Predictive Analytics

```
In [1]:
         #importing packages for data analysis
         import pandas as pd
         import numpy as np
         #importing packages for data visualization
         import seaborn as sns
         sns.set()
         import matplotlib.pyplot as plt
         import matplotlib.dates
         import datetime
         #allows charts to appear in the notebook
         %matplotlib inline
         #setting plot stuyle
         plt.style.use('ggplot')
         #ignoring warnings
         import warnings
         warnings.filterwarnings("ignore")
         #setting column display
         pd.options.display.max_columns = None
         #importing dataset
In [2]:
         df_original = pd.read_excel('ANZ synthesised transaction dataset.xlsx')
In [3]:
         df_original.head()
Out[3]:
               status card_present_flag bpay_biller_code
                                                       account currency
                                                                       long_lat txn_description
                                                         ACC-
                                                                         153.41
          0 authorized
                                 1.0
                                                                  AUD
                                                                                        POS
                                               NaN
                                                    1598451071
                                                                         -27.95
                                                         ACC-
                                                                         153.41
                                                                  AUD
          1 authorized
                                 0.0
                                                                                  SALES-POS
                                               NaN
                                                    1598451071
                                                                         -27 95
                                                                         151.23
                                                                                        POS
          2 authorized
                                 1.0
                                                                  AUD
                                                    1222300524
                                                                         -33.94
                                                         ACC-
                                                                         153.10
           authorized
                                 1.0
                                                                  AUD
                                                                                  SALES-POS
                                               NaN
                                                    1037050564
                                                                         -27.66
                                                         ACC-
                                                                         153.41
          4 authorized
                                 1.0
                                                                  AUD
                                                                                  SALES-POS
                                               NaN
                                                    1598451071
                                                                         -27.95
```

```
In [4]: column_list = df_original.columns.tolist()
    for column in column_list:
        print( column, ':', df_original[column].nunique())
```

status : 2
card_present_flag : 2

bpay_biller_code : 3

account: 100 currency: 1 long_lat : 100 txn_description : 6 merchant_id : 5725 merchant_code : 1 first_name: 80 balance : 12006

date: 91 gender: 2 age : 33

merchant_suburb : 1609 merchant_state : 8 extraction: 9442

amount : 4457

transaction_id : 12043

country: 1

customer_id : 100

merchant long lat: 2703

movement : 2

In [5]: df_original['movement'].value_counts()

Out[5]: debit 11160 credit 883

Name: movement, dtype: int64

The above piece of code shows the number of unique values in each of the columns. Here we are particularly interested in the 'movement' column and we have found out that there are only two types of transaction took place. Hence we create two columns in the dataframe showing the debit and credit amounts.

Adding Debit & Credit Amount Columns in Dataframe

```
In [6]:
        df = df_original.copy()
        df['Debit_amount'] = np.where(df_original['movement'] == 'debit', df_orig
        inal['amount'], np.nan)
        df['Credit_amount'] = np.where(df_original['movement'] == 'credit', df_or
        iginal['amount'], np.nan)
        df
```

Out[6]:

	status	card_present_flag	bpay_biller_code	account	currency	long_lat	txn_description
0	authorized	1.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	PC
1	authorized	0.0	NaN	ACC- 1598451071	AUD	153.41 -27.95	SALES-PC
2	authorized	1.0	NaN	ACC- 1222300524	AUD	151.23 -33.94	PC
3	authorized	1.0	NaN	ACC- 1037050564	AUD	153.10 -27.66	SALES-PC
4	authorized	1.0	NaN	ACC-	AUD	153.41 -27.95	SALES-P(

12038	authorized	0.0	NaN	ACC- 3021093232	AUD	149.83 -29.47	PC
12039	authorized	1.0	NaN	ACC- 1608363396	AUD	151.22 -33.87	SALES-P(
12040	authorized	1.0	NaN	ACC- 3827517394	AUD	151.12 -33.89	PC
12041	authorized	1.0	NaN	ACC- 2920611728	AUD	144.96 -37.76	SALES-PC
12042	authorized	1.0	NaN	ACC- 1443681913	AUD	150.92 -33.77	SALES-PC

12043 rows × 25 columns

Executing the following piece of code, we get a glimpse of some summery statistics. We can see debit amount on an average in 52.57 AUD, whereas mean credit amount is much higher, which is 1898.73 AUD.

In [7]: df.describe()

date

Out[7]:

	card_present_flag	merchant_code	balance	age	amount	Debit_amount
count	7717.000000	883.0	12043.000000	12043.000000	12043.000000	11160.000000
mean	0.802644	0.0	14704.195553	30.582330	187.933588	52.572343
std	0.398029	0.0	31503.722652	10.046343	592.599934	156.354143
min	0.000000	0.0	0.240000	18.000000	0.100000	0.100000
25%	1.000000	0.0	3158.585000	22.000000	16.000000	15.190000
50%	1.000000	0.0	6432.010000	28.000000	29.000000	26.930000
75%	1.000000	0.0	12465.945000	38.000000	53.655000	45.000000
max	1.000000	0.0	267128.520000	78.000000	8835.980000	7081.090000

Calculating Percentage of Missing Values in Each Column

0.000000

In [8]:	df.isna().sum()/len(df) * 100					
Out[8]:	status	0.000000				
	card_present_flag	35.921282				
	bpay_biller_code	92.651333				
	account	0.000000				
	currency	0.000000				
	long_lat	0.000000				
	txn_description	0.000000				
	merchant_id	35.921282				
	merchant_code	92.667940				
	first_name	0.000000				
	balance	0.000000				

```
gender
                      0.00000
age
                      0.000000
merchant_suburb
                     35.921282
merchant_state
                     35.921282
extraction
                      0.000000
amount
                      0.000000
transaction_id
                      0.000000
country
                      0.000000
customer_id
                      0.000000
merchant_long_lat
                     35.921282
movement
                      0.000000
Debit amount
                      7.332060
Credit_amount
                     92.667940
dtype: float64
```

From the above piece of code, we get some information about missing values, which should be dealt carefully in order to do further analysis. Here we gather an idea about dropping columns with highest number of missing values.

Extracting Customer Details

We want to extract details of each customer through running the following code.

```
In [9]: customer_details = df.groupby(['customer_id'])
  customer_details
```

Out[9]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000000000778A0
8>

We proceed towards our target of creating a new dataframe which is suitable for data analysis.

```
In [10]: df1 = customer_details.apply(lambda x: x['transaction_id'].count())
    df2 = customer_details.apply(lambda x: x['Debit_amount'].count())
    df3 = customer_details.apply(lambda x: x['Debit_amount'].sum())
    df4 = customer_details.apply(lambda x: x['Credit_amount'].count())
    df5 = customer_details.apply(lambda x: x['Credit_amount'].sum())
```

Out[11]:

total_tr_count Debit_tr_count total_Debit_amount credit_transaction_count total_Credit

customer_id

CUS- 1005756958	73	60	3652.86	13
CUS- 1117979751	100	93	8933.82	7
CUS- 1140341822	80	74	5511.54	6
CUS- 1147642491	118	105	6732.75	13
CUS- 1196156254	245	238	8724.61	7

	•••			
CUS- 72755508	58	46	2734.53	12
CUS- 809013380	124	111	5328.18	13
CUS- 860700529	233	227	7248.16	6
CUS- 880898248	78	72	2858.57	6
CUS- 883482547	178	171	8797.19	7

100 rows × 5 columns

We have till now built some part of our required dataframe. Now, we are using first() and last() for creating columns containing the information of opening (beginning of August) and closing balance (end of October) of the customers.

```
In [16]: final_customer_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 100 entries, CUS-1005756958 to CUS-883482547
Data columns (total 11 columns):

	(,	
#	Column	Non-Null Count	Dtype
0	account	100 non-null	object
1	first_name	100 non-null	object
2	gender	100 non-null	object
3	age	100 non-null	int64
4	Opening_bal	100 non-null	float64
5	Closing_bal	100 non-null	float64
6	total_tr_count	100 non-null	int64
7	Debit_tr_count	100 non-null	int64
8	total_Debit_amount	100 non-null	float64

```
9 credit_transaction_count 100 non-null int64

10 total_Credit_amount 100 non-null float64
dtypes: float64(4), int64(4), object(3)
memory usage: 9.4+ KB
```

Identification of Annual Salary

Here our task is to determine the annual salary of each of the customers.

```
In [17]: ctn_count = final_customer_df['credit_transaction_count'].value_counts()
         ctn count
Out[17]: 6
                28
         13
                27
         7
                24
         14
                 8
         12
                 5
         2
                 4
                 2
         4
         5
                 1
         3
         Name: credit_transaction_count, dtype: int64
```

From the above output, we can see that there are 28 number of customers who have 6 credit transactions and so on. As all the credit transactions in the given dataset are of 'PAY/SALARY' type, hence we can use this data to calculate the annual salary of the customers. Here 6 and 7 credit transactions in 3 months imply the case of getting salary bi-weekly. Similarly, 12, 13 and 14 number of transactions indicate weekly arrival of salary and 3 number of credit transactions implies the event of monthly salary. All of the above conclusions can be drawn looking at the transaction dates and their intervals. But if we look closely on the remaining cases, suspicion arises and we want to extract more details related to the remaining credit transactions.

```
In [18]:
         def credit_details(df, customer_id, customer_detail):
             list_of_customers = customer_detail.index.tolist()
             list_of_indices = [0,1,2]
             for x in list_of_indices:
                 try:
                      each_customer_details = df[df[customer_id] == list_of_custome
         rs[x]]
                     customer_credit_details = each_customer_details[each_customer
         _details['Credit_amount'].notnull()]
                     credit_related_details = customer_credit_details[['account',
          'txn_description','customer_id','date',
                                                              'Credit_amount','trans
         action_id']]
                      print(credit_related_details.set_index('customer_id'))
                 except Exception:
                     continue
```

suspected = ctn_count.index.tolist()[5:]

In [19]:

suspected

```
with pd.option_context('expand_frame_repr', False):
              credit_details(df, 'customer_id', suspected_customer_details
)
Number of Credit Transactions : 2
                       account txn_description
                                                    date Credit_amount
transaction_id
customer_id
CUS-1739931018 ACC-1217063613
                                   PAY/SALARY 2018-09-26
                                                                4863.62
8659baa692924427aefbf4077c5a9d67
CUS-1739931018 ACC-1217063613
                                   PAY/SALARY 2018-10-26
                                                                4863.62
e6d8f31d269d4e8388e115719a59dd98
                      account txn_description
                                                    date Credit_amount
transaction_id
customer_id
                                   PAY/SALARY 2018-09-26
CUS-2178051368 ACC-3100725361
                                                                6107.23
7eb1fdb7aefb40d1a8ada1d27f556542
CUS-2178051368 ACC-3100725361
                                   PAY/SALARY 2018-10-26
                                                                6107.23
56e1a0f55f354624a3c713c37415d216
                                                  date Credit_amount
                    account txn_description
transaction id
customer_id
CUS-497688347 ACC-211792489
                                 PAY/SALARY 2018-08-23
                                                               4910.9
                                                                       2
b4ecc820d834f6ea016b40abbfbfde5
                                 PAY/SALARY 2018-10-23
CUS-497688347 ACC-211792489
                                                               4910.9 1
c410d75288f4fbb832f88d7f612693b
Number of Credit Transactions: 4
                       account txn_description
                                                    date Credit_amount
transaction_id
customer_id
CUS-1816693151 ACC-1523339231
                                   PAY/SALARY 2018-08-20
                                                                8835.98
b608ce5142664a79af4fa071a886c8f7
CUS-1816693151 ACC-1523339231
                                   PAY/SALARY 2018-09-20
                                                                8835.98
854ded55d0034ac8b9e91e16334768ca
                                   PAY/SALARY 2018-10-19
CUS-1816693151 ACC-1523339231
                                                                8835.98
873a3f11d03d41a99c55a5b1a3850e1a
CUS-1816693151 ACC-1523339231
                                   PAY/SALARY 2018-10-19
                                                                8835.98
d996300131a641c8bf25f86e1aef9bc6
                       account txn_description
                                                    date Credit amount
transaction_id
customer_id
CUS-2110742437 ACC-2270192619
                                   PAY/SALARY 2018-08-06
                                                                3026.95
c1d51fe6ac554d37b93d57dba64d6674
CUS-2110742437 ACC-2270192619
                                   PAY/SALARY 2018-09-06
                                                                3026.95
11372fe1819f48a8b0260bf3c046e4e0
CUS-2110742437 ACC-2270192619
                                   PAY/SALARY 2018-10-05
                                                                3026.95
812d58434d704041aa033b5ae904efe9
CUS-2110742437 ACC-2270192619
                                   PAY/SALARY 2018-10-05
                                                                3026.95
efbc0cb742af4879a122c99ae728354b
Number of Credit Transactions : 5
                     account txn_description
                                                   date Credit_amount
transaction_id
customer_id
CUS-2376382098 ACC-354106658
                                  PAY/SALARY 2018-08-15
                                                               5103.51
41ce67e6c8a4474385fd1646963b6758
CUS-2376382098 ACC-354106658
                                  PAY/SALARY 2018-09-14
                                                               5103.51
188e04b6e00f44f3a43afbf232a6f5c3
CUS-2376382098 ACC-354106658
                                  PAY/SALARY 2018-09-14
                                                               5103.51
7faf986ac5a341e3adfdb7030ec03f48
CUS-2376382098 ACC-354106658
                                  PAY/SALARY 2018-10-15
                                                               5103.51
dfff2531d8434969b7f385d364772534
CUS-2376382098 ACC-354106658
                                  PAY/SALARY 2018-10-15
                                                               5103.51
e4e7f0dd7c504c45990277dad7a8a86c
Number of Credit Transactions: 3
                     account txn_description
                                                   date Credit_amount
```

transaction_iu		
customer_id		
CUS-423725039 ACC-2153562714	PAY/SALARY 2018-08-24	3712.56
13d1b673d560462aa9b879f6b3730e39		
CUS-423725039 ACC-2153562714	PAY/SALARY 2018-09-24	3712.56
8d7ddef22c7c4404b63137f3ebd1a6ff		
CUS-423725039 ACC-2153562714	PAY/SALARY 2018-10-24	3712.56
fe1b1a6bdd9b43f7985acc4af7b0a101		

Here, we have taken only 3 customers having suspicious number of credit transaction counts. Observing the above output, we can see the customer we have 2 credit transactions (on September and October) dated exactly with a difference of 1 month. Hence, we can assume that these customers may have engaged in a job since September, and hence their salary are considered to be arrived monthly.

Now, for the customers with 4 and 5 number of credit transactions, we observe that there are 2 credit transactions of same amount on same date, which is unusual. The reason of this is assumed to be the Synthesisation of the dataset. Looking at the transaction dates, we can categorize them in the monthly salary class.

Calculating Annual Salary of Each customer

```
In [21]:
         #calculating wages
         final_customer_df['wage'] = final_customer_df['total_Credit_amount'] / fi
         nal_customer_df['credit_transaction_count']
         final_customer_df['Annual_Salary'] = pd.Series()
         #calculating annual salary
         weekly = [12, 13, 14]
         bi_weekly = [6,7]
         monthly = [2,3,4,5]
         for i in range(len(final_customer_df['credit_transaction_count'])):
             final_customer_df['Annual_Salary'][i] = np.where(final_customer_df['c
         redit_transaction_count'][i]
                                                        in weekly, final_customer_df
         ['wage'][i] * 52,
                                                        np.where(final_customer_df[
         'credit_transaction_count'][i]
                                                        in bi_weekly, final_custome
         r_df['wage'][i] * 26,
                                                                  final_customer_df[
         'wage'][i]*12))
```

```
In [22]: pd.options.display.max_rows = None
final_customer_df[['Annual_Salary']]
```

Out[22]:

Annual_Salary

customer_id	
CUS-1005756958	50464.44
CUS-1117979751	93044.90
CUS-1140341822	49829.26
CUS-1147642491	88992.28
CUS-1196156254	101496.98
CUS-1220154422	59341.36
CUS-1233833708	31009.16
CUS-1271030853	60223.80

CUS-127297539	59217.08
CUS-134193016	52615.68
CUS-134833760	98430.28
CUS-1388323263	54242.24
CUS-1433879684	36610.08
CUS-1462656821	101502.70
CUS-1478398256	94887.26
CUS-1499065773	64231.70
CUS-1604596597	65000.00
CUS-1609060617	74223.24
CUS-1614226872	46388.68
CUS-1617121891	86548.02
CUS-164374203	72565.48
CUS-1646183815	40685.84
CUS-1646621553	57143.32
CUS-1654129794	29952.00
CUS-1669695324	63717.16
CUS-1739931018	58363.44
CUS-1790886359	79849.64
CUS-1816693151	106031.76
CUS-1842679196	39589.16
CUS-1892177589	75070.84
CUS-1896554896	60025.42
CUS-1928710999	64619.62
CUS-2031327464	118578.72
CUS-2059096722	81130.40
CUS-2083971310	75049.52
CUS-2110742437	36323.40
CUS-2142601169	52110.76
CUS-2155701614	127048.48
CUS-2178051368	73286.76
CUS-2206365095	40069.12
CUS-2283904812	57686.98
CUS-2317998716	68633.76
CUS-2348881191	54639.26
CUS-2370108457	56678.96
CUS-2376382098	61242.12
CUS-2484453271	42661.58
CUS-2487424745	52710.84
CUS-2500783281	84576.96
CUS-2505971401	101221.64
CUS-2599279756	42389.36
CUS-261674136	114537.80

CUS-2630892467	47876.92
CUS-2650223890	44873.40
CUS-2663907001	105424.02
CUS-2688605418	60327.80
CUS-2695611575	47707.40
CUS-2738291516	132327.52
CUS-2819545904	84012.76
CUS-2977593493	37361.48
CUS-3026014945	73843.90
CUS-3117610635	70681.26
CUS-3129499595	51804.48
CUS-3142625864	134576.52
CUS-3151318058	45703.32
CUS-3174332735	95600.44
CUS-3180318393	72603.96
CUS-3201519139	47671.00
CUS-3249305314	97809.40
CUS-325142416	59972.38
CUS-3255104878	34550.36
CUS-326006476	51134.72
CUS-331942311	47921.64
CUS-3325710106	57184.40
CUS-3336454548	107437.98
CUS-3378712515	55111.68
CUS-3395687666	45703.06
CUS-3431016847	50153.22
CUS-3462882033	83070.26
CUS-3702001629	39979.68
CUS-3716701010	66168.44
CUS-3904958894	43721.08
CUS-3989008654	69884.10
CUS-4023861240	66005.68
CUS-4123612273	55538.08
CUS-4142663097	91457.86
CUS-423725039	44550.72
CUS-443776336	51508.60
CUS-495599312	68831.88
CUS-497688347	58930.80
CUS-511326734	51100.92
CUS-51506836	72293.88
CUS-527400765	109617.04
CUS-537508723	66895.66
CUS-55310383	85109.44

```
CUS-586638664 50759.54

CUS-72755508 37716.64

CUS-809013380 53927.64

CUS-860700529 47024.12

CUS-880898248 37283.48

CUS-883482547 103413.96
```

In [24]: pd.options.display.max_rows = 10
final_customer_df

Out[24]:

				•		-	
customer_id							
CUS- 1005756958	ACC- 2828321672	Stephanie	F	53	470.44	9310.03	73
CUS- 1117979751	ACC- 4065652575	Lucas	М	21	2390.35	18387.41	100
CUS- 1140341822	ACC- 80388494	Dustin	М	28	832.74	6820.26	80
CUS- 1147642491	ACC- 3233697971	Robin	F	34	14.89	15387.21	118
CUS- 1196156254	ACC- 3485804958	Jessica	F	34	12563.48	30899.53	245
CUS- 72755508	ACC- 53508546	Kimberly	F	35	341.93	7036.56	58
CUS- 809013380	ACC- 1990648130	Kaitlyn	F	21	1718.38	9872.11	124
CUS- 860700529	ACC- 1903037542	Jeffrey	М	30	13.64	5243.81	233
CUS- 880898248	ACC- 2970114956	Robert	М	26	5288.87	12346.59	78
CUS- 883482547	ACC- 1710017148	Michelle	F	19	1654.87	20699.90	178

account first_name gender age Opening_bal Closing_bal total_tr_count Debit_1

100 rows × 14 columns

Finally we have created our final Desired dataframe.

1. Multiple Linear Regression Model

Selecting Important Columns for MLR

```
In [25]: cluster_df1 = final_customer_df.copy() #Later required for clustering usi
    ng 2 variables
    regression_drop = ['account','first_name','wage','Quarterly_savings_amoun
    t']
    regression_df = final_customer_df.drop(regression_drop, axis = 1)
```

In [26]: regression_df.head()

	gender	age	Opening_bal	Closing_bal	total_tr_count	Debit_tr_count	total_Debit_amo
customer_id							
CUS- 1005756958	F	53	470.44	9310.03	73	60	3652
CUS- 1117979751	М	21	2390.35	18387.41	100	93	8933
CUS- 1140341822	М	28	832.74	6820.26	80	74	5511
CUS- 1147642491	F	34	14.89	15387.21	118	105	6732
CUS- 1196156254	F	34	12563.48	30899.53	245	238	8724

Checking correlation between possible regressor variables

Heatmap exhibiting Pearsonian Correation Coefficient between possible predictor variables

Dropping columns implying presence of multicolinearity

```
In [28]: features_to_drop = ['Opening_bal','total_tr_count']
    regression_df = regression_df.drop(features_to_drop, axis = 1)
```

Creating Dummy Variables for Gender (Categorical) column

```
In [29]:
           regression_df = pd.get_dummies(regression_df, prefix = 'gender')
            regression_df.rename( columns = {'gender_F' : 'Female', 'gender_M' : 'Mal
           e'}, inplace = True )
In [30]:
           regression_df
Out[30]:
                              Closing_bal Debit_tr_count total_Debit_amount credit_transaction_count total_Cr
            customer_id
                   CUS-
                          53
                                 9310.03
                                                    60
                                                                   3652.86
                                                                                               13
             1005756958
                  CUS-
                          21
                                 18387.41
                                                    93
                                                                   8933.82
                                                                                               7
             1117979751
                  CUS-
                          28
                                 6820.26
                                                    74
                                                                   5511.54
                                                                                               6
             1140341822
                  CUS-
                          34
                                15387.21
                                                   105
                                                                   6732.75
                                                                                               13
             1147642491
                  CUS-
                          34
                                 30899.53
                                                   238
                                                                   8724.61
                                                                                               7
             1196156254
                  CUS-
                          35
                                 7036.56
                                                                   2734.53
                                                                                               12
                                                    46
               72755508
                  CUS-
                                 9872.11
                                                                                               13
                          21
                                                   111
                                                                   5328.18
              809013380
                  CUS-
                          30
                                 5243.81
                                                   227
                                                                   7248.16
                                                                                               6
              860700529
                  CUS-
                                                                                               6
                          26
                                 12346.59
                                                    72
                                                                   2858.57
              880898248
                  CUS-
                          19
                                 20699.90
                                                   171
                                                                   8797.19
              883482547
```

100 rows × 9 columns

Here feature scaling is not done as it will not effect the model significantly.

Fitting Multiple Linear Regression Model

```
In [31]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression

    target = regression_df['Annual_Salary']
    predictors = regression_df.drop(['Annual_Salary'], axis = 1)

    X_train, X_test, y_train, y_test = train_test_split(predictors, target, t est_size=0.2, random_state=0)

In [32]: regressor = LinearRegression()
    clf = regressor.fit(X_train, y_train)
```

Getting Regression coefficients and intercept

```
In [33]: #To retrieve the intercept:
print(regressor.intercept )
```

```
#For retrieving the slope:
         print(regressor.coef_)
         12890.359181656793
         [-4.50633110e+01 -1.09021035e-02 -1.55295874e+01  6.49463246e-01
          -2.49647810e+02 3.31800819e+00 -9.85562022e+02 9.85562022e+02]
In [34]: y_pred = regressor.predict(X_test)
         result_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred })
Out[34]:
                                 Predicted
                         Actual
```

customer_id		
CUS-1790886359	79849.64	83916.971102
CUS-443776336	51508.60	52554.953525
CUS-1140341822	49829.26	51626.234954
CUS-2695611575	47707.40	51204.367504
CUS-3395687666	45703.06	47115.260246
•••	•••	•••
CUS-1896554896	60025.42	59313.725816
		59313.725816 62973.755290
CUS-1896554896	60025.42	000000000
CUS-1896554896 CUS-1646621553	60025.42 57143.32	62973.755290
CUS-1896554896 CUS-1646621553 CUS-1669695324	60025.42 57143.32 63717.16	62973.755290 61556.096422

20 rows × 2 columns

We have perfectly fitted our linear regression model. Now we want to check some basic assumptions of the linear regression. One of the most important assumption is normality of the errors. There are multiple methods of checking normality. Graphical method involves histogram and Q-Q plot whereas hypothesis testing method involves Shapiro-Wilk Test, Anderson-Darling test, Kolmogorov-Smirnov. We have used both graphical and hypothesis testing method to check the model assumption of normality.

Normality Test:

1. Graphical Method (Histogram)

```
In [35]: \#finding\ errors = y\_hat - y
         error = result_df['Actual'] - result_df['Predicted']
In [36]:
         plt.style.use('ggplot')
         plt.figure()
         sns.distplot(error, kde = True, rug = True, rug_kws = {'linewidth': 2,
         'color' : 'r'},
                       hist_kws = {'linewidth': 3, 'color': 'g'},
                      kde_kws = {'color' : 'b', 'lw': 3, 'label': 'KDE'});
```


From the above Histogram with kernel density estimate, we can visually conclude that the error distribution has not deviated very much from the normal distribution. Now we check using hypothesis testing.

2. Using Test Statistics (Shapiro-Wilk and Anderson-Darling Test)

```
In [37]: print('Test Results of Shapiro-Wilk Test : ') # Good test for less than 5
         000 samples
         from scipy import stats
         shapiro_test = stats.shapiro(error)
         print('Statistic : %.3f' % shapiro_test.statistic)
         p value = 0.05
         if shapiro_test.pvalue > p_value:
             print('Fails to reject the null hypothesis of normality at 5% level o
         f significance')
             print( 'Rejects the null hypothesis of normality at 5% level of signi
         ficance')
         print( '\n')
         print('Test Results of Anderson-Darling Test :')
         anderson = stats.anderson(error)
         print('Statistic: %.3f' % anderson.statistic)
         for i in range(len(anderson.critical_values)):
             sl = anderson.significance_level[i]
             if anderson.statistic < anderson.critical_values[i]:</pre>
                 print('Fails to reject the null hypothesis of normality at %d%% 1
         evel of significance' % sl)
             else:
                 print( 'Rejects the null hypothesis of normality at %d%% level of
         significance' % sl)
         Test Results of Shapiro-Wilk Test:
         Statistic: 0.951
         Fails to reject the null hypothesis of normality at 5% level of significa
         nce
         Test Results of Anderson-Darling Test :
         Statistic: 0.273
         Fails to reject the null hypothesis of normality at 15% level of signific
         ance
         Fails to reject the null hypothesis of normality at 10% level of signific
         ance
         Fails to reject the null hypothesis of normality at 5% level of significa
         Fails to reject the null hypothesis of normality at 2% level of significa
         Fails to reject the null hypothesis of normality at 1% level of significa
         nce
```

From the above hypothesis tests, we can conclude that there is no significant violation of model assumptions. Also, we have already tried to eliminate the possibility of existence of multicollinearity.

Hence, it is perfect to apply Linear Regression model in the current dataset.

Graphical Comparison of Actual and Predicted Salary

```
In [64]: result_df.plot(kind='bar')

#plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
#plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
plt.ylabel('Annual Salary')
plt.show()
```


Checking Model Accuracy

```
In [39]: def mape(y_true, y_pred):
    y_true, y_pred = np.array(y_true), np.array(y_pred)
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

from sklearn import metrics
    print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
    print('Mean Absolute Percentage Error: ', mape(y_test, y_pred))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

Mean Absolute Error: 3073.7885564645176

Mean Absolute Percentage Error: 4.636103050955255

Mean Squared Error: 15917509.691530734 Root Mean Squared Error: 3989.6753867364614

Here we have computed different measures of model accuracy. RMSE is about 3989 which is quite large, hence the linear regresson model performance is not ideal for this data.

On the other hand, We get a MAPE value of 4.64%. Hence, we can conclude that the multiple linear regression model has performed moderately well as a predictive model for the given dataset. Now we look forward to another popular supervised machine learning algorithm.

2. Decision Tree Regression

Fitting the Model using RandomizedSearchCV

'min_impurity_decrease': 0.0,
'min_impurity_split': None,

'min_weight_fraction_leaf': 0.0,

'min_samples_leaf': 1,
'min_samples_split': 13,

'presort': False,

In this cross validation method, we have to create a list of possible values for different arguments in the function. Then using param_gridargument we have to provide our created set of possible parameter values and as the regressor argument we have to provide the regressor function (here DTR) This RandomizedSearchCV function then checks taking combination of arguments randomly and provides us the best accuracy score and that combination of arguments.

```
In [40]: X_train, X_test, y_train, y_test = train_test_split(predictors, target, t
         est_size = 0.2, random_state=0)
         from sklearn.model_selection import RandomizedSearchCV
         model_params = { 'criterion' : [ "mse", "friedman_mse", "mae"] , 'splitte
         r' : ["best", "random"],
                         'max_depth' : [2,3,4,5], 'min_samples_split' : [10,12,13,
         14,15,16,18,20],
                        'max_features' : ["auto", "sqrt", "log2"] }
         from sklearn.tree import DecisionTreeRegressor # Import Decision Tree Reg
         ressor
         model = DecisionTreeRegressor()
         # Creating Decision Tree regressor object
         clf1 = RandomizedSearchCV(model, model_params, n_iter = 10000, cv = 10)
         # Train Decision Tree regressor
         clf1 = clf1.fit(X_train,y_train)
         #Predict the response for test dataset
         y_pred = clf1.predict(X_test)
         #clf.score(X_test, y_test)
         result_df1 = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred })
         print(result_df1)
                                      Predicted
                           Actual
         customer id
         CUS-1790886359 79849.64 90769.986667
         CUS-443776336
                         51508.60 53672.357143
         CUS-1140341822 49829.26 46295.087273
         CUS-2695611575 47707.40 46295.087273
         CUS-3395687666 45703.06 46295.087273
         CUS-1896554896 60025.42 53672.357143
         CUS-1646621553 57143.32 61793.524000
         CUS-1669695324 63717.16 61793.524000
                         81130.40 69159.090000
         CUS-2059096722
         CUS-127297539
                         59217.08 61793.524000
         [20 rows x 2 columns]
In [41]: from pprint import pprint
         pprint(clf1.best_estimator_.get_params())
         {'criterion': 'mse',
          'max_depth': 5,
          'max_features': 'auto',
          'max_leaf_nodes': None,
```

'splitter': 'best'}

We have also used another cross validation technique namely GridSearchCV which produces similar results but it takes all possible combination of arguments. But, this technique does not improved the result significantly.

Checking Model Accuracy

```
In [42]: from sklearn import metrics
    print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred
    ))
    print('Mean Absolute Percentage Error: ', mape(y_test, y_pred))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

Mean Absolute Error: 4784.111705411255

Mean Absolute Percentage Error: 6.534526554431901

Mean Squared Error: 41761375.064742595 Root Mean Squared Error: 6462.304160649094

```
In [43]: clf1.score(X_test, y_test)
```

Out[43]: 0.898686732967573

As we can see, DTR has RMSE of about 6462, amlost double than multiple linear regression model and its MAPE score is 6.53% which is again larger than MLR model. Hence, we can conclude, multiple linear regression model has performed better in this predictive data analysis.

But if we look individually, the DTR model has accuracy score of 89.9% which is quite good. Hence we can say that our model has performed well.

Now we will discuss One way of improving the model accuracy by using decision tree classifier.

Using Decision Tree Classifier

We know in case of DTC, the target variable should be categorical. Hence, in order to implement this model, we have to modify the target variable accordingly. One way is creating class intervals of annual salary and label encode them.

```
In [44]: plt.figure()
plt.hist(regression_df['Annual_Salary'], bins = 25);
```


As seen from the above graph, even if we categorize and label encode the customers annual salary into 25 classes, there will be salary intervals of length around 4500 AUS, hence it will yield crude outputs, exact estimate can not be predicted. But this is one way to use the decision tree classifier algorithm and if we take more than 25 classes, it may yield good result.

Data Segmentation Using Cluster Analysis Technique

```
In [45]: cluster_df = pd.get_dummies(cluster_df, columns = ['gender', 'txn_descrip
tion'] )
```

Hierarchical Clustering Algorithm

Here we create the distance matrix using Euclidean distance metric and then single linkage Agglomerative Hierarchical Clustering method is used to create a dendrogram which serves the purpose of finding optimal number of clusters visually as well as creates a nested set of partitions of the given dataset.

```
In [47]: plt.figure(figsize = (20,10))
    import scipy.cluster.hierarchy as hc
    dendrogram = hc.dendrogram(hc.linkage(cluster_df, method = 'single'))

plt.title('Dendrogram for Agglomerative Hierarchical Clustering')
    plt.ylabel('Merger Points', fontsize = 12)
    plt.show()
```



```
In [49]: np.unique(y_ahc, return_counts = True ) # Counting class frequency
```

Out[49]: (array([0, 1, 2], dtype=int64), array([98, 1, 1], dtype=int64))

Based on the above output we can say that the clustering algorithm based on the whole data performed very poorly. Hence we look for other data segmentation ideas.

Clustering based on two variables

Age vs Closing Balance

In [50]: cluster_df1

Out[50]:

	account	first_name	gender	age	Opening_bal	Closing_bal	total_tr_count	Debit_1
customer_id								
CUS- 1005756958	ACC- 2828321672	Stephanie	F	53	470.44	9310.03	73	
CUS- 1117979751	ACC- 4065652575	Lucas	М	21	2390.35	18387.41	100	
CUS- 1140341822	ACC- 80388494	Dustin	М	28	832.74	6820.26	80	
CUS- 1147642491	ACC- 3233697971	Robin	F	34	14.89	15387.21	118	
CUS- 1196156254	ACC- 3485804958	Jessica	F	34	12563.48	30899.53	245	
CUS- 72755508	ACC- 53508546	Kimberly	F	35	341.93	7036.56	58	
CUS- 809013380	ACC- 1990648130	Kaitlyn	F	21	1718.38	9872.11	124	
CUS- 860700529	ACC- 1903037542	Jeffrey	М	30	13.64	5243.81	233	
CUS- 880898248	ACC- 2970114956	Robert	М	26	5288.87	12346.59	78	
CUS- 883482547	ACC- 1710017148	Michelle	F	19	1654.87	20699.90	178	

100 rows × 14 columns

Feature Scaling

```
In [51]: from sklearn.preprocessing import MinMaxScaler
    minmax = MinMaxScaler()

    c_age_sal = pd.DataFrame()
    c_age_sal = cluster_df1[[ 'age', 'Closing_bal' ]]
    c_age_sal[['Closing_bal' ]] = minmax.fit_transform(c_age_sal[[ 'Closing_b al' ]])
```

In [52]: c_age_sal #scaled dataset

Out[52]:

age Closing_bal

customer_id

CUS-1005756958	53	0.027127
CUS-1117979751	21	0.061445
CUS-1140341822	28	0.017714
CUS-1147642491	34	0.050102
CUS-1196156254	34	0.108749
CUS-72755508	35	0.018532
CUS-809013380	21	0.029252
CUS-860700529	30	0.011754
CUS-880898248	26	0.038607
CUS-883482547	19	0.070188

100 rows × 2 columns

Implementing Hierarchical Clustering Algorithm

```
In [53]: plt.figure(figsize = (10,10))
    import scipy.cluster.hierarchy as hc
    dendrogram = hc.dendrogram(hc.linkage(c_age_sal, method = 'single'))

plt.title('Dendrogram')
    plt.ylabel('Merger Levels')
    plt.show()
```



```
In [55]: np.unique(y_ahc, return_counts = True)
Out[55]: (array([0, 1, 2], dtype=int64), array([ 2, 97, 1], dtype=int64))
```

From the above output, we can conclude Hierarchical clustering performed very poorly. Hence, we proceed to do clustering using a non-hierarchical algorithm namely k-means clustering.

K-Means Clustering Algorithm

In order to find the optimal number of clusters we use the elbow method where within cluster sum of squares is plotted against number of clusters. From the above figure, we can conclude that 3 clusters can be considered as the optimum number of clusters as there is a elbow formation near the value 3.

```
In [57]: kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 1000, n_in
   it = 10, random_state = 42)
   y_kmeans = kmeans.fit_predict(c_age_sal)
```

```
In [58]: print(np.unique(y_kmeans, return_counts = True))
          (array([0, 1, 2]), array([56, 41, 3], dtype=int64))
```

CUS-2487424745	26	0.000000	0
CUS-3702001629	18	0.003510	0
CUS-1271030853	30	0.004934	0
CUS-325142416	21	0.010630	0
CUS-860700529	30	0.011754	0
CUS-261674136	29	0.085597	0
CUS-2059096722	21	0.152010	0
CUS-2663907001	28	0.163550	0
CUS-3462882033	22	0.205496	0
CUS-1609060617	19	0.231023	0

56 rows × 3 columns

Visualizing the output

```
In [63]:
         plt.figure(figsize = (16,6))
         plt.scatter((c_age_sal[c_age_sal.cluster == 0 ]).age,
                      (c_age_sal[c_age_sal.cluster == 0 ]).Closing_bal, s = 50, c=
         'red', label = 'Middle Aged')
         plt.scatter((c_age_sal[c_age_sal.cluster == 1 ]).age,
                      (c_age_sal[c_age_sal.cluster == 1]).Closing_bal, s = 50, c=
         'green', label = 'Young Aged')
         plt.scatter((c_age_sal[c_age_sal.cluster == 2 ]).age,
                      (c_age_sal[c_age_sal.cluster == 2 ]).Closing_bal, s = 50, c=
         'blue', label = 'Old Aged')
         plt.title('Clustering of customer based on age and closing balance')
         plt.xlabel('Age')
         plt.ylabel('Scaled Closing Balance')
         plt.legend()
         plt.show()
```


From the above output, we can see that based on age and closing balance, we have done the data segmentation quite successfully. Most of the persons have low closing balance, which is a bit unusual and it happened may be because of the synthesisation of the dataset.