Solutions to Exercise Sheet 1

Model answers to all exercises

Exercise 1.1

We start the induction at 4 since the statement is not true for 0–3. At 4 we have $2^4 = 16 < 24 = 4!$. Good. Now we assume that the statement is true for some a (which we also need to assume to be greater than 1). Then we can argue for the successor of a as follows:

$$2^{s(a)} = 2 \times 2^a$$
 by the definition of exponentiation $< 2 \times a!$ by the assumption $P(a)$ $\leq s(a) \times a!$ since we assumed $a > 1$ $= (s(a))!$ by the definition of factorial

Exercise 1.2

We assume $a \times b = 0$. Now, either a = 0 or $a \neq 0$. In the first case, the conclusion is already true. In the second case we have $a \times b = 0$ by assumption and $a \times 0 = 0$ by annihilation, hence $a \times b = a \times 0$. Using the cancellation law for multiplication (which we are allowed to apply because $a \neq 0$ by assumption), b = 0 follows, and so the conclusion has been shown in this case as well.

Exercise 1.3

Here is my list:

- $a \le a$ is always true.
- If $a \le b$ and $b \le c$ then $a \le c$.
- For any a and b, either $a \le b$ or $b \le a$ is true.
- For any c, if $a \le b$ then $a + c \le b + c$.
- If $a \le b$ then $-b \le -a$.
- For any $c \ge 0$, if $a \le b$ then $a \times c \le b \times c$.

Exercise 1.4

- (a) (i) If c > d.
 - (ii) If c < d.
 - (iii) If c = d.
- (b) We would like to write this as

$$(c,d) \equiv (c',d') \stackrel{\text{def}}{\iff} c-d = c'-d'$$

but we are not allowed to use subtraction. So we rearrange to get

$$(c,d) \equiv (c',d') \stackrel{\text{def}}{\iff} c+d'=c'+d$$

Similarly, we define comparison:

$$(c,d) \le (c',d') \iff c+d' \le c'+d$$

(c) (i)
$$(c,d) + (c',d') \stackrel{\text{def}}{=} (c+c',d+d')$$

(ii)
$$-(c,d) \stackrel{\text{def}}{=} (d,c)$$

(iii)
$$(c,d) \times (c',d') \stackrel{\text{def}}{=\!=\!=} (cc'+dd',cd'+dc')$$

(You get this by "cheating" and using ordinary algebra: $(c-d) \times (c'-d') = cc'-cd'-dc'+dd' = (cc'+dd')-(cd'+dc')$.)