PGP DSBA Jan\_A 22 Batch Online Project - Data Mining Boby Sinha

# **Table of Contents**

# Contents

| 1. Clustering data analysis                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Executive Summary 6                                                                                                                                                                                                                                                          |
| Introduction 6                                                                                                                                                                                                                                                               |
| Data Description                                                                                                                                                                                                                                                             |
| Sample of the dataset                                                                                                                                                                                                                                                        |
| Exploratory data analysis 7                                                                                                                                                                                                                                                  |
| Let us check the type of the variables in the data frame                                                                                                                                                                                                                     |
| Check the missing values 8                                                                                                                                                                                                                                                   |
| Correlation plot11                                                                                                                                                                                                                                                           |
| Pairplot16                                                                                                                                                                                                                                                                   |
| Problem 1: Clustering                                                                                                                                                                                                                                                        |
| A leading bank wants to develop a customer segmentation to give promotional offers to its customers. They collected a sample that summarizes the activities of users during the past few months. You are given the task to identify the segments based on credit card usage. |
| <b>1.1</b> Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bivariate, and multivariate analysis)                                                                                                                                   |
| <b>1.2</b> Do you think scaling is necessary for clustering in this case? Justify                                                                                                                                                                                            |
| <b>1.3</b> Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them                                                                                                                                  |
| <b>1.4</b> Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results properly. Interpret and write inferences on the finalized clusters                                                            |
| <b>1.5</b> Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters                                                                                                                                             |
| Dataset for Problem 1: <a href="https://drive.google.com/file/d/1SRWZIR8Wbxt-a3uXdf5l5nTXrkodJoO4/view?usp=sharing">https://drive.google.com/file/d/1SRWZIR8Wbxt-a3uXdf5l5nTXrkodJoO4/view?usp=sharing</a>                                                                   |

# **Data Dictionary for Market Segmentation:**

- 1. spending: Amount spent by the customer per month (in 1000s)
- advance\_payments: Amount paid by the customer in advance by cash (in 100s)
- 3. probability\_of\_full\_payment: Probability of payment done in full by the customer to the bank
- 4. current\_balance: Balance amount left in the account to make purchases (in 1000s)
- 5. credit limit: Limit of the amount in credit card (10000s)
- 6. min\_payment\_amt : minimum paid by the customer while making payments for purchases made monthly (in 100s)
- 7. max\_spent\_in\_single\_shopping: Maximum amount spent in one purchase (in 1000s)

# 2. Insurance Analysis

| Summary                                                 | 28 |
|---------------------------------------------------------|----|
| Introduction                                            | 28 |
| Data Description                                        | 28 |
| Sample of the dataset                                   | 28 |
| Exploratory data analysis                               | 29 |
| Let us check the type of the variables in the dattframe | 30 |
| Correlation plot                                        | 33 |
| Pair plot                                               | 34 |

# Problem 2: CART-RF-ANN

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

| <b>2.2</b> Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network44                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2.3</b> Performance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score, classification reports for each model |
| 2.4 Final Model: Compare all the models and write an inference which model is best/optimized54                                                                                                                        |
| 2.5 Inference: Based on the whole Analysis, what are the business insights and recommendations                                                                                                                        |

# Dataset for Problem 2:

https://drive.google.com/file/d/1skj1zx67g6hHi0srYkxKWiBthluHrjuK/view?usp=sharing

# Attribute Information:

- 1. Target: Claim Status (Claimed)
  - 2. Code of tour firm (Agency\_Code)
  - 3. Type of tour insurance firms (Type)
  - 4. Distribution channel of tour insurance agencies (Channel)
  - 5. Name of the tour insurance products (Product)
  - 6. Duration of the tour (Duration in days)
  - 7. Destination of the tour (Destination)
  - 8. Amount worth of sales per customer in procuring tour insurance policies in rupees (in 100's)
  - 9. The commission received for tour insurance firm (Commission is in percentage of sales)
  - 10.Age of insured (Age)

# **List of Figures**

| Figure Name                    | Page No. |
|--------------------------------|----------|
| Spending                       | 6        |
| advance_payments               | 7        |
| probability_of_full_payment    | 7        |
| current_balance                | 8        |
| credit_limit                   | 8        |
| min_payment_amt                | 9        |
| max_spent_in_single_shopping . | 9        |
| Heat Map                       | 10       |
| Pair Plot                      | 11       |
| Clustering                     | 13       |
| Truncated Clustering           | 13       |
| Max Cluster                    | 13       |
| Clustering- Sets               | 14       |
| Elbow Curve                    | 15       |
| Silhouette score.              | 15       |
| Age                            | 19       |
| Commission                     | 19       |
| Duration                       | 20       |
| Sales                          | 25       |
| Agency code                    | 27       |
| Туре                           | 28       |

| Claimed                       | 29 |
|-------------------------------|----|
| Channel                       | 30 |
| Product Name                  | 31 |
| Destination                   | 32 |
| Agency code – Sales           | 33 |
| Type – Sales                  | 34 |
| Channel – Sales               | 35 |
| Product Name – Sales          | 36 |
| Destination – Sales           | 37 |
| Agency code – Sales – Claimed | 37 |
| Type- Sales - Claimed         | 37 |
| Channel– Sales – Claimed      | 26 |
| Product Name- Sales - Claimed | 27 |
| Pair plot                     | 28 |
| Heat Map                      | 29 |
| Boxplot - Outlier checking    | 29 |
| Train Test Data               | 30 |
| Decision Tree                 | 31 |
| Regularising Decision Tree    | 32 |
| Scaled Trained Data           | 33 |
| Scaled Test Data              | 33 |
| Classification Report - Train | 34 |

| <b>Classification Report - Test</b> | 35 |
|-------------------------------------|----|
| Confusion Matrix - Train            | 37 |
| Confusion Matrix - Test             | 38 |
| ROC_AUC Score and ROC Curve -Train  | 39 |
| ROC_AUC Score and ROC Curve -Test   | 40 |
| Classification Report – Train       | 41 |
| Classification Report – Test        | 44 |
| Confusion Matrix – Train            | 45 |
| Confusion Matrix – Test             | 47 |
| ROC_AUC Score and ROC Curve –Train  | 48 |
| ROC_AUC Score and ROC Curve -Test   | 49 |
| Classification Report- Test         | 49 |
| Classification Report– Train        | 50 |
| Confusion Matrix- Train             | 50 |
| Confusion Matrix– Test              | 50 |

# **List of Tables**

| Table Name                   | Page No. |
|------------------------------|----------|
| Dataset Sample               | 5        |
| Scaled Dataset               | 12       |
| <b>Dataset with Clusters</b> | 24       |
| Dataset with kmeans          | 26       |
| Dataset with sil_width       | 36       |
| Dataset with Freq            | 46       |
| Insurance Dataset            | 48       |

# 1. Cluster Analysis

## **Executive Summary:**

A leading bank deals with different types of buying/spending behaviour of the customers. The dataset consists of various characteristics of the customers based on the models available in the bank. Based on the different attributes/characteristics of the buying/spending behaviour of the customers is defined. In this problem statement we will explore the different attributes of the buying/spending behaviour of the customers based on credit card usage and bank will develop a customer segmentation to give promotional offers to its customers.

#### **Introduction:**

The purpose of this whole exercise is to explore the dataset. Do the exploratory data analysis. Explore the dataset using clustering techniques such as hierarchical clustering and k- means clustering. The dataset consists of 210 rows and 7 columns, 210 customers with 7 different buying/spending behaviour of the customers. Analyse the different attributes of the bank marketing dataset which can help in segmenting the customers to give promotional offers. This assignment should help the student in exploring the summary statistics, information about the dataset, shape of the dataset, missing or duplicate values, understand the distribution of the dataset and to check any outliers are there in the dataset.

# **Data Description:**

## **Data Dictionary for Market Segmentation:**

- 1. spending: Amount spent by the customer per month (in 1000s)
- 2. advance\_payments: Amount paid by the customer in advance by cash (in 100s)
- 3. probability\_of\_full\_payment: Probability of payment done in full by the customer to the bank
- 4. current balance: Balance amount left in the account to make purchases (in 1000s)
- 5. credit limit: Limit of the amount in credit card (10000s)
- 6. min\_payment\_amt: minimum paid by the customer while making payments for purchases made monthly (in 100s)
- 7. max\_spent\_in\_single\_shopping: Maximum amount spent in one purchase (in 1000s)

### **Problem 1: Clustering**

1.1 Read the data and do exploratory data analysis (3 pts). Describe the data briefly. Interpret the inferences for each (3 pts). Initial steps like head() .info(), Data Types, etc . Null value check. Distribution plots(histogram) or similar plots for the continuous columns. Box plots, Correlation plots. Appropriate plots for categorical variables. Inferences on each plot. Summary stats, Skewness, Outliers proportion should be discussed, and inferences from above used plots should be there. There is no restriction on how the learner wishes to implement this but the code should be able to represent the correct output and inferences should be logical and correct.

#### Sol:

#### Read the data

```
bank_marketing_df = pd.read_csv('bank_marketing_part1_Data.csv')
```

Pd.read\_csv function is used to read the file in jupyter notebook environment.

## Importing the packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(color_codes=True)
import warnings
warnings.filterwarnings("ignore")
from sklearn.cluster import KMeans
```

To read the dataset and do the analysis and exploratory data analysis we need to import packages in python jupyter notebook so that we can read the data and perform EDA.

## **Exploratory Data Analysis:**

Exploratory data analysis (EDA) is used by data scientists to analyze and investigate data sets and summarize their main characteristics, often employing data visualization methods. It helps determine how best to manipulate data sources to get the answers you need, making it easier for data scientists to discover patterns, spot anomalies, test a hypothesis, or check assumptions. EDA is primarily used to see what data

can reveal beyond the formal modelling or hypothesis testing task and provides a provides a better understanding of data set variables and the relationships between them.

# Sample of the dataset:

|   | spending | advance_payments | probability_of_full_payment | current_balance | credit_limit | min_payment_amt | max_spent_in_single_shopping |
|---|----------|------------------|-----------------------------|-----------------|--------------|-----------------|------------------------------|
| 0 | 19.94    | 16.92            | 0.8752                      | 6.675           | 3.763        | 3.252           | 6.550                        |
| 1 | 15.99    | 14.89            | 0.9064                      | 5.363           | 3.582        | 3.336           | 5.144                        |
| 2 | 18.95    | 16.42            | 0.8829                      | 6.248           | 3.755        | 3.368           | 6.148                        |
| 3 | 10.83    | 12.96            | 0.8099                      | 5.278           | 2.641        | 5.182           | 5.185                        |
| 4 | 17.99    | 15.86            | 0.8992                      | 5.890           | 3.694        | 2.068           | 5.837                        |
| 5 | 12.70    | 13.41            | 0.8874                      | 5.183           | 3.091        | 8.456           | 5.000                        |
| 6 | 12.02    | 13.33            | 0.8503                      | 5.350           | 2.810        | 4.271           | 5.308                        |
| 7 | 13.74    | 14.05            | 0.8744                      | 5.482           | 3.114        | 2.932           | 4.825                        |
| 8 | 18.17    | 16.26            | 0.8637                      | 6.271           | 3.512        | 2.853           | 6.273                        |
| 9 | 11.23    | 12.88            | 0.8511                      | 5.140           | 2.795        | 4.325           | 5.003                        |

Table 1. Dataset Sample

Dataset consists of 210 rows and 7 unique columns with 7 different buying/spending behaviour of the customers.

# Top 10 entries or head of the dataset:

| bar | nk_market | ing_df.head(10)  | #Top 10 entries             |                 |              |                 |                              |
|-----|-----------|------------------|-----------------------------|-----------------|--------------|-----------------|------------------------------|
|     | spending  | advance_payments | probability_of_full_payment | current_balance | credit_limit | min_payment_amt | max_spent_in_single_shopping |
| 0   | 19.94     | 16.92            | 0.8752                      | 6.675           | 3.763        | 3.252           | 6.550                        |
| 1   | 15.99     | 14.89            | 0.9064                      | 5.363           | 3.582        | 3.336           | 5.144                        |
| 2   | 18.95     | 16.42            | 0.8829                      | 6.248           | 3.755        | 3.368           | 6.148                        |
| 3   | 10.83     | 12.96            | 0.8099                      | 5.278           | 2.641        | 5.182           | 5.185                        |
| 4   | 17.99     | 15.86            | 0.8992                      | 5.890           | 3.694        | 2.068           | 5.837                        |
| 5   | 12.70     | 13.41            | 0.8874                      | 5.183           | 3.091        | 8.456           | 5.000                        |
| 6   | 12.02     | 13.33            | 0.8503                      | 5.350           | 2.810        | 4.271           | 5.308                        |
| 7   | 13.74     | 14.05            | 0.8744                      | 5.482           | 3.114        | 2.932           | 4.825                        |
| 8   | 18.17     | 16.26            | 0.8637                      | 6.271           | 3.512        | 2.853           | 6.273                        |
| 9   | 11.23     | 12.88            | 0.8511                      | 5.140           | 2.795        | 4.325           | 5.003                        |

From the above tables we can see the top 10 rows or entries of the dataset.

# **Bottom 10 entries or tail of the dataset:**

|     | spending | advance_payments | probability_of_full_payment | current_balance | credit_limit | min_payment_amt | $max\_spent\_in\_single\_shopping$ |
|-----|----------|------------------|-----------------------------|-----------------|--------------|-----------------|------------------------------------|
| 200 | 14.88    | 14.57            | 0.8811                      | 5.554           | 3.333        | 1.018           | 4.956                              |
| 201 | 17.08    | 15.38            | 0.9079                      | 5.832           | 3.683        | 2.956           | 5.484                              |
| 202 | 14.80    | 14.52            | 0.8823                      | 5.656           | 3.288        | 3.112           | 5.309                              |
| 203 | 11.55    | 13.10            | 0.8455                      | 5.167           | 2.845        | 6.715           | 4.956                              |
| 204 | 16.41    | 15.25            | 0.8866                      | 5.718           | 3.525        | 4.217           | 5.618                              |
| 205 | 13.89    | 14.02            | 0.8880                      | 5.439           | 3.199        | 3.986           | 4.738                              |
| 206 | 16.77    | 15.62            | 0.8638                      | 5.927           | 3.438        | 4.920           | 5.795                              |
| 207 | 14.03    | 14.16            | 0.8796                      | 5.438           | 3.201        | 1.717           | 5.001                              |
| 208 | 16.12    | 15.00            | 0.9000                      | 5.709           | 3.485        | 2.270           | 5.443                              |
| 209 | 15.57    | 15.15            | 0.8527                      | 5.920           | 3.231        | 2.640           | 5.879                              |
|     |          |                  |                             |                 |              |                 |                                    |

From the above tables we can see the bottom 10 rows or entries of the dataset.

# Check the shape of the dataset:

```
bank_marketing_df.shape
(210, 7)
```

From the above figure we can say that there are 210 rows and 7 columns available in the dataset.

# Check the complete information of the dataset:

```
bank_marketing_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):
    Column
                                Non-Null Count Dtype
    -----
                                -----
    spending
                                              float64
0
                                210 non-null
    advance_payments
                                210 non-null float64
1
                                210 non-null float64
2
    probability_of_full_payment
3 current balance
                                210 non-null float64
    credit_limit
                                210 non-null float64
5
                                210 non-null
    min_payment_amt
                                              float64
    max_spent_in_single_shopping 210 non-null float64
dtypes: float64(7)
memory usage: 11.6 KB
```

From the above figure we can say that there are zero null values, datatype if of float, range index starts from 0 and ends at 210, columns names and the dataframe.

# To check the mathematical summary:

| bank_marketing_df.describe().T |       |           |          |         |          |          |           |         |
|--------------------------------|-------|-----------|----------|---------|----------|----------|-----------|---------|
|                                | count | mean      | std      | min     | 25%      | 50%      | 75%       | max     |
| spending                       | 210.0 | 14.847524 | 2.909699 | 10.5900 | 12.27000 | 14.35500 | 17.305000 | 21.1800 |
| advance_payments               | 210.0 | 14.559286 | 1.305959 | 12.4100 | 13.45000 | 14.32000 | 15.715000 | 17.2500 |
| probability_of_full_payment    | 210.0 | 0.870999  | 0.023629 | 0.8081  | 0.85690  | 0.87345  | 0.887775  | 0.9183  |
| current_balance                | 210.0 | 5.628533  | 0.443063 | 4.8990  | 5.26225  | 5.52350  | 5.979750  | 6.6750  |
| credit_limit                   | 210.0 | 3.258605  | 0.377714 | 2.6300  | 2.94400  | 3.23700  | 3.561750  | 4.0330  |
| min_payment_amt                | 210.0 | 3.700201  | 1.503557 | 0.7651  | 2.56150  | 3.59900  | 4.768750  | 8.4560  |
| max_spent_in_single_shopping   | 210.0 | 5.408071  | 0.491480 | 4.5190  | 5.04500  | 5.22300  | 5.877000  | 6.5500  |

From the above table we can get the 5 point summary of the dataset such as their mean value, max value, number of count,  $25^{th}$  percentile,  $75^{th}$  percentile and the maximum value.

# Let us check the types of variables in the data frame

| spending                     | float64 |
|------------------------------|---------|
| advance_payments             | float64 |
| probability_of_full_payment  | float64 |
| current_balance              | float64 |
| credit_limit                 | float64 |
| min_payment_amt              | float64 |
| max_spent_in_single_shopping | float64 |
| dtype: object                |         |

There is total 210 rows and 7 columns. And out of 7 columns all 7 columns has datatype as float.

# Check for missing values in the dataset:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):
   Column
                                  Non-Null Count
0
    spending
                                  210 non-null
    advance_payments
1
                                  210 non-null
 2 probability_of_full_payment 210 non-null
    current_balance
3
                                 210 non-null
    credit_limit
4
                                 210 non-null
5
    min_payment_amt
                                 210 non-null
    max_spent_in_single_shopping 210 non-null
6
dtypes: float64(7)
memory usage: 11.6 KB
```

From the above we can say that there are no missing value present in the dataset.

#### To check the Index of the dataset

```
bank_marketing_df.index
RangeIndex(start=0, stop=210, step=1)
```

From the above we can say that the index starts from 0 and ends at 210 with the interval of one step.

#### To check the columns of the dataset:

From the above we can say that the columns are as follows: spending, advance\_payments, probability\_of\_full\_payment, current\_balance, credit\_limit, min\_payment\_amt, max\_spent\_in\_single\_shopping.

#### To check the datatypes of the variables in the dataset:

| bank_marketing_df.dtypes     |         |  |  |  |  |  |  |  |
|------------------------------|---------|--|--|--|--|--|--|--|
| spending                     | float64 |  |  |  |  |  |  |  |
| advance_payments             | float64 |  |  |  |  |  |  |  |
| probability_of_full_payment  | float64 |  |  |  |  |  |  |  |
| current_balance              | float64 |  |  |  |  |  |  |  |
| credit_limit                 | float64 |  |  |  |  |  |  |  |
| min_payment_amt              | float64 |  |  |  |  |  |  |  |
| max_spent_in_single_shopping | float64 |  |  |  |  |  |  |  |
| dtype: object                |         |  |  |  |  |  |  |  |

From the above we can say that the datatypes of the variables in the dataset are in float not in string or Boolean.

# **Univariate Analysis:**

Univariate analysis involves analysis of single variables.



Fig 1. Spending

- The 25th quantile of spending is 12.27
- The median or 50th quantile of spending is 14.355
- The 75th quantile of spending is 17.305
- The distribution of spending is normal but little right skewed 0.3998891917177586





Fig 2. advance\_payments

- The 25th quantile of advance\_payments is 13.45
- The median or 50th quantile of advance\_payments is 14.32
- The 75th quantile of advance\_payments is 15.715
- The distribution of advance\_payments is almost normal 0.3865727731912213



Fig 3. probability\_of\_full\_payment

- The 25th quantile of probability\_of\_full\_payment is 0.8569
- The median or 50th quantile of probability\_of\_full\_payment is 0.8734500000000001
- The 75th quantile of probability\_of\_full\_payment is 0.887775
- The distribution of probability\_of\_full\_payment is left skewed -0.5379537283982823





Fig 4. current\_balance

- The 25th quantile of current\_balance is 5.26225
- The median or 50th quantile of current\_balance is 5.5235
- The 75th quantile of current\_balancet is 5.97975
- The distribution of current\_balance is normal but little right skewed 0.5254815601318906





 $Fig~5.~Univariate-credit\_limit$ 

- The 25th quantile of credit\_limit is 2.944
- The median or 50th quantile of credit\_limit is 3.237
- The 75th quantile of credit\_limit is 3.56175
- The distribution of credit\_limit is normal 0.1343782451316215





Fig 6. Univariate - min\_payment\_amt

- The 25th quantile of min\_payment\_amt is 2.5615
- The median or 50th quantile of min\_payment\_amt is 3.599
- The 75th quantile of min\_payment\_amt is 4.76875
- The distribution of min\_payment\_amt is normal 0.40166734329025183





Fig 7. Univariate - max\_spent\_in\_single\_shopping

- The 25th quantile of max spent in single shopping is 5.045
- The median or 50th quantile of max\_spent\_in\_single\_shopping is 5.223000000000001
- The 75th quantile of max\_spent\_in\_single\_shopping is 5.877
- The distribution of max\_spent\_in\_single\_shopping is normal 0.561897374954866

#### Inference:

After plotting the Boxplots for all the variables, we can conclude that a few outliers are present in the variable namely, min\_payment\_amt which means that there are only a few customers whose minimum payment amount falls on the higher side on an average. We can conclude from the above graphs that most of the customers in our data have a higher spending capacity, high current balance in their bank accounts and these customers spent a higher amount during a single shopping event with their savings. Majority of the customers of the dataset have a higher probability to make full payment to the bank.

## **Bivariate & Multivariate Analysis:**



Fig 8. Bivariate – spending & advance\_payments



 $Fig~9.~Bivariate-spending~\&~probability\_of\_full\_payment$ 



Fig 10. Bivariate – spending & current\_balance



Fig 11. Bivariate – spending & credit\_limit



Fig 12. Bivariate – spending &  $min_payment_amt$ 



Fig 13. Bivariate – spending & max\_spent\_in\_single\_shopping



Fig 14 Bivariate – advance\_payments & max\_spent\_in\_single\_shopping

# Pair plot



Fig15 Multivariate- PairPlot[bank\_marketing\_df]

#### HeatMap



Fig16 Multivariate- HeatMap[bank\_marketing\_df]

# Inference:

As per the Heat Map, we can conclude that the following variables are highly correlated: • Spending and advance\_payments, spending and current\_balance, spending and credit\_limit • Advance payment and current\_balance, advance payment, and credit limit • Current balance and max spent in single shopping By this we can conclude that the customers who are spending very high have a higher current balance and high credit limit. Advance payments and maximum expenditure done in single shopping are done by majority of those customers who have high current balance in their bank accounts. Probability of full payments are higher for those customers who have a higher credit limit. Minimum payment amount is not correlated to any of the variables; hence, it is not affected by any changes in the current balance or credit limit of the customers.

## a. Do you think scaling is necessary for clustering in this case? Justify

Yes, scaling is necessary for clustering in this case before building clustering algorithm scaling of data is important otherwise model will not be accurate and the values of the datapoint will differ. It is applied to independent variables which helps to normalise the data in a particular range. If feature scaling is not done,

then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values. For the data given to us, scaling is required as all the variables are expressed in different units such as spending in 1000's, advance payments in 100's and credit limit in 10000's, whereas probability is expressed as fraction or decimal values. Since the other values expressed in higher units will outweigh probabilities and can give varied results hence it is important to Scale the data using Standard Scaler and therefore normalise the values where the means will be 0 and standard deviation 1.

|   | spending  | advance_payments | probability_of_full_payment | current_balance | credit_limit | min_payment_amt | max_spent_in_single_shopping |
|---|-----------|------------------|-----------------------------|-----------------|--------------|-----------------|------------------------------|
| 0 | 1.754355  | 1.811968         | 0.177628                    | 2.367533        | 1.338579     | -0.298625       | 2.328998                     |
| 1 | 0.393582  | 0.253840         | 1.505071                    | -0.600744       | 0.858236     | -0.242292       | -0.538582                    |
| 2 | 1.413300  | 1.428192         | 0.505234                    | 1.401485        | 1.317348     | -0.220832       | 1.509107                     |
| 3 | -1.384034 | -1.227533        | -2.571391                   | -0.793049       | -1.639017    | 0.995699        | -0.454961                    |
| 4 | 1.082581  | 0.998364         | 1.198738                    | 0.591544        | 1.155464     | -1.092656       | 0.874813                     |

Table 2. Scaled Dataset

# 1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

Cluster Analysis or Clustering is a widely accepted Unsupervised Learning technique in Machine Learning, Clustering can be divided into two categories namely, Hierarchical and K-means clustering.

Hierarchical clustering, also known as hierarchical cluster analysis, is an algorithm that groups similar objects into groups called clusters. The endpoint is a set of clusters, where each cluster is distinct from each other cluster, and the objects within each cluster are broadly like each other. There are two types of hierarchical clustering, Divisive and Agglomerative. For the dataset in question, we will be using Agglomerative Hierarchical Clustering method to create optimum clusters and categorising the dataset on the basis of these clusters.



Fig16 Clustering

To create a Dendrogram using our scaled data we have firstly imported the package dendrogram, linkage from scipy.cluster.hierarchy. Using this function, we have created a dendrogram which shows two clusters very clearly. Now, we will check the make-up of these two clusters using 'maxclust' and 'distance'. As can be seen from above we will now take 2 clusters for our further analysis.



Fig17 Truncated Clustering

This above graph shows the last 10 links in the dendrogram.

```
dend = dendrogram(wardlink,
                     truncate_mode='lastp',
                     p = 5,
                     )
 40
 35
 30
 25
 20
 15
 10
  5
  0
        (70)
                   (24)
                              (43)
                                         (24)
                                                    (49)
```

Fig17 Truncated Clustering (p=5)

This above graph shows the last 5 links in the dendrogram.

Fig 18 Max Cluster using criterion = maxclust

Fig 19 Max Cluster using criterion = distance

| <pre>df.head()</pre> |          |                  |                             |                 |              |                 |                              |          |  |  |  |  |
|----------------------|----------|------------------|-----------------------------|-----------------|--------------|-----------------|------------------------------|----------|--|--|--|--|
|                      | spending | advance_payments | probability_of_full_payment | current_balance | credit_limit | min_payment_amt | max_spent_in_single_shopping | clusters |  |  |  |  |
| 0                    | 19.94    | 16.92            | 0.8752                      | 6.675           | 3.763        | 3.252           | 6.550                        | 1        |  |  |  |  |
| 1                    | 15.99    | 14.89            | 0.9064                      | 5.363           | 3.582        | 3.336           | 5.144                        | 3        |  |  |  |  |
| 2                    | 18.95    | 16.42            | 0.8829                      | 6.248           | 3.755        | 3.368           | 6.148                        | 1        |  |  |  |  |
| 3                    | 10.83    | 12.96            | 0.8099                      | 5.278           | 2.641        | 5.182           | 5.185                        | 2        |  |  |  |  |
| 4                    | 17.99    | 15.86            | 0.8992                      | 5.890           | 3.694        | 2.068           | 5.837                        | 1        |  |  |  |  |

**Table 3. Dataset with Clusters** 

1 70 2 67 3 73

Name: clusters, dtype: int64

Fig 20. Clustering- Sets

Cluster 1 having 70 rows, cluster 2 having 67 rows and cluster 3 having 73 rows.

Looking at the clusters and frequencies: -

- Cluster 1 has maximum power of spending and does maximum shopping in single visit as well as pays the amount in advance. The customer from has the highest probability of paying the full amount to the bank. As the current balance as well as credit limit is high, due to it increases the power of purchase. People in cluster 1 which is 70 out of 210 have more spending power as compared to other clusters.
- Overall, the three clusters are divided into high/medium/low spending based on maximum spent in single shopping.
- 1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results properly. Interpret and write inferences on the finalized clusters.

K-means clustering is one of the unsupervised machine learning algorithms. K-means algorithm identifies k number of centroids, and then allocates every data point to the nearest cluster, while

keeping the centroids as small as possible. For the dataset we will be using K-means clustering on scaled data and identify the clusters formed and use them further to devise tools to target each group separately. Firstly, we have scaled the dataset using StandardScaler package from sklearn.preprocessing and using the scaled\_bank\_marketing\_df we will now plot two curves to determine the optimal number of clusters(k) to be used for our clustering.

The two methods are namely within sum of squares(wss) method and average silhouette scores method.

```
wss =[]
for i in range(1,11):
    KM = KMeans(n_clusters=i,random_state=1)
    KM.fit(scaled_bank_marketing_df)
   wss.append(KM.inertia_)
WSS
[1469.999999999995,
659.1717544870411,
 430.65897315130064,
 371.301721277542,
 327.9608240079031,
 290.5900305968219,
 264.83153087478144,
 240.6837259501598,
 220.85285825594738,
 206.3829103601579]
```

Fig 21. WSS



Fig 22. Elbow Curve

As per the above plot i.e. within sum of squares (wss) method we can conclude that the optimal number of clusters to be taken for k-means clustering is 3 since as per the elbow method it can be easily seen in the curve that after 3 the curve gets flat.

```
from sklearn.metrics import silhouette_samples, silhouette_score

k_means = KMeans(n_clusters = 2,random_state=1)
k_means.fit(scaled_bank_marketing_df)
labels_2 = k_means.labels_

# Cluster_2
silhouette_score(scaled_bank_marketing_df,labels_2, random_state=1)
0.46577247686580914

k_means = KMeans(n_clusters = 3,random_state=1)
k_means.fit(scaled_bank_marketing_df)
labels_3 = k_means.labels_
```

Fig 23. Silhouette score.

Average silhouette scores the highest Average score is corresponding to k=3. Hence, as per both the methods i.e. within sum of squares and silhouette method we can conclude that the optimal number of k or clusters that needs to be taken for k-means clustering is 3.



| _      | 0_                         |                   |              |                 |                              |          |                |         |           |
|--------|----------------------------|-------------------|--------------|-----------------|------------------------------|----------|----------------|---------|-----------|
| yments | probability_of_full_paymer | t current_balance | credit_limit | min_payment_amt | max_spent_in_single_shopping | clusters | Agglo_clusters | kmeans3 | sil_width |
| 16.92  | 0.875                      | 2 6.675           | 3.763        | 3.252           | 6.550                        | 1        | 1              | 1       | 0.573699  |
| 14.89  | 0.906                      | 5.363             | 3.582        | 3.336           | 5.144                        | 3        | 0              | 2       | 0.366386  |
| 16.42  | 0.882                      | 6.248             | 3.755        | 3.368           | 6.148                        | 1        | 1              | 1       | 0.637784  |
| 12.96  | 0.809                      | 5.278             | 2.641        | 5.182           | 5.185                        | 2        | 2              | 0       | 0.512458  |
| 15.86  | 0.899                      | 5.890             | 3.694        | 2.068           | 5.837                        | 1        | 1              | 1       | 0.362276  |
| 4      |                            |                   |              |                 |                              |          |                |         | <b></b>   |

 $Table \ 5. \ Dataset \ with \ sil\_width$ 

The average silhouettes score is 0.400 and minimum silhouette score is 0.002. The silhouette score ranges from -1 to +1 and higher the silhouette score better the clustering.

# 1.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

| <pre>clust_profile=bank_marketing_df clust_profile=clust_profile.groupby("kmeans3").mean() clust_profile["Freq"]=bank_marketing_df['kmeans3'].value_counts().sort_index() clust_profile</pre> |                             |                 |              |                 |                              |          |                |           |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|--------------|-----------------|------------------------------|----------|----------------|-----------|------|
| _payments                                                                                                                                                                                     | probability_of_full_payment | current_balance | credit_limit | min_payment_amt | max_spent_in_single_shopping | clusters | Agglo_clusters | sil_width | Fred |
| 13.247778                                                                                                                                                                                     | 0.848253                    | 5.231750        | 2.849542     | 4.742389        | 5.101722                     | 2.083333 | 1.833333       | 0.397473  | 72   |
| 16.203433                                                                                                                                                                                     | 0.884210                    | 6.175687        | 3.697537     | 3.632373        | 6.041701                     | 1.029851 | 0.985075       | 0.468772  | 67   |
| 14.337746                                                                                                                                                                                     | 0.881597                    | 5.514577        | 3.259225     | 2.707341        | 5.120803                     | 2.873239 | 0.084507       | 0.339816  | 7    |

**Table 6. Dataset with Frequency** 

Looking at the above summary, we can conclude:

K-means Cluster 0: This segment has higher spending per month, high current balance, and credit limit. This is the Prosperous or Upper class with majorly higher income. This segment can be targeted using various offers such as cards with rewards and loyalty points for every spent.

K-means Cluster 1: This segment has the lowest spending per month, lowest current balance, and credit limit. This is the Financially Stressed Class with very low income on an average. This segment can be targeted with cards with offers such as zero annual charges and lurking them with benefits such as free coupons or tickets and waivers on a variety of places.

K-means Cluster 2: This segment has must lower spending per month with low current balance and lower credit limit. This is the Middle Class with low incomes. This segment can be targeted with cards that have lower interest rates so as to encourage more spending.

# 2. Insurance Analysis

### **Executive Summary:**

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test.

## **Data Description:**

- 1. Target: Claim Status (Claimed)
  - 2. Code of tour firm (Agency\_Code)
  - 3. Type of tour insurance firms (Type)
  - 4. Distribution channel of tour insurance agencies (Channel)
  - 5. Name of the tour insurance products (Product)
  - 6. Duration of the tour (Duration in days)
  - 7. Destination of the tour (Destination)
  - 8. Amount worth of sales per customer in procuring tour insurance policies in rupees (in 100's)
  - 9. The commission received for tour insurance firm (Commission is in percentage of sales)
  - 10.Age of insured (Age)

# 2.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

#### Read the data

```
insurance_df = pd.read_csv('insurance_part2_data.csv')
```

Pd.read\_csv function is used to read the file in jupyter notebook environment.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(color_codes=True)
import warnings
warnings.filterwarnings("ignore")
```

To read the dataset and do the analysis and exploratory data analysis we need to import packages in python jupyter notebook so that we can read the data and perform EDA.

## **Exploratory Data Analysis:**

Exploratory data analysis (EDA) is used by data scientists to analyze and investigate data sets and summarize their main characteristics, often employing data visualization methods. It helps determine how best to manipulate data sources to get the answers you need, making it easier for data scientists to discover patterns, spot anomalies, test a hypothesis, or check assumptions. EDA is primarily used to see what data can reveal beyond the formal modelling or hypothesis testing task and provides a provides a better understanding of data set variables and the relationships between them.

#### Sample of the dataset:

|   | Age | Agency_Code | Туре          | Claimed | Commision | Channel | Duration | Sales | Product Name      | Destination |
|---|-----|-------------|---------------|---------|-----------|---------|----------|-------|-------------------|-------------|
| 0 | 48  | C2B         | Airlines      | No      | 0.70      | Online  | 7        | 2.51  | Customised Plan   | ASIA        |
| 1 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 34       | 20.00 | Customised Plan   | ASIA        |
| 2 | 39  | CWT         | Travel Agency | No      | 5.94      | Online  | 3        | 9.90  | Customised Plan   | Americas    |
| 3 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 4        | 26.00 | Cancellation Plan | ASIA        |
| 4 | 33  | JZI         | Airlines      | No      | 6.30      | Online  | 53       | 18.00 | Bronze Plan       | ASIA        |
| 5 | 45  | JZI         | Airlines      | Yes     | 15.75     | Online  | 8        | 45.00 | Bronze Plan       | ASIA        |
| 6 | 61  | CWT         | Travel Agency | No      | 35.64     | Online  | 30       | 59.40 | Customised Plan   | Americas    |
| 7 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 16       | 80.00 | Cancellation Plan | ASIA        |
| 8 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 19       | 14.00 | Cancellation Plan | ASIA        |
| 9 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 42       | 43.00 | Cancellation Plan | ASIA        |

Table 1. Dataset Sample

Dataset consists of 3000 rows and 10 unique columns.

# Top 10 entries or head of the dataset:

|   | Age | Agency_Code | Туре          | Claimed | Commision | Channel | Duration | Sales | Product Name      | Destination |
|---|-----|-------------|---------------|---------|-----------|---------|----------|-------|-------------------|-------------|
| 0 | 48  | C2B         | Airlines      | No      | 0.70      | Online  | 7        | 2.51  | Customised Plan   | ASIA        |
| 1 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 34       | 20.00 | Customised Plan   | ASIA        |
| 2 | 39  | CWT         | Travel Agency | No      | 5.94      | Online  | 3        | 9.90  | Customised Plan   | Americas    |
| 3 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 4        | 26.00 | Cancellation Plan | ASIA        |
| 4 | 33  | JZI         | Airlines      | No      | 6.30      | Online  | 53       | 18.00 | Bronze Plan       | ASIA        |
| 5 | 45  | JZI         | Airlines      | Yes     | 15.75     | Online  | 8        | 45.00 | Bronze Plan       | ASIA        |
| 6 | 61  | CWT         | Travel Agency | No      | 35.64     | Online  | 30       | 59.40 | Customised Plan   | Americas    |
| 7 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 16       | 80.00 | Cancellation Plan | ASIA        |
| 8 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 19       | 14.00 | Cancellation Plan | ASIA        |
| 9 | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 42       | 43.00 | Cancellation Plan | ASIA        |

From the above tables we can see the top 10 rows or entries of the dataset.

# Bottom 10 entries or tail of the dataset:

| <pre>insurance_df.tail(10)</pre> |     |             |               |         |           |         |          |        |                   |             |  |
|----------------------------------|-----|-------------|---------------|---------|-----------|---------|----------|--------|-------------------|-------------|--|
|                                  | Age | Agency_Code | Туре          | Claimed | Commision | Channel | Duration | Sales  | Product Name      | Destination |  |
| 2990                             | 51  | EPX         | Travel Agency | No      | 0.00      | Online  | 2        | 20.00  | Customised Plan   | ASIA        |  |
| 2991                             | 29  | C2B         | Airlines      | Yes     | 48.30     | Online  | 381      | 193.20 | Silver Plan       | ASIA        |  |
| 2992                             | 28  | CWT         | Travel Agency | No      | 11.88     | Online  | 389      | 19.80  | Customised Plan   | ASIA        |  |
| 2993                             | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 234      | 10.00  | Cancellation Plan | ASIA        |  |
| 2994                             | 27  | C2B         | Airlines      | Yes     | 71.85     | Online  | 416      | 287.40 | Gold Plan         | ASIA        |  |
| 2995                             | 28  | CWT         | Travel Agency | Yes     | 166.53    | Online  | 364      | 256.20 | Gold Plan         | Americas    |  |
| 2996                             | 35  | C2B         | Airlines      | No      | 13.50     | Online  | 5        | 54.00  | Gold Plan         | ASIA        |  |
| 2997                             | 36  | EPX         | Travel Agency | No      | 0.00      | Online  | 54       | 28.00  | Customised Plan   | ASIA        |  |
| 2998                             | 34  | C2B         | Airlines      | Yes     | 7.64      | Online  | 39       | 30.55  | Bronze Plan       | ASIA        |  |
| 2999                             | 47  | JZI         | Airlines      | No      | 11.55     | Online  | 15       | 33.00  | Bronze Plan       | ASIA        |  |

From the above tables we can see the bottom 10 rows or entries of the dataset.

# Check the shape of the dataset:

From the above figure we can say that there are 3000 rows and 10 columns available in the dataset.

## Check the complete information of the dataset:

```
insurance df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):
                  Non-Null Count
    Column
                                 Dtype
    -----
                  -----
                                  ----
0
                  3000 non-null
                                 int64
    Age
                  3000 non-null
 1
    Agency Code
                                 object
                  3000 non-null object
 2
    Type
 3
    Claimed
                  3000 non-null object
4
    Commision
                  3000 non-null float64
 5
                                 object
    Channel
                  3000 non-null
6
    Duration
                  3000 non-null
                                 int64
 7
    Sales
                  3000 non-null
                                 float64
8
    Product Name 3000 non-null
                                 object
    Destination 3000 non-null
                                 object
dtypes: float64(2), int64(2), object(6)
memory usage: 234.5+ KB
```

From the above figure we can say that there are zero null values, datatype if of float, object, int range index starts from 0 and ends at 2999, columns names and the dataframe.

# To check the mathematical summary:

|              | count  | unique | top             | freq | mean      | std        | min  | 25%  | 50%  | 75%    | max    |
|--------------|--------|--------|-----------------|------|-----------|------------|------|------|------|--------|--------|
| Age          | 3000.0 | NaN    | NaN             | NaN  | 38.091    | 10.463518  | 8.0  | 32.0 | 36.0 | 42.0   | 84.0   |
| Agency_Code  | 3000   | 4      | EPX             | 1365 | NaN       | NaN        | NaN  | NaN  | NaN  | NaN    | NaN    |
| Туре         | 3000   | 2      | Travel Agency   | 1837 | NaN       | NaN        | NaN  | NaN  | NaN  | NaN    | NaN    |
| Claimed      | 3000   | 2      | No              | 2076 | NaN       | NaN        | NaN  | NaN  | NaN  | NaN    | NaN    |
| Commision    | 3000.0 | NaN    | NaN             | NaN  | 14.529203 | 25.481455  | 0.0  | 0.0  | 4.63 | 17.235 | 210.21 |
| Channel      | 3000   | 2      | Online          | 2954 | NaN       | NaN        | NaN  | NaN  | NaN  | NaN    | NaN    |
| Duration     | 3000.0 | NaN    | NaN             | NaN  | 70.001333 | 134.053313 | -1.0 | 11.0 | 26.5 | 63.0   | 4580.0 |
| Sales        | 3000.0 | NaN    | NaN             | NaN  | 60.249913 | 70.733954  | 0.0  | 20.0 | 33.0 | 69.0   | 539.0  |
| Product Name | 3000   | 5      | Customised Plan | 1136 | NaN       | NaN        | NaN  | NaN  | NaN  | NaN    | NaN    |
| Destination  | 3000   | 3      | ASIA            | 2465 | NaN       | NaN        | NaN  | NaN  | NaN  | NaN    | NaN    |

From the above table we can get the 5 point summary of the dataset such as their mean value, max value, number of count, 25<sup>th</sup> percentile, 75<sup>th</sup> percentile and the maximum value.

# Let us check the types of variables in the data frame

| Age           | int64   |
|---------------|---------|
| Agency_Code   | object  |
| Type          | object  |
| Claimed       | object  |
| Commision     | float64 |
| Channel       | object  |
| Duration      | int64   |
| Sales         | float64 |
| Product Name  | object  |
| Destination   | object  |
| dtype: object |         |

There is total 3000 rows and 10 columns. And out of 10 columns 2 columns has datatype as int, 6 columns as object type and 2 columns as float.

# Check for missing values in the dataset:

| 0 | Age          | 3000 | non-null |
|---|--------------|------|----------|
| 1 | Agency_Code  | 3000 | non-null |
| 2 | Туре         | 3000 | non-null |
| 3 | Claimed      | 3000 | non-null |
| 4 | Commision    | 3000 | non-null |
| 5 | Channel      | 3000 | non-null |
| 6 | Duration     | 3000 | non-null |
| 7 | Sales        | 3000 | non-null |
| 8 | Product Name | 3000 | non-null |
| 9 | Destination  | 3000 | non-null |

From the above we can say that there are no missing value present in the dataset.

## To check the Index of the dataset

From the above we can say that the index starts from 0 and ends at 2999with the interval of one step.

### To check the columns of the dataset:

From the above we can say that the columns are as follow: Age, Agency code, Type, Claimed, Commisi on, Channel, Duration, Sales, ProductName, Destination.

#### **Univariate Analysis:**





Fig 24. Univariate - Age

- The 25th quantile of Age is 32.0
- The median or 50th quantile of Age is 36.0
- The 75th quantile of Age is 42.0
- The distribution of Age is normal but little right skewed 1.149712770495169





Fig 25. Univariate – Commission

The 25th quantile of is Commission 0.0

The median or 50th quantile of Commission is 4.63

The 75th quantile of Commission is 17.235

The distribution of Commission is normal but little right skewed 3.148857772356885





Fig 26. Univariate - Duration

The 25th quantile of Duration is 11.0
The median or 50th quantile of Duration is 26.5
The 75th quantile of Duration is 63.0

The distribution of Duration is normal but little right skewed 13.784681027519602





Fig 27. Univariate - Sales

The 25th quantile of Sales is 20.0

The median or 50th quantile of Sales is 33.0

The 75th quantile of Sales is 69.0

The distribution of Sales is normal but little right skewed 2.381148461687274

# **Bivariate Analysis:**



Fig 28. Agency code – Sales



Fig 29. Channel – Sales



Fig 30. Type – Sales



Fig 31. Product Name – Sales



Fig 32. Destination – Sales

# **Multivariate Analysis:**



Fig 33. Pair plot



Fig 34. Destination & Sales

#### Inference:

After plotting the Boxplots for all the numerical variables we can conclude that a very high number of outliers are present in the variables namely, Age, Commision, Duration and Sales. We can conclude from the above graphs that most of the customers doing a claim in our data belong to age group of 25-40 with the type of Tour Agency firm being Travel Agency, Channel being Online, Product name being Customised Plan and Destination being Asia.

# **Heat Map**



Fig 35. Heat Map

# 2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network

Converting Object datatype to Int:

| #    | Column                                | Non-Null Count | Dtype   |  |  |  |  |
|------|---------------------------------------|----------------|---------|--|--|--|--|
|      |                                       |                |         |  |  |  |  |
| 0    | Age                                   | 2861 non-null  | int64   |  |  |  |  |
| 1    | Agency_Code                           | 2861 non-null  | int8    |  |  |  |  |
| 2    | Туре                                  | 2861 non-null  | int8    |  |  |  |  |
| 3    | Claimed                               | 2861 non-null  | int8    |  |  |  |  |
| 4    | Commision                             | 2861 non-null  | float64 |  |  |  |  |
| 5    | Channel                               | 2861 non-null  | int8    |  |  |  |  |
| 6    | Duration                              | 2861 non-null  | int64   |  |  |  |  |
| 7    | Sales                                 | 2861 non-null  | float64 |  |  |  |  |
| 8    | Product Name                          | 2861 non-null  | int8    |  |  |  |  |
| 9    | Destination                           | 2861 non-null  | int8    |  |  |  |  |
| dtyp | dtypes: float64(2), int64(2), int8(6) |                |         |  |  |  |  |
| memo | ry usage: 208.                        | 5 KB           |         |  |  |  |  |

For our analysis and building Decision tree and Random Forest, we must convert the variables which have 'object' datatype and convert them into integer.

|   | Age | Agency_Code | Туре | Claimed | Commision | Channel | Duration | Sales | Product Name | Destination |
|---|-----|-------------|------|---------|-----------|---------|----------|-------|--------------|-------------|
| 0 | 48  | 0           | 0    | 0       | 0.70      | 1       | 7        | 2.51  | 2            | 0           |
| 1 | 36  | 2           | 1    | 0       | 0.00      | 1       | 34       | 20.00 | 2            | 0           |
| 2 | 39  | 1           | 1    | 0       | 5.94      | 1       | 3        | 9.90  | 2            | 1           |
| 3 | 36  | 2           | 1    | 0       | 0.00      | 1       | 4        | 26.00 | 1            | 0           |
| 4 | 33  | 3           | 0    | 0       | 6.30      | 1       | 53       | 18.00 | 0            | 0           |

**Table 8. Insurance Dataset - Conversion** 

# **Splitting Dataset in Train and Test Data (70:30)**

For building the models we will now have to split the dataset into Training and Testing Data with the ratio of 70:30. These two datasets are stored in X\_train and X\_test with their corresponding dimensions as follows

```
#Extracting the target column into separate vectors for training set and test set

X = df2.drop("Claimed" , axis=1)

y = df2.pop("Claimed")

#Splitting the data into Train & Test sets

X_train, X_test, train_labels , test_labels = train_test_split(X, y, test_size=.30, random_state=1)

#Checking the dimensions on train and test data.

print('X_train',X_train.shape)
print('X_test',X_test.shape)
print('test_labels',train_labels.shape)
print('test_labels',trest_labels.shape)
print('total Obs',2002+859)

X_train (2002, 9)
X_test (859, 9)
train_labels (859,)
Total Obs 2861
```

Fig 36. Train Test Data

#### **CART MODEL:**

```
#Initialise a Decission Tree
dt_model = DecisionTreeClassifier(criterion = 'gini')

#Fit model
dt_model.fit(X_train,train_labels)

3]: DecisionTreeClassifier()
```



Fig 44. Decision Tree

As we can see the decision tree has overgrown and too many branches are grown. We need toprune the model.

- The depth of the tree is large, and we are unable to predict.
- By using the Grid search method, we can find the best parameters and best estimator.

# **Regularising the Decision Tree**

#### **Best Parameters**

```
{'criterion': 'gini',
'max_depth': 8,
'min_samples_leaf': 50,
'min_samples_split': 200}
```

These best grid parameters are henceforth used to build the regularised or pruned Decision tree.



Fig 45. Regularising Decision Tree

#### Variable Importance

|              | Imp      |
|--------------|----------|
| Agency_Code  | 0.338088 |
| Product Name | 0.223942 |
| Sales        | 0.180290 |
| Commision    | 0.125910 |
| Туре         | 0.062099 |
| Duration     | 0.040351 |
| Age          | 0.019066 |
| Destination  | 0.010254 |
| Channel      | 0.000000 |
|              |          |

The agency code is the most important variable, and it is the root node.

#### **Random Forest**

Using the Train Dataset(X\_train) we will be creating a Random Forest model and then further testing the model on Test Dataset(X\_test).

### **Grid Search**

#### **Best Parameters**

```
{'criterion': 'gini',
 'max_depth': 3,
 'max_features': 3,
 'min_samples_leaf': 45,
 'min_samples_split': 45,
 'n_estimators': 200}
```

Using these best parameters evaluated using GridSeachCV a Random Forest Model is created which is further used for model performance evaluation.

#### Variable Importance

|              | Imp      |
|--------------|----------|
| Agency_Code  | 0.338088 |
| Product Name | 0.223942 |
| Sales        | 0.180290 |
| Commision    | 0.125910 |
| Туре         | 0.062099 |
| Duration     | 0.040351 |
| Age          | 0.019066 |
| Destination  | 0.010254 |
| Channel      | 0.000000 |

The agency code is the most important variable, and it is the root node.

#### Artificial Neural Network (ANN)

Firstly, we will have to Scale the two datasets.

```
array([[ 2.88764239, -1.2626112 , -1.19813318, ..., -0.65375471, -1.31338076, -0.44775345], [-0.21666128, 0.71683095, 0.83463176, ..., -0.37032806, 0.24339146, -0.44775345], [ 2.04101412, -0.27289013, 0.83463176, ..., 0.11574864, 0.24339146, 1.24676906], ..., [-0.21666128, 0.71683095, 0.83463176, ..., -0.68209737, -0.53499465, -0.44775345], [-0.21666128, 0.71683095, 0.83463176, ..., 0.72086453, 0.24339146, -0.44775345], [-0.21666128, 0.71683095, 0.83463176, ..., 0.72086453, 0.24339146, 1.24676906]])
```

Fig 46. Scaled Trained Data

Fig 47. Scaled Test D

#### **Grid Search**

#### **Best Parameters**

```
{'hidden_layer_sizes': 100, 'max_iter': 2500, 'solver': 'adam', 'tol': 0.01}
```

2.3 Performance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC\_AUCscore, classification reports for each model.

To check the Model Performances of the three models created above certain model evaluators are used i.e., Classification Report, Confusion Matrix, ROC\_AUC Score and ROC Plot. They are calculated first for train data and then for test data.

#### **CART Model**

#### **Classification Report**

| <pre>print(classification_report(train_labels, ytrain_predict))</pre> |           |        |          |         |  |  |  |
|-----------------------------------------------------------------------|-----------|--------|----------|---------|--|--|--|
|                                                                       | precision | recall | f1-score | support |  |  |  |
| 0                                                                     | 0.80      | 0.89   | 0.84     | 1359    |  |  |  |
| 1                                                                     | 0.70      | 0.51   | 0.59     | 643     |  |  |  |
| accuracy                                                              |           |        | 0.77     | 2002    |  |  |  |
| macro avg                                                             | 0.75      | 0.70   | 0.72     | 2002    |  |  |  |
| weighted avg                                                          | 0.76      | 0.77   | 0.76     | 2002    |  |  |  |

Fig 48. Classification Report - Train

| <pre>print(classification_report(test_labels, ytest_predict))</pre> |              |              |                      |                   |  |  |  |
|---------------------------------------------------------------------|--------------|--------------|----------------------|-------------------|--|--|--|
|                                                                     | precision    | recall       | f1-score             | support           |  |  |  |
| 0<br>1                                                              | 0.80<br>0.70 | 0.90<br>0.51 | 0.85<br>0.59         | 588<br>271        |  |  |  |
| accuracy<br>macro avg<br>weighted avg                               | 0.75<br>0.77 | 0.70<br>0.78 | 0.78<br>0.72<br>0.77 | 859<br>859<br>859 |  |  |  |

Fig 49. Classification Report - Test

#### **Confusion Matrix**

Fig 50. Confusion Matrix - Train

Fig 51. Confusion Matrix - Test

#### **ROC\_AUC Score and ROC Curve**

```
# predict probabilities
probs = best_grid.predict_proba(X_train)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
from sklearn.metrics import roc_auc_score
cart_train_auc = roc_auc_score(train_labels, probs)
# print('AUC: %.3f' % cart_train_auc)
# calculate roc curve
from sklearn.metrics import roc_curve
cart_train_frp, cart_train_trp, cart_train_thresholds = roc_curve(train_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(cart_train_frp, cart_train_tpr, marker='.')
# show the plot
plt.xlabel('False Positive Rate')
plt.xlabel('False Positive Rate')
print('Area under Curve is', cart_train_auc)
plt.show()
Area under Curve is 0.810897799017437
```



Fig 52. ROC\_AUC Score and ROC Curve - Train

```
# predict probabilities
probs = best_grid.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
from sklearn.metrics import roc_auc_score
cart_test_auc = roc_auc_score(test_labels, probs)
# print('AUC: %.3f' % cart_test_auc)
# calculate roc_curve
from sklearn.metrics import roc_curve
cart_test_frp, cart_test_tpr, cart_test_tpr, cart_test_tpr, probable for cart_test_frp, cart_test_tpr, cart_test_tpr, cart_test_tpr, cart_test_tpr, art_test_tpr, art_test_tpr, art_test_tpr, arkwhere'.')
# plot the roc curve for the model
plt.plot(cart_test_frp, cart_test_tpr, marker='.')
# show the plot
plt.xlabel('False Positive Rate')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
print('Area under Curve is', cart_test_auc)
plt.show()
Area under Curve is 0.8185700479453774
```



Fig 53. ROC\_AUC Score and ROC Curve - Test

#### **Cart Conclusion**

```
CART Train-Accuracy 0.7717282717282717
CART Train-Recall/Sensitivity 0.5147744945567652
CART Train-Specificity 0.8933038999264165
CART Train-Precision 0.6953781512605042
CART Train-F1 Score 0.5915996425379804
```

```
CART Test-Accuracy 0.7764842840512224
CART Test-Recall/Sensitivity 0.5092250922509225
CART Test-Specificity 0.8996598639455783
CART Test-Precision 0.700507614213198
CART Test-F1 Score 0.5897435897435898
```

- Training and Testing set results are almost similar, and with the overall measures high, themodel is good.
- Agency code is the most important variable for pending "Claimed"

# **Random Forest Classification Report**

|                           | precision    | recall       | f1-score     | support      |  |
|---------------------------|--------------|--------------|--------------|--------------|--|
| 0                         | 0.79<br>0.71 | 0.90<br>0.49 | 0.84<br>0.58 | 1359<br>643  |  |
| accuracy                  |              |              | 0.77         | 2002         |  |
| macro avg<br>weighted avg | 0.75<br>0.76 | 0.70<br>0.77 | 0.71<br>0.76 | 2002<br>2002 |  |

Fig 54. Classification Report - Train

| <pre>print(classification_report(test_labels, ytest_predict))</pre> |           |        |          |         |  |  |
|---------------------------------------------------------------------|-----------|--------|----------|---------|--|--|
|                                                                     | precision | recall | f1-score | support |  |  |
| 0                                                                   | 0.79      | 0.91   | 0.85     | 588     |  |  |
| 1                                                                   | 0.71      | 0.47   | 0.57     | 271     |  |  |
| accuracy                                                            |           |        | 0.77     | 859     |  |  |
| macro avg                                                           | 0.75      | 0.69   | 0.71     | 859     |  |  |
| weighted avg                                                        | 0.76      | 0.77   | 0.76     | 859     |  |  |
|                                                                     |           |        |          |         |  |  |

Fig 55. Classification Report – Test

# **Confusion Matrix**

Fig 56. Confusion Matrix - Train

Fig 57. Confusion Matrix – Test

#### ROC\_AUC Score and ROC Curve

Fig 58. ROC\_AUC Score and ROC Curve - Train

```
# predict probabilities
probs = best_grid.predict_proba(X_train)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
from sklearn.metrics import roc_auc_score
rf_train_auc = roc_auc_score(train_labels, probs)
# print('AUC: %.3f' % rf_train_auc)
# calculate roc curve
from sklearn.metrics import roc_curve
rf_train_fpr, rf_train_tpr, rf_train_thresholds = roc_curve(train_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the mode!
plt.plot(rf_train_fpr,rf_train_tpr, marker='.')
# show the plot
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
print('Area under Curve is', rf_train_auc)
plt.show()
Area under Curve is 0.8033140047857896
```



```
# predict probabilities
probs = best_grid.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
from sklearn.metrics import roc_auc_score
rf_test_auc = roc_auc_score(test_labels, probs)
# print('AUC: %.3f' % rf_test_auc)
# print('AUC: %.3f' % rf_test_auc)
# calculate roc curve
from sklearn.metrics import roc_curve
frest_frp.rf_test_trp, rf_test_thresholds = roc_curve(test_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(f_test_fpr.f_test_trp.
plt.xlabel('False Positive Rate')
plt.xlabel('False Positive Rate')
print('Area under Curve is', rf_test_auc)
plt.show()
```



Fig 59. ROC\_AUC Score and ROC Curve - Test

#### **Random Forest Conclusion**

```
Random Forest Training data-Accuracy 0.7702297702297702
Random Forest Training data-Recall/Sensitivity 0.48833592534992226
Random Forest Training data-Specificity 0.9036055923473142
Random Forest Training data-Precision 0.7056179775280899
Random Forest Training data-F1 Score 0.5772058823529411
```

- Training and Testing set results are almost similar, and with the overall measures high, themodel is good.
- Agency code is the most important variable for pending "Claimed"

#### Artificial Neural Network (ANN)

#### **Classification Report**

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| 0           | 0.80      | 0.85   | 0.83     | 1359    |
| 1           | 0.64      | 0.56   | 0.60     | 643     |
| accuracy    |           |        | 0.76     | 2002    |
| macro avg   | 0.72      | 0.70   | 0.71     | 2002    |
| eighted avg | 0.75      | 0.76   | 0.75     | 2002    |

Fig 60. Classification Report-Test

| <pre>print(classification_report(test_labels, ytest_predict))</pre> |              |              |                      |                   |  |  |  |
|---------------------------------------------------------------------|--------------|--------------|----------------------|-------------------|--|--|--|
|                                                                     | precision    | recall       | f1-score             | support           |  |  |  |
| 0<br>1                                                              | 0.81<br>0.66 | 0.87<br>0.55 | 0.84<br>0.60         | 588<br>271        |  |  |  |
| accuracy<br>macro avg<br>weighted avg                               | 0.73<br>0.76 | 0.71<br>0.77 | 0.77<br>0.72<br>0.76 | 859<br>859<br>859 |  |  |  |

Fig 61. Classification Report-Train

#### **ROC AUC Score and ROC Curve**

```
# predict probabilities
probs = best_grid.predict_proba(X_train)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
from sklearn.metrics import roc_auc_score
nn_train_auc = roc_auc_score(train_labels, probs)
# print('AUC: %.3f' % rf_train_auc)
# calculate roc curve
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_curve
nn_train_fpr, nn_train_tpr, nn_train_thresholds = roc_curve(train_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot('f_train_fpr,rf_train_tpr, marker='.')
# show the plot
plt.xlabel('False Positive Rate')
plt.xlabel('False Positive Rate')
print('Area under Curve is', nn_train_auc)
plt.show()
Area under Curve is 0.7921265636497425
```



Fig 62. ROC\_AUC Score and ROC Curve-Test

```
# predict probabilities

probs = best_grid.predict_proba(X_test)

# keep probabilities for the positive outcome only

probs = probs[:, 1]

# calculate AUC

from sklearn.metrics import roc_auc_score

nn_test_auc = roc_auc_score(test_labels, probs)

# print('AUC: %.3f' % rf_test_auc)

# calculate roc curve

from sklearn.metrics import roc_curve

nn_test_fpr,nn_test_tpr, nn_test_thresholds = roc_curve(test_labels, probs)

plt.plot([0, 1], [0, 1], linestyle='--')

# plot the roc curve for the model

plt.plot(rf_test_fpr,rf_test_tpr, marker='.')

# show the plot

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

print('Area under Curve is', nn_test_auc)

plt.show()

Area under Curve is 0.7977947636619223
```



Fig 63. ROC\_AUC Score and ROC Curve-Train

#### **Confusion Matrix**

Fig 64. Confusion Matrix-Train

Fig 65. Confusion Matrix-Test

### Artificial Neural Network (ANN) Conclusion

Neutral Network Training data-Accuracy 0.7577422577422578

Neutral Network Training data-Recall/Sensitivity 0.5567651632970451

Neutral Network Training data-Specificity 0.8528329654157468

Neutral Network Training data-Precision 0.6415770609318996

Neutral Network Training data-F1 Score 0.5961698584512906

- Training and Testing set results are almost similar, and with the overall measures high, the model is good.
- Agency code is the most important variable for pending "Claimed"

Neutral Network Test data-Accuracy 0.7683352735739232

Neutral Network Test data-Recall/Sensitivity 0.5498154981549815

Neutral Network Test data-Specificity 0.8690476190476191

Neutral Network Test data-Precision 0.6592920353982301

Neutral Network Test data-F1 Score 0.5995975855130785

# 2.4 Final Model: Compare all the models and write an inference which model is best/optimized.

Comparison of all the performance evaluators for the three models are given in the following table. We are using Precision, F1 Score and AUC Score for our evaluation.

|           | CART Train | CART Test | Random Forest Train | Random Forest Test | Neural Network Train | Neural Network Test |
|-----------|------------|-----------|---------------------|--------------------|----------------------|---------------------|
| Accuracy  | 0.77       | 0.78      | 0.77                | 0.77               | 0.76                 | 0.77                |
| AUC       | 0.81       | 0.82      | 0.80                | 0.81               | 0.79                 | 0.80                |
| Recall    | 0.51       | 0.51      | 0.49                | 0.47               | 0.56                 | 0.55                |
| Precision | 0.70       | 0.70      | 0.71                | 0.71               | 0.64                 | 0.66                |
| F1 Score  | 0.59       | 0.59      | 0.58                | 0.57               | 0.60                 | 0.60                |
|           |            |           |                     |                    |                      |                     |

**Table 9. Model Comparison** 

From the above table, comparing the model performance evaluators for the three models it is quite clear that the Random Forest Model is performing well as compared to the other two as it has high precisions for both training and testing data and although the AUC Score is the same for all the three models for training data but for testing data it is the highest for Random Forest Model. Choosing Random Forest Model is the best option in this case as it will exhibit very less variance as compared to a single decision tree or a multi – layered Neural Network.

#### 2.5 To provide business insights and recommendations.

For the business problem of an insurance firm providing Tour Insurance, we have attempted to make a few Data Models for predictions of probabilities. The models that are attempted are namely, CART or Classification and Regression Trees, Random Forest and Artificial Neural Network (MLP). The three models are then evaluated on training and testing datasets and their model performance scores are calculated. The Accuracy, Precision, F1 Score are computed using Classification Report. The confusion matrix, AUC\_ROC Scores and ROC plot are computed for each model separately and compared. All the three models have performed well but to increase our accuracy in determining the claims made by the customers we can choose the Random Forest Model. Instead of creating a single Decision Tree it can create multiple decision trees and hence can provide the best claim status from the data. As seen from the above model performance measures, for all the models i.e. CART, Random Forest and ANN have performed exceptionally well. Hence, we can choose either of the models but choosing Random Forest Model is a great option as even though they exhibit the same accuracy but choosing Random Forest over Cart model is way better as they have much less variance than a single decision tree.