Feuille d'exercice n° 14 : Polynômes

Exercice 1 Résoudre les équations suivantes.

- 1) $Q^2 = XP^2$, d'inconnues $P, Q \in \mathbb{K}[X]$.
- **2)** $P \circ P = P$, d'inconnue $P \in \mathbb{K}[X]$.

Exercice 2 Résoudre en $P \in \mathbb{C}[X]$ l'équation $P(X^2) = (X^2 + 1)P(X)$.

Exercice 3 (\circlearrowleft) Soit $n \in \mathbb{N}^*$. Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X - 1)^2$.

Exercice 4 (\circlearrowleft) Soient $a, b \in \mathbb{K}$, avec $a \neq b$, soit $P \in \mathbb{K}[X]$. Exprimer le reste de la division euclidienne de P par (X - a)(X - b), en fonction de P(a) et P(b).

Exercice 5 ($^{\circ}$) Dans $\mathbb{C}[X]$, effectuer les divisions euclidiennes suivantes.

- 1) $X^2 3iX 5(1+i)$ par X 1 + i
- **2)** $4X^3 + X^2$ par X + 1 + i

Exercice 6 Soit $n \in \mathbb{N}$. Déterminer une condition nécessaire et suffisante sur n pour que $X^2 + X + 1$ divise $X^{2n} + X^n + 1$.

Exercice 7 ($^{\circ}$) Décomposer dans $\mathbb{R}[X]$ le polynôme $P = X^6 + 1$ en produit de facteurs irréductibles.

Exercice 8 Trouver le(s) polynôme(s) A de degré 4 tel(s) que : $X^2 + 1|A$ et $X^3 + 1|A - 1$.

Exercice 9 (\emptyset) Montrer que si $P \in \mathbb{R}[X] \setminus \{0\}$ vérifie $P(X^2) = P(X)P(X+1)$ ses racines sont parmi $0, 1, -j, -j^2$. En déduire tous les polynômes solution de cette équation.

Exercice 10 Soit P un polynôme de $\mathbb{R}[X]$ tel que $P(x) \geq 0$ pour tout $x \in \mathbb{R}$. Montrer qu'il existe $S, T \in \mathbb{R}[X]$ tels que $P = S^2 + T^2$. Indications:

- 1) Montrer que les racines réelles de P sont de multiplicité paire.
- 2) Pour $\alpha \in \mathbb{C} \setminus \mathbb{R}$, écrire $(X \alpha)(X \bar{\alpha})$ comme somme de deux carrés de polynômes.

Exercice 11 Résoudre les équations suivantes.

- 1) $P'^2 = 4P$ d'inconnue $P \in \mathbb{K}[X]$.
- 2) $(X^2 + 1)P'' 6P = 0$ d'inconnue $P \in \mathbb{K}[X]$.

Exercice 12 Résoudre le système $\begin{cases} a^2 + b^2 + c^2 &= 14 \\ a + b + c &= 2 \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} &= \frac{5}{6} \end{cases}.$

Exercice 13 () Déterminer le PGCD de chacun des couples de polynômes suivants.

- 1) $X^5 + 3X^4 + X^3 + X^2 + 3X + 1$ et $X^4 + 2X^3 + X + 2$
- **2)** $X^4 + X^3 3X^2 4X 1$ et $X^3 + X^2 X 1$
- 3) $X^5 + 5X^4 + 9X^3 + 7X^2 + 5X + 3$ et $X^4 + 2X^3 + 2X^2 + X + 1$

Exercice 14 () Calculer un couple de Bézout pour chacun des couples de polynômes suivants.

- 1) $X^5 X^4 + 2X^3 X^2 + X 2$ et $X^4 2X^3 X + 2$
- **2)** $X^4 + 2X^3 X 2$ et $X^5 + X^4 3X^3 + X^2 + 4X 4$

Exercice 15 (\bigcirc) Soient P, Q deux polynômes premiers entre eux.

- 1) Montrer qu'alors P^n et Q^m sont premiers entre eux, où n, m sont deux entiers positifs.
- 2) Montrer de même que P + Q et PQ sont premiers entre eux.

Exercice 16 Soit P un polynôme de $\mathbb{C}[X]$, non constant. Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$.

- 1) Montrer que quels que soient les entiers positifs b et q, $P^b 1$ divise $P^{bq} 1$.
- 2) En déduire que le reste de la division de $P^a 1$ par $P^b 1$ est $P^r 1$ où r est le reste de la division dans \mathbb{N} de a par b.
- 3) En utilisant l'algorithme d'Euclide, déterminer le pgcd de $P^a 1$ et $P^b 1$.
- 4) Retrouver ce résultat en utilisant le théorème de Bézout dans \mathbb{Z} et dans $\mathbb{C}[X]$.
- 5) Application: trouver le pgcd de $X^{5400} 1$ et $X^{1920} 1$.

Exercice 17 Montrer que les polynômes complexes $P = X^{2017} + X + 1$ et $Q = X^5 + X + 1$ sont premiers entre eux.

Exercice 18 ($\stackrel{\triangleright}{\longrightarrow}$) Soit $n \in \mathbb{N}^*$.

- 1) Montrer qu'il existe deux polynômes U, V, vérifiant $(1 X)^n U + X^n V = 1$ (*).
- 2) Déterminer deux polynômes U_1, V_1 de degré strictement inférieur à n, satisfaisant (\star) .
- 3) En déduire tous les polynômes U, V vérifiant (\star) .

Exercice 19

- 1) Déterminer les polynômes $P,Q \in \mathbb{R}[X]$, premiers entre eux et à coefficients entiers, tels que $P^2 + Q^2 = (X^2 + 1)^2$.
- 2) En déduire que l'équation $x^2 + y^2 = z^2$ a une infinité de solutions (non proportionnelles) dans \mathbb{Z} .

