MA1521 Cheatsheet

AY20/21 Sem 1 | Chapter 1-3

01. FUNCTIONS & LIMITS

Rules of Limits

- 1. $\lim_{x\to a}(f\pm g)(x)=L\pm L'$ 2. $\lim_{x\to a}(fg)(x)=LL'$
- 3. $\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{L'}$, provided $L' \neq 0$
- 4. $\lim_{x \to a} k f(x) = kL$ for any real number k.

Estimation

first order estimate: $y' \approx y + \Delta x \times \frac{dy}{dx}\Big|_{x=0}$

second order estimate: $y' \approx 1$ st estimate $+ \left(\frac{(\triangle x)^2}{2} \times \frac{d^2 y}{dx^2} \Big|_{x=2} \right)$

Stats

pop. variance:
$$\sigma^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n}$$

pop. covariance: $cov(x,y) = \frac{\sum xy^2 - \frac{\sum x \sum y}{n}}{x}$

pop. correlation: $\frac{\text{cov}(x,y)}{\sigma_x \times \sigma_y}$

02. DIFFERENTIATION

extreme values:

- f'(x) = 0
- f'(x) does not exist
- end points of the domain of f
- parametric differentiaton: $\frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx})=\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dx}}$

Differentiation Techniques

f(x)	f'(x)
$\tan x$	$\sec^2 x$
$\csc x$	$-\csc x \cot x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\csc^2 x$
$a^{f(x)}$	$\ln a \cdot f'(x) a^{f(x)}$
$\log_a f(x)$	$\log_a e \cdot \frac{f'(x)}{f(x)}$
$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
$\cos^{-1} f(x)$	$-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}$
$\cot^{-1} f(x)$	$-\frac{f'(x)}{1+[f(x)]^2}$
$\sec^{-1} f(x)$	$\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$
$\csc^{-1} f(x)$	$-\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$

L'Hopital's Rule

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- for indeterminate forms $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$, cannot directly substitute
- for other forms: convert to $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$ then apply L'Hopital's
- for exponents: use \ln , then sub into $e^{f(x)}$

03. INTEGRATION

Integration Techniques

f(x)	$\int f(x)$
$\tan x$	$\ln(\sec x), x < \frac{\pi}{2}$
$\cot x$	$\ln(\sin x), 0 < x < \pi$
$\csc x$	$-\ln(\csc x + \cot x), 0 < x < \pi$
$\sec x$	$\ln(\sec x + \tan x), x < \frac{\pi}{2}$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1}(\frac{x}{a})$
$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right)$, $ x < a$
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a}\ln(\frac{x-a}{x+a}), x>a$
$\frac{1}{a^2 - x^2}$	$\frac{1}{2a}\ln(\frac{x+a}{x-a}), x < a$
a^x	$\frac{a^x}{\ln a}$

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

- · indefinite integral the integral of the function without any
- · antiderivative any function whose derivative will be the same as the original function

substitution: $\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$ by parts: $\int uv' dx = uv - \int u'v dx$

volume of revolution

about x-axis:

- (with hollow area) $V = \pi \int_a^b [f(x)]^2 [g(x)]^2 dx$
- (about line y=k) $V=\pi\int_a^b [f(x)-k]^2 dx$

Logistic Models

$$N = \frac{N_{t=\infty}}{1 + (\frac{N_{t=\infty}}{N_{t=0}} - 1)e^{-Bt}}$$

- N number
- B birth rate
- *t* time

04. SERIES

aeometric series

 $\sup \frac{(\mathbf{divergent})}{\frac{a(1-r^n)}{1-r}}$

sum (convergent)

$$\frac{a}{1-r}$$

power series

power series about x = 0

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$$

power series about x=a (a is the centre of the power series)

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$$

radius of convergence

power series converges where $\lim_{n\to\infty} |\frac{u_{n+1}}{u_n}| < 1$

converge at	R	$\lim_{n\to\infty} \left \frac{u_{n+1}}{u_n} \right $
x = a	0	∞
(x-h,x+h)	$h, \frac{1}{N}$	$N \cdot x-a $
all x	∞	0

differentiation/integration

For
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
 and $a-h < x < a+h$

differentiation of power series:

$$f'(x) = \sum_{n=0}^{\infty} nc_n (x-a)^{n-1}$$

integration of power series:

$$\int f(x)dx = \sum_{0}^{\infty} c_n \frac{(x-1)^{n+1}}{n+1} + c$$

taylor series

$$\sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x-a)^k$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$

MacLaurin series:
$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$
 Taylor polynomial of f at a :
$$P_n(x) = \sum_{k=0}^n \frac{f^k(a)}{k!} (x-a)^k$$