SISTEMI LINEARI E MATRICI INVERSE

Osservazione. ripassare la definizione di sistema lineare e di soluzione di un sistema. Sapere inoltre il Teorema di Rouché-Capelli.

ESERCIZIO 1 Passare dalla scrittura estesa di un sistema alla forma matriciale e viceversa.

ESERCIZIO 2 Verificare se la terna (2,1,1) è soluzione del sistema lineare

$$\begin{cases} x - y + z = 2\\ x + 2y - z = 3 \end{cases}$$

Trovare poi tutte le soluzioni del sistema.

Per trovare tutte le soluzioni utilizzare due metodi: (a) per riduzione; (b) scrivendo le soluzioni come somma di quella particolare più le soluzioni dell'omogeneo associato.

ESERCIZIO 3 Discutere i seguenti sistemi lineari (al variare del parametro reale, dove presente) e risolverli per i valori del parametro indicati.

1. AX = B dove

$$(A|B) = \left(\begin{array}{cccc|ccc} k & -k & 0 & 1 & | & 0 \\ 1 & -2 & -1 & 0 & | & 0 \\ 0 & 1 & k & 1 & | & 0 \end{array}\right).$$

Risolverlo per un particolare valore di k, per il quale il sistema sia compatibile.

2. AX = B dove

$$(A|B) = \begin{pmatrix} k & 1 & | & k \\ 0 & -k & | & 0 \\ k+1 & 0 & | & 3 \end{pmatrix}.$$

Risolverlo per k=0.

3. AX = B dove

$$(A|B) = \begin{pmatrix} 1 & 1 & k & | & -k \\ k+1 & 1 & -1 & | & 0 \\ k & 0 & 1 & | & -2 \end{pmatrix}.$$

Risolverlo per k = 1, riducendo fortemente.

ESERCIZIO 4 Risolvere il seguente sistema matriciale AX = B con:

$$(A|B) = \left(\begin{array}{ccc|c} 1 & 3 & | & 0 & 1 \\ -4 & 5 & | & -1 & 0 \end{array}\right).$$

ESERCIZIO 5 Discutere i seguenti sistemi matriciali AX = B:

1.

$$(A|B) = \left(\begin{array}{ccc|ccc} 1 & 2 & t-1 & | & 0 & 1 & 0 \\ t/4 & 1 & 0 & | & 0 & 0 & 0 \end{array}\right)$$

(risolverlo per t = 1);

2.

$$(A|B) = \left(\begin{array}{ccc|c} 1 & t & | & 0 & 1 \\ 1 & 2 & | & 3 & 4 \end{array}\right)$$

(risolverlo per t = 3).

 ${\bf ESERCIZIO~6}$ Calcolare, con il metodo di riduzione, l'inversa delle seguenti matrici:

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{pmatrix}.$$

ESERCIZIO 7 QUIZ

Q1. Sia $A \in \mathbb{R}^{n,n}$ e $B \in \mathbb{R}^{n,1}$. Supponiamo che il sistema AX = B abbia due soluzioni distinte $X_1, X_2 \in \mathbb{R}^{n,1}$. Quale delle seguenti affermazioni è vera?

- 1. Il sistema ha infinite soluzioni;
- 2. La matrice A è invertibile;
- 3. Il sistema non ha altre soluzioni;
- 4. $X_1 X_2$ è soluzione del sistema.

Q2. Sia data la matrice

$$A = \left(\begin{array}{cccc} 1 & 2 & -3 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & h & 0 & 0 \end{array}\right).$$

Quale delle seguenti affermazioni è vera?

- 1. $\exists h, B \text{ tale che } AX = B \text{ non ha soluzioni;}$
- 2. A_h è invertibile per ogni h;
- 3. se h = 0, AX = B ha infinite soluzioni, $\forall B \in \mathbb{R}^{3,1}$;
- 4. $\exists h$ tale che AX = 0 ha solo la soluzione nulla.

Osservate che la matrice è già ridotta.

Osservazione sui determinanti. Per semplificare i conti sul determinante, ricordarsi come si comporta il determinante con le operazioni elementari:

- 1. $A \to A' \text{ con } R_i \leftrightarrow R_i \text{ allora } \det(A') = -\det(A);$
- 2. $A \to A'$ con $R_i \leftrightarrow hR_i, h \neq 0$ allora $det(A') = h \det(A)$;
- 3. $A \to A' \operatorname{con} R_i \leftrightarrow R_i + hR_j$ allora $\det(A) = \det(A')$.

Conseguenze:

- 1. Se nella riduzione applico solo la terza operazione elementare, il determinante non cambia.
- 2. Si possono dedurre i valori di det(kA), det(-A).
- 3. $\exists A^{-1} \Leftrightarrow \det(A) \neq 0$; infatti con il metodo di riduzione si trova che una fortemente ridotta di $A \in I$. I loro determinanti possono solo differenziarsi per una costante moltiplicativa diversa da 0.

ESERCIZIO 8 Stabilire, anche al variare del parametro reale dove presente, se le seguenti matrici sono invertibili:

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 0 \\ 3 & 4 & 5 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix}; \quad C = \begin{pmatrix} t & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 1 & t \end{pmatrix}.$$

Calcolare poi l'inversa di almeno una di queste con il metodo dei complementi algebrici.

Domande per una discussione su determinanti e inverse.

1. In generale, conoscendo A^{-1} e B^{-1} si possono dedurre $(AB)^{-1}, (A+B)^{-1}, (^tA)^{-1}$?

2. Esistono eventuali relazioni tra: det(A), det(B) e det(A+B) o det(AB)?(Ricordarsi il Teorema di Binet).

ESERCIZIO 9 Risolvere con il metodo di Cramer il sistema AX = B, dove A è la matrice dell'es. 8 e ${}^tB = (1, 2, 0)$.

ESERCIZIO 10 (T.E. 17/02/2009)

Siano

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

- 1. Risolvere il sistema omogeneo AX = 0 ed esprimere le soluzioni in termini di un parametro libero.
- 2. Dati

$$C_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 4 \end{pmatrix}, \quad C_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 3 \end{pmatrix}, \quad C_3 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 2 \end{pmatrix}, \quad C_4 = \begin{pmatrix} 0 \\ 4 \\ 1 \\ 1 \end{pmatrix}$$

verificare che $AX = x_1C_1 + x_2C_2 + x_3C_3 + x_4C_4$.

3. Determinare le soluzioni di $AX = C_4$.

Utilizzare il fatto che sono note le soluzioni dell'omogeneo associato per (i) ed è ovvia la soluzione particolare $^t(0,0,0,1)$ per (ii).

ESERCIZIO 11 QUIZ

Q1. Sia $A \in \mathbb{R}^{m,n}$ la matrice dei coefficienti di un sistema lineare omogeneo avente soluzioni non nulle. Quale affermazione è vera?

- 1. Per qualche $B \in \mathbb{R}^{n,1}$ il sistema lineare AX = B non è risolubile;
- 2. la matrice A è invertibile;
- 3. per ogni $B \in \mathbb{R}^{n,1}$, il sistema lineare AX = B ha infinite soluzioni;
- 4. per qualche $B \in \mathbb{R}^{n,1}$, il sistema lineare AX = B ha una sola soluzione.

Q2. Siano $A \in \mathbb{R}^{4,4}, B \in \mathbb{R}^{4,1}$ e supponiamo che il sistema AX = B sia incompatibile. Quale delle seguenti affermazioni è vera?

- 1. Il rango di A è minore di 4;
- 2. il rango di A è maggiore di 4;
- 3. il sistema AX=0 è incompatibile;
- 4. il rango di A è 4.