Fluidos

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

Prof. Flaviano W. Fernandes

Sumário

- Definição de fluido
- Pressão
- Massa específica
- Aplicações
- 6 Apêndice

Prof. Flaviano W. Fernandes

O que é um fluido?

Fluido

Líquido incompressível que assume a forma do recipiente que o contém.

- ✓ Os sólidos são objetos que possuem forma definida, portanto não são fluidos:
- ✓ O Volume de um fluido não se altera independente da temperatura que se encontra e do recipiente que o contém.
- ✓ Conceitos como densidade e pressão são usados ao invés de massa e forca.

Formato de um fluido em diversos recipientes.

PressãoMassa específicaAplicaçõesApêndice00000000000

Fluido versus corpo rígido

Corpo rígido

- ✓ Formato rígido e imutável;
- ✓ Corpos homogêneos ou heterogêneos (a densidade pode variar ao longo da estrutura);
- ✓ Usamos conceitos de massa e força.

Exemplo de um corpo rígido.

Fluido

- ✓ Formato flexível e se adapta ao recipiente;
- ✓ Corpos homogêneos e isotrópicos (densidade é a mesma ao longo do fluido);
- ✓ Usamos conceitos de densidade (massa específica) e pressão.

Exemplo de um fluido.

O que é Pressão?

Pressão

A pressão p é a relação entre o módulo da força \vec{F} que atua ao longo da área A.

$$p=rac{F}{A}$$
.

Força por unidade de área.

Corollary

Pela definição de pressão (p=F/A), temos que a unidade de medida no SI é o Pascal (Pa), onde a força F e a área A também devem estar no SI,

$$1 \text{ Pa} = 1 \text{ N/m}^2$$
.

Exemplos de pressão

deslizar em cima do gelo?

apertarmos a tachinha.

Como a patinadora consegue Qual dos dedos irá se machucar se Por que usamos raquete de tênis para andar na neve?

Prof. Flaviano W. Fernandes IFPR-Irati

Massa específica

Massa específica ou densidade absoluta de um objeto é a razão entre sua massa e seu volume.

$$\rho = \frac{m}{V}$$

Corollary

Pela definição de densidade ($\rho = m/v$), percebe-se que a sua unidade no SI deve ser dada pela relação da massa m em ka e o volume V em m³.

$$1\frac{g}{cm^3} = \frac{1 \times 10^{-3} \,\mathrm{kg}}{1 \times 10^{-6} \,\mathrm{m}^3} = 10^3 \frac{kg}{m^3}.$$

A experiência de Arquimedes

Arquimedes mergulhou em um recipiente contendo água:

- Uma massa de ouro pura igual a massa da coroa:
- Uma massa de prata pura igual a massa da coroa:
- A coroa em questão:

Corollary

Arquimedes verificou que o volume de áqua recolhido tinha um valor intermediário entre aqueles recolhidos no caso do ouro e da prata. Portanto, a coroa não era de ouro puro!

Prof. Flaviano W. Fernandes IFPR-Irati

Aplicações da hidrostática

Macaco hidráulico.

Caixa dágua.

Pressão atmosférica.

Submarino.

Experiência de Arquimedes.

Aeroplano.

são Ma oo Aplicações o

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Р	ho
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereco https://flavianowilliams.github.io/education

Prof. Flaviano W. Fernandes

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.