N. Gregory Mankiw

Economics Sixth Edition

The Costs of Production

Premium
PowerPoint
Slides by
Ron Cronovich
2012 UPDATE

ACTIVE LEARNING 1 Brainstorming costs

You run Ford Motor Company.

- List three different costs you have.
- List three different business decisions that are affected by your costs.

In this chapter, look for the answers to these questions:

- What is a production function? What is marginal product? How are they related?
- What are the various costs, and how are they related to each other and to output?
- How are costs different in the short run vs. the long run?
- What are "economies of scale"?

Total Revenue, Total Cost, Profit

We assume that the firm's goal is to maximize profit.

Profit = Total revenue - Total cost

the amount a firm receives from the sale of its output

the market value of the inputs a firm uses in production

Costs: Explicit vs. Implicit

- Explicit costs require an outlay of money,
 e.g., paying wages to workers.
- Implicit costs do not require a cash outlay,
 e.g., the opportunity cost of the owner's time.
- Remember one of the Ten Principles:
 The cost of something is what you give up to get it.
- This is true whether the costs are implicit or explicit. Both matter for firms' decisions.

Explicit vs. Implicit Costs: An Example

You need \$100,000 to start your business. The interest rate is 5%.

- Case 1: borrow \$100,000
 - explicit cost = \$5000 interest on loan
- Case 2: use \$40,000 of your savings, borrow the other \$60,000
 - explicit cost = \$3000 (5%) interest on the loan
 - implicit cost = \$2000 (5%) foregone interest you could have earned on your \$40,000.

In both cases, total (exp + imp) costs are \$5000.

Economic Profit vs. Accounting Profit

- Accounting profit
 - = total revenue minus total explicit costs
- Economic profit
 - = total revenue minus total costs (including explicit and implicit costs)
- Accounting profit ignores implicit costs, so it's higher than economic profit.

ACTIVE LEARNING 2

Economic profit vs. accounting profit

The equilibrium rent on office space has just increased by \$500/month.

Determine the effects on accounting profit and economic profit if

- a. you rent your office space
- b. you own your office space

ACTIVE LEARNING 2 Answers

The rent on office space increases \$500/month.

a. You rent your office space.

Explicit costs increase \$500/month.

Accounting profit & economic profit each fall \$500/month.

b. You own your office space.

Explicit costs do not change, so accounting profit does not change. Implicit costs increase \$500/month (opp. cost of using your space instead of renting it), so economic profit falls by \$500/month.

The Production Function

- A production function shows the relationship between the quantity of inputs used to produce a good and the quantity of output of that good.
- It can be represented by a table, equation, or graph.
- Example 1:
 - Farmer Jack grows wheat.
 - He has 5 acres of land.
 - He can hire as many workers as he wants.

EXAMPLE 1: Farmer Jack's Production Function

Marginal Product

- If Jack hires one more worker, his output rises by the marginal product of labor.
- The marginal product of any input is the increase in output arising from an additional unit of that input, holding all other inputs constant.
- Notation:

 Δ (delta) = "change in..."

Examples:

 $\Delta \mathbf{Q}$ = change in output, $\Delta \mathbf{L}$ = change in labor

• Marginal product of labor (MPL) = $\frac{\Delta \mathbf{Q}}{\Delta \mathbf{L}}$

EXAMPLE 1: Total & Marginal Product

	(no. of workers)	Q (bushels of wheat)		MPL
$\Delta L = 1$	0	0	$\Delta Q = 1000$	1000
$\Delta L = 1$	1 2	1000	$\Delta \mathbf{Q} = 800$	800
$\Delta L = 1$	3	1800 ⊀ 2400 ⊀	$\Delta Q = 600$	600
$\Delta L = 1$	4	2800	$\Delta Q = 400$	400
$\Delta L = 1$	5	3000	$\Delta Q = 200$	200

EXAMPLE 1: MPL = Slope of Prod Function

Why MPL Is Important

- Recall one of the Ten Principles:
 Rational people think at the margin.
- When Farmer Jack hires an extra worker,
 - his costs rise by the wage he pays the worker
 - his output rises by MPL
- Comparing them helps Jack decide whether he should hire the worker.

Why MPL Diminishes

- Farmer Jack's output rises by a smaller and smaller amount for each additional worker. Why?
- As Jack adds workers, the average worker has less land to work with and will be less productive.
- In general, MPL diminishes as L rises whether the fixed input is land or capital (equipment, machines, etc.).
- Diminishing marginal product: the marginal product of an input declines as the quantity of the input increases (other things equal)

EXAMPLE 1: Farmer Jack's Costs

- Farmer Jack must pay \$1000 per month for the land, regardless of how much wheat he grows.
- The market wage for a farm worker is \$2000 per month.
- So Farmer Jack's costs are related to how much wheat he produces....

EXAMPLE 1: Farmer Jack's Costs

(no. of workers)	Q (bushels of wheat)	Cost of land	Cost of labor	Total Cost	
0	0	\$1,000	\$0	\$1,000	
1	1000	\$1,000	\$2,000	\$3,000	
2	1800	\$1,000	\$4,000	\$5,000	
3	2400	\$1,000	\$6,000	\$7,000	
4	2800	\$1,000	\$8,000	\$9,000	
5	3000	\$1,000	\$10,000	\$11,000	

EXAMPLE 1: Farmer Jack's Total Cost Curve

Q (bushels of wheat)	Total Cost
0	\$1,000
1000	\$3,000
1800	\$5,000
2400	\$7,000
2800	\$9,000
3000	\$11,000

Marginal Cost

Marginal Cost (MC) is the increase in Total Cost from producing one more unit:

$$MC = \frac{\Delta TC}{\Delta Q}$$

EXAMPLE 1: Total and Marginal Cost

	Q (bushels of wheat)	Total Cost		Marginal Cost (<i>MC</i>)
	0	\$1,000 -	\	
$\Delta \mathbf{Q} = 1000$	1000	\$3,000 <	Δ TC = \$2000	\$2.00
$\Delta \mathbf{Q} = 800$	1000	. ,	Δ TC = \$2000	\$2.50
40 600	1800	\$5,000	ATC — \$2000	\$3.33
$\Delta \mathbf{Q} = 600$	>2400	\$7,000 <	Δ TC = \$2000	φ3.33
$\Delta \mathbf{Q} = 400$			$\Delta TC = 2000	\$5.00
$\Delta Q = 200$	2800	\$9,000	Δ TC = \$2000	\$10.00
∆ ≪ − 200	3000	\$11,000 ←	<u> </u>	т

EXAMPLE 1: The Marginal Cost Curve

Q (bushels of wheat)	TC	MC
0	\$1,000	
1000	\$3,000	\$2.00
1000	ψ5,000	\$2.50
1800	\$5,000	\$3.33
2400	\$7,000	φ3.33
2800	\$0,000	\$5.00
2000	\$9,000	\$10.00
3000	\$11,000	

Why MC Is Important

- Farmer Jack is rational and wants to maximize his profit. To increase profit, should he produce more or less wheat?
- To find the answer, Farmer Jack needs to "think at the margin."
- If the cost of additional wheat (MC) is less than the revenue he would get from selling it, then Jack's profits rise if he produces more.

Fixed and Variable Costs

- Fixed costs (FC) do not vary with the quantity of output produced.
 - For Farmer Jack, FC = \$1000 for his land
 - Other examples: cost of equipment, loan payments, rent
- Variable costs (VC) vary with the quantity produced.
 - For Farmer Jack, VC = wages he pays workers
 - Other example: cost of materials
- Total cost (TC) = FC + VC

EXAMPLE 2

 Our second example is more general, applies to any type of firm producing any good with any types of inputs.

EXAMPLE 2: Costs

Q	FC	VC	TC
0	\$100	\$0	\$100
1	100	70	170
2	100	120	220
3	100	160	260
4	100	210	310
5	100	280	380
6	100	380	480
7	100	520	620

EXAMPLE 2: Marginal Cost

Q	TC	MC
0	\$100	
1	170	\$70
		50
2	220	40
3	260	5 0
4	310	50
5	380	70
		100
6	480	140
7	620	

EXAMPLE 2: Average Fixed Cost

Q	FC	AFC
0	\$100	n/a
1	100	\$100
2	100	50
3	100	33.33
4	100	25
5	100	20
6	100	16.67
7	100	14.29

EXAMPLE 2: Average Variable Cost

Q	VC	AVC
0	\$0	n/a
1	70	\$70
2	120	60
3	160	53.33
4	210	52.50
5	280	56.00
6	380	63.33
7	520	74.29

EXAMPLE 2: Average Total Cost

Q	TC	ATC	AFC	AVC
0	\$100	n/a	n/a	n/a
1	170	\$170	\$100	\$70
2	220	110	50	60
3	260	86.67	33.33	53.33
4	310	77.50	25	52.50
5	380	76	20	56.00
6	480	80	16.67	63.33
7	620	88.57	14.29	74.29

Average total cost (ATC) equals total cost divided by the quantity of output:

$$ATC = TC/Q$$

Also,

$$ATC = AFC + AVC$$

EXAMPLE 2: Average Total Cost

Q	TC	ATC
0	\$100	n/a
1	170	\$170
2	220	110
3	260	86.67
4	310	77.50
5	380	76
6	480	80
7	620	88.57

EXAMPLE 2: The Various Cost Curves Together

ACTIVE LEARNING 3 Calculating costs

Fill in the blank spaces of this table.

Q	VC	TC	AFC	AVC	ATC	MC
0		\$50	n/a	n/a	n/a	\$10
1	10			\$10	\$60.00	ΨΙΟ
2	30	80				30
3			16.67	20	36.67	30
4	100	150	12.50		37.50	
5	150			30		60
6	210	260	8.33	35	43.33	60

ACTIVE LEARNING 3

Answers

First, deduce FC = \$50 and use FC + VC = TC.

Q	VC	TC	AFC	AVC	ATC	MC
0	\$0	\$50	n/a	n/a	n/a	\$10
1	10	60	\$50.00	\$10	\$60.00	20
2	30	80	25.00	15	40.00	30
3	60	110	16.67	20	36.67	40
4	100	150	12.50	25	37.50	50
5	150	200	10.00	30	40.00	60
6	210	260	8.33	35	43.33	////////

EXAMPLE 2: Why ATC Is Usually U-Shaped

As Q rises:

Initially, falling *AFC* pulls *ATC* down.

Eventually, rising *AVC* pulls *ATC* up.

Efficient scale:

The quantity that minimizes ATC.

EXAMPLE 2: ATC and MC

When *MC* < *ATC*, *ATC* is falling.

When MC > ATC, ATC is rising.

The MC curve crosses the ATC curve at the ATC curve's minimum.

Costs in the Short Run & Long Run

- Short run:
 Some inputs are fixed (e.g., factories, land).
 The costs of these inputs are FC.
- Long run:
 All inputs are variable
 (e.g., firms can build more factories, or sell existing ones).
- In the long run, ATC at any Q is cost per unit using the most efficient mix of inputs for that Q (e.g., the factory size with the lowest ATC).

EXAMPLE 3: LRATC with 3 factory sizes

Firm can choose from three factory sizes: **S**, **M**, **L**.

Avg Total Cost

Each size has its own *SRATC* curve.

The firm can change to a different factory size in the long run, but not in the short run.

EXAMPLE 3: LRATC with 3 factory sizes

To produce less than Q_A , firm will choose size S in the long run.

To produce between \mathbf{Q}_{A} and \mathbf{Q}_{B} , firm will choose size \mathbf{M} in the long run.

To produce more than Q_B , firm will choose size L in the long run.

A Typical LRATC Curve

In the real world, factories come in many sizes, each with its own *SRATC* curve.

So a typical LRATC curve looks like this:

How ATC Changes as the Scale of Production Changes

Economies of scale: *ATC* falls as **Q** increases.

Constant returns to scale: ATC stays the same as **Q** increases.

Diseconomies of scale: *ATC* rises as **Q** increases.

How ATC Changes as the Scale of Production Changes

- Economies of scale occur when increasing production allows greater specialization: workers more efficient when focusing on a narrow task.
 - More common when Q is low.
- Diseconomies of scale are due to coordination problems in large organizations.
 E.g., management becomes stretched, can't control costs.
 - More common when Q is high.

CONCLUSION

- Costs are critically important to many business decisions, including production, pricing, and hiring.
- This chapter has introduced the various cost concepts.
- The following chapters will show how firms use these concepts to maximize profits in various market structures.

- Implicit costs do not involve a cash outlay, yet are just as important as explicit costs to firms' decisions.
- Accounting profit is revenue minus explicit costs.
 Economic profit is revenue minus total (explicit + implicit) costs.
- The production function shows the relationship between output and inputs.

- The marginal product of labor is the increase in output from a one-unit increase in labor, holding other inputs constant. The marginal products of other inputs are defined similarly.
- Marginal product usually diminishes as the input increases. Thus, as output rises, the production function becomes flatter, and the total cost curve becomes steeper.
- Variable costs vary with output; fixed costs do not.

- Marginal cost is the increase in total cost from an extra unit of production. The MC curve is usually upward-sloping.
- Average variable cost is variable cost divided by output.
- Average fixed cost is fixed cost divided by output. AFC always falls as output increases.
- Average total cost (sometimes called "cost per unit") is total cost divided by the quantity of output. The ATC curve is usually U-shaped.

- The MC curve intersects the ATC curve at minimum average total cost.
 When MC < ATC, ATC falls as Q rises.
 When MC > ATC, ATC rises as Q rises.
- In the long run, all costs are variable.
- Economies of scale: ATC falls as Q rises.
 Diseconomies of scale: ATC rises as Q rises.
 Constant returns to scale: ATC remains constant as Q rises.