A Conjecture for Primitive Pythagorean Triples

R. Scott McIntire

July 6, 2023

1 Definitions

After a few definitions we describe a conjecture regarding Primitive Pythagorean Triples. We use standard notation to indicate that the natural numbers are represented by the symbol $\mathbb N$ and we use the symbol $\mathbb P$ to denote the set of prime numbers.

Definition 1. Pythagorean Triples denoted, \mathcal{T} , are triplets of numbers representing the length of the sides of right triangles where all the sides are integers. Specifically,

$$\mathcal{T} = \{(x, y, z) \mid (x, y, z) \in \mathbb{N}^3 \land x^2 + y^2 = z^2\}$$
 (1)

The usual definition.

Definition 2. Primitive Pythagorean Triples denoted, \mathcal{T}_p , are Pythagorean Triples which have no common factors. Specifically,

$$\mathcal{T}_p = \{(x, y, z) \mid (x, y, z) \in \mathbb{N}^3 \land \gcd(x, y) = 1 \land x^2 + y^2 = z^2\}$$
 (2)

The usual definition.

Definition 3. Primitive Pythagorean Hypotenuses denoted, \mathcal{H} , defined by:

$$\mathcal{H} = \{ z \mid \exists (x, y) \in \mathbb{N}^2, \ (x, y, z) \in \mathcal{T}_p \}$$
 (3)

This represents the set of all possible hypotenuses of primitive Pythagorean triples.

Definition 4. Pythagorean Primes denoted, \mathcal{H}_p , defined by:

$$\mathcal{H}_p = \{ z \mid \exists (x, y) \in \mathbb{N}^2, (x, y, z) \in \mathcal{T}_p \land z \in \mathbb{P} \}$$
 (4)

This represents the set of all possible lengths of hypotenuses of right triangles with integer sides that are prime.

Note: \mathcal{H}_p is a *proper* subset of the primes: $\mathcal{H}_p \subset \mathbb{P}$.

Note: If the sets \mathcal{H} or \mathcal{H}_p are treated as lists, they are indexed in sorted order.

Definition 5. The Prime Parity function, Π , is defined on any prime, p, with $p \geq 5$ by:

$$\Pi(p) = \begin{cases} 1 & \exists n \in \mathbb{N}, p = 6n + 1 \\ -1 & \exists n \in \mathbb{N}, p = 6n - 1 \end{cases}$$
 (5)

Definition 6. First Deviation function, Δ_p , is defined by:

$$\Delta_p(n) = \min_{m} \left\{ m \mid n \le \left(\sum_{i=1}^m \Pi(\mathcal{H}_p[i]) - \sum_{i=3}^{m+2} \Pi(\mathbb{P}[i]) \right) \right\}$$
 (6)

Clearly, Δ_p is a non-decreasing function.

2 McIntire's Pythagorean Triple Conjectures

Define \mathcal{H}_d and \mathcal{H}_u by:

$$\mathcal{H}_d = \{ z \mid \exists (x_1, x_2, y_1, y_2) \in \mathbb{N}^4, \ (x_1, y_1, z) \in \mathcal{T}_p \land (x_2, y_2, z) \in \mathcal{T}_p \land x_1 \neq x_2 \}$$
 (7)

$$\mathcal{H}_u = \{ z \mid \exists (p, n) \in (\mathcal{H}_p, \mathbb{N}), \ z = p^n \}$$
(8)

It is a well established *conjecture* in the mathematical community that the cardinality of \mathcal{H}_p is infinite: $|\mathcal{H}_p| = \infty$.

Conjecture 1. The set \mathcal{H}_d has infinite cardinality:

1. $|\mathcal{H}_d| = \infty$.

Conjecture 2. The set \mathcal{H} is partitioned by the sets \mathcal{H}_d and \mathcal{H}_u :

- 1. $\mathcal{H} = \mathcal{H}_d \cup \mathcal{H}_u$;
- 2. $\emptyset = \mathcal{H}_d \cap \mathcal{H}_u$.

In simple terms the conjecture says that each element of the set of all primitive Pythagorean hypotenuses is either a power of a Pythagorean prime; or, is the length of the hypotenuse of more than one "primitive" right triangle.

Conjecture 3. Properties of the cumulative parity of \mathcal{H}_p indicates that it is non-trivial:

¹If for a given
$$n$$
, $\left\{m \mid n \leq \left(\sum_{i=1}^{m} \Pi(\mathcal{H}_{p}[i]) - \sum_{i=3}^{m+2} \Pi(\mathbb{P}[i])\right)\right\} = \emptyset$, we set $\Delta_{p}(n) = \infty$.

1.
$$\lim_{n\to\infty} \frac{\sum\limits_{i=1}^n \Pi(\mathcal{H}_p[i])}{n} = 0;$$

- 2. $\forall n \in \mathbb{N}, \Delta_p(n) < \infty;$
- 3. $\lim_{n \to \infty} \frac{\Delta_p(n)}{n^{\ln(2\pi)}} = 41.$

These last conjectures suggest that the Pythagorean primes are non-trivial in a way similar to the primes.

- 1. The first conjecture states that the \mathcal{H}_p primes are "spread out" in a way similar to the set of all primes.
- 2. From numerical experiments, its seems that the cumulative parity of \mathcal{H}_p is "on average" lower than the cumulative parity of all primes. The second and third conjectures suggest that there are non-trivial deviations from this rule. This "mixing" of the cumulative parity of \mathcal{H}_p with that of \mathbb{P} suggests that the Pythagorean primes are as "complex" as the set of all primes.