WORK, ENERGY AND POWER

- 1. Notions of work, work-energy theorem, power
- 2. Kinetic energy
- 3. Potential energy
- 4. The conservation of Energy
- 5. Non-conservative forces-Motion in a vertical circle, Collisions

SUMMARY

1. The work-energy theorem states that the change in kinetic energy of a body is the workdone by the net force on the body.

$$\mathbf{K}_f - \mathbf{K}_i = \mathbf{W}_{net}$$

- 2. A force is conservative if (i) work done by it on an object is path independent anddepends only on the end points {xi, xj}, or (ii) the work done by the force is zero for anarbitrary closed path taken by the object such that it returns to its initial position.
- 3. For a conservative force in one dimension, we may define a potential energy function

$$V(x)$$
 such that $V(x) = rac{dV(x)}{dx}$ or $V_1 \ V_j = \int_{x_i}^{x_f} F(x) dx$

- 4. The principle of conservation of mechanical energy states that the total mechanical energy of a body remains constant if the only forces that act on the body are conservative.
- 5. The gravitational potential energy of a particle of mass m at a height x about the earth's surface is V(x) = m g x

where the variation of g with height is ignored.

6. The elastic potential energy of a spring of force constant k and extension x is $V \; x = \frac{1}{2} \;\; k \; x^2$

7. The scalar or dot product of two vectors A and B is written as A. B and is a scalar quantity given by : A.B = AB $\cos \theta$, where θ is the angle between A and B. It can be positive, negative or zero depending upon the value of θ . The scalar product of two vectors can be interpreted as the product of magnitude of one vector and component of the other vector along the first vector. For unit vectors :

$$\hat{i}. \hat{i} = \hat{j}. \hat{j}$$

$$= \hat{k}. \hat{k} = 1 \text{ and } \hat{i}. \hat{j}$$

$$= \hat{j}. \hat{k} = \hat{k}. \hat{i} = 0$$

Scalar products obey the commutative and the distributive laws.

Physical Quality	Symbol	Dimensions	units	Remarks
Work	W	$oxed{[ML^2T^{-2}]}$	J	W=F.d.
Kinetic Energy	К	$oxed{[ML^2T^{-2}]}$	J	$K=rac{1}{2}m u^2$
Potential energy	V(x)	ML^2T^{-2}	J	$F(x) = \frac{dv(x)}{dx}$
Mechanical energy	Е	$oxed{[ML^2T^{-2}]}$	J	E= K+V
Spring Constant	К	T^{-2}	$[Nm^{-1}]$	$textF = -kx$ $V(x) = \frac{1}{2}kx^{2}$
Power	P	$egin{bmatrix} [ML^2 & ^3] \end{matrix}$	W	$P=F.v$ $P \equiv {}^{dw}$