CH 7: Nested and Nested Factorial Experiments

7.1 Introduction

- Example: Study the Strain Readings of Glass Cathode Supports
 - ← 5 different Machines
 - ← 4 Heads on each Machine
 - ← 4 replications
 - Question: What if Heads on each Machine are Different?
 - ← 5*4 Factorial Design???
- Factorial Design (Crossed)

- Nested Design (Hierarchical Experiment)

7.2 Nested Experiments

- **Model of the Example:** $Y_{ijk} = \mu + M_i + H_{j(i)} + \varepsilon_{k(ij)}$, with $\varepsilon_{ij} \sim NID(0, \sigma_{\varepsilon}^2)$ where $i = 1, \dots, 5$ $j = 1, \dots, 4$ $k = 1, \dots, 4$

← Note: i) Model of Factorial Experiment:

$$Y_{ijk} = \mu + M_i + H_j + MH_{ij} + \varepsilon_{k(ij)}$$

ii) No Interaction between Machines and Heads in Nested Design

- Data for Strain-Reading Problem in a Nested Arrangement

						Machi	ine				
		A	4		B	\mathbf{C}	D		E		
Head	1	2	3	4	5-8	9-12	13-16	17	18	19	20
	6	13	1	7				1	6	3	3
	2	3	10	4				4	7	0	7
	0	9	0	7				7	0	2	4
	8	8	6	9				9	3	2	0
Head											
Totals	16	33	17	27				21	16	7	14
Mach											
Totals		9	3		81	82	88		58	3	

- **Examples:** Factor in the Nest
 - i) Farms within Townships
 - iii) Heads within Machines
- ii) Classes within Schools
- iv) Samples within Batches

- **Model:** $Y_{ijk} = \mu + M_i + H_{j(i)} + \varepsilon_{k(ij)}$

- EMS for Nested Experiment

Source	5 F <i>i</i>	4 R j	4 R k	EMS
M_{i}	0	4	4	$\sigma_{\varepsilon}^2 + 4\sigma_H^2 + 16\phi_M$
$H_{_{j(i)}}$	1	1	4	$\sigma_{\varepsilon}^2 + 4\sigma_H^2$
$\mathcal{E}_{k(ij)}$	1	1	1	$\sigma_{arepsilon}^{2}$

- Minitab ANOVA for Nested Strain-Reading Problem (Table 7.4)

Factor	Type	Levels	Values	
Machine	fixed	5	1, 2, 3, 4, 5	
Head(Machine)	random	4	1, 2, 3, 4	

Analysis of Variance for Reading

Source	DF	SS	MS	\mathbf{F}	P
Machine	4	45.07	11.27	0.60	0.670
Head(Machine)	15	282.88	18.86	1.76	0.063
Error	60	642.00	10.70		
Total	79	969.95			

				Expected Mean Square
		Variance	Error	for Each Term (using
	Source	component	term	restricted model)
1	Machine		2	(3) + 4(2) + 16Q[1]
2	Head(Machine)	2.040	3	(3) + 4(2)
3	Error	10,700		(3)

- Sum of Squares of the Heads within a Machine:

Machine A:
$$SS_H = \frac{(16)^2 + (33)^2 + (17)^2 + (27)^2}{4} - \frac{(93)^2}{16}$$

= 590.750 - 540.5624 = 50.1875
...

Machine E:
$$SS_H = \frac{(21)^2 + (16)^2 + (7)^2 + (14)^2}{4} - \frac{(58)^2}{16}$$

= 235.500 - 210.2500 = 25.2500

- Detailed ANOVA for Strain-Reading Data

Source	df	SS	MS	F	P
M_i	4	45.075	11.269	0.60	0.670
$H_{j(i)}$	15	282.875	18.858	1.76	0.063
$H_{i}(A)$	3	50.188	16.729	1.56	0.208
$H'_{i}(B)$	3	126.188	42.063	3.93	0.013
$H_{i}^{\prime}(C)$	3	74.750	24.917	2.33	0.083
$H_{i}^{\prime}(D)$	3	6.500	2.1667	0.20	0.896
$H_{i}^{\prime}(E)$	3	25.250	8.4167	0.79	0.504
$\mathcal{E}_{k(ij)}$	60	642.000	10.7000		
Totals	79	969.9500			

- Further Analysis of the Heads on Machine B and C

$$p: 2 3 4$$
 $\Rightarrow S_{\overline{y}} = \sqrt{10.70/4} \approx 1.636 \text{ and } LSR: 3.866 4.841 5.418$
 $(df 60): 2.363 2.959 3.312$

• Newman-Keuls Test for Machine B \rightarrow (Q) Any Information/Conclusion?

• Newman-Keuls Test for Machine $C \rightarrow (Q)$ Any Information/Conclusion?

- General ANOVA for a Nested Experiment

Source	df	SS	MS
A_{i}	<i>a</i> −1	$\sum_{i}^{a} T_{i}^{2} / nb - T_{}^{2} / nab$	$SS_A/(a-1)$
$oldsymbol{B}_{j(i)}$	a(b-1)	$\sum_{i}^{a} \sum_{j}^{b} T_{ij.}^{2} / n - \sum_{i}^{a} T_{i}^{2} / nb$	$SS_B/a(b-1)$
${\cal E}_{k(ij)}$	ab(n-1)	$\sum_{i}^{a} \sum_{j}^{b} \sum_{k}^{n} Y_{ijk}^{2} - \sum_{i}^{a} \sum_{j}^{b} T_{ij.}^{2} / n$	$SS_{\varepsilon}/ab(n-1)$
Totals	abn-1	$\sum_{i}^{a}\sum_{j}^{b}\sum_{k}^{n}Y_{ijk}^{2}-T_{}^{2}/nab$	

7.3 ANOVA Rationale

- **Model:** $Y_{ijk} = \mu + A_i + B_{j(i)} + \varepsilon_{k(ij)}$
- Decomposition:

$$Y_{iik} - \mu \equiv (\mu_{i \bullet} - \mu) + (\mu_{ii} - \mu_{i \bullet}) + (Y_{iik} - \mu_{ii})$$

→ Decomposition (Sample Version):

$$Y_{iik} - \overline{Y}_{\cdot \cdot \cdot \cdot} \equiv (\overline{Y}_{i \cdot \cdot \cdot} - \overline{Y}_{\cdot \cdot \cdot}) + (\overline{Y}_{ij \cdot \cdot} - \overline{Y}_{i \cdot \cdot}) + (Y_{iik} - \overline{Y}_{ij \cdot})$$

 \rightarrow Sum of Squares of each term over (i, j, k) gives

$$\sum_{i,j,k}^{a,b,n} (Y_{ijk} - \overline{Y}_{...})^{2} \equiv \sum_{i}^{a} nb(\overline{Y}_{i...} - \overline{Y}_{...})^{2} + \sum_{i}^{a} \sum_{j}^{b} n(\overline{Y}_{ij..} - \overline{Y}_{i...})^{2} + \sum_{i,j,k}^{a,b,n} (Y_{ijk} - \overline{Y}_{ij.})^{2}$$

$$SS_{Total} = SS_{A} + SS_{B} + SS_{Error}$$

$$(abn - 1) = (a - 1) + a(b - 1) + ab(n - 1)$$

- Remarks:

$$SS_{B} = \sum_{i}^{a} \sum_{j}^{b} n(\overline{Y}_{ij.} - \overline{Y}_{i..})^{2} = \sum_{i}^{a} \sum_{j}^{b} T_{ij.}^{2} / n - \sum_{i}^{a} T_{i..}^{2} / nb$$

$$= \sum_{i}^{a} (\sum_{j}^{b} T_{ij.}^{2} / n - T_{i..}^{2} / nb) = \sum_{i}^{a} SS_{B(i)}$$

 \leftarrow Sum of Squares between levels of **B** for each level of **A**, and then Pooling over all levels of **A**

7.4 Nested-Factorial Experiments

- In some Multi-Factor Experiments, Both Factors are Crossed with others and Factors are Nested within Levels of the Others
 - → i.e., Both Factorial and Nested Factors, fixed or random, appear in the same experiment: **Nested-Factorial Experiment**
- Example 7.1: Gun-Loading Problem

Response: Number of Rounds per minute that could be fired from a Naval Gun **Factors:**

- Loading Methods: M₁ (New) and M₂ (Existing)
- Physical group: G₁ (Slight), G₂ (Average), G₃ (Heavy)
- Teams: 3 teams Randomly Chosen for each group
- Two replications for each team
- ← Check the randomization and experimental procedures (page 198-9)

- Data and ANOVA for Gun-Loading Problem (Table 7.8)

		Group									
		I			II		III				
Team	1	2	3	4	5	6	7	8	9		
Moth J T	20.2	26.2	23.8	22.0	22.6	22.9	23.1	22.9	21.8		
Methd I	24.1	26.9	24.9	23.5	24.6	25.0	22.9	23.7	23.5		
Methd	14.2	18.0	12.5	14.1	14.0	13.7	14.1	12.2	12.7		
II	16.2	19.1	15.4	16.1	18.1	16.0	16.1	13.8	15.1		

Factor	Levels
Metho	1 11
Group	1 2 3
Team	1 2 3 4 5 6 7 8 9

- **Model:** $Y_{ijkm} = \mu + M_i + G_j + MG_{ij} + T_{k(j)} + MT_{ik(j)} + \varepsilon_{m(ijk)}$
- EMS for Gun-Loading Problem

		2	3	3	2	
		F	\mathbf{F}	R	R	
Source	모수	i	j	k	m	EMS
M_{i}	$\phi_{\!\scriptscriptstyle M}$	0	3	3	2	$\sigma_{\varepsilon}^2 + 2\sigma_{MT}^2 + 18\phi_{M}$
$G_{_{j}}$	$\pmb{\phi}_G$	2	0	3	2	$\sigma_{\varepsilon}^2 + 4\sigma_T^2 + 12\phi_G$
MG_{ij}	$\phi_{\scriptscriptstyle MG}$	0	0	3	2	$\sigma_{\varepsilon}^2 + 2\sigma_{MT}^2 + 6\phi_{MG}$
$T_{k(j)}$	$\sigma_{\scriptscriptstyle T}^{\scriptscriptstyle 2}$	2	1	1	2	$\sigma_{\varepsilon}^2 + 4\sigma_T^2$
$MT_{ik(j)}$	$\sigma_{\scriptscriptstyle MT}^{\scriptscriptstyle 2}$	0	1	1	2	$\sigma_{\varepsilon}^2 + 2\sigma_{MT}^2$
$\mathcal{E}_{m(ijk)}$	$\sigma_{arepsilon}^{\scriptscriptstyle 2}$	1	1	1	1	$\sigma_{arepsilon}^2$

 \leftarrow EMS 계산시, 계수의 곱을 합할 때 첨자의 괄호 포함 여부는 무관 (참고) e.g., $T_{k(j)}$ 항에 대한 EMS 계산

- Minitab ANOVA for Gun-Loading Problem (Table 7.9)

Facto	r Type	Lev	els Valu	es		
Meth	od fixed		2 1, 2			
Grou	p fixed		3 1, 2,	3		
Team	(Group) rando	m	3 1, 2,	3		
Analy	sis of Variance fo	or <mark>Spe</mark>	ed			
Sourc	ee	DF	SS	MS	${f F}$	P
Meth	od	1	651.951	651.95	364.84	0.000
Grou	p	2	16.052	8.026	1.23	0.358
Meth	od*Group	2	1.187	0.594	0.33	0.730
Team	(Group)	6	39.258	6.543	2.83	0.040
Meth	od*Team(Group)	6	10.722	1.787	0.77	0.601
Error	•	18	41.590	2.311		
Total		35	760.760			
					Expected N	Iean Square
			Variance	Error	for Each To	erm (using
So	ource	C	omponent	term	restricted	model)
1 M	ethod			5	(6) + 2(5)	+ 18 Q[1]
2 G i	roup			4	(6) + 4(4)	+ 12 Q[2]
3 M	ethod*Group			5	(6) + 2(5)	+ 6 Q[3]
4 Te	eam(Group)		1.0581	6	(6) + 4(4)	

- After ANOVA: → (Q) Any Information/Conclusion?

5 Method*Team(Group)

6 Error

Note that <u>Method</u> and <u>Team(Group)</u> are Significant!

→ i) Further Analysis of Team Effects for each Group (see Table 7-10~12)

-0.2618

2.3106

6 (6) + 2 (5)

(6)

$$SS_{Team(G_1)} = 35.7350$$
, $SS_{Team(G_2)} = 1.6217$, $SS_{Team(G_3)} = 1.9017$

- ii) Group 1 has significant different effect than Group 2 and 3
 - → Further Analysis between Teams within Group 1:

→ Team 2 is exceptionally faster than the other two teams !!!

- Computation of Sum of Squares: $SS_{M \times T(G)}$
- Data on Gun-Loading Problem for Group I (Table 7.10)

		Method						
_	1		2		3		Totals	
Method I	20.2		26.2		23.8			
	24.1		26.9		24.9			
		44.3		53.1		48.7	146.1	
Method II	14.2		18.0		12.5			
	16.2		19.1		15.4			
		30.4		37.1		27.9	95.4	
Team totals		74.7		90.2		76.6	241.5	

→ Computation: Factorial Experiment (see, Page 147)

$$SS_{Cell} = \frac{44.3^2 + 53.1^2 + \dots + 27.9^2}{2} - \frac{241.5^2}{12} = 256.1975$$

$$SS_{Method} = \frac{146.1^2 + 95.4^2}{6} - \frac{241.5^2}{12} = 214.2075$$

$$SS_{Team} = \frac{74.7^2 + 90.2^2 + 76.6^2}{4} - \frac{241.5^2}{12} = 35.7350$$

$$\Rightarrow SS_{M \times T} = SS_{Cell} - SS_{Method} - SS_{Team} = 256.1975 - 214.2075 - 35.7350 = 6.2550$$

Data on Gun-Loading Problem for Group II

$$SS_{Cell} = 199.9567$$
, $SS_{Method} = 196.8300$, $SS_{Team} = 1.6217$
 $\Rightarrow SS_{M \times T} = 199.9567 - 196.8300 - 1.6217 = 1.5050$

Data on Gun-Loading Problem for Group III

$$SS_{Cell} = 246.9642$$
, $SS_{Method} = 242.1009$, $SS_{Team} = 1.9017$
 $\Rightarrow SS_{M \times T} = 246.9642 - 242.1009 - 1.9017 = 2.9616$

$$SS_{M \times T(G)} = SS_{M \times T(G_1)} + SS_{M \times T(G_2)} + SS_{M \times T(G_3)}$$
= 6.2550 + 1.5050 + 2.9616 \approx 10.722 : By Pooling for All Groups

7.5 Repeated-Measures Design Nested-Factorial Experiments

- Repeated Measure = A Special Case of Factorial and Nested-Factorial Design
 ← Same Subjects are measured repeatedly
 - Example 7.2 (Pre- and Post- Effects): Evaluate Physical Strength Before and After a Specified Training Period (Factorial Experiment Type)

Sub	ojects	Pretest	Post-Test	
1	-	100	115	
2		110	125	← Between Subjects
3		90	105	· ·
4		110	130	← Within Subjects
5		125	140	· ·
6		130	140	
7		105	125	

$$\leftarrow \text{Model:} \quad Y_{ij} = \mu + S_i + \varepsilon_{j(i)}$$
(DF 6 7)

ANOVA (Repeated Measure Design)

Source	DF		SS	MS	F
Between Sub (S _i)	6		2084.72	347.45	
Within Subjects	7		902.00		
Test (T _j)		1	864.29	864.29	145
Residuals		6	35.71	5.96	
Totals	13		2985.71		

Model:
$$Y_{ij} = \mu + S_i + T_j + ST_{ij}$$
 (Factorial Design with No Replication) (DF 6 1 6) \leftarrow Subjects (Random), Test (Fixed)

ANOVA (Repeated Measure Design)

		7	2	1	
Source	DF	K i	.j	R k	EMS
S_i	6	1	2	1	$\sigma_{\scriptscriptstyle \mathcal{E}}^2 + 2\sigma_{\scriptscriptstyle \mathcal{S}}^2$
T_{j}	1	7	0	1	$\sigma_{\varepsilon}^2 + \sigma_{ST}^2 + 7\phi_T \leftarrow MS_S / MS_{ST}$
ST_{ij}	6	1	0	1	$\sigma_{arepsilon}^2 + \sigma_{ST}^2$
$\mathcal{E}_{k(ij)}$	0	1	1	1	σ_{ε}^2 (not retrievable)

← Same as a Randomized Block Design

← Same as Paired Comparison (t-Test)

• Example 7.3 (Pre- and Post- Effects): Evaluate Physical Strength Before and After a Specified Training Period (Nested-Factorial Experiment Type),

Group	Subjects	Pretest	Post-Test				
1	1	26.25	29.50				
II	 7 8	29.33 27.47	31.15 28.74				
III	14 15	28.09 22.27	28.99 22.52				
	<u>:</u> ii	27.55	27.86				

→ A Nested-Factorial Design: Subjects are nested within Groups and then Tests are Factorial on both Groups and Subjects

← Model:
$$Y_{ijkm} = \mu + G_i + S_{j(i)} + T_k + GT_{ik} + TS_{kj(i)} + \varepsilon_{m(ijk)}$$
(DF 2 18 1 2 18 0)
$$3*(7-1) \qquad (3-1)*(2-1) \quad 1*18$$

ANOVA

Source	DF	SS	MS	EMS	F
Between Sub	20	271.05			
$\mathbf{Group}(G_i)$	2	28.14	14.07	$\sigma_{\varepsilon}^2 + 2\sigma_{S}^2 + 14\phi_{G}$	1.04
Sub in $G(S_{j(i)})$	18	242.91	13.50	$\sigma_{\varepsilon}^2 + 2\sigma_{S}^2$	
Within Sub	21	35.73			
Test (T_k)	1	21.26	21.26	$\sigma_{\varepsilon}^2 + \sigma_{TS}^2 + 21\phi_T$	183
$G \times T$	2	12.38	6.19	$\sigma_{\varepsilon}^2 + \sigma_{TS}^2 + 7\phi_{GT}$	53
$T \times S_{kj(i)}$	18	2.09	0.116	$\sigma_{\varepsilon}^2 + \sigma_{TS}^2$	

- Derivation of EMS: See Table 7.18 (Page 207)
- ☐ Two Cases of Three-Factor Experiments with Repeated Measure
 - Case I: Two of Factors (Fixed) crossing (or Repeated) All Subjects

$$\begin{aligned} Y_{ijkm} &= \mu + A_i + S_{j(i)} \\ &+ B_k + AB_{ik} + BS_{kj(i)} + C_m + AC_{im} + CS_{mi(i)} + BC_{km} + ABC_{ikm} + BCS_{mki(i)} \end{aligned}$$

 Case II: Subjects are Nested within Two Factors (Fixed) and the Third Factors Crossing (or is Repeated on) All Subjects

$$\begin{aligned} Y_{ijkm} &= \mu + A_i + B_j + AB_{ij} + S_{k(ij)} \\ &\quad + C_m + AC_{im} + BC_{jm} + ABC_{ijm} + CS_{mk(ij)} \end{aligned}$$