Devoir à la maison n° 12

À rendre le 20 janvier

Dans ce problème vous pourrez utiliser librement le résultat suivant :

Théorème : Si f est une injection entre deux ensembles finis ayant le même nombre d'éléments, alors f est une bijection.

I - L'anneau $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}$, $n \ge 2$. Pour tout $k \in \mathbb{Z}$, on note \overline{k} le reste de la division euclidienne de k par n.

- 1) Montrer que $\{\overline{k} \mid k \in \mathbb{Z}\} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$. Cet ensemble est alors noté $\mathbb{Z}/n\mathbb{Z}$.
- 2) a) Soient $k, \ell \in \mathbb{Z}$. Montrer que $\overline{k} = \overline{\ell}$ si et seulement si $k \equiv \ell[n]$.
 - **b)** Soient $k, k', \ell, \ell' \in \mathbb{Z}$ tels que $\overline{k} = \overline{k'}$ et $\overline{\ell} = \overline{\ell'}$. Montrer que $\overline{k+\ell} = \overline{k'+\ell'}$. Ceci permet de définir une addition \oplus sur $\mathbb{Z}/n\mathbb{Z}$: soient $a, b \in \mathbb{Z}/n\mathbb{Z}$. Alors il existe $k, \ell \in \mathbb{Z}$ tels que $a = \overline{k}$ et $b = \overline{\ell}$. On pose alors $a \oplus b = \overline{k+\ell}$, c'est-à-dire $\overline{k} \oplus \overline{\ell} = \overline{k+\ell}$, ce qui est défini sans ambiguité grâce à la question 2)b). Pour plus de commodités, \oplus sera aussi notée +.
 - c) Soient $k, k', \ell, \ell' \in \mathbb{Z}$ tels que $\overline{k} = \overline{k'}$ et $\overline{\ell} = \overline{\ell'}$. Montrer que $\overline{k \times \ell} = \overline{k' \times \ell'}$. Ceci permet de définir une multiplication \otimes sur $\mathbb{Z}/n\mathbb{Z}$: soient $a, b \in \mathbb{Z}/n\mathbb{Z}$. Alors il existe $k, \ell \in \mathbb{Z}$ tels que $a = \overline{k}$ et $b = \overline{\ell}$. On pose alors $a \otimes b = \overline{k \times \ell}$, c'est-à-dire $\overline{k} \otimes \overline{\ell} = \overline{k \times \ell}$, ce qui est défini sans ambiguité grâce à la question 2)c). Pour plus de commodités, \otimes sera aussi notée \times .
- 3) Pour vérifier que vous avez bien compris :
 - a) Donner les éléments de $\mathbb{Z}/6\mathbb{Z}$.
 - **b)** Dans $(\mathbb{Z}/6\mathbb{Z}, +, \times)$, calculer $\overline{2} + \overline{3}$, $\overline{3} + \overline{5}$, $\overline{1} + \overline{5}$, $\overline{3} \times \overline{5}$ et $\overline{2} \times \overline{3}$.
- 4) a) Montrer que $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe abélien.
 - **b)** Montrer que $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau. Est-il commutatif?
- 5) a) Soit $k \in [2, n-1]$ tel que k|n. Montrer alors qu'il existe $a \in \mathbb{Z}/n\mathbb{Z}$ tel que $a \neq 0$ et $\overline{k} \times a = \overline{0}$.
 - **b)** Soit $k \in [2, n-1]$ tel que k et n ne soient pas premiers entre eux. Montrer alors qu'il existe $a \in \mathbb{Z}/n\mathbb{Z}$ tel que $a \neq 0$ et $\overline{k} \times a = \overline{0}$.
 - c) Soit $k \in [1, n-1]$ tel que $k \wedge n = 1$. En utilisant le théorème de Bézout, montrer qu'il existe $m \in \mathbb{Z}$ tel que $\overline{k} \times \overline{m} = \overline{1}$. En déduire que \overline{k} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ pour la loi \times .
- 6) Montrer que $(\mathbb{Z}/n\mathbb{Z}, +\times)$ est un corps si et seulement si n est premier.
- 7) Pour vérifier que vous avez bien compris : dans $\mathbb{Z}/150\mathbb{Z}$, dire si 81 et 143 sont inversibles. Pour chacun d'eux, donner son inverse s'il existe, sinon donner un élément non nul a de $\mathbb{Z}/150\mathbb{Z}$ tel que $a \times b = \overline{0}$ (avec $b = \overline{8}1$ ou $\overline{143}$).

II – Le théorème chinois

L'objectif de cette partie est de montrer que si $n, m \in \mathbb{N} \setminus \{0, 1\}$ sont premiers entre eux, les anneaux $\mathbb{Z}/nm\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ sont isomorphes.

Les lois + et \times de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ sont telles que si $(a,b),(c,d) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$, alors (a,b)+(c,d)=(a+b,c+d) et $(a,b)\times(c,d)=(a\times c,b\times d)$, et on admettra que muni de ces lois, $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ est un anneau (ces sont les *lois produit* définies en TD).

Si $n \in \mathbb{Z}$ et $x \in \mathbb{Z}$, on notera désormais $\overline{x}^{[n]}$ le reste de la division euclidienne de x par n.

- 8) Soit $n, m \in \mathbb{N} \setminus \{0, 1\}$ deux entiers premiers entre eux et $\varphi : \left\{ \begin{array}{ccc} \mathbb{Z}/nm\mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \\ x & \mapsto & \left(\overline{x}^{[n]}, \overline{x}^{[m]}\right) \end{array} \right.$.
 - a) Montrer que pour tout $x \in \mathbb{Z}$, $\varphi(\overline{x}^{[nm]}) = (\overline{x}^{[n]}, \overline{x}^{[m]})$.
 - b) Montrer que φ est un morphisme d'anneaux.
 - c) Montrer que φ est un isomorphisme d'anneaux.
- 9) Application : Soit $n, m \in \mathbb{N}^*$ premiers entre eux et soit $a \in [0, n-1], b \in [0, m-1]$. On cherche à résoudre le système de congruences

$$\begin{cases} x \equiv a & [n] \\ x \equiv b & [m] \end{cases}.$$

- a) Montrer qu'il existe une unique solution $x_0 \in [0, nm 1]$.
- b) Exprimer l'ensemble des solutions en fonction de x_0 .
- c) Donner l'expression d'une solution particulière (on pourra utiliser un entier u tel que $nu \equiv 1 [m]$).
- **10)** Résoudre $\begin{cases} x \equiv 10 & [47] \\ x \equiv 5 & [111] \end{cases} .$

— FIN —