# CSE 291 – Al Agents 1/21 Search for Planning in Simulations

Prithviraj Ammanabrolu

## Basic components of a simulation

- S = set of all states
  - propositions that are true: you are in a house, door is open, knife in drawer
- A = set of all actions
  - take knife from drawer, walk through door
- T = transition matrix T: (S, A) → S
  - (you are in a house & door is open, walk through door) → you are outside

There are pre-conditions that need to be met to perform a certain action, and post-conditions that are true after

## What's in a PDDL task?

- Objects: Things in the world that interest us.
- Predicates: Properties of objects that we are interested in; can be true or false.
- Initial state: The state of the world that we start in.
- Goal specification: Things that we want to be true.
- Actions/Operators: Ways of changing the state of the world.

2 .pddl files, domain and problem

## You have a simulation, now what?

- You need to plan out a policy
- Sequence of actions to get from start state to goal state
- A \*plan\* gives you a way of getting said policy
  - Can be expressed as constraints on actions you can perform

## How to get a plan?

• Search is a way of getting possible plans for a given spec

## Search Terminology

- State Space Search each state is a node on the search tree, go from there
- Planning Space Search searching through space of possible plans or constraints on actions

- Satisficing looking longer and longer for a good enough solution
- Optimal looking for the best possible solution there is

## Standard (but not necessary) Assumptions

- No environment stochasticity, exact post conditions always manifest once action is executed
- No agent stochasticity, actions are always executed as planned
- Think about ways not having these assumptions would complicate things in the methods we talk about here on out

## Properties of Forward Search

- Sound: plans generated by the traces will guarantee a solution if executed
- Complete: if a solution exists, then at least one of the search's traces will be a solution

#### Forward Search

- Some deterministic implementations of forward search:
  - · breadth-first search
  - depth-first search
  - best-first search (e.g., A\*)
  - greedy search
- Breadth-first and best-first search are sound and complete But they usually aren't practical, requiring too much memory
  - Memory requirement is exponential in the length of the solution
- In practice, more likely to use depth-first search or greedy search
  - Worst-case memory requirement is linear in the length of the solution
  - In general, sound but not complete
  - But classical planning has only finitely many states
  - Thus, can make depth-first search complete by doing loop-checking

# Forward Search Example – BlocksWorld

#### unstack(x,y)

Pre: on(x,y), clear(x), handempty

Eff:  $\sim$ on(x,y),  $\sim$ clear(x),  $\sim$ handempty,

holding(x), clear(y)

#### stack(x,y)

Pre: holding(x), clear(y)

Eff:  $\sim$ holding(x),  $\sim$ clear(y),

on(x,y), clear(x), handempty

#### pickup(x)

Pre: ontable(x), clear(x), handempty

Eff:  $\sim$ ontable(x),  $\sim$ clear(x),  $\sim$ handempty, holding(x)

#### putdown(x)

Pre: holding(x)

Eff:  $\sim$ holding(x), ontable(x), clear(x), handempty



# Forward Search Example



Initial state Goal state

#### Forward Search Issues

- Branching factor lots of possible states and actions, deterministic searches waste time trying a bunch of unnecessary stuff
- State and action spaces can blow up memory and compute costs



Imagine a controller with ~50000 buttons. How to scale language planning? (Game of Go ~250, Chess ~35)

#### **Backward Search**

- For forward search, we started at the initial state and computed state transitions
  - new state = T(s,a)
- For backward search, we start at the goal and compute inverse state transitions
  - new set of subgoals = T<sup>-1</sup>(g,a)
- To define T<sup>-1</sup>(g,a), must first define relevance: An action a is relevant for a goal g if
  - a makes at least one of g's literals true, g ∩ effects(a) ≠ Ø
  - a does not make any of g's literals false, g + n effects (a) =  $\emptyset$  and g n effects + (a) =  $\emptyset$

#### **Backward Search**

- To define T<sup>-1</sup>(g,a), must first define relevance: An action a is relevant for a goal g if
  - a makes at least one of g's literals true, g  $\cap$  effects(a)  $\neq \emptyset$
  - a does not make any of g's literals false,  $g^+ \cap effects^-(a) = \emptyset$  and.  $g^- \cap effects^+(a) = \emptyset$
  - If a is relevant for g, then  $T^{-1}(g,a) = (g^- \text{ effects}(a)) \cup \text{ precond}(a)$
  - Otherwise, T<sup>-1</sup>(g,a) is undefined

# Backward Search Example





Initial state Goal state

• • •

#### **Backward Search Issues**

- Branching factor
  - an operator o that is relevant for g may have many instances  $a_1$ ,  $a_2$ , ...,  $a_n$  such that each  $a_i$ 's input state might be unreachable from the initial state
- Goal states are actually described by constraints instead of exact list of propositions
- Generating predecessor states (inverting Transition matrix) is hard

## Mitigations for Such Issues

- Pruning state or action space ... somehow
- 1. Just describe constraints that need to be satisfied
- 2. Find a heuristic to move effectively through state space

#### Total Order and Partial Order Plans

- Exact order of actions may not matter
- If you can break down problem into subproblems, partial planning may be easier 
   some actions and constraints on when they can be executed
- Partially ordered plans = planning space search (rather than state space search)

## Total Order and Partial Order Plans



## Heuristic Planning - STRIPS

- One of the first planning algorithms (Shakey the robot)
- $\pi$   $\leftarrow$  the empty plan
- do a modified backward search from g
  - \*\* each new subgoal is precond(a)
  - when you find an action that's executable in the current state, then go forward on the current search path as far as possible, executing actions and appending them to  $\boldsymbol{\pi}$
  - repeat until all goals are satisfied

## Heuristic Planning - STRIPS



## STRIPS Example

• Exercise, solve this like STRIPS would



Initial state Goal state

## Limitation of STRIPS

- Exercise, solve this like STRIPS would
  - Move a on top of b
  - Move b on top of c
  - Contradictory subgoals



a b c

Initial state Goal state

#### Simulation Search

- Evolution of heuristic search, the model of the world is the heuristic that decides how the agent moves forward
- Use the simulation to build estimates of the "value" of being in a state intuitively, if I am in a state what is the likelihood I will win

## Monte Carlo Methods

- A set of methods that focus on learning better from simulated experiences collected by interacting with an environment
- When to use? You have a way of easily simulating an environment but it is too complex to solve deterministically with planning / search

#### Monte Carlo Tree Search

- 4 phases of building out and simulating paths along a search tree
- Various forms of this used in everything from Alpha Zero to modern LLM inference
- For arbitrary problem with start state s<sub>0</sub> and actions a<sub>i</sub>
- All states have attributes:
  - Total simulation reward Q(s) and
  - Total no. of visits N(s)



#### MCTS Part 1 - Selection

- From the current state, pick an action to perform
- For now, assume we pick randomly
- Update N(s) as you pick a new state



## MCTS Part 2 - Expansion

- Execute transition
- If resultant state is a terminal state, observe result (reward)



## MCTS Part 3 – Simulation / Rollout

- If it isn't a terminal state, finish a playout until it is
- For now, we will "cheat" and directly use our simulation for this



## MCTS Part 4 – Backpropogation

 Add the reward of the simulated path to all node scores, this gives you Q(s)



## Improvements to MCTS Components

- Improvements are possible for each of the parts I talked about
- Think about that it would take to improve selection / expansion phases

## **Upper Confidence Trees (UCT)**

 A way of improving the selection phase by treating selection as a multi-arm bandit problem: which possible action to select that maximizes the possible payout (reward) in the future

$$ext{UCT}(v_i, v) = rac{Q(v_i)}{N(v_i)} + c\sqrt{rac{\ln N(v)}{N(v_i)}}$$

## **Upper Confidence Trees (UCT)**

 A way of improving the selection phase by treating selection as a multi-arm bandit problem: which possible action to select that maximizes the possible payout (reward) in the future

$$ext{UCT}(v_i, v) = rac{Q(v_i)}{N(v_i)} + c\sqrt{rac{\ln N(v)}{N(v_i)}}$$

**Exploit** 

## **Upper Confidence Trees (UCT)**

 A way of improving the selection phase by treating selection as a multi-arm bandit problem: which possible action to select that maximizes the possible payout (reward) in the future

$$ext{UCT}(v_i,v) = rac{Q(v_i)}{N(v_i)} + c\sqrt{rac{\ln N(v)}{N(v_i)}}$$

**Exploit** 

**Explore** 

## Improvements to MCTS Components

- Improvements are possible for each of the parts I talked about
- Think about that it would take to improve selection / expansion phases
- Can you go further? How to improve the simulation phase?
- Can you add learning in here somehow?