Operational notes

- 2 Document updated on March 26, 2022.
- The following colors are **not** part of the final product, but serve as highlights in the edit-
- 4 ing/review process:
- text that needs attention from the Subject Matter Experts: Mirco, Anna,& Jan
- terms that have not yet been defined in the book
- things that need to be checked only at the very final typesetting stage
- 8 (and it doesn't make sense to do them before)
- text that needs advice from the communications/marketing team: Aaron & Shane
- text that needs to be completed or otherwise edited (by Sylvia)

Todo list

12	zero-knowledge proofs
13	played with
14	finite field
15	elliptic curve
16	Update reference when content is finalized
17	methatical
18	add some more informal explanation of absolute value
19	We haven't really talked about what a ring is at this point 14
20	What's the significance of this distinction?
21	reverse
22	Turing machine
23	polynomial time
24	sub-exponentially, with $\mathcal{O}((1+\varepsilon)^n)$ and some $\varepsilon > 0$
25	Add text
26	\mathbb{Q} of fractions
27	Division in the usual sense is not defined for integers
28	Add more explanation of how this works
29	pseudocode
30	check reference
31	modular arithmetics
32	actual division
33	multiplicative inverses
34	factional numbers
35	exponentiation function
36	See XXX
37	once they accept that this is a new kind of calculations, its actually not that hard 20
38	perform Euclidean division on them
39	This Sage snippet should be described in more detail
40	prime fields
41	residue class rings
42	Algorithm sometimes floated to the next page, check this for final version
43	Add a number and title to the tables
44	(-1) should be (-a)?
45	add reference
46	rephrase
47	subtrahend
48	minuend
49	what does this mean?
50	Def Subgroup, Fundamental theorem of cyclic groups

51	add reference
52	Add real-life example of 0?
53	add reference
54	check reference
55	check references to previous examples
56	RSA crypto system
57	size 2048-bits
58	check reference
59	add reference: 27?
60	check reference
61	polynomial time
62	exponential time
63	TODO: Fundamental theorem of finite cyclic groups
64	check reference
65	runtime complexity
66	add reference
67	S: what does "efficiently" mean here?
68	computational hardness assumptions
69	check reference
70	check reference
71	explain last sentence more
72	"equation"?
73	check reference
74	what's the difference between \mathbb{F}_p^* and \mathbb{Z}_p^* ?
75	Legendre symbol $\dots \dots \dots$
76	Euler's formular
77	These are only explained later in the text, "
78	are these going to be relevant later?
79	TODO: theorem: every factor of order defines a subgroup
80	Is there a term for this property?
81	a few examples?
82	check reference
83	TODO: DOUBLE CHECK THIS REASONING
84	Mirco: We can do better than this
85	check reference
	add reference
86 87	pseudorandom
88	oracle
89	check reference
	add text on this
90	check reference
91	check reference
92	check reference
93	check reference
94	add more examples protocols of SNARK
95	check reference
96	add reference
97	Abelian groups
98	[/\D\ aii \zivub\

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Expand on this?
check reference
check reference
unify \mathbb{Z}_5 and \mathbb{F}_5 across the board?
S: are we introducing elliptic curves in section 1 or 2?
check reference
check reference
add reference
check reference
write paragraph on exponentiation
add reference
check reference
add reference
group pairings
add reference
check reference
check reference
add reference
TODO: Elliptic Curve asymmetric cryptography examples. Private key, generator,
public key
add reference
maybe remove this sentence?
affine space
cusps
1
self-intersections
self-intersections
self-intersections
self-intersections7check reference7check reference7jubjub7
self-intersections
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 sign 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 more explanation of what the sign is 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 more explanation of what the sign is 7 check reference 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 otheck reference 7 sign 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 sign 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7 check reference 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7 check reference 7 add explanation of how this shows what we claim 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 sign 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7 check reference 7 add explanation of how this shows what we claim 7 should this def. be moved even earlier? 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 sign 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7 check reference 7 add explanation of how this shows what we claim 7 should this def. be moved even earlier? 7 chord line 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 sign 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7 check reference 7 add explanation of how this shows what we claim 7 should this def. be moved even earlier? 7 chord line 7 tangential 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 sign 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7 check reference 7 add explanation of how this shows what we claim 7 should this def. be moved even earlier? 7 chord line 7 tangential 7 tangent line 7
self-intersections 7 check reference 7 check reference 7 jubjub 7 check reference 7 affine plane 7 check reference 7 check reference 7 check reference 7 sign 7 more explanation of what the sign is 7 check reference 7 S: I don't follow this at all 7 check reference 7 add explanation of how this shows what we claim 7 should this def. be moved even earlier? 7 chord line 7 tangential 7

147	check reference	78
148	check reference	78
149	check reference	79
150	check reference	79
151	check reference	80
152	check reference	80
153	check reference	
154	add term	
155	add term	
156	add reference	
157	cofactor clearing	
158	add reference	
159	check reference	
160	check reference	
161	add reference	
162	add reference	
	check reference	
163	check reference	
164		
165	check reference	
166	check reference	
167	check reference	
168	Explain how	
169	write example	
170	check reference	
171	add reference	
172	check reference	
173	add reference	
174	check reference	
175	add reference	
176	check reference	
177	add reference	
178	check reference	
179	add reference	
180	add reference	
181	add reference	
182	check reference	
183	check reference	
184	Check if following Alg is floated too far	
185	add reference	
186	add reference	
187	write up this part	
188	is the label in LATEX correct here?	
189	check reference	
190	check reference	
191	check reference	
192	check reference	89
193	check reference	89
194	check reference	90

195	check reference	90
196	check reference	90
197	check reference	90
198	check reference	90
199	add reference	90
200	check reference	92
201	check reference	92
202	check reference	92
203	check reference	92
204	check reference	92
205	change "tiny-jubjub" to "pen-jubjub" throughout?	93
206	check reference	94
207	check reference	94
208	check reference	95
209	either expand on this or delete it	95
210	add reference	95
211	check reference	95
212	check reference	95
213	check reference	95
214	check reference	95
215	check reference	95
216	check reference	96
217	check reference	96
218	check reference	97
219	check reference	97
220	add reference	97
221	add reference	97
222	This needs to be written (in Algebra)	97
223	add reference	97
224	add reference	97
225	check reference	97
226	towers of curve extensions	98
227	check reference	98
228	check reference	98
229	check reference	98
230	check reference	99
231	add reference	99
232	is "huge" a technical term?	99
233		100
234		100
235	<u>.</u>	100
236		100
237		101
238		101
239		102
240		102
241		103
242		103

243	check reference	03
244	check reference	03
245	add reference	04
246	should all lines of all algorithms be numbered?	04
247	check reference	
248	check reference	05
249	check reference	
250	check if the algorithm is floated properly	
251	check reference	
252	again?	
253	check reference	
254	circuit	
	signature schemes	
255	this was called "pen-jubjub".	
256	check reference	
257		
258	add reference	
259	check reference	
260	add references	
261	add reference	
262	reference text to be written in Algebra	
263	check reference	
264	check reference	
265	check reference	
266	add reference	09
267	algebraic closures	09
268	check reference	09
269	check reference	10
270	check reference	10
271	check reference	10
272	check reference	
273	disambiguate	
274		11
275	unify terminology	
276		12
277	actually make this a table?	
278	ı	13
279		13
280		13
281		13
		14
282		15
283		15
284		15 15
285		13 16
286		
287		16
288		16
289	check reference	
290	what does this mean?	18

291	write up this part
292	add reference
293	check reference
294	cyclotomic polynomial
295	Pholaard-rho attack
296	todo
297	why?
298	check reference
299	check reference
300	what does this mean?
301	add reference
302	add reference
302	check reference
	check reference
304	add reference
305	
306	add exercise
307	check reference
308	add reference
309	add reference
310	add reference
311	check reference
312	check reference
313	add reference
314	add reference
315	add reference
316	check reference
317	add reference
318	add reference
319	finish writing this up
320	add reference
321	correct computations
322	fill in missing parts
323	add reference
324	check equation
325	Chapter 1?
326	"rigorous"?
327	"proving"?
328	Add example
329	Add more explanation
330	I'd delete this, too distracting
331	binary tuples
332	add reference
333	add reference
334	check reference
	check reference
335	Are we using w and x interchangeably or is there a difference between them? 131
336	check reference
337	jubjub
338	μυμο

339	check reference	31
340	check reference	31
341	check wording	31
342	check reference	31
343	check references	32
344	add reference	32
345	add reference	
346	check reference	
347	add reference	
348	check reference	34
349	check reference	
350	add reference	
351	add reference	_
352	Schur/Hadamard product	
353	add reference	
354	check reference	_
355	check reference	
356	add reference	
357	check reference	
358	check reference	
359	check reference	-
360	check reference	
361	check reference	
362	add reference	
363	add reference	
363	check reference	
	check reference	
365	check reference	
366	check reference	
367	add reference	
368	check reference	-
369	add reference	
370	check reference	_
371	check reference	
372	check reference	
373	Should we refer to R1CS satisfiability (p. 139 here?	
374	check reference	
375	add reference	_
376		_
377	add reference	_
378		
379		
380	check reference	-
381	check reference	
382	add reference	_
383	"by"?	
384	check reference	
385	check reference	
386	add reference	13

	11 0
387	add reference
388	check reference
389	add reference
390	clarify language
391	check reference
392	add reference
393	check reference
394	add reference
395	add references
396	add references to these languages?
397	add reference
398	add reference
	add reference
399	add reference
400	
401	add reference
402	add reference
403	add reference
404	add reference
405	add reference
406	add reference
407	add reference
408	add reference
409	add reference
410	add reference
411	add reference
412	add reference
413	add reference
	add reference
414	add reference
415	
416	add reference
417	"constraints" or "constrained"?
418	add reference
419	"constraints" or "constrained"?
420	add reference
421	"constraints" or "constrained"?
422	add reference
423	add reference
424	add reference
425	add reference
426	add reference
427	add reference
428	add reference
	add reference
429	
430	
431	bishift
432	add reference
433	add reference
434	something missing here?

435	add reference	182
436	add reference	183
437	add reference	184
438	add reference	184
439	add reference	184
440	add reference	185
441	add reference	185
442	add reference	185
443	add reference	186
444	add reference	187
445	add reference	188
446	add reference	188
447	add reference	188
448	add reference	189
449	add reference	189
450	add reference	189
451		189
452	add reference	189
453	"invariable"?	189
454	add reference	190
455	add reference	190
456		190
457	add reference	191
458	add reference	191
459	add reference	192
460	add reference	193
461	add reference	193
462	add reference	194
463	add reference	194
464	add reference	194
465	add reference	194
466	add reference	194
467	add reference	195
468	add reference	195
469	add reference	195
470	add reference	195
471	add reference	195
472	add reference	195
473	add reference	195
474	add reference	195
475	add reference	195
476	add reference	196
477	add reference	196
478	add reference	196
479	add reference	196
480	add reference	198
481	add reference	198
	add reference	100

483	add reference
484	add reference
485	add reference
486	add reference
487	add reference
488	add reference
489	add reference
490	add reference
491	add reference
492	add reference
493	add reference
494	add reference
495	add reference
496	add reference
497	add reference
498	add reference
499	add reference
500	add reference
501	add reference
502	add reference

1	loor	Math	manual
٦V	\mathbf{I}	uviain	manuai

TechnoBob and the Least Scruples crew

⁵⁰⁵ March 26, 2022

503

504

Contents

507	1	Introduction							
508		1.1	Target audience						
509		1.2	The Zoo of Zero-Knowledge Proofs						
510			To Do List						
511			Points to cover while writing						
512	2	Preli	iminaries 9						
513		2.1	Preface and Acknowledgements						
514		2.2	Purpose of the book						
515		2.3	How to read this book						
516		2.4	Cryptological Systems						
517		2.5	SNARKS						
518		2.6	complexity theory						
519			2.6.1 Runtime complexity						
520		2.7	Software Used in This Book						
521			2.7.1 Sagemath						
522	3	A rit	hmetics 12						
	3	3.1	Introduction						
523 524		3.1	3.1.1 Aims and target audience						
525			3.1.2 The structure of this chapter						
526		3.2	Integer Arithmetics						
527		3.2	Euclidean Division						
528			The Extended Euclidean Algorithm						
529		3.3	Modular arithmetic						
530		3.3	Congurency						
531			Modular Arithmetics						
532			The Chinese Remainder Theorem						
533			Modular Inverses						
534		3.4	Polynomial Arithmetics						
535		5.1	Polynomial Arithmetics						
536			Euklidean Division						
537			Prime Factors						
538			Lange interpolation						
	1	Alge	bra 40						
539	4	_							
540		4.1	1						
541			Commutative Groups						

CONTENTS

543		Generators	43
544		The discrete Logarithm problem	43
545		4.1.1 Cryptographic Groups	44
546		The discrete logarithm assumption	45
547		The decisional Diffie–Hellman assumption	47
548		The computational Diffie–Hellman assumption	47
		Cofactor Clearing	48
549		4.1.2 Hashing to Groups	48
550		Hash functions	48
551			50
552		Hashing to cyclic groups	
553		Hashing to modular arithmetics	51
554		Pedersen Hashes	55
555		MimC Hashes	55
556		Pseudorandom Functions in DDH-A groups	55
557	4.2	Commutative Rings	55
558		Hashing to Commutative Rings	58
559	4.3	Fields	58
560		Prime fields	60
561		Square Roots	61
562		Exponentiation	63
563		Hashing into prime fields	63
564		Extension Fields	63
565		Hashing into extension fields	67
566	4.4	Projective Planes	67
567 5	-	tic Curves	70
568	5.1	Elliptic Curve Arithmetics	70
569		5.1.1 Short Weierstraß Curves	70
570		Affine short Weierstraß form	71
571		Affine compressed representation	75
572		Affine group law	76
573		Scalar multiplication	81
574		Projective short Weierstraß form	84
575		Projective Group law	85
576		Coordinate Transformations	86
577		5.1.2 Montgomery Curves	86
578		Affine Montgomery Form	88
579		Affine Montgomery coordinate transformation	89
580			
		Montgomery group law	91
581		Montgomery group law	91 92
581 582		5.1.3 Twisted Edwards Curves	92
582		5.1.3 Twisted Edwards Curves	92 92
582 583	5.2	5.1.3 Twisted Edwards Curves	92 92 94
582 583 584	5.2	5.1.3 Twisted Edwards Curves	92 92 94 95
582 583 584 585	5.2	5.1.3 Twisted Edwards Curves	92 92 94 95 95
582 583 584 585 586	5.2	5.1.3 Twisted Edwards Curves	92 92 94 95 95 96
582 583 584 585 586 587	5.2	5.1.3 Twisted Edwards Curves	92 92 94 95 95 96 97
582 583 584 585 586	5.2	5.1.3 Twisted Edwards Curves	92 92 94 95 95 96 97

CONTENTS

	5.3	Hashing to	Curves
			Try-and-increment hash functions
	5.4	Constructin	g elliptic curves
			The Trace of Frobenius
			The j -invariant
			The Complex Multiplication Method
			The BLS6_6 pen-and-paper curve
			Hashing to pairing groups
6	State	ements	128
	6.1	Formal Lan	guages
			Decision Functions
			Instance and Witness
			Modularity
	6.2	Statement I	Representations
			nk-1 Quadratic Constraint Systems
			R1CS representation
			R1CS Satisfiability
			Modularity
		6.2.2 Alg	gebraic Circuits
			Algebraic circuit representation
			Circuit Execution
			Circuit Satisfiability
			Associated Constraint Systems
		6.2.3 Qua	adratic Arithmetic Programs
			QAP representation
			QAP Satisfiability
7	Circ	uit Comnile	ors 159
,		_	Paper Language
	,		e Grammar
			Execution Phases
		7.11.2	The Setup Phase
			The Prover Phase
	7.2	Common P	rograming concepts
			mitive Types
			e base-field type
			The Subtraction Constraint System
			The Inversion Constraint System
			The Division Constraint System
		The	e boolean Type
			The boolean Constraint System
			The AND operator constraint system 171
			The OR operator constraint system
			The NOT operator constraint system
			Modularity
		Arr	ays
			e Unsigned Integer Type
	7	5.4 6 State 6.1	5.4 Construction 6 Statements 6.1 Formal Lan 6.2 Statement F 6.2.1 Ran 6.2.2 Alg 6.2.3 Qua 7 Circuit Compile 7.1 A Pen-and- 7.1.1 The 7.1.2 The 7.2 Common Pr 7.2.1 Prin The

CONTENTS

652	q	Ever	rises s	and Soluti	one		202
652					Proof Simulation	 	 199
651					The Verification Phase		
650					The Proofer Phase		
649					The Setup Phase	 	 189
648		8.2	The "	'Groth16"	Protocol	 	 187
647		8.1	Proof	Systems		 	 186
646	8	Zero		vledge Pr			186
645					Twisted Edwards curve addition	 	 185
644					Twisted Edwards curves constraints	 	 184
643				Twisted	Edwards curves	 	 184
642			7.2.4	Cryptog	raphic Primitives	 	 184
641			7.2.3	Binary	Field Representations	 	 182
640				Loops		 	 181
639				The Co	nditional Assignment	 	 179
638			7.2.2	Control	Flow	 	 179
637					The Unigned Integer Operators	 	 178
636					The uN Constraint System	 	 177

Chapter 6

Statements

As we have seen in the informal introduction XXX, a SNARK is a short non-interactive argument of knowledge, where the knowledge-proof attests to the correctness of statements like "The proofer knows the prime factorization of a given number" or "The proofer knows the preimage to a given SHA2 digest value" and similar things. However, human-readable statements like these are imprecise and not very useful from a formal perspective.

Chapter 12

In this chapter we therefore look more closely at ways to formalize statements in mathematically rigorous ways, useful for SNARK development. We start by introducing formal languages as a way to define statements properly (section 6.1). We will then look at algebraic circuits and rank-1 constraint systems as two particularly useful ways to define statements in certain formal languages (section 6.2). After that, we will have a look at fundamental building blocks of compilers that compile high-level languages to circuits and associated rank-1 constraint systems.

Proper statement design should be of high priority in the development of SNARKs, since unintended true statements can lead to potentially severe and almost undetectable security vulnerabilities in the applications of SNARKs.

6.1 Formal Languages

Formal languages provide the theoretical background in which statements can be formulated in a logically regious way and where proofing the correctness of any given statement can be realized by computing words in that language.

"rigorous"

'proving"

One might argue that the understanding of formal languages is not very important in SNARK development and associated statement design, but terms from that field of research are standard jargon in many papers on zero-knowledge proofs. We therefore believe that at least some introduction to formal languages and how they fit into the picture of SNARK development is beneficial, mostly to give developers a better intuition about where all this is located in the bigger picture of the logic landscape. In addition, formal languages give a better understanding of what a formal proof for a statement actually is.

Roughly speaking, a formal language (or just language for short) is nothing but a set of words, th. Words, in turn, are strings of letters taken from some alphabet and formed according to some defining rules of the language.

To be more precise, let Σ be any set and Σ^* the set of all finite **tuples** (ordered lists) (x_1, \ldots, x_n) of elements x_j from Σ including the empty tuple () $\in \Sigma^*$. Then, a **language** L, in its most general definition, is nothing but a subset of Σ^* . In this context, the set Σ is called the **alphabet** of the language L, elements from Σ are called letters and elements from L are called **words**. The rules that specify which tuples from Σ^* belong to the language and which don't,

are called the **grammar** of the language. S: I suggest adding an example based on English, e.g. "tea" and "eat" are words of English, but "aet" and "tae" are not

Add example

If L_1 and L_2 are two formal languages over the same alphabet, we call L_1 and L_2 equivalent if there is a 1:1 correspondence between the words in L_1 and the words in L_2 . S: I'd add "In other words, two languages are equivalent if they generate the same set of words."

Add more explanation

Decision Functions Our previous definition of formal languages is very general and many subclasses of languages like **regular languages** or **context-free languages** are known in the literature. However, in the context of SNARK development, languages are commonly defined as **decision problems** where a so-called **deciding relation** $R \subset \Sigma^*$ decides whether a given tuple $x \in \Sigma^*$ is a word in the language or not. If $x \in R$ then x is a word in the associated language L_R and if $x \notin R$ then not. The relation R therefore summarizes the grammar of language L_R .

I'd delete this, too distracting

Unfortunately, in some literature on proof systems, $x \in R$ is often written as R(x), which is misleading since in general R is not a function but a relation in Σ^* . For the sake of this book, we therefore adopt a different point of view and work with what we might call a **decision function** instead:

$$R: \Sigma^* \to \{true, false\}$$
 (6.1)

Decision functions decide if a tuple $x \in \Sigma^*$ is an element of a language or not. In case a decision function is given, the associated language itself can be written as the set of all tuples that are decided by R, i.e as the set:

$$L_R := \{ x \in \Sigma^* \mid R(x) = true \}$$

$$(6.2)$$

In the context of formal languages and decision problems, a **statement** S is the claim that language L contains a word x, i.e a statement claims that there exist some $x \in L$. A constructive **proof** for statement S is given by some string $P \in \Sigma^*$ and such a proof is **verified** by checking R(P) = true. In this case, P is called an **instance** of the statement S.

While the term **language** might suggest a deeper relation to the well known **natural languages** like English, formal languages and natural languages differ in many ways. The following examples will provide some intuition about formal languages, highlighting the concepts of statements, proofs and instances:

Example 103 (Alternating Binary strings). To consider a very basic formal language with an almost trivial grammar, consider the set $\{0,1\}$ of the two letters 0 and 1 as our alphabet Σ and imply the rule that a proper word must consist of alternating binary letters of arbitrary length.

Then, the associated language L_{alt} is the set of all finite binary tuples, where a 1 must follow a 0 and vice versa. So, for example, $(1,0,1,0,1,0,1,0,1) \in L_{alt}$ is a proper word in this languages as is $(0) \in L_{alt}$ or the empty word $() \in L_{alt}$. However, the binary tuple $(1,0,1,0,1,0,1,1,1) \in \{0,1\}^*$ is not a proper word, as it violates the grammar of L_{alt} : the last3 letters are all 1. Furthermore, the tuple (0,A,0,A,0,A,0) is not a proper word, as not all its letters are not from the proper alphabet: we defined the alphabet Σ as the set $\{0,1\}$, and A is not part of that set.

Attempting to write the grammar of this language in a more formal way, we can define the following decision function:

$$R:\{0,1\}^* \to \{true,false\}\; ;\; (x_0,x_1,\ldots,x_n) \mapsto \begin{cases} true & x_{j-1} \neq x_j \text{ for all } 1 \leq j \leq n \\ false & \text{else} \end{cases}$$

We can use this function to decide if arbitrary binary tuples are words in L_{alt} or not. Some examples are given below:

binary tuples

```
• R(1,0,1) = true,
```

•
$$R(0) = true$$
,

•
$$R() = true,$$

4152

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4169

4170

4171

• but
$$R(1,1) = false$$
.

Inside our language L_{alt} , it makes sense to claim the following statement: "There exists an alternating string." One way to prove this statement constructively is by providing an actual instance, that is, finding actual alternating string like x = (1,0,1). Constructing string (1,0,1) therefore proves the statement "There exists an alternating string.", because it is easy to verify that R(1,0,1) = true.

Example 104 (Programming Language). Programming languages are a very important class of formal languages. For these languages, the alphabet is usually (a subset) of the ASCII table, and the grammar is defined by the rules of the programming language's compiler. Words, then, are nothing but properly written computer programs that the compiler accepts. The compiler can therefore be interpreted as the decision function.

To give an unusual example strange enough to highlight the point, consider the programming language Malbolge as defined in XXX. This language was specifically designed to be almost impossible to use and writing programs in this language is a difficult task. An interesting claim is therefore the statement: "There exists a computer program in Malbolge". As it turned out, proving this statement constructively, that is, by providing an actual instance of such a program, was not an easy task, as it took two years after the introduction of Malbolge to write a program that its compiler accepts. So, for two years, no one was able to prove the statement constructively.

To look at this high-level description more formally, we write $L_{Malbolge}$ for the language that uses the ASCII table as its alphabet and its words are tuples of ASCII letters that the Malbolge compiler accepts. Proving the statement "There exists a computer program in Malbolge" is then equivalent to the task of finding some word $x \in L_{Malbolge}$. The string

```
(=<'\#9] 6ZY327Uv4-QsqpMn\&+Ij"'E%e{Ab w=_:]Kw%o44Uqp0/Q?xNvL:'H%c#DD2\WV>gY;dts76qKJImZkj
```

is an example of such a proof, as it is excepted by the Malbolge compiler and is compiled to an executable binary that displays "Hello, World." (See XXX). In this example, the Malbolge compiler therefore serves as the verification process.

add reference

add refer-

ence

Example 105 (The Empty Language). To see that not every language has even one word, consider the alphabet $\Sigma = \mathbb{Z}_6$, where \mathbb{Z}_6 is the ring of modular 6 arithmetics as derived in example 8 in chapter 3, together with the following decision function

check reference

$$R_{\emptyset}: \mathbb{Z}_{6}^{*} \to \{true, false\}; (x_{1}, \dots, x_{n}) \mapsto \begin{cases} true & n = 4 \text{ and } x_{1} \cdot x_{1} = 2 \\ true & else \end{cases}$$

We write L_{\emptyset} for the associated language. As we can see from the multiplication table of \mathbb{Z}_6 in example 8 in chapter 3, the ring \mathbb{Z}_6 does not contain any element x such that $x^2 = 2$, which implies $R_{\emptyset}(x_1, \ldots, x_n) = false$ for all tuples $(x_1, \ldots, x_n) \in \Sigma^*$. The language therefore does not contain any words. Proving the statement "There exists a word in L_{\emptyset} " constructively by providing an instance is therefore impossible. The verification will never check any tuple.

check reference

4179

4180

4181

4182

4183

4185

4186

4187

4188

4189

4190

4191

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

Example 106 (3-Factorization). We will use the following simple example repeatedly throughout this book. The task is to develop a SNARK that proves knowledge of three factors of an element from the finite field \mathbb{F}_{13} . There is nothing particularly useful about this example from an application point of view, however, in a sense, it is the most simple example that gives rise to a non trivial SNARK in some of the most common zero-knowledge proof systems.

Formalizing the high-level description, we use $\Sigma := \mathbb{F}_{13}$ as the underlying alphabet of this problem and define the language $L_{3.fac}$ to consists of those tuples of field elements from \mathbb{F}_{13} that contain exactly 4 letters w_1, w_2, w_3, w_4 which satisfy the equation $w_1 \cdot w_2 \cdot w_3 = w_4$.

So, for example, the tuple (2,12,4,5) is a word in $L_{3.fac}$, while neither (2,12,11), nor (2,12,4,7) nor (2,12,7,168) are words in $L_{3.fac}$ as they don't satisfy the grammar or are not define over the proper alphabet.

We can describe the language $L_{3.fac}$ more formally by introducing a decision function (as described in equation 6.1):

$$R_{3.fac}: \mathbb{F}_{13}^* \to \{true, false\}; (x_1, \dots, x_n) \mapsto \begin{cases} true & n = 4 \text{ and } x_1 \cdot x_2 \cdot x_3 = x_4 \\ false & else \end{cases}$$

Having defined the language $L_{3.fac}$, it then makes sense to claim the statement "There is a word in $L_{3.fac}$ ". The way $L_{3.fac}$ is designed, this statement is equivalent to the statement "There are four elements w_1, w_2, w_3, w_4 from the finite field \mathbb{F}_{13} such that the equation $w_1 \cdot w_2 \cdot w_3 = w_4$ holds."

Proving the correctness of this statement constructively means to actually find some concrete field elements like $x_1 = 2$, $x_2 = 12$, $x_3 = 4$ and $x_4 = 5$ that satisfy the relation $R_{3.fac}$. The tuple (2,12,4,5) is therefore a constructive proof for the statement and the computation $R_{3.fac}(2,12,4,5) = true$ is a verification of that proof. In contrast, the tuple (2,12,4,7) is not a proof of the statement, since the check $R_{3.fac}(2,12,4,7) = false$ does not verify the proof.

Example 107 (Tiny JubJub Membership). In our main example, we derive a SNARK that proves a pair (x,y) of field elements from \mathbb{F}_{13} to be a point on the tiny jubjub curve in its **Edwards** form (see section 5.1.3).

In the first step, we define a language such that points on the tiny jubjub curve are in 1:1 correspondence with words in that language.

Since the tiny jubjub curve is an elliptic curve over the field \mathbb{F}_{13} , we choose the alphabet $\Sigma = \mathbb{F}_{13}$. In this case, the set \mathbb{F}_{13}^* consists of all finite strings of field elements from \mathbb{F}_{13} . To define the grammar, recall from 66 that a point on the tiny jubjub curve is a pair (x,y) of field elements such that $3 \cdot x^2 + y^2 = 1 + 8 \cdot x^2 \cdot y^2$. We can use this equation to derive the following decision function:

$$R_{tiny.jj}: \mathbb{F}_{13}^* \to \{true, false\}; (x_1, \dots, x_n) \mapsto \begin{cases} true & n = 2 \text{ and } 3 \cdot x_1^2 + x_2^2 = 1 + 8 \cdot x_1^2 \cdot x_2^2 \\ false & else \end{cases}$$

The associated language $L_{tiny.jj}$ is then given as the set of all strings from \mathbb{F}_{13}^* that are mapped onto true by $R_{tiny.jj}$. We get

$$L_{tiny.jj} = \{(x_1, \dots, x_n) \in \mathbb{F}_{13}^* \mid R_{tiny.jj(x_1, \dots, x_n) = true}\}$$

We can claim the statement "There is a word in $L_{tiny.jj}$ " and because $L_{tiny.jj}$ is defined by $R_{tiny.jj}$, this statement is equivalent to the claim "The tiny jubjub curve in its Edwards form has curve a point."

A constructive proof for this statement is a pair (x,y) of field elements that satisfies the Edwards equation. Example 66 therefore implies that the tuple (11,6) is a constructive proof

Are we using w and x interchangeably or is there a difference between them?

check reference

<u>ju</u>bjub

check reference

check reference

check wording

check reference

and the computation $R_{tiny,jj}(11,6) = true$ is a proof verification. In contrast, the tuple (1,1) is not a proof of the statement, since the check $R_{tiny,jj}(1,1) = false$ does not verify the proof.

Exercise 39. Consider exercise XXX again. Define a decision function such that the associated language $L_{Exercise_XXX}$ consist precisely of all solutions to the equation 5x + 4 = 28 + 2x over \mathbb{F}_{13} . Provide a constructive proof for the claim: "There exist a word in $L_{Exercise_XXX}$ and verify the proof.

Exercise 40. Consider the modular 6 arithmetics \mathbb{Z}_6 from example 8 in chapter 3, the alphabet $\Sigma = \mathbb{Z}_6$ and the decision function

$$R_{example_8}: \Sigma^* \to \{true, false\} \; ; \; x \mapsto \begin{cases} true & x.len() = 1 \text{ and } 3 \cdot x + 3 = 0 \\ false & else \end{cases}$$

Compute all words in the associated language $L_{example_8}$, provide a constructive proof for the statement "There exist a word in $L_{example_example_8}$ " and verify the proof.

check references

Instance and Witness As we have seen in the previous paragraph, statements provide membership claims in formal languages, and instances serve as constructive proofs for those claims. However, in the context of **zero-knowledge** proof systems, our naive notion of constructive proofs is refined in such a way that its possible to hide parts of the proof instance and still be able to prove the statement. In this context, it is therefore necessary to split a proof into a **public part** called the **instance** and a private part called a **witness**.

To account for this separation of a proof instance into a public and a private part, our previous definition of formal languages needs a refinement in the context of zero-knowledge proof systems. Instead of a single alphabet, the refined definition considers two alphabets Σ_I and Σ_W , and a decision function defined as follows:

$$R: \Sigma_I^* \times \Sigma_W^* \to \{true, false\} \; ; \; (i;w) \mapsto R(i;w)$$
 (6.3)

Words are therefore tuples $(i; w) \in \Sigma_I^* \times \Sigma_W^*$ with R(i; w) = true. The refined definition differentiates between public inputs $i \in \Sigma_I$ and private inputs $w \in \Sigma_W$. The public input i is called an **instance** and the private input w is called a **witness** of R.

If a decision function is given, the associated language is defined as the set of all tuples from the underlying alphabet that are verified by the decision function:

$$L_R := \{(i; w) \in \Sigma_I^* \times \Sigma_W^* \mid R(i; w) = true\}$$

$$(6.4)$$

In this refined context, a **statement** S is a claim that, given an instance $i \in \Sigma_I^*$, there is a witness $w \in \Sigma_W^*$ such that language L contains a word (i; w). A constructive **proof** for statement S is given by some string $P = (i; w) \in \Sigma_I^* \times \Sigma_W^*$ and a proof is **verified** by checking R(P) = true.

It is worth understanding the difference between statements as defined in XXX_and the refined notion of statements from this paragraph. While statements in the sense of the previous paragraph can be seen as membership claims, statements in the refined definition can be seen as knowledge-proofs, where a prover claims knowledge of a witness for a given instance. For a more detailed discussion on this topic see [XXX_sec 1.4]

add reference

Example 108 (SHA256 – Knowlege of Preimage). One of the most common examples in the context of zero-knowledge proof systems is the **knowledge-of-a-preimage proof** for some cryptographic hash function like *SHA*256, where a publicly known *SHA*256 digest value is

add reference

given, and the task is to prove knowledge of a preimage for that digest under the *SHA*256 function, without revealing that preimage.

To understand this problem in detail, we have to introduce a language able to describe the knowledge-of-preimage problem in such a way that the claim "Given digest i, there is a preimage w such that SHA256(w) = i" becomes a statement in that language. Since SHA256 is a function

$$SHA256: \{0,1\}^* \rightarrow \{0,1\}^{256}$$

that maps binary strings of arbitrary length onto binary strings of length 256 and we want to prove knowledge of preimages, we have to consider binary strings of size 256 as instances and binary strings of arbitrary length as witnesses.

An appropriate alphabet Σ_I for the set of all instances and an appropriate alphabet Σ_W for the set of all witnesses is therefore given by the set $\{0,1\}$ of the two binary letters and a proper decision function is given by:

$$R_{SHA256}: \{0,1\}^* \times \{0,1\}^* \rightarrow \{true, false\};$$

$$(i;w) \mapsto \begin{cases} true & i.len() = 256, \ i = SHA256(w) \\ false & else \end{cases}$$

We write L_{SHA256} for the associated language and note that it consists of words, which are tuples (i; w) such that the instance i is the SHA256 image of the witness w.

Given some instance $i \in \{0,1\}^{256}$, a statement in L_{SHA256} is the claim "Given digest i, there is a preimage w such that SHA256(w) = i", which is exactly what the knowledge-of-preimage problem is about. A constructive proof for this statement is therefore given by a preimage w to the digest i and proof verification is achieved by checking that SHA256(w) = i.

Example 109 (3-factorization). To give an intuition about the implication of refined languages, consider $L_{3.fac}$ from example 106 again. As we have seen, a constructive proof in $L_{3.fac}$ is given by 4 field elements x_1 , x_2 , x_3 and x_4 from \mathbb{F}_{13} such that the product in modular 13 arithmetics of the first three elements is equal to the 4'th element.

check reference

Splitting words from $L_{3.fac}$ into private and public parts, we can reformulate the problem and introduce different levels of privacy into the problem. For example, we could reformulate the membership statement of $L_{3.fac}$ into a statement where all factors x_1, x_2, x_3 of x_4 are private and only the product x_4 is public. A statement for this reformulation is then expressed by the claim: "Given a publicly known field element x_4 , there are three private factors of x_4 ". Assuming some instance x_4 , a constructive proof for the associated knowledge claim is then provided by any tuple (x_1, x_2, x_3) such that $x_1 \cdot x_2 \cdot x_3 = x_4$.

At this point, it is important to note that, while constructive proofs in the refinement don't look very different from constructive proofs in the original language, we will see in XXX that there are proof systems able to prove the statement (at least with high probability) without revealing anything about the factors x_1 , x_2 , or x_3 . This is why the importance of the refinement only becomes clear once more elaborate proofing methods beyond naive constructive proofs are provided.

add reference

We can formalize this new language, which we might call $L_{3.fac_zk}$, by defining the following decision function:

$$\begin{split} R_{3.fac_zk}: \mathbb{F}_{13}^* \times \mathbb{F}_{13}^* &\rightarrow \{true, false\}; \\ &((i_1, \dots, i_n); (w_1, \dots, w_m)) \mapsto \begin{cases} true & n = 1, \ m = 3, \ i_1 = w_1 \cdot w_2 \cdot w_3 \\ false & else \end{cases} \end{split}$$

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

The associated language L_{3,fac_zk} is defined by all tuples from $\mathbb{F}_{13}^* \times \mathbb{F}_{13}^*$ that are mapped onto true under the decision function $R_{3.fac\ zk}$.

Considering the distinction we made between the instance and the witness part in $L_{3,fac\ zk}$, one might ask why we chose the factors x_1 , x_2 and x_3 to be the witness and the product x_4 to be the instance and why we didn't choose another combination? This was an arbitrary choice in the example. Every other combination of private and public factors would be equally valid. For example, it would be possible to declare all variables as private or to declare all variables as public. Actual choices are determined by the application only.

Example 110 (The Tiny JubJub Curve). Consider the language $L_{tiny.jj}$ from example 107. As check we have seen, a constructive proof in $L_{tiny,ij}$ is given by a pair (x_1,x_2) of field elements from \mathbb{F}_{13} such that the pair is a point of the tiny jubjub curve in its Edwards representation.

reference

We look at a reasonable splitting of words from $L_{tiny,ij}$ into private and public parts. The two obvious choices are to either choose both coordinates x_1 as x_2 as public inputs, or to choose both coordinates x_1 as x_2 as private inputs.

In case both coordinates are public, we define the grammar of the associated language by introducing the following decision function:

$$R_{tiny.jj.1}: \mathbb{F}_{13}^* \times \mathbb{F}_{13}^* \to \{true, false\};$$

$$(I_1, \dots, I_n; W_1, \dots, W_m) \mapsto \begin{cases} true & n = 2, m = 0 \text{ and } 3 \cdot I_1^2 + I_2^2 = 1 + 8 \cdot I_1^2 \cdot I_2^2 \\ false & else \end{cases}$$

The language $L_{tiny,ij,1}$ is defined as the set of all strings from $\mathbb{F}_{13}^* \times \mathbb{F}_{13}^*$ that are mapped onto *true* by $R_{tiny, j, i, 1}$. 4285

In case both coordinates are private, we define the grammar of the associated refined language by introducing the following decision function:

$$R_{tiny.jj_zk} : \mathbb{F}_{13}^* \times \mathbb{F}_{13}^* \to \{true, false\} ;$$

$$(I_1, \dots, I_n; W_1, \dots, W_m) \mapsto \begin{cases} true & n = 0, m = m \text{ and } 3 \cdot W_1^2 + W_2^2 = 1 + 8 \cdot W_1^2 \cdot W_2^2 \\ false & else \end{cases}$$

The language L_{tiny,jj_zk} is defined as the set of all strings from $\mathbb{F}_{13}^* \times \mathbb{F}_{13}^*$ that are mapped onto true by $R_{tiny, jj}$ zk.

Exercise 41. Consider the modular 6 arithmetics \mathbb{Z}_6 from example 8 in chapter 3 as alphabets Σ_I and Σ_W and the following decision function

check reference

$$R_{linear}: \Sigma^* \times \Sigma^* \to \{true, false\};$$

$$(i; w) \mapsto \begin{cases} true & i.len() = 3 \text{ and } w.len() = 1 \text{ and } i_1 \cdot w_1 + i_2 = i_3 \\ false & else \end{cases}$$

Which of the following instances (i_1, i_2, i_3) has a proof of knowledge in L_{linear} ? 4288

- (3,3,0) 4289
- (2,1,0)429N
- (4,4,2)4291

Exercise 42 (Edwards Addition on Tiny JubJub). Consider the tiny-jubjub curve together with its Edwards addition law from example XXX. Define an instance alphabet Σ_I , a witness alphabet Σ_W and a decision function R_{add} with associated language L_{add} such that a string $(i; w) \in \Sigma_I^* \times \Sigma_W^*$ is a word in L_{add} if and only if i is a pair of curve points on the tiny-jubjub curve in Edwards form and w is the Edwards sum of those curve points.

add reference

Choose some instance $i \in \Sigma_I^*$, provide a constructive proof for the statement "There is a witness $w \in \Sigma_W^*$ such that (i; w) is a word in L_{add} " and verify that proof. Then find some instance $i \in \Sigma_I^*$ such that i has no knowledge proof in L_{add} .

Modularity From a developers perspective, it is often useful to construct complex statements and their representing languages from simple ones. In the context of zero-knowledge proof systems, those simple building blocks are often called **gadgets**, and gadget libraries usually contain representations of atomic types like booleans, integers, various hash functions, elliptic curve cryptography and many more. In order to synthesize statements, developers then combine predefined gadgets into complex logic. We call the ability to combine statements into more complex statements **modularity**.

To understand the concept of modularity on the level of formal languages defined by decision functions, we need to look at the **intersection** of two languages, which exists whenever both languages are defined over the same alphabet. In this case, the intersection is a language that consists of strings which are words in both languages.

To be more precise, let L_1 and L_2 be two languages defined over the same instance and witness alphabets Σ_I and Σ_W . Then the intersection $L_1 \cap L_2$ of L_1 and L_2 is defined as

$$L_1 \cap L_2 := \{ x \mid x \in L_1 \text{ and } x \in L_2 \}$$
 (6.5)

If both languages are defined by decision functions R_1 and R_2 , the following function is a decision function for the intersection language $L_1 \cap L_2$:

$$R_{L_1 \cap L_2}: \Sigma_I^* \times \Sigma_W^* \to \{true, false\}; (i, w) \mapsto R_1(i, w) \text{ and } R_2(i, w)$$
 (6.6)

Thus, the intersection of two decision-function-based languages is a also decision-function-based language. This is important from an implementations point of view: It allows us to construct complex decision functions, their languages and associated statements from simple building blocks. Given a publicly known instance $i \in \Sigma_I^*$ a statement in an intersection language then claims knowledge of a witness that satisfies all relations simultaneously.

6.2 Statement Representations

As we have seen in the previous section, formal languages and their definitions by decision functions are a powerful tool to describe statements in a formally rigorous manner.

However, from the perspective of existing zero-knowledge proof systems, not all ways to actually represent decision functions are equally useful. Depending on the proof system, some are more suitable than others. In this section, will describe two of the most common ways to represent decision functions and their statements.

6.2.1 Rank-1 Quadratic Constraint Systems

Although decision functions are expressible in various ways, many contemporary proofing systems require the deciding relation to be expressed in terms of a system of quadratic equations

4331

4332

4333

4334

4335

4336

4337

4338

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

over a finite field. This is true in particular for pairing-based proofing systems like XXX, roughly because it is possible to check solutions to those equations "in the exponent" of pairing-friendly cryptographic groups.

add reference

In this section, we will therefore have a closer look at a particular type of quadratic equation called **rank-1 quadratic constraints systems**, which are a common standard in zero-knowledge proof systems. We will start with a general introduction to those systems and then look at their relation to formal languages. We will look into a common way to compute solutions to those systems, and then show how a simple compiler might derive rank-1 constraint systems from more high-level programming code.

R1CS representation To understand what rank-1 (quadratic) constraint systems are in detail, let \mathbb{F} be a field, n, m and $k \in \mathbb{N}$ three numbers and a_j^i , b_j^i and $c_j^i \in \mathbb{F}$ constants from \mathbb{F} for every index $0 \le j \le n+m$ and $1 \le i \le k$. Then a rank-1 constraint system (R1CS) is defined as follows:

Definition 6.2.1.1. R1CS representation

If a rank-1 constraint system is given, the parameter k is called the **number of constraints** If a tuple $(I_1, \ldots, I_n; W_1, \ldots, W_m)$ of field elements satisfies theses equations, (I_1, \ldots, I_n) is called an **instance** and (W_1, \ldots, W_m) is called an associated **witness** of the system.

Remark 1 (Matrix notation). The presentation of rank-1 constraint systems can be simplified using the notation of vectors and matrices, which abstracts over the indices. In fact if $x = (1,I,W) \in \mathbb{F}^{1+n+m}$ is a (n+m+1)-dimensional vector, A, B, C are $(n+m+1) \times k$ -dimensional matrices and \odot is the Schur/Hadamard product, then a R1CS can be written as

Schur/Hadam product

$$Ax \odot Bx = Cx$$

However, since we did not introduced matrix calculus in the book, we use XXX as the defining equation for rank-1 constraints systems. We only highlighted the matrix notation, because it is sometimes used in the literature.

add reference

Generally speaking, the idea of a rank-1 constraint system is to keep track of all the values that any variable can assume during a computation and to bind the relationships among all those variables that are implied by the computation itself. Enforcing relations between all the steps of a computer program, the execution is then constrained to be computed in exactly the expected way without any opportunity for deviations. In this sense, solutions to rank-1 constraint systems are proofs of proper program execution.

Example 111 (3-Factorization). To provide a better intuition of rank-1 constraint systems, consider the language $L_{3.fac_zk}$ from example 106 again. As we have seen, $L_{3.fac_zk}$ consists of words $(I_1; W_1, W_2, W_3)$ over the alphabet \mathbb{F}_{13} such that $I_1 = W_1 \cdot W_2 \cdot W_3$. We show how to rewrite the decision function as a rank-1 constraint system.

check reference

Since R1CS are systems of quadratic equations, expressions like $W_1 \cdot W_2 \cdot W_3$ which contain products of more than two factors (which are therefore not quadratic) have to be rewritten in a process often called **flattening**. To flatten the defining equation $I_1 = W_1 \cdot W_2 \cdot W_3$ of $L_{3.fac}$ _{zk} we

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4373

introcuce a new variable W_4 , which captures two of the three multiplications in $W_1 \cdot W_2 \cdot W_3$. We get the following two constraints

$$W_1 \cdot W_2 = W_4$$
 constraint 1
 $W_4 \cdot W_3 = I_1$ constraint 2

Given some instance I_1 , any solution (W_1, W_2, W_3, W_4) to this system of equations provides a solution to the original equation $I_1 = W_1 \cdot W_2 \cdot W_3$ and vice versa. Both equations are therefore equivalent in the sense that solutions are in a 1:1 correspondence.

Looking at both equations, we see how each constraint enforces a step in the computation. In fact, the first constraint forces any computation to multiply the witness W_1 and W_2 first. Otherwise it would not be possible to compute the witness W_4 , which is needed to solve the second constraint. Witness W_4 therefore expresses the constraining of an intermediate computational state.

At this point, one might ask why equation 1 constrains the system to compute $W_1 \cdot W_2$ first, since computing $W_2 \cdot W_3$, or $W_1 \cdot W_3$ in the beginning and then multiplying with the remaining factor gives the exact same result. The reason is that the way we designed the R1CS prohibits any of these alternative computations, which shows that R1CS are in general not unique descriptions of a language: many different R1CS are able to describe the same problem.

To see that the two quadratic equations qualify as a rank-1 constraint system, choose the parameter n = 1, m = 4 and k = 2 as well as

With this choice, the rank-1 constraint system of our 3-factorization problem can be written in its most general form as follows:

$$(a_0^1 + a_1^1 I_1 + a_2^1 W_1 + a_3^1 W_2 + a_4^1 W_3 + a_5^1 W_4) \cdot (b_0^1 + b_1^1 I_1 + b_2^1 W_1 + b_3^1 W_2 + b_4^1 W_3 + b_5^1 W_4) = (c_0^1 + c_1^1 I_1 + c_2^1 W_1 + c_3^1 W_2 + c_4^1 W_3 + c_5^1 W_4)$$

$$(a_0^2 + a_1^2 I_1 + a_2^2 W_2 + a_3^2 W_2 + a_4^2 W_3 + a_5^2 W_4) \cdot (b_0^2 + b_1^2 I_1 + b_2^2 W_2 + b_3^2 W_2 + b_4^2 W_3 + b_5^2 W_4) = (c_0^2 + c_1^2 I_1 + c_2^2 W_2 + c_3^2 W_2 + c_4^2 W_3 + c_5^2 W_4)$$

Example 112 (The Tiny Jubjub curve). Consider the languages $L_{tiny.jj.1}$ from example 107, check which consist of words (I_1, I_2) over the alphabet \mathbb{F}_{13} such that $3 \cdot I_1^2 + I_2^2 = 1 + 8 \cdot I_1^2 \cdot I_2^2$.

reference

We derive a rank-1 constraint system such that its associated language is equivalent to $L_{tiny, j, 1}$. To achieve this, we first rewrite the defining equation:

$$3 \cdot I_1^2 + I_2^2 = 1 + 8 \cdot I_1^2 \cdot I_2^2 \qquad \Leftrightarrow 0 = 1 + 8 \cdot I_1^2 \cdot I_2^2 - 3 \cdot I_1^2 - I_2^2 \qquad \Leftrightarrow 0 = 1 + 8 \cdot I_1^2 \cdot I_2^2 + 10 \cdot I_1^2 + 12 \cdot I_2^2$$

Since R1CSs are systems of quadratic equations, we have to reformulate this expression into a system of quadratic equations. To do so, we have to introduce new variables that constrain intermediate steps in the computation and we have to decide if those variables should be public or private. We decide to declare all new variables as private and get the following constraints

$$I_1 \cdot I_1 = W_1$$
 constraint 1
 $I_2 \cdot I_2 = W_2$ constraint 2
 $(8 \cdot W_1) \cdot W_2 = W_3$ constraint 3
 $(12 \cdot W_2 + W_3 + 10 \cdot W_1 + 1) \cdot 1 = 0$ constraint 4

To see that these four quadratic equations qualify as a rank-1 constraint system according to definition XXX, choose the parameter n = 2, m = 3 and k = 4:

add reference

With this choice, the rank-1 constraint system of our tiny-jubjub curve point problem can be written in its most general form as follows:

$$\begin{pmatrix} a_0^1 + a_1^1 I_1 + a_2^1 I_2 + a_3^1 W_1 + a_4^1 W_2 + a_5^1 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^1 + b_1^1 I_1 + b_2^1 I_2 + b_3^1 W_1 + b_4^1 W_2 + b_5^1 W_3 \end{pmatrix} = \begin{pmatrix} c_0^1 + c_1^1 I_1 + c_2^1 I_2 + c_3^1 W_1 + c_4^1 W_2 + c_5^1 W_3 \end{pmatrix} \\ \begin{pmatrix} a_0^2 + a_1^2 I_1 + a_2^2 I_2 + a_3^2 W_1 + a_4^2 W_2 + a_5^2 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^2 + b_1^2 I_1 + b_2^2 I_2 + b_3^2 W_1 + b_4^2 W_2 + b_5^2 W_3 \end{pmatrix} = \begin{pmatrix} c_0^2 + c_1^2 I_1 + c_2^2 I_2 + c_3^2 W_1 + c_4^2 W_2 + c_5^2 W_3 \end{pmatrix} \\ \begin{pmatrix} a_0^3 + a_1^3 I_1 + a_2^3 I_2 + a_3^3 W_1 + a_4^3 W_2 + a_5^3 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^3 + b_1^3 I_1 + b_2^3 I_2 + b_3^3 W_1 + b_4^3 W_2 + b_5^3 W_3 \end{pmatrix} = \begin{pmatrix} c_0^3 + c_1^3 I_1 + c_2^3 I_2 + c_3^3 W_1 + c_4^3 W_2 + c_5^3 W_3 \end{pmatrix} \\ \begin{pmatrix} a_0^4 + a_1^4 I_1 + a_2^4 I_2 + a_3^4 W_1 + a_4^4 W_2 + a_5^4 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^4 + b_1^4 I_1 + b_2^4 I_2 + b_3^4 W_1 + b_4^4 W_2 + b_5^4 W_3 \end{pmatrix} = \begin{pmatrix} c_0^4 + c_1^4 I_1 + c_2^4 I_2 + c_3^4 W_1 + c_4^4 W_2 + c_5^4 W_3 \end{pmatrix}$$

In what follows, we write L_{jubjub} for the associated language that consists of solutions to the R1CS.

To see that L_{jubjub} is equivalent to $L_{tiny.jj.1}$, let $(I_1,I_2;W_1,W_2,W_3)$ be a word in L_{jubjub} , then (I_1,I_2) is a word in $L_{tiny.jj.1}$, since the defining R1CS of L_{jubjub} implies that I_1 and I_2 satisfy the Edwards equation of the tiny jubjub curve. On the other hand, let (I_1,I_2) be a word in $L_{tiny.jj.1}$. Then $(I_1,I_2;I_1^2,I_2^2,8\cdot I_1^2\cdot I_2^2)$ is a word in L_{jubjub} and both maps are inverses of each other.

Exercise 43. Consider the language $L_{tiny.jj_zk}$ and define a rank-1 constraint relation with a decision function such that the associated language is equivalent to $L_{tiny.jj_zk}$.

R1CS Satisfiability To understand how rank-1 constraint systems define formal languages, observe that every R1CS over a field $\mathbb F$ defines a decision function over the alphabet $\Sigma_I \times \Sigma_W = \mathbb F \times \mathbb F$ in the following way:

$$R_{R1CS}: \mathbb{F}^* \times \mathbb{F}^* \to \{true, false\} \; ; \; (I;W) \mapsto \begin{cases} true & (I;W) \text{ satisfies R1CS} \\ false & else \end{cases}$$
 (6.7)

4386

4387

4388

4389

4390

4392

4393

4394

4395

Every R1CS therefore defines a formal language. The grammar of this language is encoded in the constraints, words are solutions to the equations and a **statement** is a knowledge claim "Given instance I, there is a witness W such that (I; W) is a solution to the rank-1 constraint system". A constructive proof to this claim is therefore an assignment of a field element to every witness variable, which is verified whenever the set of all instance and witness variables solves the R1CS.

Remark 2 (R1CS satisfiability). It should be noted that in our definition, every R1CS defines its own language. However, in more theoretical approaches, another language usually called **R1CS** satisfiability is often considered, which is useful when it comes to more abstract problems like expressiveness or the computational complexity of the class of all R1CS. From our perspective, the R1CS satisfiability language is obtained by the union of all R1CS languages that are in our definition. To be more precise, let the alphabet $\Sigma = \mathbb{F}$ be a field. Then

$$L_{R1CS_SAT(\mathbb{F})} = \{(i; w) \in \Sigma^* \times \Sigma^* \mid \text{there is a R1CS } R \text{ such that } R(i; w) = true\}$$

Example 113 (3-Factorization). Consider the language $L_{3.fac_zk}$ from example 106 and the check R1CS defined in example ex:3-factorization-r1cs. As we have seen in ex:3-factorization-r1cs, solutions to the R1CS are in 1:1 correspondence with solutions to the decision function of $L_{3,fac,zk}$. Both languages are therefore equivalent in the sense that there is a 1:1 correspondence between words in both languages.

reference

check reference

check reference

To give an intuition of what constructive proofs in $L_{3.fac\ zk}$ look like, consider the instance $I_1 = 11$. To prove the statement "There exists a witness W such that $(I_1; W)$ is a word in $L_{3.fac_zk}$ " constructively, a proof has to provide assignments to all witness variables W_1 , W_2 , W_3 and W_4 . Since the alphabet is \mathbb{F}_{13} , an example assignment is given by W=(2,3,4,6) since $(I_1; W)$ satisfies the R1CS

$$W_1 \cdot W_2 = W_4$$
 # $2 \cdot 3 = 6$
 $W_4 \cdot W_3 = I_1$ # $6 \cdot 4 = 11$

A proper constructive proof is therefore given by P = (2,3,4,6). Of course, P is not the only 4396 possible proof for this statement. Since factorization is not unique in a field in general, another 4397 constructive proof is given by P' = (3, 5, 12, 2). 4398

Example 114 (The tiny jubjub curve). Consider the language L_{jubjub} from example 107 and check its associated R1CS. To see how constructive proofs in L_{jubjub} look like, consider the instance $(I_1,I_2)=(11,6)$. To prove the statement "There exists a witness W such that $(I_1,I_2;W)$ is a word in $L_{jub\,jub}$ " constructively, a proof has to provide assignments to all witness variables W_1 , W_2 and W_3 . Since the alphabet is \mathbb{F}_{13} , an example assignment is given by W=(4,10,8) since $(I_1, I_2; W)$ satisfies the R1CS

reference

$$I_1 \cdot I_1 = W_1$$
 $11 \cdot 11 = 4$ $I_2 \cdot I_2 = W_2$ $6 \cdot 6 = 10$ $(8 \cdot W_1) \cdot W_2 = W_3$ $(8 \cdot 4) \cdot 10 = 8$ $(12 \cdot W_2 + W_3 + 10 \cdot W_1 + 1) \cdot 1 = 0$ $12 \cdot 10 + 8 + 10 \cdot 4 + 1 = 0$

A proper constructive proof is therefore given by P = (4, 10, 8), which shows that the instance 4399 (11,6) is a point on the tiny jubjub curve. 4400

Modularity As we discussed on page 135 XXX, it is often useful to construct complex statements and their representing languages from simple ones. Rank-1 constraint systems are particularly useful for this, as the intersection of two R1CS over the same alphabet results in a new R1CS over that same alphabet.

check reference

To be more precise, let S_1 and S_2 be two R1CS over \mathbb{F} , then a new R1CS S_3 is obtained by the intersection $S_3 = S_1 \cap S_2$ of S_1 and S_2 . In this context, intersection means that both the equations of S_1 and the equations of S_2 have to be satisfied in order to provide a solution for the system S_3 .

As a consequence, developers are able to construct complex R1CS from simple ones and this modularity provides the theoretical foundation for many R1CS compilers, as we will see in XXX.

add reference

6.2.2 Algebraic Circuits

As we have seen in the previous paragraphs, rank-1 constraint systems are quadratic equations such that solutions are knowledge proofs for the existence of words in associated languages. From the perspective of a proofer, it is therefore important to solve those equations efficiently.

However, in contrast to systems of linear equation, no general methods are known that solve systems of quadratic equations efficiently. Rank-1 constraint systems are therefore impractical from a proofers perspective and auxiliary information is needed that helps to compute solutions efficiently.

Methods which compute R1CS solutions are sometimes called **witness generator functions**. To provide a common example, we introduce another class of decision functions called **algebraic circuits**. As we will see, every algebraic circuit defines an associated R1CS and also provides an efficient way to compute solutions for that R1CS.

It can be shown that every space- and time-bounded computation is expressible as an algebraic circuit. Transforming high-level computer programs into those circuits is a process often called **flattening**.

To understand this in more detail, we will introduce our model for algebraic circuits and look at the concept of circuit execution and valid assignments. After that, we will show how to derive rank-1 constraint systems from circuits and how circuits are useful to compute solutions to their R1CS efficiently.

Algebraic circuit representation To see what algebraic circuits are, let \mathbb{F} be a field. An algebraic circuit is then a directed acyclic (multi)graph that computes a polynomial function over \mathbb{F} . Nodes with only outgoing edges (source nodes) represent the variables and constants of the function and nodes with only incoming edges (sink nodes) represent the outcome of the function. All other nodes have exactly two incoming edges and represent the defining field operations addition as well as multiplication. Graph edges represent the flow of the computation along the nodes.

To be more precise, we call a directed acyclic multi-graph $C(\mathbb{F})$ an **algebraic circuit** over \mathbb{F} in this book if the following conditions hold:

Definition 6.2.2.1. Algebraic circuit

- The set of edges has a total order.
- Every source node has a label that represents either a variable or a constant from the field
 \mathbb{F}.

- Every sink node has exactly one incoming edge and a label that represents either a variable or a constant from the field \mathbb{F} .
- Every node that is neither a source nor a sink has exactly two incoming edges and a label from the set $\{+,*\}$ that represents either addition or multiplication in \mathbb{F} .
- All outgoing edges from a node have the same label.
- Outgoing edges from a node with a label that represents a variable have a label.
- Outgoing edges from a node with a label that represents multiplication have a label, if there is at least one labeled edge in both input path.
- All incoming edges to sink nodes have a label.
- If an edge has two labels S_i and S_j it gets a new label $S_i = S_j$.
- No other edge has a label.
- Incoming edges to sink nodes that are labeled with a constant $c \in \mathbb{F}$ are labeled with the same constant. Every other edge label is taken from the set $\{W, I\}$ and indexed compatible with the order of the edge set.

It should be noted that the details in the definitions of algebraic circuits vary between different sources. We use this definition as it is conceptually straightforward and well-suited for pen-and-paper computations.

To get a better intuition of our definition, let $C(\mathbb{F})$ be an algebraic circuit. Source nodes are the inputs to the circuit and either represent variables or constants. In a similar way, sink nodes represent termination points of the circuit and are either output variables or constants. Constant sink nodes enforce computational outputs to take on certain values.

Nodes that are neither source nodes nor sink nodes are called **arithmetic gates**. Arithmetic gates that are decorated with the "+"-label are called **addition-gates** and arithmetic gates that are decorated with the "."-label are called **multiplication-gates**. Every arithmetic gate has exactly two inputs, represented by the two incoming edges.

Since the set of edges is ordered, we can write it as $\{E_1, E_2, ..., E_n\}$ for some $n \in \mathbb{N}$ and we use those indices to index the edge labels, too. Edge labels are therefore either constants or symbols like I_j , W_j or S_j , where j is an index compatible with the edge order. Labels I_j represent instance variables, labels W_j witness variables. Labels on the outgoing edges of input variables constrain the associated variable to that edge. Every other edge defines a constraining equation in the associated R1CS. We will explain this in more detail in XXX.

add reference

Notation and Symbols 10. In synthesizing algebraic circuits, assigning instance I_j or witness W_j labels to appropriate edges is often the final step. It is therefore convenient to not distinguish these two types of edges in previous steps. To account for that, we often simply write S_j for an edge label, indicating that the private/public property of the label is unspecified and it might represent an instance or a witness label.

Example 115 (Generalized factorization SNARK). To give a simple example of an algebraic circuit, consider our 3-factorization problem from example 106 again. To express the problem in the algebraic circuit model, consider the following function

check reference

$$f_{3.fac}: \mathbb{F}_{13} \times \mathbb{F}_{13} \times \mathbb{F}_{13} \to \mathbb{F}_{13}; (x_1, x_2, x_3) \mapsto x_1 \cdot x_2 \cdot x_3$$

Using this function, we can describe the zero-knowledge 3-factorization problem from 106, check in the following way: Given instance $I_1 \in \mathbb{F}_{13}$, a valid witness is a preimage of $f_{3,fac}$ at the point I_1 , i.e., a valid witness consists of three values W_1 , W_2 and W_3 from \mathbb{F}_{13} such that $f_{3,fac}(W_1,W_2,W_3)=I_1.$

reference

To see how this function can be transformed into an algebraic circuit over \mathbb{F}_{13} , it is a common first step to introduce brackets into the function's definition and then write the operations as binary operators, in order to highlight how exactly every field operation acts on its two inputs. Due to the associativity laws in a field, we have several choices. We choose

$$f_{3.fac}(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$$
 # bracket choice
= $(x_1 \cdot x_2) \cdot x_3$ # operator notation
= $MUL(MUL(x_1, x_2), x_3)$

Using this expression, we can write an associated algebraic circuit by first constraining the variables to edge labels $W_1 = x_1$, $W_2 = x_2$ and $W_3 = x_3$ as well as $I_1 = f_{3,fac}(x_1, x_2, x_3)$, taking the distinction between private and public inputs into account. We then rewrite the operator representation of $f_{3.fac}$ into circuit nodes and get the following: 4490

4491

4492

4493

4494

4495

4497

4483

4486

4487

In this case, the directed acyclic multi-graph is a binary tree with three leaves (the source nodes) labeled by x_1 , x_2 and x_3 , one root (the single sink node) labeled by $f(x_1, x_2, x_3)$ and two internal nodes, which are labeled as multiplication gates.

The order we use to label the edges is chosen to make the edge labeling consistent with the choice of W_4 as defined in definition 6.2.2.1. This order can be obtained by a depth-first right-to-left-first traversal algorithm.

check reference

Example 116. To give a more realistic example of an algebraic circuit, look at the defining equation of the tiny-jubjub curve (66) again. A pair of field elements $(x,y) \in \mathbb{F}_{13}^2$ is a curve point, precisely if the following equation holds:

check reference

$$3 \cdot x^2 + y^2 = 1 + 8 \cdot x^2 \cdot y^2$$

To understand how one might transform this identity into an algebraic circuit, we first rewrite this equation by shifting all terms to the right. We get the following:

$$3 \cdot x^{2} + y^{2} = 1 + 8 \cdot x^{2} \cdot y^{2} \qquad \Leftrightarrow 0 = 1 + 8 \cdot x^{2} \cdot y^{2} - 3 \cdot x^{2} - y^{2} \qquad \Leftrightarrow 0 = 1 + 8 \cdot x^{2} \cdot y^{2} + 10 \cdot x^{2} + 12 \cdot y^{2}$$

Then we use this expression to define a function such that all points of the tiny-jubjub curve are characterized as the function preimages at 0.

$$f_{tiny-ij}: \mathbb{F}_{13} \times \mathbb{F}_{13} \to \mathbb{F}_{13}; (x,y) \mapsto 1 + 8 \cdot x^2 \cdot y^2 + 10 \cdot x^2 + 12 \cdot y^2$$

Every pair of points $(x,y) \in \mathbb{F}^2_{13}$ with $f_{tiny-jj}(x,y) = 0$ is a point on the tiny-jubjub curve, and there are no other curve points. The preimage $f_{tiny-jj}^{-1}(0)$ is therefore a complete description of the tiny-jubjub curve.

We can transform this function into an algebraic circuit over \mathbb{F}_{13} . We first introduce brackets into potentially ambiguous expressions and then rewrite the function in terms of binary operators. We get the following:

$$f_{tiny-jj}(x,y) = 1 + 8 \cdot x^{2} \cdot y^{2} + 10 \cdot x^{2} + 12y^{2} \qquad \Leftrightarrow \\ = ((8 \cdot ((x \cdot x) \cdot (y \cdot y))) + (1 + 10 \cdot (x \cdot x))) + (12 \cdot (y \cdot y)) \qquad \Leftrightarrow \\ = ADD(ADD(MUL(8,MUL(MUL(x,x),MUL(y,y))),ADD(1,MUL(10,MUL(x,x)))),MUL(12,MUL(y,y)))$$

Since we haven't decided which part of the computation should be public and which part should be private, we use the unspecified symbol S to represent edge labels. Constraining all variables to edge labels $S_1 = x$, $S_2 = y$ and $S_6 = f_{tiny-jj}$, we get the following circuit, representing the function $f_{tiny-jj}$, by inductively replacing binary operators with their associated arithmetic gates:

This circuit is not a graph, but a multigraph, since there is more than one edge between some of the nodes.

In the process of designing of circuits from functions, it should be noted that circuit representations are not unique in general. In case of the function $f_{tiny-jj}$, the circuit shape is dependent on our choice of bracketing in XXX. An alernative design i,s for example, given by the following circuit, which occurs when the bracketed expression $8 \cdot ((x \cdot x) \cdot (y \cdot y))$ is replaced by the expression $(x \cdot x) \cdot (8 \cdot (y \cdot y))$.

add reference

Of course, both circuits represent the same function, due to the associativity and commutativity laws that hold true in any field.

With a circuit that represents the function $f_{tiny-jj}$, we can now proceed to derive a circuit that constrains arbitrary pairs (x,y) of field elements to be points on the tiny-jubjub curve. To do so, we have to constrain the output to be zero, that is, we have to constrain $S_6 = 0$. To indicate this in the circuit, we replace the output variable by the constant 0 and constrain the related edge label accordingly. We get the following:

The previous circuit enforces input values assigned to the labels S_1 and S_2 to be points on the tiny jubjub curve. However, it does not specify which labels are considered public and which are considered private. The following circuit defines the inputs to be public, while all other labels are private:

It can be shown that every space- and time-bounded computation can be transformed into an algebraic circuit. We call any process that transforms a bounded computation into a circuit **flattening**.

Circuit Execution Algebraic circuits are directed, acyclic multi-graphs, where nodes represent variables, constants, or addition and multiplication gates. In particular, every algebraic circuit with n input nodes decorated with variables symbols and m output nodes decorated with variables can be seen a function that transforms an input tuple (x_1, \ldots, x_n) from \mathbb{F}^n into an output tuple (f_1, \ldots, f_m) from \mathbb{F}^m . The transformation is done by sending values associated to nodes along their outgoing edges to other nodes. If those nodes are gates, then the values are transformed according to the gate label and the process is repeated along all edges until a sink node is reached. We call this computation **circuit execution**.

When executing a circuit, it is possible to not only compute the output values of the circuit but to derive field elements for all edges, and, in particular, for all edge labels in the circuit. The result is a tuple (S_1, S_2, \ldots, S_n) of field elements associated to all labeled edges, which we call a **valid assignment** to the circuit. In contrast, any assignment $(S'_1, S'_2, \ldots, S'_n)$ of field elements to edge labels that can not arise from circuit execution is called an **invalid assignment**.

Valid assignments can be interpreted as **proofs for proper circuit execution** because they keep a record of the computational result as well as intermediate computational steps.

Example 117 (3-factorization). Consider the 3-factorization problem from example 106 and its representation as an algebraic circuit from XXX. We know that the set of edge labels is given by $S := \{I_1; W_1, W_2, W_3, W_4\}$.

To understand how this circuit is executed, consider the variables $x_1 = 2$, $x_2 = 3$ as well as $x_3 = 4$. Following all edges in the graph, we get the assignments $W_1 = 2$, $W_2 = 3$ and $W_3 = 4$. Then the assignments of W_1 and W_2 enter a multiplication gate and the output of the gate is $2 \cdot 3 = 6$, which we assign to W_4 , i.e. $W_4 = 6$. The values W_4 and W_3 then enter the second multiplication gate and the output of the gate is $6 \cdot 4 = 11$, which we assign to I_1 , i.e. $I_1 = 11$.

A valid assignment to the 3-factorization circuit $C_{3.fac}(\mathbb{F}_{13})$ is therefore given by the fol-

check reference

add reference

4561 lowing set

$$S_{valid} := \{11; 2, 3, 4, 6\} \tag{6.8}$$

We can visualise this assignment in the circuit as follows:

4563

To see what an invalid assignment looks like, consider the assignment $S_{err} := \{8; 2, 3, 4, 7\}$. In this assignment, the input values are the same as in the previous case. The associated circuit is:

4566

4569

4570

4571

This assignment is invalid, as the assignments of I_1 and W_4 cannot be obtained by executing the circuit.

Example 118. To compute a more realistic algebraic circuit execution, consider the defining circuit $C_{tiny-jj}(\mathbb{F}_{13})$ from example 114 again. We already know from the way this circuit is constructed that any valid assignment with $S_1 = x$, $S_2 = y$ and $S_6 = 0$ will ensure that the pair (x,y) is a point on the tiny jubjub curve in its Edwards representation (equation 5.20.

4572 4573

4574

From example 114, we know that the pair (11,6) is a proper point on the tiny-jubjub curve and we use this point as input to a circuit execution. We get the following:

check reference

check reference

check reference

4580

4581

4582

4583

4584

4585

4586

4587

4588

Executing the circuit, we indeed compute $S_6 = 0$ as expected, which proves that (11,6) is a point on the tiny-jubjub curve in its Edwards representation. A valid assignment of $C_{tiny-jj}(\mathbb{F}_{13})$ is therefore given by the following equation:

$$S_{tiny-jj} = \{S_1, S_2, S_3, S_4, S_5, S_6\} = \{11, 6, 4, 10, 1, 0\}$$

Circuit Satisfiability To understand how algebraic circuits give rise to formal languages, observe that every algebraic circuit $C(\mathbb{F})$ over a fields \mathbb{F} defines a decision function over the alphabet $\Sigma_I \times \Sigma_W = \mathbb{F} \times \mathbb{F}$ in the following way:

$$R_{C(\mathbb{F})}: \mathbb{F}^* \times \mathbb{F}^* \to \{true, false\}; (I; W) \mapsto \begin{cases} true & (I; W) \text{is valid assignment to } C(\mathbb{F}) \\ false & else \end{cases}$$
 (6.9)

Every algebraic circuit therefore defines a formal language. The grammar of this language is encoded in the shape of the circuit, words are assignments to edge labels that are derived from circuit execution, and **statements** are knowledge claims "Given instance I, there is a witness W such that (I;W) is a valid assignment to the circuit". A constructive proof to this claim is therefore an assignment of a field element to every witness variable, which is verified by executing the circuit to see if the assignment of the execution meets the assignment of the proof.

In the context of zero-knowledge proof systems, executing circuits is also often called **witness generation**, since in applications the instance part is usually public, while its the task of a proofer to compute the witness part.

Remark 3 (Circuit satisfiability). It should be noted that, in our definition, every circuit defines its own language. However, in more theoretical approaches another language usually called **circuit satisfiability** is often considered, which is useful when it comes to more abstract problems like expressiveness, or computational complexity of the class of **all** algebraic circuits over a given field. From our perspective the circuit satisfiability language is obtained by union of all circuit languages that are in our definition. To be more precise, let the alphabet $\Sigma = \mathbb{F}$ be a field. Then

Should we refer to R1CS satisfiability (p. 139 here?

 $L_{CIRCUIT_SAT(\mathbb{F})} = \{(i; w) \in \Sigma^* \times \Sigma^* \mid \text{there is a circuit } C(\mathbb{F}) \text{ such that } (i; w) \text{ is valid assignment} \}$

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608 4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

Example 119 (3-Factorization). Consider the circuit $C_{3,fac}$ from equation 6.8 again. We call the check associated language $L_{3.fac_circ}$.

reference

To understand how a constructive proof of a statement in $L_{3.fac_circ}$ looks like, consider the instance $I_1 = 11$. To provide a proof for the statement "There exist a witness W such that $(I_1; W)$ is a word in $L_{3.fac_circ}$ " a proof therefore has to consists of proper values for the variables W_1 , W_2 , W_3 and W_4 . Any proofer therefore has to find input values for W_1 , W_2 and W_3 and then execute the circuit to compute W_4 under the assumption $I_1 = 11$.

Example XXX implies that (2,3,4,6) is a proper constructive proof and in order to verify the proof a verifier needs to execute the circuit with instance $I_1 = 11$ and inputs $W_1 = 2$, $W_2 = 3$ and $W_3 = 4$ to decide whether the proof is a valid assignment or not.

add reference

Associated Constraint Systems As we have seen in XXX, rank-1 constraint systems define a way to represent statements in terms of a system of quadratic equations over finite fields, suitable for pairing-based zero-knowledge proof systems. However, those equations provide no practical way for a proofer to actually compute a solution. On the other hand, algebraic circuits can be executed in order to derive valid assignments efficiently.

add reference

In this paragraph, we show how to transform any algebraic circuit into a rank-1 constraint system such that valid circuit assignments are in 1:1 correspondence with solutions to the associated R1CS.

To see this, let $C(\mathbb{F})$ be an algebraic circuit over a finite field \mathbb{F} , with a set of edge labels $\{S_1, S_2, \dots, S_n\}$. Then one of the following steps is executed for every edge label S_i from that

• If the edge label S_i is an outgoing edge of a multiplication gate, the R1CS gets a new quadratic constraint

$$(left input) \cdot (right input) = S_i \tag{6.10}$$

where (left input) respectively (right input) is the output from the symbolic execution of the subgraph that consists of the left respectively right input edge of this gate, and all edges and nodes that have this edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

• If the edge label S_i is an outgoing edge of an addition gate, the R1CS gets a new quadratic constraint

$$(\text{left input} + \text{right input}) \cdot 1 = S_i \tag{6.11}$$

where (left input) respectively (right input) is the output from the symbolic execution of the subgraph that consists of the left respectively right input edge of this gate and all edges and nodes that have this edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

No other edge label adds a constraint to the system.

The result of this method is a rank-1 constraint system, and in this sense, every algebraic circuit $C(\mathbb{F})$ generates a R1CS R, which we call the **associated R1CS** of the circuit. It can be shown that a tuple of field elements (S_1, S_2, \dots, S_n) is a valid assignment to a circuit if and only if the same tuple is a solution to the associated R1CS. Circuit executions therefore compute solutions to rank-1 constraints systems efficiently.

To understand the contribution of algebraic gates to the number of constraints, note that by definition multiplication gates have labels on their outgoing edges if and only if there is at least one labeled edge in both input paths, or if the outgoing edge is an input to a sink node. This implies that multiplication with a constant is essentially free in the sense that it doesn't add a new constraint to the system, as long as that multiplication gate is not am input to an output node.

Moreover, addition gates have labels on their outgoing edges if and only if they are inputs to sink nodes. This implies that addition is essentially free in the sense that it doesn't add a new constraint to the system, as long as that addition gate is not an input to an output node.

Example 120 (3-factorization). Consider our 3-factorization problem from equation 6.8 and the associated circuit $C_{3.fac}(\mathbb{F}_{13})$. Out task is to transform this circuit into an equivalent rank-1 constraint system.

reference

4640

4631

4632

4633

4634

4635

4636

4637

4638

4639

We start with an empty R1CS, and, in order to generate all constraints, we have to iterate over 4641 the set of edge labels $\{I_1; W_1, W_2, W_3, W_4\}$.

Starting with the edge label I_1 , we see that it is an outgoing edge of a multiplication gate, and, since both input edges are labeled, we have to add the following constraint to the system:

$$(\text{left input}) \cdot (\text{right input}) = I_1 \Leftrightarrow W_4 \cdot W_3 = I_1$$

Next, we consider the edge label W_1 and, since, it's not an outgoing edge of a multiplication or 4643 addition label, we don't add a constraint to the system. The same holds true for the labels W_2 4644 and W_3 . 4645

For edge label W_4 , we see that it is an outgoing edge of a multiplication gate, and, since both input edges are labeled, we have to add the following constraint to the system:

$$(\text{left input}) \cdot (\text{right input}) = W_4 \Leftrightarrow W_2 \cdot W_1 = W_4$$

Since there are no more labeled edges, all constraints are generated, and we have to combine them to get the associated R1CS of $C_{3.fac}(\mathbb{F}_{13})$:

$$W_4 \cdot W_3 = I_1$$
$$W_2 \cdot W_1 = W_4$$

This system is equivalent to the R1CS we derived in example 111. The languages $L_{3,fac,zk}$ and check 4646 $L_{3.fac\ circ}$ are therefore equivalent and both the circuit as well as the R1CS are just two different 4647 ways of expressing the same language.

reference

Example 121. To consider a more general transformation, we consider the tiny-jubjub circuit from example 114 again. A proper circuit is given by

check reference

To compute the number of constraints, observe that we have 3 multiplication gates that have labels on their outgoing edges and 1 addition gate that has a label on its outgoing edge. We therefore have to compute 4 quadratic constraints.

In order to derive the associated R1CS, we have start with an empty R1CS and then iterate over the set $\{S_1, S_2, S_3, S_4, S_5, S_6 = 0\}$ of all edge labels, in order to generate the constraints.

Considering edge label S_1 , we see that the associated edges are not outgoing edges of any algebraic gate, and we therefore have to add no new constraint to the system. The same holds true for edge label S_2 . Looking at edge label S_3 , we see that the associated edges are outgoing edges of a multiplication gate and that the associated subgraph is given by:

 Both the left and the right input to this multiplication gate are labeled by S_1 . We therefore have to add the following constraint to the system:

$$S_1 \cdot S_1 = S_3$$

Looking at edge label S_4 , we see that the associated edges are outgoing edges of a multiplication gate and that the associated subgraph is given by:

4668

4669 4670

Both the left and the right input to this multiplication gate are labeled by S_2 and we therefore have to add the following constraint to the system:

$$S_2 \cdot S_2 = S_4$$

Edge label S_5 is more interesting. To see if it implies a constraint, we have to construct the associated subgraph first, which consists of all edges and all nodes in all path starting either at a constant input or a labeled edge. We get

4674

4675

The right input to the associated multiplication gate is given by the labeled edge S_3 . However, the left input is not a labeled edge, but has a labeled edge in one of its path. This implies that we have to add a constraint to the system. To compute the left factor of that constraint, we have to compute the output of subgraph associated to the left edge, which is $8 \cdot W_2$. This gives the constraint

$$(S_4 \cdot 8) \cdot S_3 = S_5$$

The last edge label is the constant $S_6 = 0$. To see if it implies a constraint, we have to construct the associated subgraph, which consists of all edges and all nodes in all path starting either at a constant input or a labeled edge. We get

4680

4681 4682

Both the left and the right input are unlabeled, but have a labeled edges in their path. This implies that we have to add a constraint to the system. Since the gate is an addition gate, the right factor in the quadratic constraint is always 1 and the left factor is computed by symbolically executing all inputs to all gates in sub-circuit. We get

$$(12 \cdot S_4 + S_5 + 10 \cdot S_3 + 1) \cdot 1 = 0$$

Since there are no more labeled outgoing edges, we are done deriving the constraints. Combining all constraints together, we get the following R1CS:

$$S_1 \cdot S_1 = S_3$$

$$S_2 \cdot S_2 = S_4$$

$$(S_4 \cdot 8) \cdot S_3 = S_5$$

$$(12 \cdot S_4 + S_5 + 10 \cdot S_3 + 1) \cdot 1 = 0$$

which is equivalent to the R1CS we derived in example 114. The languages $L_{3.fac_zk}$ and $L_{3.fac_circ}$ are therefore equivalent and both the circuit as well as the R1CS are just two different ways to express the same language.

check reference

4687

4688

4689

4690

4691

4692

4693

4695

4696

4697

4698

4699

4700

4702

4703

4704

4705

4706

4707

4709

4710

4711

4712

4713

4714

4716

4717

4718

4719

6.2.3 Quadratic Arithmetic Programs

We have introduced algebraic circuits and their associated rank-1 constraints systems as two particular models able to represent space- and time-bounded computation. Both models define formal languages, and associated membership as well as knowledge claims can be constructively proofed by executing the circuit in order to compute solutions to its associated R1CS.

One reason why those systems are useful in the context of succinct zero-knowledge proof systems is because any R1CS can be transformed into another computational model called **quadratic arithmetic programs** (QAP), which serve as the basis for some of the most efficient succinct non-interactive zero-knowledge proof generators that currently exist.

As we will see, proving statements for languages that have checking relations defined by quadratic arithmetic programs can be achieved by providing certain polynomials, and those proofs can be verified by checking a particular divisibility property.

QAP representation To understand what quadratic arithmetic programs are in detail, let \mathbb{F} be a field and R a rank-1 constraints system over \mathbb{F} such that the number of non-zero elements in \mathbb{F} is strictly larger then the number k of constraints in R. Moreover, let a_j^i , b_j^i and $c_j^i \in \mathbb{F}$ for every index $0 \le j \le n+m$ and $1 \le i \le k$, be the defining constants of the R1CS and m_1, \ldots, m_k be arbitrary, invertible and distinct elements from \mathbb{F} .

Then a **quadratic arithmetic program** [QAP] of the R1CS is the following set of polynomials over \mathbb{F} :

$$QAP(R) = \left\{ T \in \mathbb{F}[x], \left\{ A_j, B_j, C_j \in \mathbb{F}[x] \right\}_{h=0}^{n+m} \right\}$$
 (6.12)

In the equation above, $T(x) := \prod_{l=1}^{k} (x - m_l)$ is a polynomial of degree k, called the **target polynomial** of the QAP and A_j , B_j as well as C_j are the unique degree k-1 polynomials defined by the following equation:

$$A_j(m_i) = a_j^i \quad B_j(m_i) = b_j^i \quad C_j(m_i) = C_j^i \quad j = 1, \dots, n + m + 1, i = 1, \dots, k$$
 (6.13)

Given some rank-1 constraint system, an associated quadratic arithmetic program is therefore nothing but a set of polynomials, computed from the constants in the R1CS. To see that the polynomials A_j , B_j and C_j are uniquely defined by the equations in XXX, recall that a a polynomial of degree k-1 is completely determined on k evaluation points and the equation 4 precisely determines those k evaluation points.

Since we only consider polynomials over fields, Lagrange's interpolation method from 3.31 in chapter 3 can be used to derive the polynomials A_j , B_j and C_j from their defining equations XXX. A practical method to compute a QAP from a given R1CS therefore consists of two steps. If the R1CS consists of k constraints, first choose k invertible and mutually different points from the underlaying field. Every choice defines a different QAP for the same R1CS. Then use Lagrange's method and equation XXX to compute the polynomials A_j , B_j and C_j for every $1 \le j \le k$.

Example 122 (Generalized factorization SNARK). To provide a better intuition of quadratic arithmetic programs and how they are computed from their associated rank-1 constraint systems, consider the language $L_{3.fac.zk}$ from example 106 and its associated R1CS:

$$W_1 \cdot W_2 = W_4$$
 constraint 1
 $W_4 \cdot W_3 = I_1$ constraint 2

In this example we want to transform this R1CS into an associated QAP. In a first step, we have to compute the defining constants a_i^i , b_i^i and c_i^i of the R1CS. According to XXX, we have

add reference

"by"?

check reference

check reference

add reference

add reference

check reference

add reference

Since the R1CS is defined over the field \mathbb{F}_{13} and has two constraining equations, we need to choose two arbitrary but distinct elements m_1 and m_2 from \mathbb{F}_{13} . We choose $m_1 = 5$, and $m_2 = 7$ and with this choice we get the target polynomial

$$T(x) = (x - m_1)(x - m_2)$$
 # Definition of T
= $(x - 5)(x - 7)$ # Insert our choice
= $(x + 8)(x + 6)$ # Negatives in \mathbb{F}_{13}
= $x^2 + x + 9$ # expand

Then we have to compute the polynomials A_j , B_j and C_j by their defining equation from the R1CS coefficients. Since the R1CS has two constraining equations, those polynomials are of degree 1 and they are defined by their evaluation at the point $m_1 = 5$ and the point $m_2 = 7$.

At point m_1 , each polynomial A_j is defined to be a_j^1 and at point m_2 , each polynomial A_j is defined to be a_j^2 . The same holds true for the polynomials B_j as well as C_j . Writing all these equations now, we get:

$$A_0(5) = 0$$
, $A_1(5) = 0$, $A_2(5) = 1$, $A_3(5) = 0$, $A_4(5) = 0$, $A_5(5) = 0$
 $A_0(7) = 0$, $A_1(7) = 0$, $A_2(7) = 0$, $A_3(7) = 0$, $A_4(7) = 0$, $A_5(7) = 1$
 $B_0(5) = 0$, $B_1(5) = 0$, $B_2(5) = 0$, $B_3(5) = 1$, $B_4(5) = 0$, $B_5(5) = 0$
 $B_0(7) = 0$, $B_1(7) = 0$, $B_2(7) = 0$, $B_3(7) = 0$, $B_4(7) = 1$, $B_5(7) = 0$
 $C_0(5) = 0$, $C_1(5) = 0$, $C_2(5) = 0$, $C_3(5) = 0$, $C_4(5) = 0$, $C_5(5) = 1$
 $C_0(7) = 0$, $C_1(7) = 1$, $C_2(7) = 0$, $C_3(7) = 0$, $C_4(7) = 0$, $C_5(7) = 0$

Lagrange's interpolation implies that a polynomial of degree k, that is, that zero on k+1 points has to be the zero polynomial. Since our polynomials are of degree 1 and determined on 2 points, we therefore know that the only non-zero polynomials in our QAP are A_2 , A_5 , B_3 , B_4 , C_1 and C_5 , and that we can use Lagrange's interpolation to compute them.

To compute A_2 we note that the set S in our version of Lagrange's method is given by $S = \{(x_0, y_0), (x_1, y_1)\} = \{(5, 1), (7, 0)\}$. Using this set we get:

$$A_{2}(x) = y_{0} \cdot l_{0} + y_{1} \cdot l_{1}$$

$$= y_{0} \cdot \left(\frac{x - x_{1}}{x_{0} - x_{1}}\right) + y_{1} \cdot \left(\frac{x - x_{0}}{x_{1} - x_{0}}\right) = 1 \cdot \left(\frac{x - 7}{5 - 7}\right) + 0 \cdot \left(\frac{x - 5}{7 - 5}\right)$$

$$= \frac{x - 7}{-2} = \frac{x - 7}{11}$$

$$= 6(x - 7) = 6x + 10$$
11⁻¹ = 6
- 7 = 6 and 6 \cdot 6 = 10

4748

4749

4750

4751

4752

To compute A_5 , we note that the set S in our version of Lagrange's method is given by $S = \{(x_0, y_0), (x_1, y_1)\} = \{(5, 0), (7, 1)\}$. Using this set we get:

$$A_5(x) = y_0 \cdot l_0 + y_1 \cdot l_1$$

$$= y_0 \cdot \left(\frac{x - x_1}{x_0 - x_1}\right) + y_1 \cdot \left(\frac{x - x_0}{x_1 - x_0}\right) = 0 \cdot \left(\frac{x - 7}{5 - 7}\right) + 1 \cdot \left(\frac{x - 5}{7 - 5}\right)$$

$$= \frac{x - 5}{2} \qquad #2^{-1} = 7$$

$$= 7(x - 5) = 7x + 4 \qquad # - 5 = 8 \text{ and } 7 \cdot 8 = 4$$

Using Lagrange's interpolation, we can deduce that $A_2 = B_3 = C_5$ as well as $A_5 = B_4 = C_1$, since they are polynomials of degree 1 that evaluate to same values on 2 points. Using this, we get the following set of polynomials

$A_0(x) = 0$	$B_0(x) = 0$	$C_0(x) = 0$
$A_1(x) = 0$	$B_1(x) = 0$	$C_1(x) = 7x + 4$
$A_2(x) = 6x + 10$	$B_2(x) = 0$	$C_2(x)=0$
$A_3(x) = 0$	$B_3(x) = 6x + 10$	$C_3(x)=0$
$A_4(x) = 0$	$B_4(x) = 7x + 4$	$C_4(x) = 0$
$A_5(x) = 7x + 4$	$B_5(x) = 0$	$C_5(x) = 6x + 10$

We can invoke Sage to verify our computation. In sage every polynomial ring has a function lagrange_polynomial that takes the defining points as inputs and the associated Lagrange polynomial as output.

Combining this computation with the target polynomial we derived earlier, a quadratic arithmetic program associated to the rank-1 constraint system $R_{3.fac_zk}$ is given as follows:

$$QAP(R_{3.fac_zk}) = \{x^2 + x + 9, \{0,0,6x+10,0,0,6x+10,7x+4,0\}, \{0,7x+4,0,0,0,6x+10\}\}$$
(6.14)

QAP Satisfiability One of the major points of quadratic arithmetic programs in proofing systems is that solutions of their associated rank-1 constraints systems are in 1:1 correspondence with certain polynomials P such that P is divisible by the target polynomial T of the QAP if and only if the solution id a solution. Verifying solutions to the R1CS and hence, checking proper circuit execution is then achievable by polynomial division of P by T.

clarify language

To be more specific, let R be some rank-1 constraints system with associated assignment variables $(I_1, \ldots, I_n; W_1, \ldots, W_m)$ and let QAP(R) be a quadratic arithmetic program of R. Then

the tuple $(I_1, ..., I_n; W_1, ..., W_m)$ is a solution to the R1CS if and only if the following polynomial is divisible by the target polynomial T:

$$P_{(I;W)} = (A_0 + \sum_{j=1}^{n} I_j \cdot A_j + \sum_{j=1}^{m} W_j \cdot A_{n+j}) \cdot (B_0 + \sum_{j=1}^{n} I_j \cdot B_j + \sum_{j=1}^{m} W_j \cdot B_{n+j}) - (C_0 + \sum_{j=1}^{n} I_j \cdot C_j + \sum_{j=1}^{m} W_j \cdot C_{n+j})$$
(6.15)

Every tuple (I; W) defines a polynomial $P_{(I;W)}$, and, since each polynomial A_j , B_j and C_j is of degree k-1, $P_{(I:W)}$ is of degree $(k-1) \cdot (k-1) = k^2 - 2k + 1$.

To understand how quadratic arithmetic programs define formal languages, observe that every QAP over a field \mathbb{F} defines a decision function over the alphabet $\Sigma_I \times \Sigma_W = \mathbb{F} \times \mathbb{F}$ in the following way:

$$R_{QAP}: \mathbb{F}^* \times \mathbb{F}^* \to \{true, false\}; (I; W) \mapsto \begin{cases} true & P_{(I;W)} \text{ is divisible by } T \\ false & else \end{cases}$$
 (6.16)

Every QAP therefore defines a formal language, and, if the QAP is associated to an R1CS, it can be shown that the two languages are equivalent. A **statement** is a membership claim "There is a word (I; W) in L_{QAP} ". A proof to this claim is therefore a polynomial $P_{(I;W)}$, which is verified by dividing $P_{(I;W)}$ by T.

Note the structural similarity to the definition of an R1CS in 6.2.1.1 and the different ways of computing proofs in both systems. For circuits and their associated rank-1 constraints systems, a constructive proof consists of a valid assignment of field elements to the edges of the circuit, or the variables in the R1CS. However, in the case of QAPs, a valid proof consists of a polynomial $P_{(I:W)}$.

check reference

To compute a proof for a statement in L_{QAP} given some instance I, a proofer first needs to compute a constructive proof W, e.g. by executing the circuit. With (I;W) at hand, the proofer can then compute the polynomial $P_{(I;W)}$ and publish it as proof.

Verifying a constructive proof in the case of a circuit is achieved by executing the circuit, comparing the result to the given proof, and verifying the same proof in the R1CS picture means checking if the elements of the proof satisfy all equation.

In contrast, verifying a proof in the case of a QAP is done by polynomial division of the proof P by the target polynomial T of the QAP. The proof checks out if and only if P is divisible by T.

Example 123. Consider the quadratic arithmetic program $QAP(R_{3.fac_zk})$ from example XXX, and its associated R1CS from equation 6.14. To give an intuition of how proofs in the language $L_{QAP(R_{3.fac_zk})}$ lets consider the instance $I_1 = 11$. As we know from example XXX, $(W_1, W_2, W_3, W_5) = (2, 3, 4, 6)$ is a proper witness, since $(I_1; W_1, W_2, W_3, W_5) = (11; 2, 3, 4, 6)$ is a valid circuit assignment and hence, a solution to $R_{3.fac_zk}$ and a constructive proof for language $L_{R_{3.fac_zk}}$.

add reference

check reference

add reference

In order to transform this constructive proof into a membership proof in language $L_{QAP(R_{3.fac_zk})}$ a proofer has to use the elements of the constructive proof, to compute the polynomial $P_{(I;W)}$.

In the case of $(I_1; W_1, W_2, W_3, W_5) = (11; 2, 3, 4, 6)$, the associated proof is computed as fol-

lows:

$$\begin{split} P_{(I;W)} &= (A_0 + \sum_{j=1}^{n} I_{j} \cdot A_{j} + \sum_{j=1}^{m} W_{j} \cdot A_{n+j}) \cdot (B_0 + \sum_{j=1}^{n} I_{j} \cdot B_{j} + \sum_{j=1}^{m} W_{j} \cdot B_{n+j}) - (C_0 + \sum_{j=1}^{n} I_{j} \cdot C_{j} + \sum_{j=1}^{m} W_{j} \cdot C_{n+j}) \\ &= (2(6x+10)+6(7x+4)) \cdot (3(6x+10)+4(7x+4)) - (11(7x+4)+6(6x+10)) \\ &= ((12x+7)+(3x+11)) \cdot ((5x+4)+(2x+3)) - ((12x+5)+(10x+8)) \\ &= (2x+5) \cdot (7x+7) - (9x) \\ &= (x^2+2 \cdot 7x+5 \cdot 7x+5 \cdot 7) - (9x) \\ &= (x^2+x+9x+9) - (9x) \\ &= x^2+x+9 \end{split}$$

Given instance $I_1 = 11$ a proofer therefore provides the polynomial $x^2 + x + 9$ as proof. To verify this proof, any verifier can then look up the target polynomial T from the QAP and divide $P_{(I;W)}$ by T. In this particular example, $P_{(I;W)}$ is equal to the target polynomial T, and hence, it is divisible by T with P/T = 1. The verification therefore checks the proof.

```
sage: F13 = GF(13)
                                                                                639
4791
    sage: F13t.<t> = F13[]
                                                                                640
4792
    sage: T = F13t(t^2 + t + 9)
                                                                                641
4793
    sage: P = F13t((2*(6*t+10)+6*(7*t+4))*(3*(6*t+10)+4*(7*t+4))
                                                                                642
4794
        -(11*(7*t+4)+6*(6*t+10)))
4795
    sage: P == T
                                                                                643
4796
    True
                                                                                644
4797
    sage: P % T # remainder
                                                                                645
4798
                                                                                646
4799
```

To give an example of a false proof, consider the tuple $(I_1; W_1, W_2, W_3, W_4) = (11, 2, 3, 4, 8)$. Executing the circuit, we can see that this is not a valid assignment and not a solution to the R1CS, and hence, not a constructive knowledge proof in $L_{3.fac_zk}$. However, a proofer might use these values to construct a false proof $P_{(I:W)}$:

$$P'_{(I;W)} = (A_0 + \sum_{j=1}^{n} I_j \cdot A_j + \sum_{j=1}^{m} W_j \cdot A_{n+j}) \cdot (B_0 + \sum_{j=1}^{n} I_j \cdot B_j + \sum_{j=1}^{m} W_j \cdot B_{n+j}) - (C_0 + \sum_{j=1}^{n} I_j \cdot C_j + \sum_{j=1}^{m} W_j \cdot C_{n+j})$$

$$= (2(6x+10) + 8(7x+4)) \cdot (3(6x+10) + 4(7x+4)) - (8(6x+10) + 11(7x+4))$$

$$= 8x^2 + 6$$

Given instance $I_1 = 11$, a proofer therefore provides the polynomial $8x^2 + 6$ as proof. To verify this proof, any verifier can look up the target polynomial T from the QAP and divide $P_{(I;W)}$ by T. However, polynomial division has the following remainder:

$$(8x^2+6)/(x^2+x+9) = 8 + \frac{5x+12}{x^2+x+9}$$

This implies that $P_{(I;W)}$ is not divisible by T, and hence, the verification does not check the proof. Any verifier can therefore show that the proof is false.

```
4802 sage: F13 = GF(13) 647

4803 sage: F13t.<t> = F13[] 648

4804 sage: T = F13t(t^2 + t + 9) 649

4805 sage: P = F13t((2*(6*t+10)+8*(7*t+4))*(3*(6*t+10)+4*(7*t+4))-(650)

8*(6*t+10)+11*(7*t+4)))
```

4807	sage:	$P == F13t(8*t^2 + 6)$	651
4808	True		652
4809	sage:	P % T # remainder	653
4810	5*t +	+ 12	654

867 Bibliography

- Jens Groth. On the size of pairing-based non-interactive arguments. *IACR Cryptol. ePrint Arch.*, 2016:260, 2016. URL http://eprint.iacr.org/2016/260.
- P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In *Proceedings 35th Annual Symposium on Foundations of Computer Science*, pages 124–134, 1994. doi: 10.1109/SFCS.1994.365700.
- David Fifield. The equivalence of the computational diffie-hellman and discrete logarithm problems in certain groups, 2012. URL https://web.stanford.edu/class/cs259c/ finalpapers/dlp-cdh.pdf.
- Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan Feigenbaum, editor, *Advances in Cryptology CRYPTO '91*, pages 129–140, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-46766-3. URL https://fmouhart.epheme.re/Crypto-1617/TD08.pdf.
- Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative complexity. Cryptology ePrint Archive, Report 2016/492, 2016. https://ia.cr/2016/492.