Linux Workshop

•••

Kriengkrai J. <<u>kk@jira.org</u>> Super AI Engineer 2020

Workshop Outline (180 minutes)

Topics

- 1. Linux VM and Basic Commands
- 2. Python Environment (Miniconda)
- Visual Studio Code Remote SSH
- 4. Jupyter Notebook / Lab (Web service)

Tasks	Minutes
Linux VM and Basic Commands	30
Python Environment (Miniconda)	20
Visual Studio Code: Extensions, Coding, Terminal	20
Break #1 - Q&A	15
Object Detection with YOLO11	20
API service	20
Break #2 - Q&A	15
Run Jupyter Notebook in VS Code	15
Jupyter Notebook / Lab (Web Service)	15
Q&A	10

Linux VM and Basic Commands

 $\bullet \bullet \bullet$

With Huawei Cloud

Related Huawei Cloud Services

- Elastic Cloud Server (VM CPU / GPU / RAM)
 https://www.huaweicloud.com/intl/en-us/product/ecs.html
- Elastic Volume Service (Disk storage)
 https://www.huaweicloud.com/intl/en-us/product/evs.html
- Elastic IP (Network / Internet)
 https://www.huaweicloud.com/intl/en-us/product/eip.html

Linux VM Components

** Pay-per-use **

- 1. Region
 - Bangkok
 - Singapore
 - Hong Kong
- 2. CPU / RAM
- 3. GPU:
 - NVIDIA A100, V100
 - NVIDIA T4 x2, x4
- 4. Disk
- 5. Network

\$\$\$\$ USD / Hour \$\$\$\$

GPU: NVIDIA T4 vs V100

GPU: NVIDIA T4 x4 vs V100

GPU: Sharing

CDII			D		Don Til Dies A	1/-11-	U FCC
GPU Fan	Name Temp	Derf	Persist Pwr:Usa		Bus-Id Disp.A Memory-Usage		Uncorr. ECC
	TCIIIP	TCIT	T WI . 034	ge/ cap		+========	compace 11.
0	Tesla	T4		Off	00000000:21:01.0 Off		0
N/A	54C	P0	27W /	70W	1745MiB / 15079MiB	0%	Default
1	Tesla	T4		0ff	00000000:21:02.0 Off	i	0
N/A	67C	P0	73W /	70W	11865MiB / 15079MiB	100%	Default
2	Tesla	T4		0ff	00000000:21:03.0 Off	i	0
N/A	44C	P0	32W /	70W	1587MiB / 15079MiB	40%	Default
3	Tesla	T4		0ff	00000000:21:04.0 Off	İ	0
N/A	45C	PØ.	54W /	70W	1587MiB / 15079MiB	61%	Default

Processes:				GPU Memory		
GPU	PID	Type	Process name	Usage		
0	31569	С	python	======================================		
1	17904	C	python	11855MiB		
2	31637	C	python	1577MiB		
3	31707	C	python	1577MiB		

```
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
```

GPU ID: 0,1,2,3 (in order by nvidia-smi) 0,3 = GPU#0 + GPU#3

Disk Types

- System Disk MAX 1 TB
- Data Disk MAX 32 TB

Disk Spec

Network

Sample Budget Management

Region

AP-Bangkok

GPU

• pi2.8xlarge.4 = T4 x 4

Disk

- System Disk
- Data Disk

Network

• Traffic (Max 300 Mbps)

AD Donalesk	pi-kuonel	USD	24x7	15x7	12x7
AP-Bangkok	Disk[IOPS]	per hour/hour	168	105	84
pi2.8xlarge.4 (sys)	40GB[1440]	4.002	672.34	420.21	336.17
	500GB[4200]	4.048	680.06	425.04	340.03
	1TB[5000]	4.1004	688.87	430.54	344.43
	500GB[26500]	4.133	694.34	433.97	347.17
2	1TB[33000]	4.2744	718.10	448.81	359.05
pi2.8xlarge.4	500GB[4200]	4.052	680.74	425.46	340.37
(FREE sys 40GB + data)	1TB[5000]	4.1044	689.54	430.96	344.77
	500GB[26500]	4.137	695.02	434.39	347.51
	1TB[33000]	4.2784	718.77	449.23	359.39
EIP (Bandwidth)	5 Mbps	0.065	10.92	6.83	5.46
En (banawiden)	10 Mbps	0.175	29.40	18.38	14.70
	20 Mbps	0.395	66.36	41.48	33.18
	50 Mbps	1.055	177.24	110.78	88.62
	100 Mbps	2.155	362.04	226.28	181.02

Billing

Access to a Linux VM

Task 1.1) Access to a Linux VM

Host	vm1.lnode.com	vm2.lnode.com	vm3.lnode.com	vm4.lnode.com
Super Al ID	500003	500407	500988	502197
	- 500397	- 500952	- 502138	- 510290

Username: u50xxxx Password: SuperAI@5

SSH to the Linux VM:

ssh u

u50xxx@vm?.lnode.com

Task 1.2) Setup SSH Key Access (Concept)

Task 1.2) Setup SSH Key Access (1/2)

1. Generate an SSH key pair (with or without passphrase)

```
ssh-keygen -t ed25519 -f mykey # output file name (mykey, mykey.pub)
```

Copy the public key to the server

```
sftp u50xxx@vm?.lnode.com
mkdir .ssh
chmod 700 .ssh  # 700 = (user)rwx / (group)--- / (others)---
cd .ssh
put mykey.pub authorized_keys
chmod 600 authorized_keys  # 600 = (user)rw- / (group)--- / (others)---
quit
```

3. Access with the private key

```
ssh -i mykey u50xxx@vm?.lnode.com
```

Setup SSH Key Access (2/2)

4. Setup SSH Config

Windows: C:\users\<myuser>\.ssh\config

Mac / Linux: ~/.ssh/config

```
Host vm

HostName vm?.lnode.com

User u50xxx

IdentityFile ~/.ssh/mykey # Path to private key
```

5. Access with the Host in SSH Config

```
ssh vm
sftp vm
```

Passwordless System

Setup SSH server config
 Files: /etc/ssh/sshd_config, /etc/ssh/sshd_config.d/*

PasswordAuthentication no

Restart ssh service

systemctl restart ssh

for Ubuntu

2. Setup SUDOers not to use password (File: /etc/sudoers)

```
# Allow members of group sudo to execute any command %sudo ALL=(ALL:ALL) NOPASSWD: ALL
```

3. Add super users to supplementary group "sudo"

```
sudo usermod -a -G sudo <username>
```

Basic Linux Commands ...

Task 1.3) Basic Linux Commands

Network

- ssh, sftp
- ping
- wget, gdown
- Secure-Shell (SSH)
- host test
- download files

File System (Storage)

- pwd, cd
- mkdir, rmdir
- du, df
- cp, mv
- ln

- list files, directories
- remove files, directories
- display text files, merge files
- current, change directory
- make, remove directory
- disk usage, disk free
- copy, move-rename
- create link
- . = current dir, .. = prev dir, / = root, ~ =

System

apt

- package management

passwd

- change password - superuser do, switch user
- sudo, su env, export
- environment variables
- - **date, timedatectl** set date-time, timezone
- reboot, shutdown

Misc

find

- search for files, directories
- chown, chgrp
- change owner, group

chmod

- change mode (permission)
- nano, vi
- text editor
- ps, kill, pkill, killall
- process management

- top, htop
- system monitor
- screen, tmux
- terminal multiplexer

Python Environment

•••

with Miniconda

Python Environment

System-wide Environment

Sudo apt install python

/usr/bin/python

Venv, virtualenv, Miniconda

/home/user/*

Miniconda

A Free minimal installer for conda

Linux installers %

Python version	Name	Size
Python 3.9	Miniconda3 Linux 64-bit	63.6 MiB
	Miniconda3 Linux-aarch64 64-bit	62.6 MiB
	Miniconda3 Linux-ppc64le 64-bit	60.6 MiB
	Miniconda3 Linux-s390x 64-bit	57.1 MiB
Python 3.8	Miniconda3 Linux 64-bit	98.8 MiB
	Miniconda3 Linux-aarch64 64-bit	94.8 MiB
	Miniconda3 Linux-ppc64le 64-bit	93.3 MiB
	Miniconda3 Linux-s390x 64-bit	89.0 MiB
Python 3.7	Miniconda3 Linux 64-bit	84.9 MiB
	Miniconda3 Linux-aarch64 64-bit	89.2 MiB
	Miniconda3 Linux-ppc64le 64-bit	88.1 MiB
	Miniconda3 Linux-s390x 64-bit	84.1 MiB

https://www.anaconda.com/docs/getting-started/miniconda/main

Tasks

- 2.1) Install Miniconda (Linux x64 Installer)
- 2.2) Manage Python/Conda Packages (pip/conda)
- 2.3) Work with multiple Python environments
- 2.4) Remove Env Uninstall Miniconda

Task 2.1) Install Miniconda (Linux x64 Installer)

```
# Download
       https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86 64.sh
wget
# Run
        Miniconda3-latest-Linux-x86 64.sh
bash
Do you accept the license terms? >>> ves
Miniconda3 will now be installed into this location: [/home/u50xxxx/miniconda3] >>> <ENTER>
Do you wish to update your shell profile to automatically initialize conda? >>> ves
(or update login script by: miniconda3/bin/conda init)
# relogin or reload .bashrc
         .bashrc
source
```

Task 2.2) Manage Python/Conda Packages (pip/conda)

List installed Python/ Software Packages:

```
pip/conda list
    (Channel:pypi = Python Package Index)
```

Install Python/ Software Packages:

```
pip/conda install <package>
    [==version ">=version" "<version"]</pre>
```

Uninstall Python/ Software Packages:

```
pip/conda uninstall <package>
```

Try to install packages:

- gdown
- numpy==2.0.0

TensorFlow and PyTorch Installation

TensorFlow

GPU					
Version	Python version	Compiler	Build tools	cuDNN	CUDA
tensorflow-2.19.0	3.9-3.12	Clang 18.1.8	Bazel 6.5.0	9.3	12.5
tensorflow-2.18.0	3.9-3.12	Clang 17.0.6	Bazel 6.5.0	9.3	12.5
tensorflow-2.17.0	3.9-3.12	Clang 17.0.6	Bazel 6.5.0	8.9	12.3
tensorflow-2.16.1	3.9-3.12	Clang 17.0.6	Bazel 6.5.0	8.9	12.3
tensorflow-2.15.0	3.9-3.11	Clang 16.0.0	Bazel 6.1.0	8.9	12.2
tensorflow-2.14.0	3.9-3.11	Clang 16.0.0	Bazel 6.1.0	8.7	11.8
tensorflow-2.13.0	3.8-3.11	Clang 16.0.0	Bazel 5.3.0	8.6	11.8
tensorflow-2.12.0	3.8-3.11	GCC 9.3.1	Bazel 5.3.0	8.6	11.8
tensorflow-2.11.0	3.7-3.10	GCC 9.3.1	Bazel 5.3.0	8.1	11.2
tensorflow-2.10.0	3.7-3.10	GCC 9.3.1	Bazel 5.1.1	8.1	11.2

https://www.tensorflow.org/install/pip

CUDA 12.5 \Rightarrow TensorFlow 2.18.0

CUDA 12.3 \Rightarrow TensorFlow 2.16.1

CUDA 11.2 \Rightarrow TensorFlow 2.10.0

PyTorch

https://pytorch.org/get-started/locally/

Task 2.3) Work with multiple Python environments

base [Python 3.12]

- TensorFlow [Latest]
- numpy [Latest]

py2 [Python 2.7]

- TensorFlow 2.1
- numpy 1.16.6

Create Environment:

```
conda create -n py2 python=2.7
```

Activate / Deactivate Environment:

conda activate py2
conda deactivate

CONDA Cheat Sheet:

Task 2.3) Work with multiple Python environments (cont.)

base [Python 3.12]

numpy [Latest]

. [1 -4--4]

/home/u50xxxx/miniconda3/bin/python

#1: Try with different path to python

py2 [Python 2.7]

numpy 1.16.6

/home/u50xxxx/miniconda3/envs/py2/bin/python

```
/home/u50xxxx/miniconda3/bin/python -c "import numpy; print(numpy.version.version)" /home/u50xxxx/miniconda3/envs/py2/bin/python -c "import numpy; print(numpy.version.version)"
```

#2: Run with conda

```
conda run -n base python -c "import numpy; print(numpy.version.version)"
conda run -n py2 python -c "import numpy; print(numpy.version.version)"
```

Task 2.4) Remove Env - Uninstall Miniconda

Remove Environment:

```
conda deactivate
conda remove -n py2 --all
#or conda env remove -n py2
```

Uninstall Miniconda

```
\sim = $HOME = /home/u50xxxx
```

Visual Studio Code ...

Visual Studio Code

https://code.visualstudio.com/

Tasks

- 3.1) Install Extensions
 - Remote SSH
 - Python
- 3.2) Coding and Terminal
- 3.3) Object Detection with YOLO
- 3.4) File Transfer
- 3.5) Object Detection API (FastAPI)
- 3.6) Port Forwarding
- 3.7) Jupyter Notebook (ipynb) support

Task 3.1) Install Extensions

Remote - SSH

Python

Task 3.2) Coding and Terminal

- Connect to Host
- Explorer
- Write / Run Code
- Open / Close Terminal
- Move / Split Screens

Linux Workshop

Break #1 & QA

Task 3.3) Object Detection with YOLO

Object Detection

Object Tracking

Object Localization ⇒ **Image Classification** ⇒ **Object Tracking**

YOLO Family

Ultralytics YOLO11 vs others

YOLO Family

YOLOv12 YOLO11 YOLOv1-10 YOLO9000 PP-YOLO YOLOR YOLOX

YOLO11 - https://docs.ultralytics.com/models/yolo11 YOLOv12 - https://github.com/sunsmarterjie/yolov12

More YOLO Tasks

Pose Estimation

Classification

Instance Segmentation

Oriented Bounding Boxes

Track and more..

YOLO11 - Installation

1. Install Ultralytics YOLO

```
pip install ultralytics
```

2. Try CLI Inference with pre-trained weight (COCO dataset - 80 classes)

```
# weight in: /data/yolo11n.pt, sample images: /data/*.jpg
yolo predict model=/data/yolo11n.pt source=/data/*.jpg
```

YOLO11 - Python

3. Inference with Python

```
import os
import glob
from ultralytics import YOLO

model = YOLO('/data/yolo11n.pt')

results = model(glob.glob('/data/*.jpg'))

for result in results:
    filename = f'result_{os.path.basename(result.path)}'
    result.save(filename)
```

Ref: https://docs.ultralytics.com/modes/predict/

Task 3.4) File Transfer

Put your result in:

https://drive.google.com/drive/folders/1hnpkJpOtByBJkASNntwIm_i0npU-wNFu

Task 3.5) Object Detection API (with FastAPI)

Web Browser - API Client

API Server (HTTP)

IP:	0.0.0.0 (Public / Internet) 127.0.0.1 (Private / Local host)
Port:	50000+superai id(4 digits) valid port: 1024 - 65535)
Services:	1) Main page Method: GET Path: / Return: HTML (web) 2) Object Detection API Method: POST Path: /detect/ Body: file (binary) Return: file (binary)

Task 3.6) Port Forwarding

http://localhost:80

Linux Workshop

Break #2 & QA

Task 3.7) Jupyter Notebook (ipynb) support

pip install jupyter

- Open / Create a new file with extension ".ipynb"
- Write Markdown and Code cells
- Run Code cells
- Try iris classification with scikit-learn

Jupyter Notebook / Lab

Project Jupyter

https://jupyter.org/

Jupyter Notebook

JupyterLab

Jupyter Notebook

```
4.1) Install
```

pip install jupyter

4.2) Setup

jupyter notebook --generate-config

~/.jupyter/jupyter_notebook_config.py

```
c.NotebookApp.ip = ''
```

- c.NotebookApp.open_browser = False
- c.NotebookApp.quit button = False
- c.NotebookApp.port = 50000 #+superai id(4 digits) # valid port: 1024 - 65535)

4.3) Set Password

jupyter notebook password

Jupyter Notebook

4.4) Run

jupyter notebook

JupyterLab

4.5) Install and Run JupyterLab

pip install jupyterlab

jupyter lab

Jupyter Notebook

4.6) Run a notebook in background

jupyter nbconvert file.ipynb --to notebook --execute

Linux Workshop

•••

Q&A Session