Rebuttal Response

Figure 1. The evolution of the lower-level training loss and KL divergence in training of 10B tokens. Proxy model size: 31M, target LLM size: 410M.

Figure 2. The evolution of the lower-level training loss and KL divergence in training of 10B tokens. Proxy model size: 160M, target LLM size: 410M.

Table 1. Total FLOPs for pretraining 410M/1B target model with 25B tokens.

Process	#FLOPs $\times 10^{19}$	Ratio	
BLISS: 410M model, 25B tokens			
Model pretraining	6.35	79.28%	
Warm up the proxy/score model	0.07	0.87%	
Bilevel optimization	0.13	1.62%	
Data influence model inference	1.53	19.10%	
Total	8.08	100.00%	
BLISS: 1B model, 25B tokens			
Model pretraining	17.67	90.48%	
Warm up the proxy/score model	0.07	0.36%	
Bilevel optimization	0.261	1.34%	
Data influence model inference	1.53	7.83%	
Total	19.53	100.00%	

 Table 2. Comparison of BLISS with different size of proxy/score model and on zero-shot evaluation over multiuple downstream datasets (410M model, 10B tokens) with 20k-step training.

Method	SciQ ARC	-E ARC-C	LogiQA	OBQA	BoolQ	HellaSwag	PIQA	WinoGrando	e Average
BLISS (Pythia-31m)	65.5(1.5) 40.8(.0) 23.4(1.2	27.2(1.7)	29.8(2.0)	58.9(0.9)	36.0(0.5)	67.6(1.1)	53.4(1.4)	44.7(1.3)
BLISS (Pythia-160m)	63.8(1.5) 40.8(.0) 23.4(1.2	27.5(1.8)	29.8(2.0)	51.3(0.9)	38.3(0.5)	67.6(1.1)	50.4(1.4)	44.1(1.3)
BLISS (Pythia-31m without sigmoid) 62.6(1.5) 41.0(.0) 24.0(1.2	26.4(1.7)	30.4(2.1)	53.4(0.9)	39.5(0.5)	68.3(1.1)	52.2(1.4)	44.2(1.3)

Table 3. Comparison of methods on zero-shot evaluation over multiple downstream datasets (410M model, 15B tokens). BLISS-org denotes the original algorithm, and $BLISS^{\dagger}$ is a variant which uses different initialization method for the score model.

Methods (#FLOPs ×10 ¹⁹)) SciQ	ARC-E AR	C-C LogiQ	A OBQA	BoolQ	HellaSwag	PIQA	WinoGrand	e Average
	67.7 (1.5) 41.7 (1.0) 23.6	6 (1.2) 25.8(1.7	28.4(2.0)	56.0 (0.8)	39.7 (0.5)	68.7 (1.1	53.2 (1.4)	44.9 (1.3)
BLISS†	65.2 (1.5) 41.6 (1.0) 23.4	1 (1.2) 27.1 (1.7	7) 29.8 (2.0)	57.5 (0.8)	34.9 (0.5)	67.7 (1.1	53.5 (1.4)	44.5 (1.3)