Department of Computer Science and Engineering Jahangirnagar University Savar, Dhaka

Laboratory Report

CSE-406: VLSI Circuits Design Laboratory

Submitted by

Md. Ashick Areafin Exam Roll: 160054 Class Roll: 2130 Session: 2015-16 4th year 1st Semester

Submitted to

Dr. Abu Sayed Mohammed Mustafizur Rahman Professor Department of Computer Science and Engineering Jahangirnagar University **Experiment No: 05**

Experiment Name: Verification of nMOS and pMOS DC-Characteristics.

Objectives:

- \succ To find the MOS model parameters for the transistors & then by paper and pencil manually calculate the DC characteristics of I_{Ds} current vs V_{GS} voltage using simple current equations for MOS model level 1 to determine the number of corresponding value pairs of (Ids,Vds) with the gate source voltage V_{GS} = a constant > V_{th} .
- > Use circuit simulator of Microwind to do a DC simulation of the Ids current vs Vds voltage and the result of the two methods compared.
- > Calculation of the threshold voltage.

Theory:

The nMOS transistor Ids current vs Vds voltage equations are as follows:

Cut-off mode: $I_{Ds} = 0$ when $V_{GS} < 0$

Triod/Linear region: $I_{Ds} = K_n \left\{ (V_{GS} - V_{Tn}) V_{DS} - \frac{1}{2} V_{DS}^2 \right\}$ when $V_{DS} < V_{GS} - V_{Tn} \cdots (1)$

In Level 1 SPICE model, $I_{Ds} = U_O \frac{\varepsilon_0 \varepsilon_{Sio2}}{TOX} \frac{W}{L} \left\{ (V_{GS} - V_{Tn}) V_{DS} - \frac{1}{2} V_{DS}^2 \right\}$

Saturation region: $I_{Ds} = \frac{1}{2}K_n \left\{ (V_{GS} - V_{Tn})^2 (1 + \lambda V_{DS}) \right\}$ when $V_{DS} > V_{GS} - V_{Tn}$ ···· (2)

In Level 1 SPICE model, $I_{Ds} = \frac{1}{2} U_O \frac{\varepsilon_0 \varepsilon_{Sio2}}{TOX} \frac{W}{L} \left\{ (V_{GS} - V_{Tn})^2 \right\}$

When the channel modulation effect is neglected the drain current equation (2) can be simplified as, $I_{Ds} = \frac{1}{2}K_n \{(V_{GS} - V_{Tn})^2\}$ when $V_{DS} > V_{GS} - V_{Tn} \cdots$ (3)

The current gain factor K_n is constant with unit [A / V^2] This is depended on MOS transistor geometry, fabrication process parameters (elector mobility, μ_n and gate oxide capacitance C_{ox}).

The factor K_n can be calculated as $K_n = K_n'Wn/Ln$ where the process conductance parameter $K_{n'} = \mu_n \ C_{ox} \ [$ A /V^2]. The parameter Cox stands for gate oxide capacitance per unit area depend on gate oxide thickness t_{ox} . This can be expressed as Cox = ϵ_{0x} / t_{ox} . The additional parameter of the I_{Ds} and V_{Ds} is the threshold voltage V_{th} .

Procedure:

1. Level 1 MOS model equations to calculate DC values for the drain-current I_{Ds} vs drain-source voltage V_{Ds} .

Table 1: VO	GS = +2.0V	and Wn	/Ln = 2
-------------	------------	--------	---------

V_{Ds} (V)	0.5	1.0	1.5	2.0	2.5
$V_{DS} - (V_{GS} - V_{Tn})$	-1.05	-0.55	-0.05	0.45	0.95
	(1)	(1)	(1)	(2)	(2)
$\begin{array}{c} {\rm Manual} \\ {\rm Calculation} \\ I_{DS} \\ {\rm (micro\ amp.)} \end{array}$	547.56	884.52	1010.88	1011.933	1011.933

2. Use of "simulate>MOS characteristics" to generate the DC characteristics I_{Ds} vs V_{Ds} for the nMOS transistor in Microwind.

Figure 1: nMOS characteristics curve(simulated)

P	est	11	t·
1.	CSL		١.,

The lab objectives are successfully observed and verified with theoretical calculation.