TFY4115 Fysikk (MTEL/MTTK/MTNANO) Tips for øving 1

Oppgave 1.

Bruk en eller flere av konstant-akselerasjonslikningene.

Oppgave 2.

a. Fra $a = \frac{\mathrm{d}v}{\mathrm{d}t}$, finn en differensiallikning for v, dvs. en likning av form

$$dv \cdot (funksjon \text{ av } v) = dt \cdot (funksjon \text{ av } t)$$

og integrer denne fra start $(0, v_0)$ til et vilkårlig tidspunkt (t, v).

b.
$$v(T) = \frac{1}{2}v_0$$
.

Oppgave 3.

b. Velg utskytningsstedet som origo og finn uttrykk for x(t)-posisjonen og y(t)-posisjonen for pila. Pila treffer bakken når høyden y(t) er lik bakkehøyden ved samme x(t)-posisjon. Du får her bruk for $\tan \alpha$.

Når du har funnet tida t_b når bakken treffes, vil rekkevidden i x-retning være $x(t_b)$ og rekkevidden langs planet gitt av denne og helningsvinkelen.

c. Maksimer $L(\theta)$ mhp. θ ved å derivere. På flat mark er det optimalt å kaste 45° oppover.

Oppgave 4.

a. Legg inn et koordinatsystem med x langs elvebredden og y på tvers. I figuren til venstre er referansesystemet fast i elvebredden betegnet O, mens referansesystemet som følger elvestrømmen er betegnet O'.

Vannets hastighet $\vec{V} = V \hat{\mathbf{x}}$ er gitt i system O. Båtens hastighet i system O' er som oppgitt

$$\vec{v}' = v_x' \,\hat{\mathbf{x}} + v_y' \,\hat{\mathbf{y}}$$

og båtens hastighet i system O er

$$\vec{v} = \vec{v}' + \vec{V}$$
 osv....

b. Total tid er sammensatt av tida t_r å ro over bredden pluss tida t_g for å gå til rett posisjon: $t(\theta) = t_r + t_g$. Tida t_r er gitt av hastigheten v_y . Tida t_g er gitt av hvor man lander på den andre bredden (som er gitt av v_x og t_r) og gangfarten v_g .

c. Minimalisering: $\frac{\mathrm{d}t(\theta)}{\mathrm{d}\theta} = 0. \quad \text{Svaret skal bli} \cos\theta_{\min} = -\frac{v'}{V+v_{\mathrm{g}}}.$

d. Overbevis deg om at kontrollen V=0 ikke kan være riktig. Å krysse stillestående vann må være å ro rett over: $\theta_{\min}=90^{\circ}$.

Problemet ligger i gangavstanden på den andre elvebredden funnet i b. Med direkte-fram regning antar vi at denne er positiv, dvs. vi havner et sted nedenfor i den retning elva renner. Men hvis vi ikke gjør det (som er fullt matematisk mulig), må vi skifte et fortegn i uttrykket for $t(\theta)$. Vi får altså to ulike uttrykk som gjelder under ulike forhold, og det er noe mer arbeidssomt å finne minimum for.

Betingelsen for det enkleste svaret er at $\cos \theta > -(V/v')$. Overlater detaljene til den grundige student, fullstendig løsning vil du finne i øvingens løsningsforslag.