Examenul de bacalaureat național 2016

Proba E. c) Matematică *M mate-info*

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$7 + x^2 + 2 = 2 \cdot 3x$	3 p
	$x^2 - 6x + 9 = 0 \Leftrightarrow x = 3$	2p
2.	$\Delta = 0 \Leftrightarrow 4 - 4m = 0$	3p
	m=1	2p
3.	$\left(2^{-1}\right)^{4x-9} = 2^{5x} \Leftrightarrow -4x+9 = 5x$	3p
	x = 1	2p
4.	Mulțimea A are $C_6^0 + C_6^1 + C_6^2 + C_6^3 + C_6^4 + C_6^5 + C_6^6 = 2^6 = 64$ de submulțimi, deci sunt 64 de cazuri posibile	2p
	Mulțimea A are $C_6^0 + C_6^1 + C_6^2 = 1 + 6 + 15 = 22$ de submulțimi cu cel mult două elemente, deci sunt 22 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{22}{64} = \frac{11}{32}$	1p
5.	Punctul $M(1, 2)$ este mijlocul laturii BC	1p
	$m_{AM} = \frac{2 - 0}{1 - \left(-1\right)} = 1$	2p
	Ecuația dreptei care trece prin punctul B și este paralelă cu dreapta AM este $y = x - 1$	2p
6.	$\frac{BC}{\sin A} = 2R \Rightarrow R = \frac{\sqrt{2}}{2\sin\frac{3\pi}{4}} =$	3р
	=1	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(10) = \begin{pmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{10} \end{pmatrix} \Rightarrow \det(A(10)) = \begin{vmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{10} \end{vmatrix} =$	2p
	$=2^{10}=1024$	3 p
b)	$A(x) \cdot A(2x) = A(3x)$	2p
	$A(3x) = A(x^2 + 2) \Leftrightarrow x^2 - 3x + 2 = 0 \Leftrightarrow x_1 = 1 \text{ si } x_2 = 2$	3 p
c)	Deoarece $A(x) \cdot A(y) = A(x+y)$, pentru orice numere reale $x \neq y$, obținem $A(n) = A(x+y)$	_
	$= A(1) \cdot A(2) \cdot A(3) \cdot \dots \cdot A(2016) = A(1+2+3+\dots+2016) = A(2017 \cdot 1008)$	3р
	$n = 2017 \cdot 1008$, deci n este număr natural divizibil cu 2017	2p

2.a)	$f(0) = 0^3 - 5 \cdot 0 + a =$	3p
	=0-0+a=a	2p
b)	$x_1 + x_2 + x_3 = 0$, $x_1^3 + x_2^3 + x_3^3 = 5(x_1 + x_2 + x_3) - 3a = -3a$	3 p
	$-3a = 2016 - 4a \Leftrightarrow a = 2016$	2p
c)	Presupunem că f are cel puțin două rădăcini întregi x_1 și x_2 ; cum $x_1 + x_2 + x_3 = 0 \Rightarrow x_3 \in \mathbb{Z}$	1p
	Ştiind că $x_1^2 + x_2^2 + x_3^2 = 10$, dacă $x_1^2 \ge x_2^2 \ge x_3^2$, obținem $x_1^2 = 9$, $x_2^2 = 1$ și $x_3^2 = 0$	2p
	Deoarece pentru valorile pe care le obținem pentru x_1 , x_2 și x_3 , relația $x_1 + x_2 + x_3 = 0$ nu este verificată, polinomul f are cel mult o rădăcină întreagă	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (e^x)' - (\frac{1}{2}x^2)' - x' - 1' =$	2p
	$=e^x-\frac{1}{2}\cdot 2x-1=e^x-x-1, x\in\mathbb{R}$	3 p
b)	Aplicând succesiv teorema lui l'Hospital, obținem $\lim_{x \to +\infty} \frac{e^x - x - 1}{e^x - \frac{1}{2}x^2 - x - 1} = \lim_{x \to +\infty} \frac{e^x - 1}{e^x - x - 1} = \lim_{x \to +\infty} e^x$	3p
	$= \lim_{x \to +\infty} \frac{e^x}{e^x - 1} = 1$	2p
c)	$f''(x) = e^x - 1 > 0$ pentru orice $x \in (0, +\infty)$, deci f' strict crescătoare pe $(0, +\infty)$ și cum $f'(0) = 0$, obținem $f'(x) > 0$ pentru orice $x \in (0, +\infty)$, deci f strict crescătoare pe $(0, +\infty)$	3p
	$0 < 2\sqrt{3} < 3\sqrt{2} \Rightarrow f\left(2\sqrt{3}\right) < f\left(3\sqrt{2}\right)$	2p
2.a)	$I_1 = \int_0^1 (1 - x^2) dx = \left(x - \frac{x^3}{3}\right) \Big _0^1 =$	3p
	$=1-\frac{1}{3}=\frac{2}{3}$	2p
b)	$I_{n+1} - I_n = \int_0^1 (-x^2) (1-x^2)^n dx$, pentru orice număr natural nenul n	2p
	Pentru orice număr natural nenul n și $x \in [0,1]$ avem $-x^2 \le 0$ și $(1-x^2)^n \ge 0$, deci $I_{n+1} \le I_n$	3p
c)	$I_{n+1} = \int_{0}^{1} x' (1 - x^{2})^{n+1} dx = x (1 - x^{2})^{n+1} \Big _{0}^{1} - \int_{0}^{1} x (n+1) (1 - x^{2})^{n} (-2x) dx =$	2p
	$= 2(n+1)\int_{0}^{1} x^{2} (1-x^{2})^{n} dx = -2(n+1)\int_{0}^{1} (1-x^{2}-1)(1-x^{2})^{n} dx = -2(n+1)(I_{n+1}-I_{n}), \text{ deci}$	3 p
	$(2n+3)I_{n+1} = 2(n+1)I_n$, pentru orice număr natural nenul n	