# РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

Практикум по математической статистике

Лабораторная работа №5

Тема: «Дискриминантный анализ»

Вариант 10

Выполнил

Студент: Феоктистов Владислав

Группа: НПМбд-01-19б

№ c/б: 1032192939

Преподаватель: Матюшенко Сергей Иванович

**Цель работы:** приобрести практические навыки применения дискриминантного анализа для решения конкретных задач с использованием статистического пакета SPSS.

# Ход работы:

- 1. Изучил теоретические основы дискриминантного анализа, используя материалы учебного пособия.
- 2. Разобрал пример использования SPSS для реализации дискриминантного анализа.
- 3. Запустим программу SPSS и введем исходные данные по обучающей выборке, а также добавим данные, вероятности которых нужно классифицировать.

| A6 |    | - 1 ×               | $\checkmark f_x$ id      |                     |                    |               |                      |                          |
|----|----|---------------------|--------------------------|---------------------|--------------------|---------------|----------------------|--------------------------|
| 4  | А  | В                   | С                        | D                   | E                  | F             | G                    | Н                        |
|    | Nº | Брался ли<br>кредит | Среднемеся<br>чный доход | Период<br>погашения | Размер<br>кредита, | Состав семьи  | Возраст<br>заемщика, | Вероятность<br>погашения |
| 1  |    | ранее*)             | семьи                    | кредита,            |                    | заемщика,     | лет                  | кредита                  |
| 2  |    |                     | тыс. руб.                | чел.                |                    |               |                      |                          |
| 3  |    |                     | тыс. руб.                |                     |                    |               |                      |                          |
| 4  | 1  | 2                   | 3                        | 4                   | 5                  | 6             | 7                    | 8                        |
| 5  |    | Данн                | ые для построе           | ния дискримин       | антной функц       | ции (Обучающа | ая выборка)          | 39                       |
| 6  | id | X1                  | X2                       | Х3                  | X4                 | X5            | X6                   | X7                       |
| 7  | 1  | 1                   | 27,6                     | 7                   | 140                | 4             | 46                   | 2                        |
| 8  | 2  | 1                   | 25,6                     | 8                   | 190                | 5             | 37                   | 2                        |
| 9  | 3  | 1                   | 32,75                    | 8                   | 170                | 6             | 43                   | 2                        |
| 10 | 4  | 1                   | 36,5                     | 7                   | 290                | 4             | 52                   | 3                        |
| 11 | 5  | 1                   | 26,45                    | 6                   | 200                | 3             | 44                   | 2                        |
| 12 | 6  | 1                   | 38,75                    | 9                   | 390                | 5             | 49                   | 3                        |
| 13 | 7  | 1                   | 24,35                    | 6                   | 150                | 3             | 53                   | 2                        |
| 14 | 8  | 2                   | 23,3                     | 7                   | 380                | 3             | 43                   | 2                        |
| 15 | 9  | 1                   | 32,25                    | 6                   | 180                | 2             | 49                   | 3                        |
| 16 | 10 | 2                   | 19,6                     | 4                   | 240                | 3             | 29                   | 1                        |
| 17 | 11 | 1                   | 37,95                    | 7                   | 190                | 5             | 45                   | 3                        |
| 18 | 12 | 1                   | 37,15                    | 6                   | 220                | 4             | 42                   | 3                        |
| 19 | 13 | 2                   | 21,9                     | 4                   | 270                | 2             | 43                   | 2                        |
| 20 | 14 | 1                   | 25,9                     | 5                   | 140                | 3             | 57                   | 3                        |
| 21 | 15 | 2                   | 19,9                     | 3                   | 110                | 4             | 55                   | 1                        |
| 22 | 16 | 2                   | 17,3                     | 6                   | 160                | 3             | 59                   | 1                        |
| 23 | 17 | 2                   | 19,35                    | 4                   | 150                | 2             | 56                   | 1                        |
| 24 | 18 | 2                   | 22,9                     | 3                   | 170                | 2             | 38                   | 2                        |
| 25 | 19 | 2                   | 26,45                    | 6                   | 240                | 4             | 34                   | 1                        |
| 26 | 20 | 4                   | 35.3                     | 0                   | 100                | 5             | 46                   | 3                        |

Отсюда брались только 10, 11, 12 варианты

|    |          | , , I               |           |             | , ,        | 1         |           |
|----|----------|---------------------|-----------|-------------|------------|-----------|-----------|
|    | Nº       | Брался ли           | Среднеме- |             | Размер     | Состав    | Возраст   |
|    | варианта | кредит              | сячный    | погашения   | кредита,   | семьи     | заемщика, |
|    | _        | ранее <sup>*)</sup> | доход     | кредита,    |            | заемщика, | лет       |
| 1  |          |                     | семьи     |             |            | чел.      |           |
| 2  |          | (Да -1,             | заемщика, | лет         | тыс. руб.  |           |           |
| 3  |          | Нет-2)              | тыс. руб. |             |            |           |           |
| 4  | 1        | 2                   | 3         | 4           | 5          | 6         | 7         |
| 5  |          | •                   | Данные дл | пя выполнен | ия задания | •         |           |
| 6  | 1        | 1                   | 28,75     | 6           | 370        | 4         | 42        |
| 7  | 2        | 1                   | 18,62     | 4           | 230        | 5         | 35        |
| 8  | 3        | 1                   | 36,47     | 10          | 450        | 6         | 43        |
| 9  | 4        | 1                   | 47,37     | 3           | 260        | 4         | 52        |
| 10 | 5        | 1                   | 46,85     | 9           | 470        | 3         | 44        |
| 11 | 6        | 1                   | 49,50     | 6           | 450        | 5         | 49        |
| 12 | 7        | 1                   | 15,52     | 5           | 380        | 3         | 53        |
| 13 | 8        | 2                   | 29,67     | 2           | 370        | 3         | 43        |
| 14 | 9        | 1                   | 46,08     | 4           | 280        | 2         | 49        |
| 15 | 10       | 2                   | 19,99     | 5           | 270        | 3         | 28        |
| 16 | 11       | 1                   | 23,82     | 7           | 350        | 5         | 45        |
| 17 | 12       | 1                   | 16,64     | 3           | 320        | 4         | 42        |
| 18 | 13       | 2                   | 16,17     | 6           | 390        | 2         | 43        |
| 19 | 14       | 1                   | 20,91     | 4           | 220        | 3         | 56        |
| 20 | 15       | 2                   | 22,91     | 4           | 234        | 4         | 55        |
| 21 | 16       | 2                   | 15,62     | 5           | 450        | 3         | 55        |
| 22 | 17       | 2                   | 25.26     | 7           | 200        | 2         | 52        |



Далее проделаем дискриминантный анализ.





После нажатия на кнопку «ОК» получаем следующий вывод:

Общее количество наблюдений составило 33 единицы, в том числе 30 действительных и 3 подлежащих дискриминации:

Сводка результатов обработки наблюдений

| Невзвешенные | наблюдения                                                                                                                             | N  | Процент |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| Валидные     |                                                                                                                                        | 30 | 90,9    |
| Исключенные  | Пропущенные или<br>лежащие вне диапазона<br>коды группирующей<br>переменной                                                            | 3  | 9,1     |
|              | По крайней мере одна<br>пропущенная<br>дискриминантная<br>переменная                                                                   | 0  | 0,      |
|              | Оба групповых кода<br>пропущены или лежат<br>вне диапазона, и<br>отсутствует по крайней<br>мере одна<br>дискриминантная<br>переменная. | 0  | 0,      |
|              | Итого искл.                                                                                                                            | 3  | 9,1     |
| Всего набл.  |                                                                                                                                        | 33 | 100,0   |

По средним значениям групп заметно, что в 3й группе самый большой размер кредита (262,222), самый маленький – во 2ой (211,667); также в 3ей группе самый большой размер дохода (34,089), самый маленький – в 1й (20,444); и кроме того, 3я группа чаще всего брала кредит ранее (1,111 наиболее близкое к 1).

Групповые статистики

|             |         |         | -                  | Кол-во вали<br>цели | дных (искл.<br>іком) |  |
|-------------|---------|---------|--------------------|---------------------|----------------------|--|
| Вероятность |         | Среднее | Стд.<br>отклонение | Невзвешенн<br>ые    | Взвешенные           |  |
| Низкая      | История | 2,000   | ,0000              | 9                   | 9,000                |  |
|             | Доход   | 20,444  | 3,0025             | 9                   | 9,000                |  |
|             | Срок    | 5,444   | 2,4552             | 9                   | 9,000                |  |
|             | Кредит  | 218,889 | 94,7951            | 9                   | 9,000                |  |
|             | Семья   | 3,111   | 1,0541             | 9                   | 9,000                |  |
|             | Возраст | 44,778  | 12,0807            | 9                   | 9,000                |  |
| Средняя     | История | 1,417   | ,5149              | 12                  | 12,000               |  |
|             | Доход   | 26,242  | 3,4670             | 12                  | 12,000               |  |
|             | Срок    | 5,333   | 2,0597             | 12                  | 12,000               |  |
|             | Кредит  | 211,667 | 76,3763            | 12                  | 12,000               |  |
|             | Семья   | 3,750   | 1,6026             | 12                  | 12,000               |  |
|             | Возраст | 45,750  | 7,1748             | 12                  | 12,000               |  |
| Высокая     | История | 1,111   | ,3333              | 9                   | 9,000                |  |
|             | Доход   | 34,089  | 4,2316             | 9                   | 9,000                |  |
|             | Срок    | 7,222   | 1,3944             | 9                   | 9,000                |  |
|             | Кредит  | 262,222 | 116,8094           | 9                   | 9,000                |  |
|             | Семья   | 3,778   | 1,2019             | 9                   | 9,000                |  |
|             | Возраст | 47,889  | 6,1734             | 9                   | 9,000                |  |
| Итого       | История | 1,500   | ,5085              | 30                  | 30,000               |  |
|             | Доход   | 26,857  | 6,4137             | 30                  | 30,000               |  |
|             | Срок    | 5,933   | 2,1324             | 30                  | 30,000               |  |
|             | Кредит  | 229,000 | 94,6263            | 30                  | 30,000               |  |
|             | Семья   | 3,567   | 1,3309             | 30                  | 30,000               |  |
|             | Возраст | 46,100  | 8,4786             | 30                  | 30,000               |  |

Из данных таблицы «Критерий равенства групповых средних» следует, что переменные «Кредит» («Размер кредита»), «Семья» («Состав семьи заемщика»), «Возраст» («Возраст заемщика») незначимо различаются по группам, поскольку для них уровень значимости Знч. > 0.05, поэтому классификацию заемщиков целесообразно проводить по первым двум переменным: «История» («Брался ли кредит») и «Доход» («Среднемесячный доход семье заемщика»).

## Критерий равенства групповых средних

|         | Лямбда<br>Уилкса | F      | ст.св1 | ст.св2 | Знч. |
|---------|------------------|--------|--------|--------|------|
| История | ,507             | 13,106 | 2      | 27     | ,000 |
| Доход   | ,291             | 32,831 | 2      | 27     | ,000 |
| Срок    | ,838             | 2,619  | 2      | 27     | ,091 |
| Кредит  | ,944             | ,796   | 2      | 27     | ,461 |
| Семья   | ,948             | ,741   | 2      | 27     | ,486 |
| Возраст | ,978             | ,305   | 2      | 27     | ,740 |

Анализ матрицы коэффициентов в таблице «Объединенные внутригрупповые матрицы» свидетельствует об отсутствии мультиколлинеарности, поэтому коэффициенты корреляции малы.

Объединенные внутригрупповые матрицы

|            |         | История | Доход | Срок  | Кредит | Семья | Возраст |
|------------|---------|---------|-------|-------|--------|-------|---------|
| Корреляция | История | 1,000   | -,455 | -,141 | ,486   | -,626 | -,234   |
|            | Доход   | -,455   | 1,000 | ,026  | -,176  | ,621  | ,053    |
|            | Срок    | -,141   | ,026  | 1,000 | ,583   | ,341  | -,352   |
|            | Кредит  | ,486    | -,176 | ,583  | 1,000  | -,037 | -,469   |
|            | Семья   | -,626   | ,621  | ,341  | -,037  | 1,000 | ,099    |
|            | Возраст | -,234   | ,053  | -,352 | -,469  | ,099  | 1,000   |

Данные таблицы «Собственные значения» показывают, что первая функция учитывает 95,2% дисперсии, а корреляция между исходными данными и данными, полученными по модели, высокая и составляет 0,929. Для второй функции эти значения намного меньше.

Собственные значения

| Функция | Собственное<br>значение | %<br>объясненной<br>дисперсии | Кумулятивны<br>й % | Каноническа<br>я<br>корреляция |
|---------|-------------------------|-------------------------------|--------------------|--------------------------------|
| 1       | 6,327ª                  | 95,2                          | 95,2               | ,929                           |
| 2       | ,318ª                   | 4,8                           | 100,0              | ,491                           |

 а. В анализе использовались первые 2 канонические дискриминантные функции.

Оценка значимости дискриминантных функций проводится по коэффициенту Уилкса ( $\lambda$ ). Из данных таблицы «Лямбда Уилкса» видно, что для первой функции значимость Знч. < 0,001, следовательно, она позволяет значимо и надежно дискриминировать наблюдения. В то же время значимость второй функции составляет лишь 0,239. Поэтому в дальнейшем для классификации целесообразно использовать только первую дискриминантную функцию.

Лямбда Уилкса

| Проверка функции(й) | Лямбда<br>Уилкса | Хи-квадрат | ст.св. | Знч. |
|---------------------|------------------|------------|--------|------|
| от 1 до 2           | ,104             | 55,549     | 12     | ,000 |
| 2                   | ,759             | 6,757      | 5      | ,239 |

## Нормированные коэффициенты канонической дискриминантной функции

|         | Функция |       |  |
|---------|---------|-------|--|
|         | 1       | 2     |  |
| История | -,963   | 1,235 |  |
| Доход   | 1,039   | ,543  |  |
| Срок    | ,019    | 1,276 |  |
| Кредит  | ,807    | -,837 |  |
| Семья   | -1,177  | -,310 |  |
| Возраст | ,281    | ,383  |  |

| Структурная матриц | 3 |
|--------------------|---|
|--------------------|---|

|         | Функция |                    |  |
|---------|---------|--------------------|--|
|         | 1       | 2                  |  |
| Доход   | ,620*   | -,012              |  |
| Возраст | ,059*   | ,036               |  |
| История | -,375   | ,507*              |  |
| Срок    | ,152    | ,388*              |  |
| Кредит  | ,080    | ,244*              |  |
| Семья   | ,076    | -,243 <sup>*</sup> |  |

мья "078

Объединенные 
внутригрупповые 
коррепации между 
дискриминантными 
переменными и 
нормированными 
каноническими 
дискриминантными 
функциями 
Переменные 
упорядочены по 
абсолютной величине 
коррепаций внутри 
функциями

\*. Максимальная по абсолютной величин корреляция между переменными и дискриминантными функциями.

Формально по данным таблицы «Коэффициенты канонической дискриминантной функции» можно построить две дискриминантные функции:

$$D_1(X) = -4,286 - 2,566x_1 + 0,290x_2 + 0,009x_3 + 0,008x_4 - 0,876x_5 + 0,032x_6;$$

$$D_2(X) = -11,943 + 3,291x_1 + 0,151x_2 + 0,631x_3 - 0,009x_4 - 0,231x_5 + 0,044x_6$$

# Коэффициенты канонической дискриминантрой функции

|             | Функ   | ция     |
|-------------|--------|---------|
|             | 1      | 2       |
| История     | -2,566 | 3,291   |
| Доход       | ,290   | ,151    |
| Срок        | ,009   | ,631    |
| Кредит      | ,008   | -,009   |
| Семья       | -,876  | -,231   |
| Возраст     | ,032   | ,044    |
| (Константа) | -4,286 | -11,943 |

Ненормированные коэффициенты

Однако поскольку значимость второй функции более 0,001, ее для дискриминации использовать нецелесообразно.

Координаты центроидов по группам приведены в таблице «Функции в центроидах групп». Они используются для нанесения центроидов на карту восприятия.

# Функции в центроидах групп

|             | Функция |       |  |  |
|-------------|---------|-------|--|--|
| Вероятность | 1       | 2     |  |  |
| Низкая      | -2,873  | ,503  |  |  |
| Средняя     | -,289   | -,652 |  |  |
| Высокая     | 3,258   | ,366  |  |  |

Ненормированные канонические дискриминантные функции вычислены в центроидах групп.

#### Сводка классификации

#### Априорные вероятности для групп

| Обработано       |                                                                  | 33 |
|------------------|------------------------------------------------------------------|----|
| Исключенные2     | Пропущенные или<br>лежащие вне диапазона<br>коды групп2          | 0  |
|                  | По крайней мере одна<br>дискриминантная<br>переменная пропущена. | 0  |
| Используется в в | 33                                                               |    |

| Вероятность |           | Наблюдения,<br>использованные в анализе |            |  |  |  |
|-------------|-----------|-----------------------------------------|------------|--|--|--|
|             | Априорные | Невзвешенн<br>ые                        | Взвешенные |  |  |  |
| Низкая      | ,300      | 9                                       | 9,000      |  |  |  |
| Средняя     | ,400      | 12                                      | 12,000     |  |  |  |
| Высокая     | ,300      | 9                                       | 9,000      |  |  |  |
| Итого       | 1,000     | 30                                      | 30,000     |  |  |  |

Карта восприятий визуализирует разделение наблюдений функциями. Так, первая функция  $D_1(X)$  делит наблюдения на две группы: 1, 2 и 2, 3, вторая функция  $D_2(X)$  отделяет наблюдения 2 от всех остальных.

Поле графика разделено дискриминантными функциями на три области: в левой части находятся преимущественно наблюдения первой группы с низкой вероятностью своевременного погашения кредита; в правой части – третьей группы с высокой вероятностью и в нижней части — второй группы со средней вероятностью.



Символы, используемые в территориальной карте

1 1 НИЗКАЯ
2 2 СРЕДНЯЯ
3 3 ВЫСОКАЯ
\* УКАЗЫВАЕТ ЦЕНТР ГРУППЫ

В таблице «Поточечные статистики» размещена информация о фактических ( $Actual\ Group$ ) и предсказанных ( $Predicted\ Group$ ) группах для каждого заемщика и соответствующие дискриминантные баллы ( $Discriminant\ Scores$ ), полученные при подстановке значений переменных в уравнениях дискриминантных функций  $D_1(X)$  и  $D_2(X)$ .

|                               |                  |                                        | 1                        |              |       | е статистию                |                                                     |        |                       | MANAGAR AND ONE                                     |                  |               |
|-------------------------------|------------------|----------------------------------------|--------------------------|--------------|-------|----------------------------|-----------------------------------------------------|--------|-----------------------|-----------------------------------------------------|------------------|---------------|
|                               |                  | Наивероятнейшая группа<br>P(D>d   G=g) |                          |              |       | Вторая вероятнейшая группа |                                                     |        | Дискриминантные баллы |                                                     |                  |               |
|                               | Номер наблюдения | Фактическая<br>группа                  | Предсказанн<br>ая группа | P(D×d        | CT.CB | P(G=q   D=d)               | Квадрат<br>расстояния<br>Махалонобис<br>а до центра | Группа | P(G=q   D=d)          | Квадрат<br>расстояния<br>Махалонобис<br>а до центра | Функция 1        | Функция 2     |
| Исходные                      | 1                | 2                                      | 2                        | ,721         | 2     | ,982                       | ,655                                                | 3      | ,014                  | 8,635                                               | ,371             | -,18          |
|                               | 2                | 2                                      | 2                        | ,779         | 2     | ,949                       | ,500                                                | 1      | ,051                  | 5,757                                               | -,942            | -,92          |
|                               | 3                | 2                                      | 2                        | ,506         | 2     | ,973                       | 1,361                                               | 3      | ,017                  | 8,890                                               | ,276             | ,36           |
|                               | 4<br>5           | 3 2                                    | 3 2                      | ,497         | 2 2   | 1,000                      | 1,398<br>3,200                                      | 2      | ,000                  | 22,681<br>6,666                                     | 4,412<br>1,349   | .11,<br>-1,37 |
|                               | 6                | 3                                      | 3                        | 235          | 2     | 1,000                      | 2,896                                               | 2      | ,000                  | 28,771                                              | 4,956            | -1,37         |
|                               | 7                | 2                                      | 2                        | ,655         | 2     | ,983                       | ,845                                                | 3      | ,016                  | 8,509                                               | .608             | -,85          |
|                               | 8                | 2                                      | 2                        | ,515         | 2     | ,895                       | 1,326                                               | 1      | ,104                  | 5,046                                               | -,627            | ,44           |
|                               | 9                | 3                                      | 3                        | ,794         | 2     | 1,000                      | ,462                                                | 2      | ,000                  | 18,130                                              | 3,896            | ,1:           |
|                               | 10               | 1                                      | 1                        | ,147         | 2     | ,943                       | 3,833                                               | 2      | ,057                  | 10,012                                              | -3,365           | -1,3          |
|                               | 11               | 3                                      | 3                        | ,890         | 2     | ,996                       | ,232                                                | 2      | ,004                  | 11,800                                              | 2,883            | ,61           |
|                               | 12               | 3                                      | 3                        | ,759         | 2     | ,999                       | ,552                                                | 2      | ,001                  | 15,874                                              | 3,675            | -,2           |
|                               | 13               | 2                                      | 2                        | ,697         | 2     | ,874                       | ,722                                                | 1      | ,126                  | 4,012                                               | -1,116           | -,4           |
|                               | 14               | 3                                      | 2***                     | ,365         | 2     | ,927                       | 2,018                                               | 3      | ,073                  | 6,518                                               | 1,092            | -,9           |
|                               | 15               | 1                                      | 1                        | ,275         | 2     | ,999                       | 2,585                                               | 2      | ,001                  | 17,638                                              | -4,424           | .0            |
|                               | 16<br>17         | 1                                      | 1                        | ,405<br>,880 | 2 2   | ,999<br>,950               | 1,810<br>,257                                       | 2 2    | ,001                  | 16,613<br>6,730                                     | -3,720<br>-2,451 | 1,5           |
|                               | 17               | 2                                      | 1**                      | ,880         | 2     | ,539                       | 1,673                                               | 2 2    | ,050                  | 2 558                                               | -2,451           | -,2           |
|                               | 19               | 1                                      | 1                        | ,675         | 2     | ,892                       | ,787                                                | 2      | ,108                  | 5,593                                               | -1,844           | .,2           |
|                               | 20               | 3                                      | 3                        | ,397         | 2     | ,952                       | 1,847                                               | 2      | ,048                  | 8,404                                               | 2,072            | 1,0           |
|                               | 21               | 1                                      | 1                        | ,778         | 2     | ,847                       | ,503                                                | 2      | ,153                  | 4,502                                               | -2,216           | ,2            |
|                               | 22               | 2                                      | 2                        | ,182         | 2     | ,944                       | 3,403                                               | 3      | ,030                  | 9,720                                               | ,232             | 1,1           |
|                               | 23               | 3                                      | 3                        | ,447         | 2     | ,999                       | 1,612                                               | 2      | ,001                  | 15,605                                              | 2,957            | 1,6           |
|                               | 24               | 1                                      | 1                        | ,531         | 2     | ,997                       | 1,265                                               | 2      | ,003                  | 13,699                                              | -3,257           | 1,5           |
|                               | 25               | 3                                      | 3                        | ,982         | 2     | ,999                       | ,036                                                | 2      | ,001                  | 14,788                                              | 3,376            | ,5            |
|                               | 26               | 2                                      | 2                        | ,385         | 2     | ,598                       | 1,907                                               | 1      | ,402                  | 2,122                                               | -1,587           | -,1           |
|                               | 27               | 1                                      | 1                        | ,539         | 2     | ,832                       | 1,238                                               | 2      | ,168                  | 5,007                                               | -1,854           | 9,            |
|                               | 28               | 1                                      | 1                        | ,761         | 2     | ,882                       | ,547                                                | 2      | ,118                  | 5,137                                               | -2,495           | -,1           |
|                               | 29               | 2                                      | 2                        | ,048         | 2     | ,999                       | 6,064                                               | 1      | ,000                  | 20,750                                              | -,094            | -3,1          |
|                               | 30               | 2                                      | 2                        | ,214         | 2     | ,999                       | 3,083                                               | 1      | ,001                  | 16,154                                              | -,089            | -2,3          |
|                               | 31               | несгруппиров<br>анные                  | 1                        | ,315         | 2     | ,913                       | 2,310                                               | 2      | ,087                  | 7,593                                               | -3,021           | -1,0          |
|                               | 32               | несгруппиров                           | 2                        | ,077         | 2     | ,999                       | 5,128                                               | 3      | ,000                  | 20,175                                              | ,147             | -2,8          |
|                               | 33               | анные<br>несгруппиров                  | 2                        | ,000         | 2     | 1,000                      | 31.261                                              | 1      | ,000                  | 45,930                                              | -1,444           | -6,1          |
|                               | 8000             | анные                                  |                          | SHAONER      | 10.70 |                            | 327,02323                                           | 92.0   | 1.000                 | 0.014.0330                                          |                  |               |
| росс-проверенные <sup>а</sup> | 1                | 2                                      | 2                        | ,554         | 6     | ,963                       | 4,919                                               | 3      | ,031                  | 11,239                                              |                  |               |
|                               | 2                | 2                                      | 2                        | ,244         | 6     | ,866                       | 7,923                                               | 1      | .134                  | 11,073                                              |                  |               |
|                               | 3                | 2                                      | 2 3                      | ,074         | 6     | ,866<br>1,000              | 11,521                                              | 3 2    | ,111<br>,000          | 15,058                                              |                  |               |
|                               | 4 5              | 2                                      | 2                        | ,853<br>,225 | 6     | ,631                       | 2,637<br>8,188                                      | 3      | ,369                  | 23,888<br>8,687                                     |                  |               |
|                               | 6                | 3                                      | 3                        | ,178         | 6     | 1,000                      | 8,921                                               | 2      | ,000                  | 37,535                                              |                  |               |
|                               | 7                | 2                                      | 2                        | ,277         | 6     | ,944                       | 7,505                                               | 3      | .055                  | 12,606                                              |                  |               |
|                               | 8                | 2                                      | 2                        | ,437         | 6     | ,783                       | 5,878                                               | 1      | ,216                  | 7,881                                               |                  |               |
|                               | 9                | 3                                      | 3                        | ,459         | 6     | 1,000                      | 5,686                                               | 2      | ,000                  | 22,461                                              |                  |               |
|                               | 10               | 1                                      | 1                        | ,047         | 6     | ,729                       | 12,743                                              | 2      | ,271                  | 15,297                                              |                  |               |
|                               | 11               | 3                                      | 3                        | ,532         | 6     | ,990                       | 5,093                                               | 2      | ,010                  | 14,869                                              |                  |               |
|                               | 12               | 3                                      | 3                        | ,805         | 6     | ,999                       | 3,033                                               | 2      | ,001                  | 17,355                                              |                  |               |
|                               | 13               | 2                                      | 2                        | ,670         | 6     | ,794                       | 4,046                                               | 1      | ,206                  | 6,168                                               |                  |               |
|                               | 14               | 3                                      | 2**                      | ,466         | 6     | ,999                       | 5,627                                               | 1      | ,000                  | 21,429                                              |                  |               |
|                               | 15               | 1                                      | 1                        | ,212         | 6     | ,999                       | 8,381                                               | 2      | ,001                  | 23,699                                              |                  |               |
|                               | 16               | 1                                      | 1                        | ,188         | 6     | ,999                       | 8,755                                               | 2      | ,001                  | 23,731                                              |                  |               |
|                               | 17               | 1                                      | 1                        | ,690         | 6     | ,912                       | 3,901                                               | 2      | ,088                  | 9,146                                               |                  |               |
|                               | 18<br>19         | 2                                      | 1                        | ,529<br>,252 | 6     | ,852<br>.702               | 5,114<br>7,820                                      | 2 2    | ,148<br>,298          | 9,190<br>10.112                                     |                  |               |
|                               | 20               | 3                                      | 3                        | ,252         | 6     | ,702                       | 7,820                                               | 2      | ,193                  | 10,112                                              |                  |               |
|                               | 21               | 1                                      | 1                        | ,907         | 6     | 796                        | 2,129                                               | 2      | ,204                  | 5,425                                               |                  |               |
|                               | 22               | 2                                      | 3**                      | ,003         | 6     | ,600                       | 19,944                                              | 2      | ,309                  | 21,845                                              |                  |               |
|                               | 23               | 3                                      | 3                        | ,019         | 6     | 993                        | 15,112                                              | 2      | ,007                  | 25,605                                              |                  |               |
|                               | 24               | 1                                      | 1                        | ,000         | 6     | ,994                       | 25,041                                              | 2      | ,006                  | 35,769                                              |                  |               |
|                               | 25               | 3                                      | 3                        | ,965         | 6     | ,999                       | 1,419                                               | 2      | ,001                  | 15,394                                              |                  |               |
|                               | 26               | 2                                      | 1***                     | ,686         | 6     | 592                        | 3,929                                               | 2      | ,408                  | 5,248                                               |                  |               |
|                               | 27               | 1                                      | 1                        | ,675         | 6     | ,717                       | 4,013                                               | 2      | ,283                  | 6,446                                               |                  |               |
|                               | 28               | 1                                      | 1                        | ,103         | 6     | ,574                       | 10,554                                              | 2      | ,426                  | 11,730                                              |                  |               |
|                               | 29               | 2                                      | 2                        | ,004         | 6     | 1,000                      | 19,379                                              | 3      | ,000                  | 35,465                                              |                  |               |
|                               | 30               | 2                                      | 2                        | .081         | 6     | .998                       | 11,247                                              | 1      | .001                  | 24,317                                              |                  |               |

Для исходных данных квадрат расстояния Махалонобиса вычисляется по канонической функции Для кросс-проверяемых данных квадрат расстояния Махалонобиса вычисляется по наблюдениям.

На рисунках с 1го по 3ий ниже отражено расположение заемщиков каждой из трех групп на плоскости двух дискриминантных функций  $D_1(X)$  и  $D_2(X)$ . По этим графикам можно проводить детальный анализ вероятностей погашения кредита внутри каждой группы, судить о характере распределения заемщиков и оценивать степень их удаленности от соответствующего центроида.

Кроме того, на 4ом рисунке в той же системе координат приведен объединенный график распределения всех групп заемщиков вместе со своими центроидами; его можно использовать для проведения сравнительного визуального анализа характера взаимного расположения групп заемщиков банка с разными вероятностями погашения кредита. В левой части графика расположены заемщики с низкой вероятностью погашения кредита, в правой — с высокой, а в средней части — со средней вероятностью. Поскольку по результатам расчета вторая дискриминантная функция  $D_2(X)$  оказалась незначима, то различия координат центроидов по этой оси незначительны. Этот факт подтверждается картой восприятия, которая была расположена выше.

Неправильно классифицированное наблюдение

а. Кросс-проверка проводится только для наблюдений в знагизе. При кросс-проверке каждое наблюдение классифицируется функциями, выведенными по всем наблюдениям, за исключением егос-самого.

#### Канонические дискриминантные функции



## Канонические дискриминантные функции



Данные таблицы «Результаты классификации» свидетельствуют о том, что для 93,3% исходных и перекрестно-проверяемых 86,7% сгруппированных наблюдений классификация проведена корректно, высокая точность достигнута в каждой из групп, но в первой она максимальная -100%, а в третьей несколько ниже -88,9%, ниже всего во второй -75%, но все еще относительно хорошая.

Результаты классификации<sup>b,c</sup>

|                                |         |                                 | Предсказанн |         |         |       |
|--------------------------------|---------|---------------------------------|-------------|---------|---------|-------|
|                                |         | Вероятность                     | Низкая      | Средняя | Высокая | Итого |
| Исходные                       | Частота | Низкая                          | 9           | 0       | 0       | 9     |
|                                |         | Средняя                         | 1           | 11      | 0       | 12    |
|                                |         | Высокая                         | 0           | 1       | 8       | 9     |
|                                |         | Несгруппированные<br>наблюдения | 1           | 2       | 0       | 3     |
|                                | %       | Низкая                          | 100,0       | 0,      | ,0      | 100,0 |
|                                |         | Средняя                         | 8,3         | 91,7    | ,0      | 100,0 |
|                                |         | Высокая                         | ,0          | 11,1    | 88,9    | 100,0 |
|                                |         | Несгруппированные<br>наблюдения | 33,3        | 66,7    | ,0      | 100,0 |
| Кросс-проверенные <sup>а</sup> | Частота | Низкая                          | 9           | 0       | 0       | 9     |
|                                |         | Средняя                         | 2           | 9       | 1       | 12    |
|                                |         | Высокая                         | 0           | 1       | 8       | 9     |
|                                | %       | Низкая                          | 100,0       | ,0      | .0      | 100,0 |
|                                |         | Средняя                         | 16,7        | 75,0    | 8,3     | 100,0 |
|                                |         | Высокая                         | .0          | 11,1    | 88,9    | 100,0 |

а. Кросс-проверка проводится только для наблюдений в анализе. При кросс-проверке каждое наблюдение классифицируется функциями, выведенными по всем наблюдениям, за исключением его самого.

**Вывод:** приобрёл практические навыки применения дискриминантного анализа для решения конкретных задач с использованием статистического пакета SPSS.

р. 93,3% исходных сгруппированных наблюдений классифицировано правильно.

с. 86,7% перекрестно-проверяемых сгруппированных наблюдений классифицировано правильно.