Human Capital Investments and Expectations About Career and Family

Matthew Wiswall & Basit Zafar

11 December 2019

Motivation

Introduction

Motivation

Literatur

Worke Firms

Doto

Story unde KORV

Estimation

Results

Conclusi

- ▶ Much of the literature on wage inequality trends looks at issue through competitive lens i.e. W=MPL.
- ▶ Changes to wage inequality can only ever be driven by changes to supply or demand/technology.
- When considering rise in graduate wage premium, in a competitive environment it is almost tautological that technology is responsible given increase in supply of graduates.
- ▶ Introducing search frictions allows for other explanations:
 - 1. Transition Rates: Transition out of unemployment, between jobs, and into unemployment impact average wages.
 - 2. Wage Bargain: Institutions affecting the wage bargain matter e.g. welfare, minimum wages, unions etc.

Motivation

Introduction

Motivation

Literatur

Model

Works Firms

wagi

Story und

KORV Story unde

Estimation

Results

- ▶ Will embed frictions, as per ?, within a classic model of tech change and wage inequality by ?- henceforth KORV
- ▶ In KORV rising graduate wage premium is driven by capital skill complementarity and falling capital prices.
- ▶ Adding search frictions to this model serves two aims:
 - 1. Robustness: See whether estimates of capital skill complementarity robust to alternative wage setting environments.
 - 2. **Decomposition**: Decompose growth of wage inequality into changes to supply, technological, frictional and institutional components.

Key Results

Introduction

Motivation Kev Results

Literatur

Model Workers

Worker Firms Wages

Data
Story unde
KORV
Story unde

Estimation

Results

- ▶ Theory Contribution. Develop a framework where wage inequality is driven by changes to labour supply, technology, frictional (and institutional) components.
- ▶ Quantitative Contribution. I find that allowing for the evolution of search frictions does not significantly change the findings of ?, in the sense that:
 - 1. Parameter estimates determining the elasticity of subs. between capital and skilled/unskilled labour are very similar in competitive and frictional version of model.
 - 2. Without capital skill complementarity (CSC), both the competitive and frictional versions of the model fail to explain growth of wage inequality.

Outline

Introduction

Key Results

Literatur

1 Introduction

Workers

2 Literature

vvage

3 Model

Story unde KORV with

4 Data

Estimation

6 Estimation

onclusion

6 Results

Related Literature

Literature

1. Literature explaining wage inequality dynamics.

- ► Skills biased tech change e.g. Katz and Murphy (1992) then task biased tech change - Autor and Acemoglu (2011)
- ▶ Labour Supply: Card & Lemieux (2001)
- Institutional explanations: DiNardo et al (1996)
- ▶ Contribution: Develop model that nests tech, supply and institution explanations, adds transition rates as candidate explanation, and allows counterfactuals.

2. Literature explaining cross-sectional inequality.

- ▶ Postel-Vinay and Robin (2002) decompose residual inequality into worker and firm heterogeneity and frictions. Find frictions account for 45-60% of residual inequality.
- ▶ Abowd, Kramarz, and Margolis (1999) find much larger worker and firm effects (c.80% of residual wage variance).
- ▶ Contribution: Applying search literature to explain change in cross-sectional inequality rather than just level.

The Model: Workers

Motivation

Rey Results

Literature

Model Workers

Firms

KORV und

Story unde KORV with frictions

Estimation

Results

Conclus

- ▶ Two skill levels unskilled/skilled- indexed by $i \in u, s$.
- Efficiency in production of skill types denoted by $\Psi_{i,t}$ (assumed stationary).
- Exogenous job destruction $\delta_{i,t}$
- Flow income in unemployment is $b_{i,t} * MPL_{i,t}$
- ▶ Choose to work or not hours per worker $(h_{i,t})$ exogenous (from data)
- ▶ Job offer arrival in unemployment and in employment denoted by $\lambda_{0,i,t}$ and $\lambda_{1,i,t}$ respectively.
- ▶ Exogenous job offer rates: i.e. vacancy creation not modelled.
- Risk neutral

The Model: Firms

Model

Firms

- ▶ I wish to allow for both capital to labour substitution in production, and substitution between skill types.
- ▶ Not easy in pure search/match framework e.g. potential for complex intra-firm bargaining problems as per?.
- ▶ Proposed solution is to have two sectors of production:
 - 1. An intermediate goods sector with search frictions
 - 2. Competitive final good sector that combines intermediate goods and capital, with no frictions but with imperfect substitutability of all factors.

The Model: Final Goods Firm

Motivation
Key Results

Literatt

Model

Worker

Firms

Data

Story unde KORV

Story under KORV with frictions

Estimation

Results

Conclusion

Final good produced using capital structures, $k_{s,t}$, capital equipment, $k_{e,t}$, and skilled and unskilled labour $s_t \& u_t$:

$$Y_{t} = A_{t} k_{s,t}^{\alpha} \left[\mu u_{t}^{\sigma} + (1 - \mu) (\lambda k_{e,t}^{\rho} + (1 - \lambda) s_{t}^{\rho})^{\frac{\sigma}{\rho}} \right]^{\frac{1 - \alpha}{\sigma}}$$
(1)

Without frictions (as per KORV)

- Labour input is hours worked in efficiency units e.g $u_t \equiv \Psi_{u,t} h_{u,t}, \ s_t \equiv \Psi_{s,t} h_{s,t}$
- Elas. of subs. between unskilled labour and capital equipment (and skilled labour) is $\frac{1}{1-\sigma}$. Elas. of subs. between skilled labour and capital equipment is $\frac{1}{1-\sigma}$.
- ▶ Defining $\pi_t \equiv w_{s,t}/w_{u,t}$, profit max implies:

$$g_{\pi_t} \simeq (1 - \sigma)(g_{h_{u,t}} - g_{h_{s,t}}) + \sigma(g_{\Psi_{s,t}} - g_{\Psi_{u,t}}) + \qquad (2)$$
$$(\sigma - \rho)\lambda(\frac{k_{e,t}}{s_t})(g_{k_{e,t}} - g_{\Psi_{s,t}} - g_{h_{s,t}})$$

The Model: Intermediate Goods Sectors

Motivation Key Results

Literatur

Model

Worke Firms

Data

KORV un

Story und KORV wit frictions

Estimation

Results

Conclu

With Frictions: Intermediate Good Firms

- ▶ I now interpret u_t and s_t as intermediate goods produced using unskilled and skilled labour.
- Labour is hired by heterogeneous intermediate firms with match quality ν , and population cdf $F_{i,t}(\nu)$.
- $\ell_{t,u}(\nu)$ is fraction of employees in a match of quality ν .
- A worker in a match of quality ν produces exactly ν units of intermediate good for every hour they work.
- $y_{i,t}$ is the total amount of intermediate goods produced by skill type i for $i \in u, s$.

$$u_t \equiv \Psi_{u,t} y_{u,t} = \Psi_{u,t} h_{u,t} \int_{\nu_{inf}}^{\nu_{max}} \nu \ell_{t,u}(\nu) d\nu \tag{3}$$

$$s_t \equiv \Psi_{s,t} y_{s,t} = \Psi_{s,t} h_{s,t} \int_{\nu_{inf}}^{\nu_{max}} \nu \ell_{t,s}(\nu) d\nu \tag{4}$$

Wage Determination

Model

Firms

Final good producers pay a price, p_i , for a unit of type i intermediate good given by $p_i = \frac{\partial Y}{\partial u_i} \Psi_i$ (for $i \in \{u, s\}$).

Unemployed Workers

 \triangleright When an unemployed worker of skill type i meets a potential employer of type ν , a Nash type bargaining game ensues and worker is hired at wage contract $\phi(p_i, \nu)$ that solves:

$$V(p_i, \phi(p_i, \nu), \nu) = U(b_i p_i) + \beta [V(p_i, p_i \nu, \nu) - U(b_i p_i)]$$
 (5)

 $\beta \in [0,1]$ is the bargaining parameter

Wage Determination

Model

Firms

Employed Workers

- ▶ When an employed worker of skill type i meets a potential alternate employer, a bargaining game involving the worker and both employers of types $[\nu^+ \geqslant \nu^-]$ is played, the outcome is that the worker:
 - ends up accepting the more productive type firm's offer
 - receives a wage $\phi(p_i, \nu^-, \nu^+)$ that solves

$$V(p_i, \phi(p_i, \nu^-, \nu^+), \nu^+) = V(p_i, p_i \nu^-, \nu^-) +$$

$$\beta[V(p_i, p_i \nu^+, \nu^+) - V(p_i, p_i \nu^-, \nu^-)]$$
(6)

Wage and Employment Distributions

Model

Wages

▶ Jumping ahead..the distribution of workers of type i across intermediate firms is (with $\kappa_{1,i} \equiv \lambda_{1,i}/\delta_i$):

$$\ell_i(\nu) = \frac{1 + \kappa_{1,i}}{[1 + \kappa_{1,i}\bar{F}_i(\nu)]^2} f_i(\nu)$$
 (7)

 \triangleright And crucially the expected wage for a worker of type i is:

$$E(w_{i}) = E(E(w_{i}|\nu))$$

$$= p_{i} \int_{\underline{\nu}}^{\nu_{max}} \left[\nu - \left(\left[1 + \kappa_{1,i}\bar{F}_{i}(\nu)\right]^{2} \times \right] \right]$$

$$\int_{\nu_{inf}}^{\nu} \frac{(1 - \beta)\left[1 + \frac{\delta_{i}}{\delta_{i} + \rho}\kappa_{1,i}\bar{F}_{i}(x)\right]}{\left[1 + \frac{\delta_{i}}{\delta_{i} + \rho}\kappa_{1,i}\beta\bar{F}_{i}(x)\right]\left[1 + \kappa_{1,i}\bar{F}_{i}(x)\right]^{2}} dx\right] \ell_{i}(\nu)d\nu$$
(8)

Wage Impact of Search Frictions

Figure: Wage Impact of Parameters

Model

Wages

Wage and Employment Distributions

Introduction Motivation

Motivation Key Results

Litera

Model

Worker

Wages

Data

Story und

KORV Story unde

Estimation

Results

Conclusion

▶ Summing up:

▶ Under KORV, with no frictions:

$$g_{\pi_t} \propto (g_{h_{u,t}}/g_{h_{s,t}}), (g_{\Psi_{s,t}}/g_{\Psi_{u,t}}), (g_{k_{e,t}}/g_{h_{s,t}})$$
 (9)

▶ Under KORV with frictions:

$$g_{\pi_t} \propto (g_{h_{u,t}}/g_{h_{s,t}}), (g_{\Psi_{s,t}}/g_{\Psi_{u,t}}), (g_{k_{e,t}}/g_{h_{s,t}}), (g_{\beta_{s,t}}/g_{\beta_{u,t}}), (g_{\mathbf{b_{s,t}}}/g_{\mathbf{b_{u,t}}}), (g_{\kappa_{1,s,t}}/g_{\kappa_{1,u,t}})$$
(10)

Data: The KORV story

Introduction

Motivation Key Results

Literature

Model

Worke

Wag

Data

Story under KORV

KORV with frictions

Estimation

Results

Motivation

Literature

Literature

Worker Firms

Wages

Data

KORV

Story under KORV with frictions

Estimation

Results

Conclusion

▶ Under KORV, with no frictions:

$$g_{\pi_t} \propto (g_{h_{u,t}}/g_{h_{s,t}}), (g_{\Psi_{s,t}}/g_{\Psi_{u,t}}), (g_{k_{e,t}}/g_{h_{s,t}})$$
 (11)

▶ Under KORV with frictions:

$$g_{\pi_t} \propto (g_{h_{u,t}}/g_{h_{s,t}}), (g_{\Psi_{s,t}}/g_{\Psi_{u,t}}), (g_{k_{e,t}}/g_{h_{s,t}}),$$
 (12)

$$(\mathbf{g}_{\beta_{\mathbf{s},\mathbf{t}}}/\mathbf{g}_{\beta_{\mathbf{u},\mathbf{t}}}), (\mathbf{g}_{\mathbf{b}_{\mathbf{s},\mathbf{t}}}/\mathbf{g}_{\mathbf{b}_{\mathbf{u},\mathbf{t}}}), (\mathbf{g}_{\kappa_{\mathbf{1},\mathbf{s},\mathbf{t}}}/\mathbf{g}_{\kappa_{\mathbf{1},\mathbf{u},\mathbf{t}}})$$
 (13)

▶ So question is do trends for **transition rates**, and for institutional parameters differ much for graduates relative to non-graduates?

Data

Story under

KORV with frictions

Transition Data: Job Destruction Rates

Source: Current Population Survey, Monthly Files

Data

Story under KORV with

Transition Data: Job transition Rates

Source: Current Population Survey, Monthly Files

• Used as empirical target for estimating job contact rate, $\lambda_{1,i,t}$

Introduction

Motivation

Literature

36 11

Worker Firms

Data

Story un

Story under KORV with

Estimation

Results

Conclusion

Distribution data: Standard Dev of Resid. Log Wages Source: Current Population Survey

• Used as empirical target for estimating $F_{i,t}$

Introduction

Key Results

Literature

Model

Firms

Data

Story und KORV

Story under KORV with frictions

Estimation

Results

Conclusion

Distribution data: Lower Bound of Wage Distribution

Source: Current Population Survey

• Used as target for estimating reservation match quality $\nu_{inf,i,t}$

Introduction

Motivation Key Results

Literature

Literature

Model

Worker Firms

Data

KORV und

Story under KORV with frictions

Estimation

Results

Conclusion

Institutions

▶ Not used in estimation (yet)

Estimation Overview

Introductio

Motivation Key Results

Literatur

Model

Worke

Firms

_

Story unde

KORV

Estimation

Rocult

Conclusion

▶ Recall wage equation in model:

$$\begin{split} E(w_{i,t}) = & p_{i,t} \int_{\underline{\nu}}^{\nu_{max}} \bigg[\nu - \big(\big[1 + \kappa_{1,i,t}\bar{F}_{i,t}(\nu)\big]^2 \times \\ & \int_{\nu_{inf}}^{\nu} \frac{(1-\beta)\big[1 + \frac{\delta_{i,t}}{\delta_{i,t}+\rho}\kappa_{1,i,t}\bar{F}_{i,t}(x)\big]}{\big[1 + \frac{\delta_{i,t}}{\delta_{i,t}+\rho}\kappa_{1,i,t}\beta\bar{F}_{i,t}(x)\big]\big[1 + \kappa_{1,i,t}\bar{F}_{i,t}(x)\big]^2} dx\big)\bigg] \ell_{i,t}(\nu) d\nu \\ = & \underbrace{E_{\nu}(w_{i,t}, p_{i,t} = 1)}_{\text{Stage 1 of Estimation}} \times \underbrace{p_{i,t}}_{p_{i,t}} \underbrace{p_{i,t}}_{\sigma y_{i,t}} \Psi_{i,t} \end{split}$$

- ▶ Estimation proceeds in two stages:
 - 1. $E_{\nu}(w_{i,t}, p_{i,t} = 1)$. Estimate parameters determining job market frictions and shape of within skill wage distribution.
 - ▶ Determines shape but not location of wage distribution.
 - 2. $p_{i,t}$. Estimate parameters of KORV production function
 - ▶ Determines location but not shape of wage distribution.

Estimation Approach

Estimation

▶ Use SMM in two stages:

- 1. $E_{\nu}(w_{i,t}, p_{i,t} = 1)$. Estimate parameters determining job market frictions and shape of within skill wage distribution:
 - ▶ Job contact rates for employed, $\lambda_{1,i,t}$ for $i \in u, s$. Empirical Target: Proportion of continuously employed workers with more than one employer (non concurrent) over year
 - ▶ Sampling distribution of offers, $F_{i,t(\nu)}$ for $i \in u, s$. Assume log normal with lower bound $\nu_{inf,i,t}$, mean $\zeta_{i,t}$ (will normalise this) and variance $\eta_{i,t}$. Empirical Targets: Variance of Log Wages, p2/50 wage percentile ratio

Estimation Detail: Search parameters

- 2. $p_{i,t}$. Estimate parameters for KORV production function:
 - ▶ Empirical Targets: Time series of Graduate Wage Premium, Labour Share, Output and No arbitrage condition for Capital Structures and Equipment.

Estimation Detail: KORV parameters

Results: Stage 1 (Search Frictions)

Introduction

Motivation Key Results

Literature

woud.

Firms

Wage

Data

Story und

Story unde KORV wit

Estimation

Results

Figure:
$$E_{\nu}(w_{i,t}, p_{i,t} = 1)$$

Results: Stage 2 (KORV Production Function)

Introduction

Literature

Literature

3.6 - 1 - 1

Vorkers Table

Table: KORV parameter values: the importance of frictions

With Frictions Without Frictions Parameter 0.505 0.568 0.833 0.8060.083 0.091 -0.186-0.2090.329 0.352 Elas. of Subs. btw S and K_{eq} , $\varepsilon_{S,K_{eq}}$ (= 1/1 - γ)) 0.843 0.827 Elas. of Subs. btw U and K_{eq} , $\varepsilon_{U,K_{eq}} (= 1/1 - \sigma))$ 1.489 1.544 CSC Strength: $\varepsilon_{U,K_{eq}} - \varepsilon_{S,K_{eq}}$ 0.646 0.716

Story und

KORV und

Estimation

Results

Results: Stage 2 (KORV Production Function)

Introduction Motivation

Literature

Literature

Model

Firms

....

Story und

KORV Story und

Estimation

Results

Conclusion

Without some degree of capital skill complementarity (i.e. $\sigma = \gamma$) then both competitive and frictional version of models unable to explain increase in wage premium:

Figure: Model Fit: No Capital Skill Complementarity (CSC)

Conclusions and Next Steps

- ▶ I have developed a model where relative average wages of skill groups determined by:
 - 1. relative labour supply and capital use (?)
 - 2. transition probabilities, replacement rates, and bargaining strength (?)
- ▶ This approach allows analysis of impact of search frictions on wage inequality, and implications for estimates of CSC.
- ▶ Find that accounting for changes to transition rates and outside options does not change estimates of CSC.
- Next steps:
 - 1. incorporate institutions i.e. minimum wage, estimate bargaining strength (probably requires MEE data).
 - 2. Move away from skilled vs non-skilled split of data.

Thank you! Comments/Questions?

Appendix A: Data

Transition Data: Job transition vs Multiple Employer Rates

Source: Current Population Survey, Monthly Files

Appendix B: KORV Estimation With Frictions

1. Estimate Contact Rates

- ▶ In all cases, note that I target a rolling six year average of the data rather than the actual annual series.
- ▶ I assume that $\nu_{min} \ge b$ so $\lambda_{0,i}$ simply equals the empirical unemployment exit rate
- $\lambda_{1,i}$ is chosen to target the proportion of individuals continuously employed in a year who have more than one employer (call this τ).
 - ▶ This is given in model by the following expression (which turns out to be independent of distribution, F):

$$\tau_i = 1 - \int_{\nu_{min}}^{\nu_{max}} (1 - \lambda_{1,i} \bar{F}(\nu))^{12} \ell_i(\nu)$$
 (14)

Appendix B: KORV Estimation With Frictions

2. Estimate Distribution of Firm Heterogeneity

- Per period revenue generated at a match of quality ν , is $p_i \nu$ (recall $p_i = \frac{\partial Y}{\partial u_i} \Psi_i$)
- ▶ The distribution of wages for skill type i employees across the quality distribution will be, up to a scale, independent of p_i .
- ▶ I can therefore estimate distribution of wages, independently of KORV production parameters (which influenc p_i).
- Assume distribution is log-normal, and normalize mean, leaving variance and lower bound $(\eta_{i,t} \text{ and } \nu_{inf_{i,t}})$ to be estimated.
- ► Empirical Targets: Variance of Log Wages, p2/50 wage percentile ratio

Appendix C: KORV Estimation Detail

• Estimation is based on three equations coming from firms FOC's and no-arbitrage condition

$$\frac{w_{u,t}h_{u,t} + w_{s,t}h_{s,t}}{Y_t} = lsh_t(X_t, \Psi_t; \phi)$$
(15)

$$\frac{w_{s,t}h_{s,t}}{w_{u,t}h_{u,t}} = wbr_t(X_t, \Psi_t; \phi)$$
(16)

$$(1 - \delta_s) + A_{t+1}G_{k_s}((X_t, \Psi_t; \phi)) = E_t(\frac{q_t}{q_{t+1}})(1 - \delta_e) + q_t A_{t+1}G_{k_e}((X_t, \Psi_t; \phi))$$
(17)

- Here X_t is the set of factor inputs $(k_{s,t}, k_{e,t}, u_t, s_t)$, and ϕ is the vector of all parameters.
- ▶ The system of equations above can be summarized in vector form as $Z_t = f(X_t, \Psi_t, \epsilon_t; \phi)$

Appendix C: KORV Estimation Detail

- 1. Instrument hours worked, so exogenous data is $\hat{X}_t = (k_{s,t}, k_{e,t}, \hat{h}_{u,t}, \hat{h}_{s,t})$
- 2. Draw S values of the shocks to labour efficiency, ψ_t^i for each period t to get S realizations of $Z_t^i = f(\hat{X}_t, \Psi_t^i, \epsilon_t^i; \phi)$
- 3. Use these S realizations to obtain the following moments:

$$m_s(\hat{X}_t, \phi) = \frac{1}{S} \sum_{i=1}^{S} f(\hat{X}_t, \Psi_t^i, \epsilon_t^i; \phi)$$
(18)

$$V_s(\hat{X}_t, \phi) = \frac{1}{S-1} \sum_{i=1}^{S} (Z_t^i - m_s(\hat{X}_t, \phi)) (Z_t^i - m_s(\hat{X}_t, \phi))' \quad (19)$$

4. Maximize the following objective function:

$$l_s(\hat{X}_t, \phi) = \frac{1}{2T} \sum_{t=1}^{T} \left\{ (Z_t - m_s(\hat{X}_t, \phi))' V_s(\hat{X}_t, \phi) \right\}$$
 (20)

$$\times \left(Z_t - m_s(\hat{X}_t, \phi) \right) + \ln(\det(V_s(\hat{X}_t, \phi)))$$
 (21)