

NNUI2 Základy umělé inteligence 2

Základy umělé inteligence 2

Ing. Dominik Štursa

Katedra řízení procesů

FEI, Univerzita Pardubice Nám. Čs. legií 565

(1. patro, dveře č. 02 043)

e-mail: dominik.stursa@upce.cz

tel.: 466 037 124

Konvoluční neuronová síť (CNN)

Problémy zpracování obrazu

- Klasifikace zařazení vstupního obrázku do příslušné třídy
- Lokalizace nalezení objektu ve vstupním obrázku
- Detekce souběžná lokalizace a klasifikace
- Segmentace rozdělení vstupního obrázku na segmenty
 - Sémantická každý pixel je přiřazen do určité třídy
 - Instanční označuje pixely odpovídající jednotlivým instancím objektu

Problémy zpracování obrazu

- Klasifikace zařazení vstupního obrázku do příslušné třídy
- Lokalizace nalezení objektu ve vstupním obrázku
- Detekce souběžná lokalizace a klasifikace
- Segmentace rozdělení vstupního obrázku na segmenty

Konvoluční neuronová síť – myšlenka

- Typicky člověk vybírá v datech specifické příznaky hrany, tvary, barvy
- V datech se obecně nacházejí vzory (vlastnosti) definující dané objekty
- Tyto vzory mohou být různých velikostí a různě umístěné v datech
- > návrh skupiny detektorů, které procházejí zpracovávaná data
- Jednotlivé části dat mohou být kódovány stejným detektorem (stejným způsobem)

Konvoluční neuronová síť – myšlenka

Konvoluční neuronová síť - úvod

- Jednotlivé detektory jsou realizované pomocí konvoluční vrstvy
- Konvoluční vrstva je představovaná skupinou filtrů provádějících operaci konvoluce

• 1 konvoluční vrstva je tvořena definovaným počtem filtrů, které detekují vzory definované velikosti (velikost jádra), váhy filtrů jsou získány trénováním.

Obrázek 6x6	1	0	0	0	0	1
	0	1	0	0	1	0
	0	0	1	1	0	0
	1	0	0	0	1	0
	0	1	0	0	1	0
	0	0	1	0	1	0

Konvoluční neuronová síť – konvoluce

• Pro každý pixel aplikujeme skalární součin konvolučního filtru s vstupem a získáváme výstupní hodnotu tvořící matici příznaků

• Pro každý pixel aplikujeme skalární součin konvolučního filtru s vstupem a získáváme výstupní hodnotu tvořící matici příznaků

Stride = 1 (po kolika pixelech brát další blok)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Filtr 1 (3x3)

3	-1	

• Pro každý pixel aplikujeme skalární součin konvolučního filtru s vstupem a získáváme výstupní hodnotu tvořící matici příznaků

Stride = 1 (po kolika pixelech brát další blok)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Filtr 1 (3x3)

3	-1	ကု	

Konvoluční neuronová síť – konvoluce

• Pro každý pixel aplikujeme skalární součin konvolučního filtru s vstupem a získáváme výstupní hodnotu tvořící matici příznaků

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Filtr 1 (3x3)

3	-1	-3	-1
-3	1	0	-3
-3	-3	0	1
3	-2	-2	-1

- Matice příznaků určuje, kde se v původním obrázku vyskytují dominantní příznaky shodné s těmi ve filtru
- Určuje, kde v obrázku jsou přítomné dané tvary

A	0	0	0	0	1
0	M	0	0	1	0
0	0	M	1	0	0
H	0	0	0	1	0
0	¥	0	0	1	0
0	0	1	0	1	0

Matice příznaků – filtr 1

3	-1	-3	-1
-3	1	0	-3
-3	-3	0	1
3	-2	-2	-1

- Matice příznaků určuje, kde se v původním obrázku vyskytují dominantní příznaky shodné s těmi ve filtru
- Určuje, kde v obrázku jsou přítomné dané tvary

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	4	0
0	0	1	0	4	0

Matice příznaků – filtr n

-1	-1	-1	-1
-1	-1	-2	1
-1	-1	-2	1
-1	0	-4	3

• Aplikací všech filtrů pak dochází k zisku mapy příznaků

Obrázek 6x6

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Filtr 1 (3x3)

i

Filtr n (3x3)

Mapa příznaků jednotlivé matice příznaku za sebou

• Padding (vyplňování) vs. Normálně – dochází ke snížení velikosti

Obrázek 6x6

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Padding = Same – Zachování velikosti obrazu

Obrázek 6x6 + výplň (celkem 8x8)

1	0	0	0	0	1	
0	1	0	0	1	0	
0	0	1	1	0	0	
1	0	0	0	1	0	
0	1	0	0	1	0	
0	0	1	0	1	0	

Filtr 1 (3x3)

1	-1	-1
-1	1	-1
-1	-1	1

Matice příznaků 6x6

Konvoluční neuronová síť – konvoluce

- U barevného obrázku (RGB) se provádí pro každý kanál
- Ziskem jsou mapy příznaků (dominantních vlastnosti vstupních dat)
 Obrázek 6x6x3 (RGB)

Konvoluční neuronová síť – motivace

- Konvoluční vrstva "sama" extrahuje klíčové vlastnosti
- Konvoluční vs. plně propojená vrstva

	1	-	-1	-	1						
	-:	1	1	-	1			_	_		_
	-:	1	-1		1			3	-1	-3	-1
			1	 				-3	1	0	-3
L	0	0	()	0	1		-3	-3	_	1
)	1	0	(1	0		-5	-3	0	Т
)	0	1	1	L	0	0		3	-2	-2	-1
L	0	0	()	1	0					

Konvoluční neuronová síť – motivace

- Konvoluční vrstva není plně propojená (neuron ve skryté vrstvě příznak je definován počtem vah odpovídající velikosti filtru)
- Dále dochází ke sdílení vah ještě méně parametrů
- FFNN a CNN se stejným počtem neuronů má méně vah k učení

CNN – Klasifikace

Konvoluční neuronová síť – struktura

 CNN je obecně složená z konvolučních, pooling, flatten, a dense (plně propojených) vrstev

Konvoluční neuronová síť – struktura

 Pooling vrstvy sjednocují skupinu vlastností a vybírají jen tu nejvíce dominantní – max pooling vybírá maximální hodnotu, snižují velikost

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Konvoluční neuronová síť – topologie

Jednotlivé CNN se skládají z párů Conv + MaxPooling

- Samotných topologií CNN je velké množství a návrh samotné topologie je již značně komplexní
- Běžnou inženýrskou praktikou je výběr z již existujících topologií vhodných pro řešení daného problému

Konvoluční neuronová síť – topologie

Jednotlivé CNN se skládají z párů Conv + MaxPooling

Konvoluční neuronová síť – vyhodnocení

 K vyhodnocení klasifikačních úloh se používá Confusion Matrix (Matice záměn)

- 1959 Simple and Complex Cells <u>David Hubel</u> and <u>Torsten Wiesel</u>
- Zkoumali lidské zrakovém ústrojí a navrhli, že existují určité druhy buněk, které člověk využívá při rozpoznávání vzorů.
- Simple cell (S-Buňka) reaguje na hrany a pruhy určité orientace v daném perceptivním poli.
- Complex cell (C-Buňka) také reaguje na hrany a pruhy určité orientace, ale od jednoduché buňky se liší tím, že tyto hrany a pruhy mohou být na scéně posunuty a buňka bude stále reagovat.

- 1980 Neocognitron Kunihiko Fukushima
 - <u>Neocognitron: A Self-organizing Neural Network Model for a Mechanism of</u>
 <u>Pattern Recognition Unaffected by Shift in Position</u>.
 - Model zahrnuje komponenty označované jako S-buňky a Cbuňky realizující matematické operace.
 - Celkovou myšlenkou je zachytit koncept "od jednoduchého ke složitému" a přeměnit jej na výpočetní model pro rozpoznávání vizuálních vzorů.

• 1980 - Neocognitron - Kunihiko Fukushima

- 1998 LeNet Yann LeCun
 - Gradient-Based Learning Applied to Document Recognition

- 2009 <u>IMAGENET</u> Fei-Fei Li & Team
 - První rozsáhlý dataset (1000 tříd; 1,3 milionu obrázků) vyzívající k soutěžení v klasifikaci obrazových dat mezi výzkumníky
 - Díky soutěžení vznikají návrhy nových topologií klíčových pro rozvoj aplikace neuronových sítí pro zpracování obrazu
- 2012 <u>AlexNet</u> Alex Krizhevsky
 - ReLu aktivační funkce, velký počet filtrů v konvolučních vrstvách
 - Paralelní trénování architektury
 - Augmentace dat
 - Zavedení Dropout vrstvy nastavení výstupu neuronů s určitou pravděpodobností na hodnotu 0. (Omezení vzájemných vztahů neuronů -> neuron se nemůže spoléhat na přítomnost jiných neuronů)

- 2012 <u>AlexNet</u> Alex Krizhevsky
 - Překrývající se části z Pooling vrstev

- 2013 ZFNet Zeiler and Fergus
 - Založený na AlexNet, ale měnící nastavení jednotlivých vrstev
- 2014 VGGNet Visual Geometry Group
 - Přineslo hlubší architekturu CNN, která dosahovala nižší chybovosti v soutěži na datasetu ImageNet.
 - Nová filozofie zvětšením hloubky lze modelovat více nelinearit ve funkci -> zohledňování hloubky jako kritické složky při návrhu topologie.

- 2014 <u>GoogLeNet</u>
 - Trend zvětšování hloubky sítě, ale bez použití plně propojených vrstev (12x méně parametrů než u AlexNet, 28x méně parametrů než u VGG)
 - Zavedení "inception" modulu cílem je aproximovat optimální lokální struktur CNN.
 Umožňuje použít v jednom bloku více velikostí filtrů, místo abychom byli omezeni na jednu velikost filtru, které pak spojíme a předáme další vrstvě.

Konvoluční neuronová síť – porovnání

CNN – Detekce

Konvoluční neuronová síť – detekce

- Základní přístup pro detekci objektů v obraze je použití klasifikátoru na tzv. pohyblivé okno (slidding window)
- Uvažují se tzv. ohraničující obdélníky pro detekci pozice objektu

Konvoluční neuronová síť – vyhodnocení

 K vyhodnocení detekčních úloh se používá metrika loU - Intersecion over Union

Konvoluční neuronová síť – R-CNN

- 2014 R-CNN
 - 2 Fázový detektor (přistupuje k problému rozdělením na fáze)
 - Projde obrázek CNN a určí návrh oblasti zájmu, pak každý návrh projde sítí pro klasifikaci

Konvoluční neuronová síť – Fast R-CNN

- 2015 <u>Fast R-CNN</u>
 - Kombinuje 2 fáze → Jednou projet obrázek CNN + až potom řešit jednotlivé regiony
 - Postup detekce:
 - Celý vstupní obrázek projde jednou hlubokou CNN (např. VGG-16). Výstup = Feature mapa (popis obrázku).
 - Na feature mapě se aplikují tzv. Region Proposal Regions (Rols) oblasti, kde by mohly být objekty
 - Pro každý RoI: Použije se speciální vrstva → RoI Pooling: Převzorkuje fixní velikosti (např. 7×7). (Pro FFNN)
 - Výstup z Rol Poolingu jde do plně propojené vrstvy (klasifikační head).

Konvoluční neuronová síť – YOLO

- 2016 <u>YOLOv1</u>
 - You Only Look Once Přináší nový přístup kombinující fáze z 2 fázových detektorů
 - Obraz se rozdělí na 7×7 (v originále) buněk a každá buňka předpovídá několik bounding boxů včetně pravděpodobnosti, že tam objekt je, a klasifikaci do tříd.

Konvoluční neuronová síť – YOLO

- 2018 <u>YOLOv3</u>
 - Navazuje na v2, s vylepšením díky využití tzv. "anchor boxů" místo bounding boxů

Bounding box

Výsledný obdélník kolem objektu. Vzniká po výpočtu/predikci modelu.

Anchor Box

- Předdefinované tvary boxů, které model používá jako "startovní šablony" pro predikci bounding boxů.
- Využití více úrovní map příznaků
- Použití "multi-scale" přístupu (tři úrovně detekce) → lepší detekce menších obj.
- Počátek zavádění tzv. "páteřních" sítí (Backbone)
 - Část modelu, která extrahuje feature mapy.
 - Typicky předtrénovaná na ImageNet (klasifikace).
 - Detektor pak přidává jen "hlavičku" (head) pro detekci objektů.

Konvoluční neuronová síť – YOLO

- YOLO, YOLOv8
 - Rozšíření zaměřující se zejména na zlepšení přesnosti a udržení real-time inference
 - Přechod pod Open-source platformu Ultralytics
 - Různé implementace + snadné vlastní implementace (PyTorch, připravené skripty)
 - Různé velikosti sítě (U, S, M, L, X)
 - Testování a optimalizace backbone
 - Pokročilá augmentace pro zlepšení schopnosti generalizovat

Konvoluční neuronová síť – porovnání

CNN – Segmentace

Segmentace obrazových dat

- Pokročilejší metoda, přiřazující třídu (label) jednotlivým pixelům
- Instanční vs Sémantická

Semantic Segmentation

Instance Segmentation

Segmentace obrazových dat – užití

• Medical imaging, Self-driving cars, Remote Sensing

Konvoluční vrstvy produkují výstupní data – zpracované obrázky

- U segmentace vyžadujeme na výstupu označený obrázek.
- Modely založené na principu Enkodér-Dekodér nebo Auto-Enkodér.
- Jsou založené na vlastnosti konvolučních sítí kódovat vstupní informaci (obrázek).

Segmentace pomocí CNN

 Enkodér-Dekodér schéma – postupné kódování vlastností obrázku a následné jeho postupné dekódování pro vygenerování segmentovaného obrázku

 Skip spojení – přenášejí určité klíčové vlastnosti mezi enkodérem a dekodérem v dané hloubce

- UpSampling vrstva zvětšuje původní rozměr vstupu
- Metody: replikace, průměrování, Unpooling

- UpSampling vrstva zvětšuje původní rozměr vstupu
- Metody: replikace, průměrování, Unpooling

- UpSampling vrstva zvětšuje původní rozměr vstupu
- Metody: replikace, průměrování, Unpooling

SegNet

• U-Net

• FCN – Fully Convolutional Network

• Pyramid Network modely

- Mask R-CNN
 - Objekty jsou klasifikovány a lokalizovány pomocí ohraničujícího boxu a sémantické segmentace, která klasifikuje každý pixel do daných kategorií. Každá oblast zájmu dostane segmentační masku.

- Segmentační úloha vede k zisku nového obrázku, který nemusí zachycovat pouhé přiřazení do třídy, ale může vytvářet nový obrázek
- GANs Generative Adversarial Networks

Datasety

- Datasety jsou nedílnou součástí při práci s neuronovými sítěmi.
- V obrazovém zpracování mohou vstupní obrázky nabývat 2D, 2.5D (RGB+D), 3D rozměrů.
- Podle dané úlohy existují různé datasety, na kterých se provádí testování vlastních topologií vzhledem k ostatním. Přehledné shrnutí dostupných datasetů bylo např. popsáno v <u>článku</u> z 2020.
- Kromě vytvořených "obecných" datasetů je ale často pro specifickou úlohu vytvořit datasety vlastní.
 - Vytvoření obrázků trénovací a testovací množiny.
 - Ruční označení dat (zisk tzv. ground truth) bounding boxy, labelling pro segmentaci (přehled 2022), vlastní označování (vlastní aplikace)

Augmentace

- Vlastní datasety jsou často vytvořeny z několika stovek, tisíců obrázků, které nepokrývají dostačující část pro správné natrénování neuronové sítě.
- Pomocí augmentace můžeme dataset uměle rozšířit (původní obrázky orotovat, ztmavit, posunout, ...)
- Použití více dat pro trénování vede k lepší generalizaci sítě.
- Tensorflow Data Generator

Děkuji za pozornost.

Přednáška pro mikrocertifikát !!! 5. Test - 22. 4. 2024 !!!

Cvičení – společné

- Organizace další výuky
- Výpočet konvoluce a operace max-pooling
- Záznam do deníku

Organizace další výuky

- 22. 4. 2024
 - Přednáška pro mikrocertifikát
 - 5. test na CNN, kompletace deníků
- 29.4.2024
 - Vybrané téma přednášky
 - Prezentace deníku (Zp)
- 6.5.2024
 - Předtermín zkoušky
 - Prezentace deníku (Zp)

Konvoluční neuronová síť – konvoluce

• Pro každý pixel aplikujeme skalární součin konvolučního filtru s vstupem a získáváme výstupní hodnotu tvořící matici příznaků

Konvoluční neuronová síť – Max-Pooling

 Pooling vrstvy sjednocují skupinu vlastností a vybírají jen tu nejvíce dominantní – max pooling vybírá maximální hodnotu, snižují velikost

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Konvoluční neuronová síť – konvoluce

 Pro každý pixel aplikujeme skalární součin konvolučního filtru s vstupem a získáváme výstupní hodnotu tvořící matici příznaků

Vstupní obraz (5x5)

1	0	0	3	0
1	1	1	1	1
0	2	1	1	0
1	2	2	1	1
0	1	0	1	1

1	1	2
0	0	0
0	3	1

Filtr 2 (2x2)

Konvoluční neuronová síť – konvoluce

 Pro každý pixel aplikujeme skalární součin konvolučního filtru s vstupem a získáváme výstupní hodnotu tvořící matici příznaků

Vstupní obraz (4x4)

1	0	1	1
0	1	1	0
2	1	1	1
0	0	0	3

0	1	1
0	1	0
0	1	1

Filtr 1 (3x3)

Cvičení- samostatně

- Záznam do deníku:
 - Samostatně navrhněte a několik vlastních architektur konvolučních neuronových sítí (CNN) pro klasifikaci dopravních značek na datech z (<u>GTSRB dataset</u>) pomocí knihovny KERAS nebo pyTorch.
 - Využijte úprav pro přípravu dat z minulého úkolu.
 - Navrhněte alespoň 5 různých topologií CNN (Každý model natrénujte 10×)
 - Vytvořte boxplot pro přesnost/valid loss všech 5 topologií
 - Zobrazte nejlepší modelu nad test daty (např. klasifikační report, confusion matrix)