Limit of a Function

What is the behavior of a function f(x) as x gets arbitrarily close to some value c?

In particular, does f(x) get arbitrarily close to some value L as x gets arbitrarily close to c from both directions (left and right), regardless of whether or not c is in the domain of f(x)? If so, then we call L the *limit* of f(x) as x approaches c:

$$\lim_{x \to c} f(x) = L$$

This is essentially the book definition; however, we need something a little more analytical to see what this really means:

1. Assume that we know that f(x) = L.

2. Assume $\epsilon > 0$:

3. Select some $\delta>0$ so that for all $|x-c|<\delta$ all the f(x) values are contained in the resulting box:

Note that as $\epsilon \to 0$, this forces $\delta \to 0$ and the box converges on the limit L. This happens regardless of whether x=c is in the domain of f(x) or not, since $\delta>0$ and thus $x\neq c$.

The functions that we are going to look at are fairly well-behaved and so finding limits by visualization and a few simple rules will be sufficient.

Examples

Let's start with some visual examples: p549 #1-4.

But where might there fail to be some limit of a function as x approaches some point c?

1. Gaps

$$f(x) = \frac{x}{|x|}, c = 0$$

2. Breaks

$$f(x) = \frac{1}{x}, c = 0$$

You can always find an ϵ for which no suitable δ exists.

Examples

p552 #66-70.

Now, lets see how to analytically find limits for some of our basic functions (Section 2.5 p215).