Chapitre I Régression linéaire simple

Licence 3 MIASHS - Université de Bordeaux

Marie Chavent

Un exemple

On cherche à modéliser la relation entre le prix d'un appartement et sa surface. On pose :

- y = prix en euros/1000,
- $x = \text{surface en } m^2$.

On suppose que cette relation est linéaire de la forme :

$$y = \beta_0 + \beta_1 x$$

- On veut estimer cette relation appellée droite de régression théorique.
- On utilise un échantillon de n appartements dont on connait le prix et la surface


```
# Prix des appartements en fonction de la surface
#-----
prix<-c(130,280,268,500,320,250,378,250,350,300,155,245,200,325,85,78,375,200,270,85)
surface<-c(28,50,55,110,60,48,90,35,86,65,32,52,40,70,28,30,105,52,80,20)
apparts <- data.frame(prix,surface)
apparts
     prix surface
##
## 1
      130
               28
## 2
      280
               50
## 3
      268
               55
## 4
      500
              110
## 5
      320
               60
## 6
      250
               48
## 7
      378
               90
## 8
      250
               35
## 9
      350
               86
## 10
      300
               65
               32
## 11
      155
## 12
      245
               52
## 13
      200
               40
## 14
      325
               70
## 15
       85
               28
## 16
       78
               30
## 17
      375
              105
               52
## 18
      200
## 19
      270
               80
## 20
       85
               20
```

```
library(ggplot2)
ggplot(apparts, aes(x=surface, y=prix)) +
    geom_point() +
    geom_smooth(method=lm,se=FALSE)
```



```
coef(lm(prix ~ surface))
## (Intercept) surface
## 33.6 3.8
```

1. Le modèle

On cherche à modéliser la relation entre deux variables quantitatives continues. Un modèle de régression linéaire simple est de la forme suivante :

$$y = \beta_0 + \beta_1 x + \varepsilon \tag{1}$$

où:

- y est la variable à expliquer (à valeurs dans ℝ);
- x est la variable explicative (à valeurs dans \mathbb{R});
- ε est le terme d'erreur aléatoire du modèle;
- β_0 et β_1 sont deux paramètres à estimer.

Commentaires:

- La désignation "simple" fait référence au fait qu'il n'y a qu'une seule variable explicative x pour expliquer y.
- La désignation "linéaire" correspond au fait que le modèle (1) est linéaire en β_0 et β_1 .

Pour n observations, on peut écrire le modèle de régression linéaire simple sous la forme :

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{2}$$

Dans ce chapitre, on suppose que :

- ε_i est une variable *aléatoire*, non observée,
- xi est observée et non aléatoire,
- yi est observée et aléatoire.

On fait les trois hypothèses additionnelles suivantes :

(A1)
$$\mathbb{E}[\varepsilon_i] = 0, \ \forall i = 1, \dots, n,$$

ou de manière équivalente :
 $\mathbb{E}[y_i] = \beta_0 + \beta_1 x_i, \ \forall i = 1, \dots, n.$

Commentaire sur l'hypothèse (A1): elle indique que les erreurs sont centrées ce qui implique que y_i dépend seulement de x_i et que les autres sources de variations de y_i sont aléatoires.

```
(A2) \mathbb{V}(\varepsilon_i) = \sigma^2, \forall i = 1, ..., n, ou de manière équivalente : \mathbb{V}(v_i) = \sigma^2, \forall i = 1, ..., n.
```

Commentaires sur l'hypothèse (A2) :

- On parle d'hypothèse d'homoscédasticité (≈ homogénéité des variances).
- Cette variance est supposée constante et indépendante de x_i.
- Cette variance σ^2 est un paramètre du modèle qu'il faudra estimer.

(A3)
$$Cov(\varepsilon_i, \varepsilon_j) = 0, \forall i \neq j$$

ou de manière équivalente :
 $Cov(y_i, y_j) = 0, \forall i \neq j$.

Commentaire sur l'hypothèse (A3) :

- Sous cette hypothèse, les termes d'erreur ε_i sont non corrélés .
- Lorsque l'on rajoutera une hypothèse de normalité sur les ε_i , les erreurs ϵ_i seront alors indépendantes.

On peut écrire matriciellement le modèle (2) de la manière suivante :

$$Y = X\beta + \varepsilon \tag{3}$$

οù

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \quad \text{et} \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

- Y désigne le vecteur à expliquer de taille $n \times 1$,
- X la matrice explicative de taille $n \times 2$,
- ε le vecteur d'erreurs de taille $n \times 1$.

Exercice : Touver X et Y pour les données sur les appartements.

Exemple. Données simulées à partir du modèle $y = -x + \varepsilon$.

```
library(ggplot2)
n <- 20; sigma2 <- 0.5; eps <- rnorm(n,0,sigma2)
x \leftarrow rnorm(n,0,1)
y <- -x+eps
data.frame(x,y)
       X
## 1 1.454 -0.895
## 2 0.086 -0.309
## 3 -0.913 0.366
## 4 -1.233 0.975
## 5 -0.188 -0.688
## 6 -1.250 1.364
## 7 1.003 -0.234
## 8 0.249 0.068
## 9 -0.135 0.378
## 10 -0.161 -0.103
## 11 0.879 0.052
## 12 -0.206 -0.176
## 13 -0.226 0.276
## 14 0.606 -1.097
## 15 1.759 -1.645
## 16 1.276 -1.363
## 17 -0.859 0.060
## 18 1.466 -0.662
## 19 0.218 0.370
## 20 -1.813 1.224
```

```
library(ggplot2)
ggplot(data.frame(x,y), aes(x=x, y=y)) + geom_point() + geom_smooth(method=lm,se=FALSE)
```


Exercice : tapez ce code dans R et regardez ce qui se passe

- lorsque vous simulez plusieurs échantillons. Représentez alors les valeurs estimées de β_0 et β_1 dans des boxplots.
- lorsque la valeur de σ^2 varie, lorsque la valeur de n varie.

2. Estimation des paramètres β_0 , β_1 et σ^2

A partir de l'echantillon (aléatoire) de n observations

$$\{(x_i,y_i),\ i=1,\ldots,n\},\$$

on veut estimer les paramètres

$$\beta_0$$
, β_1 et σ^2 .

- Pour estimer β_0 et β_1 , on peut utiliser la méthode des moindres carrés qui ne nécessite pas d'hypothèse supplémentaire sur la distribution de ε_i (ou de y_i), contrairement à la méthode du maximum de vraisemblance (que l'on peut aussi utiliser) qui est fondée sur la normalité de ε_i (ou de y_i).
- La méthode des moindres carrés ne fournit pas un estimateur de σ^2 .

Estimation de β_0 et β_1 par les moindres carrés

On cherche $\widehat{\beta}_0$ et $\widehat{\beta}_1$ qui minimisent la somme des erreurs quadratiques

$$\varepsilon_i^2 = (y_i - \beta_0 - \beta_1 x_i)^2$$

On doit donc résoudre le problème d'optimisation suivant :

$$(\widehat{\beta}_0, \widehat{\beta}_1) = \operatorname{Arg} \min_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2.$$
 (4)

Vocabulaire:

- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ est appelé la valeur prédite.
- $\hat{\varepsilon}_i = y_i \hat{y}_i$ est appelé le résidu.

Interprétation graphique

Graphiquement, $\widehat{\beta}_0$ et $\widehat{\beta}_1$ sont construits pour minimiser les distances <u>verticales</u> entre les observations (y_n) et la droite de régression théorique $y = \beta_0 + \beta_1 x$. Nous avons représenté ces distances sur les figures ci-dessous.

La droite d'équation $y=\widehat{\beta}_0+\widehat{\beta}_1x$ est la droite de régression estimée sur le nuage de points

Résolution du problème d'optimisation

Le problème d'optimisation est :

$$\min_{(\beta_0,\beta_1)} F(\beta_0,\beta_1),$$

avec
$$F(\beta_0, \beta_1) = \sum_{i=1}^n \{y_i - (\beta_0 + \beta_1 x_i)\}^2$$
.

Le minimum est atteint pour

$$\begin{cases} \frac{\partial F(\beta_{\mathbf{0}}, \beta_{\mathbf{1}})}{\partial \beta_{\mathbf{0}}} \Big|_{\beta_{\mathbf{0}} = \widehat{\beta}_{\mathbf{0}}, \beta_{\mathbf{1}} = \widehat{\beta}_{\mathbf{1}}} = 0, \\ \frac{\partial F(\beta_{\mathbf{0}}, \beta_{\mathbf{1}})}{\partial \beta_{\mathbf{1}}} \Big|_{\beta_{\mathbf{0}} = \widehat{\beta}_{\mathbf{0}}, \beta_{\mathbf{1}} = \widehat{\beta}_{\mathbf{1}}} = 0, \end{cases}$$

soit après quelques calculs :

$$\begin{cases} -2\sum_{i=1}^n(y_i-\widehat{\beta}_0-\widehat{\beta}_1x_i)=0, \\ -2\sum_{i=1}^n(y_i-\widehat{\beta}_0-\widehat{\beta}_1x_i)x_i=0. \end{cases}$$

Solution du problème d'optimisation

On en déduit après quelques manipulations :

$$\begin{cases} \widehat{\beta}_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n}) (y_{i} - \bar{y}_{n})}{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2}} = \frac{c_{x,y}}{s_{x}^{2}}, \\ \\ \widehat{\beta}_{0} = \bar{y}_{n} - \widehat{\beta}_{1} \bar{x}_{n}. \end{cases}$$

où $c_{x,y}$ est la covariance empirique entre les x_i et les y_i et s_x^2 est la variance empirique des x_i .

Commentaires

- Le minimum de F est égal à $\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$. Ce minimum est appelé la somme des carrés des résidus (SCR).
- La valeur prédite \hat{y}_i estime $\mathbb{E}[y_i] = \beta_0 + \beta_1 x_i$ et non pas y_i . Une meilleure notation serait $\mathbb{E}[y_i]$.
- Aucune des hypothèses (A1), (A2) et (A3) n'a été utilisée ici pour obtenir les estimateurs $\widehat{\beta}_0$ et $\widehat{\beta}_1$.

Propriétés des estimateurs $\widehat{\beta}_0$ et $\widehat{\beta}_1$

Sous les hypothèses (A1), (A2) et (A3), on peut montrer que

-
$$\mathbb{E}[\widehat{\beta}_0] = \beta_0$$
,

-
$$\mathbb{E}[\widehat{\beta}_1] = \beta_1$$
,

$$- \mathbb{V}(\widehat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{(\bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2} \right),$$

$$- \mathbb{V}(\widehat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}.$$

Commentaires

- Les estimateurs $\widehat{\beta}_0$ et $\widehat{\beta}_1$ sont sans biais.
- Ils sont aussi de variance minimale parmi tous les estimateurs linéaires (par rapport à y_1, \ldots, y_n) sans biais (propriété dite de Gauss-Markov).

Estimation de σ^2

Le paramètre σ^2 est défini par

$$\sigma^2 = \mathbb{V}(\varepsilon_i) = \mathbb{V}(y_i) = \mathbb{E}\left[\left(y_i - \mathbb{E}[y_i]\right)^2\right].$$

En prenant $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ comme estimateur de $\mathbb{E}[y_i]$, il apparaît naturel d'estimer σ^2 par

$$s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{\sum_{i=1}^{n} (\hat{\varepsilon}_{i})^{2}}{n-2} = \frac{SCR}{n-2}.$$

Commentaires

- s^2 est un estimateur sans biais de σ^2
- La perte de deux degrés de liberté dans l'expression de s^2 est le "coût" de l'estimation de β_0 et de β_1 nécessaire pour obtenir les $\hat{y_i}$.

Exemple de données réelles : les appartements Parisiens.

```
x <- apparts$surface
y <- apparts$prix
plot(x,y,xlab='surface',ylab='prix',col=ifelse(x==50, "red", "black"))</pre>
```


Sorties R

```
mod <- lm(y ~ x) #fonction linear model
names (mod)
## [1] "coefficients" "residuals" "effects"
                                                  "rank"
                                                                "fitted.values" "assign"
## [7] "gr"
              "df.residual" "xlevels"
                                                  "call"
                                                                "terms"
                                                                              "model"
summary (mod)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -71 47 -27 63 4 75 24 96 81 68
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.644 24.445 1.38 0.19
## x
             3.848 0.392 9.81 1.2e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 45 on 18 degrees of freedom
## Multiple R-squared: 0.842, Adjusted R-squared: 0.834
## F-statistic: 96.3 on 1 and 18 DF, p-value: 1.2e-08
```



```
round(data.frame(y,val.predites=fitted(mod),residus=resid(mod))[1:5,],digit=2)
       y val.predites residus
## 1 130
                  141
                          -11
## 2 280
                  226
                           54
## 3 268
                  245
                           23
## 4 500
                  457
                           43
## 5 320
                           55
                  265
n <- 20
sqrt(sum(resid(mod)^2)/(n-2)) #residual standard error (square root of SCR)
## [1] 45
```

Graphique croisant les valeurs prédites $\hat{y_i}$ et les résidus $\hat{\varepsilon}_i = y_i - \hat{y}_i$

Graphique croisant les valeurs prédites \hat{y}_i et les valeurs observées y_i

3. Test d'hypothèses et intervalle de confiance pour β_1

Typiquement, les hypothèses portant sur β_1 ont plus d'intérêt que celles portant sur β_0 . On va donc se limiter à tester la nullité de la pente β_1 (absence de liaison linéaire entre x et y) :

$$\mathcal{H}_0$$
: " $\beta_1=0$ " contre \mathcal{H}_1 : " $\beta_1\neq 0$ "

Pour faire ce test, il est nécessaire de faire une hypothèse supplémentaire :

(A4)
$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

ou de manière équivalente

$$y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2).$$

Commentaire. L'unique "nouveauté" ici est la normalité.

Nouvelles propriétés pour les estimateurs $\widehat{\beta}_1$ et s^2

Sous les hypothèses (A1)-(A4), on a :

(a)
$$\widehat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}\right);$$

(b)
$$\frac{(n-2)s^2}{\sigma^2} \sim \chi^2(n-2)$$
;

(c) $\widehat{\beta}_1$ et s^2 sont indépendants.

Commentaires. La propriété (a) est facile à établir. Les propriétés (b) et (c) seront démontrées ultérieurement.

Un rappel de probabilité

Si
$$U \sim \mathcal{N}(0,1), \ V \sim \chi^2(\nu)$$
 et U est indépendant de V , alors $\frac{U}{\sqrt{\frac{V}{\nu}}} \sim T(\nu)$.

On déduit alors des propriétés (a)-(c) que

$$\frac{\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}}}}{\sqrt{\frac{(n-2)s^2}{\sigma^2}}} = \frac{\widehat{\beta}_1 - \beta_1}{s/\sqrt{\sum_{i=1}^n (x_i - \bar{x}_n)^2}} \sim T(n-2).$$

Commentaire. On peut remarquer que le dénominateur $s/\sqrt{\sum_{i=1}^n(x_i-\bar{x}_n)^2}$ est un estimateur de $\sqrt{\mathbb{V}(\widehat{\beta}_1)}$, l'écart-type de $\widehat{\beta}_1$.

On utilisera la statistique suivante :

$$T_n = \frac{\widehat{\beta}_1 - \beta_1}{s / \sqrt{\sum_{i=1}^n (x_i - \bar{x}_n)^2}},$$

qui est distribuée selon une loi de Student à n-2 degrés de libertés.

Test de \mathcal{H}_0 contre \mathcal{H}_1

Sous l'hypothèse \mathcal{H}_0 : " $eta_1=0$ ", on a

$$T_n = \frac{\widehat{\beta}_1}{s/\sqrt{\sum_{i=1}^n (x_i - \bar{x}_n)^2}} \sim T(n-2).$$
 (5)

Pour une hypothèse alternative \mathcal{H}_1 : " $\beta_1 \neq 0$ " bilatérale, on rejette \mathcal{H}_0 avec un risque $0 \leq \alpha \leq 1$ si

$$|t| \geq t_{n-2, 1-\alpha/2}$$

où t est la réalisation de T_n et $t_{n-2,1-\alpha/2}$ est le fractile d'ordre $1-\alpha/2$ de la loi T(n-2).

Commentaire. Pour réaliser ce test, on peut également regarder la *p*-valeur aussi appelée niveau de signification du test : si *p*-valeur $\leq \alpha$, on rejette \mathcal{H}_0 . Dans le cas d'un test bilatéral (\mathcal{H}_1 : " $\beta_1 \neq 0$ "), on a :

$$p\text{-valeur} = \mathbb{P}(|T_n| > |t| / \mathcal{H}_0). \tag{6}$$

On rejette \mathcal{H}_0 si p-valeur $\leq \alpha$

Intervalle de confiance pour β_1 au niveau de confiance $1-\alpha$:

L'intervalle de confiance de β_1 est :

$$[\widehat{\beta}_1 \pm t_{n-2, 1-\alpha/2} \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \bar{x}_n)^2}}].$$

Commentaire. On rejette \mathcal{H}_0 si 0 n'appartient pas à cet intervalle.

Exemple des données appartements.

```
summary(mod)$coefficients
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
               33.6
                         24.44 1.4 1.9e-01
                     0.39 9.8 1.2e-08
## x
                3.8
qt(0.975,18) # quantile loi Student
## [1] 2.1
confint(mod)
    2.5 % 97.5 %
## (Intercept) -18 85.0
                3 4.7
## x
```

Table d'analyse de la variance (ANOVA) : On complète souvent l'étude en

construisant la table d'ANOVA.

Source de variation	Somme des carrés	ddl	carré moyen	F
régression (expliquée)	$SCE = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y}_n)^2$	1	$\sum_{i=1}^n (\widehat{y}_i - \bar{y}_n)^2$	$\frac{SCE}{SCR/(n-2)}$
Résiduelle	$SCR = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$	n-2	$\frac{1}{n-2}\sum_{i=1}^n(y_i-\widehat{y}_i)^2$	
Totale	$SCT = \sum_{i=1}^{n} (y_i - \bar{y}_n)^2$	n-1	$\frac{1}{n-1}\sum_{i=1}^{n}(y_i-\bar{y}_n)^2$	

Commentaire. La statistique F, dite statistique de Fisher, permet de tester \mathcal{H}_0 : " $\beta_1 = 0$ " contre \mathcal{H}_1 : " $\beta_1 \neq 0$ ".

On rejette \mathcal{H}_0 si

$$F > f_{1,n-2,1-\alpha}$$

où $f_{1,n-2,1-\alpha}$ est le fractile d'ordre $1-\alpha$ d'une loi F(1,n-2).

Commentaires.

- Le carré d'une variable de Student à ν degrés de libertés est une variable de Fisher à (1, ν) degrés de libertés.
- En régression linéaire simple, le test de Fisher issu de l'ANOVA est donc le même que le test de student pour tester la nullité de β_1 .
- En régression linéaire multiple, la table d'ANOVA et le test de Fisher permettront de tester la nullité simultanée des p coefficients des p variables explicatives soit H₀: "β₁ = ... = β_p = 0".

Exemple des données appartements.

4. Coefficient de détermination

Le coefficient de détermination R^2 est défini par

$$R^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y}_n)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_n)^2} = \frac{\text{variabilit\'e expliqu\'ee (SCE)}}{\text{variabilit\'e totale (SCT)}} = 1 - \frac{SCR}{SCT}$$

Remarque. On a la formule "classique" de l'analyse de la variance nous donnant la décomposition suivante :

$$\sum_{i=1}^{n} (y_i - \bar{y}_n)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y}_n)^2$$

variabilité totale = variabilité résiduelle + variabilité expliquée

Commentaire. Le coefficient R^2 donne la proportion de variabilité de y qui est expliquée par le modèle. Plus le R^2 est proche de 1, meilleure est l'adéquation du modèle aux données.

```
summary(mod)$r.squared
## [1] 0.84
```


5. Prévision d'une valeur ultérieure

On désire prévoir à l'aide du modèle la valeur de la variable y pour une valeur non observé x_0 de x.

D'après le modèle on a $y_0=\beta_0+\beta_1x_0+\varepsilon_0$, où y_0 et ε_0 sont des variables aléatoires. La prédiction naturelle est alors :

$$\widehat{y}_0 = \widehat{\mathbb{E}[y_0]} = \widehat{\beta}_0 + \widehat{\beta}_1 x_0.$$

L'erreur de prédiction est définie par $\hat{y_0}-y_0$ et on peut montrer que sous les hypothèses du modèle (incluant l'hypothèse de normalité), on a :

$$\widehat{y}_0 - y_0 \sim \mathcal{N}\left(0, \sigma^2\left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}\right)\right).$$
 (7)

On en déduit que :

$$\frac{y_0 - \hat{y}_0}{\sigma \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}}} \sim \mathcal{N}(0, 1).$$

On peut montrer que :

$$\frac{y_0 - \hat{y}_0}{s\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}}} \sim T(n-2).$$

On utilise ce résultat pour construire un intervalle de prédiction pour y_0 , c'est à dire l'intervalle [A,B] tel que

$$\mathbb{P}(A \le y_0 \le B) = 1 - \alpha.$$

lci, y_0 est une variable aléatoire et non pas un paramètre. L'intervalle de prédiction est donc un intervalle dans lequel une future observation y_0 va tomber avec une certaine probabilité (différent d'un intervalle de confiance).

On en déduit l'intervalle de prédiction pour y_0 au niveau de confiance $1-\alpha$ suivant :

$$\left[\hat{y}_0 \pm t_{n-2, 1-\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}}\right]$$

Commentaires. La variance de l'erreur de prévision dépend

- de la variabilité intrinséque σ^2 de la variable (aléatoire) y_0 ,
- de la variabilité due à "l'imprécision" des estimations de β_0 et β_1 dans la formule de régression.

Cette source de variabilité peut être réduite (en augmentant la taille de l'échantillon par exemple), contrairement à la première source de variabilité.

On peut aussi construire un intervalle de confiance de la valeur moyenne

$$\mathbb{E}[y_0] = \beta_0 + \beta_1 x_0,$$

qui est cette fois un paramètre. On va donc chercher l'intervalle aléatoire [A,B] tel que

$$\mathbb{P}(A \leq \mathbb{E}[y_0] \leq B) = 1 - \alpha.$$

Pour construire cet intervalle, on montre que :

$$\hat{y}_0 \sim \mathcal{N}\left(\beta_0 + \beta_1 x_0, \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}\right)\right),$$
 (8)

$$\frac{\hat{y}_0 - \beta_0 + \beta_1 x_0}{s\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2}}} \sim T(n-2). \tag{9}$$

On en déduit l'intervalle de confiance de $\mathbb{E}[y_0]$ suivant :

$$\left[\widehat{y}_0 \mp t_{n-2,\,1-\alpha/2}\,\mathsf{s}\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2)}}\right].$$

Exemple des données appartements.

```
x0 <- 50
predict(mod,data.frame(x=x0),interval="prediction")

## fit lwr upr
## 1 226 129 323

predict(mod,data.frame(x=x0),interval="confidence")

## fit lwr upr
## 1 226 204 248</pre>
```


Code R pour obtenir ce graphique.

```
seqx <- seq(min(x),max(x),length=50)
intpred <- predict(mod,data.frame(x=seqx),interval="prediction")[,c("lwr","upr")]
intconf <- predict(mod,data.frame(x=seqx),interval="confidence")[,c("lwr","upr")]
plot(y"x,xlab="surface",ylab="prix",cex=0.8)
abline(mod)
matlines(seqx,cbind(intconf,intpred),lty=c(2,2,3,3), col=c("red","red","blue","blue"),lwd=c(2,2))
legend("bottomright",lty=c(2,3),lwd=c(2,1), c("confiance","prediction"),col=c("red","blue"),cex=0.8)</pre>
```


6. Quelques compléments

Quelques graphiques permettant de "vérifier visuellement" des hypothèses sous-jacentes.

- Graphique croisant les valeurs prédites \hat{y}_i et les résidus $\hat{\varepsilon}_i = y_i - \hat{y}_i$:

On observe un "comportement aléatoire" et "une variance constante".

On observe un "structure évidente" dans les résidus (qui ne sont plus vraiment aléatoires).

 \hookrightarrow II faut "changer" de modèle pour essayer de prendre en compte cette structure.

(Par exemple rajouter un terme quadratique x^2 dans la partie explicative du modèle).

On observe que "la variance des résidus n'est pas constante", elle augmente clairement en fonction de \hat{y}_i (elle dépend donc des x_i). Il n'y a donc pas homoscédasticité.

→ Il faut "changer" de modèle pour prendre en compte cette hétéroscédasticité.

- Graphique croisant les valeurs prédites \hat{y}_i et les valeurs observées y_i :

Les points s'alignent sur la première bissectrice : l'adéquation du modèle aux données est correcte.

On voit ici clairement apparaître une structure non linéaire : il y a une mauvaise adéquation du modèle.

 \hookrightarrow II faut changer de modèle.

Normalité des résidus.

La théorie sous-jacente à l'inférence du modèle (tests d'hypothèses , intervalles de confiance et de prédiction) suppose la normalité du terme d'erreur ε_i .

Il convient donc de tester cette hypothèse *a posteriori* en utilisant les résidus du modèle : $\{\hat{\varepsilon}_i,\ i=1,\ldots,n\}$. Pour cela, on peut faire un test de normalité de Shapiro-Wilk.

```
residus <- resid(mod)
shapiro.test(residus)

##
## Shapiro-Wilk normality test
##
## data: residus
## W = 1, p-value = 0.7</pre>
```

Dans l'exemple des appartements, en prenant un risque de première espèce de 5%, on accepte la normalité des résidus (p-value=0.5177> $\alpha=5\%$). Les tests d'hypothèses sont donc "valides" ainsi que les intervalles de confiance.

On peut aussi faire un examen graphique de la normalité des résidus.

Résidus **standardisés** : on divise $\hat{\varepsilon}_i$ par son écart-type (estimé) :

$$\hat{\varepsilon}_i^* = \frac{\hat{\varepsilon}_i}{s\sqrt{1-h_{ii}}}$$

avec
$$h_{ii} = \frac{1}{n} + \frac{x_i - \bar{x}}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Parfois appelé résidus **studentisés** (interne) car comme $\hat{\varepsilon}_i$ suit une loi normale, on peut montrer que $\hat{\varepsilon}_i^* \sim T(n-2)$ et pour n assez grand on pourra considérer que $\hat{\varepsilon}_i^* \sim \mathcal{N}(0,1)$.

