Ogloblin Ivan Semenovich

Study of the effect of noise on efficient quantum search algorithms

June 2022 course work

Scientific adviser: Tikhomirov Sergei Borisovich

Faculty of mathematics and computer science SPBU Specialty «modern programming»

Introduction

- The errors resulting from noisy quantum gates and decoherence make quantum devices far from perfect
- NISQ era algorithms strive for shallow depth to reduce the impact of noise from environment¹
- There are three different strategies to improve accuracy and efficiency of the Grover's search algorithm on the NISQ processors²

²Zhang, K., Rao, P., Yu, K., Lim, H., & Korepin, V. (2021)

¹Noisy intermediate-scale quantum (NISQ) algorithms

The problem

- 1. Implement the algorithm improvements described in the article
- 2. Create an environment for testing different variations of the algorithm with different noise models and different number of qubits
- 3. Conduct a series of experiments and explore noise impact on variations of the algorithm

Implementation

- Using Qiskit and IBMQ³
- Using thermal relaxation model⁴
- Coupling map of errors on qubits as on the real device "Melbourne"
- Toffoli gate implementation through Qiskit function "mct"

⁴T1/T2 thermal relaxation

³public repository

Tests on 6 qubits⁵

Tests on 6 qubits: results

- Dm_iM6 stands for algoritm with local Grover operator applied i times
- We can see that some algorithms perform better than the others
- Some algorithms scale better with noise parameter. D6_2M6
 has lower expected depth than D4_1M2_D4_1M4 at low
 noise parameter values, but greater at large noise
 parameter values

Задача 2: результаты измерений в таблице

Имя	Работа 1	Работа 2	Итог
Алиса	8.0	9.0	8.5
Боб	9.0	9.8	9.4
Чак	9.1	9.3	9.2

Пояснения к таблице

- Таблицы могут требовать пояснений.
- Что это за величины? Откуда они взялись?
- Какие выводы можно сделать?

Задача 2: результаты сравнения с конкурентами⁶⁷

⁶Понятна ли ваша диаграмма? Не забыли ли вы легенду?

 $^{^{7}}$ Контрастно ли изображение? Помните, на проекторе всё может выглядеть хуже.

Задача 3: основные трудности

- Мы всё классно сделали, но рецензенты STOC сформулировали ряд претензий к работе, обозвали нас идиотами и отказались пускать на конференцию.
- Все замечания были исправлены, попробуем FOCS8!

Дополнительный слайд по работе в целом⁹

- Освоенные и применённые технологии
- Информация о внедрении
- Полученные в ходе выполнения работы навыки
- Вынесенные уроки
- Реальные планы на будущее (не надо фантазировать!)
- Ссылки на цитированную литературу их можно вынести в конец слайдов, но во время доклада не показывать.

⁹Кстати, слайды с длинными перечислениями выглядят плохо. Старайтесь их избегать.

Результаты работы

- 1. Разработан полиномиальный алгоритм решения задачи коммивояжёра.
- 2. Программная реализация демонстрирует высочайшую производительность и превосходит все известные аналоги.
- 3. Результаты подготовлены для представления на FOCS.

Имя, фамилия и контакты автора, ссылка на материалы работы, QR-код.

Спасибо за внимание! Ваши вопросы? Этот слайд не нужен! Удалите его¹⁰!

 $^{^{10}}$ Сноски на слайдах тоже удалите: не нужно усложнять их структуру и содержимое. Не забывайте, что многое можно просто сказать словами.