# 1 Ideas

# 1.1 Line search

Line search in ?? is not working very well.

line Search = 7 x f ( 9, 6) grad disand,  $\gamma \in \gamma - \eta \, Q_{\gamma} \, \widetilde{D}_{KL} \, (\gamma)$ func. grad, 7 f(n ) 7x KL (9+ x (5-9+) 11P) = 17 2 P - 9 = L 7 f(m), s> 19+ Y (5-9+) ) - (9+ Y (5-9+) JQ - (Df(a), N) = Vy | # 9+ 1-9 9+ 1 Tr q (s-q\*)  $= (3-q^{t}) | q | q_{t} + (3-q^{t})$ = ( ( S - qt) \$ ( 1 + 1 - q 9 + ) = (s, 19 2+) - < 9t, 19 2+) > = 1Es [199+-19] - 1Egt [199+-199] = IE, [ ] + [ ] - E + [ ] = + [ ]

changes for measuring variance of  $\mathbb{E}_{s}\left[\cdot\right]$  and  $\mathbb{E}_{q_{t+1}^{\gamma}}\left[\cdot\right]$ .

```
grad_gamma = []
       for it in range(n_steps):
        # Samples w.r.t s
       rez_s = np.asarray([
            px_qx_ratio_log_prob(sample_s[ss]) for ss in range(len(sample_s))
       ])
        # Samples w.r.t q_{t+1}
       rez_q = np.asarray([
10
            px_qx_ratio_log_prob(sample_q[ss]) for ss in range(len(sample_q))
11
12
       grad_gamma.append({'E_s': rez_s, 'E_q': rez_q, 'gamma': gamma})
13
14
        # Write grad_gamma to outdir/line_search_samples_<n_samples>.npy.<fw_iter>
15
```

Metrics on original version.



Figure 1: gamma with iterations for different n\_samples



Figure 2:  $E_s$  with different n\_samples

#### 1.2 Adaptive Frank-Wolfe from smoothness estimators

Algorithm 1 of [Pedregosa et al., 2018] Code changes.

# 1.3 Measuring smoothness

in progress

values have changed slightly after moving everything to Tensor-flow/Edward Remake plots?



Figure 3:  $E_q$  with different n\_samples ?? begins with iter 1 as iter 0 has very high variance

#### **Algorithm 1:** Adaptive Frank-Wolfe for Boosting BBVI

```
Input: q_0 \in \mathcal{D}, initial Lipschitz estimate L_{-1}, line search parameters \tau > 1, \eta \in (0,1]

1 for t = 1...T do

2 | s_t \leftarrow LMO_{\mathcal{A}}(\nabla f(q^t))

3 | g_t \leftarrow \langle \nabla f(q_t), q_t \rangle - \langle \nabla f(q_t), s_t \rangle // Gap \geq 0

4 | Find smallest integer i s.t

5 | f(q_t + \gamma_t(s_t - q_t)) \leq Q_t(\gamma_t) Where

6 | Q_t(\gamma) := f(q_t) - \gamma g_t + \frac{\gamma^2 L_t}{2} d(s_t, q_t) // Quadratic upper bound ??

7 | L_t \leftarrow \tau^i \eta L_{t-1} and \gamma_t \leftarrow \min\left(\frac{g_t}{L_t d(s_t, q_t)}, 1\right)

8 end

9 return q_T
```

Computing optimal  $\gamma$  directly from eqn 1 of [Pedregosa et al., 2018]

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \gamma \langle \nabla f(\mathbf{x}_t), \mathbf{s}_t - \mathbf{x}_t \rangle + \frac{\gamma^2}{2} L_t ||\mathbf{s}_t - \mathbf{x}_t||^2$$

$$\Rightarrow L_t \geq \frac{f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) + \gamma \langle \nabla f(\mathbf{x}_t), \mathbf{s}_t - \mathbf{x}_t \rangle}{\frac{\gamma^2}{2} ||\mathbf{s}_t - \mathbf{x}_t||^2}$$

$$\frac{f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) + \gamma \langle \nabla f(\mathbf{x}_t), \mathbf{s}_t - \mathbf{x}_t \rangle}{\frac{\gamma^2}{2} \text{KL} (\mathbf{s}_t || q_t)}$$

#### Code changes.

```
def grad_kl(q, p, theta):  
# Functional Gradient w.r.t q \nabla KL(q||p) = \log q - \log p

def lmo(y, p, ...):  
# f = \mathcal{D}^{KL}(y||p)

# \langle \nabla f, y \rangle = \mathbb{E}_y \nabla f
```

#### 1.4 Other optimization algorithm

#### todo

As shown in link ??, Frank-Wolfe converges slower than Projected Gradient Descent in Practice. See [Locatello et al., 2017] to see why we use FW and if it can be replaced. (will have to derive new convergence proofs and boosting won't be as integrated into the optimization algorithm as before).

### 1.5 Entropy Regularization and Noise addition using Optimal Transport

In LMO, [Locatello et al., 2018] uses Entropy Regularization in place of norm constrained optimization. It can be replaced with something simpler See [Tolstikhin et al., 2017] [Dong Liu, 2018] [Bernton et al., 2017] [Jordan et al., 1998] here And [Peyré et al., 2017] part 4.

#### 1.6 Sensibility of Distribution

Given observable r(x) with mean  $\mu$ , Probability distribution p(x) that satisfies the constraint  $\mathbb{E}_{p(x)}[r(x)] = \mu$  is a function of parameter  $\mu, p(x) \equiv p(x, \mu)$ . Sensibility of a distribution w.r.t  $\mu$  is defined as the expected squared deviation given by the perturbation of  $\mu$ . See slides of lecture 2 of SLT

$$S(p) = \mathbb{E}\left[\left(\frac{\partial_{\mu}p}{p}\right)^{2}\right]$$

# 1.7 Port code to Tensorflow Probability

see ??. Issue is if tfp.edward2 will have support for Variational Inference and ELBO etc.

# References

- [Bernton et al., 2017] Bernton, E., Jacob, P. E., Gerber, M., and Robert, C. P. (2017). Inference in generative models using the wasserstein distance. arXiv preprint arXiv:1701.05146.
- [Dong Liu, 2018] Dong Liu, Minh Thnh Vu, S. C. L. K. R. (2018). Entropy-regularized optimal transport generative models. arXiv preprint arXiv:1811.06763.
- [Jordan et al., 1998] Jordan, R., Kinderlehrer, D., and Otto, F. (1998). The variational formulation of the fokker–planck equation. SIAM journal on mathematical analysis, 29(1):1–17.
- [Locatello et al., 2018] Locatello, F., Dresdner, G., Khanna, R., Valera, I., and Rätsch, G. (2018). Boosting black box variational inference. arXiv preprint arXiv:1806.02185.
- [Locatello et al., 2017] Locatello, F., Khanna, R., Ghosh, J., and Rätsch, G. (2017). Boosting variational inference: an optimization perspective. arXiv preprint arXiv:1708.01733.
- [Pedregosa et al., 2018] Pedregosa, F., Askari, A., Negiar, G., and Jaggi, M. (2018). Step-size adaptivity in projection-free optimization. arXiv preprint arXiv:1806.05123.
- [Peyré et al., 2017] Peyré, G., Cuturi, M., et al. (2017). Computational optimal transport. Technical report, École Normale Supérieure.
- [Tolstikhin et al., 2017] Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017). Wasserstein autoencoders. arXiv preprint arXiv:1711.01558.