ACKNOWLEDGEMENT

I am greatly indebted to **Mr. K. PRAVEEN**, Head of the Department. Computer Science and Engineering, **DRK INSTITUTE OF SCIENCE AND TECHNOLOGY**, JNTU, Hyderabad, for his motivation and timely support in completion of our project work.

I express my deep sense of gratitude to our Internal Guide **Dr K. VENKATA SUBBAIAH**, Dept. of Computer Science & Engineering, **DRK INSTITUTE OF SCIENCE AND TECHNOLOGY**, JNTU, Hyderabad, for his insightful guidance, kind concern and inspiration without which this work might not have been completed.

I learnt many moral and ethical standards in academic and non-academic words from him. We are thankful to all teaching and non-teaching members of Department of Computer Science and Engineering, **DRK INSTITUTE OF SCINECE AND TECHNOLOGY**, JNTU, Hyderabad, for their cooperation and moral support.

With Sincere Regards,

CHAITANKER YASHWANTH (20N71A0513)

ABSTRACT

Online media cooperation particularly the word getting out around the organization is an incredible wellspring of data these days. From one's point of view, its insignificant effort, direct access, and speedy scattering of data that lead individuals to watch out and global news from web sites. Twitter being a champion among the most notable progressing news sources moreover winds up a champion among the most prevailing news emanating mediums. It is known to cause broad damage by spreading pieces of tattle beforehand. Therefore, motorizing fake news acknowledgment is rudimentary to keep up healthy online media and casual association. We propose a model for perceiving manufactured news messages from twitter posts, by making sense of how to envision exactness examinations, considering automating fashioned news distinguishing proof in Twitter datasets. Subsequently, we played out a correlation between five notable Machine Learning calculations, similar to Support Vector Machine, Naïve Bayes Method, Logistic Regression and Recurrent Neural Network models, independently to exhibit the effectiveness of the grouping execution on the dataset. Our exploratory outcome indicated that SVM and Naïve Bayes classifier beats different calculation.

TABLE OF CONTENTS

CONTENTS	PAGENO
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF OUTPUT SCREENS	ix
1. INTRODUCTION	1
2. SOFTWARE AND HARDWARE REQUIREMENTS	2
2.1 HARDWARE REQUIREMENTS	2
2.2 SOFTWARE REQUIREMENTS	2
3. LITERATURE SURVEY	3
4. SOFTWARE REQUIREMENT ANALYSIS	7
4.1 REQUIREMENT ANALYSIS	7
4.2 REQUIREMENT SPECIFICATION	7
4.3 EXISTING SYSTEM	8
4.4 PROPOSED SYSTEM	8
4.5 MODULES AND THEIR FUNCTIONALITIES	9
4.6 FEASIBILITY STUDY	10

5. SOFTWARE DESIGN	26
5.1 SOFTWARE ARCHITECTURE	26
5.2 DATA FLOW DIAGRAM	27
5.3 UML DIAGRAMS	28
5.3.1 GOALS	28
5.3.2 USE CASE DIAGRAM	29
5.3.3 CLASS DIAGRAM	30
5.3.4 SEQUENCE DIAGRAM	31
5.3.5 ACTIVITY DIAGRAMS	32
5.3.6 COLLABORATION DIAGRAM	38
6. SOURCE CODE	40
7. SYSTEM TESTING	52
7.1 INTRODUCTION TO TESTING	52
7.2 TYPES OF TESTING	52
7.2.1 UNIT TESTING	52
7.2.2 INTEGRATION TESTING	52
7.2.3 FUNCTIONAL TESTING	53
7.3 SYSTEM TESTING	53
7.3.1 WHITE BOX TESTING	53
7.3.2 BLACK BOX TESTING	54
7.3.3 UNIT TESTING	54
7.3.4 INTEGRATION TESTING	54
7.3.5 ACCEPTANCE TESTING	55

8. OUTPUT SCREENS	56
9. CONCLUSION	61
10. FURTHER ENHANCEMENTS	62
11. BIBLIOGRAPHY	63

LIST OF FIGURES

FIGURES	PAGENO
Fig 5.1 ARCHITECTURE DIAGRAM	26
Fig 5.2 DATA FLOW DIAGRAM	27
Fig 5.3.2 USE CASE DIAGRAM	29
Fig 5.3.3 CLASS DIAGRAM	30
Fig 5.3.4 SEQUENCE DIAGRAM	31
Fig 5.3.5.1 ACTIVITY DIAGRAM FOR USER REGISTRATION	32
PASSWORD	
Fig 5.3.5.2 ACTIVITY DIAGRAM OF USER LOGIN	33
Fig 5.3.5.3 ACTIVITY DIAGRAM OF ADMIN LOGIN	34
Fig 5.3.5.4 ACTIVITY DIAGRAM OF EMAIL	35
Fig 5.3.5.5 ACTIVITY DIAGRAM OF PASSWORD	36
Fig 5.3.5.6 ACTIVITY DIAGRAM FOR OVERALL WORKFLOW	7 37
OF THE SYSTEM	
Fig 5.3.6 COLLABORATION DIAGRAM	38

LIST OF OUTPUT SCREENS

OUTPUT SCREENS	PAGENO
OUTPUT SCREEN 8.1: Home Page	56
OUTPUT SCREEN 8.2: User Registration Page	56
OUTPUT SCREEN 8.3: Admin Login Page	57
OUTPUT SCREEN 8.4: Admin Home Page	57
OUTPUT SCREEN 8.5: Admin User Details Page	58
OUTPUT SCREEN 8.6: User Login Page	58
OUTPUT SCREEN 8.7: User Home Page	59
OUTPUT SCREEN 8.8: User View News Page	59
OUTPUT SCREEN 8.9: User Machine Learning Results	60
OUTPUT SCREEN 8.10: User Predict Page	60