10/533310 JC17 Rec'd PCT/PTO 29 APR 2005

SEQUENCE LISTING

<110>	Meiji Se OKAKURA, YANAI, K	Kaoru	•									
<120>	NOVEL CE	LLULASE	RESIS	TANT	г то	SUR	ACT	TNA				
<130>	Q87626											
<150> <151>	PCT/JP2003/014013 2003-10-31											
<150> <151>	JP 2002-318303 2002-10-31											
<160>	8											
<170>	PatentIn	version	3.3									
<212>	1 205 PRT Humicola	insolen	s									
<220> <221> <222>	mat_pept (1)(20											
<400>	1											
Gln Se 1	r Gly Ser	Gly Arg 5	Thr	Thr	Arg	Tyr 10	Trp	Asp	Cys	Cys	Lys 15	Pro
Ser Cy	s Ala Trp 20	Pro Gly	Lys	Gly	Pro 25	Ala	Pro	Val	Arg	Thr 30	Cys	Asp
Arg Tr	p Asp Asn 35	Pro Leu	Phe	Asp 40	Gly	Gly	Asn	Thr	Arg 45	Ser	Gly	Cys
Asp Al	a Gly Gly	Gly Ala	Tyr 55	Met	Cys	Ser	Asp	Gln 60	Ser	Pro	Trp	Ala
Val Se 65	r Asp Asp	Leu Ala 70	Tyr	Gly	Trp	Ala	Ala 75	Val	Asn	Ile	Ala	Gly 80
Ser As	n Glu Arg	Gln Trp 85	Cys	Cys	Ala	Суs 90	Tyr	Glu	Leu	Thr	Phe 95	Thr
Ser Gl	y Pro Val 100	Ala Gly	Lys	Arg	Met 105	Ile	Val	Gln	Ala	Ser 110	Asn	Thr

Gly Gly Asp Leu Gly Asn Asn His Phe Asp Ile Ala Met Pro Gly Gly 115 120 125	
Gly Val Gly Ile Phe Asn Ala Cys Thr Asp Gln Tyr Gly Ala Pro Pro 130 135 140	
Asn Gly Trp Gly Gln Arg Tyr Gly Gly Ile Ser Gln Arg His Glu Cys 145 150 155 160	
Asp Ala Phe Pro Glu Lys Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp 165 170 175	
Trp Phe Leu Asn Ala Asp Asn Pro Ser Val Asn Trp Arg Gln Val Ser 180 185 190	
Cys Pro Ala Glu Ile Val Ala Lys Ser Gly Cys Ser Arg 195 200 205	
<210> 2 <211> 615 <212> DNA <213> Humicola insolens	
<400> 2 cagtccggca gcggccgcac cacgcgctac tgggactgct gcaagccgtc gtgcgcgtgg	60
cccggcaagg gcccggcgcc cgtgcggacg tgcgaccggt gggacaaccc gctgttcgac	120
ggcggcaaca cgcgcagcgg gtgcgacgcg ggcggcggcg cctacatgtg ctcggaccag	180
agcccgtggg cggtcagcga cgacctggcg tacggctggg cggccgtcaa cattgccggc	240
tccaacgaga ggcagtggtg ctgcgcctgc tacgagctga ccttcaccag cgggccggtg	300
gcgggcaaga ggatgattgt gcaggcgagc aacacgggag gcgatttggg gaacaaccac	360
tttgatattg ctatgcccgg cggtggcgtc ggtatcttca acgcctgcac cgaccagtac	420
ggcgcgcccc ccaacggctg gggccagcgc tacggcggca tcagccaacg ccacgagtgc	480
gacgccttcc ccgagaagct caagcccggc tgctactggc gctttgactg gttcctcaac	540
gccgacaacc cgagcgtcaa ctggcggcag gtcagctgcc cggccgagat tgtggccaag	600
agcggctgct cgcgt	615
<210> 3 <211> 205 <212> PRT <213> Artificial Sequence	
<220>	

<223> A detergent-resistant cellulase

<400> 3

Gln Ser Gly Ser Gly Arg Thr Thr Arg Tyr Trp Asp Cys Cys Lys Pro 5 10 15

Ser Cys Ala Trp Pro Gly Lys Gly Pro Ala Pro Val Arg Thr Cys Asp 20 25 30

Asp Ala Gly Gly Ala Tyr Met Cys Ser Asp Gln Ser Pro Trp Ala 50 55 60

Val Ser Asp Asp Leu Ala Tyr Gly Trp Ala Ala Val Asn Ile Ala Gly 65 70 75 80

Ser Asn Glu Arg Gln Trp Cys Cys Ala Cys Tyr Glu Leu Thr Phe Thr 85 90 95

Ser Gly Pro Val Ala Gly Lys Arg Met Ile Val Gln Ala Ser Asn Thr 100 105 110

Gly Gly Asp Leu Gly Asn Asn His Phe Asp Ile Ala Met Pro Gly Gly
115 120 125

Gly Val Gly Ile Phe Asn Ala Cys Thr Asp Gln Tyr Gly Ala Pro Pro 130 135 140

Asn Gly Trp Gly Gln Arg Tyr Gly Gly Ile Ser Gln Arg His Glu Cys 145 150 155 160

Asp Pro Phe Pro Glu Lys Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp 165 170 175

Trp Phe Leu Asn Ala Asp Asn Pro Ser Val Asn Trp Arg Gln Val Ser 180 185 190

Cys Pro Ala Glu Ile Val Ala Lys Ser Gly Cys Ser Arg 195 200 205

<210> 4

<211> 205

<212> PRT

<213> Artificial Sequence

<220>

<223> A detergent-resistant cellulase

<400> 4

Gln Ser Gly Ser Gly Arg Thr Thr Arg Tyr Trp Asp Cys Cys Lys Pro 1 5 10 15

Ser Cys Ala Trp Pro Gly Lys Gly Pro Ala Pro Val Arg Thr Cys Asp 20 25 30

Arg Trp Asp Asn Pro Leu Phe Asp Gly Gly Asn Thr Arg Ser Gly Cys 35 40 45

Asp Ala Gly Gly Ala Tyr Met Cys Ser Asp Gln Ser Pro Trp Ala 50 55 60

Val Ser Asp Asp Leu Ala Tyr Gly Trp Ala Ala Val Asn Ile Ala Gly 65 70 75 80

Ser Asn Glu Arg Gln Trp Cys Cys Ala Cys Tyr Glu Leu Thr Phe Thr 85 90 95

Ser Gly Pro Val Ala Gly Lys Arg Met Ile Val Gln Ala Ser Asn Thr 100 105 110

Gly Gly Asp Leu Gly Asn Asn His Phe Asp Ile Ala Met Pro Gly Gly
115 120 125

Gly Val Gly Ile Phe Asn Ala Cys Thr Asp Gln Tyr Gly Ala Pro Pro 130 135 140

Asn Gly Trp Gly Gln Arg Tyr Gly Gly Ile Ser Gln Arg His Glu Cys 145 150 155 160

Asp Ala Phe Pro Glu Glu Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp 165 170 175

Trp Phe Leu Asn Ala Asp Asn Pro Ser Val Asn Trp Arg Gln Val Ser 180 185 190

Cys Pro Ala Glu Ile Val Ala Lys Ser Gly Cys Ser Arg 195 200 205

<210> 5

<211> 205

<212> PRT

<213> Artificial Sequence

<220>

<223> A detergent-resistant cellulase

<400> 5

Gln Ser Gly Ser Gly Arg Thr Thr Arg Tyr Trp Asp Cys Cys Lys Pro 1 5 10 15

Ser Cys Ala Trp Pro Gly Lys Gly Pro Ala Pro Val Arg Thr Cys Asp 20 25 30

Asp Ala Gly Gly Ala Tyr Met Cys Ser Asp Gln Ser Pro Trp Ala 50 60

Val Ser Asp Asp Leu Ala Tyr Gly Trp Ala Ala Val Asn Ile Ala Gly 65 70 75 80

Ser Asn Glu Arg Gln Trp Cys Cys Ala Cys Tyr Glu Leu Thr Phe Thr 85 90 95

Ser Gly Pro Val Ala Gly Lys Arg Met Ile Val Gln Ala Ser Asn Thr 100 105 110

Gly Gly Asp Leu Gly Asn Asn His Phe Asp Ile Ala Met Pro Gly Gly
115 120 125

Gly Val Gly Ile Phe Asn Ala Cys Thr Asp Gln Tyr Gly Ala Pro Pro 130 135 140

Asn Gly Trp Gly Gln Arg Tyr Gly Gly Ile Ser Gln Arg His Glu Cys 145 150 155 160

Asp Pro Phe Pro Glu Glu Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp 165 170 175

Trp Phe Leu Asn Ala Asp Asn Pro Ser Val Asn Trp Arg Gln Val Ser 180 185 190

Cys Pro Ala Glu Ile Val Ala Lys Ser Gly Cys Ser Arg 195 200 205

<210> 6

<211>	27				
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	A primer for site-directed mutagenesis				
<400>		۰.			
ggggaa	gggg tcgcactcgt ggcgttg	27			
<210>	7				
<211>					
<212>					
<213>	Artificial Sequence				
<220>					
<223>	A primer for site-directed mutagenesis				
<400>	7	22			
cttgagctcc tcggggaagg cgtcgca 27					
<210>	8				
<211>	30				
<212>					
<213>	Artificial Sequence				
<220>					
<223>	A primer for site-directed mutagenesis				
-100>	0				
	8 ctcg gggaagggt cgcactcgtg	30			
UNITED	LLEG GGGAGGGGG CGCACLCGCG	\sim			