V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

Encontro 5: Soluções no Espaço de Estados

Valter J. S. Leite¹

¹CEFET-MG / Campus V Divinópolis, MG – Brasil

Graduação em Engenharia Mecatrônica CFFFT–MG

O que nos espera?

Controle Moderno

V. J. S. Leit

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

- Solução de equações estado LTI
 - Cálculos úteis
- Equações de estado equivalentes
 - Motivação
- 3 Dicas de Sistemas

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas • De Análise e Teoria de Controle:

$$y(t) = \int_{\tau=t_0}^t g(t,\tau)u(\tau)d\tau \tag{1}$$

 $g(t,\tau) \text{: resposta impulsiva} \left\{ \begin{array}{l} \text{no instante } t \\ \text{para impulso aplicado em } t = \tau. \end{array} \right.$

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas d

• De Análise e Teoria de Controle:

$$y(t) = \int_{\tau=t_0}^t g(t,\tau)u(\tau)d\tau \tag{1}$$

 $g(t,\tau) \colon \text{resposta impulsiva} \left\{ \begin{array}{l} \text{no instante } t \\ \text{para impulso aplicado em } t = \tau. \end{array} \right.$

Numericamente

$$y(kT) = \sum_{m=k_0}^{k} g(kT, mT)u(mT)T$$
 (2)

- $\Rightarrow T$ período de amostragem (ou de integração)
- \Rightarrow resultados pouco precisos para um dado T

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações do estado equivalentes Motivação

Dicas de Sistemas

Alternativa

- \Rightarrow Parâmetros concentrados \longrightarrow Transformada de Laplace
- \Rightarrow Requer cálculo: polos (roots()), expansão em frações parciais (residue()), tabela de transformadas.
- \Rightarrow Polos repetidos \longrightarrow sensibilidade a erros de arredondamento

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes

Dicas de

Alternativa

- \Rightarrow Parâmetros concentrados \longrightarrow Transformada de Laplace
- ⇒ Requer cálculo: polos (roots()), expansão em frações parciais (residue()), tabela de transformadas.
- \Rightarrow Polos repetidos \longrightarrow sensibilidade a erros de arredondamento
- Saída
- \Rightarrow Funções de transferências \longrightarrow Eq. no Espaço de Estados

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes

Dicas de

• Descrição do sistema

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t) \tag{3}$$

$$y(t) = \mathbf{C}x(t) + \mathbf{D}u(t) \tag{4}$$

 \Rightarrow Propriedade usada¹:

$$\frac{d}{dt}e^{\mathbf{A}t} = \mathbf{A}e^{\mathbf{A}t} = e^{\mathbf{A}t}\mathbf{A} \tag{5}$$

 $^{^1 {\}sf Pode}\text{-se}$ verificar usando a expansão em série de Taylor de $e^{{\bf A}t}.$ Veja slide da aula 3.

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas ⇒ Sabendo que

$$(e^{\mathbf{A}t})^{-1} = e^{-\mathbf{A}t} \implies e^{-\mathbf{A}t}e^{\mathbf{A}t} = \mathbf{I}$$

multiplica-se ambos os lados de (3) por $e^{-\mathbf{A}t}$:

$$e^{-\mathbf{A}t}\dot{x}(t) - e^{-\mathbf{A}t}\mathbf{A}x(t) = \frac{d}{dt}\left[e^{-\mathbf{A}t}x(t)\right] = e^{-\mathbf{A}t}\mathbf{B}u(t)$$

Integrando 2 de 0 a t

$$e^{-\mathbf{A}\tau}x(\tau)\Big|_{\tau=0}^t = \int_0^t e^{-\mathbf{A}\tau}\mathbf{B}u(\tau)d\tau$$

 $^{^2}$ O argumento do integrando foi trocado de t para au, evitando confusão com os limites de integração.

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas ⇒ Sabendo que

$$(e^{\mathbf{A}t})^{-1} = e^{-\mathbf{A}t} \implies e^{-\mathbf{A}t}e^{\mathbf{A}t} = \mathbf{I}$$

multiplica-se ambos os lados de (3) por $e^{-\mathbf{A}t}$:

$$e^{-\mathbf{A}t}\dot{x}(t) - e^{-\mathbf{A}t}\mathbf{A}x(t) = \frac{d}{dt}\left[e^{-\mathbf{A}t}x(t)\right] = e^{-\mathbf{A}t}\mathbf{B}u(t)$$

Integrando 2 de 0 a t

$$e^{-\mathbf{A}\tau}x(\tau)\Big|_{\tau=0}^t = \int_0^t e^{-\mathbf{A}\tau}\mathbf{B}u(\tau)d\tau$$

$$e^{-\mathbf{A}t}x(t) - e^{\mathbf{0}}x(0) = e^{-\mathbf{A}t}x(t) - \mathbf{I}x(0) = \int_0^t e^{-\mathbf{A}\tau}\mathbf{B}u(\tau)d\tau$$

 $^{^2{\}rm O}$ argumento do integrando foi trocado de t para $\tau,$ evitando confusão com os limites de integração.

Dicas de Sistemas Pré-multiplicando por $e^{\mathbf{A}t}$:

$$x(t) = \underbrace{e^{\mathbf{A}t}x(0)}_{\text{Resposta à entrada nula}} + \underbrace{\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B}u(\tau) d\tau}_{\text{Resposta ao estado nulo}}$$
(6)

Equações de estado equivalentes Motivação

Dicas de

Pré-multiplicando por $e^{\mathbf{A}t}$:

$$x(t) = \underbrace{e^{\mathbf{A}t}x(0)}_{\text{Resposta à entrada nula}} + \underbrace{\int_{0}^{t}e^{\mathbf{A}(t-\tau)}\mathbf{B}u(\tau)d\tau}_{\text{Resposta ao estado nulo}} \tag{6}$$

• Levando (6) em (4):

$$y(t) = \mathbf{C}e^{\mathbf{A}t}x(0) + \mathbf{C}\int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}u(\tau)d\tau + \mathbf{D}u(t)$$
 (7)

Notas

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes

Motivação

Dicas de Sistemas • Cômputo aplicando Laplace em (3)–(4):

$$sX(s) - \underbrace{x(0)}_{\text{Cond. Inicial}} = \mathbf{A}X(s) + \mathbf{B}U(s)$$

$$\Rightarrow X(s) = (s\mathbf{I} - \mathbf{A})^{-1}[x(0) + \mathbf{B}U(s)] \quad (8)$$

$$Y(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}[x(0) + \mathbf{B}U(s)] + \mathbf{D}U(s)$$

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas • Cômputo aplicando Laplace em (3)–(4):

$$sX(s) - \underbrace{x(0)}_{\text{Cond. Inicial}} = \mathbf{A}X(s) + \mathbf{B}U(s)$$

$$\Rightarrow X(s) = (s\mathbf{I} - \mathbf{A})^{-1}[x(0) + \mathbf{B}U(s)] \quad (8)$$

$$Y(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}[x(0) + \mathbf{B}U(s)] + \mathbf{D}U(s)$$

• Cômputo de $e^{\mathbf{A}t}$: várias maneiras. Por exemplo, use Cayley-Hamilton, já estudado em *Análise de Sistemas Lineares* e em *Teoria de Controle*.

Calculando Matriz inversa

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

$$A^{-1} = \frac{\operatorname{Adj} A}{\det(A)}; \quad \operatorname{Adj} A = (\operatorname{Co} A)'$$

em que $\operatorname{Co} A$ é a matriz cofatora de A e

$$[\operatorname{Co} A]_{ij} = (-1)^{i+j} M_{ij}$$

em que M_{ij} é o menor ij da matriz A.

• M_{ij} é o determinante da matriz resultante da eliminação da linha i e coluna j da matriz A.

$e^{\mathbf{A}t}$ via Cayley-Hamilton

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

- Calcule os autovalores de $\mathbf{A} \in \mathbb{R}^{n \times n}$;
- Faça $f(\lambda) = e^{\lambda t}$;
- Defina $h(\lambda)$ um polinômio de grau n-1;
- Calcule os coeficientes de $h(\lambda)$ usando:

$$f^{(\ell)}(\lambda_i) = h^{(\ell)}(\lambda_i), \ \ell = 0, 1, \dots, (n_i - 1) \ \mathsf{e} \ i = 0, 1, \dots, m$$

$$\Rightarrow f^{(\ell)}(\lambda_i) = \left. \frac{d^\ell f(\lambda)}{d\lambda^\ell} \right|_{\lambda = \lambda_i}$$

 $\Rightarrow h^{(\ell)}(\lambda_i)$ definido de maneira similar.

$$\Rightarrow f(\mathbf{A}) = h(\mathbf{A})$$

Estudo de caso

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

Figura: Um circuito e dois conjuntos de variáveis de estado.

Em que:

- u(t) e y(t) são a entrada e saída, respectivamente.
- x_1 e x_2 são estados baseados nas correntes dos ramos.
- \hat{x}_1 e \hat{x}_2 são estados baseados nas correntes das malhas.

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas $\Rightarrow x_2 \longrightarrow \text{tens\~ao} \text{ no capacitor}$

 \Rightarrow Tensão no indutor $v_L=L\dot{x}_1$, Tensão no capacitor $v_C=Rx_2$ e Corrente no capacitor $i_C=C\frac{dv_C}{dt}=CR\dot{x}_2$.

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

$$\Rightarrow x_2 \longrightarrow \text{tensão no capacitor}$$

 \Rightarrow Tensão no indutor $v_L = L\dot{x}_1$, Tensão no capacitor

$$v_C = Rx_2$$
 e Corrente no capacitor $i_C = C \frac{dv_C}{dt} = CR\dot{x}_2$.

Modelagem

$$\Rightarrow$$
 Lei dos nós: $x_1 = x_2 + CR\dot{x}_2$

$$\Rightarrow$$
 Lei das tensões: $L\dot{x}_1 + Rx_2 - u = 0$

Equações de estado equivalentes Motivação

Dicas de Sistemas

$$\Rightarrow x_2 \longrightarrow \text{tensão no capacitor}$$

 \Rightarrow Tensão no indutor $v_L = L\dot{x}_1$, Tensão no capacitor

$$v_C = Rx_2$$
 e Corrente no capacitor $i_C = C \frac{dv_C}{dt} = CR\dot{x}_2$.

Modelagem

- \Rightarrow Lei dos nós: $x_1 = x_2 + CR\dot{x}_2$
- \Rightarrow Lei das tensões: $L\dot{x}_1 + Rx_2 u = 0$

$$\begin{bmatrix} \dot{\boldsymbol{x}}_1 \\ \dot{\boldsymbol{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{-R}{L} \\ \frac{1}{CR} & \frac{-1}{CR} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u; \quad y = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix}$$

Equações de estado equivalentes Motivação

Dicas de Sistemas • Outra modelagem possível para o mesmo sistema

$$\Rightarrow \text{Malha 1: } u = L\dot{\hat{x}}_1 + R\hat{x}_1 - R\hat{x}_2$$

$$\dot{\hat{x}}_1 = -\frac{R}{L}\hat{x}_1 + \frac{R}{L}\hat{x}_2 + \frac{1}{L}u$$

Dicas de Sistemas • Outra modelagem possível para o mesmo sistema

$$\Rightarrow \text{Malha 1: } u = L\dot{\hat{x}}_1 + R\hat{x}_1 - R\hat{x}_2$$

$$\dot{\hat{x}}_1 = -\frac{R}{L}\hat{x}_1 + \frac{R}{L}\hat{x}_2 + \frac{1}{L}u$$

 \Rightarrow Malha 2:

$$v_C = v_R \Rightarrow i_C = C \frac{d}{dt} v_R \Rightarrow \hat{x}_2 = RC \dot{\hat{x}}_1 - RC \dot{\hat{x}}_2$$

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas • Outra modelagem possível para o mesmo sistema

$$\Rightarrow \text{Malha 1: } u = L\dot{\hat{x}}_1 + R\hat{x}_1 - R\hat{x}_2$$

$$\dot{\hat{x}}_1 = -\frac{R}{L}\hat{x}_1 + \frac{R}{L}\hat{x}_2 + \frac{1}{L}u$$

 \Rightarrow Malha 2:

$$v_C = v_R \Rightarrow i_C = C \frac{d}{dt} v_R \Rightarrow \hat{x}_2 = RC \dot{\hat{x}}_1 - RC \dot{\hat{x}}_2$$

Usando a expressão obtida para \hat{x}_1 :

$$\dot{\hat{x}}_2 = -\frac{R}{L}\hat{x}_1 + \frac{R^2C - L}{RLC}\hat{x}_2 + \frac{1}{L}u$$

Equações de estado equivalentes Motivação

Dicas de Sistemas • Outra modelagem possível para o mesmo sistema

$$\Rightarrow \text{Malha 1: } u = L\dot{\hat{x}}_1 + R\hat{x}_1 - R\hat{x}_2$$

$$\dot{\hat{x}}_1 = -\frac{R}{L}\hat{x}_1 + \frac{R}{L}\hat{x}_2 + \frac{1}{L}u$$

 \Rightarrow Malha 2:

$$v_C = v_R \Rightarrow i_C = C \frac{d}{dt} v_R \Rightarrow \hat{x}_2 = RC \dot{\hat{x}}_1 - RC \dot{\hat{x}}_2$$

Usando a expressão obtida para $\dot{\hat{x}}_1$:

$$\dot{\hat{x}}_2 = -\frac{R}{L}\hat{x}_1 + \frac{R^2C - L}{RLC}\hat{x}_2 + \frac{1}{L}u$$

$$\begin{bmatrix} \dot{\hat{x}}_1 \\ \dot{\hat{x}}_2 \end{bmatrix} = \begin{bmatrix} \frac{-R}{L} & \frac{R}{L} \\ \frac{R}{C} & \frac{R^2C-L}{RLC} \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ \frac{1}{L} \end{bmatrix} u; \quad y = \begin{bmatrix} R & -R \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$$

Observações

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistema

- As duas descrições são do mesmo sistema.
- Portanto, são algebricamente equivalentes.
- Como passar de uma representação para outra?

Transformação de equivalência

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

- Advém de uma transformação de similaridade.
- ullet Define-se $\hat{x}(t) = \mathbf{P}x(t)$, \mathbf{P} não-singular , resulta em

$$\left[\begin{array}{c|c} \hat{\mathbf{A}} & \hat{\mathbf{B}} \\ \hline \hat{\mathbf{C}} & \hat{\mathbf{D}} \end{array} \right]_{\text{em } \hat{x}(t)} \quad \text{equivale a} \quad \left[\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D} \end{array} \right]_{\text{em } x(t)}$$

Transformação de equivalência

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes Motivação

Dicas de Sistemas

- Advém de uma transformação de similaridade.
- ullet Define-se $\hat{x}(t) = \mathbf{P}x(t)$, \mathbf{P} não-singular , resulta em

$$\left[\begin{array}{c|c} \hat{\mathbf{A}} & \hat{\mathbf{B}} \\ \hline \hat{\mathbf{C}} & \hat{\mathbf{D}} \end{array} \right]_{\text{em } \hat{x}(t)} \quad \text{equivale a} \quad \left[\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D} \end{array} \right]_{\text{em } x(t)}$$

 \Rightarrow com

$$\hat{\mathbf{A}} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}; \quad \hat{\mathbf{B}} = \mathbf{P}\mathbf{B}; \quad \hat{\mathbf{C}} = \mathbf{C}\mathbf{P}^{-1}; \quad \hat{\mathbf{D}} = \mathbf{D}$$

Transformação de equivalência

Controle Moderno

V. J. S. Leite

Solução de equações estado LTI ^{Cálculos úteis}

Equações de estado equivalentes Motivação

Dicas de Sistemas

- Advém de uma transformação de similaridade.
- ullet Define-se $\hat{x}(t) = \mathbf{P}x(t)$, \mathbf{P} não-singular , resulta em

$$\left[\begin{array}{c|c} \hat{\mathbf{A}} & \hat{\mathbf{B}} \\ \hline \hat{\mathbf{C}} & \hat{\mathbf{D}} \end{array}\right] \bigg|_{\mathsf{em}} \ \ \underset{\hat{x}(t)}{\mathsf{equivale}} \ \ \mathsf{a} \ \ \left[\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D} \end{array}\right] \bigg|_{\mathsf{em}} \ \ x(t)$$

⇒ com

$$\hat{\mathbf{A}} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}; \quad \hat{\mathbf{B}} = \mathbf{P}\mathbf{B}; \quad \hat{\mathbf{C}} = \mathbf{C}\mathbf{P}^{-1}; \quad \hat{\mathbf{D}} = \mathbf{D}$$

 $\Rightarrow \hat{x}(t) = \mathbf{P}x(t)$ é uma transformação de equivalência

V. J. S. Leite

Solução de equações estado LTI Cálculos úteis

Equações de estado equivalentes

Motivação

Dicas de Sistemas • Qual é a transformação?

- Qual é a transformação?
- Equivalência se dá em:

$$\Rightarrow \hat{\Delta}(\lambda) = \det(\lambda \mathbf{I} - \hat{\mathbf{A}}) = \det(\lambda \mathbf{I} - \mathbf{A}) = \Delta(\lambda)$$

$$\Rightarrow$$

$$\Rightarrow \hat{\mathbf{G}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}})^{-1}\hat{\mathbf{B}} + \hat{\mathbf{D}} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1} + \mathbf{D} = \mathbf{G}(s)$$

Atividade 3

Controle Moderno

- V. J. S. Leite
- Solução de equações estado LTI
- Equações de estado equivalentes Motivação

Dicas de Sistemas

- Calcule a transformação que relaciona as duas representações do exemplo usado nesse conjunto de slides.
- 2 Calcule a função de transferência em cada caso, manualmente.
- Encontre uma representação no espaço de estados para o circuito em uma forma canônica, via transformação de similaridade.
- Suponha i_L = 1A, i_R = 0.5A, L = 49mH, C = 49µF e R = 3194.4. Para essas condições, simule cada uma das 3 representações obtidas usando o cálculo da matriz exponencial³, mostrando, em cada caso, o comportamento dos estados e da saída. Armazene os valores obtidos em 3 matrizes, uma para cada simulação.
- Usando os valores salvos em uma das matrizes do item anterior, determine os estados e a partir desses a saída para as outras duas representações (Use as relações entre os estados para isso!). Verifique o erro cometido em cada caso.

³Usando Cayley Hamilton, por exemplo!

Dicas de Sistemas ⇒ Sugestão de sistemas para trabalhos futuros ou para estudo das técnicas apresentadas:

Vejam www.slicot.org para uma biblioteca de sistemas contínuos no tempo

http://www.slicot.org/REPORTS/SLWN1998-9.ps.gz e sistemas discretos no tempo

http://www.slicot.org/REPORTS/SLWN1998-10.ps.gz

Outro conjunto de sistemas pode ser encontrada no projeto *COMPlib* que pode ser baixado e instalado como um toolbox do Matlab. Acesse em http://www.complib.de/