· Annahme:

$$y = \beta_0 + \beta_1 \times + \varepsilon$$

· Modell:

$$y = b_0 + b_1 X$$
 and $y = b_0 + b_1 X + e$,
where $e = y - b_0 - b_1 X := Residuen$

$$y = b_0 + b_1 X + e$$

Wir finden boybe, indem

wir SQR =
$$\sum_{i=1}^{N} e_i^2$$

= $\sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

= N. MSE

minimieren (in Abh. von bo', ba').

(2) bo, by sied gegeben duich:

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$b_1 = \frac{\widehat{Cos}(y,x)}{\widehat{var}(x)}$$

(3) bo, b1 sind Enfallsvariablen, da sie ven Y abhangen, dos aw der Betiehung $Y = \beta o + \beta + X + \varepsilon$ entsteht und somit anch eine Enfallsvariable ist (wegen ε).

Ly Wir werden also die statistische Maschinerie auf bo, b1 an, um ihre Verteilung herzuleiten (samt Erwartungswert, Varianz). So können wir die Unsicherheit der Schafter bo, b1 quantifizioren.

Lo Anmerkung: Die Varianzen halten so nur, falls

- (i) Die Fehler unabhängig sird
- (ii) Die Fehler eine honstante Varianz haben
- (iii) Die X fix sird (ni at refallig)

(4) Somit konnen wir Hypothesentests für Po, Br durchführen und auch Konfidentintervalle für So, Br berechnen (Nachste Liberg).

Einführung in die Empirische Wirtschaftsforschung

Übungsaufgaben 4

Lineare Einfachregression - Erwartungswert und Varianz der KQ-Schätzer

- 1. Betrachten Sie den Datensatz "werbung.csv" aus der Vorlesung. Regressieren Sie mit einer linearen Einfachregression in R "sales" (Y) auf "TV" (X).
 - a) Interpretieren Sie Ihren R Output (Koeffizienten und Standardfehler).
 - b) Plotten Sie die Regressionsgerade im Streuungsdiagramm der Daten.
 - c) Ist die lineare Einfachregression ein geeignetes Modell?
- 2. Betrachten Sie das Modell

$$x_i = \beta_0 + u_i, \quad i = 1, \dots, N$$

wobei die u_i eine Zufallsstichprobe von einer Verteilung mit Erwartungswert 0 und (unbekannter) Varianz σ^2 darstellen.

- a) Was ist die Interpretation von β_0 ?
- b) Finden Sie den Kleinste-Quadrate-Schätzer für β_0 . Schon mal gesehen?
- 3. Eine Forscherin möchte herausfinden, wie der Ernteertrag einer Pflanze, Y auf die Menge des verabreichten Düngers, X reagiert. Sie hat dazu N = 10 Parzellen (identischen) Bodens zur Verfügung. Auf der i-ten Parzelle wird sie die Menge x_i an Dünger verabreichen, wobei jeweils $x_i \in [0, 100]$ sein muss (in einer angemessenen Einheit).
 - a) Die Forscherin geht davon aus, dass es eine lineare Beziehung gibt der Art

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, \dots, N$$

Wie sollte die Forscherin x_1, \ldots, x_{10} wählen, um die Varianz des Kleinste-Quadrate Schätzers b_1 so klein wie möglich zu machen?

- b) Was ist die Gefahr dieser Lösung im Falle, dass die Beziehung eventuell nichtlinear ist?
- 4. Zeigen Sie, dass die geschätzte lineare Regressionsgerade immer durch den Punkt (\bar{X}, \bar{Y}) geht.
- 5. Betrachten Sie das vereinfachte Regressions-Modell ("Gerade durch den Ursprung")

$$y_i = \beta_1 x_i + u_i, \quad i = 1, \dots, N.$$

- a) Zeigen Sie, dass der KQ-Schätzer b_1 erwartungstreu ist. Welche Annahmen haben Sie für den Beweis benötigt?
- b) Zeigen Sie, dass die Varianz von b_1 kleiner oder gleich gross ist im Vergleich zum allgemeinen Modell ("Gerade mit Achsen-Abschitt"), und in der Regel kleiner.

- 1. Betrachten Sie den Datensatz "werbung.csv" aus der Vorlesung. Regressieren Sie mit einer linearen Einfachregression in R "sales" (Y) auf "TV" (X).
 - a) Interpretieren Sie Ihren R Output (Koeffizienten und Standardfehler).
 - b) Plotten Sie die Regressionsgerade im Streuungsdiagramm der Daten.
 - c) Ist die lineare Einfachregression ein geeignetes Modell?

2. Betrachten Sie das Modell

$$x_i = \beta_0 + u_i, \quad i = 1, \dots, N$$
 , u; $\mathsf{r} \in (0, 6^2)$

D - ?

wobei die u_i eine Zufallsstichprobe von einer Verteilung mit Erwartungswert 0 und (unbekannter) Varianz σ^2 darstellen.

- a) Was ist die Interpretation von β_0 ?
- b) Finden Sie den Kleinste-Quadrate-Schätzer für β_0 . Schon mal gesehen?

a)
$$F(x_i) = F(\beta_0 + \mu_i) = F(\beta_0) + F(\mu_i) = \beta_0$$

b)
$$b_0 = \underset{b_0'}{\operatorname{argmin}} \sum_{i=1}^{N} (x_i - b_0')^2$$

$$= \underset{i=1}{\operatorname{argmin}} SQR(b_0') \qquad g(f(b_0'))$$

$$\frac{dSQZ(b_0')}{db_0'} = 2 \sum_{i=1}^{N} (x_i - b_0) (-1) \stackrel{!}{=} 0$$

$$\sum_{i=1}^{N} \chi_{i} - \sum_{i=1}^{N} b_{i} = 0 \implies b_{0} = \frac{1}{N} \sum_{i=1}^{N} \lambda_{i}$$

- 3. Eine Forscherin möchte herausfinden, wie der Ernteertrag einer Pflanze, Y auf die Menge des verabreichten Düngers, X reagiert. Sie hat dazu N=10 Parzellen (identischen) Bodens zur Verfügung. Auf der i-ten Parzelle wird sie die Menge x_i an Dünger verabreichen, wobei jeweils $x_i \in [0, 100]$ sein muss (in einer angemessenen Einheit).
 - a) Die Forscherin geht davon aus, dass es eine lineare Beziehung gibt der Art

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, \dots, N$$

Wie sollte die Forscherin x_1, \ldots, x_{10} wählen, um die Varianz des Kleinste-Quadrate Schätzers b_1 so klein wie möglich zu machen?

b) Was ist die Gefahr dieser Lösung im Falle, dass die Beziehung eventuell nichtlinear ist?

Idee:
$$\gamma = \int (x) + \varepsilon$$

$$V_{\alpha l}(b_0) = \delta^2 \left[\frac{1}{N} + \frac{\overline{x}^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2} \right]$$

$$V_{\alpha l}(b_1) = \frac{\delta^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

-> Sie muss
$$\sum_{i=1}^{N} (x_i - \overline{x})^2$$
 maximieren. Data wahlt sie

$$x_1 = x_2 = \dots = x_5 = 0$$

$$y_6 = x_7 = \dots = x_{106} = 100$$

$$y_{10} = x_{10} = x_{10}$$

$$(100-50)^2 + -$$

b) Man essait nionts De lineeitat:

$$(100 - 50)^2$$
= 10.50^2

Lo Bessere Wahl von X:

$$X \in \{0, 11.1, ..., 88.9, 100\}$$

4. Zeigen Sie, dass die geschätzte lineare Regressionsgerade immer durch den Punkt (\bar{X}, \bar{Y}) geht.

 $= \overline{y} - b_1 \overline{x}$

5. Betrachten Sie das vereinfachte Regressions-Modell ("Gerade durch den Ursprung")

$$y_i = \beta_1 x_i + u_i, \quad i = 1, \dots, N.$$

- a) Zeigen Sie, dass der KQ-Schätzer b_1 erwartungstreu ist. Welche Annahmen haben Sie für den Beweis benötigt?
- b) Zeigen Sie, dass die Varianz von b_1 kleiner oder gleich gross ist im Vergleich zum allgemeinen Modell ("Gerade mit Achsen-Abschitt"), und in der Regel kleiner.

a)
$$b_1 = \operatorname{argmin} \sum_{i=1}^{N} (y_i - b_i' X_i)^2$$

$$\frac{d \, SGR'(b_1)}{d \, b_1} = 2 \sum_{i=1}^{N} (\gamma_i - b_1 \, X_i) (-X_i) \stackrel{!}{=} 0$$

$$\sum_{i=1}^{N} \gamma_i \, x_i - b_1 \sum_{i=1}^{N} x_i x_i = b_1 = b_1$$

$$\sum_{i=1}^{N} y_i x_i - b_1 \sum_{i=1}^{N} x_i x_i$$

$$b_1 = \frac{\sum_{i=1}^{N} y_i x_i}{\sum_{i=1}^{N} x_i^2}$$

Repetition Erwartungstreve:

$$E[b_1] = E\left[\frac{\sum_{y:x_i}}{\sum_{y:x_i}}\right]$$

$$= E \left[\beta_1 \frac{\sum x_i^2}{\sum x_i^2} \right] + E \left[\frac{\sum \varepsilon_i x_i}{\sum x_i^2} \right]$$

$$= \beta_1 + \frac{\sum \overline{E[\epsilon:]x_i}}{\sum x_i^2} = \beta_1 + 0 = \beta_1$$

$$V_{\omega}(b_1) = \frac{\delta^2}{\sum_{i=1}^{N} x_i^2}$$

Soust:
$$Vor(b_1) = \frac{6^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

$$y_i = \beta_1 x_i + \epsilon_i$$

$$E[b_1] = \beta_1$$

$$F[b_1] = F\left[\frac{2}{7} \frac{x_i^2}{x_i^2}\right] = F\left[\frac{2}{2} \frac{(\beta_1 x_i + \epsilon_i) x_i}{2} \frac{x_i^2}{x_i^2}\right]$$

$$\frac{\sum_{s: X_i}}{\sum_{s: X_i}}$$

$$\frac{\sum_{s: X_i}}{\sum_{s: X_i}}$$

$$\sum_{i=1}^{N} x_i^2 - 2x_i \overline{x} + \overline{x}^2$$

$$\sum_{i=1}^{n} x_i^2 - 2x_i^2 \sum_{i=1}^{n} x_i^2$$

The
$$Var(b_1) = E[b_1^2] - E[b_1]^2$$

$$E[b_1] = E[b_1] = E[b_1]$$

mit
$$\sum_{i=1}^{N} (x_i - \bar{x})^2 \le \sum_{i=1}^{N} x_i^2$$

$$\frac{Z \times x^2 - 2N\overline{X}^2 + N\overline{X}^2}{Z \times x^2 - N\overline{X}^2}$$

$$\hat{y} = b_0 + b_1 \times \text{Neu} + b_1 \left(\frac{X - X_{NEU}}{X^r} \right)$$

$$\hat{y} = b_0 + b_1 \times \text{NEU} - b_1 \times \text{NEU} + b_1 \times X$$

$$= b_0 + b_1 \times \text{NEU} + b_1 \times \text{NEU} + b_2 \times \text{NEU} + b_3 \times \text{NEU} + b_4 \times \text{NEU} + b_4$$

$$\sum_{i} (y_i - b_0 - b_1 x_i) x_i = 0$$

$$\sum yixi-b_0xi-b_1xi^2=0$$

$$Z yixi - b_0 Z xi - b_1 \overline{Z} xi^2 = 0$$