Porta lógica

Anderson Lucena

Junho 2021

1 Introdução

Portas Lógicas (AND, OR, XOR, NOT, NAND, NOR e XNOR)

Uma porta lógica é um bloco de construção fundamental de um circuito digital. A maioria das portas lógicas tem duas entradas e uma saída. Em um determinado momento, cada terminal é uma das duas condições binário baixo (0) ou alta (1), representado por diferentes níveis de tensão. O estado lógico de um terminal pode, e geralmente faz, a mudança muitas vezes, como o circuito processa os dados. Na maioria das portas lógicas, o estado de baixo é de cerca de zero volts (0 V), enquanto o estado de alto está a cerca de cinco volts positivo (+5 V).

Há sete portas lógicas básicas: AND, OR, XOR, NOT, NAND, NOR e XNOR.

A porta AND é chamado assim porque, se 0 é chamado de "Falsa" e 1 é chamado de "Verdadeira", o porta age da mesma maneira como a lógica "AND" do operador. A ilustração e a tabela a seguir mostra o símbolo do circuito e as combinações de lógica para uma porta AND. (No símbolo, os terminais de entrada são à esquerda e ao terminal de saída é à direita.) A saída é "Verdadeira" quando ambas as entradas são "Verdadeiras". Caso contrário, a saída é "falso".

Entrada 1	Entrada 2	Saida
0	0	0
0	1	0
1	0	0
1	1	1

A porta "OR" recebe o seu nome do fato de que ele se comporta após a moda da lógica inclusiva "ou". A saída é "Verdadeira" se uma ou ambas as entradas são "Verdadeiras". Se ambas as entradas forem "Falsas", então a saída é "Falsa".

Entrada 1	Entrada 2	Saida
0	0	0
0	1	1
1	0	1
1	1	1

A porta XOR (ou exclusivo) atua da mesma forma como a lógica "ou / ou". A saída é "Verdadeira" se quer, mas não ambos, as entradas são "verdadeiras". A saída é "Falsa" se ambas as entradas são "Falsas" ou se ambas as entradas são "Verdadeiras". Outra maneira de olhar para este circuito é observar que a saída é 1 se as entradas são diferentes, mas 0 se as entradas são iguais.

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	0

Um inversor lógico, às vezes chamado de **porta NOT** para diferenciá-lo de outros tipos de dispositivos de inversor eletrônico, tem apenas uma entrada. Ele inverte o estado lógico.

Entrada	Saida		
1	0		
0	1		

A porta NAND funciona como uma porta AND seguida por uma porta NOT. Ele atua na forma da operação lógica "e" seguido de negação. A saída é "Falsa" se ambas as entradas são "Verdadeiras". Caso contrário, a saída é "Verdadeira".

Entrada 1	Entrada 2	Saida	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

A porta NOR é uma combinação da porta OR seguida por um inversor. Sua saída é "true" se ambas as entradas são "falsas". Caso contrário, a saída é "falso".

Entrada 1	Entrada 2	Saida	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

A porta XNOR (exclusive-NOR) porta é uma combinação da porta XOR seguido por um inversor. Sua saída é "Verdadeira" se as entradas são iguais, e "Falsa" caso as entradas são diferentes.

Entrada 1	Entrada 2	Saida
0	0	1
0	1	0
1	0	0
1	1	1

Utilizando combinações de portas lógicas, as operações complexas podem ser executadas. Na teoria, não há limite para o número de portas que podem ser dispostas juntas em um único dispositivo. Mas, na prática, há um limite para o número de portas que podem ser acondicionados em um determinado espaço físico. As matrizes de portas lógicas são encontrados em circuitos digitais integrados (CIs). Enquanto a tecnologia de CI avança, o volume físico necessário para cada porta lógica individual diminui e os dispositivos digitais do mesmo tamanho ou menores tornam-se capazes de realizar operações cada vez mais complicado em velocidades cada vez maiores.

Foi implementado uma simulação de circuítos de lógico de semáfaro

SEM_A	SEM_B	Q2 Q1 Q0	VD_A	AM_A	VM_A	VD_B	AM_B	VM_B
VD_A	VM_B	000	1	0	0	0	0	1
AM_A	VM_B	001	0	1	0	0	0	1
VM_A	VD_B	010	0	0	1	1	0	0
VM_A	VD_B	011	0	0	1	1	0	0
VM_A	VD_B	100	0	0	1	1	0	0
VM_A	AM_B	101	0	0	1 0	0	1	0
VD_A	VM_B	110	1	0	0	6 0	0	1
VD_A	VM_B	111	1	0	0	0	0	1

https://www.falstad.com/circuit/circuitjs.html

Referências:

https://www.embarcados.com.br/portas-logicas/

31/07/2015 Thiago Lima

http://wifi-prompt.blogspot.com/p/portas-logicas-and-or-xor-not-nand-nor.html

TocaBusca. Imagens de tema por gaffera. Tecnologia do Blogger.

Assinar: Postagens (Atom)