EXERCISE 3

- 1. Let \mathcal{I} be an interval in \mathbb{R} and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of real valued functions on \mathcal{I} and f a real valued function on \mathcal{I} . Are the following statements TRUE or FALSE?
 - (a) $f_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f \Longrightarrow f_n \stackrel{uc(\mathcal{I})}{\longrightarrow} f$
 - (b) $f_n \stackrel{uc(\mathcal{I})}{\longrightarrow} f \Longrightarrow f_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f$
 - (c) If f_n are all continuous on \mathcal{I} and $f_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f$ and f is not continuous on \mathcal{I} then f_n does not converge uniformly to f on \mathcal{I}
 - (d) If f_n are all continuous on \mathcal{I} and $f_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f$ and f is continuous on \mathcal{I} then f_n must converge uniformly to f on \mathcal{I}
 - (e) $f_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f$ and f_n are all differentiable on \mathcal{I} \Longrightarrow f is differentiable and $f'_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f'$
 - (f) $f_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f$ and f_n and f are all differentiable on \mathcal{I} $\Longrightarrow f'_n \stackrel{pw(\mathcal{I})}{\longrightarrow} f'$
 - (g) $f_n \stackrel{pw}{\longrightarrow} f$ \Longrightarrow $\lim_{n \to \infty} \inf f_n(x) = \limsup_{n \to \infty} f_n(x) = f(x) \text{ for every } x \in \mathcal{I}$
 - (h) $\mathcal{I} = [-10, 10]$ and $f_n \stackrel{uc}{\longrightarrow} f$ \Longrightarrow $\int_{-10}^{10} f_n(x) dx \longrightarrow \int_{-10}^{10} f(x) dx$
 - (i) $\mathcal{I} = (-\infty, \infty)$ and $f_n \stackrel{uc(\mathcal{I})}{\longrightarrow} f$ \Longrightarrow $\int_{-\infty}^{\infty} f_n(x) dx \longrightarrow \int_{-\infty}^{\infty} f(x) dx$
- 2. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of real valued functions defined on the interval $\mathcal{I}=[0,1)$ as $f_n(x)=n^2x^n$. Does the sequence converge pointwise on \mathcal{I} to the function f(x)=0 for all $x\in\mathcal{I}$

- 3. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of real valued functions defined on the interval $\mathcal{I}=[0,1]$ as $f_n(x)=nx(1-x)^n$. Does the sequence converge pointwise on \mathcal{I} to the function f(x)=0 for all $x\in\mathcal{I}$
- 4. Show that the following sequences converge to the zero function uniformly:
 - (a) $f_n(x): \mathbb{R} \longrightarrow \mathbb{R}$ defined as

$$f_n(x) = \frac{\sin(nx)}{n+1}$$

(b) $f_n(x): \mathbb{R} \longrightarrow \mathbb{R}$ defined as

$$f_n(x) = \frac{1 + \cos(n^2 x)}{n^2 + 1}$$

- 5. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of real valued functions defined on the interval $\mathcal{I} = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ as $f_n(x) = \cos^n(x)$ Answer the following:
 - (a) Show that the sequence converges pointwise on \mathcal{I} and find the pointwise limit function f(x)
 - (b) Are the functions $f_n(x)$ continuous on \mathcal{I} ?
 - (c) Is the limit function f(x) continuous on \mathcal{I} ?
 - (d) Does the sequence converge to f uniformly on $\mathcal I$
- 6. Let $f_n:[0,1]\longrightarrow \mathbb{R}$ and $f:[0,1]\longrightarrow \mathbb{R}$ be defined as follows:

$$f_n(x) = \left(x - \frac{1}{n}\right)^2$$
 and $f(x) = x^2$

Show that f_n converges uniformly to f

7. Let $f_n:[0,1] \longrightarrow \mathbb{R}$ and $f:[0,1] \longrightarrow \mathbb{R}$ be defined as follows:

$$f_n(x) = exp\left(-\frac{x^2}{n}\right)$$

 $f(x) = 1 \text{ for all } x \in [0, 1]$

- (a) Show that f_n converges pointwise to f on [0,1]
- (b) Show that for every positive integer N we can find an $x_N \in [0,1]$ such that

$$|f_{\scriptscriptstyle N}(x_{\scriptscriptstyle N}) - f(x_{\scriptscriptstyle N})| \ge \frac{1}{2}$$

- (c) Does f_n converge to f uniformly on [0,1]?
- 8. Let $\mathcal{I} = (0, \infty)$ and the sequence of real valued functions $\{f_n\}_{n \in \mathbb{N}}$ on \mathcal{I} , be defined as

$$f_n(x) = \begin{cases} n^3 & \text{for } 0 \le x \le \frac{1}{n} \\ 0 & \text{for } x > \frac{1}{n} \end{cases}$$

Answer the following: Does the sequence converge pointwise on \mathcal{I} to the function f(x) = 0 for all $x \in \mathcal{I}$

9. Let $f_n:[0,\infty)\longrightarrow\mathbb{R}$ be defined as follows:

$$f_n(x) = \frac{x^2}{1 + n^4 x^3}$$

Discuss the following convergences:

- (a) Pointwise Converge of the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$
- (b) Uniform Converge of the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$
- (c) Pointwise Converge of the sequence of functions $\{f'_n\}_{n\in\mathbb{N}}$
- (d) Uniform Converge of the sequence of functions $\{f'_n\}_{n\in\mathbb{N}}$
- 10. Let $f_n:[0,1]\longrightarrow \mathbb{R}$ and $f:[0,1]\longrightarrow \mathbb{R}$ be defined as follows:

$$f_n(x) = \frac{1}{1+nx}$$

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } 0 < x \le 1 \end{cases}$$

Answer the following:

(a) Show that f_n converges pointwise to f on [0,1]

(b) Show that for every positive integer N we can find an $x_{_{N}} \in [0,1]$ such that

$$|f_{\scriptscriptstyle N}(x_{\scriptscriptstyle N}) - f(x_{\scriptscriptstyle N})| \ge \frac{1}{2}$$

- (c) Does f_n converge to f uniformly on [0,1]?
- (d) Does f_n converge to f in $L^1[0,1]$?
- (e) Does f_n converge to f in $L^2[0,1]$?
- (f) If p > 1 does f_n converge to f in $L^p[0,1]$?
- 11. Let $\mathcal{I} = [0, 1]$ and consider the sequence of real valued functions $\{f_n\}_{n \in \mathbb{N}}$, defined as

$$f_n(x) = x^n (0.0.1)$$

Let f(x) be the function defined as

$$f(x) = \begin{cases} 0 & \text{for } 0 \le x < 1 \\ 1 & \text{for } x = 1 \end{cases}$$

Answer the following:

- (a) Does $f_n \stackrel{pw(A)}{\longrightarrow} f$?
- (b) Does $f_n \stackrel{u(A)}{\longrightarrow} f$?
- (c) Does $f_n \stackrel{L^p(\mathcal{A})}{\longrightarrow} f$ for $1 \le p < \infty$
- 12. Let $\mathcal{I} = [0, \infty)$ and consider the sequence of real valued functions $\{f_n\}_{n \in \mathbb{N}}$, defined on \mathcal{I} as

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{for } 0 \le x < n \\ 0 & \text{for } x \ge n \end{cases}$$

- (a) Sketch the graph of $f_n(x)$
- (b) Discuss the pointwise and uniform convergence of f_n on \mathcal{I}
- (c) Discuss the L^1 , L^2 and L^p (p > 1) convergence of f_n on \mathcal{I}

13. Let $\mathcal{I} = (-\infty, \infty)$ and consider the sequence of real valued functions $\{f_n\}_{n\in\mathbb{N}}$, defined on \mathcal{I} as

$$f_n(x) = \begin{cases} n(x + \frac{1}{n}) & \text{for } -\frac{1}{n} \le x < 0 \\ -n(x - \frac{1}{n}) & \text{for } 0 \le x \le \frac{1}{n} \end{cases}$$

$$0 \quad \text{if } |x| > \frac{1}{n}$$

Answer the following:

- (a) Sketch the graph of $f_n(x)$
- (b) Discuss the pointwise, uniform, $L^1,\ L^2$ and $L^p\ (p>1)$ convergences of f_n
- 14. Let $\mathcal{I} = [0, \infty)$ and consider the sequence of real valued functions $\{f_n\}_{n \in \mathbb{N}}$, defined on \mathcal{I} as

$$f_n(x) = \begin{cases} -\frac{1}{n^2}(x-n) & \text{for } 0 \le x \le n \\ 0 & \text{for } x \ge n \end{cases}$$

- (a) Sketch the graph of $f_n(x)$
- (b) Discuss the pointwise, uniform, L^1 , L^2 and L^p (p>1) convergences of f_n
- 15. Let $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ be two sequences of real valued functions defined on an interval \mathcal{I} and converging uniformly on \mathcal{I} respectively to the functions f and g. Define the sequence $\{h_n\}_{n\in\mathbb{N}}$ on \mathcal{I} as $h_n(x) = f_n(x) + g_n(x)$. Show that h_n converges uniformly on \mathcal{I} to the function h(x) = f(x) + g(x)
- 16. Let $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ be two sequences of real valued functions defined on an \mathbb{R} as

$$f_n(x) = x$$
 for all $x \in \mathbb{R}$ and for all n
 $g_n(x) = \frac{1}{n}$ for all $x \in \mathbb{R}$ and for all n

Let f(x) and g(x) be defined as

$$f(x) = x \text{ for all } x \in \mathbb{R}$$

 $g(x) = \frac{1}{n} \text{ for all } x \in \mathbb{R}$

- (a) Does f_n converge uniformly to f on \mathbb{R} ?
- (b) Does g_n converge uniformly to g on \mathbb{R} ?
- (c) Does $f_n + g_n$ converge uniformly to f + g on \mathbb{R} ?
- (d) Does $f_n \times g_n$ converge uniformly to $f \times g$ on \mathbb{R} ?