WSI - ćwiczenie 1. Przeszukiwanie przestrzeni grupa 101

16 października 2020

1 Sprawy organizacyjne

- 1. Ćwiczenie realizowane jest samodzielnie.
- 2. Ćwiczenie wykonywane jest w jezyku R lub Python.
- 3. Ćwiczenie powinno zostać wykonane do 22.10.2020 23:59. Do tego czasu na adres mailowy jakub.lyskawa.stud@pw.edu.pl należy przesłać plik .zip albo .tar.gz zawierający kod, dokumentację oraz skan lub zdjęcie podpisanego oświadczenia o pracy zdalnej.
- 4. Dokumentacja powinna być w postaci pliku .pdf albo notebooka jupyterowego. Szczegółowe informacje co dokumentacja powinna zawierać oraz na co będzie zwracana uwaga podczas oceniania znajdują się na stronie http://staff.elka.pw.edu.pl/~rbiedrzy/WSI/index.html
- 5. Wzór oświadczenia o pracy zdalnej jest załącznikiem do zarządzenia https://www.bip.pw.edu.pl/var/pw/storage/original/application/9bfa38aad48ba019ab4cd5449ef209b6.pdf
- 6. W przypadku pytań lub wątpliwosci zachęcam do pisania na adres mailowy jakub.lyskawa.stud@pw.edu.pl.

2 Zadanie

W ramach pierwszego ćwiczenia należy zaimplementować metodę realizującą algorytm wg. tabeli doprecyzowującej zadanie.

Następnie należy zbadać zachowanie tych algorytmów dla

- różnych wartości parametru określonego w tabeli,
- różnych wartości punktu początkowego

dla problemów maksymalizacji podanych niżej funkcji celu. Proszę w szczególności o zwrócenie uwagi na osiągane wartości funkcji celu w funkcji liczby kroków algorytmu oraz na czas trwania obliczeń.

Doprecyzowanie zadania

Początek nazwiska	Algorytm	Badany parametr
[A, Ka]	Najszybszy wzrost	Rozmiar kroku β_t
(Ka - M]	Najszybszy wzrost	Wymiarowość przestrzeni poszukiwań n
(M - Ro]	Metoda Newtona	Rozmiar kroku β
(Ro - Z]	Metoda Newtona	Wymiarowość przestrzeni poszukiwań n

Funkcje celu

gdzie I_n jest macierzą jednostkową $n\times n,\, n=\dim(x)$