Scilab Textbook Companion for Engineering Physics by D. C. Ghosh, N. C. Ghosh and P. K. Haldar¹

Created by
Pankaj Biswas
Physics
Physics
Shri Mata Vaishno Devi University
College Teacher
Dr. Kamni
Cross-Checked by
Chaya

September 23, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: D. C. Ghosh, N. C. Ghosh and P. K. Haldar

Publisher: University Science, New Delhi

Edition: 1

Year: 2008

ISBN: 978-81-318-0366-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Classical Mechanics	10
2	Electricity and Magnetism	14
3	Vibration Waves and Light	19
4	Special Theory of Relativity	55
5	Quantum Mechanics	63
6	Classical Statistics and Quantum Statistics	82
7	Classical Statistics and Quantum Statistics	89
8	Laser and Fibre Optics	103
9	Nuclear Physics	107

List of Scilab Codes

Exa	1.5	Force of contact between two masses	10
Exa	1.6	Direction of motion of a ball after momentum conserva-	
		tion during collision	11
Exa	1.9	Angular velocity of the combination of two wheels	11
Exa	1.10	Common velocity of a car truck system	12
Exa	1.11	Velocity of third piece of the exploded object	13
Exa	2.12	Work done in moving a particle in force field	14
Exa	2.13	Evaluation of force integral	15
Exa	2.31	Electric flux through a surface area	15
Exa	2.32	Electric flux through an area in XY plane	16
Exa	2.33	Electric flux through a surface in YZ plane	16
Exa	2.39	Magnetic field due to a straight conductor carrying cur-	
		rent	17
Exa	2.40	Force between two current carrying straight wires	18
Exa	3.a.02	Frequency of particle executing SHM	19
Exa	3.a.03	A body executing SHM	20
Exa	3.a.04	Time period of a body oscillating in the tunnel across	
		the earth	21
Exa	3.a.05	Resultant amplitude and phase angle relative to the first	
		SHM	21
Exa	3.a.07	Two SHMs acting in the same direction	22
Exa	3.a.11	A spring disc system undergoing damped oscillation .	22
Exa	3.a.12	A mass executing damped oscillations in one dimension	24
Exa	3.a.14	A mass executing damped oscillations in one dimension	25
Exa	3.a.15	Resisting force for critically damped motion	25
Exa	3.a.16	Damped oscillatory motion	26
Exa	3.a.17	Damped simple harmonic motion	27
Exa	3.a.21	Characteristics of progressive waves	28

Exa 3.a.22 A simple harmonic wave travelling along X axis	29
Exa 3.a.23 Travelling wave characteristics and phase difference	30
Exa 3.b.101Brewster angle and angle of refraction for glass	31
Exa 3.b.102Polarizing angles for various pair of media	31
Exa 3.b.103Polarizing angle for glass	33
Exa 3.b.104Polarization by reflection	33
Exa 3.b.105Intensity ratio of two beams through analyser	34
Exa 3.b.106Percentage reduction in the intensity of the inident light	34
Exa 3.b.107Angle of rotation of polaroid to reduce the intensity .	35
Exa 3.c.202Ratio of maximum to minimum intensity in the inter-	
ference fringe system	36
Exa 3.c.203Wavelength of light from interference of fringes	37
Exa 3.c.204Fringe width from interference pattern	37
Exa 3.c.205Distance between the two coherent sources	38
Exa 3.c.206Distance between consecutive interference bands	38
Exa 3.c.207Wavelength of the light used in biprism experiment	36
Exa 3.c.208Number of fringes obtained with the given wavelength	36
Exa 3.c.209Wavelength of light from biprism interference pattern .	40
Exa 3.c.210Fringe width observed at one metre distance from biprism	41
Exa 3.c.211Wavelength of light in Newton ring experiment	41
Exa 3.c.212Radius of plano convex lens	42
Exa 3.c.213Wavelenght of light used in obtaining Newton rings	42
Exa 3.c.214Diameter of the 20th dark ring	43
Exa 3.c.215Radius of curvature of the lens and the thickness of the	
air film	44
Exa 3.c.216Newton rings observed in reflected light	44
Exa 3.c.217Smallest thickness of the glass film in which it appears	
dark	45
Exa 3.d.301Wavelength of light used in diffraction due to narrow slit	45
Exa 3.d.302Separation between the second minima on either side of	
the central maximum	46
Exa 3.d.303Distance of the first dark band from the axis	46
Exa 3.d.304Angle of diffraction for the principal maxima	47
Exa 3.d.305Wavelength of the spectral line	48
Exa 3.d.306Number of lines in one centimeter of the grating surface	49
Exa 3.d.307Highest order spectrum obtainable with the given diffrac-	
tion grating	49

Exa 3.d.30	O8Invisible third and higher order principal maxima in a
	diffraction grating
Exa 3.d.30	09Number of lines per cm on the grating
	10Minimum number of lines on the diffraction grating
	11Design of a plane transmission diffraction grating
Exa 3.d.3	12Minimum number of lines per cm in grating to just re-
	solve the D1 and D2 lines of sodium
Exa 3.d.3	13Maximum resolving power of a plane transmission grat-
	ing
Exa 3.d.3	14Maximum number of lines of a grating
Exa 4.1	Fringe shift in the Michelson Morley experiment
Exa 4.2	Apparent length of rod relative to the observer
Exa 4.3	Apparent length of a meter stick for different speeds .
Exa 4.4	Lorentz transformations applied to a rigid bar
Exa 4.5	Velocity of pi meson
Exa 4.6	Relative speed of the ships as measured by an observer
Exa 4.7	Velocity of one particle relative to the other
Exa 4.8	Velocity of the rocket as observed from the earth
Exa 4.9	Velocity of the particle when its total energy is thrice
	its rest energy
Exa 4.10	Relativisti variation of mass of electron with velocity .
Exa 4.11	An electron subjected to relativistic motion
Exa 5.2	Temperature of the surface of sun
Exa 5.3	Wavelength of maximum intensity of radiation
Exa 5.4	Kinetic energy of the ejected photoelectrons
Exa 5.5	Possibility of electron emission with the given incident
	wavelengths
Exa 5.6	Velocity of emitted photoelectrons
Exa 5.7	A photosensitive material emitting photoelectrons
Exa 5.8	Maximum wavelength of radiation which would start the emission of photoelectrons
Exa 5.9	Potassium surface exposed to UV radiation
Exa 5.9	Planck constant and threshold wavelength of metal
Exa 5.10	Energy and wavelength of incident photon
Exa 5.11	Energy lost by an X ray photon in collsion with an elec-
LAW 0.12	tron
Exa 5.13	The Compton effect stidied at different scattering angles
Exa 5 15	de Broglie wavelength associated with moving masses

Exa 5.16	Voltage applied to the electron microscope to produce	79
Exa 5.18	the required wavelength	73 74
Exa 5.19	Minimum uncertainty in momentum and kinetic energy	14
Exa 9.19	of a proton confined within nucleus	75
Exa 5.20	Minimum uncertainty in the measurement of velocity of	10
	the electron	75
Exa 5.22	Minimum uncertainty in the position of the particle .	76
Exa 5.23	Uncertainty with which position of the electron can be	
	located	77
Exa 5.24	Minimum uncertainty in energy of the excited state of	77
Erro E OE	an atom	11
Exa 5.25	Probable uncertainty in energy and frequency of gamma ray photon	78
Exa 5.29	Lowest energy of an electron in one dimensional force	10
LAG 0.25	free region	79
Exa 5.30	The excited state energies of the particle entrapped in	.0
	a one dimensional box	79
Exa 5.31	Probability of finding the particle within a given interval	80
Exa 5.32	Probability of finding a particle within given range of	
	1D box for different energy states	80
Exa 6.1	Probability of distribution of distinguishable particles	82
Exa 6.6	Most probable distribution for total energy	83
Exa 6.8	Probability for a Maxwell Boltzmann system to be in	
	given states	84
Exa 6.9	Number of microstates in the given macostate of a Fermi	
_	Dirac system	85
Exa 6.10	Number of microstates formed by particles obeying Fermi	
E 0.44	Dirac statistics	85
Exa 6.11	Fermi energy and internal energy for metallic silver at	0.0
D 0.10	0 K	86
Exa 6.12	Number of conduction electrons per cc in silver at 0 K	87
Exa 6.13 Exa 7.1	Fermi energy of conduction electrons in cesium	87 89
Exa 7.1 Exa 7.3	Atomic packing fractions of SC FCC and BCC unit cells Distance between two adjacent atoms in the NaCl	90
Exa 7.3 Exa 7.4	Type of unit cell of Cs	90
Exa 7.4 Exa 7.5	Miller indices of given planes	92
Exa 7.6	Meaning of hkl notation of planes	92

Exa 7.9	Lengths of intercepts along y and z axis	94
Exa 7.10	Interplanar spacing for a set of planes in a cubic lattice	95
Exa 7.11	Determining Planck constant from given set of X ray	
	data	95
Exa 7.12	Maximum speed of striking electron and the shortest	
	wavelength of X ray produced	96
Exa 7.13	Interatomic spacing using Bragg relation	97
Exa 7.14	Value of Planck constant from Bragg relation	98
Exa 7.15	Diffraction of X rays from a crystal	98
Exa 7.16	Wavelength of X rays from grating space of the rock salt	99
Exa 7.17	Diffraction of X rays by the calcite crystal	100
Exa 7.18	Interatomic spacing for given crystal planes	101
Exa 7.19	Smallest angle between the crystal plane and the X ray	_
	beam	101
Exa 8.1	Image produced by laser beam	103
Exa 8.2	Pumping energy required for He Ne laser transition	104
Exa 8.3	Wavelength of radiation emitted at room temperature	104
Exa 8.4	Refractive index of the cladding in an optical fibre	105
Exa 8.5	Numerical aperture and acceptance angle of the optical	
	fibre	105
Exa 9.1.1	Binding energy per nucleon for Ni	107
Exa 9.1.2	Binding energy per nucleon for deutron	108
Exa 9.1.3	Packing fraction and binding energy per nucleon for oxy-	
	gen	108
Exa 9.1.4	Atomic mass of neon	109
Exa 9.2.1	Average number of photons pe cubic metre in a monochro-	
	matic beam	110
Exa 9.2.2	Average number of photons pe cubic metre in a monochro-	
	matic beam	110
Exa 9.2.3	Photoelectric effect with silver	111
Exa 9.2.4	Work function of the metallic surface	112
Exa 9.2.5	Wavelength of the scattered photon	113
Exa 9.2.6	de Broglie wavelength of the valence electron in metallic	110
	sodium	113
Exa 9.2.7	de Broglie wavelength of a moving electron	114
Exa 9.2.8	Uncertainty in energy and frequency of emitted light .	114
Exa 9.2.9	Shortest wavelength present in the radiation from an X	
	ray machine	115

Exa	9.2.11	Q value of nuclear reaction	116
Exa	9.2.12	Threshold energy for the reactions	117
Exa	9.2.13	Finding unknown particles in the nuclear reactions	118
Exa	9.2.14	Comptom scattering	120
Exa	9.2.16	Miller indices for the lattice planes	121
Exa	9.2.19	Glancing angles for the second and third order reflections	122

Chapter 1

Classical Mechanics

Scilab code Exa 1.5 Force of contact between two masses

```
1 // Scilab Code Ex1.5: Page-11 (2008)
2 clc; clear;
3 \text{ m1} = 2; // Mass of first body, kg
             // Mass of second body, kg
4 m2 = 1;
5 F = 3; // The horizontal force applied to the
     mass m1, N
6 F_prime = m2/(m1 + m2)*F; // Force of contact
     between m1 and m2, N
7 printf("\nThe force of contact between m1 and m2 =
     \%3.1 \, \mathrm{f} N", F_prime);
8 F_prime = m1/(m1 + m2)*F; // Force of contact
     when F is applied to m2, N
9 printf("\nThe force of contact when F is applied to
     m2 = \%3.1 f N, F_prime);
10
11 // Result
12 // The force of contact between m1 and m2 = 1.0 N
13 // The force of contact when F is applied to m2 =
     2.0 N
```

Scilab code Exa 1.6 Direction of motion of a ball after momentum conservation during collision

Scilab code Exa 1.9 Angular velocity of the combination of two wheels

```
8 omega = (I1*omega1 + I2*omega2)/(I1 + I2); //
    Angular speed of the combination of two wheels, r
    .p.m.
9 printf("\nThe angular speed of the combination of
    two wheels = %3.0 f r.p.m.", omega);
10
11 // Result
12 // The angular speed of the combination of two
    wheels = 250 r.p.m.
```

Scilab code Exa 1.10 Common velocity of a car truck system

```
1 // Scilab Code Ex1.10: : Page-14 (2008)
2 clc; clear;
              // Mass of the car, kg
3 m1 = 1200;
4 m2 = 3600;
                // Mass of the truck, kg
             // Speed of the car, m/s
5 u1 = 30;
             // Speed of the truck, m/s
6 u2 = 20;
7 theta = 60; // Direction of motion of the truck w
     .r.t. that of car, degree
  // As m1*u1 + m2*u2 = (m1 + m2)*v, solving for v
     along x and y directions
9 v_x = (m1*u1 + m2*u2*cosd(theta))/(m1 + m2);
     Common speed along x-direction, m/s
10 u1 = 0;
            // The speed of the car after
     interlocking with the truck, m/s
11 v_y = (m1*u1 + m2*u2*sind(theta))/(m1 + m2);
     Common speed along y-direction, m/s
12 v = sqrt(v_x^2 + v_y^2); // Common speed of the
     car-truck system, m/s
                           // Direction of common
13 theta = atand(v_y/v_x);
     velocity w.r.t. that of car, degree
14 printf("\nThe common speed of the car-truck system =
      \%4.1 \text{ f m/s}", v);
15 printf("\nThe direction of common velocity = \%4.1 \,\mathrm{f}
```

```
degree north of east", theta);
16
17 // Result
18 // The common speed of the car-truck system = 19.8 m
/s
```

Scilab code Exa 1.11 Velocity of third piece of the exploded object

```
1 // Scilab Code Ex1.11: Page-14 (2008)
2 clc; clear;
3 v1 = 20;
               // Velocity of first piece, m/s
               // Velocity of second piece, m/s
4 v2 = 30;
5 // From conservation of momentum, in x-direction
6 // m*v1*cosd(0)+m*v2*cosd(45)+m*v3*cosd(theta) = 0,
      solving for v3*cosd(theta)
7 v3_{cos_{theta}} = -(v1*cosd(0)+v2*cosd(45));
      component of v3 along theta, m/s
8 // From conservation of momentum, in y-direction
9 / m*v1*sind(0)-m*v2*sind(45)+m*v3*sind(theta) = 0
      solving for v3*sind(theta)
10 v3_{sin_{theta}} = -(v1*sind(0)-v2*sind(45));
                                                   // y-
      component of v3 along theta, m/s
11 theta = atand(v3_sin_theta/v3_cos_theta);
      Direction of velocity of third piece, degree
12 \text{ v3} = -(\text{v1}*\cos d(0) + \text{v2}*\cos d(45))/\cos d(\text{theta}+180);
      // Velocity of third piece, m/s
13 printf("\nThe velocity of third piece is %4.1 f m/s
      towards %d degree north of west", v3, ceil(theta
      +180));
14
15 // Result
16 // The velocity of third piece is 46.4 m/s towards
      153 degree north of west
```

Chapter 2

Electricity and Magnetism

Scilab code Exa 2.12 Work done in moving a particle in force field

```
1 // Scilab Code Ex2.12: Page-80 (2008)
2 clc; clear;
3 t = poly(0, 't');
4 x = t^2 + 1;
5 y = 2*t^2;
6 z = t^3;
7 F = [3*x*y -5*z 10*x]; // Force acting on the
     particle, N
8 t1 = 1; // lower limit
9 t2 = 2;
            // upper limit
10 dr = [derivat(x); derivat(y); derivat(z)]; //
     Infinitesimal displacement, m
              // Work done or infinitesimally small
11 dW = F*dr;
     displcement, J
12 work_exp = sci2exp(dW); // Convert the polynomial
     to the expression
13 W = integrate(work_exp, 't', t1, t2); // Total
     work done in moving the particle in a force field
14 printf("\nThe total work done in moving the particle
      in a force field = \%d J", W);
```

```
15
16 // Result
```

Scilab code Exa 2.13 Evaluation of force integral

```
1 // Scilab Code Ex2.13: Page-80 (2008)
2 clc; clear;
3 x = poly(0, 'x');
4 y = x^2-4;
5 F = [x*y (x^2 + y^2)]; // Force acting on the
     particle, N
6 \times 1 = 2; // lower limit
7 \times 2 = 4; // upper limit
8 dr = [derivat(x); derivat(y);]; // Infinitesimal
     displacement, m
9 dW = F*dr;
              // Work done or infinitesimally small
     displcement, J
10 work_exp = sci2exp(dW); // Convert the polynomial
      to the expression
11 W = integrate(work_exp, 'x', x1, x2); // Total
     work done in moving the particle in a force field
12 printf("\nThe total work done in moving the particle
      in the x-y plane = \%d J", W);
13
14 // Result
15 // The total work done in moving the particle in the
      x-y plane = 732 J
```

Scilab code Exa 2.31 Electric flux through a surface area

```
1 // Scilab Code Ex2.31: Page-93 (2008)
2 clc; clear;
```

Scilab code Exa 2.32 Electric flux through an area in XY plane

```
1 // Scilab Code Ex2.32: Page-93 (2008)
2 clc; clear;
3 E = [8 4 3];
                  // Coefficients of i, j and k in the
      electric field, N/C
4 S = [0; 0; 100]; // Coefficients of i, j and k in
      the area vector, Sq. m
5 \text{ phi}_E = E*S;
                 // Electric flux through the surface
     N-Sq.m/C
6 printf("\nThe electric flux through the area in XY
     plane = \%d N-Sq.m/C", phi_E);
7
8 // Result
9 // The electric flux through the area in XY plane =
     300 \text{ N-Sq.m/C}
```

Scilab code Exa 2.33 Electric flux through a surface in YZ plane

```
1 // Scilab Code Ex2.33: Page-93 (2008)
```

```
2 clc; clear;
3 E = [2 3 4];  // Coefficients of i, j and k in the
        electric field, N/C
4 S = [10; 0; 0];  // Coefficients of i, j and k in
        the area vector, Sq. m
5 phi_E = E*S;  // Electric flux through the surface
        , N-Sq.m/C
6 printf("\nThe electric flux through the surface in
        YZ plane = %d N-Sq.m/C", phi_E);
7
8 // Result
9 // The electric flux through the surface in YZ plane
        = 20 N-Sq.m/C
```

Scilab code Exa 2.39 Magnetic field due to a straight conductor carrying current

```
1 // Scilab Code Ex2.39: Page-96 (2008)
2 clc; clear;
3 \text{ mu}_0 = 4*\%\text{pi}*1\text{e}-007; // Absolute magnetic
     permeability of free space, N/ampere-square
4 I = 15; // Current through the wire, A
5 x = 1e-002; // Distance of observation point from
      the wire, m
6 B = mu_0/(4*\%pi)*2*I/x; // Magnetic field at 1 cm
      distance, T
7 printf("\nThe magnetic field due to the current
     carrying wire at %d cm distance = %1.0e tesla", x
     /1e-002, B);
8 \times = 5; // Distance of observation point from the
     infinite straight conductor, m
  I = 100; // Current through the straight
     conductor, A
10 B = mu_0/(4*\%pi)*2*I/x; // Magnetic field at 1 cm
      distance, T
```

Scilab code Exa 2.40 Force between two current carrying straight wires

```
1 // Scilab Code Ex2.40: Page-96 (2008)
2 clc; clear;
3 \text{ mu}_0 = 4*\%\text{pi}*1\text{e}-007; // Absolute magnetic
      permeability of free space, N/ampere-square
4 I1 = 30; // Current through the first wire, A
              // Current through the second wire, A
5 	 12 = 40;
6 x = 2; // Separation distance between two wires,
7 F = mu_0/(4*\%pi)*2*I1*I2/x; // Force between two
      current carrying straight wires, N
8 printf("\nThe force between two current carrying
      straight wires = \%3.1e N", F);
9
10 // Result
11 // The force between two current carrying straight
      wires = 1.2e - 004 \text{ N}
```

Chapter 3

Vibration Waves and Light

Scilab code Exa 3.a.02 Frequency of particle executing SHM

```
1 // Scilab Code Ex3a.a.2: Page-132 (2008)
2 clc; clear;
            // Mass of the particle, g
3 m = 10;
4 x = poly(0, 'x');
5 V = 50*x^2 + 100;
                     // Potential field surrounding
     the particle, erg/g
6 U = m*V; // Potential energy of the particle
     field system, erg
7 F = -derivat(U); // Force acting on the particle,
      dyne
8 // As F = -m*a = -m*omega^2*x = -m*(2\%pi*f)^2*x,
     solving for f
9 f = sqrt(eval(pol2str(-pdiv(F,x)/m)))/(2*%pi);
      Frequency of oscillations of the particle
     executing SHM, Hz
10 printf("\nThe frequency of oscillations of the
     particle executing SHM = \%4.2 \, \text{f} Hz", f);
11
12 // Result
13 // The frequency of oscillations of the particle
     executing SHM = 1.59 Hz
```

Scilab code Exa 3.a.03 A body executing SHM

```
1 // Scilab Code Ex3a.a.3: Page -133 (2008)
2 clc; clear;
               // Velocity of the body at 3 cm
3 v1 = 80;
      displacement, cm/s
4 v2 = 60;
              // Velocity of the body at 4 cm
      displacement, cm/s
             // Displacement of the body at velocity
  x1 = 3;
      of 80 \text{ cm/s}
6 \times 2 = 4;
             // Displacement of the body at velocity
      of 60 \text{ cm/s}
7 // As v = \text{omega} * \text{sqrt} (a^2 - x^2), solving for a
8 = poly(0, 'a');
9 a = roots(v1^2*(a^2-16) - v2^2*(a^2 - 9));
10 omega = v1/sqrt(a(1)^2 - x1^2);
                                     // Angular
      ferquency of the oscillations, rad/s
             // Maximum displacement, cm
12 // As x = a*sin(omega*t), solving for t
13 t_{ex} = asin(x/a(1))/omega; // Time taken to reach
      the +ve extremity, s
14 d = a(1) - 2.5;
                      // Distance of the point from the
      mean position, cm
15 t = asin(d/a(1))/omega;
                             // Time taken to travel
     from mean position to positive extremity, s
16 printf("\nThe time taken to travel from 2.5 cm from
     +ve extremity = \%5.3 \, \text{f s}, t_ex - t);
17
18 // Result
19 // The time taken to travel from 2.5 cm from +ve
      extremity = 0.052 s
```

Scilab code Exa 3.a.04 Time period of a body oscillating in the tunnel across the earth

```
// Scilab Code Ex3a.a.4: Page-134 (2008)
clc; clear;
R = 6.4e+006; // Radius of the earth, m
g = 10; // Acceleration due to gravity, m/sec-
square
T = 2*%pi*sqrt(R/g); // Time period of
oscillations of the body, s
printf("\nThe time period of oscillations of the
body = %4.1 f min", T/60);

// Result
// The time period of oscillations of the body =
83.8 min
```

Scilab code Exa 3.a.05 Resultant amplitude and phase angle relative to the first SHM

```
1 // Scilab Code Ex3a.a.5: Page-135 (2008)
2 clc; clear;
                // Phase of the first SHM, degree
3 \text{ phi1} = 0;
               // Phase of the second SHM, degree
4 \text{ phi2} = 60;
                 // Phase of the third SHM, degree
5 \text{ phi3} = 90;
6 \text{ a1} = 1.0;
                // Amplitude of the first SHM, cm
                // Amplitude of the second SHM, cm
7 	 a2 = 1.5;
8 \quad a3 = 2.0:
               // Amplitude of the third SHM, cm
9 A = sqrt((a1 + a2*cosd(phi2)+a3*cosd(phi3))^2 + (a2*
     sind(phi2)+a3*sind(phi3))^2);
                                     // Resultant
     amplitude relative to the first SHM, cm
10 phi = atand((a2*sind(phi2)+a3*sind(phi3))/(a1 + a2*
     cosd(phi2)+a3*cosd(phi3))); // Resultant phase
       angle relative to the first SHM, degree
11 printf("\nThe resultant amplitude and phase angle
```

```
relative to the first SHM = %4.2 f cm and %2d degrees respectively", A, phi);

12
13 // Result
14 // The resultant amplitude and phase angle relative to the first SHM are 3.73 cm and 62 degrees respectively
```

Scilab code Exa 3.a.07 Two SHMs acting in the same direction

```
1 // Scilab Code Ex3a.a.7: Page -136 (2008)
2 clc; clear;
3 \text{ phi1} = 0;
               // Phase of the first SHM, degree
                // Phase of the second SHM, degree
4 \text{ phi2} = 45;
               // Amplitude of the first SHM, m
5 a1 = 0.005;
6 	 a2 = 0.002;
                 // Amplitude of the second SHM, m
7 A = sqrt((a1 + a2*cosd(phi2))^2 + (a2*sind(phi2))^2)
         // Resultant amplitude relative to the first
      SHM, m
8 phi = atand(a2*sind(phi2)/(a1 + a2*cosd(phi2)));
     // Resultant phase angle relative to the first
     SHM, degree
9 printf("\nThe amplitude of the resultant
     displacement and phase angle relative to the
     first SHM are %7.5 f m and %5.2 f degrees
     respectively", A, phi);
10
11 // Result
12 // The amplitude of the resultant displacement and
     phase angle relative to the first SHM are 0.00657
      m and 12.43 degrees respectively
```

Scilab code Exa 3.a.11 A spring disc system undergoing damped oscillation

```
1 // Scilab Code Ex3a.b.1: Page-138 (2008)
2 clc; clear;
3 m = 100;
             // Mass of the horizontal disc, g
              // Time during which the amplitude
4 t = 60;
      reduces to half of its undamped value, s
             // Frequency of oscillations of the
5 f = 10;
     system, Hz
6 omega_prime = 2*%pi*f;
                            // Angular frequency of
      the oscillations, rad/s
            // Assume the amplitude of undamped
  AO = 1;
      oscillations to be unity, cm
8 // As A = A0*exp(-k*t), solving for k
9 \quad A = A0/2;
              // Amplitude of damped oscillations
      after 1 min, cm
10 k = log(AO/A)/t; // Resisting force per unit mass
      per unit velocity, nepers/sec
11 r = 2*k*m; // Resistive force constant, sec/cm
12 tau = 1/k; // Relaxation time, sec
13 Q = m*omega_prime/r; // Quality factor
14 s = m*(omega_prime^2 + k^2); // Force constant of
       the spring, dynes/Sq.cm
15 printf("\nThe resistive force constant = \%4.2 \,\mathrm{f} dyne-
      sec/cm", r);
16 printf ("\nThe relaxation time of the system = \%4.2 \,\mathrm{f}
      sec", tau);
17 printf("\nThe quality factor, Q = \%4.2 f", Q);
18 printf ("\nThe force constant of the spring = \%4.2e
     dyne/Sq.cm", s);
19
20 // Result
21 // The resistive force constant = 2.31 dyne-sec/cm
22 // The relaxation time of the system = 86.56 sec
23 // The quality factor, Q = 2719.42
24 // The force constant of the spring = 3.95\,\mathrm{e} + 005 dyne
     /\mathrm{Sq.cm}
```

Scilab code Exa 3.a.12 A mass executing damped oscillations in one dimension

```
1 // Scilab Code Ex3a.b.2: Page-139 (2008)
2 clc; clear;
3 function m = check_motion_type(k, omega0)
       if k > omega0 then
           m = 'aperiodic';
5
       else if k == omega0 then
6
                m = 'criticallydamped';
7
           else if k < omega0 then
8
                    m = 'oscillatory';
9
10
                end
11
           end
12
       end
13 endfunction
14 m = 10; // Mass of the body, g
15 s = 10;  // Restoring force, dyne/cm
16 r = 2;  // Resistive force constant, dyne.sec/cm
17 k = r/(2*m); // Resisting force, nepers/sec
18 // As omega0^2 = s/m, solving for omega0
19 omega0 = sqrt(s/m); // Angular frequency, rad/s
20 motion = check_motion_type(k, omega0); // Check
      for the type of motion
21 r_{new} = 2*sqrt(m*s);
                         // Resistive force constant,
       dyne-sec/cm
22 m = r^2/(4*s);
                    // Mass for which the given forces
       makes the motion critically damped, g
23 printf("\nThe motion is %s in nature", motion);
24 printf("\nThe resistive force constant = %d dyne-sec
      /cm", r_new);
25 printf("\nThe mass for which the given forces makes
      the motion critically damped = \%3.1 \, \text{f} g", m);
26
```

```
27 // Result
28 // The motion is oscillatory in nature
29 // The resistive force constant = 20 dyne-sec/cm
30 // The mass for which the given forces makes the motion critically damped = 0.1 g
```

Scilab code Exa 3.a.14 A mass executing damped oscillations in one dimension

```
// Scilab Code Ex3a.b.4: Page-140 (2008)
clc; clear;
m = 1;    // Mass of the suspended body, kg
s = 25;    // Stifness constant of the spring, N/m
r = poly(0, 'r');
// As f0/f_prime = 2/sqrt(3), solving for r
r = roots(4*(s/m-r^2/(4*m^2))-3*s/m);    // Damping factor, kg/sec
printf("\nThe damping factor of damped oscillations = %d kg/sec", r(1));
// Result
// The damping factor of damped oscillations = 5 kg/sec
```

Scilab code Exa 3.a.15 Resisting force for critically damped motion

```
1
2  // Scilab Code Ex3a.b.5: Page-141 (2008)
3  clc; clear;
4  function m = check_motion_type(k, omega0)
5     if k > omega0 then
6        m = 'aperiodic';
7     else if k == omega0 then
```

```
m = 'criticallydamped';
8
9
           else if k < omega0 then
                   m = 'oscillatory';
10
11
               end
12
           end
13
       end
14 endfunction
15 m = 10;
            // Mass of the oscillating body, g
             // Resisting force, dyne-sec/cm
16 r = 2;
            // Restoring force, dyne/cm
                 // Resisting force, nepers/sec
18 k = r/(2*m);
19 // As omega0^2 = s/m, solving for omega0
20 omega0 = sqrt(s/m); // Angular frequency, rad/s
21 motion = check_motion_type(k, omega0);
                                            // Check
      for the type of motion
                    // Resistive force constant for
22 r = 2*sqrt(m*s);
      critical damping, dyne-sec/cm
23 printf("\nThe motion is %s in nature", motion);
24 printf("\nThe resistive force constant for critical
      damping = \%4.1 \, \text{f} \, \text{dyne-sec/cm}, r);
25
26 // Result
27 // The motion is oscillatory in nature
28 // The resistive force constant for critical damping
      = 14.1 \, \text{dyne-sec/cm}
```

Scilab code Exa 3.a.16 Damped oscillatory motion

```
oscillations to be unity, erg
7 // As E = E0*exp(-k*t) and E/E0 = 1/e, solving for
8 E = E0/%e; // Energy of damped oscillations after
      50 \, \sec, \, erg
9 k = log(E0/E)/t;
                    // Resisting force per unit mass
      per unit velocity, nepers/sec
10 p = m*k; // A resistive force constant, N-s/m
11 omega0 = sqrt(s/m);
                       // Angular frequency in the
     absence of damping, rad/sec
12 omega_prime = sqrt(omega0^2 - k^2/4); // Angular
     frequency when damping takes place, rad/sec
13 Q = omega_prime/k; // Quality factor
14 printf("\nThe resistive force constant, p = \%1.0\,\mathrm{e} N-
     s/m", p);
15 printf("\nThe quality factor, Q = %d", ceil(Q));
16
17 // Result
18 // The resistive force constant, p = 2e-003 \text{ N-s/m}
19 // The quality factor, Q=500
```

Scilab code Exa 3.a.17 Damped simple harmonic motion

```
1 // Scilab Code Ex3a.b.7: Page-142 (2008)
2 clc; clear;
3 t = 10;    // Time during which the amplitude
    reduces to 1/10th of its undamped value, s
4 f = 200;    // Frequency of oscillations of the
    system, Hz
5 omega0 = 2*%pi*f;    // Angular frequency of the
    oscillations, rad/s
6 A0 = 1;    // Assume the amplitude of undamped
    oscillations to be unity, cm
7 // As A = A0*exp(-k*t), solving for k
8 A = A0/10;    // Amplitude of damped oscillations
```

```
after 10 sec, cm
9 k = \log(A0/A)/t;
                     // Resisting force per unit mass
      per unit velocity, nepers/sec
10 tau = 1/(2*k);
                    // Relaxation time, sec
11 Q = omega0*tau; // Quality factor
12 E0 = 1;
            // Assume energy of undamped oscillations
      to be unity, erg
                // Energy of damped oscillations after
13 E = E0/10;
      t sec, erg
14 // As E = E0*exp(-2*k*t), solving for t
15 t = 1/(2*k)*log(E0/E); // Time during which the
      energy falls to 1/10 of its initial value, sec
16 printf("\nThe relaxation time = \%4.2 \, \text{f sec}", tau);
17 printf("\nThe quality factor, Q = \%d", Q);
18 printf("\nThe time during which the energy falls to
      1/10 of its initial value = %d sec", t);
19 printf ("\nThe damping constant, k = \%4.2 \, f", k);
20
21 // Result
22 // The relaxation time = 2.17 sec
23 // The quality factor, Q = 2728
24 // The time during which the energy falls to 1/10 of
      its initial value = 5 sec
25 // The damping constant, k = 0.23
26 // The answer for Q is given wrongly in the textbook
```

Scilab code Exa 3.a.21 Characteristics of progressive waves

Scilab code Exa 3.a.22 A simple harmonic wave travelling along X axis

```
1 // Scilab Code Ex3a.c.2: Page-144 (2008)
2 clc; clear;
3 // Comparing with the standard progressive wave
      equation, we have
           // Amplitude of the wave, m
5 nu = 0.2; // Frequency of the wave, Hz
6 lambda = 1/0.5; // Wavelength of the wave, m
                     // Wave velocity, m/s
7 v = nu*lambda;
8 printf("\nThe amplitude of the wave = \%3.1 \,\mathrm{f} m", a);
9 printf("\nThe wavelength of the wave = \%3.1 \, \text{f m}",
      lambda);
10 printf("\nThe velocity of the wave = \%3.1 \, \text{f m/s}", v);
11 printf("\nThe frequency of the wave = \%3.1 \, \text{f Hz}", nu)
12
13 // Result
14 // The amplitude of the wave = 5.0 \text{ m}
15 // The wavelength of the wave = 2.0 \text{ m}
```

```
16 // The velocity of the wave = 0.4 \text{ m/s}
17 // The frequency of the wave = 0.2 \text{ Hz}
```

Scilab code Exa 3.a.23 Travelling wave characteristics and phase difference

```
1 // Scilab Code Ex3a.c.3: Page-144 (2008)
2 clc; clear;
3 // Comparing with the standard progressive wave
      equation, we have
          // Amplitude of the wave, cm
5 \text{ nu} = 4/2;
                // Frequency of the wave, Hz
6 \text{ lambda} = 2/0.02;
                       // Wavelength of the wave, cm
7 v = nu*lambda;
                     // Wave velocity, cm/s
                     // Path difference between two
8 \text{ delta_x} = 20;
      particles, cm
9 delta_phi = delta_x*2*%pi/lambda*180/%pi;
      Phase difference between two particles, degree
10 printf("\nThe amplitude of the wave = \%3.1 f cm", a);
11 printf("\nThe wavelength of the wave = \%3.1 \, \text{f cm}",
      lambda);
12 printf("\nThe velocity of the wave = \%3.1 \text{ f cm/s}", v)
13 printf("\nThe frequency of the wave = \%d Hz", nu);
14 printf("\nThe phase difference between two particles
      = %d degree", delta_phi);
15
16 // Result
17 // The amplitude of the wave = 8.0 cm
18 // The wavelength of the wave = 100.0 cm
19 // The velocity of the wave = 200.0 \text{ cm/s}
20 // The frequency of the wave = 2 Hz
21 // The phase difference between two particles = 72
      degree
```

Scilab code Exa 3.b.101 Brewster angle and angle of refraction for glass

Scilab code Exa 3.b.102 Polarizing angles for various pair of media

```
// Scilab Code Ex3b.2: Page-163 (2008)
clc; clear;
// Function to convert degree to degree-minute
function [d,m]= deg2deg_min(deg)
d = int(deg);
m = (deg - d)*60;
endfunction
mu_air = 1; // Refractive index fo air
mu_glass = 1.54; // Refractive index of glass
mu_water = 1.33; // Refractive index of water
// Air to glass incidence
i_p = atand(mu_glass/mu_air); // Angle of
polarization for air to glass incidence, degree
```

```
13 printf("\nFor air to glass, i_p = \%d degree", i_p);
14 // glass to air incidence
15 i_p = atand(mu_air/mu_glass); // Angle of
     polarization for glass to air incidence, degree
16 printf("\nFor glass to air, i_p = \%d degree", ceil(
     i_p));
17 // Water to glass incidence
18 i_p = atand(mu_glass/mu_water); // Angle of
     polarization for water to glass incidence, degree
  [d,m] = deg2deg_min(i_p); // Call function to
     convert to deg-min
20 printf("\nFor water to glass, i_p = %d degree %d min
     ", d, m);
21 // Glass to water incidence
22 i_p = atand(mu_water/mu_glass); // Angle of
     polarization for glass to water incidence, degree
23 [d,m] = deg2deg_min(i_p); // Call function to
     convert to deg-min
24 printf("\nFor glass to water, i_p = %d degree %d min
     ", d, m);
25 // Air to water incidence
26 i_p = atand(mu_water/mu_air);
                                 // Angle of
     polarization for air to water incidence, degree
  [d,m] = deg2deg_min(i_p); // Call function to
     convert to deg-min
28 printf("\nFor air to water, i_p = \%d degree \%d min",
      d, m);
29 // Water to air incidence
30 i_p = atand(mu_air/mu_water); // Angle of
     polarization for water to airincidence, degree
31 [d,m] = deg2deg_min(i_p); // Call function to
     convert to deg-min
32 printf("\nFor water to air, i_p = \%d degree %d min",
      d, m);
33
34 // Result
35 // For air to glass, i_p = 57 degree
36 // For glass to air, i_p = 33 degree
```

```
37 // For water to glass, i_p = 49 degree 11 min 38 // For glass to water, i_p = 40 degree 48 min 39 // For air to water, i_p = 53 degree 3 min 40 // For water to air, i_p = 36 degree 56 min
```

Scilab code Exa 3.b.103 Polarizing angle for glass

```
// Scilab Code Ex3b.3: Page-163 (2008)
clc; clear;
C = 40; // Critical angle for glass to air
mu = 1/sind(C); // Refractive index of glass w.r.
t. air
i_p = atand(mu); // Polarizing angle for glass,
degree
printf("\nThe polarizing angle for glass = %4.1f
degree", i_p);

Result
// Result
// The polarizing angle for glass = 57.3 degree
```

Scilab code Exa 3.b.104 Polarization by reflection

```
1 // Scilab Code Ex3b.4: Page-164 (2008)
2 clc; clear;
3 i = 60; // Angle of incidence, degree
4 i_p = i; // Angle of polarization, degree
5 mu = tand(i_p); // Refractive index of the medium
6 r = 90 - i; // Angle of refraction, degree
7 printf("\nThe refractive index of transparent medium = %5.3 f", mu);
8 printf("\nThe angle of refraction, r = %d degree", r
);
```

Scilab code Exa 3.b.105 Intensity ratio of two beams through analyser

```
1 // Scilab Code Ex3b.5: Page-164 (2008)
2 clc; clear;
3 \text{ theta_A} = 30;
                    // Angle between principal sections
       of polariser and analyser for beam A, degree
4 \text{ theta_B} = 60;
                    // Angle between principal sections
       of polariser and analyser for beam B, degree
5 // As I_A * cosd (theta_A)^2 = I_B * cosd (theta_B)^2
      solving for I ratio
6 I_ratio = cosd(theta_B)^2/cosd(theta_A)^2;
       intensity ratio of the two beams
7 printf("\nThe intensity ratio of the two beams = \%4
      .2 f", I_ratio);
8
9 // Result
10 // The intensity ratio of the two beams = 0.33
```

Scilab code Exa 3.b.106 Percentage reduction in the intensity of the inident light

```
1 // Scilab Code Ex3b.6: Page -165 (2008) 2 clc; clear;
```

```
3 theta = [30 45 60 90]; // Angles between
     principal sections of polariser and analyser,
     degree
4 \text{ for } i = 1:1:4
       P_{red} = (1-cosd(theta(i))^2)*100;
          Percentage reduction in intensity of incident
           light
       printf("\nFor theta = %d degree, percentage
          reduction = \%1.0 f percent", theta(i), P_red);
7 end
8
9 // Result
10 // For theta = 30 degree, percentage reduction = 25
     percent
11 // For theta = 45 degree, percentage reduction = 50
     percent
12 // For theta = 60 degree, percentage reduction = 75
     percent
13 // For theta = 90 degree, percentage reduction = 100
      percent
```

Scilab code Exa 3.b.107 Angle of rotation of polaroid to reduce the intensity

```
1 // Scilab Code Ex3b.7: Page-165 (2008)
2 clc; clear;
3 // For half reduction in intensity
4 I_ratio = 1/2; // Intensity ratio
5 theta = acosd(sqrt(I_ratio)); // Angle of rotation of polaroid, degree
6 printf("\nFor half reduction in intensity, the angle of rotation = %d degree", theta);
7 // For one-fourth reduction in intensity
8 I_ratio = 1/4; // Intensity ratio
9 theta = acosd(sqrt(I_ratio)); // Angle of
```

Scilab code Exa 3.c.202 Ratio of maximum to minimum intensity in the interference fringe system

```
1 // Scilab Code Ex3c.2: Page-184 (2008)
2 clc; clear;
3 I2 = 1;
              // Assume intensity of light beam from
      the second source to be unity
4 I1 = 81*I2;
                  // Intensity of light beam from the
      first source
5 a = sqrt(I1);
                     // Width of the first slit, mm
                    // Width of the second slit, mm
6 b = sqrt(I2);
7 I_max = (1+a/b)^2;
                        // Maximum intensity in the
      fringe pattern
8 I_min = (1-a/b)^2; // Minimum intensity in the
      fringe pattern
9 fact = gcd([I_max, I_min]); // Find l.c.m. of I_max
     and I_min
10 printf("\nThe ratio of maximum to minimum intensity
      in the fringe system, I_{\text{max}}:I_{\text{min}} = \%d:\%d, I_{\text{max}}
     /4, I_min/4);
11
12 // Result
13 // The ratio of maximum to minimum intensity in the
      fringe system, I_{\text{max}}:I_{\text{min}} = 25:16
```

Scilab code Exa 3.c.203 Wavelength of light from interference of fringes

```
// Scilab Code Ex3c.3: Page-184 (2008)
clc; clear;
d = 0.1; // Separation between the two slits, cm
D = 100; // Distance between the source and the slit, cm
bita = 0.05; // Fringe width, cm
lambda = bita*d/D; // Wavelength of light, cm
printf("\nThe wavelength of light used = %4d angstrom", lambda/1e-008);

// Result
// The wavelength of light used = 5000 angstrom
```

Scilab code Exa 3.c.204 Fringe width from interference pattern

```
// Scilab Code Ex3c.4: Page-184 (2008)
clc; clear;
d = 0.3; // Separation between the two slits, cm
D = 60; // Distance between the source and the slit, cm
slit, cm
lambda = 59e-006; // Wavelength of light, cm
bita = lambda*D/d; // Fringe width, cm
printf("\nThe fringe width = %4.2e cm", bita);
// Result
// The fringe width = 1.18e-002 cm
```

Scilab code Exa 3.c.205 Distance between the two coherent sources

```
// Scilab Code Ex3c.5: Page-185 (2008)
clc; clear;
D = 80;  // Distance between the source and the slit, cm
lambda = 5890e-008;  // Wavelength of light, cm
bita = 9.424e-002;  // Fringe width, cm
d = lambda*D/bita;  // Separation between the two slits, cm
printf("\nThe distance between the two coherent sources = %4.2 f cm", d);

// Result
// The distance between the two coherent sources = 0.05 cm
```

Scilab code Exa 3.c.206 Distance between consecutive interference bands

```
1 // Scilab Code Ex3c.6: Page-185 (2008)
2 clc; clear;
3 D = 100;
               // Distance between the source and the
      slit, cm
4 lambda = 5893e-008; // Wavelength of light, cm
                   // Distance between the images of
  d1 = 4.05e-001;
      the two slits in one position, cm
  d2 = 2.90e-001;
                    // Distance between the images of
      the two slits in second position, cm
7 d = sqrt(d1*d2); // Separation between the two
     slits, cm
8 bita = lambda*D/d; // Fringe width, cm
9 printf("\nThe distance between consecutive
     interference bands = \%6.4 \,\mathrm{f} cm, bita);
10
11 // Result
```

```
12 // The distance between consecutive interference bands = 0.0172 cm
```

Scilab code Exa 3.c.207 Wavelength of the light used in biprism experiment

```
1 // Scilab Code Ex3c.7: Page-185 (2008)
2 clc; clear;
3 D = 1.2;
              // Distance between the source and the
     slit, m
4 d = 7.5e-004; // Separation between the two slits,
5 n = 20; // Number of fringes crossed in the field
      of view
6 bita = 1.888e-002/n; // Fringe width, cm
7 lambda = bita*d/D; // Wavelength of light, cm
8 printf("\nThe wavelength of the light used in
     biprism experiment = %4d angstrom", lambda/1e
     -010);
9
10 // Result
11 // The wavelength of the light used in biprism
     experiment = 5900 angstrom
```

Scilab code Exa 3.c.208 Number of fringes obtained with the given wavelength

Scilab code Exa 3.c.209 Wavelength of light from biprism interference pattern

```
1 // Scilab Code Ex3c.9: Page-186 (2008)
2 clc; clear;
3 D = 100;
                // Distance between the source and the
      slit, cm
4 bita = 0.0135;  // Fringe width, cm
5 alpha = %pi/360;  // Angle of refracting face with
       the base of biprism, radian
               // Refractive index of the material of
6 \text{ mu} = 1.5;
      biprism
7 x = 50;
              // Distance between slit and the biprism,
       cm
8 d = 2*(mu-1)*x*alpha;
                            // Separation between the
      two virtual slits, cm
  lambda = bita*d/D;
                         // Wavelength of light, cm
10 printf("\nThe wavelength of light from biprism
      interference pattern = %4d angstrom", lambda/1e
      -008);
11
12 // Result
13 // The wavelength of light from biprism interference
```

Scilab code Exa 3.c.210 Fringe width observed at one metre distance from biprism

```
1 // Scilab Code Ex3c.10: Page-187 (2008)
2 clc; clear;
3 \text{ mu} = 1.5;
               // Refractive index of the material of
     biprism
4 alpha = %pi/180; // Base angle of biprism, radian
5 D = 110;
             // Distance between the source and the
     slit, cm
6 x = 10;
             // Distance between slit and the biprism,
7 d = 2*(mu-1)*x*alpha; // Separation between the
     two virtual slits, cm
8 lambda = 5900e-008; // Wavelength of light, cm
9 bita = lambda*D/d; // Fringe width, cm
10 printf("\nThe fringe width observed at one metre
     distance from biprism = \%6.4 f cm", bita);
11
12 // Result
13 // The fringe width observed at one metre distance
     from biprism = 0.0372 cm
```

Scilab code Exa 3.c.211 Wavelength of light in Newton ring experiment

```
1 // Scilab Code Ex3c.11: Page-187 (2008)
2 clc; clear;
3 D_n = 0.42; // Diameter of nth ring, cm
4 D_mplusn = 0.7; // Diameter of (m+n)th ring, cm
5 m = 14; // Difference between (m+n)th and nth rings
```

Scilab code Exa 3.c.212 Radius of plano convex lens

```
1 // Scilab Code Ex3c.12: Page-187 (2008)
2 clc; clear;
3 D5 = 0.336; // Diameter of 5th ring, cm
4 D10plus5 = 0.590; // Diameter of (10+5)th ring,
     cm
5 m = 10;
            // Difference between (10+5)th and 5th
     rings
6 lambda = 5890e-008; // Wavelength of the light,
7 R = (D10plus5^2 - D5^2)/(4*m*lambda); // Radius
     of curvature of the plano-convex lens, m
8 printf("\nThe radius of plano convex lens = \%5.2 f cm
     ", R);
9
10 // Result
11 // The radius of plano convex lens = 99.83 cm
```

Scilab code Exa 3.c.213 Wavelenght of light used in obtaining Newton rings

```
1 // Scilab Code Ex3c.13: Page-187 (2008)
```

```
2 clc; clear;
3 D3 = 0.181;  // Diameter of 3rd ring, cm
4 D23 = 0.501;  // Diameter of 23rd ring, cm
5 m = 23-3;  // Difference between (m+n)th and nth rings
6 R = 50;  // Radius of curvature of the plano-convex lens, m
7 lambda = (D23^2 - D3^2)/(4*m*R);  // Wavelength of the light, cm
8 printf("\nThe wavelength of the light used = %4d angstrom", lambda/1e-008);
9
10 // Result
11 // The wavelength of the light used = 5456 angstrom
```

Scilab code Exa 3.c.214 Diameter of the 20th dark ring

```
// Scilab Code Ex3c.14: Page-188 (2008)
clc; clear;
D4 = 0.4;  // Diameter of 4th ring, cm
D12 = 0.7;  // Diameter of 12th ring, cm
m = 12-4;  // Difference between (m+n)th and nth rings
lambda_R = (D12^2 - D4^2)/(4*m);  // Wavelength-Radius product, Sq.cm
D20 = sqrt(80*lambda_R);  // Diameter of the 20th dark ring, cm
printf("\nThe diameter of the 20th dark ring = %5.3f cm", D20);
// Result
// The diameter of the 20th dark ring = 0.908 cm
```

Scilab code Exa 3.c.215 Radius of curvature of the lens and the thickness of the air film

```
// Scilab Code Ex3c.15: Page-188 (2008)
clc; clear;
D10 = 0.50;  // Diameter of 10th ring, cm
n = 10;  // Number of dark fringe
lambda = 6250e-008;  // Wavelength of light used,
cm
R = D10^2/(4*n*lambda);  // Radius of curvature of
the lens, cm
t = D10^2/(8*R);  // Thickness of the air film, cm
printf("\nThe radius of curvature of the lens = %3d
cm", R);
printf("\nThe thickness of the air film = %9.7f cm",
t);
// Result
// Result
// The radius of curvature of the lens = 100 cm
// The thickness of the air film = 0.0003125 cm
```

Scilab code Exa 3.c.216 Newton rings observed in reflected light

```
t);

10

11 // Result

12 // The radius of curvature of the lens = 1.059 m

13 // The thickness of the air film = 2.95e-006 m
```

Scilab code Exa 3.c.217 Smallest thickness of the glass film in which it appears dark

```
1 // Scilab Code Ex3c.17: Page-189 (2008)
2 clc; clear;
3 \text{ lambda} = 5893e-010;
                        // Wavelength of light used,
               // Refractive index of glass film
4 \text{ mu} = 1.5;
              // Angle of reflection in the film,
  r = 60;
      degree
6 t = lambda/(2*mu*cosd(r));
                               // Smallest thickness
      of the
7 printf("\nThe smallest thickness of the glass film
     when it appears dark = \%6.1 \, \text{f} angstrom", t/1e-010)
8
9 // Result
10 // The smallest thickness of the glass film when it
      appears dark = 3928.7 angstrom
```

Scilab code Exa 3.d.301 Wavelength of light used in diffraction due to narrow slit

```
1 // Scilab Code Ex3d.1: Page-205 (2008)
2 clc; clear;
3 D = 200; // Distance between the source and the slit, cm
```

Scilab code Exa 3.d.302 Separation between the second minima on either side of the central maximum

```
1 // Scilab Code Ex3d.2: Page -205 (2008)
2 clc; clear;
3 f = 20;
          // Focal length of the lens, cm
4 a = 0.06; // Slit width, cm
5 n = 2; // Order of diffraction
6 lambda = 6e-005; // Wavelength of light used, cm
7 x = 2*lambda*f/a;
                    // Separation between the
     second minima on either side of the central
     maximum, cm
8 printf("\nThe separation between the second minimum
     an central maximum = \%4.2 \text{ f cm}", x);
9
10 // Result
11 // The separation between the second minimum an
     central maximum = 0.04 cm
```

Scilab code Exa 3.d.303 Distance of the first dark band from the axis

```
1 // Scilab Code Ex3d.3: Page-206 (2008)
```

```
2 clc; clear;
3 n = 1; // Order of diffraction
4 f = 40; // Focal length of the lens, cm
5 a = 0.03; // Slit width, cm
6 lambda = 5890e-008; // Wavelength of the light
     used, cm
7 // As a*sind(theta) = n*lambda, solving for theta
8 theta = asin(n*lambda/a); // The angle of
     diffraction corresponding to the first minimum,
     radian
9 x = f*theta; // The distance of the first dark
     band from the axis, cm
10 printf("\nThe distance of the first dark band from
     the axis = \%6.4 \text{ f cm}, x);
11
12 // Result
13 // The distance of the first dark band from the axis
      = 0.0785 \text{ cm}
```

Scilab code Exa 3.d.304 Angle of diffraction for the principal maxima

```
// Scilab Code Ex3d.4: Page-206 (2008)
clc; clear;
lambda1 = 5890e-008;  // Wavelength of D1 line of sodium lamp, cm
lambda2 = 5896e-008;  // Wavelength of D2 line of sodium lamp, cm
lambda = lambda2 - lambda1;  // Wavelength difference, cm
w = 0.5;  // Width of the grating, cm
N = 2500;  // Total number of grating lines
N_prime = N/w;  // Number of lines per cm, lines/cm
a_plus_b = 1/N_prime;  // Grating element, cm
on = 1;  // Order of diffraction
```

```
11 // Case 1
12 theta = asind(n*lambda1/a_plus_b); // Angle of
      diffraction for D1 line, degree
13 // Case 2
14 theta_prime = asind(n*lambda2/a_plus_b);
                                              // Angle
      of diffraction for D2 line, degree
15 printf("\nThe angle of diffraction for D1 and D2
     lines of sodium are %5.2f dgree and %5.2f degree
     respectively.", theta, theta_prime);
16 // From the condition for just resolution, lambda/
     d_{-}lambda = n*N, solving for N
17 N_min = lambda1/(d_lambda*n); // Minimum number
     of lines required on the grating
18 if N_min < N then
      printf("\nThe two lines are well resolved.");
19
20 else
       printf("\nThe two lines are not resolved.");
21
22 end
23
24 // Result
25 // The angle of diffraction for D1 and D2 lines of
     sodium are 17.13 dgree and 17.15 degree
     respectively.
26 // The two lines are well resolved.
```

Scilab code Exa 3.d.305 Wavelength of the spectral line

```
1 // Scilab Code Ex3d.5: Page-207 (2008)
2 clc; clear;
3 N = 4250;    // Number of lines per cm of grating,
        lines/cm
4 a_plus_b = 1/N;    // Grating element, cm
5 n = 2;    // Order of diffraction
6 theta = 30;    // Angle of diffraction, degree
7 lambda = sind(theta)*a_plus_b/n;    // Wavelength of
```

```
spectral line from diffraction condition, cm
8 printf("\nThe wavelength of spectral line from
    diffraction condition = %4d angstrom", lambda/1e
    -008);
9
10 // Result
11 // The wavelength of spectral line from diffraction
    condition = 5882 angstrom
```

Scilab code Exa 3.d.306 Number of lines in one centimeter of the grating surface

Scilab code Exa 3.d.307 Highest order spectrum obtainable with the given diffraction grating

```
1 // Scilab Code Ex3d.7: Page-208 (2008)
2 clc; clear;
3 N = 5000; // Number of lines per cm ruled on grating, lines/cm
```

Scilab code Exa 3.d.308 Invisible third and higher order principal maxima in a diffraction grating

```
1 // Scilab Code Ex3d.8: Page-208 (2008)
2 clc; clear;
3 \text{ lambda} = 5.5e-007; // Wavelength of light, m
4 a_plus_b = 1.5e-006; // Grating element, m
5 theta = 90; // Maximum angle of diffraction,
     degree
                                       // Order of
6 n = a_plus_b*sind(theta)/lambda;
     diffraction
7 printf("\nIn this diffraction grating only %dnd
     order will be visible while %drd and higher
     orders are not possible.", n, n+1);
8
9 // Result
10 // In this diffraction grating only 2nd order will
     be visible while 3rd and higher orders are not
     possible.
```

Scilab code Exa 3.d.309 Number of lines per cm on the grating

```
1 // Scilab Code Ex3d.9: Page -208 (2008)
2 clc; clear;
3 \text{ theta} = 30;
                  // Maximum angle of diffraction,
     degree
4 lambda1 = 5400e-010; // Wavelength of light
     giving certain diffraction order, m
 lambda2 = 4050e-010; // Wavelength of light
     giving higher diffraction order, m
6 n = poly(0, 'n');
7 n = roots(lambda1*n-(n+1)*lambda2);
                                       // Order of
     diffraction for first wavelength
8 a_plus_b = n*lambda1/sind(theta); // Grating
     element, m
                  // Number of lines per cm ruled
9 N = 1/a_plus_b;
     on grating, lines/cm
10 printf("\nThe number of lines per cm on the
      diffraction grating = \%d lines per cm", N/100);
11
12 // Result
13 // The number of lines per cm on the diffraction
     grating = 3086 lines per cm
```

Scilab code Exa 3.d.310 Minimum number of lines on the diffraction grating

```
1 // Scilab Code Ex3d.10: Page-209 (2008)
2 clc; clear;
3 lambda = 5890e-008; // Wavelength of light, cm
4 n = 1; // Order of diffraction
5 d_lambda = 6e-008; // Difference in wavelengths of D1 and D2 lines, cm
6 N = lambda/(n*d_lambda); // Number of lines on grating
```

```
7 printf("\nThe minimum number of lines on the
            diffraction grating = %d", ceil(N));
8
9 // Result
10 // The minimum number of lines on the diffraction
            grating = 982
```

Scilab code Exa 3.d.311 Design of a plane transmission diffraction grating

```
// Scilab Code Ex3d.11: Page-209 (2008)
clc; clear;
lambda = 6000e-008; // Wavelength of light, cm
n = 2; // Order of diffraction
d_lambda = 6e-008; // Difference in wavelengths
    of D1 and D2 lines, cm
N = lambda/(n*d_lambda); // Number of lines on
    grating
printf("\nThe minimum number of lines in the
    required diffraction grating = %d", N);

// Result
// The minimum number of lines in the required
    diffraction grating = 500
```

Scilab code Exa 3.d.312 Minimum number of lines per cm in grating to just resolve the D1 and D2 lines of sodium

```
5 d_lambda = 6e-008;  // Difference in wavelengths
    of D1 and D2 lines, cm
6 w = 2.5;  // Width of the grating, cm
7 N = lambda/(n*d_lambda);  // Number of lines on
    grating
8 printf("\nThe minimum number of lines per cm in the
    diffraction grating = %5.1f", N/w);
9
10 // Result
11 // The minimum number of lines per cm in the
    diffraction grating = 196.3
```

Scilab code Exa 3.d.313 Maximum resolving power of a plane transmission grating

```
// Scilab Code Ex3d.13: Page-210 (2008)
clc; clear;
lambda = 5000e-008; // Wavelength of light, cm
theta = 90; // Angle of diffraction for the
    maximum resolving power, degree

N = 40000; // Number of lines on grating
a_plus_b = 12.5e-005; // Grating element, cm
n = 2; // Order of diffraction
n_max = N*a_plus_b*sind(theta)/lambda; // Maximum
    resolving power
printf("\nThe maximum resolving power = %d", n_max);
// Result
// Result
// The maximum resolving power = 100000
```

Scilab code Exa 3.d.314 Maximum number of lines of a grating

```
1 // Scilab Code Ex3d.14: Page-209 (2008)
```

```
2 clc; clear;
3 lambda = 5890e-008;  // Wavelength of light, cm
4 n = 3;  // Order of diffraction
5 d_lambda = 6e-008;  // Difference in wavelengths
    of D1 and D2 lines, cm
6 N = lambda/(n*d_lambda);  // Maximum number of
    lines of a grating
7 printf("\nThe maximum number of lines of the grating
    = %d", N);
8
9 // Result
10 // The maximum number of lines of the grating = 327
```

Chapter 4

Special Theory of Relativity

Scilab code Exa 4.1 Fringe shift in the Michelson Morley experiment

```
// Scilab Code Ex4.1: Page-233 (2008)
clc; clear;
c = 3e+008;  // Speed of light in vacuum, m/s
v = 3e+004;  // Speed of earth, m/s
d = 7;  // Effective length of each path, m
lambda = 7000e-010;  // Wavelength of light used,
m
n = 2*d*v^2/(lambda*c^2);  // Fringe shift
printf("\nThe expected fringe shift = %3.1f", n);
// Result
// The expected fringe shift = 0.2
```

Scilab code Exa 4.2 Apparent length of rod relative to the observer

```
1 // Scilab Code Ex4.2: Page-233 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
```

Scilab code Exa 4.3 Apparent length of a meter stick for different speeds

```
1 // Scilab Code Ex4.3: Page -234 (2008)
2 clc; clear;
3 c = 3e + 008;
                  // Speed of light in vacuum, m/s
4 v = [c c/sqrt(2) sqrt(3)/2*c c/2 0.8*c];
      Different speeds of metre rod, m/s
              // Actual length of the rod, cm
5 L0 = 100;
6 \text{ for } i = 1:1:5
       L = L0*sqrt(1-v(i)^2/c^2); // Apparent length
            of rod from Lorentz transformation, m
       printf("\nFor v = \%4.2e \text{ m/s}, L = \%4.1f \text{ cm}", v(i)
           , L);
9 end
10
11 // Result
12 // For v = 3.00 e + 008 m/s, L = 0.0 cm
13 // For v = 2.12e + 008 \text{ m/s}, L = 70.7 \text{ cm}
14 // For v = 2.60 e + 008 m/s, L = 50.0 cm
15 // For v = 1.50e + 008 m/s, L = 86.6 cm
16 // For v = 2.40 e + 008 m/s, L = 60.0 cm
```

Scilab code Exa 4.4 Lorentz transformations applied to a rigid bar

```
1 // Scilab Code Ex4.4: Page -235 -236 (2008)
2 clc; clear;
3 c = 3e + 008;
               // Speed of light in vacuum, m/s
4 // Part (a)
5 v = 0.98*c; // Speed of the rigid bar, m/s
               // Length of the rigid bar in S_prime
6 L2 = 1.5;
     frame, m
  L1 = L2*sqrt(1-v^2/c^2); // Apparent length of
     rod from Lorentz transformation, m
  theta2 = 45; // Angle which the bar makes w.r.t.
     x-aixs in S_prime frame, degree
9 theta1 = atand(tand(theta2)/sqrt(1-v^2/c^2));
     Orientation of bar relative to S frame, degree
10 printf("\nThe orientation of the %d m bar relative
     to S frame = \%4.1 \, \text{f} degree", L2, theta1);
11 // Part(b)
12 v = 0.6*c; // Speed of the rigid bar, m/s
13 L2 = 5; // Length of the rigid bar in S_prime
     frame, m
14 L1 = L2*sqrt(1-v^2/c^2); // Apparent length of
     rod from Lorentz transformation, m
15 theta2 = 30; // Angle which the bar makes w.r.t.
     x-aixs in S_prime frame, degree
16 theta1 = atand(tand(theta2)/sqrt(1-v^2/c^2)); //
     Orientation of bar relative to S frame, degree
17 printf("\nThe orientation of the %d m bar relative
     to S frame = \%4.1 \, \text{f} degree", L2, theta1);
18
19 // Result
20 // The orientation of the 1 m bar relative to S
     frame = 78.7 degree
21 // The orientation of the 5 m bar relative to S
     frame = 35.8 degree
```

Scilab code Exa 4.5 Velocity of pi meson

Scilab code Exa 4.6 Relative speed of the ships as measured by an observer

```
1 // Scilab Code Ex4.6: Page-237 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
4 v = 0.8*c; // Speed of the first spaceship, m/s
5 u_prime = 0.9*c; // Speed of the second spaceship, m/s
6 u = (u_prime+v)/(1+u_prime*v/c^2); // Relative speed of the ships as measured by the observer on either one from Velocity addition rule, m/s
7 printf("\nThe relative speed of the ships as measured by an observer in either one = %5.3 f c = %4.2 e m/s", u/c, u);
```

```
8
9 // Result
10 // The relative speed of the ships as measured by an observer in either one = 0.988 c = 2.97e+008 m/s
```

Scilab code Exa 4.7 Velocity of one particle relative to the other

```
1 // Scilab Code Ex4.7: Page -237 (2008)
2 clc; clear;
3 c = 3e + 008;
                   // Speed of light in vacuum, m/s
4 v = 0.9*c; // Speed of the first particle, m/s
5 u_prime = 0.9*c; // Speed of the oppositely
      moving second particle, m/s
6 u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of
       one particle relative to the other from Velocity
       addition rule, m/s
7 printf("\nThe velocity of one particle relative to
      the other = \%5.3 \, \text{f} \, \text{c} = \%4.2 \, \text{e} \, \text{m/s}, u/c, u);
8
9 // Result
10 // The velocity of one particle relative to the
      other = 0.994 \text{ c} = 2.98 \text{ e} + 008 \text{ m/s}
```

Scilab code Exa 4.8 Velocity of the rocket as observed from the earth

```
1 // Scilab Code Ex4.8: Page-237 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
4 // Case 1: when velocity of firing is away from the earth
5 v = 0.5*c; // Speed of the rocket away from the earth, m/s
```

```
6 u_prime = 0.8*c; // Speed of the outgoing
      spaceship relative to earth, m/s
7 u = (u_prime+v)/(1+u_prime*v/c^2);
                                           // Velocity of
       rocket moving away relative to the earth, m/s
8 printf("\nThe velocity of rocket moving away
      relative to the earth = \%4.2 \,\mathrm{f} c = \%4.2 \,\mathrm{e} m/s", u/c
      , u);
9 // Case 2: when velocity of firing is towards the
      earth
10 v = 0.5*c;
                // Speed of the rocket moving towards
      the earth, m/s
                        // Speed of the outgoing
11 u_{prime} = -0.8*c;
      spaceship relative to earth, m/s
12 u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of
       approaching rocket relative to the earth, m/s
13 printf("\nThe velocity of approaching rocket
      relative to the earth = \%3.1 \,\mathrm{f} c = \%3.1 \,\mathrm{e} m/s", u/c
      , u);
14
15 // Result
16 // The velocity of rocket moving away relative to
      the earth = 0.93 \text{ c} = 2.79 \text{ e} + 008 \text{ m/s}
17 // The velocity of approaching rocket relative to
      the earth = -0.5 \text{ c} = -1.5 \text{ e} + 008 \text{ m/s}
```

Scilab code Exa 4.9 Velocity of the particle when its total energy is thrice its rest energy

```
1 // Scilab Code Ex4.9: Page-237 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
4 E0 = 1; // Assume the rest energy of the particle to be unity
5 E = 3*E0; // Total energy of the particle
6 v = sqrt(1-(E0/E)^2)*c; // Velocity of the
```

```
particle from relativistic variation of mass with
    speed, m/s

7 printf("\nThe velocity of the particle when its
    total energy is thrice its rest energy = %5.3e cm
    /s", v);

8

9 // Result
10 // The velocity of the particle when its total
    energy is thrice its rest energy = 2.828e+008 cm/s
```

Scilab code Exa 4.10 Relativisti variation of mass of electron with velocity

```
1 // Scilab Code Ex4.10: Page -238 (2008)
2 clc; clear;
                  // Speed of light in vacuum, m/s
3 c = 3e + 008:
4 m0 = 9.1e-031; // Rest mass of the electron, kg
5 EO = m0*c^2; // Rest energy of the electron, J
6 printf("\nThe rest energy of the electron = \%4.2 \,\mathrm{f}
     {
m MeV}", E0/1.6e-013);
7 E = 1.25*E0;
                  // Total energy of the particle
8 v = sqrt(1-(E0/E)^2)*c; // Velocity of the
      particle from relativistic variation of mass with
       speed, m/s
9 printf("\nThe velocity of the electron when its
      total energy is 1.25 times its rest energy = \%3.1
      f c = \%3.1 e cm/s", v/c, v);
10
11 // Result
12 // The rest energy of the electron = 0.51 \text{ MeV}
13 // The velocity of the electron when its total
      energy is 1.25 times its rest energy = 0.6 c =
      1.8e + 008 \text{ cm/s}
```

Scilab code Exa 4.11 An electron subjected to relativistic motion

```
1 // Scilab Code Ex4.11: Page -238 (2008)
2 clc; clear;
                   // Speed of light in vacuum, m/s
3 c = 3e+008;
               // Speed of the electron , m/s
4 v = 0.99*c;
5 \text{ mO} = 9.1\text{e}-031; // Rest mass of the electron, kg
6 m = m0/sqrt(1-v^2/c^2); // Moving mass of the
      electron, kg
7 E = m*c^2;
              // Total energy of the electron, J
8 printf("\nThe total energy of the electron = \%4.2\,\mathrm{e} J
     ", E);
9 KE_ratio = m0/(2*(m-m0))*(v/c)^2;
                                          // Ratio of
      Newtonian kinetic energy to the relativistic
      kinetic energy
10 printf("\nThe ratio of Newtonian kinetic energy to
      the relativistic kinetic energy = \%4.2 \,\mathrm{f}",
      KE_ratio);
11
12 // Result
13 // The total energy of the electron = 5.81e-013 J
14 // The ratio of Newtonian kinetic energy to the
      relativistic kinetic energy = 0.08
```

Chapter 5

Quantum Mechanics

Scilab code Exa 5.2 Temperature of the surface of sun

```
1 // Scilab Code Ex5.2: Page-284 (2008)
2 clc; clear;
3 lambda_m = 4753e-010;  // Wavelength from the sun
    at which maximum energy is emitted, m
4 b = 2.88e-003;  // Wein's constant, m-K
5 T = b/lambda_m;  // Temperature of the surface of
    sun
6 printf("\nThe temperature of the surface of sun = %d
    K", ceil(T));
7
8 // Result
9 // The temperature of the surface of sun = 6060 K
```

Scilab code Exa 5.3 Wavelength of maximum intensity of radiation

```
1 // Scilab Code Ex5.3: Page-284 (2008)
2 clc; clear;
3 b = 2.898e-003; // Wein's constant, m-K
```

```
4 T = 3000 + 273;  // Temperature of the source, K
5 lambda_m = b/T;  // Wavelength of maximum
    intensity of radiation emitted from the source, m
6 printf("\nThe wavelength of maximum intensity of
    radiation emitted from the source = %d angstrom",
    lambda_m/1e-010);
7
8 // Result
9 // The wavelength of maximum intensity of radiation
    emitted from the source = 8854 angstrom
```

Scilab code Exa 5.4 Kinetic energy of the ejected photoelectrons

```
1 // Scilab Code Ex5.4: Page -285 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 lambda = 2300e-010; // Thereshold wavelength for
     tungsten, m
6 phi = h*c/lambda; // Work function for tungsten,
  lambda = 1800e-010; // Wavelength of incident
     radiation, m
8 E = h*c/lambda;
                    // Energy of the incidnt
     radiation, J
9 \text{ KE} = \text{E} - \text{phi};
                 // Kinetic energy of the ejected
      photoelectrons, J
10 printf("\nThe kinetic energy of the ejected
      photoelectrons = \%3.1 \,\mathrm{f} eV", KE/1.6e-019);
11
12 // Result
13 // The kinetic energy of the ejected photoelectrons
     = 1.5 \text{ eV}
```

Scilab code Exa 5.5 Possibility of electron emission with the given incident wavelengths

```
1 // Scilab Code Ex5.5: Page -285 (2008)
2 clc; clear;
3 function [] = check_energy(E, L)
4 \text{ phi} = 4.8;
              // Work function for tungsten, eV
      if E > phi then
           printf("\nThe wavelength %d angstrom will be
              able to liberate an electron.", ceil(L/1
             e-010));
7
       else
           printf("\nThe wavelength %d angstrom will
             not be able to liberate an electron.",
             ceil(L/1e-010));
9
       end
10 endfunction
11 h = 6.62e-034; // Planck's constant, Js
12 c = 3e+008; // Speed of light, m/s
13 // Case 1
14 lambda = 2000e-010; // Wavelength of incident
     radiation, m
15 E = h*c/(lambda*1.6e-019); // Energy of the
     incidnt radiation, eV
16 check_energy(E, lambda); // Check for the
     wavelength
17 // Case 2
18 lambda = 5000e-010; // Wavelength of incident
     radiation, m
19 E = h*c/(lambda*1.6e-019); // Energy of the
     incidnt radiation, eV
20 check_energy(E, lambda); // Check for the
     wavelength
21
```

```
22 // Result
23 // The wavelength 2000 angstrom will be able to liberate an electron.
24 // The wavelength 5000 angstrom will not be able to liberate an electron.
```

Scilab code Exa 5.6 Velocity of emitted photoelectrons

```
1 // Scilab Code Ex5.6: Page -286 (2008)
2 clc; clear;
3 h = 6.62e - 034;
                     // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
                  // Energy quivalent of 1 eV, J
5 e = 1.6e - 019;
                   // Work function for material, J
6 \text{ phi} = 2.28*e;
                 // Mass of an electron, kg
7 m = 9.1e-031;
8 lambda = 3000e-010; // Wavelength of incident
     radiation, m
9 E = h*c/lambda;
                    // Energy of the incidnt
     radiation, J
10 \text{ KE} = \text{E} - \text{phi};
                   // Kinetic energy of the ejected
     photoelectrons, J
                     // Velocity of emitted electron
11 v = sqrt(2*KE/m);
      , m/s
12 printf("\nThe velocity of the emitted electron = \%4
      .2 \, e \, m/s, v);
13
14 // Result
15 // The velocity of the emitted electron = 8.08e+005
     m/s
```

Scilab code Exa 5.7 A photosensitive material emitting photoelectrons

```
1 // Scilab Code Ex5.7: Page -286 (2008)
```

```
2 clc; clear;
3 h = 6.62e - 034;
                    // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 e = 1.6e-019; // Energy quivalent of 1 eV, J 6 phi = 4.2*e; // Work function for material, J
7 lambda = 2000e-010; // Wavelength of incident
      radiation, m
                    // Energy of the incidnt
8 E = h*c/lambda;
      radiation, J
  KE_fast = (E - phi)/e; // Kinetic energy of the
      fastest photoelectron, eV
10 KE_slow = 0; // Kinetic energy of the slowest
      photoelectron, eV
11 printf("\nThe kinetic energy of the fastest
      photoelectron = \%d eV", KE_fast);
12 printf("\nThe kinetic energy of the slowest
      photoelectron = %d eV", KE_slow);
13 V = (E - phi)/e; // Stopping potential, V
14 printf("\nThe stopping potential = %d volt", V);
15
16 // Result
17 // The kinetic energy of the fastest photoelectron =
       2 \text{ eV}
18 // The kinetic energy of the slowest photoelectron =
       0 \text{ eV}
19 // The stopping potential = 2 volt
```

Scilab code Exa 5.8 Maximum wavelength of radiation which would start the emission of photoelectrons

```
1 // Scilab Code Ex5.8: Page-287 (2008)
2 clc; clear;
3 h = 6.62e-027; // Planck's constant, erg-s
4 c = 3e+010; // Speed of light, cm/s
5 phi = 3.31e-012; // Work function for material,
```

```
erg
6 lambda0 = h*c/phi;  // Wavelength of incident
    radiation, cm
7 printf("\nThe maximum wavelength of radiation which
    would start the emission of photoelectrons = %d
    angstrom", lambda0/1e-008);
8
9 // Result
10 // The maximum wavelength of radiation which would
    start the emission of photoelectrons = 6000
    angstrom
```

Scilab code Exa 5.9 Potassium surface exposed to UV radiation

```
1 // Scilab Code Ex5.9: Page -287 (2008)
2 clc; clear;
3 h = 6.62e - 034;
                    // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 e = 1.6e-019; // Energy quivalent of 1 eV, J
6 phi = 2.1*e; // Work function for material, J
7 lambda = 3500e-010; // Wavelength of incident UV
     radiation, m
8 E = 1e-004;
                  // Energy incident per sec on 1 Sq.
     cm of potassium surface, J
9 eta = 0.5/100; // Efficiency of potassium surface
10 KE = (h*c/lambda-phi)/e; // Maximum kinetic
     energy of the ejected photoelectrons, eV
11 N = eta*E/(KE*e); // Number of photoelectrons
     emitted per second per Sq. cm of potassium
     surface
12 printf("\nThe maximum kinetic energy of the incidnt
     radiation = \%4.2 \, \text{f eV}", KE);
13 printf("\nThe number of photoelectrons emitted per
     second per Sq. cm of potassium surface = \%4.2e",
     N);
```

```
14
15 // Result
16 // The maximum kinetic energy of the incidnt
    radiation = 1.45 eV
17 // The number of photoelectrons emitted per second
    per Sq. cm of potassium surface = 2.16 e+012
```

Scilab code Exa 5.10 Planck constant and threshold wavelength of metal

```
1 // Scilab Code Ex5.10: Page -288 (2008)
2 clc; clear;
               // Speed of light, m/s
3 c = 3e + 008;
4 KE1 = 3.62e-019; // Maximum kinetic energy of
     photoelectrons with first wavelength, eV
 lambda1 = 3000;
                    // First wavelength of incident
     radiation, angstrom
6 KE2 = 0.972e-019; // Maximum kinetic energy of
     photoelectrons with second wavelength, eV
  lambda2 = 5000; // Second wavelength of incident
     radiation, angstrom
8 A = [c/lambda1, -1; c/lambda2, -1]; // Declare a
     square matrix as per Einstein's Photoelectric
     relation, KE = h*c/lambda - phi
9 B = [KE1; KE2]; // Put KEs in a column matrix
10 X = inv(A)*B; // Apply inverse multiplication of
     a matrix to fing h and phi
11 lambda0 = X(1)*1e-010*c/X(2); // Threshold
     wavelength of metal, m
12 printf("\nh = \%4.2 \, e \, Js \nphi = \%1.0 \, e \, J", X(1)*1e-010,
      X(2));
13 printf("\nThe threshold wavelength of metal = \%d
     angstrom", ceil(lambda0/1e-010));
14
15 // Result
16 / h = 6.62 e - 034 Js
```

```
17 // phi = 3e-019~\mathrm{J}
18 // The threshold wavelength of metal = 6620~\mathrm{angstrom}
```

Scilab code Exa 5.11 Energy and wavelength of incident photon

```
1 // Scilab Code Ex5.11: Page -288 (2008)
2 clc; clear;
                   // Speed of light, m/s
3 c = 3e + 008;
4 e = 1.6e-019; // Energy equivalent of 1 eV, J
5 h = 6.62e-034; // Planck's constant, Js
6 \text{ mO} = 9.1e-031;
                      // Rest mass of an electron, kg
                // Scattering angle for X-ray photon,
7 \text{ alpha} = 90;
       degree
8 	 d_{lambda} = h/(m0*c)*(1-cosd(alpha));
      Wavelength shift after collision, m
  lambda = d_lambda; // Wavelength of the incident
      photon according to the condition, m
10 E = h*c/(lambda*e*1e+006); // Energy of the
      incident photon, MeV
11 printf("\nThe wavelength of the incident photon = \%6
      .4\,\mathrm{e} m", lambda);
12 printf("\nThe energy of the incident photon = \%4.2 \, \mathrm{f}
     \mathrm{MeV}" , \mathbf{\check{E}} ) ;
13
14 // Result
15 // The wavelength of the incident photon = 2.4249e
      -012 \text{ m}
16 // The energy of the incident photon = 0.51 \text{ MeV}
```

Scilab code Exa 5.12 Energy lost by an X ray photon in collsion with an electron

```
1 // Scilab Code Ex5.12: Page -289 (2008)
```

```
2 clc; clear;
                  // Speed of light, m/s
3 c = 3e+008;
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 h = 6.6e - 034;
                   // Planck's constant, Js
                 // Wavelength of X ray photon,
6 \quad lambda = 0.1;
      angstrom
7 m0 = 9.1e-031; // Rest mass of an electron, kg
8 \text{ alpha} = 90;
                  // Scattering angle for X-ray photon,
       degree
9 \ d_{anbda} = h/(m0*c*1e-010)*(1-cosd(alpha));
      Wavelength shift after collision, angstrom
10 lambda_prime = lambda + d_lambda;
                                         // Wavelength
      of the scattered photon, angstrom
11 dE = h*c*1e+010/e*(1/lambda - 1/lambda_prime);
      Energy lost by the X-ray photon by collision, eV
12 printf("\nThe energy lost by the X ray photon by
      collision = \%4.1 \text{ f KeV}", dE/1e+003);
13
14 // Result
15 // The energy lost by the X ray photon by collision
     = 24.1 \text{ KeV}
```

Scilab code Exa 5.13 The Compton effect stidied at different scattering angles

```
1 // Scilab Code Ex5.13: Page-289 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light, m/s
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 h = 6.6e-034; // Planck's constant, Js
6 m0 = 9.1e-031; // Rest mass of an electron, kg
7 alpha = [90 60 45 180]; // Different scattering angle for X-ray photon, degrees
8 d_lambda = zeros(4);
9 for i = 1:1:4
```

```
10
       d_{a} = h/(m0*c*1e-010)*(1-cosd(alpha(i)))
                // Wavelength shift after collision,
          angstrom
       printf("\nFor alpha = %d degree, d_lambda = %6.4
11
          f angstrom", alpha(i), d_lambda(i));
12 end
13 \quad lambda = 0.2;
                     // Given wavelength of incident X-
      ray photon, angstrom
14 lambda_prime = lambda + d_lambda(3);
      Wavelength of the scattered photon at 45 degree,
      angstrom
15 printf("\nThe wavelength of the photon scattered at
      45 \text{ degree} = \%5.3 \text{ f angstrom}", lambda_prime);
                                             // Maximum
16 lambda_prime = lambda + d_lambda(4);
      wavelength of the photon scattered at 180 degree,
       angstrom
17 KE_max = h*c*1e+010*(1/lambda - 1/lambda_prime);
      // Maximum kinetic energy of the recoil electron,
18 printf("\nThe maximum kinetic energy of the recoil
      electron = \%4.2 \,\mathrm{e} J", KE_max);
19
20 // Result
21 // For alpha = 90 degree, d_{a} dambda = 0.0242 angstrom
\frac{22}{\sqrt{8}} For alpha = 60 degree, d_lambda = 0.0121 angstrom
23 // For alpha = 45 degree, d_{a} dambda = 0.0071 angstrom
24 // For alpha = 180 \text{ degree}, d_{\text{lambda}} = 0.0484
      angstrom
  // The wavelength of the photon scattered at 45
25
      degree = 0.207 angstrom
26 // The maximum kinetic energy of the recoil electron
       = 1.93 e - 015 J
```

Scilab code Exa 5.15 de Broglie wavelength associated with moving masses

```
1 // Scilab Code Ex5.15: Page -292 (2008)
2 clc; clear;
3 h = 6.6e - 034;
                    // Planck's constant, Js
4 // For golf ball
5 m = 0.046;
                 // Mass of the golf ball, kg
6 v = 36;
            // Velocity of the golf ball, m/s
7 lambda = h/(m*v); // de-Broglie wavelength
      associated with the moving golf ball, m
8 printf("\nThe de-Broglie wavelength associated with
      the moving golf ball = \%1.0 \,\mathrm{e} m", lambda);
9 \text{ if } lambda/1e-010 > 0.1 \text{ then}
       printf("\nThe moving golf ball may exhibit wave
          character.");
11 end
12 // For an electron
                      // Mass of the electron, kg
13 \text{ m} = 9.11e-031;
                  // Velocity of the electron, m/s
14 v = 1e + 007;
15 lambda = h/(m*v); // de-Broglie wavelength
      associated with the moving electron, m
16 printf("\nThe de-Broglie wavelength associated with
      the moving electron = \%3.1e m", lambda);
  if lambda/1e-010 > 0.1 then
17
       printf("\nThe moving electron may exhibit wave
18
          character.");
19
  end
20
21 // Result
22 // The de-Broglie wavelength associated with the
     moving golf ball = 4e-034 m
  // The de-Broglie wavelength associated with the
     moving electron = 7.2e-011 m
24 // The moving electron may exhibit wave character.
```

Scilab code Exa 5.16 Voltage applied to the electron microscope to produce the required wavelength

```
1 // Scilab Code Ex5.16: Page -292 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 lambda = 0.40e-010; // de-Broglie wavelength
      associated with the moving electron, m
6 \text{ m} = 9.11\text{e}-031; // Rest mass of an electron, kg
7 V = (h/lambda)^2/(2*m*e); // Voltage applied to
     the electron microscope to produce the required
     wavelength, volt
8 printf("\nThe voltage applied to the electron
     microscope to produce the required de-Broglie
     wavelength = \%5.1 \, \text{f} volt", V);
9
10 // Result
11 // The voltage applied to the electron microscope to
      produce the required de-Broglie wavelength =
     938.4 volt
```

Scilab code Exa 5.18 de Broglie wavelength of a neutron of given energy

```
// Scilab Code Ex5.18: Page-293 (2008)
clc; clear;
h = 6.62e-034; // Planck's constant, Js
e = 1.602e-019; // Energy equivalent of 1 eV, J
E_k = 12.8e+006; // Energy of the moving neutron, eV

mo = 1.675e-027; // Rest mass of a neutron, kg
lambda = h/sqrt(2*m0*E_k*e) // de-Broglie wavelength associated with the moving neutron, m
printf("\nThe de-Broglie wavelength of the moving neutron = %3.1e angstrom", lambda/1e-010);

// Result
// The de-Broglie wavelength of the moving neutron =
```

Scilab code Exa 5.19 Minimum uncertainty in momentum and kinetic energy of a proton confined within nucleus

```
1 // Scilab Code Ex5.19: Page -294 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 e = 1.602e-019;

5 m = 1.67e-027;
                      // Energy equivalent of 1 eV, J
                      // Rest mass of a proton, kg
                // Radius of the nucleus, m
6 r = 5e-015;
  delta_x = 2*r;
                     // Minimum uncertainty in position
       of the proton, m
  delta_p = h/(2*%pi*delta_x); // Minimum
      uncertainty in proton's momentum, kg-m/s
  KE = delta_p^2/(2*m); // Minimum kinetic emergy
      of the proton, J
10 printf("\nThe minimum uncertainty in momentum of the
       proton = \%4.2 \,\mathrm{e} kg-m/s", delta_p);
11 printf("\nThe minimum kinetic emergy of the proton =
      \%5.3 \, \mathrm{f \ MeV}", KE/(e*1e+006));
12
13 // Result
14 // The minimum uncertainty in momentum of the proton
      = 1.05 \,\mathrm{e} - 020 \,\mathrm{kg-m/s}
15 // The minimum kinetic emergy of the proton = 0.207
     MeV
```

Scilab code Exa 5.20 Minimum uncertainty in the measurement of velocity of the electron

```
1 // Scilab Code Ex5.20: Page-294 (2008) 2 clc; clear;
```

```
3 h = 6.62e-034; // Planck's constant, Js
4 m = 9.11e-031; // Rest mass of a electron, kg
5 \text{ delta_x} = 1e-009;
                       // Minimum uncertainty in
     position of the electron, m
6 delta_p_min = h/delta_x;
                              // Minimum uncertainty
     in electron's momentum, kg-m/s
7 delta_v = delta_p_min/m; // Minimum uncertainty
     in the measurement of velocity of the electron, m
8 printf("\nThe minimum uncertainty in the measurement
      of velocity of the electron = \%4.2 \,\mathrm{e} m/s",
     delta_v);
9
10 // Result
11 // The minimum uncertainty in the measurement of
     velocity of the electron = 7.27e+005 \text{ m/s}
```

Scilab code Exa 5.22 Minimum uncertainty in the position of the particle

```
1 // Scilab Code Ex5.22: Page-295 (2008)
2 clc; clear;
3 h = 6.62e - 034;
                    // Planck's constant, Js
4 m = 1e-009; // Mass of the particle, kg
5 v = 1; // Velocity of the particle, m/s
6 delta_v = v*0.01/100; // Minimum uncertainty in
      the velocity of the particle, m/s
7 delta_x = h/(m*delta_v); // Minimum uncertainty
     in the position of the particle, m
8 printf("\nThe minimum uncertainty in the position of
      the particle = \%4.2 \,\mathrm{e} m", delta_x);
9
10 // Result
11 // The minimum uncertainty in the position of the
      particle = 6.62e-021 \text{ m}
```

Scilab code Exa 5.23 Uncertainty with which position of the electron can be located

```
1 // Scilab Code Ex5.23: Page-295 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 m = 9.1e-031; // Mass of the electron, kg
5 v = 1e+003; // Velocity of the electron, m/s
6 delta_v = v*0.05/100;
                          // Minimum uncertainty in
     the velocity of the electron, m/s
  delta_x = h/(m*delta_v); // Minimum uncertainty
     in the position of the electron, m
  printf("\nThe minimum uncertainty in the position of
      the electron = \%4.2e m", delta_x);
9
10 // Result
11 // The minimum uncertainty in the position of the
     electron = 1.45e-003 m
```

Scilab code Exa 5.24 Minimum uncertainty in energy of the excited state of an atom

```
1 // Scilab Code Ex5.24: Page-295 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 delta_t = 1e-008; // Life time of excited state
    of an atom, s
6 delta_E = h/(2*%pi*delta_t); // Minimum
    uncertainty in the energy of the excited state of
    the atom, J
```

Scilab code Exa 5.25 Probable uncertainty in energy and frequency of gamma ray photon

```
1 // Scilab Code Ex5.25: Page-296 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 delta_t = 1e-012;
                      // Life time of a nucleus in
     the excited state, s
5 delta_E = h/(2*%pi*delta_t); // Minimum
     uncertainty in the energy of the excited state of
      the nucleus, J
6 // As E = h*nu, solving for delta_nu
7 delta_nu = delta_E/h; // Minimum uncertainty in
     the frequency of the excited state of the nucleus
     , Hz
8 printf("\nThe minimum uncertainty in the energy of
     the excited state of the nucleus = \%5.3e J",
     delta_E);
9 printf("\nThe minimum uncertainty in the frequency
     of the excited state of the nucleus = \%4.2 e MHz",
      delta_nu/1e+006);
10
11 // Result
12 // The minimum uncertainty in the energy of the
     excited state of the nucleus = 1.054e-022 J
13 // The minimum uncertainty in the frequency of the
     excited state of the nucleus = 1.59e+005 MHz
```

Scilab code Exa 5.29 Lowest energy of an electron in one dimensional force free region

```
1 // Scilab Code Ex5.29: Page -300 (2008)
2 clc; clear;
3 h = 6.62e - 034;
                  // Planck's constant, Js
4 e = 1.602e - 019;
                     // Energy equivalent of 1 eV, J
5 m = 9.11e-031;
                     // Rest mass of the electron, kg
               // Length of the force free region, m
  1 = 4e - 010;
            // Principal quantum number for lowest
     energy state
  E1 = n^2*h^2/(8*m*1^2); // Lowest energy of an
     electron in one dimensional force free region, J
9 printf("\nThe lowest energy of an electron in one
     dimensional force free region = \%4.2 \,\mathrm{f} eV", E1/e);
10
11 // Result
12 // The lowest energy of an electron in one
     dimensional force free region = 2.35 eV
```

Scilab code Exa 5.30 The excited state energies of the particle entrapped in a one dimensional box

```
1 // Scilab Code Ex5.30: Page-300 (2008)
2 clc; clear;
3 e = 1.602e-019; // Energy equivalent of 1 eV, J
4 E1 = 3.2e-018/e; // Minimum energy possible for a particle entrapped in a one dimensional box, eV
5 n = [1 2 3 4]; // Principal quantum number for K, L, M and N states
6 printf("\nThe next three energies which the particle can have are:");
```

```
7 for i = 2:1:4
8     printf("\nE%d = %d eV", i, ceil(i^2*E1));
9 end
10
11 // Result
12 // The next three energies which the particle can have are:
13 // E2 = 80 eV
14 // E3 = 180 eV
15 // E4 = 320 eV
```

Scilab code Exa 5.31 Probability of finding the particle within a given interval

```
1 // Scilab Code Ex5.31: Page-301 (2008)
2 clc; clear;
3 delta_x = 4; // Interval at the centre of the box
      at which the probability is to be found out,
     angstrom
            // Width of one dimensional infinite
4 1 = 10;
    height box, angstrom
5 P = 2*delta_x/1; // Probability of finding the
     particle within 4 angstrom interval
6 printf("\nThe probability of finding the particle
     within the %d angstrom interval at the centre of
     the box = \%3.1 \,\mathrm{f}", delta_x, P);
8 // Result
9 // The probability of finding the particle within
     the 4 angstrom interval at the centre of the box
    = 0.8
```

Scilab code Exa 5.32 Probability of finding a particle within given range of 1D box for different energy states

```
1 // Scilab Code Ex5.32: Page-301 (2008)
2 clc; clear;
           // Assume the length of the box to be
3 L = 1;
     unity, m
               // Lower limit , m
4 L1 = 0.4*L;
                // Upper limit, m
5 L2 = 0.6*L;
6 x = (L1+L2)/2; // Mean position of particle, m
7 delta_x = L2 - L1; // Uncertainty in position of
     the particle, m
  for n = 1:1:3
      P = 2/L*sin(n*%pi*x/L)^2; // Probability
         density, per m
       printf ("\nFor n = \%d, the probability, P = \%3.1 f
         ", n, P*delta_x);
11 end
12
13 // Result
14 // For n = 1, the probability, P = 0.4
15 // For n = 2, the probability, P = 0.0
16 // For n = 3, the probability, P = 0.4
```

Chapter 6

Classical Statistics and Quantum Statistics

Scilab code Exa 6.1 Probability of distribution of distinguishable particles

```
1 // Scilab Code Ex6.1: Page -345 (2008)
2 clc; clear;
3 n = 14; // Total number of particles
4 C = 2; // Total number of compartments
5 N_micro = C^n; // Total number of microstates
                    // Set of number of particles in
6 \text{ n1} = [10 \ 7 \ 14];
      first compartment
                   // Set of number of particles in
7 n2 = [4 7 0];
      second compartment
8 \text{ for } i = 1:1:3
       W = factorial(n1(i) + n2(i))/(factorial(n1(i))*
          factorial(n2(i)));
10
       P = W/N_micro;
       printf("\nThe probability of microstate (%d, %d)
           = \%8.6 \,\mathrm{f}", n1(i), n2(i), P);
12 end
13
14 // Result
```

```
15 // The probability of microstate (10, 4) = 0.061096
16 // The probability of microstate (7, 7) = 0.209473
17 // The probability of microstate (14, 0) = 0.000061
```

Scilab code Exa 6.6 Most probable distribution for total energy

```
1 // Scilab Code Ex6.6: Page -348 (2008)
2 clc; clear;
3 \text{ MAX} = 10;
4 // Look for all the possible set of values for n1,
      n2 and n3
5 printf("\nThe most probable distribution is for ");
6 \text{ for } i = 0:1:5
       for j = 0:1:5
7
            for k = 0:1:5
         // Check for the condition and avoid
             repetition of set of values
                if ((i + j + k) == 5) & ((j+2*k) == 3)
10
                   then
                     W = factorial(i + j + k)/(factorial(i + j + k))
11
                        i)*factorial(j)*factorial(k));
12
                     if W > MAX then
                        printf ("\nn1 = \%d, n2 = \%d and n3
13
                            = \%d", i, j, k);
14
                     end
15
                end
16
            end
17
       end
18
  end
19
20 // Result
21 // The most probable distribution is for
22 // n1 = 3, n2 = 1 and n3 = 1
```

Scilab code Exa 6.8 Probability for a Maxwell Boltzmann system to be in given states

```
1 // Scilab Code Ex6.8: Page -349 (2008)
2 clc; clear;
3 k = 1.38e - 016;
                   // Boltzmann constant, erg/K
4 T = 100; // Given temperature, K
              // Energy of the first state, erg
5 E1 = 0;
  E2 = 1.38e-014; // Energy of the second state,
     erg
  E3 = 2.76e - 014;
                   // Energy of the third state, erg
8 g1 = 2, g2 = 5, g3 = 4;
                            // Different ways of
     occuring for E1, E2 and E3 states
  P1 = g1*exp(-E1/(k*T));
                             // Probability of
     occurence of state E1
10 P2 = g2*exp(-E2/(k*T));
                              // Probability of
     occurence of state E2
11 P3 = g3*exp(-E3/(k*T));
                            // Probability of
     occurence of state E3
                          // Probability for the
12 \text{ PE}_3 = P3/(P1+P2+P3);
     system to be in any one microstates of E3
13 P0 = P1/(P1+P2+P3);
                       // Probability for the system
      to be in ground state
14 printf("\nThe probability for the system to be in
     any one microstates of E3 = \%6.4 \,\mathrm{f}", PE_3);
15 printf("\nThe probability for the system to be in
     ground state = \%5.3 \,\mathrm{f}", PO);
16
17 // Result
18 // The probability for the system to be in any one
     microstates of E3 = 0.1236
19 // The probability for the system to be in ground
     state = 0.457
```

Scilab code Exa 6.9 Number of microstates in the given macostate of a Fermi Dirac system

```
1 // Scilab Code Ex6.9: Page -350 (2008)
2 clc; clear;
3 g1 = 6, g2 = 8;
                    // Total number of cells in the
     first and the second compartments respectively
4 n1 = 2, n2 = 3; // Given number of cells in the
     first and the second compartments respectively
     for given macrostate
5 W_23 = factorial(g1)/(factorial(n1)*factorial(g1 -
    n1))*factorial(g2)/(factorial(n2)*factorial(g2 -
             // Total number of microstates in the
     macrostate (2, 3)
6 printf("\nThe total number of microstates in the
     macrostate (%d, %d) = %d", n1, n2, W_23);
7
8 // Result
9 // The total number of microstates in the macrostate
     (2, 3) = 840
```

Scilab code Exa 6.10 Number of microstates formed by particles obeying Fermi Dirac statistics

```
1 // Scilab Code Ex6.10: Page-350 (2008)
2 clc; clear;
3 g1 = 8, g2 = 10; // Total number of cells in the first and the second compartments respectively
4 n1 = 3, n2 = 4; // Given number of cells in the first and the second compartments respectively for given macrostate
```

Scilab code Exa 6.11 Fermi energy and internal energy for metallic silver at 0 K

```
1 // Scilab Code Ex6.11: Page -351 (2008)
2 clc; clear;
3 h = 6.6e - 034;
                    // Planck's constant, Js
4 m = 9.1e-031; // Mass of an electron, kg
                    // Energy equivalent of 1 eV, J
5 e = 1.6e - 019;
6 \text{ rho} = 10.5;
                   // Density of silver, g/cc
7 A = 108;
              // Atomic weight of Ag, g/mole
8 N_A = 6.023e + 023; // Avogadro's number
9 E_F0 = h^2/(8*m)*(3*N_A*rho*1e+006/(%pi*A))^(2/3);
          // Fermi energy of silver at 0 K, J
10 U = 3/5*(N_A*rho*1e+006/A)*E_F0;
                                        // Internal
      energy of the electron gas per unit volume at 0 K
      , J/metre-cube
11 printf("\nThe Fermi energy of silver at 0 \text{ K} = \%3.1 \text{ f}
      eV", E_F0/e);
12 printf("\nThe internal energy of the electron gas
      per unit volume at 0 \text{ K} = \%4.2 \text{ e} \text{ J/cubic-metre}, U)
13
14 // Result
15 // The Fermi energy of silver at 0 \text{ K} = 5.5 \text{ eV}
```

```
16 // The internal energy of the electron gas per unit volume at 0 \text{ K} = 3.07 \text{ e} + 010 \text{ J/cubic-metre}
```

Scilab code Exa 6.12 Number of conduction electrons per cc in silver at $0~\mathrm{K}$

```
1 // Scilab Code Ex6.12: Page -351 (2008)
2 clc; clear;
3 h = 6.6e - 034;
                      // Planck's constant, Js
                    // Mass of an electron, kg
4 m = 9.1e-031;
                     // Energy equivalent of 1 eV, J
5 e = 1.6e - 019;
                      // Fermi energy of silver at 0 K,
6 E_F0 = 5.48;
      eV
7 N_{bar} = (8*m/h^2)^(3/2)*\%pi/3*(E_F0*e)^(3/2);
      Number density of conduction electrons in silver
      at 0 K, per cc
8 printf("\nThe number density of conduction electrons
       in silver at 0 \text{ K} = \%3.1 \text{ e per cc}, N_bar*1e-006);
9
10 // Result
11 // The number density of conduction electrons in
      silver at 0 \text{ K} = 5.9 \text{ e} + 0.022 \text{ per cc}
```

Scilab code Exa 6.13 Fermi energy of conduction electrons in cesium

```
1 // Scilab Code Ex6.13: Page-351 (2008)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
4 m = 9.1e-031; // Mass of an electron, kg
5 e = 1.6e-019; // Energy equivalent of 1 eV, J
6 E_F0_Be = 14.44 // Fermi energy of Be at 0 K,
eV
```

```
7 N_bar_Be = 24.2e+022;  // Number density of
        conduction electrons in Be at 0 K, per cc
8 N_bar_Cs = 0.91e+022;  // Number density of
        conduction electrons in Cs at 0 K, per cc
9 E_F0_Cs = E_F0_Be*(N_bar_Cs/N_bar_Be)^(2/3);  //
        Fermi energy of conduction electrons in cesium,
        eV
10 printf("\nThe Fermi energy of conduction electrons
        in cesium = %5.3 f eV", E_F0_Cs);
11
12 // Result
13 // The Fermi energy of conduction electrons in
        cesium = 1.621 eV
14 // The answer is given wrongly in the textbook
```

Chapter 7

Classical Statistics and Quantum Statistics

Scilab code Exa 7.1 Atomic packing fractions of SC FCC and BCC unit cells

```
1 // Scilab Code Ex7.1: Page -376 (2008)
2 clc; clear;
3 a = poly(0, 'a'); // Lattice parameter for a
     cubic unit cell, m
4 // For simple cubic cell
5 n = 1; // Number of atoms per simple cubic unit
     cell
6 r = a/2;
           // Atomic radius for a simple cubic cell
7 f = pol2str(int(numer(n*4/3*\%pi*r^3/a^3)*100));
     // Atomic packing fraction for a simple cubic
8 printf("\nFor simple cubic cell, f = \%s percent", f)
9 // For face centered cubic cell
10 n = 2; // Number of atoms per face centered cubic
     unit cell
11 r = sqrt(3)/4*a; // Atomic radius for a face
```

```
centered cubic cell, m
12 f = pol2str(int(numer(n*4/3*%pi*r^3/a^3)*100));
     // Atomic packing fraction for a face centered
     cubic cell
13 printf("\nFor face centered cubic cell, f = \%s
     percent", f);
14 // For body centered cubic cell
         // Number of atoms per body centered cubic
15 n = 4;
      unit cell
16 r = a/(2*sqrt(2)); // Atomic radius for a body
     centered cubic cell, m
17 f = pol2str(int(numer(n*4/3*\%pi*r^3/a^3)*100));
     // Atomic packing fraction for a body centered
     cubic cell
18 printf("\nFor body centered cubic cell, f = \%s
     percent", f);
19
20 // Result
21 // For simple cubic cell, f = 52 percent
22 // For face centered cubic cell, f = 68 percent
23 // For body centered cubic cell, f = 74 percent
```

Scilab code Exa 7.3 Distance between two adjacent atoms in the NaCl

```
1 // Scilab Code Ex7.3: Page -377 (2008)
2 clc; clear;
               // Gram atomic mass of NaCl, g/mole
3 M = 58.46;
4 N = 6.023e + 023;
                    // Avogadro's number
5 \text{ rho} = 2.17;
                // Density of NaCl, g/cc
             // Mass of each NaCl molecule, g
6 m = M/N;
7 n = rho/m;
                // Number of NaCl molecules per unit
    volume, molecules/cc
             // Number of atoms per unit volume,
8 N = 2*n;
     atoms/cc
9 a = (1/N)^{(1/3)}; // Distance between two adjacent
```

Scilab code Exa 7.4 Type of unit cell of Cs

```
1 // Scilab Code Ex7.4: Page -377 (2008)
2 clc; clear;
3 function p = find_cell_type(x)
       if x == 1 then
           p = 'simple cubic';
5
6
       end
       if x == 2 then
8
           p = 'body centered';
9
       end
       if x == 4 then
10
11
           p = 'face centered';
12
       end
13 endfunction
14 M = 130;
              // Gram atomic weight of Cs, g/mole
15 N = 6.023e+023; // Avogadro's number
16 \text{ rho} = 2;
               // Density of Cs, g/cc
                 // Distance between two adjacent
17 a = 6e-008;
     atoms in the Cs, cm
18 m = M/N; // Mass of each Cs atom, g
19 x = rho*a^3*N/M; // Number of Cs atoms in cubic
     unit cell
                                        // Call function
20 c_type = find_cell_type(int(x));
      to determine the type of cell
21 printf("\nThe cubic unit cell of Cs is \%s.", c_type)
```

```
22
23 // Result
24 // The cubic unit cell of Cs is body centered.
```

Scilab code Exa 7.5 Miller indices of given planes

```
1 // Scilab Code Ex7.5: Page -378 (2008)
2 clc; clear;
3 m = 2; n = 3; p = 6; // Coefficients of intercepts
      along three axes
                          // Reciprocate the first
4 \text{ m_inv} = 1/\text{m};
      coefficient
5 n_{inv} = 1/n;
                          // Reciprocate the second
      coefficient
6 p_{inv} = 1/p;
                          // Reciprocate the third
      coefficient
7 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
      m. of m, n and p
8 m1 = m_inv*mul_fact; // Clear the first fraction
9 m2 = n_inv*mul_fact; // Clear the second fraction
10 m3 = p_inv*mul_fact; // Clear the third fraction
11 printf("\nThe required miller indices are : (%d %d
      \%d) ", m1,m2,m3);
12
13 // Result
14 // The required miller indices are : (3 2 1)
```

Scilab code Exa 7.6 Meaning of hkl notation of planes

```
1 // Scilab Code Ex7.6: Page-378 (2008)
2 clc; clear;
3 // For first set (3, 2, 2)
```

```
4 m = 3; n = 2; p = 2; // Coefficients of intercepts
      along three axes
5 \text{ m_inv} = 1/\text{m};
                          // Reciprocate the first
      coefficient
6 n_{inv} = 1/n;
                          // Reciprocate the second
      coefficient
7 p_{inv} = 1/p;
                          // Reciprocate the third
      coefficient
8 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
      m. of m, n and p
9 m1 = m_inv*mul_fact;  // Clear the first fraction
10 m2 = n_inv*mul_fact;  // Clear the second fraction
11 m3 = p_inv*mul_fact;  // Clear the third fraction
12 printf("\nThe plane (%d %d %d) has intercepts %da,
      %db and %dc on the three axes.", m, n, p, m1, m2,
13 // For second set (1 \ 1 \ 1)
14 m = 1; n = 1; p = 1; // Coefficients of intercepts
      along three axes
15 \text{ m_inv} = 1/\text{m};
                          // Reciprocate the first
      coefficient
16 \text{ n_inv} = 1/\text{n};
                          // Reciprocate the second
      coefficient
17 p_{inv} = 1/p;
                          // Reciprocate the third
      coefficient
18 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
      m. of m, n and p
                              // Clear the first fraction
19 m1 = m_inv*mul_fact;
                              // Clear the second fraction
20 m2 = n_inv*mul_fact;
21 m3 = p_inv*mul_fact; // Clear the third fraction
22 printf("\nThe plane (%d %d %d) has intercepts a, b
      and c on the three axes.", m, n, p);
23
24 // Result
25 // The plane (3 \ 2 \ 2) has intercepts 2a, 3b and 3c on
       the three axes.
26 // The plane (1 1 1) has intercepts a, b and c on
      the three axes.
```

Scilab code Exa 7.9 Lengths of intercepts along y and z axis

```
1 // Scilab Code Ex7.9: Page -379 (2008)
2 clc; clear;
3 h = 2; k = 3; l = 1; // Miller indices of the set of
      planes
4 p = 1/h;
                   // Reciprocate h
                   // Reciprocate k
5 q = 1/k;
                   // Reciprocate 1
6 r = 1/1;
                // Intercept cut by plane along x-axis,
7 lx = 1.2;
      angstrom
8 = 1.2, b = 1.8, c = 2; // Primitives of the
     crystal, angstrom
9 mul_fact = double(lcm(int32([h, k, 1]))); // Find 1.
     c.m. of h, k and l
10 pa = mul_fact*p*a;
11 qb = mul_fact*q*b;
12 rc = mul_fact*r*c;
13 ly = lx*qb/pa; // Length of intercept along y-
     axis
14 lz = lx*rc/pa; // Length of intercept along z-
     axis
15 printf("\nThe length of intercept along y-axis = \%3
      .1f angstrom", ly);
16 printf("\nThe length of intercept along z-axis = \%3
      .1f angstrom", lz);
17
18 // Result
19 // The length of intercept along y-axis = 1.2
     angstrom
20 // The length of intercept along z-axis = 4.0
     angstrom
```

Scilab code Exa 7.10 Interplanar spacing for a set of planes in a cubic lattice

```
// Scilab Code Ex7.10: Page-380 (2008)
clc; clear;
h = 3; k = 2; l = 1; // Miller Indices for planes in a cubic crystal
a = 4.21D-10; // Interatomic spacing, m
d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystals, m
printf("\nThe interplanar spacing between consecutive (321) planes = %3.1e m", d);

// Result
// Result
// The interplanar spacing between consecutive (321) planes = 1.1e-010 m
```

Scilab code Exa 7.11 Determining Planck constant from given set of X ray data

Scilab code Exa 7.12 Maximum speed of striking electron and the shortest wavelength of X ray produced

```
1 // Scilab Code Ex7.12: Page -381 (2008)
2 clc; clear;
3 e = 1.6e - 0.19;
                     // The energy equivalent of 1 eV, J
4 m = 9.11e-031;
                     // Rest mass of an electron, kg
                      // Planck's constant, Js
5 h = 6.62e - 034;
6 c = 3e+008;
                   // Speed of light in vacuum, m/s
7 V = [20 100];
                     // Operating voltages of X ray, kV
8 \text{ for } i = 1:1:2
       v = sqrt(2*e*V(i)*1e+003/m);
                                         // Maximum
          striking speed of the electron, m/s
       lambda_min = c*h/(e*V(i)*1e+003*1e-010);
10
          Minimum wavelength of emitted continuous X
          rays, angstrom
       printf("\nFor V = \%d kV:", V(i));
11
12
       printf("\nThe maximum striking speed of the
          electron = \%5.2 \,\mathrm{e} m/s", v);
13
       printf("\nThe minimum wavelength of emitted
```

```
continuous X rays = \%5.3 \, \text{f angstrom} \, \text{n}",
           lambda_min);
14 end
15
16 // Result
17 // For V = 20 \text{ kV}:
18 // The maximum striking speed of the electron = 8.38
      e + 007 \text{ m/s}
  // The minimum wavelength of emitted continuous X
      rays = 0.621 angstrom
20 //
21 // \text{ For } V = 100 \text{ kV}:
22 // The maximum striking speed of the electron = 1.87
      e + 008 \text{ m/s}
23 // The minimum wavelength of emitted continuous X
      rays = 0.124 angstrom
24 // There are small variation in the answers as
      approximations are used in the text
```

Scilab code Exa 7.13 Interatomic spacing using Bragg relation

```
1 // Scilab Code Ex7.13: Page-381 (2008)
2 clc; clear;
3 n = 1; // Order of diffraction
4 lambda = 1.75e-010; // Wavelength of X rays, m
5 h = 1, k = 1, l = 1; // Miller indices for the set of planes
6 theta = 30; // Bragg's angle, degree
7 // As from Bragg's law, 2*d*sind(theta) = n*lambda and d = a/sqrt(h^2+k^2+l^2). solving for a we have
8 a = sqrt(h^2+k^2+l^2)*n*lambda/(2*sind(theta)*1e -010); // Interatomic spacing of the crystal, angstrom
9 printf("\nThe interatomic spacing of the crystal =
```

```
%5.3f angstrom", a);

10

11 // Result
12 // The interatomic spacing of the crystal = 3.031 angstrom
```

Scilab code Exa 7.14 Value of Planck constant from Bragg relation

```
1 // Scilab Code Ex7.14: Page -382 (2008)
2 clc; clear;
3 e = 1.6e - 019;
                      // The energy equivalent of 1 eV, J
4 c = 3e+008; // Speed of light in vacuum, m/s
5 n = 1; // Order of diffraction
6 d = 2.82e-010; // Interplanar spacing, m 7 V = 9.1e+003; // Operating voltage of X rays 8 theta = 14; // Bragg's angle, degree
9 lambda = 2*d*sind(theta)/n; // Wavelength of X
      rays, m
10 nu = c/lambda; // Frequency of X rays, Hz
11 h = e*V/nu; // Planck's constant, Js
12 printf("\nThe value of Planck constant, h = \%4.2e Js
      ", h);
13
14 // Result
15 // The value of Planck constant, h=6.62\,\mathrm{e}{-034}\,\mathrm{Js}
```

Scilab code Exa 7.15 Diffraction of X rays from a crystal

```
1 // Scilab Code Ex7.15: Page-382 (2008)
2 clc; clear;
3 e = 1.6e-019; // The energy equivalent of 1 eV, J
4 c = 3e+008; // Speed of light in vacuum, m/s
5 lambda = 0.5e-010; // Wavelength of X rays, m
```

```
6 theta = 5; // Bragg's angle, degree
7 n = 1; // Order of diffraction
8 d = n*lambda/(2*sind(theta)*1e-010);
     Interplanar spacing, angstrom
9 n = 2; // Ordr of diffraction
10 theta1 = asind(n*lambda/(2*d*1e-010));
                                           // Angle
     at which the second maximum occur, degree
11 printf("\nThe spacing between adjacent planes of the
      crystal = \%4.2 f angstrom, d);
12 printf("\nThe angle at which the second maximum
     occur = \%5.2 \,\mathrm{f} degree", theta1);
13
14 // Result
15 // The spacing between adjacent planes of the
     crystal = 2.87 angstrom
16 // The angle at which the second maximum occur =
     10.04 degree
```

Scilab code Exa 7.16 Wavelength of X rays from grating space of the rock salt

```
1 // Scilab Code Ex7.16: Page -383 (2008)
2 clc; clear;
           // Gram atomic mass of NaCl, kg/mole
3 M = 58.5
4 N = 6.023e+026; // Avogadro's number per kmol
                   // Density of NaCl, kg/metre-
5 \text{ rho} = 2.17e+003;
     cube
6 m = M/N;
           // Mass of each NaCl molecule, g
7 V = m/rho; // Volume of each NaCl molecule, metre
     -cube
8 d = (V/2)^{(1/3)}/1e^{-010}; // Atomic apacing in the
     NaCl crystal, angstrom
9 theta = 26; // Bragg's angle, degree
10 n = 2; // Order of diffraction
11 lambda = 2*d*sind(theta)/n; // Wavelength of X
```

Scilab code Exa 7.17 Diffraction of X rays by the calcite crystal

```
1 // Scilab Code Ex7.17: Page-383 (2008)
2 clc; clear;
3 d = 3.02945e-010; // Atomic apacing in the
     calcite crystal, m
4 lambda_alpha = 0.563e-010; // Wavelength of the K
     -alpha line of Ag, m
5 n = 1; // Order of diffraction
6 theta = asind(n*lambda_alpha/(2*d)); // Angle of
     reflection for the first order, degree
  theta_max = 90; // Angle of reflection for the
     highest order, degree
8 n = 2*d*sind(theta_max)/lambda_alpha; // The
     highest order for which the line may be observed
9 printf("\nThe angle of reflection for the first
     order = \%4.2 f degree, theta);
10 printf("\nThe highest order for which the line may
     be observed = \%d", n);
11
12 // Result
13 // The angle of reflection for the first order =
     5.33 degree
14 // The highest order for which the line may be
     observed = 10
```

Scilab code Exa 7.18 Interatomic spacing for given crystal planes

```
1 // Scilab Code Ex7.18: Page -384 (2008)
2 clc; clear;
3 \text{ lambda} = 1.8e-010;
                      // Wavelength of the X rays, m
4 n = 1; // Order of diffraction
5 \text{ theta} = 60;
                // Angle of diffraction for the first
      order, degree
6 d = n*lambda/(2*sind(theta)); // Interplanar
     spacing, m
7 // Since for a simple cubic lattice, d_1111 = d = a/
     sqrt(3), solving for a
8 a = sqrt(3)*d; // The interatomic spacing for the
      given crystal planes, m
9 printf("\nThe interatomic spacing for the given
      crystal planes, a = \%3.1 f angstrom", a/1e-010);
10
11 // Result
12 // The interatomic spacing for the given crystal
     planes, a = 1.8 angstrom
```

Scilab code Exa 7.19 Smallest angle between the crystal plane and the X ray beam

```
1  // Scilab Code Ex7.19: Page-384 (2008)
2  clc; clear;
3  function [d, m] = deg2degmin(theta)
4          d = int(theta);
5          m = (theta-d)*60;
6  endfunction
7  h = 6.626e-034;  // Planck's constant, Js
```

```
8 e = 1.6e-019; // The energy equivalent of 1 eV, J
9 c = 3e+008; // Speed of light in vacuum, m/s
10 V = 50e+003; // Operating voltage of X ray, V
11 lambda_min = h*c/(e*V); // Minimum wavelength of
     emitted continuous X rays, angstrom
12 n = 1;
           // Order of diffraction
13 d = 3.02945e-010; // Interplanar spacing, m
14 theta = asind(n*lambda_min/(2*d));
     smallest angle between the crystal plane and the
     X ray beam, degree
15 [deg , m] = deg2degmin(theta);
16 printf("\nThe smallest angle between the crystal
     plane and the X ray beam = %d degree %d min", deg
     , m);
17
18 // Result
19 // The smallest angle between the crystal plane and
     the X ray beam = 2 degree 21 min
```

Chapter 8

Laser and Fibre Optics

Scilab code Exa 8.1 Image produced by laser beam

```
1 // Scilab Code Ex8.1: Page -397 (2008)
2 clc; clear;
3 lambda = 6000e-008; // Wavelength of the lase
     beam, cm
4 P = 10e-003; // Power of the laser beam, W
5 theta = 1.5e-004; // Angular spread of laser beam,
           // Focal length of the lens, cm
6 f = 10;
7 r = f*theta; // Radius of the image, cm
8 rho = P/(\%pi*r^2*1e+003); // Power density of the
     image, kW/Sq.cm
9 L_w = lambda/(theta/10); // Coherence width, mm
10 printf("\nThe radius of the image = \%3.1e cm", r);
11 printf("\nThe power density of the image = \%3.1 \text{ f kW}/
     Sq.cm", rho);
12 printf("\nThe coherence width = \%d mm", L_w);
13
14 // Result
15 // The radius of the image = 1.5e-03 cm
16 // The power density of the image = 1.4 kW/Sq.cm
17 // The coherence width = 4 \text{ mm}
```

Scilab code Exa 8.2 Pumping energy required for He Ne laser transition

```
1 // Scilab Code Ex8.2: Page-398 (2008)
2 clc; clear;
3 lambda = 632.8e-009; // Wavelength of the lase
     beam, cm
4 E_2P = 15.2e-019; // Energy of 2P level, J
5 h = 6.626e - 034;
                       // Planck's constant, Js
                 // Speed of light, m/s
6 c = 3e + 008;
7 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
8 E_Pump = E_2P + h*c/lambda; // The required pumping
     energy, J
  printf("\nThe pumping energy required for He Ne
     laser transition = \%5.2 \, \text{f eV}", E_Pump/e);
10
11 // Result
12 // The pumping energy required for He Ne laser
     transition = 11.46 \text{ eV}
```

Scilab code Exa 8.3 Wavelength of radiation emitted at room temperature

```
1 // Scilab Code Ex8.3: Page-398 (2008)
2 clc; clear;
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 T = 27+273; // Room temperature, K
6 k = 1.38e-023; // Boltzmann constant, J/mol/K
7 lambda = h*c/(k*T); // Wavelength of radiation
    mitted at room temperature, m
8 printf("\nThe wavelength of radiation mitted at room
    temperature = %3.1e m", lambda);
```

```
9
10 // Result
11 // The wavelength of radiation mitted at room temperature = 4.8e-05 m
```

Scilab code Exa 8.4 Refractive index of the cladding in an optical fibre

```
// Scilab Code Ex8.4: Page-398 (2008)
clc; clear;
NA = 0.5;  // Numerical aperture of the optical fibre
n1 = 1.54;  // Refractive index of the core material
n2 = sqrt(n1^2-NA^2);  // Refractive index of the cladding in an optical fibre
printf("\nThe refractive index of the cladding in the optical fibre = %4.2f", n2);

Result
// Result
// The refractive index of the cladding in the optical fibre = 1.46
```

Scilab code Exa 8.5 Numerical aperture and acceptance angle of the optical fibre

```
1 // Scilab Code Ex8.5: Page-398 (2008)
2 clc; clear;
3 n1 = 1.51; // Refractive index of the core material
4 n2 = 1.47; // Refractive index of the cladding
5 NA = sqrt(n1^2-n2^2); // Numerical aperture of the optical fibre
6 n0 = 1; // Refractive index of air
7 theta_a = asin(NA/n0); // Acceptance angle of the optical fibre, rad
```

Chapter 9

Nuclear Physics

Scilab code Exa 9.1.1 Binding energy per nucleon for Ni

```
1 // Scilab Code Ex9.1.1: Page -411 (2008)
2 clc; clear;
3 u = 931.508;
                 // Energy equivalent of 1 amu, MeV
4 Z = 28; // Atomic number of ni-64
5 A = 64; // Mass number of Ni-64
9 delta_m = Z*m_p + (A-Z)*m_n - M_Ni; // Mass
     difference, u
                 // Binding energy of Ni-64
10 BE = delta_m*u;
     nucleus, MeV
                 // Binding energy per nucleon of
11 BE_bar = BE/A;
     Ni-64 nucleus, MeV
12 printf ("\nThe binding energy per nucleon for Ni-64
     nucleus = \%4.2 f MeV/nucleon, BE_bar);
13
14 // Result
15 // The binding energy per nucleon for Ni-64 nucleus
     = 8.78 \text{ MeV/nucleon}
```

Scilab code Exa 9.1.2 Binding energy per nucleon for deutron

```
1 // Scilab Code Ex9.1.2: Page -411 (2008)
2 clc; clear;
3 e = 1.6e - 013;
                   // Energy equivalent of 1 MeV, J
4 m_p = 1.672e-027; // Mass of a proton, kg

5 m_n = 1.675e-027; // Mass of a neutron, kg

6 M_D = 3.343e-027; // Mass of a deutron, kg
7 c = 3.00e+008; // Speed of light in vacuum, m/s
8 delta_m = m_p + m_n - M_D; // Mass defect, kg
9 E_B = delta_m*c^2/e; // Binding energy for the
      deutron, MeV
10 BE_bar = E_B/2;
                     // Binding energy per nucleon for
       the deutron, MeV
11 printf("\nThe binding energy per nucleon for the
      deutron = \%5.3 f MeV/nucleon, BE_bar);
12
13 // Result
14 // The binding energy per nucleon for the deutron =
      1.125 MeV/nucleon
```

Scilab code Exa 9.1.3 Packing fraction and binding energy per nucleon for oxygen

```
1 // Scilab Code Ex9.1.3:Page-411 (2008)
2 clc; clear;
3 u = 931.508; // Energy equivalent of 1 amu, MeV
4 Z = 8; // Atomic number of O-16
5 A = 16; // Mass number of O-16
6 m_p = 1.008142; // Mass of a proton, u
7 m_n = 1.008982; // Mass of a neutron, u
```

```
8 M_0 = 15.994915; // Atomic mass of O-16 nucleus,
9 delta_m = Z*m_p + (A-Z)*m_n - M_0; // Mass
     difference, u
10 BE = delta_m*u; // Binding energy of O-16 nucleus
     , MeV
11 BE_bar = BE/A; // Binding energy per nucleon of O
     -16 nucleus, MeV
12 delta_m = abs(M_O - A); // Mass difference, u
13 PF = delta_m/A; // Packing fraction for O-16
     nucleus, u
14 printf ("\nThe binding energy per nucleon for O-16
     nucleus = \%4.2 f MeV/nucleon, BE_bar);
15 printf ("\nThe packing fraction for O-16 nucleus = \%5
     .3 e u", PF);
16
17 // Result
18 // The binding energy per nucleon for O-16 nucleus =
      8.27 MeV/nucleon
19 // The packing fraction for O-16 nucleus = 3.178e
     -004 u
```

Scilab code Exa 9.1.4 Atomic mass of neon

```
1  // Scilab Code Ex9.1.4: Page-411 (2008)
2  clc; clear;
3  u = 931.508;  // Energy equivalent of 1 amu, MeV
4  Z = 10;  // Atomic number of Ne-20
5  A = 20;  // Mass number of Ne-0
6  m_p = 1.007825;  // Mass of a proton, u
7  m_n = 1.008665;  // Mass of a neutron, u
8  BE = 160.64;  // Binding energy of Ne-20 nucleus, MeV
9  M = Z*m_p + (A-Z)*m_n + Z*0.51/u - BE/u;  // Atomic mass of Ne-20 nucleus, u
```

Scilab code Exa 9.2.1 Average number of photons pe cubic metre in a monochromatic beam

```
1 // Scilab Code Ex9.2.1: Page-414 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 c = 3.00e+008; // Speed of light in vacu
                     // Speed of light in vacuum, m/s
5 I = 1e+004; // Intensity of monochromatic beam, W
     /Sq.m
6 nu = 1e+004; // Frequency of monochromatic beam,
     Hz
7 n = I/(h*nu*c); // Average number of photons per
      cubic metre, photons/metre-cube
8 printf("\nThe average number of photons in the
      monochromatic beam of radiation = \%4.2e photons/
      metre-cube", n);
9
10 // Result
11 // The average number of photons in the
      monochromatic beam of radiation = 5.03 e+0.24
      photons/metre-cube
```

Scilab code Exa 9.2.2 Average number of photons pe cubic metre in a monochromatic beam

```
1 // Scilab Code Ex9.2.2: Page-414 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
```

Scilab code Exa 9.2.3 Photoelectric effect with silver

```
1 // Scilab Code Ex9.2.3: Page-414 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 c = 3.00e+008; // Speed of light in vacuum, m/s 5 e = 1.6e-019; // Energy equivalent of 1 eV, J
6 \text{ m_e} = 9.1\text{e}-031; // Rest mass of an electron, kg
7 lambda0 = 2762e-010; // Thereshold wavelength of
      silver, m
  lambda = 2000e-010; // Wavelength of ultraviolet
     rays, m
9 E_max = h*c*(1/lambda - 1/lambda0); // Maximum
      kinetic energy of the ejected electrons from
      Einstein's photoelectric equation, J
10 // As E_{max} = 1/2*m_e*v^2, solving for v
11 v_max = sqrt(2*E_max/m_e); // Maximum velocity of
      the photoelectrons, m/s
12 VO = E_max/e; // Stopping potential for the
```

Scilab code Exa 9.2.4 Work function of the metallic surface

```
1 // Scilab Code Ex9.2.4: Page-415 (2008)
2 clc; clear;
3 \quad lambda1 = 3333e-010;
                           // First wavelength of the
     incident light, m
4 \quad lambda2 = 2400e-010;
                          // Second wavelength of the
     incident light, m
5 c = 3e+008; // Speed of light in free space, m/s
6 e = 1.6e-019; // Energy equivalent of 1 eV, J
               // Kinetic energy of the emitted
7 E1 = 0.6;
     photoelectrons for the first wavelength, eV
8 E2 = 2.04;
                  // Kinetic energy of the emitted
     photoelectrons for the second wavelength, eV
9 h = (E2 - E1)*lambda1*lambda2*e/(c*(lambda1 -
     lambda2)); // Planck's constant, Js
10 W0 = (E2*lambda2 - E1*lambda1)/(lambda1 - lambda2);
        // Work function of the metal, eV
11 printf("\nThe value of Planck constant = \%3.1e Js",
```

```
h);
12 printf("\nThe work function of the metal = %3.1 f eV", W0);
13
14 // Result
15 // The value of Planck constant = 6.6 e - 034 Js
16 // The work function of the metal = 3.1 eV
```

Scilab code Exa 9.2.5 Wavelength of the scattered photon

```
1 // Scilab Code Ex9.2.5: Page-415 (2008)
2 clc; clear;
3 c = 3e + 008;
                   // Speed of light in free space, m/s
4 h = 6.63e-034; // Planck's constant, Js
5 \text{ m_e} = 9.11\text{e-031}; // Rest mass of an electron , kg
6 \quad lambda = 0.3;
                     // Wavelength of incident X-ray
      photon, angstrom
                 // The angle of scattering, degrees
7 \text{ phi} = 45;
8 lambda_prime = lambda + h/(m_e*c*1e-010)*(1-cosd(phi
             // The wavelength of the scattered photon,
       angstrom
9 printf("\nThe wavelength of the scattered photon =
      \%6.4 \, \mathrm{f} \, \mathrm{angstrom}", lambda_prime);
10
11 // Result
12 // The wavelength of the scattered photon = 0.3071
      angstrom
```

Scilab code Exa 9.2.6 de Broglie wavelength of the valence electron in metallic sodium

```
1 // Scilab Code Ex9.2.6: Page-416 (2008)
2 clc; clear;
```

```
3 h = 6.63e-034;  // Planck's constant, Js
4 m_e = 9.11e-031;  // Rest mass of an electron, kg
5 e = 1.6e-019;  // Energy equivalent of 1 eV, J
6 K = 3*e;  // Kinetic energy of the electron in metllic sodium, J
7 lambda = h/sqrt(2*m_e*K)/1e-010;  // de Broglie wavelength of the valence electron, angstrom
8 printf("\nThe de-Broglie wavelength of the valence electron = %3.1 f angstrom", lambda);
9
10 // Result
11 // The de-Broglie wavelength of the valence electron = 7.1 angstrom
```

Scilab code Exa 9.2.7 de Broglie wavelength of a moving electron

```
1 // Scilab Code Ex9.2.7: Page-416 (2008)
2 clc; clear;
3 h = 6.63e - 034;
                   // Planck's constant, Js
4 m = 9.11e-031; // Rest mass of an electron, kg
5 c = 3e + 008;
                 // Speed of light in vacuum, m/s
                 // Boost parameter
6 bita = 3/5;
7 v = 3/5*c;
                 // Spped of the electron, m/s
  lambda = h/(m*v)*sqrt(1-bita^2);
                                    // de Broglie
     wavelength of the electron, m
9 printf("\nThe de-Broglie wavelength of the moving
     electron = \%6.4 f angstrom", lambda/1e-010);
10
11 // Result
12 // The de-Broglie wavelength of the moving electron
     = 0.0323 angstrom
```

Scilab code Exa 9.2.8 Uncertainty in energy and frequency of emitted light

```
1 // Scilab Code Ex9.2.8: Page-416 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 h_bar = h/(2*%pi); // Reduced Planck's constant,
     Js
 delta_t = 1e-008;  // Time during which the
     radiation is emitted, s
6 delta_E = h_bar/delta_t;
                            // Minimum uncertainty
     in energy of emitted light, J
  // As delta_E = h*delta_nu from Planck's quantum
     theory, solving for delta_nu
8 delta_nu = delta_E/h; // Minimum uncertainty in
     frequency of emitted light, Hz
9 printf("\nThe minimum uncertainty in energy of
     emitted light = \%5.3e J", delta_E);
10 printf("\nThe minimum uncertainty in frequency of
     emitted light = \%4.2 \,\mathrm{e} Hz", delta_nu);
11
12 // Result
13 // The minimum uncertainty in energy of emitted ligh
      = 1.055 e - 026 J
14 // The minimum uncertainty in frequency of emitted
     ligh = 1.59e + 007 Hz
```

Scilab code Exa 9.2.9 Shortest wavelength present in the radiation from an X ray machine

```
1 // Scilab Code Ex9.2.9: Page-417 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light in free space, m/s
5 e = 1.6e-019; // Energy equivalent of 1 eV, J
```

```
6 V = 50000;  // Accelerating potential, V
7 lambda_min = h*c/(e*V);  // The shortest
    wavelength present in the radiation from an X-ray
    machine, m
8 printf("\nThe shortest wavelength present in the
    radiation from an X-ray machine = %6.4 f nm",
    lambda_min/1e-009);
9
10 // Result
11 // The shortest wavelength present in the radiation
    from an X-ray machine = 0.0249 nm
```

Scilab code Exa 9.2.11 Q value of nuclear reaction

```
1 // Scilab Code Ex9.2.11: Page -418(2008)
2 clc; clear;
3 u = 931.5; // Energy equivalent of 1 amu, MeV
4 \text{ m_x} = 4.002603;
                     // Mass of projectile (alpha-
     particle), u
                   // Mass of emitted particle (
5 \text{ m_y} = 1.007825;
     proton), u
6 \text{ M_X} = 14.0031; // Mass of target nucleus (N-14),
      u
7 \text{ M_Y} = 16.9994; // Mass of daughter nucleus (O-16)
     , u
8 Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of
     the reaction, MeV
9 printf("\nThe Q-value of the nuclear reaction = \%5.3
      f MeV", Q);
10
11 // Result
12 // The Q-value of the nuclear reaction = -1.418 MeV
```

Scilab code Exa 9.2.12 Threshold energy for the reactions

```
1 // Scilab Code Ex9.2.12: Page -418(2008)
2 clc; clear;
                  // Energy equivalent of 1 amu, MeV
3 u = 931.5;
4 // First reaction
                       // Mass of projectile (proton), u
5 \text{ m_x} = 1.007825;
6 \text{ m_y} = 2.014102;
                      // Mass of emitted particle (
      deutron), u
7 M_X = 208.980394;
                         // Mass of target nucleus (Bi
      -209), u
                      // Mass of daughter nucleus (Bi
8 M_Y = 207.979731;
      -208), u
9 Q = ((m_x + M_X) - (m_y + M_Y))*u;
                                            // Q-value of
      the reaction, MeV
10 Ex_threshold = -Q*(m_x + M_X)/M_X;
      smallest value of the projectile energy, MeV
11 printf("\nThe threshhold energy of the reaction Bi
      (209,83) + p \longrightarrow Bi(208,83) + d = \%4.2 f MeV,
      Ex_threshold);
12 // Second reaction
13 \text{ m_x} = 4.002603;
                       // Mass of projectile (alpha-
      particle), u
14 \text{ m_y} = 1.007825;
                      // Mass of emitted particle (
     proton), u
15 \text{ M}_X = 27.98210;
                      // Mass of target nucleus (Al
      -27), u
16 M_Y = 30.973765; // Mass of daughter nucleus (P
      -31), u
17 Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of
      the reaction, MeV
  Ex\_threshold = -Q*(m_x + M_X)/M_X; // The
      smallest value of the projectile energy, MeV
19 printf("\nThe threshhold energy of the reaction Al
      (27,13) + \text{He} \longrightarrow P(31,15) + p = \%4.2 \text{ f MeV},
      Ex_threshold);
20
21 // Result
```

```
22 // The threshhold energy of the reaction Bi(209,83) + p \longrightarrow Bi(208,83) + d = 5.25 \text{ MeV}
23 // The threshhold energy of the reaction Al(27,13) + Be \longrightarrow P(31,15) + p = -3.31 \text{ MeV}
```

Scilab code Exa 9.2.13 Finding unknown particles in the nuclear reactions

```
1 // Scilab Code Ex9.2.13: Page -418(2008)
2 clc; clear;
3 function p = Find(Z, A)
       if Z == 2 \& A == 4 then
            p = 'alpha';
5
6
       end
7
       if Z == -1 & A == 0 then
8
            p = 'beta-';
9
       end
10
            Z == 1 \& A == 0 then
       if
            p = 'beta+';
11
12
       end
13 endfunction
14 R1 = cell(4,3);
15 R2 = cell(4,3);
16 // Enter data for first cell (Reaction)
17 R1(1,1).entries = 'Li'; // Element
18 R1(1,2).entries = 3; // Atomic number
                             // Mass number
19 R1(1,3).entries = 6;
20 R1(2,1).entries = 'd';
21 R1(2,2).entries = 1;
22 R1(2,3).entries = 2;
23 R1(3,1).entries = X';
24 R1(3,2).entries = 0;
25 \text{ R1}(3,3).\text{entries} = 0;
26 \text{ R1}(4,1) \cdot \text{entries} = 'He';
27 R1(4,2).entries = 2;
```

```
28 R1(4,3).entries = 4;
29 // Enter data for second cell (Reaction)
30 \text{ R2(1,1).entries} = \text{"Te"};
31 R2(1,2).entries = 52;
32 R2(1,3).entries = 122;
33 R2(2,1).entries = 'X';
34 \text{ R2}(2,2).\text{entries} = 0;
35 \text{ R2}(2,3).\text{entries} = 0;
36 \text{ R2}(3,1).\text{entries} = 'I';
37 R2(3,2).entries = 53;
38 R2(3,3).entries = 124;
39 R2(4,1).entries = 'd';
40 \text{ R2}(4,2) \cdot \text{entries} = 1;
41 R2(4,3) entries = 2;
42 R1(3,2).entries = R1(1,2).entries+R1(2,2).entries-R1
      (4,2) entries
43 R1(3,3) entries = R1(1,3) entries+R1(2,3) entries-R1
      (4,3) entries
44 particle = Find(R1(3,2).entries, R1(3,3).entries);
         // Find the unknown particle
45 printf("\nFor the reaction\n")
                printf("\t%s(%d) + %s(%d) --> %s + %s(%d)
46
                   \n X must be an %s particle", R1
                    (1,1) entries, R1(1,3) entries, R1
                    (2,1) entries, R1(2,3) entries, R1
                    (3,1) entries, R1(4,1) entries, R1
                    (4,3).entries, particle);
47 R2(2,2) entries = R2(3,2) entries+R2(4,2) entries-R2
      (1,2) entries
48 R2(2,3).entries = R2(3,3).entries+R2(4,3).entries-R2
      (1,3) entries
  particle = Find(R2(2,2).entries, R2(2,3).entries);
         // Find the unknown particle
50 printf("\n For the reaction\n")
                printf("\t\%s(\%d) + \%s \longrightarrow \%s(\%d) + \%s(\%d) \setminus
51
                   n X must be an %s particle", R2(1,1).
                   entries, R2(1,3) entries, R2(2,1).
                    entries, R2(3,1) entries, R2(3,3).
```

```
entries, R2(4,1).entries, R2(4,3). entries, particle);  52 
 53  //   Result 
 54  //   For the reaction 
 55  //   Li(6) + d(2) \longrightarrow X + He(4) 
 56  //   X   must be an alpha particle 
 57  
 58  //   For the reaction 
 59  //   Te(122) + X \longrightarrow I(124) + d(2) 
 60  //   X   must be an alpha particle
```

Scilab code Exa 9.2.14 Comptom scattering

```
1 // Scilab Code Ex9.2.14: Page -419(2008)
2 clc; clear;
3 h = 6.63e - 034;
                   // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 lambda = 10e-012; // Wavelength of incident X-
     rays, m
 lambda_c = 2.426e-012; // Compton wavelength for
     the electron, m
             // Angle of scattering of X-rays,
7 \text{ phi} = 45;
     degree
8 lambda_prime = lambda + lambda_c*(1 - cosd(phi));
        // Wavelength of scattered X-rays, m
9 // For maximum wavelength
10 \text{ phi} = 180;
              // Angle for maximum scattering,
     degree
11 lambda_prime_max = lambda + lambda_c*(1 - cosd(phi))
      ; // Maximum wavelength present in the
     scattered X-rays, m
12 KE_max = h*c*(1/lambda-1/lambda_prime_max); //
     Maximum kinetic energy of the recoil electrons, J
13 printf("\nThe wavelength of scattered X-rays = \%5.2e
```

```
m", lambda_prime);

14 printf("\nThe maximum wavelength present in the scattered X-rays = %6.3 f pm", lambda_prime_max/1e -012);

15 printf("\nThe maximum kinetic energy of the recoil electrons = %5.3 e J", KE_max);

16

17 // Result

18 // The wavelength of scattered X-rays = 1.07e-011 m

19 // The maximum wavelength present in the scattered X -rays = 14.852 pm

20 // The maximum kinetic energy of the recoil electrons = 6.498e-015 J
```

Scilab code Exa 9.2.16 Miller indices for the lattice planes

```
1 // Scilab Code Ex9.2.16: Page -420(2008)
2 clc; clear;
3 m = 3; n = 3; p = 2; // Coefficients of intercepts
      along three axes
4 \text{ m_inv} = 1/\text{m};
                        // Reciprocate the first
      coefficient
                        // Reciprocate the second
5 \text{ n_inv} = 1/n;
      coefficient
                        // Reciprocate the third
6 p_{inv} = 1/p;
      coefficient
7 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
     m. of m, n and p
8 m1 = m_inv*mul_fact; // Clear the first fraction
                           // Clear the second fraction
9 m2 = n_inv*mul_fact;
10 m3 = p_inv*mul_fact; // Clear the third fraction
11 printf("\nThe miller indices for planes with set of
      intercepts (\%da, \%db, \%dc) are (\%d \%d \%d) ", m, n
     , p, m1, m2, m3);
12 m = 1; n = 2; p = %inf; // Coefficients of
```

```
intercepts along three axes
                          // Reciprocate the first
13 \text{ m_inv} = 1/\text{m};
      coefficient
14 \text{ n_inv} = 1/n;
                          // Reciprocate the second
      coefficient
15 p_{inv} = 1/p;
                          // Reciprocate the third
      coefficient
16 mul_fact = double(lcm(int32([m,n]))); // Find l.c.m.
       of m, n and p
17 m1 = m_inv*mul_fact; // Clear the first fraction
18 m2 = n_inv*mul_fact; // Clear the second fraction
19 m3 = p_inv*mul_fact;
                             // Clear the third fraction
20 printf("\nThe miller indices for planes with set of
      intercepts (\%\mathrm{da}, \%\mathrm{db}, \%\mathrm{dc}) are (\%\mathrm{d} \%\mathrm{d} \%\mathrm{d}) ", m, n
      , p, m1, m2, m3);
21
22 // Result
23 // The miller indices for planes with set of
      intercepts (3a, 3b, 2c) are (2 2 3)
24 // The miller indices for planes with set of
      intercepts (1a, 2b, Infc) are (2 1 0)
```

Scilab code Exa 9.2.19 Glancing angles for the second and third order reflections

```
1 // Scilab Code Ex9.2.19: Page-421(2008)
2 clc; clear;
3 d = 1;    // For simplicity assume interplanar
        spacing to be unity, m
4 theta = 15;    // Glancing angle for first order,
        degree
5 n = 1;    // Order of reflection
6 // From Bragg's law, 2*d*sind(theta) = n*lambda,
        solving for lambda
7 lambda = 2*d*sind(theta)/n;    // Wavelength of
```

```
incident X-ray, angstrom
8 // For second order reflection
9 n = 2
10 theta = asind(n*lambda/(2*d)); // Glancing angle
      for second order reflection, degree
11 printf("\nThe glancing angle for the second order
      reflection = \%4.1f degree", theta);
12 // For third order reflection
13 n = 3;
14 theta = asind(n*lambda/(2*d)); // Glancing angle
      for third order reflection, degree
15 printf("\nThe glancing angle for the third order
      reflection = \%4.1 f degree", theta);
16
17 // Result
18 // The glancing angle for the second order
      reflection = 31.2 degree
19 // The glancing angle for the third order reflection
      = 50.9 \text{ degree}
```