Cooperative effects in motor-driven cargo transport

Kevin Klein

Naturwissenschaftlich-Technische Fakultät II
- Physik und Mechatronik Universität des Saarlandes

Vortrag zur Bachelorarbeit, 2016

Overview

- Introduction
 - Motivation
 - The mean-field model by Li et al.
 - Discussion
- The explicit model
 - Adjustments and comparison to the mean-field model
 - Analysis of the transport process
- Summary

Overview

- Introduction
 - Motivation
 - The mean-field model by Li et al.
 - Discussion
- 2 The explicit model
 - Adjustments and comparison to the mean-field model
 - Analysis of the transport process
- Summary

- Cells need to be able to rearrange or move cargos in its interior (e.g. nutrients, organelles)
- Motorproteins (here: kinesin and dynein) pull the cargo along filaments (here: microtubules)

- Cells need to be able to rearrange or move cargos in its interior (e.g. nutrients, organelles)
- Motorproteins (here: kinesin and dynein) pull the cargo along filaments (here: microtubules)

- Bi- and unidirectional transport subject of much research
- Different attempts of modeling these kinds of transport
- Here: closer look at so called mean-field model and explicit-motor-positions model

- Bi- and unidirectional transport subject of much research
- Different attempts of modeling these kinds of transport
- Here: closer look at so called mean-field model and explicit-motor-positions model

- Bi- and unidirectional transport subject of much research
- Different attempts of modeling these kinds of transport
- Here: closer look at so called mean-field model and explicit-motor-positions model

Overview

- Introduction
 - Motivation
 - The mean-field model by Li et al.
 - Discussion
- 2 The explicit model
 - Adjustments and comparison to the mean-field model
 - Analysis of the transport process
- 3 Summary

- One slow and one fast team of kinesins pulling the cargo
- N_f and N_s motors available, n_f and n_s numbers of bound motors
- Force independent binding rates π_{0s} and π_{0f}
- Force dependent unbinding rates

$$\epsilon\left(F\right) = \epsilon_0 \exp\left(\frac{F}{F_d}\right)$$

$$egin{aligned} V_s\left(F
ight) &= V_s\left(1 - F/F_{ss}
ight) & ext{for} \quad F \leq 0 < F_{ss} \ V_f\left(F
ight) &= V_f\left(1 - F/F_{sf}
ight) & ext{for} \quad 0 \leq F < F_{sf} \end{aligned}$$

- One slow and one fast team of kinesins pulling the cargo
- N_f and N_s motors available, n_f and n_s numbers of bound motors
- Force independent binding rates π_{0s} and π_{0f}
- Force dependent unbinding rates

$$\epsilon\left(F\right) = \epsilon_0 \exp\left(\frac{F}{F_d}\right)$$

$$egin{aligned} V_s\left(F
ight) &= V_s\left(1 - F/F_{ss}
ight) & ext{for} \quad F \leq 0 < F_{ss} \ V_f\left(F
ight) &= V_f\left(1 - F/F_{sf}
ight) & ext{for} \quad 0 \leq F < F_{sf} \end{aligned}$$

- One slow and one fast team of kinesins pulling the cargo
- N_f and N_s motors available, n_f and n_s numbers of bound motors
- Force independent binding rates π_{0s} and π_{0f}
- Force dependent unbinding rates

$$\epsilon\left(F\right) = \epsilon_0 \exp\left(\frac{F}{F_d}\right)$$

$$egin{aligned} V_{\mathcal{S}}\left(F
ight) &= V_{\mathcal{S}}\left(1 - F/F_{ss}
ight) & ext{for} \quad F \leq 0 < F_{ss} \ V_{f}\left(F
ight) &= V_{f}\left(1 - F/F_{sf}
ight) & ext{for} \quad 0 \leq F < F_{sf}, \end{aligned}$$

- One slow and one fast team of kinesins pulling the cargo
- N_f and N_s motors available, n_f and n_s numbers of bound motors
- Force independent binding rates π_{0s} and π_{0f}
- Force dependent unbinding rates

$$\epsilon\left(F\right) = \epsilon_0 \exp\left(\frac{F}{F_d}\right)$$

$$egin{aligned} V_{\mathcal{S}}\left(F
ight) &= V_{\mathcal{S}}\left(1 - F/F_{\mathcal{S}\mathcal{S}}
ight) & ext{for} \quad F \leq 0 < F_{\mathcal{S}\mathcal{S}}, \ V_{f}\left(F
ight) &= V_{f}\left(1 - F/F_{\mathcal{S}f}
ight) & ext{for} \quad 0 \leq F < F_{\mathcal{S}f}, \end{aligned}$$

- One slow and one fast team of kinesins pulling the cargo
- N_f and N_s motors available, n_f and n_s numbers of bound motors
- Force independent binding rates π_{0s} and π_{0f}
- Force dependent unbinding rates

$$\epsilon\left(F\right) = \epsilon_0 \exp\left(\frac{F}{F_d}\right)$$

$$egin{aligned} V_{\mathcal{S}}\left(F
ight) &= v_{\mathcal{S}}\left(1 - F/F_{\mathcal{S}\mathcal{S}}
ight) & ext{for} \quad F \leq 0 < F_{\mathcal{S}\mathcal{S}} \ V_{f}\left(F
ight) &= v_{f}\left(1 - F/F_{\mathcal{S}f}
ight) & ext{for} \quad 0 \leq F < F_{\mathcal{S}f}, \end{aligned}$$

Assumption of force balance and equal force sharing

$$n_f F_+ = -n_s F_- \equiv F(n_f, n_s),$$

Assumption of equal velocities of all motors

$$V_{s}\left(F_{-}\right)=V_{f}\left(F_{+}\right)=v\left(n_{f},n_{s}\right),$$

These lead to the transport velocity

$$v(n_f, n_s) = \frac{v_s v_f}{\left(1 - \frac{n_f}{n}\right) v_f + \frac{n_f}{n} v_s},$$

uniquely determined by the numbers n_f and n_s

Assumption of force balance and equal force sharing

$$n_f F_+ = -n_s F_- \equiv F(n_f, n_s),$$

Assumption of equal velocities of all motors

$$V_{s}\left(F_{-}\right)=V_{f}\left(F_{+}\right)=v\left(n_{f},n_{s}\right),$$

These lead to the transport velocity

$$v(n_f, n_s) = \frac{v_s v_f}{\left(1 - \frac{n_f}{n}\right) v_f + \frac{n_f}{n} v_s},$$

uniquely determined by the numbers n_f and n_s

Assumption of force balance and equal force sharing

$$n_f F_+ = -n_s F_- \equiv F(n_f, n_s),$$

Assumption of equal velocities of all motors

$$V_{s}\left(F_{-}\right)=V_{f}\left(F_{+}\right)=v\left(n_{f},n_{s}\right),$$

These lead to the transport velocity

$$v(n_f, n_s) = \frac{v_s v_f}{\left(1 - \frac{n_f}{n}\right) v_f + \frac{n_f}{n} v_s},$$

uniquely determined by the numbers n_f and n_s

Results

 By using different sets of motor parameters Li et al. find three distinct motility regimes

• Bimodal state explained by small detachment to stall force ratio $\frac{F_d}{F_s}$ and resulting unbinding cascades

Results

 By using different sets of motor parameters Li et al. find three distinct motility regimes

• Bimodal state explained by small detachment to stall force ratio $\frac{F_d}{F_s}$ and resulting unbinding cascades

Overview

- Introduction
 - Motivation
 - The mean-field model by Li et al.
 - Discussion
- 2 The explicit model
 - Adjustments and comparison to the mean-field model
 - Analysis of the transport process
- Summary

- Equal force sharing and equal motor velocities?
- => all motors within one team need to be at the exact same position
- => the system of motors and cargo is always stepping as a complete unit
- -> unrealistic scenario

- Equal force sharing and equal motor velocities?
- => all motors within one team need to be at the exact same position
- => the system of motors and cargo is always stepping as a complete unit
- -> unrealistic scenario

- Equal force sharing and equal motor velocities?
- => all motors within one team need to be at the exact same position
- => the system of motors and cargo is always stepping as a complete unit
- -> unrealistic scenario

- Equal force sharing and equal motor velocities?
- => all motors within one team need to be at the exact same position
- => the system of motors and cargo is always stepping as a complete unit
- -> unrealistic scenario

Idea

- Introducing a new model which takes the explicit motor positions into account
- Comparing the results of this explicit model to the results of the mean-field model

Overview

- Introduction
 - Motivation
 - The mean-field model by Li et al.
 - Discussion
- The explicit model
 - Adjustments and comparison to the mean-field model
 - Analysis of the transport process
- Summary

Adjustments

 Stalks of the motors modeled as cable-like Hookean springs: slack up to a length of L_0 and linear force relation beyond L_0 . The force of the i-th motor on the cargo reads

$$F_{i} = \begin{cases} \alpha \left(x_{i}\left(t\right) - x_{C}\left(t\right) + L_{0}\right), & x_{i}\left(t\right) - x_{C}\left(t\right) < -L_{0}, \\ 0, & \left|x_{i}\left(t\right) - x_{C}\left(t\right)\right| < L_{0}, \\ \alpha \left(x_{i}\left(t\right) - x_{C}\left(t\right) - L_{0}\right), & x_{i}\left(t\right) - x_{C}\left(t\right) > L_{0}. \end{cases}$$

Stepping rates for each motor

ping rates for each motor
$$s_s(F_i) = \begin{cases} \frac{V_s}{d}, \\ \frac{V_s}{d} \left[1 - \frac{F_i}{F_{ss}}\right], \\ \frac{V_s^B}{d}, \end{cases}$$

$$F_i < 0,$$
 $0 \le F_i \le F_{ss},$

Adjustments

• Stalks of the motors modeled as cable-like Hookean springs: slack up to a length of L_0 and linear force relation beyond L_0 . The force of the i-th motor on the cargo reads

$$F_{i} = \begin{cases} \alpha \left(x_{i}\left(t \right) - x_{C}\left(t \right) + L_{0} \right), & x_{i}\left(t \right) - x_{C}\left(t \right) < -L_{0}, \\ 0, & \left| x_{i}\left(t \right) - x_{C}\left(t \right) \right| < L_{0}, \\ \alpha \left(x_{i}\left(t \right) - x_{C}\left(t \right) - L_{0} \right), & x_{i}\left(t \right) - x_{C}\left(t \right) > L_{0}. \end{cases}$$

Stepping rates for each motor

$$egin{aligned} s_{s}\left(F_{i}
ight) &= \left\{ egin{aligned} rac{v_{s}}{d}, & F_{i} < 0, \ rac{v_{s}}{d}\left[1 - rac{F_{i}}{F_{ss}}
ight], & 0 \leq F_{i} \leq F_{ss}, \ rac{v_{s}^{B}}{d}, & F_{i} > F_{ss} \end{aligned}
ight.$$

Comparison to results of Li et al.

Different results for same sets of parameters!

Bimodal velocity distributions?

- Are bimodal velocity distributions possible in the explicit model?
- Yes they are, but with different sets of parameters!

Bimodal velocity distributions?

- Are bimodal velocity distributions possible in the explicit model?
- Yes they are, but with different sets of parameters!

Overview

- Introduction
 - Motivation
 - The mean-field model by Li et al.
 - Discussion
- The explicit model
 - Adjustments and comparison to the mean-field model
 - Analysis of the transport process
- Summary

- In order to understand the underlying effects, which lead to the shown bimodal velocity distribution, changes to the following parameters have been examined:
 - Slow and fast velocities v_s and v_t
 - Attachment rate κ_a
 - Stall forces F_{ss} and F_{sf}
 - Force free detachment rate κ_a^0
 - Detachment forces F_{ds} and F_{df}

- In order to understand the underlying effects, which lead to the shown bimodal velocity distribution, changes to the following parameters have been examined:
 - Slow and fast velocities v_s and v_f
 - Attachment rate κ_a
 - Stall forces F_{ss} and F_{sf}
 - Force free detachment rate κ_a^0
 - Detachment forces F_{ds} and F_{df}

- In order to understand the underlying effects, which lead to the shown bimodal velocity distribution, changes to the following parameters have been examined:
 - Slow and fast velocities v_s and v_f
 - Attachment rate κ_a
 - Stall forces F_{ss} and F_{sf}
 - Force free detachment rate κ_a^0
 - Detachment forces F_{ds} and F_{df}

- In order to understand the underlying effects, which lead to the shown bimodal velocity distribution, changes to the following parameters have been examined:
 - Slow and fast velocities v_s and v_f
 - Attachment rate κ_a
 - Stall forces F_{ss} and F_{sf}
 - Force free detachment rate κ_a^0
 - Detachment forces F_{ds} and F_{df}

A closer look at the motor parameters

- In order to understand the underlying effects, which lead to the shown bimodal velocity distribution, changes to the following parameters have been examined:
 - Slow and fast velocities v_s and v_f
 - Attachment rate κ_a
 - Stall forces F_{ss} and F_{sf}
 - Force free detachment rate κ_a^0
 - Detachment forces F_{ds} and F_{df}

A closer look at the motor parameters

- In order to understand the underlying effects, which lead to the shown bimodal velocity distribution, changes to the following parameters have been examined:
 - Slow and fast velocities v_s and v_f
 - Attachment rate κ_a
 - Stall forces F_{ss} and F_{sf}
 - Force free detachment rate κ_a^0
 - Detachment forces F_{ds} and F_{df}

Velocities, attachment rate and stall forces

- Bimodal velocities: $v_s = 100 \, \frac{\text{nm}}{\text{s}}$, $v_f = 2000 \, \frac{\text{nm}}{\text{s}}$ Increasing the velocity of slow motors leads to a vanishing distinctness of the bimodal velocity distribution
- Bimodal attachment rate: $\kappa_a = 5 \, \mathrm{s}^{-1}$ For very low attachment rates (< 0.1 s⁻¹) transport is stalling most of the time and is carried out by only one attached motor at a time. Very high attachment rates (> 100 s⁻¹) lead to unimodal velocity distributions, as all motors are involved into transport.
- Bimodal stall forces: $F_s = 5 \, \text{pN}$ Changes to the stall force of slow motors do not effect the velocity distribution.
 - The bimodal velocity distribution is kept for stall forces of fast motors that are larger than the detachment forces.

Velocities, attachment rate and stall forces

- Bimodal velocities: $v_s = 100 \, \frac{\text{nm}}{\text{s}}$, $v_f = 2000 \, \frac{\text{nm}}{\text{s}}$ Increasing the velocity of slow motors leads to a vanishing distinctness of the bimodal velocity distribution
- Bimodal attachment rate: $\kappa_a = 5 \, \mathrm{s}^{-1}$ For very low attachment rates (< 0.1 s⁻¹) transport is stalling most of the time and is carried out by only one attached motor at a time. Very high attachment rates (> 100 s⁻¹) lead to unimodal velocity distributions, as all motors are involved into transport.
- Bimodal stall forces: $F_s = 5 \, \text{pN}$ Changes to the stall force of slow motors do not effect the velocity distribution.
 - The bimodal velocity distribution is kept for stall forces of fast motors that are larger than the detachment forces.

Velocities, attachment rate and stall forces

- Bimodal velocities: $v_s = 100 \frac{\text{nm}}{\text{s}}$, $v_f = 2000 \frac{\text{nm}}{\text{s}}$ Increasing the velocity of slow motors leads to a vanishing distinctness of the bimodal velocity distribution
- Bimodal attachment rate: $\kappa_a = 5 \, \mathrm{s}^{-1}$ For very low attachment rates (< 0.1 s⁻¹) transport is stalling most of the time and is carried out by only one attached motor at a time. Very high attachment rates (> 100 s⁻¹) lead to unimodal velocity distributions, as all motors are involved into transport.
- Bimodal stall forces: F_s = 5 pN
 Changes to the stall force of slow motors do not effect the velocity distribution.
 - The bimodal velocity distribution is kept for stall forces of fast motors that are larger than the detachment forces.

Force free detachment rate

- Bimodal force free detachment rate: $\kappa_d^0 = 1 \, {
 m s}^{-1}$
- Reminder: $\kappa_d(F_i) = \kappa_d^0 exp\left(\frac{|F_i|}{F_d}\right)$

• Bimodal for roughly $0.1 \, \mathrm{s}^{-1} < \kappa_d^0 < 5 \, \mathrm{s}^{-1}$

Detachment forces

- Bimodal detachment forces: $F_d = 1 \text{ pN}$
- Reminder: $\kappa_d(F_i) = \kappa_d^0 exp\left(\frac{|F_i|}{F_d}\right)$

- $F_{sf} > F_d$
- Only few motors must participate in cargo transport simultaneously
- Detachment forces of fast and slow motors need to be "close"
- A considerable gap between slow and fast motor's velocities

- $F_{sf} > F_d$
- Only few motors must participate in cargo transport simultaneously
- Detachment forces of fast and slow motors need to be "close"
- A considerable gap between slow and fast motor's velocities

- $F_{sf} > F_d$
- Only few motors must participate in cargo transport simultaneously
- Detachment forces of fast and slow motors need to be "close"
- A considerable gap between slow and fast motor's velocities

- $F_{sf} > F_d$
- Only few motors must participate in cargo transport simultaneously
- Detachment forces of fast and slow motors need to be "close"
- A considerable gap between slow and fast motor's velocities

Extension on bidirectional case

 Bi- and even trimodal velocity distributions obtainable for symmetric motors.

Summary

- Bimodal motility states have been obtained by Li et al. using the mean field model.
- These bimodal states cannot be reproduced by an explicit model for the same set of parameters but for different sets of parameters.
- The explicit model can be extended on the bidirectional case and, there, leads to bimodal and even trimodal motility states.
- Further improvements:
 - A different modeling approach for the detachment rate could be examined, as the exponential modeling heavily effects the motility state.

Thank you for your attention!

References I

X. Li, R. Lipowsky, and J. Kierfeld.

Bifurcation of Velocity Distributions in Cooperative Transport of Filaments by Fast and Slow Motors.

Biophysical Journal, vol. 104, pp. 666-676, 2013.

Bieling

Li et al. parameters

Parameters used by Li *et al.* for the three different motility regimes

Larson

Pan

	Larson	1 411	Diemig
	et al. [2]	et al. [4]	et al. [3]
	Fast motors		
	Wild		
	kinesin-I	OSM-3	Xklp1
	5	Slow motors	
	Mutant		
Parameter	kinesin-I	Kinesin-II	Xkid
Binding rate, fast π_{0f}	$5s^{-1}$	$5 \mathrm{s}^{-1}$	$5 \mathrm{s}^{-1}$
Binding rate, slow π_{0s}	$5s^{-1}$	$5s^{-1}$	$5 \mathrm{s}^{-1}$
Unbinding rate, fast ϵ_{0f}	$1 \mathrm{s}^{-1}$	$1 \mathrm{s}^{-1}$	$1 \mathrm{s}^{-1}$
Unbinding rate, slow ϵ_{0s}	$1 {\rm s}^{-1}$	$1 \mathrm{s}^{-1}$	$1 \mathrm{s}^{-1}$
Detachment force, fast F_{df}	3pN	6 pN*	6 pN*
Detachment force ratio	0.45	3.3*	1.9*
$\eta \equiv \frac{F_{ds}}{F_{df}}$			
Stall force, fast F_{sf}	6pN	6pN	6 pN
Stall force, slow \hat{F}_{ss}	6pN	6pN	6 pN
Zero load velocity, fast v_f	$0.522 \mu m s^{-1}$	$1.09 \mu m s^{-1}$	$1.0 \mu m s^{-1}$
Zero load velocity, slow v_s	$0.034 \mu m s^{-1}$	$0.34 \mu m s^{-1}$	$0.1 \mu m s^{-1}$
$\hat{\pi} \equiv \frac{\pi_{0f}}{\epsilon_{0f}} = \frac{\pi_{0s}}{\epsilon_{0s}}$	5	5	5
$\hat{F} \equiv \frac{F_s^{\nu \prime}}{F_{df}}$	2	1	1
$\hat{v} \equiv \frac{v_s}{v_f}$	0.065	0.31	0.1

Parameters used for the explicit model simulation for the bistable motility regime

		,		
System parameters				
Simulation time t_{end}	100 000 s			
Velocity measurement interval Δt	0.1 s			
Motor parameters				
Parameter	Slow	Fast		
Number of available motors N	8	2		
Stalk length L ₀ (*)	10 nm	10 nm		
Stepsize d (*)	8 nm	8nm		
Stiffness constant α (*)	$10^{-4} \frac{\text{kg}}{\text{s}^2}$	$10^{-4} \frac{\text{kg}}{\text{s}^2}$		
Detachment force F_d	1.35 pN	3 pN		
Stall force F_s	6pN	6 pN		
Force free detachment rate κ_d^0	$1 { m s}^{-1}$	$1{\rm s}^{-1}$		
Attachment rate κ_a	$5 \mathrm{s}^{-1}$	$5 \mathrm{s}^{-1}$		
Velocity forward v^F	34 <u>nm</u>	522 <u>nm</u>		
Velocity backward v ^B (*)	6 <u>nm</u>	6 nm		

Changes to parameters to obtain bimodal velocity distribution

Motor parameters				
Parameter	Slow	Fast		
Number of available motors N	5	5		
Detachment force F_d	1pN	1pN		
Stall force F_s	5pN	5pN		
Velocity forward v^F	100 <u>nm</u>	2000 nm/s		

Different transport characteristics to the shown bimodal case

Simulations for differing slow motor velocities

Simulations for differing attachment rates

Simulations for differing stall forces of fast motors

Motor distributions in the bidirectional case

Bidirectional bimodal velocitiy distribution: motors attached, motors with |F| > 0

Bidirectional trimodal velocitiy distribution: motors attached, motors with |F|>0

◆□▶◆□▶◆필▶◆필► 원