

Exploring mathematical objects from custom-tailored mathematical universes

- an invitation -

Ingo Blechschmidt University of Augsburg / Max Planck Institute for Mathematics in the Sciences, Leipzig

Third international conference of the Italian Network for the Philosophy of Mathematics in Mussomeli

May 26th, 2018

A glimpse of the toposophic landscape

A glimpse of the toposophic landscape

A glimpse of the toposophic landscape

The internal universe of a topos

$$\mathbf{Set} \models \varphi$$
 "\varphi holds in the usual sense."

$$Sh(X) \models \varphi$$
"\varphi holds continuously."

$$\begin{array}{c} \mathrm{Eff} \models \varphi \\ \text{``}\varphi \mathrm{\ holds} \\ \mathrm{computably.''} \end{array}$$

The internal universe of a topos

$$\begin{array}{c} \text{Set} \models \varphi \\ \text{``}\varphi \text{ holds in the} \\ \text{usual sense.''} \end{array}$$

$$Sh(X) \models \varphi$$
"\varphi holds
continuously."

$$\begin{array}{c} \text{Eff} \models \varphi \\ \text{``}\varphi \text{ holds} \\ \text{computably.''} \end{array}$$

Any topos supports mathematical reasoning:

If
$$\mathcal{E} \models \varphi$$
 and if $\varphi \vdash \psi$ intuitionistically, then $\mathcal{E} \models \psi$.

The internal universe of a topos

For any topos $\mathcal E$ and any statement φ , we define the meaning of " $\mathcal E \models \varphi$ " (" φ holds in the internal universe of $\mathcal E$ ") using the Kripke–Joyal semantics.

Set
$$\models \varphi$$
 " φ holds in the usual sense."

$$Sh(X) \models \varphi$$
"\varphi holds
continuously."

 $\begin{array}{c} \mathrm{Eff} \models \varphi \\ \text{``}\varphi \; \mathrm{holds} \\ \mathrm{computably.''} \end{array}$

Any topos supports mathematical reasoning:

If
$$\mathcal{E} \models \varphi$$
 and if $\varphi \vdash \psi$ intuitionistically, then $\mathcal{E} \models \psi$.

no
$$\varphi \vee \neg \varphi$$
, no $\neg \neg \varphi \Rightarrow \varphi$, no axiom of choice

First steps in alternate universes

- Eff |= "Any number is prime or is not prime."
 ✓
 Meaning: There is a Turing machine which determines of any given number whether it is prime or not.
- Eff |= "There are infinitely many prime numbers." ✓ Meaning: There is a Turing machine producing arbitrarily many primes.
- Eff |= "Any function N → N is the zero function or not." Meaning: There is a Turing machine which, given a Turing machine computing a function f : N → N, determines whether f is zero or not.
- Eff \models "Any function $\mathbb{N} \to \mathbb{N}$ is computable."
- $Sh(X) \models$ "Any cont. function with opposite signs has a zero." X Meaning: Zeros can locally be picked **continuously** in continuous families of continuous functions. (video for counterexample)

Applications in commutative algebra

Let *A* be a reduced commutative ring.

For instance: \mathbb{Z} , $\mathbb{Z}[X]$, $\mathbb{Z}[X, Y, Z]/(X^n + Y^n - Z^n)$, \mathbb{Q} , \mathbb{R}

The **little Zariski topos** of *A* contains a **mirror image** of *A*: A^{\sim} .

 \blacksquare A^{\sim} is always a **field**.

2 A^{\sim} is still **very close** to A.

A baby application

Let M be a surjective matrix with more rows than columns over a ring A. Then A = 0.

Generic freeness

Generically, any finitely generated module over a reduced ring is free.

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$$

The little Zariski topos in more detail

Recall
$$A[f^{-1}] = \left\{ \frac{u}{f^n} \mid u \in A, n \in \mathbb{N} \right\}.$$

- Sh(Spec(A)) |= "For all $x \in A^{\sim}$, ..." Meaning: For all $f \in A$ and all $x \in A[f^{-1}]$, ...
- Sh(Spec(A)) \models "There is $x \in A^{\sim}$ such that ..." Meaning: There is a partition of unity, $1 = f_1 + \cdots + f_n \in A$, such that for each i, there exists $x_i \in A[f_i^{-1}]$ with ...
- Sh(Spec(A)) \models " φ implies ψ " Meaning: For all $f \in A$, if φ on stage f, then ψ on stage f.

Topos theory ...

- enriches the platonism debate,
- uncovers further relations between objects,
- allows to study objects from a different point of view,
- has applications in mathematical practice.

