Lecture 1: Data Handling

Sequences

Mean	Variance
$\bar{x} = \frac{1}{n} \Sigma x$	$s^2 = \frac{\Sigma (x - \bar{x})^2}{n - 1}$

Percentiles

- P_y is simply the (100p)th percentile when $p = \frac{y}{100}$
- Q_1 , Q_2 and Q_3 are equivalent to P_{25} , P_{50} and P_{75} , respectively

Lecture 2: Probability Distributions

Discrete Random Variables

Mean	Variance
$\mu = E(X) = \Sigma x P(X = x) = \Sigma x f(x)$	$\sigma^2 = Var(X) = \Sigma(x - \mu)^2 f(x)$
$E(X^2) = \Sigma x^2 P(X = x) = \Sigma x^2 f(x)$	$\sigma^2 = E(X^2) - [E(X)]^2$

Bernoulli Random Variables

X	PDF		Notation
X = 1, if "success" X = 0, if "failure"	$f(x) = p^x (1-p)^{1-x}$		$X \sim B(p)$
Mean		Variance	
E(X) = p			Var(X) = p(1-p)

Binomial Random Variables

X	PDF		Notation
Number of "successes" in a Bernoulli process of n trials	$f(x) = \binom{n}{x} p^x (1-p)^{n-x} \ 0 \le x \le n$		$X \sim B(n,p)$
Mean		Variance	
E(X) = np		,	Var(X) = np(1-p)

Poisson Random Variables

X	PDF		Notation
Number of certain events occurring in a time interval or region	$f(x) = \frac{e^{-\lambda}\lambda!}{x!}$	$\begin{array}{c} x \\ -0 \le x \le n \end{array}$	$X \sim P(\lambda)$
Mean		Variance	
$E(X) = \lambda$			$Var(X) = \lambda$

Y	Notation
Number of certain events occurring in t units of time	$Y \sim Poisson(\lambda t)$
Mean	Variance
$E(Y) = \lambda t$	$Var(Y) = \lambda t$

Continuous Random Variables

Mean			Variance
$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) \ dx$		$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	
$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$			$Var(X) = E(X^2) - [E(X)]^2$
	Calculating the	CDF of a PD	F
If y is in $[-\infty, a]$, then	If y is in $[a, b]$, t	hen	If y is in $[b, \infty]$, then
$F(y) = \int_{-\infty}^{y} f(x) dx$ $= 0$	$F(y) = \int_{-\infty}^{y} f(x) dx$ $= \int_{-\infty}^{a} f(x) dx + \int_{a}^{y} f(x) dx$ $= [F(x)]_{a}^{y}$ $= F(y) - F(a)$	'a	$F(y) = \int_{-\infty}^{y} f(x) dx$ $= \int_{-\infty}^{a} f(x) dx + \int_{a}^{b} f(x) dx + \int_{b}^{y} f(x) dx$ $= 0 + \int_{a}^{b} f(x) dx + 0$ $= [F(x)]_{a}^{b}$ $= F(b) - F(a)$ $= 1$

Normal Distribution

X			Notation
is considered to have Normal Distribut	ion if its PDF has the		$X \sim N(\mu, \sigma^2)$
form of the Normal Probability De	nsity Function		$X \sim N(\mu, \sigma)$
Mean	Varia	nce	Standard Score
$E(X) = \mu$	Var(X)	$= \sigma^2$	$z = \frac{x - \mu}{\sigma}$

Lecture 3: Sampling Distribution & Estimation

Mean and Standard Deviation of a Sample Mean

• If \bar{x} is the mean of an SRS of size n from a population with mean μ and standard deviation σ , then:

$\mu_{\bar{x}} = \mu$	$\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$	$\sigma_{\bar{x}}^2 = \frac{\sigma^2}{\sigma^2}$
	∇n	\tilde{n}

Distribution of \bar{x}

• If a population X has $N(\mu, \sigma^2)$ distribution, then, for the sample mean, \bar{x} , of n independent values...

(σ \	$\bar{x} - \mu$
$N\left(\mu,\frac{1}{\sqrt{n}}\right)$	$z = \frac{1}{\sigma_{I}} \sim N(0, 1)$
$\sqrt{n'}$	$/\sqrt{n}$

General Confidence Interval for μ

• The 100(1 - α)% CI for μ when σ is known is given by:

	σ	. CI
$\bar{x} \pm E$	$E = Z\alpha_{/2} \frac{1}{\sqrt{n}}$	$\alpha = 1 - \frac{100}{100}$

• The general conclusion is written as "We are approximately CI confident that the population mean lies between $\bar{x} - E$ and $\bar{x} + E$ "

Lecture 4: Estimation, Hypothesis & Testing

Selecting Sample Size

• We can select the sample size, n, that will guarantee a desired confidence level for a fixed margin of error, E.

$E = \frac{z\alpha_2\sigma}{\sqrt{n}} \qquad \qquad \sqrt{n} = \frac{z\alpha_2\sigma}{E} \qquad \qquad n = \left(\frac{z\alpha_2\sigma}{E}\right)^2$			
	$E = \frac{z\alpha_{/2}\sigma}{\sqrt{n}}$	$\sqrt{n} = \frac{72}{E}$	$n = 1 - \frac{1}{n}$

• Note: round up to the nearest whole.

Test Statistic for Samples with Known Population Standard Deviations

• To test the validity of an alternative hypothesis H_A we standardise \bar{x} and obtain z-score that tells us how many standard errors \bar{x} is from μ

$z = \frac{\bar{x} - \mu}{\sigma_I}$	μ: Supposed population mean	σ: Known population standard
$/\sqrt{n}$	denoted by H_0	deviation

Test Statistics Samples with Unknown Population Standard Deviations

•	•	
$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$	μ : Supposed population mean denoted by H_0	s: Known sample standard deviation

Confidence Intervals for Samples with Unknown Population Standard Deviations

	E = t S	. CI
$x \pm E$	$E = t_{n-1,\alpha/2} \frac{1}{\sqrt{n}}$	$\alpha = 1 - \frac{100}{100}$

When to Use Standard Scores and Standard Errors

- If σ is given and $n \ge 30$, then we should use z-scores, otherwise, t-scores
- If s is given and $n \ge 100$, then we should use z-scores, otherwise, t-scores

P-Values

- From the tables, we find the probability of obtaining a value or more extreme than the test statistic. This probability is referred to as the *p*-value
- If the p-value is relatively small, we say that we have enough evidence to reject H₀. i.e. there is a relatively low probability that H₀ is true, so we are willing to promote the H_A

Conclusions at the α Level of Significance

• "Since the p-value of _____ is more / less than α at the (100 α)% level of significance, we should reject H_0 and state that, on average, the _____ more / less than μ "

Validity of Conclusions

- For our conclusions to be valid, the chosen sample should...
 - 1. Be approximately normal
 - 2. Not be skewed
 - 3. Not contain any outliers