Importing Libraries and Dataset

Dataset Explore

In [4]: 1 car_data.head()

Out[4]:

	Make	Model	Year	Engine Fuel Type	Engine HP	Engine Cylinders	Transmission Type	Driven_Wheels	Number of Doors	N
0	BMW	1 Series M	2011	premium unleaded (required)	335.0	6.0	MANUAL	rear wheel drive	2.0	Tu
1	BMW	1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0	Lux
2	BMW	1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0	
3	BMW	1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0	Lux
4	BMW	1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0	
4										•

In [5]: 1 car_data.tail()

Out[5]:

```
N
                                 Engine Fuel
                                              Engine
                                                         Engine Transmission
                                                                                Driven_Wheels
        Make
                Model Year
                                                  HP
                                       Type
                                                      Cylinders
                                                                          Type
                                    premium
11909
        Acura
                 ZDX 2012
                                    unleaded
                                               300.0
                                                             6.0
                                                                   AUTOMATIC
                                                                                  all wheel drive
                                   (required)
                                    premium
11910
                                                             6.0
                                                                   AUTOMATIC
                                                                                  all wheel drive
        Acura
                 ZDX 2012
                                    unleaded
                                                300.0
                                   (required)
                                    premium
11911
        Acura
                 ZDX 2012
                                    unleaded
                                                300.0
                                                             6.0
                                                                   AUTOMATIC
                                                                                  all wheel drive
                                   (required)
                                    premium
11912
                 ZDX 2013
                                    unleaded
                                                300.0
                                                             6.0
                                                                   AUTOMATIC
                                                                                  all wheel drive
        Acura
                              (recommended)
                                      regular
                                                                                     front wheel
11913 Lincoln Zephyr 2006
                                                221.0
                                                             6.0
                                                                   AUTOMATIC
                                                                                          drive
                                    unleaded
```

```
In [6]: 1 car_data.columns
```

```
In [7]:
             car_data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11914 entries, 0 to 11913 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Make	11914 non-null	object
1	Model	11914 non-null	object
2	Year	1191 4 non-null	int64
3	Engine Fuel Type	11911 non-null	object
4	Engine HP	11845 non-null	float64
5	Engine Cylinders	11884 non-null	float64
6	Transmission Type	11914 non-null	object
7	Driven_Wheels	11914 non-null	object
8	Number of Doors	11908 non-null	float64
9	Market Category	8172 non-null	object
10	Vehicle Size	11914 non-null	object
11	Vehicle Style	11914 non-null	object
12	highway MPG	11914 non-null	int64
1 3	city mpg	11914 non-null	int64
14	Popularity	11914 non-null	int64
15	MSRP	11914 non-null	int64
dtvp	es: float64(3), int	64(5), object(8)	

dtypes: float64(3), int64(5), object(8)

memory usage: 1.5+ MB

```
In [8]:
            car_data.isnull().sum()
```

0

```
Out[8]: Make
        Model
```

0 Year 0 Engine Fuel Type 3 Engine HP 69 Engine Cylinders 30 Transmission Type 0 Driven Wheels 0 Number of Doors 6 Market Category 3742 Vehicle Size 0 0 Vehicle Style highway MPG 0 city mpg 0 Popularity 0 MSRP 0

dtype: int64

In [9]: # Fill null values in the "Engine HP" column with the mean value of the column are car_data['Engine HP'] = car_data['Engine HP'].fillna(car_data['Engine HP']

Fill null values in the "Engine Cylinders" column with the median value car_data['Engine Cylinders'] = car_data['Engine Cylinders'].fillna(car_data['Engine Tylengine Tylen

In [10]:

1 car_data.describe()

Out[10]:

	Year	Engine HP	Engine Cylinders	Number of Doors	highway MPG	city mpg	F
count	11914.000000	11914.000000	11914.000000	11908.000000	11914.000000	11914.000000	119
mean	2010.384338	249.386070	5.629763	3.436093	26.637485	19.733255	15
std	7.579740	108.875192	1.778413	0.881315	8.863001	8.987798	144
min	1990.000000	55.000000	0.000000	2.000000	12.000000	7.000000	
25%	2007.000000	170.000000	4.000000	2.000000	22.000000	16.000000	54
50%	2015.000000	227.000000	6.000000	4.000000	26.000000	18.000000	13
75%	2016.000000	300.000000	6.000000	4.000000	30.000000	22.000000	201
max	2017.000000	1001.000000	16.000000	4.000000	354.000000	137.000000	56
4							•

In [11]: 1 print(car_data)

,	Make	Model	Year		E	Engine	Fuel	Туре	Engine	HP
0	BMW	1 Series M	2011	nromi	ium unle	hahea	(reau	ired)	335	a
1	BMW	1 Series	2011	•	ium unle		٠.,	•	300	
2	BMW	1 Series	2011	•	ium unle			•	300	
3	BMW	1 Series	2011	•	ium unle		٠ .	•	236	
4	BMW	1 Series	2011		ium unle			•	230	
• • •	• • •		• • •	•			` '	•••	•	
11909	Acura	ZDX	2012	premi	ium unle	eaded	(requ	ired)	300	.0
11910	Acura	ZDX	2012	premi	ium unle	eaded	(requ	ired)	300	.0
11911	Acura	ZDX	2012	•	ium unle		٠ .	,	300	
11912	Acura	ZDX	•	emium	unleade				300	
11913	Lincoln	Zephyr	2006		r	regula	r unle	eaded	221	.0
\	Engine C	ylinders Tra	ansmission	Туре	Dr	riven_	Wheels	s Num	nber of D	oors
0		6.0	M	ANUAL	rear	wheel	drive	2		2.0
1		6.0	M	ANUAL	rear	wheel	drive	5		2.0
2		6.0	M	ANUAL		wheel				2.0
3		6.0		ANUAL		wheel				2.0
4		6.0	M	ANUAL	rear	wheel	drive	5		2.0
11000			ALITO		-11	, de a a T	، مراجعات	•		4.0
11909 11910		6.0 6.0		MATIC MATIC		wheel wheel				4.0 4.0
11910		6.0		MATIC		wheel				4.0
11912		6.0		MATIC		wheel				4.0
11913		6.0		MATIC	front					4.0
			Market	Catego	orv Vehi	icle S	ize \	/ehicl	le Style	\
0	Factory	Tuner, Luxury		_	-	Comp			Coupe	`
1			_uxury,Per			Comp		Conv	vertible	
2		Luxury	,High-Per	formar	nce	Comp	act		Coupe	
3		I	_uxury,Per	formar	nce	Comp	act		Coupe	
4				Luxu	ıry	Comp	act	Conv	vertible	
 11909		Crossovei	,Hatchbac	k . Luxı	 urv	Mids	··· ize 4	1dr Ha	··· atchback	
11910			, Hatchbac	-	-	Mids			atchback	
11911		Crossovei	,Hatchbac	k,Luxı	ıry	Mids	ize 4	1dr Ha	atchback	
11912		Crossovei	,Hatchbac	k,Luxu	ıry	Mids		1dr Ha	atchback	
11913				Luxi	ıry	Mids	ize		Sedan	
	highway	MPG city m	og Popula	ritv	MSRP					
0	ر ۱۰۰۰ ۰۰			3916	46135					
1			19	3916	40650					
2		28	20	3916	36350					
3		28	18	3916	29450					
4		28	18	3916	34500					
11909			16	204	46120					
11910			16 16	204	56670 50620					
11911 11912			16 16	204 204	50620 50920					
11912			17	61	28995					
				01						

[11914 rows x 16 columns]

```
In [12]:
             car_data.duplicated()
Out[12]: 0
                  False
                  False
                  False
         2
         3
                  False
                  False
         11909
                  False
                  False
         11910
         11911
                 False
         11912
                 False
         11913
                 False
         Length: 11914, dtype: bool
```

Understanding the Dataset

Understanding the Dataset

Visualize trends in car features and pricing over time

Compare fuel efficiency of different types of cars

Investigating the relationship between a car's features and its popularity

Predicting the price of a car based on its numeric features

```
In [17]:
             from sklearn.model selection import train test split
             from sklearn.linear model import LinearRegression
           2
           3 from sklearn.metrics import mean_squared_error, r2_score
             # Assuming you've preprocessed your data and have a feature matrix X and
           5
           6 | X = car_data[['Engine HP', 'Engine Cylinders', 'highway MPG', 'city mpg',
           7
             y = car_data['MSRP'] # Dependent variable (car prices)
             # Split the data into training and testing sets
           9 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
          10
          11
             # Create a Linear Regression model
          12
             model = LinearRegression()
          13
          14 # Train the model
          15 model.fit(X_train, y_train)
          16
          17
             # Make predictions on the test data
          18 | y pred = model.predict(X test)
          19
          20 # Evaluate the model
          21
             mse = mean squared error(y test, y pred)
             r2 = r2_score(y_test, y_pred)
          22
          23
             print(f"Mean Squared Error: {mse}")
          24
          25
             print(f"R-squared: {r2}")
          26
          27 # Visualize actual vs. predicted prices
          28 plt.scatter(y_test, y_pred)
          29 plt.xlabel("Actual Prices")
          30 plt.ylabel("Predicted Prices")
             plt.title("Actual vs. Predicted Prices")
          32 plt.show()
          33
```

Mean Squared Error: 1070196857.0707968

R-squared: 0.5510109345873742

Actual vs. Predicted Prices

Analysis of Dataset

Analysis of Dataset

How does the popularity of a car model vary across different market categories?

Task 1.A: : Create a pivot table that shows the number of car models in each market category and their corresponding popularity scores.

Out[25]:		Number of Car Models	Average Popularity Score
	Market Category		
_	Crossover	1110	1545.263063
	Flex Fuel	872	2217.302752
	Luxury	855	1102.657310
	Luxury,Performance	673	1292.615156
	Hatchback	641	1318.865835
	Exotic,Luxury,High-Performance,Hybrid	1	204.000000
	Flex Fuel,Factory Tuner,Luxury,High- Performance	1	258.000000
	Crossover,Exotic,Luxury,Performance	1	238.000000
	Crossover,Exotic,Luxury,High-Performance	1	238.000000
	Performance,Hybrid	1	155.000000

71 rows × 2 columns

Task 1.B: Create a combo chart that visualizes the relationship between market category and popularity.

```
In [28]:
              pivot table = car data.groupby('Market Category').agg({'Model': 'count',
           1
           2
           3
              # Sort the pivot table by the number of car models in descending order
              pivot table = pivot table.sort values(by='Model', ascending=False)
           4
           5
           6
              # Create a combo chart
           7
              fig, ax1 = plt.subplots(figsize=(12, 6))
           8
              # Bar chart for the number of car models
           9
              ax1.bar(pivot_table['Market Category'], pivot_table['Model'], color='skybl
          10
              ax1.set xlabel("Market Category")
          11
              ax1.set_ylabel("Number of Car Models", color='skyblue')
          12
          13
              ax1.tick_params(axis='y', labelcolor='skyblue')
          14
          15
              # Create a secondary y-axis for the line chart
              ax2 = ax1.twinx()
          16
          17
          18
             # Line chart for the average popularity score
          19
              ax2.plot(pivot_table['Market Category'], pivot_table['Popularity'], market
              ax2.set_ylabel("Average Popularity Score", color='orange')
          20
              ax2.tick_params(axis='y', labelcolor='orange')
          21
          22
          23
             # Rotate x-axis labels for better readability
          24
              plt.xticks(rotation=90)
              plt.title("Relationship Between Market Category and Popularity")
          25
          26
              # Show the combo chart
          27
          28
              plt.tight layout()
          29
              plt.show()
```



```
In [32]:
             # Group the data by Market Category and calculate the count of car models
             pivot_table = car_data.groupby('Market Category').agg({'Model': 'count',
           2
           3
             # Sort the pivot table by the number of car models in descending order
           4
             pivot table = pivot table.sort values(by='Model', ascending=False)
           5
           6
           7
             # Display only the top N categories
             top n = 10 # Change this value to the desired number of top categories
             pivot_table = pivot_table.head(top_n)
           9
          10
             # Create a combo chart
          11
          12
             fig, ax1 = plt.subplots(figsize=(16, 9))
          13
             # Bar chart for the number of car models
          14
             ax1.bar(pivot_table['Market Category'], pivot_table['Model'])
          15
             ax1.set_xlabel("Market Category")
          16
             ax1.set_ylabel("Number of Car Models", color='skyblue')
          17
          18
             ax1.tick_params(axis='y', labelcolor='skyblue')
          19
             # Create a secondary y-axis for the line chart
          20
             ax2 = ax1.twinx()
          21
          22
          23
             # Line chart for the average popularity score
             ax2.plot(pivot_table['Market Category'], pivot_table['Popularity'], market
          24
             ax2.set_ylabel("Average Popularity Score", color='orange')
          25
             ax2.tick_params(axis='y', labelcolor='orange')
          26
          27
          28 # Giving title to the chart
          29
             plt.title(f"Top {top n} Market Categories vs. Popularity")
          30
             # Show the combo chart
          31
          32 plt.tight layout()
             plt.show()
          33
```


What is the relationship between a car's engine power and its price?

Task 2: Create a scatter chart that plots engine power on the x-axis and price on the y-axis. Add a trendline to the chart to visualize the relationship between these variables.

```
In [48]:
             # Create a scatter plot
             plt.figure(figsize=(12, 6))
             sns.scatterplot(x='Engine HP', y='MSRP', data=car_data, alpha=0.5)
             # Add a trendline
           5
             sns.regplot(x='Engine HP', y='MSRP', data=car_data, scatter=False, color=
           7
           8 # Customize Labels and title
           9 plt.xlabel("Engine HP", fontsize=14)
          10 plt.ylabel("Price (MSRP)", fontsize=14)
             plt.title("Relationship Between Engine Power and Price", fontsize=16)
          11
          12
          13 # Show the plot
          14 plt.grid(True)
          15 plt.tight layout()
          16 plt.show()
```


Which car features are most important in determining a car's price?

Task 3: Using regression analysis to identify the variables that have the strongest relationship with a car's price.

```
In [49]:
             # Select relevant features and target variable
             X = car_data[['Engine HP', 'highway MPG', 'city mpg', 'Popularity']]
             y = car data['MSRP']
           5 # Create and fit a linear regression model
             model = LinearRegression()
             model.fit(X, y)
           7
           8
             # Get the coefficient values for each feature
           9
          10 coefficients = model.coef
             print(coefficients)
          11
          12
          13 # Create a bar chart to visualize feature importance
          14 plt.figure(figsize=(12, 6))
          15 plt.bar(X.columns, coefficients)
          16 plt.xlabel("Car Features", fontsize=14)
          17 plt.ylabel("Coefficient Value", fontsize=14)
          18 | plt.title("Feature Importance in Determining Car Price", fontsize=16)
          19 plt.xticks(rotation=45) # Rotate x-axis labels for readability
          20 plt.grid(True)
          21
          22 # Show the bar chart
          23 plt.tight layout()
          24 plt.show()
```

[383.9162872 336.83794293 259.89510263 -3.05399185]

How does the average price of a car vary across different manufacturers?

Task 4.A: Create a pivot table that shows the average price of cars for each manufacturer

MSRP

Make	2 422222
Plymouth	3.122902e+03
Oldsmobile	1.154254e+04
Suzuki	1.790721e+04
Pontiac	1.932155e+04
Scion	1.993250e+04
Mazda	2.003938e+04
Mitsubishi	2.124054e+04
Dodge	2.239006e+04
FIAT	2.267024e+04
Hyundai	2.459704e+04
Subaru	2.482750e+04
Kia	2.531017e+04
Honda	2.667434e+04
Chrysler	2.672296e+04
Ford	2.739927e+04
Saab	2.741350e+04
Volkswagen	2.810238e+04
Buick	2.820661e+04
Chevrolet	2.835039e+04
Volvo	2.854116e+04
Nissan	2.858343e+04
Toyota	2.903002e+04
GMC	3.049330e+04
Acura	3.488759e+04
HUMMER	3.646441e+04
Infiniti	4.239421e+04
Lincoln	4.283983e+04
Genesis	4.661667e+04
Lexus	4.754907e+04
Audi	5.345211e+04
Cadillac	5.623132e+04
BMW	6.154676e+04
Alfa Romeo	6.160000e+04
Land Rover	6.782322e+04
Lotus	6.918828e+04
Mercedes-Benz	7.147623e+04
Tesla	8.525556e+04
Porsche	1.016224e+05
Maserati	1.142077e+05
Aston Martin	1.979104e+05
	2.133233e+05
Spyker	
Ferrari	2.382188e+05
McLaren	2.398050e+05
Bentley	2.471693e+05
Lamborghini	3.315673e+05
Rolls-Royce	3.511306e+05
Maybach	5.462219e+05
Bugatti	1.757224e+06

Task 4.B: Create a bar chart or a horizontal stacked bar chart that visualizes the relationship between manufacturer and average price.

What is the relationship between fuel efficiency and the number of cylinders in a car's engine?

Task 5.A: Create a scatter plot & trend line with the number of cylinders on the x-axis and highway MPG on the y-axis.

```
In [64]:
             # Create a scatter plot with trendline
             plt.figure(figsize=(10, 6))
             sns.scatterplot(x='Engine Cylinders', y='highway MPG', data=car data, alpl
             # Add a trendline
           5
             sns.regplot(x='Engine Cylinders', y='highway MPG', data=car_data, scatter
           6
           7
             # Customize Labels and title
             plt.xlabel("Number of Cylinders in Engine", fontsize=14)
           9
             plt.ylabel("highway MPG", fontsize=14)
             plt.title("Relationship Between Engine Cylinders and Highway MPG", fontsi
          11
          12
          13 # Show the plot
             plt.tight_layout()
             plt.show()
```


Task 5.B: Calculate the correlation coefficient between the number of cylinders and highway MPG

```
In [69]: 1 # Calculate the correlation coefficient
2 correlation = car_data['Engine Cylinders'].corr(car_data['highway MPG'])
3
4 # Print the correlation coefficient
5 print(f"Correlation coefficient between Engine Cylinders and Highway MPG:
```

Correlation coefficient between Engine Cylinders and Highway MPG: -0.60

Inference :- A negative value indicates a negative correlation. i.e. as number of cylinders increases, highway MPG decreases