ML Homework 7 Report

Student Info

1. Student ID: 310555024

2. Student Name: 林廷翰

- Code
 - 1. Kernel Eigenfaces
 - Common Parts
 - 1. Parse Arguments

```
# Set up the input parameters, and return args.

| def parseArguments():
| parse = argparse.ArgumentParser()

# The algorithm will be used, 0 -> PCA, 1-> LDA.
| parse.add_argument('--algo', default=0)

# Mode of PCA and LDA, 0 -> simple, 1 -> kernel.
| parse.add_argument('--mode', default=0)

# The number of nearest neighbors used for classification.
| parse.add_argument('--numOfNeighbors', default=5)

# The kernel type, 0 -> linear, 1 -> RBF.
| parse.add_argument('--kernelType', default=0)

# The gamma of RBF kernel.
| parse.add_argument('--gamma', default=0.800001)

| return parse.parse_args()
```

The objective of the parseArguments function is to parse all the necessary input parameters of all scenarios.

2. Load Data

```
def readTrainingImages():
    trainingImages, trainingLabels = None, None
    numOfImages = 0

# Get the number of images first.

with os.scandir(f'{imageDirectory}/Training') as directory:

# Get number of files
numOfImages = len([file for file in directory if file.is_file()])

# Read the files.

with os.scandir(f'{imageDirectory}/Training') as directory:
    trainingLabels = np.zeros(numOfImages, dtype=int)

# Images will be resized to 29 * 24.
    trainingImages = np.zeros((numOfImages, 29 * 24))

for index, file in enumerate(directory):
    if file.path.endswith('.pgm') and file.is_file():
        face = np.asarray(Image.open(file.path).resize((24, 29))).reshape(1, -1)
        trainingImages(index, :] = face
        trainingLabels[index] = int(file.name[7:9])

return trainingImages, trainingLabels
```

I used two functions (readTrainingData & readTestingData) to load the data from corresponding input files.

- Part 1 (PCA, LDA → eigenfaces & fisherfaces, reconstruction)
 - 1. PCA
 - Overview

```
### Principal components analysis.

| Odef PCA(mode, numOfNeighbors, kernelType, gamma, trainingImages, trainingLabels, testingImages, testingLabels):

#### Get the number of training images.
numOfTrainingImages = len(trainingImages)

| numOfTrainingImages = len(testingImages)

### Simple PCA

| if mode == 0:
| matrix = simplePCA(numOfTrainingImages, trainingImages)

### Kernel PCA

| else:
| matrix = kernelPCA(trainingImages, kernelType, gamma)

### Find the first 25 largest eigenvectors.

| targetEigenvectors = findTargetEigenvectors(matrix)

### Transform eigenvectors into eigenfaces.
| transformEigenvectorsToFaces(targetEigenvectors, e)

### Randomly reconstruct 10 eigenfaces.
| reconstructFaces(numOfTrainingImages, trainingImages, targetEigenvectors)

### Classify and predict.
| classifyAndPredict(numOfTrainingImages, numOfTestingImages, trainingImages, trainingImages, testingImages,
| testingLabels, targetEigenvectors, numOfNeighbors)

### Output the diagram.
| Output the diagram.
```

I tried to find the projection W and find the 25 eigenvectors with the largest eigenvalues. After that, I transformed eigenvectors into faces (eigenfaces & fisherfaces), and then reconstruct 10 randomly chosen images.

• Find Projection W (PCA)

```
# Compute covariance
trainingImages, trainingImages,:
# Compute covariance
trainingImagesTransposed = trainingImages.T

mean = np.mean(trainingImagesTransposed, axis=1)
mean = np.tile(mean.T, (numOffrainingImages, 1)).T
difference = trainingImagesTransposed - mean
covariance = difference.dot(difference.T) / numOffrainingImages

to return covariance
```

For simple PCA, I just computed the covariance of training images.

2. LDA

Overview

I tried to find the projection W and find the 25 eigenvectors with the largest eigenvalues. After that, I transformed eigenvectors into faces (eigenfaces & fisherfaces), and then reconstruct 10 randomly chosen images.

• Find Projection W (LDA)

```
# Compute vithin-class scatter.

# Compute within-class scatter.
```

For simple LDA, I computed the between-class scatter and withinclass scatter according to the following two formulas:

Between-Class Scatter

between-class scatter:

$$S_B = \sum_{j=1}^k S_{B_j} = \sum_{j=1}^k n_j (\mathbf{m}_j - \mathbf{m}) (\mathbf{m}_j - \mathbf{m})^{\top}$$
where $\mathbf{m} = \frac{1}{n} \sum x$

2. Within-Class Scatter

within-class scatter:
$$S_W = \sum_{j=1}^k S_j$$
, where $S_j = \sum_{i \in \mathcal{C}_j} (x_i - \mathbf{m}_j)(x_i - \mathbf{m}_j)^{\top}$
and $\mathbf{m}_j = \frac{1}{n_j} \sum_{i \in \mathcal{C}_j} x_i$

Then, for simple LDA, I computed the projection W based on between-class scatter and within-class scatter, as the following formula:

$$S_W^{-1}S_B$$
 as W

3. Common Parts

• Find Eigenvectors

```
def findTargetEigenvectors(matrix):

# Compute eigenvalues and eigenvectors.
eigenvalues, eigenvectors = np.linalg.eig(matrix)

# Get 25 first largest eigenvectors.
targetIndex = np.argsort(eigenvalues)[::-1][:25]
targetEigenvectors = eigenvectors[:, targetIndex].real

| Peturn targetEigenvectors
```

I computed all of the eigenvectors, and just chose the 25 first eigenvectors with the largest eigenvalues.

Transform Eigenvectors to Faces

```
## Transform eigenvectors into eigenfaces/fisherfaces.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used, 0 -> PCA, 1-> LOA.

## algo parameter means the algorithm been used.

## algo
```

I reshaped the eigenvectors for displaying them as eigenfaces or fisherfaces.

Face Reconstruction

I randomly chose 10 images from training images, and reconstructed the faces based on the following formula:

- Part 2 (Compute the performance)
 - 1. Classify and Predict

```
# Classify and show predict result.

def classifyAndPredict(numOfTrainingImages, numOfTestingImages, trainingImages, trainingLabels, testingImages,

testingLabels,

targetEigenvectors, numOfNeighbors):

decorrelatedTraining = decorrelate(numOfTrainingImages, trainingImages, targetEigenvectors)

decorrelatedTesting = decorrelate(numOfTestingImages, testingImages, targetEigenvectors)

decorrelatedTesting = decorrelate(numOfTestingImages, testingImages, targetEigenvectors)

error = 0

distance = np.zeros(numOfTrainingImages)

for testIndex, test in enumerate(decorrelatedTesting):

for trainIndex, train in enumerate(decorrelatedTraining):

distance[trainIndex] = np.linalg.norm(test - train)

minDistances = np.argsort(distance)[:numOfNeighbors]

predict = np.argmax(np.bincount(trainingLabels[minDistances]))

if predict != testingLabels[testIndex]:

error += 1

print(*'Error count: {error}\nError rate: {float(error) / numOfTestingImages}')
```

The training and testing images are first decorrelated by eigenvectors. And then, I used k nearest neighbors to decide the class of each testing image.

```
# Decorrelate original images into components space.

| Odef decorrelate(num0fImages, images, eigenvectors):
| decorrelatedImages = np.zeros((num0fImages, 25))
| decorrelatedImages in enumerate(images):
| decorrelatedImages[index, :] = image.dot(eigenvectors)
| decorrelatedImages[index, :] = image.dot(eigenvectors)
| decorrelatedImages[index, :] = image.dot(eigenvectors)
```

This is the decorrelate function, it is based on the following formula:

$$z = Wx$$

Part 3 (kernel PCA, kernel LDA (diff kernels) vs. PCA, LDA)

1. PCA

- Overview → It is same as the part 1.
- Find Projection W (kernel PCA)

I computed the gram matrix first (linear and RBF kernel), and then computed the matrix K based on the following formula:

$$K^C = K - \mathbf{1}_N K - K \mathbf{1}_N + \mathbf{1}_N K \mathbf{1}_N$$

2. LDA

- Overview → It is same as the part 1.
- Find Projection W (kernel LDA)

```
# Compute kernel.
# Compute kernel.
numOfClasses = len(numOfEachClass)
numOfClasses = len(numOfEachClass)
numOfClasses = len(numOfEachClass)
numOfClasses = len(numOfClasses)

# Linear
kernelOfEachClass = np.zeros((numOfClasses, 29 * 24, 29 * 24))

for idx in range(numOfClasses):

# kernelOfEachClass = rainingImages(trainingLabels == idx + 1]
kernelOfEachClass[idx] = images.T.dot(trainingImages)

kernelOfAll = trainingImages.T.dot(trainingImages)

else:

# RBF
kernelOfEachClass = np.zeros((numOfClasses, 29 * 24, 29 * 24))

for idx in range(numOfClasses):
    images = trainingImages[trainingLabels == idx + 1]
kernelOfEachClass[idx] = np.exp(-gamma * cdist(images.T, images.T, 'sqeuclidean'))

# Compute N.

# c
```

```
# Compute M.
matrixMI = np.zeros((numOfClasses, 29 * 24))

for index, kernel in enumerate(kernelOfEachClass):
    for rowIndex, row in enumerate(kernel):
        matrixMStar = np.zeros(29 * 24)

for index, row in enumerate(kernel):
    matrixMStar[index] = np.sum(row) / numOfEachClass[idx]

matrixMStar[index] = np.sum(row) / numOfImages

matrixM = np.zeros((29 * 24, 29 * 24))

for idx, num in enumerate(kernelOfAll):
    difference = (matrixMI[idx] - matrixMStar).reshape((29 * 24, 1))

matrixM = np.zeros((20 * 24, 29 * 24))

# Get N^(-1) * M.
matrix = np.linalg.pinv(matrixM).dot(matrixM)

preturn matrix

preturn matrix
```

For kernel LDA, I computed the matrix N and matrix M based on the following formulas:

$$egin{align} M &= \sum_{j=1}^c l_j (\mathbf{M}_j - \mathbf{M}_*) (\mathbf{M}_j - \mathbf{M}_*)^{\mathrm{T}} \ N &= \sum_{j=1}^c \mathbf{K}_j (\mathbf{I} - \mathbf{1}_{l_j}) \mathbf{K}_j^{\mathrm{T}}. \end{split}$$

$$(\mathbf{M}_*)_j = rac{1}{l} \sum_{k=1}^l k(\mathbf{x}_j, \mathbf{x}_k).$$

And then, I computed the projection W based on the following formula:

$$N^{-1}M$$
.

- 3. Find Eigenvectors \rightarrow It is same as the part 1.
- 4. Transform Eigenvectors to Faces → It is same as the part 1.
- 5. Face Reconstruction → It is same as the part 1.
- 6. Classify and Predict \rightarrow It is same as the part 2.

2. t-SNE

- Common Parts
 - 1. Parse Arguments

```
Didef parseArguments():

parse = argparse.ArgumentParser()

# Mode for SNE, 0 -> t-SNE, 1 -> symmetric SNE.

parse.add_argument('--mode', default=0)

parse.add_argument('--perplexity', default=20.0)

return parse.parse_args()
```

The objective of the parseArguments function is to parse all the necessary input parameters of all scenarios.

2. Load Data

I used readInputFile to load the data from input files.

- Part 1 (symmetric SNE vs. t-SNE, modify code)
 - 1. Original (t-SNE)

Originally, the program computed the q and gradients based on the following formulas:

$$q_{ij} = \frac{(1+||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1+||y_i - y_j||^2)^{-1}}$$

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij})(y_i - y_j)(1 + ||y_i - y_j||^2)^{-1}$$

2. Add Symmetric SNE Support

We used the input parameter - mode to control the scenario (symmetric SNE or t-SNE), and we computed the q and gradients of symmetric SNE based on the following formulas:

$$q_{ij} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq l} \exp(-||y_l - y_k||^2)}$$

$$\frac{\partial C}{\partial y_i} = 2\sum_j (p_{ij} - q_{ij})(y_i - y_j)$$

Part 2 (visualize the embedding)

```
# Compute current value of cost function

if (iteration + 1) % 10 == 0:

C = np.sum(P * np.log(P / Q))

print("Iteration %d: error is %f" % (iteration + 1, C))

image.append(captureState(Y, labels, mode, perplexity))
```

```
# Save gif

filename = f'./output/{"t-SNE" if not mode else "symmetric-SNE"}_{perplexity}.gif'

os.makedirs(os.path.dirname(filename), exist_ok=True)

image[0].save(filename, save_all=True, append_images=image[1:], optimize=False, loop=0, duration=200)
```

I captured the state every 10 iterations and stored it to an array. Finally, I output the GIF file based on the record array.

• Part 3 (visualize the distribution of pairwise similarities)

```
# Plot pairwise similarities in high-dimensional space and low-dimensional space
drawSimilarities(P, Q, labels)
```

```
def drawSimilarities(p, q, labels):

# Get sorted index.
index = np.argsort(labels)
plt.olf()

plt.figure(1)

# Plot p.

log_p = np.log(p)
sorted_p = log_p[index][:, index]
plt.colorbar(img)
plt.title('High dim space')

# Plot q.

log_q = np.log(q)
sorted_a = log_q[index][:, index]
plt.subplot(122)
img = ptt.imshow(sorted_p, cmap='gray', vmin=np.min(log_p), vmax=np.max(log_p))
plt.title('High dim space')

# Plot q.

log_q = np.log(q)
sorted_q = log_q[index][:, index]
plt.subplot(122)
img = ptt.imshow(sorted_q, cmap='gray', vmin=np.min(log_q), vmax=np.max(log_q))
plt.colorbar(img)
plt.colorbar(img)
plt.title('Low dim space')
```

After finishing all iterations, I will output the similarities in high and low dimensions.

• Part 4 (try different perplexity values)

I set perplexity as an input parameter, so we can try different perplexities to meet our different experiments.

- Experiments & Discussion
 - 1. Kernel Eigenfaces
 - PCA

	Eigenfaces					Recor	struction	Performance
Simple			1		\bigcirc	⊕ ⊕	⊕	
	0			0		₽ R	<u>@</u>	Error count: 4 Error rate: 0.13333333333333333
					6	<u>@</u>	<u> </u>	
						<u>e</u>	<u> </u>	
						9	0	
Linear Kernel					\bigcirc	9	9	Error count: 4 Error rate: 0.1333333333333333
	<u>×</u>	130	V: //			₽	<u>@</u>	
					(3)	in	R	
			(2)		9	<u>@</u>	9	
					\bigcirc	ଲ ଭ	9 8	
						91 9	m 9	
RBF Kernel	9		9	9		© Ω	요 요	Error count: 4
	\bigcirc					<u>@</u>	⊚	
		9		0		9	9	
						 @	9	
		9			0	0	0	

• LDA

2. t-SNE

• Embedding

• Pairwise Similarities

Observations

1. Kernel Eigenfaces

- The output of fisher faces are a little bit strange. It's not as intuitive as the output of eigenfaces.
- The reconstruction of LDA is not very clear, but the reconstruction of PCA is very clear.
- The objective of eigenfaces is that we try to output the features of each person. And then we can classify the testing images to corresponding class based on the eigenfaces.

2. t-SNE

- The training speed of symmetric SNE is faster that t-SNE.
- Based on the embedding result, we can clearly find that t-SNE can separate the low dimension point more clearly.
- Perplexity is the number of neighbors to be used, we can find that the larger perplexity lead to less sensitive to small group.