UNCLASSIFIED

AD NUMBER AD914190 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 02 NOV 1973. Other requests shall be referred to Air Force Avionics Laboratory, AFAL/AAA, Wright-Patterson AFB, OH 45433. **AUTHORITY** afal ltr dtd 7 oct 1977

MULTILATERATION SOFTWARE DEVELOPMENT (PHASE II)

J. Weinberg, Principal Investigator
M. Harris, E. Knobbe, E. Kopitzke, G. Kochmann
(Northrop Corporation)

E. Martin, V. Calbi, M. Bittner (Magnavox Research Laboratories)

TECHNICAL REPORT AFAL-TR-73-297

September 1973

MEG . 1975

Distribution limited to U.S. Government agencies only; other requests for this document must be referred to the Air Force Avionics Laboratory (AFAL/AAA), Wright-Patterson Air Force Base, Ohio 45433.

Air Force Avionics Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND D'SCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

MULTILATERATION SOFTWARE DEVELOPMENT (PHASE II)

J. Weinberg, M. Harris, E. Knobbe, E. Kopitzke, G. Kochmann (Northrop Corporation)

E. Martin, V. Calbi, M. Bittner (Magnavox Research Laboratories)

Distribution limited to U.S. Government agencies only; other requests for this document must be referred to the Air Force Avionics Laboratory (AFAL/AAA), Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

This report, AFAL TR-73-297, covers work done by the Electronics Division of the Northrop Corporation, Palos Verdes, California, under Contract F33615-72-C-1607 and project 6095 02 04 for the US Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio 45433. The USAF program monitor is J A Biernacki (AFAL/AAA). Research on this report was conducted from May 72 to Jun 73 and the report submitted Jul 73. The Magnavox Research Laboratory, Torrance, California, participated in this effort under subcontract to the Northrop Corporation. Contributors to this report are J Weinberg, M Harris, E Knobbe, E Kopitzke, G Kochmann of the Northrop Corporation and E Martin, V Calbi, M Bittner of the Magnavox Corporation.

The authors hereby gratefully acknowledge the many contributions -technical, administrative, and philosophical -- made to this development
program by Mr John Biernacki, who has served as the AFAL Project Engineer
from program inception to date.

This technical report has been reviewed and is approved.

COZOTR S KLINE, Colonel, USAF Chief, System Avionics Division AF Avionics Laboratory

ABSTRACT

Historically, vehicle-borne, radio-hybrid navigation system software has too often been designed around preselected navigation hardware on an ad hoc, system-by-system basis. In these developments, little attention has been paid to the inherent physical and functional commonality which underlies much of this superficially quite different software. This report documents the methods, and the very promising results, of the second phase of a software development effort directed at identifying and specifying a standardized, modular, flexible, radio-hybrid navigation system software processor.

The machine-and-language-independent (MLI) processor specification which has in particular been developed to date has been designed so that -- with appropriate, minor, system-specific tailoring -- it can serve as the basic specification for the navigation software development for any specific system, within a wide range of navigation hardware equipment configurations and mission requirements. These currently include any combination of radio (LOS or earth mode), inertial, AHRS, and CADS navigation equipments, as well as the requirements associated with most military and civil aircraft missions and usages. In addition, the MLI processor has been carefully structured to allow for easy accommodation of additional navigation hardware processing requirements.

The second-phase effort used as its point of departure and developmental framework the basic guidelines, concepts and algorithms established in the initial phase. These include, in particular, the exclusive use of vector-matrix algorithm formulations, processor organization into basic, building-block function- and hardware-specific modules and submodules, the use of a single, mission-phase switchable, computational reference frame, and the use of partitioned, modularly organized Kalman filtering techniques. The overall second-phase effort itself consisted of two main, more or less sequential developments: (a) the extension and refinement of the MLI processor capabilities beyond its first-phase level, and (b) the initial development of a specialized, higher-order language navigation program using the MLI processor specification as a basis.

The improvements of the MLI processor accomplished in the second phase included (a) extension of its navigation hardware applicability to allow use of cheaper AHRU/CADS equipment, either in lieu of or as a backup to an IMU; (b) further development and refinement of a novel and promising radio-autonomous navigation technique; (c) extension and refinement of processor and navigation equipment initialization and alignment techniques; (d) development of a completely partitioned and modularized Kalman filter; and (e) development of a complete set of processor mode control and switching logic specifications. In particular, one of the initialization algorithms developed is a new and powerful one which allows undegraded Kalman filter use of radio pseudoranging measurements, despite large LOS directional uncertainties. Further, the Kalman filter partitioned modularity was achieved without artificial (and performance-degrading) decoupling of interpartition system error dynamics.

Time and money constraints permitted development of the specialized FORTRAN IV/IBM 370 processor program only to a very limited stage. Specifically, all the principal navigation modules required for a single assumed LOS/inertial navigation hardware configuration and navigation mode of operation have been programmed and checked out (for fixed inputs only); no mode switching or control modules have been programmed. However, even this limited level of development was intended (and has served) to accomplish two purposes. First, it provided a learn-by-doing vehicle for the broadly experienced programmer assigned the task, to assay the viability of the MLI processor specifications from the standpoint of real-time programming in either an HOL or a machine-specific language. The preliminary conclusions reached in this regard are that the MLI specification provides the programmer with an extremely flexible and easily modifiable, but standardized approach to programming real-time, multisensor, Kalman (or non-Kalman) navigation system software for any airborne digital computer. In addition, it places overall program efficiency and balance (with regard to execution time and memory requirements) much more completely under the control of the programmer than traditional types of specification.

The second purpose accomplished lies in the fact that the programmed modules thus far developed constitute a nucleus-in-being for further development of either a processor evaluation simulation program on the one hand, or a standardized, real-time HOL master navigation program for subsequent machine-specific translation, on the other.

CONTENTS

Section	on/Paragraph	Page
	SYMBOL GLOSSARY	xi
I	INTRODUCTION AND SUMMARY	1
II	PROCESSOR DESCRIPTION	3
	1. Functional Scope and Role	3
	2. Mission/Hardware Applicability	6
	 Basic Structural and Operational Concepts 	9
	a. Basic Navigation Equations	9
	b. Vector/Matric Algorithms	12
	c. Functional Modularity/Commonality	13
	d. Kalman Filtering	15
	e. Overall Navigation Information Processing	
	Organization	17
	f. Processor Modular Organization	19
	g. Special Processor Concepts and Capabilities	28
	h. Growth Potential	41
III	PROCESSOR MLI SPECIFICATION	43
	1. Overall Processor Organization Summary	44
	a. Start-up Modules	47
	b. Switching Modules	47
	c. CALM: Coarse Align Module	48
	d. DR Nav Modules	48
	e. Ref Nav Measurement Modules	48
	f. Kalman Filter Modules	49
	g. Special Navigation Output Modules	49
	2. DR Navigation (D) Modules Specification Summary	51
	a. Vehicle State Module (VSTM) Specification	53
	b. Platform Module (PLAM) Specification	59
	c. Wind/Airspeed Module (WASM) Specification	65
	3. Reference Navigation Measurement (R) Modules Specifications Summary	71
	a. Reference Altitude Module (ALTM) Specification	73
	b. Reference Position Fix Module (POSM) Specification	77
	c. Transceiver Data Processing Modules (TDPM)	,,
	Specifications Summary	81
	(1) Transceiver Acquisition and Aiding	٠.
	Module (TAAM) Specification	85
	(2) Transceiver Emitter Word Module (TEWM)	4,5
	Specification	91
	(3) Transceiver Antenna Lever Arm Module	
	(TALM) Specification	97
	(4) Transceiver Range and Range Rate	••
	Module (TRRM) Specification	103

٧

CONTENTS (Continued)

Section/Paragraph		Page	
III.3.c	(co	ontinued)	
		(5) Transceiver Propagation Correction	
		Module (TPCM) Specification	109
		(6) Transceiver Measurement Observables	
		Module (TMOM) Specification	115
		(7) Transceiver Measurement Matrix	
		Module (TMMM) Specification	121
		(8) Transceiver Data Statistics Module	
		(TDSM) Specification	127
	4.	Kalman Filter (K) Modules Specifications	133
		a. Kalman Filter Modules Partitioned Structure	
		Summary	135
		b. Kalman Filter Modules Timing and	
		Sequencing Organization	143
		c. Kalman Filter Estimate/Covariance Matrix	
		Time Update Module (KTUM) Specification	147
		d. Kalman Filter Measurement Preprocessing Modules	
		(KMRM, KMCM, KMOM)	151
		e. Kalman Filter Estimate/Covariance Matrix	
		Filtering Update Module (KFIM) Specification	159
		f. Kalman Filter Estimate/Processor Control	
		Module (KCOM) Specification	165
		g. Kalman Filter Time Update Matrix Generation	
		Module (KTMM) Specification	171
		h. Kalman Filter Measurement Matrix Generation	177
	E	Module (KP9M) Specification	177
	٥.	Initialization and Switching Modules Specifications	181 183
		a. Navigation Start-up Module (NSTM) Specification	193
		b. C Frame Switching Module (Non-KF Modules) (CSWM) Specification	189
		c. Coarse Align Module (CALM) Specification	195
		d. DR Nav Hode Switching Module (DSWM) Specification	201
		c. Reference Navigation Measurement Switching	201
		Module (RSWM) Specification	209
		f. Kalman Filter Configuration Switching Module	-07
		(KSWM) Specification	215
		g. Navigation Constants Initialization Module	413
		(CONM) Specification)	225
IV	HOL	PROCESSOR (LIMITED MLI PROCESSOR VERSION)	231
	1.	Specializing Assumptions and Constraints	233
		a. Navigation Environment/Equipment Assumptions	233
		b. Processor Development Level Simplification	
		Constraints	234

CONTENIS(Continued)

Section	Section/Paragraph	
IV.2 ((Continued)	
	2. MLI-Based Specification	234
	a. Processor Module Requirements	234
	b. Module Algorithm Requirements	235
	3. FORTRAN IV/IBM 370 Program Description	241
	a. General Organization	241
	b. Switching Modules	245
	c. Other Modules	248
	d. Array Structure	248
	e. Subroutines	250
	f. FORTRAN Program Listing	252
Append	ndix	
I	Some Basic Vector/Matrix Relationships	318
II	Generalized DR Navigation Equations	322
III	IDR Navigation and Error Equations	325
IV	ADR Navigation Equations	336
V	PDR Navigation and Error Equations	339
VI	Basic Measurement Matrices Derivation	344
VII	Measurement Preprocessing	364
VIII	Recursion Equations for Measurement Time Smoothing	3
	and Prediction Matrices	369
IX	Processor Design for Nonlinear LOS Pseudoranging S	Situations 373
X	IMU Coarse Self-Leveling and Alignment	387
XI	Antenna Lever Arm Errors	395
XII	LOS Range and Range Rate Time Delays	
	Pertinent to Multilateration	401
XIII	Propagation Delay Compensation	416
YTU	Pacidual Propagation Frrom Modeling	432

ILLUSTRATIONS

Figure		Page
1	Avionics Data Processing	4
2	Basic Navigation/Navigation Interface Information Flow	5
3	Navigation Processor/Navigation Equipment Overall	
	Organization and Interfaces	14
4	Kalman Measurement/Estimate Timing Diagram	35
5	Overall Navigation Processor Flow Diagram	45
6	VSTM Operations Flow	55
7	PLAM Operations Flow	61
8	WASM Operations Flow	67
9	ALTM Operations Flow	75
10	TDPM Modules Organization/Receiver Interface	83
11	TAAM Operations Flow	87
12	TEWM Operations Flow	93
13	TALM Operations Flow	99
14	TRRM Operations Flow	1.05
15	TPCM Operations Flow	111
16	TMOM Operations Flow	117
17	TMM Operations Flow	123
18	TDSM Operations Flow	129
19	Kalman Filter Modules, Overall Dynamic Operations	
	Timing/Sequencing/Data Requirements (Standard KF Cycle)	145
20	KMRM, KMCM, KMOM and KFIM Submodule Logic/Data Flow	153
21	Estimate/Covariance Matrix Substates Measurement	
	Update Logic Flow	161
22	NSTM Operations Flow	185
23	CSWM Operations Flow (Non-KF Modules)	191
24	CALM Operations Flow	197
25	Overall DSWM Organization/logic/Data Flow	203
26	DR Equipment Configuration Marker Setting	204
27	DR Nav Mode Switching Requirements Summary	205
28	Overall RSWM Organization/Logic/Data Flow	211
29	Reference Altitude Mode Switching Logic	212 213
30 31	TDPM Measurement Availability/Marker Setting TDPM Modules Processing Flow	213
32	FORTRAN IV Processor MACRO Flow	243
33	LOS Emitter/User Geometry	350
34	Earth-Mode Emitter/User Geometry (1)	352
35	Earth-Mode Emitter/User Geometry (2)	353
36	Altitude Measurement Geometry	360
37	User-Emitter Geometry	374
38	User-Receiver Vector Geometry	402
39	Propagation Geometry	417
40	Errors in Apparent and True Range Due to the Troposphere	419
41	Bending Error Data Fitting	421
42	Graphical Function for CSC 0.	428

TABLES

Table		Page
I	Applicable Mission Summary	7
II	Basic Inertial Navigation Computational Requirements	
	by P and C Frame Type	10
III	DR Nav Modules: Summary of Operations and Use by Mode	20
IV	ALTM: Summary of Operations and Use by Reference	
	Altitude Mode	22
V	VSTM Operations Summary	56
VI	VSTM Input/Output Summary	57
VII	PLAM Operations Summary	62
VIII	PLAM Input/Output Summary	63
IX	WASM Operations Summary	68
X	WASM Input/Output Summary	69
XI	ALTM Operations Summary	76
XII	ALTM Input/Output Summary	76
XIII	POSM Operations Summary	79
XIV	POSM Input/Output Summary	79
XV	TAAM Operations Summary	88
IVX	TAAM Input/Output Summary	89
XVII	TEWM Data Word Inputs	94
IIIVX	TEMM Operations Summary	95
XIX	TEMM Input/Output Summary	96
XX	TALM Operations Summary	100
XXI	TALM Input/Output Summary	101
XXII	TRRM Operations Summary	106
XXIII	TRRM Input/Output Summary	107
XXIV	TPCM Operations Summary	112
XXV	TPCM Input/Output Summary	113
XXVI	TMOM Operations Summary	118
XXVII	TMOM Input/Output Summary	119
XXVIII	TMMM Operations Summary	124
XXIX	TP22 Input/Output Summary	125
XXX	TDSM Operations Summary	130
XXXI	TDSM Input/Output Summary	131
XXXII	KF Navigation Error Substate Definition:	137
XXXIII	KF D/R Substate Level Structure	138
XXXIV	D Substate Vector/Hatrix Structure	139
XXXX	R Substate Vector/Matrix Structure	140
XXXXI	D/R Substate Vector/Matrix Structure	141
XXXVII	D/R Measurement Differential Vector/Matrix Structure	142
XXXVIII	KTUM Operations Summary	149
XXXIX	KTUM Input/Output Summary	150
XL	KMRM Operations Summary	154
XLI	KHOM Operations Summary	154
XLII	KMCM Operations Summary	155

TABLES (Continued)

Table		Page
XLIII	KMRM Input/Output Summary	156
XLIV	KMOM Input/Output Summary	157
XLV	KMCM Input/Output Summary	158
XLVI	KFIM Operations Summary	162
XLVII	KFIM Input/Output Summary	163
XLVIII	KCOM Operations Summary (KF Control)	167
XLIX	KCOM (Non-KF Modules Control)	168
L	KCOM Input/Output Summary (KF Control)	169
LI	KCOM Input/Output Summary (Non-KF Modules Control)	170
LII	D Substates KTMM Operations Summary (Governing	
	Differential Equations)	173
LIII	R Substates KTMM Operations Summary (Governing	
	Differential Equations)	174
LIV	KTMM Input/Output Summary	175
LV	KPM Operations Summary	179
LVI	KPM Input/Output Summary	1.80
LVII	NSTM Operations Summary	1.86
LVIII	NSTM Input/Output Summary	14-
LIX	CSWM Operations Summary (Non-KF Modules)	192
LX	CSWM Input/Output Summary (Non-KF Modules)	193
LXI	CALM Operations Summary	198
LXII	CALM Input/Output Summary	199
LXIII	DR Nav Modes Overall Switching Requirements Summary	
	(DR Nav Modules Switching)	207
LXIV	DR Nav Modules Variables/Execution Order Switching	
	Requirements	208
LXV	KSWM nth-Cycle Overall Requirements Summary	217
LXVI	Summary of nth-Cycle Nav Configuration Switching	
	Modifications to Standard KTMM Operations	218
LXVII	Summary of nth-Cycle Nav Configuration Switching	
	Modifications to Standard KTAM and KFIM Operations	219
LXVIII	Summary of nth-Cycle Nav Configuration Switching	
	Modifications to Standard KTUM Operations	220
LXIX	Summary of KF DR Nav Substate Switching Sets	221
LXX	Summary of KF Ref Altitude Substate Switching Sets	222
LXXI	KSWM KF R Substate Switching Sets	223
LXXII	C Frame Switching Operations Summary (KF Modules)	224
LXXIII	D Module Constants Requirements	227
LXXIV	R Module Constants Requirements	228
LXXV	K Module Constants Requirements	229
LXXVI	Initialization/Switching Module Constants Requirements	230
LXXVII	Candidate Nav Processor Configuration by Mission Phase	232
LXXVIII	Main Program Organization Summary	244
LXXXX	DR Nav Mode Switching Module (DSWM) Markers	245
LXXX	C Frame Switching Module (CSWM) Markers	246

TABLES (Continued)

Page
247
247
251
407
420
427

SYMBOL GLOSSARY

1. COORDINATE REFERENCE FRAME (all frames Cartesian)

Symbol	Unit Vectors	Frame Definition
I	Î, Î, Î	Earth centered, non-rotating w/r to fixed stars. \vec{l}_1 = earth's north polar axis direction, \vec{l}_2 = normal to \vec{l}_1 in direction of point of Aries, \vec{l}_3 = \vec{l}_1 x \vec{l}_2 .
E	$\vec{\mathbf{E}}_1$, $\vec{\mathbf{E}}_2$, $\vec{\mathbf{E}}_3$	Earth centered, earth-fixed. $\vec{E}_1 = \vec{T}_1$, $\vec{E}_2 = \text{normal to } \vec{E} \text{ in plane of Growth Meridian, } \vec{E}_3 = \vec{E}_1 \times \vec{E}_2$.
P	P ₁ , P ₂ , P ₃	Platform reference frame. Centar at centar of rotation of platform (for gimballed or floated platform), or at defined point in platform (for strapdown platform). Orthogonal P ₁ , P ₂ , P ₃ directions fixed in platform
^	$\vec{\lambda}_1, \vec{\lambda}_2, \vec{\lambda}_3$	Airframe frame. Concentric with P frame. Orthogonal \vec{A}_1 , \vec{A}_2 , \vec{A}_3 directions fixed in aircraft.
L	1, 1, 1, 1,	Local geographic vertical, wander azimuth frame. Concentric with P frame. $L_1 = up$, L_2 and L_3 normal to L_1 and each other.
С	\vec{c}_1 , \vec{c}_2 , \vec{c}_3	Computational (Computar) frame. Hay be any of the other frames defined here, as specified (C frame subscripting is often omitted for compactness of expression)

1. COORDINATE REFERENCE FRAME (Continued)

Symbol	Unit Vectors	Frame Definition
EF	EF ₁ , EF ₂ , EF ₃	Earth-fixed, but not necessarily earth- centered frame. (e.g., local tangent plane frame).
AEM	AEM ₁ ,AEM ₂ ,AEM ₃	Emitter air frame; centered at emitter

2. INTERFRAME RELATIONSHIPS

Symbol	Definition
T _{F2/F1}	Orthonormal 3x3 matrix transformation from frame F1 to frame F2
F2/F1	Vector angular rate of frame F2 w/r to frame F1

3. BASIC NAVIGATION DISPLACEMENT VECTORS

Vector Symbol	Displacement Vector Definition
P=PE E R R	Position vector from center of earth to center of P frame. Position vector from center of earth to center of EM frame. Estimated LOS range vector (= p-e = P-E) Measured LOS range scalar
C P e	Position vector from center of earth to center of EF frame. Position vector from center of EF frame to center of P frame. Position vector from center of EF frame to center of EM frame.

*scalar

3. BASIC NAVIGATION DISPLACEMENT VECTORS (Continued)

Vector Symbol	Displacement Vector Definition
P ₆	Position vector from center of earth to the subsircraft surface ellipsoid point.
E	Position vector from center of earth to the subemitter surface ellipsoid point.
A	Position vector from center of earth to center of user antenna.
•	Position vector from center of EF frame to center of user antenna.
du	Position vector from center of P frame to center of user antenna.
^d EM	Position vector from center of emitter frame to center of emitter antenna
r	Unit LOS range vector
q	Unit earth mode range vector (user end)
T _{EM}	Unit earth mode range vector (emitter end)

4. ALTITUDE SCALARS

Symbol	Altitude Definitions
h *	User altitude scalar.
h _{EM} *	Emitter altitude scalar.

^{*}scalars

5. VELOCITY AND ACCELERATION VECTORS

Vector Symbol	Vector Definition
v	Velocity of center of P frame with respect to the earth (i.e., with respect to the E or EF frames)
v _{EM,} ė	Velocity of center of EM frame with respect to the earth
4 F2/F1	Angular rate of frame F2 with respect to frame F1.
f	Specific force acting on aircraft (taken to act at center of P frame)
G(P)	Sum of all celestial mass attraction gravitation accelerations acting on aircraft (taken to act at center of P frame) minus same sum acting at center of earth.
g(P)	G(P), plus centripetal acceleration at center of P frame due to rotation of the earth.
v _w	Wind velocity vector
^V AS	Airspeed velocity vector
β	Maneuver acceleration vector

6. OPERATORS

Operator Symbol	Operator Definition
d _F a	Time rate of change of any vector a w/r to frame F (F subscript optional).
(ax) _F	Cross-product matrix associated with any vector a in frame F.
	Length of any vector a.
â, Î, Î	Estimated value of any vector a, of any matrix T, of any scalar s
Δ _c a	Change in a in the basic computational interval &t.
∫∆t ^{adt}	Integral of a over the interval t to $t + \Delta t$.

6. OPERATORS (Continued)

Operator Symbol	Operator Definition
Σ	Signal addition and/or subtraction
ſ	Signal integration
δa - = -	Error in computed vector a
ā,T,s T	Time average of any vector a, of any matrix T, of any scalar s Superscript indicating matrix transposition

- KALMAN FILTER VECTORS AND MATRICES
 See Table XXXIII, page 138.
- 8. MODULE-SPECIFIC VECTORS, MATRICES, SCALARS

 See MLI module operations summary tables (Section III).

SECTION I

INTRODUCTION AND SUMMARY

This document comprises the final report for the second phase of the joint Northrop (prime contractor)/Magnavox (sole subcontractor) software development effort entitled "Navigation by Multilateration to Fixed and Moving Reporting Emitters," Project No. 6095, under Contract No. F33615-72-C-1607. However, since this second phase consisted in large part of a broadening, deepening, systematizing and programming of the basic concepts formulated in the initial phase, much Phase I material -- amended and/or extended as necessary -- has been included to make this report as nearly self-contained as practical.*

The principal results of the overall (two-phase) development are:

- a) <u>MLI Processor Specification</u>. The development of a machine and language-independent (MLI) specification of a standardized, modular, flexible, multi-application, radio-hybrid navigation system software processor.
- b) HOL (FORTRAN IV/IBM 370) Version. The partial development of a functionally limited, FORTRAN IV/370 programmed version of the above processor.

In particular, the latter, specialized HOL (higher order language) version was developed using the former, generalized (and even higher level language) MLI specification as a basis. Although limited in both function and scope, and incomplete (as an overall navigation processor), the HOL program development nevertheless effectively scrved its intended purpose as a trial horse for the viability of the MLI specification as a basis for development of navigation software for a specific application.

The report is organized to present both the MLI processor specification and the specialized HOL version in a logically sequential manner, closely paralleling the order and sequence of their actual development. Following this introductory section, Section II presents a generalized description of the processor with regard to its scope and role, its mission and hardware applicability, and its basic structural and operational characteristics, together with the rationale underlying each of aspects and features. With Section II as a background, Section III presents the detailed modular MLI processor specification itself, in terms of standardized, module-by-module operations and input/output summary

^{*}However, since principal emphasis in this report has of course been placed on the Phase II effort in particular, the Phase I Final Report (AFAL-TR-72-80, May 1972) can and should serve as useful background reference material for this document.

tables, and summary logic flow diagrams. Finally, Section IV presents the MLI-based, HOL program processor version, including a programmer-oriented description as well as the actual FORTRAN program listing. Extensive appendices are included at the end of the report as detailed and appropriate backup for the text of these main sections.

Based on the results obtained in the two-phase processor development to date, it is evident that the MLI specification presented in this document, although still incomplete in some regards, already constitutes an extremely powerful tool for the standardized and systematic development of modular, flexible, compact, and efficient navigation system software, for a wide range of specific mission applications and navigation hardware configurations. In fact, recognition of this within both Northrop and Magnavox has already led to its adoption as the basic navigation software approach for several applications, at both the proposal and contractual levels. In particular, it has been adopted by Northrop for its use in the initial, AFAL MRV hardware/software configuration definition phase.

Further, it is also already evident that the concepts and techniques employed to date for development of the navigation-only processor presented here can probably be applied nearly intact, not only to development of additional, wholly compatible software for processing types of navigation sensor not yet specifically considered (e.g., doppler radar, DF and angulation equipment, etc.), but also for other, non-navigation but navigation-related avionics software (e.g., weapon delivery, steering, guidance, etc.). Overall, this suggests the extremely attractive possibility that in the not too distant future, large portions of the overall avionics software packages associated not only with a single weapons system, but with whole classes of weapons systems, may be developable on a standardized, modular, partly interchangeable basis. Significant overall cost savings, both developmental and operational, could thereby be clearly achieved.

Finally, it should also be noted that the FORTRAN IV processor version developed to date constitutes a sizeable nucleus-in-being for a possible, general processor evaluation simulation program. Such a program, especially if used as a central preliminary and/or an adjunct to development of the standardized avionics software mentioned above, would quickly pay for its development cost in terms of avoidance of later pitfalls in checkout of the actual system software, when the design has hardened and is difficult and costly to change.

SECTION II

PROCESSOR DESCRIPTION

This section presents a general description of the processor evolved to date (i.e., as presented in Section III of this report), together with the rationale which underlay its development into this form.

1. FUNCTIONAL SCOPE AND ROLE

Early Phase I effort was mainly concentrated on the essential preliminary of scoping the processor to be developed — within the time and level-of-effort constraints of that phase — so as to provide a sound point of departure for subsequent evolution of the processor in later development phases. In this connection, Figure 1 shows the overall airborne avionics equipments data processing requirements for a generic, aircraft weapons delivery system. In this diagram, the block labeled navigation processing plays a central role. This role is further emphasized in Figure 2, which compresses all the required processing into two areas: basic navigation processing, and all other navigation (or navigationrelated) processing. This is not an arbitrary, but rather a natural and useful division of the overall avionics processing requirements, as follows.

The meaning of the basic navigation processing intended here is most easily conveyed in terms of the basic outputs -- i.e., user vehicle 3-d position, velocity, attitude, and attitude rate -- it produces. Thus defined, basic navigation processing comprises a central computational role, with respect to which all other computations are peripheral in the sense that they all require one or more of its outputs as inputs, while the converse is not true.

To clarify this, the basic navigation processing computations require some subset of data only from the IMU (acceleration, attitude and, if available, attitude rate), the AHRU (attitude and attitude rate), the transceiver (emitter signal phase and frequency shift, and, when reported, emitter antenna position and velocity), and the CADS (altitude and true airspeed), to continuously generate all the basic navigation outputs, as well as appropriate IMU control and transceiver rate-aiding signals. On the other hand, the inputs to those areas of the overall processing which relate to control of all other onboard avionics hardware equipments can always be simply derived from the basic navigation outputs. For example, in the case of ILS, the required inputs might typically be runway-relative, aircraft horizontal position, horizontal velocity, altitude, vertical velocity, roll, pitch, heading, and turn rate; these can all be simply derived from the basic navigation outputs, if they are expressed in a common earth-fixed reference frame, and if augmented only by runway location data referenced to the same frame.

Figure 1. Avionics Data Processing

Figure 2. Basic Navigation/Navigation Interface Information Flow

Phase I processor functional scope was therefore limited to basic navigation processing, thus defined, to enable the attainment of a reasonable first-stage level of processor definition, within the constraints imposed by Phase I level-of-effort and duration.

2. MISSION/HARDWARE APPLICABILITY

Table I summarizes in broad terms the results of a brief Phase I survey of aircraft missions to which the processor under consideration here might apply. Source material for this survey included government and industry sponsored reports, trade periodicals, and consultation with mission requirements specialists at Northrop and Magnavox.

In particular, Table I shows three levels of accuracy requirements—moderate (about 1 mile DRMS), high (a few hundred feet, DRMS), and very high (under one hundred feet, DRMS)—for a wide class of military and non-military missions, and during both enroute and objective area phases of the mission. In general, enroute phase accuracy requirements are seen to be uniformly moderate, while objective area requirements range from moderate (e.g., for near-destination checkpoint acquisition in an intercontinental 747 commercial carrier flight) to very high (e.g., for an A-7 close-support mission in zero visibility).

Table I also summarizes in qualitative terms the typical maneuver profiles for the same broad class of missions. Again, there is a marked distinction between the enroute phase, where maneuvers are infrequent and mild (e.g., a long-range patrol mission) and the objective area phase, where they are in many cases frequent and violent (e.g., ground fire evasion maneuvers during a low-altitude, tectical observation mission).

Finally, in Table I, two broad classes of navigation computation coordinate system -- geodetic referenced and locally referenced -- are identified, together with their use by mission and mission phase.

The geodetically referenced coordinate systems, which are most frequently used and useful for long-range, point-to-point navigation, are referenced to earth-centered, earth-fixed frames (e.g., the unit vector triad composed of the unit vector along the earth's polar axis, and two equatorial plane unit vectors, one in the Greenwich Meridian plane, and the other in the 90° Meridian plane). Typical of such coordinate systems in common use are latitude-longitude-altitude (normal and transverse polar), and local vertical direction cosines-altitude.

The second broad class -- the locally referenced coordinate systems -- are most frequently used for short-range point-to-point navigation and terminal phase operation in a localized (e.g., battlefield or theatre) area. These are also referenced to earth-fixed, but not generally earth-centered frames, which are in turn tied to specific ground points (e.g., a bombing target or a landing field). Typical of such coordinate systems are UTM coordinates, and tangent-plane, target-centered coordinates.

TABLE 1. APPLICABLE MISSION SUMPARY

ĺ.

L					N N	MISSION	W1 S Truey		
		HOISSIDE	TYPICAL	SH ROUTE	=		ORSECTIVE AREA	A PHASE	
		TYPE	AIRCRAFT	PROFILE	10	ACC.Y		COOKD.	ACC.Y
	WEAPON DELIVERY	ELI VERY	18	HICK, DESC CEOD.	CEOD.	90	LOND (TP), PPUP, WPML GEOD	CEOD.	I
	LOCISTIC	LOCISTICS TRANSPORT	C-34	MICA, DESC	DESC CEOD.	9	LOWA, ADRE OR LADG	171	H TO VH
	RECORDA! SSANCE	SSANCE	SR-71	MCC	CEOD.	윷	NICA	CEOD.	H TO VH
	CD. PUE	ctor. Purp. Pathol.	r. X	HECK	CE00.	Ş	DESC, 17PM	CEOD.	90
34	757		S-34	HECK	CEOD.	90	DESC, ADRP, WPIIL	171	H TO VH
TAF	SWARM INC/CONTROL	CONTROL	£2.A	MC C	CEOD.	ğ	MCA	CEOD.	MOD
12		PHC/SAYY/OCHCA.SUP.	EC-135	MICH	CEOD.	8	MECR	CEOD.	HY OT H
	WEATHER RECOR.	RECOR.	C-130	MCA	CEOD.	8	HICK	GEOD.	9094
) A.	18-P.1C	IN-PLICET REPUBLING	EC-135	HICH	CEOD.	8	HICK	CEOD.	MOD
nt	SEARCH/RESCUE	ESCUE	HC-130H	HECK, DESC	DESC GEOD.	901	LOUA, ADRP	CEOD.	NO TO H
IIM	Ę	CLOSE AIR SUP.	A-7	1007	ומ	90	DESC, VPBH	101	H TO VH
	DEM	STR./INTERD'H	F-111	HECK	าวา	300	DESC, VPSH	וכנ	NO TO VIE
	EQT7/	ASSAULT	2(-N2	1001	131	904	DESC TRIDO	וכנ	H
(A)	CA1	INSERT/EXTR'N	1-110	1001	101	90	DESC., HOVR	121	H TO VH
T)	OLY /EXT	roar	C-7A	MECR	121	909	DESC, LNDG	101	H
4	RECON/OBSERV'B	R, ANGS	01/1-40	1007	101	009	TOHY	וכר	HOD TO H
	SEARCH/RESCUE	ESCUE	HU-164/E	10CB , DESC	131	OOM	LOMA, LYDG	וכו	H OT 00H
	CARCO/PA	CARCO/PASS. TRUSPRT	171	MCR DESC	CEOD.	G.	LOWA, LADG	CEOD.	MOD TO VIH
	JETW TIO	OIL AGREAL SRY	2C-7	MECR	. 0035	90	1001	CEOD.	HOD TO H
		APPINC/OCHCR SUP.	1-20	HICK	. 0035	90%	HECK	CEOD.	HOD TO VH
-101 NT11	WEATHER RECOR	RECOM.	LCIOND CONSTEN	HICK	. doao	gow.	HICK	CEOD.	HOD
TM.	SEARCH/RESCUE	25CUE	CRUMMAN	MECR, DESC. GEOD.	CEOD.	901	LOWA, LYDG	CEOD.	н от дон
	POLEST H	POREST HANACENERT	Γ	MECR, DESC	121	QON.	LOWA, ADRP	121	HOT JOH

MEDIDICE KEY: LOCR, MECR, HICK - LOW; MEDIUM, HICH ALT, CRUISE; DESC - DESCENT; LOWA, LOWD, LOWA - LOW ALT. APPROACH, DASH, MANEUVERING; WFML, WFMH - LOW-C, HICH-C WEAPON DELIVERY RUN AND MELEASE; PPUP = POP UP, ADRP - AIR DROP, LYDC - LANDING; TF - TERRAIN FOLLOWING; GEOD. - GEODETIC-MEFERENCED; LCL - LOCALLY-MEFERENCED, HOD - HODERATE; H - HICH; VH - VERY HICH.

Each of these coordinate systems has its peculiar advantages and disadvantages. For example, the latitude-longitude approach leads to the simplest navigation equations, but is useless near the poles, while the local vertical direction cosine approach is costlier to mechanize, but automatically provides polar navigation capability. Thus, if mission operations were, say, limited to non-polar regions, the former might be selected. However, if the objective area mission involved, say, an air drop with respect to a target-referenced aim point, then a local coordinate system would be more suitable and natural for navigation in this phase of the mission.

Typical solutions to this problem -- the necessity for navigating in one coordinate system enroute, and another in the objective area -- have often been brute-force; i.e., two different sets of navigation equations are mechanized, one for each phase, and both sets of computations are run in parallel during the terminal phase. This approach tends to be costly in terms of airborne computer loading.

These mission characteristics and requirements -- i.e., accuracy, flight profile, and coordinate reference frame -- constitute important constraints on the design of a generalized processor which should if possible accommodate the entire range of these requirements. The ideas underlying the solutions to these problems are discussed in subsection 3, which deals with basic processor structural and operational concepts.

Determination of the initial processor navigation equipment applicabaility list was governed mainly by the desire for full processor coverage, with due regard to both accuracy and cost requirements, of the range of missions summarized in Table I. The resulting list therefore included:

- a. IMU (rotationally isolated or strapdown)
- b. AHRU
- c. CADS
- d. Radio Transceiver(s) (earth mode or LOS, one way or two way)

In addition, although specific processing capability has not to date been included for the following equipment types, careful design provision has nevertheless been made so that their processing can easily and naturally be accommodated by simply adding for each, its appropriate hardwarespecific module:

- e. Doppler radar
- f. Angular tracking equipment (stellar, optical, etc.)
- g. Terrain matching equipment.

3. BASIC STRUCTURAL AND OPERATIONAL CONCEPTS

The attainment of a compact, efficient, and flexible processor design, in the face of the desired broad range of mission and hardware applicability outlined above, required early Phase I consideration of a variety of basic design factors which are discussed in paragraphs a. through e. below. Against this background, paragraph f. then presents a brief summary of the modular organization actually adopted for the processor. Finally, paragraphs g. and h. deal respectively with certain capabilities of special interest which were developed and embedded in the processor design during the program, and a brief discussion of the growth potential also embedded in the processor structure, with regard to expanding its avionics hardware applicability.

a. Basic Navigation Equations

As discussed above, four basic navigation entities -- vehicle 3-d position, vehicle 3-d velocity, vehicle angular orientation, and vehicle angular rate -- were identified early in the program as comprising the set of fundamental outputs which should be generated in the basic navigation implemented by the processor.

Two fundamental and closely related questions immediately arise in this connection. First, what coordinates should be selected to represent each of these entities, and second, to what reference frames should these coordinates be referenced?

Addressing the latter question first, there are in all seven widely used and convenient reference frames which are pertinent to the discussion here. These are the inertial (I), earth fixed (E or EF), locally level (L), air (A), platform (P), and computational (C) frames. These frames are defined in detail in the List of Symbols and Abbreviations. The first five of these frames (I, E, EF, L, and A) comprise the set of candidate frames from which the mechanized C and P frame orientations were selected.

The fact that position and velocity with respect to the earth are two of the fundamental output requirements for the basic navigation processor allowed immediate elimination of the A and I frames in favor of the closely earth-related E, EF, and L frames. Immediate elimination of the A frame (for rotationally isolated platforms) as a P frame candidate was also natural, since this would be tantamount to unnecessarily mechanizing a strapdown platform.

Table II was constructed to aid in completing the C and P frame selections.* The table summarizes the broad computational requirements imposed by any combination of C and P frame selections from among the remaining candidate frames. Overall computational requirements are broken down into 13 different

^{*}Table II is a comparison based on inertial navigation only (see Appendix III). However, since this mode imposes a greater computational load than the others (e.g., ADR) required of the processor, it was felt this was appropriate for a limited tradecif investigation.

TABLE II. BASIC INERTIAL NAVIGATION COMPUTATIONAL REQUIREMENTS BY P AND C FRAME TYPE

COGUTAT'L GE			TATION SIMPLIFICAT	PORS NO.		
		EARTH-FIXED C FRANCE		7	LOCAL LEVEL C FRAME	
20115	GENERAL MATHEMATICAL DESCRIPTION	CHBLD (OR PLTD) PLATFURM		COURT (OR PLED)	5	
		LOCAL EARTH- INEXT. LEVEL STAB-22D STAB2D	T. STRAFDOME	LOCAL	EALTH- IMENTIALLY ETAS ZED	STRAPOME
ACCELEROPETER CALIBRATION CONFUTATIONS 7	f = facc + \D (fp. (mp/1) CALIBE'B)	(wp/1) RFFECTS MECLIGIBLE	(Up/1)p EFFC. SIGHIF	d (1/d-)	18	(~p/1)p
	(°) (°)	3 CRAVITY CONTOURNES REQUIRED	9	COLY "WE CPAVITY	TA WE CONNETTY	
WELCC ITY ACUTE	Δcv = Jat c,p fp + sc 2Tc/E (-E/1) g + (-c/E) c xv dt	C/E ² C XV _c dt "c/E * 0, 2("E/1)c * COMSTANT VECTOR	VECTOR	REQ'D AS SHOW	SHOW	
CARTESIAN POSITION UPDATE	35.9 J. D.	REQ'D AS SHOWN		NOT PEQ'D	•	
	Ache - Satveldt	HOT REGUIRED		NORS SY G. DATE	NACARI.	
C/E FRAME AMOUNAE BATE CONCRUTATIONS	(مر ₁₇) و • الركاد	NOT REQ'D: ("c/g)c = 0		BUCKS SA C'PSA	SHOME	
110e	2.Tc/E /24(-c/E) x Tc/E4t	HOT REQ'D: T _{c/E} - CONSTANT MATRIX	AIX	MOHS SV G.DZW	SHOWE	
C/P FLANC AMCULAR RATE CONTUTATIONS	(m)/c) c T(p(m)/1)p (mc/g)c		~(E/1)c- const vactor	#0=3/d3	MONS SY O, DIE	
8		Tc/p. COMOT. MITEL	EEQ'D AS SHOWIN	Te/fer.	HACES SY G, DITE	
PLATFORM L. RATE AT TORIS	$ \frac{ a_{11} _p = r_{p/C} (a_{p/C})_c + (a_{C/E})_c}{r_{C/E} = r_{11} r_{11}} $	0	LEGO NOT REGO - 0 AVAIL PH PLATE, GROS	0-3/4-	As wor and b	AVAILANLE PROM FLAT. GTROS
	$Crr^{+} \leftarrow p_{f,1}^{-} p^{+} \Delta \cup \left(\frac{1}{p}, \left(\frac{p_{f,1}}{p_{f,1}} \right) p, CORST \right)$	f _p AND (= _{p/l}) _p EFFECTS MODERATE	SIGNIP'T	f AND (w _{p/1})	AND (p/1) PPECTS HODERATE	EFFECTS SIGNI'T
FLATFORM ATTITUDE READOUT CAL'H COMFUTATIONS	•	g,ben	NOT REQ.D	2	nrq'b	nor may n
A/C ATTITUDE/ ATTITUDE BATE OUTPUT GENER'N	•	g,ban	NOT REG'D; AVAILABLE AS TC/P	2	g,bas	AVALLABLE AS

* Assumes no relative torquing of P W/R to C prape $\phi \left(\omega_p/c\right)_C = T_C/p^{K,T}_{K,p}/c^{K}_{C}$

4. THESE COMPUTATIONS DEPOND ON FLATPORN AND PLATFORM ANCLE AND ANGLE RATE HEASUREMENT PROLIPMENT TYPES.

11123

basic computational operations. Each of these is expressed in terms of a generalized, all-frame, vector/matrix equation (see Appendices II and III), and the simplifications -- if any -- of this operation which result from any particular C/P selection are indicated.

Using the table, it is evident that the choice C = L would be inadvisable relative to the selected C = E/EF, since (a) C = L does not provide E/EF frame-referenced position and velocity as natural outputs, while C = E/EF does; (b) the L frame does rotate (as the vehicle moves over the surface of the earth) with respect to the earth, while the E/EF frame does not; this requires the dynamic updating of the C versus E frame transformation in the former case, but obviates it in the latter; and, (c) most tactical, target-referenced frames are basically E/EF, rather than L frames. The choice C = E/EF has therefore been made for these reasons.

On the other hand, the choice P = L, rather than P = E/EF, seems a natural one for (rotationally isolated) platform attitude stabilization. This is so because (a) it eliminates tumbling of the gravity vector with respect to the inertial instruments; such tumbling excites g-sensitive inertial instrument errors, which can lead to the need for costly modeling of such errors in the Kalman filter; and (b) it provides aircraft roll, pitch and yaw as natural gimbal angle outputs, without the need for further coordinate conversion. However, on closer scrutiny, there are many situations (e.g., during alignment) in which the platform, even though nominally locally level stabilized, will in fact be significantly misaligned with respect to the true L frame. Recognition of this fact -- i.e., by allowing for separate P and L frames in the processor mechanization -- therefore provides a desirable flexibility (and performance improvement) of the processor with regard to the processing of platform instrument inputs and control outputs. In addition, the facts that (a) the L frame is a natural one in which to represent wind estimates, and (b) P and L frame separation is mandatory in the case of a strapdown platform anyway, add force to the argument in favor of such a separation.*

Choosing C and P to be noncoincident does, of course, lead to the computational need for maintaining a dynamic transformation between these two frames. Although this would be unnecessary if the two frames had been chosen to coincide (i.e., by choosing both C and P as L frames, or both as E/EF frames), it is nevertheless felt that the advantages of frame separation, as discussed above, outweigh this and other disadvantages.

The selection C = E/EF also benefits from the fact that the E and EF frames are closely related; i.e., both are fixed to the earth and therefore are not rotating with respect to one another. This has been discovered to result in a very high degree of similarity between the basic inertial navigation and navigation error equations formulated for each of the two frames.

^{*}When such a separation is mechanized, an additional interframe transformation to those shown on Table II is of course required. However, since this additive requirement is common to all P frame choices shown, it does not alter the tradeoff comparisons.

As a matter of fact, it has allowed the formulation of essentially a <u>single</u> set of such equations which is equally applicable to E or EF frame-referenced computations, if augmented by some simple, interframe switching computations. This is felt to be a significant advantage with regard to simplification of the overall processor design in multiphase missions.

Turning to the remaining question of coordinate type (e.g., polar, spherical, Cartesian, etc.) the choice of Cartesian coordinates is a natural one, since (a) such coordinates inherently lend themselves to Cartesian, orthogonal vector representation, and are thus compatible with the extensive and advantageous employment of vector-matrix algorithm formulations throughout the processor (see paragraph b. below), and (b) use of these coordinates leads naturally to the selection of corresponding Cartesian coordinates as error state variables in the processor Kalman filter (this produces truly linear measurement-state relationships, which uniquely enable the accurate generation of large Kalman filter error estimates and resultant processor variable corrections -- which would be impossible if the often-used quasilinear angular error variables were employed instead).

b. Vector/Matrix Algorithms

It is evident from Table II that the use of vector/matrix notation greatly simplifies both the overall representation of the equations shown and the identification of common subroutine candidates (e.g., 3x3 matrix multiplication) among those equations as well. Both of these characteristics are patently important advantages in the organization of an efficient, compact, and flexible computer program.

Although Table II is limited only to inertial navigation, almost all other processor functional areas can be similarly formulated. For example, in the area of radio navigation data processing, the fundamental, geometric pseudoranging process [which comprises the whole range of phase/phase difference techniques including Loran, Omega, NAVSAT, TACAN (DME), etc.,] intrinsically always involves -- and therefore can be formulated in terms of -- the vector dot product, cross product and absolute value operations. In the area of airspeed dead reckoning (ADR), wind and airspeed, and their subsequent processing into position and velocity vectors, can also naturally be expressed as vectors and vector-matrix operations, respectively. Most other, non-Kalman operations can also be formulated equally easily and completely in vector/matrix terms.

Finally, in the area of Kalman filtering operations, which can comprise a very large portion of the overall processor computational load in any specific application, use of vector/matrix operations is perhaps the most natural and advantageous of all. This is partly because the equations were originally naturally formulated in vector-matrix terms by Kalman himself, and partly because further, this formulation leads naturally to a highly useful decomposition of the overall filter equations into a set of mainly equipment-dedicated equations, based on the use of standard matrix-partitioning techniques on the unpartitioned equations.

c. Functional Modularity/Commonality

Simple logic dictates that if processor design is to be kept compact and easily manageable, and at the same time capable of accommodating a wide variety of mission and navigation hardware requirements, the ancient but powerful concepts of functional modularity and functional commonality must be exploited. To this end, a careful consideration of how best to decompose the overall basic navigation computations into a set of functionally distinct modules was undertaken early in the Phase I effort.

Two basic ground rules were quickly identified. First, the primary modular division ought to be largely navigation hardware oriented; e.g., all computations associated with IMU data use and control should be grouped into a single, functional, IMU module (or submodule). This would (a) simplify the complete bypassing of such computations as a group in cases of IMU hardware malfunction in an overall hardware configuration containing an IMU, and (b) allow for the easy omission of an IMU-related computation in configuring software for systems not involving an IMU, or for later augmenting the software if an IMU were added.

Second, it was also apparent that within each module of such an overall modular structure, two classes of functional operations could be usefully distinguished: those which were independent of differences in, and therefore common to, the various types of hardware associated with that module, and those which depended on the peculiarities of each such hardware type. For example, assuming a single computational reference frame, there are several well-known mathematical techniques for updating the required IMU platform/computational axes transformation, each one of which could be used for either the strapdown or the rotationally free types of IMU. On the other hand, the algorithms for airborne IMU error compensation for ground-calibrated IMU error sources are highly dependent in form and extent on the nature and arrangement of the IMU gyros and accelerometers.

Use of these two principal ground rules led to the overall modular processor framework described in general by Figure 3, and discussed in paragraph f.

In the search for algorithm commonality, it quickly became evident that the use of vector-matrix algorithm formulations was the key. When expressed this way -- instead of in terms of the customary scalar equations -- superficially disparate types of inertial navigation schemes (e.g., north slaved, free azimuth, strapdown, unipole, etc.) look in large part suspiciously similar. This is no accident, but is due to the simple fact that each of these is essentially a mechanization of the same physical problem; namely (using inertial navigation as an example), the continuous determination of position and velocity by means of a device (the IMU) which measures acceleration (except for gravity), and attitude rate. In addition, Kalman filtering equations (see paragraph d.) are by far most easily and naturally expressed in vector-matrix form. Also, the extensive, well-known partitioning techniques

Navigation Processor/Navigation Equipment Overall Organization and Interfaces Figure 3.

The state of the s

associated with vector-matrix formulations lend themselves naturally to the functional modularizing (functional partitioning) process outlined above.

Finally, it is important to emphasize here that the overall functional modularity/commonality structure adopted for the processor under consideration here is principally a means to achieve one of its central and most important characteristics: generality. While the flexibility inherent in this structure guarantees that it will provide easy adaptability to the mission requirements and hardware associated with any single system, and minimize redundant software development for the class of systems to which it applies, it cannot result in software quite as efficient for any single system as that developed specifically for that system. Averaged over many systems, however, generalized software of this type is unquestionably far more cost-effective than the much larger body consisting of the sum of all the specialized software separately developed for each such system.

d. Kalman Filtering

Use of a Kalman filter as an integral and central processor feature was decided upon because: (a) its natural formulation is a linear, vector-matrix one, so that it lends itself to modularization and algorithm commonality with the rest of the processor computations; (b) in the area of pseudoranging in particular, it inherently incorporates the geometric, coordinate-conversion function; (c) it offers the greatest possible theoretical accuracy potential in use of available navigation data, and (d) it provides a natural basis for statistically optimal, emitter data reasonableness and selection algorithms.

Taking these in turn, one of the central conceptual and computational entities in the structure of any Kalman filter is the state estimate vector, or more exactly in the case of vehicle-borne navigation systems, the error state estimate vector. This is simply the set of estimates of the set of scalars which are used to model the errors in the overall navigation system information flow. The entire vector-matrix structure of overall filter computations is based in turn on the order and meaning of these error variables. Once the concept of hardware-oriented modularization of the non-Kalman navigation computations described above was formulated, it became obvious that this concept could be naturally and easily extended to correspondingly modularize the Kalman filtering computations as well. This consisted simply in ordering and grouping the error variables in the overall state vector in such a way as to form a set of separate blocks of variables, each block consisting solely of the set of modeled errors associated with the computations and hardware of just one of the non-Kalman functional modules. This idea was carefully developed, and has been incorporated into the processor to allow for the easy, hardware-dedicated structuring of the Kalman as well as the non-Kalman portions of the overall processor software.

As mentioned above, the Kalman filter basically generates continuous estimates not of the overall navigation variables themselves, but only of the errors in these variables. These error estimates are then used to periodically correct the values of the overall navigation variables. Correspondingly, these error estimates are generated by use of (noisy) measurements of the differences between two synchronous estimates of some geometric quantity, so that, since the true value of this quantity cancels out in the differencing, the measurement really consists of the difference of the errors in the two estimates of the quantity. The measurement difference is therefore directly related to certain of the primary navigation error variables (i.e., state variables). If the errors are small, then this in general nonlinear relation* can be approximated by a linear one (the so-called Kalman measurement or observation matrix), which embeds the coordinate conversion function. For example, if the geometric quantity being estimated is range to a simple emitter, the (say) two-way signal phase shift provides one range estimate, while use of Pythagoras' theorem on user and emitter position coordinates provides another. In differencing, the true range cancels out, so that the measurement difference really involves only the difference of the user and emitter location errors along the line of sight, plus of course the inevitable ranging signal phase, propagation and receiver noise errors. Assuming that the emitter location error is negligible, the filter will in fact estimate the component of user position error along the user-emitter line of sight, using the user-emitter geometric information embedded in the measurement matrix, and will then correct user position accordingly. not only does the filter embed the necessary geometric coordinate-conversion, but it can make maximum use of radio navigation information data (e.g., lange) from whatever number of emitters whose signals are currently available, even if this is less than (or more than) the number required to determine, say, 3-d user position.

In addition to these coordinate conversion capabilities, the Kalman filter is also a minimum-variance, statistical filter. That is, given a measurement difference, its consequent estimates of error state variables are based on (in addition to the linear geometric relations discussed above), the relative uncertainty it associates with the variables concerned. Specifically, these uncertainties are carried as numerical variances, one associated with each state variable. For example, if in the ranging example above, the variance associated with the user position error was much larger than that associated with the emitter, then the filter would assign the entire measurement difference to user position error, and reset it alone. On the other hand, if the converse were true, only the emitter position error would be estimated and only the emitter position error reset accordingly. For intermediate cases, both would be partially reset. This kind of filter is therefore optimum in the sense that, given a large number of noisy measurements,

^{*}If the relationship is actually linear, then neither the errors nor the measurement-differences need be small.

and accurate error variable statistics, it will theoretically reset processor navigation variables with less residual error than any other type of filter.

Finally, the error estimate variances carried by the filter to accomplish the minimum-variance weighting described above, also provided a natural and convenient basis for the construction of statistical, emitter data reasonableness and selection algorithms, which are embedded in the current processor definition. These are discussed in paragraph f.

e. Overall Navigation Information Processing Organization

Once a set of navigation system sensor hardware has been decided upon, a range of options remains as to the manner in which the software shall process (i.e., conduct navigation using) the data available from these sensors. At first sight, all these options would seem to fall into one of two familiar classes; i.e., the use of the data from any one given sensor either (a) to directly drive DR (dead reckoning) navigation in the intervals between successive availability of reference measurement data, or (b) to provide such periodic, reference measurement data itself.

For example, assuming an equipment set consisting of an IMU and a NAVSAT receiver, a natural data processing philosophy would be to use the essentially continuous IMU accelerometer data to continuously (i.e., at a very high data rate) and directly drive the velocity and position updates, and to use the (lower data rate) NAVSAT pseudoranging data as reference measurements to periodically correct---via an appropriate navigation filter ---DR position and velocity, as well as (perhaps) the errors in IMU measurements of acceleration, and the errors in NAVSAT pseudoranging measurements due to NAVSAT/receiver clock phase difference and signal propagation delay errors.

On the other hand, assuming the availability of an adequately high receiver pseudoranging data rate, then position (and perhaps velocity as well if doppler shift data is mechanized) might be directly tracked by use of the NAVSAT receiver outputs*, and the (lower data rate) IMU data treated as navigation reference data for processing through the navigation filter.

This latter approach (NAVSAT dead reckoning) is less desirable than the former (IMU dead reckoning), however, because the former is essentially a differential (predictive), and the latter an integral (historical) process. That is, when the NAVSAT DR approach is used, vehicle acceleration can only be inferred by noisy differentiation of the DR position and/or velocity estimate, while in the IMU DR (IDR) approach, it is measured directly by the IMU accelerometers, and velocity and position are inferred by noise-smoothing integrations.

^{*}Simultaneous three-channel tracking of at least three satellite emitters would of course be necessary to maintain 3-d position and velocity.

When no IMU is available [or no AHRU/TAS backup equipment combination to provide (integral) sirspeed dead reckoning (ADR) instead], so that position-level DR via NAVSAT or other pseudoranging-type equipment is necessary, then this technique can be improved upon-i.e., made more integro-historical -by creating an artificial computational model of vehicle dynamics (acceleration, velocity, and position) using whatever is known (either a priori or via other onboard equipment) about the dynamical characteristics of the carrier vehicle, to implement this model. For example, in a coordinated turn, the vehicle acceleration vector is always normal to its velocity vector, and the occurrence of such a turn is signalled by the behavior of the vehicle control surface settings. Such information could be used to condition an appropriate filter (e.g., a Kalman filter) to "expect" (and therefore to better estimate) a large cross-track acceleration when, say, sileron setting is suddenly changed. This general technique—creating a vehicle dynamics model to accomplish continuous dead reckoning navigation in the intervals between successive use of position measurement data (via say pseudoranging data) -has for convenience of reference been termed pseudo dead reckoning (PDR) and has been tentatively adopted and embedded in the overall processor design, for use whenever no source of continuous acceleration-level or velocity-level data for DR navigation is available.

In particular, this mode can be used to advantage in start-up situations, to maintain continuous radio-autonomous navigation while coarse IMU or AHRU (if available) slignment relative to the computational (C) frame is being carried out.

The altitude channel is also given a similar treatment to provide overall processor uniformity of operation in the face of loss of barometric altitude information. As long as such data is available, it is treated as reference measurement data (regardless of whether the processor DR mode is IDR, ADR, or PDR). When such data is lost, however, the last value of altitude is retained and decayed slowly toward nominal vehicle cruise altitude. This pseudo altitude is, however, still treated as a reference altitude measurement by the Kalman filter (but given a growing statistical uncertainty).

To summarize, for the complete navigation equipment complement—IMU, AHRU, CADS, and transceiver(s)—comprising current processor processing capabilities, the basic processor navigation mode rules are simply:

- If IMU is available, then IDR
- If IMU is not available, but AHRU/CADS(TAS) is, then ADR
- If neither IMU nor AHRU/CADS(TAS) is available, but radio pseudoranging equipment is, then PDR
- Radio pseudoranging and barometric/pseudoaltitude data (or visual position fix data) is always used only as reference navigation measurement data through the Kalman filter, and never as a direct DR data source.

"Available" in the above means:

- IMU or AHRU: Coarse platform-to-computer alignment is complete and valid navigation data is being generated.
- <u>CADS(TAS or barometric altitude)</u>: Valid navigation data is being generated.
- <u>Pseudoranging equipment</u>: Signal acquisition is complete and valid navigation data is being generated.

f. Processor Modular Organization

With the preceding discussion as a background, this subsection presents an overall summary of the modular navigation processor, which is presented in MLI specification-level detail in Section III.

The overall processor has been organized into four conceptually distinct modular groups—the dead reckoning navigation (D or DR) modules, the reference navigation measurement (R) modules, the Kalman filter (K or KF) modules, and the processor mode/configuration initialization and switching modules. These four modular groups are discussed in order in the following paragraphs. As a reference in these discussions, Figure 3 summarizes information flow between these modular groups within the processor, and across the processor/navigation sensor interface as well.

(1) DR Nav Modules

This group includes the Vehicle State Module (VSTM), the Platform Module (PLAM), and the Wind/Airspeed Module (WASM). Together, these modules comprise the processing necessary to conduct continuous, basic DR navigation in the IDR, APR, or PDR modes. In all DR modes, this means the continuous generation of the C frame referenced position and velocity vectors. In the IDR or ADR modes, where a platform is available to measure airframe attitude (and perhaps attitude rate), the orthogonal airframe-to-(earth-fixed) computational frame, and the corresponding C frame-referenced airframe angular rate vector are additionally generated as basic navigation outputs (and a wind vector as well). Table III summa-izes the use and function of each D module by DR mode.

From Table III it is evident that a considerable degree of intermodal functional commonality exists. This has been emphasized in the MLI specification for each module by grouping (and logically addressing) the overall functions required of each module into those required in common for all three DR modes, those required in common only for modes in pairs, and those particular to each mode. This grouping, together with the simple DR modeto-DR navigation hardware sensor correspondence rules (see Section III, paragraph 3.e), has resulted in a very significant simplification of the processor DR mode switching logic, and in a very simple and direct DR nav hardware-to-software modular correspondence. These techniques have also been used in both the R module and K module groups, discussed in paragraphs (2) and (3).

TABLE III. DR NAV MODULES: SUMMARY OF OPERATIONS AND USE BY MODE

From Table III it is also evident that a high degree of interdependence exists between the separate DR modules. This, as will be seen, is in direct contrast to the R modules, which are essentially mutually independent.

(2) Reference Navigation Measurement Modules

This group includes the reference altitude module (ALTM), the position fix module (POSM), and the transceiver data processing module (TDPM). In general, each of these hardware-specific modules executes two types of operation. First, it accomplishes the processing of input sensor data from its particular sensor or input source (and in the case of the TDPM, provides rate aiding control feedback as well) into an estimate of some fundamental navigation quantity (e.g., barometric altitude, radio pseudorange). Second, it synchronously computes a second estimate of the same navigation quantity based on the basic DR navigation module outputs and forms the synchronous difference. These synchronous differences form the basic input measurements used by the Kalman filter to subsequently estimate and correct D and R module-associated navigation quantities. Since these R modules are mainly independent of one another, they are discussed in turn in the following paragraphs.

(a) Reference Altitude Module (ALTM)

The functions executed by this module depend on whether the vehicle is on the ground or airborne, and whether or not barometric altitude is available, as summarized in Table IV. Note that <u>synchronous</u> differencing of the DR and reference altitude measurements is specified in order to remove vehicle dynamics. This technique is uniformly specified for all R modules.

(b) Position Fix Module (POSM)

This module simply converts panel-inserted visual position fix data from input coordinates (e.g., latitude/longitude/altitude) into an internal C frame-referenced position vector, and synchronously differences this vector with the corresponding DR-generated position vector.

(c) Transceiver Data Processing Modules (TDPMs)

The design technique utilized in establishing the overall TDPM module group was a detailed examination of the functional tasks required for the various emitter types. Three basic emitter/user transceiver configurations were identified by this effort: the Ground, the Airborne, and the Satellite Emitter configurations. A set of overall, all-configuration functional tasks was established and organized into a corresponding set of TDPM modules. Within each module the attendant functional tasks were then further organized in terms of their use by configuration type.

TABLE IV. ALTM: SUMMARY OF OPERATIONS AND USE BY REFERENCE ALTITUDE MODE

Aircraft Status CADS Barn Altitude Availabilicy	Air	Ground
Available	 Ref Alt = Error Compensated Baro Alt Differences** DR/Ref Alt 	 Baro Alt = Field Alt* Ref Alt = Field Alt* Differences DR/Ref Alt
Not Available	 Ref Alt = Pseudo Alt Decays Pseudo Alt Differences DR/Ref Alt 	Ref Alt = Field AltDifferences DR/Ref Alt

*Panel-inserted field altitude assumed available.

The modules established by this functional organization were:

- Emitter Word Processing (TEWM)
- Propagation Correction (TPCM)
- Range and Range Rate Generation (TRRM)
- Kalman Measurement Observables (TMOM)
- Antenna Lever Arm Compensation (TALM)
- Kalman Measurement Matrix (TMMM)
- Data Statistics Generation (TDSM)
- Acquisition and Aiding (TAAM)

An important design feature which has been incorporated in the module definition is the combination of both range and range rate calculations within the same modules, since these entail almost identical mathematical operations and from a programming structure standpoint could therefore share the same operational subroutines with only a variation of input and output parameter definition. The design also embeds a single propagation link error state definition which represents the amalgamated effect of numerous algorithmic uncertainties in determining the exact link error. The inclusion of an expanded error state vector of increased dimension was not considered as being warranted due to the basic unobservability of the various link error contributors.

It should be noted that the radio navigation treatment in this document is almost exclusively LOS-oriented, since attention in Phase II was concentrated on this type, rather than on the earth mode type, of radio signal. However, a brief joint Northrop/Magnavox review of the LOS radio navigation module specifications presented in subsection III.3.c of this report revealed that five of those (the TEWM, TALM, TRRM, TMOM, and TMMM modules) would require only minor revision to additionally accommodate earth mode emitter processing, two others (TDSM and TAAM) would need careful review to ascertain how much modification would be necessary, and only one (TPCM) would clearly require major extension.

(3) Kalman Filter Modules

There are eight Kalman Filter (K) modules, falling into four distinct conceptual groups as follows:

- Prediction Modules: Estimate/covariance Matrix Time Update Module (KTUM), and the Time Update Matrix Generation Module (KTMM)
- Measurement Preprocessing Modules: Measurement Matrix Generation Module (KMMM), and the Measurement Reasonableness, Combination, and Optimal Selection Modules (KMRM, KMCM, KMOM)
- <u>Filtering Module</u>: Estimate/Covariance Matrix Filtering Update Module (KFIM)
- Control Module: Estimate/Processor Control Module (KCOM).

The functions of these modules are best understood against the background of the fact that, because of the extent of the computations required to fully execute one cycle of all Kalman operations even when only a small mavigation system error model is incorporated in the filter design, the Kalman execution cycle is of necessity considerably longer than either the DR module execution cycles or the even slower R module cycles. Typical values, for example, might be a 0.1-second DR cycle, a 1.0-second R cycle, and a 10-second KF cycle.

In order to accurately track significant system time-variable error dynamics (by computing their effect after the fact) the error estimate produced by the filter is purposely made to lag essentially one KF cycle behind the real-time error behaviour. The control fed back to other processor modules by the filter must therefore be compensated for this lag to avoid the destabilizing effect of delay in the stationary portion of system error dynamics. For these reasons, the various K modules operate asynchronously, some conducting essentially last-cycle-related, and some current-cycle-related, operations.

With this as background, the roles of each of the modules within the above groups during a full-operation Kalman cycle are as follows:

Prediction Modules:

KTUM: Time updates KF error estimate and associated covariance matrix across <u>last</u> KF cycle, using time update matrices generated by KTMM in last KF cycle.

KTMM: Generates current-cycle time update matrices for use by KTUM in next KF cycle.

Measurement Preprocessing Modules:

KMMM: Generates current-cycle-measurement/KF cycle endpoint-synchronizing measurement matrices for use by KMRM, KMCM, and KMOM in next KF cycle.

KMRM: Generates current-cycle statistical reasonableness tests on candidate last-cycle measurements (and their associated matrices).

KMCM: Combines (linearly or nonlinearly) last-cycle measurements (and their associated matrices) which have passed KMRM reasonableness tests.

KMOM: Optimally orders current-cycle KMCM output (last-cycle) measurements (and associated matrices) for use by KFIM.

Filtering Module:

KFIM: Updates KF error estimate and associated covariance matrix using KMOM outputs (last-cycle measurements and associated matrices). Resulting estimate and covariance matrix relate to start of current KF cycle.

• Control Module:

KCOM: Predicts KFIM estimate to end of current cycle and computes appropriate corrections to DR and R module navigation variables, and to KF estimator. Applies the former to DR and R modules at end of current cycle, and applies estimator correction generated by Last-cycle KCOM operation to this-cycle KFIM estimate (start-of-cycle estimate).

Each of the functions executed by each of these modules has been partitioned. That is, instead of algorithms formulated to process the full error state estimate vector (and all its associated vectors and matrices) essentially as a single entity, the algorithms have instead been uniformly formulated to process a set of much smaller function- and hardware module-oriented partitions, which together comprise the equivalent of the full-state algorithms.

There are several levels of this partitioning, as follows. At the broadest level is the partitioning of the overall state x into a DR navigation-related substate, \mathbf{x}_{D} , and a reference navigation-related substate, \mathbf{x}_{R} . In particular, \mathbf{x}_{D} includes all of the elements in the overall mechanized error state model which model errors in the DR navigation module variables, and \mathbf{x}_{R} includes all those elements which model errors in the R module navigation variables.

Each of these principal substates is in turn further partitioned into more specific substates. Specifically, the D substate is broken down into position and velocity error substates which are common to all DR navigation modes (and which model VSTM errors), plus a set of mode-specific substates for each particular DR mode. For example, in IDR, these additional substates would probably include at least a platform-to-computer misalignment substate, and -- depending on the model depth required for the specific processor application -- selected platform drift rate and acceleration measurement error substates (note that these model PLAM errors).

The R substate is correspondingly decomposed into a set of R navigation module-specific substates. For example, the nth emitter net error substate, which models the errors associated with pseudoranging on emitters of a particular net, might range from one including a common user-emitter net clock error substate plus an emitter ephemeris error substate plus separate propagation error substates for each emitter in the net, to no modeling at all -- depending on the model depth required and/or feasible.

Note that, although it is partitioned, the filter is not artificially (and deleteriously) decoupled by simply ignoring the inter-substate co-variance matrices, which embed the vital inter-substate correlations that enable cross-correction of errors by measurements which do not directly measure these errors. These matrices are retained and updated so long as both substates concerned are present.

This bi-fold modularity -- via the overall, eight-module Kalman function-specific filter structure, and the uniform, intra-KF-module partitioning into D and R module-specific substate operations -- provides for an extremely flexible, but at the same time highly efficient Kalman filter design. In particular, the problem area of Kalman filter switching -- between DR modes, or of the R configuration (e.g., as emitter nets drop out or are acquired in the course of a mission) -- is dramatically simplified and systematized. Further, the reduction of conceptually difficult Kalman filtering to its essential elements using the above techniques (and at the same time emphasizing its vector-matrix character) will in general result in much more efficient programming, since the programmer can -- after a suitable learning phase -- much more easily visualize filter interrelationships and commonalities.

(4) Initialization/Switching Modules

There are six of these modules, falling into two general classes as follows:

- Initialization Modules: Navigation Start Module (NSTM) and Coarse Align Module (CALM)
- Switching Modules: DR Navigation Switching Module (DSWM), Reference Navigation Measurement Switching Module (RSWM), Kalman Filter Switching Module (DSWM), and C Frame Switching Module (CSWM).

These are discussed in turn in the following paragraphs.

(a) Initialization Modules

These modules are used to establish initial PDR navigation and to initiate preparation for subsequent ADR or IDR operation.

In particular, the NSTM -- which is executed only once, just after the operator navigation start command, and prior to first execution of any other processor medule -- simply initializes the C frame to the D frame, generates initial null vector estimates of VSTM position and velocity and of KF position and velocity error substates, and assigns very large initial variances to the latter. Assuming the availability of a panel-entered initial visual fix and/or continuous LOS pseudoranging data, the Kalman filter will subsequently quickly correct position and velocity to navigation-quality accuracies.*

^{*}Vehicle maneuvering is assumed minimal during this period.

The CALM, which is used only when an unaligned platform is available, generates initial values for two of the fundamental interframe matrices -- P/L and L/C -- which are dynamically updated by the PLAM in subsequent ADR or IDR operation. (The third, A/P, is not updated based on prior values, but is directly computed from current dynamic platform attitude readouts.) In addition, the CALM accomplishes any required coarse erection and leveling of a rotationally isolated IMU (this is of course not possible for a strapdown IMU).*

When CALM operation -- which runs in parallel with, and is aided by, reference measurement-augmented PDR -- is complete, the processor is ready for sequencing into ADR or IDR, depending on which platform is available. When both are available, ADR can be initiated and used for DR navigation (using the prealigned AHRU) while IMU alignment is under way.

(b) <u>Switching Modules</u>

These modules are used to switch between DR navigation modes and between reference navigation measurement configurations, depending on navigation hardware availability. In particular the DSWM, RSWM, and KSWM respectively accomplish the inter-DR-mode switching of the DR modules, the inter-R-configuration switching of the R modules, and the corresponding, intra-KF-module D and R substate partitions switching. The CSWM, on the other hand, switches all affected D and R module variables from one C frame to another, when required and specified by the operator. Kalman module variable C frame switching is embedded as a KSWM submodule. The switching modules are discussed in turn in the following paragraphs.

The DSWM accomplishes two main functions. First, it selects the appropriate DR mode based on current DR navigation equipment availability. Second, it appropriately initiates CALM operation if required for aggradation to ADR or IDR, initiates any new-mode-only DR module variables, and sets up intra-DR-module execution of those DR module subsets appropriate to the new mode.

The RSWM also accomplishes two main, corresponding but simpler functions, since the R modules, unlike the D modules, are essentially mutually independent. First, it selects which R modules are to be executed, and in what mode (e.g. reference altitude modes) based on current R nevigation equipment availability. Second, it appropriately initiates any new-signal acquisition and tracking if required in the case of radio pseudoranging equipment, initiates any variables required by start or restart of any module, and sets up intra-module execution of the selected R modules in the appropriate modes.

^{*}Only passive processor interfacing with the AHRU is assumed in the current processor definition. The AHRU is assumed to be independently aligned prior to its use by the processor, which at no time generates AHRU torquing rate controls, but only passively uses its attitude inputs in conjunction with TAS to conduct ADR navigation.

The KSWM carries out KF module switching which is compatible and synchronous with both DR navigation mode and R configuration switching. Since such switches can occur at a faster rate in certain situations than the KF cycling rate, the KSWM sets up temporary, mode-change-type-dependent bypassing of certain KF modules conducting lower priority functions, in favor of modules conducting higher priority functions, to conserve time with minimal impact on accuracy. For example, if the switch involves a DR mode change only, then all KF measurement use and control operation modules are temporarily bypassed, to enable the prediction modules (KTMM, KTUM) to maintain error estimate and covariance matrix continuity and currency despite the time-consuming DR error model switching operations which the mode switch requires. On the other hand, if the switch involves only an R configuration change, then only the KCOM needs to be bypassed (to avoid time-consuming adjustment of its prediction operation, since the changes to the measurement use modules are trivial and require little time).

Because of the D and R module-oriented Kalman filter state partitioning, maintaining continuity and currency of the error estimate and covariance matrix at a mode or configuration switch reduces to implementation of the following simple rules:

- Discontinue updating of, and discard all preswitch-only substate estimate vectors and covariance matrix partitions.
- Continue updating (using new-mode updating relationships) of all preand postswitch-common, substate estimate vector and covariance matrix partitions.
- Initialize and initiate new-mode updating of all postswitch-only, substate estimate vectors and covariance matrix partitions.

Finally, the CSWM, in conjunction with the Kalman filter C frame switching submodule of the KSWM, switches all DR, R, and KF module variables which are C frame referenced, to their new values with respect to the new C frame. In order to simplify overall processor switching requirements, these variable transformations are delayed until the end of the KF cycle in which the operator has initiated the C frame change, and are then executed in a single pass through the required computations.

g. Special Processor Concepts and Capabilities

This subsection deals with a variety of special concepts and capabilities associated with the processor, which, because they are of unusual interest and value, need emphasis. There are three main areas treated here: (1) switchable uniframe navigation, (2) Kalman filter partitioning, and (3) Kalman filter measurement preprocessing techniques. These are discussed in turn in the following paragraphs.

(1) Switchable Uniframe Navigation

The generalized mission requirements constraints on processor design outlined in subsection 2 above included in particular the need to navigate in any of a variety of either geodetically or locally referenced coordinates on missions of different types, or even in different phases of the same mission.

The approach adopted to simplify and unify processor characteristics in this regard consisted in the selection of a single type of earth-fixed, Cartesian coordinate frame in which the basic navigation computations could be executed, independent of mission type. On missions, or during mission phases, where global navigation is required, this frame is earth fixed and earth centered, with its orthogonal axes aligned along the principal axes of the earth (i.e., polar and equatorial axes); on the other hand, on missions, or during mission phases, where localized navigation is needed, although still earth-fixed, the frame is now centered at some convenient local point (e.g., the touchdown point in ILS), and the axes are aligned in some locally, operationally convenient way (e.g., along, across, and vertical to the runway). A significant property of these frames, since they are nonrotating with respect to one another (both are fixed in the earth), is that the basic navigation and navigation error behavior are almost exactly, functionally the same for both frames. Thus essentially the same navigation and Kalman filter update equations can be used by the processor for global or tactical missions, or, with appropriate (and simple) navigation variable switching at transition, for missions involving both global and tactical phases.

The processor therefore essentially carries out continuous navigation in and with respect to a single type of coordinate system throughout any mission, using essentially a single set of overall navigation computations. User position initialization, emitter position, and other local reference point position and velocity data must of course be transformed from the coordinates in which it is available into this central computational frame, so that all relative navigation and guidance can be carried out uniformly within this frame. The generalized vector-matrix equations which underlie this capability are derived in Appendices II, III, IV, and V.

(2) Kalman Filter Partitioning

The breakdown of the overall state vector into a set of module-related, partitioned substates has been discussed earlier. This outlines the basic concepts of, and advantages provided by the partitioning.

The fundamental unpartitioned (full state) Kalman filtering operations are (a) the time update or prediction operation, (b) the measurement update or filtering operation. Both of these are essentially updating operations on the state vector (x) and its associated covariance matrix (P).

The mathematical, full-state formulations* are:

• Time Update

$$\dot{\phi} = A\phi \qquad (\phi_0 = I) \tag{1}$$

$$x = \phi x \tag{2}$$

$$P = \phi P \phi^{T} + R \tag{3}$$

Measurement Update

$$b = PM^{T}/Q \quad (Q = MPM^{T} + C)^{-1}$$
(4)

$$x = x + b (Y - Mx)$$
 (5)

$$P = P - Qbb^{T}$$
 (6)

where A is the overall error state differential equation coefficients matrix, ϕ is the error state transition matrix, R is the error state noise matrix, Y is the measurement, M is the measurement matrix, C is the measurement noise, and b is the gain vector.

The partitioning of the full state x is defined by:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

where each x (s = 1,2...,n) is a module-oriented, partitioned substate of x. The corresponding partitions of A, ϕ , P, R, b, and M (Y and C are assumed scalars) are all double-indexed to indicate the substates they relate; e.g., A_{ss}, is the set of error state differential coefficients which dynamically couple the error substate s' into the error substate s.

^{*}These have been purposely simplified, and simplifying assumptions have also been made about some of the retained auxiliary matrices (i.e., Y and C are scalars), to maintain clarity of ideas.

By the laws of matrix algebra, equations (1) through (6) above can be partitioned into:

$$\dot{\phi}_{s} = \sum_{i=1}^{n} A_{si} \phi_{is} \qquad (\phi_{sso} = I, \phi_{ss'o} = 0)$$
(7)

$$x_{s} = \sum_{i=1}^{n} \phi_{si} x_{is}$$
 (8)

$$P_{ss'} = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\phi_{si} P_{ij} \phi_{js'}^{T} \right) + R_{ss'} \left(P_{s's} = P_{ss'}^{T} \right)$$
(9)

$$b_{s} = \sum_{i=1}^{n} P_{si} M_{i}^{T} / Q \quad \left(Q = \sum_{i=1}^{n} \sum_{j=1}^{n} M_{i} P_{ij} M_{j}^{T} + C \right)$$
 (10)

$$x_{s} = x_{s} + b_{s} \left(Y - \sum_{i=1}^{n} M_{i} x_{i} \right)$$
 (11)

$$P_{ss'} = P_{ss'} - Qb_s b_{s'}^{T} \qquad \left(P_{s's} = P_{ss'}^{T}\right)$$
 (12)

where s,s', i, and j all range from 1 to n.

The required summations in these equations can either be simplified or in many cases even entirely eliminated by appropriately ordering and organizing the selected substates. For example, if A is organizable into a pseudodiagonal form (this is in fact the case with the combined R substates) then (7) through (9), for the R substates, reduce to:

$$\dot{\phi}_{S} = A_{S} \phi_{S} \quad (\phi_{SO} = I) \tag{13}$$

$$x_{s} = \phi_{s} x_{s} \tag{14}$$

$$P_{ss'} = \phi_s P_{ss'}, \quad \phi_{s'}^{T} \tag{15}$$

For another example, if A is organizable into a pseudo upper-diagonal form (this is in fact the case with the combined D substates in any mode) then, assuming say, that A and ϕ have the partitioned structures:

$$A = \begin{bmatrix} A_{11} & A_{12} & 0 \\ 0 & A_{22} & A_{23} \\ 0 & 0 & A_{33} \end{bmatrix} \qquad \phi * = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ 0 & \phi_{22} & \phi_{23} \\ 0 & 0 & \phi_{33} \end{bmatrix}$$

^{*}It can be straightforwardly demonstrated, using the well-known properties of the transition matrix [all of which are based on equation (1)], that if A has the structure shown, then ϕ must have the structure shown.

then (7) through (9) (for the D substates) would reduce to:

$$\dot{\phi}_{ss'} = \sum_{i=s}^{s'} A_{si} \dot{\phi}_{is'} \quad (s \le s', \phi_{sso} = I_o, \phi_{ss'o} = 0)$$
 (16)

$$x_{s} = \sum_{i=s}^{n} \phi_{si} x_{i}$$
 (17)

$$P_{ss'} = \sum_{i=s}^{s'} \sum_{j=1}^{s'} \left(\phi_{si} P_{ij} \phi_{js'}^{T} \right) + R_{ss'} \left(s \le s', P_{s's} = P_{ss'}^{T} \right)$$
 (18)

In (16), (17), and (18), full advantage has been taken of the structures of A and ϕ , to edit out almost all null ϕ and A submatrices.

In particular, equations (14), (15), (17), and (18) constitute a very attractive basis for the design of the KTUM module. The programmer, who is always primarily concerned with the critical program execution time-versus-storage requirements balance tradeoffs, has at his disposal a set of compact, completely indexed (and indexed in a D and R module-oriented way), already fast (because nearly all null submatrices have already been edited out) equations, in which is embedded a small set of easily identifiable, candidate common vector-matrix subroutines (summation and multiplication). He can optionally -- depending on his requirements and the computer involved -- increase speed by uniformly straightlining, instead of indexing, all indicated operations and subroutines, or at the other extreme he can decrease speed (but reduce storage requirements) by fully indexing all operations. Intermediate decisions result in intermediate speed versus storage consequences.

A similar programming flexibility with regard to the filtering module (KFIM) design is inherent in equations (10) through (12), where in particular an added flexibility in programming is obtained by noting that the indicated summations need be carried out only for the substate indices which have non-null relationships with the measurement Y; i.e., with the non-null submatrices of M. For example, if the measurement Y is a simple two-way range measurement taken synchronously with the KF cycle enapoint, then only the position substate partition of M (which is simply the unit LOS vector transposed) is non-null (assuming that propagation errors are not modeled), and therefore only the index corresponding to the position error substate need be considered in the summations shown in equations (10) and (11).

Correspondingly, equations (13) and (16) furnish an equally attractive starting point for KTMM module algorithm design. Note that, because of the structure of A, the on-(pseudo) diagonal, DR transition submatrix differential equations generated by equation (16) are of the same simple, autonomous form as those of equation (13). This means that <u>independent</u> solutions can be generated for all of the (pseudo) diagonal transition submatrices. Further, careful examination of equation (16) leads to the conclusion that the off-diagonal, substate-coupling transition submatrices can also be separately (but not independently) generated, using the on-diagonal submatrix solutions as forcing functions.

All the non-null partitions of the overall transition matrix can therefore be generated separately, some completely autonomously, others forced by the autonomous solutions. These partitions can then of course serve as direct and natural inputs to KTUM time update operations based on equations (14), (15), (17), and (18). Further, the fact that they can be generated separately allows for the very attractive possibility that each can be updated at a rate consistent with its own dynamics (i.e., its own A matrix). That is, those transition submatrices whose dynamics are essentially constant over one or more KF cycles need be computed only that often, while those whose dynamics are rapidly changing can be updated as fast as necessary within each KF cycle.*

(3) KF Measurement Preprocessing

This paragraph discusses the wide variety of KF measurement preprocessing techniques which have been considered in this development to date. Some of these were and are in common use, while others, to the author's knowledge, are original with Northrop during this development. In any event, all are important design tools, not only for preprocessing the range of reference navigation measurement types which have been considered to date for processor use (i.e., radio pseudorange, altitude, and visual position fix data), and which have largely motivated the development of these techniques, but for other reference measurement sensor types as well (e.g., doppler radar, stellar and landmark trackers, etc.).

There are in all five broad areas considered in the following paragraphs: (a) raw measurement**/KF estimate synchronization (KMMM); (b) time smoothing of the measurements of a single type over all or part of the Kalman cycle (also KMMM); (c) combination of measurements of different types (both linear and nonlinear combination) (KMCM); (d) statistically optimal, ordered selection of measurements of different types (KMOM), and (e) reasonableness testing (KMRM). In general, it is emphasized that whether none, some, or all of these techniques at present should be employed in a given application, and in what order, seems to depend to a large extent or what the mission and hardware background to the particular application is. This whole important area needs further attention to fit the processing tools defined here to the mission and system hardware requirements in as generally applicable a manner as possible.

This attractive approach can in fact be implemented as described if KF measurements are only taken synchronously with the KF cycle endpoints. If measurements interior to the KF cycle are used, however, difficulties arise because partial-cycle transition submatrices may be additionally required to synchronize such measurements with the KF cycle endpoints. In such cases, frequency of generation of even the slow-dynamics dependent transition submatrices (but only those needed for synchronization) may be governed by the measurement data rate. This important area needs further attention.

inti.e., the single sample, mutually synchronous D/R reference measurement/DR differences.

(a) KF Measurement/Estimate Synchronization*(KMAM)

Figure 4 depicts the timing of KF measurements relative to the KF endpoints, with which KF processor error estimates are synchronized.

Consider a single, synchronous, raw measurement-difference** Y_i , taken interior to the KF cycle. The time $\Delta t_{F,i}$ in Figure 4 then represents the fundamental asynchronism between the measurement of actual processor state x_i at time t_i , and the time t_F for which the filter computes its estimate of the actual processor state x_F .

Mathematically, the relationship between the measurement Y_i and the true processor error state at t_v , x_p , is simply:***

$$Y_{i} = M_{i,F} \times_{F} + v_{i} \tag{19}$$

where v_i is reasurement noise and $M_{i,F}$ is the observation matrix; i.e., the linear relationship between the measurement Y_i and the actual state x_F which the filter is estimating.**** $M_{i,F}$ can in particular be written:

$$\mathbf{M}_{i,F} = \mathbf{M}_{i} \quad \phi_{i,F} \tag{20}$$

where M_i is the linear relationship between Y_i and x_i (the true state at time t_i, which Y_i directly measures) and $\phi_{i,F}$, the (backward) error state transition matrix from time t_F to time t_i.

To synchronize the measurement Y_i to the error state <u>estimate</u> for time t_F , \hat{x}_F , the processor KF measurement-residual is therefore formulated as $(Y_i - M_{i,F} \hat{x}_F)$, to compensate the effects of actual error state transition in the interval $\Delta t_{F,i}$. Failure to do this [i.e., use of just $(Y_i - M_i \hat{x}_F)$], can lead to serious errors in KF operation.

^{*}See also Appendix XII.

^{**}It is emphasized here again that synchronous, D/R measurement differencing essentially removes vehicle dynamics, leaving only the dynamics of processor error in its overall estimates (e.g., VSTM position and velocity) of vehicle dynamics.

^{***} System error state noise and control have purposely been neglected here to simplify the discuscion.

^{****}See Appendix VI.

KF cycle endpoints (KF processor error estimate synchronization times) to, tr:

 x_o , x_F : Actual processor error state at times t_o and t_F

: Times of KF raw measurement availability

: Available KF rav measurements

: .: Asynchronism (delay) between $Y_{\hat{I}}$ and $x_{\hat{F}}$

Figure 4. Kalman Measurement/Estimate Timing Diagram

For example, suppose Y_i is a two-way range measurement, so that, neglecting propagation errors, Y_i is essentially a measurement of the component of processor position error along the line of sight (and the position error partition of M_i is in fact just the transposed unit LOS vector). If a significant uncompensated velocity error exists along the LOS at the time of measurement, then use of the uncompensated residual formulation above is tantamount to neglecting that part of the position error at t_F due to propagation of the velocity error at time t_i in the interval, $\Delta t_{F,i}$. The accuracy of both KF position and velocity error estimation could therefore be significantly affected.

The compensation actually applied is more general than implied by this example, taking additionally into account (1) any control rates applied to the estimator (e.g., those modeling the leveling control rates actually applied to the IMU in IDR) in the $\Delta t_{F,i}$ interval, since these can, independently of other effects, produce significant velocity errors, and (2) vehicle dynamics-dependent velocity errors generated by vehicle maneuvers in the $\Delta t_{F,i}$ interval (e.g., velocity errors produced in IDR by platform/computer misalignments during aircraft maneuvers).

(b) Measurement Time Smoothing (KMM)*

If the number of measurements Y_i (for the moment, assumed here to be of a single type; e.g., all LOS pseudoranging measurements on a single emitter) in a single KF cycle is large, then time smoothing techniques -- to an extent and in a form governed by many factors -- can be applied.

These techniques, like the measurement combination techniques discussed in paragraph (c), are desirable to the extent that they reduce the number of measurements which must be processed by the time-consuming KFIM operations (i.e., the actual Kalman filtering of the measurements) into a smaller, prefiltered set of measurements. When they are used, accuracy is thus traded off to gain execution time.

Perhaps the simplest approach is to straightforwardly average the data Y_i ; i.e., use the average:

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 (21)

as a Kalman filter measurement. Generalizing on the results of paragraph (a), however, such a measurement should be compensated by use of the observation matrix:

$$\overline{H}_{F} = \frac{1}{n} \sum_{i=1}^{n} H_{i} \phi_{i,F}$$
 (22)

^{*}See Appendites VII and VIII.

Generation of this matrix is simplified (1) if the data is equispaced; (2) if the \mathbf{M}_i can be treated in common as a constant matrix (e.g., if the emitter is a distant navigation satellite, so that its LOS is nearly fixed), and (3) if the pertinent submatrices of $\phi_{i,F}$ depend on only slowly varying dynamics (e.g., the vehicle is not maneuvering). Under these special circumstances, $\overline{\mathbf{M}}_F$ can be computed in a single, closed-form computation. If significant data rate irregularity, LOS directional change, and/or vehicle dynamics are present, however, $\overline{\mathbf{M}}_F$ must be computed recursively, which requires a computation corresponding to each measurement in the average. The extent to which executing these relatively more time-consuming recursive computations is feasible depends on, among other things, computer speed and processor accuracy requirements for the particular application being considered.

If the measurement data rate is sufficiently high, either formulation for M_F (recursive or single-pass) can be simplified by condensing (i.e., preaveraging) the measurements over short time intervals onto the interval centerpoints and using these as a basis for M_F generation. For example, if the measurement data were such as to much more densely cover the KF cycle interval shown in Figure 4, it might be profitably condensed into n measurements Y_1, Y_2, \ldots, Y_n , each consisting of the local average of the actual measurements centered on t_1, t_2, \ldots, t_n and M_F could be computed as if there were only n measurements. The viability of this technique is of course dependent on the adequate plus-and-minus cancellation of local velocity-into-position error propagation effects over the short averaging intervals.

(c) KF Measurement Combination (KMCM)

To this point, the discussion has focused on preprocessing KF measurements of a single type. This paragraph deals with the precombination of different types of raw (or KF endpoint-synchronized or time smoothed) KF measurement differences before KFIM use. Two principal types of measurement combination are discussed here: linear and nonlinear. Of these, several generally applicable linear techniques are discussed, the purpose of each of which is principally -- like the linear time-smoothing techniques discussed above -- to reduce the computational load on the computer at some (as yet unknown) cost in accuracy. On the other hand, only a single, more or less special-purpose, but quite important nonlinear combination algorithm is discussed, whose purpose is to enable use by the Kalman filter of LOS net pseudoranging data in the face of large LOS directional uncertainties.

- <u>Linear Techniques</u>: Two specific techniques -- space averaging, and the familiar hyperbolic differencing -- are discussed here; there is also a final, brief general discussion of other linear techniques.
 - Space Averaging:* One of the problems often associated with use of a Kalman filter to accomplish statistically optimum radio psuedoranging, is the need to carry a large -- and therefore computationally costly -- propagation delay error model in the filter. This technique can prove valuable in such situations by eliminating the need for such a model.

Given a set of either actually simultaneous multichannel-derived or computationally synchronized** single-channel-derived range measurement differences from a number of different emitters, this technique involves simply first converting each of these into a corresponding LOS error vector, vectorially averaging*** all of these vectors, and using the resulting, average error vector as a KFIM (single 3x1, or three 1x1) measurement.****

The underlying rationale here is simply that since the emitter directions will tend to be uniformly distributed, the error in the averaged measurement will be significantly reduced. For example, if all the n emitters are producing data of the same statistical quality, then the standard deviation of the radial error associated with their average is $1\sqrt{n}$ times that associated with any one of the vectors separately.

Hyperbolic Differencing: This well-known technique, viewed from the standpoint of the more general pseudoranging process (of which it is a special case), implemented by the processor, is another special-purpose, linear measurement combination technique.

This technique, which essentially consists of linearly differencing pseudoranging measurements in pairs, thereby eliminates emitter net-receiver clock phase difference from the resulting measurements. There is therefore also no need to carry a storage and time-consuming clock error model in the Kalman filter.

^{*}See Appendix VII.

^{**}E.g., KF endpoint-synchronized, using the technique described earlier.

^{***}This can be a simply weighted average if emitters of several different types are involved.

^{*****}The KFIM observation matrix used to process this averaged measurement is a simple function of the LOS directions and the endpoint-synchronizing observation matrices associated with all of the measurement differences.

Although there is no geometrical loss in positioning accuracy resulting from hyperbolic differencing of two or more pseudoranging measurements (as opposed to separately processing them)*, there is a loss in both accuracy and operational capability, in that single-emitter data cannot be used (unless a clock error model is carried). This latter fact therefore represents the central tradeoff between the two approaches.

- Other Linear Combination Techniques: In the KMCM module, provision is made for assigning weights to the pseudoranging measurements to be combined in a general way, which is not restricted solely to those special weights associated with the space averaging and hyperbolic techniques discussed above. This has been purposely done to allow for future inclusion of other linear combination techniques.
- <u>Nonlinear Technique</u>:** An important processor design problem in the LOS pseudoranging area centers on the proper use of LOS net pseudoranging measurements in prospective operational situations where the user/emitter relative (3-d) position uncertainties are comparable in size to the actual user-emitter ranges themselves. This produces large LOS directional uncertainties which preclude KFIM use of the normally formulated pseudoranging measurement differences in conjunction with their attendant, normally formulated observation matrices, since the linear measurement-state relationships inherently assumed in the latter no longer hold.

Two common operational situations in which this problem can occur are (1) navigation start-up with LOS data when little or no information about vehicle position with respect to the net is known, and (2) switching from globally referenced (e.g., NAVSAT-aided) navigation to locally referenced (e.g., target area LOS net-aided) navigation, when, although the vehicle position is accurately known in the E frame, because the local emitter net tie-in to the E frame might be coarse, vehicle position relative to this net is again uncertain.

Northrop has discovered*** a very attractive technique for solution of this problem, which allows Kalman filter estimation of vehicle position no matter how large (but of course within the computational range of the computer employed) the relative vehicle-emitter net position uncertainty.

^{*}There is a common misconception that the hyperbolic technique suffers uniquely from "gdop" problems near emitter net baselines and their extensions. The fact is that the rho-rho and the pseudoranging techniques suffer identically in this regard -- i.e., all three techniques are equally geometry-sensitive.

^{**}See Appendix IX.

Report No. 1, Period 11 May to 10 June 1972.

The technique simply involves using simple, nonlinear combinations of the pseudoranging measurements in pairs (instead of the individual linear, separate, emitter measurements one by one) as direct KFIM input measurements. These nonlinear pair combinations are such as to produce an exact measurement-state relationship (i.e., observation matrix) and thus remove the difficulty.

This important and promising technique -- like the statistically optimal measurement selection technique discussed below -- in particular merit further investigation, development, and evaluation.

(d) Optimal Measurement Selection (KMOM)*

When several different types of radio position fixing, ranging, rangerating, and altitude data are simultaneously available, appropriate sequencing and/or selection logic must be incorporated in the processor to afford best use of the data in the real time available. Such logic can range all the way from that required simply to implement the operator's selections at all times to that necessary to automatically select and/or sequence on a more sophisticated basis, subject at most to occasional operator overrides. One design approach to the latter philosophy, which has the advantage that is is naturally compatible with the Kalman estimation theory and algorithms, is as follows. A unique feature of any Kalman (or modified Kalman) navigational filter, and one which might be put to advantage in designing the measurement selection logic of the processor, consists in the incorporation of its own error statistics. That is, an error covariance matrix which embodies the estimated variances and covariances of the errors in the various navigation error variables being estimated is automatically (and necessarily) carried and updated as an integral part of the overall filter algorithm computations. In particular, one set of computations which is routinely performed whenever a new measurement is used by the filter produces a covariancechange matrix whose diagonal elements represent the error variance decrements which reflect the improved quality of the new estimate resulting from use of the new measurement.

If sets of these variance-decrement elements -- one set for each measurement -- were computed for all of several simultaneously available measurements of different types in advance of their actual use by the filter, these could be used as a basis for several types of rather conceptually attractive, automatic measurement selection algorithms.

For example, suppose that it were desired during a particular phase of a mission, to select measurements so as to minimize vehicle radial position error. Since the variance of the radial position error is simply the sum of the three variance elements in the covariance matrix which correspond to the three components of vehicle position, then it would only be necessary

^{*}See Appendix VII.

to calculate the radial position error variance decrement for each of the available measurements, and select for further processing that measurement which would produce the largest such decrement. This process could, for example, be activated by the operator via the control panel.

As another example, if it were desired during the weapon delivery phase of a mission to select measurements so as to minimize weapon impact miss distance, then an extension of the above technique could be used to accomplish this as follows. The extra information required here would consist of a set of sensitivity coefficients which linearly related the miss distance to the errors in the appropriate vehicle navigational variables being estimated by the Kalman filter. Given these coefficients, which would in general be expressable terms of already computationally available weapon delivery variables, a set of miss distance decrements -- one for each measurement -could be computed, and that measurement which yielded the largest such decrement selected for further processing from among the candidate measurements. This overall process might also, like that in the above example, be actuated from the control panel as a selectable operation. The essential mathematics underlying this technique is also summarized in Appendix VII. However, a central question which would require resolution in connection with the prospective use of such algorithms revolves around whether or not the time to execute them might not be so long as to make it preferable to omit all sophisticated selection logic, and simply use the time saved in processing as many measurements through the filter as possible in accordance with some simple cyclic rule instead.

(e) Measurement Reasonableness Testing (KMRM)*

Finally, the availability of built-in Kalman filter error statistics also facilitates the incorporation of measurement data reasonableness tests as part of the measurement preprocessing logic. This type of test is in wide use in the industry.

h. Growth Potential

As indicated in subsection 1, the scope of the processor developed to date is limited to (1) basic navigation output (3-d position, 3-d velocity, and vehicle-to-computer frame angular transformation and angular rate) generation only, and (2) processing of input data from IMU, AHRU, CADS, and radio transceiver pseudoranging equipments only.

However, the flexibility and generalizability which have been carefully built into the processor structure will enable easy expansion of its capabilities to also include (a) processing of input data from additional navigation sensor types, such as doppler radar, the wide class of angle-measuring or angulation (as opposed to pseudorange measuring, or ranging) devices, and (b) processing for operations closely related to navigation, such as steering, guidance, weapon delivery, ILS, etc.

^{*}See Appendix VII.

As an example of processor navigation processing adaptability, consider the software approach to use of a strapdown doppler radar, instead of CADS TAS and a wind estimate, in conjunction with AHRU attitude data to accomplish DDR instead of ADR.*

This can be visualized as a two-step process. First, the formulation of a doppler data processing module which would include all operations necessary to convert raw doppler input signal data into error-compensated frequency shift, and finally into 3-d, airframe-referenced, groundspeed vector data. The functions of this module, like those of the processor DR modules specified to date, would be organized into functionally separate and distinct groups to allow processing at different rates (or even complete omission of certain functions), and formulated in vector/matrix terms (which should be widely applicable to the essentially vector-measurement, doppler process) to facilitate common subroutining with other modules. The computations of this module in DDR would essentially replace those of the WASM in ADR.

Second, the DSWM and KSWM (D portion only) modules would require minor modification to accommodate DDR/PDR switching instead of the (highly similar) ADR/PDR. Thus essentially only two already available processor modules would require modification -- and those only slight modification using already developed techniques discussed in this document -- without otherwise disturbing the main body of processor modules.

An an example of extension of processor techniques to other, non-navigation but closely related avionics functions, consider the generation of, say, weapon delivery computations. In general, such computations have the following suggestive characteristics: (1) their principal outputs --time and/or distance and/or velocity to go before weapon release or launch --are straightforwardly formulable in terms of vector-matrix, locally referenced computations, and (2) these computations usually require three-dimensional position, velocity, attitude (and sometimes attitude rate) of carrier aircraft, as well as three-dimensional position and velocity of the target and in the same reference frame).

Overall, therefore, weapon delivery computations could be formulated using not only the same vector matrix techniques as already developed for processor navigation, but navigation processor outputs as principal (carrier vehicle data) inputs as well. Such a formulation would of course not only be highly compatible with the navigation processor formulation developed to date, but would share its intramodule flexibilities and other advantages as well.

^{*}Assuming for simplicity in this discussion, a navigation hardware complement not including an IMU, but only an AHRU.

SECTION III

PROCESSOR MLI SPECIFICATION

This section presents the navigation processor specification at the machine-and-language-independent (MLI) level of definition. Overall, this section is organized into five main subsections, largely paralleling the organization of the modular processor itself. These are (1) an initial description of the overall processor modular structure, organization, and information flow, followed by the separate descriptions and actual MLI specifications for each of the principal, processor modular groups: (2) the DR (D) navigation modules, (3) the reference navigation measurement (R) modules, (4) the Kalman filter (K) modules, and (5) the initialization and switching modules.

Each module, whatever its module group, adheres to a more or less standard MLI specification format. This consists of a brief introductory description of the specific functional role of the module with regard to overall processor operations, followed by a formal specification consisting of one or more of each of the following, depending on the modular group to which the module belongs: an operations summary table, an input/output summary table, an operations flow diagram, a logic flow diagram, and a data flow diagram. Further, each module-subsection is intended to be as nearly self-contained as possible from a programmer's point of view; i.e., given only certain minimal additional machine, language, and application-specific information (e.g., relative frequency of execution of the algorithms comprising the module), he could actually program the module from this specification. Consistent with this, module and module group-specifying subsections in this section have been arranged as separate, pull-out packages, starting with a right-hand page, module title page, and ending with a left-hand page (which is blank where necessary to create a pull-out package).

Further, the submodular organization of the specification for each module, although largely standardized, still allows a wide flexibility in such important areas as alternate-algorithm substitution, order and relative frequency of algorithm execution, and so forth.

Finally, the depth of module algorithm definition varies with the module and algorithm involved, in accordance with the degree to which single, obviously preferable candidate algorithms can or cannot be specified short of further machine, language, and application-specific information. For example, processing of IDR specific force into C-frame velocity and position vectors in the VSTM can be accomplished essentially in only one way and is so specified; on the other hand, the vector gravity computation, which can be accomplished in several ways, is left as a more general, input/output identification-level specification only. Correspondingly loose algorithm specifications are also used in particular in several of the Kalman filter modules (e.g., KTMM, KMMM) where both closed-form and recursive formulations are available for the same algorithm, the selection depending on the application.

1. OVERALL PROCESSOR ORGANIZATION SUMMARY

Figure 5 is the overall logic data, control marker flow, and module identification diagram for the navigation processor. In particular, the diagram centers on the dynamic navigation execution loop which includes (a) the sequential processing of the three main navigation update module groups -- i.e., the DR navigation (D) modules, the reference navigation measurement (R) modules, and the Kalman filter (K) modules; (b) the switching modules necessary to control the use of these module groups and their computational reference frame --- i.e., the DR navigation mode switching module, the R configuration switching module, the Kalman filter switching module, and the C frame switching module -- and (c) the platform-to-computer coarse alignment module. In addition, the loop includes provision for peripheral execution of any of a variety of possible navigation output computations (e.g., conversion of basic navigation processor outputs into output display coordinates which are not required to maintain processor basic navigation but use its outputs as inputs). Finally, there are two modules outside the dynamic navigation loop whose sole purpose is initial startup of basic navigation.

Entry into each module on each overall navigation loop execution cycle is governed by a marker-controlled, module use decision. These markers may in general be set (actually or conceptually) by any or all of the following means: (a) operator control, (b) hardware-controlled computer interrupts and/or predetermined (i.e., initial input-controlled) relative frequency of execution data, and (c) changes in DR navigation mode, reference navigation measurement configuration, and platform-to-computer alignment status, controlled by the DSWM and RSWM modules.

Of these, full operator control should probably be associated with the use of certain modules (e.g., CSWM, since the operator can best decide just when processor navigation with respect to a local objective area emitter net should begin), while solely automatic control should perhaps be exerted over certain others (e.g., the Kalman filter modules, since the computer can far more quickly assimilate and use the large amount of relatively cryptic, statistically based data generated by the filter). However, the whole area of operator versus automatic control is of course highly dependent on the processor application and its particular man-machine interface philosophy. Complete processor flexibility in this regard has therefore been retained by the simple device of allowing for the capability of operator intervention of any specified degree in switching modules.

Whatever the degree of operator versus automatic control embedded in the DSWM, RSWM, KSWM, and CSWM logic, it is assumed that the first two produce as respective outputs, on every main loop cycle, the basic DRMM (DR mode marker) and RMCMs (reference navigation measurement processing configuration markers), which (a) fully control the use and internal configuration of the D and R modules respectively, and (b) via the KSWM, control the use of only the corresponding appropriate D, R, and D/R Kalman filter estimate vector

Figure 5. Overall Mavigation Processor Flow Diagram

and covariance matrix partitions by each of the K modules. The KSWM further controls use and internal configuration of the K modules as well. Finally, the CSWM controls the configuration of the (limited) C-frame-dependent portion of the VSTM module. All these switching modules, in addition to the control functions just described, also execute the required navigation variable switching attending each D mode and/or R configuration change for its pertinent module group.

Specification of an appropriate set of predetermined, inter- and intramodule relative frequency of algorithm execution data is correspondingly left entirely open, since this depends heavily on the carrier vehicle dynamical capabilities, mission accuracy requirements, computer speed, and so forth, associated with the specific processor application contemplated.

A summary description of the functions performed by each of the processor modules is included below as a compact, overall-processor, companion reference to Figure 5.

a. Start-Up Modules

- (1) CONM: Navigation Constants Initialization Module: Checks for availability of, and installs, all navigation constants required by every processor module for the given navigation equipment configuration.
- (2) NSTM: Navigation Start Module: Initializes C frame (C=E), and initializes VSTM and KFMD substates for PDR start.

b. Switching Modules

- (1) DSWM: DR Nav Mode Selection/Switching Module: Selects current DR nav mode, based on current DR nav equipment output data availability and operator control. Initializes and switches DR module and coarse align module variables and operations as required by DR mode change.
- (2) RSWM: Ref Nav Measurement Selection/Switching Module:
 Selects set of measurement types for R module and KF module
 time update) processing, based on current reference navigation measurement equipment, output data availability, and
 operator control. Initializes and switches R module variables
 and operations as required by reference navigation processing
 set change.
- (3) KSWM: Kalman Filter Switching Module: Initializes and switches Kalman filter module D. R. and D/R substates and operations, as required by changes in DR nav mode or ref nav measurement processing configuration or computational reference (C) frame.

- (4) CSWM: C Frame Switching Module (Non-KF Modules): Initializes and switches D and R module variables (or substates) and operations as required by C frame change (operator controlled).
- c. CALM: Coarse Align Module: Coarse initializes (IMU or AHRU)
 platform-to-computer transformation and local level-to-computer
 transformations, and coarse levels IMU (as required) prior to IDR
 or ADR processor operation.

d. DR Nav Modules

- (1) VSTM: Vehicle State Module: Continuously updates vehicle state (position and velocity) in C frame.
- (2) PLAM: Platform Module: Continuously computes all platform-use-related quantities necessary to provide (a) C frame acceleration inputs to VSTM and control rates to platform control loops in IDR, or (b) VSTM C frame velocity, in conjunction with WASM operation, in ADR.
- (3) WASM: Wind/TAS Modules: Continuously computes (a) C frame wind and TAS vectors for VSTM velocity determination in ADR, and (b) C frame TAS vector for wind determination in IDR.

e. Ref Nav Measurement Modules

- (1) ALTM: Ref Altitude Module: Continuously computes reference altitude, based on RSWM-selected reference altitude mode, and synchronously differences with VSTM-computed altitude.
- (2) <u>POSM: Position Fix Module</u>: Converts panel-entered visual position fix data from input to internal (C frame) coordinates, and synchronously differences the result with VSTM position.
- (3) TDPMs: Transceiver Data Processing Modules: Acquisition—and rate—aids radio navigation (ranging) signal processing (TAAM), defines and processes emitter data word signal into emitter position, velocity and antenna lever arm data (TEWM), computes appropriate antenna lever arm corrections for the TRRM module (TALM), computes synchronous VSTM/emitter ephemeris data—based range and range rate for TMCM use (TRRM), computes signal propagation error corrections for the TMOM module (TPCM), computes D/R radio measurement—difference observables (TMOM), computes the measurement matrix (TMMM) and measurement data statistics (TDSM) for KF use in conjunction with the TMOM measurement—differences.

f. Kalman Filter Modules

- (1) KTUM: KF Estimate/Covariance Matrix Time Update Module: Time updates KF estimate and attendant covariance matrix over last KF cycle.
- (2) KTMM: KF Time Update Matrix Generation Module: Generates current-cycle time update matrices for use by KTUM in next KF cycle.
- (3) KMRM: KF Measurement Reasonableness Module: Tests lastcycle measurements for reasonableness. Rejects unreasonable measurements for further KF processing.
- (4) KMCM: KF Measurement Combination Module: Linearly combines some or all of the set of reasonable, last-cycle measurements (i.e., the set passed by the KMRM) and its set of attendant measurement matrices.
- (5) KMOM: KF Measurement Optimal Selection Module: Optimally orders the set of last-cycle linearly combined measurements for use by the KFIM.
- (6) KFIM: KF Estimate/Covariance Matrix Filtering Module: Updates the KF processor error estimate and its attendant covariance matrix, using the set of last-cycle, reasonable, and linearly combined measurements (and their attendant measurement matrices) which are outputted by the KMRM, KMCM, and KMOM modules. Resulting estimate and covariance matrices are synchronized with start of current cycle.
- (7) KMM: KF Synchronized Measurement Matrix Generation Module: Generates time-smoothed, estimate-synchronized measurement matrices for use with current cycle measurements in next KF cycle.
- (8) KCOM: KF Estimate/Processor Control Module: Generates and executes end-of-cycle KF estimate and non-KF module variable corrections and controls.

g. Special Navigation Output Modules

This is a class of prospective, special-purpose modules, which use nav processor outputs as principal inputs (e.g., output display coordinate computation module, steering signal generation module, etc.)

III.2

DR NAVIGATION (D) MODULES

SPECIFICATIONS SUMMARY

This module group, which executes basic DR navigation, consists of the central, all-mode (IDR, ADR, PDR) Vehicle State Module (VSTM), augmented by the Platform Module (PLAM) and the Wind/Airspeed Module (WASM) in IDR or ADR.

The specification for each of these three modules is composed of (a) a brief summary description of the module functions, (b) a DR mode-dependent, module operations summary table, (c) a DR mode-controlled, module operations flow diagram, and (d) a DR mode-dependent, module input/output summary table. In particular, use is made throughout each specification of the following DR mode-use set mnemonics, for identifying and grouping these operations themselves, as well as their inputs and outputs:

I.P.A = IDR, PDR, ADR modes, respectively

IPA = Set of Operations (or input/output) common to I, P, and A modes

IP =	. '	"	n .	common to	I and P modes
IA =	. '	11	n	common to	I and A modes
PA =	. '	и	11	common to	P and A modes
I =	. '	11	11	exclusive	to I mode
P =	. '	11	11	exclusive	to P mode
A =		11	ii.	exclusive	to A mode

Thus, for example, in the IDR mode, as the operations flow diagrams prescribe, all of the (non-null) operation sets IPA, IP, IA, and I, as identified in the operations summary table, need to be executed, and the corresponding input/output requirements are summarized against these sets in the input/output summary table.

The relative frequency of execution of each of the separate operations in the summary table is purposely left unspecified, since it is highly application-dependent. On the other hand, the order has been carefully selected such that, if followed on the first module execution cycle in any new DR mode, it leads to minimum DSWM navigation variable switching requirements. If another order is used, therefore, the DSWM logic and operations must be carefully reexamined and revised as necessary.

III.2.a

VEHICLE STATE MODULE

(VSTM)

SPECIFICATION

This module operates in all three DR modes.

In IDR, operation consists of resolution of PLAM-generated specific force into the C frame, its compensation for gravity and Coriolis accelerations, and its integration into C-frame-referenced velocity and position vectors.

In ADR, the C-frame-referenced velocity vector is computed as the sum of the WASM-derived airspeed and wind vectors, and integrated into a C-frame-referenced position vector.

In PDR, an L-frame-referenced pseudoacceleration vector is resolved into the C frame and integrated into C-frame-referenced velocity and position vectors. The pseudoacceleration vector is also appropriately time-decayed.

In particular, the C-frame-referenced vehicle position, velocity, and gravity vectors, and the geoidal altitude, are generated in all three DR modes.

Figure 6. VSTM Operations Flow

TABLE V. VSTM OPERATIONS SUMMARY

	DR Nav Mode	IDR(I)	ADR(A)	PDR(P)	
	C Frame Referenced Acceleration (in L Frame)			$ a_{L} = v ^{2} - (v^{T}u_{1})^{2}$ $(u_{1})_{L}^{T} = [1 \ 0 \ 0] \qquad (P1)$ $(v_{C})_{L} = \beta_{L} - a_{L} (u_{1})_{L}$	
	L/C Frame Transf., T _{L/C}			$u_{1} = \left \frac{\mathbf{g}}{\mathbf{g}} \right , \forall = \left \frac{\mathbf{v}}{\mathbf{v}} \right ,$ $u_{2} = \left \frac{\mathbf{v} \times \mathbf{u}_{1}}{\mathbf{v} \times \mathbf{u}_{1}} \right , \mathbf{u}_{3} = \mathbf{u}_{1} \times \mathbf{u}_{2}$ $T_{L/C} = \left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3} \right]^{T}$	
5	Specific Force, f	f = T _{P/C} f _P (I1)		•••••	
Intra-KF Cycle Execution	Velocity, v	$\Delta v = \int_{\Delta t_{v}} (f+g)$ $-2\omega_{k}/x^{k} = v+\Delta v$ (I2)	v ^k = V _W +V _{AS} (A1)	$V^{k} = V$ $+T_{L/C}^{T} \int_{0}^{(v_{C})} L^{dt} \qquad (P3)^{t}$	
	Position, p	Δp = \int_{ztp} vdt,	(IPA1		
	Position, Pg	p _E = T _{C/E} p +	(IPA2		
	Gravity, s _E	s _E - s _E (p _E)	(IPA3		
	Gravity, g	s - T _{C/E} FE		(IPA4	
	Gaoidal Altituda h	h - PE -	h = PE - PS(PE)		
	Manauvar Acceleration, $oldsymbol{eta}_{ m L}$ (L Frame)			$Q_{\beta L}^{a} = e^{-k} \beta L^{\Delta L}_{a}$ $\beta_{L}^{k} = Q_{\beta L} \beta_{L}$ (P4)	
		y KCOM at KF Cycla Endpoin -kgLi ^{Δt} a; rix With Terms a ; atrolled by Flight Control	kgili = 1/gili;		

TABLE VI. VSTM INPUT/OUTPUT SUMMARY

Inputs/ Subsets Outputs Inputs Constant Constant Outputs	1 PA I Tc/ε, C _C /ε, fp, Tβ/C, Δt _v , Δt _p v*p*Δp* p _E , g _E , g* h , p _S	A A L, v*, v*S	$\Delta t_{\mathbf{v}}, \Delta t_{\mathbf{a}}$ $\langle \mathbf{v}_{\mathbf{C}}, \mathbf{L}, \boldsymbol{\beta}_{\mathbf{L}}, \begin{vmatrix} \mathbf{a}_{\mathbf{L}} \\ \mathbf{a}_{\mathbf{L}} \end{vmatrix}, \mathbf{a}_{\mathbf{L}} \end{vmatrix},$ $\mathbf{u}_{\mathbf{l}}^{*} \mathbf{u}_{2}^{*} \mathbf{u}_{3}, \mathbf{T}_{\mathbf{L}}^{*} \boldsymbol{\zeta}_{\mathbf{c}},$
Constant	,		л ө _о

* C Frame Dependent

III.2.b

PLATFORM MODULE

(PLAM)

This module operates only in the IDR or ADR modes. In addition, IDR operation is further broken down into strapdown IMU-only (IS) and rotationally isolated (free) IMU-only (IF) operations, and ADR operations into those which are required only when the AHRU is in the DG mode (AD), and only when it is in the magnetic mode (AM).

Whatever the DR mode, IMU type, or AHRU mode, the PLAM always generates the following principal outputs: (a) the basic interframe transformation matrices and relative angular rate vectors between the platform, locally level, and (earth-fixed) computer frames, and (b) (if appropriate platform readout data is available) the corresponding entities relating the vehicle (=air) and computer frames.

In addition in IDR, the PLAM error-compensates IMU accelerometer outputs, shapes and outputs the platform frame-referenced specific force vector, and error-compensates and shapes IMU gyro control signals.

Figure 7. PLAM Operations Flow

TABLE VII. PLAM OPERATIONS SUMMARY

'	DR Nav Mode	Ini	R(I)	AD	R(A)		
Оре	retion	Strapdown (I\$)	Rot, Frae (IF)	(DG Mode (AD)	Meg Mode	(AM)	
	Earth Rate $(\omega_{k/1})^{L}$ (1 Frame)	(= 1) L - T	L/c"\t/1			(TA1)	
	Geordal Curvature Matrix K _L	K _L = Function o	f h . (ME/I)[/ WE/I			(IVS)	
	L/C Frame Ang. Rata (wL/C)L	(4L/c) L * KL ⁷ L				(1A3)	
	L/C Frame Transf. T _{L/C}	τ _{L/c} - τ _{L/c} -/ _{Δε_{L/c}}	(4L/c)L * TL/c ^{dt} (1A4)			(184)	
	P/I Frame Ang. Rata $(\omega_{p/1})_p$ (IS)	(up/1)p " utyr-ow-ouk (151)	••••	•••••		•••	
	P/L Prame Ang. Rate (u _b /L)P	$(\omega_{P}/L)_{p} = (\omega_{P}/I)_{p}$ (IS2) $-T_{P}/L \left\{ (\omega_{L}/c)_{L} + (\omega_{L}/I)_{L} \right\}$	(4p/L)p = 4k	(IFADI)	a	1	
	P/L Prame Tranef, T _{P/L}	τ <mark>k</mark> • τ _{ρ/μ} · ∫	P x Tp/Ldt			(145)	
Intra-LF Cycle Execution	P/C Prame Ang. Reta (w _{P/C}) _P	(4)/c)p = (4/L)p + Tp/L(4/c)L					
	P/C Frame Transf, T _{P/C}	T _{P/C} - T			(157)		
tra-KF Cyc	Platform Spacific Force Calibr'n Af	$\Delta f = Funct, of f_p \cdot (\omega_{p/1})_{p} \cdot PACC$ (IS3)	$\Delta f = Funct, of f_{p^*}(\omega_{p}/I)_{p^*}PACC$ (IF1)	•••••		•••	
Int	Platform Inerti, Ang. Rate Calibr'n Au	$\delta \omega = \text{Funct. of}$ $f_p \cdot (\omega_{p/1})_p \cdot \text{PGCC}$ (184)	$\Delta \omega = \text{Funct. of}$ $f_{p^*}(\omega_{p/1})_p, \text{FGCC}$ (IF2)			•••	
	Platform Spacific Porce fp	fp = facc + af	ν Σ ξ ^K (11)		•••••	•••	
	P/I Prame Ang. Rate $(\omega_{P/I})_p$ (IF)		(4)/1)p =(4)/c)p + Tp/L(4)/1)L + Cuk (1F3)		7		
	Cyro Torquing Rate utyn	(utyr = Etrapdown Gyro Sansed Rate)	ω _{CYR} * (ω _P /ε) _P + ∴ω (1P4)		•••••	••	
	A/P Frame Tranxf, T _{A/P}	(TA/P " Conet.) Matrix	T _{A/P} = Funct, of IMU Att, Reedoutx (IP5)	T _{A/P} = Func AHRU Att, R		(11)	
	A/P Frame Ang. Rata (-4/P)p	(("h/p)p = 0)	(uh/p)p = Funct. of (IP6) IMU Act. & Act. Rate Resdouts	(4)/p)p + Fun AHRU Att. 6 Readouts		rs()	
	A/C Frame Trans. T _{A/C}	1 _{A/C} - 1			(1:4)		
	A/C Frame Ang. Rate Wa/C	WA/C = TP/C)» * (m)»			CIA95	
	Veriables Control (() - () - a P	piled by KCON at KF Cycle is $\frac{1}{10} \left(\frac{1}{4} \frac{1}{4} \frac{1}{10} \right) \left(\frac{1}{4} \frac{1}{4} \frac{1}{10} \right) = \frac{1}{10} \frac{1}{10} \frac{1}{10} = \frac{1}{10$	(e, - m ^{E\I} × E)				

TABLE VIII. FLAM INPUT/OUTPUT SUMMARY

1 IFAD	3 [×]			
¥¥	8, PE,			
SI	^u €yr			
IF	IMU Att., Att. Rate Readouts		^u €yR	
۷	AHRU Att., Att.Rate Readouts			
I	f _{ACC, Δfk} , Δα _k	PACC, PGCC	$(\omega_{\mathbf{p}/\mathbf{I}})_{\mathbf{p}}, $	
IA	h ,v,d _{E/I} , ^{Δ¢} L/C	1/3 _m	(4E/1)L (4L/C)L' (4P/L)P (4PLC)P' * (4A/P)P',4A/C',TL/C' TP/L',TP/C',TA/P' TA/C',KL	
DR Mode Subsets	Dynamic	Constant	Dynamic	Constant
Inputs/ Outputs	Inputs		Outputs	

*C Frame Dependent

III.2.c

WIND/AIRSPEED MODULE

(WASM)

This module operates only in the IDR or ADR modes.

In the ADR mode, operations involve error-compensation, shaping, and C frame resolution of CADS true airspeed and L frame wind estimates, into C frame airspeed and wind vector outputs. In addition, the wind estimate is appropriately time-decayed.

In the IDR mode, the process is reversed, and an L-frame-referenced wind estimate is continuously determined from the C-frame-referenced airspeed and groundspeed vector difference. In particular, the groundspeed vector used is just the VSTM velocity vector.

Figure 8. WASM Operations Flow

TABLE IX. WASM OPERATIONS SUMMARY

Opera	DR Nav Mode	IDR(I)*	ADR(A)	PDR(P)
	TAS Calibration Δa	Δa = Function of	(IA1)	•••••
	Compensated TAS &	a = a _m + Δa +	Δak (IA2)	
Intra-KF Cycle Execution	TAS Angle of Attack Compensation	TA/A', kA/A' = Function Angle of	ons of (IA3) of Attack	
F Cycle	TAS Vector (VAS)A (A Frame)	('AS)A = TA/A' ^k A/A' a	(IA4)	
Intra-k	TAS Vector v _{AS} (C Frame)	$v_{AS} = T_{A/C}^{T}(v_{AS})_{A}$	(1A5)	
	Wind Vector v _W (C Frame)	v _w = v - v _{AS} (I1)	$v_W = T_{L/C}^T (v_W)_L^{(A2)}$	
	Wind Vector (v _W) _L (L Frame)	(vw)L = T _{L/C} vw (12)	$(v_W)_L^k = Q_{WL}(v_W)_L^{(A1)}$	·
KF Cycle Endpoint Fxecution				
KP Cy Endpo				

*With TAS available. This module is not used in IDR if TAS is not available.

k: Variables controlled by KCOM at KF cycle endpoints.

 $\frac{-K_{WL}\Delta^{t}_{W}}{WL} = e^{-K_{WL}\Delta^{t}_{W}} = 0$ is a gonal Matrix with Terms $e^{-K_{WLi}\Delta^{t}_{W}}$; $k_{WLi} = \frac{1}{\tau_{WLi}}$

40982

TABLE X. WASM INPUT/OUTPUT SUMMARY

A		OMI		
Þ				
**1	*			
PA				
IA**	T _L /c, T _A /c, Δa, Δa _K		vw* (vw)L, v*S v(vAS)A, a,a TA/A'' kA/A'	
**dI				ege.
IPA**				
DR Mode Subsets	Dynamic	Constant	Dynamic	Constant
Inputs/ Outputs	Inputs		Out put s	

*C Frame Dependent

**IDR with TAS available. This module is not used at all if TAS is not available,

III.3

REFERENCE NAVIGATION MEASUREMENT (R) MODULES

There are three of these modules, corresponding to the three types of reference navigation measurement data assumed. These are (a) the reference altitude module (ALTM), (b) the position fix module (POSM), and (c) the transceiver data processing module (TDPM).

Unlike the D modules, where a high degree of interrelationship between modules exists, the R modules are essentially independent of one another, and each R module specification is therefore arranged by itself in this subsection as a separate, pullout package.

III.3.a

REFERENCE ALTITUDE MODULE

(ALTM)

Operation of this module depends partly on whether the aircraft is on the ground or in the air. When airborne, the best available reference altitude -- barometric altitude from the CADS or pseudo altitude in its absence -- is continuously selected and updated by this module. This reference altitude is then synchronously differenced with DR altitude computed by the VSTM, for measurement preprocessing use by the Kalman Filter Measurement Matrix Generation Module (KMMM).

On the ground (where it is assumed that panel-inserted field altitude is always available) field altitude is selected as the best available reference altitude when the barometric altitude is not available; when available, barometric altitude itself -- continuously corrected to equal the field altitude -- is selected instead. Kalman filter use of this data does not commence until the vehicle is airborne.

Figure 9. ALTM Operations Flow

TABLE XI. ALTM OPERATIONS SUMMARY

	Ref Altitude	Air	(A)	Ground(G)	
Oper.	Mode	Pseudo Alt (No Baro Avail)	Baro Alt Available	Field Alt Plus Baro Alt	Field Alt Only
		APS	AB	GFB	GF
	Ref Alt h	h _R = h _{PC} (APS1)	h _R = 1	nBC (B1)	$h_{\mathbf{R}} = h_{\mathbf{F}}^{(\mathbf{GF1})}$
tra-KF cycle Execution	Corrected Baro Alt h		(AB1) hBC ≠hB+∆hBK	(GFB1) hBC=hF	
Intra-KF Execu	Corrected Pseudo Alt h PC Update	$h_{PC} = h_{PC}^{(APS2)}$ + $k_h^{(h_{PC}-h_{CR})}$			(GF2) h _{PC} =h _F
	Δh _{BK} Corr'n (Ground)			(GFB2) $\Delta h_{BK}^{=h}F^{-h}B$	
	Synchronous Alt Diff ∆h	∆ h = h	- hR	~****	

Note: Δh_{BK} , h_{PC} Corrected by KF in Airborne Modes only.

TABLE XII. ALTM INPUT/OUTPUT SUMMARY

Alt Mode →	APS	AB	GFB	В	G	BG	APS/GF	A
Input	h _{CR} , k _h	∆h B K	•••	h _B	h	••••		h
Output	•		∆h _{BK}	^h вс		h _R	^h PC	∆ħ

III.3.b

REFERENCE POSITION FIX MODULE

(POSM)

This module converts panel-inserted visual position fix data from input coordinates to an internal C frame-referenced position vector, and synchronously differences this vector with the DR position vector generated by the VSTM.

TABLE XIII. POSM OPERATIONS SUMMARY

KF-Cycle ion	Ref Position Vector p _R Generation	p _R = Function of Panel Input Position Fix Coordinates
Intra-K Executi	Synchronous Position Diff. Ap	Δp = p - p _R

TABLE XIV. POSM INPUT/OUTPUT SUMMARY

Input	p, Panel Input Position Fix Coordinates
Output	p _R , Δp

III.3.c

TRANSCEIVER DATA PROCESSING MODULES

(TDPM)

SPECIFICATIONS SUMMARY

The fundamental TDPM submodule organization is shown in Figure 10. The module interface to the receiver is defined by the two inputs which consist of the received data word message and the basic range and range rate signals measured by the receiver. An acquisition and aiding signal is plovided to the receiver interface from the TDPM. Three intramodule outputs are provided by the TDPM: (a) the filter variances provided by the TDSM, (b) the measurement matrix elements generated by the TMMM, and (c) the Kalman filter observable data obtained from the TMOM. Elements of the Kalman filter estimates are provided for correction to several other modules within the TDPM to complete the intramodule interfacing.

Two data bus outputs dominate the submodule interfacing. These are the basic emitter word data vector generated by the TWEM and the scalar range and rate information developed by the TRRM. These two dominant information flows govern the operation of the other six submodules and only two other intermodule interfaces are required to complete the functional architecture.

Figure 10. TDPM Modules Organization/Receiver Interface

III.3.c.(1)

TRANSCEIVER ACQUISITION AND AIDING MODULE

(TAAM)

The receiver acquisition and signal tracking processes are enhanced if information is provided defining the initial phase and phase rate and current deviations in this data. For a time division multiplexed system (TDM) the estimated time of arrival of the emitter signal is also indicated to the receiver. Rate aiding in terms of the phase derivatives allows for narrowband tracking within the receiver loops.

Figure 11. TAAM Operations Flow

TABLE XV. TAAM OPERATIONS SUMMARY

Ope	Transceiver Configura- tion	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
Type j)	Time of Arrival (TDM System)t	t _{Dj} = Δ _K t _j	Already calculated in TEWM	
Emitter		t _j	= t _u - t _{Dj}	(GAS1)
(Once per Emit	Phase ϕ_j Indication (CDM System) and Initialization	φ _j = κ _φ (R _j	$+ R_j \Delta T_d + r_j^T \ddot{R}_j$	$\left(\frac{\Delta T_d^2}{2}\right)$ (GAS 2)
scution (Phase Search Deviation Δφ	Δøj	$= K_{\phi} \sqrt{r_{j}^{T} P_{D11}} r_{j}$	(GAS 3)
-Cycle Exe	Rate Aiding $\phi_{f j}$	ð _j - κ _ö (Ř _j	$+ r_j^T \aleph_j \Delta T_d$	(GAS4)
Intra-KF	Frequency Search Deviation 🎝	Δφ _j	$= K_{\phi}^{\sqrt{r_{j}^{T}P_{D2}}} r_{j}$	(GAS 5)
Intra-KF-Cycle Execution	øj Frequency Search	, , ,		

TABLE XVI. TAAM INPUT/OUTPUT SUMMARY

Input Constants

K₄ = range-to-phase conversion

 K_{A}^{\bullet} = velocity-to-phase-rate conversion

 $\Delta T_d = computational delay constant$

Input Variables

t = user receiver time base (1x1)

TEWM

 $\Delta_{K}t_{i}$ = cumulative KF emitter clock error correction (1x1)

 $r_i = unit jth emitter LOS vector (3x1)$

 $|R_i|$ = estimated scalar range to jth emitter (1x1)

TRRM

 $|\dot{R}_{i}|$ = estimated range rate to jth emitter (1x1)

 P_{D11} = KF position error covariance matrix (3x3)

 P_{022} = KF velocity error covariance matrix (3x3)

R_j = measured range acceleration vector in computational frame (3x1) (if available)

Output Variables

t, = time of arrival of jth emitter for TDM systems

 ϕ_i = phase initialization for receiver acquisition

 \dot{x}_i = phase rate initialization for receiver acquisition

 $\Delta \sigma_{ij}$ = phase search extent for receiver acquisition

 $\Delta \hat{\phi}_{ij}$ = phase rate extent for receiver acquisition

III.3.c.(2)

TRANSCEIVER EMITTER WORD MODULE (TEWM)

The demodulated serial bit data stream which is processed by each emitter receiver is converted to distinct emitter position and velocity states by this module. The other elements of the data word which contain information on emitter dynamics or on propagation constants are simply throughputted to other modules. The basic emitter states are also corrected to maintain the updated value suitable for navigation. The data word may also contain time base data, in terms of total state values or in terms of emitter time offsets. If no data word time base is given, the user receiver time state is based on the user clock with corrections.

Figure 12. TEWM Operations Flow

TABLE XVII. TEWM DATA WORD INPUTS

Transceiver Configura- tion Data Word	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
Time Base		t _j	
Position	Not required	e _j	Not required
Velocity	Not required	èj	Not required
Antenna Arm	Not required	(d _{EM} j) _A	Not required
Direction Cosine	Not required	T _C /AEMj	Not required
Attitude Rate	Not required	^ω AEMj/C	Not required
Surface Refraction			
Satellite Coefficient	Not r	^ _{ji}	
Ionosphere Coefficient	Not r	I _{ji}	

TABLE XVIII. TEWM OPERATIONS SUMMARY

Transceiver Configura- tion Operations		Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
Intra-KP-Cycle Execution (Once per Emitter Type j)	Initialization of Time t	t' = t (with data word)		(GAS 1)
	u	t' = t (no data word)		(GAS 2)
	Corrected Time t	t _u = t' _u + Δ _K t _u		(GAS 3)
	Delay Time t _D	Not required		$t_{Dj} = \Delta_K t_j + \left \frac{Rj}{C} \right $ (S1)
	Patermination of Emitter Position e'	e' = e' [0] e' [0] = constant	e¦ = data word (Al)	$t_{j} = (t_{u} - t_{Dj}) (S2)$ $e_{j} = \sum_{i=0}^{n} A_{ji}(t_{j})^{i} (S3)$
	Determination of Emitter Velocity e' j	Not required	e¦ = data word (A2)	e' <u>d</u> e' (S4)
	Corrected Emitter Position e *	e _j = e¦ + Δ _K e _j		(GAS4)
	Corrected Emitter Velocity e	Not required	ė _j = ė' _j + Δ _κ e _j	(AS 1)

^{*}e' may be formed by an alternate series of $e'_j = \sum_{i=0}^n A_{j,i}(t)^i$

C = speed of light(constant)

TABLE XIX. TESM INPUT/OUTPUT SUMMARY

Inputs:

```
\Delta_{\mu}t_{i} = cumulative KF emitter clock error correction (lx1)
Δ,t, = cumulative KF user receiver clock error correction (1x1)
  t = user receiver time base (1x1)
|R. = estimated scalar range to the jth emitter (lxl)
\Delta_{\mathbf{y}}\mathbf{e}_{i} = cumulative KF emitter position error correction (3x1)
\Delta_{\mathbf{r}}\hat{\mathbf{e}}_{i} = cumulative KF emitter velocity error correction (3x1)
Data Word = demodulated serial bit stream consisting of the following data:
        t, = emitter time base (1x1)
        e_4^{\dagger} = emitter position vector for jth emitter (3x1)
        e' = emitter velocity vector for jth emitter (3x1)
  (d_{BM,i})_A = antenna lever arm (3x1)
  T<sub>C/AEMi</sub> = airframe-to-C-frame transformation metrix (3x1)
  \omega_{AEMi/C} = airframe-to-C-frame angular rate (expressed in C frame) (3x1)
        N = surface refractivity
       A = satellite position/velocity polynomial coefficient (ix1)
       I = satellite ionospheric correction polynomial coefficient (ixl)
```

Outputs:

Data word elements of:

III.3.c.(3)

TRANSCEIVER ANTENNA LEVER ARM MODULE
(TALM)

The compensation for antenna position and angular rate about the computational frame point defined by the platform requires the use of location and attitude rate data. The inclusion of emitter antenna motion for airborne relay transceiver configuration requires additional emitter reporting data which specifies antenna location, attitude, and attitude rate in aircraft coordinates or in a common computational reference frame.

Figure 13. TALM Operations Flow

TABLE XX. TALM OPERATIONS SUMMARY

Ope	Transceiver Configura- tion	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
Type j)*	User Antenna Displacement d u		$d_{\mathbf{u}} = T_{\mathbf{C}/\mathbf{A}} (d_{\mathbf{u}})_{\mathbf{A}}$	(GAS1)
se per Emitter	Emitter Antenna Displacement ^d EMj	Not required	(A1) demj = T _C /AEMj (demj)A	Not required
Execution (Once	Antenna Uşer Velocity d u	d	u = ω _A /C × du	(GAS2)
Intra-KF-Cycle Ex	Emitter Antenna Velocity ^d EMj	Not required	(A2) denj = water AEMj/C x denj	Not required

TABLE XXI. TALM INPUT/OUTPUT SUMMARY

III.3.c.(4)

TRANSCEIVER RANGE AND RANGE RATE MODULE (TRRM)

The determination of the scalar range and range rate to each emitter is estimated from data on the emitter and user vector dynamics. Various compensations for antenna and emitter dynamics are incorporated to provide high accuracy for each emitter type. The vector pointing direction in the form of a unit vector quantity is also determined to provide the coordinate frame orientation for the transceiver measurements.

Figure 14. TRRM Operations Flow

TABLE XXII. TRRM OPERATIONS SUMMARY

Ope	Transceiver Configura- tion	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
(í	User/jth Emitter Vector Range	d = d _u (GS1)	d=d _U -d _{EMj} (A1)	d = d _u (GS1)
r Type	Rj	1	$R_j = p + d - e_j$	(GAS1)
per Emitter	LOS Range Rj	R _j	$ - (R_j^T R_j)^{1/2}$	(GAS 2)
Execution (Once	Unit LOS Vector	rj	- R _j / R _j	(GAS 3)
1	IOS Range Rate	d = d _u (GS2)	å=å _u −å _{EMj}	d = d _u (GS2)
Intra-KP-Cycle	LOS Range Rate	Ř _j =r ^T (p+d) (G1)	R _j =r ^T (p+d-e	(AS1)

TABLE XXIII. TRRM INPUT/OUTPUT SUMMARY

Inputs:

Outputs:

$$|R_i|$$
 = estimated scalar range to jth emitter (lx1)

$$|\dot{R}_{i}|$$
 = estimated range rate to jth emitter (1x1)

$$r_i$$
 = unit vector along line-of-sight to jth emitter (3x1)

$$(p+d) = \text{vector velocity to emitter } (3x1)$$

$$(p+d-e_j) = \text{vector velocity to emitter } (3x1)$$
Input to TMMM

III.3.c.(5)

TRANSCEIVER PROPAGATION CORRECTION MODULE

(TPCM)

The modelable errors for line-of-sight propagation corrections for transceiver configurations are the tropospheric velocity change and ray bending and the ionospheric group delay for satellite emitters. These corrections are based on physical, empirically derived models which employ various parameters as inputs to generate the compensations. Basic emitter-user geometry is also tested to ensure that the most suitable emitter is employed to generate the desired navigation information.

TABLE XXIV. TPCM OPERATIONS SUMMARY

Ope	Transceiver Configura- tion rations	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
	LOS Angle β _j	β _j -	$\frac{\pi}{2} - r_j^T \frac{P_E}{ P_E }$	(GAS 1)
	Negative Angle Check	Not required	p > e _j (A1)	Not required
Pe J)	Redefine LOS Angle β_j	Not required	$\beta_j = -r_j^T \frac{P_E}{ P_E }$ (A2)	Not required
Emitter Type	Satellite Availability	Not req	uired	B _j < 5° (S1)
2	Tropospheric Correction ^{Δρ} Τj	Δρ _{Tj} = $\frac{K_T}{(\sin)}$	Ns (GA1)	Additional (S2) Algorithm
ion (Once	Low Grazing Angle	β _j <	3° (GA2)	Not required
Cycle Execution	Redefine LOS Angle Bj	β _j - β _j -	9 _j *** (GA3)	Not required
Intra-IV-Cyc	Additional Bending Correction	Δρ _{Τj} = Δρ _Τ	J+K-CSC B (GAA)	Not required .
Intr	Ionospheric Correction	Not 1	required	$\frac{\kappa_{1j}}{\kappa_{1}} = \frac{\kappa_{1}^{2} \cos(\theta_{j}^{2} + c_{2}^{2})}{\epsilon^{2}}$ (S3)
	Total Correction	Δρ	Tj + Ap Ij + AKLj =	ΔR _{mj} (GAS2)

TABLE XXV. TPCM INPUT/OUTPUT SUMMARY

Inputs:

p = estimated receiver position vector (3x1)

 r_i = unit vector along line-of-sight to jth emitter (3x1)

 $e_i = jth emitter position vector (3x1)$

N_s = surface refractivity TEWM

 $\Delta_{K}L_{i}$ = cumulative KF jth link propagation error correction (lx1)

 \hat{I}_{v} = electron content (may be calculated from I_{ii} coefficient of TWEM)

Constants:

 $K_T = tropospheric constant$

 C_1 = atmospheric constant or functional parameter of altitude

P = exponent constant

 θ_{j}^{**} = bending angle error which may be defined either as a function or as a tabulated parameter of β_{j}

(*) (**) indicates potential expanded algorithm

K = bending constant

K, = ionospheric constant

f = frequency

C₂ = tropospheric constant or functional parameter

Outputs:

 ΔR_{mi} = total propagation correction (to THOM)

III.3.c.(6)

TRANSCEIVER MEASUREMENT OBSERVABLES MODULE (TMOM)

The basic measurement data provided to the Kalman filter estimation algorithm is the difference between the computed and measured values of range and range rate. All known propagation link range and range rate errors must also be corrected before making this comparison. The pseudorange and range rate time offsets due to both emitter and user clock biases are applied as range correction terms.

Figure 16. TMOM Operations Flow

TABLE XXVI. TMOM OPERATIONS SUMMARY

Ope	Transceiver Configura- tion rations	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
	Measured Range and Range Rate Scaling		- κ ₁ φ _j - κ ₂ φ _j	(GAS 1)
	R'mj,Ř'mj	" mj	~2°j	(0.2.5)
Type j)	Measured Range Propagation Correction R' mj	R' _{mj}	= R" _{mj} + \(\Delta R_{mj} \)	(GAS 3)
per Emitter Type	Measured Range Rate Propagation Correction R' mj	R' _{mj}	= R" _{mj} + ΔR _{mj}	(GAS4)
Execution (Once	Measured Range Clock-Difference Correction R mj	R _{mj}	$= R'_{mj} + C \left(\Delta_K^t_{u} - \Delta_1^t \right)$	(GAS5)
	Measured Range Rate Clock Rate- Diff. Correction R mj	R mj	= R' _{mj} + C (Δ _K t _u -4	(GAS6)
Intra-KF-Cycle	Range Difference Observable ^Y Rj	Y _{Rj}	= R _j - R _{mj}	(GAS7)
	Range Rate Difference Observable YRRj	Y _{RR}	j = R _j -R _{mj}	(GAS8)

TABLE XXVII. TMOM INPUT/OUTPUT SUMMARY

Inputs:

 $\begin{array}{l} R_{mj} = \text{corrected, scaled measured pseudorange from jth receiver channel**} & (1x1) \\ R_{mj} = \text{corrected, scaled measured pseudorange rate from the jth channel**} & (1x1) \\ R_{j} = \text{scalar range estimate (1x1)} \\ R_{j} = \text{range rate estimate (1x1)} \\ R_{K}t_{j} = \text{cumulative KF emitter clock error correction (1x1)} \\ R_{K}t_{u} = \text{cumulative KF user clock error correction (1x1)} \\ R_{K}t_{u} = \text{cumulative KF emitter clock rate error correction (1x1)} \\ R_{K}t_{u} = \text{cumulative user clock rate error correction (1x1)} \\ R_{mj} = \text{propagation range correction (1x1)} \\ R_{mj} = \text{propagation range rate correction (1x1)} \\ \end{array}$

Outputs:

*In the KF Partitioned Structure Specification, the indices R and RR used here and in the TMMM and TDSM modules are respectively denoted simply by 3 and 4 **i.e., from jth emitter via jth receiver channel

III.3.c.(7)

TRANSCEIVER MEASUREMENT MATRIX MODULE (TMMM)

The measurement matrix elements relating the measured observable to the error states are specified by this module. The user and emitter position and velocity errors are determined in terms of the unit LOS (direction cosine) vector. The elements for time and link propagation errors are also established by functional terms, and are related to the range or range rate observations by using the speed of light and by stipulating a single propagation error state.

Figure 17. TMMM Operations Flow

TABLE XXVIII. TMMM OPERATIONS SUMMARY

Оре	Transceiver Configura- tion erations	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
	User Position Error State	M	dδp = r ^T j	(GAS1)
	Emitter Position Error State	M _R ô	ej = -r ^T j	(GAS2)
)*(<u>;</u>	User Time Error State	^M R∂	t _u = c	(GAS 3)
Type	Emitter Time Error State	M _R ô	t _j = -c	(GAS4)
Emitter	Link Propagation Error State	Mp	δL = 1	(GAS5)
per	User Velocity Error State	M _{RF}	δp = r ^T j	(GAS 6)
(Once	Emitter Velocity Error State	Not required	^M RRδe _j =	-r ^T (AS1)
Execut ion	User Clock Drift Error State	M _{RRô}	t _u = c	(GAS7)
	Emitter Clock Drift Error State	M _{RR} ô	t _j = -c	(GAS8)
tra-KP-Cycle	Range Rate Error Due to User Position Error State	MRRôp (p+d) [D] (G1)	MRRôp (p+d - e j	
In	Range Rate Error Due to Emitter Position Error State	^M rrô	e _j ^M RRôp	

^{*}Unless otherwise noted by an asterisk to indicate only one execution per emitter group.

**D = (I-r_jr_j^T)/|R_j|

TABLE XXIX. TMMM INPUT/OUTPUT SUMMARY

Inputs:

|R_j| = estimated scalar range to jth emitter (1x1)

r_j = user/jth emitter unit LOS vector (3x1)

(p+d) = antenna velocity w/r to fixed emitter (3x1)

(p+d-e_j) = antenna velocity vector w/r to moving emitter (3x1)

Outputs: Measurement matrix elements defined according to the following convention:

 $\mathbf{M}^{\mathbf{T}}$

Range-Diff. Measurement	Range-Rate-Diff. Measurement	Error States
^M Rðp	^M rrôp	δp (= user position error)
^M Rôe _j	M _{RRôe} j	δe_{j} (= emitter position error)
M _R ðt _u	0	δt _u (= user clock error)
^M Rðt _j	0	δt j (≈ emitter clock error)
^M RôL	O	δL (= link propagation error)
0	^M rrôp	δp
0	^M RRôe _j	δe _j
0	M _{RR} ōt _u	δt _u
0	^M RRôt _i	δt _j

^{*}In the KF Partitioned Structure Specification, the indices op, oe, etc., are respectively denoted by the appropriate value of the KF error substate index s.

III.3.c.(8)

TRANSCEIVER DATA STATISTICS MODULE (TDSM)

The emitter data provided to the estimation algorithm within the Kalman filter requires an estimate of the measurement noise error covariance to properly weight the information. These noise statistics depend (a) upon the signal-to-noise ratio present within the tracking receiver bandwidth, and (b) upon tracking errors due to multipath conditions which present large deviations between the measured and extrapolated data. Other system noise error statistics which characterize the system error driving noises are also generated by this module.

5.24

Figure 18. TDSM Operations Flow

TABLE XXX. TDSM OPERATIONS SUMMARY

Ope	Transceiver Configura- tion	Ground Emitter (G)	Airborne Emitter (A)	Satellite Emitter (S)
	Signal-to-Noise	s/N = α _j	Receiver Inp	out (GAS1)
	Ratio, α _j	$\alpha_j = \kappa \alpha \frac{W_j}{R_j}$	(Calcula	ated) (GAS2)
3)*	Multipath Test Term, R _{Dj}	(R _{mj}	$- R_{j} = R_{Dj}$ $- \dot{R}_{j} = \dot{R}_{Dj}$	(GAS 3)
per Emitter Tyse	Multipath Test Logic	R _D j R _D j	$ > K_{m} $ $K_{m}^{2} = N $ $ < K_{m} $ $K_{m} = 0 $ $ < K_{m} $ $K_{m}^{2} = N $ $ < K_{m} $ $K_{m} = 0 $	(GAS4)
n (Once	Emitter Range 2 Variance, σ_{Rj}	σ_{Rj}^2	$\kappa_1 \alpha_j^{-1} + \kappa$	(GAS 5)
Execution (Once	Emitter Rate Variance, ORj	σ _{Řj}	$\kappa_2 \alpha_j^{-1} + \hbar$	(G4S6)
-KF-Cycle	User Time Rate Variance, Otu	σ:²	. к ₃	(GAS7)
Intra-KP.	Emitter Time Rate Variance, Otj	σ _{tj} .	. K ₄	(GAS8)
Ĭ	Link Error 2* Variance, σ_{L}	$\sigma_{\rm L}^{\ 2}$	- K ₅	(GAS9)
	Total Range Variance, C _{Rj}	c _{kj} •	$\sigma_{Gj}^2 + \sigma_{L}^2$	(GAS 10)
	Total Range Rate Variance, C _{RRj}	C _{RRj}	$\sigma_{kj}^2 + \sigma_{tu}^2 + \sigma_{tj}^2$	(GAS11)

^{*}Unless otherwise noted by an asterisk to indicate execution once per emitter group.

TABLE XXXI. TDSM INPUT/OUTPUT SUMMARY

R v estimated scalar range to ith emitter (x)	Constant * Definitions:
I don't	We transmitted emitter power for jth emitter obtained as a priori data if or each emitter or optionally provided within the emitter data word
R = estimated range rate to jth emitter (lxi)	K = scaling constant for converting power ratio to signal-to-noise units
of messured signal-to-noise ratio from receiver for jth emitter	K = multipath range difference constant in range units, stored as a priori data
(optional input from TEAM (see constants)	<pre>x * multipath rate difference constant in range rate units, stored n as a priori data</pre>
	if - multipath covariance term for range
outputs:	" multipath covariance term for range rate
G . tange measurement noise variance (lxl)	K = range covariance scaling of S/N or bandwidth
Of . Frage rate measurement noise variance (1x1)	K, " range rate covariance scaling of S/N or bandwidth
~	K_3 = user clock offset rate error constant stored as a priori value
of . used time fate noise variance (14.)	% * emitter clock offset rate error constants stored as a priori value
of . emitter time rate noise variance (lxl)	* propagation link noise error constant stored as a priori data or provided as optional data word for emitter link
of " propagation link error noise variance (1x1)	
Cg = total user/jth ematter range variance (lxl)	
Can total user/jth emitter range rite sariance (ixl)	

III.4

KALMAN FILTER (K) MODULES

Taken as a group, these modules together comprise all the operations necessary to (a) preselect and preprocess raw D/R measurement-differences into a form suitable for actual Kalman filtering (KMMM, KMRM, KMCM, KMOM); (b) accomplish Kalman filtering itself (KFIM); (c) accomplish estimate and covariance matrix prediction across the Kalman interval (between filtering times at the interval endpoints (KTUM, KTMM), and (d) compute and apply Kalman estimate-derived corrections to processor (Kalman and non-Kalman) navigation variables (KCOM).

All of these modules are partitioned into D, R, and D/R substate operations. Underlying these partitioned operations is the partitioned structure of the full processor error estimation model into D and R module-related partitions. This structure is therefore defined in detail in an initial, separate specification, distinct from the actual module specifications that follow, but necessary for interpreting them.

An understanding of the intermodular timing, sequencing and data flow is an equally necessary preliminary and reference for use of the module specifications themselves. Another initial, separate specification which defines these interrelationships, has therefore also been included.

III.4.a

KALMAN FILTER MODULES PARTITIONED STRUCTURE

SPECIFICATIONS SUMMARY

This specification defines the D and R module-related, overall Kalman Filter structural partitioning by means of an ordered set of tables (Tables XXXII through XXXVII.

In particular, the initial Table XXXII defines the multilevel partitioning of the overall processor error state, from the two broadest-level partitions, which model to the processor error variables associated with the entire D module, and the entire R module groups respectively, to the finest level partitions, each of which models the error variables associated with only a submodular portion of just one of the D or R modules. Table XXXIII extends this partitioning beyond the error state vector to all the computational entities processed by the Kalman modules, at the broadest D and R group level.

Tables XXXIV through XXXVI then define the finest level, singly indexed partitioning (principally in terms of non-null partitions) of all these computational entities, for the D, R and D/R substates respectively, and Table XXXVII defines the doubly indexed (measurement-related) partitioning at this level.

It is important to note that these tables define substate reference frames, dimensions, indexing, and mnemonics which are used uniformly throughout all the Kalman modules.

TABLE XXXII. KF NAVIGATION ERROR SUBSTATE DEFINITIONS

A STATE OF

			Ref		Subsi	Substate Index(s)	ex(s)
		Substate Definition	Frame	Ulmens Ion	IDR	PDR	ADR
		User Position Error Substate	C	3	110	DP1	140
-	597	User Velocity Error Substate	ပ	3	D12	DP2	DA2**
	1)	Platform/Computer Misalignment Substate	۵	3	DI3		DA3
	lu 2	Platf/Compr Hsignt Rate Source Subst (Won-G-Sens)	۵.	*	910	:	5VQ
	10 2 C	Platf/Compr Mslgmt Rate Source Subst (G-Sens)	۵	*	015		DAS
	D S C	Specific Force Measurement Error Source Subst (Non-G-Sens)	a.	*	910		-
) •N 8	Specific Force Measurement Error Source Subst (G-Sens)	۵,	*	D17	DP3	1
•	DI	Wind Error Source Substate	T	*			DA6
383		TAS Error Source Substate	V	*	:	:	DA7
S 20							
2113		User Ref Altitude Error Substate		*		RUA	
)	User Clock Error Substate	:	*		RUC	
	113						
	an a de			•			
	s Sub						
879V 0		nth Net Clock Error Substate nth nth Net Ephemeris(Posn/Vel, etc.) E. S. Emtr Net	٠.	* * .	i	REnC	
	ef Ne Subst	Error Substate nth Net kth Signal jth Emtr Error Substate		•• *	KEn	REnjk	
	¥	•		•••		ا ر	
···· ·							
			•	•		n	

* Dimension depends on equipment types and KF model depth required.

40985

#* Pseudosubstate whose use facilitates DR mode switching and provides direct velocity error statistics in ADR mode. The second second

TABLE XXXIII. KF D/R SUBSTATE LEVEL STRUCTURE

Error State State (Impulsive) (Meteror x = [x] x = [x] Coefficient Matrix A = [A 0] A = [A 0] A = [A 0]	(Metered) $ \dot{u} = \begin{bmatrix} \dot{u} \\ \dot{v} \end{bmatrix} \\ \dot{x} = \begin{bmatrix} \dot{v} \\ \dot{v} \end{bmatrix} $ Error State Transition Matrix $ \phi = \begin{bmatrix} \phi \\ 0 \end{bmatrix} $	Error State Metered Control Distribution Matrix G = G 0	Error State Noise PSD Matrix K** = K** 0 K**	Error State Noise Increment Matrix R* = R* 0 R* = R* 0
Error State Error Covariance Hatrix * P P P/R P = PT P R	Synchropous Measurement Diff. $\Delta Y = Y_D - Y_R$	Measurement/State Matrix M = [M _D M _R]	Nessurement Diff. Noise C = C _D + C _R	Kalman Optimal Gain Matrix by Pro by Pro
Least Squares Gain Matrix blub blub call least	Overall Gain Matrix $\begin{bmatrix} b \\ b \end{bmatrix}$	Time-Averaged Measurement-Diff. $\overline{\Delta Y} = \overline{Y} - \overline{Y}$	Time-Averaged Messurement/State Matrix M = [MD MR]	Time-Averaged Messurement Control Compensation Matrix $\overline{N} = \overline{N}_D 0$
Time-Averaged Hearurement State Noise Compensation Matrices $\overline{Z} = \left \overline{Z}_{D} - \overline{Z}_{R} \right $ $\overline{W} = \overline{W}_{D} + \overline{W}_{R}$	Dimension Summery nx1: x, u, û, b _K , b _L , b nxn: A, £, G, K, R, P lxn: M, M, N, Z ix1: Y, LY, C, \(\overline{L}\), \(\overline{L}\), \(\overline{L}\)	Time-Averaged Measurement-Diff, b Noise $\overline{C} = \overline{C}_D + \overline{C}_R$	ed	*Symmetric Matrices

TABLE XXXIV. D SUBSTATE VECTOR/MATRIX STRUCTURE

201-7

Overail D State	Substate	Dimensions (n) = 0	Special	Struct (Non-	Structure by DR Nav Mode (Non-Null D Partitions)	
Materix	Matrix	Dim)	Properties	IDR(DI)	PDR(DP)	ADR(DA)
α _×	^K Ds	" _{Ds} *!	•	A11	A11	A11
·P	\$q.	:	4 4 4	•	:	
. g-	^û Ds		•	3		•
tro	b _{KDs}		•	A11	A11	A11
on _q	PLD*				:	-
o _Q	b _U s	:		=	:	1
φ,	Apss'	, sq _u ×sq _u		12,21,22,23,26,27,33,34, 35,44,55,66,77	12,23,33	13, 16, 17, 31, 33 -37, 44, 55, 66, 77
Ā	*Ds	n _{Ds^{x n}us}	K _D * ^K Ds Diag.	L-4	E	4-7
,a	. Das	"Ds ^{x "} Ds		11-17,21-27,33-35,44,55,	11-13,22-23,33	11,13-17,31,33-37,44,
$^{G}_{\mathbf{D}}$	C _{Dss'}	.	•	13,23,33	2	:
₹°	H _{Dss} ,	.	R _D Symma.	11-17,22-27,33-35,44, 55,66,77 and Symm.	A11	11,13-17,33-37,44,55,66,
P _D	Poss'	:	P _D Symm.	АП	A11	A11

 $^{\lambda}_{D112} = ^{2} \cdot ^{\lambda}_{D121} = ^{2} \left(\frac{1}{1 \cdot ^{3}} \frac{g}{|g|} \right) \cdot ^{\lambda}_{D122} = ^{-2} \frac{1}{2} \cdot ^{1} \cdot ^{\lambda}_{D123} = ^{2} \frac{T_{C/P}^{p}}{P} \cdot ^{\lambda}_{D126} = ^{2} \frac{T_{C/P}^{0}}{P} \cdot ^{1}_{D126}$

40987

 $^{A}_{D127} = ^{1}_{C/P} ^{V}_{D127}$, $^{A}_{D134} = ^{1}_{C} ^{A}_{D134}$, $^{A}_{D135} = ^{0}_{D135}$, $^{A}_{D154} = ^{1}_{C}_{D155} = ^{0}_{D155} = ^{0}_{D155}$

April " "01-6" April " "0177" Appil " 1, Appil " TL/cI+ Appil " "KAL

(Apag to be determined)

(Unspecified 9s and Ks depend on DR nav equipment types and on depth of KF error model required)

TABLE XXXV. R SUBSTATE VECTOR/MATRIX STRUCTURE

Overall R State Vector or Matrix	R Substate Vector or Matrix	Dimensions (nRs = Substate Dimension)	Special Structural Properties	Structure (Non-Null R Partitions)
×	xRs	n _{Rs} x 1	•	A11
- 4-	. Rs	:	0 0 0	=
b _{KR}	b _{KRs}	=	•	ı
b _{LR}	b _{LRs}	=	• • •	=
A B	b _{RS}	2	8 8 1	:
7 ₈	Ks	ng × ngs	KR, KRs Diag	All Pseudodiag.
-8"	ARs	=	A _R Pseudodiag.*	=
e a	Rs	=	φ _R Pseudodiag.	=
%	Rs	=	R Pseudodiag., Rs Symm	2
P _R	P.R.S.	ngs × ngs'	P _R Symm.	A11

*All off-diagonal partitions of a pseudodiagonal matrix are null.

(As and Ks depend on Ref Nav measurement equipment types and on KF model depth required).

TABLE XXXVI. D/R SUBSTATE VECTOR/MATRIX STRUCTURE

Overall D/R Coupling Matrix	D/R Substate Matrix	Dimensions	Special Structural Properties	Structure (Non-Null D/R Partitions)
P _{IJ} /R	PD/Rss'	n _{Ds} × n _{Rs} ,	$P_{D/R} = P_{R/D}$	A11
P _R /D	P _R /Dss'	n _{Rs} × n _{Ds} ,	$^{P}_{R/D} = ^{P}_{D/R}$	A11

TABLE XXXVII D/R MEASUREMENT-DIFFERENTIAL VECTOR/MATRIX STRUCTURE

	Overall	3	Dimensions		*	Structure (Non-Mull Partitions)	(\$0	
	Matrix	21.01		Pos'n Compon't(m-1)	Altitude(m=2)	LOS Renge (se-3)	108 R Rate (m-4)	EN Renge* (m-5)
	Å	:	1 * 1	• •	•	•		•
	8	:	3	•				•
	o d		3				•	
	J	:	z	• • •	:	•	•	:
•	8	8	, a a		D11/DF1/DA1		DII,2/DPI,2/DAI, 2.6.7	D11/DF1/DA1
	, <u>8</u>	, A	:		9.176	DI DIZ/net-net/mai nat nay		
	ZDm	7.	2			1 m/c30 130 / c		
	ه.		2		- /9id	- / -		
	138	الح	1 * 1	•	:		•	•
	8	:	1 = 1	•			•	:
	13-E	:		0 0	0 0 0			i
	S.	•	3		•	:	:	:
«	قی	÷	2	•	:	:	:	-
	, e	"Same	11. 225					
	A.	N.	2	None	Y Y		Ruc; REnc, REnf, REnjk	<u>*</u>
	Z.	Zees	:					
	<u>و</u> د،	الم.	1 × 1	•		:		:
1	. V.	:	- ×	00:		:	•	:
1 /0	占"	:	1	:	;	1	!	:
	which signal of jth		mitter of ath net	1				99607
	Y P.	Vom - P. h . n .	. Rajenje Snj	. 1 " •	MDII " MDFI " MDAI	1° -		
	YR. PR.	- H	Hnj' Hnj' Staj	m - 2 Mp11	I - Mpei - PDAI	6 / 8 : Maun		
	(Undef in	of Ms and C	(Undefined Ns and Cs depend on	_	For I	4	nj. Mauc. Menchaene. Menjk	
	depth r	depth required.)	se and KF model	Holling	144 - 1404 - 1		nji Mauc. Menc. Mene. Menjk	
				7 * 2		x x		

rn, Rnj/Rnj Rn, P - Cnj

MUC' NENC' MENE" MEnjk

III.4.b

KALMAN FILTER MODULES TIMING AND SEQUENCING ORGANIZATION

This specification defines the relative intermodular timing, sequencing, and data flow for all Kalman filter modules, within a single, standard (i.e., all-operations), current (nth), Kalman filter execution cycle.

The summary diagram (Figure 19) divides overall single-cycle filter operations into two more or less parallel processing areas. The first of these sequentially involves (a) KTUM prediction of the processor error estimate and covariance matrix across the prior cycle, using prediction matrices generated by the KTMM in the prior cycle; (b) KMRM, KMCM, and KMOM preprocessing of raw measurements collected, time-smoothed and synchronized during the prior cycle by the KMMM (and/or R modules) for current-cycle use by the KFIM; (c) actual Kalman filtering by the KFIM using these preprocessed measurements, and (d) the KCOM generation, and end-of-current-cycle execution, of processor module (D, R, and K) control corrections, based on the updated estimate obtained from KFIM filtering.

The second of these parallel processing areas involves (a) KTMM generation of current-cycle prediction matrices for next-cycle KTUM use, and (b) KMMM generation of current-cycle, endpoint-synchronized and time-smoothed measurements and measurement matrices for use by the measurement preprocessing modules (KMRM, KMCM, and KMOM) in the next cycle.

In general, the overall diagram for clarity depicts only full-state operations; however, each of the module specifications themselves in fact defines the partitioned equivalents of these full-state operations, in terms of indexed operations on the D and R substate sets (sd, sd', sri), as defined at the bottom of the diagram.

In addition, the measurement sets remaining after successive execution of each of the measurement preprocessing module operations are also symbolized and defined at the bottom of the diagram. These measurement set symbols are used in defining doubly indexed substate processing operations by measurement type in the measurement processing (i.e., KFIM, KMRM, KMCM, and KMMM) modules.

Figure 19. Kalman Filter Modules, Overall Dynamic Operations
Timing/Sequencing/Data Requirements 'Standard KF Cycles

ILL SET OF KED SUBSTATES* (DR MODE DEPENDENT)

IT WITH SUBSTATES DIT, DIZ; DPZ; DAT, DA3 RESPECTIVELY WHED WITTO THE SINGLE SUBSTATES DIZ, DPT - DPZ; DAT - DA3

GADE PSET DOS SUBSTATE DAS

// 'perstions
S a dard FF Oyele)

- mo OVERALL SET OF CURRENTLY AVAILABLE REF NAV MEASUREMENT OUTPUT DATA TYPES
- m1 SUBSET OF mo PRESELECTED BY OPERATOR IN LAST CYCLE FOR KMMM PROCESSING IN CURRENT CYCLE
- m2 = SURVIVING SUBSET OF m1 AFTER REASONABLENESS TESTING
- m3 SET CONSISTING OF LINEAR (CH NONLINEAR)
- sri SET OF KF R SUBSTATES CORRESPONDING TO REF NAV MEASUREMENT SET mi

III.4.c

KALMAN FILTER ESTIMATE/COVARIANCE MATRIX TIME UPDATE MODULE

(KTUM)

SPECIFICATION

This module time-updates the KF error state estimate vector and its associated covariance matrix, across the prior cycle to the beginning of the current cycle (time t_S), using the time update matrices generated by the KTMM in the prior cycle.

TABLE XXXVIII. KTUM OPERATIONS SUMMARY

D/R Substates	s=sd', s'=sr0	$P_{D/RSS'} = \left(\frac{\sum_{i}^{\infty} D_{Si} P_{D/RiS'}}{i}\right)^{T} R_{S'}$ $(All s, s') *$
R Substates	0. s = 's. e.	x _{Rs} = z _{Rs} x _{Rs} P _{Rss'} = z _{Rs} P _{Rss'} z _{Rs'} +δ _{ss'} R _s (δ=Kronecker delta) (All s,s')
D Substates	s,s',i,j = sd' (sd' DR Mode Dependent)*	$\sum_{j}^{x} (x_{Ds,j}^{x} x_{D,j}^{+} G_{Ds,j}^{u} x_{D,j}) \begin{vmatrix} x_{Rs} = x_{Rs} \\ P_{Rs,i} = x_{Rs,i} \end{vmatrix}$ $\sum_{j}^{x} (x_{Ds,i}^{p} P_{D,j}^{x} x_{D,i}^{T}) + R_{Ds,i}^{x}$ $(All s, s', i, j) * (All s, s', i, j$
Substate Class Operation	Substate Index Set-up	Est/Cov. Matrix Substates Time Update (Across Prior Cycle)
Oper	င္ပဲေဌ	Execute Once per KF

*For ADR, additional DA2 pseudostate updating is required (executed just following the above time updating) as follows:

$$\mathbf{x}_{D2} = \sum_{\mathbf{j}} \mathbf{u}_{\mathbf{v}} \mathbf{j}_{\mathbf{D}} \mathbf{j}_{\mathbf{j}}$$

$$\mathbf{p}_{D2s'} = \sum_{\mathbf{j}} \mathbf{u}_{\mathbf{v}} \mathbf{j}_{\mathbf{D}} \mathbf{j}_{\mathbf{s}'}$$

$$(\mathbf{j} = A11 \ ADR \ Substates)$$

$$\mathbf{p}_{\mathbf{j}} \mathbf{R}_{\mathbf{2}s'} = \sum_{\mathbf{j}} \mathbf{u}_{\mathbf{v}} \mathbf{j}_{\mathbf{D}} \mathbf{j}_{\mathbf{k}} \mathbf{j}_{\mathbf{s}'}$$
 where $\mathbf{u}_{\mathbf{v}} \mathbf{j}_{\mathbf{j}}$ are submatrices of $\mathbf{u}_{\mathbf{v}} \mathbf{j}_{\mathbf{k}} = \begin{bmatrix} 0 \ 0 \ \mathbf{u}_{\mathbf{v}} \mathbf{k} \mathbf{j} \ 0 \ 0 \ \mathbf{u}_{\mathbf{v}} \mathbf{k} \mathbf{j} \end{bmatrix}$

and $H_{vAj} = A_{DAlj}$ (at time t_F of n-1st KF cycle for nth KF cycle operations)

TABLE XXXIX. KTUM INPUT/OUTPUT SUMMARY

ates D/R Substates	$\frac{r0)_{n-1}}{s_{n-1}}$ $\frac{s = (sd', sr0)_{n-1}}{(P_D/Rss')S, n-1}$	s=(DA2) _{n-1} , s'=(sr0) _{n-1} (P _D /Rss')F, n-1	$\frac{0)_{n-1}}{n-1}$ $\frac{s = (sd', sr0)_{n-1}}{(P_D/Rss')F, n-1}$	$\frac{s=(DA2)_{n-1}, s'=(sr0)_{n-1}}{\binom{p_{D/Rss'}}{F, n-1}}$
R Substates	n-1; (\$\phi_{\text{Rs}}, \text{Rs}, \text{Rs})(\text{F}, \text{S}) \n-1; (\pi_{\text{Rs}}, \text{Rs}, \text{Pss}, \text{S}, \n-1)		$\frac{s, s' = (sr0)_{n-1}}{(x_{RS}^{P}_{Rss},)_{F, n-1}}$	
D Substates	(*Dss', *Gps', *Rpss') (F,S) n-1; (*Ds, *Pss') S, n-1;	(u _{Ds}) _{n-2} s=(DA2) _{n-1} , s'=(sd', DA2) _{n-1} (H _{vAs'} , P _{Dss'}) F, n-1	$s,s' = (sd')_{n-1}$ $(x_{Ds'}^{Pos'})F, n-1$	s=(DA2) _{n-1} , s'=(sd', DA2) _{n-1} (x _{Ds} , P _{Dss'})F, n-1
Substate Inputs/ Class Outputs		rupur s		Outputs

*Additional Input/Output requirements for ADR only.

III.4.d

KALMAN FILTER MEASUREMENT PREPROCESSING MODULES

- (1) MEASUREMENT REASONABLENESS TESTING (KMRM)
- (2) MEASUREMENT OPTIMAL SELECTION (KMOM)
- (3) MEASUREMENT COMBINATION (KMCM)

SPECIFICATIONS

These modules respectively reasonableness-edit (KMRM), combine (KMCM), and order (KMOM) the time-smoothed, endpoint-synchronized measurements from last-cycle KMMM (and R module) operations, in preparation for their use by the KFIM module in the current cycle.

In particular, it should be noted that the KMCM (measurement combination module) specification given here (and the related KF measurement type definitions of subsection III.4.a), explicitly accommodate only linear combinations of measurements of different types, and not the special start-up, nonlinear LOS measurement combination technique presented and discussed in detail elsewhere in this document (see subsection III.g.3 and Appendix IX).

Although it appears that this specification could be quite simply modified to include this capability as well, this has not been done since it is felt that this promising technique merits a further, well-rounded, overall investigation of its own -- one which would in particular include a deeper examination of its important statistical, geometrical, time-sequencing, and equipment-requirement aspects.

Finally, it should be noted that the KMMM specification here (in conjunction with the measurement type definitions of subsection III.4.a) implies that the operations of raw measurement D/R differencing, KF endpoint synchronization, and time smoothing must be done collectively within the context of Kalman operations -- i.e., under Kalman timing control. However, these operations could alternatively -- and perhaps preferably -- be placed in the context of, and within the timing control of only the pertinent R modules instead. As a third alternative in certain circumstances (e.g., an R measurement which is available at a very high rate) they could perhaps best be placed under D module timing control. Which of these options is preferable in programming for a specific application will depend in general on factors peculiar to that application. To cover the two most likely possibilities, these operations have therefore in fact been specified in two places -- i.e., in both the K and the R module groups -- in this document.

KMRM, KMCM, KMOM and KFIM Submodule Logic/Data Flow Figure 20.

40890

Opera	Substate Class ation	D Substates	R Substates	D/R Substates
	t Measurement Index Setup		m = m1	
per 1	Substate Index Setup	s,s' = sd' (sd' DR Mode Dependent)	s,s' = srl	
KF Cycle g	Unbiased Measurement Computation	*	*	*
Once per KF	Measurement Residual Variance Computation		*	
Execution Once Averaged Measu	Averaged Measurement Reasonableness Test	,	$(As)_{m}^{2} \overline{Q}_{m}$ (Measurement m	t m is reasonable) is <u>not</u> reasonable)

^{*}Same Equations as for Estimate/Covariance Matrix Filtering Submodule.

TABLE XLI. KMOM OPERATION SUMMARY

Equati	Substate on Class	D Substates	R Substates	D/R Substates
r KF i Com- Type m3	Input Measure- ment Type Index Setup		m = m3	
Once per Averaged urement	Trace Computations	TR _m = Trace	of K _{OPT} ^{ΔP} Dm ^K OPT	(All m)
Execution Once Cycle per Avera bined Messurem	Optimum Measurement Identification	Find m suc	h that TR _m = MAX	(All m)

If only the 1' (position and velocity error) partition of $K_{\mbox{OPl}}$ are non-null (which will often be the case), then the trace computation algorithm above reduces to:

$$TR_m = TRACE OF (K_{OPT1}, \Delta P_{D1}, 1, M_{OPT1})$$

TABLE XLII. KMCM OPERATIONS SUMMARY

Opera	Substate Class	D Substates	R Substates
ution per /cle	Measurement Type Index Setup	m = m3,	m' = m2
Execution Once per KP Cycle	Substate Index Setup	s = sd' (DR Mode Dependent)	s ≠ sr2
le for Type m3	Scalar Weight (w _{mm} ,) Computations	w _{mm'} = Depends on Cano Measurement Com	lidate mbination Technique
per KF Cycle Measurement T	$\overline{\Delta Y}_{m}', \overline{C}_{m}$ Computations	$\overline{\Delta Y}_{m}^{'} = \sum_{m} w_{mm}, \overline{\Delta Y}_{m}^{'},$	\overline{C}_m = Function* of \overline{C}_m 's
Once	Mms,Nms Computations	$\overline{\overline{N}}_{Dms} = \sum_{m'} w_{mm'}, \overline{\overline{N}}_{Dm's}$ $\overline{\overline{N}}_{Dms} = \sum_{m'} w_{mm'}, \overline{\overline{N}}_{Dm's}$	M̄ _{Rms} = ∑, w _{mm} , M̄ _{Rm's}
Execution each Combi	Z _{ms} ,W _{ms}	*	*

 $[\]star Depends$ on Candidate Measurement Combination Algorithm

TABLE XLIII. KHRM INPUT/OUTPUT SUMBARY

D/R Substates	m=(m1) _{n-1} (^k REAs)m	$(\overline{Q}_{D/Rm}^{*}, \overline{Q}_{m}^{*}, \overline{\Delta Y}_{m})_{n-1},$ $(m2)_{n-1}$
R Substates	E=(m1) _{n-1} ; s=(sr1) _{n-1} (\(\overline{V}\) Rm, \(\overline{C}\) Rm, \(\overline{K}\) Rms, \(\overline{Z}\) Rms, \(\overline{W}\) Rms \(\overline{D}\) n-1, \((\overline{F}\) Rss, \() F, n-1	$\frac{\mathbf{m} = (\mathbf{m}1)_{\mathbf{n}-1}}{\left(\overline{Q}_{\mathbf{Rm}}^{*}, \overline{Y}^{"}\right)_{\mathbf{n}-1}}$
D Substates	$\frac{\mathbf{n} = (m1)_{n-1} : s, s' = (s'_d)_{n-1}}{(\overline{Y}_{Dm}, \overline{C}_{Dm}, \overline{M}_{Dms}, \overline{N}_{Dms},}$ $\overline{Z}_{Dms}, \overline{W}_{Dms})_{n-1}, (\hat{G}_{Ds})_{n-2},$ (P_{Dss}, P_{n-1})	$\frac{\mathbf{m} = (\mathbf{m}1)_{n-1}}{\left(\overline{\mathbf{Q}}_{\mathbf{D}n}^{*}, \overline{\mathbf{Y}}_{\mathbf{D}n}\right)_{n-1}}$
Substate Class Inputs/ Outputs	laputs	Outputs

*Q's for Reasonableness Testing only; all are based on same (PF) n-1

TABLE XLIV. KMOM INPUT/OUTPUT SUMMARY

Substate	
Inputs/ Class Outputs	D Substates Only
Inputs	K _{OPT} , ΔP _{Dm}
Outputs	TR _m , (TR _m) _{max}

TABLE XLV. KMCM INPUT/OUTPUT SUMMARY

Substate Class Inputs/ Outputs	D Substates	R Substates	D/R Substates
Inputs	$\frac{\mathbf{n}^{=}(\mathbf{m}^{2})_{n-1}, \mathbf{s}^{=}(\mathbf{sd}')_{n-1}}{\left(\overline{\mathbf{H}}_{\mathbf{Dms}}, \overline{\mathbf{N}}_{\mathbf{Dms}}, \overline{\mathbf{Z}}_{\mathbf{Dms}}, \overline{\mathbf{H}}_{\mathbf{Dms}}, \overline{\mathbf{H}}_{\mathbf{Dms}}, \overline{\mathbf{H}}_{\mathbf{Dms}}, \overline{\mathbf{H}}_{\mathbf{Dms}}, \overline{\mathbf{H}}_{\mathbf{Dms}}\right)}$	$\frac{\mathbf{m}=(\mathbf{m}^2)_{n-1}, \mathbf{s}=(\mathbf{s}\mathbf{r}^2)_{n-1}}{\left(\overline{\mathbf{H}}_{\mathbf{Rms}}, \overline{\mathbf{Z}}_{\mathbf{Rms}}, \overline{\mathbf{W}}_{\mathbf{Rms}}\right)_{n-1}}$	$\frac{\mathbf{m}=(\mathbf{m}3)_{\mathbf{n}-1},\mathbf{m}'=(\mathbf{m}2)_{\mathbf{n}-1}}{\left(\tilde{\mathbf{w}}_{\mathbf{m}\mathbf{m}'}\right)_{\mathbf{n}-1}\mathrm{Definition\ Inputs,}}$ $\left(\frac{\tilde{\mathbf{w}}_{\mathbf{m}'}}{\Delta \mathbf{Y}'_{\mathbf{m}'}}\right)_{\mathbf{n}-1}$
Outputs	m=(m2) _{n-1} , s=(sd') _{n-1} (\vec{\mu}_{Dms}, \widetilde{N}_{Dms}, \widetilde{Z}_{Dms}, \widetilde{\vec{\mu}_{Dms}}, \vec{\	$m=(m2)_{n-1}, s=(sr2)_{n-1}$ $(\vec{M}_{Rms}, \vec{Z}_{Rms}, \vec{W}_{Rms})_{n-1}$	$m^{=}(m3)_{n-1}, m' = (m2)_{n-1}$ $(w_{mm'}, \overline{\Delta Y}', \overline{C}_{m})_{n-1}$

III.4.e

KALMAN FILTER ESTIMATE/COVARIANCE MATRIX FILTERING UPDATE MODULE

(KFIM)

SPECIFICATION

This module summarizes the operations which comprise actual Kalman filtering of the preprocessed and preselected measurements; i.e., the generation of a new, overall processor error estimate (and its attendant covariance matrix) using these measurements and the a priori estimate generated by the KTUM in the current cycle. Both estimates -- the KTUM current cycle estimate and the one generated by this module in the current cycle -- are estimates of processor error state at time to of the current cycle, but the latter, measurement-improved estimate supersedes and replaces the former.

Estimate/Covariance Matrix Substates Measurement Update Logic Flow Figure 21.

ł

TABLE XLVI. KFIM OPERATIONS SUMMARY

Operati	Substete Class	D Substates	R Substates	D/R Substates		
ion Once Cycle	Input Measurement Type Index Setup	m = m1 or m2 or m3				
Execution (Substate Index Setup	s,s' = sd' (sd' DR Hode dependent)	e,e' - erO	e - ed', s' - erO		
le	Meesurement Residual Variance	$\begin{aligned} & \overline{\mathbb{Q}}_{Dm} = \sum_{s,s} \left(\overline{\mathbb{M}}_{Dms} P_{Dee}, \overline{\mathbb{M}}_{Dms}^{T} \right) \\ & + \overline{\mathbb{Q}}_{Dm} + \sum_{s} \left(\overline{\mathbb{M}}_{Dms} - 2 \overline{\mathbb{M}}_{Dms}^{T} \overline{\mathbb{Z}}_{Dme}^{T} \right) \end{aligned}$	$\begin{aligned} & \overline{Q}_{Rm} = \sum_{\theta,\theta} \left(\overline{M}_{Rms} P_{R\theta,\theta}, \overline{M}_{Rms}, \right) \\ & + \overline{C}_{Rm} + \sum_{\theta} \left(\overline{W}_{Rms} - 2\overline{M}_{Rms}, \overline{Z}, T \right) \end{aligned}$	Q _{D/Rm} =55, (M _{Dms} P _{D/Rss} , M _{Rms})		
T Cycle	Computation.	$\bar{Q}_{m} = \bar{Q}_{Dm} + \bar{Q}_{R}$	m ^{+2Q} D/Rm			
Execution once per KP per Averaged Measureme Type ml or m2 or m3	Nonrecursive Leest Squeres	μ _{Dm} -Σ(M _{Dms} M _{Dms})	$\overline{\mu}_{RM} = \sum_{s} \left(\overline{H}_{Rms} \overline{H}_{Rms}^{T} \right)$			
rion oncreaged	Weighting Sceler Computetion	<u> ~</u> _~~Dm+~,				
Execut per Av Type	Unbissed Messurement - Residual	$ \overline{Y}_{D_m} = \overline{Y}_{D_m} + \overline{Y}_{D_m} = $	$\widetilde{Y}_{Rm}^{'}=\widetilde{Y}_{Rm}+\sum_{s}\left[\widetilde{M}_{Rms}\left(x_{Rs}+u_{Rs}\right)\right]$			
		ΔΫ́=Ϋ́ _{Dm} -Ϋ́	Rm			
	Pertitioned Kelmen Geins	$\beta_{\mathrm{Dms}} = \sum_{\mathbf{s}} \left(P_{\mathrm{Des}}, \overline{\mathbf{H}}_{\mathrm{Dms}}^{\mathrm{T}}, -\overline{\mathbf{Z}}_{\mathrm{Dme}}^{\mathrm{T}} \right)$	$\beta_{\rm Rms} = \sum_{\rm s} \left(P_{\rm Rss}, \overline{M}_{\rm Rms}^{\rm T} \right) - \overline{Z}_{\rm Rms}^{\rm T}$	β _{D/Rms} -Σ(P _{D/Rss} , \overline{M}_{Rms}^{T})		
Execut ion	Computation	$b_{KDma} = \frac{1}{6} (\beta_{Dra} + \beta_{D/Rma})$	$b_{KRme} = \frac{1}{\overline{Q}} (\beta_{Rme} + \beta_{R/Dme})$	$\beta_{R/Dms}$ - Σ $\left(P_{D/Rss}^{T}, \widetilde{M}_{Dms}^{T},\right)$		
per Substate Exec	Partitioned Nonrecursive Leest Square Gsins Comp'n	b _{1.Dms} = $\frac{1}{\overline{\mu}_{m}} \overrightarrow{M}_{Dms}^{T}$	b _{LRms} = $\frac{1}{\mu_m} \frac{T}{R_{ms}}$			
er Sul	Partitioned Overell	Δb _{Dms} • b _{KDms} • L _{Dms}	ΔbRms - bRms -bLRms	*******		
d e b	Geins Computation	b _{Dms} - b _{KDms} -ζΔb _{Dms}	b _{RMs} = b _{KRms} - ζΔb _{Rms}	**********		
0	Estimate Substates Measurement Updete Comp'n	×Ds exDe+pDme ZA	*Rs=*Rs+bRms \(\overline{\Delta Y}_m\)			
Pair	Coverience Submatrices	ΔP _{Dmes} , $\sim \overline{Q}_m \left(b_{KDme}b_{KDme}\right)$,	ΔP _{Rmes} , =Q _m (b _{KRme} b T	ΔP _{D/Rmas} , =Q̄m(b _{KDms} b _{KDms} ,		
per Late		-ζ²Δb _{Dme} Δb _{Dme} ')	-C ² Ab _{Rme} Ab _{Rme} .)	-ζ ² Δb _{Dms} Δb _{Rms} ,)		
Once per Substate : Execution	Computation	PDse', -PDss', -APDmss'	PRes' =PRes' - APRes'	PD/Res' = PD/Res' - APD/Rmss'		

^{*}Depending on how much intermediate processing of the time everaged measurement set ml is done prior to its use by this submodule (see Time Averaged Measurement Selection and Linear Combination submodules specifications).

40989

weather ADR pseudostete DA2 is carried in \mathbf{x}_D , \mathbf{P}_D , and $\mathbf{P}_{D/R}$, these operations must be followed by setting \mathbf{x}_{D2} , \mathbf{P}_{D2s} , and $\mathbf{P}_{D/R2s}$, in accordance with the formulae footnoting the operations summary for the Estimate/Covarience Metrix Time Update submodule.

TABLE XLVII. KFIM INPUT/OUTPUT SUMMARY

D/R Substates	$m = (m1)_{n-1}^{*}; s = (sd')_{n-1}; s' = (sr0)_{n-1}$ $(P_D/Rss')_{F,n-1}$	$m=(ml)^{*}_{n}; s=(sd')_{n}; s'=(sr0)_{n}$ $\left(\overline{\Delta Y}_{m}, \overline{Q}_{D/Rm}, \overline{Q}_{m}, \beta_{D/Rms}, \Delta^{P}_{D/Rmss'}\right)_{n}$ $\left(P_{D/Rss'}\right)_{S, n}$
R Substates	m=(m1) * * * * * * * * * * * * * * * * * * *	m=(ml)* s, s'=(sr0) _n (x _{Rs} , P _{Rss'}) S, n (Q _{Rm} , μ _{Rm} , β _{Rms} , b _{KRms} , b _{LRms} , Δ _{b_{Rms}, b_{Rms}, Δ_{P_{Rms}, η}}
D Substates	$m = (m1)^*_{n-1}; s, s' = (sd')_{n-1}$ $(^{T}Ds'^{P}Dss')^{F}, n-1$ $(^{u}Ds)_{n-1}'(^{u}Ds)_{n-2}$ $(^{\overline{Y}}_{Dm}, ^{C}_{\overline{Dm}}, ^{\overline{M}}_{Dms}, ^{\overline{N}}_{Dms},$ $^{\overline{Z}}_{Dms'}, ^{\overline{M}}_{Dms})_{n-1}$	$m=(m1)^{*}_{n-1}, s, s' = (sd')_{n}$ $(^{x}_{Ds}, ^{P}_{Dss'})_{S,n}$ $(^{\nabla}_{Dm}, \overline{\mu}_{Dm}, \beta_{Dms}, ^{\triangle}_{Dms}, ^{\triangle}_{Dms$
Substate Inputs/ Class Outputs	Inputs	Outputs

*Or m2 or m3.

III.4.f

KALMAN FILTER ESTIMATE/PROCESSOR CONTROL MODULE

(KCOM)

SPECIFICATION

This module first computes controls to be applied to processor variables associated with both non-Kalman (D and R) and Kalman modules, and then applies not only these, but a portion of the corresponding controls computed by this (KCOM) module in the last cycle.

In order to compute the non-Kalman module controls for application at the end of the current cycle (i.e., at time t_F), the current KF error estimate (i.e., the estimate just generated by current-cycle KFIM operations, which relates to processor error state at time t_S) is first predicted across the current cycle to time t_F .* Two types of KF estimate control -- impulsive and metered -- are then computed based on this t_F estimate, which can then be discarded. These estimate controls are then used to compute impulsive and metered control for the non-KF module variables which are then applied at time t_F .

On the other hand, the t_S estimate is retained, and is corrected for the non-KF module impulsive control applied at the end of the last cycle by this module (KCOM) by subtracting out the impulsive estimate control generated by this module in the last cycle. The corrected, retained t_S estimate thus corresponds to the processor error state at the beginning of the current cycle.**

^{*}This is in fact a pure prediction based on at most the stationary and quasi-stationary portions of the time update matrices, since the non-stationary, vehicle-dynamics-dependent portions will not be available until completion of the (parallel) current-cycle KTMM operations.

^{**}This estimate thus lags real time by one cycle, but includes all vehicledynamics-dependent error effects.

_	Substate Class Operation		D	Substates		R Substates
	ction)	Substate Index Satup	a,a',i (DR Mo	i,j = sd ⁱ ode Dependent	·)**	s,s'=srO
	Estimate Sync (Prediction Across Current Cycle)	Estimate Substates Time Update (Across Current Cycle)	(All cycl depe	s, j ((*Dj)s - un s, j; unj, unj le; repid-dyn endent on and rices null)	from prior	(x _{Rs}) _F = φ _{Rs} (x _{Rs}) _S -u _{Rs} (All s; u _{Rs} from prior cycle; rapid-dynamics-dependent φ _R submatrices null)
			IDR	ADR	PDR	
			s=D11,D12, D14-D17	s-DA1,DA2, DA6,DA7	s=DP1-DP3	
		Estimate Substates		u _{Ds} =(× _{Ds}) _F		
		Impulsive Control	s=DI3	s=DA3		
er KF Cytle	Execute Once per KF Cytle Estimate Control	Formulation	$u_{Ds} = -\gamma_{p} = -(x)$ $\delta\theta_{p} = T_{p/L}K_{L}T$ $\phi_{p} = \phi_{p} + \delta\theta_{p}$	C _{Ds}) _F		$u_{Rs} = (x_{Rs})_F$ (All s)
Once p				s=DA4,DA5		
ecute	Estim	Estimate	s=DI3 <u>IF</u> * ψ, Ψ-ω or	s-DA1,DA2, DA4-DA7	s=DP1-DP3	
Ex		Substates Metered Control Formuletion	or ≥umax IS Da=0 s=D11-D13, D15-D17	u _{Ds} =0 s=DA3 u _{Ds} = - (Function	ů _{Ds} = 0	ů _{Rs} = 0 (All s)
			ů _{Ds} = 0	of x _{DA4} , x _{DA5})		
		Estimate Substete Control	a=DI1-DI7	S-DA1-DA7	S=DP1-DP3	(* _{Rs}) _S =(* _{Rs}) _S -u _{Rs}
		Control Execution	(x _{Ds}) _S = (x (u_ from p	De S De prior cycle)		(u _{RS} from prior cycle)
Ц		[1 0 0] +7	· De	300 3,010/		

 $I_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

*This formulation applies to only that 3x1 portion of \hat{u}_{D3} corresponding to the fixed bias error rate locations of the overall x_{D3} substate. ($\omega_L = \tau_p/\Delta t_K$) **For ADR, additional DA2 psaudostate (x_{DA} only) updating required per the footnote in the operations summary for the estimate/covariance matrix time update submodula.

TABLE XLIX. KCOM OPERATIONS SUMMARY (NON-KF MODULES CONTROL)

		_	S)					g	TWEN e. ected	TPCM	ected		
Ref Nav Modules		ΔħgK=ΔħgK-ΨRuA (AB)	hm=hm-ub	7 Z	Aku		ير. ا	Function of unking; depends on	(a) emitter net type, (b) TWEM ephemeris computations type, and (c) KF error model selected	Function of uRBnjk; depends on (a) emitter net type, (b) TFCH propagation compensation type.	and (c) KF error model selected		
Ref	Operation	,	Altitude	Correction	User Clock Correction	nth Emitter Net Clock	Correction	nth Emitter	Velocity Correction	jth Emitter nth Net kth Signal Propagation Error	compensacion		
	Module		ALTH					TOPM					
	PDR	(IPAI)	(IPA2)	β _L -β _L -u _{pp3} (P1)									
	ADR	- " p1"			(TAI)	TQ(+)TP/C	•		⁴ κ [±] υ _{DA3}	$\begin{pmatrix} v_{\nu} \end{pmatrix}_{L}^{-}$	(v) _c		
lodules	IDR IP	*10-4 = d	v = v-4 _{D2}	n-d = d		$T_{L/C}^{-}$ Q $(-\phi_P)T_{P/L}$	$\tau_{L/C^{-}}\left\{Q\left(-\phi_{p}\right)T_{p/L}\right\}^{T}Q\left(\phi_{p}\right)T_{p/C}$ (1A2)	*(111)	(1F2) ^b	of (IF3)			
DR Nav Modules	IS				TL/C		(181)	(1S2)					
	Operation	Position Correction	Velocity Correction	Pseudo Spec Force Correction	$T_{\mathbf{p}/L}$ Transformation Correction	T _{L/C} Transformation Correction	Afg Correction	Mu Correction	(up/L) p Correction	Wind Estimate Correction	TAS/TAS Transformation Corrections		
	Module		VSTM			PLAN.				нуул			
					uoj:	Execut	117 od	ba3	Cheje	X			

*All up, up, up, uks, uks indicated in this table are current cycle values (i.e., values determined by estimate substate control formulation computations in the current cycle)

(a * Jxl vector)

a: Function of Up16, Up17; depends on PLAM Af compensation

formulation b: Function of u_{DI4} and $u_{DI5};$ depends on PLAM $\delta\omega$ compensation

formulation c: Function of UDA7; TBD

16607

TABLE L. KCOM INPUT/OUTPUT SUMMARY (KF CONTROL)

Substate Class Inputs/ Outputs	D Substates	R Substates
	s=(sd') _n (x _{Ds}) _{S, n} , (φ _{Dss''} , G _{Dss'}) ***	$\frac{s=(sr0)_n}{(x_{Rs})_{S,n},(\phi_{Rs})_{(F,S)_n}}$
Inputs	$S = (DA2)^{*}$ $(H_{VAS})^{S, n}$	$s=(sr0)_{n-1}$ $\binom{u}{Rs}_{n-1}$
	$\frac{s=(sd')_{n-1}}{\binom{u_{bs},\hat{u}_{bs}}{n-1}}$	
Outputs	$\frac{s=(sd')_n}{(x_{Ds})_{F,n},(x_{Ds})_{S,n}}$	$\frac{s=(sr0)_n}{\binom{x_{Rs}}{r_{Rs}}F,n'\binom{x_{Rs}}{s,n'}}$
	$s = (D\dot{a}2)^{*}$ $s = (D\dot{a}2)^{*}$ $(^{*}D_{S})_{F,n}$	(KS/n

*Additional Input/output Requirements for ADR Only **Rapid-dynamics-dependent z and G Submatrices Null

TABLE LI. KCOM INPUT/OUTPUT SUMMARY (NON-KF MODULES CONTROL)

Module Com- putation Input/ Class Output	_	D MODULES	R MODULES
Input	VSTE: P,	$ \rho, v, u_{D1}, u_{D2}(IPA) $ $ \beta_L, u_{Dp3}(P) $ $ T_{P/L}, T_{P/C}, u_{D3} = \psi_p, \phi_p(IA) $ $ u_{D14}^{-u_{D17}(I)} $ $ \dot{u}_{D13}^{-u_{D13}(IP)}, \dot{u}_{DA3}^{-u_{DA3}(A)} $	ALTH: uRUA (A), $\Delta h_{BK}(\Delta B)$, $h_{pc}(APS)$ TDPH: uRUC 'uRE'S + $\Delta_{K}^{\epsilon} u$, Δ_{K}^{e} , $\Delta_{K}^{e} i$, $\Delta_{K}^{c} i$,
	HASH: (V	(V _W) _L , u _{DA6} , u _{DA7} (A)	$^{\Delta_{\mathbf{K}}}^{\mathbf{t}_{\mathbf{n}}}$
Output	VSTA: P,	ρ,ν(ΙΡΑ) β _L (Ρ) Τ _{P/C} , ^T _{L/C} ,Ψ _K (ΙΑ) Δε _K , Δω _K (Ι)	ALTH: $\Delta h_{BK}(AB)$, $h_{PC}(APS)$ TDPM: $\Delta_{K}^{t} u$, $\Delta_{K}^{e}_{j}$, $\Delta_{K}^{e}_{U}$, $\Delta_{K}^{e}_{j}$, $\Delta_{K}^{t}_{U}$, $\Delta_{K}^{e}_{j}$,
	WASM: (V	WASM: (VW)L+TBD(A)	^Δ κ ^c n,

III.4.g

KALMAN FILTER TIME UPDATE MATRIX GENERATION MODULE

(KTMM)

SPECIFICATION

This module generates the time update matrices for use by the KTUM on the next cycle. The algorithms are shown in their fundamental differential equation form, since either recursive, or single-pass closed form, or a mixture of both of these types of solution may be required and/or desirable, depending on the nature of the application.

TABLE LII. D SUBSTATES KTMM OPERATIONS SUMMARY (GOVERNING DIFFERENTIAL EQUATIONS)

Operation		DR Mode	IDR	PDR	ΛDR
	D Substate D Substate Prediction Submatrices Initialisation		s,s'esd'eDI+DI2, DI3-DI7	s,s'ead'= DP1+DP2 DP3	s,s'= DA1+DA3, DA4-DA7
Execution Once Per KF Cycle			∳ _{Dat}	s =I (All s) s,=0 (All s = s') s,=0 (All s =')	
Variability and to KP Cycle Bite		Princips! Autonomous Sub· matrices	All s \$\delta_{Das}^{A}D_{Das} \delta_{Das}^{A}\$ \$\delta_{Das}^{A}D_{Das} \delta_{Das}^{A}\$ \$\delta_{Das}^{A}D_{A} \delta_{A}^{A} \delta_{	Alis Des Ades Des Des Bos Ades Bo	All s Das Address Send thru DA7 RDss KDs +Address Pres + (Address RDss) T
Depends Buth on Error Dynamics Variab Measurement Data Rate Relative to KP	D Substate Prediction Submatrices Generation	Principel Substate Coupling Sub- metrices	a=DX1+DX2.e'=DX3.DI6. DX7: s=DX3.e'=DX4.DX5 dbes'*ADes*Das'.e' ADes*Das'.ADes*RDas'.e' ADes*Das'.ADes*RDas'.ADes'.GDa's'.	a-DP1+DP2, a'-DP3 DES'-ADES'DES' ADES DES'-ADES' ADES' RDES'-ADES' ADES' ADES' ADES BDES' ADES' ADES' ADES' +(")]T	meDAl+DAl, s'eDA4 thru DA7 DBs 'eADs Dss' ADss Dbs '+ADss' ADss' ADss' +(") T
Execution: Near		Secondary Substate Coupling Sub- matrices	s-Dil+Di2.s'-Di3. s'-Di4.Di3 Des"-ADes Des"*ADes 'De's" R-Di1-7.s'-Di3.s"-Di4 GDes"*ADes GDes"*ADes 'GDe's"		

*To conserve space, the IDR Secondary Coupling and Tertiary Autonomous R Submatrix equations are not shown here. If needed, these are also obtainable from the full D State equation, $\hat{R}_D = K_D + A_B R_D + R_D A_D^T$.

TABLE LIII. R SUBSTATES KTMM OPERATIONS SUMMARY (GOVERNING DIFFERENTIAL EQUATIONS)

	Operatio		
	R Subs Index	tate	s = sro
Execution Once Per KF Cycle	R Subs Predic Submat Initia	tion	• Rs = I RRs = 0
Execution*	R Substate Prediction	Principal Autonomous Sub- matrices	$\dot{\phi}_{Rs} = A_{Rs} \phi_{Rs}$ $\dot{R}_{Rs} = K_{Rs}$ $+A_{Rs}R_{Rs} + (A_{Rs}R_{Rs})^{T}$
Execi		Other Sub- matrices	•••••

*Execution:

- Once per KF cycle if A_{Rs} : constant
- Based on $\int_{\Delta t} A_{Rs} dt$ if $A_{Rs} \neq constant$

TABLE LIV. KTMM INPUT/OUTPUT SUMMARY

Substate Inputs/ Class Outputs	D Substates	R Substates
Inputs	<pre>s = sd' (A_{Dss'}, K_{Ds})_{i,n}</pre>	$\frac{s = sro}{(A_{Rs}, K_{Rs})_{i,n}}$
Outputs	<u>s = sd'</u> (φ _{Dss'} , G _{Dss'} , R _{Dss'}) (F,S) n (φ _{Dss'} , G _{Dss'} , R _{Dss'}) i, n	$\frac{s = sro}{(\phi_{Rs}, R_{Rs})} (F, S) n$ $(\phi_{Rs}, R_{Rs})_{i,n}$

III.4.h

KALMAN FILTER MEASUREMENT MATRIX GENERATION MODULE

(KMMM)

This module KF endpoint-synchronizes and time-smooths current-cycle raw D/R synchronous measurement-differences and their associated measurement matrices. Its outputs are further processed by the measurement preprocessing matrices (KMRM, KMCM, KMCM) in the next KF cycle. The algorithms are shown in their fundamental, nonrecursive summation forms. Compact closed-form, or recursive, or a mixture of both types (all based on these fundamental forms) may be required and/or desirable, depending on the nature of the application.

TABLE LV. KMMM OPERATIONS SUMMARY

Oper	Substate Class ation		D Substat	:48		R Substates
	Input Measurament Type Index Setup				m =	ml
Execute Once per KF Cycle	Ym, Cm Computations	$\overline{Y}_{Dm} = \frac{1}{n} \sum_{i} Y_{Di}$	$C_{Dm} = \frac{1}{n} \sum_{i} \sum_{j} \frac{1}{n} \frac{\sum_{i} \sum_{j} \sum_{i} \frac{1}{n}}{n} \frac{\sum_{i} \sum_{j} \sum_{i} \sum_{j} \frac{1}{n}}{n} \frac{\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \frac{1}{n}}{n} \frac{\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum$	C _{Dmi}	l lm)	$\overline{Y}_{Rm} = \frac{1}{n} \sum_{i} Y_{Rmi}, \overline{C}_{Rm} = \frac{1}{n} \sum_{i} C_{Rmi}$ (All m)
Exec	ΔΥ _m , ΔΥ _m Computations	$\frac{\Delta Y_{mi} - Y_{Dmi} - Y_{Rmi}}{\Delta \overline{Y}_{m} - \overline{Y}_{Dm} - \overline{Y}_{Rm} - \frac{1}{n} \sum_{i} \Delta Y_{mi}}$			(WII W)	
: for et Ml		IDR m=1-5: s'-D11+D12, s-D11+D12, D13-D17	PDR m=1-5: s'=DP1+DP: s=DP1+DP: DP3		ADR mol-3,5: a'=DA1+DA3, s=DA1+DA3, DA4-DA7 m=4: s'=DA1+DA3, s=DA1+DA3, DA4,DA5	m=2: s=RUA m=3-5: s=RUC,REnC, REnE,REnjk MRms = \frac{1}{i} \sum_{Rms} M_{Rms} M_{Rms
Execute Once per KP Cycle for Each Messurement of Subset MI	M ms Computations	IDR m=1-5: s=D11+D12, s=D14 N Dms -\frac{1}{r} \sum_{Dms} \frac{M}{r} \text{Dms} \frac{1}{r} \text{G}	T Σ M _{Dms} ,	a-D M Dm 1 ∑ c Da	ADR =4: DA1+DA3, A6,DA7	
	Z _{ms} , W _{ms} Computations		**			Z _{Rms} 1 Z M _{Rms} (*Rsi, F ^R sF, i W _{Rms} 1 Z Z M _{Rmsi} , r ^R RsF, i j*M Rmsj, F

lj* w Larger of i and j.

^{**}Omitted hara for lack of space. See Appendix VIII

TABLE LVI. KNEM INPUT/OUTPUT SUMMARY

D/R Substates		$\frac{\mathbf{m} = (\mathbf{m}1)_{\mathbf{n}}}{\left(\frac{\Delta \mathbf{Y}}{\mathbf{m}}\right)_{\mathbf{i},\mathbf{n}}}$
R Substates	$\frac{\mathbf{m}^{=}(\mathbf{m}1)_{\mathbf{n}}, \mathbf{s}^{=}(\mathbf{s}\mathbf{r}0)_{\mathbf{n}}}{\left(\mathbf{Y}_{\mathbf{K}\mathbf{m}}, \mathbf{C}_{\mathbf{K}\mathbf{m}}, \mathbf{M}_{\mathbf{K}\mathbf{m}\mathbf{s}}, \mathbf{n}\right)}$	$\frac{\mathbf{m}=(\mathbf{m}1)_{\mathbf{n}}, (\mathbf{s}=\mathbf{s}\mathbf{r}0)_{\mathbf{n}}}{\left(\overline{\mathbf{Y}}_{\mathbf{Rm}}, \overline{\mathbf{C}}_{\mathbf{Rm}}, \overline{\mathbf{M}}_{\mathbf{Rms}}\right)_{\mathbf{n}}}$ $\overline{Z}_{\mathbf{Rms}}, \overline{\mathbf{W}}_{\mathbf{Rms}}\right)_{\mathbf{n}}$
D Substates	m=(m1) _n ;s,s'=(sd') _n (Y _{Dm} ,C _{Dm} ,M _{Dms} , \$\phi_{Ds}',G_{Ds}',R_{Ds}'\) i,n	$(\overline{Y_{Dm}, C_{Dm}, \overline{M}_{Dms}}, \overline{Y_{Dm}, \overline{M}_{Dms}})$
Substate Class Inputs/ Outputs	Inputs	Outputs

III.5

INITIALIZATION AND SWITCHING MODULES

These modules together comprise the operations necessary to initiate and subsequently to switch processor navigation with regard to DR mode, R configuration, and computational reference (C) frame.

III.5.a

NAVIGATION START-UP MODULE

(NSTM)

This module initializes processor dynamic operation before first entry to the main, dynamic navigation loop for PDR operation.

Specifically, it initializes (a) the computational frame (to C=E); (b) initial position, velocity, and pseudo-acceleration to null vectors; and (c) the KF PDR error substate and control vectors to null, and the covariance matrix to large values to reflect the consequent large uncorrelated uncertainties in the initial position, velocity and the pseudo-acceleration error substates.

S. Santa

Figure 22. NSTM Operations Flow

TABLE LVII. NSTM OPERATIONS SUMMARY

Oper	Start Type	Fixed Start	Moving Start
	C Frame Initialization (C = E)	$C_{C/E} = 0, T_{C/D}$	= I
	VSTM Initialization (for PDR Start)	$p = 0 \qquad \beta_{L} = 0$ $v = 0 \qquad \omega_{E/I} = Const$	ant
Execution Prior to Dynamic Nav Loop Entry*	KFM/DR Initialization (for PDR Start)		$(s = DP1)$ $\sigma_{P0} = \frac{\sqrt{3}}{3} R_0; R_0 = \text{nom. earth radius}$ $\frac{s = DP2}{P_{Dss} = \sigma_{v0}^2 I} (\sigma_{v0} = \frac{\sqrt{3}}{3} v_{CR} ; v_{CR} = \text{nom. vehicle cruise speed})$ $\frac{s = DP3}{P_{Dss} = \sigma_{\beta 1}^2 0}$ $\frac{\sigma_{\beta 2}^2 0}{0 \sigma_{\beta 2}^2 0}$ $0 \sigma_{\beta 3}^2$

^{*}Execute Operations in Order Shown

TABLE LVIII. NSTR INPUT/OUTPUT SUMMARY

Moving Only	$\sigma_{v0}, \sigma_{\beta_i}$ (i=1,2,3)	Init Values for: P _{Dss} (s=DP1,DP2)
Fixed or Moving	σ _{p0} , Earth Rate	Init Values for: T _{C/E} , C _{C/E} , P, V, W _{E/I} , B _L (*Ds, "bs, "bs, "pss,") s, s' = DP1 - DP3
Start Variable Type Type	Input	Output

III.5.b

C FRAME SWITCHING MODULE (WON-KF MODULES)

(CSWM)

This module embeds the operations necessary to (a) define a new computational reference frame, (b) generate the switching transformation and center-displacement vector between the old and new computational frames, and then (c) switch all affected processor D and R variables to the new frame. Actual switching of the variables is delayed until the end of the KF cycle in which the new C frame command was initiated, at which time affected K module variables are also switched by (a submodule of) the KSWM.

Service Many

September 1

1

F- 1

Figure 23. CSWM Operations Flow (Non-KF Modules)

TABLE LIX. CSWM OPERATIONS SUMMARY (NON-KF MODULES)

	\	DR Nav Mode	IDR(I)	100/11	PDR(P)
Oper	ation	Mode	Without TAS	With TAS	ADR(A)	PDR(F)
	Defi	C Frame nition ,C _C /E			ion of New C Frame	
	C Fr.	to-New ame tion Matrix ^T SW		^T sw	-(T _{C/E}) _{NEW} (T _{C/E})	T OLD (1PA2)
	C Fr. Cent.			ΔC	J- (C _{C/E}) _{NEW} - (C _{C/E})	OLD (IPA3)
		Definition acement ew	(c _{C/E}) _{NEW} ——(C _{C/E})	OLD (TC/E)NEW	-(T _{C/E})OLD (IPA4)
t Logit				"NEW"TSW"OI	LD - (TC/E)NEWACSW	(a = p) (IPA5)
Execu	80			*NEW *Ts	w ^e OLD (4-ν, 8, Δρ, 1	L/C) (IPA6)
ndpoint	Switchin	DR May Modules	anew ^{-T} sw ^a oli	a=T _{P/C} ,T _A	/c' ^{\\\} \/c'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*NEW*TSW*OLD(#*"1,"2,"3) (P1)
cle E	ices	Ev)		NEW TSWOLD		•••••
nth KF Cycle Endpoint Execution	ors/Hate	ă ă	anew-Tswaold (a	-f,Δv) (IP1)		(171)
5	Mavigation Vectors/Matrices Switching	Ref Nav Modules	*NEW ^{-T}		NEW ^{AC} SW (a-e _{nj}) O (a-ė _{nj}) (All n	

^{*}New C frame commanded by operator in nth KF cycle.

TABLE LX. CSWM INPUT/OUTPUT SUMMARY (NON-KF MODULES)

	Q.	$(u_1, u_2, u_3)_{OLD}$					(u1, u2, u3) NEW			
	IP	(Av.f)OLD					(∆v, f) _{NEW}			
TAS	I_A	(vw. vas) OLD					(vw, vas) New			
	IA	(T P/C, TA/C, WA/C) OLD	$(\mathbf{w}_{E/1})_{\text{OLD}}$				$\binom{T}{P}/C$, T_A/C , ω_A/C) NEW $\binom{T}{\omega_L/1}$ NEW			
	IFA	$(p, v, g, \triangle p, T_{L/C})_{OLD}$		(e _{nj} ,ė _{nj})olD (All nj in srO)	New C Frame Def. Data $(T_{C/E}, C_{C/E})_{OLD}$		(P, v, 8, D, T _{L/C})NEW	(e _{nj} , ė _{nj})NEW (All nk in sr0)	(^C c/E' ^T c/E) _{NEW} , T _{SW} , ^{CC} _{SW}	
DR Mode Subsets		DR Nav Modules		Ref Nav Modules	DR Nav Modules	Ref Nav Modules	DR Nav Modules	Ref Nav Modules	DR Nav Modules	Ref Nav Modules
	Inputs/ Outputs		шţс	Inputs) Tue 3 6	იიე	amrc.	Outputs Dyna	tant	suoŋ

II1.5.c

COARSE ALIGN MODULE

(CALM)

This module is used to accomplish coarse (IMU or AHRU) platform-to-computer alignment prior to IDR or ADR operation.

In particular, initial TMU operations consist of coarse-leveling the platform (if it is of the rotationally isolated type). When this is complete, no further operations are initiated unless VSTM position and velocity data is sufficiently accurate (as indicated by the corresponding KF variances). When this latter condition is met, coarse computational alignment -- i.e., coarse determination of the (AHRU or IMU) platform-to-computer and L-frame-to-computer transformations for subsequent PLAM IDR or ADR navigation updating -- begins and continues until the initiation of the IDR or ADR navigation.

Figure 24. CALM Operations Flow

Align For	IDR(t)	ADR(A)*
retion	Strapdown (IS)	Rotation Free (IF)	
VST Accuracy Test			
Coerse Eraction		(A ₁) _P -(facc) _P / facc (\(\alpha\) _{EEH} .\(\alpha\) (\(\alpha\) _{EEH} .\(\alpha\)) 9 ₁
Proportional Levaling		A LIE A LIE A LIE	
Azimuth Rate Control		$(\omega_{\text{PROP1}})_{P}^{-} \left\{ (\omega_{\text{E}/\text{L}})^{\text{T}} \frac{8}{ 8 } \right\} (P_{1})_{P}^{-}$	
Total Gyro Rate	(utyr) _P - Strapdown Gyro Outputa	(Word) p = (Weropl) p + (Weropl) p (IF4	וכ
Alignment Transforms - tions	$Q_{P1} = \left \left(f_{ACC} \right)_{P} \right \left(\omega_{CYR} \right)$ $Q_{C1} = \left -g \right \left \omega_{P/I} \right -g \times \frac{T}{P/C1} = T_{P/C1}$ $(1 = 2, 3,, n)$	ω ₁ /1]ι (11)	T _P /CO ^{-T} P/LO ^T L/CO (A1)
	T _{CLO} - (L ₁) _C	$ \frac{ L_1\rangle_C (L_2)_C }{ E } \frac{ L_2\rangle_C }{ \omega_{P/I} ^{\times} \frac{ L_1\rangle_C}{ \omega_{P/I} ^{\times}}} $	(IA2) L ₃) _C -(L ₁) _C ×(L ₂) _C
	^Т Р/10	• T _P /co ^T c/w (12)	$T_{P/LO} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & Cos\theta_{P/L} - Sin\theta_{P/L} \\ 0 & Sin\theta_{P/L} Cos\theta_{P/L} \end{bmatrix}$ $\theta_{P/L} = \theta_{P/V} + \theta_{M/L}$ $Sin\theta_{M/L} = (L2)_{C}^{T} (L2)_{CO}$ $Cos\theta_{M/L} = (L2)_{C}^{T} (L3)_{CO}$ $(L2)_{CO} = (L2)_{C} \text{ with } v \text{ set to } O$ $(L3)_{CO} = (L1)_{C} \times (L2)_{CO}$
	Coarse Eraction Proportional Levaling Azimuth Rate Control Total Gyro Rate Alignment Transforms-	Strapdown (18) VST Accuracy Pass: Fail: Coarse Eraction Proportional Levaling Azimuth Rate Control Total Gyro Rate Tp/ci = Qpi Qci Qpro Qutputs Tp/ci = (fAcc) pi (Gyro) Qci = [-g Mp/r] - g x Tp/ci = (1-kg)Tp/ci Transformations Alignment Transformations Transformations Tp/ci = Tp/ci = (1-kg)Tp/ci Transformations Tcio = (L1)c = - TL/co = TL/co = - TL/c	Strapdown (IS) Rotation Free (IF)

*Single fast-loop (MCDM) cycle execution of CALM ADR equations is assumed

TABLE LXII. CALM INPUT/OUTPUT SUMMARY

No. of Lot, Lot,

Total Spirit

A	P _{D11} , P _{D22} , θ _{P/N} σ ² 2 σ _{P0} ,σ _{v0} , 8, Ψ _{E/1} , ^V , R ₀	TP/CO, TL/CO, TP/LO
IF	Δθ _L , ω _{SLEW} , ^k PROPL, ^k PROP1	(4 ₁) p. (4 _{SLEW}) p. (4 _{PROPL}) p.
Ι	facc, ^u cyr, k _s , n	
Align Variable Type	Input	Output

III.5.d

DR NAV MODE SWITCHING MODULE

(DSWM)

This module (a) selects the appropriate (i.e., highest-level) DR mode of operation based on current DR equipment navigation output data availability, (b) sets the corresponding DR navigation mode marker (DRMM) which controls the DR configuration of the D modules and the CSWM (and is also used by the KSWM), and (c) if the mode is a new one, executes the required set-up for that mode.

In particular, if the new mode selected involves a platform, PDR operation is continued until CALM-controlled coarse alignment is complete. Also, the additional new-mode set-up specified is minimal because, and only if, the first new-mode cycle execution order of each of the D modules is that shown in the operations summary table for that module.

E

Total Marie

DEQM = DR No. Equipment Configuration Marker DRMM = DR Mode Marker

Pigure 25. Overall DSWM Organization/Logic/Data Flow

Figure 26. DR Equipment Configuration Marker Setting

commanded by the operator by his appropriate control action.

40888

1,

- (a) I.e., set CALM ADR Coarse Align Complete Marker to NO
- (b) I.e., set CALM IDR Coarse Align Complete Marker to NO.

FIGURE 37 DR NAV MODE SWITCHING REQUIREMENTS SUMMARY

Note: DR 19a. Module switching requirements are summarized in Table 10.000.

TABLE LXIII. DR NAV MODE OVERALL SWITCHING REQUIREMENTS SUMMARY (DR NAV MODULES SWITCHING)

Last DR Node/	IDA			ADR			POR	
• /	With TAS	Without TAS	CAL	CALM (IDR):		3	CALM (IDR):	
Configuration	(Wind Comp.)	(No Wind Comp.)	Not Started U	Undervey	Just Complete	Not Started	Underway	Just Complete
(S) INU and AHRU/TAS (Nax. Poss. DR Node = IDR with Wind Comp.)		• WASH Start-up	• Start CALM(IDR)		● DRP#1=IDR	• Execute Calm(ADR) • DRPH-ADR • Init. WASH (FDR to ADR) • Init. VSTM/FLAM (FDR to ADR)	tm(ADR) [®] (1) (2) (2) (3) (4) (4)	#G1− !#R #G •
© Dau/1348		(IDR «/TAS)	• Start CALM(IDR)		• Init, VSTM/ PLAMb/WASM (ADR to IDR w/TAS)			• Init, VSIM/ PLAM ^b /WASM (POR to IDR w/TAS)
Only (Max. Poss. DR Node-IDR with Wind Comp.)			• DRD##-FDR • Init. VSTM (ADR to FDR)	iji Por)		• Start		
INU ONLY OF INU/ABRU ONLY (Max. Poss. DR Mode=IDR without Wind Comp.)			Same as for Equipment Configuration No. 4 Above	g	• DRPM-IDR • Init. VSTM/ PLAM ⁶ (ADR to IDR w/o TAS)	CALM(IDR		• DRMH-IDR • Init. VSTM/ PLAM [†] (POR to IDR w/o TAS)
AHRU/TAS Only (Max. Poss. DR Hode-ADR)	• Exec. CALH(ADR) a • DRDH-ADR • Init. VSTH/PLAM ^D (IDR to ADR) • Init. WASH • Init. WASI (IDR with TAS (IDR w/o to ADR)	H ^b (IDR to ADR) o Init. WASH (IDR w/o TAS)			,	• Execute • DRM=ADR • Init. WA	Execute CALM(ADR) ^a DRM=ADR Init. WASH (PDR to Init. VSTH/PLAH ^b (P	Execute CALM(ADR) ² DRMM-ADR Init, WASM (PDR to ADR) Init, VSTM/PLAM ^b (PDR to ADR)
AHRU Only or TAS Only or No Equipment	DRM*PDR Init. VS (IDR to	PDR VSTM to PDR)	0 0	DRIME POR Init. VSTM (ADR to PDR)	R)			

(a) This table assumes all CALM(ADR) equations are executed in a single fast loop (MCDM) cycle, just following DSMM execution on that cycle,

DRPM = DR Nav Mode Mark

(b) Except FIAM variables

TP/C, TP/L, TL/C

(initialized by CALM)

TABLE LXIV. DR NAV MODULES VARIABLES/EXECUTION ORDER SWITCHING REQUIREMENTS

A CA		WASM: $ \Delta V_{ASM} K = 0$ VSTM: Same as ADR to IDR PLAM: " " "	VSTM: Same as ADR to IDR	WASM: Same as IDR (w/o TAS) to ADR VSTM: " " PLAM: $\alpha_k = 0$	
ADR	(DG or Mag)	VSTM: $f = -g$, BYPASS (I1) PLAM: $f_{\mathbf{p}} = 0$, $(\omega_{\mathbf{p}/1})_{\mathbf{p}} = 0$,	$\Delta^{\text{f}}_{\text{K}} = 0, \Delta \omega_{\text{K}} = 0,$ $\Delta^{\text{f}}_{\text{K}} = 0, \Delta \omega_{\text{K}} = 0,$ $\omega_{\text{K}} = 0 \text{ (IF Only)}$		VSTM: Same as IDR to PDR
(F or S)	without TAS	$\frac{WASM:}{ \Delta^{V}ASM K} = 0$		WASM: \begin{align*} \beg	
IDR (F	with TAS			WASM: Execute (11,12) instead of (A1,A2) VSTM: BYPASS (A1) PLAM: 4k=0	$\frac{\text{VSTM}}{\rho_{\text{L}}}$: $\beta_{\text{L}} = 0$
From		With TAS	Without TAS	6	
/	То	IDR	(F 04 5)	ADR (DG of MAG)	PDR

After the above initializations, execution of each DR module should begin with the first new-mode operation and continue according to the order shown in the module operations summary table (except for the first-cycle omissions and substitutions above). The DR modules must also be executed in the order VSTM, PLAM, WASM. Note:

III.5.e

REFERENCE NAVIGATION MEASUREMENT SWITCHING MODULE

(RSWM)

This module comprises the operations necessary to switch processor operation from one reference navigation-measurement availability/use configuration to another such configuration, in the event of new measurement availability or old measurement drop-out.

Separate submodules are included for switching of (a) the TDPM emitter range/range-rate measurement configuration, and (b) the reference altitude measurement (ALTM) mode of operation.

In particular, the TDPM switching is organized first on a general, overall emitter-net basis, and then into a more detailed per-emitter basis. Markers are generated for each emitter which control the switching and subsequent operation of not only the TDPM modules themselves, but their associated KF error substates as well (via the KSWM).

The ALTM switching sets a single marker to corresponding control switching and subsequent operation of the ALTM and its attendant KF error substate.

Figure 28. Overall RSWM Organization/Logic/Data Flow

Figure 29. Reference Altitude Mode Switching Logic

Figure 30. TDPM Measurement Availability/Marker Setting

Company of the second s

i

Figure 31. TDPM Modules Processing Flow

40945

· Rate Aiding Operations Only.

Logic Flow Marker Flow

III.5.f

KALMAN FILTER CONFIGURATION SWITCHING* MODULE

(KSWM)

SPECIFICATION

*Navigation configuration and C Frame switching

This module, using the DR navigation mode and reference navigation configuration markers as inputs, controls the operation and switching of KF substates so as to correspond to and synchronize with the operation and switching of the D and R modules.

To facilitate thia, modules are grouped into (a) those dealing with current-cycle data (KTMM, KMMM), (b) those dealing with last-cycle data (KTUM, KFIM, KMRM, KMCM, and KMCM), and (c) those dealing with data from both cycles (KCOM). For each of these modules, both a standard operation (i.e., operation according to the MLI module specification), and a non-standard operation (i.e., slightly modified operation, or complete bypass) is defined. Standard or nonstandard current-cycle and next-cycle operation, and appropriate KF substate switching, are then prescribed as a function of all possible combinations of D mode, R configuration, or C frame changes (or none at all) in the last and current KF cycles.

In particular, the substate switching requirements are simplified by defining them in terms of requirements on three D-substate, and three R-substate, logical sets; i.e., all those substates common to the pre- and post-switch (D or R) configurations, and all those associated with only the old, or only the new, configurations.

The rationale underlying KF module operation (standard, nonstandard, or bypass) during processor configuration switching rests simply on the desire to maintain the KF estimate current through such periods. Since switching operations take time, and estimator currency resides in the KTMM and KTUM module operations, operations of all other modules are reduced or bypassed to allow sufficient time for intermodal switching, and intramodal execution, of these modules at a sufficiently high rate.

TABLE LXV. KSWM nch CYCLE OVERALL REQUIREMENT SUMMARY

out on Redules

## Last (s-lat) EF Cycle Involved: ### C Frame Change Command ### Bypase C Frame #### Bypase C Frame ###################################	Cycle In	(C) 10 C FLAME SUTTEMENT ERQUINAMENTS	T. ASSETTS
3	3	If Last (a-lot) IF Cyc	le Lavelved:
		to C Press Change Comment	C Press Change Command
	TO The checuston	Bypess C Frame Suitching Operations Set up ath Cycle EF Nedels Operations per Table B	Set up ath Cycle EF Hadula Operations per Table B, except: n Bypase ECON o Exacute C Fram Selecting Operations just efter ath Cycle

c - Assumes that C frame outching of mon-IF variables (see CSM specification) is deserted until completion of all specations in IF cycle in which operator initiates C frame change commend.

(B) mch	י כוברו	ET HEBELE OPERAȚIONS MOBIF	(8) MEN CYCLE KF HOBULE OPTRAJIONS HOBIFICATIONS FOR MAN CONFIGURATION CHANGES
ETDB1 & ET28		If Current (ath) KF Cycle lavelves:	le lavelves:
		No D or A Conf. Change	Change in B or R or Both
ETDE		5TB (Ba, la)	MSTD (D'n,R'n)
KTAN		STD (Da, An, Im)	MST9 (W'n,R'n,W'n,)
KTUM & KUTOM	3	If Lest (m-let) KP Cycle Invelved:	e Invelved:
Marie		Do D or R Conf. Change	Change in D or R or Both
NA.		STD(Da-1, fa-1)	METB(D'n-1, R'n-1)
10.Die		STD(Da-1, fa-1, im-1)	MSTB(D'n-1,R'n-1,H'n-1)
PCOR MAN		If Current (ath Cycle) Involves:	Involves:
		No D or A Conf. Change	Cheege in B or R or both
11 Last (8-1st)	. 8	STB(Ba-1, La-1; Ba, La)	MSTD(Da-1, La-1; 0'a, R'a)
Cycle Izrel med		Cycle Invelved Change STB(D'n-1,R'n-1;Bu,Ra)	MOTD(P's-1,R'n-1;P'n,R's)

NETD - Standard module operation (per medule specification)
NETD - Modifications of standard module operations
required to accommedder BR and/or Ref May.
configuration changes within a RF yell
Dn,Rn,Mn - Single, skh typle D substate, R substate, or
measurement configuration required to be processed
when no D, R, or H changes occur is skh cycle.
D'n,R'Mn - Multiple, mth cycle D substate R substate
D, R, or H changes occur is skh cycle.

a - Camidates for complete bypass (except set u = 0,û = 0) for
any configuration change.

b - Candidates for complete bypass for D (or simultaneous D
and R changes) configuration change only.

As a special requirement on the very first complete KF cycle following turn-on, all KF modules should be entirely bypassed except the current-cycle data pro-cessing (i.e., the KTMM and 1988) modules.

TABLE LXVI. SUPPLARY OF nch-CYCLE NAV CONFIGURATION SWITCHING MODIFICATIONS TO STANDARD KIMM OPERATIONS

Execute Once at each Current-Cycle Change of: DR Hode DR Hode Oc. DR	Substate Switching Set Formation Time Update Hatrix Storage Matrix Generation Freswitch Time Update Hatrix Storage	Identify, Label and Store the D Substate Sets ^c ; PRED, POSTD, COMD ^a Store Preswitch-Generaced: (*Dss''Gbs''Rbs') s=COMD, Execute Standard Postswitch (*Dss''Gbs''Rbs') s, s'=POST+COMD Store Preswitch-Generated: (*Dss''Gbs''Rbs') s, s'=COMD ^b Execute Standard Postswitch Execute Standard Postswitch Generation of:	• Identify, Label, and Store the R Substate Sets ³ ; • Store Preswitch-Generated: (\$\phi_{Rs}, R_{Rs}\$)_{s=COMR}\$ • Store Preswitch-Generated: (\$\phi_{Rs}, R_{Rs}\$)_{s=COMR}\$ • Store Preswitch-Generated: (\$\phi_{Rs}, R_{Rs}\$)_{s=COMR}\$ • Execute Standard Postswitch Generation of:
•	Generat ion	(2Dss', 6Dss', Rnss') s.s'=0000	(dRs, Rs) s-com

PRED(R), POSTD(R), COMD(R) = Preswitch-only, postswitch-only, and common preswitch/postswitch

For these configuration change situations, PRER=POSTR=Null. D(K) substates. ٠

This operation is based on use of preswitch and postswitch DRMMs. This operation is based on use of preswitch and postswitch RMCMs and ALMMs. o e

TABLE LXVII. SUMMARY OF nth CYCLE NAV CONFIGURATION SWITCHING MODIFICATIONS
TO STANDARD KTAM AND KFIM OPERATIONS

		A.	KTMM MODIFICATIONS		
ns	Substate Class		D Substates	R Substates	
DR Nav Mode	Standard Operations Bypass	•	Completely bypass al cycle KTMM operation		
		•	Discontinue further generation of all TSMM sets involving PRER substates.		
Modifications		•	Initiate postswitch TSMM sets involving	-	
Ref Na		•		oted generation of all only COMR substates)	
		В.	KFIMs MODIFICATIONS	,	
Substate Class			D Substates	R Substates	
DR Mode Bypass Standard Operations Bypass			Completely bypass al KFIM operations	l current cycle	
	TCM Con	•	Omit processing of a last-cycle KMMM gene	ell TSMM sets* whose eration was discontinued.	
	DR Nav DR Nav Mode Mode Mode	Standard Operations Bypass Substate Class Substate Class Substate Class TSMM Set * Generation Modifications Substate Class TSMM Set * Class	Substate Class Standard Operations Bypass TSMM Set* Generation Modifications B. Substate Class Class Substate Class B. Substate Class TSMM Set* Generation Modifications B. Substate Class TSMM Set* TSMM Set*	Substate Class D Substates Class D Substates Completely bypass all cycle KTMM operations Bypass Discontinue further TSMM sets involving Initiate postswitch TSMM sets involving Continue uninterrunt TSMM sets involving Continue uninterrunt TSMM sets involving B. KFIMs MODIFICATIONS Substate Class D Substates Class D Substates Completely bypass all KFIM operations Completely bypass all KFIM operations Completely bypass all KFIM operations Completely bypass all KFIM operations	

*Time Synchronized Measurement Matrix Set: $(\overline{Y}_m, \overline{\Delta Y}_m, \overline{C}_m, \overline{M}_{ms}, \overline{N}_{ms}, \overline{Z}_{ms}, \overline{W}_{ms})$

86607

SUFMARY OF nth CYCLE NAV CONFIGURATION SWITCHING MODIFICATIONS TO STANDARD KTUM OPERATIONS TABLE LXVIII.

D/R Substates	PD/Rss') Post = COPE: (PD/Rss') Post = (PD/Rss') Pre Switch s = POSTD, s' = POSTR: (PD/Rss') Post = Constants Switch	s, i = POSTD + COED, s' = POSTR + COEE Execute Std KTUH D/R Operations, Using Update-Interval- Corresponding: (*Dsi*Gbsi*Psi* from Last-KF-Cycle, Nonstandard KTHH D and R Operations
R Substates	(*Rs' Pss') Post (*Rs' Pss') Pre Switch Switch s.s' = POSTR: Stored (*Rs' Pss') Post Constants Switch	Execute Std KTUM R Operations, Using Update-Interval- Corresponding: (\$\pa_{Rs}, R_{Rs}\$) from Last-KF-Cycle, Monstandard KTM R Operations
D Substates	s,s' = COMD: ("Ds'Pss') Post "("Ds'Pss') Pre Switch s,s' = POSTD: ("Ds'Pss'' "Ds) Post "Constants Switch	Execute Std KTUM D Operations, Using Update-Interval- Corresponding: (\$\phi_{Dss}''G_{Dss}''B_{Dss}')\$ from Last-KF-Cycle, idenstandard KTMM D Operations
Substate Class Operation	Cycle Time Cycle Initialization Cycle	Execute Once for Each May Change (D or R) in Lest K R of R R of R C of R

TABLE LXIX. SUMMARY OF KF DR NAV SUBSTATE SWITCHING SETS

			From DR Nav Mo	de	
		IDR	PDR	ADR (DG)	ADR (MAG)
	IDR	Com: DI1-7 Pre: " Post: "	DI1,2=DP1,2 DP3 DI3-7	DI1,2=DA1,2 DA3-7 DI3-7	DI1,2=DA1,2 DA3-7 DI3-7
v Mode	PDR	DP1,2=DI1,2 DI3-7 DP3	DP1-3 "	DP1,2-DA1,2 DA3-7 DP3	DP1,2-DA1,2 DA3-7 DP3
To DR Nav	ADR (DG)	DA1,2=DI1,2 DI3-7 DA3-7	DI3-7 DP3		DA1-7
	ADR (MAG)	DA1,2=DI1,2 DI3-7 DA3-7	DA1,2=DP1,2 DP3 DA3-7	DA1-7 "	DA1-7

Note: New mode substate initialization requirements:

- New common substates = old common substates
- Post substates = stored constants

Pre, Post, Com = Preswitch-only, postswitch-only, preswitch-postswitch-common substate sets

TABLE LXX. SUMMARY OF KF REF ALTITUDE SUBSTATE SWITCHING SETS

			From Ref Altitude Mode							
		APS	AB	GFB	GF					
		COM 8h			,					
	APS	PRE "	ôh _B							
	POST "		δh _p *	δh _p *	δh _p					
e			δh _B	в						
Mod	АВ		11							
To Ref Alt Mode		δh _B	11	δh _B						
Ref	CED									
Te	GFB									
	δh _p		δh _B							
	GF									

*Initialize According to $\delta h_D = \delta h_B$

**Assumes candidate KF ref alt error substate composition:

Note: New mode substate initialization requirements:

- New common substates = old common substates
- Post substates = stored constants

Pre, Post, Com = Preswitch-only, postswitch-only, preswitch-postswitch-common substate sets

TABLE LXXI. KSWM KF R SUBSTATE SWITCHING SETS*

nt Was:	Available	njth signal KF error substate is a preswitch- only R substate	njth signal KF error substate is a pre- and postswitch-common R substate**
njth Emitter Measurement Was:	Not Available		njth signai KF error substate is a postswitch- only R substate
Old RMCMnj Marker Setting		Not Available	Avaílable
Current	RMCMnj Marker Setting	njth Emitter	Measure- ment is:

*Applies to reference altitude measurements as well as njth emitter measurements. **If KF modelling of njth signal error is to be omitted (to make room for a new signal substate), this logical output marker state should be artificially set to preswitch-only instead, to enable its subsequent omission.

TABLE LXXII. C FRAME SWITCHING OPERATIONS SUMMARY (KF MODULES)

r							r			r
	85	ADK	s=DA1+DA2	s' = All sr0 except REnE Subset	a		s'=DA3=DA7	T.T.		s=DAl+DA2
	D/R Substates	PDR	s=DI1+DI2 s=DP1+DP2	sr0 except	(PD/Rss')n=T', (PD/Rss') n	(PD/Rss')n	s'=D13-D17 s'=DP3	s = All REnE in sr0 $(P_D/Rss')_n = (P_D/Rss')_T'T$	$(P_D/Rs's)_n = (P_D/Rss')_n$	s=DI1+DI2 s=DP1+DP2 s=DA1+DA2 s = All REnE in sr0 (PD/Rss')_n=T; (PD/Rss')_nT'T (PD/Rs's)_n=(PD/Rss')_n
(0000	Q	IDR	s=D11+D12	8' = All	(PD/Rss)n=T	$(P_D/Rs's)_n = (P_D/Rss')_n$	s'=D13-D17	(P _D /Rss')	(PD/Rs's)n	s=DI1+DI2 s = All (PD/Rss')n' (PD/Rs's)n'
	R Substates	s,s' = All REnE in sr0		(*Rs)n=Tsw(*Rs)n	("Rs)n-1 =T', ("Rs)n-1	(PRss') =T' (PRss') T'T	s = All REnE in sr0	s = Ail other $sr0(Rss') n T' (Rss') n$	(PRs's)n = (PRss')n	
	e s	ADR	s-DA1+DA2		n-1	T.T nSW	s'=DP3 s'=DA3-DA7	G		
	D Substates	PDR	s=DP1+DP2	(xDs)n=T'N (xDs)n	"Ds n-1 "T' w ("Ds)n-1	(Poss) n"T' (Poss) n'T' (Poss)		(Poss')n=T'sw(Poss')	" (PDss.) n	
		IDR	s=D11+D12	(xDs)	1 (80 _{n)}	(P _{Dss})	110-E1G-'2	(Poss')	(Pos's)n (Poss'	
	Substate Class					Kalman Filter	Matrices	Switching		
	Ope			*	c je	KE C	чэч	ı uş	no i ana	эхз

*Just after completion of nth cycle Estimate/Covariance Matrix Filtering Operations (unless bypassed on nth cycle; then just after completion of nth cycle Estimate/Covariance Matrix Time Update Operations).

New C Frame commanded by operator in (n-1) st KF cycle, but non-KF Nav Variables Switching delayed until all (n-1)st cycle KF operations completed.

**All REnE assumed here to be composed of both position and velocity error substates.

Note:
$$T_{SW} = \begin{bmatrix} T_{SW} & 0 \\ 0 & T_{SW} \end{bmatrix}$$

III.5.g

NAVIGATION CONSTANTS INITIALIZATION MODULE

(CONM)

SPECIFICATION

This module reads in all constants necessary to overall processor modular operations. Many of these constants are navigation equipment-related (they correspond to and are needed for characterization and correction of the navigation sensor equipment complement used), while the remainder are required whatever the equipment complement employed. These requirements are broadly summarized for each processor module in the tables included in this specification.

No attempt is made here to define either the associated input data constant verification operations or their attendant control/display panel interfacing operations, since these are outside the scope of the processor developed to date.

TABLE LXXIII. D MODULE CONSTANTS REQUIREMENTS

Constants	DR Nav E	DR Nav Equipment-Related Constants	stants	Equipment
D Module	IMU	AHRU	CADS(TAS)	Constants
VSTM				• Gravity and sub- aircraft position vector formulae constants • Pseudoacceleration model constants
PLAM	IMU inertial instrument and attitude readout calibration constants	AHRU attitude readout cali- bration constants		
	Geoidal curvature formula constants	rvature nstants		
WASM			TAS instrument calibration constants	 Angle-of-attack compensation function constants Wind model constants

TABLE LXXIV. R MODULE CONSTANTS REQUIREMENTS

Equipment	Independent Constants	Pseudo altítude operation constants	External- to-internal coordinate conversion constants	Ionospheric and tropospheric constants and statis-tics, and phase-to-range and receiver-to-computer units conversion constants
Ref Nav Equipment-Related Constants	Transceivers/Emitters			Emitter, transceiver power, clock, delay, noise, and multipath constants and statistics
Ref Nav Equips	CADS (Baro Alt)	Barometric altimeter calibration constants		
Constants	R Module	ALTM	POSM	Magl

66607

TABLE LXXV. K MODULE CONSTANTS REQUIREMENTS

Constants	75 Hay 20	May Equipment - Related	Constants	Equipment	Ref Nav Equipm	Ref Nav Equipment-Related Constants	Equipment
K Hodule	DAG	AHRU	CADS(TAS)	Independent Constants	CADS(Baro Alt)	Transceivers/Emitters	Constants
	DW subst ident, dim, dyn, noise, constants	• AHRU subst ident, dim, dyn, noise, constants	• CADS(TAS) subst ident, dim,dyn, noise constants	• Pos/vel'y subst dim, dyn,noise constants	• CADS(B. Alt) subst ident, dim, dyn, noiss	 Transcvr/emitter substate ident, dimensions, dynamical, noise constants 	
KF Structure				D substate measmt mtx constants	constants • CADS subst measmt mtx constants	 Transcvr/emitter subst measmt mtx constants 	
				error model			
L Tining			KF cycle time Module sequent	 KF cycle time Module sequencing timing constants 	tants		
KTUM				*			
W.DH			• Kalman/least sq	Kalman/least squares gain mix constants*	nstants*		
КСОН	IMU torquing algorithm constant			*			
KIJEUS			• KF retionablene	KF rettunableness test gain constants*	tants#		
ною			• POM/state relat	POM/state relationship matrix constants*	nstants*		
НЭЮ		* •	 Measurement -combination relative weighting function constants Measurement -combination noise function constants* 	n relative weight n noise function	ing function consconsconstants*	tants	
rTP#I				*			
XJ ee t				*			

*Plus constants specified under KF structure and/or KF timing above.

TABLE LXXVI. INITIALIZATION/SWITCHING MODULE CONSTANTS REQUIREMENTS

Constants	3	May Engineer - Polyton County and	Constants		Ref May Equipme	Ref May Equipment -Related Constants	
late/ Sutching Module	90	AMRU	CADS (TAS)	Equipment Independent Constants	CADS (Baro Alt)	Transceivers/Emitter	Equipment Independent Constants
E B				e VSTM FDR and KFM/ FDR init constants			
14 S			• Hev C frame defi	definition function constants	constants		
	ewfry test constants	CALM motages					
смл	e Platform level- ing op'n coust Al't compl'n test constants						
3	e Hev-IDR- mode DW variable initialization constants	• Mew-ADR- mode AMEU variable initializ'n constants	• Mew-ADR- cr IDR/TAS mode var initializ'n constants	Mev-PDR- mode var init const Nev-ADR- mode vind var init constants			
Herry					e Mes-Baro- Alt-gode var init constants	• New-emitter configura- tion variable in the alization constants	
WS3	• New-IDR- mode INU subst initialization constants	Mev-ADR- mode AMRU subst init constants	e New-ADR- or IDR/TAS- mode TAS subst init constants	New-PDR- mode pado acc/n subst init const New ADR- scoe wind subst init constants	New-Baro- alt-mode Baro alt subst init constants	• Mev-emitter config- uration substate initialization constants	

SECTION IV

HOL PROCESSOR (LIMITED MLI PROCESSOR VERSION)

This final main section presents and discusses a specialized, functionally limited, FORTRAN IV/IBM 370 programmed version of the MLI processor, as far as it has been developed to date.

The purposes of this development were two-fold. Both have been fulfilled. These were (a) to provide a first-time vehicle for MLI-based programming of a specific processor application in a specific language for a specific machine, and (b) to provide a program nucleus which could eventually be easily developed into either a processor algorithm evaluation, a simulation program, or a master, HOL navigation processor software generation program.

In order to permit a meaningful level of development of an HOL (FORTRAN IV) processor program toward these ends within the time and funding available in Phase II, a set of simplifying and facilitating guidelines and assumptions was therefore formulated prior to initiation of the actual programming effort. These guidelines and assumptions were then carefully adhered to during the development itself.

In this connection, a loose scenario for a multiphase tactical mission was first formulated. This scenario was chosen especially to enable (or even require) exercising many of the MLI processor functional capabilities, including most of those of special interest and importance (e.g., C-frame switching, simultaneous, dual-LOS-net pseudorange processing, etc.). Next, a candidate navigation processing design was formulated -- with particular attention to minimizing the required Kalman filter state vector size -- to accomplish this mission. This design, together with the mission scenario to which it applies, is summarized in paragraph 1.a in terms of the navigation/environment equipment assumptions, and in Table LXXVII in terms of candidate processor configuration by mission phase.

This scenario/candidate processing design then furnished the basis for identifying the appropriate subset of the general (Section III) MLI specifications necessary to implement it. To further delimit the required programming effort to the time and funding available, a set of additional simplification constraints, which are summarized in paragraph 1.b, was invoked. These were selected specifically to have minimal effect on program capabilities with respect to the chosen scenario (e.g., omission of coarse alignment and DR navigation mode switching capability did not reduce the capability of the program to conduct all significant phases of the mission shown in Table LXXVII. The residual MLI specifications required for final programming are summarized in subsection 2.

41001

TABLE LXXVII. CANDIDATE NAV PROCESSOR CONFIGURATION BY MISSION PHASE

Processor	J	2	ž	Nessuremen	ent Use				Þ	KF Configuration	ion				
Li On	, <u>a</u>		Pero	- A Y	28	Penò SU1									Comments
Mission /				100				D Substates	rates		-	R Substates		State	
<u>/</u>	troni na				*	Ale	DI1(3)	DI2(3)	013(3)	014(3)	RUA(1)	RDC(2)	RE(3,0T)	Size	
Plate 1 Drewt e	(Gelebel)	<u>ā</u>	×	×			×	H	×	Mon-g Sens. (long corr'n time)	H	User/ MAV SAT Diff	MVZAT Prop Error	61	User/MAV- SAT Clock Diff. and Diff. and Bur How-g Sens. Drift Rates Collbrated
Pase 2s															
Torget Area Approach	C • EF (Target - Local)	<u>a</u>	×	×	×	11a.	x	×	×	Mon-g Sens. (short corr'n time)	×	User/ LOS Het Diff.	LOS Net Detun Error	2	User/LOS Het Clock Diff. and LOS Detum Error Calibrated
Pass 28 Target Area Vespon Belivery	41 - 3	E			×	Lín.	×	×	×	Omit (Replace			8 <u>2</u>	13 9 9	High Accuracy
					-					with white noise forcing DI3)			Prop Error (or omit)		Weapon Delivery With Cali- brated Clock Diff.
These 2 Return to	2 - 0	104	×	×		-	×	×	×	Non-g	×	User/	NAVSAT	61	Same as
										(long corr'n time)		Diff.	rrop Error		Entoute

evis RF using linear signifilm

"Sacr processor configuration as enroute

1

Use of this framework of mission and hardware-related ground rules and constraints (as summarized in Table LXXVII and paragraphs 1.a and 1.b), in part created for the analyst and programmer involved an atmosphere not unlike that surrounding an actual software development for a specific, real-time navigation system application. This was valuable as a test of the usefulness of the MLI specifications in situations of this sort, for which it was in large part designed.

The actual HOL program developed to date is presented in subsection 3, in terms of general organization, module descriptions, common and special subroutines, an input/output and level-of-checkout discussion, and finally the actual FORTRAN IV program listing itself.

1. SPECIALIZING ASSUMPTIONS AND CONSTRAINTS

This subsection (and Table LXXVII) summarize the assumptions and constraints which simplified and facilitated the development of the nucleus program.

a. Navigation Environment/Equipment Assumptions

- (1) Navigation Environment
 - (a) Tactical aircraft
 - (b) Tactical multiphase mission
 - Enroute (NAVSAT/IMU)
 - Local area approach and weapon delivery (LOS ground net/IMU)
 - Return to base (NAVSAT/IMU)
- (2) Navigation Equipment
 - (a) Onboard aircraft
 - Digital navigation computer(s)
 - IMU (rotationally isolated)
 - LOS ground net receiver equipment (single channel, high-accuracy clock)
 - NAVEAT receiver equipment (single channel, high-accuracy clock)
 - Barometric altimeter
 - (b) External to aircraft
 - LOS ground emitter net (4 emitters; serial, synchronized transmissions; accurate, intra-net emitter location survey)
 - NAVSAT net (4 emitters; serial, synchronized transmissions; accurate E frame-referenced ephemeris data transmissions)

b. Processor Development Level Simplification Constraints

- (1) Basic Navigation Only
 - (a) Position/velocity vector outputs only (i.e., no aircraft attitude, attitude rate outputs)
 - (b) No coarse alignment
 - (c) No DR navigation mode switching (radio-inertial only)
 - (d) No intramission reference navigation switching
- (2) Simplest Algorithm Choice (where intramodular choices exist)
- (3) Limited Checkout (in absence of equipment/environment simulation)
- (4) Geodetic Assumptions: Spherical, homogeneous earth

2. MLI-BASED SPECIFICATION

With the set of simplifying ground rules just defined, the relevant subset of the overall MLI specifications of Section II which is required as a basis for programming can, because of the modular organization of the processor, be quickly identified.

This required MLI specification subset is briefly summarized in the following paragraphs.

a. Processor Module Requirements

- (1) Required Modules
 - (a) Initialization/Switching: CONM, CSWM
 - (b) DR Navigation: PLAM, VSTM
 - (c) Reference Navigation: ALTM, TDPM (TEWM, TRRM, TPCM, TMOM, TMMM)
 - (d) Kalman: KTUM, KFIM, KCOM, KTMM, KMMM
- (2) Modules Not Required
 - (a) Initialization/Switching: NSTM, CALM, DSWM, RSWM, KSWM
 - (b) DR Navigation: WASM
 - (c) Reference Navigation: POSM TDPM (TAAM, TALM, TDSM)
 - (d) Kalman: KMRM, KMCM, KMOM

b. Module Algorithm Requirements

- (1) CONM: Constants appropriate to (F) IMU, CADS(baro altitude) ground LOS and NAVSAT signal equipment and use only, and for only those modules specified in paragraph 2.a(1) above.
- (2) CSWM*
 - (a) IDR (without TAS) algorithms only
 - (b) C frame definition and input data**
- (3) VSTM*
 - (a) IDR algorithms only
 - (b) g_E, p_S formulae**
- (4) PLAM*
 - (a) IF algorithms only
 - (b) Omit Δw , Δf , $\Delta \omega_k$, Δf_k and ω_k computations entirely
 - (c) Omit $T_{A/P}$, $(\omega_{A/P})_P$ computations entirely
 - (d) K formula
- (5) ALTM*
- (6) TDPM*: G and S configuration algorithms only, pseudorange(no pseudorange rate) measurements only.
 - (a) TEWM: Operations GAS(3) and (4) only
 - (b) TRRM: GS(1), GAS(1) (3) only
 - (c) TPCM: GAS(2) only
 - (d) TMOM: GAS(1), (3), (5) and (7) only
 - (e) TMMM: GAS(1), (2) and (5) only.

^{*} See MLI module specification.

^{**}See the special, spherical homogeneous earth-based formulae which are summarized at the end of this subsection.

(7) Kalman Filter Partitioned Structure*

- (a) Error Substate Definitions:
 - D Substates: IDR only; DI1 through DI4, DI4** of dimension 3
 - R Substates: RUA (dimension 1)**, RUC (user/emitter net clock phase difference, dimension 2),** RE (emitter net datum error, dimension 3, or emitter signal propagation delay error, dimension 1 per emitter)**
- (b) D Substate Vector/Matrix Structure:
 - IDR only
 - x_D through b_D : per specification
 - A_D: 12,21,22,23,33^{**}, 34^{**}, 44^{**}
 - K_D: 4
 - $\phi_{\rm D}$: 11,12,21,22,13,23,33,34,44**
 - G_D: 13,23,33
 - R_D: 11,22,33,**44**
 - P_D: all
- (c) R Substate Vector/Matrix Structure: per specification, except all submatrices of (K,A ϕ and R)**
- (d) D/R Substate Vector/Matrix Structure: per specification
- (e) D/R Messurement-Difference Vector/Matrix Structure:
 - m = 2,3 only
 - Υ, Ψ, C, C, ΔΥ, ΔΨ: per specification
 - Z,W: all null
 - Mp: DI1
 - M_D: m = 2: DI1,DI2; m = 3: DI1,DI2,DI3

^{*} See MLI module specification.

^{**}Possible mission-phase-dependent substates.

- \overline{N}_D : m = 2: all null; m = 3: DI3
- M_R : m = 2: per spec; m = 3: M_{RUC} , M_{RE}^{**}
- (8) KF Modules Timing and Sequencing Organization: per specification
- (9) KTUM
 - (a) IDR only
 - (b) sd' = DI1+DI2 = DI1', DI3, DI4**
 - (c) sro = RUA*, RUC*, RUE*
- (10) KFIM
 - (a) sd', sro as above
 - (b) m = ml ** (set of all sequential time-point measurements in KF cycle)
- (11) KCOM
 - (a) IDR (IF only)
 - (b) sd', sro as above
 - (c) Non-KF Modules Control
 - ullet PLAM: Omit Δf_k and $\Delta \omega_k$ corrections
 - WASM: Omit
 - ALTM: AB algorithm only
 - TDPM: User/emitter clock correction = user clock correction shown; emitter net datum error is $\Delta_{K}^{e} = \Delta_{K}^{e} u_{REnE}^{e}$; emitter propagation error correction is $\Delta_{K}^{L} = \Delta_{K}^{L} u_{REnj}^{e}$ (per emitter).
- (12) KTMM
 - (a) IDR only
 - (b) sd', sro as above
 - (c) D Submatrix Generation: Execute the closed-form, nonrecursive equations shown below, once per KF cycle for KTUM use, and once per measurement availability per KF cycle for KMMM use.

^{*} Possible mission-phase-dependent substates

^{**}Mission-phase-dependent

(d) R Submatrix Generation: Execute the closed-form, non-recursive equations shown below, once per KF cycle for KTUM use with t = t_F-t_S, and once per measurement availability per KF cycle for KMMM use with t = t_i-t_F.

$$\text{KTUM} \\ \text{Use} \\ \begin{cases} \phi_{\text{D1'i'}} = \text{I} + \text{A}_{\text{DC1'1'}} \Delta t + \frac{1}{2} \left(\text{A}_{\text{DC1'1'}} \Delta t \right)^2 & \text{($^{\Delta}_{\text{DC1'1'}} = ^{\Delta}_{\text{DI1'1'}}; \\ see MLI D Substate \\ \text{structure} \\ \text{specifications}) \end{cases}$$
 KTUM Use
$$\begin{cases} \phi_{\text{D1'3}} = \left[\left(-\frac{1}{2} \text{g} \Delta t^2 + \Delta p - \text{v}_1 \Delta t \right) \times \text{T}_{\text{C/P}} \right] \times \text{T}_{\text{C/P}} \\ \text{($g \Delta t + \Delta v$)} \times \text{T}_{\text{C/P}} \right] \\ \phi_{\text{D3}} = \left[\left(-\frac{1}{2} \text{g} \Delta t^2 \right) \times \text{T}_{\text{C/P}} \right] \\ \left(-\frac{1}{2} \text{g} \Delta t^2 \right) \times \text{T}_{\text{C/P}} \end{cases}$$

$$\phi_{\text{D3}} = \text{I} - \left(\Delta \theta_{\text{E/I}} + \Delta \theta_{\text{P/C}} \right)_{\text{P}} \times \text{R}_{\text{D1'1'}} = \text{constant diagonal matrix} \\ \phi_{\text{D3}}^* = \text{I} \Delta t \quad (\text{or 0}) \times \text{R}_{\text{D3}}^* = \text{II} \\ \phi_{\text{D4}}^* = \text{I} \times \text{A}_{\text{DC4}}^* \Delta t \times \text{R}_{\text{D4}}^* = \text{II} \\ G_{\text{D3}} = \text{I} \Delta t \times \text{A}_{\text{DC4}}^* \Delta t \times \text{R}_{\text{D4}}^* = \text{II} \\ \left(\Delta \theta_{\text{E/I}} \right)_{\text{P}} = \text{T}_{\text{P/C}} \times \text{E/I} \Delta t \\ \left(\Delta \theta_{\text{P/C}} \right)_{\text{P}} = \left(\omega_{\text{P/C}} \right)_{\text{P}} \Delta t \end{aligned}$$

	KTUM Use	KMMM Use
Δt	t _F - t _S	t _i - t _F
Δν	v _F - v _S	v _i - v _F
ΔP	p _F - p _S	p _i - p _F
v ₁	^v s	v _F

g, $\omega_{E/I}$, $T_{P/C}$, $\omega_{P/C}$: any values in current KF cycle

^{*}Mission-phase-dependent

(13) KMMM

- (a) $m = m1^*$ (see above)
- (b) n = 1 (KF endpoint-synchronization only; no time smoothing)
- (c) sd', sro as above
- (d) Measurement Matrix Generation (m = 2; altitude): Execute the closed-form equations below once per measurement availability per KF cycle (i.e., once at t = t_p):

$$\overline{Y}_{D} = |h|_{F}$$

$$\overline{C}_{D} = constant$$

$$\overline{C}_{R} = constant$$

$$\overline{M}_{D1'} = M_{D1'F}$$

$$\overline{M}_{RUA} = M_{RUA} = -1$$

$$= \left[g^{T}/|g| \ 0\right]$$

$$\overline{\Delta Y} = \overline{Y}_{D} - \overline{Y}_{R}$$

(e) Measurement Matrix Generation (m = 3; LOS pseudorange): Execute the closed-form equations below once per measurement availability per KF cycle (i.e., once per availability of emitter j at time t;

M_{REj} = -1 (NAVSAT or LOS emitter propagation error)

$$\overline{\Delta Y}_i = \overline{Y}_{Di} - \overline{Y}_{Ri}$$

 $r_{ji} = \frac{p_{ji} - e_{ji}}{p_{ij} - e_{ij}}$

- (14) Simplified Formulae (Based on homogeneous, spherical earth assumption):
 - (a) Gravity

$$g_{E}(p_{E}) = -\left[\left\{\frac{k_{o}}{|p_{E}|^{3}} - |\omega_{E/I}|^{2}\right\}I + (\omega_{E/I})_{E} (\omega_{E/I})_{E}^{T}\right] p_{E}$$

$$(if |p_{E}| \le R_{o} - \Delta R, \text{ take } g_{E} = 0$$

$$(k_{o} = G_{o} R_{o}^{2}; G_{o}, R_{o}, \Delta R \text{ are scalar constants})$$

(b) Subaircraft Position Vector

$$P_S = \frac{R_O}{|P_E|} P_E$$

(c) Earth's Geoidal Curvature Matrix

$$K_{L} = \frac{1}{|P_{E}|} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

(d) C Frame Definition

Enroute:
$$C = E$$
, so that $C_{C/E} = 0$, $T_{C/E} = I$

Objective Area: C = Tangent-plane, Cartesian frame centered at λ_{CTR} , L_{CTR} , L_{CTR} , L_{CTR} (latitude, longitude, altitude), so that:

$$C_{C/E} = (R_o + h_{CIR}) \begin{bmatrix} c_{11} \\ c_{12} \\ c_{13} \end{bmatrix} T_{C/E} = \{c_{ij}\}_{3\times 3}$$

$$c_{11} = \sin \lambda_{\text{CTR}}$$
 $c_{12} = \cos \lambda_{\text{CTR}}$ $\cos L_{\text{CTR}}$ $c_{13} = \cos \lambda_{\text{CTR}}$ $\sin L_{\text{CTR}}$
 $c_{21} = 0$ $c_{22} = -\sin \lambda_{\text{CTR}}$ $c_{23} = \cos L_{\text{CTR}}$

$$c_{31} = \cos \lambda_{CTR}$$
 $c_{32} = -\sin \lambda_{CTR}$ $\cos L_{CTR}$ $c_{33} = -\sin \lambda_{CTR}$ $\sin L_{CTR}$

3. FORTRAN IV/IBM 370 PROGRAM DESCRIPTION

The MLI specification approach to generating digital navigation system software does in fact introduce many savings in programming, in checkout, and in changes and modifications to such software. This conclusion has been reached as a result of the direct (although limited) experience gained with the technique in actually programming the limited-version, FORTRAN IV/IBM 370 program presented and discussed here. The validity of this contention will become more apparent against the background of the organizational simplicity and flexibility which, by following the MLI specification, have been embedded in this sample program.

Before proceeding with the discussion, it is first emphasized that the program developed to date is not yet either usable or fully checked out. That is, because no dynamic, mission-history simulation of navigation sensor input data and vehicle flight profile is yet available, it has not been possible to carry checkout past a relatively rudimentary level (i.e., only to the level of separate module or module group checkout and only with fixed inputs), let alone to exercise the overall program in simulated navigation. Nevertheless, the program, even in its present state, constitutes an advanced nucleus and point of departure for the eventual development of a complete processor/processor environment simulation and evaluation program.

At least equally important of course, are the facts that (a) it has, as indicated above, served as a practical test bed for the MLI specification concept and (b) its design illustrates how one might design a processor in any HOL language, either to verify (and adjust) a selected mechanization, or even to translate the selected mechanization into an actual, real-time HOL system navigation program.

a. General Organization

In programming this version, extensive use has been made of the subroutines, array structuring, and indexing features of FORTRAN IV. Dynamic
forcing inputs are of course (as indicated above) not available, and output
routines have not been included, since in checkout these depend on the checkout technique employed, and for any particular working application depend on
the output coordinates peculiar to the application itself (e.g., latitudelongitude, UTM, etc.). On the other hand, internal, intermodular communication
has been embedded (but not yet fully checked out) via storage in appropriate
common blocks, organized so as to ensure that the most recently computed
results will always be used.

The program has been organized into five basic modular groups: the startup and initialization modules, the DR navigation modules, the reference modules, the Kalman modules, and the special output modules.*

^{*}Note that these groupings differ slightly from the MLI groupings in that each of the switching modules has been embedded as part of the group of medules it controls. This is not, however, a real difference, but only one in point of view.

Of these, the D, R, and K module groups (which modularly embed the dynamic mode, configuration, and C frame switching operations) together comprise the dynamic navigation loop, and the special output modules (none of which are included) comprise the functions necessary for any of a wide class of output operations (e.g., conversion of internal C frame-referenced navigation quantities to output display coordinates or control signals):

The start-up and initialization modules, in addition to embedding the MLI CONM and NSTM functions, also configure the processor in accordance with the navigation equipment complement available (i.e., any subset of the overall IMU/AHRU/CADS/transceiver equipments which the current MLI processor is capable of processing).*

Another noteworthy (and prospectively very useful) feature of the program is its algorithm timing flexibility. Under input control, each module or algorithm thereof can optionally be executed at any desired frequency relative to a basic frequency, or even bypassed entirely.

In actual operation, all data constants and variables are saved in labeled common storage and are initialized in the block data routine. During turn-on, each basic module group is called and executed once to initialize fixed or specific arrays, pointers, algorithm timing, etc. Navigation sensor equipment characteristics, error models, and availabilities are input by the NSTM and CONM modules. These inputs are read using the FORTRAN Name List function.

After all required initial inputs are read and verified, dynamic main loop operation begins, with the DR navigation mode, the R configuration, the C frame, and the K configuration respectively and continuously controlled by the DSWM, the RSWM, the CSWM, and the KSWM. This is accomplished by setting internal pointer and software configuration markers to control the execution of only those algorithms appropriate to the selected type of processor operation.

In this functionally limited program, only the IDR mode algorithms are programmed. However, the markers and specific entry points for ADR and PDR operations have been included so that the mode-specific algorithms can later be inserted with absolutely no change to the program organization. Figure 32 is a summary block flow diagram of the program organization.

Table LXXVIII summarizes the main program organization in terms of the FORTRAN flow and command symbology actually implemented.

^{*}It is this processor-configuration feature which, if appropriately generalized, could comprise an important step toward eventual realization of an HOL software generation program.

Section 2

Figure 32. FORTRAN IV Processor MACRO Flow

40917

TABLE LXXVIII. MAIN PROGRAM ORGANIZATION SUMMARY

```
BLOCK DATA (all common arrays, constants, etc.)
                  END
                MAIN
                CALL SET-UP (initialize variable arrays)
                CALL CONVM (input fixed constants)
                CALL NSTM
                             (input start-up condition of arrays and pointers)
MAIN PROGRAM
                CALL PROCES (processor main loop timing/execution control)
                             (end of job)
                CALL EXIT
                RETURN
                END
                SUBROUTINE PROCES
                   (labeled common arrays and variables)
                CALL DR NAV (initializes each D module to specified configuration)
                CALL RF NAV (
                                              R
       INIT.
                                   **
                                                             **
                CALL KALMAN (
                                               K
                CALL SPECAL (
                                               0
                CALL DSWM
                CALL CSWM
                CALL CALM
                CALL PLAM
       DYN.
       NAV
       LOOP
                CALL KMCM
                CALL OSWM
                CALL OUTM
```

The entire control program thus consists essentially of subroutine calls; each call (e.g., CALL PLAM) shifts program control to the execution group:

```
ENTRY PLAM

(PLAM Module Operations)

RETURN
```

This arrangement efficiently allows for retention of module processing capability even in the absence of that module. A similar capability, using the FORTRAN GO TO, DO loop and CONTINUE operations, is embedded at the intramodular, specific algorithm level as well.

The remaining paragraphs of this subsection present the principal features and specifics of the FORTRAN IV program. It should be kept in mind in reviewing this discussion that almost all of these features and specifics are strongly influenced by the structure and characteristics of the higher order language (FORTRAN IV), the compiler (FORTRAN IV/IBM 370/65), and the machine (IBM 370/65) employed. The techniques selected therefore represent the best programming compromise in the programmer's judgment -- and against the background of the limited time allotted -- to realizing a program nucleus capable of generalization in any one of the several directions discussed earlier. (See the introduction to Section IV.)

b. Switching Modules*

This paragraph briefly describes and defines the markers used in the program to implement processor DR navigation mode, reference navigation configuration, and C frame switching requirements; i.e., the functions of the DSWM, CSWM, RSWM, and KSWM modules respectively. Descriptions of the functions of these modules has been emitted here, since these have already been presented in the corresponding MLI module specifications. The markers are summarized by module in Tables LXXIX through LXXXII.

TABLE LXXIX. DR NAV MODE SWITCHING MODULE (DSWM) MARKERS

Marker	Description	Marker Values	Meaning
DEQM DEQO	Current DR Equipment Availability Previous DR Equipment Availability	1 2 3 4 5	No IMU, AHRU or TAS AHRU and TAS only IMU only IMU and TAS only IMU, TAS and AHRU
D IMU	Current IMU Availability	1 2 3	No IMU IMU type (F) IMU type (S)
DIDR	IMU Status Control	1 2 3 4 5 6	Coarse Align Fine Align Alignment Complete IMU Nav Mode (IMU only) IMU & TAS only IMU, AHRU & TAS

^{*}In addition to the required CSWM, this paragraph discusses the D, R, and K switching modules, which are not required for the limited, single-mode program scenario assumed here, but which have nevertheless been preliminarily formulated to provide a built-in base for later inclusion of full-mode switching capability.

TABLE LXXIX. (Continued)

Marker	Description	Marker Values	Meaning
DAHS	AHRU Availability	1 2 3	No AHRU AHRU DG Mode AHRU MAG Mode
DAHR	AHRU Status Control	1 2 3 4 5	No AHRI & TAS AHRU Align AHRU Align Complete AHRU DG Mode AHRU MAG Mode
DTAS	TAS Availability	1 2	No TAS TAS
DRIM DRMO	Current DR Nav Mode Marker Previous DR Nav Mode Marker	1 2 3 4 5	PDR Mode ADR Mode IDR (IMU only) IDR (IMU & TAS) IDR (IMU, TAS, AHRU)

TABLE LXXX. C FRAME SWITCHING MODULE (CSWM) MARKERS

Marker	Description	Marker Values	Meaning
CFRM	Current Nav Reference (C) Frame	1 2	No change Switch Initialization
KFFN	C Frame Switching Time Control	1 2 3	Do not Switch Complete KF Switching Kalman Switch Completed

TABLE LXXXI. REF NAV MEASUREMENT CONFIGURATION SWITCHING MODULE (RSWM) MARKERS

Marker	Description	Marker Values	Meaning
EBAR	Altitude Control	1 2 3 4 5 6	No Baro Altitude Pseudo Altitude Only Baro Altitude Field Altitude and Baro Altitude Field Altitude Pseudo and Field Altitude
DALT	Altitude Available		
ALMM	Altitude Mode		
REQM	Ref Nav Equipment Availability Marker	1 2	No Change in Equipment Availability Status Change in Equipment Availability Status

TABLE LXXXII. KALMAN FILTER SWITCHING MODULE (KSWM) MARKERS

Marker	Description	Marker Values	Meaning
KEQM KRMM REQM REQO	As Defined Above		
KALL	Select KF Module Set to Execute		
NOMS	Number of Measurements to Process from Previous Cycle		
DSWTH	DR Nav - Switched	1 2	No Switch DR Switched
RSWTH	Ref Nav - Switched		
NOSW	Number of DR Nav Switches in Previous KF Interval		

c. Other Modules

The programming of almost all other (i.e., nonswitching) modules so closely follows the MLI specification as to be self-explanatory. No further definition is therefore given here.

d. Array Structure

The program extensively defines and utilizes FORTRAN data arrays to facilitate handling of the multidimensional data sets associated with (1) reference navigation measurement type availability, (2) selected measurement processing for the Kalman filter, and (3) Kalman filter estimate and covariance matrix processing. These are discussed in turn in the following paragraphs.

(1) Reference Navigation Measurement Type Availability Arrays

The one-dimensional array RKRAY(N) is used to define the availability and viability of reference navigation measurement equipment and output data. In this array the ranges N=1 to 5, 6 to 10, 11 to 15, and 16 to 20 respectively contain reference altitude, reference ground LOS emitter, reference airborne emitter, and reference NAVSAT emitter data. In each such block of 5 words, the individual words represent the information summarized below (for each of the equipment group types just identified).

The first word of each block defines the current equipment status according to:

- l = Data input available from this net
- 2 = Add new emitter/input to this net
- 3 = Drop emitter/input from this net
- 4 = Drop complete net, discontinue processing data from this net
- 5 = Add a complete net.

Words 2 through 5 define emitter type and number according to:

- 1 = Emitter data available
- 2 = Add to net this emitter
- 3 = Drop emitter from net
- 4 = Spare
- 5 = Spare

(2) Measurement Processing Arrays

The 3-dimensional array PHI (L,M,N) is used here (a) to save data appropriate for synchronized measurement matrix generation at the end of the KF cycle, and (b) to save data appropriate for KF DR mode switching operations in the next KF cycle. The indices N, M, and L respectively denote:

- N = Index of raw measurement data type.
- M = Index of set of scalars, vectors, and matrices associated with use of a raw measurement data type N; i.e.,:

1. M_D 6. $\omega_{P/C}$ 11. M_R 12. Measurement type 3. Δt 8. C_D 13. Emitter number 4. Δv 9. Y_R 14. Clock (net) 5. Δp 10. C_R 15. Propagation data

L = index of elements of each of the entities of index M.

Another 3-dimensional processing array, DDM (L,M,N) is used for several purposes in the program, one of the more important of which is in the synchronized measurement time-smoothing operation. The indices M,N, and L here respectively denote:

- M = index of raw measurement type; i.e.:
 - 1. Position

4. Range rate (LOS)

2. Altitude

- 5. Range (EM)
- 3. Range (LOS)
- N = index of data group types associated with measurement type M; i.e.:
 - 1. \overline{Y} , \overline{Y}_D , \overline{Y}_R , \overline{C}_D , \overline{C}_R , \overline{M}_{Ds} , \overline{M}_{Rs}
 - 2. \overline{N}_{DS}
 - 3. \overline{Z}_{Ds}
 - 4. WDs
- L = index of data within group type N of measurement type M.

(3) Kalman Filter Arrays

Substate-partition-related arrays are used extensively to store the variable sets defined in the detailed KF structure tables of the MLI KF structure specification. Since these are directly patterned on the MLI specification, no further definition is given here.

e. Subroutines

Both common and special FORTRAN subroutines are employed extensively in the program.

The common subroutines consist almost exclusively of vector-matrix operations; a few of these are general (IBM 370/65, FORTRAN IVH extended) FORTRAN V library subroutines, but the main body are navigation-specialized, Northrop library subroutines. The common subroutines are summarized in Table LXXXIII.

The special subroutines, which were developed specifically for this program, are of two kinds: (1) those which were designed in conjunction with, and facilitate the use of, the special data arrays described above (e.g., the special subroutine MXMV used in the KF measurement processing modules), and (2) those which mechanize operations which are expected to be highly application-dependent (e.g., the VSTM gravity computation).

TABLE LXXXIII. COMMON AND MATHEMATICAL SUBROUTINES

1				
Mnemonic	Description			
DOT	Dot product of two vectors			
ADOT	Angle between two vectors (in degrees)			
ADOTR	Angle between two vectors (in radians)			
FNORM	Normalize a vector			
VNORM	Normalize a vector			
VCROS	Vector cross product			
VADD	Vector addition			
VSUB	Vector subtraction			
VSCL	Scalar times a vector			
VCXR	Vector times a vector transpose (outer product)			
VRCX	Vector transpose times a vector (inner product)			
VMOV	Vector transfer			
ADDM	General matrix addition*			
SUBM	General matrix subtract*			
MPYM	Matrix multiply general*			
MTRA	Matrix transpose general*			
VTRT	Matrix transpose times a vector $(3x3)^T$ $(3x1)$			
MTRT	Matrix times matrix transpose $(3x3)$ $(3x3)$ ^T			
VTRN	Matrix times a vector $(3x3)$ $(3x1)$			
MTRN	Matrix times a matrix (3x3) (3x3)			
WCROS	Vector into rotation matrix			
STRN	Rotation (of a vector) about a coordinate axis (3x1)			
GTRN	Generates a rotation matrix about a line (3x3)			
GTSN	Generates a rotation matrix in terms of successive			
	rotations about 3 axes (3x3)			
INVERT	Invert a matrix			
MSCL	Scalar times a matrix			
MGID	Generate identity matrix			
SINE	Sine of an angle			
COSINE	Cosine of an angle			
SQRT	Square root			

^{*}Essentially unmodified FORTRAN library subroutines

HOL (FORTRAN 4) PROCESSOR VERSION	HAIN	
	Z Z Z Z Z Z Z Z Z	
TARI	NATA	. •
ALL SETUP	NAIN	
ALL	ZIVE	
ALL		٠,
ALL		_
ALL		
	N N N	4
END OF MAIN PROGRAM		_
		-
		Ž.
		4
BLOCK DATA	BLKD	
BLOCK DATA	BLKD	
COMMON /AI/	BLKD	
3),G(3),FP(3),PE(3),CE(3),GE(3),PS(3),P(3),DF(3)	BLKD	•
2, UM 31, VAS(31, M, UV (31, UP (3), V(3), UL (3), UZ (31, U3 (3), CEN(3), UCSM(3)	BLKD	
S+ICEN(4)+FACC(5)+VASA(5) COMMON /All/ VEC(3)-VEC1(3)-VEC2(3)-VEC1(4)		•
2, VEC3(9), VEC 4(9), VEC 5(9), VEC6(9), VEC 7(9), VEC8(9), VEC9(9), VEC10(9)		
3, VEC12(36), VEC13(36), VEC14(36)		_
CUMMON /AZ/	BLKD	-
1 TAP(3,3),TLC(3,3),TPL(3,3),TPC(3,3),TCE(3,3),TAC(3,3),TAA(3,3)		-
2, TKA(3, 3), TKL(3, 3), TSW(3, 3)		-
COMMON /A3/		- ·
**************************************		4 -
COMMON /A4/	BLKD	4 -4

DALT.ALMM KFFN W.NOSI.NOMS.NOEM.NOSW BLK L.DELTP.DELRO.DELTC.DTPL.DELTV.FTKAL BLK BLK D.TPAL(10) .TWAS(10) .TVST(10) .TRSW(10) BLK C(9) .PGCC(9) .TPLF(9) .TPLA(9) BLK S(50) .XT(50) BLK S(50) .X	DEOM. DEOD. DRM	BLKD	1
**************************************	CFRM, CFRM, CFCN, CFCD, DAHS,	BLK D	7
. NOMES.DSWTH.RSWTH.NRSW.NGSI,NGMS,NDEM,NDSW DIMENSION TING(130) DIMENSION TING(130) DIMENSION TING(130) DIMENSION TING(130) DIMENSION TING(130) FLIME,DELT,STIME,BTI,TKAL,DELTP,DELRG,DELTC,DTPL,DELTY,FTKAL BLKD TATT(10),TPGS(10),TCAL(10),TAAL(10),TWST(10),TRSW(10) BLKD TATT(10),TPGS(10),TCAL(10),TAAL(100),TWST(10),TPCT(10),TRSW(10) BLKD TATT(10),TPGS(10),TDFT(10),TTGT(10),TPCT(10) BLKD TATT(10),TPGS(10),TTGT(10),TTGT(10),TPCT(10) BLKD COMMON/ASI,NGS,MTCH(100),TMTCH(100) BLKD THOM (13),TMTCH(10),TMTCH(100),TMTCH(100) BLKD THOM (13),TMTCH(10),TMTCH(100),TMTCH(100) BLKD THOM (13),TMTCH(10),TMTCH(100),TMTCH(100) BLKD THOM (13),TMTCH(10),TMTCH(10),TMTCH(10) BLKD THOM (13),TMTCH(10),TMTCH(10),TMTCH(10),TMTCH(10),TMTCH(10) BLKD THOM (13),TMTCH(10),TMTC	*KEDM.KRMM.KRMO,REDM,REDO,KFFN	BLKD	5
DIMENSION TING(130)	. NOMES.D SWITH, R SEITH, NR SW, NOSI, NOMS, NOEM, NOSK	BLKD	2
FLTIME, DELT, STIME, BIL, TKAL, DELTP, DELTC, DTPL, DELTV, FTKAL BLKD	IMENSION TING(130)	BLKD	2
FITTHE, DELT, STIME, BTI, TKAI, DELTP, DELTC, DTPL, DELTY, FTKAL FITTHE, DELT, STIME, BTI, TKAI, DELTP, DELTC, DTPL, DELTY, FTKAL TOSSULIO), TCSMILIO, TCALLIO), TYDALLIO), TYDALLIO), TYSTILO), TYSTILO), TSSMILO) BLKD BETAI B, DWK 131, DFK 131, PACCI 91, TPLF (91, TPLA (91) BLKD BLKD COMMON ASI, NO, SWTCHILOO, FWTCHILOO) BLKD COMMON ASI, NO, SWTCHILOO, FWTCHILOO) HM 501, DWZ 101, DNS (501, DS (501, XT (501) HM 501, DWZ 101, DNS (501, UDS (501, XT (501) BLKD UNDS (501, UDS (501, UDS (501, XT (501) DIMENSION BROM 1371, BDRM (137), BBRM (137), BKRM (377), BLKD DIMENSION DDM (50, 60, 4), DDL (60, 601), GDL (601), DR (601), UDM, QB BLKD URS (377, DRZ (377) DIMENSION DDM (50, 60, 4), DDL (601), GDS (131), BKRM (131), BKRM (131), BKRM (131), GDL (131	COMMON /AS/	BLKD	2
TOSU(10)TCSW(10)*TCAL(10)*TPAL(10)*TMAS(10)*TVSY(10)*TRSW(10)**BLKD **TALT(10)**TDSS(10)**TDF(10)**TRLT(10)**TSPC(10)** **TALT(10)**TDSS(10)**TDF(10)**TRLT(10)**TSPC(10)** **SETA(10)**DDK(13)**DFK(13)**PCK(19)**PCK(19)**TLF(19)**TPLA(19)*** **COMMON ASI/**NO.SWTCH(100)**PRITCH(100)*** **COMMON ASI/**NO.SWTCH(100)**PRITCH(100)*** **COMMON ASI/**NO.SWTCH(100)**PRITCH(100)*** **COMMON ASI/*** **MATCOLO***DNX**IDO***DNX**IDO***DNX**IDO*** **MATCOLO***DNX**IDO***DNX**IDO***DNX**IDO*** **MATCOLO***DNX**IDO***DNX**IDO*** **DUDOS(50)***NO***IDO***DNX**IDO*** **DUMENSION BRDM(37)**BRM(37)**BRM(37)** **BUKD***DNX**IDO***DNX**IDO***DD116***S1***DNX**IDO*** **DUMENSION BRDM(37)**BRPM(37)**BRM(37)**BLKD*** **DUMENSION BRDM(37)**BRPM(37)**BRM(37)**BLKD*** **DUMENSION BRDM(37)**BRPM(37)**BRPM(37)**BLKD***BL	FLTIME, DELT, STIME, BT1, TKAL, DELTP, DELRO, DELTC, DTPL, DELTV, FTKAL	BLKD	23
TALT(10)TPOS(10)**TDP(10)**TKLT(10)**TSPC(10) **BETA(13)**DWK(13)**DFK(13)**PGC(19)**TPLF(19)**TPLA(9)** **BETA(13)**DWK(13)**DFK(13)**PGC(19)**TPLF(19)**TPLA(9)** **BETA(13)**DWK(13)**DFK(13)**PGC(19)**TPLF(19)**TPLA(9)** **BETA(10)**DWS(10)**DS(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(10)**TPLA(10)**PGC(, TOSU(10), TC SW(10), TCAL(10), TPAL(10), TWAS(10), TVST(10); TRSW(10)	BLKD	7
### ### ##############################	, TALT(10), TPOS(10), TTDP(10), TKLT(10), TSPC(10)	BLKD	7
COMMON/ASI/ NG.SWTCH(100), RWTCH(100) COMMON/ASI/ NG.SWTCH(100), RWTCH(100) COMMON ASA/ VO(3), PO(3), VK(10), AMUR.DYXP VO(3), PO(3), VK(10), DNS(50), ESS(50), XT(50) LWD S(50), VX S(50), US S(50), BBDM(50), DBDM(50), BKDM(50), UDM, QB BLKD OUNENSION BRDM(37), BBRM(37), BBRM(37), BKRM(37), BLKD OUNENSION DDM(50,6,4), OD11(6,6), OD13(6,3), GD13(6,3), XRS(37) BLKD OUNENSION DDM(50,6,4), OD11(6,6), OD13(6,3), GD13(6,3), XRS(37) BLKD EQUIVALENCE (BBDM(13), BBRP(1)), (DBDM(13), DBRM(1)), (BKDM(13), BKRM(1)) LI), (HM(13), RM(1)), (DNS(13), DRS(11), (DSS(13), DRS(11)) EQUIVALENCE (XDS(13), XRS(1)), (UDS(13), URS(1)) BLKD OCDISS(3,3), GD13(3,3), TO12(3,3), TO22(3,3), OD13(3,3) SP1(16,6), P13(6,3), P14(6,3), P15(6,1), P16(6,2), P17(6,4) P11(6,6), P13(6,3), P14(6,3), P15(6,1), P16(6,2), P17(6,4) P11(6,6), P13(6,3), P14(6,3), P15(6,1), P16(6,2), P17(6,4) P11(6,6), P13(3,3), P44(3,3), P55(1,1), P56(1,2), P77(4,4) P11(4,5), P53(1,3), P64(2,3), P75(4,1), P16(4,2), P77(4,4) P11(4,6), P73(4,3), P76(4,3), P76(4,2), P77(4,4) P11(4,6), P73(4,4), P76(4,3), P76(4,2), P77(4,4) P11(4,6), P73(4,4), P76(4,3), P76(4,2), P77(4,4) P11(4,6), P73(4,4), P76(4,3), P76(4,2), P77(4,4) P11(4,6), P71(4,4), P76(4,2), P77(4,4) P11(4,6),	, BETA(3), DWK(3), DFK(3), PACC(9), PGCC(9), TPLF(9), TPLA(9)	BLKD	2
COMMON /A6/ VOT 31, VK(10) *AMUR *DYWP VOT 31, VK(10) *DALC 100 *AMUR *DYWP VOT 31, VK(10) *DALC 100 *DES 150) *XT 150) *UDDS(50) *XD S(50) *UDS (50) *GZ S(50) *XT 150) *UDDS(50) *XD S(50) *UDS (50) *GZ S(50) *XT 150) *UDDS(50) *XD S(50) *UDS (50) *BBDM(50) *DBRM(37) *BKRM(37) *BKRM BLKD DIMENSION BRDM(37) *BBRM(37) *BBRM(37) *BKRM(37) *BLKD DIMENSION DDM(50,60,4) *QD 11(6,6) *QD 13(6,3) *XRS(37) *BLKD DIMENSION DDM(50,60,4) *QD 11(6,6) *QD 13(6,3) *XRS(37) *BLKD EQUIVAL ENCE (BBDM(13) *BBRP(11) *(DBDM(13) *DR 2(11) *) *BLKD 11) *(HM(13) *RM(1)) *(ONS(13) *DRS(11) *(ODS(13) *DR 2(11) *) *BLKD COMMON /A61/ DH(150, 15, 10) *DDMS(10,6,4) *DMS(10,6,4) *DMS(10,6,4) *DHR(20,6,4) *BLKD *COMMON /A61/ COMMON /A61/ PH(150, 15, 10) *DDMS(10,6,4) *DMS(10,6,4) *DMS(10,6,4) *DHR(20,6,4) *BLKD *CD132(3,3) *GD131(3,3) *QD44(3,3) *QD44(3) *QD4(13,4) *QD131(3,4) *	OMMON/AS1/ NO, SWTCH(100), RWTCH(100)	BLKD	7
VO(3), PO(3), VK(10), AMUR, DYRP VO(3), PO(3), VK(10), AMUR, DYRP Hersol, DMZ(10), DNS(50), DZS(50), XT(50) *UDDS(50), XDS(50), UDS(50), BBDM(50), BRDM(50), BKDM(50), UDM, QB *UDDS(50), XDS(50), UDS(50), BBDM(50), DBDM(50), BKDM(37), BKRM(37) *UDDS(50), XDS(50), UDS(50), BBDM(51), BBDM(50), BKDM(57), BKRM(37) *UDDS(51), DRZ(51) *UDDS(51), DRZ(51) *UDDS(51), DRZ(51) *UDDS(51), DRZ(51) *UDDS(51), DRZ(51) *UDDS(51), DRZ(51) *UDDM(50,6,4), DDI(6,6) *UDDM(13), BKRM(13), BKM(13), BKRM(13), BKRM	COMMON /A6/	BLKO	7
### \$60).DMS(50).DSS(50).XT(50) *UDDS(50).WDS(50).DDS(50).BBDM(50).BBM(50).BWN(50).UDM,QB *UDDS(50).WDS(50).WDS(50).BBDM(50).DBM(50).UDM,QB *UDDS(50).WDS(50).WDS(50).BBDM(37).BBM(37).BWRM(37).RM(37) *UDDS(37).DRZ(37) *UDDS(37).DRZ(37) *URS(37).DRZ(37) *URS(37).BRZ(37) *URS(37).IKK(20) *URS(VO(3), PO(3), VK (10), AMUR, OYMP	BLKD	5
.UDDS(50).XDS(50).UDS(50).BBDM(50).DBOM(50).BKDM(50).UDM,qBBBLKD DIMENSION BRDM(37).BBRM(37).BBRM(37).BKRN(37).BKRN(37).BLKD DIMENSION DDM(50.6.4).DDII(6.6).DDI3(6.3).GDI3(6.3).XRS(37) BLKD DIMENSION DDM(50.6.4).DDII(6.6).DDI3(6.3).GDI3(6.3).XRS(37) BLKD DIMENSION DDM(50.6.4).DDII(6.6).DDI3(6.3).GDI3(6.3).XRS(37) BLKD EQUIVALENCE (BBDM(13).BBRP(1)).(DDBM(13).DRR(1)).BKRN(13).BKRN(13).BKRD 1)).(HM(13).RM(1)).(DNS(13).DRS(1)).(DS(13).DRZ(1)) BLKD COMMON /A61/ COMMON /A61	. HM (50), DM2 (10), DNS (50), GZ S (50), XT (50)	BLKD	ĕ
DIMENSION BRDM(37).BBRM(37).BBRM(37).BBRM(37).BKRM(37).RKM(37) DIMENSION BRDM(37).BBRM(37).BBRM(37).BBRM(37).BLKD DIMENSION DOM(50.6.4).DD11(6.6).DD13(6.3).GD13(6.3).XRS(37) BLKD UNS(37).JRK(20) GUIVALENCE (BBDM(13).BBRP(1)).(DBDM(13).DBRM(1)).(BKDM(13).BKRM(BLKD EQUIVALENCE (KDS(13).BRP(1)).(DDRS(1)).DRS(1)) COMMON /A61/ COMMON /A61/ COMMON /A61/ PHI(50.15.10).DDMS(10.6.4).DMS(10.6.4).DMS(1)) COMMON /A61/ PHI(50.15.10).DDMS(10.6.4).DMS(10.6.4).DMS(1)) COMMON /A61/ COMMON /	.UDDS(50).XDS(50).UDS(50).BBDM(50).DBDM(50).BKDM(50).UDM.QB	BLKO	m
### PERSONATION DOMISONATION ### DECEMBER ### D	DIMENSION BROM(37), BORM(37), BBRM(37), OBRM(37), BKRM(37), RM(37)	BLKO	m
DIMENSION DDM(50,6,4),001116,6),001316,3),C01316,3),XRS(37) UKS(37),IKK(20) UKS(37),IKK(20) EQUIVALENCE (BBDM(13),BBRM(1)),(DBDM(13),DBRM(1)),(BKDM(13),BKRM(BLKD EQUIVALENCE (BBDM(13),BBRM(1)),(DS(13),DRS(1)),DRS(1)) EQUIVALENCE (XDS(13),XRS(1)),(UDS(13),URS(1)) EQUIVALENCE (XDS(13),XRS(1)),(UDS(13),URS(1)) EQUIVALENCE (XDS(13),XRS(1)),(UDS(13),URS(1)) BLKD PHI (50,15,10),DDMS(10,6,4),DMS(10,6,4),DMS1(10,6,4),DHR(20,6,4) BLKD PHI (50,15,10),DDMS(10,6,4),DMS(10,6,4),DMS1(10,6,4),DHR(20,6,4) BLKD **RARY(50),R(100),0D33(3,3),DDM4(13,3),TD22(3,3),DD13(13,3) **GD32(3,3),TD11(13,3),TD12(13,3),AD44(13,3),DR5(11,6) **PAI(16,6),P13(6,3),P14(6,3),P15(6,1),P16(6,2),P17(6,4) **PAI(16,6),P23(13,3),P44(13,3),P45(13,1),P46(13,2),P47(13,4) **PAI(13,6),P23(1,3),P54(1,3),P55(1,1),P66(2,2),P77(1,4) **PAI(14,6),P73(4,3),P74(4,3),P75(4,1),P76(4,2),P77(4,4) **PAI(14,6),P73(4,3),P76(4,3),P76(4,2),P77(4,4) **PAI(14,6),P73(4,3),P74(4,3),P76(4,2),P77(4,4) **PAI(14,6),P73(4,3),P76(4,3),P76(4,2),P77(4,4) **PAI(14,6),P73(4,3),P76(4,3),P76(4,2),P77(4,4) **PAI(14,6),P73(4,3),P76(4,3),P76(4,2),P77(4,4) **PAI(14,6),P73(4,4),P76(4,4),P76(4,4),P76(4,4) **PAI(14,6),P73(4,4),P76(4,4),P76(4,4) **PAI(14,6),P73(4,4),P76(4,4),P76(4,4),P76(4,4) **PAI(14,6),P73(4,4),P76(4,4),P76(4,4),P76(4,4) **PAI(14,6),P76(4,4),P76(4,4),P76(4,4),P76(4,4) **PAI(14,6),P76(4,4),P76(4,4),P76(4,4),P76(4,4) **PAI(14,6),P76(4,4),P76(4,4),P76(4,4),P76(4,4) **PAI(14,6),P76(4,4),P76(4,4),P76(4,4),P76(4,4) **PAI(14,6),P76(4,4),P76(4,4),	, DRS(37), DRZ(37)	BLKD	m
BLKD EQUIVALENCE (BBDM(13), BBRP(1)), (DBDM(13), DBRM(1)), (BKDM(13), BKRM(BLKD 1), (HM(13),RM(1)), (DNS(13),DRS(1)), (DZS(13),DRZ(1)) EQUIVALENCE (XDS(13),XRS(1)), (UDS(13),URS(1)) EQUIVALENCE (XDS(13),XRS(1)), (UDS(13),URS(1)) EQUIVALENCE (XDS(13),XRS(1)), (UDS(13),URS(1)) BLKD COMMON /A61/ PHI (50, 15, 10), DDMS(10,6,4),DMS(10,6,4),DMS1(10,6,4),DHR(20,6,4) BLKD *RKARY(50),R(100), OD 33(3,3), OD 44(3,3), TO22(3,3), OD 131(3,3) *CD 33(3,3), TO 11(3,3), TO 12(3,3), TO 22(3,3), OD 131(3,3) *CD 32(3,3), TO 11(3,3), PD 44(6,3), PD 46(6,2), PD 77(6,4) *PA 11(6,6),PD 31(3,3),PD 44(1,3),PD 56(1,2),PD 77(1,4) *PO 11(4,6),PD 31(2,3),PD 74(4,3),PD 76(4,2),PD 77(4,4) *PO 11(4,6),PD 31(4,3),PD 74(4,3),PD 76(4,2),PD 77(1,1)) *PO 11(4,6),PD 73(4,3),PD 74(4,3),PD 74(4,2),PD 77(4,2)) *PO 11(4,6),PD 73(4,3),PD 74(4,3),PD 74(4,2),PD 77(4,2)) *PO 11(4,6),PD 73(4,3),PD 74(4,3),PD 74(4,2),PD 77(4,4)) *PO 11(4,6),PD 73(4,4),PD 74(4,3),PD 74(4,2),PD 77(4,4)) *PO 11(4,6),PD 74(4,4),PD 74(IMENSION DDM(50,6,4),0011(6,6),0013(6,3),G013(6,3),XRS(37)	BLKD	m
EQUIVALENCE (BBDM(13), BBRP(11), (DBDM(13), DBRM(11), (BKDM(13), BKRM(BLKD 11), (HM(13),RM(1)), (DNS(13), DRS(1)), (DZS(13), DRZ(1)) BLKD EQUIVALENCE (XDS(13), XRS(1)), (UDS(13), URS(1)) BLKD EQUIVALENCE (XDS(13), XRS(1)), (UDS(13), URS(1)) BLKD BLKD COMMON /A61/ COMMON /A61/ PHI(50, 15, 10), DDMS(10, 6, 4), DMS(10, 6, 4), DMS(10, 6, 4), DMR(20, 6, 4) BLKD BLKD RXARY(50),R(100), 0D33(3,3), 30044(3,3) BLKD BLKD GD33(3,3), TO12(3,3), TO22(3,3), TO22(3,3), OD131(3,3) BLKD GD32(3,3), TO11(3,3), TO22(3,3), TO22(3,3), OREJ(16) BLKD GD32(3,3), D14(6,3), P15(6,1), P16(6,2), P17(6,4) BLKD GD31(3,5), P34(3,3), P35(3,1), P36(3,2), P47(3,4) BLKD GD31(3,6), P53(1,6), P53(1,6), P53(1,6), P53(1,6), P53(1,6), P63(2,3), P64(2,3), P76(4,2), P77(4,4) BLKD GD11(2,6), P73(4,3), P74(4,3), P76(4,2), P77(4,4) GD11(10,1), T012(1,1)) GD11(1,1), GD11(10,1), T012(1,1))	, URS(37), IKK(20)	BLKO	m
11), (HM(13), RM(1)), (ONS(13), DRS(1)), (UZS(13), DRZ(1)) EQUIVAL ENCE (XDS(13), XRS(1)), (UDS(13), URS(1)) EQUIVAL ENCE (XDS(13), XRS(1)), (UDS(13), URS(1)) COMMON /A61/ PHI (50, 15, 10), DDMS(10, 6, 4), DMS(10, 6, 4), DMS(20, 6, 4), BLKD RKARY(50), R(100), OD33(3, 3), OD44(3, 3) GD33(3, 3), TO11(3, 3), TO12(3, 3), TO22(3, 3), OD131(3, 3) BLKD GD33(3, 3), TO11(3, 3), TO12(3, 3), AD44(9), AD4(3), OREJ(16) RKARY(50), R(100), OD33(3, 3), PO12(4), OURE(16) AREJ(16), ARUC, ARUA, OURA, OURC (4), OURE(16) PP11(6, 6), P13(6, 3), P14(6, 3), P15(6, 1), P16(6, 2), P17(6, 4) BLKD PP11(1, 6), P53(1, 3), P54(1, 3), P55(1, 1), P66(1, 2), P57(1, 4) PP11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PO11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P73(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P77(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P77(4, 4), P76(4, 1), P76(4, 2), P77(4, 4) BLKD PP11(4, 6), P77(4, 6), P77(4, 6), P77(4, 6) PP11(4, 6), P77(4, 6), P77(4, 6) PP11(4, 6), P77(4, 6), P77(4, 6) PP11(4, 6), P77(QUIVALENCE (880M(13),88RP(1)),(080M(13),08RH(1)),(8K0M(13),8KRM(BLKD	ĕ
EQUIVAL ENCE (XDS(131, XRS(1)), (UDS(13), URS(1)) COMMON /A61/ COMMON /A61/ PHI (50, 15, 10), DDMS(10, 6, 4), DMS(10, 6, 4), DMS(10, 6, 4), DHR(20, 6, 4) RKARY(50), R(100), DD33(3, 3), GD44(3, 3) CD33(3, 3), T011(3, 3), T012(3, 3), T021(3, 3), T022(3, 3), DD131(3, 3) CD132(3, 3), T011(3, 3), T012(3, 3), AD44(9), AD4(3), OREJ(16) AREJ(16), ARUG, ARUA, GURA, GURC(4), GURE(16) P11(6, 6), P13(6, 3), P14(6, 3), P15(6, 1), P16(6, 2), P17(6, 4) P11(5, 6), P33(3, 3), P34(3, 3), P35(3, 1), P36(3, 2), P47(3, 4) BLKD P41(3, 6), P43(3, 3), P64(2, 3), P65(2, 1), P66(2, 2), P67(2, 4) P61(2, 6), P63(2, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BLKD P71(4, 6), P73(4, 3), P74(4, 3), P75(4, 1), P76(4, 2), P77(4, 4) BCKD	1)), (HM(13), RM(1)), (ONS(13), ORS(1)), (OZS(13), ORZ(1))	BLKO	m
COMMON /A61/ PHI (50, 15, 10), DDMS(10, 6, 4), DMS(10, 6, 4), DMS1(10, 6, 4), DHR(20, 6, 4) RKARY(50), R(100), DD33(3, 3), QD44(3, 3) (GD33(3, 3), TD11(3, 3), TD12(3, 3), TD22(3, 3), DD131(3, 3) (GD33(3, 3), TD11(3, 3), TD12(3, 3), TD21(3, 3), DREJ(16) (DD132(3, 3), GD131(3, 3), TD12(3, 3), AD44(9), AD4(3), OREJ(16) (AREJ(16), ARUC, ARUA, OURA, OURC(4), OURE(16) (AREJ(16), ARUC, ARUA, OURA, DURC(4), OURE(16) (AREJ(16), PR) (3, 3), PR (4, 3), PR (4, 3), PR (4, 2), PR (4,	OUIVAL ENCE (XDS(13)+XRS(1)), (UDS(13),URS(1))	BLKD	ñ
PHI(50, 15.10), DDMS(10,6,4), DMS(10,6,4), DMS1(10,6,4), DHR(20,6,4) BLKD , RKARY(50), R(100), DD33(3,3), DD44(3,3) , GD33(3,3), TO11(3,3), TO12(3,3), TO21(3,3), TO22(3,3), DD131(3,3) , GD132(3,3), TO11(3,3), TO12(3,3), TO21(3,3), TO22(3,3), DD131(3,3) , CD132(3,3), GD131(3,3), FOD132(3,3), AD44(9), AD4(3), OREJ(16) , AREJ(16), ARUC, ARUA, DURA, DURA, DURE(16) , P11(6,6), P13(6,3), P14(6,3), P15(6,1), P16(6,2), P17(6,4) , P31(3,6), P33(3,3), P44(3,3), P45(3,1), P46(3,2), P47(3,4) , P41(3,6), P53(1,3), P54(1,3), P55(1,1), P66(2,2), P67(2,4) , P61(2,6), P73(4,3), P74(4,3), P75(4,1), P76(4,2), P77(4,4) , P71(4,6), P73(4,3), P74(4,3), P75(4,1), P76(4,2), P77(4,4) , P61(2,6), P73(4,3), P76(4,3), P76(4,2), P77(4,4) , P71(4,6), P73(4,3), P76(4,3), P76(4,2), P77(4,4) , P71(4,6), P73(4,3), P76(4,3), P76(4,2), P77(4,4) , P71(4,6), P77(4,4), P76(4,4), P	OMMON /A61/	BLKD	m
### ### ##############################	PHI (50, 15, 10), DDMS(10, 6, 4), DMS(10, 6, 4), DMS1(10, 6, 4), DMR(20, 6, 4)	BLKD	4
.GD33(3,3), TO11((3,3), TO12((3,3), TO22((3,3), GD131((3,3))) BLKD .CD132((3,3), GD131((3,3), GD132((3,3), AD44(9), AD4((3), GREJ(16)) BLKD .AREJ(16), ARUC, ARUA, GURA, GURC((4), GURE(16)) B17((6,4)) BLKD .P11((6,6), P13((6,3), P14((6,3), P15((6,1), P16((6,2), P17((6,4)) BLKD .P31((3,6), P33((3,3), P34((3,3), P45((3,2), P47((3,4)) BLKD .P41((3,6), P43((3,3), P44((3,3), P45((3,1), P66((3,2), P67((2,4)) BLKD .P51((1,6), P53((1,3), P54((1,3), P65((2,1), P66((2,2), P67((2,4)) BLKD .P71((4,6), P73((4,3), P74((4,3), P75((4,1), P76((4,2), P77((4,4)) BLKD .P01(VALENCE (GD11((1,1), TG11((1,1)), (GD11((10,1), TG12((1,1))) BLKD	, RKARY (50), R (100), 0033 (3,3), 0044 (3,3)	BLKD	4
.CD132(3,3), GD131(3,3), GD132(3,3), AD44(9), AD4(3), OREJ(16) AREJ(16), ARUC, ARUA, OURA, GURC(4), OURE(16) P11(6,6), P13(6,3), P14(6,3), P15(6,1), P16(6,2), P17(6,4) BLKD P31(3,6), P33(3,3), P34(3,3), P35(3,1), P36(3,2), P47(3,4) P41(3,6), P53(1,3), P54(1,3), P55(1,1), P56(1,2), P57(1,4) P51(1,6), P53(1,3), P54(2,3), P65(2,1), P66(2,2), P67(2,4) P61(2,6), P63(2,3), P64(2,3), P65(2,1), P66(4,2), P77(4,4) EOUIVALENCE (OD11(1,1), TG11(1,1)), (OD11(10,1), TO12(1,1)) BLKD	. G033(3,3), T011(3,3), T012(3,3), T021(3,3), T022(3,3), 00131(3,3)	BLKD	4
## ## ## ## ## ## ## ## ## ## ## ## ##	, CD132(3,3), GD131(3,3), GD132(3,3), AD44(9), AD4(3), OR	-	4
.P11(6,6).P13(6,3).P14(6,3).P15(6,1).P16(6,2).P17(6,4) .P31(3,6).P33(3,3).P34(3,3).P35(3,1).P36(3,2).P37(3,4) .P41(3,6).P43(3,3).P44(3,3).P45(3,1).P46(3,2).P47(3,4) .P51(1,6).P53(1,3).P54(1,3).P55(1,1).P56(1,2).P57(1,4) .P61(2,6).P63(2,3).P64(2,3).P65(2,1).P66(2,2).P67(2,4) .P71(4,6).P73(4,3).P74(4,3).P75(4,1).P76(4,2).P77(4,4) .P071(4,6).P73(4,3).P74(4,3).P75(4,1).P76(4,2).P77(4,6) .P071(4,6).P73(4,3).P74(4,3).P75(4,1).P76(4,2).P77(4,6) .P011VALENCE (0011(1,1).TG11(1,1)).(0011(10,1).TG12(1,1))	. ARE JI 16) . ARUC . ARUA, OURA, OURA (4) .OURE(16)	_	÷
.P31(3,6),P33(3,3),P34(3,3),P35(3,1),P36(3,2),P37(3,4) .P41(3,6),P43(3,3),P44(3,3),P45(3,1),P46(3,2),P47(3,4) .P51(1,6),P53(1,3),P54(1,3),P55(1,1),P56(1,2),P57(1,4) .P61(2,6),P63(2,3),P64(2,3),P65(2,1),P66(2,2),P67(2,4) .P71(4,6),P73(4,3),P74(4,3),P75(4,1),P76(4,2),P77(4,4) .P01(1,1),TG11(1,1),G011(10,1))	.P11(6,6).P13(6,3),P14(6,3),P15(6,1),P16(6,2),	-	4
.P41(3,6).P43(3,3).P44(3,3).P45(3,1).P46(3,2).P47(3,4) .P51(1,6).P53(1,3).P54(1,3).P55(1,1).P56(1,2).P57(1,4) .P61(2,6).P63(2,3).P64(2,3).P65(2,1).P66(2,2).P67(2,4) .P71(4,6).P73(4,3).P74(4,3).P75(4,1).P76(4,2).P77(4,4) .P01(1,6).P73(4,3).P74(4,3).P76(4,1).P76(4,2).P77(4,4) .P01(1,6).P73(4,3).P74(4,3).P76(4,1).P76(4,2).P77(4,4) .P01(1,6).P73(4,3).P74(4,3).P76(4,1).P76(4,2).P77(4,4) .P01(1,6).P73(4,3).P74(4,3).P76(4,1).P76(4,2).P77(4,4) .P01(1,6).P73(4,3).P74(1,6).P76(1,6).P76(4,5).P77(4,4) .P01(1,6).P73(4,3).P74(1,6).P76(1,6).P76(1,6).P77(1,6).P76(1,6).P7	, P31(3,61,P33(3,31,P34(3,3),P35(3,11,P36(3,2),I		4
, P51(1,6), P53(1,3), P54(1,3), P55(1,1), P56(1,2), P57(1,4) , P61(2,6), P63(2,3), P64(2,3), P65(2,1), P66(2,2), P67(2,4) , P71(4,6), P73(4,3), P74(4,3), P75(4,1), P76(4,2), P77(4,4) EQUIVALENCE (0011(1,1), TG11(1,1)), (0011(10,1), T012(1,1))	, P41(3, 61, P43(3, 31, P44(3, 31, P45(3, 11, P46(3, 21,	_	4
,P61(2,6),P63(2,3),P64(2,3),P65(2,1),P66(2,2),P67(2,4) ,P71(4,6),P73(4,3),P74(4,3),P75(4,1),P76(4,2),P77(4,4) EQUIVAL ENCE (0011(1,1),TG11(1,1)),(0011(10,1),T012(1,1)) BLKD	, F51(1,6), P53(1,3), P54(1,3), P55(1,1), P56(1,2),		4
.P71(4,6),P73(4,3),P74(4,3),P75(4,1),P76(4,2),P77(4,4) EQUIVALENCE (OD11(1,1),TG11(1,1)),(OD11(10,1),TO12(1,1)) BLKD	,P61(2,6),P63(2,3),P64(2,3),P65(2,1),P66(2,2),I	-	4
OUIVALENCE (0011(1,1),TG11(1,1)),(0011(10,1),T012(1,1)) 8LKD	,P71(4,6),P73(4,3),P74(4,3),P75(4,1),P76(4,2),I		S
	OUIVALENCE (0011(1,1),TG11(1,1)),(0011(10,1),T012(1,1	BLKD	S

. (OD11(19,1),TO21(1,1)),(OD11(28,	BLKO	52
(0013(1,1),00131(1,1)),(0013(10,1),00132(1	BLKO	53
• (C013(1,1), G0131(1,1)), (G013(10,1), G0132(1,1))	BLKO	24
. (DDM(1,1,1),DDMS(1,1,1)),(DDM(241,1,1),DMS(1,1,1	8LK0	55
. (DDM(481.1.1), DMS1(1.1,1)), (DDM(721,1.1), DMR(1,1,	BLKO	26
COMMON /A7/	BLKD	25
HF, HR, HCR, DH8K, HK, HBC, HPC, SMAL T, SIGB, TAUHB, SIGBW, HE, HBAB	8LK D	58
.AL T [M(100), ALAT(8), ALONG(8), HT(8), ALIM(8), RADIUS(5), ECCENT(BLKD	59
. INCL IN(5), A SCEND(5), PERIGE(5), TIME(5), ANGSEE(5), ANGROT (8120	9
, TAVANT (5), NA, NB	8LKD	61
COMMON /A71/RJ(3),UJ(3),D(3),DD(3),DEM(3),DEMD(3),RJD(3),DUD(3	BLKO	62
ER, EJO(3), RMJ, RMJD, DRJ, DRJD, DTU, DTJ, ERD, YRJ, YRRJ, RNDP(BLKD	63
. RMDTU(2), RMDTJ(2), RMDL, RRDPD(3), RR	BLKD	99
.RRDE(3), DPTJ, DPIJ, EJ(3), CDJ, CRJ, YDJ, OKI, OK2, NC, IRT	BLKO	65
COMMON /A9/RO,DTR,CKFT,H25,RTD,GZER	8LK 0	99
. PI . COROSO	BLKD	29
EQUIVALENCE (TING(1), TD SU(1)), (TING(11), TCS)	BLKO	99
.(TING(21),TCAL(1)),(TING(31),TPAL(1)),(TING(41),TWAS(1	8LK 0	69
•(TING(51),TVST(1)),(TING(61),TRSW(1)),(TING(71),TALT(1)	BLKO	20
(TING(81), TPOS(1)), (TING(91), TTOP(1))	BLKO	1.1
. (T ING(101) . TKLT(1)) . (T ING(111) , TSP	BLKD	72
NTEGER 0	8LK0	73
EBAR , CFRM, CFI	8LK0	14
. NOMES, DSWT	BLKO	15
ATA TING/130#1.0/	BLKO	16
DATA FLTIME, TI	8LK0	11
0.0.0.1.10.01	8LK0	78
DATA BETA, DELTP, WE, DELRO, DELTC	BLKD	4
DWK, DFK, PACC, PGCC, TPLF, TPLA, DTPL /3*1.0,0.1,7.2921	BLKD	80
2.E+3,.1,3#.1,3#.1,9#0.,9#0.,1.,3#0.,1.,3#0.,1.,3#0.,1.,1.,1.,3#0	BLKD	8
,3*0.,1.,.1/	8LK0	82
DATA ALMM.EBAR. SMALT. SIGB. TAUMB. SIGBY. HBABA, HE, HI	8LK0	
/ 3,3,0.0,200.,14400.,10.,0.,0.,2.0E4,10042.0E	BLKO	
A DRMM. DRMO. DIOR. DAHR. DAHS. DTA	BLKD	8

	2.2.1	BLKD	8
	DATA	BLKD	81
	2.0926E7,.01	BLKD	8
	.29211E-5.4	BLKO	8
	DATA TAP, TLC.	BLKD	90
	. 9 . 0 . 9 .	BLKD	6
	0	BLKD	6
		STAU	
		STAU	14
		STAU	111
		STAU	4
	TART PROGRAM	STAU	•
	UBROUTINE	STAU	•
	TO RUN PROGR	STAU	_
	UST BE INSERTED)	STAU	~
	FAL . B DATR	STAU	٠.
	IMENSION TITLE (2	STAU	ĭ
	AMELIST /SWITCH/	STAU	=
	AMEL IST /TIMING/	STAU	7
	TTDP. TKL T. TSPC.81	STAU	-
	NAMEL IST /C	STAU	4
	DWK . DFK . PACC . PGCC	STAU	_
	NAMEL IST /NAED/ DRI	STAU	=
	1, DALT, EBAR, NST	STAU	-
	NAMEL IST /	STAU	=
	AMEL IST IN	STAU	-
	NA, ANGSEE	STAU	7
	1=1 886 U	STAU	7
38	0.0=(1)	STAU	7
	1 186 0	STAU	7
~	LC(1)=0	STAU	'n
	0	STAU	7

	ALT [M(1)=0.0		N
,	CONTINUE		N
	FORMAT (2044)		N
_	FORMAT (1HI, 10X, 20A4, 25X, "DATE", 2X, A8)		N
	TRI		m
	WRITE (6,9999)		m
6666	FORMAT(2X,///.		m
	WE(1) = 7.292116E-5		M
	I		m
	-		3
	READ (5,NAEO)		M
	00 20 K =1.5		m
	IF (NST(K).EQ.0; GO TO 20		m
	.48.49.501.		m
v	INPUT NAV. EQUIP. TIMING		4
46	CONTINUE		4
	GO TO 21		4
	INPUT REF.EQUIP.TIMING	STAU	4
47	CONTINUE		Ť
	60 TO 21		4
U	INPUT MODULE TIMING		4
48			•
			4
	00 30 1=1,120		4
			n
30			5
	GO TO 21		5
40	CONTINUE		5
	READ (5,LOS)		5
	WRITE (6,LOS)		5
	GO TO 21	TAU	5

```
9
                                            62
                                                     63
                                                                       65
                                                                                 99
                                                                                                   89
                                                                                                           69
                 59
                                                                                                                     20
                                                                                                                            727
                                    19
                                                               49
                                                                                         19
                                                    STAU
                          STAU
         STAU
                 STAU
                                   STAU
                                            STAU
                                                              STAU
                                                                       STAU
                                                                                 STAU
                                                                                         STAU
                                                                                                  STAU
                                                                                                           STAU
                                                                                                                    STAU
                                                                                                                             STAU
                                                                                                                                      STAU
                                                                                                                                               STAU
                                                                                                                                                          CONM
                                                                                                                                                                                     CONM
                                                                                                                                                                                              CONM
                                                                                                                                                                                                       CONM
                                                                                                                                                                                                                CONM
                                                                                                                                                                                                                         CONM
                                                                                                                                                                                                                                  CONM
                                                                                                                                                                                                                                           CONT
                                                                                                                                                                                                                                                    CONM
                                                                                                                                                                                                                                                              NSTR
                                                                                                                                                                                                                                                                                NSTR
                                                                                                                                                                                                                                                                                         NSTR
                                                                                                                                                                                                                                                                                                  NSTR
                                                                                                                                                                                                                                                                                                           NSTR
                                                                                                                                                                                                                                                                                                                    NSTM
                                                                                                                                                                                                                                                                                                                             NSTM
                                                                                                                                                                                                                                                                                                                                      NSTR
                                                                                                                                                                                                                                                                                                                                               NSTR
                                                                                                                                                                   CONM
                                                                                                                                                                            CONT
                                                                                                                                                                                                                                                                       NSTR
                                                                                                                                                                                                                                                                                                           COUR. TYPE (1, LAT, LONG, 2 * POLAR, 3 = X, Y, Z, 4 = UTM)
                                                                                                                                                                                                                                                                                                  TYPE (1=C-EF,2=EF-C,3=REF,NAV ON)
                                                                                 23
                                                              IF (DIMU.EQ. 2.OR.DIMU.EQ.3) DEQM=3
                                                                                 2
                                                                                 00
                                                                                                                                                                                                                                                                                                                     DEGREES
                                                                                                                                                                                                                                                                                                                             DEGREES
                                                                                                                                                                                                                                                                                                                                      DEGREES
                                                                                                                                                                                                                                                                                ARRAY PARAMETERS (1),1=1,N)
                                                                               IF (DAHS.EQ. 2.0R.DAHS.EQ.3)
                                                                       IF (DTAS.EQ.2) DEGM+DEGM+1
                                                                                                                                                                                                                START OF CONM (SUBROUTINE)
                                                                                                                                                                                                                                                              START OF NSTM (SUBROUTINE)
                                                                                                                                                                                                                                                                                                                                               FEET
                                                                                                  GO TO (27,27,26,26),0EQM
                                                                                                                                                                                                                                                   END OF COMM (SUBROUTINE)
                                                                                                                                                                                                                                                                                         SHITCH TIME
                                                                                                                                                                                             START PROCESSOR SETUP
                                                                                                                                                                                                                                                                                                                             LONGITUDE
                                                                                                                                                                                                                                                                                                                    LATITUDE
                                                                                                                                                                                                                                                                                                                                               ALTITUDE
                                                                                                                                               FND PROGRAM SETUP
                                                                                                                                                                                                                                                                                                                                       THETA
                                                                                                                                                                                                                                  READ (5, CONST)
                 WRITE (6.NAV)
        READ (S,NAV)
                                                                                                                                                                                                                        ENTRY CONVM
                                                                                                                                                                                                                                                                                         SWITCH (1)
                                                                                                                                                                                                                                                                       FNTRY NSTM
                                                                                        GO TO 24
CONT INUF
                          GO TO 21
                                   CONT INUE
                                            CONTINUE
                                                                                                           DEOM = 5
                                                                                                                    CONTINUE
                                                                                                                             CONTINUE
                                                      DECH =1
                                                                                                                                      RETURN
                                                                                                                                                                                                                                           RETURN
50
                                   21
                                                                                                  23 26 27 24 24
```

13

```
6
                                                                                                                                                                                                                                                                                                                                            PROC
                                                                                                              PROC
                                                                                                                       PROC
                                                                                                                                 PROC
                                                                                                                                            PRUC
                                                                                                                                                      PROC
                                                                                                                                                                PROC
                                                                                                                                                                          PROC
                                                                                                                                                                                   PROC
                                                                                                                                                                                               PROC
                                                                                                                                                                                                       PROC
                                                                                                                                                                                                                  PROC
                                                                                                                                                                                                                             PROC
                                                                                                                                                                                                                                       PROC
                                                                                                                                                                                                                                                PROC
                                                                                                                                                                                                                                                            PROC
                                                                                                                                                                                                                                                                     PROC
                                                                                                                                                                                                                                                                               PROC
                                                                                                                                                                                                                                                                                          PROC
                                                                                                                                                                                                                                                                                                    PROC
                                                                                                                                                                                                                                                                                                              PROC
                                                                                                                                                                                                                                                                                                                        PROC
                                                                                                                                                                                                                                                                                                                                  PROC
                                                                                         NSTR
                                                                                                   NSTR
                                                            NSTM
                                                                     NSTR
                                                                               NSTH
NSTR
         NSTH
                   NSTH
                              NSTR
                                        NSTH
                                                 NSTA
                                                                                                                                                                ITO RUN PROGRAM, COMMON BLOCK DATA AT END OF THIS LISTING
                                                                                                                                            START PROCESSOR EXECUTION CONFIGURATION SETUP
                                                                                                                                                                                                                                                                     END PROCESSOR EXECUTION CONFIGURATION SETUP
                                                                                                                                                                                                                                                                                                                        BEGINNING OF PROCESSOR DYNAMIC LOOP
                                                                               END OF NSTM (SUBROUTINE)
                                                                                                                                                                                    DIMENSION TV(20), TO(20)
                                                                                                                                                                                                                                                                                                                                            (FLTIME.GT.STIME)
                                                                                        END PROCESSOR SETUPEND
                                                                                                                                                      SUBROUTINE PROCES
                                                                                                                                                                          MUST BE INSERTED!
                                        READ (5, SHITCH)
                                                           HRITE (6.RWTCH)
                                                 READ (5.RUTCH)
                                                                                                                                                                                                                                       DO 20 I=1,20
                                                                                                                                                                                                                                                           rv(1) = 0.0
                                                                                                                                                                                                                    KALMAN
                                                                                                                                                                                                         RFNAV
                                                                                                                                                                                                                             SPECL
                                                                                                                                                                                               DRNAV
                                                                                                                                                                                                                                                 TO(1)=0.
                                                                     RETURN
                                                                                                                                                                                               CALL
                                                                                                                                                                                                                   CALL
                                                                                                                                                                                                         CALL
                                                                                                                                                                                                                             CALL
                                                                                                                                                                                                                                                                                                                                          F
```

PROC

ITVIK).GT.FLTIME) GO TO 22

21 11 = 1.120,10

IV(K) = TING(11) + FLTIME

		2000	2.5
	THE STATE OF THE S		
1	JOHNOOLE CALLS	7850	97
	GO TO (1.2.3.4.5.6.7.8.9.10.11.12.13).K	PROC	58
_	CONT INUE	PROC	30
	CALL DSW.	PROC	31
	GO TO 22	PROC	32
~	CONTINUE	PROC	33
	CALL CSKM	PROC	34
	GO TO 22	PROC	35
m	CONTINUE	PROC	36
	CALL CALM	PROC	37
	GO TO 22	PROC	38
*	CONTINUE	PROC	39
	CALL PLAM	PROC	40
	CO TO 22	PROC	1
ĸ.	CONTINUE	PROC	42
	CALL MASM	PROC	43
	50 TO 22	PROC	**
9	CONTINUE	PROC	45
	CALL YSTM	PROC	46
	60 TO 22	PROC	24
		PROC	48
	REF NAV SUBMODULE CALLS	PROC	40
-	CONT INUE	PROC	20
	CALL RSWM	PROC	21
	G0 T0 22	PROC	25
•	CONTINUE	PROC	53
	CALL ALTM	PROC	54
	GO TO 22	PROC	55
c	CONTINUE	PROC	26
	CALL POSM	PROC	22
	60 T0 22	PROC	28
01	CONTINUE	PROC	59
	CALL TOPM	PROC	9
	60 T0 22	PROC	19
		PROC	62
	KALMAN FILTER MODULE SUBROUTINE CALLS	PROC	63
-	CONTINUE	PROC	49
	CALL KALMN	PROC	65

21	GO TO 22 CONTINUE	9 9 8 0 0 0 0	99
ں ر	SPECIAL MODULE SUBROUTINE CALLS		6 6 0
25		9800	122
21	CONT INJE	9 A O C C	13
	FLIME # FLTIME + DELT	PROC	2
26	GO TO 23	0 0 0	72
	RETURN	PROC	2 =
		980C	200
ں ر	END OF SUBROUTINE PROCES	PROC	8
U		DRNV	-
U (DRNV	7
ں د		> 2 2 2 2	m 4
ت	MODULE SUBROUTINES	DRNV	8
J		ORNV	•
ں ر		DRNV	~
ں ں	DK NAV MODULE GROUP	OKNA	10 0
,	· >	DRNV	, 2
U	8	DRNV	11
ပ	E INSERTE	DRNV	12
	N O	> NXO	13
	- " 	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 v
	0.0 = (1))	DRNV	91
	*	DRNV	17
	TVH(1) = 0.0	ORNV	18
		ORN	61
0		D S S S S S S S S S S S S S S S S S S S	20
	XFFN # 2	O O S	22
	Z	DANV	23

EGO.AND.ORMM.EQ.DRMO) RETURN 12.13.14).DEGM 12.13.14).DEGM 12.13.14).DEGM 13.14).DEGM 13.14	F (DEGM.EQ.DEGO.AND.DRMM.EQ.DRMO) RETURN O TO (10.11.12.13.14), DEGM DD MODE (NO IMU.TAS.AND AHRU) F (DRMM.EQ.1.AND.DRMO.EQ.1) GO TO 16 SET MARKERS FOR POR, INITIALIZE SUBMODULES TO DR TO 1 ON TOUL ON TO 1 EQO = 1 IOR = 1 EQO = 1 IOR = 1 F (DRMM.EQ.2.AND.DRMO.EQ.2) GO TO 17 HRU VALIDITY DETERMINE O TO (33.34.35.17.17), DAHR ET MARKERS FOR ADR.INITIALIZE SUBMODULES TO ADAHR = DAHR + EAHR TAS = 2 ON TINUE FRM = 2 ON TINUE FRM = 2 EQO = 2 IOR = 1 O TO 1			DSMM	~
12,13,14), DEGM 1MU, TAS, AND AHRU) AND, DRMO, EQ. 1) GO TO 16 OR POR, INITIALIZE SUBMODULES TO POR DETERMINE 55,17,17), DAHR BADR, INITIALIZE SUBMODULES TO ADR EAHR NO TAS OR AHRU) AND, DRMO, EQ. 3) GO TO 18 18,18,18), DIDR	12.13.14), DEGM IMU, TAS, AND AHRU) .AND.DRMO.EQ.1) GO TO 16 .OR POR, INITIALIZE SUBMODULES TO DETERMINE 55.17.17).DAHR BADR, INITIALIZE SUBMODULES TO ADEAHR ADR, INITIALIZE SUBMODULES TO ADEAHR AND.DRMO.EQ.3) GO TO 18 .AND.DRMO.EQ.3) GO TO 18 .3.44.44).DAHR			DSWM	m
IMU, TAS, AND AHRU) AND, DRMO, EQ. 11 GO TO 16 AND, DRMO, EQ. 21 GO TO 17 DETERMINE 55, 17, 17), DAHR BA ADR, INITIALIZE SUBMODULES TO ADR EAHR NO TAS OR AHRU) AND, DRMO, EQ. 31 GO TO 18 18, 18, 18, 18), DIDR	IMU.TAS.AND AHRU) .AND.DRMO.EQ.1) GO TO 16 .OR POR, INITIALIZE SUBMODULES TO DETERMINE 5.17.17.17).DAHR NO TAS OR AHRU) .AND.DRMO.EQ.3) GO TO 18			DSWM	4
AND-DR MO.EQ.1) GO TO 16 AND-DR MO.EQ.2) GO TO 17 DETERMINE 55.17.17).DAHR 18.18.18.18).DIDR 18.18.18.18).DIDR	TU AND TAS) TU AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE 5.17.17.17.17.0AHR DR ADR, INITIALIZE SUBMODULES TO AD EAHR AND.DRMO.EQ.3) GO TO 18 18.18.18.18.0DAHR			DSMM	S.
TOR POR, INITIALIZE SUBMODULES TO POR AND-DRMO-EQ-2) GO TO 17 DETERMINE S5.17.17).DAHR S6.17.17).DAHR EAHR NO TAS OR AHRU) AND-DRMO-EQ-3) GO TO 18 18.18.18.18).DIDR	U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE S5.17.17).DAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 EAHR 18.18.18.18).DIDR	91		DEM	0 1
1U AND TAS) AND-DRMD-EQ-2) GO TO 17 DETERMINE S5.17.17).DAHR IR ADR, INITIALIZE SUBMODULES TO ADR EAHR NO TAS OR AHRU) AND-DRMO-EQ-3) GO TO 18 18.18.18.18).DIDR	TU AND TAS) AND-DRMO-EQ.2) GO TO 17 DETERMINE SF.17.17).DAHR DR ADR, INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO-EQ.3) GO TO 18 18.18.18.18).DIDR	SUBMODULES TO	20%	DSM	~ (
1U AND TAS) AND-DRMO-EQ.2) GO TO 17 DETERMINE S5.17.17).DAHR JR ADR, INITIALIZE SUBMODULES TO ADR EAHR NO TAS OR AHRU) AND.DRMO-EQ.3) GO TO 18 18.18.18.18.10.00R	U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE S.17.17).DAHR R ADR,INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR			N BSO	10
OETERMINE SF.17.17).DAHR SF.17.17).DAHR SABRAGOULES TO ADR EAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18.010R	U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE 5.17.17).DAHR NA ADR, INITIALIZE SUBMODULES TO EAHR AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR 13.44.44).DAHR			DSMM	
1U AND TAS) AND-DRMO.EG.2) GO TO 17 DETERMINE S.17.17).DAHR SR ADR, INITIALIZE SUBMODULES TO ADR EAHR AND.DRMO.EG.3) GO TO 18 18.18.18.10.DDR	U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE 5.17.17).DAHR NA ADR, INITIALIZE SUBMODULES TO EAHR AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR			DSWM	2
U AND TAS) AND-DRMO-EQ-2) GO TO 17 DETERMINE S-17-17).DAHR NO TAS OR AHRU) AND-DRMO-EQ-3) GO TO 18 18-18-18-18).DIDR	U AND TAS) AND-DRMO-EQ-2) GO TO 17 DETERMINE 15.17.17).DAHR DR ADR, INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND-DRMO-EQ-3) GO TO 18 18.18.18.18).DIDR			DSWM	11
AND-DRMO-EQ-2) GO TO 17 DETERMINE 5.17.17).DAHR 18.18.18.18).DIDR	U AND TAS) AND-DRMO-EQ-2) GO TO 17 DETERMINE SF.17.17).DAHR DR ADR, INITIALIZE SUBMODULES TO EAHR AND-DRMO-EQ-3) GO TO 18 18.18.18.18).DIDR			DSWM	12
U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE S5.17.17).DAHR S6.17.17).DAHR S7.17.17).DAHR S8.17.17).DAHR S8.18.18.18.18.18.18.18.18.18.18.18.18.18	U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE S.17.17).DAHR DR ADR, INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR			DSWM	13
OU AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE S.17.17).DAHR S.17.17).DAHR SAMODULES TO ADR EAHR AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR	U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE S.17.17).DAHR BR ADR,INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR			DSWM	14
AND.DRMO.EQ.2) GO TO 17 DETERMINE 15.17.17).DAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR	U AND TAS) AND.DRMO.EQ.2) GO TO 17 DETERMINE 5.17.17).DAHR BR ADR,INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR			DSWM	
AND.DRMO.EQ.2) GO TO 17 DETERMINE S.17.17).DAHR NA ADR.INITIALIZE SUBMODULES TO ADR EAHR AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR	AND.DRMO.EQ.2) GO TO 17 DETERMINE JS.17.17).DAHR DR ADR.INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR			DSWM	16
DETERMINE S5.17.17).DAHR DR ADR, INITIALIZE SUBMODULES TO ADR EAHR AND.DRMO.EQ.3) GO TO 18 18.18.18.18.0DR	DETERMINE 55.17.17).DAHR 18.17.17).DAHR 18.18.18.18).DIDR 13.44.44).DAHR	10		DSWM	17
15.17.17), DAHR DR ADR, INITIALIZE SUBMODULES TO ADR EAHR AND. DRMO. EQ.31 GO TO 18 18.18.18.18.18), DIDR	55.17.17).DAHR DR ADR, INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18 18.18.18.18).DIDR 33.44.44).DAHR			DSWM	18
EAHR, INITIALIZE SUBMODULES TO ADR EAHR ,NO TAS OR AHRU) ,AND.DRMO.EQ.31 GO TO 18 18,18,18,18,1010R	DR ADR, INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND. DRMO. EQ. 3) GO TO 18 18, 18, 18, 18, 0 DIDR			DSWM	19
EAHR SAND.DRMO.EQ.31 GO TO 18 18.18.18.18.18.00.00.00.00.00.00.00.00.00.00.00.00.00	DR ADR, INITIALIZE SUBMODULES TO EAHR ,NO TAS OR AHRU) ,AND.DRMO.EQ.3) GO TO 18 18,18,18,18,000R			DSWM	20
DR ADR, INITIALIZE SUBMODULES TO ADR EAHR ,NO TAS OR AHRU) ,AND.DRMO.EQ.31 GO TO 18 18,18,18,18,000R	DR ADR, INITIALIZE SUBMODULES TO EAHR NO TAS OR AHRU) AND.DRMO.EQ.31 GO TO 18 18,18,18,18,000R			DSMM	21
EAHR NO TAS OR AHRU) AND.DRMO.EQ.31 GO TO 18 18.18.18.18).DIDR	EAHR NO TAS OR AHRU) AND.DRMO.EQ.31 GO TO 18.18.18.18).DIDR	10		DSMM	22
NO TAS OR AHRU) AND.DRMO.EQ.31 GO TO 18 18.18.18.18).DIDR	.NO TAS OR AHRU) .AND.DRMO.EQ.31 GO TO 18.18.18.18,000R			DSWM	23
.NO TAS OR AHRU! .AND.DRMO.EQ.31 GO TO 18 18.18.18.181.010R	.NO TAS OR AHRU) .AND.DRMO.EQ.31 GO TO 18.18.18.18,010R			DSMM	24
NO TAS OR AHRU! AND.DRMG.EQ.31 GO TO 18 18.18.18.100R	.NO TAS OR AHRU) .AND.DRMO.EQ.3) GO TO 18.18.18.18,000R			DSWM	25
NO TAS OR AHRU! AND.DRMG.EQ.31 GO TO 18 18.18.18.18).DIOR	NO TAS OR AHRU) AND.DRMO.EQ.31 GO TO 18.18.18,18,18),DIDR			DSMM	5 8
NO TAS OR AHRU! AND.DRMO.EQ.31 GO TO 18 18.18.18.18).DIDR	NO TAS OR AHRU) AND.DRMO.EQ.3) GO TO 18.18.18.18).DIDR		,	DSWM	27
NO TAS OR AHRU) AND.DRMO.EQ.31 GO TO 18 18,18,18,18),DIOR	.NO TAS OR AHRU) .AND.DRMO.EQ.3) GO TO 18.18.18.18).DIDR			DSMM	28
NO TAS OR AHRU) AND.DRMO.EQ.31 GO TO 18 18,18,18,18),DIOR	.NO TAS OR AHRU) .AND.DRMO.EQ.3) GO TO 18.18.18.18).DIDR			DSWM	53
AND.DRMO.EQ.3) GO TO 18 18,18,18,100R	.NO TAS OR AHRU) .AND.DRMO.EQ.3) GO TO 18.18.18.18.18).DIDR			DSWM	30
AND.DRMO.EQ.3) GO TO 18 18.18.18.100R	.MO TAS OR AHRU) .AND.DRMO.EQ.3) GO TO 18.18.18.18,18).DIDR			DSWM	31
.AND.DRMO.EQ.3) GO TO 18 18,18,18,1010R	.AND.DRMO.EQ.3) GO TO 18.18.18.18).DIDR :3.44.44).DAHR			DSMM	32
18,18,18,18),DIOR	18,18,18	10		DSWM	33
18,18,18,18),DIOR	18,18,18			DSWM	34
				DSWM	35
MSO STANDARY AND S				DSMM	36
9740 477 77 67				DSWM	37
100 YUNDO CTTO CTTO CTTO CTTO CTTO CTTO CTTO CT				DSWM	38

	POR UNTIL AHRU OR IMU VALID	DSWM	39
	DAHR = 2	NASO	\$
7	OREN = 1	DSWM	1
	CO TO 1	DSWM	42
ű	DAHR = DAHR + EAHR	DSWM	43
	U VA	DSWM	*
		DSWM	45
4	60 TO 1	DSWM	46
	FOR IDR MOD	DSWM	14
	UB MOD	DSWM	48
80	DTAS = 1	MMSO	40
	DAHR = 1	DSWM	20
	DRMM = 3	DSWM	21
	DRMO = 3	DSWM	25
	DEOM = 3	DSWM	53
	0600 = 3	DSWM	54
	DIDR = 4	DSWM	52
	60 TO 1	DSWM	26
		DSWM	25
m	4. AND. DRMC	DSWM	38
	3) GO TO 32	DSWM	29
	E. INITIALI	DSWM	9
6	CONTINUE	DSMM	19
	OTAS=2	DSWM	79
	DRMM # 4	DSWM	63
	DRMO = 4	DSWM	94
	DEGM = 4	DSWM	65
	0600 = 4	DSMM	99
	DIDR = 5	DSWM	29
		DSWM	89
	U TAS.IMU	DSWM	69
4	5. AND . DR MO	DSWM	10
	31 GO TO 32	DSWM	11
	· INITIAL 12	DSWM	72
0	CONTINUE	DSWM	73
	DRMM=5	DSWM	14
	DRMO = 5	DSWM	75
	DFOM = 5	DSWM	9
	11	DSWM	1

```
90
                                       83
                                                                                                                                                                                                                                                                                                              25
                                                                                                                                                                                                                                                                                                                        26
                                                                                                                                                                                                                                                                                                                                                       29
                                                                                                                                                                                                                                                                                                                                                                 30
                             81
          DSWM
                   DSEM
                             DSMM
                                       DSWM
                                                 DSWM
                                                            CSWM
                                                                                                                                                                                                                                                                      CSWM
                                                                                                                                                                                                                                                                                         CSWM
                                                                                                                                                                                                                                                                                                    CSEM
                                                                                                                                                                                                                                                                                                              CSER
                                                                                                                                                                                                                                                                                                                        CSUM
                                                                                                                                                                                                                                                                                                                                  CSWM
                                                                                                                                                                                                                                                                                                                                            CSWM
                                                                                                                                                                                                                                                                                                                                                       CSMM
                                                                                                                                                                                                                                                                                                                                                                 CSWM
                                                                                                                                                                                                                                                                                                                                                                           CSWM
                                                                                                                                                                                                                                                                                                                                                                                     CSWM
                                                                      CSWM
                                                                                 CSER
                                                                                          CSWM
                                                                                                    CSEM
                                                                                                              CSUM
                                                                                                                         CSWM
                                                                                                                                  CSWM
                                                                                                                                             CSWM
                                                                                                                                                      CSWM
                                                                                                                                                                CSUM
                                                                                                                                                                           CSWM
                                                                                                                                                                                    CSWM
                                                                                                                                                                                               CSWM
                                                                                                                                                                                                         CSWM
                                                                                                                                                                                                                    CSEN
                                                                                                                                                                                                                             CSWM
                                                                                                                                                                                                                                       CSWM
                                                                                                                                                                                                                                                  CSWM
                                                                                                                                                                                                                                                           CSWM
                                                                                                                                                                                                                                                                               CSWM
                                                                                                    IF (FLTIME.LT.SWTCH(NET)) GO TO 99
                                                                                                                                           GO TO (114,114,114,114),15
                                                                                                                                  GO TO (110,111,112,113),1N
                                                                      START OF CSWM (SUBROUTINE
                  SET KALMAN SWITCH MARKER
                                                 END OF DSWM (SUBROUTINE)
                                                                                           F (CFRM.GT.1) GO TO 101
                                                                                                                                                                                                                                        SIND (SMTCH(NET+3))
                                                                                                                                                                                                                                                 COSD (SWTCH(NET+3))
                                                                                                                                                                                                                                                            (SMTCH(NET+4))
                                                                                                                                                                                                                                                                      COSD (SWTCH(NET+4)
                                                                                                                                                                                                                                                                                                                                                       CALL MSCL (0, VEC2, TCEN)
                                                                                                                                                      LAT. . LONG. COOR. INPUT
                                                                                                                                                                                                                                                                                                                                   CALL VSCL(HTX, VEC, CEN)
                                                                                                                                                                                      CALL VSCL (O.VEC, CEN)
                                                                                                                                                                                                                                                                                          HTX= SWTCH(NET+6)+RD
                                                                                                                                                                                                                                                                                                                                            NEW TIC/E)
                                                                                                                                                                                                                                                                                COMPUTE NEW CIC/E)
                                                                                                                                                                                               MGID(TCEN, 4)
                                                                                                               SHTCH(NET+1)
                                                                                                                         SWTCH(NET+2)
                                                                                                                                                                                                                                                                                                                                                                                     = VEC(K)
                                                                                                                                                                                                                                                                                                                                                                           00 1121 1=1,9,3
                                                                                                                                                                 EF TO C SHITCH
                                                                                                                                                                                                                             C TO EF SWITCH
                                                                                                                                                                                                                                                                                                              VEC(2) = CC*CL
                                                                                                                                                                                                                                                                                                                        VEC (3)= CC * SL
                                                                                                                                                                                                                                                                                                    VEC(1) = SC
                             KRMM = DRMM
                                                                                 ENTRY CSWM
                                                                                                                                                                                                          Gn TO 1011
                                                                                                                                                                                                                                                            SIND
                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                             COMPUTE
                                                                                                                                                                                                                                                                                                                                                                                      TCEN(I)
         DIAS =
                                       RETURN
                                                                                                                                                                                               CALL
DIDR
                                                                                                               # Z ]
                                                                                                                                                                                                                                                                                                                                                                   n
¥
                                                                                                                                             110
                                                                                                                                                                           114
                                                                                                      100
                                                                                                                                                                                                                    111
```

21	+ X X	3	33
	TCEN(3) = CC	K	
	EN(5) = -	CSWM	
	EN(6) # -	3	
	(EN (8) = C.	CSWM	37
	(EN (9) =	CSWM	38
	DAPUTE (TSW)	CSMM	
11	ONT INUE	CSWM	40
	ALL MIRT (TCEN, TCE, T	CSWM	1+
	B (CEN,CE	CSWM	42
	FCN # 2	CSEM	43
	CFRM = 2	CSER	*
	-	SE	45
	J TO(101,1	SE	46
2	ONT INCE	CSWM	14
	_	MS	84
	HECK IN OF KAL	MS	49
	F (KFFN.NE.2) GO TO 10	CSER	20
	HITCH ALL NON-KAL	S	21
	AR	SE	25
	ALL VMOV (SE	53
	ALL MXMV (TCEN.	SE	24
	ALL VTRN (TSW.P	SE	52
	ALL VTRN (TCEN.	IS	26
	ALL VSUB (VEC.V	SE	21
	ALL VIRN (TSW.V.V	SE	28
	ALL VMOV (VEC.V.	S	59
	ALL VTRN (TSW.G.	CSER	90
	ALL VMOV (VEC.	CSEM	19
	ALL VTRN(TSW.DP.	SE	62
	ALL VMOVIVEC. DP. 3	SE	63
	ALL MTRNITSW.	CSWM	49
	ALL MXMVIVEC2, TLC.	CSMM	65
	F (DRMM.LT.2)	K	99
	ITHER (IDR	Z	19
	ALL VTRNITSH	CSER	89
	ALL VMOVIVEC	CSMM	69
	ALL VTRNITSH.W	CSEM	70
	ALL VMUVIVEC	BS	71

ں

		CSWN 86 CSWN 87 CSWN 89 CSWN 91 CSWN 91 CSWN 92	~ ,	M M M M
ITRN (TSW,TPC IXMV (VEC2,TP ITRN (TSW,TAC IXMV (VEC2,TA IAS AYA!LABL IAS NE.2)	CALL VIRN (ISM,VW,VEC) CALL VMDV (VEC,VW,3) CALL VTRN (TSW,VAS,VEC) CALL VMOV (VEC,VAS,3) 21 IF (DRMM,EQ,2) GO TO 999 20 CALL VTRN (TSW,F,VEC) CALL VTRN (TSW,F,VEC) CALL VTRN (TSW,F,VEC)	(VEC.DV NE.1) G (TSW.U1 (VEC.U (VEC.U (TSW.U3 (VEC.U	100 100 100 100 100 100 100 100 100 100	NET =NET+10 GO TO 100 CONTINUE RETURN END OF CSWM (SUBROUTINE) START OF CALM (SUBROUTINE) ENTRY CALM RETURN END OF CALM (SUBROUTINE)

	START OF PLAM (SUBROUTINE)	4	-
	ENTRY PLAM	PLAM	~ (
	IF (ORMM.EQ.1) RETURN	4	٠,
	00 200 1 = 2,10	P. CA.	t v
	TIME	PLAM	•
	R) + FLTIME	-	~
	02.203.		60
	TLC, AND WEI)	•	0
201		PLAM	
	GO = FNORM(PE)	PLAM	11
	GF = 1./GD	PLAM	12
	CALL VSCL (0,VEC1,VEC)	PLAM	13
		4	11
	CALL VTRN(TLC, WE, WEI)	4	15
	CALL WCROS (VEC.TKL)	PLAM	91
	CALL UTRN (TLC, V, VEC)		11
	CALL VTRN (TKL, VEC, WLC)	PLAM	18
	CALL WCROS (WLC.VEC2)	•	61
	.TLC.	PLAM	20
	CALL MSCL (DELTC, VEC 3, VEC 2)	•	21
	EC2.V	•	22
	CALL MXMV (VEC3,TLC,9)	•	23
	GO TO 200	₹	54
	COMPUTE (WPI+WPL)	PLAM	25
202	CONT INUE	PLAM	56
	0	PLAM	27
	0 70 21	PLAM	28
215	.3	PLAM	59
	SO TO 200	PLAM	30
	PLATFORM TYPE (S)	PLAM	31
213	CONT INUE	PLAM	32
	CALL VSUBIDM.DWK.VEC)	PLAM	33
	CALL VSUB(WGYR, VEC, WPI)	•	34
	-	•	35
	u	⋖	36
	CALL VSUBIWP I. VECI. WPL)	⋖	37
	GN TO 200	PLAM	38
	NANA I	•	36

214	CONTINUE	PLAM	40
	F (DAHR.EQ.4)	PLAM	41
	G. MODE	PLAM	42
	VCROS (WEI .	PLAM	43
	ALL VRXC (V,VEC	PLAM	44
	FNORM (G)	_	45
	L VSCL	PLAM	46
	L VRXC (G.HI	PLAM	47
	L VCROS (VE	PLAM	48
	L VRXC (VEC2, VEC4.V	PLAM	49
	* VEC3(1	PLAM	20
	3	PLAM	21
	F. V	PLAM	52
		PLAM	53
	COMPUTE (WPL.TPL.WPC.TPC)	PLAM	54
203		PLAM	55
	4	PLAM	26
	VE	PLAM	57
	DTPL , VEC 3, VEC 2	PLAM	28
	CALL SUBM(TPL, VEC2, VEC3, 3, 3)	PLAM	29
	CALL MXMV (VEC3,TPL,9)	PLAM	9
	TPL . MLC	PLAM	19
	WPL . VEC . W	PLAM	29
	CALL MTRN(TPL, TLC, TPC)	PLAM	63
		PLAM	49
	COMPUTE SPECIFIC FORCE	PLAM	65
204		PLAM	99
	MPUTATION	PLAM	67
		PLAM	68
	3) GO TO	PLAM	69
	(F)	PLAM	10
	CALL VTRN(TPL,WEI,VEC)	PLAM	11
	ALL VADDIDWK.	PLAM	72
	ALL VADDIVECION	PLAM	73
	L VADD(MP I.DW	PLAM	14
	ALL VADD (DF.DFK, VEC	PLAM	15
	VADD (FACC.	PLAM	16
	0	PLAM	11

•		_	a	•	₩	₩	•	00	a	a	₩.	40	v	o	Φ.	(7 *)	<u>ጥ</u>	5															_						
	PLAM	PLAM	PLAM	PLAN	PLAM	PLAM	PLAM	PLAM	PLAM	PLAM	PLAM	PLAM	PLAM	PLAM	PLAM	PLAM	PLAH	PLAM	MASH	MASH	MARM	MASM	HASH	VSTM	VSTH	VSTM	VSTH	VSTM	VSTM	VSTR	VSTH	VSTR	VSTM	VSTR	VSTM	MLSA		VSTM	VSTM
•			_		_				•	•	•	•	•			•	_	_		_			_																
																																					A F		
																																. KR					FRAME		
																																,152,1501 .KR					N L		
																															MEI	152,							
																															/11/	,158,					CCEL		
																													0		ပ	-					REF. ACCEL 'N	1/C	
																													051 0		GE								
																				(E)			_		(E)				G0 T0	TIME	PE		(F)		_	0	FRAME	TRANSFORMA TION	
										AC)	3	C						(SUBROUTINE)		(SUBROUTINE)			INE		(SUBROUTINE					_	۵	53,154,155	CE		160	-	O	ORM	
	~			2					_	PC. T	. WPC. VEC)	. VEC . MA						ROUT		UBRO			(SUBROUTINE		UBRO				.FLTIME)	R1 +	>				0 10	0 10	PUTE	ANSF	7 TO 150
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			P. WAP)			J		. WAC	AP . TPC	D. MP	C. VE						SUB		-			(SUB		E CS		0		GT.F	STIKE	L	51,1	L		3) G	21 G	Ū	E TR	
	1			(TA			(TA		(TAC	1	X .	(TP)						LAM		MASI	SM		N		VST	Ξ	-		-	7		50.1	TE SPEC		GE.	E0.	DR	RAM	_
	E Y	NUE	200	TE	NUE	200	TE	NUE		~	VADDEWA	VIRT	NUE	NUE	NUE	NOE	z	F		7	3		AH TI		OF	>		_	×	R		(19	TE S	NUE	RMH.	MMW	IS P	70	150
	PLAIFURM	INO	GO TO 200	OMPO	CONT INUE	Gn TD 200	COMPUTE	CONT INCE	DAMO	CALL MTR	CALL	CALL	-	ONTI	UNT I	ONTI	RETUR	END 0		START	ENTRY	ETUR	OQN		START	NTRY	00 150	π	F (T	TVV(KR) =		GO TO	COMPUTE	CONT INUE	F (0	F (0	MODE	NO L	Gn 10
(S			ق			ũ	ن	J	J					~	W		S	w	α	W		S	W	0	×	-)		S	U	51 C	-	_	T	4	G
	ٔ ر	210		ပ	205		J	206	J				20	20	209	70		ں	U	U			ပ	U	ပ						U		J	-			ں	U	

091 3	MODE = IDR CONTINUE CALL VIRT (IPC, FP, F)	VSTH VSTH VSTH	118
153	GO TO 150 CONTINUE COMPLIFE VELOCITY (V)	VSTR	202
	09	VSTM	23
U	LE L. VEC 1	VSTM	25
	. V. VEC	VSTM	27 82
	EC.VECI)	VSTM	53
		VSTM	31
U	GO TO 150 ADR VELOCITY (V)	VSTM	32
191		VSTM	34
	5 ?	VSTA	35
	CALL VMOV (VEC.V.3)	VSTR	37
	•	VSTM	38
1191	CONTINUE MODE POR COMPLIE WELDCITY	VSTR	39
		VSTM	7
ن	POSITION (P)	VSTM	45
154		VSTM	43
	-	VSTM	*
	CALL VAUD(P, DP, P) 60 TO 150	VSTR VSTR	4.0
	POSITION (PE)	VSTM	47
155		VSTM	48
	CALL VIRT (TCE, P, VEC)	VSTA	
		1 X X X	
	GRAVITY (GE)	VSTM	52
1 56		VSTM	
	1F 160-LF.(RO-DELKU) 60 (0 10 262	S	

	CC = FNORECEFI	WIST	55
	NFED SCALER GENERATION HERE	-	26
	GF = (GOROSQ/((GO**2)*GO)) - (GC**2)	VSTM	51
	CALL MGID(VEC2,4)	VSTH	58
	CALL MSCL(GF, VEC 2, VEC 3)	VSTM	29
	CALL VCXR(WE, WE, VEC2)	ST	9
	CALL ADDM (VEC2.VEC3.VEC4.3.3)	VSTM	19
	CALL MSCL(-1.0, VEC4, VEC3)	VSTM	62
	CALL VTRN(VEC3.PE,GE)	VSTM	63
	60 T0 150	VSTM	49
162	CONTINUE	VSTM	65
	CALL VSCL (0,VEC,GE)	VSTM	99
	60 10 150	"STH	19
	COMPUTE GRAVITY (G)	VSTM	89
151	CONT INUE	VSTM	69
	CALL VTRN (TCE, GE, G)	VSTM	20
	60 T0 150	VSTM	11
	CUMPUTE ALTITUDE (/H/)	VSTH	72
158	CONTINUE	VSTM	13
	GC =FNORM(PE)	VSTM	14
	GF * R0/GC	VSTM	15
	CALL VSCL (GF, PE, PS)	VSTM	16
	GF = FNORM(PS)	VSTH	11
	H * ABS(GC - GF)	VSTM	18
	60 TO 150	VSTH	19
1 52	CONTINUE	VSTM	80
	CONT INUE	VSTM	81
	RETURN	VSTM	82
		NSTM	83
	SUBROUT INE	VSTN	
	END OF SUBROUTINE OR-NAV	NSTH	8
		RFNV	
		A FN V	7
		RFNV	m
	REF-NAV MODULE GROUP	R FN <	4
	INE RENA	RFNV	5
	RUN PROGRAM.	REN >	•
	INSERTED)	N L	~ (
	SZ	Z L	6

1.PP(5.3).00(5.3)	A S	0 5
NAMELIST /NALTD/EBAR.HI.SMALT.NO.SIGB.TAUHB.SIGBW.HBABA.HE.ALTIM	RFNV	2 =
	RENV	12
	RFNV	13
HF = 0.	RFNV	
	RFNV	
IF (DALT.EQ.0.0) GO TO 10	RFNV	91
	RFNV	17
READ (5, NALTD)	RFNV	18
CONT INUE	AFNV	61
ALME & FIGAR	RFNV	20
	RFNV	21
SMAL	A FN	22
*	RENV	23
0	FFR	30
	N L O	100
RETURN	RFNV	33
	RSWM	-
AR	RSER	7
	RSHM	m
ITTER SHITCHING	RSHM	4
HTCH ARRAY (1)= TIME	RSHM	5
2 =EMITTER NET TYPE 1=GR	RSMM	9
ITTER NO. OR NET	RSHM	-
7 × TIME (ETC.)	RSER	80
	RSEM	Φ
	RSKE	01
	RSEM	11
IF (FLTIME.LT.RWTCH(NY)) GO TO 31	RSER	12
	RSKA	13
(2)	RSKM	14
[F (NX.GT.3) GO TO 32	RSKI	
Z = dX	REEL	16
CONTINUE	REEL	11
NT=NZ+1	RSEE	18
	Z Z	19
NK = NX# 3+Z	N N N N	20

	RKARYINR-11=NP	RSEM	21
	CO 34 HANSON	RSKR	22
	RKARY(NR)=RWTCH(I)	RSHM	23
	NR=NR+1	RSHM	24
34	CONTINUE	RSHM	2
	GO TO 35	RSHM	26
3.5	CONTINUE	RSHM	21
	IF (NX.GT.6) GO TO 36	RSHM	2
	NP=5	RSHM	29
	GO TO 33	RSMM	30
36	CONTINUE	RSEM	8
	ZP=4	RSHM	32
	GO TO 33	RSHM	9
35	CONT INUE	RSKM	W
	PFQM=2	RSHM	6
	NA=NA+6	RSHM	30
	GO TO 30	RSKM	3
31	CONTINUE	RSHM	38
		RSHM	39
	END OF RSWM (SUBROUTINE)	RSHM	4
()		ALTM	_
	START OF ALTM (SUBROUTINE)	ALTM	14
		ALTM	401
	IF (FLTIME.LT.CALT) RETURN	ALTM	•
	CALT=FLTIME + SMALT	ALTM	•
	IF (FLTIME.LE.ALTIM(NL)) GO TO 11	ALTM	
	ALMM = ALTIMINL+1)	ALTM	,-
	HI = ALTIM(NL+2)	ALTM	•
	IF (ALMM.EQ.1) RETURN	ALTM	=
	EBAR = ALMM	ALTM	_
11	CONTINUE	ALTM	7
	CHECK ALTITUDE MODE	ALTM	=
	GO TO (12,12,13,14,15,15,15,15),ALMM	ALTM	7
U	MODE = APS	ALTM	_
12	CONTINUE	ALTM	=
U	MODE = AB	ALTM	-
13	CONTINUE	ALTM	7
U	MODE = GF8	ALTM	7

```
ALTH
                                                                                                     ALTH
                                 ALTM
                                          ALTM
                                                                            ALTM
                                                                                    ALTH
                                                                                                               ALTM
                                                                                                                                                                                                                              ALTH
                                                                                                                                                                                                                                                                                                          ALTM
              ALTH
                       ALTH
                                                  ALTH
                                                           ALTM
                                                                   ALTM
                                                                                            ALTH
                                                                                                                        ALTH
                                                                                                                                ALTM
                                                                                                                                        ALTM
                                                                                                                                                 ALTH
                                                                                                                                                          ALTH
                                                                                                                                                                  ALTM
                                                                                                                                                                           ALTH
                                                                                                                                                                                   ALTH
                                                                                                                                                                                            ALTH
                                                                                                                                                                                                    ALTM
                                                                                                                                                                                                             ALTH
                                                                                                                                                                                                                     ALTH
                                                                                                                                                                                                                                      ALTM
                                                                                                                                                                                                                                               ALTM
                                                                                                                                                                                                                                                       ALTM
                                                                                                                                                                                                                                                                                 ALTM
                                                                                                                                                                                                                                                                                          ALTM
                                                                                                                                                                                                                                                                                                  ALTH
                                                            GO TO (16,16,17,18,19,19,19,19), ALMM
                                                                                                                                                                                                                                                                                                                   END OF ALTM (SUBROUTINE)
                                         IF (AIR.EQ.O.O) RETURN
                                                                                     HPC = HPC+HK+(HPC-HCR)
                                                                                                                                                                                                                                                               CALL VSCLIER 1, G. RMDP )
                                                                                                                       HBC = HB + DHBK
GO TO 20
                                  HR . H - HBARO
                                                                                                                                                                  4
                                                                                                                                                                                                                              YOJ=ABS(HF)
                                                                                                                                                                                                                                               ER . FNORM (G)
                         HP * HBARD
                                                                   MODE - APS
                                                                                                                                        MODE = GFB
                                                                                                                                                                                                                                                      ER1=1.0/ER
        MODE = GF
                                                                                                                                                                                                                                                                                          RMDL =-1.0
                                                                                                      MODE = AB
                                                                                                                                                                  DHBK = HF
                                                                                                                                                                                   MODE = GF
                                                   ATRBORNE
                CONT INUE
                                                                            CONT INUE
                                                                                             GO TO 20
                                                                                                                                                                           GO TO 20
                                                                                                               CONT INUE
                                                                                                                                                 CONTINUE
CONT INUE
                                                                                                                                                          HBC . HF
                                                                                                                                                                                            CONT INUE
                                                                                                                                                                                                    HPC = HF
                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                     HRC . HR
                                                                                                                                                                                                                                      0.0-603
                                                                                                                                                                                                                                                                                 CRJ=0.0
                                                                                                                                                                                                                                                                                                  NOME S = 1
                                                                                                                                                                                                                                                                                                           RETURN
                                                                                                                                                                                                                                                                         YRJ=HR
                                                                                                                                                  18
                                                                                                                                                                                           61
```

Total Control

U

```
28
                                                                                                                                                                                                                                                                                                    29
                                                                                                                                                                                                                                                                                                    TOPM
                                                                                                                                                                                                                                                                                                             1001
                                                                         TOPH
                                                                                                                                                                                                                  TOPM
                                                                                                                                                                                                                           TOPM
                                                                                                                                                                                                                                    TOPH
                                                                                                                                                                                                                                             TOPM
                                                                                                                                                                                                                                                      TOPM
                                                                                                                                                                                                                                                               TOPM
                                                                                                                                                                                                                                                                        TOPM
                                                                                                                                                                                                                                                                                  TOPM
                                                                                                                                                                                                                                                                                           TOPM
                                                                                                                                                                                                                                                                                                                               TOPM
         POSM
                           POSM
                                     TOPH
                                                        TOPM
                                                                TOPM
                                                                                  TOPM
                                                                                           TOPM
                                                                                                    TOPM
                                                                                                             TOPM
                                                                                                                       TOPM
                                                                                                                                                                              TOPM
                                                                                                                                                                                      TOPM
                                                                                                                                                                                               TOPM
                                                                                                                                                                                                         TOPM
POSM
                  POSM
                                              TOPM
                                                                                                                               TOPM
                                                                                                                                                                    TOPM
                                                                                                                                         TOP
                                                                                                                                                  1001
                                                                                                                                                           TOP
                                                                                                                                                            GO TC (40,41,42,43,44,45,46,47),Kl
                                                                                                                                          IF (TO(K2).GT.FLTIME) GO TO 28
                                                                          SETUP GROUND XMTTR MEASUREMENT
 START OF POSM (SUBROUTINE)
                                              START OF TOPM (SUBROUTINE)
                            END OF POSM (SUBROUTINE)
                                                                                                                                                  TOIKI)= TRSWIK2)+FLTIME
                                                                 F (NB.EQ.0) GO TO 51
                                                                                            IF (NA.ED.O) RETURN
                                                                                                                                DO 28 K2=2,10
                                                                                                      SETUP NAVSTAT
                                                        ENTRY TOPM
           ENTRY POSM
                                                                                                                                                                               CALL TAAM
                                                                                                                                                                                                          CALL TEWN
                                                                                                                                                                                                                                     CALL TALM
                                                                                                                                                                                                                                                                CALL TRRM
                                                                                                                                                                                                                                                                                           CALL TPCM
                                                                                                                                                                                                                                                                                                                       CALL THOM
                                                                                                                                                                     CONTINUE
                                                                                   CONT INUE
                                                                                                                                                                                       GO TO 48
                                                                                                                                                                                                CONT INUE
                                                                                                                                                                                                                           CONT INUE
                                                                                                              CONT INUE
                                                                                                                                                                                                                  60 TO 48
                                                                                                                                                                                                                                              GO TO 48
                                                                                                                                                                                                                                                       CONT INUE
                                                                                                                                                                                                                                                                         GO TO 48
                                                                                                                                                                                                                                                                                  CONT INUE
                                                                                                                                                                                                                                                                                                     GO TO 48
                                                                                                                                                                                                                                                                                                              CONT INUE
                    RETURN
                                                                                                                        K 1=1
                                                                                                                                                                      40
                                                                                                              52
                                                                                                                                                                                                                                                       43
                                                                                                                                                                                                                                                                                                              45
                                                                                                                                                                                                                                                                                                                                          46
                                                                                   51
                                                                                                                                                                                                 14
                                                                                                                                                                                                                                                                                    75
```

		0	
	60 TO 48		
7.7		5 6	
		2	
	CALL IDSM	100 H	
48	K1=K1+1	TOPM	
28	CONTINUE	TOPM	
	RETURN	TOPM	40
ပ	END OF TOPM (SUBROUTINE)	TOPM	
	FNO	TOPM	
	_	TRRM	-
ပ	(TO RUN PROGRAM, COMMON BLOCK DATA AT END OF THIS LISTING	TRRM	~
ں	SERT	TRRM	m
U		TRRM	4
U	START OF TRRM (SUBROUTINE)	TRRM	5
	ENTRY TRRM	TRRM	•
U		TRRM	~
	GO TO (60,61,62), IRT	TRRM	8
03	CONTINUE	TRRM	0
	GO TO 63	TRRM	
19	CONT INUE	TRRM	11
	GO TO 63	TRRM	
62	CONTINUE	TRRM	
	GU TO 59	TRRM	
63	CONTINUE	TRRM	
28	CONTINUE	TRRM	
	CALL VADD(P, D, VEC1)	TRRM	
	CALL VSUB(VEC1+EJ +RJ)	TRRM	
	YOJ=FNORM(RJ)	TRRM	
	UR=VNORM(RJ,UJ)	TRRM	
	GO TO (64,65,66), IRT	TRRM	
49	CONTINUE	TRRM	
	CALL VMOV(DUD, DD, 3)	TRRM	
	CALL VADO(0P,00,VEC)	TRRM	
	CALL VRXC(UJ, VEC, RJD)	TRRM	
	RETURN	TRRM	26
5.	CONT INUE	TRRM	
ပ	NAVSTAT DATA WORD	TRRM	
	60 TO 58	TRRM	
65	CONTINUE	~	

CALL VSUB(DUD.DEMD.DD)	TRRE	
60 10 67		32
CONTINUE	TRR	
CALL VMOV(DUD, DD, 3)	TRRM	34
CONTINUE	TRRF	35
CALL VADD(OP.DD.VEC)	TRRM	36
CALL VSUBIVEC, EJD, VEC1)	TRRM	37
CALL VRXC(UJ, VEC1, RJD)	TRRM	
RETURN	TRRM	39
END UF TRRM (SUBROUTINE)	TRRM	04
	THOM	i
START OF TMOM (SUBROUTINE)	TMOM	7
	TMOM	m
-VLITE	THOM	*
RMJP=(OK2*RMJD-DRJD)-VL[TE*(DTU-DTJ)	TMOM	S
YRJ= ER-RMJ	THOM	•
YRRJ= ERO-RMJO	THOM	7
RETURN	THOM	0
END OF THOM (SUBROUTINE)	THOM	10
START OF TMMM (SUBROUTINE)	HWH	-
	THE	7
	INI	e
CALL VMOV(UJ,RMOP,3)	III	*
CALL VSCL(-1UJ,RMDE)	III	S
RMDTU(1)=VLITE	III	•
RMDTU(2)=0.	III	7
PMDTJ(1)=-VLITE	HWW	∞
PMDL =1.0	HIL	Φ
CALL VMOV(UJ, RRDPD, 3)	III	10
RRTUD = VLITE	EEE	11
RRTJO =-VLITE	HWW	12
CALL MGID (VEC2.4)	MMM	13
CALL VCXR (UJ.UJ.VEC3)	ZZ	14
CALL SUBM (VEC2, VEC3, VEC4, 3, 3)	THE	15
	NIN	16
	MMM	17
_	Z Z L	18
CONTINUE	III	19

NAME OF THE CONTROL O	L VADD (DP.DD.VEC)	HHH	20	
L VSCL (-1.*RRDP.RRDE) L VSUB (DP,DD,VEC) L VSUB (DP,DD,VEC) L VSUB (CP,DD,VEC) THMH 2 L VSCL (-1.*RRDP.RRDE) THMH 2 L VSCL (-1.*RRDP.RRDE) THMH 2 TH	HPYR (VEC.VE	I	21	
WSUB (DP,DD,VEC)	L VSCL (-1., R	TTT	22	
V V V V V V V V V V V V V V V V V V V	CRN	III	23	
VSCB (VEC.ED.VEC.I.) VSCB (VEC.ED.VEC.I.) VSCB (VEC.ED.VEC.I.) VSCB (VEC.ED.VEC.I.) VSCB (VEC.ED.VEC.I.) VSCB (VEC.I.VEC.I.VEC.I.) VSCB (VEC.I.VEC.I.) VSCB (VEC.I.VEC.I.) VSCB (VEC.I.VEC.I.) VSCB (VEC.I.VEC.II.) VSCB (VEC.II.) VEC.II. VSCB (VEC.II.) VEC.II. VSCB (VEC.II.) VEC.II. VEC	L VSUB (DP.DD	TEX	54	
L VSCL (-I.,RRDP,RRDE) L VSCL (-I.,RRDP,RRDE) L VSCL (-I.,RRDP,RRDE) L VSCL (-I.,RRDP,RRDE) TANH 2 TANH 3 TANH 4 TANH 4	L VSUB (VEC.E.	MMM	25	
OF THEM (SUBROUTINE) TO THAM (SUBROUTINE) TO THEM (SUBROUTINE) TO THEM (SUBROUTINE) TO TEWN (SUBROUTINE) TO TAAN TO T	L MPYM (VECI, VEC3, RRDP	THE	97	
DEN (SUBROUTINE) THAM (SUBROUTINE) TOF TPCM (SUBROUTINE) TOF TPCM (SUBROUTINE) TOF TEAM (SUBROUTINE) TOF TEAM (SUBROUTINE) TOF TEAM (SUBROUTINE) TOF TEAM (SUBROUTINE) TOF TAAM TOR TAAM TOR	L VSCL (-1R!	MINI	27	
THE TARM (SUBROUTINE) TO TEAM (SUBROUTINE) TO TAAM TO TO TO SM TO TO TO SM TO TAAM TO TO TO SM TO TO TO SM TO TAAM TO TO TO SM	NAD	HHH	28	
T OF TPCM (SUBROUTINE) T OF TEWN DPTJ+DPIJ+DLJ NAM T OF TEWN (SUBROUTINE) T OF TEXN (SUBROUTINE) T OF TEWN (SUBROUTINE) T OF TEXN (SUBROUTINE)	OF THMM (IXI	53	
TPCH TPCH DPTJ+DPIJ+DLJ NEW (SUBROUTINE) TOF TEWM (SUBROUTINE) TOF TAMM (SUBROUTINE) TOF TALM (SUBROUTINE) TOF TOSM (SUBROUTINE) TALM	TART OF TPCM	TPCM		
TPCH TEMM		TPCM	7	
** DPTJ+DPIJ+DPIJ+DPIJ **N **N **TEWM (SUBROUTINE) **TEWM (SUBROUT	ENTRY TPCM	TPCM	m	
TPCH SUBROUTINE) TPCH TPCH TEWN TOF TEWN (SUBROUTINE) TOF TAAM TAAM TAAM TAAM TOF TOSM TAAM TAAM TAAM TAAM TAAM TAAM TAAM TA	DRJ = DPTJ+DPIJ+DLJ	TPCM	•	
TPCM (SUBROUTINE) T OF TEWN (SUBROUTINE) Y TEWN WXWVZ(VEC,TN,3,1,NC) VSCL(TM,VEC,VEC) VSCL(TM,VEC,VEC) VSCL(TM,VEC,VEC) VSCL(TM,VEC,VEC) VSCL(TM,VEC,VEC) VSCL(TM,VEC,VEC) TEWN TEWN TOF TEWN (SUBROUTINE) TAAN TOF TALM (SUBROUTINE) TALM Y TALM TOF TALM (SUBROUTINE) TALM TOF TALM (SUBROUTINE) TALM TOF TALM (SUBROUTINE) TALM Y TALM	Z	TPCM	5	
F TEWM (SUBROUTINE) EWM TINC) MYZ(VEC,TN,3,1,NC) TEWM CL(TM,VEC,VEC) TEWM CL(TM,VEC,VEC) TEWM CL(TM,VEC,VEC) TEWM TEWM TEWM TEWM TEWM TEWM TEWM TEW	JF TPCM (SUBR	TPCM	•	
TEWM (SUBROUTINE) FEM (SUBROUTINE) FEM (SUBROUTINE) FAM (SUBROUTINE) FALM (SUBROUTINE)		TENM		
TEWN TEWN TITLOC TITLOC TOTAL TOTAL TOTAL TOTAL TEWN TEWN TEWN TEWN TEWN TEWN TEWN TEWN	DE TEWN (SL	TENT	7	
TEWN IT (NC) THOUSE THE TENN TO THE T	ENTRY TEMM	TENM	m	
TEWN CL(TM, VEC, VEC) TEWN CL(TM, VEC, VEC) TEWN TEWN TEWN TEWN TEWN TEWN TEWN TEWN	T(NC)	TENH	*	
TEWM (SUBROUTINE) TEWM (SUBROUTINE) TEWM (SUBROUTINE) TEWM (SUBROUTINE) TAAM TAAM TALM (SUBROUTINE) TALM (SUBROUTINE) TALM	(MV2 (VEC , TN , 3 , 1	TERM	5	
TEWM (SUBROUTINE) TEWM (SUBROUTINE) TEWM (SUBROUTINE) TAAM TAA	SCLITM, VEC.	LEXE	•	
TEWM (SUBROUTINE) TEWM TAAM TAAM TAAM TAAM TAAM TAAM TALM TAL	SUB(VEC. DEJ		_	
TEWM (SUBROUTINE) TAAM TAAM TAAM TAAM TAAM TAAM TAAM TALM TAL		TENM	6 0	
TAAM TAAM TAAM TAAM TAAM TAAM TAAM TAAM	TEWM (S	N N N N N N N N N N N N N N N N N N N	0	ļ
TAAM TAAM TAAM TAAM TAAM TAAM TALM	JF TAAM	¥	-	
TAAM TAAM TAAM TAAM TAAM TALM (SUBROUTINE) TALM TALM TALM (SUBROUTINE) TALM TALM TALM TALM TALM TALM TALM TALM		AA	7	
TAAM (SUBROUTINE) F TALM (SUBROUTINE) TALM	AA	AA	m	
TAAM (SUBROUTINE) F TALM (SUBROUTINE) TALM		TAAM	*	
TALM (SUBROUTINE) TALM	TAAM (SUBR	TAAM	In	
TALM TALM TALM TALM TALM TALM TALM TALM		TALM	-	
TALM TALM (SUBROUTINE) TALM TALM TALM TALM TALM TALM TALM TAL	F TALM (SI	TALM	7	
TALM (SUBROUTINE) F TOSM (SUBROUTINE) TALM TALM TALM TALM TALM TALM		TALM	σ	
TALM (SUBROUTINE) TALM TALM TALM TALM TALM TALM TALM TAL		TALM	4	
IF TOSM (SUBROUTINE) TALM TALM TOSM	TALM (SUBR	TALM	S	
TOSM TAL	IF TOSM (SL	TALM	•	
TOSM			1	
			œ	

NOME S= IRT+1	TALM	0
2=GROUND, 3=AIRBORNE, 4=NAVSTAT	#	
CD1=0.	d	
CRJ=0.	¥	
RETURN	7	
END OF TOSM (SUBROUTINE)	TALM	
END OF SUBROUTINE REF-NAV	1 4	12 14
	KLMN	
KALMAN MODULE GROUPS	KLMN	7
UBROUTINE	KLMN	m
(TO RUN PROGRAM, COMMON BLOCK DATA AT END OF THIS LISTING	KLMN	*
	KIN	'n,
NAMEL 151/PKAL/P11,P13 - GD 13-R - AD4- AD44-AHBA	X X X	٥ ٢
H.NRSH.NOSI.	KLMN	· @
	KLMN	•
XFS=1	KLMN	
KCRNT = 1	KLMN	11
KCOUNT = 1	KLAN	12
KALL = 1	KLHN	13
CALL VMOV(V, VO, 3)	KLMN	4
00 8 1=1,539	N N N	<u>.</u>
c	X . X . X	o :
27 (1.61.50) GU 10 8	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	7
	7	0
FTKAL=0.0	KLMN	20
READ (5.PKAL)	XLES	21
WRITE (6, PKAL)	KLEZ	22
RETURN	KLMN	23
	KLMN	54
ENTRY KALMN	KLMN	25
NT INUE	KLES	56
IF (FLTIME.GE.FTKAL) GO TO 11	KLMN	27
	, لـ	58
H	X X	62
IF (FLIME-GI-VK(I)) GO TO 12	_	30

	VK(I) = TKLT(I) + FLTIME	KLWN	31
	IF (IN.GT.3) GO TO 13	KLMN	32
	GO TO (14,14,15,13),IN	KLMN	33
+	CONTINUE	KLMN	34
	CALL KSWM	KLMN	35
	GO TO 12	KLMN	36
15	CONTINUE	KLMN	37
	IF (DSWTH.EQ.2) RETURN	KLMN	38
	IF (NOMES.EQ.0) GO TO 13	KLMN	39
	CALL KAMM	KLMN	04
	NOMES = 0	KLMN	7
	GO TO 12	KLMN	42
13	CONTINUE	KLMN	43
	IF (FLTIME.LT.TKAL) RETURN	KLMN	4
	IF (KALL .EQ. 2) RETURN	KLMN	45
	GG TO (17,18,19,20,21,22),KCOUNT	KLMN	46
17	CONTINUE	KLMN	41
	CALL KMRM	KLMN	48
	GO TO 23	KLMN	49
18	CONTINUE	KLMN	20
	CALL KMCM	KLMN	21
	GO TO 23	KLMN	25
19	CONTINUE	KLAN	53
	CALL KMOM	KLMN	54
	GO TO 23	KLMN	25
20	CONT INUE	KLMN	96
	IF (KFS.EQ.2) CALL KFCW	KLMN	57
	KFS=1	X	58
	CAI.L KFIM	KLMN	29
	GO TO 23	KLMN	9
21	CONTINUE	KLMN	19
	IF (KFS.EQ.2) CALL KFCW	XLMN	. 62
	KFS = 1	KLMN	63
	CALL KCOM	KLMN	99
	KALL = 2	KLMN	69
23	KCOUNT = KCOUNT + 1	KLNN	99
12	CONTINUE	KLMN	19
	RFTURN	KLRZ	89
=	CONTINUE	KLMN	69

	1F (KFFN.EQ.3) KFS=2	KLMN	70
		XLEN	11
	FTKAL = FTKAL+ TKAL	KLRN	72
	KCPNT=1	XLES	73
	IF (DSWTH.EQ.2) GO TO 22	KLNN	1.4
24		KLMN	15
	IF (RSWTH.EQ.2) GO TO 25	KLKN	16
92	CONTINUE	KLMN	11
	UPDATE PHI TO END OF INTERVAL	KLNN	18
	CALL KTMM	KLMN	4
	CALL KTUM(1)	KLMN	80
	IF (NOMS.EQ.0) RETURN	KLMN	18
	DO 261 K = 1,NOMS	KLNN	82
	NOS1 = K	KLEN	83
	CALL KSYN	KLEZ	84
	CALL KMM1	KLNN	85
192	CONTINUE	KLMN	98
	I=ISCN	KLES	87
	WRITE(6, 1025)	KLNN	88
1025	10	KLAN	89
	FORM AT (2x, (9(2x, F10, 7)))	KLES	90
	KALL = 1	KLMN	16
	KCOUNT = 1	KLNN	36
	KCRNT = 1	KLAN	93
	NOMS = 0	KLAN	46
	RETURN	KLEN	95
22	CONTINUE	KLMN	96
	DO 27 K=1.NOSW	KLMN	16
	NOS1 = K	KLRZ	98
	CALL KTMM	KLMN	66
	CALL KTUM(1)	KLEN	0
27	CONTINUE	KLMN	0
	KCOUNT=5	KLMN	102
	DSWIH = 1	KLES	0
	KCRNT= 2	KLAN	0
	KALL = 1	KLAN	0
	60 T0 24	KLAN	0
25	CONTINUE	KLNN	0
	DO 28 K = 1. NRSW	KLMN	0

11164	121	. w o b o c		18 2010 2010 2010 2010 2010 2010
TY T	K K K K K K K K K K K K K K K K K K K	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	HHHHHH RESERVE	WHEN HEN HEN WAS A STANDARD A STA
CALL KTMM CALL KTUM (1) CONTINUE KALL = 1 KCOUNT=1 RSWTH =1 IF (KCRNT-EQ-1) GO TO 26 KCRNT =1 KCOUNT=5 KALL = 1 RETURN FND	END DF SUBROUTINE KALMAN	START OF KALMAN SUBROUTINE GROUP SUBROUTINE KSWM (TO RUN PROGRAM, COMMON BLOCK DATA AT END OF THIS LISTING MUST BE INSERTED) DIMENSION SUM(6), SUMI(6), SUMI(6), BORM(50), BOMS(50), NKKI(6)	START OF KSW% (SUBROUTINE) ENTRY KSWM IF (DEQM.NE.KEQM) GO TO 50 IF (DRMM.NE.KEQM) GO TO 50 CONTINUE IF (REQM.NE.REQD) GO TO 800	CONTINUE IF (FTKAL.NE.O.) GO TO 66 CONTINUE GO TO (60,61,62,62,62),KRMM INITIALIZE FOR PDR MODE CONTINUE GO TO 65 INITIALIZE FOR ADR MODE CONTINUE
2 8	00000) U 6 4	50 74 60 60 61

	GO TO 65	X SER	27
	INITIALIZE FOR IOR MODE	KSMM	28
7	CONTINUE		59
	60 TO 65	KSER	30
Š	CONT INUE	KSHW	31
	KREM = DREM	X SEE	32
	KRMO = ORMM	KSEE	33
	KEOM = DEOM	KSHW	34
	DSWTH = 2	KREK	35
	60 10 49	KSHM	36
	INFLIGHT DR-NAV. SWITCHING	KSHM	37
9		KSMM	38
	IF (DSWTH.EQ.2) GO TO 67	X SEE	39
		KSHM	0
	NOSM # O	KSER	1+
~	NOSH # NOSH # 1	KOKK	42
	FOR COMO, PRED+COMO AND OR, RR COMR MATRICES	KSEE	43
	DRNAV SHITCH IN ONE KA	KSKK	44
	TO POR MODE (X SEE	45
	IF (NOSW-LT.4) GO TO 69	X NEW	46
	DEOM = 1	KNEK	47
	CO TO 60	KSER	48
69	CONTINUE	XSEE	40
	KRE	X NE X	20
	GO TO (70,71,72,72,72),KRMU	XXXX	21
	G.R	KSEE	25
7	CONT INUE	XXXX	23
	KC * NOSH	KSKI	54
	111	XXXX	55
	SC	KREK	26
	CALL MXMV1(0011,PHI, 36,1,KC)	KSER	25
	D44.PHI.9. 2	XXXX	28
	T , PHI, 1, 3	X SEE	20
	V .PHI.3. 4	KSKW	9
	(MVICOP .PHI.3. 5.	3	61
	ALL MXMVI(MPC .PHI.3. 6.	SE	62
	ALL MXMVICTPC .	3	63
	_	S	49
-	ONTINO	KSEE	65

	GO TO 73	KSAM	9;
,		E BOX	0
0	CONTINUE	X SEE	9
	60 T0 73	X XX X	69
.)	TURN OF KTAM, PROCESSING: TO BY PASS KFIM'S PROCESSING NEXT INT.	KREN	20
73	CONT INUE	KSKI	11
	60 TO 74	KSAM	72
800	CONTINUE	KSKK	73
	E.O.0) GO TO	KSKK	*
	REF.NAV VA	KSMW	75
		KSMM	2
108	IF (RSWTH.E0.2) GO TU 80	KREX	11
	RSMTH = 2	KSKK	-
	ZRSE O	KRAN	19
80	NRSK # NRSK+1	KSMM	80
802		KRSX	8
	0.5	KSKK	82
	~	KREK	83
	1.GT.31 GO TO	KREX	\$
	- · ·	KSMM	85
	+ + N = E	KSKM	98
	1 + N = WI	KREK	87
	DO 82 [1 = 1MM, IM	KREK	8
	•	KREK	83
	4,851,12	K SK K	9
.,	TTER	KSKK	16
84	CONTINUE	KNEK	95
		KREK	66
	MITTER FROM NET	KNEK	*6
	SAVE (PRED+COMOR OR AND RR)	KSEE	. 95
85	CONTINUE	KSAM	96
86	RKARY(11)=1.0	KSMM	16
82	CONTINUE	KSAM	96
		KSKK	66
88	1.GT.41 GO TO 89	KSER	100
4.7	ETE NET:	KSMM	101
		KSMM	102
	DELETE THE ENTIRE NET;SAVE (PRED+COMR OR AND RR)	KSKM	103

0		KCLE	104
0 0		KSKM	
3 -		KAN	6
-		KSKK	107
	Naura a	KSER	0
	END OF KSWM (SUBROUTINE)	KREW	0
		KTHR	-
	START OF KIMM (SUBROUTINE)	KTHH	7
		KTHH	m
	V1=FNORM(VO)	KTMM	•
	CALL VMOV(V, VO, 3)	KTER	8
	1560 = 1	KTMM	•
	IF (DSWTH.NE.2) GO TO 10	KTAR	~
	1SEQ = 2	XTAX	•
	60 TO 10	KTMM	•
	ENTRY KSYN	KTMM	2
	VI = FRORM(V)	KTME	11
	1560 = 3	KTHH	12
10	CONTINUE	KTMK	13
	01 CO 10	XTAR	1
	COMPUTE 044(TF -TS) END OF INTERVAL	KTMK	15
	CT = TFKAL-FLTIME	KTMM	91
56	. AD	KTKK	17
	144.41	XTXX	18
	CALL MPVC (0044, VEC1, 4)	KTHH	19
	60 T0 27	KTMM	20
	COMPUTE 044 (TF-TI) MEAS.SYNC OR DR-SWITCH	XTME	21
25	CONTINUE	KTEE	22
	CT * PKI(1, 3, NOS1)	KTMK	23
	60 10 26	KTMM	54
	COMPUTE 034:633	KTMM	52
27	CONTINUE	KTMM	97
	22	KTAR	27
	VE	KTHH	28
	34,6033.	KTHH	53
	3 GO TO	KTRK	30
	TF-TS) E	KTHH	31
	C. WEI.V	XTAR	32
	. VEC 3. V	X	33

•	T. WPC.	I	
62	EC 5. V	XTAX	
	VEC 1.	KTMM	
	033.	XTMM	37
	33	KTMM	38
		KTMM	39
	COMPUTE 033 (TF -TI) MEAS.SYN OR DR-SWITCH		0
88		KTHM	41
	CALL MXMV2 (VEC1,PHI,3,6,NOSI)	KTMM	42
	VEC 2	-	43
	EC2, WEI, VEC3	KTMM	*
	T. VECL.V	KTMM	45
	T, VE	KTHH	46
	60 10 29	KTMM	47
30	00 301 1=1,3	-	48
	SUM(1) = 6(1)	KTAR	49
	-	KTEE	20
	1.5.	KTMM	21
301	CONT INUE	KTHH	52
	IF (ISEQ.EQ.1) GO TO 31	KTMM	53
u	COMPUTE DD13,GD13 (TF - TI) MEAS, SYNC. & ORSWITCH	KINK	54
	CALL POI (SUM, SUMI, SUM2, CT.VI)	KTRE	55
32	C. VEC	KTMM	26
	VEC 2	KTKK	57
	UM. VEC	KTMM	28
	CKI.V	KTMM	59
	UM2.	KTAR	9
	EC 4.	XTER	19
	EC3, VEC	KTHH	62
	EC 5. VEC	XTMM	63
	CA = CT*CT*.5	XTAR	49
	.6.5	KTHH	65
	3	KTMM	99
	C4 . VEC2 . GD1	KTAK	67
		KTEE	89
ں	G013 (TF-TS)	XTER	69
31	CALL POI (SUM, SUMI, SUM2, CT, VI)	KTME	70
			11
u	COMPUTE ADCIL AND ODII	I	

-	KTEE	73
I SEO GE 21	KTMM	*
NOBMIC VEC 1	KTH	75
ACAM CONTECT	XTER	16
) ·	KTAR	77
INDE	KTMM	18
2	KTAM	19
VC XB I VEC 1 - VEC 1	KTMM	90
MCCI (3, 0, VEC 2, VEC 3)	KTMM	18
MG TO (VEC 2 + 4)	KTMM	82
SILAMIVEC	KTEE	83
MSC: (-RTS.VEC4.T021)	KTMM	*
VSCI (-2.0.MEI.VECL)	KTMM	85
LCBOS VEC 1 TO 2 1	KTMM	96
METOCTO	KTMM	87
MSCI CO-O-VECS-1	KTMM	88
MXMXCOOLL VEC.	KTMM	68
ARRYCODII. VEC	KTMM	90
VSC(1(CT-0011-)	KTMM	16
MPYMIVECIZ-VEC12-VEC13	KTMM	92
VSCL1(0.5.VEC13.VEC13.36.1	KTMM	93
ADDM(VEC12 . VEC13 . 6 . 6)	KTMM	16
MG10(VEC14.7)	KTM	95
ADDMI VEC14.	XTMM	96
A = 1. + ARUA+CT	KTMM	16
MGID (VEC 2.	XTE	86
MXMV (VE	KTHH	66
C(1) = CT	KTMM	001
(3) = C	KTMM	101
C(4) = ARUC+	X	102
MGID LORE.	KLMM	103
MXMV(0013.	X	104
ARRY(DD13.VEC1	XTEE	105
MXMV(GD13.VEC12.1	KTMM	901
ARRY (6013, VEC 12	KTWK	101
A=1.+ARUA+CT	KTHH	108
VSCLICT, A	KTRE	100
MGIDI VECI.	I	011
MI VECL.	X	111

END OF KALMAN INTERVAL KANNIN KANNIN	END OF KALMAN INTERVAL KANNIN KANNIN	SID(OURE,4) 1.13.MOS1) 1.43.MOS1)	XTXX	112
END OF KALMAN INTERVAL KINN KINN INTERVAL KINN IN	END OF KALMAN INTERVAL KANHH KANH KANHH KANH KANHH K		XTX	
END OF KALMAN INTERVAL KANN	END OF KALMAN INTERVAL KANNIN KANNIN	UBROUTINE	X	. ~
		MAN 14% 30 043	XXX	m 4
	A X X X X X X X X X X X X X X X X X X X	CINC OF RACHAM	KAMA	'n
	X X X X X X X X X X X X X X X X X X X		XMMX	•
	X X X X X X X X X X X X X X X X X X X		KHWH	-
				\$
	AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX	
	X X X X X X X X X X X X X X X X X X X		XIII	
			XMMX	
			XMMX	
			XMMX	
			KHHH	
			T T T	= :
1 - O O O O O O O O O O O O O O O	4			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			KAMA	51
			XMMX	7
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		KHHH	7
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		KMMX	7
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		KHWK	8
			KAMA	N
1 0 0 0 m m m m	1			, ,
	. N N M M M M M		XMMX	27
~~~~	~~~~~		KMMX	28
~~~	~~~~		XXXX	53
M W W	~~~~		KEKE	30
M M	(M (M (M)		YEE	31
HHH 3	KHARA WARANA WANA W		KEE	32
			Ī	33

	00 130 K = 1.4	KMMX	36
	-	KEE	37
	OU 130 I = 1,50	KILK	38
	. CX	KILK	39
30		KMMX	40
621	CONT INUE	KERE	1+
	GO TO (131,132,133,133,133,133), DRMM	KENE	42
		KEEK	43
131	CONTINUE	KEEK	*
	RETURN	KMMX	45
	ADR MODE	KMMX	4
132	CONT INUE	KHMK	44
	RETURN	KERE	48
	I'DR MUDE	KIKK	49
133	CONTINUE	KMMX	20
	GET (MDJ,MRJ)	KINK	21
	121	KMMX	52
	ZIVEC .PHI.11.	KERK	53
	I (VEC 2, 0011, VEC	XXX	54
	I (VEC2.GD13.VEC	KARR	52
	I (VEC2.0013.VEC3.1.6.	KKKK	26
	131 VEC 4. DMS.	XIIX	21
	13 (VEC 3. DMS 1. 3.	KHH	28
	73 (VEC 5.0MS1,3.2.	KHHH	29
	14 (VEC . DDMS . 1 . N	KER	9
	1,12,NOS1)	KHHH	19
	14, 135, 136, 137, 138	KEE	62
	MEASUREMENT SUMA	KEE	63
134	CONT INUE	KILI	49
	DMR(1,1,1)=(-1.*OURA)+DMR(1,1,1)	KIKK	65
	CO TO 1341	KILI	99
	GROUND EMITTER	KEEK	29
135		KMMX	89
	13.NO	XXXX	69
	(P VEC . VEC)	KMMX	20
	72 (VEC . PHI . 14.2.	KKKK	11
	121 VEC 1. PHI. 11.3	KERE	72
	721 VEC 3. PHI . 15.1	KARR	73
	IL VEC. DURC. VEC3.	KMMX	14

	140.1.1.0MB.2.1.1.0HI		¥.
	VEC 1 - Olibe - VEC 4 -		2;
	TOTAL DING TOTAL		0 !
	1+51 O1 O2	XIII	8
	L0S	XIII	19
36	CONTINUE	XIII	80
	RETURN	XXXX	-
	NAVSTAT	KEE	6
_		-	1 0
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0
	TARONAL TOTAL		40
	1 VEC . PHI . 14.2	XIII	82
	CVEC	XXX	86
	(VEC 3, PHI, 15	XIII	87
	VEC, DURA, VEC3,	XXX	8
	(VEC 3 , DMR , 2 , 1 , 1 , P	X	89
	0.0. VEC1, VEC1, 6.1)	X	90
	(MS)	X	5
	7	X	92
		KKKK	60
	LORAN	X	46
	CONTINUE	XIII	95
341	CONTINUE	XXXX	96
	E.NO	X	16
	CALL MXMV5 (VEC, DDMS, 1, 1, NOS1, PHI)	KEME	86
		XMMX	66
	END OF KMMM (SUBROUTINE)	KEME	100
		KCOM	
	7	KCOM	7
	NTRY KCD	KCOX	E
	ALL KTUM	KCOM	4
	_	KCOM	8
	ALL VIRN (TLC.	KCOM	•
	ALL VTRN (TKL,	KCOM	1
	ALL VTRN (TPC.	KCOM	8
	ALL VMOV(XDS(7	KCOM	•
	ALL VSUBIVEC, VEC 3.V	KCOM	01
	#	KCOM	
	ALL	KCOM	12

ALL VSHRIP.		X C L X	-
SUNJAUNA		X CON	4
ALL VSUBIV.		NO.	2
ETIDE		100	14
		200	- 1
SAT THE COURT ACCUMENTS			- 0
AU OF ALOR			
MUST BE INSERTED)		KTUN	-
TO RUN PROGR	LISTING	KTON	7
		KTOM	6
TART OF KTU		KTUM	4
JBROUTINE KTUM		KTUM	S
FI IX.LE.0.0R		KTUM	9
# PHI+X+6		KTOM	_
ALL GETIXDS. VEC 6		KTUM	80
ALL MSCLID.O.		KTOM	•
ALL MPYMIODIL, VE		KTUM	2
ALL MPYM(0013, VEC1, VEC		KTUM	
AIL VADDIIVEC 3, VEC 4, XD 5, 6, 1		KTUM	12
ALL MPYMIOD33, VEC1, VEC3		KTOM	13
ALL MPYMIOD34.VEC.VEC4,		KTOM	14
ALL VADDIIVEC3.VEC4.XDS,		KTOM	15
ALL MPYMIOD44. VEC. VEC3.		KTON	16
ALL VSCLIO.0.		KTOM	11
ALL VADDIIVE		KTUM	18
09 · ×		KTUM	13
ALL MPYMIGDE		KTUM	20
ALL VADDIIVEC3, XDS, XDS,		KTUM	21
ALL MPYMIGD33, VEC 5, VEC		KTUM	22
ALL VADDIIVEC3, XDS, XDS, 3		KTUM	23
F (1X.EQ.2)		KTON	24
DMPUTE POT		KTUM	25
ALL MTRA100		KTUM	52
ALL MPYMIPI		KTUN	27
ALL MXMVIVE		KTUN	28
ALL MPYMIP31. VEC		KTUN	53
ALL MXMVIVE		KTUM	30
CALL MPYM(P41, VEC12, VEC13, 3, 6, 3)		KICH	31
ALL MXMVIVEC13.P41		KTON	32
ALL MTRAIOD13		KTUM	33

```
63
                                                                                                                                                                                                                                                                                                                                                              69
         35
                    36
                            37
                                        38
                                                 39
                                                           40
                                                                                          63
                                                                                                              5
                                                                                                                         99
                                                                                                                                 14
                                                                                                                                             8
                                                                                                                                                      63
                                                                                                                                                                20
                                                                                                                                                                                   52
                                                                                                                                                                                             53
                                                                                                                                                                                                        54
                                                                                                                                                                                                                 55
                                                                                                                                                                                                                            26
                                                                                                                                                                                                                                     57
                                                                                                                                                                                                                                                58
                                                                                                                                                                                                                                                          59
                                                                                                                                                                                                                                                                    9
                                                                                                                                                                                                                                                                                       62
                                                                                                                                                                                                                                                                                                                     65
                                                                                                                                                                                                                                                                                                                                99
                                                                                                                                                                                                                                                                                                                                         19
                                                                                                                                                                                                                                                                                                                                                    68
                                                                                                                                                                                                                                                                                                                                                                       70
                                                                               42
                                                                                                                                                                                                                                                                             19
                                                                                                                                                                                                                                                                                                             19
                                                                                                      3
                                                                                                                                                                                  KTUM
                                                                                                                                                                                                                                                                                                                               KTON
         KTCM
                   KTCM
                             KTCH
                                        KTCM
                                                 KTCM
                                                          KTCH
                                                                     KTCH
                                                                               KTUM
                                                                                          KTUM
                                                                                                    KTUM
                                                                                                              KTUM
                                                                                                                        KTOM
                                                                                                                                  KTCM
                                                                                                                                           KTUM
                                                                                                                                                      KTCH
                                                                                                                                                               KTUM
                                                                                                                                                                          KTUM
                                                                                                                                                                                             KTUM
                                                                                                                                                                                                       KTUM
                                                                                                                                                                                                                 KTOM
                                                                                                                                                                                                                            KTOK
                                                                                                                                                                                                                                      KTCK
                                                                                                                                                                                                                                               KTON
                                                                                                                                                                                                                                                         KTCM
                                                                                                                                                                                                                                                                    KTCH
                                                                                                                                                                                                                                                                             KTCH
                                                                                                                                                                                                                                                                                       KTCM
                                                                                                                                                                                                                                                                                                 KTUM
                                                                                                                                                                                                                                                                                                           KTOM
                                                                                                                                                                                                                                                                                                                     KTCM
                                                                                                                                                                                                                                                                                                                                          KTCH
                                                                                                                                                                                                                                                                                                                                                   KTOM
                                                                                                                                                                                                                                                                                                                                                              KTCM
                                                                                                                                                                                                                                                                                                                                                                       KTOM
                                                                                                                                                                                                                                                                                                                                                                                           KTOM
                   MPYM(P33, VEC 12, VEC 13, 3, 3, 6)
                                      MPYM(P43. VEC12. VEC13.3.3.6)
                                                                                                                                  MPYM(P14, VEC12, VEC13, 6, 3, 3)
MPYM(P13, VEC12, VEC13, 6, 3, 6)
                                                                                                                                                                                                       MPYM(P14.VEC12.VEC13.6.3.6)
                                                                     MPYM(P13. VEC12. VEC13.6.3.31
                                                                                                                                                                                                                                                                                        MPYM(0011.P11.VEC12.6.6.6)
                                                                                                                                                                                                                                                                                                 MPYM(0013, P31, VEC13, 6, 3, 3)
                                                                                                                                                                                                                                                                                                                                          MP YM( 00 11, P13, VEC 12, 6, 6, 3)
                                                                                                                                                                                                                                                                                                                                                   MPYM(0013, P33, VEC13, 6,3,3)
                             ADDM (P31, VEC13, P31,3,3)
         MADD(P11, VEC13, P11, 6, 6)
                                                 MADD(F41, VEC 13, P41, 3,6)
                                                                                                                                                                                                                                                                                                                     MADD(P11, VEC13, P11, 6, 6)
                                                                                                                                                                                                                                                                                                                                                                       MADD(P13, VEC13, P13, 6, 3)
                                                                                                                                           MADD(P13, VEC13, P13, 18)
                                                           MTRA(0033, VEC 12, 3, 3)
                                                                                         MTRT(P33,0033,VEC13)
                                                                                                              MTR T(P43,0033, VEC13)
                                                                                                                                                      MTRT(P34.0034.VEC13)
                                                                                                                                                                          MTR T (P 44,0034, VEC 13)
                                                                                                                                                                                                                           MTRT(P34,0044, VEC13)
                                                                                                                                                                                                                                               MTR T(P44,0044, VEC 13)
                                                                                                                                                                                              MTRA(0044, VEC 12, 3, 3
                                                                                                                                                               MADD(P33, VEC 13, 3, 3)
                                                                                                                                                                                   MADD(P43, VEC 13, 3,3)
                                                                              MXMV(VEC13,P13,18)
                                                                                                                                                                                                                  MXMV( VEC 13, P14, 18)
                                                                                                                                                                                                                                                                                                                                                              MXMV( VEC 12, P 13, 18)
                                                                                                                                                                                                                                                                                                           MXMV( VEC 12, P 11, 36)
                                                                                                    MXMV(VEC13,P33,91
                                                                                                                                                                                                                                      MXMV(VEC13,P34,9)
                                                                                                                        MXMV (VEC 13. P43.9)
                                                                                                                                                                                                                                                         MXMV(VEC13.P44.9)
                                                                                                                                                                                                                                                                                                                                                                                MTRA(P13.P31.6.3)
                                                                                                                                                                                                                                                                    œ
+
                                                                                                                        CALL
                                                                                                                                 CALL
                                                                                                                                                                         CALL
                                                                                                                                                                                             CALL
                                                                                                                                                                                                                                               CALL
                                                                                                                                                                                                                                                                  OPOT
                                                                                                                                                                                                                                                                                       CALL
         CALL
                                                 CALL
                                                                                          CALL
                                                                                                   CALL
                                                                                                              CALL
                                                                                                                                            CALL
                                                                                                                                                      CALL
                                                                                                                                                               CALL
                                                                                                                                                                                   CALL
                                                                                                                                                                                                       CALL
                                                                                                                                                                                                                 CALL
                                                                                                                                                                                                                           CALL
                                                                                                                                                                                                                                     CALL
                                                                                                                                                                                                                                                         CALL
                                                                                                                                                                                                                                                                                                 CALL
                                                                                                                                                                                                                                                                                                                     CALL
                                                                                                                                                                                                                                                                                                                                                                                 CALL
                            CALL
                                       CALL
                                                          CALL
                                                                     CALL
                                                                              CALL
                                                                                                                                                                                                                                                                                                           CALL
                                                                                                                                                                                                                                                                                                                                          CALL
                                                                                                                                                                                                                                                                                                                                                   CALL
                                                                                                                                                                                                                                                                                                                                                              CALL
                   CALL
                                                                                                                                                                                                                                                                                                                                                                       CALL
                                                                                                                                                                                                                                                                             114
                                                                                                                                                                                                                                                                                                                               P 23
```

U U

U

P14.VEC12.6	EUTX :	73
ILL MPYM(0013,P34,VEC13,6,3,	E 0 1	•
ALL MXMV(VEC12,P14,18	X C	12
ALL MADDIP14, VEC13,P	KTUM	16
ALI, MTRAIP14,P41,6,3)	KTUM	11
10	KTUM	78
NLL MTRN(0033, P33, VEC12	KTCM	79
CALL MTRN(0034,P43,VEC13)	KTUM	80
ALL MADDIVEC12, VEC13, P3	KTUM	81
34	KTUM	82
ALL MTRN(OD33,P34,VEC1	XTCM	83
ALL MTRN(0034,P44,VEC13	KTUM	84
ALL MADDIVEC12. VEC13.	KTUM	8
ALL MTRA(P34,P43,3,3	KTOM	86
4.	KTUM	87
ALL MTRN(0044.P4	KIUK	80
ALL MXMV(VEC12,P44,9)	XTOM	83
RSA = ORUA + ORUA	XTCM	90
RSS P	XTCM	16
ALL VSCLICORSA, P55, P	XTOR	35
ALL MTRA (DURC, VEC 1, 2,	XTCM	63
ALL MPYM (P66. VEC 1. VEC 2.2.2.	KTUM	46
ALL MPYM (OURC, VEC2, P66, 2, 2, 2	KICK	95
F (IRT.EQ.2) GG TO 10	KTOK	96
ALL MTRA (OURE, VEC 2.3.	KTUK	16
ALL MPYM (P77, VEC 2, VEC 3, 3, 3,	KTUM	98
ALL MPYM (OURE, VEC 3, P77, 3, 3, 3	KTUM	Or .
0 TO 106	KTOM	0
ONTINUE	KTUM	v
ALL MTRA (OREJ. VEC 12.4	KTUM	0
ALL MPYM (P77. VEC12. VEC13.4.	KTUM	0
ALL MPYM (OREJ, VEC 13, P77,	KTUM	u
ONT INUE	KTOM	0
ALL MPYMCODII.P15.VEC12.	KTCM	v
ALL MPYM10013, P35, VEC13, 6,3,	XTCM	J
ALL ADDM(VEC12, VEC13, P15,6,1	KTCK	Y
ALL MPYMIDDII, PI6, VEC12, 6, 6	ATCA	_
ALL MPYM(0013, P36, VEC13, 6,3,	ATCA	111
ALL ADDMIVECIZ. VECI 3.P16.6.	E O I V	_

	i	1
ALL VSCLIGOURA, P15.6	KTOM	_
ALL MTRA (P15,P51,6,1)	KTCM	
ALL MPYMIOD33,P35,VECI	KTOM	
ALL VSCL (OURA, VEC 12, P3	KTOM	-4
ALL MTRAIP35,P	KTUM	117
ALL MPYM(0033,P36,VEC12,3,3,	KTUM	
ALL MPYMIOD44.P46.VEC1	KTOM	-4
AIL MTRAIDRUC, VEC 1, 2	KTUM	N
ALL MPYMIVECIZA	KTUM	N
ALL MTRAIP36,P63,3,2	KTOM	N
ALL MPYMIVECI3. VEC1.	KTCM	N
ALL MTRAIP46,P64,3,2	KTUM	N
ALL MTRA(P36,P63,3,2)	KTCM	N
ALL MPYMIN	KTUM	N
ALL VSCL (OURC, VEC 2, P45	KTUM	N
ALL VMOV(P45,P54,3)	KTOM	N
ALL MPYMIP	KTUM	N
ALL MTRA(P16,P61.6.2)	KTUM	m
F (IRT. GT. 1) GO TO 107	KTUM	3
ALL MPYMIODII, PI7, VEC12	KTCM	3
ALL MPYM(UD13,P37,VEC13	KTUM	3
ALL ADDMIVE	KTUM	134
ALL MPYMIOD33, P37, VEC12	KTUM	m
ALL MPYM(0044, P47, VEC13	KTCM	ST.
ALL MTRA(OURE, VEC 2, 3, 3)	KTCM	(L)
ALL MPYM(V	KTCH	(1)
ALL MIKA(PI/P/II.6, 3)	X C W	m ·
ALL MPTMIVELIZAVECZA	MOLY:	•
5,5}	X X	141
ALL MTPA(047,034,3,3)		1
O TO 109		1
ONTINUE	F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* 4
ALL MPYMCODII-PI7.	TO LA	144
ALL MPYM(0013, P37, VEC13;	KTUM	
L ADDMI VEC12, VEC13, VEC	KTOM	4
L MPYM(0033,P37,VEC12,3,3,	KTUM	149
L MTRACOREJ. VEC13.4.	KTUM	5

ALL MPYMIVECIA	13.017.6.4.4)	KTUM	151
ALL MTOACOLZ-DZ		3	152
ALL MPYMCOD44.P.	11	KTUM	153
ALL MDVMCVFC14	3.047.3.4	KTIIM	154
CALL MPYMICHELLS, VECT	3.037.3	KTUM	155
ALL MTRAIP47.P7		KTOM	156
ALL MTRAIP37,P7		KTUM	157
ALL MTRACOURC.VE	N.	KTUM	158
ALL MPYMIPS6.VE	VEC3,1,2,2)	KTUM	159
ALL VSCLITORUA.	.P56.2	KTUM	160
ALL VMUVIPS6.P6		KTUM	161
F ([RT.GT.1) GO T	801	KTUM	162
ONT INUE		KTOM	163
ALL MTRACOURE, VE		KTUM	164
ALL MPYM(P57, VEC3		KTUM	165
ALL VSCLEORUA, VEC	•	KTUM	991
ALL VMOV(P57,P75		KTUM	167
ALL MPYMIP67, VEC3	EC4.2.3.3	KTUM	168
ALL MPYMIGURC, VEC	67.	KTUM	169
ALL MTRAIP67.P76.	;•3)	KTUM	170
ONTINUE		KTON	171
ALL MTRAIDURE, VEC	2.4.4	KTUM	172
ALL MPYMIPS7, VECI	2.VEC13.1.4.4)	KTOW	173
ALL VSCLICORUA.VE	13,95	KTUM	174
ALL VMOV (P57,P75		KTOM	175
ALL MPYMIP67, VECI	13.2	KTOM	176
ALL MPYMIDURC. VECI	3.P67.2	KTUM	111
ALL MTRAIP67.P76.		KTUM	178
00 R		KTOM	179
ALL MPVC(P11.R.		KTUM	180
ALL MPVC(P33,R,		KTOM	181
ALL MPVC(P44.R	10	KTOM	182
ALL MPVC(P55.R.2	.31	KTUM	183
ALL MPVCIP66.R.	(*)	KTUM	184
ALL MPVCIP77.R.	9	KTOM	185
ETURN			186
ND OF KTUM (SU	BROUTINE	XTCX	187

U

```
16
                                                                                                                                                                             20
21
22
23
                                                                                                                                                                                                                     24
                                                                                                                                                                                                                                                           28
                                                                                                                                                         816
                                                                                                                                                                                                                                       26
                                                                                                                                                                                                                                                                     29
                                                                                                                                                                                                                                                                              31
                                                                                                                                                                                                                                                                                                32
                                                                                                                    1
                                                                                                                            5
                                                                                                                                                                                                                                                27
                                        500
                                                                                                                                                                                                                                        KFIM
                                                                                                                                                                                                                                                                                                                                                                    KFIM
 KFIM
                             KFIN
                                                                                                                                                 KFIR
                                                                                                                                                                    KFIM
                                                                                                                                                                             KFIM
                                                                                                                                                                                       KFIH
                                                                                                                                                                                                KFIM
                                                                                                                                                                                                          KFIM
                                                                                                                                                                                                                    KFIM
                                                                                                                                                                                                                             KFIM
                                                                                                                                                                                                                                                 MISH
                                                                                                                                                                                                                                                           KFIH
                                                                                                                                                                                                                                                                    KFIM
                                                                                                                                                                                                                                                                              KFIM
                                                                                                                                                                                                                                                                                                 KFIH
                                                                                                                                                                                                                                                                                                           KFIM
                                                                                                                                                                                                                                                                                                                     KFIM
                                                                                                                                                                                                                                                                                                                              KFIM
                                                                                                                                                                                                                                                                                                                                        KFIM
                                                                                                                                                                                                                                                                                                                                                  KFIM
                                                                                                                                                                                                                                                                                                                                                            KFIM
                    KFIM
                                       KFIR
                                                KFIM
                                                          KFIM
                                                                              KFIN
                                                                                       KFIM
                                                                                                KFIM
                                                                                                          KFIM
                                                                                                                   KFIM
                                                                                                                             KFIM
                                                                                                                                       KFIM
                                                                                                                                                                                                                                                                                        KFIR
          KFIM
                                                                    KFIM
                                                                                                                                                          KFII
                                                                                                                                                                                                                                                                                        X11'=VEC6,X1'3=VEC1,XI'4=VEC,U1'3=VEC5
                                                                                      MEASUREMENT MATRIX (M.N. 6 2)
                                        TO 300
                                                                                                                                                                                                                                                                                                                                        VADD1' VEC 12, VEC 13, VEC 12, 6,11)
                                                                                                                                                                                                                                                                                                                                                            VADD1(VEC12, VEC13, VEC12, 6,1)
                                                                                                                                                                                                                                                                              CALL SET (HM, VEC6, VEC1, VEC, VEC5)
                                                                                                                                                                                                                                                                                                VSCL 1(0.0, VEC 12, VEC 12, 36,0)
                                                                                                                                                                                                                                                                                                           VSCL1(0.0, VEC13, VEC13, 36.0)
                                                                                                                                                                                                                                                                                                                    MPYM(P11, VEC6, VEC i2, 6, 6, 1)
                                                                                                                                                                                                                                                                                                                              MP YM (P13, VEC1, VEC13, 6, 3, 1)
                                                                                                                                                                                                                                                                                                                                                                    MPYM(P31, VEC6, VEC13,6,3,1)
                                                                                                                                                                                                                                                                                                                                                 MPYM(P14, VEC, VEC13, 6, 3,1)
                                      IF (DDMS(1.J.1).EQ.0.0) GD
                                                GET. YO.YR, CD, CR AND DELTA
START OF KFIN (SUBROUTINE)
                                                                   (11.L.1) = 00MS(1.J.1)
                                                                                                                                                                             DNS(K) = DDMS(I,J,2)
                                                                                                                                                                                                                    COMPUTE (MT AND YOM)
                                                                                                                                                                                      HM(K) = DOMS(1,1,1)
                                                                                                                                                                                                D2S(K)= DDMS(I,J,3)
                                                          00 3011 1=2,6
                   901 = f 000 00
                                                                                                          302 1=1,50
                                                                                                                                                                    00 304 1=7.50
                                                                                                                             0.0
                                                                                                                                       0.0
                                                                                                                   0.0 *(1) #C88
          ENTRY KFIM
                                                                                                                                       BKOM(I)=
                                                                                                                              DADM(1)=
                                                                                                                                                CONT INUS
                                                                                      GET THE
                                                                              1+11=11
                                                                                                                                                                                                                                       FTA=0.0
                                                                                                                                                                                                                                                                     ODRM=0.
                                                                                                                                                                                                                                                 DRN .O.
                                                                                                                                                                                                                                                           URM=0.
                                                                                                                                                                                                           K=K+1
                                                                                                                                                                                                                                                                                                                      CALL
                                                                                                                                                                                                                                                                                                                                                 CALL
                                                                                                                                                                                                                                                                                                  CALL
                                                                                                                                                                                                                                                                                                            CALL
                                                                                                                                                                                                                                                                                                                              CALL
                                                                                                                                                                                                                                                                                                                                                            CALL
                                                                                                                                                                                                                                                                                                                                                                     CALL
                                                                                                 X = 1
                                                                                                                                                                                                                                                                                                                                          ことに
                                                                                                                                                           1 = 1 4
                                                                                                                                                                                                                              [ = ]
                                                                                                          00
                                                                             3011
                                                                                                                                                 302
                                                                                                                                                                                                           304
```

ں

J

ALL VADDLEY	KER	1
ALL MOVMED 12 VECT LVECT 1 2 2 2	X	- 3
ALL VADDICVETIONVETIONER	N L W	3
ALL MPYMIP34.VEC.VEC13.3.3.1	KFIR	•
ALL VADDICVECI.VECI3	KFIM	3
ALL MPYM(P41, VEC6, VEC13,6,3,	KFIM	4
ALL VADDIIVEC12, VEC 13, VEC 12,	KFIM	4
ALL MPYMIP43, VEC1, VEC13,3,3,	KFIM	4
ALL MPYMIP44.VEC.VEC 11,3,3,1	KFIR	4
ALL VADDIIVEC12, VEC11, VEC12,	KFIM	4
ALL MPYMIMM. VEC 12. VFC 13.1.12	KFIT	š
DM = VEC13(KFIX	S
CHAS	KFIM	5
DM = MDS-(2	XFIM	Ś
ALL MPYMENM	KFIM	S
DM = VEC13(1)	KFIM	S
ALL VSUBICVEC12.DZS.8BDP	KFIK	Š
ALL GET (RM. VEC. VFC 1, VEC 2, VEC 3)	KFIM	S
LT=VEC(1),CLOCK=VEC1(1,2	KFIM	Š
LALB=VEC(1) eVEC(1)	KFIM	S
AL VSCL1(0VEC12.VEC12.	KFIM	3
ALL VSCL11 VEC 13, VEC 13, 36.1)	KFIR	9
ALL MPYM(P66, VEC1, VEC4, 2, 2, 1	KFIR	9
ALL VADDICVEC12, VEC 4, VEC12,	KFIE	9
ALL VSCLICCLALB.P55.VEC12.1.	KFIM	3
ALL MPYMIP77. VEC 2. VEC 4.4.4.	KFIM	9
ALL VADDIIVEC12, VEC 4, VEC 12,	KFIM	3
ALL MFYMIRM. VEC12, VEC13, 1	KFIM	0
KM=VFC13(1)	KFIM	3
ALL MPYMIRM DRZ	XFIX	9
RM=WRM (2.04VEC 13(1)+DP	KFIM	7
ALL VSUBICVEC12.DRZ.EBR	KFIM	-
ALL VSCL1100.VECI	KFIM	1
ALL VSCL110VEC13.VEC1	KFIR	1
ALL VSCLICCLALB,P15,VEC	KFIM	7
ALL MPYMIP16. VEC1. VEC4.6.	KFIM	~
ALL VADDICVEC12.VEC	KFIM	7
ALL MPYMIPI7. VEC2. VFC4.6.4	KFIM	~
ALL VADDIIVECIZ. VEC 4. VEC 1	KFIM	7

ALL VSCLICCLA	KFIN	7
PYMIP36. VEC1. VEC4.3.2.	. 4	
ALL VADDICYEC12, VEC 4, VEC 12,	FI	9
ALL MPYM(P37. VEC2. VEC4.3.4.1	FI	82
ALL VADDICVEC12.VEC4.VEC12.3	FI	69
ALL VSCLICLALB,P45,VEC12,3,	-	4
ALL MPYM(P46, VEC1, VEC4, 3, 2, 1)	1	8
ALL VADDIIVEC12.VEC4.VEC12	F	86
ALL MPYM(P47, VEC2, VEC4, 3, 4, 1)	F	6
ALL ADDIEVEC12, VEC 4, VEC 12,	FI	8
ALL MPYM(PS6, VEC1, VEC4, 1, 2	FI	6
ALL VADDIIVEC12, VEC 4, VEC 12, 1	FI	6
ALL MPYM(P57, VEC2, VEC4, 1,4,1)	FI	6
ALL VADDIIVECIZ:VEC4.VEC12	F	6
ALL MPYMIP67.VEC2.VEC4.2.4.1	FI	6
ALL VADDI(VEC12, VEC4, VEC12,2,1	XIII	46
ALL MPYMIMM, VEC 12, VEC 1	II.	9
DAM=VEC 13(1)+2.	F	96
ALL MPYMIRM	FI	6
RM=VEC13(1)	FI	86
ALL VADDICARS, URS, VEC13, 7,1	FI	6
ALL MPYMIRM, VEC13, VEC1	F	001
AMP=VEC 14(1)+DM2(2)	FI	0
ALL YMUVILVEC 12.BORM.	F	0
ALL VADDICKDS.C.T.VEC13.12.11	F	0
ALL MPYM(HM, VEC13, VEC1	Z	101
DMP=VECI2(I)	I	0
DATE AVECE		ÒC
VED H YORD-YEAD	i ii) (
R = ODM+ORM+	II.	Ò
H = UDK+URR	FI	~
B1= 1.0/0B	=	~
MUN/0-1 =10	FI	-
AL VADDICBBOM.BORM, VECI	FI	
ALL VSCLICOBI.VEC12.BKDM.12	F	-
ALL VSCLIGUOL.HM. VEC 12.12.	Z	
ALL. VSUBI(BKOM, VEC12, DBD	F	
ALL VSCLICETA, DBDM, VEC 12, 1	XIII	

KFIN KFIN KFIM KFIM KFIN KFIH KFIM KFIN KFIM KFIN KFIN KFIM KFIM KFIN KFIN KFIH KFIM KFIN KFIN KFIM KFIR KFIN KFIH KFIN KFIN KFIM KFIN KFIN KFII KFI KFI KFE KFII KFI KFL KFI KFII KFII GET (BROM, VEC4, VEC5, VEC6, VEC7) GET(BKOM, VEC4, VEC5, VEC6, VEC7) GET (BKRM. VEC. VEC.1, VEC.2, VEC.3) VSUB1(BKOM, VFC.12, VEC.13, 12, 1) VSCL 1(DYMP, VEC13, VEC12,12,1) MPYM (VEC 12 . VEC 6 . VEC 13 . 1 . 6 . 1) MPYMIVEC12.VEC6.VEC13.1.2.1) MPYM(VEC12.VFC6.VEC13.4.6.1) VSUB1(BKRM, VFC12, VEC13,7.1) VSCL 1(DYMP, VEC 13, VEC 12, 7, 1) SUBMIVEC12.VEC13.VEC14.2.2) SUBM(VEC12.VEC13.VEC14.4.4) VADDI(BORM, BROM, VEC 13, 7, 1) VADD1(VEC13,8RDM,8RDM,1,1) VADD1 (BRDM, VEC 13, BRDM, 2, 2) VSUBI(BKRM, VEC 12, BDRF, 7, 1) VADD1(BROM, VEC13, BROM, 4, 4) GET (HM, VEC 6, VEC 1, VEC, VEC 3) VADD1(XDS, VEC 12, XDS, 12, 1) VSCL 1(081, VEC13, 9KRM, 7,1) VSCL 1(ETA, BDRM, VEC 12, 7,1) VCXR (VEC 5 . VEC 13 . 2 . 2) WCKRIVECL , VEC6, VEC13, 4,41 VCXR (VFC1 . VEC 1 . VEC 1 2 . 2 . 2) VCXR (VEC 2 . VEC 12 . 4 . 4) VSCL1(FTB, BRDM, BRDM, 7.1) VSCL 1(0., VEC13, VFC13, 36) VSCL 1(UD1,RM, VEC 12, 7,1) VSUB1(P55.04LT.P55,1.1) SUBM(P66, VEC14, P66, 2,2) SUBM(P77, VEC14, P77, 4,4) VSCL 1 (0.0, BROM, BROM, 37) VADD1(RM. VEC12. XRS. 7.1) VSCL 1(08,8KRM,8KRM,7,1) MTRAIP 17. VEC 12.6.4) MTRA(P15, VEC12, 6, 1) MTRA(P16, VEC12, 6,2) MTRA(P15, VEC12, 6, 1) 9AL T=VEC (1)-VEC 4(4)+08 CALL CALI

129

126 127 128

125

119

122

121

133

134

132

131

136

37

38

39

041

644

142

141

40

841

147

150

121

152

154

-	-	¥
110000		1
C ASCLINGALIOVELTONELIZO	-	n I
L VSUBICP15.VEC12.P15.		n
L MTRAIP15.P51.6.1	1	0
L VCXRIVEC4.VEC1.VEC12.	H	9
L SUBMIP16. VEC 12. P16.6.2	FI	•
L MTRAIP16.P61.6.2	FI	9
L VCXRIVEC4.VEC2.VEC12.6	F	•
L SUBMIP17. VEC 12. P17.6.	E	•
L MTRAIPIT.P71.	F	•
L VSCL110ALT, VEC 5, VEC 12, 3	F	•
L VSUBI(P35.VEC12.P35.3.	F	9
L MTRA(P35.P53.3.1)	FI	•
L VCXR(VEC5.VEC1.VEC12.	F	-
L SUBMIP 36. VEC 12, P 36, 3,2)	FI	~
L MTRA(P36.P63.3.2	FI	-
L VCXRIVECS.VEC2.VEC12.3	H	-
L SUBMIP37. VEC12. P37.3.	FI	
L MTRA(P37.P73.3.4	FI	
L VSCL11UALT.VEC6.VEC12	E	
L VSUBICP45.VEC12,P45.	FI	
L MTRA(P45.P54.3.1)	FI	~
L VCXRIVEC6.VEC1.VEC12.	F	-
L SUBMIP46. VEC12	KFIN	180
L MTRA(P46.P64.3.2)	F	0
L VCXR (VEC6.VEC 2. VEC 12.	FI	0
L SUBMIP47. VEC12. P47.3.4	F	8
L MTRAIP47.074.3.41	1	•
L VSCL 110A. T. P56. VEC 12.2	H	0
L VSUB16756.VEC12.P56.2.1	T	8
L MTRAIP 56, P65, 2, 1)	H	8
L YSCLICUALT, PS7. V	H	•
L VSUBILP57, VEC 12, P57, 4	F	8
L MTRAIP57.P75.4.11	F	9
L VCXRIVE:2.VEC2.VEC12.2	2	9
L VSUBICP67. VEC12.P67.2	T	0
L MTRAIP6: . P 76.2.41	I	9
VSCL 1(08.9KDM.BK	XFIX	194
= ETA+ET	T.	

	ALL VSCLIFETB.DBDM.DBDM.12	F	
	ALL GETIBKOM, VFC6, VFC1, VF	_	197
	ALL VCXR(VEC6.VEC6.VEC12.6	FI	198
	ALL GET (DBDM, VEC 7, VEC	F	661
	ALL VCARIVECT.VECT.VEC13.	FI	200
	ALL SUBMIVECIZ. VEC 13. VEC 14	KFIM	201
	ALL SUBMIPIL . VEC 14. PIL .	FI	202
	ALL VCXRIVEC6. VEC 1. VEC 12.6	F	203
	ALL VCXRIVEC7.VEC8	FI	204
	ALL SUBMIVECIZ. VECI3. VE	FI	202
	ALL SUBMIP13 . VEC 14.P1	F	206
	ALL MTRA(P13.P31.6.3	F	207
	ALL VCKRIVEC6.VEC.VEC	KFIN	208
	ALL VCXRIVECT, VEC 9, VEC 1	KFIM	503
	ALL SUBMIVECIZ.VEC13.VFC	KFIM	210
	ALL SUBMIP14. VEC14. P14.6.	KFIM	211
	ALL MTRAIP14,P	XFIN	212
	ALL VCXRIVECI.VECI.VEC12	KFIN	213
	ALL VCXR(VECB.VECB.VEC13.	KFIM	517
	VEC12. VEC13. VEC14	KFIM	215
	ALL SUBMIP33.VEC14.P33.3.3	KFIM	216
	ALL VCXR (VEC1.VEC. VEC1	KFIM	217
	ALL VCXR (VEC8, VEC9, VEC1	KFIM	218
	ALL SUBMIVECIZ.VEC13.VE	KILX	513
	ALL SUBMIP34. VEC14.P	KFIM	220
	ALL MIRAIP34.P4	KFIM	221
	ALL VCXRIVEC. VEC. VF	KFIM	222
	ALL VCXPIVEC9.VEC9.VEC	KFIM	223
	ALL SUBMIVECIZ.VEC13.	KFIM	224
	ALL SUBMIP44. VE	KFIM	225
00	CONT INU	KFIM	226
	RETURN	KFIM	227
	0 0	KFIX	228
		KHCH	
	KT DF	XXC	7
	NTRY KMC		m
		KWCW	*
	Ç	¥	5

(SUBROUTINE) SUBROUTINE)	K K K K K K K K K K K K K K K K K K K	まるるよう ま
VEC 12, VEC 12,36,1)	X X X X	1 W 4 R
• •	X X X X X X X X X X X X X X X X X X X	· • ~ •
	XXX	62:
12.UDS.61 13.P13.VEC	X X X	
2.013.18) 3.014.VEC	A X X	
	X X X	17
	A T T T T T T T T T T T T T T T T T T T	19
	XXX	22
	XXX	ממו
T) 6X6	KFCW	2 2
14.P3	X FCW	2 2
. VEC 1	X FCW	mm
C14,P63,6) 7.VEC12,VEC14,3,3,4)	X FCW	M M

```
111
       35
                                          39
                                                                                43
                                                                                                                   14
                                                                                                                                      49
                                                                                                                                                                                                                                                                                                                 91
                36
                                                    40
                                                             41
                                                                      45
                                                                                                                                               50
                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                               4
                        37
                                  38
                                                                                          44
                                                                                                                                      KFCW
                                                                                                                                                                                                                        KMRM
                                                                                                                                                                                                                                          KERE
                                                                                                                                                                                                                                                   KMRH
                                                                                                                                                                                                                                                           KMRM
                                                                                                                                                                                                                                                                                      KMRM
                                                                                                                                                                                                                                                                                               KHRH
                                                                                                                                                                                                                                                                                                        KERE
                                                                                                                                                                                                                                                                                                                 KARA
                                                                                                                                                                                                                                                                                                                          KARA
                                                                                                                                                                                                                                                                                                                                   KMRK
                                                                                 KFCW
                                                                                                   KFCW
                                                                                                           KFCW
                                                                                                                     KFCW
                                                                                                                                               KFCM
                                                                                                                                                        KFCH
                                                                                                                                                                 KFCW
                                                                                                                                                                            KMRH
                                                                                                                                                                                    KMRM
                                                                                                                                                                                              KHRH
                                                                                                                                                                                                      KMRM
                                                                                                                                                                                                                                 KMRM
                                                                                                                                                                                                                                                                     KMRM
                                                                                                                                                                                                                                                                             KMRM
                                                                                                                                                                                                                                                                                                                                             XXXX
                                                                                                                                                                                                                                                                                                                                                     KARA
                KFCW
                         KFCW
                                  KFCE
                                          KFCH
                                                    KFCW
                                                             KFCW
                                                                      KFCW
                                                                                                                                                                                                               KARA
                                                                                          KFCW
                                                                                                                             KFCW
                                                                                                                                                                                                                                                                    (-.5*G*DT*2+DP-V*DT)
                                                                                                                                                                                                                                                                             (--1666*G*DT*2
                                                                                                                                                                                                                                                            (-C+D1 + DV)
                                                                                                                                                                                                                                          DIMENSION A(1).D(1).B(1).A1(4).A2(4),A3(4)
                                                                                                                                                                                                                                                   RE TURN
                (P45, VEC 12, VEC 14,3,3,1)
                                                                                                   P 11, VEC 12, VEC 14,6,6,6)
                                                                                                            IVEC 13, VEC 14. P 11.6.6.6)
                                                                                                                     P 17, VEC 12, VEC 14,6,6,4)
                                            P46, VEC12, VEC 14, 3, 3, 2)
                                                                       (P47,VEC12,VEC14,3,3,4)
                                                                                                                              VEC 13, VEC 14, P 17, 6, 6, 4)
                                                                                                                                                                                                                                                                                                 >
                                                                                                                                                                                    START OF KMRM (SUBROUTINE)
                                                                                                                                                                                                                                 SUBROUTINE POICA,D, B, C, F)
                                                                                                                                                                                                                                                                             DELTA
                                                                                                                                                                                                                                                                      DELTA
                                                                                                                                                                                                                                                                                               TOTAL
                                                                                 I VEC 14.P47, 121
                                                                                          [ VEC 14.P74.12]
                                                                                                                                                                                                                        FND OF KMRM (SUBRUUTINE)
                                                                                                                                                                  FND OF KFCW (SUBROUTINE)
        (VEC 14,P73,12)
                                                                                                                                                                                                                                                                                       T I ME
I VEC 14.P37.12)
                          ( VFC 14,P45,31
                                  I VEC 14.P54.31
                                                     (VEC 14,P46,6)
                                                             (VEC 14,P64,6)
                                                                                                                                       (P17,P71,24)
                                                                                                                                                                                                                                                           A CONTAIN
                                                                                                                                                                                                                                                                     CONTAIN
                                                                                                                                                                                                                                                                             CONTAIN
                                                                                                                                                                                                                                                                                      C CONTAIN
F CONTAIN
                                                                                                                                                                                                                                                                                                                           110
                                                                                                                                                                                                                                                                                                                                                     Jn 12 [= 1,3
                                                                                                                                                                                                                                                                                                                   A ( 1)
                                                                                                                                                                                                                                                                                                                                   A3(1) = 8(1)
                                                                                                                                                                                                                                                    ENTRY
                                                                                                                                                                                              ENTRY KARM
                                                                                                                                                                                                                                                                     9
                 MPYM
                                                     NXW >
                                                             NXW <
                                                                                 NXW N
        NXM V
                                   YXX
                                                                                                                                                                                                                                                                             8
NXH V
                          YXX C
                                            IDVE
                                                                       MAAW
                                                                                          HXMV
                                                                                                   MAAM
                                                                                                            HPYM
                                                                                                                     MAAM
                                                                                                                              MPVE
                                                                                                                                        ZXXV
                                                                                                                                                                                                                                                                                                                                             CONT INUE
                                                                                                                                                                                                                                                                                                         11 00
                                                                                                                                                                                                       RETURN
                                                                                                                                                                                                                                                            VECTOR
                                                                                                                                                                                                                                                                     VFCTOR
                                                                                                                                                                                                                                                                             VFCTOR
                                                                                                                                                                                                                                                                                               VECTOR
                                                                                                                                                        RETURN
                                                                                                                                                                                                                                                                                       VECTOR
                                                                                                                                                                                                                                                                                                                   A1(1)
                                                                                                                                                                                                                                                                                                                           A2(1)
                                                                                                                                               KFFN
                                   CALL
                                                                       CALL
                                                                                 CALL
                                                                                          CALL
                                                                                                    CALL
                                                                                                            CALL
                                                                                                                     CALL
         CALL
                 CALL
                           CALL
                                            CALL
                                                     CALL
                                                             CALL
                                                                                                                              CALL
                                                                                                                                       CALL
                                                                                                                                                                                                                 CNU
```

5

0

U U

ပ

	4	KARA	21
	(.5*A1(1)*C	KARA	22
	66 *A1(1)	KMKM	23
12	CONTINUE	KMKK	24
	RETURN	KARA	25
		KMRM	26
	(E,A,8,C,D	KIRI	27
	•	KKKI	28
	K=1	KMRM	53
	00 102 [=1,6	KARA	30
		KARA	31
	IF (1.6T.3) GO TO 102	KMRM	32
	B(K) = E(1+6)	KARA	33
	C(K)=E(I+9)	KMRM	34
	D(K)=E(I+6)	KHRM	35
	T+**	XMX	36
102	CONT INUE	KMRM	37
	RETURN	KMRM	38
	CAD	KMRM	39
	Y(A,B	KMRM	40
	11,8(1	KMRM	41
	- X	KMRM	42
	00 10 J=1,3	KMRM	43
	00 11 %=1,3	KMRM	44
	A(], J)=8(X)	KMRM	45
	A([+3,J)=B(K+9)	KHRH	46
	1 + x = x	KMRH	47
11	CONT INUE	KMRM	48
	X=X+3	KMRH	40
0	CONTINUE	KMRM	20
	60 TO (12,13),N	KMRM	51
U	N=1 IS 6*6,	KMRM	52
13	CONTINUE	KMRM	53
	RETURN	KMRM	54
12	CONTINUE	KMRM	55
	K=19	KMRM	56
	00 14 J=4.6	KHRH	57
	00 15 1=1,3	KMKM	58
	A(1, J) = B(K)	KMRM	59

	A(1+3.1)=R(K+9)	KARA	9
		KARA	5
15	CONTINUE	KMRM	9
	K * K + 3	KERE	63
14	CONTINUE	KMKN	2
	RETURN	KERI	9
		KMKM	3
U	END OF KALMAN SUBROUTINE GROUP	KIRI	9
L		SPCL	
ن	SPECIAL MODULE GROUP	SPCL	
۲,	START OF SUBROUTINE SPECIAL	SPCL	(4)
	IE SPECL	SPCL	•
ں	(TO RUN PROGRAM.COMMON BLOCK DATA AT END OF THIS LISTING	SPCL	•
U	MUST BE INSERTED)	SPCL	
	DIMENSION PRNT(10)	SPCL	
		SPCL	~
	CALL PAGE (LINE, DRMM, 1,2)	SPCL	•
	-	SPCL	7
	PRNT(1)=0.	SPCL	_
20	CONTINUE	SPCL	7
	RETURN	SPCL	-
Ų		OUTM	
U		OUTM	•
	ENTRY DUTM	OUTH	•
		OUTM	14
		OUTM	14
U	(SUBRO	OUTM	14
ں	FND OF SUBROUTINE SPECIAL	DOLM	4
ن		SUBS	
ပ	START OF COMMON SUBROUTINE GROUP	2082	
ں	ATRIX OPERATIONS 1	SUBS	
U	UBROUT INE	SUBS	
		SUBS	
J	LLING SEQUENCE WHERE	SUBS	
U	ALL ADDM (A.B.R.N.M)	SUBS	
: ب	ALL SUBM (A.B.R.N.M) B = Z-ND.MA	SUBS	
ن د	CALL APYM (A.K.K.N.K.L) K # COLPOI AAIKIX	SUBS	-
د)	•

	•		i							•
	•	M	NO.CCLS	Z	A AND	KOMS	Z	20	2082	-
		11	200	z	6 0				SUBS	=
	E MPYM (A.B.R.N								SUBS	Ä
	DIMENSION A(1),8(1),R(1)								SUBS	<u> </u>
									SUBS	-
	# n ×								SUBS	<u>~</u>
	DO 10 K=1,L								SUBS	-
	X = X+E								SUBS	7
	00 10 J=1.N								SUBS	-
									SUBS	7
	N-7 = 17								SUBS	2
	18 = 1K								SUBS	7
									SUBS	7
	00 10 I=1.M								SUBS	7
	_								SUBS	N
	18 = 18+1								SUBS	7
	.EQ.0.0.0R.B(18).EQ.	0.03	GO TO 1	0					SUBS	2
	(IR) + A(JI)* B(IB)								SUBS	7
0									SUBS	N
	RETURN								SUBS	m
	ENTRY ADDM (A,B,R,N,M)								SUBS	6
									SUBS	m
	CO TO 11								SUBS	3
	FNTRY SUBM (A,B,R,N,M)								SUBS	M
									SUBS	M
	Z + Z + Z Z								SUBS	m
	00 12 1=1.NM								SUBS	m
	1,13,								SUBS	m
6	R(1) = A(1)+B(1)								SUBS	m
	60 TO 12								SUBS	*
4	R(1) = A(1)-B(1)								SUBS	4
7									SUBS	4
	RETURN								SUBS	4
	ENTRY MTRA (A,R,N,M)								SUBS	*
									SUBS	*
	00 15 1×1.N								SUBS	4
	N-1 + 71								SUBS	4
	00 15 J=1,M								SUBS	•

```
9
                                                                                                           29
                                                                                                                                                                      69
                                                                                                                                                                                                                         52
                                                                                                                                                                                                                                                         61
                                                                                                                                                                                                                                                                                                           85
                                                                                                                                                                      SUBS
                                                                                                                                                                                                                        SUBS
                                                                                                                                                                                       SUBS
                                                                                                                                                                                                        SUBS
                                                                                                                                                                                                                SUBS
                                                                                                                                                                                                                                        SUBS
                                                                                                                                                                                                                                                 SUBS
                                                                                                                                                                                                                                                                  SUBS
                                                                                                                                                                                                                                                                          SUBS
                                                                                                                                                                                                                                                                                  SUBS
       SURS
                       SUBS
SUBS
                                        SUBS
                                                SUBS
                                                                 SUBS
                                                                          SUBS
                                                                                  SUBS
                                                                                          SUBS
                                                                                                   SUBS
                                                                                                           SUBS
                                                                                                                   SUBS
                                                                                                                            SUBS
                                                                                                                                   SUBS
                                                                                                                                            SUBS
                                                                                                                                                     SUBS
                                                                                                                                                             SUBS
                                                                                                                                                                                               SUBS
                                                                                                                                                                                                                                                         SUBS
                                                                                                                                                                                                                                                                                           SUBS
                                                                                                                                                                                                                                                                                                    SUBS
                                                                                                                                                                                                                                                                                                           SUBS
                                                                                                                                                                                                                                                                                                                      SUBS
                                                                                                                                                                                                                                                                                                                              SUBS
               SUBS
                                                         SUBS
                                                 OF VECTORS (1X3 OR 3X1 VECTORS)
                                                                                                                    DIMENSION X(3), Y(3), A(6), SUM(3), Z(3), W(3)
                                                                                                   VECTOR (8(1
                                                                          ANGLE
                                                                                           ANGLE
                                                          OUTPUT
                                                                  ANGLE
                                                                                  ANGLE
                                                                                                                                                                                                                                                                                                             # AMAX1(SUM(1),SUM(3))
                                                                                                                                                                                                                                                                                                                      (SCL.LF.DVT) GO TO 10
                                                 SUBROUTINE DOT PREDUCT
                                                                                                                             DATA OVT/25755124.E3/
                                         VECTOR OPERATIONS 1
                                                                                                            FUNCTION DOT (X,Y)
                                                                                                                                                                                       ENTRY ADOTA (X,Y)
                                                                                                                                                                                                                                                                   16,6,7,81,1
                                                         CALLING SEQUENCE
Y = DOT (A,8)
                                                                          ADOT (A.8)
                                                                                   ADOTR (A.8)
                                                                                                   VNORM (A,8)
                                                                                                                                                              ENTRY ADOT (X,Y)
                                                                                           FNORM (2)
                                                                                                                                                                       * 57.2957796
                P(IR)=A(IJ)
N+71 = 71
                                                                                                                                                                                                                                                                                     TO 16
       R= [R+]
                                                                                                                                                                               50 TG 2
                                                                                                                                                      0 TO 3
                         RETURN
                                                                                                                                                                                                                                          A(1+3)
                                                                                                                                                                                                                                                                   GO TO
                                                                                                                                                                                                                                                  GO TO
                                                                                                                                                                                                                                  A(I)
                                                                                                                                                                                                                                                                                                             SCL
                                                                                                                                                                                                                                                                                                    00
                                                                                                                                                                                                                                                                                   G
                                                                                                                                                                                                                                                                                                                      T.
                15
```

•	SUM(1) # SUM(1)/SCL	SUBS	
0		SUBS	89
	GO TO 18	SUBS	90
	ENTRY FNORM(2)	SUBS	16
	1 = 3	SUBS	92
	60 10 11	SUBS	93
	ENTRY VNORM (Z+M)	SUBS	46
	+ = 11	SUBS	95
11	J2 = 1	SUBS	96
	00 12 1=1,3	SUBS	16
12		SUBS	86
		SUBS	66
13	= SORT(SUM! I	SUBS	100
	LE.3) G	SUBS	101
	[=1,3	SUBS	102
7	4	SUBS	103
	81 01 09	SUBS	104
51		SUBS	105
	-	SUBS	106
91	0 *	SUBS	107
	J = 1,3	SUBS	108
	SUM(1) = A(J1)*A(J2)+SUM(1)	SUBS	109
	1+17 = 17	SUBS	110
11		SUBS	111
	60 TO (18, 5, 13, 13), 11	SUBS	112
18	007 = SUM(1)	SUBS	113
	RETURN	SUBS	114
		SUBS	115
	TION 2	SUBS	116
	OSS PRODUCT OF VECTORS; SUM, DIFF, ET	SUBS	117
	- 1	SUBS	
	ING SEQUENCE	SUBS	119
	VCROS (A.B.C) WHERE A = 1-	SUBS	120
	VADD (A,B,C) $8 = 2-ND$ VECTC	SUBS	121
	VSUB (A,B,C) C = RESULTANT VECTOR	SUB	122
	N = SCALAR OR		123
	VNCR (A.B.	SUBS	124
	VC XR (A,8,	SUBS	125
	VRXC	SUBS	126

	CALL VMOV (A.C.N)	SUBS	N
		SUBS	128
		SUBS	N
	VCROS(X,Y,Z,	SUBS	m
	DIMENSION X(1), Y(1), Z(1)	SUBS	M
		SUBS	3
	NP = 1	SUBS	3
	CO TO 10	SUBS	m
	5	SUBS	3
	00 20 1 = 1,3	SUBS	
C	-	SUBS	3
	CO TO 13	SUBS	3
	9	SUBS	3
	00 21 1 = 1+3	SUBS	4
_	=	SUBS	4
	GO TO 13	SUBS	4
	ENTRY UNCR (X.Y.Z.)	SUBS	4
	NP = 2	SUBS	4
C	((2)*Y(3	SUBS	4
	((3)	SUBS	4
	((1) *Y(2)	SUBS	4
	*(1)2)	SUBS	4
	14.151.	SUBS	
		SUBS	5
6	2(1) = 2(1)/AB	SUBS	5
	CO TO 13	SUBS	5
2	CONTINUE	SUBS	5
	ENTRY VCXR (X,Y,Z,N,M)	SUBS	154
	· · · · ·	SUBS	5
	00 25 J*I*N	SUBS	5
	DO 26 [=1,M	SUBS	
	(1) * x(J) * x(L) * (L)	SUBS	5
9		SUBS	5
15	CONTINUE	SUBS	9
	GU TO 13	SUBS	9
	ENTRY VRXC (X,Y,Z)	SUBS	•
	7(1) = 0	SUBS	163
	1.3	SUBS	164
	$2(1) = x(1) + \lambda(1) + 2(1)$	SUBS	165

		SUBS	166
13		SUBS	
		SUBS	
	NTRY VADDI(X,Y,Z,N,M)	SUBS	169
	1=H (0)	SUBS	170
		SUBS	171
	00 16 I=1,00	SUBS	172
		SUBS	173
		SUBS	174
91		SUBS	175
		SOBS	176
	. Y. Z. N. M.	SUBS	111
		SUBS	178
		SUBS	179
		SUBS	
	=	SUBS	
		SUBS	
11		SUBS	183
		SUBS	184
		SUBS	185
ပ	CONS 2	SUBS	186
		SUBS	187
U	GTSN.GTF >	SUBS	188
U	X3 TRANSFORMATION MATRIX CORRESPONDING TO A	SUBS	189
ں	LINE OR A SEQUENCE OF ROT. ABOUT COOR. AXES	SUBS	190
ں	WHERE ALL OPERATION ARE 3X3,3X1 OR(1X3)	SUBS	161
U	T = MATRIX RESULT. (3X3)	SUBS	192
U	ALL GTRN (T.N.A.M) N = ROTATION AXIS	SUBS	193
ن	SA,CA,M) M = NUMBER OF ROTATION	SUBS	194
U	ALL STRN (T, IS) SA, CA = SINE, COSINE	SUBS	195
	A = ANGLE CF RCTATION (RAD.) (3)	SUBS	961
	ZZ (T,N,A,M)	SUBS	197
	41(9)	SUBS	198
	0).N(10).T(9).NN(4).NS(22).CA(10).SA(10)	SUBS	199
	,3/.NS/5,6,4,8,9,7,2,3,1,5,6,4,5,9,7,8,3,1,2,6,4,5/,	SUBS	200
	1 MTEST, TTEST/10, 5.E-8/	SUBS	201
		SUBS	202
		SUBS	203
	4. SP. CA. M.	SUBS	204

236 238 208 210 211 212 213 213 215 216 218 220 221 222 223 224 225 226 226 227 228 229 231 232 234 240 242 206 207 241 SUBS 10 IF (N(1).LT.0) S=-S - ET(4)+ET(3) * WT(5)*WT(K) 8 MT(J)+S CALL VNOPMIN'NT STIKIE -MT(JIES ASSIGN 13 TO N2 GO TO N2, (9, 13) 1F (J.GT.3) J=1 IF (N(1).E0.0) 7 TO NI TO N1. (6.7) C = COS(MT(4)) SINCETICAL ST(J)=ST(J)+C DN 15 1=1,46 J=1.9. on 12 J=1,3 DO 10 J=1,3 OU 10 K=1,3 MT(4)=1.0-C CALL SACII CON - X 1 ASS I GN ASSIGN STIL 1 . OH ST(1) 11 00 HC H

			- 4
		SUBS 24	- 3
	(+) = ST(J)		3
	(J) = CeHT(4)+SeST(K)		
	(X) =-S#ET(+)+C#ST(K)		3
	£ 4.3		3
14	* K+3		Š
	NT INUE		-
	(MG.GT.MTEST) GO TO 18		5
	16 1-1.9		-
91	1) = ST(1)		Š
	TCR.		n
	TRY STRN (T.IS)		Š
	* IS		-
	17 1*1,9		5
11	(1)= 1(1)		-
18	(MS.EQ.0) GO TO 21		3
	20 I=1.MS		9
	6.1=6.91		9
	(0+7)SN		۵
	# NS(J+10)		Ğ
	= NS(J+13)		9
	= NS(3+3)		3
19	(J) = ST(K) + ST(K) - ST(L) + ST(L)		•
	= 1.0/00f(ST.MT)		9
	20 J=1,9		Ö
	(L) = (HT(L)+MH+ST(L))+0.5		$\bar{\epsilon}$
21	NT INUE		-
	22 J = 1,9		
	(ABSISTIJI).LE.TTEST) STIJI=0.0		-
22	J) = ST(J)	7	-
	TURN	s 2	-
	Q	SUBS 2	~
L		SUBT	
ပ	ATRIX OPERATION 3	SUBT	
J	BRUUTINE MTRN, MTRT, VTRN, VTRT, MCROS, MXMV, MGIO, MSCL	SUBT	
ن ن	ALLING SEQUENCE - WHERE ALL OPERATIONS ARE 3X3,3X1 OR 1X3	SUBT	
ر	ALL DIES TANDES TO THE TANDES		

```
38
                  35
                                                                                                                                       34
                                                                                                                                                                    410
                                               SUBT
    SUB T
SUB T
              SUBT
                   SUBT
                        SUBT
                             SUBT
                                 SUBT
                                           SUBT
                                                                                                SUBT
                                                                                                     SUBT
SUBT
SUBT
                                                                                                                   SUBT
                                                                                                                         SUBT
                                                                                                                             SUBT
                                                                                                                                  SUBT
                                                                                                                                       SUBT
                                                                                                                                            SUBT
                                                                                                                                                 SUBT
                                                                                                                                                     SUBT
                                                                                                                                                           SUBT
                                                                                                                                                                SUBT
                                                                                                                                                                    SUBT
                                      SUBT
3X31 * (3X3)T
         (3X3)T*(3X1)
    (3X3) + (3X1)
2-NO MATRIX OR VECTOR RESULT
                        DIMENSION A(1).8(1),C(1),A1(1,1)
  M 11
e u
                   SUBROUTINE MTRN (A.B.C.)
                                                                                                                                                      A( J11) + B(K1) +C11
     (A.B.C)
         VTRT (A.B.C)
( A. B.C.)
               CALL WCROS (A.B)
                                                                                                ENTRY VIRTIA,8,C)
                                                                        VTRN(A,B,C)
                                                MTRT (A.B.C
     VALA
MIRI
                                                                                                                                        J=1.3
                                                                                                                                   N. 1 = 1
                                                                                                                                                 K=1,3
                                                                                                                                            • 0.0
                                                                                                                                                           11+11-11
                                                                                                                                                                               J1=J1-M2
                                                                                                                                                                     - (111)
                                                                                                                                                                K1=K1+1
                                                                                                                                                                          []=[]+]
          CALL
     CALL
                                                FNTRY
                                                                        ENTRY
                                                                                            50 70
                                           00 00
                                                                   60 10
                                                                             M1=3
                                  M2=8
                                                          M2=0
                                                                                  H2=8
                                                                                                      1=14
                                                                                                          M2=0
                                                     1=14
                             HIE 3
                                                                                                                    11-11
                                                                                                                         1=16
                                                                                                                              KILI
                                       N=3
                                                              N=3
                                                                                       1 × N
                                                                                                               1 = N
                                                                                                                                                 00
                                                                                                                                       00
```

UU

~

K 1 s K 1 - 3	SUAT	1
X1=X1+3	SUBT	;
71-17	SUBT	45
RETURN	SUBT	
ENTRY WCROS (A.B)	SUBT	47
8(1) = 0.	SUBT	40
8(4)=-A(3)	SUBT	40
8(7)=4(2)	SUBT	20
8(2)=A(3)	SUBT	21
B(5) = 0°0	SUBT	25
8(8)=-4(1)	SUBT	53
8(3)=-A(2)	SUBT	34
8(6)=4(1)	SUBT	52
8(9) = 0.0	SUBT	26
RETURN	SUBT	57
	SUBT	28
SUBROUTINE NORN (S.AM, IX, V)	SUBT	29
o co ≈ «€	SUBT	9
00 2 1=1,12	SUBT	19
	SUBT	62
00	SUBT	63
83	SUBT	49
٨١٨	SUBT	65
Y=Y*.4656613E-9	SUBT	99
	SUBT	29
A=A+Y	SUBT	9
¥.	SUBT	69
REJURN	SUBT	10
	SUBT	1
SUBRCUTINE INVERT (A,N,M,D)	SUBT	. 72
,	SUBT	13
COMMON T.S.NO.DT.NM.NI.IN(20)	SUBT	1.4
D1=1.0	SUBT	75
Z=-Z	SUBT	16
	SUBT	11
IF (NI) 22,22,2	SUBT	18
IN-XX=GX	SUBT	19
XX 2=XX	SUBT	80
00 3 J=1,NI	SUBT	81

	1N(7)=0	SUBT	82
	00 15 L=1.NI	SUBT	
	1=0.0	SUBT	
	K*1	SUBT	85
	1N-1=1 6 00	SUBT	96
	IN-1 - C 00	SUBT	87
	IF (IN(1)-1) 5.4.5	SUBT	88
•	X=X+X=	SUBT	89
. 1	60 10 9	SUBT	90
8	CONTINUE	SUBT	16
	IN-1 = 1 00	SUBT	92
	IF (IN(I) 8.6.8	SUBT	93
9	IF (ABS(A(K))-ABS(T)) 8.8.7	SUBT	46
1	1001=1	SUBT	95
	I BOK = I	SUBT	96
	X 1 = X	SUBT	97
	T-A(K)	SUBT	96
8	X = X = X	SUBT	66
	K=K+ND	SUBT	901
6	CONTINUE	SUBT	101
	IN(IROW) = I COL	SUBT	102
	A(K1)=1.0	SUBT	103
	PT=T*DT	SUBT	201
	16 (DT) 10,22,10	SUBT	105
9	K=K1-IROM	SUBT	901
	00 13 1=1,NI	SUBT	107
	X=X+1	SUBT	2
	IF (IROM-1) 11,13,11	SUBT	601
=	S=-A(K)/T	SUBT	110
	A(K)=0.0	SUBT	111
	1-17	SUBT	112
	CO 12 J=IRDH,NN.NM	SUBT	113
	A(J1)=A(J)+S+A(J1)	SUBT	114
12	71-71-MM	SUBT	115
13	CONTINUE	SUBT	116
1	OO 14 J= IROM.NN.NM	SUBT	117
71	A(J)=A(J)/T	SUBT	118
15	CON! INUE	SUBT	119
	DO 21 1=1.N	SUBT	120

Given a vector b,

$$\delta |b| = \frac{b^{T}}{|b|} \delta b$$
, where $\frac{b}{|b|}$ is a unit vector pointing (140) in the direction of b.

$$\frac{d}{dt}|b| = \frac{b^{T}}{|b|} \frac{d(b)}{dt}$$
 (141)

$$\delta\left\{\frac{b}{|b|}\right\} = \left\{I - \frac{b}{|b|} \frac{b}{|b|}\right\} \frac{\delta b}{|b|} ; \quad I \stackrel{\triangle}{=} Identity Matrix \tag{142}$$

Proof of (140):

$$|b||b| = |b|^2 = b^T b$$
, which implies that

$$\delta \left\{ \left| b \right| \left| b \right| \right\} = \delta \left\{ \left| b^{T} b \right| \right\}$$

Evaluating both sides yields:

$$2|b|\delta|b| = 2b^{T}\delta b \Rightarrow \delta|b| = \frac{b^{T}}{|b|}\delta b$$

Proof of (141):

$$\frac{d}{dt} |b|^2 = \frac{d}{dt} (b^T b)$$

Again evaluating both sides,

$$|b| \frac{d}{dt} |b| = b^{T} \frac{d(b)}{dt} \Rightarrow \frac{d|b|}{dt} = \frac{b^{T}}{|b|} \frac{d}{dt} (b)$$

Proof of (142):

$$\delta\left\{\frac{b}{|b|}\right\} = \frac{|b|\delta(b) - (b)\delta(b)}{|b||b|}$$

Substituting in the results of (140) above yields

$$\delta \left\{ \frac{b}{|b|} \right\} = \frac{|b| \delta(b)}{|b| |b|} \left\{ \frac{b b^{T}}{|b||b|} \right\} \frac{\delta b}{|b|} = \left\{ I - \frac{b b^{T}}{|b||b|} \right\} \frac{\delta b}{|b|}$$

	CO TO 12	CHRT	•
.0	CONTINUE	SUBT	191
	RETURN	SUBT	•
	END	SUBT	•
	SUBROUTINE VMOV(A,B,N,M)	SUBT	•
	DIMENSION A(1), B(1)	SUBT	•
	60 ro 10	SUBT	•
	ENTRY MXMV(A,B,N)	SUBT	•
_	10	SUBT	•
	No 11 1=1 100	SUBT	•
	B(1)=A(1)	SUBT	-
_	CONTINUE	SUBT	-
	RETURN	SUBT	
	ENTRY MPVC(A, B, N, M)	SUBT	-
	NS*N-I	SUBT	
	NS#NS	SUBT	
		SUBT	176
	N. 2N.1=1 6 00	SUBT	-
	A(I)=A(I)+B(K)	SUBT	~
	\(\tau \) \(\ta	SUBT	-
	CONTINUE	SUBT	60
	RETURN	SUBT	m
		SUBT	60
	I (A.B.L.M.N.DS.	SUBT	60
	8(1,1,1	SUBT	60
	00 8 I*I,t	SUBT	60
	8(I, M, N) = A(I)	SUBT	186
	;	SUBT	60
	ENTRY MXMV2(A,B,L,M,N,DS)	SUBT	•
	7.72 7.00	SUBT	80 (
		2081	
		SUBT	D
	ENTRY MXKV3(A,B,L,M,N,OS)	SUBT	O (
		SUBT	9
	B(LI,M,N) = B(LI,M,N)+A(LI)	SUBT	194
_	CONTINUE	SUBT	195
		SUBT	961
	NIKY EXECT (A.B.C., N. N. C.	5081	161
	BILL MILL IN CONTROLL	2081	861

J	SUBT	199
S(1.2.N)+B(3.N.1)	8	200
S(1,9.N)+B(4.M	SUBT	201
S(1,8,N)+B(5,M	SUBT	202
S(1,10,N)+8(6,	SUBT	203
	SUBT	204
ENTRY MXHV5(A,B,L,M,N,DS)	SUBT	205
	SUBT	206
1F (8(1, J, 1).Eq.0.0) GO TO 11	SUBT	207
T = 10	SUBT	208
	SUBT	503
00 12 1 = 3,50	SUBT	210
	SUBT	211
K).EQ.0.01 G	SUBT	212
$B(I_0,J_1,K) = B(I_0,J_1,K)/B(I_0,J_0,I)$	SUBT	213
CONTINUE	SUBT	214
B(2, J, KI) = B(3, J, KI) - B(4, J, KI)	SUBT	215
CONTINUE	SUBT	216
RETURN	SUBT	217
ENTRY MXMV6(A,B.L.M.N.DS.NI)	SUBT	218
N2=N1	SUBT	219
	SUBT	220
B(N2,M,N)=B(N2,M,N)+A(L1)	SUBT	221
N2=N2+1	SUBT	222
CONT INUE	SUBT	223
RETURN	SUBT	224
END	SUBT	225
SUBROUTINE MGIO(A.N)	SUBT	226
DIMENSION A(1)	SUBT	227
1-N=Z%	SUBT	228
ZN+ZN=SN	SUBT	523
SN-1=1 / OU	SUBT	230
A(I)=0.0	SUBT	231
00 B 1=1.NS.N	SUBT	232
A(1)=1.0	SUBT	233
CONT INUE	SUBT	234
	SUBT	235
FND OF COMMON SUBROUTINE GROUP	SUBT	236
END	SIJBT	3

APPENDIX I

SOME BASIC VECTOR/MATRIX RELATIONSHIPS

This appendix derives several basic, mathematical, vector/matrix relationships which are employed in the derivations in subsequent appendices.

Consider any two orthogonal frames F1 and F2. Denoting the orthogonal transformation from F1 to F2 by $T_{\rm F2/F1}$,

$$(v_j)_{F2} = T_{F2/F1} (v_j)_{F1} (j = 1,2,3)$$
 (23)

where V_j is a unit vector along the jth axis of frame F2. Taking the time rate of change of both sides of equation (23) gives

$$\dot{T}_{F2/F1} (V_i)_{F1} + T_{F2/F1} (\dot{V}_i)_{F1} = 0 \quad (j = 1, 2, 3)$$
 (24)

If $\omega_{F2/F1}$ denotes the angular rate of F2 with respect to F1, it is true that:

$$(\dot{v}_j)_{F1} = (\omega_{F2/F1})_{F1} \times (v_j)_{F1} \quad (j = 1,2,3)$$
 (25)

Substituting this result in equation (24) gives

$$[\dot{T}_{F2/F1} + T_{F2/F1} (\omega_{F2/F1})_{F1} \times] V = 0$$
 (26)

where

$$v = [(v_1)_{F1} | (v_2)_{F1} | (v_3)_{F1}] = \tau_{F1/F2} [(v_1)_{F2} | (v_2)_{F_2} | (v_3)_{F2}] = \tau_{F1/F2}$$

and $\{(\omega_{F2/F1})_{F1} \times \}$ is the matrix equivalent of the vector cross-product operation; i.e.,

$$\left\{ (\omega_{F2/F1})_{F1} \times \right\} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

where w_1 , w_2 , w_3 are the components of $w_{F2/F1}$ in the F1 frame.

Since $V = T_{F1/F2}$ is invertible, it follows by postmultiplication of equation 4) by $V^{-1} = T_{F2/F1}$ that:

$$\dot{T}_{F2/F1} = -T_{F2/F1} [(\omega_{F2/F1})_{F1} \times]$$
 (27)

Equation (27) is the first of the desired relationships. It relates the time rate of change of an orthogonal matrix to the matrix itself and to the angular rate vector as shown.

A second useful relationship is obtained from:

$$T_{F1/F2} T_{F2/F1} = I$$
 (28)

Taking the time rate of change of this equation, and postmultiplying the result by ${\rm T_{F1/F2}}$, leads to the desired second relationship:

$$T_{F1/F2} = -T_{F1/F2} T_{F2/F1} T_{F1/F2}$$
 (29)

Equation (29) simply expresses the relationship between the time rate of change of the transformation $T_{F2/F1}$ and that of its inverse $T_{F1/F2}$.

Pre- and post multiplication of equation (27) by $T_{F1/F2}$ and use of equation (29) on the result leads to:

$$\dot{T}_{F1/F2} = [(\omega_{F2/F1})_{F1} \times] T_{F1/F2}$$
 (30)

But since F1 and F2 are conceptually interchangeable, equation (30) can also be written:

$$\dot{T}_{F2/F1} = - [(\omega_{F2/F1})_{F2} \times] T_{F2/F1}$$
(31)

where use has been made of the fact that $\omega_{F2/F1} = -\omega_{F1/F2}$. Equation (31) is an alternate, equally useful form of the relationship inherent in equation (27).

Equating the right sides of equations (27) and (31) leads to:

$$[(\omega_{F2/F1})_{F2} \times] = T_{F2/F1} [(\omega_{F2/F1})_{F1} \times] T_{F1/F2}$$
(32)

Equation (32) is a formula for transforming the angular rate cross-product matrix from one orthogonal frame to another. Still another useful relationship, known as Coriolis' law, is obtained as follows from:

$$(a)_{F2} = T_{F2/F1} \quad (a)_{F1}$$
 (33)

where a is any vector. Taking the time rate of change of equation (33) gives:

$$(a)_{F2} = T_{F2/F1} (a)_{F1} + T_{F2/F1} (a)_{F1}$$
 (34)

Using equation (27) in equation (34) gives:

$$(a)_{F2} = T_{F2/F1} [(a_{F1}) - |(w_{F2/F1})_{F1} \times |(a)_{F1}]$$
 (35)

from which it follows that:

$$T_{F1/F2} \stackrel{(a)}{(a)}_{F2} = \stackrel{(a)}{(a)}_{F1} - [(u_{F2/F1})_{F1} \times] \stackrel{(a)}{(a)}_{F1}$$
 (36)

Applying the time derivative notation defined in the Symbol Glossary finally gives:

$$\frac{d_{F2}a}{dt} = \frac{d_{F1}a}{dt} - [(\omega_{F2/F1}) \times] a$$
 (37)

Another formula, which is used for error equation linearization in Appendix III, is stated here without proof.*

$$T_{F2/F1} = I \cos |\theta| + (1-\cos |\theta|) uu^T - \sin |\theta|$$
 (ux)

where θ = vector representing the rotation of F1 into F2, and

 $u = \theta / |\theta| = unit$ vector about which the rotation angle $|\theta|$ is measured.

Two final formulae are also useful. If a and b are any (3x1) vectors, then:

$$(ax) (bx) - (bx) (ax) = - \{(axb)x\}$$
 (39)

and:

(ax) (ax) =
$$aa^{T} - a^{T}aI$$
 (40)

These formulae can both easily be verified by carrying out the indicated operations at the scalar level.

^{*}The proof requires use of matrix concepts more advanced than are pertinent to this development. See, for example, MASA Contractor Report CR-968, "A Study of the Critical Computational Problems Associated with Strapdown Navigation Systems", April 1968, (Appendix C).

APPENDIX II

GENERALIZED DR NAVIGATION EQUATIONS

This appendix derives a set of basic, generalized, vector/matrix, terrestrial DR navigation equations. These equations provided the partial basis for processor reference frame selection and for IDR, ADR, and PDR equation definitions.

The basic, terrestrial navigation acceleration equation is:

$$\frac{d^2P}{dt^2} = f + G \tag{41}$$

Using Coriolis' law (see Appendix I) and the definition of v (see the Symbol Glossary) leads to:

$$\frac{d_{\mathbf{I}}P}{dt} = v + (\omega_{\mathbf{E}/\mathbf{I}}X)P \tag{42}$$

and further:

$$\frac{d_{I}^{2}P}{dt^{2}} = \frac{d_{c}v}{dt} + \left(\frac{d_{c}\omega_{E/I}X}{dt}\right)P + \left(\omega_{E/I}X\right)\frac{d_{c}P}{dt} + \left(\omega_{C/I}X\right)\left[v + \left(\omega_{E/I}X\right)P\right]$$
(43)

again using Coriolis' law, it follows that

$$\frac{\mathrm{d}_{c}\omega_{E/I}}{\mathrm{d}t} = (\omega_{E/C}X)\omega_{E/I} \tag{44}$$

and also that:

$$\frac{d_c P}{dt} = v + (\omega_{E/C} X) P \tag{45}$$

Substitution of these results into equation (43) and of that result into equation (41) leads to:

$$\frac{\frac{d}{c}v'}{dt} = f + g - \left[(2 \omega_{E/I} + \omega_{C/E})X \right]v$$
(46)

Where $g = G - (\omega_{R/I}X)(\omega_{E/I}X)P$

Equation (46) is the desired generalized acceleration equation, and equation (45) is the desired generalized relationship between position, velocity, and angular rate.

If the C, P, and E frames have relative angular rates with respect to one another, then it is necessary to initialize the transformations between these frames and subsequently to continuously update them according to the equations [see Equation (31) of Appendix I].

$$T_{C/E} = - [(\omega_{C/E})_C^X] T_{C/E}$$

$$T_{C/P} = [(\omega_{P/C})_C^X] T_{C/P}$$
(48)

$$\dot{\mathbf{T}}_{\mathbf{C/P}} = \left[\left(\omega_{\mathbf{P/C}} \right)_{\mathbf{C}}^{\mathbf{X}} \right] \mathbf{T}_{\mathbf{C/P}} \tag{48}$$

The angular rate $(\omega_{C/E})_{C}$ required by equation 7) is obtained by solution of equation (45)*. The angular rate $(\omega_{P/C})_{C}$ required by equation (48), however, must be computed for inertial navigation from a formula derived as follows:

$$(\omega_{P/C})_{C} = (\omega_{P/I} - \omega_{C/E} - \omega_{E/I})_{C}$$
(49)

Therefore, if the inertial platform is strapdown:

$$(\omega_{P/C})_{C} = T_{C/P}(\omega_{P/I})_{P} - (\omega_{C/E})_{C} - T_{C/E}(\omega_{E/I})_{E}$$
 (50)

*For the case of special interest C = L, equation (45) can be shown to reduce to h = v_1 and $\omega_{L/E} = K_L^v_L$, where the 3X3 earth radii of curvature matrix K_{I} is a function of h and certain elements of $T_{C/E}$.

where $(\omega_{P/I})_P$ is obtained (after suitable calibration corrections) essentially as the outputs of the strapdown gyros.

On the other hand, if the inertial platform is gimballed, $(\omega_{P/C})_C$ must be specified computationally**. Once this is done, then the platform gyro control torquing rates can be essentially specified as:

$$(\omega_{P/I})_{P} = T_{P/C} \left[(\omega_{P/C})_{C} + (\omega_{C/E})_{C} + T_{C/E} (\omega_{E/I})_{E} \right]$$
 (51)

^{**}For example, for the case C = E and P = L, as $\omega_{P/C} = T_{C/P}K_L T_{P/C}V$

APPENDIX III

IDR NAVIGATION AND ERROR EQUATIONS

This appendix derives the processor IDR navigation and navigation error equations, predicated on the frame selection C = E (or EF) and P = L.

IDR NAVIGATION EQUATIONS

For the choice C = E, it follows that $\omega_{C/E} = 0$, and the processor acceleration and velocity equations can be written down direction from equations (46) and (45) of Appendix II as*.

$$f_{C} = T_{C/P}f_{P}$$

$$\mathring{v} = f_{C}+g-2(\omega_{E/I}X)v$$

$$\mathring{r} = v$$
(52)

$$\hat{\mathbf{v}} = \mathbf{f}_{C} + \mathbf{g} - 2(\omega_{\mathbf{r}/T} \mathbf{X}) \mathbf{v} \tag{53}$$

$$\hat{\mathbf{P}} = \mathbf{v} \tag{54}$$

Also in this case, the need for mechanizing equation (47) of Appendix II is obviated, since again, $\omega_{C/E} = 0$. On the other hand [see equation (31) of Appendix I and equation (48) of Appendix II]:

$$\dot{T}_{P/C} = -\left[\left(\omega_{P/C}\right)_{P} X\right] T_{P/C} \tag{55}$$

is required for updating $T_{P/C}$. If the platform is strapdown, $\omega_{P/C}$ is computed for use in equation (55) [see equation (50) of Appendix II]:

$$(\omega_{P/C})_{P} = (\omega_{P/I})_{P} - T_{P/C} \omega_{E/I}$$
 (56)

^{*}For compactness here, C-subscripting of vectors is omitted.

where $(\omega_{P/I})_P$ is obtained directly as the (compensated) strapdown gyro outputs. On the other hand, for the gimballed platform case, the selection P = L leads to (see Appendix II footnotes):

$$\left(\omega_{P/C}\right)_{P} = K_{L} T_{P/C} V \tag{57}$$

and the required (uncompensated) platform control torquing rate from equation 11) of Appendix II is:

$$\left(\omega_{P/I} \right)_{P} = \left(\omega_{P/C} \right)_{P} + T_{P/C} \quad \omega_{E/I}$$
 (58)

To complete these equations, f_p for equation (52) is generated from the accelerometer outputs f_{ACC} , and from the accelerometer outputs calibration/shaping compensation Δf as:

$$f_{p} = f_{ACC} + \Delta f \tag{59}$$

Also, the angular rate calibration/shaping compensation Δw is used to correct $(w_{p/T})_p$ in equations (56) and (58) so that:

$$\omega_{\text{GYR}} = \left(\omega_{\text{P}/\text{I}}\right)_{\text{P}} + \Delta \omega \tag{60}$$

where $\omega_{\rm GYR}$ is the actual gyro outputs for the strapdown case, and the actual gyro control torquing rates for the gimballed platform case. Equations (52) through (58) comprise the set of basic mechanization equations for the case C=E.* For the case C=EF, it should first be noted that again, $\omega_{\rm C/E}=0$.

In addition, since C is a constant vector in any earth-fixed frame, it follows that p = P. Finally, it is assumed that at the time of E to EF transition, p (= P-C), v, and $\omega_{E/I}$ are transformed into the EF frame, and

 $T_{\rm P/C}$ is adjusted to account for the change in C frame, according to the equations:

^{*}Equations (59) and (60) do not depend on the choice of the C frame, and thus are the same for C=E or C=EF.

a)
$$v_{EF} = T_{EF/E} v_{E}$$

b) $p_{EF} = T_{EF/E} (P_{E} - C_{E})$
c) $(\omega_{E/I})_{EF} = T_{EF/E}(\omega_{E/I})_{E}$
d) $T_{P/EF} = T_{P/E}T_{EF/E}^{T}$
(61)

In these equations, it should be noted that $T_{EF/E}$ is a fixed transformation. With these preliminaries, it is evident that use of the generalized equations of Appendix II for the case C = EF will lead to a set of mechanization equations which is functionally identical to those above for the case $C=E^*$, except that:

a) Equation (54) is replaced by:

b) The E frame computation of gravity, $g = g_E(P_E)$ must be replaced by the computation:

$$g_{EF} = T_{EF/E}g_E \left(T_{E/EF}p_{EF} + C_E\right)$$
(63)

Finally, in EF to E transition, equations (52) through (58) will subsequently be valid if the following switching operations are carried out:

a)
$$v_E = T_{EF/E}^T v_{EF}$$

b) $P_E = T_{EF/E}^T P_{EF} + C_E$
c) $(w_{E/I})_E = T_{EF/E}^T (w_{E/I})_{EF}$
d) $T_{P/E} = T_{P/EF}^T EF/E$ (64)

^{*} It should be recalled that all unsubscripted quantities in equations (52) through (60) and all time derivatives are referred to the C frams, be it E or EF.

2. IDR NAVIGATION ERROR EQUATIONS

A fundamental preliminary to the development of the inertial navigation equations (for the selections, C = E or EF, and P = L or strapdown) consists in the identification of two different sets of navigation equations, the differencing of which leads directly to the desired error equations.

The first of these two sets describes the computational process which is actually carried out, as follows:

$$\hat{\mathbf{f}}_{\mathbf{C}} = \hat{\mathbf{T}}_{\mathbf{C}/\mathbf{P}} \left(\mathbf{f}_{\mathbf{ACC}}^{\dagger} + \hat{\Delta} \mathbf{f} \right) \tag{65}$$

$$\hat{\nabla} = \hat{f}_C + \hat{g}(\hat{P}) - 2(\omega_{E/I}X) \hat{\nabla}$$
(66)

$$\stackrel{\wedge}{P} = \stackrel{\wedge}{p} = \stackrel{\wedge}{V}$$
(67)

$$\hat{T}_{P/C} = -\left[\begin{pmatrix} A \\ \omega_{P/C} \end{pmatrix}_{P} X \right] \hat{T}_{P/C} \qquad \left| \begin{pmatrix} \text{EITHER TYPE} \\ \text{OF PLATFORM} \end{pmatrix} \right]$$
 (68)

$$\begin{pmatrix} \hat{\Delta}_{P/C} \end{pmatrix}_{P} = \omega_{GYR} - \hat{\Delta}_{w} - \hat{T}_{P/C} \quad \omega_{E/I} \quad \left(\text{STRAPDOWN} \right)$$
(69)

$$= \widehat{K}_{L} \widehat{T}_{P/C} \widehat{V}$$
| Local Level, wander azimuth platform (70)

$$\omega_{\text{GYR}} = (\widehat{\omega}_{P/C})_{P} + \widehat{T}_{P/C} \omega_{E/I} + \widehat{\Delta}_{\omega}$$
(71)

In these equations, the superior hat above a quantity indicates that it is only an onboard computational estimate of the value of the quantity, and not in general the true value. That is, these equations describe the actual onboard processing of specific force as measured by the accelerometers, into estimated velocity, position, and torquing rate signals (for the estimated platform-to-computer transformation, and, in the rotationally isolated platform case, for the platform gyros).

The second set of navigation equations is:

$$f_{C} = T_{C/P} f_{P} \tag{72}$$

$$\dot{v} = f_C + g(P) - 2(w_{E/I}X) v$$
 (73)

$$\dot{\mathbf{P}} = \dot{\mathbf{p}} = \mathbf{V} \tag{74}$$

$$\dot{T}_{P/I} = -\left[\left(\omega_{P/I} \right)_{P} X \right] T_{P/I} \qquad \left\{ \begin{array}{c} \text{EITHER TYPE} \\ \text{OF PLATFORM} \end{array} \right\}$$
 (75)

All quantities here are unhatted to indicate that they are true, rather than estimated values. These equations describe, a) the processing of true (as opposed to measured) specific force, resolved into the computational frame using the correct transformation between platform and computer frames, into true velocity and position, and b) the behavior of the actual, as opposed to the estimated, orientation of the platform.

The error equations can now be obtained as follows. To begin, direct differencing of equations (65) with (72), (66) with (73), and (67) with (74) gives:

$$\delta f_{\mathbf{p}} = f_{\mathbf{ACC}} + \Delta \hat{\mathbf{f}} - f_{\mathbf{p}} \tag{77}$$

$$\delta f_{C} = \hat{T}_{C/P} \delta f_{P} + \delta T_{C/P} f_{P}$$
 (78)

$$\delta \dot{\mathbf{v}} = \delta \mathbf{f}_{\mathbf{C}} + \delta \mathbf{g} - 2 \left(\mathbf{\omega}_{\mathbf{E}/\mathbf{I}} \mathbf{X} \right) \delta \mathbf{v} \tag{79}$$

$$\delta \dot{\mathbf{p}} = \delta \mathbf{p} = \delta \mathbf{V} \tag{80}$$

$$\delta g = \mathring{g}(P) - g(P) \tag{81}$$

where the error quantities are defined as $\delta V = \hat{V} - V$, $\delta P = \hat{P} - P$, $\delta p = \hat{p} - P$, and $\delta T_{C/P} = \hat{T}_{C/P} - \hat{T}_{C/P}$.

Noting that:

$$\hat{T}_{C/P} = T_{C/P} \tag{82}$$

it follows that:

$$\delta T_{C/P} = \hat{T}_{C/P} - T_{C/P} = T_{C/P} \left(I - T_{P/P} \right)$$
(83)

The dynamic behavior of $T_{\overline{P}/P}$ is obtained as follows. Since:

$$T_{P/P}^{\wedge} = T_{P/C}^{\wedge} \quad T_{C/P}^{(84)}$$

it follows that, using equation (68), and equations (27) and (32) from Appendix I:

$$\begin{array}{rcl}
\hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{P} &=& \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{C}^{\mathsf{T}}\mathbf{C}/\mathbf{P} &+& \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{C}^{\mathsf{T}}\mathbf{C}/\mathbf{P} \\
&=& -\left[\left(\widehat{\boldsymbol{\omega}}_{\mathbf{P}/\mathbf{C}}\right)_{\mathbf{P}}\mathbf{X}\right] & \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{C}^{\mathsf{T}}\mathbf{C}/\mathbf{P} &+& \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{P}^{\mathsf{T}}\mathbf{P}/\mathbf{C}^{\mathsf{T}}\mathbf{C}/\mathbf{P} \\
&=& -\left[\left(\widehat{\boldsymbol{\omega}}_{\mathbf{P}/\mathbf{C}}\right)_{\mathbf{P}}\mathbf{X}\right] & \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{P} &+& \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{P}\left[\left(\widehat{\boldsymbol{\omega}}_{\mathbf{P}/\mathbf{C}}\right)_{\mathbf{P}}\mathbf{X}\right] \\
&=& \left[\mathbf{T}\widehat{\mathbf{P}}/\mathbf{P}\left[\left(\widehat{\boldsymbol{\omega}}_{\mathbf{P}/\mathbf{C}}\right)_{\mathbf{P}}\mathbf{X}\right] & \hat{\mathbf{T}}_{\mathbf{P}/\mathbf{P}} & -\left[\left(\widehat{\boldsymbol{\omega}}_{\mathbf{P}/\mathbf{C}}\right)_{\mathbf{P}}\mathbf{X}\right] & \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{P}\right] \\
&=& \left[\mathbf{T}\widehat{\mathbf{P}}/\mathbf{P}\left[\left(\widehat{\boldsymbol{\omega}}_{\mathbf{P}/\mathbf{C}}\right)_{\mathbf{P}}\mathbf{X}\right] & \hat{\mathbf{T}}_{\mathbf{P}/\mathbf{P}} & -\left[\left(\widehat{\boldsymbol{\omega}}_{\mathbf{P}/\mathbf{C}}\right)_{\mathbf{P}}\mathbf{X}\right] & \hat{\mathbf{T}}\widehat{\mathbf{P}}/\mathbf{P}\right]
\end{array}$$

or finally:

$$\dot{T}_{P/P}^{\wedge} = \left[\left\{ T_{P/P} \left(\omega_{P/C} \right)_{P} - \left(\omega_{P/C} \right)_{P} \right\} X \right] T_{P/P}^{\wedge}$$
(85)

To continue, denote:

$$Q = T_{P/P}^{\wedge} - I \tag{86}$$

So that equation (83) becomes:

$$\delta T_{C/P} = -T_{C/P}(I+Q)^{-1}Q \tag{87}$$

and equation (85) becomes:

$$Q = \left[\left(\left(I + Q \right) \left(\omega_{P/C} \right)_{P} - \left(\omega_{P/C} \right)_{P} \right] X \right]$$
 (1+Q) (88)

But:

and, using equations (69), (70), and (76):

for both the strapdown and rotationally free platform cases, where:

$$\delta \Delta \omega = \Delta \omega - \Delta \omega \tag{91}$$

Using equations (89) and (90) in (88) leads to:

$$\dot{Q} = \left[\left\{ Q \left(\omega_{P/I} \right)_{P} + \delta \Delta \omega \right\} X \right]$$
 (1+Q) (92)

Equations (77) through (81), (87), and (92) together comprise a set of non-linear error equations in the closed-loop error variables δV , δP or δP , and Q, and in the forcing error variables δf_p and $\delta \Delta \omega$. These equations must however, be linearized for use in designing the processor Kalman filter. There are two principal steps involved in doing this: a) the linearization of the dynamic platform-to-computer misalignment error [equation (92)], and the linearization of the gravity error [equation (81)].

To linearize equation (92), denote by \forall the vector representing the instantaneous angular misalignment between the estimated and actual attitude of the inertial platform. Using equation (38) of Appendix I, it follows that:

$$T_{P/P}^{\Lambda} = I \cos |\psi| + (1-\cos |\psi|) uu^{T} - \sin |\psi| (ux)$$
 (93)

where $u = \psi/|\psi|$ is the unit vector about which the rotation angle $|\psi|$ is defined.

If $|\psi|$ is small, $T_{p/p}$ can therefore be linearly approximated by:

$$T_{P/P} = I - (\psi x) \tag{94}$$

So that:

$$Q = (\psi X) \tag{95}$$

Using this result in (92) gives:

$$(\dot{\psi}_{\mathbf{P}}\mathbf{X}) \approx \left[\left\{ (\psi_{\mathbf{P}}\mathbf{X}) (\omega_{\mathbf{P}/\mathbf{I}})_{\mathbf{P}} + \delta \Delta \omega \right\} \mathbf{X} \right] \left[\mathbf{I} + (\psi_{\mathbf{P}}\mathbf{X}) \right]$$
 (96)

So that, to the first order:

$$\psi_{\mathbf{P}} = -\left[(\omega_{\mathbf{P}/\mathbf{I}})_{\mathbf{P}} \mathbf{X} \right] \psi_{\mathbf{P}} + \delta \Delta \omega$$
(97)

Equation (81) can be linearized as follows. To start, note that:

$$g(P) = G(P) + \Delta g(P) \tag{98}$$

where $\Delta g(P)$ is the small difference between mass attraction and plumb-bob gravity. Since $|\Delta g|$ is at most less then 1/3 of one percent of |g|, it can be neglected in deriving a linearized error relationship between δg and δP .

Thus:

$$\delta g = \hat{g}(\hat{P}) - g(P) \approx \delta g_A + G(\hat{P}) - G(P)$$

or

$$\delta g = \delta g_A - C_G \delta P \tag{99}$$

where δg_A is the error in gravity due to sources other than position error (e.g., gravity anomalies) and C_G is the matrix relation between the position-error-dependent gravity error, and the position error. In particular:

$$C_{C} \approx \frac{\partial C}{\partial P} \tag{100}$$

For navigation in the E frame, C_G can be shown to be given by*.

$$(C_G)_E = \frac{|G_E(P_E)|}{|P_E|} \left[I - 3 \left(\frac{g_E}{|g_E|} \right) \left(\frac{g_E}{|g_E|} \right)^T \right]$$
 (101)

On the other hand, for navigation in the EF frame, δ_B becomes:

$$\delta g_{EF} = T_{EF/E} \delta g_A - T_{EF/E} (C_G)_E \delta P_E$$
 (102)

But since $\delta P_E = T_{E/EF} \delta p_{EF}$, it follows that:

$$\delta g_{EF} = T_{EF/E} \delta g_A - (C_G)_{EF} \delta p_{EF}$$
 (103)

where

$$(^{C}_{G})_{EF} = T_{EF/E} \quad (^{C}_{G})_{E} \quad T_{E/EF}$$
 (104)

Substitution of equation (98) in (101) leads to:

$$(C_G)_{EF} = \frac{\left|G_{EF}(P_{EF})\right|}{\left|P_{EF}\right|} \left[1 - 3\left(\frac{g_{EF}}{\left|g_{EF}\right|}\right)\left(\frac{g_{EF}}{\left|g_{EF}\right|}\right)^{T}\right]$$
(105)

Thus $C_{\overline{G}}$ can be represented in either the E or EF frames by:

$$C_{G} = \frac{|G(P)|}{|P|} \left[I - 3 \left(\frac{g_{EF}}{|g_{EF}|} \right) \left(\frac{g_{EF}}{|g_{EF}|} \right)^{T} \right]$$
 (106)

and the gravity error by:

$$\delta g = \delta g_A - C_G \delta P (OR \delta_P)$$
 (107)

where δg_A is the non-position-error-dependent gravity error expressed in the C frame.

^{*} See G. Pitman (ed.), "Inertial Guidance", J. Wiley & Sons, 1962, Chapter 1.

Finally, substitution of equation (95) in (87), and substitution of the result in (78) leads, after linearization, to:

$$\delta f_{C} = T_{C/P} \left\{ \delta f_{P} + (f_{P}X) \psi_{P} \right\}$$
 (108)

and substitution of equation (107) into (79) leads to:

$$\delta \dot{V} = \delta f_C + \delta g_A - C_G \delta P (\text{or } \delta p) - 2 (\omega_{E/I} X) \delta V$$
 (109)

Equations (108), (109), (80), and (97) together comprise the desired set of linearized inertial navigation error equations.

Switching of the error equations must be carried out when the navigation equations are switched. The appropriate error switching equations are obtained as follows.

Direct linear perturbation of equations (61 a,b) and (64 a,b) gives*:

a)
$$\delta v_{EF} = T_{EF/E} \delta v_{E}$$
(E to EF)
b) $\delta p_{EF} = T_{EF/E} \delta p_{E}$

a)
$$\delta v_E = T_{EF/E}^T \delta v_{EF}$$

(EF to E)

b) $\delta P_E = T_{EF/E}^T \delta p_{EF}$

Also, since the location of the EF frame is known with respect to the E frame (see footnotes) and the earth rate vector is known in the E frame, this vector is also known errorlessly in the EF frame. For this same reason, no change in the platform-to-computer misalignment $\psi_{\mathbf{p}}$ is required

^{*} C_E and $T_{EF/E}$ are errorless by definition; i.e., the location of the center of the EF frame in, and its attitude with respect to, the E frame are assumed known, although the position and velocity of users and/or emitters and/or other points in the EF frame with respect to the EF frame are in general assumed to be in error. This philosophy leads to a more compact overall mechanization than do alternative philosophies.

at the time of C frame switching, since the C frame is known, be it E or EF. No additional error contribution to $\psi_{\rm P}$ is therefore introduced by switching.

Equations (110) and (111) therefore define all necessary error switching operations.

APPENDIX IV

ADR NAVIGATION EQUATIONS

This appendix derives the processor ADR equations, predicated on the frame selection C=EF.

In ADR, since the basic driving DR navigation information is available at the velocity, rather than the acceleration level, no acceleration-level processing is required. Integral processing is therefore confined to the equation:

$$\dot{\mathbf{p}} = \mathbf{v} \tag{112}$$

The velocity v for this equation is obtained from:

$$v = v_W + v_{AS} \tag{113}$$

The C-frame-referenced airspeed vector vAS is obtained from:

$$v_{AS} = T_{A/C}^{T} (v_{AS})_{A}$$
 (114)

and the airframe (A frame) referenced airspeed vector from:

$$(v_{AS})_A = T_{A/A}, k_{A/A}, (|v_{ASM}| + |\Delta v_{ASM}|)$$
 (115)

where $|v_{ASM}|$ is the measured (scalar) airspeed, $|\Delta v_{ASM}|$ is the airspeed bias and scale factor correction, and $T_{A/A}$, $k_{A/A}$, is a combined angle of attack correction and vectorizing operator (i.e., to convert airspeed from a scalar to a vector). Finally the A-to-C-frame transformation required by equation (114) is generated from:

$$^{T}_{A/C} = ^{T}_{A/P}^{T}_{P/C} \tag{116}$$

and TA/P from:

TA/P = FUNCTION OF AHRU ATTITUDE READOUTS

Discussion of $T_{P/C}$ generation is deferred for the moment since it relates to wind vector generation for equation (113).

Equation (113) requires a C-frame-referenced wind vector. In ADR, generation of wind in any frame is of course based on some initial, a priori wind vector estimate which is subsequently decayed in the absence of further information.* A natural frame in which to conduct this basic wind estimation process is the L (locally level) frame. In particular, to maintain maximum inter-DR-mode commonality of processor algorithms, this L frame should be the same as that used in IDR; i.e., a wander azimuth frame. The wind processing equations are therefore:

$$v_{W} = T_{L/C}^{T}(v_{W})_{L} \tag{117}$$

$$v_{WL} = Q_{WL}(v_{W})_{L} \tag{118}$$

where $\mathbf{Q}_{\mathbf{WL}}$ is an appropriate, wind estimate decay (diagonal) matrix.

Returning now to consideration of $T_{\rm P/C}$ generation for equation (116), a natural way, which makes use of $T_{\rm L/C}$, is:

$$^{T}_{P/C} = ^{T}_{P/L}^{T}_{L/C} \tag{119}$$

This equation of course requires separate generation of $T_{\rm P/L}$ and $T_{\rm L/C}$ by means of

$$\dot{T}_{L/C} = (\omega_{L/C})_{L} \times T_{L/C}$$
 (120)

$$\dot{T}_{P/L} = (\omega_{P/L})_P \times T_{P/L} \tag{121}$$

where $(\omega_{L/C})_L$ is obtained (as in IDR for P = L) from:

$$\left(\omega_{L/C}\right)_{L} = K_{L} T_{L/C} V \tag{122}$$

and (wp/L)p from:

^{*}This estimate can of course be corrected (e.g., via a Kalman filter) if external measurements of groundspeed (e.g., from continuous pseudoranging and/or pseudorange-rating) are available.

 $(\omega_{\rm P/L})_{\rm P}$ = 0 if AHRU platform is in DG(wander azimuth) mode

= local meridian convergence rate (i.e., azimuth rate equal to vehicle longitude rate multiplied by the sine of vehicle geographic latitude)

Finally, again to maintain maximum inter-DR-mode processor algorithm commonality, since (120) and (121) must be computed in ADR and strapdown IMU IDR anyway, then if the hardware configuration involves both an AHRU and a rotationally free IMU, (120) and (121) should also be implemented in IDR, instead of the simpler equation (44) of Appendix II alone. In addition, carrying the additional $T_{\rm P/L}$ transformation desirably generalizes processor IMU acceleration data processing and torquing control rate capabilities.

APPENDIX V

PDR NAVIGATION AND ERROR EQUATIONS

This appendix discusses the PDR mechanization and error equations based on the assumption C=EF.

1. PDR NAVIGATION EQUATIONS

The C-Frame-referenced aircraft acceleration equation is:

$$\frac{dv}{dt} = f + g - 2\omega_{E/I} \times v \tag{123}$$

where, as usual, the C-frame subscripting is omitted for brevity.

The corresponding equation referenced to an L frame is:

$$\frac{d_L v}{dt} = f_L + g_L - (2\omega_{E/I} + \omega_{L/C})_L \times v_L$$
 (124)

and the two equations are related by:

$$\frac{dv}{dt} = T_{L/C}^{T} \left\{ \frac{d_{L}v_{L}}{dt} + (\omega_{L/C})_{L} \times v_{L} \right\}$$
(125)

Now consider in particular the L frame defined by the orthogonal unit vectors*:

$$u_1 = \frac{g}{|g|}, u_2 = \frac{y \times u_1}{|y \times u_1|}, u_3 = u_1 \times u_2, y = \frac{v}{|v|}$$
 (126)

i.e., the locally level frame with its horizontal axes down-and cross-ground-track. In particular, the $T_{\rm L/C}$ transformation can be defined conveniently in terms of these unit basis vectors as:

$$T_{L/C} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^T$$
 (127)

^{*}Note that this L frame, although it has the same vertical axis as the wander azimuth L frame used in IDR and ADR, has its horizontal axes constrained to follow the horizontal projection of the vehicle velocity vector.

Consider the bracketed term on the right-hand side of (125). If the aircraft is flying at constant speed and altitude (this does not preclude turns) then $\frac{d_L v_L}{dt} = 0$, and the overall term reduces to:

$$(\omega_{L/C})_{L}^{xv}_{L} = \begin{bmatrix} \omega_{L/C1} \\ \omega_{L/C2} \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ v_{L3} \end{bmatrix} = \begin{bmatrix} \omega_{L/C2}^{v}_{L3} \\ -\omega_{L/C1}^{v}_{L3} \\ 0 \end{bmatrix}$$
 (128)

Thus, if the aircraft is not turning, only the earth-centripetal (radial) term $\mu_{L/C2} v_{L3}$ is present. If the aircraft is also turning, then the additional turn-centripetal term $-\mu_{L/C1} v_{L3}$ is required as well.

If, further, the aircraft is either or both horizontally (along-track) and vertically accelerating or decelerating, then:

$$\frac{d_L v_L}{dt} = \begin{bmatrix} \dot{v}_{L1} \\ 0 \\ \dot{v}_{L3} \end{bmatrix}$$
 (129)

combining results:

$$\frac{d_{L}v_{L}}{dt} + (\omega_{L/C})_{L} \times v_{L} \approx \begin{bmatrix} -\frac{v_{L3}^{2}}{|p_{E}|} & \text{(always)} + v_{L1} & \text{of climb)} \\ -\frac{\omega_{L/C1}v_{L3}}{|p_{E}|} & \text{(in turn)} \\ v_{L3} & \text{(horizontal acceleration)} \end{bmatrix}$$
(130)

In PDA, the horizontal (along-track) and vertical accelerations \dot{v}_{L3} and \dot{v}_{L1} , and the turning rate (necessary to determine the cross-track turning acceleration) are not directly measurable, but must be inferred (after integration, using pseudorange and/or range-rating data). Calling the acceleration vector composed of these three components $\boldsymbol{\beta}$, then the overall, C-Frame-referenced acceleration can be written:

$$\dot{\mathbf{v}} = \mathbf{T}_{L/C}^{T} \left(\boldsymbol{\beta}_{L} - \mathbf{a}_{L} \right) = \boldsymbol{\beta} - \mathbf{a}$$

$$\boldsymbol{\beta}_{L} = \begin{bmatrix} \boldsymbol{\beta}_{L1} \\ \boldsymbol{\beta}_{L2} \\ \boldsymbol{\beta}_{L3} \end{bmatrix} \qquad \mathbf{a}_{L} = \begin{bmatrix} -\left\{ |\mathbf{v}|^{2} - \left(\mathbf{v}^{T}\mathbf{u}_{1}\right)^{2} \right\} \\ 0 \\ 0 \end{bmatrix}$$
(131)

The β_L components can be simply modeled for use in this equation as exponentially time-correlated variables; i.e.:

$$\dot{\beta}_{Li} = -\frac{1}{\tau_{RLi}} \beta_{Li} \quad (i = 1, 2, 3)$$
 (132)

where the correlation times $\tau_{\beta Li}$ depend on the direction u_i involved, and on the type of maneuver, per the following table:

	No <u>Maneuvers</u>	Start of Climb or Descent	Along-Track Acceleration or Deceleration	Turn
[™] β L1	[†] βln1	TBLS 1	FRLNI	[†] βLN1
[†] βL2	TBLN2	[™] βLN2	[™] β LN2	BLS?
™β L3	[†] βln3	-βLN3	TALS 3	[†] βLS 3

Talni = Nominal, no-maneuver value

*BLSi = Shorter, maneuver value

In particular, the shorter correlation times are used for both components of horizontal acceleration throughout a turn to account for the change in effective acceleration due to the change in the groundtrack direction relative to wind direction.

Information from the flight control system (e.g., throttle setting, control surface settings, etc.) could presumably be used to control the maneuver indicators required by implication in the above file-setting table. If not, single, fixed values (which would have to be intermediate, compromise values between the no-maneuver and maneuver values) would have to be used instead.

Combining results, the PDR mechanization equations are:

$$\dot{v} = T_{L/C}^{T}(\beta_{L} - a_{L})$$
 $a_{L} = \left\{ |v|^{2} - (v^{T}u_{1})^{2} \right\} (u_{1})_{L}$ (133)

$$\mathbf{T}_{\mathbf{L/C}} = \left[\mathbf{u}_1 \middle| \mathbf{u}_2 \middle| \mathbf{u}_3 \right]^{\mathbf{T}} \tag{134}$$

$$u_1 = \frac{g}{|g|}, u_2 = \frac{\gamma x u_1}{\gamma x u_1}, u_3 = u_1 x u_2, \gamma = \frac{v}{|v|}$$
 (135)

$$\dot{\boldsymbol{\beta}}_{L} = -\kappa_{\boldsymbol{\beta}L}\boldsymbol{\beta}_{L} \qquad \boldsymbol{\beta}_{L} = \begin{bmatrix} \boldsymbol{\beta}_{L1} \\ \boldsymbol{\beta}_{L2} \\ \boldsymbol{\beta}_{L3} \end{bmatrix} \qquad \kappa_{L} = \begin{bmatrix} \kappa_{\boldsymbol{\beta}L1} & 0 & 0 \\ 0 & \kappa_{\boldsymbol{\beta}_{L2}} & 0 \\ 0 & 0 & \kappa_{\boldsymbol{\beta}L1} \end{bmatrix}$$
(136)

$$k_{\beta Li} = \frac{1}{\tau_{\beta Li}}$$
 (i = 1,2,3)

 $\tau_{\beta i}$ settings per table from flight control data, or single, fixed values (p, p_E , g_E , g, |h| equations same as for IDR)

2, PDR ERROR EQUATIONS

In the acceleration equation (131),

$$\dot{\mathbf{v}} = \mathbf{T}_{L/C}^{T} (\mathbf{R}_{L} - \mathbf{a}_{L})$$

the terms β_L and a_L model L frame accelerations, and $T_{L/C}^T$ is the matrix necessary to express them in the C frame. By direct linear perturbation, the corresponding error equation is:

$$\delta v = T_{L/C}^{T} \delta \beta_{L} + \mathcal{D}_{L/C}^{T} (\beta_{L} - a_{L}) - T_{L/C}^{T} \delta a_{L}$$
(137)

But since both $T_{L/C}^T$ and a are just velocity dependent, while only β_L is acceleration dependent, for short-time extrapolations the last two terms can be neglected so that:

$$\delta \dot{\mathbf{v}} \approx \mathbf{T}_{L/C}^{\mathsf{T}} \delta \boldsymbol{\beta}_{L} \tag{138}$$

Also, by direct perturbation:

$$\begin{cases}
\delta \dot{\beta}_{L} = -K_{RL} \delta \beta_{L} \\
\dot{\delta}_{P} = \delta v
\end{cases} (139)$$

No gravity error feedback (via position error) coupling into the acceleration error equation is needed here, since computed gravity is not used in the acceleration equation (except to compute the direction \mathbf{u}_1 ; but $\delta \mathbf{T}_{L/C}$ error effects are neglected).

APPENDIX VI

BASIC MEASUREMENT MATRICES DERIVATION

This appendix is devoted to the derivation of the basic measurement (M) matrices for the following general types of measurements: range, range-rate and barometric altitude. A high level of commonality between the various M matrices was considered to be of primary importance in the development.

In taking measurements (range or range-rate) relative to emitters the question arises as to whether or not emitter, as well as user location errors should be modeled and estimated. If it is decided that emitter location errors should be estimated, then there is the possibility these errors are interrelated. If this is so, and the interrelationships are known, then the number of error state variables required to be carried by the Kalman filter may be significantly reduced. The number of measurements required to estimate the emitter errors would also be reduced by a like amount.

Consider, for example, a situation in which the user is operating with n range of a network consisting of four, earth fixed, range type emitters. Assume that emitter position errors are to be estimated. Now if the emitter location errors are not correlated, or if they are but this fact is not used in the estimation process, then a total of twelve state error variables are required in the filter model. Further, twelve different scalar range measurements are required to estimate the twelve state error variables.

Depending upon the circumstances, a second alternative might exist. Consider the case where the first emitter is located by some means and then the second, third and fourth emitters in the network are located relative to the first. Assume that distances between emitters is known quite precisely but that errors in local vertical and true north are present, in the process of locating these emitters. In this situation, the four emitters might be considered as four points in a rigid body which has three translational error components (those due to the location errors of the first emitter) and three rotational error components (those due to errors in local vertical and true north). For this case, the position errors of all four emitters may be estimated using only six error variables and six different scalar range measurements. If, during the locating of the last three emitters, true north and local vertical were also known precisely, then only three error variables are required. Finally, under certain circumstances. it may be that no emitter error state variables are required, i.e., emitter locations are known precisely and no emitter position error estimates are required.

In the derivations of this appendix, the worst case has been assumed, i.e., the M matrices provide for the inclusion of three error variables for each emitter whose position error is to be estimated.

Range measurements are of two general types, line-of-sight (LOS) range measurements and earth-mode (EM) range measurements. Earth-mode measurements (e.g., LORAN or Omega) are processed differently than are LOS measurements. But more importantly, from the standpoint of generating M matrices, the information content in an EM range measurement is less. Since EM signal propagation is based upon the concept of a spherical waveguide, there is no way to relate changes in user altitude to changes in measured range. For this reason EM range measurements must be restricted such that they are used only to estimate position errors in the local horizontal plane (local horizontal at the user and emitter positions); LOS and EM measurements are therefore discussed below in separate subsections.

There are a number of symbols which are used in this appendix and which are not defined in the glossary. Some are defined in the text at the time they are used; however, some which are used more generally throughout this appendix are defined below:

Symbol Definitions

[--- UNITY ---] is a row vector in which every element is unity

[--- ZERO ---] is a row vector in which every element is zero

Superscript T = Transpose of the quantity

 $\delta R_{Tj}^{'} = -\delta R_{Tj}^{'}$ = the sum of all scalar time correlated errors associated with a specific jth radio ranging measurement

 $\delta \dot{R}_{Tj}^{'} = -\delta \dot{R}_{Tj}^{'}$ = the sum of all scalar time correlated errors associated with a specific jth radio range-rate measurement

 $\frac{\partial \mathbf{F}}{\partial \mathbf{P}} \stackrel{\triangle}{=} \begin{bmatrix} \frac{\partial \mathbf{F}}{\partial \mathbf{X}} & \frac{\partial \mathbf{F}}{\partial \mathbf{Y}} & \frac{\partial \mathbf{F}}{\partial \mathbf{Z}} \end{bmatrix} = \text{gradient of } \mathbf{F}$

The gradient of scalar functions is used throughout this appendix (both implicitly and explicity) to expand computed functions about their actual values using a Taylor series expansion. Second and higher order terms in these expansions are always neglected (to arrive at linear relationships), which is valid when the computed value is very close to the actual value. This condition is always assumed. Further, since the actual values of the function argument variables are never known, the resulting partial derivatives are evaluated using the estimated values of these variables. This is also reasonable where the errors are very small.

In an attempt to avoid derivations within a section which detract from the main thought, three identities (which are used within the sections) are defined and proved as follows.

Given a vector b,

$$\delta |b| = \frac{b^T}{|b|} \delta b$$
, where $\frac{b}{|b|}$ is a unit vector pointing (140) in the direction of b.

$$\frac{d}{dt}|b| = \frac{b^{T}}{|b|} \frac{d}{dt}(b) \tag{141}$$

$$\delta\left\{\frac{b}{|b|}\right\} = \left\{I - \frac{b}{|b|} \frac{b}{|b|}\right\} \frac{\delta b}{|b|} ; \quad I \stackrel{\triangle}{=} Identity Matrix$$
 (142)

Proof of (140):

$$|b||b| = |b|^2 = b^T b$$
, which implies that

$$\delta \left\{ \left| \; \mathsf{b} \; \right| \; \left| \; \mathsf{b} \; \; \right| \right\} \; = \; \; \delta \left\{ \; \mathsf{b}^T \mathsf{b} \right\}$$

Evaluating both sides yields:

$$2|\mathbf{b}|\delta|\mathbf{b}| = 2\mathbf{b}^{\mathrm{T}}\delta\mathbf{b} \Rightarrow \delta|\mathbf{b}| = \frac{\mathbf{b}^{\mathrm{T}}}{|\mathbf{b}|}\delta\mathbf{b}$$

Proof of (141):

$$\frac{d}{dt} |b|^2 = \frac{d}{dt} (b^T b)$$

Again evaluating both sides,

$$\begin{vmatrix} b & \frac{d}{dt} \end{vmatrix} b = b^{T} \frac{d(b)}{dt} \Rightarrow \frac{d|b|}{dt} = \frac{b^{T}}{|b|} \frac{d}{dt} (b)$$

Proof of (142):

$$\delta\left\{\frac{b}{|b|}\right\} = \frac{|b|\delta(b) - (b)\delta|b|}{|b||b|}$$

Substituting in the results of (140) above yields

$$\delta \left\{ \frac{b}{|b|} \right\} = \frac{|b| \delta(b)}{|b| |b|} \left\{ \frac{b b^{T}}{|b||b|} \right\} \frac{\delta b}{|b|} = \left\{ I - \frac{b b^{T}}{|b||b|} \right\} \frac{\delta b}{|b|}$$

1. RANGE MEASUREMENTS (LINE-OF-SIGHT)

In this subsection, M matrices are developed for line-of-sight range measurements which are consistent with both the C=E and C=EF computational frames. For the C=E frame case, the range between the user and the j^{th} emitter is given by

$$\left| R_{1} \right| = \left| P + d - E_{1} \right| \tag{143}$$

where P, d and E are as defined in the symbol glossary. Briefly, P is the vector distance from the center of the earth to the center of the user platform frame; d is the vector distance from the center of the user platform frame to the user receiving antenna; \mathbf{E}_{j} is the vector distance from the center of the earth to the jth emitter antenna.

Now, let

$$\left|R_{mj}\right| = \left|R_{j}\right| + \delta R_{Tj} + n_{Rj}(t) \tag{144}$$

and

$$\left|\widehat{R}_{j}\right| = \left|R_{j}\right| + \delta \left|R_{j}\right| \tag{145}$$

represent, respectively, the measured and computed values corresponding to the range between the user and the $j^{\mbox{th}}$ emitter.

To generate the M_j measurement matrix, the measured range is subtracted from the computed range after the $\delta |R_j|$ term in equation (145) has been expanded in terms of system variables. Taking the first variation of $|R_j|$, defined in equation (143), yields:

$$\delta |R_j| = \delta |P+d-E_j| \tag{146}$$

Now, using equation (140), (identity #1),

$$\delta |P+d-E_{j}| = \frac{(P+d-E_{j})^{T}}{|P+d-E_{j}|} \cdot (\delta P + \delta d - \delta E_{j})$$
 (147)

where the vector quantity,

is, by definition, a unit vector which points from the j^{th} emitter antenna to the user antenna. Let this unit vector be defined as r_j . Using this definition, one can rewrite equation (147) as

$$\delta |P+d-E_j| = r_j^T \cdot (\delta P + \delta d - \delta E_j)$$
 (148)

Now, subtracting equation (144) from (145) and utilizing the results of equations (146) and (148) produces the following equation:

$$\left|\Delta R_{j}\right| = r_{j}^{T} \cdot (\delta P + \delta d - \delta E_{j}) + \delta R_{Tj} + n_{Rj}(t)$$
 (149)

It turns out, as will be shown later, that the term δd in equation (149) provides a means of estimating errors in the transformation matrix, $T_{C/A}$, which relates the computation frame and the aircraft frame. Neglecting for the moment the δd term, equation (149) in vector-matrix notation becomes:

$$\left|\Delta R_{j}\right| = \left[r_{j}^{T} \mid [ZERO] \mid -r_{j}^{T} \mid [ZERO] \mid [UNITY] \mid [ZERO]\right] \left[\frac{\delta P_{-}}{\delta P_{-}}\right] + n_{Rj}(t)$$

$$-\frac{\delta E_{j}}{\delta R_{Tj}}$$

$$-\frac{\delta R_{Tj}}{\delta R_{Tj}}$$
(150)

From equation (150), the M_i matrix is, by definition,

$$M_{j} = \left[r_{j}^{T} \mid [ZERO] \mid -r_{j}^{T} \mid [ZERO] \mid [UNITY] \mid [ZERO]\right]$$
(151)

In equation (149), the vector d represents the vector distance from the center of the platform frame to the user antenna expressed in C frame coordinates. If the effect of this separation distance is to be taken into account (both for range and range-rate measurements) then the vector d must be an input parameter. However, since d is physically measured in airframe coordinates, then the input will be in airframe coordinates. The computational algorithms then must take into account the necessary conversions.

Let $d_{\overline{A}}$ represent the physical measurement of d expressed in airframe coordinates; then

$$d = T_{C/A} d_A$$
 (152)

Using equation (152),

$$\delta d = \delta T c_{/A} d_A + T c_{/A} \delta d_A$$
 (153)

but $\delta d_A = 0$ since d_A is a known constant vector in airframe coordinates; hence, equation (153) reduces to

$$\delta d = \delta T c / A^{d} A \tag{154}$$

Now, let the 3x3 error matrix, $\delta Tc_{/A}$, be represented by its three-row vector partitions; i.e., let

$$\delta^{Tc}/A = \begin{bmatrix} \delta^{T}_{1} \\ \delta^{T}_{2} \end{bmatrix}$$

$$\begin{bmatrix} \delta^{T}_{3} \end{bmatrix}$$
(155)

Using equation (16), one can now rewrite (154) as:

$$\delta \mathbf{Tc}_{/\mathbf{A}} \mathbf{d}_{\mathbf{A}} = \begin{bmatrix} \delta \mathbf{T}_{1} & \delta \mathbf{d}_{\mathbf{A}} \\ \delta \mathbf{T}_{2} & \delta \mathbf{d}_{\mathbf{A}} \\ \delta \mathbf{T}_{3} & \delta \mathbf{d}_{\mathbf{A}} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_{\mathbf{A}}^{\mathbf{T}} & \delta \mathbf{T}_{1}^{\mathbf{T}} \\ \mathbf{d}_{\mathbf{A}}^{\mathbf{T}} & \delta \mathbf{T}_{2}^{\mathbf{T}} \\ \mathbf{d}_{\mathbf{A}}^{\mathbf{T}} & \delta \mathbf{T}_{3}^{\mathbf{T}} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_{\mathbf{A}}^{\mathbf{T}} & 0 & 1 & 0 \\ \mathbf{d}_{\mathbf{A}}^{\mathbf{T}} & 0 & 1 & 0 \\ 0 & \mathbf{d}_{\mathbf{A}}^{\mathbf{T}} & 1 & 0 \\ 0 & 0 & \mathbf{d}_{\mathbf{A}}^{\mathbf{T}} \end{bmatrix} \begin{bmatrix} \delta \mathbf{T}_{1}^{\mathbf{T}} \\ \delta \mathbf{T}_{2}^{\mathbf{T}} \\ \delta \mathbf{T}_{3}^{\mathbf{T}} \end{bmatrix}$$

$$(156)$$

To simplify notation, let

$$\delta Tc /A^{d} = D\delta Tc /A \tag{157}$$

where D is understood to be the 3x9 matrix in equation (156) and $\delta T_{c/A}$ is the (9x1) vector representation of the error matrix $\delta T_{c/A}$. The $r_i T \circ \delta d$ term in equation (149) now becomes

$$r_j^{T \cdot \delta d} = [r_j^{T} D] \delta T_c^{\prime}$$
(158)

where $[r_i^T D]$ is a (1x9) row vector.

Now, if errors in the $\text{Tc}_{/A}$ transformation matrix are to be estimated, then the M_j matrix and state error vector, defined by equation (150), are modified and become:

$$|\Delta R_{j}| = \left[r_{j}^{T} | [r_{j}^{T} D] | [ZERO] | -r_{j}^{T} [ZERO] | [UNITY] | [ZERO] \right] \frac{\delta P_{T}}{\delta T_{C}/A} + n_{R_{j}}(t)$$

$$\frac{\delta E_{j}}{\delta E_{j}} = \frac{\delta E_{j}}{\delta R_{T_{j}}}$$
(159)

In the C = EF frame case, the center of the EF frame is translated from the center of the E frame through the vector distance C; and the coordinate axes of the EF frame are related to the E frame coordinate axes through the orthogonal transformation $T_{\rm EF/E}$.

To fix ideas in the following derivation, use is made of the following vector diagram::

Figure 33. I.OS Emitter/User Geometry

where, now p+d is the vector distance of the user antenna with respect to the EF frame center, and e is the vector distance of the jth emitter antenna with respect to the center of the EF frame.

Now, from Figure

$$\begin{vmatrix} R_j \end{vmatrix} = \begin{vmatrix} P+d-E_j \end{vmatrix} = \begin{vmatrix} p+d-e_j \end{vmatrix}$$
 (160)

The measured range is (as before) defined by equation (144). Now, let the computed range be defined by:

$$\left|\hat{R}_{j}\right| = \left|R_{j}\right| + \delta \left|R_{j}\right| = \left|p + d - e_{j}\right| + \delta \left|p + d - e_{j}\right| \tag{161}$$

Following the identical procedure as described above to evaluate the $\delta|p+d-e_i|$ term in equation (161) yields

$$\delta | p + d - e_j | = r_j^T \cdot (\delta p + \delta d - \delta e_j)$$
 (162)

where r_j^T , δp , δd and δe_j are all expressed in C = EF frame coordinates. The δd term can, as before, be used to estimate errors in the transformation matrix which relates the C = EF frame and the user aircraft frame. (Note: In the previous consideration, $T_{A/C} = T_{A/E}$, whereas here $T_{A/C} = T_{A/E}$.)

As a result, equation (162) yields an M_j matrix which is identical to the M_j matrix defined by equation (150) (if the δd term is neglected), or equation (159) (if the δd term is used to estimate transformation errors). The M matrix elements are computed in the operating frame coordinates, using parameters measured relative to the center of this frame.

RANGE MEASUREMENTS (EARTH MODE)

As described above, the information contained in an earth mode range measurement must be restricted such that it is used only to estimate position errors in the local horizontal plane, at both the user and the emitter locations. Even with this restriction it is still possible to derive M matrices for this mode of operation which display a certain level of commonality with the M matrices developed for LOS measurements. This commonality is achieved using the same unit vector, r, developed in Section 1 above, and then rotating this unit vector into the local horizontal plane. The following paragraphs describe this procedure in detail, in which the C = E frame case is considered first.

To provide a good insight into the derivations of this section, use is made of the following sketch where for simplicity the vector A is used (A = P + d) rather than P + d; "user position" implies user antenna position and "emitter location" implies emitter antenna location.

Figure 34. Earth-Mode Emitter/User Geometry (1)

In this sketch, A' is the point on the earth's surface directly below the user position, λ_G is the geocentric latitude and θ_j is the angle between the vectors A' and E_j. Let $|S_j|$ represent the actual distance between the emitter position and the point A' as measured along the surface of the earth.

The computed value of the distance $|S_j|$ can then be expressed by the following line integral:

$$|\hat{s}_{j}| - \int_{\hat{E}_{j}}^{\hat{R}(\lambda_{G})} |d\hat{\theta}_{j}|$$
(163)

and the measured value of | S | can be expressed as

$$|s_{mj}| = |s_j| + \delta R_{\tau_j} + n_{R_j}(t)$$
 (164)

The value $|\Delta S_j|$ then is arrived at by subtracting equation (164) from (163). The M matrices for this mode of operation are not, however, developed by operating on equation (163) because of the altitude restriction, but rather as follows.

As noted in Section 1 above, r_j is a unit vector which points from the emitter to the user along the line of sight. Now, assume that the line of sight distance between the emitter and user ($|R_j|$, where R_j is as described in the sketch) is much greater than the altitude of the user. Under this assumption, and for the purposes of the following derivation, it is reasonable to assume that the user is located at the point A'. (If this assumption is not valid, then user altitude must be subtracted out of the vector A to arrive at A'. The derivation then continues as described below.

The following sketch describes how the earth mode M matrix is derived using the results of the preceding section.

Figure 35. Earth-Mode Emitter/User Geometry (2)

In Figure 35,

h = unit vector along local vertical at user position = $\frac{A}{|A|}$ $r_j = \frac{R_j}{|R_j|}$; as previously defined

τ = unit vector contained in both the local horizontal plane and the plane containing the center of the E frame, the jth emitter location and the user location

 h_{Ej} = unit vector along local vertical at emitter position = $\frac{E_j}{|E_j|}$

 τ_{Ej} = same description as τ_{j} except at jth emitter location.

It might be well to note that $\frac{A}{|A|}$ does not in fact point exactly along the local vertical. However it only differs from the local vertical by the eccentric anomaly which is, at worst, approximately ll arc-minutes. For the purposes of the M matrix this is a very good approximation.

Now, from the sketch and the unit vector definitions

$$r_{j} = (\cos \theta_{j}/2) \tau_{j} + (\sin \theta_{j}/2) h \tag{165}$$

at the user location and

$$-r_{j} = -(\cos \theta_{j}/2) \tau_{Ej} + (\sin \theta_{j}/2) h_{Ej}$$
 (166)

at the emitter location.

Solving equations (165) and (166) for $\tau_{\hat{1}}$ and $\tau_{\hat{E}\hat{1}}$ respectively yields

$$\tau_{j} = \frac{1}{\cos \theta_{j}/2} \left[r_{j} - (\sin \theta_{j}/2) h \right]$$
and
$$-\tau_{Ej} = \frac{1}{\cos \theta_{j}/2} \left[-r_{j} - (\sin \theta_{j}/2) h_{Ej} \right]$$
(167)

The unit vectors τ_j and τ_{Ej} can now be used to restrict the earth mode measurement such that only local norizontal estimates of user and emitter position can be made, i.e., let

$$|\Delta S_{j}| = \tau_{j}^{T} \cdot \delta A - \tau_{Ej}^{T} \cdot \delta E_{j} + \delta R_{Tj} + n_{Rj}(t)$$
 (168)

where the radio navigation measurement errors have been added. Using equation (159), the $|\Delta S_j|$ equation for the jth emitter range measurement then becomes

$$|\Delta S_{j}| = \begin{bmatrix} \tau_{j}^{T} | [ZERO] | -\tau_{E_{j}}^{T} | [ZERO] | [UNITY] | [ZERO] | \\ \delta A \\ \vdots \\ \delta E_{j} \\ \vdots \\ \delta R_{T_{j}} \end{bmatrix} + n_{R_{j}}(t)$$
 (169)

where $\delta A = \delta(P + d) = \delta P + \delta d$.

As for line of sight measurements, the δd term can be used to estimate errors in the transformation matrix, $T_{C/A}$, or it can be neglected. If it is neglected, then $\delta A = \delta P$. If it is not neglected, then a (1×9) row vector, $[\tau^T D]$, is added to the M matrix and a (9×1) error vector, $\delta T_{C/A}^{\dagger}$, as previously described in Section 1.

Now in comparing the form of the M_j matrix defined in equation (169) with, e.g., the LOS M_j matrix defined by equation (150) (for this comparison let $\delta A = \delta P$), it is seen that the difference between the two matrices can be identified as follows:

$$\tau_{j}^{T} = \left(\frac{1}{\cos\theta_{j}/2}\right) r_{j}^{T} - \left(\sin\theta_{j}/2\right) h^{T}$$
and
$$-\tau_{Ej}^{T} = -\left(\frac{1}{\cos\theta_{j}/2}\right) r_{j}^{T} - \left(\sin\theta_{j}/2\right) h_{Ej}^{T}$$
(170)

For θ_j = 0, equation (169) reduces to equation (150), as can be seen by inspection using equation (170). The same applies for the case where errors in $T_{A/C}$ are to be estimated. (For particularly high user altitude cases it may be desirable to scale τ_j by the factor $\frac{A^i}{|A|}$ or $\frac{|A| - |h|}{|A|}$.)

An identical relationship exists between the M matrices for the case C = E frame, and the case C = EF frame except that, when operating in the EF frame:

$$h = \frac{C + p}{|C + p|}$$

$$h_{Ej} = \frac{C + ej}{|C + ej|}$$
(171)

where C (expressed in EF frame coordinates) is the vector joining the centers of the E and EF frames, ej and p are the jth emitter and user locations respectively as measured in the EF frame.

3. RANGE-RATE MEASUREMENTS

In this section, range-rate measurements are assumed to be made along the line-of-sight between the user antenna and the jth emitter antenna; i.e., $|\mathring{R}_i|$ is defined as follows:

$$\left|\dot{R}_{i}\right| = \frac{d\left|R_{i}\right|}{dt} = \frac{d}{dt}\left|P + d - Ej\right| \tag{172}$$

From equation (141):

$$\frac{d}{dt} |P + d - E_j| = \frac{(P + d - E_j)^T}{|P + d - E_j|} (V + d - V_{E_j})$$
 (173)

Or, using the unit vector, r_{i} , (172) can be rewritten as

$$|\dot{R}_{j}| = r_{j}^{T} \cdot (V + \dot{d} - V_{Ej})$$
(174)

Now let $|\hat{R}_i|$, the computed value of the range-rate, be expressed as

$$|\hat{R}_{j}| = |\hat{R}_{j}| + \delta |\hat{R}_{j}| \tag{175}$$

and let $|R_{mj}^{\bullet}|$, the measured value of the range-rate, be expressed as

$$|R_{mj}^{\bullet}| = |\hat{R}_{j}| + \delta \hat{R}_{Tj}^{\dagger} + n_{Rj}^{\bullet}(t)$$
 (176)

Subtracting equation (176) from equation (175) yields:

$$|\Delta \hat{R}_{j}| = \delta |\hat{R}_{j}| + \delta \hat{R}_{Tj} + n_{Rj}(t)$$
(177)

Now, using equation (174), one can rewrite the $\delta |\hat{R}_{i}|$ term in equation (177) as

$$\delta |\hat{R}_{j}| = r_{j}^{T} \cdot (\delta V + \delta \dot{d} - \delta V_{Ej}) + (V + \dot{d} - V_{Ej}) \cdot \delta r_{j}$$
 (178)

To evalute δr_i in equation (178), recall that

$$r_{j} = \frac{(P + d - E_{j})}{|P + d - E_{j}|} = \frac{R_{j}}{|R_{j}|}$$
(179)

Then, using equation (142),

$$\delta \mathbf{r}_{j} = \delta \left\{ \frac{(P + d - E_{j})}{|P + d - E_{j}|} \right\} = \left| \mathbf{I} - \mathbf{r}_{j} \mathbf{r}_{j}^{T} \right| \left\{ \frac{(\delta P + \delta d - \delta E_{j})}{|P + d - E_{j}|} \right\}$$
(180)

Now, if the results of equations (177), (178), (179), and (180) are gathered together, $\left|\Delta R_{i}\right|$ now becomes

$$|\Delta \dot{R}_{j}| = m_{j}^{T} (\delta P + \delta d - \delta E_{j}) + r_{j}^{T} (\delta V + \delta \dot{d} - \delta V_{Ej}) + \delta \dot{R}_{Tj} + n_{Rj}(t)$$
where $m_{j}^{T} = \frac{(V + \dot{d} - V_{Ej})^{T}}{|R_{j}|} [I - r_{j} r_{j}^{T}] = \dot{R}_{j}^{T} [I - r_{j} r_{j}^{T}] / |R_{j}|$

Now, note that equation (181) contains both \dot{d} and $\delta \dot{d}$ terms as well as a $\delta \dot{d}$ term, (the \dot{d} term is contained in m_1^T).

Looking first at d, and remembering that $d = T_{C/A} d_A$, it is seen that

$$\dot{d} = \dot{T}_{C/A} d_A + T_{C/A} \frac{d}{dt} (d_A). \tag{182}$$

However, d_A is a constant vector in the aircraft reference frame, hence the time derivative of d_A is equal to zero. Also, $T_{C/A} = \begin{bmatrix} \omega_{A/C} X \end{bmatrix}_C T_{C/A}$. Therefore equation (182) can be rewritten as

$$\dot{d} = \left[\begin{array}{c} \omega_{A/C} X \right]_C T_{C/A} d_A = \left[\begin{array}{c} \omega_{A/C} X \right]_C d \end{array}$$
 (183)

where $\omega_{A/C}$ = angular rate of the aircraft WRT the C frame, and

 $\left[\omega_{A/C}^{X}\right]_{C}$ = cross product matrix of $\omega_{A/C}$ expressed in C frame coordinates.

That portion of m_{j}^{T} which contains d can now be expressed as follows:

$$\frac{\dot{\mathbf{d}}^{T}}{|\mathbf{R}_{j}|} \left[\mathbf{I} - \mathbf{r}_{j} \ \mathbf{r}_{j}^{T} \right] = \frac{\left[\omega_{A/C}^{X} \right]^{T}}{|\mathbf{R}_{j}|} \left[\mathbf{I} - \mathbf{r}_{j} \ \mathbf{r}_{j}^{T} \right]$$
(184)

Now &d, as defined in Section 1, is given by:

$$\delta d = \delta T_{C/A} d_A$$

Taking the time derivative of this expression, and again noting that the time derivative of $d_{\underline{A}}$ in the aircraft frame is zero, yields

$$\delta \dot{\mathbf{d}} = \delta \dot{\mathbf{T}}_{\mathbf{C}/\mathbf{A}} \, \mathbf{d}_{\mathbf{A}} \tag{185}$$

Now $\delta\,T_{C/A}$ is a small angle transformation which is the sum a) of the ψ rotation and antenna/airframe flexure for a strapdown mechanization, and b) of ψ , plus flexure, plus platform attitude readout errors for stabilized platform mechanizations. Correspondingly $\delta T_{C/A}$ is the sum of the time rate of change of each of these effects. If the update rate of the $T_{C/A}$ transformation is sufficiently fast to keep up with vehicle rotational motion, then the only δd error of consequence is that arising from antenna/airframe flexure rates. This flexure rate error is more properly modeled as time uncorrelated noise, considering the relatively long Kalman cycle time.

Assuming that the δd term is modeled as noise, (and now contained in the $n_{Rj}^{\bullet}(t)$ term), then the M_j matrix can be defined using equation (181), and is given by:

$$M_{j} = \begin{bmatrix} m_{j}^{T} & T & ZERO & -m_{j}^{T} & -r_{j}^{T} & ZERO & UNITY & ZERO \end{bmatrix}$$
 (186)

where the &d term has been neglected.

If the δd term is retained, then a (1×9) row vector, $m_j^T D$, is added to the M_j matrix and a (9×1) column vector $\delta T_{A/C}^i$ is added to the error state vector. The matrix D, and the column vector $\delta T_{A/C}^i$ are both defined in Section 1 of this appendix and m_j^T is defined in equation (181).

If operating in the C = EF frame, then [see equation (160)]:

$$|R_{j}| = |P + d - E_{j}| = |p + d - e_{j}|$$
 (187)

and using equation (187), the range-rate is given by

$$\frac{d}{dt} |R_{j}| = \frac{d}{dt} |p + d - \epsilon_{j}|$$
 (188)

From this equation, it can be seen that the same M, matrix, defined by equation (186), will be arrived at where now the variables are computed with reference to the EF frame center and expressed in EF frame coordinates.

4. BAROMETRIC ALTIMETER MEASUREMENTS

The formulation of the M matrix for altitude measurements is based upon the geometry described in Figure 36.

(Center of the E Frame)

Figure 36. Altitude Measurement Geometry

Now let the vector h be defined as

$$h = P - R (\lambda_G)$$
 (189)

This vector, h, differs from the actual vector altitude due to the eccentric anomalv. The difference in their magnitude is approximately one foot or less for altitudes up to 100,000 feet. Hence to a very good approximation, let the scalar altitude measurement be given as:

$$|h| = |P - R(\lambda_G)| = |P| - |R(\lambda_G)|$$
(190)

The terms |P| and $|R|(\lambda_G)$ can be expressed as

$$|P(X,Y,Z)| = \sqrt{|X^2 + Y^2 + Z^2|}$$
 (191)

and

$$|R(\lambda_G)| = \frac{|R_0|}{1 + k \sin^2 \lambda_G^{1/2}}$$
(192)

where $|R_0|$ = earth radius at the equator

$$k = \left[\frac{1}{(1-e)^2} - 1\right]$$

e = ellipticity = 1/297.0

In the E frame, $\sin \lambda_G = Z/|P|$. Substituting this expression into equation (192) yields

$$|R(X,Y,Z)| = \frac{|R_0|}{\left[1 + k\left(\frac{z^2}{x^2 + y^2 + z^2}\right)\right]} 1/2$$
 (193)

To form the expression for $|\Delta h|$, let $|\hat{h}|$ be the computed value for |h| and $|h_m|$ be the compensated measurement of |h|. Then subtract $|h_m|$ from $|\hat{h}|$ after expanding $|\hat{h}|$ in a Taylor series about the true value |h|. This results in the following expression:

$$|\Delta h| = \frac{\partial |P|(X,Y,Z)|}{\partial P} \cdot \delta P - \frac{\partial |R|}{\partial P}(X,Y,Z) | \cdot \delta P + \delta h_m + n_h(t)$$
 (194)

where δh_m and $n_h(t)$ respectively denote the time correlated and time uncorrelated altitude reference measurement errors.

By definition,

$$\frac{\partial P}{\partial P} (X, Y, Z) | \cdot \delta P = \frac{\partial X}{\partial P} \delta X + \frac{\partial P}{\partial P} \delta Y + \frac{\partial Z}{\partial P} \delta Z$$

and

$$\frac{\partial |R|(X,Y,Z)}{\partial P}|\cdot \delta P = \frac{\partial |R|}{\partial X} \delta X + \frac{\partial |R|}{\partial Y} \delta Y + \frac{\partial |R|}{\partial Z} \delta Z$$

Performing the indicated partial differentiations as indicated, and then gathering together like terms provides the following expressions:

$$\begin{pmatrix}
\frac{\partial |P|}{\partial X} - \frac{\partial |R|}{\partial X}
\end{pmatrix} = \begin{pmatrix}
\frac{X}{|P|} - \frac{X}{|P|} & |R_0| & \frac{R}{R_0} & \frac{Z^2}{|P|^3}
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\partial |P|}{\partial Y} - \frac{\partial |R|}{\partial Y}
\end{pmatrix} = \begin{pmatrix}
\frac{Y}{|P|} - \frac{Y}{|P|} & |R_0| & \frac{R}{R_0} & \frac{Z^2}{|P|^3}
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\partial |P|}{\partial Y} - \frac{\partial |R|}{\partial Y}
\end{pmatrix} = \begin{pmatrix}
\frac{Z}{|P|} - \frac{Z}{|P|} & |R_0| & \frac{R}{R_0} & \frac{Z^2}{|P|^3}
\end{pmatrix}$$

These results simplify based upon the following considerations:

$$\left(\frac{|R|}{|R_0|}\right) \le 1 \qquad \left(\frac{|R|}{|R_0|}\right)^3 \le 1$$
and $k = \frac{e(2-e)}{(1-e)(1-e)} \stackrel{\text{def}}{=} 2e \stackrel{\text{def}}{=} 1/150$

Now, since |P| and $|R_0|$ are of the same order of magnitude, X,Y, and Z are at most of the same order of magnitude as |P|, and since 2e = 1/150, this implies that the second term in each of the above expressions is at least two orders of magnitude less than the first term. A very good approximation to equation (194) is arrived at by neglecting these terms; i.e.,

$$|\Delta h| = \left[\frac{\partial |P|}{\partial P}\right] \left[\text{UNITY}\right] \left[\frac{\delta P}{\delta h_{m}}\right] + n_{h}(t)$$
(195)

where
$$\frac{3|P|}{\partial P} = \frac{\hat{X}}{|P|} = \frac{\hat{Y}}{|P|} = \frac{\hat{Z}}{|P|}$$

For the case where the computational frame is the EF frame, some slight modifications result. The scalar |h| is generated in the same fashion and again the partial of |R| may be neglected. However, now

$$|P| = \sqrt{(x+x_c)^2 + (y+y_c)^2 + (z+z_c)^2}$$
 (196)

where x_c , y_c , z_c are the components of the c vector (vector from origin of E frame to origin of EF frame) expressed in EF frame coordinates.

$$|\Delta h| = \begin{bmatrix} \frac{\partial |P|}{\partial p} & [UNITY] & \delta p \\ \frac{\partial h}{\partial p} & \frac{\partial h}{\partial p} &$$

APPENDIX VII

MEASUREMENT PREPROCESSING

This appendix summarizes the mathematics underlying established or promising approaches to four different types of measurement preprocessing module algorithms: measurement smoothing, measurement reasonableness testing, measurement selection, and measurement space averaging.

1. MEASUREMENT SMOOTHING

Denote the raw measurement at time t_i within the averaging interval by Y_i , and the smoothed measurement by \overline{Y} . Then:

$$\overline{Y} = (1/n) \sum_{i=1}^{n} Y_{i}$$
 (198)

where n is the number of measurements Y_i obtained in the averaging interval. Next denote by M_i and V_i , respectively, the measurement matrix and the measurement noise corresponding to Y_i , such that:

$$Y_i = M_i X_i + V_i \tag{199}$$

where \mathbf{X}_{i} is the system state at time \mathbf{t}_{i} . Also:

$$X_{i} = \phi_{i,n} \quad X_{n} - \int_{t_{i}}^{t_{n}} \phi(t_{i}, \tau) W(\tau) d\tau$$
 (200)

where X is the state at time t (taken here for simplicity as corresponding to the end of the filter cycle), $\phi_{i,n}$ is the state transition matrix for the interval t to t, ϕ (t, τ) is the state transition matrix for the interval τ to t, and W(τ) is random, forcing state noise.

Combining equations (198), (199) and (200) gives:

$$Y = MX_n + V$$
 (201)

where:

$$\overline{\mathbf{M}} = (1/n) \sum_{i=1}^{n} \mathbf{M}_{i} \phi_{i,n}$$

$$\overline{v} = (1/n) \sum_{i=1}^{n} v_i - (1/n) \sum_{i=1}^{n} \int_{t_i}^{t_n} M_i \phi(t_i, \tau) W(\tau) d\tau$$

The gain and the covariance matrix measurement update equations, which determine the new estimate and its associated covariance matrix from the prior estimate and the smoothed measurement Y, are derived using a procedure identical to that used in deriving the corresponding Kalman equations for simpler, end-of-interval measurements. Since this derivation is widely available in the literature, it is not repeated here. However, the results are:

$$b_{K} = (\overline{PM}^{T} - \overline{Z}^{T})(\overline{M}P\overline{M}^{T} + \overline{C}' - \overline{M}\overline{Z} - \overline{Z} \overline{M}^{T})^{-1}$$
(202)

$$P = P - b_{\nu} (\overline{MP} - \overline{Z}) \tag{203}$$

where $\boldsymbol{b}_{\boldsymbol{K}}$ is the gain, P is the covariance matrix, and:

$$\overline{Z} = (1/n) \sum_{i=1}^{n} M'_{i} R_{i} \qquad M'_{i} = M_{i} \phi_{i,n}$$
 (204)

$$R_{i} = \int_{t_{i}}^{t_{n}} \phi(t_{n}, \tau) K^{\phi^{T}}(t_{n}, \tau) d\tau$$
 (205)

$$\overline{C}' = (1/n^2) \sum_{i=1}^{n} \langle v_i | v_i^T \rangle + (1/n^2) \sum_{i=1}^{n} \left[\sum_{j=1}^{n} (M_j' | R_i | M_i'^T) \right]$$

$$+ M_{i} R_{i} M_{j}^{T}) - M_{i} R_{i} M_{i}^{T}$$
 (206)

Note that for the special case of a single, end-of-the-interval measurement (i.e., $\overline{Y} = Y_1 = Y_n$, $t_i = t_n$), equations (202) and (203) reduce to the normal Kalman form $(M_i = M_n = \overline{M}, \overline{Z} = 0)$.

2. MEASUREMENT REASONABLENESS TESTING

Consider any single measurement Y. Denoting by \hat{Y} the estimated value of that measurement based on the measurement matrix M and the existing state estimate \hat{X} , i.e.,

$$\hat{Y} = M\hat{X}$$
,

then the difference D, defined by

$$\mathbf{p} = \mathbf{\hat{Y}} - \mathbf{Y} \tag{207}$$

is a convenient basis for a reasonableness test as follows. Using equation 4) it follows that

$$D = M\varepsilon - V \tag{208}$$

where $\varepsilon = X - X$ is the error in the estimate X.

Taking the expected value of the square of D therefore gives

$$< D^2 > = < DD^T > = MPM^T + C$$
 (209)

An attractive reasonableness test can now be formulated as

$$D^2 \le k^2 (MPM^T + C) \rightarrow Y \text{ is reasonable}$$

 $D^2 > k^2 (MPM^T + C) \rightarrow Y \text{ is not reasonable}$ (210)

where k is the number of standard deviations selected as the reasonableness limit for |D|.

3. MEASUREMENT SELECTION

Denote by δ and K, respectively, a generalized miss vector and its (sensitivity coefficient) matrix relationship to ε , the error in the state estimate \hat{X} ; i.e.,

$$\delta = Kc \tag{211}$$

The expected squared radial miss distance is just the trace of the miss covariance matrix:

$$KPK^{T}$$
 (212)

Further, denoting by P and P_{Aj} , respectively, the estimate error covariance matrix just before and just after use of a particular measurement Y_j (measurement matrix M_j and measurement noise C_j), then the change in the expected squared radial miss distance is just:

$$K(P_{Aj} - P) K^{T}$$
 (213)

But since (assuming for simplicity that all measurements Y_i are scalar):

$$P_{Aj} - P = -\frac{PM_{j}^{T} M_{j}P}{M_{j} PM_{j}^{T} + C_{j}}$$
 (214)

it follows that the trace of the matrix Δ_i , defined by:

$$\Delta_{j} = \frac{KPM_{j}^{T} M_{j} PK^{T}}{M_{j} PM_{j}^{T} + C_{j}}$$
(215)

is the decrease in the expected squared radial miss distance.

An attractive measurement selection algorithm might therefore be based simply on calculating the trace of Δ_j for each of the available measurements, and selecting for further processing (i.e., processing by the Estimation and Control Module) that measurement which yielded the <u>largest</u> trace value.

4. MEASUREMENT SPACE AVERAGING

Consider a set of available (scalar) measurement differences Y_j (j = 1,2,...,n). Denote the corresponding set of unit line-of-sight vectors by r_j (j = 1,2,...,n)*. Then the space-averaged measurement on this set is defined by:

$$\overline{Y} = 1/n \sum_{j=1}^{n} r_{j} Y_{j}$$
 (216)

^{*} In the case of earth-mode emitters, replace r_j by τ_j (see the symbol glossary).

Define the error in Y by δY_j , and that portion of the measurement matrix associated with the <u>modeled</u> overall system errors by \hat{M}_j . Also let x denote the modeled error state vector. Then:

$$Y_{j} = \widehat{M}_{j} x + \delta Y_{j}$$
 (217)

where δY consists in all the unmodeled measurement-difference errors, plus noise. Using equation (217) in equation (216) leads to:

$$\overline{Y} = \overline{M}X + \delta Y \tag{218}$$

where:
$$\overline{M} = 1/n \sum_{j=1}^{n} r_{j}M_{j}$$
 and
$$\underline{n}$$
 (219)

$$Y = 1/n \sum_{j=1}^{n} \delta Y_{j}$$
 (220)

Remembering that the errors δY_j are assumed to be unmodeled, then if the scalar measurements Y_j were processed through the filter sequentially one at a time, the filter would essentially correct user position along each line of sight in turn, in each instance with an error essentially equal to \mathbf{r}_j δY_j . These errors would be cumulative, so that the final user position error δP_{SQ} after sequential, one-at-a-time processing of all n measurements Y_j would be given by the expression:

$$\delta P_{SQ} = \sum_{j=1}^{n} r_{j} \delta Y_{j}$$
 (221)

On the other hand, use of the space-averaged measurement defined by equation (216) would essentially result in only the user position error:

$$\delta P_{SA} = \delta Y = 1/n \, \delta P_{SQ} \tag{222}$$

Thus, δP_{SA} will in general be much smaller than δP_{SQ} ; more specifically, the expected value of δP_{SA} is in fact n times smaller than that of δP_{SQ} .

APPENDIX VIII

RECURSION EQUATIONS FOR MEASUREMENT TIME SMOOTHING AND PREDICTION MATRICES

The Phase I functional formulation of the Kalman Filter Module provided closed-form equations for generating the sets of matrices associated with both the measurement averaging and the estimate and covariance matrix prediction operations.* However, since in many practical cases it may be necessary to update these matrices at much higher rates than the overall Kalman Filter Module execution rate, recursive rather than closed-form formulations are preferable. This appendix presents and discusses an appropriate set of such recursive formations.***

The matrices (and their closed-form expressions) under consideration here are:

$$Y_n = \frac{1}{n} \sum_{i=1}^n Y_i$$
 (223)

$$\overline{c}_{n} = \frac{1}{n} \sum_{i=1}^{n} c_{i}$$
(224)

$$\overline{M}_{n,F} = \frac{1}{n} \sum_{i=1}^{n} M_{i} c_{i,F}$$
 (225)

$$N_{n,F} = \frac{1}{n} \sum_{i=1}^{n} M_i c_{i,F} G_{F,i}$$
 (226)

^{*}See Appendix VII of this (Phase II) report.

^{**}The derivations, which in many cases are rather lengthy, are omitted here for brevity and clarity. The recursive formulae presented here, however, can be easily verified by direct substitution of the closed-form formulae.

$$\bar{Z}_{n,F} = \frac{1}{n} \sum_{i=1}^{n} M_{i} \phi_{i,F} R_{F,i}$$
 (227)

$$\overline{W}_{n,F} = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} M_{i,F} R_{F,ij*} M_{j,F}^{T}$$
 (228)

$$(M_{i,F} = M_{i}\phi_{i,F}, ij * = larger of i and j)$$

Note that formulae (225) through (228) represent an important generalization of the corresponding formulae presented in the Phase I final report, which are valid only for generating a new Kalman estimate of the system error state for the time at which the last measurement Y_n was taken. On the other hand, the generalized formulae given here apply in the more general case when a delay exists between the time of the last measurement and the time t_F associated with the Kalman estimate (see the time sequence sketch below).

The recursive formulations of the closed-form expressions above are:

$$Y_i = Y_{i-1} + \frac{1}{i} \left(Y_i - Y_{i-1} \right) \left(Y_0 = 0, i = 1 \text{ to n} \right)$$
(229)

$$\overline{C}_{i} = \overline{C}_{i-1} + \frac{1}{i} \left(C_{i} - \overline{C}_{i-1} \right) \left(\overline{C}_{0} = 0, i = 1 \text{ to n} \right)$$
(230)

$$\left\{
\begin{array}{l}
\overline{M}_{i} = \overline{M}_{i-1}c_{i-1,i} + \frac{1}{i}\left(M_{i} - \overline{M}_{i-1}c_{i-1,i}\right) \left(\overline{M}_{o} = 0, i = 1 \text{ to } n\right) \\
c_{n,n+i}' = c_{n,n+i'-1}c_{n+i'-1,n+i'}\left(c_{n,n} = I, i' = 1 \text{ to } n'\right) \\
\overline{M}_{n,F} = \overline{M}_{n}c_{n,F}
\end{array}\right\}$$
(231)

$$\begin{cases}
\overline{N}_{i} = \left(1 - \frac{1}{i}\right) \left(\overline{N}_{i-1} + \overline{M}_{i-1}G_{i-1,i}\right) & \left(\overline{N}_{o} = 0, i = 1 \text{ to } n\right) \\
G_{n,n+i}^{**} = G_{n,n+i'-1} + \phi_{n,n+i'-1}G_{n+i'-1,n+i'} & \left(G_{n,n} = 0, i' = 1 \text{ to } n'\right) \\
\overline{N}_{n,F} = \overline{N}_{n} - \overline{M}_{n}G_{n,F}
\end{cases} (232)$$

$$\begin{cases}
\overline{Z}_{i} = \left(1 - \frac{1}{i}\right) \left(\overline{Z}_{i-1} \varphi_{i,i-1}^{T} + \overline{M}_{i-1} R_{i,i-1}\right) \left(\overline{Z}_{o} = 0, i = 1 \text{ to } n\right) \\
R_{n+i',n}^{****} = \varphi_{n+i',n+i'-1} R_{n+i'-1,n} \varphi_{n+i',n+i'-1}^{T} \\
+ R_{n+i',n+i'-1} \left(R_{n,n} = 0, i' = 1 \text{ to } n'\right) \\
\overline{Z}_{n,F} = \overline{Z}_{n} \varphi_{F,n}^{T} + \overline{M}_{n,F} R_{F,n}
\end{cases} (233)$$

$$\left\{ \begin{array}{l} \overline{W}_{i} = \left(1 - \frac{1}{i}\right)^{2} \overline{W}_{i-1} + \left(\overline{M}_{i} - \frac{1}{i} M_{i}\right) R_{i,i-1} \left(\overline{M}_{i} - \frac{1}{i} M_{i}\right)^{T} \\ \left(\overline{W}_{o} = 0, i = 1 \text{ to } n\right) \\ \overline{W}_{o,F} = \overline{W}_{n} + \overline{M}_{n,F} R_{F,n} \overline{M}_{n,F}^{T}
\end{array} \right\}$$

$$(234)$$

Formulae (229) through (234) comprise the recursive formulation for the measurement averaging matrices defined by equations (223) through (228). The corresponding recursive formulae for prediction are:

^{*}This formula is for recursive generation of $\mathcal{T}_{n,F}$ for use in the $\overline{\mathbb{N}}_{n,F}$ formula.

^{**}This formula is for recursive generation of $G_{n,F}$ for use in the $\overline{N}_{n,F}$ formula.

^{***}This formula is for recursive generation of $R_{F,n}$ for use in the $\overline{Z}_{n,F}$ and and $\overline{W}_{n,F}$ formulae.

$$\left\{
\begin{array}{l}
\hat{X}_{i} = \varphi_{i,i-1} \hat{X}_{i-1} + G_{i,i-1} \dot{u} \\
P_{i} = \varphi_{i,i-1} P_{i-1} \phi_{i,i-1}^{T} + R_{i,i-1}
\end{array}
\right\}$$
(235)

Use of the above recursive formulae (229) through (235) requires definition of the fundamental incremental matrices $\phi_{i-1,i}$ (and $\phi_{n+i'-1,n+i'}$), $G_{i-1,i}$ (and $G_{n+i'-1,n+i'}$), and $G_{n+i'-1,n+i'}$. It can be demonstrated that*

$$\phi_{i-1,i} = I + \int_{t_{i}}^{t_{i-1}} A(u) \phi(u,t_{i}) du$$

$$G_{i-1,i} = (t_{i-1} - t_{i})I + \int_{t_{i}}^{t_{i-1}} A(u)G(u,t_{i}) du$$

$$R_{i,i-1} = (t_{i} - t_{i-1})K$$

$$+ \int_{t_{i-1}}^{t_{i}} \{A(u)R(u,t_{i-1}) + R^{T}(u,t_{i-1})A^{T}(u)\} du$$

If the time interval t_i - t_{i-1} is small, then these formulae can be approximated by:

$$\begin{cases} \phi_{i-1,i} \approx I - A_{i-1}(t_i - t_{i-1}) \\ G_{i-1,i} \approx -I(t_i - t_{i-1}) \\ R_{i,i-1} \approx K(t_i - t_{i-1}) \end{cases} \qquad \begin{pmatrix} i = 1 \text{ to } n \\ \text{and} \\ i = 1 \text{ to } n' \end{pmatrix} \\ \phi_{i,i-1} = \phi_{i-1,i}^{-1} \approx I + A_{i-1}(t_i - t_{i-1}) \\ G_{i,i-1} = -\phi_{i,i-1}G_{i-1,i} \approx I(t_i - t_{i-1}) \\ R_{i-1,i} = -\phi_{i,i-1}R_{i,i-1}\phi_{i,i-1}^{T} \approx -K(t_i - t_{i-1}) \end{cases}$$

$$(236)$$

^{*}Again, the derivations are omitted here for brevity, but the formulae can easily be verified by using the defining integral and differential equations for z, C, and R.

APPENDIX IX

PROCESSOR DESIGN FOR NONLINEAR LOS PSEUDORANGING SITUATIONS

An important multilateration processor design problem area centers on the proper use of available radio navigation data in those prospective operational situations where the user/emitter relative position uncertainties are comparable in size to the actual user/emitter ranges themselves. The two principal such situations considered here--both against the background of the assumed availability of a net of LOS radio links only--are

(a) navigation start-up (i.e., user position and velocity initialization) when no (or only coarse) a priori position and velocity estimates are available, and (b) transition from globally referenced (E frame) to locally referenced (EF frame) navigation on acquisition of an objective area LOS net. In the former case a large user position error, and in the latter case both a large user position error (e.g., from say pure inertial enroute navigation) and a large emitter net position error (e.g., from say an objective area datum plane uncertainty) are present which may well be comparable in size to the user/emitter ranges themselves.

This appendix first formulates and discusses the mathematical basis of the problem, and then outlines some promising candidate algorithms for its solution.

1. GENERAL DISCUSSION

4.24

To attack the problem, consider first the fundamental ranging equation, which relates the primary navigational entities involved in pseudoranging -- which includes two-way ranging as a subcase -- between the user and the jth emitter (see Figure 37).

$$\left|R_{j}\right| = \left|P - E_{j}\right| * \tag{237}$$

*Throughout these notes, the symbols P, &P, E, and &E can everywhere be replaced with p, &p, e, and &e, respectively; i.e., all results are equally valid for either E or EF frame referenced computations.

Figure 37. User-Emitter Geometry

where P, E_j , and R_j are respectively the true user position vector, the true jth emitter position vector, and the true jth-emitter-to-user range vector. The left side of equation (237) can be written:

$$|R_{j}| = R_{mj} - \delta R_{mb} - \delta R_{mNj}$$
 (238)

where R = radio pseudorange (phase of user-received emitter signal relative to user clock phase reference)

δR = difference between user and emitter clock phase references

 δR_{mNj} = noise in R_{mj}

Correspondingly, the right side of equation (237) can be written:

$$|P-E_j| = |\hat{R}_j - \delta R_j|$$
 (239)

where $\hat{R}_j = \hat{P} - \hat{E}_j$, $\delta R_j = \delta P - \delta E_j$, and the superior hat implies the estimated, rather than the true, value of the hatted quantity. Equating these results according to equation (237) gives:

$$R_{mj} - \delta R_{mb} - \delta R_{mNj} = |\hat{R}_{j} - \delta R_{j}| \qquad (240)$$

Squaring both sides of equation (240), using equation (238), and collecting terms leads to the fundamental, <u>nonlinear</u>, pseudoranging measurement/state relationship:

$$Y_{Rj} = M_{Rj} x + V_{Rj} + Q_{Rj}$$
 (241)

where:

$$\mathbf{x}^{T} = \begin{bmatrix} \delta \mathbf{P}^{T} & \delta \mathbf{\hat{P}}^{T} & \delta \mathbf{\hat{R}}_{mb} & \delta \mathbf{\hat{R}}_{mb} \\ \delta \mathbf{\hat{R}}_{mb} & \delta \mathbf{\hat{R}}_{mb} \end{bmatrix} \dots \begin{bmatrix} \delta \mathbf{\hat{E}}_{j}^{T} & \dots & \delta \mathbf{\hat{E}}_{j}^{T} \\ \delta \mathbf{\hat{E}}_{j}^{T} & \delta \mathbf{\hat{E}}_{mb} \end{bmatrix} \dots \begin{bmatrix} \delta \mathbf{\hat{E}}_{j}^{T} & \dots & \delta \mathbf{\hat{E}}_{j}^{T} \\ \delta \mathbf{\hat{E}}_{j}^{T} & \delta \mathbf{\hat{E}}_{mb} \end{bmatrix}$$

$$\mathbf{V}_{\mathbf{R}j} = -\left(\begin{bmatrix} \mathbf{R}_{j} \\ \mathbf{\hat{E}}_{j} \end{bmatrix} + \frac{1}{2} \delta \mathbf{\hat{E}}_{mb} \right) \delta \mathbf{\hat{E}}_{mnj}$$

$$\mathbf{V}_{\mathbf{R}j} = \frac{1}{2} \left(\begin{bmatrix} \mathbf{\hat{C}}_{j} \\ \mathbf{\hat{E}}_{j} \end{bmatrix}^{2} - \mathbf{\hat{E}}_{mj} \right)$$

$$\mathbf{\hat{E}}_{mnj} \begin{pmatrix} \mathbf{\hat{E}}_{j} \\ \mathbf{\hat{E}}_{j} \end{pmatrix} - \mathbf{\hat{E}}_{j} \end{pmatrix}$$

$$\mathbf{\hat{E}}_{j} \begin{pmatrix} \mathbf{\hat{E}}_{j} \\ \mathbf{\hat{E}}_{j} \end{pmatrix} - \mathbf{\hat{E}}_{j} \end{pmatrix}$$

$$\mathbf{\hat{E}}_{j} \begin{pmatrix} \mathbf{\hat{E}}_{j} \\ \mathbf{\hat{E}}_{j} \end{pmatrix} - \mathbf{\hat{E}}_{j} \end{pmatrix}$$

$$\mathbf{\hat{E}}_{j} \begin{pmatrix} \mathbf{\hat{E}}_{j} \\ \mathbf{\hat{E}}_{j} \end{pmatrix} - \mathbf{\hat{E}}_{j} \end{pmatrix}$$

$$\mathbf{\hat{E}}_{j} \begin{pmatrix} \mathbf{\hat{E}}_{j} \\ \mathbf{\hat{E}}_{j} \end{pmatrix} - \mathbf{\hat{E}}_{j} \end{pmatrix}$$

A second fundamental, nonlinear, pseudorange-rating equation is obtained by time differentiating (240), multiplying the resulting equation by (240) itself, and collecting terms. The result is.

$$Y_{RRi} = M_{RRi} \times + V_{RRi} + Q_{RRi}$$
 (242)

where:

$$\mathbf{x}^{T} = \begin{bmatrix} \delta \mathbf{P} & \delta \mathbf{P}^{T} & \delta \mathbf{R}_{mb} & \delta \dot{\mathbf{R}}_{mb} & \cdots & \delta \mathbf{E}_{\mathbf{j}}^{T} & \cdots & \delta \ddot{\mathbf{E}}_{\mathbf{j}}^{T} & \cdots \end{bmatrix}$$

$$\mathbf{M}_{RRj} = \begin{bmatrix} \hat{\mathbf{R}}_{\mathbf{j}}^{T} & \hat{\mathbf{R}}_{\mathbf{j}}^{T} & -\hat{\mathbf{R}}_{mj} & -\hat{\mathbf{R}}_{mj} & \cdots & -\hat{\mathbf{R}}_{\mathbf{j}}^{T} & \cdots & -\hat{\mathbf{R}}_{\mathbf{j}}^{T} & \cdots \end{bmatrix}$$

$$\mathbf{V}_{RRj} = \dot{\mathbf{V}}_{Rj}$$

$$\mathbf{Y}_{RRj} = \dot{\mathbf{Y}}_{Rj} = \hat{\mathbf{R}}_{\mathbf{j}}^{T} \hat{\mathbf{R}}_{\mathbf{j}} - \mathbf{R}_{mj} \hat{\mathbf{R}}_{mj} \qquad (\hat{\mathbf{R}}_{\mathbf{j}} = \hat{\mathbf{P}}_{\mathbf{j}} - \hat{\mathbf{E}}_{\mathbf{j}})$$

$$\mathbf{Q}_{RRj} = \dot{\mathbf{Q}}_{Rj} = \delta \mathbf{R}_{mb} \delta \dot{\mathbf{R}}_{mb} - \delta \mathbf{R}_{\mathbf{j}}^{T} \delta \dot{\mathbf{R}}_{\mathbf{j}}$$

and

R = radio pseudo range rate (phase rate of user-received emitter signal relative to user clock phase reference)

$$\delta R_{mb}$$
 = time rate of change of δR_{mb}

Equations (241) and (242) are the fundamental nonlinear relations between the measurements Y_{Rj} (or Y_{RRj}) and the error state x; the nonlinearities are in particular grouped in the term Q_{Rj} (or Q_{RRj}). These equations are the basis for the development of several, completely linear measurement/state relationships in what follows.

Before proceeding, it should first be noted that if the conditions

$$\begin{vmatrix} 5R_{mb} & \ll |R_{mj}| \\ |5R_{j}| & \ll |\hat{R}_{j}| \end{vmatrix}$$
(243)

hold, then the nonlinearities in equations (241) and (242) are negligible, and these equations then reduce to the linear relationships:

Equations (244) and (245) are equivalent to the <u>linear</u> measurement/state relationships developed in the first phase of the multilateration processor development effort, and which are derived and presented in Appendix VI of this Phase II final report.

Those equations, like (8) and (9) above, are also valid only when the conditions (7) hold.

Returning now to the consideration of the basic nonlinear equations (241) and (242), consider first the case when two or more emitters are ϵ simultaneously available. It is evident from the form of equation (241) and of Q_{Ri} that if:

$$\delta E_{i} = \delta E, \text{ or } \delta E_{i} = 0$$
 (246)

then writing down equation (241) for emitters j and k and differencing the resulting equations leads to the linear form:

where it is understood that the set of variables δE_j in x has been collapsed to either the single common (datum plane) error vector δE_j or is obviated entirely if $\delta E_j = 0$.

Similarly, if (246) holds, the same procedure with equation (242) also leads to:

Consider next the case where only <u>one</u> emitter is available. Under these conditions, dropping the unnecessary emitter subscript j, and introducing instead the time subscript i, equations (5) and (5) can be written:

$$Y_{R_i} = M_{R_1} x_i + v_{R_i} + Q_{R_i}$$
 (249)

$$Y_{RRi} = M_{RRi} \times + V_{RRi} + Q_{RRi}$$
 (250)

Assume now that:

$$\delta \dot{P}$$
 = constant ($\delta \dot{R}$ = constant)
 $\delta \dot{E}$ = constant
 $\delta \dot{R}_{mb}$ = constant

Therefore:
$$Q_{Ri} = \frac{1}{2} \left(\delta R_{mbi}^2 - \delta R_{i}^T \delta R_{i} \right)$$

$$Q_{RRi} = \delta \hat{R}_{mb} \delta R_{mbi} - \delta \hat{R}^T \delta R_{i}$$

It is obvious by inspection that simple differencing of equation (249) [or equation (250)] at two different time points will not remove these nonlinear terms. However, given the assumptions (251), higher-order differencing will. To this end, assume that some linear combination L_R of the measurements Y_{Ri} , and some (other) linear combination L_{RR} of the measurements Y_{RRi} can be identified such that:

$$L_{R}Q_{Ri} = \sum_{i=1}^{n} w_{Ri}Q_{Ri} = 0$$
 (252)

$$L_{RR}Q_{RRi} = \sum_{i=1}^{n_{RR}} w_{RRi}Q_{RRi} = 0$$
 (253)

where w_{Ri} and w_{RRi} are the weights associated with the linear combinations and n_{R} and n_{RR} are the required number of measurements which must be combined. To find these, note that:

$$Q_{Ri} = \frac{1}{2} \left[\left(\delta R_{mbn} + \delta \dot{R}_{mb} \Delta t_{in} \right)^{2} - \left| \delta R_{n} + \delta \dot{R} \Delta t_{in} \right|^{2} \right]$$

$$= \frac{1}{2} \left[\left(\delta R_{mbn}^{2} + 2 \delta \dot{R}_{mb} \delta R_{mbn} \Delta t_{in} + \delta \dot{R}_{mb}^{2} \Delta t_{in}^{2} \right)$$

$$- \left| \delta R_{n} \right|^{2} - 2 \delta R_{n}^{T} \delta \dot{R} \Delta t_{in} - \left| \delta \dot{R} \right|^{2} \Delta t_{in}^{2} \right]$$
(254)

or
$$Q_{Ri} = \frac{1}{2} \left(\delta R_{mbn}^2 - |\delta R_n|^2 \right) + \left(\delta \dot{R}_{mb} \delta R_{mbn} - \delta R_n^T \delta \dot{R} \right) \Delta t_{in}$$

$$+ \frac{1}{2} \left(\delta \dot{R}_{mb}^2 - |\delta \dot{R}|^2 \right) \Delta t_{in}^2 \qquad (255)$$

and

$$Q_{RRi} = \delta \dot{R}_{mb} \left(\delta \dot{R}_{mbn} + \delta \dot{R}_{mb} \Delta t_{in} \right) - \delta \dot{R}^{T} \left(\delta R_{n} + \delta \dot{R} \Delta t_{in} \right)$$
or
$$Q_{RRi} = \left(\delta \dot{R}_{mb} \delta R_{mbn} - \delta \dot{R}^{T} \delta R_{n} \right) + \left(\delta \dot{R}_{mb}^{2} - |\delta \dot{R}|^{2} \right) \Delta t_{in}$$
(256)

where At = t - t ...

 $L_{R}^{}$ $Q_{Ri}^{}$ and $L_{RR}^{}$ $Q_{RRi}^{}$ therefore have the form:

$$L_{R}Q_{Ri} = A_{R1}\sum_{i=1}^{n_{R}} w_{Ri} + A_{R2}\sum_{i=1}^{n_{R}} w_{Ri}\Delta t_{in} + A_{R3}\sum_{i=1}^{n_{R}} w_{Ri}\Delta t_{in}^{2}$$
 (257)

$$L_{RR}Q_{RRi} = A_{RR1} \sum_{i=1}^{n_{RR}} w_{RRi} + A_{RR2} \sum_{i=1}^{n_{RR}} w_{RRi} \wedge t_{in}$$
 (258)

where the A_R 's and A_{RR} 's are independent of the summation index i. Since these are arbitrary coefficients, L_R Q_{Ri} and L_{RR} Q_{RRi} can be zero only if:

$$\sum_{i=1}^{n_R} w_{Ri} = \sum_{i=1}^{n_R} w_{Ri} \Delta t_{in} = \sum_{i=1}^{n_R} w_{Ri} \Delta t_{in}^2 = 0$$
 (259)

$$\sum_{i=1}^{n_{RR}} w_{RRi} = \sum_{i=1}^{n_{RR}} w_{RRi} \Delta t_{in} = 0$$
(260)

To simplify these conditions, assume that the measurements are equitime-spaced, Δt apart. Then, since $\Delta t_{in} = (i-n) \Delta t$, these conditions reduce to:

$$\sum_{i=1}^{n_R} w_{Ri} = \sum_{i=1}^{n_R} i w_{Ri} = \sum_{i=1}^{n_R} i (2n-i) w_{Ri} = 0$$
 (261)

$$\sum_{i=1}^{n} w_{RRi} = \sum_{i=1}^{n} i w_{RRi} = 0$$
 (262)

The smallest values of n_R and n_{RR} for which these can be satisfied are $n_R = 3$ and $n_{RR} = 2$. Based on these values, the resulting weights are:

$$w_{R1} = k_R$$

$$w_{RR1} = k_{RR}$$

$$w_{RR2} = 3k_R$$

$$w_{RR2} = -2k_{RR}$$

$$w_{RR3} = k_{RR}$$

$$w_{RR3} = k_{RR}$$

$$w_{RR4} = -k_R$$

where k_R and k_{RR} are arbitrary constants. For simplicity, take $k_R = k_{RR} = 1$.

Next note that $x_i = \Phi_{i,n} x_n$, where, because of the conditions (251), the transition matrix $\Phi_{i,n}$ is given by:

$$\Phi_{i,n} = \begin{bmatrix} I & (i-n)\Delta t I & 0 & 0 & 0 & 0 \\ 0 & I & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & (i-n)\Delta t & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & I & (i-n)\Delta t I \\ 0 & 0 & 0 & 0 & 0 & I \end{bmatrix}$$
(263)

where $\mathbf{x}^{T} = \begin{bmatrix} \delta \mathbf{P}^{T} & \delta \dot{\mathbf{P}}^{T} & \delta \mathbf{R}_{mb} & \delta \dot{\mathbf{R}}_{mb} & \delta \mathbf{E}^{T} & \delta \dot{\mathbf{E}}^{T} \end{bmatrix}$

Therefore, equations (249) and (250) can be written:**

$$Y_{Ri} = M_{Ri} \Phi_{i,n_R} x_{n_R} + v_{Ri} + Q_{Ri}$$
 (264)

$$Y_{RRi} = M_{RRi} \Phi_{i,n_{RR}} + V_{RRi} + Q_{RRi}$$
(265)

Operating on these with L_R and L_{RR} respectively and remembering that $L_R Q_{Ri} = L_{RR} Q_{RRi} = 0$, one can write the desired linear measurement/state forms:

$$\sum_{i=1}^{4} w_{Ri} Y_{Ri} = \left(\sum_{i=1}^{4} w_{Ri} M_{Ri} \Phi_{i,4} \right) x_4 + \sum_{i=1}^{4} w_{Ri} V_{Ri}$$
(266)

$$\sum_{i=1}^{4} w_{BRi}^{Y}_{RRi} = \left(\sum_{i=1}^{3} w_{RRi}^{M}_{RRi}^{\Phi}_{i,3}\right) \times_{3} + \sum_{i=1}^{3} w_{RRi}^{V}_{RRi}$$
(267)

^{*} I.e., for transition of the state x from time t_n to time t_i .

^{**}This result tacitly assumes that no forcing state noise of consequence acts on x in the time period of interest here.

These can be finally summarized in vector/matrix form as:

L _{R4} Y _{Ri} = μ _{R4} x ₄ + L _{R4} V _{Ri} One emitter; significant nonlinearities; pseudo ranging or pseudo ranging and pseudo range rating where	(268) (269)
$L_{R4}Y_{Ri} = w_{R4S}^{T}Y_{R4S}$ $Y_{R4S}^{T} = \begin{bmatrix} Y_{R1} & Y_{R2} & Y_{R3} & Y_{R4} \end{bmatrix}$	
$L_{RR3}Y_{RR1} = W_{RR3S}^{T}Y_{RR3S} \qquad Y_{RR3S}^{T} = \begin{bmatrix} Y_{RR1} & Y_{RR2} & Y_{RR3} \end{bmatrix}$	
$L_{R4}V_{Ri} = V_{R4S}^{T}V_{R4S} \qquad V_{R4S}^{T} = \begin{bmatrix} V_{R1} & V_{R2} & V_{R4} \end{bmatrix}$	
and	
$w_{R4S}^{T} = [1-3 \ 3 \ 1], w_{RR3S}^{T} = [1-2 \ 1], w_{RR2S}^{T} = [1-1]$	
$\hat{R}_{4S} = [\hat{R}_1 \hat{R}_2 \hat{R}_3 \hat{R}_4], \hat{R}_{3S} = [\hat{R}_1 \hat{R}_2 \hat{R}_3], \hat{R}_{2S} = [\hat{R}_1 \hat{R}_2]$	
$R_{m4S}^{T} = [R_{m1} R_{m2} R_{m3} R_{m4}], R_{m3S}^{T} = [R_{m1} R_{m2} R_{m3}]$	
$\dot{R}_{3S} = \left[\dot{R}_{1} \right] \dot{R}_{2} \dot{R}_{3}, \dot{R}_{2S} = \left[\dot{R}_{1} \right] \dot{R}_{2}$	
$\hat{R}_{m3S}^{T} = [\hat{R}_{m1S} \hat{R}_{m2S} \hat{R}_{m3S}], \hat{R}_{m2S}^{T} = [\hat{R}_{m1S} \hat{R}_{m2S}]$	

2. CANDIDATE ALGORITHMS

Depending on whether only one, or two or more LOS emitter links are simultaneously available, equations (268), (269), or (247), (248) respectively furnish the basis for any of a wide variety of types of linear estimators of the error state x.

For example, the estimator selected could be of the closed form, batch type on the one hand, or of the recursive (iterative) form on the other. Further, it might either be of the least-squares type, or alternatively of the statistical (e.g., minimum variance, maximum likelihood, etc.) type.

However, the fact that (recursive, minimum variance) Kalman filtering has already been selected in Phase I as the best technique for processing the standard, linearized, one-emitter-at-a-time, LOS measurements [as defined in AFAL-TR-72-80, or equivalently by equations (244) and (245)], militates for the selection of this same technique for processing the special-case, start-up and reference frame transition measurements derived in equations (268), (269) or (247), (248).

Such a selection ensures maximum compactness and efficiency of the overall processor program, because of the large body of Kalman Filter Module subroutines which can then be developed and used in common for processing the standard type, and the special-case types (hereafter called the start-up type) of measurement alike. In fact, the only important difference associated with processing these two different types of measurement lies in the Kalman Filter Measurement Preprocessing Submodule, where in start-up situations, measurements and measurement matrices which are essentially just simple linear combinations of the

standard measurements and measurement matrices must be constructed for use by the Estimation and Control Submodule.*

With this approach, the appropriate times of transition between use of the start-up and the standard types of measurement might be specifiable by means of a simple test based on the variance levels of δR and δR_{mb} , using appropriate elements from the Kalman Filter covariance matrix, as follows.

A suitable starting point for defining such a test has already been identified by the conditions (243), or equivalently:

$$\begin{vmatrix} \delta R_{mb} & \leq k & R_{mj} \\ \delta R & \leq k & R_{j} & ** \end{vmatrix}$$
 (0 < k < < 1) (270b)

Squaring gives:

$$\delta R_{mb}^2 \le k^2 R_{mj}^2 \tag{271a}$$

$$\delta R^{T} \delta R \leq k^{2} R_{j}^{T} R_{j}$$
 (271b)

Taking expected values of these gives: ***

$$\langle \xi R_{mb}^2 \rangle \leq k^2 R_{m1}^2 \tag{272a}$$

$$\langle \xi R^T \xi R \rangle \leq k^2 \hat{R}_{j}^T \hat{R}_{j}$$
 (272b)

^{*} It is pointed out that although the linear-combination start-up type of measurement appears at first sight to be a suitable candidate for exclusive use all the time, since it involves no measurement/state non-linearities at all, it has the serious disadvantage of requiring the simultaneous availability of data from more than one user/emitter link at a time. The basic linearized, one-emitter-at-a-time type of measurement is therefore to be preferred as the standard, with the linear combination type reserved for the nonlinear start-up situations.

^{##} The conditions (246) are assumed.

^{**} The right sides of these equations are treated here as deterministic quantities.

Equations (272a and b) represent the desired tests for determining Kalman filter transition to and from start-up and standard operation. In particular, start-up operation (i.e., exclusive use of linear-combination measurements) should be initiated and should continue (with respect to a given net of emitters) until equations (272) are satisfied for every emitter j in the net. When all emitters satisfy (272), then standard measurement use should be initiated. In implementing the tests, the right sides of equations (272a) and (272b) should be computed from the quantities k, R_{mj} , and \hat{R}_{j} as shown, while the left sides should be obtained from the Kalman filter covariance matrix P_{K} as follows. P_{K} can be written in partitioned form as.*

	<5 P 5 P ^T >	<δ P δ P ̄ ^T >	. <δPδR _{mb} >	<δPδŘ _{mb} >	<δPδE ^T >	<6 PôĖ ^T >	
P _K =	<ôPôP ^T >	<δ₽δ₽ [™] >	<δPδR _{mb} >	<6 P6 R _{mb} >	<δΡ̈́δΕ ^T > ,	<ôÞôĖ ^T >	(273)
	< \delta R _{mb} \delta P ^T >	$\langle \delta R_{mb} \delta \dot{P}^{T} \rangle$	<5R ² _{mb} >	$\langle \delta R_{mb} \delta R_{mb} \rangle$	$<\delta R_{mb} \delta E^{T}>$	< \$R _{mb} \$\dot{E}^T >	
	<õr [™] mb õP ^T >	<δR _{mb} δP ^T >	<õr≀ mb or mb	<8R ² _{mb} >	<δR _{mb} δE ^T >	<\$\hat{R}_{mb}\$\$\$\delta\delta\delta}^T>\$	
					<δεδε ^T >		
	<δĖδP ^T >	<δĖδP ^T >	<õÉôR _{mb} >	<δĖδŘ _{mb} >	<δĖδE ^T >	<δĖδĖ ^T >	

 $<\delta R_{mb}^{2}>$ is then available where shown in P_{K} .

^{*}The state vector x and covariance matrix P_K represented in this appendix are (for brevity) actually only the subsets of elements of the more general x and P_K (as defined in AFAL-TR-72-80) which are involved in the measurement operations discussed here. Generalization of these results to apply to the more general x and P_K is simply a matter of inserting the necessary null relationships between the measurements defined here and the remaining, omitted state vector elements, and then reordering.

Since $\langle \delta R^T \delta R \rangle = \langle \delta P^T \delta P + \delta E^T \delta E - 2 \delta P^T \delta E \rangle = \langle \delta P^T \delta P \rangle + \langle \delta E^T \delta E \rangle - 2 \langle \delta P^T \delta E \rangle$, it follows that $\langle \delta R^T \delta R \rangle$ can then be obtained from P_K as:

$$\langle \delta R^{T} \delta R \rangle = Tr \langle \delta P \delta P^{T} \rangle + Tr \langle \delta E \delta E^{T} \rangle - 2Tr \langle \delta P \delta E^{T} \rangle$$
 (274)

where the symbol Tr denotes the trace (i.e., the sum of the diagonal elements) of the matrix following this symbol.

Finally, the constant k of equations (272) should be chosen small compared to unity (e.g., k = 0.1). However, simulation may be necessary to determine its most appropriate handling.

In navigation start-up with no a priori position or velocity information, P, P, E, E, x, and P_K should be initialized according to

a)
$$\stackrel{\wedge}{P} = \stackrel{\wedge}{P} = \stackrel{\wedge}{E} = \stackrel{\wedge}{E} = \stackrel{\wedge}{\Delta} \stackrel{\wedge}{R} = \stackrel{\wedge}{\Delta} = \stackrel{\wedge}{X} = 0;$$

- b) $\langle \delta P \delta P^T \rangle = \langle \delta E \delta E^T \rangle = \langle \delta P \delta E^T \rangle = \sigma_p^2 I$ (where σ_p = large (1 σ) position error); $\langle \delta R_{mb}^2 \rangle = \sigma_R^2$, $\langle \delta R_{mb}^2 \rangle = \sigma_R^2$ ($\sigma_R = 0.577 \times 1$) and width, $\dot{\sigma}_R = 0.577 \times 1$] groundspeed capability of aircraft);
- c) All other P_{K} elements = 0.

On the other hand, in E to EF frame transition, $<\delta E\delta E^T> = \sigma_E^2 I$, where $\sigma_E = I\sigma$ emitter net datum plane error.

^{*} These are the a priori estimates of phase and phase rate error respectively which are subsequently corrected by the Kalman filter, and should not be confused with the corresponding Kalman filter estimates of errors in phase and phase rate.

APPENDIX X

IMU COARSE SELF-LEVELING AND ALIGNMENT

The algorithms developed in this appendix are based on two principal assumptions:

- (a) The carrier vehicle either is stationary or is moving at constant speed and altitude on a great circle course throughout the entire coarse leveling and alignment operation.*
- (b) Continuous radio-autonomous navigation has been established before the start of, and is maintained throughout the latter, coarse align phase. Also, the fixed transformation $T_{\rm C/E}$ has been established

To begin, if v is the vehicle velocity with respect to the earth (E frame), then assumption (a) implies that:

$$\frac{\mathbf{d}_{\mathbf{L}}\mathbf{v}}{\mathbf{d}\mathbf{t}} = \mathbf{0} \tag{275}$$

i.e., the time rate of change of v with respect to the local vertical wander azimuth frame L is zero. It follows from (275) that:**

$$f = -g - (2\omega_{E/I} + \omega_{L/E}) \times v$$
 (276)

Now f_{ACC}, the accelerometer output vector, is a direct measure of the specific force f. Neglecting the small last term, (276) can therefore be written:

$$f_{ACC} \approx -g$$
 (277)

^{*}These conditions need not and cannot be exactly satisfied; however, the inaccuracies in the coarse alignment scheme described here will be directly proportional to the deviations from them.

**See Appendix II, equation (46).

Since -g has the direction of the local (upward) vertical, it follows that if ℓ_1 is the unit local vertical vector, then:

$$L_1 \approx f_{ACC} / |f_{ACC}| \tag{278}$$

The vector $\boldsymbol{\ell}_1$ provides the basis for platform coarse leveling. In particular:

where $(p_1)_p$ is the unit #1 P frame axis vector $\{(p_1)_p^T = [\ 1\ 0\ 0]\}$ and θ (0° $\leq \theta \leq 180$ °) is the angle between the platform #1 (azimuth) axis and the local vertical. The vector \mathbf{u}_1 lies along the intersection of the local horizon plane and the plane defined by \mathbf{p}_2 and \mathbf{p}_3 , and has a magnitude $\sin \theta$.

A very fast way to erect the platform would consist in applying slew rate along the platform direction defined by u_1 ; i.e.:

$$\left(\omega_{\text{SLEW}}\right)_{P} = \left|\omega_{\text{SLEW}}\right| \frac{\left(\omega_{1}\right)_{P}}{\left|\omega_{1}\right|}$$
 (280)

The slew should be continued until:

$$|u_1| \leq \theta_1 \text{ and } (p_1)_P^T (\ell_1)_P > 0$$
 (281)

where θ_1 is a suitable chosen constant.*

However, if only one level of fixed slew rate can be applied to each platform gyro, then (280) is not possible, and must be replaced by:

^{*} This algorithm will probably work as it stands even when the platform is initially upside down. This should, however, be verified by simulation.

$$\left(\omega_{\text{SLEW}}\right)_{\text{P}} = \left|\omega_{\text{SLEW}}\right| \left(P_{i}\right)_{\text{P}}$$
 (282)

until $\left(p_{j}\right)_{p}^{T}\left(\ell_{1}\right)_{p} < \theta_{2} \quad (i = 2 \text{ or } 3)$

and then

$$\left(\omega_{\text{SLEW}}\right)_{P} = \left|\omega_{\text{SLEW}}\right| \left(P_{j}\right)_{P} \tag{283}$$

until $\left(\mathbf{p}_{i}\right)_{P}^{T}\left(\mathbf{\ell}_{1}\right)_{P} < \theta_{2}$ (j\in)

where θ_2 is another suitably chosen constant.

When coarse erection is complete, a period of proportional control leveling should follow in order to attain a sufficiently accurate platform vertical to allow subsequent coarse alignment. This can be done by applying the gyro torquing rate:

$$\binom{\omega_{PROPL}}{P} = k_{PROPL} \binom{u}{1} P$$
 (284)

where k PROPL is an appropriate proportional leveling control gain. In particular, this rate should be maintained until the end of coarse alignment.

When:

$$\left|u_{1}\right| < \theta_{3} \tag{285}$$

where θ_3 is an appropriate constant, the null rate applied to the azimuth gyro* should be replaced by the azimuth earth rate component:

$$\left(\omega_{\text{PROP1}}\right)_{P} = \left\{\left(\omega_{\text{E/I}}\right)_{C}^{T} \frac{g_{\text{c}}}{|g|} \left\{\left(p_{1}\right)_{P}\right\} \right\}$$
 (286)

where g_c is available as a dynamic VSM output.

^{*} This null rate is implied by equation 10), since $\begin{pmatrix} u_1 \end{pmatrix}_P$ is a 3 X l vector whose #l element is zero.

The total stabilization rate:

$$(\omega_{GYR})_{P} = (\omega_{PROPL})_{P} + (\omega_{PROP1})_{P}$$
 (287)

should continue to be applied to the platform gyros until coarse align is complete.

With the platform held level and approximately nonrotating in azimuth (with respect to a wander azimuth frame) by the torquing rate (287), the coarse align phase can begin.

Since, except for platform drift rates and the azimuth earth rate misalignment produced by the small platform bangoff, the applied rate (287) is equal to the sum of local earth rate and the local vertical angular rate, it follows that:

$$\left(\omega_{\rm GYR}\right)_{\rm P} \approx T_{\rm P/C}\left(\omega_{\rm P/I}\right)_{\rm C}$$
 (288)

where:

$$\left(\omega_{P/I}\right)_{C} = \left(\omega_{P/C}\right)_{C} + \left(\omega_{E/I}\right)_{C} \tag{289}$$

Also:

$$\left(f_{ACC}\right)_{P} \approx -T_{P/C}g_{C} \tag{290}$$

and taking the vector cross-product of equations (288) and (290) gives:

$$(f_{ACC})_P \times (\omega_{GYR})_P \approx T_{P/C} [(\omega_{P/I})_C \times g_C]$$
 (291)

Equations (288), (290), and (291) can be combined into a single 3x3 matrix equation, and solved explicitly for $T_{P/C}$ as*:

^{*}An alternate, normalized form of (292) can be obtained by first normalizing equations (288), (290) and (291). This form should also be considered when it comes to actual programming for a specific application.

$$T_{P/C} = \left[\left(f_{ACC} \right)_{P} \middle| \left(\omega_{GYR} \right)_{P} \middle| \left(f_{ACC} \right)_{P} \times \left(\omega_{GYR} \right)_{P} \right] \left[-g_{C} \middle| \left(\omega_{P/I} \right)_{C} \middle| \left(\omega_{P/I} \right)_{C} \times g_{C} \right]^{-1}$$
(292)

In equation (292), g_C and $(\omega_{R/I})_C$ are available directly as VSTM outputs. $(\omega_{P/C})_C$ can also be computed from VSTM outputs as follows.

Now:

$$(\omega_{P/C})_C = T_{C/P}(\omega_{P/C})_P$$

But, if L is any locally level, wander azimuth frame, then because of assumption (a) above, it follows that $\omega_{P/C} = \omega_{L/C}$. Therefore:

$$(\omega_{P/C})_{C} = \tau_{C/P}(\omega_{L/C})_{P}$$

$$= \tau_{C/P}\tau_{P/L}(\omega_{L/C})_{L}$$

$$= \tau_{C/L}(\omega_{L/C})_{L}$$

In the L frame, however, $\omega_{L/C}$ can be expressed in terms of v_L or v_C as:

$$\left(\omega_{\rm L/C}\right)_{\rm L} = \frac{1}{R_{\rm o}} \, K_{\rm Lo} v_{\rm L} = \frac{1}{R_{\rm o}} \, K_{\rm Lo} T_{\rm L/C} v_{\rm C}$$

where R_{o} is the nominal radius of the earth and:

$$K_{Lo} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = \frac{-g_L}{|g_L|} \times$$

Therefore:

$$\left(\omega_{P/C}\right)_{C} = \frac{1}{R_{O}} \left(T_{C/L} \kappa_{Lo} T_{L/C}\right) v_{C}$$

or

$$\left(\omega_{P/C}\right)_{C} = \frac{1}{R} \kappa_{Co} c$$

where:

$$K_{Co} = \frac{-g_C}{|g|} \times$$

 $\left(\omega_{P/C}\right)_{C}$ can therefore be determined using g_{C} and v_{C} from the VSTM, by the formula:

$$\left(\omega_{P/C}\right)_{C} = \frac{1}{R_{o}} \frac{-g_{C}}{|g|} \times v_{C}$$
 (293)

Equation (292) reflects the impossibility of stationary gyrocompassing (i.e., azimuth determination) in the vicinity of the earth's poles in the fact that $\omega_{P/I} \times g = 0$ (since $\omega_{P/I}$ and g are parallel) in this case, so that the indicated matrix inversion required to determine $T_{C/P}$ is impossible. Also, if the carrier vehicle is moving in such a way as to remain essentially non-rotating with respect to inertial space, then $\omega_{P/I} = 0$, and gyrocompassing is again impossible*.

However, for all other types of vehicle motion, gyrocompassing is possible. In particular, it is possible for a moving vehicle at the pole, provided that sufficient radio data is available to continuously maintain accurate VSTM P_C and V_C outputs during the align phase.

When only an AHRU is available as an attitude reference, then $T_{\rm P/C}$ cannot be initialized directly as above. Rather $T_{\rm L/C}$ and $T_{\rm P/L}$ must first be initialized and then $T_{\rm P/C}$ computed from:

$$T_{P/C} = T_{P/L}T_{L/C}$$

^{*}Mathematically, this condition is described by: $v_C = -T_{C/E} \left(\frac{\omega_{E/I}}{E} \times p_E \right)$. Strictly speaking, this situation can only arise on small-circle, not great-circle, courses. However, it can be closely approached at the high-latitude apogee of certain great-circle courses.

TL/C for this purpose can be obtained as:

$$\mathbf{T}_{L/C} = \begin{bmatrix} \begin{pmatrix} \mathbf{L}_1 \end{pmatrix}_{C}^{T} \\ \begin{pmatrix} \mathbf{L}_2 \end{pmatrix}_{C}^{T} \\ \begin{pmatrix} \mathbf{L}_3 \end{pmatrix}_{C}^{T} \end{bmatrix}$$

$$\begin{pmatrix} L_1 \end{pmatrix}_C = \frac{-g_C/|g|}{\left(L_2\right)_C} \times \begin{pmatrix} L_1 \end{pmatrix}_C \times \begin{pmatrix} L_1 \end{pmatrix}_C \\ \frac{|\omega_P/I|_C \times (L_1)_C}{|\omega_P/I|_C \times (L_1)_C} \end{pmatrix}$$

$$\begin{pmatrix} L_3 \end{pmatrix}_C = \begin{pmatrix} L_1 \end{pmatrix}_C \times \begin{pmatrix} L_2 \end{pmatrix}_C$$

(unit vertical up)

where L₂,L₃ = unit east, north vectors if v_C = 0 = unit along-track, cross-track vectors at earth's poles

In general, if L' is any other locally level frame (i.e., such that $L_1' = L_1$) then the transformation from the L to the L' frames can be represented by

$$T_{L'/L} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{L'/L} & -\sin \theta_{L'/L} \\ 0 & \sin \theta_{L'/L} & \cos \theta_{L'/L} \end{bmatrix}$$

where $\theta_{\rm L^1/L}$ is the CCW angle from $\rm L_3$ to $\rm L_3^1$.

If L' = local up, east, north frame, then:

$$\begin{cases} \sin \theta_{L^1/L} = (L_2)_C^T n_C \\ \cos \theta_{L^1/L} = (L_2)_C^T e_C \end{cases}$$

where: $\begin{cases} e_C = \text{unit east vector} = (L_2)_C, & \text{with } v_C \text{ set to zero} \\ n_C = \text{unit north vector} = (L_1)_C \times e_C \end{cases}$

Near the poles, where L' cannot be defined in this way since north is undefined, $\theta_{\rm L'/L}$ can be defined by the more general equations:

$$\begin{cases} \sin \theta_{L'/L} - (L_2)_C^T (L_{2C}) \\ \cos \theta_{L'/L} - (L_2)_C^T (L_{3C}) \end{cases}$$

where $(L_2)_C^i$ must be defined with respect to the earth-fixed C frame, and $(L_{3C})' = (L_1)_C \times (L_{2C})'$

APPENDIX XI

ANTENNA LEVER ARM ERRORS

This appendix contains the development for establishing the errors due to uncertainty in aircraft frame direction cosines and gives a means of reducing the state complexity and redundancy contained in Appendix VI.

A basic linear error effect is the uncertainty in defining the antenna lever arm of the user. Note that the error vector is defined by assuming the following conditions:

- (a) Antenna separation from platform is fixed and invariant in the airframe coordinate system.
- (b) A direction cosine matrix (DCM) is defined which transforms from aircraft coordinate system to computer-defined earth-centered system.

Notationally the lever arm is defined as:

$$d_{C} = T_{C/A}d_{A} \tag{294}$$

where da = antenna lever arm in aircraft frame, vector

d = antenna lever arm in computer frame, vector

 $T_{C/A}$ = direction cosine matrix (DCH) from aircraft to computer axes.

In order to establish the error vector for the antenna lever arm, consider the following:

$$d + \Delta d = \left| T_{C/A} + \delta T_{C/A} \right| \left(d_A + \Delta d_A \right)$$
 (295)

$$d + \Delta d = T_{C/A}d_A + T_{C/A}\Delta d_A + \delta T_{C/A}d_A + \delta T_{C/A}\Delta d_A$$
 (296)

and

$$\Delta d = T_{C/A} \Delta d_A + \delta T_{C/A} \Delta d_A + \delta T_{C/A} d_A \qquad (297)$$

where $\delta T_{C/A}$ = 3x3 direction cosine matrix which is functional with $T_{C/A}$ and with the errors in establishing $T_{C/A}$

 Δd_A = error in antenna lever arm as defined along the aircraft axis.

The DCH oT_{C/A} is also given by:

$$T_{C/A} + \delta T_{C/A} - \left[I + \delta T_{C/A} T_{A/C} \right] T_{C/A}$$
(298)

where

 $\delta T_{C/A}T_{A/C}$ = skew symmetric matrix which for small angle errors is the vector matrix [ϕx]

$$\delta T_{C/A} = [\phi] T_{C/A} = \begin{bmatrix} 0 & \phi_z & -\phi_y \\ -\phi_z & 0 & \phi_x \\ \phi_y & -\phi_x & 0 \end{bmatrix} T_{C/A}$$
 (299)

The proof of the logic given for defining the Incremental Direction Cosine Matrix $\delta T_{C/A}$ is given by the following:

Consider the DCM:

$$T + \delta T$$

We can write

$$T + \delta T = \left[I + \delta T T^{T}\right] T \tag{300}$$

since

$$T + \delta T = T + \delta T \left[T^{T} T \right]$$

$$= \left[I + \left[\phi x \right] \right] T \tag{302}$$

80

$$[\phi x] = \delta T T^{T}$$
 (303)

$$[\phi \times]T = \delta TT^{T}T = \delta T [I] = \delta T.$$
 (304)

where

Note that the formulation of

$$\delta T_{C/A} = [gx]T_{C/A} \tag{305}$$

requires only the definition of a skew symmetric matrix of 3 unknown vector misalignment angles:

rather than the 9 elements of $\delta T_{C/A}$.

The approach defined for all 9 elements is:

$$\Delta d = \left[\frac{T_{C/A} + \delta T_{C/A}}{\Delta d_A} + \delta T_{C/A} \right] \Delta d_A + \delta T_{C/A} \Delta d_A$$
Observable portion of any error of antenna location
$$\left. Assume = 0 \right.$$

or keep in state vector for the filter to estimate.

The latter portion may be written as:

$$\delta T_{C/A} = \begin{bmatrix} 0 & \phi_z & -\phi_y \\ -\phi_z & 0 & \phi_x \\ \phi_y & -\phi_x & 0 \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix}$$

and
$$\left[\delta T_{C/A} \right]^{d_A} = \left[3x3 \right] \left[\frac{dA_1}{dA_2} \right]$$

Expanding the terms for the indicated product yields:

$$\Delta d_{1} = \left(T_{21}\phi_{z} - T_{31}\phi_{y}\right) dA_{1}$$

$$\left(T_{22}\phi_{z} - T_{32}\phi_{y}\right) dA_{2}$$

$$\left(T_{23}\phi_{z} - T_{33}\phi_{y}\right) dA_{3}$$

$$\Delta d_{2} = \left(-T_{11}\phi_{z} + T_{31}\phi_{x}\right) dA_{1}$$

$$\left(-T_{12}\phi_{z} + T_{32}\phi_{x}\right) dA_{2}$$

$$\left(-T_{13}\phi_{z} + T_{33}\phi_{x}\right) dA_{3}$$

$$\Delta d_{3} = \left(T_{11}\phi_{y} - T_{21}\phi_{x}\right) dA_{1}$$

$$\left(T_{12}\phi_{y} - T_{22}\phi_{x}\right) dA_{2}$$

$$\left(T_{13}\phi_{y} - T_{23}\phi_{x}\right) dA_{3}$$
(312)

What is wanted is the following:

$$\begin{bmatrix} \Delta d_1 \\ \Delta d_2 \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \end{bmatrix}$$

$$\begin{bmatrix} \Delta d_3 \end{bmatrix}$$

$$\begin{bmatrix} \Delta d_3 \end{bmatrix}$$

$$\begin{bmatrix} \sigma_x \\ \sigma_z \end{bmatrix}$$

The elements of [M] can be defined as:

$$\begin{array}{l}
 M_{11} \stackrel{\triangle}{=} 0.0 \\
 M_{22} \stackrel{\triangle}{=} 0.0 \\
 M_{33} \stackrel{\triangle}{=} 0.0
 \end{array}$$
(314)

$$M_{12} = -T_{31}^{dA_1} - T_{32}^{dA_2} - T_{33}^{dA_3}$$

$$= - \begin{bmatrix} T_{31} & T_{32} & T_{33} \end{bmatrix} \begin{bmatrix} dA_1 \\ dA_2 \\ dA_3 \end{bmatrix}$$
(315)

$$M_{13} = T_{21}dA_{1} + T_{22}dA_{2} + T_{23}dA_{3}$$

$$= \begin{bmatrix} T_{21} & T_{22} & T_{23} \end{bmatrix} \begin{bmatrix} dA_{1} \\ dA_{2} \\ dA_{3} \end{bmatrix}$$
(316)

$$M_{21} = \begin{bmatrix} T_{31} & T_{32} & T_{33} \end{bmatrix} \begin{bmatrix} dA_1 \\ dA_2 \\ dA_3 \end{bmatrix}$$
 (317)

$$M_{23} = -\begin{bmatrix} T_{11} & T_{12} & T_{13} \end{bmatrix} \begin{bmatrix} dA_1 \\ dA_2 \\ dA_3 \end{bmatrix}$$
 (318)

and
$$M_{31} = -\begin{bmatrix} T_{21} & T_{22} & T_{23} \end{bmatrix} \begin{bmatrix} dA_1 \\ dA_2 \\ dA_3 \end{bmatrix}$$
 (319)

$$M_{32} = \begin{bmatrix} T_{11} & T_{12} & T_{13} \end{bmatrix} \begin{bmatrix} dA_1 \\ dA_2 \\ dA_3 \end{bmatrix}$$
(320)

which defines [M] to be a skew symmetric matrix with 6 nonzero elements, 3 of which are identical except for sign!

Note that each element of M is basically a dot product of two vectors which are:

$$T = \begin{bmatrix} T_1^T \\ T_2^T \\ T_3^T \end{bmatrix} \quad \text{and } T^T = \begin{bmatrix} T_1 & T_2 & T_3 \\ T_1 & T_2 & T_3 \end{bmatrix}$$
 (321)

and $T_1 = 0$ lumn vector of T^T

$$T_2 = \text{column vector of } T^T$$
 (322)

 $T_3 = \text{column vector of } T^T$

and M =
$$\begin{bmatrix} 0 & -\mathbf{T}_3 \cdot dA & \overline{\mathbf{T}}_2 \cdot dA \\ \overline{\mathbf{T}}_3 \cdot dA & 0 & -\mathbf{T}_1 \cdot dA \\ -\mathbf{T}_2 \cdot dA & \mathbf{T}_1 \cdot dA & 0 \end{bmatrix}$$
(323)

APPENDIX XII

LOS RANGE AND RANGE RATE TIME DELAYS PERTINENT TO MULTILATERATION

This appendix is concerned with the mechanization and timing sequence due to transit and computational delays for a pseudorange and range-rate system. The development is intended to answer some bothersome aspects of the timing and control sequence. In general, this appendix can also be considered in part an extension of the material and results of Appendix VI.

PSEUDONOISE RANGING CONCEPTS FOR ERROR ESTIMATION

Consider a universal time track defined as to:

At $t_{o}^{+\tau_{u}}$ a user receiver generates a pseudorandom noise phase-shift keyed code sequence which is used to cross-correlate with a signal generated by the ith satellite which also generates the same PRN PSK sequence, but with a transmission incidence of starting given as $t_{o}^{+\tau_{i}}$.

Note that in both cases the universal clock delays can be defined as range biases given by:

$$b_u = c\tau_u$$
 $c = speed of light$
 $b_i = c\tau_i$

In the same universal time track we define that we have knowledge of the satellite position vector or

$$e_i(t_0) \stackrel{\Delta}{=} known satellite position vector$$

Actually all we will have in reality will be an estimate of the satellite vector or

$$\hat{\mathbf{e}}(\mathbf{t}_{0}) = \mathbf{e}(\mathbf{t}_{0}) + \Delta \mathbf{d}(\mathbf{t}_{0}) \tag{324}$$

The position of the user is given by a p vector or $p(t_o) \triangleq \text{defined user position at } t_o$

The exact range between the user and the satellite is defined as the scalar quantity (see Figure 38).

$$|R| = |p-e| \tag{325}$$

or $|R(t_0)| = |p(t_0) - e(t_0)|$

Unit Vector Along LOS $r = \frac{\overline{R}}{R}$ R LOS Vector

User Position Vector p

Center of Reference
Coordinate Frame

Figure 38. User-Receiver Vector Geometry

It is this range which causes a time delay of the code sequence measured at the receiver so that the receiver cross-correlation measures:

$$T_{j} = \frac{|R(t_{o})|}{C} + \Delta T_{d} + \delta T - \tau_{u} + \tau_{i} + \Delta T_{L}$$

where $\Delta T_d = time delay through receiver$

6T = noise in measurement

 ΔT_{T} = link delays due to troposphere and ionosphere.

This measured time delay is scaled into range by

$$cT_{i} = |R(t_{o})| + c\Delta T_{d} + c\delta T - b_{u} + b_{i} + c\Delta T_{L}$$
(326)

This range measurement is not obtained with respect to universal time until t where t is the sum of at least the delay time $\frac{|R(t_0)|}{c}$ plus a processing delay t.

$$\begin{array}{c|c}
 & & & \\
t_{o} & & & \\
\hline
 & & & \\$$

Assume that at time t_j' in the receiver-computer, which is $t_j - \tau_u$, the receiver transfers the measurement T_j to the computer and the computer forms the following estimate of scalar LOS range:

$$|R(t_{j}') + \Delta R(t_{j}')| = |\hat{P}(t_{j}') - \hat{e}(t_{j}')|$$
 (327)

where
$$\hat{p}(t_j') = p(t_j') + \Delta p(t_j')$$
 (true user position plus error)
$$\hat{e}(t_j) = e(t_j') + \Delta e(t_j')$$
 (true emitter position plus error)
but $p(t_j') = p(t_o) + \hat{p}(t_o)$ ($t_j' - t_o$)*
and $\Delta p(t_i') = \Delta p(t_o) + \Delta \hat{p}(t_o)$ ($t_i' - t_o$)

^{*}This is of course an approximation, since acceleration and higher order terms have been neglected.

So
$$p(t_j') = p(t_o) + \dot{p}(t_o) (t_i - \tau_u - t_o)$$

and similarly for emitter position. But we know t_j - t_o = T_j + t_p ; thus the term provided by the computer will be:

$$\begin{split} & \left| p(t_{o}) + \dot{p}(t_{o}) \right. \left. (T_{j} + t_{p} - \tau_{u}) - e(t_{o}) - \dot{e}(t_{o}) \right. \left. (T_{j} + t_{p} - \tau_{u}) \right| \\ & + \left| \Delta p(t_{o}) + \Delta \dot{p}(t_{o}) \right. \left. (T_{j} + t_{p} - \tau_{u}) - \Delta e(t_{o}) - \Delta \dot{e}(t_{o}) \left. (T_{j} + t_{p} - \tau_{u}) \right| \end{split}$$

The observable provided to the Kalman filter will be the following difference:

Y = observable error

$$Y = |R(t_j') + \Delta R(t_j')| - cT_j$$
 (328)

Let r = unit vector defined as $\frac{\overline{R}}{|R|}$ along the LOS; then we may write the above equation as the following dot or transpose product:

$$Y = r^{T}p(t_{o}) + r^{T}\dot{p}(t_{o})(T_{j} + t_{p} - \tau_{u})$$

$$-r^{T}e(t_{o}) - r^{T}\dot{e}(t_{o})(T_{j} + t_{p} - \tau_{u})$$

$$+r^{T}\Delta p(t_{o}) + r^{T}\Delta \dot{p}(t_{o})(T_{j} + t_{p} - \tau_{u})$$

$$-r^{T}\Delta e(t_{o}) - r^{T}\Delta \dot{e}(t_{o})(T_{j} + t_{p} - \tau_{u})$$

$$-r^{T}p(t_{o}) + r^{T}e(t_{o}) - c\Delta T_{d} - c\delta T + b_{u} - b_{j} - c\Delta T_{L}$$
(329)

Canceling out the common terms of the above, we obtain:

Y = function of error states (Δp , Δe , $\Delta \dot{p}$, $\Delta \dot{e}$)

- + function of timing error $(b_u, b_i, c\Delta t_d, c\Delta t_L)$
- + measurement noise (côT)

If we define the state vector for our system as the following \underline{n} element vector, the entire observable equation may be expressed as:

$$\overline{Y} = Mx + \overline{V} \tag{330}$$

Substituting for T_{i} , we obtain:

$$(T_j + t_p - \tau_u) = \begin{bmatrix} \frac{r^T}{c} p(t_o) - \frac{r^T}{c} e(T_o) + \Delta T_d + t_p - 2\tau_u + \tau_i + \Delta T_L \\ + \delta T_{c} \end{bmatrix}$$
random measurement noise

So
$$r^{T}\dot{p}(t_{o}) + r^{T}\Delta\dot{p}(t_{o}) = r^{T}\dot{\hat{p}}(t_{o})$$
 values of estimated velocity, uncontrolled $\bar{r}^{T}\dot{e}(t_{o}) + r^{T}\Delta\dot{e}(t_{o}) = r^{T}\dot{\hat{e}}(t_{o})$

Examination of equation (329) indicates that using nonsynchronous data differences leads to the additional terms in the measurement (relative to those required for synchronous differences; see Appendix VI):

$$\Delta Y = r^{T_p^A} (T_j + t_p - \tau_u) - r^{T_e^A} (T_j + t_p - \tau_u)$$
 (331)

These terms can be compensated, since we do indeed have knowledge of $p(t_j)$ and $e(t_j)$ and T_j . Therefore a compensating $\Delta \hat{Y}$ can be generated such that:

$$\Delta \hat{Y} = -r^{T_{\hat{P}}^{\hat{q}}}(t_{j}' - T_{j}) |T_{j}| + r^{T_{\hat{P}}^{\hat{q}}}(t_{j}' - T_{j}) |T_{j}|$$
(332)

Such a mechanization would require a <u>backward</u> propagation in time to the approximate time t_0' which is in error from true time, t_0 , by $(t_p - \tau_u)$.

It would also of course be possible to compensate the measured time delay t_j itself, instead of the range, to obtain the approximate delay time, but this is conceptually the same as the above and hence should make no difference in terms of the error coupling. The observable ΔY can be written after compensation as:

$$\Delta Y = \begin{bmatrix} r^{T}\dot{p}(t_{o}) - r^{T}\dot{p}(t_{o}') \end{bmatrix} \begin{bmatrix} T_{j} \end{bmatrix}$$

$$+r^{T}\dot{p}(t_{o}) \begin{bmatrix} t_{p} - \tau_{u} \end{bmatrix}$$

$$- \begin{bmatrix} r^{T}\dot{e}(t_{o}) - r^{T}\dot{e}(t_{o}') \end{bmatrix} \begin{bmatrix} T_{j} \end{bmatrix}$$

$$- r^{T}\dot{e}(t_{o}) \begin{bmatrix} t_{p} - \tau_{u} \end{bmatrix}$$
(333)

At first glance this may not appear to be much of a simplification, but if we assume that the acceleration is small or zero, then:

$$\dot{u}Y \approx r^{T}\dot{p}(t_{o})\left[t_{p} - \tau_{u}\right]$$
$$-r^{T}\dot{e}(t_{o})\left[t_{p} - \tau_{u}\right] \tag{334}$$

Hence the terms of the observable with velocity compensation are:

$$Y = r^{T} \Delta p(t_{o}) - r^{T} \Delta e(t_{o}) + r^{T} \dot{p}(t_{o}) t_{p} - r^{T} \dot{e}(t_{o}) t_{p}$$

$$- \left[r^{T} \dot{p}(t_{o}) - c \right] \tau_{u} + r^{T} \dot{e}(t_{o}) \tau_{u}$$

$$- c \Delta T_{d} - c \Delta T_{L} - c \tau_{i}$$

$$+ c \delta T \qquad (335)$$

Let M^T = transpose of the measurement matrix; then:

$$\mathbf{m}^{\mathbf{T}} = \mathbf{r}^{\mathbf{T}}$$

$$0$$

$$1 - \frac{\mathbf{r}^{\mathbf{T}} \dot{\mathbf{p}}(\mathbf{t}_{o})}{c} + \frac{\mathbf{r}^{\mathbf{T}} \dot{\mathbf{e}}(\mathbf{t}_{o})}{c}$$

$$- 1$$

$$- 1$$

$$\mathbf{r}^{\mathbf{T}} \dot{\mathbf{p}}(\mathbf{t}_{o}) - \mathbf{r}^{\mathbf{T}} \dot{\mathbf{e}}(\mathbf{t}_{o})$$

$$- 1$$

(336)

Note that since the propagation-delay-dependent elements of M involve a division by the speed of light, these are extremely small terms. Hence, with a velocity-compensated mechanization which has no fixed processing delay time, t_p , the measurement matrix reduces to that for the short-range LOS case of synchronous, almost instantaneous (because short-range) propagation.

Table LXXXIV summarizes, for convenience of reference, the event timing involved in the foregoing discussion.

TABLE LXXXIV. SUMMARY OF EVENT TIMING

OBSERVATION OF PSEUDORANGE RATE FOR ERROR ESTIMATION 2.

For moving vehicles the measurement of the doppler shift frequency of the carrier is given by

$$f_{D} = \frac{2}{\lambda} \frac{\mathbf{v} \cdot \mathbf{R}}{|\mathbf{R}|} \tag{337}$$

where
$$v = p - e$$

$$R = p-e$$

 λ = carrier frequency.

Given that the user and satellite clocks are varying with rates of

b = user oscillator rate in fps

b, = satellite oscillator rate in fps

the measured doppler term or pseudorange rate is thus given as:

$$\frac{2}{\lambda} \left| \dot{R} \right| = \frac{2}{\lambda} \left| \frac{\mathbf{v} \cdot \mathbf{R}}{|\mathbf{R}|} + \dot{\mathbf{b}}_{\mathbf{u}} + \dot{\mathbf{b}}_{\dot{\mathbf{i}}} + \Delta \dot{\mathbf{L}} \right|$$
 (338)

where AL = transmission link range rate.

Realistically any doppler measurement requires a finite amount of time to obtain the frequency measurement so that equation (338) becomes

$$|\dot{R}| \approx \frac{\lambda}{2} \int_{t_{n-1}}^{t_n} \frac{f_D(t_{n-1})}{\Delta t} dt + \frac{\lambda}{2} \int_{t_{n-1}}^{t_n} f_D(t) dt + \dot{b}_u + \dot{b}_i + \dot{\Delta}L$$
 (339)

where $f_n(t)$ = derivative of doppler shift

$$\Delta t$$
 = measurement interval = $t_n - t_{n-1}$

Since timing is defined by the user clock, the actual universal time definition is related to the above by $(t-T_n)$ where $T_n = propagation$ delay time. Note also that the interval At has a timing error which is due to the user clock rate:

$$\Delta t' = \Delta t - \frac{\dot{b}\Delta t'}{c} \approx \Delta t \left(1 - \frac{\dot{b}}{c}\right)$$
 (340)

In summary, any data measured at the receiver is delayed by the propagation time, and the data is averaged over an incorrect time interval due to the clock drift rate.

The nature of the frequency shift derivative can be formulated by the following:

$$\frac{d}{dt}(f_{D}) = \frac{d}{dt} \left\{ \frac{2}{\lambda} \left[v \cdot R \right] \left[|R| \right]^{-1} \right\}$$

$$= \frac{2}{\lambda} \left[\frac{d}{dt} \left[v \cdot R \right] \left[|R| \right]^{-1} + \left[v \cdot R \right] \left[-1 \right] \left[|R| \right]^{-2} \frac{d}{dt} \left[|R| \right] \right]$$

$$= \frac{2}{\lambda} \left[\frac{d}{dt} \frac{\left[v \cdot R \right]}{|R|} - f_{D} \frac{d}{dt} \frac{\left[|R| \right]}{|R|} \right]$$

$$= \left[\frac{dv}{dt} \cdot (R) + (v) \cdot \frac{dR}{dt} - f_{D} \frac{d}{dt} \left[|R| \right] \right] \frac{2}{\lambda |R|} \tag{341}$$

Hence the derivative consists of three terms: two dot products and a derivative of the scalar range. These three parts of the derivative may be written as:

$$\frac{d}{dt}(f_{D}) = \frac{2}{\lambda} \left[\frac{dv}{dt} \cdot \frac{R}{|R|} \right] + \frac{2}{\lambda} \left[\frac{v}{|R|} \cdot \frac{dR}{dt} \right] - f_{D} \left[R \cdot \frac{dR}{dt} \right] \frac{1}{|R|^{2}}$$
(342)

Obviously if the quantities v(t) and R(t) have significant time variations during the interval Δt , the formulation of $|\vec{R}|(t)$ could be rather complex. Therefore assume for the moment that Δt is sufficiently small so that equation (337) describes the range rate scalar relation defined within the computer; hence at time t_m the following values are generated:

$$v(t_{m}) = \stackrel{A}{p}(t_{m}) - \stackrel{A}{c}(t_{m})$$

$$R(t_{m}) = \frac{A}{p}(t_{m}) - \frac{A}{e}(t_{m})$$
estimates of velocity and position

The velocity and position estimates may be written as:

$$\hat{R}(t_m) = \hat{p}(t_m) + \Delta \hat{p}(t_m) - \hat{e}(t_m) - \Delta \hat{e}(t_m)$$

$$\hat{R}(t_m) = p(t_m) + \Delta p(t_m) - e(t_m) - \Delta e(t_m)$$

Using the results of equation (341), we may write the error in \boldsymbol{f}_{D} , the doppler frequency, as:

$$\Delta f_{D} = \frac{2}{\lambda} \left[\frac{(\Delta p - \Delta e) \cdot (p - e)}{(|p - e|)} + \frac{2}{\lambda} \left[\frac{(\dot{p} - \dot{e}) \cdot (\Delta p - \Delta e)}{(|p - e|)} \right] - f_{D} \left[\frac{(\dot{p} - e) \cdot (\Delta p - \Delta e)}{(|p - e|)^{2}} \right]$$

Or, using the unit LCS direction cosine vector r,

$$\Delta f_{D} = \frac{2}{\lambda} \left[(\Delta p - \Delta e) r^{T} \right] + \frac{2}{\lambda} \left[\frac{(\dot{p} - \dot{e}) \cdot (\Delta p - \Delta e)}{|R|} \right] - \frac{f_{D}}{|R|} \left[(\Delta p - \Delta e) r^{T} \right]$$
(344)

The last two terms here can be written:

$$\frac{2}{\lambda} \left[\frac{(\dot{\mathbf{p}} - \dot{\mathbf{e}})^{\mathrm{T}} (\Delta \mathbf{p} - \Delta \mathbf{e})}{|\mathbf{R}|} - \frac{(\dot{\mathbf{p}} - \dot{\mathbf{e}})^{\mathrm{T}}}{|\mathbf{R}|} \mathbf{r} (\Delta \mathbf{p} - \Delta \mathbf{e}) \mathbf{r}^{\mathrm{T}} \right] \\
- \frac{2}{\lambda} \left[\frac{(\dot{\mathbf{p}} - \dot{\mathbf{e}})^{\mathrm{T}}}{|\mathbf{R}|} |\mathbf{I} - \mathbf{r} \mathbf{r}^{\mathrm{T}}| \right] (\Delta \mathbf{p} - \Delta \mathbf{e}) \tag{345}$$

With this simplified form we now have a means of expressing measured observables of data as the difference between the computed range rate and the measured range rate.

Let Y = observable for the filter; then:

$$Y = \frac{2}{\lambda} \left\{ (\mathbf{p} - \mathbf{e}) \mathbf{r}^{T} + (\Delta \dot{\mathbf{p}} - \Delta \dot{\mathbf{e}}) \mathbf{r}^{T} + \left[\frac{(\dot{\mathbf{p}} - \dot{\mathbf{e}})^{T}}{|\mathbf{R}|} \left[\mathbf{I} - \mathbf{r} \mathbf{r}^{T} \right] \right] (\Delta \mathbf{p} - \Delta \mathbf{e}) - \int_{t_{n-1}}^{t_{n}} \mathbf{f}_{D} \frac{(t_{n-1})_{dt}}{\Delta t} - \int_{t_{n-1}}^{t_{n}} \mathbf{f}_{D}(t) dt - \dot{\mathbf{b}}_{u} \frac{2}{\lambda} - \dot{\mathbf{b}}_{i} \frac{2}{\lambda} - \dot{\Delta} \mathbf{L} \frac{2}{y} \right\}$$
(346)

In order to understand the time span for the above, consider that the universal time axis is given as:

computer formulates estimated radial rate and makes comparison

For the sake of brevity and further understanding, consider that

$$\frac{2}{\lambda} \left[\left(\dot{p}(t_m) - e(t_m) \right) r^T - \int_{t_{n-1}}^{t_n} \frac{f_D(t_{n-1})}{\Delta t} - \int_{t_{n-1}}^{t_n} \dot{f}_D(t) dt \right]$$

is most likely nonzero and

=
$$\Delta B \frac{2}{\lambda}$$

where ΔB = dynamic doppler lag due to nonsynchronous sampling and finite doppler bandwidth and delay.

And thus in velocity terms:

$$Y = \left[\Delta \dot{p}(t_{m}) - \Delta \dot{e}(t_{m})\right] r^{T}$$

$$+ \left[\frac{\left[\dot{p}(t_{m}) - \dot{e}(t_{m})\right]^{T}}{|R|} \left[I - rr^{T}\right]\right] \left[\Delta p(t_{m}) - \Delta e(t_{m})\right]$$

$$- \dot{b}_{u} - \dot{b}_{i} - \Delta \dot{L} + \Delta \dot{B}$$
(347)

Note that all the above terms are given for the time $t = t_m$

The next consideration is the possible differentiation between the link velocity error and the velocity lag error due to functional effects.

Let us first examine the link transmission error effects. From basic theory it is known that the phase length path due to the ionosphere is reduced by an amount identical to the group path energy delay.

The phase length decrease relative to free space is given as:

$$\Delta \phi = \frac{-K}{f^2} \int_{-K}^{S} N(s) ds \cdot \frac{2\pi}{\lambda}$$
 (348)

If the line integral which defines the total electron content along the LOS is time-varying as it would be due to relative motion of the LOS, the rate of change of the integral will result in a frequency shift of

$$\Delta f = \frac{-K}{f^2} \cdot \frac{2\pi}{\lambda} \cdot \frac{1}{2\pi} \frac{d}{dt} \int_{-K}^{S} N(s) ds$$

$$= \frac{-K}{cf} \frac{d}{dt} \int_{-K}^{S} N(s) ds \qquad (349)$$

In order to determine the magnitude of the doppler shift due to ionosphere changes, we need to make two basic dynamic considerations:

- (1) What is the angular change of the LOS for a constant homogeneous density atmosphere?
- (2) What is the time variation for a true horizontal gradient in the vertical electron content?

Consider the evaluation by means of the following:

$$\int N(s) ds = I_v \overline{CSC} \theta_R$$
 (350)

where $I_v = vertical electron content/m^2$

 $\overline{\text{CSC}} \ \theta_{R}$ = geometric obliquity factor.

The time derivative of the above integral may be denoted as:

$$\frac{d}{dt} \int N(s) ds = \frac{dI_{v}}{dt} \overline{CSC} \theta_{R} + I_{v} \frac{d}{dt} \overline{CSC} \theta_{R}$$
(351)

The rate of change of $\mathbf{I}_{\mathbf{V}}$ with time can be established by letting the horizontal gradient be given as:

$$\frac{dI_{v}}{dx} = 1\% \text{ per } 100 \text{ miles}$$

$$= 10^{17} \times 0.01 \times 10^{-2} \text{ electrons/m}^{2}/\text{mile}$$

$$= 10^{13} \text{ electrons/m}^{2}/\text{mile}$$
(352)

Next consider that the maximum relative velocity is given as about 4000 ft/sec so that the rate with respect to time is:

$$\frac{dI_{v}}{dc} = 10^{13} \frac{\text{electrons}}{m^{2}} \cdot \frac{4000 \text{ ft}}{6000 \text{ ft}} \cdot \frac{1}{\text{sec}}$$

$$\approx 0.7 \times 10^{13} \frac{\text{electrons}}{m^{2}} \frac{1}{\text{sec}}$$
(353)

The second portion of the rate dynamics is given as:

$$I_{v} \frac{d}{dt} CSC \theta_{R} = I_{v} \cot \theta_{R} CSC \theta_{R} \frac{d\theta_{R}}{dt}$$
(354)

Geometrically the angular rate for the LOS is defined as:

$$\omega = \frac{d\theta_R}{dt} = \frac{v \times R}{|R|^2}$$
 (355)

Assuming that the range and velocity vectors are orthogonal and that

$$v_{max} \approx 4000 \text{ ft/sec}$$

$$R_{min} = 20,000 \text{ miles}$$

the angular rate is given as:

$$\omega = \frac{v}{R} = \frac{4000 \text{ ft/sec}}{20000 \text{ x } 6000 \text{ ft}} = \frac{1}{5 \text{ x } 6000} = \frac{10^{-4}}{3} \frac{\text{rad}}{\text{sec}}$$
(356)

The rate change is maximum at elevation angles near the horizon and we can evaluate the function at a low elevation angle of 10 degrees, so:

$$= I_{v}(5.6)(5.8) \frac{d\theta_{R}}{dt}$$

$$= I_{v}(10^{-3})$$

$$= 10^{14} \frac{\text{electrons}}{m^{2}} \frac{1}{\text{sec}}$$
(357)

We may thus establish that both effects (even with an order of magnitude increase in the horizontal gradient) place a bound of about

$$\Delta f = \frac{K}{cf} \cdot 10^{14}$$

where

$$K = 132$$
 and $\Delta f = cps (Hz)$

At "L" band frequency for a generic 621B system, this becomes:

$$\Delta f = \frac{132}{983 \times 10^{6} \text{ ft/sec}} \times \frac{10^{14}}{1575 \times 10^{6} \text{ Hz}}$$

$$= \frac{132 \times 10^{14}}{1550 \times 10^{15}}$$

$$= 0.85 \times 10^{-2} \text{ Hz}$$
(358)

This also converts to

$$\Delta f \cdot \frac{c}{f} = \frac{983}{1575} \times 0.85 \times 10^{-2} \approx 0.5 \times 10^{-2} \text{ ft/sec}$$
 (359)

The results -- for changes in the angular LOS and for horizontal gradients -- indicate that, at L band, extremely negligible velocity errors will be introduced into the system.

Note also that higher-order iomospheric error terms are also negligible because they depend on reciprocal powers of frequency and with smaller coefficients than the first-order term evaluated above.

It is therefore concluded that: An ionospheric velocity error state is so small as to be unobservable with respect to the finite lag and bandwidth effects normally encountered. The dynamic doppler lag effect is by far the most significant error term.

APPENDIX XIII

PROPAGATION DELAY COMPENSATION

The effect of the earth's atmosphere produces both a curvature in the propagation path and a decrease in propagation velocity along this path as well, so that line-of-sight range measurements are significantly greater than the true geometric range between the emitter and the transmitter. These effects, and compensation algorithms for them, are discussed in this appendix.

OVERALL RANGE ERROR COMPENSATION

The range error compensation can be developed by considering the geometry shown in Figure 39. The apparent range which is measured along the curved line-of-sight is given as:

$$Re = \int_{0}^{R} n dR$$
 (360)

where

Re = apparent range

n = atmospheric radio refraction index

R = ray path

The apparent range is a line integral along the ray path which has a non-unity index, since its is generally slightly greater than 1.0. The range increment can be alternately defined in terms of altitude by considering a small spherical shell of height dh. Using differential geometry:

$$dh \frac{\partial^2 \theta}{\partial R}$$

$$sin \theta = \frac{dh}{dR}$$

$$dR = \frac{dh}{sin \theta} = dh CSC \theta$$

Equation (360) can be written as:

Re
$$=\int_{h_1}^{h_2} n(h) CSC \theta(h) dh$$
 (361)

where

n(h) * functional variation of refractive index with altitude

θ(h) = variation of elevation angle with altitude.

Figure 39. Propagation Geometry

Since the variation of n from unity is very small, another term is defined which represents the small portion which differs from one or:

$$N = (n-1) \times 10^6 \tag{362}$$

where

N = refractivity

and

$$n = 1 + N \times 10^{-6}$$

Using equation (362) leads to:

Re =
$$\int_{h_1}^{h_2} \text{CSC } \theta(h) \, dh + 10^{-6} \int_{h_1}^{h_3} N(h) \, \text{CSC } \theta(h) \, dh$$
 (363)

Since the geometric range is given as D, the range error may be defined as:

$$\Delta R = Re - D$$

$$\Delta R = \int_{h_{\frac{1}{2}}}^{h_{2}} CSC \theta (h) dh - D + 10^{-6} \int_{h_{\frac{1}{2}}}^{h_{2}} N(h) CSC \theta (h) dh$$
curved path diff.
$$\Delta R_{g}$$
velocity diff.
$$\Delta R_{N}$$
(364)

Equation (364) contains two distinct error terms; the first is the range error due to bending, ΔR_g , and the second is due to velocity decreases, ΔR_N . Generally the bending error, ΔR_g , is an order of magnitude smaller than ΔR_N , and a direct closed-form compensation for it is therefore not contemplated. The bending error is thus a residual error effect term which must be considered in designing the Kalman filter for lumped, residual propagation error estimation.

2. BENDING ERROR COMPENSATION

In this connection, the functional form of the bending error is of interest, and this may be determined by examining empirical data for the error effect. Magnitudes of bending error, ΔR_g , are shown in Figure 40 and in Table LXXXV, as obtained from references 1 and 2.

Figure 40. Errors in Apparent and True Range due to the Troposphere

TABLE LXXXV. TYPICAL AND EXTREME VALUES OF RANGE ERRORS FOR TARGETS BEYOND THE ATMOSPHERE

	Typical N _€ =320		Extreme N _e =400			Maximum percent	
θ ₀	ΔRg	ΔR_{N}	ΔR _e	ΔRg	ΔR_{N}	ΔR _e	$\Delta R_g / \Delta R_e$
0 20 mrad 50 mrad 100 mrad 200 mrad 500 mrad	meters 10 2.5 0.7 0.14 0.02 0.001	100 62.5 38.1 22.26 11.9 5.01	110 65 38.8 22.4 11.9 5.01	60 4.5 1.0 0.2 0.03 0.002	165 73 43 24.8 13.0 5.50	225 77.5 44 25 13.0 5.50	27 6 2.3 0.8 0.23 0.04

The information from these two sources is for range to a stationary satellite and the data is replotted in Figure 41, along with a proposed functional curve fit to the data.

The functional curve fit is chosen by assuming the following form:

$$\Delta R_g = K \csc \sqrt{A^2 + \theta_0^2}$$
 (365)

where

K = constant determined by error at zero elevation angle

A = constant which establishes the slope of the error function.

From the empirical data the typical values of the constants are defined as:

$$\begin{array}{ccc} K & = & 0.09 \\ A & = & 0.3^{\circ} \end{array} \right\} \Delta R \text{ in meters}$$

For apparent elevation angles of $\theta_0 \le 3$ degrees, the bending error is a finite value and should be considered. The only difficulty with using equation (365) is that knowledge of the apparent elevation angle will be in error. From data given by reference 2, the error in geometric and apparent elevation angles is defined as:

$$\epsilon = \theta_0 - \beta \tag{366}$$

where β = geometric LOS angle.

For typical atmospheric conditions the following maximum angular error can be encountered:

$$\theta_0$$
 = 0° ϵ = maximum of 20 mrad θ_0 = 3° ϵ = maximum of 10 mrad

Figure 41. Bending Error Data Fitting

Use of $\theta_0 \cong \beta$ in the residual error equation leads to a negative angular error of 0.5 to 1.0 degree. For this low elevation angle condition, the best option is to initialize the value of equation (365) at its maximum ($\theta_0 = 0^\circ$) and to utilize the pessimistic error state condition.

Note that the angular error, ϵ , is bounded by the total angular bending angle as:

$$\frac{\tau}{2} \le \epsilon \le \tau$$

where τ = angular bending angle, and that expressions exist for ϵ as a function of τ , the surface refraction, refraction profile, and apparent elevation angle.

3. VELOCITY VARIATION COMPENSATION

Returning now to the more important velocity-variation error effect, the principal mechanism involved here is the increase in the energy path length relative to the free space line of sight which is caused by the ionized electrons along the path.

The group path range increase is given by:

$$\Delta R = \int_{-\infty}^{\infty} (u - 1) ds \qquad (367)$$

where

u = group refractive index

S = ray path

The group refractive index can be approximated by the reciprocal of the true index of refraction, so

$$u \approx \frac{1}{n}$$

$$\therefore (u-1) = \left(\frac{1}{n}-1\right)$$

$$= \left(\frac{1-n}{n}\right)$$

$$\approx (1-n) \text{ since } n \approx 1.$$

$$\Delta R = \int_{-\infty}^{S} (1-n) ds$$

$$= \int_{-\infty}^{S} \Delta n ds$$
(368)

where $\Delta n = \frac{bN}{\omega^2}$

N = number density of free electrons, electrons per meter³

 ω = angular frequency of incident wave

b = constant =
$$\frac{e^2}{2\epsilon_0^m}$$
 = 1.6 x 10³ (MKS)

where $\frac{e}{m}$ = charge to mass ratio of electron ϵ_0 = free space permittivity

With a little conversion work the path length increase can be written as:

$$\Delta R = \frac{K}{f^2} \int^{S} N(s) ds$$
 (369)

where ΔR = meters

K = 40.3

f = frequency in Hz

N(s) = density function along the ray path given as electrons/meter³.

Equation (369) shows the basic area of uncertainty in predicting the path error; i.e., that of defining the density function of electrons along the ray path. Alternate approaches to this problem have been considered as follows.

Assume for the moment that the path length error is governed by a density function of electrons which have only a vertical variation. The pertinent elemental path geometry is as shown below.

$$\sin \theta = \frac{dh}{ds}$$
 $\theta = \text{elevation angle}$

 $ds = dh/sin \theta = dh CSC \theta$

and equation (369) becomes:

$$\Delta R = \frac{\kappa}{f^2} \int^{H} N(h) CSC \theta dh \qquad (370)$$

where H = height between source and user.

Since the ionosphere introduces bending of the ray along the energy path it is really more accurate to express equation (370) as:

$$\Delta R = \frac{K}{f^2} \int^H N(h) CSC \theta(h) dh \qquad (371)$$

since CSC $\theta(h)$ will be a varying elevation angle as the wave progresses along the ray path due to refraction.

The integral in equation (371) is simplified by defining a mean equivalent value for the function

$$\langle CSC \theta(h) \rangle \stackrel{\Delta}{=} \overline{CSC \theta_R} \qquad \theta_R = \text{reference altitude angle}$$
and
$$\Delta R = \frac{K}{f^2} \overline{CSC \theta_R} \int_{-R}^{H} N(h) dh \qquad (372)$$

The term $\int_{-\infty}^{H} N(h) dh$ is defined as the integrated density profile of a vertical column and in units it is expressed as

electrons/meter² =
$$\int_{-\infty}^{H} N(h) dh$$

and I_{V} = VERTICAL ELECTRON CONTENT = $\int_{-\infty}^{H} N(h) dh$

The term I can be visualized as the number of electrons contained in a vertical column whose cross-sectional area is one square meter:

In some literature the integrated density of the vertical column is given the name:

By way of summarizing it is possible to state

$$I_{V} = \int_{0}^{H} N(b) dh$$

$$= \int_{0}^{H} \frac{N(b) \csc \theta(b) dh}{\csc \theta_{R}}$$
(373)

Note that $I_v \cdot \overline{CSC \theta}_R = I_s = \text{total electron content in slant-range column}$.

The utility of defining I_V = total electron content is that soundings of the ionosphere at reference locations $\operatorname{can}_A\operatorname{easily}$ establish the empirical value of the vertical electron content. Or I_V can be obtained as a physical measurement using dual frequency, faraday rotation or ionosonde signals. Hence much information and data exists to define I_V about the earth's surface.

Using the concept of a mean equivalent equation for the CSC θ_R , we can write equation (371) as:

$$\Delta R = \frac{K}{f^2} I_{V} \overline{CSC \theta}_{R}$$
 (374)

where

 I_{v} = estimated or measured total electron content

 $\overline{\text{CSC }9}_{R}$ = reference value of mean equivalent

and we know

$$\frac{A}{CSC \theta_R} = \int_{N(h)}^{H} \frac{\int_{N(h)}^{CSC \theta(h) dh}}{I_{u}}$$
(375)

Examination of equation (375) points out the problem of utilizing equation (374) in establishing the mean equivalent CSC θ_R by knowing the entire profile and path length models -- which are very difficult to measure in real time. The solution to the problem is to:

- (a) Define a model for N(h) as a function of altitude
- (b) Execute a ray tracing program and determine the value of $\overline{\text{CSC }\theta}_{R}$ vs θ .

Two reference sources 3,4 have carried out the above steps and the data are presented in Figure 39 as a function of the elevation angle $\theta_{\rm o}$ which defines the LOS between the emitter and user. This function has been defined alternatively as either (a) the obliquity factor, or (b) the raypath length adjustment.

Several numerical approximations exist for calculating the "obliquity factor;" two of these are:

$$\frac{\text{CSC }\theta_{\text{R}} = \text{CSC } (\theta_{\text{o}}^{2} + 10^{2})^{1/2} \qquad [\text{Ref } 5]$$

$$= \text{CSC } (\theta_{\text{o}}^{2} + 20.3^{2})^{1/2} \qquad [\text{Ref } 6]$$

For comparison these approximations were calculated (Table LXXXVI) and the latter function,

is plotted in Figure 42 to show its substantive agreement with the Hughes ray tracing data. The TRW approximation 5 gives a very large adjustment factor at low angles and is rejected for this reason as not agreeing with available data.

The suggested calculation for the ionospheric delay compensation term is thus given as

$$\Delta R = \frac{K}{f^2} I_V \csc \sqrt{\theta_o^2 + 20.3^2}$$
 (376)

where

$$K = 1.31 \times 10^{-16}$$

 θ_{o} = LOS elevation angle, degrees

 $I_v = \text{estimate of total electron content in electrons/meter}^2$

f = carrier frequency, 6Hz

and $\Delta R = feet.$

TABLE LXXXVI CALCULATION OF $\overline{\text{CSC }\theta}_R$

(a) TRW Model							
θ	$\sqrt{\theta^2+10^2}$	Sin()	csc()				
0	10°	0.1736	5.8				
10	14.4	0.25	4.0				
20	22.6	0.38	2.6				
30	31.3	0.52	1.4				
40	41.0	0.656	1.5				
50	51.0	0.777	1.3				
60	61.0	0.874	1.15				
70	70.8	0.944	1.06				
80	80.6	0.987	1.01				
90	90.5	1.0	1.0				
(b) Aerospace Model							
0	20.3	0.347	2.9				
10	22,6	0.384	2.6				
20	28.5	0.477	2.1				
30	36.2	0,59	1.7				
40	45.0	0.707	1.42				
50	54.0	0.809	1.24				
60	64.0	0.895	1,12				
70	73.0	0.956	1.04				
80	82.5	0.99	1.0				
90	90.0	1.0	1.0				

Figure 42. Graphical Function for $\overline{\text{CSC}}\theta_{R}$

Note that this approach does not employ any consideration of a <u>lateral</u> gradient in the electron density but that this limitation can be easily overcome when better ray tracing information is provided simply by altering the constant term under the square root sign.

The calculation of the total electron content depends upon a form of deterministic behavior which is a function of:

- (a) Time of day
- (b) Time of the year
- (c) Phase of the solar cycle
- (d) Geographical latitude of signal traversal.

From a software concept for aircraft navigation, the compensations for time of day and for latitude are of primary interest for real-time calculations. Simple seasonal and solar cycle compensations can also be incorporated within the software for additional flexibility.

The average value of total electron content for a vertical column is:

$$I_v = 10^{17} \text{ electrons/meter}^2$$

The variation about this average value can be at least as large as an order of magnitude in either direction due to the effects of time and location variability.

A portion of $I_{\mathbf{v}}$ can be compensated for the daily time variation or diurnal effect as a function of time, or more precisely as a function of the location of the sun. The first form of time compensation considered is defined as:

$$f_T = A + \frac{B-A}{12} t$$
 (0 $\leq \pm \leq 12$ hours)
= B + $\frac{(A-B)}{12} (t-12)$ (12 $\leq \pm \leq 24$ hours)

This is a linear function of time which is monotonic up to high noon from a night-time low level of A. The peak level B is reached at high noon. For data plots considered, A is about 4×10^{10} and B is about 3×10^{17} with deviations around these values of about a factor of 3. The difficulty with this linear triangular function is that its symmetry around noon does not comply with the natural phenomena.

A more appropriate function would be one that is asymmetric with a low value at sunrise and a peak in the late afternoon. The linear gradient of the late afternoon decrease is also greater than that of the early morning growth from the night-time value.

The restriction to a linear functional expression with time should be reexamined, and in fact has been in several new investigations which have formulated the following nonlinear functions for diurnal variation.

The suggested method proposed by a Stanford Electronics Lab study sis to establish a Fourier series representation to describe the total electron content or

$$I_{v}(t) = a_{o} + \sum_{k=1}^{n} \left[a_{k} \cos kT + a_{kth} \sin kT \right]$$

where

$$T = \frac{\pi t}{12}$$

The coefficients for such a series representation are themselves functions of the day of the year, d, and the solar activity index, s. These functions have the form of power series expansions modifying a Fourier series with yearly harmonics.

The generation of about 13 coefficients was found to be sufficient for describing a each day at a specific reference location where data is being observed and collected. Since such locations are limited and unique, the problem of defining the total electron content some distance away from the reference location, but still within its region of correlated occurrence, is accomplished by defining an expansion with a so-called domain.

REFERENCES:

- 1. Takahashi, Kozo, "Atmospheric Error in Range and Range-Rate Measurements Between a Ground Station and an Artificial Satellite," IEEE Trans. Aerospace and Electronic Systems, Vol AES-6, No. 6, November 1970.
- 2. Bean, B. R., and E. J. Dutton, "Radio Meteorology," National Bureau of Standards Monograph 92, March 1966.
- 3. System 621B, Satellite System for Precise Navigation, Vol. II, AD395536, Hughes Aircraft Co. (Secret) 1969.
- 4. Tracking System Analytic Calibration Activities for the Mariner Mars 1969 Mission, JPL TR 32-1499, 1970.
- 5. Integrated Inertial/Nav Sat Study Analysis and Planning for Test, Vol. I, AFAL TR-71-319, TRW, 1971 (Confidential).
- 6. Woodford and Dutcher, "A Satellite System to Support an Advanced Air Traffic Control Concept", Proc. IEEE, March 1970.
- 7. Lawrence, R., and C. Little, "A Survey of Ionospheric Effects upon Earth-Space Radio Propagation", Proceedings IEEE, January 1964.

- 8. Waldman, H., and Ada Rosa, "Prognostication of Ionospheric Electron Content", SAMSO TR-71-82, SEL 71-046, August 1971.
- 9. Freeman, J. J., "Real-Time Compensation for Tropospheric Radio Refractive Effects on Range Measurements," NASA CR-109, October 1964
- 10. Yionoulis, S. M., "Algorithm to Compute Tropospheric Refraction Effects on Range Measurements," <u>Journal of Geophysical Research</u>, Vol. 75, No. 36, December 1970.
- 11. Hopfield, H. S., "Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data," Radio Science, Vol. 6, No. 3, March 1971.
- 12. Ondrasik, V. J., "The Troposphere," part of JPL Technical Report 32-1499, Tracking System Analytic Calibration Activities for the Mariner Mars 1969 Mission, November 1970.
- 13. Rodrick, T. L., and T. I. Fine, "Computers for Satellite-Based Navigation and Guidance Systems," Extracted from Satellite-Aided Communications, Navigation and Traffic Control, Purdue University Summer Course, 1972.
- 14. Cooper, G., "Theory of Position and Velocity Determination," Extracted from Satellite-Aided Communications, Navigation and Traffic Control, Purdue University Summer Course, 1972.

APPENDIX XIV

RESIDUAL PROPAGATION ERROR MODELING

This appendix discusses the Kalman filter modeling of propagation errors which remain after closed-form error compensation.

1. SPATIAL MODELING

The combined effect of residual propagation delays caused by the troposphere, ionosphere, and multipath effects may be described by an error term of:

$$\delta \phi = \text{propagation delay}$$

At any given location in the spatial domain of interest, this propagation delay is characterized as a random variable and is described in statistical terms, one of which could be the mean square value of the delay error or:

$$\mathbb{E}\left[\delta\phi(\mathbf{x})\delta\phi(\mathbf{x})\right] = \sigma^2$$

This mean square term is defined over the entire extent of the spatial variable x and it is also possible to state that at any location that is specifically defined, such as $x = x_0$,

$$E \left[\delta \varphi(\mathbf{x}_0) \delta \phi(\mathbf{x}_0)\right] = \sigma^2$$

We know from observation of the propagation delay due to variability of the dynamics governing the troposphere, ionosphere, and multipath that the delay error is variable in the spatial dimension, x, and that

$$\delta\phi(x) \neq \delta\phi(x_0)$$

The statistical manner in which we describe this variability is by defining the expected value of the product:

$$E \left[\delta_{\mathcal{C}}(x) \delta_{\phi}(x_{o})\right] = R(\Delta x)$$
 (378)

where $\Delta x = x-x_0$ and R() = autocorrelation function.

The biggest difficulty with the approach used to this point is that we do not have any information available to describe the analytical or empirical

form of the autocorrelation function, since global autocorrelation data has not been developed to date. In the face of such ignorance, let us stipulate that possibly nature has done the following:

$$R(\Delta x) \approx \sigma^2 \left[K_1^2 + K_2^2 \exp(-|\Delta x| \cdot d^{-1}) \right]$$
 (379)

where

 $K_1^2 \sigma^2$ = fixed bias variance

 $K_2^2 \sigma^2$ = distance variable variance

d = correlation distance in feet.

Note that we scale the constants such that

$$\sum_{n=1}^{2} K_n^2 = 1$$

The assumed autocorrelation function states two main ideas:

- (a) A fixed portion of propagation delay is to be expected given by the variance term $K_1^2\sigma^2$.
- (b) A portion of the propagation delay decorrelates as an exponential function of distance, d, away from some specific location. (This assumption is not backed up by any experimental data but evaluation of random Omega propagation variations indicates that such an isotropic diffusion does seem to occur for the mean square value of delay.)

The approach to be followed, given that $R(\Delta x)$ is known, will now be developed and can utilize either the assumed function shown in equation (379) or simply leave $R(\Delta x)$ to be defined as a general autocorrelation function; its specific form is not critical to the ensuing development.

Incidentally, some mention should be made at this point of the effect on the delay error of the geometric orientation of the line of sight. This variability does in fact determine the mean square value of the delay and it could be stipulated that $R(\Delta x)$ is really functional in the line-of-sight angle, denoted as θ , so that a spatial autocorrelation is really denoted as:

 $R(\Delta x), \theta$ = multivariable function

For a fixed geometric orientation, or $\theta = \theta_0$, the multi-varied function reduces to single dimensionality and so one should think that the further discussions are valid for a specific geometric orientation which is always employed regardless of specific spatial location.

Since several speculative assumptions have already been made, it seems reasonable to mention here that the geometric variability is probably most evident in the constant K_1 and is probably of the form

$$R(\Delta x, \theta) = \sigma^{2} \left[K_{1}(\theta)^{2} + K_{2}^{2} \exp(-|\Delta x| \cdot d^{-1}) \right]$$
and
$$K_{1}(\theta) = K_{0} \operatorname{CSC} \theta$$

Some dependence of K, on 8 also may exist, but is probably negligible.

2. EFFECT OF MODEL CORRECTIONS

The basis for every known form of propagation delay correction is to utilize a model of the delay effect and to apply the model term as a correction. Generally the model is said to be an exact evaluation of $\delta \phi(x_0)$ at the location x_0 , or at best a very large part of it, so that we can now formulate the <u>residual</u> error at any location as:

$$\Delta \phi(\mathbf{x}) = \delta \phi(\mathbf{x}) - \delta \phi(\mathbf{x}_0) \tag{380}$$

where $\delta_{\varphi}^{A}(x_{0}) = \delta_{\varphi}(x_{0}) + n\delta_{\varphi}(x_{0})$

or
$$\Delta_{\mathcal{T}}(\mathbf{x}) = \delta_{\phi}(\mathbf{x}) - \delta_{\mathcal{C}}(\mathbf{x}_{o}) - n\delta_{\phi}(\mathbf{x}_{o})$$
 (381)

where n = fractional part

The use of an error term in the correction which is a fractional part of the original correction itself seems to be justified, since generally the models are exact in terms of functional relations but are in error by knowledge of a multiplicative constant of the function.

Next to be determined is the autocorrelation for the residual error in the propagation delay due to the correction; i.e., the expectation of:

 $E \left[\Delta \phi(x) \Delta \phi(x) \right] \stackrel{\Delta}{=} R_{\Lambda}(\Delta x) = residual autocorrelation$

Substituting produces:

$$R_{\Delta}(\Delta \mathbf{x}) = E \left[\left(\delta \phi(\mathbf{x}) - \delta \phi(\mathbf{x}_{o}) - n \delta \phi(\mathbf{x}_{o}) \right)^{2} \right]$$

$$= E \left[\left(\delta \phi(\mathbf{x}) - (n+1) \delta \phi(\mathbf{x}_{o}) \right)^{2} \right]$$

$$= E \left[\delta \phi(\mathbf{x})^{2} - 2(n+1) \delta \phi(\mathbf{x}) \delta \phi(\mathbf{x}_{o}) + (n+1)^{2} \delta \phi(\mathbf{x}_{o})^{2} \right]$$

$$= E \left[\delta \phi(\mathbf{x})^{2} \right] - 2(n+1) E \left[\delta \phi(\mathbf{x}) \delta \phi(\mathbf{x}_{o}) \right] + (n^{2} + 2n + 1) E \left[\delta \phi(\mathbf{x}_{o})^{2} \right]$$
(382)

Using (377) and (378), we can write:

$$R_{\Delta}(\Delta x) = \sigma^{2} - 2(n+1)\sigma^{2} \left[K_{1}^{2} + K_{2}^{2} \exp(-|\Delta x| d^{-1}) \right] + (n^{2} + 2n + 1)\sigma^{2}$$

$$= \sigma^{2} \left(2 + 2n + n^{2} - (2n + 2) \left[K_{1}^{2} + K_{2}^{2} \exp(-|\Delta x| d^{-1}) \right] \right)$$
(383)

The results of equation (383) have several interesting aspects. Using (383), assume that n = 0, which means that an exact correction model is employed for the specific point, x_0 ; then the residual autocorrelation function is:

$$R_{\Delta}(\Delta x) = \sigma^{2} \left\{ 2 - 2 \left[K_{1}^{2} + K_{2}^{2} \exp(-|\Delta x| \cdot d^{-1}) \right] \right\}$$

$$= \left[\left(2\sigma^{2} - 2K_{1}^{2}\sigma^{2} \right) - 2K_{2}\sigma^{2} \exp(-|\Delta x| \cdot d^{-1}) \right]$$
(384)

The above result states that the residual has a bias-like variance or mean square error of

$$2\sigma^{2}-2K_{1}^{2}\sigma^{2} = 2\sigma^{2}(K_{2}^{2})$$
or
$$R_{\Delta}(\Delta x) = 2\sigma^{2}(K_{2}^{2}) \left[1 - \exp(-|\Delta x| d^{-1})\right]$$
(385)

The result given in (385) can be interpreted as a general result for any given form of correlation process that may occur other than exponential; only the form of the subtracted portion is altered, so that in general for n=0 we have:

$$R_{\Delta}(\Delta x) = 2\sigma^{2}(K_{2}^{2})\left[1 - R_{n}(\Delta x)\right]$$

where $R_n(\Delta x)$ = general normalized autocorrelation function.

Again, reviewing equation (383), consider that if the distance variable correlation process does not exist but that $n\neq 0$, the result will then be

$$R_{\Delta}(\Delta x) = \sigma^2 \left[2 + 2n + n^2 - (2n + 2)K_1^2 \right]$$
 (386)

but

$$K_1^2 = 1$$
, since $K_2^2 = 0$

so
$$R_{\Delta}(\Delta x) = \sigma^2 n^2$$

Hence the bias-like portion of the residual error simply scales as a fraction of the original mean square variance by which the correction estimate is in error.

The spatial autocorrelation model given in equation (383) thus satisfies several specific end-point conditions and also is general enough to accommodate more definitive model alterations as data becomes available. Note that the result of (383) is quite different from the development given in the previous Multilateration report (AFAL TR-72-80). The only significant alteration which may have to be applied to the development is to employ a spatially oriented diffusion process in two spatial dimensions rather than the isotropic one with radial distance utilized in this analysis.

3. TEMPORAL MODELING

The time variations of the residual propagation delays caused by the combined effect of the troposphere, ionosphere, and multipath probably consist of several time-shift-dependent functions which define the time autocorrelation process as:

 $E[\delta\phi(t)\delta\phi(t+\tau)] = R(\tau) \tag{387}$

and

$$R(\tau) \approx \sigma^2 \left[c_1^2 + c_2^2 \exp(-|\tau|\beta) + \sum_{j=3}^{m} c_j^2 \cos(j-2) \omega \tau \right]$$

where

 ω = angular rotation rate of earth

τ = correlation time variable

 β = reciprocal time constant

The basic periodicity implied by the above is a 24-host variation due to the diurnal changes caused by the sun, with the higher order harmonics being due to improper functional modeling of the daily changes which occur in the troposphere and ionosphere. Note again that

$$\sum_{j=1}^{m} c_{j}^{2} = 1$$

4. COMBINED STATISTICAL ALGORITHM

With both the spatial and temporal propagation errors defined, it is possible to combine both of the autocorrelation functions to describe the complete error statistics. The assumption that spatial errors are not correlated with the temporal errors translates mathematically into:

$$R_{\Delta}(\Delta x, \tau) = R_{\Delta}(\Delta x) \cdot R_{\Delta}(\tau)$$
 (388)

Using the results of (383) and (387), it is possible to write

$$R_{\Delta}(\Delta x, \tau) = \sigma^{2} \left\{ (2+2n+n^{2}) - (2n+2) \left| K_{1}^{2} + K_{2}^{2} \exp(-|\Delta x| \cdot d^{-1}) \right| \right\}$$

$$\cdot \left[C_{1}^{2} + C_{2}^{2} \exp(-|\tau| \beta_{c}) + \sum_{n=3}^{m} C_{n}^{2} \cos(n-2) \omega r \right]$$

This correlation process can be broken up and rewritten in several terms, with the distance correlation converted to a time correlation by assuming a constant velocity of movement.

DISTRIBUTION LIST

Activity	Number of Copies
AFAL/TSR WPAFB, Ohio 45433	1
2750th ABW/SSL WPAFB, Ohio 45433	1
SAMSO/XRZE P.O. Box 92960 Worldway Postal Center Los Angeles, California 90009	1
Air University Library Attn: AUI. 3T Maxwell AFB, Alabama 36112	1
HQ USAF/SAMID Washington, D.C. 20330	1
AFAL/NVN-1 WPAFB, Ohio 45433	2
AFAL/AAA (J.A. Biernacki) WPAFB, Ohio 45433	26
Defense Documentation Center (DDC) Attn: TIPDR Cameron Station Alexandria, Va. 22314	?
SAMSO/XR Los Angeles AFS Los Angeles, Ca. 90045	1
ESD/XRT L.G. Hanscom Field Bedford, Ma. 01730	1
USAF Academy (DFSFR) Boulder, Co. 80840	1

DISTRIBUTION LIST (Cont'd)

Activity	Number of Copies
AFSC/XRT Andrews AFB 20331	1
ESD/XRC L.G. Hanscom Field Bedford, Ma. 01730	1
HQ USAF/AFRPQPS Attn: W.V. Becker Washington, D.C. 20330	1
AFSC/DLCEC Attn: Dave Anderson Andrews AFB 20331	1

Security Classification

DOCUMENT CONT	-		support to classified		
1 ORIGINATING ACTIVITY (Corporate author)			CURITY CLASSIFICATION		
Northrop Corporation, Electronics Division		UNCLASSIFIED			
1 Research Park		2b. GROUP			
Palos Verdes Peninsula, California 90274					
3. REPORT TITLE					
MULTILATERATION SOFTWARE DEVELOPMENT (PHASE	II)				
4. OESCRIPTIVE NOTES (Type of report and Inclusive dates) Final Technical Report (May 1972 to June 19	73)				
John D. Weinberg, Myles Harris, E. J. Knob (Northrop Corporation) and E. Martin, V. Ca Laboratories).	be, E. R. Ko lbi and M. B	pitzke and ittner (Ma	Gideon Kochmann gnavox Research		
6. REPORT OATE			76. NO OF REFS		
September 1973	437		14		
SE. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT NUMB	ER(5)		
F33615-72-C-1607	NORT 73-27	0			
b. PROJECT NO.		_			
6095 02 04					
c.	9b. OTHER REPOR	T NO(S) (Any oth	ner numbers that may be assigned		
d.			" 8 NON 1023		
Distribution limited to Government agencies only; other requests for this document					
must be referred to the Air Force Avionics Laboratory (AFAL/AAA), Wright-Patterson					
Air Force Base, Ohio 45433.					
11 SUPPLEMENTARY NOTES	12. SPONSORING M	AVIONICS T	aboratory		
	bbe, E. R. Kopitzke and Gideon Kochmann albi and M. Bittner (Magnavox Research 76. TOTAL NO. OF PAGES 437 14 96. ORIGINATOR'S REPORT NUMBER(S) NORT 73-270 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) AFAL-TR-73-297 S only; other requests for this document				
	J		•		

Historically, vehicle-borne, radio-hybrid navigation system software has too often been designed around preselected navigation hardware on an ad hoc, system-by-system basis. In these developments, little attention has been paid to the inherent physical and functional commonality which underlies much of this superficially quite different software. This report documents the methods, and the very promising results, of the second phase of a software development effort directed at identifying and specifying a standardized, modular, flexible, radio-hybrid navigation system software processor.

The machine-and-language-independent (MLI) processor specification which has in particular been developed to date has been designed so that -- with appropriate, minor, system-specific tailoring -- it can serve as the basic specification for the navigation software development for any specific system, within a wide range of navigation hardware equipment configurations and mission requirements. These currently include any combination of radio (LOS or earth mode), inertial, AHRS, and CADS navigation equipments, as well as the requirements associated with most military and civil aircraft missions and usages. In addition, the MLI processor has been carefully structured to allow for easy accommodation of additional navigation hardware processing requirements. (Continued)

DD . FORM .. 1473

UNCLASSIFIED

ABSTRACT OF AFAL-TR-73-297 (Continued)

The second-phase effort used as its point of departure and developmental framework the basic guidelines, concepts and algorithms established in the initial phase. These include, in particular, the exclusive use of vector-matrix algorithm formulations, processor organization into basic, building-block function- and hardware-specific modules and submodules, the use of a single, mission-phase switchable, computational reference frame, and the use of partitioned, modularly organized Kalman filtering techniques. The overall second-phase effort itself consisted of two main, more or less sequential developments: (a) the extension and refinement of the MLI processor capabilities beyond its first-phase level, and (b) the initial development of a specialized, higher-order language navigation program using the MLI processor specification as a basis.

The improvements of the MLI processor accomplished in the second phase included (a) extension of its navigation hardware applicability to allow use of cheaper AHRU/CADS equipment, either in lieu of or as a backup to an IMU; (b) further development and refinement of a novel and promising radio-autonomous navigation technique; (c) extension and refinement of processor and navigation equipment initialization and alignment techniques; (d) development of a completely partitioned and modularized Kalman filter; and (e) development of a complete set of processor mode control and switching logic specifications. In particular, one of the initialization algorithms developed is a new and powerful one which allows undegraded Kalman filter use of radio pseudoranging measurements, despite large LOS directional uncertainties. Further, the Kalman filter partitioned modularity was achieved without artificial (and performance-degrading) decoupling of interpartition system error dynamics.

Time and money constraints permitted development of the specialized FORTRAN IV/IBM 370 processor program only to a very limited stage. Specifically, all the principal navigation modules required for a single assumed LOS/inertial navigation hardware configuration and navigation mode of operation have been programmed and checked out (for fixed inputs only); no mode switching or control modules have been programmed. However, even this limited level of development was intended (and has ser ed) to accomplish two purposes. First, it provided a learn-by-doing vehicle for the broadly experienced programmer assigned the task, to assay the viability of the MLI processor specifications from the standpoint of real-time programming in either an HOL or a machine-specific language. The preliminary conclusions reached in this regard are that the MLI specification provides the programmer with an extremely flexible and easily modifiable, but standardized approach to programming real-time, multisensor, Kalman (or non-Kalman) navigation system software for any airborne digital computer. In addition, it places overall program efficiency and balance (with regard to execution time and memory requirements) much more completely under the control of the programmer than traditional types of specification.

ABSTRACT OF AFAL-TR-73-297 (Continued)

The second purpose accomplished lies in the fact that the programmed modules thus far developed constitute a nucleus-in-being for further devel-opment of either a processor evaluation simulation program on the one hand, or a standardized, real-time HOL master navigation program for subsequent machine-specific translation, on the other.

UNCLASSIFIED

Security Classification

14	Security Classification		LIN	K B	LINK C	
REV WORDS		WT	ROLE WT		ROLE WT	
Algorithm Attitude and Heading Reference System (AHRS) Building Block Central Air Data System (CADS) Higher-Order Language (HOL) Inertial Measurement Unit (IMU) Inertial Navigation Initialization Kalman Filter Line of Sight (LOS) Machine-and-Language-Independent (MLI) Modular Module Multilateration Multisensor Navigation Partitioned Processor Radio-Autonomous Navigation Radio-Hybrid Navigation Radio-Beudoranging Simulation Software Vector-Matrix	ROLE		ROLE		ROLE	W T

UNCLASSIFIED

Security Classification