Estimador de Semivariância para Big Data

André Felipe Menezes

Universidade Estadual de Maringá

Departamento de Estatística

7 de Outubro de 2016

Organização

- Aspectos gerais da Geoestatística Fenômeno espacial Semivariância
- Estimador de Semivariância para Big Data Estudo de simulação Aplicação em dados reais
- 3 Conclusões

Aspectos gerais da Geoestatística

Aspectos gerais

A Geoestatística é um ramo da estatística espacial, cujo os principais propósitos são:

- Compreensão de fenômenos espaciais;
- Identificar e quantificar a variabilidade espacial;
- ► Predizer observações não amostradas.

Fenômeno espacial

O que é?

Defini-se $Z(x_i)$ um fenômeno espacial como:

$$Z(x_i) = \mu(x_i) + \varepsilon'(x_i) + \varepsilon. \qquad (x_i \in \mathbb{R}^n)$$
 (1)

Sendo:

- $-\mu(x_i)$ uma função determinística que representa a componente estrutural;
- $-\varepsilon'(x_i)$ um termo estocástico que varia localmente e é espacialmente correlacionado;
- $-\varepsilon$ um ruido aleatório, não correlacionado.

Definição

A semivariância é definida como uma medida de dissimilaridade, na qual fornece o grau de dependência espacial entre duas amostras separas por uma distância h.

Semivariância teórica

Matheron (1962) e Cressie (1993, p.58) definiram a semivariância teórica $\gamma(h)$ sendo:

$$\gamma(h) = \frac{1}{2} \operatorname{Var}(Z(x+h) - Z(x))$$
 (2)

Semivariância teórica

Sob hipótese de estacionariedade de 2° ordem ou hipótese intrínseca, temos que $E[Z(x)]=\mu,\ \forall\,x.$ Logo têm-se:

$$\gamma(h) = \frac{1}{2} \operatorname{Var}(Z(x+h) - Z(x))
= \frac{1}{2} \left(E[(Z(x+h) - Z(x))^2] - (E[Z(x+h) - Z(x)])^2 \right)
= \frac{1}{2} \left(E[(Z(x+h) - Z(x))^2] - (E[Z(x+h)] - E[Z(x)])^2 \right)
= \frac{1}{2} \left(E[(Z(x+h) - Z(x))^2] - (\mu - \mu)^2 \right)
\therefore \gamma(h) = \frac{1}{2} E[(Z(x+h) - Z(x))^2]$$

Semivariância de nuvem

Utilizado na análise exploratória, a semivariância de nuvem é definida como:

$$\hat{\gamma}(h) = \frac{(Z(x_i) - Z(x_i + h))^2}{2}$$
 (3)

em que:

- $ightharpoonup Z(x_i)$ é a realização da variável aleatória Z no ponto x_i ;
- ► $Z(x_i + h)$ é a realização da variável aleatória Z no ponto x_i mais uma distância h;
- ▶ h é a distância entre as observações;

O variograma de nuvem, produz um gráfico de dispersão entre os valores da variograma e a os $\frac{n(n-1)}{2}$ pares de distâncias.

Estimador de Matheron

Desenvolvido por Matheron em 1962, a partir do método dos momentos.

$$\hat{\gamma}(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(x_i) - Z(x_i + h)]^2$$
 (4)

Sendo:

- $ightharpoonup Z(x_i)$ a realização da variável aleatória Z no ponto x_i ;
- $ightharpoonup Z(x_i + h)$ a realização da variável aleatória Z no ponto x_i mais uma distância h;
- h a distância entre as observações;
- ightharpoonup N(h) o número de pares de valores medidos, separados por uma distância h;

Semivariograma empírico

O semivariograma empírico é o gráfico da semivariância em função de uma classe de distâncias definidas. A componente estrutural ε é encontrada no ajuste do semivariograma.

Semivariograma

Estimador de Semivariância para Big Data

Estimador de Semivariância para Big Data

Algoritmo

Passo 1: Selecionar aleatoriamente e sem reposição uma subamostra de tamanho b;

Passo 2: A partir da subamostra de tamanho b, procede-se com o cálculo da semivariância, utilizando o estimador de Matheron;

Passo 3: Repete-se os passos anteriores k vezes, gerando um vetor de semivariâncias para cada nova subamostra;

Passo 4: Por fim a estimativa da semivariância é obtida pela média aritmética das k semivariâncias em cada distância;

Algoritmo

Portanto definimos a semivariância como:

$$\hat{\gamma}(h)_{bk} = k^{-1} \sum_{i=1}^{k} \hat{\gamma}(h)_{bi}$$
 (5)

em que:

- b: tamanho da subamostra;
- k: número de subamostras ou número de iterações;
- h: vetor distancia;
- $\hat{\gamma}(h)_{bi}$ semivariância da distancia h da subamostra de tamanho b, da i-ésima iteração.

Estudo de simulação

Estudo de simulação

Realizou-se simulações com 15000 observações em diferente configurações. Para o cálculo do estimador proposto padronizou-se b=200 e k=400, isto é 400 subamostras de tamanho 200.

Tabela: Configurações da simulação

Patamar	Alcance	Efeito Pepita
60	10	3
30	19	5
80	10	10
	60 30	30 19

Modelo Exponencial

(a) Estimador de Matheron

(b) Estimador para Big Data

Modelo Esférico

(a) Estimador de Matheron

(b) Estimador para Big Data

Modelo Gaussiano

(a) Estimador de Matheron

(b) Estimador para Big Data

Estudo de simulação

Erro quadrático médio entre estimadores

Além da verificação do tempo computacional, calculamos o erro quadrático médio entre os estimadores, definido por:

$$EQM = \frac{1}{Cl(h)} \sum_{i=1}^{Cl(h)} (\hat{\gamma}(h) - \hat{\gamma}_{bk}(h))^2$$
 (6)

Sendo:

- ► Cl(h) classe de distância h;
- $\hat{\gamma}(h)$ o estimador de Matheron;
- $ightharpoonup \gamma_{bk}(h)$ o estimador para *Big Data*

Síntese

Modelo	EQM	Tempo Est. Matheron	Tempo Big Data
Exponencial	0.11	7.91	3.84
Esférico	0.15	7.58	3.48
Gaussiano	1.58	7.58	3.39

Goldmine Samples

O banco de dados " $goldmine\ samples$ ", contém a localização e o grau de ouro em grama, de 21577 observações tomadas a partir de uma mina de ouro.

Definiu-se k = 300 e variou-se a quantidade de subamostras (b).

Em resumo os parâmetros estimados e o tempo gasto em segundos, para cada semivariograma:

b	300	700
Modelo	Exponencial	Exponencial
Patamar	405.23	403.29
Alcance	715.64	692.43
Efeito Pepita	1194.31	1195.34
Tempo (seg.)	3.92	12.16

Além disso o erro quadrático entre as estimativas foi de 55,34. Portanto há diferenças significativas quando tamanho da subamostra aumenta.

Conclusões

Conclusões

- Deve-se padronizar uma classe de distâncias igualmente espaçadas;
- ► Estimador fornece resultados viáveis:
- ▶ Tempo computacional aumenta a medida que b ou k aumentam;
- ► Estudo de simulação mais detalhado.