Analisi dell'efficacia del data clustering sull'addestramento di Recommender System

Laureando:

Andrea Ricci

Relatori:

Valentina Poggioni

Alina Elena Baia

DI PERUGIA

29 aprile 2021 A.A. 2019/2020

Fidelity Salus

Sistema Fidelity

Fidelity Con Te ~

Teleassistenza

Area Riservata

2

La Carta Per Te

Fidelizzare il cliente non è mai stato così facile, con la nostra carta fedeltà viene alimentato un sofisticato sistema di **Business**Intelligence con il quale il cliente viene delineato in base al suo comportamento di acquisto.

- Erogazione e gestione delle Fidelity card
- Sconti riservati ai possessori
- Campagne pubblicitarie personalizzate

Sommario

Obiettivi del lavoro di tesi:

- Implementazione di un Recommender System che consigli alle farmacie nuovi prodotti da inserire in magazzino
- Applicazione di tecniche di clustering atte a verificare se le performance del Recommender System possano essere migliorate

Sommario

- Recommender System
 - Collaborative Filtering
 - Allenamento del modello: Matrix Factorization e Bayesian Personalized Ranking
 - Prestazioni del sistema
- Clustering
 - Selezione degli attributi
 - Applicazione degli algoritmi di clustering
 - Variazioni delle prestazioni del Recommender System
- Conclusioni e sviluppi futuri

Recommender System

Recommender System

Un recommender system è un software di filtraggio dei contenuti che crea delle raccomandazioni personalizzate specifiche per l'utente così da aiutarlo nelle sue scelte.

Youtube

Amazon

Feedback implicito ed esplicito

Tipologie di raccolta delle informazioni:

- Feedback esplicito: l'utente assegna esplicitamente le valutazioni agli oggetti
- Feedback implicito: viene studiato il comportamento dell'utente per derivarne le preferenze

Tipologie di recommender system

Allenamento del modello

Matrix Factorization

- f = numero fattori latenti
- $U \in \mathbb{R}^{m \times f}$ $V \in \mathbb{R}^{n \times f}$
- $A \approx UV^T$ contiene la preferenza predetta dal sistema per ogni coppia utente/oggetto
- Obiettivo: garantire che A rappresenti una buona approssimazione di R

Bayesian Personalized Ranking

Siano:

- ullet U ed I l'insieme di tutti gli utenti ed oggetti
- $I_u^+ = \{i \in I : (u,i) \in S\}$ l'insieme degli oggetti con i quali l'utente u ha interagito

L'obiettivo dell'algoritmo è quello di trovare una classifica personalizzata $>_u \subset I^2$ per ogni utente $u \in U$ ed ogni coppia di oggetti $(i,j) \in I^2$ che soddisfi le proprietà di un ordine totale.

Bayesian Personalized Ranking

Dati di allenamento:

$$D_S := \{(u,i,j)|i \in I_u^+ \land j \in I \setminus I_u^+\}$$

dove

$$(u,i,j) \in D_s$$

$$i >_{u} j$$

+

u₅: i > _{u₅} j

 $u_1: i > u_1 j$

Criterio di ottimizzazione BPR-OPT

BPR-OPT massimizza la probabilità a posteriori $p(\Theta|>_u)$.

$$BPR - OPT := \ln p(\Theta \mid >_{u})$$

$$= \dots$$

$$= \sum_{(u,i,j) \in D_{S}} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} \|\Theta\|^{2}$$

Se il modello scelto è la Matrix Factorization, allora $\hat{x}_{uij} = \hat{x}_{ui} - \hat{x}_{uj}$

Struttura del dataset degli acquisti

UserID	1397958
ItemID	971989823
ItemName	LFP FERMENTIFLUID 10X10ML
CatCode	4AA2F35
CatName	FERMENTI LATTICI
Quantity	1
PharmacyID	512

Record di esempio del dataset degli acquisti riferito all'anno 2019

Matrice degli acquisti

UserID	ItemID	Quantity	PharmacyID
18	1017	7	15
745	1017	3	137
18	96	1	137
111	1017	10	15
1048	96	6	137

PharmacyID	ItemID	Quantity	
15	1017	17	
137	1017	3	
137	96	7	

 \approx 3 milioni di record

 \approx 9.5 milioni di record

Implementazione del Recommender System

https://github.com/benfred/implicit

Testing del Recommender System

	ALS	BPR
Sparsity	97.6	68%
Precision@5	23.01%	76.45%
Precision@10	23.42%	73.18%
MAP@5	14.45%	71.16%
MAP@10	12.04%	65.57%
nDCG@5	23.08%	77.39%
nDCG@10	23.34%	74.78%

Suddivisione dei record nella fase di testing:

- 80% assegnati al training set
- 20% assegnati al test set

$$Precision = \frac{\text{\# previsioni corrette}}{\text{\# totale previsioni effettuate}}$$

Clustering

Riduzione della dimensionalità

Struttura del dataset delle farmacie

PharmacyID	1172
PharmacyName	FARMACIA XY
GroupID	61
GroupDES	FARMACIA XY
ConsortiumCode	5
ConsortiumDES	UNICONS
City	ROMA
CAP	00132
Province	RM
StartupDate	2014-01-01
Tutor	mariorossi
Revenue	734427.50
UsersNumber	938

Numero totale di farmacie: 893

	Numero di etichette
CAP	610
City	611
Province	94
GroupID	615
ConsortiumCode	9
Tutor	7
StartupDate	575

Numero di etichette uniche per attributo categorico

Numero totale di farmacie: 893

	Numero di etichette
CAP	610
City	611
Province	94
GroupID	615
ConsortiumCode	9
Tutor	7
StartupDate	575

Numero di etichette uniche per attributo categorico

PharmacyID	1172		
GroupID	61		
ConsortiumCode	5		
City	ROMA)	
CAP	00132		Zone CENTER
Province	RM	J	
StartupDate	2014-01-01		StartupYear 2014
Tutor	mariorossi		
Revenue	734427.50		
UsersNumber	938		

PharmacyID	1172
ConsortiumCode	5
Zone	CENTER
StartupYear	2014
Tutor	mariorossi
Revenue	734427.50
UsersNumber	938

ItemsNumber	2636
TotalQuantity	13810
SalesMean	1.7
SalesMax	38

A: Zone

B: ConsortiumCode

C: Tutor

D: StartupYear

E: Revenue

F: UsersNumber

G: ItemsNumber

H: TotalQuantity

I: SalesMean

J: SalesMax

Attributi rimossi:

- UsersNumber
- ItemsNumber
- TotalQuantity

Clustering

Algoritmi testati:

• DBSCAN (density-based)

• K-means (partizionale)

Agglomerative Clustering (gerarchico)

Clustering con DBSCAN

Visualizzazione t-SNE

Attributi:

- Tutor
 - ConsortiumCode
 - Zone
 - StartupYear
 - Revenue
 - SalesMean

- minPts=10
- eps=1.85

Clustering con DBSCAN

Visualizzazione PCA

Attributi:

- Tutor
 - ConsortiumCode
 - Zone
 - StartupYear
 - Revenue
 - SalesMean

- minPts=10
- eps=1.85

Clustering con DBSCAN

Visualizzazione t-SNE

Attributi:

- Tutor
- ConsortiumCode
- Zone

. 9 • 10

• 11

• 12 • 13

• 14 • 15

- StartupYear
- Revenue
- SalesMean

- minPts=10
- eps=1.25

Visualizzazione PCA

Attributi:

- Tutor
- ConsortiumCode
- Zone
- StartupYear
- Revenue
- SalesMean

Parametri:

-K = 2

	Cluster 1	Cluster 2
N° di elementi	131	762
Precision@5	89.16%	75.58%

Risultati per suddivisione in 2 cluster

Distribuzione della variabile Revenue

Visualizzazione PCA

Attributi:

- Tutor
- ConsortiumCode
- Zone
- StartupYear
- Revenue
- SalesMean

Parametri:

-K = 3

	Cluster 1	Cluster 2	Cluster 3
N° di elementi	116	700	77
Precision@5	88.96%	75.42%	56.81%

Risultati per suddivisione in 3 cluster

Visualizzazione PCA

Attributi:

- Tutor

labels

- ConsortiumCode
- Zone
- Revenue

$$-K = 2$$

Visualizzazione PCA

Attributi:

- Tutor
- Zone
- StartupYear
- SalesMean

$$-K = 2$$

	Cluster 1	Cluster 2
N° di elementi	123	770
Precision@5	85.85%	75.53%

Risultati per suddivisione in 2 cluster con attributi Tutor, ConsortiumCode, Zone, Revenue

	Cluster 1	Cluster 2
N° di elementi	87	806
Precision@5	61.45%	75.69%

Risultati per suddivisione in 2 cluster con attributi Tutor, Zone, StartupYear, SalesMean

Agglomerative Clustering

Attributi:

- Tutor
- ConsortiumCode
- Zone
- StartupYear
- Revenue
- SalesMean

$$-K = 2$$

	Cluster I	Cluster 2
N° di elementi	90	803
Precision@5	88.99%	75.87%

Conclusioni

- Risultati prima parte:
 - L'algoritmo BPR ha offerto ottimi risultati con un valore di Precision@5 del sistema superiore al 75%.

- Risultati seconda parte:
 - L'algoritmo DBSCAN si è rivelato inefficace.
 - L'applicazione degli algoritmi K-means ed Agglomerative Clustering hanno portato ad un miglioramento delle performance del Recommender System, seppure parziale. Possibilità di utilizzare RS specializzato per punti vendita ad alta Revenue.

Sviluppi futuri

 Arricchimento del dataset con attributi più significativi per le operazioni di clustering.

 Studio del funzionamento di algoritmi di clustering con una funzione obiettivo personalizzata, che utilizzi come valore da massimizzare la *Precision@5* restituita in output dal test delle performance del Recommender System.

Grazie per l'attenzione