

Sintáxis y Semántica

Un lenguaje de programación es una notación formal para describir algoritmos a ser ejecutados en una computadora

Lenguaje→ Sintaxisde programación→ Semántica

Sintáxis y Semántica

Definiciones.

- Sintáxis: Conjunto de reglas que definen como componer letras, dígitos y otros caracteres para formar los programas
- Semántica: Conjunto de reglas para dar significado a los programas sintácticamente válidos.

```
v: array [1..10] of integer; ----- en Pascal y int v[10]; ----- en C
```

Sintáxis y Semántica

- ¿Cuál es la utilidad de definir y conocer la sintáxis y la semántica de un lenguaje? ¿Quiénes se benefician?
 - Programadores
 - Implementador (Compilador)
- La definición de la sintáxis y la semántica de un lenguaje de programación proporcionan mecanismos para que una persona o una computadora pueda decir:
 - Si el programa es válido y
 - Si lo es, qué significa

Características de la sintáxis

- La sintáxis debe ayudar al programador a escribir programas correctos sintácticamente
- La sintáxis establecen reglas que sirven para que el programador se comunique con el procesador
- La sintáxis debe contemplar soluciones a caracterísitcas tales como:
 - Legibilidad
 - Verificabilidad
 - Traducción
 - Falta de ambigüedad

La sintáxis establece reglas que definen cómo deben combinarse las componentes básicas, llamadas "word", para formar sentencias y programas.

Elementos de la sintáxis

- Alfabeto o conjunto de caracteres
- identificadores
- Operadores
- Palabra clave y palabra reservada
- Comentarios y uso de blancos

Alfabeto o conjunto de caracteres

El código ASCII

sigla en inglés de American Standard Code for Information Interchange (Código Estadounidense Estándar para el Intercambio de Información)

Caracteres de control ASCII								
DEC	HEX	Simbolo ASCII						
00	00h	NULL	(carácter nulo)					
01	01h	SOH	(inicio encabezado)					
02	0.2h	STX	(inicio texto)					
03	0.3h	ETX	(fin de texto)					
04	04h	EOT	(fin transmisión)					
05	05h	ENQ	(enquiry)					
06		ACK	(acknowledgement)					
07	07h	BEL	(timbre)					
08		BS	(retroceso)					
09	09b	HT	(tab horizontal)					
10		LF	(sato de linea)					
11		VT	(tab vertical)					
12	0Ch	FF	(form feed)					
13		CR	(retorno de carro)					
14	OEb-	SO	(shift Out)					
15	CF h	SI	(shift in)					
16	ton	DLE	(data link escape)					
17	110	DC1	(device control 1)					
18	12%	DC2	(device control 2)					
19	1.3h	DC3	(device control 3)					
20	1-4h	DC4	(device control 4)					
21	15h	NAK	(negative acknowle.)					
22	16h	SYN	(synchronous idle)					
23	17h	ETB	(end of trans, block)					
24	155	CAN	(cancel)					
25	100	EM	(end of medium)					
26	1.40	SUB	(substitute)					
27		ESC	(escape)					
28	101	FS	(file separator)					
29	1Dh	GS	(group separator)					
30	1Eh	RS	(record separator)					
31	1Fb	US	(unit separator)					
127	29h	DEL	(delete)					

DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo
32	20h	espacio	64	40h	@	96	60n	
33	21h	1	65	41h	A	97	61h	a
34	22h	-	66	42%	В	98	62h	b
35	23h		67	43h	C	99	53h	c
36	24h	5	68	440	D	100	64h	d
37	25h	%	69	45h	E	101	65h	e
38	25h	8	70	46h	F	102		f
39	275		71	476	G	103	67h	9
40	285	(72	40h	н	104		h
41	29%	j	73	49h	1	105	65h	1
42	246		74	440	J	106	sah	i
43			75	4Bh	K	107		k
44	20h		76	4Ch	L	108	6Ch	1
45	20h	20	77	4Dh	M	109	(Oh	m
46	2Eh		78	4Eh	N	110	6Eh	n
47	2Fb	- 1	79	4Fh	0	111		0
48	30h	0	80		P	112		p
49	21h	1	81	51h	Q	113	71h	q
50	325	2	82	52h	R	114	72h	ř
51	33h	3	83	53h	S	115	73h	5
52	345	4	84	54h	T	116	745	t
53	36h	5	85	55h	U	117	75h	u
54		6	86	56h	V	118		v
55	37h	7	87	57h	W	119	77h	w
56		8	88	58h	X	120	70h	×
57		9	89	59h	Y	121		y
58		1	90	5Ah	Z	122	7Ah	Z
59		100	91	58h		123		(
60	3Ch	<	92	5Ch	į	124		ì
61		-	93		1	125		i
62	3Eh	>	94	5Eh	*	126	7Eh	-
63	3Fb	?	95	SFh	1.00	-		Cil.com.ar

ASCII extendido											
DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo
128	Bon	Ç	160	Ach	á	192	CON	L	224	EOn	Ó
129		ü	161	Ath	i	193	C1h	1	225	£1h	ß.
130		é	162	A2h	ò	194	C2h	т	226	E2h	Ó
131		à	163	A3h	ü	195	C3b	Ţ	227	E3h	Ó
132	940	a	164	A4h	ñ	196	C4h	-	228	E4h	ő
133	#5h	à	165	. ASh	Ñ	197	CSN	+	229	E5b	Ō
134		â	166	A6h		198	CSh	à	230	-E6h	μ
135	=7h	ç	167	A7h		199	C7h	A	231	±770	þ
136		ě	168	Alth	ž	200	C8h	lb.	232		Þ
137		ĕ	169	Adh	6	201	C0h	F	233	Elley	ÛÛÛ
138		è	170	AAb	7	202	CAb	1	234	EAD	Û
139		Y	171	ABh	3/9	203	CSP	· ·	235		
140	8Ch	1	172	ACh	54	204	CCh	T.	236	ECn.	Ý
141	8Dh	1	173	ADh	1	205	CON	100	237	EDn	Ŷ
142		A	174	AEh	4	206	CEN	4	238	EEN	-
143		A	175	AFh		207	CFh		239	EFb	*
144		É	176		善	208	Dóh	ð	240	Föb	
145	91h	æ	177	Dith.	#	209	O1h	Ð	241	F1h	*
146		Æ	178	B2h		210	DØth	É	242	F2b	
147		ő	179	83h	T	211	D35	Ε	243	F3h	9/4
148	94h	ò	180	B4h	4	212	D:4h	Ė	244	F4b	1
149		ò	181		À	213	D5h		245	F5h	5
150		ü	182		Á	214		1	246	FGB	
151	97%	ů	183	67h	A	215		í	247	F7D	20
152		¥	184		0	216		Ĩ	248	Filh	
153		ŏ	185		4	217	D9h	7	249	F9b	-
154		Ü	186		1	218		-	250	FAb	
155		0	187			219	DBh		251	78b	1
156	9Ch	£	188		1	220	DCb		252	FCh	
157		Ø	189	BDh	é	221		Ī	253	FDh	
158	1Eh	*	190		¥	222	DEN	1	254	FEB	
159	g#b	1	191		-	223	DFh		255	FFb	

Alfabeto o coniunto de caractero Latin-1 (ISO-8859-1: Western European)

El código ASCII

sigla en inglér Cyrillic (ISO-8859-5) 0x0

Caractere

Arabic (ISO-8859-6)

0x0

0x10x2

0x3

0x5 P

0x6 e

0x8

0x9

0xb0xd a 0xc

0xd 0xe

Greek (ISO-8859-7)

G	0	1	2	3	4	5	6	7	8	9	a
0x0	nul	stx	sot	etx	eot	enq	ack	bel	bs	ht	lf
0x1	dle	dcl	dc2	dc3	dc4	nak	syn	etb	can	em	sub
0x2	sp	!	"	#	\$	%	&	'	()	*
0x3	0	1	2	3	4	5	6	7	8	9	:
0x4	<u>@</u>	A	В	C	D	E	F	G	Η	I	J
0x5	P	Q	R	S	T	U	V	W	X	Y	
0x6	`	a	b	С	d	e	f	g	h	i	j
0x7	p	q	ſ	S	t	u	v	w	х	y	z
0x8	pad	hop	bph	nbh	ind	nel	ssa	esa	hts	htj	vts
0x9	des	pul	pu2	sts	cch	nnw	spa	epa	505	sgci	sci
0xa	nbsp	¢	,	£	xx	xx	I I	§		©	xx
0xb	0	±	2	3	*		Ά		Έ	Ή	Ι
0xc	ΐ	A	В	Γ	Δ	E	Z	Н	Θ	I	K
0xd	П	Р	xx	Σ	T	Y	Φ	X	Ψ	Ω	Ϊ

0xe

UNICODE

Alfabeto o conjunto de caracteres

Importante: Tener en cuenta con qué conjunto de caracteres se trabaja sobre todo por **el orden** a la hora de comparaciones.

La secuencia de bits que compone cada carácter la determina la implementación. # -*- coding: utf-8 -*-

Identificadores

- Elección más ampliamente utilizada: Cadena de letras y dígitos, que deben comenzar con una letra
- Si se restringe la longitud se pierde legibilidad

Operadores

 Con los operadores de suma, resta, etc. la mayoría de los lenguajes utilizan +, -. En los otros operadores no hay tanta uniformidad

Comentarios

Hacen los programas más legibles

"El código es leído muchas más veces de lo que es escrito". Guido Van Roussen.

Palabra clave y palabra reservada

Array do else if

- Palabra clave o keywords, son palabras claves que tienen un significado dentro de un contexto.
- Palabra reservada, son palabras claves que además no pueden ser usadas por el programador como identificador de otra entidad.
- Ventajas de su uso:
 - Permiten al compilador y al programador expresarse claramente
 - Hacen los programas más legibles y permiten una rápida traducción
- Soluciones para evitar confusión entre palabras claves e identificadores
 - Usar palabras reservadas
 - Identificarlas de alguna manera (Ej. Algol) usa 'PROGRAM 'END
 - Libre uso y determinar de acuerdo al contexto.

Ej: if if=1 then if=0;

Python: las palabras reservadas y sus versiones...

En las versiones 2.x el lenguaje cuenta con 31 palabras reservadas:

and as assert break class continue def del elif else except exec finally for from global if import in is lambda not or pass print raise return try while with yield

En la versión 3.x se quitaron de la lista **exec y print** han sido removidas, ya que ahora se presentan como funciones incorporadas por defecto.

Se han aadido: los térmiinos nonlocal, True, False y None

Por lo tanto, la lista de *keywords* en Python 3 resulta ser la siguiente.

False None True and as assert break class continue def del elif else except finally for from global if import in is lambda nonlocal not or pass raise return try while with yield

Esto lleva a que...

Estructura sintáctica

Vocabulario o words

 Conjunto de caracteres y palabras necesarias para construir expresiones, sentencias y programas. Ej: identificadores, operadores, palabras claves, etc.

Las words no son elementales se construyen a partir del alfabeto

Expresiones

- Son funciones que a partir de un conjunto de datos devuelven un resultado.
- Son bloques sintácticos básicos a partir de los cuales se construyen las sentencias y programas

Sentencias

- Componente sintáctico más importante.
- Tiene un fuerte impacto en la facilidad de escritura y legibilidad
- Hay sentencias simples, estructuradas y anidadas.

Reglas léxicas y sintácticas.

- Diferencias entre mayúsculas y minúsculas
- •Símbolo de distinto. En C!= en Pascal <>
- Reglas léxicas: Conjunto de reglas para formar las "word", a partir de los caracteres del alfabeto
- Reglas sintácticas: Conjunto de reglas que definen como formar las "expresiones" y "sentencias".

•El If en C no lleva ""then"", en Pascal si

La diferencia entre léxico y sintáctico es arbitrario, dan la apariencia externa del lenguaje

Tipos de Sintáxis

ABSTRACTA

Se refiere básicamente a la estructura

CONCRETA

Se refiere básicamente a la parte léxica

PRAGMÁTICA

Se refiere básicamente al uso práctico

Ejemplo de sintáxis concreta y abstracta:.

- Son diferentes respecto a la sintáxis
 concreta, porque existen diferencias léxicas
 entre ellas
 - Son iguales respecto a la sintáxis abstracta, ya que ambas tienen la misma estructura

w hile condición bloque

Sintáxis Ejemplo de sintáxis pragmática:.

Ej1.

<> es mas legible que !=

Ej2.

En C y Pascal {} o begin-end pueden omitirse si el bloque esta compuesto por una sola sentencia

while
$$(x!=y)$$
 $x=y+1$

Pragmáticamente puede conducir a error ya que si se necesitara agregar una sentencia debe agregarse el begin end o las {}.

Cómo definir la sintáxis

- Se necesita una descripción finita para definir un conjunto infinito (conjunto de todos los programas bien escritos)
- Formas para definir la sintaxis:
 - Lenguaje natural. Ej.: Fortran
 - Utilizando la gramática libre de contexto, definida por Backus y Naun: BNF. Ej: Algol
 - Diagramas sintácticos son equivalentes a BNF pero mucho mas intuitivos

BNF (Backus Naun Form)

- Es una notación formal para describir la sintaxis
- Es un metalenguaje
- Utiliza metasímbolos
 - . < > ::= |
- Define las reglas por medio de "producciones"
 Ejemplo:
- < digito > ::= 0|1|2|3|4|5|6|7|8|9

No terminal Se define como Terminales

Metasímblo

símbolos

terminales

Gramática

- Conjunto de reglas finita que define un conjunto infinito de posibles sentencias válidas en el lenguaje.
- Una gramática esta formada por una 4-tupla

de la gramática que

pertenece a N

Árboles sintácticos

"Juan un canta manta"

- Es una oración sintácticamente incorrecta
- No todas las oraciones que se pueden armar con los terminales son válidas
- Se necesita de un Método de análisis (reconocimiento) que permita determinar si un string dado es valido o no en el lenguaje: Parsing.
- El parse, para cada sentencia construye un "árbol sintáctico o árbol de derivación"

Árboles sintácticos

- Dos maneras de construirlo:
 - Método botton-up
 - De izquierda a derecha
 - De derecha a izquierda
 - Método top-dow
 - De izquierda a derecha
 - De derecha a izquierda

Ejemplo: árbol sintáctico de "oración". Top-down de izquierda a derecha

Árbol de derivación:

Ejemplo top-down de izquierda a derecha

```
<oración> =>
                 <sujeto><predicado>
                 Juan cado>
         =>
                 Juan <verbo><objeto>
         =>
                 Juan compra <objeto>
         =>
                 Juan compra art><sustan>
         =>
                 Juan compra un <sustan>
         =>
                 Juan compra un perro
         =>
```

 Los compiladores utilizan el parse canónico que es el bottom-up de izquierda a derecha

Otro ejemplo:

- Expresiones simples de uno y dos términos
- Posibles operaciones: + / * y -
- Solo los operandos A, B y C
- Ejemplo de expresiones válidas:
 - A
 - A+B
 - A-C
 - etc.

Producciones recursivas:

- Son las que hacen que el conjunto de sentencias descripto sea infinito
- Ejemplo de producciones recursivas:

```
<natural> ::= <digito> | <digito> <digito> ...... | <digito> ...... <digito>
```

Si lo planteamos recursivamente

 Cualquier gramática que tiene una producción recursiva describe un lenguaje infinito.

Producciones recursivas:

- Regla recursiva por la izquierda
 - La asociatividad es por la izquierda
 - El símbolo no terminal de la parte izquierda de una regla de producción aparece al comienzo de la parte derecha
- Regla recursiva por la derecha
 - La asociatividad es por la derecha
 - El símbolo no terminal de la parte izquierda de una regla de producción aparece al final de la parte derecha

Gramáticas ambiguas:

 Una gramática es ambigua si una sentencia puede derivarse de mas de una forma

```
G=(N,T,S,P)
N = \{ \langle id \rangle, \langle exp \rangle, \langle asig \rangle \}
T = \{ A,B,C, +,*,-,/,:= \}
S = \langle asiq \rangle
P1 = {
<asiq> ::= <id> := <exp>
<exp> ::= <exp>+<exp>|<exp>+<exp>-=
   <exp>|<exp>/ <exp>|<id>
<id> ::= A | B | C
```

Subgramáticas:

Sea la gramática para identificadores GI = (N, T, S, P)

 Para definir la gramática GE, de expresiones, se puede utilizar la gramática de números y de identificadores.

GE se defiría utilizando las **subgramáticas** GN y GI "La filosofía de composición es la forma en **que** trabajan los compiladores"

Gramáticas libres de contexto y sensibles al contexto :

int e;
$$a := b + c$$
;

- Según nuestra gramática son sentencias sintácticamente válidas, aunque puede suceder que a veces no lo sea semánticamente.
 - El identificador está definido dos veces
 - No son del mismo tipo
- Una gramática libre de contexto es aquella en la que no realiza un análisis del contexto.
- Una gramática sensible al contexto analiza este tipo de cosas. (Algol 68).

- Otras formas de describir la sintaxis libres de contexto:
 - EBNF. Esta gramática es la BNF extendida
 - Los metasimbolos que incorporados son:
 - [] elemento optativo puede o no estar
 - (|) selección de una alternativa
 - {} repetición
 - * 0 o mas veces + una o mas veces

Ejemplo con EBNF:

Definición números enteros en BNF y en EBNF **BNF**

EBNF

Eliminó la recursión y es mas fácil de entender

Recursión

Diagramas sintácticos (CONWAY):

- Es un grafo sintáctico o carta sintáctica
- Cada diagrama tiene una entrada y una salida, y el camino determina el análisis.
- Cada diagrama representa una regla o producción
- Para que una sentencia sea válida, debe haber una camino desde la entrada hasta la salida que la describa.
- Se visualiza y entiende mejor que BNF o EBNF

Diagramas sintácticos (CONWAY):

Pensar:

Como definir una gramática para una expresión con operandos del tipo identificador y números y que refleje el orden de prioridades de las operaciones