REGRESSION

How **Unsupervised** Machine Learning Works

STEPI

Provide the machine learning algorithm uncategorized, unlabeled input data to see what patterns it finds

MACHINE

STEP 2

Observe and learn from the patterns the machine identifies

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLUSTERING

Identifying similarities in groups

For Example: Are there patterns in the data to indicate certain patients will respond better to this treatment than others?

ANOMALY DETECTION

Identifying abnormalities in data

For Example: Is a hacker intruding in our network?

No labels attached to data

How **Supervised** Machine Learning Works

Labels attached to data

ANALYTICS MODELS

- Decision trees
- Regression trees
- Random forests
- Boosted trees
- Logistic regression
- Naïve Bayes
- K-Means Clustering

- Logistic Regression is similar linear regression, yet its used when outcome variable is categorical.
- Example:
 - Input X: GRE score, GPA and undergrad school rank
 - Output Y: Admission (Yes/No)
 Binary classification Y=0 or
 Y=1

- We are more interested in estimating the probabilities that X belongs to each category in C. For example, we will estimate the probability if a student will get admission, than a classification he will be accepted or not.
- In case of a binary outcome, linear regression does a good job as a classifier. However, linear regression might produce probabilities less than zero or bigger than one. Logistic regression is more appropriate.

Linear versus Logistic Regression

Logistic regression ensures that our estimate for p(X) lies between 0 and 1.

The Logistic Regression Algorithm

• The Logit is a function of the predictor variables that relates them to a 0/1 outcome

Logit can be modeled as a linear function of the predictors

 The logit can be mapped back to a probability, which, in turn, can be mapped to a class

REFERENCES

- https://machinelearning-blog.com/2018/04/23/logisticregression-101/
- https://www.r-bloggers.com/evaluating-logistic-regressionmodels/
- https://hackernoon.com/photos/
 GfP1NeEJ0khjpqT4YN1hAcAMop63-8h32424oa
- https://stats.idre.ucla.edu/r/dae/logit-regression/
- https://lagunita.stanford.edu/c4x/HumanitiesScience/ StatLearning/asset/classification.pdf