Évaluation de modèles

Quentin Fournier <quentin.fournier@polymtl.ca>

Les diapositives ont été créées par Daniel Aloise <daniel.aloise@polymtl.ca>

basé sur des diapositives de Steven Skiena, 2017 25 mai 2020

Évaluation d'un modèle de classification

- Vous avez construit un modèle prédictif pour la classification
- Est-ce qu'il est bon?

Évaluation d'un modèle de classification

Parametres: ce que la fonction va apprendre Hyperparametres: valeurs choisies au départ et non apprises

- Étapes d'une évaluation typique :
 - Les données sont séparées en trois sous-ensembles :
 entraînement (70%), validation (15%) et test (15%)
 liste des valeurs à essayer (linverse des paramètres, qui eux
 - On fait une liste de valeurs des hyper-paramètres à essayer
 - Pour chaque élément de cette liste, l'algorithme est exécuté sur l'ensemble d'entraînement et sa performance est mesurées sur l'ensemble de validation
 - Avec les meilleurs valeurs des hyper-paramètres identifiés avec l'ensemble de validation, on calcule la performance de l'algorithme sur l'ensemble de test

Procédure d'évaluation d'un algorithme de classification

- Souvent, nous n'avons pas assez de données pour les séparer en trois sous-ensembles
- La validation croisée partitionne les données en *k* blocs de taille égale
- Puis, on entraîne k modèles distincts
- Le modèle i est entraîné sur l'union de touts les blocs sauf 1 (le bloc d'index i), et validé sur le bloc i

Procédure d'évaluation d'un algorithme de classification

- Souvent, nous n'avons pas assez de données pour les séparer en trois sous-ensembles
- La validation croisée partitionne les données en *k* blocs de taille égale
- Puis, on entraîne k modèles distincts
- Le modèle i est entraîné sur l'union de touts les blocs sauf 1 (le bloc d'index i), et validé sur le bloc i
- Bagging combine tout les k modèles entraînés dans un seul modèle de classification

Évaluation

 Pour la classification binaire, nous avons quatre résultats possibles

		Classe prédite							
		Oui si prévu + et obtenu +	Non si prévu + mais obtenu -						
Classe	Oui	True Positive (TP)	False Negative (FN)						
réelle	Non	False Positive (FP)	True Negative <mark>(TN)</mark>						
		D1	Ci on a právu ot aulan abtient un						

Si on a prédit un - et qu'on obtient un +

Accuracy

 L'accuracy est le rapport entre les prédictions correctes et les prédictions totales :

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

- Un classificateur randomisé aurait une espérance d'accuracy de 50%
- Si on prend juste la classe plus nombreuse comme prédition (classificateur gourmand) accuracy > 50%

Précision

- Quand $|P| \ll |N|$, mesurer l'accuracy est inutil $\frac{\text{si on a une des classes qui est}}{\text{sur-représenté}}$
- L'accuracy d'un classificateur gourmand serait de 95% lorsque $p = \frac{|P|}{|P| + |N|} = 0.05$!
- Nous avons donc besoin d'une mesure d'évaluation plus sensible à l'obtention de la classe positive.

dataset de 10 TP et de 10 FP

$$10/(10+0)=1$$
mais pas tris très précis!!!

precision = $\frac{TP}{TP+FP}$ instances positives prédites

 Atteindre une valeur de precision élévée est impossible pour le classificateur randomisé ou le gourmand

Recall

- Nous pourrions être plus tolérants aux faux positifs (e.g. erreurs où nous effrayons une personne en bonne santé avec un mauvais diagnostic) que les faux négatifs
- Le recall mesure la capacité d'avoir raison uniquement sur les instances positives

$$recall = \frac{TP}{TP + FN}$$
 réelles instance +

- Attention : dire que tout le monde a un cancer donne un recall parfait! de 1
- Ceci donne un bon recall, mais un mauvais precision

F-score

Mesure équilibré de score unique

$$F_{score} = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

 La moyenne harmonique est toujours inférieure ou égale à la moyenne arithmétique, ce qui rend difficile l'obtention d'un F-score élevé

Precision/Recall

Figure - https://en.wikipedia.org/wiki/F1_score#/media/File: Precisionrecall.svg

FXAMEN

Exercice

- Un classifieur dont la precision est plus grande que le recall.
 - Que se passe-t-il?
 - Comment peut-on l'améliorer?
- Un classifieur dont le recall est plus grand que la precision.
 - Que se passe-t-il?
 - Comment on pourrait l'améliorer?

enregistrement voir exercices dernier cours environ minute 9 **Exercice**

+: veut dire positif

- Le precision de ton classificateur est plus grand que son recall.
 - Que se passe-t-il? Ton classificateur classifie peu des données comme de la classe positive peu de prédiction +, mais quand prédiction + il a tris raison
 - Comment on pourrait l'améliorer? On pourrait augmenter le poids de l'erreur sur l'entraînement des données de la classe positive
- Le recall de ton classificateur est plus grand que son precision
 prédire trop la classe +, tendance à prédire + meme s'il a tort

• Que se passe-t-il? Ton classificateur est trop agressif pour

- classer les données comme appartenant à la classe positive
- Comment on pourrait l'améliorer? On pourrait augmenter le seuil de classification de la classe positive
 ex: plus haut que le seuil de 0.8, tout ce qui est en dessous de 0.8 est considéré

0: classe -1: classe +

0.5 valeur moyenne en dessous au dessus +

tromper pour les +

POLYTECHNIQUE MONTRÉAL LE GENIE

comme -, donc tendance à moins se

Receiver-Operator Curves (ROC)

- Faire varier le seuil d'un modèle modifie le recall et la precision
- (TP)Rate = $\frac{TP}{P}$ et (FP)Rate = $\frac{FP}{N}$

• La surface sous une ROC est une bonne mesure d'évaluation d'un modèle si seuil = 1, aucune instance positive

si seuil =1, aucune instance positive si seuil =0, ca veut dire je prédis tout est positif, aucune instance négative

Skiena, 2017

Évaluation de systèmes multiclasses

- La classification devient plus difficile avec plus des classes
- ex. reconnaissance de chiffres

Digits	0	1	2	3	4	5	6	7	8	9
0	351	0	5	4	2	7	2	1	6	0
1	0	254	0	0	2	0	0	1	1	2
2	1	1	166	4	5	1	3	2	2	1
3	1	2	4	142	0	5	0	1	4	0
4	3	3	8	1	180	3	2	5	4	4
5	0	0	3	11	0	140	3	0	7	1
6	0	2	2	0	4	0	158	0	1	0
7	0	0	2	2	1	0	0	132	2	1
8	2	1	8	0	0	0	2	1	137	1
9	1	1	0	2	6	4	0	4	2	167

Skiena, 2017

Où les erreurs sont commises principalement?

Évaluation de systèmes multiclasses

- On note C[i,j] le nombre d'objets de la classe i classés comme de la classe i
- precision; est la fraction de tous les objets déclarés de la classe i qui étaient en fait de la classe i

$$\text{ rundl} = \underbrace{\text{C[i,i]}}_{\substack{j \text{ ord the point by poin$$

ont été correctement identifiés comme tel :

Évaluation de systèmes multiclasses

- Un taux de classification trop bas est décourageant et souvent trompeur avec plusieurs classes problèmes quand 1 millier de classes
- Le taux de réussite du top-K vous donne du crédit si la bonne étiquette aurait été l'une de vos premières suppositions
- Il est important de choisir K afin que de réelles améliorations puissent être reconnues
- Si K = au nombre de classes, le taux de réussite est 100%
- Si K=1 on a simplement l'accuracy, la précision et le rappel
- Normalement, on choisi K tel que la performance du classificateur est supérieure à celle d'un classificateur aléatoire
- Mais pas trop mieux, de façon qu'on ait encore de l'espace d'amélioration choisir K pas trop élevé et pas trop petit

Évaluation pour la régression

- Pour les valeurs numériques, l'erreur est une fonction de la différence entre la prévision f(X) et l'observation y:
 - |f(X) y| absolute error
 - |f(X) y|/y (normalement meilleur) absolute percentage error
 - $(f(X) y)^2$ (toujours non-négatif) square error
- Ceux-ci peuvent être agrégés sur de nombreux données, ex :

Min square error •
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - y_i)^2$$
 (sensible aux *outliers*)

Root min square error •
$$RMSE = \sqrt{MSE}$$
 (plus facile à interpreter)

