4	
CI	
CEU	

EXAMEN DE ANÁLISIS I	
1º Grado en Ingeniería Matemática	Nombre:
Asignatura: Análisis I	DNI:
Fecha: 14/11/2022	Modelo A

Duración: 2 horas.

- 1. (1 punto) Calcular los puntos de acumulación del conjunto $A=[0,1]\cup \left\{\frac{n}{n-1}:n\in\mathbb{N},n\geq 2\right\}$. ¿Es un conjunto cerrado? ¿Y abierto?
- 2. (2 puntos) Dada la sucesión $\left(\frac{1}{2^n}\right)_{n=1}^{\infty},$
 - a) Calcular, si existen, el supremo, ínfimo, máximo y mínimo del conjunto de sus términos.
 - b) Demostrar que la sucesión converge a 0.
- 3. (2 puntos) La rentabilidad de un bono cada año, en porcentaje, viene dada por la sucesión recurrente $x_1=3$ y $x_{n+1}=\sqrt{\frac{x_n}{2}+3}$. ¿Hacia dónde converge la rentabilidad del bono a medida que pasa el tiempo?
- 4. (1.5 puntos) Demostrar, usando la definición de límite, que $\lim_{x\to 1} \frac{3x+1}{2} = 2$.
- 5. (1.5 puntos) Sabiendo que $\lim_{x\to 0} (1+x)^{1/x} = e$, demostrar que las siguientes funciones son infinitésimos equivalentes en x=0:
 - a) $\ln(1+x)$ y x.
 - b) $e^x 1 y x$.
- 6. (2 puntos) Determinar las asíntotas de la función $f(x) = \ln\left(\frac{1}{x} + 1\right)x^2$.