Test Your Understanding: predicate and quantifier

Test yourself by filling in the blanks.

1.	A predicate is
2.	The truth set of a predicate $P(x)$ with domain D is
3.	A statement of the form " $\forall x \in D, Q(x)$ " is true if, and only if,
4.	A statement of the form " $\exists x \in D, Q(x)$ " is true if, and only if,
5.	A universal conditional statement is a statement of the form
6.	A negation of a universal statement is an statement.
7.	A negation of an existential statement is a statement.
8.	A statement of the form "All A are B " can be written with a quantifier and a variable as $___$.
9.	A statement of the form "Some A are B " can be written with a quantifier and a variable as .
10.	A statement of the form "No A are B " can be written with a quantifier and a variable as .
11.	A negation for a statement of the form " $\forall x \in D, Q(x)$ " is
12.	A negation for a statement of the form " $\exists x \in D$ such that $Q(x)$ " is
13.	A negation for a statement of the form " $\forall x \in D$, if $P(x)$ then $Q(x)$ " is
14.	For a statement of the form " $\forall x \in D, Q(x)$ " to be vacuously true means that
15.	Given a statement of the form " $\forall x$, if $P(x)$ then $Q(x)$," the contrapositive is, the converse is, and the inverse is
16.	If you want to establish the truth of a statement of the form " $\forall x \in D, \exists y \in E \text{ such that } P(x,y)$," your challenge is to allow someone else to pick, and then you must find for which $P(x,y)$
17.	If you want to establish the truth of a statement of the form " $\exists x \in D$ such that $\forall y \in E$, $P(x,y)$," your job is to find with the property that no matter what, $P(x,y)$ will be
18.	A negation for a statement of the form " $\forall x \in D, \exists y \in E \text{ such that } P(x,y)$ " is
19.	A negation for a statement of the form " $\exists x \in D$ such that $\forall y \in E, P(x,y)$ " is
20.	The rule of universal instantiation says that
	Universal modus ponens is an argument of the form, and universal modus tollens is an argument of the form

Answers

- a sentence that contains a finite number of variables and becomes a statement when specific values are substituted for the variables
- 2. the set of all x in D such that P(x) is true
- 3. Q(x) is true for each individual x in D
- 4. there is at least one x in D for which Q(x) is true
- 5. $\forall x$, if P(x) then Q(x), where P(x) and Q(x) are predicates
- 6. existential
- 7. universal
- 8. $\forall x$, if x is an A then x is a B
- 9. $\exists x \text{ such that } x \text{ is an } A \text{ and } x \text{ is a } B$
- 10. $\forall x$, if x is an A then x is not a B (Or: $\forall x$, if x is an B then x is not a A)
- 11. $\exists x \in D \text{ such that } \sim Q(x)$
- 12. $\forall x \in D, \sim Q(x)$
- 13. $\exists x \in D$ such that P(x) and $\sim Q(x)$
- 14. there are no elements in D
- 15. $\forall x$, if $\sim Q(x)$ then $\sim P(x)$; $\forall x$, if Q(x) then P(x) $\forall x$, if $\sim P(x)$ then $\sim Q(x)$
- 16. whatever element x in D they wish; an element y in E; is true
- 17. an element x in D; element y in E anyone might choose; true
- 18. $\exists x \in D$ such that $\forall y \in E, \sim P(x, y)$
- 19. $\forall x \in D, \exists y \in E \text{ such that } \sim P(x,y)$
- if a property is true of everything in a domain, then it is true of any particular thing in the domain
- 21. $\forall x$, if P(x) then Q(x) $\forall x$, if P(x) then Q(x) P(a), for a particular a $\therefore Q(a)$ $\therefore P(a)$