Universidad Alfonso X el Sabio

Martina García González, Lucía Mielgo Torres Grado en Ingeniería Matemática AMPLIACIÓN DE LOS MÉTODOS NUMÉRICOS

Taller 7: Métodos Runge-Kutta

28 de enero de 2025

1. Introducción

- 1. Desarrolle una función en Python para calcular la integral de una ecuación $\frac{dy}{dt} = f(y,t)$ donde $t \in [t_0, t_f]$ con $y(t_0) = y_0$ mediante el método Runge-Kutta de orden 4, dando como variables $f(y,t), t_0, t_f, y_0, y$ N siendo N el número de pasos.
- 2. Implemente computacionalmente un programa que resuelva la ecuación diferencial $\frac{dy}{dt} = 4e^{0.8t} 0.5y$, donde $t \in [0,4]$, y(0) = 2, mediante el método Runge-Kutta de orden 4, utilizando los números de paso de h = 1, h = 0.5 y h = 0.1. Compare los resultados con los obtenidos en el taller 6.

2. Métodos y modelos matemáticos

El método de Runge-Kutta de orden 4 (RK4) es un método numérico utilizado para resolver ecuaciones diferenciales ordinarias de la forma $\frac{dy}{dt} = f(t,y)$

Dado un intervalo $[t_0, t_f]$ y un valor inicial $y(t_0) = y_0$, el método RK4 calcula una aproximación de $y(t_f)$ siguiendo estos pasos:

• Definir el tamaño del paso h:

El intervalo se divide en N pasos, donde h se calcula como:

$$h = \frac{t_f - t_0}{N} \tag{1}$$

• Iterar para cada paso:

Para cada paso i desde 0 hasta N-1:

- Calcular el valor actual de t:

$$t_i = t_0 + i \cdot h \tag{2}$$

- Calcular las pendientes:

$$k_1 = h \cdot f(t_i, y_i) \tag{3}$$

$$k_2 = h \cdot f\left(t_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right) \tag{4}$$

$$k_3 = h \cdot f\left(t_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right) \tag{5}$$

$$k_4 = h \cdot f(t_i + h, y_i + k_3) \tag{6}$$

- Actualizar el valor de y:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
(7)

• Al finalizar la iteración, el valor y_N será la aproximación de la solución $y(t_f)$.

3. Resultados

Los resultados del taller anterior con h=0'1, h=0'01 y h=0'001 son los siguientes:

Cuadro 1: Comparación de los Métodos para h=0,1

t	Solución Analítica	Método de Heun
0.0	2.000000	2.000000
0.1	2.308790	2.309157
0.2	2.636362	2.637113
0.3	2.984620	2.985770
0.4	3.355606	3.357177

Los resultados que nos da con método de Runge-Kutta para h=1, h=0'5 y h=0'1 son los siguientes:

Cuadro 2: Comparación de los Métodos para h=0.01

	\mathbf{t}	Solución Analítica	Método de Heun
	0.0	2.000000	2.000000
(0.01	2.023089	2.023089
(0.02	2.046479	2.046481
(0.03	2.070174	2.070177
(0.04	2.094182	2.094187

Cuadro 3: Comparación de los Métodos para h=0.001

	\mathbf{t}	Solución Analítica	Método de Heun
Ì	0.0	2.000000	2.000000
	0.001	2.002308	2.002308
	0.002	2.004621	2.004621
	0.003	2.006939	2.006939
	0.004	2.009261	2.009261

Cuadro 4: Comparación de los Métodos para h=1

\mathbf{t}	Solución Analítica	Método de Runge-Kutta
0.0	2.000000	2.000000
1.0	6.194631	6.201037
2.0	14.843922	14.862484
3.0	33.677172	33.721348
4.0	75.338963	75.439172

Cuadro 5: Comparación de los Métodos para h=0.5

\mathbf{t}	Solución Analítica	Método de Runge-Kutta
0.0	2.000000	2.000000
0.5	3.751521	3.751699
1.0	6.194631	6.195042
1.5	9.707042	9.707772
2.0	14.843922	14.845106

Cuadro 6: Comparación de los Métodos para h=0,1

t	Solución Analítica	Método de Runge-Kutta
0.0	2.000000	2.000000
0.1	2.308790	2.308790
0.2	2.636362	2.636362
0.3	2.984620	2.984620
0.4	3.355606	3.355606

4. Discusión

Comparando los resultados obtenidos con el método de Runge-Kutta y los del método de Heun, podemos notar que ambos métodos producen resultados similares, especialmente para

tamaños de paso más pequeños (h=0.1 o menores). Esto se debe a que tanto el método de Runge-Kutta de cuarto orden como el de Heun (una versión mejorada del método de Euler) son métodos de integración numérica precisos que tienden a converger hacia la solución analítica conforme se disminuye el tamaño del paso.

Sin embargo, para tamaños de paso grandes (h=1), la diferencia entre el método de Heun y el método de Runge-Kutta puede ser más notable, ya que el método de Runge-Kutta tiene un orden de precisión más alto (cuarto orden) y, por lo tanto, puede manejar mejor los errores acumulativos. En general, los resultados parecen razonables y consistentes con lo que se esperaría, dado que ambas soluciones tienden hacia la solución analítica al reducir h.

5. Conclusiones

Podemos concluir que el método de Runge-Kutta de cuarto orden ofrece una mayor precisión en la aproximación de la solución de ecuaciones diferenciales en comparación con métodos de orden inferior, como el de Heun. A medida que se reduce el tamaño del paso uh, tanto el método de Heun como el de Runge-Kutta convergen hacia la solución analítica, lo que confirma que la elección de un tamaño de paso adecuado es crucial para obtener resultados precisos en métodos numéricos. Sin embargo, Runge-Kutta demuestra ser más robusto y menos sensible al tamaño del paso, lo que lo hace preferible para problemas donde la precisión es clave.

6. Referencias

Douglas J. Faires and Richard L. Burden, Análisis Numérico, Cengage Learning, 1998.

7. Anexos

Las funciones utilizadas para realizar los ejercicios son las siguientes.

Función del Método de Runge-Kutta

Crea un array de valores de t que va desde t0 hasta tf con N+1 puntos

```
t_values = np.linspace(t0, tf, N + 1)
# Inicializa un array para almacenar los valores de y, con tamaño N+1
y_values = np.zeros(N + 1)
# Asigna el valor inicial y0 al primer elemento de y_values
y_values[0] = y0
# Itera sobre el número de pasos N
for i in range(N):
    # Obtiene el valor actual de t y y
   t = t_values[i]
    y = y_values[i]
    # Calcula las pendientes k1, k2, k3, y k4 usando la función f
    k1 = h * f(t, y) # Pendiente en el inicio del intervalo
    k2 = h * f(t + h/2, y + k1/2) # Pendiente en el medio del intervalo usando k1
    k3 = h * f(t + h/2, y + k2/2) # Pendiente en el medio del intervalo usando k2
    k4 = h * f(t + h, y + k3) # Pendiente al final del intervalo usando k3
    # Actualiza el valor de y para el siguiente paso
    y_values[i + 1] = y + (k1 + 2*k2 + 2*k3 + k4) / 6
# Devuelve los arrays de valores de t y de y
return t_values, y_values
```