#### Курс "Анализ изображений"

Лекция#10. Нейронные сети. Слои. Алгоритм обратного распространения ошибки. Регуляризация.

## Модель нейрона Маккаллока-Питтса

#### Входной сигнал



# Функции активации

• Линейная: 
$$\sigma(x) = x$$

• Пороговая: 
$$\sigma(x) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$$

• Логистическая сигмоида: 
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

• Гиперболический тангенс: 
$$\sigma(x) = \tanh(x) = \frac{e^{2x}-1}{e^{2x}+1} = 2\sigma(2x) - 1$$

• ReLU (Rectified Linear Unit):  $\sigma(x) = \max(0, x)$ 

## Функции активации



$$y = \sigma(\alpha \mathbf{w}'^T \mathbf{x} + b), \|\mathbf{w}'\| = 1$$

- Множитель  $\alpha$  отвечает за растяжение по оси X
- ullet сдвиг b отвечает за сдвиг порога

#### Softmax

$$\sigma(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^J e^{z_j}}$$

- Используется как выход классификатора для представления распределения вероятностей
- Реже внутри модели, для выбора одного из вариантов внутренней переменной
- Компонента соответствует вероятности класса:

$$P(y = i|x) = \sigma(\mathbf{w}^T \mathbf{x})_i$$

- Сумма компонент вектора равна 1
- $\sigma(\mathbf{z} + c) = \sigma(\mathbf{z})$

## Нейронная сеть. Полносвязный слой

- Все нейроны предыдущего слоя связаны со всеми нейронами следующего
- Внутреннее представление слоя матрица весов  $y_i = \sigma(\mathbf{w}^T \mathbf{x}) \to \mathbf{y} = \sigma(\mathbf{W}^T \mathbf{x})$
- Реализация слоя перемножение матриц



#### Локально связный слой

• Между собой связаны только соседние признаки (=пиксели)

| $w_{00}$ | 0        | 0        | 0        |
|----------|----------|----------|----------|
| $w_{10}$ | $w_{11}$ | 0        | 0        |
| $w_{20}$ | $w_{21}$ | $w_{22}$ | 0        |
| 0        | $w_{31}$ | $W_{32}$ | $W_{33}$ |
| 0        | 0        | $W_{42}$ | $W_{43}$ |
| 0        | 0        | 0        | $w_{53}$ |



# Сверточный слой

• Реализует свертку изображения (или сигнала) x с ядром w:

$$s(t) = (x * w)(t) = \sum_{a=-\infty}^{\infty} x(a)w(t-a)$$

- Инвариантен к параллельному переносу искомый признак может находится где угодно на изображении
- По сути локально-связный слой с общими весами





# Pooling

- Реализует операцию локального прореживания
- В большинстве случаев используется усреднение или максимум по небольшому окну (2х2 или 3х3)

| 1 | 2 | 7 | 2 | 5 | 2 |
|---|---|---|---|---|---|
| 9 | 5 | 4 | 5 | 5 | 4 |
| 1 | 2 | 3 | 1 | 4 | 6 |
| 1 | 2 | 8 | 9 | 8 | 3 |
| 8 | 3 | 3 | 7 | 4 | 6 |
| 3 | 7 | 2 | 5 | 6 | 8 |



# Задача XOR

0
 1

- Задача неразрешима с использованием только одного слоя
- Легко разрешается 2-мя слоями с нелинейными функциями активации (например, пороговой)





| X <sub>0</sub> | X <sub>1</sub> | Y <sub>0</sub> | <b>y</b> <sub>1</sub> | y <sub>2</sub> | z <sub>o</sub> |
|----------------|----------------|----------------|-----------------------|----------------|----------------|
| 0              | 0              | 0              | 0                     | 0              | 0              |
| 0              | 1              | 1              | 0                     | 1              | 1              |
| 1              | 0              | 0              | 1                     | 1              | 1              |
| 1              | 1              | 0              | 0                     | 1              | 0              |

# Обучение нейронной сети

#### Обозначения:

- Е функция потерь
- l l-ый слой сети
- $w_{ij}^l$  веса l-го слоя
- $\sigma$  функция активации
- $o_i^l = \sigma(x_i^l)$  выход l-го слоя
- $x_j^l$  преобразованный входной вектор

Хотим устроить градиентный спуск:

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$$

 $\eta$  – скорость обучения.

Для этого нужно посчитать градиенты  $\frac{\partial E}{\partial w_{ij}}$  для всех слоев

# Алгоритм обратного распространения ошибки

• Ответ слоя:

$$x_j^l = \sum_i w_{ij}^l o_i^{l-1} = f(w_{ij}^l)$$

• Функция потерь:

$$E = E(o_j, y_j) = E(\sigma(f(w_{ij}^l)), y_j)$$

• Градиент для последнего слоя:

$$\frac{\partial E}{\partial w_{ij}^{l}} = \frac{\partial E}{\partial o_{j}^{l}} \left[ \frac{\partial o_{j}^{l}}{\partial x_{j}^{l}} \right] \left[ \frac{\partial x_{j}^{l}}{\partial w_{ij}^{l}} \right]$$

$$\stackrel{\circ}{\sim} O_{j}^{\prime} \stackrel{\circ}{\sim} O_{j}^{\prime} \stackrel{\circ}$$

 На внутренних слоях – считаем относительно предыдущего слоя:

$$\frac{\partial E}{\partial w_{ij}^l} = \sum_{k} \frac{\partial E}{\partial x_k^{l+1}} \frac{\partial x_k^{l+1}}{\partial x_j^l} \frac{\partial x_j^l}{\partial w_{ij}^l} =$$

$$= \frac{\partial x_{j}^{l}}{\partial w_{ij}^{l}} \sum_{k} \frac{\partial E}{\partial x_{k}^{l+1}} \frac{\partial x_{k}^{l+1}}{\partial o_{j}^{l}} \frac{\partial o_{j}^{l}}{\partial x_{j}^{l}}$$

$$\stackrel{\circ}{\sim} o_{i}^{\prime} \downarrow_{I} \stackrel{\circ}{\sim} o_{k}^{\prime} \downarrow_{I} \stackrel{\circ}{\sim} w_{jk}^{\prime} \downarrow_{I} \stackrel{\circ}{\sim} o_{k}^{\prime} \downarrow_{I}$$

#### Регуляризация

- Цель уменьшение ошибки обобщения, не уменьшая при этом ошибку обучения
- Штраф по норме:
  - Задача оптимизации:  $\min_{w} \sum_{i=1}^{N} L(y_i, y_i') + \lambda R(w)$  L<sub>2</sub> (ridge):  $R(w) = \sum_{i} w_i^2$

  - L<sub>1</sub> (lasso):  $R(w) = \sum_{i} |w_{i}|$  реализует также отбор признаков
- Раздутие обучающей выборки
- Многозадачное обучение
- Ранняя остановка обучения
- Dropout

#### Dropout

- Идея в процессе обучения удалять из
- Реализация умножение на 0 строк матрицы приращений
- Аппроксимирует ансамбль экспоненциального количества нейронных сетей с общими параметрами



#### Автоэнкодер

- Задача понизить размерность входного вектора
- Задача обучения "скопировать входной вектор", при этом пройдя через узкое горлышко
- Если L среднеквадратичная ошибка, а декодер линейная функция, то обучение эквивалентно РСА

