01/26/05

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-199566

(43)公開日 平成11年(1999)7月27日

(51) Int.Cl. ⁸	識別記号	FΙ		
C 0 7 D 231/16		C 0 7 D 231/16		
A01N 43/56		A01N 43/56	D	
C 0 7 D 231/22		C 0 7 D 231/22	Z	
401/04	2 3 1	401/04	2 3 1	

審査請求 未請求 請求項の数9 OL (全 26 頁)

		B 24171	Neman manyayan on the name
(21)出願番号	特顧平10-83320	(71)出顧人	000005968
			三菱化学株式会社
(22)出顧日	平成10年(1998) 3月30日		東京都千代田区丸の内二丁目5番2号
		(72)発明者	岡田 至
(31)優先権主張番号	特顯平9-85124		神奈川県横浜市青葉区鴨志田町1000番地
(32)優先日	平9 (1997) 4月3日		三菱化学株式会社横浜総合研究所内
(33)優先権主張国	日本 (JP)	(72)発明者	富田 啓文
(31)優先権主張番号	特願平9-314916		神奈川県横浜市青葉区鴨志田町1000番地
(32)優先日	平 9 (1997)11月17日		三菱化学株式会社横浜総合研究所内
(33)優先権主張国	日本 (JP)	(72)発明者	志賀 靖
			神奈川県横浜市青葉区鴨志田町1000番地
			三菱化学株式会社横浜総合研究所内
		(74)代理人	

(54) 【発明の名称】 1-置換-ピラゾール-3-カルポキサミド誘導体およびこれを有効成分とする殺菌剤

(57)【要約】

(修正有)

【課題】 各種病原菌に対して高い防除効果を有する新 規化合物を提供する。

【解決手段】 下記一般式(I)

$$\begin{array}{c|c}
R^{1} \\
X \\
C - R^{5} \\
Y
\end{array}$$

(式中、Aは

を示し、 R^1 は C_1 ~ C_4 のアルキル基または C_1 ~ C_4 のアルコキシ基を示し、 R^2 , R^3 , R^4 , R^6 , R^7 および R^8 はそれぞれ独立に、水素原子、ハロゲン原子、 C_1 ~ C_5 のアルキル基、トリフルオロメチル基、ニトロ基、シアノ基、 C_1 ~ C_4 のアルコキシ基、 C_1

 \sim C₄ のハロアルコキシ基などを示し、Xはハロゲン原子を示し、Yは酸素原子または硫黄原子を示し、 R^5 はアミノ基、 $C_1 \sim C_6$ のアルキルアミノ基、 $C_2 \sim C_4$ のジアルキルアミノ基、ピロリジニル基、モルホリノ基などを示す。但し、 R^1 がメトキシ基で、 R^5 がアルキルアミノ基を示す場合のアルキルアミノ基の炭素数は2~5である。)で表される1-置換ーピラゾール-3-カルボキサミド誘導体。

【特許請求の範囲】

【請求項1】 下記一般式(I)

【化1】

$$\begin{array}{c|c}
R & 1 \\
A - N & X \\
N & C - R^5 \\
Y & Y
\end{array}$$

(式中、Aは 【化2】

を示し、R1 はC1~C。のアルキル基またはC1~C $_4$ のアルコキシ基を示し、 R^2 , R^3 , R^4 , R^6 , R7 およびR8 はそれぞれ独立に、水素原子、ハロゲン原 子、C₁~C₅のアルキル基、トリフルオロメチル基、 ニトロ基、シアノ基、C₁~C₄のアルコキシ基、C₁ ~C4 のハロアルコキシ基、C2 ~C5 のアルコキシカ ルボニル基、C2~C5のアルキルカルバモイル基、C 1 ~C4 のアルキルチオ基、C1 ~C4 のアルキルスル フィニル基、C1~C4のアルキルスルホニル基、アミ ノ基、C₁~C₄のアルキルアミノ基、C₂~C₄のジ アルキルアミノ基、C2~C5のアルキルカルボニルア ミノ基、C2~C5のアルコキシカルボニルアミノ基、 C1~C4のアルキルスルホニルアミノ基または置換基 を有していても良いフェノキシ基を示し、Xはハロゲン 原子を示し、Yは酸素原子または硫黄原子を示し、R5 はアミノ基、C₁~C₅のアルキルアミノ基、C₂~C 。のジアルキルアミノ基、ピロリジニル基、モルホリノ 基、2、6-ジメチルモルホリノ基、アリルアミノ基、 プロパルギルアミノ基、メトキシアミノ基、メトキシプ ロピルアミノ基、2,2,2-トリフルオロエチルアミ ノ基、シアノメチルアミノ基、C1~C4のアルキルヒ ドラジノ基、アリルヒドラジノ基を示す。但し、R1 が メトキシ基で、R5 がアルキルアミノ基を示す場合のア ルキルアミノ基の炭素数は2~5である。)で表される 1-置換ーピラゾール-3-カルボキサミド誘導体。

【請求項2】 一般式(I)における R^1 が、 C_1 ~ C_2 のアルキル基又はアルコキシ基であることを特徴とする請求項1記載の1一置換ーピラゾールー3 ーカルボキサミド誘導体。

【請求項3】 一般式(I)におけるR¹ が、メトキシ 基であることを特徴とする請求項1又は2記載の1-置 換-ピラゾール-3-カルボキサミド誘導体。

【請求項4】 一般式(I)における R^2 , R^3 および R^4 の1つ或いは R^6 , R^7 および R^8 の1つが、ハロゲン原子、 C_1 ~ C_5 のアルキル基、トリフルオロメチ

ル基、シアノ基、 $C_1 \sim C_4$ のアルコキシ基、 $C_1 \sim C_4$ のハロアルコキシ基から選ばれ、且つ、ピラゾール環との結合位のパラー位に置換している置換基であり、他の基が水素原子であることを特徴とする請求項1乃至3の何れかに記載の1 一置換ーピラゾールー3 ーカルボキサミド誘導体。

【請求項5】 一般式(I)における R^5 が、 C_2 \sim C 4 のアルキルアミノ基であることを特徴とする請求項1 乃至4の何れかに記載の1 - 置換- ピラゾール- 3 - カルボキサミド誘導体。

【請求項6】 一般式(I)におけるR5 が、n-プロピルアミノ基であることを特徴とする請求項5に記載の1-置換-ピラゾール-3-カルボキサミド誘導体。

【請求項7】 一般式(I)におけるXが、塩素原子又は臭素原子であることを特徴とする請求項1乃至6の何れかに記載の1-置換-ピラゾール-3-カルボキサミド誘導体。

【請求項8】 一般式(I)におけるYが、酸素原子であることを特徴とする請求項1乃至7の何れかに記載の1一置換ーピラゾールー3ーカルボキサミド誘導体。

【請求項9】 請求項1乃至8の何れかに記載の1-置換-ピラゾール-3-カルボキサミド誘導体を有効成分として含有することを特徴とする農園芸用殺菌剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は新規な1-置換ーピラゾール-3-カルボキサミド誘導体およびこれを有効成分として含有する農園芸用殺菌剤に関する。

[0002]

【従来の技術】農園芸分野では、各種病害の防除を目的とした様々な殺菌剤が開発され実用に供されている。しかしながら、従来汎用されている農園芸用殺菌剤は、殺菌効果、殺菌スペクトラムまたは残効性などの点において必ずしも満足すべきものではない。また、施用回数や施用薬量の低減などの要求も満足しているとはいえないものであった。

【0003】また、従来汎用の農薬に対して抵抗性を獲得した病原菌の出現も問題となっている。例えば、野菜、果樹、花卉、茶、ムギ類およびイネ等の栽培において、様々な型の農薬、例えば、トリアゾール系、イミダゾール系、ピリミジン系、ベンズイミダゾール系、ジカルボキシイミド系、フェニルアミド系農薬等に抵抗性を獲得した種々の病原菌が各地で出現しており、これらの病原菌に起因する各種病害の防除が年々困難になっている。

【0004】さらに、ジチオカルバメート系やフタルイミド系農薬等の様に病原菌が未だ抵抗性を獲得していない農薬もあるが、これらは一般に施用薬量や施用回数が多く、環境汚染などの観点から好ましいものではない。従って、従来汎用の農園芸殺用菌剤に抵抗性を獲得した

各種病原菌に対しても低薬量で十分な防除効果を示し、 しかも環境への悪影響が少ない新規な殺菌剤の開発が切 望されている。

【0005】一方、ピラゾールカルボキサミド誘導体 は、ピラゾール環上の3個の置換基とカルボキサミド部 分のアミノ基の種類により、それぞれ、殺虫、殺ダニ、 除草活性あるいは医薬活性等の生理活性を有することが 知られている。例えば1-フェニルピラゾール-3-カ ルボキサミド誘導体については、特開昭64-2576 3号には殺虫および殺ダニ活性を有するN-アラルキル -1-フェニルピラゾール-3-カルボキサミド誘導体 が報告されている。除草剤の薬害軽減作用を有する物質 として、特開昭63-91373号には、N-アルキル -4-ハロゲノー5-非置換-1-フェニルピラゾール -3-カルボキサミド誘導体が;特開平1-28327 4号公報には、N-アルキル-4-非置換-5-アルキ ルー1ーフェニルピラゾールー3ーカルボキサミド誘導 体が; また、特開昭63-115867号にはN-アル キルー4ー非置換-1,5ージフェニルピラゾール-3 ーカルボキサミド誘導体が記載されているが、これらは 殺菌活性については全く記載していない。また、除草活 性を有するN-アルキル-4-ハロゲノ-1,5-ジフ ェニルピラゾールー3ーカルボキサミドが特開平8-1 2654号公報に記載されているが殺菌活性については 全く記載されていない。

【0006】さらに、医薬活性を有するN-アルキルー4ー非置換ー5ーアルコキシー1ーフェニルピラゾールー3ーカルボキサミド誘導体が薬学雑誌、97巻、719頁(1977)およびJournal of Medical Chemistry,20巻、80頁(1977)に記載されているが農薬活性については全く記載されていない。また、名古屋市立大学薬学部研究年報、29巻、25頁(1981)には、鎮痛作用を有する物質の探索のためNーメチルー4ーブロモー5ーメトキシー1ーフェニルピラゾールー3ーカルボキサミドを合成したが、この化合物は、鎮痛作用が認められなかったことが記載されている。この化合物の農薬活性については全く記載されていない。以上述べた様に殺菌活性を有する1ーフェニルピラゾールー3ーカルボキサミド誘導体については全く報告がない。

[0007]

【発明が解決しようとする課題】本発明は、従来の農園 芸用殺菌剤に抵抗性を示す各種病原菌に対しても高い防除効果を示し、かつ、残留毒性や環境汚染等の問題が軽減された安全性の高い、農園芸用殺菌剤の有効成分として有用な化学物質を提供することにある。

[8000]

【課題を解決するための手段】本発明者等は上記の課題を解決すべく鋭意努力した結果、下記の式で示される新規な1-置換-ピラゾール-3-カルボキサミド誘導体

が上記の特徴を有する化合物であることを見いだし、本 発明を完成するに至った。すなわち本発明の要旨は、下 記一般式(I)

[0009]

【化3】

$$A - N \longrightarrow X$$

$$C - R^{5}$$

$$Y$$

【0010】(式中、Aは

[0011]

【化4】

$$R^3$$
 R^4
 R^2
 R^6
 R^8
 R^8

【0012】を示し、R1 はC1 ~C4 のアルキル基ま たはC₁~C₄のアルコキシ基を示し、R²,R³,R 4 , R⁶ , R⁷ および R⁸ はそれぞれ独立に、水素原 子、ハロゲン原子、C₁~C₅のアルキル基、トリフル オロメチル基、ニトロ基、シアノ基、C1~C4のアル コキシ基、C₁~C₄のハロアルコキシ基、C₂~C₅ のアルコキシカルボニル基、C2~C5のアルキルカル バモイル基、 $C_1 \sim C_4$ のアルキルチオ基、 $C_1 \sim C_4$ のアルキルスルフィニル基、C1 ~C4 のアルキルスル ホニル基、アミノ基、C₁~C₄のアルキルアミノ基、 $C_2 \sim C_4$ のジアルキルアミノ基、 $C_2 \sim C_5$ のアルキ ルカルボニルアミノ基、C2~C5のアルコキシカルボ ニルアミノ基、C1~C4のアルキルスルホニルアミノ 基または置換基を有していても良いフェノキシ基を示 し、Xはハロゲン原子を示し、Yは酸素原子または硫黄 原子を示し、 R^5 はアミノ基、 C_1 ~ C_5 のアルキルア ミノ基、C。~C。のジアルキルアミノ基、ピロリジニ ル基、モルホリノ基、2,6-ジメチルモルホリノ基、 アリルアミノ基、プロパルギルアミノ基、メトキシアミ ノ基、メトキシプロピルアミノ基、2,2,2ートリフ ルオロエチルアミノ基、シアノメチルアミノ基、C1~ C。のアルキルヒドラジノ基、アリルヒドラジノ基を示 す。ただし、R1 がメトキシ基で、R5 がアルキルアミ ノ基を示す場合のアルキルアミノ基の炭素数は2~5で ある。) で表される1-置換-ピラゾール-3-カルボ キサミド誘導体およびこの誘導体を有効成分として含有 する農園芸用殺菌剤に存する。

【0013】以下、本発明を詳細に説明する。一般式 (I)で表される本発明の化合物の置換基 R^1 は、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基等の C_1 $\sim C_4$ の直鎖、分岐

鎖もしくは環状のアルキル基; メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基等の $C_1 \sim C_4$ の直鎖もしくは分岐鎖アルコキシ基を示す。 R^1 としては、 $C_1 \sim C_2$ のアルキル基、具体的にはメチル基、エチル基、メトキシ基等が好ましく、特に好ましくはメトキシ基である。

【0014】R² , R³ , R⁴ , R⁶ , R⁷ およびR⁸ はそれぞれ独立に水素原子;フッ素原子、塩素原子、臭 素原子、ヨウ素原子のハロゲン原子;メチル基、エチル 基、nープロピル基、イソプロピル基、シクロプロピル 基、n-ブチル基、イソブチル基、sec-ブチル基、 tーブチル基、nーペンチル基、イソアミル基等のC1 ~C₅ の直鎖、分岐鎖もしくは環状アルキル基;トリフ ルオロメチル基; ニトロ基; シアノ基; メトキシ基、エ トキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t ーブトキシ基等のC₁~C₄の直鎖もしくは分岐鎖アル コキシ基;ジフルオロメトキシ基、トリフルオロメトキ シ基、2-フルオロエトキシ基、2-クロロエトキシ 基、2,2,2-トリフルオロエトキシ基、2,2,2 ートリクロロエトキシ基、3ークロロプロポキシ基、3 -ブロモプロポキシ基、3,3-トリフルオロプロ ポキシ基、2,2,3,3-テトラフルオロプロポキシ 基、2,2,3,3,3-ペンタフルオロプロポキシ 基、2,2-ジクロロ-3,3,3-トリフルオロプロ ポキシ基、1,3-ジフルオロ-2-プロポキシ基、 1, 1, 1, 3, 3, 3-ヘキサフルオロー2-プロポ キシ基、3,3,3-トリクロロプロポキシ基、4-ク ロロブトキシ基、4,4,4ートリフルオロブトキシ 基、3、3、4、4、4-ペンタフルオロブトキシ基等 のC、~C。の直鎖もしくは分岐鎖ハロアルコキシ基; メトキシカルボニル基、エトキシカルボニル基、n-プ ロポキシカルボニル基、イソプロポキシカルボニル基、 n-ブトキシカルボニル基、イソブトキシカルボニル 基、sec‐ブトキシカルボニル基、t‐ブトキシカル ボニル基等のC。~C。の直鎖もしくは分岐鎖アルコキ シカルボニル基;メチルカルバモイル基、ジメチルカル バモイル基、エチルカルバモイル基、ジエチルカルバモ イル基、nープロピルカルバモイル基、イソプロピルカ ルバモイル基、nーブチルカルバモイル基、イソブチル カルバモイル基、sec‐ブチルカルバモイル基、t‐ ブチルカルバモイル基等のC2~C5の直鎖もしくは分 岐鎖のアルキルカルバモイル基:メチルチオ基、エチル チオ基、n-プロピルチオ基、イソプロピルチオ基、n ーブチルチオ基、イソブチルチオ基、sec-ブチルチ オ基、tーブチルチオ基等のC」~C。の直鎖もしくは 分岐鎖アルキルチオ基;メチルスルフィニル基、エチル スルフィニル基、nープロピルスルフィニル基、イソプ ロピルスルフィニル基、n-ブチルスルフィニル基、イ ソブチルスルフィニル基、sec-ブチルスルフィニル 基、tーブチルスルフィニル基等のC1~C4の直鎖も しくは分岐鎖アルキルスルフィニル基;メチルスルホニ ル基、エチルスルホニル基、n-プロピルスルホニル 基、イソプロピルスルホニル基、n-ブチルスルホニル 基、イソブチルスルホニル基、sec-ブチルスルホニ ル基、tーブチルスルホニル基等のC₁~C₄の直鎖も しくは分岐鎖アルキルスルホニル基; アミノ基; メチル アミノ基、エチルアミノ基、nープロピルアミノ基、イ ソプロピルアミノ基、n-ブチルアミノ基、イソブチル アミノ基、secーブチルアミノ基、セーブチルアミノ 基等のC₁~C₄の直鎖もしくは分岐鎖アルキルアミノ 基;ジメチルアミノ基、ジエチルアミノ基、メチルエチ ルアミノ基、メチルプロピルアミノ基等のC2~C4の 直鎖もしくは分岐鎖ジアルキルアミノ基; アセチルアミ ノ基、プロピオニルアミノ基、ブチリルアミノ基等のC 2 ~ C5 の直鎖もしくは分岐鎖アルキルカルボニルアミ ノ基;メトキシカルボニルアミノ基、エトキシカルボニ ルアミノ基、プロポキシカルボニルアミノ基等のC。~ C₅ の直鎖もしくは分岐鎖アルコキシカルボニルアミノ 基;メチルスルホニルアミノ基、エチルスルホニルアミ ノ基、プロピルスルホニルアミノ基、ブチルスルホニル アミノ基等のC₁~C₄の直鎖もしくは分岐鎖アルキル スルホニルアミノ基;メチル基、エチル基等のアルキル 基または塩素原子、臭素原子等のハロゲン原子で置換さ れても良いフェノキシ基等を示す。Xはハロゲン原子 で、フッ素原子、塩素原子、臭素原子またはヨウ素原子 を示す。Xとしては特に塩素原子又は臭素原子が好まし い。Yは酸素原子または硫黄原子を示す。特に、R2, R³ 及びR⁴ の中の1つ或いはR⁶ , R⁷ およびR⁸ の 中の1つが、ハロゲン原子、アルキル基、アルコキシ 基、トリフルオロメチル基、シアノ基、ハロアルコキシ 基特にトリフルオロメトキシ基から選ばれ、且つ、ピラ ゾール環との結合位のパラー位に結合している置換基で あることが好ましい。

【0015】 R^2 , R^3 , R^4 , R^6 , R^7 および R^8 の残りの基は水素原子であることが好ましい R^5 はアミノ基;メチルアミノ基、エチルアミノ基、n ープロピルアミノ基、イソプロピルアミノ基、シクロプルアミノ基、n ーブチルアミノ基、イソブチルアミノ基、エーブチルアミノ基、シクロプルアミノ基、n ーアミルアミノ基、イソアミルアミノ基、n ーアミルアミノ基、イソアミルアミノ基、n ーアミルアミノ基、イソアミルアミノ基、ナーアミルアミノ基等の C_1 ~ C_5 の直鎖、分岐鎖もしくは環状のアルキルアミノ基;ジメチルアミノ基、ジエチルアミノ基、メチルエチルアミノ基;ジアルキルアミノ基;アリルアミノ基;プロパルギルアミノ基;メトキシアロピルアミノ基;スチルヒドラスルアミノ基;シアノメチルアミノ基;メチルヒドラ

ジノ基、エチルヒドラジノ基、プロピルヒドラジノ基、ブチルヒドラジノ基等の $C_1 \sim C_4$ の直鎖もしくは分岐鎖アルキルヒドラジノ基;アリルヒドラジノ基を示す。 R^5 としては、好ましくは $C_2 \sim C_4$ のアルキルアミノ基であり、特に好ましくはプロピルアミノ基である。 又、 R^1 がメトキシ基で R^5 がアルキルアミノ基の場合、アルキルアミノ基の炭素数は $2\sim5$ であり、特に炭

素数 $2\sim4$ のアルキルアミノ基であることが好ましい。 前記一般式 (I) で表される本発明の化合物は、新規化合物であって、例えば下記反応式に従って製造することができる。

【0016】 【化5】

【0017】(上記式中、A、R¹、R⁵、XおよびY は前記一般式(I)で定義したおりであり、Zは塩素原 子、臭素原子、水酸基、メトキシ基、エトキシ基または プロポキシ基を示す)

上記一般式 (II) において、 Zが塩素原子、臭素原子の 化合物を出発物質とする場合には、溶媒としてベンゼン、トルエン、キシレン等の芳香族炭化水素; アセトン、メチルエチルケトン、メチルイソブチルケトン等の ケトン類; クロロホルム、塩化メチレン等のハロゲン化炭化水素; 水; 酢酸メチル、酢酸エチル等のエステル類; またはテトラヒドロフラン、アセトニトリル、ジオキサン、N, N-ジメチルホルムアミド、N-メチルピロリドンまたはジメチルスルホキシド等の極性溶媒等を用い、0℃~30℃、好ましくは0℃~5℃で、塩基の存在下反応を行うことが出来る。塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、ピリジンまたはトリエチルアミン等を用いることが出来る。

【0018】また、一般式(II)において、Zが水酸 基、メトキシ基、エトキシ基、またはプロポキシ基であ る場合には、溶媒の非存在下、または、メチルアルコー ル、エチルアルコール、プロピルアルコール、等のアル コール溶媒中で5~100℃、好ましくは20~80℃ で反応を行うことが出来る。反応後、目的物である一般 式(I)で表される化合物を単離するには、水に溶解す る溶媒を用いた場合は、減圧下溶媒を留去し、水を加え た後、水に不溶のベンゼン、トルエン、キシレン等の芳 香族炭化水素; クロロホルム、塩化メチレン等のハロゲ ン化炭化水素等;酢酸エチル等のエステル類で抽出し、 飽和食塩水で洗浄後、無水硫酸ナトリウム等の乾燥剤で 乾燥し、減圧下で溶媒を留去すれば良い。水に不溶の溶 媒を用いた場合は、反応混合物に水を加えた後分液し、 有機相を飽和食塩水で洗浄後、無水硫酸ナトリウム等の 乾燥剤で乾燥後減圧下で溶媒を留去すれば良い。

【0019】溶媒留去後得られた残渣はそのままでも十分純品であることもあるが、不純な場合には目的物を余り溶解しないヘキサン、ヘプタン等の炭化水素で洗浄す

るか、再結晶またはカラムクロマトグラフィーで精製すれば純品が得られる。なお、一般式 (II) で表される化合物は、例えばJournal of Chemical Society, 2769頁(1961)、Annalen Der Chemie, 716巻, 160頁(1968)、特開昭63-91373号公報および特開平1-283274号公報;薬学雑誌, 97巻, 719頁(1979)及びJournal of Medical Chemistry, 20巻, 80頁(1977)に記載された方法に準じて合成することができる。

【0020】一般式(I)で示される本発明化合物は、いもち病菌、さび病菌、べと病菌、疫病菌等の各種植物病原菌に対して高い殺菌効果を有しており、農園芸用殺菌剤の有効成分として稲、麦類等の穀物、果樹、蔬菜類の病害防除に有用である。もっとも、本発明の化合物の防除対象となる作物及び植物病原菌は上記に例示したものに限定されることはない。

【0021】一般式(I)で示される本発明化合物を農園芸用の殺菌剤として使用する場合には、単独で用いてもよいが、通常は当業界で汎用される農薬補助剤を加えた組成物として用いるのが好ましい。農園芸用殺菌剤の剤型は特に限定されないが、例えば乳剤、水和剤、粉剤、フロアブル剤、細粒剤、粒剤、錠剤、油剤、噴霧剤、煙霧剤等の形態とすることが好適である。上記の化合物の1種又は2種以上を有効成分として配合することができる。

【0022】農園芸用殺菌用を製造するために用いられる農薬補助剤は例えば、農園芸用殺菌剤の効果の向上、安定化、分散性の向上等の作用を有する物質で、たとえば、担体(希釈剤)、展着剤、乳化剤、湿展剤、分散剤、崩壊剤等を用いることができる。液体担体としては、例えば水:トルエン、キシレン等の芳香族炭化水素;メタノール、ブタノール、グリコール等のアルコール類;アセトン等のケトン類;ジメチルホルムアミド等

のアミド類:ジメチルスルホキシド等のスルホキシド類:メチルナフタレン:シクロヘキサン:動植物油:または脂肪酸等を挙げることができる。また、固体担体としては、例えばクレー、カオリン、タルク、珪藻土、シリカ、炭酸カルシウム、モンモリロナイト、ベントナイト、長石、石英、アルミナ、鋸屑、ニトロセルロース、デンプン、アラビアゴム等が挙げられる。

【0023】乳化剤、分散剤としては通常の界面活性剤を使用することが出来、例えば、高級アルコール硫酸ナトリウム、ステアリルトリメチルアンモニウムクロライド、ポリオキシエチレンアルキルフェニルエーテル、ラウリルベタイン等の陰イオン系界面活性剤;陽イオン系界面活性剤;非イオン系界面活性剤;または両性イオン系界面活性剤等を用いることが出来る。また、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンラウリルフェニルエーテル等の展着剤;ジアルキルスルホサクシネート等の温展剤;カルボキシメチルセルロース、ポリビニルアルコール等の固着剤;リグニンスルホン酸ナトリウム、ラウリル硫酸ナトリウム等の崩壊剤を用いることができる。

【0024】本発明の農園芸用殺菌剤の有効成分である一般式(I)の化合物の含有量は、0.1~99.5%の範囲から選ばれる。製剤形態、施用方法等の種々の条件により適宜決定すればよいが、例えば、粉剤では約0.5~20重量%程度、好ましくは1~10重量%、水和剤では約1~90重量%程度、好ましくは10~80重量%、乳剤では約1~90重量%程度、好ましくは10~40重量%、フロアブル剤では約1~90重量%程度、好ましくは10~50重量%程度の有効成分を含有するように製造することが好適である。

【0025】例えば、乳剤の場合、有効成分である一般 式(I)の化合物に対して溶剤および界面活性剤等を混 合して乳剤原液を製造することが出来、さらにこの原液 を使用に際して所定濃度に水で希釈して施用する。フロ アブル剤の場合、有効成分である一般式(I)の化合物 に対して水および界面活性剤等を混合して原液を製造す ることが出来、さらにこの原液を使用に際して所定濃度 に水で希釈して施用する。水和剤の場合、有効成分の一 般式(I)の化合物、固形担体および界面活性剤等を混 合して製造し、さらに使用に際して所定濃度に水で希釈 して施用する。粉剤の場合、有効成分の一般式(I)の 化合物、固形担体等を混合してそのまま施用することが でき、粒剤の場合には、有効成分の一般式(I)の化合 物、固形担体および界面活性剤等を混合して造粒するこ とにより製造し、そのまま施用することが出来る。もっ とも、上記の各製剤形態の製造方法は上記のものに限定 されることはなく、有効成分の種類や施用目的等に応じ て当業者が適宜選択することができるものである。

【0026】本発明の農園芸用殺菌剤には、有効成分である一般式(I)の化合物の活性を損なわない限り、他

の殺菌剤、殺虫剤、殺ダニ剤、除草剤、昆虫生育調整剤、肥料、土壌改良剤等の任意の有効成分を配合してもよい。本発明の農園芸用殺菌剤の施用方法は特に限定されるものではなく、茎葉散布、水面施用、土壌処理、種子処理等のいずれの方法でも施用することが出来る。例えば、茎葉散布の場合、5~1000ppm、好ましくは10~500ppmの濃度範囲の溶液を10アール当たり100~200L(liter)程度の施用量は通常、有効成分が5~15%の粒剤では10アール当たり1~10kgである。土壌処理の場合、5~1000ppmの濃度範囲の溶液を1m²当たり1~10L程度の施用量で用いることができる。種子処理の場合、種子重量1kg当たり10~1000ppmの濃度範囲の溶液を10~100ml程度施用処理することができる。

[0027]

た。

【実施例】以下、本発明を実施例および試験例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。

<実施例1> N-n-プロピル-4-ブロモ-1-(4-クロロフェニル)-5-メチルピラゾール-3-カルボキサミドの合成

4ープロモー1ー(4ークロロフェニル)-5ーメチルピラゾール-3ーカルボン酸3.16gと塩化チオニル4m1を混合し、1時間加熱還流した。未反応の塩化チオニルを減圧下留去後、残渣をトルエン10m1に溶解した。この溶液をnープロピルアミン0.59gおよびトリエチルアミン1.01gのトルエン10m1溶液中に0~10℃で滴下した。滴下後室温で2時間撹拌した後、反応液を氷水に注ぎ、トルエンで抽出した。トルエン相を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムを添加して乾燥後、トルエンを減圧下に留去した。残渣をヘキサンで洗浄し、表-1記載の化合物(No.9)2.86gを得た。融点は121~122℃であっ

【0028】<実施例2> N-n-プロピル-4-クロロ-1-(4-クロロフェニル)-5-エチルピラゾール-3-カルボキサミドの合成

4-クロロ-1-(4-クロロフェニル)-5-エチルピラゾール-3-カルボン酸エチル3.15gとn-プロピルアミン2.95gをメタノール25m1中に溶解し、室温で32時間撹拌した。反応液を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、表-1記載の化合物(No.24)2.89gを得た。融点は98~99℃であった。

【0029】<実施例3> N-n-プロピルー4ークロロー1-(4-シアノフェニル)-5-メトキシピラゾール-3-カルボキサミドの合成

4-2ロロ-1-(4-シアノフェニル)-5-メトキシピラゾール-3-カルボン酸エチル3.06gとn-

プロビルアミン11.8gをメタノール30m1中に加え、室温で40時間撹拌した。反応が進行するにつれてだんだん溶解してきた。反応液を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、表-1記載の化合物(No.97)2.51gを得

[0031]

た。融点は120~121℃であった。 <実施例4>実施例1、2又は3の方法に準じて表− 1、2及び3記載の化合物を得た。 【0030】

【表1】

表 - 1

 $\begin{array}{c|c}
R^2 \\
R^3 \\
R^4
\end{array}$ $\begin{array}{c}
R^1 \\
COR^5$

		R	ı	COR5	
化合物	R ³	R ²	X	R 5	酸点m.p. (℃) 屈折率n. _p (℃)
1	CH 3		Br	NHCH ₃	mp. 130-131
2	CH ₃		Br	MHC ₃ H ₇ -n	91-93
3	CH 3		Br	NHC ₃ H ₇ -i	100-101
4	CH ₃		8r	NHC ₄ H ₈ -t	107-108
5	CH 3	c e-{_}-	C.e	NH ₂	193-195
6	CH 3	c e -{}	Br	NHCH ₃	169-170
				【表2】	

表 - 1 (統き)

化合物 No.	R ¹	R 3 R 4	X	. R 5	融点 p. (℃) 回折率n _p (℃)
7	CH 3	c e -{_}	Br	NHC ₂ H ₅	m. p. 160-161
8	CH 3	c e-{	C.£	NHC ₉ H ₇ -n	107-109
9	CH ₃	c e-{_}	Br	NHC _S H ₇ -n	121-122
10	CH 3	c e -{_}}-	Br	NHC ₃ H ₇ - i	111-112
11	CH 3	c e -{_}	C &	NH<	155-156
12	СН 3	c e-{_}	Br	NHC ₄ H ₉ -n	85-86
13	CH _S	c e -{}	Br	NHC4H9-3	107-108
14	CH 3	c e -{}	Br	NHCH ₂ CH=CH ₂ 【表3】	125-126

[0032]

表 - 1 (続き)

化合物 Na	R 1	R ²	X	R 5	融点m.p. (℃) 屈折率n.g(℃)
15	СН 3	c e-{_}	Br	NHCH ₂ C = CH	m. p. 101-102
16	CH 3	c e -{_>	Cℓ	иносн 3	164-166
17	CH 3	c e -{\sum_}	Cℓ	ИН (СН ⁵) ³ ОСН ²	95-96
18	CH ₃	c &-	C &	NHCH 2CF 3	172-174
19	CH 3	c e -{_>	Br	N(CH ₃) ₂	130-131
20	CH ₃	c e -{}	Br	N	156-159
21	CH 3	c e -{_}}	Br	N(C ₂ H ₅) ₂	90-92
22	CH 3	c &-{_}	Br	N_0 【表4】	108-109

[0033]

表 - 1 (統き)

化合物 Na	R I	R ²	X	_R 5	融点m.p. (℃) 屈折率n. _p (℃)
23	CH 3	c ℓ -⟨}	Br	NO CH3	n _D 1. 5719(24)
24	¢₂H₅	c e-{_>	C &	NHC3H 7-n	n. p. 98-99
25	n-C ₃ H ₇	c e-{_}	C.£	NHC ₃ H ₇ -n	108-110
26	n-C ₃ H ₇	c e-{_>	C &	NHCH ₂ CF ₃	135-136
27	i-C ₃ H ₇	c &-{_}	C.£	NHCH 3	109-110
28	i-C ₃ H ₇	c e -{_}}-	C &	NHC ₂ H ₅	118-120
29	i-C ₃ H ₇	c e -{_}}	C.£	NHC ₈ H 7-a	92-94
30	n-C ₄ H ₉	c e-{	C &	NHC₃Hァn 【表5】	74-76

[0034]

表 - 1 (続き)

化合物 Na	R 1	R 2	X	R 5	融点皿 p. (℃) 屈折率n _p (℃)
31	i-C ₄ H ₉	c e -{	C.£	NHC3H7-n	m. p. 100-101
32	s-C ₄ H ₉	c e -{_>	C.£	NHC3H7-n	49-50
33	t-C ₄ H ₉	c e-{_}	C.£	NHCH 3	154-155
34	t-C4H9	c e-{_>	C.£	NHC3H7-n	162-163
35	CH 3	CH 3 -	Br	NHC3H7*n	99-100
36	СН 3	CH 3 -	Br	NHC ₄ H ₉ -n	45-46
37	CH 3	CH 3 -	Br	NHC ₄ H ₉ -i	71-72
38	СН 3	CH 3 -	Br	NHC5H ₁₁ -n 【表6】	a _D 1. 5718(25)

[0035]

表 - 1(続き)

化合物 No.	R 1	R 2	X	R 5	融点m.p. (℃) 屈折率n _D (℃)
39	CH 8	C.E	Br	NHC3H7-n	n. p. 90-92
40	CH 8	t-C4H9-	Br	NHC ₃ H ₇ -n	156-157
41	CH 3	t-C4H8-	Br	NHC ₄ H ₈ -s	104-105
42	CH 3	C.e	Br	NHC ₃ H ₇ -n	87-88
43	CH ₈	c e	Br	NHC ₈ H ₇ -n	n _D 1. 5810(25)
44	СН 3	0 ₂ N-	Br	NHC ₃ H ₇ -n	m. p. 155-158
45	CH 3	CH30-	C.e	NHC3H7-n	88-89
46	CH 3	CH3	C &	NHC ₃ H ₇ -n	n _D 1. 5542(24)
				【表7】	

[0036]

表 - 1 (続き)

化合物	R 1	R ²	X	R 5	酸点皿 p. (℃) 屈折率n _p (℃)
47	CH 3	F-{_}	c e	NHC ₃ H ₇ -n	n. p. 93-94
48	CH 3	Br-	C &	NHC3H7-n	123-124
49	CH 3	CF3-{	C £	NHC3H 7-n	146-147
50	CH 3	$CP_3 = C_{C\ell}$	C. £	NHC3H7-n	82-84
51	CH 3	CP80 -	C &	NHC3H7n	115-116
52	CH 3	c e -{\sqrt{c} \ e	C £	NHC ₃ H ₇ -n	112-113
53	CH 3		C &	NHC ₃ H ₇ -n	n _D 1. 5450 (24)
54	CH ₈	CH3	C ℓ	NHC3H7-0	1. 5660 (24)
55	CH 3	CP ₃	C.e	NHC3H7-D	в. р. 87-88
				[主0]	

[0037]

【表8】

表 - 1 (統含)

化合物 Na.	Ŗ I	R3 R4	X	R 5	酸点血 p. (℃) 屈折率n _p (℃)
56	CH3	i-C ₃ H ₇ -	C &	NHC3H7n	124-125
57	CH3	C2H5-	C L	NHC3H71	85-88
58	CH3	a-C ₃ H ₇ -	C &	NHC3H7-n	86-88
59	CH 3	I-{	C &	NHC3H7-n	132-133
60	CH ₃	i-C ₃ H ₇ O-	C &	NHC3H7-a	90-91
61	CH3	(. C 2	NHC3H7-0	92-94
62	CH3	CH3-(C &	NHC3H7n	101-102
63	CH3	C € - ()-0 - ()-	C €	NBC3H√n	116-117
64	CH3	0 II n-C3H7NHC-(C &	NHC3H7-0	119-121
6 5	CH3	0 0 0 0 0 0 0 0 0 0 	C &	NHC3H7-n	94-95
			[表9】	

[0038]

表 - 1 (続き)

化合物 Na	R I	R 8 R 4	X	R5	融点m.p. (℃) 屈折率n.p.(℃)
66	\triangleright	Ce-	C L	NHC ₂ H ₅	146-148
67	\triangleright	c e -{_>	C &	NHC3H7n	118-120
68	\triangleright	c e -{	C &	NHC4Hg-n	112-113
69	CH ₃	c ℓ -<->C ℓ	C &	NKC ₈ H ₇ -n	106-107
70	CH3	Br-	Br	NHC ₃ H ₇ -n	119-120
71	CH3	Br-	Br	NHC4H9-n	95-96
72	CH ₃	CH ₈ S-	C &	NHC3H7-n	133-135
73	CH3	Br-	C∉	NHC ₂ H ₅	174-175
74	CH3	Br-	C £	NHC4H8-n	82-83
75	CH3	CR3-{\}-	C &	NHC ₈ H ₇ -a	84-86
			(:	表10】	

[0039]

表 - 1 (続き)

化合物 No.	R1	R ²	X	R 5	酸点皿 p. (℃) 屈折率n _p (℃)
76	СН 30		C &	NHC3H7-n	1. 5733(23)
77	CH30	c & -{_}	C &	NHC3H7-11	118-119
78	сн80	CH3-	C &	NHC3H7™n	81-83
79	CH30	CF ₃ -	C &	NHC3H7−n	88-89
80	C ₂ H ₅ O	c e -{	C &	NHC3H7-n	116-117
81	i-C3H70	c e -	C &	NHC3H7-n	115-118
82	CH30	CH3-	C £	NHC ₂ H ₅	110-111
83	CH30	CH3-	C £	NHC4H9-n	86-87
84	CH3	NC-{_}	C £	NHC3H7-D	146-147

[0040]

【表11】

表 - 1 (続き)

化合物 Na.	R 1	R ²	X	R5	融点n.p. (℃) 屈折率n _B (℃)
85	CH3	C2H5NHC	C &	NHC ₂ H ₅	151-153
86	CH3	n-C ₄ H ₉ NHC-	C.L	NHC ₄ H ₉ -0	110-112
87	CH3	n-C ₅ H ₁₁ -	C &	NHC ₈ H7n	50-52
88	CH3	n-C ₅ H ₁₁ -	C &	NHC ₈ H∕i	51-53
89	CH3	ce 🕌	C &	NHC3H70	94-95
90	CH3	c ₂ H ₅ 0-	C £	NHC3H7n	126-127
91	CH30	Br-	C &	NHC ₃ H ₇ -n	115-116
92	CH30	0 ₂ N-{	C &	NHC3H7n	134-135
93	сн ₈ 0	c e <	C ℓ	NHCH ₂ CN	159-160
94	CH ₃ O	c e <	C £	NHNHCH2CH=CH2	70-72
			I	【表12】	

[0041]

表 - 1 (税き)

化合物 No.	RI	R 2 R 4	X	R5	融点m.p. (℃) 屈折率n. _p (℃)
95	CH30	c e -{	C.e	NHNHC ₂ H ₅	77-78
96	C ₂ H ₅	C & -<->	C L	NHC4H9-t	126-128
97	CH30	NC-	C &	NHC ₈ H ₇ n	120-121
98	CH3	c e <	C &	NHC4H9-t	108-110
99	СНз	c.e	Br	NHC4H9-t	146-147
100	CH3		Br	NHC4H9-t	157-159
101	CH3	CH ₃	Br	NHC4H9-t	134-135
102	CH3	CH3	C &	NHC4H9-t	147-149
103	CH3 ·	t-C4H9-	Br	NHC4H9-t	189-191
104	CH3	F-(C £	NHC4H9-t	112-113
			ľ	表13】	

[0042]

表 - 1 (続き)

化合物 No.	R 1	R 2	x	R5	融点m.p. (℃) 屈折率n _p (℃)
105	CH3	CR CR	C &	NHC4H9-t	1. 5440(24. 5)
106	CH3	C 2	Br	NHC4H9-t	190-191
107	n-C ₃ H ₇	ce C	C L	NHC4H9-t	132-133
108	i-C ₃ H ₇	c e <	C 2	NHC4H9-t	109-110
109	t-C ₄ H ₉	c e -<	C &	NHC4Hg-t	229-230
110	CH ₃	CF3-	C &	NHC4H9-t	132-134
111	CH30	02N-	C &	NHC4H9-t	98-100
112	CH30	c e -{/	C &	NHC4H9-t	91-93
113	CH30	c e -{\}	C &	NHNHC4H9-t	100-102
114	C ₂ H ₅	c e -<	Br	NHC ₄ H ₉ -t	118-120
			[:	表14】	

[0043]

表 - 1 (続き)

化合物 No.	R 1	R 8 R 2	X	<u>R</u> 5	融点∞ p. (℃) 屈折率n _p (℃)
115	CH30	1-{	C &	NHC3H7-n	103-105
116	CH3	H ₂ N-	Br	NHC ₃ H ₇ -a	155-157
117	CH3	(CH ₃) ₂ N -	Br	NHC3H7-n	100-102
118	CH3	O CH ₃ CNH -	8r	NHC ₃ H ₇ -n	140-142
119	CH3	CH ³ OCNH -	Br	NHC3H7-n	142-144
120	CH3	CH3MH-	Br	NHC ₃ H ₇ -n	119-121
121	CH3	CH3SO2NH-	Br	NHC3H7-a	115-117
122	CH3	c e <	I	NHC3H7-a	132-134
123	CH3	c e -{}	Ī	NHC ₄ H ₉ -L	131-133
124	CH 30	NC-	Br	NHC ₈ H ₇ -n	133-134

[0044]

【表15】

$$\begin{array}{c|c}
R^{8} \\
\hline
 & R^{1} \\
\hline
 & R^{7} \\
\hline
 & R^{8} \\
\hline
 & R^{1} \\
\hline
 & C \\
 & C \\
\hline
 & C \\
 & C \\$$

化合物 No.	R 1	R F R R R R R R R R R R R R R R R R R R	X	R 5	融点皿 p. (℃)
125	CH ₃	c e - (C &	NHC3H7-n	172-173
126	CH30	CF3-	C £	МНС _З Н ₇ −п	98-100
127	CH30	CF8-	C &	NHC4H9-t	100-102
128	СН ³ О	c ℓ -{\bigs_N}-	C &	NHC ₃ H ₇ -n	122-123
129	CH ₃ O	NC -	C £	NHC ₃ H ₇ -n	173-174
130	CH3O	c ℓ -{=N	C £	NHC ₄ H ₉ -t	88-90

[0045]

【表16】

【0046】以下、本発明の化合物を有効成分として含む農園芸用殺菌剤の製剤例を示すが、本発明の農園芸用剤の形態は下記のものに限定されることはない。なお、化合物No. は表-1, 2及び3の化合物No. に対応する。

<製造例1> 水和剤

本発明の化合物No.9を20重量部、カープレックス #80 (ホワイトカーボン、塩野義製薬株式会社、商品名)20重量部、STカオリンクレー(カオリナイト、土屋カオリン社、商品名)52重量部、ソルポール9047K(アニオン性界面活性剤、東邦化学株式会社、商品名)5重量部、ルノックスP65L(アニオン性界面活性剤、東邦化学株式会社、商品名)3重量部を配合し、均一に混合粉砕して、有効成分20重量%の水和剤を得た。

【0047】<製造例2> 粉剤

本発明の化合物No.9を2重量部、クレー(日本タルク社製)93重量部、カープレックス#80(ホワイトカーボン、塩野義製薬株式会社、商品名)5重量部を均一に混合粉砕して、有効成分2重量%の粉剤を製造した。

【0048】<製造例3> 乳剤

本発明の化合物No.24を20重量部、キシレン35 重量部およびジメチルホルムアミド30重量部からなる 混合溶媒に溶解し、これらにソルポール3005X(非 イオン性界面活性剤とアニオン性界面活性剤の混合物、 東邦化学株式会社、商品名)15重量部を加えて、有効 成分20重量%の乳剤を得た。

【0049】<製造例4> フロアブル剤

本発明の化合物No.17を30重量部、ソルポール9047K 5重量部、ソルボンT-20(非イオン性界面活性剤、東邦化学株式会社、商品名)3重量部、エチレングリコール8重量部および水44重量部をダイノミル(シンマルエンタープライゼス社製)で湿式粉砕し、このスラリー状混合物に1重量%キサンタンガム(天然高分子)水溶液10重量部を加え、良く混合粉砕して、有効成分20重量%のフロアブル剤を得た。

<試験例1> イネいもち病に対する殺菌効果直径6cmの樹脂製ポツトで1ポット当り10株のイネ(品種:アキニシキ)を育成した。製剤例3の処方に従って製剤した本発明の農園芸用殺菌剤(乳剤)を水で所定濃度に希釈し、上記のイネ(3~4葉期)に1ポット当り10m1の割合で茎葉散布した。散布した薬液を風乾した後のイネに、オートミール培地で培養したイネいもち病菌(Magnaporthe grisea)の胞子懸濁液(5.0×10⁵胞子/m1)を噴霧接種し、25℃の湿室に24時間保った。その後、温室内(22~25℃)で7日間放置し、出現した病斑面積率を測定し、下式により防除価を算出した。結果を表ー4に示す。なお、化合物No.は表-1-3の化合物No.に対応する。

[0050]

【数1】

(無処理区1葉当りの病焼面積率) - (処理区1葉当りの病焼面積率)

防除価=-

(無処理区1葉当りの病斑面積率)

×100 (%)

【0051】<比較試験例1>特開平8-12654号に記載される下記化合物を用い、試験例1と同様にいもち病菌に対する殺菌効果を試験した。結果を表-4に記載する。

[0052]

【化6】

$$F \longrightarrow F$$

$$C \ \ell$$

$$C \ O \ N \ H \ C_3 H_7 - n$$

【0053】<比較試験例2>特開平1-283274 号に記載される下記化合物を用い、試験例1と同様にい もち病菌に対する殺菌効果を試験した。結果を表-4に 記載する。

[0054]

【化7】

$$\begin{array}{c|c}
C & H_3 \\
N & \\
N & \\
C & O & N & H & C_3 & H_7 - n
\end{array}$$

【0055】<比較試験例3>特開昭63-91373号に記載される下記化合物を用い、試験例1と同様にいもち病菌に対する殺菌効果を試験した。結果を表-4に記載する。

[0056]

【化8】

【0057】 【表17】

表 - 4

化合物No.	濃度(ppm)	防除価(%)
2	500	100
6	500	100
7	500	100
8	500	100
9	500	100
1 0	500	100
1 1	500	95
1 2	500	100
1 4	500	100
15	500	100
1 6	500	100
1 7	500	100
18	500	100
1 9	500	100
23	500	100
24	500	100
27	500	87
29	500	100

100

(24)

37

 3 2
 5 0 0
 1 0 0

 3 3
 5 0 0
 1 0 0

 3 5
 5 0 0
 1 0 0

 3 6
 5 0 0
 1 0 0

【表18】

[0058]

表-4(続き)

500

化合物No.	濃度(ppm)	防除価(%)
38	500	100
39	500	97
4 2	500	94
4 3	500	98
4 4	500	100
45	500	100
46	500	100
4 7	500	100
48	500	100
4 9	500	100
5 0	500	100
5 1	500	100
5 2	500	100
5 3	500	100
5 4	500	100
5 5	500	100
上較例 1	500	0

[0059]

【表19】 表-4 (続き)

化合物No.	濃度(ppm)	防除価(%)
5 6	500	100
5 7	500	100
58	500	100
5 9	500	100
6 0	500	100
6 1	500	98
6 6	500	98
6 7	500	100
6 9	500	100
7 0	500	95
7 1	500	90 ·
7 3	500	100
7 4	500	100
75	500	100
76	500	100
7 7	500	100

1	2	\sqsubseteq	١
١.	4	ン	•

78	500	100
79	500	100
8 2	500	100
83	500	100
84	500	100
90	500	100
9 1	500	100
	【表20】	

[0060]

表-4 (続き)

 化合物No.	濃度(ppm)	防除価(%)
9 2	500	100
97	500	100
115	500	100
117	500	100
119	500	100
120	500	100
122	500	100
124	500	100
125	500	100
126	500	100
128	500	100
129	500	100
131	500	100
132	500	100
————— 比較例2	500	0
比較例3	500	0

【0061】<試験例2> トマト疫病に対する殺菌効

直径6cmの樹脂製ポットで、1ポット当り3株のイネ (品種:レッドチェリー)を育成した。製剤例1の処方 に従って製剤した本発明の農園芸用殺菌剤(水和剤)を 水で所定濃度に希釈し、上記のイネ(3~4葉期)に1 ポット当り10mlの割合で茎葉散布した。散布した薬 液を風乾した後のイネに、トマト切葉上で培養したトマ ト疫病菌(Phytophthora infesta ns)の遊走子嚢懸濁液(5.0×104 遊走子嚢/m 1)を噴霧接種し、25℃の湿室に24時間保った。そ の後、温室内(20~22℃)で4日間放置し、葉中に 出現した病斑面積を測定し、下記基準で発病指数を判定 し、下記式により防除価を算出した。結果を表-5に示 す。

発病指数 0:無病斑

1:病斑面積1/3以下 3:病癌面積1/3~2/3 5:病斑面積2/3以上

[0062] 【数2】

 $5 (n_0 + n_1 + n_8 + n_5)$

nx: 1ポット当りの、上記発病指数がxであるトマト [0063] の棄数 【数3】

無処理区発病度-処理区発病度

-×100 防除価(%)=-

無処理区発病度

[0064]

【表21】

表 - 5

(26)

化合物No.	濃度(ppm)	防除価(%)
3	500	100
8	500	90
1 7	500	100
2 1	500	100
22	500	100
24	500	100
3 1	500	100
3 2	500	100
4 0	500	95
4 3	500	100
5 2	500	100
5 5	500	100
6 1	500	100
6 3	500	100
65	500	100
7 0	500	100
7 1	500	100
77	500	100
90	500	100
97	500	100
116	500	100
117	500	100
129	500	100
	【表22	2]
	表 - 5 	
化合物No.	濃度(ppm)	防除価(%)

500

[0065]

【0066】 【発明の効果】本発明の1-置換-ピラゾール-3-カ

132

ルボキサミド誘導体は、各種の植物病原菌に対して優れ た防除効果を有し、農園芸用殺菌剤として有用である。

100