MATEMÁTICA DISCRETA Teoría de Números

Prof. Sergio Salinas

Facultad de Ingeniería Universidad Nacional de Cuyo

Agosto 2024

- Diophantus de Alejandría fue un matemático griego que vivió aproximadamente entre el año 200 y 284 d.C. durante el período del Imperio Romano en Egipto, en la ciudad de Alejandría, que era un importante centro cultural y científico en ese momento.
- Su vida y obra son fundamentales en la historia de las matemáticas, especialmente en el campo de la teoría de números y es considerado «el padre del álgebra».
- La obra más famosa de Diophantus es «Arithmetica», una serie de 13 libros, de los cuales solo se conservan fragmentos y 6 libros completos. Este trabajo es crucial para la teoría de números.
- Diophantus es conocido por su estudio de las ecuaciones diofantinas, que llevan su nombre. Estas ecuaciones buscan soluciones en números enteros.
 Su trabajo inspiró a matemáticos como Fermat.

Las ecuaciones diofantinas son ecuaciones polinómicas para las cuales se buscan soluciones en números enteros:

- 1. **Ecuaciones Diofantinas Lineales:** de la forma ax + by = c, donde a, b y c son enteros dados, y se buscan soluciones enteras para x e y.
- 2. **Ecuaciones Diofantinas Cuadráticas:** son ecuaciones como $x^2 + y^2 = z^2$ (la ecuación de Pitágoras), o más generalmente $ax^2 + bxy + cy^2 = d$.
- 3. **Ecuaciones Diofantinas Lineales Homogéneas:** son de la forma ax + by = 0 y se buscan soluciones enteras no triviales, es decir, $(x,y) \neq (0,0)$.
- 4. **Ecuaciones Diofantinas No Lineales:** estas pueden ser de mayor grado y más complejas. Ejemplos incluyen la ecuación de Fermat $x^n + y^n = z^n$ para n > 2, que es el corazón del famoso Último Teorema de Fermat.

- Es habitual aplicar el término ecuación Diofantina a cualquier ecuación de una o más incógnitas que se debe resolver en el dominio de los enteros.
- El tipo más sencillo de ecuación diofantina que consideraremos es la ecuación lineal en dos incógnitas: ax + by = c donde a, b, c son enteros y a, b no son cero en forma simultánea.
- Una solución de esta ecuación es un par de enteros x_0 , y_0 que, al ser sustituidos en la ecuación, la satisfacen; es decir que $ax_0 + by_0 = c$.
- Una ecuación diofantina lineal dada puede tener múltiples soluciones, como es el caso de 3x + 6y = 18, donde: $3 \cdot 4 + 6 \cdot 1 = 18$; $3 \cdot (-6) + 6 \cdot 6 = 18$; y $3 \cdot 10 + 6 \cdot (-2) = 18$.
- En contraste, no hay solución para la ecuación 2x + 10y = 17. El lado izquierdo es un entero par sin importar la elección de x e y, mientras que el lado derecho no lo es.
- ¿En qué circunstancias es posible encontrar una solución y, cuando una solución existe, si podemos determinar todas las soluciones de manera explícita?.

Solución de una ecuación diofantina lineal

Una ecuación diofantina lineal ax + by = c admite una solución si y solo si d|c, donde d = mcd(a, b). Existen enteros r y s para los cuales a = dr y b = ds. Si existe una solución de ax + by = c, de manera que $ax_0 + by_0 = c$ para ciertos x_0 y y_0 , entonces $c = ax_0 + by_0 = drx_0 + dsy_0 = d(rx_0 + sy_0)$ lo cual simplemente dice que d divide a c.

Teorema

Existe una **solución particular** x_0 e y_0 de la ecuación diofántica lineal para cualquier valor u, v tal que el d = mcd(a, b) = ua + vb según las siguientes expresiones: $x_0 = \frac{uc}{d}, y_0 = \frac{vc}{d}$

Teorema

La ecuación diofantina lineal ax + by = c tiene una solución si y solo si d divide a c, donde d = mcd(a, b). Si x_0 , y_0 es una solución particular de esta ecuación, entonces todas la **solución general** está dada por:

$$x = x_0 + \frac{b}{d}t; y = y_0 - \frac{a}{d}t$$

donde t es un número entero arbitrario.

Ejemplo 1

Calcular las soluciones de la siguiente ecuación diofántica lineal 234x + 63y = 18.

1. Utilizar el algoritmo de Euclides para calcular d = mcd(234, 63) = 9:

$$234 = 3 \cdot 63 + 45 \tag{1}$$

$$63 = 1 \cdot 45 + 18 \tag{2}$$

$$45 = 2 \cdot 18 + 9 \tag{3}$$

$$18 = 9 \cdot 1 + 0$$

- 2. Determinar si la ecuación tiene solución verificando si d|c, en este caso 9|18.
- 3. Calcular la combinación lineal tal que mcd(a, b) = au + bv:

$$9 = 45 - 2 \cdot 18 \tag{1}$$

$$= 45 - 2 \cdot [63 - 1 \cdot 45] = 45 - 2 \cdot 63 + 2 \cdot 45 = 3 \cdot 45 - 2 \cdot 63 \tag{2}$$

$$= 3 \cdot [234 - 3 \cdot 63] - 2 \cdot 63 = 3 \cdot 234 - 9 \cdot 63 - 2 \cdot 63$$

$$= 3 \cdot 234 - 11 \cdot 63 = 234 \cdot (3) + 63 \cdot (-11) \tag{4}$$

(3)

(4)

- 4. Identificar los valores de au + bv = c a partir de la combinación lineal, en este caso $234 \cdot (3) + 63 \cdot (-11)$ de forma que u = 3 y v = -11.
- 5. Calcular la solución particular:

$$x_0 = \frac{uc}{d} = \frac{3 \cdot 18}{9} = 6, y_0 = \frac{vc}{d} = \frac{-11 \cdot 18}{9} = -22$$

- 6. Verificar la solución encontrada: $234 \cdot (6) + 63 \cdot (-22) = 1404 1386 = 18$.
- 7. Calcular la solución general:

$$x = x_0 + \frac{b}{d}t = 6 + \frac{63}{9}t$$
; $y = y_0 - \frac{a}{d}t = -22 - \frac{234}{9}t$

8. Calcular los valores de x, y para algún valor de t, por ejemplo t = 2:

$$x = 6 + \frac{63}{9}2 = 20; y = -22 - \frac{234}{9}2 = -74$$

9. Verificar la solución encontrada: $234 \cdot (10) + 63 \cdot (-74) = 4680 - 4662 = 18$

Ejemplo 2

Calcular las soluciones de la siguiente ecuación diofántica lineal -25x + 40y = 10.

1. Utilizar el algoritmo de Euclides para calcular el mcd recordar que en este caso d = mcd(-a, b) = mdc(|a|, b) = mcd(b, |a|):

$$40 = 1 \cdot 25 + 15 \tag{1}$$

$$25 = 1 \cdot 15 + 10 \tag{2}$$

$$15 = 1 \cdot 10 + 5 \tag{3}$$

$$10 = 2 \cdot 5 + 0 \tag{4}$$

- 2. Determinar si la ecuación tiene solución verificando si d|c.
- 3. Calcular la combinación lineal tal que mcd(a, b) = au + bv:

$$5 = 15 - 1 \cdot 10 \tag{1}$$

$$= 15 - 1 \cdot [25 - 1 \cdot 15] = 15 - 1 \cdot 25 + 1 \cdot 15 = 2 \cdot 15 - 1 \cdot 25 \tag{2}$$

$$= 2 \cdot [40 - 1 \cdot 25] - 1 \cdot 25 = 2 \cdot 40 - 2 \cdot 25 - 1 \cdot 25 \tag{3}$$

$$= -3 \cdot 25 + 2 \cdot 40 = -25 \cdot (3) + 40 \cdot (2) \tag{4}$$

- 4. Identificar los valores de au + bv = c a partir de la combinación lineal, en este caso $-25 \cdot (3) + 40 \cdot (2)$ de forma que u = 3 y v = 2.
- 5. Calcular la solución particular:

$$x_0 = \frac{uc}{d} = \frac{3 \cdot 10}{5} = 6, y_0 = \frac{vc}{d} = \frac{2 \cdot 10}{5} = 4$$

- 6. Verificar la solución encontrada: $-25 \cdot (6) + 40 \cdot (4) = -150 + 160 = 10$.
- 7. Calcular la solución general:

$$x = x_0 + \frac{b}{d}t = 6 + \frac{40}{5}t; y = y_0 - \frac{a}{d}t = 4 - \frac{-25}{5}t$$

8. Calcular los valores de x, y para algún valor de t, por ejemplo t = 3:

$$x = 6 + \frac{40}{5}3 = 30; y = 4 - \frac{-25}{5}3 = 19$$

9. Verificar la solución encontrada: $-25 \cdot (30) + 40 \cdot (19) = -750 + 760 = 10$

Ejemplo 3

Calcular las soluciones de la siguiente ecuación diofántica lineal 910x + 3003y = -364.

1. Utilizar el algoritmo de Euclides para calcular mcd(910,3003) = mcd(3003,910):

$$3003 = 3 \cdot 910 + 273 \tag{1}$$

$$910 = 3 \cdot 273 + 91 \tag{2}$$

$$273 = 3 \cdot 91 + 0 \tag{3}$$

- 2. Determinar si la ecuación tiene solución verificando si mcd(a, b)|c.
- 3. Calcular la combinación lineal tal que mcd(a, b) = au + bv:

$$91 = 910 - 3 \cdot 273 \tag{1}$$

$$= 910 - 3 \cdot [3003 - 3 \cdot 910] = 910 - 3 \cdot 3003 + 9 \cdot 910 \tag{2}$$

$$= 10 \cdot 910 - 3 \cdot 3003 = 910 \cdot (10) + 3003 \cdot (-3) \tag{3}$$

- 4. Identificar los valores de au + bv = c a partir de la combinación lineal, en este caso $910 \cdot (10) + 3003 \cdot (-3)$ de forma que u = 10 y v = -3.
- 5. Calcular la solución particular:

$$x_0 = \frac{uc}{d} = \frac{10 \cdot -364}{91} = -40, y_0 = \frac{vc}{d} = \frac{-3 \cdot -364}{91} = 12$$

6. Verificar la solución encontrada:

$$910 \cdot (-40) + 3003 \cdot (12) = -36400 + 36036 = -364.$$

7. Calcular la solución general:

$$x = x_0 + \frac{b}{d}t = -40 + \frac{3003}{91}t; y = y_0 - \frac{a}{d}t = 12 - \frac{910}{91}t$$

8. Calcular los valores de x, y para algún valor de t, por ejemplo t = 5:

$$x = -40 + \frac{3003}{91}5 = 125; y = 12 - \frac{910}{91}5 = -38$$

9. Verificar la solución encontrada:

$$910 \cdot (125) + 3003 \cdot (-38) = 113750 - 114114 = -364$$

Ejemplo 4

Calcular las soluciones de la siguiente ecuación diofántica lineal 84x + 18y = 126.

1. Utilizar el algoritmo de Euclides para calcular *mcd*(84, 18):

$$84 = 4 \cdot 18 + 12 \tag{4}$$

$$18 = 1 \cdot 12 + 6 \tag{5}$$

$$12 = 2 \cdot 6 + 0$$

·

3. Calcular la combinación lineal tal que mcd(a, b) = au + bv:

$$6 = 18 - 1 \cdot 12$$

Determinar si la ecuación tiene solución verificando si d|c, es decir 6|126.

$$= 18 - 1 \cdot [84 - 4 \cdot 18] = 18 - 1 \cdot 84 + 4 \cdot 18 \tag{2}$$

$$= 5 \cdot 18 - 1 \cdot 84 = 90 - 84 \tag{3}$$

(6)

(1)

- 4. Identificar los valores de au + bv = c a partir de la combinación lineal, en este caso $84 \cdot (-1) + 18 \cdot (5)$ de forma que u = -1 y v = 5.
- 5. Calcular la solución particular:

$$x_0 = \frac{uc}{d} = \frac{-1 \cdot 126}{6} = -21, y_0 = \frac{vc}{d} = \frac{5 \cdot 126}{6} = 105$$

- 6. Verificar la solución encontrada: $84 \cdot (-21) + 18 \cdot (105) = -1764 + 1890 = 126$.
- 7. Calcular la solución general:

$$x = x_0 + \frac{b}{d}t = -21 + \frac{18}{6}t; y = y_0 - \frac{a}{d}t = 105 - \frac{84}{6}t$$

8. Calcular los valores de x, y para algún valor de t, por ejemplo t = 3:

$$x = -21 + \frac{18}{6}3 = -12; y = 105 - \frac{84}{6}3 = 63$$

9. Verificar la solución encontrada: $84 \cdot (-12) + 18 \cdot (63) = -1008 + 1134 = 126$

Ejemplo 5

Jorge tiene dos recipientes no marcados, un recipiente contiene 17 litros y el otro 55 litros. ¿Cómo es posible usar los dos recipientes para medir exactamente 1 litro?

Solución:

$$55 = 3(17)+4$$
 , $0 < 4 < 17$
 $17 = 4(4)+1$, $0 < 1 < 4$

Por lo tanto, 1=17-4(4)=17-4[55-3(17)]=13(17)-4(55), esto significa que hay que llenar el recipiente de 17 litros 13 veces y vaciar el contenido las primeras 12 veces en el recipiente mayor. Antes de llenar el recipiente de 17 litros la vez número 13 tenemos 12(17)-3(55)=204-165=30 litros en el recipiente de 55 litros. Después de llenar el recipiente por 13^o vez se vaciará 16=(55-39) de este recipiente y llenará el recipiente grande, quedando un litro en el recipiente de 17 litros.

Ejemplo 6

Al ayudar a los estudiantes en sus cursos de programación, Juan observa que en promedio puede ayudar a un estudiante a depurar un programa en Java en 6 minutos, pero tarda 10 minutos en depurar un programa en Python. Si trabajó en forma continua durante 104 minutos y no desperdición tiempo, ¿Cuántos programas depuró en cada lenguaje?

Solución:

En este caso buscamos enteros tales que $x,y\geq 0$ tales que 6x+10y=104, es decir 3x+5y=52. Como el mcd(3,5)=1 entonces 1=3(2)+5(-1) es decir que 52=3(104)+5(-52)=3(104-5k)+5(-52+3k), $k\in\mathbb{Z}$. Para obtener $0\leq x=104-5k$ y $0\leq y=-52+3k$ necesitamos que $\frac{52}{3}\leq k\leq \frac{104}{5}$. De esta manera, k=18,19,20 y existen tres posibles soluciones:

- (k = 18) : x = 14, y = 2
- (k = 19) : x = 9, y = 5
- (k = 20) : x = 4, y = 8

Fin

