Basic Principles of Wireless Networks (I)

Tommy Svensson

Professor (full), PhD, Leader Wireless Systems

Communication Systems Group

Department of Electrical Engineering
Chalmers University of Technology, Sweden
tommy.svensson@chalmers.se
EDIT building, floor 6, room 6413
www.chalmers.se/en/staff/Pages/tommy-svensson.aspx

CHALMERS

Based on slides prepared by Nima Seifi at Chalmers, based on slides from P. Viswanath/Tse, A. Goldsmith, Shiv Kalyanaraman, Tae Hyun Kim, David Gesbert & textbooks by Tse/Viswanath, A. Goldsmith, J. Andrews et al.

Outline

- Wireless channel
- Physical layer
- Mitigating the wireless channel impairments
 - Equalization
 - Spread spectrum
 - Multicarrier modulation and OFDM
 - Antenna solutions
- Multi-antenna techniques

Wireless Channel

Wireless Channel is Very Different!

Wired	Wireless
Each cable is a different channel	One media (cable) shared by all
Signal attenuation is low	High signal attenuation
Small (no) interference	High interference noise; co-channel interference; adjacent channel interference

Wireless Multipath Channel

Channel varies at two spatial scales:

- · Large scale fading: path loss, shadowing
- Small scale fading: Multi-path fading, Doppler

Path Loss, Shadowing, Fading

Variable decay of signal due to environment, multipaths, mobility

Source: A. Goldsmith book

Path Loss Modeling

- Maxwell's equations
 - Complex and impractical
- Free space path loss model
 - Too simple
- Ray tracing models
 - Requires site-specific information
- Empirical Models
 - Don't always generalize to other environments
- Simplified power falloff models
 - Main characteristics: good for high-level analysis
 - A simple model for path loss, L, is

$$L = \frac{\bar{P}_r}{P_t} = K \left(\frac{d_0}{d}\right)^{\gamma}$$

- \bullet γ is the path loss exponent
- P_t transmit power
- P_r local mean receive power
- d₀ reference distance
- d transmit-receive distance
- K transmission constant

Shadowing

- The received signal is shadowed by obstructions such as hills and buildings.
- This results in variation in the local mean received signal power

$$P_r(dB) = \bar{P}_r(dB) + \chi \text{ where } \chi \sim \mathcal{N}(0, \sigma), 4 \leq \sigma \leq 10 \text{ dB}$$

Implications:

- nonuniform coverage
- increases the required transmit power

Path loss and random shadowing

Wer

Path loss and average shadowing

Source: A. Goldsmith book

Figure 2.10: Contours of Constant Received Power.

Small-scale Multipath fading

 Multipath fading due to constructive and destructive interference of the transmitted waves.

Single-Tap Channel: Rayleigh Fading

- Path loss, shadowing => average signal power loss
 - Fading around this average.
 - Subtract out average => fading modeled as a zero-mean random process
- Narrowband Fading channel: Each symbol is long in time
- Fading w/ many scatterers: Central Limit Theorem
 - In-phase (cosine) and quadrature (sine) components of the snapshot r(0), denoted as $r_1(0)$ and $r_Q(0)$ are independent Gaussian random variables.

– Envelope Amplitude:
$$|r| = \sqrt{r_I^2 + r_Q^2}$$
 is Rayleigh,

- Received Power: $|r|^2 = r_I^2 + r_Q^2$ is exponentially distributed.

Normal Vector R.V, Rayleigh, Chi-Squared

The rayleigh, exponential, and uniform pdf 's.

 $X = [X_1, ..., X_n]$ is **Normal random vector** ||X|| is **Rayleigh** { eg: **magnitude** of a complex gaussian channel $X_1 + jX_2$ } $||X||^2$ is **Chi-Squared w/ n-degrees of freedom** When n = 2, chi-squared becomes **exponential**. {eg: **power** in complex gaussian channel: sum of squares...}

Multipaths: Power-Delay Profile

Delay Spread: Time Domain Interpretation

- $\bullet \frac{\tau}{T}$ small \Longrightarrow negligible intersymbol interference
- $\bullet \frac{\tau}{T}$ large \Longrightarrow significant intersymbol interference, which causes an irreducible error floor

Dispersion-Selectivity Duality

Figure 3.18: The shape of the Doppler power spectrum $\rho_t(\Delta f)$ determines the correlation envelope of the channel in time (top). Similarly, the shape of the multipath intensity profile $A_{\tau}(\Delta \tau)$ determines the correlation pattern of the channel frequency response (bottom)

Fading: Jargon

- Flat fading: no multipath ISI effects.
 - Eg: narrowband, indoors
- Frequency-selective fading: multipath ISI effects.
 - Eg: broadband, outdoor.
- Slow fading: no Doppler effects.
 - Eg: indoor Wi-fi home networking
- <u>Fast Fading:</u> Doppler effects, time-selective channel
 - Eg: cellular, vehicular
 - Doppler: not an LTI system
- Broadband cellular + vehicular => Fast + frequency-selective

Summary of Wireless Channel

- We have discussed the concepts of path loss, shadowing, fading (multipath, Doppler), and some of their design impacts.
- We have discussed how time and frequency selectivity of wireless channels depend on key physical parameters.

Physical Layer

Physical Layer Issue

- Link Performance Measures
- Modulation Tradeoffs
- Flat Fading Countermeasures
- Delay Spread Countermeasures

Link Performance Measures

PROBABILITY OF BIT/ BLOCK ERROR

- The bit error probability (BER), P_b, in a radio environment is a random variable.
 - $\begin{array}{ll} \text{- Average} & P_b, P_b \\ \text{- Outage} & P_b, P_{out} = Pr[P_b > P_{b,target}] \end{array}$
- Similarly, the block error probability (BLER), P_{bl}, in a radio environment is a random variable.
 - $\begin{array}{lll} & \text{Average} & P_{bl}, P_{bl} \\ & \text{Outage} & P_{bl}, P_{out} = Pr[P_{bl} > P_{bl,target}] \end{array}$

Link Performance Measures

EFFICIENCY

- Spectral Efficiency
 - A measure of data rate per unit bandwidth for a given bit error probability and transmitted power.
- Power Efficiency
 - A measure of required transmit power to achieve a given data rate for a given bit error probability and bandwidth.

What is Modulation?

- Encoding information in a manner suitable for transmission.
 - Translate baseband source signal to bandpass signal
 - Bandpass signal: "modulated signal"
- How?
 - Vary amplitude, phase or frequency of a carrier
- Demodulation
 - Extract baseband message from carrier

Digital Modulation

Any modulated signal can be represented as

$$s(t) = A(t) \cos \left[\omega_c t + \phi(t)\right]$$

$$\uparrow \qquad \uparrow$$
amplitude phase or frequency

= A(t) cos
$$\phi(t)$$
 cos $\omega_c t$ - A(t) sin $\phi(t)$ sin $\omega_c t$ in-phase quadrature

- Linear versus nonlinear modulation
- Constant envelope versus non-constant envelope

Linear Modulation Techniques

Signal Constellation

M-PSK (Circular Constellations)

M-QAM (Square Constellations)

Demodulation

- Coherent detection requires a coherent phase reference.
 - difficult to obtain in a rapidly fading environment
 - increases receiver complexity
- Differential detection uses the previous symbol for the reference signal.
 - eliminates need for coherent reference
 - Doppler causes irreducible error floor, typically small for high bit rates

Bit Error Rate (BER): AWGN

For $P_b = 10^{-3}$ BPSK 6.5 dB QPSK 6.5 dB DBPSK ~8 dB DQPSK ~9 dB

- QPSK is more spectrally efficient than BPSK with the same performance.
- There is a ~3 dB power penalty for differential detection.

Bit Error Rate (BER): Fading Channel

- P_b is inversely proportion to the average SNR per bit.
- Transmission in a fading environment requires about 18 dB more power for $P_b = 10^{-3}$.

Bit Error Probability (BER): Doppler Effects

 Doppler causes an irreducible error floor when differential detection is used ⇒ decorrelation of reference signal and distortion of signal shape.

• The irreducible P_b depends on the data rate and the Doppler. For $f_D = 80$ Hz,

data rate	Т	$\overline{P}_{b_{floor}}$
10 kbps	10 ⁻⁴ s	3x10 ⁻⁴
100 kbps	10 ⁻⁵ s	3x10 ⁻⁶
1 Mbps	10 ⁻⁶ s	3x10 ⁻⁸

The implication is that Doppler is <u>not an issue for high-speed</u> wireless data.

[M. D. Yacoub, Foundations of Mobile Radio Engineering, CRC Press, 1993]

Bit Error Probability (BER): Delay Spread

- ISI causes an irreducible error floor.
- The rms delay spread imposes a limit on the maximum bit rate in a multipath environment.
 For example, for QPSK,

	τ	Maximum Bit Rate
Mobile (rural)	25 μ sec	8 kbps
Mobile (city)	2.5 μsec	80 kbps
Microcells	500 nsec	400 kbps
Large Building	100 nsec	2 Mbps

[J. C.-I. Chuang, "The Effects of Time Delay Spread on Portable Radio Communications Channels with Digital Modulation," *IEEE JSAC*, June 1987]

Summary of Modulation Issues

Tradeoffs

- linear versus nonlinear modulation
- constant envelope versus non-constant envelope
- coherent versus differential detection
- power efficiency versus spectral efficiency

Limitations

- flat fading
- Doppler
- delay spread