Naïve Bayes as a Default in Human Category Learning

Jana B. Jarecki | Björn Meder | Jonathan D. Nelson Center for Adaptive Behavior and Cognition (ABC) Max Planck Institute for Human Development | Berlin

The challenge

Taking a probabilistic viewpoint on categorization poses a computational challenge.

Combinatorial explosion

This challenge...

....affects cognitive categorization models

Exemplar models (Medin & Schaffer, 1978; Nosofsky, 1986)

Rule-based models (Ashby et al. 1998)

The challenge

This computational challenge is researched in Machine Learning.

Species A or Species B?

Classification algorithm assuming class-conditional independence

independent of

independent of

Species A

$$P(\boldsymbol{f} \mid c) = \prod_{d=1}^{D} P(f_d \mid c)$$

Species A

Species B

independent of

independent of

Complexity Reduction

Robust

against violations of conditional independence (Domingos & Pazzani, 1997; Rish et al., 2001) Extrapolate

Species A or Species B?

For four out of five stimuli we predict different classification decisions given flexible dependencies versus Naïve Bayes.

Error Rates

Modeling Learning

Most predictive model

Belief in Naïve Bayes structure $P(NB) = \pi$

$$\pi = 0$$
 $\pi = 1$

Summary

- Given the computational complexity of classification
- We used Naïve Bayes as computationally plausible principle from Machine Learning
- As default assumption for human classification
- Classification learning is in line with Naïve Bayes
 - Proportion of errors
 - Classification learning decisions
- People are not stuck with it

References

- Ashby, F. G. & Gott, R. E. (1988) Decision rules in the perception and categorization of multidimensional stimuli. *Journal of Experimental Psychology Learning, Memory, and Cognition* 14, 33–53. doi:10.1037/0278-7393.14.1.33
- Domingos, P., & Pazzani, M. J. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. *Machine Learning*, 29(2), 103–130. doi:10.1023/A:1007413511361
- Katsikopoulos, K. V, & Martignon, L. (2006). Naive heuristics for paired comparisons: Some results on their relative accuracy. Journal of Mathematical Psychology, 50, 488–494. doi:10.1016/j.jmp.2006.06.001

- Medin, D. L. & Schaffer, M. M. (1978) Context theory of classification learning. Psychological Review 85, 207–38. doi:10.1037//0033-295X.85.3.207
- Nosofsky, R. M. & Clark, S. E. (1989) Rules and exemplars in categorization, identification, and recognition. *Journal of Experimental Psychology Learning, Memory, and Cognition* 15, 282–304. doi:10.1037/0278-7393.15.2.282
- Rish, I., Hellerstein, J., & Thathachar, J. (2001). An analysis of data characteristics that affect naive Bayes performance.