Práctica Máquina Estados Finitos (FSM) II

- 1.- Tenemos un motor que queremos que se comporte de la siguiente forma:
- En estado inicial o de reposo, estará detenido en la posición en la que el sensor ('a' en el esquema de Proteus) detecta la posición de reposo (posición de la figura).
- Cuando se pulse 'Marcha', el motor dará dos vueltas completas, deteniéndose en la posición de reposo inicial.
- Durante el recorrido, si se pulsa 'Marcha', el motor seguirá rotando hasta alcanzar el final de las dos vueltas.
- Si al completar las dos vueltas, el pulsador marcha está pulsado por cualquier causa, no se comenzará un ciclo nuevo hasta que deje de estar pulsado.
- * Resolver circuito por Mealy o Moore.
- * Realizar esquema con Proteus
- * Simular el circuito y verificar funcionamiento.

Notas:

El sensor y el pulsador 'Marcha' proporcionan un '1' cuando están activados. La velocidad del volante y del motor es lenta, el ciclo de 2 vueltas es lento.

Solución

Vamos a resolver el sistema por Moore, en primer lugar realizamos el diagrama de estados con las salidas entradas y salidas identificadas en el diagrama y con una breve descripción de la situación de cada estado.

Tabla de estados

Estado	Q2	Q1	Q
Inicio	0	0	0
Marcha1	0	0	1
Mar1 ^a V	0	1	0
1ªVConf	0	1	1
Mar2 ^a V	1	0	0
EspLP	1	0	1
Avería	1	1	0

Una vez determinado que precisamos de tres biestables, vamos a usar unos tipo 'D' y vamos a realizar tabla de la verdad y tabla de excitación de todo el proceso:

Estado	Q2	Q1	Q0	а	р	Q2'	Q1'	Q0'	М	Α	D2	D1	D0
	0	0	0	0	0	1	1	0	0	0	1	1	0
Inicio	0	0	0	0	1	1	1	0	0	0	1	1	0
IIIICIO	0	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	1	1	0	0	1	0	0	0	0	1
	0	0	1	0	0	0	1	0	1	0	0	1	0
Marcha1	0	0	1	0	1	0	1	0	1	0	0	1	0
Iviai Gria i	0	0	1	1	0	0	0	1	1	0	0	0	1
	0	0	1	1	1	0	0	1	1	0	0	0	1
	0	1	0	0	0	0	1	0	1	0	0	1	0
Mar1 ^a V	0	1	0	0	1	0	1	0	1	0	0	1	0
IVIAI I V	0	1	0	1	0	0	1	1	1	0	0	1	1
	0	1	0	1	1	0	1	1	1	0	0	1	1
	0	1	1	0	0	1	0	0	1	0	1	0	0
1ªVConf	0	1	1	0	1	1	0	0	1	0	1	0	0
1 000111	0	1	1	1	0	0	1	1	1	0	0	1	1
	0	1	1	1	1	0	1	1	1	0	0	1	1
	1	0	0	0	0	1	0	0	1	0	1	0	0
Mar2 ^a V	1	0	0	0	1	1	0	0	1	0	1	0	0
	1	0	0	1	0	0	0	0	1	0	0	0	0
	1	0	0	1	1	1	0	1	1	0	1	0	1
	1	0	1	0	0	1	1	0	0	0	1	1	0
EspLP	1	0	1	0	1	1	1	0	0	0	1	1	0
2002.	1	0	1	1	0	0	0	0	0	0	0	0	0
	1	0	1	1	1	1	0	1	0	0	1	0	1
Avería 1	1	1	0	0	0	1	1	0	0	1	1	1	0
	1	1	0	0	1	1	1	0	0	1	1	1	0
Avella	1	1	0	1	0	1	1	0	0	1	1	1	0
	1	1	0	1	1	1	1	0	0	1	1	1	0

A la vista de esta tabla, mediante Karnaught, estableceremos las ecuaciones necesarias para las salidas M (Motor) y A (señal de avería), así como las salidas que conectaremos a los biestables para escribir los nuevos estados (estados futuros mediante D2, D1 y D0). Para facilitar la identificación de las selecciones las marcaremos con diferentes colores, así un mismo color indicará selección común (celdas contiguas).

Q2Q1Q0									
ар	000	001	011	010	110	111	101	100	
00	1	0	1	0	1	X	1	1)
01	1	0	1	0	1	Х	1	1	D2
11	0	0	0	0	1	Х	1	D	
10	0	0	0	0	1	Х	0	0	

 $D2 = (Q2 \cdot Q1) + (p \cdot Q2) + (\overline{a} \cdot Q2) + (\overline{a} \cdot \overline{Q1} \cdot \overline{Q0}) + (\overline{a} \cdot Q1 \cdot Q0)$

Q2Q1Q0									
ар	000	001	011	010	110		101	100	
00	1	1	0	1	1	Х	1	0	
01	1	1	0	1	1	Х	1	0	D1
11	0	0	1	1	1	Х	0	0	נט
10	0	0	J	1	1	Χ	0	0	

$$\mathbf{D1} = (\mathbf{a} \cdot \mathbf{Q1}) + (\mathbf{Q1} \cdot \overline{\mathbf{Q0}}) + (\overline{\mathbf{a}} \cdot \mathbf{Q2} \cdot \mathbf{Q0}) + (\overline{\mathbf{a}} \cdot \overline{\mathbf{Q2}} \cdot \overline{\mathbf{Q1}})$$

Q2Q1Q0								
ар	000	001	011	010	110	111	101	100
00	0	0	0	0	0	Х	0	0
01	0	0	0	0	0	Х	0	0
11	1	1	1	1	0	Х	1	1
10	0	1	1	1	0	Х	0	0

 $\mathbf{D0} = (\mathbf{a} \cdot \mathbf{p} \cdot \overline{\mathbf{Q2}}) + (\mathbf{a} \cdot \overline{\mathbf{Q2}} \cdot \mathbf{Q0}) + (\mathbf{a} \cdot \mathbf{p} \cdot \mathbf{Q2} \cdot \overline{\mathbf{Q1}}) + (\mathbf{a} \cdot \overline{\mathbf{Q2}} \cdot \mathbf{Q1})$

Q2Q1Q0								
ар	000	001	011	010	110	111	101	100
00	0	1	-	٦	0	X	0	1
01	0	1	1	1	0	X	0	1
11	0	1	1	1	0	X	0	1
10	0	1	1	1	0	Х	0	1

$$M = (\overline{\mathbb{Q}2} \cdot \mathbb{Q}1) + (\overline{\mathbb{Q}2} \cdot \mathbb{Q}0) + (\mathbb{Q}2 \cdot \overline{\mathbb{Q}1} \cdot \overline{\mathbb{Q}0})$$

Q2Q1Q0								
ар	000	001	011	010	110	111	101	100
00	0	0	0	0	1	Х	0	0
01	0	0	0	0	1	Х	0	0
11	0	0	0	0	1	Х	0	0
10	0	0	0	0	1	Х	0	0

 $A = (Q2 \cdot Q1)$

Una vez obtenidas las ecuaciones, podríamos hacer algunas simplificaciones (ver final soluciones), pero a veces esas simplificaciones complican el esquema eléctrico.

