

BUKU AJAR

Matematika Dasar

Mohammad Faizal Amir, M.Pd. Bayu Hari Prasojo, S.Si.,M.Pd.

UNIVERSITAS MUHAMMADIYAH SIDOARJO

2016

BUKU AJAR MATEMATIKA DASAR

Mohammad Faizal Amir, M.Pd. Bayu Hari Prasojo, S.Si., M.Pd.

UMSIDA PRESSJl. Mojopahit 666 B Sidoarjo

ISBN: 978-979-3401-38-6

BUKU AJAR MATEMATIKA DASAR

Mohammad Faizal Amir, M.Pd. Bayu Hari Prasojo, S.Si., M.Pd.

Sidoarjo, 2016

Diterbitkan atas Program Bantuan Penulisan dan Penerbitan Buku Ajar dan Modul Praktikum Universitas Muhammadiyah Sidoarjo Tahun 2015/2016

BUKU AJAR MATEMATIKA DASAR

PENULIS

Mohammad Faizal Amir, M.Pd. Bayu Hari Prasojo, S.Si., M.Pd.

Diterbitkan Oleh:

UMSIDA PRESS

JI. Mojopahit 666 B Sidoarjo

ISBN: 978-979-3401-38-6

Copyright©2016. Mohammad Faizal Amir & Bayu Hari Prasojo. All rights reserved.

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas segala anugerah dan rahmat-Nya, sehingga Buku Ajar Matematika Dasar untuk Tingkat Perguruan Tinggi ini dapat terselesaikan dengan baik.

Buku ajar Matematika Dasar ini terdiri dari 8 Bab Materi Perkuliahan, yang terdiri dari (1) Sistem Bilangan Real; (2) Himpunan; (3) Persamaan dan Pertidaksamaan Linear; (4) Fungsi; (5) Matriks; (6) Limit dan Kekontinuan; (7) Turunan; (8) Integral. Materi ini merupakan satu kesatuan materi yang dipelajari oleh mahasiswa secara menyeluruh dan tak terpisahkan selama satu semester karena merupakan satu kesatuan yang utuh dalam Capaian Kompetensi di Rencana Pembelajaran Semester.

Tujuan diterbitkan buku ini untuk membantu mahasiswa agar dapat menguasai konsep matematika dasar secara mudah, dan utuh. Di samping itu pula, buku ini dapat digunakan sebagai acuan bagi dosen yang mengampu mata kuliah Matematika Dasar ataupun mata kuliah matematika yang lain. Isi buku ini memuat 5 komponen utama yaitu; pendahuluan, penyajian materi, rangkuman, latihan dan daftar pustaka. Buku Ajar Matematika Dasar untuk Tingkat Perguruan Tinggi ini diterbitkan oleh UMSIDA Press. Buku Ajar ini merupakan buku terbitan edisi pertama yang tentunya masih butuh disempurnakan. Oleh karena itu, saran dan masukan oleh para pengguna sangat kami harapkan untuk kesempurnaan isi buku ajar ini di masa yang akan datang.

Semoga Buku Ajar ini dapat bermanfaat bagi mahasiswa, dosen dan siapa saja yang menggunakannya untuk kemajuan pendidikan di Universitas Muhammadiyah Sidoarjo (UMSIDA) khususnya dan kemajuan pendidikan di Indonesia pada umumnya.

Sidoarjo, Juni 2016

Tim Penyusun

DAFTAR ISI

KATA PENGANTAR			
DADIO	SISTEMA DILANICANI DE AL		
	SISTEM BILANGAN REAL	1	
	huluan		
A. B.	Himpunan Bilangan		
Б. С.	Bentuk Pangkat Akar dan Logaritma		
C. D.	Rangkuman Latihan		
	HIMPUNAN	10	
A.	Pendahuluan	17	
А. В.	Pengertian Himpunan		
Б. С.	Keanggotaan Himpunan dan Bilangan		
D.	Penulisan Himpunan		
E.	Macam-macam Himpunan		
F.	Relasi Antar Himpunan		
G.	Operasi Himpunan		
Н.	Sifat-sfat Operasi pada Himpunan		
п. I.	Rangkuman		
ı. J.	Latihan		
	PERSAMAAN DAN PERTIDAKSAMAAN LINIER	33	
A.	Pendahuluan	35	
В.	Persamaan Linier Satu Variabel		
В. С.	Persamaan Ekuivalen		
D.	Persamaan Linier Bentuk Pecahan Satu Variabel		
F.	Pertidaksamaan Linier Satu Variabel		
F.	Pertidaksamaan Linier Bentuk Pecahan Satu Variabel		
G.	Rangkuman		
Н.	Latihan		
	' FUNGSI	72	
A.	Pendahuluan	13	
В.	Pengertian Fungsi		
С.	Sifat Fungsi		
D.	Jenis Fungsi		
E.	Rangkuman		
F.	Latihan		
	MATRIKS	55	
A.	Pendahuluan	57	
В.	Pengertian Matriks		
С.	Jenis-jenis Matriks		
D.	Operasi dan Sifat-sifat Matriks		
E.	Determinan		
F.	Invers Matriks		
G.	Rangkuman		
О. Н.	Latihan		
	LIMIT DAN KEKONTINUAN	, ,	
A.	Pendahuluan	72	
В.	Pengertian Limit		
	J	_	

C.	Sifat-sifat Limit	73
D.	Limit Bentuk Tak Tentu	74
E.	Limit Bentuk Trigonometri	77
F.	Kekontinuan	78
G.	Rangkuman	79
H.	Latihan	80
BAB V	II TURUNAN	
A.	Pendahuluan	81
B.	Pengertian Turunan	81
C.	Aturan-aturan Turunan	82
D.	Turunan Trigonometri	85
E.	De L'Hospital	86
F.	Aturan Rantai	87
G.	Turunan Tingkat Tinggi	89
H.	Rangkuman	89
I.	Latihan	91
BAB V	III INTEGRAL	
A.	Pendahuluan	93
B.	Integral Sebagai Anti Turunan	93
C.	Rumus Dasar Integral	94
D.	Teknik Integral Substitusi	98
E.	Integral Parsial	101
F.	Integral Tentu	103
G.	Rangkuman	104
H.	Latihan	105
DAFTA	R PUSTAKA	107
INDEK	S MATERI	108
BIODA	TA PENULIS	110

BABI

SISTEM BILANGAN REAL

A. Pendahuluan

Dalam Matematika Dasar terdapat konsep dari himpunan obyek-obyek, khususnya tentang konsep himpunan dari bilangan-bilangan yang banyak sekali diterapkan untuk matematika lebih lanjut maupun penerapan di bidang-bidang yang lain. Himpunan bilangan yang penting untuk diketahui adalah himpunan bilangan Asli, himpunan bilangan Cacah, himpunan bilangan Bulat, himpunan bilangan Rasional, himpunan bilangan Irrasional (tak terukur), dan himpunan bilangan Real. Sifat-sifat dari bilangan ini akan digunakan dalam Bentuk Pangkat, Penarikan Akar, dan Logaritma.

Diharapkan mahasiswa dapat memahami konsep himpunan bilangan yang penting untuk diketahui dan mampu menggunakan sifat-sifat dari himpunan bilangan diantaranya yaitu Bentuk Pangkat, Penarikan Akar, dan Logaritma.

B. Himpunan Bilangan

Konsep dari himpunan obyek-obyek yang paling penting dipelajari untuk matematika lebih lanjut adalah konsep dari himpunan bilangan-bilangan. Beberapa konsep dari himpunan bilangan-bilangan tersebut diantaranya adalah himpunan bilangan Asli, himpunan bilangan Cacah, himpunan bilangan Bulat, himpunan bilangan Rasional, himpunan bilangan Irrasional (tak terukur), dan himpunan bilangan Real.

- 1. Himpunan bilangan Asli atau disebut juga himpunan bilangan bulat positif dapat ditulis sebagai : **N** = {1, 2, 3, 4, ...}.
- 2. Himpunan bilangan Cacah ditulis : **W** = {0, 1, 2, 3, 4, ...}.
- 3. Himpunan bilangan Bulat ditulis : **I** = {... -3, -2, -1, 0, 1, 2, 3, ...}.
- 4. Himpunan bilangan Rasional / Terukur ditulis:

$$Q = \left\{ x \middle| x = \frac{a}{b}, \quad a, b \in I, \ b \neq 0 \right\}$$
 yaitu bilangan yang dapat dinyatakan sebagai

hasil bagi antara dua bilangan bulat (pecahan) dengan syarat bahwa nilai penyebut tidak sama dengan nol, contoh : $\frac{1}{2}, \frac{1}{4}, \frac{3}{5}, -\frac{5}{7}$ dan sebagainya.

4

Dengan demikian bilangan rasional adalah bilangan yang dapat ditulis dalam bentuk pecahan $\frac{a}{b}$ dengan a dan b bilangan bulat dan $b \neq 0$. Adapun himpunan bilangan rasional terdiri dari bilangan bulat, bilangan pecahan murni, dan bilangan pecahan desimal.

- 5. Himpunan bilangan Irrasional (tak terukur) ditulis : $Q' = \{x \mid x \in Q\}$ yaitu bilangan yang tidak dapat dinyatakan sebagai hasil bagi antara dua bilangan bulat (pecahan), tapi dapat dinyatakan dengan bilangan desimal tak tentu atau tak berulang, misalnya : e = 2,71828..., π = 3,14159..., $\sqrt{2}$ = 1,4142... dan lain sebagainya.
- 6. Himpunan bilangan Real (nyata) ditulis : $R = \{x \mid x \text{ bilangan Real}\}$. Bilangan rasional dan Irrasional merupakan himpunan bilangan real.

Dengan demikian, himpunan bilangan Asli adalah subset dari himpunan bilangan Cacah. Himpunan bilangan Cacah adalah subset dari himpunan bilangan Rasional. Sedangkan himpunan bilangan baik Rasional maupun Irrasional disebut himpunan bilangan Real. Himpunan bilangan yang tidak Real adalah himpunan bilangan Imaginer ataupun himpunan bilangan Kompleks. Himpunan-himpunan bilangan di atas dapat ditulis dalam bentuk subset sebagai berikut:

$$N \subset W \subset I \subset O \subset R$$

Sifat Ketidaksamaan Bilangan Real

- a. Sembarang bilangan Real a dan b, dapat terjadi salah satu dari tiga hal yaitu : a < b, b < a, atau a = b.
- b. Jika $a < b \operatorname{dan} b < c \operatorname{maka} a < c$.
- c. Jika a < b, maka a + c < b + c untuk sembarang nilai c.
- d. Jika a < b dan c > 0 maka ac < bc.
- e. Jika a < b dan c < 0 maka ac > bc.

Sistem bilangan Real dibentuk atas dasar sistem bilangan Asli, di mana semua sifat-sifatnya dapat diturunkan. Jika x, y, dan z adalah bilangan Real maka sifat-sifat bilangan Real adalah :

a. Sifat komutatif untuk penjumlahan

$$X+y=y+X$$

b. Sifat komutatif untuk perkalian

$$X.y = y.X$$

c. Sifat assosiatif untuk penjumlahan

$$X + (y + Z) = (X + y) + Z$$

d. Sifat assosiatif untuk perkalian

$$X(yz) = (xy) z$$

e. Sifat distributif

$$X(y + z) = Xy + Xz$$

- f. Jika x dan y dua bilangan Real, maka terdapat suatu bilangan Real z sehingga x + z = y. Bilangan z ini kita nyatakan dengan y x dan disebut selisih dari y dan x. Selisih x x kita nyatakan dengan simbol 0. Simbol 0 ini selanjutnya disebut nol.
- g. Terdapat paling sedikit satu bilangan real $x \ne 0$. Jika x dan y dua bilangan Real dengan $x \ne 0$, maka terdapat suatu bilangan Real z demikian sehingga x.z = y. Bilangan z ini kita nyatakan dengan $\frac{y}{x}$ dan disebut hasil bagi dari y dan x. Hasil bagi x dan x dinyatakan dengan simbol 1, yang selanjutnya disebut satu dan tidak bergantung pada x.

C. Bentuk Pangkat, Akar dan Logaritma

1. Bentuk Pangkat Bulat

Definisi

Fungsi notasi pangkat salah satunya adalah untuk menyederhanakan penulisan atau meringkas penulisan. Contoh, 10.000.000,- dapat ditulis dengan notasi pangkat 10⁷. Notasi pangkat dapat menghemat tempat, sehingga notasi pangkat banyak digunakan dalam perumusan dan penyederhanakan perhitungan.

Pangkat Bulat Positif

Perkalian berulang dari suatu bilangan dapat dinyatakan dalam bentuk bilangan berpangkat bilangan bulat positif.

Contoh:

$$2 = 2^{1}$$

$$2.2 = 2^2$$

$$2.2.2 = 2^3$$

$$2.2.2.2=2^4$$

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5$$

$$2.2.2.2.2 = 2^6$$

Bentuk 2⁶ dibaca "dua pangkat enam". 2⁶ disebut bilangan berpangkat bulat positif. Bilangan 2 disebut bilangan pokok atau bilangan dasar dan bilangan 6 yang ditulis agak di atas disebut pangkat atau eksponen. Secara umum bilangan berpangkat dapat ditulis:

Jika a bilangan real atau $a \in R$ dan n bilangan bulat positif, maka

$$a^n = a.a.a.a...a$$

a disebut bilangan pokok dan n disebut pangkat.

Contoh 1.1

1.
$$3^2 = 3 \cdot 3 = 9$$

2.
$$64 = 4 \cdot 4 \cdot 4 = 4^3$$

3.
$$648 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 2^3 \cdot 3^4$$

4.
$$\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = \left(\frac{2}{3}\right)^4$$

Contoh 1.2

Tentukan nilai dari persamaan berikut untuk nilai variabel yang ditentukan.

1.
$$x^3 + 2x^2 + 3x + 4$$
 untuk $x = 2$

$$(2)^3 + 2(2)^2 + 3(2) + 4 = 8 + 8 + 6 + 4 = 26$$

2.
$$3x^3 + 2x^2y + 3xy^2 + 4y^3$$
 untuk $x = -1$ dan $y = 2$

$$3(-1)^3 + 2(-1)^2(2) + 3(-1)(2)^2 + 4(2)^3 = -3 + 4 - 12 + 32 = 21$$

Sifat-sifat Pangkat Bulat Positif

Pada bilangan berpangkat bulat positif dapat dilakukan beberapa operasi aljabar seperti : perkalian, pemangkatan, dan pembagian untuk bilangan berpangkat bulat positif. Perhatikan teorema-teorema untuk bentuk perkalian, pemangkatan, dan pembagian dari bilangan berpangkat bulat positif berikut:

a. Jika a bilangan real, p dan q adalah bilangan bulat postitif maka

$$a^p$$
 . $a^q = a^{p+q}$

b. Jika $a \in R$ dan $a \ne 0$, p dan q bilangan bulat positif maka

$$a^{p}: a^{q} = \frac{a^{p}}{a^{q}} = \begin{cases} a^{p-q} & \text{; jika } p > q \\ \frac{1}{a^{q-p}} & \text{; jika } q > p \\ 1 & \text{; jika } p = q \end{cases}$$

c. Jika a bilangan real, p dan q bilangan bulat positif maka

$$\left(a^{p}\right)^{q} = a^{p \cdot q} = a^{pq}$$

d. Jika a dan b bilangan real, p bilangan bulat maka

$$(ab)^p = a^p b^p$$

Contoh 1.3

Sederhanakan:

1.
$$2^3 \cdot 2^4 = 2^{3+4} = 2^7$$

2.
$$x^2$$
. $x^6 = x^{2+6} = x^8$

3.
$$(2x^3y)(-3x^2y^3) = 2(-3)x^{3+2}y^{1+3} = -6x^5y^4$$

Contoh 1.4

Kalikanlah $(2x^2y + 3xy^2)$ dengan $-4x^3y^2$.

Penyelesaian

$$(2x^{2}y + 3xy^{2})(-4x^{3}y^{2}) = 2(-4)x^{2+3}y^{1+2} + 3(-4)x^{1+3}y^{2+2}$$
$$= -8x^{5}y^{3} - 12x^{4}y^{4}$$

Pangkat Bulat Negatif dan Nol

Jika pada bentuk perpangkatan pangkat dari bilangan dasar kurang dari satu dan nol maka akan diperoleh pangkat bilangan bulat negatif dan nol.

Contoh 1.5

$$3^{-1}$$
; 3^{-2} ; 3^{-3} ; 3^{-4} ; 3^{-5} ; dan 3^{0}
 a^{-1} ; a^{-2} ; a^{-3} ; a^{-4} ; a^{-5} ; ...; a^{-n} ; dan a^{0}

Untuk mendefinisikan a^n dengan a bilangan real dan n bilangan bulat negarif dan nol, maka dapat digunakan teorema-teorema perpangkatan pada bilangan bulat positif, seperti :

$$\frac{a^n}{a^n}=1$$
 . Jika teorema $\frac{a^p}{a^q}=a^{p-q}$ digunakan maka akan diperoleh

$$\frac{a^n}{a^n} = a^{n-n} = a^0 = 1$$
 dan untuk $q = p + n$ maka diperoleh

$$\frac{a^{p}}{a^{q}} = \frac{a^{p}}{a^{p+n}} = a^{p-(p+n)} = a^{-n} .$$

Dengan demikian maka terdapat teorema berikut,

Jika $a \neq 0$, a bilangan real dan n bilangan bulat positif maka

$$a^{-n} = \frac{1}{a^n} \operatorname{dan} a^0 = 1.$$

2. Bentuk Akar

Tanda akar dinotasikan dengan " $\sqrt{}$ " bentuk akar atau $\sqrt{}$ menyatakan akar pangkat dua yaitu merupakan kebalikan dari kuadrat. Pernyataan yang ditulis dengan tanda akar disebut bentuk akar.

Contoh 1.6

- 1. Karena $5^2 = 25$ maka $\sqrt{25} = 5$
- 2. Karena $8^2 = 64$ maka $\sqrt{64} = 8$

Contoh 1.7

Bentuk-bentuk berikut merupakan contoh bentuk akar:

$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{21}$ dan sebagainya.

Operasi aljabar seperti penjumlahan, pengurangan, perkalian, dan pembagian dapat juga dilakukan terhadap bentuk akar. Operasi tersebut digunakan untuk merasionalkan penyebut yang dinyatakan dalam bentuk akar. Operasi-operasi aljabar tersebut adalah sebagai berikut :

a.
$$a\sqrt{x} + b\sqrt{x} = (a+b)\sqrt{x}$$

b.
$$a\sqrt{x} - b\sqrt{x} = (a-b)\sqrt{x}$$

$$C. \quad \sqrt{a} . \sqrt{b} = \sqrt{ab}$$

d.
$$\sqrt{a} \cdot \sqrt{a} = \sqrt{aa} = \sqrt{a^2} = a^{\frac{2}{2}} = a$$

e.
$$\sqrt{a}:\sqrt{b}=\sqrt{\frac{a}{b}}$$

f.
$$\frac{\sqrt{a}\sqrt{b}}{\sqrt{c}\sqrt{d}} = \frac{\sqrt{ab}}{\sqrt{cd}}$$

Contoh 1.8

Sederhanakanlah.

1.
$$3\sqrt{2} + 4\sqrt{2} = (3+4)\sqrt{2} = 7\sqrt{2}$$

2.
$$\sqrt{8} + \sqrt{32} = 2\sqrt{2} + 4\sqrt{2} = (2+4)\sqrt{2} = 6\sqrt{2}$$

9

3.
$$\sqrt{32} \cdot \sqrt{8} = \sqrt{32.8} = \sqrt{256} = 16$$

4.
$$\sqrt{32} : \sqrt{8} = \sqrt{\frac{32}{8}} = \sqrt{4} = 2$$

5.
$$\frac{\sqrt{5}.\sqrt{10}}{\sqrt{2}} = \frac{\sqrt{5.10}}{\sqrt{2}} = \frac{\sqrt{50}}{\sqrt{2}} = \sqrt{\frac{50}{2}} = \sqrt{25} = 5$$

Merasionalkan Pecahan Bentuk Akar

Suatu pecahan yang penyebutnya mengandung bentuk akar dapat disederhanakan bentuknya dengan cara merasionalkan bentuk akar yang ada pada penyebutnya. Untuk merasionalkan bentuk pecahan dari penyebut tersebut maka pembilang dan penyebut harus dikalikan dengan bentuk rasional dari bentuk akar yang ada pada penyebutnya. Di bawah ini bentuk-bentuk rumusan untuk penyederhanaan pecahan yang mengandung bentuk akar:

a.
$$\frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

b.
$$\frac{a}{b+\sqrt{c}} = \frac{a}{b+\sqrt{c}} \cdot \frac{b-\sqrt{c}}{b-\sqrt{c}} = \frac{a(b-\sqrt{c})}{b^2-c}$$

c.
$$\frac{a}{b-\sqrt{c}} = \frac{a}{b-\sqrt{c}} \cdot \frac{b+\sqrt{c}}{b+\sqrt{c}} = \frac{a(b+\sqrt{c})}{b^2-c}$$

d.
$$\frac{a}{\sqrt{b} + \sqrt{c}} = \frac{a}{\sqrt{b} + \sqrt{c}} \cdot \frac{\sqrt{b} - \sqrt{c}}{\sqrt{b} - \sqrt{c}} = \frac{a(\sqrt{b} - \sqrt{c})}{b - c}$$

e.
$$\frac{a}{\sqrt{b} - \sqrt{c}} = \frac{a}{\sqrt{b} - \sqrt{c}} \cdot \frac{\sqrt{b} + \sqrt{c}}{\sqrt{b} + \sqrt{c}} = \frac{a(\sqrt{b} + \sqrt{c})}{b - c}$$

Contoh 1.9

Rasionalkan penyebut pecahan berikut:

1.
$$\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

2.
$$\frac{2-\sqrt{3}}{2+\sqrt{3}} = \frac{2-\sqrt{3}}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{4-4\sqrt{3}+3}{4-3} = \frac{7-4\sqrt{3}}{1} = 7-4\sqrt{3}$$

3. Pangkat Pecahan

Definisi

Bilangan real a yang memenuhi persamaan $a^n=b$, disebut akar pangkat n dari b dan ditulis dengan $a=\sqrt[n]{b}$. Akar pangkat n dari b atau $\sqrt[n]{b}$ dapat juga ditulis sebagai bilangan berpangkat pecahan yaitu $b^{\frac{1}{n}}$. Demikian juga sebaliknya, bilangan berpangkat pecahan yaitu $b^{\frac{1}{n}}$ dapat ditulis sebagai akar pangkat n dari n0 atau n1 b atau n2 b . Jadi n3 c .

Jika b bukanlah pangkat n dari suatu bilangan rasional maka penentuan dari $\sqrt[n]{b}$ hasilnya akan merupakan bilangan Irrasional. Jika nilai realnya diperlukan maka sebaiknya menggunakan alat hitung seperti kalkulator atau komputer.

Jika m dan n adalah bilangan asli dengan $n \ne 1$ dan a adalah bilangan real yang tidak negatif maka :

$$a^{\frac{m}{n}} = \left(a^{m}\right)^{\frac{1}{n}} = \sqrt[n]{a^{m}} \quad \text{dan } a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^{m} = \left(\sqrt[n]{a}\right)^{n}$$

Contoh 1.10

$$\sqrt[3]{2^6} = 2^{\frac{6}{3}} = 2^2 = 4$$

Sifat-sifat Pangkat Pecahan

a. Jika a adalah bilangan real, p dan q adalah bilangan rasional maka

$$a^p \cdot a^q = a^{p+q}$$

b. Jika a adalah bilangan real, p dan q adalah bilangan rasional maka

$$a^{p}: a^{q} = a^{p-q}$$

c. Jika a adalah bilangan real, p dan q adalah bilangan rasional maka

$$(a^p)^q = a^{pq}$$

d. Jika a adalah bilangan real, $a \neq 0$ dan p adalah bilangan rasional maka

$$a^{-p} = \frac{1}{a^p}$$

e. Jika a dan b adalah bilangan real, p, q, dan r adalah bilangan rasional maka

$$(a^p \cdot b^q)^r = (a^p)^r (b^q)^r = a^{pr} \cdot b^{qr}$$

11

f. Jika a dan b adalah bilangan real, $b \neq 0$ dan p, q, dan r adalah bilangan rasional maka:

$$\left(\frac{a^p}{b^q}\right)^r = \frac{a^{pr}}{b^{qr}}$$

4. Logaritma

Definisi

Logaritma merupakan invers atau kebalikan dari eksponen atau perpangkatan.

Misalnya $3^2 = 9$ dapat ditulis dengan ${}^3\log 9 = 2$; $3^{-1} = \frac{1}{3}$ dapat ditulis dengan

$$^{3}\log\frac{1}{3}=-1$$
.

Dengan demikian bentuk logaritma secara umum ditulis:

Jika
$$a^n = b$$
 dengan $a > 0$ dan $a \ne 1$ maka $a \log b = p$

Pengertian dari penulisan $a \log b$, a disebut bilangan pokok logaritma. Nilai a harus positif dan $\neq 1$. Jika bilangan pokok bernilai 10, maka bilangan pokok 10 ini biasanya tidak ditulis. Misalkan $a \log b = \log b$.

Jika bilangan pokoknya e atau bilangan euler dimana e = 2,718281828 maka nilai logaritma dinyatakan dengan ln yaitu singkatan dari logaritma natural.

Misal: elog b = ln b

Contoh 1.11

- 1. Jika $2^3 = 8 \text{ maka }^2 \log 8 = 3$
- 2. Jika $3^{-2} = \frac{1}{9}$ maka $^{3} \log \frac{1}{9} = -2$
- 3. Jika $10^4 = 10.000$ maka $\log 10.000 = 4$
- 4. Jika $10^{-2} = 0.01$ maka $\log 0.01 = -2$

Sifat-sifat Logaritma

Sifat-sifat logaritma digunakan untuk menyederhanakan bentuk pernyataan dalam logaritma dan juga dapat membantu dalam penentuan nilai logaritmanya. Berikut ini adalah sifat-sifat logaritma:

a. Logaritma dari perkalian

$$^{a}\log MN = ^{a}\log M + ^{a}\log N$$
, dimana $a > 0$, $a \ne 1$, $M > 0$ dan $N > 0$

Contoh 1.12

1.
$$\log 20 + \log 5 = \log (20.5) = \log 100 = 2$$

- 2. Jika log 2 = 0,3010 dan log 3 = 0,4771 maka tentukan log 6! log 6 = log (2.3) = log 2 + log 3 = 0,3010 + 0,4771 = 0,7781
- b. Logaritma dari pembagian

$$a \log \frac{M}{N} = a \log M - a \log N$$
, dimana $a > 0$, $a \ne 1$, $M > 0$ dan $N > 0$

Contoh 1.13

- 1. $^{2}\log 48 ^{2}\log 3 = ^{2}\log (48/3) = ^{2}\log 16 = 4$
- 2. Jika $\log 2 = 0.3010$ dan $\log 3 = 0.4771$ maka tentukan $\log 1.5!$ $\log 1.5 = \log (3/2) = \log 3 \log 2 = 0.4771 0.3010 = 0.1761$
- c. Logaritma dari perpangkatan

$$a \log M^p = p \log M$$
, dimana $a > 0$, $\alpha \ne 1$, $M > 0$

Contoh 1.14

- 1. $^{2}\log 27 = ^{2}\log 3^{3} = 3^{2}\log 3$
- 2. Jika $\log 2 = 0.3010$ dan $\log 3 = 0.4771$ maka tentukan $\log 36!$ $\log 36 = \log (2^2.3^2) = \log 2^2 + \log 3^2 = 2 \log 2 + 2 \log 3$ = 2 (0.3010) + 2 (0.4771) = 0.6020 + 0.9542 = 1.5562
- d. Mengubah basis logaritma

M
 log $N = \frac{^{a} \log N}{^{a} \log M}$, dimana $a > 0$, $a \ne 1$, $M > 0$ dan $N > 0$

Contoh 1.15

1.
$$^{3}\log 5 = \frac{^{2}\log 5}{^{2}\log 3}$$

2. Jika $\log 2 = 0.3010 \text{ dan } \log 3 = 0.4771 \text{ maka tentukan }^2 \log 3!$

$$^{2}\log 3 = \frac{\log 3}{\log 2} = \frac{0,4771}{0,3010} = 1,5850$$

e. Perpangkatan dengan logaritma

$$a^{^a\log M}=M$$
 , dimana a > 0, a ≠ 1, M > 0

Contoh 1.16

1.
$$2^{2\log 3} = 3$$

2.
$$8^{2\log 3} = (2^3)^{2\log 3} = 2^{2\log 3^3} = 3^3 = 27$$

D. Rangkuman

- 1. Himpunan bilangan Real (nyata) ditulis : $R = \{x \mid x \text{ bilangan Real}\}$ Bilangan rasional dan Irrasional merupakan himpunan bilangan real.
- 2. Sifat Ketidaksamaan Bilangan Real
 - a. Sembarang bilangan Real a dan b, dapat terjadi salah satu dari tiga hal yaitu : a < b, b < a, atau a = b.
 - b. Jika a < b dan b < c maka a < c.
 - c. Jika a < b, maka a + c < b + c untuk sembarang nilai c.
 - d. Jika a < b dan c > 0 maka ac < bc.
 - e. Jika a < b dan c < 0 maka ac > bc
- 3. Pangkat Bulat Positif

Jika a bilangan real atau $\alpha \in R$ dan n bilangan bulat positif, maka

$$a^n = a.a.a.a...a$$

a disebut bilangan pokok dan n disebut pangkat

- 4. Sifat Pangkat Bulat Positif
 - a. Jika a bilangan real, p dan q adalah bilangan bulat postitif maka

$$a^{p} \cdot a^{q} = a^{p+q}$$

b. Jika $a \in R$ dan $a \neq 0$, p dan q bilangan bulat positif maka

$$a^{p}: a^{q} = \frac{a^{p}}{a^{q}} = \begin{cases} a^{p-q} & \text{; jika } p > q \\ \frac{1}{a^{q-p}} & \text{; jika } q > p \\ 1 & \text{; jika } p = q \end{cases}$$

c. Jika a bilangan real, p dan q bilangan bulat positif maka

$$\left(a^{p}\right)^{q}=a^{p\cdot q}=a^{pq}$$

d. Jika a dan b bilangan real, p bilangan bulat maka

$$(ab)^p = a^p b^p$$

5. Pangkat Bulat Negatif dan Nol

Jika $a \neq 0$, a bilangan real dan n bilangan bulat positif maka

$$a^{-n} = \frac{1}{a^n} \operatorname{dan} a^0 = 1$$

14

6. Operasi aljabar pada bentuk akar

a.
$$a\sqrt{x} + b\sqrt{x} = (a+b)\sqrt{x}$$

b.
$$a\sqrt{x} - b\sqrt{x} = (a-b)\sqrt{x}$$

C.
$$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$$

d.
$$\sqrt{a} \cdot \sqrt{a} = \sqrt{aa} = \sqrt{a^2} = a^{\frac{2}{2}} = a$$

e.
$$\sqrt{a}:\sqrt{b}=\sqrt{\frac{a}{b}}$$

f.
$$\frac{\sqrt{a}\sqrt{b}}{\sqrt{c}\sqrt{d}} = \frac{\sqrt{ab}}{\sqrt{cd}}$$

7. Merasionalkan pecahan bentuk akar

a.
$$\frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

b.
$$\frac{a}{b+\sqrt{c}} = \frac{a}{b+\sqrt{c}} \cdot \frac{b-\sqrt{c}}{b-\sqrt{c}} = \frac{a(b-\sqrt{c})}{b^2-c}$$

c.
$$\frac{a}{b-\sqrt{c}} = \frac{a}{b-\sqrt{c}} \cdot \frac{b+\sqrt{c}}{b+\sqrt{c}} = \frac{a(b+\sqrt{c})}{b^2-c}$$

d.
$$\frac{a}{\sqrt{b} + \sqrt{c}} = \frac{a}{\sqrt{b} + \sqrt{c}} \cdot \frac{\sqrt{b} - \sqrt{c}}{\sqrt{b} - \sqrt{c}} = \frac{a(\sqrt{b} - \sqrt{c})}{b - c}$$

e.
$$\frac{a}{\sqrt{b} - \sqrt{c}} = \frac{a}{\sqrt{b} - \sqrt{c}} \cdot \frac{\sqrt{b} + \sqrt{c}}{\sqrt{b} + \sqrt{c}} = \frac{a(\sqrt{b} + \sqrt{c})}{b - c}$$

8. Logaritma merupakan invers atau kebalikan dari eksponen atau perpangkatan.

Jika
$$a^n = b$$
 dengan $a > 0$ dan $a \ne 1$ maka $a \log b = p$

- 9. Sifat-sifat Logaritma
 - a. Logaritma dari perkalian

$$^{a}\log MN = ^{a}\log M + ^{a}\log N$$
, dimana $a > 0$, $\alpha \ne 1$, $M > 0$ dan $N > 0$

b. Logaritma dari pembagian

$$a \log \frac{M}{N} = a \log M - a \log N$$
, dimana $a > 0$, $a \ne 1$, $M > 0$ dan $N > 0$

c. Logaritma dari perpangkatan

$$^{a}\log M^{p} = p^{a}\log M$$
, dimana $a > 0$, $a \ne 1$, $M > 0$

d. Mengubah basis logaritma

M
 log $N = \frac{^{a} \log N}{^{a} \log M}$, dimana $a > 0$, $a \ne 1$, $M > 0$ dan $N > 0$

e. Perpangkatan dengan logaritma

$$a^{a \log M} = M$$
, dimana $a > 0$, $a \ne 1$, $M > 0$

E. Latihan

- 1. Gambarkan dalam suatu skema tentang pembagian sistem bilangan real!
- 2. Selesaikan soal berikut:
 - a. $2^{-3} \cdot 2^{7}$
 - b. $(-3)^6 \cdot (-3)^5$
 - c. $\frac{3x^2y^5 \cdot 10xy^3}{6x^2y^4}$
- 3. Kerjakan soal bentuk akar berikut:
 - a. Sederhanakan $\sqrt{128}$
 - b. $125^{\frac{2}{3}} 81^{\frac{1}{4}} = \dots$
 - c. Jika $L=a^{\frac{1}{2}}.b^{-\frac{1}{3}}$ maka nilai L untuk $a=100\,\mathrm{dan}\,b=64\,\mathrm{adalah}\dots$
 - d. Hitunglah $\left(\frac{27x^4y^9}{xy^3}\right)^{\frac{2}{3}}$
 - e. Untuk harga $x = 2^{12}$ maka tentukan nilai dari $\sqrt[3]{\sqrt{\sqrt{x}}}$
- 4. Kerjakan soal logaritma berikut :
 - a. Uraikan bentuk $a \log \left(\frac{ab}{c}\right)!$
 - b. Jika $^2\log 3 = a \operatorname{dan} ^2\log 5 = b \operatorname{maka}$ tentukan nilai $^2\log \sqrt{45}$!
 - c. Jika 2 log 5 = p maka tentukan nilai 2 log 40
 - d. Jika $^{2}\log a = p \operatorname{dan}^{2}\log b = q \operatorname{maka}$ tentukan a.b!

BAB II

HIMPUNAN

A. Pendahuluan

Konsep himpunan merupakan suatu konsep yang telah banyak mendasari perkembangan ilmu pengetahuan, baik pada bidang matematika itu sendiri maupun pada disiplin ilmu lainnya. Perkembangan pada disiplin ilmu lainnya terutama dalam hal pembentukan model diharuskan menggunakan himpunan / kelompok data observasi dari lapangan. Dengan demikian terlihat jelas begitu penting peran dari konsep himpunan, dan sebagai awal dari bahasan buku ajar ini akan dibahas pengertian himpunan, cara penyajian himpunan, macam-macam himpunan, relasi pada himpunan dan operasi-operasi himpunan.

Diharapkan mahasiswa dapat mendeskripsikan pengertian himpunan, menuliskan himpunan dalam berbagai cara penulisan himpunan, menyebutkan macam-macam himpunan, menentukan relasi pada himpunan dan menggunakan operasi-operasi himpunan.

B. Pengertian Himpunan

Istilah himpunan dalam matematika berasal dari kata "set" dalam bahasa Inggris. Kata lain yang sering digunakan untuk menyatakan himpunan antara lain kumpulan, kelas, gugus, dan kelompok. Secara sederhana, arti dari himpunan adalah kumpulan objek-objek (real atau abstrak). Sebagai contoh kumpulan bukubuku, kumpulan materai, kumpulan mahasiswa di kelasmu, dan sebagainya. Objek-objek yang dimasukan dalam satu kelompok haruslah mempunyai sifat-sifat tertentu yang sama. Sifat tertentu yang sama dari suatu himpunan harus didefinisikan secara tepat, agar kita tidak salah mengumpulkan objek-objek yang termasuk dalam himpunan itu. Dengan kata lain, himpunan dalam pengertian matematika objeknya / anggotanya harus tertentu (well defined), jika tidak ia bukan himpunan.

Dengan demikian, kata himpunan atau kumpulan dalam pengertian sehari-hari ada perbedaannya dengan pengertian dalam matematika. Jika kumpulan itu anggotanya tidak bisa ditentukan, maka ia bukan himpunan dalam pengertian

matematika. Demikian juga dengan konsep himpunan kosong dalam matematika, tidak ada istilah tersebut dalam pengertian sehari-hari.

Contoh kumpulan yang bukan himpunan dalam pengertian matematika adalah kumpulan bilangan, kumpulan lukisan indah, dan kumpulan makanan lezat

Pada contoh di atas tampak bahwa dalam suatu kumpulan ada objek. Objek tersebut bisa abstrak atau bisa juga kongkrit. Pengertian abstrak sendiri berarti hanya dapat dipikirkan, sedangkan pengertian kongkrit selain dapat dipikirkan mungkin ia bisa dilihat, dirasa, diraba, atau dipegang. Pada contoh (1) objeknya adalah bilangan (abstrak). Objek tersebut belum tertentu, sebab kita tidak bisa menentukan bilangan apa saja yang termasuk dalam himpunan tersebut. Pada contoh (2) dan (3), masing-masing objeknya adalah lukisan dan makanan, jadi ia kongkrit. Namun demikian kedua objek tersebut *belum tertentu*, sebab sifat indah dan lezat adalah relatif, untuk setiap orang bisa berlainan.

Sekarang marilah kita pelajari contoh kumpulan yang merupakan himpunan dalam pengertian matematika. Misal (1) kumpulan bilangan asli, (2) kumpulan bilangan cacah kurang dari 10, (3) kumpulan warna pada bendera RI, (4) kumpulan hewan berkaki dua, dan (5) kumpulan manusia berkaki lima

Pada kelima contoh di atas kumpulan tersebut memiliki objek (abstrak atau kongkrit), dan semua objek pada himpunan tersebut adalah tertentu atau dapat ditentukan. Pada contoh (1), (2), dan (3) objeknya abstrak, sedangkan pada contoh (4) dan (5) objeknya kongkrit. Khusus untuk contoh (5) banyaknya anggota 0 (nol), jadi ia tertentu juga. Untuk hal yang terakhir ini biasa disebut himpunan kosong (*empty set*), suatu konsep himpunan yang didefinisikan dalam matematika. Pembicaraan lebih rinci mengenai himpunan kosong akan dibahas pada bagian lain.

Terkait dengan pengertian himpunan, berikut adalah hal-hal yang harus anda cermati dan ingat, yaitu objek-objek dalam suatu himpunan mestilah berbeda, artinya tidak terjadi pengulangan penulisan objek yang sama.

Sebagai contoh, misalkan $A = \{a, c, a, b, d, c\}$. Himpunan A tersebut tidak dipandang mempunyai jumlah anggota sebanyak 6, tetapi himpunan tersebut dipandang sebagai $A = \{a, c, b, d\}$ dengan jumlah anggota sebanyak 4. Urutan objek dalam suatu himpunan tidaklah dipentingkan. Maksudnya himpunan $\{1, 2, 3, 4\}$ dan $\{2, 1, 4, 3\}$ menyatakan himpunan yang sama.

C. Keanggotaan Himpunan dan Bilangan Kardinal

Suatu himpunan dinyatakan dengan huruf kapital, seperti A, B, C, D, ..., dan untuk menyatakan himpunan itu sendiri dinotasikan dengan tanda kurung kurawal (aqulade). Objek yang dibicarakan dalam himpunan tersebut dinamakan anggota (elemen, unsur). Anggota-anggota dari suatu himpunan dinyatakan dengan huruf kecil atau angka-angka dan berada di dalam tanda kurawal. Tanda keanggotaan dinotasikan dengan \in , sedangkan tanda bukan anggota dinotasikan dengan \notin .

Jika x adalah anggota dari A maka dapat ditulis $x \in A$, dan jika y bukan anggota himpunan A maka ditulis dengan $y \notin A$. Banyaknya anggota dari suatu himpunan disebut dengan kardinal (bilangan kardinal) himpunan tersebut. Jika A adalah suatu himpunan, maka banyaknya anggota dari A (bilangan kardinal A) ditulis dengan notasi n(A) atau |A|.

Contoh 2.1

$$A = \{a, b, c, d, e, f\}, \text{ maka } n(A) = 6$$

D. Penulisan Himpunan

Ada empat cara atau metode untuk menyatakan (menuliskan) suatu himpunan, yaitu:

1. Cara Tabulasi

Cara ini sering disebut juga dengan cara pendaftaran (*roster method*) atau enumerasi, yaitu cara menyatakan suatu himpunan dengan menuliskan anggotanya satu per satu. Untuk membedakan anggota yang satu dengan yang lainnya digunakan tanda koma (,). Jika banyaknya anggota himpunan itu cukup banyak atau tak hingga, untuk menyingkat tulisan biasanya digunakan tanda titik tiga yang berarti "dan seterusnya". Cara tabulasi biasa digunakan jika anggota dari himpunan itu bisa ditunjukan satu persatu (diskrit), misal:

(1)
$$A = \{0, 1, 2, 3, 4, ...\}$$

(2)
$$B = \{0, 1, 4, 9, 16, ..., 100\}$$

(3) $C = \{\text{merah, jingga, kuning, hijau, biru}\}$

Pada contoh (1) banyak anggota dari himpunan A adalah tak hingga sehingga tidak mungkin dituliskan semua anggotanya satu persatu, oleh karena itu digunakan titik tiga setelah aturan (pola) bilangan yang disajikan dapat dilihat. Perhatikan bahwa kita tidak boleh menuliskan seperti $A = \{0, ...\}$ atau $A = \{0, ...\}$

 $\{0, 1, ...\}$ untuk contoh (1) sebab belum tampak polanya. Penulisan seperti itu bisa mengandung interpretasi lain, sehingga tidak sesuai dengan yang dimaksudkan. Pada contoh (2), juga digunakan tanda titik tiga karena banyak anggotanya cukup banyak dan aturan bilangannya sudah tampak, yaitu kuadrat dari bilangan cacah. Kardinal dari setiap himpunan di atas adalah n(A) = -, n(B) = 11, dan n(C) = 5.

2. Cara Pencirian / Deskriptif

Cara ini dikenal juga dengan "rule method" atau metode aturan, atau disebut juga metode pembentuk himpunan. Dalam menggunakan metode deskripsi ini, anggota dari suatu himpunan tidak disebutkan satu per satu, tetapi penyajian anggota himpunannya dilakukan dengan mendefinisikan suatu aturan / rumusan yang merupakan batasan bagi anggota-anggota himpunan. Himpunan yang anggotanya diskrit dapat disajikan dengan cara deskripsi ini, akan tetapi suatu himpunan yang anggotanya kontinu hanya bisa disajikan dengan cara deskripsi, dan tidak bisa disajikan dengan cara tabulasi.

Contoh 2.2

A = adalah himpuan bilangan cacah yang lebih dari 1 dan kurang dari 8.
 Himpunan A, jika disajikan dengan cara tabulasi didapat :

$$A = \{2, 3, 4, 5, 6, 7\}$$

sedangkan jika disajikan dengan menggunakan metode deskripsi didapat :

 $A = \{x \mid 1 < x < 8, x \text{ bilangan cacah}\}\$

2. $B = \{x \mid 1 < x < 8, x \text{ bilangan real}\}.$

Himpunan tersebut tidak bisa disajikan dengan cara tabulasi, karena anggotanya kontinu.

Kedua himpunan tersebut memiliki kardinalitas yang berbeda, yaitu n(A) = 6 sedangkan $n(B) = \sim$.

3. Simbol-simbol Baku

Beberapa himpunan yang khusus dituliskan dengan simbol-simbol yang sudah baku. Terdapat sejumlah simbol baku yang menyatakan suatu himpunan, yang biasanya disajikan dengan menggunakan huruf kapital dan dicetak tebal. Berikut adalah contoh-contoh himpunan yang dinyatakan dengan simbol baku, yang sering kita dijumpai, yaitu :

 \mathbf{N} = himpunan bilangan asli = $\{1, 2, 3, ...\}$

P = himpunan bilangan bulat positif = {1, 2, 3, ...}

Z = himpunan bilangan bulat {...,-2, -1, 0, 1, 2, 3, ...}

Q = himpunan bilangan rasional

R = himpunan bilangan riil

C = himpunan bilangan kompleks

4. Diagram Venn

Dalam diagram venn, himpunan semesta *S* digambarkan dengan persegi panjang, sedangkan untuk himpunan lainnya digambarkan dengan lengkungan tertutup sederhana, dan anggotanya digambarkan dengan noktah. Anggota dari suatu himpunan digambarkan dengan noktah yang terletak di dalam di dalam daerah lengkungan tertutup sederhana itu, atau di dalam persegi panjang untuk anggota yang tidak termasuk di dalam himpunan itu.

Contoh 2.3

 $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

 $A = \{1, 2, 5\}$; $B = \{3, 4, 7, 8\}$

Gambar 2.1

E. Macam-macam Himpunan

Beberapa konsep berkenaan dengan himpunan yang didefinisikan dalam matematika.

1. Himpunan kosong

Definisi

Suatu himpunan A dikatakan himpunan kosong jika dan hanya jika n(A) = 0. Himpunan kosong dilambangkan dengan ϕ (dibaca phi). Karena bilangan kardinal dari ϕ sama dengan nol, maka himpunan tidak mempunyai anggota, sehingga = $\{\}$.

Pengertian *jika dan hanya jika* pada definisi di atas berarti : "jika A himpunan kosong", maka n(A) = 0. Sebaliknya, jika n(A) = 0 maka A adalah himpunan kosong.

Berikut disajikan beberapa contoh tentang himpunan kosong.

Contoh 2.4

- 1. *A* = himpunan mahasiswa Jurusan Ekonomi dan Bisnis Umsida angkatan 2015/2016 yang mempunyai tinggi badan di atas 3 meter.
- 2. $B = \{x \mid 6 < x < 7, x \text{ bilangan bulat}\}$
- 3. $C = \{x \mid x \text{ bilangan prima kelipatan 6}\}$
- 4. $D = \{x \mid x^2 < 0, x \text{ bilangan real}\}\$

2. Himpunan Semesta

Definisi

Himpunan semesta S adalah himpunan yang memuat semua anggota himpunan yang dibicarakan.

Jika anda cermati definisi di atas, tampak bahwa suatu himpunan tertentu merupakan himpunan semesta bagi dirinya sendiri. Himpunan semesta dari suatu himpunan tertentu tidaklah tunggal, tetapi mungkin lebih dari satu. Coba anda perhatikan contoh berikut :

Misalkan $A = \{a, b, c\}$, maka himpunan semesta dari A antara lain adalah :

$$S_1 = \{a, b, c\}$$

 $S_2 = \{a, b, c, d\}$
 $S_3 = \{a, b, c, d, e\}$
 $S_4 = \{a, b, c, d, e, f\}$

Dari contoh di atas, jelas bahwa himpunan semesta dari suatu himpunan tidaklah tunggal.

Suatu himpunan bisa merupakan himpunan semesta bagi himpunan tertentu asalkan semua anggota dari himpunan tertentu itu menjadi anggota dari himpunan semesta.

F. Relasi antar Himpunan

1. Himpunan yang sama

Definisi

Dua buah himpunan A dan B dikatakan sama, dilambangkan A = B, jika dan hanya jika setiap anggota di A merupakan anggota di B, dan juga setiap anggota di B merupakan anggota di A.

Pada definisi di atas, digunakan perkataan *jika dan hanya jika,* ini mengandung arti bahwa :

- a. jika himpunan *A* sama dengan *B*, maka setiap anggota di *A* merupakan anggota di *B*, dan
- b. jika terdapat dua himpunan sedemikian hingga setiap anggota pada himpunan pertama merupakan anggota pada himpunan kedua dan setiap anggota pada himpunan kedua merupakan anggota pada himpunan pertama, maka dikatakan bahwa kedua himpunan itu sama.

Contoh 2.5

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8\} dan$

 $B = \{x \mid x < 9, x \text{ bilangan cacah}\}\$

Himpunan B jika dituliskan dengan metode tabulasi maka di dapat $B = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

Dengan memperhatikan anggota-anggota pada A dan B, maka jelas bahwa A = B.

Contoh 2.6

Misalkan $C = \{a, b, c, d\} \text{ dan } D = \{c, a, b\}.$

Meskipun setiap anggota di *D* merupakan anggota di *C*, akan tetapi tidak setiap anggota di *C* merupakan anggota di *D*.

Dengan demikian $C \neq D$.

2. Himpunan bagian

Definisi.

A dikatakan himpunan bagian dari B, dilambangkan $A \subseteq B$, jika dan hanya jika setiap anggota di A merupakan anggota di B.

Jika $A \subseteq B$ digambarkan dengan menggunakan diagram venn, maka didapatkan sebagai berikut.

Gambar 2.2 A⊆B

Sebagai contoh bahwa $\{a, b, c\} \subseteq \{a, b, c, d\}$ dan $\{2, 4, 6, 8\} \subseteq \{0, 2, 4, 6, 8, 10, 12, 14\}$. Anda pastinya juga setuju bahwa $A \subseteq B$ adalah ekivalen dengan $B \supseteq A$. Penulisan $B \supseteq A$ lazimnya dimaknai sebagai B *superset* dari A.

Definisi.

A dikatakan himpunan bagian sejati (*proper subset*) dari B, $A \subset B$, jika dan hanya jika setiap anggota di A merupakan anggota di B dan paling sedikit terdapat satu anggota di B yang bukan merupakan anggota A.

Sebagai contoh, perhatikan bahwa $\{1, 2, 3, 4, 5\} \subset \{0, 1, 2, 3, 4, 5, 6\}$ akan tetapi $\{a, b, c\} \not\subset \{c, a, b\}$.

3. Himpunan Lepas

Definisi

A dan B dikatakan lepas (*disjoint*) jika dan hanya jika tidak terdapat anggota bersama pada A dan B, atau dengan kata lain A dan B dikatakan lepas jika $A \cap B = \phi$. Simbol $A \cap B$ menyatakan irisan dari A dan B.

Berikut adalah deskripsi dari A lepas dengan B.

Gambar 2.3 $A \cap B = \phi$

Contoh 2.7

Misalkan $A = \{a, b, c, d, e\}$ dan $B = \{f, h, i, j, k\}$ maka didapatkan bahwa $A \cap B = \phi$. Karena $A \cap B = \phi$ maka A dan B merupakan himpunan yang lepas.

4. Himpunan Bersilangan

Definisi

A bersilangan dengan B jika dan hanya jika $A \cap B \neq \phi$, atau dengan kata lain irisan dari kedua himpunan tersebut tidak kosong. Berikut adalah deskripsi dari A bersilangan dengan B.

Gambar 2.4 $A \cap B \neq \phi$

Contoh 2.8

Misalkan $A = \{a, b, c, d, e, f\}$ dan $B = \{d, e, f, g, h, i\}$ maka didapatkan bahwa $A \cap B = \{d, e, f\}$. Karena $A \cap B = \{d, e, f\} \neq \emptyset$ maka A dan B merupakan himpunan yang bersilangan.

5. Himpunan Ekuivalen

Definisi

A ekuivalen dengan himpunan B_i dilambangkan $A \sim B_i$ jika dan hanya jika banyaknya anggota dari A sama dengan banyaknya anggota B, atau n(A) = n(B).

Contoh 2.9

 $A = \{1, 3, 5, 7, 9, 11\}$ $B = \{ a, b, c, d, e, f \}$ n(A) = 6 dan n(B) = 6Maka A ~ B

6. Himpunan Kuasa (Power Set)

Definisi

Himpunan Kuasa dari himpunan A, dilambangkan P(A), adalah suatu himpunan yang anggotanya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri.

Contoh 2.10

$$A = \{a, b, c\}.$$

Himpunan bagian dari *A* adalah , {*a*}, {*b*}, {*c*}, {*a*, *b*}, {*a*, *c*}, {*b*, *c*}, {*a*, *b*, *c*}. Sehingga $P(A) = \{ , \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$

G. Operasi Himpunan

1. Irisan (Intersection)

Definisi

Irisan dari A dan B, dilambangkan $A \cap B$, adalah himpunan yang anggotanggotanya merupakan anggota dari himpunan A dan sekaligus anggota himpunan B.

Gambar 2.5 $A \cap B$

Contoh 2.11

Misalkan $A = \{a, b, c, d, e, f\}$ dan $B = \{a, e, g\}$ maka $A \cap B = \{a, e\}$. Diagram venn-nya adalah sebagai berikut.

Daerah yang diarsir menyatakan $A \cap B$

Contoh 2.12

Misalkan $A = \{a, b, c, d, e, f\}$ dan $B = \{g, h, i, j\}$ maka $A \cap B = \phi$.

Diagram venn-nya adalah sebagai berikut

Gambar 2.7

Karena $A \cap B = \phi$ maka tidak ada daerah yang diarsir

2. Gabungan (Union)

Definisi

Gabungan antara himpunan A dan himpunan B dilambangkan $A \cup B$, adalah himpunan yang anggota-anggotanya merupakan anggota himpunan A atau anggota himpunan B.

 $A \cup B$ Gambar 2.8 $A \cup B$

Contoh 2.13

Misalkan $A = \{a, b, c, d, e, f\}$ dan $B = \{a, e, g\}$ maka $A \cup B = \{a, b, c, d, e, f, g\}$. Diagram venn-nya adalah sebagai berikut.

Gambar 2.9

Daerah yang diarsir menyatakan $A \cup B$.

Contoh 2.14

Misalkan $A = \{a, b, c, d, e, f\}$ dan $B = \{g, h, i, j\}$ maka $A \cup B = \{a, b, c, d, e, f, g, h, i, j\}$. Diagram venn-nya adalah sebagai berikut.

Gambar 2.10

Daerah yang diarsir menyatakan $A \cup B$

3. Komplemen

Definisi

Diberikan himpunan universal (semesta) S dan himpunan A. $A \subseteq S$, komplemen dari A, dilambangkan A', adalah himpunan semua objek di S yang **tidak** termasuk di A.

Gambar 2.11

Contoh 2.16

Misalkan $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ dan $B = \{1, 3, 5, 7, 9\}$ maka B' adalah himpunan bilangan S selain B, yaitu $B' = \{0, 2, 4, 6, 8, 10\}$.

4. Selisih Himpunan

Selisih dari A dan B, dilambangkan A – B, adalah himpunan yang anggotanggotanya merupakan anggota dari himpunan A tetapi bukan merupakan anggota dari himpunan B.

Gambar 2.12

Contoh 2.17

Misalkan $A = \{a, b, c, d, e, f\}$ dan $B = \{a, e, g\}$ maka $A - B = \{b, c, d, f\}$. Diagram venn-nya adalah sebagai berikut.

Gambar 2.13

Daerah yang diarsir menyatakan A - B

H. Sifat-sifat Operasi pada Himpunan

1. Sifat Identitas

$$A \cup \phi = A$$

2. Sifat Dominasi

$$A \cap \phi = \phi$$

3. Sifat Komplemen

$$A \cup A' = S$$

4. Sifat Idempoten

$$A \cup A = A$$

5. Sifat Penyerapan

$$A \cup (A \cap B) = A$$

6. Sifat Komutatif

$$A \cup B = B \cup A$$
 atau $A \cap B = B \cap A$

7. Sifat Asosiatif

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 atau $A \cap (B \cap C) = (A \cap B) \cap C$

8. Sifat Distributif

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 atau $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Sifat De-Morgan

$$(A \cup B)' = A' \cap B'$$
 atau $(A \cap B)' = A' \cup B'$

9. Sifat Komplemen ke-2

$$\phi' = S$$
 atau $S' = \phi$

I. Rangkuman

- 1. Himpunan dalam pengertian matematika objeknya / anggotanya harus tertentu (well defined), jika tidak ia bukan himpunan.
- 2. Penulisan Himpunan.

Ada empat metode dalam menuliskan himpunan:

a. Cara Tabulasi

Cara ini sering disebut juga dengan cara pendaftaran (*roster method*) atau enumerasi, yaitu cara menyatakan suatu himpunan dengan menuliskan anggotanya satu per satu. Untuk membedakan anggota yang satu dengan yang lainnya digunakan tanda koma (,). Jika banyaknya anggota himpunan itu

cukup banyak atau tak hingga, untuk menyingkat tulisan lazimnya dengan menggunakan tanda titik tiga yang berarti dan seterusnya, asal aturannya sudah tampak pada pernyataan anggota yang telah dituliskan.

b. Cara Pencirian / Deskriptif

Cara ini dikenal juga dengan "rule method" atau metode aturan, atau disebut juga metode pembentuk himpunan. Dalam menggunakan metode deskripsi ini, anggota dari suatu himpunan tidak disebutkan satu per satu, tetapi penyajian anggota himpunannya dilakukan dengan mendefinisikan suatu aturan/rumusan yang merupakan batasan bagi anggota-anggota himpunan.

c. Simbol-simbol Baku

Berikut adalah contoh-contoh himpunan yang dinyatakan dengan simbol baku, yang sering kita dijumpai, yaitu :

 $N = himpunan bilangan asli = \{1, 2, 3, ...\}$

P = himpunan bilangan bulat positif = {1, 2, 3, ...}

Z = himpunan bilangan bulat {...,-2, -1, 0, 1, 2, 3, ...}

Q = himpunan bilangan rasional

R = himpunan bilangan riil

C = himpunan bilangan kompleks

d. Diagram Venn

Dalam diagram venn himpunan semesta *S* digambarkan dengan persegi panjang, sedangkan untuk himpunan lainnya digambarkan dengan lengkungan tertutup sederhana, dan anggotanya digambarkan dengan noktah. Anggota dari suatu himpunan digambarkan dengan noktah yang terletak di dalam di dalam daerah lengkungan tertutup sederhana itu, atau di dalam persegi panjang untuk anggota yang tidak termasuk di dalam himpunan itu.

3. Beberapa konsep macam-macam himpunan:

a. Himpunan Kosong

Suatu himpunan A dikatakan himpunan kosong jika dan hanya jika n(A) = 0. Himpunan kosong dilambangkan dengan ϕ (dibaca phi). Karena bilangan kardinal dari ϕ sama dengan nol, maka himpunan tidak mempunyai anggota, sehingga = { }

b. Himpunan Semesta

Himpunan semesta S adalah himpunan yang memuat semua anggota himpunan yang dibicarakan

4. Relasi antar Himpunan:

a. Himpunan yang sama

Dua buah himpunan A dan B dikatakan sama, dilambangkan A = B, jika dan hanya jika setiap anggota di A merupakan anggota di B, dan juga setiap anggota di B merupakan anggota di A.

b. Himpunan Bagian

A dikatakan himpunan bagian dari B, dilambangkan $A \subseteq B$, jika dan hanya jika setiap anggota di A merupakan anggota di B.

c. Himpunan Lepas

A dan B dikatakan lepas (*disjoint*) jika dan hanya jika tidak terdapat anggota bersama pada A dan B, atau dengan kata lain A dan B dikatakan lepas jika $A \cap B = \phi$

d. Himpunan Bersilangan

A bersilangan dengan B jika dan hanya jika $A \cap B \neq \phi$, atau dengan kata lain irisan dari kedua himpunan tersebut tidak kosong

e. Himpunan Ekuivalen

A ekivalen dengan himpunan B, dilambangkan $A \sim B$, jika dan hanya jika banyaknya anggota dari A sama dengan banyaknya anggota B, atau n(A) = n(B).

f. Himpunan Kuasa (Power Set)

Himpunan Kuasa dari himpunan A, dilambangkan P(A), adalah suatu himpunan yang anggotanya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri.

5. Operasi Himpunan

a. Irisan (Intersection)

Irisan dari A dan B, dilambangkan $A \cap B$, adalah himpunan yang anggotanggotanya merupakan anggota dari himpunan A dan sekaligus anggota himpunan B.

$$A \cap B = \{x | x \in A \operatorname{dan} x \in B\}$$

b. Gabungan (Union)

Gabungan antara himpunan A dan himpunan B dilambangkan $A \cup B$, adalah himpunan yang anggota-anggotanya merupakan anggota himpunan A atau anggota himpunan B.

$$A \cup B = \{x | x \in A \text{ atau } x \in B\}$$

c. Komplemen

Diberikan himpunan universal (semesta) S dan himpunan A. $A \subseteq S$, komplemen dari A, dilambangkan A', adalah himpunan semua objek di S yang **tidak** termasuk di A.

$$A' = \left\{ x \middle| x \in S \operatorname{dan} x \notin A \right\}$$

d. Selisih

Selisih dari A dan B, dilambangkan A - B, adalah himpunan yang anggotaanggotanya merupakan anggota dari himpunan A tetapi bukan merupakan anggota dari himpunan B.

$$A - B = \{x | x \in A \operatorname{dan} x \notin B\}$$

6. Sifat-sifat Operasi pada Himpunan

a. Sifat Identitas

$$A \cup \phi = A$$

b. Sifat Dominasi

$$A \cap \phi = \phi$$

c. Sifat Komplemen

$$A \cup A' = S$$

d. Sifat Idempoten

$$A \cup A = A$$

e. Sifat Penyerapan

$$A \cup (A \cap B) = A$$

f. Sifat Komutatif

$$A \cup B = B \cup A$$
 atau $A \cap B = B \cap A$

g. Sifat Asosiatif

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 atau $A \cap (B \cap C) = (A \cap B) \cap C$

h. Sifat Distributif

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 atau $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

i. Sifat De-Morgan

$$(A \cup B)' = A' \cap B'$$
 atau $(A \cap B)' = A' \cup B'$

j. Sifat Komplemen ke-2

$$\phi' = S$$
 atau $S' = \phi$

J. Latihan

- 1. Misalkan $S = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, $B = \{2, 3, 4\}$. Dengan menggunakan cara tabulasi tentukan himpunan berikut :
 - a. $A \cap B$
 - b. $A \cup B$
 - C. $(A \cap B)'$
 - d. $(A \cup B)'$
 - e. *A'*
 - f. B'
 - q. $A' \cap B'$
 - h. $A' \cup B'$
 - i. Apakah $(A \cap B)' = A' \cup B'$?
 - j. Apakah $(A \cup B)' = A' \cap B'$?
- 2. Dengan menggunakan diagram venn tunjukkan bahwa:
 - a. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - b. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 3. Dari 100 orang mahasiswa, 60 mahasiswa mengikuti kuliah Bahasa Inggris, 50 mahasiswa mengikuti kuliah Statistika, 30 mahasiswa mengikuti kuliah Matematika Dasar, 30 mahasiswa mengikuti kuliah Bahasa Inggris dan Statistika, 16 mahasiswa mengikuti kuliah Bahasa Inggris dan Matematika Dasar, 10 mahasiswa mengikuti kuliah Statistika dan Matematika Dasar, dan 6 mahasiswa mengikuti kuliah ketiga-tiganya. Berapa banyak mahasiswa yang mengikuti kuliah Bahasa Inggris, atau Statistika, atau Matematika Dasar?
- 4. Manakah dari himpunan berikut ini, yang merupakan himpunan kosong? Jelaskan!

- a. $\{x \mid x \text{ nama huruf vokal selain } a, i, u, e, o \text{ di dalam alfabetl}\}$
- b. $\{x \mid x^2 = 9 \text{ dan } 2x = 4\}$
- C. $\{x \mid x \neq x\}$
- d. $\{x \mid x + 6 = 6, x \text{ bilangan asli}\}$
- 5. Misalkan $A = \{1, 2, 3\}, B = \{0, 1, 2\}, C = \{3, 1, 2\}, D = \{a, b, c\}, E = \{1, 2\}, F = \{0, 1, 2\}, E = \{1, 2\}, E$
 - 3}, dan $G = \{ bilangan cacah antara 0 dan 4 \}$
 - a. Himpunan manakah yang sama dengan A?
 - b. Himpunan manakah yang ekivalen dengan A?
 - c. Jika H dan I adalah himpunan, sedemikian sehingga berlaku H = I, apakah $H \sim I$? Jelaskan!
 - d. Jika J dan K adalah himpunan, sedemikian sehingga berlaku $J \sim K$, apakah J = K? Jelaskan!
- 6. Misalkan A = {2, {4,5}, 4}. Manakah pernyataan yang salah? Jelaskan!
 - a. $\{4, 5\} \subset A$
 - b. $\{4, 5\} \in A$
 - c. $\{\{4, 5\}\} \subset A$

BAB III

PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

A. Pendahuluan

Dasar dari suatu persamaan adalah sebuah pernyataan matematika yang terdiri dari dua ungkapan pada ruas kanan dan ruas kiri yang dipisahkan oleh tanda "=" (dibaca sama dengan). Hal yang tak diketahui dalam sebuah persamaan disebut variabel. Dan sebuah penyelesaian dari suatu persamaan berupa nilai yang jika disubstitusikan pada variabel menghasilkan sebuah pernyataan yang benar.

Sementara itu, istilah-istilah seperti lebih dari, kurang dari, lebih besar, lebih kecil, lebih tinggi, lebih rendah, tidak sama sudah menjadi bahasa sehari-hari dalam masyarakat. Istilah-istilah tersebut digunakan untuk menentukan nilai maksimum atau nilai minimum dari suatu permasalahan atau pernyataan yang dapat dimodelkan secara matematis.

Diharapkan mahasiswa dapat menentukan penyelesaian dari persamaan linear satu variabel dan himpunan penyelesaian dari pertidaksamaan linear satu variabel.

B. Persamaan Linear Satu Variabel

Definisi

Suatu persamaan yang memuat satu variabel berpangkat satu.

Contoh 3.1

- 1. x = 9
- 2. 5x + 4 = 29
- 3. 3x 2 = x + 24

Sebuah penyelesaian untuk suatu persamaan adalah sebarang bilangan yang membuat persamaan itu benar jika bilangan itu disubstitusikan pada variabel.

Contoh 3.2

1. 3x = 21

Persamaan ini mempunyai penyelesaian bilangan 7, karena 3(7) = 21 adalah benar. Sementara bilangan 5 bukan sebuah penyelesaian dari 3x = 21, karena 3(5) = 21 adalah salah.

2.
$$3x-2=x+24$$

Jika persamaan ini diselesaikan maka mempunyai penyelesaian bilangan 13, karena 3(13) - 2 = 13 + 24.

Prinsip Penjumlahan dan Perkalian

Ada dua prinsip yang diperbolehkan untuk menyelesaikan bermacam-macam persamaan.

Pertama, Prinsip Penjumlahan

Untuk sebarang bilangan real a, b dan c, jika a = b maka berlaku

$$a + c = b + c$$

$$a-c=b-c$$

Kedua, Prinsip Perkalian

Untuk sebarang bilangan real a, b dan c, jika a = b maka berlaku

$$a.c=b.c$$

$$\frac{a}{c} = \frac{b}{c}$$
 , benar dengan $c \neq 0$.

Contoh 3.3

Tentukan penyelesaian dari 3x-2=31.

Penyelesaian:

$$3x - 2 = 31$$

$$3x-2+2=31+2$$
 menggunaka n prinsip penjumlaha n, kedua ruas ditambah 2 $3x=33$

$$\left(\frac{1}{3}\right)3x = \left(\frac{1}{3}\right)33$$
 menggunaka n prinsip perkalian, kedua ruas dikali $\frac{1}{3}$ $x = 11$

Contoh 3.4

Tentukan penyelesaian dari 3(x-1)-1=5-5(x+5)

Penyelesaian:

$$3(x-1)-1 = 5-5(x+5)$$

 $3x-3-1 = 5-5x-25$ sifat distributif
 $3x-4 = -5x-20$
 $3x-4+4 = -5x-20+4$ kedua ruas ditambah 4
 $3x = -5x-16$
 $3x+5x = -5x+5x-16$ kedua ruas ditambah $5x$
 $8x = -16$

$$\left(\frac{1}{8}\right)8x = \left(\frac{1}{8}\right). -16$$
 kedua ruas dikali $\frac{1}{8}$

C. Persamaan Ekuivalen

Definisi

Persamaan Ekuivalen adalah persamaan yang mempunyai himpunan penyelesaian yang sama.

Contoh 3.5

- (1) 2x = 12
- (2) -5x = -30
- (3) 3x + 5 = 23
- (4) 2x 5 = x + 1

Keempat persamaan tersebut ekuivalen karena mempunyai himpunan penyelesaian yang sama yaitu x = 4.

D. Persamaan Linear Bentuk Pecahan Satu Variabel

Yaitu persamaan yang memuat pecahan. Untuk menyelesaikan persamaan pecahan ini digunakan perkalian dengan variabel.

Contoh 3.6

Tentukan penyelesaian dari $\frac{x-2}{5} + \frac{x}{3} = \frac{1}{5}$.

Penyelesaian:

$$\frac{x-2}{5} + \frac{x}{3} = \frac{1}{5}$$

$$15\left(\frac{x-2}{5} + \frac{x}{3}\right) = 15\left(\frac{1}{5}\right)$$
 kedua ruas dikali 15
$$15\left(\frac{x-2}{5}\right) + 15\left(\frac{x}{3}\right) = 3$$
 sifat distributi f
$$3x - 6 + 5x = 3$$

$$8x - 6 + 6 = 3 + 6$$
 kedua ruas ditambah 6
$$8x = 9$$

$$\left(\frac{1}{8}\right)8x = \left(\frac{1}{8}\right)9$$
 kedua ruas dikali $\frac{1}{8}$

$$x = \frac{9}{8}$$

E. Pertidaksamaan Linear Satu Variabel

Definisi

Suatu pertidaksamaan yang hanya mempunyai satu variabel dengan pangkat tertinggi variabelnya satu.

Contoh 3.7

- 1. x < 9
- 2. 5x + 4 > 29
- 3. 3x-2 < x + 24

Pada prinsipnya penyelesaian pertidaksamaan linear mirip dengan persamaan linear. Hal ini dapat dilihat pada tabel perbandingan berikut.

No	Penyelesaian Persamaan	Penyelesaian Pertidaksamaan
1.	Prinsip Penjumlahan	Prinsip Penjumlahan
	Menambah dengan	Menambah dengan bilangan yang sama
	bilangan yang sama pada	pada kedua ruas.
	kedua ruas.	
2.	Prinsip Perkalian	Prinsip Perkalian
	Kedua ruas dikalikan	1. Jika kedua ruas dikalikan dengan
	dengan bilangan yang	bilangan positif yang sama maka
	sama.	tanda pertidaksamaan tidak
		berubah.
		2. Jika kedua ruas dikalikan dengan
		bilangan negatif yang sama, tanda
		pertidaksamaan berubah dari <
		menjadi >, dari ≤ menjadi ≥ dan
		sebaliknya.

Contoh 3.8

Tentukan penyelesaian dari 2x-4 < 6.

Penyelesaian:

$$2x-4<6$$

$$2x-4+4<6+4$$
 kedua ruas ditambah 4
$$2x<10$$

$$\left(\frac{1}{2}\right)2x<\left(\frac{1}{2}\right)10$$
 kedua ruas dikali $\frac{1}{5}$

$$x<5$$

Jadi himpunan penyelesaiannya $\{x|x<5\}$

Contoh 3.9

Tentukan penyelesaian dari 3x-5 > x+7.

Penyelesaian:

$$3x-5+5>x+7+5$$
 kedua ruas ditambah 5
 $3x>x+12$ kedua ruas ditambah $-x$
 $2x>12$ kedua ruas ditambah $-x$
 $\left(\frac{1}{2}\right)2x>\left(\frac{1}{2}\right)12$ kedua ruas dikali $\frac{1}{2}$
 $x>6$

Jadi himpunan penyelesaiannya $\{x|x>6\}$.

Contoh 3.10

Tentukan penyelesaian dari 3x-2(2x-7)>2(3+x)-4.

Penyelesaian:

$$3x - 2(2x - 7) \ge 2(3 + x) - 4$$

$$3x - 4x + 14 \ge 6 + 2x - 4$$
 sifat distributi f
$$-x + 14 \ge 2 + 2x$$

$$-x + 14 - 14 \ge 2 + 2x - 14$$
 kedua ruas ditambah -14
$$-x \ge 2x - 12$$
 kedua ruas ditambah - x
$$-3x \ge -12$$
 kedua ruas ditambah - x
$$-3x \ge -12$$
 kedua ruas dikali $-\frac{1}{3}$

$$x \le 4$$

Jadi himpunan penyelesaiannya $\{x | x \le 4\}$

Contoh 3.11

Tentukan himpunan penyelesaian dari 3 < x + 7 < 11.

Penyelesaian:

$$3 < x + 7 < 11$$

Untuk menyelesaikan soal ini menggunakan dua langkah karena menyelesaikannya menggunakan kombinasi pertidaksamaan.

Langkah I.

$$3 < x + 7$$

 $3 - 7 < x + 7 - 7$ kedua ruas ditambah -7
 $-4 < x$
 $x > -4$...(1)

Langkah II.

$$x+7<11$$

 $x+7-7<11-7$ kedua ruas ditambah -7
 $x<4$ (2)

Dari (1) dan (2) dikombinassikan maka himpunan penyelesaiannya $\{x \mid -4 < x < 4\}$

F. Pertidaksamaan Linear Bentuk Pecahan Satu Variabel

Yaitu pertidaksamaan yang memuat pecahan. Untuk menyelesaikan pertidaksamaan pecahan ini digunakan perkalian variabel.

Contoh 3.12

Tentukan himpunan penyelesaian dari $\frac{x}{3} > 1 + \frac{x}{4}$.

Penyelesaian:

$$\frac{x}{3} > 1 + \frac{x}{4}$$

$$12\left(\frac{x}{3}\right) > 12\left(1 + \frac{x}{4}\right)$$
 kedua ruas dikali 12
$$4x > 12 + 3x$$

$$4x - 3x > 12 + 3x - 3x$$
 kedua ruas ditambah $-3x$

$$x > 12$$

Jadi himpunan penyelesaiannya $\{x | x > 12\}$

G. Rangkuman

- 1. Persamaan adalah sebuah pernyataan matematika yang terdiri dari dua ungkapan pada ruas kanan dan ruas kiri yang dipisahkan oleh tanda "=" (dibaca sama dengan)
- 2. Penyelesaian untuk suatu persamaan adalah sebarang bilangan yang membuat persamaan itu benar jika bilangan itu disubstitusikan pada variabel.
- 3. Untuk setiap $a,b,c \in R$

Jika
$$a = b$$
 maka $a + c = b + c$

4. Untuk setiap $a,b,c \in R$

Jika
$$a = b$$
 maka $a \cdot c = b \cdot c$

5. Untuk setiap $a,b,c \in R$

Jika
$$a = b$$
 maka $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$

Jika
$$a \cdot b = 0$$
 maka $a = 0$ atau $b = 0$

Jika
$$a = 0$$
 atau $b = 0$ maka $ab = 0$

- 6. Persamaan-persamaan yang mempunyai himpunan penyelesaian yang sama disebut persamaan ekuivalen
- 7. Lambang dari pertidaksamaan <, \leq , >, \geq .
- 8. Prinsip-prinsip untuk menyelesaikan pertidaksamaan:
 - a. Prinsip Penjumlahan, kedua ruas ditambah dengan bilangan yang sama.
 - b. Prinsip Perkalian, kedua ruas dikalikan dengan bilangan yang sama.
 - 1) Jika dikalikan dengan bilangan positif tanda pertidaksamaan tidak berubah.
 - 2) Jika dikalikan dengan bilangan negatif tanda pertidaksamaan berubah kebalikannya.

H. Latihan

1. Tentukan penyelesaian dari persamaan berikut:

a.
$$-x-1 = x + 3$$

b.
$$19x - 78 + 53x = 30 + 18x$$

c.
$$(3x-2)-2(6-x)=1$$

d.
$$3(7-2x) + (x-1) - 5(2-x) = 2x + 1$$

2. Tentukan penyelesaian dari persamaan berikut:

a.
$$\frac{12}{x} = \frac{-3}{4}$$

b.
$$\frac{2x}{9} - \frac{x}{12} = \frac{5}{6}$$

c.
$$\frac{1}{x} + \frac{5}{x-2} = \frac{4}{x-2}$$

3. Tentukan himpunan penyelesaian dari pertidaksamaan berikut:

a.
$$-24x < 8$$

b.
$$(3x-2)-2(6-x)>1$$

c.
$$3(7-2x) + (x-1) - 5(2-x) \le 2x + 1$$

4. Tentukan himpunan penyelesaian dari pertidaksamaan berikut:

a.
$$-x-\frac{1}{2} > 1$$

b.
$$\frac{3-x}{3} \le \frac{x}{4}$$

c.
$$\frac{-\frac{1}{2} - \frac{1}{3}x}{4} > x - 2$$

d.
$$\frac{3}{-\frac{1}{2} - \frac{1}{3}x} \le \frac{1}{5}$$

5. Himpunan penyelesaian dari pertidaksamaan $\frac{1}{2} < \frac{3}{4} - 2x < 1$ adalah

42

BAB IV

FUNGSI

A. Pendahuluan

Salah satu konsep dalam matematika yang paling penting adalah konsep fungsi. Dengan konsep fungsi, para matematikawan maupun para ahli di bidang yang lain dengan jelas dapat mengetahui apakah suatu struktur identik dengan struktur yang lain. Dan hampir semua cabang matematika menggunakan konsep fungsi dalam pengembangannya.

Fungsi linear dan fungsi kuadrat merupakan salah satu fungsi yang banyak digunakan dalam kehidupan. Banyak masalah sehari-hari menjadi lebih mudah diselesaikan dengan menggunakan konsep fungsi linear dan fungsi kuadrat.

Diharapkan mahasiswa dapat menerapkan konsep fungsi baik fungsi linear maupun fungsi kuadrat dalam berbagai permasalahan sehari-hari dan berbagai bidang pengembangan ilmu yang lain

B. Pengertian Fungsi

Definisi

Suatu fungsi f dari himpunan A ke himpunan B adalah suatu relasi yang memasangkan setiap elemen dari A secara tunggal, dengan elemen pada B.

Apabila f memetakan suatu elemen $x \in A$ ke suatu $y \in B$ dikatakan bahwa y adalah peta dari x oleh f dan peta ini dinyatakan dengan notasi f(x), dan biasa ditulis dengan $f: x \to f(x)$, sedangkan x biasa disebut prapeta dari f(x).

Himpunan A dinamakan daerah asal (domain) dari fungsi f, sedangkan himpunan B disebut daerah kawan (kodomain) sedangkan himpunan dari semua peta di B dinamakan daerah hasil (range) dari fungsi f tersebut.

Contoh 4.1

Diagram sebagaimana pada Gambar 1 di atas adalah fungsi karena pertama, terdapat relasi (yang melibatkan dua himpunan yakni *A* dan *B*) dan kedua, pemasangan setiap elemen *A* adalah secara tunggal.

Contoh 4.2

Diagram 4.2 bukan merupakan fungsi karena ada elemen *A* yang dipasangkan tidak secara tunggal dengan elemen pada *B*.

C. Sifat Fungsi

Dengan memperhatikan bagaimana elemen-elemen pada masing-masing himpunan A dan B yang direlasikan dalam suatu fungsi, maka kita mengenal tiga sifat fungsi yakni sebagai berikut :

1. Injektif (Satu-satu)

Misalkan fungsi f menyatakan A ke B maka fungsi f disebut suatu fungsi satusatu (injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Selanjutnya secara singkat dapat dikatakan bahwa $f: A \rightarrow B$ adalah fungsi injektif apabila $a \ne a'$ berakibat $f(a) \ne f(a')$ atau ekuivalen, jika f(a) = f(a') maka akibatnya a = a'.

Contoh 4.3

1. Fungsi f pada R yang didefinisikan dengan $f(x) = x^2$ bukan suatu fungsi satu-satu sebab f(-2) = f(2).

Adapun fungsi pada $A = \{\text{bilangan asli}\}\$ yang didefinisikan dengan f(x) = 2x adalah fungsi satu-satu, sebab kelipatan dua dari setiap dua bilangan yang berlainan adalah berlainan pula.

2. Surjektif (Onto)

Misalkan f adalah suatu fungsi yang memetakan A ke B maka daerah hasil f(A) dari fungsi f adalah himpunan bagian dari B, atau $f(A) \subset B$. Apabila f(A) = B, yang berarti setiap elemen di B pasti merupakan peta dari sekurang-kurangnya satu elemen di A maka kita katakan f adalah suatu fungsi surjektif atau "f memetakan A Onto B".

Contoh 4.4

- 1. Fungsi $f: R \rightarrow R$ yang didefinisikan dengan rumus $f(x) = x^2$ bukan fungsi yang onto karena himpunan bilangan negatif tidak dimuat oleh hasil fungsi tersebut.
- 2. Perhatikan gambar berikut.

Misal $A = \{a, b, c, d\}$ dan $B = \{x, y, z\}$ dan fungsi $f : A \rightarrow B$ yang didefinisikan dengan diagram panah adalah suatu fungsi yang surjektif karena daerah hasil f adalah sama dengan kodomain dari f (himpunan B).

3. Bijektif (Korespondensi Satu-satu)

Suatu pemetaan $f: A \rightarrow B$ sedemikian rupa sehingga f merupakan fungsi yang injektif dan surjektif sekaligus, maka dikatakan "f adalah fungsi yang bijektif" atau "A dan B berada dalam korespondensi satu-satu".

Contoh 4.5

1. Perhatikan gambar berikut.

Relasi dari himpunan $A = \{a, b, c\}$ ke himpunan $B = \{p, q, r\}$ yang didefinisikan sebagai diagram di samping adalah suatu fungsi yang bijektif.

2. Fungsi f yang memasangkan setiap negara di dunia dengan ibu kota negaranegara di dunia adalah fungsi korespondensi satu-satu (fungsi bijektif), karena tidak ada satu kotapun yang menjadi ibu kota dua negara yang berlainan.

D. Jenis Fungsi

Jika suatu fungsi f mempunyai daerah asal dan daerah kawan yang sama, misalnya D, maka sering dikatakan fungsi f pada D. Jika daerah asal dari fungsi tidak dinyatakan maka yang dimaksud adalah himpunan semua bilangan real (R). Untuk fungsi-fungsi pada R kita kenal beberapa fungsi antara lain sebagai berikut.

1. Fungsi Konstan

Definisi

 $f: x \rightarrow C$ dengan C konstan disebut fungsi konstan (tetap). Fungsi f memetakan setiap bilangan real dengan C.

Contoh 4.6

Fungsi $f: x \rightarrow 3$

$$f(-2) = 3$$
, $f(0) = 3$, $f(5) = 3$.

2. Fungsi Identitas

Definisi

Fungsi $R \rightarrow R$ yang didefinisikan sebagai $f: x \rightarrow x$ disebut fungsi identitas.

$$f(1) = 1$$
, $f(2) = 2$, $f(3) = 3$

3. Fungsi Linear

Definisi

Fungsi pada bilangan real yang didefinisikan f(x) = ax + b, a dan b konstan dengan $a \ne 0$ disebut fungsi linear.

Grafik fungsi linier berupa garis lurus. Untuk menggambar grafik fungsi linier bisa dilakukan dengan dua cara yaitu dengan membuat tabel dan dengan menentukan titik potong dengan sumbu-*x* dan sumbu-*y*.

Contoh 4.7

Gambarlah grafik fungsi y = 2x + 3

Penyelesaian:

Dengan membuat tabel:

Dari tabel diperoleh titik-titik berupa pasangan koordinat, kita gambar titik tersebut dalam bidang Cartesius kemudian dihubungkan, sehingga tampak membentuk garis lurus.

Dengan menentukan titik-titik potong dengan sumbu-x dan sumbu-y

$$y = 2x + 3$$

Titik potong grafik dengan sumbu-x:

$$y = 0 \rightarrow 0 = 2x + 3$$

$$-2x = 3$$

$$x = -\frac{3}{2}$$

sehingga titik potong grafik dengan sumbu x adalah $\left(-\frac{3}{2},0\right)$

Titik potong grafik dengan sumbu-y:

$$x = 0 \rightarrow y = 2x + 3$$

$$y = 2.0 + 3$$

$$y = 0 + 3$$

$$y = 3$$

sehingga titik potong grafik dengan sumbu-y adalah (0,3) Kedua titik potong tersebut digambar dalam bidang Cartesius kemudian dihubungkan sehingga tampak membentuk garis lurus.

Gambar 4.9

Beberapa hal penting dalam Fungsi Linear

a. Gradien

Gradien atau koefisien arah (*m*) adalah konstanta yang menunjukkan tingkat kemiringan suatu garis.

Perhatikan gambar berikut ini:

Gambar 4.10

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Persamaan garis y = mx + c, dengan m, $c \in R$, c adalah konstanta, dengan m melambangkan gradien / koefisien arah garis lurus. Pada gambar di atas, misalkan α adalah sudut antara garis horisontal (sejajar sumbu x) dan grafik fungsi linier dengan arah putaran berlawanan arah dengan arah putaran jarum jam, maka gradien dapat pula didefinisikan sebagai

$$m = \frac{\Delta y}{\Delta x} = \tan \alpha$$

Catatan:

- 1) Jika m = 0 maka grafik sejajar dengan sumbu-x dan ini sering disebut sebagai fungsi konstan.
- 2) Jika m > 0 maka grafik miring ke kanan (0° < α < 90°)
- 3) Jika m < 0 maka grafik miring ke kiri (90° < α < 180°)

b. Menentukan Persamaan Garis melalui Satu Titik dan gradien m

Misalkan garis y = mx + c melalui titik $P(x_1, y_1)$, setelah nilai koordinat titik P disubstitusikan ke persamaan garis tersebut diperoleh:

$$y = mx + c$$

$$y_1 = mx_1 + c$$

$$y - y_1 = m(x - x_1)$$

Jadi persamaan garis melalui titik $P(x_1, y_1)$, dan bergradien m adalah

$$y-y_1=m\left(x-x_1\right)$$

c. Menentukan Persamaan Garis melalui Dua Titik

Persamaan garis melalui dua titik $A(x_1, y_1)$ dan $B(x_2, y_2)$ dapat dicari dengan langkah sebagai berikut :

Persamaan garis melalui titik $A(x_1, y_1)$ dengan memisalkan gradiennya m adalah

$$y - y_1 = m(x - x_1)$$
(i)

karena garis ini juga melalui titik $B(x_2, y_2)$, maka $y_2 - y_1 = m(x_2 - x_1)$, sehingga diperoleh gradiennya

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
(ii)

persamaan (ii) disubstitusikan ke persamaan (i) diperoleh

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

Jadi persamaan garis melalui dua titik $A(x_1, y_1)$ dan $B(x_2, y_2)$ adalah

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

d. Menentukan Titik Potong antara Dua Garis

Misalkan dua garis g_1 dan g_2 saling berpotongan di titik P(x, y) maka nilai x dan y harus memenuhi kedua persamaan garis tersebut. Titik potong dua garis dapat dicari dengan metode substitusi, eliminasi, atau membuat sketsa grafiknya.

e. Hubungan Gradien dari Dua Garis

- 1) Garis g_1 yang bergradien m_1 dikatakan sejajar dengan garis g_2 yang bergradien m_2 jika memenuhi $m_1 = m_2$.
- 2) Garis g_1 yang bergradien m_1 dikatakan tegak lurus dengan garis g_2 yang bergradien m_2 jika memenuhi m_1 . $m_2 = -1$.

4. Fungsi Kuadrat

Definisi

Bentuk umum fungsi kuadrat adalah $y = ax^2 + bx + c$ dengan a, b, $c \in R$ dan $a \ne 0$. Grafik fungsi kuadrat berbentuk parabola maka sering juga disebut fungsi parabola. Jika a > 0, parabola terbuka ke atas sehingga mempunyai titik balik minimum, dan jika a < 0 parabola terbuka ke bawah sehingga mempunyai titik balik maksimum.

Langkah-langkah dalam menggambar grafik fungsi kuadrat $y = ax^2 + bx + c$

- a. Tentukan pembuat nol fungsi $\rightarrow y = 0$ atau f(x) = 0Pembuat nol fungsi dari persamaan kuadrat $y = ax^2 + bx + c$ diperoleh jika $ax^2 + bx + c = 0$. Sehingga diperoleh nilai x yang memenuhi $ax^2 + bx + c = 0$. Nilai ini tidak lain adalah absis titik potong dengan sumbu-x, sedangkan untuk menentukan titik potong dengan sumbu-y, dapat dilakukan dengan mensubstitusikan nilai x tadi pada persamaan kuadrat semula.
- b. Tentukan sumbu simetri $x = -\frac{b}{2a}$
- c. Tentukan titik puncak P(x, y) dengan $x = -\frac{b}{2a}$ dan $y = -\frac{D}{4a}$, dengan nilai $D = b^2 4ac$.

Jika ditinjau dari nilai a dan D maka sketsa grafik parabola sebagai berikut :

Catatan:

Persamaan Kuadrat $ax^2 + bx + c = 0$ dapat dicari akar-akarnya dengan:

- 1) Pemfaktoran
- 2) Melengkapi bentuk kuadrat sempurna

3) Rumus
$$abc$$
: $x_{1.2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Contoh 4.8

Gambarlah sketsa grafik fungsi $y = x^2 - 6x + 5$

Penyelesaian:

a. Menentukan pembuat nol fungsi, dengan pemfaktoran diperoleh

$$x^2 - 6x + 5 = 0$$

$$(x-1)(x-5)=0$$

$$x = 1$$
 atau $x = 5$

- b. Menentukan sumbu simetri $x = -\frac{b}{2a} = -\frac{-6}{2(1)} = 3$
- c. Menentukan titik puncak P(x, y)

Karena nilai x sudah diperoleh maka tinggal mencari nilai y dengan substitusi

$$x = 3$$
 pada fungsi semula
 $y = 3^2 - 6(3) + 5$

Jadi puncak parabola adalah titik (3, –4) sehingga sketsa grafiknya seperti pada gambar di bawah ini.

E. Rangkuman

1. Pengertian fungsi

Suatu fungsi *f* dari himpunan *A* ke himpunan *B* adalah suatu relasi yang memasangkan setiap elemen dari *A* secara tunggal, dengan elemen pada *B*.

2. Sifat-sifat Fungsi

a. Injektif (Satu-satu)

 $f: A \rightarrow B$ adalah fungsi injektif apabila $a \neq a'$ berakibat $f(a) \neq f(a')$ atau ekuivalen, jika f(a) = f(a') maka akibatnya a = a'.

b. Surjektif (Onto)

f adalah suatu fungsi yang memetakan A ke B maka daerah hasil f(A) dari fungsi f adalah himpunan bagian dari B, atau $f(A) \subset B$. Apabila f(A) = B, yang berarti setiap elemen di B pasti merupakan peta dari sekurang-kurangnya satu elemen di A maka kita katakan f adalah suatu fungsi surjektif atau "f memetakan A Onto B"

c. Bijektif (Korespondensi satu-satu)

 $f: A \rightarrow B$ sedemikian rupa sehingga f merupakan fungsi yang injektif dan surjektif sekaligus, maka dikatakan "f adalah fungsi yang bijektif" atau "A dan B berada dalam korespondensi satu-satu"

3. Jenis Fungsi

a. Fungsi Konstan

Fungsi $f: x \rightarrow C$ dengan C konstan disebut fungsi konstan (tetap). Fungsi f memetakan setiap bilangan real dengan C.

b. Fungsi Identitas

Fungsi $R \rightarrow R$ yang didefinisikan sebagai $f: x \rightarrow x$ disebut fungsi identitas.

c. Fungsi Linear

Fungsi pada bilangan real yang didefinisikan f(x) = ax + b, a dan b konstan dengan $a \ne 0$ disebut fungsi linear.

d. Fungsi Kuadrat

Bentuk umum fungsi kuadrat adalah $y = ax^2 + bx + c$ dengan a, b, $c \in R$ dan $a \ne 0$. Grafik fungsi kuadrat berbentuk parabola maka sering juga disebut fungsi parabola. Jika a > 0, parabola terbuka ke atas sehingga mempunyai titik balik minimum, dan jika a < 0 parabola terbuka ke bawah sehingga mempunyai titik balik maksimum.

- 4. Beberapa hal penting dalam fungsi linear
 - a. Gradien

Gradien atau koefisien arah (*m*) adalah konstanta yang menunjukkan tingkat kemiringan suatu garis.

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

- b. Menentukan Persamaan Garis melalui Satu Titik dan gradien mPersamaan garis melalui titik $P(x_1, y_1)$, dan bergradien m adalah $y-y_1=m(x-x_1)$
- c. Menentukan Persamaan Garis melalui Dua Titik Persamaan garis melalui dua titik $A(x_1, y_1)$ dan $B(x_2, y_2)$ adalah

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

d. Menentukan Titik Potong antara Dua Garis

Misalkan dua garis g_1 dan g_2 saling berpotongan di titik P(x, y) maka nilai x dan y harus memenuhi kedua persamaan garis tersebut. Titik potong dua garis dapat dicari dengan metode substitusi, eliminasi, atau membuat sketsa grafiknya

- e. Hubungan Gradien dari Dua Garis
 - 1) Garis g_1 yang bergradien m_1 dikatakan sejajar dengan garis g_2 yang bergradien m_2 jika memenuhi $m_1 = m_2$.
 - 2) Garis g_1 yang bergradien m_1 dikatakan tegak lurus dengan garis g_2 yang bergradien m_2 jika memenuhi m_1 . $m_2 = -1$
- 5. Langkah-langkah dalam menggambar grafik fungsi kuadrat $y = ax^2 + bx + c$
 - a. Tentukan pembuat nol fungsi $\rightarrow y = 0$ atau f(x) = 0
 - b. Tentukan sumbu simetri $x = -\frac{b}{2a}$

c. Tentukan titik puncak P(x, y) dengan $x = -\frac{b}{2a}$ dan $y = -\frac{D}{4a}$, dengan nilai $D = b^2 - 4ac$

F. Latihan

1. Diantara fungsi-fungsi berikut, manakah yang merupakan fungsi injektif, surjektif, serta bijektif? Berilah penjelasannya!

- 2. Suatu fungsi $f: R \rightarrow R$ ditentukan oleh $f(x) = x^2 2$
 - a. Tentukan f(-1), f(a), dan f(1).
 - b. Tentukan a jika f(a) = 23
 - c. Anggota manakah dari daerah asal yang mempunyai peta 34?
- 3. Manakah yang merupakan fungsi injektif, surjektif, atau bijektif dari fungsi dengan domain {1, 2, 3, 4}, yang didefinisikan sebagai berikut?
 - a. $R = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ jika kodomainnya $\{1, 2, 3, 4, 5, 6, 7\}$
 - b. $R = \{(1, 1), (2, 2), (3, 3), (4, 1); jika kodomainnya \{1, 2, 3\}$
 - c. $R = \{(1, 4), (2, 3), (3, 2), (4, 1); jika kodomainnya \{1, 2, 3, 4\}\}$
 - d. $R = \{(1, 1), (2, 2), (3, 2), (4, 4); jika kodomainnya \{1, 2, 3, 4, 5, 6\}\}$
- 4. Tentukan persamaan garis yang melalui :
 - a. titik M(1, 2) dan N(-1, 6)
 - b. titik (-2, 3) dan membentuk sudut 45° terhadap sumbu x positif
- 5. Diketahui gradien garis g adalah ½ . Jika garis tersebut melalui titik A (2, 3) dan B(k, 6), tentukan nilai k!
- 6. Tentukan persamaan garis *I* yang melalui *R* (3, 1) dan tegak lurus garis *AB* dimana titik *A* (2, 3) dan *B* (6, 5) !

BAB V

MATRIKS

A. Pendahuluan

Matriks dalam matematika digunakan untuk menyatakan bilangan-bilangan ke dalam jajaran empat persegipanjang, terbentuknya suatu matriks dapat diperoleh melalui suatu sistem persamaan linier, demikian pula sebaliknya bahwa suatu sistem persamaan linier dapat diperoleh melalui suatu matriks. Dalam kehidupan sehari-hari penggunaan matriks dapat mempermudah penyajian suatu data dari tabel sekaligus operasi-operasi bilangan yang terkandung di dalamnya. Oleh karena itu, pemahaman mengenai matriks ini sangat penting untuk diperoleh.

Melalui bab ini, mahasiswa diharapkan memahami pengertian matriks, jenisjenis matriks, operasi dan sifat-sifat matriks, determinan, dan invers, serta dapat menggunakannya dalam pemecahan masalah.

B. Pengertian Matriks

Matriks adalah susunan bilangan-bilangan dalam bentuk baris dan kolom yang membentuk suatu persegipanjang. Penulisan susunan tersebut dibatasi oleh kurung siku atau kurung biasa. Bilangan-bilangan dalam matriks bisa berupa bilangan *real* ataupun bilangan kompleks. Namun dalam buku ini pembahasan matriks hanya dibatasi pada bilangan real, lihat contoh 5.1.

Contoh 5.1

$$\begin{bmatrix} 2 & -3 \\ 0 & 5 \\ 9 & 1 \end{bmatrix} \begin{pmatrix} 1/2 & 1.5 & 0 \\ 3 & 7 & 9 \end{pmatrix} \begin{bmatrix} 2 & 8 & -1 \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix}$$

Suatu matriks ditentukan oleh banyak baris (misal m baris) dan kolom (misal n kolom), sehingga suatu matriks yang terdiri dari $m \times n$ unsur (biasa disebut ordo $m \times n$). Notasi matriks menggunakan huruf kapital, sementara notasi untuk menyatakan unsur-unsurnya menggunakan huruf kecil. Seperti contoh 5.2.

Contoh 5.2

$$A = \begin{bmatrix} 5 & 1 & 8 \\ 3 & 2 & -4 \end{bmatrix} B = (a \quad b \quad c)$$

Matriks *A* di atas terdiri dari 3 baris dan 2 kolom yang memiliki 6 unsur, sedangkan matriks *B* terdiri dari 1 baris dan 3 kolom.

Jika A adalah suatu matriks, maka simbol untuk menyatakan unsur-unsur pada baris i dan unsur-unsur pada kolom j adalah a_{ij} . Sehingga matriks A pada contoh 5.2 dapat ditulis dengan

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Jadi bentuk umum suatu matriks A yang memiliki unsur-unsur pada baris ke *i* dan unsur-unsur pada kolom *j* adalah

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \text{ atau } A_{mxn} = (a_{ij})$$

Keterangan:

A : Matriks A

 A_{mxn} : Matriks A berordo mxn

 a_{12} : Unsur matriks A pada baris 1 kolom 2

 a_{mn} : Unsur matriks A pada baris m kolom n

 (a_{ij}) : Matriks A yang memiliki *i* baris dan *j* kolom

dengan i = 1, 2, 3,, m dan j = 1, 2, 3,, n

C. Jenis-Jenis Matriks

Pada dasarnya jenis suatu matriks tergantung dari ordo dan unsur-unsurnya, berikut dijelaskan beberapa jenis-jenis matriks.

 Matriks baris adalah matriks yang hanya terdiri dari satu baris, matriks ini disebut juga vektor baris, misal:

$$A = [1 -2 3]$$

2. Matriks kolom adalah matriks yang hanya terdiri dari satu kolom, matriks ini disebut juga vektor kolom, misal:

$$A = \begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix}$$

3. Matriks nol adalah matriks yang memiliki unsur nol semua, misal:

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4. Matriks negatif adalah matriks yang semua unsurnya dikalikan dengan bilangan-1 atau semua unsurenya merupakan bilangan negatif.

Matriks bujur sangkar adalah matriks yang memiliki ordo mxm atau memiliki banyak baris dan kolom yang sama, matriks ini disebut juga matriks persegi, misal:

$$A = \begin{bmatrix} 2 & 8 & 1 \\ 3 & 2 & 0 \\ 1 & 6 & 3 \end{bmatrix}$$

6. Matriks diagonal adalah matriks bujur sangkar yang memiliki semua unsur bilangan di atas dan di bawah diagonal ialah 0, matriks ini disimbolkan dengan huruf D, misal:

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

7. Matriks skalar adalah matriks diagonal yang memiliki unsur bilangan yang sama pada diagonalnya, misal:

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

8. Matriks identitas adalah matriks skalar yang setiap unsur bilangan pada diagonalnya ialah 1, matriks ini disebut juga matriks satuan, misal:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Suatu matriks apabila dikalikan dengan matriks satuan maka akan kembali pada dirinya sendiri, misal *A.I=I.A=A*

9. Matriks transpose adalah matriks yang diperoleh dengan menukarkan letak unsur-unsur pada baris menjadi letak unsur-unsur pada kolom, demikian pula sebaliknya. Simbol untuk menyatakan matriks transpose dari matriks A adalah A^T misal:

$$A = \begin{bmatrix} 8 & 2 \\ 9 & -8 \\ 1 & 3 \end{bmatrix} \rightarrow A^T = \begin{bmatrix} 8 & 9 & 1 \\ 2 & -8 & 3 \end{bmatrix}$$

 Matriks simetris adalah matriks bujur sangkar yang memiliki sifat bahwa transposenya sama dengan matriks semula, misal

$$A = A^T = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 3 \end{bmatrix}$$

11. Matriks singular adalah matriks bujur sangkar yang memiliki determinan 0 dan tidak memiliki invers. Sebaliknya apabila matriks bujur sangkar memiliki determinan ≠ 0 dan memiliki invers, maka disebut matriks non-singular.

59

D. Operasi dan Sifat-sifat Matriks

Sebelum membahas mengenai operasi dan sifat-sifat matriks, akan lebih baik dipahami terlebih dahulu tentang pengertian dari kesamaan matriks bahwa dua matriks dikatakan sama jika kedua matriks tersebut memiliki ukuran yang sama dan unsur-unsur yang bersesuaian pada kedua matriks tersebut sama. Perhatikan contoh 5.3 berikut.

Contoh 5.3

$$A = \begin{bmatrix} 1 & 3 \\ 7 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 3 \\ 7 & 5 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 3 \\ 9 & 5 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 3 & 7 \\ 7 & 5 & 9 \end{bmatrix}$$

Pada contoh 5.3 matriks A = B karena A dan B memiliki ukuran yang sama dan unsur-unsur yang bersesuaian pun sama. $A \neq C$ karena meski A dan C memiliki ukuran yang sama, namun ada unsur bersesuaian yang tidak sama yakni 7 dan 9. $A \neq D$ karena tidak memiliki ukuran yang sama.

Operasi-operasi pada matriks menyebabkan kekhasan atau sifat-sifat pada matriks yang dijelaskan sebagai berikut.

Penjumlahan matriks

Jika A dan B adalah sebarang dua matriks yang ukurannya sama, maka A + B merupakan matriks yang diperoleh dengan menambahkan unsur-unsur yang bersesuaian pada A dan B. Dalam hal ini artinya jika dua matriks atau lebih memiliki ukuran yang berbeda, maka matriks-matriks tersebut tidak dapat dijumlahkan.

Contoh 5.4

Perhatikan matriks-matriks

$$A = \begin{bmatrix} 2 & 0 & 7 \\ 1 & 4 & 8 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 5 & 6 \\ 2 & 3 & 3 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

Sehingga

$$A + B = \begin{bmatrix} 1 & 5 & 13 \\ 3 & 7 & 11 \end{bmatrix}$$

Namun A + C atau B + C tidak dapat ditentukan.

Sifat-sifat yang berlaku pada penjumlahan matriks adalah

a.
$$A + B = B + A$$
 (sifat komutatif)

b.
$$A + (B + C) = (A + B) + C$$
 (sifat asosiatif)

c.
$$A + 0 = 0 + A = A$$
 (memiliki matriks identitas yakni matriks 0)

2. Pengurangan matriks

Syarat operasi pengurangan sama dengan operasi penjumlahan yakni ukuran matriks yang dioperasikan harus sama. Jika A dan B adalah sebarang dua matriks yang ukurannya sama, maka A - B merupakan matriks yang diperoleh dengan mengurangkan unsur-unsur yang bersesuaian pada A dengan B.

Contoh 5.5

Pada contoh 5.5 ini, kita gunakan matriks-matriks pada contoh 5.4 Sehingga

$$A - B = \begin{bmatrix} 3 & -5 & 1 \\ -1 & 1 & 5 \end{bmatrix}$$

Namun A - Catau B - Ctidak dapat ditentukan.

Berbeda dengan sifat-sifat yang berlaku pada penjumlahan matriks, pada pengurangan matriks tidak berlaku sifat komutatif dan sifat asosiatif.

3. Perkalian skalar dengan matriks

Jika c adalah suatu skalar dan A adalah suatu matriks A, maka hasil kali cA adalah matriks yang diperoleh dengan mengalikan c pada setiap unsur A.

Contoh 5.6

Perhatikan matriks berikut

$$A = \begin{bmatrix} -3 & 0 \\ 1 & -7 \\ 6 & 5 \end{bmatrix}$$

Sehingga

$$3A = \begin{bmatrix} -9 & 0 \\ 3 & -21 \\ 18 & 15 \end{bmatrix} (-1)A = \begin{bmatrix} 3 & 0 \\ -1 & 7 \\ -6 & -5 \end{bmatrix}$$

Secara intuitif, pada contoh di atas dapat diperoleh informasi bahwa jika A adalah sebarang matriks maka -A menyatakan (-1)A. Serta, jika A dan B adalah dua matriks yang ukurannya sama, maka A - B didefinisikan sebagai A + (-B) = A + (-1)B.

Sehingga sifat-sifat yang berlaku pada perkalian skalar dengan matriks adalah

a.
$$(-1)A = -A$$

b.
$$A + (-B) = A + (-1)B$$

c.
$$A + (-A) = A - A = 0$$

d.
$$cA = Ac$$
 (sifat komutatif)

e.
$$c(A+B) = cA + cB$$
 (sifat distributif)

f.
$$c(A-B) = cA - cB$$

g.
$$(c+d)A = cA + dA$$

h.
$$(cd)A = c(dA)$$
 (sifat asosiatif)

4. Perkalian matriks dengan matriks

Jika A adalah matriks berordo mxn dan B adalah matriks berordo nxr, Hasil kali A dan B adalah suatu matriks (misal C) yang memiliki ordo mxr. Setiap elemen dari C (misal c_{ij}) diperoleh dari jumlah hasil kali unsur-unsur baris ke-i dari A dengan unsur-unsur kolom ke-i dari B.

Dari penjelasan tersebut diketahui bahwa syarat dua matriks dapat dikalikan adalah banyak kolom matriks pertama harus sama dengan banyak baris pada matriks kedua, sehingga hasil perkalian tersebut memiliki ordo baru yakni banyak baris matriks pertama kali banyak kolom matriks kedua.

Contoh 5.7

Perhatikan matriks berikut

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 2 & 4 \end{bmatrix} B = \begin{bmatrix} 2 & 0 & 3 \\ 4 & 1 & 0 \\ -1 & 2 & 5 \end{bmatrix}$$

Karena A adalah matriks berordo 2x3 dan B adalah matriks berordo 3 x 3, maka hasil perkalian A dan B adalah matriks berordo 2x3 (misal AB=C). Untuk mendapatkan unsur-unsur C (c_{ij}), berikut perhitungannya

$$c_{11} = (1.2) + (0.4) + (-1.-1) = 3$$

$$c_{12} = (1.0) + (0.1) + (-1.2) = -2$$

$$c_{13} = (1.3) + (0.0) + (-1.5) = -2$$

$$c_{21} = (3.2) + (2.4) + (4.-1) = 10$$

$$c_{22} = (3.0) + (2.1) + (4.2) = 10$$

$$c_{23} = (3.3) + (2.0) + (4.5) = 29$$

sehingga

$$A.B = C = \begin{bmatrix} 3 & -2 & -2 \\ 10 & 10 & 6 \end{bmatrix}$$

Hasil kali A dan B di atas menghasilkan C, sekarang yang menjadi pertanyaan adalah apakah hasil kali B dan A menghasilkan C? dengan kata lain apakah perkalian matriks dengan matriks bersifat komutatif?. Perhatikan bahwa B dan A tidak dapat dikalikan karena banyak kolom dari B tidak sama

dengan banyak baris dari A. Sehingga perkalian matriks dengan matriks tidak bersifat komutatif atau A. $B \neq B$. A.

Sifat-sifat yang berlaku pada perkalian matriks dengan matriks adalah sebagai berikut

a.
$$A(BC) = (AB)C$$

(sifat asosiatif)

b.
$$A(B+C) = AB + AC$$

(sifat distributif)

c.
$$(B+C)A = BA + CA$$

d.
$$A(B-C) = AB - AC$$

e.
$$(B-C)A = BA - CA$$

f.
$$AI = IA = A$$

(memiliki matriks identitas)

5. Perpangkatan matriks

Perpangkatan matriks A^n dengan n>1, $n \in bilangan$ asli hanya dapat dilakukan jika A adalah matriks bujur sangkar dan unsur-unsur hasil perpangkatan matriks bukan merupakan perpangkatan dari unsur-unsur A. Dengan demikian jika A matriks bujur sangkar maka berlaku $A^2 = A.A$; $A^3=A^2.A$ dan seterusnya.

Contoh 5.8

Diberikan A adalah matriks

$$A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$$
$$A^2 = A \cdot A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 20 \\ 5 & 13 \end{bmatrix}$$

Perhatikan bahwa unsur-unsur yang bersesuaian pada A^2 bukan hasil kuadrat dari unsur-unsur pada A.

E. Determinan

Suatu matriks yang memiliki determinan hanyalah matriks bujur sangkar, determinan dapat didefinisikan sebagai jumlah semua hasil kali elementer. Yang dimaksud dengan hasil kali elementer adalah setiap hasil kali *n* unsur dari matriks tersebut.

Misal matriks A merupakan matriks bujur sangkar, biasanya fungsi determinan disimbolkan dengan det, jumlah semua hasil kali elementer dari A disimbolkan det (A) atau sering juga disimbolkan |A|, sementara jumlah det (A) merupakan determinan A.

Jika A adalah matriks dengan

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Maka determinan A dengan menggunakan hasil kali elementer adalah

$$\det(A) = \det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Contoh 5.9

Diberikan A adalah matriks

$$A = \begin{bmatrix} 3 & 1 \\ 5 & 7 \end{bmatrix}$$

Sehingga

$$det(A) = 3.7 - 1.5$$

Jika A adalah matriks dengan

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Maka determinan A dengan menggunakan hasil kali elementer adalah

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{33} \\ \det(A) = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{33}) - (a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12}) \end{vmatrix}$$

Cara menentukan determinan matriks ordo 3x3 di atas sering kali disebut dengan metode **sarrus**, metode ini hanya dapat digunakan untuk matriks berordo 3x3. Cara kerja metode ini adalah menempatkan dua kolom pertama dari determinan awal, lalu menjumlahkan hasil kali unsur pada tiap diagonal dari kiri atas ke kanan bawah yang dikurangi dengan jumlah hasil kali unsur pada tiap diagonal dari kiri bawah ke kanan atas.

Contoh 5.10

Diberikan A adalah matriks, tentukan det (A) menggunakan metode sarrus

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$
$$\det(A) = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 6 \\ 2 & -4 \end{bmatrix}$$
$$\det(A) = (0 + 12 + 4) - (-12 + (-36) + 0) = 64$$

Determinan matriks berordo 4x4 atau lebih dapat dihitung melalui ekspansi kofaktor, sebetulnya cara ini dapat digunakan untuk mencari determinan pada semua matriks bujur sangkar yang memiliki berordo berapapun termasuk ordo 2x2

dan 3x3. Namun secara umum, cara seperti pada contoh 5.9 dan contoh 5.10 sebelumnya banyak dipandang lebih mudah dan efektif untuk digunakan.

Sebelum menggunakan ekspansi kofaktor, kita harus memahami terlebih dahulu minor dan kofaktor suatu matriks. Minor unsur a_{ij} yang dinotasikan dengan M_{ij} adalah determinan sub matriks setelah menghilangkan baris ke i dan kolom j dari A. Sementara itu kofaktor unsur a_{ij} adalah bilangan $(-1)^{i+j}M_{ij}$ yang dinotasikan dengan C_{ij} .

Contoh 5.11

Diberikan

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

Minor unsur a_{12} adalah

$$M_{12} = \begin{vmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix} = -6$$

Sedangkan kofaktor a_{12} adalah

$$C_{12} = (-1)^{1+2} M_{12} = 6$$

Perhatikan bahwa setiap kali mencari C_{ij} , maka selalu mencari M_{ij} dan yang membedakan nilanya adalah tanda + atau tanda -. Hal ini dikarenakan pangkat i dan j dari perpangkatan $(-1)^{i+j}$, oleh karena itu apabila dibuat suatu pola pangkat bilangan ganjil atau genap sebagai tanda untuk mengisi unsur-unsur pada matriks. Maka dapat dibuat pola sebagai berikut

Mencari deteminan dengan menggunakan ekspansi kofaktor dilakukan dengan cara menambahkan setiap hasil kali dari unsur-unsur suatu baris dengan kofaktor-kofaktornya. Misal A adalah matriks yang berukuran mxm serta $1 \le i \le m$ dan $1 \le j \le m$, maka berlaku

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{im}C_{im}$$
(ekspansi kofaktor sepanjang baris *i*)

dan

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{mj}C_{mj}$$
(ekspansi kofaktor sepanjang kolom *j*)

Contoh 5.12

Dengan menggunakan A pada contoh 5.11, hitunglah det(A).

Misal det (A) dicari dengan menggunakan ekspansi kofaktor sepanjang kolom 3.

$$\det(A) = \begin{vmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{vmatrix} = -1 \begin{vmatrix} 1 & 6 \\ 2 & -4 \end{vmatrix} - (3) \begin{vmatrix} 3 & 2 \\ 2 & -4 \end{vmatrix} + 0 \begin{vmatrix} 3 & 2 \\ 1 & 6 \end{vmatrix}$$
$$= -1(-16) - 3(-16)$$
$$= 64$$

Perhatikan bahwa nilai det (A) ini sama dengan nilai det (A) pada contoh 5.10. Manakah penyelesaian yang lebih mudah dan sederhana? Tentu hal ini diserahkan pada pembaca untuk memilihnya sebagai suatu strategi. Menurut anda mengapa pada contoh di atas menggunakan ekspansi kofaktor pada kolom ke 3? Bukan pada kolom yang lain atau suatu baris?. Andaikan kolom yang dipilih bukan ke-3, maka perhitungannya akan sedikit lebih lama. Memang strategi dalam memilih ekspansi "kolom atau baris" atau "urutan kolom atau urutan baris" adalah dengan cara memilih kolom atau baris yang memiliki bilangan nol paling banyak.

F. Invers Matriks

Invers matriks dari A adalah matriks B sehingga AB = BA = I, hal ini berlaku jika A adalah matriks bujur sangkar dan A dapat dibalik (*invertible*). Notasi untuk menyatakan invers matriks A adalah A^{-1} . Sementara untuk mencari A^{-1} dapat menggunakan rumus

$$A^{-1} = \frac{1}{\det(A)}(adj(A)), \det(A) \neq 0$$

Keterangan:

adj(A) = adjoin matriks A

adj(A) diperoleh dari mentranspose matriks kofaktor (matriks yang terbentuk melalui kofaktor-kofaktor yang bersesuaian)

Contoh 5.13

Apabila A adalah matriks berordo 2x2 dan $ad - bc \neq 0$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Bagaimanakah A^{-1} yang terbentuk.

Sebelum mencari A^{-1} kita cari terlebuh dahulu det(A) dan adj(A)

$$det(A) = ad - bc$$

$$C_{11} = d$$
, $C_{12} = -c$, $C_{21} = -b$, $C_{22} = a$, sehingga matriks kofaktor $C = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$

$$\operatorname{Jadi} adj(A) = C^T = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Maka
$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Hasil akhir di atas dapat menjadi sebuah rumus praktis yang digunakan untuk mendapatkan invers suatu matriks yang berordo 2x2.

Contoh 5.14

Dengan menggunakan A pada contoh 5.11, berapakah A^{-1}

Sebelumnya telah diperoleh bahwa det(A) = 64

Dengan menggunakan rumus $C_{ij} = (-1)^{i+j} M_{ij}$ diperoleh

$$C_{11} = 12$$
 $C_{12} = 6$ $C_{13} = -16$

$$C_{21} = 4$$
 $C_{22} = 2$ $C_{23} = 16$

$$C_{31} = 12$$
 $C_{32} = -10$ $C_{33} = 16$

Sehingga matriks kofaktor

$$C = \begin{bmatrix} 12 & 6 & -16 \\ 4 & 2 & 16 \\ 12 & -10 & 16 \end{bmatrix}$$
$$adj(A) = C^{T} = \begin{bmatrix} 12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16 \end{bmatrix}$$

Jadi

$$A^{-1} = \frac{1}{64} \begin{bmatrix} 12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{16} & \frac{1}{16} & \frac{3}{16} \\ \frac{3}{32} & \frac{1}{32} & -\frac{5}{32} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

G. Rangkuman

- 1. Matriks adalah susunan bilangan-bilangan dalam bentuk baris dan kolom yang membentuk suatu persegipanjang.
- 2. Matriks yang terdiri dari *m* x *n* unsur (biasa disebut ordo *m*x*n*) dengan menyatakan banyak baris dan n menyatakan banyak kolom.
- 3. Jika *A* adalah suatu matriks yang memiliki unsur-unsur pada baris ke *i* dan unsur-unsur pada baris *j*, maka bentuk umum matriks *A* dituliskan dengan

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ atau } A_{mxn} = (a_{ij})$$

Keterangan:

A : Matriks A

 A_{mxn} : Matriks A berordo mxn

 a_{12} : Unsur matriks A pada baris 1 kolom 2

 a_{mn} : Unsur matriks A pada baris m kolom n

 (a_{ij}) : Matriks A yang memiliki *i* baris dan *j* kolom

dengan i = 1, 2, 3,, m dan j = 1, 2, 3,, n

- 4. Jenis-jenis matriks diantaranya adalah matriks baris, matriks kolom, matriks nol, matriks negatif, matriks bujur sangkar, matriks diagonal, matriks skalar, matriks identitas, matriks transpose, matriks simetris, dan matriks singular.
- 5. Dua matriks dikatakan sama jika kedua matriks tersebut memiliki ukuran yang sama dan unsur-unsur yang bersesuaian pada kedua matriks tersebut sama.
- 6. Operasi Penjumlahan Matriks

Jika A dan B adalah sebarang dua matriks yang ukurannya sama, maka A + B merupakan matriks yang diperoleh dengan menambahkan unsur-unsur yang bersesuaian pada A dan B.

7. Sifat-sifat yang berlaku pada penjumlahan matriks adalah

a. A + B = B + A (sifat komutatif)

b. A + (B + C) = (A + B) + C (sifat asosiatif)

c. A + 0 = 0 + A = A (memiliki matriks identitas yakni matriks 0)

8. Operasi Pengurangan Matriks

Jika A dan B adalah sebarang dua matriks yang ukurannya sama, maka A - B merupakan matriks yang diperoleh dengan mengurangkan unsur-unsur yang bersesuaian pada A dengan B.

- 9. Pada operasi pengurangan tidak berlaku sifat komutatif dan sifat asosiatif.
- 10. Perkalian skalar dengan matriks

Jika *c* adalah suatu skalar dan *A* adalah suatu matriks *A*, maka hasil kali *cA* adalah matriks yang diperoleh dengan mengalikan *c* pada setiap unsur *A*.

11. Sifat-sifat yang berlaku pada perkalian skalar dengan matriks adalah

a.
$$(-1)A = -A$$

b.
$$A + (-B) = A + (-1)B$$

C.
$$A + (-A) = A - A = 0$$

d.
$$cA = Ac$$
 (sifat komutatif)

e.
$$c(A + B) = cA + cB$$
 (sifat distributif)

f.
$$c(A-B) = cA - cB$$

q.
$$(c+d)A = cA + dA$$

h.
$$(cd)A = c(dA)$$
 (sifat asosiatif)

12. Perkalian matriks dengan matriks

Jika A adalah matriks berordo mxn dan B adalah matriks berordo nxr, Hasil kali A dan B adalah suatu matriks (misal C) yang memiliki ordo mxr. Setiap elemen dari C (misal c_{ij}) diperoleh dari jumlah hasil kali unsur-unsur baris ke-i dari A dengan unsur-unsur kolom ke-j dari B.

13. Sifat-sifat yang berlaku pada perkalian matriks dengan matriks adalah

a.
$$A(BC) = (AB)C$$

(sifat asosiatif)

b.
$$A(B+C) = AB + AC$$

(sifat distributif)

c.
$$(B+C)A = BA + CA$$

d.
$$A(B-C) = AB - AC$$

e.
$$(B-C)A = BA - CA$$

f.
$$AI = IA = A$$

(memiliki matriks identitas)

14. Perpangkatan matriks

Jika A matriks bujur sangkar maka berlaku $A^2 = A.A$; $A^3 = A^2.A$ dan seterusnya

15. Misal matriks A merupakan matriks bujur sangkar, biasanya fungsi determinan disimbolkan dengan det, jumlah semua hasil kali elementer dari A disimbolkan

- det (A) atau sering juga disimbolkan |A|, sementara jumlah det (A) merupakan determinan A.
- 16. Determinan matriks A berordo 2x2, dengan menggunakan hasil kali elementer adalah $\det(A) = \det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} a_{12}a_{21}$
- 17. Determinan matriks A berordo 3x3, dengan menggunakan hasil kali elementer (metode sarrus) adalah

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{33} & a_{34} & a_{33} \end{vmatrix}$$

$$\det(A) = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{33}) - (a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12})$$

- 18. Minor unsur a_{ij} yang dinotasikan dengan M_{ij} adalah determinan sub matriks setelah menghilangkan baris ke i dan kolom j dari A. Sementara itu kofaktor unsur a_{ij} adalah bilangan $(-1)^{i+j}M_{ij}$ yang dinotasikan dengan C_{ij} .
- 19. Misal A adalah matriks yang berukuran mxm serta $1 \le i \le m$ dan $1 \le j \le m$, maka berlaku

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{im}C_{im}$$
(ekspansi kofaktor sepanjang baris *i*)

dan

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{mj}C_{mj}$$
(ekspansi kofaktor sepanjang kolom *j*)

20. Invers matriks dari A adalah matriks B sehingga AB = BA = I, hal ini berlaku jika A adalah matriks bujur sangkar dan A dapat dibalik (*invertible*). Notasi untuk menyatakan invers matriks A adalah A^{-1} . Sementara untuk mencari A^{-1} dapat menggunakan rumus

$$A^{-1} = \frac{1}{\det(A)}(adj(A)), \det(A) \neq 0$$

Keterangan:

adj(A) = adjoin matriks A

adj(A) diperoleh dari mentranspose matriks kofaktor (matriks yang terbentuk melalui kofaktor-kofaktor yang bersesuaian)

H. Latihan

1. Diberikan matriks-matriks

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 4 & 3 & 1 \\ 0 & -4 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 6 & 1 \\ -3 & 2 \end{bmatrix}$$
$$D = \begin{bmatrix} 3 & 0 \\ 2 & 3 \end{bmatrix} E = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 6 & 2 \\ -1 & 1 & 0 \end{bmatrix} \quad F = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 6 & 2 \\ -1 & 1 & 0 \end{bmatrix}$$

Hitunglah

a. AD c. F+E e. -4B g. B^T-A^2

b. *BE*

d. E - F f. $2D + C^2$ h. (BE)F

2. Dengan menggunakan skalar s = 2 dan matriks-matriks pada nomor 1, tunjukkan hubungan-hubungan berikut

a. $(kD)^t = kD^t$

d. $(CD)^t = D^t C^t$

b. $(E+F)^t = E^t + F^t$ e. $(A^t)^t = A^2$

- 3. Apabila a_{ij} merupakan unsur pada baris i kolom j dari matriks A, tentukan di baris dan kolom mana a_{ij} akan muncul pada matriks A^t ?
- 4. Dengan menggunakan matriks-matriks pada nomor 1, carilah
 - a. det(C) det(D)
 - b. det(E) + det(F)
- 5. Dengan menggunakan matriks-matriks pada nomor 1, buktikan bahwa hubungan-hubungan $(CD)^{-1} = D^{-1}C^{-1}$ dan $(EF)^{-1} = F^{-1}E^{-1}$ adalah berikut benar?. Apakah hubungan tersebut berlaku secara umum untuk sebarang dua matriks yang berukuran sama?. Jelaskan pendapat anda.
- 6. Misal A adalah matriks yang dapat dibalik dan invers dari 7A adalah

$$\begin{bmatrix} -1 & 2 \\ 4 & -7 \end{bmatrix}$$

Tentukan, matriks A

7. Melalui ekspansi kofaktor, hitunglah determinan dari matriks-matriks berikut

$$K = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ -1 & 5 & 7 & 0 \\ 2 & -3 & 9 & -4 \end{bmatrix} \quad K = \begin{bmatrix} -2 & 2 & 5 & 1 \\ 0 & 1 & 4 & 8 \\ 3 & 3 & 0 & 9 \\ 1 & -5 & -2 & 0 \end{bmatrix}$$

8. Identifikasilah matriks dari

$$\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

71