# OPERASI MATRIKS DAN TRANSPOSE MATRIKS

#### **OBJEKTIF:**

- Mahasiswa Mampu Menghitung Penjumlahan dan Pengurangan Matriks
- Mahasiswa Mampu Mengetahui Sifat Sifat Penjumlahan dan Pengurangan Matriks
- Mahasiswa Mampu Mengetahui Pengertian Perkalian dan Transpose Matriks
- 4. Mahasiswa Mampu Menghitung Perkalian dan Transpose Matriks

# 1. Operasi – Operasi Matriks

Operasi-operasi matrik merupakan operasi aljabar dasar yang sama halnya dengan operasi aljabar pada bilangan. Namun, ada beberapa sifat aljabar yang perlu diketahui kaitannya dengan operasi matrik, berikut ini penjelasannya.

## A. Penjumlahan dan Pengurangan Matriks

Penjumlahan serta pengurangan dalam matriks hanya dapat dilakukan apabila kedua matriks mempunyai ukuran dan tipe yang sama.

Misal,  $A = [a_{ij}]$  dan  $B = [b_{ij}]$  dua buah matrik dengan ukuran yang sama misalkan matrik m x n. maka, penjumlahan dan pengurangan matrik A dan B dituliskan sebagai berikut:

$$[c_{ij}] = [a_{ij}] \pm [b_{ij}].$$

Dimana:

C = matrik hasil penjumlahan A dan B

$$i = 1, 2, 3, \dots, m.$$

$$j = 1, 2, 3, \dots, n.$$

Sebagai catatan bahwa jika dua buah matrik mempunyai ukuran yang berbeda, maka elemen yang bersesuaian tidak dapat ditemukan, dalam permasalahan ini penjumlahan matrik tidak dapat didefinisikan. Penjumlahan matrik terdefinisi jika A dan B mempunyai jumlah baris dan kolom yang sama. Dalam permasalahan ini, matrik A dan B dapat dikatakan "comformable in addition" atau saling bersesuaian.

Beberapa hukum dasar dasar dari penjumlahan dan pengurangan adalah sebagai berikut:

1. Komutatif

$$A + B = B + A$$

$$E-F=E-F$$

2. Asosiatif

$$A + (B + C) = (A + B) + C$$

Bentuk umum dari penjumlahan atau pengurangan matriks adalah sebagai berikut:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \text{ dan } B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

Hasil

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

Dengan:

$$\mathsf{C} = \mathsf{A} + \mathsf{B} \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + a_{23} \end{bmatrix}$$

Contoh:

Diketahui matrik A =  $\begin{bmatrix} 2 & -7 & 4 \\ 1 & 5 & -3 \end{bmatrix}$  dan B =  $\begin{bmatrix} -6 & 2 & 1 \\ 3 & -4 & 6 \end{bmatrix}$ . Maka penjumlahan dan pengurangan matriks tersebut adalah

$$A+B = \begin{bmatrix} 2 & -7 & 4 \\ 1 & 5 & -3 \end{bmatrix} + \begin{bmatrix} -6 & 2 & 1 \\ 3 & -4 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 2+(-6) & (-7)+2 & 4+1 \\ 1+3 & 5+(-4) & (-3)+6 \end{bmatrix}$$

$$= \begin{bmatrix} -4 & -5 & 5 \\ 4 & 1 & 3 \end{bmatrix}$$

$$A-B = \begin{bmatrix} 2 & -7 & 4 \\ 1 & 5 & -3 \end{bmatrix} - \begin{bmatrix} -6 & 2 & 1 \\ 3 & -4 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 2-(-6) & -7-2 & 4-1 \\ 1-3 & 5-(-4) & -3-6 \end{bmatrix}$$

$$= \begin{bmatrix} 2+6 & -7-2 & 4-1 \\ 1-3 & 5+4 & -3-6 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & -9 & 3 \\ -2 & 9 & -9 \end{bmatrix}$$

#### **RANGKUMAN**

1. Menentukan penjumlahan matriks menggunakan rumus:

$$A_{mxn} + B_{mxn} = C_{mxn}$$
dimana  $c_{ij} = a_{ij} + b_{ij}$ 

2. Menentukan pengurangan matriks menggunakan rumus:

$$Am \times n - B_{mxn} = D_{mxn}$$
dimana  $d_{ij} = a_{ij} - b_{ij}$ 

### **TUNTUNAN LATIHAN**

Berikut ini diberikan perhitungan operasi dasar matriks pada software Scilab dalam penyelesaian ,dimana diketahui :

Matriks A = 
$$\begin{bmatrix} 5 & 6 & 4 \\ 7 & 3 & 1 \end{bmatrix}$$
 dan Matriks B =  $\begin{bmatrix} 4 & 1 & 8 \\ 2 & 9 & 5 \end{bmatrix}$ 

a) Mendefinisikan matriks A dan B ke dalam Scilab. Caranya mengetikkan langsung pada lembar kerja (console), yaitu:

```
A=[5 6 4; 7 3 1] lalu tekan enter
B=[4 1 8; 2 9 5] lalu tekan enter
```

```
Startup execution:
    loading initial environment

--> A = [5 6 4; 7 3 1]
A =

    5. 6. 4.
    7. 3. 1.

--> B = [4 1 8; 2 9 5]
B =

    4. 1. 8.
    2. 9. 5.
```

Gambar 2.1 Penulisan pada scilab

b) Operasi penjumlahan dan pengurangan matriks diselesaikan dengan langsung menggunakan operator yang ada pada Scilab dimana :

```
" + " untuk operasi penjumlahan
```

" - " untuk operasi pengurangan

```
Scalab 6.1.0 Console

Startup execution:
loading initial environment

--> A = [5 6 4; 7 3 1]
A =

5. 6. 4.
7. 3. 1.

--> B = [4 1 8; 2 9 5]
B =

4. 1. 8.
2. 9. 5.

--> A+B
ans =

9. 7. 12.
9. 12. 6.

--> A-B
ans =

1. 5. -4.
5. -6. -4.
```

Gambar 2.2 Contoh Penulisan penambahan dan pengurangan pada scilab

#### **LATIHAN**

1. Diketahui matriks  $A_{3x2}\begin{bmatrix} 4 & 5 \\ 2 & 7 \\ 6 & 1 \end{bmatrix} \operatorname{dan} B_{3x2}\begin{bmatrix} 7 & 6 \\ 6 & 8 \\ 9 & 2 \end{bmatrix}$ 

Tentukan:

- (a) B-A
- (b) B+A

2. Tentukan Pengurangan matriks A = 
$$\begin{bmatrix} 9 & 2 & -3 \\ 3 & 4 & 1 \\ 6 & 5 & 2 \end{bmatrix}$$
 dengan matriks B =

$$\begin{bmatrix} 3 & 9 & 3 \\ 4 & 4 & 2 \\ 8 & 3 & 5 \end{bmatrix}$$

### B. Perkalian Dengan Skalar

Ada dua jenis perkalian matriks yaitu perkalian antara matriks A dengan skalar g, dan perkalian antara matriks A dengan B.

 Perkalian antara matriks A dengan skalar g akan menghasilkan matriks
 C yang elemennya merupakan perkalian dari setiap elemen pada matriks A dengan g.

$$\mathsf{C} = \mathsf{g} \cdot \mathsf{A} = \begin{bmatrix} g \cdot a_{11} & g \cdot a_{12} & g \cdot a_{13} \\ g \cdot a_{21} & g \cdot a_{22} & g \cdot a_{23} \\ g \cdot a_{31} & g \cdot a_{32} & g \cdot a_{33} \end{bmatrix}$$

2. Perkalian antara matriks A yang mempunyai ukuran m x n dan matriks B yang mempunyai ukuran n x l akan menghasilkan matriks C dengan ukuran m x l. perkalian antara dua matriks dapat diopersikan jika ukuran interior matriksnya sama.



#### Catatan:

Beberapa hukum pada penjumlahan dan perkalian skalar. Jika A,, matriks-matriks berukuran sama, dan  $\lambda$  skalar, maka berlaku :

- a. A+B=B+A (Sifat Komutatif) b. (A+B)+C=A+(B+C) (Sifat Asosiatif) c.  $\lambda(A+B)=\lambda A+\lambda B$  (Sifat Distributif)
- d. A+(-1)A=0
- e. Selalu ada matriks D, sedemikian sehingga A+D=B

#### C. Perkalian Dua Buah Matriks

Perkalian matriks dengan matriks hanya dapat terjadi apabila jumlah kolom pada matriks pertama sama dengan jumlah baris matriks kedua. Misalkan matriks A berukuran  $m \times n$  dan B berukuran  $n \times p$ , maka hasil perkalian keduanya E = AB dari matriks A = [aij] dan B = [bij] adalah matriks E berukuran  $m \times p$ , dimana elemen pada matriks E dihitung menggunakan persamaan (2.2).

$$e_{ij} = a_{i1} b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{in}$$
 (2.2)  
 $i = 1,2,\dots,m; j=1,2,\dots,p$ 

Catatan:

Beberapa hukum pada perkalian matriks. Jika  $A_{,,}$  matriks-matriks yang memenuhi syarat-syarat perkalian matriks, maka berlaku :

a. (B+C)=AB+AC; (B+C)A=BA+CA (Sifat Distributif) b. (BC)=(AB)C (Sifat Asosiatif) c.  $AB\neq BA$  (Tidak Komutatif) d. Jika AB=AC belum tentu B=C

# D. Transpose Matriks

Transpose dari matriks A yang dinotasikan dengan A' atau AT merupakan matriks yang diperoleh dengan mengubah letak elemen pada setiap baris menjadi elemen kolom matriks. Baris pertama matriks A menjadi kolom pertama dari matriks A' dan baris kedua matriks A menjadi kolom kedua dari matriks A'. Misalkan  $A = \begin{pmatrix} a_{ij} \end{pmatrix}$  berukuran  $(m \times n)$  maka transpose dari A adalah matriks A' berukuran  $(n \times m)$  dengan  $A' = \begin{pmatrix} a_{ji} \end{pmatrix}$ 

#### Catatan:

Beberapa sifat pada matriks transpose yaitu:

- a. (A+B)T=AT+BT
- b. (AT)T = A
- c.  $\lambda(AT) = (\lambda A)T$
- d. (AB)T=BTAT

Contoh:

Diketahui matriks A = 
$$\begin{bmatrix} 2 & -7 & 4 \\ 1 & 5 & -3 \end{bmatrix}$$
 dan B =  $\begin{bmatrix} -6 & 2 & 1 \\ 3 & -4 & 6 \end{bmatrix}$ 

Tentukan:

a. 
$$3A - 2B$$

b. AB'

## Penyelesaian

a. 
$$3A - 2B$$

$$3A - 2B = \begin{bmatrix} 3.2 & 3.(-7) & 3.4 \\ 3.1 & 3.5 & 3.(-3) \end{bmatrix} - \begin{bmatrix} 2.(-6) & 2.2 & 2.1 \\ 2.3 & 2.(-4) & 2.6 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -21 & 12 \\ 3 & 15 & -9 \end{bmatrix} - \begin{bmatrix} -12 & 4 & 2 \\ 6 & -8 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 6 - (-12) & (-21) - 4 & 12 - 2 \\ 3 - 6 & 15 - (-8) & -9 - 12 \end{bmatrix}$$

$$= \begin{bmatrix} 6 + 12 & (-21) - 4 & 12 - 2 \\ 3 - 6 & 15 + 8 & -9 - 12 \end{bmatrix}$$

$$= \begin{bmatrix} 18 & -25 & 10 \\ -3 & 23 & -21 \end{bmatrix}$$

#### b. B'A

$$\mathsf{B'} = \begin{bmatrix} -6 & 2 & 1 \\ 3 & -4 & 6 \end{bmatrix}, = \begin{bmatrix} -6 & 3 \\ 2 & -4 \\ 1 & 6 \end{bmatrix}$$

$$B'A = \begin{bmatrix} -6 & 3 \\ 2 & -4 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} 2 & -7 & 4 \\ 1 & 5 & -3 \end{bmatrix}$$

$$\mathsf{B'A} = \begin{bmatrix} (-6.2) + (3.1) & (-6.-7) + (3.5) & (-6.4) + (3.-3) \\ (2.2) + (-4.1) & (2.-7) + (-4.5) & (2.4) + (-4.-3) \\ (1.2) + (6.1) & (1.-7) + (6.5) & (1.4) + (6.-3) \end{bmatrix}$$

$$\mathsf{B'A} = \begin{bmatrix} -12 + 3 & 42 + 15 & -24 + (-9) \\ 4 + (-4) & -14 + (-20) & 8 + (12) \\ 2 + 6 & -7 + 30 & 4 + (-18) \end{bmatrix}$$

$$B'A = \begin{bmatrix} -9 & 57 & -33 \\ 0 & -34 & 20 \\ 8 & 23 & -14 \end{bmatrix}$$

#### **RANGKUMAN**

1. Menentukan perkalian skalar matriks menggunakan rumus :

$$\lambda A_{mxn} = [\lambda a_{ij}]$$
 dimana  $\lambda$  adalah skalar

2. Menentukan perkalian matriks menggunakan rumus:

$$A_{mxn}B_{nxp}=E_{mxp}$$
;  $e_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$ 

3. Transposematriks  $A = (a_{ij})$  didefinisikan dengan bentuk :

$$A'=AT(a_{ii})$$

dengan mengubah letak elemen pada setiap baris A menjadi elemen pada kolom matriks  $A^\prime$ .

#### **TUNTUNAN LATIHAN**

 A. Berikut ini diberikan perhitungan operasi dasar matriks pada software Scilab dalam penyelesaian

Dimana diketahui:

matriks A = 
$$\begin{bmatrix} 2 & -7 & 4 \\ 1 & 5 & -3 \end{bmatrix}$$
 dan matriks B =  $\begin{bmatrix} -6 & 2 & 1 \\ 3 & -4 & 6 \end{bmatrix}$ 

(a) Mendefinisikan matriks Adan B ke dalam lembar kerja Scilab.

```
Startup execution:
loading initial environment

--> A = [2 -7 4; 1 5 -3]
A =

2. -7. 4.
1. 5. -3.

--> B = [-6 2 1; 3 -4 6]
B =

-6. 2. 1.
3. -4. 6.
```

Gambar 2.3 Penulisan Pada Lembar Kerja Scilab

(b) Operasi perkalian matriks dan transpose matriks diselesaikan dengan langsung menggunakan operator yang ada pada Scilab dimana :

" \* "untuk operasi perkalian
" ' "untuk transpose matriks

# Startup execution: loading initial environment --> A = [2 -7 4; 1 5 -3] 2. -7. 4. 1. 5. -3. --> B = [-6 2 1; 3 -4 6] -6. 2. 1. 3. -4. --> 3\*A - 2\*B ans = 18. -25. 10. -3. 23. -21. --> B' \*A ans = -9. 57. -33. 20. 0. -34. 8. 23. -14.

Gambar 2.4 Contoh Soal Perkalian dan Transpose

#### **LATIHAN**

Diketahui matriks 
$$A_{3x2} = \begin{bmatrix} 2 & -7 \\ -1 & 2 \\ 0 & 3 \end{bmatrix} \operatorname{dan} B_{3x2} = \begin{bmatrix} -6 & 5 \\ 3 & 0 \\ 2 & 2 \end{bmatrix}$$

Tentukan:

- a. B + (-2)A
- b. 3A 2B
- c. B'A