

Europäisches Patentamt

(19) European Patent Office
Office européen des brevets

(11) Publication number:

0 251 446
A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 87303761.8

(51) Int. Cl.³: C 12 N 15/00

(22) Date of filing: 28.04.87

C 12 N 9/54, C 12 N 1/00

(30) Priority: 30.04.86 US 858594
06.04.87 US 35652

(71) Applicant: GENENTECH, INC.
460 Point San Bruno Boulevard
South San Francisco California 94080(US)

(43) Date of publication of application:
07.01.88 Bulletin 88/1

(72) Inventor: Wells, James Allen
64 Otay Avenue
San Mateo CA 94403(US)

(84) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(72) Inventor: Cunningham, Brian C.
24 Olive Avenue
Piedmont CA 94611(US)

(72) Inventor: Caldwell, Robert Mark
1828 Broadway
No. 101 San Francisco Ca 94109(US)

(72) Inventor: Bott, Richard Ray
3032 Hillside drive
Burlingame CA 94010(US)

(72) Inventor: Estell, David Aaron
250 Diablo Avenue
Mountain View CA 94043(US)

(72) Inventor: Power, Scott Douglas
732 Olive Court
San Bruno CA 94066(US)

(74) Representative: Bizley, Richard Edward et al,
BOULT, WADE & TENNANT 27 Fenchurch Street
London EC4A 1PQ(GB)

(54) Non-human Carbonyl hydrolase mutants, DNA sequences and vectors encoding same and hosts transformed with said vectors.

(55) Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by *in vitro* modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.

EP 0 251 446 A2

NON-HUMAN CARBONYL HYDROLASE MUTANTS,
DNA SEQUENCES AND VECTORS ENCODING SAME
AND HOSTS TRANSFORMED WITH SAID VECTORS

The recent development of various in vitro techniques to manipulate the DNA sequences encoding naturally-occurring polypeptides as well as recent developments in the chemical synthesis of relatively short sequences of single and double stranded DNA has resulted in the speculation that such techniques can be used to modify enzymes to improve some functional property in a predictable way. Ulmer, K.M. (1983) Science 219, 666-671. The only working example disclosed therein is the substitution of a single amino acid within the active site of tyrosyl-tRNA synthetase (Cys35-Ser) which lead to a reduction in enzymatic activity. See Winter, G., et al. (1982) Nature 299, 756-758; and Wilkinson, A.J., et al. (1983) Biochemistry 22, 3581-3586 (Cys35-Gly mutation also resulted in decreased activity).

When the same t-RNA synthetase was modified by substituting a different amino acid residue within the active site with two different amino acids, one of the mutants (Thr51-Ala) reportedly demonstrated a predicted moderate increase in kcat/Km whereas a second mutant (Thr51-Pro) demonstrated a massive increase in kcat/Km which could not be explained with

certainty. Wilkinson, A.H., et al. (1984) Nature 307, 187-188.

Another reported example of a single substitution of an amino acid residue is the substitution of cysteine for isoleucine at the third residue of T4 lysozyme.
5 Perry, L.J., et al. (1984) Science 226, 555-557. The resultant mutant lysozyme was mildly oxidized to form a disulfide bond between the new cysteine residue at position 3 and the native cysteine at position 97. This crosslinked mutant was initially described by the
10 author as being enzymatically identical to, but more thermally stable than, the wild type enzyme. However, in a "Note Added in Proof", the author indicated that the enhanced stability observed was probably due to a chemical modification of cysteine at residue 54 since
15 the mutant lysozyme with a free thiol at Cys54 has a thermal stability identical to the wild type lysozyme.

Similarly, a modified dihydrofolate reductase from
20 E.coli has been reported to be modified by similar methods to introduce a cysteine which could be crosslinked with a naturally-occurring cysteine in the reductase. Villafranca, D.E., et al. (1983) Science 222, 782-788. The author indicates that this mutant is fully reactive in the reduced state but has
25 significantly diminished activity in the oxidized state. In addition, two other substitutions of specific amino acid residues are reported which resulted in mutants which had diminished or no activity.
30

35 EPO Publication No. 0130756 discloses the substitution of specific residues within B. amyloliquefaciens subtilisin with specific amino acids. Thus, Met222 has been substituted with all 19 other amino acids,

Gly166 with 9 different amino acids and Gly169 with Ala and Ser.

As set forth below, several laboratories have also reported the use of site directed mutagensis to produce the mutation of more than one amino acid residue within a polypeptide.

The amino-terminal region of the signal peptide of the prolipoprotein of the E. coli outer membrane was stated to be altered by the substitution or deletion of residues 2 and 3 to produce a charge change in that region of the polypeptide. Inoyye, S., et al. (1982) Proc. Nat. Acad. Sci. USA 79, 3438-3441. The same laboratory also reported the substitution and deletion of amino acid residues 9 and 14 to determine the effects of such substitution on the hydrophobic region of the same signal sequence. Inouye, S., et al. (1984) J. Biol. Chem. 259, 3729-3733.

Double mutants in the active site of tyrosyl-t-RNA synthetase have also been reported. Carter, P.J., et al. (1984) Cell 38, 835-840. In this report, the improved affinity of the previously described Thr51-Pro mutant for ATP was probed by producing a second mutation in the active site of the enzyme. One of the double mutants, Gly35/Pro51, reportedly demonstrated an unexpected result in that it bound ATP in the transition state better than was expected from the two single mutants. Moreover, the author warns, at least for one double mutant, that it is not readily predictable how one substitution alters the effect caused by the other substitution and that care must be taken in interpreting such substitutions.

A mutant is disclosed in U.S. Patent No. 4,532,207, wherein a polyarginine tail was attached to the C-terminal residue of β -urogastrone by modifying the DNA sequence encoding the polypeptide. As disclosed, the polyarginine tail changed the electrophoretic mobility of the urogastrone-polyarginine hybrid permitting selective purification. The polyarginine was subsequently removed, according to the patentee, by a polyarginine specific exopeptidase to produce the purified urogastrone. Properly construed, this reference discloses hybrid polypeptides which do not constitute mutant polypeptides containing the substitution, insertion or deletion of one or more amino acids of a naturally occurring polypeptide.

Single and double mutants of rat pancreatic trypsin have also been reported. Craik, C.S., *et al.* (1985) *Science* 228, 291-297. As reported, glycine residues at positions 216 and 226 were replaced with alanine residues to produce three trypsin mutants (two single mutants and one double mutant). In the case of the single mutants, the authors stated expectation was to observe a differential effect on K_m . They instead reported a change in specificity (k_{cat}/K_m) which was primarily the result of a decrease in k_{cat} . In contrast, the double mutant reportedly demonstrated a differential increase in K_m for lysyl and arginyl substrates as compared to wild type trypsin but had virtually no catalytic activity.

The references discussed above are provided solely for their disclosure prior to the filing date of the instant case, and nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or priority based on earlier filed applications.

-5-

Based on the above references, however, it is apparent that the modification of the amino acid sequence of wild type enzymes often results in the decrease or destruction of biological activity.

5 Accordingly, it is an object herein to provide carbonyl hydrolase mutants which have at least one property which is different from the same property of the carbonyl hydrolase precursor from which the amino acid of said mutant is derived.

10 It is a further object to provide mutant DNA sequences encoding such carbonyl hydrolase mutants as well as expression vectors containing such mutant DNA sequences.

15 Still further, another object of the present invention is to provide host cells transformed with such vectors as well as host cells which are capable of expressing such mutants either intracellularly or
20 extracellularly.

25

30

35

Summary of the Invention

The invention includes carbonyl hydrolase mutants, preferably having at least one property which is substantially different from the same property of the precursor non-human carbonyl hydrolase from which the amino acid sequence of the mutant is derived. These properties include oxidative stability, substrate, specificity catalytic activity, thermal stability, alkaline stability, pH activity profile and resistance to proteolytic degradation. The precursor carbonyl hydrolase may be naturally occurring carbonyl hydrolases or recombinant carbonyl hydrolases. The amino acid sequence of the carbonyl hydrolase mutant is derived by the substitution, deletion or insertion of one or more amino acids of the precursor carbonyl hydrolase amino acid sequence.

The invention also includes mutant DNA sequences encoding such carbonyl hydrolase mutants. Further the invention includes expression vectors containing such mutant DNA sequences as well as host cells transformed with such vectors which are capable of expressing said carbonyl hydrolase mutants.

Brief Description of the Drawings

Figure 1 shows the nucleotide sequence of the coding strand, correlated with the amino acid sequence of *B. amyloliquefaciens* subtilisin gene. Promoter (p) ribosome binding site (rbs) and termination (term) regions of the DNA sequence as well as sequences encoding the presequence (PRE) putative prosequence (PRO) and mature form (MAT) of the hydrolase are also shown.

Figure 2 is a schematic diagram showing the substrate binding cleft of subtilisin together with substrate.

-7-

Figure 3 is a stereo view of the S-1 binding subsite of B. amyloliquefaciens subtilisin showing a lysine P-1 substrate bound in the site in two different ways. Figure 3A shows Lysine P-1 substrate bound to form a salt bridge with a Glu at position 156. Figure 3B shows Lysine P-1 substrate bound to form a salt bridge with Glu at position 166.

Figure 4 is a schematic diagram of the active site of subtilisin Asp32, His64 and Ser221.

Figures 5A and 5B depict the amino acid sequence of subtilisin obtained from various sources. The residues directly beneath each residue of B. amyloliquefaciens subtilisin are equivalent residues which (1) can be mutated in a similar manner to that described for B. amyloliquefaciens subtilisin, or (2) can be used as a replacement amino acid residue in B. amyloliquefaciens subtilisin. Figure 5C depicts conserved residues of B. amyloliquefaciens subtilisin when compared to other subtilisin sequences.

Figures 6A and 6B depict the inactivation of the mutants Met222L and Met222Q when exposed to various organic oxidants.

Figure 7 depicts the ultraviolet spectrum of Met222F subtilisin and the difference spectrum generated after inactivation by diperdodecanoic acid (DPDA).

Figure 8 shows the pattern of cyanogen bromide digests of untreated and DPDA oxidized subtilisin Met222F on high resolution SDS-pyridine peptide gels.

Figure 9 depicts a map of the cyanogen bromide fragments of Fig. 8 and their alignment with the sequence of subtilisin Met222F.

5 Figure 10 depicts the construction of mutations between codons 45 and 50 of B. amyloliquefaciens subtilisin.

10 Figure 11 depicts the construction of mutations between codons 122 and 127 of B. amyloliquefaciens subtilisin.

15 Figure 12 depicts the effect of DPDA on the activity of subtilisin mutants at positions 50 and 124 in subtilisin Met222F.

15 Figure 13 depicts the construction of mutations at codon 166 of B. amyloliquefaciens subtilisin.

20 Figure 14 depicts the effect of hydrophobicity of the P-1 substrate side-chain on the kinetic parameters of wild-type B. amyloliquefaciens subtilisin.

25 Figure 15 depicts the effect of position 166 side-chain substitutions on P-1 substrate specificity.

Figure 15A shows position 166 mutant subtilisins containing non-branched alkyl and aromatic side-chain substitutions arranged in order of increasing molecular volume. Figure 15B shows a series of mutant enzymes progressing through β - and γ -branched aliphatic side chain substitutions of increasing molecular volume.

30 35 Figure 16 depicts the effect of position 166 side-chain volume on log kcat/Km for various P-1 substrates.

Figure 17 shows the substrate specificity differences between Ile166 and wild-type (Gly166) B. amyloliquefaciens subtilisin against a series of aliphatic and aromatic substrates. Each bar represents the difference in log kcat/Km for Ile166 minus wild-type (Gly166) subtilisin.

Figure 18 depicts the construction of mutations at codon 169 of B. amyloliquefaciens subtilisin.

Figure 19 depicts the construction of mutations at codon 104 of B. amyloliquefaciens subtilisin.

Figure 20 depicts the construction of mutations at codon 152 B. amyloliquefaciens subtilisin.

Figure 21 depicts the construction of single mutations at codon 156 and double mutations at codons 156 and 166 of B. amyloliquefaciens subtilisin.

Figure 22 depicts the construction of mutations at codon 217 for B. amyloliquefaciens subtilisin.

Figure 23 depicts the kcat/Km versus pH profile for mutations at codon 156 and 166 in B. amyloliquefaciens subtilisin.

Figure 23A depicts the kcat/Km versus pH profile for mutations at codon 156 and 166 in B. amyloliquefaciens subtilisin.

Figure 24 depicts the kcat/Km versus pH profile for mutations at codon 222 in B. amyloliquefaciens subtilisin.

-10-

Figure 25 depicts the constructing mutants at codons 94, 95 and 96.

5 Figures 26 and 27 depict substrate specificity of various wild type and mutant subtilisins for different substrates.

10 Figures 28 A, B, C and D depict the effect of charge in the P-1 binding sites due to substitutions at codon 156 and 166.

15 Figures 29 A and B are a stereoview of the P-1 binding site of subtilisin BPN' showing a lysine P-1 substrate bound in the site in two ways. In 29A, Lysine P-1 substrate is built to form a salt bridge with a Glu at codon 156. In 29B, Lysine P-1 substrate is built to form a salt bridge with Glu at codon 166.

20 Figure 30 demonstrates residual enzyme activity versus temperature curves for purified wild-type (Panel A), C22/C87 (Panel B) and C24/C87 (Panel C).

25 Figure 31 depicts the strategy for producing point mutations in the subtilisin coding sequence by misincorporation of α -thioldeoxynucleotide triphosphates.

30 Figure 32 depicts the autolytic stability of purified wild type and mutant subtilisins 170E, 107V, 213R and 107V/213R at alkaline pH.

35 Figure 33 depicts the autolytic stability of purified wild type and mutant subtilisins V50, F50 and F50/V107/R213 at alkaline pH.

Figure 34 depicts the strategy for constructing plasmids containing random cassette mutagenesis over residues 197 through 228.

5 Figure 35 depicts the oligodeoxynucleotides used for random cassette mutagenesis over residues 197 through 228.

10 Figure 36 depicts the construction of mutants at codon 204.

15 Figure 37 depicts the oligodeoxynucleotides used for synthesizing mutants at codon 204.

Detailed Description

20 The inventors have discovered that various single and multiple in vitro mutations involving the substitution, deletion or insertion of one or more amino acids within a non-human carbonyl hydrolase amino acid sequence can confer advantageous properties to such mutants when compared to the non-mutated carbonyl hydrolase.

25 Specifically, B. amyloliquefaciens subtilisin, an alkaline bacterial protease, has been mutated by modifying the DNA encoding the subtilisin to encode the substitution of one or more amino acids at various amino acid residues within the mature form of the subtilisin molecule. These in vitro mutant subtilisins have at least one property which is different when compared to the same property of the precursor subtilisin. These modified properties fall into several categories including: oxidative stability, substrate specificity, thermal stability, alkaline stability, catalytic activity, pH activity

-12-

profile, resistance to proteolytic degradation, Km,
kcat and Km/kcat ratio.

Carbonyl hydrolases are enzymes which hydrolyze

O

5 ||

compounds containing C-X bonds in which X is oxygen or
nitrogen. They include naturally-occurring carbonyl
hydrolases and recombinant carbonyl hydrolases.
Naturally occurring carbonyl hydrolases principally
10 include hydrolases, e.g. lipases and peptide
hydrolases, e.g. subtilisins or metalloproteases.
Peptide hydrolases include α -aminoacylpeptide
hydrolase, peptidylamino-acid hydrolase, acylamino
hydrolase, serine carboxypeptidase, metallocarboxy-
15 peptidase, thiol proteinase, carboxylproteinase and
metalloproteinase. Serine, metallo, thiol and acid
proteases are included, as well as endo and exo-
proteases.

20 "Recombinant carbonyl hydrolase" refers to a carbonyl
hydrolase in which the DNA sequence encoding the
naturally occurring carbonyl hydrolase is modified to
produce a mutant DNA sequence which encodes the
substitution, insertion or deletion of one or more
25 amino acids in the carbonyl hydrolase amino acid
sequence. Suitable modification methods are disclosed
herein and in EPO Publication No. 0130756 published
January 9, 1985.

30 Subtilisins are bacterial carbonyl hydrolases which
generally act to cleave peptide bonds of proteins or
peptides. As used herein, "subtilisin" means a
naturally occurring subtilisin or a recombinant
subtilisin. A series of naturally occurring
35 subtilisins is known to be produced and often secreted

by various bacterial species. Amino acid sequences of the members of this series are not entirely homologous. However, the subtilisins in this series exhibit the same or similar type of proteolytic activity. This class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. The subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine. In the subtilisin related proteases the relative order of these amino acids, reading from the amino to carboxy terminus is aspartate-histidine-serine. In the chymotrypsin related proteases the relative order, however is histidine-aspartate-serine. Thus, subtilisin herein refers to a serine protease having the catalytic triad of subtilisin related proteases.

"Recombinant subtilisin" refers to a subtilisin in which the DNA sequence encoding the subtilisin is modified to produce a mutant DNA sequence which encodes the substitution, deletion or insertion of one or more amino acids in the naturally occurring subtilisin amino acid sequence. Suitable methods to produce such modification include those disclosed herein and in EPO Publication No. 0130756. For example, the subtilisin multiple mutant herein containing the substitution of methionine at amino acid residues 50, 124 and 222 with phenylalanine, isoleucine and glutamine, respectively, can be considered to be derived from the recombinant subtilisin containing the substitution of glutamine at residue 222 (Q222) disclosed in EPO Publication No. 0130756. The multiple mutant thus is produced by the substitution of phenylalanine for methionine at

residue 50 and isoleucine for methionine at residue 124 in the Q222 recombinant subtilisin.

"Carbonyl hydrolases" and their genes may be obtained from many prokaryotic and eukaryotic organisms. Suitable examples of prokaryotic organisms include gram negative organisms such as E. coli or pseudomonas and gram positive bacteria such as micrococcus or bacillus. Examples of eukaryotic organisms from which carbonyl hydrolase and their genes may be obtained include yeast such as S. cerevisiae, fungi such as Aspergillus sp., and non-human mammalian sources such as, for example, Bovine sp. from which the gene encoding the carbonyl hydrolase chymosin can be obtained. As with subtilisins, a series of carbonyl hydrolases can be obtained from various related species which have amino acid sequences which are not entirely homologous between the members of that series but which nevertheless exhibit the same or similar type of biological activity. Thus, non-human carbonyl hydrolase as used herein has a functional definition which refers to carbonyl hydrolases which are associated, directly or indirectly, with prokaryotic and non-human eukaryotic sources.

A "carbonyl hydrolase mutant" has an amino acid sequence which is derived from the amino acid sequence of a non-human "precursor carbonyl hydrolase". The precursor carbonyl hydrolases include naturally-occurring carbonyl hydrolases and recombinant carbonyl hydrolases. The amino acid sequence of the carbonyl hydrolase mutant is "derived" from the precursor hydrolase amino acid sequence by the substitution, deletion or insertion of one or more amino acids of the precursor amino acid sequence. Such modification is of the "precursor DNA sequence" which encodes the

5 amino acid sequence of the precursor carbonyl hydrolase rather than manipulation of the precursor carbonyl hydrolase per se. Suitable methods for such manipulation of the precursor DNA sequence include methods disclosed herein and in EPO Publication No.
10 0130756.

10 Specific residues of B. amyloliquefaciens subtilisin are identified for substitution, insertion or deletion. These amino acid position numbers refer to those assigned to the B. amyloliquefaciens subtilisin sequence presented in Fig. 1. The invention, however,
15 is not limited to the mutation of this particular subtilisin but extends to precursor carbonyl hydrolases containing amino acid residues which are "equivalent" to the particular identified residues in B. amyloliquefaciens subtilisin.

20 A residue (amino acid) of a precursor carbonyl hydrolase is equivalent to a residue of B. amyloliquefaciens subtilisin if it is either homologous (i.e., corresponding in position in either primary or tertiary structure) or analogous to a specific residue or portion of that residue in B. amyloliquefaciens subtilisin (i.e., having the same or
25 similar functional capacity to combine, react, or interact chemically).

30 In order to establish homology to primary structure, the amino acid sequence of a precursor carbonyl hydrolase is directly compared to the B. amyloliquefaciens subtilisin primary sequence and particularly to a set of residues known to be invariant in all subtilisins for which sequence is known (Figure 5C). After aligning the conserved residues, allowing for necessary insertions and
35

-16-

deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of B. amyloliquefaciens subtilisin are defined. Alignment of conserved residues preferably should conserve 100% of such residues. However, alignment of greater than 75% or as little as 50% of conserved residues is also adequate to define equivalent residues. Conservation of the catalytic triad, Asp32/His64/Ser221 should be maintained.

For example, in Figure 5A the amino acid sequence of subtilisin from B. amyloliquefaciens B. subtilisin var. II168 and B. lichenformis (carlsbergensis) are aligned to provide the maximum amount of homology between amino acid sequences. A comparison of these sequences shows that there are a number of conserved residues contained in each sequence. These residues are identified in Fig. 5C.

These conserved residues thus may be used to define the corresponding equivalent amino acid residues of B. amyloliquefaciens subtilisin in other carbonyl hydrolases such as thermitase derived from Thermoactinomyces. These two particular sequences are aligned in Fig. 5B to produce the maximum homology of conserved residues. As can be seen there are a number of insertions and deletions in the thermitase sequence as compared to B. amyloliquefaciens subtilisin. Thus, in thermitase the equivalent amino acid of Tyr217 in B. amyloliquefaciens subtilisin is the particular lysine shown beneath Tyr217.

In Fig. 5A, the equivalent amino acid at position 217 in B. amyloliquefaciens subtilisin is Tyr. Likewise,

in B. subtilis subtilisin position 217 is also occupied by Tyr but in B. licheniformis position 217 is occupied by Leu.

5 Thus, these particular residues in thermitase, and subtilisin from B. subtilisin and B. licheniformis may be substituted by a different amino acid to produce a mutant carbonyl hydrolase since they are equivalent in primary structure to Tyr217 in B. amyloliquefaciens subtilisin. Equivalent amino acids of course are not limited to those for Tyr217 but extend to any residue 10 which is equivalent to a residue in B. amyloliquefaciens whether such residues are conserved or not.

15 Equivalent residues homologous at the level of tertiary structure for a precursor carbonyl hydrolase whose tertiary structure has been determined by x-ray crystallography, are defined as those for which the atomic coordinates of 2 or more of the main chain atoms of a particular amino acid residue of the precursor carbonyl hydrolase and B. amyloliquefaciens subtilisin (N on N, CA on CA, C on C, and O on O) are within 0.13nm and preferably 0.1nm after alignment. Alignment is achieved after the best model has been oriented and positioned to give the maximum overlap of 20 atomic coordinates of non-hydrogen protein atoms of the carbonyl hydrolase in question to the B. amyloliquefaciens subtilisin. The best model is the crystallographic model giving the lowest R factor for experimental diffraction data at the highest 25 resolution available.

$$\text{R factor} = \frac{\sum_h |F_o(h)| - |F_c(h)|}{\sum_h |F_o(h)|}$$

Equivalent residues which are functionally analogous to a specific residue of *B. amyloliquefaciens* subtilisin are defined as those amino acids of the precursor carbonyl hydrolases which may adopt a conformation such that they either alter, modify or contribute to protein structure, substrate binding or catalysis in a manner defined and attributed to a specific residue of the *B. amyloliquefaciens* subtilisin as described herein. Further, they are those residues of the precursor carbonyl hydrolase (for which a tertiary structure has been obtained by x-ray crystallography), which occupy an analogous position to the extent that although the main chain atoms of the given residue may not satisfy the criteria of equivalence on the basis of occupying a homologous position, the atomic coordinates of at least two of the side chain atoms of the residue lie with 0.13nm of the corresponding side chain atoms of *B. amyloliquefaciens* subtilisin. The three dimensional structures would be aligned as outlined above.

Some of the residues identified for substitution, insertion or deletion are conserved residues whereas others are not. In the case of residues which are not conserved, the replacement of one or more amino acids is limited to substitutions which produce a mutant which has an amino acid sequence that does not correspond to one found in nature. In the case of conserved residues, such replacements should not result in a naturally occurring sequence. The carbonyl hydrolase mutants of the present invention include the mature forms of carbonyl hydrolase mutants as well as the pro- and prepro-forms of such hydrolase mutants. The prepro-forms are the preferred construction since

this facilitates the expression, secretion and maturation of the carbonyl hydrolase mutants.

"Expression vector" refers to a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites, and sequences which control termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably as the plasmid is the most commonly used form of vector at present. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.

The "host cells" used in the present invention generally are prokaryotic or eucaryotic hosts which preferably have been manipulated by the methods disclosed in EPO Publication No. 0130756 to render

them incapable of secreting enzymatically active endoprotease. A preferred host cell for expressing subtilisin is the Bacillus strain BG2036 which is deficient in enzymatically active neutral protease and alkaline protease (subtilisin). The construction of strain BG2036 is described in detail in EPO Publication No. 0130756 and further described by Yang, M.Y., et al. (1984) J. Bacteriol. 160, 15-21. Other host cells for expressing subtilisin include Bacillus subtilis I168 (EPO Publication No. 0130756).

Host cells are transformed or transfected with vectors constructed using recombinant DNA techniques. Such transformed host cells are capable of either replicating vectors encoding the carbonyl hydrolase mutants or expressing the desired carbonyl hydrolase mutant. In the case of vectors which encode the pre or prepro form of the carbonyl hydrolase mutant, such mutants, when expressed, are typically secreted from the host cell into the host cell medium.

"Operably linked" when describing the relationship between two DNA regions simply means that they are functionally related to each other. For example, a presequence is operably linked to a peptide if it functions as a signal sequence, participating in the secretion of the mature form of the protein most probably involving cleavage of the signal sequence. A promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

The genes encoding the naturally-occurring precursor carbonyl hydrolase may be obtained in accord with the

general methods described herein in EPO Publication No. 0130756.

Once the carbonyl hydrolase gene has been cloned, a number of modifications are undertaken to enhance the use of the gene beyond synthesis of the naturally-occurring precursor carbonyl hydrolase. Such modifications include the production of recombinant carbonyl hydrolases as disclosed in EPO Publication No. 0130756 and the production of carbonyl hydrolase mutants described herein.

The carbonyl hydrolase mutants of the present invention may be generated by site specific mutagenesis (Smith, M. (1985) Ann, Rev. Genet. 423; Zoeller, M.J., et al. (1982) Nucleic Acid Res. 10, 6487-6500), cassette mutagenesis (EPO Publication No. 0130756) or random mutagenesis (Shortle, D., et al. (1985) Genetics, 110, 539; Shortle, D., et al. (1986) Proteins: Structure, Function and Genetics, 1, 81; Shortle, D. (1986) J. Cell. Biochem., 30, 281; Alber, T., et al. (1985) Proc. Natl. Acad. of Sci., 82, 747; Matsumura, M., et al. (1985) J. Biochem., 260, 15298; Liao, H., et al. (1986) Proc. Natl. Acad. of Sci., 83 576) of the cloned precursor carbonyl hydrolase. Cassette mutagenesis and the random mutagenesis method disclosed herein are preferred.

The mutant carbonyl hydrolases expressed upon transformation of suitable hosts are screened for enzymes exhibiting one or more properties which are substantially different from the properties of the precursor carbonyl hydrolases, e.g., changes in substrate specificity, oxidative stability, thermal stability, alkaline stability, resistance to

proteolytic degradation, pH-activity profiles and the like.

A change in substrate specificity is defined as a difference between the k_{cat}/K_m ratio of the precursor carbonyl hydrolase and that of the hydrolase mutant.
5 The k_{cat}/K_m ratio is a measure of catalytic efficiency. Carbonyl hydrolase mutants with increased or diminished k_{cat}/K_m ratios are described in the examples. Generally, the objective will be to secure
10 a mutant having a greater (numerically large) k_{cat}/K_m ratio for a given substrate, thereby enabling the use of the enzyme to more efficiently act on a target substrate. A substantial change in k_{cat}/K_m ratio is preferably at least 2-fold increase or decrease.
15 However, smaller increases or decreases in the ratio (e.g., at least 1.5-fold) are also considered substantial. An increase in k_{cat}/K_m ratio for one substrate may be accompanied by a reduction in k_{cat}/K_m ratio for another substrate. This is a shift in
20 substrate specificity, and mutants exhibiting such shifts have utility where the precursor hydrolase is undesirable, e.g. to prevent undesired hydrolysis of a particular substrate in an admixture of substrates. K_m and k_{cat} are measured in accord with known
25 procedures, as described in EPO Publication No. 0130756 or as described herein.

Oxidative stability is measured either by known procedures or by the methods described hereinafter. A substantial change in oxidative stability is evidenced by at least about 50% increase or decrease (preferably decrease) in the rate of loss of enzyme activity when exposed to various oxidizing conditions. Such oxidizing conditions are exposure to the organic
30

-23-

oxidant diperdodecanoic acid (DPDA) under the conditions described in the examples.

Alkaline stability is measured either by known procedures or by the methods described herein. A substantial change in alkaline stability is evidenced by at least about a 5% or greater increase or decrease (preferably increase) in the half life of the enzymatic activity of a mutant when compared to the precursor carbonyl hydrolase. In the case of subtilisins, alkaline stability was measured as a function of autoproteolytic degradation of subtilisin at alkaline pH, e.g. for example, 0.1M sodium phosphate, pH 12 at 25° or 30°C.

Thermal stability is measured either by known procedures or by the methods described herein. A substantial change in thermal stability is evidenced by at least about a 5% or greater increase or decrease (preferably increase) in the half-life of the catalytic activity of a mutant when exposed to a relatively high temperature and neutral pH as compared to the precursor carbonyl hydrolase. In the case of subtilisins, thermal stability is measured by the autoproteolytic degradation of subtilisin at elevated temperatures and neutral pH, e.g., for example 2mM calcium chloride, 50mM MOPS pH 7.0 at 59°C.

The inventors have produced mutant subtilisins containing the substitution of the amino acid residues of B. amyloliquefaciens subtilisin shown in Table I. The wild type amino acid sequence and DNA sequence of B. amyloliquefaciens subtilisin is shown in Fig. 1.

TABLE I

<u>Residue</u>	<u>Replacement Amino Acid</u>
Tyr21	F A
Thr22	C
Ser24	C
5 Asp32	Q S
Ser33	A T
Asp36	A G
Gly46	V
Ala48	E V R
10 Ser49	C L
Met50	C F V
Asn77	D
Ser87	C
Lys94	C
15 Val95	C
Leu96	D
Tyr104	A C D E F G H I K L M N P Q R S T V W
Ile107	V
Gly110	C R
20 Met124	I L
Asn155	A D H Q T
Glu156	Q S
Gly166	C E I L M P S T W Y
Gly169	C D E F H I K L M N P Q R T V W Y
25 Lys170	E R
Tyr171	F
Pro172	E Q
Phe189	A C D E G H I K L M N P Q R S T V W Y
Asp197	R A
30 Met199	I
Ser204	C R L P
Lys213	R T
Tyr217	A C D E F G H I K L M N P Q R S T V W
Ser221	A C

The different amino acids substituted are represented in Table I by the following single letter designations:

	Amino acid or residue <u>thereof</u>	3-letter symbol	1-letter symbol
5	Alanine	Ala	A
	Glutamate	Glu	E
	Glutamine	Gln	Q
10	Aspartate	Asp	D
	Asparagine	Asn	N
	Leucine	Leu	L
	Glycine	Gly	G
	Lysine	Lys	K
15	Serine	Ser	S
	Valine	Val	V
	Arginine	Arg	R
	Threonine	Thr	T
	Proline	Pro	P
20	Isoleucine	Ile	I
	Methionine	Met	M
	Phenylalanine	Phe	F
	Tyrosine	Tyr	Y
	Cysteine	Cys	C
25	Tryptophan	Trp	W
	Histidine	His	H

Except where otherwise indicated by context, wild-type amino acids are represented by the above three-letter symbols and replaced amino acids by the above single-letter symbols. Thus, if the methionine at residue 50 in B. amyloliquefaciens subtilisin is

replaced by phenylalanine, this mutation (mutant) may be designated Met50F or F50. Similar designations are used for multiple mutants.

In addition to the amino acids used to replace the residues disclosed in Table I, other replacements of amino acids at these residues are expected to produce mutant subtilisins having useful properties. These residues and replacement amino acids are shown in Table II.

10

15

20

25

30

35

TABLE II

	<u>Residue</u>	<u>Replacement Amino Acid(s)</u>
	Tyr-21	L
	Thr22	K
5	Ser24	A
	Asp32	
	Ser33	G
	Gly46	
	Ala48	
10	Ser49	
	Met50	L K I V
	Asn77	D
	Ser87	N
	Lys94	R Q
15	Val95	L I
	Tyr104	
	Met124	K A
	Ala152	C L I T M
	Asn155	
20	Glul56	A T M L Y
	Gly166	
	Gly169	
	Tyr171	K R E Q
	Prol72	D N
25	Phel89	
	Tyr217	
	Ser221	
	Met222	
30		

Each of the mutant subtilisins in Table I contain the replacement of a single residue of the *B. amyloliquefaciens* amino acid sequence. These particular residues were chosen to probe the influence

of such substitutions on various properties of B. amyloliquefaciens subtilisin.

Thus, the inventors have identified Met124 and Met222
5 as important residues which if substituted with another amino acid produce a mutant subtilisin with enhanced oxidative stability. For Met124, Leu and Ile are preferred replacement amino acids. Preferred amino acids for replacement of Met222 are disclosed in
10 EPO Publication No. 0130756.

Various other specific residues have also been identified as being important with regard to substrate specificity. These residues include Tyr104, Ala152,
15 Glu156, Gly166, Gly169, Phe189 and Tyr217 for which mutants containing the various replacement amino acids presented in Table I have already been made, as well as other residues presented below for which mutants have yet to be made.

20 The identification of these residues, including those yet to be mutated, is based on the inventors' high resolution crystal structure of B. amyloliquefaciens subtilisin to 1.8 Å (see Table III), their experience with in vitro mutagenesis of subtilisin and the literature on subtilisin. This work and the x-ray crystal structures of subtilisin containing covalently bound peptide inhibitors (Robertus, J.D., et al. (1972) Biochemistry 11, 2439-2449), product complexes (Robertus, J.D., et al. (1972) Biochemistry 11, 4293-4303), and transition state analogs (Matthews, D.A., et al (1975) J. Biol. Chem. 250, 7120-7126; Poulos, T.L., et al. (1976) J. Biol. Chem. 251, 1097-1103), has helped in identifying an extended peptide binding cleft in subtilisin. This substrate binding cleft together with substrate is schematically
25
30
35

-29-

diagrammed in Fig. 2, according to the nomenclature
of Schechter, I., et al. (1967) Biochem Bio. Res.
Commun. 27, 157. The scissile bond in the substrate
is identified by an arrow. The P and P' designations
refer to the amino acids which are positioned
5 respectively toward the amino or carboxy terminus
relative to the scissile bond. The S and S'
designations refer to subsites in the substrate
binding cleft of subtilisin which interact with the
corresponding substrate amino acid residues.

10

15

20

25

30

35

-30-

Atomic Coordinates for the
Apoenzyme Form of B, Amyloliquefaciens
Subtilisin to 1.8A Resolution

1	ALA N	19.436	53.195	-21.756	1	ALA CA	19.811	51.774	-21.965
1	ALA C	18.731	50.925	-21.324	1	ALA O	18.376	51.197	-20.375
1	ALA CB	21.099	51.518	-21.183	2	GLN N	18.268	49.886	-22.841
2	GLN CA	17.219	49.008	-21.434	2	GLN C	17.875	47.706	-20.952
2	GLN D	18.765	47.165	-21.691	2	GLN CD	16.125	48.766	-22.449
2	GLN CG	25.028	47.395	-21.927	2	GLN NE2	16.115	46.917	-23.926
2	GLN DE1	13.023	48.612	-22.867	3	SER CA	17.950	45.868	-19.437
3	SER N	17.477	47.205	-19.852	3	SER O	15.590	45.352	-19.229
3	SER C	16.735	44.918	-19.490	3	SER OG	17.882	46.210	-17.049
3	SER CB	18.588	45.038	-18.069	4	VAL CA	15.946	42.619	-19.639
4	VAL N	16.991	43.646	-19.725	4	VAL O	17.123	41.178	-18.826
4	VAL C	16.129	41.934	-18.290	4	VAL CG1	14.874	48.572	-20.741
4	VAL CB	16.008	41.622	-20.822	5	PRO N	15.239	62.194	-17.331
4	VAL CG2	16.037	42.266	-22.186	5	PRO C	15.501	39.905	-16.249
5	PRO CA	15.384	41.415	-16.027	5	PRO CB	14.150	41.880	-15.263
5	PRO O	14.885	39.263	-17.146	5	PRO CD	14.064	42.986	-17.417
5	PRO CG	13.841	43.215	-15.921	6	TTR CA	16.628	37.883	-15.715
6	TTR N	16.363	39.240	-15.487	6	TTR D	15.224	35.943	-16.235
6	TTR C	15.359	36.975	-15.528	6	TTR CG	16.021	35.847	-15.855
6	TTR CB	17.824	37.323	-16.834	6	TTR CD2	17.696	34.988	-14.071
6	TTR CD1	18.437	35.452	-16.346	6	TTR CE2	17.815	33.539	-14.379
6	TTR CE1	18.535	34.970	-16.653	6	TTR OH	18.312	31.838	-15.994
6	TTR CZ	18.222	33.154	-15.621	7	GLY CA	13.211	36.640	-14.376
7	GLY N	14.464	37.362	-14.630	7	GLY D	11.747	35.478	-15.883
7	GLY C	12.400	36.535	-15.670	8	VAL CA	11.777	37.523	-17.836
8	VAL N	12.441	37.529	-16.541	8	VAL O	11.639	35.714	-19.470
8	VAL C	12.363	36.433	-18.735	8	VAL CG1	11.106	38.893	-19.943
8	VAL CB	11.765	38.900	-18.567	9	SER N	13.661	36.310	-18.775
8	VAL CG2	10.991	39.919	-17.733	9	SER C	14.189	33.920	-18.945
9	SER CA	14.619	35.342	-19.582	9	SER CB	15.926	35.632	-19.505
9	SER O	14.312	33.816	-19.801	10	GLN N	14.115	33.887	-17.662
9	SER OG	15.162	36.747	-20.358	10	GLN C	12.687	31.887	-17.277
10	GLN CA	13.964	32.636	-16.876	10	GLN CB	14.125	32.885	-15.410
10	GLN D	12.785	30.642	-17.413	10	GLN CD	14.486	31.911	-13.147
10	GLN CG	14.295	31.617	-14.588	10	GLN NE2	14.552	30.960	-12.251
10	GLN DE1	14.554	33.668	-12.766	11	ILE CA	16.373	31.904	-18.102
11	ILE N	11.625	32.575	-17.670	11	ILE O	9.173	31.333	-20.180
11	ILE C	10.209	31.792	-19.605	11	ILE CG1	9.066	34.317	-18.849
11	ILE CB	9.132	32.669	-17.675	11	ILE CO1	7.588	34.648	-17.923
11	ILE CG2	9.162	32.655	-15.941	12	LVS CA	11.388	32.319	-21.722
12	LVS N	11.272	32.185	-20.277	12	LVS O	10.178	32.783	-23.684
12	LVS C	10.456	33.866	-22.522	12	LVS CG	12.283	29.830	-21.423
12	LVS CB	11.257	30.646	-22.216	12	LVS CE	13.023	27.447	-21.166
12	LVS CD	12.543	28.517	-22.159	13	ALA N	20.199	34.138	-21.991
12	LVS CZ	14.476	27.680	-20.935	13	ALA C	18.026	35.714	-23.863
13	ALA CA	9.325	35.198	-22.631	13	ALA CB	8.885	36.195	-21.565
13	ALA D	9.338	35.804	-24.901	14	PRO CA	11.985	36.430	-25.120
14	PRO N	11.332	35.958	-23.893	14	PRO O	11.770	36.847	-27.445
14	PRO C	11.786	35.557	-26.317	14	PRO CG	13.328	36.976	-23.221
14	PRO CB	13.462	36.510	-24.692	15	ALA N	11.560	34.236	-26.129
14	PRO CD	32.281	35.936	-22.758	15	ALA C	10.082	33.795	-28.032
15	ALA CA	11.379	33.458	-27.367	15	ALA CB	11.552	31.969	-27.062
15	ALA D	10.098	33.718	-29.278	16	LEU CA	7.791	34.558	-27.828
16	LEU N	9.083	34.130	-27.240	16	LEU O	7.362	36.126	-29.588
16	LEU C	7.912	35.925	-28.521	16	LEU CG	3.798	33.465	-24.572
16	LEU CB	6.746	34.623	-26.698	16	LEU CD2	6.694	32.287	-26.283
16	LEU CD1	5.081	33.234	-27.809	17	WIS CA	8.070	38.151	-28.539
17	WIS N	8.663	36.878	-27.922	17	WIS O	8.107	38.622	-30.836
17	WIS C	9.510	37.981	-29.898	17	WIS CG	9.185	39.288	-26.262
17	WIS CB	9.788	39.100	-27.652	17	WIS CB2	8.088	38.924	-25.694
17	WIS ND1	9.938	39.887	-25.272	17	WIS NE2	8.079	39.328	-24.381
17	WIS CE1	9.226	39.914	-24.164	18	SEE CA	11.107	36.739	-31.322
18	SEE N	10.443	37.833	-38.822					

18	SER C	18.199	36.373	-32.353	18	SER D	18.547	36.312	-32.534
19	SER CB	12.311	35.799	-31.372	19	SER CS	13.321	36.476	-32.349
20	SLR N	7.980	35.495	-31.943	19	SLR CA	9.982	36.942	-32.878
21	SLR C	7.142	34.213	-33.303	19	SLR CG	8.297	35.973	-34.219
22	SLR CB	7.221	33.849	-32.280	19	SLR DE1	9.719	31.033	-31.644
23	SLR CD	6.923	31.757	-31.191	20	SLT N	7.205	37.223	-32.587
24	SLR DE2	7.362	30.352	-30.295	20	SLT C	8.181	38.492	-31.880
25	SLT CA	6.369	38.317	-32.859	21	SLT N	8.282	37.801	-34.761
26	SLT D	6.263	37.276	-32.215	21	SLT C	4.579	38.552	-28.923
27	SLT EA	6.118	37.831	-29.763	21	SLT CG	3.498	36.431	-29.443
28	SLT EB	2.622	38.974	-27.754	21	SLT CO1	3.795	36.332	-31.238
29	SLT CG	2.973	31.784	-30.799	21	SLT CO1	3.306	35.797	-32.446
30	SLT CO2	3.650	34.794	-31.397	21	SLT CI	2.093	34.755	-31.947
31	SLT CE2	3.173	34.261	-32.583	22	TMR N	3.902	39.690	-28.188
32	SLT DM	1.931	36.241	-34.250	22	TMR C	3.891	48.922	-36.244
33	TMR EA	4.262	40.527	-27.329	22	TMR CE	9.133	61.759	-37.611
34	TMR EC	3.287	41.725	-25.325	22	TMR CG1	6.476	41.323	-26.229
35	TMR DG1	6.319	42.637	-28.397	23	GLT CA	9.899	48.600	-23.362
36	GLT N	1.939	40.289	-24.453	23	GLT C	2.913	42.895	-29.330
37	GLT C	-0.157	41.631	-26.318	23	GLT CG	-0.897	42.937	-28.811
38	GLT CB	-0.023	41.967	-27.373	24	SER D	-2.013	61.908	-28.160
39	SER C	-2.383	42.626	-27.846	24	SER DS	0.563	43.432	-29.728
40	SER CB	-0.734	43.120	-29.820	25	ASH EA	-6.519	42.637	-27.393
41	ASH N	-1.059	62.692	-27.919	25	ASH D	-6.233	42.661	-26.190
42	ASH C	-0.915	41.873	-24.203	25	ASH CG	-6.960	46.170	-29.813
43	ASH CB	-3.163	43.127	-26.703	25	ASH HD2	-4.747	45.661	-29.394
44	ASH DD1	-4.949	43.767	-31.083	26	VAL C	-4.674	41.679	-26.142
45	VAL N	-4.177	42.449	-29.292	26	VAL D	-3.838	43.419	-22.687
46	VAL C	-6.792	42.652	-22.917	26	VAL CG1	-6.160	39.802	-22.548
47	VAL CB	-3.714	40.903	-23.821	27	LTS N	-3.910	42.613	-21.301
48	VAL CG2	-3.598	39.576	-29.018	27	LTS C	-3.815	42.872	-19.841
49	LTS CA	-6.113	43.524	-21.175	27	LTS CS	-7.590	63.981	-21.147
50	LTS C	-6.405	41.873	-19.613	27	LTS CD	-8.321	45.302	-21.820
51	LTS CG	-0.046	44.875	-22.490	27	LTS CI	-9.696	46.253	-24.264
52	LTS CE	-10.304	43.497	-23.137	28	VAL CS	-4.457	42.930	-17.897
53	VAL N	-4.811	43.442	-19.203	28	VAL C	-6.209	65.875	-16.817
54	VAL C	-4.738	43.939	-16.828	28	VAL CG1	-2.456	62.183	-16.889
55	VAL CB	-2.924	42.666	-17.032	29	SLA N	-5.434	43.527	-15.813
56	VAL CG2	-2.687	41.805	-19.173	29	SLA C	-6.730	44.810	-13.953
57	SLA CA	-5.747	44.330	-14.831	29	SLA CB	-7.172	44.187	-14.101
58	SLA C	-6.866	42.845	-13.104	29	VAL CB	-3.166	44.982	-11.910
59	VAL N	-4.857	65.833	-13.072	30	VAL CA	-6.153	66.648	-18.378
60	VAL C	-3.938	49.689	-10.681	30	VAL CG1	-0.936	65.981	-19.988
61	VAL CB	-1.886	45.810	-12.169	31	ILE N	-4.514	44.315	-9.877
62	VAL CG2	-1.833	45.234	-13.307	31	ILE C	-4.346	44.933	-7.946
63	ILE CA	-5.228	64.844	-8.674	31	ILE CP	-4.457	43.776	-8.981
64	ILE C	-3.823	43.713	-8.977	31	ILE CG2	-7.278	46.838	-7.225
65	ILE CG1	-7.293	43.707	-9.799	32	ILE N	-6.864	46.193	-7.127
66	ILE CD1	-8.617	42.854	-9.717	32	ILE C	-3.971	47.889	-8.793
67	ASP CA	-3.946	48.467	-6.333	32	ASP C	-1.695	46.129	-7.892
68	ASP D	-6.197	48.418	-5.182	32	ASP CB	-0.934	44.992	-6.376
69	ASP E	-8.483	45.782	-6.273	32	ASP DD1	-1.931	45.912	-8.394
70	ASP DD1	-8.982	46.428	-5.330	33	SER N	-3.952	50.976	-8.808
71	SER CA	-1.893	49.337	-6.801	33	SER C	-3.952	49.923	-8.939
72	SER D	-1.706	52.136	-5.363	33	SER CS	-0.611	49.740	-7.984
73	SER CG	0.513	50.925	-6.774	34	SLT N	-2.173	50.740	-9.857
74	SLT CA	-2.153	51.726	-8.165	34	SLT C	-1.035	51.648	-9.857
75	SLT D	-8.164	50.831	-8.761	35	ILE N	-0.983	52.431	-10.302
76	ILE CA	0.288	52.438	-10.973	35	ILE C	0.368	53.910	-11.363
77	ILE D	-0.327	54.638	-11.746	35	ILE CB	-0.963	51.654	-12.367
78	ILE CG1	-0.530	50.210	-12.697	35	ILE CG2	1.143	51.741	-13.382
79	ILE CD1	-0.962	49.482	-13.424	36	ASP N	1.016	54.283	-10.971
80	ASP CA	0.359	51.633	-21.232	36	ASP C	2.291	55.934	-12.792

36	ASP D	3.884	55.471	-13.579	36	ASP CB	3.712	55.728	-38.514
36	ASP CG	4.339	57.049	-10.804	36	ASP DD1	3.755	57.974	-11.429
36	ASP DD2	3.448	57.277	-10.263	37	SER W	1.304	56.822	-13.313
37	SER CA	1.183	57.221	-14.512	37	SER C	2.377	58.895	-14.949
37	SER D	2.545	58.303	-16.151	37	SER CB	-8.093	58.869	-14.788
37	SER DG	-8.930	59.133	-13.879	38	SER H	3.163	58.614	-14.881
38	SER CA	4.261	59.505	-16.487	38	SER T	3.466	58.705	-14.912
38	SER D	4.343	59.251	-25.285	38	SER CB	4.742	60.435	-13.398
38	SER DG	5.376	59.365	-12.234	39	MIS W	5.654	57.390	-14.892
39	MIS CA	6.637	56.574	-15.291	39	MIS C	6.681	56.491	-16.778
39	MIS D	5.738	55.878	-17.419	39	MIS CB	6.637	55.203	-14.515
39	MIS CG	8.016	56.609	-14.456	39	MIS WD1	8.795	54.356	-15.561
39	MIS CD2	8.769	54.345	-13.389	39	MIS CE1	9.970	53.930	-15.138
39	MIS MEZ	7.986	53.910	-13.808	40	PRO W	7.887	56.834	-17.387
40	PRO CA	7.988	56.657	-18.831	40	PRO C	8.156	55.280	-19.357
40	PRO D	8.032	55.897	-20.578	40	PRO CB	9.247	57.523	-29.161
40	PRO CG	18.053	57.485	-17.982	40	PRO CD	8.988	57.452	-16.776
41	ASP W	8.481	54.328	-18.415	41	ASP DD2	11.148	58.399	-18.668
41	ASP DD1	20.325	51.395	-20.429	41	ASP CG	18.473	51.387	-19.211
41	ASP CB	9.799	52.239	-18.224	41	ASP CA	8.645	52.959	-18.964
41	ASP C	7.311	52.163	-18.839	41	ASP D	7.396	58.947	-18.977
42	LEU W	6.185	52.803	-18.558	42	LEU CA	4.892	52.147	-18.466
42	LEU C	3.926	52.907	-19.376	42	LEU D	3.993	54.163	-19.490
42	LEU CB	4.421	52.158	-17.808	42	LEU CG	5.182	51.363	-15.946
42	LEU CD1	4.535	51.546	-14.581	42	LEU CD2	5.273	49.877	-16.356
43	LTS W	3.918	52.135	-19.966	43	LTS CA	1.893	52.615	-28.721
43	LTS C	0.637	52.156	-20.018	43	LTS D	0.584	58.928	-19.820
43	LTS CG	2.821	52.389	-22.169	43	LTS CE	0.685	52.436	-22.910
43	LTS CO	8.998	52.862	-24.339	43	LTS CE	-9.180	52.584	-25.260
43	LTS H2	8.337	51.757	-26.418	44	VAL W	-8.191	53.935	-19.490
44	VAL CA	-1.487	52.639	-18.765	44	VAL C	-2.571	52.887	-19.731
44	VAL D	-2.623	53.586	-28.434	44	VAL CB	-1.480	53.351	-17.383
44	VAL CG1	-2.724	52.941	-16.582	44	VAL CG2	-8.197	53.194	-16.553
45	ALA W	-3.494	51.951	-19.871	45	ALA CA	-4.619	51.977	-20.810
45	ALA C	-5.841	52.507	-20.053	45	ALA D	-6.783	53.885	-20.793
45	ALA CB	-4.831	58.580	-21.389	46	GLY W	-5.918	52.356	-18.768
46	GLT CA	-7.882	52.837	-18.881	46	GLT C	-6.987	52.463	-16.538
46	GLT D	-5.938	52.806	-16.035	47	GLY H	-8.992	52.658	-15.793
47	GLT CA	-8.014	52.246	-24.388	47	GLY C	-9.179	52.757	-13.572
47	GLT D	-9.988	53.481	-16.185	48	ALA W	-9.221	52.446	-32.330
48	ALA CA	-10.255	52.970	-11.182	48	ALA C	-9.798	52.675	-9.968
48	ALA D	-9.866	51.726	-9.725	48	ALA CB	-31.558	52.180	-11.617
49	SER W	-19.149	53.567	-9.837	49	SER CA	-9.752	53.355	-7.652
49	SER C	-10.947	52.986	-6.783	49	SER D	-31.972	53.677	-6.908
49	SER CG	-9.992	54.388	-7.029	49	SER DG	-8.879	54.255	-3.650
50	RET W	-10.835	52.887	-5.932	50	RET CA	-11.852	51.549	-4.974
50	RET C	-11.463	51.962	-3.561	50	RET D	-31.997	53.398	-2.575
50	RET CG	-12.812	50.818	-4.996	50	RET CG	-11.912	49.463	-6.389
50	RET SD	-13.468	49.889	-7.256	50	RET CE	-32.888	58.111	-8.973
51	VAL W	-10.477	52.768	-3.622	51	VAL CA	-9.768	53.170	-2.867
51	VAL C	-10.630	54.562	-1.987	51	VAL D	-10.237	55.437	-2.682
51	VAL CG	-8.643	53.155	-2.888	51	VAL CG1	-7.892	53.579	-8.633
51	VAL CG2	-7.764	51.815	-2.302	52	PRO W	-21.621	54.693	-1.856
52	PRO CA	-12.372	55.933	-8.821	52	PRO C	-31.490	57.123	-8.448
52	PRO D	-11.771	58.220	-8.925	52	PRO CB	-33.488	55.994	-8.246
52	PRO CG	-13.583	54.183	-8.085	52	PRO CD	-32.364	53.620	-8.175
53	SER W	-10.442	56.986	-8.299	53	SER CA	-9.538	57.982	-8.682
53	SER C	-8.429	58.245	-8.326	53	SER S	-7.679	59.224	-8.038
53	SER CG	-9.804	57.787	-2.869	53	SER DG	-8.756	58.521	-2.127
54	GLU W	-8.234	57.523	-1.393	54	GLU CA	-7.284	57.648	-2.421
54	GLU C	-7.767	57.303	-3.785	54	GLU D	-7.933	56.263	-4.379
54	GLU CG	-6.134	56.593	-2.354	54	GLU CG	-5.289	56.959	-8.927
54	GLU PR	-6.044 ..	54.849	-8.678	54	GLU PR	-3.943	55.494	-1.962

54	ELN DEZ	-3.908	55.777	0.271	53	THR M	-0.571	58.251	-4.249
55	THR CA	-9.433	58.221	-5.441	55	THR C	-0.764	58.139	-6.779
55	THR D	-9.433	57.919	-7.810	55	THR CB	-10.506	59.200	-5.303
55	THR DC1	-9.433	58.510	-5.418	55	THR CG2	-11.432	59.143	-6.817
56	ASH M	-7.682	58.403	-6.877	56	ASH BD1	-4.930	61.179	-9.881
56	ASH CB	-5.875	58.947	-10.337	56	ASH CG	-5.273	59.925	-9.555
56	ASH CD	-5.875	59.694	-8.208	56	ASH CA	-6.762	58.423	-8.280
56	ASH C	-6.812	57.994	-8.305	56	ASH O	-5.104	54.846	-7.670
57	PRO M	-8.342	56.261	-9.258	57	PRO CG	-7.123	55.297	-11.177
57	PRO CD	-7.384	56.433	-10.272	57	PRO CB	-6.644	54.178	-10.235
57	PRO CA	-5.679	54.961	-9.332	57	PRO C	-4.381	55.082	-9.966
57	PRO D	-3.509	54.128	-8.945	58	PHE M	-3.998	58.262	-10.491
58	PHE CA	-2.747	56.577	-11.222	58	PHE C	-1.712	57.129	-10.253
58	PHE O	-8.635	57.497	-10.680	58	PHE C9	-2.943	57.582	-12.423
58	PHE CG	-3.983	56.968	-13.357	58	PHE CD1	-3.756	55.708	-14.059
58	PHE CD2	-5.211	57.630	-13.459	58	PHE CE1	-6.722	55.255	-14.928
58	PHE CE2	-6.194	57.995	-14.276	58	PHE CZ	-5.949	55.939	-15.051
59	GLN M	-2.844	57.119	-8.990	59	GLN CA	-1.172	57.583	-7.934
59	GLN C	-8.807	56.403	-7.800	59	GLN O	-1.639	54.813	-6.115
59	GLN CB	-1.862	58.668	-7.889	59	GLN CG	-6.942	59.261	-6.834
59	GLN CD	-1.780	60.157	-5.150	59	GLN DE1	-1.484	61.782	-6.836
59	GLN NE2	-2.959	59.685	-4.742	60	ASP M	0.410	55.895	-7.211
60	ASP CA	0.851	54.792	-6.304	60	ASP C	1.631	55.267	-5.096
60	ASP O	2.827	55.550	-5.231	60	ASP CB	1.396	53.744	-7.188
60	ASP CG	2.077	52.538	-6.380	60	ASP DD1	1.746	52.337	-5.190
60	ASP DD2	2.915	51.841	-7.030	61	ASH M	0.959	55.245	-3.950
61	ASH BD2	-1.364	57.747	-2.347	61	ASH DD1	0.666	58.566	-2.875
61	ASH CG	-8.048	57.670	-2.399	61	ASH CB	0.531	56.491	-1.784
61	ASH CA	1.557	55.734	-2.700	61	ASH C	2.291	54.632	-1.960
61	ASH D	2.933	54.862	-8.902	62	ASH M	2.210	53.434	-2.468
62	ASH CA	2.877	52.348	-1.709	62	ASH C	4.124	51.893	-2.479
62	ASH D	4.951	51.313	-1.770	62	ASH CB	1.783	51.319	-1.421
62	ASH CG	2.371	50.103	-8.597	62	ASH DD1	2.633	49.877	-1.343
62	ASH BD2	2.622	50.208	0.601	63	SER M	4.152	52.184	-3.761
63	SER CA	5.189	51.694	-4.709	63	SER C	2.871	50.254	-5.209
63	SER D	5.533	49.790	-6.269	63	SER CB	6.523	51.958	-6.812
63	SER CG	6.871	50.698	-3.418	64	HIS M	4.202	49.475	-6.639
64	HIS CA	3.994	48.859	-6.935	64	HIS C	3.366	47.759	-6.261
64	HIS O	3.861	46.974	-7.108	64	HIS CB	3.184	47.501	-3.747
64	HIS CG	3.144	46.821	-3.726	64	HIS HD1	2.107	45.247	-4.241
64	HIS CD2	4.054	45.194	-3.135	64	HIS CE1	2.416	43.966	-4.054
64	HIS NE2	3.556	43.920	-3.368	65	GLY M	2.287	48.428	-6.587
65	GLY CA	1.552	48.264	-7.830	65	GLY C	2.392	48.636	-9.837
65	GLY O	2.238	48.078	-10.134	66	THR M	3.233	45.659	-8.832
66	THR CA	4.064	50.117	-9.954	66	THR C	5.889	49.009	-10.291
66	THR D	5.333	48.789	-11.461	66	THR CS	4.764	51.511	-9.667
66	THR DC1	3.637	52.425	-9.406	66	THR CG2	5.536	52.878	-10.849
67	HIS M	5.685	48.463	-9.274	67	HIS CB	6.703	47.361	-9.458
67	HIS C	6.091	46.162	-10.143	67	HIS O	6.649	45.638	-11.150
67	HIS CB	7.306	47.871	-8.064	67	HIS CG	8.595	46.275	-8.165
67	HIS BD1	8.590	46.907	-8.276	67	HIS CD2	9.904	46.478	-8.976
67	HIS CE1	9.857	46.491	-8.299	67	HIS MZ	10.678	45.314	-8.196
68	VAL M	4.892	45.749	-9.731	68	VAL CA	4.142	46.897	-10.264
68	VAL C	3.856	46.860	-11.740	68	VAL D	4.114	43.942	-12.535
68	VAL CB	2.939	44.252	-9.386	68	VAL CG1	1.980	43.260	-10.820
68	VAL CG2	3.319	43.705	-8.800	69	ALA M	3.373	46.847	-12.113
69	ALA CA	3.937	46.468	-13.429	69	ALA C	4.393	46.390	-14.411
69	ALA O	4.828	45.913	-13.565	69	ALA CG	2.332	47.851	-13.386
70	GLY M	5.348	46.782	-13.914	70	GLY CA	6.595	46.805	-14.670
70	GLY C	7.046	45.370	-15.821	70	GLY O	7.604	43.194	-10.319
71	THR M	6.820	46.431	-14.138	71	THR CA	7.177	43.019	-14.466
71	THR C	6.224	42.506	-13.543	71	THR D	6.682	41.828	-16.495
71	THR CB	7.119	42.870	-13.191	71	THR DC1	8.191	42.592	-12.390

72	THR CG2	7.274	48.583	-13.396	72	VAL N	6.930	62.887	-15.427
72	VAL CA	3.976	42.491	-14.484	72	VAL C	6.312	63.884	-17.831
72	VAL D	4.341	42.380	-18.868	72	VAL CB	2.926	62.867	-14.885
72	VAL CG1	1.512	42.459	-17.178	72	VAL CG2	2.342	62.327	-14.723
73	ALA N	4.534	44.417	-17.988	73	ALA CA	4.387	63.931	-12.167
73	ALA C	5.433	46.333	-19.355	73	ALA D	5.062	67.188	-20.216
73	ALA CB	3.387	43.643	-19.433	74	ALA N	6.344	68.429	-18.635
74	ALA CA	7.478	47.591	-18.859	74	ALA C	7.740	67.648	-20.342
74	ALA D	7.957	46.640	-21.054	74	ALA CB	8.653	67.446	-17.925
75	LEU N	7.658	48.784	-21.039	75	LEU CA	7.822	68.968	-22.456
75	LEU C	9.192	48.568	-22.966	75	LEU D	10.162	68.758	-22.253
75	LEU CB	7.548	50.471	-22.809	75	LEU CG	6.123	59.913	-22.379
75	LEU CD1	6.079	52.436	-22.380	75	LEU CG2	5.096	50.462	-23.405
76	ASN N	9.147	48.103	-24.169	76	ASN ND2	12.385	66.432	-26.304
76	ASN DD1	10.950	45.840	-27.528	76	ASN CG	11.195	66.274	-26.862
76	ASN CB	10.010	46.651	-25.988	76	ASN CA	10.359	67.738	-24.938
76	ASN C	10.783	49.948	-25.643	76	ASN D	10.157	69.479	-26.819
77	ASN N	11.804	49.664	-25.071	77	ASN CA	12.220	50.957	-25.681
77	ASN C	13.707	51.029	-25.348	77	ASN D	14.364	69.979	-25.313
77	ASN ES	11.335	52.076	-25.117	77	ASN CG	11.250	52.927	-23.616
77	ASN OD1	12.032	51.346	-22.917	77	ASN ND2	10.294	52.741	-23.025
78	SER N	14.125	52.267	-25.164	78	SER CA	15.513	52.614	-24.906
78	SER C	15.810	52.742	-23.436	78	SER D	16.982	53.871	-23.164
78	SER CB	15.905	53.941	-25.587	78	SER CG	15.726	53.370	-26.994
79	ILE N	14.858	52.565	-22.529	79	ILE CA	15.155	52.784	-21.120
79	ILE C	14.617	51.683	-20.230	79	ILE D	13.843	50.841	-28.679
79	ILE CB	14.471	56.274	-28.697	79	ILE CG1	12.943	54.832	-28.814
79	ILE CG2	14.997	55.320	-21.612	79	ILE CG2	12.135	55.176	-28.155
80	GLY N	14.995	51.768	-18.981	80	GLY CA	14.476	56.949	-17.913
80	GLY C	14.612	49.648	-18.219	80	GLY D	15.719	61.994	-18.544
81	VAL N	13.513	48.766	-17.980	81	VAL CA	13.411	67.284	-28.061
81	VAL C	12.511	46.919	-19.217	81	VAL D	12.260	67.739	-20.117
81	VAL CB	13.001	46.755	-14.677	81	VAL CG1	14.030	67.984	-15.573
81	VAL CG2	11.638	47.261	-16.231	82	LEU N	12.126	45.645	-19.216
82	LEU CA	11.312	45.020	-20.256	82	LEU C	10.390	44.028	-19.510
82	LEU D	10.858	43.356	-18.600	82	LEU CB	12.206	44.219	-21.229
82	LEU CG	11.430	43.568	-22.366	82	LEU CD1	10.796	44.657	-23.223
82	LEU CD2	12.359	42.675	-23.192	83	GLY M	9.131	44.180	-19.816
83	GLY CA	8.133	43.321	-19.114	83	GLY C	8.827	42.811	-19.925
83	GLY D	8.546	41.822	-21.026	84	VAL N	7.272	41.112	-19.283
84	VAL CA	6.973	39.807	-19.888	84	VAL C	6.164	48.838	-21.140
84	VAL D	6.424	39.472	-22.194	84	VAL CB	6.256	38.920	-18.861
84	VAL CG1	5.680	37.677	-19.557	84	VAL CG2	7.190	38.507	-17.705
85	ALA N	5.156	40.924	-21.024	85	ALA CA	4.217	41.194	-22.158
85	ALA C	4.213	42.683	-22.394	85	ALA D	3.260	43.401	-22.938
85	ALA CB	2.846	40.643	-21.768	86	PRO N	5.240	43.184	-23.059
86	PRO CA	5.413	44.635	-23.285	86	PRO C	4.321	63.371	-23.947
86	PRO O	4.291	46.805	-23.849	86	PRO CB	6.322	46.784	-23.813
86	PRO CG	7.630	43.466	-24.546	86	PRO CD	6.377	62.440	-23.636
87	SER N	3.548	46.876	-24.769	87	SER CA	2.489	43.324	-25.529
87	SER C	1.103	45.132	-24.897	87	SER D	3.162	43.913	-29.619
87	SER CB	2.401	44.777	-26.927	87	SER CG	3.591	43.143	-27.583
88	ALA N	1.017	44.564	-23.742	88	ALA CB	-0.163	43.510	-21.828
88	ALA CA	-0.273	44.353	-23.084	88	ALA C	-0.898	43.717	-22.670
88	ALA D	-0.174	46.717	-22.435	89	SER N	-2.219	43.691	-22.678
89	SER CG	-4.146	47.102	-24.280	89	SER C	-6.343	46.983	-22.898
89	SER CA	-3.801	46.867	-22.227	89	SER D	-3.136	46.780	-28.727
89	SER O	-3.793	45.864	-20.209	90	LEU N	-2.446	47.656	-20.837
90	LEU CA	-2.378	47.667	-18.593	90	LEU C	-3.483	43.438	-17.864
90	LEU D	-3.582	49.604	-18.215	90	LEU CB	-0.931	48.273	-18.426
90	LEU CG	-8.233	47.851	-17.174	90	LEU CD1	-0.828	46.361	-17.219
91	LEU CD2	1.160	42.526	-17.047	91	TYR N	-6.264	47.964	-16.938
91	TYR CA	-5.258	48.678	-26.137	91	TYR C	-6.873	48.750	-16.685

-35-

91	TYR D	-4.496	47.249	-14.823	91	TYR CG	-6.686	48.993	-16.514
91	TYR CG	-7.994	48.237	-17.761	91	TYR CD1	-6.595	47.415	-18.755
91	TYR CD2	-7.971	49.175	-18.149	91	TYR CE1	-6.985	47.972	-20.698
91	TYR CE2	-8.315	49.421	-19.692	92	ALA N	-6.895	49.958	-14.104
91	TYR DH	-8.182	48.752	-21.764	92	ALA C	-5.823	50.933	-11.903
92	ALA CA	-4.549	50.199	-12.787	92	ALA CS	-3.997	51.621	-12.488
92	ALA D	-6.723	50.898	-12.050	93	VAL CA	-7.183	48.854	-10.325
93	VAL H	-5.959	48.993	-11.329	93	VAL D	-6.181	47.993	-8.372
93	VAL C	-6.708	49.814	-8.899	93	VAL CG1	-9.213	47.488	-9.725
93	VAL CB	-7.957	47.553	-10.631	94	LYS N	-6.987	50.217	-8.327
93	VAL CG2	-8.195	47.378	-12.872	94	LYS C	-7.331	49.985	-5.894
94	LYS CA	-6.378	50.464	-6.999	94	LYS CB	-6.851	51.976	-6.818
94	LTS D	-8.458	50.480	-5.783	94	LTS CD	-4.868	53.785	-5.582
94	LTS CG	-5.394	52.320	-5.467	94	LTS H2	-3.735	55.344	-6.387
94	LTS CE	-4.399	54.208	-4.199	95	VAL CA	-7.646	48.457	-3.920
95	VAL N	-6.909	49.071	-5.024	95	VAL D	-7.425	48.156	-1.501
95	VAL C	-6.919	48.499	-2.568	95	VAL CG1	-8.868	46.852	-5.619
95	VAL CB	-8.104	47.838	-6.319	96	LEU H	-5.676	48.974	-2.664
95	VAL CG2	-6.900	46.100	-4.332	96	LEU C	-6.331	50.559	-1.321
96	LEU CA	-4.782	49.193	-1.486	96	LEU CE	-3.589	48.241	-1.573
96	LEU D	-3.962	51.121	-2.336	96	LEU CD1	-2.287	46.184	-2.163
96	LEU CG	-3.593	46.799	-2.072	97	GLY H	-6.326	50.975	-9.086
96	LEU CO2	-4.459	46.082	-1.845	97	GLY C	-2.363	52.437	0.385
97	GLY CA	-3.890	52.307	0.287	98	ALA H	-1.954	53.648	0.758
97	GLY D	-1.619	51.463	0.165	98	ALA CA	-8.563	54.868	0.945
98	ALA CB	-0.428	55.678	1.510	98	ALA D	1.393	52.921	1.663
98	ALA C	0.188	53.118	1.917	99	ASP DD2	-2.631	51.042	6.151
99	ASP N	-8.504	52.573	2.912	99	ASP CG	-2.883	51.131	5.640
99	ASP BD1	-2.730	58.902	4.093	99	ASP CA	0.181	51.610	3.855
99	ASP CB	-8.648	51.603	5.175	99	ASP D	0.735	49.313	4.829
99	ASP C	0.146	50.165	3.320	100	GLY CA	-8.343	48.521	1.615
100	GLY H	-9.424	49.883	2.168	100	GLY D	-1.649	46.512	1.479
100	GLY C	-1.520	47.651	2.882	101	SER CA	-3.542	47.388	3.315
101	SER H	-2.342	48.128	2.908	101	SER D	-6.758	48.972	1.907
101	SER C	-4.750	47.894	2.532	101	SER OG	-4.411	48.634	5.209
101	SER CB	-3.716	47.447	4.817	102	GLY CA	-7.877	47.422	1.896
102	GLY N	-5.821	47.892	2.577	102	GLY D	-7.888	45.431	3.830
102	GLY C	-8.166	46.536	2.528	103	GLN CA	-10.535	46.297	3.620
103	GLN H	-9.377	47.958	2.698	103	GLN C	-10.779	45.482	0.817
103	GLN C	-10.963	45.232	2.022	103	GLN CG	-11.348	48.005	4.586
103	GLN CB	-11.671	47.307	3.274	103	GLN DE1	-12.159	49.816	5.902
103	GLN CD	-12.360	49.104	4.915	104	TYP H	-11.611	44.141	2.451
103	GLN HE2	-13.419	49.197	4.112	104	TYP C	-13.031	43.690	0.473
104	TTR CA	-12.868	63.126	1.588	104	TTR CB	-12.697	41.966	2.143
104	TTR D	-12.939	63.276	-0.687	104	TTR CD1	-11.819	39.789	3.377
104	TTR CG	-13.629	60.829	2.472	104	TTR CE1	-10.809	38.885	3.707
104	TTR CD2	-10.379	48.959	1.080	104	TTR C2	-9.564	39.822	3.081
104	TTR CE2	-9.352	68.057	2.171	105	SER H	-13.009	44.572	8.903
104	TTR GH	-8.481	38.191	3.324	105	SER C	-14.172	65.920	-1.159
105	SER CA	-14.877	45.166	-0.034	105	SER CB	-15.820	46.121	0.601
105	SER D	-14.759	65.935	-2.258	105	TRP H	-13.877	66.625	-8.334
105	SER DG	-15.209	47.839	1.450	106	TRP C	-13.895	66.438	-3.012
106	TRP CA	-32.421	47.391	-1.748	106	TRP CB	-11.321	48.254	-1.355
106	TRP G	-12.821	46.648	-4.245	106	TRP CD1	-12.862	49.924	0.264
106	TRP CG	-11.845	49.111	-8.206	106	TRP HE1	-12.691	50.358	1.360
106	TRP CB2	-10.658	49.612	0.581	106	TRP CE3	-9.275	49.852	0.576
106	TRP CE2	-11.359	50.573	1.561	106	TRP C23	-8.580	50.563	1.523
106	TRP C22	-10.671	51.318	2.500	107	ILE H	-11.339	45.338	-2.461
106	TRP CM2	-9.293	51.291	2.455	107	ILE C	-11.755	43.594	-4.190
107	ILE CA	-10.765	44.250	-3.325	107	ILE C5	-9.944	43.163	-2.923
107	ILE D	-11.695	43.476	-5.398	107	ILE CG2	-9.632	41.930	-3.381
107	ILE CG1	-8.636	43.784	-1.936	107	ILE C9	-12.994	43.292	-3.977
107	ILE CD1	-8.243	42.998	-8.627	108				

108	ILE CA	-34.314	62.722	-4.321	308	ILE C	-34.439	43.894	-5.386
109	ILE D	-34.894	43.329	-6.552	309	ILE CG	-35.246	42.265	-3.328
109	ILE CG1	-34.726	61.877	-2.482	309	ILE CG2	-36.368	42.824	-4.895
109	ILE CD1	-35.452	48.845	-1.131	309	ASH B	-14.751	44.958	-4.981
109	ASH C	-15.204	46.918	-5.916	309	ASH C	-14.232	46.867	-7.684
109	ASH D	-14.860	46.272	-9.235	309	ASH CB	-15.280	47.359	-5.287
109	ASH CG	-16.528	47.600	-4.353	309	ASH CD1	-17.455	46.695	-6.646
109	ASH ND2	-16.633	48.447	-3.642	310	GLY N	-12.951	43.988	-6.774
310	GLY CA	-21.952	45.917	-7.865	310	GLY C	-12.108	44.712	-8.812
310	GLY D	-13.929	44.929	-10.034	311	ILE H	-12.379	43.539	-8.246
311	ILE CA	-12.603	42.334	-9.999	311	ILE C	-13.859	42.560	-9.942
311	ILE D	-13.921	42.384	-11.148	311	ILE CB	-12.734	40.948	-8.364
311	ILE CG1	-13.421	40.581	-7.655	311	ILE CG2	-13.322	39.791	-9.347
312	GLU CA	-16.118	43.376	-6.336	312	GLU N	-14.893	43.875	-9.280
312	GLU D	-16.467	44.130	-12.246	312	GLU C	-15.872	44.347	-11.171
312	GLU CG	-17.847	42.917	-8.135	312	GLU CS	-17.229	43.899	-9.141
312	GLU DE1	-19.041	40.866	-8.816	312	GLU CD	-18.724	41.824	-8.685
313	TRP N	-15.094	45.403	-18.971	312	GLU CE2	-19.123	41.928	-9.866
313	TRP C	-14.076	45.663	-13.140	313	TRP CA	-16.754	46.400	-12.008
313	TRP CB	-13.882	47.553	-11.434	313	TRP D	-14.319	45.932	-14.332
313	TRP CD1	-14.148	49.736	-12.681	313	TRP CG	-13.486	48.356	-12.481
313	TRP NE1	-13.597	58.443	-13.723	313	TRP CD2	-12.441	49.952	-13.463
313	TRP CE3	-11.451	47.645	-13.809	313	TRP CE2	-12.545	49.761	-14.215
313	TRP CZ3	-20.610	47.899	-14.279	313	TRP C22	-11.694	50.045	-15.274
314	ALA M	-13.089	44.801	-12.132	313	TRP CH2	-10.752	49.074	-15.603
314	ALA C	-13.199	43.179	-14.752	314	ALA CA	-12.333	44.065	-13.874
314	ALA CB	-11.299	43.182	-13.140	314	ALA D	-12.983	43.974	-15.978
315	ILE CA	-25.870	41.648	-14.897	315	ILE N	-14.174	42.540	-14.119
315	ILE D	-16.077	42.225	-17.870	315	ILE C	-15.928	42.485	-15.856
315	ILE CG1	-15.210	39.836	-13.043	315	ILE CB	-16.980	40.840	-13.922
315	ILE CD1	-16.004	39.411	-11.143	315	ILE CG2	-17.151	40.168	-14.755
316	ALA CA	-17.390	46.648	-16.850	316	ALA N	-16.534	43.527	-15.247
316	ALA C	-17.323	45.255	-18.343	316	ALA CB	-16.786	45.669	-17.278
317	ASN M	-15.423	45.390	-17.122	317	ASN CA	-16.911	45.510	-15.151
317	ASN C	-13.827	44.974	-19.834	317	ASN D	-12.997	45.436	-18.139
317	ASN CB	-13.615	46.258	-17.426	317	ASN CG	-14.600	48.177	-16.939
317	ASN DD1	-14.565	49.882	-17.773	317	ASN ND2	-16.931	48.249	-15.736
318	ASN N	-14.223	43.725	-18.967	318	ASN CA	-13.760	42.642	-19.832
318	ASN C	-12.248	42.644	-19.843	318	ASN D	-11.617	42.309	-20.932
318	ASN CB	-14.247	42.863	-21.279	318	ASN CG	-15.737	43.060	-21.395
318	ASN CD1	-14.510	42.321	-20.759	318	ASN ND2	-16.136	44.096	-22.133
319	MET N	-11.686	42.500	-18.675	319	MET CA	-10.232	42.222	-18.478
319	MET C	-10.025	40.734	-18.928	319	MET D	-10.888	39.838	-18.759
319	MET CB	-9.818	42.461	-17.055	319	MET CG	-9.880	43.883	-16.582
320	ASP M	-8.788	44.943	-17.526	319	MET CE	-9.982	46.061	-18.263
320	ASP C	-8.904	48.437	-19.584	320	ASP CA	-8.488	39.110	-20.030
320	ASP CB	-7.822	38.390	-18.856	320	ASP O	-8.938	37.189	-18.490
320	ASP CG	-7.555	39.156	-21.236	320	ASP CG	-8.237	39.730	-22.454
320	ASP CD1	-7.881	40.706	-23.084	320	ASP DD2	-9.327	39.135	-22.739
321	VAL N	-7.021	39.117	-18.115	321	VAL CA	-6.226	38.681	-16.974
321	VAL C	-6.296	39.534	-15.786	321	VAL D	-6.284	40.788	-15.909
321	VAL CB	-6.755	38.587	-17.496	321	VAL CG1	-3.758	38.176	-16.427
321	VAL CG2	-6.787	37.916	-18.846	322	ILE N	-6.318	38.978	-14.990
322	ILE CA	-6.248	39.792	-13.397	322	ILE C	-5.826	39.262	-12.627
322	ILE D	-4.829	38.012	-12.469	322	ILE CB	-7.476	39.604	-12.486
322	ILE CG1	-8.696	40.392	-13.963	322	ILE CG2	-7.221	39.883	-10.954
322	ILE CD1	-9.976	39.782	-12.353	323	ASH N	-6.263	40.222	-12.110
323	ASN CA	-3.145	39.854	-21.232	323	ASH C	-3.302	40.406	-9.881
323	ASN D	-3.708	61.631	-9.833	323	ASH CB	-1.828	40.478	-11.497
323	ASN CG	-8.692	40.843	-10.777	323	ASH DD1	-8.063	38.990	-11.018
323	ASN ND2	-8.366	40.747	-9.728	324	MET N	-3.458	39.604	-8.832
324	MET CA	-3.630	39.973	-7.638	324	MET C	-2.623	39.603	-8.814

124	NET D	-2.306	38.908	-6.010	124	NET C8	-6.943	34.387	-6.895
124	NET CG	-6.198	40.082	-7.673	124	NET C9	-7.395	39.472	-8.450
124	NET CD	-7.940	39.095	-7.541	125	LEU N	-1.474	61.696	-4.302
125	SER CA	-8.193	68.287	-8.769	125	SER C8	-8.422	68.712	-4.321
125	SER D	8.139	61.617	-3.605	126	LEU N	-1.433	61.827	-4.321
125	SER DG	1.446	60.496	-7.875	126	LEU C	-2.433	61.873	-4.375
126	LEU CA	-1.842	60.347	-2.386	126	LEU C8	-2.791	61.968	-2.610
126	LEU D	-7.844	38.136	-2.329	126	LEU CD1	-1.278	61.131	-2.375
126	LEU CG	-8.983	61.447	-3.333	127	GLT N	-2.922	39.882	-8.481
126	LEU CD2	-6.179	62.760	-6.273	127	GLT C	-3.176	38.180	1.682
127	GLT CA	-3.835	37.871	8.191	127	GLT C8	-4.121	37.443	2.222
127	GLT D	-2.646	39.030	2.720	128	GLT N	-6.644	36.918	4.104
128	GLT CA	-4.675	37.495	2.662	128	GLT C	-6.919	37.837	8.492
128	GLT D	-6.983	38.198	3.276	129	PRO N	-6.118	36.884	6.982
129	PRO CA	-6.871	36.523	3.998	129	PRO C	-4.260	34.684	7.334
129	PRO D	-6.338	32.897	6.303	129	PRO C8	-6.239	34.870	6.418
129	PRO CG	-6.419	36.116	7.727	130	SER C8	-8.449	35.881	6.023
130	SER N	-7.051	35.015	8.912	130	SER D	-8.723	36.626	8.403
130	SER C	-9.218	36.984	4.726	130	SER DG	-10.524	36.329	3.874
130	SER CG	-9.069	35.353	7.216	131	GLT C	-12.493	34.722	4.751
131	GLT N	-10.883	33.947	6.349	131	GLT D	-14.407	33.433	3.911
131	GLT C	-12.203	34.713	3.862	132	SER CA	-14.791	34.386	8.824
132	SER K	-13.940	33.031	2.594	132	SER D	-14.693	37.539	1.875
132	SER C	-15.261	34.803	3.936	132	SER DG	-17.507	34.857	1.324
132	SER CB	-14.590	36.927	3.145	133	ALA C	-17.743	36.437	-1.016
133	ALA N	-16.847	34.568	2.294	133	ALA C	-17.683	36.288	8.296
133	ALA C	-17.630	36.963	6.097	134	ALA N	-17.683	37.369	-1.674
133	ALA CG	-18.866	33.820	1.996	134	ALA C	-18.263	38.600	-8.187
134	ALA CA	-17.872	37.259	-0.792	134	ALA C8	-14.197	37.244	-1.804
134	ALA D	-16.781	37.385	-2.889	135	LEU C8	-19.794	36.920	-2.890
135	LEU N	-15.478	37.229	-1.046	135	LEU D	-11.893	37.130	-1.991
135	LEU C	-14.193	26.005	-2.703	135	LEU CG	-10.382	36.807	-8.319
135	LEU CG	-13.030	37.328	-0.798	135	LEU CD2	-14.863	33.997	-3.013
135	LEU CD1	-11.460	38.413	-2.232	136	LTS C8	-19.279	33.431	-8.393
136	LTS N	-14.309	34.823	-2.173	136	LTS C	-16.763	31.867	-3.843
136	LTS C	-13.344	33.729	-6.130	136	LTS CG	-19.763	21.707	-2.778
136	LTS CG	-14.903	32.341	-2.186	136	LTS CE	-19.763	34.260	-3.167
136	LTS CD	-15.913	29.112	-2.134	137	ALA N	-16.746	38.383	-6.043
136	LTS CD	-15.398	28.433	-6.160	137	ALA C	-17.238	38.383	-6.263
137	ALA CA	-17.795	34.414	-4.823	137	ALA CB	-19.894	34.941	-4.263
137	ALA O	-17.793	35.069	-7.208	137	ALA CG	-16.591	37.311	-6.685
138	ALA N	-16.821	36.301	-3.729	138	ALA C	-16.993	36.843	-8.762
138	ALA C	-16.903	34.686	-7.557	139	VAL N	-13.950	35.959	-7.827
138	ALA CG	-15.522	38.647	-3.934	139	VAL C	-13.623	34.228	-8.720
139	VAL CA	-12.946	35.281	-7.237	139	VAL C8	-11.830	34.671	-6.960
139	VAL D	-13.108	36.070	-9.877	139	VAL CG2	-11.978	35.780	-6.233
139	VAL CG1	-10.919	33.856	-7.866	140	ASP C8	-15.274	32.496	-8.929
140	ASP N	-14.583	33.936	-8.122	140	ASP C	-16.980	32.379	-11.190
140	ASP C	-16.923	33.131	-10.084	140	ASP CG	-13.380	30.440	-7.186
140	ASP CB	-16.149	31.369	-8.133	140	ASP CD2	-16.139	30.132	-6.329
140	ASP DD1	-14.178	30.403	-7.232	141	LTS C8	-17.373	35.094	-16.868
141	LTS N	-16.652	24.263	-9.820	142	LTS C	-16.790	35.344	-13.113
141	LTS C	-16.373	38.413	-13.946	142	LTS CG	-18.084	31.016	-11.306
141	LTS CG	-18.939	36.373	-30.328	143	LTS CE	-20.372	39.051	-11.250
141	LTS CD	-19.616	38.187	-10.536	142	ALA N	-19.167	35.049	-11.366
142	LTS C8	-21.131	40.037	-10.275	142	ALA C	-13.818	35.010	-13.521
142	ALA CA	-16.173	36.192	-12.614	142	ALA CB	-12.870	36.697	-11.940
142	ALA O	-13.770	35.169	-16.785	143	VAL C8	-19.169	32.788	-13.659
143	VAL N	-13.382	33.886	-12.832	143	VAL C	-14.160	31.026	-15.639
143	VAL C	-14.346	32.233	-16.476	143	VAL D	-22.100	35.370	-13.661
143	VAL CG	-12.551	31.673	-12.716	143	VAL CG1	-22.100	32.331	-13.575
143	VAL CG2	-11.383	32.195	-12.014	144	ALA N	-23.531	32.681	-13.961
144	ALA CA	-26.744	31.834	-14.861	144	ALA C	-16.928	32.681	-13.961

144	GLS C	-37.380	32.863	-16.952	144	GLA CB	-17.942	31.963	-13.760
145	SER N	-34.307	33.968	-13.761	145	SER CB	-16.682	34.917	-16.786
146	SER O	-33.693	34.773	-17.819	146	SER O	-15.910	35.321	-18.893
146	GLY N	-17.816	34.376	-16.614	146	SER OG	-15.982	36.933	-18.849
146	GLY C	-32.273	34.491	-17.385	146	GLY CA	-13.619	35.795	-18.673
147	VAL N	-12.190	34.162	-17.236	147	GLY O	-11.428	34.386	-19.266
147	VAL C	-9.880	34.836	-16.323	147	VAL CA	-10.874	35.356	-16.912
147	VAL CB	-11.192	36.977	-13.684	147	VAL CG1	-10.171	33.991	-18.486
147	VAL CG2	-12.340	37.933	-16.230	148	VAL N	-8.883	35.818	-16.683
148	VAL CA	-7.682	34.230	-14.009	148	VAL C	-7.157	34.907	-16.781
148	VAL D	-6.846	34.133	-16.750	148	VAL CS	-6.273	36.326	-16.988
148	VAL CG1	-10.079	33.483	-14.281	148	VAL CG2	-6.840	33.432	-18.262
149	VAL N	-7.298	34.383	-13.531	149	VAL CA	-6.987	34.985	-12.249
149	VAL C	-9.768	34.375	-11.613	149	VAL D	-5.624	33.175	-11.439
149	VAL CG1	-6.224	36.890	-11.315	149	VAL CG2	-7.173	35.619	-13.083
150	VAL CA	-8.456	31.386	-12.096	150	VAL N	-4.732	31.381	-11.404
150	VAL D	-3.393	34.917	-10.991	150	VAL C	-3.157	35.623	-9.387
150	VAL CG1	-3.592	36.778	-9.600	150	VAL CB	-2.174	35.308	-81.981
151	ALA N	-2.568	34.966	-8.393	150	VAL CG2	-1.678	34.943	-13.381
151	ALA C	-1.080	35.816	-6.657	151	ALA CA	-3.361	35.582	-7.287
151	ALA CB	-3.557	35.390	-6.307	151	ALA D	-6.618	33.819	-6.094
152	ALA CA	-8.716	35.438	-5.112	152	ALA N	-6.490	35.987	-9.022
152	ALA D	-8.718	34.666	-3.467	152	ALA CG	-8.384	34.320	-6.158
153	ALA N	-1.125	33.302	-3.912	152	ALA CG	-1.268	34.607	-6.294
153	ALA C	-8.931	32.723	-1.911	153	ALA CA	-9.840	32.238	-2.943
153	ALA CG	-1.750	31.038	-3.193	153	ALA D	-8.317	33.192	-8.399
154	GLY CA	-2.063	34.211	-8.123	154	GLY N	-1.327	33.692	-1.244
154	GLY D	6.189	33.267	-8.118	154	GLY C	-3.319	34.689	8.530
155	ASN CA	9.346	34.787	2.037	155	ASN C	9.758	36.782	8.568
155	ASN D	6.191	34.829	4.295	155	ASN CB	8.399	34.288	8.462
155	ASN EG	9.890	36.702	0.300	155	ASN BD1	6.898	34.198	3.904
155	ASN ND2	9.494	37.963	0.392	156	GLU N	6.711	33.160	-9.836
156	GLU CA	4.673	32.537	4.976	156	GLU C	9.322	31.322	8.675
156	GLU D	9.276	30.637	6.221	156	GLU CB	3.203	31.980	9.100
156	GLU CG	2.491	32.442	6.368	156	GLU CD	3.294	33.931	6.278
156	GLU DE1	1.764	34.322	5.312	156	GLU DE2	3.186	34.686	7.146
157	GLY N	8.289	31.057	4.227	157	GLY CA	7.306	34.917	4.387
157	GLY C	8.903	28.622	6.353	157	GLY D	9.416	38.344	4.889
158	TAR N	7.147	27.793	9.382	158	TAR CG2	8.079	25.396	3.859
158	TAR CG1	8.707	23.417	6.217	158	TAR CG	7.564	25.364	3.296
158	TAR CA	6.352	26.487	5.702	158	TAR C	6.198	26.489	7.157
159	SER CG	3.141	23.906	10.523	159	SER N	5.138	25.461	7.497
159	SER CA	6.823	25.210	8.835	159	SER CB	3.673	26.189	9.217
159	SER D	3.339	23.281	9.030	159	SER C	4.494	23.720	8.946
160	GLY CA	8.434	21.806	8.993	160	GLY C	5.974	22.667	8.823
160	GLY C	4.808	21.326	6.355	160	GLY CG	6.976	21.043	7.738
161	SER CA	2.656	29.777	7.934	161	SER N	3.925	20.310	8.116
161	SER D	9.696	20.347	9.389	161	SER C	2.477	20.788	6.756
161	SER DG	1.834	18.528	8.585	161	SER CB	2.346	20.293	7.271
162	SER CA	0.267	22.726	7.213	162	SER N	1.303	21.961	7.459
162	SER D	1.333	23.840	9.294	162	SER C	0.438	23.552	8.048
162	SER DG	0.204	23.891	9.485	162	SER CB	-0.213	23.466	3.242
163	SER CA	-0.621	24.750	10.970	163	SER N	-0.679	23.921	8.197
163	SER D	-1.978	26.346	8.306	163	SER C	-0.481	26.177	4.513
163	SER DG	-1.992	23.718	8.333	163	SER CB	-1.890	24.642	3.221
164	TAR CA	0.059	20.360	6.312	164	TAR N	0.321	20.732	3.852
164	TAR C	0.468	20.802	3.278	164	TAR C	0.188	20.286	3.194
164	TAR CG1	2.584	24.282	3.692	164	TAR CG	2.075	23.518	6.818
165	VAL N	-9.513	28.742	2.190	165	TAR CG2	2.297	27.610	6.081
165	VAL C	-2.920	20.340	2.497	165	TAL CA	-0.735	29.342	1.018
				165	TAL D	-2.920	30.122	2.280	

165	VAL C8	-1.339	21.626	-8.361	265	VAL C81	-1.047	29.357	-1.174
165	VAL C62	-2.216	27.716	-8.475	166	GLT N	-1.910	21.921	1.129
366	GLT CA	-2.945	32.778	-8.626	266	GLT C	-6.070	22.884	0.617
166	GLT D	-4.116	32.194	-8.376	267	TYR N	-1.914	23.930	0.770
367	TYR C8	-6.223	34.966	-8.113	267	TYR C	-1.993	25.309	-2.484
367	TYR D	-5.674	36.293	-8.084	267	TYR C8	-7.664	24.252	0.966
367	TYR CG	-7.793	32.916	-1.789	267	TYR CD1	-7.288	22.783	2.947
367	TYR CD2	-8.710	32.316	-1.133	267	TYR C81	-7.867	21.328	3.618
367	TYR CZ2	-9.068	30.933	-1.809	267	TYR C2	-8.496	20.672	3.044
367	TYR DX	-8.882	29.483	-3.652	168	PED N	-6.380	25.499	-1.830
368	PED CG	-6.943	36.376	-3.478	168	PED CD	-6.273	26.752	-2.614
368	PED C8	-7.364	35.366	-3.505	168	PED CA	-7.134	24.457	-2.980
368	PED C	-8.379	33.336	-3.270	168	PED D	-7.097	22.820	-3.912
369	GLT N	-5.896	33.163	-3.389	269	GLT CA	-4.646	22.977	-3.927
369	GLT C	-4.937	30.702	-3.470	269	GLT D	-6.880	29.733	-4.249
370	LTS N	-3.402	30.878	-2.288	270	LTS CA	-3.894	29.268	-1.743
370	LTS C	-7.055	28.773	-2.816	270	LTS D	-7.308	27.884	-2.824
370	LTS CB	-6.266	29.286	-8.286	270	LTS CG	-3.795	28.106	0.985
370	LTS CD	-6.250	28.289	-2.031	270	LTS C8	-3.731	27.271	3.829
370	LTS C8	-6.239	27.463	-3.215	271	TYR N	-7.838	29.616	-1.148
371	TYR CA	-9.012	29.043	-3.839	271	TYR C	-8.683	28.309	-8.113
371	TYR D	-7.760	28.714	-3.928	271	TYR C8	-7.962	28.274	-6.242
371	TYR CG	-10.497	30.984	-3.047	271	TYR CD1	-11.860	30.303	-1.982
371	TYR CD2	-10.456	32.376	-3.026	271	TYR C81	-11.920	31.983	-8.367
371	TYR CZ2	-10.561	33.088	-1.936	271	TYR C2	-11.928	32.398	-8.816
371	TYR DX	-12.806	33.119	0.170	172	PED N	-6.277	27.204	-8.376
372	PED C4	-9.693	26.417	-6.396	172	PED C	-9.233	27.196	-7.983
372	PED D	-8.925	26.784	-8.881	172	PED C8	-10.167	28.329	-6.513
372	PED CG	-10.600	26.271	-3.036	172	PED CD	-10.364	26.669	-4.916
373	SER N	-19.897	28.167	-8.019	273	SER C8	-10.720	28.818	-10.730
373	SER C	-9.025	29.773	-9.395	273	SER D	-8.946	30.233	-10.762
373	SER C8	-11.928	29.623	-9.481	273	SER CG	-11.375	30.366	-8.696
374	VAL N	-8.162	29.946	-8.616	274	VAL CA	-7.933	30.891	-8.935
374	VAL C	-5.754	29.131	-9.068	274	VAL D	-8.612	29.182	-8.364
374	VAL CG	-6.899	31.775	-7.398	274	VAL C8	-9.798	32.837	-7.617
374	VAL C62	-6.220	32.503	-7.321	275	ILE N	-6.913	30.729	-9.885
375	ILE CA	-3.569	30.186	-10.024	275	ILE C	-2.714	30.736	-8.894
375	ILE D	-2.450	31.958	-8.935	275	ILE C8	-2.953	30.924	-11.419
375	ILE C61	-3.857	29.978	-12.524	275	ILE C62	-1.491	30.819	-11.512
375	ILE C81	-3.692	30.529	-13.546	276	ILE N	-6.220	30.618	-7.929
376	SLA CA	-1.335	30.517	-8.870	276	SLA C	-8.120	28.381	-7.310
376	SLA D	0.453	29.218	-7.838	276	SLA C8	-1.639	29.838	-8.841
377	VAL N	0.864	31.410	-7.180	277	VAL C8	-2.261	31.834	-7.636
377	VAL C	3.223	31.693	-6.473	277	VAL D	-3.178	32.657	-8.721
377	VAL C8	2.431	32.607	-8.785	277	VAL C81	-3.642	32.647	-8.392
377	VAL C62	1.374	32.332	-9.043	278	GLT N	4.072	20.654	-8.398
378	GLT CA	3.168	30.703	-5.339	278	GLT C	6.446	21.233	-8.876
378	GLT D	6.493	31.633	-7.286	278	GLT N	7.912	21.467	-8.287
378	GLA CA	0.713	32.037	-5.859	279	GLA C	9.939	31.019	-8.779
379	GLA C	10.198	30.481	-4.719	279	GLA C8	9.828	33.251	-6.973
380	VAL N	10.639	31.162	-8.885	280	VAL C8	11.970	30.482	-6.981
380	VAL C	13.061	31.385	-7.171	280	VAL D	12.712	32.671	-7.617
380	VAL C8	12.573	29.314	-8.166	280	VAL C61	11.271	28.251	-7.833
380	VAL C62	11.875	30.120	-9.500	281	ASP N	14.267	31.203	-6.900
381	ASP C4	13.631	32.104	-7.037	281	ASP C	15.962	31.806	-8.462
381	ASP D	13.319	31.890	-8.292	281	ASP C8	16.466	31.821	-8.916
381	ASP CG	17.120	30.534	-5.971	281	ASP C61	27.193	29.783	-8.972
381	ASP DD2	17.680	30.216	-6.887	282	SER N	17.887	32.386	-8.847
382	SER CA	17.622	32.216	-10.191	282	SER C	20.193	26.817	-16.494
382	SER D	18.365	30.632	-13.670	282	SER C8	20.878	33.313	-16.464
382	SER DG	18.816	34.361	-18.475	283	SER N	20.298	28.042	-6.423
383	SER CA	18.716	28.665	-9.461	283	SER C	27.881	27.634	-9.847
383	SER D	17.839	26.413	-8.397	283	SER C8	29.256	28.323	-8.967

183	SER CG	26.939	26.815	-8.283	184	SER C	26.973	26.994	-8.682
184	ASP CA	25.164	27.337	-9.380	184	ASP C	26.931	26.720	-8.197
184	ASP O	24.136	23.759	-8.897	184	ASP CB	26.914	26.341	-15.722
184	ASP CG	24.930	24.998	-12.076	184	ASP CD1	26.780	25.106	-12.271
184	ASP ND2	23.352	24.210	-13.876	185	GLN N	25.842	27.247	-7.139
185	GLN CA	25.274	26.646	-9.533	185	GLN C	24.280	27.694	-9.293
185	GLN D	24.139	25.726	-9.386	185	GLN CB	26.399	26.961	-8.191
185	GLN CE	24.539	26.242	-9.514	185	GLN CD	26.811	26.162	-9.286
185	GLN OE1	24.864	25.799	-9.861	185	GLN NE2	25.244	26.386	-1.934
186	ARG N	13.278	26.950	-6.648	186	ARG CA	22.183	27.774	-2.861
186	ARG C	22.780	21.782	-2.856	186	ARG O	23.673	26.384	-1.843
186	ARG CB	23.215	22.843	-3.116	186	ARG CG	26.234	27.471	-2.181
186	ARG CD	9.467	24.337	-1.669	186	ARG NW1	9.866	26.333	-8.117
186	ARG CZ	9.461	24.879	1.839	186	ARG NW2	9.347	27.810	1.658
186	ARG NH1	10.966	26.321	1.783	187	ALP N	11.244	26.889	-2.853
187	ALA CA	12.728	21.866	-21.893	187	ALA C	22.262	26.694	-8.517
187	ALA D	21.158	20.843	-20.387	187	ALA CZ	12.144	22.492	-2.364
188	SER N	23.653	25.770	8.549	188	SER CA	22.671	26.226	1.861
188	SER C	21.336	20.847	2.612	188	SER D	26.740	26.131	3.212
188	SER CG	23.747	23.496	2.932	188	SER OG	24.137	31.826	2.941
189	PHE N	10.943	21.010	1.974	189	PHE CA	9.647	22.458	2.618
189	PHE C	8.499	22.198	1.609	189	PHE O	7.389	22.536	2.011
189	PHE CB	9.787	24.217	2.243	189	PHE CG	18.117	26.676	0.857
189	PHE CD1	9.147	24.120	-9.121	189	PHE CD2	21.415	25.216	0.517
189	PHE CE1	9.683	23.187	-1.411	189	PHE CF2	21.769	25.343	-8.781
189	PHE CI	18.786	21.186	-21.729	190	SER N	8.703	21.324	8.497
190	SER CA	7.626	21.996	-8.393	190	SER C	6.863	26.162	8.328
190	SER D	7.834	29.983	8.866	190	SER CB	8.181	26.590	-1.783
190	SER DG	7.136	26.337	-2.618	191	SER N	8.388	26.931	0.326
191	SER CA	4.341	29.876	8.987	191	SER C	4.261	26.330	0.223
191	SER D	4.343	28.268	-8.893	191	SER CB	3.015	26.411	0.911
191	SER DG	2.729	21.285	1.856	192	VAL N	3.786	27.316	8.921
192	VAL CA	2.629	25.932	8.392	192	VAL C	2.234	25.291	8.586
192	VAL D	1.594	25.692	1.598	192	VAL O	4.781	25.127	1.888
192	VAL CG1	6.144	25.727	0.722	192	VAL CG2	4.617	25.194	2.892
193	GLY N	2.936	24.172	0.847	193	GLY CA	8.629	23.364	0.410
193	GLY C	0.981	23.029	-8.901	193	GLY O	9.510	23.244	-2.815
194	PRO N	-1.823	23.285	-0.722	194	PRO CA	-1.662	21.631	-1.871
194	PRO C	-2.237	22.823	-2.914	194	PRO O	-2.463	22.244	-4.885
194	PRO CB	-2.769	20.783	-1.210	194	PRO CG	-2.311	26.623	0.213
194	PRO CO	-3.633	21.954	8.378	195	GLU N	-2.522	23.793	-2.431
195	GLU CA	-3.145	24.850	-3.212	195	GLU C	-2.993	26.631	-6.931
195	GLU D	-2.516	26.291	-6.936	195	GLU CB	-4.043	25.786	-2.470
195	GLU CG	-6.942	26.124	-1.635	195	GLU CD	-4.313	26.860	-8.190
195	GLU CD1	-3.110	24.960	8.183	195	GLU O	-3.130	24.520	8.785
196	LEU N	-0.529	25.264	-3.870	196	LEU CA	3.241	25.929	-6.866
196	LEU C	0.228	21.376	-6.059	196	LEU O	3.305	24.121	-6.153
196	LEU CS	1.340	25.733	-3.294	196	LEU CG	2.770	26.178	-6.643
196	LEU CD1	2.739	27.716	-6.639	196	LEU CD2	4.827	25.721	-3.711
197	ASP N	8.140	24.208	-7.093	197	ASP CA	8.932	25.774	-8.489
197	ASP C	1.307	25.731	-9.293	197	ASP O	1.053	24.734	-9.914
197	ASP CB	-1.067	26.392	-9.171	197	ASP CG	-2.466	26.251	-8.369
197	ASP CD1	-2.004	25.155	-8.394	197	ASP DD2	-3.835	27.327	-3.888
198	VAL N	2.813	26.389	-9.344	198	VAL CA	3.206	24.979	-10.209
198	VAL C	4.157	27.950	-9.514	198	VAL O	3.732	26.899	-8.587
198	VAL CB	2.874	27.476	-31.637	198	VAL CG1	3.730	24.716	-12.537
198	VAL CG2	2.337	28.919	-21.486	199	MET N	3.374	27.916	-15.816
199	MET CA	6.429	28.802	-8.698	199	MET C	6.165	27.810	-10.878
199	MET D	6.096	29.518	-11.793	199	MET CB	7.680	27.978	-9.877
199	MET CG	7.363	26.849	-8.139	199	MET CD	6.753	27.649	-6.361
199	MET CS	8.227	27.733	-8.587	200	ALA N	7.426	26.942	-10.103
200	ALA CA	7.971	21.929	-11.055	200	ALA C	9.858	22.666	-2.872
200	ALA D	9.127	32.824	-9.860	200	ALA CB	9.732	21.670	-11.631

201	PBC N	9.927	33.493	-18.983	201	PBC C8	11.813	34.130	-18.238
201	PBC C	10.459	35.127	-9.228	201	PBC N	9.579	35.987	-9.612
201	PBC C8	11.817	34.723	-11.469	201	PBC CG	11.392	34.948	-12.678
201	PBC CD	9.941	33.616	-13.483	202	GLY N	10.925	35.194	-8.821
202	GLY C4	10.473	36.204	-7.846	202	GLY C	11.380	36.698	-6.119
202	GLY D	11.352	37.134	-6.973	203	VAL N	12.813	36.303	-6.613
203	VAL C4	11.948	36.929	-7.714	203	VAL C	14.796	35.817	-6.469
203	VAL C	11.233	37.731	-7.593	203	VAL CG	14.814	35.681	-8.381
203	VAL CG1	14.996	36.106	-6.832	203	VAL CG2	14.879	34.741	-4.378
204	SER N	14.863	39.182	-9.839	204	SER C4	15.572	45.281	-8.487
204	SER C	15.047	46.619	-7.872	204	SER C	15.786	49.611	-8.385
204	SER CG	17.087	39.976	-8.326	204	SER D2	17.752	61.186	-6.472
205	ILE N	13.771	46.563	-8.008	205	ILE C8	13.869	61.234	-9.228
205	ILE C	13.207	42.749	-9.478	205	ILE D	13.675	63.691	-8.648
205	ILE C8	11.832	40.833	-9.164	205	ILE CG1	13.436	39.336	-8.810
205	ILE CG2	19.899	41.281	-10.467	205	ILE CD1	12.257	38.412	-9.771
206	GLN N	13.936	43.955	-10.489	206	GLN C8	14.204	64.317	-10.834
206	GLN C	13.002	46.970	-11.630	206	GLN D	12.669	64.218	-12.621
206	GLN CS	15.483	44.703	-11.740	206	GLN CG	14.884	64.103	-10.980
206	GLN CD	17.283	45.148	-10.007	206	GLN DP1	18.328	44.934	-9.353
206	GLN NE2	16.956	46.260	-9.857	207	SER N	12.359	46.364	-11.214
207	SER CA	11.217	46.571	-11.987	207	SER C	11.889	41.693	-11.749
207	SER D	11.319	48.657	-11.004	207	SER CG	9.718	48.933	-11.361
207	SER SG	8.993	46.056	-12.613	208	THR N	18.854	48.684	-12.324
208	THR CG2	9.171	50.358	-14.734	208	THR D61	7.370	47.434	-13.144
208	THR C8	8.620	50.415	-13.337	208	THR CA	9.675	39.892	-32.173
208	THR C	9.187	50.488	-10.803	209	THR D	8.423	49.807	-19.849
209	LEU N	9.656	51.613	-10.228	209	LEU C8	9.192	52.191	-8.959
209	LEU C	8.673	53.616	-9.262	209	LEU D	9.160	54.227	-19.222
209	LEU CS	10.333	52.192	-7.938	209	LEU CG	10.804	58.816	-7.416
209	LEU CD1	11.968	51.314	-6.471	209	LEU CD2	9.657	50.282	-8.649
210	PBC N	7.790	34.139	-8.444	210	PBC C8	7.273	55.917	-8.669
210	PBC C	8.383	36.573	-8.639	210	PBC D	9.491	56.445	-8.194
210	PBC C8	8.302	35.733	-7.917	210	PBC CG	8.684	54.379	-6.964
210	PBC CD	7.193	33.491	-7.271	211	GLY N	8.877	57.061	-9.335
211	GLY C4	9.669	51.745	-9.410	211	GLY C	10.794	58.434	-10.490
211	GLY D	11.176	51.058	-10.259	212	ASN N	9.891	57.770	-11.987
212	ASN C4	10.903	57.422	-12.643	212	ASN C	12.059	56.793	-12.856
212	ASN C	13.188	57.181	-12.420	212	ASN CG	11.224	58.393	-13.498
212	ASN CG	11.803	58.185	-14.814	212	ASN D91	11.853	57.034	-15.323
212	ASN ND2	12.273	59.159	-15.376	213	LYS N	11.893	55.749	-11.247
213	LYS C4	12.810	54.968	-10.337	213	LYS C	11.648	52.479	-10.886
213	LYS D	11.773	53.039	-21.613	213	LYS CB	12.769	53.241	-8.859
213	LYS CG	13.204	54.876	-8.767	213	LYS CD	13.246	57.030	-7.312
213	LYS CE	14.193	58.218	-8.570	213	LYS NZ	15.948	58.783	-7.921
214	Tyr N	13.681	52.793	-10.464	214	Tyr C4	13.862	51.246	-10.722
214	Tyr C	14.383	50.600	-9.689	214	Tyr D	15.211	51.253	-8.817
214	Tyr C8	14.641	50.981	-11.984	214	Tyr CG	14.130	51.621	-13.246
214	Tyr CD1	14.689	51.847	-13.478	214	Tyr CD2	13.129	51.083	-14.816
214	Tyr CE1	14.230	53.475	-14.814	214	Tyr CE2	12.654	51.669	-15.178
214	Tyr C2	13.204	52.893	-13.950	214	Tyr DM	12.796	53.458	-16.696
215	GLY N	14.938	49.947	-9.198	215	GLY C8	14.672	48.772	-7.903
215	GLY C	14.130	47.323	-7.749	215	GLY D	13.249	46.917	-8.121
215	GLY N	14.810	46.638	-8.831	216	ALA C8	14.454	45.203	-6.781
216	ALA C	13.682	46.922	-8.512	216	ALA D	13.948	43.527	-4.478
216	ALA C9	15.715	44.394	-8.887	217	Tyr N	12.798	43.982	-5.975
217	Tyr C4	11.964	43.498	-6.440	217	Tyr C	12.033	41.928	-4.947
217	Tyr D	12.252	43.442	-8.636	217	Tyr C7	15.473	43.862	-4.570
217	Tyr CG	10.117	43.291	-6.216	217	Tyr CD1	15.846	43.991	-3.836
217	Tyr CD2	9.016	43.933	-6.783	217	Tyr CG1	15.439	47.267	-2.790
217	Tyr CE2	8.654	47.219	-6.381	217	Tyr C2	9.231	47.332	-3.391
217	Tyr DH	8.953	43.160	-2.788	218	ASN N	11.790	41.386	-3.391
218	ASN C4	11.642	39.942	-3.227	218	ASN C	10.204	37.634	-2.769

218	ASW D	0.763	03.347	-1.917	218	ASW CB	12.953	30.340	-1.154
219	ASW CG	14.831	39.966	-2.342	219	ASW CD1	14.812	39.789	-2.422
220	ASW MD2	34.660	39.644	-1.163	219	GLT R	9.678	39.934	-2.289
221	GLT CA	8.382	38.325	-2.649	220	TNS N	6.562	36.633	-2.681
222	GLT D	7.873	31.803	-4.876	220	TNS C	6.879	37.944	-2.984
223	TNS CA	5.697	33.736	-4.179	220	TNS CB	4.825	36.819	-3.926
224	TNS C	4.417	36.742	-5.933	220	TNS CG2	5.784	33.696	-2.959
225	TNS D	6.136	31.543	-2.491	221	SER CA	3.984	39.201	-3.169
226	SER R	4.738	38.232	-4.303	221	SER D	4.217	40.208	-7.377
227	SER C	6.760	39.641	-8.381	221	SER DG	3.435	40.282	-3.149
228	SER CB	2.322	42.383	-6.346	222	MET CE	6.471	62.771	-8.173
229	MET N	6.065	37.359	-6.485	222	MET CG	6.904	41.393	-6.602
230	MET SD	7.762	41.333	-6.993	222	MET CA	6.916	39.670	-7.633
231	MET CG	8.351	40.018	-7.218	223	MET D	7.084	28.567	-8.778
232	MET C	6.877	38.435	-8.887	223	ALA CA	6.469	34.020	-8.883
233	ALA N	6.836	37.244	-8.861	223	ALA D	5.133	35.942	-10.924
234	ALA C	9.200	36.068	-9.707	224	SER N	6.076	36.360	-5.939
235	ALA CB	6.509	34.807	-7.923	224	SER C	2.661	37.161	-11.039
236	SER CA	2.753	36.688	-9.709	224	SER CB	3.091	36.795	-8.403
237	SER D	2.163	36.193	-12.057	225	PRO N	3.195	33.411	-11.159
238	SER CG	0.492	36.999	-9.137	225	PRO C	3.764	32.469	-13.674
239	PRO CA	3.095	39.130	-12.437	225	PRO CB	3.653	49.311	-12.954
240	PRO D	3.466	38.650	-14.804	225	PRO CO	3.735	39.224	-10.836
241	PRO CG	6.411	40.402	-10.764	226	MIS CA	5.466	36.879	-16.362
242	MIS N	4.781	37.626	-13.299	226	MIS C	4.425	35.809	-16.293
243	MIS C	4.418	35.947	-15.061	226	MIS CG	7.834	36.339	-13.338
244	MIS CB	6.608	36.946	-13.765	226	MIS CG2	8.813	37.118	-16.167
245	MIS ND1	8.948	37.488	-12.170	226	MIS NS2	9.773	37.066	-13.463
246	MIS CG1	9.270	38.932	-12.236	227	VAL CA	2.533	34.218	-16.727
247	VAL N	3.593	39.346	-14.193	227	VAL D	3.018	34.773	-16.470
248	VAL C	1.479	33.177	-15.421	227	VAL CG3	1.076	32.476	-14.264
249	VAL CB	2.303	33.464	-13.619	228	ALA N	1.003	36.242	-14.814
250	VAL CG2	3.206	32.615	-12.891	228	ALA C	0.943	37.928	-16.961
251	ALA CA	0.811	37.199	-13.317	228	ALA CB	-0.307	38.353	-14.863
252	ALA C	-0.233	37.633	-17.828	229	GLT CA	2.332	38.698	-18.239
253	GLT N	1.791	38.828	-16.943	229	GLT D	2.189	37.175	-20.354
254	GLT C	2.420	37.177	-17.187	230	ALA CA	2.794	34.301	-19.346
255	ALA N	1.711	35.932	-18.646	230	ALA D	1.380	34.203	-21.343
256	ALA C	1.414	34.800	-20.153	231	ALA N	0.385	34.523	-19.328
257	ALA CB	3.298	33.624	-18.709	231	ALA C	-1.256	35.423	-20.866
258	ALA CG	-1.810	34.416	-19.766	231	ALA CB	-1.932	34.566	-18.569
259	ALA D	-1.909	35.656	-21.852	232	ALA CI	-1.013	37.663	-21.792
260	ALA N	-0.778	36.457	-20.721	232	ALA D	-0.661	37.901	-24.157
261	ALA C	-0.281	37.284	-23.078	233	LEU N	0.935	36.726	-22.967
262	ALA CB	-0.742	37.121	-21.377	233	LEU C	0.821	35.169	-24.880
263	LEU CA	1.617	36.293	-24.209	233	LEU CB	2.063	35.277	-23.987
264	LEU C	0.696	31.231	-26.113	233	LEU CD1	2.237	34.362	-22.921
265	LEU CG	3.996	36.994	-23.433	234	ILE N	0.337	34.199	-24.947
266	LEU CG2	4.241	37.851	-26.880	234	ILE CG1	0.496	31.223	-23.103
267	ILE CD1	0.306	30.684	-21.657	234	ILE CG2	-1.803	36.930	-24.991
268	ILE CB	-0.911	32.014	-23.370	234	ILE C	-1.621	33.597	-25.634
269	ILE CA	-0.626	33.076	-26.666	235	ILE N	-2.370	36.463	-24.778
270	ILE D	-1.083	33.166	-26.344	235	LEU N	-3.258	35.843	-26.672
271	ILE CA	-3.594	35.028	-25.423	235	LEU C	-4.632	35.763	-24.373
272	LEU D	-4.109	35.916	-27.581	235	LEU CG	-1.652	35.693	-22.145
273	LEU CG	-5.160	36.899	-23.342	236	SER N	-2.986	36.438	-26.791
274	LEU CG2	-6.282	36.238	-24.120	236	SER C	-1.491	36.292	-29.144
275	SER CA	-1.764	37.237	-27.986	236	SER CG	-0.683	38.234	-27.733
276	SER D	-3.748	36.834	-20.290	237	LTS N	-1.664	33.667	-28.882
277	SER DG	0.599	37.371	-27.382	237	LTS C	-2.113	33.277	-30.268
278	LTS CA	-8.866	34.039	-24.952	237	LTS CB	0.272	33.112	-29.591
279	LTS D	-1.378	32.931	-31.444	237	LTS CD	2.020	31.935	-30.442
280	LTS CG	0.677	32.160	-20.716	237	LTS CD	2.020	31.935	-30.442

237	LVS	C8	-3.343	30.762	-31.729	237	LVS	R2	3.823	20.848	-31.596
238	MIS	N	-2.932	31.939	-29.337	238	MIS	C8	-6.188	32.163	-29.379
238	MIS	C	-5.136	31.939	-29.697	238	MIS	D	-5.733	32.514	-27.342
238	MIS	C8	-3.943	30.962	-28.911	238	MIS	C8	-3.884	29.921	-29.237
238	MIS	CD1	-3.797	28.679	-21.835	238	MIS	CD2	-3.137	29.251	-30.396
239	MIS	CE1	-3.836	28.631	-29.662	239	MIS	ME2	-1.948	26.698	-30.344
239	PBD	N	-3.843	31.917	-29.368	239	PBD	C4	-6.988	24.799	-28.971
239	PBD	C	-1.294	34.292	-28.937	239	PBD	D	-1.947	34.919	-21.662
239	PBD	C8	-7.618	35.977	-29.713	239	PBD	CC	-6.666	35.294	-31.827
239	PBD	CD	-3.436	34.436	-26.699	240	AS4	N	-3.398	32.469	-29.227
240	AS4	C4	-9.329	32.041	-29.216	240	AS4	C	-1.881	31.180	-27.985
240	AS4	C	-16.349	30.610	-27.976	240	AS4	C8	-1.493	31.249	-30.531
240	AS4	CG	-7.971	30.827	-29.889	240	AS4	CD1	-7.898	31.990	-31.847
240	AS4	ND2	-7.670	29.904	-28.926	241	TTP	N	-1.354	31.906	-27.196
241	TTP	CA	-8.396	30.124	-26.120	241	TTP	C	-1.106	30.638	-26.916
241	TTP	O	-9.043	31.833	-26.686	241	TTP	CS	-6.879	29.836	-25.674
241	TTP	CG	-8.094	31.903	-26.917	241	TTP	CD1	-6.338	28.433	-27.811
241	TTP	CD2	-6.839	30.874	-26.193	241	TTP	ME1	-1.362	27.547	-21.231
241	TTP	CE2	-6.434	37.476	-37.216	241	TTP	CE3	-6.097	28.496	-24.991
241	TTP	C12	-3.193	24.786	-27.176	241	TTP	C13	-2.912	27.647	-24.943
241	TTP	CR2	-2.470	26.372	-26.003	242	TMR	N	-9.727	29.761	-24.142
242	TMR	C4	-10.458	30.319	-22.913	242	TMR	C	-9.659	30.374	-21.747
242	TMR	D	-9.335	29.674	-21.937	242	TMR	C8	-11.979	29.932	-22.475
242	TMR	CG1	-18.837	27.786	-22.676	242	TMR	CG2	-12.694	28.907	-21.895
243	AS4	N	-9.966	30.659	-20.613	243	AS4	ND2	-11.787	30.686	-18.767
243	AS4	DD1	-11.455	31.818	-16.768	243	AS4	CG	-11.093	31.331	-17.985
243	AS4	CS	-9.708	31.830	-18.332	243	AS4	C4	-9.813	30.731	-19.446
243	AS4	C	-8.637	29.303	-19.010	243	AS4	D	-7.593	29.136	-18.669
244	TMR	A	-9.364	28.362	-19.282	244	TMR	C4	-9.321	28.934	-19.839
244	TMR	C	-8.133	36.393	-19.802	244	TMR	D	-7.324	28.757	-19.111
244	TMR	CS	-10.685	26.088	-19.694	244	TMR	CG1	-11.739	26.675	-18.884
244	TMR	CG2	-30.933	24.593	-19.189	245	SLN	N	-8.682	26.716	-21.673
245	GLN	CA	-8.764	26.362	-21.962	245	GLN	C	-8.667	27.620	-21.520
245	GLN	D	-4.373	26.393	-21.647	245	GLN	CS	-7.330	26.599	-23.397
245	GLN	CG	-8.265	25.521	-21.819	245	GLN	CD	-8.493	26.873	-23.428
245	GLN	CD1	-9.136	26.769	-23.727	245	GLN	ME2	-7.743	25.312	-26.370
246	VAL	N	-5.697	28.304	-21.218	246	VAL	CA	-6.477	29.646	-20.770
246	VAL	C	-3.936	26.462	-19.667	246	VAL	D	-2.709	28.227	-19.361
246	VAL	CB	-4.779	30.833	-20.621	246	VAL	CG1	-3.564	31.272	-20.977
246	VAL	CG2	-5.141	31.331	-21.939	247	ARG	N	-4.767	28.240	-18.442
247	ARG	CA	-4.382	27.714	-17.163	247	ARG	C	-3.770	26.232	-17.340
247	ARG	O	-2.703	25.935	-16.764	247	ARG	CD	-3.533	27.647	-16.149
247	ARG	CG	-4.937	27.935	-14.932	247	ARG	CD	-6.056	27.179	-13.793
247	ARG	ME	-3.640	26.737	-12.946	247	ARG	CI	-5.893	26.866	-11.313
247	ARG	ME1	-7.066	27.484	-11.210	247	ARG	ME2	-5.177	26.428	-16.270
248	SER	N	-6.480	26.803	-18.231	248	SER	C8	-6.829	24.331	-18.426
248	SER	C	-2.657	34.096	-19.879	248	SER	D	-1.648	29.233	-18.932
248	SER	CA	-3.034	23.600	-19.372	248	SER	CG	-6.146	23.896	-18.932
249	SER	M	-2.500	24.333	-20.136	249	SER	CS	-1.223	24.874	-20.031
249	SER	C	-8.071	23.302	-19.450	249	SER	D	-1.826	24.705	-20.049
249	SER	CD	-1.368	25.788	-22.018	249	SER	CG	-5.309	25.419	-22.936
250	LEU	N	-8.268	26.333	-19.260	250	LEU	CD1	1.224	25.814	-18.222
250	LEU	CD1	-9.373	32.653	-17.260	250	LEU	CG	0.352	29.433	-16.151
250	LEU	CG	0.178	26.653	-17.903	250	LEU	C8	0.718	26.837	-18.216
250	LEU	C	1.092	25.694	-17.263	250	LEU	C	2.203	23.421	-17.032
251	GLN	N	0.968	25.827	-16.714	251	GLN	ME2	-2.790	25.332	-12.237
251	GLN	CF1	-2.819	23.424	-12.931	251	GLN	CD	-3.343	24.850	-13.834
251	GLN	CG	-1.218	24.816	-13.994	251	GLN	C8	-6.857	23.821	-16.877
251	GLN	CA	0.381	23.941	-13.743	251	GLN	C	6.979	22.664	-16.361
251	GLN	O	1.743	22.034	-13.616	252	AS4	N	0.873	22.394	-17.390
252	AS4	CA	1.882	21.296	-18.282	252	AS4	C	1.304	21.359	-18.991
252	AS4	O	2.559	20.462	-19.763	252	AS4	C8	0.986	20.780	-19.292
252	AS4	CG	-1.036	29.924	-19.973	252	AS4	CD1	-8.836	19.335	-17.592

252	ASN	WD2	-2.234	15.034	-19.381	253	THR	W	3.818	21.805	-18.923
253	THR	CA	4.253	21.237	-19.713	253	THR	C	3.381	21.247	-18.818
253	THR	D	6.348	21.733	-19.427	253	THR	C8	4.056	21.672	-18.932
253	THR	D1	3.893	21.937	-20.423	253	THR	CG2	3.147	21.130	-18.832
254	THR	N	5.218	21.177	-17.551	254	THR	CA	4.216	21.612	-18.581
254	THR	C	7.666	21.720	-16.617	254	THR	D	7.482	21.980	-17.933
254	THR	C8	5.666	21.538	-19.132	254	THR	CG2	9.121	21.178	-18.040
254	THR	CG2	6.830	21.549	-16.802	255	THR	W	3.499	21.296	-16.874
255	THR	CA	9.771	22.594	-16.817	255	THR	C	4.621	21.031	-14.414
255	THR	D	9.439	22.746	-23.474	255	THR	CG	21.980	21.433	-18.897
255	THR	DG1	21.882	23.709	-17.321	255	THR	CG2	22.284	22.620	-18.404
256	LYS	W	9.696	20.702	-16.314	256	LYS	CA	7.364	20.063	-13.010
256	LYS	C	10.522	20.333	-12.063	256	LYS	O	21.662	20.274	-12.582
256	LYS	CB	9.026	18.930	-23.249	256	LYS	CG	9.818	17.901	-11.921
256	LYS	CO	10.216	18.948	-11.777	256	LYS	CR	10.212	18.940	-18.623
256	LYS	H2	9.263	14.869	-11.034	257	LEU	W	10.212	20.474	-18.824
257	LEU	CA	11.272	21.031	-9.193	257	LEU	C	11.230	20.292	-8.614
257	LEU	D	12.096	20.865	-7.732	257	LEU	CS	11.187	22.347	-9.922
257	LEU	CG	11.397	23.620	-10.368	257	LEU	CD1	11.245	25.993	-9.921
257	LEU	CD2	12.678	23.668	-21.325	258	GLY	W	10.631	19.282	-8.291
258	GLY	CA	10.602	11.743	-6.379	258	GLY	C	9.198	18.703	-4.373
258	GLY	O	6.213	18.934	-7.202	259	ASP	W	9.826	18.282	-3.190
259	ASP	CA	7.757	17.896	-6.916	259	ASP	C	6.659	18.941	-4.789
259	ASP	D	6.853	20.039	-6.214	259	ASP	CG	7.996	17.860	-3.033
259	ASP	CG	6.781	17.328	-2.243	259	ASP	CD1	6.611	17.827	-2.334
259	ASP	CD2	7.098	16.299	-1.321	260	SER	W	5.160	18.610	-5.312
260	SER	CA	6.491	19.587	-5.579	260	SER	C	6.946	20.362	-6.293
260	SER	D	8.300	21.933	-6.444	260	SER	CG	3.345	18.919	-6.214
260	SER	CG	8.763	17.937	-5.443	261	PHE	W	4.261	19.778	-9.112
261	PHE	CA	3.831	22.468	-1.855	261	PHE	C	6.566	21.846	-3.563
261	PHE	D	3.944	22.168	-1.432	261	PHE	CG	4.053	19.749	-3.513
261	PHE	CG	3.349	20.337	0.719	261	PHE	CD1	3.208	20.163	1.123
261	PHE	CD2	4.601	21.960	1.518	262	PHE	CE1	3.737	20.717	2.315
261	PHE	CE2	3.965	21.802	2.748	262	PHE	C2	3.673	21.465	3.114
262	TTR	W	5.778	21.758	-2.305	262	TTR	CA	6.698	22.914	-2.251
262	TTR	C	6.820	23.619	-3.563	262	TTR	CG	7.201	24.833	-3.393
262	TTR	CB	8.122	22.431	-1.831	262	TTR	CD2	8.146	21.992	-8.454
262	TTR	CD1	8.084	20.484	-0.364	262	TTR	CE2	8.143	22.669	-6.493
262	TTR	CE1	8.082	19.871	0.882	262	TTR	CW	8.314	22.049	1.962
262	TTR	CZ	8.069	20.672	2.018	262	TTR	CH	7.965	20.029	3.203
263	TTR	CZ	6.826	23.104	-4.693	263	TTR	CA	6.812	23.655	-6.022
263	TTR	C	5.626	23.680	-6.956	263	TTR	D	5.781	24.117	-8.311
263	TTR	CB	7.921	22.768	-6.631	263	TTR	CG	9.279	23.035	-6.868
263	TTR	CD1	10.064	24.046	-6.637	263	TTR	CD2	9.800	22.342	-6.993
263	TTR	CE1	11.375	24.924	-6.168	263	TTR	CE2	11.042	23.640	-6.471
263	TTR	CG2	11.836	23.618	-5.106	263	TTR	CH	11.063	23.941	-6.597
264	GLY	W	4.471	23.161	-6.816	264	GLY	CG	3.301	23.014	-7.612
264	GLY	C	3.867	22.196	-8.376	264	GLY	C	4.617	21.274	-8.345
264	GLY	CB	3.636	22.477	-9.734	264	GLY	CA	3.834	21.782	-10.471
264	GLY	C	9.188	22.232	-11.484	265	LYS	D	9.684	21.383	-12.386
265	LYS	CB	2.753	22.071	-12.964	265	LYS	CG	1.480	21.343	-11.303
265	LYS	CD	8.710	20.561	-12.079	265	LYS	CE	-6.692	20.696	-11.391
265	LYS	CD1	-1.678	22.157	-12.619	266	GLY	W	3.787	23.226	-10.817
266	GLY	CA	7.120	23.612	-21.923	266	GLY	C	7.193	23.032	-11.818
266	GLY	C	6.177	23.793	-11.649	267	LEU	W	6.262	25.334	-11.430
267	LEU	CA	8.490	26.650	-13.997	267	LEU	C	7.804	24.771	-16.437
267	LEU	D	7.933	25.809	-13.295	267	LEU	CG	10.010	26.893	-13.214
267	LEU	CG	10.432	28.060	-14.058	267	LEU	CD1	10.076	28.331	-13.235
267	LEU	CD2	11.924	27.921	-14.327	268	ILE	W	7.066	27.843	-14.432
268	ILE	CA	6.406	28.033	-18.944	268	ILE	C	7.416	28.246	-17.843
268	ILE	D	8.339	28.793	-16.912	268	ILE	CG	8.369	29.210	-18.899
268	ILE	CG1	6.099	20.541	-23.352	268	ILE	CG2	6.263	28.923	-16.867
268	ILE	CD1	8.371	21.765	-16.262	269	ILE	CH	7.087	27.843	-18.137

-45-

269	AS4	CA	1.362	27.973	-27.637	269	SL4	C	6.939	28.914	-28.685
269	SL4	O	6.969	27.971	-27.643	269	SL4	CB	6.637	28.913	-28.685
269	SL4	CC	6.361	26.851	-27.231	269	SL4	CD	6.943	27.614	-28.122
269	SL4	ND2	12.931	26.796	-27.472	270	VAL	N	6.903	26.861	-28.734
270	VAL	C4	5.843	26.618	-27.014	270	VAL	C	6.889	26.887	-28.684
270	VAL	O	5.957	26.569	-27.072	270	VAL	CB	6.636	21.410	-21.622
270	VAL	CC1	6.849	26.597	-27.079	270	VAL	CC2	6.620	22.361	-27.722
271	GLK	N	5.325	26.761	-27.392	271	GLK	CA	7.603	27.370	-26.764
271	GLK	I	6.469	27.934	-25.231	271	GLK	O	6.213	27.384	-26.891
271	GLK	CB	6.104	25.220	-24.964	271	GLK	CD	6.486	28.811	-26.931
271	GLK	CO	26.903	26.363	-21.982	271	GLK	CE1	23.269	28.370	-27.718
271	GLK	HE2	21.702	26.353	-25.910	272	AL4	N	6.977	26.901	-26.892
272	AL4	CA	6.324	25.712	-24.142	272	AL4	C	6.701	21.951	-24.264
272	AL4	O	3.138	23.503	-25.003	272	AL4	CB	6.763	26.761	-23.372
272	AL4	CC	6.267	26.961	-23.239	273	AL4	CD	6.149	26.721	-22.659
273	AL4	C	3.081	27.321	-24.020	273	AL4	O	6.269	27.214	-24.285
273	AL4	CB	2.736	27.773	-21.991	274	AL4	N	3.795	28.464	-24.762
274	AL4	CS	1.932	30.391	-26.210	274	AL4	CA	2.189	29.164	-23.667
274	AL4	C	4.735	22.367	-27.000	274	AL4	O	6.980	28.149	-27.022
275	GLN	N	2.320	27.144	-27.714	275	GLN	CA	6.848	26.279	-28.827
275	GLN	C	3.167	27.261	-27.777	275	GLN	O	3.260	27.807	-28.916
275	GLN	DT	2.192	27.361	-28.593	275	GLN	CB	6.636	28.724	-28.520
275	GLN	CG	6.931	26.664	-27.647	275	GLN	CD	6.023	23.976	-27.632
275	GLN	DE1	-1.376	23.893	-29.789	275	GLN	CE1	-1.373	23.613	-26.898

The above structural studies together with the kinetic data presented herein and elsewhere (Philipp, M., et al. (1983) Mol. Cell. Biochem. 51, 5-32; Svendsen, I.B. (1976) Carlsberg Res. Comm. 41, 237-291; Markland, S.F. Id; Stauffe, D.C., et al. (1965) J. Biol. Chem. 244, 5333-5338) indicate that the subsites in the binding cleft of subtilisin are capable of interacting with substrate amino acid residues from P-4 to P-2'.

10 The most extensively studied of the above residues are Gly166, Gly169 and Alal52. These amino acids were identified as residues within the S-1 subsite. As seen in Fig. 3, which is a stereoview of the S-1 subsite, Gly166 and Gly169 occupy positions at the bottom of the S-1 subsite, whereas Alal52 occupies a position near the top of S-1, close to the catalytic Ser221.

20 All 19 amino acid substitutions of Gly166 and Gly169 have been made. As will be indicated in the examples which follow, the preferred replacement amino acids for Gly166 and/or Gly169 will depend on the specific amino acid occupying the P-1 position of a given substrate.

25 The only substitutions of Alal52 presently made and analyzed comprise the replacement of Alal52 with Gly and Ser. The results of these substitutions on P-1 specificity will be presented in the examples.

30 In addition to those residues specifically associated with specificity for the P-1 substrate amino acid, Tyr104 has been identified as being involved with P-4 specificity. Substitutions at Phe189 and Tyr217,

however, are expected to respectively effect P-2' and P-1' specificity.

The catalytic activity of subtilisin has also been modified by single amino acid substitutions at Asn155. The catalytic triad of subtilisin is shown in Fig. 4. As can be seen, Ser221, His64 and Asp32 are positioned to facilitate nucleophilic attack by the serine hydroxylate on the carbonyl of the scissile peptide bond. Crystallographic studies of subtilisin (Robertus, et al. (1972) Biochem. 11, 4293-4303; Matthews, et al. (1975) J. Biol. Chem. 250, 7120-7126; Poulos, et al. (1976) J. Biol. Chem. 250, 1097-1103) show that two hydrogen bonds are formed with the oxyanion of the substrate transition state. One hydrogen bond donor is from the catalytic serine-221 main-chain amide while the other is from one of the NE2 protons of the asparagine-155 side chain. See Fig. 4.

Asn155 was substituted with Ala, Asp, His, Glu and Thr. These substitutions were made to investigate the stabilization of the charged tetrahedral intermediate of the transition state complex by the potential hydrogen bond between the side chain of Asn155 and the oxyanion of the intermediate. These particular substitutions caused large decreases in substrate turnover, k_{cat} (200 to 4,000 fold), marginal decreases in substrate binding K_m (up to 7 fold), and a loss in transition state stabilization energy of 2.2 to 4.7 kcal/mol. The retention of K_m and the drop in k_{cat} will make these mutant enzymes useful as binding proteins for specific peptide sequences, the nature of which will be determined by the specificity of the precursor protease.

Various other amino acid residues have been identified which affect alkaline stability. In some cases, mutants having altered alkaline stability also have altered thermal stability.

- 5 In B. amyloliquefaciens subtilisin residues Asp36, Ile107, Lys170, Ser204 and Lys213 have been identified as residues which upon substitution with a different amino acid alter the alkaline stability of the mutated enzyme as compared to the precursor enzyme. The substitution of Asp36 with Ala and the substitution of Lys170 with Glu each resulted in a mutant enzyme having a lower alkaline stability as compared to the wild type subtilisin. When Ile107 was substituted with Val, Ser204 substituted with Cys, Arg or Leu or Lys213 substituted with Arg, the mutant subtilisin had a greater alkaline stability as compared to the wild type subtilisin. However, the mutant Ser204P demonstrated a decrease in alkaline stability.
- 10 In addition, other residues, identified as being associated with the modification of other properties of subtilisin, also affect alkaline stability. These residues include Ser24, Met50, Glu156, Gly166, Gly169 and Tyr217. Specifically the following particular substitutions result in an increased alkaline stability: Ser24C, Met50F, Gly156Q or S, Gly166A, H, K, N or Q, Gly169S or A, and Tyr217F, K, R or L. The mutant Met50V, on the other hand, results in a decrease in the alkaline stability of the mutant subtilisin as compared to wild type subtilisin.
- 15 Other residues involved in alkaline stability based on the alkaline stability screen include Asp197 and Met222. Particular mutants include Asp197(R or A) and Met 222 (all other amino acids).
- 20
- 25
- 30
- 35

Various other residues have been identified as being involved in thermal stability as determined by the thermal stability screen herein. These residues include the above identified residues which effect alkaline stability and Met199 and Tyr21. These latter two residues are also believed to be important for alkaline stability. Mutants at these residues include I199 and F21.

The amino acid sequence of B. amyloliquefaciens subtilisin has also been modified by substituting two or more amino acids of the wild-type sequence. Six categories of multiply substituted mutant subtilisin have been identified. The first two categories comprise thermally and oxidatively stable mutants. The next three other categories comprise mutants which combine the useful properties of any of several single mutations of B. amyloliquefaciens subtilisin. The last category comprises mutants which have modified alkaline and/or thermal stability.

The first category comprises double mutants in which two cysteine residues have been substituted at various amino acid residue positions within the subtilisin molecule. Formation of disulfide bridges between the two substituted cysteine residues results in mutant subtilisins with altered thermal stability and catalytic activity. These mutants include A21/C22/C87 and C24/C87 which will be described in more detail in Example 11.

The second category of multiple subtilisin mutants comprises mutants which are stable in the presence of various oxidizing agents such as hydrogen peroxide or peracids. Examples 1 and 2 describe these mutants

-50-

which include F50/I124/Q222, F50/I124, F50/Q222, F50/L124/Q222, I124/Q222 and L124/Q222.

5 The third category of multiple subtilisin mutants
comprises mutants with substitutions at position 222
combined with various substitutions at positions 166
or 169. These mutants, for example, combine the
property of oxidative stability of the A222 mutation
with the altered substrate specificity of the various
10 166 or 169 substitutions. Such multiple mutants
include A166/A222, A166/C222, F166/C222, K166/A222,
K166/C222, V166/A222 and V166/C222. The K166/A222
mutant subtilisin, for example, has a K_{cat}/K_m ratio
which is approximately two times greater than that of
15 the single A222 mutant subtilisin when compared using
a substrate with phenylalanine as the P-1 amino acid.
This category of multiple mutant is described in more
detail in Example 12.

20 The fourth category of multiple mutants combines
substitutions at position 156 (Glu to Q or S) with the
substitution of Lys at position 166. Either of these
single mutations improve enzyme performance upon
substrates with glutamate as the P-1 amino acid. When
25 these single mutations are combined, the resulting
multiple enzyme mutants perform better than either
precursor. See Example 9.

30 The fifth category of multiple mutants contain the
substitution of up to four amino acids of the *B.*
amyloliquefaciens subtilisin sequence. These mutants
have specific properties which are virtually identical
to the properties of the subtilisin from *B.*
licheniformis. The subtilisin from *B. licheniformis*
35 differs from *B. amyloliquefaciens* subtilisin at 87 out
of 275 amino acids. The multiple mutant

F50/S156/A169/L217 was found to have similar substrate specificity and kinetics to the *licheniformis* enzyme. (See Example 13.) However, this is probably due to only three of the mutations (S156, A169 and L217) which are present in the substrate binding region of the enzyme. It is quite surprising that, by making only three changes out of the 87 different amino acids between the sequence of the two enzymes, the *B. amyloliquifaciens* enzyme was converted into an enzyme with properties similar to *B. licheniformis* enzyme. Other enzymes in this series include F50/Q156/N166/L217 and F50/S156/L217.

The sixth category of multiple mutants includes the combination of substitutions at position 107 (Ile to V) with the substitution of Lys at position 213 with Arg, and the combination of substitutions of position 204 (preferably Ser to C or L but also to all other amino acids) with the substitution of Lys at position 213 with R. Other multiple mutants which have altered alkaline stability include Q156/K166, Q156/N166, S156/K166, S156/N166 (previously identified as having altered substrate specificity), and F50/S156/A169/L217 (previously identified as a mutant of *B. amyloliquifaciens* subtilisin having properties similar to subtilisin from *B. licheniformis*). The mutant F50/V107/R213 was constructed based on the observed increase in alkaline stability for the single mutants F50, V107 and R213. It was determined that the V107/R213 mutant had an increased alkaline stability as compared to the wild type subtilisin. In this particular mutant, the increased alkaline stability was the result of the cumulative stability of each of the individual mutations. Similarly, the mutant F50/V107/R213 had an even greater alkaline stability as compared to the V107/R213 mutant indicating that

the increase in the alkaline stability due to the F50 mutation was also cumulative.

Table IV summarizes the multiple mutants which have been made including those not mentioned above.

5

In addition, based in part on the above results, substitution at the following residues in subtilisin is expected to produce a multiple mutant having increased thermal and alkaline stability: Ser24,
10 Met50, Ile107, Glu156, Gly166, Gly169, Ser204, Lys213, Gly215, and Tyr217.

15

20

25

30

35

TABLE IV

<u>Double Mutants</u>	<u>Triple, Quadruple or Other Multiple</u>
C22/C87	F50/I124/Q222
C24/C87	F50/L124/Q222
5 V45/V48	F50/L124/A222
C49/C94	A21/C22/C87
C49/C95	F50/S156/N166/L217
C50/C95	F50/Q156/N166/L217
C50/C110	F50/S156/A169/L217
10 F50/I124	F50/S156/L217
F50/Q222	F50/Q156/K166/L217
I124/Q222	F50/S156/K166/L217
Q156/D166	F50/Q156/K166/K217
Q156/K166	F50/S156/K166/K217
15 Q156/N166	F50/V107/R213
S156/D166	[S153/S156/A158/G159/S160/Δ161- 164/I165/S166/A169/R170]
S156/K166	L204/R213
S156/N166	R213/204A, E, Q, D, N, G, K, V, R, T, P, I, M, F, Y, W or H
20 A166/A222	V107/R213
A166/C222	
F166/A222	
F166/C222	
K166/A222	
25 K166/C222	
V166/A222	
V166/C222	
A169/A222	
A169/A222	
30 A169/C222	
A21/C22	

35 In addition to the above identified amino acid residues, other amino acid residues of subtilisin are

also considered to be important with regard to substrate specificity. Mutation of each of these residues is expected to produce changes in the substrate specificity of subtilisin. Moreover, multiple mutations among these residues and among the previously identified residues are also expected to produce subtilisin mutants having novel substrate specificity.

Particularly important residues are His67, Ile107, Leu126 and Leu135. Mutation of His67 should alter the S-1' subsite, thereby altering the specificity of the mutant for the P-1' substrate residue. Changes at this position could also affect the pH activity profile of the mutant. This residue was identified based on the inventor's substrate modeling from product inhibitor complexes.

Ile107 is involved in P-4 binding. Mutation at this position thus should alter specificity for the P-4 substrate residue in addition to the observed effect on alkaline stability. Ile107 was also identified by molecular modeling from product inhibitor complexes.

The S-2 binding site includes the Leu126 residue. Modification at this position should therefore affect P-2 specificity. Moreover, this residue is believed to be important to convert subtilisin to an amino peptidase. The pH activity profile should also be modified by appropriate substitution. These residues were identified from inspection of the refined model, the three dimensional structure from modeling studies. A longer side chain is expected to preclude binding of any side chain at the S-2 subsite. Therefore, binding would be restricted to subsites S-1, S-1', S-2', S-3'

and cleavage would be forced to occur after the amino terminal peptide.

Leu135 is in the S-4 subsite and if mutated should alter substrate specificity for P-4 if mutated. This 5 residue was identified by inspection of the three-dimensional structure and modeling based on the product inhibitor complex of F222.

In addition to these sites, specific amino acid 10 residues within the segments 97-103, 126-129 and 213-215 are also believed to be important to substrate binding.

Segments 97-103 and 126-129 form an antiparallel beta 15 sheet with the main chain of substrate residues P-4 through P-2. Mutating residues in those regions should affect the substrate orientation through main chain (enzyme) - main chain (substrate) interactions, since the main chain of these substrate residues do 20 not interact with these particular residues within the S-4 through S-2 subsites.

Within the segment 97-103, Gly97 and Asp99 may be 25 mutated to alter the position of residues 101-103 within the segment. Changes at these sites must be compatible, however. In B. amyloliquifaciens subtilisin Asp99 stabilizes a turn in the main chain tertiary folding that affects the direction of residues 101-103. B. licheniformis subtilisin Asp97, 30 functions in an analogous manner.

In addition to Gly97 and Asp99, Ser101 interacts with Asp99 in B. amyloliquifaciens subtilisin to stabilize the same main chain turn. Alterations at this residue 35 should alter the 101-103 main chain direction.

Mutations at Glu103 are also expected to affect the 101-103 main chain direction.

The side chain of Gly102 interacts with the substrate P-3 amino acid. Side chains of substituted amino 5 acids thus are expected to significantly affect specificity for the P-3 substrate amino acids.

All the amino acids within the 127-129 segment are considered important to substrate specificity. Gly 10 127 is positioned such that its side chain interacts with the S-1 and S-3 subsites. Altering this residue thus should alter the specificity for P-1 and P-3 residues of the substrate.

15 The side chain of Gly128 comprises a part of both the S-2 and S-4 subsites. Altered specificity for P-2 and P-4 therefore would be expected upon mutation. Moreover, such mutation may convert subtilisin into an amino peptidase for the same reasons substitutions of 20 Leu126 would be expected to produce that result.

The Pro129 residue is likely to restrict the conformational freedom of the sequence 126-133, residues which may play a major role in determining 25 P-1 specificity. Replacing Pro may introduce more flexibility thereby broadening the range of binding capabilities of such mutants.

30 The side chain of Lys213 is located within the S-3 subsite. All of the amino acids within the 213-215 segment are also considered to be important to substrate specificity. Accordingly, altered P-3 substrate specificity is expected upon mutation of this residue.

The Tyr214 residue does not interact with substrate but is positioned such that it could affect the conformation of the hair pin loop 204-217.

5 Finally, mutation of the Gly215 residue should affect the S-3' subsite, and thereby alter P-3' specificity.

In addition to the above substitutions of amino acids, the insertion or deletion of one or more amino acids within the external loop comprising residues 152-172 10 may also affect specificity. This is because these residues may play a role in the "secondary contact region" described in the model of streptomyces subtilisin inhibitor complexed with subtilisin. Hirono, et al. (1984) J. Mol. Biol. 178, 389-413. Thermitase K has a deletion in this region, which eliminates several of these "secondary contact" residues. In particular, deletion of residues 161 through 164 is expected to produce a mutant subtilisin having modified substrate specificity. In addition, a rearrangement in this area induced by the deletion 15 should alter the position of many residues involved in substrate binding, predominantly at P-1. This, in turn, should affect overall activity against proteinaceous substrates. 20

25 The effect of deletion of residues 161 through 164 has been shown by comparing the activity of the wild type (WT) enzyme with a mutant enzyme containing this deletion as well as multiple substitutions (i.e., S153/S156/A158/G159/S160/Δ161-164/I165/S166/A169/R170). This produced the following results:

TABLE V

	<u>kcat</u>	<u>Km</u>	<u>kcat/Km</u>
WT	50	1.4×10^{-4}	3.6×10^5
Deletion mutant	8	5.0×10^{-6}	1.6×10^6

5

The WT has a kcat 6 times greater than the deletion mutant but substrate binding is 28 fold tighter by the deletion mutant. The overall efficiency of the 10 deletion mutant is thus 4.4 times higher than the WT enzyme.

All of these above identified residues which have yet 15 to be substituted, deleted or inserted into are presented in Table VI.

TABLE VI

Substitution/Insertion/Deletion

20

Residues

25

His67	Ala152
Leu126	Ala153
Leu135	Gly154
Gly97	Asn155
Asp99	Gly156
Ser101	Gly157
Gly102	Gly160
Glu103	Thr158
Leu126	Ser159
Gly127	Ser161
Gly128	Ser162
Pro129	Ser163
Tyr214	Thr164
Gly215	Val165
Gly166	Gly169
Tyr167	Lys170
Pro168	Tyr171
	Pro172

30

35

The following disclosure is intended to serve as a representation of embodiments herein, and should not be construed as limiting the scope of this application. These specific examples disclose the construction of certain of the above identified 5 mutants. The construction of the other mutants, however, is apparent from the disclosure herein and that presented in EPO Publication No. 0130756.

10 All literature citations are expressly incorporated by reference.

EXAMPLE 1

15 Identification of Peracid Oxidizable Residues of Subtilisin Q222 and L222

As shown in Figures 6A and 6B, organic peracid oxidants inactivate the mutant subtilisins Met222L and Met222Q (L222 and Q222). This example describes the 20 identification of peracid oxidizable sites in these mutant subtilisins.

First, the type of amino acid involved in peracid oxidation was determined. Except under drastic conditions (Means, G.E., et al. (1971) Chemical 25 Modifications of Proteins, Holden-Day, S.F., CA, pp. 160-162), organic peracids modify only methionine and tryptophan in subtilisin. Difference spectra of the enzyme over the 250nm to 350nm range were determined during an inactivation titration employing 30 the reagent, diperdodecanoic acid (DPDA) as oxidant. Despite quantitative inactivation of the enzyme, no change in absorbance over this wavelength range was noted as shown in Figures 7A and 7B indicating that tryptophan was not oxidized. Fontana, A., et al. 35 (1980) Methods in Peptide and Protein Sequence

Analysis (C. Birr ed.) Elsevier, New York, p. 309. The absence of tryptophan modification implied oxidation of one or more of the remaining methionines of B. amyloliquefaciens subtilisin. See Figure 1.

- 5 To confirm this result the recombinant subtilisin Met222F was cleaved with cyanogen bromide (CNBr) both before and after oxidation by DPDA. The peptides produced by CNBr cleavage were analyzed on high resolution SDS-pyridine peptide gels (SPG).

10

- Subtilisin Met222F (F222) was oxidized in the following manner. Purified F222 was resuspended in 0.1 M sodium borate pH 9.5 at 10 mg/ml and was added to a final concentration of 26 diperdodecanoic acid (DPDA) at 26 mg/ml was added to produce an effective active oxygen concentration of 30 ppm. The sample was incubated for at least 30 minutes at room temperature and then quenched with 0.1 volume of 1 M Tris pH 8.6 buffer to produce a final concentration of 0.1 M Tris pH 8.6). 3mM phenylmethylsulfonyl fluoride (PMSF) was added and 2.5 ml of the sample was applied to a Pharmacia PD10 column equilibrated in 10 mM sodium phosphate pH 6.2, 1 mM PMSF. 3.5 ml of 10 mM sodium phosphate pH6.2, 1mM PMSF was applied and the eluant collected.

- F222 and DPDA oxidized F222 were precipitated with 9 volumes of acetone at -20°C. The samples were resuspended at 10 mg/ml in 8M urea in 88% formic acid and allowed to sit for 5 minutes. An equal volume of 200 mg/ml CNBr in 88% formic acid was added (5 mg/ml protein) and the samples incubated for 2 hours at room temperature in the dark. Prior to gel electrophoresis, the samples were lyophilized and resuspended at 2-5 mg/ml in sample buffer (1%

pyridine, 5% NaDODSO₄, 5% glycerol and bromophenol blue) and disassociated at 95°C for 3 minutes.

The samples were electrophoresed on discontinuous polyacrylamide gels (Kyte, J., et al. (1983) 5 Anal. Bioch. 133, 515-522). The gels were stained using the Pharmacia silver staining technique (Sammons, D.W., et al. (1981) Electrophoresis 2 135-141).

10 The results of this experiment are shown in Figure 8. As can be seen, F222 treated with CNBr only gives nine resolved bands on SPG. However, when F222 is also treated with DPDA prior to cleavage, bands X, 7 and 9 disappear whereas bands 5 and 6 are greatly increased 15 in intensity.

In order to determine which of the methionines were effected, each of the CNBr peptides was isolated by 20 reversed phase HPLC and further characterized. The buffer system in both Solvent A (aqueous) and Solvent B (organic) for all HPLC separations was 0.05% triethylamine/trifluoroacetic acid (TEA-TFA). In all cases unless noted, solvent A consisted of 0.05% 25 TEA-TFA in H₂O, solvent B was 0.05% TEA-TFA in 1-propanol, and the flow rate was 0.5 ml/minute.

For HPLC analysis, two injections of 1 mg enzyme 30 digest were used. Three samples were acetone precipitated, washed and dried. The dried 1 mg samples were resuspended at 10 mg/ml in 8M urea, 88% formic acid; an equal volume of 200 mg/ml CNBr in 88% formic acid was added (5 mg/ml protein). After 35 incubation for 2 hours in the dark at room temperature, the samples were desalted on a 0.8 cm X 7

cm column of Tris Acryl GF05 coarse resin (IBF, Paris, France) equilibrated with 40% solvent B, 60% solvent A. 200 ul samples were applied at a flow rate of 1 ml a minute and 1.0-1.2 ml collected by monitoring the absorbance at 280nm. Prior to injection on the HPLC, 5 each desalted sample was diluted with 3 volumes of solvent A. The samples were injected at 1.0 ml/min (2 minutes) and the flow then adjusted to 0.5 ml/min (100% A). After 2 minutes, a linear gradient to 60% B at 1.0% B/min was initiated. From each 1 mg run, the 10 pooled peaks were sampled (50ul) and analyzed by gel electrophoresis as described above.

Each polypeptide isolated by reversed phase HPLC was further analyzed for homogeneity by SPG. The position 15 of each peptide on the known gene sequence (Wells, J.A., et al. (1983) Nucleic Acids Res. 11 7911-7924) was obtained through a combination of amino acid compositional analysis and, where needed, amino terminal sequencing.

20 Prior to such analysis the following peptides were to rechromatographed.

1. CNBr peptides from F222 not treated with DPDA:

25 Peptide 5 was subjected to two additional reversed phase separations. The 10 cm C4 column was equilibrated to 80%A/ 20%B and the pooled sample applied and washed for 2 minutes. Next an 0.5% ml 30 B/min gradient was initiated. Fractions from this separation were again rerun, this time on the 25 cm C4 column, and employing 0.05% TEA-TFA in acetonitrile/1-propanol (1:1) for solvent B. The gradient was identical to the one just described.

Peptide "X" was subjected to one additional separation after the initial chromatography. The sample was applied and washed for 2 minutes at 0.5ml/min (100% A), and a 0.5% ml B/min gradient was initiated.

5 Peptides 7 and 9 were rechromatographed in a similar manner to the first rerun of peptide 5.

Peptide 8 was purified to homogeneity after the initial separation.

10 2. CNBr Peptides from DPDA Oxidized F222:

Peptides 5 and 6 from a CNBr digest of the oxidized F222 were purified in the same manner as peptide 5 from the untreated enzyme.

15 Amino acid compositional analysis was obtained as follows. Samples (-1nM each amino acid) were dried, hydrolyzed in vacuo with 100 ul 6N HCl at 106°C for 24 hours and then dried in a Speed Vac. The samples were 20 analyzed on a Beckmann 6300 AA analyzer employing ninhydrin detection.

25 Amino terminal sequence data was obtained as previously described (Rodriguez, H., et al. (1984) Anal. Biochem. 134, 538-547).

The results are shown in Table VII and Figure 9.

30

35

TABLE VII

Amino and COOH termini of CNBr fragments

<u>Terminus and Method</u>		
<u>Fragment</u>	<u>amino, method</u>	<u>COOH, method</u>
5	X	1, sequence
	9	51, sequence
	7	125, sequence
	8	200, sequence
10	5ox	1, sequence
	6ox	120, composition
		275, composition
		119, composition
		199, composition

15 Peptides 5ox and 6ox refer to peptides 5 and 6 isolated from CNBr digests of the oxidized protein where their respective levels are enhanced.

20 From the data in Table VII and the comparison of SPG tracks for the oxidized and native protein digests in Figure 8, it is apparent that (1) Met50 is oxidized leading to the loss of peptides X and 9 and the appearance of 5; and (2) Met124 is also oxidized leading to the loss of peptide 7 and the accumulation of peptide 6. Thus oxidation of *B. amyloliquifaciens* 25 subtilisin with the peracid, diperdocecanoic acid leads to the specific oxidation of methionine at residues 50 and 124.

EXAMPLE 2

30

Substitution at Met50 and Met124
in Subtilisin Met2220

The choice of amino acid for substitution at Met50 was based on the available sequence data for subtilisins

35

from B. licheniformis (Smith, E.C., et al. (1968) J. Biol. Chem. 243, 2184-2191), B.DY (Nedkov, P., et al. (1983) Hoppe Sayler's Z. Physiol. Chem. 364 1537-1540), B. amylosacchariticus (Markland, F.S., et al. (1967) J. Biol. Chem. 242 5198-5211) and B. subtilis (Stahl, M.L., et al. (1984) J. Bacteriol. 158, 411-418). In all cases, position 50 is a phenylalanine. See Figure 5. Therefore, Phe50 was chosen for construction.

At position 124, all known subtilisins possess a methionine. See Figure 5. Molecular modelling of the x-ray derived protein structure was therefore required to determine the most probable candidates for substitution. From all 19 candidates, isoleucine and leucine were chosen as the best residues to employ. In order to test whether or not modification at one site but not both was sufficient to increase oxidative stability, all possible combinations were built on the Q222 backbone (F50/Q222, I124/Q222, F50/I124/Q222).

A. Construction of Mutations Between Codons 45 and 50

All manipulations for cassette mutagenesis were carried out on pS4.5 using methods disclosed in EPO Publication No. 0130756 and Wells, J.A., et al, (1985) Gene 34, 315-323. The pΔ50 in Fig. 10, line 4, mutations was produced using the mutagenesis primer shown in Fig. 10, line 6, and employed an approach designated as restriction-purification which is described below. Briefly, a M13 template containing the subtilisin gene, M13mp11-SUBT was used for heteroduplex synthesis (Adelman, et al (1983), DNA 2, 183-193). Following transfection of JM101 (ATCC 33876), the 1.5 kb EcoRI-BamHI fragment containing the

subtilisin gene was subcloned from M13mp11 SUBT rf into a recipient vector fragment of pBS42 the construction of which is described in EPO Publication No. 0130756. To enrich for the mutant sequence (p Δ 50, line 4), the resulting plasmid pool was digested with 5 KpnI, and linear molecules were purified by polyacrylamide gel electrophoresis. Linear molecules were ligated back to a circular form, and transformed into E. coli MM294 cells (ATCC 31446). Isolated plasmids were screened by restriction analysis for the 10 KpnI site. KpnI⁺ plasmids were sequenced and confirmed the p Δ 50 sequence. Asterisks in Figure 11 indicate the bases that are mutated from the wild type sequence (line 4). p Δ 50 (line 4) was cut with StuI and EcoRI and the 0.5 Kb fragment containing the 5' 15 half of the subtilisin gene was purified (fragment 1). p Δ 50 (line 4) was digested with KpnI and EcoRI and the 4.0 Kb fragment containing the 3' half of the subtilisin gene and vector sequences was purified (fragment 2). Fragments 1 and 2 (line 5), and duplex 20 DNA cassettes coding for mutations desired (shaded sequence, line 6) were mixed in a molar ratio of 1:1:10, respectively. For the particular construction of this example the DNA cassette contained the triplet TTT for codon 50 which encodes Phe. This plasmid was 25 designated pF50. The mutant subtilisin was designated F50.

30 B. Construction of Mutation
 Between Codons 122 and 127

The procedure of Example 2A was followed in substantial detail except that the mutagenesis primer of Figure 11, line 7 was used and restriction-purification for the EcoRV site in p Δ 124 was used. In 35 addition, the DNA cassette (shaded sequence, Figure

11, line 6) contained the triplet ATT for codon 124 which encodes Ile and CTT for Leu. Those plasmids which contained the substitution of Ile for Met124 were designated pII124. The mutant subtilisin was designated II124.

5

C. Construction of Various F50/II124/Q222 Multiple Mutants

The triple mutant, F50/II124/Q222, was constructed from
10 a three-way ligation in which each fragment contained one of the three mutations. The single mutant Q222 (pQ222) was prepared by cassette mutagenesis as described in EPO Publication No. 0130756. The F50 mutation was contained on a 2.2kb AvaII to PvuII
15 fragment from pF50; the II124 mutation was contained on a 260 bp PvuII to AvaII fragment from pII124; and the Q222 mutation was contained on 2.7 kb AvaII to AvaII fragment from pQ222. The three fragments were ligated together and transformed into E. coli MM294 cells.
20 Restriction analysis of plasmids from isolated transformants confirmed the construction. To analyze the final construction it was convenient that the AvaII site at position 798 in the wild-type subtilisin gene was eliminated by the II124 construction.

25

The F50/Q222 and II124/Q222 mutants were constructed in a similar manner except that the appropriate fragment from pS4.5 was used for the final construction.

30

D. Oxidative Stability of Q222 Mutants

The above mutants were analyzed for stability to peracid oxidation. As shown in Fig. 12, upon incubation with diperdodecanoic acid (protein 2mg/mL, oxidant 75ppm[O]), both the II124/Q222 and the
35

-68-

F50/I124/Q222 are completely stable whereas the F50/Q222 and the Q222 are inactivated. This indicates that conversion of Met124 to I124 in subtilisin Q222 is sufficient to confer resistance to organic peracid oxidants.

5

EXAMPLE 3

10 Subtilisin Mutants Having Altered Substrate Specificity-Hydrophobic Substitutions at Residues 166

Subtilisin contains an extended binding cleft which is hydrophobic in character. A conserved glycine at residue 166 was replaced with twelve non-ionic amino acids which can project their side-chains into the S-1 subsite. These mutants were constructed to determine the effect of changes in size and hydrophobicity on the binding of various substrates.

20

A. Kinetics for Hydrolysis of Substrates Having Altered P-1 Amino Acids by Subtilisin from *B. Amyloliquefaciens*

Wild-type subtilisin was purified from *B. subtilis* culture supernatants expressing the *B. amyloliquefaciens* subtilisin gene (Wells, J.A., *et al.* (1983) *Nucleic Acids Res.* **11**, 7911-7925) as previously described (Estell, D.A., *et al.* (1985) *J. Biol. Chem.* **260**, 6518-6521). Details of the synthesis of tetrapeptide substrates having the form succinyl-L-AlaL-AlaL-ProL-[X]-p-nitroanilide (where X is the P1 amino acid) are described by DelMar, E.G., *et al.* (1979) *Anal. Biochem.* **99**, 316-320. Kinetic parameters, $K_m(M)$ and $k_{cat}(s^{-1})$ were measured using a modified progress curve analysis (Estell, D.A., *et al.* (1985) *J. Biol. Chem.* **260**, 6518-6521). Briefly, plots

30

35

of rate versus product concentration were fit to the differential form of the rate equation using a non-linear regression algorithm. Errors in kcat and Km for all values reported are less than five percent. The various substrates in Table VIII are ranged in order of decreasing hydrophobicity. Nozaki, Y. (1971), J. Biol. Chem. 246, 2211-2217; Tanford C. (1978) Science 200, 1012).

10

TABLE VIII

	<u>P1 substrate</u> <u>Amino Acid</u>	<u>kcat(s⁻¹)</u>	<u>1/Km(M⁻¹)</u>	<u>kcat/Km</u> <u>(s⁻¹M-1)</u>
15	Phe	50	7,100	360,000
	Tyr	28	40,000	1,100,000
	Leu	24	3,100	75,000
	Met	13	9,400	120,000
20	His	7.9	1,600	13,000
	Ala	1.9	5,500	11,000
	Gly	0.003	8,300	21
	Gln	3.2	2,200	7,100
	Ser	2.8	1,500	4,200
	Glu	0.54	32	16

25

The ratio of kcat/Km (also referred to as catalytic efficiency) is the apparent second order rate constant for the conversion of free enzyme plus substrate (E+S) to enzyme plus products (E+P) (Jencks, W.P., Catalysis in Chemistry and Enzymology (McGraw-Hill, 1969) pp. 321-436; Fersht, A., Enzyme Structure and Mechanism (Freeman, San Francisco, 1977) pp. 226-287). The log (kcat/Km) is proportional to transition state binding

35

energy, ΔG_T^{\ddagger} . A plot of the log kcat/Km versus the hydrophobicity of the P1 side-chain (Figure 14) shows a strong correlation ($r = 0.98$), with the exception of the glycine substrate which shows evidence for non-productive binding. These data show that relative differences between transition-state binding energies can be accounted for by differences in P1 side-chain hydrophobicity. When the transition-state binding energies are calculated for these substrates and plotted versus their respective side-chain hydrophobicities, the line slope is 1.2 (not shown). A slope greater than unity, as is also the case for chymotrypsin (Fersht, A., Enzyme Structure and Mechanism (Freeman, San Francisco, 1977) pp. 226-287; Harper, J.W., et al. (1984) Biochemistry, 23, 2995-3002), suggests that the P1 binding cleft is more hydrophobic than ethanol or dioxane solvents that were used to empirically determine the hydrophobicity of amino acids (Nozaki, Y., et al. J. Biol. Chem. (1971) 246, 2211-2217; Tanford, C. (1978) Science 200, 1012).

For amide hydrolysis by subtilisin, kcat can be interpreted as the acylation rate constant and Km as the dissociation constant, for the Michaelis complex (E-S), Ks. Gutfreund, H., et al (1956) Biochem. J. 63, 656. The fact that the log kcat, as well as log 1/Km, correlates with substrate hydrophobicity is consistent with proposals (Robertus, J.D., et al. (1972) Biochemistry 11, 2439-2449; Robertus, J.D., et al. (1972) Biochemistry 11, 4293-4303) that during the acylation step the P1 side-chain moves deeper into the hydrophobic cleft as the substrate advances from the Michaelis complex (E-S) to the tetrahedral transition-state complex (E-S[†]). However, these data can also be interpreted as the hydrophobicity of the P1 side-chain effecting the orientation, and thus the

susceptibility of the scissile peptide bond to nucleophilic attack by the hydroxyl group of the catalytic Ser221.

5 The dependence of k_{cat}/K_m on P-1 side chain hydrophobicity suggested that the k_{cat}/K_m for hydrophobic substrates may be increased by increasing the hydrophobicity of the S-1 binding subsite. To test this hypothesis, hydrophobic amino acid substitutions of Gly166 were produced.
10

Since hydrophobicity of aliphatic side-chains is directly proportional to side-chain surface area (Rose, G.D., *et al.* (1985) *Science* **229**, 834-838; Reynolds, J.A., *et al.* (1974) *Proc. Natl. Acad. Sci. USA* **71**, 2825-2927), increasing the hydrophobicity in the S-1 subsite may also sterically hinder binding of larger substrates. Because of difficulties in predicting the relative importance of these two opposing effects, we elected to generate twelve non-charged mutations at position 166 to determine the resulting specificities against non-charged substrates of varied size and hydrophobicity.
15
20

25 B. Cassette Mutagenesis of the P1 Binding Cleft

The preparation of mutant subtilisins containing the substitution of the hydrophobic amino acids Ala, Val and Phe into residue 166 has been described in EPO Publication No. 0130756. The same method was used to produce the remaining hydrophobic mutants at residue 166. In applying this method, two unique and silent restriction sites were introduced in the subtilisin genes to closely flank the target codon 166. As can be seen in Figure 13, the wild type sequence (line 1)
30
35

was altered by site-directed mutagenesis in M13 using the indicated 37mer mutagenesis primer, to introduce a 13 bp deletion (dashedline) and unique SacI and XmaI sites (underlined sequences) that closely flank codon 166. The subtilisin gene fragment was subcloned back 5 into the E. coli - B. subtilis shuttle plasmid, pBS42, giving the plasmid p Δ 166 (Figure 13, line 2). p Δ 166 was cut open with SacI and XmaI, and gapped linear molecules were purified (Figure 13, line 3). Pools of 10 synthetic oligonucleotides containing the mutation of interest were annealed to give duplex DNA cassettes that were ligated into gapped p Δ 166 (underlined and overlined sequences in Figure 13, line 4). This construction restored the coding sequence except over position 166(NNN; line 4). Mutant sequences were 15 confirmed by dideoxy sequencing. Asterisks denote sequence changes from the wild type sequence. Plasmids containing each mutant B. amyloliquefaciens subtilisin gene were expressed at roughly equivalent levels in a protease deficient strain of B. subtilis, 20 BG2036 as previously described. EPO Publication No. 0130756; Yang, M., et al. (1984) J. Bacteriol. 160, 15-21; Estell, D.A., et al (1985) J. Biol. Chem. 260, 6518-6521.

25

C. Narrowing Substrate Specificity by Steric Hindrance

To probe the change in substrate specificity caused by steric alterations in the S-1 subsite, position 166 30 mutants were kinetically analyzed versus P1 substrates of increasing size (i.e., Ala, Met, Phe and Tyr). Ratios of kcat/Km are presented in log form in Figure 15 to allow direct comparisons of transition-state binding energies between various enzyme-substrate pairs.

According to transition state theory, the free energy difference between the free enzyme plus substrate ($E + S$) and the transition state complex ($E \cdot S^*$) can be calculated from equation (1),

5

$$(1) \Delta G_T^* = -RT \ln k_{cat}/K_m + RT \ln kT/h$$

10

in which k_{cat} is the turnover number, K_m is the Michaelis constant, R is the gas constant, T is the temperature, k is Boltzmann's constant, and h is Planck's constant. Specificity differences are expressed quantitatively as differences between transition state binding energies (i.e., $\Delta\Delta G_t^*$), and can be calculated from equation (2).

15

$$(2) \Delta\Delta G_T^* = -RT \ln (k_{cat}/K_m)_A / (k_{cat}/K_m)_B$$

A and B represent either two different substrates assayed against the same enzyme, or two mutant enzymes assayed against the same substrate.

20

As can be seen from Figure 15A, as the size of the side-chain at position 166 increases the substrate preference shifts from large to small P-1 side-chains. Enlarging the side-chain at position 166 causes k_{cat}/K_m to decrease in proportion to the size of the P-1 substrate side-chain (e.g., from Gly166 (wild-type) through W166, the k_{cat}/K_m for the Tyr substrate is decreased most followed in order by the Phe, Met and Ala P-1 substrates).

30

Specific steric changes in the position 166 side-chain, such as the presence of a β -hydroxyl group, β - or γ -aliphatic branching, cause large decreases in k_{cat}/K_m for larger P1 substrates. Introducing a β -hydroxyl group in going from A166 (Figure 15A) to

35

S166 (Figure 15B), causes an 8 fold and 4 fold reduction in kcat/Km for Phe and Tyr substrates, respectively, while the values for Ala and Met substrates are unchanged. Producing a β -branched structure, in going from S166 to T166, results in a 5 drop of 14 and 4 fold in kcat/Km for Phe and Tyr, respectively. These differences are slightly magnified for V166 which is slightly larger and isosteric with T166. Enlarging the β -branched substituents from V166 to I166 causes a lowering of 10 kcat/Km between two and six fold toward Met, Phe and Tyr substrates. Inserting a γ -branched structure, by replacing M166 (Figure 15A) with L166 (Figure 15B), produces a 5 fold and 18 fold decrease in kcat/Km for Phe and Tyr substrates, respectively. Aliphatic 15 γ -branched appears to induce less steric hindrance toward the Phe P-1 substrate than β -branching, as evidenced by the 100 fold decrease in kcat/Km for the Phe substrate in going from L166 to I166.

20 Reductions in kcat/Km resulting from increases in side chain size in the S-1 subsite, or specific structural features such as β - and γ -branching, are quantitatively illustrated in Figure 16. The kcat/Km values for the position 166 mutants determined for the Ala, 25 Met, Phe, and Tyr P-1 substrates (top panel through bottom panel, respectively), are plotted versus the position 166 side-chain volumes (Chothia, C. (1984) Ann. Rev. Biochem. 53, 537-572). Catalytic efficiency for the Ala substrate reaches a maximum for I166, and 30 for the Met substrate it reaches a maximum between V166 and L166. The Phe substrate shows a broad kcat/Km peak but is optimal with A166. Here, the β -branched position 166 substitutions form a line that is parallel to, but roughly 50 fold lower in kcat/Km 35 than side-chains of similar size [i.e., C166 versus

T166, L166 versus I166]. The Tyr substrate is most efficiently utilized by wild type enzyme (Gly166), and there is a steady decrease as one proceeds to large position 166 side-chains. The β -branched and γ -branched substitutions form a parallel line below the other non-charged substitutions of similar molecular volume.

The optimal substitution at position 166 decreases in volume with increasing volume of the P1 substrate [i.e., I166/Ala substrate, L166/Met substrate, A166/Phe substrate, Gly166/Tyr substrate]. The combined volumes for these optimal pairs may approximate the volume for productive binding in the S-1 subsite. For the optimal pairs, Gly166/Tyr substrate, A166/Phe substrate, L166/Met substrate, V166/Met substrate, and I166/Ala substrate, the combined volumes are 266, 295, 313, 339 and 261 Å^3 , respectively. Subtracting the volume of the peptide backbone from each pair (i.e., two times the volume of glycine), an average side-chain volume of $160 \pm 32 \text{ Å}^3$ for productive binding can be calculated.

The effect of volume, in excess to the productive binding volume, on the drop in transition-state binding energy can be estimated from the Tyr substrate curve (bottom panel, Figure 16), because these data, and modeling studies (Figure 2), suggest that any substitution beyond glycine causes steric repulsion. A best-fit line drawn to all the data ($r = 0.87$) gives a slope indicating a loss of roughly 3 kcal/mol in transition state binding energy per 100 Å^3 of excess volume. (100 Å^3 is approximately the size of a leucyl side-chain.)

D. Enhanced Catalytic Efficiency
Correlates with Increasing Hydrophobicity
of the Position 166 Substitution

Substantial increases in k_{cat}/K_m occur with enlargement of the position 166 side-chain, except for the Tyr P-1 substrate (Figure 16). For example, k_{cat}/K_m increases in progressing from Gly166 to I166 for the Ala substrate (net of ten-fold), from Gly166 to L166 for the Met substrate (net of ten-fold) and from Gly166 to A166 for the Phe substrate (net of two-fold). The increases in k_{cat}/K_m cannot be entirely explained by the attractive terms in the van der Waals potential energy function because of their strong distance dependence ($1/r^6$) and because of the weak nature of these attractive forces (Jencks, W.P., Catalysis in Chemistry and Enzymology (McGraw-Hill, 1969) pp. 321-436; Fersht, A., Enzyme Structure and Mechanism (Freeman, San Francisco, 1977) pp. 226-287; Levitt, M. (1976) J. Mol. Biol. **104**, 59-107). For example, Levitt (Levitt, M. (1976) J. Mol. Biol. **104**, 59-107) has calculated that the van der Waals attraction between two methionyl residues would produce a maximal interaction energy of roughly -0.2 kcal/mol. This energy would translate to only 1.4 fold increase in k_{cat}/K_m .

The increases of catalytic efficiency caused by side-chain substitutions at position 166 are better accounted for by increases in the hydrophobicity of the S-1 subsite. The increase k_{cat}/K_m observed for the Ala and Met substrates with increasing position 166 side-chain size would be expected, because hydrophobicity is roughly proportional to side-chain surface area (Rose, G.D., et al. (1985) Science **229**, 834-838; Reynolds, J.A., et al. (1974) Proc. Natl. Acad. Sci. USA **71**, 2825-2927).

Another example that can be interpreted as a hydrophobic effect is seen when comparing k_{cat}/K_m for isosteric substitutions that differ in hydrophobicity such as S166 and C166 (Figure 16). Cysteine is considerably more hydrophobic than serine (-1.0 versus +0.3 kcal/mol) (Nozaki, Y., *et al.* (1971) *J. Biol. Chem.* **246**, 2211-2217; Tanford, C. (1978) *Science* **200**, 1012). The difference in hydrophobicity correlates with the observation that C166 becomes more efficient relative to Ser166 as the hydrophobicity of the substrates increases (i.e., Ala < Met < Tyr < Phe). Steric hindrance cannot explain these differences because serine is considerably smaller than cysteine (99 versus 118 \AA^3). Paul, I.C., *Chemistry of the -SH Group* (ed. S. Patai, Wiley Interscience, New York, 1974) pp. 111-149.

E. Production of an Elastase-Like Specificity in Subtilisin

The I166 mutation illustrates particularly well that large changes in specificity can be produced by altering the structure and hydrophobicity of the S-1 subsite by a single mutation (Figure 17). Progressing through the small hydrophobic substrates, a maximal specificity improvement over wild type occurs for the Val substrate (16 fold in k_{cat}/K_m). As the substrate side chain size increases, these enhancements shrink to near unity (i.e., Leu and His substrates). The I166 enzyme becomes poorer against larger aromatic substrates of increasing size (e.g., I166 is over 1,000 fold worse against the Tyr substrate than is Gly166). We interpret the increase in catalytic efficiency toward the small hydrophobic substrates for I166 compared to Gly166 to the greater hydrophobicity of isoleucine (i.e., -1.8 kcal/mol versus 0). Nozaki,

Y., et al. (1971) J. Biol. Chem. 246, 2211-2217; Tanford, C. (1978) Science 200, 1012. The decrease in catalytic efficiency toward the very large substrates for I166 versus Gly166 is attributed to steric repulsion.

5

The specificity differences between Gly166 and I166 are similar to the specificity differences between chymotrypsin and the evolutionary relative, elastase (Harper, J.W., et al (1984) Biochemistry 23, 10 2995-3002). In elastase, the bulky amino acids, Thr and Val, block access to the P-1 binding site for large hydrophobic substrates that are preferred by chymotrypsin. In addition, the catalytic efficiencies toward small hydrophobic substrates are greater for 15 elastase than for chymotrypsin as we observe for I166 versus Gly166 in subtilisin.

20

Substitution of Ionic Amino Acids for Gly166

25

The construction of subtilisin mutants containing the substitution of the ionic amino acids Asp, Asn, Gln, Lys and Arg are disclosed in EPO Publication No. 0130756. The present example describes the construction of the mutant subtilisin containing Glu at position 166 (E166) and presents substrate specificity data on these mutants. Further data on position 166 and 156 single and double mutants is 30 presented infra.

35

p_A166, described in Example 3, was digested with SacI and XmaI. The double strand DNA cassette (underlined and overlined) of line 4 in Figure 13 contained the

triplet GAA for the codon 166 to encode the replacement of Glu for Gly166. This mutant plasmid designated pQ166 was propagated in BG2036 as described. This mutant subtilisin, together with the other mutants containing ionic substituent amino acids at residue 166, were isolated as described and further analyzed for variations in substrate specificity.

Each of these mutants was analyzed with the tetrapeptide substrates, succinyl-L-AlaL-AlaProL-X-p-nitroanilide, where X was Phe, Ala and Glu.

The results of this analysis are shown in Table IX.

TABLE IX

	<u>Position 166</u>	<u>P-1 Substrate</u> (kcat/Km x 10 ⁻⁴)		
		<u>Phe</u>	<u>Ala</u>	<u>Glu</u>
20	Gly (wild type)	36.0	1.4	0.002
	Asp (D)	0.5	0.4	<0.001
	Glu (E)	3.5	0.4	<0.001
	Asn (N)	18.0	1.2	0.004
	Gln (Q)	57.0	2.6	0.002
25	Lys (K)	52.0	2.8	1.2
	Arg (R)	42.0	5.0	0.08

These results indicate that charged amino acid substitutions at Gly166 have improved catalytic efficiencies (kcat/Km) for oppositely charged P-1 substrates (as much as 500 fold) and poorer catalytic efficiency for like charged P-1 substrates.

EXAMPLE 5

Substitution of Glycine at Position 169

5 The substitution of Gly169 in B. amyloliquefaciens subtilisin with Ala and Ser is described in EPO Publication No. 0130756. The same method was used to make the remaining 17 mutants containing all other substituent amino acids for position 169.

10 The construction protocol is summarized in Figure 18. The overscored and underscored double stranded DNA cassettes used contained the following triplet encoding the substitution of the indicated amino acid at residue 169.

15	GCT	A	ATG	M
	TGT	C	AAC	N
	GAT	D	CCT	P
	GAA	E	CAA	Q
	TTC	F	AGA	R
20	GGC	G	AGC	S
	CAC	H	ACA	T
	ATC	I	GTT	V
	AAA	K	TGG	W
	CTT	L	TAC	Y

25 Each of the plasmids containing a substituted Gly169 was designated pX169, where X represents the substituent amino acid. The mutant subtilisins were similarly designated.

30 Two of the above mutant subtilisins, Al69 and Sl69, were analyzed for substrate specificity against synthetic substrates containing Phe, Leu, Ala and Arg in the P-1 position. The following results are shown 35 in Table X.

TABLE X

Effect of Serine and Alanine Mutations
at Position 169 on P-1 Substrate Specificity

<u>Position 169</u>	P-1 Substrate (kcat/Km x 10 ⁻⁴)			
	Phe	Leu	Ala	Arg
Gly (wild type)	40	10	1	0.4
A169	120	20	1	0.9
S169	50	10	1	0.6

10

These results indicate that substitutions of Ala and Ser at Gly169 have remarkably similar catalytic efficiencies against a range of P-1 substrates compared to their position 166 counterparts. This is probably because position 169 is at the bottom of the P-1 specificity subsite.

EXAMPLE 6

20

Substitution at Position 104

Tyr104 has been substituted with Ala, His, Leu, Met and Ser. The method used was a modification of the site directed mutagenesis method. According to the protocol of Figure 19, a primer (shaded in line 4) introduced a unique HindIII site and a frame shift mutation at codon 104. Restriction-purification for the unique HindIII site facilitated the isolation of the mutant sequence (line 4). Restriction-selection against this HindIII site using primers in line 5 was used to obtain position 104 mutants.

35

The following triplets were used in the primers of Figure 19, line 5 for the 104 codon which substituted the following amino acids.

	GCT	A	TTC	F
5	ATG	M	CCT	P
	CTT	L	ACA	T
	AGC	S	TGG	W
	CAC	H	TAC	Y
	CAA	Q	GTT	V
10	GAA	E	AGA	R
	GGC	G	AAC	N
	ATC	I	GAT	D
	AAA	K	TGT	C

15 The substrates in Table XI were used to analyze the substrate specificity of these mutants. The results obtained for H104 subtilisin are shown in Table XI.

20 TABLE XI

Substrate	kcat		Km		Kcat/Km	
	WT	H104	WT	H104	WT	H104
25 sAAPFPpNA	50.0	22.0	1.4×10^{-4}	7.1×10^{-4}	3.6×10^5	3.1×10^4
sAAPApNA	3.2	2.0	2.3×10^{-4}	1.9×10^{-3}	1.4×10^4	1×10^3
sFAPFPpNA	26.0	38.0	1.8×10^{-4}	4.1×10^{-4}	1.5×10^5	9.1×10^4
sFAPApNA	0.32	2.4	7.3×10^{-5}	1.5×10^{-4}	4.4×10^3	1.6×10^4

30 From these data it is clear that the substitution of His for Tyr at position 104 produces an enzyme which is more efficient (higher kcat/Km) when Phe is at the P-4 substrate position than when Ala is at the P-4 substrate position.

EXAMPLE 7

Substitution of Ala152

5 Ala152 has been substituted by Gly and Ser to determine the effect of such substitutions on substrate specificity.

10 The wild type DNA sequence was mutated by the V152/P153 primer (Figure 20, line 4) using the above restriction-purification approach for the new KpnI site. Other mutant primers (shaded sequences Figure 20; S152, line 5 and G152, line 6) mutated the new KpnI site away and such mutants were isolated using the restriction-selection procedure as described above 15 for loss of the KpnI site.

20 The results of these substitutions for the above synthetic substrates containing the P-1 amino acids Phe, Leu and Ala are shown in Table XII.

TABLE XII

25 <u>Position 152</u>	<u>P-1 Substrate</u>		
	(kcat/Km $\times 10^{-4}$)		
	<u>Phe</u>	<u>Leu</u>	<u>Ala</u>
Gly (G)	0.2	0.4	<0.04
Ala (wild type)	40.0	10.0	1.0
30 Ser (S)	1.0	0.5	0.2

These results indicate that, in contrast to positions 166 and 169, replacement of Ala152 with Ser or Gly 35 causes a dramatic reduction in catalytic efficiencies

across all substrates tested. This suggests Ala152, at the top of the S-1 subsite, may be the optimal amino acid because Ser and Gly are homologous Ala substitutes.

5

EXAMPLE 8Substitution at Position 156

Mutants containing the substitution of Ser and Gln for Glu156 have been constructed according to the overall method depicted in Figure 21. This method was designed to facilitate the construction of multiple mutants at position 156 and 166 as will be described hereinafter. However, by regenerating the wild type Gly166, single mutations at Glu156 were obtained.

The plasmid pΔ166 is already depicted in line 2 of Figure 13. The synthetic oligonucleotides at the top right of Figure 21 represent the same DNA cassettes depicted in line 4 of Figure 13. The plasmid p166 in Figure 21 thus represents the mutant plasmids of Examples 3 and 4. In this particular example, p166 contains the wild type Gly166.

Construction of position 156 single mutants were prepared by ligation of the three fragments (1-3) indicated at the bottom of Figure 21. Fragment 3, containing the carboxy-terminal portion of the subtilisin gene including the wild type position 166 codon, was isolated as a 610 bp SacI-BamHI fragment. Fragment 1 contained the vector sequences, as well as the amino-terminal sequences of the subtilisin gene through codon 151. To produce fragment 1, a unique KpnI site at codon 152 was introduced into the wild type subtilisin sequence from pS4.5. Site-directed

mutagenesis in M13 employed a primer having the sequence 5'-TA-GTC-GTT-GCG-GTA-CCC-GGT-AAC-GAA-3' to produce the mutation. Enrichment for the mutant sequence was accomplished by restriction with KpnI, purification and self ligation. The mutant sequence containing the KpnI site was confirmed by direct plasmid sequencing to give pV152. pV152 (~1 μ g) was digested with KpnI and treated with 2 units of DNA polymerase I large fragment (Klenow fragment from Boeringer-Mannheim) plus 50 μ M deoxynucleotide triphosphates at 37°C for 30 min. This created a blunt end that terminated with codon 151. The DNA was extracted with 1:1 volumes phenol and CHCl₃, and DNA in the aqueous phase was precipitated by addition of 0.1 volumes 5M ammonium acetate and two volumes ethanol. After centrifugation and washing the DNA pellet with 70% ethanol, the DNA was lyophilized. DNA was digested with BamHI and the 4.6kb piece (fragment 1) was purified by acrylamide gel electrophoresis followed by electroelution. Fragment 2 was a duplex synthetic DNA cassette which when ligated with fragments 1 and 3 properly restored the coding sequence except at codon 156. The top strand was synthesized to contain a glutamine codon, and the complementary bottom strand coded for serine at 156. Ligation of heterophosphorylated cassettes leads to a large and favorable bias for the phosphorylated over the non-phosphorylated oligonucleotide sequence in the final segregated plasmid product. Therefore, to obtain Q156 the top strand was phosphorylated, and annealed to the non-phosphorylated bottom strand prior to ligation. Similarly, to obtain S156 the bottom strand was phosphorylated and annealed to the non-phosphorylated top strand. Mutant sequences were isolated after ligation and transformation, and were confirmed by restriction analysis and DNA sequencing

as before. To express variant subtilisins, plasmids were transformed into a subtilisin-neutral protease deletion mutant of *B. subtilis*, BG2036, as previously described. Cultures were fermented in shake flasks for 24 h at 37°C in LB media containing 12.5 mg/mL chloramphenicol and subtilisin was purified from culture supernatants as described. Purity of subtilisin was greater than 95% as judged by SDS PAGE.

These mutant plasmids designated pS156 and pQ156 and mutant subtilisins designated S156 and Q156 were analyzed with the above synthetic substrates where P-1 comprised the amino acids Glu, Gln, Met and Lys. The results of this analyses are presented in Example 9.

15

EXAMPLE 9Multiple Mutants With Altered Substrate Specificity - Substitution at Positions 156 and 166

20 Single substitutions of position 166 are described in Examples 3 and 4. Example 8 describes single substitutions at position 156 as well as the protocol of Figure 21 whereby various double mutants comprising the substitution of various amino acids at positions 25 156 and 166 can be made. This example describes the construction and substrate specificity of subtilisin containing substitutions at position 156 and 166 and summarizes some of the data for single and double mutants at positions 156 and 166 with various substrates.

K166 is a common replacement amino acid in the 156/166 mutants described herein. The replacement of Lys for

35

Gly166 was achieved by using the synthetic DNA cassette at the top right of Figure 21 which contained the triplet AAA for NNN. This produced fragment 2 with Lys substituting for Gly166.

5 The 156 substituents were Gln and Ser. The Gln and Ser substitutions at Gly156 are contained within fragment 3 (bottom right Figure 21).

10 The multiple mutants were produced by combining fragments 1, 2 and 3 as described in Example 8. The mutants Q156/K166 and S156/K166 were selectively generated by differential phosphorylation as described. Alternatively, the double 156/166 mutants, c.f. Q156/K166 and S156/K166, were prepared by ligation of the 4.6kb SacI-BamHI fragment from the relevant p156 plasmid containing the 0.6kb SacI-BamHI 15 fragment from the relevant p166 plasmid.

20 These mutants, the single mutant K166, and the S156 and Q156 mutants of Example 8 were analyzed for substitute specificity against synthetic polypeptides containing Phe or Glu as the P-1 substrate residue. The results are presented in Table XIII.

25

30

35

0251446

TABLE XIII

Enzymes Compared (b)	Substrate	P-1		Km	kcat/Km (mutant)	
		Residue	kcat			kcat/Km(wt)
K166	Phe	50.00	1.4x10 ⁻⁴	3.6x10 ⁵	(1)	
	Glu	0.54	3.4x10 ⁻²	1.6x10 ¹	(1)	
	Phe	20.00	4.0x10 ⁻⁵	5.2x10 ⁵	1.4	
	Glu	0.70	5.6x10 ⁻⁵	1.2x10 ⁴	750	
Q156/K166	Phe	30.00	1.9x10 ⁻⁵	1.6x10 ⁶	4.4	
	Glu	1.60	3.1x10 ⁻⁵	5.0x10 ⁴	3100	
	Phe	30.00	1.8x10 ⁻⁵	1.6x10 ⁶	4.4	
	Glu	0.60	3.9x10 ⁻⁵	1.6x10 ⁴	1000	
S156/K166	Phe	34.00	4.7x10 ⁻⁵	7.3x10 ⁵	2.0	
	Glu	0.40	1.8x10 ⁻³	1.1x10 ²	6.9	
	Phe	48.00	4.5x10 ⁻⁵	1.1x10 ⁶	3.1	
	Glu	0.90	3.3x10 ⁻³	2.7x10 ²	17	

As can be seen in Table XIV, either of these single mutations improve enzyme performance upon substrates with glutamate at the P-1 enzyme binding site. When these single mutations were combined, the resulting multiple enzyme mutants are better than either parent. These single or multiple mutations also alter the 5 relative pH activity profiles of the enzymes as shown in Figure 23.

To isolate the contribution of electrostatics to substrate specificity from other chemical binding forces, these various single and double mutants were analyzed for their ability to bind and cleave synthetic substrates containing Glu, Gln, Met and Lys as the P-1 substrate amino acid. This permitted comparisons between side-chains that were more 10 sterically similar but differed in charge (e.g., Glu versus Gln, Lys versus Met). Similarly, mutant enzymes were assayed against homologous P-1 substrates that were most sterically similar but differed in charge (Table XIV).

15
20

25

30

35

TABLE XIV

Kinetics of Position 156/166 Subtilisins
Determined for Different P1 Substrates

Enzyme Position (a)	Net Charge (b)	P-1 Substrate log kcat/Km (log 1/Km) (c)			
		Glu	Gln	Met	
156 166				Lys	
Glu Asp	-2	n.d.	3.02 (2.56)	3.93 (2.74)	4.23 (3.00)
Glu Glu	-2	n.d.	3.06 (2.91)	3.86 (3.28)	4.48 (3.69)
Glu Asn	-1	1.62 (2.22)	3.85 (3.14)	4.99 (3.85)	4.15 (2.88)
Glu Gln	-1	1.20 (2.12)	4.36 (3.64)	5.43 (4.36)	4.10 (3.15)
Gln Asp	-1	1.30 (1.79)	3.40 (3.08)	4.94 (3.87)	4.41 (3.22)
Ser Asp	-1	1.23 (2.13)	3.41 (3.09)	4.67 (3.68)	4.24 (3.07)
Glu Met	-1	1.20 (2.30)	3.89 (3.19)	5.64 (4.83)	4.70 (3.89)
Glu Ala	-1	n.d.	4.34 (3.55)	5.65 (4.46)	4.90 (3.24)
Glu Gly (wt)	-1	1.20 (1.47)	3.85 (3.35)	5.07 (3.97)	4.60 (3.13)
Gln Gly	0	2.42 (2.48)	4.53 (3.81)	5.77 (4.61)	3.76 (2.82)
Ser Gly	0	2.31 (2.73)	4.09 (3.68)	5.61 (4.55)	3.46 (2.74)
Gln Asn	0	2.04 (2.72)	4.51 (3.76)	5.79 (4.66)	3.75 (2.74)
Ser Asn	0	1.91 (2.78)	4.57 (3.82)	5.72 (4.64)	3.68 (2.80)
Glu Arg	0	2.91 (3.30)	4.26 (3.50)	5.32 (4.22)	3.19 (2.80)
Glu Lys	0	4.09 (4.25)	4.70 (3.88)	6.15 (4.45)	4.23 (2.93)
Gln Lys	+1	4.70 (4.50)	4.64 (3.68)	5.97 (4.68)	3.23 (2.75)
Ser Lys	+1	4.21 (4.40)	4.84 (3.94)	6.16 (4.90)	3.73 (2.84)

Maximum difference:

log kcat/Km (log 1/Km) (d) 3.5 (3.0) 1.8 (1.4) 2.3 (2.2) -1.3 (-1.0)

Footnotes to Table XIV:

(a) *B. subtilis*, BG 2036, expressing indicated variant subtilisin were fermented and enzymes purified as previously described (Estell, et al. (1985) *J. Biol. Chem.* 260, 6518-6521). Wild type subtilisin is indicated (wt) containing Glu156 and Gly166.

5 (b) Net charge in the P-1 binding site is defined as the sum of charges from positions 156 and 166 at pH 8.6.

10 (c) Values for $k_{cat}(s^{-1})$ and $K_m(M)$ were measured in 0.1M Tris pH 8.6 at 25°C as previously described against P-1 substrates having the form succinyl-L-AlaL-AlaL-ProL-[X]-p-nitroanilide, where X is the indicated P-1 amino acid. Values for $\log k_{cat}/K_m$ are shown inside parentheses. All errors in determination of k_{cat}/K_m and $1/K_m$ are below 5%.

15 (d) Because values for Glu156/Asp166(D166) are too small to determine accurately, the maximum difference taken for GluP-1 substrate is limited to a charge range of +1 to -1 charge change.

n.d. = not determined

The k_{cat}/K_m ratios shown are the second order rate constants for the conversion of substrate to product, and represent the catalytic efficiency of the enzyme.

20 These ratios are presented in logarithmic form to scale the data, and because $\log k_{cat}/K_m$ is proportional to the lowering of transition-state activation energy (ΔG_p). Mutations at position 156 and 166 produce changes in catalytic efficiency toward Glu, Gln, Met and Lys P-1 substrates of 3100, 60, 200 and 20 fold, respectively. Making the P-1 binding-site more positively charged [e.g., compare Gln156/Lys166 (Q156/K166) versus Glu156/Met166 (Glu156/M166)] dramatically increased k_{cat}/K_m toward the Glu P-1 substrate (up to 3100 fold), and decreased the catalytic efficiency toward the Lys P-1 substrate (up to 10 fold). In addition, the results show that the catalytic efficiency of wild type enzyme can be

greatly improved toward any of the four P-1 substrates by mutagenesis of the P-1 binding site.

The changes in k_{cat}/K_m are caused predominantly by changes in $1/K_m$. Because $1/K_m$ is approximately equal to $1/K_s$, the enzyme-substrate association constant, 5 the mutations primarily cause a change in substrate binding. These mutations produce smaller effects on k_{cat} that run parallel to the effects on $1/K_m$. The changes in k_{cat} suggest either an alteration in binding in the P-1 binding site in going from the 10 Michaelis-complex E-S) to the transition-state complex (E-S \neq) as previously proposed (Robertus, J.D., *et al.* (1972) *Biochemistry* 11, 2439-2449; Robertus, J.D., *et al.* (1972) *Biochemistry* 11, 4293-4303), or change in the position of the scissile peptide bond over the 15 catalytic serine in the E'S complex.

Changes in substrate preference that arise from changes in the net charge in the P-1 binding site show trends that are best accounted for by electrostatic effects (Figure 2B). As the P-1 binding cleft becomes more positively charged, the average catalytic efficiency increases much more for the Glu P-1 substrate than for its neutral and isosteric P-1 homolog, Gln (Figure 2B). Furthermore, at the 20 positive extreme both substrates have nearly identical 25 catalytic efficiencies.

In contrast, as the P-1 site becomes more positively charged the catalytic efficiency toward the Lys P-1 substrate decreases, and diverges sharply from its neutral and isosteric homolog, Met (Figure 2B). The 30 similar and parallel upward trend seen with increasing positive charge for the Met and Glu P-1 substrates probably results from the fact that all the substrates

are succinylated on their amino-terminal end, and thus carry a formal negative charge.

The trends observed in log kcat/Km are dominated by changes in the Km term (Figures 28C and 28D). As the pocket becomes more positively charged, the log 1/Km values converge for Glu and Gln P-1 substrates (Figure 5 28C), and diverge for Lys and Met P-1 substrates (Figure 28D). Although less pronounced effects are seen in log kcat, the effects of P-1 charge on log kcat parallel those seen in log 1/Km and become larger 10 as the P-1 pocket becomes more positively charged. This may result from the fact that the transition-state is a tetrahedral anion, and a net positive charge in the enzyme may serve to provide some added stabilization to the transition-state.

15 The effect of the change in P-1 binding-site charge on substrate preference can be estimated from the differences in slopes between the charged and neutral isosteric P-1 substrates (Figure 28B). The average 20 change in substrate preference (Δ log kcat/Km) between charged and neutral isosteric substrates increases roughly 10-fold as the complementary charge on the enzyme increases (Table XV). When comparing Glu versus Lys, this difference is 100-fold and the change 25 in substrate preference appears predominantly in the Km term.

TABLE XV

0251446

Differential Effect on Binding Site
Charge on log kcat/Km or (log 1/Km)
for P-1 Substrates that Differ in Charge^(a)

5	Change in P-1 Binding Site Charge ^(b)	$\Delta \log k_{cat}/K_m$		$(\Delta \log 1/K_m)$
		GluGln	MetLys	GluLys
	-2 to -1	n.d.	1.2 (1.2)	n.d.
	-1 to 0	0.7 (0.6)	1.3 (0.8)	2.1 (1.4)
	0 to +1	1.5 (1.3)	0.5 (0.3)	2.0 (1.5)
10	Avg. change in log kcat/K _m or (log 1/K _m) ^m per unit charge change		1.1 (1.0)	1.0 (0.8), 2.1 (1.5)

- 15 (a) The difference in the slopes of curves were taken between the P-1 substrates over the charge interval given for log (kcat/Km) (Figure 28A, B) and (log 1/Km) (Figure 28C, D). Values represent the differential effect a charge change has in distinguishing the substrates that are compared.
- 20 (b) Charge in P-1 binding site is defined as the sum of charges from positions 156 and 166.

25

30

35

0251446

The free energy of electrostatic interactions in the structure and energetics of salt-bridge formation depends on the distance between the charges and the microscopic dielectric of the media. To dissect these structural and microenvironmental effects, the
5 energies involved in specific salt-bridges were evaluated. In addition to the possible salt-bridges shown (Figures 29A and 29B), reasonable salt-bridges can be built between a Lys P-1 substrate and Asp at position 166, and between a Glu P-1 substrate and a
10 Lys at position 166 (not shown). Although only one of these structures is confirmed by X-ray crystallography (Poulos, T.L., *et al.* (1976) *J. Mol. Biol.* **257** 1097-1103), all models have favorable torsion angles
15 (Sielecki, A.R., *et al.* (1979) *J. Mol. Biol.* **134**, 781-804), and do not introduce unfavorable van der Waals contacts.

The change in charged P-1 substrate preference brought about by formation of the model salt-bridges above are
20 shown in Table XVI.

25

30

35

TABLE XVI

Effect of Salt Bridge Formation Between Enzyme
(a)
and Substrate on P1 Substrate Preference

Enzymes Compared (b)	Enzyme Position Changed	P-1 Substrates Compared	Substrate (d) Preference		Change in Substrate Preference $\Delta \log (k_{cat}/K_m)$ (1-2)
			$\Delta \log (k_{cat}/K_m)$ 1	$\Delta \log (k_{cat}/K_m)$ 2	
Glu156/Asp166	Gln156/Asp166	156	LysMet	+0.30	-0.53
Glu156/Asn166	Gln156/Asn166	156	LysMet	-0.84	-2.04
Glu156/Gly166	Gln156/Gly166	156	LysMet	-0.47	-2.10
Glu156/Lsy-166	Gln156/Lys166	156	LysMet	-1.92	-2.74
					Ave $\Delta \log (k_{cat}/K_m)$ 1.10 ± 0.3
Glu156/Asp166	Glu156/Asn166	166	LysMet	+0.30	-0.84
Glu156/Glu166	Glu156/Glu166	166	LysMet	+0.62	-1.33
Gln156/Asp166	Gln156/Asn166	166	LysMet	-0.53	-2.04
Ser156/Asp166	Ser156/Asn166	166	LysMet	-0.43	-2.04
Glu156/Lys166	Glu156/Met166	166	GluGln	-0.63	-2.69
					Ave $\Delta \log (k_{cat}/K_m)$ 1.70 ± 0.3

Footnotes to Table XVI:

(a) Molecular modeling shows it is possible to form a salt bridge between the indicated charged P-1 substrate and a complementary charge in the P-1 binding site of the enzyme at the indicated position changed.

5 (b) Enzymes compared have sterically similar amino acid substitutions that differ in charge at the indicated position.

10 (c) The P-1 substrates compared are structurally similar but differ in charge. The charged P-1 substrate is complementary to the charge change at the position indicated between enzymes 1 and 2.

(d) Data from Table XIV was used to compute the difference in log (kcat/Km) between the charged and the non-charged P-1 substrate (i.e., the substrate preference). The substrate preference is shown separately for enzyme 1 and 2.

15 (e) The difference in substrate preference between enzyme 1 (more highly charged) and enzyme 2 (more neutral) represents the rate change accompanying the electrostatic interaction.

20 The difference between catalytic efficiencies (i.e., $\Delta \log k_{cat}/K_m$) for the charged and neutral P-1 substrates (e.g., Lys minus Met or Glu minus Gln) give the substrate preference for each enzyme. The change in substrate preference ($\Delta \Delta \log k_{cat}/K_m$) between the charged and more neutral enzyme homologs (e.g., 25 Glu156/Gly166 minus Gln156(Q156)/Gly166) reflects the change in catalytic efficiency that may be attributed solely to electrostatic effects.

30 These results show that the average change in substrate preference is considerably greater when electrostatic substitutions are produced at position 166 (50-fold in k_{cat}/K_m) versus position 156 (12-fold in k_{cat}/K_m). From these $\Delta \Delta \log k_{cat}/K_m$ values, an average change in transition-state stabilization 35 energy can be calculated of -1.5 and -2.4 kcal/mol for

substitutions at positions 156 and 166, respectively. This should represent the stabilization energy contributed from a favorable electrostatic interaction for the binding of free enzyme and substrate to form the transition-state complex.

5

EXAMPLE 10

Substitutions at Position 217

10 Tyr217 has been substituted by all other 19 amino acids. Cassette mutagenesis as described in EPO publication No. 0130756 was used according to the protocol of Figure 22. The EcoRV restriction site was used for restriction-purification of pΔ217.

15 Since this position is involved in substrate binding, mutations here effect kinetic parameters of the enzyme. An example is the substitution of Leu for Tyr at position 217. For the substrate sAAPFpNa, this mutant has a kcat of 277 5' and a Km of 4.7×10^{-4} with 20 a kcat/Km ratio of 6×10^5 . This represents a 5.5-fold increase in kcat with a 3-fold increase in Km over the wild type enzyme.

25 In addition, replacement of Tyr217 by Lys, Arg, Phe or Leu results in mutant enzymes which are more stable at pHs of about 9-11 than the WT enzyme. Conversely, replacement of Tyr217 by Asp, Glu, Gly or Pro results in enzymes which are less stable at pHs of about 9-11 than the WT enzyme.

30

35

EXAMPLE 11

Multiple Mutants Having
Altered Thermal Stability

5 B. amyloliquefacien subtilisin does not contain any cysteine residues. Thus, any attempt to produce thermal stability by Cys cross-linkage required the substitution of more than one amino acid in subtilisin with Cys. The following subtilisin residues were multiply substituted with cysteine:

10 Thr22/Ser87
 Ser24/Ser87

15 Mutagenesis of Ser24 to Cys was carried out with a 5' phosphorylated oligonucleotide primer having the sequence

5'-pC-TAC-ACT-GGA-TGC-AAT-GTT-AAA-G-3'.

(Asterisks show the location of mismatches and the underlined sequence shows the position of the altered Sau3A site.) The B. amyloliquefaciens subtilisin gene on a 1.5 kb EcoRI-BAMHI fragment from pS4.5 was cloned into M13mp11 and single stranded DNA was isolated. This template (M13mp11SUBT) was double primed with the 5' phosphorylated M13 universal sequencing primer and the mutagenesis primer. Adelman, et al. (1983) DNA 2, 183-193. The heteroduplex was transfected into competent JM101 cells and plaques were probed for the mutant sequence (Zoller, M.J., et al. (1982) Nucleic Acid Res. 10, 6487-6500; Wallace, et al. (1981) Nucleic Acid Res. 9, 3647-3656) using a tetramethylammonium chloride hybridization protocol (Wood, et al. (1985) Proc. Natl. Acad. Sci. USA 82, 1585-1588). The Ser87 to Cys mutation was prepared in

a similar fashion using a 5' phosphorylated primer having the sequence

5'-pGGC-GTT-GCG-CCA-TGC-GCA-TCA-CT-3'.

(The asterisk indicates the position of the mismatch and the underlined sequence shows the position of a new MstI site.) The C24 and C87 mutations were obtained at a frequency of one and two percent, respectively. Mutant sequences were confirmed by dideoxy sequencing in M13.

Mutagenesis of Tyr21/Thr22 to A21/C22 was carried out with a 5' phosphorylated oligonucleotide primer having the sequence

5'-pAC-TCT-CAA-GGC-GC*TGT-GGC*TCA-AAT-GTT-3'.

(The asterisks show mismatches to the wild type sequence and the underlined sequence shows the position of an altered Sau3A site.) Manipulations for heteroduplex synthesis were identical to those described for C24. Because direct cloning of the heteroduplex DNA fragment can yield increased frequencies of mutagenesis, the EcoRI-BamHI subtilisin fragment was purified and ligated into pBS42. E. coli MM 294 cells were transformed with the ligation mixture and plasmid DNA was purified from isolated transformants. Plasmid DNA was screened for the loss of the Sau3A site at codon 23 that was eliminated by the mutagenesis primer. Two out of 16 plasmid preparations had lost the wild type Sau3A site. The mutant sequence was confirmed by dideoxy sequencing in M13.

Double mutants, C22/C87 and C24/C87, were constructed by ligating fragments sharing a common ClaI site that separated the single parent cystine codons. Specifically, the 500 bp EcoRI-ClaI fragment containing the 5' portion of the subtilisin gene (including codons 22 and 24) was ligated with the 4.7 kb ClaI-EcoRI fragment that contained the 3' portion of the subtilisin gene (including codon 87) plus pBS42 vector sequence. E. coli MM 294 was transformed with ligation mixtures and plasmid DNA was purified from individual transformants. Double-cysteine plasmid constructions were identified by restriction site markers originating from the parent cysteine mutants (i.e., C22 and C24, Sau3A minus; Cys87, MstI plus). Plasmids from E. coli were transformed into B. subtilis BG2036. The thermal stability of these mutants as compared to wild type subtilisin are presented in Figure 30 and Tables XVII and XVIII.

20

25

30

35

TABLE XVII

Effect of DTT on the Half-Time of
Autolytic Inactivation of Wild-Type
and Disulfide Mutants of Subtilisin*

Enzyme	$t_{\frac{1}{2}}$		-DTT/+DTT
	-DDT	+DTT	
	min		
Wild-type	95	85	1.1
C22/C87	44	25	1.8
C24/C87	92	62	1.5

(*) Purified enzymes were either treated or not
treated with 25mM DTT and dialyzed with or without
10mM DTT in 2mM CaCl_2 , 50mM Tris (pH 7.5) for 14 hr.
at 4°C. Enzyme concentrations were adjusted to 80 μ l
aliquots were quenched on ice and assayed for residual
activity. Half-times for autolytic inactivation were
determined from semi-log plots of \log_{10} (residual
activity) versus time. These plots were linear for
over 90% of the inactivation.

25

30

35

TABLE XVIII

Effect of Mutations in Subtilisin
on the Half-Time of Autolytic
Inactivation at 58°C*

	<u>Enzyme</u>	<u>t_{1/2}</u> min
5	Wild-type	120
	C22	22
	C24	120
	C87	104
10	C22/C87	43
	C24/C87	115

(*) Half-times for autolytic inactivation were determined for wild-type and mutant subtilisins as described in the legend to Table III. Unpurified and non-reduced enzymes were used directly from *B. subtilis* culture supernatants.

The disulfides introduced into subtilisin did not improve the autolytic stability of the mutant enzymes when compared to the wild-type enzyme. However, the disulfide bonds did provide a margin of autolytic stability when compared to their corresponding reduced double-cysteine enzyme. Inspection of a highly refined x-ray structure of wild-type *B. amyloliquefaciens* subtilisin reveals a hydrogen bond between Thr22 and Ser87. Because cysteine is a poor hydrogen donor or acceptor (Paul, I.C. (1974) in Chemistry of the -SH Group (Patai, S., ed.) pp. 111-149, Wiley Interscience, New York) weakening of 22/87 hydrogen bond may explain why the C22 and C87 single-cysteine mutant proteins are less autolytically stable than either C24 or wild-type (Table XVIII). The fact that C22 is less autolytically stable than C87 may be the result of the Tyr21A mutation (Table XVIII). Indeed,

-104-

construction and analysis of Tyr21/C22 shows the mutant protein has an autolytic stability closer to that of C87. In summary, the C22 and C87 of single-cysteine mutations destabilize the protein toward autolysis, and disulfide bond formation increases the stability to a level less than or equal to that of wild-type enzyme.

EXAMPLE 12

10 Multiple Mutants Containing Substitutions
15 at Position 222 and Position 166 or 169

20 Double mutants 166/222 and 169/222 were prepared by ligating together (1) the 2.3kb AcaII fragment from pS4.5 which contains the 5' portion of the subtilisin gene and vector sequences, (2) the 200bp AvaII fragment which contains the relevant 166 or 169 mutations from the respective 166 or 169 plasmids, and (3) the 2.2kb AvaII fragment which contains the relevant 222 mutation 3' and of the subtilisin genes and vector sequence from the respective p222 plasmid.

25 Although mutations at position 222 improve oxidation stability they also tend to increase the Km. An example is shown in Table XIX. In this case the A222 mutation was combined with the K166 mutation to give an enzyme with kcat and Km intermediate between the two parent enzymes.

30

35

TABLE XIX

	<u>kcat</u>	<u>Km</u>
5	WT	50×10^{-4}
	A222	9.9×10^{-4}
	K166	3.7×10^{-5}
	K166/A222	2.0×10^{-4}

substrate sAAPFpNA

10

EXAMPLE 13

15 Multiple Mutants Containing
 Substitutions at Positions 50, 156,
 166, 217 and Combinations Thereof

20 The double mutant S156/A169 was prepared by ligation
 of two fragments, each containing one of the relevant
 mutations. The plasmid pS156 was cut with XmaI and
 treated with S1 nuclease to create a blunt end at
 codon 167. After removal of the nuclease by
 phenol/chloroform extraction and ethanol precipita-
 tion, the DNA was digested with BamHI and the
 approximately 4kb fragment containing the vector plus
25 the 5' portion of the subtilisin gene through codon
 167 was purified.

30 The pA169 plasmid was digested with KpnI and treated
 with DNA polymerase Klenow fragment plus 50 μ M dNTPs
 to create a blunt end codon at codon 168. The Klenow
 was removed by phenol/chloroform extraction and
 ethanol precipitation. The DNA was digested with
 BamHI and the 590bp fragment including codon 168
 through the carboxy terminus of the subtilisin gene

35

was isolated. The two fragments were then ligated to give S156/A169.

Triple and quadruple mutants were prepared by ligating together (1) the 220bp PvuII/HaeII fragment containing the relevant 156, 166 and/or 169 mutations from the respective p156, p166 and/or p169 double or single mutant plasmid, (2) the 550bp HaeII/BamHI fragment containing the relevant 217 mutant from the respective p217 plasmid, and (3) the 3.9kb PvuII/BamHI fragment containing the F50 mutation and vector sequences.

10

The multiple mutant F50/S156/A169/L217, as well as B. amyloliquefaciens subtilisin, B. licheniformis subtilisin and the single mutant L217 were analyzed with the above synthetic polypeptides where the P-1 amino acid in the substrate was Lys, His, Ala, Gln, Tyr, Phe, Met and Leu. These results are shown in Figures 26 and 27.

20 These results show that the F50/S156/A169/L217 mutant has substrate specificity similar to that of the B. licheniformis enzyme and differs dramatically from the wild type enzyme. Although only data for the L217 mutant are shown, none of the single mutants (e.g., F50, S156 or A169) showed this effect. Although B. licheniformis differs in 88 residue positions from B. amyloliquefaciens, the combination of only these four mutations accounts for most of the differences in substrate specificity between the two enzymes.

30

EXAMPLE 14

Subtilisin Mutants Having Altered Alkaline Stability

A random mutagenesis technique was used to generate single and multiple mutations within the B.

35

5 amyloliquefaciens subtilisin gene. Such mutants were screened for altered alkaline stability. Clones having increased (positive) alkaline stability and decreased (negative) alkaline stability were isolated and sequenced to identify the mutations within the subtilisin gene. Among the positive clones, the mutants V107 and R213 were identified. These single mutants were subsequently combined to produce the mutant V107/R213.

10 One of the negative clones (V50) from the random mutagenesis experiments resulted in a marked decrease in alkaline stability. Another mutant (P50) was analyzed for alkaline stability to determine the effect of a different substitution at position 50. The F50 mutant was found to have a greater alkaline 15 stability than wild type subtilisin and when combined with the double mutant V107/R213 resulted in a mutant having an alkaline stability which reflected the aggregate of the alkaline stabilities for each of the individual mutants.

20 The single mutant R204 and double mutant C204/R213 were identified by alkaline screening after random cassette mutagenesis over the region from position 197 to 228. The C204/R213 mutant was thereafter modified 25 to produce mutants containing the individual mutations C204 and R213 to determine the contribution of each of the individual mutations. Cassette mutagenesis using pooled oligonucleotides to substitute all amino acids at position 204, was utilized to determine which substitution at position 204 would maximize the increase in alkaline stability. The mutation from Lys213 to Arg was maintained constant for each of 30 these substitutions at position 204.

A. Construction of pB0180, an
E. coli-B. subtilis Shuttle Plasmid

The 2.9 kb EcoRI-BamHI fragment from pBR327 (Covarrubias, L., et al. (1981) Gene 13, 25-35) was ligated to the 3.7kb EcoRI-BamHI fragment of pBD64 (Gryczan, T., et al. (1980) J. Bacteriol., 141, 246-253) to give the recombinant plasmid pB0153. The unique EcoRI recognition sequence in pBD64 was eliminated by digestion with EcoRI followed by treatment with Klenow and deoxynucleotide triphosphates (Maniatis, T., et al. (eds.) (1982) in Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.). Blunt end ligation and transformation yielded pB0154. The unique AvaI recognition sequence in pB0154 was eliminated in a similar manner to yield pB0171. pB0171 was digested with BamHI and PvuII and treated with Klenow and deoxynucleotide triphosphates to create blunt ends. The 6.4 kb fragment was purified, ligated and transformed into LE392 cells (Enquist, L.W., et al. (1977) J. Mol. Biol. 111, 97-120), to yield pB0172 which retains the unique BamHI site. To facilitate subcloning of subtilisin mutants, a unique and silent KpnI site starting at codon 166 was introduced into the subtilisin gene from pS4.5 (Wells, J.A., et al. (1983) Nucleic Acids Res., 11, 7911-7925) by site-directed mutagenesis. The KpnI+ plasmid was digested with EcoRI and treated with Klenow and deoxynucleotide triphosphates to create a blunt end. The Klenow was inactivated by heating for 20 min at 68°C, and the DNA was digested with BamHI. The 1.5 kb blunt EcoRI-BamHI fragment containing the entire subtilisin was ligated with the 5.8 kb NruI-BamHI from pB0172 to yield pB0180. The ligation of the blunt NruI end to the blunt EcoRI end recreated an EcoRI

site. Proceeding clockwise around pB0180 from the EcoRI site at the 5' end of the subtilisin gene is the unique BamHI site at the 3' end of the subtilisin gene, the chloramphenicol and neomycin resistance genes and UB110 gram positive replication origin derived from pBD64, the ampicillin resistance gene and gram negative replication origin derived from pBR327.

5 B. Construction of Random Mutagenesis Library

10 The 1.5 kb EcoRI-BamHI fragment containing the *B. amyloliquefaciens* subtilisin gene (Wells et al., 1983) from pB0180 was cloned into M13mp11 to give M13mp11 SUBT essentially as previously described (Wells, J.A., et al. (1986) J. Biol. Chem., 261, 6564-6570).
15 Deoxyuridine containing template DNA was prepared according to Kunkel (Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA, 82 488-492). Uridine containing template DNA (Kunkel, 1985) was purified by CsCl density gradients (Maniatis, T. et al. (eds.) (1982)
20 in Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.). A primer (AvaI⁻) having the sequence

25 5' GAAAAAAGACCCTAGCGTCGCTTA^{*}

ending at codon -11, was used to alter the unique AvaI recognition sequence within the subtilisin gene. (The asterisk denotes the mismatches from the wild-type sequence and underlined is the altered AvaI site.)
30

35 The 5' phosphorylated AvaI primer (~320 pmol) and ~40 pmol (~120 μ g) of uridine containing M13mp11 SUBT template in 1.88 ml of 53 mM NaCl, 7.4 mM MgCl₂ and 7.4 mM Tris.HCl (pH 7.5) were annealed by heating to

90°C for 2 min. and cooling 15 min at 24°C (Fig. 31). Primer extension at 24°C was initiated by addition of 100 μ L containing 1 mM in all four deoxynucleotide triphosphates, and 20 μ l Klenow fragment (5 units/l). The extension reaction was stopped every 15 seconds over ten min by addition of 10 μ l 0.25 M EDTA (pH 8) to 5 50 μ l aliquots of the reaction mixture. Samples were pooled, phenol chlorophorm extracted and DNA was precipitated twice by addition of 2.5 vol 100% ethanol, and washed twice with 70% ethanol. The pellet was dried, and redissolved in 0.4 ml 1 mM EDTA, 10 10 mM Tris (pH 8).

Misincorporation of α -thiodeoxynucleotides onto the 3' ends of the pool of randomly terminated template was carried out by incubating four 0.2 ml solutions each 15 containing one-fourth of the randomly terminated template mixture (~20 μ g), 0.25 mM of a given α -thiodeoxynucleotide triphosphate, 100 units AMV polymerase, 50 mM KCL, 10 mM MgCl₂, 0.4 mM dithiothreitol, and 50 mM Tris (pH 8.3) (Champoux, 20 J.J. (1984) *Genetics*, 2, 454-464). After incubation at 37°C for 90 minutes, misincorporation reactions were sealed by incubation for five minutes at 37°C with 50 mM all four deoxynucleotide triphosphates (pH 8), and 50 units AMV polymerase. Reactions were 25 stopped by addition of 25 mM EDTA (final), and heated at 68°C for ten min to inactivate AMV polymerase. After ethanol precipitation and resuspension, synthesis of closed circular heteroduplexes was carried out for two days at 14°C under the same 30 conditions used for the timed extension reactions above, except the reactions also contained 1000 units T4 DNA ligase, 0.5 mM ATP and 1 mM β -mercaptoethanol. Simultaneous restriction of each heteroduplex pool with KpnI, BamHI, and EcoRI confirmed that the

extension reactions were nearly quantitative. Heteroduplex DNA in each reaction mixture was methylated by incubation with 80 μ M S-adenosylmethionine and 150 units dam methylase for 1 hour at 37°C. Methylation reactions were stopped by heating at 68°C for 15 min.

5

One-half of each of the four methylated heteroduplex reactions were transformed into 2.5 ml competent E. coli JM101 (Messing, J. (1979) Recombinant DNA Tech. Bull., 2, 43-48). The number of independent transformants from each of the four transformations ranged from 0.4-2.0 $\times 10^5$. After growing out phage pools, RF DNA from each of the four transformations was isolated and purified by centrifugation through CsCl density gradients. Approximately 2 μ g of RF DNA from each of the four pools was digested with EcoRI, BamHI and AvaI. The 1.5 kb EcoRI-BamHI fragment (i.e., AvaI resistant) was purified on low gel temperature agarose and ligated into the 5.5 kb EcoRI-BamHI vector fragment of pB0180. The total number of independent transformants from each α -thiodeoxynucleotide misincorporation plasmid library ranged from 1.2-2.4 $\times 10^4$. The pool of plasmids from each of the four transformations was grown out in 200 ml LB media containing 12.5 μ g/ml cmp and plasmid DNA was purified by centrifugation through CsCl density gradients.

20

25

30

C. Expression and Screening of Subtilisin Point Mutants

Plasmid DNA from each of the four misincorporation pools was transformed (Anagnostopoulos, C., et al. (1967), J. Bacteriol., 81, 741-746) into BG2036. For each transformation, 5 μ g of DNA produced approximately

35

2.5 x 10⁵ independent BG2036 transformants, and liquid culture aliquots from the four libraries were stored in 10% glycerol at 70°C. Thawed aliquots of frozen cultures were plated on LB/5 μ g/ml cmp/1.6% skim milk plates (Wells, J.A., et al. (1983) Nucleic Acids Res., 11, 7911-7925), and fresh colonies were arrayed onto 96-well microtiter plates containing 150 l per well LB media plus 12.5 μ g/ml cmp. After 1 h at room temperature, a replica was stamped (using a matched 96 prong stamp) onto a 132 mm BA 85 nitrocellulose filter (Schleicher and Scheull) which was layered on a 140 mm diameter LB/cmp/skim milk plate. Cells were grown about 16 h at 30°C until halos of proteolysis were roughly 5-7 mm in diameter and filters were transferred directly to a freshly prepared agar plate at 37°C containing only 1.6% skim milk and 50 mM sodium phosphate pH 11.5. Filters were incubated on plates for 3-6 h at 37°C to produce halos of about 5 mm for wild-type subtilisin and were discarded. The plates were stained for 10 min at 24°C with Coomassie blue solution (0.25% Coomassie blue (R-250) 25% ethanol) and destained with 25% ethanol, 10% acetic acid for 20 min. Zones of proteolysis appeared as blue halos on a white background on the underside of the plate and were compared to the original growth plate that was similarly stained and destained as a control. Clones were considered positive that produced proportionately larger zones of proteolysis on the high pH plates relative to the original growth plate. Negative clones gave smaller halos under alkaline conditions. Positive and negative clones were restreaked to colony purify and screened again in triplicate to confirm alkaline pH results.

D. Identification and Analysis
of Mutant Subtilisins

Plasmid DNA from 5 ml overnight cultures of more alkaline active *B. subtilis* clones was prepared according to Birnboim and Doly (Birnboim, H.C., et al. (1979) *Nucleic Acid Res.*, 7, 1513) except that 5 incubation with 2 mg/ml lysozyme proceeded for 5 min at 37°C to ensure cell lysis and an additional phenol/CHCl₃ extraction was employed to remove contaminants. The 1.5 kb EcoRI-BamHI fragment containing the subtilisin gene was ligated into 10 M13mp11 and template DNA was prepared for DNA sequencing (Messing, J., et al. (1982) *Gene*, 19 269-276). Three DNA sequencing primers ending at codon 15 26, +95, and +155 were synthesized to match the subtilisin coding sequence. For preliminary sequence identification a single track of DNA sequence, corresponding to the dNTPas misincorporation library from which the mutant came, was applied over the entire mature protein coding sequence (i.e., a single dideoxyguanosine sequence track was applied to 20 identify a mutant from the dGTPas library). A complete four track of DNA sequence was performed 200 bp over the site of mutagenesis to confirm and identify the mutant sequence (Sanger, F., et al., (1980) *J. Mol. Biol.*, 143, 161-178). Confirmed 25 positive and negative bacilli clones were cultured in LB media containing 12.5μg/mL cmp and purified from culture supernatants as previously described (Estell, D.A., et al. (1985) *J. Biol. Chem.*, 260, 6518-6521). Enzymes were greater than 98% pure as analyzed by 30 SDS-polyacrylamide gel electrophoresis (Laemmli, U.K. (1970), *Nature*, 227, 680-685), and protein concentrations were calculated from the absorbance at 280 nm, $\epsilon_{280}^{0.1\%} = 1.17$ (Maturbara, H., et al. (1965), *J. Biol. Chem.*, 240, 1125-1130).

Enzyme activity was measured with $200\mu\text{g/mL}$ succinyl-L-AlaL-AlaL-ProL-Phep-nitroanilide (Sigma) in 0.1M Tris pH 8.6 or 0.1 M CAPS pH 10.8 at 25°C. Specific activity (μ moles product/min-mg) was calculated from the change in absorbance at 410 nm from production of p-nitroaniline with time per mg of enzyme ($E_{410} = 8,480 \text{ M}^{-1}\text{cm}^{-1}$; Del Mar, E.G., et al. (1979), Anal. Biochem., **99**, 316-320). Alkaline autolytic stability studies were performed on purified enzymes ($200\mu\text{g/mL}$) in 0.1 M potassium phosphate (pH 12.0) at 37°C. At various times aliquots were assayed for residual enzyme activity (Wells, J.A., et al. (1986) J. Biol. Chem., **261**, 6564-6570).

15 E. Results

1. Optimization and analysis
 of mutagenesis frequency

A set of primer-template molecules that were randomly 3'-terminated over the subtilisin gene (Fig. 31) was produced by variable extension from a fixed 5'-primer (The primer mutated a unique *Ava*I site at codon 11 in the subtilisin gene). This was achieved by stopping polymerase reactions with EDTA after various times of extension. The extent and distribution of duplex formation over the 1 kb subtilisin gene fragment was assessed by multiple restriction digestion (not shown). For example, production of new *Hinf*I fragments identified when polymerase extension had proceeded past *Ile*110, *Leu*233, and *Asp*259 in the subtilisin gene.

Misincorporation of each dNTPas at randomly terminated 3' ends by AMV reverse transcriptase (Zakour, R.A., et al. (1982), Nature, **295**, 708-710; Zakour, R.A., et al. (1984), Nucleic Acids Res., **12**, 6615-6628), used

conditions previously described (Champoux, J.J., (1984), Genetics, 2, 454-464). The efficiency of each misincorporation reaction was estimated to be greater than 80% by the addition of each dNTP's to the AvaI restriction primer, and analysis by polyacrylamide gel electrophoresis. Misincorporations were sealed by polymerization with all four dNTP's and closed circular DNA was produced by reaction with DNA ligase.

Several manipulations were employed to maximize the yield of the mutant sequences in the heteroduplex. These included the use of a deoxyuridine containing template (Kunkel, T.A. (1985), Proc. Natl. Acad. Sci. USA, 82 488-492; Pukkila, P.J. et al. (1983), Genetics, 104, 571-582), in vitro methylation of the mutagenic strand (Kramer, W. et al. (1982) Nucleic Acids Res., 10 6475-6485), and the use of AvaI restriction-selection against the wild-type template strand which contained a unique AvaI site. The separate contribution of each of these enrichment procedures to the final mutagenesis frequency was not determined, except that prior to AvaI restriction-selection roughly one-third of the segregated clones in each of the four pools still retained a wild-type AvaI site within the subtilisin gene. After AvaI restriction-selection greater than 98% of the plasmids lacked the wild-type AvaI site.

The 1.5 kb EcoRI-BamHI subtilisin gene fragment that was resistant to AvaI restriction digestion, from each of the four CsCl purified M13 RF pools was isolated on low melting agarose. The fragment was ligated in situ from the agarose with a similarly cut E. coli-B. subtilis shuttle vector, pB0180, and transformed directly into E. coli LE392. Such direct ligation and transformation of DNA isolated from agarose avoided

0251446

loses and allowed large numbers of recombinants to be obtained (>100,000 per μ g equivalent of input M13 pool).

The frequency of mutagenesis for each of the four dNTPas misincorporation reactions was estimated from
5 the frequency that unique restriction sites were eliminated (Table XX). The unique restriction sites chosen for this analysis, Clal, PvuII, and KpnI, were distributed over the subtilisin gene starting at codons 35, 104, and 166, respectively. As a control,
10 the mutagenesis frequency was determined at the PstI site located in the β lactamase gene which was outside the window of mutagenesis. Because the absolute mutagenesis frequency was close to the percentage of undigested plasmid DNA, two rounds of restriction-
15 selection were necessary to reduce the background of surviving uncut wild-type plasmid DNA below the mutant plasmid (Table XX). The background of surviving plasmid from wild-type DNA probably represents the sum total of spontaneous mutations, uncut wild-type
20 plasmid, plus the efficiency with which linear DNA can transform E. coli. Subtracting the frequency for unmutagenized DNA (background) from the frequency for mutant DNA, and normalizing for the window of mutagenesis sampled by a given restriction analysis
25 (4-6 bp) provides an estimate of the mutagenesis efficiency over the entire coding sequence (-1000 bp).

TABLE XX

0251446

α -thiol dNTP misincor- porated (b)	Restriction Site Selection	% resistant clones ^c			% resistant clones over Background ^d	% mutants per 1000bp ^e
		1st round	2nd round	Total		
5	None	<u>PstI</u>	0.32	0.7	0.002	0
	G	<u>PstI</u>	0.33	1.0	0.003	0.001
	T	<u>PstI</u>	0.32	<0.5	<0.002	0
	C	<u>PstI</u>	0.43	3.0	0.013	0.011
10	None	<u>ClaI</u>	0.28	5	0.014	0
	G	<u>ClaI</u>	2.26	85	1.92	1.91
	T	<u>ClaI</u>	0.48	31	0.15	0.14
	C	<u>ClaI</u>	0.55	15	0.08	0.066
15	None	<u>PvuII</u>	0.08	29	0.023	0
	G	<u>PvuII</u>	0.41	90	0.37	0.35
	T	<u>PvuII</u>	0.10	67	0.067	0.044
	C	<u>PvuII</u>	0.76	53	0.40	0.38
20	None	<u>KpnI</u>	0.41	3	0.012	0
	G	<u>KpnI</u>	0.98	35	0.34	0.33
	T	<u>KpnI</u>	0.36	15	0.054	0.042
	C	<u>KpnI</u>	1.47	26	0.38	0.37

- 25 (a) Mutagenesis frequency is estimated from the frequency for obtaining mutations that alter unique restriction sites within the mutagenized subtilisin gene (i.e., ClaI, PvuII, or KpnI) compared to mutation frequencies of the PstI site, that is outside the window of mutagenesis.
- 30 (b) Plasmid DNA was from wild-type (none) or mutagenized by dNTPas misincorporation as described.
- (c) Percentage of resistant clones was calculated from the fraction of clones obtained after three fold or greater over-digestion of the plasmid with the indicated restriction enzyme compared to a
- 35

non-digested control. Restriction-resistant plasmid DNA from the first round was subjected to a second round of restriction-selection. The total represents the product of the fractions of resistant clones obtained from both rounds of selection and gives percentage of restriction-site mutant clones in the original starting pool. Frequencies were derived from counting at least 20 colonies and usually greater than 100.

- (d) Percent resistant clones was calculated by subtracting the percentage of restriction-resistant clones obtained for wild-type DNA (i.e., none) from that obtained for mutant DNA.

10 (e) This extrapolates from the frequency of mutation over each restriction site to the entire subtilisin gene (~1 kb). This has been normalized to the number of possible bases (4-6 bp) within each restriction site that can be mutagenized by a given misincorporation event.

15 From this analysis, the average percentage of
subtilisin genes containing mutations that result from
dGTPas, dCTPas, or dTTPas misincorporation was
estimated to be 90, 70, and 20 percent, respectively.
20 These high mutagenesis frequencies were generally
quite variable depending upon the dNTPas and
misincorporation efficiencies at this site.
Misincorporation efficiency has been reported to be
both dependent on the kind of mismatch, and the
context of primer (Champoux, J.J., (1984); Skinner,
25 J.A., et al. (1986) Nucleic Acids Res., 14,
6945-6964). Biased misincorporation efficiency of
dGTPas and dCTPas over dTTPas has been previously
observed (Shortle, D., et al. (1985), Genetics, 110,
30 539-555). Unlike the dGTPas, dCTPas, and dTTPas
libraries the efficiency of mutagenesis for the dATPas

misincorporation library could not be accurately assessed because 90% of the restriction-resistant plasmids analyzed simply lacked the subtilisin gene insert. This problem probably arose from self-ligation of the vector when the dATPas mutagenized subtilisin gene was subcloned from M13 into pB0180. Correcting for the vector background, we estimate the mutagenesis frequency around 20 percent in the dATPas misincorporation library. In a separate experiment (not shown), the mutagenesis efficiencies for dGTPas and dTTPas misincorporation were estimated to be around 50 and 30 percent, respectively, based on the frequency of reversion of an inactivating mutation at codon 169.

The location and identity of each mutation was determined by a single track of DNA sequencing corresponding to the misincorporated thiodeoxy-nucleotide over the entire gene followed by a complete four track of DNA sequencing focused over the site of mutation. Of 14 mutants identified, the distribution was similar to that reported by Shortle and Lin (1985) except we did not observe nucleotide insertion or deletion mutations. The proportion of AG mutations was highest in the G misincorporation library, and some unexpected point mutations appeared in the dTTPas and dCTPas libraries.

2. Screening and Identification of
Alkaline Stability Mutants of Subtilisin

It is possible to screen colonies producing subtilisin by halos of casein digestion (Wells, J.A. et al. (1983) Nucleic Acids Res., 11, 7911-7925). However, two problems were posed by screening colonies under high alkaline conditions (>pH 11). First, B. subtilis

will not grow at high pH, and we have been unable to transform an alkylophilic strain of bacillus. This problem was overcome by adopting a replica plating strategy in which colonies were grown on filters at neutral pH to produce subtilisin and filters subsequently transferred to casein plates at pH 11.5 to assay subtilisin activity. However, at pH 11.5 the casein micells no longer formed a turbid background and thus prevented a clear observation of proteolysis halos. The problem was overcome by briefly staining the plate with Coomassie blue to amplify proteolysis zones and acidifying the plates to develop casein micell turbidity. By comparison of the halo size produced on the reference growth plate (pH 7) to the high pH plate (pH 11.5), it was possible to identify mutant subtilisins that had increased (positives) or decreased (negatives) stability under alkaline conditions.

Roughly 1000 colonies were screened from each of the four misincorporation libraries. The percentage of colonies showing a differential loss of activity at pH 11.5 versus pH 7 represented 1.4, 1.8, 1.4, and 0.6% of the total colonies screened from the thiol dGTP_ns, dATP_ns, dTTP_ns, and dCTP_ns libraries, respectively. Several of these negative clones were sequenced and all were found to contain a single base change as expected from the misincorporation library from which they came. Negative mutants included A36, E170 and V50. Two positive mutants were identified as V107 and R213. The ratio of negatives to positives was roughly 50:1.

3. Stability and Activity of Subtilisin Mutants at Alkaline pH

Subtilisin mutants were purified and their autolytic stabilities were measured by the time course of inactivation at pH 12.0 (Figs. 32 and 33). Positive mutants identified from the screen (i.e., V107 and R213) were more resistant to alkaline induced autolytic inactivation compared to wild-type; negative mutants (i.e., E170 and V50) were less resistant. We had advantageously produced another mutant at position 50 (F50) by site-directed mutagenesis. This mutant was more stable than wild-type enzyme to alkaline autolytic inactivation (Fig. 33). At the termination of the autolysis study, SDS-PAGE analysis confirmed that each subtilisin variant had autolyzed to an extent consistent with the remaining enzyme activity.

The stabilizing effects of V107, R213, and F50 are cumulative. See Table XXI. The double mutant, V107/R213 (made by subcloning the 920 bp EcoRI-KpnI fragment of pB0180V107 into the 6.6 kb EcoRI-KpnI fragment of pB0180R213), is more stable than either single mutant. The triple mutant, F50/V107/R213 (made by subcloning the 735 bp EcoRI-PvuII fragment of pF50 (Example 2) into the 6.8 kb EcoRI-PvuII fragment of pB0180/V107, is more stable than the double mutant V107/R213 or F50. The inactivation curves show a biphasic character that becomes more pronounced the more stable the mutant analyzed. This may result from some destabilizing chemical modification(s) (eg., deamidation) during the autolysis study and/or reduced stabilization caused by complete digestion of larger autolysis peptides. These alkaline autolysis studies have been repeated on separately purified enzyme batches with essentially the same results. Rates of autolysis should depend both on the conformational

F. Random Cassette Mutagenesis
of Residues 197 through 228

5 Plasmid p Δ 222 (Wells, et al. (1985) Gene 34, 315-323) was digested with PstI and BamHI and the 0.4 kb PstI/BamHI fragment (fragment 1, see Fig. 34) purified from a polyacrylamide gel by electroelution.

10 The 1.5 kb EcoRI/BamHI fragment from pS4.5 was cloned into M13mp9. Site directed mutagenesis was performed to create the A197 mutant and simultaneously insert a silent SstI site over codons 195-196. The mutant EcoRI/BamHI fragment was cloned back into pBS42. The pA197 plasmid was digested with BamHI and SstI and the 5.3 kb BamHI/SstI fragment (fragment 2) was purified 15 from low melting agarose.

20 Complimentary oligonucleotides were synthesized to span the region from SstI (codons 195-196) to PstI (codons 228-230). These oligodeoxynucleotides were designed to (1) restore codon 197 to the wild type, (2) re-create a silent KpnI site present in p Δ 222 at codons 219-220, (3) create a silent SmaI site over codons 210-211, and (4) eliminate the PstI site over codons 228-230 (see Fig. 35). Oligodeoxynucleotides 25 were synthesized with 2% contaminating nucleotides at each cycle of synthesis, e.g., dATP reagent was spiked with 2% dCTP, 2% dGTP, and 2% dTTP. For 97-mers, this 2% poisoning should give the following percentages of non-mutant, single mutants and double or higher mutants per strand with two or more misincorporations per complimentary strand: 14% non-mutant, 28% single mutant, and 57% with ≥ 2 mutations, according to the 30 general formula

$$f = \frac{n}{\mu} e^{-\mu} .$$

where μ is the average number of mutations and n is a number class of mutations and f is the fraction of the total having that number of mutations. Complimentary oligodeoxynucleotide pools were phosphorylated and annealed (fragment 3) and then ligated at 2-fold molar excess over fragments 1 and 2 in a three-way ligation.

E. coli MM294 was transformed with the ligation reaction, the transformation pool grown up over night and the pooled plasmid DNA was isolated. This pool represented 3.4×10^4 independent transformants. This plasmid pool was digested with PstI and then used to retransform E. coli. A second plasmid pool was prepared and used to transform B. subtilis (BG2036). Approximately 40% of the BG2036 transformants actively expressed subtilisin as judged by halo-clearing on casein plates. Several of the non-expressing transformants were sequenced and found to have insertions or deletions in the synthetic cassettes. Expressing BG2036 mutants were arrayed in microtiter dishes with $150\mu\text{l}$ of LB/ $12.5\mu\text{g}/\text{mL}$ chloramphenicol (cmp) per well, incubated at 37°C for 3-4 hours and then stamped in duplicate onto nitrocellulose filters laid on LB 1.5% skim milk/ $5\mu\text{g}/\text{mL}$ cmp plates and incubated overnight at 33°C (until halos were approximately 4-8 mm in diameter). Filters were then lifted to stacks of filter paper saturated with 1 x Tide commercial grade detergent, 50 mM Na_2CO_3 , pH 11.5 and incubated at 65°C for 90 min. Overnight growth plates were Commassie stained and destained to establish basal levels of expression. After this treatment, filters were returned to pH7/skim milk/ $20\mu\text{g}/\text{mL}$ tetracycline plates and incubated at 37°C for 4 hours to overnight.

Mutants identified by the high pH stability screen to
be more alkaline stable were purified and analyzed for
autolytic stability at high pH or high temperature.
The double mutant C204/R213 was more stable than wild
5 type at either high pH or high temperature (Table
XXII).

This mutant was dissected into single mutant parents
(C204 and R213) by cutting at the unique SmaI
10 restriction site (Fig. 35) and either ligating wild
type sequence 3' to the SmaI site to create the single
C204 mutant or ligating wild type sequence 5' to the
SmaI site to create the single R213 mutant. Of the
15 two single parents, C204 was nearly as alkaline stable
as the parent double mutant (C04/R213) and slightly
more thermally stable. See Table XXII. The R213
mutant was only slightly more stable than wild type
under both conditions (not shown).

20 Another mutant identified from the screen of the 197
to 228 random cassette mutagenesis was R204. This
mutant was more stable than wild type at both high pH
and high temperature but less stable than C204.

25

30

35

TABLE XXIIStability of subtilisin variants

5 Purified enzymes (200 μ g/mL) were incubated in 0.1M phosphate, pH 12 at 30°C for alkaline autolysis, or in 2mM CaCl₂, 50mM MOPS, pH 7.0 at 62°C for thermal autolysis. At various times samples were assayed for residual enzyme activity. Inactivations were roughly 10 pseudo-first order, and t 1/2 gives the time it took to reach 50% of the starting activity in two separate experiments.

	<u>Subtilisin variant</u>	t 1/2 (alkaline autolysis)		t 1/2 (thermal autolysis)	
		Exp. #1	Exp. #2	Exp. #1	Exp. #2
	wild type	30	25	20	23
20	F50/V107/R213	49	41	18	23
	R204	35	32	24	27
	C204	43	46	38	40
	C204/R213	50	52	32	36
25	L204/R213	32	30	20	21

G. Random Mutagenesis at Codon 204

30 Based on the above results, codon 204 was targeted for random mutagenesis. Mutagenic DNA cassettes (for codon at 204) all contained a fixed R213 mutation which was found to slightly augment the stability of the C204 mutant.

Plasmid DNA encoding the subtilisin mutant C204/R213 was digested with SstI and EcoRI and a 1.0 kb EcoRI/SstI fragment was isolated by electro-elution from polyacrylamide gel (fragment 1, see Fig. 35).

5

C204/R213 was also digested with SmaI and EcoRI and the large 4.7 kb fragment, including vector sequences and the 3' portion of coding region, was isolated from low melting agarose (fragment 2, see Fig. 36).

10

Fragments 1 and 2 were combined in four separate three-way ligations with heterophosphorylated fragments 3 (see Figs. 36 and 37). This heterophosphorylation of synthetic duplexes should 15 preferentially drive the phosphorylated strand into the plasmid ligation product. Four plasmid pools, corresponding to the four ligations, were restricted with SmaI in order to linearize any single cut C204/R213 present from fragment 2 isolation, thus 20 reducing the background of C204/R213. E. coli was then re-transformed with SmaI-restricted plasmid pools to yield a second set of plasmid pools which are essentially free of C204/R213 and any non-segregated heteroduplex material.

25

These second enriched plasmid pools were then used to transform B. subtilis (BG2036) and the resulting four mutant pools were screened for clones expressing subtilisin resistant to high pH/temperature 30 inactivation. Mutants found positive by such a screen were further characterized and identified by sequencing.

The mutant L204/R213 was found to be slightly more 35 stable than the wild type subtilisin. See Table XXII.

Having described the preferred embodiments of the present invention, it will appear to those ordinarily skilled in the art that various modifications may be made to the disclosed embodiments, and that such modifications are intended to be within the scope of
5 the present invention.

10

15

20

25

30

35

CLAIMS;

1. A carbonyl hydrolase mutant having at least one property which is substantially different from the same property of a precursor carbonyl hydrolase from which the amino acid sequence of said carbonyl hydrolase mutant is derived, said property being selected from the group consisting of thermal stability and alkaline stability wherein said precursor carbonyl hydrolase is selected from the group consisting of naturally occurring carbonyl hydrolases and recombinant carbonyl hydrolases and said carbonyl hydrolase mutant amino acid sequence is derived by a method selected from the group consisting of the substitution, deletion and insertion of at least one amino acid in said amino acid sequence of said precursor carbonyl hydrolase.

2. A carbonyl hydrolase mutant having at least one property which is substantially different from the same property of a precursor carbonyl hydrolase from which the amino acid sequence of said carbonyl hydrolase mutant is derived, said property being selected from the group consisting of oxidative stability, substrate specificity, catalytic activity, thermal stability, alkaline stability and pH activity profile wherein said precursor carbonyl hydrolase is selected from the group consisting of naturally occurring carbonyl hydrolases and recombinant carbonyl hydrolases and said carbonyl hydrolase mutant amino acid sequence is derived by a method selected from the group consisting of deletion and insertion of at least one amino acid in said amino acid sequence of said precursor carbonyl hydrolase and substitution of more than one amino acid residue of said amino acid sequence of said precursor carbonyl hydrolase.

3. A carbonyl hydrolase mutant derived by the replacement of at least one amino acid residue of a precursor carbonyl hydrolase with a different amino acid, said one amino acid residue being selected from
5 the group of amino acid residues of Bacillus amyloliquefaciens subtilisin consisting of Tyr21, Thr22, Ser24, Ser33, Asp36, Ala45, Gly46, Ala48, Ser49, Met50, Asn77, Ser87, Lys94, Val95, Leu96, Tyr104, Ile107, Gly110, Met124, Asn155, Glu156,
10 Lys170, Tyr171, Pro172, Phe189, Asp197, Met199, Ser204, Lys213, Tyr217, Ser221, His67, Leu126, Leu135, Gly97, Asp99, Ser101, Gly102, Glu103, Leu126, Gly127, Gly128, Pro129, Tyr214, Gly215, and equivalent amino acid residues in other precursor carbonyl hydrolases.

15

4. A carbonyl hydrolase mutant having an amino acid sequence derived from the amino acid sequence of a precursor carbonyl hydrolase by the substitution of a differnt amino acid for more than one amino acid
20 residue of said amino acid sequence of said precursor carbonyl hydrolase, said amino acid residues being selected from the group of amino acid residues of Bacillus amyloliquefaciens subtilisin consisting of Tyr21, Thr22, Ser24, Asp32, Ser33, Asp36, Ala45, Gly46, Ala48, Ser49, Met50, Asn77, Ser87, Lys94, Val95, Leu96, Tyr104, Ile107, Gly110, Met124, Ala152, Asn155, Glu156, Gly166, Gly169, Lys170, Tyr171, Pro172, Phe189, Asp197, Met199, Ser204, Lys213, Tyr217, Ser221, Met222, His67, Leu126, Leu135, Gly97,
25 Asp99, Ser101, Gly102, Glu103, Leu126, Gly127, Gly128, Pro129, Tyr214, Gly215, and equivalent amino acid residues in other precursor carbonyl hydrolases.

5. The mutant of Claim 4 wherein said combinations are selected from the group consisting of Thr22/Ser87, Ser24/Ser87, Ala45/Ala48, Ser49/Lys94, Ser49/Val95, Met50/Val95, Met50/Gly110, Met50/Met124, Met50/Met222, 5 Met124/Met222, Glu156/Gly166, Glu156/Gly169, Gly166/Met222, Gly169/Met222, Tyr21/Thr22, Met50/Met124/Met222, Tyr21/Thr22/Ser87, Met50/Glu156/Gly166/Tyr217, Met50/Glu156/Tyr217, Glu156/Gly169/Tyr217, Ile170/Lys213, Ser204/Lys213, Met50/Ile107/10 Lys213 and Ser24/Met50/Ile107/Glu156/Gly166/Gly169/Ser204/Lys213/Gly215/Tyr217.

6. A carbonyl hydrolase mutant derived by the replacement of at least one amino acid residue of a precursor carbonyl hydrolase with a different amino acid, said one amino acid residue being selected from the group of amino acid residues of of Bacillus amyloliquefaciens subtilisin consisting of Tyr21, 15 Thr22, Ser24, Asp32, Ser33, Asp36, Ala45, Gly46, Ala48, Ser49, Met50, Asn77, Ser87, Lys94, Val95, 20 Leu96, Tyr104, Ile107, Gly110, Met124, Ala152, Asn-155, Glu156, Gly166, Gly169, Lys170, Tyr171, Pro172, Phe189, Asp197, Met199, Ser204, Lys213, Tyr217, Ser221, Met222, His67, Leu126, Leu135, Gly97, 25 Asp99, Ser101, Gly102, Glu103, Leu126, Gly127, Gly128, Pro129, Tyr214, Gly215, and equivalent amino acid residues in other precursor carbonyl hydrolases, wherein said at least one amino acid residue of said precursor carbonyl hydrolase is replaced with the 30 amino acid residues listed in TABLE I and TABLE II herein.

7. The mutant of Claim 6 wherein the amino acid replacing said at least one amino acid residue in said precursor carbonyl hydrolase is selectd from the replacement amino acids listed in TABLE I herein. 35

8. Mutant DNA sequence encoding the mutant of claims
1 through 7.

9. Expression vector containing the mutant DNA
sequence of claim 8.

5

10. Host cell transformed with the expression vector
of Claim 9.

10

15

20

25

30

35

0251446

FIG.—I

0251446

FIG. -2

FIG. -3

FIG. - 4

Homology of *Bacillus* proteases

1. *Bacillus amyloliquifaciens*
2. *Bacillus subtilis* var. I158
3. *Bacillus licheniformis* (carlsbergensis)

1	A	D	S	V	P	Y	S	V	S	Q	I	K	A	P	R	L	H	S	Q	20
A	Q	S	T	U	P	Y	G	I	P	Q	I	K	A	P	R	L	H	S	Q	6
A	Q	S	T	V	P	Y	G	I	P	L	I	K	A	D	K	V	Q	Q	6	
A	Q	T	V	P	Y	G	I	P	Q	L	I	K	A	D	K	V	Q	Q	6	
21																				
Y	T	G	S	N	N	V	K	V	A	V	I	D	S	S	I	D	S	S	H	48
Y	T	G	S	S	N	V	K	V	A	V	I	D	S	S	I	D	S	S	H	P
F	K	S	A	N	V	K	V	A	V	L	D	T	S	S	I	Q	S	S	H	P
41																				
D	L	K	V	A	E	E	A	S	S	H	U	P	S	E	T	N	P	F	Q	68
D	L	N	V	R	E	E	A	S	F	U	V	P	S	E	A	Y	P	Y	Q	D
D	L	N	V	R	E	E	A	S	F	U	V	P	S	E	A	Y	P	Y	Q	D
61																				
N	N	S	H	6	T	H	U	A	6	T	V	A	A	A	L	N	N	S	I	88
S	S	S	H	6	T	H	U	A	6	T	V	A	A	A	L	N	N	S	I	6
G	N	S	H	6	T	H	U	A	6	T	V	A	A	A	L	N	N	T	I	6
81																				
U	L	6	U	A	P	S	A	S	L	Y	A	V	K	U	L	6	A	D	6	180
U	L	6	U	S	P	S	A	S	L	Y	A	V	K	U	L	6	S	T	6	6
U	L	6	U	A	P	S	U	S	L	Y	A	V	K	U	L	6	N	S	S	6
101																				
S	S	Q	Y	S	W	I	I	N	6	I	E	W	A	I	A	N	N	M	D	120
S	S	Q	Y	S	W	I	I	N	6	I	E	W	A	I	A	N	N	M	D	0
S	S	S	Y	S	6	I	V	S	6	I	E	W	A	I	A	N	N	M	D	0

FIG.—5A-I

0251446

121	V	I	N	M	S	L	6	6	P	130	S	S	S	A	A	L	K	A	A	U	U	D
	U	I	N	M	S	L	6	6	A		T	S	S	T	A	M	K	T	A	V	V	D
	V	I	N	M	S	L	6	6														
141	K	A	U	A	S	S	6	U	U	150	V	A	A	A	A	N	E	S	S	T	S	S
	K	A	U	V	S	S	6	U	U		A	A	A	A	G	N	S	S	S	S	S	
	N	A	Y	A	R	S	6	U	U		U	A	A	A	G	N	E	S	S	S	S	
161	S	S	S	T	T	U	6	Y	P	170	K	Y	P	S	U	I	A	U	U	6	A	U
	S	T	T	N	T	I	6	Y	P		K	Y	D	S	T	I	A	V	6	A	V	
	S	T	T	N	T	I	6	Y	P		K	Y	D	S	T	I	A	V	6	A	V	
181	D	S	S	S	N	Q	R	A	S	180	S	S	V	6	P	E	L	D	U	M	M	
	D	S	S	S	N	Q	R	A	S		S	S	U	6	S	E	E	V	M	M		
	D	S	N	S	N	R	A	S	F		S	S	U	6	P	E	E	V	M	M		
201	P	G	V	U	S	I	Q	S	T	210	P	6	N	K	Y	6	A	Y	U	6	T	220
	P	G	V	U	S	I	Q	S	T		P	6	N	T	Y	6	A	U	6	T	T	
	P	G	A	S	I	V	Y	S	T		P	T	N	T	Y	6	A	U	6	T	T	
221	S	M	A	S	P	H	U	A	6	230	A	A	A	L	I	L	S	K	H	P	240	
	S	M	A	A	T	P	H	U	A		A	A	A	L	I	L	S	K	H	P		
	S	M	A	A	S	P	H	U	A		A	A	A	L	I	L	S	K	H	P		
241	W	T	N	N	T	Q	U	R	S	250	L	E	N	T	T	A	T	T	K	L	6	
	T	T	N	A	T	Q	U	R	N		L	E	S	T	A	T	T	K	L	6		
	S	A	S	Q	Q	U	R	S	R		L	E	S	T	A	T	T	K	L	6		
261	F	Y	Y	6	K	6	L	I	N	270	U	Q	A	A	A	A	Q					
	F	Y	Y	6	K	6	L	I	N		U	Q	A	A	A	A	Q					
	F	Y	Y	6	K	6	L	I	N		U	Q	A	A	A	A	Q					

FIG.—5A—2

ALIGNMENT OF *B. AMYLOLIQUIFACIENS* SUBTILISIN AND THERMITASE

1,8-*phytoliquifaciens* subtilissim

2. thermite

FIG.—5B-1

0251446

A	A	A	A	S	N	E	S	T	T	S	6	168	S	S	S	T	U	G	Y	P	S	K
A	A	A	A	S	N	A	S	N	T	A	*	*	*	*	*	P	N	Y	P	A	Y	
Y	F	S	V	I	A	V	G	A	E	U	188	D	D	S	S	N	D	Q	R	A	S	F
Y	S	N	A	I	A	V	A	E	T	D	*	*	*	*	N	D	H	K	S	S	S	
S	V	S	P	E	L	D	V	M	A	208	P	S	U	S	S	I	O	S	T	L	218	
T	Y	S	S	V	U	D	V	A	A	*	P	*	*	*	*	I	Y	S	T	Y	P	
G	N	K	Y	S	A	Y	N	S	6	228	T	S	M	A	S	P	H	U	A	S	238	
T	S	T	Y	A	S	L	S	S	6	*	E	M	A	T	P	H	U	A	S	U		
A	A	L	I	L	S	K	H	P	248	N	U	T	N	T	Q	U	R	S	A	258		
A	G	L	L	A	S	Q	B	R	S	*	*	*	A	S	N	T	R	S	A	I		
E	N	T	T	T	K	*	L	S	6	268	D	S	F	Y	Y	G	K	6	L	I	N	
E	N	T	A	D	K	I	S	S	6	*	T	Y	U	A	K	6	R	I	U	N		
V	Q	A	A	A	Q	Q	Y		278													
A	Y	K	A	A	U	Q	Y															

FIG.—5B-2

0251446

TOTALLY CONSERVED RESIDUES IN SUBTILISINS

1		16		28					
*	*	*	*	*					
21		36		48					
*	*	S	*	H					
41		58		68					
*	*	*	V	*					
61		78		88					
*	*	H	G	T	H	*			
81		98		108					
*	*	S	*	V	L	*			
101		118		128					
S	S	*	*	*					
121		138		148					
*	*	*	L	S	*				
141		158		168					
*	*	*	S	N	*				
161		178		188					
*	*	*	Y	P	*				
181		198		208					
*	*	*	S	F	S	*			
201		218		228					
P	S	*	*	*	T				
221		238		248					
S	K	A	*	P	H	V	A	S	*
241		258		268					
*	*	*	R	*	*				
261		278							
*	*	*	N	*	*				

FIG.—5C

0251446

INACTIVATION OF L222 WITH
METACHLORO PARBENZOIC ACID

FIG. - 6A

INACTIVATION OF Q222 BY DPDA
(DIPERDODECANOIC ACID)

FIG. - 6B

0251446

FIG. - 7A

FIG. - 7B

0251446

BAND # F222 + OXIDANT

FIG.- 8

CNBr FRAGMENT MAP OF F222 MUTANT

FIG.- 9

0251446

1. Codon number: 43 45
 2. Wild type amino acid sequence:
 3. Wild type DNA sequence: 5'-AAG-GTA-GCA-GGC-GGA-GCC-AGC-ATG-GTT-CCT-TCT-TTC-CAT-CGT-CCG-CCT-CGG-TCG-TAC-CAA-GGA-AGA-5'
 4. pΔ50:

$$\begin{array}{c} * * * \\ 5' - \text{AAG-GCC-T-----} \\ \text{TTC-CGG-A-----} \\ \text{Stu I} \end{array}$$

$$\begin{array}{c} * \\ \text{Kpn I} \end{array}$$
 5. pΔ50 cut with *Stu I*/*Kpn I*

$$5' - \text{AAG-G} \\ \text{TTC-Cp}$$
 6. Cut pΔ50 ligated with cassettes:

$$5' - \text{AAG-GTA-GCA-GGC-GGA-GCC-AGC-ATG-GTT-CCT-TCT} \\ \text{TCC-CAT-CGT-CCG-CCT-CGG-TCG-TAC-CAT-GGA-AGA-5'}$$
 7. Mutagenesis primer for pΔ50:

$$5' - \text{CT-GAT-TTA-MAG-GCC-TGC-ATG-GTA-CCT-TCT-GA}$$
 8. Mutants made:

$$\begin{array}{c} * \\ \text{P45, V45/P48, E46, E48, V48, C49, C50, F50} \end{array}$$

0251446

1. Codon number: 117 120 124 126 130

2. Wild type amino acid sequence: Asn-Met-Asp-Val-Ile-Asn-Met-Ser-Leu-Gly-Pro-Ser

3. Wild type DNA sequence: 5'-AAC-AAT-ATG-GAC-GTT-ATT-AAC-ATG-AGC-CTC-GGC-GGA-CCT-TCT TTG-TTA-TAC-CTG-CAA-TAA-TTG-TAC-TCG-GAG-CCG-CCT-GGA-AGA-5'

4. pΔ124: 5'-AAC-AAT-ATG-GAT-ATC-
TTG-TTA-TAC-CTA-TAG-
Eco RV
Apa I

5. pΔ124 cut with *Eco RV* and *Apa I*: 5'-AAC-AAT-ATG-GAT
TTG-TTA-TAC-CTA-
Eco RV

6. Cut pΔ124 ligated with cassettes: 5'-AAC-AAT-ATG-GAT-ATT-GTT-ATT-AAC-ATG-AGC-CTC-GGC-GGC-CCT-TCT TTG-TTA-TAC-CTA-CAA-TAA-TTG-TAC-TCG-GAG-CCG-CCG-GGA-AGA-5'

7. Mutagenesis primer for pΔ124: 5'-AAC-AAT-ATG-GAT-ATC-C-GGG-GGC-CCP-TCT-GGT-TC-3'

8. Mutants made: 1124, L124 AND C126

0251446

EFFECT OF DPDA ON MUTANTS AT 124 AND 50

FIG.-12

- 166
- | | |
|--------------------------------|---|
| Codon: | Thr Ser Gly Ser Ser Thr Val Gly Tyr Pro Gly |
| Wild type amino acid sequence: | |
1. Wild type DNA sequence:
- 5'-ACT TCC GGC AGC TCA AGC ACA GTG GGC TAC CCT GGT-3'
3'-TGA AGG CCG TCG AGT TCG TGT CAC CCG ATG GGA CCA-5'
2. p_A166 DNA sequence:
- * 5'-ACT TCC GGG AGC TCA A-----C CCG GGT-3'
* 3'-TGA AGG CCC TCG AGT T-----G GGC CCA-5'
SacI XmaI
3. p_A166 cut with SacI and XmaI:
- * 5'-ACT TCC GGG AGC T
* 3'-TGA AGG CCP
4. Cut p_A166 ligated with
duplex DNA cassette pools:
- * 5'-ACT TCC GGG AGC TCA AGC ACA GTG NNN TAC CCG GGT-3'
* 3'-TGA AGG CCC TCG AGT TCG TGT CAC NNN ATG GGC CCA-5'

MUTAGENESIS PRIMER 37 MER

5' AA GGC ACT TCC GGG AGC TCA ACC CGG GTA AA TAC CCT 3'

FIG.—13

0251446

FIG. - 14

0251446

FIG. - 15A

FIG. - 15B

0251446

FIG.-16

0251446

FIG. - 17

$$\square \log \frac{(k_{cat}/K_M)_{11e166}}{(k_{cat}/K_M)_{Gly166}}$$

G_V-169 CASSETTE MUTAGENESIS

WILD TYPE AMINO ACID SEQUENCE:		CODON: 162 SER SER THR VAL GLY TYR PRO GLY LIS TYR PRO SER 169	173
1. WILD TYPE DNA SEQUENCE		5' TCA AGC ACA GTG GGC TAC CCT GGT AAA TAC CCT TCT 3' AGT TCG TGT CAC CGG ATG GGA CCA TTT ATG GGA AGA	5' TCT TAT CCT TCT 3'
2. P169 DNA SEQUENCE		5' TCA AGC ACA GTC GGG TAC CCT --- GA TAT CCT TCT 3' AGT TCG TGT CAC CCC ATG GGA CT ATA GGA AGA	5' KPNI ECORV
3. P169 cut with KPNI AND ECORV:		5' TAC AGC ACA GTC GGG TAC 3' AGT TCG TGT CAC CCP	5' TAT CCT TCT 3' TA GGA AGA 5'
4. Cut P169 ligated with OLIGONUCLEOTIDE POOLS		5' TAC AGC ACA GTC GGG TAC CCT TNN TAA TAT CCT TGT 3' AGT TCG TGT CAC CCC ATG GGA NNN TTT ATA GGA AGA	5' TCT TAT CCT GTC A 3'
MUTAGENESIS PRIMER FOR P169		5' AAG CAC AGT GGG GTA CCC TGA TAT CCT TCT GTC A	3'

0251446

FIG.—18

0251446

1. Codon number: 100 104 105 106 108
2. Wild type amino acid sequence: Gly-Ser-Gly-Gln-Tyr-Ser-Trp-Ile-Ile-
3. Wild type DNA sequence: 5'-GGT-TCC-GGC-CAA-TAC-AGC-TGG-ATC-ATT-3'
Pvu II

4. Primer for *Hind* III
insertion at 104:
5' -GGT-TCC-GGC-CAA-GCTT] AGC-TGG-ATC-ATT-3'
Hind III

5. Primers for 104 mutants:
5'---T-TCC-GCC-CAA-NNN-AGC-TGG-ATC-----3'

6. Mutants made:
A, M, L, S, AND H104

FIG.—19

1. Codon number:
 2. Wild type amino acid sequence:
 3. Wild type DNA sequence:

148 150 152 155
 Val-Val-Ala-Ala-Gly-Asn-Glu
 5'-GTA-GTC-GTT-GCG-GCA-GCC-GGT-AAC-GAA-3'

5' - G**T**A-G**T**C-G**T**T-G**G**T - **G****G****G**-G**T**A-C**C**C-G**T**T-A**A**C-G**A**A - 3'
 * * *
 K_{GnT}

5'-GTA-GTC-GTT-GCG-AGC-GCC-GGT-AAC-GAA-3' ***

5' - GTC - GTC - GTC - GGT - CCC - GGC - GGT - AAC - GAA - 3' **

FIG. 20

0251446

FIG.—21

1. Codon number: 211 215 217 220
 2. Wild type amino acid sequence: Gly-Asn-Lys-Tyr-Gly-Ala-Tyr-Asn-Gly-Thr-Ser-Met-Ala
 3. Wild type DNA sequence: 5'-GGA-AAC-AAA-TAC-GGG-GCG-TAC-AAC-GGT-ACG-TCA-ATG-GCA
CCT-TTG-TTT-ATG-CCC-CGC-ATG-TTG-CCA-TGC-AGT-TAC-CGT-5'
 4. pΔ217 5'-GGA-AAC-AAA-TAC-GGC-GCC-TAC-----GG-ATA-TCA-ATG-GCA
CCT-TTG-TTT-ATG-CCG-CGG-ATG-----CC-TAT-AGT-TAC-CGT-5'
Nar I Eco RI
 5. pΔ217 cut with Nar I 5'-GGA-AAC-AAA-TAC-GG
CCT-TTG-TTT-ATG-CCG-Gp and Eco RI
 6. Cut pΔ217 ligated with 5'-GGA-AAC-AAA-TAC-GGC-GCC-GGG-NNN-AAC-GGT-TCA-TCA-ATG-GCA
cassettes: CCT-TTG-TTT-ATG-CCG-CGG-NNN-TTG-CCA-TGT-AGT-TAC-CGT-5'
 7. Mutagenesis primer 5'-GA-AAC-AAA-TAC-GGC-GCC-TAC-GGA-TAT-CAA-TGG-CAT-3' for pΔ217:

All 19 at 217

8. Mutants made:

FIG. - 22

ALKALINE pH PROFILE

0251446

FIG. - 23A

ALKALINE pH PROFILE

FIG. - 23B

0251446

FIG. - 24

1. Codon number: 91 95 100
2. Wild type amino acid sequence: Tyr-Ala-Val-Lys-Val-Leu-Gly-Ala-Asp-Gly-Ser
3. Wild type DNA sequence: 5'-TAC-GCT-GTA-AAA-GTT-CTC-GGT-GCT-GAC-GGT-TCC
ATG-CGA-CAT-TTT-CAA-GAG-CCA-CGA-CTG-CCA-AGG-5'
4. pΔ95:

5' -TAC-GCG-T * * *
ATG-CGC-A
Mu I

* * PGAC-GGT-TCC
A-CCG-CTG-CCA-AGG-5'
5. pΔ95 cut with *Mu I* and *Pst I*

5' -TA *
ATG-CGCP
6. Cut pΔ95 ligated with cassettes:

5' -TAC-GCG-GTA-HAA-GTT-CTC-GGT-GCA-GAC-GGT-TCC
ATG-CGC-CAT-TTT-CAA-GAG-CCA-CGG-CTG-CCA-AGG-5'
7. Mutagenesis primer for pΔ95:

5' -CA-TCA-CTT-TAC-GCG-T-CTC-GCT-GCA-GAC-GGT-TCC
8. Mutants made:
 C94, C95, D96

FIG. — 25

0251446

FIG.-26

0251446

FIG. - 27

0251446

FIG. -28

0251446

FIG. -28

0251446

FIG.—29A

FIG.—29B

0251446

FIG.-30

0251446

FIG.—31

0251446

FIG. - 32

0251446

FIG.-33

0251446

195 200 206
W.T.A.A.: Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln

W.T.DNA: GAG CTT GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA
CTC GAA CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT

pΔ222DNA: GAG CTT GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA
CTC GAA CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT

A197 DNA: ~~GAG CTC GCA~~ GTC ATG GCA CCT GGC GTA TCT ATC CAA
CTC GAG CGT CAG TAC CGT GGA CCG CAT AGA TAG GTT
SstI

Fragments from
pΔ222 and A197
cut w/ *PstI*, *SstI*:

*
pΔ222, A197
cut & ligated
w/ oligodeoxy-
nucleotide pools:
~~GAG CTC GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA~~
~~CTC GAG CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT~~
SstI

207 210 218
W.T.A.A.: Ser Thr Leu Pro Gly Asn Lys Tyr Gly Ala Tyr Asn

W.T.DNA: AGC ACG CTT CCT GGA AAC AAA TAC GGG GCG TAC AAC
TCG TGC GAA GGA CCT TTG TTT ATG CCC CGC ATG TTG

pΔ222DNA: AGC ACG CTT CCT GGA AAC AAA TAC GGG GCG TAC AAC
TCG TGC GAA GGA CCT TTG TTT ATG CCC CGC ATG TTG

A197 DNA: AGC ACG CTT CCT GGA AAC AAA TAC GGG GCG TAC AAC
TCG TGC GAA GGA CCT TTG TTT ATG CCC CGC ATG TTG

Fragments from
pΔ222 and A197
cut w/ *PstI*, *SstI*:

* *
~~AGC ACG CTT CCC GGG AAC AAA TAC GGG GCG TAC AAC~~
~~TCG TGC GAA GGG CCC TTG TTT ATG CCC CGC ATG TTG~~
SmaI

219 220 230
W.T.A.A.: Gly Thr Ser Met Ala Ser Pro His Val Ala Gly Ala

W.T.DNA: GGT ACG TCA ATG GCA TCT CCG CAC GTT GCC GGA GCG-3'
CCA TGC AGT TAC CGT AGA GGC GTG CAA CGG CCT CGC-5'

pΔ222DNA: ~~GGT ACC TCA ----- CG CAC GCT GCA GGA GCG-3'~~
~~CCA TGG AGT ----- GC GTG CGA CGT CCT CGC-5'~~
KpnI *PstI*

A197 DNA: GGT ACG TCA ATG GCA TCT CCG CAC GTT GCC GGA GCG-3'
CCA TGG AGT TAC CGT AGA GGC GTG CAA GTG CCT CGC-5'

Fragments from
pΔ222 and A197
cut w/ *PstI*, *SstI*:

PGGA GCG-3'
A CGT CCT CGC-5'

* *
~~GGT ACC TCA ATG GCA TCT CCG CAC GTT GCA GGA GCG-3'~~
~~CCA TGG AGT TAC CGT AGA GGC GTG CAA CGT CCT CGC-5'~~
KpnI *PstI* destroyed

Oligodeoxynucleotide pools synthesized with 2% contaminating nucleotides in each cycle to give
~15% of pool with 0 mutations, ~28% of pool with single mutations, and

~57% of pool with 2 or more mutations, according to the general formula $f = \frac{\mu^n}{n!} e^{-\mu}$.

FIG.—35

FIG.—36

0251446

Wild type A.A.:	195 200	204 210
	Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Glu Ser Thr Leu Pro Gly Asn Lys	
Wild type DNA:	5'-GAG CTT GAT GTC ATG GCA CCT GGC GTA TCT ATC CAA AGC ACG CCT GGA AAC AAA-3' 3'-CTC GAA CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT TCG TGC GAA CCT TTG TTT-5'	
C204/R213 DNA:	5'-GAG CTC * GAT GTC ATG GCA CCT GGC GTA TGT ATC CAA AGC ACG CCT CCC GGG AAC AGA-3' 3'-CTC GAG CTA CAG TAC CGT GGA CCG CAT AGA TAG GTT TCG TGC GAA CCC TTG TCT-5'	
	SstI	SmaI
C204/R213 cut with SstI and SmaI:	5'-GAG CT 3'-C	
		GGG AAC AGA-3' CCC TTG TCT-5'
C204/R213 cut and ligated with oligo- deoxyribonucleotide pools:	5'-GAG CTC * GAT CTC ATG GCA CCT GGG GTA 3'-CTC GAG CTA CAG TAC CGT GGA CCG CAT	ATC CAG TCG ACG CCT GGG AAC AGA-3' TAG GTC AGC TGC GAA CCC TTG TCT-5'
	SstI	SmaI
		W, R, R, or G ← <u>11</u> NCC or <u>13</u> NCC → S, P, T or A
		Stop, Y, H, Q, N, K, D or E ← <u>[G]</u> AN or <u>[G]</u> CN or <u>[G]</u> CAN → L, F, I, V or M