

Constraint Programming applied to the Multi-Skill Project Scheduling Problem

Kenneth D. Young, Thibaut Feydy and Andreas Schutt CP2017, 31st of August 2017

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

- Activity constraint: Precedence relations between activities
- Skill constraint: Activities require skills
- Worker constraint: Workers each have a variety of skills

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	\checkmark	-	-	-
Webmaster	\checkmark	\checkmark	-	\checkmark

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	\checkmark	-	-	-
Webmaster	\checkmark	\checkmark	-	\checkmark

Figure: Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	\checkmark	-	-	-
Webmaster	\checkmark	\checkmark	-	\checkmark

Table: Skill Requirement

	A_1	A ₂	<i>A</i> ₃	A ₄
Programmer	-	1	2	1
DB Designer	1	-	-	1
Webmaster	1	1	-	-

Figure: Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	\checkmark	-	-	-
Webmaster	\checkmark	\checkmark	-	\checkmark

Table: Skill Requirement

	A_1	A_2	<i>A</i> ₃	A_4
Programmer	-	1	2	1
DB Designer	1	-	-	1
Webmaster	1	1	-	-

Figure: Precedence Graph

Figure: Schedule

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - ▶ Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib
- Portuguese research group
 - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
 - Constructive heuristics
 - Randomised search heuristics
 - Generated their own data

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib
- Portuguese research group
 - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
 - Constructive heuristics
 - Randomised search heuristics
 - Generated their own data
- Polish research group
 - Principal researchers: Myszkowski, Skowronski
 - Randomised search heuristics
 - Generated their own data

Intro: Timeline of the Literature

- French
- Portuguese
- Polish
- Other

- Objective
 - ▶ Minimise the total project duration

- Objective
 - ▶ Minimise the total project duration
- Two main decisions

- Objective
 - Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times

- Objective
 - Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times
 - 2. Assignment decisions
 - Workers to activities
 - Skill contribution of workers

• Precedence relations are respected

- Precedence relations are respected
- Workers perform only one activity at a time

- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task

- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task
- Skill requirement is satisfied
 - ▶ A worker for each skill must be present to perform the activity

- Precedence relations are respected
- · Workers perform only one activity at a time
- Workers cannot multi-task
- Skill requirement is satisfied
 - ▶ A worker for each skill must be present to perform the activity
- Redundant constraints

Unary Resource Constraint

• Each worker only performs one activity at a time

Unary Resource Constraint

• Each worker only performs one activity at a time

Possible ways of modelling

Unary Resource Constraint

• Each worker only performs one activity at a time

Possible ways of modelling

1. Time-indexed decomposition

Unary Resource Constraint

• Each worker only performs one activity at a time

Possible ways of modelling

- 1. Time-indexed decomposition
- 2. Global constraints (either disjunctive or cumulative)

Unary Resource Constraint

Each worker only performs one activity at a time

Possible ways of modelling

- 1. Time-indexed decomposition
- Global constraints (either disjunctive or cumulative)
- 3. Order constraints

Model: Decision Variables

Decision Variables						
Primary	s _i y _{ir}	Start time of activity $i \in V$ 1 iff resource $r \in R$ contributes with skill $s \in S$ to activity $i \in V$				
Auxiliary	.,	1 iff activities i and j overlap for $(i,j) \in U$ 1 iff resource $r \in R$ is assigned activity $i \in V$				

Model

$$Min s_{n+1} \tag{1}$$

s.t.
$$s_i + p_i \leq s_j$$
 $\forall (i,j) \in E$ (2)

$$\neg o_{ij} \Leftrightarrow (s_i + p_i \le s_j) \lor (s_i + p_i \le s_i) \quad \forall (i, j) \in U$$
 (3)

$$(x_{ir} \wedge x_{jr}) \Rightarrow \neg o_{ij} \qquad \forall (i,j) \in U, \ r \in RV_i \cap RV_j \quad (4)$$

$$\sum_{r \in RV_i} y_{ir}^s = sr_{ik} \qquad \forall i \in V, \ s \in S_i$$
 (5)

$$\sum y_{ir}^{s} \leq 1 \qquad \forall i \in V, \ r \in RV_{i}$$
 (6)

 $s \in S_i | mast_{rk} = 1$

$$y_{ir}^s \leq mast_{rk} \qquad \forall i \in V, \ r \in RV_i, \ s \in S$$
 (7)

$$y_{ir}^{s} \leq x_{ir}$$
 $\forall i \in V, r \in RV_{i}, s \in S_{i}$ (8)

$$s_i \ge 0 \qquad \forall i \in V \tag{9}$$

Model: Redundent Constraints

$$\texttt{cumulative}(s, p, [sr_{ik} : i \in V], |\mathscr{R}_k|) \quad \forall k \in \mathscr{L} \quad (10)$$

cumulative
$$\left(s, p, \left[\sum_{k \in \mathcal{L}} sr_{ik} : i \in V\right], m\right)$$
 (11)

$$x_{ir} = 0 \quad \forall i \in V, \ r \in \mathcal{R} \backslash \mathcal{R} V_i$$
 (12)

$$y_{irk} = 0 \quad \forall i \in V, \ r \in \mathcal{R} \backslash \mathcal{R} V_i, \ k \in \mathcal{L}$$
 (13)

$$y_{irk} = 0 \quad \forall i \in V, \ r \in \mathcal{R}, \ k \in \mathcal{L} \setminus \mathcal{L}_i$$
 (14)

$$y_{irk} = 0 \ \forall r \in \mathcal{R}, \ k \in \mathcal{L} \backslash \mathcal{L}_r, \ i \in V$$
 (15)

Data: Overview

• Tested on data from the literature and generated our own data

Data: Overview

Tested on data from the literature and generated our own data

Table: Data sets summary

					Best known results		
set	#instances	n	1	m	source	%optimal	#unsolved
1a	216	22	4	10-30	Correia et al. 2012	93.98	13
1b	216	42	4	20-60	Almeida et al. 2016	2.31	211
2a	110	20-51	2-8	5-14	Montoya et al. 2014	43.64	62
2b	77	32-62	9-15	5-19	Montoya et al. 2014	66.20	24
2c	91	22-32	3-12	4-15	Montoya et al. 2014	51.11	44

Data: Complexity Measures

- 1. Skill Factor
 - ▶ $SF \in \{1, 0.75, 0.5, variable\}$

Data: Complexity Measures

- 1. Skill Factor
 - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
 - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$

Data: Complexity Measures

- 1. Skill Factor
 - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
 - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$
- 3. Modified Resource Strength
 - varied over 3 values

$$MRS = \frac{m}{\sum_{i \in V} \sum_{k \in \mathscr{L}} Req_{ik}}$$

• Start times (s_i)

- Start times (s_i)
- Start times (s_i) , then worker assignment (x_{ir})

- Start times (s_i)
- Start times (s_i) , then worker assignment (x_{ir})
- Start times (s_i) , then contribution of each worker (y_{irk})

- Start times (s_i)
- Start times (s_i) , then worker assignment (x_{ir})
- Start times (s_i) , then contribution of each worker (y_{irk})
- Naïve priority search

Experiments: Small Data Set

- Tested on all 216 small instances
- Time limit of 300 seconds

Experiments: Small Data Set

- Tested on all 216 small instances.
- Time limit of 300 seconds

search strategy	#no soln	%gap	#optimal	%optimal	avg. runtime
default	0	0.00	216	100.00	3.25s
start	0	2.50	215	99.54	1.26s
start then worker	0	0.00	216	100.00	2.89s
start then skill	0	0.00	216	100.00	1.63s
naïve activity-based	0	2.50	215	99.54	0.82s

Experiments: Small Data Set

- Tested on all 216 small instances.
- Time limit of 300 seconds

search strategy	#no soln	%gap	#optimal	%optimal	avg. runtime
default	0	0.00	216	100.00	3.25s
start	0	2.50	215	99.54	1.26s
start then worker	0	0.00	216	100.00	2.89s
start then skill	0	0.00	216	100.00	1.63s
naïve activity-based	0	2.50	215	99.54	0.82s
activity smallest	0	0.00	216	100.00	0.45s

- Tested on all 216 large instances
- Time limit of 300 seconds

- Tested on all 216 large instances
- Time limit of 300 seconds

variable selection	#nodes	#props	#no soln	%gap	#opt	%opt	opt rt.	total rt.
naive	6,568k	375m	0	60.36	13	6.02	98.15	287.85
smallest	734k	71m	0	53.29	15	6.94	103.51	286.35
smallest_largest	814k	73m	0	55.50	7	3.24	70.71	292.57
first_fail	1,037k	80m	0	67.48	8	3.70	113.33	293.09
	!							

- Tested on all 216 large instances
- Time limit of 300 seconds

variable selection	#nodes	#props	#no soln	%gap	#opt	%opt	opt rt.	total rt.
naive	6,568k	375m	0	60.36	13	6.02	98.15	287.85
smallest	734k	71m	0	53.29	15	6.94	103.51	286.35
smallest_largest	814k	73m	0	55.50	7	3.24	70.71	292.57
first_fail	1,037k	80m	0	67.48	8	3.70	113.33	293.09
smallest wth UB	715k	69m	5	54.18	16	7.41	78.88	283.62
	1							

- Tested on all 216 large instances
- Time limit of 300 seconds

variable selection	#nodes	#props	#no soln	%gap	#opt	%opt	opt rt.	total rt.
naive	6,568k	375m	0	60.36	13	6.02	98.15	287.85
smallest	734k	71m	0	53.29	15	6.94	103.51	286.35
smallest_largest	814k	73m	0	55.50	7	3.24	70.71	292.57
first_fail	1,037k	80m	0	67.48	8	3.70	113.33	293.09
smallest wth UB	715k	69m	5	54.18	16	7.41	78.88	283.62
smallest $(fixed)$	3,962k	409m	0	50.18	24	11.11	55.45	272.83

Time limit of 3600 seconds

Time limit of 3600 seconds

measure	value	#nodes	#props	%gap	#opt	%opt	opt rt.	total rt.
SF	1	36m	4,254m	48.35	7	12.96	257.55	3166.72
	0.75	47m	4,296m	49.63	4	7.41	545.44	3373.74
	0.5	32m	4,468m	42.06	20	37.04	782.20	2556.37
	var	45m	4,302m	49.82	5	9.26	130.97	3278.79
NC	1.5	41m	5,007m	57.33	8	11.11	819.48	3291.05
	1.8	42m	4,381m	46.09	11	15.28	558.06	3135.26
	2.1	36m	3,602m	38.99	17	23.61	446.41	2855.40
MRS	#1	37m	6,083m	76.93	14	19.44	327.52	2963.68
	#2	42m	4,154m	43.36	8	11.11	913.89	3301.54
	#3	39m	2,753m	23.94	14	19.44	599.07	3016.49
Overall		40m	4,330m	47.92	36	16.67	563.43	3093.90

Applied the constraint programming solver chuffed to the MSPSP

- Applied the constraint programming solver chuffed to the MSPSP
- Generated a set of benchmark instances

- Applied the constraint programming solver chuffed to the **MSPSP**
- Generated a set of benchmark instances
- Found an effective model formulation

- Applied the constraint programming solver chuffed to the MSPSP
- Generated a set of benchmark instances
- · Found an effective model formulation
- Solved all small instances

Acknowledgements

- Dr. Andreas Schutt
- Dr. Thibaut Feydy
- Adrian Goldwaser

Thanks for listening!

Questions?