

Concours ITA session 2013

Composition: Physique 7 Durée : 2 Heures

Electrocinétique

On réalise un circuit RLC en branchant en série un résistor de résistance R =40 Ω , une bobine de résistance r d'inductance L et un condensateur de capacité C = 10 µF. Le générateur GBF délivre une tension de fréquence f = 250 Hz et de valeur crête à crête 10 V. Deux tensions u_e et u_R sont visualisées.

L'oscillogramme obtenu est le graphe suivant

La précision sur chaque tension mesurée est $\frac{\Delta U}{U} = 0.5 \%$

- 1- Déterminer les amplitudes U_e , U_R et I respectivement de u_e , u_R et i. (Les grandeurs seront données sous la forme $A = (a \pm \Delta a)$.).
- 2- Calculer l'impédance Z_{AM} du dipôle AM et ses incertitudes.
- 3- Déterminer le déphasage φ entre u_e et u_R.
- 4- Exprimer r en fonction de R, Z_{AM} et φ et calculer sa valeur
- 5- Exprimer L en fonction de C, ω , Z_{AM} et φ et calculer sa valeur.

STATIQUE DES FLUIDES

On étudie la répartition de température T et de pression P en altitude de l'air sec dans l'atmosphère en équilibre adiabatique. On suppose que l'air est un gaz parfait de masse molaire $M = 29 \text{ g.mol}^{-1}$, de coefficient $\gamma = 1,4$.

A la surface du sol $T_0 = 293 \text{ K et P}_0 = 10^5 \text{ Pa. R} = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1} \text{ et g} = 9,8 \text{ m.s}^{-2}.$

- 1- Etablir l'expression de la température T en fonction de l'altitude z, et des constantes T_0 , M, g, R et γ
- 2- On pose $\beta = Mg/RT_0$. Etablir l'expression de la pression P en fonction de z et de β , γ et P_0
- 3- Pour l'altitude $z_1 = 2.3$ km, calculer la valeur
 - 3.1- Du gradient de température $\frac{dT}{dz}$
 - 3.2- De la température T₁
 - 3.3- De la pression P₁

THERMODYNAMIQUE

Un volume d'air $V_1=2.0$ L est enfermé dans un cylindre vertical, fermé par un piston de surface S=20 cm² et de masse négligeable. Le piston peut se déplacer verticalement sans frottement à l'intérieur du cylindre. L'air est considéré comme un gaz parfait diatomique ($\gamma=1.4$) et se trouve initialement à la température $T_1=298$ K et à la pression $P_1=1$ atm.

- 1- On pose sur le piston une masse m = 1 kg. Le piston descend brusquement puis se stabilise. La compression, rapide est supposée adiabatique. Calculer :
 - 1.1- La pression P_2 , la température T_2 et le volume V_2 à la fin de cette compression.
 - 1.2- Le travail W échangé.
- 2- A la suite d'échanges thermiques à travers les parois du cylindre, le gaz revient lentement à la température $T_3 = T_1$. Calculer :
 - 2.1- La pression finale P₃ et le volume final V₃ du gaz.
 - 2.2- La variation d'énergie interne ΔU, le travail W échangé et la chaleur Q échangée.

Données : $q = 9.8 \text{ m.s}^{-2}$