CS 109 Quiz 1 (30 points):

- 1. [14 points] True or False (2 points correct, 1 point blank, 0 points guess). Note that true means **always** true. Assume *A* and *B* are events with **nonzero** probability.
 - a. $Pr(A|B) + Pr(A^{C}|B) = 1$.
 - b. $Pr(A|B) + Pr(A|B^{C}) = 1$.
 - c. $Pr(A \cap B) + Pr(A \cap B^C) = 1$.
 - d. $Pr(A \cap B) = Pr(A) Pr(B)$.
 - e. If Pr(A) = 0.4 and Pr(B) = 0.6, then $A = B^{C}$.
 - f. Suppose Pr(A) = 0.2, Pr(B) = 0.3, and $Pr(A \cup B) = 0.44$. Then, A and B are independent.
 - $g. \ A$ and B can be both mutually exclusive and independent.
- 2. [9 points] Definitions (3 points each).
 - a. Cite Bayes Theorem. Pr(A|B) = ...
 - b. Cite the Law of Total Probability for Pr(A) in terms of the partition B, B^C . Pr(A) =.
 - c. Cite the Chain Rule for three events. $Pr(A \cap B \cap C) = ...$
- 3. [7 points] Short Answer (7 points).
 - a. Suppose there are 7 blue fish, 4 red fish, and 8 green fish in a large fishing tank. You drop a net into it and end up with 6 fish. What is the probability you get 2 of each color?

Take-Home Problem

A, B, C, D, E, F, and G want to sit in a row of 9 chairs for a picture (note: there are only 7 of them). A and B cannot sit next to each other, since they are enemies. C and D must sit next to each other, since they are dating. Children E and G must sit immediately adjacent to their parent F. How many ways can they sit in a row?