

Duração: 1h15

Nome completo: _

(0.5)

de mês para mês. Calcule:

(a) A probabilidade da procura se situar entre 75 e 90 toneladas.

	N.º alu	no:	Curso:			
1						or lógico de cada uma das seguintes nada vale nem desconta.
				de um espaço de a C) = 0.4, $P(A \cap C)$		(\mathcal{F}) e que:
(0.3)	• [\overline{V} F $P(A \cap B \cap$	C(C) = 0.1			
(0.3)	• [$\boxed{\mathbf{V}} \boxed{\mathbf{F}} P(C) = 0.3$	3			
(0.3)	• [\overline{V} F $P(A \cap \overline{C})$	= 0.1			
(0.3)	• [\overline{V} F Se $A \in C$ for	orem acontecimen	tos independentes,	então $P(C) = 0.5$	5
2		-	_			nale-a com uma cruz no quadrado esta nada vale nem desconta.
	um en de qua	treposto comercial alquer uma das ou	l. A fábrica F_1 ter tras fábricas $(F_2,$	n uma capacidade F_3). A tecnologia o	produtiva (nº peça le produção das fá	ne escoam toda a sua produção para as/dia) que é o dobro da capacidade bricas (F_1, F_2) é mais moderna que o: 2% para F_1 e F_2 , e 4% para F_3 .
(0.5)	(a)]	Retirando uma pe	ça ao acaso do ent	treposto, qual a pr	obabilidade desta	ter defeito?
		A 0.06	B 0.025	C 0.11	$\boxed{\mathtt{D}}$ 0.15	E Nenhuma das anteriores
(0.5)	(b) S	Se a peça retirada	tiver defeito, qua	l a probabilidade d	le ter sido produzi	da pela fábrica F_1 ?
		A 0.3	$\boxed{ {\tt B} } \ 0.35$	C 0.41	$\boxed{\mathtt{D}} \ 0.25$	E Nenhuma das anteriores
3	corres	-	sposta incorreta d ação:		s e uma não respos	nale-a com uma cruz no quadrado sta nada vale nem desconta.
(0.3)	(a) [\overline{V} F Para $m=3$	3/2, b = -1 e a =	2, a função g é un	na função densidad	le de probabilidade.
	(b) (lensidade $f_X(x) =$		=1/2 e m = 1.
(0.5)		i. Sabendo que	$\int_0^1 3x(x+1/2)dx$	=7/4, o valor méd	lio de X é:	
		$\boxed{\texttt{A}} \ 1/12$	$\boxed{\mathtt{B}}$ 7/12	C 7/6	$\boxed{\mathtt{D}}$ $1/2$	E Nenhuma das anteriores
(0.5)		ii. A $P(1/3 \le X)$	$\leq 2/3$) é:			
		A 1/3	B 7/32	C 1/6	D 7/9	E Nenhuma das anteriores
	Resol	va as restantes	alíneas no cade	rno indicando to	dos os passos e	justificações.

4. Uma empresa tem produção constante de 90 toneladas/mês do produto que fabrica. Sabe-se que a procura mensal desse produto (em toneladas) é uma v.a. com distribuição normal de parâmetros $\mu=80$ e $\sigma=10$ e é independente

- (0.5) (b) O valor que deveria ter a produção da empresa para que a probabilidade de haver procura insatisfeita fosse 0.01.
- (0.5) (c) A probabilidade da procura nos próximos 3 anos ser superior a 2950 toneladas.
 - 5. A procura diária para certo tipo de artigo na loja A tem distribuição de Poisson. Sabendo que a procura média diária é de 2 produtos:
- (0.5) (a) Calcule a probabilidade de num dia serem procurados pelo menos 2 produtos.
- (0.5) (b) Considerando as variáveis aleatórias X_i , o número de produtos vendidos no dia i, i = 1, 2, ..., 365, calcule a probabilidade **aproximada** do número de produtos vendidos num ano (com 365 dias) ser no máximo 730.

		Distribuições discretas					
Distribuição	f. probabilidade	Suporte	Valor médio	Variância			
H(N,M,n)	$\binom{M}{k}\binom{N-M}{n-k}/\binom{N}{n}$	$\max(0, M + n - N) \le k \le \min(M, n)$	nM/N	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$			
$Bin\left(n,p\right)$	$\binom{n}{k} p^k \left(1 - p\right)^{n - k}$	$0 \le k \le n$	np	np(1-p)			
$P\left(\lambda\right)$	$e^{-\lambda}\lambda^k/k!$	$k \in \mathbb{N}_0$	λ	λ			
Distribuições contínuas							
Distribuição	f. densidade	Suporte	Valor médio	Variância			
$Exp(\lambda)$	$\lambda e^{-\lambda x}$	$x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$			
$N\left(\mu,\sigma^2\right)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	$x \in \mathbb{R}$	μ	σ^2			

Nome completo: _

N.º aluno: _____ Curso: ____

Duração: 1h15

1							lógico de cada uma das seguintes ada vale nem desconta.
			ita que A , B e C são disjuntos, P (le acontecimentos $(\Omega, C) = 0.1$.	$\mathcal{F})$ e que:
(0.3)		•	$\boxed{V} \boxed{F} P(B) = 0.3$	3			
(0.3)		•	$\boxed{\mathtt{V}}$ $\boxed{\mathtt{F}}$ Se A e C fe	orem acontecimen	tos independent	es, então $P(A) = 0.1$	
(0.3)		•	$lackbox{V} lackbox{F} P(C-A)$	= 0.2			
(0.3)	• $\boxed{\mathtt{V}}$ $\boxed{\mathtt{F}} P(A \cap B \cap C) = 0$						
2							nale-a com uma cruz no quadrado eta nada vale nem desconta.
	Uma empresa industrial tem três centros produtivos, as fábricas (F_1, F_2, F_3) , que escoam toda a sua produção par um entreposto comercial. A fábrica F_1 tem uma capacidade produtiva (nº peças/dia) que é o dobro da capacidad de qualquer uma das outras fábricas (F_2, F_3) . A tecnologia de produção das fábricas (F_1, F_2) é mais moderna que a da fábrica F_3 , o que se reflecte nas respectivas taxas de produção com defeito: 3% para F_1 e F_2 , e 5% para F_3					s/dia) que é o dobro da capacidade oricas (F_1, F_2) é mais moderna que	
(0.5)		(a)	Retirando uma per	ça ao acaso do ent	creposto, qual a	probabilidade desta te	er defeito?
			A 0.015	B 0.025	$\boxed{\mathtt{C}}$ 0.02	$\boxed{\mathtt{D}} \ 0.035$	E Nenhuma das anteriores
(0.5)		(b)	Se a peça retirada	tiver defeito, qua	l a probabilidad	e de ter sido produzid	a pela fábrica F_3 ?
			$lacksquare$ $A = \frac{5}{7}$	$\boxed{B} \frac{5}{12}$	\boxed{C} $\frac{5}{9}$	$\boxed{D} \ \frac{5}{14}$	E Nenhuma das anteriores
3. Em cada alínea apenas uma das respostas está correta. Determine-a e assinale-a com uma cruz no correspondente. Uma resposta incorreta desconta 0.1 valores e uma não resposta nada vale nem descor							
	(Cons	idere a seguinte fun	ıção:	,		
				:	$g\left(x\right) = \left\{ \begin{array}{l} mx + \\ 0, \end{array} \right.$	$b, x \in [0, a] \\ x \notin [0, a]$	
(0.3)		(a)	\overline{V} \overline{F} Para $m=3$	3/2, b = -1 e a =	2, a função g n	ão é uma função densi	idade de probabilidade.
		(b)	Considere X uma	v.a. com função d	ensidade $f_X(x)$	=g(x) com $a=1, b=$	= 1/2 e m = 1.
(0.5)			i. Sabendo que	$\int_0^1 4x(x+1/2)dx$	=7/3, o valor n	nédio de $2X$ é:	
			$\boxed{\texttt{A}} \ 1/12$	$\boxed{\mathtt{B}}$ $7/12$	C 7/6	$\boxed{\mathtt{D}}$ $1/2$	E Nenhuma das anteriores
(0.5)			ii. A $P(1/2 \le X)$	$\leq 3/4$) é:			

Resolva as restantes alíneas no caderno, indicando todos os passos e justificações.

4. Uma empresa tem produção constante de 90 toneladas/mês do produto que fabrica. Sabe-se que a procura mensal desse produto (em toneladas) é uma v.a. com distribuição normal de parâmetros $\mu=80$ e $\sigma=10$ e é independente de mês para mês. Calcule:

C 1/6

D 7/9

E Nenhuma das anteriores

(0.5) (a) A probabilidade da procura se situar entre 75 e 90 toneladas.

A 1/3

B 7/32

- (0.5) (b) O valor que deveria ter a produção da empresa para que a probabilidade de haver procura insatisfeita fosse 0.01.
- (0.5) (c) A probabilidade da procura nos próximos 3 anos ser superior a 2950 toneladas.
 - 5. A procura diária para certo tipo de artigo na loja A tem distribuição de Poisson. Sabendo que a procura média diária é de 2 produtos:
- (0.5) (a) Calcule a probabilidade de num dia serem procurados pelo menos 2 produtos.
- (0.5) (b) Considerando as variáveis aleatórias X_i , o número de produtos vendidos no dia i, i = 1, 2, ..., 365, calcule a probabilidade **aproximada** do número de produtos vendidos num ano (com 365 dias) ser no máximo 730.

		Distribuições discretas					
Distribuição	f. probabilidade	Suporte	Valor médio	Variância			
H(N,M,n)	$\binom{M}{k}\binom{N-M}{n-k}/\binom{N}{n}$	$\max(0, M + n - N) \le k \le \min(M, n)$	nM/N	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$			
$Bin\left(n,p\right)$	$\binom{n}{k} p^k \left(1 - p\right)^{n - k}$	$0 \le k \le n$	np	np(1-p)			
$P\left(\lambda\right)$	$e^{-\lambda}\lambda^k/k!$	$k \in \mathbb{N}_0$	λ	λ			
Distribuições contínuas							
Distribuição	f. densidade	Suporte	Valor médio	Variância			
$Exp(\lambda)$	$\lambda e^{-\lambda x}$	$x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$			
$N\left(\mu,\sigma^2\right)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	$x \in \mathbb{R}$	μ	σ^2			