R19

Code No: R1932053

SET - 1

[8M]

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

- 1. a) Define an algorithm. Describe the characteristics of an [7M] algorithm.
 - b) Prove that:
 - (i) $f(n)+g(n) = O(n^2)$ where $f(n)=3n^2-n+4$ and $g(n)=n \log n+5$
 - (ii) $f(n) = 4n^2 64n + 288 = \Omega(n^2)$.

(OR)

- 2. a) What are bi-connected components? Relate with suitable [7M] examples.
 - b) Define Articulation point. For the following graph, in Fig.1, [8M] identify the articulation points and draw the bi-connected components.

Fig.1

UNIT-II

- 3. a) Write algorithm for abstract Divide and Conquer strategy. Relate [8M] the method to real-time applications.
 - b) Trace the quick sort algorithm to sort the list C, O, L, L, E, G, E [7M] in alphabetical order.

(OR)

- 4. a) Explain in the control abstraction for greedy method. List out [7M] the advantages.
 - b) Prove that, if p1/w1≥, p2/w2≥,.....≥pn/wn, then Greedy [8M] Knapsack generates an optimal solution to the given instance of the Knapsack problem.

UNIT-III

- 5. a) Define and describe Dynamic Programming. Give its [8M] applications.
 - b) How the reliability of a system is determined using dynamic [7M] programming? Explain.

Code No: R1932053	(R19)
-------------------	-------

SET - 1

I	0	\mathbf{R}

- 6. Explain 0/1 Knapsack problem solution using Dynamic [8M] a) programming.
 - Solve the following instance of 0/1 Knapsack problem using b) [7M] Dynamic programming n = 3; (W1, W2, W3) = (3, 5, 7); (P1, P2, P3) = (3, 7, 12); M = 4.

UNIT-IV

- 7. a) Give the solution to the 8-queens problem using backtracking. [8M]Draw the state space tree.
 - Describe the algorithm for Hamiltonian cycles and determine the b) [7M] order of magnitude of the worst-case computing time for the backtracking procedure that finds all Hamiltonian cycles.

(OR)

- 8. Describe about Control Abstractions for LC-search. a) [7M]
 - Explain the principles of b) [8M](i) FIFO branch and Bound, (ii) LC Branch and Bound and

UNIT-V 9.

- a) Explain the satisfiability problem. [7M] How are P and NP problems related? Give the relation between b) [8M]
 - NP-hard and NP problems.

(OR)

- 10. a) What is String Matching? Give its applications. [8M]
 - Write about Naïve String Matching Algorithm. [7M]

[7M]

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

1.	a)	Write	the	non-recursive	algorithm	for	finding	the	Fibonacci	[7M]
sequence and derive its time complexity.										

b) Express the following function in Big Oh, Omega and theta [8M] notations: (i) $10n^2+5n$ and (ii) 10logn+6.

(OR)

2. a) Present an algorithm for depth first search traversal. Explain with [8M] an example.

b) Consider the set of all trees of height h that can be constructed by a sequence of "union-by-height" operations. How many such trees are there?

UNIT-II

3. a) Write the Binary search algorithm and explain. [7M]

b) Compare Merge sort and Quick sort complexities for the given data [8M] set: {10, 30, 15, 45, 25, 30, 35, 20, 30, 40, 50}.

(OR)

4. a) Explain the control abstraction for greedy method. [7M]

b) Explain the Job sequencing with dead line algorithm and also find the solution for the instance n=7, (P1,P2,...,P7)=(3,5,20,18,1,6,30) and (D1,D2,..., D7)= (1,3,4,3,2,1,2).

UNIT-III

5. a) Explain Optimal Binary Search tree problem with an example. [7M]

b) Design an algorithm to find solution for Optimal binary search [8M] tree.

(OR)

6. a) Write an algorithm of all pairs shortest path problem using [8M] dynamic programming.

b) Find the shortest path between all pairs of nodes in the following [7M] Graph in Fig.1.

Fig.1

Code No: R1932053 R19

SET - 2

[7M]

UNIT-IV

7.	a)	Explain	the	basic	principle	of	backtracking	and	list	the	[8M]
		applicati	ons o	f backtı	racking.						
	b)	Explain	how 1	backtra	cking is us	sed t	for solving n-au	ieen's	prob	lem.	[7M]

Explain how backtracking is used for solving n-queen's problem. Show the state space tree.

(OR)

- 8. a) What is branch and bound? Explain the role of bounding function [8M] in it using LC search.
 - b) Generate FIFO branch and bound solution for the given knapsack problem. m = 15, n = 3. (P1 P2 P3) = (10, 6, 8), (w1 w2 w3) = (10, 12, 3).

UNIT-V

- 9. a) Write short notes on Cook's theorem. [8M]
 - b) Explain non deterministic algorithms. Give some examples. [7M]

(OR)

- 10. a) Write a short note on why KMP algorithm is most efficient [8M] algorithm for string matching.
 - b) What are tries? Explain the algorithm for their formation. [7M]

R19

Code No: R1932053

SET - 3

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

1. a) Describe the Performance analysis in detail. [8M]

b) Solve the following recurrence relation using substitution [7M] method:

 $T(n) = 1, n \le 4$ 2T(n) + log n, n > 4

(OR)

2. a) What are the disjoint sets? Discuss about various disjoint set [8M] operations.

b) Write short notes on Randomized algorithm. [7M]

UNIT-II

3. a) Give an algorithm for Merge sort. Derive it's time complexity. [7M]

b) Perform merge sort on the array of elements a[1:10] = {310, 285, [8M] 179, 652, 351, 423, 861, 254, 450, 520}. Represent tree of calls for merge sort.

(OR)

4. a) Write Kruskal's algorithm to find the maximum spanning tree. [7M]

b) Compute a minimum cost spanning tree for the following graph, shown in Fig.1, using Kruskal's Algorithm:

Fig. 1

UNIT-III

5. a) Define and describe Dynamic Programming. Give its [7M] applications.

b) Describe the problem of single-source shortest path and give a solution using dynamic programming. [8M]

Code No: R1932053 R19 SET - 3

1	OR	

6.	a)	write an Algorithm for 0/1 Knapsack problem using Dynamic	[8M]						
		programming.							
	b)	Describe the Matrix multiplication chains problem. Apply the	[7M]						
		recursive solution of dynamic programming to determine optimal							
		sequence of pair wise matrix multiplications.							
		<u>UNIT-IV</u>							
7.	a)	State and explain the subset sum problem with an example.							
	b)	Consider the following Sum of Subsets problem instance: n = 6,							
		$m = 30$, and $w[1:6] = \{5, 10, 12, 13, 15, 18\}$. Find all possible							
	subsets of w that sum to m. Draw the portion of the state space								
		tree that is generated.							
		(OR)							
8.	a)	State the concept of branch and bound method and also list its	[8M]						
	,	applications.							
	b)	Write short notes on FIFO and LC branch and bound.	[7M]						
	,	UNIT-V							
9.	a)	What are differences between NP-Hard and NP-Complete	[8M]						
	,	classes? Explain with examples.	. ,						
	b)	Explain any two problems of polynomial time algorithms.	[7M]						
	-,	r J r r - J							

[8M]

[7M]

(OR)

What are suffix trees? What are the applications of suffix trees?

Explain the Rabin-Karp algorithm. What is its complexity?

2 of 2

10.

a)

b)

R19

Code No: R1932053

SET - 4

[7M]

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

> Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

- What are the various Asymptotic notations? Bring out the 1. [8M] importance of the same with suitable examples.
 - What is the time complexity of following function fun ()? Explain intfun(int n)

```
for (inti = 1; i <= n; i++)
        for (int j = 1; j < n; j += i)
Sum = Sum + i*j;
return(Sum);
```

(OR)

- 2. With the help of an algorithm explain the importance of weighted [8M] rule for Union operation? Represent a suitable tree for the same for an example.
 - Write about Collapsing rule for Find operation. Give suitable b) [7M] example.

UNIT-II

- Write the General method of Divide-and-Conquer approach. 3. a)
 - [7M] Explain the problem of finding minimum and maximum, and try [8M] to apply 'divide and conquer' strategy to solve it. Give a general

algorithm for doing the same.

(OR)

Write Prim's algorithm to find the maximum spanning tree. 4. a)

[7M]

b) Compute a minimum cost spanning tree for the following graph, in Fig.1, using Prim's Algorithm: [8M]

Fig.1

UNIT-III

- 5. a) Explain the methodology of dynamic programming. List the [8M] applications of dynamic programming.
 - b) How the reliability of a system is determined using dynamic [7M] programming? Explain.

(OR)

- 6. a) What is Travelling Sales Person problem? And what are its [7M] applications?
 - b) Find the shortest tour of a TSP for following instance using [8M] Dynamic programming:

В C D Α 10 15 20 Α 0 В 5 9 10 0 C 6 13 0 12 D 8 8 9 0

UNIT-IV

- 7. a) Define the method of backtracking with suitable example. [7M]
 - b) What is graph coloring? Present an algorithm which finds all m- [8M] colorings of a graph.

(OR)

- 8. a) State the concept of branch and bound method and also list its [8M] applications.
 - b) Solve the Travelling Salesman problem using branch and bound algorithms. [7M]

UNIT-V

- 9. a) With a neat diagram, explain the relevance of NP-hard and NP- [8M] complete problems.
 - b) Write about the theory of NP-Completeness. [7M]

(OR)

- 10. a) What are tries? Explain the algorithm for their formation. [8M]
 - b) What are suffix trees? What are the applications of suffix trees? [7M]
