Wizards

Standard Code Library

2017年11月19日

目	录			5.3	Treap	21
1	米九八个	0		5.4	Splay	
1	数论	3		5.5	Link cut Tree	23
	1.1 $O(m^2 \log n)$ 线性递推	3 3		5.6	树上莫队	
	1.3 中国剩余定理	3		5.7	CDQ 分治	
	1.4 素性测试	3		5.8	整体二分	24
	1.5 质因数分解	3	6	图记	☆	25
	1.6 佩尔方程	4	U		2-SAT tarjan	
	1.7 二次剩余	4		6.2	KM	
	1.8 一元三次方程	4		6.3	点双连通分量	
	1.9 线下整点	4		6.4	边双连通分量	
	1.10 线性同余不等式	4		6.5	最小树形图	
	1.11 组合数取模	5		6.6	带花树	
	1.12 Schreier-Sims	5		6.7	支配树	
				6.8	无向图最小割	
2	代数	6		6.9	最大团搜索	
	2.1 快速傅里叶变换	6			斯坦纳树	
	2.2 分治卷积	6			虚树	$\frac{29}{30}$
	2.3 快速数论变换	6			点分治	30
	2.4 快速沃尔什变换	6			最小割最大流	30
	2.5 自适应辛普森积分	6			最小费用流	31
	2.6 单纯形	7			zkw 费用流	31
3	计算几何	7			最小割树	
J	ル 介	•			上下界网络流建图	
	3.1.1 点类			0.11	6.17.1 无源汇的上下界可行流	
	3.1.2 凸包	8			6.17.2 有源汇的上下界可行流	
	3.1.3 凸包最近点对	9			6.17.3 有源汇的上下界最大流	
	3.1.4 三角形的心	_			6.17.4 有源汇的上下界最小流	
	3.1.5 半平面交				0.11.1 月初江山江上 7年载月初临	00
	3.1.6 最大空凸包		7	其作	也	33
	3.1.7 平面最近点对	13		7.1	Dancing Links	33
	3.1.8 最小覆盖圆	13			7.1.1 精确覆盖	33
	3.1.9 多边形内部可视	14			7.1.2 重复覆盖	34
	3.1.10 V 图	14		7.2	蔡勒公式	34
	3.2 三维	16		7.3	五边形数定理	34
	3.2.1 三维点类	16		7.4	凸包闵可夫斯基和	34
	3.2.2 凸包	16	0	 	T	
	3.2.3 最小覆盖球	17	8	技工		34
				8.1	/ ·· — — / ·	34
4	字符串	18		8.2	大整数取模	
	4.1 AC 自动机	18		8.3	读入优化	
	4.2 后缀数组	18		8.4	二次随机法	35
	4.3 后缀自动机	19		8.5	vimre	35
	4.4 广义后缀自动机	19		8.6	控制 cout 输出实数精度	35
	4.5 manacher	19		8.7	让 make 支持 c++11	35
	4.6 回文自动机	19		8.8	tuple 相关	
	4.7 循环串的最小表示	20		8.9	汇编技巧	35
5	数据结构	20	9	提え	示	35
	5.1 可并堆	20		9.1	· 线性规划转对偶	
	5.2 KD-Tree	_			NTT 素数及其原根	

9.3	积分表	₹	36
	9.3.1	$ax^2 + bx + c(a > 0) \dots \dots \dots$	36
	9.3.2	$\sqrt{\pm ax^2 + bx + c}(a > 0) \dots \dots$	36
	9.3.3	$\sqrt{\pm \frac{x-a}{x-b}}$ 或 $\sqrt{(x-a)(x-b)}$	36
		三角函数的积分	
	9.3.5	反三角函数的积分(其中 $a>0$)	36
	9.3.6	指数函数的积分	36
	9.3.7	对数函数的积分	36

1. 数论

1.1 $O(m^2 \log n)$ 线性递推

```
Given a_0, a_1, \ldots, a_{m-1}

a_n = c_0 \times a_{n-m} + \cdots + c_{m-1} \times a_{n-1}

Solve for a_n = v_0 \times a_0 + v_1 \times a_1 + \cdots + v_{m-1} \times a_{m-1}
```

```
1
   void linear_recurrence(long long n, int m, int a[], int
      \hookrightarrow \texttt{c[], int p) } \{
 2
     long long v[M] = \{1 \% p\}, u[M << 1], msk = !!n;
     for(long long i(n); i > 1; i >>= 1) {
 3
 4
       msk <<= 1:
 5
 6
     for(long long x(0); msk; msk >>= 1, x <<= 1) {
 7
       fill_n(u, m << 1, 0);
       int b(!!(n & msk));
 8
9
       x \mid = b;
10
        if(x < m) {
11
          u[x] = 1 \% p;
12
        }else {
13
          for(int i(0); i < m; i++) {</pre>
14
            for(int j(0), t(i + b); j < m; j++, t++) {
15
              u[t] = (u[t] + v[i] * v[j]) % p;
            }
16
17
          for(int i((m << 1) - 1); i >= m; i--) {
18
19
            for(int j(0), t(i - m); j < m; j++, t++) {
              u[t] = (u[t] + c[j] * u[i]) % p;
20
21
22
          }
23
        }
24
        copy(u, u + m, v);
     }
25
     //a[n] = v[0] * a[0] + v[1] * a[1] + ... + v[m - 1] *
26
        \hookrightarrow a[m - 1].
27
     for(int i(m); i < 2 * m; i++) {</pre>
28
        a[i] = 0:
29
        for(int j(0); j < m; j++) {</pre>
30
          a[i] = (a[i] + (long long)c[j] * a[i + j - m]) % p;
31
     }
32
33
     for(int j(0); j < m; j++) {
       b[j] = 0;
        for(int i(0); i < m; i++) {</pre>
35
36
          b[j] = (b[j] + v[i] * a[i + j]) % p;
37
38
     }
39
     for(int j(0); j < m; j++) {
40
        a[j] = b[j];
41
  }
42
```

1.2 求逆元

```
void ex_gcd(long long a, long long b, long long &x, long
      \hookrightarrow long &y) {
     if (b == 0) {
       x = 1;
3
       y = 0;
4
5
       return;
7
     long long xx, yy;
8
     ex_gcd(b, a % b, xx, yy);
9
     y = xx - a / b * yy;
10
     x = yy;
11
   }
12
   long long inv(long long x, long long MODN) {
13
14
     long long inv_x, y;
     ex_gcd(x, MODN, inv_x, y);
15
     return (inv_x % MODN + MODN) % MODN;
16
```

17 }

1.3 中国剩余定理

```
//返回 (ans, M), 其中 ans 是模 M 意义下的解
   std::pair<long long, long long> CRT(const std::vector<long
     \hookrightarrow long>& m, const std::vector<long long>& a) {
3
    long long M = 1, ans = 0;
    int n = m.size();
4
5
    for (int i = 0; i < n; i++) M *= m[i];</pre>
6
    for (int i = 0; i < n; i++) {
       ans = (ans + (M / m[i]) * a[i] % M * inv(M / m[i],
         → m[i])) % M; // 可能需要大整数相乘取模
8
9
    return std::make_pair(ans, M);
10 }
```

1.4 素性测试

```
int strong_pseudo_primetest(long long n,int base) {
2
       long long n2=n-1,res;
3
        int s=0:
 4
        while(n2\%2==0) n2>>=1,s++;
 5
        res=powmod(base,n2,n);
 6
        if((res==1)||(res==n-1)) return 1;
 7
        s--;
 8
        while(s>=0) {
 g
            res=mulmod(res,res,n);
10
            if(res==n-1) return 1;
11
12
       }
13
        return 0; // n is not a strong pseudo prime
14
15
   int isprime(long long n) {
16
     static LL testNum[]={2,3,5,7,11,13,17,19,23,29,31,37};
17
        \rightarrow \lim[]=\{4,0,1373653LL,25326001LL,25000000000LL,21523028987\}
         \rightarrow 3474749660383LL,341550071728321LL,0,0,0,0);
     if(n<2||n==3215031751LL) return 0;
18
     for(int i=0;i<12;++i){</pre>
19
20
        if(n<lim[i]) return 1;</pre>
        if(strong_pseudo_primetest(n,testNum[i])==0) return 0;
21
22
     }
23
     return 1;
24
```

1.5 质因数分解

```
int ansn; LL ans[1000];
   LL func(LL x,LL n){ return(mod_mul(x,x,n)+1)%n; }
   LL Pollard(LL n){
     LL i,x,y,p;
     if(Rabin_Miller(n)) return n;
     if(!(n&1)) return 2;
6
 7
     for(i=1;i<20;i++){</pre>
8
       x=i; y=func(x,n); p=gcd(y-x,n);
9
        while(p==1) {x=func(x,n); y=func(func(y,n),n);
           \hookrightarrow p=\gcd((y-x+n)%n,n)%n;
10
        if(p==0||p==n) continue;
11
        return p;
12
13
14
   void factor(LL n){
     LL x;
16
     x=Pollard(n);
17
     if(x==n){ ans[ansn++]=x; return; }
     factor(x), factor(n/x);
18
19
   }
```

1.6 佩尔方程

```
import java.math.BigInteger;
1
  import java.util.Scanner;
2
3/a[n]=(g[n]+a[0])/h[n]
4 //g[n] = a[n-1] *h[n-1] -g[n-1]
5 / h[n] = (N-g[n]*g[n])/h[n-1]
6 //p[n] = a[n-1] *p[n-1] + p[n-2]
  //q[n]=a[n-1]*q[n-1]+q[n-2]
  //so:
8
9
  //p[n]*q[n-1]-p[n-1]*q[n]=(-1)^(n+1);
10 //p[n]^2-N*q[n]^2=(-1)^(n+1)*h[n+1];
11
   public class Main {
12
       public static BigInteger p, q;
       public static void solve(int n) {
13
           BigInteger N, p1, p2, q1, q2, a0, a1, a2, g1, g2,
14
              \hookrightarrow h1, h2;
15
           g1 = q2 = p1 = BigInteger.ZERO;
           h1 = q1 = p2 = BigInteger.ONE;
16
           a0 = a1 =
17
              → BigInteger.valueOf((long)Math.sqrt(1.0*n));
18
           N = BigInteger.valueOf(n);
           while (true) {
19
20
               g2 = a1.multiply(h1).subtract(g1);
               h2 = N.subtract(g2.pow(2)).divide(h1);
21
22
               a2 = g2.add(a0).divide(h2);
23
               p = a1.multiply(p2).add(p1);
24
               q = a1.multiply(q2).add(q1);
25
               if
                  \hookrightarrow == 0) return;
         g1 = g2;h1 = h2;a1 = a2;
26
27
               p1 = p2; p2 = p;
               q1 = q2; q2 = q;
28
           }
29
30
       }
31
       public static void main(String[] args) {
32
           Scanner cin = new Scanner(System.in);
33
           int t=cin.nextInt();
34
35
           while (t--!=0) {
               solve(cin.nextInt());
36
               System.out.println(p + " " + q);
37
38
39
40 }
```

1.7 二次剩余

```
1 // x^2 = a (mod p), 0 <= a < p, 返回 true or false 代表
     →是否存在解
  // p 必须是质数, 若是多个单次质数的乘积, 可以分别
     →求解再用 CRT 合并
3 // 复杂度为 D(log n)
  void multiply(11 &c, 11 &d, 11 a, 11 b, 11 w) {
      int cc = (a * c + b * d % MOD * w) % MOD;
      int dd = (a * d + b * c) % MOD;
7
      c = cc, d = dd;
8
  1
9
10
  bool solve(int n, int &x) {
11
      if (MOD == 2) return x = 1, true;
      if (power(n, MOD / 2, MOD) == MOD - 1) return false;
12
      11 c = 1, d = 0, b = 1, a, w;
13
14
      // finding a such that a^2 - n is not a square
      do { a = rand() % MOD;
15
          w = (a * a - n + MOD) \% MOD;
16
```

```
17
           if (w == 0) return x = a, true;
18
       } while (power(w, MOD / 2, MOD) != MOD - 1);
19
       for (int times = (MOD + 1) / 2; times; times >>= 1) {
20
           if (times & 1) multiply(c, d, a, b, w);
21
           multiply(a, b, a, b, w);
22
23
       // x = (a + sqrt(w)) ^ ((p + 1) / 2)
24
       return x = c, true;
25
```

1.8 一元三次方程

```
double a(p[3]), b(p[2]), c(p[1]), d(p[0]);
   double k(b / a), m(c / a), n(d / a);
   double p(-k * k / 3. + m);
 3
   double q(2. * k * k * k / 27 - k * m / 3. + n);
   Complex omega[3] = \{Complex(1, 0), Complex(-0.5, 0.5 *
      \rightarrow sqrt(3)), Complex(-0.5, -0.5 * sqrt(3))};
   Complex r1, r2;
 6
   double delta(q * q / 4 + p * p * p / 27);
   if (delta > 0) {
       r1 = cubrt(-q / 2. + sqrt(delta));
10
       r2 = cubrt(-q / 2. - sqrt(delta));
11
   } else {
12
       r1 = pow(-q / 2. + pow(Complex(delta), 0.5), 1. / 3);
13
       r2 = pow(-q / 2. - pow(Complex(delta), 0.5), 1. / 3);
14
15
   for(int _(0); _ < 3; _++) {
       Complex x = -k / 3. + r1 * omega[_ * 1] + r2 * omega[_
          \hookrightarrow * 2 % 3];
17 }
```

1.9 线下整点

```
//\sum_{i=0}^{n-1} \lfloor \frac{a+bi}{m} \rfloor, n, m, a, b > 0
LL solve(LL n,LL a,LL b,LL m){
  if (b==0) return n*(a/m);
  if(a>=m) return n*(a/m)+solve(n,a%m,b,m);
  if (b>=m) return (n-1)*n/2*(b/m)+solve(n,a,b,m,m);
  return solve((a+b*n)/m,(a+b*n)%m,m,b);
```

1.10 线性同余不等式

```
// Find the minimal non-negtive solutions for
      // 0 \le d, l, r \le m; l \le r, O(\log n)
   11 cal(11 m, 11 d, 11 1, 11 r) {
 3
       if (1 == 0) return 0;
       if (d == 0) return MXL; // 无解
 6
       if (d * 2 > m) return cal(m, m - d, m - r, m - 1);
       if ((1 - 1) / d < r / d) return (1 - 1) / d + 1;
 7
8
       ll k = cal(d, (-m % d + d) % d, 1 % d, r % d);
 9
       return k == MXL ? MXL : (k * m + 1 - 1) / d + 1; // \pi
          →解 2
10
11
12
   // return all x satisfying l1<=x<=r1 and
      \hookrightarrow 12<=(x*mul+add)%LIM<=r2
  // here LIM = 2^32 so we use UI instead of "%".
   // O(\log p + \#solutions)
15
   struct Jump {
       UI val, step;
16
17
       Jump(UI val, UI step) : val(val), step(step) { }
18
       Jump operator + (const Jump & b) const {
           return Jump(val + b.val, step + b.step); }
19
20
       Jump operator - (const Jump & b) const {
           return Jump(val - b.val, step + b.step);
21
22
23 inline Jump operator * (UI x, const Jump & a) {
```

```
return Jump(x * a.val, x * a.step);
24
25
  }
26
   vector<UI> solve(UI 11, UI r1, UI 12, UI r2, pair<UI, UI>

    muladd) {
       UI mul = muladd.first, add = muladd.second, w = r2 -
          Jump up(mul, 1), dn(-mul, 1);
28
       UI s(11 * mul + add);
29
30
       Jump lo(r2 - s, 0), hi(s - 12, 0);
31
       function<void(Jump &, Jump &)> sub = [&](Jump & a,
          \hookrightarrow Jump & b) {
            if (a.val > w) {
32
33
                UI t(((long long)a.val - max(0ll, w + 1ll -
                   \hookrightarrow b.val)) / b.val);
34
                a = a - t * b:
            7
35
       }:
36
37
       sub(lo, up), sub(hi, dn);
38
       while (up.val > w || dn.val > w) {
            sub(up, dn); sub(lo, up);
39
40
            sub(dn, up); sub(hi, dn); }
       assert(up.val + dn.val > w);
41
       vector<UI> res;
42
43
        Jump bg(s + mul * min(lo.step, hi.step), min(lo.step,

    hi.step));
       while (bg.step <= r1 - 11) {</pre>
44
45
            if (12 <= bg.val && bg.val <= r2)</pre>
46
                res.push_back(bg.step + 11);
            if (12 <= bg.val - dn.val && bg.val - dn.val <=
47
               \hookrightarrow r2) {
48
                bg = bg - dn;
            } else bg = bg + up;
49
50
       } return res;
51
  | }
```

1.11 组合数取模

```
1 LL prod=1,P;
2
   pair<LL,LL> comput(LL n,LL p,LL k){
       if(n<=1)return make_pair(0,1);</pre>
3
4
       LL ans=1,cnt=0;
5
       ans=pow(prod,n/P,P);
6
       cnt=n/p;
7
       pair<LL,LL>res=comput(n/p,p,k);
8
       cnt+=res.first;
9
       ans=ans*res.second%P:
10
       for(int i=n-n%P+1;i<=n;i++)if(i%p){</pre>
11
            ans=ans*i%P;
12
13
       }
14
       return make_pair(cnt,ans);
15
  }
  pair<LL,LL> calc(LL n,LL p,LL k){
16
17
       prod=1;P=pow(p,k,1e18);
       for(int i=1;i<P;i++)if(i%p)prod=prod*i%P;</pre>
18
19
       pair<LL,LL> res=comput(n,p,k);
20
   // res.second=res.second*pow(p,res.first%k,P)%P;
  // res.first-=res.first%k;
21
22
       return res;
23 }
24
  LL calc(LL n,LL m,LL p,LL k){
25
       pair<LL,LL>A,B,C;
26
       LL P=pow(p,k,1e18);
       A=calc(n,p,k);
28
       B=calc(m,p,k);
29
       C=calc(n-m,p,k);
30
31
       ans=pow(p,A.first-B.first-C.first,P);
32

→ ans=ans*A.second%P*inv(B.second,P)%P*inv(C.second,P)%P;

59
33
       return ans;
34 }
```

1.12 Schreier-Sims

```
struct Perm{
 2
     vector<int> P; Perm() {} Perm(int n) { P.resize(n); }
 3
     Perm inv()const{
 4
       Perm ret(P.size()):
       for(int i = 0; i < int(P.size()); ++i) ret.P[P[i]] =</pre>
 6
       return ret;
 7
8
     int &operator [](const int &dn){ return P[dn]; }
9
     void resize(const size_t &sz){ P.resize(sz); }
10
     size_t size()const{ return P.size(); }
     const int &operator [](const int &dn)const{ return
11
        \hookrightarrow P[dn]; }
12
   };
13
   Perm operator *(const Perm &a, const Perm &b){
     Perm ret(a.size());
14
15
     for(int i = 0; i < (int)a.size(); ++i) ret[i] = b[a[i]];</pre>
16
     return ret;
17
18
   typedef vector<Perm> Bucket;
   typedef vector<int> Table;
19
   typedef pair<int,int> PII;
20
   int n, m;
   vector<Bucket> buckets, bucketsInv; vector<Table>
      \hookrightarrow \texttt{lookupTable;}
23
   int fastFilter(const Perm &g, bool addToGroup = true) {
     int n = buckets.size();
24
25
     Perm p(g);
26
     for(int i = 0; i < n; ++i){
27
       int res = lookupTable[i][p[i]];
28
       if(res == -1){
29
         if (addToGroup) {
30
           buckets[i].push_back(p);
               → bucketsInv[i].push_back(p.inv());
           lookupTable[i][p[i]] = (int)buckets[i].size() - 1;
31
32
         }
33
         return i;
34
       }
       p = p * bucketsInv[i][res];
35
36
37
     return -1;
38
39
   long long calcTotalSize(){
40
     long long ret = 1;
     for(int i = 0; i < n; ++i) ret *= buckets[i].size();</pre>
41
42
     return ret:
43
   }
   bool inGroup(const Perm &g){ return fastFilter(g, false)
      45
   void solve(const Bucket &gen,int _n){// m perm[0..n - 1]s
46
     n = _n, m = gen.size();
47
     {//clear all
48
       vector<Bucket> _buckets(n); swap(buckets, _buckets);
       vector<Bucket> _bucketsInv(n); swap(bucketsInv,

→ _bucketsInv);
50
       vector<Table> _lookupTable(n); swap(lookupTable,
          → _lookupTable);
51
52
     for(int i = 0; i < n; ++i){
53
       lookupTable[i].resize(n):
       fill(lookupTable[i].begin(), lookupTable[i].end(),
54
          \hookrightarrow -1):
     }
55
56
     Perm id(n):
57
     for(int i = 0; i < n; ++i) id[i] = i;</pre>
     for(int i = 0; i < n; ++i){
       buckets[i].push_back(id); bucketsInv[i].push_back(id);
       lookupTable[i][i] = 0;
61
62
     for(int i = 0; i < m; ++i) fastFilter(gen[i]);</pre>
```

```
queue<pair<PII,PII> > toUpdate;
63
     for(int i = 0; i < n; ++i)
64
65
       for(int j = i; j < n; ++j)
          for(int k = 0; k < (int)buckets[i].size(); ++k)</pre>
66
            for(int 1 = 0; 1 < (int)buckets[j].size(); ++1)</pre>
67
              toUpdate.push(make_pair(PII(i,k), PII(j,1)));
68
69
     while(!toUpdate.empty()){
70
        PII a = toUpdate.front().first, b =
           \hookrightarrow toUpdate.front().second;
71
        toUpdate.pop();
72
        int res = fastFilter(buckets[a.first][a.second] *

    buckets[b.first][b.second]);
73
        if(res==-1) continue:
74
        PII newPair(res, (int)buckets[res].size() - 1);
75
        for(int i = 0; i < n; ++i)
          for(int j = 0; j < (int)buckets[i].size(); ++j){</pre>
76
            if(i <= res) toUpdate.push(make_pair(PII(i, j),</pre>
77
               → newPair));
78
            if(res <= i) toUpdate.push(make_pair(newPair,</pre>
               \hookrightarrow PII(i, j)));
79
     }
80
81 }
```

2. 代数

2.1 快速傅里叶变换

```
1 // n 必须是 2 的次幂
  void fft(Complex a[], int n, int f) {
3
    for (int i = 0; i < n; ++i)
4
       if (R[i] < i) swap(a[i], a[R[i]]);</pre>
     for (int i = 1, h = 0; i < n; i <<= 1, h++) {
5
       Complex wn = Complex(cos(pi / i), f * sin(pi / i));
6
7
       Complex w = Complex(1, 0);
8
       for (int k = 0; k < i; ++k, w = w * wn) tmp[k] = w;
9
       for (int p = i \ll 1, j = 0; j < n; j += p) {
         for (int k = 0; k < i; ++k) {
10
           Complex x = a[j + k], y = a[j + k + i] * tmp[k];
11
           a[j + k] = x + y; a[j + k + i] = x - y;
12
13
14
       }
15
    }
16
  }
```

2.2 分治卷积

```
1 // n 必须是 2 的次幂
  void fft(Complex a[], int n, int f) {
3
     for (int i = 0; i < n; ++i)
       if (R[i] < i) swap(a[i], a[R[i]]);</pre>
     for (int i = 1, h = 0; i < n; i <<= 1, h++) {
6
       Complex wn = Complex(cos(pi / i), f * sin(pi / i));
       Complex w = Complex(1, 0);
7
8
       for (int k = 0; k < i; ++k, w = w * wn) tmp[k] = w;
9
       for (int p = i \ll 1, j = 0; j \ll n; j += p) {
10
         for (int k = 0; k < i; ++k) {
           Complex x = a[j + k], y = a[j + k + i] * tmp[k];
11
12
           a[j + k] = x + y; a[j + k + i] = x - y;
13
14
       }
     }
15
16 }
```

2.3 快速数论变换

```
1 // n 必须是 2 的次幂
2 void fft(Complex a[], int n, int f) {
3 for (int i = 0; i < n; ++i)
4 if (R[i] < i) swap(a[i], a[R[i]]);
5 for (int i = 1, h = 0; i < n; i <<= 1, h++) {
```

```
Complex wn = Complex(cos(pi / i), f * sin(pi / i));
6
 7
       Complex w = Complex(1, 0);
8
       for (int k = 0; k < i; ++k, w = w * wn) tmp[k] = w;
       for (int p = i << 1, j = 0; j < n; j += p) {
9
         for (int k = 0; k < i; ++k) {
10
11
           Complex x = a[j + k], y = a[j + k + i] * tmp[k];
12
           a[j + k] = x + y; a[j + k + i] = x - y;
13
14
       }
15
     }
16
```

2.4 快速沃尔什变换

```
void FWT(LL a[],int n,int ty){ //the length is 2^n
     for(int d=1;d<n;d<<=1){</pre>
 3
        for(int m=(d<<1), i=0; i< n; i+=m){
          if(tv==1){
 5
            for(int j=0; j<d; j++){</pre>
               LL x=a[i+j], y=a[i+j+d];
 7
               a[i+j]=x+y;
 8
               a[i+j+d]=x-y;
 q
                        //and:a[i+j]=x+y; or:a[i+j+d]=x+y;
10
            }
11
          }else{
12
            for(int j=0; j<d; j++){</pre>
13
              LL x=a[i+j], y=a[i+j+d];
14
               a[i+j]=(x+y)/2;
15
               a[i+j+d]=(x-y)/2;
                       //and:a[i+j]=x-y; or:a[i+j+d]=y-x;
16
17
18
          }
19
        }
20
     }
21
```

2.5 自适应辛普森积分

```
namespace adaptive_simpson {
 2
     template<typename function>
     inline double area(function f, const double &left, const
 3
        double mid = (left + right) / 2;
 4
       return (right - left) * (f(left) + 4 * f(mid) +
          \hookrightarrow f(right)) / 6;
 6
 7
8
     template<typename function>
9
     inline double simpson(function f, const double &left,
        → const double &right, const double &eps, const

    double &area_sum) {
10
       double mid = (left + right) / 2;
11
       double area_left = area(f, left, mid);
       double area_right = area(f, mid, right);
12
       double area_total = area_left + area_right;
13
14
       if (fabs(area_total - area_sum) <= 15 * eps) {</pre>
15
         return area_total + (area_total - area_sum) / 15;
16
17
       return simpson(f, left, right, eps / 2, area_left) +
          \hookrightarrow simpson(f, mid, right, eps / 2, area_right);
18
19
20
     template<typename function>
     inline double simpson(function f, const double &left,
        return simpson(f, left, right, eps, area(f, left,
22
          \hookrightarrow right));
23
24
  }
```

2.6 单纯形

```
const double eps = 1e-8;
   // max{c * x | Ax <= b, x >= 0} 的解, 无解返回空的
      → vector, 否则就是解.
   vector<double> simplex(vector<vector<double> > &A,
3

    vector<double> b, vector<double> c) {
     int n = A.size(), m = A[0].size() + 1, r = n, s = m - 1;
     vector < vector < double > D(n + 2, vector < double > (m + 1));
     vector<int> ix(n + m);
7
     for(int i = 0; i < n + m; i++) {</pre>
       ix[i] = i;
8
9
     }
10
     for(int i = 0; i < n; i++) {</pre>
       for(int j = 0; j < m - 1; j++) {
11
12
         D[i][j] = -A[i][j];
13
       D[i][m - 1] = 1;
14
       D[i][m] = b[i];
15
       if (D[r][m] > D[i][m]) {
16
17
         r = i;
18
     }
19
20
     for(int j = 0; j < m - 1; j++) {
21
22
       D[n][j] = c[j];
23
24
     D[n + 1][m - 1] = -1;
25
     for(double d; ;) {
26
       if (r < n) {
         swap(ix[s], ix[r + m]);
27
28
         D[r][s] = 1. / D[r][s];
29
         for(int j = 0; j \le m; j++) {
30
            if (j != s) {
              D[r][j] *= -D[r][s];
31
32
33
34
         for(int i = 0; i <= n + 1; i++) {
35
            if (i != r) {
36
              for(int j = 0; j \le m; j++) {
37
                if (j != s) {
                  D[i][j] += D[r][j] * D[i][s];
38
39
40
41
              D[i][s] *= D[r][s];
42
         }
43
       }
44
       r = -1, s = -1;
45
       for(int j = 0; j < m; j++) {
46
47
          if (s < 0 || ix[s] > ix[j]) {
48
            if (D[n + 1][j] > eps || D[n + 1][j] > -eps &&
               \hookrightarrow D[n][j] > eps) {
49
              s = j;
            }
50
51
52
53
        if (s < 0) {
         break;
54
55
56
       for(int i = 0; i < n; i++) {</pre>
57
         if (D[i][s] < -eps) {</pre>
            if (r < 0 \mid | (d = D[r][m] / D[r][s] - D[i][m] /
58
               \hookrightarrow D[i][s]) < -eps
50
              || d < eps && ix[r + m] > ix[i + m]) {
60
61
              r = i;
62
            }
         }
63
64
65
       if (r < 0) {
66
         return vector<double> ();
67
```

```
69
70
      if (D[n + 1][m] < -eps) {
71
        return vector<double> ();
72
73
     vector<double> x(m - 1);
74
75
      for(int i = m; i < n + m; i++) {</pre>
76
        if (ix[i] < m - 1) {</pre>
77
          x[ix[i]] = D[i - m][m];
78
79
     }
80
     return x;
81
```

3. 计算几何

3.1 二维

3.1.1 点类

```
int sign(DB x) {
2
    return (x > eps) - (x < -eps);
3
   DB msqrt(DB x) {
    return sign(x) > 0 ? sqrt(x) : 0;
6
7
   struct Point {
     DB x, y;
8
     Point rotate(DB ang) const { // 逆时针旋转 ang 弧度
9
       return Point(cos(ang) * x - sin(ang) * y, cos(ang) * y
10
          \hookrightarrow + sin(ang) * x);
11
     Point turn90() const { // 逆时针旋转 90 度
12
13
       return Point(-y, x);
14
15
     Point unit() const {
16
       return *this / len();
17
18
   };
   DB dot(const Point& a, const Point& b) {
19
20
    return a.x * b.x + a.y * b.y;
21
   DB det(const Point& a, const Point& b) {
23
     return a.x * b.y - a.y * b.x;
24
   #define cross(p1,p2,p3)
      \hookrightarrow ((\texttt{p2.x-p1.x})*(\texttt{p3.y-p1.y}) - (\texttt{p3.x-p1.x})*(\texttt{p2.y-p1.y}))
   #define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
   bool isLL(const Line& 11, const Line& 12, Point& p) { //
      →直线与直线交点
28
     DB s1 = det(12.b - 12.a, 11.a - 12.a),
        s2 = -det(12.b - 12.a, 11.b - 12.a);
29
30
     if (!sign(s1 + s2)) return false;
31
     p = (11.a * s2 + 11.b * s1) / (s1 + s2);
32
     return true;
33
   bool onSeg(const Line& 1, const Point& p) { // 点在线段
35
     return sign(det(p - 1.a, 1.b - 1.a)) == 0 && sign(dot(p
        \hookrightarrow - 1.a, p - 1.b)) <= 0;
36
37
   Point projection(const Line & 1, const Point& p) {
     return 1.a + (1.b - 1.a) * (dot(p - 1.a, 1.b - 1.a) /
38
        \hookrightarrow (1.b - 1.a).len2());
39
   | DB disToLine(const Line& 1, const Point& p) { // 点到 *
40
      →直线 * 距离
     return fabs(det(p - 1.a, 1.b - 1.a) / (1.b -
41
        \hookrightarrow 1.a).len());
42 }
```

```
43 DB disToSeg(const Line& 1, const Point& p) { // 点到线段
       →距离
      return sign(dot(p - 1.a, 1.b - 1.a)) * sign(dot(p - 1.b,
44
         \hookrightarrow l.a - l.b)) == 1 ? disToLine(l, p) : std::min((p -
         \hookrightarrow 1.a).len(), (p - 1.b).len());
45 }
    // 圆与直线交点
46
    bool isCL(Circle a, Line 1, Point& p1, Point& p2) {
47
      DB x = dot(1.a - a.o, 1.b - 1.a),
48
         y = (1.b - 1.a).len2(),
49
         d = x * x - y * ((1.a - a.o).len2() - a.r * a.r);
50
      if (sign(d) < 0) return false;</pre>
51
      Point p = 1.a - ((1.b - 1.a) * (x / y)), delta = (1.b - 1.a) * (x / y))
52
         \hookrightarrow 1.a) * (msqrt(d) / y);
53
      p1 = p + delta; p2 = p - delta;
54
      return true;
55
   ۱,
    |//圆与圆的交面积
56
    DB areaCC(const Circle& c1, const Circle& c2) {
57
58
      DB d = (c1.o - c2.o).len();
      if (sign(d - (c1.r + c2.r)) >= 0) return 0;
59
60
      if (sign(d - std::abs(c1.r - c2.r)) \le 0) {
        DB r = std::min(c1.r, c2.r);
61
        return r * r * PI;
62
63
      DB x = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d),
       t1 = acos(x / c1.r), t2 = acos((d - x) / c2.r);
65
      return c1.r * c1.r * t1 + c2.r * c2.r * t2 - d * c1.r *
66
         \hookrightarrow \sin(t.1):
   }
67
   // 圆与圆交点
68
    bool isCC(Circle a, Circle b, P& p1, P& p2) {
69
70
      DB s1 = (a.o - b.o).len();
71
      if (sign(s1 - a.r - b.r) > 0 \mid \mid sign(s1 - std::abs(a.r - a.r - b.r))
         \hookrightarrow b.r)) < 0) return false;
      DB s2 = (a.r * a.r - b.r * b.r) / s1;
72
      DB aa = (s1 + s2) * 0.5, bb = (s1 - s2) * 0.5;
73
      P \circ = (b.o - a.o) * (aa / (aa + bb)) + a.o;
74
75
      P delta = (b.o - a.o).unit().turn90() * msqrt(a.r * a.r
         \rightarrow - aa * aa):
76
      p1 = o + delta, p2 = o - delta;
77
      return true;
78 }
    // 求点到圆的切点,按关于点的顺时针方向返回两个点
79
    bool tanCP(const Circle &c, const Point &p0, Point &p1,
80
      → Point &p2) {
81
      double x = (p0 - c.o).len2(), d = x - c.r * c.r;
      if (d < eps) return false; // 点在圆上认为没有切点
82
      Point p = (p0 - c.o) * (c.r * c.r / x);
83
      Point delta = ((p0 - c.o) * (-c.r * sqrt(d) /
         \rightarrow x)).turn90();
85
      p1 = c.o + p + delta;
      p2 = c.o + p - delta;
86
87
      return true:
88 }
    // 求圆到圆的外共切线, 按关于 c1.o 的顺时针方向返
    vector<Line> extanCC(const Circle &c1, const Circle &c2) {
90
      vector<Line> ret;
91
92
      if (sign(c1.r - c2.r) == 0) {
        Point dir = c2.o - c1.o;
        dir = (dir * (c1.r / dir.len())).turn90();
94
95
        ret.push_back(Line(c1.o + dir, c2.o + dir));
        ret.push_back(Line(c1.o - dir, c2.o - dir));
96
      } else {
97
98
        Point p = (c1.0 * -c2.r + c2.o * c1.r) / (c1.r - c2.r + c2.o * c1.r) / (c1.r - c2.r + c2.o * c1.r)
           \hookrightarrow c2.r):
99
        Point p1, p2, q1, q2;
        if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1, q2)) {
100
          if (c1.r < c2.r) swap(p1, p2), swap(q1, q2);
101
102
          ret.push_back(Line(p1, q1));
103
          ret.push_back(Line(p2, q2));
104
```

```
106
      return ret;
107
    // 求圆到圆的内共切线, 按关于 c1.o 的顺时针方向返
108
    std::vector<Line> intanCC(const Circle &c1, const Circle
109
       \hookrightarrow &c2) {
110
      std::vector<Line> ret;
111
      Point p = (c1.0 * c2.r + c2.o * c1.r) / (c1.r + c2.r);
112
      Point p1, p2, q1, q2;
      if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1, q2)) { //
113
         →两圆相切认为没有切线
        ret.push_back(Line(p1, q1));
114
115
        ret.push_back(Line(p2, q2));
      }
116
117
      return ret;
118 }
    bool contain(vector<Point> polygon, Point p) { // 判断点
119
       →p 是否被多边形包含,包括落在边界上
      int ret = 0, n = polygon.size();
120
      for(int i = 0; i < n; ++ i) {
121
122
        Point u = polygon[i], v = polygon[(i + 1) % n];
        if (onSeg(Line(u, v), p)) return true; // Here I
123
124
        if (sign(u.y - v.y) \le 0) swap(u, v);
125
        if (sign(p.y - u.y) > 0 \mid \mid sign(p.y - v.y) \le 0)
           \hookrightarrow continue;
126
        ret += sign(det(p, v, u)) > 0;
127
      }
128
      return ret & 1;
129
    // 用半平面 (q1,q2) 的逆时针方向去切凸多边形
130
    std::vector<Point> convexCut(const std::vector<Point>&ps,
       \hookrightarrow Point q1, Point q2) {
      std::vector<Point> qs; int n = ps.size();
132
      for (int i = 0; i < n; ++i) {
133
        Point p1 = ps[i], p2 = ps[(i + 1) % n];
134
135
        int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2,p2);
136
        if (d1 \ge 0) qs.push_back(p1);
        if (d1 * d2 < 0) qs.push_back(isSS(p1, p2, q1, q2));
137
138
139
      return qs;
140
    // 求凸包
141
142
    std::vector<Point> convexHull(std::vector<Point> ps) {
143
      int n = ps.size(); if (n <= 1) return ps;</pre>
      std::sort(ps.begin(), ps.end());
144
      std::vector<Point> qs;
145
      for (int i = 0; i < n; qs.push_back(ps[i ++]))</pre>
146
        while (qs.size() > 1 && sign(det(qs[qs.size() - 2],
           \hookrightarrow qs.back(), ps[i])) <= 0)
148
          qs.pop_back();
149
      for (int i = n - 2, t = qs.size(); i \ge 0;

    qs.push_back(ps[i --]))
150
        while ((int)qs.size() > t && sign(det(qs[qs.size() -
           \hookrightarrow 2], qs.back(), ps[i])) <= 0)
151
          qs.pop_back();
152
      return qs;
153
```

3.1.2 凸包

```
for (; j \ge 2 \&\& sign(det(shell[j-1] - shell[j-2],
9
10
                 p[i] - shell[j-2])) \le 0; --j)

    shell.pop_back();
11
         shell.push_back(p[i]);
12
    }
13
14
     void make_convex() {
       std::sort(a.begin(), a.end());
15
16
       make_shell(a, lower);
17
       std::reverse(a.begin(), a.end());
       make_shell(a, upper);
19
       a = lower; a.pop_back();
20
       a.insert(a.end(), upper.begin(), upper.end());
       if ((int)a.size() >= 2) a.pop_back();
21
22
       n = a.size():
     7
23
     void init(const std::vector<Point>& _a) {
24
25
       clear(a); a = _a; n = a.size();
26
       make_convex();
27
     void read(int _n) { // Won't make convex.
28
29
       clear(a); n = _n; a.resize(n);
       for (int i = 0; i < n; i++)
30
31
         a[i].read();
32
33
     std::pair<DB, int> get_tangent(
34
         const std::vector<Point>& convex, const Point& vec)
       int l = 0, r = (int)convex.size() - 2;
35
       assert(r >= 0);
36
37
       for (; 1 + 1 < r; ) {
         int mid = (1 + r) / 2;
38
39
         if (sign(det(convex[mid + 1] - convex[mid], vec)) >
           \rightarrow 0)
40
           r = mid:
         else 1 = mid;
41
42
       return std::max(std::make_pair(det(vec, convex[r]),
43
44
           std::make_pair(det(vec, convex[0]), 0));
45
     int binary_search(Point u, Point v, int 1, int r) {
46
47
       int s1 = sign(det(v - u, a[1 % n] - u));
       for (; 1 + 1 < r; ) {
48
49
         int mid = (1 + r) / 2;
50
         int smid = sign(det(v - u, a[mid % n] - u));
         if (smid == s1) l = mid;
51
52
         else r = mid;
53
       return 1 % n;
55
     }
     // 求凸包上和向量 vec 叉积最大的点, 返回编号, 共
56
       →线的多个切点返回任意一个
57
     int get_tangent(Point vec) {
58
       std::pair<DB, int> ret = get_tangent(upper, vec);
       ret.second = (ret.second + (int)lower.size() - 1) % n;
59
60
       ret = std::max(ret, get_tangent(lower, vec));
61
       return ret.second;
    }
62
     // 求凸包和直线 u, v 的交点, 如果不相交返回 false,
63
        →如果有则是和 (i, next(i)) 的交点, 交在点上不
        →确定返回前后两条边其中之一
     bool get_intersection(Point u, Point v, int &i0, int
64
       int p0 = get_tangent(u - v), p1 = get_tangent(v - u);
65
       if (sign(det(v - u, a[p0] - u)) * sign(det(v - u,
66
         \hookrightarrow \texttt{a[p1] - u)) <= 0) \ \{
67
         if (p0 > p1) std::swap(p0, p1);
68
         i0 = binary_search(u, v, p0, p1);
         i1 = binary_search(u, v, p1, p0 + n);
69
70
         return true;
71
72
       else return false;
```

```
73 }
74 };
```

3.1.3 凸包最近点对

```
#include<cstdio>
 2
   #include<cmath>
 3
   #include<cstring>
   #include<iostream>
   #include<algorithm>
   #include<cstdlib>
   #include<queue>
 8
   #include<map>
   #include<stack>
   #include<set>
10
   #define e exp(1.0); //2.718281828
11
   #define mod 1000000007
   #define INF 0x7fffffff
   #define inf 0x3f3f3f3f
15
   typedef long long LL;
16
   using namespace std;
17
18
   #define zero(x) (((x)>0?(x):(-x))<eps)
   const double eps=1e-8;
20
   //判断数 k 的符号 -1 负数 1 正数 0 零
21
22
   int dcmp(double k) {
23
       return k<-eps?-1:k>eps?1:0;
24
25
26
   inline double sqr(double x) {
27
       return x*x;
28
29
   struct point {
30
       double x,y;
31
       point() {}:
32
       point(double a,double b):x(a),y(b) {};
33
       void input() {
34
           scanf("%lf %lf",&x,&y);
35
36
       friend point operator + (const point &a,const point
          37
           return point(a.x+b.x,a.y+b.y);
38
39
       friend point operator - (const point &a, const point
          40
           return point(a.x-b.x,a.y-b.y);
       }
41
42
       friend bool operator == (const point &a,const point
43
           return dcmp(a.x-b.x)==0\&\&dcmp(a.y-b.y)==0;
44
45
       friend point operator * (const point &a,const double
          46
           return point(a.x*b,a.y*b);
47
48
       friend point operator * (const double &a, const point
          49
           return point(a*b.x,a*b.y);
50
       friend point operator / (const point &a, const double
51
52
           return point(a.x/b,a.y/b);
53
       friend bool operator < (const point &a, const point
54
          55
           return a.x < b.x \mid \mid (a.x == b.x && a.y < b.y);
56
57
       double norm() {
58
           return sqrt(sqr(x)+sqr(y));
59
60 };
```

```
1//计算两个向量的叉积
                                                                        //判断点 p 是否在直线 a1a2 上
    double cross(const point &a,const point &b) {
                                                                     127
62
63
        return a.x*b.y-a.y*b.x;
                                                                     128
64
   ۱,
                                                                    129
                                                                        }
65
    double cross3(point A,point B,point C) { //叉乘
        return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
66
                                                                     130
67
   }
                                                                           →相交
    //计算两个点的点积
68
                                                                     131
    double dot(const point &a,const point &b) {
69
                                                                           \hookrightarrow point b2) {
70
        return a.x*b.x+a.y*b.y;
                                                                     132
71
   }
    double dot3(point A, point B, point C) { //点乘
72
                                                                    133
                                                                        }
73
        return (C.x-A.x)*(B.x-A.x)+(C.y-A.y)*(B.y-A.y);
                                                                     134
74
   | }
                                                                     135
75
                                                                           \hookrightarrow point b2) {
    //向量长度
76
                                                                    136
    double length(const point &a) {
77
                                                                    137
        return sqrt(dot(a,a));
78
                                                                    138
79
   }
                                                                     139
    //两个向量的角度
80
                                                                     140
    double angle(const point &a,const point &b) {
                                                                     141
81
        return acos(dot(a,b)/length(a)/length(b));
                                                                     142
82
                                                                         //使点集逆时针转
83
   }
                                                                     143
    //计算两个点的距离
84
                                                                     144
85
    double dist(const point &a,const point &b) {
                                                                     145
                                                                     146
        return (a-b).norm();
86
87
   }
                                                                     147
                                                                             reverse(ch, ch+n);
    //op 沿远点逆时针旋转角度 A
                                                                        }
                                                                     148
88
   point rotate_point(const point &p,double A) {
                                                                     149
89
        double tx=p.x,ty=p.y;
                                                                     150
90
                                                                             sort(P, P + cnt);
        return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
                                                                     151
91
                                                                     152
92 }
                                                                             int m = 0;
                                                                     153
93
    double TriArea(const point &a, const point &b, const point
                                                                     154
      return fabs( cross( b - a, c - a ) ) / 2;
                                                                     155
94
95
   }
                                                                     156
96
    point Normal(const point &a) {
                                                                                    m--:
                                                                                 res[m++] = P[i];
                                                                     157
97
        double L = length(a);
                                                                     158
                                                                             }
98
        return point(-a.y/L, a.x/L);
                                                                     159
                                                                             int k = m;
   1
99
                                                                     160
    //求两条直线的交点, p 和 q 分别为两条直线上的点, v
100
                                                                     161
      →和 w 分别为直线的方向向量
101
    point GetLineIntersection(point p, point v, point q, point
                                                                     162
                                                                                     m--:
      \hookrightarrow W) {
                                                                     163
                                                                                 res[m++] = P[i];
        point u = p - q;
102
                                                                             }
                                                                     164
        double t = cross(w, u) / cross(v, w);
103
                                                                     165
                                                                             if (cnt > 1) m--;
104
        return p + v * t;
                                                                     166
                                                                             return m;
105
   1 }
                                                                     167
    //求点 p 到直线 ab 的距离
106
                                                                    168
    double DistanceToLine(point p, point a, point b) {
                                                                         //判断点是否在多边形内
                                                                     169
108
        point v1 = b - a, v2 = p - a;
                                                                    170
109
        return fabs(cross(v1,v2)) / length(v1);
                                                                     171
                                                                             int cnt = 0;
110 }
                                                                     172
    //求点 p 到线段 ab 的距离
111
                                                                     173
    double DistanceToSegment(point p, point a, point b) {
112
                                                                     174
        if(a==b) return length(p - a);
113
                                                                     175
114
        point v1 = b - a, v2 = p - a, v3 = p - b;
                                                                     176
        if(dcmp(dot(v1,v2)) < 0) return length(v2);</pre>
115
                                                                     177
116
        else if(dcmp(dot(v1,v3)) > 0) return length(v3);
                                                                     178
                                                                                     cnt++;
117
        else return fabs(cross(v1,v2)) / length(v1);
                                                                     179
118 }
                                                                     180
                                                                                     cnt++;
    //判断直线 a1a2 和直线 b1b2 是否规范相交
119
                                                                     181
120
    bool SegmentProperIntersection(point a1, point a2, point
                                                                     182
                                                                             }
      \hookrightarrow b1, point b2) {
                                                                     183
                                                                             if(cnt&1)return 1;
        double c1 = cross(a2-a1,b1-a1), c2 = cross(a2-a1,b1-a1)
                                                                     184
                                                                             return 0;
           \hookrightarrow b2-a1);
                                                                     185
122
        double c3 = cross(b2-b1, a1-b1), c4 = cross(b2-b1,
                                                                         //判断凸包是否相离
           \hookrightarrow a2-b1):
                                                                     187
        return dcmp(c1) * dcmp(c2) <0 && dcmp(c3) * dcmp(c4) <
123
                                                                           \hookrightarrow *chb, int m1) {
           if (n1==1 && m1==1) {
                                                                     188
124 }
                                                                     189
                                                                                 if(cha[0] == chb[0])
125
```

```
bool OnSegment(point p, point a1, point a2) {
    return dcmp(cross(a1-p,a2-p)) ==0 &&
       \hookrightarrow dcmp(dot(a1-p,a2-p))<0;
//判断线段 a1a2 和线段 b1b2 是否相交, 可以在端点处
bool SegmentIntersection(point a1, point a2, point b1,
    return SegmentProperIntersection(a1, a2, b1, b2) ||

    OnSegment(a1, b1, b2) || OnSegment(a2, b1, b2);
double SegmentToSegment(point a1, point a2, point b1,
    //线段间的最短距离分为四种情况
    double t1 = DistanceToSegment(b1, a1, a2);
    double t2 = DistanceToSegment(b2, a1, a2);
    double t3 = DistanceToSegment(a1, b1, b2);
    double t4 = DistanceToSegment(a2, b1, b2);
    return min(t1,min(t2,min(t3,t4)));
void antiClockSort(point *ch, int n) {
    double res = cross(ch[1] - ch[0], ch[2] - ch[0]);
    if(dcmp(res) >= 0) return;
int ConvexHull(point* P, int cnt, point* res) {
    cnt = (int) (unique(P, P + cnt) - P);
    for (int i = 0; i < cnt; i++) {
        while (m > 1 && cross(res[m - 1] - res[m - 2],
          \hookrightarrow P[i] - res[m - 2]) \le 0
    for (int i = cnt - 2; i >= 0; i--) {
        while (m > k \&\& cross(res[m - 1] - res[m - 2],
          \hookrightarrow P[i] - res[m - 2]) \le 0
int isPointInPolygon(point p, point *a, int n) {
    for(int i=0; i<n; ++i) {</pre>
        if(OnSegment(p, a[i], a[(i+1)%n])) return -1;
        double k = cross(a[(i+1)%n]-a[i], p-a[i]);
        double d1 = a[i].y - p.y;
    double d2 = a[(i+1)].y - p.y;
        if(k>0 &&d1<=0 &&d2>0)//点在线段的左侧
        if(k<0 &&d2<=0 &&d1>0)//点在线段的右侧
        //k==0, 点和线段共线的情况不考虑
bool two_getaway_ConvexHull(point *cha, int n1, point
```

```
190
                 return false:
191
        } else if(n1==1 && m1==2) {
192
             if(OnSegment(cha[0], chb[0], chb[1]))
193
                 return false:
        else if(n1==2 \&\& m1==1) {
194
             if(OnSegment(chb[0], cha[0], cha[1]))
195
196
                 return false:
        } else if(n1==2 && m1==2) {
197
198
             if(SegmentIntersection(cha[0], cha[1], chb[0],
                \hookrightarrow chb[1])
199
                 return false:
200
        } else if(n1==2) {
201
             for(int i=0; i<n1; ++i)</pre>
202
                 if(isPointInPolygon(cha[i], chb, m1))
203
                     return false:
        } else if(m1==2) {
204
             for(int i=0; i<m1; ++i)</pre>
205
206
                 if(isPointInPolygon(chb[i], cha, n1))
207
                     return false;
        } else {
208
209
             for(int i=0; i<n1; ++i) {</pre>
                 for(int j=0; j<m1; ++j) {</pre>
210
                     if(SegmentIntersection(cha[i],
211
                        \hookrightarrow cha[(i+1)%n1], chb[j],
                        \hookrightarrow \text{chb}[(j+1)\%m1]))
212
                          return false;
213
                 }
             }
214
             for(int i=0; i<n1; ++i)</pre>
215
                 if(isPointInPolygon(cha[i], chb, m1))
216
217
                     return false;
             for(int i=0; i<m1; ++i)</pre>
218
219
                 if(isPointInPolygon(chb[i], cha, n1))
220
                     return false;
221
222
        return true;
223
    //旋转卡壳求两个凸包最近距离
224
225
    double solve(point *P, point *Q, int n, int m) {
226
        if(n==1 \&\& m==1) {
227
             return length(P[0] - Q[0]);
        } else if(n==1 && m==2) {
228
229
            return DistanceToSegment(P[0], Q[0], Q[1]);
230
        } else if(n==2 && m==1) {
             return DistanceToSegment(Q[0], P[0], P[1]);
231
        } else if(n==2 && m==2) {
232
233
             return SegmentToSegment(P[0], P[1], Q[0], Q[1]);
234
        }
235
236
        int yminP = 0, ymaxQ = 0;
237
        for(int i=0; i<n; ++i) if(P[i].y < P[yminP].y) yminP =</pre>
238
         for(int i=0; i<m; ++i) if(Q[i].y > Q[ymaxQ].y) ymaxQ =
           \hookrightarrow i;
239
        P[n] = P[0];
        Q[n] = Q[0];
240
241
        double INF2 = 1e100;
242
        double arg, ans = INF2;
243
244
        for(int i=0; i<n; ++i) {</pre>
             //当叉积负正转正时,说明点 ymaxQ 就是对踵点
245
             while((arg=cross(P[yminP] - P[yminP+1],Q[ymaxQ+1]
246
                \hookrightarrow - Q[ymaxQ])) < -eps)
247
                 ymaxQ = (ymaxQ+1)%m;
248
             double ret;
249
             if(arg > eps) { //卡住第二个凸包上的点。
250
251
                 ret = DistanceToSegment(Q[ymaxQ], P[yminP],
                    \hookrightarrow P[yminP+1]);
                 ans = min(ans,ret);
             } else { //arg==0, 卡住第二个凸包的边
253
254
```

```
255
                 ans = min(ans,ret);
256
             }
257
             yminP = (yminP+1)%n;
         }
258
259
         return ans;
260
    }
    double mindis_twotubao(point *P, point *Q, int n, int m){
         //尼玛, hdu2823 要判是否分离, poj3608 不判
262
         //return min(solve(P, Q, n, m),solve(Q,P,m,n));
         //判断凸包是不是相离,如果不是,输出 o
264
         if(two_getaway_ConvexHull(P,n,Q,m)==true) return
265
            \hookrightarrow \min(\text{solve}(P, Q, n, m), \text{solve}(Q, P, m, n));
266
         else return 0.0;
267
268
269
    const int N=10005;
    point a[N],b[N];
271
    point cha[N],chb[N];
272
    int main() {
273
        int n.m:
274
         while (scanf("%d%d",&n,&m)!=EOF){
275
             for(int i=0;i<n;++i)</pre>
                \hookrightarrow scanf("%lf%lf",&a[i].x,&a[i].y);
             for(int i=0;i<m;++i)</pre>
276
                \hookrightarrow scanf("%lf%lf",&b[i].x,&b[i].y);
             //先求凸包
277
             int n1 = ConvexHull(a, n, cha);
278
             int m1 = ConvexHull(b, m, chb);
279
280
             printf("%.4f\n",mindis_twotubao(cha,chb,n1,m1));
281
282
         return 0:
283
```

3.1.4 三角形的心

```
1 Point inCenter(const Point &A, const Point &B, const Point
      → &C) { // 内心
     double a = (B - C).len(), b = (C - A).len(), c = (A -
        \hookrightarrow B).len(),
 3
       s = fabs(det(B - A, C - A)),
       r = s / p;
 4
 5
     return (A * a + B * b + C * c) / (a + b + c);
 6
  }
 7
   Point circumCenter(const Point &a, const Point &b, const
     → Point &c) { // 外心
 8
     Point bb = b - a, cc = c - a;
     double db = bb.len2(), dc = cc.len2(), d = 2 * det(bb)
 9
     return a - Point(bb.y * dc - cc.y * db, cc.x * db - bb.x
        \rightarrow * dc) / d:
11
   }
12
   Point othroCenter(const Point &a, const Point &b, const
     → Point &c) { // 垂心
     Point ba = b - a, ca = c - a, bc = b - c;
13
14
     double Y = ba.y * ca.y * bc.y,
          A = ca.x * ba.y - ba.x * ca.y,
15
16
          x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) /
          y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
17
     return Point(x0, y0);
18
19 }
```

3.1.5 半平面交

```
t = DistanceToSegment(Q[ymaxQ], P[yminP],

→ P[yminP+1]);

s = min(ans,ret);
{ //arg==0, 卡住第二个凸包的边

t =

→ SegmentToSegment(P[yminP],P[yminP+1],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q[ymaxQ],Q
```

```
Line push() const{ // 将半平面向外推 eps
 6
 7
        const double eps = 1e-6;
 8
        Point delta = (b - a).turn90().norm() * eps;
9
        return Line(a - delta, b - delta);
10
    }
11 };
   | bool sameDir(const Line &10, const Line &11) { return
      \hookrightarrow parallel(10, 11) && sign(dot(10.b - 10.a, 11.b -
      \hookrightarrow 11.a)) == 1; }
13
   bool operator < (const Point &a, const Point &b) {
     if (a.quad() != b.quad()) {
14
15
        return a.quad() < b.quad();</pre>
16
      } else {
17
        return sign(det(a, b)) > 0;
18
   l٦
19
   bool operator < (const Line &10, const Line &11) {
20
21
     if (sameDir(10, 11)) {
22
        return 11.include(10.a);
23
        return (10.b - 10.a) < (11.b - 11.a);
24
     }
25
26
   | }
27
   bool check(const Line &u, const Line &v, const Line &w) {

    return w.include(intersect(u, v)); }

28
   vector<Point> intersection(vector<Line> &1) {
29
      sort(1.begin(), 1.end());
      deque<Line> q;
30
     for (int i = 0; i < (int)1.size(); ++i) {</pre>
31
        if (i && sameDir(l[i], l[i - 1])) {
32
33
          continue;
34
        }
35
        while (q.size() > 1 && !check(q[q.size() - 2],
           \hookrightarrow q[q.size() - 1], l[i])) q.pop_back();
36
        while (q.size() > 1 && !check(q[1], q[0], 1[i]))
           \hookrightarrow q.pop\_front();
        q.push_back(l[i]);
37
38
39
      while (q.size() > 2 && !check(q[q.size() - 2],
         \label{eq:qqsize} \leftarrow \texttt{q[q.size() - 1], q[0])) \ q.pop\_back();}
      while (q.size() > 2 && !check(q[1], q[0], q[q.size() -
40
        _{\hookrightarrow}\, 1 \clim{t})) \ \ q.\, pop\_front();
41
      vector<Point> ret;
      for (int i = 0; i < (int)q.size(); ++i)</pre>
         \hookrightarrow ret.push_back(intersect(q[i], q[(i + 1) %
         \hookrightarrow q.size()]));
43
      return ret;
44 }
```

3.1.6 最大空凸包

```
1 #include <iostream>
2
  #include <cmath>
3
   #include <cstdio>
   #include <algorithm>
5
   using namespace std;
   typedef double type_p;
   const double eps = 1e-6;
   const int maxn = 510;
   double dp[maxn] [maxn];
10 inline double eq(double x, double y)
11 {
12
       return fabs(x-y)<eps;</pre>
13 }
14 inline int eq(int x, int y)
15 | {
16
       return x==y;
17
  }
18
   struct point
19
   {
20
       type_p x,y;
21 }:
22 type_p xmult(point a, point b, point o)
```

```
23 {
        return (a.x-o.x)*(o.y-b.y)-(a.y-o.y)*(o.x-b.x);//b at
24

→ ao left if negative, at right if positive

   }
25
26
   type_p dist(point a, point b)
27
28
        return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
29
   }
30
   point o;
31
   bool cmp_angle(point a,point b)
32
33
        if(eq(xmult(a,b,o),0.0))
34
        {
35
            return dist(a,o)<dist(b,o);</pre>
36
37
        return xmult(a,o,b)>0;
   }
38
39
40
   Input: p: Point set
            pn: size of the point set
42
43
   Output: the area of the largest empty convex
44
45
   double empty_convex(point *p, int pn)
46
47
        double ans=0;
48
        for(int i=0; i<pn; i++)</pre>
49
50
            for(int j=0; j<pn; j++)</pre>
51
            {
                 dp[i][j]=0;
53
            }
54
        }
55
56
        for(int i=0; i<pn; i++)</pre>
57
58
            int j = i-1;
59
            while(j \ge 0 && eq(xmult(p[i], p[j],
               \hookrightarrow o),0.0))j--;//coline
60
61
            bool flag= j==i-1;
62
63
            while(j>=0)
            {
65
                 int k = j-1;
66
                 while(k >= 0 && xmult(p[i],p[k],p[j])>0)k--;
67
                 double area = fabs(xmult(p[i],p[j],o))/2;
68
                 if(k >= 0)area+=dp[j][k];
69
                 if(flag) dp[i][j]=area;
70
                 ans=max(ans,area);
71
                 j=k;
72
            }
            if(flag)
73
74
            {
75
                 for(int j=1; j<i; j++)</pre>
76
77
                     dp[i][j] = max(dp[i][j],dp[i][j-1]);
78
                 }
79
            }
80
81
        return ans;
82
   double largest_empty_convex(point *p, int pn)
83
84
85
        point data[maxn];
86
        double ans=0:
87
        for(int i=0; i<pn; i++)</pre>
88
89
            o=p[i];
90
            int dn=0;
91
            for(int j=0; j<pn; j++)</pre>
92
93
                 if(p[j].y>o.y||(p[j].y==o.y&&p[j].x>=o.x))
```

```
94
 95
                      data[dn++]=p[j];
 96
             }
 97
 98
             sort(data, data+dn, cmp_angle);
             ans=max(ans, empty_convex(data, dn));
 99
100
101
         return ans;
102
    }
103
    int main()
104
    {
         point p[110];
105
106
         int t;
         scanf("%d",&t);
107
108
         while(t--)
109
             int pn;
110
111
             scanf("%d",&pn);
112
             for(int i=0; i<pn; i++)</pre>
113
114
                 scanf("%lf%lf",&p[i].x,&p[i].y);
             }
115
             printf("%.1f\n",largest_empty_convex(p,pn));
116
117
118
         return 0;
119
```

3.1.7 平面最近点对

```
1
   double Dis(Point a, Point b) {
2
    return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
3
  | }
4
   double Closest_Pair(int left, int right) {
5
     double d = INF:
     if(left == right) return d;
6
7
     if(left +1 == right)
8
      return Dis(p[left],p[right]);
9
     int mid = (left+right)>>1;
     double d1 = Closest_Pair(left,mid);
10
11
     double d2 = Closest_Pair(mid,right);
12
     d = min(d1,d2);
     int k = 0;
13
14
     for(int i = left; i <= right; i++) {</pre>
      if(fabs(p[mid].x - p[i].x) \le d)
15
16
         temp[k++] = p[i];
17
18
     sort(temp,temp+k,cmpy);
19
     for(int i = 0; i < k; i++) {</pre>
       for(int j = i+1; j < k && temp[j].y - temp[i].y < d;
20
          double d3 = Dis(temp[i],temp[j]);
21
22
         d = min(d,d3);
23
24
     }
25
     return d;
26
```

3.1.8 最小覆盖圆

```
1 | #include < cmath >
2 #include<cstdio>
3 #include<algorithm>
4 using namespace std;
5
   const double eps=1e-6;
6
   struct couple
7
   {
     double x, y;
8
9
     couple(){}
10
     couple(const double &xx, const double &yy)
11
12
       x = xx; y = yy;
13
```

```
14 } a[100001];
15
   //dis means distance, dis2 means square of it
17
   struct circle {
    double r; couple c;
18
19 } cir;
   inline bool inside(const couple & x) {
     return di2(x, cir.c) < cir.r*cir.r+eps;</pre>
21
22
   }
23
   inline void p2c(int x, int y) {
     cir.c.x = (a[x].x+a[y].x)/2;
24
25
     cir.c.y = (a[x].y+a[y].y)/2;
26
     cir.r = dis(cir.c, a[x]);
27
28
   inline void p3c(int i, int j, int k) {
29
     couple x = a[i], y = a[j], z = a[k];
     cir.r =
30
        \rightarrow sqrt(di2(x,y)*di2(y,z)*di2(z,x))/fabs(x*y+y*z+z*x)/2;
     couple t1((x-y).x, (y-z).x), t2((x-y).y, (y-z).y),
        \hookrightarrow t3((len(x)-len(y))/2, (len(y)-len(z))/2);
32
     cir.c = couple(t3*t2, t1*t3)/(t1*t2);
33
   inline circle mi() {
34
35
     sort(a + 1, a + 1 + n);
36
     n = unique(a + 1, a + 1 + n) - a - 1;
37
     if(n == 1) {
38
       cir.c = a[1];
       cir.r = 0:
39
40
       return cir;
41
42
     random\_shuffle(a + 1, a + 1 + n);
43
     p2c(1, 2);
44
     for(int i = 3; i <= n; i++)
45
       if(!inside(a[i])) {
46
         p2c(1, i);
47
         for(int j = 2; j < i; j++)
48
            if(!inside(a[j])) {
49
              p2c(i, j);
50
              for(int k = 1; k < j; k++)
51
                if(!inside(a[k]))
52
                  p3c(i,j, k);
53
       }
55
     return cir;
56
```

3.1.9 多边形内部可视

```
int C(const Point & P, const Point & A, const Point & Q,
      \hookrightarrow \texttt{const} Point & B) {
 2
     Point C = GetIntersection(P, A - P, Q, Q - B);
 3
     return OnLine(Q, C, B);
4
   }
5
   int Onleft(const Point & a, const Point &b, const Point &
 6
     return dcmp(Cross(b - c, a - c)) > 0;
 7
 8
   int visible(int x, int y) {
     int P = (x + n - 1) \% n, Q = (x + 1) \% n;
9
     Point u = p[y] - p[x], v = p[x] - p[P], w = p[x] - p[Q];
10
     if (Onleft(p[Q], p[x], p[P])) {
11
       return dcmp(Cross(v, u)) > 0 && dcmp(Cross(w, u)) < 0;
12
13
14
       return !(dcmp(Cross(v, u)) < 0 && dcmp(Cross(w, u)) >
          \leftrightarrow 0):
15
16
   int solve(int x, int y) {
17
     if (vis[x][y] == dfn) return g[x][y];
18
19
     vis[x][y] = dfn;
     if (x == y || y == x + 1) return g[x][y] = 1;
20
     for (int i = x; i + 1 <= y; i++) {
```

```
if (C(p[x], p[y], p[i], p[i + 1])) return g[x][y] = 0;
22
23
24
    for (int i = x + 1; i < y; i++) {
25
      if (OnLine(p[x], p[i], p[y])) {
       26
27
28
    }
    if (!visible(x, y) || !visible(y, x)) return g[x][y] =
29
30
    return g[x][y] = 1;
31 | }
```

3.1.10 V 图

```
1 const int AIX = 5;
2
   const int MAXM = AIX * MAXN;
3
4
  struct point {
5
     double x, y;
     int index;
6
     struct Edge *in;
8
     point(double _x = 0, double _y = 0) : x(_x), y(_y) {}
9 };
10 | inline bool operator< (const point &a, const point &b) {
    return a.x < b.x \mid \mid (sgn(a.x - b.x) == 0 \&\& a.y < b.y);
11
12 }
13 inline double cross(const point &a, const point &b, const
      \hookrightarrow point &c) { return det
14
       (b - a, c - a); }
15
   struct Edge {
16
     point *Org, *Dest;
17
     Edge *Onext, *Oprev, *Dnext, *Dprev;
18
  };
   inline point* Other(const Edge *e, const point *p) {
19
      \hookrightarrow return e->0rg == p ?
20
        e->Dest : e->Org; }
   inline Edge* Next(const Edge *e, const point *p) { return
21
      \hookrightarrow e->0rg == p ? e->0next
22
        : e->Dnext; }
23
   inline Edge* Prev(const Edge *e, const point *p) { return
      \hookrightarrow e->0rg == p ? e->0prev
24
        : e->Dprev; }
25
   struct gEdge {
26
     int u, v;
27
     double w;
28
     gEdge() {}
29
     gEdge(int _u, int _v, double _w) : u(_u), v(_v), w(_w)
30 };
31 inline bool operator< (const gEdge &a, const gEdge &b) {

    return a.w < b.w; }
</pre>
32 point p[MAXN], *Q[MAXN];
33 Edge mem[AIX * MAXN], *elist[AIX * MAXN];
34 static int nfree;
35
  //Alloc memory
   inline void Alloc_Memory(const int &n) {
36
37
     nfree = AIX * n;
38
     Edge *e = mem;
39
     for (int i = 0; i < nfree; ++i)</pre>
       elist[i] = e++;
40
41 }
42 //Add an edge to a ring of edges
43 inline void Splice(Edge *a, Edge *b, point *v) {
44
     Edge *next;
45
     if (a->0rg == v)
       next = a->Onext, a->Onext = b;
46
47
48
       next = a->Dnext, a->Dnext = b;
49
     if (next->Org == v)
50
       next->Oprev = b;
51
     else
       next->Dprev = b:
52
     if (b->0rg == v)
53
```

```
54
        b->0next = next, b->0prev = a;
 55
 56
        b->Dnext = next, b->Dprev = a;
57
    }
    //Initialise a new edge
58
    inline Edge *MakeEdge(point *u, point *v) {
59
      Edge *e = elist[--nfree];
      e->Onext = e->Oprev = e->Dnext = e->Dprev = e;
62
      e->0rg = u, e->Dest = v;
63
      if (!u->in)
64
        u->in = e;
65
      if (!v->in)
66
        v->in = e;
 67
 68
 69
    //Creates a new edge and adds it to two rings of edges.
    inline Edge *Join(Edge *a, point *u, Edge *b, point *v,
 70
       \hookrightarrow int side) {
71
      Edge *e = MakeEdge(u, v);
      if (side == 1) {
73
        if (a->Org == u)
 74
          Splice(a->Oprev, e, u);
 75
        else
 76
          Splice(a->Dprev, e, u);
 77
        Splice(b, e, v);
 78
 79
80
        Splice(a, e, u);
        if (b->0rg == v)
81
          Splice(b->Oprev, e, v);
82
83
          Splice(b->Dprev, e, v);
84
85
      }
86
      return e;
87
 88
    //Remove an edge
 89
    inline void Remove(Edge *e) {
      point *u = e \rightarrow 0rg, *v = e \rightarrow Dest;
      if (u->in == e)
91
92
        u->in = e->0next;
93
      if (v->in == e)
 94
        v->in = e->Dnext;
 95
      if (e->0next->0rg == u)
 96
        e->Onext->Oprev = e->Oprev;
97
98
        e->Onext->Dprev = e->Oprev;
99
      if (e->Oprev->Org == u)
100
        e->Oprev->Onext = e->Onext;
101
102
        e->Oprev->Dnext = e->Onext;
103
      if (e->Dnext->Org == v)
104
        e->Dnext->Oprev = e->Dprev;
105
      else
106
        e->Dnext->Dprev = e->Dprev;
107
      if (e->Dprev->Org == v)
108
        e->Dprev->Onext = e->Dnext;
109
110
        e->Dprev->Dnext = e->Dnext;
      elist[nfree++] = e;
111
112
113
    //Determines the lower tangent of two triangulations
    inline void Low_tangent(Edge *e_1, point *o_1, Edge *e_r,
       → point *o_r, Edge
115
          **l_low, point **OL, Edge **r_low, point **OR) {
      point *d_1 = Other(e_1, o_1), *d_r = Other(e_r, o_r);
117
      while (true) {
        if (cross(*o_1, *o_r, *d_1) < -EPS) {</pre>
118
119
          e_l = Prev(e_l, d_l);
120
          o_1 = d_1;
121
          d_1 = Other(e_1, o_1);
122
123
        else if (cross(*o_l, *o_r, *d_r) < -EPS) {
124
          e_r = Next(e_r, d_r);
```

```
125
           or = dr:
126
           d_r = Other(e_r, o_r);
                                                                        197
127
        }
                                                                        198
                                                                               while (true);
128
        else
                                                                        199
                                                                             inline void Divide(int s, int t, Edge **L, Edge **R) {
129
          break;
                                                                        200
                                                                               Edge *a, *b, *c, *ll, *lr, *rl, *rr, *tangent;
130
                                                                        201
      *OL = o_1, *OR = o_r;
                                                                               int n = t - s + 1;
131
                                                                               if (n == 2)
132
      *l_low = e_l, *r_low = e_r;
                                                                        203
133 }
                                                                        204
                                                                                 *L = *R = MakeEdge(Q[s], Q[t]);
134
    inline void Merge(Edge *lr, point *s, Edge *rl, point *u,
                                                                        205
                                                                               else if (n == 3) {
                                                                                 a = MakeEdge(Q[s], Q[s + 1]);

→ Edge **tangent) {
                                                                        206
      double cot_L, cot_R, N1, cot_N, P1, cot_P;
                                                                        207
                                                                                 b = MakeEdge(Q[s + 1], Q[t]);
135
136
      point 11, 12, r1, r2, uu, vv;
                                                                        208
                                                                                 Splice(a, b, Q[s + 1]);
      point *0, *D, *OR, *OL;
                                                                        209
                                                                                 double v = cross(*Q[s], *Q[s + 1], *Q[t]);
137
138
      Edge *B, *L, *R;
                                                                        210
                                                                                 if (v > EPS) {
                                                                                   c = Join(a, Q[s], b, Q[t], 0);
130
      Low_tangent(lr, s, rl, u, &L, &OL, &R, &OR);
                                                                        211
      *tangent = B = Join(L, OL, R, OR, O);
                                                                                   *L = a, *R = b;
140
                                                                        212
141
      0 = OL, D = OR;
                                                                        213
142
                                                                        214
                                                                                 else if (v < -EPS) {
        Edge *El = Next(B, O), *Er = Prev(B, D), *next, *prev;
                                                                                   c = Join(a, Q[s], b, Q[t], 1);
143
144
        point *l = Other(El, O), *r = Other(Er, D);
                                                                        216
                                                                                   *L = c, *R = c;
        11 = *0 - *1, 12 = *D - *1, r1 = *0 - *r, r2 = *D -
                                                                                 }
145
                                                                        217
                                                                        218
                                                                                 else
           → *r:
        double c1 = det(11, 12), cr = det(r1, r2);
                                                                        219
                                                                                   *L = a, *R = b;
146
        bool BL = cl > EPS, BR = cr > EPS;
                                                                        220
148
        if (!BL && !BR)
                                                                        221
                                                                               else if(n > 3) {
149
          break;
                                                                        222
                                                                                 int split = (s + t) / 2;
        if (BL) {
                                                                                 Divide(s, split, &ll, &lr);
150
                                                                        223
          double dl = dot(11, 12);
                                                                                 Divide(split + 1, t, &rl, &rr);
                                                                        224
151
          cot_L = dl / cl;
                                                                                 Merge(lr, Q[split], rl, Q[split + 1], &tangent);
152
                                                                        225
153
          do {
                                                                        226
                                                                                 if (tangent->Org == Q[s])
            next = Next(E1, 0);
                                                                                   11 = tangent;
154
                                                                        227
155
             uu = *0 - *0ther(next, 0);
                                                                        228
                                                                                 if (tangent->Dest == Q[t])
156
             vv = *D - *Other(next, 0);
                                                                        229
                                                                                   rr = tangent;
            N1 = det(uu, vv);
                                                                                 *L = 11; *R = rr;
157
                                                                        230
             if (!(N1 > EPS))
                                                                        231
158
               break;
159
                                                                        232
             cot_N = dot(uu, vv) / N1;
                                                                             int task, n, m, k, root[MAXN];
160
161
             if (cot_N > cot_L)
                                                                        234
                                                                             gEdge E[MAXM], MST[MAXN];
                                                                             inline int Make_Graph() {
162
              break:
                                                                        235
                                                                              Edge *start, *e;
163
             Remove(E1):
                                                                        236
             El = next;
                                                                        237
                                                                               int M = 0;
164
165
             cot_L = cot_N;
                                                                        238
                                                                              point *u, *v;
          }
166
                                                                               for(int i = 0; i < n; ++i) {</pre>
167
          while (true);
                                                                        240
                                                                                 u = p + i;
168
        }
                                                                        241
                                                                                 start = e = u->in;
        if (BR) {
169
                                                                        242
                                                                                 do {
170
          double dr = dot(r1, r2);
                                                                        243
                                                                                   v = Other(e, u);
171
           cot_R = dr / cr;
                                                                        244
                                                                                   if (u < v)
172
                                                                        245
                                                                                     E[M++] = gEdge(u - p + 1, v - p + 1, dis(*u, *v));
173
             prev = Prev(Er, D);
                                                                        246
                                                                                   e = Next(e, u);
                                                                                 }
174
            uu = *0 - *0ther(prev, D);
                                                                        247
             vv = *D - *Other(prev, D);
175
                                                                        248
                                                                                 while(e != start);
             P1 = det(uu, vv);
                                                                              }
176
                                                                        249
177
             if (!(P1 > EPS))
                                                                        250
                                                                               return M;
178
               break;
                                                                        251
179
             cot_P = dot(uu, vv) / P1;
                                                                             int find_root(const int &x) { return root[x] ? root[x] =
180
             if (cot_P > cot_R)
                                                                               \hookrightarrow find_root(root[x]) : x;
                                                                                  }
181
               break;
                                                                        253
182
             Remove(Er):
                                                                        254
                                                                             inline bool merge(const int &x. const int &v) {
                                                                               int p = find_root(x), q = find_root(y);
183
             Er = prev;
                                                                        255
                                                                               if (p != q) {
184
             cot_R = cot_P;
                                                                        256
185
          }
                                                                        257
                                                                                 root[p] = q;
186
          while (true);
                                                                                 return true;
                                                                              }
187
                                                                        259
        1 = Other(E1, 0); r = Other(Er, D);
188
                                                                        260
                                                                               else
189
         if (!BL || (BL && BR && cot_R < cot_L)) {</pre>
                                                                        261
                                                                                 return false;
          B = Join(B, 0, Er, r, 0);
190
                                                                        262
191
          D = r;
                                                                             inline void kruskal(gEdge *E, int m, int n, gEdge* MST) {
                                                                        263
192
        }
                                                                        264
                                                                              for (int i = 1; i <= n; ++i)
                                                                                 root[i] = 0:
193
        else {
                                                                        265
                                                                               sort(E, E + m);
194
          B = Join(E1, 1, B, D, 0);
                                                                        266
195
          0 = 1;
                                                                              int tot = 0;
```

```
for (int i = 0; i < m; ++i)
        if (merge(E[i].u, E[i].v))
269
270
          MST[tot++] = E[i];
271 }
   inline void MinimumEuclideanSpaningTree(point* p, int n,
272
      Alloc_Memory(n);
      sort(p, p + n);
274
275
      for (int i = 0; i < n; ++i)
276
        Q[i] = p + i;
277
      Edge *L, *R;
278
      Divide(0, n - 1, &L, &R);
279
      m = Make_Graph();
280
      kruskal(E, m, n, MST);
281 }
    int main() {
282
      for (scanf("%d", &task); task--; ) {
283
284
        scanf("%d", &k);
285
        for (n = 0; scanf("%lf", &p[n].x) == 1 && p[n].x !=
           \hookrightarrow -1: ++n) {
          scanf("%lf", &p[n].y);
286
          p[n].in = NULL;
287
          p[n].index = n;
289
290
        if (n == 1) {
291
          printf("0\n");
292
          continue;
293
        MinimumEuclideanSpaningTree(p, n, MST);
294
        printf("%d\n", int(ceil(k > n ? 0 : MST[n - k - 1].w))
295
296
297
   }
```

3.2 三维

3.2.1 三维点类

```
1 // 三维绕轴旋转,大拇指指向 axis 向量方向,四指弯曲
     →方向转 w 弧度
2 Point rotate(const Point& s, const Point& axis, DB w) {
    DB x = axis.x, y = axis.y, z = axis.z;
3
    DB s1 = x * x + y * y + z * z, ss1 = msqrt(s1),
       cosw = cos(w), sinw = sin(w);
6
    DB a[4][4];
7
     memset(a, 0, sizeof a);
     a[3][3] = 1:
8
9
     a[0][0] = ((y * y + z * z) * cosw + x * x) / s1;
10
     a[0][1] = x * y * (1 - cosw) / s1 + z * sinw / ss1;
11
     a[0][2] = x * z * (1 - cosw) / s1 - y * sinw / ss1;
12
     a[1][0] = x * y * (1 - cosw) / s1 - z * sinw / ss1;
    a[1][1] = ((x * x + z * z) * cosw + y * y) / s1;
13
    a[1][2] = y * z * (1 - cosw) / s1 + x * sinw / ss1;
14
    a[2][0] = x * z * (1 - cosw) / s1 + y * sinw / ss1;
15
    a[2][1] = y * z * (1 - cosw) / s1 - x * sinw / ss1;
16
    a[2][2] = ((x * x + y * y) * cos(w) + z * z) / s1;
17
18
    DB ans [4] = \{0, 0, 0, 0\}, c[4] = \{s.x, s.y, s.z, 1\};
    for (int i = 0; i < 4; ++ i)
19
      for (int j = 0; j < 4; ++ j)
20
21
        ans[i] += a[j][i] * c[j];
     return Point(ans[0], ans[1], ans[2]);
22
23 }
```

3.2.2 凸包

```
1  __inline P cross(const P& a, const P& b) {
2   return P(
3          a.y * b.z - a.z * b.y,
4          a.z * b.x - a.x * b.z,
5          a.x * b.y - a.y * b.x
6          );
7 }
```

```
9
   __inline DB mix(const P& a, const P& b, const P& c) {
10
    return dot(cross(a, b), c);
11
12
   __inline DB volume(const P& a, const P& b, const P& c,
13
      return mix(b - a, c - a, d - a);
14
15
   }
16
17
   struct Face {
18
     int a. b. c:
     __inline Face() {}
19
     __inline Face(int _a, int _b, int _c):
20
21
       a(_a), b(_b), c(_c) {}
     __inline DB area() const {
22
      return 0.5 * cross(p[b] - p[a], p[c] - p[a]).len();
23
24
     __inline P normal() const {
      return cross(p[b] - p[a], p[c] - p[a]).unit();
26
27
     __inline DB dis(const P& p0) const {
28
29
      return dot(normal(), p0 - p[a]);
30
31
32
33
   std::vector<Face> face, tmp; // Should be O(n).
   int mark[N][N], Time, n;
34
35
   __inline void add(int v) {
36
37
     ++ Time;
     clear(tmp);
38
39
     for (int i = 0; i < (int)face.size(); ++ i) {</pre>
40
       int a = face[i].a, b = face[i].b, c = face[i].c;
41
       if (sign(volume(p[v], p[a], p[b], p[c])) > 0) {
42
         mark[a][b] = mark[b][a] = mark[a][c] =
43
           mark[c][a] = mark[b][c] = mark[c][b] = Time;
       }
44
45
       else {
46
         tmp.push_back(face[i]);
47
48
49
     clear(face); face = tmp;
     for (int i = 0; i < (int)tmp.size(); ++ i) {</pre>
51
       int a = face[i].a, b = face[i].b, c = face[i].c;
       if (mark[a][b] == Time) face.emplace_back(v, b, a);
52
53
       if (mark[b][c] == Time) face.emplace_back(v, c, b);
       if (mark[c][a] == Time) face.emplace_back(v, a, c);
54
55
       assert(face.size() < 500u);
56
57
   }
58
59
   void reorder() {
    for (int i = 2; i < n; ++ i) {
60
       P \text{ tmp} = cross(p[i] - p[0], p[i] - p[1]);
       if (sign(tmp.len())) {
63
         std::swap(p[i], p[2]);
64
         for (int j = 3; j < n; ++ j)
65
           if (sign(volume(p[0], p[1], p[2], p[j]))) {
66
             std::swap(p[j], p[3]);
67
             return;
68
69
70
     }
71
   }
72
73
   void build_convex() {
74
     reorder();
75
     clear(face);
76
     face.emplace_back(0, 1, 2);
     face.emplace_back(0, 2, 1);
77
78
     for (int i = 3; i < n; ++ i)
```

```
79 add(i);
80 }
```

3.2.3 最小覆盖球

```
1
   #include<iostream>
2
   #include<cstring>
3
   #include<algorithm>
   #include<cstdio>
5
   #include<cmath>
7
   using namespace std;
8
9
   const int eps = 1e-8;
10
11
   struct Tpoint
12 {
13
     double x, y, z;
14
  };
15
16
   int npoint, nouter;
17
18
  Tpoint pt[200000], outer[4],res;
19
   double radius, tmp;
  inline double dist(Tpoint p1, Tpoint p2) {
20
21
     double dx=p1.x-p2.x, dy=p1.y-p2.y, dz=p1.z-p2.z;
22
     return ( dx*dx + dy*dy + dz*dz );
23 }
24
   inline double dot(Tpoint p1, Tpoint p2) {
25
     return p1.x*p2.x + p1.y*p2.y + p1.z*p2.z;
26
  ۱,
27
   void ball() {
     Tpoint q[3]; double m[3][3], sol[3], L[3], det;
28
29
30
     res.x = res.y = res.z = radius = 0;
     switch ( nouter ) {
31
32
       case 1: res=outer[0]: break:
33
34
           res.x=(outer[0].x+outer[1].x)/2;
35
           res.y=(outer[0].y+outer[1].y)/2;
36
           res.z=(outer[0].z+outer[1].z)/2;
37
           radius=dist(res, outer[0]);
38
           break:
39
       case 3:
40
           for (i=0; i<2; ++i ) {</pre>
41
              q[i].x=outer[i+1].x-outer[0].x;
42
              q[i].y=outer[i+1].y-outer[0].y;
43
              q[i].z=outer[i+1].z-outer[0].z;
44
           for (i=0; i<2; ++i) for(j=0; j<2; ++j)
45
46
             m[i][j]=dot(q[i], q[j])*2;
            for (i=0; i<2; ++i ) sol[i]=dot(q[i], q[i]);</pre>
47
48
            if (fabs(det=m[0][0]*m[1][1]-m[0][1]*m[1][0])<eps)
49
              return:
           L[0]=(sol[0]*m[1][1]-sol[1]*m[0][1])/det;
50
           L[1]=(sol[1]*m[0][0]-sol[0]*m[1][0])/det;
51
52
           res.x=outer[0].x+q[0].x*L[0]+q[1].x*L[1];
           res.y=outer[0].y+q[0].y*L[0]+q[1].y*L[1];
53
54
           res.z=outer[0].z+q[0].z*L[0]+q[1].z*L[1];
           radius=dist(res, outer[0]);
55
56
           break:
57
       case 4:
           for (i=0; i<3; ++i) {</pre>
58
              q[i].x=outer[i+1].x-outer[0].x;
59
60
              q[i].y=outer[i+1].y-outer[0].y;
              q[i].z=outer[i+1].z-outer[0].z;
61
              sol[i]=dot(q[i], q[i]);
62
63
            for (i=0:i<3:++i)
65
              for(j=0;j<3;++j) m[i][j]=dot(q[i],q[j])*2;</pre>
66
            det= m[0][0]*m[1][1]*m[2][2]
              + m[0][1]*m[1][2]*m[2][0]
67
              + m[0][2]*m[2][1]*m[1][0]
68
```

```
- m[0][2]*m[1][1]*m[2][0]
 69
 70
                - m[0][1]*m[1][0]*m[2][2]
 71
                 m[0][0]*m[1][2]*m[2][1];
 72
             if ( fabs(det)<eps ) return;</pre>
 73
             for (j=0; j<3; ++j) {
               for (i=0; i<3; ++i) m[i][j]=sol[i];</pre>
 74
 75
               L[j]=(m[0][0]*m[1][1]*m[2][2]
 76
                    + m[0][1]*m[1][2]*m[2][0]
 77
                    + m[0][2]*m[2][1]*m[1][0]
 78
                    - m[0][2]*m[1][1]*m[2][0]
 79
                    - m[0][1]*m[1][0]*m[2][2]
80
                    - m[0][0]*m[1][2]*m[2][1]
81
                   ) / det;
 82
               for (i=0; i<3; ++i)
83
                 m[i][j]=dot(q[i], q[j])*2;
84
             res=outer[0]:
85
86
             for (i=0; i<3; ++i ) {
 87
               res.x += q[i].x * L[i];
               res.y += q[i].y * L[i];
 88
89
               res.z += q[i].z * L[i];
90
91
             radius=dist(res. outer[0]):
92
 93
 94
    void minball(int n) {
95
      ball();
      //printf("(%.31f,%.31f,%.31f) %.31f\n",
96

    res.x,res.y,res.z,radius);
97
      if ( nouter<4 )</pre>
         for (int i=0; i<n; ++i)</pre>
99
           if (dist(res, pt[i])-radius>eps) {
100
             outer[nouter] = pt[i];
101
             ++nouter;
102
             minball(i):
103
             --nouter;
104
             if (i>0) {
               Tpoint Tt = pt[i];
105
106
               memmove(&pt[1], &pt[0], sizeof(Tpoint)*i);
107
               pt[0]=Tt;
108
             }
109
           }
110
111
    void solve()
112
    {
113
      for (int i=0;i<npoint;i++)</pre>
         \hookrightarrow \texttt{scanf("%lf%lf",\&pt[i].x,\&pt[i].y,\&pt[i].z);}
114
      random_shuffle(pt, pt + npoint);
115
      radius=-1;
116
      for (int i=0;i<npoint;i++){</pre>
117
        if (dist(res,pt[i])-radius>eps){
118
           nouter=1;
119
           outer[0]=pt[i];
120
           minball(i):
121
      }
122
123
      printf("%.5f\n",sqrt(radius));
124
125
    int main(){
      for( ; cin >> npoint && npoint; )
126
127
         solve();
128
      return 0;
129
```

4. 字符串

4.1 AC 自动机

```
int newnode()
{
    ++tot;
    memset(ch[tot], 0, sizeof(ch[tot]));
```

```
5
     fail[tot] = 0:
     dep[tot] = 0;
 6
 7
     par[tot] = 0;
8
9
     return tot;
10 }
11
   void insert(char *s,int x)
12 {
     if(*s == '\0') return;
13
14
     else
15
     {
        int &y = ch[x][*s - 'a'];
16
17
        if(y == 0)
18
19
20
          v = newnode();
          par[v] = x:
21
22
          dep[y] = dep[x] + 1;
23
24
25
       insert(s + 1, y);
     }
26
   }
27
   void build()
28
29
30
     int line[maxn];
31
     int f = 0, r = 0;
32
     fail[root] = root:
33
34
     for(int i = 0; i < alpha; i++)</pre>
35
36
37
        if(ch[root][i])
38
        {
          fail[ch[root][i]] = root:
39
40
          line[r++] = ch[root][i];
41
42
        else
43
          ch[root][i] = root;
44
45
     }
46
47
48
     while(f != r)
49
50
       int x = line[f++];
51
52
        for(int i = 0; i < alpha; i++)
53
          if(ch[x][i])
55
56
            fail[ch[x][i]] = ch[fail[x]][i];
57
            line[r++] = ch[x][i];
58
59
60
61
            ch[x][i] = ch[fail[x]][i];
62
63
64
     }
65
   }
```

4.2 后缀数组

```
for (; k <= n; k <<= 1) {
10
       int tot = k;
11
       for (int i = n - k + 1; i \le n; ++i) y[i - n + k] = i;
       for (int i = 1; i <= n; ++i)
12
         if (sa[i] > k) y[++tot] = sa[i] - k;
13
       memset(c, 0, sizeof(*c) * (m + 1));
14
       for (int i = 1; i <= n; ++i) c[x[i]]++;</pre>
       for (int i = 1; i \le m; ++i) c[i] += c[i - 1];
16
17
       for (int i = n; i; --i) sa[c[x[y[i]]]--] = y[i];
18
       for (int i = 1; i \le n; ++i) y[i] = x[i];
19
       tot = 1; x[sa[1]] = 1;
       for (int i = 2; i <= n; ++i) {
20
         if (max(sa[i], sa[i - 1]) + k > n || y[sa[i]] !=
             \hookrightarrow y[sa[i - 1]] || y[sa[i] + k] != y[sa[i - 1] +
             \hookrightarrow k]) ++tot;
22
         x[sa[i]] = tot;
23
24
       if (tot == n) break; else m = tot;
     }
25
26
   }
27
   void calc_height(int n) {
     for (int i = 1; i <= n; ++i) rank[sa[i]] = i;</pre>
28
     for (int i = 1; i <= n; ++i) {
29
       height[rank[i]] = max(0, height[rank[i - 1]] - 1);
30
31
       if (rank[i] == 1) continue;
32
       int j = sa[rank[i] - 1];
33
       while (max(i, j) + height[rank[i]] <= n && a[i +

    height[rank[i]]] == a[j + height[rank[i]]])

    ++height[rank[i]];

34
     }
35
```

4.3 后缀自动机

```
static const int MAXL = MAXN * 2; // MAXN is original
   static const int alphabet = 26; // sometimes need
      \hookrightarrow changing
   int 1, last, cnt, trans[MAXL][alphabet], par[MAXL],
      \hookrightarrow sum[MAXL], seq[MAXL], mxl[MAXL], size[MAXL]; // mxl
      \ensuremath{\hookrightarrow} is maxlength, size is the size of right
   char str[MAXL];
5
   inline void init() {
     l = strlen(str + 1); cnt = last = 1;
     for (int i = 0; i <= 1 * 2; ++i) memset(trans[i], 0,

    sizeof(trans[i]));
     memset(par, 0, sizeof(*par) * (1 * 2 + 1));
8
     memset(mxl, 0, sizeof(*mxl) * (1 * 2 + 1));
9
10
     memset(size, 0, sizeof(*size) * (1 * 2 + 1));
11
12
   inline void extend(int pos, int c) {
13
     int p = last, np = last = ++cnt;
14
     mxl[np] = mxl[p] + 1; size[np] = 1;
     for (; p && !trans[p][c]; p = par[p]) trans[p][c] = np;
15
16
     if (!p) par[np] = 1;
17
18
        int q = trans[p][c];
19
        if (mxl[p] + 1 == mxl[q]) par[np] = q;
20
        else {
21
         int nq = ++cnt;
22
         mxl[nq] = mxl[p] + 1;
         memcpy(trans[nq], trans[q], sizeof(trans[nq]));
         par[nq] = par[q];
24
25
         par[np] = par[q] = nq;
         for (; trans[p][c] == q; p = par[p]) trans[p][c] =
26
             \hookrightarrow nq;
27
       }
     }
28
29
30
   inline void buildsam() {
     for (int i = 1; i <= 1; ++i) extend(i, str[i] - 'a');</pre>
31
     memset(sum, 0, sizeof(*sum) * (1 * 2 + 1));
```

4.4 广义后缀自动机

```
inline void add_node(int x, int &last) {
     int lastnode = last;
2
3
     if (c[lastnode][x]) {
4
       int nownode = c[lastnode][x];
       if (l[nownode] == l[lastnode] + 1) last = nownode;
5
6
         int auxnode = ++cnt; l[auxnode] = l[lastnode] + 1;
         for (int i = 0; i < alphabet; ++i) c[auxnode][i] =</pre>
8
            \hookrightarrow c[nownode][i];
9
         par[auxnode] = par[nownode]; par[nownode] = auxnode;
         for (; lastnode && c[lastnode][x] == nownode;
10
            \hookrightarrow lastnode = par[lastnode]) {
11
            c[lastnode][x] = auxnode;
12
13
         last = auxnode;
       }
14
     } else {
15
       int newnode = ++cnt; l[newnode] = l[lastnode] + 1;
16
17
       for (; lastnode && !c[lastnode][x]; lastnode =

→ par[lastnode]) c[lastnode][x] = newnode;
18
       if (!lastnode) par[newnode] = 1;
19
       else {
20
         int nownode = c[lastnode][x];
         if (l[lastnode] + 1 == l[nownode]) par[newnode] =
21
22
         else {
23
            int auxnode = ++cnt; l[auxnode] = l[lastnode] + 1;
24
            for (int i = 0; i < alphabet; ++i) c[auxnode][i] =</pre>
              \hookrightarrow c [nownode] [i];
25
            par[auxnode] = par[nownode]; par[nownode] =
              26
            for (; lastnode && c[lastnode][x] == nownode;
               \hookrightarrow lastnode = par[lastnode]) {
27
              c[lastnode][x] = auxnode;
28
29
30
31
       last = newnode;
32
33 }
```

4.5 manacher

```
1
   void Manacher(std::string s,int p[])
2
   {
 3
        string t = "$#";
 4
 5
        for (int i = 0; i < s.size(); i++)</pre>
 6
 7
            t += s[i];
            t += "#";
 8
 9
10
11
        std::vector<int> p(t.size(), 0);
12
        int mx = 0, id = 0:
13
14
15
        for (int i = 1; i < t.size(); i++)</pre>
16
17
            p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
18
            while (t[i + p[i]] == t[i - p[i]]) ++p[i];
19
            if (mx < i + p[i])</pre>
20
```

4.6 回文自动机

```
int nT, nStr, last, c[MAXT][26], fail[MAXT], r[MAXN],
      \hookrightarrow 1[MAXN], s[MAXN];
   int allocate(int len) {
 3
     l[nT] = len;
 4
     r[nT] = 0;
 5
     fail[nT] = 0;
     memset(c[nT], 0, sizeof(c[nT]));
6
7
     return nT++;
8
   }
9
   void init() {
10
     nT = nStr = 0:
     int newE = allocate(0);
11
     int new0 = allocate(-1);
12
13
     last = newE:
14
     fail[newE] = new0;
15
     fail[new0] = newE;
16
     s[0] = -1;
17
   void add(int x) {
18
     s[++nStr] = x;
19
     int now = last;
     while (s[nStr - l[now] - 1] != s[nStr]) now = fail[now];
21
22
     if (!c[now][x]) {
       int newnode = allocate(l[now] + 2), &newfail =
           \hookrightarrow fail[newnode]:
       newfail = fail[now];
24
        while (s[nStr - l[newfail] - 1] != s[nStr]) newfail =
25
           \hookrightarrow fail[newfail];
26
        newfail = c[newfail][x];
27
       c[now][x] = newnode;
28
     last = c[now][x];
29
30
     r[last]++;
31
   }
32
   void count() {
     for (int i = nT - 1; i >= 0; i--) {
34
       r[fail[i]] += r[i];
35
36
```

4.7 循环串的最小表示

```
// n 必须是 2 的次幂
   void fft(Complex a[], int n, int f) {
     for (int i = 0; i < n; ++i)
3
       if (R[i] < i) swap(a[i], a[R[i]]);</pre>
 5
     for (int i = 1, h = 0; i < n; i <<= 1, h++) {
 6
       Complex wn = Complex(cos(pi / i), f * sin(pi / i));
7
       Complex w = Complex(1, 0);
8
       for (int k = 0; k < i; ++k, w = w * wn) tmp[k] = w;
       for (int p = i \ll 1, j = 0; j < n; j += p) {
9
10
         for (int k = 0; k < i; ++k) {
11
           Complex x = a[j + k], y = a[j + k + i] * tmp[k];
12
           a[j + k] = x + y; a[j + k + i] = x - y;
13
14
15
    }
16
  }
```

5. 数据结构

5.1 可并堆

```
int merge(int x,int y)
2
  //p[i] 结点 i 的权值,这里是维护大根堆
3
  //d[i] 在 i 的子树中, i 到右叶子结点的最远距离.
5
      if(!x) return y;
6
7
      if(!y) return x;
8
9
      if(p[x] < p[y]) std::swap(x, y);
10
      r[x] = merge(r[x], y);
11
      if(r[x]) fa[r[x]] = x;
12
13
      if(d[l[x]] < d[r[x]]) std::swap(l[x], r[x]);//调整树
14
        →的结构,使其满足左偏性质
15
16
      d[x] = d[r[x]] + 1;
17
      return x;
18 }
```

5.2 KD-Tree

```
1
   long long norm(const long long &x) {
       //
2
             For manhattan distance
3
       return std::abs(x);
            For euclid distance
4
5
       return x * x;
6
   }
   struct Point {
8
9
       int x, y, id;
10
       const int& operator [] (int index) const {
11
12
           if (index == 0) {
13
               return x;
14
           } else {
15
               return y;
           }
16
17
       }
18
19
       friend long long dist(const Point &a, const Point &b)
           long long result = 0;
20
           for (int i = 0; i < 2; ++i) {
21
22
               result += norm(a[i] - b[i]);
24
           return result;
25
       }
   } point[N];
26
27
28
   struct Rectangle {
       int min[2], max[2];
29
30
31
       Rectangle() {
           min[0] = min[1] = INT_MAX; // sometimes int is
32

→ not enough

           max[0] = max[1] = INT_MIN;
33
34
35
       void add(const Point &p) {
36
           for (int i = 0; i < 2; ++i) {
37
               min[i] = std::min(min[i], p[i]);
38
39
               max[i] = std::max(max[i], p[i]);
40
41
       }
42
       long long dist(const Point &p) {
43
44
           long long result = 0;
```

```
for (int i = 0; i < 2; ++i) {
45
 46
                     For minimum distance
 47
                 result += norm(std::min(std::max(p[i],
                    \hookrightarrow \min[i]), \max[i]) - p[i]);
48
                     For maximum distance
                 result += std::max(norm(max[i] - p[i]),
49
                    50
             }
51
             return result;
52
53
    };
54
55
    struct Node {
56
        Point seperator;
57
        Rectangle rectangle;
58
        int child[2];
59
 60
        void reset(const Point &p) {
             seperator = p;
             rectangle = Rectangle();
63
             rectangle.add(p);
             child[0] = child[1] = 0;
64
65
66
    } tree[N << 1];</pre>
 68
    int size, pivot;
 69
    bool compare(const Point &a, const Point &b) {
70
        if (a[pivot] != b[pivot]) {
71
72
             return a[pivot] < b[pivot];</pre>
73
 74
        return a.id < b.id;</pre>
75
    }
76
    // 左閉右開: build(1, n + 1)
77
    int build(int 1, int r, int type = 1) {
78
79
        pivot = type;
80
        if (1 >= r) {
81
             return 0;
        7
82
        int x = ++size;
83
        int mid = l + r >> 1;
84
        std::nth_element(point + 1, point + mid, point + r,
85
           \hookrightarrow compare);
        tree[x].reset(point[mid]);
        for (int i = 1; i < r; ++i) {
 87
             tree[x].rectangle.add(point[i]);
88
 89
90
        tree[x].child[0] = build(1, mid, type ^ 1);
 91
        tree[x].child[1] = build(mid + 1, r, type ^ 1);
92
        return x;
93
94
95
    int insert(int x, const Point &p, int type = 1) {
96
        pivot = type;
97
        if (x == 0) {
98
             tree[++size].reset(p);
99
             return size;
100
        }
101
        tree[x].rectangle.add(p);
102
        if (compare(p, tree[x].seperator)) {
103
             tree[x].child[0] = insert(tree[x].child[0], p,
                \hookrightarrow type ^ 1);
104
             tree[x].child[1] = insert(tree[x].child[1], p,
105
                \hookrightarrow type ^ 1);
106
107
        return x;
108
109
    // For minimum distance
110
    // For maximum: 下面递归 query 时 0, 1 换顺序;< and
       \leftrightarrow >;min and max
```

```
112 void query(int x, const Point &p, std::pair<long long,
       \hookrightarrow int> &answer, int type = 1) {
113
        pivot = type;
        if (x == 0 \mid \mid tree[x].rectangle.dist(p) >
114
           \hookrightarrow \mathtt{answer.first)} \ \ \{
115
            return:
116
        answer = std::min(answer,
117
118
                 std::make_pair(dist(tree[x].seperator, p),
                    if (compare(p, tree[x].seperator)) {
119
            query(tree[x].child[0], p, answer, type ^ 1);
120
121
            query(tree[x].child[1], p, answer, type ^ 1);
122
123
            query(tree[x].child[1], p, answer, type ^ 1);
            query(tree[x].child[0], p, answer, type ^ 1);
124
125
126
   }
127
    std::priority_queue<std::pair<long long, int> > answer;
128
129
130
    void query(int x, const Point &p, int k, int type = 1) {
        pivot = type;
131
132
        if (x == 0 || (int)answer.size() == k &&
           133
134
        answer.push(std::make_pair(dist(tree[x].seperator, p),
135
           \hookrightarrow tree[x].seperator.id));
        if ((int)answer.size() > k) {
136
137
            answer.pop();
        }
138
139
        if (compare(p, tree[x].seperator)) {
140
            query(tree[x].child[0], p, k, type ^ 1);
            query(tree[x].child[1], p, k, type ^ 1);
141
142
        } else {
143
            query(tree[x].child[1], p, k, type ^ 1);
            query(tree[x].child[0], p, k, type ^ 1);
144
145
146 }
```

5.3 Treap

```
struct Node{
 1
 2
     int mn, key, size, tag;
 3
     bool rev;
 4
     Node* ch[2];
     Node(int mn, int key, int size): mn(mn), key(key),
 5
        \hookrightarrow size(size), rev(0), tag(0){}
     void downtag();
 6
     Node* update(){
 8
        mn = min(ch[0] \rightarrow mn, min(key, ch[1] \rightarrow mn));
9
        size = ch[0] \rightarrow size + 1 + ch[1] \rightarrow size;
10
        return this;
11
12
   };
13
   typedef pair<Node*, Node*> Pair;
   Node *null, *root;
15
   void Node::downtag(){
16
     if(rev){
17
        for(int i = 0; i < 2; i++)
18
          if(ch[i] != null){
            ch[i] -> rev ^= 1;
19
            swap(ch[i] -> ch[0], ch[i] -> ch[1]);
20
          }
21
       rev = 0;
22
     }
23
24
     if(tag){
        for(int i = 0; i < 2; i++)</pre>
25
          if(ch[i] != null){
26
            ch[i] -> key += tag;
27
            ch[i] -> mn += tag;
28
29
            ch[i] -> tag += tag;
```

```
30
31
        tag = 0;
32
      }
   1
33
34
   int r(){
     static int s = 3023192386;
35
      return (s += (s << 3) + 1) & (^{\circ}0u >> 1);
37
38
   bool random(int x, int y){
39
     return r() \% (x + y) < x;
40
41
   Node* merge(Node *p, Node *q){
42
      if(p == null) return q;
43
      if(q == null) return p;
44
      p -> downtag();
      q -> downtag();
45
      if(random(p -> size, q -> size)){
46
        p \to ch[1] = merge(p \to ch[1], q);
47
48
        return p -> update();
49
50
        q \rightarrow ch[0] = merge(p, q \rightarrow ch[0]);
51
        return q -> update();
52
53
54
   Pair split(Node *x, int n){
      if(x == null) return make_pair(null, null);
      x -> downtag();
      if(n \le x \rightarrow ch[0] \rightarrow size){
57
        Pair ret = split(x \rightarrow ch[0], n);
58
        x \rightarrow ch[0] = ret.second;
59
60
        return make_pair(ret.first, x -> update());
61
62
      Pair ret = split(x \rightarrow ch[1], n - x \rightarrow ch[0] \rightarrow size -
         \hookrightarrow 1);
63
      x \rightarrow ch[1] = ret.first:
64
      return make_pair(x -> update(), ret.second);
65
   pair<Node*, Pair> get_segment(int 1, int r){
66
67
      Pair ret = split(root, 1 - 1);
68
      return make_pair(ret.first, split(ret.second, r - 1 +
         \hookrightarrow 1)):
69
   int main(){
      null = new Node(INF, INF, 0);
72
      null \rightarrow ch[0] = null \rightarrow ch[1] = null;
73
      root = null;
74
```

5.4 Splay

```
template < class T > void checkmin(T &x,T y)
2
   {
3
     if(y < x) x = y;
4
   }
5
   struct Node
6
     Node *c[2], *fa;
8
     int size, rev;
9
10
     LL val, add, min;
11
     Node *init(LL v)
12
13
14
       val = min = v;
        add = rev = 0:
15
       c[0] = c[1] = fa = NULL;
16
17
       size = 1;
18
19
       return this;
     }
20
21
     void rvs()
22
```

```
23
       std::swap(c[0], c[1]);
24
       rev ^= 1;
25
     }
26
     void inc(LL x)
27
       val += x;
28
       add += x;
29
30
       min += x;
31
     }
32
     void pushdown()
33
     {
34
       if(rev)
35
         if(c[0]) c[0]->rvs();
36
37
         if(c[1]) c[1]->rvs();
38
         rev = 0;
       }
39
40
       if (add)
41
42
         if(c[0]) c[0]->inc(add);
43
         if(c[1]) c[1]->inc(add);
         add = 0;
44
45
       }
46
     }
47
     void update()
48
49
       min = val;
       if(c[0]) checkmin(min, c[0]->min);
50
       if(c[1]) checkmin(min, c[1]->min);
51
52
53
      size = 1;
      if(c[0]) size += c[0]->size;
54
55
       if(c[1]) size += c[1]->size;
56
57
58
  } *root;
59
60
   Node* newnode(LL x)
61
     static Node pool[maxs], *p = pool;
62
63
64
     return (++p)->init(x);
65 }
   void setc(Node *x,int t,Node *y)
66
67 {
68
    x->c[t] = y;
69
     if(y) y->fa = x;
70
  }
71
   Node *find(int k)
72
73
     Node *now = root;
74
     while(true)
75
76
77
       now->pushdown();
78
79
       int t = (now->c[0] ? now->c[0]->size : 0) + 1;
80
       if(t == k) break;
81
82
83
       if(t > k) now = now->c[0];
       else now = now->c[1], k -= t;
84
85
86
87
     return now;
88 }
89
   void rotate(Node *x, Node* &k)
90 {
91
     Node *y = x-fa, *z = y-fa;
92
     if(y != k) z -> c[z -> c[1] == y] = x;
93
94
     else k = x;
95
```

```
x->fa = z:
97
98
      int i = (y->c[1] == x);
99
100
      setc(y, i, x->c[i ^ 1]);
101
      setc(x, i ^ 1, y);
102
103
      y->update(), x->update();
104
    void spaly(Node *x,Node* &k)
105
106
107
      static Node *st[maxs];
108
      int top = 0;
109
      Node *y, *z;
110
111
      y = x;
      while(y != k) st[++top] = y, y = y->fa;
112
113
      st[++top] = y;
114
115
      while(top) st[top]->pushdown(), top--;
116
      while(x != k)
117
118
119
        y = x-fa, z = y-fa;
120
121
        if(y != k)
122
          if((y == z-c[1]) ^ (x == y-c[1])) rotate(x, k);
123
124
          else rotate(y, k);
125
126
127
        rotate(x, k);
128
      }
129
130
    Node *subtree(int 1.int r)
131
      assert((++1) <= (++r));
132
133
      spaly(find(l - 1), root);
134
      spaly(find(r + 1), root->c[1]);
135
136
      return root->c[1]->c[0];
137
138
    void ins(int pos,int v)
139
140
      pos++;
      spaly(find(pos), root);
141
      spaly(find(pos + 1), root->c[1]);
142
143
      setc(root->c[1], 0, newnode(v));
144
      root->c[1]->update();
145
      root->update();
146
147
    void del(int pos)
148
      pos++;
149
      spaly(find(pos - 1), root);
150
      spaly(find(pos + 1), root->c[1]);
151
152
      root->c[1]->c[0] = NULL;
153
      root->c[1]->update();
154
      root->update();
155
156
    void init()
157
158
      root = newnode(0);
159
      setc(root, 1, newnode(0));
160
      root->update();
161
```

5.5 Link cut Tree

```
inline void reverse(int x) {
  tr[x].rev ^= 1; swap(tr[x].c[0], tr[x].c[1]);
}
```

```
4
5
   inline void rotate(int x, int k) {
6
    int y = tr[x].fa, z = tr[y].fa;
       tr[x].fa = z; tr[z].c[tr[z].c[1] == y] = x;
7
       tr[tr[x].c[k ^ 1]].fa = y; tr[y].c[k] = tr[x].c[k ^
8
9
       tr[x].c[k ^ 1] = y; tr[y].fa = x;
10 }
11
12
   inline void splay(int x, int w) {
13
    int z = x; pushdown(x);
    while (tr[x].fa != w) {
14
15
       int y = tr[x].fa; z = tr[y].fa;
       if (z == w) {
16
17
        pushdown(z = y); pushdown(x);
18
        rotate(x, tr[y].c[1] == x);
        update(y); update(x);
19
20
       } else {
21
        pushdown(z); pushdown(y); pushdown(x);
        int t1 = tr[y].c[1] == x, t2 = tr[z].c[1] == y;
22
23
        if (t1 == t2) rotate(y, t2), rotate(x, t1);
24
        else rotate(x, t1), rotate(x, t2);
25
        update(z); update(y); update(x);
26
      }
27
28
     update(x);
29
     if (x != z) par[x] = par[z], par[z] = 0;
30 }
31
   inline void access(int x) {
32
    for (int y = 0; x; y = x, x = par[x]) {
33
34
       splay(x, 0);
35
       if (tr[x].c[1]) par[tr[x].c[1]] = x, tr[tr[x].c[1]].fa
       tr[x].c[1] = y; par[y] = 0; tr[y].fa = x; update(x);
36
37
38
   }
39
40
   inline void makeroot(int x) {
41
    access(x); splay(x, 0); reverse(x);
42 }
43
44 inline void link(int x, int y) {
45
    makeroot(x); par[x] = y;
46 }
47
48 inline void cut(int x, int y) {
49
    access(x); splay(y, 0);
50
    if (par[y] != x) swap(x, y), access(x), splay(y, 0);
51
    par[y] = 0;
52 }
53
  54
     \hookrightarrow of the tree
55
    makeroot(y); access(x); splay(x, 0);
56 }
```

5.6 树上莫队

```
1 | void dfs(int u)
2 {
     dep[u] = dep[fa[u][0]] + 1;
3
    for(int i = 1; i < logn; i++)</pre>
5
      fa[u][i] = fa[fa[u][i - 1]][i - 1];
6
7
     stk.push(u):
8
     for(int i = 0; i < vec[u].size(); i++)</pre>
9
10
       int v = vec[u][i];
11
       if(v == fa[u][0]) continue;
12
13
       fa[v][0] = u, dfs(v);
14
```

```
15
16
        size[u] += size[v];
17
       if(size[u] >= bufsize)
18
19
          ++bcnt;
20
21
22
          while(stk.top() != u)
23
24
            block[stk.top()] = bcnt;
25
            stk.pop();
26
27
28
          size[u] = 0;
29
     7
30
31
32
     size[u]++;
33
   void prework()
34
35
36
     dfs(1);
37
38
     ++bcnt;
39
     while(!stk.empty())
40
41
       block[stk.top()] = bcnt;
42
        stk.pop();
43
44
   }
45
   void rev(int u)
46
47
     now -= (cnt[val[u]] > 0);
48
49
     if (used[u])
50
     {
51
        cnt[val[u]]--;
52
        used[u] = false;
53
54
     else
55
       cnt[val[u]]++;
56
57
       used[u] = true;
58
59
     now += (cnt[val[u]] > 0);
60
61
62
   void move(int &x,int y,int z)
63
64
     int fwd = y;
65
66
     rev(getlca(x, z));
67
     rev(getlca(y, z));
68
69
     while(x != y)
70
71
        if(dep[x] < dep[y]) std::swap(x, y);</pre>
72
73
       rev(x), x = fa[x][0];
74
75
76
     x = fwd;
77
78
   void solve()
79
80
     std::sort(query + 1, query + m + 1);
81
     int L = 1, R = 1;
82
83
     rev(1);
84
85
     for(int i = 1; i <= m; i++)</pre>
86
```

```
int 1 = query[i].u;
87
88
       int r = query[i].v;
89
       move(L, 1, R);
90
       move(R, r, L);
91
92
       ans[query[i].t] = now;
93
94
     }
95 }
```

5.8 整体二分

60 }

5.7 CDQ 分治

```
1 struct Node
2
  {
3
     int x, y, z, idx;
4
     friend bool operator == (const Node &a,const Node &b)
5
6
7
       return a.x == b.x && a.y == b.y && a.z == b.z;
8
9
     friend bool operator < (const Node &a,const Node &b)
10
11
       return a.y < b.y;</pre>
12
13
14
   } triple[maxn];
15
16
   bool cmpx(const Node &a,const Node &b)
17 | {
18
     if(a.x != b.x) return a.x < b.x;</pre>
19
     if(a.y != b.y) return a.y < b.y;</pre>
20
     return a.z < b.z;</pre>
21
22
23
   void solve(int l,int r)
24
   {
     if(1 == r) return;
25
26
27
     int mid = (1 + r) >> 1;
28
29
     solve(1, mid);
30
31
     static std::pair<Node,int> Lt[maxn], Rt[maxn];
32
     int Ls = 0, Rs = 0;
33
34
     for(int i = 1; i <= mid; i++)</pre>
       Lt[++Ls] = std::make_pair(triple[i], i);
35
     for(int i = mid + 1; i <= r; i++)</pre>
36
       Rt[++Rs] = std::make_pair(triple[i], i);
37
38
39
     int pos = 1;
40
41
     std::sort(Lt + 1, Lt + Ls + 1);
     std::sort(Rt + 1, Rt + Rs + 1);
42
43
44
     backup.clear();
45
     for(int i = 1; i <= Rs; i++)
46
       while(pos <= Ls && !(Rt[i].first < Lt[pos].first))</pre>
47
48
49
         insert(Lt[pos].first.z, 1);
50
51
         pos++;
52
53
54
       f[Rt[i].second] += query(Rt[i].first.z);
55
56
57
     for(int i = 0; i < backup.size(); i++) pre[backup[i]] =</pre>
58
59
     solve(mid + 1, r);
```

```
void solve(int l,int r,std::vector<int> q)
 2
   {
 3
     if(1 == r || q.empty())
 4
5
        for(int i = 0; i < q.size(); i++)</pre>
 6
 7
          ans[q[i]] = 1;
 8
 9
     }
10
      else
11
12
        int mid = (1 + r) >> 1;
13
        backup.clear();
14
15
16
        for(int i = 1; i <= mid; i++)</pre>
17
18
          Event e = event[i]:
19
20
          if(e.1 <= e.r)
21
22
            add(e.1, e.v);
            add(e.r + 1, -e.v);
23
          }
24
25
          else
26
          ł
27
            add(1, e.v);
28
            add(e.r + 1, -e.v);
29
            add(e.1, e.v);
30
          }
31
32
33
        std::vector<int> qL, qR;
34
35
        for(int i = 0; i < q.size(); i++)</pre>
36
37
          LL val = 0;
38
39
          for(int j = 0; j < vec[q[i]].size(); j++)
40
            val += count(vec[q[i]][j]);
41
42
43
            if(val >= p[q[i]]) break;
44
45
46
          if(cnt[q[i]] + val >= p[q[i]])
47
            qL.push_back(q[i]);
48
49
          }
50
          else
51
52
            cnt[q[i]] += val;
53
            qR.push_back(q[i]);
54
          }
55
56
        for(int i = 0; i < backup.size(); i++) sum[backup[i]]</pre>
           \hookrightarrow = 0;
58
        solve(1, mid, qL);
59
        solve(mid + 1, r, qR);
60
   }
61
```

6. 图论

6.1 2-SAT tarjan

```
template<class TAT>void checkmin(TAT &x,TAT y)
2
3
     if(y < x) x = y;
4 }
5 void tarjan(int u)
6 {
7
     dfn[u] = low[u] = ++dt;
8
     flag[u] = true;
Q
     stk.push(u);
10
11
     for(int i = 0; i < vec[u].size(); i++)</pre>
12
13
       int v = vec[u][i];
14
       if(!dfn[v])
15
16
17
         tarjan(v);
18
         checkmin(low[u], low[v]);
19
20
       else if(flag[v])
21
         checkmin(low[u], dfn[v]);
22
23
       }
24
     }
25
26
     if(low[u] == dfn[u])
       ++bcnt:
29
       while(stk.top() != u)
30
         block[stk.top()] = bcnt;
31
32
         flag[stk.top()] = false;
33
         stk.pop();
34
35
36
       block[u] = bcnt;
37
       flag[u] = false;
38
       stk.pop();
39
40 }
   bool solve()
41
42
       for(int i = 1; i <= 2 * n; i++)
43
44
         if(!dfn[i]) tarjan(i);
45
46
       bool ans = true;
47
       for(int i = 1; i <= n; i++)
48
         if(block[2 * i] == block[2 * i - 1])
49
50
            ans = false:
51
52
            break;
53
55
       return ans;
56 }
```

6.2 KM

```
8
       for (int i = 1; i <= n; i++) {
9
         match[i] = 0;
10
         lx[i] = 0;
         ly[i] = 0;
11
         way[i] = 0;
12
13
     }
14
15
     void hungary(int x) {
16
       match[0] = x;
17
       int j0 = 0;
18
       for (int j = 0; j \le n; j++) {
19
         slack[j] = INF;
20
         used[j] = false;
21
22
       do {
23
         used[j0] = true;
24
25
         int i0 = match[j0], delta = INF, j1 = 0;
         for (int j = 1; j \le n; j++) {
26
27
           if (used[j] == false) {
28
             int cur = -w[i0][j] - lx[i0] - ly[j];
29
             if (cur < slack[j]) {</pre>
30
                slack[j] = cur;
31
                way[j] = j0;
32
33
              if (slack[j] < delta) {</pre>
34
                delta = slack[j];
35
                j1 = j;
             }
36
37
           }
         }
38
39
         for (int j = 0; j \le n; j++) {
40
           if (used[j]) {
41
             lx[match[j]] += delta;
              ly[j] -= delta;
42
43
44
           else slack[j] -= delta;
45
         }
46
          j0 = j1;
       } while (match[j0] != 0);
47
48
49
       do {
         int j1 = way[j0];
         match[j0] = match[j1];
52
         j0 = j1;
53
       } while (j0);
54
55
56
     int get_ans() {
       int sum = 0;
58
       for(int i = 1; i <= n; i++) {
59
         if (w[match[i]][i] == -INF); // 无解
60
         if (match[i] > 0) sum += w[match[i]][i];
       }
61
62
       return sum;
63
     }
   } km;
```

6.3 点双连通分量

```
const bool BCC_VERTEX = 0, BCC_EDGE = 1;
2
   struct BCC { // N = NO + MO. Remember to call
      3
     Graph *g, forest; // g is raw graph ptr.
     int dfn[N], DFN, low[N];
4
5
     int stack[N], top;
                           // Where edge i is expanded to in
    int expand_to[N];
       \hookrightarrow expaned graph.
7
     // Vertex i expaned to i.
8
     int compress\_to[N]; // Where vertex i is compressed to.
9
     bool vertex_type[N], cut[N], compress_cut[N], branch[M];
10
     //std::vector<int> BCC_component[N]; // Cut vertex
        \hookrightarrow \texttt{belongs} to none.
```

```
__inline void init(Graph *raw_graph) {
11
12
       g = raw_graph;
13
     }
14
     void DFS(int u, int pe) {
       dfn[u] = low[u] = ++DFN; cut[u] = false;
15
       if (!~g->adj[u]) {
16
17
         cut[u] = 1:
         compress_to[u] = forest.new_node();
18
19
         compress_cut[compress_to[u]] = 1;
20
21
       for (int e = g->adj[u]; ~e; e = g->nxt[e]) {
22
         int v = g - v[e];
23
         if ((e ^ pe) > 1 && dfn[v] > 0 && dfn[v] < dfn[u]) {
            stack[top++] = e;
24
25
           low[u] = std::min(low[u], dfn[v]);
26
         else if (!dfn[v]) {
28
           stack[top++] = e; branch[e] = 1;
29
           DFS(v, e);
           low[u] = std::min(low[v], low[u]);
30
31
           if (low[v] >= dfn[u]) {
             if (!cut[u]) {
32
                cut[u] = 1:
33
                compress_to[u] = forest.new_node();
34
35
                compress_cut[compress_to[u]] = 1;
36
             }
37
              int cc = forest.new_node();
38
              forest.bi_ins(compress_to[u], cc);
             compress_cut[cc] = 0;
39
             //BCC_component[cc].clear();
40
41
                int cur_e = stack[--top];
42
43
                compress_to[expand_to[cur_e]] = cc;
44
                compress_to[expand_to[cur_e^1]] = cc;
45
                if (branch[cur_e]) {
                  int v = g->v[cur_e];
46
47
                  if (cut[v])
                    forest.bi_ins(cc, compress_to[v]);
48
49
50
                    //BCC_component[cc].push_back(v);
51
                    compress_to[v] = cc;
                  }
52
53
             } while (stack[top] != e);
55
56
         }
       }
57
58
     }
59
     void solve() {
60
       forest.init(g->base);
61
       int n = g->n;
62
       for (int i = 0; i < g > e; i + +) {
63
         expand_to[i] = g->new_node();
64
65
       memset(branch, 0, sizeof(*branch) * g->e);
66
       memset(dfn + g->base, 0, sizeof(*dfn) * n); DFN = 0;
       for (int i = 0; i < n; i++)</pre>
67
68
         if (!dfn[i + g->base]) {
69
           top = 0;
70
           DFS(i + g - base, -1);
71
     }
72
73
   } bcc;
74
75 | bcc.init(&raw_graph);
76 bcc.solve():
  // Do something with bcc.forest ...
```

6.4 边双连通分量

```
1 struct BCC {
2 Graph *g, forest;
```

```
int dfn[N], low[N], stack[N], tot[N], belong[N], vis[N],
3
        \hookrightarrow top, dfs_clock;
     // tot[] is the size of each BCC, belong[] is the BCC
 4
        \hookrightarrow that each node belongs to
     pair<int, int > ori[M]; // bridge in raw_graph(raw node)
5
6
     bool is bridge[M]:
 7
     __inline void init(Graph *raw_graph) {
8
       g = raw_graph;
9
       memset(is_bridge, false, sizeof(*is_bridge) * g -> e);
10
       memset(vis + g -> base, 0, sizeof(*vis) * g -> n);
11
12
     void tarjan(int u, int from) {
13
        dfn[u] = low[u] = ++dfs_clock; vis[u] = 1;

    stack[++top] = u;

        for (int p = g -> adj[u]; ~p; p = g -> nxt[p]) {
14
          if ((p ^ 1) == from) continue;
15
          int v = g -> v[p];
16
17
          if (vis[v]) {
18
            if (vis[v] == 1) low[u] = min(low[u], dfn[v]);
19
20
            tarjan(v, p);
            low[u] = min(low[u], low[v]);
21
            if (low[v] > dfn[u]) is_bridge[p / 2] = true;
22
23
         }
24
25
        if (dfn[u] != low[u]) return;
26
        tot[forest.new_node()] = 0;
27
        do {
          belong[stack[top]] = forest.n;
28
29
          vis[stack[top]] = 2;
30
          tot[forest.n]++;
31
          --top;
32
        } while (stack[top + 1] != u);
33
     }
34
     void solve() {
35
       forest.init(g -> base);
36
        int n = g \rightarrow n;
        for (int i = 0; i < n; ++i)
37
38
          if (!vis[i + g -> base]) {
39
            top = dfs_clock = 0;
40
            tarjan(i + g \rightarrow base, -1);
41
42
        for (int i = 0; i < g -> e / 2; ++i)
43
         if (is_bridge[i]) {
            int e = forest.e;
44
            forest.bi_ins(belong[g -> v[i * 2]], belong[g ->
45
               \hookrightarrow v[i * 2 + 1]], g \rightarrow w[i * 2]);
46
            ori[e] = make_pair(g -> v[i * 2 + 1], g -> v[i *
               \hookrightarrow 21):
            ori[e + 1] = make_pair(g -> v[i * 2], g -> v[i * 2
               \hookrightarrow + 1]);
48
     }
49
50 } bcc:
```

6.5 最小树形图

```
const int MAXN,INF;// INF >= sum( W_ij )
   int from [MAXN + 10] [MAXN * 2 + 10], n, m, edge [MAXN +
      \hookrightarrow 10] [MAXN * 2 + 10];
   int sel[MAXN * 2 + 10],fa[MAXN * 2 + 10],vis[MAXN * 2 +
   int getfa(int x){if(x == fa[x]) return x; return fa[x] =
      \hookrightarrow getfa(fa[x]);}
   void liuzhu(){ // 1-base: root is 1, answer = (sel[i], i)
      \hookrightarrow for i in [2..n]
     fa[1] = 1:
6
 7
     for(int i = 2; i <= n; ++i){
        sel[i] = 1; fa[i] = i;
8
9
        for(int j = 1; j <= n; ++j) if(fa[j] != i)
          if(from[j][i] = i, edge[sel[i]][i] > edge[j][i])
10
             \hookrightarrow sel[i] = j;
     }
11
```

```
int limit = n;
12
      while(1){
13
        int prelimit = limit; memset(vis, 0, sizeof(vis));
14
           \hookrightarrow vis[1] = 1:
        for(int i = 2; i <= prelimit; ++i) if(fa[i] == i &&</pre>
           int j = i; while(!vis[j]) vis[j] = i, j =
16
              \hookrightarrow \text{getfa(sel[j])};
17
          if(j == 1 || vis[j] != i) continue; vector<int> C;
             \hookrightarrow int k = j;
18
          do C.push_back(k), k = getfa(sel[k]); while(k != j);
19
          ++limit:
20
          for(int i = 1; i <= n; ++i){
             edge[i][limit] = INF, from[i][limit] = limit;
21
22
23
          fa[limit] = vis[limit] = limit;
          for(int i = 0; i < int(C.size()); ++i){</pre>
24
25
             int x = C[i], fa[x] = limit;
26
             for(int j = 1; j \le n; ++j)
               if(edge[j][x] != INF && edge[j][limit] >
27
                  \hookrightarrow edge[j][x] - edge[sel[x]][x]){
28
                 edge[j][limit] = edge[j][x] - edge[sel[x]][x];
                 from[j][limit] = x;
29
30
31
32
          for(int j=1;j<=n;++j) if(getfa(j)==limit)</pre>
              \hookrightarrow \texttt{edge[j][limit]} = \texttt{INF};
33
          sel[limit] = 1;
          for(int j = 1; j \le n; ++j)
34
             if(edge[sel[limit]][limit] > edge[j][limit])
35
                \hookrightarrow sel[limit] = j;
36
        }
37
        if(prelimit == limit) break;
38
      for(int i = limit; i > 1; --i) sel[from[sel[i]][i]] =
39
         \hookrightarrow sel[i];
40
```

6.6 带花树

```
vector<int> link[maxn];
   int n,match[maxn],Queue[maxn],head,tail;
   int pred[maxn],base[maxn],start,finish,newbase;
   bool InQueue[maxn], InBlossom[maxn];
   void push(int u){ Queue[tail++]=u;InQueue[u]=true; }
   int pop(){ return Queue[head++]; }
   int FindCommonAncestor(int u,int v){
     bool InPath[maxn];
8
     for(int i=0;i<n;i++) InPath[i]=0;</pre>
9
     while(true){ u=base[u];InPath[u]=true;if(u==start)
10
        ⇔ break;u=pred[match[u]]; }
11
     while(true){ v=base[v];if(InPath[v])
        → break; v=pred[match[v]]; }
12
     return v;
13
  | }
   void ResetTrace(int u){
14
15
     while(base[u]!=newbase){
16
17
       v=match[u];
       InBlossom[base[u]]=InBlossom[base[v]]=true;
18
19
       u=pred[v]:
20
       if(base[u]!=newbase) pred[u]=v;
     }
21
22 }
23
   void BlossomContract(int u,int v){
    newbase=FindCommonAncestor(u.v):
24
     for (int i=0:i<n:i++)
     InBlossom[i]=0;
26
27
     ResetTrace(u);ResetTrace(v);
     if(base[u]!=newbase) pred[u]=v;
28
29
     if(base[v]!=newbase) pred[v]=u;
     for(int i=0;i<n;++i)</pre>
30
     if(InBlossom[base[i]]){
31
```

```
32
        base[i]=newbase:
33
        if(!InQueue[i]) push(i);
34
     }
   1
35
36
   bool FindAugmentingPath(int u){
      bool found=false;
37
      for(int i=0;i<n;++i) pred[i]=-1,base[i]=i;</pre>
      for (int i=0;i<n;i++) InQueue[i]=0;</pre>
39
40
      start=u;finish=-1; head=tail=0; push(start);
41
      while(head<tail){
        int u=pop();
42
43
        for(int i=link[u].size()-1;i>=0;i--){
          int v=link[u][i]:
45
          if (base[u]!=base[v]&&match[u]!=v)
46
             if(v==start||(match[v]>=0&&pred[match[v]]>=0))
47
               BlossomContract(u,v);
48
             else if(pred[v]==-1){
49
               pred[v]=u;
50
               if(match[v]>=0) push(match[v]);
               else{ finish=v; return true; }
51
52
        }
53
54
55
      return found;
56
57
   void AugmentPath(){
58
      int u=finish, v, w;
      while(u>=0){}
59

    v=pred[u]; w=match[v]; match[v]=u; match[u]=v; u=w; }

60
   }
   void FindMaxMatching(){
     for(int i=0;i<n;++i) match[i]=-1;</pre>
63
      for(int i=0;i<n;++i) if(match[i]==-1)</pre>
         \hookrightarrow \texttt{if}(\texttt{FindAugmentingPath(i)}) \  \, \texttt{AugmentPath()};
64
```

6.7 支配树

```
vector<int> prec[N], succ[N];
 2
   vector<int> ord;
 3
   int stamp, vis[N];
   int num[N]:
 4
5
   int fa[N];
6
   void dfs(int u) {
     vis[u] = stamp;
 8
     num[u] = ord.size();
9
     ord.push_back(u);
     for (int i = 0; i < (int)succ[u].size(); ++i) {</pre>
10
11
       int v = succ[u][i];
12
        if (vis[v] != stamp) {
13
          fa[v] = u;
14
          dfs(v);
15
16
17
   int fs[N], mins[N], dom[N], sem[N];
18
   int find(int u) {
20
     if (u != fs[u]) {
       int v = fs[u];
21
22
        fs[u] = find(fs[u]):
        if (mins[v] != -1 && num[sem[mins[v]]] <</pre>
           \hookrightarrow num[sem[mins[u]]]) {
          mins[u] = mins[v];
24
       }
25
     }
26
27
     return fs[u];
28
   void merge(int u, int v) { fs[u] = v; }
   vector<int> buf[N];
31
   int buf2[N]:
   void mark(int source) {
32
     ord.clear();
```

```
34
     ++stamp:
35
     dfs(source);
36
     for (int i = 0; i < (int)ord.size(); ++i) {</pre>
       int u = ord[i];
37
       fs[u] = u, mins[u] = -1, buf2[u] = -1;
38
39
     for (int i = (int)ord.size() - 1; i > 0; --i) {
40
       int u = ord[i], p = fa[u];
41
42
       sem[u] = p;
       for (int j = 0; j < (int)prec[u].size(); ++j) {</pre>
43
         int v = prec[u][j];
44
          if (use[v] != stamp) continue;
45
46
          if (num[v] > num[u]) {
            find(v); v = sem[mins[v]];
47
48
         if (num[v] < num[sem[u]]) {</pre>
49
            sem[ii] = v:
50
51
52
       buf[sem[u]].push_back(u);
53
54
       mins[u] = u;
       merge(u, p);
55
       while (buf[p].size()) {
56
         int v = buf[p].back();
57
58
         buf[p].pop_back();
59
         find(v);
60
         if (sem[v] == sem[mins[v]]) {
            dom[v] = sem[v];
61
         } else {
62
            buf2[v] = mins[v];
63
         }
65
       }
66
     }
67
     dom[ord[0]] = ord[0];
     for (int i = 0; i < (int)ord.size(); ++i) {</pre>
68
       int u = ord[i];
69
70
       if (~buf2[u]) {
71
          dom[u] = dom[buf2[u]];
72
     }
73
74 }
```

6.8 无向图最小割

```
int cost[maxn] (maxn], seq[maxn], len[maxn], n, m, pop, ans;
   bool used[maxn];
3
   void Init(){
     int i,j,a,b,c;
4
     for(i=0;i<n;i++) for(j=0;j<n;j++) cost[i][j]=0;</pre>
5
     for(i=0;i<m;i++){</pre>
6
7
       scanf("%d %d %d",&a,&b,&c); cost[a][b]+=c;
          \hookrightarrow cost[b][a]+=c;
8
     }
9
     pop=n; for(i=0;i<n;i++) seq[i]=i;
   }
10
11
   void Work(){
12
     ans=inf; int i,j,k,l,mm,sum,pk;
13
     while(pop > 1){
       for(i=1;i<pop;i++) used[seq[i]]=0; used[seq[0]]=1;</pre>
14
       for(i=1;i<pop;i++) len[seq[i]]=cost[seq[0]][seq[i]];</pre>
15
       pk=0; mm=-inf; k=-1;
17
       for(i=1;i<pop;i++) if(len[seq[i]] > mm){
          for(i=1;i<pop;i++){</pre>
18
19
         used[seq[l=k]]=1;
         if(i==pop-2) pk=k;
20
21
         if(i==pop-1) break;
22
         mm=-inf;
         for(j=1;j<pop;j++) if(!used[seq[j]])</pre>
23
24
            if((len[seq[j]]+=cost[seq[1]][seq[j]]) > mm)
25
              mm=len[seq[j]], k=j;
26
27
       sum=0:
```

6.9 最大团搜索

```
const int N = 1000 + 7;
 2
   vector<vector<bool> > adj;
 3
   class MaxClique {
       const vector<vector<bool> > adj;
4
5
       const int n;
6
       vector<int> result, cur_res;
       vector<vector<int> > color_set;
8
       const double t_limit; // MAGIC
9
     int para, level;
10
     vector<pair<int, int> > steps;
11
   public:
       class Vertex {
12
13
       public:
14
            int i, d;
15
            Vertex(int i, int d = 0) : i(i), d(d) {}
16
17
       void reorder(vector<Vertex> &p) {
18
            for (auto &u : p) {
                u.d = 0;
19
20
                for (auto v : p) u.d += adj[v.i][u.i];
21
22
            sort(p.begin(), p.end(), [&](const Vertex &a,
               23
     // reuse p[i].d to denote the maximum possible clique
        \hookrightarrow for first i vertices.
25
       void init_color(vector<Vertex> &p) {
26
            int maxd = p[0].d;
27
            for (int i = 0; i < p.size(); i++) p[i].d = min(i,</pre>
               \hookrightarrow maxd) + 1;
28
29
       bool bridge(const vector<int> &s, int x) {
30
            for (auto v : s) if (adj[v][x]) return true;
            return false;
31
       }
32
33
     // approximate estimate the p[i].d
     // Do not care about first mink color class (For better
        \hookrightarrow result, we must get some vertex in some color class
        \hookrightarrow larger than mink )
35
       void color_sort(vector<Vertex> &cur) {
            int totc = 0, ptr = 0, mink =
36
               \hookrightarrow \max((int)result.size() - (int)cur_res.size(),
            for (int i = 0; i < cur.size(); i++) {</pre>
37
38
                int x = cur[i].i, k = 0;
                while (k < totc && bridge(color_set[k], x))</pre>
39
40
                if (k == totc) color_set[totc++].clear();
41
                color_set[k].push_back(x);
42
                if (k < mink) cur[ptr++].i = x;</pre>
            7
43
            if (ptr) cur[ptr - 1].d = 0;
44
45
            for (int i = mink; i < totc; i ++) {</pre>
46
                for (auto v : color_set[i]) {
                    cur[ptr++] = Vertex(v, i + 1);
47
48
49
            }
50
51
       void expand(vector<Vertex> &cur) {
```

```
52
        steps[level].second = steps[level].second -
           \hookrightarrow steps[level].first + steps[level - 1].first;
53
        steps[level].first = steps[level - 1].second;
54
            while (cur.size()) {
                if (cur_res.size() + cur.back().d <=</pre>
55

    result.size()) return ;

56
                int x = cur.back().i;
57
                cur_res.push_back(x); cur.pop_back();
58
                vector<Vertex> remain;
50
                for (auto v : cur) {
60
                     if (adj[v.i][x]) remain.push_back(v.i);
                }
61
62
                if (remain.size() == 0) {
63
                     if (cur_res.size() > result.size()) result
                       } else {
64
            // Magic ballance.
65
            if (1. * steps[level].second / ++para < t_limit)</pre>
66

    reorder(remain);
                     color_sort(remain);
67
68
            steps[level++].second++;
69
                    expand(remain);
            level--;
70
71
                }
72
                cur_res.pop_back();
73
74
       }
75
   public:
       MaxClique(const vector<vector<bool> > &_adj, int n,
76
          \hookrightarrow double tt = 0.025) : adj(_adj), n(n), t_limit(tt)
            result.clear();
77
78
            cur_res.clear();
79
            color_set.resize(n);
80
       steps.resize(n + 1);
81
       fill(steps.begin(), steps.end(), make_pair(0, 0));
82
       level = 1;
83
       para = 0;
84
       }
85
       vector<int> solve() {
86
            vector<Vertex> p:
            for (int i = 0; i < n; i++)
87
               \hookrightarrow p.push_back(Vertex(i));
88
            reorder(p);
89
            init_color(p);
90
            expand(p);
91
            return result;
92
       }
93
   };
```

6.10 斯坦纳树

```
1
   void SPFA(int *dist)
 2
   {
 3
        static int line[maxn + 5];
 4
        static bool hash[maxn + 5];
 5
        int f = 0, r = 0;
 6
 7
        for(int i = 1; i <= N; i++)</pre>
 8
            if(dist[i] < inf)</pre>
9
            {
10
                line[r] = i;
                hash[i] = true;
11
12
                 r = (r + 1) \% (N + 1);
            7
13
14
        while(f != r)
15
16
        {
            int t = line[f];
17
18
            hash[t] = false;
            f = (f + 1) \% (N + 1);
19
20
            for(int i = head[t]; i ; i = edge[i].next)
21
```

```
22
            {
23
                 int v = edge[i].v, dt = dist[t] + edge[i].w;
24
                 if(dt < dist[v])</pre>
25
26
                 ₹
27
                     dist[v] = dt;
28
29
                     if(!hash[v])
30
                     {
                          if(dist[v] < dist[line[f]])</pre>
31
32
33
                              f = (f + N) \% (N + 1);
34
                              line[f] = v;
35
                          }
36
                          else
37
                              line[r] = v;
38
                              r = (r + 1) \% (N + 1);
39
40
41
                          hash[v] = true;
42
                     }
43
                }
44
45
            }
46
47
48
    void solve()
49
        for(int i = 1; i <= S; i++)
50
51
52
            for(int j = 1; j \le N; j++)
53
                 for(int k = (i - 1) & i; k; k = (k - 1) & i)
54
                     G[i][j] = std::min(G[i][j], G[k][j] + G[k]
                        → ^ i][j]);
55
56
            SPFA(G[i]);
57
        }
58
```

6.11 虚树

```
bool cmp(const int lhs,const int rhs)
 1
2
 3
     return dfn[lhs] < dfn[rhs];</pre>
4
   }
5
   void build()
   {
6
7
     std::sort(h + 1, h + 1 + m, cmp);
8
9
     int top = 0;
10
11
     for (int i = 1; i <= m; i++)
12
13
        if (!top) father[st[++top] = h[i]] = 0;
14
        else
15
16
            int p = h[i], lca = LCA(h[i],st[top]);
17
18
            while(d[st[top]] > d[lca])
19
                if (d[st[top - 1]] <= d[lca])</pre>
20
21
                     father[st[top]] = lca;
22
23
                top--;
            }
24
25
26
            if (st[top] != lca)
27
28
                t[++tot] = lca;
                father[lca] = st[top];
29
                st[++top] = lca;
30
31
```

6.12 点分治

```
template < class TAT > void checkmax (TAT &x, TAT y)
2
3
     if(x < y) x = y;
4 | }
   template<class TAT>void checkmin(TAT &x,TAT y)
5
6
7
     if(y < x) x = y;
8
  | }
9
   void getsize(int u,int fa)
10 {
11
     size[u] = 1;
12
     smax[u] = 0;
13
     for(int i = 0; i < G[u].size(); i++)</pre>
14
15
       int v = G[u][i];
16
17
       if(v == fa || ban[v]) continue;
18
19
20
       getsize(v, u);
21
       size[u] += size[v];
22
       checkmax(smax[u], size[v]);
23
24
25
   }
   int getroot(int u,int ts,int fa)
26
27
28
     checkmax(smax[u], ts - size[u]);
29
30
     int res = u;
31
     for(int i = 0; i < G[u].size(); i++)</pre>
32
33
       int v = G[u][i];
34
35
36
       if(v == fa || ban[v]) continue;
37
38
       int w = getroot(v, ts, u);
39
       if(smax[w] < smax[res]) res = w;</pre>
40
41
42
43
     return res;
44
  |}
45
   void solve()
46
  1
47
     static int line[maxn];
     static std::vector<int> vec;
48
49
     int f = 0, r = 0;
50
51
     line[r++] = 1;
52
     while(f != r)
53
55
       int u = line[f++];
56
       getsize(u, 0);
57
58
       u = getroot(u, size[u], 0);
59
60
       ban[u] = true;
61
       vec.clear();
62
       for(int i = 0; i < G[u].size(); i++)</pre>
63
         if(!ban[G[u][i]]) vec.push_back(G[u][i]);
64
```

6.13 最小割最大流

```
bool BFS()
 1
2
   {
 3
        for(int i = 1; i <= ind; i++) dep[i] = 0;</pre>
 4
5
        dep[S] = 1, line.push(S);
6
 7
       while(!line.empty())
 8
9
            int now = line.front();
10
            line.pop();
11
            for(int i = head[now], p; i ; i = edge[i].next)
12
13
                if(edge[i].cap && !dep[p = edge[i].v])
14
                     dep[p] = dep[now] + 1, line.push(p);
15
       }
16
17
       if (dep[T])
18
            for(int i = 1; i <= ind; i++)
19
20
                cur[i] = head[i];
21
            return true;
22
       }
23
        else
24
            return false:
25
26
   int DFS(int a,int flow)
27
        if(a == T) return flow;
28
29
        int ret = 0;
30
31
        for(int &i = cur[a], p; i ; i = edge[i].next)
32
33
            if(dep[p = edge[i].v] == dep[a] + 1 &&
               \hookrightarrow \texttt{edge[i].cap)}
            {
34
35
                int ff = DFS(p, std::min(flow, edge[i].cap));
36
                flow -= ff, edge[i].cap -= ff;
37
                ret += ff, edge[i ^ 1].cap += ff;
38
39
                if(!flow) break;
40
41
            }
42
43
            return ret;
44
45
   int solve()
46
   {
47
        int totflow = 0;
48
        while(BFS())
49
50
51
            totflow += DFS(S, INF);
52
53
54
        return totflow;
55
```

6.14 最小费用流

```
bool SPFA()
 2
   {
3
        static int line[maxv];
 4
        static bool hash[maxv]:
5
        register int f = 0, r = 0;
 6
 7
      for(int i = 1; i <= ind; i++)</pre>
 8
          dist[i] = inf;
9
10
          from[i] = 0:
11
      }
12
13
        dist[S] = 0, line[r] = S, r = (r + 1) % maxv;
14
        hash[S] = true;
15
        while(f != r)
16
17
        {
18
             int x = line[f];
19
             line[f] = 0, f = (f + 1) % maxv;
20
             hash[x] = false;
21
22
             for(int i = head[x]; i; i = edge[i].next)
23
24
                 if(edge[i].cap)
                 {
25
26
                      int v = edge[i].v;
27
                      int w = dist[x] + edge[i].cost;
28
                      if(w < dist[v])</pre>
29
30
                      {
                           dist[v] = w;
31
32
                           from[v] = i;
33
                           if(!hash[v])
34
35
                                if(f != r && dist[v] <=</pre>
36
                                   \hookrightarrow \mathtt{dist[line[f]]})
37
                                    f = (f - 1 + maxv) \% maxv,
                                       \hookrightarrow line[f] = v;
38
                                else
                                    line[r] = v, r = (r + 1) %
39
                                       \hookrightarrow maxv;
40
41
                               hash[v] = true;
                           }
42
                      }
43
                 }
44
45
46
47
        return from[T];
48
   | }
49
   int back(int x, int flow)
50
51
   {
52
      if(from[x])
53
        flow = back(edge[from[x] ^ 1].v, std::min(flow,
54
           \hookrightarrow edge[from[x]].cap));
55
56
        edge[from[x]].cap -= flow;
        edge[from[x] ^ 1].cap += flow;
57
58
     }
59
     return flow:
60
61
   ۱,
62
   int solve()
63
64
        int mincost = 0, maxflow = 0;
65
        while(SPFA())
66
67
```

6.15 zkw 费用流

```
int S, T, totFlow, totCost;
   int dis[N], slack[N], visit[N];
3
   int modlable () {
       int delta = INF;
 6
 7
       for (int i = 1; i <= T; i++) {
           if (!visit[i] && slack[i] < delta) delta =</pre>
8
              → slack[i]:
9
            slack[i] = INF;
       }
11
       if (delta == INF) return 1;
12
       for (int i = 1; i <= T; i++)
           if (visit[i]) dis[i] += delta;
13
       return 0:
14
15
16
17
   int dfs (int x, int flow) {
18
       if (x == T) {
19
            totFlow += flow;
20
            totCost += flow * (dis[S] - dis[T]);
21
            return flow;
22
23
       visit[x] = 1;
24
       int left = flow;
       for (int i = e.last[x]; ~i; i = e.succ[i])
25
26
            if (e.cap[i] > 0 && !visit[e.other[i]]) {
27
                int y = e.other[i];
28
                if (dis[y] + e.cost[i] == dis[x]) {
29
                    int delta = dfs (y, min (left, e.cap[i]));
30
                    e.cap[i] -= delta;
31
                    e.cap[i ^ 1] += delta;
32
                    left -= delta;
                    if (!left) { visit[x] = 0; return flow; }
33
34
35
                    slack[y] = min (slack[y], dis[y] +
                       \hookrightarrow e.cost[i] - dis[x]);
                }
36
37
           }
38
       return flow - left;
39
40
41
   pair <int, int> minCost () {
42
       totFlow = 0; totCost = 0;
43
       fill (dis + 1, dis + T + 1, 0);
44
       do {
45
            do {
                fill (visit + 1, visit + T + 1, 0);
46
47
           } while (dfs (S, INF));
       } while (!modlable ());
48
49
       return make_pair (totFlow, totCost);
50
```

6.16 最小割树

```
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
```

```
#define inf 0x3f3f3f3f
   #define N 155
 8
   using namespace std;
10
11
   int
      \hookrightarrow cnt,n,m,dis[N],last[N],a[N],tmp[N],ans[N][N],s,t,mark[N];
   struct edge{int to,c,next;}e[N*200];
   queue <int> q;
14
15
   void addedge(int u,int v,int c)
16
   ł
17
           \rightarrow e[++cnt].to=v;e[cnt].c=c;e[cnt].next=last[u];last[u]=cnt8
18
           \rightarrow e[++cnt].to=u;e[cnt].c=c;e[cnt].next=last[v];last[\forall]=cnt0
   ۱,
19
20
21
   bool bfs()
22
   ł
23
        memset(dis,0,sizeof(dis));
24
        dis[s]=2:
        while (!q.empty()) q.pop();
25
        q.push(s);
26
27
        while (!q.empty())
28
29
            int u=q.front();
30
            q.pop();
            for (int i=last[u];i;i=e[i].next)
31
                if (e[i].c&&!dis[e[i].to])
32
33
                     dis[e[i].to]=dis[u]+1;
35
                     if (e[i].to==t) return 1;
36
                     q.push(e[i].to);
37
38
39
        return 0;
40
   }
41
42
   int dfs(int x,int maxf)
43
   {
        if (x==t||!maxf) return maxf;
44
45
        int ret=0;
46
        for (int i=last[x];i;i=e[i].next)
            if (e[i].c&&dis[e[i].to]==dis[x]+1)
47
48
                 int f=dfs(e[i].to,min(e[i].c,maxf-ret));
49
                 e[i].c-=f:
50
51
                 e[i^1].c+=f;
52
                 ret+=f:
53
                 if (ret==maxf) break;
54
        if (!ret) dis[x]=0;
55
56
        return ret;
   }
57
58
   void dfs(int x)
59
60
   {
61
        mark[x]=1:
        for (int i=last[x];i;i=e[i].next)
62
            if (e[i].c&&!mark[e[i].to]) dfs(e[i].to);
63
64
   }
65
66
   void solve(int l,int r)
67
   {
        if (l==r) return;
68
        s=a[1];t=a[r];
69
70
        for (int i=2;i<=cnt;i+=2)</pre>
            e[i].c=e[i^1].c=(e[i].c+e[i^1].c)/2;
71
72
        int flow=0:
        while (bfs()) flow+=dfs(s,inf);
73
        memset(mark, 0.sizeof(mark));
74
75
        dfs(s):
76
        for (int i=1;i<=n;i++)</pre>
```

```
77
              if (mark[i])
 78
                  for (int j=1;j<=n;j++)</pre>
 79
                       if (!mark[j])
 80
                               \rightarrow ans[i][j]=ans[j][i]=min(ans[i][j], flow)
         int i=1,j=r;
81
         for (int k=1:k<=r:k++)
 83
              if (mark[a[k]]) tmp[i++]=a[k];
 84
              else tmp[j--]=a[k];
 85
         for (int k=1;k<=r;k++)</pre>
 86
              a[k]=tmp[k]:
 87
         solve(1,i-1);
         solve(j+1,r);
 89
 91
     int main()
    {
 92
 93
         int cas:
         scanf("%d",&cas);
 95
         while (cas--)
 96
 97
              scanf("%d%d",&n,&m);
 98
              cnt=1:
 99
              for (int i=1;i<=n;i++)</pre>
100
                  a[i]=i;
101
              memset(last,0,sizeof(last));
102
              memset(ans,inf,sizeof(ans));
103
              for (int i=1;i<=m;i++)</pre>
104
              {
105
                   int x,y,z;
                   scanf("%d%d%d",&x,&y,&z);
106
107
                   addedge(x,y,z);
108
              }
109
              solve(1,n);
110
              int q;
111
              scanf("%d",&q);
112
              for (int i=1;i<=q;i++)</pre>
113
114
                   int x,tot=0;
                  scanf("%d".&x):
115
116
                  for (int i=1:i<n:i++)
117
                       for (int j=i+1; j<=n; j++)</pre>
118
                            if (ans[i][j]<=x) tot++;</pre>
                  printf("%d\n",tot);
119
120
              }
121
              cout << end1;
122
         }
123
         return 0;
```

6.17 上下界网络流建图

B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v) 流量的上界,F(u,v) 表示边 (u,v) 的流量。设 G(u,v)=F(u,v)-B(u,v),显然有

$$0 \le G(u, v) \le C(u, v) - B(u, v)$$

6.17.1 无源汇的上下界可行流

建立超级源点 S^* 和超级汇点 T^* ,对于原图每条边 (u,v) 在新网络中连如下三条边: $S^* \to v$,容量为 B(u,v); $u \to T^*$,容量为 B(u,v); $u \to v$,容量为 C(u,v) - B(u,v)。 最后求新网络的最大流,判断从超级源点 S^* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v) + B(u,v)。

6.17.2 有源汇的上下界可行流

从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边。按照**无源汇的上下界可行流**一样做即可,流量即为 $T \to S$ 边上的流量。

6.17.3 有源汇的上下界最大流

- 1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的 边改为连一条上界为 ∞ ,下届为 x 的边。x 满足二分性质,找到最大的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最大流。
- 2. 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的 边,变成无源汇的网络。按照**无源汇的上下界可行流** 的方法,建立超级源点 S^* 和超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 $S \to T$ 的最大流即可。

6.17.4 有源汇的上下界最小流

- 1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的 边改为连一条上界为 x,下界为 0 的边。x 满足二分性质,找到最小的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最小流。
- 2. 按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 S^* → T^* 的最大流,但是注意这一次不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 上界 ∞ 的边。因为这条边下界为 0,所以 S^* , T^* 无影响,再直接求一次 S^* → T^* 的最大流。若超级源点 S^* 出发的边全部满流,则 T → S 边上的流量即为原图的最小流,否则无解。

7. 其他

7.1 Dancing Links

7.1.1 精确覆盖

```
1 #pragma comment(linker, "/STACK:1024000000,1024000000")
   #define maxn 1000005
   using namespace std;
  int head,sz;
  |int U[maxn],D[maxn],L[maxn],R[maxn];//上下左右链表指针
5
   int H[maxn],ROW[maxn],C[maxn],S[maxn],O[maxn];
6
   void remove(int c) {
7
8
       L[R[c]]=L[c];
9
       R[L[c]]=R[c];
10
       for(int i=D[c]; i!=c; i=D[i])
11
           for(int j=R[i]; j!=i; j=R[j]) {
               U[D[j]]=U[j];
12
               D[U[j]]=D[j];
13
14
               --S[C[j]];
15
           }
16
  }
17
   void resume(int c) {
       for(int i=U[c]; i!=c; i=U[i]) {
18
19
           for(int j=L[i]; j!=i; j=L[j]) {
20
               ++S[C[j]];
               U[D[j]]=j;
21
22
               D[U[j]]=j;
           }
23
24
       L[R[c]]=c;
25
26
       R[L[c]]=c;
27 }
   void init(int m) {
28
       head=0;//头指针为 0
29
30
       for(int i=0; i<=m; i++) {</pre>
           U[i]=i;
31
           D[i]=i;//建立双向十字链表
32
           L[i]=i-1;
33
           R[i]=i+1:
34
35
           S[i]=0;
36
37
       R[m] = 0;
38
       L[0]=m;
       S[0] = INF + 1;
39
40
       sz=m+1;
```

```
41
        memset(H,0,sizeof(H));
42
43
   void insert(int i, int j) {
       if(H[i]) {
44
45
            L[sz] = L[H[i]];
            R[sz] = H[i];
46
            L[R[sz]] = sz;
47
48
            R[L[sz]] = sz;
49
       }
50
        else {
            L[sz] = sz;
51
52
            R[sz] = sz;
53
            H[i] = sz;
54
55
       U[sz] = U[j];
56
       D[sz] = j;
       U[D[sz]] = sz;
57
58
       D[U[sz]] = sz;
59
        C[sz] = j;
       ROW[sz] = i;
61
        ++S[j];
62
        ++sz;
63
64
   bool dfs(int k,int len) {
65
        if(R[head] == head) {
            sort(0,0+len*len);
67
            int p=0;
            for(int i=0; i<len; i++) {</pre>
68
                for(int j=0; j<len; j++) {</pre>
69
                     int num=0[p++];
70
71
                     num=num-(i*len+j)*len;
72
                     printf("%d",num);
73
                }
                puts("");
74
75
            }
76
            return true;
77
78
        int s=INF,c;
79
        for (int t=R[head]; t!=head; t=R[t])
80
            if (S[t] <s) s=S[t],c=t;</pre>
81
       remove(c):
        for(int i=D[c]; i!=c; i=D[i]) {
82
            0[k]=ROW[i];
            for(int j=R[i]; j!=i; j=R[j])
85
                remove(C[j]);
86
            if(dfs(k+1,len))
87
                return true;
88
            for(int j=L[i]; j!=i; j=L[j])
89
                resume(C[j]);
90
91
        resume(c);
92
        return false;
93
```

7.1.2 重复覆盖

```
2
   {
3
       int i,j,k,count=0;
4
       bool visit[N]:
5
       memset(visit,0,sizeof(visit));
6
       for(i=R[0];i;i=R[i])
8
            if(visit[i]) continue;
Q
            count++;
            visit[i]=1;
10
            for(j=D[i];j!=i;j=D[j])
11
12
            {
                for(k=R[j];k!=j;k=R[k])
13
14
                    visit[C[k]]=1;
15
            }
       }
16
17
       return count;
```

```
18 }
19
   void Dance(int k)
20
   {
21
        int i,j,c,Min,ans;
22
        ans=h():
        if(k+ans>K || k+ans>=ak) return;
23
        if(!R[0])
25
26
            if(k<ak) ak=k;</pre>
            return;
28
        for(Min=N,i=R[0];i;i=R[i])
29
            if(S[i]<Min) Min=S[i],c=i;</pre>
30
31
        for(i=D[c];i!=c;i=D[i])
32
33
            remove(i);
            for(j=R[i];j!=i;j=R[j])
34
35
                remove(i):
36
            Dance(k+1);
            for(j=L[i];j!=i;j=L[j])
37
38
                resume(j);
39
            resume(i);
40
        }
41
        return;
42
```

7.2 蔡勒公式

```
int zeller(int y,int m,int d) {
   if (m<=2) y--,m+=12; int c=y/100; y%=100;
   int w=((c>>2)-(c<<1)+y+(y>>2)+(13*(m+1)/5)+d-1)%7;
   if (w<0) w+=7; return(w);
}</pre>
```

7.3 五边形数定理

```
p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k-1} p(n - \frac{k(3k-1)}{2})
```

```
1 #include<iostream>
   #include<cstdio>
   using namespace std;
   #define LL __int64
   const int N=100005;
  const int MOD=1000000007:
7 LL dp[N],fi[N];
8 LL five(LL x){ return (3*x*x-x)/2; }
9 //五边形数
10 void wbxs(){
       dp[0]=1;
11
       int t=1000; //其实可以等于 sqrt(N)
12
13
       for(int i=-t;i<=t;++i)</pre>
14
           fi[i+t]=five(i);
15
       for(int i=1;i<=100000;++i){
           int flag=1;
16
17
           for(int j=1;;++j){
18
                LL a=fi[j+t],b=fi[-j+t];
                if(a>i && b>i) break;
19
20
                if(a<=i) dp[i]=(dp[i]+dp[i-a]*flag+MOD)%MOD;</pre>
21
                if(b<=i) dp[i]=(dp[i]+dp[i-b]*flag+MOD)%MOD;</pre>
22
               flag*=-1;
23
24
       }
  1
25
   int main(){
26
       wbxs():
28
       int T,n;
       scanf("%d",&T);
29
30
       while(T--){
           scanf("%d",&n);
31
           printf("%I64d\n",dp[n]);
32
33
```

```
34 return 0;
35 }
```

7.4 凸包闵可夫斯基和

8. 技巧

8.1 STL 归还空间

```
template <typename T>
__inline void clear(T& container) {
  container.clear(); // 或者删除了一堆元素
  T(container).swap(container);
}
```

8.2 大整数取模

8.3 读入优化

```
// getchar() 读入优化 << 关同步 cin << 此优化
  // 用 isdigit() 会小幅变慢
  // 返回 false 表示读到文件尾
   namespace Reader {
       const int L = (1 << 15) + 5;
       char buffer[L], *S, *T;
       __inline bool getchar(char &ch) {
 8
           if (S == T) {
9
               T = (S = buffer) + fread(buffer, 1, L, stdin);
10
               if (S == T) {
11
           ch = EOF;
12
           return false;
13
         }
14
           }
       ch = *S++;
15
16
       return true;
17
18
       __inline bool getint(int &x) {
19
       char ch; bool neg = 0;
       for (; getchar(ch) && (ch < '0' || ch > '9'); ) neg ^=
20
          \hookrightarrow ch == '-';
       if (ch == EOF) return false;
21
22
       x = ch - '0';
       for (; getchar(ch), ch >= '0' && ch <= '9'; )
23
24
         x = x * 10 + ch - '0';
25
       if (neg) x = -x;
26
       return true;
27
       }
28
```

8.4 二次随机法

```
#include <random>
int main() {
    std::mt19937 g(seed); // std::mt19937_64
    std::cout << g() << std::endl;
}</pre>
```

8.5 vimrc

```
set ruler
   set number
  set smartindent
  set autoindent
   set tabstop=4
   set softtabstop=4
   set shiftwidth=4
   set hlsearch
8
   set incsearch
10
   set autoread
   set backspace=2
12
  set mouse=a
13
14
   syntax on
15
16 nmap <C-A> ggVG
   vmap <C-C> "+y
18
19
   filetype plugin indent on
20
21
   autocmd FileType cpp set cindent
   autocmd FileType cpp map <F9> :!g++ % -o %< -g -std=c++11
      \hookrightarrow -Wall -Wextra -Wconversion && size %< <CR>
   autocmd FileType cpp map <C-F9> :!g++ % -o %< -std=c++11
     \hookrightarrow -02 && size %< <CR>
   autocmd FileType cpp map <F8> :!time ./%< < %<.in <CR>
   autocmd FileType cpp map <F5> :!time ./%< <CR>
  map <F3> :vnew %<.in <CR>
28 map <F4> :!gedit % <CR>
```

8.6 控制 cout 输出实数精度

```
std::cout << std::fixed << std::setprecision(5);
```

8.7 让 make 支持 c++11

export CXXFLAGS='-std=c++11 -Wall'

8.8 tuple 相关

8.9 汇编技巧

```
8 int __size = 256 << 20;
9 char* __p__ = (char *) malloc(__size__) + __size__;
10
11 int main() {
    __asm__("mov1 %0, %%esp\n" :: "r"(__p__));
13    return 0;
14 }</pre>
```

9. 提示

9.1 线性规划转对偶

 $\begin{array}{l} \text{maximize } \mathbf{c}^T \mathbf{x} \\ \text{subject to } \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0 \\ \end{array} \Longrightarrow \begin{array}{l} \text{minimize } \mathbf{y}^T \mathbf{b} \\ \text{subject to } \mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T, \mathbf{y} \geq 0 \end{array}$

9.2 NTT 素数及其原根

Prime	Primitive root
1053818881	7
1051721729	6
1045430273	3
1012924417	5
1007681537	3

9.3 积分表

9.3.1
$$ax^2 + bx + c(a > 0)$$

1.
$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C & (b^2 < 4ac) \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C & (b^2 > 4ac) \end{cases}$$

2.
$$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln|ax^2 + bx + c| - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$$

9.3.2
$$\sqrt{\pm ax^2 + bx + c}$$
 $(a > 0)$

1.
$$\int \frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}} \ln |2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}| + C$$

2.
$$\int \sqrt{ax^2 + bx + c} dx = \frac{\frac{2ax+b}{4a}\sqrt{ax^2 + bx + c}}{\frac{4ac-b^2}{8\sqrt{a^3}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C} + C$$

3.
$$\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2\sqrt{a^3}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$$

4.
$$\int \frac{\mathrm{d}x}{\sqrt{c+bx-ax^2}} = -\frac{1}{\sqrt{a}}\arcsin\frac{2ax-b}{\sqrt{b^2+4ac}} + C$$

5.
$$\int \sqrt{c + bx - ax^2} dx = \frac{2ax - b}{4a} \sqrt{c + bx - ax^2} + \frac{b^2 + 4ac}{8\sqrt{a^3}} \arcsin \frac{2ax - b}{\sqrt{b^2 + 4ac}} + C$$

6.
$$\int \frac{x}{\sqrt{c+bx-ax^2}} dx = -\frac{1}{a}\sqrt{c+bx-ax^2} + \frac{b}{2\sqrt{a^3}} \arcsin \frac{2ax-b}{\sqrt{b^2+4ac}} + C$$

9.3.3
$$\sqrt{\pm \frac{x-a}{x-b}}$$
 或 $\sqrt{(x-a)(x-b)}$

1.
$$\int \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} = 2\arcsin\sqrt{\frac{x-a}{b-x}} + C \ (a < b)$$

2.

$$\int \sqrt{(x-a)(b-x)} dx = \frac{2x-a-b}{4} \sqrt{(x-a)(b-x)} + \frac{(b-a)^2}{4} \arcsin \sqrt{\frac{x-a}{b-x}} + C, (a < b) \quad (1)$$

9.3.4 三角函数的积分

1. $\int \tan x dx = -\ln|\cos x| + C$

2. $\int \cot x dx = \ln|\sin x| + C$

3. $\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$

4. $\int \csc x dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x - \cot x \right| + C$

5. $\int \sec^2 x dx = \tan x + C$

6. $\int \csc^2 x dx = -\cot x + C$

7. $\int \sec x \tan x dx = \sec x + C$

8. $\int \csc x \cot x dx = -\csc x + C$

9. $\int \sin^2 x dx = \frac{x}{2} - \frac{1}{4} \sin 2x + C$

10. $\int \cos^2 x dx = \frac{x}{2} + \frac{1}{4} \sin 2x + C$

11. $\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$

12. $\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$

13. $\int \frac{dx}{\sin^n x} = -\frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}$

14. $\int \frac{dx}{\cos^n x} = \frac{1}{n-1} \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$

15.

$$\int \cos^m x \sin^n x dx$$

$$= \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x dx$$

$$= -\frac{1}{m+n} \cos^{m+1} x \sin^{n-1} x + \frac{n-1}{m+1} \int \cos^m x \sin^{n-2} x dx$$

16.
$$\int \frac{\mathrm{d}x}{a+b\sin x} = \begin{cases} \frac{2}{\sqrt{a^2 - b^2}} \arctan \frac{a\tan \frac{x}{2} + b}{\sqrt{a^2 - b^2}} + C & (a^2 > b^2) \\ \frac{1}{\sqrt{b^2 - a^2}} \ln \left| \frac{a\tan \frac{x}{2} + b - \sqrt{b^2 - a^2}}{a\tan \frac{x}{2} + b + \sqrt{b^2 - a^2}} \right| + C & (a^2 < b^2) \end{cases}$$

17.
$$\int \frac{dx}{a+b\cos x} = \begin{cases} \frac{2}{a+b} \sqrt{\frac{a+b}{a-b}} \arctan\left(\sqrt{\frac{a-b}{a+b}} \tan\frac{x}{2}\right) + C & (a^2 > b^2) \\ \frac{1}{a+b} \sqrt{\frac{a+b}{a-b}} \ln\left|\frac{\tan\frac{x}{2} + \sqrt{\frac{a+b}{b-a}}}{\tan\frac{x}{2} - \sqrt{\frac{a+b}{b-a}}}\right| + C & (a^2 < b^2) \end{cases}$$

18.
$$\int \frac{\mathrm{d}x}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan\left(\frac{b}{a} \tan x\right) + C$$

19.
$$\int \frac{dx}{a^2 \cos^2 x - b^2 \sin^2 x} = \frac{1}{2ab} \ln \left| \frac{b \tan x + a}{b \tan x - a} \right| + C$$

20.
$$\int x \sin ax dx = \frac{1}{a^2} \sin ax - \frac{1}{a}x \cos ax + C$$

21. $\int x^2 \sin ax dx = -\frac{1}{a}x^2 \cos ax + \frac{2}{a^2}x \sin ax + \frac{2}{a^3}\cos ax + C$

22. $\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C$

23. $\int x^2 \cos ax dx = \frac{1}{a}x^2 \sin ax + \frac{2}{a^2}x \cos ax - \frac{2}{a^3} \sin ax + C$

9.3.5 反三角函数的积分 (其中 a > 0)

1. $\int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C$

2. $\int x \arcsin \frac{x}{a} dx = (\frac{x^2}{2} - \frac{a^2}{4}) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{x^2 - x^2} + C$

3. $\int x^2 \arcsin \frac{x}{a} dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9}(x^2 + 2a^2)\sqrt{a^2 - x^2} + C$

4. $\int \arccos \frac{x}{a} dx = x \ \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C$

5. $\int x \arccos \frac{x}{a} dx = (\frac{x^2}{2} - \frac{a^2}{4}) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C$

6. $\int x^2 \arccos \frac{x}{a} dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{1}{9}(x^2 + 2a^2)\sqrt{a^2 - x^2} + C$

7. $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2) + C$

8. $\int x \arctan \frac{x}{a} dx = \frac{1}{2} (a^2 + x^2) \arctan \frac{x}{a} - \frac{a}{2} x + C$

9. $\int x^2 \arctan \frac{x}{a} dx = \frac{x^3}{3} \arctan \frac{x}{a} - \frac{a}{6}x^2 + \frac{a^3}{6} \ln(a^2 + x^2) + C$

9.3.6 指数函数的积分

1.
$$\int a^x dx = \frac{1}{\ln a} a^x + C$$

$$2. \int e^{ax} dx = \frac{1}{a} a^{ax} + C$$

3.
$$\int xe^{ax} dx = \frac{1}{a^2}(ax - 1)a^{ax} + C$$

4.
$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

5.
$$\int xa^x dx = \frac{x}{\ln a}a^x - \frac{1}{(\ln a)^2}a^x + C$$

6.
$$\int x^n a^x dx = \frac{1}{\ln a} x^n a^x - \frac{n}{\ln a} \int x^{n-1} a^x dx$$

7.
$$\int e^{ax} \sin bx dx = \frac{1}{a^2 + b^2} e^{ax} (a \sin bx - b \cos bx) + C$$

8.
$$\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C$$

9.
$$\int e^{ax} \sin^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \sin^{n-1} bx (a \sin bx - nb \cos bx) + \frac{n(n-1)b^2}{a^2 + b^2 n^2} \int e^{ax} \sin^{n-2} bx dx$$

10. $\int e^{ax} \cos^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \cos^{n-1} bx (a \cos bx + nb \sin bx) + \frac{n(n-1)b^2}{a^2 + b^2 n^2} \int e^{ax} \cos^{n-2} bx dx$

9.3.7 对数函数的积分

1. $\int \ln x dx = x \ln x - x + C$

2. $\int \frac{\mathrm{d}x}{x \ln x} = \ln \left| \ln x \right| + C$

3. $\int x^n \ln x dx = \frac{1}{n+1} x^{n+1} (\ln x - \frac{1}{n+1}) + C$

4. $\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx$

5. $\int x^m (\ln x)^n dx = \frac{1}{m+1} x^{m+1} (\ln x)^n - \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx$