Apostila de Exercícios:

1 Exercícios de Conjuntos

- 1. Sendo o conjunto $A = \{4, 6, 9, 2, 11\}$ e $B = \{2, 5, 2, 9\}$, resolva as seguintes operações sobre conjuntos:
 - (a) $A \cup B$
 - (b) $B \cap A$
 - (c) B-A
 - (d) $A \times B$
- 2. Demonstre o Diagrama de Venn dos seguintes casos:
 - (a) $E = \{6, 8, 4, 2\}, F = \{b, d, h, f\}$
 - (b) A = {gato, pato, urso}, B = {carne, ração, milho}
- 3. De acordo com os conjuntos A e B do exercício 1, responda se as seguintes afirmações são verdadeiras ou falsas:
 - (a) A B
 - (b) B C A
 - (c) A B
- 4. Demostre o conjunto das partes de cada um dos seguintes conjuntos:
 - (a) $A = \{5, 7, 2\}, P(A) = ?$
 - (b) $B = \{6, 1, 5\}, P(B) = ?$
 - (c) $C = \{23, 54, 67, 123\}, P(C) = ?$
 - (d) $D = \{6, 5, 4, 3, 2\}, P(D) = ?$
- 5. (OSEC) Numa escola de 360 alunos, onde as únicas matérias dadas são matemática e português, 240 alunos estudam matemática e 180 alunos estudam português. O número de alunos que estudam matemática e português é:

(a) 120(b) 60(c) 90(d) 180

(e) N.d.a.

- 6. (PUC-CAMPINAS) Numa indústria, 120 operários trabalham de manhã, 130 trabalham à tarde, 80 trabalham à noite; 60 trabalham de manhã e à tarde, 50 trabalham de manhã e a noite, 40 trabalham à tarde e à noite e 20 trabalham nos três períodos. Assim:
 - (a) 150 operários trabalham em 2 períodos;
 - (b) Há 500 operários na indústria;
 - (c) 300 operários não trabalham à tarde;
 - (d) Há 30 operários que trabalham só de manhã;
 - (e) N.d.a;
- 7. (NUNO LISBOA) Um subconjunto X de números naturais contém 12 múltiplos de 4, 7 múltiplos de 6, 5 múltiplos de 12 e 8 números ímpares. O número de elementos de X é:
 - (a) 22
 - (b) 27
 - (c) 24
 - (d) 32
 - (e) 20
- 8. (CESGRANRIO) Em uma universidade são lidos dois jornais A e B; exatamente 80% dos alunos lêem o jornal A e 60% o jornal B. Sabendose que todo aluno é leitor de pelo menos um dos jornais, o percentual de alunos que lêem ambos é:
 - (a) 48%
 - (b) 60%
 - (c) 40%
 - (d) 140%

- (e) 80%
- 9. Em uma pesquisa de mercado foram entrevistadas várias pessoas acerca de suas preferências em relação a três produtos A, B e C. Os resultados da pesquisa indicaram que:
 - 210 compram o produto A.
 - 210 compram o produto B.
 - 250 compram o produto C.
 - 20 compram os três produtos.
 - 100 não compram nenhum dos três produtos.
 - 60 compram os produtos A e B.
 - 70 compram os produtos A e C.
 - 50 compram os produtos B e C.
 - Quantas pessoas foram entrevistadas?
- 10. (UFBH) Um colégio ofereceu cursos de inglês e francês, devendo os alunos se matricularem em pelo menos um deles. Dos 45 alunos de uma classe, 13 resolveram estudar tanto inglês quanto francês; em francês, matricularam-se 22 alunos. Quantos alunos se matricularam em inglês?
- 11. (FAAP) Os sócios dos clubes A e B formam um total de 2200 pessoas. Qual é o número de sócios do clube B se A tem 1600 e existem 600 que pertencem aos dois clubes?
- 12. (MED. RIO PRETO) Num almoço, foram servidos, entre outros pratos, frangos e leitões. Sabendo-se que, das 94 pessoas presente, 56 comeram frango, 41 comeram leitão e 21 comeram dos dois, o número de pessoas que não comeram nem frango nem leitão é:
 - (a) 10
 - (b) 12
 - (c) 15
 - (d) 17
 - (e) 18
- 13. (UFPA) Uma escola tem 20 professores, dos quais 10 ensinam Matemática, 9 ensinam Física, 7 Química e 4 ensinam Matemática e Física. Nenhum deles ensina Matemática e Química. Quantos professores ensinam Química e Física e quantos ensinam somente Física?

2 Exercícios de Lógica

- 1. Sejam as proposições: p : está frio q : está chovendo Traduzir para a linguagem natural as seguintes proposições:
 - (a) $\neg p$
 - (b) $p \wedge q$
 - (c) $p \vee q$
 - (d) $q \leftrightarrow p$
 - (e) $p \to \neg q$
 - (f) $p \vee \neg q$
 - (g) $\neg p \land \neg q$
 - (h) $p \leftrightarrow \neg q$
 - (i) $p \land \neg q \to p$
- 2. Construir a tabela-verdade para a proposição: $p \vee \neg q$
- 3. Sabendo-se que V(p) = V(q) = T (verdadeiro) e V(r) = V(s) = F (falso), determine os valores lógicos das seguintes proposições:
 - (a) $(p \land (q \lor r)) \to (p \to (r \lor q))$
 - (b) $(q \to r) \leftrightarrow (\neg q \lor r)$
 - (c) $(\neg p \lor \neg (r \land s))$
 - (d) $\neg (q \leftrightarrow (\neg p \land s))$
 - (e) $(p \leftrightarrow q) \lor (q \rightarrow \neg p)$
 - (f) $\neg(\neg q \land (p \land \neg s))$
 - (g) $\neg q \land ((\neg r \lor s) \leftrightarrow (p \rightarrow \neg q))$
 - (h) $\neg(\neg p \lor (q \land s)) \rightarrow (r \rightarrow \neg s)$
 - (i) $\neg (p \to (q \to r)) \to s$
- 4. Construir as tabelas verdade para as seguintes proposições:
 - (a) $p \vee \neg r \rightarrow q \vee \neg r$
 - (b) $\neg (p \land q) \lor \neg (q \leftrightarrow p)$
 - (c) $(p \land q \to r) \lor (\neg p \leftrightarrow q \lor \neg r)$

- 5. Aplicando as Leis de Morgan, dar a negação de cada uma das seguintes proposições:
 - (a) $p \wedge \neg q$
 - (b) $\neg p \land \neg q$
 - (c) $\neg p \lor q$
 - (d) $\neg p \lor \neg q$
- 6. Simplifique as proposições abaixo utilizando as leis de equivalência. (indique qual lei você está usando durante a simplificação).
 - (a) $p \wedge (p \rightarrow q) \wedge (p \rightarrow \neg q)$
 - (b) $(p \to q) \land (\neg p \to q)$
 - (c) $(p \to q) \to r$
 - (d) $(p \land q) \rightarrow (\neg r \rightarrow \neg q)$
 - (e) $p \to (p \lor q)$
 - (f) $p \leftrightarrow q$

3 Exercícios de Pré Cálculo

- 1. Fatore os termos, colocando-os em evidência:
 - (a) $x^2 xy$
 - (b) $a^3 a^2b$
 - (c) $6x^3 12x^2 + 36$
 - (d) $12x^3y^4 18x^2y^3 + 6x^4y$
 - (e) $32m^7p^{10} + 95m^5p^6 128m^4p^8$
- 2. Fatore as expressões algébricas:
 - (a) $16x^4 1$
 - (b) $x^3 6x^2 + 12x 8$
 - (c) $a^{12} a^{20}$
 - (d) $x^2 (a+1)^2$
 - (e) $m^8 y^8$
- 3. Simplifique ao máximo as seguintes expressões:
 - (a) $\frac{(x+xy)}{(x+xz)}$
 - (b) $\frac{(x^2-9)}{(x-3)}$
 - (c) $\frac{(x^2-5x+xy+5y)}{(7x+7y)}$
 - (d) $\frac{(4x^2+4xy+y^2)}{(2x+y)}$
 - (e) $\frac{[a^2+ab+(b+a)(b-a)]}{(3a+3b)}$
 - (f) $\frac{[(x+y)(x+y)-y^2]}{(x+2y)}$
- 4. Resolva as seguintes inequações de $1^{\rm o}$ grau:
 - (a) 2x + 5 < -3x + 40
 - (b) 6(x-5) 2(4x+2) > 100
 - (c) 7x 9 < 2x + 16
 - (d) $-(8-4x-7) \le 2x+7$
- 5. Demonstre o conjunto solução das seguintes inequeações do $2^{\rm o}$ grau:
 - (a) $x^2 5x + 6 > 0$
 - (b) $x^2 + x 12 \le 0$
 - (c) $-x^2 + 6x 8 > 0$