Pregunta 1 (2,5 puntos)

En el espacio $\mathcal{P}^2_{\mathbb{R}}[0,+\infty)$ de los polinomios, con coeficientes reales y de grado menor o igual a dos, se define

$$\langle P, G \rangle = \int_0^\infty P(t)G(t)e^{-t} dt$$
.

- a) Demuestre que $\langle \cdot, \cdot \rangle$ es un producto interno en $\mathcal{P}^2_{\mathbb{R}}[0, +\infty)$.
- b) Determine una base ortonormal, respecto de este producto interno, de $\mathcal{P}^2_{\mathbb{R}}[0,+\infty)$.

Pregunta 2 (2 puntos)

Sean \mathcal{H} un espacio prehilbertiano y $\{e_1, e_2, \cdots, e_n\} \subset \mathcal{H}$ un sistema de n vectores unitarios tales que para todo $x \in \mathcal{H}$ se cumple el desarrollo $x = \sum_{k=1}^{n} \langle x, e_k \rangle e_k$.

- a) Demuestre que $\langle e_i, e_j \rangle = 0$ para todo $i, j \in \{1, 2, \dots, n\}$ tales que $i \neq j$.
- b) Demuestre que $\{e_1, e_2, \dots, e_n\}$ es una una base ortonormal de \mathcal{H} .

Pregunta 3 (2,5 puntos)

Sean \mathcal{H} un espacio de Hilbert y $\{e_n\}_{n=1}^{\infty} \subset \mathcal{H}$ y $\{f_n\}_{n=1}^{\infty} \subset \mathcal{H}$ dos sistemas ortonormales. Sea $a = \{a_n\}_{n=1}^{\infty} \in \ell^{\infty}(\mathbb{N})$ fijo. Se define $T \colon \mathcal{H} \to \mathcal{H}$ mediante:

$$T(x) = \sum_{n=1}^{\infty} a_n \langle x, e_n \rangle f_n$$
, para todo $x \in \mathcal{H}$.

- a) Demuestre que la expresión de T(x) es convergente en \mathcal{H} y que T es un operador lineal acotado.
- b) Calcule ||T|| y T^* .

Pregunta 4 (3 puntos)

Sea $f: \mathbb{R} \to \mathbb{C}$ una función 2π -periódica con derivada continua y tal que $\int_{-\pi}^{\pi} f(t) dt = 0$. Denotamos por $c_n(f)$ y $c_n(f')$ los coeficientes de Fourier de f y f' respectivamente.

- a) Calcule los coeficientes de Fourier $c_0(f)$ y $c_0(f')$.
- b) Justifique que $f(t) = \sum_{n \in \mathbb{Z}^*} \frac{1}{in} c_n(f') e^{int}$ para todo $t \in \mathbb{R}$. (Notación: $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$)
- c) Demuestre que $\left|f(t)\right|^2 \leq \left(\sum_{n \in \mathbb{Z}^*} \frac{1}{n^2}\right) \left(\sum_{n \in \mathbb{Z}^*} \left|c_n(f')\right|^2\right)$ para todo $t \in \mathbb{R}$.
- d) Deduzca que $M \leq \sqrt{\frac{\pi}{6}} \|f'\|$ siendo $M = \max\{|f(t)| : t \in \mathbb{R}\}.$

Nota: utilice que
$$\sum_{n \in \mathbb{Z}^*} \frac{1}{n^2} = \frac{\pi^2}{3}$$
.