Example 5

As shown in the figure, $\angle ABD = \angle ACD = 60^{\circ}. \angle ADB = 90^{\circ} - \frac{1}{2} \angle BDC$. Show that triangle ABC is an isosceles triangle.

Solution: Method 1:

Since $\angle ABD = \angle ACD = 60^{\circ}$, points A, B, C, and D are concyclic. Therefore,

$$\begin{split} \angle ADB = \angle ACB = \alpha; \angle DBA = \angle DAC = \beta; \angle BAC = \angle BDC = \gamma. \\ \beta + \gamma + 60^{\circ} + \alpha = 180^{\circ} \\ \text{We know that } \angle ADB = 90^{\circ} - \frac{1}{2} \angle BDC \text{ or } \\ \alpha = 90^{\circ} - \frac{1}{2}\gamma \Rightarrow \quad 2\alpha + \gamma = 180^{\circ} \end{split}$$

(1) $+\alpha : \beta + \gamma + 60^{\circ} + 2\alpha = 180^{\circ} + \alpha$

Substituting (2) into (3): $\beta+60^\circ+180^\circ=180^\circ+\alpha \Rightarrow \beta+60^\circ=\alpha$. That is $\angle ABC=\angle ACB$, triangle ABC is an isosceles triangle. Method 2:

We know that
$$\angle ADB = 90^{\circ} - \frac{1}{2} \angle BDC$$
 or $2\angle ADB = 180^{\circ} - \angle BDC$ or $\angle ADB + \angle ADB + \angle BDC = 180^{\circ}$ But $\angle CDE + \angle ADB + \angle BDC = 180^{\circ}$ So $\angle ADB = \angle EDC$ That is $\angle ABC = \angle ACB$, triangle ABC is an isosceles triangle