Lineare Algebra S2

Raphael Nambiar

Version: 12. Juni 2022

Vektorgeometrie

Begriffe

Kollinear: Es existiert eine Gerade q, zu der beide Vektoren parallel

Komplanar: Existiert eine Ebene e, zu der alle drei Vektoren parallel.

Ortsvektor: Beginnt vim Ursprung. Schreibweise: $\vec{r}(P)$ **Nullvektor:** Vektor mit Betrag 0,keine Richtung.: $\vec{0}$

Betrag

$$\mid \vec{a} \mid = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{x^2 + y^2 + z^2}$$

Skalarprodukt

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi)$$
$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \to \arccos(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

Orthogonal

Wenn zwei Vektoren senkrecht zueinander sind.

$$\vec{a} \cdot \vec{b} = 0$$

Orthogonale Projektion

Projektion des Vektores \vec{b} auf den Vektor \vec{a} .

$$\vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$

$$|\vec{b}_a| = \frac{|\vec{a}| \cdot |\vec{b}|}{|\vec{a}|}$$

$$|\vec{b}_a| = |\vec{a}| \cdot \cos(\varphi)$$

Zwischenwinkel

$$\varphi = \cos^{-1}(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

Einheitsvektor

$$ec{e}_a=rac{1}{|ec{a}|}\cdotec{a}$$
 ; $|ec{e}_a|=1$

Vektorprodukt / Kreuzprodukt

$$\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix} = \begin{pmatrix}
a_2b_3 - a_3b_2 \\
a_3b_1 - a_1b_3 \\
a_1b_2 - a_2b_1
\end{pmatrix}$$

$$\begin{pmatrix}
a_1 \\
b_1 \\
a_2
\end{pmatrix}$$

$$\begin{pmatrix}
b_1 \\
b_2 \\
a_3b_2 - a_2b_1
\end{pmatrix}$$

$$\begin{array}{ll} \mid \vec{a} \times \vec{b} \mid = \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cdot \cos(\alpha) & g : \vec{r}(P) + \\ \vec{a} \times \vec{b} \text{ ist orthogonal zu } \vec{a} \text{ und } & \text{P: Aufpunkt} \\ \text{zu } \vec{b} & \vec{a} = \overrightarrow{PQ}; = \\ \end{array}$$

Kreuzprodukt in R²

Seien a und b zwei Vektoren, dann gilt für das Kreuzprodukt in R^2 :

$$\begin{split} \mathbf{a} &= \begin{bmatrix} a_x \\ a_y \end{bmatrix} \quad \text{ und } \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \end{bmatrix} \\ \vec{\mathbf{a}} \times \vec{\mathbf{b}} &= \det \begin{pmatrix} \vec{\mathbf{a}} \, \vec{\mathbf{b}} \end{pmatrix} = \begin{vmatrix} \mathbf{a}_x & \mathbf{b}_x \\ \mathbf{a}_y & \mathbf{b}_y \end{vmatrix} = \mathbf{a}_x \cdot \mathbf{b}_y - \mathbf{b}_x \cdot \mathbf{a}_y \end{split}$$

Fläche / Parallelogramm

$$\mid \vec{a} \times \vec{b} \mid = \mathsf{A}$$
 $\mathsf{Dreieck} = \frac{1}{2} \mathsf{A}$

Volumen / Spatprodukt

Das Spatprodukt der drei Vektoren $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$

- berechnest du mit
 - $(\vec{a} \times \vec{b}) \cdot \vec{c}$ oder mit
- der Determinante $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ Volumen: -> \mid Betrag nehmen \mid

Geraden

Parameterdarstellung

$$g: \vec{r}(P) + \lambda \cdot \vec{a}$$

 $\vec{a} = \overrightarrow{PQ}$; = Richtungsvektor

Koordinatendarstellung

$$g: ax + by + c = 0$$

Koordinatendarstellung zu Parameterdarstellung

Zwei Punkte auf q bestimmen: 2 beliebige x Koordinaten wählen und in q einsetzen. Danach jeweils q auslesen. Dies ergibt zwei Punkte P,Q. In Parameterdarstellung bringen.

Parameterdarstellung zu Koordinatendarstellung

Gerade
$$g: \begin{pmatrix} 7\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -2\\-4 \end{pmatrix}$$

Gleichungssystem aufstellen und Lösen:

$$x = 7 - 2\lambda$$
$$y = 1 - 4\lambda$$

In Koordinatendarstellung bringen: -2x + y + 13 = 0

Abstand Punkt zu Geraden

Gerade g:
$$\begin{pmatrix} 1\\13\\-5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3\\5\\-4 \end{pmatrix}$$

Punkt A:
$$(3, -1, 4)$$

$$\overrightarrow{PA} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 13 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ -14 \\ 9 \end{pmatrix}$$

 $\vec{a} \Rightarrow \text{aus der Parameterdarstellung}$

Ebene

Normalenvektor der Ebene (orthogonal zur Ebene)

Auf der Ebene E senkrecht stehnder Vektor \vec{n} .

$$\vec{n} = \vec{a} \times \vec{b}$$

Parameterdarstellung

$$E: \vec{r}(P) + \lambda \cdot \vec{a} + \mu \cdot \vec{b}$$

P: Aufpunkt

$$\vec{a} = \overrightarrow{PQ}$$
; $\vec{b} = \overrightarrow{PR} = \text{Richtungsvektoren}$

Koordinatendarstellung

$$E: ax + by + cz + d = 0$$

Parameterdarstellung zu Koordinatendarstellung

$$E: \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$
$$\vec{n} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = \begin{pmatrix} -14\\6\\-4 \end{pmatrix}$$

- (2) Koordinatendarstellung E: -14x + 6y 4z + d = 0
- (3) Aufpunkt einsetzen: $\binom{2}{4} \Rightarrow E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0$
- (4) d ausrechnen: $E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0 \Rightarrow d = 8$

$$(5) E: -14x + 6y - 4z + 8 = 0$$

$$\Rightarrow \frac{-14x + 6y - 4z + 8 = 0}{2} \Rightarrow E: -7x + 3y - 2z + 4 = 0$$

Koordinatendarstellung zu Parameterdarstellung

Wir bestimmen drei beliebige Punkte auf E, indem wir die x- und y-Koordinaten frei wählen und die zugehörigen z-Koordinaten aus der Koordinatendarstellung von E berechnen. Aus diesen drei Punkten können wir dann eine Parameterdarstellung von E gewinnen.

$$E: 2x + 7y - 4z + 1 = 0$$

 $x = 0, y = 0$ $-4z + 1 = 0 \Rightarrow z = 1$

$$x = 0, y = 0$$
 $-4z + 1 = 0 \Rightarrow z = 1/4 \Rightarrow P = (0; 0; 1/4)$
 $x = 1, y = 0$ $2 - 4z + 1 = 0 \Rightarrow z = 3/4 \Rightarrow Q = (1; 0; 3/4)$

$$x = 1, y = 0$$
 $2 - 4z + 1 = 0 \Rightarrow z = 3/4 \Rightarrow Q = (1;0;3)$
 $x = 0, y = 1$ $7 - 4z + 1 = 0 \Rightarrow z = 2 \Rightarrow R = (0;1;2)$

Eine mögliche Parameterdarstellung der Ebene
$$E$$
: $\begin{pmatrix} 0 \\ 0 \\ 1/4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ \frac{1}{2} \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ \frac{7}{4} \end{pmatrix}$

Abstand Punkt zu Ebene

Abstand
$$l=rac{|ax_A+bx_A+cz_A+d|}{|ec{n}|}$$

Ebene E: 3x - 6y - 2z + 67 = 0

Punkt A = (3, -4, 1)

Punkt
$$A = (3, -4, 1)$$
(1) \vec{n} bestimmen: $\begin{pmatrix} 3 \\ -6 \\ -2 \end{pmatrix} \sqrt{3^2 + -6^2 + -2^2} = 7$
(2) $I = (3 \cdot 3) - (6 \cdot (-4)) - (2 \cdot 1) = 14$

(2)
$$l = \frac{(3\cdot3) - (6\cdot(-4)) - (2\cdot1)}{7} = 14$$

normierte Koordinatendarstellung der Ebene

$$E: 2x - 6y + 3z + 4 = 0$$

$$\vec{n} = \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} \qquad |\vec{n}| = \sqrt{2^2 + (-6)^2 + 3^2} = \sqrt{49} =$$

normierte Koordinatendarstellung der Ebene

E:
$$\frac{2}{7} \cdot x - \frac{6}{7} \cdot y + \frac{3}{7} \cdot z + \frac{4}{7} = 0$$

Lineare Gleichungssysteme

Rang

Matrix muss in Zeilenstufenform sein.

rq(A) = Gesamtanzahl Zeilen - Anzahl Nullzeilen .

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \underset{\text{rang}(A|b) = 2}{\operatorname{rang}(A|b) = 2}$$

Lösbarkeit von LGS

n = Anzahl Spalten(Variablen)

Das LGS $A \cdot \vec{x} = \vec{c}$ ist genau dann lösbar, wenn $rg(A) = rg(A|\vec{c})$. Es hat genau eine Lösung, falls **zusätzlich** gilt: rg(A) = n. Es hat unendlich viele Lösungen, falls **zusätzlich** gilt: rg(A) < n.

Freie Variable

Lösungsmenge: λ_3 = kann beliebig gewählt werden, ∞-viele Lösungen.

Matrizen

Begriffe

Quadratische Matrix: gleich viele Zeilen und Spalten

Hauptdiagonale: Die Diagonale von links oben nach rechts unten

Untere- und obere Dreiecksmatrix

Beispiel	(a) (1. L. J.) O (2. S.) O (3. S.)	(b) (1
Beschreibung	unles des Happlige. alles Nyl.	den des Haptdig. alles Null.
Bezeichnung	Ober Dreadhondrix U=Upper	Unlose Dejectionals L=Lower

Symmetrische Matrix: symmetrisch bzgl. Hauptdiagonale

$$\begin{pmatrix} 1 & 5 & 6 \\ 5 & 2 & 3 \\ 6 & 3 & 1 \end{pmatrix}$$

Multiplikation / Rechenregeln

$$A = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$

$$\begin{vmatrix} 2 & -3 \\ 2 & 1 \end{vmatrix}$$

$$A, B, C \in \mathbb{R}^{m \times n} \land \lambda, \mu \in \mathbb{R}$$

$$A + (B + C) = (A + B) + C$$

$$A + B = B + A$$

$$A + 0 = A$$

$$A - A = 0 \text{ (Null matrix)}$$

Transponieren

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 5 \end{pmatrix} \rightarrow A^T = \begin{pmatrix} 2 & 1 \\ 3 & 4 \\ 0 & 5 \end{pmatrix}$$

Rechenregeln:

$$(A^T)^T = A$$
$$(A+B)^T = A^T + B^T$$
$$(A \cdot B)^T = B^T \cdot A^T$$

Gilt $A = A^T$, so heißt die Matrix A symmetrisch.

Gilt $A = -A^T$, so heißt die Matrix A antisymmetrisch.

Inverse

Matrix muss quadratisch sein: $n \times n \rightarrow 2 \times 2, 3 \times 3$

2x2

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Die 2×2 -Matrix hat genau dann ein Invese wenn $ad - bc \neq 0$

3x3 und grösser

Determinante

2x2

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$$

3x3 Regel von Sarrus

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b.$$

Laplacescher Entwicklungssatz (>3x3)

Entwickeln nach derjenigen Zeile oder Spalte, in der die meisten Nullen stehen (hier gelb)

Wichtig: häufig sind die entwickelten identisch! → Aufwand sparen! matrix multipliziert:

$$A = \begin{bmatrix} \underline{a_{00}} & \underline{a_{01}} & \underline{a_{02}} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$

Entwicklen nach 1er

$$\det(A) = \underbrace{+a_{00}} \cdot \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \underbrace{a_{01}} \cdot \det \begin{bmatrix} a_{10} & a_{12} \\ a_{20} & a_{22} \end{bmatrix} + \underbrace{a_{02}} \cdot \det \begin{bmatrix} a_{10} & a_{11} \\ a_{20} & a_{21} \end{bmatrix}$$

$$= +a_{00}(a_{11}a_{22} - a_{12}a_{21}) - a_{01}(a_{10}a_{22} - a_{12}a_{20}) + a_{02}(a_{10}a_{21} - a_{11}a_{20})$$

$$= +a_{00}a_{11}a_{22} + a_{01}a_{12}a_{20} + a_{02}a_{10}a_{21} - a_{00}a_{12}a_{21} - a_{01}a_{10}a_{22} - a_{02}a_{11}a_{20}$$

det **Dreiecksmatrix** = Produkt der Hauptdiagonale

Rechenregeln

- (1) Für die Einheitsmatrix E gilt: det(E) = 1
- (2) Für jede $n \times n$ -Dreiecksmatrix U gilt: $\det(U) = u_{11} \cdot u_{22} \cdot ... \cdot u_{nn}$
- (3) Für jede quadratische Matrix A gilt: $det(A^T) = det(A)$
- (4) Für alle $n \times n$ -Matrizen A und B gilt: $\det(A \cdot B) = \det(A) \cdot \det(B)$
- (5) Für jede invertierbare Matrix A gilt: $\det(A^{-1}) = \frac{1}{\det(A)}$
- (6) Für jede $n \times n$ -Matrix A und jedes $\lambda \in \mathbb{R}$ gilt: $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

$$2 \times 2 \rightarrow det(5 \cdot A) = 5^2 \cdot det(A)$$

$$3 \times 3 \rightarrow det(5 \cdot A) = 5^3 \cdot det(A)$$

Geometrische Interpretation der Determinante

2x2

Fläche von \vec{a} und \vec{b} = Betrag von $det \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix}^{\frac{5}{a}}$

3x3

Volumen von \vec{a} , \vec{b} und \vec{c} = Betrag von $det \begin{vmatrix} a2 & b2 & c2 \end{vmatrix}$

Matrizengleichungen

Grundgleichung	Lösung
$A \cdot X = B$	$X = A^{-1} \cdot B$
$X \cdot A = B$	$X = B \cdot A^{-1}$
$A \cdot X \cdot B = C$	$X = A^{-1} \cdot C \cdot B^{-1}$

Lösung einer Matrizengleichung:

(1) Wenn man eine unbekannte Matrix X ausklammert, muss X nach dem Ausklammern auf der Seite stehen, wo sie vorher

$$A \cdot X + B \cdot X = (A + B) \cdot X$$

(2) Die Zahlen beim Ausklammern werden mit einer Einheits-

$$A \cdot X + 4X = (A + 4E) \cdot X$$

(3) Man kann nicht durch eine Matrix dividieren, man kann aber mit einer inversen Matrix multiplizieren:

$$A\cdot X=B\to X=A^{-1}\cdot B$$

$$X \cdot A = B \rightarrow X = B \cdot A^{-1}$$

$$A\cdot X + 4\cdot X = C \to (A+4E)\cdot X = C \to X = (A+4E)^{-1}\cdot C$$

Vektorräume

Unterräume

Eine Teilmenge U eines Vektorraums V heisst Unterraum von V wenn U selber auch ein Vektorraum ist.

Unterraumkriterien

- (1) Für beliebige Elemente $\vec{a}, \vec{b} \in U$ ist $\vec{a} + \vec{b} \in U$.
- (2) Für jeden Skalar $\lambda \in \mathbb{R}$ und jeden Vektor $\vec{a} \in U$ ist $\lambda \cdot \vec{a} \in U$.

Unterraumkriterien überprüfen

(a) Ja, Vektorraum
$$1. \begin{pmatrix} a_1 & 0 \\ 0 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 0 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 0 \\ 0 & b_1 + b_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

$$2. \lambda \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \lambda \cdot a & 0 \\ 0 & \lambda \cdot b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a_1 & 1 \\ 0 & \lambda \cdot b \end{pmatrix} \cdot \begin{pmatrix} a_1 + a_2 & 2 \\ 0 & \lambda \cdot b \end{pmatrix} = \begin{pmatrix} a_1 & 1 \\ 0 & \lambda \cdot b \end{pmatrix} \cdot \begin{pmatrix} a_1 + a_2 & 2 \\ 0 & \lambda \cdot b \end{pmatrix} \cdot \begin{pmatrix} a_1 & 1 \\ 0 & \lambda \cdot b \end{pmatrix}$$

$$\begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \text{ Nein } \rightarrow \begin{pmatrix} a_1 & 1 \\ 1 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 1 \\ 1 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 2 \\ 2 & b_1 + b_2 \end{pmatrix} \neq \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}.$$

Linearkombination

Stellen Sie
$$\vec{d} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$$
 als Linearkombination von $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ dar.

Gesucht sind
$$\lambda$$
, μ und ν mit $\lambda \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \nu \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$

Lineareabhängigkeit prüfen

Quadratische Matrix:

 $det(a) = 0 \Rightarrow$ Lineare Abhängigkeit

 $det(a) \neq 0 \Rightarrow$ Lineare Unabhängigkeit

Nicht Quadratische Matrix:

Vektoren nebeneinander in eine Matrix schreiben \to Gauss Nullzeile oder -Spalte in der Matrix \Longrightarrow Lineare Abhängigkeit der Vektoren

Keine Nullzeile oder-Spalte in der Matrix \Longrightarrow Lineare Unabhängigkeit der Vektoren.

Linearer Spann (Lineare Hülle)

Diese Menge besteht aus allen Vielfachen der Vektoren und deren Summen, ist also die Menge aller möglichen Linearkombinationen, die mit den gegebenen Vektoren gebildet werden können.

$$span(\vec{a}, \vec{b}) =$$
Ebene $span(\vec{a}, \vec{b}, \vec{c}) =$ eine Gerade mit Aufpunkt.

Dimension

Wir betrachten einen reellen Vektorraum V. Die Anzahl Vektoren, die eine Basis von V bilden, heisst Dimension von V.

Bezeichnung: dim(V)

Es gilt:

$$\begin{array}{ll} \text{Vektorraum } \{\vec{0}\} \rightarrow \dim \ 0 & \dim = rg(A) \\ \dim(span(\vec{a},\vec{b})) = 2 & \dim(R^{3\times 3}) = 2 \\ \dim(R^{2\times 2}) = 2 & \end{array}$$

Beispiel:

$$A:A^T=-A$$

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$$

$$\implies a = -a; \ d = -d; \ c = -b; \ b = -c$$

$$\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \rightarrow dim() = 1$$

Erzeugendensystem

Eine Menge von Vektoren heißt Erzeugendensystem, wenn man mit ihnen alle Vektoren eines Vektorraumes durch Linearkombination erzeugen kann.

Menge von Vektoren auf Erzeugendeneigenschaft überprüfen

ightarrow Bestimmung des Rangs rg(A)

Wenn $rg(A) < \text{Anzahl Zeilen}(m) \rightarrow \text{kein Erzeugendensystem}$

Basis eines Vektorraums

Eine Basis eines Vektorraumes ist ein "minimales Erzeugendensystem"des Vektorraumes. Die Vektoren einer Basis nennt man Basisvektoren.

Überprüfung, ob eine Menge von Vektoren eine Basis ist Quadratische Matrix :— $det(A) \neq 0$

Generell:

- ① Die Anzahl der Vektoren stimmt überein mit der Dimension des Vektorraumes.
- (2) Die Vektoren sind linear unabhängig.

Wichtige Basen

Für R^n : Basis S heisst Standardbasis Für $P_n[x]$: Basus M heisst Monombasis

Umrechnung von Basis B zur Standardbasis S

$$\vec{a} = a_1 \cdot \vec{b_1} + a_2 \cdot \vec{b_2} + a_3 \cdot \vec{b_3} \dots + a_n \cdot \vec{b_n}$$

$$\vec{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \right\}$$
Beispiel:
$$(7, -3, -1) \text{ von } B \text{ nach } S$$

$$\vec{b} = \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix}_B = 7 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_S - 3 \cdot \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}_S + 1 \cdot \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}_S = \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}_S$$

Umrechnung von Standardbasis S zur Basis B

LGS bilden:

Lineare Abbildungen

Definition: Lineare Abbildung

Gegeben sind zwei reelle Vektorräume V und W (können auch identisch sein).

Eine Abbildung $f:V\to W$ heisst $lineare\ Abbildung$, wenn für alle Vektoren $\vec{x},\vec{y}\in V$ und jeden Skalar $\lambda\in\mathbb{R}$ gilt:

(1)
$$f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

(2)
$$f(\lambda \cdot \vec{x}) = \lambda \cdot f(\vec{y})$$

Der Vektor $\vec{x} \in W$, der herauskommt, wenn f auf einen Vektor \vec{x} angewendet, heisst **Bild** von \vec{x} .

Beispiele:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 2x_2 \\ x_2 \end{pmatrix}$$

(e)
$$f: \mathbb{R}^3 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - x_2 \\ -3x_1 + 5x_3 \end{pmatrix}$$

(a) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{0}{0}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{0}{0} + \binom{0}{0} = \binom{0}{0}$ o.k

Bed 2:
$$f\left(\lambda \cdot {x_1 \choose x_2}\right) = f\left({\lambda \cdot x_1 \choose \lambda \cdot x_2}\right) = {0 \choose 0}$$

 $\lambda \cdot f\left({x_1 \choose x_2}\right) = \lambda \cdot {0 \choose 0} = {0 \choose 0}$ o.k. $\Rightarrow f$ ist linea

(b) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2}{x_2 + y_2}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2}{x_2} + \binom{y_1 + 2}{y_2} = \binom{x_1 + y_1 + 4}{x_2 + y_2}$
nicht gleich $\Rightarrow f$ ist nicht linear

(c) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2(x_2 + y_2)}{x_2 + y_2}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2x_2}{x_2} + \binom{y_1 + 2y_2}{y_2} = \binom{x_1 + 2x_2 + y_1 + 2y_2}{x_2 + y_2}$
o.k.

Bed 2:
$$f\left(\lambda \cdot {x_1 \choose x_2}\right) = f\left({\lambda \cdot x_1 \choose \lambda \cdot x_2}\right) = {\lambda \cdot x_1 + 2\lambda \cdot x_2 \choose \lambda \cdot x_2}$$

 $\lambda \cdot f\left({x_1 \choose x_2}\right) = \lambda \cdot {x_1 + 2x_2 \choose x_2} = {\lambda \cdot (x_1 + 2x_2) \choose \lambda \cdot x_2}$ o.k. $\Rightarrow f$ ist linear.

Abbildungsmatrix

Bzgl. Standardbasis: Ablesen \rightarrow

1.

Gegeben ist die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

Bestimmen Sie die Abbildungsmatrix A von f.

2

Wir betrachten die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2: \binom{x_1}{x_2}_{\mathcal{S}} \mapsto \binom{x_1 - x_2}{x_1 + x_2}_{\mathcal{S}}$. Dabei ist \mathcal{S} die Standardbasis von \mathbb{R}^2 . Bestimmen Sie

- (a) die Abbildungsmatrix $_{\mathcal{S}}A_{\mathcal{S}}$ von f bezüglich \mathcal{S} .
- (b) die Abbildungsmatrix ${}_{\mathcal{B}}A_{\mathcal{B}}$ von f bezüglich der Basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{s}; \begin{pmatrix} -1 \\ 0 \end{pmatrix}_{s} \right\}$ von \mathbb{R}^{2} .

(a)
$$f\left(\begin{pmatrix}1\\0\\\delta\end{pmatrix}\right) = \begin{pmatrix}1\\1\\\delta\end{pmatrix}$$
, $f\left(\begin{pmatrix}0\\1\\\delta\end{pmatrix}\right) = \begin{pmatrix}-1\\1\\\delta\end{pmatrix}$, $_{\mathcal{S}}A_{\mathcal{S}} = \begin{pmatrix}1&-1\\1&1\end{pmatrix}_{\mathcal{S}}$

(b)
$$f(\vec{b}_1) = f\left(\binom{1}{1}_{\mathcal{S}}\right) = \binom{0}{2}_{\mathcal{S}} = 2 \cdot \left(\binom{1}{1}_{\mathcal{S}} + \binom{-1}{0}_{\mathcal{S}}\right) = 2\vec{b}_1 + 2\vec{b}_2 = \binom{2}{2}_{\mathcal{B}}$$

$$f(\vec{b}_2) = f\left(\binom{-1}{0}_{\mathcal{S}}\right) = \binom{-1}{-1}_{\mathcal{S}} = -\binom{1}{1}_{\mathcal{S}} = -\vec{b}_1 = \binom{-1}{0}_{\mathcal{B}}$$

$${}_{\mathcal{B}}A_{\mathcal{B}} = \binom{2}{2} \quad {}_{0}D_{\mathcal{B}}$$

cA_B Beispiel 5

Gegeben ist die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3: \binom{x_1}{x_2}_{\mathcal{S}_2} \mapsto \binom{-x_2}{2x_1}_{x_2-x_1}_{\mathcal{S}_2}$ sowie

die Basen
$$\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ 5 \end{pmatrix}_{\mathcal{S}_2} ; \begin{pmatrix} -1 \\ 3 \end{pmatrix}_{\mathcal{S}_2} \right\} \text{ von } \mathbb{R}^2 \text{ und } \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}_{\mathcal{S}_3} ; \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}_{\mathcal{S}_3} ; \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix}_{\mathcal{S}_3} \right\} \text{ von } \mathbb{R}^3$$

Bestimmen Sie die Abbildungsmatrix ${}_{\mathcal{C}}A_{\mathcal{B}}$ von f sowie das Bild $f(\vec{x})$ von $\vec{x} = \begin{pmatrix} -2\\1 \end{pmatrix}_{\mathcal{B}}$

$\widehat{\ \ }$ Vektoren aus $\mathcal B$ in f einsetzen

1.
$$f(b_1) = f(\frac{2}{5}) = \begin{pmatrix} -5\\4\\3 \end{pmatrix}_S$$
; 2. $f(b_2) = f(\frac{-1}{3}) = \begin{pmatrix} -3\\-2\\4 \end{pmatrix}_S$

(2) dargestellt über C (LGS mit C und (1))

$$cA_B = \begin{pmatrix} -11 & -11 \\ 14 & 15 \\ 6 & 8 \end{pmatrix}$$

(3) Bild von $f(\vec{x})$ von \vec{x} ...

$$f(b_1) = f\binom{-2}{1}_B = cA_B \cdot f(b_1) = f\binom{-2}{1}_B$$

$$\binom{-11}{14} \quad \binom{-11}{15}_{6} \cdot \binom{-2}{1}_{1} = \binom{11}{-13}_{-4}_{1}$$

Verknüpfung von linearen Abbildungen(Komposition)

 $f \rightarrow \mathsf{Abbildungsmatrix} \ \mathsf{A} \ ; \ g \rightarrow \mathsf{Abbildungsmatrix} \ \mathsf{B}$

$$g \circ f \to B \cdot A$$

$$f \circ g \to A \cdot B$$

Die Matrix der Abbildung, die zuerst ausgeführt wird, steht xechts

lineare Abbildungen in der Ebene

\rightarrow ! normieren nicht vergessen! \leftarrow

Streckung um λ_1 in x und λ_2 in y	orthogonale Projektion auf die Gerade g: ax + by = 0 mit $a^2 + b^2 = 1$	Spiegelung an der Geraden g: ax + by = 0 mit $a^2 + b^2 = 1$	$\begin{array}{c} \textbf{Rotation} \\ \textbf{um den Ursprung} \\ \textbf{um Winkel } \varphi \end{array}$	Scherung in x-Richtung mit Faktor m
		4		
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$	$\begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) - \sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$

linearen Abbildungen im Raum

→! normieren nicht vergessen! ←

Bei einer zentrischen Streckung mit dem Faktor λ wird jeder Basisvektor mit diesem Faktor multipliziert. Somit ist die entsprechende Abbildungsmatrix gegeben durch:

5.4.2 Orthogonale Projektionen und Spiegelunger

	1	. / 📞	
Orthogonale Projektion auf die x/y-Ebene	Spiegelung an der x/y -Ebene	Orthogonale Projektion auf die x-Achse	Spiegelung an der <i>x</i> -Achse
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Orthogonale Projektion auf die x/z -Ebene	Spiegelung an der x/z -Ebene	Orthogonale Projektion auf die y-Achse	Spiegelung an der <i>y</i> -Achse
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Orthogonale Projektion auf die y/z-Ebene	Spiegelung an der <i>y/z-</i> Ebene	Orthogonale Projektion auf die z-Achse	Spiegelung an der z-Achse
$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Übersicht

Streckung	Orthogonale Projektion	Spiegelung	Rotation	Scherung
 x-Richtung λ₁ y-Richtung λ₂ 	 Gerade g: ax + by = 0 Mit a² + b² = 1 	 Geraden g: ax + by = 0 Mit a² + b² = 1 	 Um den Ursprung Um den Winkel φ 	In x-Richtung Mit Faktor m
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$	$\begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix}$	$\begin{pmatrix} \cos\left(\varphi\right) & -\sin\left(\varphi\right) \\ \sin\left(\varphi\right) & \cos\left(\varphi\right) \end{pmatrix}$	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$
 x-Richtung 3 y-Richtung -1 	 Gerade g: 2x − y = 0 Normiert g: ²/_{√x}x − ¹/_{√x}y = 0 	• Geraden $g: x + 7y = 0$ • Normiert $g: \frac{1}{\sqrt{g}}x + \frac{7}{\sqrt{g}}y = 0$	 Um den Ursprung Winkel φ = 90° 	In x-Richtung Mit Faktor 3
$\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$	$\frac{1}{5} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$	$\frac{1}{50} \cdot \begin{pmatrix} 48 & -14 \\ -14 & -48 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$
Zentrische Streckung	Orthogonale Projektion auf die Ebene	Spiegelung an der Ebene	Rotation um den Winkel φ	
• Faktor λ $\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$	• $E: ax + by + cz = 0$ • $a^2 + b^2 + c^2 = 1$	• $E: ax + by + cz = 0$ • $a^2 + b^2 + c^2 = 1$	$x - Achse: \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$ $y - Achse: \begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$	
(0 0 a)	$P = \begin{pmatrix} -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix}$ $P = F - \vec{n} \cdot \vec{n}^T$	$S = \begin{pmatrix} -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix}$		
	$P = E - n \cdot n'$	$S = E - 2\vec{n} \cdot \vec{n}^T$	$z - Achse: \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \\ 0 \end{pmatrix}$	$ \begin{array}{ccc} -\sin(\varphi) & 0 \\ \cos(\varphi) & 0 \\ 0 & 1 \end{array} $
		n Richtung durch den normierten Vektor $ec{a}$ 1		
	$x - Achse:$ $\begin{pmatrix} \cos(\varphi) + a_1^2(1 - \cos(\varphi)) \\ a_1a_2(1 - \cos(\varphi)) + a_3\sin(\varphi) \\ a_1a_3(1 - \cos(\varphi)) - a_2\sin(\varphi) \end{pmatrix}$	(φ) $a_1a_2(1 - \cos(\varphi)) - a_3\sin(\varphi)$ $a_1a_2(\varphi)$ (φ) $\cos(\varphi) + a_2^2(1 - \cos(\varphi))$ $a_2a_3(1 - \cos(\varphi)) + a_1\sin(\varphi)$	$a_3(1-\cos(\varphi)) + a_2\sin(\varphi)$ $a_3(1-\cos(\varphi)) - a_1\sin(\varphi)$ $\cos(\varphi) + a_3^2(1-\cos(\varphi))$	
Rotation $\mathbb{R}^2 \to \mathbb{R}^2$ um φ	um den Ursprung Translatio	$\mathbf{n} \mathbb{R}^2 \to \mathbb{R}^2$ um den Vektor $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$	Rotation und Translation in	einem
$ \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \\ 0 \end{pmatrix} $	$-\sin \begin{pmatrix} \varphi \end{pmatrix} 0$ $\cos \begin{pmatrix} \varphi \end{pmatrix} 0$ 0 1	$\begin{pmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \end{pmatrix}$	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & \cos(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} $	$\begin{pmatrix} n & (\varphi) & a_1 \\ s & (\varphi) & a_2 \\ 0 & 1 \end{pmatrix}$

Rotationen

Aufgabe: Rotationen um die Koordinatenachsen

(1) Rotation um den Winkel φ um die z-Achse:

Blick von oben	$r_z(\vec{e}_1)$	$r_z(\vec{e}_2)$	$r_z(\vec{e}_3)$	Abbildungsmatrix
$\begin{array}{c c} & & & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$	$\begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \\ 0 \end{pmatrix}$	$\begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{pmatrix}$

(2) Rotation um den Winkel φ um die x-Achse:

Blick von vorne	$r_x(\vec{e}_1)$	$r_x(\vec{e}_2)$	$r_x(\vec{e}_3)$	Abbildungsmatrix
$\begin{array}{c c} & \uparrow z \\ \hline \vec{e_3} \\ \hline -1 & x & 0 \\ \hline \vec{e_2} & 1 \end{array}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ \cos(\varphi) \\ \sin(\varphi) \end{pmatrix}$	$\begin{pmatrix} 0 \\ -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$

(3) Rotation um den Winkel φ um die y-Achse:

Blick von rechts	$r_y(\vec{e}_1)$	$r_y(\vec{e}_2)$	$r_y(\vec{e}_3)$	Abbildungsmatrix
\vec{c}_1 \vec{c}_1 \vec{c}_1 \vec{c}_2 \vec{c}_3 \vec{c}_4 \vec{c}_4 \vec{c}_5 \vec{c}_7 \vec{c}_8	$\begin{pmatrix} \cos(\varphi) \\ 0 \\ -\sin(\varphi) \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} \sin(\varphi) \\ 0 \\ \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$

Rotation um eine allgemeine Achse durch den Ursprung

$$\begin{pmatrix} \cos(\varphi) + a_1^2(1 - \cos(\varphi)) & a_1 a_2(1 - \cos(\varphi)) - a_3 \sin(\varphi) & a_1 a_3(1 - \cos(\varphi)) + a_2 \sin(\varphi) \\ a_1 a_2(1 - \cos(\varphi)) + a_3 \sin(\varphi) & \cos(\varphi) + a_2^2(1 - \cos(\varphi)) & a_2 a_3(1 - \cos(\varphi)) - a_1 \sin(\varphi) \\ a_1 a_3(1 - \cos(\varphi)) - a_2 \sin(\varphi) & a_2 a_3(1 - \cos(\varphi)) + a_1 \sin(\varphi) & \cos(\varphi) + a_3^2(1 - \cos(\varphi)) \end{pmatrix}$$

Kern einer Matrix

Definition: Der Kern ker(A) einer $m \times n$ -Matrix A ist die Lösungsmenge des homogenen linearen Gleichungssystems:

$$A \cdot \vec{x} = \vec{0}$$

$$det(A) \neq 0 \rightarrow Kern(A) = \{0\}$$
 trivial

$$det(A) = 0 \rightarrow Kern(A)$$
 ist nicht trivial.

→ Abbildungsmatrix → Lösen durch LGS

Beispiel 1:

Bestimmen Sie Kern und Bild der linearen Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$, die durch die folgendermassen definiert ist:

(a)
$$f \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$
 $f \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \\ 3 \end{pmatrix}$ $f \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix}$
(b) $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + z \\ -6y + 12z \\ -2x + 2y - 2z \end{pmatrix}$

Abbildungsmatrix:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -6 & 12 \\ -2 & 2 & -2 \end{pmatrix}$$

Kern der Matrix (Lösung des LGS $A\vec{x} = \vec{0}$)

$$\begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 0 & -6 & 12 & | & 0 \\ -2 & 2 & -2 & | & 0 \end{pmatrix} : (-6) \leftarrow \begin{vmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{vmatrix}$$

$$\ker(A) = \left\{ \vec{x} \in \mathbb{R}^3 | \vec{x} = \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R} \right\}$$

$$x_1 = \lambda$$

$$x_2 = 2\lambda$$

$$x_3 = \lambda$$

Beispiel 2:

Es ist $g(\vec{x}) = A \cdot \vec{x}$ mit

$$A = \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ -2 & 4 & -1 & 0 \end{pmatrix}$$

Gauss-Elimination ergibt

$$\begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ -2 & 4 & -1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & -1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Also ist

$$\ker(g) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \cdot \lambda - \mu \\ \lambda \\ 2\mu \\ \mu \end{pmatrix} = \lambda \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \\ 1 \end{pmatrix} \lambda \in \mathbb{R}, \mu \in \mathbb{R} \right\}. \tag{11}$$

Das Bild ist die lineare Hülle der Spalten von A. Es ist

 $\dim(\operatorname{im}(g)) = \dim(\mathbb{R}^4) - \dim(\ker(g)) = 4 - 2 = 2$. (0.5P)

Die 1. und 3. Spalte von A sind linear unabhängig und bilden somit eine Basis des Bilds.

Bild einer Matrix

Wir multiplizieren eine Matrix A mit einem Vektor \vec{x} und erhalten den Lösungsvektor \vec{b} .

Das Bild einer Matrix gibt an, welche Menge an Vektoren als Lösungen auftreten können.

- \rightarrow Die linear unabhängigen Spalten einer Matrix heißen Bild der Matrix.
- 1 Matrix in obere Dreiecksmatrix umwandeln
- (2) Linear unabhängige Spalten mithilfe der Köpfe bestimmen
- (3) Lösung aufschreiben

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 4 \\ 3 & 5 & 6 \end{pmatrix} \textcircled{1} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\textcircled{2} \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 4 \\ 3 & 5 & 6 \end{pmatrix}$$

Da sich die Köpfe in der 1. und 2. Spalte befinden, sind diese beiden Spalten der ursprünglichen (!) Matrix die linear unabhängigen Spalten.

$$(3) \operatorname{img}(A) = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \right\rangle$$

Beispiel aus der Aufgabe von "Kern der Matrix"

Bild der Matrix (Linearkombination zweier linear unabhängige Spaltenvektoren von A):

$$\operatorname{im}(A) = \left\{ \vec{x} \in \mathbb{R}^3 | \vec{x} = \mu \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + \nu \begin{pmatrix} -1 \\ -6 \\ 2 \end{pmatrix}, \ \mu, \nu \in \mathbb{R} \right\}$$

Basiswechsel von S nach B

$$BT_S = (ST_B)^{-1}$$

$$SA_S = ST_B \cdot BA_B \cdot BT_S$$

$$BA_B = BT_S \cdot SA_S \cdot ST_B$$