

PV-Alert: Vulnerable Road User Alert System With An Advanced Map Matching Algorithm In A Fog-based Architecture

Supervisor: Sidi Mohamed senouci

14/09/2017

Presented by Aghiles DJOUDI ISAT/UPMC

Institute of Automobile and Transport Burgundy University

Pierre and Marie Curie University

Table of Contents

- 1 Introduction

 Context, Motivation and problematic
- 2 State of art
 Solutions proposed
- Map matching algorithm

 Eight-Direction Chain Code
- 4 Fog computing architecture
- 5 Application
 Proof of concept
- 6 Conclusion & Perspective

World Health Organization 2015:

1.2 million injuries each year.

Category	2000	2010
Pedestrians	10.4 %	12.1 %
Cyclists	3.3 %	3.7 %
Cyclo-motoristes	5.6 %	6.2 %
Motorcyclists	11.6 %	17.6 %

Distribution of fatal road accidents according to different users categories

The French Road Safety Observatory (ONISR)

State of art

3 projects, 3 deferent technologies

1) Systems based on radars

European projects: PROTECTOR and SAVE-U

Design a pedestrian protection systems based on multi-sensors: Radars, Cameras and Laser sensors

2) Systems based on visual or infrared sensors

French project: "Logiciels d'observation des usagers vulnérables"

/ Design a pedestrian perception systems based on: Laser sensors, monovison and stereovision

3) Systems based on intelligent road infrastructures

Project combining means of perception and communication: WATCH-OVER

Vehicle-to-Vulnerable roAd user cooperaTive communication and sensing teCHnologies to imprOve transpoRt safety

Pedestrian masked by an obstacle

Problem: Lack of means of perception and communication for drivers and pedestrians

Problematic

Perception problem

Pedestrian crossing street in front of vehicle

Pedestrian masked by an obstacle

Problem: Lack of means of **perception** and **communication** for drivers and pedestrians Solution: Use Smartphone with GPS localization for **perception** and **communication**

Challenges

Vulnerable road users alert system

Challenges

Vulnerable road users alert system

GPS accuracy

Area and weather conditions

GPS accuracy depends on:

- Signal strength
- Weather conditions
- Building obstacle
- Noise and interference

How can we increase GPS accuracy?

- Hardware-based approach:
 - Eliminate noise and interference (signal processing)
 - Deferential GPS (Base station approach)
- Software-based approach:
 - Use map information to correct the location

Hardware-based approach

Deferential GPS

GPS accuracy depends on:

- Signal strength
- Weather condition
- Building obstacle
- Noise and interference

How can we increase GPS accuracy?

- Hardware-based approach:
 - Eliminate noise and interference (signal processing)
 - Deferential GPS (Base station approach)
- Software-based approach:
 - Use map information to correct the location

Software-based approach

Map-matching approach

GPS accuracy depends on:

- Signal strength
- Weather condition
- Building obstacle
- Noise and interference

How can we increase GPS accuracy?

- Hardware-based approach:
 - Eliminate noise and interference (signal processing)
 - Deferential GPS (Base station approach)
- Software-based approach:
- Use map matching to correct GPS location

Increase horizontal accuracy

Pedestrians often take horizontal trajectory

Horizontal accuracy evaluation test

Experimental setup

Table 1: Directions (D) and distances (d) of measurements

4 scenarios

- 1) Rural area in a sunny day.
- 2) Rural area in a cloudy day
- 3) Urban area in a sunny day
- 4) Urban area in a cloudy day

Urban area

Horizontal accuracy evaluation

Cloudy day

Smartphone Location

GPS error: 2 to 7 meters

Smartphone Location

GPS error: 3 to 9 meters

Horizontal accuracy evaluation

Cloudy day

Smartphone Location

GPS error: 2 to 3 meters

Smartphone Location

GPS error: 2 to 6 meters

Map matching algorithm (Step1)

$\Delta = (Pedestrian direction)^{\circ} - (Segment direction)^{\circ} $	

Segment	Distance	Δ1	Δ2	Δ3	Δ4
AC	D1	38°	6°	256°	2°
AD	D2	7°	51°	301°	47°
AE	D3	308°	264°	14°	268°

Map matching algorithm (Step2)

Δ = Chain-Code [Pedestrian] – Chain-Code	[Segment]

Segment	Distance	Δ1	Δ2	Δ3	Δ4
AC	D1	1	0	6	0
AD	D2	0	1	7	1
AE	D3	7	6	0	6

Map matching algorithm (Step3)

$$\Delta$$
 = |Chain-Code [Pedestrian] – Chain-Code [Segment]|

 Dcc = Δ $\Delta < 4$ otherwise

Segment	Distance	DCC1	DCC2	DCC3	DCC4
AC	D1	1	0	2	0
AD	D2	0	1	1	1
AE	D3	1	2	0	2

Map matching algorithm (Step4)

$$\Delta$$
 = |Chain-Code [Pedestrian] – Chain-Code [Segment]|

 Dcc = Δ $\Delta < 4$ otherwise

Segment	Distance	DCC1	DCC2	DCC3	DCC4
AC	D1	1	0	2	1
AD	D2	0	1	1	0
AE	D3	1	2	0	1

Map matching algorithm

2 Models:

- Linear model
- Non-linear model:
 - Radial basis functional neural network

4 Scenarios:

- 2 different areas:
 - Urban and Rural area
- 2 different weather conditions
 - Sunny and cloudy day

Training data:

- 5 directions (D0-D4)

Testing data:

- 3 directions (D5-D7)

Linear model

Segment	Distance	DCC1	DCC2	DCC3	DCC4
AC	D1	1	0	2	1
AD	D2	0	1	1	0
AE	D3	1	2	0	1

$$V_{ij} = W_{ij} * D_{ij} + \sum_{m=1}^{4} W_{ijm} * Dcc(Step[i+m], Segment[j])$$

$$M_{ij} = 1/V_{ij}$$

Non-linear model

Radial Basis Functional Neural Network

$$M = \sum_{k=0}^{n} af$$

		Linear model		Non-linea	ar model
Scenario	Number of links	Correct link identified	Average time (ms)	Correct link identified	Average time (ms)
1	27	26	4.3	25	21.1
2	27	24	4.4	23	19.3
3	27	23	3.2	22	15.7
4	27	20	3.5	20	14.2

		Linear	model	Non-linear model		
Scenario	Number of links	Correct link identified	Average time (ms)	Correct link identified	Average time (ms)	
1	27	26	4.3	25	21.1	
2	27	24	4.4	23	19.3	
3	27	23	3.2	22	15.7	
4	27	20	3.5	20	14.2	

Challenges

Vulnerable road users alert system

Fog computing architecture

Different architectures

Latency of different smartphone-based VRU safety architectures

Architecture	M2M	M2C	M2OS	M2FN
Energy saving	-	+	+	+
Latency	+	_	+	+
Reliability	+	-	-	+
Scalability	-	+	-	+
Computational capability	-	+	+	+
Message management	-	+	+	+

Fog computing architecture

3 layers architecture

3 Layers:

- 1) Crowd
 - Refers to pedestrians and drivers
 - Data is sent to fog node every second
- 2) Fog node
 - Execute the collision prediction algorithm
- Road segment covered by a single node depends on the communication technology used
 - 3) Cloud
- Performs aggregated analysis on data received from fog nodes for further use

LTE connection with the fog node

High mobility support of LTE

LTE connection with the fog node

Scalability of LTE

Application

Real environment

Algorithm:

 $Dmin = V_{veh} * (T_p + T_r + T_{tx} + T_c) + GPS_{err-veh} + GPS_{err-ped}$

Application

Real environment

Algorithm:

 $Dmin = V_{veh} * (T_p + T_r + T_{tx} + T_c) + GPS_{err-veh} + GPS_{err-ped}$

IF (Dact ≤ Dmin) send Alert WARNING

Conclusion

- 1) Map matching algorithm with eight direction chain-code is easily applicable to car navigation and pedestrian navigation.
- 2) Fog computing architecture is a promising solution for problems that require low latency, high geographical distribution and high mobility support such as pedestrian collision prediction.
- **3)** Delay difference between fast-moving vehicles and slow-moving vehicles is not significant due to high mobility support of **LTE**.

Future work:

- 1) Adding new parameters in map matching algorithm that impact direction identification such the signal strength of each GPS point.
- 2) Evaluating the efficiency of map matching algorithm and Fog computing architecture with LTE connection to reduce false positive alerts.

Thank You For Your Attention!

Any Questions?

