Database Systems Project

Jeremy Gluck and Blake Janes

CSE4020 December 1, 2019

Problem. Give the two decompositions you select for further steps, and prove that they are lossless join and functional preserving.

We will use the fact that a decomposition of a relation R into R_1 and R_2 has a lossless join if and only if at least one of the following dependencies is in F+:

$$R_1 \cap R_2 \to R_1$$

$$R_1 \cap R_2 \to R_2$$

Solution. Consider the following relational schema:

 $R = \text{hosted_at_and_where_by_whom_with_peer_review}(\underline{\text{event}}, \text{ venue}, \text{ chair}, \underline{\text{paper}}, \underline{\text{author}}, \underline{\text{reviewer}})$ $F = \{\text{event} \rightarrow \text{venue}, \text{event} \rightarrow \text{chair}\}$

And the following decompositions R_{1_i} and R_{2_i} :

 R_1 : hosted_at_where_and_by_whom(<u>event</u>, venue, chair) R_2 : the_peer_review_process(<u>event</u>, paper, <u>author</u>, <u>reviewer</u>)

So let's calculate $F+=\{\text{event} \to \text{venue}, \text{event} \to \text{chair}\}$. $R_1 \cap R_2=\text{event}$ which is a key for $R_1, R_1 \cup R_2=R$. $\{\text{event} \to \text{venue}, \text{event} \to \text{chair}\}$ so we have shown a lossless join decomposition exists. R_1 could be further decomposed into $r_1(\underline{event}, venue)$ and $r_2(\underline{event}, chair)$ using the same argument.