Properties of Transpose

$$O (A \pm B)^T = A^T \pm B^T$$

(a)
$$(kA)^T = kA^T$$

(where k is a constant.)

Properties of Inverse

$$(A^{-1})^{-1} = A$$

Properties of Determinant

1) Determinant of a transpose matrix. [AT = A] Ch: $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 2 \end{vmatrix} = 5$. Find $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 2 \end{vmatrix}$.

Ans:
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 6 & 2 \end{vmatrix} = 5$$

@ Determinant of a matrix with zero rows (or columns).

3 Determinant of a matrix with a repeated row (or column).

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 5 \\ 1 & 2 & 3 \end{pmatrix}$$

(4) Determinant of a matrix which interchange 2 rows (or columns).

(4) Determinant of a matrix which interchange 2 rows (or columns).

(4) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 2 \end{pmatrix}$ and $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 2 \end{bmatrix}$

Find
$$|B| = \begin{vmatrix} 3 & 4 & 2 \\ 2 & 3 & 5 \\ 1 & 2 & 3 \end{vmatrix}$$
 and $|C| = \begin{vmatrix} 4 & 3 & 2 \\ 3 & 2 & 5 \\ 2 & 1 & 3 \end{vmatrix}$.

Ans:
$$|B| = -|A|$$
 $|C| = -|B|$

Scanned with CamScanner

Determinant of the product of 2 matrices.
$$[AB] = |A||B|$$

CM: $|A| = 3$ and $|B| = -2$. Find $|AB|$.

Ans: $|AB| = |A||B|$

$$= 3(-1)$$

$$= -6$$

Determinant of a matrix which contains common factor k in a row (or column).

Cth:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 2 \end{pmatrix}$$
, $|A| = 5$.

 $B = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ 3 & 4 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 4 & 9 \\ 2 & 6 & 15 \\ 3 & 8 & 6 \end{pmatrix}$. Find $|B|$ and $|C|$.

Ans:

 $|B| = \begin{vmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ 3 & 4 & 2 \end{vmatrix}$
 $|B| = 2 \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 2 \end{vmatrix}$
 $= 2 \cdot 3 \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 2 \end{vmatrix}$
 $= 2 \cdot 5 \begin{vmatrix} 1 & 2 & 3 \\ 3 & 4 & 2 \end{vmatrix}$
 $= 2 \cdot 5 \begin{vmatrix} 1 & 2 & 3 \\ 3 & 4 & 2 \end{vmatrix}$
 $= 6 \cdot (5)$
 $= 30 \cdot 6$.

3 methods to find inverse matrix

- (1) Adjoint method
 - . Minor matrix, $M = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix}$
 - . Cofactor matrix, $C = \begin{pmatrix} +m_{11} & -m_{12} & +m_{13} \\ -m_{21} & +m_{22} & -m_{23} \\ +m_{21} & -m_{32} & +m_{33} \end{pmatrix}$
 - · Adjoint matrix, Adj. A = CT
 - · Determinant, IAI
 - · Inverse matrix, A = 1 Adj. A.
- (ERO) Elementary Row Operations

$$\frac{3 \text{ types operations}}{(i) \quad R_i \leftrightarrow R_j}$$

(iii) $R_i^* = \alpha R_i + R_i$

Inverse matrix

Scanned with CamScanner