計量経済 II: 宿題 9

村澤 康友

提出期限: 2023年12月4日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ sw-ch12 の変数 GDP_JP は,1959 年第 1 四半期~1999 年第 2 四半期の日本 の 1 人当たり実質 GDP の季節調整済み系列である.以下の 2 つの時点について,GDP_JP の対数系 列の線形トレンドの構造変化のチョウ検定を実行しなさい.
 - (a) 第1次オイル・ショック(1974年第1四半期)
 - (b) バブル崩壊(1991年第2四半期)
 - ※ gretl でチョウ検定を実行する手順は以下の通り.
 - (a) OLS を実行した画面のメニューから「検定」→「チョウ検定」を選択.
 - (b)「標本を分割する観測」(構造変化の時点)を指定.
 - (c) $\lceil OK \rfloor$ $\geq D \cup D = 0$.
- 2. 前問と同じデータを使用する。第 1 次オイル・ショック(1974 年第 1 四半期)とバブル崩壊(1991 年第 2 四半期)の 2 つの構造変化ダミーを用いて GDP_JP の対数系列の線形トレンドの 2 回の構造変化を OLS で推定し、結果を図示しなさい。
 - ※ gretl で構造変化ダミーを作成する手順は以下の通り.
 - (a) メニューから「追加」→「観測範囲ダミー」を選択.
 - (b)「ダミー範囲」を設定し、変数名を入力.
 - (c) $\lceil OK \rfloor$ $\delta D \cup D$.

解答例

1. (a) 第1次オイル・ショック(1974年第1四半期)

チョウ (Chow) 検定のための拡張された回帰

最小二乗法 (OLS), 観測: 1959:1-1999:2 (T = 162)

従属変数: 1_GDP_JP

	係数		標準誤	差	t 値	p 値	
const	2.6826	9	0.009	71256	276.2	5.13e-21	- 1 ***
time	0.0231	227	0.0002	276918	83.50	1.27e-13	2 ***
${\tt splitdum}$	0.8179	64	0.0173	3745	47.08	6.95e-09	5 ***
sd_time	-0.0146	779	0.0003	303791	-48.32	1.50e-09	3 ***
Mean depende	nt var	4.05	1760	S.D. d	ependent v	ar 0.600	0922
Sum squared	resid	0.218	3028	S.E. o	f regressi	on 0.03	7147
R-squared		0.996	3250	Adjust	ed R-squar	ed 0.996	3179
F(3, 158)		1399	1.18	P-valu	e(F)	2.3e-	-191
Log-likeliho	od	305.6	6009	Akaike	criterion	-603.3	2019
Schwarz crit	erion	-590.8	3515	Hannan	-Quinn	-598.	1875
rho		0.975	5745	Durbin	-Watson	0.093	3901

F(2, 158) = 1284.99 なお、p値(p-value) 0.0000

(b) バブル崩壊(1991年第2四半期)

チョウ (Chow) 検定のための拡張された回帰

最小二乗法 (OLS), 観測: 1959:1-1999:2 (T = 162)

従属変数: 1_GDP_JP

	係数 		標準誤	!差 		t 値 		p 値 	
const	2.9376	4 (0.0197	7773		148.5	1	.27e-171	***
time	0.0145	132 (0.0002	264011	L	54.97	6	.54e-105	***
splitdum	1.3593	2 (2993	327		4.541	1	.10e-05	***
sd_time	- 0.011	6207	0.002	20583	7	- 5.6	46	7.45e-0)8 ***
Mean deper	ndent var	4.0517	760	S.D.	dep	endent v	ar	0.6009	22
Sum square	ed resid	1.9699	979	S.E.	of :	regressi	on	0.1116	61
R-squared		0.966	116	Adjus	sted	R-squar	ed	0.9654	72
F(3, 158)		1501.6	340	P-val	Lue(F)		7.3e-1	16
Log-likeli	hood	127.30	074	Akaik	ce c	riterion	L	- 246.6	148
Schwarz cr	riterion	- 234.	2644	Hanı	nan-	Quinn		- 241.	6004
rho		0.9669	986	Durbi	in-W	atson		0.0232	03

F(2, 158) = 71.9604 なお、p値(p-value) 0.0000

2. 構造変化の回帰分析

モデル 1: 最小二乗法 (OLS), 観測: 1959:1–1999:2 (T=162) 従属変数: l_GDP_JP

	係数	標	準誤差	t-ratio	p値
const	2.68269	0.00	491945	545.3	0.0000
d1	0.683499	0.01	20857	56.55	0.0000
d2	0.930776	0.05	515238	18.06	0.0000
$_{ m time}$	0.0231227	0.00	0140260	164.9	0.0000
d1time	-0.0131904	0.00	0180575	-73.05	0.0000
d2time	-0.00703978	0.00	0362291	-19.43	0.0000
Mean depender	nt var 4.05	1760	S.D. dep	endent va	r 0.600922
Sum squared re	esid 0.05	5226	S.E. of r	egression	0.018815
R^2	0.99	9050	Adjusted	$1 R^2$	0.999020
F(5, 156)	3283	14.03	P-value(F)	9.6e-234
Log-likelihood	416.	8290	Akaike c	riterion	-821.6581
Schwarz criteri	on -803 .	1325	Hannan-	-Quinn	-814.1364
$\hat{ ho}$	0.76	5804	Durbin-	Watson	0.433666

線形トレンドの構造変化

実績値と理論値 I_GDP_JP

