MA50260 Statistical Modelling

Lecture 11: GLM - Hypothesis Test and Model Comparison

Ilaria Bussoli

March 12, 2024

Motivation

We have explored how the glm function in R estimates the regression coefficients β_1, \ldots, β_p .

This led us to iteratively re-weighted least squares (IRWLS).

Today we consider

- Testing for significance
- Performing model selection

Distribution of Maximum Likelihood Estimator

The maximum likelihood estimator is asymptotically normal,

$$\hat{\underline{\theta}}(\mathbf{Y}) \sim \text{MVN}\left(\underline{\theta}, \mathcal{I}^{-1}(\underline{\theta})\right).$$

Distribution of Maximum Likelihood Estimator

The maximum likelihood estimator is asymptotically normal,

$$\hat{\underline{\theta}}(\mathbf{Y}) \sim \text{MVN}\left(\underline{\theta}, \mathcal{I}^{-1}(\underline{\theta})\right).$$

For the MLE of a GLM, we have

$$\underline{\hat{\beta}}(\mathbf{Y}) \sim \text{MVN}_{p}\left(\underline{\beta}, \phi(\mathbf{X}^{T}\mathbf{W}\mathbf{X})^{-1}\right),$$

where

$$W_{ii} = \frac{1}{V(\mu_i)g'(\mu_i)^2}$$
 $(i = 1, ..., n).$

We use this to constructs confidence interval and for hypothesis testing.

Note, we use $\hat{\mu}_i$ to estimate W_{ii} .

Case 1: ϕ is known

Consider

$$H_0: \beta_j = b$$
 vs. $H_1: \beta_j \neq b$.

The **test statistic** is

$$z=\frac{\hat{\beta}_j-b}{\sigma_j},$$

where

$$\sigma_j = \sqrt{\phi(\mathbf{X}^T \mathbf{W} \mathbf{X})_{j,j}^{-1}}.$$

We compare |z| to the $(1 - \alpha/2) \times 100\%$ quantile of the standard normal distribution.

The $(1 - \alpha) \times 100\%$ confidence interval is calculated as

$$\hat{\beta}_j \pm z_{1-\alpha/2} \, \sigma_j.$$

Case 2: ϕ is unknown

We estimate

$$\hat{\sigma}_j = \sqrt{\hat{\phi}(\mathbf{X}^{\mathrm{T}}\mathbf{W}\mathbf{X})_{j,j}^{-1}}.$$

The **test statistic** is

$$t=\frac{\hat{\beta}_j-b}{\hat{\sigma}_j},$$

and we compare |t| to the $(1 - \alpha/2) \times 100\%$ quantile of the t_{n-p} -distribution.

The $(1 - \alpha) \times 100\%$ confidence interval is

$$\hat{\beta}_j \pm t_{n-p}(1-\alpha/2)\,\hat{\sigma}_j.$$

Example - Beetle Mortality

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.058899 0.44315258 -4.646027 3.383879e-06
## dose 0.207153 0.03007281 6.888382 5.643066e-12
```

- ▶ The p-value for β_2 is close to zero \Rightarrow Dose is significant.
- ▶ A 95% confidence interval for β_2 is

$$\hat{\beta}_2 \pm z_{1-\alpha/2} \sqrt{\sigma_2^2} = 0.207 \pm 1.96 \times 0.03 = (0.148, 0.266).$$

Saturated Models

When can we say that a GLM fits perfectly?

Saturated Models

When can we say that a GLM fits perfectly?

Recall that $g[b'(\theta_i)] = \mathbf{x}_i^{\mathrm{T}} \underline{\beta}$ and consider the log-likelihood for observation i,

$$\ell_i = \ell(\theta_i, \phi \mid y_i) = w_i \frac{y_i \theta_i - b(\theta_i)}{\phi} + c(y_i, \phi),$$

which is maximised for $b'(\theta_i) = y_i$.

Saturated Models

When can we say that a GLM fits perfectly?

Recall that $g[b'(\theta_i)] = \mathbf{x}_i^{\mathrm{T}} \underline{\beta}$ and consider the log-likelihood for observation i,

$$\ell_i = \ell(\theta_i, \phi \mid y_i) = w_i \frac{y_i \theta_i - b(\theta_i)}{\phi} + c(y_i, \phi),$$

which is maximised for $b'(\theta_i) = y_i$.

We call a model saturated if $b'(\theta_i) = y_i$ for all i = 1, ..., n.

In general, we need one parameter for each observation for a saturated model.

The parameters are $\tilde{\theta}_1, \ldots, \tilde{\theta}_n$, with $\tilde{\theta}_i = b'^{-1}(y_i)$.

Deviance

To assess model fit, we consider the **deviance**:

$$D = 2 \left[\ell \left(\underline{\tilde{\theta}} \right) - \ell \left(\underline{\hat{\theta}} \right) \right] \phi,$$

where $\hat{\underline{\theta}}$ is the MLE for $\underline{\theta}$.

If we use a distribution from the exponential family, then

$$D = \sum_{i=1}^{n} 2w_i \left[y_i \left(\tilde{\theta}_i - \hat{\theta}_i \right) - b \left(\tilde{\theta}_i \right) + b \left(\hat{\theta}_i \right) \right].$$

The scaled deviance is defined as

$$D^* = D/\phi = 2\left[\ell\left(\underline{\tilde{\theta}}\right) - \ell\left(\underline{\hat{\theta}}\right)\right].$$

Model Comparison (I)

Consider the models \mathcal{M}_1 and \mathcal{M}_2 , with \mathcal{M}_1 being nested in \mathcal{M}_2 .

We want to test

 H_0 : \mathcal{M}_1 adequately describes \mathbf{y}

 H_1 : \mathcal{M}_2 is required.

Model Comparison (I)

Consider the models \mathcal{M}_1 and \mathcal{M}_2 , with \mathcal{M}_1 being nested in \mathcal{M}_2 .

We want to test

 H_0 : \mathcal{M}_1 adequately describes **y**

 H_1 : \mathcal{M}_2 is required.

The deviance (likelihood ratio test) statistic is

$$D(\mathcal{M}_2, \mathcal{M}_1) = 2\left[\ell\left(\underline{\hat{\beta}}^{(2)}\right) - \ell\left(\underline{\hat{\beta}}^{(1)}\right)\right].$$

We refer to \mathcal{M}_2 and \mathcal{M}_1 as the **full** and **reduced** model, respectively.

Model Comparison (II) - ϕ is known

Under H_0 , asymptotically as $n \to \infty$,

$$D(\mathcal{M}_2,\mathcal{M}_1) \sim \chi^2_{p_2-p_1}.$$

We can also relate it to the scaled deviances since

$$D(\mathcal{M}_{2}, \mathcal{M}_{1}) = 2 \left[\ell \left(\underline{\hat{\beta}}^{(2)} \right) - \ell \left(\underline{\hat{\beta}}^{(1)} \right) \right]$$

$$= 2 \left[\ell \left(\underline{\hat{\beta}}^{(2)} \right) - \ell \left(\underline{\tilde{\beta}} \right) + \ell \left(\underline{\tilde{\beta}} \right) - \ell \left(\underline{\hat{\beta}}^{(1)} \right) \right]$$

$$= D_{1}^{*} - D_{2}^{*} = \frac{D_{1} - D_{2}}{\phi}.$$

If ϕ is known, evaluate $D(\mathcal{M}_2, \mathcal{M}_1)$ and compare to the corresponding critical value, z_c^2 from the $\chi_{p_2-p_1}^2$ distribution.

Model Comparison (III) - ϕ is unknown

Since $D_2^* \sim \chi^2_{n-p_2}$ asymptotically, we can estimate

$$\phi \approx D_2/(n-p_2).$$

Model Comparison (III) - ϕ is unknown

Since $D_2^* \sim \chi^2_{n-p_2}$ asymptotically, we can estimate

$$\phi \approx D_2/(n-p_2)$$
.

Consider the ratio

$$\frac{(D_1^* - D_2^*)/(p_2 - p_1)}{D_2^*/(n - p_2)} = \frac{(D_1 - D_2)/(p_2 - p_1)}{D_2/(n - p_2)} \sim F_{p_2 - p_1, n - p_2}$$

and using that the ratio of two χ^2 distributions is an F distribution, specified by two degrees of freedom.

Note that this is still an approximation for all GLMs apart from the Gaussian model.