Graph Theory Project

PROJECT Report

Submitted to:

Dr. Irfan Yousaf

Submitted by:

Muhammad Ahmad Khan (2020-CS-651)

Department of Computer Science

UNIVERSITY OF ENGINEERING AND TECHNOLOGY LAHORE, NEW CAMPUS

Date: 05-04-2023

Social network analysis (SNA) is the process of investigating social structures using network and graph theories. It aims to understand and analyze the patterns of relationships and interactions among individuals, groups, or organizations in a social system. In the following report we can do some SNA on Graphs and exhibit some information.

1. Average degree, average clustering coefficient, average path length, diameter, highest degree node, lowest degree node etc. of the graphs.

	Graph A	Graph B	Graph AB
Avg. Degree	6.423	9.27	8.358
Avg. Clustering Coefficient	0.569	0.596	0.537
Avg. Path Length	2.735	2.185	2.934
Diameter	6	4	6
Highest Degree Node	623 with degree 16	671 with degree 17	671 with degree 18
Lowest Degree Node	693 with degree 1	694 with degree 3	709 with degree 2

• Graphs of Section A, B and AB:

Graph A Graph B Graph AB

Graph A has 52 nodes and 167 edges connecting them while **Graph B** has 44 nodes and 204 edges connecting them. When these two graphs are combined, they form **Graph AB**, which has 95 nodes and 397 edges connecting them. This makes Graph AB very complex and connected network.

Fig.(c)

2. Distribution of degree, clustering coefficient and path length of nodes.

• Degree Distribution:

In fig.(a) that shows the CDF graph of Section A suggests that the phenomenon has a higher degree within the range of 2 to 9, and a certain degree the range of 10 to 16, with a gradual increase in certainty.

In fig.(b) CDF graph of Section B shows that the likelihood of the phenomenon having a degree between 4 to 6 is low, but it increases considerably from 7 to 10, implying that it's more likely to have a higher degree within this range. Additionally, the probability of the phenomenon having an even higher degree increases further between 11 to 16, almost certain implying that the phenomenon has a significant degree within this range.

In fig.(c) the CDF graph of AB it shows that the probability of having degree between 2 to 6 is low. As the degree increases beyond 6 up to 12 the probability of graph having higher degree. The graph also displays gradual increase in probability from degree 13 to 18.

• Clustering Coefficient:

Fig.(a)

Fig.(b)

Fig.(c)

In Fig.(a) CDF of graph A shows the clustering coefficient that as the coefficient increases the probability of having higher coefficient also increases. The probability is low for coefficients between 0 to 0.4, moderate for coefficients between 0.4 to 0.8 and it has more clusters in it and high for coefficients greater than 0.8 up to 1 but in this range fewer clusters are there.

In Fig.(b) that illustrate the Graph B indicates that the probability of having a clustering coefficient between 0.3 to 0.7 is moderate, ranging from 0 to 0.8 but it contains more clusters. However, for clustering coefficients between 0.7 to 1, probability of having clustering coefficient is very high ranging from 0.8 to 1 but it contains less clusters.

In Fig.(c) that shows the Graph AB indicates that the probability of having more clusters is higher for clustering coefficients between 0.2 to 0.6 with probability ranging from 0 to 0.8. Conversely, for clustering coefficients between 0.7 to 1 the probability of having fewer cluster is higher with probability ranging from 0.8 to 1.

• Path Length:

Fig.(a)

In Fig.(a) that illustrates the Graph A indicates that having a path length of 1 is impossible, while path lengths from 2 to 4 increasingly likely ranging from 0.1 to 0.9 probability. Path lengths greater than 5 are almost certain with a probability of 1 as shown by a sudden increase and then a flat line in the graph.

Fig.(b)

In Fig.(b) that represents Graph B shows that it's not possible to have a path length of 1. However, for path lengths ranging from 2 to 3 there is a considerable probability of having path of this length ranging from 0.2 to 0.9. For path lengths greater than 3 the probability of having path pf that length becomes very high with probability of 1.

In Fig.(c) that represents Graph AB shows that the probability of having a path length of 1 is 0. However, as the path length increases from 2 to 4, the probability of the phenomenon having a path length within this range increases significantly, ranging from 0.1 to 0.9. For path lengths greater than 4, the probability of having a longer path is very high, ranging from greater than 0.9 to 1. The graph shows a sharp increase in probability for path lengths 2-4, and then a gradual increase for longer path lengths until it reaches a probability of 1.

3. 5 types of centrality measures of all the nodes.

Sr.	Max. 10 Degree Centrality						Min. 10 Degree Centrality						
	Graph A		Graph B		Graph AB		Graph A		Graph B		Graph AB		
	Node	Value	Node	Value	Node	Value	Node	Value	Node	Value	Node	Value	
1	603	0.156	696	0.279	705	0.138	693	0.019	694	0.069	709	0.021	
2	620	0.156	667	0.302	662	0.138	709	0.039	670	0.069	694	0.031	
3	701	0.156	705	0.302	684	0.138	644	0.058	688	0.093	670	0.031	
4	791	0.176	708	0.302	674	0.138	640	0.058	665	0.093	644	0.031	
5	619	0.176	662	0.302	708	0.149	604	0.058	683	0.116	640	0.031	
6	707	0.196	684	0.302	692	0.149	627	0.078	666	0.139	665	0.042	
7	648	0.215	652	0.325	652	0.159	630	0.078	653	0.139	635	0.042	
8	622	0.215	692	0.325	699	0.159	612	0.078	675	0.139	627	0.042	
9	605	0.235	699	0.348	623	0.17	637	0.078	680	0.162	630	0.042	
10	623	0.313	671	0.395	671	0.191	615	0.078	654	0.162	612	0.042	

Table: 1 Degree Centrality of Graph A, B and AB

Sr.		Max. 10 Betweenness Centrality						Min. 10 Betweenness Centrality						
	Gra	ph A	Graph B		Graph AB		Graph A		Graph B		Graph AB			
	Node	Value	Node	Value	Node	Value	Node	Value	Node	Value	Node	Value		
1	621	0.074	667	0.045	634	0.053	644	0	694	0	694	0		
2	614	0.078	651	0.05	622	0.057	640	0	665	0	665	0		
3	619	0.079	663	0.05	703	0.063	642	0	670	0	670	0		
4	633	0.086	662	0.05	707	0.063	604	0	793	0.0009	644	0		
5	616	0.099	660	0.06	692	0.066	693	0	669	0.001	640	0		
6	707	0.102	652	0.077	652	0.069	709	0	675	0.001	642	0		
7	648	0.106	699	0.082	623	0.07	624	0.0007	687	0.001	709	0		
8	631	0.109	703	0.115	674	0.076	606	0.0007	673	0.002	675	0.0003		
9	622	0.161	671	0.124	616	0.084	612	0.0013	690	0.003	624	0.0003		
10	623	0.197	692	0.125	671	0.105	637	0.0013	693	0.003	612	0.0003		

Table: 2 Betweenness Centrality of Graph A, B and AB

Sr.		Max. 10 Closeness Centrality							Min. 10 Closeness Centrality						
	Gra	aph A Graph B		Graph AB		Graph A		Graph B		Graph AB					
	Node	Value	Node	Value	Node	Value	Node	Value	Node	Value	Node	Value			
1	634	0.435	700	0.505	631	0.394	693	0.263	694	0.37	709	0.252			
2	621	0.439	708	511	657	0.396	644	0.277	665	0.373	640	0.264			
3	619	0.443	696	0.511	692	0.4	604	0.283	687	0.383	644	0.267			
4	707	0.447	703	0.518	621	0.4	646	0.293	683	0.387	646	0.27			
5	631	0.447	684	0.53	623	0.405	709	0.297	690	0.387	694	0.272			
6	648	0.451	651	0.538	652	0.406	630	0.304	693	0.387	665	0.275			
7	622	0.455	652	0.538	634	0.41	640	0.304	670	0.387	610	0.28			
8	605	0.455	692	0.544	671	0.42	625	0.311	677	0.394	612	0.283			
9	614	0.467	699	0.558	703	0.42	610	0.316	688	0.405	627	0.291			
10	623	0.51	671	0.581	674	0.42	628	0.321	657	0.405	624	0.294			

Table: 3 Closeness Centrality of Graph A, B and AB

Rank	Eigen Centrality										
	Gra	ph A	Gra	ph B	Graph AB						
	Node Value		Node Value		Node	Value					
1	623	0.369	671	0.314	671	0.315					
2	605	0.314	708	0.266	708	0.266					
3	620	0.242	705	0.265	705	0.262					
4	619	0.24	652	0.252	652	0.252					
5	603	0.235	699	0.234	699	0.232					
6	648	0.232	673	0.229	673	0.227					
7	707	0.222	667	0.228	667	0.226					
8	613	0.217	661	0.228	661	0.225					
9	614	0.197	662	0.219	662	0.216					
10	634	0.183	700	0.216	700	0.214					

Rank		PageRank Centrality										
	Gra	ph A	Gra	ph B	Graph AB							
	Node	Value	Node	Value	Node	Value						
1	623	0.042	671	0.037	623	0.02						
2	605	0.031	692	0.034	671	0.018						
3	648	0.031	699	0.034	652	0.016						
4	622	0.03	652	0.031	699	0.016						
5	707	0.027	662	0.03	692	0.015						
6	616	0.025	684	0.03	674	0.015						
7	791	0.025	667	0.03	605	0.015						
8	633	0.024	663	0.029	648	0.015						
9	619	0.024	696	0.028	622	0.015						
10	631	0.024	705	0.028	707	0.015						

Table: 4 Eigen Centrality of Graph A, B and AB

Table: 5 PageRank Centrality of Graph A, B and AB

4. Find Communities in the graph and show them in different colours in the graph.

Fig.(c)

Fig.(a)

Fig.(b)

In Fig.(a) The graph shows 7 communities within a network. These communities consist of nodes that are grouped together based on similarities or interactions. Each community has a higher number of connections within the community compared to outside the community. The nodes within a community tend to be more densely connected with each other, creating a substructure within the overall network. The identification of communities within the graph can provide insights into the structure and function of the network, as well as the relationships between the nodes.

In Fig.(b) The graph depicts a network that has been partitioned into three distinct communities. These communities are formed by groups of nodes that exhibit a higher degree of interconnectedness amongst themselves compared to their connections with the nodes in other communities. The nodes within a community tend to have a more dense and cohesive structure, resulting in a distinct substructure within the overall network.

In Fig.(c) The graph displays a complex network that has been segmented into six distinct communities. Each community is comprised of a group of nodes that are densely

interconnected with one another and exhibit a higher degree of cohesion compared to their connections with nodes outside of the community.

- 5. Remove yourself, your friends, and friends of friends and then check if the graph is connected or not?
- Graph A:

The above Graph A is connected.

But it has **Cut-Vertex Set {635}**. By removing this node, the above graph becomes disconnected.

• Graph B:

The above graph is disconnected by removing myself, my friends and my friends of friends.

The graph has **3 connected components**: [{673, 705, 708, 678, 666, 661, 694, 662, 793, 698, 667, 669, 670}, {665}, {683}].

• Graph AB:

The above graph is disconnected by removing me, my friends, and my friends of friends.

The graph has 3 connected components: [{640, 641, 642, 643, 644, 646, 647, 648, 649, 661, 662, 791, 793, 666, 667, 669, 670, 673, 678, 694, 698, 701, 704, 705, 707, 708, 709, 710, 601, 602, 603, 604, 605, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638}, {665}, {683}].