STA286 Lecture 02

Neil Montgomery

Last edited: 2017-01-11 09:49

numerical summaries of dataset variables — definitions first

with examples after

sample measures of "location"

The dataset is often called the "sample" (no matter where the data came from).

sample measures of "location"

The dataset is often called the "sample" (no matter where the data came from).

For a particular numerical variable in the sample with observations:

$$\{x_1,x_2,\ldots,x_n\}$$

the sample average is just the arithmetic mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

sample measures of "location"

The dataset is often called the "sample" (no matter where the data came from).

For a particular numerical variable in the sample with observations:

$$\{x_1,x_2,\ldots,x_n\}$$

the sample average is just the arithmetic mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Could be sensitive to extreme observations.

sample medians, sample percentiles

Order the observations:

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

A number that divides the observations into two groups is called a *sample median*. For example:

$$\tilde{x} = \begin{cases} x_{((n+1)/2)} & : n \text{ odd} \\ \left(x_{(n/2)} + x_{(n/2+1)}\right)/2 & : n \text{ even} \end{cases}$$

which is harder to write out than it is to understand.

sample medians, sample percentiles

Order the observations:

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

A number that divides the observations into two groups is called a *sample median*. For example:

$$\tilde{x} = \begin{cases} x_{((n+1)/2)} & : n \text{ odd} \\ \left(x_{(n/2)} + x_{(n/2+1)}\right)/2 & : n \text{ even} \end{cases}$$

which is harder to write out than it is to understand.

A sample p^{th} percentile has p% of the data below or equal to it. Special cases include (sample...): quartiles, quintiles, deciles, and indeed the median itself.

sample measures of variation of a numerical variable

Very (too?) simple measure: sample range which is just $x_{(n)} - x_{(1)}$.

sample measures of variation of a numerical variable

Very (too?) simple measure: sample range which is just $x_{(n)} - x_{(1)}$.

More common to consider the set of deviations from the sample mean:

$$x_i - \overline{x}$$

Adding them up just gives 0, so instead consider positive functions such as:

$$|x_i - \overline{x}|$$
 or $(x_i - \overline{x})^2$

sample measures of variation of a numerical variable

Very (too?) simple measure: sample range which is just $x_{(n)} - x_{(1)}$.

More common to consider the set of deviations from the sample mean:

$$x_i - \overline{x}$$

Adding them up just gives 0, so instead consider positive functions such as:

$$|x_i - \overline{x}|$$
 or $(x_i - \overline{x})^2$

Summing up over all the observations gives the *sum of absolute deviations* (aka SAD) and the *sample variance* respectively. Notation and formula:

$$s^2 = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

sample standard deviation

 s^2 is essentially the average squared deviation. (More on n-1 later in the course.)

The sample variance is good for theory but has an inconvenient unit. More practical is the *sample standard deviation*:

$$s = \sqrt{s^2}$$

numerical summaries for categorical variables

The oil readings data had one categorical variable, the Ident variable which is just a serial number. I added a fake one TakenBy for illustration.

```
## # A tibble: 5 × 17
              Date WorkingAge TakenBy
                                                  Αl
##
     Ident
                                            Fe
                                                        C_{11}
                                                              Cr
##
    <fctr>
               <date>
                          <dbl> <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 448576 1999-05-10
                                                   5
                                                        14
                            243 EMPL 0917
                                             13
## 2 448576 1999-07-26
                            569 EMPL 0917
                                            18
                                                   6
                                                        25
## 3 448576 1999-09-29
                            830 EMPL 9375
                                            26
                                                        35
## 4 448576 1999-10-08
                            862 EMPL 0917 15
                                                        14
## 5 448576 1999-11-02
                            946 EMPL 9375
                                            14
                                                   4
                                                        19
## # ... with 9 more variables: Si <dbl>, Pb <dbl>, Ph <dbl>, Ca <dbl>,
      Zn <dbl>, Mg <dbl>, Mo <dbl>, Sn <dbl>, Na <dbl>
## #
```

tables of counts (or proportions)

A categorical variable could also be called a *factor* variable with *levels*, and to tabulate the frequency of each level is the way to summarize.

```
## # A tibble: 25 \times 3
##
       Ident
                 n proportion
                         <dbl>
##
      <fctr> <int>
      448572
                 31 0.05065359
## 1
## 2
      448574
                 31 0.05065359
## 3
      448576
                 36 0.05882353
## 4
      448577
                 29 0.04738562
## 5
      448578
                 34 0.0555556
## 6
      448579
                 36 0.05882353
## 7
      448580
                 28 0.04575163
## 8
      448581
                 31 0.05065359
## 9
      448582
                 41 0.06699346
  10 448583
                 42 0.06862745
    ... with 15 more rows
```

two-way classification with Ident and TakenBy

Ident

EMPL_9134 0

EMPL 9375

##

##

##	EMPL_0592	18	16	0	0	12	0	0	7	
##	EMPL_0917	0	0	18	11	0	22	10	0	
##	EMPL_2095	8	8	0	0	8	0	0	7	
##	EMPL_4925	0	0	10	9	0	6	10	0	
##	EMPL_9134	5	7	0	0	14	0	0	17	
##	EMPL_9375	0	0	8	9	0	8	8	0	
##	Ident									
##	TakenBy	448583	448584	448588	448589	448590	448593	448594	448595	448
##	EMDI OFOO	^	^	^	4.0	^		_	^	
	EMPL_0592	0	0	0	10	0	10	0	0	
##	EMPL_0592 EMPL_0917	24	9	11	10	13	10	10	18	
## ##	_	-	_			•			•	

10

TakenBy 448572 448574 448576 448577 448578 448579 448580 448581 448

barchart

A barchart is a table of counts, in graphical form.

"Pareto" chart

Ordered by count.

piecharts are problematic

histograms

A histogram is a special case of a barchart.

A numerical variable is split into classes and a barchart is made from the table of counts of obvservations within each class.

Histograms are done by the computer. Always play around with the number of classes.

histograms are hard to implement!

Better picture around 0. Possibly not important for EDA?

histogram without those really big values

a few more ppm histograms

"shapes" of "distributions"

To use a histogram, *glance* at it and look for any of the following (without getting fooled by plot artefacts):

transforming variables

Apply log or square root to a variable will change the shape of the empirical distribution, e.g. transform right-skewed to symmetric.

boxplots

A special plot of these (or similar) five numbers:

min 25^{th} percentile median 75^{th} percentile max

is called a *boxplot*. Often the extreme values are shown individually (see documentation for the (irrelevant) details.)

Best as side-by-side boxplots with more than one varaible on the same scale.

boxplot example - I

boxplot example - II

scatterplot

A graphic for two numerical variables, e.g. Fe and Si

Fe vs Si without the "outliers"

alternatively, on a log-log scale

"small multiples" through faceting

A powerful exploratory tool is to make a grid of small plots on subsets of the data.

what about that "Date" variable. . . (!)

Fe versus Date, facet by Ident

