



# Ordenação linear Projeto e Análise de Algoritmos

Bruno Prado

Departamento de Computação / UFS

- Algoritmos clássicos de ordenação
  - Mergesort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n \log_2 n)$

- Algoritmos clássicos de ordenação
  - Mergesort
    - $\triangleright \Omega(n \log_2 n)$
    - ▶ O(n log<sub>2</sub> n)
  - Quicksort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n^2)$

- Algoritmos clássicos de ordenação
  - Mergesort
    - $\triangleright \Omega(n \log_2 n)$
    - ▶ O(n log<sub>2</sub> n)
  - Quicksort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n^2)$
  - Heapsort
    - $\triangleright \Omega(n \log_2 n)$
    - ▶ O(n log<sub>2</sub> n)

- Algoritmos clássicos de ordenação
  - Mergesort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n \log_2 n)$
  - Quicksort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n^2)$
  - Heapsort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n \log_2 n)$

Todos executam em pelo menos  $\Omega(n \log_2 n)$  passos

- Algoritmos clássicos de ordenação
  - Mergesort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n \log_2 n)$
  - Quicksort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n^2)$
  - Heapsort
    - $\triangleright \Omega(n \log_2 n)$
    - $\triangleright$   $O(n \log_2 n)$

Este é o limite inferior de ordenação?

- Ordenação baseada em comparação
  - Árvore de decisão



- Ordenação baseada em comparação
  - Árvore de decisão



- ▶ Ordenação baseada em comparação
  - Árvore de decisão



- Ordenação baseada em comparação
  - Árvore de decisão



- Ordenação baseada em comparação
  - Árvore de decisão



- Ordenação baseada em comparação
  - Árvore de decisão



- Ordenação baseada em comparação
  - Árvore de decisão



A quantidade de comparações é a altura da árvore

- Ordenação baseada em comparação
  - ▶ Todos os n elementos precisam ser comparados por operações relacionais binárias ( $\leq$ , <,  $\geq$  ou >)





- Ordenação baseada em comparação
  - ▶ Todos os n elementos precisam ser comparados por operações relacionais binárias ( $\leq$ , <,  $\geq$  ou >)



 O número mínimo de comparações é descrito por h = f(n), que é a altura da árvore

- Ordenação baseada em comparação
  - ▶ Todos os n elementos precisam ser comparados por operações relacionais binárias (≤, <, ≥ ou >)



- O número mínimo de comparações é descrito por h = f(n), que é a altura da árvore
- Nas folhas da árvore existem n! combinações possíveis para ordenação da sequência

- Ordenação baseada em comparação
  - Como uma árvore binária com altura h = f(n) possui no máximo  $2^{f(n)}$  folhas, temos que  $2^{f(n)} \ge n!$

- Ordenação baseada em comparação
  - Como uma árvore binária com altura h = f(n) possui no máximo  $2^{f(n)}$  folhas, temos que  $2^{f(n)} > n!$
  - Aplicando a operação de logaritmo em base 2 em ambos os lados da expressão

```
\log_2 2^{f(n)} \geq \log_2 n!
f(n) \geq \log_2 n!
```

- Ordenação baseada em comparação
  - Como uma árvore binária com altura h = f(n) possui no máximo  $2^{f(n)}$  folhas, temos que  $2^{f(n)} \ge n!$
  - Aplicando a operação de logaritmo em base 2 em ambos os lados da expressão

$$\log_2 2^{f(n)} \geq \log_2 n!$$

$$f(n) \geq \log_2 n!$$

Utilizando a aproximação de Stirling

$$O(\log_2 n!) = n \log_2 n - n + O(\log_2 n)$$

$$O(\log_2 n!) = O(n \log_2 n)$$

- Ordenação baseada em comparação
  - Como uma árvore binária com altura h = f(n) possui no máximo  $2^{f(n)}$  folhas, temos que  $2^{f(n)} > n!$
  - Aplicando a operação de logaritmo em base 2 em ambos os lados da expressão

$$\log_2 2^{f(n)} \geq \log_2 n!$$

$$f(n) \geq \log_2 n!$$

Utilizando a aproximação de Stirling

$$O(\log_2 n!) = n \log_2 n - n + O(\log_2 n)$$

$$O(\log_2 n!) = O(n \log_2 n)$$

$$\downarrow$$

$$f(n) \ge n \log_2 n$$

- Ordenação baseada em comparação
  - Como uma árvore binária com altura h = f(n) possui no máximo  $2^{f(n)}$  folhas, temos que  $2^{f(n)} > n!$
  - Aplicando a operação de logaritmo em base 2 em ambos os lados da expressão

$$\log_2 2^{f(n)} \geq \log_2 n!$$

$$f(n) \geq \log_2 n!$$

Utilizando a aproximação de Stirling

$$O(\log_2 n!) = n\log_2 n - n + O(\log_2 n)$$

$$O(\log_2 n!) = O(n\log_2 n)$$

$$\downarrow$$

$$f(n) \ge n\log_2 n$$

$$= \Omega(n\log_2 n)$$

Conjunto de entrada com tamanho n

|                 |            |                 | $\downarrow$        |                  |                  |                      |                       |
|-----------------|------------|-----------------|---------------------|------------------|------------------|----------------------|-----------------------|
| n               | $\log_2 n$ | n               | $n \log_2 n$        | $n^2$            | $n^3$            | 2 <sup>n</sup>       | n!                    |
| 10 <sup>1</sup> | 3,3        | 10 <sup>1</sup> | $3,3 \times 10^{1}$ | 10 <sup>2</sup>  | 10 <sup>3</sup>  | 10 <sup>3</sup>      | $3,6 \times 10^{6}$   |
| 10 <sup>2</sup> | 6,6        | 10 <sup>2</sup> | $6,6 \times 10^{2}$ | 10 <sup>4</sup>  | 10 <sup>6</sup>  | $1,3 \times 10^{30}$ | $9,3 \times 10^{157}$ |
| 10 <sup>3</sup> | 10         | 10 <sup>3</sup> | $1,0 \times 10^{4}$ | 10 <sup>6</sup>  | 10 <sup>9</sup>  | -                    | -                     |
| 10 <sup>4</sup> | 13         | 10 <sup>4</sup> | $1,3 \times 10^{5}$ | 10 <sup>8</sup>  | 10 <sup>12</sup> | -                    | -                     |
| 10 <sup>5</sup> | 17         | 10 <sup>5</sup> | $1,7 \times 10^{6}$ | 10 <sup>10</sup> | 10 <sup>15</sup> | -                    | -                     |
| 10 <sup>6</sup> | 20         | 10 <sup>6</sup> | $2,0 \times 10^{7}$ | 10 <sup>12</sup> | 10 <sup>18</sup> | -                    | -                     |

Conjunto de entrada com tamanho n

|                 |            |                 | $\downarrow$        |                  |                  |                      |                       |
|-----------------|------------|-----------------|---------------------|------------------|------------------|----------------------|-----------------------|
| n               | $\log_2 n$ | n               | $n \log_2 n$        | $n^2$            | $n^3$            | 2 <sup>n</sup>       | n!                    |
| 10 <sup>1</sup> | 3,3        | 10 <sup>1</sup> | $3,3 \times 10^{1}$ | 10 <sup>2</sup>  | 10 <sup>3</sup>  | 10 <sup>3</sup>      | $3,6 \times 10^{6}$   |
| 10 <sup>2</sup> | 6,6        | 10 <sup>2</sup> | $6,6 \times 10^{2}$ | 10 <sup>4</sup>  | 10 <sup>6</sup>  | $1,3 \times 10^{30}$ | $9,3 \times 10^{157}$ |
| 10 <sup>3</sup> | 10         | 10 <sup>3</sup> | $1,0 \times 10^{4}$ | 10 <sup>6</sup>  | 10 <sup>9</sup>  | -                    | -                     |
| 10 <sup>4</sup> | 13         | 10 <sup>4</sup> | $1,3 \times 10^{5}$ | 10 <sup>8</sup>  | 10 <sup>12</sup> | -                    | -                     |
| 10 <sup>5</sup> | 17         | 10 <sup>5</sup> | $1,7 \times 10^{6}$ | 10 <sup>10</sup> | 10 <sup>15</sup> | -                    | -                     |
| 10 <sup>6</sup> | 20         | 10 <sup>6</sup> | $2,0 \times 10^{7}$ | 10 <sup>12</sup> | 10 <sup>18</sup> | -                    | -                     |

É possível ordenar com um número inferior de passos?

- É possível ordenar em tempo linear O(n), desde que o paradigma de ordenação utilizado não seja baseado em comparações dos números
  - Counting Sort
  - Radix Sort
  - Bucket Sort

- É possível ordenar em tempo linear O(n), desde que o paradigma de ordenação utilizado não seja baseado em comparações dos números
  - Counting Sort
  - Radix Sort
  - Bucket Sort
- A ordenação é feita pela contagem e indexação dos elementos, entretanto, esta classe de algoritmos precisa de um alfabeto reduzido para entrada, o que gera limitações para suas aplicações

- Etapas de execução do algoritmo
  - 1. Cálculo do histograma do vetor de entrada

- Etapas de execução do algoritmo
  - 1. Cálculo do histograma do vetor de entrada
  - 2. Determinação dos índices de cada símbolo

- Etapas de execução do algoritmo
  - 1. Cálculo do histograma do vetor de entrada
  - 2. Determinação dos índices de cada símbolo
  - 3. Ordenação do vetor de saída

- Etapas de execução do algoritmo
  - 1. Cálculo do histograma do vetor de entrada
  - 2. Determinação dos índices de cada símbolo
  - 3. Ordenação do vetor de saída
- Limitação: o alfabeto (número de símbolos) não pode ser grande, porque é necessário um vetor auxiliar para indexação do tamanho deste alfabeto

```
// Padrão de tipos por tamanho
  #include <stdint.h>
2
  // Procedimento counting sort
   void counting_sort(int32_t A[], int32_t B[], uint32_t
      n, uint32_t k) {
       // Vetor de contagem e indexação
5
       uint32_t C[k] = { 0 };
6
7
       // Histograma
8
       for(uint32_t i = 0; i < n; i++)
           C[A[i]] = C[A[i]] + 1:
9
10
      // Indexação
       for(i = 1; i < k; i++)
11
           C[i] = C[i] + C[i - 1];
12
13
       // Ordenação
       for (i = n - 1; i >= 0; i--) {
14
           B[C[A[i]] - 1] = A[i]:
15
           C[A[i]] = C[A[i]] - 1;
16
17
  }
18
```

```
// Padrão de tipos por tamanho
  #include <stdint.h>
2
  // Procedimento counting sort
   void counting_sort(int32_t A[], int32_t B[], uint32_t
      n, uint32_t k) {
       // Vetor de contagem e indexação
5
       uint32_t C[k] = { 0 };
6
7
       // Histograma
8
       for(uint32_t i = 0; i < n; i++)
           C[A[i]] = C[A[i]] + 1:
9
10
      // Indexação
       for(i = 1; i < k; i++)
11
           C[i] = C[i] + C[i - 1]:
12
13
       // Ordenação
       for (i = n - 1; i >= 0; i--) {
14
           B[C[A[i]] - 1] = A[i]:
15
           C[A[i]] = C[A[i]] - 1;
16
17
  }
18
```

- Cálculo do histograma do vetor de entrada A
  - O alfabeto está definido como um dígito da base decimal, com os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9







- Cálculo do histograma do vetor de entrada A
  - O alfabeto está definido como um dígito da base decimal, com os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9



- Cálculo do histograma do vetor de entrada A
  - O alfabeto está definido como um dígito da base decimal, com os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9



- Cálculo do histograma do vetor de entrada A
  - O alfabeto está definido como um dígito da base decimal, com os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9



- Cálculo do histograma do vetor de entrada A
  - O alfabeto está definido como um dígito da base decimal, com os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9



- Cálculo do histograma do vetor de entrada A
  - O alfabeto está definido como um dígito da base decimal, com os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9



- Cálculo do histograma do vetor de entrada A
  - O alfabeto está definido como um dígito da base decimal, com os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9



Cada posição do vetor C armazena a frequência de ocorrências dos símbolos

```
// Padrão de tipos por tamanho
  #include <stdint.h>
2
  // Procedimento counting sort
   void counting_sort(int32_t A[], int32_t B[], uint32_t
      n, uint32_t k) {
       // Vetor de contagem e indexação
5
       uint32_t C[k] = { 0 };
6
7
       // Histograma
8
       for(uint32_t i = 0; i < n; i++)
           C[A[i]] = C[A[i]] + 1:
9
10
      // Indexação
       for(i = 1; i < k; i++)
11
           C[i] = C[i] + C[i - 1];
12
13
       // Ordenação
       for (i = n - 1; i >= 0; i--) {
14
           B[C[A[i]] - 1] = A[i]:
15
           C[A[i]] = C[A[i]] - 1;
16
17
  }
18
```

```
// Padrão de tipos por tamanho
  #include <stdint.h>
2
  // Procedimento counting sort
   void counting_sort(int32_t A[], int32_t B[], uint32_t
      n, uint32_t k) {
       // Vetor de contagem e indexação
5
       uint32_t C[k] = { 0 };
6
7
       // Histograma
8
       for(uint32_t i = 0; i < n; i++)
           C[A[i]] = C[A[i]] + 1;
9
10
      // Indexação
       for(i = 1; i < k; i++)
11
           C[i] = C[i] + C[i - 1];
12
13
       // Ordenação
       for (i = n - 1; i >= 0; i--) {
14
           B[C[A[i]] - 1] = A[i]:
15
           C[A[i]] = C[A[i]] - 1;
16
17
  }
18
```





















Indexação do histograma do vetor de contagem C



Cada posição do vetor C armazena o índice dos símbolos para ordenação

```
// Padrão de tipos por tamanho
  #include <stdint.h>
2
  // Procedimento counting sort
   void counting_sort(int32_t A[], int32_t B[], uint32_t
      n, uint32_t k) {
       // Vetor de contagem e indexação
5
       uint32_t C[k] = { 0 };
6
7
       // Histograma
8
       for(uint32_t i = 0; i < n; i++)
           C[A[i]] = C[A[i]] + 1:
9
10
      // Indexação
       for(i = 1; i < k; i++)
11
           C[i] = C[i] + C[i - 1];
12
13
       // Ordenação
       for (i = n - 1; i >= 0; i--) {
14
           B[C[A[i]] - 1] = A[i]:
15
           C[A[i]] = C[A[i]] - 1;
16
17
  }
18
```

```
// Padrão de tipos por tamanho
  #include <stdint.h>
2
  // Procedimento counting sort
   void counting_sort(int32_t A[], int32_t B[], uint32_t
      n, uint32_t k) {
       // Vetor de contagem e indexação
5
       uint32_t C[k] = { 0 };
6
7
       // Histograma
8
       for(uint32_t i = 0; i < n; i++)
           C[A[i]] = C[A[i]] + 1:
9
10
      // Indexação
       for(i = 1; i < k; i++)
11
           C[i] = C[i] + C[i - 1];
12
13
      // Ordenação
       for (i = n - 1; i >= 0; i--) {
14
           B[C[A[i]] - 1] = A[i]:
15
           C[A[i]] = C[A[i]] - 1;
16
       }
17
   }
18
```















- Características do Counting sort
  - ✓ Possui complexidade de espaço e de tempo  $\Theta(n+k)$

- Características do Counting sort
  - ✓ Possui complexidade de espaço e de tempo  $\Theta(n+k)$
  - √ É estável, preservando a ordem relativa dos elementos

- Características do Counting sort
  - ✓ Possui complexidade de espaço e de tempo  $\Theta(n+k)$
  - √ É estável, preservando a ordem relativa dos elementos
  - XO tamanho do alfabeto deve ser conhecido e limitado

- Características do Counting sort
  - ✓ Possui complexidade de espaço e de tempo  $\Theta(n+k)$
  - √ É estável, preservando a ordem relativa dos elementos
  - XO tamanho do alfabeto deve ser conhecido e limitado
  - X Não suporta símbolos negativos na entrada

Processo de ordenação dos dígitos



Espaço  $\Theta(n+k)$  e tempo  $\Theta(d \times (n+k))$ Departamento de Computação / UFS





















Espaço  $\Theta(n+k)$  e tempo  $\Omega(n)$  e  $O(n^2)$ 

# Exemplo

- Considerando o algoritmo de ordenação Radix sort, implementado com ordenação linear pelo Counting sort, ordene o vetor 99, 342, 102, 33, 298 e 7
  - Utilize o critério decrescente de ordenação
  - Execute passo a passo cada etapa dos algoritmos