

Können semantische Ähnlichkeiten von Wörtern die Schlussfolgerungen des gesunden Menschenverstands verbessern? Eine Fallstudie mit Prover E und SUMO.

Can semantic similarities of words enhance common sense reasoning? A case study with prover E and SUMO.

Bachelorarbeit

verfasst am

Institut für Software Engineering und Programming Languages

im Rahmen des Studiengangs Informatik der Universität zu Lübeck

vorgelegt von **Julian Britz**

ausgegeben und betreut von **Prof. Dr. Diedrich Wolter**

mit Unterstützung von Moritz Bayerkuhnlein

Lübeck, den 06. Juli 2025

	esstattliche Erklärt erkläre hiermit an 1		s ich diese A	rbeit selbstän	dig verfasst und
and	eren als die angegel	benen Quellen	und Hilfsm	ttel benutzt h	eabe.
					 Julian Bri

Zusammenfassung

Zusammenfassung.

Abstract

Abstract.

Inhaltsverzeichnis

1	Einleitung	1
2	Verwandte Arbeit	2
3	Vorwissen	3
3.1	Commen Sense reasoning	3
3.2	Word Embeddings	3
3.3	Grammatiken	3
3.4	Theorembeweiser	3
4	Selektionsstrategien	5
5	Experimente	6
6	Weiterführende Arbeit	7
7	Quellenverzeichnis	8

Einleitung

- Bedeutung der logischen Schlussfolgerung im Bereich KI und der natürlichen Sprachverarbeitung
- Bedeutung der logischen Schlussfolgerung im Bereich der Künstlichen Intelligenz und der natürlichen Sprachverarbeitung
- Typische Ansätze
- Potenzial von semantischen Informationen zur Verbesserung der Auswahl von Axiomen
- Beschreibung von E als ein effektiver Theorembeweiser für die Aussagenlogik
- Adimen-SUMO als komplexe Wissensbasis für die Simulation und Bewertung von Schlussfolgerungsstrategien
- Ziel und Beitrag der Arbeit

Verwandte Arbeit

Vorwissen

Automatisierte Theorembeweiser

3.1 Commen sense reasoning

- Erklärung
- Herausforderungen

3.2 Word Embeddings

- Definition
- Erstellung
- Eigenschaften
- Anwendung
- Limitierung und Herausforderungen

3.3 Grammatiken

- Erklärung. Was sind Grammatiken und welche gibt es?
- Aufbau und Struktur
- SUMO

3.4 Theorembeweiser

- Erklärung. Was sind Theorembeweiser und welche gibt es?
- Funktionalität
- Grenzen und Herausforderungen
- Prover E
 - Auto mode

- Satauto mode

Selektionsstrategien

- SyntaktischSemantisch
- Kombination

Experimente

- Standard vs. Satauto vs. Auto
- SInE vs. SeVen
- Welche Axiome werden gewählt?
- Statistiken
 - Mean variable count
 - Count signs
 - Character Count
 - Variable appearence
 - Proofs found in first named
 - Time to find proof
 - Summarized time proof found
 - Conclusion
- Add Axiome
 - 1000 häufigste
 - SInE Strategie als Auswahl
- Vampire
- Conclusion

Weiterführende Arbeit

Quellenverzeichnis