Commande Avancée mini-projet

28 novembre 2018

1 Modélisation

On considère un manipulateur mobile de type véhicule (cf. figure 1) avec $D=1\mathrm{m},\,l_1=0.8\mathrm{m},\,l_2=0.55\mathrm{m}.$

FIGURE 1 – Manipulateur mobile

- 1. On considère un manipulateur mobile selon la figure (1). Écrire les équations cinématiques du manipulateur mobile reliant les vitesses \dot{X}_e , \dot{Y}_e et $\dot{\theta}$ avec les vitesses articulaires du manipulateur $\dot{\theta}_1(t)$, $\dot{\theta}_2(t)$ et la vitesse de translation V du véhicule .
- 2. Les équations cinématiques doivent être mise sous la forme suivante :

En déduire les expressions de a_1, b_1, a_2, b_2 .

- 3. On réalise ensuite les approximations suivantes avec : $\dot{X}_e \approx X_{ed} X_e$, $\dot{Y}_e \approx Y_{ed} Y_e$, $V_d = \sqrt{\dot{X}_e^2 + \dot{Y}_e^2}$, $\theta_d(t) \approx \arctan(\frac{\dot{Y}_e}{\dot{X}_e})$, $\psi_d(t) = K_p(\theta_d \theta)$.
- 4. On souhaite réaliser un contrôle cinématique du manipulateur mobile. Écrire les équations de la commande permettant le contrôle des variables X_e et Y_e .
- 5. Réaliser un schéma de commande du contrôle du manipulateur mobile.
- 6. Comment calcule-t-on l'orientation désirée du véhicule $\theta_d(t)$? Quelle direction est privilégiée?
- 7. Comment calcule-t-on l'angle de la direction désirée du véhicule $\psi_d(t)$ dans le contrôleur? Quelles précautions doit-on prendre pour ce calcul.

2 Expérimentation

A.N: les conditions initiales du robots sont : $X_r(0) = 1$ m, $Y_r(0) = 1$ m, $\theta_1(0) = \frac{\pi}{3}$ rd, $\theta_2(0) = \frac{-\pi}{3}$ rd $\theta(0) = \frac{\pi}{3}$ rd V(0) = 0m/s.

- 1. Réaliser en utilisant MATLAB-SIMULINK, la simulation du contrôle du manipulateur mobile. Représenter la pose initiale du robot.
- 2. Réaliser le contrôle du manipulateur pour $X_{ed} = 2.2$ m et $Y_{ed} = 0.7$ m. Afficher les courbes $X_e(t), Y_e(t), \theta_1(t), \theta_2(t), V(t), \dot{\theta}(t)$ et $\psi(t)$. Afficher la trajectoire du véhicule dans le plan (o,x,y). Représenter la pose initiale et finale du robot. Conclusions.
- 3. Réaliser le contrôle du manipulateur pour $X_{ed} = 6.0$ m et $Y_{ed} = 6.0$ m. Afficher les courbes $X_e(t), Y_e(t), \theta_1(t), \theta_2(t), V(t), \dot{\theta}(t)$ et $\psi(t)$. Afficher la trajectoire du véhicule dans le plan (o,x,y). Représenter la pose initiale et finale du robot.
- 4. Est-il possible de régler séparément la contribution du mouvement du bras ou du véhicule lors d'un déplacement ? Détailler votre réponse.

3 Annexes

```
1 function y = anglediff(u,v)
2 if u<-pi;</pre>
       u=mod(u,-pi);
5 if u>pi;
       u=mod(u,pi);
7 end;
  if v<-pi;</pre>
       v=mod(v,-pi);
10 end;
11 if v>pi;
       v=mod(v,pi);
13 end;
14 y=u-v;
  if y<-pi;</pre>
       y=mod(y,-pi);
17 end;
18 if y>pi;
       y = mod(y, pi);
20 end;
```