THE RESERVE OF THE PROPERTY OF		Transfer of the Art of the	and the facilities	STATE OF STREET
4.1 Scatterplots	2. 1	mage	Corre	ation

Two variable statistics are methods used for detecting if there is a relation thip between two variables (e.g. the hotter the day, the more energy is used for air conditioning). Once a cause and effect relationship is determined, we can then develop mathematical models for these relationships for

Scatter Plots - graphs to determine if there is a relationship blu 2 variables independent - x-avis, dependent - y-axis

Line of Best Fit - A straight like drawn through data that: 1) passes through as many points or possible

a) Everly distributed points above 1 below

3) ignores outliers, wherever possible.

Outliers - Data that lies away from the majority Can affect a regression analysis when data set is small

Correlation - when a change in the independent variable offects the dependent variable

1) Type

2) Direction

100/

Linear Correlation - When the changes in one variable on propos to the changes in the other

Correlation Coefficient (r) - gives a quantitative measure of the strength of a linear correlation, regular positive from moderal peak what wood strong - 1.0.17 - 0.37 0 0.33 0.67 peaket
$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2 - (\Sigma x)^2][n\Sigma y^2 - (\Sigma y)^2]}}$$

Example 1 - This table shows data for the full time employees of a small company. Compute thecorrelation coefficient using the formula above.

×	9		
Age (years)	Annual Income (\$000)		
33	33		
25	31		
19	18		
44	52		
50	56		
54	60		
38	44		
29	35		

Age (x)	Income (y)	X ²	y²	xy
33	33	1089 -	1089	1089
25	31	625	961	775
19	18	361	324	34-2
44	52	1936	2704	2288
50	56	2500	3136	28 00
54	60	2916	3600	32 40
38	44	1444	1936	1672
29	35	841	1225	1015
$\Sigma_{Y} = 0.90$	$\Sigma y = 329$	$\Sigma x^2 = 11 - 712$	Sv2 = 14 975	$\Sigma xy = 12.221$

n=8

(

1 2 2		1 1 - +		
50	56	25 00	3/36	28 00
54	60	2916	3600	32 40
38	44	1444	1936	1672
29	35	841	1225	1015
$\Sigma x = 0.92$	$\Sigma y = 329$	$\Sigma x^2 = 11,712$	$\Sigma y^2 = 14,975$	$\Sigma xy = /3, 22/$

$$r = \frac{(8)(13221) - (292)(329)}{\sqrt{[(8)(11712) - (292)^{2}][(8)(14975) - (329)^{2}]^{2}}}$$

$$= \frac{9700}{\sqrt{(8432)(11559)^{2}}} = 0.98 \quad \text{and} \quad \text{positive correlation}. \qquad 2$$

MDM4U

4.1

Unit 4: Two-variable Statistics

Example 2 – The data below shows scores from two different obedience training methods.

Rogers Method		
Hours X	Score 6	
10	12	
15	16	
7	10	
12	15	
8	9	
5	8	
8	11	
16	19	
10	14	

Laing System		
Hours ~	Score 4	
8	10	
6	9	
15	12	
16	7	
9	11	
11	7	
10	9	
10	6	
8	15	

Laing

b) Sketch a line of best fit for each graph.

(

c) What training method do you think is more effective? Explain.

The Rogers method is more effective ble the correlation is stronger.