

數學 試卷一 試題答題簿

本試卷必須用中文作答 兩小時完卷(上午八時三十分至上午十時三十分)

- 1. 在本封面的適當位置填寫考生編號、試場編號 及座位編號。
- 2. 本試卷分**三部**,即甲部(1)、甲部(2)和乙部。每 部各佔33分。
- 3. 甲部(1)及甲部(2)各題**全答**。乙部選答**三題**。答 案須寫在本試題答題簿中預留的空位內。如有 需要,可要求派發補充答題紙。每張紙均須寫 上考生編號,並用繩縛於簿內。
- 4. 在本封面的適當位置填寫乙部中選答試題的編號。
- 5. 除特別指明外,須詳細列出所有算式。
- 6. 除特別指明外,數值答案可用真確值表示,亦可用近似值表示,惟須準確至三位有效數字。
- 7. 本試卷的附圖不一定依比例繪成。

◎香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2000

2000-CE-MATH 1-1

考生編號					
試場編號					
座位編號					

		I
	由閱卷員填寫	由試卷主席 填寫
	閱卷員編號	試卷主席編號
甲部試題編號	積分	積分
1–2		
3–4		
5–6		
7–8		
9		
10		
11		
12		
13		
14		
甲部總分		

核分員專用	甲部總分		
-------	------	--	--

乙部試題編號 (由考生填寫)	積分	積分
乙部總分		

核分員專用	乙部總分		
-------	------	--	--

核分員編號

參考公式

球	體	表面	積	$=4\pi r^2$
		體	積	$= \frac{4}{3}\pi r^3$
圓	柱	側面	積	$= 2\pi rh$
		體	積	$= \pi r^2 h$
圓	錐	側面	積	$= \pi r l$
		體	積	$= \frac{1}{3}\pi r^2 h$
角	柱	體	積	= 底面積×高
角	錐	體	積	$=\frac{1}{3}\times$ 底面積×高

甲部(1) (33分)

本部各題全答, 答案須寫在預留的空位內。

2. 化簡
$$\frac{x^{-3}y}{x^2}$$
,並以正指數表示答案。 (3分)

3. 求圖 1 中扇形的面積。

4.	求圖	2	中的	а	及	\boldsymbol{x}	0
----	----	---	----	---	---	------------------	---

本	頁	積	分
·T'	尸	114	ノリ

5.	解 $\frac{11-2x}{5}$ <1	,並於圖 3 中表示其解。	
----	------------------------	---------------	--

(4分)

(≣⊓ ε() 23 + 6 ² 2 7	_	1/1 4/1 () 4		(2.73)
6.	設 $f(x) = 2x^3 + 6x^2 - 2x - 7$	· >	水 I(x))	x+3 時的厭數。	(3分)

(4分)

7.	啚	4	中	,	AD	及	BC	爲圓	的兩	條平	行弦	,	AC	及	BD	交於	E	0
	求	\boldsymbol{x}	及	v	0													

在一幅比例為 $1:5000$ 的地圖中, <u>香港國際機場</u> 客運大樓的面積 爲 220 cm^2 。 該大樓實際佔地多少 m^2 ?	(4分)

本頁積分

	爲過 (-4,4) 及 (6,0) 的直線。	(5分
(a)	求 L 的斜率。	
(b)	求 L 的方程。	
(c)	若 L 與 y 軸交於 C ,求 C 的坐標。	

9.

甲部(2)(33分)

本部各題全答, 答案須寫在預留的空位內。

(a)	$\text{fit } 10x^2 + 9x - 22 = 0 \circ \tag{2}$
(b)	董先生在 25 歲生日時將 $$10000$ 存入某銀行,又在 26 歲生日時存入 $$9000$ 。 行是按年以年利率 $r\%$ 計算複利息, 而他在 27 歲生日時所得的本利和 $$22000$ 。 求 r 。

11. 圖 5 顯示 75 首歌曲長度的分佈的累積頻數多邊形。

75 首歌曲長度的分佈的累積頻數多邊形

圖 5

(a) 完成以下兩表。

()	\triangle
(2	TT

長度 (<i>t</i> 秒)	累積頻數
<i>t</i> ≤ 220	3
<i>t</i> ≤ 240	16
<i>t</i> ≤ 260	46
<i>t</i> ≤ 280	
<i>t</i> ≤ 300	75

長度 (<i>t</i> 秒)	頻數
$200 < t \le 220$	3
$220 < t \le 240$	13
$240 < t \le 260$	30
$260 < t \le 280$	
$280 < t \le 300$	9

(b)	求清化	固分佈	的平均	间的估值	0

(2分)

(c) 從累積頻數多邊形估計這個分佈的中位數。

(1分)

(d) 求這些歌曲中長度超過 220 秒但不超過 260 秒的歌曲所佔的百分數。

(2分)

(a)	求抽出的數有兩個數字是零的概率。	(2
(b)	求抽出的數沒有一個數字是零的概率。	(2
(c)	求抽出的數只有一個數字是零的概率。	(2

-8-

13. 圖 6 中, ABCDE 是一正五邊形, CDFG 是一正方形, BG 的延線與 AE 交於 P。

(a) 求 ∠BCG、∠ABP 及 ∠APB。

(5分)

(b) 利用 $\frac{AP}{\sin \angle ABP} = \frac{AB}{\sin \angle APB}$ 此一事實,或其他方法, 指出 AP 及 PE 這兩個線段哪一個較長。 (3分)

14. 某演奏廳有 50 行座位。 全部座位由第一行至最後一行及由左至右接數目次序編號, 如圖 7 所示。 第一行有座位 20 個,第二行有座位 22 個,接著的每一行較前一行多 2 個座位。

最後一行有多少個座位?	(
求首 n 行的座位總數。	

由此求編號 2000 的座位在哪一行。

		(4分)

乙部(33 分) 本部選答三題, 答案須寫在預留的空位內。 每題11分。

15. 某公司將花生和杏仁混合,生產出 A 及 B 兩種牌子的混合果仁。 每包 A 牌子的混合果仁內有 40 g 花生和 10 g 杏仁,而每包 B 牌子的混合果仁內有 30 g 花生和 25 g 杏仁。 該公司有 2400 kg 花生、 1200 kg 杏仁和 70 個紙皮箱。 每個紙皮箱可裝 1000 包 A 牌子的混合果仁或 800 包 B 牌子的混合果仁。

每箱 A 牌子的混合果仁和每箱 B 牌子的混合果仁分別可帶來 \$800 及 \$1000 的利潤。 設共生產了 x 箱 A 牌子的混合果仁及 y 箱 B 牌子的混合果仁。

(a) 利用圖 8 的方格紙, 求使利潤爲最大的 x 及 y。

(8分)

(b) 若 B 牌子混合果仁的箱數須少於 A 牌子混合果仁的箱數, 求可得的最大利潤。

(3分)

 	*Color	175
 \blacksquare	石石	\rightarrow

- 16. 圖 9 中, C 爲圓 PQS 的圓心。 OR 及 OP 分 別與圓相切於 S 及 P 。 OCQ 爲一直線, 而 $\angle QOP = 30^{\circ}$ 。
 - (a) 證明 ∠PQO=30°。 (3 分)
 - (b) 設 OPQR 爲一圓內接四邊形。
 - (i) 證明 RQ 與圓 PQS 相切於 Q。
 - (ii) 在圖 9 中引入一直角坐標系使 O 及 C 的坐標分別為 (0,0) 及 (6,8)。 求 QR 的方程。

(8分)

	Table 17
\sim	右分

17. 圖 10 顯示一鉛垂於水平地面的 牆,上有一圓,圓心爲 O, 半徑爲 $10 \, \mathrm{m} \circ A \circ B$ 及 C 是 圓周上的三點,使 A 位於 O 的正下方, $\angle AOB = 90^\circ$ 及 $\angle AOC = 20^\circ \circ$ 地面上的一個激光發射器 D 對 B 發射一束激光。 該束激光掃過一個 30° 的角後射向 A 。由 D 測 B 及 A 的仰角分別爲 60° 及 30° 。

- (a) 設 A 離地面的高度爲 h m。
 - (i) 以 h 表 AD 及 BD。
 - (ii) 求 h。

(7分)

(b) 地面上的另一激光發射器 E 對 A 發射一束激光, 其仰角爲 25° 。 該束激光掃過 一個 5° 的角後射向 C 。 求 $\angle ACE$ 。

(4分)

-	工士 バ
\sim	右分

18. 圖 11.1 顯示一半徑爲 10 cm 的半球形固體。 沿一與其底平行的平面將它分割成 P 和 Q 兩截。 P 的高和體積分別爲 h cm 及 V cm³。

已知 V 是兩部分的和,一部分與 h^2 正變,另一部分與 h^3 正變。 當 h=1 時, $V=\frac{29}{3}\pi$, 又當 h=3 時, $V=81\pi$ 。

- (a) 以h及 π 表V。 (3分)
- (b) 從 Q 的頂控走一與 P 全等的固體, 使成一個如圖 11.2 所示的容器。
 - (i) 求該容器的表面積(不包括底部)。
 - (ii) 已知該容器的體積為 $\frac{1400}{3}\pi$ cm³。 證明 $h^3 30h^2 + 300 = 0$ 。 利用圖 11.3 的圖像及一適當的方法求 h 的值,答案須準確至二位小數。 (8 分)

	Table 17
\sim	右分

-	77	工士	17
Λ	=	₩	1

- 試券完 -

2000

Mathematics 1 Section A(1)

- 1. 86
- $2. \qquad \frac{y}{x^5}$
- 3. 23.6 cm²
- 4. $a = \sqrt{51}$
 - $x \approx 45.6$
- 5. x > 3
- 6. -1
- 7. x = 25
 - y = 74
- 8. 550 000 m²
- 9. (a) $-\frac{2}{5}$
 - (b) 2x + 5y 12 = 0
 - (c) $(0, \frac{12}{5})$

Section A(2)

10. (a)
$$x = -2$$
 or $\frac{11}{10}$

(b)
$$10000(1+r\%)^2 + 9000(1+r\%) = 22000$$

 $10(1+r\%)^2 + 9(1+r\%) - 22 = 0$
From (a), $1+r\% = 1.1$
 $r = 10$

11. (a) Missing value in 1st table = 66 Missing value in 2nd table = 20

(b) An estimate of the mean
$$= \frac{210\times3 + 230\times13 + 250\times30 + 270\times20 + 290\times9}{75} \text{ seconds}$$

$$\approx 255 \text{ seconds}$$

(c) Median ≈ 254 seconds

(d) Percentage required =
$$\frac{13+30}{75} \times 100\% \approx 57.3\%$$

12. (a) Probability required =
$$\frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$$

(b) Probability required
$$=\frac{9}{10} \times \frac{9}{10} = \frac{81}{100}$$

(c) Probability required =
$$1 - \frac{1}{100} - \frac{81}{100} = \frac{9}{50}$$

13. (a) Size of each interior angle of the pentagon =
$$\frac{(5-2)\times180^{\circ}}{5} = 108^{\circ}$$

$$\angle BCG = 108^{\circ} - 90^{\circ} = 18^{\circ}$$

$$\angle CBG = \frac{180^{\circ} - 18^{\circ}}{2} = 81^{\circ}$$

$$\angle ABP = 108^{\circ} - 81^{\circ} = 27^{\circ}$$

$$\angle APB = 180^{\circ} - 27^{\circ} - 108^{\circ} = 45^{\circ}$$

(b)
$$\frac{AP}{\sin 27^{\circ}} = \frac{AB}{\sin 45^{\circ}}$$

$$\therefore AP = \frac{\sin 27^{\circ}}{AP} = \frac{\sin 27^{\circ}}{AP} = \frac{\sin 27^{\circ}}{AP} \approx 0.6$$

$$\therefore AP = \frac{\sin 27^{\circ}}{\sin 45^{\circ}} AB = \frac{\sin 27^{\circ}}{\sin 45^{\circ}} AE \approx 0.642 AE$$

$$PE \approx (1-0.642)AE \approx 0.358 AE$$

- \therefore AP is longer than PE.
- 14. (a) Number of seats in the last row = 20 + 2(50 1) = 118
 - (b) Total number of seats in the first n rows = $\frac{n}{2}[2 \times 20 + 2(n-1)] = n^2 + 19n$

If
$$n^2 + 19n = 2000$$
, then
$$n^2 + 19n - 2000 = 0$$
$$n = \frac{-19 \pm \sqrt{19^2 - 4(-2000)}}{2}$$
$$n \approx 36.2 \text{ or } -55.2$$

.. The seat numbered 2000 can be found in the 37th row.

15. (a) x and y satisfy the following conditions:

 $1000(40x) + 800(30y) \le 2400000 \quad \text{or} \quad 5x + 3y \le 300$

01 511 157 250

 $1000(10x) + 800(25y) \leq 12000000$

or $x + 2y \le 120$

 $x + y \le 70$

x, y are non-negative integers

Let P(x, y) be the profit generated by x boxes of brand A mixed nuts and y boxes of brand B mixed nuts. Then

$$P(x, y) = 800x + 1000y$$
$$= 200(4x + 5y)$$

By drawing parallel lines of 4x + 5y = 0, P(x, y) attains its maximum at (20, 50).

- \therefore The profit is the greatest when x = 20 and y = 50.
- (b) In addition to the conditions in (a), x, y should also satisfy y < x.

By considering lines parallel to 4x + 5y = 0P(x, y) attains its maximum at (36, 34).

:. The greatest profit is \$62800.

$$\angle OPC = 90^{\circ}$$
 (tangent \perp radius)
 $\angle PCO = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$ (\angle sum of Δ)
 $\angle PQO = \frac{1}{2} \angle PCO = 30^{\circ}$ (\angle at centre twice \angle at circumference)

(b) (i)
$$\angle ROQ = \angle QOP = 30^{\circ}$$
 (tangents from ext. pt.)
 $\angle PQO = 30^{\circ}$ (proved)
 $\therefore \angle RQP + \angle POR = 180^{\circ}$ (opp. \angle s of cyclic quad.)
 $\therefore \angle CQR = 180^{\circ} - 3 \times 30^{\circ} = 90^{\circ}$

Hence RQ is tangent to circle PQS at Q. (conv. of tangent \perp radius)

(b) (ii)
$$\therefore$$
 Slope of $OC = \frac{4}{3}$

$$\therefore \quad \text{Slope of } QR = -\frac{3}{4}$$

$$OC = \sqrt{6^2 + 8^2} = 10$$

 $CQ = CP = OC \sin 30^\circ = 5$

Let the coordinates of Q be (x, y).

$$CC: CQ = 10: 5 = 2: 1$$

$$\therefore \frac{2x+1(0)}{3} = 6 \text{ and } \frac{2y+1(0)}{3} = 8$$

$$x = 9 \text{ and } y = 12$$

Hence the equation of QR is

$$\frac{y-12}{x-9} = -\frac{3}{4}$$
$$3x + 4y - 75 = 0$$

$$3x + 4y - 75 = 0$$

17. (a) (i)
$$AD = \frac{h}{\sin 30^{\circ}} \text{ m} = 2h \text{ m}$$

$$BD = \frac{h+10}{\sin 60^{\circ}} \text{ m} = \frac{2}{\sqrt{3}} (h+10) \text{ m} = \frac{2\sqrt{3}}{3} (h+10) \text{ m}$$

(ii)
$$AB^2 = (10^2 + 10^2) \text{ m}^2$$

By cosine law,
 $AB^2 = AD^2 + DB^2 - 2(AD)(DB) \cos \angle ADB$
 $200 = \left(\frac{h}{\sin 30^\circ}\right)^2 + \left(\frac{h+10}{\sin 60^\circ}\right)^2 - 2\left(\frac{h}{\sin 30^\circ}\right)\left(\frac{h+10}{\sin 60^\circ}\right)\cos 30^\circ$
 $200 = 4h^2 + \frac{4}{3}(h+10)^2 - 4h(h+10)$
 $h^2 - 10h - 50 = 0$
 $h \approx 13.660 \text{ or } -3.660$
 $h \approx 13.7 \text{ or } -3.66 \text{ (rejected)}$

(b)
$$AC = 2(10 \sin 10^{\circ}) \text{ m} \approx 3.47296 \text{ m}$$

$$AE = \frac{h}{\sin 25^{\circ}} \text{ m} \approx 32.3 \text{ m}$$
By sine law, $\sin \angle ACE = \frac{AE \sin 5^{\circ}}{AC}$

$$\approx \frac{h \sin 5^{\circ}}{20 \sin 10^{\circ} \sin 25^{\circ}}$$

$$\approx 0.8112$$

$$\therefore \angle ACE = 54.2^{\circ} \text{ or } 126^{\circ}$$

18. (a) Let
$$V = ah^2 + bh^3$$
 where a , b are non-zero constants.

(b) (i) Surface area =
$$2\pi \times 10^2$$
 cm² ≈ 628 cm²

(ii)
$$\because$$
 Volume of hemisphere = $\frac{2}{3}\pi \times 10^3$ cm³

$$\therefore \frac{2}{3}\pi \times 10^3 - 2V = \frac{1400}{3}\pi$$

$$\frac{2}{3}\pi \times 10^3 - 2(10\pi h^2 - \frac{\pi}{3}h^3) = \frac{1400}{3}\pi$$
$$\frac{2}{3}\pi(1000 - 30h^2 + h^3 - 700) = 0$$

$$h^3 - 30h^2 + 300 = 0$$

From the graph in Figure 11.3, 3.3 < h < 3.4

Let $f(h) = h^3 - 30h^2 + 300$, then f(3.3) > 0 and f(3.4) < 0. Using the method of bisection,

esing the method of observion,				
Interval	mid-value (m)	f (m)		
3.3 < h < 3.4	3.35	+ve (0.9204)		
3.35 < h < 3.4	3.375	-ve (-3.2754)		
3.35 < h < 3.375	3.363	-ve (-1.2583)		
3.35 < h < 3.363	3.357	-ve (-0.2519)		
3.35 < h < 3.357	3.354	+ve (0.2507)		
3.354 < h < 3.357	3.356	-ve (-0.0843)		
3.351 < h < 3.356	3 355	$\pm v_0$ (0.0832)		

$$\therefore$$
 3.355 < h < 3.356

 $h \approx 3.36$ (correct to 2 decimal places)