Εφαρμογές Ασαφούς Λογικής με άλλες τεχνικές

Ε.ΔΙ.Π. Dr. Κωνσταντίνα Χρυσαφιάδη

Ασαφής πολυκριτηριακή ανάλυση

TOPSIS

- Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
- Εισάχθηκε από τους Ching-Lai Hwang and Yoon το 1981.
- Στόχος: εύρεση της καλύτερης εναλλακτικής λύσης
- Κεντρική ιδέα: η επιλεγμένη εναλλακτική πρέπει να έχει τη μικρότερη γεωμετρική απόσταση από τη θετική ιδανική λύση και τη μεγαλύτερη γεωμετρική απόσταση από την αρνητική ιδανική λύση.

TOPSIS - Περιγραφή μεθόδου

- Γίνεται σύγκριση εναλλακτικών λύσεων.
- Καθορίζονται τα κριτήρια επιλογής.
- Καθορίζονται τα βάρη ανά κριτήριο.
- Κανονικοποίηση των βαθμολογιών ανά κριτήριο.
- Υπολογισμός της γεωμετρικής απόστασης μεταξύ κάθε εναλλακτικής λύσης και της ιδανικής εναλλακτικής.
- Ιδανική εναλλακτική λύση είναι εκείνη που έχει την καλύτερη βαθμολογία για κάθε κριτήριο.

TOPSIS - Βήματα υπολογισμού (1/4)

- Βήμα 1: Δημιουργία ενός δισδιάστατου πίνακα.
 - Γραμμές: οι m εναλλακτικές
 - Στήλες: τα η κριτήρια
 - Χij: τιμή κριτηρίου j για την εναλλακτική i.

• Βημα 2: Κανονικοποίηση:
$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{k=1}^m x_{kj}^2}}, \quad i=1,2,\ldots,m, \quad j=1,2,\ldots,n$$

Βήμα 3: Υπολογισμός κανονικοποιημένης τιμής λαμβάνοντας υπόψη τα βάρη:

$$t_{ij}=r_{ij}\cdot w_j,\quad i=1,2,\ldots,m,\quad j=1,2,\ldots,n$$

• Το άθροισμα των βαρών θα πρέπει να ισούται με 1.

TOPSIS - Βήματα υπολογισμού (2/4)

• Βήμα 4: Υπολογισμός καλύτερης και χειρότερης εναλλακτικής

$$egin{aligned} A_w &= \{ \langle \max(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_-
angle, \langle \min(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_+
angle \} \equiv \{t_{wj} \mid j=1,2,\ldots,n\}, \ A_b &= \{ \langle \min(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_-
angle, \langle \max(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_+
angle \} \equiv \{t_{bj} \mid j=1,2,\ldots,n\}, \end{aligned}$$

 $J_+=\{j=1,2,\ldots,n\mid j\}$ associated with the criteria having a positive impact, and $J_-=\{j=1,2,\ldots,n\mid j\}$ associated with the criteria having a negative impact.

TOPSIS - Βήματα υπολογισμού (3/4)

 Βήμα 5: Υπολογισμός γεωμετρικής απόστασης της εναλλακτικής λύσης i από την χειρότερη εναλλακτική.

$$d_{iw} = \sqrt{\sum_{j=1}^n (t_{ij} - t_{wj})^2}, \quad i = 1, 2, \dots, m,$$

• Υπολογισμός γεωμετρικής απόστασης της εναλλακτικής λύσης i από την καλύτερη εναλλακτική.

$$d_{ib} = \sqrt{\sum_{j=1}^n (t_{ij} - t_{bj})^2}, \quad i = 1, 2, \dots, m$$

TOPSIS - Βήματα υπολογισμού (4/4)

 Βήμα 6: Υπολογισμός ομοιότητας ως προς την χειρότερη εναλλακτική

$$s_{iw}=d_{iw}/(d_{iw}+d_{ib}), \quad 0 \leq s_{iw} \leq 1, \quad i=1,2,\ldots,m.$$
 $s_{iw}=1$ if and only if the alternative solution has the best condition; and $s_{iw}=0$ if and only if the alternative solution has the worst condition.

• Ταξινόμηση των εναλλακτικών με βάση την τιμή siw.

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου (1/9)

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου (2/9)

	Attributes			Altern	atives	
y			MarutiErtiga	Swift	Tata Indica	Alto800
	Fuel Economy	City	18kmph	15.2kmph	20kmph	16kmph
		Highway	22.2kmph	18.6kmph	24kmph	21.7kmph
1	Sty	yle	Better	Extreme	Good	Good
	Life Span i	in Average	10yrs	12yrs	10yrs	8yrs
	Cost	(Rs)	5.99 -8.77 lakhs	4.58 - 6.9 lakhs	4.20-5.3 lakhs	2.5 – 3.6 lakhs

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου (3/9)

Alternatives	Criteria's				
Atternatives	Style	Lifespan	Fuel economy	Cost	
MarutiErtiga	6	7	8	6	
Swift	8	7	8	7	
Tata Indica	7	9	9	8	
Alto800	9	6	8	9	
Weights	0.1	0.4	0.3	0.2	

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου - Κανονικοποίηση (4/9)

Alternatives		Criteria's		
Atternatives	Style	Lifespan	Fuel economy	Cost
MarutiErtiga	0.40	0.48	0.48	0.40
Swift	0.53	0.48	0.48	0.46
Tata Indica	0.46	0.61	0.54	0.53
Alto800	0.59	0.41	0.48	0.59

$$R_{13}=7/(8^2+6^2+9^2)^{1/2} = 0.46$$

$$R_{23}=9/(7^2+7^2+6^2)^{1/2} = 0.61$$

$$R_{33}=9/(8^2+8^2+8^2)^{1/2} = 0.54$$

$$R_{43}=8/(6^2+7^2+9^2)^{1/2} = 0.53$$

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου – Κανονικοποίηση με βάρη (5/9)

Alternatives		Criteria's			
Anematives	Style	Lifespan	Fuel economy	Cost	
MarutiErtiga	0.040	0.192	0.144	0.080	
Swift	0.053	0.192	0.144	0.092	
Tata Indica	0.046	0.244	0.162	0.106	
Alto800	0.059	0.164	0.144	0.118	

$$V_{13} = 0.1 \times 0.46 = 0.046$$

$$V_{23} = 0.4 \times 0.61 = 0.244$$

$$V_{33} = 0.3 \times 0.54 = 0.162$$

$$V_{43} = 0.2 \times 0.53 = 0.106$$

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου – Υπολογισμός καλύτερης εναλλακτικής(6/9)

Γ	Alternatives	Criteria's				
	Antematives	Style	Lifespan	Fuel economy	Cost	
	MarutiErtiga	0.040	0.192	0.144	0.080	
	Swift	0.053	0.192	0.144	0.092	
	Tata Indica	0.046	0.244	0.162	0.106	
	Alto800	0.059	0.164	0.144	0.118	

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου – Υπολογισμός χειρότερης εναλλακτικής(7/9)

	Alternatives		Criteria's				
	Atternatives	Style	Lifespan	Fuel economy	Cost		
	MarutiErtiga	0.040	0.192	0.144	0.080		
	Swift	0.053	0.192	0.144	0.092		
	Tata Indica	0.046	0.244	0.162	0.106		
	Alto800	0.059	0.164	0.144	0.118		

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου - Υπολογισμός γεωμετρικών αποστάσεων(8/9)

$$d_1^+ = \sqrt{(0.040 - 0.059)^2 + (0.192 - 0.244)^2 + (0.144 - 0.162)^2 + (0.080 - 0.080)^2} = 0.058$$

$$d_1^- = \sqrt{(0.040 - 0.040)^2 + (0.192 - 0.164)^2 + (0.144 - 0.144)^2 + (0.080 - 0.118)^2} = 0.047$$

```
d^+ = \{0.058; 0.057; 0.029; 0.090\}
```

$$d = \{0.047; 0.040; 0.083; 0.019\}$$

ΤΟΡSIS – Παράδειγμα – Επιλογή αυτοκινήτου – Υπολογισμός ομοιότητας (9/9)

	d ⁺
Maruti Ertiga	0.058
Swift	0.057
TataIndica	0.029
Alto800	0.090

	d⁻
Maruti Ertiga	0.047
Swift	0.040
TataIndica	0.083
Alto800	0.019

	S
Maruti Ertiga	0.058/(0.58+0.047) =0.45
Swift	0.41
TataIndica	0.74
Alto800	0.17

FUZZY TOPSIS (1/2)

• Τα βάρη ορίζονται όχι με αριθμούς, αλλά με λεκτικές τιμές.

Triangular FNs for the importance of criteria

Rank	Attribute grade	Triangular FN
Very low	1	(0.00, 0.10, 0.30)
Low	2	(0.10, 0.30, 0.50)
Medium	3	(0.30, 0.50, 0.75)
High	4	(0.50, 0.75, 0.90)
Very high	5	(0.75, 0.90, 1.00)

FUZZY TOPSIS (2/2)

• Τα βάρη ορίζονται όχι με αριθμούς, αλλά με λεκτικές τιμές.

Linguistic terms for alternatives ratings	Triangular FN
Very good	(9,10,10)
Good	(7,9,10)
Medium	(3,5,7)
Poor	(1,3,5)
Very poor	(1,1,3)

Linguistic term	Trapezoidal FN
Very low	(0.00, 0.00, 0.00, 0.10)
Low	(0.10, 0.20, 0.25, 0.30)
Medium low	(0.30, 0.40, 0.45, 0.50)
Medium	(0.50, 0.60, 0.65, 0.70)
Medium high	(0.70, 0.80, 0.85, 0.90)
High	(0.90, 0.95, 1.00, 1.00)
Very high	(1.00, 1.00, 1.00, 1.00)

Fuzzy TOPSIS – Βήματα υπολογισμού (1/4)

- Βήμα 1: Δημιουργία ενός δισδιάστατου πίνακα.
 - Γραμμές: οι m εναλλακτικές
 - Στήλες: τα η κριτήρια
 - Χί]: ασαφής αριθμός (λεκτική περιγραφή) κριτηρίου j για την εναλλακτική i.
 - Παράδειγμα τριγωνικής τιμής $x_{ij}=(a_{x_{ij}},b_{x_{ij}},c_{x_{ij}})$
- Βημα 2: Κανονικοποίηση (Β θετικά κριτήρια, C αρνητικά κριτήρια):

$$r_{ij} = \begin{cases} \left(\frac{a_{x_{ij}}}{\max_i c_{x_{ij}}}, \frac{b_{x_{ij}}}{\max_i c_{x_{ij}}}, \frac{c_{x_{ij}}}{\max_i c_{x_{ij}}}\right) & \text{if} \quad j \in B\\ \left(\frac{\min_i a_{x_{ij}}}{c_{x_{ij}}}, \frac{\min_i a_{x_{ij}}}{b_{x_{ij}}}, \frac{\min_i a_{x_{ij}}}{a_{x_{ij}}}\right) & \text{if} \quad j \in C \end{cases}$$

Fuzzy TOPSIS – Βήματα υπολογισμού (1/4)

 Βήμα 3: Υπολογισμός κανονικοποιημένης τιμής λαμβάνοντας υπόψη τα βάρη:

$$v_{ij} = r_{ij} \cdot w_j = (a_{r_{ij}}, b_{r_{ij}}, c_{r_{ij}}) \cdot w_j = (a_{r_{ij}} \cdot w_j, b_{r_{ij}} \cdot w_j, c_{r_{ij}} \cdot w_j)$$

Το άθροισμα των βαρών θα πρέπει να ισούται με 1.

• Βήμα 4: Υπολογισμός καλύτερης και χειρότερης εναλλακτικής

$$egin{aligned} A_w &= \{ \langle \max(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_-
angle, \langle \min(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_+
angle \} \equiv \{t_{wj} \mid j=1,2,\ldots,n\}, \ A_b &= \{ \langle \min(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_-
angle, \langle \max(t_{ij} \mid i=1,2,\ldots,m) \mid j \in J_+
angle \} \equiv \{t_{bj} \mid j=1,2,\ldots,n\}, \end{aligned}$$

$$J_+=\{j=1,2,\ldots,n\mid j\}$$
 associated with the criteria having a positive impact, and $J_-=\{j=1,2,\ldots,n\mid j\}$ associated with the criteria having a negative impact.

TOPSIS - Βήματα υπολογισμού (3/4)

- Βήμα 5: Υπολογισμός γεωμετρικής απόστασης της εναλλακτικής λύσης i από την χειρότερη εναλλακτική.
- Υπολογισμός γεωμετρικής απόστασης της εναλλακτικής λύσης i από την καλύτερη εναλλακτική.

$$A = (a_A, b_A, c_A)$$
 and $B = (a_B, b_B, c_B)$ is equal to
$$dd(A, B) = \sqrt{\frac{1}{3}[(a_A - a_B)^2 + (b_A - b_B)^2 + (c_A - c_B)^2]}.$$

TOPSIS - Βήματα υπολογισμού (4/4)

 Βήμα 6: Υπολογισμός ομοιότητας ως προς την χειρότερη εναλλακτική

$$s_{iw}=d_{iw}/(d_{iw}+d_{ib}), \quad 0 \leq s_{iw} \leq 1, \quad i=1,2,\ldots,m.$$
 $s_{iw}=1$ if and only if the alternative solution has the best condition; and $s_{iw}=0$ if and only if the alternative solution has the worst condition.

• Ταξινόμηση των εναλλακτικών με βάση την τιμή siw.

Fuzzy TOPSIS – Παράδειγμα (1/)

- Στόχος: Κατάταξη βιώσιμων μεταφορικών συστημάτων
- Πηγή: Awasthi, A., Chauhan, S. S., & Omrani, H. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. *Expert systems with Applications*, 38(10), 12270-12280.

Fuzzy TOPSIS – Παράδειγμα (2/)

Linguistic terms for alternative ratings.

Membership function
(1, 1, 3)
(1, 3, 5)
(3, 5, 7)
(5, 7, 9)
(7, 9, 9)

Linguistic terms for criteria ratings.

Linguistic term	Membership function
Very low	(1, 1, 3)
Low	(1, 3, 5)
Medium	(3, 5, 7)
High	(5, 7, 9)
Very high	(7, 9, 9)

Fuzzy TOPSIS – Παράδειγμα (3/)

Criteria for sustainability evaluation of transportation systems.

Criteria	Definition	Category
Operating costs (C1)	Costs to operator for running the transportation service	С
Safety (C2)	Safety offered by the transportation system	В
Security (C3)	Security from theft, vandalism offered by the transportation system	В
Reliability (C4)	Ability to perform the promised service dependably and accurately	В
Air pollutants (C5)	Air pollutants from the transportation system	C
Noise (C6)	Noise from the transportation system	С
GHG emissions (C7)	GHG emissions from the transportation system	C
Usage of fossil fuels (C8)	Usage of fossil fuels like petrol, diesel	C
Travel costs (C9)	Costs for travel between any given stations	С
Waste from road transport (C10)	Waste from road transport: number of end-of-life vehicles, number of used tires	C
Energy consumption (C11)	Energy consumption by the transportation system	C
Land usage (C12)	Land space used for running the transportation service	С
Accessibility (C13)	Access to residential areas, activity areas and other transportation modes	В
Benefits to economy (C14)	Benefits to economy from the transportation mode e.g. labor employment, resource usage	В
Competency (C15)	State of the art technology, equipment and infrastructure employed by the transportation mode	В
Equity (C16)	Equity across genders, age groups, handicapped people	В
Possibility of expansion (C17)	Ability to expand the service if required	В
Mobility (C18)	Ability to service over the transportation area	В
Productivity (C19)	Ability to achieve performance targets	В
Occupancy rate (C20)	Capacity utilization of transportation mode	В
Share in public transit (C21)	Contribution to public transport	В
Convenience to use (C22)	Convenience in using the transportation service	В
Quality of service (C23)	Quality of service provided by the transportation staff	В
Tangibles (C24)	Physical facilities, equipment, and appearance of personnel	В

C (cost) – The lower the better.

B (Benefit) - The higher the better.

Fuzzy TOPSIS – Παράδειγμα (4/)

$$w_{j1} = \min_{k} \{w_{jk1}\}, \quad w_{j2} = \frac{1}{K} \sum_{k=1}^{K} w_{jk2}, \quad w_{j3} = \max_{k} \{c_{jk3}\}$$

$$w_{j1} = \min_{k}(7,5,5), \quad w_{j2} = \frac{1}{3}\sum_{k=1}^{3}(9+7+7),$$

 $w_{j3} = \max_{k}(9,9,9) = \tilde{w}_{j} = (5,7.67,9)$

Linguistic assessments for the 24 criteria.

Criteria	Decision	n makers		Aggregate fuzzy ratings
Criteria				Aggregate ruzzy ratings
	D1	D2	D3	
C1	VH	Н	Н	(5, 7.67, 9)
C2	VH	VH	Н	(5, 8.33, 9)
C3	VH	Н	Н	(5, 7.67, 9)
C4	VH	VH	Н	(5, 8.33, 9)
C5	Н	VH	Н	(5, 7.67, 9)
C6	Н	Н	Н	(5, 7, 9)
C7	Н	VH	VH	(5, 8.33, 9)
C8	Н	Н	VH	(5, 7.67, 9)
C9	VH	VH	VH	(7, 9, 9)
C10	VH	VH	VH	(7, 9, 9)
C11	VH	VH	VH	(7, 9, 9)
C12	Н	Н	VH	(5, 7.67, 9)
C13	Н	VH	Н	(5, 7.67, 9)
C14	Н	Н	Н	(5, 7, 9)
C15	VH	Н	Н	(5, 7.67, 9)
C16	VH	Н	VH	(5, 8.33, 9)
C17	VH	VH	Н	(5, 8.33, 9)
C18	VH	VH	Н	(5, 8.33, 9)
C19	Н	Н	Н	(5, 7, 9)
C20	VH	VH	VH	(7, 9, 9)
C21	Н	Н	VH	(5, 7.67, 9)
C22	VH	VH	VH	(7, 9, 9)
C23	VH	Н	VH	(5, 8.33, 9)
C24	Н	VH	VH	(5, 8.33, 9)

Fuzzy TOPSIS - Παράδειγμα (5/)

Linguistic assessments for the three alternatives.

Criteria	Alternati	ves							
	A1		A2			A3			
	D1	D2	D3	D1	D2	D3	D1	D2	D3
Operating costs (C1)	VL	VH	Н	L	VH	M	M	VL	VH
Safety (C2)	VH	L	M	VL	M	VH	Н	VL	VL
Security (C3)	L	VL	Н	VH	Н	M	VH	VH	VH
Reliability (C4)	VL	VH	VH	VL	M	VL	VH	VH	Н
Air pollutants (C5)	VH	VL	VL	L	L	M	M	Н	Н
Noise (C6)	M	M	M	VL	M	Н	Н	VL	L
GHG emissions (C7)	Н	L	Н	M	VH	VH	L	VL	M
Usage of fossil fuels (C8)	Н	VL	Н	VL	M	VH	Н	L	M
Travel costs (C9)	M	L	L	VH	VL	M	VL	VL	VH
Waste from road transport (C10)	M	VL	VH	L	M	Н	M	VH	VH
Energy consumption (C11)	L	VH	Н	Н	VH	M	VH	VL	Н
Land usage (C12)	VL	VL	VL	VH	M	Н	VH	VL	VL
Accessibility (C13)	VL	L	Н	VL	VH	Н	Н	VL	L
Benefits to economy (C14)	M	VL	Н	Н	M	VL	M	M	VL
Competency (C15)	L	M	M	VH	VL	Н	VH	M	Н
Equity (C16)	M	L	VL	Н	VL	L	VH	VL	VL
Possibility of expansion (C17)	M	Н	M	M	VL	M	VL	L	L
Mobility (C18)	L	L	Н	Н	VH	VH	VH	VL	VH
Productivity (C19)	VH	M	M	L	L	VH	VH	VL	L
Occupancy rate (C20)	Н	VL	VL	L	L	Н	M	Н	VL
Share in public transit (C21)	M	M	L	VH	VH	M	M	Н	L
Convenience to use (C22)	M	M	VL	L	VH	Н	Н	VL	VH
Quality of service (C23)	VH	VL	L	M	L	M	M	Н	M
Tangibles (C24)	L	M	L	M	VH	VH	VL	L	Н

Fuzzy TOPSIS – Παράδειγμα (6/)

Aggregate fuzzy decision matrix.

Criteria	Alternatives		
	A1 (R)	A2 (C)	A3 (PR)
C1	(1, 5.67, 9)	(1, 5.67, 9)	(1, 5, 9)
C2	(1, 5.67, 9)	(1, 5, 9)	(1, 3, 9)
C3	(1, 3.67, 9)	(3, 7, 9)	(7, 9, 9)
C4	(1, 6.33, 9)	(1, 2.33, 7)	(5, 8.33, 9)
C5	(1, 3.67, 9)	(1, 3.67, 7)	(3, 6.33, 9)
C6	(3, 5, 7)	(1, 4.33, 9)	(1, 3.67, 9)
C7	(1, 5.67, 9)	(3, 7.67, 9)	(1, 3, 7)
C8	(1, 5, 9)	(1, 5, 9)	(1, 5, 9)
C9	(1, 3.67, 7)	(1, 5, 9)	(1, 3.67, 9)
C10	(1, 5, 9)	(1, 5, 9)	(3, 7.67, 9)
C11	(1, 6.33, 9)	(3, 7, 9)	(1, 5.67, 9)
C12	(1, 1, 3)	(3, 7, 9)	(1, 3.67, 9)
C13	(1, 3.67, 9)	(1, 5.67, 9)	(1, 3.67, 9)
C14	(1, 4.33, 9)	(1, 4.33, 9)	(1, 3.67, 7)
C15	(1, 4.33, 7)	(1, 5.67, 9)	(3, 7, 9)
C16	(1, 3, 7)	(1, 3.67, 9)	(1, 3.67, 9)
C17	(3, 5.67, 9)	(1, 3.67, 7)	(1, 2.33, 5)
C18	(1, 4.33, 9)	(5, 8.33, 9)	(1, 6.33, 9)
C19	(3, 6.33, 9)	(1, 5, 9)	(1, 4.33, 9)
C20	(1, 3, 9)	(1, 4.33, 9)	(1, 4.33, 9)
C21	(1, 4.33, 7)	(3, 7.67, 9)	(1, 5, 9)
C22	(1, 3.67, 7)	(1, 6.33, 9)	(1, 5.67, 9)
C23	(1, 4.33, 9)	(1, 4.33, 7)	(3, 5.67, 9)
C24	(1, 3.67, 7)	(3, 7.67, 9)	(1, 3.67, 9)

Fuzzy TOPSIS – Παράδειγμα (7/)

$$\tilde{r}_{ij} = \begin{pmatrix} a_{ij} \\ c_j^* \\ c_j^* \end{pmatrix}, \frac{c_{ij}}{c_j^*}, \frac{c_{ij}}{c_j^*} \end{pmatrix} \quad \text{and} \quad c_j^* = \max_i c_{ij} \quad \text{(benefit criteria)}$$

$$\tilde{r}_{ij} = \begin{pmatrix} a_{ij}^- \\ c_{ij}^- \\ b_{ij}^- \end{pmatrix}, \frac{a_{ij}^-}{a_{ij}} \end{pmatrix} \quad \text{and} \quad a_j^- = \min_i a_{ij} \quad \text{(cost criteria)}$$

$$a_j^- = \min_i(1, 1, 1) = 1$$

$$\tilde{r}_{ij} = \left(\frac{1}{9}, \frac{1}{5.667}, \frac{1}{1}\right) = (0.11, 0.176, 1)$$

Normalized fuzzy decision matrix for alternatives.

Criteria	Alternatives					
	A1 (R)	A2 (C)	A3 (PR)			
C1	(0.11, 0.176, 1)	(0.11, 0.176, 1)	(0.11, 0.2, 1)			
C2	(0.11, 0.629, 1)	(0.11, 0.56, 1)	(0.11, 0.33, 1)			
C3	(0.11, 0.407, 1)	(0.33, 0.78, 1)	(0.78, 1, 1)			
C4	(0.11, 0.703, 1)	(0.11, 0.259, 0.78)	(0.56, 0.925, 1)			
C5	(0.11, 0.272, 1)	(0.142, 0.27, 1)	(0.11, 0.157, 0.33)			
C6	(0.14, 0.2, 0.33)	(0.11, 0.23, 1)	(0.11, 0.272, 1)			
C7	(0.11, 0.176, 1)	(0.11, 0.13, 0.33)	(0.14, 0.33, 1)			
C8	(0.11, 0.2, 1)	(0.11, 0.2, 1)	(0.11, 0.2, 1)			
C9	(0.14, 0.27, 1)	(0.11, 0.2, 1)	(0.11, 0.272, 1)			
C10	(0.11, 0.2, 1)	(0.11, 0.2, 1)	(0.11, 0.13, 0.33)			
C11	(0.11, 0.157, 1)	(0.11, 0.142, 0.33)	(0.11, 0.176, 1)			
C12	(0.33, 1, 1)	(0.11, 0.142, 0.33)	(0.11, 0.272, 1)			
C13	(0.11, 0.40, 1)	(0.11, 0.629, 1)	(0.11, 0.407, 1)			
C14	(0.11, 0.48, 1)	(0.11, 0.48, 1)	(0.11, 0.407, 0.78)			
C15	(0.11, 0.48, 0.78)	(0.11, 0.629, 1)	(0.33, 0.78, 1)			
C16	(0.11, 0.33, 0.78)	(0.11, 0.407, 1)	(0.11, 0.407, 1)			
C17	(0.33, 0.62, 1)	(0.11, 0.407, 0.78)	(0.11, 0.259, 0.56)			
C18	(0.11, 0.48, 1)	(0.56, 0.925, 1)	(0.11, 0.703, 1)			
C19	(0.33, 0.703, 1)	(0.11, 0.56, 1)	(0.11, 0.48, 1)			
C20	(0.11, 0.33, 1)	(0.11, 0.48, 1)	(0.11, 0.48, 1)			
C21	(0.11, 0.48, 0.78)	(0.33, 0.85, 1)	(0.11, 0.56, 1)			
C22	(0.11, 0.407, 0.78)	(0.11, 0.703, 1)	(0.11, 0.62, 1)			
C23	(0.11, 0.48, 1)	(0.11, 0.48, 0.78)	(0.33, 0.62, 1)			
C24	(0.11, 0.407, 0.778)	(0.33, 0.85, 1)	(0.11, 0.407, 1)			

Fuzzy TOPSIS – Παράδειγμα (8/)

Weighted normalized alternatives, FPIS and FNIS.

Criteria	Alternatives			FNIS (A ⁻)	FPIS (A*)
	A1	A2	A3		
C1	(0.55, 1.35, 9)	(0.55, 1.35, 9)	(0.55, 1.53, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C2	(0.55, 5.24, 9)	(0.55, 4.62, 9)	(0.55, 2.77, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C3	(0.55, 3.12, 9)	(1.66, 5.96, 9)	(3.88, 7.66, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C4	(0.55, 5.86, 9)	(0.55, 2.16, 7)	(2.77, 7.71, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C5	(0.55, 2.09, 9)	(0.71, 2.09, 9)	(0.55, 1.21, 3)	(0.55, 0.55, 0.55)	(9, 9, 9)
C6	(0.71, 1.4, 3)	(0.55, 1.61, 9)	(0.55, 1.90, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C7	(0.55, 1.47, 9)	(0.55, 1.08, 3)	(0.71, 2.77, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C8	(0.55, 1.53, 9)	(0.55, 1.53, 9)	(0.55, 1.53, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C9	(1, 2.45, 9)	(0.77, 1.8, 9)	(0.77, 2.45, 9)	(0.77, 0.77, 0.77)	(9, 9, 9)
C10	(0.77, 1.8, 9)	(0.77, 1.8, 9)	(0.77, 1.17, 3)	(0.77, 0.77, 0.77)	(9, 9, 9)
C11	(0.77, 1.42, 9)	(0.77, 1.28, 3)	(0.77, 1.58, 9)	(0.77, 0.77, 0.77)	(9, 9, 9)
C12	(1.66, 7.66, 9)	(0.55, 1.09, 3)	(0.55, 2.09, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C13	(0.55, 3.12, 9)	(0.55, 4.82, 9)	(0.55, 3.12, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C14	(0.55, 3.37, 9)	(0.55, 3.37, 9)	(0.55, 2.85, 7)	(0.55, 0.55, 0.55)	(9, 9, 9)
C15	(0.55, 3.69, 7)	(0.55, 4.82, 9)	(1.66, 5.96, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C16	(0.55, 2.77, 7)	(0.55, 3.39, 9)	(0.55, 3.39, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C17	(1.66, 5.24, 9)	(0.55, 3.39, 7)	(0.55, 2.16, 5)	(0.55, 0.55, 0.55)	(9, 9, 9)
C18	(0.55, 4.01, 9)	(2.77, 7.71, 9)	(0.55, 5.86, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C19	(1.66, 4.92, 9)	(0.55, 3.88, 9)	(0.55, 3.37, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C20	(0.77, 3, 9)	(0.77, 4.33, 9)	(0.77, 4.33, 9)	(0.77, 0.77, 0.77)	(9, 9, 9)
C21	(0.55, 3.69, 7)	(1.66, 6.53, 9)	(0.55, 4.25, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C22	(0.77, 3.66, 7)	(0.77, 6.33, 9)	(0.77, 5.66, 9)	(0.77, 0.77, 0.77)	(9, 9, 9)
C23	(0.55, 4.01, 9)	(0.55, 4.01, 7)	(1.66, 5.24, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)
C24	(0.55, 3.39, 7)	(1.66, 7.09, 9)	(0.55, 3.395, 9)	(0.55, 0.55, 0.55)	(9, 9, 9)

Fuzzy TOPSIS – Παράδειγμα (9/)

$$d_{\nu}(A_1, A^*) = \sqrt{\frac{1}{3}}[(0.556 - 0.556)^2 + (1.353 - 0.556)^2 + (9 - 0.556)^2]$$

$$= 4.89$$

$$d_{\nu}(A_{1},A^{-}) = \sqrt{\frac{1}{3}[(0.556-9)^{2} + (0.556-9)^{2} + (0.556-9)^{2}]} = 6.57$$

Distance d_{ν} (A_i , A^*) and d_{ν} (A_i , A^-) for alternatives.

Criteria	d^-			d⁺		
	A1	A2	A3	A1	A2	A3
C 1	4.89	4.89	4.90	6.57	6.57	6.50
C2	5.57	5.41	5.03	5.33	5.48	6.05
C3	5.09	5.82	6.65	5.93	4.58	3.04
C4	5.75	3.83	6.51	5.19	6.37	3.66
C5	4.95	4.95	1.46	6.29	6.22	7.47
C6	1.49	4.91	4.93	7.35	6.47	6.36
C7	4.90	1.44	5.03	6.52	7.52	5.97
C8	4.90	4.90	4.90	6.50	6.50	6.50
C9	4.84	4.78	4.84	5.96	6.30	6.06
C10	4.78	4.78	1.30	6.30	6.30	7.40
C11	4.75	1.31	4.76	6.45	7.37	6.38
C12	6.40	1.44	4.95	4.30	7.51	6.29
C13	5.09	5.46	5.09	5.93	5.43	5.93
C14	5.13	5.13	3.94	5.85	5.85	6.13
C15	4.13	5.46	5.82	5.87	5.43	4.58
C16	3.93	5.14	5.14	6.16	5.84	5.84
C17	5.61	4.06	2.72	4.75	5.96	6.68
C18	5.26	6.51	5.75	5.65	3.66	5.19
C19	5.52	5.23	5.13	4.84	5.69	5.85
C20	4.91	5.16	5.16	5.87	5.45	5.45
C21	4.13	6.00	5.32	5.87	4.46	5.58
C22	3.95	5.72	5.52	5.77	4.98	5.11
C23	5.26	4.22	5.61	5.65	5.77	4.75
C24	4.06	6.19	5.14	5.96	4.37	5.84

Fuzzy TOPSIS – Παράδειγμα (10/)

Closeness coefficient (CC_i) of the three alternatives.

	A1	A2	A3
d_i^-	115.39	112.83	115.70
d_i^+	140.96	140.20	138.76
a _i CC _i	0.549	0.554	0.545

Πηγές

- https://en.wikipedia.org/wiki/TOPSIS
- Srikrishna, S., Reddy, A. S., & Vani, S. (2014). A new car selection in the market using TOPSIS technique. International Journal of Engineering Research and General Science, 2(4), 177-181.
- Nădăban, Sorin, Simona Dzitac, and Ioan Dzitac. "Fuzzy TOPSIS: A general view." Procedia computer science 91 (2016): 823-831.
- Kacprzak, D. (2018). Fuzzy TOPSIS method for group decision making. Multiple criteria decision making, 13, 116-132.
- Sevkli, Mehmet, et al. "An application of fuzzy Topsis method for supplier selection." *International Conference on Fuzzy Systems*. IEEE, 2010.
- Kore, Neelima B., K. Ravi, and S. B. Patil. "A simplified description of fuzzy TOPSIS method for multi criteria decision making." *International Research Journal* of Engineering and Technology (IRJET) 4.5 (2017): 2047-2050.
- Aghajani, H., & Ahmadpour, M. (2011). Application of fuzzy topsis for ranking suppliers of supply chain in automobile manufacturing companies in Iran. Fuzzy Information and Engineering, 3(4), 433-444.
- Awasthi, A., Chauhan, S. S., & Omrani, H. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. *Expert systems with Applications*, 38(10), 12270-12280.

Ασαφής συσταδοποίηση

Fuzzy Clustering, soft clustering, soft k-means clustering, fuzzy c-means clustering

K-means

- Βήμα 1: Επιλογή πλήθους ομάδων (συστάδων) και καθορισμός των κέντρων τους.
- Βήμα 2: Τυχαία αρχικοποίηση των κέντρων των ομάδων.
- Βήμα 3: εκχώρηση κάθε «αντικειμένου» σε μια ομάδα με βάση την απόστασή του από το κέντρο των ομάδων.

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

 Επανεκτίμηση των κέντρων υπολογίζοντας τον μέσον όρο όλων των «αντικειμένων» που ανήκουν στην ομάδα.

$$Ci = \frac{1}{|Ni|} \sum xi$$

 Επανάληψη της διαδικασίας από το βήμα 3 μέχρι οι τιμές των κέντρων να μην αλλάζουν.

Fuzzy c-means

- Εισάχθηκε από τον J.C. Dunn το 1973 και βελτιώθηκε από τον J.C. Bezdek το 1981.
- Κεντρική ιδέα: Ένα «αντικείμενο» (data point) μπορεί να ανήκει σε περισσότερες από μια ομάδες με διαφορετικό βαθμό συμμετοχής.

Fuzzy c-means

- Εισάχθηκε από τον J.C. Dunn το 1973 και βελτιώθηκε από τον J.C.
- Βήμα 1: Επιλογή πλήθους ομάδων (συστάδων) και καθορισμός των κέντρων τους.
- Βήμα 2: Τυχαία εκχώρηση συντελεστών σε κάθε «αντικείμενο» για την κατανομή τους στις ομάδες.
- Βήμα 3: επανάληψη διαδικασίας μέχρι να μην υπάρχει αλλαγή στις ομάδες ανάμεσα σε 2 επαναλήψεις.
 - Υπολογισμός του κέντρου (centroid) για κάθε ομάδα
 - Υπολογισμός για κάθε «αντικείμενο» της απόστασης από το κέντρο της ομάδας.

Υπολογισμός κεντροειδούς

$$c_k = rac{\sum_x w_k(x)^m x}{\sum_x w_k(x)^m},$$

 $W_k(x)$: βαθμός συμμετοχής «αντικειμένου» στην ομάδα k

m: παράμετρος που καθορίζει πόσο ασαφές θα είναι η ομάδα. Όσο μεγαλύτερο είναι το m, τόσο πιο ασαφής θα είναι στο τέλος η ομάδα. Συνήθης τιμή είναι το 2.

Fuzzy c-means - Αλγόριθμος

- Συλλογή η «αντικειμένων»: $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- Συλλογή από c κέντρα ομάδων: $C = \{c_1, \ldots, c_c\}$
- ullet Πίνακας κατάτμησης: $W=w_{i,j}\in [0,1],\; i=1,\ldots,n,\; j=1,\ldots,c$
 - w_{i,i}: ο βαθμός που το «αντικείμενο» x_i ανήκει στην ομάδα c_i.
- Υπολογισμός κεντροειδούς για κάθε ομάδα

$$c_k = rac{\sum_x w_k(x)^m x}{\sum_x w_k(x)^m},$$

Fuzzy c-means - Αλγόριθμος

• Υπολογισμός απόστασης για κάθε «αντικείμενο» από το κέντρο της κάθε ομάδας

$$\bullet d_{ij} = \sqrt{\sum_{j} (x_i - c_{ij})^2}$$

 Επαναυπολογισμός ασαφών τιμών συμμετοχής για κάθε «αντικείμενο»

$$\mu = \sum_{1}^{n} \left(d_{ki}^{2} / d_{kj}^{2} \right)^{1/m - 1}]^{-1}$$

- Συλλογή αντικειμένων: {(1, 3), (2, 5), (6, 8), (7, 9)}
- Πλήθος ομάδων: 2.
- Τυχαία εκχώρηση κάθε «αντικειμένου» στις ομάδες με καθορισμό του βαθμού τους συμμετοχής, μέσω συναρτήσεων συμμετοχής.

Cluster	(1, 3)	(2, 5)	(4, 8)	(7, 9)
1)	0.8	0.7	0.2	0.1
2)	0.2	0.3	0.8	0.9

• Υπολογισμός κεντροιδών:

$$C_{11} = \frac{0.8^2 * 1 + 0.7^2 * 2 + 0.2^2 * 4 + 0.1^2 * 7}{(0.8^2 + 0.7^2 + 0.2^2 + 0.1^2)} = 1.568$$

$$C_{21} = \frac{0.2^2 \times 1 + 0.3^2 \times 2 + 0.8^2 \times 4 + 0.9^2 \times 7}{(0.2^2 + 0.3^2 + 0.8^2 + 0.9^2)} = 5.35$$

$$C_{12} = \frac{0.8^2 * 3 + 0.7^2 * 5 + 0.2^2 * 8 + 0.1^2 * 9}{(0.8^2 + 0.7^2 + 0.2^2 + 0.1^2)} = 4.051$$

$$C_{22} = \frac{0.2^2 * 3 + 0.3^2 * 5 + 0.8^2 * 8 + 0.9^2 * 9}{(0.2^2 + 0.3^2 + 0.8^2 + 0.9^2)} = 8.215$$

- Κέντρα των 2 ομάδων:
 - Ομάδα 1: (1.568, 4.051)
 - Ομάδα 2: (5.35, 8.215)

• Υπολογισμός γεωμετρικών αποστάσεων για κάθε «αντικείμενο» από τα κέντρα των ομάδων:

•
$$d_{11} = \sqrt{((1 - 1.568)^2 + (3 - 4.051)^2)} = 1.2$$

•
$$d_{12} = \sqrt{((1-5.35)^2 + (3-8.215)^2)} = 6.79$$

•
$$d_{21} = \sqrt{((2 - 1.568)^2 + (5 - 4.051)^2)} = 1.04$$

•
$$d_{22} = \sqrt{((2-5.35)^2 + (5-8.215)^2)} = 4.64$$

•
$$d_{31} = \sqrt{((4 - 1.568)^2 + (8 - 4.051)^2)} = 4.64$$

•
$$d_{32} = \sqrt{((4-5.35)^2 + (8-8.215)^2)} = 1.37$$

•
$$d_{41} = \sqrt{((7 - 1.568)^2 + (9 - 4.051)^2)} = 7.35$$

•
$$d_{42} = \sqrt{((7-5.35)^2 + (9-8.215)^2)} = 1.83$$

• Επαναυπολογισμός ασαφών βαθμών συμμετοχής:

• Επαναλαμβάνουμε μέχρι οι βαθμοί συμμετοχής να μην αλλάζουνε.

Πηγές

- https://en.m.wikipedia.org/wiki/Fuzzy clustering
- https://www.geeksforgeeks.org/ml-fuzzy-clustering/amp/

Ασαφής Τεχνικά Νευρωνικά Δίκτυα

Τεχνικά Νευρωνικά Δίκτυα (ΤΝΔ) (1/2)

- Artificial Neural Networks (ANNs)
- Προσομοιάζουν την λειτουργία του ανθρώπινου εγκεφάλου.
- Ένα σύστημα επεξεργασίας δεδομένων, το οποίο αποτελείται από τεχνητούς νευρώνες.
- Είδη νευρώνων:
 - νευρώνες εισόδου
 - νευρώνες εξόδου
 - κρυμμένοι (ή υπολογιστικοί) νευρώνες

Τεχνητό Νευρωνικό Δίκτυο (ΤΝΔ) (2/2)

https://www.researchgate.net/figure/A-multi-layer-neural-network-with-n-inputs-at-least-two-hidden-layers-and-one-output_fig5_330230427

Νευρώνες

- Νευρώνες εισόδου
 - Δεν επιτελούν κανέναν υπολογισμό.
 - Μεσολαβούν ανάμεσα στις περιβαλλοντικές εισόδους του δικτύου και στους κρυμμένους νευρώνες.
- Νευρώνες εξόδου
 - Διοχετεύουν στο περιβάλλον τις τελικές αριθμητικές εξόδους του δικτύου.
- Κρυμμένοι (ή υπολογιστικοί) νευρώνες
 - Έχουν έναν αριθμό σημάτων που έρχονται σε αυτόν ως είσοδος με αντίστοιχα βάρη,
 - Έχουν πιθανές καταστάσεις στις οποίες μπορεί να βρεθεί,
 - Έχουν μία μόνον έξοδο, η οποία είναι συνάρτηση των σημάτων εισόδου.

Κρυμμένος νευρώνας ενός ΤΝΔ

Όταν ένας κρυμμένος νευρώνας ενεργοποιείται (1/2)

- Υπολογισμός του αθροίσματος των γινομένων της κάθε τιμής εισόδου με το αντίστοιχο βάρος.
- Σύγκριση του αθροίσματος με μια τιμή κατωφλίου η οποία είναι χαρακτηριστική για τον νευρώνα.
- Αν το άθροισμα είναι μεγαλύτερο από την τιμή κατωφλιού τότε:
 - Το αποτέλεσμα του αθροίσματος αποτελεί είσοδο στην συνάρτηση του νευρώνα (συνάρτηση ενεργοποίησης).
 - Το αποτέλεσμα της συνάρτησης ενεργοποίησης είναι η έξοδος του νευρώνα.
 - Συνάρτηση ενεργοποίησης: $y_k = \phi\left(\sum_{i=0}^N x_{ki}w_{ki}
 ight)$
- Αν το άθροισμα δεν είναι μεγαλύτερο από την τιμή κατωφλιού τότε ο νευρώνας παραμένει ανενεργός.

Όταν ένας κρυμμένος νευρώνας ενεργοποιείται (2/2)

Συναρτήσεις ενεργοποήσης

• Βηματική:

$$\phi \left(x
ight) =\left\{ egin{array}{ll} 1, & x\geq 0 \ 0, & x<0 \end{array}
ight.$$

- Δεν ενδείκνυται
- Γραμμική:

$$\phi\left(x
ight)=x$$

• Μη-γραμμική:

$$\phi \left(x
ight) =rac{1}{1+e^{-x}}$$

- Η πιο γνωστή είναι η σιγμοειδής
- Χρησιμοποιείται συνήθως

Εκπαίδευση ενός ΤΝΔ

- Ένα ΤΝΝ εκπαιδεύεται-μαθαίνει.
 - Αλλάζουν οι τιμές των βαρών των συνδέσεων των νευρώνων.
 - Οι αλλαγές γίνονται με διάφορες μεθόδους τεχνητής νοημοσύνης που επιλέγουμε να χρησιμοποιήσουμε.
 - διοχετεύουν στο περιβάλλον τις τελικές αριθμητικές εξόδους του δικτύου

Ασαφής Λογική σε ένα ΤΝΔ

- Η ασαφής λογική χρησιμοποιείται σε μεγάλο βαθμό για τον καθορισμό των βαρών, από ασαφή σύνολα, στα νευρωνικά δίκτυα.
- Όταν δεν είναι δυνατή η εφαρμογή ευκρινών τιμών, τότε χρησιμοποιούνται ασαφείς τιμές.
- Έχουμε ήδη μελετήσει ότι η εκπαίδευση και η μάθηση βοηθούν τα νευρωνικά δίκτυα να αποδίδουν καλύτερα σε απροσδόκητες καταστάσεις. Εκείνη τη στιγμή οι ασαφείς τιμές θα ήταν πιο εφαρμόσιμες από τις ευκρινείς τιμές.
- Ένα γνωστό Ασαφές Τεχνητό Νευρωνικό Δίκτυο αποτελεί το Fyzzy Cognitive Map.
- Artificial Neuro-Fuzzy Inference Systems (ANFIS)

Neural-fuzzy system

- Ένα νευρο-ασαφές σύστημα αναπαρίσταται συνήθως ως ειδικό νευρωνικό δίκτυο τριών επιπέδων.
- Το πρώτο επίπεδο αντιστοιχεί στις μεταβλητές εισόδου.
- Το δεύτερο στρώμα συμβολίζει τους ασαφείς κανόνες.
- Το τρίτο επίπεδο αντιπροσωπεύει τις μεταβλητές εξόδου.
- Τα ασαφή σύνολα μετατρέπονται σε (ασαφή) βάρη σύνδεσης.

ANFIS

- Εισάχθηκε τη δεκαετία του 1990.
- Επέτρεψε την εφαρμογή τόσο των fuzzy inference όσο και των νευρωνικών δικτύων στο ίδιο σύνολο δεδομένων.
- Τα μοντέλα ANFIS αποτελούνται από πέντε επίπεδα ή βήματα.
- Χρησιμοποιεί το Sugeno fuzzy model.

ANFIS – περιγραφή (1/7)

- Πηγή: http://ce.sharif.edu/courses/92-93/1/ce957-1/resources/root/Lectures/Lecture17.pdf
- Είσοδος: x, y
- Έξοδος: z
- Κανόνες: Rule 1: If x is A_1 and y is B_1 , then $f_1 = p_1x + q_1y + r_1$, Rule 2: If x is A_2 and y is B_2 , then $f_2 = p_2x + q_2y + r_2$.

ANFIS – περιγραφή (2/7)

ANFIS – περιγραφή (3/7)

 Κάθε κόμβος στο επίπεδο 1 είναι ένας προσαρμοστικός κόμβος με συναρτήσεις:

$$O_{1,i} = \mu_{A_i}(x),$$
 for $i = 1, 2,$ or $O_{1,i} = \mu_{B_{i-2}}(y),$ for $i = 3, 4,$

• Ο_{1,i} είναι ο βαθμός συμμετοχής στο ασαφές σύνολο Α ή Β

ANFIS – περιγραφή (4/7)

- Κάθε κόμβος στο επίπεδο 2 είναι ένας σταθερός κόμβος με την ταμπέλα Π.
- Η έξοδος του κάθε κόμβου του επιπέδου 2είναι το γινόμενο όλων των σημάτων εισόδου.

$$O_{2,i} = w_i = \mu_{A_i}(x)\mu_{B_i}(y), i = 1, 2.$$

- Η τιμή της εξόδου «δείχνει» την ισχύ πυροδότησης του κανόνα.
- Σε αυτό το επίπεδο μπορεί να χρησιμοποιηθεί οποιοσδήποτε τελεστής-συνάρτηση που υλοποιεί το ασαφές AND (π.Χ. min).

ANFIS – περιγραφή (5/7)

- Κάθε κόμβος στο επίπεδο 3 είναι ένας σταθερός κόμβος με την ένδειξη Ν.
- Ο i-ος κόμβος υπολογίζει την αναλογία της δύναμης πυροδότησης του i-ου κανόνα προς το άθροισμα των δυνάμεων πυροδότησης όλων των κανόνων:

$$O_{3,i} = \overline{w_i} = \frac{w_i}{w_1 + w_2}, \ i = 1, 2$$

Για λόγους ευκολίας, οι έξοδοι αυτού του επιπέδου ονομάζονται κανονικοποιημένες

ισχύς πυροδότησης.

ANFIS – περιγραφή (6/7)

• Κάθε κόμβος στο επίπεδο 4 είναι ένας προσαρμοστικός κόμβος με μια συνάρτηση.

$$O_{4,i} = \overline{w}_i f_i = \overline{w}_i (p_i x + q_i y + r_i)$$

- W_i: η κανονικοποιημένη ισχύς πυροδότησης από το επίπεδο 3
- {p_i, q_i, r_i} : σετ παραμέτρων του κόμβου
- Οι παράμετροι σε αυτό το επίπεδο αναφέρονται ως επακόλουθες παράμετροι (consequent parameters).

ANFIS – περιγραφή (7/7)

- Ο μόνος κόμβος του επιπέδου 5 είναι ένας σταθερός κόμβος με την ένδειξη Σ.
- Υπολογίζει την συνολική έξοδο ως άθροισμα των εισερχόμενων σημάτων.

$$O_{5,1} = \sum_{i} \overline{w}_{i} f_{i} = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

ANFIS - 2 είσοδοι - 9 κανόνες

ANFIS - Παράδειγμα (1/6)

Rule 1: IF x is small (A1) AND y is small (B1) THEN f1=small Rule 2: IF x is large (A2) AND y is large (B2) THEN f2=large

A1:
$$\mu_{A1}(x) = \frac{1}{1 + \left| \frac{x-1}{2} \right|^2}$$

B1:
$$\mu_{B1}(y) = \frac{1}{1 + \left| \frac{y - 2}{2} \right|^2}$$
 $f1 = 0.1x + 0.1y + 0.1$

$$f1 = 0.1x + 0.1y + 0.1$$

A2:
$$\mu_{A2}(x) = \frac{1}{1 + \left| \frac{x - 9}{2} \right|^2}$$
 B2: $f2 = 10x + 10y + 10$

$$\mu_{B2}(y) = \frac{1}{1 + \left| \frac{y - 14}{2} \right|^2}$$

$$f2 = 10x + 10y + 10$$

Given the trained fuzzy system above and input values of x=3 and y=4, find output of the Sugeno fuzzy system

ANFIS – Παράδειγμα (2/6)

http://ce.sharif.edu/courses/92-93/1/ce957-1/resources/root/Lectures/Lecture17.pdf

ANFIS - Παράδειγμα (3/6)

http://ce.sharif.edu/courses/92-93/1/ce957-1/resources/root/Lectures/Lecture17.pdf

ANFIS - Παράδειγμα (4/6)

ANFIS - Παράδειγμα (5/6)

ANFIS - Παράδειγμα (6/6)

ΑΝFIS – Παράδειγμα –χρήση Τ-ΝΟRΜ στο επίπεδο 2(1/3)

ΑΝFIS – Παράδειγμα –χρήση Τ-ΝΟRΜ στο επίπεδο 2 (2/3)

W₁=0.9276

 $w_1f_1=(0.9276)x(0.1x3+0.1x4+0.1)=0.7421$

 W_2 =0.0724

 $w_2f_2 = (0.0724)x(10x3+10x4+10)=5.7920$

LAYER 3

LAYER 4

ΑΝΓΙS – Παράδειγμα –χρήση Τ-ΝΟRΜ στο επίπεδο 2 (3/3)

Πηγές

- https://www.tutorialspoint.com/fuzzy logic/fuzziness in neural networks.htm
- http://kelifos.physics.auth.gr/COURSES/neural/K1.pdf
- https://el.wikipedia.org/wiki/%CE%9D%CE%B5%CF%85%CF%81
 %CF%89%CE%BD%CE%B9%CE%BA%CF%8C
 %CE%B4%CE%AF%C
 E%BA%CF%84%CF%85%CE%BF
- http://www.scholarpedia.org/article/Fuzzy neural network
- http://ce.sharif.edu/courses/92-93/1/ce957-1/resources/root/Lectures/Lecture17.pdf