main

Contents

- Basic terminology and definitions
- Methods of solving linear systems
 - Direct methods
 - Iterative methods
- Interpolation
- Non linear equations
- Differentiation and Integration
- Numerical methods of solving ODE
- Projects
- Summary

Basic terminology and definitions

An important aspect of computation is the error that shows up when we try to model a system. Error often propagates through our calculations.

One example of a source of error is in the limited capacity of a computer memory to hold a number. Ex, a floating point number in IEEE 754 standard uses 52 bits for its mantissa in 64 bit machines. Thus, accuracy can be lost

Machine Epsilon

A machine epsilon can be defined as the smallest positive number that can be added to 1 and still have the result be greater than 1

Any postive number smaller than the machine epsilon that's added to 1 will result in the sum be treated as 1. This is due to the finite precision of floating point numbers in computers. 1+number_less_than_epsilon is identical to 1 in the computer's memory and ALU.

The following is a python script for calculating machine epsilon:

```
PYTHON
     import math
1
     def main():
2
          espsilon = 1
3
          while(1+espsilon>1):
4
              espsilon = espsilon*0.999999
5
          print(espsilon)
6
          print(math.log2(1/espsilon)) # ~53 for 64 bit machines
7
8
9
     if __name__ == '__main__':
10
          main()
11
```

Condition number

One method of identifying the amount of error is by the condition number.

The Condition number of a continuous and differentiable function f at the point c is defined as:

ക

$$|rac{f'(c)}{f(c)}c|$$

It tells us the error in the output as a ratio of the error in the input.

Ill-conditioned and well-conditioned

The process of evaluating a continuously differentiable function f at a point x=c is said to be Well-Conditioned if the Condition number is small. Else it is Ill-Conditioned

Stable and unstable computation

The process of evaluating a function f, involving n steps is said to have instability if at-least one of the steps is Ill-conditioned . If all steps are Well-Conditioned , then the process is stable

Methods of solving Linear Systems

Direct Methods

Given a system of n linear equations, in n variables, we can employ various methods to solve them.

Gaussian Elimination

We could simply try the Gaussian elimination method and solve for x_n and then apply backward-substitution to solve for x_i $i \in {1, 2 \dots n-1}$

However floating point errors may result in a on-zero pivot point to exist where it should have been zero, thus causing large errors in the solution to the equations.

To rectify this, a popular approach is partial-pivoting

Modified Gaussian Elimination with Partial Pivoting

In this version of the Gaussian elimination, rows are interchanged before the elimination step such that a_{ii} is the largest(magnitude wise) element in

$$\{a_{ik} : k \in i, i+1, i+2 \dots n\}$$

Thomas method for Tri-diagonal Systems

Thomas method is a special case of Guassian elimination where the latter can be simplified to increase efficiency. It can only be used in tri-diagonal systems of linear equations.

LU factorization

It is often useful to factorize a matrix into simpler, more easily solvable forms. One such form is the LU form, where L is a lower triangle matrix and U is an upper triangle matrix.

Three popular methods of factorizing a matrix are:

Dolittle's factorization

A matrix A is said to have a Doolittle factorization if there exists a lower triangular matrix L with all diagonal elements as 1, and an upper triangular matrix U such that:

$$A = LU$$

Ex:

$$egin{bmatrix} 1 & 1 & -1 \ 1 & 2 & -2 \ -2 & 1 & 1 \ \end{bmatrix}$$

has a Doolittle factorization of:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

Crout's Factorization

A matrix A is said to have a Crout factorization is there exists an up triangular matrix U with all diagonal elements as 1, and a lower triangular matrix L such that:

$$A = LU$$

Cholesky's Factorization

A matrix A is said to have a Cholesky Factorization if there exists a lower triangular matrix L such that

$$A = LL^T$$

Note, this implies A is symmetric

Additionally, we know that every symmetric matrix, positive definite has an LL^T factorization(with L having positive diagonal elements) and hence a Cholesky Factorization

A matrix A is said to be positive definite if

$$x^T A x > 0 \qquad \forall x \in \mathbb{R}^n$$

Norms

Vector Norm

A norm of a vector is a generalization of the | | operator. It has the following properties:

$$||x|| \geq 0 \ \ orall x \in \mathbb{R}^n$$
 $||x|| = 0 \ ext{if and only if } x = 0$ $||lpha x|| = |lpha|||x|| ext{ for all } x \in \mathbb{R}^n ext{ and for all } lpha \in \mathbb{R}$ $||x+y|| \leq ||x|| + ||y|| \ \ \ orall x, y \in \mathbb{R}^n$

An l_n norm is defined as follows:

$$||v||_n = \left(\sum_{j=0}^k \left|v_j
ight|^n
ight)^{\left(rac{1}{n}
ight)}$$

The ∞ norm is simply $max(|v_1|,|v_2|,\dots|v_k|)$ While 1st norm is $v_1+v_2+\dots+v_k$

Matrix Norm

A matrix norm on the vector space is a function $||.||:M_n(R)\to [0,\infty)$ having similar properties to the matrix norm (the four properties)

Matrix Norm subordinate to a vector norm

Let ||.|| be a vector norm on \mathbb{R}^n and let $A \in M_n(\mathbb{R})$. The matrix norm of A subordinate to the vector norm ||.|| is defined by

$$||A|| := \sup \{ \||Ax|| : x \in \mathbb{R}^n, \||x|\| = 1 \}$$

① Note

$$||A||_{\infty}=\max_{1\leq i\leq n}\sum_{i=1}^n|a_{ij}|$$

$$||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}|$$

$$||A||_2 = \sqrt{\max_{1 \leq i \leq n} |\lambda_i|}$$

 $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of the matrix A^TA . This norm is also known as the spectral norm of A

Condition number for a matrix

We can now define a condition number for a matrix.

The condition number (often denoted as $\kappa(A)$) is defined as:

$$\kappa(A) := ||A||||A^{-1}||$$

The condition number gives a measure of how "close" a matrix is to a singular matrix.

Let $A \in M_n(\mathbb{R})$ be non-singular. Then, for any singular $n \times n$ matrix B, we have:

$$\frac{1}{\kappa(A)} \leq \frac{||A-B||}{||A||}$$

Iterative methods

- Jacobi method. Step wise calculation of next state step from present state.
 State is update after the calculation is complete. Implemented here: https://sam-martis.github.io/ChaosTheoryAttractors/
- 2. Guass-Seidel method. Similar to Jacobi, but state is updated every every substep calculation. Faster convergence. Both methods converge is the system of linear equations in the form of matrix A is diagonally dominant.

Diagonally Dominant Matrices

A matrix A is said to be diagonally dominant if it satisfies the inequality

$$\left(\sum_{j=1, j
eq i}^n |a_{ij}|
ight) < |a_{ii}|, \;\; i=1,2,\ldots,n.$$

Stationary Iterative methods

An iterative method is called stationary if it can be written in the form

$$x^{(k+1)} = Bx^{(k)} + c$$

for some $B\in M_n(\mathbb{R})$ and $c\in \mathbb{R}^n$

Spectral radius

$$p(A) = \max_{j=1,2,\ldots,n} |\lambda_j|$$

If the spectral radius is less than 1, the matrix compresses the space. Thus, it would make sense that $lim_{n\to\infty}A^nx=0$

No matter the vector, it gets shrunk.