Unix System Programming

Hyunchan, Park

http://oslab.jbnu.ac.kr

Division of Computer Science and Engineering

Jeonbuk National University

학습 내용

• 유닉스 환경에서의 개발 능력을 함양한다.

• 시스템콜을 활용한 프로그래밍 능력을 함양한다.

유닉스?

- 유닉스 시스템의 역사
 - 1969 AT&T산하의 벨연구소에서 켄 톰슨과 데니스 리치가 개발
 - 1973 C언어를 이용하여 재개발 ->
 고급 언어로 작성한 최초의 운영체제
 - 설계 목표: 높은 호환성과 이식성
 - 그 후 상용유닉스(시스템V) 계열과 BSD 계열로 분리하여 각각 발전
 - 1989 AT&T와 썬마이크로시스템즈가 두 계열의 장점을 결합하여
 SVR4를 공동개발
 - SVR4가 현재 사용하는 대부분의 유닉스의 기반임

- Linux
- 유닉스 개발과 전혀 무관한 대학생(Linus Torvalds)이 주도하여 개발한 Open Source 운영체제
- "Free 유닉스"를 목표로 시작
 - 유닉스와 동일한 인터페이스와 기능을 제공하는 것

Unix-like OS or Unix-family

- Unix family
 - FreeBSD, OpenBSD, Solaris, Minix, NetBSD, HP-UX
- Darwin (Apple)
 - macOS, iOS의 기반이 되는 OS
 - XNU 커널 사용 (kernel: 핵심 기능을 제공하는 코드)
 - 주요 OS 기능 부분은 BSD 의 코드를 기반으로 함
- Linux
 - 유닉스 개발과 전혀 무관한 대학생(Linus Torvalds)이 주도하여 개발
 - "Free Unix"를 목표로 시작: Unix와 동일한 인터페이스와 기능을 제공하는 것
 - Server, desktop, mobile (Android) 등 다방면에 활용
- 현재, Unix 라는 용어는 OS 그 자체를 가리키기 보다, Unix OS의 환경 (인터페이스와 동작 방식)을 지칭함
 - 위에 언급한 OS들은 모두 기본 구조, 기능, 환경이 유사함

Lineage of Unix

왜 유닉스 공부를 해야 하나요?

1. 가장 많은 사용자가 존재하는 OS 환경

Unix-like or Unix family

Date	Windows	Apple (macOS,iOS)	Linux-kernel (Android,Linux)	Source
2019	30.55 %	17.12 %	38.76 %	W3Counter
2018	23.43 %	13.48 %	53.21 %	W3Counter
2017	37.93 %	18.26 %	39.44 %	StatCounter GlobalStats
2016	36.78 %	17.05 %	34.75 %	W3Counter
	38.72 %	17.63 %	39.38 %	StatCounter GlobalStats

Web clients

^{*} https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#cite_note-221

왜 유닉스 공부를 해야 하나요?

2. 가장 많은 서버가 사용하는 OS 환경

Worldwide Server Operating Environment Shipments/Subscriptions and Nonpaid Deployment Share by Operating Environment, 2018

Linux had
double digit positive CAGR
from 2013-2018,
while other server
operating systems,
including UNIX and
Windows, experienced

negative growth

Source: IDC, 2019

^{*} CAGR: Compound Annual Growth Rate, 연평균성장율

^{*} https://www.redhat.com/ko/blog/red-hat-leadingenterprise-linux-server-market

(+)

..그런데 어렵잖아요!!

그저 익숙하지 않을 뿐.

- 우리는 Windows 에 너무 익숙하고,
- GUI 가 없으면 겁이 나고,
 - GUI: Graphical User Interface
- 마우스에서 손을 떼기가 싫어요!

- 저도 어려서부터 Windows 에 익숙하긴 한데요
 - 물론 지금도 대부분 시간을 Windows 에서 보냅니다.
- GUI보단 CLI가 마음이 편하고 안정이 되고요
 - CLI: Command Line Interface
- 키보드에서 손을 떼기가 싫어요!

그저 익숙하지 않을 뿐.

• 그래서 이 수업이 있는 것!

• 차근차근 배워 봅시다!

 강의의 초반 2-3주는 유닉스 환경에 대한 기본적인 설명과 명령어들을 다름

시스템 프로그래밍

- System Call: OS가 제공하는 기능들을 사용하는 것
 - 하드웨어를 제어하거나,
 - 다른 프로세스와의 통신을 수행하거나,
 - 시스템 정보에 접근, 수정하거나,
 - 시스템을 제어하는 기능 등
- 대표적인 시스템 콜
 - 화면 출력: printf() <- C 라이브러리. 내부에서 write() system call 사용
 - 파일 제어: open(), close(), read(), write()
 - 동적 메모리 할당: malloc() <- C 라이브러리. 내부에서 brk(), mmap() 사용
 - 네트워크 통신: socket(), send(), receive()
- 실제 강의는 위 시스템콜들을 이용한 프로그래밍 실습 위주
 - 물론 유닉스 환경에서, C 언어로!
 - 진행하며 필요한 명령어들이나 유닉스 시스템 지식 습득

수업 진행

- 유닉스 환경에서의 개발 (3주)
 - J-Cloud 기반의 Linux 환경에서 진행
 - 간단한 c언어 복습 (과제)
- 시스템 프로그래밍 (12주)
 - 파일 처리
 - 동적 메모리 할당
 - 프로세스 제어
 - 프로세스 간 통신
 - 소켓 프로그래밍

수업 진행

- 실습 위주 진행
 - 교수 강의: 실습 진행에 필요한 내용, 실습 시연 등
 - 시간은 매주 50% 이내로 진행
 - 동영상 업로드
 - 학생 실습: 동영상 강의 수강 후, 실습 진행
 - 매주 실습 진행 후, 결과물은 과제로 제출
 - 수업 시간에 진행하는 것처럼, 꾸준히 진행할 것
- 질문 및 강의 피드백
 - 실시간 강의는 없음
 - LMS (ieilms_old), e-mail, Kakao talk 등을 통해 자유롭게 질문할 것
 - 필요 시, 화면 공유하고 통화하며 해결할 것
 - 적극적으로 질문하고, 소통할 것!

평가 방법

항목	비중
기말 고사	20%
개인별 실습 과제 (출석 포함)	80%

- 개인 과제 평가
 - 주안점: "수업 진도를 꾸준히, 열심히 따라올 것!!"
 - 제출: JOTA, LMS (구버전), 시간 체크는 각 시스템 시간 기준
 - JOTA: JBNU Online Teaching Assistant (http://jota.jbnu.ac.kr/)
 - 제출 기한: 과제 제출 이후 1주일 (이후 제출 불가)
 - 제출 기한 이후 감점 정책: 12시간 단위로 5%p 씩 감점
 - 예) 만점 10점 과제의 경우, 동일한 기준으로 채점 진행 후,
 - 1분 지각: 0.5점 감점
 - 12시간 10분 지각: 1점 감점

강의 일정

주차	월 (150분: 강의+실습)	과제
1 (9/7)	Introduction 및 유닉스 소개	개인과제 1
2 (9/14)	J-Cloud 를 활용한 리눅스 개발 환경 구축	개인과제 2
3 (9/21)	유닉스 환경에서의 기본 명령 및 도구	개인과제 3
4 (9/28)	파일 입출력 및 디렉토리 1	개인과제 4
5 (10/5)	파일 입출력 및 디렉토리 2	개인과제 5
6 (10/12)	시스템 정보 및 프로세스 정보	개인과제 6
7 (10/19)	프로세스 생성과 실행	-
8 (10/26)	(중간고사 기간 휴강: 시험 없음)	-
9 (11/2)	동적 메모리 할당 1	개인과제 7
10 (11/9)	동적 메모리 할당 2	개인과제 8
11 (11/16)	메모리 매핑	개인과제 9
12 (11/23)	소켓 프로그래밍 1	개인과제 10
13 (11/30)	소켓 프로그래밍 2	개인과제 11
14 (12/7)	멀티 쓰레드 프로그래밍	개인과제 12
15 (12/14)	기말고사	

강의 공지 및 자료

- 강의 공지: 강의 자료, 시험, 과제 제출, 점수 공개 및 휴강 등
 - https://ieilms_old.jbnu.ac.kr
 - 수시로 확인할 것
- 오픈 카톡방 운영: 반드시 참여할 것
 - "2020 전북대 박현찬 유닉스 시스템 프로그래밍"
 - 비밀번호: 7626
- 수업 질의 응답
 - LMS 의 질문 게시판 이용할 것
 - 너무 부끄러운 경우, 이메일 이용 : hyunchan.park@jbnu.ac.kr

Contact

• Hyunchan Park, assistant professor

• Office: 7호관 626호

• E-mail: hyunchan.park@jbnu.ac.kr

DON'T KEEP CALM **AND** HAVE FUN