MSc. Data Science

LAA - Homework 1

1. Let A be an $m \times n$ matrix. Define

$$||A||_F = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{\frac{1}{2}}.$$

- (i) Prove that this is indeed a matrix norm.
- (ii) Evaluate $||A||_1$, $||A||_2$, $||A||_{\infty}$ and $||A||_F$ for

$$A = \left(\begin{array}{rrr} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{array}\right).$$

- (a) A be an $m \times n$ matrix and $||A||_F = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{\frac{1}{2}}$. To prove that this is indeed a matrix norm we need to verify the properties of the Matrix Norm.
 - First, $||A||_F$ is positive definite as we are squaring all the entries and then taking square root of it. Hence, it is following the positive definite property.
 - Second, We need to prove the triangle inequality. Let us take 2 norms, $||A||_F$ and $||B||_F$. Need to show, $||A + B||_F \le ||A||_F + ||B||_F$.

$$||A + B||_F^2 = ||A||_F^2 + ||B||_F^2 + 2||AB||_F$$

Now,

$$||AB||_F = (\sum_{i=1}^m \sum_{j=1}^n (|a_{ij}||b_{ij}|)^2)^{\frac{1}{2}}$$

using Cauchy-Schwartz Inequality,

$$\left(\sum_{i=1}^{m}\sum_{j=1}^{n}(|a_{ij}||b_{ij}|)^{2}\right)^{\frac{1}{2}} \leq \left(\sum_{i=1}^{m}\sum_{j=1}^{n}|a_{ij}|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{m}\sum_{j=1}^{n}|b_{ij}|^{2}\right)^{\frac{1}{2}} = ||A||_{F}||B||_{F}$$

Hence.

$$2||AB||_F \le 2||A||_F||B||_F$$

So,

$$||A + B||_F^2 \le ||A||_F^2 + ||B||_F^2 + 2||A||_F||B||_F = (||A||_F + ||B||_F)^2$$

By applying Square Root on both side,

$$||A + B||_F \le ||A||_F + ||B||_F$$
 (Proved)

• We have already shown by CS inequality that, $||AB||_F \leq ||A||_F ||B||_F$

As, it is following all the properties of a Matrix Norm, Frobenius norm is indeed a matrix norm.

(b)

$$A = \left(\begin{array}{rrr} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{array}\right).$$

• Calculating 1-Norm,

$$||A||_1 = \max_{1 \le j \le 3} \left[\sum_{i=1}^3 |a_{ij}| \right] = \max[10, 5, 10] = \mathbf{10}$$

• Calculating Infinity Norm,

$$||A||_{\infty} = \max_{1 \le i \le 3} \left[\sum_{j=1}^{3} |a_{ij}| \right] = \max[10, 5, 10] = \mathbf{10}$$

• Calculating Frobenius Norm,

$$||A||_F = \left(\sum_{i=1}^3 \sum_{j=1}^3 |a_{ij}|^2\right)^{\frac{1}{2}} = \left[|4|^2 + |-2|^2 + |4|^2 + |-2|^2 + |1|^2 + |-2|^2 + |4|^2 + |-2|^2 + |4|^2 \right]^{\frac{1}{2}} = 9$$

• Now for calculating 2-norm, we need to evaluate the matrix A^*A .

$$A^*A = \begin{pmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{pmatrix}^* \begin{pmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{pmatrix} = \begin{pmatrix} 36 & -18 & 36 \\ -18 & 9 & -18 \\ 36 & -18 & 36 \end{pmatrix}$$

Now, calculating the eigen value of the A^*A ,

$$\begin{vmatrix} 36 - \lambda & -18 & 36 \\ -18 & 9 - \lambda & -18 \\ 36 & -18 & 36 - \lambda \end{vmatrix} = 0$$

Solving this equation we get,

$$4\lambda^2 \times (81 - \lambda) = 0$$

Hence, the eigen values are, 0.0.81. As by the definition the 2-norm is the square root of the maximum eigen value of the matrix A^*A ,

$$||A||_2 = \sqrt{81} = 9$$

2. Evaluate $||I_{n\times n}||_F$.

According to the definition of Frobenius Norm,

$$||A||_F = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{\frac{1}{2}}$$

As $I_{n\times n}$ is Identity Matrix, then the diagonal entries are 1 and all the off diagonal entries are 0. Mathematically, $I_{ii} = 1$ and $I_{ij} = 0$, where $i \neq j$.

Hence,

$$||I_{n\times n}||_F = [1^2 + 1^2 + \dots \text{ n times}]^{\frac{1}{2}} = \sqrt{n}$$

3. Prove that for the induced 2-norm and the Frobenius norm on matrices are invariant under multiplication by unitary matrices.

A matrix norm is unitary invariant if, $||UAV|| = ||A|| \forall U^*U = I, V^*V = I$.

• Induced 2-Norm

So,

$$(UAV)^*(UAV) = V^*A^*U^*UAV = V^*A^*AV$$
 as, $U^*U = I$

We know that for an Unitary Matrix, $V^*V = I = VV^*$. Hence, $V^* = V^{-1}$

$$(UAV)^*(UAV) = V^{-1}A^*AV$$

From the above equation, it is clear that, $(UAV)^*(UAV)$ and A^*A are similar. Hence both of them will have same eigen values.

So, by definition of 2-Norm,

$$||UAV||_2 = \sqrt{\lambda_{\max}((UAV)^*(UAV))} = \sqrt{\lambda_{\max}(A^*A)} = ||A||_2$$

Where, λ_{max} is the maximum eigen value.

Hence, Induced 2-Norm of a Matrix is Unitary Invariant. (Proved)

• Frobenius Norm

According to the definition of Frobenius Norm,

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2 = \sum_{i=1}^m (\sum_{j=1}^n a_{ij}^* a_{ij}) = \sum_{i=1}^m (A^*A)_{ii} = \operatorname{tr} (A^*A)$$

Again, to show, the Frobenius Norm to be Unitary Invariant, we need to show, $||UAV||_F = ||A||_F \,\forall\, U^*U = I, V^*V = I$. Hence,

$$\operatorname{tr} (UAV)^*(UAV) = \operatorname{tr} (V^*A^*U^*UAV) = \operatorname{tr} (V^*A^*AV) \text{ as, } U^*U = I$$

Since, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$,

$$\operatorname{tr} (UAV)^*(UAV) = \operatorname{tr} (V^*A^*AV) = \operatorname{tr} (VV^*A^*A)$$

As, V is Unitary, $V^*V = VV^* = I$.

$$\operatorname{tr} (UAV)^*(UAV) = \operatorname{tr} (VV^*A^*A) = \operatorname{tr} (IA^*A) = \operatorname{tr} (A^*A) = ||A||_F$$

Hence, Frobenius Norm of a Matrix is Unitary Invariant. (Proved)

- 4. Study Section 1.3 of Strang's book 'Linear Algebra and Learning from Data' (you can find it here). Then solve problems 1, 2, 4 and 6 from problem set 1.3 (page 20).
 - (a) The Null Space of AB contains the Null Space of B.

Let a vector v is in the Null Space of B. Then, by the definition of Null Space, Bv = 0. So, multiplying A on the both side,

$$A(Bv) = 0$$

$$(AB)v = 0$$

Hence, v is also in the Null Space of AB. Hence Proved.

(b) Find a square matrix with $rank(A^2) < rank(A)$. Confirm that the $rank(A^TA) = rank(A)$.

The nilpotent square matrix of degree 2 will give $rank(A^2) < rank(A)$. The example of such matrix is,

$$A = \left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array}\right)$$

where, $a \in \mathbb{R}, a \neq 0$.

Hence,
$$A^2 = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

The rank(A) = 1, but the rank $(A^2) = 0$. Hence, rank $(A^2) < \text{rank}(A)$.

Now,
$$A^T A = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix} \times \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & a^2 \end{pmatrix}$$
. The rank $(A^T A) = 1$

Hence, $rank(A^T A) = rank(A)$ (Confirmed).

(c) If row space of A = Column Space of A, and also $N(A) = N(A^T)$, is A symmetric?

by the definition of null space N(A) = Contains all solutions x to Ax = 0. and the definition of Left null space $N(A^T) = \text{Contains}$ all solutions of y to $A^Ty = 0$.

As, $rank(A) = rank(A^T)$, by rank-nullity theorem, A is a square matrix.

By, the definition of column space A = C(A) = Contains all combinations of the columns of A. and the definition of row space $A = C(A^T) = \text{Contains}$ all combinations of the columns of A^T .

It is given that, row space of A = Column Space of A, then from the above definitions, $C(A) = C(A^T)$. So, $\dim C(A) = \dim C(A^T) = \operatorname{rank}(A)$.

Now, here two cases may arise, the rank of A is equal to the dimension of the matrix, or the rank of A is less than equals to the dimension of the matrix.

Hence, If A is of full rank. Then, A is invertible and the null space and the left null space will have the dimension 0.In this case A need not to be symmetric.

Example - $\begin{pmatrix} 1 & 4 \\ 3 & 8 \end{pmatrix}$. This matrix is not symmetric but the row space of A = Column Space of A, and also $N(A) = N(A^T)$.

Now, If, A is not of full rank, then it should be symmetric.

Example -
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
.

So, A doesn't necessarily be a symmetric matrix.

(d) Show that A^TA has the same null space as A.

First, let's assume x is a vector in the null space of A. So, Ax = 0. Multiplying A^T on both side,

$$A^T(Ax) = 0 = (A^T A)x$$

Hence, null space of A^TA contains the null space of A.

Now, Let, y is a vector in the null space of A^TA . So, $A^TAy = 0$.

Multiplying y^T on the both side,

$$y^T A^T A y = 0$$
$$\implies (y^T A^T) A y = 0$$

4

$$\implies (Ay)^T Ay = 0$$

$$\implies ||Ay||^2 = 0$$

$$\implies Ay = 0$$

hence, null space of A contains the null space of A^TA . Finally we can say that, A^TA has the same null space as A (proved).