Dynamic Structure Factor

Masaru Okada (岡田 大)

2025年10月24日

These are notes on the dynamic structure factor. The discussion is set in the context of neutron scattering.

On the Interaction Between Neutrons and the Lattice

Consider a neutron with momentum \vec{p} being scattered by a crystal, emerging with momentum $\vec{p'}$. Before the scattering, the lattice is assumed to be in an eigenstate of the crystal Hamiltonian with energy $E_{\rm i}$, and after scattering, it is in an eigenstate with energy $E_{\rm f}$. The states of the combined neutron-lattice system are, respectively:

Wave function and eigenenergy before scattering:

$$\Psi_{i} = \psi_{\vec{p}}(\vec{r})\Phi_{i} \tag{1}$$

$$\varepsilon_{\rm i} = E_{\rm i} + \frac{p^2}{2M_n} \tag{2}$$

Wave function and eigenenergy after scattering:

$$\Psi_{\rm f} = \psi_{\vec{p}'}(\vec{r})\Phi_{\rm f} \tag{3}$$

$$\varepsilon_{\rm f} = E_{\rm f} + \frac{p'^2}{2M_n} \tag{4}$$

Here, M_n is the neutron mass, and V is the volume of the system, used as a normalization constant. The function $\psi_{\vec{p}}(\vec{r})$ is a plane wave $\psi_{\vec{p}}(\vec{r}) = \frac{1}{\sqrt{V}}e^{i\vec{p}\cdot\vec{r}}$. The energy gain and momentum change of the lattice are:

$$\hbar\omega = \frac{p'^2}{2M_n} - \frac{p^2}{2M_n} \tag{5}$$

$$\hbar \vec{q} = \vec{p'} - \vec{p} \tag{6}$$

Letting \vec{R} be a lattice point and $\vec{r}(\vec{R})$ be the position of the ion belonging to \vec{R} , which fluctuates due to heat etc., the neutron-lattice interaction is:

$$U(\vec{r}) = \sum_{\vec{R}} u[\vec{r} - \vec{r}(\vec{R})] = \frac{1}{V} \sum_{\vec{k}.\vec{R}} u_{\vec{k}} e^{i\vec{k}\cdot[\vec{r} - \vec{r}(\vec{R})]}$$
(7)

The range of the interaction $u[\vec{r} - \vec{r}(\vec{R})]$ is at most the size of the nucleus, i.e., about 10^{-13} cm. Its Fourier component $u_{\vec{k}}$ is thought to vary on the scale of $k \sim 10^{13}$ cm⁻¹. The important scale for

the phonon spectrum is a wave vector of about 10^8 cm⁻¹, and compared to this, the variation of k is sufficiently slow (by a factor of 10^5). Therefore, the Fourier component of the interaction $u_{\vec{k}}$ can be regarded as independent of the wave vector, and we will write this constant as u_0 .

Suppose the total scattering cross-section for a single lattice point is given by $4\pi a^2$. Using the averaged length a that characterizes this scattering,

$$u_0 = 4\pi a^2 \times \frac{\hbar^2}{2M_n} \frac{1}{a} \tag{8}$$

we have,

$$U(\vec{r}) = \frac{2\pi\hbar^2 a}{M_n V} \sum_{\vec{r} \cdot \vec{R}} e^{i\vec{k} \cdot [\vec{r} - \vec{r}(\vec{R})]}$$

$$\tag{9}$$

Note that performing the \vec{k} integration yields,

$$U(\vec{r}) = \frac{2\pi\hbar^2 a}{M_n} \sum_{\vec{R}} \int \frac{d^3 \vec{k}}{(2\pi)^3} e^{i\vec{k} \cdot [\vec{r} - \vec{r}(\vec{R})]}$$
$$= \frac{2\pi\hbar^2 a}{M_n} \sum_{\vec{R}} \delta[\vec{r} - \vec{r}(\vec{R})]$$
(10)

This naturally shows that the assumptions we have made are, in fact, equivalent to assuming that the interaction is a point-contact type that acts only on the lattice points.

Fermi's Golden Rule and the Scattering Cross-Section

The probability P per unit time of scattering from \vec{p} to $\vec{p'}$ can be calculated to the lowest order of perturbation theory using the formula known as Fermi's Golden Rule. Writing the inner product of functions f = f(x) and g = g(x) as

$$\int dx [f(x)]^* g(x) = (f, g) \tag{11}$$

we can calculate P as:

$$P = \frac{2\pi}{\hbar} \sum_{\mathbf{f}} \delta(\varepsilon_{\mathbf{f}} - \varepsilon_{\mathbf{i}}) \left| \left(\Psi_{\mathbf{f}}, U \Psi_{\mathbf{i}} \right) \right|^{2}$$

$$= \frac{2\pi}{\hbar} \sum_{\mathbf{f}} \delta(E_{\mathbf{f}} - E_{\mathbf{i}} + \hbar \omega) \left| \frac{1}{V} \int d^{3}\vec{r} \ e^{i\vec{q}\cdot\vec{r}} \left(\Phi_{\mathbf{f}}, U(\vec{r}) \Phi_{\mathbf{i}} \right) \right|^{2}$$

$$= \frac{2\pi}{\hbar} \frac{1}{V^{2}} \left(\frac{2\pi\hbar^{2}a}{M_{n}V} \right)^{2} \sum_{\mathbf{f}} \delta(E_{\mathbf{f}} - E_{\mathbf{i}} + \hbar \omega) \left| \sum_{\vec{k},\vec{R}} \int d^{3}\vec{r} \ e^{i(\vec{k}+\vec{q})\cdot\vec{r}} \left(\Phi_{\mathbf{f}}, e^{-i\vec{k}\cdot\vec{r}(\vec{R})} \Phi_{\mathbf{i}} \right) \right|^{2}$$

$$= \frac{(2\pi\hbar)^{3}}{V^{2}(M_{n}V)^{2}} a^{2} \sum_{\mathbf{f}} \delta(E_{\mathbf{f}} - E_{\mathbf{i}} + \hbar \omega) \left| \sum_{\vec{k},\vec{R}} (2\pi\hbar)^{3} \delta(\vec{k} + \vec{q}) \left(\Phi_{\mathbf{f}}, e^{-i\vec{k}\cdot\vec{r}(\vec{R})} \Phi_{\mathbf{i}} \right) \right|^{2}$$

$$= \frac{(2\pi\hbar)^{3}}{V^{2}(M_{n}V)^{2}} a^{2} \sum_{\mathbf{f}} \delta(E_{\mathbf{f}} - E_{\mathbf{i}} + \hbar \omega) \left| \sum_{\vec{k}} (2\pi\hbar)^{3} \frac{V}{(2\pi\hbar)^{3}} \int d^{3}\vec{k} \ \delta(\vec{k} + \vec{q}) \left(\Phi_{\mathbf{f}}, e^{-i\vec{k}\cdot\vec{r}(\vec{R})} \Phi_{\mathbf{i}} \right) \right|^{2}$$

$$= \frac{(2\pi\hbar)^{3}}{(M_{n}V)^{2}} a^{2} \sum_{\mathbf{f}} \delta(E_{\mathbf{f}} - E_{\mathbf{i}} + \hbar \omega) \left| \sum_{\vec{k}} \left(\Phi_{\mathbf{f}}, e^{i\vec{q}\cdot\vec{r}(\vec{k})} \Phi_{\mathbf{i}} \right) \right|^{2}$$

$$= \frac{(2\pi\hbar)^{3}}{(M_{n}V)^{2}} a^{2} \sum_{\mathbf{f}} \delta(E_{\mathbf{f}} - E_{\mathbf{i}} + \hbar \omega) \left| \sum_{\vec{k}} \left(\Phi_{\mathbf{f}}, e^{i\vec{q}\cdot\vec{r}(\vec{k})} \Phi_{\mathbf{i}} \right) \right|^{2}$$

$$(12)$$

The scattering probability P is related to the measurable quantity, the differential scattering cross-section $\frac{d^3\sigma}{d^2\Omega dE}$. The incident neutron flux is

$$j = \frac{p}{M_n} \left| \psi_{\vec{p}} \right|^2 = \frac{1}{V} \frac{p}{M_n} \tag{13}$$

From the conservation of flux,

'(Integral of differential scattering cross-section over all solid angles and energies) = (Sum of probability P over all states)'

Therefore, the following holds:

$$\int j \frac{d^3 \sigma}{d^2 \Omega dE} d^2 \Omega dE = \int P \frac{V}{(2\pi\hbar)^3} d^3 \vec{p'}$$
(14)

The left-hand side is,

$$\int j \frac{d^3 \sigma}{d^2 \Omega dE} d^2 \Omega dE = \int \frac{1}{V} \frac{p}{M_p} \frac{d^3 \sigma}{d^2 \Omega dE} d^2 \Omega dE$$
(15)

On the other hand, the right-hand side is

$$\int P \frac{V}{(2\pi\hbar)^3} d^3 \vec{p'} = \int P \frac{V}{(2\pi\hbar)^3} p'^2 dp' d^2 \Omega$$

$$= \int P \frac{V}{(2\pi\hbar)^3} M_n p' dE d^2 \Omega$$
(16)

Comparing both sides,

$$\frac{1}{V}\frac{p}{M_n}\frac{d^3\sigma}{d^2\Omega dE} = P\frac{V}{(2\pi\hbar)^3}M_n p' \tag{17}$$

That is,

$$\frac{d^3\sigma}{d^2\Omega dE} = \frac{p'}{p} \frac{(M_n V)^2}{(2\pi\hbar)^3} P$$

$$= \frac{p'}{p} \frac{(M_n V)^2}{(2\pi\hbar)^3} \cdot \frac{(2\pi\hbar)^3}{(M_n V)^2} a^2 \sum_{\mathbf{f}} \delta(E_{\mathbf{f}} - E_{\mathbf{i}} + \hbar\omega) \left| \sum_{\vec{R}} \left(\Phi_{\mathbf{f}}, e^{i\vec{q}\cdot\vec{r}(\vec{R})} \Phi_{\mathbf{i}} \right) \right|^2$$

$$= \frac{p'}{p} \frac{Na^2}{\hbar} S_{\mathbf{i}}(\vec{q}, \omega) \tag{18}$$

This $S_i(\vec{q},\omega)$ is defined as follows.

$$S_{i}(\vec{q},\omega) = \frac{1}{N} \sum_{f} \delta\left(\frac{E_{f} - E_{i}}{\hbar} + \omega\right) \left|\sum_{\vec{p}} \left(\Phi_{f}, e^{i\vec{q}\cdot\vec{r}(\vec{R})}\Phi_{i}\right)\right|^{2}$$
(19)

Here, N is the number of lattice sites in the system. Now, the following identity holds for the Heisenberg operator $A(t) = e^{iHt/\hbar} A e^{-iHt/\hbar}$:

$$(\Phi_{f}, A(t)\Phi_{i}) = (\Phi_{f}, e^{iHt/\hbar}Ae^{-iHt/\hbar}\Phi_{i})$$

$$= (\Phi_{f}, e^{iE_{f}t/\hbar}Ae^{-iE_{i}t/\hbar}\Phi_{i})$$

$$= e^{i(E_{f}-E_{i})t/\hbar}(\Phi_{f}, A\Phi_{i})$$
(20)

By expanding the delta function (Fourier transform) and using this,

$$S_{\mathbf{i}}(\vec{q},\omega) = \frac{1}{N} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\mathbf{f}} e^{i(E_{\mathbf{f}} - E_{\mathbf{i}})t/\hbar} \left| \sum_{\vec{R}} \left(\Phi_{\mathbf{f}}, e^{i\vec{q}\cdot\vec{r}(\vec{R})} \Phi_{\mathbf{i}} \right) \right|^{2}$$

$$= \frac{1}{N} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\mathbf{f}} e^{i(E_{\mathbf{f}} - E_{\mathbf{i}})t/\hbar} \sum_{\vec{R}} \left(\Phi_{\mathbf{f}}, e^{i\vec{q}\cdot\vec{r}(\vec{R})} \Phi_{\mathbf{i}} \right) \sum_{\vec{R}'} \left(\Phi_{\mathbf{i}}, e^{-i\vec{q}\cdot\vec{r}(\vec{R}')} \Phi_{\mathbf{f}} \right)$$

$$= \frac{1}{N} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\mathbf{f}} \sum_{\vec{R},\vec{R}'} \left(\Phi_{\mathbf{i}}, e^{-i\vec{q}\cdot\vec{r}(\vec{R}')} \Phi_{\mathbf{f}} \right) \left(\Phi_{\mathbf{f}}, e^{i\vec{q}\cdot\vec{r}(\vec{R},t)} \Phi_{\mathbf{i}} \right)$$

$$(21)$$

Furthermore, since Φ_f forms a complete set, for operators A and B,

$$\sum_{f} (\Phi_{i}, A\Phi_{f}) (\Phi_{f}, B\Phi_{i}) = (\Phi_{i}, AB\Phi_{i})$$
(22)

also holds. Letting $\delta \vec{R} \; (= \vec{r}(\vec{R}) - \vec{R})$ be the displacement of the ion from the lattice point due to thermal

motion,

$$S_{i}(\vec{q},\omega) = \frac{1}{N} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{f} \sum_{\vec{R},\vec{R}'} \left(\Phi_{i}, e^{-i\vec{q}\cdot[\delta\vec{R}'+\vec{R}']} \Phi_{f} \right) \left(\Phi_{f}, e^{i\vec{q}\cdot[\delta\vec{R}(t)+\vec{R}]} \Phi_{i} \right)$$

$$= \frac{1}{N} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{f} \sum_{\vec{R},\vec{R}'} e^{i\vec{q}\cdot(\vec{R}-\vec{R}')} \left(\Phi_{i}, e^{-i\vec{q}\cdot\delta\vec{R}'} \Phi_{f} \right) \left(\Phi_{f}, e^{i\vec{q}\cdot\delta\vec{R}(t)} \Phi_{i} \right)$$

$$= \frac{1}{N} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\vec{R},\vec{R}'} e^{i\vec{q}\cdot(\vec{R}-\vec{R}')} \left(\Phi_{i}, e^{-i\vec{q}\cdot\delta\vec{R}'} e^{i\vec{q}\cdot\delta\vec{R}(t)} \Phi_{i} \right)$$

$$(23)$$

In general, the crystal in the initial state is in thermal equilibrium. To find the scattering cross-section, we should take a statistical average over all initial states. If we write the statistical average of an operator A as

$$\langle A \rangle = \sum_{i} \frac{e^{-E_{i}/k_{B}T} \left(\Phi_{i}, A\Phi_{i}\right)}{e^{-E_{i}/k_{B}T}} \tag{24}$$

the statistical average of $S_{\rm i}(\vec{q},\omega)$ is:

$$S(\vec{q},\omega) = \frac{1}{N} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\vec{R},\vec{R'}} e^{i\vec{q}\cdot(\vec{R}-\vec{R'})} \langle e^{-i\vec{q}\cdot\delta\vec{R'}} e^{i\vec{q}\cdot\delta\vec{R}(t)} \rangle$$
 (25)

This quantity is called the **dynamic structure factor**, and it is related to the differential scattering cross-section as follows.

$$\frac{d^3\sigma}{d^2\Omega dE} = \frac{p'}{p} \frac{Na^2}{\hbar} S(\vec{q}, \omega) \tag{26}$$

The dynamic structure factor $S(\vec{q}, \omega)$ depends only on the structure of the scatterer.

About the Dynamic Structure Factor

Let's consider the term inside $S(\vec{q}, \omega)$, $\langle e^{-i\vec{q}\cdot\delta\vec{R}'}e^{i\vec{q}\cdot\delta\vec{R}(t)}\rangle$. For linear operators A and B, the relation

$$\langle e^A e^B \rangle = \exp\left(\frac{1}{2}\langle A^2 + 2AB + B^2 \rangle\right)$$
 (27)

holds (this is the Gaussian approximation), so

$$\left\langle e^{-i\vec{q}\cdot\delta\vec{R}'}e^{i\vec{q}\cdot\delta\vec{R}(t)}\right\rangle = \exp\left\langle -\frac{1}{2}\Big[\vec{q}\cdot\delta\vec{R}'\Big]^2\right\rangle \ \exp\left\langle \Big[\vec{q}\cdot\delta\vec{R}'\Big]\Big[\vec{q}\cdot\delta\vec{R}(t)\Big]\right\rangle \ \exp\left\langle -\frac{1}{2}\Big[\vec{q}\cdot\delta\vec{R}(t)\Big]^2\right\rangle \ \ (28)$$

Since observable physical quantities depend only on relative coordinates and relative time,

$$\exp\left\langle \left[\vec{q} \cdot \delta \vec{R}'\right]^2\right\rangle = \exp\left\langle \left[\vec{q} \cdot \delta \vec{R}(t)\right]^2\right\rangle = 2W = \text{const.}$$
 (29)

(This e^{-2W} is the Debye-Waller factor). Furthermore, by shifting the position coordinates, letting $\delta \vec{R}' \to \delta \vec{R}_0$, and rewriting $\delta \vec{R} \to \delta \vec{R} + \delta \vec{R}_0 - \delta \vec{R}'$ as $\delta \vec{R}$,

$$\exp\left\langle \left[\vec{q}\cdot\delta\vec{R}'\right]\left[\vec{q}\cdot\delta\vec{R}(t)\right]\right\rangle = \exp\left\langle \left[\vec{q}\cdot\delta\vec{R}_0\right]\left[\vec{q}\cdot\delta\vec{\tilde{R}}(t)\right]\right\rangle \tag{30}$$

From these steps,

$$S(\vec{q},\omega) = e^{-2W} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\vec{R}} e^{i\vec{q}\cdot\vec{R}} \exp\left\langle \left[\vec{q}\cdot\delta\vec{R}_0\right] \left[\vec{q}\cdot\delta\vec{R}(t)\right]\right\rangle$$
$$= e^{-2W} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\vec{R}} e^{i\vec{q}\cdot\vec{R}} \exp\left\langle \left[\vec{q}\cdot\delta\vec{R}_0\right] \left[\vec{q}\cdot\delta\vec{R}(t)\right]\right\rangle$$
(31)

(The transformation to the second line is just relabeling the summation variable from \vec{R} to \vec{R} for clarity.)

$$\exp\left\langle \left[\vec{q} \cdot \delta \vec{R}_{0}\right] \left[\vec{q} \cdot \delta \vec{R}(t)\right] \right\rangle = \sum_{m=0}^{\infty} \frac{1}{m!} \left(\left\langle \left[\vec{q} \cdot \delta \vec{R}_{0}\right] \left[\vec{q} \cdot \delta \vec{R}(t)\right] \right\rangle \right)^{m} \tag{32}$$

can be expanded. The m-th term here represents the contribution of m phonons; for example, m=0 is zero-phonon scattering (elastic scattering), and m=1 is called one-phonon scattering.