Семинар № 5 по дисциплине «Электроника»

Тема: Определение параметров логических вентилей

1 Теоретическое введение

1.1 Основные параметры и характеристики логических элементов

Логические схемы на входе и выходе должны иметь два устойчивых состояния: логического нуля и логической единицы.

Примеры логических функций, выполняемых схемами:

И-НЕ									
X1	X2	Y							
0	0	1							
0	1	1							
1	0	1							
1	1	0							

ИЛИ-НЕ								
X1	X2	Y						
0	0	1						
0	1	0						
1	0	0						
1	1	0						

Все возможные логические функции двух аргументов приведены в табл. 1.

Рассмотрим потенциальные элементы: логическое состояние определяется значениями электрического потенциала на входе и выходе.

Основные параметры логических элементов:

Статические параметрых потенциалы логического 0 и логической 1: U^0 , U^1 ; порог переключения V_{n} ; помехоустойчивость к помехам - положительным и отрицательным: U^+_n , U^-_n ; статическая потребляемая мощность $P_{\rm ct}$, ток питания I_{num} , динамические параметрых задержки переключения: $t^{01}_{\,_3}$ из 1 на выходе в 0; фронты переключения $t^{01}_{\,_4}$ и $t^{01}_{\,_4}$ и $t^{01}_{\,_4}$, динамическая потребляемая мощность $P_{\rm дин}$.

1.2 Определение статических характеристик и параметров

Передаточная характеристика. Основная статическая характеристика логических элементов — передаточная: $U_{_{\mathit{вых}}} = f(U_{_{\mathit{gx}}})$ — зависимость потенциала на выходе от потенциалов на одном из входов, при постоянном значении на других входах. К входам и выходам логических схем подключаются такие же схемы. Передаточные характеристики бывают инвертирующие и неинвертирующие (см. рис. 26).

На рисунках отмечены:

 $U_{\Pi} = U^{1} - U^{0} -$ логический перепад;

 $\Delta V_{_{I\!I}}\!\!=V^{^{1}}_{_{_{I\!I}}}\!\!-V^{^{0}}_{_{_{I\!I}}}\!\!-$ ширина зоны неопределённости;

 $U_{\Pi}^{+} = V_{\Pi}^{0} - U_{\Pi}^{0}; \quad U_{\Pi}^{-} = U_{\Pi}^{1} - V_{\Pi}^{1}$ - помехоустойчивость по положительной и отрицательной помехам, соответственно;

 $\mathbf{U}_{\Pi}^{+} + \mathbf{U}_{\Pi}^{-} = \mathbf{U}_{\Pi} - \Delta \mathbf{V}_{\Pi};$

Логические	Значение	Запись функции с помощью									_
посументы и	истинности	самостоятель- нотации	1	2	3 .	1 5	6	7	9	O.	

Пороги переключения $V^{^0}_{{^{\prime\prime}}}$, $V^{^1}_{{^{\prime\prime}}}$ определяются из условия:

$$\left| \frac{dU_{BblX}}{dU_{BX}} \right| = 1, \tag{1}$$

т.е. при одинаковом масштабе осей X и Y в точках $V_{_{\Pi}}^{_{0}}$, $V_{_{\Pi}}^{_{1}}$ передаточная характеристика наклонена под углом 45°.

Т.к. в хорошо спроектированной схеме $\Delta V_{\Pi} << U_{\Pi}$, то $V_{\Pi}^{0} \approx V_{\Pi}^{1} \approx V_{\Pi}$ $U_{\Pi} = E_{\Pi \Pi \Pi} \Rightarrow U_{\Pi}^{+} + U_{\Pi}^{-} \leq E_{\Pi \Pi \Pi}$.

Следует использовать такие схемы, у которых $V_{\Pi}=(U^0+U^1)/2$, т. е. переключение происходит при входном напряжении, равном половине питания, тогда

$$U_n^+ \approx U_n^- \approx U_n = \frac{U_n - \Delta V_n}{2} \tag{2}$$

Помехоустойчивость следует рассчитывать для наихудшего случая: $U_{\Pi}^{+} = V_{\Pi M IN}^{0}$ - $U_{\Pi A IN}^{0}$ - $U_{\Pi A IN}^{0}$ - $U_{\Pi M IN}^{0}$

Рис. 1. Неинвертирующая (а) и инвертирующая (б) передаточная характеристика: I — зона логического нуля по выходу, II — зона логической единицы по выходу, III — зона неопределённости

Статическая мощность потребления схемы:

Статическая мощность потребления схемы характеризует схему в статических состояниях: нуля или единицы. Этот параметр приближённо соответствует полной мощности потребления в случае, если схема пре-имущественно находится в статических состояниях (например, длительное время находится в режиме ожидания или работает при низкой частоте переключений). Для расчёта этого параметра следует по графику потребляемого тока $I_{\text{пит}}^0$ и $I_{\text{пит}}^1$ в

режимах, соответствующих $U_{\text{вых}} = U^{0}$ и $U_{\text{вых}} = U^{1}$. После этого средняя мощность рассчитывается как:

$$P_{C} = \frac{E_{num}(I_{num}^{0} + I_{num}^{1})}{2} = E_{num}I_{num}$$
(3)

1.3 Определение динамических характеристик и параметров

Для определения задержек $t_3^{1,0}$, $t_3^{0,1}$ и фронтов переключения используется схема рис. 2. Она состоит из трёх логических схем одной серии: схемы, на выходе которой формируется входной сигнал для исследуемой схемы, самой исследуемой схемы, которая является нагрузкой для исследуемой. Входной и выходной точкой для этого типа расчёта являются входная и выходная точки самой исследуемой схемы. Дополнительно от входной и выходной точек к земле подключаются ёмкости межсоединений (металлических дорожек — проводников на микросхеме). Такое подключение создаёт для исследуемой схемы условия работы, близкие к реальным: схема получает на вход более реалистический входной сигнал и имеет реалистическую нагрузку.

На вход подаётся однополярный прямоугольный сигнал (меандр) с короткими фронтами и амплитудой, соответствующей семейству логической схемы. Типовые графики зависимостей $U_{_{\rm BX}}(t)$ и $U_{_{\rm BMX}}(t)$ для определения фронтов и задержек переключения приведены на рис. 3 и 4.

Рис. 2. Схема для определения задержек и фронтов переключения

Время задержки определяется как среднее арифметическое времени задержки переключения с логического нуля на логическую единицу и времени задержки переключения с логической единицы на логический нуль.

$$t_{_{3}} = \frac{t_{_{3}}^{01} + t_{_{3}}^{10}}{2} \tag{4}$$

Длительность фронтов определяется по уровням 0.1-0.9, см. рис. 3.

Для определения предварительного значения для максимально допустимой частоты работы схемы следует увеличивать частоту входного сигнала до тех пор, пока не исчезнет верхняя и/или нижняя полочки (определяемые по уровням 0,9 и 0,1, соответственно). Напряжение при переходном процессе переключения в этом случае должно достигать минимального уровня логической единицы и максимального уровня логического нуля, но не задерживаться в единице и нуле.

Рис. 3. Определение задержек по переходной характеристике

Рис. 4. Определение длительностей фронтов по переходной характеристике

Проверка и корректировка предварительного значения осуществляется следующим образом:

Динамическая мощность потребления

Динамическая мощность потребления характеризует схему, работающую при высокой частоте переключений; этот параметр соответствует полной мощности потребления:

$$P_{\pi} \approx C_{\pi} E_{\pi\nu\tau}^2 f_{\pi} \tag{5}$$

 $C_{\scriptscriptstyle \Pi}$ – паразитная ёмкость схемы

 $f_{\scriptscriptstyle \Pi}$ - частота переключения.

Если рассматривается работа логического элемента при максимально допустимой частоте $f_{\rm max}$, то по той же формуле рассчитывается максимальная динамическая потребляемая мощность.

1.4 Особенности логических схем семейства КМОП

КМОП (комплементарная структура металл-оксид-полупроводник; англ. CMOS, complementary metal-oxide-semiconductor) — набор полупроводниковых технологий построения интегральных микросхем и соответствующая ей схемотехника микросхем. Подавляющее большинство современных цифровых микросхем — КМОП.

В схемах данного типа используются как п-канальные, так и р-канальные МДП транзисторы. Это позволяет создать логические схемы, практически не потребляющие мощность в статическом режиме. У таких схем потребляемая мощность на низких и средних частотах на 2-3 порядка меньше, чем у ТТЛ схем, а задержка примерно такая же. Эти схемы применяются при наличии ограничений на потребляемую мощность из-за ограниченных энергоресурсов или жестких требований к тепловому режиму. Однако они технологически сложнее и занимают большую площадь на кристалле.

Особенностью многих логических схем КМОП является инверсный выход, т. е. реализуются логические функции НЕ, И-НЕ, ИЛИ-НЕ и т. п.

Транзисторы в КМОП-схемах часто включены парами («КМОП-парами»), где два транзистора соединены затворами и для них выполняются условия комплементарности:

- 1. транзисторы в КМОП-паре противоположного типа проводимости;
- 2. их пороговые напряжения равны по модулю, но противоположны по 3 на ку: $V_{\text{пор},n} = -V_{\text{пор},n}$;
- 3. значения их удельной крутизны равны:

$$kp_n = kp_p$$
, откуда $\mu_n \frac{W_n}{L_n} = \mu_p \frac{W_p}{L_n}$. (6)

где kp — коэффициент крутизны, W и L — ширина и длина затвора, μ — подвижность носителей заряда (электронов и дырок), индексы n и p относятся k показателям n- и p-канальных транзисторов, соответственно.

Номинальная ширина затворов n- и p-канальных транзисторов КМОП-схемы определяется исходя из одного из условий комплементарности КМОП-пары, в соответствии с которым должны быть равны значения их крутизны (№).

Как правило, значения длины обоих типов транзисторов равно минимально допустимому значению в соответствии с нормами проектирования в заданной технологии: $L_n = L_p = \Delta$. Отношение значений подвижности электронов и дырок обычно составляет 2..3: $\mu_n/\mu_p = 2$... 3, отношение W/L для n-MOПГ обычно берут в диапазоне 5..10, откуда определяется номинальная ширина затвора p-канального транзистора.

В дальнейшем при выравнивании токов различных частей схемы размеры транзисторов корректируются.

1.5 Примеры логических схем семейства КМОП

1.5.1 КМОП-инвертор

<u>Анализ работы.</u> Пусть $U_{\rm ex}=U_{\rm sun}< U_{\rm 0n}$, следовательно, n-канальный $T_{\rm 1}$ тогда $U_{\rm sup}=U_{\rm ex}-E< U_{\rm 0p}$, следовательно, p-канальный $T_{\rm 2}$ открыт и работает в крутой области выходной характеристики, то $U_{\rm sux}=U^{\rm 1}=E$.

Пусть $U_{{\scriptscriptstyle Bx}}$ растёт, когда $U_{{\scriptscriptstyle Bx}}=U_{{\scriptscriptstyle on}},T_{{\scriptscriptstyle 1}}$ открывается и в схеме начинает течь ток.

Пусть $U_{x_1}=U^1$, тогда $T_1^{'}$ - открыт $(U_{_3T_1^{'}}>U_{on})$, $T_2^{'}$ - закрыт $\left|U_{_3T_2^{'}}\right|<\left|U_{op}\right| \Rightarrow U_{_{\mathit{Bbl}X}}=U^0=0$, если $U_{x_1}=U^{'}$ и $U_{x_2}=U^{'}$ - что то же самое.

Когда $U_{{\scriptscriptstyle Bx}}$ достигает $E-\left|U_{{\scriptscriptstyle op}}\right|$ транзистор $T_{\scriptscriptstyle 2}$, запирается и устанавливается $U_{{\scriptscriptstyle Gblx}}=U_{\scriptscriptstyle 0}=0$

Рис. 5. Принципиальная схема КМОП-инвертора

Рис. 6. Передаточная характеристика КМОП-инвертора

Рис. 7. Разрез физической структуры КМОП-инвертора

Как правило, к выходу логической схемы подключается вход такой же логической схемы, поэтому в статике ток в КМОП-схеме может течь только через транзисторы (вход следующей схемы — затворы её транзисторов, через них ток не течёт):

когда на выходе логический 0, заперт $T_2 \Rightarrow I_{num} = 0$, когда на выходе логическая 1, заперт $T_1 \Rightarrow I_{num} = 0$.

1.5.2 КМОП-схема ИЛИ-НЕ

Y
1
0
0
0

$$egin{aligned} oldsymbol{U}_{x2} = oldsymbol{U}^0 \ oldsymbol{T}_1^{\parallel}$$
 и $oldsymbol{T}_1^{\parallel}$ оба заперты $oldsymbol{T}_2^{\parallel}$ и $oldsymbol{T}_2^{\parallel}$ оба открыты $oldsymbol{U}_{\scriptscriptstyle \mathit{BMX}} = oldsymbol{U}^{\parallel} pprox oldsymbol{E} \end{aligned}$

 $U_{x1} = U^0$

1.5.3 КМОП-схема И-НЕ

2 Задание для работы

Задание 1 (4 балла).

- **а)** Рассчитайте размеры и другие параметры модели р-канальных МОПТ в соответствии с критериями комплементарности (см. п. 1.4);
- **б)** промоделируйте статические характеристики схемы для любой пары вход-выход: передаточную и потребляемый ток;
- **в)** подберите ширину р-канальных транзисторов так, чтобы статические характеристики оказались симметричными в диапазоне $V_{\rm BX} = (0; V_{\rm nut});$
- г) по результатам моделирования определите статические параметры схемы: уровни логического нуля, единицы, запас помехоустойчивости, средний потребляемый ток, статическую мощность потребления.

Задание 2 (3 балла).

- а) Промоделируйте переходные характеристики схемы для той же самой пары вход-выход при максимально допустимой частоте входного сигнала;
- **б)** скорректируйте ширину р-канальных транзисторов так, чтобы фронты и спады на переходной характеристике оказались одинаковыми;
- в) по результатам моделирования определите динамические параметры схемы: времена задержек и фронтов переключения, максимальную рабочую частоту схемы, динамическую мощность потребления.

Задание 3 (3 балла).

- а) Промоделируйте более реалистическую переходную характеристику заданной схемы с использованием ёмкостей межсоединений, задающей и нагрузочной схемы того же состава для той же самой пары входвыход при максимально допустимой частоте входного сигнала;
- б) покажите, как развивается переходной процесс переключения от схемы к схеме: исходный импульс, входное и выходное напряжение исследуемой схемы, выходное напряжение нагрузочной схемы все эти напряжения должны демонстрировать полное переключение.

3 Таблица вариантов

для БИТ-203

№	№ с х е мы	V _{пит} , В	<i>Wn</i> , мкм	<i>Ln</i> , мкм	μ_n , $c \text{m}^2/(\text{B} \cdot \text{c})$	t ,, нм	$\left egin{array}{c} V_{\scriptscriptstyle m non} \ {f B} \end{array} ight ,$	λ, Β ⁻¹	С _{зсо} \ С _{зсо} , пФм	С _{меж} , пФ
1	12	2.5	12.5	0.25	270	10	0.43	0.05	0.1	8
2	11	2.5	7.5	0.25	320	10	0.48	0.3	0.1	8
3	10	2.5	7.5	0.25	260	10	0.50	0.25	0.1	8
4	9	2.5	10	0.25	190	10	0.45	0.2	0.1	8
5	8	2.5	7.5	0.25	380	10	0.50	0.15	0.1	8
6	7	2.5	12.5	0.25	400	10	0.40	0.25	0.1	8
7	6	2.5	7.5	0.25	310	10	0.43	0.1	0.1	8
8	5	2.5	5	0.25	330	10	0.38	0.1	0.1	8
9	4	1.8	9	0.18	280	3.6	0.32	0.05	0.1	11.1
10	3	2.5	10	0.25	400	10	0.50	0.05	0.1	8
11	2	1.8	7.2	0.18	200	3.6	0.27	0.25	0.1	11.1
12	1	2.5	12.5	0.25	200	5	0.43	0.2	0.1	8

4 Электрические схемы

