SESIÓN 2: ARITMÉTICA

PRINCIPIO DE INDUCCIÓN SISTEMAS DE NUMERACIÓN DIVISIBILIDAD

Pares e impares Primos y compuestos Números consecutivos Criterios de divisibilidad Congruencias

a es congruente con r módulo b si al dividir a entre b da de resto r

Dados tres números consecutivos, al menos uno de ellos es divisible entre 2

Dados tres números consecutivos, exactamente uno es divisible entre 3

Pruebe que n(n + 1)(n + 2) es múltiplo de 6 para cualquier entero n. Pruebe que n(n+1)(n+2)(n+3) es múltiplo de 24 para cualquier

Descomposición de un número en factores primos Cálculo del número de divisores de un número Si $N=p_1^{x_i}$. $p_2^{x_2}$... $p_n^{x_n}$ siendo p_i números primos, el número de

divisores de N es $(x_1+1)\cdot(x_2+1)\dots(x_n+1)$, incluyendo al 1 y a N

TRIÁNGULO DE TARTAGLIA

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

 $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$, y así sucesivamente colocamos los números del triángulo, las potencias de a en orden decreciente y las de b en orden creciente.

OTRAS IDENTIDADES

$$a^{2}-b^{2}=(a-b)\cdot(a+b)$$

$$a^{3}-b^{3}=(a-b)\cdot(a^{2}+ab+b^{2})$$

$$a^{4}-b^{4}=(a-b)\cdot(a^{3}+a^{2}b+ab^{2}+b^{3})$$

SUCESIONES DE NÚMEROS REALES

Progresiones aritméticas y geométricas Sucesiones recurrentes

Progresiones aritméticas: Sucesiones de números reales en las que cada término se diferencia del anterior en la misma cantidad, **d (Diferencia)**

 a_1 , a_1+d , a_1+2d , ... Término general de una progresión aritmética

 $a_n=a_I+(n-1)\cdot d$ Fórmula que sirve para calcular cualquier término conociendo el primero y la diferencia.

Para calcular la suma de los **n** primeros términos de una progresión aritmética utilizamos la fórmula $S_n = (a_1 + a_n) \cdot \frac{n}{2}$

Progresiones geométricas: Sucesiones de números reales en las que cada término se obtiene multiplicando el anterior por **r** (**Razón**)

$$a_1$$
, $a_1 \cdot r$, $a_1 \cdot r^2$, ... El término general será $a_n = a_1 \cdot r^{n-1}$

La suma de los **n** primeros términos de una progresión geométrica es $S_n = \frac{a_n \cdot r - a_1}{r - 1}$

La suma de los infinitos términos de una progresión geométrica de razón -1 < r < 1

$$S = \frac{a_1}{1 - r}$$

PROBLEMAS

Problema: Si a es un número impar, demuestra que $a^4+4a^3+11a^2+6a+2$ es múltiplo de 4

Problema: Demuestra que la siguiente expresión es siempre cierta para cualquier entero positivo

$$1+2+3+...+n=\frac{n(n+1)}{2}$$
 (Por inducción)

Problema: Demuestra que para la expresión 5^n+3 es par para cualquier entero positivo. (Por inducción)

Problema: Demuestra que 17 es divisor de 2m + 3n si y solo si 17 es divisor de 9m + 5n

Problema: Demuestra que $n^{19}-n^7$ es divisible por 30

Problema: Demuestra que $n^3 - n$ es divisible por 3

Problema: Demuestra que $A_n = 5^n + 2 \cdot 3^{n-1} + 1$ es múltiplo de 8 para todo entero positivo

Problema: Sea m número natural. Probar que si 2^m+1 es primo y mayor que 3 entonces m es par necesariamente.

Resolución:

Lo demostramos por "Reducción al absurdo" (suponiendo lo contrario de lo que hay que demostrar y llegando a una contradicción con la hipótesis).

Supongamos que m es impar, es decir m=2k+1 con **k** natural, entonces $2^m+1=2^{2k+1}+1=4^k\cdot 2+1=2(3+1)^k+1$ y desarrollando $(3+1)^k$ por el triángulo de Tartaglia (Binomio de Newton), quedará $3^k+h\cdot 3^{k-1}+...+1^k$, luego $2^m+1=2(3r+1)+1=6r+2+1=3(2r)+3=3(2r+1)$ Contradicción

Problema: Demuestra que la expresión $\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}$ es un número entero.

Resolución:

Llamamos N al número anterior $N = \sqrt[3]{45 + 29\sqrt{2}} + \sqrt[3]{45 - 29\sqrt{2}}$ y elevando ambos miembros al cubo obtenemos:

$$N^3 = 45 + 29\sqrt{2} + 45 - 29\sqrt{2} + 3\left(\sqrt[3]{45 + 29\sqrt{2}}\right)^2 \sqrt[3]{45 - 29\sqrt{2}} + 3\left(\sqrt[3]{45 - 29\sqrt{2}}\right)^2 \sqrt[3]{45 + 29\sqrt{2}}$$

Y desarrollando obtenemos:

$$N^{3} = 90 + 3 \left(\sqrt[3]{45 + 29\sqrt{2}} \right) \left(45 - 29\sqrt{2} \right) \left(45 + 29\sqrt{2} \right) + 3 \left(\sqrt[3]{45 - 29\sqrt{2}} \right) \left(45 + 29\sqrt{2} \right) \left(45 - 29\sqrt{2} \right) \right)$$

$$N^{3} = 90 + 3 \left(\sqrt[3]{45^{2} - 29^{2} \cdot 2} \right) \left(45 + 29\sqrt{2} \right) + 3 \left(\sqrt[3]{45^{2} - 29^{2} \cdot 2} \right) \left(45 - 29\sqrt{2} \right) \right)$$

$$N^{3} = 90 + 3 \left(\sqrt[3]{343} \left(45 + 29\sqrt{2} \right) \right) + 3 \left(\sqrt[3]{343} \left(45 - 29\sqrt{2} \right) \right)$$

$$N^{3} = 90 + 3 \left(\sqrt[3]{7^{3}} \left(45 + 29\sqrt{2} \right) \right) + 3 \left(\sqrt[3]{7^{3}} \left(45 - 29\sqrt{2} \right) \right)$$

$$N^{3} = 90 + 21 \left(\sqrt[3]{45 + 29\sqrt{2}} + \sqrt[3]{45 - 29\sqrt{2}} \right)$$

 N^3 =90+21N y resolviendo esta ecuación de grado 3 por la Regla de Ruffini obtenemos N=-6

Problema: Demuestra que la expresión siguiente es siempre divisible por 24, siendo n entero

$$\frac{n^5 - 5n^3 + 4n}{n+2}$$

Problema: El numero N es múltiplo de 83 y N^2 tiene 63 divisores. Busca el menor número que cumple las condiciones

Resolución:

Supongamos que N se descompone como $N=83 \cdot x \Rightarrow N^2=83^2 \cdot x^2$ $N=2^a \cdot 3^b \cdot 5^c \dots 83^r$

, entonces
$$N^2 = 2^{2a} \cdot 3^{2b} \cdot ... \cdot 83^{2r}$$

$$(2a+1)\cdot(2b+1)\cdot...\cdot(2r+1)=63$$

 $63=7\cdot9=7\cdot3\cdot3$

Tenemos diferentes posibilidades:

$$r = 31$$

$$a=3$$
 $b=4$

$$a=4$$
 $b=3$

$$r=4$$
 $c=3$ etc.

El menor número se obtendrá con r=1, a=3 y b = 1. Es decir, $N=2^3 \cdot 3 \cdot 83$

Problema: Sea p entero positivo tal que 2^p-1 es primo. Probar que la suma de todos los divisores de $2^{p-1}(2^p-1)$ es igual a $2^p(2^p-1)$

Resolución:

Sea $N=2^{p-1}(2^p-1)$; los divisores del primer factor son: 1, 2, 2, 2...2 y los del segundo factor, por ser número primo, serán 1 y 2^p-1 . Por tanto los divisores de N serán todos los anteriores y sus productos:

$$2^{p}-1$$
, $2(2^{p}-1)$, $2^{2}(2^{p}-1)$, ..., $2^{p-1}(2^{p}-1)$

Y su suma será:

$$S=1+2+...+2^{p-1}+2^p-1+2(2^p-1)+...+2^{p-1}(2^p-1)=$$