Codes

April 18, 2024

Import libraries

```
[112]: import torch
       import torch.nn as nn
       import torch.nn.functional as F
       from torch.utils.data import TensorDataset
       import torch.optim as optim
       from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau
       import pandas as pd
       import os
       import numpy as np
       import datetime
       import scipy
       import seaborn as sns
       import sys
       from collections import Counter
       import matplotlib.pyplot as plt
       import matplotlib.dates as mdates
       from sklearn.utils import shuffle
       from imblearn.over_sampling import SMOTE
       from imblearn.combine import SMOTETomek, SMOTEENN
       from sklearn.utils import resample
       from sklearn.preprocessing import StandardScaler, MinMaxScaler, LabelEncoder, L
        →OneHotEncoder, OrdinalEncoder
       from sklearn.metrics import classification_report
       from sklearn.metrics import confusion_matrix
       from sklearn.metrics import multilabel_confusion_matrix
       from sklearn.metrics import f1_score, accuracy_score
       from sklearn.svm import SVC
       from sklearn.pipeline import Pipeline
       from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
       from sklearn.model_selection import train_test_split
       from sklearn.model_selection import StratifiedKFold
       from sklearn.decomposition import PCA
       from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
```

```
import joblib
       from sklearn.utils.class_weight import compute_class_weight
       from skorch import NeuralNetClassifier
       from skorch.callbacks import EarlyStopping, LRScheduler, Checkpoint
       from skorch.helper import predefined_split
       from skorch.dataset import Dataset
       from skorch.callbacks import EpochScoring
       from sklearn.metrics import RocCurveDisplay
       from itertools import cycle
       from sklearn.preprocessing import LabelBinarizer
       from sklearn.metrics import auc, roc_curve
       %load_ext autotime
      time: 16 ms (started: 2024-04-03 10:53:05 +01:00)
 []: # Set random seed
       np.random.seed(42)
       torch.manual_seed(42)
 []: if torch.cuda.is_available():
           device = torch.device("cuda")
       else:
           device = torch.device("cpu")
       print(device)
      Functions and Tools
 []: def get_timestamp():
               Get current timestamp
           return datetime.datetime.now().strftime("%Y%m%dT%H%M%S")
[116]: def _import_data(path, validation_size=None):
               Import source data
           # Read source files
           df = pd.read_csv(f'source/mitbih_{path}.csv', header=None)
           # Extract data, and labels
           X = df.iloc[:, :-1].values
           y = df.iloc[:, -1].values.astype('int64')
```

```
# Split into validation set, if needed
           if validation size:
               X1, X2, y1, y2 = train_test_split(X, y, test_size=validation_size, ___
        →random_state=42)
               return X1, y1, X2, y2
           else:
               return X, y
      time: 0 ns (started: 2024-04-03 10:53:05 +01:00)
[117]: def _gaussian_noise(X_train):
               Add noise to dataset
           noise = np.random.normal(loc=0, scale=0.03, size=X_train.shape)
           return X_train + noise
      time: 16 ms (started: 2024-04-03 10:53:06 +01:00)
[118]: def _balancing(X, y, num_sample):
               Balancing data with specific number of records
           11 II II
           # Get records count
           label, count = np.unique(y, return_counts=True)
           X_balanced = []
           y_balanced = []
           for lbl, cnt in zip(label, count):
               X_filter = X[y==1b1]
               y_filter = y[y==lbl]
               # Downsampling if data exceeds desire number
               if cnt > num_sample:
                   X_filter, y_filter = resample(X_filter, y_filter,
                                                  replace=False,
                                                  n_samples=num_sample,
                                                  random_state=42)
               # Otherwise, upsampling with bootstrap
               elif cnt < num_sample:</pre>
```

X_filter, y_filter = resample(X_filter, y_filter,

time: 0 ns (started: 2024-04-03 10:53:06 +01:00)

```
[2]: def _roc_curve(y_true, y_pred):
         11 11 11
         Generate ROC curve
         Code for generating ROC curve obtained from documentation :
         https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
         # Convert true labels to one-hot encoding
         y_true = LabelBinarizer().fit_transform(y_true)
         # Define the number of classes
         n_{classes} = 5
         class_labels = {0: 'N', 1: 'S', 2: 'V', 3: 'F', 4: 'Q'}
         # Define colors for each class
         colors = cycle(["aqua", "darkorange", "cornflowerblue", "olive", "maroon"])
         # Initialize dictionaries to store fpr, tpr, and roc_auc for each class
         fpr, tpr, roc_auc = dict(), dict(), dict()
         # Compute micro-average ROC
         fpr["micro"], tpr["micro"], _ = roc_curve(y_true.ravel(), y_pred.ravel())
         roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
```

```
# Compute macro-average ROC
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_true[:, i], y_pred[:, i])
   roc_auc[i] = auc(fpr[i], tpr[i])
fpr_grid = np.linspace(0.0, 1.0, 1000)
# Interpolate all ROC curves at these points
mean_tpr = np.zeros_like(fpr_grid)
for i in range(n_classes):
    mean_tpr += np.interp(fpr_grid, fpr[i], tpr[i]) # linear interpolation
# Average interpolated TPRs and compute macro AUC
mean_tpr /= n_classes
fpr["macro"] = fpr_grid
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
fig, ax = plt.subplots()
# Set the figure size
fig.set_size_inches(8, 6)
# Plot micro-average ROC curve
plt.plot(
   fpr["micro"],
   tpr["micro"],
   label=f"micro-average ROC curve (AUC = {roc_auc['micro']:.2f})",
    color="deeppink",
   linestyle=":",
   linewidth=4,
)
# Plot macro-average ROC curve
plt.plot(
   fpr["macro"],
   tpr["macro"],
   label=f"macro-average ROC curve (AUC = {roc_auc['macro']:.2f})",
    color="navy",
   linestyle=":",
   linewidth=4,
)
# Plot individual ROC curves for each class
for class_id, color in zip(range(n_classes), colors):
    RocCurveDisplay.from_predictions(
```

```
y_true[:, class_id],
    y_pred[:, class_id],
    name=f"ROC curve for Class {class_labels[class_id]}",
    color=color,
    ax=ax,
)

# Set plot labels and title
ax.set(
    xlabel="False Positive Rate",
    ylabel="True Positive Rate",
    title=" Receiver Operation Curve",
)

plt.legend()
plt.show()
```

```
[]: def _get_confusion_matrix(y_true, y_pred, title=None):
             Generate confusion matrix
         11 11 11
         cm = confusion_matrix(y_true, y_pred)
         class_labels = ['N', 'S', 'V', 'F', 'Q']
         # Calculate counts for each class
         class_totals = cm.sum(axis=1)
         # Calculate percentage for each class
         cm_percent = (cm.T / class_totals).T * 100
         plt.figure(figsize=(6, 6))
         # Plot confusion matrix with heatmap
         sns.heatmap(cm_percent, annot=False, cmap="Blues", fmt='d',__
      -xticklabels=class_labels, yticklabels=class_labels, cbar=False,__
      →linewidths=1, linecolor='white')
         # Annotate with total predictions
         for i in range(len(class_labels)):
             for j in range(len(class_labels)):
                 # Annotations for count
                 plt.text(j + 0.5, i + 0.6, f'{cm[i, j]}', ha='center', va='center',
      ⇔color='black', fontsize=8)
                 # Annotations for percentage
```

```
plt.text(j + 0.5, i + 0.4, f'{cm_percent[i, j]:.2f}%', ha='center',
va='center', color='black', fontsize=8)

plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title(title)
plt.grid(False)
plt.show()
```

Models and Pipelines

```
CNN
```

```
model.to(device)

# Set model to evaluation mode
model.eval()

return model
```

```
[134]: | def _evaluate_cnn(cnn, fn, subset='test', roc_curve=True):
               Evaluate CNN model
               Params:
                   cnn - Model Class (CNN or ResCNN)
                   fn - Filename of model to be evaluated
                   subset - Subset of source data to be evaluated (train, validation, ⊔
        \hookrightarrow test)
                   roc_curve - Whether to show ROC curve
           HHHH
           # Load model
           model = _load_cnn_model(cnn, fn)
           if subset == 'test':
               # Load data
               X_test, y_test = _import_data('test')
               # Preprocess data
               X, y = _preprocess(X_test, y_test)
           else:
               # Load data
               X_train, y_train, X_val, y_val = _import_data('train',_
        ⇔validation_size=0.2)
               if subset == 'train':
                   X, y = _preprocess(X_train, y_train)
               else:
                   X, y = _preprocess(X_val, y_val)
           start = datetime.datetime.now()
```

```
# Evaluate, and predict with probability
with torch.no_grad():
    outputs = model(X)

end = datetime.datetime.now()
print(f"Predicting time: {end-start}")

# Get predicted labels with highest probability
_, y_pred = torch.max(outputs, 1)

# Get classification report
_get_report(y.cpu(), y_pred.cpu())

# Generate confusion matric
_get_confusion_matrix(y.cpu(), y_pred.cpu())

if roc_curve:
    # Plot ROC curve
_roc_curve(y.detach().cpu().numpy(), outputs.detach().cpu().numpy())
```

time: 0 ns (started: 2024-04-03 10:53:30 +01:00)

```
[137]: def _callbacks(earlystop_patience=10, lr_scheduler=None, checkpoint=True):
    """

    Define callbacks for model training
    """

# Earlystopping to prevent overfitting, by stop training when validation_
    sloss does not improve more than threshold
```

```
early_stop = EarlyStopping(monitor='valid_loss',_
  →patience=earlystop_patience)
    # Model checkpoint to continuosly save best model, with the focus on best,
 ⇔validation loss
    model_path = f'models/cnn/{get_timestamp()}.pth'
    checkpoint = Checkpoint(
        f_params=model_path,
        monitor='valid_loss_best',
        f_optimizer=None,
        f_history=None,
        f criterion=None
    # Define callback to compute and log training accuracy
    train_acc = EpochScoring(scoring='accuracy', name='train_acc',__
  →on train=True)
    if checkpoint:
        return [early_stop, lr_scheduler, checkpoint, train_acc]
    else:
        return [early_stop, lr_scheduler, train_acc]
time: 0 ns (started: 2024-04-03 10:53:30 +01:00)
  ⇔scoring='f1_macro'):
    11 11 11
        Perform paremeter tuning with stratify k-fold cross validation
```

```
[141]: def _plot_history(history):
    """
        Plot training and validation loss/accuracy over epochs
    """

fig, axs = plt.subplots(1, 2, figsize=(10, 4))

axs[0].plot(history[:, 'train_loss'], label='Training')
```

```
axs[0].plot(history[:, 'valid_loss'], label='Validation')
axs[0].set_xlabel('Epoch')
axs[0].set_ylabel('Loss')
axs[0].legend()

axs[1].plot(history[:, 'train_acc'], label='Training')
axs[1].plot(history[:, 'valid_acc'], label='Validation')
axs[1].set_xlabel('Epoch')
axs[1].set_ylabel('Accuracy')
axs[1].legend()

plt.tight_layout()
plt.show()
```

time: 0 ns (started: 2024-04-03 10:53:30 +01:00)

```
[142]: def _preprocess(X, y, balance=False, noise=False):
           11 11 11
           Preprocess data with optional balancing and augmentation,
           then convert to tensor dataset and move to CUDA (if available)
           11 11 11
           # Balance data if specified
           if balance:
               X, y = balancing(X, y, balance)
           # Add noise for augmentation if specified
           if noise:
               X = _gaussian_noise(X)
           # Convert data to tensor dataset
           X, y = _convert_to_tensor(X, y)
           # Move data to CUDA device if available
           X, y = X.to(device), y.to(device)
           return X, y
```

```
Params:
           cnn - Model Class (CNN or ResCNN)
           param\_grid - Dictionary of parameters to be selected through_{\sqcup}
\neg qridsearch process
           earlystop_patience - Early stopping threshold
           checkpoint - Whether to enable checkpoint to continuously save best_{\sqcup}
→model during training
           balance - Whether to balance dataset or not
           noise - Whether to add noise to dataset or not
   11 11 11
  # Import training data, and filter out validation set
  X_train, y_train, X_val, y_val = _import_data('train', validation_size=0.2)
  # Preproces train and validation set
  X_train, y_train = _preprocess(X_train, y_train, balance=balance,_u
⊶noise=noise)
   # Define scheduler to adjust learning rate during training
  lr_scheduler = LRScheduler(policy='ReduceLROnPlateau', mode='min',_
→patience=5, factor=0.5, verbose=True)
   # Define callbacks for earlystopping and learning rate scheduler
  callbacks = _callbacks(earlystop_patience=earlystop_patience,_
→lr_scheduler=lr_scheduler)
  # Initialize CNN model
  model = _initilise_cnn(cnn, callbacks=callbacks, optimizer=optim.SGD,_u
⇔optimizer__momentum=0.9,
                          optimizer__weight_decay=0.0001, lr=0.05, **kwargs)
  model.initialize()
  # Move to cuda (if available)
  model.module_.to(device)
  # Perform gridsearch cross-validation
  grid_result = _gridsearchcv(X_train, y_train, model, param_grid, cv=5)
  # Get best params and scores
  best_params = grid_result.best_params_
  best_score = grid_result.best_score_
  print("Best score: %f with %s" % (best_score, best_params))
```

return best_params

```
[140]: def cnn pipeline with best param(cnn, params, earlystop patience=10,
                                          checkpoint=True, class_weight=False,_
        ⇔balance=False,
                                          noise=False, fn=None, optimizer=None,
        ⇒lr_scheduler=None):
           11 11 11
               Encapsulated CNN pipeline for training model with best parameters
               Params:
                    cnn - Model Class (CNN or ResCNN)
                   params - Dictionary of best parameters obtained from parameter ⊔
        \hookrightarrow selection process
                    earlystop_patience - Early stopping threshold
                    checkpoint - Whether to enable checkpoint to continuously save best_{\sqcup}
        ⇔model during training
                    balance - Whether to balance dataset or not
                    noise - Whether to add noise to dataset or not
                   fn - Customized filename of final model will be saved to
                   optimizer - Whether to use default optimizer settings, or manually \Box
        \hookrightarrow passes
                   lr_scheduler - Learning rate scheduler
           11 11 11
           # Import train and validation set
           X_train, y_train, X_val, y_val = _import_data('train', validation_size=0.2)
           # Compute class weight with class frequency to handle class imbalanced
           weights = torch.tensor(compute_class_weight('balanced',
                                                 classes=np.unique(y_train),
                                                 y=y_train.flatten()), dtype=torch.float)
           # Preprocess train and validation set
           X_train, y_train = _preprocess(X_train, y_train, balance=balance,_
        →noise=noise)
           X_val, y_val = _preprocess(X_val, y_val, balance=balance, noise=noise)
           # Define scheduler to adjust learning rate during training
           if lr_scheduler is None:
```

```
lr_scheduler = LRScheduler(policy='ReduceLROnPlateau', mode='min',_
→patience=5, factor=0.5, verbose=True)
  # Define callbacks
  callbacks = callbacks(earlystop patience=earlystop patience,
→lr_scheduler=lr_scheduler, checkpoint=checkpoint)
   # Initialize CNN model
  if optimizer is None:
      if class_weight:
           model = _initilise_cnn(cnn, callbacks=callbacks,__

¬train_split=predefined_split(Dataset(X_val, y_val)),
                                  criterion__weight=weights, optimizer=optim.
SGD, optimizer_momentum=0.9, optimizer_weight_decay=0.0001, lr=0.
\hookrightarrow 05, **params)
      else:
           model = _initilise_cnn(cnn, callbacks=callbacks,__
→train_split=predefined_split(Dataset(X_val, y_val)),
                                  optimizer=optim.SGD, optimizer__momentum= 0.
→9, optimizer__weight_decay=0.0001, lr=0.05,**params)
  # To train model with replicate structure from reference paper
  else:
      model = _initilise_cnn(cnn, callbacks=callbacks,__
→criterion_weight=weights, train_split=predefined_split(Dataset(X_val,_

y_val)), **params)

  model.initialize()
  # Move model to cuda if available
  model.module_.to(device)
  # Train model
  model.fit(X train, y train)
  # Get model prediction on train set
  y_pred = model.predict(X_train)
  # Generate classification report for train set
  _get_report(y_train.cpu().numpy(), y_pred)
  # Get model prediction on validation set
  y_pred = model.predict(X_val)
```

```
# Generate classification report for validation set
    _get_report(y_val.cpu().numpy(), y_pred)

# Plot learning graph through epochs, with accuracy and loss of train and_
=validation set
    _plot_history(model.history)

# Save final models
if not fn:
    fn = get_timestamp()

fp = f'models/cnn/{fn}.pth'
torch.save(model.module_.state_dict(), fp)

print(f"Best model saved to {fp}")

return model
```

time: 0 ns (started: 2024-04-03 10:53:30 +01:00)

```
[]: class ConvBlock(nn.Module):
             Convolutional block for a layer of convolution followed by batch_
      ⇔normalization, activation, and max pooling
         11 11 11
         def __init__(self, inputs, outputs, activation=nn.GELU, kernel_size=3,
                      padding='same', pool_kernel=3, pool_stride=2):
             super().__init__()
             # Define convolutional layer
             self.conv = nn.Conv1d(inputs, outputs, kernel_size=kernel_size,__
      →padding=padding)
             # Batch normalization
             self.bn = nn.BatchNorm1d(outputs)
             # Activation function
             self.activation = activation()
             # Max pooling
             self.maxpool = nn.MaxPool1d(kernel_size=pool_kernel, stride=pool_stride)
         def forward(self, x):
```

```
# Forward through convolution, batch normalization, activation, and max_
 →pooling
        x = self.activation(self.bn(self.conv(x)))
        x = self.maxpool(x)
        return x
class CNN(nn.Module):
        Convolutional Neural Network model with multiple ConvBlocks followed by \Box
 ⇔fully connected layers
    n n n
    def __init__(self, neurons=128, activation=nn.GELU, dropout=0.3):
        super().__init__()
        # Convolutional layers
        self.conv1 = ConvBlock(1, 32, activation=activation)
        self.conv2 = ConvBlock(32, 64, activation=activation)
        self.conv3 = ConvBlock(64, 128, activation=activation)
        self.conv4 = ConvBlock(128, 256, activation=activation)
        self.conv5 = ConvBlock(256, 512, activation=activation)
        # Adaptive max pooling
        self.pool = nn.AdaptiveMaxPool1d(1)
        # Activation function
        self.activation = activation()
        # Fully connected layer
        self.fc1 = nn.Linear(512, neurons)
        # Batch normalization
        self.bn = nn.BatchNorm1d(neurons)
        # Dropout layer
        self.dropout = nn.Dropout(dropout)
        # Output layer with 5 classes
        self.fc2 = nn.Linear(neurons, 5)
        self.softmax = nn.Softmax(dim=1)
    def forward(self, x):
        # Forward through convolutional layers
        x = self.conv1(x)
```

```
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)

# Adaptive max pooling
x = self.pool(x)

# Flatten before passing to fully connected layers
x = torch.flatten(x, 1)

# Fully connected layers
x = self.activation(self.bn(self.fc1(x)))
x = self.dropout(x)
x = self.fc2(x)
x = self.softmax(x)
```

```
[]: class ResidualBlock(nn.Module):
             Residual block for a layer of convolution followed by activation and \Box
      →max pooling.
             This structure is aimed to replicate the models done by M. Kachuee et_{\sqcup}
      \hookrightarrow al.
             Further details will be described in glossary.
         11 11 11
         def __init__(self, in_channels, out_channels, kernel_size=5, stride=1,__
      →padding='same', activation=nn.ReLU):
             super().__init__()
             # Define convolutional layers
             self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size, stride,__
      →padding)
             self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size, stride,_
      →padding)
             # Activation function
             self.activation = activation()
             # Max pooling layer
             self.maxpool = nn.MaxPool1d(kernel_size=5, stride=2)
         def forward(self, x):
             # Store the residual
```

```
residual = x
        # Forward through the first convolutional layer and activation
        out = self.conv1(x)
        out = self.activation(out)
        # Forward through the second convolutional layer
        out = self.conv2(out)
        # Add residual to output
        out += residual
        # Apply activation to output
        out = self.activation(out)
        # Apply max pooling
        out = self.maxpool(out)
        return out
class ResCNN(nn.Module):
    11 11 11
        Residual Convolutional Neural Network model with multiple_
 →ResidualBlocks followed by fully connected layers
    11 11 11
    def __init__(self, activation=nn.ReLU):
        super().__init__()
        # Define the initial convolutional layer
        self.conv1 = nn.Conv1d(1, 32, kernel_size=5, stride=1)
        # Define the sequence of residual blocks
        self.res_blocks = nn.Sequential(
            ResidualBlock(32, 32, activation=activation),
            ResidualBlock(32, 32, activation=activation),
            ResidualBlock(32, 32, activation=activation),
            ResidualBlock(32, 32, activation=activation),
            ResidualBlock(32, 32, activation=activation)
        )
        # Flatten layer
        self.flatten = nn.Flatten()
        # Activation function
        self.activation = activation()
```

```
# Fully connected layers
    self.fc1 = nn.Linear(64, 32)
    self.fc2 = nn.Linear(32, 32)
    self.fc3 = nn.Linear(32, 5)
def forward(self, x):
    # Forward through the initial convolutional layer
    x = self.conv1(x)
    # Forward through the sequence of residual blocks
    x = self.res_blocks(x)
    # Flatten the output
    x = self.flatten(x)
    # Fully connected layers
    x = self.fc1(x)
    x = self.activation(x)
    x = self.fc2(x)
    # Softmax activation for multiclass classification
    x = F.softmax(self.fc3(x), dim=1)
    return x
```

SVM

```
[17]: def _svm_pipeline(balanced_sample=None, dimredc=None,
                              n_components=None, n_folds=5, class_weight=None,
                              decision_function_shape='ovr', model_fn=None,
                              max_iter=-1):
           11 11 11
               Encapsulated SVM pipeline to import data, preproces,
               hyper paramater tuning, and training model
              Params:
                   balanced_sample - Number of records after balancing
                   dimredc - Feature reduction type (PCA, LDA)
                   n\_components - Number of components will be retained after\sqcup
       \hookrightarrow transformation
                   n\_folds - Number of subsets that the dataset will be divided for \sqcup
       \hookrightarrow cross-validation
                   class_weight - Whether to apply class weights or not
                   decision_function_shape - Shape of the decision function (ovo, ovr)
                   model\_fn - Filename of final model
```

```
max_iter - Maximum number of iteration
  11 II II
  # Import train data
  X_train, y_train = _import_data('train')
  # Balance data if specific
  if balanced sample:
      X_train, y_train = _balancing(X_train, y_train, balanced_sample)
  print(np.unique(y_train, return_counts=True))
  # Feature reduction if specific
  steps = []
  if dimredc == 'pca':
      steps.append(('pca', PCA(n_components=n_components)))
  elif dimredc == 'lda':
      steps.append(('lda', __
→LinearDiscriminantAnalysis(n_components=n_components)))
  # Initialize SVM model
  steps.append(('svm', SVC(decision_function_shape=decision_function_shape,
                            max_iter=max_iter,
                            verbose=1,
                            class_weight=class_weight)))
  pipeline = Pipeline(steps)
  # Perform stratified gridsearch cross validation
  grid_search = GridSearchCV(pipeline, params,__
cv=StratifiedKFold(n_splits=n_folds), n_jobs=-1, scoring='f1_macro')
  grid_search.fit(X_train, y_train)
  # Get best parameters
  print("Best Parameters:", grid_search.best_params_)
  # Define final model with best paramaters
  best_model = grid_search.best_estimator_
  # Save best model for further evaluation
  if model_fn:
      model_fp = f'models/svm/{model_fn}.pkl'
      model_fp = f'models/svm/{get_timestamp()}.pkl'
  joblib.dump(best_model, model_fp)
  print(f"Model saved to {model_fp}")
```

```
# Predict on train set, with classification report
y_pred = best_model.predict(X_train)
_get_report(y_train, y_pred)
```

time: 0 ns (started: 2024-03-27 13:59:12 +00:00)

```
[]: def _evaluate_svm(fn, subset='test', roc_curve=True):
             Evaluate SVM model
             Params:
                 fn - Filename of model to be evaluated
                 subset - Subset of source data to be evaluated (train, validation, ⊔
      \hookrightarrow test)
                 roc_curve - Whether to show ROC curve
         n n n
         if subset == 'test':
             # Load data
             X, y = _import_data('test')
         else:
             X, y = _import_data('train')
         # Load best model
         model = joblib.load(f"models/svm/{fn}.pkl")
         start = datetime.datetime.now()
         # Evaluate, and predict
         y_pred = model.predict(X)
         end = datetime.datetime.now()
         print(f"Predicting time: {end-start}")
         # Get classification report
         _get_report(y, y_pred)
         # Generate confusion matric
         _get_confusion_matrix(y, y_pred)
         if roc_curve:
```

```
# Evaluate, and predict with probability
y_prob_test = model.predict_proba(X)

# Plot ROC curve
_roc_curve(y, y_prob_test)
```

1 Set up

```
[]: %run "tools.ipynb"
```

cuda

time: 109 ms (started: 2024-04-16 12:11:18 +01:00)

2 EDA

```
[]: train_df = pd.read_csv('source/mitbih_train.csv', header=None)
  test_df = pd.read_csv('source/mitbih_test.csv', header=None)

if (train_df.isnull().sum().sum()) == 0:
    print('No missing value in training set!')

if (test_df.isnull().sum().sum()) == 0:
    print('No missing value in test set!')
```

No missing value in training set!

No missing value in test set!

time: 6.3 s (started: 2024-04-12 20:31:13 +01:00)

[]: train_df.describe()

	0	1	2	3	4	\
count	87554.000000	87554.000000	87554.000000	87554.000000	87554.000000	
mean	0.890360	0.758160	0.423972	0.219104	0.201127	
std	0.240909	0.221813	0.227305	0.206878	0.177058	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.921922	0.682486	0.250969	0.048458	0.082329	
50%	0.991342	0.826013	0.429472	0.166000	0.147878	
75%	1.000000	0.910506	0.578767	0.341727	0.258993	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
	5	6	7	8	9	\
count	87554.000000	87554.000000	87554.000000	87554.000000	87554.000000	
mean	0.210399	0.205808	0.201773	0.198691	0.196757	
std	0.171909	0.178481	0.177240	0.171778	0.168357	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.088416	0.073333	0.066116	0.065000	0.068639	
50%	0.158798	0.145324	0.144424	0.150000	0.148734	

```
75%
                0.287628
                              0.298237
                                             0.295391
                                                            0.290832
                                                                           0.283636
                                                                           1.000000
    max
                1.000000
                               1.000000
                                             1.000000
                                                            1.000000
                        178
                                       179
                                                                          \
                                                      180
                                                                     181
                                            87554.000000
                                                           87554.000000
    count
               87554.000000
                             87554.000000
                   0.005025
                                  0.004628
                                                0.004291
                                                               0.003945
    mean
    std
                   0.044154
                                  0.042089
                                                 0.040525
                                                               0.038651
    min
                   0.000000
                                  0.000000
                                                0.000000
                                                               0.000000
    25%
                   0.000000
                                  0.00000
                                                0.000000
                                                               0.00000
    50%
                   0.000000
                                  0.000000
                                                 0.000000
                                                               0.00000
    75%
                   0.000000
                                  0.000000
                                                 0.000000
                                                               0.00000
                                  1.000000
                                                 1.000000
                                                               1.000000
    max
                   1.000000
                     182
                                    183
                                                   184
                                                                 185
                                                                                186 \
    count
            87554.000000
                          87554.000000
                                         87554.000000
                                                        87554.000000
                                                                       87554.000000
                0.003681
                              0.003471
                                             0.003221
                                                            0.002945
                                                                           0.002807
    mean
                0.037193
                              0.036255
                                             0.034789
                                                            0.032865
                                                                           0.031924
    std
                0.000000
                              0.000000
                                             0.000000
                                                            0.000000
                                                                           0.00000
    min
    25%
                0.000000
                              0.000000
                                             0.000000
                                                            0.000000
                                                                           0.00000
    50%
                0.000000
                              0.000000
                                             0.000000
                                                            0.000000
                                                                           0.000000
    75%
                0.000000
                              0.000000
                                             0.000000
                                                            0.000000
                                                                           0.000000
                1.000000
                              1.000000
                                              1.000000
                                                            1.000000
                                                                           1.000000
    max
                     187
           87554.000000
    count
                0.473376
    mean
    std
                1.143184
    min
                0.000000
    25%
                0.000000
    50%
                0.000000
    75%
                0.000000
                4.000000
    max
    [8 rows x 188 columns]
    time: 1.16 s (started: 2024-04-12 20:31:19 +01:00)
[]: X_train, y_train = _import_data('train')
     X_test, y_test = _import_data('test')
    time: 5.89 s (started: 2024-04-16 12:11:18 +01:00)
[]: y_train.shape
    (87554,)
    time: 16 ms (started: 2024-04-16 12:11:24 +01:00)
    y_test.shape
```

```
(21892,)
    time: 15 ms (started: 2024-04-16 12:11:29 +01:00)
[]: # Create subplot
     fig, ax = plt.subplots(figsize=(8, 5))
     # Get class counts for training and test sets
     classes, train_counts = np.unique(y_train, return_counts=True)
     test_counts = [np.sum(y_test == cls) for cls in classes]
     # Calculate total counts for each class
     total_counts = train_counts + test_counts
     # Set the width of the bars
     bar_width = 0.35
     # Plot the training set counts
     train_bars = ax.bar(classes - bar_width/2, train_counts, width=bar_width,_u
      ⇔color='steelblue', label='Training set')
     # Plot the test set counts
     test_bars = ax.bar(classes + bar_width/2, test_counts, width=bar_width,_u
      ⇔color='maroon', label='Test set')
     # Set labels and title
     ax.set_xlabel('Class')
     ax.set_ylabel('Counts')
     ax.set_title('Class Distribution')
     label_mapping = {'N': 0, 'S': 1, 'V': 2, 'F': 3, 'Q': 4}
     ax.set_xticks(list(label_mapping.values()), list(label_mapping.keys()))
     ax.legend()
     # Annotate the bars with percentage
     for bars, counts in zip([train_bars, test_bars], [train_counts, test_counts]):
         for bar, count in zip(bars, counts):
             height = bar.get_height()
             percentage = (count / len(y_train)) * 100 if bars == train_bars else__
      \hookrightarrow (count / len(y_test)) * 100
             ax.annotate(f'{percentage:.2f}%', xy=(bar.get_x() + bar.get_width() /u
      \Rightarrow2, height), xytext=(0, 3),
                         textcoords="offset points", ha='center', va='bottom')
     plt.show()
```


time: 312 ms (started: 2024-04-15 22:52:44 +01:00)

Dataset contains highly imbalanced class, with over 82% belong to majority class N, and less than 10% of other classes each. Also, train and test set have the same class distribution.

```
[]: # Create subplots
fig, axs = plt.subplots(5, 1, figsize=(10, 8), sharex=True)
axs = axs.flatten()

# Define colors for each class
label_colors = ['blue', 'orange', 'green', 'red', 'purple']

# Define label mapping
label_mapping = {0: "N", 1: "S", 2: "V", 3: "F", 4: "Q"}

# Store 1 sample per class
samples_per_class = []
for label in np.unique(y_train):
    X_lbl = X_train[y_train == label][10:]
    samples_per_class.append(X_lbl)

# Plot ECG signal for each class
for i, ax in enumerate(axs):
    sample = samples_per_class[i][0]
```


time: 1.03 s (started: 2024-04-15 22:55:52 +01:00)

Time series plot shows the different pattern in ECG signal among 5 distinct classes.

```
[]: # Extract each class
X_train_0 = X_train[y_train == 0]
X_train_1 = X_train[y_train == 1]
X_train_2 = X_train[y_train == 2]
X_train_3 = X_train[y_train == 3]
```

```
X_train_4 = X_train[y_train == 4]
# Filter out zero-padding
X_train_0 = X_train_0[X_train_0 > 0]
X_train_1 = X_train_1[X_train_1 > 0]
X_train_2 = X_train_2[X_train_2 > 0]
X_train_3 = X_train_3[X_train_3 > 0]
X_train_4 = X_train_4[X_train_4 > 0]
plt.figure(figsize=(12, 8))
# Plot histogram for each class to see data characteristics
plt.subplot(2, 3, 1)
plt.hist(X_train_0.flatten(), bins=50, color='blue', alpha=0.7)
plt.title('Class N')
plt.xlabel('ECG Signal Value')
plt.ylabel('Frequency')
plt.subplot(2, 3, 2)
plt.hist(X_train_1.flatten(), bins=50, color='orange', alpha=0.7)
plt.title('Class S')
plt.xlabel('ECG Signal Value')
plt.ylabel('Frequency')
plt.subplot(2, 3, 3)
plt.hist(X_train_2.flatten(), bins=50, color='green', alpha=0.7)
plt.title('Class V')
plt.xlabel('ECG Signal Value')
plt.ylabel('Frequency')
plt.subplot(2, 3, 4)
plt.hist(X_train_3.flatten(), bins=50, color='red', alpha=0.7)
plt.title('Class F')
plt.xlabel('ECG Signal Value')
plt.ylabel('Frequency')
plt.subplot(2, 3, 5)
plt.hist(X_train_4.flatten(), bins=50, color='purple', alpha=0.7)
plt.title('Class Q')
plt.xlabel('ECG Signal Value')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
```


time: 2.49 s (started: 2024-04-15 23:11:09 +01:00)

Histograms show the differences in data distribution among 5 classes

```
[]: # Create subplots
     fig, ax = plt.subplots(figsize=(10, 5))
     # Define label mapping
     label_mapping = {0: "N", 1: "S", 2: "V", 3: "F", 4: "Q"}
     # Define color for each class
     colors = ["blue", "orange", "green", "red", "purple"]
     # Plot signal of each class
     for label in np.unique(y_train):
         # Filter by each class
         X_lbl = X_train[y_train == label][:1]
         for sample in X_lbl:
             ax.plot(sample, color=colors[label], label=label_mapping[label], lw=0.8)
     # Define title and label
     ax.legend(title="Classes")
     ax.set_title("ECG Samples")
     ax.set_xlabel("Time")
```

```
ax.set_ylabel("Amplitude")
ax.grid(True)
plt.show()
```


time: 438 ms (started: 2024-04-15 23:14:09 +01:00)

```
[]: # Create subplots
     fig, ax = plt.subplots(figsize=(10, 5))
     # Define label mapping
     label_mapping = {0: "N", 1: "S", 2: "V", 3: "F", 4: "Q"}
     # Define color for each class
     colors = ["blue", "orange", "green", "red", "purple"]
     # Plot signal of each class
     for label in np.unique(y_train):
         # Filter by each class
         X_lbl = _gaussian_noise(X_train)[y_train == label][:1]
         for sample in X_lbl:
             ax.plot(sample, color=colors[label], label=label_mapping[label], lw=0.8)
     # Define title and label
     ax.legend(title="Classes")
     ax.set_title("ECG Samples with noise")
     ax.set_xlabel("Time")
```

```
ax.set_ylabel("Amplitude")
ax.grid(True)
plt.show()
```


time: 5.11 s (started: 2024-04-15 23:15:22 +01:00)

ECG signals before and after applied guassian noise for augmentation to make model more generalized to unseen data

3 CNN

3.0.1 Custom CNN

Parameters to be tuned through Gridserch on 5 folds cross validation

- Dropout rate
- Number of hidden neurons

```
[]: param_grid = {
    'module__dropout': [0.1, 0.2, 0.3, 0.4, 0.5],
    'module__neurons': [64, 128, 256]
}
```

time: 0 ns (started: 2024-04-15 23:27:54 +01:00)

				nce=False, noi	lse, noise=False)		
epoch dur	tra	ain_acc	train_loss	valid_acc	valid_loss	ср	lr
1		0.8539	1.1332	0.9439			
0.9902		0.0100					
2			0.9751	0.9569			
0.9620	+	0.0100	9.0220				
3		0.9601	0.9586	0.9622			
0.9516	+	0.0100	9.0153				
4		0.9648	0.9504	0.9655			
0.9459	+	0.0100	8.7229				
5		0.9674	0.9453	0.9676			
0.9424	+	0.0100	8.8085				
6		0.9693	0.9420	0.9694			
0.9401	+	0.0100	8.5856				
7		0.9713	0.9393	0.9709			
0.9381	+	0.0100	9.1406				
8		0.9731	0.9370	0.9720			
0.9364	+	0.0100	8.8585				
9		0.9747	0.9349	0.9737			
0.9349	+	0.0100	8.4018				
10			0.9331	0.9742			
0.9336	+	0.0100					
11			0.9315	0.9746			
0.9335	+	0.0030					
12			0.9310	0.9749			
0.9332	+		9.2522				
13			0.9306	0.9752			
0.9329	+		8.8847				
14		0.9786	0.9303	0.9754			
0.9326	+		8.6738				
15			0.9299	0.9758			
0.9324	+		8.9361				
16		0.9793		0.9758	0.9320		
	9.3	3220		2.2.00			
17			0.9292	0.9760			
0.9318	+		9.5151				
18			0.9289	0.9764			
0.9316	+		9.5317	0.0,01			
19			0.9285	0.9768			
0.9314	+		9.7765	3.0.00			
20			0.9282	0.9772			
0.9311	+		9.3587	0.0112			
21	-		0.9278	0.9768	0.9311		
+ 0.0009	8 0		0.0210	0.0100	0.0011		
. 0.0003	0.3	,,,,,,					

		0.9809	0.9278	0.9769	0.9310	
+		9.3320				
			0.9277	0.9770	0.9310	
+		9.2943				
		0.9812	0.9276	0.9771	0.9309	
+	0.0009					
			0.9274	0.9770	0.9308	
+	0.0009					
			0.9273	0.9772	0.9308	
+		8.7363				
			0.9273	0.9772	0.9307	+
0.		9048				
			0.9272	0.9772		
0.			9.0423			
			0.9271	0.9774		
0.	9305		9.2815			
	30		0.9271	0.9775		
0.	9305	+ 0.0009	9.2394			
	31	0.9819	0.9269	0.9774	0.9304	
+		9.6172				
	32	0.9819	0.9268	0.9775	0.9304	
+	0.0003	9.4173				
			0.9268	0.9777		
0.	9304	+ 0.0003	7.4128			
	34	0.9820	0.9268	0.9777	0.9304	
+	0.0003	7.2125				
	35	0.9821	0.9268	0.9777	0.9304	
+		7.1140				
	36	0.9822	0.9267	0.9778		
0.	9304	+ 0.0003	7.3040			
	37	0.9820	0.9267	0.9775	0.9303	+
0.	0003 7.	2956				
	38	0.9821	0.9267	0.9777	0.9303	
+	0.0003	7.7008				
	39	0.9820	0.9267	0.9777	0.9303	+
0.	0003 7.	0570				
	40	0.9822	0.9266	0.9777	0.9303	
+	0.0003	7.3041				
	41	0.9822	0.9265	0.9778	0.9303	
+	0.0001	7.1863				
	42	0.9822	0.9266	0.9778	0.9303	+
0.	0001 7.	3058				
	43	0.9822	0.9266	0.9779	0.9303	
+	0.0001	7.2984				
	44	0.9822	0.9266	0.9778	0.9303	0.0001
7.	2452					
	45	0.9824	0.9265	0.9779	0.9302	+
0.	0001 7.	2556				

```
46
             0.9823
                           0.9265
                                        0.9779
                                                      0.9302
+ 0.0001 7.3535
    47
             0.9822
                           0.9265
                                        0.9779
0.9302
          + 0.0001 7.5370
     48
             0.9822
                           0.9265
                                        0.9780
                                                      0.9302
 0.0001 7.2751
     49
             0.9821
                           0.9265
                                        0.9779
                                                      0.9302
0.0001 7.4848
                           0.9266
                                        0.9780
    50
             0.9823
                                                      0.9302
0.0001 7.0033
             0.9823
                           0.9265
    51
                                        0.9781
                                                      0.9302
+ 0.0000 7.0686
             0.9822
                           0.9265
                                        0.9781
                                                      0.9302
    52
 0.0000 7.2410
     53
             0.9823
                           0.9265
                                        0.9781
                                                      0.9302
0.0000 7.1883
    54
             0.9824
                           0.9265
                                        0.9781
                                                      0.9302
0.0000 7.3135
                                        0.9781
     55
             0.9824
                           0.9265
                                                      0.9302
0.0000 7.2605
                           0.9265
    56
             0.9822
                                        0.9781
                                                      0.9302
0.0000 7.4943
Stopping since valid_loss has not improved in the last 10 epochs.
Best score: 0.977442 with {'module_dropout': 0.1, 'module_neurons': 128}
time: 1d 9h 28min 15s (started: 2024-04-13 17:14:17 +01:00)
```

[]: print(best params)

{'module_dropout': 0.1, 'module_neurons': 128} time: 0 ns (started: 2024-04-15 10:35:15 +01:00)

Train model

[]: # Create final model with best parameter gained from grid search model = _cnn_pipeline_with_best_param(CNN, best_params, earlystop patience=15, checkpoint=True, class_weight=False, balance=False, u →noise=False)

Re-initializing module because the following parameters were re-set: dropout, neurons.

Re-initializing criterion.

Re-initializing optimizer.

C:\Users\kornk\anaconda3\envs\nn\lib\site-

packages\torch\optim\lr scheduler.py:28: UserWarning: The verbose parameter is deprecated. Please use get_last_lr() to access the learning rate.

warnings.warn("The verbose parameter is deprecated. Please use get_last_lr() "

epoch train_acc train_loss valid_acc valid_loss ср dur

1		0.9397	0.9689	0.9568		
0.9489	+	9.4336				
2		0.9567	0.9489	0.9588		
0.9469	+	9.1213				
3		0.9591	0.9462	0.9611		
0.9438	+	9.0853				
4		0.9705	0.9361	0.9716		
0.9338	+	9.3393	0.0000	0.0704	0.0045	
5		0.9736	0.9320	0.9701	0.9345	
9.3094		0.9751	0.9304	0 0722		
0.9315	_	10.3064	0.9304	0.9733		
7	т	0.9781	0.9278	0 0785		
0.9268	_	7.9249	0.9210	0.9765		
8	•	0.9807	0.9253	0 9788		
0.9265	+	9.5960	0.0200	0.5700		
9	•	0.9815	0.9243	0.9794		
0.9258	+	9.2702	0.0210	0.0101		
10		0.9826	0.9232	0.9816		
0.9235	+	9.0372	0.0202	0.0010		
11		0.9855	0.9202	0.9830		
	+	9.2424				
12		0.9862	0.9195	0.9818	0.9233	
9.4364						
13		0.9871	0.9185	0.9836		
0.9215						
14		0.9877	0.9179	0.9844		
0.9208	+	9.5733				
15		0.9882	0.9175	0.9857		
0.9195	+	9.7071				
16		0.9880	0.9175	0.9853	0.9200	9.0425
17		0.9886	0.9172	0.9846	0.9209	
9.1401						
18		0.9884	0.9172	0.9813	0.9242	
9.2926						
19		0.9891	0.9164	0.9855	0.9199	
8.7236						
20		0.9898	0.9158	0.9859		
0.9194	+	9.3346				
21		0.9901	0.9156	0.9854	0.9198	
9.5157						
22		0.9901	0.9155	0.9864		
0.9188	+	9.3885				
23		0.9901	0.9155	0.9862	0.9193	
9.5768						
24		0.9902	0.9153	0.9849	0.9203	
9.2868		0.0000	0.6:-:		0.0122	
25		0.9906	0.9151	0.9857	0.9198	

0.0404							
9.3491		0 0005	0.0454	0.0057	0.0004		
26		0.9905	0.9151	0.9857	0.9201		
9.2264							
27		0.9912	0.9145	0.9866			
0.9186	+	9.5265					
28		0.9918	0.9139	0.9874	0.9188		
9.5518							
29		0.9917	0.9139	0.9867	0.9186	+	
9.3035							
30		0.9919	0.9137	0.9853	0.9200		
9.2138							
31		0.9918	0.9137	0.9866	0.9188		
9.4149							
32		0.9915	0.9140	0.9882	0.9175		
+ 9.2845		0.0010	0.0110	0.0002	0.0110		
33		0.9927	0.9129	0.9873	0.9187		
9.1830		0.3321	0.9129	0.9013	0.9107		
		0 0007	0.0100	0.9875	0.0175		0 0721
34		0.9927	0.9129		0.9175		9.0731
35		0.9930	0.9126	0.9862	0.9190		
9.1072							
36		0.9928	0.9129	0.9872	0.9187		9.0756
37		0.9923	0.9132	0.9874	0.9180		9.3046
38		0.9927	0.9129	0.9868	0.9183		9.3763
39		0.9932	0.9123	0.9852	0.9194		
9.6227							
40		0.9933	0.9124	0.9863	0.9196		9.6892
41		0.9931	0.9124	0.9838	0.9213		9.4488
42		0.9935	0.9121	0.9879	0.9184		
9.3823							
43		0.9938	0.9117	0.9873	0.9181		
9.5229							
44		0.9938	0.9118	0.9872	0.9184		9.4323
45		0.9942	0.9115	0.9858	0.9196		
9.2577		0.0012	0.0110	0.0000	0.0100		
46		0.9938	0.9119	0.9879	0.9173	+	
9.4048		0.5500	0.3113	0.5075	0.3170		
47		0 0020	0.0117	0 0076	0.0190		9.6746
		0.9939	0.9117	0.9876	0.9182		9.0740
48		0.9943	0.9112	0.9886			
0.9168	+	9.7949	0.0444	0.0074	0.0400		0 0400
49		0.9942	0.9114	0.9871	0.9180		9.3420
50		0.9942	0.9114	0.9882	0.9173		9.3905
51		0.9943	0.9113	0.9874	0.9181		9.2120
52		0.9943	0.9113	0.9871	0.9183		9.0525
53		0.9943	0.9114	0.9867	0.9180		9.0384
54		0.9942	0.9113	0.9876	0.9178		9.2766
55		0.9954	0.9099	0.9891			
0.9161	+	9.4243					
56		0.9957	0.9095	0.9890	0.9159		

+ 9.5320					
57	0.9961	0.9090	0.9893		
0.9159 +	9.1651				
58	0.9960	0.9090	0.9895	0.9155	
+ 9.5528					
59	0.9963	0.9087	0.9893	0.9159	
9.4884					
60	0.9964	0.9087	0.9897	0.9156	
9.5678					
61	0.9965	0.9086	0.9891	0.9159	
9.3629					
62	0.9966	0.9085	0.9897	0.9157	
9.4445					
63	0.9966	0.9085	0.9895	0.9155	9.3120
64	0.9968	0.9083	0.9895	0.9157	
9.5840					
65	0.9969	0.9083	0.9896	0.9157	
9.5502					
66	0.9971	0.9081	0.9893	0.9157	
9.1607					
67	0.9969	0.9083	0.9890	0.9164	9.5691
68	0.9970	0.9082	0.9902	0.9153	
+ 9.7085					
69	0.9971	0.9081	0.9898	0.9155	
9.4443					
70	0.9972	0.9081	0.9891	0.9158	9.4413
71	0.9973	0.9080	0.9897	0.9157	
9.5149					
72	0.9973	0.9081	0.9894	0.9162	9.3699
73	0.9973	0.9079	0.9891	0.9162	
9.7471					
74	0.9975	0.9077	0.9892	0.9159	
9.6346					
75	0.9973	0.9078	0.9886	0.9167	8.9931
76	0.9972	0.9082	0.9891	0.9178	8.4420
77	0.9972	0.9083	0.9890	0.9166	9.3346
78	0.9973	0.9081	0.9897	0.9154	9.1190
79	0.9972	0.9082	0.9897	0.9156	9.2462
80	0.9973	0.9082	0.9894	0.9161	9.2093
81	0.9976	0.9075	0.9899	0.9153	
9.1218					
82	0.9977	0.9073	0.9899	0.9151	
+ 9.1884					
83	0.9977	0.9073	0.9897	0.9155	
9.2774					
84	0.9977	0.9073	0.9903		
0.9150 +					
85	0.9978	0.9072	0.9905		

0.9149 +	8.8975					
86	0.9977	0.9073	0.99	003	0.9150	9.7051
87	0.9978	0.9072	0.99	001	0.9150	
9.1389						
88	0.9979	0.9072	0.99	05	0.9149	+
9.2376						
89	0.9978	0.9073	0.99	002	0.9149	8.9907
90	0.9979	0.9072	0.99	001	0.9150	
9.6113						
91	0.9979	0.9072	0.98	397	0.9152	
9.1120						
92	0.9979	0.9071	0.99	000	0.9150	
9.2032						
93	0.9979	0.9071	0.99	001	0.9149	
9.0313						
94	0.9979	0.9071	0.98	399	0.9149	
9.2120						
95	0.9980	0.9070	0.98	399	0.9150	
9.6548						
96	0.9980	0.9070	0.98	398	0.9150	
9.0758						
97	0.9980	0.9070	0.98	398	0.9151	
9.3722						
98	0.9980	0.9070	0.99	001	0.9149	9.0986
Stopping sinc	e valid_loss	has not	improved in	the last	15 epochs.	
Stopping sinc	ce valid_loss precision	has not recall	_	the last support	15 epochs.	
	precision	recall	f1-score	support	15 epochs.	
0	precision	recall	f1-score 1.00	support 57892	15 epochs.	
0	1.00 1.00	1.00 0.96	f1-score 1.00 0.98	57892 1797	15 epochs.	
0 1 2	1.00 1.00 1.00	1.00 0.96 1.00	1.00 0.98 1.00	57892 1797 4676	15 epochs.	
0 1 2 3	1.00 1.00 1.00 1.00 0.99	1.00 0.96 1.00 0.93	1.00 0.98 1.00 0.96	57892 1797 4676 496	15 epochs.	
0 1 2	1.00 1.00 1.00	1.00 0.96 1.00	1.00 0.98 1.00	57892 1797 4676	15 epochs.	
0 1 2 3 4	1.00 1.00 1.00 1.00 0.99	1.00 0.96 1.00 0.93	1.00 0.98 1.00 0.96 1.00	57892 1797 4676 496 5182	15 epochs.	
0 1 2 3 4 accuracy	1.00 1.00 1.00 0.99 1.00	1.00 0.96 1.00 0.93 1.00	1.00 0.98 1.00 0.96 1.00	57892 1797 4676 496 5182	15 epochs.	
0 1 2 3 4 accuracy macro avg	1.00 1.00 1.00 0.99 1.00	1.00 0.96 1.00 0.93 1.00	1.00 0.98 1.00 0.96 1.00	57892 1797 4676 496 5182 70043 70043	15 epochs.	
0 1 2 3 4 accuracy	1.00 1.00 1.00 0.99 1.00	1.00 0.96 1.00 0.93 1.00	1.00 0.98 1.00 0.96 1.00	57892 1797 4676 496 5182	15 epochs.	
0 1 2 3 4 accuracy macro avg	1.00 1.00 1.00 0.99 1.00	1.00 0.96 1.00 0.93 1.00	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00	57892 1797 4676 496 5182 70043 70043 70043	15 epochs.	
0 1 2 3 4 accuracy macro avg	1.00 1.00 1.00 0.99 1.00	1.00 0.96 1.00 0.93 1.00	1.00 0.98 1.00 0.96 1.00	57892 1797 4676 496 5182 70043 70043	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg	1.00 1.00 1.00 0.99 1.00 1.00 precision	1.00 0.96 1.00 0.93 1.00 0.98 1.00	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00	57892 1797 4676 496 5182 70043 70043 70043 support	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg	1.00 1.00 1.00 0.99 1.00 1.00 precision	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00 f1-score	57892 1797 4676 496 5182 70043 70043 70043 support 14579	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg	1.00 1.00 1.00 0.99 1.00 1.00 precision 0.99 0.94	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00 f1-score	57892 1797 4676 496 5182 70043 70043 70043 support 14579 426	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg 0 1 2	1.00 1.00 1.00 0.99 1.00 1.00 precision 0.99 0.94 0.98	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall 1.00 0.84 0.97	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00 f1-score 0.99 0.89	57892 1797 4676 496 5182 70043 70043 70043 support 14579 426 1112	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg	1.00 1.00 1.00 0.99 1.00 1.00 precision 0.99 0.94 0.98 0.89	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall 1.00 0.84 0.97 0.81	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00 f1-score 0.99 0.89 0.97 0.84	57892 1797 4676 496 5182 70043 70043 70043 support 14579 426 1112 145	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg 0 1 2	1.00 1.00 1.00 0.99 1.00 1.00 precision 0.99 0.94 0.98	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall 1.00 0.84 0.97	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00 f1-score 0.99 0.89	57892 1797 4676 496 5182 70043 70043 70043 support 14579 426 1112	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg 0 1 2 3 4	1.00 1.00 1.00 0.99 1.00 1.00 precision 0.99 0.94 0.98 0.89	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall 1.00 0.84 0.97 0.81	1.00 0.98 1.00 0.96 1.00 1.00 1.00 0.99 1.00 f1-score 0.99 0.89 0.97 0.84 1.00	57892 1797 4676 496 5182 70043 70043 70043 support 14579 426 1112 145 1249	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg 0 1 2 3 4 accuracy	1.00 1.00 1.00 0.99 1.00 1.00 precision 0.99 0.94 0.98 0.89 1.00	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall 1.00 0.84 0.97 0.81 0.99	1.00 0.98 1.00 0.96 1.00 1.00 0.99 1.00 f1-score 0.99 0.89 0.97 0.84 1.00	57892 1797 4676 496 5182 70043 70043 70043 8upport 14579 426 1112 145 1249	15 epochs.	
0 1 2 3 4 accuracy macro avg weighted avg 0 1 2 3 4	1.00 1.00 1.00 0.99 1.00 1.00 precision 0.99 0.94 0.98 0.89	1.00 0.96 1.00 0.93 1.00 0.98 1.00 recall 1.00 0.84 0.97 0.81	1.00 0.98 1.00 0.96 1.00 1.00 1.00 0.99 1.00 f1-score 0.99 0.89 0.97 0.84 1.00	57892 1797 4676 496 5182 70043 70043 70043 support 14579 426 1112 145 1249	15 epochs.	

Best model saved to models/cnn/20240415T112137.pth time: 15min 51s (started: 2024-04-15 11:05:46 +01:00)

Additional approaches for comparison

The autotime extension is already loaded. To reload it, use:

%reload_ext autotime

Re-initializing module because the following parameters were re-set: activation, dropout, neurons.

Re-initializing criterion.

Re-initializing optimizer.

C:\Users\kornk\anaconda3\envs\nn\lib\site-

packages\torch\optim\lr_scheduler.py:28: UserWarning: The verbose parameter is deprecated. Please use get_last_lr() to access the learning rate.

warnings.warn("The verbose parameter is deprecated. Please use get_last_lr() "

epoch	train_acc	train_loss	valid_acc	valid_loss	ср	dur
 1	0 9412	0.9663	0.9555			
=	+ 9.4769	0.000	0.0000			
2	0.9567	0.9486	0.9591			

0.9459			0.0400	0.0505	
3		0.9593	0.9460	0.9595	
0.9455		8.9376	0 0445	0.9596	
0.9454			0.9443	0.9590	
5		0.9615	0.9435	0.9612	
0.9440			0.0100	0.0012	
6		0.9623	0.9427	0.9600	0.9446
8.9918					
7		0.9628	0.9421	0.9591	0.9460
8.9469					
8		0.9632	0.9418	0.9614	
0.9434	+	9.2820			
9		0.9635	0.9415	0.9608	0.9434
+ 8.8828					
		0.9658	0.9376	0.9725	
0.9323					
11		0.9771	0.9281	0.9775	
0.9277			0.0054	0.0704	
12		0.9797	0.9256	0.9784	
0.9266	+	0.9805	0.9247	0.9776	0.9276
13 9.1793		0.9005	0.9247	0.9776	0.9276
9.1793 14		0.9809	0 9242	0.9802	
0.9249			0.3242	0.5002	
15		0.9816	0.9236	0.9795	0.9252
9.1915		0.0010	0.0200	0.0100	0.0202
16		0.9827	0.9225	0.9806	
0.9246					
17		0.9827	0.9225	0.9772	0.9282
9.1965					
18		0.9830	0.9221	0.9806	0.9246
+ 9.1886					
19		0.9836	0.9214	0.9806	0.9244
+ 9.1207					
20		0.9843	0.9209	0.9810	
0.9241	+	9.1066			
21		0.9844	0.9207	0.9809	0.9239
+ 9.1089		0.0040	0.0000	0.0004	
22		0.9848	0.9203	0.9821	
0.9229	+	9.3463	0.0104	0.0000	0.0007
23 + 9.3201		0.9857	0.9194	0.9820	0.9227
+ 9.3201 24		0.9863	0.9189	0.9837	
0.9212	+	9.1017	0.3103	0.9031	
25	•	0.9869	0.9181	0.9854	
0.9194	+		0.0101	3.0001	
26	•	0.9891	0.9160	0.9861	
			0.0100	1.0001	

0.9189	+	8 9709				
27	•	0.9896	0.9155	0 9854	0.9194	
9.0150		0.9090	0.9100	0.9004	0.3134	
28		0.9901	0.0151	0.9856	0.9193	
		0.9901	0.9151	0.9856	0.9193	
9.1316		0.0000	0.0440	0.0000	0.0100	
29		0.9902	0.9148	0.9863	0.9190	
8.9114						
30		0.9903	0.9147	0.9864		
0.9185	+					
31		0.9903	0.9146	0.9863	0.9186	
9.0649						
32		0.9912	0.9139	0.9860	0.9189	
9.1915						
33		0.9914	0.9137	0.9870		
0.9178	+	9.0381				
34		0.9916	0.9135	0.9866	0.9184	
9.0842						
35		0.9920	0.9131	0.9873		
0.9178		9.0380				
36		0.9922	0.9129	0.9876		
0.9173	+		0.0220			
37		0.9924	0.9126	0.9870	0.9179	
9.0543		0.0021	0.0120	0.5010	0.0110	
38		0.9925	0.9124	0.9866	0.9181	
		0.9925	0.9124	0.9000	0.9101	
9.1183		0.0004	0.0404	0.0070	0.0470	0 0045
39		0.9924	0.9124			8.9015
40		0.9929	0.9122	0.9873	0.9174	
9.0708						
41		0.9931	0.9120	0.9883		
0.9167	+	8.8861				
42		0.9933	0.9117	0.9868	0.9181	
9.0306						
43		0.9934	0.9116	0.9881	0.9170	
9.2468						
44		0.9933	0.9117	0.9880	0.9170	8.9612
45		0.9938	0.9112	0.9885		
0.9162	+	9.0153				
46		0.9939	0.9112	0.9881	0.9167	
9.1338						
47		0.9937	0.9112	0.9863	0.9186	8.9543
48		0.9938	0.9112	0.9874	0.9173	9.0585
49		0.9943	0.9107	0.9872	0.9176	0.0000
9.0486		0.0040	0.0101	0.0012	0.0110	
		0.0044	0.106	0 0076	0 0171	
50		0.9944	0.9106	0.9876	0.9171	
9.1488		0.0040	0.0407	0.0070	0.0470	0 0004
51		0.9943	0.9107	0.9870	0.9179	9.0201
52		0.9947	0.9103	0.9876	0.9171	
9.2848						

53	0.9946	0.9104	0.9877	0.9173	9.0446
54	0.9943	0.9106	0.9879	0.9169	9.1593
55	0.9946	0.9103	0.9876	0.9170	
8.9580					
56	0.9950	0.9100	0.9879	0.9169	
9.1170					
57	0.9951	0.9098	0.9878	0.9169	
9.0373					
58	0.9951	0.9099	0.9882	0.9166	9.2081
59	0.9951	0.9098	0.9876	0.9173	
9.0646					

Stopping since valid_loss has not improved in the last 15 epochs.

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	57892	
1	0.99	0.90	0.94		
2	0.99	0.99	0.99	4676	
3	0.95	0.85	0.89	496	
4	1.00	1.00	1.00	5182	
accuracy			1.00	70043	
macro avg	0.99	0.95	0.96	70043	
weighted avg	1.00	1.00	1.00	70043	
	precision	recall	f1-score	support	
	•		f1-score	support	
0	precision 0.99	recall	f1-score 0.99	support 14579	
0	•		0.99		
	0.99	1.00	0.99	14579	
1	0.99	1.00 0.81	0.99 0.87 0.97	14579 426	
1 2	0.99 0.93 0.98	1.00 0.81 0.96	0.99 0.87 0.97	14579 426 1112	
1 2 3	0.99 0.93 0.98 0.90	1.00 0.81 0.96 0.79	0.99 0.87 0.97 0.84	14579 426 1112 145	
1 2 3	0.99 0.93 0.98 0.90	1.00 0.81 0.96 0.79	0.99 0.87 0.97 0.84	14579 426 1112 145	
1 2 3 4	0.99 0.93 0.98 0.90	1.00 0.81 0.96 0.79	0.99 0.87 0.97 0.84 0.99	14579 426 1112 145 1249	

Best model saved to models/cnn/20240413T150503.pth time: 9min 28s (started: 2024-04-13 14:55:34 +01:00)

The autotime extension is already loaded. To reload it, use:

%reload_ext autotime

Re-initializing module because the following parameters were re-set: activation, dropout, neurons.

Re-initializing criterion.

Re-initializing optimizer.

epoch	tr	ain_acc	${\tt train_loss}$	${\tt valid_acc}$	${\tt valid_loss}$	ср	lr
dur							
1		0.9425	0.9650	0.9575			
0.9484	+	0.0500	6.3081				
2		0.9567	0.9485	0.9573	0.9482		
+ 0.0500	6.	3936					
3		0.9593	0.9461	0.9593			
0.9456	+	0.0500	6.0357				
4		0.9601	0.9450	0.9605			
0.9442	+	0.0500	6.2029				

5	0.9612	0.9440	0.9584	0.9467
0.0500 6.				
6	0.9620	0.9430	0.9611	
0.9436	+ 0.0500	6.2798		
7	0.9627	0.9417	0.9625	
		6.2113		
8	0.9739	0.9319	0.9726	
0.9322	+ 0.0500	6.2545		
9	0.9763	0.9290	0.9741	
		6.2490		
10	0.9770	0.9280	0.9745	
0.9303	+ 0.0500	6.5303		
11	0.9784	0.9266	0.9758	
		6.3700		
		0.9257	0.9764	
		6.2050		
		0.9251	0.9768	
		6.4005		
		0.9246	0.9770	
		6.6155		
		0.9241	0.9768	0.9275
	2211			
		0.9237	0.9766	0.9274
	6.0781			
		0.9234	0.9771	
		6.1254		
18	0.9815	0.9230	0.9793	
0.9249	+ 0.0150	6.2195		
19	0.9839	0.9207	0.9794	
		6.6632		
		0.9203	0.9806	0.9247
0.0150 6.				
		0.9196	0.9826	
		6.3415		
22	0.9867		0.9829	
0.9228		6.5141		
23		0.9186	0.9831	
0.9222		6.6634		
24	0.9869	0.9184	0.9832	
		6.2202		
25		0.9181	0.9833	
0.9218		6.0442		
	0.9872		0.9831	0.9217
+ 0.0045				
27		0.9176	0.9836	
		6.3302		
		0.9174	0.9836	0.9214
+ 0.0045				

	0.9172	0.9836	0.9213	
+ 0.0045 6.2819	0.9171	0 0027		
0.9212 + 0.0045		0.9031		
	0.9169	0 9836	0 9213	
0.0013 6.2650	0.3103	0.3000	0.3210	
	0.9168	0.9834	0.9213	
0.0013 6.4477	0.0200	0.0001	0.0220	
	0.9167	0.9834	0.9213	
0.0013 5.9978				
	0.9167	0.9836	0.9212	
+ 0.0013 6.1424	0.020.	0.0000	0.0222	
	0.9166	0.9836	0.9212	
0.0013 6.2621		0.0000	0.0222	
	0.9165	0.9834	0.9212	
0.0013 6.3442				
	0.9164	0.9832	0.9212	
+ 0.0013 6.3761		0.0002	0.000	
	0.9162	0.9836	0.9208	
+ 0.0013 6.4961	0.0202	0.0000	0.0200	
	0.9158	0.9854		
0.9198 + 0.0013		0.0001		
40 0.9903		0.9859		
0.9193 + 0.0013		0.0000		
	0.9149	0.9858	0.9192	
+ 0.0004 6.4701		0.0000	0.0102	
	0.9147	0.9858	0.9191	
+ 0.0004 6.5533	0.011	0.0000	0.0101	
	0.9147	0.9857	0.9191	+
0.0004 6.4603		0.0001	0.0101	
	0.9146	0.9858	0.9190	
+ 0.0004 6.4932	0.0110	0.0000	0.0100	
45 0.9910	0.9147	0.9859	0.9190	+
0.0004 6.3853	0.022.	0.0000	0.0200	
	0.9146	0.9860		
0.9189 + 0.0004		0.0000		
47 0.9911		0.9860	0.9189	
+ 0.0004 6.4227		0.0000	0.0100	
48 0.9913		0.9861		
0.9189 + 0.0004		0.0001		
49 0.9912		0.9861		
0.9188 + 0.0004		0.0001		
50 0.9912		0.9861	0 9188	
+ 0.0004 6.3223	0.0111	0.5001	0.3100	
51 0.9912	0 9149	0.9862		
0.9187 + 0.0001		0.5002		
	0.9143	0 9862	0 9188	0 0001
6.6168	0.0140	0.5002	0.0100	0.0001
0.0100				

53	0.9915	0.9141	0.986	52	0.9187		
+ 0.0001 6 54	.3620 0.9913	0.9143	0.986	31	0.9187		0.0001
6.4619 55	0.9913	0.9142	0.986	52	0.9187	+	
0.0001 6.402 56	21 0.9915	0.9141	0.986	32	0.9187		
+ 0.0001 6 57	.5470 0.9914	0.9142	0.986	31	0.9187	+	
0.0001 6.29		0.0112	0.00		0.0101		
	0.9915	0.9141	0.986	32	0.9187		0.0001
6.2987							
59	0.9914	0.9142	0.986	32	0.9187		0.0001
6.2600							
60	0.9915	0.9141	0.986	52	0.9187	+	
0.0001 6.31	17						
61	0.9915	0.9141	0.986	52	0.9187	+	
0.0000 6.31							
	0.9914	0.9140	0.986	52	0.9187		
	. 1781						
63	0.9914	0.9142	0.986	52	0.9187	+	
0.0000 6.234							
	0.9915	0.9142	0.986	52	0.9187		0.0000
6.4051							
	0.9915	0.9141	0.986	52	0.9187		0.0000
6.1205							
Stopping sind	ce valid_loss		_		15 epochs	· .	
	precision	recall	f1-score	support			
	0.00	4 00	4 00	F7000			
0		1.00					
1		0.80	0.89	1797			
2		0.99	0.99	4676			
3		0.73		496			
4	1.00	1.00	1.00	5182			
266118261			0.99	70043			
accuracy macro avg	0.99	0.90	0.99	70043			
weighted avg		0.99	0.99	70043			
weighted avg	0.33	0.33	0.33	10043			
	precision	recall	f1-score	support			
0	-						
0	0.99	1.00	0.99	14579			
1	0.99	1.00 0.74	0.99 0.82	14579 426			
1 2	0.99 0.93 0.97	1.00 0.74 0.96	0.99 0.82 0.97	14579 426 1112			
1 2 3	0.99 0.93 0.97 0.92	1.00 0.74 0.96 0.73	0.99 0.82 0.97 0.82	14579 426 1112 145			
1 2	0.99 0.93 0.97	1.00 0.74 0.96	0.99 0.82 0.97	14579 426 1112			

macro avg 0.96 0.88 0.92 17511 weighted avg 0.99 0.99 0.99 17511

Best model saved to models/cnn/20240413T004512.pth time: 7min 16s (started: 2024-04-13 00:37:55 +01:00)

The autotime extension is already loaded. To reload it, use:

%reload_ext autotime

Re-initializing module because the following parameters were re-set: activation, dropout, neurons.

Re-initializing criterion because the following parameters were re-set: weight. Re-initializing optimizer.

C:\Users\kornk\anaconda3\envs\nn\lib\site-

packages\torch\optim\lr_scheduler.py:28: UserWarning: The verbose parameter is deprecated. Please use get_last_lr() to access the learning rate.

warnings.warn("The verbose parameter is deprecated. Please use get_last_lr() "

epoch	tra	ain_acc	train_lo	SS	valid _.	_acc	valid_l	.oss	ср	dur
1		0.7290	1.09	89	0.8	8646				
1.0405	+	9.3654								
2		0.8500	1.04	.05	0.8	8198	1.0	259		

+ 9.1883					
	0.8758	1.0237	0 9018		
1.0208 +		1.0201	0.0010		
	0.8792	1 0157	0.8857	1 0015	
+ 9.1999	0.0102	1.0101	0.0001	1.0010	
	0.8969	1.0021	0.8985	0 9975	
+ 9.0275	0.0000	1.0021	0.0000	0.0010	
	0.9053	0.9975	0.9162	0.9984	
9.1147	0.0000	0.0010	0.0102	0.0001	
	0.9067	0.9950	0.9148	0.9869	
+ 9.0160			0.0110		
	0.9093	0.9906	0.8907	0.9937	
9.1138					
	0.9169	0.9850	0.9027	0.9894	
9.5245					
	0.9215	0.9812	0.9103	0.9867	
+ 9.4169					
	0.9209	0.9745	0.9116	0.9781	
+ 9.7799					
12	0.9284	0.9695	0.9476		
0.9746 +					
		0.9681	0.9361	0.9764	
9.3713					
	0.9371	0.9660	0.9447	0.9713	
+ 9.3350					
	0.9375	0.9642	0.9211	0.9856	
9.1023					
	0.9385	0.9617	0.9372	0.9801	
9.3777					
17	0.9407	0.9649	0.9393	0.9791	9.3136
18	0.9460	0.9633	0.9547	0.9723	
9.2096					
19	0.9537	0.9571	0.9600	0.9731	
9.1114					
20	0.9404	0.9617	0.9307	0.9828	9.2274
21	0.9335	0.9617	0.9464	0.9712	+
9.0888					
22	0.9508	0.9592	0.9372	0.9730	9.1070
23	0.9504	0.9556	0.9305	0.9764	
9.1922					
24	0.9383	0.9610	0.9531	0.9672	+
9.1775					
25	0.9465	0.9564	0.9521	0.9656	+
9.0899					
26	0.9406	0.9577	0.9329	0.9655	+
9.4965					
27	0.9430	0.9532	0.9461	0.9668	
9.3117					

28	0.9496	0.9521	0.958	39	0.9698	
9.0634						
29	0.9537	0.9496	0.953	39	0.9633	
+ 9.3468						
30	0.9501	0.9507	0.963	38	0.9686	
9.1610						
31	0.9569	0.9496	0.951	12	0.9643	
9.5245						
32	0.9447	0.9537	0.958	34	0.9602	+
9.0295						
33	0.9615	0.9477	0.965	57	0.9710	
9.1164						
34	0.9493	0.9510	0.935	56	0.9669	9.1024
35	0.9518	0.9508	0.960)8	0.9771	9.0464
36	0.9604	0.9471	0.957	71	0.9644	
9.0611						
37	0.9672	0.9472	0.966	66	0.9712	
9.3670						
38	0.9677	0.9464	0.965	59	0.9618	
9.1247						
39	0.9717	0.9415	0.975	56	0.9664	
9.3451						
40	0.9730	0.9440			0.9705	9.1744
41	0.9539	0.9471			0.9664	9.1196
42	0.9527	0.9481			0.9689	9.2367
43	0.9560	0.9461			0.9719	9.2175
44	0.9664	0.9451			0.9635	9.3446
45	0.9648	0.9440			0.9648	9.3201
46	0.9796	0.9388	0.975	53	0.9657	
9.3749						
Stopping since			-		15 epochs.	
	precision	recall	f1-score	support		
•	4 00		0.00	55000		
0	1.00	0.97	0.98	57892		
1	0.84	0.94	0.89	1797		
2	0.95	0.98	0.97	4676		
3	0.29	0.93	0.44	496		
4	0.99	1.00	0.99	5182		
20017201			0.97	70043		
accuracy macro avg	0.81	0.96	0.85	70043		
weighted avg	0.99	0.90	0.98	70043		
merkured av8	0.33	0.31	0.90	10043		
	precision	recall	f1-score	support		
0	0.99	0.97	0.98	14579		
1	0.80	0.86	0.83	426		
2	0.94	0.96	0.95	1112		

3	0.33	0.91	0.49	145
4	0.99	0.99	0.99	1249
accuracy			0.97	17511
macro avg	0.81	0.94	0.85	17511
weighted avg	0.98	0.97	0.97	17511

Best model saved to models/cnn/20240413T125808.pth time: 7min 34s (started: 2024-04-13 12:50:33 +01:00)

The autotime extension is already loaded. To reload it, use:

%reload_ext autotime

Re-initializing module because the following parameters were re-set: activation, dropout, neurons.

Re-initializing criterion.

Re-initializing optimizer.

epoch train_acc train_loss valid_acc valid_loss cp lr dur
-----1 0.9499 0.9594 0.9657

0.9395 + 0.0500 7.5531

2	0.9693	0.9364	0.9729	
		7.4975		
3	0.9739	0.9315	0.9746	
0.9306	+ 0.0500	7.5624		
4	0.9762	0.9290	0.9733	0.9316
0.0500 7.	5365			
		0.9268	0.9787	
		7.6423		
		0.9238	0.9785	0.9271
	7.7520			
		0.9223	0.9790	
0.9258	+ 0.0500	7.4463		
		0.9212	0.9810	
		7.6275		
		0.9209	0.9803	0.9247
	4080	0.040		0.0040
		0.9197	0.9809	0.9240
	7.4302			
		0.9180	0.9828	
		7.6209		
		0.9172	0.9837	
		7.7226	0.0044	
		0.9163	0.9841	
		7.3813	0.0044	0.0000
		0.9156	0.9841	0.9206
	7.4572		0.0045	
		0.9151	0.9847	
		7.4060	0.0045	0.0004
		0.9145	0.9845	0.9201
	7.3525		0.0047	0.0400
		0.9140	0.9847	0.9199
	7.6057	0.0120	0.0051	
	0.9913	0.9138	0.9851	
		7.6922	0.0054	0.0106
	0.9916	0.9135	0.9851	0.9196
+ 0.0150		0.0124	0.0057	
20		0.9134	0.9857	
		7.4078	0.0050	
		0.9131	0.9858	
	+ 0.0045		0.0056	0.0101
		0.9130	0.9856	0.9191
	7.4126	0.0100	0.0057	0.0100
		0.9129	0.9857	0.9190
+ 0.0045		0.0100	0.0054	0 0101
		0.9128	0.9854	0.9191
0.0045 7.		0.0107	0 0057	0 0101
		0.9127	0.985/	0.9191
0.0045 7.	4042			

26 0.9923 + 0.0045 7.4891	0.9127	0.9857	0.9190	
27 0.9924	0.9126	0.9856	0.9190	
0.0045 7.4701 28 0.9924	0.9125	0.9856	0.9191	
0.0045 7.4539 29 0.9925	0.9125	0.9857	0.9190	
+ 0.0045 7.4661 30 0.9925	0.9124	0.9855	0.9190	
0.0045 7.6559 31 0.9926	0.9124	0.9857	0.9190	
0.0013 7.4272 32 0.9926	0.9123	0.9858	0.9190	
	0.9123	0.9857	0.9189	
+ 0.0013 7.5241 34 0.9926	0.9123	0.9857	0.9189	0.0013
	0.9123	0.9860	0.9189	
+ 0.0013 7.5592 36 0.9927	0.9122	0.9858	0.9189	
0.0013 7.5898 37 0.9927	0.9122	0.9860	0.9189	
+ 0.0013 7.5598 38 0.9927	0.9122	0.9860	0.9189	
+ 0.0013 7.4851 39 0.9927	0.9122	0.9860	0.9189	
0.0013 7.6400 40 0.9928	0.9122	0.9860	0.9189	
0.0013 7.5404 41 0.9928	0.9122	0.9860	0.9189	
0.0004 7.6700 42 0.9928	0.9122	0.9859	0.9189	0.0004
7.7998 43 0.9928	0.9121	0.9861	0.9189	
0.0004 7.5054 44 0.9928	0.9121	0.9860	0.9189	
0.0004 7.3961 45 0.9928		0.9861	0.9189	+
0.0004 7.4161 46 0.9928	0.9121	0.9860	0.9189	
+ 0.0004 7.4564 47 0.9928	0.9121		0.9188	
+ 0.0004 7.3999 48 0.9928	0.9121		0.9188	+
0.0004 7.5602 49 0.9928				
7.9389	V.0121	2.0001	3.3130	3.0001

Stopping since valid_loss has not improved in the last 15 epochs.

	precision	recall	f1-score	support
0	0.99	1.00	1.00	57892
1	0.99	0.82	0.90	1797
2	0.99	0.99	0.99	4676
3	0.99	0.82	0.90	496
4	1.00	1.00	1.00	5182
accuracy			0.99	70043
macro avg	0.99	0.92	0.96	70043
weighted avg	0.99	0.99	0.99	70043
	precision	recall	f1-score	support
	precision	recall	f1-score	support
0	precision 0.99	recall	f1-score 0.99	support
0 1	•			
	0.99	1.00	0.99	14579
1	0.99 0.94	1.00 0.75	0.99 0.84	14579 426
1 2	0.99 0.94 0.96	1.00 0.75 0.95	0.99 0.84 0.96	14579 426 1112
1 2 3	0.99 0.94 0.96 0.90	1.00 0.75 0.95 0.73	0.99 0.84 0.96 0.81	14579 426 1112 145
1 2 3	0.99 0.94 0.96 0.90	1.00 0.75 0.95 0.73	0.99 0.84 0.96 0.81	14579 426 1112 145
1 2 3 4	0.99 0.94 0.96 0.90	1.00 0.75 0.95 0.73	0.99 0.84 0.96 0.81 0.99	14579 426 1112 145 1249

Best model saved to models/cnn/20240413T110602.pth time: 6min 34s (started: 2024-04-13 10:59:28 +01:00)

```
[]: # With Step learning rate scheduler

lr_scheduler = LRScheduler(policy='StepLR', step_size=10, gamma=0.3)
```

Re-initializing module because the following parameters were re-set: activation, dropout, neurons.

Re-initializing criterion.

Re-initializing optimizer.

epoch	tr	ain_acc	${\tt train_loss}$	valid_acc	valid_loss	ср	lr
dur							
			0.1662	0.9643			
			7.5059				
			0.0916	0.9714			
0.1050	+	0.0100	6.5200				
3		0.9799	0.0726	0.9819			
0.0722	+	0.0100	6.4677				
			0.0616	0.9790	0.0727		
0.0100							
			0.0542	0.9797	0.0728		
0.0100	6.265	1					
6		0.9855	0.0478	0.9830			
0.0656	+	0.0100	6.3778				
7			0.0433	0.9849			
			6.3579				
			0.0405	0.9853			
			6.4560				
			0.0359	0.9850	0.0599		
0.0100							
			0.0342	0.9857			
			6.3375				
			0.0202	0.9887			
0.0536	+	0.0030	6.4054				
			0.0150	0.9882	0.0571		
0.0030							
			0.0134	0.9887	0.0617		
0.0030							
14		0.9959	0.0113	0.9885	0.0598		
0.0030							
15		0.9964	0.0099	0.9879	0.0727		
0.0030							
16		0.9969	0.0090	0.9884	0.0792		
0.0030	7.226	1					

17	0.9965	0.0100	0.9890	0.0660	
0.0030	6.4022				
18	0.9968	0.0087	0.9888	0.0695	
0.0030	6.3624				
19	0.9972	0.0078	0.9877	0.0787	
0.0030	7.1420				
20	0.9973	0.0078	0.9883	0.0822	
0.0030	9.3075				
21	0.9985	0.0042	0.9894	0.0804	
0.0009	7.3965				
22	0.9990	0.0032	0.9893	0.0840	
0.0009	8.2413				
23	0.9991	0.0024	0.9890	0.0879	
0.0009	7.9417				
24	0.9993	0.0022	0.9887	0.0920	
0.0009	8.9985				
25	0.9993	0.0022	0.9892	0.0931	0.0009
6.9576					
Stopping	g since valid_loss	has not impr	coved in the las	st 15 epochs.	
	precision	recall f1-	-score suppor	t	

	1			
0	1.00	1.00	1.00	57892
1	1.00	0.99	1.00	1797
2	1.00	1.00	1.00	4676
3	0.96	0.95	0.95	496
4	1.00	1.00	1.00	5182
accuracy			1.00	70043
macro avg	0.99	0.99	0.99	70043
weighted avg	1.00	1.00	1.00	70043
	precision	recall	f1-score	support
	precision	recall	f1-score	support
0	precision 0.99	recall	f1-score 0.99	support 14579
0 1	•			
	0.99	1.00	0.99	14579
1	0.99	1.00 0.85	0.99 0.88	14579 426
1 2	0.99 0.92 0.98	1.00 0.85 0.97	0.99 0.88 0.97	14579 426 1112
1 2 3	0.99 0.92 0.98 0.90	1.00 0.85 0.97 0.79	0.99 0.88 0.97 0.84	14579 426 1112 145
1 2 3	0.99 0.92 0.98 0.90	1.00 0.85 0.97 0.79	0.99 0.88 0.97 0.84	14579 426 1112 145
1 2 3 4	0.99 0.92 0.98 0.90	1.00 0.85 0.97 0.79	0.99 0.88 0.97 0.84 0.99	14579 426 1112 145 1249

Best model saved to models/cnn/20240403T184404.pth time: 3min 15s (started: 2024-04-03 18:40:48 +01:00)

The autotime extension is already loaded. To reload it, use:

%reload_ext autotime

Re-initializing module because the following parameters were re-set: activation, dropout, neurons.

Re-initializing criterion.

Re-initializing optimizer.

/usr/local/lib/python3.10/dist-packages/torch/optim/lr_scheduler.py:28: UserWarning: The verbose parameter is deprecated. Please use get_last_lr() to access the learning rate.

warnings.warn("The verbose parameter is deprecated. Please use get_last_lr() "

epoch	tr	ain_acc	train_loss	valid_acc	valid_loss	ср	dur
1		0.6758	1.2347	0.2000			
1.7047	+	8.8092					
2		0.6672	1.2391	0.1824	1.7201		
8.0163							
3		0.7307	1.1765	0.2256			
1.6780	+	8.5924					
4		0.7067	1.1961	0.1801	1.7059		8.8382

5	0.6751	1.2279	0.19	38	1.7038	7.9770
6	0.6832	1.2193	0.22	17	1.6834	8.5457
7	0.6150	1.2903	0.20	05	1.7013	
8.7747						
8	0.7340	1.1712	0.19	84	1.7093	
7.9737	0.1010	1.1/12	0.10	01	1.1000	
9	0.7226	1 177/	0 10	00	1 7056	0 4041
		1.1774			1.7056	8.4941
10	0.6068	1.2973	0.20	00	1.7047	
8.8832						
11	0.7558	1.1492	0.19	66	1.7074	
8.0631						
12	0.6289	1.2745	0.19	72	1.7088	8.5041
13	0.6826	1.2209	0.21	52	1.6876	8.8821
14	0.8171	1.0890	0.22	76		
1.6638 +	8.0340					
15	0.6829	1.2223	0.20	01	1.7037	8.6226
16	0.6843	1.2195			1.7017	8.8141
17	0.6598	1.2424			1.7038	8.0918
18	0.6934	1.2112			1.7048	8.5498
19	0.6634	1.2406			1.7046	8.6406
	0.6795					
20		1.2240			1.7048	8.1519
21	0.6974	1.2041			1.6903	8.5743
22	0.6735	1.2308			1.6814	8.5315
23	0.7596	1.1451	0.21		1.6918	8.3079
24	0.7673	1.1374	0.22	18	1.6822	8.5838
25	0.7809	1.1232	0.22	00	1.6831	8.2319
26	0.8286	1.0764	0.22	80	1.6758	
8.5398						
27	0.8721	1.0341	0.22	17	1.6820	
8.7515						
28	0.8859	1.0205	0.22	35	1.6805	
8.0470						
	ce valid_loss	has not	improved in	the last	15 enochs	
propping bind	precision		f1-score		to epochs.	
	precision	recarr	II SCOLE	support		
^	0.40	0.02	0.04	20000		
0						
1	0.00	0.00	0.00	20000		
2	0.71	0.06	0.11	20000		
3	0.00	0.00	0.00	20000		
4	0.21	1.00	0.34	20000		
accuracy			0.22	100000		
macro avg	0.26	0.22	0.10	100000		
weighted avg	0.26	0.22	0.10	100000		
2 0						
	precision	recall	f1-score	support		
	•			11		
0	0.46	0.02	0.04	20000		
U	0.10	0.02	0.01	20000		

1	0.00	0.00	0.00	20000
2	0.82	0.06	0.12	20000
3	0.00	0.00	0.00	20000
4	0.21	1.00	0.34	20000
accuracy			0.22	100000
macro avg	0.30	0.22	0.10	100000
weighted avg	0.30	0.22	0.10	100000

Best model saved to drive/MyDrive/Colab Notebooks/Project/models/cnn/20240415T100929.pth time: 4min 22s (started: 2024-04-15 10:05:07 +00:00)

3.0.2 Residual neural network (based on M. Kachuee et al.)

Re-initializing module because the following parameters were re-set: activation. Re-initializing criterion because the following parameters were re-set: weight. Re-initializing optimizer.

epoch train_acc train_loss valid_acc valid_loss cp lr dur

1 0.6	1.2688	0.7967		
	0010 45.0406			
	7822 1.1074			
	0010 22.6163		4 0700	
	3060 1.0926	0.8294	1.0798	
+ 0.0010 22.216	3224 1.0680	0.7669	1 0705	
		0.7668	1.0705	
+ 0.0010 22.819		0.0142		
	3533 1.0562			
	0010 22.6351		1 0000	
	3401 1.0507	0.8675	1.0206	
+ 0.0010 22.001		0.0000	4 0464	0.0040
	3285 1.0527	0.8280	1.0464	0.0010
22.0334	2500 4 0404	0.0004	4 0000	
	3589 1.0421	0.9021	1.0302	
0.0010 22.3899		0.0050	4 0040	0.0040
	3552 1.0453	0.8959	1.0246	0.0010
22.9173				
	3529 1.0501	0.8682	1.0581	0.0010
23.6895				
	3551 1.0406	0.8933	1.0207	
0.0003 23.4467				
	3833 1.0200	0.9187		
	0003 23.2027			
13 0.8	3845 1.0118	0.8825	1.0095	
+ 0.0003 23.207				
14 0.9	1.0040	0.9122	1.0076	
+ 0.0003 22.788				
	9018 1.0030	0.7951	1.0356	
0.0003 22.4892				
16 0.9	9049 1.0111	0.9114	1.0045	+
0.0003 21.9644				
17 0.9	0.9998	0.9350	1.0062	
0.0003 21.9745				
18 0.9	0.9973	0.9016	1.0049	
0.0003 20.1796				
19 0.9	0.9936	0.9157	1.0068	
0.0003 19.8418				
20 0.9	0.9982	0.8769	1.0029	+
0.0003 19.3045				
21 0.9	0.9922	0.9141	0.9962	
+ 0.0001 18.438	35			
22 0.9	0.9865	0.9150	0.9963	
0.0001 17.5530				
23 0.9	0.9840	0.9281	0.9932	
+ 0.0001 16.917	79			
24 0.9	0.9820	0.9301	0.9920	
+ 0.0001 17.173	39			

		0.9809	0.9384	0.9931
26		0.9790	0.9426	
	+ 0.0001 0.9366	17.2744 0.9794	0.9374	0.9899
0.0001	16.6498			
	0.9423 01 16.7674	0.9768	0.9325	0.9880
	0.9416 16.7618	0.9767	0.9265	0.9894
		0.9758	0.9415	0.9890
	14.3881	0.9741	0 9448	0 9884
	15.6936	0.3741	0.5440	0.3004
		0.9732	0.9456	0.9893
	15.0261			
	0.9502	0.9725	0.9476	0.9882
		0.9719	0 9479	
	+ 0.0000		0.5415	
		0.9711	0.9491	0.9880
	12.4536			
36	0.9527	0.9708	0.9467	0.9862
+ 0.000	00 13.0646			
37	0.9527	0.9704	0.9499	0.9881
	12.3366			
		0.9697	0.9509	0.9888
	12.0045			
		0.9695	0.9508	0.9887
	11.4171	0.000	0.0504	
		0.9692	0.9501	0.9883
	11.7081 0.9558	0 0690	0 0500	0.0001
	11.3872	0.9689	0.9526	0.9091
		0.9685	0 9531	0 9891
	11.4429	0.000	0.0001	0.0001
		0.9683	0.9529	0.9897
0.0000	9.0214			
44	0.9580	0.9682	0.9528	0.9901
0.0000	9.6019			
45	0.9584	0.9681	0.9531	0.9901
	9.5109			
		0.9680	0.9532	0.9903
	8.8917	0.0070	0.0500	0.0000
	0.9589 8.4810	0.9679	0.9536	0.9902
		0.9677	0 9539	0 9904
	8.7160	0.5011	0.000	0.0004

49	0.9595	0.9676	0.9539	0.9901
0.0000 8.	4946			
50	0.9596	0.9674	0.9543	0.9902
0.0000 8.	7672			

Stopping since valid_loss has not improved in the last 15 epochs.

0	precision	recall	f1-score	support	
0	0.99	0.96	0.98	57892	
1	0.64	0.88	0.74	1797	
2	0.88	0.96	0.92	4676	
3	0.39	0.90	0.54	496	
4	0.97	0.98	0.97	5182	
accuracy			0.96	70043	
macro avg	0.77	0.94			
weighted avg		0.96	0.96	70043	
	precision	recall	f1-score	support	
0	precision 0.99	recall	f1-score 0.97		
0	-			14579	
	0.99	0.96	0.97 0.68	14579 426	
1	0.99 0.59	0.96 0.81	0.97 0.68 0.88	14579 426 1112	
1 2	0.99 0.59 0.85	0.96 0.81 0.92	0.97 0.68 0.88	14579 426 1112	
1 2 3 4	0.99 0.59 0.85 0.41	0.96 0.81 0.92 0.90	0.97 0.68 0.88 0.57 0.97	14579 426 1112 145	
1 2 3	0.99 0.59 0.85 0.41	0.96 0.81 0.92 0.90	0.97 0.68 0.88 0.57	14579 426 1112 145 1249	

Best model saved to models/cnn/20240403T190703.pth time: 15min 21s (started: 2024-04-03 18:51:41 +01:00)

4 SVM

Evaluate number of components for PCA and LDA by examining explained variance plot

```
[]: X_train, y_train = _import_data('train')

time: 5.12 s (started: 2024-04-03 19:09:46 +01:00)

[]: # Perform PCA on training set
    pca = PCA()
    pca.fit(X_train)
```

```
pca = PCA()
pca.fit(X_train)

# Calculate the explained variance ratio
ev_pca = pca.explained_variance_ratio_.cumsum()

# Plot the explained variance
plt.figure(figsize=(6, 4))
plt.plot(range(1, len(ev_pca) + 1), ev_pca)
plt.title('Explained Variance')
plt.xlabel('Components')
plt.grid(True)
plt.show()
```


time: 2.36 s (started: 2024-04-16 00:09:09 +01:00)

From the explained variance plot, 100 components will be used as PCA captures nearly 100% of the variance

```
[]: # Perform LDA on training set
lda = LinearDiscriminantAnalysis()
lda.fit(X_train, y_train)

# Calculate the explained variance ratio
ev_lda = lda.explained_variance_ratio_.cumsum()

# Plot the explained variance
plt.figure(figsize=(6, 4))
plt.plot(range(1, len(ev_lda) + 1), ev_lda)
plt.title('Explained Variance')
plt.xlabel('Components')
plt.grid(True)
plt.show()
```


time: 2.48 s (started: 2024-04-16 00:09:14 +01:00)

From the explained variance plot, 4 components will be used as LDA captures 100% of the variance

Parameter Tuning and Model Training Parameters to be tuned through Gridserch on 5 folds cross validation - C (Regularization parameter) - Gamma - Kernel

```
[ ]: params = {
         'svm__C': [0.1, 1, 10, 100, 1000],
         'svm__gamma': [0.001, 0.01, 0.1, 1],
         'svm__kernel': ['linear', 'rbf'],
     }
    time: 0 ns (started: 2024-04-03 19:09:20 +01:00)
[]: # With class weight
     _svm_pipeline(balanced_sample=None, dimredc=None,
                   n_components=None, n_folds=5, class_weight='balanced',_
      ⇒model fn=None,
                   max_iter=1500)
    (array([0, 1, 2, 3, 4], dtype=int64), array([72471, 2223,
                                                                  5788,
                                                                           641,
                                                                                 6431],
    dtype=int64))
    [LibSVM]
    C:\Users\kornk\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
    ConvergenceWarning: Solver terminated early (max_iter=1500). Consider pre-
    processing your data with StandardScaler or MinMaxScaler.
      warnings.warn(
    Best Parameters: {'svm_C': 100, 'svm_gamma': 1, 'svm_kernel': 'rbf'}
    Model saved to models/svm/20240327T164911.pkl
                  precision
                                recall f1-score
                                                    support
               0
                        1.00
                                  1.00
                                             1.00
                                                      72471
               1
                        1.00
                                  1.00
                                             1.00
                                                       2223
               2
                        1.00
                                  1.00
                                             1.00
                                                       5788
               3
                        0.98
                                  1.00
                                             0.99
                                                        641
               4
                        1.00
                                  1.00
                                             1.00
                                                       6431
        accuracy
                                             1.00
                                                      87554
                        1.00
                                  1.00
                                             1.00
                                                      87554
       macro avg
    weighted avg
                        1.00
                                  1.00
                                             1.00
                                                      87554
                  precision
                                recall f1-score
                                                    support
               0
                        0.98
                                  0.99
                                             0.99
                                                      18118
                        0.84
                                  0.75
                                             0.79
               1
                                                        556
               2
                        0.96
                                  0.93
                                             0.94
                                                       1448
               3
                        0.85
                                  0.75
                                             0.80
                                                        162
               4
                        1.00
                                  0.97
                                             0.98
                                                       1608
                                             0.98
                                                      21892
        accuracy
       macro avg
                        0.93
                                  0.88
                                             0.90
                                                      21892
                                  0.98
                                             0.98
    weighted avg
                        0.98
                                                      21892
```

time: 1h 22min 13s (started: 2024-03-27 15:31:30 +00:00)

Additional approaches for comparison

(array([0, 1, 2, 3, 4], dtype=int64), array([20000, 20000, 20000, 20000],
dtype=int64))
[LibSVM]

C:\Users\kornk\anaconda3\lib\site-packages\sklearn\svm_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=1500). Consider pre-processing your data with StandardScaler or MinMaxScaler.
warnings.warn(

Best Parameters: {'svm_C': 1000, 'svm_gamma': 1, 'svm_kernel': 'rbf'} Model saved to models/svm/20240327T195247.pkl

	precision	recall	f1-score	support
	-			••
0	1.00	0.99	0.99	72471
1	0.83	1.00	0.91	2223
2	0.96	1.00	0.98	5788
3	0.87	1.00	0.93	641
4	0.99	1.00	0.99	6431
accuracy			0.99	87554
macro avg	0.93	1.00	0.96	87554
weighted avg	0.99	0.99	0.99	87554
	nrociaion	2000017	f1-scoro	support
	precision	recall	II-SCOLE	Duppor
	•			
0	0.99	0.98	0.99	18118
0 1	0.99 0.72	0.98 0.78	0.99 0.75	18118 556
1 2	0.99 0.72 0.92	0.98 0.78 0.94	0.99 0.75 0.93	18118 556 1448
1	0.99 0.72	0.98 0.78 0.94	0.99 0.75 0.93	18118 556 1448
1 2	0.99 0.72 0.92	0.98 0.78 0.94	0.99 0.75 0.93	18118 556 1448 162
1 2 3	0.99 0.72 0.92 0.74	0.98 0.78 0.94 0.79	0.99 0.75 0.93 0.76	18118 556 1448 162
1 2 3	0.99 0.72 0.92 0.74 0.99	0.98 0.78 0.94 0.79 0.97	0.99 0.75 0.93 0.76 0.98	18118 556 1448 162 1608
1 2 3 4	0.99 0.72 0.92 0.74 0.99	0.98 0.78 0.94 0.79 0.97	0.99 0.75 0.93 0.76 0.98	18118 556 1448 162 1608

time: 1h 50min 40s (started: 2024-03-27 18:06:42 +00:00)

```
[]: # With LDA, feature reduction
_svm_pipeline(balanced_sample=None, scaler=None, dimredc='lda',
_n_components=4, n_folds=5, class_weight='balanced', model_fn=None,
```

```
max_iter=1500)
    (array([0, 1, 2, 3, 4], dtype=int64), array([72471,
                                                         2223,
                                                                 5788,
                                                                         641,
                                                                               6431],
    dtype=int64))
    [LibSVM]
    C:\Users\kornk\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
    ConvergenceWarning: Solver terminated early (max iter=1500). Consider pre-
    processing your data with StandardScaler or MinMaxScaler.
      warnings.warn(
    Best Parameters: {'svm_C': 1000, 'svm_gamma': 1, 'svm_kernel': 'rbf'}
    Model saved to models/svm/20240403T194254.pkl
                  precision
                               recall f1-score
                                                   support
               0
                       0.90
                                 0.49
                                            0.64
                                                     72471
               1
                       0.01
                                 0.10
                                            0.02
                                                      2223
               2
                       0.15
                                 0.73
                                           0.25
                                                      5788
               3
                                 0.26
                       0.27
                                            0.26
                                                       641
               4
                       0.13
                                 0.03
                                           0.05
                                                      6431
                                           0.46
                                                     87554
        accuracy
       macro avg
                       0.29
                                 0.32
                                            0.24
                                                     87554
                       0.77
                                 0.46
                                            0.55
                                                     87554
    weighted avg
    time: 15min 5s (started: 2024-04-03 19:29:23 +01:00)
[]: # With PCA, feature reduction
     _svm_pipeline(balanced_sample=None, scaler=None, dimredc='pca',
                   n_components=100, n_folds=5, class_weight='balanced',_
      →model_fn=None,
                   max_iter=1500)
    (array([0, 1, 2, 3, 4], dtype=int64), array([72471, 2223, 5788,
                                                                         641, 6431],
    dtype=int64))
    [LibSVM]
    C:\Users\kornk\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
    ConvergenceWarning: Solver terminated early (max_iter=1500). Consider pre-
    processing your data with StandardScaler or MinMaxScaler.
      warnings.warn(
    Best Parameters: {'svm_C': 100, 'svm_gamma': 1, 'svm_kernel': 'rbf'}
    Model saved to models/svm/20240327T180008.pkl
                  precision
                               recall f1-score
                                                   support
               0
                       1.00
                                 1.00
                                            1.00
                                                     72471
               1
                       1.00
                                 1.00
                                            1.00
                                                      2223
```

1.00

0.99

5788

641

2

3

1.00

0.98

1.00

1.00

4	1.00	1.00	1.00	6431
accuracy			1.00	87554
macro avg	0.99	1.00	1.00	87554
weighted avg	1.00	1.00	1.00	87554
	precision	recall	f1-score	support
0	0.98	0.99	0.99	18118
1	0.83	0.74	0.79	556
2	0.96	0.93	0.94	1448
3	0.83	0.74	0.78	162
4	1.00	0.97	0.98	1608
accuracy			0.98	21892
macro avg	0.92	0.88	0.90	21892
weighted avg	0.98	0.98	0.98	21892

time: 47min 58s (started: 2024-03-27 17:15:18 +00:00)

5 Set up

[]: %run "tools.ipynb"

The autotime extension is already loaded. To reload it, use: %reload_ext autotime

cpu

time: 94 ms (started: 2024-04-17 22:34:31 +01:00)

6 CNN

6.0.1 CNN

[]: # Evaluate on Test set

_evaluate_cnn(CNN, '20240415T112137', subset='test')

Predicting time: 0:00:04.909453

	precision	recall	f1-score	support
0	0.99	1.00	0.99	18118
1	0.95	0.82	0.88	556
2	0.97	0.97	0.97	1448
3	0.87	0.81	0.84	162
4	1.00	0.99	0.99	1608
accuracy			0.99	21892
macro avg	0.96	0.92	0.94	21892

weighted avg 0.99 0.99 0.99 21892

z -	99.76%	0.11%	0.09%	0.03%	0.01%
	18074	20	17	5	2
s -	16.73% 93	82.01% 456	1.26% 7	0.00%	0.00% 0
True Label	1.86%	0.21%	96.82%	0.97%	0.14%
V	27	3	1402	14	2
u -	11.11%	0.00%	8.02%	80.86%	0.00%
	18	0	13	131	0
o -	0.93% 15	0.00% 0	0.25% 4	0.00%	98.82% 1589
	Ň	s P	v redicted Labe	r el	Q

time: 6.72 s (started: 2024-04-17 23:31:04 +01:00)

Results on Train and Validation Set

[]: # Evaluate on Train set

#_evaluate_cnn(CNN, '20240415T112137', subset='train', roc_curve=False)

	precision	recall	f1-score	support
0	1.00	1.00	1.00	57892
1	1.00	0.96	0.98	1797
2	1.00	1.00	1.00	4676
3	0.99	0.93	0.96	496
4	1.00	1.00	1.00	5182
accuracy			1.00	70043

macro	avg	1.00	0.98	0.99	70043
weighted	avg	1.00	1.00	1.00	70043

time: 23.5 s (started: 2024-04-16 00:38:20 +01:00)

[]: # Evaluate on Validation set

#_evaluate_cnn(CNN, '20240415T112137', subset='validation', roc_curve=False)

support	f1-score	recall	precision	
14579	0.99	1.00	0.99	0
426	0.89	0.84	0.94	1
1112	0.97	0.97	0.98	2
145	0.84	0.81	0.89	3
1249	1.00	0.99	1.00	4

accuracy			0.99	17511
macro avg	0.96	0.92	0.94	17511
weighted avg	0.99	0.99	0.99	17511

time: 9.42 s (started: 2024-04-16 00:39:08 +01:00)

6.0.2 Residual neural network (replicate structure and parameters obtained from M. Kachuee et al.)

M. Kachuee, S. Fazeli and M. Sarrafzadeh, "ECG Heartbeat Classification: A Deep Transferable Representation," 2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, USA, 2018, pp. 443-444, doi: 10.1109/ICHI.2018.0009

[]: # Evaluate on Test set

_evaluate_cnn(ResCNN, '20240403T190703', subset='test')

Predicting time: 0	:00:03.	349093
--------------------	---------	--------

_	precision	recall	f1-score	support
0	0.99	0.96	0.97	18118
1	0.57	0.76	0.65	556
2	0.86	0.93	0.90	1448
3	0.39	0.90	0.55	162
4	0.97	0.97	0.97	1608
accuracy			0.95	21892
macro avg	0.76	0.90	0.81	21892
weighted avg	0.96	0.95	0.96	21892

time: 5.5 s (started: 2024-04-17 20:46:02 +01:00)

7 SVM

```
[]: # Evaluate on Test set without ROC curve

# Takes around 1.30 mins for loading model, and predicting labels

_evaluate_svm('20240415T231637', subset='test', roc_curve=False)
```

Predicting time: 0:00:57.763997

p.	recision	recall	11-score	support
0	0.98	0.99	0.99	18118
1	0.84	0.75	0.79	556
2	0.96	0.93	0.94	1448

3	0.85	0.75	0.80	162
4	1.00	0.97	0.98	1608
accuracy			0.98	21892
macro avg	0.93	0.88	0.90	21892
weighted avg	0.98	0.98	0.98	21892

time: 58.7 s (started: 2024-04-17 22:32:04 +01:00)

```
[]: # Evaluate on Test set with ROC curve

# Takes around 4 mins for loading model, predicting labels, and generate ROC

-curve

_evaluate_svm('20240415T231637', subset='test')
```

Predicting time: 0:00:59.283368

	precision	recall	f1-score	support
0	0.98	0.99	0.99	18118
1	0.84	0.75	0.79	556
2	0.96	0.93	0.94	1448
3	0.85	0.75	0.80	162
4	1.00	0.97	0.98	1608
accuracy			0.98	21892
macro avg	0.93	0.88	0.90	21892
weighted avg	0.98	0.98	0.98	21892

time: 2min (started: 2024-04-17 22:34:35 +01:00)

Results on Train Set

```
[]: # Evaluate on Train set with ROC curve
# Takes around 6 mins for loading model, predicting labels
# _evaluate_svm('20240415T231637', subset='train', roc_curve=False)
```

support	f1-score	recall	precision	
72471	1.00	1.00	1.00	0
2223	1.00	1.00	1.00	1
5788	1.00	1.00	1.00	2
641	0.99	1.00	0.98	3
6431	1 00	1 00	1 00	4

accuracy			1.00	87554
macro avg	1.00	1.00	1.00	87554
weighted avg	1.00	1.00	1.00	87554

time: 5min 58s (started: 2024-04-16 00:45:33 +01:00)