Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

July 13, 2023

Lehrstuhl Informatik 2 Fakultät für Informatik

Worum geht es?

- der Dijkstra-Algorithmus hat quadratische Laufzeit
- Flaschenhals ist die Berechnung des Knotens mit minimalen Abstand
- mit dem Fibonacciheap lernen wir die effizienteste Datenstruktur für die Operation kennen
- wir wenden das Prinzip der amortisierten Laufzeitanalyse an

Aufbau

- der Fibonacci-Heap besteht aus gewurzelten Bäumen
- die Bäume sind ungeordnet (anders als im binomial heap)
- Gewicht eines Elternknotens ≤ Gewicht jedes Kindes
- die Liste der Wurzeln ist doppelt verkettet
- für jede Wurzel ist die Liste der Kinder doppelt verkettet
- \blacksquare Elemente löschen oder Listen kombinieren in Zeit O(1)

Aufbau

- der Heap hat eine Referenz auf das minimale Element
- die Bäume sind nicht notwendigerweise Binomialbäume
- \blacksquare mit D(n) bezeichnen wir den maximalen Grad eines Fibonacci-Heaps mit Größe n
- wir werden zeigen, daß $D(n) = O(\log n)$
- jeder Knoten v hat ferner eine Markierung $\mu(v) \in \{0, 1\}$

Operationen

einfügen: neues Element mit gegebenen Gewicht hinzufügen

Minimum: auffinden des Elements mit minimalen Gewicht

Minimum entnehmen: auffinden und entfernen

Vereinigung: zwei Heaps zu einem vereinigen

verringern: das Gewicht eines Elements verringern

löschen: ein Element aus der Datenstruktur entfernen

Potentialfunktion

- lacksquare $\mathcal{T}(\mathcal{F})$ bezeichet die Zahl der Bäume im Fibonacci-Heap \mathcal{F}
- \blacksquare $N(\mathcal{F})$ bezeichet die Zahl aller Knoten in \mathcal{F}
- $M(\mathcal{F})$ bezeichet die Zahl markierter Knoten v, d.h. $\mu(v) = 1$
- das Potential ist definiert als

$$\Phi(\mathcal{F}) = T(\mathcal{F}) + 2M(\mathcal{F})$$

Einfügen

- \blacksquare wir fügen den neuen Eintrag einfach als neuen gewurzelten Baum, bestehend aus einem Knoten, in $\mathcal F$ ein
- ggf. wird das Minimum aktualisiert
- Laufzeit *O*(1)
- Potentialänderung *O*(1)

Minimum finden

- der Fibonacci-Heap besitzt eine Referenz auf das minimale Element
- Laufzeit *O*(1); Potentialänderung 0

Vereinigung

- wir fügen einfach die Listen der Wurzeln zusammen
- weil sie doppelt verlinkt sind, geht das in Zeit O(1)
- außerdem wird das Minimum aktualisiert
- das Potential ändert sich nicht

Minimum extrahieren

- das Element minmalen Gewichts wird gelöscht
- aus jedem Kind des min. Elements wird eine neue Wurzel
- anschließend wird der Heap konsolidiert
- dabei wird auch das Minimum aktualisiert

Konsolidieren

- zum Konsolidieren iterieren wir über die Wurzelliste
- wir suchen ein Paar von Wurzeln gleichen Grades
- dazu verwenden wir ein Array $A[0...D(N(\mathcal{F}))]$
- \blacksquare A[i] verweist auf eine Wurzel vom Grad i (oder \varnothing)

Konsolidieren

- wenn zwei Wurzeln gleichen Grades gefunden sind, wird die Wurzel mit größerem Gewicht wird zum Kind der anderen
- \blacksquare das Feld $\mu(v)$ der Wurzel v, die zum Kind der anderen wird, wird auf 0 gesetzt
- der Grad der anderen Wurzel wird um 1 erhöht
- wir prüfen, ob es eine andere Wurzel dieses neuen Grades schon gibt und wiederholen

Konsolidieren

- wenn zwei Wurzeln gleichen Grades gefunden sind, wird die Wurzel mit größerem Gewicht wird zum Kind der anderen
- \blacksquare das Feld $\mu(v)$ der Wurzel v, die zum Kind der anderen wird, wird auf 0 gesetzt
- der Grad der anderen Wurzel wird um 1 erhöht
- wir prüfen, ob es eine andere Wurzel dieses neuen Grades schon gibt und wiederholen

Konsolidieren

- wenn zwei Wurzeln gleichen Grades gefunden sind, wird die Wurzel mit größerem Gewicht wird zum Kind der anderen
- \blacksquare das Feld $\mu(v)$ der Wurzel v, die zum Kind der anderen wird, wird auf 0 gesetzt
- der Grad der anderen Wurzel wird um 1 erhöht
- wir prüfen, ob es eine andere Wurzel dieses neuen Grades schon gibt und wiederholen

Konsolidieren

- wenn zwei Wurzeln gleichen Grades gefunden sind, wird die Wurzel mit größerem Gewicht wird zum Kind der anderen
- lacktriangle das Feld $\mu(v)$ der Wurzel v, die zum Kind der anderen wird, wird auf 0 gesetzt
- der Grad der anderen Wurzel wird um 1 erhöht
- wir prüfen, ob es eine andere Wurzel dieses neuen Grades schon gibt und wiederholen

Konsolidieren

- wenn zwei Wurzeln gleichen Grades gefunden sind, wird die Wurzel mit größerem Gewicht wird zum Kind der anderen
- lacktriangle das Feld $\mu(v)$ der Wurzel v, die zum Kind der anderen wird, wird auf 0 gesetzt
- der Grad der anderen Wurzel wird um 1 erhöht
- wir prüfen, ob es eine andere Wurzel dieses neuen Grades schon gibt und wiederholen

Lemma

Die amortisierten Kosten zum Extrahieren des Minimums sind $O(D(N(\mathcal{F})))$.

Beweis

- lacksquare sei \mathcal{F}' der Fibonacci-Heap nach der Extraktion
- lacksquare alle Wurzeln in \mathcal{F}' haben verschiedene Grade
- also $\Phi(\mathcal{F}') \leq D(N(\mathcal{F})) + 1 + 2M(\mathcal{F})$
- folglich $\Phi(\mathcal{F}') \Phi(\mathcal{F}) = O(D(N(\mathcal{F})))$

Gewicht verringern

- wir müssen darauf achten, daß die Ordnung erhalten bleibt,
- d.h. Kinder haben mindestens so großes Gewicht wie Eltern
- um den Grad zu begrenzen, trennen wir den Baum ggf. auf
- dazu verwenden wir die Markierungen
- $\mu(x) = 1$ zeigt an, daß x bereits ein Kind verloren hat

Gewicht verringern

- falls der Knoten x, dessen Gewicht reduziert wird, schon eine Wurzel ist, verringern wir einfach das Gewicht, passen ggf. das Minimum an und sind fertig
- wenn allgemeiner das Gewicht von x nicht kleiner wird als das Gewicht des Elternknotens y, gehen wir genauso vor
- andernfalls wende die folgende Trennoperation auf x an

Trennen von x

- entferne x aus der Kinderliste von y
- füge x (und seine Nachkommen) als Wurzel ein
- aktualsiere das Minimum
- setze $\mu(x) = 0$
- wende folgende Operation an, um y zu aktualisieren

Aktualisieren von y

- setze z auf den Elternknoten von y
- falls y keinen Elternknoten hat, ist nichts zu tun
- sonst prüfe, ob $\mu(y) = 0$; dann setze $\mu(y) = 1$ und stoppe
- wenn $\mu(y) = 1$, wende Trennen auf y an (und iteriere)

Amortisierte Laufzeit

- \blacksquare sei \mathcal{F}' der Heap nach der Extraktion
- ein neuer Baum, der in die Wurzelliste eingefügt wird, stammt von einem Knoten u, dessen Markierung $\mu(u)$ die Trennoperation von 1 auf 0 setzt
- einzige Ausnahme ist ggf. der extrahierte Knoten

Amortisierte Laufzeit

wenn *t* neue Bäume in die Wurzelliste eingefügt werden, ändert sich das Potential also um

$$\Phi(\mathcal{F}') - \Phi(\mathcal{F}) \le t - 2t + 1 \le 1 - t$$

- \blacksquare dem steht eine materielle Laufzeit von O(t) gegenüber
- \blacksquare die amortisierte Laufzeit ist also O(1)

Entfernen eines Knotens

- \blacksquare verringere das Gewicht des zu entfernenden Knotens auf $-\infty$
- extrahiere anschließend den Knoten geringsten Gewichts
- amortisierte Laufzeit ist $O(D(N(\mathcal{F})))$

Proposition

Der maximale Grad eines Fibonacci-Heap \mathcal{F} ist $O(\log N(\mathcal{F}))$.

Lemma

Angenommen Knoten x des Fibonacci-Heaps \mathcal{F} hat k Kinder y_1, \ldots, y_k , numeriert nach der Reihenfolge, in der sie an x angefügt worden sind. Dann gilt hat y_i mindestens i-2 Kinder $(i=2,\ldots,k)$.

Beweis

- zu dem Zeitpunkt, als y_i an x angefügt wurde, hatte x bereits mindestens i-1 Kinder
- ein Knoten wird nur dann als Kind an einen anderen angehängt, wenn beide den gleichen Grad haben
- seitdem y_i an x angehängt wurde, hat y_i höchstens ein Kind verloren (weil im Fall $\mu(y) = 1$ der Knoten y selbst zur Wurzel wird, wenn er noch ein Kind verliert)

Erinnerung: die Fibonacci-Zahlen

- $F_0 = 0$
- $F_1 = 1$
- $F_k = F_{k-1} + F_{k-2}$ für $k \ge 2$
- \blacksquare also erhalten wir für $\ell \geq 0$,

$$F_{\ell+2} = 1 + \sum_{i=0}^{\ell} F_i \ge \left(\frac{1+\sqrt{5}}{2}\right)^{\ell}$$

Lemma

Für einen Knoten x in einem Fibonacci-Heap $\mathcal F$ sei $N(x,\mathcal F)$ die Zahl der Nachkommen von x, einschließlich x selbst. Wenn ℓ die Zahl der Kinder von x ist, gilt $N(x,\mathcal F) \geq F_{\ell+2}$.

Beweis

- Induktion nach ℓ
- lacksquare sei s_ℓ die kleinstmögliche Zahl von Nachkommen eines Knotens mit ℓ Kindern
- wir sehen unmittelbar, daß $s_0 = 1$ und $s_1 = 2$
- seien nun allgemeien $y_1, ..., y_k$ die Kinder von x in \mathcal{F}
- Knoten y_i habe k_i Kinder
- dann gilt $k_i \ge i 2$

Beweis (fortgesetzt)

- \blacksquare ferner gilt $s_{h+1} \ge s_h$
- also erhalten wir mit Induktion und dem vorherigen Lemma

$$s_{\ell} \ge 2 + \sum_{i=2}^{\ell} s_{k_i} \ge 2 + \sum_{i=2}^{\ell} s_{i-2}$$

 $\ge 2 + \sum_{i=2}^{\ell} F_i > F_{\ell+2}$

■ weil $N(x,\mathcal{F}) \geq s_{\ell}$, folgt die Behauptung

Beweis der Proposition

 \blacksquare das Lemma zeigt, daß für jeden Knoten x mit ℓ Kindern gilt

$$N(x,\mathcal{F}) \ge F_{\ell+2} \ge \left(\frac{1+\sqrt{5}}{2}\right)^{\ell}$$

■ also folgt $D(\mathcal{F}) \leq O(\log N(\mathcal{F}))$

Amortisierte Laufzeiten

Aus der Proposition und unserer obigen Analyse ergeben sich die folgenden amortisierten Laufzeiten für den Fibonacci-Heap:

einfügen: O(1)Minimum: O(1)

Minimum entnehmen: $O(\log n)$

Vereinigung: O(1) verringern: O(1)

löschen: $O(\log n)$

Zusammenfassung

- Fibonacciheaps sind die effizienteste Datenstruktur für den Dijkstra-Algorithmus
- die Laufzeit von Dijkstra mit Fibonacciheaps beträgt

$$O(|E| + |V| \log |V|)$$

■ Die Laufzeit wir mit Hilfe der amortisierten Analyse abgeschätzt