MASTERBATCH TYP

URING AGENT FOR ONE-PACK

Patent number:

JP1070523

Publication date:

1989-03-16

Inventor:

ISHIMURA SHUICHI; others: 03

Applicant:

ASAHI CHEM IND CO LTD

Classification:

- international:

C08G59/50

- european:

Application number:

JP19880199019 19880811

Priority number(s):

Also published as:

EP0304503 (A1) US4833226 (A1)

EP0304503 (B1)

Abstract of JP1070523

PURPOSE:To obtain the titled curing agent having excellent storage stability and improved curing characteristics, by blending a curing agent containing a specific powdery amine compound as a core and a reaction product of the above-mentioned amine compound with an epoxy polymer as a shell with an epoxy polymer in a specific proportion.

CONSTITUTION: The aimed curing agent, obtained by blending (A) a curing agent containing a powdery amine compound having one or more tertiary amino groups and bonded groups (e.g. urea bond) absorbing infrared rays at 1,630-1,680cm<-1> wavelength and bonded groups (e.g. biuret bond) absorbing infrared rays at 1,680-1,725cm<-1> wavelength on the surface without any primary and secondary amino groups as a core and a reaction product of the above- mentioned amine compound with an epoxy polymer as a shell with (B) an epoxy polymer in an amount of 10-50,000pts.wt. based on 100pts.wt. component (A) and suitable as adhesives, etc. Furthermore, the component (A) can be obtained by treating a reaction product of an alicyclic secondary amine with a monoepoxy compound, etc., with an imidazole compound, dispersing the treatment product in an epoxy polymer, adding and reacting an isocyanate compound.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(全18頁)

⑩ 日本国特許庁(JP)

⑩ 特 許 出 願 公 開

⑩ 公 開 特 許 公 報 (A) 昭64-70523

審査請求 未請求

@Int_Cl_4 C 08 G 59/50

の発明の名称

識別記号

庁内整理番号

匈公開 昭和64年(1989) 3月16日

NJA

7602 - 4J

請求項の数 1

一液性エポキシ樹脂用マスターバツチ型硬化剤

②特 昭63-199019

四出 願 昭63(1988)8月11日

優先権主張 鈔1987年8月26日鈔米国(US)鈔89368

明 村 秀 含染 者 石 勿発 明 者 石 Л 忠 敬 ⑫発 明 老 高 橋 忢 静岡県富士市鮫島2番地の1 旭化成工業株式会社内 静岡県富士市鮫島2番地の1 旭化成工業株式会社内 静岡県富士市鮫島2番地の1 旭化成工業株式会社内

大 塚 ⑫発 眀 者 雅 奁 旭化成工業株式会社 の出 顖 人

岡山県倉敷市潮通3丁目13番1 旭化成工業株式会社内

大阪府大阪市北区堂島浜1丁目2番6号

砂代 理 弁理士 清 水 外1名

四月 太田 老野

1. 発明の名称

一液性エポキシ樹脂用マスターバッチ型硬化

2. 特許請求の範囲

1分子中に少なくとも1個の3級アミノ基を有 するが1級および2級アミノ基を有さず、波数16 30~1680cm-1の赤外線を吸収する結合基図と波数 1680~1725㎝-1の赤外線を吸収する結合基切を少 なくともその表面に有する粉末状アミン化合物(A)をコアとし、

上記アミン化合物(A) とエポキシ樹脂(B) の反 応生成物をシェルとしてなる硬化剤(「)と、

上記硬化剤(1)100 重量部に対して10~50.0 00賃量部のエポキシ樹脂(B) とからなる一液性エ 。 ポキシ樹脂配合品用マスターパッチ型硬化剤。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は新規な一液性エポキシ樹脂用マスター パッチ型硬化剤に関するものである。さらに詳し

くは、貯蔵安定性に優れ、かつエポキシ樹脂との 配合が容易であり、かつ配合時に加わる機械的な 剪断力によっても性能の変化が少なく、また、良 好な硬化特性を与える一波性エポキシ樹脂配合品 用マスターパッチ型硬化剤に関するものである。 (従来の技術)

エポキシ樹脂は、その硬化物が、機械的特性、 電気的特性、熱的特性、耐薬品性、接着性等の点 で優れた性能を有することから、堕料、電気電子 用絶縁材料、接着剤等の幅広い用途に使用されて

現在一般に使用されているエポキシ樹脂配合品 は、使用時にエポキシ樹脂と硬化剤の二液を混合 する。いわゆる二液性のものである。二液性エポ キシ樹脂配合品は室温で硬化しうる反面、エポキ シ樹脂と硬化剤を別々に保管し、必要に応じて両 者を計費、混合した後、使用する必要があるため、 保管や取り扱いが煩雑である。その上、可使時間 が限られているため、予め大量に混合しておくこ とができず、配合頻度が多くなり、能率の低下を

免がれない。

こうした二液性エポキシ樹脂配合品の問題を解 **沙する目的で、これまでいくつかの一液性エポキ** シ樹脂配合品が提案されてきている。例えば、ジ シアンジアミド、BF:-アミン蜡体、アミン塩、 変性イミダゾール化合物等の潜在性硬化剤をエポ キシ樹脂に配合したものがある。このうちジシア ンジアミドは古くから知られており、単独で硬化 させる場合、170 ℃以上の硬化温度が必要である。 ただし、配合品の貯蔵安定性は、常温保存の場合 に6 ケ月以上である。しかしながら、この硬化温 皮を130~150℃の低温に下げるために、促進剤 として、3 級アミン化合物、イミダゾール化合物、 ジメチル尿素化合物等を添加することが提案され ている。その結果、硬化温度は低下するが、逆に 可使時間(ポットライフ)が短くなり、ジシアン ジアミドの潜在性硬化の利点が十分に生かされな くなる。

その他の方法としては、エポキシ樹脂とアミン 系硬化剤を混合し、ただちに冷凍して反応の進行

ところが、この四つの特許公報に開示されているいずれの方法を用いても、このような窒温での分散操作時に適用される機械的剪断力によって、 一旦生成した不活性な裏面相が破壊され、目的と する配合品の貯蔵安定性が悪くなるという課題を を停止させたもの、モレキュラーシーブに硬化剤を吸着させたもの等がある。しかし、冷凍型、マイクロカブセル型、モレキュラーシープ型は、現状においては性能面、特に硬化物特性が不良であり、実用化は殆どされていない。

また、特公昭43-17654号公银では、硬化剤をマイクロカプセル化して一液化を図っているが、この硬化剤を使用してエポキシ樹脂を硬化させるときには、機械的にマイクロカプセルを破壊しなければならなくなる。したがって、現在求められている特に圧をかけないで硬化させるという条件には適合しない。

また、特別昭58-83023号公報では、硬化剤粒子 表面に存在する官能基をヨウ化メチル、酢酸等で 封鎖するものであるが、単なる表面官能基の封鎖 では、一液性に必要な特性、特に配合品の長い貯 蔵安定性を持たせることはできない。

また、特公昭58-55970号公報、特開昭59-27914 号公報、特開昭59-59720号公報およびヨーロッパ

有している.

(発明が解決しようとする課題)

前記のように、従来の技術における一液性エポキシ樹脂配合品においては、それぞれ課題を有しており、一液性エポキシ樹脂配合品としての利点を十分に生かしていない。

(課題を解決するための手段)

本発明者らは、従来の技術における一液性エポキシ樹脂配合品の有する課題を克服し、しかも、一液性エポキシ樹脂配合品としての利点を十分に生かすことができる硬化剤を開発するため鋭意研究を重ね、本発明をなすに至ったのである。

すなわち、本発明は;

1分子中に少なくとも1個の3級アミノ基を有するが1級および2級アミノ基を有さず、波数1630~1680~1725~1の赤外線を吸収する結合基(以と波数1680~1725~1の赤外線を吸収する結合基(分を少なくともその表面に有する粉末状アミン化合物(A)をコアとし、

上記アミン化合物(A) とエポキシ樹脂(B) の反

応生成物をシェルとしてなる硬化剤(1)と、

上記硬化剤(I)100 重量部に対して10~50.000重量部のエポキシ樹脂(B) とからなる一液性エポキシ樹脂用マスターバッチ型硬化剤(II)に関するものである。

さらに、本発明は下記の実施の態様をも包含するものである:

- 1. アミン化合物(A) が、エボキシ樹脂と水の存在下で3級アミノ基を有する化合物とイソシア ネート化合物とを反応させて得られる反応生成物である特許請求の範囲記載のマスターバッチ型硬化剤。
- 2. 3級アミノ基を有する化合物が、1 分子中にヒ ドロキシル基を1 個以上有するものである特許請 求の範囲記載のマスターバッチ型硬化剤。
- 3.3級アミノ基を有する化合物が第一アミン又は 第二アミンとエポキシ基を有する化合物との反応 生成物である前記第2項記載のマスターバッチ型 硬化剤。
- 4. 第一アミンがジエチルアミノプロピルアミン

ターパッチ型硬化剤。
6. エポキシ基を有する化合物がポリフェノール
化合物とエピクロルヒドリンとから合成されるものである前紀第3 項記載のマスターバッチ型硬化

5. 第二アミンがイミダゾール化合物、またはN

- メチルピペラジンである前紀第3 項記載のマス

である前記第3項記録

额.

- 7. 3級アミノ基を有する化合物が、イミダゾール 化合物とピスフェノールA型エポキシ樹脂との反 応生成物である特許請求の範囲記載のマスター パッチ型硬化剤。
- 8. 3級アミノ基を有する化合物が、イミダゾール 化合物とモノエポキシ化合物との反応生成物である特許請求の範囲記載のマスターバッチ型硬化剤。 9. イソシアネート化合物が、トリレンジイソシアネート、4.4 - ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネートから選ばれた少なくとも1 種類のものである特許請求の範囲記載のマスターバッチ型硬化剤。
- 10. アミン化合物(A) において、波数が1630~1680cm 'の赤外線を吸収する結合益仪が、ウレア基であり、かつ1680~1725cm 'の赤外線を吸収する結合基例がピウレット基である特許請求の範囲記載のマスターバッチ型硬化剤。
- 11. アミン化合物(A) において、結合基図の濃度 が1~1000meq/Kgである、特許請求の範囲配載の マスターパッチ型硬化剤。
- 12. アミン化合物(A) において、結合基切の濃度 が1~1000meq/Kgである、特許請求の範囲記載の マスターバッチ型硬化剤。
- 13. アミン化合物(A) が、波敷が1730~1755cm の赤外線を吸収する結合基(2)を有するものである 特許論求の範囲記載のマスターバッチ型硬化剤。
- 14. 結合基心がウレタン基である前記第13項記載 のマスターパッチ型硬化剤。
- 15. アミン化合物(A) の結合基(X)、(Y)、および(2) の濃度がそれぞれ1 ~1000meq/Kg、1 ~1000meq/Kg、 なよび1 ~200meq/Kg 、である、前配第13項記載のマスターバッチ型硬化剤。

- 16. シェルが、アミン化合物(A) 対エポキシ樹脂(B) の重量比90/10 ~20/80 の割合で反応させて得られたものである特許請求の範囲配載のマスターバッチ型硬化剤。
- 17. コアとシェルの比が重量比で100/0.1 ~100/50である特許請求の範囲記載のマスターバッチ型 で化剤。
- 18. エポキシ樹脂(B) がポリフェノールとエピクロルヒドリンの縮合物である特許請求の範囲記載のマスターバッチ型硬化剤。
- 19. エポキシ樹脂(B) がピスフェノールA型エポキシ樹脂またはピスフェノールP型エポキシ樹脂である前記第19項記載のマスターバッチ型硬化剤。
 20. (I)の硬化剤とエポキシ樹脂(B)の比率が
 100/100~100/500である特許請求の範囲記載のマスターバッチ型硬化剤。
- 21. 1 分子中に少なくとも1 個の3 級アミノ基を 有するが1 級および2 級アミノ基を有さず、波数 1630~1680 cm-1の赤外線を吸収する結合基(V)と波 数1680~1725 cm-1の赤外線を吸収する結合基(V)と

を少なくともその表面に有する粉末状アミン化合物(A) をコアとし、

上記アミン化合物(A) とエポキン樹脂の反応生成物をシェルとしてなる硬化剤(I)と、

上記硬化剂 (I) 100 重量部に対して10~50.0 00重量部のエポキシ樹脂(B) と、

グアニジン化合物、芳香族アミン化合物、カルボン酸無水物化合物およびヒドラジド化合物から選ばれる一つまたは二つ以上の化合物(C) とからなり、硬化剤(I)と化合物(C) の重量割合が、

である一液性エポキシ樹脂用マスターバッチ型 硬化剤。

22. 化合物(C) がジシアンジアミドであり、かつ 硬化剂(1) および(C) の重量割合が、

である前記第21項記載の一被性エポキシ樹脂用マスターバッチ型硬化剤。

60分の硬化で充分な性能を発揮し、また、130 ~ 200 での高温では数十秒~数分という速硬化性を 有する。

(4)機械的な外力を加えなくても、所定の温度以 上の加熱によって、良好な硬化物を与える。

(5)本発明の硬化剤を用いたエポキシ樹脂配合品において、配合するために機械的剪断力が加えられる前後で、配合品の可使時間は殆ど変化しない。

23. 化合物(C) が無水メチルヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水メチルナジック酸および無水ヘキサヒドロフタル酸から選ばれた少なくとも1 種のものであり、かつ硬化剂(I) および(C) の重量割合が、

である前記第21項記載の一液性エポキシ樹脂用マスターバッチ型硬化剤。

本発明の一液性エポキシ樹脂用マスターバッチ型硬化剤は、従来の技術に比べて、以下の優れた 特徴を有している。

(1)マスターバッチ型硬化剤なので、エポキシ樹脂に容易に均一に分散する。

(2) 長い可使時間(ポットライフ)を有している。 0 ででの可使時間が長いことは言うまでもないが、 25~50での比較的高い温度においても、2 週間~ 1 年の長い可使時間を有している。

(3)硬化に要する温度が低く、かつ硬化時間が短い。60~130 ℃の比較的低い温度においても5 ~

いて表面処理された粉末状硬化剤の場合には、一 旦形成された不活性な表面層が破壊され易く、そ の結果、極端な場合には、全く表面処理した効果 がみられないという結果を生じていた。

以下に、本発明の一液性エポキシ樹脂配合品用マスターバッチ型硬化剤を構成する成分について 詳細に説明する。

本発明のマスターバッチ型硬化剤は、硬化剤 (1)とエポキシ樹脂(B)が一定の比率で混合されてなるものである。

まず、硬化剤(1)の説明を行う。硬化剤(1)は、粉末状アミン化合物(A)からなるコアと、 このアミン化合物(A)とエポキシ樹脂(B)の反応 生成物からなるシェルから構成されている。

本発明でいう粉末状アミン化合物(A) は、3級アミノ基を有する粉末状アミン化合物(A)を処理して得られるものである。この3級アミノ基を有する粉末状アミン化合物(A)として、以下のものを挙げることができる。

(1)分子中に一個以上の1級アミノ基を有する化

益問昭64-70523(5)

合物および/または アミノ基を有する化合物 と、カルボン酸化合物、スルホン酸化合物、イソシアネート化合物またはエポキシ化合物との反応 生成物 (a-1);ただし、反応生成物の分子中に、1級アミノ基または2級アミノ基を有しているものは除外する。

(2)イミダゾール化合物 (a-2)

次に、反応生成物 (a-1) の原料について説明する。

1分子中に1個以上の1級アミノ基を有する化 合物としては、脂肪族第一アミン、脂環式第一ア ミン、芳香族第一アミンのいずれを用いてもよい。

脂肪族第一アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、メタノールアミン、エタノールアミン、プロパノールアミン、等を挙げることができる。

脂環式第一アミンとしては、例えば、シクロへ

キシルアミン、イソ ンジアミン、アミノエチ ルピペラジン及びジェチルアミノプロピルアミン 等を挙げることができる。

芳香族第一アミンとしては、アニリン、トルイジン、ジアミノジフェニルメタン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等を挙げることができる。

1 分子中に1 個以上の2 級アミノ基を有する化合物としては、脂肪族第二アミン、脂型式第二アミン、オミダゾール化合物、イミダゾリン化合物のいずれを用いてもよい。

脂肪族第二アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジブロピルアミン、ジ ブチルアミン、ジベンチルアミン、ジヘキシルア ミン、ジメタノールアミン、ジエタノールアミン、 ジプロパノールアミン等を挙げることができる。

脂環式第二アミンとしては、例えば、ジシクロ ヘキシルアミン、N-メチルピペラジン等を挙げる ことができる。

芳香族第二アミンとしては、例えば、ジフェニルアミン、フェニルメチルアミン、フェニルメチ

ルアミン等を挙げることができる。

イミダゾール化合物としては、イミダゾール、2-メチルイミダゾール、2-メチルイミダゾール、2-ドデシルイミダ 2-イソプロピルイミダゾール、2-ドデシルイミダ ゾール、2-ウンデシルイミダゾール、2-フェニル イミダゾール、2-ヘアタデシルイミダゾール、2-エチル-4-メチルイミダゾール及びここに挙げた イミダゾール化合物のカルボン酸塩等を挙げるこ とができる。

イミダゾリン化合物としては、2-メチルイミダ ゾリン、2-フェニルイミダゾリン、2-ウンデシル イミダゾリン、2-ヘプタデシルイミダゾリン等を 挙げることができる。

反応生成物(a-1) の他の原料の例を以下に述べ

カルボン酸化合物: 例えば、コハク酸、アジピン酸、セパシン酸、フタル酸、ダイマー酸等。

スルホン酸化合物: 例えば、エタンスルホン酸、 p.トルエンスルホン酸等。

イソシアネート化合物: 例えば、トリレンジイ

ソシアネート、4,4'- ジフェニルメタンジイソシ アネート、ヘキサメチレンジイソシアネート等。

エポキシ化合物としては、モノエポキシ化合物、 ジエポキシ化合物、多価エポキシ化合物のいずれ 又はそれらの混合物を用いてもよい。

モノエボキシ化合物としては、ブチルグリシジルエーテル、ヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、パラ-tert-ブチルフェニルグリシジルエーテル、エチレンオキシド、プロピレンオキシド、パラキシリルグリシジルエーテル、グリシジルインサート、グリシジルベンゾエート、エポキシ樹脂等を挙げることができる。

ジェポキシ化合物としては、ピスフェノールA 、ピスフェノールP 、カテコール、レゾルシンテトラブロモピスフェノールA 等の二価のフェノー ル化合物: またはエチレングリコール、プロピレ ングリコール、ポリエチレングリコール、ポリア ロピレングリコール、1.4-ブタンジオール、ネオ ペンチルグリコー の二価アルコール化合物:p
- オキシ安息香酸、 B - オキシナフトエ酸等のヒドロキシカルボン酸: フタル酸、テレフタル酸、
のキサヒドロフタル酸等のジカルボン酸とエピクロルヒドリンを反応させて得られるジグリシジル化合物:3.4- エポキシ-6- メチルシクロヘキシルメチル-3.4- エポキシ-6- メチルシクロヘキサンカルボキシレート、3.4-エポキシシクロヘキシルメチル(3.4- エポキシシクロヘキサン) カルボキシレート等の脂環式エポキシ化合物を挙げることができる。

多価エポキシ化合物としては、フェノールノボ ラック型エポキシ樹脂、クレゾールノボラック型 エポキシ樹脂等を用いることができる。

好ましいアミン化合物(a-1) は、脂環式第二アミンとモノエポキン化合物との反応生成物であり、第二アミンの活性水素原子1 当量に、エポキン化合物のエポキン基1 当量を反応させて得られるものである。より好ましくは、脂環式第二アミンがN-メチルピペラジンの場合である。

の付加化合物が挙げられる。

使用されるイミダゾール化合物としては、イミダゾール、2 - メチルイミダゾール、2-エチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-ウンデシルイミダゾール、2-フェニルイミダゾール等とそのカルボン酸塩が挙げられる。

カルボン酸としては、酢酸、乳酸、サリチル酸、 安息香酸、アジピン酸、フタル酸、クエン酸、酒 石酸、マレイン酸、トリメリット酸等が挙げられる。

また、使用される1 分子中に1 個以上のエポキシ基を有する化合物としては、ブチルグリシジルエーテル、フェニルグリシジルエーテル、ファーキシリルグリシジルエーテル、グリシジルマーテル、グリシジルへキソエート、グリシジルペンプエート、アリルグリシジルエーテル、アーにブチルフェニルグリシジルエーテル、エチレンオキサイド、プロピレンオキサイド等のモノエポキ

イミダゾール化 (8-2) としては、1-シアノエチル-2- ウンデシル- イミダゾール- トリメリテート、イミダゾリルコハク酸、2-メチルイミダゾールコハク酸、2-エチルイミダゾールコハク酸、1-シアノエチル-2- メチルイミダゾール、1-シアノエチル-2- ウンデシルイミダゾール、1-シアノエチル-2- フェニルイミダゾール等を挙げることができる。

これらのアミン化合物(a)の中で、硬化の容易性、 貯蔵安定性が特に優れたものを得るためには、1 分子中にヒドロキシル基を1 個以上有するイミダ ゾール誘導体が好ましい。

本発明に用いられるさらに好ましいアミン化合物は、イミダゾール化合物と分子中に少なくとも2個のエポキン基を有する化合物との反応により生成する、分子中に少なくとも2個のヒドロキシル基を有する化合物である。そのようなイミダゾール誘導体としては、例えばイミダゾール化合物あるいはイミダゾール化合物のカルボン酸塩と、1分子中に1個以上のエポキシ基を有する化合物

シ化合物、あるいはエポキシ樹脂が挙げられる。

優れた硬化性、貯蔵安定性を得るためには、イミダゾール化合物として、2・メチルイミダゾールあるいは2・エチル・4・メチルイミダゾールから選ばれた一つもしくはその混合物が好ましく、また、エポキシ化合物としては、ピスフェノールAとエピクロルヒドリンを反応して得られるエポキシ樹脂が最も好ましい。

このイミダゾール化合物とエポキシ化合物の付加物は、1~5 モルのイミダゾールと1~5 モルのイミダゾールと1~5 モルのエポキシ化合物を反応させ、従来公知の一般的方法で行うことができる。

3 級アミノ基を有する粉末状アミン化合物(A)の平均粒径は特別に制限するものではないが、平均粒径が大きすぎる場合、硬化性を低下させたり、硬化物の機械的な物性を損なうことがある。好ましくは平均粒径50μを越えないものであり、これ以上平均粒径が大きくなると硬化物の物性において、耐変品性、機械的強度の低下を招く。最適には10μを越えないものである。

本発明でいう拉径とは、日本粉体工業技術協会 編「融集工学」(昭和57年発行)の変ー4.4 中 に示される遠心沈降法または沈降法で測定される ストークス径を指すものである。また、平均粒径 は、モード径を指すものである。

本発明で用いられる化合物(A) において、1 級アミノ基または2 級アミノ基を有しているものを除外する目的は、これらの基を有する化合物をエポキシ樹脂、とりわけ液状エポキシ樹脂に配合する時に、配合品の粘度が極端に高くなるのを避けるためである。

粉末状アミン化合物(A) 中の1630~1680cm⁻ '及び1680~1725cm⁻ 'の赤外線を吸収する結合基は、 赤外分光光度計を用いて測定することができるが、 フーリエ変換式赤外分光光度計を用いることによ り、より詳細に解析できる。

1630~1680cm 'の吸収を有する結合基別のうち、 特に有用なものとして、ウレア結合を挙げること ができる。

1680~1725cm-1の吸収を有する結合基(がのうち、

脂環式ジイソシアネートの例としては、イソホ ロンジイソシアネート、4.4'- ジンクロヘキシル メタンジイソシアネート等を挙げることができる。

芳香族ジイソシアネートの例としては、トリレンジイソシアネート、4.4'- ジフェニルメタンジイソシアネート、キシリレンジイソシアネートおよびポリメチレンポリフェニルポリイソシアネート等を挙げることができる。

脂肪族トリイソシアネートの例としては、1.3. 6-トリイソシアネートメチルヘキサン等を挙げる ことができる。

また、上記のイソシアネート化合物と1分子中に水酸基を有する化合物とのアダクト、例えば、イソシアネート化合物とα、ω・ジヒドロキシアルカン類との反応生成物、イソシアネート化合物とピスフェノール類との反応生成物も用いることができる。イソシアネート化合物と水との予備反応生成物も使用することができる。

結合基図およびMの代表であるウレア結合またはピュレット結合を生成させるための1分子中に

特に有用なものとして、ビュレット結合を挙げる ことができる。

このウレア結合、ビュレット結合は、イソシアネート化合物と水または! 分子中に1 個以上の1 級アミノ基を有するアミン化合物との反応により生成される。

結合基例の代表であるウレア結合、及び(5)の代表であるビュレット結合を生成するために用いられるイソシアネート化合物としては、1分子中に1個以上のイソシアネート基を有する化合物であればよいが、好ましくは1分子中に2個以上のイソシアネート基を有する化合物を用いることである。代表的なイソシアネート、脂類式ジイソシアネート、脂肪族トリイソシアネートを挙げることができる。

脂肪族ジイソシアネートの例としては、エチレンジイソシアネート、プロピレンジイソシアネート、プチレンジイソシアネート、ヘキサメチレンジイソシアネート等を挙げることができる。

1 個以上の1 級アミノ基を有するアミン化合物と しては、脂肪族アミン、脂環族アミン、芳香族ア ミンを使用することができる。

脂肪族アミンの例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン等のアルキルアミン: エチレンジアミン、プロピレンジアミン、ブチレンジアミン等のアルキレンジアミン: ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミンを挙げることができる。

脂型式アミンの例としては、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロペンチルアミン、イソホロンジアミン等を挙げることができる。

芳香族アミンとしては、アニリン、トルイジン、ベンジルアミン、ナフチルアミン、ジアミノジフェニルスルホン等を挙げることができる。

粉末状アミン化合物(A) において、結合基(X)お

よび結合ないは、それぞれ1~1000meq/Kgおよび1~1000meq/Kgの範囲の温度を有していることが好ましい。結合基区の温度が1meq/Kg より低い場合には化合物(A) の機械的な強さが充分でないため、配合品の可使時間が短い。

ここで、 初末状アミン化合物 (A) の「機械的強さ」とは、(潜在性) 硬化剤 (II) の製造に当たり、ロールあるいはその他の装置の機械的別断力により、エポキン樹脂中に硬化剤やアミン化合物 (A) 等を均一に分散させるが、その機械的剪断強さにより該化合物が破壊されない強さを意味している。

また、1000meq/Kgより高い場合は硬化性が駆くなり、高温硬化が必要になるため実用的でない。 さらに好ましい結合基例の温度範囲は10~300meq /Kg である。

結合基(y)の温度が1 meq/kg より低い場合は化合物(A) の機械的強さが充分でないため配合品の可使時間が短い。また、1000meq/kg より高くなると硬化性が駆く、高温硬化が必要になるため実

脂肪族不飽和アルコールとしては、アリルアル コール、クロチルアルコール、プロパルギルアル コール等を挙げることができる。

脂環式アルコールとしては、シクロペンタノー

用的でない。さらに好ましい結合基(y)の範囲は10 $\sim 200\ meq/Kg$ である。

本発明の粉末状アミン化合物(A) として好ましいのは、結合基(X)および結合基(Y)の他に、波数が1730~1755cm 'の赤外線を吸収する結合基(Z)を有することである。

この結合基(2)のうち、特に有用なものは、ウレタン結合等である。このウレタン結合は、イソシアネート化合物と1分子中に1個以上の水酸基を有する化合物との反応により生成される。

結合茲(2)の代衷であるウレタン結合を生成する ために用いられる1分子中に1個以上の水酸基を 有する化合物としては、脂肪族飽和アルコール、 脂肪族不飽和アルコール、脂環式アルコール、芳 香族アルコール等のアルコール化合物:フェノー ル化合物を用いることができる。

脂肪族アルコールとしては、メチルアルコール、 エチルアルコール、プロピルアルコール、プチル アルコール、アミルアルコール、ヘキシルアル コール、ヘプチルアルコール、オクチルアルコー

ル、シクロヘキサノール等を挙げることができる。 芳香族アルコールとしては、ベンジルアルコー ル、シンナミルアルコール等のモノアルコール類 を挙げることができる。

これらのアルコールにおいては、第一、第二または第三アルコールのいずれでもよい。また、1分子中に1個以上のエポキシ基を有する化合物と、1分子中に1個以上の水酸基、カルボキシル基、1級または2級アミノ基、メルカプト基を有する化合物との反応により得られる2級水酸基を1分子中に1個以上有する化合物もアルコール化合物として用いることができる。

フェノール化合物としては、石炭酸、クレゾール、キシレノール、カルバクロール、チモール、ナフトール等の一価フェノール;カテコール、レゾルシン、ヒドロキノン、ピスフェノールA、ピスフェノールF等の二価フェノール;ピロガロール、フロログルシン等の三価フェノールを挙げることができる。

これら一分子中に一個以上の水酸基を有する化

合物として好ましいのは、二価以上の水酸基を有するアルコール化合物またはフェノール化合物である。

粉末状アミン化合物(A) 中の結合基(2)の好ましい濃度範囲は、1~200meq/Kgである。結合基(2)の濃度が1meq/Kgより低い場合には、配合品の可使時間が短い。また、200meq/Kgより高い場合は硬化性が悪く、高温での硬化条件が必要となるため、実用的ではない。さらに好ましい結合基(2)の濃度範囲は、5~100meq/Kgである。

また結合基(X)と結合基(Y)の濃度の合計に対する 結合基(X)の濃度比

結合签(2)

箱合基(2) + 結合基(3)

が0.05~1.0 の範囲が好ましい。 濃度比が0.05より小さい場合には、化合物(A) の凝集力が強くなり、硬化温度を実用範囲より高めに設定する必要があり、1.0 より大きい場合には逆に化合物(A) の凝集力が弱く、配合品の貯蔵安定性に欠け、機械的剪断力への抵抗性も低下する。

(モデル化合物 M 3)

本発明で用いられるエポキシ樹脂(B) は、特に 限定するものではなく、平均して1 分子当たり2 個以上のエポキシ茲を有するものであればよい。 結合基()および結合基()の濃度の定量は、それぞれの結合基を有する式(1)および(2)に示すモデル化合物と、結合基()および結合基()がを有せず、かつ特異な波長の赤外線を吸収する官能基を有する標準物質を用いて、検量線を作成した後に、標準物質と粉末状アミン化合物(A)を一定の比率で混合して、その混合物の赤外線の吸収強度、すなわち、1630~1680~1725~1の吸収度を測定し、検量線から濃度を算出すればよい。模準物質の例として、2.3-ジメチル-2.3-ジシアノブタンを挙げることができ、この物質の2220~2250~11日で含る

例えば、ピスフェノールA、ピスフェノールF、 カテコール、レゾルシンなどの多価フェノール; またはグリセリンやポリエチレングリコールのよ うな多価アルコールとエピクロルヒドリンを反応 させて得られるポリグリシジルエーテル:あるい はpーオキシ安息香酸、Bーオキシナフトエ酸の ようなヒドロキシカルボン酸とエピクロルヒドリ ンを反応させて得られるグリシジルエーテルエス テル;あるいはフタル酸、テレフタル酸のような ポリカルボン酸とエピクロルヒドリンを反応させ て得られるポリグリシジルエステル:あるいは4. **イ゚・ジアミノジフェニルメタンや≋・アミノフェ** ノール等とエピクロルヒドリンを反応させて得ら れるグリシジルアミン化合物:さらには、エポキ シ化ノポラック樹脂、エポキシ化クレゾールノポ ラック樹脂、エポキシ化ポリオレフェン等が挙げ られるが、これらに限定されるものではない。好 ましいエポキシ樹脂は、ピスフェノールAのジグ リシジルエーテルである。

本発明で用いられるマスターバッチ型硬化剤(

回)を製造する方法として、例えばエポキシ樹脂(B)中に3級アミノ落を有する粉末状化合物(a)を予め分散させておき、これにイソシアネート化合物を添加し、水の存在下で反応を行わしめる方法を挙げることができる。この反応によってアの変面にシェルを形成させることができる。コアである粉末状アミン化合物(A)中の結合基(X)、(Y)、(Z)の濃度調節は、①3級アミノ基を有する化合物(A)に対する水分量、②3級アミノ基を有する化合物(A)に対するイソシアネート化合物量及びイソシアネートの種類を変えることによって行うことができる。

エポキシ樹脂(B) 中に3 級アミノ基を有する粉 末状化合物(A) を予め分散させるには、三本ロー ル等の機械的剪断力を加えながら混合することが 好ましい。

エポヰシ樹脂(B) は前記のエポキシ樹脂(B) の 中から選ばれるものである。

粉末状アミン化合物(A) からなるコアの裏面を 覆うシェルの厚みは、平均層厚で50~10000 人が

能を発揮しない。好ましくは1/1 ~1/5 である。

本発明のマスターバッチ型硬化剤は、室温で液 状又はペースト状である。

エポキシ樹脂に本発明のマスターバッチ型硬化 剤を均一に混合して配合品を得るためには、特別 の装置を必要とせず、十分に復神するだけでよい。 また三本ロールなどの機械的剪断力を加えながら 混合してもよい。

 好ましい。50人以下では可使時間が十分でなく、10000 人以上では硬化温度が高くなりすぎるため 実用的でない。ここでいう層の厚みは、透過型電 子類微鏡により観察される。特に好ましいシェル の厚みは、平均層厚で100 ~1000人である。

本発明のマスターバッチ型硬化剤(II) の必須の成分であるエポキシ樹脂(B) は、3 級アミノ基を有する化合物(a)を水の存在下でイソシアネート化合物と反応させるための媒体としての役割を有しているが、さらにエポキシ樹脂(B) の一部が粉末状アミン化合物(A) と反応してシェルを形成することによって硬化剤としての貯蔵安定性を向上させうるという積極的な役割をも有している。

本発明で使用する粉末状アミン化合物(A) とエポキシ樹脂(B) との重量比率は1/0.1 ~1/500 の範囲である。1/0.1 より大きい場合には、粉末状アミン化合物(A) がエポキシ樹脂(B) 中に分散できない。

1/500 より小さい場合には、硬化剤としての性

リカルボン酸とエピクロルヒドリンを反応させて得られるポリグリンジルエステル; あるいは4.4'
- ジアミノジフェニルメタンや - アミノフェノール等とエピクロルヒドリンを反応させて得られるグリンジルアミン化合物; さらにはエボキシ化ノボラック樹脂、エポキシ化ポリオレフィンなどが挙げられるが、これらに限定されるものではない。

好ましいエポキシ樹脂は、ピスフェノールAの ジグリシジルエーテルである。

本発明のマスターバッチ型硬化剤とエポキシ樹脂の混合比は、硬化性、硬化物の特性の面から決定されるものであるが、好ましくはエポキシ樹脂100 重量部に対して、マスターバッチ型硬化剤を0.1~100 重量部を用いればよい。0.1 重量部を 高の場合には、十分な硬化性能を得るのに長い時間を必要として実用的でないし、100 重量部を超える場合には、エポキシ樹脂と混合した時に配合品の粘度が高くなり、硬化過程において発熱が大きくて硬化のコントロールが困難になる。 本発明のマスターバッチ型硬化剤を用いる一液 性エポキシ切脂配合品には、本発明の硬化剤以外 の硬化剤を併用してもよい。併用する硬化剤とし ては、例えば、以下のものを挙げることができる。

ジシアンジアミド、メチルグアニジン、エチル グアニジン、プロピルグアニジン、ブチルグアニ ジン、ジメチルグアニジン、トリメチルグアニジ ン、フェニルグアニジン、ジフェニルグアニジン、 トルイルグアニジン等のグアニジン類:コハク酸 ジヒドラジド、アジピン酸ジヒドラジド、グルタ ル酸ジヒドラジド、セパシン酸ジヒドラジド、フ タル酸ジヒドラジド、イソフタル酸ジヒドラジド、 テレフタル酸ジヒドラジド、p-オキシ安息香酸ヒ ドラジド、サリチル酸ヒドラジド、フェニルアミ ノプロピオン酸ヒドラジド、マレイン酸ジヒドラ ジド等の酸ヒドラジド類: ジアミノジフェニルメ タン、ジアミノジフェニルスルホン、メタフェニ レンジアミン、パラフェニレンジアミン、ジアミ ノトルエン、ジアミノキシレン、ジアミノジフェ ニルアミン、ジアミノピフェニル、ピス(3- クロ

サヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水メチルナンック酸等の酸無水物であり、

1 ≤ 酸無水物 ≤ 1.000

の範囲で用いると、耐熱性、耐水性に優れ、か つ硬化性と貯蔵安定性に優れた性質を与える。

また、本発明のマスターバッチ型硬化剤を用いて一液性エポキシ樹脂配合品を製造する場合には、所望によって、増量剤、補強材、充壌材、飼料、有機溶剤、反応性希釈剤、非反応性希釈剤、変性エポキシ樹脂等を添加することができる。

充塡材の例としては、例えば、コールタール、 ガラス繊維、アスペスト繊維、ほう素繊維、炭素 繊維、セルロース、ポリエチレン粉、ポリプロピ レン粉、石英粉、鉱物性けい酸塩、雲母、アスペ スト粉、スレート粉、カオリン、酸化アルミニウ ム三水和物、水酸化アルミニウム、チョーク粉、 石こう、炭酸カルシウム、三酸化アンチモン、ペ ントン、シリカ、エアロゾル、リトポン、バライ ル-4- アミノフェニル)メタン、ジアミノ安息香酸などの芳香族アミン類:無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水へキサヒドロフタル酸、無水テトラヒドロフタル酸、無水-3- クロロフタル酸、無水-4- クロロフタル酸、無水ベンゾフェノンテトラカルボン酸、無水コハク酸、無水ジメチルコハク酸、無水ジメチルコハク酸、無水ジクロルコハク酸、メチルナジック酸、ボジルコハク酸、無水クロレンデック酸、無水マレイン酸等の酸無水物である。

好ましいのはグアニジン化合物および酸無水物 である。

さらに好ましいグアニジン化合物は、ジシアン ジアミドであり、接着強度の向上を図ることがで きる。この場合には、

の範囲で用いると、硬化性と貯蔵安定性の両立 が計り易い。

また酸無水物として好ましいものは、無水ヘキ

ト、二酸化チタン、カーボンブラック、グラファイト、酸化鉄、金、アルミニウム粉、鉄粉等を挙げることができ、これらは、いずれもその用途に応じて有効に用いられる。

有機溶剤としては、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル等が挙げられる。

反応性希釈剤としては、例えば、ブチルグリシジルエーテル、N.N'・ジグリシジル- o-トルイジン、フェニルグリシジルエーテル、スチレンオキサイド、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等が挙げられる。

非反応性希収剤としては、例えば、ジオクチル フタレート、ジブチルフクレート、ジオクチルア ジペート、石油系溶剤等が挙げられる。

変性エポキシ樹脂としては、例えば、ウレタン 変性エポキシ樹脂、ゴム変性エポキシ樹脂、アル キッド変性エポキシ樹脂等が挙げられる。

H

開昭 64-70523 (12)

参考例 1 (3 級アミノ基を有する化合物(a)の合成)

ピスフェノールA型エポキシ樹脂ABR-330(旭化成工業構製、エポキシ当量185)1 モルと2-メチルイミダゾール1.5 モルを、メタノールとトルエン中、80℃で反応させた後、溶媒を被圧で留去することによって、固体状化合物を得た。

これを粉砕して、平均粒径5 μの粉末状アミン 化合物X-1 を掛た。

参考例2(同上)

ピスフェノールA型エポキン樹脂AER-661 R (旭化成工業蝌製、エポキン当量470) 1 モルとジメチルアミン2 モルを反応させて、固体状化合物を得た。これを粉砕して、平均粒径 8 μの粉末状アミン化合物 X - 2 を得た。

参考例3(同上)

フェニルグリシジルエーテル4モルにジアミノ ジフェニルメタン1モルを反応させて、固体状化 合物を得た。これを粉砕して、平均粒径5μの粉 末状アミン化合物X-3を得た。

~1660 cn-'の吸収帯の面積と複単物質の面積比を とり、実測値をプロットすることによって、重量 比と面積比の間に直線関係(y=bx)があることを示 している。

同様にして、モデル化合物(M 2)

の1680~1725 ca⁻¹の吸収帯面積、およびモデル化 合物 (M3)

の 1730 ~1755cm-'の吸収帯面積と根準物質の 2 220 ~2250cm-'の吸収帯の面積比と、実際の頂量 参考例4 (結合基x、y、zを有する化合物の合成)

ジフェニルメタンジイソシアネート1 モルに0.5 モルのヘキサメチレンジアミンを予め60℃で2時間反応させておき、これにピスフェノールA0.75モルを加えて、さらに反応を行うとこによってポリマーP を得た。このポリマーP の I R スペクトルを測定した結果、1630~1680 cm・と1680~1725 cm・1 に吸収役が得られた。

参考例5 (検量線の作成)

報準物質として2.3-ジメチル-2.3-ジシアノブタンを用い、これとモデル化合物(M1)

とから、実際の重量比とモデル化合物 (M1) の1630~1660 ca・の吸収帯の面積と、 模準物質の2220~2250 ca・の吸収帯の面積比とを関係づける検量線を作成した。その結果を第1図に示す。

すなわち、縦軸にはモデル化合物(M1)と根準物質の重量比を、横軸にはモデル化合物(M1)の1630

比を関係づける検量線を作成した。その結果を同じく第1回に示す。

第1図から測定サンブルの重量当たりの各結合 基温度を求めるのは以下の方法のとおりである。

すなわち、柏秤した測定サンブルと根準物質を混合し、IRチャートから1630~1660 cm・'、1680~1725 cm・'、1730~1755 cm・'及び2220~2250 cm・'のピーク面積を求める。この面積からそれぞれの面積比、すなわち1630~1660 cm・'と2220~2250 cm・'のピーク面積比及び1730~1755 cm・'と2220~2250 cm・'のピーク面積比及び1730~1755 cm・'と2220~2250 cm・'のピーク面積比を求め、第1 図からそれぞれのピークに対応する直線、例えば1630~1660 cm・'の場合にはモデル化合物(M1)に関する直線を用いてモデル化合物(M1)/ 模準物質の重量比を求め

この重量比からモデル化合物(M1)のウレア基当量/ 根準物質重量に投算することによって、測定サンプルの1630~1660cm⁻¹の吸収を有する結合基当量を求める。得られた結合基当量を測定サンプ

ルの重量で割ることによって、測定サンプル重量 当たりの結合基濃度が得られる。 その他の吸収に おいても同様の方法を用いればよい。

(なお、第1 図において、x ,yは各結合法/ 標 準物質に基づいている。)

なお、IRスペクトルの測定には、日本電子蝌製 FT-IR(JIR-100)を用いた。

実施例1

参考例4 で得られたポリマーP 1gを、99g のキシレン/ メタノール(1/1) の混合溶剤に溶解した。この溶液中に、予め平均5 μに粉砕した1-シアノエチル-2- フェニルイミダゾール(2PZ-CN)50g を加えて、25でで5 分間攪拌した後、すみやかに建過を行って、ケーキを違別し、そのケーキを50でで5 ~10mHgの減圧下に混合溶剤を探散させた。その際、建液中の不揮発分を測定したところ、0.3 重量%であり、残りの0.7 重量%は2PZ-CNに付着したものである。

こうして得られた粉末状化合物を10g 採り、これにAER-331(ピスフェノールA型エポキシ樹脂、

平均で5 μ に粉砕した2PZ-CRの 108に46R-331 1408を加えて、三本ロールを用いて配合品 F-2 を得た。 F-2 の初期粘度は25 でで250 ポイズであり、これを50 での雰囲気に1 週間放置したところ、配合品はゲル化した。

実施例2

(マスターバッチ型硬化剤の合成)

操件器、温度検出器を備えた1 ℓのセパラブルフラスコ中で、AER-331 の 400g に粉末アミン化合物x-1 の 200g 、さらに水5gを加えて均一に混合したのち、トリレンジイソシアネート(TDI)18g を加えて、40℃で提拌しながら2時間反応を続けたところ、残存するTDI は0.1g以下となり、マスターバッチ型硬化剤R-2 を得た。

(マスターバッチ型硬化剤の分析)

マスターバッチ型硬化剤B - 2 の15g をキシレン100gと混合して1 昼夜放置したところ、キシレンに不溶の成分が沈澱してきた。この沈澱物を雄別したところ、5.6gの沈澱物が得られた。濾液からキシレンを波圧乾燥して、残った粘稠な液体は

旭化成剱製、エポキン当量189)20g を加えて三本ロールを用いて均一に混合して、マスターバッチ型硬化列R - 1 の30g を得た。

得られたマスターバッチ型硬化剤B − 1 の粘度は22万cps(25℃)であった。また40℃の雰囲気に1 週間放置した後の粘度は25万cps であり、殆んど粘度の変化はなかった。

このマスターバッチ型硬化剤30g に、更にAER-331 の 120g を加えて、三本ロールを用いて、12 0g/分の吐出量で混合し、配合品F-1を得た。

配合品P-1を50℃で放置して粘度の変化を調べた。配合品の初期粘度は、25℃で190 ポイズであった。50℃で1週間経過後の粘度は250ポイズであり、粘度倍数は1.32倍であった。

また、配合品F-1の120 ででのゲル化時間を 熱板上でのストロークキュア法で調べたところ、 210 秒であり、硬化可能であることがわかった。

比較例1

1 R分析、K!ーHCL 方法によるエポキシ当量の測 定によりAER -331 であると同定された。

一方、沈澱物を40℃で減圧乾燥させて分析用サンプルを得た。この分析用サンプル3.3gに標準物質として2.3-ジメチル-2.3-ジシアノブタン10㎏を加え、乳鉢で粉砕混合後、その配合品2㎏を50㎏のKBrと共に粉砕し、錠剤成型機を用いて直径8㎏をの錠剤を作成した。

本錠剤を用いて、日本電子(制製JIR-100 型のFT - IR 測定装置により赤外スペクトル図を得た。 得られた図のうち、1500~1800 cm - 1 の赤外線の波長領域におけるスペクトル図から予め作成した検量線を用いて、結合基図の濃度を求めたところ、55 meq/Kg - 粉末状プミン化合物であった。

1680~1725cm 'の被長領域および1730~1755cm 'の被長領域の吸収も全く同様にして、結合基(y)、結合基(z)を求めたところ、それぞれ25meq/Kg、15meq/Kgであった。

本硬化剂 H - 2 の30g に、AER -331 の100 g およびエポメートB -002(油化シェル社製硬化

利)40gを加え、25℃で硬化させて電子凱微鏡用の 試料を作成した。その試料をスライスして、透過 型電子顕微鏡により断面を攝影し、第2 図に示し た。第2 図からシェルが形成されていることが分 かる。

(配合品の作成)

AER-331 の 100g に、マスターバッチ型硬化利 H-2の 30gを加えて予め租混合したのち、三本 ロール (5インチ径)を用いて、110g/分の吐出 量で均一に混合して配合品ドー2を作成した。

(配合品F-2の物性測定)

(I)配合品F-2を25℃及び50℃で放置して粘度の変化を調べた。配合品の初期の粘度は、25℃で180 ポイズであった。25℃で1年経過後の粘度は190 ポイズであり、ほとんど粘度の変化はなかった。また、50℃で1週間経過後の粘度は、25℃で220 ポイズであり、実用上問題になる粘度変化を破棄できなかった。

(2)配合品の100 で及び120 でにおけるゲルタイムをストロークキュア法で調べたところ、それぞ

れ540 秒、120 秒であった。

(3)配合品を用いて、鉄一鉄の接着を行い、100 でで30分間硬化を行った後、室温でその引張剪断 強さを測定したところ、130kg/cmであった。

比较例2

粉末状アミン化合物 X - 1 の 8 g を AER-331 の 100gに加えて、予め粗混練した後、三本ロールを 用いて、110g/分の吐出量で硬化剤を充分エポキン樹脂中に分散して、配合品 K を作成した。

配合品 K を 夫 * 25 ℃、50 ℃ で放置して粘度の変化を調べた。配合品の初期粘度は、25 ℃ で180 ポイズであった。25 ℃ で1週間経過後に、粘度は15000ポイズ以上であったが、50 ℃ では12時間後にゲル化した。

この粉末状アミン化合物硬化剤を、エポキシ樹脂配合品中に包埋し、25℃でその配合品を硬化させた。その硬化物をスライスし、透過型電子顕微鏡を用いてその断面写真を撮影し、その結果を第3 図に示した。第3 図から粉末状アミン化合物の表面には、全く殻状の層が形成されていないこと

が分かる。

実施例3

(マスターバッチ型硬化剤の合成)

実施例2 において、5gの水を加える代わりに、 粉末アミン化合物 X - 1 を調温することによって 粉末アミン化合物 X - 1 中の水分含有率を2.5 % とする以外は同様の方法で、マスターバッチ型硬 化剤 H - 3 を得た。

(マスターバッチ型硬化剤の分析)

実施例 2 と同様にしてマスターバッチ型硬化剤 を分析したところ、以下のとおりであった。

結合基(x) 45meq/Kg

結合基(y) 21meq/Kg

結合器(Z) 17meq/Kg

(配合品の作成)

ビスフェノールAD(三井石油化学等社製)エポキシ出脂100gに、マスターバッチ型硬化剤25gを加えて、予め粗混雑したのち、三本ロールを用いて、110g/分の吐出量で均一に混合して、配合品F-3を作成した。

(配合品F-3 の物性測定)

(1)配合品F-3を50℃で放置して粘度の変化を 調べた、配合品F-3の初期粘度は、25℃で110 ポイズであり、50℃で1週間放置後の粘度は、2 5℃で180ポイズであり、実用上問題になる粘度 変化を観測できなかった。

(2)配合品F-3 の100 でにおけるゲルタイムを ストロークキュア法で調べたところ、620 秒で あった。

比較例3

(マスターバッチ型硬化剤の合成)

実施例2 において、5gの水の添加をせずに、マスターバッチ型硬化剤 H - 4 を得た。

(マスターバッチ型硬化剤の分析)

実施例 2 と同様にして、マスターバッチ型硬化 剤を分析したところ、結合基(X)および結合基(Y)は 殆ど検出されなかった。

(配合品の作成)

(1)実施例 2 において用いたマスターバッチ型硬化剤 H - 2 の代わりに、マスターバッチ型硬化剤

H-4を用いる以外は同様にして配合品F-4を 作成した。

(2)配合品F-4の作成において三本ロールを用 いることなしに、スパチュラを用いて混合するこ とにより配合品F-5を作成した。

(配合品の物性測定)

配合品を50℃に放置して粘度の変化を調べた。 初期粘度は、25℃でF-4が190 ポイズ、F-5 が210 ポイズであった。50℃で1 週間放置後に、 F-4は25℃で2,000 ポイズ以上であり、殆ど流 動しなかった。

一方F-5は25℃で450ポイズであり、この配 合品は三木ロールによる機械的剪斯力により、貯 蔵安定性が悪化することが分かった。

実施例4 および5

実施例2 の硬化剤の合成において、加える水の 量を夫ゃ2.5g、10g と変えて、マスターバッチ型 硬化剤 H-5、6を合成した。

得られた硬化網Fー5、6を実施例2と同様の 方法で、結合基図、図および②の濃度を分析した。

安 2

		F - 6	F - 7
配合品の粘度 (25℃、≰∢ス)	初期	170	175
	50℃.1週間後	3 2 0	180
100 ℃でのゲノ	レタイム (秒)	5 1 0	6 2 0
引張剪断強さ(Kg/cd)	1 3 5	1 2 7

実施例 6

実施例2の硬化剤の合成において、加えるTDI の量を9gに変えて、マスターパッチ型硬化剤H-7を得た。

得られた硬化剂 H-7を実施例2と同様の方法 で、結合基図、切および口の湿度を調べた。その 結果を衷るに示す。

変3

		н – 7
結合基以	■eq/Kg- 粉末アミン化合物	3 2
結合基(y)	,	1 3
結合基(Z)	,	8

その結果を表しに示す。

喪 1

		H — 5	H - 6
結合基(X)	meq/Kg- 粉末アミン化合物	1 0	270
結合基(y)	,	8	185
結合基(2)	,,	8	2 5

本発明のマスターパッチ型硬化剤H-5、H-6 を用いて、実施例2と同様にして、配合品F-6、 F-7を作成した、その配合品を用いて、実施例 2 と同様にして、50℃1 週間放置後の粘度変化、 100 てのゲルタイム、鉄一鉄による引張剪断強さ を測定した。

その結果を表2に示す。

実施例7および8

実施例2の硬化剤の合成において、用いるAER-331 の畳を夫々200g、800gと代えて、マスター バッチ型硬化剤H-8、H-9を得た。

得られたマスターバッチ型硬化剤H-8、H-9を用いて衷4に示す配合で、配合品F-8、F - 9を作成した。その配合品を用いて、実施例2 と同様にして、50℃で1週間放置後の粘度変化、 100 ℃のゲルタイムを測定した。結果を併せて衷4 に示す。

衷4

			F - 8	F - 9
配合	AER-	3 3 1	1 1 0	8 5
(g	マスターバッチ 豆	包硬化剂 H-8	1 6	
, g	,	H - 9	—	4 0
	品の粘度	初期	190	185
(2	5℃. € (\$)	50℃.1週間後	2 1 0	2 1 5
100	てでのゲバ	レタイム (砂)	5 5 0	5 7 0

実施例9

実施例 2 において、TDI の代わりにMR-200(日本ポリウレタン(以及、ポリメチレンポリフェニレンポリイソシアネート) を用いることによってマスターバッチ型収化剂 H-10を得た。

得られた硬化剂 H-10を実施例 2 と同様の方法 で分析したところ、キシレン不溶分は6.0gであっ り、結合基(以、(Y)及び(2)の混度を分析した。その 結果を衷5に示す。

安 5

		H -10
結合基以	neq/Kg- 粉末アミン化合物	2 5 0
結合茲切		166
結合基(Z)	,	5 6

実施例10及び11

実施例2 において、用いる粉末アミン化合物 X - 1 の代わりに、粉末アミン化合物 X - 2 、 X -3 を用いてマスターバッチ型硬化剤 H - 11、 H -

0 2

[E.,	-	-	2 2	1 3	
F - 10	-	1.2		120	
	50 ℃・1 週間後の粘度	初期粘度	(4) 7)		
	配合品の粘度変化	(25℃・ポイズ)	120 ててのゲルタイム (砂)	T & (t).	

120 とで30分の硬化

開昭64-70523 (16)

12を得た。得られた硬化剤R-11.12 を用いて、実施例2 と同様にして配合品F-10. F-11を作成した。その配合品を用いて、実施例2と同様にして、50℃1 週間放置後の粘度変化、120 ℃のゲルタイム、および硬化物のガラス転移温度T g を測定した。その結果を表6に示す。

实施例12

予め平均粒径3 μα に初砕したジシアンジアミド100gに、AER-331 の 200g を加えて均一に分散させておく。このジシアンジアミド分散のエポキシ樹脂150gに、実施例2 で得られたマスターバッチ型硬化剤 H ー 2 の50g 及び150gを夫々添加することによって新たにマスターバッチ型硬化剤 H ー 13及び H ー 14を得た。AER-331 の 95g、EP-4023(アデカ餅製、CTBN変性エポキシ樹脂)5g 炭酸カルシウム20g に、マスターバッチ型硬化剤 H ー 13、および H ー 14を加えて均一に混合し、配合品 F ー 12、F ー 13を得た。

本配合品の50℃での粘度変化、140 ℃でのゲル 化時間及び140 ℃で30分間硬化させたときの鉄ー 鉄の引張剪断接着強さを衷7に示す。

	F - 12	F - 13
配合品の粘度変化	1,.3	1.5
140 ℃でのゲルタイム(炒)	9 0	6 5
引張剪断接着強さ(Kg/cml)	185	1 6 5

実施例13

実施例2 で得られたマスターバッチ型硬化剤H - 2 の10g に無水メチルヘキサヒドロフタル酸90 g を混合することによってマスターバッチ型硬化 剤H-15を得た。

エピクロン830(大日本インキ銭製、ピスフェ ノールド型エポキシ樹脂) 100gにマスターバッチ 型硬化剤H-15の85g を加えて均一に混合して、 配合品F-14を得た。

F-14の50℃で1 週間放置後の粘度変化は2.5 倍

ヘッドライト、ガソリンタンクの接着、ポンネット等のヘミングランジ部の接着、ポデーおよび ルーフ部の綱板の維合わせ;

あるいは位気分野では、スピーカーマグネットの投着、モーターコイルの合浸及び接着、テープへッド、バッテリーケースの接着、蛍光灯安定器の接着: あるいは電子分野ではダイボンディング用接着剤、ICチップ封止剤、チップコート材、チップマウント材、プリント基材の接着剤、フィルム接着剤等が挙げられる。

塗料関係においては、粉体塗料用、あるいは特殊な分野としてソルダーレジストインキ、 導電性 塗料等が挙げられる。

また、電気絶縁材料、積層構造体等にも利用できる。

4. 図面の簡単な説明

第1図はモデル化合物の標準物質に対する重量 比と18チャートの面積比の関係を示すグラフである。

第2図は実施例2によって得られた硬化剤(11-

であった。 F - 14を100 ℃/3時間+150 ℃/3時間で硬化させたときの熱変形温度は、135 ℃であった。(発明の効果)

本発明のマスターバッチ型硬化剤は、前記の実 施例及び比較例から明らかなように、以下の優れ た硬化特性を与える効果が得られる。

(1)マスターバッチ型硬化剤なので、エポキシ樹脂に容易に均一に分散する。

(2)保存安定性(ポットライフ)に優れているために、常温において何ら性能の変化がなく、長い 期間安定に保存することができる。

(3)一液性配合組成物を容易に製造できるので、 使用時の作業性が改良され、また製品の高い信頼性が 得られる。

(4)硬化に要する温度が低く、かつ硬化時間が短い。

(5) 機械的な外力を加えなくても、所定の温度以上の加熱によって、良好な硬化物を与える。

このような効果を生かして広い用途分野に利用できる。

例えば接着荊関係において、自動車分野では

2)] の粒子構造(図面) を示す電子顕微鏡写真である。

第3 図は比較例2 によって得られた粉末状アミン化合物硬化剤の粒子構造(断面)を示す電子顕微鏡写真である。

代理人 清 水

(ほか1名)

第1図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
	☐ BLACK BORDERS		
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
	☐ FADED TEXT OR DRAWING		
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
	☐ SKEWED/SLANTED IMAGES		
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
	☐ GRAY SCALE DOCUMENTS		
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.