# 有到大學

网络技术与应用课程实验报告 实验 1: 共享式和交换式以太网组网



学院: 网络空间安全学院

专业: 信息安全-法学

学号: \_\_\_\_2111454\_\_\_\_

姓名: 李潇逸

# 目录

# 一、前期准备

- 1. 安装 Cisco Packet Tracer
- 2. 学习虚拟仿真软件的基本使用方法

# 二、实验过程

# (一) 仿真环境下的共享式以太网组网

- 1. 单集线器共享式以太网组网
  - 网络布局和配置
    - 1. 选择合适的组件,添加集线器(Hub)和终端(end devices)







图 1: 组件

2. 本次实验使用自动连接,软件自动分配端口和选择合适种类的线,选择直连线(适用于终端和集线器连接)



图 2: 直连线

3. 分配 IP 地址, 选择静态分配, IP 分配如下图所示, 子网掩码统一采用 255.255.255.0

| PC  | IPv4 Address | Subnet Mask   |
|-----|--------------|---------------|
| PC0 | 192.168.1.1  | 255.255.255.0 |
| PC1 | 192.168.1.2  | 255.255.255.0 |

### • 测试网络连通性

```
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

图 3: PC0 ping PC1

```
C:\>ping 192.168.1.1

Pinging 192.168.1.1 with 32 bytes of data:

Reply from 192.168.1.1: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

图 4: PC1 ping PC0

### 2. 多集线器共享式以太网组网

- 网络布局和配置
  - 1. 参考单集线器的配置、搭建多集线器共享式以太网组网



图 5: 组网

2. 分配 IP 地址, 选择静态分配, IP 分配如下图所示, 子网掩码统一采用 255.255.255.0

| PC  | IPv4 Address | Subnet Mask   |
|-----|--------------|---------------|
| PC2 | 192.168.1.6  | 255.255.255.0 |
| PC3 | 192.168.1.7  | 255.255.255.0 |
| PC4 | 192.168.1.8  | 255.255.255.0 |
| PC5 | 192.168.1.9  | 255.255.255.0 |

### • 测试网络连通性

```
C:\>ping 192.168.1.7

Pinging 192.168.1.7 with 32 bytes of data:

Reply from 192.168.1.7: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.7:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

图 6: PC2 ping PC3

```
C:\>ping 192.168.1.9

Pinging 192.168.1.9 with 32 bytes of data:

Reply from 192.168.1.9: bytes=32 time=1ms TTL=128
Reply from 192.168.1.9: bytes=32 time=10ms TTL=128
Reply from 192.168.1.9: bytes=32 time<1ms TTL=128
Reply from 192.168.1.9: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.9:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 10ms, Average = 2ms</pre>
```

图 7: PC2 ping PC4

连接在同一个集线器下的两个主机能 ping 通,连接在不同集线器下,但集线器相连的主机也能 ping 通

- 3. "模拟"方式中观察数据包
- (a) 单集线器, PC0 到 PC1
  - 1. PC0 发送数据包的初始态



图 8: 初始态

2. PC0 将数据包发送给集线器



图 9: PC0 将数据包发送给集线器

3. 集线器将数据包发送给每一个可达的 PC 端, 但非目标接收端不会接收该数据包



图 10: 集线器将数据包发送给每一个可达的 PC 端

4. PC1 接收数据包并产生回复,该数据被发送到集线器



图 11: 返回数据被发送到集线器

5. 集线器将数据包发送给每一个可达的 PC 端,但非目标接收端不会接收该数据包,PC0 接收,PC6 拒收



图 12: PC0 接收, PC6 拒收

# (b) 多集线器传输给同集线器下的接收端,PC2 到 PC3

1. PC2 发送数据包初始态



图 13: PC2 发送数据包初始态

2. PC2 将数据包发送给集线器 Hub1



图 14: PC2 将数据包发送给集线器 Hub1

3. 集线器 Hub1 将数据包转发给 PC3 和与 Hub1 连接的 Hub2, PC3 是目标接收端,做出回 复



图 15: Hub1 将数据包传给 PC3 和 Hub2

4. PC3 将回复数据传输给集线器 Hub1, 集线器 Hub2 将 PC2 发出的数据包继续传输给 PC4 和 PC5,但不会被两主机接收



图 16: PC3 回复响应, Hub2 继续传输

5. Hub1 将 PC3 端发送的数据包传输给 PC2 和集线器 Hub2, PC2 成功接收



图 17: Hub1 将数据包传给 PC2 和 Hub2

6. 集线器 Hub2 将 PC3 发出的数据包继续传输给 PC4 和 PC5, 但不会被两主机接收



图 18: Hub2 继续传输

# (c) 多集线器传输给不同集线器下的接收端,PC2 到 PC5

1. PC2 发送数据包初始态



图 19: PC2 发送数据包初始态

2. PC2 将数据包发送给集线器 Hub1



图 20: PC2 将数据包发送给集线器 Hub1

3. 集线器 Hub1 将数据包转发给 PC3 和与 Hub1 连接的 Hub2, PC3 是不接收



图 21: Hub1 将数据包传给 PC3 和 Hub2

4. 集线器 Hub2 将 PC2 发出的数据包继续传输给 PC4 和 PC5, PC4 不接收而 PC5 接收



图 22: Hub2 继续传输, PC4 不接收而 PC5 接收

5. PC5 将回复的数据包发送给集线器 Hub2



图 23: PC5 将回复的数据包发送给集线器 Hub2

6. 集线器 Hub2 将 PC5 发出的数据包继续传输给 PC4 和集线器 Hub1, 但不会被 PC4 接收



图 24: Hub2 继续传输

7. 集线器 Hub1 将 PC5 发出的数据包继续传输给 PC2 和 PC3, 但不会被 PC3 接收, 会被 PC2 接收



图 25: PC2 接收回复数据包

### (d) 总结

集线器作为数据传输的载体,不会对数据的目标地址进行判断,会将其发往与其连通的所有地址,是否接受由主机进行判断

# (二) 交换式以太网组网和 VLAN 配置

- 1. 单交换机以太网组网
- (a) 单交换机以太网组网和连通性
  - 网络布局和配置
    - 1. 搭建单交换机以太网组网



图 26: 组网

2. 分配 IP 地址, 选择静态分配, IP 分配如下图所示, 子网掩码统一采用 255.255.255.0

| PC  | IPv4 Address | Subnet Mask   |
|-----|--------------|---------------|
| PC0 | 192.168.1.1  | 255.255.255.0 |
| PC1 | 192.168.1.2  | 255.255.255.0 |
| PC2 | 192.168.1.3  | 255.255.255.0 |

• 测试网络连通性

```
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

图 27: PC0 ping PC1

### (b) 终端配置交换机

1. 点击 PC3  $\rightarrow$  Desktop  $\rightarrow$  Terminal, 配置串口连接的参数, 设置为 9600 波特、8 个数据位、 1 个停止位



图 28: PC3 中终端模拟器配置

2. 用终端配置 VLAN2.PC3 连接到 VLAN2 的端口

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#vlan 2
Switch(config-vlan)#name VLAN2
Switch(config-vlan)#exit
```

图 29: 终端配置 VLAN2

```
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface GigabitEthernet1/0/3

* Invalid input detected at '^' marker.

Switch(config)#interface FastEthernet/0/3

* Invalid input detected at '^' marker.

Switch(config)#interface FastEthernet0/3
Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan 2
Switch(config-if)#exit
Switch(config)#exit
Switch#

*SYS-5-CONFIG_I: Configured from console by console
```

图 30: PC3 连接到 VLAN2 的端口

### (c) 单台交换机中划分 VLAN

1. 划分 VLAN 并进行重新分配(b) 中实现,增加了一个新的 VLAN2 和 VLAN3,将 PC0 和 PC1 分配给 VLAN3,PC2 分配给 VLAN2

| PC  | IPv4 Address | Subnet Mask   | VLAN |
|-----|--------------|---------------|------|
| PC0 | 192.168.1.1  | 255.255.255.0 | 3    |
| PC1 | 192.168.1.2  | 255.255.255.0 | 3    |
| PC2 | 192.168.1.3  | 255.255.255.0 | 2    |

2. 同一 VLAN 中主机的连通性 (同在 VLAN3 下的 PC0 ping PC1)

```
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

图 31: 同一 VLAN 中主机的连通性

3. 不同 VLAN 中主机的连通性

```
C:\>ping 192.168.1.3

Pinging 192.168.1.3 with 32 bytes of data:

Request timed out.
Ping statistics for 192.168.1.3:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

图 32: 不同 VLAN 中主机的连通性

4. 在同一 VLAN 下的主机可以 ping 通,在不同 VLAN 下的主机不能 ping 通。因此 VLAN 是相互隔离的虚拟局域网络,虽然它们都存在于一个交换机中,但是它们的广播域是隔离的,所以不同 VLAN 下的主机不能 ping 通

### 2. 多集线器、多交换机混合式网络

- (a) 多集线器、多交换机混合式网络和连通性
  - 网络布局和配置
    - 1. 搭建单交换机以太网组网



图 33: 组网

2. 分配 IP 地址, 选择静态分配, IP 分配如下图所示, 子网掩码统一采用 255.255.255.0, 设置分配 VLAN

| PC      | IPv4 Address | Subnet Mask   | VLAN |
|---------|--------------|---------------|------|
| PC5     | 192.168.1.5  | 255.255.255.0 | 2    |
| PC6     | 192.168.1.6  | 255.255.255.0 | 3    |
| PC7     | 192.168.1.7  | 255.255.255.0 | 2    |
| PC8     | 192.168.1.8  | 255.255.255.0 | 3    |
| PC9     | 192.168.1.9  | 255.255.255.0 | 2    |
| PC10    | 192.168.1.10 | 255.255.255.0 | 2    |
| Switch1 |              |               | 2    |
| Switch2 |              |               | 2    |

值得注意的是,我们需要将两个交换机连接的端口设置成相同的,且要于发送数据包 的主机相同,否则无论主机于目的机的端口是否相同,都不能连通

- 测试网络连通性
  - 1. 同一 VLAN 下的连通性

```
C:\>ping 192.168.1.7

Pinging 192.168.1.7 with 32 bytes of data:

Reply from 192.168.1.7: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.7:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

图 34: PC5 ping PC7

2. 不同 VLAN 下的连通性

```
C:\>ping 192.168.1.11
Pinging 192.168.1.11 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.11:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

图 35: PC5 ping PC8

3. 与集线器连接的连通性

```
^C
C:\>ping 192.168.1.10

Pinging 192.168.1.10 with 32 bytes of data:

Reply from 192.168.1.10: bytes=32 time<1ms TTL=128
Reply from 192.168.1.10: bytes=32 time=3ms TTL=128
Reply from 192.168.1.10: bytes=32 time<1ms TTL=128
Reply from 192.168.1.10: bytes=32 time<1ms TTL=128
Reply from 192.168.1.10: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 3ms, Average = 0ms
```

图 36: PC5 ping PC10

4. 在保证两个交换机在同一个 VLAN 且和发送端的 VLAN 相同的情况下,接收端的 VLAN 与发送端相同时连通,不同时不连通,理由同上述一致,不同的 VLAN 是互 相隔离的两个局域网,在没有路由等其他方式进行连接的情况下,是不会互通的

### (b)"模拟"方式中观察数据包

- 1. 同一 VLAN 下的数据传输, PC5 到 PC7
  - (a) PC5 发送数据包初始态



图 37: PC5 发送数据包初始态

(b) PC5 将数据包发送给交换机 1



图 38: PC5 将数据包发送给交换机 1

# (c) 交换机 1 将数据包发送给交换机 2



图 39: 交换机 1 将数据包发送给交换机 2

### (d) 交换机 2 将数据包发送给 PC7 和相同 VLAN 下的集线器



图 40: 交换机 2 将数据包发送给 PC7 和集线器

(e) PC7 回复数据发送给交换机 2, 集线器将数据包发给 PC9 和 PC10, 但两者没接收



图 41: PC7 回复数据发送给交换机 2, 集线器将数据包发给 PC9 和 PC10

(f) 交换机 2 将回复数据包传给交换机 1



图 42: 交换机 2 将回复数据包传给交换机 1

### (g) 交换机 1 将回复数据包传给 PC5



图 43: 交换机 1 将回复数据包传给 PC5

- 2. 不同 VLAN 下的数据传输,PC5 到 PC8
  - (a) PC5 发送数据包初始态



图 44: PC5 发送数据包初始态

### (b) PC5 将数据包发送给交换机 1



图 45: PC5 将数据包发送给交换机 1

# (c) 交换机 1 将数据包发送给交换机 2



图 46: 交换机 1 将数据包发送给交换机 2

(d) 交换机 2 将数据包发送给集线器和 PC7, 但没找到目标地址



图 47: 交换机 2 将数据包发送给 PC7 和集线器

(e) 集线器将数据包发给 PC9 和 PC10, 但两者没接收



图 48: PC7 回复数据发送给交换机 2, 集线器将数据包发给 PC9 和 PC10

(f) 数据包不断在线路内传递,始终不能传递至正确位置,PC5 也不能收到正确的返回数据报

| Event I | List      |             |           |      |   |
|---------|-----------|-------------|-----------|------|---|
| Vis.    | Time(sec) | Last Device | At Device | Type | ^ |
|         | 0.003     | Switch2     | Hub0      | ARP  |   |
|         | 0.004     | Hub0        | PC9       | ARP  |   |
|         | 0.004     | Hub0        | PC10      | ARP  |   |
|         | 0.013     |             | Switch1   | STP  |   |
|         | 0.014     | Switch1     | PC6       | STP  |   |
|         | 0.014     |             | Switch2   | STP  |   |
|         | 0.015     | Switch2     | Hub0      | STP  |   |
|         | 0.015     | Switch2     | PC7       | STP  |   |
|         | 0.015     | Switch2     | Switch1   | STP  |   |
|         | 0.016     | Hub0        | PC9       | STP  |   |
|         | 0.016     | Hub0        | PC10      | STP  |   |
|         | 0.016     | Switch1     | PC5       | STP  |   |
|         | 0.017     |             | Switch2   | STP  |   |
| (9)     | 0.018     | Switch2     | PC8       | STP  | V |

图 49: 数据包不断在线路内传递

### (c) 总结

交换机主要是以 VLAN 来区分是否应该在端口进行转发,因此,将需要连通的主机放在相同的 VLAN 下,才能达到数据传输的目的。由于这种隔离,很可能找不到数据包需要到达的指定 IP,造成数据包不断在线路内传递的结果,如果正常转发,采用 ICMP 协议,而此时会调用 STP 协议