HW-3

Your Name : Desireddy Sai Sankeerthana Your Student ID: 50465523

problem 1:

(a) T(n) = 5T(n|3) + O(n)

a=5 b=3 c=1

log a = log 5 = 1.464 > 1

Acc to master's theorm, if logb c then asymptoic upper c < logb

bond is O(nloga)

:. T(n) = O(nlog 5)

T(n) = 3T(n/8) +0(n)

a=3 b=3 c=1 c=loga

loga = log3 = 1 = 1800

Acc to master's theorm, if loga = c, then asympto

upper bound is O(nc logn)

... T(n) = O(n log n)

```
(c) T(n) = 4T(n/2) + O(n^2\sqrt{n})

n^2\sqrt{n} = n^2 \cdot n^{1/2} = n^{5/2}

a = + b = 2 c = 5/2 = 2 \cdot 5

\log a = \log_2 4 = 2 < 2 \cdot 5

if \log a < c then asymptotic upper bound is O(n^c)

(d) T(n) = 8 gT(n/2) + O(n^2)

a = 8 b = 2 c = 2

\log_b a = \log_2 8 = 3 > 2

i.i. I(n) = O(n\log_2 8)

i.i. I(n) = O(n\log_2 8)

i.i. I(n) = O(n\log_2 8)
```

Problems:

$$A = (3,0,1,0,4,1,7,1,6,3)$$

$$B = (2,9,4,6,3,1,6,0,1,3)$$

 $(3n^9 + 6n^8 + n^7 + 7n^6 + n^5 + 4n^4 + n^2 + 3) \times$ $(3n^9 + n^8 + 6n^6 + n^5 + 3n^4 + 6n^3 + 4n^2 + 9n + 2)$ this gives output of 11235330870604938676

,	329	6 n8	x7	7×6	25		2 ²	3
329	9218	1	3n16	21215		12×13	321"	929
28	3217	18 × 16	nrs		213	4×12	210	3n8
6×6	18215					24×10	6u8	1826
n ⁵	3214	6x13		7×"	W10	429	nt	345
324	9x13	18212	3n"	21 %		12×8	3n6	924
6 n 3	18212	36×"	6×10	4229		24x7	6×5	1823
4×2	1211	24×10	429	2828		1626	424	1222
9x	27 x10	54x9	928	63×7		3625	9× 3.	27 X
2	6×9	12×8	2×7	14x6	2n5	894	2×2	6
	1							

poly multiply (A, B, n) if n=1 then return (A[O]B[O]) AL = A[0... n/2-1] AH \ A[N2 ... n-1] BL < B[0 - - . . n/2 - 1] BH - B[1/2- .. n-1] CL < multiply (AL, BL, n/2) CH < multiply (AH, BH, 0/2) (M < multiply (AL+ AH, BL+ BH, 1/2) c < array of (2n-1) 0's for i ← 0 to n-2 do c[i] < c[i] +c[i] c(i+n) < c(i+n) + ch(i) c[i+n/2] < c[i+n/2] + cm[i] - c[i] - cn[i] return c Problem 3: Gunt Range (n[], n, Lo, hi) Lo = LOW hiz high for i from lo to his if x[i] == n & increment c 3 return C

```
rajority (n[], lo, ui)
    if (to Equals to hi) ?
   g return n[lo]
 calvulate mid = (hi-lo)/2 + lo;
  left = majority (n, le, mid)
  right = majority (n, mid+1, hi)
  if ( lo = = hi) {
  caluculate count of left 4 rightarrays
         leftcount = count Range (n, left, lo, li)
         rightCount = Count Raye (n, right, 10, his)
     return left count > right Count ? left : right .
 dividing the array into 2 posts to find majority
     I part is left 4 I part is right
  10 = lowest h= highest
problem 4:
   Local minima ( l, n):
       if l=x then return l
       calual
       Caluculate M = [(l+n)/2]
      if A[m] < A[m+1] then
           Deturn localminima ( L, m)
      else
             return local minima (m+1, n)
```

L=1 x=n, n is distinct numbers of given array.

A[l-1] > A[l] 4 A[x] < A[x+1]

if L=x break A[l...x] into A[l...m] 4 A[m+1...x

if A[m] < A[m+1] then local minima(l,x) where if A[m] < A[m+1] then local minima(m,x) where A[l-1] > A[l]

A[m] = A[m+1] local minima(m+1, x) where A[m] = A[m] = A[m] = A[m]

L=8 then A[l-1] => A[l]