LEC006 Inventory Management I

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Fundamental Tradeoff

Overstock Understock

Inventory Turnover

Some Terminologies

- · Demand rate average demand expected
- Lead time [+ vorder =] arrival of inventory
- Quantity discount
- Review type
- Planning horizon
- Stockout type
- Service levels
- Fixed costs
- Perishability
-

Deterministic Inventory

INPUT:

- Constant deterministic demand rate λ
- No stockout is allowed
- Zero lead time
- Fixed cost K per order
- Purchase cost c per unit
- Inventory hold cost h per unit per unit of time

OUTPUT:

The optimal ordering strategy

Deterministic Inventory

INPUT:

- Constant deterministic demand rate λ
- No stockout is allowed
- Zero lead time
- Fixed cost *K* per order
- Purchase cost *c* per unit
- Inventory hold cost *h* per unit per unit of time

OUTPUT: The optimal ordering strategy

Figure 3.2 EOQ inventory level curve.

Economic Order Quantity (EOQ)

$$g(Q) = \frac{K\lambda}{Q} + \frac{hQ}{2}$$

EOQ

Figure 3.2 EOQ inventory level curve.

$$\frac{dg(Q)}{dQ} = -\frac{K\lambda}{Q^2} + \frac{h}{2} = 0$$

$$\Longrightarrow Q^2 = \frac{2K\lambda}{h}$$

$$\Longrightarrow Q^* = \sqrt{\frac{2K\lambda}{h}}$$

$$g(Q^*) = \sqrt{\frac{K\lambda h}{2}} + \sqrt{\frac{K\lambda h}{2}} = \sqrt{2K\lambda h}$$

Figure 3.3 Fixed, holding, and total costs as a function of Q.

Adding a Lead Time *L*?

Figure 3.2 EOQ inventory level curve.

Power of Two Polices

Sensitivity of order quantity

$$\frac{g(Q)}{g(Q^*)} = \frac{1}{2} \left(\frac{Q^*}{Q} + \frac{Q}{Q^*} \right)$$

• What if $T = T_B 2^k$ where k is some integer?

$$\frac{f(\hat{T})}{f(T^*)} \le \frac{3}{2\sqrt{2}} \approx 1.06$$

EOQ with Backorders

Let x be the fraction of demand that is backordered

Figure 3.9 EOQB inventory curve.

$$g(Q,x) = \frac{hQ(1-x)^2}{2} + \frac{pQx^2}{2} + \frac{K\lambda}{Q}$$

EOQ with Backorders

Figure 3.9 EOQB inventory curve.

$$g(Q,x) = \frac{hQ(1-x)^2}{2} + \frac{pQx^2}{2} + \frac{K\lambda}{Q}$$

$$\frac{\partial g}{\partial x} = -hQ(1-x) + pQx = 0$$

$$\frac{\partial g}{\partial Q} = \frac{h(1-x)^2}{2} + \frac{px^2}{2} - \frac{K\lambda}{Q^2} = 0$$

$$g(Q^*, x^*) = \sqrt{\frac{2K\lambda(h+p)}{h+p}}$$

EOQ with Backorders

Figure 3.10 Inventory—backorder trade-off in EOQB.

EOQ with Quantity Discount

All-Unit Discount

Incremental Discount

All-Unit Discount

Figure 3.6 Total cost curves for all-units quantity discount structure.

Algorithm:

- 1. Calculate Q_i^* for each j
- 2. Check feasibility (or realizability)
- 3. Calculate the cost of break points to the right of the largest realizable Q_j^*

All-Unit Example

$$\lambda = 1300, K = 8, i = 0.3$$

$$Q_j^* = \sqrt{\frac{2K\lambda}{ic_j}}$$

We first determine the largest realizable Q_j^* by working backward from segment 2:

$$Q_2^* = \sqrt{\frac{2 \cdot 8 \cdot 1300}{0.3 \cdot 0.68}} = 319.3$$

$$Q_1^* = \sqrt{\frac{2 \cdot 8 \cdot 1300}{0.3 \cdot 0.72}} = 310.3$$

$$Q_0^* = \sqrt{\frac{2 \cdot 8 \cdot 1300}{0.3 \cdot 0.75}} = 304.1$$

Only Q_0^* is realizable, and it has cost

$$0.75 \cdot 1300 + \sqrt{2 \cdot 8 \cdot 1300 \cdot 0.3 \cdot 0.75} = 1043.4.$$

Next, we calculate the cost of the breakpoints to the right of Q_0^* :

$$g_1(400) = 0.72 \cdot 1300 + \frac{8 \cdot 1300}{400} + \frac{0.3 \cdot 0.72 \cdot 400}{2} = 1005.2$$

$$g_2(800) = 0.68 \cdot 1300 + \frac{8 \cdot 1300}{800} + \frac{0.3 \cdot 0.68 \cdot 800}{2} = 978.6$$

Therefore, the optimal order quantity is Q=800, which incurs a purchase cost of \$0.68 and a total annual cost of \$978.60.

Incremental Discount

Figure 3.7 Total cost curves for incremental quantity discount structure.

Algorithm:

- 1. Calculate Q_i^* for each j
- 2. Check feasibility (or realizability)

Incremental Example

$$\lambda = 1300, K = 8, i = 0.3$$

$$Q_j^* = \sqrt{\frac{2\left(K + \bar{c}_j\right)\lambda}{ic_j}}$$

$$\bar{c}_1 = 0.75 \cdot 400 - 0.72 \cdot 400 = 12$$

 $\bar{c}_2 = 0.75 \cdot 400 + 0.72 \cdot 400 - 0.68 \cdot 800 = 44$

Next, we calculate Q_i^* for each j:

$$Q_0^* = \sqrt{\frac{2(8+0)1300}{0.3 \cdot 0.75}} = 304.1$$

$$Q_1^* = \sqrt{\frac{2(8+12)1300}{0.3 \cdot 0.72}} = 490.7$$

$$Q_2^* = \sqrt{\frac{2(8+44)1300}{0.3 \cdot 0.68}} = 814.1$$

All three solutions are realizable. Using (3.22), these solutions have the following costs:

$$g_0(Q_0^*) = 0.75 \cdot 1300 + \frac{0.3 \cdot 0}{2} + \sqrt{2(8+0)1300 \cdot 0.3 \cdot 0.75} = 1043.4$$

$$g_1(Q_1^*) = 0.72 \cdot 1300 + \frac{0.3 \cdot 12}{2} + \sqrt{2(8+12)1300 \cdot 0.3 \cdot 0.72} = 1043.8$$

$$g_2(Q_2^*) = 0.68 \cdot 1300 + \frac{0.3 \cdot 44}{2} + \sqrt{2(8+44)1300 \cdot 0.3 \cdot 0.68} = 1056.7$$

Therefore, the optimal order quantity is Q=304.1, which incurs a total annual cost of \$1043.40.

Economic Production Quantity (EPQ)

Figure 3.11 EPQ inventory level curve.

$$g(Q) = \frac{K\lambda}{Q} + \frac{h(1-\rho)Q}{2}$$

$$Q^* = \sqrt{\frac{2K\lambda}{h(1-\rho)}}$$

$$g(Q^*) = \sqrt{2K\lambda h(1-\rho)}$$

Summary

- Basic Deterministic Inventory Models
 - EOQ
 - EOQ with backorders
 - EOQ with quantity discounts (all-unit and incremental)
 - EPQ
- Next Up: Wagner-Whitin Model