantaggi: non modificabili se compromessi, falsi positivi/negativi

10.2 Autenticazione Multi-Fattore

- MFA (Multi-Factor Authentication):
 - Combinazione di più fattori diversi
 - Significativamente più sicura
 - Implementazioni:
 - 2FA (due fattori)
 - 3FA (tre fattori)
 - Adattiva (risk-based)

Metodologie:

- OTP (One-Time Password)
- App authenticator (TOTP/HOTP)
- Push notification
- Biometria + possesso
- SMS (considerato meno sicuro)

Standard:

- FIDO2/WebAuthn
- OATH (Initiative for Open AuTHentication)
- OAuth 2.0 (per autorizzazione)
- OpenID Connect (per identità)

10.3 Sistemi Biometrici

- Tipi:
 - Fisici:
 - Impronte digitali
 - Riconoscimento facciale
 - Scansione iride/retina
 - Geometria mano

- DNA
- Comportamentali:
 - Dinamica di digitazione
 - Riconoscimento voce
 - Firma grafometrica
 - Analisi andatura
 - Pattern comportamentali

Funzionamento:

- 1. Acquisizione
- 2. Pre-elaborazione
- 3. Estrazione caratteristiche
- 4. Confronto con template
- 5. Decisione (match/no match)

Metriche:

- FAR (False Acceptance Rate)
- FRR (False Rejection Rate)
- EER (Equal Error Rate)
- Threshold di decisione

10.4 Single Sign-On e Identity Federation

- SSO (Single Sign-On):
 - Autenticazione unica per più servizi
 - · L'utente si autentica una volta sola
 - Sessione condivisa tra applicazioni
 - Tipi:
 - Enterprise SSO
 - Web SSO
 - Federated SSO

Identity Federation:

- Gestione identità distribuita tra organizzazioni
- Trust relationship tra identity provider
- L'utente si autentica presso un IdP e accede a più SP
- Protocolli:
 - SAML
 - OAuth 2.0 / OpenID Connect
 - WS-Federation

Vantaggi e rischi:

- Pro: usabilità, gestione centralizzata
- Contro: single point of failure, maggiore superficie d'attacco

11. FIRMA DIGITALE E PKI

11.1 Infrastruttura a Chiave Pubblica

- PKI (Public Key Infrastructure):
 - Insieme di hardware, software, politiche e procedure
 - Gestisce creazione, distribuzione, revoca certificati
 - Basata su crittografia asimmetrica
 - Componenti:
 - CA (Certificate Authority)
 - RA (Registration Authority)
 - · Repository certificati
 - Sistema di gestione

Gerarchia:

- Root CA (auto-firmata)
- Intermediate CA
- Issuing CA
- End entity

11.2 Certificati Digitali e CA

Certificato digitale:

- Documento elettronico che associa chiave pubblica a identità
- Standard X.509
- Contiene:
 - Dati titolare
 - Chiave pubblica
 - Periodo validità
 - Dati CA emittente
 - Firma della CA
 - Policy e utilizzi

CA (Certificate Authority):

- Emette e firma certificati
- Verifica identità richiedenti
- Pubblica CRL (Certificate Revocation List)
- Fornisce OCSP (Online Certificate Status Protocol)
- · Commerciali: DigiCert, Sectigo, GlobalSign
- Free: Let's Encrypt

11.3 Normativa eIDAS e Standard Italiani

- eIDAS (electronic IDentification, Authentication and trust Services):
 - Regolamento UE n. 910/2014
 - Quadro normativo per identità elettronica e servizi fiduciari
 - Riconoscimento transfrontaliero
 - Livelli di garanzia: basso, significativo, elevato

Standard italiani:

- CAD (Codice dell'Amministrazione Digitale)
- AgID (Agenzia per l'Italia Digitale)
- SPID (Sistema Pubblico di Identità Digitale)
- CIE (Carta d'Identità Elettronica)
- CNS (Carta Nazionale dei Servizi)

11.4 Applicazioni Pratiche della Firma Digitale

Documenti legali:

- Contratti
- Atti notarili
- Documenti fiscali
- Fascicolo sanitario

e-Government:

- Servizi PA online
- Procedure amministrative
- Procurement pubblico

• Business:

- Fatturazione elettronica
- Ordini e contratti
- Firme multiple e workflow approval
- Conservazione a norma

Tecnologie:

- PAdES (PDF)
- XAdES (XML)
- CAdES (CMS/PKCS#7)
- JAdES (JSON)

12. RESPONSIBLE DISCLOSURE E SECURITY RESEARCH

12.1 Principi della Responsible Disclosure

Definizione:

Processo etico di segnalazione vulnerabilità

- Comunicazione privata all'organizzazione interessata
- Tempo ragionevole per fix prima di disclosure pubblica
- Bilanciamento tra sicurezza e trasparenza

Fasi:

- 1. Scoperta vulnerabilità
- Documentazione dettagliata
- 3. Contatto responsabile sicurezza
- 4. Collaborazione per verifica e fix
- 5. Disclosure coordinata

• Timeframe:

- Tipicamente 30-90 giorni
- Variabile per severità e complessità
- Possibilità di estensione per vulnerabilità complesse
- Negoziabile tra researcher e organizzazione

12.2 Bug Bounty Programs

Definizione:

- Programmi che premiano ricercatori per la scoperta di vulnerabilità
- Incentivi monetari o riconoscimenti
- Regole d'ingaggio chiare
- · Piattaforme: HackerOne, Bugcrowd, Intigriti

Vantaggi:

- Crowdsourcing della security
- Riduzione costi rispetto a penetration testing tradizionale
- Diversità di approcci e competenze
- Miglioramento continuo

Componenti:

- Scope (in/out of scope)
- Regole di engagement
- Scala di ricompense
- Processo di triage e validazione
- Gestione disclosure

12.3 Framework Legali per Security Testing

Legislazione informatica:

- Variabile per giurisdizione
- Computer Fraud and Abuse Act (USA)
- Direttiva NIS (UE)
- Computer Misuse Act (UK)

Legge 48/2008 (Italia)

Autorizzazioni:

- Permesso scritto esplicito
- Limiti chiari (scope)
- Non-disclosure agreement
- Rules of engagement
- Safe harbor agreements

Rischi legali:

- Accesso non autorizzato
- Eccessivo danno o interruzione servizio
- Data breach
- Export control per strumenti di sicurezza
- Responsabilità civile

12.4 Etica Hacker e Responsabilità Professionale

• Etica hacker:

- Principi di comportamento responsabile
- Non arrecare danno
- Rispetto privacy e proprietà intellettuale
- Condivisione conoscenza per miglioramento collettivo
- Trasparenza e onestà

Responsabilità professionale:

- Competenza tecnica adeguata
- Aggiornamento continuo
- Due diligence
- Proporzionalità negli interventi
- Documentazione completa

Codici di condotta:

- (ISC)² Code of Ethics
- EC-Council Code of Ethics
- SANS Institute guidelines
- OWASP principles

13. CONCETTI UTILI PER L'ESAME DI STATO

13.1 Software Libero e Licenze

Software libero vs open source:

- Free software: libertà di eseguire, studiare, modificare, ridistribuire
- Open source: accessibilità codice, collaborazione

Differenze filosofiche ma sovrapposizioni pratiche

Licenze:

Copyleft:

- GPL (GNU General Public License): obbliga derivati a rimanere open
- LGPL: permette linking da software proprietario
- AGPL: copyleft anche per servizi di rete

Permissive:

- MIT: minime restrizioni, possibile uso commerciale
- BSD: simile a MIT, varianti con diverse clausole
- Apache 2.0: tutela brevetti, trademark

License compatibility:

- Interazione tra codice con licenze diverse
- Matrice di compatibilità
- Obblighi di attribuzione e licenza

13.2 Virtualizzazione e Ambienti Distribuiti

Virtualizzazione:

- Hypervisor:
 - Tipo 1 (bare metal): VMware ESXi, Hyper-V, KVM
 - Tipo 2 (hosted): VirtualBox, VMware Workstation

• Tipi di virtualizzazione:

- Server (macchine virtuali complete)
- Desktop (VDI Virtual Desktop Infrastructure)
- Applicativa (singole app virtualizzate)
- Network (SDN Software Defined Networking)
- Storage (SAN, NAS virtualizzati)

Container:

- Isolamento a livello OS senza hypervisor
- Leggeri, portabili, efficienti
- Docker, LXC, containerd
- Immagini e registry

Orchestrazione:

- Kubernetes
- Docker Swarm
- Apache Mesos
- Automazione deployment, scaling, management

Ambienti distribuiti:

- Cluster
- Grid computing

- Cloud computing (laaS, PaaS, SaaS)
- Edge computing
- Fog computing

13.3 Frontend, Backend e Full-stack

• Frontend:

- Interfaccia utente
- Presentazione dati
- Tecnologie:
 - HTML, CSS, JavaScript
 - Framework: React, Angular, Vue
 - Mobile: Swift, Kotlin, Flutter
- Responsività e UX/UI

Backend:

- Logica server-side
- Gestione dati
- Tecnologie:
 - Linguaggi: Python, Java, PHP, Node.js, C#
 - Framework: Django, Spring, Laravel, Express
 - Database: MySQL, PostgreSQL, MongoDB, Redis
- API, sicurezza, scalabilità

Full-stack:

- Competenze su entrambi i fronti
- Visione d'insieme dell'applicazione
- DevOps: CI/CD, containerizzazione
- Architetture: monolitica, microservizi, serverless

Comunicazione:

- REST API
- GraphQL
- WebSocket
- gRPC
- Messaging (AMQP, Kafka)

GLOSSARIO TERMINI CHIAVE

- AES (Advanced Encryption Standard): algoritmo di crittografia simmetrica
- API (Application Programming Interface): interfaccia per interazione tra software
- ARP (Address Resolution Protocol): protocollo per mappare IP in MAC

- BGP (Border Gateway Protocol): protocollo di routing tra AS
- CA (Certificate Authority): ente che emette certificati digitali
- CIDR (Classless Inter-Domain Routing): metodo flessibile di assegnazione IP
- CSRF (Cross-Site Request Forgery): attacco che sfrutta l'identità di un utente autenticato
- **DDoS** (Distributed Denial of Service): attacco di negazione del servizio distribuito
- DHCP (Dynamic Host Configuration Protocol): assegnazione automatica indirizzi IP
- DNS (Domain Name System): sistema di risoluzione nomi di dominio
- FTTH (Fiber To The Home): fibra ottica fino all'abitazione
- FTP (File Transfer Protocol): protocollo per trasferimento file
- HDLC (High-level Data Link Control): protocollo di livello data link
- HTTPS (HTTP Secure): HTTP su connessione crittografata
- ICMP (Internet Control Message Protocol): protocollo di controllo per IP
- IMAP (Internet Message Access Protocol): protocollo per accesso email su server
- IPsec (IP Security): suite protocolli per sicurezza IP
- IPv4/IPv6: versioni del protocollo IP
- ISO (International Organization for Standardization): ente di standardizzazione
- LAN (Local Area Network): rete locale
- LLC (Logical Link Control): sottolivello superiore data link
- MAC (Media Access Control): sottolivello inferiore data link
- MFA (Multi-Factor Authentication): autenticazione a più fattori
- NAT (Network Address Translation): traduzione indirizzi di rete
- OSPF (Open Shortest Path First): protocollo di routing link state
- P2P (Peer-to-Peer): architettura decentralizzata
- PKI (Public Key Infrastructure): infrastruttura a chiave pubblica
- POP3 (Post Office Protocol v3): protocollo per scaricamento email
- QoS (Quality of Service): qualità del servizio
- **REST** (Representational State Transfer): architettura per sistemi distribuiti
- RIP (Routing Information Protocol): protocollo di routing distance vector
- RSA: algoritmo di crittografia asimmetrica
- SMTP (Simple Mail Transfer Protocol): protocollo per invio email
- SOC (Security Operation Center): centro operativo sicurezza
- SSH (Secure Shell): protocollo per connessione sicura
- SSL/TLS (Secure Sockets Layer/Transport Layer Security): protocolli per comunicazione sicura
- TCP (Transmission Control Protocol): protocollo di trasporto affidabile
- **UDP** (User Datagram Protocol): protocollo di trasporto non affidabile
- VLSM (Variable Length Subnet Mask): subnet mask di lunghezza variabile
- **VPN** (Virtual Private Network): rete privata virtuale
- WPA/WPA2/WPA3: standard di sicurezza Wi-Fi

 XSS (Cross-Site Scripting): attacco che inietta script dannosi in pagine web 						