ATM, X25, Frame Relay

Co je ATM?

(Asynchronous Transfer Mode)

- je přenosovou technologií
- pochází "ze světa spojů"
- byla vyvinuta s ohledem na potřeby "světa spojů" i "světa počítačů"
- snaží se vycházet vstříc jejich specifickým potřebám
- byla (vcelku) kladně přijata i "ve světě počítačů"
- oba světy (svého času) považovaly ATM za svou společnou budoucnost (?)
- ... která měla "zvítězit"
- stát se univerzální (jednotnou) přenosovou technologií, kterou používají všichni a ke všemu
- v rámci druhého pokusu o konvergenci
- to se nestalo !!!!
- naděje, vkládané do ATM, se nenaplnily
- protože ATM je:
- drahé
- komplikované
- nepružné
- nemá broadcast
- pouze spojované
-
- dnes je ATM jednou z mnoha technologií
- má své "místo na slunci"
- je používána v některých páteřních sítích,
- hlavně tam kde je požadována podpora kvality služeb

Připomenutí: myšlenka konvergence

- světy spojů a počítačů si tradičně budovaly oddělené přenosové sítě, šité na míru vlastním požadavkům
- svět spojů: "chytré" sítě, fungující na principu přepojování okruhů
- svět počítačů: "hloupé" sítě, fungující na principu přepojování paketů
- důsledek:
- bylo to (a stále je) neefektivní
- mvšlenka:
- proč raději nebudovat (a neprovozovat) jen jednu síť, pro potřeby obou světů?
- problém:
- požadavky obou světů jsou značně odlišné, je těžké jim vyhovět současně
- a zachovat rozumnou efektivitu fungování
- První pokus o konvergenci:
- sítě ISDN (Integrated Services Digital Network)

- pochází ze světa spojů
- navrženo pro potřeby světa spojů
- potřeby světa počítačů nebyly zohledněny
- možné očekávání: svět počítačů se přizpůsobí?
- je technologií, která pro přenos dat využívá existující telefonní síť fungující plně digitálně
- proto kanály á 64 kbps
- jako "konvergované řešení" ISDN neuspělo
- přenosová kapacita ISDN je příliš malá
- proto byla klasické ISDN prohlášeno za "úzkopásmové"
- Narrowband ISD, N-ISDN
- ... a začaly přípravy širokopásmového ISDN
- Broadband ISDN, B-ISDN

Druhý pokus o konvergenci: B-ISDN, nebo ATM?

- když úzkopásmové ISDN neuspělo
- začalo se připravovat širokopásmové ISDN
- Broadband ISDN
- s podstatně vyššími rychlostmi
- širokopásmové ISDN (Broadband ISDN, B-ISDN) již nemohlo fungovat nad (digitální) telefonní sítí z kapacitních důvodů
- bylo třeba vyvinout zcela nový přenosový mechanismus
- s větší kapacitou
- s respektováním požadavků "světa spojů" i "světa počítačů"
- výsledkem je technologie ATM
- Asynchronous Transfer Mode
- samotné B-ISDN nikdy nevzniklo !!
- a ani se o něj nikdo nepokoušel zůstalo pouze ATM

Filosofie ATM: způsob přenosu

- ATM se snaží respektovat potřeby obou "světů". Ale jaké tyto potřeby jsou?
 - v čem se liší?
- "svět spojů" preferuje
 - fungování na principu přepojování okruhů
 - spojovaný a spolehlivý způsob přenosu
 - vyhrazenou přenosovou kapacitu a garanci kvality služeb
- "svět počítačů" preferuje
 - fungování na principu přepojování paketů
 - nespojovaný a nespolehlivý způsob přenosu
 - efektivnost přenosů
 - nepožaduje (tolik) garantovanou kvalitu služeb
- výsledek:
 - ATM bude fungovat spojovaně
 - (v zásadě) na principu přepojování paketů !!!!!

"ve světě spojů:

- potřebují spíše pravidelné a "okamžité" přenosy, se zárukami kvality a dostupnosti přenosové kapacity
- lépe zde vyhovují malé bloky přenášených dat
 - kvůli tomu, že když jsou malé, je jich hodně, a když je zapotřebí něco přenést, je větší šance najít "volný blok"
- ve světě počítačů:
 - potřebují spíše nárazovité přenosy, požadují spíše efektivnost fungování
 - lépe vyhovují větší bloky přenášených dat
 - kvůli tomu, že větší blok má relativně menší vlastní režii na přenos (hlavičky apod.)

Jak velké mají být?

Lekce II-8 Slide č. 5

eArchiv.cz Počítačové sítě, verze 3.0 (lekce č.19, slide č.6)

Počítačové sítě verze 3.0 Cást II.-Technologie ⊚ J.Peterka, 2005

Filosofie ATM - buňky

- kategorický požadavek "světa spojů":
 - bloky velikosti max. 32 bytů
 - aby byl nějaký blok k dispozici, když je třeba něco rychle přenést
 - snižování latence
- kategorický požadavek "světa počítačů"
 - bloky velikost min. 64 bytů
 - aby nebyla tak velká režie
- nakonec zvítězil kompromis:

 ATM pracuje s bloky dat, které mají vždy <u>pevnou</u> délku:

- jsou malé
- nazývají se <u>buňky</u> (cells)
- mají 48 bytů pro data
 - 48 bytů užitečného nákladu, tzv. payload
- mají 5-bytovou hlavičku
 - celkem mají 53 bytů
- díky pevné velikosti je lze zpracovávat i v HW

Služby ATM

- jak dokáže ATM vyhovět různým požadavkům na charakter přenosu?
 - někdo chce garantovat (celou) přenosovou kapacitu,
 - někdo chce garantovat alespoň určitou minimální přenosovou kapacitu
 - někdo nepotřebuje žádné garance

- malou velikostí buněk
 - výsledný efekt spojuje výhody přepojování paketů a přepojování okruhů
- řešení: ATM nabízí různé třídy služeb
 - CBR
 - Constant Bit Rate
 - garantuje (celou a konstantní) přenosovou kapacitu
 - VBR
 - Variable Bit Rate
 - Garantuje tu přenosovou kapacitu, kterou přenos právě potřebuje
 - ABR
 - Available Bit Rate
 - garantuje určitou minimální přenosovou kapacitu
 - UBR
 - Unspecified Bit Rate
 - negarantuje nic
 - jako "best effort"

Lekce II-8 Slide č. 7

Představa realizace

Ostronová kapacita, pro ABR (a UBR)

Pro ABR a UBR

Pro ABR a UBR

Pro VBR

Pro CBR

Dro CBR

eArchiv.cz

CBR, Constant Bit Rate

- garantuje konstantní rychlost přenosu
 - angl: bit rate,
- vytváří ekvivalent "kusu drátu"
 - poskytuje vyhrazenou a konstantní přenosovou kapacitu
- ale chová se jako bitová roura
 - přenosová kapacita je již upravena pro přenos dat (jednotlivých bitů)
 - z jedné strany data vstupují, z druhé vystupují
 - není žádné potvrzování, žádné řízení toku, ...

- je garantováno i maximální přenosové zpoždění
 - a pravidelnost (rozptyl zpoždění)
- předpokládané použití:
 - vše, co by jinak potřebovalo "samostatný dráť"
 - například přímé propojení telefonních ústředen
 - vhodné pro cokoli, co generuje KONSTANTNÍ datový tok
 - například nekomprimované video, nekomprimovaný zvuk atd.

emulace přepojování okruhů

Lekce II-8 Slide č. 9

Počítačové sítě verze 3.0 Cást II.-Technologie © J.Peterka, 2005

Realizace CBR

- buňka, přidělená v režimu CBR, již nemůže být "vrácena zpět" a použita jinak
 - pro potřeby jiného přenosu

VBR, Variable Bit Rate

- představa:
 - v tomto režimu si každý přenos dohodne se sítí, že bude používat přenosovou kapacitu v určitém rozmezí
 - MIN až MAX
 - řeší se v rámci navazování spojení
 - ATM síť rezervuje kapacitu pro maximum požadavků
 - pro hodnotu MAX
 - aby síť dokázala vždy vyhovět v plném rozsahu skutečných požadavků
 - ale pokud je skutečně požadována nižší kapacita, může být přenechána někomu jinému
 - pro potřeby jiných přenosů

- srovnání s CBR:
 - V CBR i VBR se rezervují prostředky pro maximum
 - V CBR se nevyužité prostředky (rezervované buňky) nevrací, ve VBR ano
- předpokládané použití:
 - pro přenosy, které potřebují malé přenosové zpoždění a pravidelnost doručování
 - malý rozptyl
 - ale generují proměnlivý datový tok
 - například komprimovaný obraz, komprimovaný zvuk
 -

Počítačové sítě

verze 3.0 Cást II.-Technologie ⊚ J.Peterka, 2005

rt-VBR a nrt-VBR

- třída VBR má dvě varianty,
 - podle toho zda komunikující strany potřebují být trvale a přesně synchronizovány mezi sebou
- rt-VBR
 - real-time VBR
 - mohou měnit rychlost bitového proudu (bit rate)
 - tam kde jsou striktní požadavky na přenosové zpoždění a pravidelnost doručování
 - například:
 - pro komprimované video

nrt-VBR

- non-real-time VBR
 - pro přenosy vykazující dávkový (bursty) charakter
 - ale stále náročné na přenosové zpoždění a pravidelnost doručování
- například:
 - pro terminálový přístup do rezervačních systémů
 - pro transakční systémy

Lekce II-8 Slide č. 13

Počítačové sítě verze 3.0 Cást II.-Technologie © J.Peterka, 2005

ABR, Available Bit Rate

představa:

- v tomto režimu si každý přenos dohodne se sítí, že bude používat přenosovou kapacitu v určitém rozmezí
 - MIN až MAX
- ATM síť rezervuje kapacitu pro spodní hranici požadavků
 - pro hodnotu MIN
 - aby síť garantovala "alespoň něco"
 - aby dokázala vždy vyhovět alespoň minimálním požadavkům (MIN)
- pokud je pak požadována kapacita vyšší než MIN, je poskytnuta pokud jsou dostupné potřebné zdroje
 - v opačném případě nikoli

- v režimu ABR se používá řízení toku
 - odesilatel se dozví, zda jeho požadavky nad dohodnuté minimum jsou plněny nebo ne
 - a může tomu uzpůsobit své chování
- předpokládané použití
 - např. propojení sítí LAN

Počítačové sítě verze 3.0 Cást II.-Technologie © J.Peterka, 2005 Realizace ABR Každá n-tá buňka je vyhrazena pro přenos ve třídě ABR (n závisí na MINIMÁLNÍ požadované přenosové kapacitě) ATM buňky

Požadavky "nad minimum" jsou uspokojovány z momentálně dostupných zdrojů

UBR, Unspecified Bit Rate

- v tomto režimu nejsou poskytovány žádné garance
 - požadavky jsou uspokojovány podle momentální situace
 - po splnění všech požadavků CBR, VBR a ABR
 - v zásadě jde o princip "best effort" z klasických paketových přenosů
 - data jsou přenášena na principu FIFO
 - data k odeslání čekají v bufferu až pro ně bude volná buňka

- používá se pro aplikace, které dokáží tolerovat:
 - nepravidelnost v doručování
 - způsobenou tím že data čekají na odeslání až bude volná buňka
 - ztráty dat
 - při zahlcení ATM ústředen jsou zahazována UBR data
- používá se např. přenos protokolu IP
 - resp. UDP a TCP

Shrnutí

	CBR	RT-VBR	NRT- VBR	ABR	UBR
Garance přenosové kapacity	Ano	Ano	Ano	Částečně	Ne
Vhodné pro real-time přenosy	Ano	Ano	Ne	Ne	Ne
Vhodné pro nárazový (bursty) provoz	Ne	Ne	Ano	Ano	Ano
Informuje o zahlcení	Ne	Ne	Ne	Ano	Ne

Počítačové sítě

verze 3.0 Cást II.-Technologie © J.Peterka, 2005

ATM - vlastnosti

- ATM pracuje na spojovaném principu
 - hlavičky buněk jsou hodně malé
 - je v nich prostor na identifikaci spoje (okruhu)
 - nespojovaný přenos v ATM prakticky nejde
 - v hlavičkách malých buněk není prostor pro plnou adresu příjemce
 - je to proti filosofii ATM
- ATM nabízí virtuální okruhy (kanály)
 - které jsou obecně jednosměrné
 - ale lze je vytvářet v párech, pro plně duplexní spojení
 - mohou mít různé vlastnosti v obou směrech
 - virtuální okruhy mohou být:
 - pevné (PVC, Permanent Virtual Circuit), nebo
 - komutované (SVC, Switched Virtual Circuit)

 přenosové služby (virtuální okruhy) nepoužívají potvrzování

- fungují jako nespolehlivé
 - důsledek očekávání, že půjde o přenosy po optice, která je velmi spolehlivá
- při zahlcení jsou oprávněny zahazovat buňky
 - ale nejsou oprávněny měnit jejich pořadí
- ATM se snaží maximálně zjednodušit "směrování" a manipulaci s buňkami v mezilehlých uzlech
 - důsledkem je dvouúrovňová hierarchie virtuálních spojů a jejich adresování
 - virtuální okruhy (Virtual Circuits, VC)
 - virtuální cesty (Virtual Paths, VP)

Lekce II-8 Slide č. 19 virtuální cesta

Počítačové sítě verze 3.0 Cást II.-Technologie © J.Peterka, 2005

Proč "okruhy a cesty"?

- představa:
 - mezilehlé uzly (ATM ústředny) se při přenosech mezi sebou navzájem budou rozhodovat jen podle cesty
 - identifikátory VPI, Virtual Path Identifier
 - identifikátory VPI jsou při přechodu přes ATM ústřednu přepisovány !!!
 - pouze při doručování koncovým uzlům budou brány v úvahu identifikátory konkrétních okruhů
 - identifikátory VCI, Virtual Circuit Identifier

- výhody:
 - snazší a rychlejší "směrování"
 - a menší objemy směrovacích tabulek
 - snazší zřizování nových okruhů
 - v rámei již existujících cest
 - lze snadno "přesměrovávat" celé skupiny virtuálních okruhů,
 - například při výpadku celé přenosové cesty
 - snazší tvorba virtuálních podsítí
- nevýhody:
 - nutnost dvojí role ústředen
 - nutnost dvojího rozhraní
 - UNI a NNI

Počítačové sítě verze 3.0

Cást II.-Technologie

Příklad: ATM v rámci ADSL u ČTc

Vrstvový model ATM

- základem je ATM vrstva
 - má za úkol přenášet jednotlivé buňky
- pod ATM vrstvou je fyzická vrstva
 - zajišťuje vlastní přenos dat, není součástí definice ATM
- nad ATM vrstvou je vrstva AAL (ATM Adaptation Layer)
 - má hlavně za úkol přizpůsobování potřebám vyšších vrstev
 - AAL je přítomna až v koncových uzlech, nikoli v mezilehlých
 - nikoli v ATM ústřednách (ATM switches)
- ATM sama nepřenáší data !!!!!!!
 - nemá (vlastní) fyzickou vrstvu
 - neříká jak konkrétně využít konkrétní přenosové médium
 - ATM není vázána na žádnou konkrétní přenosovou rychlost
 - jako např. FDDI, omezená na 100 Mbps už svou přístupovou metodou
 - ATM není žádný rychlostní limit

zde se přenáší ATM buňky, v režimech CBR, VBR, ABR a UBR

Convergence sublayer (service specific part)

Convergence sublayer (common part)

Segmentation reassembly sublayer

ATM vrstva

Transr

Transmission Convergence Sublayer

Physical Medium Dependent Sublayer

Lekce II-8 Slide č. 26

Počítačové sítě verze 3.0 Cást II.-Technologie © J.Peterka, 2005

fyzická vrstva ATM

- rychlost ATM je dána tím, co se "pod ní podstrčí"
 - pod ATM lze "podstrčit" různé přenosové technologie
 - např. SONET, SDH, bezdrátové technologie, apod.
 - rychlost ATM přenosu je dána především touto "podstrčenou" technologií
- ATM byla vymyšlena s představou provozování po optických vláknech
 - dnes ji lze provozovat po mnoha dalších přenosových cestách

- fyzická vrstva ATM má dvě podvrstvy:
 - TCS, Transmission Convergence Sublayer
 - generuje kontrolní součet (hlaviček) ATM buněk
 - zarovnává ATM buňky do proudu, který vytváří nižší vrstva
 - posílá prázdné buňky, když není co přenášet
 - PMD, Physical Medium Dependent Sublayer
 - zajišťuje vlastní (fyzický) přenos dat

připomenutí: hierarchie SDH

- novější, plně synchronní
 - SDH, Synchronous Digital Hierarchy
 - je "vyšší" než PDH
- má jednodušší způsob sestavení svých rámců
 - umožňuje přímé "vkládání" a "vyjímání" jednotlivých 64 kbit/s kanálů
 - není nutné k tomu "rozkládat" celé rámce
- vychází z amerického standardu pro SONET (Synchronous Optical Network)
- podle SDH bývají dimenzovány vysokorychlostní páteřní přenosové trasy
 - např. ATM

Lekce II-8 Slide č. 28 155 Mbps, 622 Mbps atd.

РИП					
Řád	Přenosová				
	rychlost				
0. (E0)	64 kbit/s				
1. (E1)	2,048 Mbps				
2. (E2)	8,448 Mbps				
3. (E3)	34,368 Mbps				
4. (E4)	139,264 Mbps				

рги

ŘádPřenosová
rychlostSTM-1155 Mbit/sSTM-2622 MbpsSTM-32,488 GbpsSTM-49,95 Gbps

SDH

SONET

Byl vytvořen **jako náhrada PDH** pro přenos velkého množství telefonních a datových přenosů, a aby byla **sjednocena technologie zařízení různých výrobců**.

Synchronous Digital Hierarchy (SDH) standard vytvořen ITU (G.707 a jeho rozšíření G.708) byl vytvořen ze zkušeností SONETu. SONET se používá v USA a Kanadě, SDH ve zbytku světa. SDH doplněná například o ATM se stává nejvýhodnější technologií přenosu dat všech druhů. Dat.rychlosti:

SONET/SDH Designations and bandwidths

SONET Optical Carrier Level	SONET Frame Format	SDH level and Frame Format	Payload bandwidth ^[1] (kbit/s)	Line Rate (kbit/s)
OC-1	STS-1	STM-0	48 960	51 840
OC-3	STS-3	STM-1	150 336	155 520
OC-12	STS-12	STM-4	601 344	622 080
00-24	STS-24	STM-8	1 202 688	1 244 160
OC-48	STS-48	STM-16	2 405 376	2 488 320
OC-96	STS-96	STM-32	4810752	4 976 640
OC-192	STS-192	STM-64	9 621 504	9 953 280
OC-768	STS-768	STM-256	38 486 016	39 813 120
OC-1536	STS-1536	STM-512	76 972 032	79 626 120
OC-3072	STS-3072	STM-1024	153 944 064	159 252 240

Základní jednotkou **SDH je STM-1 (Synchronous Transport Module-level 1)** vycházející z STS-3, pracující na trojnásobné rychlosti 155.52 kbit/s oproti STS-1.

ATM a AAL vrstva

- ATM vrstva zhruba odpovídá linkové vrstvě ISO/OSI
 - s podstatným rozdílem: zajišťuje end-to-end přenosy, zatímco linková vrstva přenáší jen k sousedům
 - tj. chová se spíše jako síťová vrstva
- ATM vrstva zajišťuje přenos který je:
 - nespolehlivý
 - spojovaný
- nevšímá si obsahu přenášených dat
 - nijak nevyhodnocuje obsah jednotlivých buněk
 - nekontroluje nepoškozenost dat
- je optimalizována na výkon a rychlost

- vrstva AAL připomíná transportní vrstvu
 - má vyšším vrstvám zakrýt charakter ATM a dát jim právě to, co chtějí
 - v tom odpovídá transportní vrstvě
 - nad AAL bývá další (skutečná) transportní vrstva
- funkce AAL vrstvy
 - rozklad dat na vhodně velké části, aby šly umístit do buněk
 - musí vkládat do přenášených dat režijní data pro správné rozdělení a pozdější poskládání
 - může zajišťovat
 - detekci chyb
 - řízení toku
 - může zajišťovat různé formy podpory kvality služeb

Lekce II-8 Slide č. 29 Počítačové sítě

verze 3.0 Cást II.-Technologie © J.Peterka, 2005

Vrstva AAL

Historie AAL

- původně se předpokládalo, že aplikace se liší v požadavcích na:
 - real-time vs. non-real-time přenosy
 - constant bit rate vs. variable bit rate
 - spojovaný vs. nespojovaný přenos
- z 8 možných kombinací autoři (ITU) povolili jako smysluplné pouze 4
 - označili je jako třídy A, B, C a D
 - pro tyto 4 třídy byly vyvinuty protokoly AAL1 až AAL4
 - protokoly AAL3 a AAL4 později splynuly, v AAL3/4
- pak byl přidán AAL5

	A		В	C				D	
přenos (velikost zpoždění)	real- time	ne	real- time	ne	real- time	ne	real- time	ne	
bit rate	konstatní		variabilní		konstatní		varia	variabilní	
režim	spojovaný přenos			;	nespojovaný přenos			os	
Slide č. 31									

QoS - Quality of Service

- ATM počítá s tím, že mezi poskytovatelem a uživatele služby existuje "kontrakt"
 - smlouva o garanci některých vlastností
 - může to dokonce mít i formu právní (vymahatelné) smlouvy
 - uzavírá se při navazování spojení
 - pokud síť nemá dostatek zdrojů, odmítne spojení navázat
 - obecně: QoS, Quality of Service

- příklady konkrétních vlastností a parametrů, které mohou být garantovány:
 - PCR, Peak Cell Rate
 - MCR, Minimum Cell Rate
 - CLR, Cell Loss Ratio
 - CTD, Cell Transfer Delay
 - CDV, Cell Delay Variation
 - ...
 - některé parametry se týkají toho, jak se bude chovat uživatel
 - jak rychle bude posílat data atd.
 - jiné se týkají toho, jak se bude chovat síť
 - jak často bude něco zahazovat atd

Lekce II-8

Počítačové sítě

verze 3.0 Část II.-Technologie © J.Peterka, 2005

AAL1, AAL2

- AAL1 je protokol pro přenos dat
 - v reálném čase (malé zpoždění a rozptyl)
 - konstantní rychlostí (bit rate)
 - spojovaným způsobem
- AAL1 vytváří "bitově orientovanou bitovou rouru"
 - z jedné strany vstupují bity
 - konstantní rychlostí
 - z druhé strany musí být stejnou rychlostí odebírány
 - s minimálním zpožděním, rozptylem atd.
 - není žádné potvrzování, žádná kontrola neporušenosti obsahu

v zásadě odpovídá CBR

- AAL2 je protokol pro přenos dat
 - v reálném čase (malé zpoždění a rozptyl)
 - proměnnou rychlostí (bit rate)
 - spojovaným způsobem
- AAL2 je vhodná pro nekomprimované "živé" přenosy (audio, video)
 - které mají "plynulý přísun dat"
- AAL2 je zaměřena spíše na komprimované přenosy
 - které vykazují nerovnoměrné požadavky, ale potřebují rychlou odezvu a žádné rozptyly ve zpoždění

AAL3/4

- je protokolem pro přenosy, které nejsou citlivé na časové závislosti
 - a spíše jim vadí ztráty a chyby
 - liší se ve spojovaném (AAL3) a nespojovaném (AAL4) režimu
- autoři dospěli k závěru, že nejsou potřebné 2 různé protokoly

- AAL3/4 může fungovat ve 2 režimech:
 - stream režim
 - chová se jako "roura", nejsou hranice mezi částmi dat
 - režim zpráv (paketů)
 - jsou zasílány celé zprávy (najednou, jako celek)
- AAL3/4 umožňuje logický multiplex
 - více relací v rámci virtuálního okruhu

odpovídá nrt-VBR a ABR

	\mathbf{A}		В	C				D
přenos	real- time	ne	real- time	ne	real- time	ne	real- time	ne
bit rate	konst	tatní	variabilní		konstatní		variabilní	
režim	spojovaný přenos			nespojovaný přenos				

Lekce II-8 Slide č. 34

Počítačové sítě verze 3.0 Cást II.-Technologie © J.Peterka, 2005

AAL5

- protokoly AAL1, AAL2 a AAL3/4 vznikly "ve světě spojů"
 - a "ve světě počítačů" jsou považovány za zbytečně složité a velmi neefektivní
- protokol AA5 je reakcí "světa počítačů" na ostatní AAL
- AAL5 nabízí
 - spolehlivý i nespolehlivý přenos
 - stream režim i režim zpráv
 - zprávy mohou být až 64KB (lze např. přímo vkládat IP datagramy)
- AAL5 má menší režii než AAL3/4
 - k přenášeným bytům přidává méně svých režijních bytů

- od vyšších vrstev přijímá AAL5 "velké" bloky
 - až 64 KB
- tyto bloky vkládá do vlastního rámce
 - s8-bytovou "patičkou"
- rámec pak "rozseká" na kusy á 48 bytů
 - které vkládá do buněk
 - poslední buňka rámce se pozná podle jednoho bitu v položce hlavičky, která vyjadřuje typ obsahu

rámec AAL5

1 až 65535 bytů 8 bytů

8 bitů 8 bitů UU CPI		32 bitů kontr. součet
-------------------------	--	--------------------------

Problém s AAL5

- z AAL5-rámce není poznat
 - od koho pochází
 - proto nemůže AAL5 poskytovat obousměrný multicast
 - jakému protokolu odpovídá obsah rámce
- možné řešení:
 - VC Multiplexing
 - po každém kanálu (VC) bude přenášen pouze jeden typ paketů

- možné řešení:
 - LLC/SNAP encapsulation
 - AAL5 rámec se zabalí do rámec LLC a SNAP

hodnota pro IP

Lekce II-8 Slide č. 36 řeší to problém s identifikací obsahu

Počítačové sítě verze 3.0 Cást II.-Technologie © J.Peterka, 2005

ATM - kritika

- technologie ATM vznikala hodně "od zeleného stolu"
 - a dosud není zcela dokončena
 - některé aspekty ještě nejsou ani vyřešeny, natož standardizovány
 - vývoj ATM byl doprovázen mnoha chybami a omyly
 - některé věci se ukázaly jako nesprávné a byly dodatečně měněny
- "koncepce" ATM je dosti odlišná od ostatních technologií, hlavně ve světě LAN
 - je relativně těžké "navázat" např. IP,
 IPX, multimédia apod. na ATM
- ATM příliš nezapadá do referenčního modelu ISO/OSI
 - role vrstev je dosti odlišná

- ATM se snaží být univerzální
 - vyhovět různým požadavkům současně
- ... ale platí za to příliš vysokou daň:
 - ATM je příliš složité
 - příliš těžkopádné, málo flexibilní
 - příliš neefektivní
 - hodně drahé
- představa, že ATM bude konvergovanou technologií, se nevyplnila
- ATM prohrává v souboji v jinými technologiemi
 - např. Gb Ethernet
 - které nejsou tak "dokonalé", ale jsou pružnější, efektivnější a lacinější
- ATM se stále používá:
 - v páteřních sítích kde je nutná koexistence hlasových, obrazových a datových provozů
 - např. Český Telecom má celorepublikovou páteřní síť ATM

Lekce II-8

Počítačové sítě

verze 3.0 Cást II.-Technologie © J.Peterka, 2005

CCITT (ITU): X.25

- X.25 je přenosová technologie, vytvořená pro potřeby veřejných datových sítí
 - v polovině 70.1et
 - vznikla ve světě spojů
 - v rámci CCITT (International Consultative Committee for Telegraphy and Telephony), od roku 1993 ITU (International Consultative Committee for Telegraphy and Telephony)
 - pokrývá fyzickou, linkovou a síťovou vrstvu
 - "zapadá" do 3 nejnižších vrstev RM ISO/OSI
 - funguje na principu přepojování paketů
- X.25 funguje spojovaně
 - podobně jako ATM
 - používá virtuální okruhy (VC)
 - řeší řízení toku
- X.25 funguje spolehlivě
 - na rozdíl od ATM
 - má zabudovány silné mechanismy pro korekci chyb
 - předpokládá, že přenosové cesty jsou hodně nespolehlivé a chyb je hodně

- X.25 řeší připojování koncových uzlů k veřejným datovým sítím
 - neřeší "vnitřní" fungování VDS
- X.25 předpokládá "inteligenci v síti"
 - chytrou síť, hloupé terminály
 - dnes se vychází spíše z opačného předpokladu
 - · hloupá síť, chytré uzly
- dnes je X.25 překonané
 - nedokázalo se zbavit zabudovaných mechanismů pro zajištění robustnosti (spolehlivosti)
 - dnes by X.25 pro směrovače představovalo příliš velkou zátěž

Počítačové sítě, verze 3.0 (lekce č.19, slide č.39)

Počítačové sítě verze 3.0 Cást II.-Technologie

© J.Peterka, 2005

Frame Relay (FR)

- linková technologie
 - pokrývá linkovou (a fyzickou) vrstvu
- vznikla v polovině 80. let,
 - používá se od 90. let
 - hlavně pro vzájemné propojování sítí
- funguje spojovaně
 - vytváří virtuální okruhy (VC)
- funguje nespolehlivě
 - nezajišťuje spolehlivost
 - předpokládá, že přenosové cesty nebudou příliš zatížené chybami
 - již "nenese zátěž robustnosti" jako X.25
 - v porovnání s X.25 je FR výrazně "odlehčené"
- má řízení toku
 - flow control
 - ale pouze "end-to-end",
 - nikoli "per hop" v každém uzlu

- virtuální okruhy FR jsou realizovány na linkové vrstvě!!
 - Frame Relay zajišťuje end-to-end komunikaci na linkové vrstvě !!!!
 - stejně jako ATM, v rozporu s RM ISO/OSI
- představa:
 - virtuální okruh FR je analogie "kusu drátu"
 - analogie (vyhrazené) pevné linky, vedené skrze sdílenou infrastrukturu

Lekce II-8 Slide č. 39

Počítačové sítě verze 3.0 Cást II.-Technologie

© J.Peterka, 2005

Frame Relay (FR)

- Frame Relay přenáší linkové rámce
 - do kterých se vkládají např. IP pakety
 - max. velikost rámce 4096 bytů, v praxi spíše kolem 1600 bytů
 - přízpůsobení Ethernetu
- Frame Relay se snaží garantovat přenosovou kapacitu
 - na principu, který je obdobný režimu ABR (Available Bit Rate) u ATM
 - je garantováno minimum
 - tzv. CIR, Committed Information Rate
 - navíc lze připustit ještě EIR, Extended Information Rate

- · lze garantovat také
 - B_C: Committed Burst Size
 - a umožnit B_E: Extended Burst Size
 - velikost dávky (burst)
- rámce, které na vstupu do FR sítě překračují dohodnuté CIR (či Bc), jsou označený příznakem DE
 - Discard Eligibility
 - síť je může zahodit, pokud je nebude schopna přenést

V současnosti to vypadá tak, že implementace Ethernetu (10gigabitový Ethernet, MetroEthernet) postupně nahradí ATM na mnoha místech.

Zařízení: MULTISERVICE Switch

Příklad: Cisco MGX 8830/B Advanced ATM Multiservice Switch

High density broadband **ATM services:** AXSM XG for OC-3/STM-1 and OC-12/STM-4; AXSM-E for OC-12/STM-4, T3/E3; AXSM/B for OC-48/STM-16 interface.

Multi-Protocol Service Modules: MPSM-8-T1E1, MPSM-16-T1E1 for T1 and E1, and MPSM-T3E3-155 for DS0 to OC-3/STM-1 channelization for Frame Relay, and T1/E1 to OC-3/STM-1 channelization for ATM.

IP and MPLS services: Route processor Modules (RPM-PR and RPM-XF) for Ethernet, Fast Ethernet, Gigabit Ethernet and Packet over SONET interfaces

Narrowband service modules: 8-port ATM AUSM/B, Frame Relay FRSM, Circuit Emulation CESM service modules.

High Speed Frame relay FRSM module: FRSM-2-T3/E3, FRSM-2CT3, and the FRSM-HS2/B. Voice services: 8-port voice interface service modules MGX-VISM-PR-T1 and MGX-VISM-PR-E1

Zdroj:

 $http://www.cisco.com/c/en/us/products/collateral/switches/mgx-8830-atm-multiservice-switch/product_data_sheet09186a00800a18dc.html\\$