가 .

2. 지역별 기상과 쌀수량과의 관련성

가. 최고품질벼 품종별 등숙기간별 평균기온과 수량성간의 관계

2015년도에 시험이 수행된 중생종 및 중만생종 최고품질벼 12품종에 대한 수량성과 등숙기 기상환경과의 관련성을 분석한 결과 수량성과 관련성이 높았던 요인은 등숙기 평균기온으로 나타났으며, 품종별 출수 후30일간 및 40일간 평균기온은 표 1-3에서 나타낸 바와 같다.

등숙기 평균기온을 적용할 경우 일반적으로 출수 후 30일간 또는 40일간의 평균기온을 활용하는 경우가 있지만, 이 시험에서는 품종간 차이는 다소 나타났지만 출수 후 30일간의 평균기온을 적용하기보다는 출수 후 40일간의 평균기온을 적용하였을 경우 분석정확도를 보다 높일수 있었다. 중생종 3품종(33개 지역)에 대한 수량성과의 관련성을 보면 출수 후 30일간의 평균기온을 적용하였을 경우 결정계수(R^2)가 0.302였던 반면 출수 후 40일간의 평균기온을 적용하였을 경우 결정계수(R^2)는 0.338, 중만생종 9품종(112개 지역)에 대한 수량성과의 관련성을 보면 출수 후 30일간의 평균기온을 적용하였을 경우 결정계수(R^2)는 0.256으로 높은 것으로 나타났기 때문에 출수후 40일간의 평균기온을 적용하는 것이 적합한 등숙온도를 산정하는데 유리하였다.

<표 1-3> 출수 후 30일 및 40일간 평균기온과 수량과의 관계

품종(수)	지역	출수 후 30일간		출수 후 40일간	
	수	최고수량 온도(℃)	\mathbb{R}^2	최고수량 온도(℃)	\mathbb{R}^2
고품	7	22.7	0.250	21.9	0.315
하이아미	10	23.2	0.547	22.4	0.495
대보	16	23.3	0.206	22.4	0.306
삼광	14	22.8	0.359	22.1	0.388
호품	10	22.3	0.483	21.7	0.559
칠보	11	22.5	0.378	21.7	0.445
진수미	15	22.6	0.222	22.0	0.228
영호진미	13	22.2	0.571	21.6	0.553
미품	16	22.2	0.312	21.6	0.352
수광	14	22.8	0.371	21.9	0.510
현품	13	21.3	0.556	20.9	0.503
해품	6	22.5	0.859	21.7	0.724
중생종(3)	33	23.2	0.302	22.4	0.338
중만생종(9)	112	22.4	0.249	21.7	0.256