# Chapter 7 Multiple Division Techniques

#### **Outline**

- Introduction
- Concepts and Models for Multiple Divisions
  - Frequency Division Multiple Access (FDMA)
  - Time Division Multiple Access (TDMA)
  - Code Division Multiple Access (CDMA)
  - Orthogonal Frequency Division Multiplexing (OFDM)
  - Space Division Multiple Access (SDMA)
  - Comparison of FDMA, TDMA, and CDMA
- Modulation Techniques
  - Amplitude Modulation (AM)
  - Frequency Modulation (FM)
  - Frequency Shift Keying (FSK)
  - Phase Shift Keying (PSK)
  - Quadrature Phase Shift Keying (QPSK)
  - $\pi/4$ QPSK
  - Quadrature Amplitude Modulation (QAM)
  - 16QAM

# Concepts and Models for Multiple Divisions

- Multiple access techniques are based on orthogonalization of signals
- A radio signal is a function of frequency, time and code as;

$$\mathbf{s}(f, t, c) = \mathbf{s}(f, t) \mathbf{c}(t)$$

where s(f, t) is the function of frequency and time and c(t) is the function of code

- Use of different frequencies to transmit a signal: FDMA
- Distinct time slot: TDMA
- Different codes CDMA
- Multiple simultaneous channels: OFDM
- Specially separable sectors: SDMA

### Frequency Division Multiple Access (FDMA)

#### Orthogonality conditions of two signals in FDMA:

$$\int_{E} s_{i}(f,t) s_{j}(f,t) df = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad i, j = 1, 2, ..., k$$



- > Single channel per carrier
- ➤ All first generation systems use FDMA

#### **Basic Structure of FDMA**





## Forward and Reverse channels in FDMA and Guard Band



# Time Division Multiple Access (TDMA)

#### **Orthogonality conditions of two signals in TDMA:**

$$\int_{T} s_{i}(f,t) s_{j}(f,t) dt = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad i, j = 1, 2, ..., k$$



- Multiple channels per carrier
- Most of second generation systems use TDMA

### The Concept of TDMA



#### **TDMA: Channel Structure**



#### (a) Forward channel



(b) Reverse channel

**Channels in TDMA/FDD (Frequency Division Duplexing)** 

### Forward and Reverse Channels in TDMA



**Channels in TDMA/TDD** 

#### Frame Structure of TDMA



# Code Division Multiple Access (CDMA)

#### Orthogonality conditions of two signals in CDMA:

$$\int_{C} s_{i}(t) s_{j}(t) dt = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad i, j = 1, 2, ..., k$$



- Users share bandwidth by using code sequences that are orthogonal to each other
- Some second generation systems use CDMA
- Most of third generation systems use CDMA

#### **CDMA Encode/Decode**



#### **CDMA:** Two-Sender Interference



### Structure of a CDMA System



 $C_i$ 'x  $C_j$ ' = 0, i.e.,  $C_i$ ' and  $C_j$ ' are orthogonal codes,  $C_i$  x  $C_j$  = 0, i.e.,  $C_i$  and  $C_j$  are orthogonal codes

### **Spread Spectrum**

Spreading of data signal s(t) by the code signal c(t) to result in message signal m(t) as:

$$m(t) = s(t) \otimes c(t)$$



# Direct Sequence Spread Spectrum (DSSS)



Using Pseudorandom code or orthogonal code

### **Orthogonal Codes**

- Orthogonal codes
  - All pairwise cross correlations are zero
  - Fixed- and variable-length codes used in CDMA systems
  - For CDMA application, each mobile user uses one sequence in the set as a spreading code
    - Provides zero cross correlation among all users
- Types
  - Walsh codes
  - Variable-length Orthogonal codes

#### Walsh Codes

Set of Walsh codes of length n consists of the n rows of an n x n Walsh matrix:

$$\mathbf{W}_{2n} = \begin{pmatrix} \mathbf{W}_n & \mathbf{W}_n \\ \mathbf{W}_n & \overline{\mathbf{W}}_n \end{pmatrix}$$

where n = dimension of the matrix.

- Every row is orthogonal to every other row
- Requires tight synchronization
  - Cross correlation between different shifts of Walsh sequences is not zero

### **Example:**

$$W_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad W_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$W_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad W_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad W_8 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

(a)  $2 \times 2$ 

(b)  $4 \times 4$ 

(c) 8  $\times$  8

# Frequency Hoping Spread Spectrum (FHSS)

- A number of channels are allocated for the FH signal
- Width of each channel corresponds to bandwidth of input signal
- Signal hops from frequency to frequency at fixed intervals
- At each successive interval, a new carrier frequency is selected

# Frequency Hoping Spread Spectrum

- Channel sequence dictated by spreading code
- Receiver, hopping between frequencies in synchronization with transmitter, picks up message
- Advantages
  - Eavesdroppers hear only unintelligible blips
  - Attempts to jam signal on one frequency succeed only at knocking out a few bits

# **An Example of Frequency Hopping Pattern**



# Fast-Frequency Hopping Spread Spectrum (FHSS)



Multiple hops per data bit

### **Near-far Problem**



### **Adjacent Channel Interference**



### **Interference in Spread Spectrum**



#### **Power Control**

- Design issues making it desirable to include dynamic power control in a cellular system
  - Received power must be sufficiently above the background noise for effective communication
  - Desirable to minimize power in the transmitted signal from the mobile
    - Reduce cochannel interference, alleviate health concerns, save battery power
  - In SS systems using CDMA, it's desirable to equalize the received power level from all mobile units at the BS

### **Types of Power Control**

- Open-loop power control
  - Depends solely on mobile unit
  - No feedback from BS
  - Not as accurate as closed-loop, but can react quicker to fluctuations in signal strength
- Closed-loop power control
  - Adjusts signal strength in reverse channel based on metric of performance
  - BS makes power adjustment decision and communicates to mobile on control channel



(b) Closed-loop power control

# Orthogonal Frequency Division Multiplexing (OFDM)

- ✓ Divide a channels into multiple sub-channels and do parallel transmission
- **✓** Orthogonality of two signals in OFDM can be given by:



# Modulation/Demodulation Steps in OFDM



#### Modulation operation at the OFDM transmitter



**Demodulation steps at the OFDM receiver** 

# Space Division Multiple Access (SDMA)

#### Space divided into spatially separate sectors



#### **Transmission in SDMA**

- ✓ Noise and interference for each MS and BS is minimized
- ✓ Enhance the quality of communication link and increase overall system capacity
- ✓ Intra-cell channel reuse can be easily exploited



The basic structure of a SDMA system

### Comparison of Various Multiple Division Techniques

| Technique         | FDMA                                                              | TDMA                                                           | CDMA                                                                         | SDMA                                                                 |
|-------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Concept           | Divide the frequency<br>band into disjoint<br>sub-bands           | Divide the time into<br>non-overlapping<br>time slots          | Spread the signal with orthogonal codes                                      | Divide the space in to sectors                                       |
| Active terminals  | All terminals active on their specified frequencies               | Terminals are active in their specified slot on same frequency | All terminals active on same frequency                                       | Number of terminals<br>per beam depends on<br>FDMA/<br>TDMA/CDMA     |
| Signal separation | Filtering in frequency                                            | Synchronization in time                                        | Code separation                                                              | Spatial separation using smart antennas                              |
| Handoff           | Hard handoff                                                      | Hard handoff                                                   | Soft handoff                                                                 | Hard and soft handoffs                                               |
| Advantages        | Simple and robust                                                 | Flexible                                                       | Flexible                                                                     | Very simple, increases system capacity                               |
| Disadvantages     | Inflexible, available frequencies are fixed, requires guard bands | Requires guard<br>space,<br>synchronization<br>problem         | Complex receivers,<br>requires power<br>control to avoid<br>near-far problem | Inflexible, requires network monitoring to avoid intra cell handoffs |
| Current           | Radio, TV and analog cellular                                     | GSM and PDC                                                    | 2.5G and 3G                                                                  | Satellite systems, LTE                                               |

### **Modulation Techniques**

- Why need modulation?
  - Small antenna size

Antenna size is inversely proportional to frequency (wavelength)

e.g.,  $3 \text{ kHz} \rightarrow 50 \text{ km}$  antenna  $3 \text{ GHz} \rightarrow 5 \text{ cm}$  antenna

- Reduces noise or distortion
- Multiplexing techniques,e.g., FDM, TDM, CDMA
- Encryption
- • •

# Concepts Related to Channel Capacity

- Data rate rate at which data can be communicated (bps)
- Bandwidth the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise average level of noise over the communications path
- Error rate rate at which errors occur
  - Error = transmit 1 and receive 0; transmit 0 and receive 1

### **Frequency-Domain Concepts**

- Fundamental frequency when all frequency components of a signal are integer multiples of one frequency, it's referred to as the fundamental frequency
- Spectrum range of frequencies that a signal contains
- Absolute bandwidth width of the spectrum of a signal
- Effective bandwidth (or just bandwidth) narrow band of frequencies that most of the signal's energy is contained in



Figure 2.4 Addition of Frequency Components (T = 1/f)



Frequency Components of Square Wave (T = 1/f)

### **Transmission Rate Constraint**

- Nyquist's Theorem
  - Given a BW B, the highest signal rate that can be carried is 2B
  - With multilevel signaling  $C = 2B \log_2 L$ , bit/sec where L = number of discrete signal or voltage levels
- Shannon's Theorem: theoretical maximum that can be achieved  $C = B \log_2(1 + S/N)$  bits/sec
  - Where S is the signal power and N is noise power

### **Modulation Techniques**

- Analog Modulation: used for transmitting analog data
  - Amplitude Modulation (AM)
  - Frequency Modulation (FM)
- Digital Modulation: used for transmitting digital data
  - Amplitude Shift Keying (ASK)
  - Frequency Shift Keying (FSK)
  - Phase Shift Keying (PSK)

### **Analog and Digital Signals**

Analog Signal (Continuous signal)

**Amplitude** 



Digital Signal (Discrete signal)

**Amplitude** 



### Hearing, Speech, and Voice-band Channels



### **Amplitude Modulation**

#### Amplitude Modulation

$$s(t) = [1 + n_a x(t)] \cos 2\pi f_c t$$

- $\cos 2\pi f_c t = \text{carrier}$
- x(t) =input signal
- $n_a$  = modulation index  $\leq 1$ 
  - ✓ Ratio of amplitude of input signal to carrier

### Amplitude Modulation (AM)





### Frequency Modulation (FM)



#### The modulated carrier signal s(t) is:

$$s(t) = A\cos\left((2\pi f_c t + 2\pi f_\Delta \int_{t_0}^t x(\tau)d\tau + \theta_0\right)$$

Where  $f_{\Delta}$  is the peak frequency deviation from the original frequency and  $f_{\Delta} << f_c$ 

# **Basic Digital Modulation**

- Digital data to analog signal
  - Amplitude shift keying (ASK)
    - Amplitude difference of carrier frequency
  - Frequency shift keying (FSK)
    - Frequency difference near carrier frequency
  - Phase shift keying (PSK)
    - Phase of carrier signal shifted



Modulation of Analog Signals for Digital Data

## **Amplitude Shift Keying**

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

• where the carrier signal is  $A\cos(2\pi f_c t)$ 

# Binary Frequency-Shift Keying (BFSK)

■ Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

•where  $f_1$  and  $f_2$  are offset from carrier frequency  $f_c$  by equal but opposite amounts

## Frequency Shift Keying (FSK)

#### 1/0 represented by two different frequencies

Carrier signal for message signal '1'

Carrier signal for message signal '0'

Message signal x(t)

FSK signal s(t)



## **Phase Shift Keying (PSK)**

• Use alternative sine wave phases to encode bits



# Quadrature Phase Shift Keying (QPSK)

✓ Four different phase shifts used are:

$$\begin{cases} \phi_{0,0} = 0 \\ \phi_{0,1} = \pi/2 \\ \phi_{1,0} = \pi \end{cases}$$
or
$$\begin{cases} \phi_{0,0} = \pi/4 \\ \phi_{0,1} = 3\pi/4 \\ \phi_{1,1} = 3\pi/2 \end{cases}$$

$$\begin{cases} \phi_{0,0} = \pi/4 \\ \phi_{0,1} = 3\pi/4 \\ \phi_{1,0} = -3\pi/4 \\ \phi_{1,1} = -\pi/4 \end{cases}$$

I (in-phase) and Q (quadrature) modulation used

### **Phase-Shift Keying (PSK)**

- Four-level PSK (QPSK)
  - Each element represents more than one bit

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

### **QPSK Signal Constellation**



(a) BPSK

(Binary Phase Shift Keying)



(b) QPSK

(Quadrature Phase Shift Keying)

### $\pi/4$ QPSK

- ✓ The phase of the carrier is:  $\theta_k = \theta_{k-1} + \phi_k$ , where  $\theta_k$  is carrier phase shift corresponding to input bit pairs.
- ✓ If  $\theta_0$ =0, input bit stream is [1011], then:

$$\theta_1 = \theta_0 + \phi_1 = -\pi/4$$

$$\theta_2 = \theta_1 + \phi_2 = -\pi/4 + \pi/4 = 0$$



All possible states in  $\pi/4$  QPSK

### Quadrature Amplitude Modulation (QAM)

Combination of AM and PSK: modulate signals using two measures of amplitude and four possible phase shifts

A representative QAM Table

| Bit sequence represented | Amplitude | Phase shift  |
|--------------------------|-----------|--------------|
| 000                      | 1         | 0            |
| 001                      | 2         | 0            |
| 010                      | 1         | π/2          |
| 011                      | 2         | π/2          |
| 100                      | 1         | π            |
| 101                      | 2         | π            |
| 110                      | 1         | 3π <b>/2</b> |
| 111                      | 2         | 3π <b>/2</b> |

# Quadrature Amplitude Modulation (QAM)

✓ Two carriers out of phase by 90 degrees are amplitude modulated



**Rectangular constellation of 16QAM** 

#### Homework

- Exercises: 7.2, 7.7, 7.10, 7.17, 7.18, 7.21(Select anyone)
- Experiment (Announced by TA)