Approach taken: A* Search with Additive Disjoint Pattern Database heuristics

Patterns used (4-4-4-3 format):

* 1 2 3	* * * *	* * * *	* * * *
* * * 7	4 * * *	* 5 6 *	* * * *
* * * *	8 * * *	* 9 A *	* * * B
* * * *	C D * *	* * * *	* * E F

(Patterns were chosen such that the number of linear conflicts in each pattern could be maximized within file size restrictions)

All tiles are segregated into patterns such that each tile is part of only one pattern (called disjoint patterns). Using breadth-first search, pattern databases of: the minimum number of moves of the tiles in each group that are required to get those tiles to their goal positions are precomputed. Only those moves which involve one of the tiles in the group are counted making them truly disjoint.

A heuristic value for A* search can be determined for each puzzle state by *adding* the corresponding costs obtained from the pattern databases. They can be added because pattern databases are independent and do not interfere with each other.

A pattern is a relaxed representation of the actual goal state of the puzzle where we are counting only the moves made by the tiles part of the pattern. When we add the values obtained for each pattern, the resulting estimate will never be greater than the actual cost which will be incurred on solving the problem as the interactions between tiles from two different pattern groups are not taken into account. This makes the heuristic admissible.

Since the heuristic is admissible, the tree-search variant of A* is optimal. Thus, the approach I've used always gives the optimal solution for any valid input.

Search Strategy	Heuristic	initial_state1.txt		initial_state2.txt		initial_state3.txt		initial_state4.txt		
		Nodes	Time taken							
		generated	(s)	generated	(s)	generated	(s)	generated	(s)	
A* search	Manhattan distance	31	0.00 #	2,55,001	3.53 #	23,34,860	37.80 #	13,02,476	19.85 #	
A* search@	Non-additive pattern databases	32	0.32 #	2,06,427	3.40 #	12,53,582	29.70 #	24,19,916	48.30 #	
Bidirectional A* search&@	Forward: Disjoint pattern databases Backward: Manhattan distance	31	0.75 #	60,637	2.23 #	3,05,619	12.37 #	2,86,726	12.62 #	
A* search@	Additive disjoint pattern databases	31	0.51 #	24,529	0.53 #	1,93,639	4.77 #	1,24,459	2.71 #	
the second of th										

#on average; &with appropriate check for optimality; @supplementary file used;