Trajectory Optimisation using Successive convexification

Sequential Convex Programming for Aerocapture Trajectory Optimization (Jens Ratajczak)

Convex Clustering though MM: An Efficient Algorithm to Perform Hierarchical Clustering (Kal Parvanov, Bisman Singh)

mmWave Radar IM (low-rank + sparse) (Yunxuan Wang)

 $\begin{aligned} & \min_{I,X} \operatorname{rank}(\mathbf{I}) + \lambda \|\mathbf{X}_{\mathrm{RD}}\|_{0} \\ & \text{s.t.} \|\mathbf{Y} - \mathbf{I} - \mathbf{X}\|_{F}^{2} < \delta, \end{aligned}$

$$\begin{split} & \min_{I,X} \|\mathbf{I}\|_* + \lambda \|\mathbf{X}_{\mathrm{RD}}\|_1 \\ & \text{s.t.} \|\mathbf{Y} - \mathbf{I} - \mathbf{X}\|_F^2 {<} \delta. \end{split}$$

Convex Optimization for Twosided Fair Ranking

(Mary Monroe, Joshua Sun)

Two-sided fairness:

- o Improves the worst-off users (Spotify listener)
- Improves the worst-off items (Spotify songs)
- Proposed concave welfare function, which captures user and item fairness:

$$\forall \boldsymbol{u} \in \mathbb{R}^n_+: \ W_{\theta}(\boldsymbol{u}) = (1-\lambda) \sum_{i \in \mathcal{N}} \psi(u_i, \alpha_1) + \lambda \sum_{j \in \mathcal{I}} \psi(u_j, \alpha_2) \ \text{with} \ \psi(x, \alpha) = \begin{cases} x^{\alpha} & \text{if} \ \alpha > 0 \\ \log(x) & \text{if} \ \alpha = 0 \\ -x^{\alpha} & \text{if} \ \alpha < 0 \end{cases}$$

Bayesian Optimization: an introduction

(Alex McManus, Leo Crowder, Jack Quinn)

Functions
(Labib Sharrar and Ali Abbasi)

Image Classification using SVM

with Linear and Nonlinear Kernel

Table (1): Performance of different kernels on fitting MNIST and CIFAR data

	MNIST		CIFAR	
	accuracy	Time (s)	accuracy	Time(s)
Linear	84.2%	223	85.4%	197
Radial	88.5%	450	89.9%	823
Polynomial	93.3%	345	88.6%	510
Intersection	99.1%	434	90.2%	627

Demonstrating How Exponential Moving Average Based Gradient

Algorithms Fail in Certain Convex Settings (e.g. ADAM/RMSProp)

(Alex McManus, Leo Crowder, Jack Quinn)

APPM 5630

"Advanced Convex Optimization"

Prof. Becker, spring 2023

Student projects

Method of Moving Asymptotes (Grant Norman)

Deriving the Lovasz Extension for Submodular Minimization

(Rick Nueve)

Theorem (1 : Greedy algorithm for submodular and base polyhedra, ` 11)

Let F be a submodular function such that $F(\emptyset) = 0$. Let $w \in \mathbb{R}^n$, with components ordered in decreasing order i.e., $w_{j_1} \geqslant \cdots \geqslant w_{j_n}$ and define $s_{j_k} = F(\{j_1, \ldots, j_k\}) - F(\{j_1, \ldots, j_{k-1}\})$. Then $s \in B(F)$ (i.e., a point from the base-polyhedra) and,

- if w ∈ ℝⁿ₊, s is a maximizer of max_{s∈P(F)} w^Ts (i.e., the support function over P(F)); moreover max_{s∈P(F)} w^Ts = f(w).
- ② s is a maximizer of $\max_{s \in B(F)} w^T s$, and $\max_{s \in B(F)} w^T s = f(w)$,

Student backgrounds:

Applied Math (BS/MS, MS, PMD, PhD)

AMSGrad

2-norm of difference

of the weights

 1.4430×10^{-13} 1.9033×10^{-6} of the weights

 1.25011×10^{-13}

 5.1294×10^{-6}

1.7580

- Computer Science (MS, PhD)
- Electrical Engineering (MS, PhD)
- Aerospace Engineering (MS, PhD)

Convex Optimization for Fixed-

Point Stability Analysis

(Morgan Byers)

Solving with PyDrake

Training Neural Networks
Without Gradients: a scalable
ADMM approach

(K. Aditi)

- In ADMM, Lagrange multiplier is added to the constraints.
- There exists a similar formulation known as Bregman iteration where Lagrange multiplier is added to the objective term.

$$egin{aligned} & \min_{\{W_l\},\{z_l\},\{a_l\}} l(z_L,\,y) \,+\, eta_L \|z_L - W_L a_{L-1}\|^2 \,+\, \langle z_L,\lambda
angle \\ & + \sum_{l=1}^{L-1} \Bigl(\gamma_l \|a_l - h_l(z_l)\|^2 + eta_l \|z_l - W_l a_{l-1}\|^2 \Bigr) \end{aligned}$$

Column Generation Algorithms for Constrained POMDPs

(Tyler Becker and Qi Heng Ho) **Toy Problem**

Solver	Value	Average Cost	Action Probabilities (initial belief)
CGCP	0.95	0.95	[0.05,0.95]
Optimal Deterministic	0.72	0.8	[1,0]

Safe Feasibility Guided MPC for stochastic hybrid systems

(Tyler Becker and Qi Heng Ho)

Proposition 1: $F_{\alpha}(x) \in T_{\mathcal{S}}(x)$, i.e. the gradient of the solution at the boundary points inside the \mathcal{S} or matches with the tangent.