Билеты по мат. анализу, 2 сем (преподаватель Кононова А. А.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	Интегральные суммы Римана. Интегрируемость по Риману.	6
2	Интегрируемость по Риману. Ограниченность интегрируемой функции.	8
3	Суммы Дарбу, их свойства (связь с суммами Римана, поведение при измельчении).	9
4	Критерий интегрируемости в терминах сумм Дарбу. Критерий Римана (б/д).	11
5	Интегрируемость непрерывной функции, монотонной функции.	- 12
6	Интегрируемость кусочно-непрерывной функции.	13
7	Интегрируемость суммы, произведения, модуля.	14
8	Интегрируемость функции и ее сужений.	15
9	Свойства интеграла Римана (линейность; аддитивность; свойства, связанные с неравенствами).	16
10	Первая теорема о среднем. Следствие для непрерывных функций.	18
11	Формула Ньютона-Лейбница. Теорема об интеграле с переменным верхним пределом.	19
12	Формула интегрирования по частям в интеграле Римана. Применение: формула Валлиса.	22

19	форме.	24
14	Формула интегрирования по частям в интеграле Римана. Вторая теорема о среднем.	25
15	Замена переменной в определенном интеграле (две формулировки, доказательство одной).	26
16	Признаки сравнения для положительных рядов.	28
17	Признаки Даламбера и Коши для положительных рядов.	29
18	Абсолютная и условная сходимость рядов. Сходимость следует из абсолютной сходимости.	30
19	Абсолютная и условная сходимость. Пример: $\sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$	31
20	Перестановка абсолютно сходящегося ряда. Теорема Римана (б/д).	32
21	Асимптотика частичных сумм расходящегося ряда (случай гармонического ряда). Постоянная Эйлера.	34
22	Несобственные интегралы. Примеры. Несобственный интеграл в смысле главного значения. Критерий Больцано- Коши для несобственных интегралов.	35
23	Свойства несобственных интегралов (линейность, аддитивность, монотонность, формула Ньютона-Лейбница).	37
2 4	Свойства несобственных интегралов (интегрирование по частям, замена переменной).	39
25	Интегральный признак Коши сходимости несобственных интегралов и рядов.	40
26	Признаки сравнения для несобственных интегралов.	41
27	Абсолютная и условная сходимость интегралов. Сходимость следует из абсолютной сходимости.	43

28	Абсолютная и условная сходимость. Пример: $\int\limits_0^\infty \frac{\sin x}{x}$	45
2 9	Признаки Дирихле и Абеля для несобственных интегралов (док-во одного из них).	46
3 0	Признаки Дирихле и Абеля для рядов (док-во одного из них).	47
31	Применение интеграла Римана для вычисления площадей и объемов. Примеры.	48
32	Путь. Длина пути. Спрямляемый путь. Аддитивность длины пути.	51
33	Кривая. Длина кривой.	54
34	Теорема о вычислении длины гладкого пути.	55
35	Функциональные последовательности и ряды. Поточечная и равномерная сходимость. Примеры.	57
36	Критерий Коши для равномерной сходимости функциональной последовательности.	58
37	Сохранение непрерывности при равномерном предельном переходе. Теорема Дини (б/д). Теорема о предельном переходе под знаком интеграла.	59
38	Дифференцируемость и равномерная сходимость.	60
39	Признак Вейерштрасса равномерной сходимости функциональных рядов.	61
40	Степенной ряд (в $\mathbb C$). Радиус сходимости. Формула Коши-Адамара.	62
41	Теорема о комплексной дифференцируемости степенного ряда. Следствие: единственность разложения в степенной	63
40	ряд.	
42	Ряд Тейлора. Примеры $(e^x, \sin x, \ln(1+x), e^{-\frac{1}{x^2}})$.	64
43	Биномиальный ряд $(1+x)^{\alpha}$	65

44	Признак Абеля-Дирихле для равномерной сходимости функциональных рядов (доказательство одного).	ς <u>-</u> 66
45	Теорема Абеля. Сумма ряда $\sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.	67
46	Интеграл комплекснозначной функции. Скалярное произведение и норма в пространстве $C(\mathbb{C}\backslash\mathbb{R})$, в пространстве $R([a;b])$. Ортогональность. Пример: $e_k(x)=e^{2\pi ikx}$.	68
47	Свойства скалярного произведения и нормы (теорема Пифагора, неравенство Коши-Буняковского-Шварца, неравенство треугольника).	69
48	Коэффициенты Фурье функции по ортогональной системе e_k . Ряд Фурье. Пример: тригонометрический полином.	70
49	Свойства коэффициентов Фурье (коэффициенты Фурье сдвига, производной).	71
50	Неравенство Бесселя. Лемма Римана-Лебега (light).	72
51	Вычисление интеграла Дирихле $\int\limits_0^\infty \frac{\sin x}{x}$.	73
52	Ядра Дирихле, их свойства. Выражение частичных сумм ряда Фурье через ядра Дирихле.	74
53	Свертка. Простейшие свойства. Свертка с тригонометрическими и алгебраическими полиномами.	75
54	Принцип локализации Римана.	7 6
55	Теорема о поточечной сходимости ряда Фурье для локально Гельдеровой функции.	77
56	Ядра Фейера, их свойства. Связь с $\sigma_N(f)$.	78
57	Аппроксимативная единица. Определение, примеры. Теорема о равномерной сходимости свертки с аппроксимативной единицей.	7 9
58	Теорема Фейера. Теорема Вейерштрасса.	80

59	Среднеквадратичное приближение функций, интегрируемых по Риману, тригонометрическими полиномами.	81
60	Равенство Парсеваля.	82
61	Замечания из конспектов, которые не вошли в билеты	83
	61.1 Множества меры ноль	83
	61.2 Критерий Лебега интегрируемости функции	83

1 Интегральные суммы Римана. Интегрируемость по Риману.

Опр

 τ -разбиение на [a;b]:

$$\tau = \{x_k\}_{k=0}^n : a = x_0 < x_1 < \dots < x_n = b$$

Опр

Мелкость разбиения **т**:

$$\lambda(\tau) = \max_{k=0\dots n-1} \Delta_k = x_{k+1} - x_k$$

Опр

Оснащение разбиения т:

$$\xi = \{\xi_k\}_{k=0}^{n-1} : \xi_k \in [x_k, x_{k+1}]$$

Опр

Пусть $f:[a,b] \to \mathbb{R}$, тогда сумма Римана:

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k$$

Опр

Интегралом Римана функции f по отрезку [a,b] называется $I \in \mathbb{R}$:

$$\forall \mathcal{E} > 0 \ \exists \delta > 0 : \forall \tau : \ \lambda(\tau) < \delta, \ \forall \xi \ |S(f, \tau, \xi) - I| < \mathcal{E}$$

то есть неформально

$$\lim_{\lambda(\tau)\to 0} S(f,\tau,\xi) = I$$

Опр

Будем говорить, что f интегрируема по Риману на [a;b], если $\exists I$ - интеграл функции f по Риману на [a,b]. И записывать это как

$$f \in R[a,b], \ I = \int_a^b f(x)dx = \int_a^b f$$

Пример

$$f(x) = C$$

Решение

$$\forall \tau \ \forall \xi \ S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = C \sum_{k=0}^{n-1} \Delta_k = C(b-a)$$
$$I = C(b-a) = \int_a^b C dx$$

Пример

Функция Дирихле $\mathcal{D}(x) = \mathcal{X}_{\mathbb{Q}}$ на отрезке [0,1]

 $\frac{\mathbf{Onp}}{A} \subset \mathbb{R}, \ \mathcal{X}_{A} = \begin{cases} 1, & \textit{ecau } x \in A \\ 0, & \textit{ecau } x \notin A \end{cases}$

Решение

 $\xi^*=\{\xi_k^*\}: \xi_k^*\in \mathbb{Q}\cap [x_k,x_{k+1}]$ - рациональное оснащение $\widetilde{\xi}=\{\widetilde{\xi}_k\}: \widetilde{\xi}_k\in [x_k,x_{k+1}]\setminus \mathbb{Q}$ - иррациональное оснащение $S(f,\tau,\xi^*)=\sum_{k=0}^{n-1}\mathcal{D}(\xi_k^*)\Delta_k=\sum_{k=0}^{n-1}\Delta_k=b-a$ $S(f,\tau,\widetilde{\xi})=0$

 $\mathcal{D} \notin R[0,1]$. Док-во от противного, пусть это не так, тогда

$$\exists I: \ \forall \mathcal{E} > 0 \ \exists \delta > 0: \forall \tau: \ \lambda(\tau) < \delta, \ \forall \xi \ |S(f, \tau, \xi) - I| < \mathcal{E}$$

Возъмём ξ^* и $\widetilde{\xi}$:

$$1 = |S(f, \tau, \xi^*) - S(f, \tau, \widetilde{\xi})| \leq |S(f, \tau, \xi^*) - I| + |S(f, \tau, \widetilde{\xi}) - I| \leq 2\mathcal{E}$$

Пример

$$f(x) = \mathcal{X}_0, f \in R[-1, 1]$$

Решение

Покажем, что I = 0. ξ_i на интервалах δ_i может тах два раза попадать в θ . Пусть это будет при k, k+1. Тогда:

$$S(f, \tau, \xi) = \sum_{i=0}^{n-1} f(\xi_i) \Delta_i = \sum_{i=0, i \neq k, k+1}^{n-1} f(\xi_i) \Delta_i + f(\xi_k) \Delta_k + f(\xi_{k+1}) \Delta_{k+1} =$$

$$= f(\xi_k) \Delta_k + f(\xi_{k+1}) \Delta_{k+1} \leqslant \Delta_k + \Delta_{k+1} < 2\lambda(\tau) \to 0$$

2 Интегрируемость по Риману. Ограниченность интегрируемой функции.

Определение интегрируемости см. в первом билете.

y_{TB}

Eсли $f \in R[a,b]$, то f - ограничена на [a,b].

Док-во (от противного)

 $\Pi ycmb \sup_{[a,b]} f(x) = +\infty.$

Для $\mathcal{E} = 1 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta, \; \forall \xi \; |S(f, \tau, \xi) - I| < \mathcal{E}.$

Зафиксируем $\tau^*:\lambda(\tau^*)<\delta$:

$$Ta\kappa \ \kappa a\kappa \ \sup_{[a,b]} f(x) = +\infty \Rightarrow \exists k : \sup_{[x_k, x_{k+1}]} f(x) = +\infty.$$

"отпустим ξ_k^* ". $S(f, \tau, \xi) = \sum_{i=0}^{n-1} f(\xi_i) \Delta_i = \sum_{i \neq k}^{n-1} f(\xi_i) \Delta_i + f(\xi_k) \Delta_k$ (неограничена, выберем ξ_k так чтобы) $> \mathcal{E} + I$, Противоречие.

3 Суммы Дарбу, их свойства (связь с суммами Римана, поведение при измельчении).

Опр

Пусть
$$f:[a,b] \to \mathbb{R}$$
, τ -разбиение. $M_k = \sup_{[x_k,x_{k+1}]} f(x)$, $m_k = \inf_{[x_k,x_{k+1}]} f(x)$, тогда: $S^*(f,\tau) := \sum_{k=0}^{n-1} M_k \Delta_k$ - верхняя сумма Дарбу $S_*(f,\tau) := \sum_{k=0}^{n-1} m_k \Delta_k$ - нижняя сумма Дарбу

Опр

au' называется измельчением au ($au' \prec au$), если $au \subset au'$

Свойства

1.
$$\forall \xi, f, \tau$$
 - safurc $\Rightarrow S_*(f, \tau) \leqslant S(f, \tau, \xi) \leqslant S^*(f, \tau)$

2. (a)
$$S^*(f, \tau) = \sup_{\xi} S(f, \tau, \xi),$$
 (6) $S_*(f, \tau) = \inf_{\xi} S(f, \tau, \xi)$

3.
$$S^*(f, \tau') \leq S^*(f, \tau), S_*(f, \tau') \geqslant S_*(f, \tau)$$

4.
$$\forall \tau_1, \tau_2 : S_*(\tau_1) \leq S^*(\tau_2)$$

Док-во

- 1. Очевидно из определения
- 2. Докажем пункт (а). Нужно доказать, что:

$$\forall \mathcal{E} > 0 \ \exists \xi^* \ S(f, \tau, \xi^*) > S^*(f, \tau) - \mathcal{E}$$

$$M_k = \sup_{[x_k, x_{k+1}]} \Rightarrow \exists \xi_k^* : f(\xi_k^*) > M_k - \frac{\mathcal{E}}{b - a}$$

$$S(f, \tau, \xi^*) = \sum_{k=0}^{n-1} f(\xi^*) \Delta_k > \sum_{k=0}^{n-1} M_k \Delta_k - \frac{\mathcal{E}}{b - a} \sum_{k=0}^{n-1} \Delta_k = S^*(f, \tau) - \mathcal{E}$$

3. Пусть $\tau : x_0 < x_1 < ... < x_n$, добавим x':

$$\tau': x_0 < x_1 < \dots < x_k < x' < x_{k+1} < \dots < x_n,$$

$$S^*(f,\tau) - S^*(f,\tau') = \sup_{[x_k, x_{k+1}]} f(x)(x_{k+1} - x_k) - \sup_{[x_k, x']} f(x)(x' - x_k) - \sup_{[x', x_{k+1}]} f(x)(x_{k+1} - x') \geqslant \sup_{[x_k, x_{k+1}]} f(x)(x_{k+1} - x_k - x' + x_k - x_{k+1} + x') = 0, \Rightarrow S^*(f,\tau') \leqslant S^*(f,\tau)$$

4. Пусть $\tau=\tau_1\cup\tau_2$ (произведение разбиений в обозначениях Кононовой), тогда $\tau\prec\tau_1,\tau_2$, значит

$$S_*(f, \tau_1) \leqslant S_*(f, \tau) \leqslant S^*(f, \tau) \leqslant S^*(f, \tau_2)$$

4 Критерий интегрируемости в терминах сумм Дарбу. Критерий Римана (б/д).

Теорема (критерий Дарбу)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \delta > 0 : \forall \lambda(\tau) < \delta \Rightarrow S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

Док-во

 (\Rightarrow) Необходимость. $f \in R[a,b] \Rightarrow I \in \mathbb{R}$:

$$\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta, \; \forall \xi \; |S(f, \tau, \xi) - I| < \frac{\mathcal{E}}{3}$$
$$I - \frac{\mathcal{E}}{3} \leqslant S_*(f, \tau) \leqslant S(f, \tau, \xi) \leqslant S^*(f, \tau) \leqslant I + \frac{\mathcal{E}}{3}$$
$$0 \leqslant S^*(f, \tau) - S_*(f, \tau) \leqslant \frac{2\mathcal{E}}{3} < \mathcal{E}$$

 (\Leftarrow) Достаточность.

$$\forall \mathcal{E} > 0 \ \exists \delta > 0 : \forall \tau : \ \lambda(\tau) < \delta \ S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

$$I^* := \inf_{\tau} S^*(f,\tau), \ I_* := \sup_{\tau} S_*(f,\tau)$$

$$0 \leqslant I^* - I_* \leqslant S^*(f,\tau) - S_*(f,\tau) < \mathcal{E} \Rightarrow I^* = I_* = I$$

$$\forall \xi \ S_*(f,\tau) \leqslant S(f,\tau,\xi) \leqslant S^*(f,\tau) \Rightarrow |S(f,\tau,\xi) - I| < \mathcal{E}$$

Теорема (критерий Римана)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \tau : S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

5 Интегрируемость непрерывной функции, монотонной функции.

Опр

Колебание
$$f: E \to \mathbb{R}$$
 на $E \subset \mathbb{R}$, $\omega(f, E) = \sup_{x \in E} f(x) - \inf_{x \in E} f(x)$,
$$d_k = [x_k, x_{k+1}], \ S^*(f, \tau) - S_*(f, \tau) = \sum_{k=0}^{n-1} M_k \Delta_k - \sum_{k=0}^{n-1} m_k \Delta_k = \sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k$$

Теорема (критерий Дарбу, другая форма)

$$f \in R[a, b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \delta > 0 : \forall \tau : \lambda(\tau) < \delta \Rightarrow \sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k < \mathcal{E}$$

(неформально
$$\lim_{\lambda(\tau)\to 0}\sum_{k=0}^{n-1}\omega(f,d_k)\Delta_k=0$$
)

Следствие (1)

$$C[a,b] \subset R[a,b]$$

Док-во

$$f \in C[a,b] \Rightarrow f$$
 равн. непр. на $[a,b]$

$$\Leftrightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall x', x'' \in E \; \textit{cnpasednuso} \; |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \mathcal{E}$$

$$\Rightarrow \forall \tau : \lambda(\tau) < \delta \Rightarrow \omega(f, d_k) < \mathcal{E}, \ pacchompun$$

$$\sum_{k=0}^{n-1} \omega(f,d_k) \Delta_k < \mathcal{E} \sum_{k=0}^{n-1} \Delta_k = \mathcal{E}(b-a) \widetilde{\mathcal{E}} \Rightarrow \text{ no критерию Дарбу } f \in R[a,b]$$

$\underline{\text{Следствие}}$ (2)

 \overline{f} -ограничена и монотонна на $[a,b] \Rightarrow f \in R[a,b]$

Док-во

$$(f\nearrow) \ \forall \mathcal{E} > 0 \ \exists \delta = \frac{\mathcal{E}}{f(b) - f(a)}, \ nycmb \ \lambda(\tau) < \delta$$

$$\sum_{k=0}^{k-1} \omega(f, d_k) \Delta_k \leqslant \delta \sum_{k=0}^{k-1} (f(x_{k+1}) - f(x_k)) = \delta(f(b) - f(a)) = \mathcal{E}$$

6 Интегрируемость кусочно-непрерывной функции.

Опр

 $f:[a,b] o\mathbb{R}$ - кусочно-непрерывная функция, если: $f\in C([a,b]\setminus\{t_1,...,t_n\})\ u\ t_1,...,t_n\ -$ точки разрыва I рода

Следствие (3)

 $f:[a,b] o \mathbb{R}$ - кусочно-непрерывная $\Rightarrow f \in R[a,b]$

Док-во

Пусть $A = \{k \in \mathbb{N} | \exists j : t_j \in d_k\}, C = \omega(f, [a, b]) < \infty$ Если $k \notin A \Rightarrow f$ - непр. на $d_k \Rightarrow p/n \Rightarrow \exists \delta_k$ из p/n. Причем $|A| \leqslant 2n$, потому что t_j могут попасть в тах два соседниих промежутка. Возьмём $\delta = \min_{k \notin A} \delta_k$, если $\tau : \lambda(\tau) < \delta$, то

$$\sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k = \sum_{k \in A} \omega(f, d_k) \Delta_k + \sum_{k \notin A} \omega(f, d_k) \Delta_k \leqslant 2nC\lambda_k + \mathcal{E} \sum_{k=0}^{n-1} \Delta_k < 2nC\lambda(\tau) + \mathcal{E}(b-a) < (nycmb \ \widetilde{\delta} = \min(\delta, \frac{\mathcal{E}}{2nC}), \ morda \ \forall \tau : \lambda(\tau) < \delta) < \mathcal{E} + \mathcal{E}(b-a) = \mathcal{E}(1+b-a)$$

7 Интегрируемость суммы, произведения, модуля.

<u>Свойство</u> (1)

$$f, g \in R[a, b] \Rightarrow f + g \in R[a, b]$$

Док-во

$$\omega(f+g,E) = \sup_{E} (f+g) - \inf_{E} (f+g) \leqslant \sup_{E} f + \sup_{E} g - \inf_{E} f - \inf_{E} g$$

$$\leqslant \omega(f,E) + \omega(g,E) \to 0 \underset{\text{Kp. } \mathcal{J}ap6y}{\Rightarrow} f + g \in R[a,b]$$

Свойство (2)

$$f \in R[a,b] \Rightarrow f^2 \in R[a,b]$$

Док-во

$$\overline{f}$$
 - ограничено $\Rightarrow \exists M>0: |f(x)|\leqslant M \quad \forall x\in [a,b]$ $\omega(f^2,E)=\sup_E(f^2)-\inf_E(f^2)=\sup_{x_1,x_2\in E}(f^2(x_2)-f^2(x_1))=$ $=\sup_{x_1,x_2\in E}(f(x_2)-f(x_1))(f(x_2)+f(x_1))\leqslant 2M\omega(f,E)\to 0$

Свойство (3)

$$f,g \in R[a,b] \Rightarrow f \cdot g \in R[a,b]$$

Док-во

 $Ta\kappa \ \kappa a\kappa \ f \in R[a,b] \Rightarrow -f \in R[a,b]$

$$\Rightarrow f \cdot g = \frac{1}{4}((f+g)^2 - (f-g)^2) \in R[a,b]$$

<u>Свойство</u> (4)

$$f \in R[a,b] \Rightarrow |f| \in R[a,b]$$

Док-во

$$\overline{||f(x_1)| - |f(x_2)||} \leqslant |f(x_2) - f(x_1)| \xrightarrow{sup} \omega(|f|, E) \leqslant \omega(f, E) \to 0 \Rightarrow \in R[a, b]$$

8 Интегрируемость функции и ее сужений.

Свойство (5)

$$f \in R[a,b], \ [c,d] \subset [a,b] \Rightarrow f \in R[c,d]$$

Док-во

$$f \in R[a,b] \Rightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 :$$

для всех τ' на [c,d] расширенных до τ на [a,b] :

$$\lambda(\tau) < \delta \Rightarrow \sum_{pas6 \ \tau'} \omega(f, d_k) \Delta_k \Rightarrow \sum_{pas6 \ \tau} \omega(f, d_k) \Delta_k \Rightarrow < \mathcal{E}$$

Свойство (6)

$$a < c < b \Rightarrow R[a, c] \cup R[c, b] \subset R[a, b]$$

Док-во

$$orall \mathcal{E} > 0 \,\,\exists \delta_1 > 0 \,\,$$
 на $[a,c]: \lambda(\tau_1) < \delta_1 \Rightarrow S^*(f_1,\tau_1) - S_*(f_1,\tau_1) < \mathcal{E}$ $\exists \delta_2 > 0 \,\,$ на $[c,b]: \lambda(\tau_2) < \delta_2 \Rightarrow S^*(f_2,\tau_2) - S_*(f_2,\tau_2) < \mathcal{E}$ Пусть $\delta = min(\delta_1,\delta_2), \,\, \tau = \tau_1 \cup \tau_2, \,\, \lambda(\tau_1) < \delta, \,\, \lambda(\tau_2) < \delta$

Мог произойти разрыв, но $|f| \leqslant M \Rightarrow \omega(f, [a, b]) < W$

$$\sum \omega(f, d_k) \Delta_k = S^*(f, \tau) - S_*(f, \tau) \leqslant S^*(f, \tau_1) - S_*(f, \tau_1) + S^*(f, \tau_2) - S_*(f, \tau_2) + d_m^{\mathcal{I}} \Delta_m^{\mathcal{I}} + d_m^{\mathcal{I}} \Delta_m^{\mathcal{I}} \leqslant (d_m = d_m^{\mathcal{I}} \cup d_m^{\mathcal{I}}, \ \widetilde{\delta} = \min(\delta_1, \delta_2, \frac{\mathcal{E}}{W})) 2\mathcal{E} + W\widetilde{\delta} < 3\mathcal{E}$$

9 Свойства интеграла Римана (линейность; аддитивность; свойства, связанные с неравенствами).

Опр Eсли a < b, то $\int_{a}^{a} f = -\int_{a}^{b} f \ u \int_{a}^{a} = 0$

Свойство (1, линейность)

$$\forall f, g \in R[a, b], \alpha, \beta \in \mathbb{R} \Rightarrow \int_{b}^{a} (\alpha f + \beta g) = \alpha \int_{b}^{a} f + \beta \int_{b}^{a} g$$

Док-во

Знаем, что $\alpha f + \beta g \in R[a,b],$

 $S(\alpha f + \beta g, \tau, \xi) = \alpha S(f, \tau, \xi) + \beta S(g, \tau, \xi)$ (очевидно из определения сумм Римана)

Свойство (2, аддитивность)

$$\forall f \in R[a, b], \ a < c < b \Rightarrow \int_{b}^{a} f = \int_{c}^{a} f + \int_{b}^{c} f$$

Док-во

Очевидно (аналогично прошлому)

<u>Свойство</u> (3)

$$\forall f \in R[a, b], \ a < b, \ f \geqslant 0 \Rightarrow \int_{a}^{b} f \geqslant 0$$

Док-во

<u>Свойство</u> (4)

$$\forall f, g \in R[a, b], \ g(x) \leqslant f(x) \ \forall x \in [a, b], a < b \Rightarrow \int_{b}^{a} g \leqslant \int_{b}^{a} f$$

Док-во

Очевидно, если взять одно разбиение и оснащение

<u>Свойство</u> (5)

$$\forall f \in R[a,b], \ m \leqslant f(x) \leqslant M \ \forall x \in [a,b], \ a < b \Rightarrow m(b-a) \leqslant \int\limits_{b}^{a} f \leqslant M(b-a)$$

Док-во

С использованием предыдущего свойства взять интеграл

Свойство (6)

$$f \in R[a, b], \ m = \inf_{[a, b]} f, \ M = \sup_{[a, b]} f \Rightarrow \exists \mu \in [m, M] : \int_{b}^{a} f = \mu(b - a)$$

Док-во

$$\mu = \frac{\int\limits_{b}^{a}f}{b-a} \in [m,M] \ (no\ npedыдущему\ неравенству)$$

Свойство (7)

$$f \in C[a,b], \Rightarrow \exists \xi \in [a,b] : \int_{b}^{a} f = f(\xi)(b-a)$$

Док-во

По теореме о промежуточном значении (Больцано-Коши) используя предыдущее свойство

Свойство (8)

$$f \in R[a,b], \Rightarrow |\int_{b}^{a} f| \leqslant \int_{b}^{a} |f|$$

$$rac{ extstyle \mathcal{L}$$
ок-во $-|f| \leqslant f \leqslant |f| \Rightarrow -\int\limits_b^a |f| \leqslant \int\limits_b^a f \leqslant \int\limits_b^a |f| \Rightarrow |\int\limits_b^a f| \leqslant \int\limits_b^a |f|$

10 Первая теорема о среднем. Следствие для непрерывных функций.

Теорема

$$f, g \in R[a, b], g \geqslant 0, m \leqslant f \leqslant M$$

$$\forall x \in [a, b] \Rightarrow \exists \mu \in [m, M] : \int_{b}^{a} fg = \mu \int_{b}^{a} g$$

$$\frac{\mathbf{Док-во}}{mg} \leqslant fg \leqslant Mg \Rightarrow m \int_{b}^{a} g \leqslant \int_{b}^{a} fg \leqslant M \int_{b}^{a} g$$

$$a) \int_{b}^{a} g = 0, \ mor \partial a \ \mu - \text{любое}.$$

$$b) \int_{b}^{a} g \neq 0 \Rightarrow \mu := \frac{\int_{a}^{a} fg}{\int_{g}^{a}} \in [m, M]$$

Следствие

$$\frac{\underline{\underline{A}} \in \underline{\underline{B}} \underline{\underline{B}} \underline{\underline{B}}}{\underline{\underline{E}} \underline{\underline{C}} \underline{\underline{C}} \underline{\underline{C}} \underline{\underline{C}}} \in C[a,b], \ g \in R[a,b], \ g \geqslant 0 \Rightarrow \exists \xi \in [a,b] : \int_{b}^{a} f g = f(\xi) \int_{b}^{a} g d\xi$$

Док-во

По теореме о промежуточном значении (Больцано-Коши) используя неравенство из последнего доказательства для $m=\inf_{[a,b]}f,\ M=\sup_{[a,b]}f$

11 Формула Ньютона-Лейбница. Теорема об интеграле с переменным верхним пределом.

Опр

$$E \subset \mathbb{R}, \quad F: E \to \mathbb{R} \quad f: E \to \mathbb{R}$$

Тогда F называется первообразной f, если $F'(x)=f(x) \quad \forall x \in E$ $E \subset \mathbb{R}, \ F:E \to \mathbb{R}, \ f:E \to \mathbb{R}, \ morдa \ F$ называется первообразной f, если $F'(x)=f(x) \ \forall x \in E$

 y_{TB}

 F_1, F_2 - первообразные f на E, тогда:

$$F(x_1) - F(x_2) = \text{const} \ (m.\ Лагранжа)$$

Теорема (формула Ньютона-Лейбница)

 $f \in R[a,b], \ F$ -первообразная $f, \ mor \partial a$:

$$\int_{a}^{b} f = F(b) - F(a) = F|_{a}^{b}$$

Док-во

 $\forall \tau$ на [a,b] по теореме Лагранжа:

$$\exists \xi_k \in [x_k, x_{k+1}]: F(x_{k+1}) - F(x_k) = F'(\xi_k)(x_{k+1} - x_k) = f(\xi_k)\Delta_k$$

 $Ta\kappa \ \kappa a\kappa \ f \in R[a,b] \Rightarrow \forall \mathcal{E} > 0 \ \exists \delta > 0 : \forall \tau : \ \lambda(\tau) < \delta, \ \forall \xi \ |S(f,\tau,\xi) - I| < \mathcal{E}$ Возъмём оснащение ξ из теоремы Лагранжа:

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = \sum_{k=0}^{n-1} (F(x_{k+1}) - F(x_k)) = F(b) - F(a)$$

Опр

 $E \subset \mathbb{R}, \ E$ - невырожденный промежуток, $f: E \to \mathbb{R}, \ \forall \alpha, \beta \in E: \alpha < \beta,$ $f \in R[\alpha, \beta], \ \partial$ ля $a \in E$ (фиксированного) $F(x) := \int\limits_a^x f(t) dt \ (F: E \to \mathbb{R})$

Теорема

$$f \in R[a,b], \ F(x) = \int_a^x f(t)dt, \ mor \partial a:$$

- 1. $F \in C[a,b]$
- 2. (теорема Барроу) Если f непр. в т. $x_0 \in [a,b]$, то $F'(x_0) = f(x_0)$

Док-во

$$\overline{x \in [a,b]}, \ h: x+h \in [a,b]$$

$$1) \ F(x+h) - F(x) = \int_{a}^{x+h} f - \int_{a}^{x} f = \int_{a}^{x+h} f + \int_{a}^{a} f = \int_{x}^{x+h} f$$

$$Tak \ kak \ f \in R[a,b] \Rightarrow \exists M \in \mathbb{R} : |f| < M, \ \textit{sharum}:$$

$$|F(x+h)-F(x)| \leqslant |\int_{x}^{x+h} f| \leqslant \int_{x+h}^{x+h} |f| \leqslant M|h|$$

$$Kpome \ moso, \ \forall \mathcal{E} > 0, \ \delta = \frac{\mathcal{E}}{M} \ ecnu \ |h| < \delta \Rightarrow |F(x+h) - F(x)| < \mathcal{E}$$

$$2) \ Paccmompum \ |\frac{F(x_0+h)-F(x_0)}{h} - f(x_0)| = |\frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt - f(x_0)\frac{1}{h} \int_{x_0}^{x_0+h} dt| =$$

$$= \frac{1}{|h|} |\int_{x_0}^{x_0+h} (f(t) - f(x_0))dt| \leqslant \frac{1}{|h|} |\int_{x_0}^{x_0+h} \mathcal{E}dt| = \mathcal{E}$$

$$(npu \ |h| < \delta \ \forall \mathcal{E} > 0 \ \exists \delta > 0 : |t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \mathcal{E})$$

Следствие

$$F \in C[a,b] \Rightarrow \exists F : F'(x) = f(x) \ \forall x \in [a,b]$$

Пример

$$f(x) = |x|, \ F(x) = \int_{0}^{x} |t| dt = \begin{cases} \frac{t^{2}}{2} \Big|_{0}^{x}, & x \geqslant 0 \\ -\frac{t^{2}}{2} \Big|_{0}^{x}, & x < 0 \end{cases}$$

$$\frac{\mathbf{\Pi}\mathbf{pимep}}{f(x)} = \begin{cases} 1, & x \geqslant 0\\ -1, & x < 0 \end{cases}$$

 $F(x) = |x| \ \forall x \neq 0$, видно что неверно для первообразной, но:

 $\frac{\mathbf{Onp}}{F}$ - "почти первообразная", если:

1.
$$F'(x) = f(x) \ \forall x \in [a, b] \setminus \{t_1, ...t_n\}$$

2.
$$F \in C[a, b]$$

Пример

 $\frac{\mathbf{Horm}}{\Pi p u mep}$ для "почти первообразной". Найти $\int\limits_0^2 f(x),\ d$ ля $f(x)=\max(1,x)$

$$F(t) \stackrel{?}{=} \begin{cases} t, & t \in [0, 1] \\ \frac{t^2}{2}, & t \in [1, 2] \end{cases}$$

Попробуем использовать H-Л: $F(t)\big|_0^2=F(2)-F(0)=2$ Неверно, потому что это не первообразная и даже не "почти первообразная". Поправим F(x):

$$F(t) = \begin{cases} t, & t \in [0, 1] \\ \frac{t^2}{2} + \frac{1}{2}, & t \in [1, 2] \end{cases}$$

Это уже "почти первообразная" можно применять Н-Л.

12 Формула интегрирования по частям в интеграле Римана. Применение: формула Валлиса.

Теорема

$$F,G$$
 - первообразные $f,g\in R[a,b]$ на $[a,b],$ тогда $\int\limits_a^b Fg=FG|_a^b-\int\limits_a^b fG$
$$(\int\limits_a^b uv'=uv|_a^b-\int\limits_a^b u'v)$$

Док-во

$$(FG)' = fG + Fg$$
, no fine H-I: $\int_{a}^{b} (FG)' = FG|_{a}^{b} = \int_{a}^{b} fG + |_{a}^{b} Fg|_{a}^{b}$

 $\frac{\mathbf{\Pi}\mathbf{pимеp}}{Ecnu} I_m := \int_{0}^{\frac{\pi}{2}} \sin^m x dx = \int_{0}^{\frac{\pi}{2}} \cos^m x dx, mo:$

Док-во

$$I_{m} = \int_{0}^{\frac{\pi}{2}} \sin^{m} x dx = \int_{0}^{\frac{\pi}{2}} (-\cos x)' \sin^{m-1} x dx =$$

$$= -\cos x \sin^{m-1} x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos^{2} x (m-1) \sin^{m-2} x dx =$$

$$= (m-1) \int_{0}^{\frac{\pi}{2}} (\sin^{m-2} x - \sin^{m} x) dx = (m-1)(I_{m-2} - I_{m})$$

$$I_m = \frac{m-1}{m} I_{m-2}, \ I_0 = \frac{\pi}{2}, \ I_1 = 1, \ I_2 = \frac{\pi}{2} \frac{1}{2}, \ I_{2k} = \frac{\pi}{2} \frac{1}{2} \frac{3}{4} \dots \frac{2k-1}{2k} = \frac{\pi}{2} \frac{(2k-1)!!}{(2k)!!}$$

Теорема (Формула Валлиса)

$$\lim_{n\to\infty}\frac{2*2*4*4*...*(2n)(2n)}{1*3*3*5*5...(2n-1)(2n+1)}=\frac{\pi}{2}\ (u\text{nu}\ \lim_{n\to\infty}\frac{1}{n}(\frac{(2n)!!}{(2n-1)!!})^2=\pi)$$

Док-во
$$\forall x \in [0, \frac{\pi}{2}] \text{ верно } \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x$$

$$\frac{(2n)!!}{(2n+1)!!} \leqslant \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \leqslant \frac{(2n-2)!!}{(2n-1)!!}$$

$$A_{n} = \frac{((2n)!!)^{2}}{(2n-1)!!(2n+1)!!} \leqslant \frac{\pi}{2} \leqslant \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^{2}} = B_{n}$$

$$B_n - A_n = \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^2} - \frac{((2n)!!)^2}{(2n-1)!!(2n+1)!!} =$$

$$= (\frac{(2n)!!}{(2n-1)!!})^2 (\frac{1}{2n} - \frac{1}{2n+1}) = (\frac{((2n)!!)^2}{(2n-1)!!(2n-1)!!}) \frac{1}{(2n+1)(2n)} =$$

$$= A_n \frac{1}{2n} \leqslant \frac{\pi}{2} \frac{1}{2n} \to_{n \to \infty} 0 \Rightarrow \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n = \frac{\pi}{2}$$

13 Формула Тейлора с остаточным членом в интегральной форме.

Теорема

$$f \in C^{n+1}([a,b]) \Rightarrow f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + R_n(b,a),$$
$$e \partial e \ R_n(b,a) = \frac{1}{n!} \int_a^b f^{(n+1)}(t) (b-t)^n dt$$

Замечание

$$f \in C^{n+1}([a,b]) \Rightarrow f^{(n+1)} \in C[a,b] \Rightarrow \exists \xi \in [a,b] :$$

$$R_n = \frac{1}{n!} f^{(n+1)}(\xi) \int_a^b (b-t)^n dt = \frac{-f^{(n+1)}(\xi)}{n!} \frac{(b-t)^{n+1}}{n+1} \Big|_a^b = \frac{-f^{(n+1)}(\xi)}{(n+1)!} (b-a)^{n+1}$$

Док-во (по индукции)

$$1) n = 0$$

$$f(b)=f(a)+\int\limits_{a}^{b}f'(t)dt$$
 - формула Н-Л

2) Инд. переход. Пусть для n-1 - доказано, $f \in C^{n-1}[a,b] \subset C^n[a,b]$, по инд. предположению:

$$f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + R_{n-1}(*)$$

$$R_{n-1} = \frac{1}{(n-1)!} \int_a^b f^{(n)}(t) (b-t)^{n-1} dt = \begin{bmatrix} u = f^{(n)}(t) \\ dv = (b-t)^{n-1} dt \end{bmatrix} =$$

$$= \frac{1}{(n-1)!} (-f^{(n)}(t) \frac{(b-t)^n}{n} \Big|_a^b + \int_a^b f^{(n+1)}(t) \frac{(b-t)^n}{n} dt) =$$

$$= \frac{1}{(n)!} (f^{(n)}(a)(b-a)^n + \int_a^b f^{(n+1)}(t)(b-t)^n dt) - nodemasums \ e \ (*)$$

Формула интегрирования по частям в ин-14 теграле Римана. Вторая теорема о среднем.

Формулу интегрирования по частям см. в 12 билете.

Теорема (Бонне или вторая теорема о среднем)

$$f\in C[a,b],\ g\in C^1[a,b], g$$
 — монотонна
$$\Rightarrow \exists \xi\in [a,b]: \int^b fg=g(a)\int^\xi f+g(b)\int^b f$$

$$\frac{\text{Док-во}}{(\partial a a a \lambda)} F(x) := \int_{0}^{x} dx$$

Док-во
$$(\partial \Lambda g \nearrow) F(x) := \int\limits_a^x f \Rightarrow F' = f$$

$$\int_{a}^{b} fg = \int_{a}^{b} F'g = Fg|_{a}^{b} - \int_{a}^{b} Fg' = F(b)g(b) - F(a)g(a) - \int_{a}^{b} Fg' = F(a)g' - \int_{a}^{b} Fg' = F(a)g' - \int_{a}^{b} Fg' = F(a)g$$

$$(m.\kappa.\ g\nearrow g\geqslant 0\Rightarrow\ no\ m.\ o\ cpeднем\ \exists \xi\in [a,b]:)$$

$$= F(b)g(b) - g(a)F(a) - F(\xi) \int_{a}^{b} g' = g(b)(F(b) - F(\xi)) + g(a)(F(\xi) - F(a))$$

15 Замена переменной в определенном интеграле (две формулировки, доказательство одной).

Теорема

$$oldsymbol{arphi} \subset C^1[oldsymbol{lpha},eta], \ f \in C(oldsymbol{arphi}([oldsymbol{lpha},eta])), \ \mathit{morda} \int\limits_{oldsymbol{arphi}}^{oldsymbol{arphi}(eta)} f = \int\limits_{oldsymbol{lpha}}^{oldsymbol{eta}} (f \circ oldsymbol{arphi}) oldsymbol{arphi}'$$

Док-во

$$f \in C(\varphi([\alpha, \beta])) \Rightarrow \exists F : F' = f$$

$$(F \circ \varphi)' = (F' \circ \varphi)\varphi' = (f \circ \varphi)\varphi' \Rightarrow \int_{\alpha}^{\beta} (f \circ \varphi)\varphi' = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha)$$

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\alpha}^{\beta} (f \circ \varphi) \varphi'$$

Теорема

 $f \in R[a,b], \ \varphi \in C^1[\alpha,\beta], \ \varphi$ - cmporo bospacmaem,

$$\phi(lpha)=a, \quad \phi(eta)=b, \; extit{morda} \; \int\limits_a^b f=\int\limits_lpha^eta(f\circ\phi)\phi'$$

Пример

$$\int_{0}^{1} \sqrt{1-x^2} dx, \quad \varphi(t) = \cos t, \quad \varphi(\alpha) = 0, \ \varphi(\beta) = 1$$

$$\int\limits_{0}^{1} \sqrt{1-x^{2}} dx = -\int\limits_{\frac{\pi}{2}}^{0} \sqrt{1-\cos^{2}t} \sin t dt = -\int\limits_{\frac{\pi}{2}}^{0} \frac{1-\cos 2t}{2} dt = (-\frac{t}{2} + \frac{\sin 2t}{4})\Big|_{\frac{\pi}{2}}^{0} = \frac{\pi}{4}$$

Напоминание (про ряды)

Опр

Числовой ряд из элементов $\{a_j\}_{j\in\mathbb{N}}$ - это $\sum\limits_{j=1}^\infty a_j$

Опр

Частичная сумма ряда $S_n = \sum\limits_{j=1}^n a_j$

Опр

Говорят, что сумма ряда $S = \sum_{j=1}^{\infty} a_j = \lim_{n \to \infty} S_n$

Замечание

$$P$$
яд $\sum_{j=1}^{\infty}a_{j}$ $cxoдится$ или $pacxoдится$ одновременно c $pядом$ $\sum_{j=N}^{\infty}a_{j}$

Теорема (необходимое условие сходимости)

$$Ecnu \sum_{j=1}^{\infty} a_j$$
 - $cxodumcs$, $mo \lim_{j \to \infty} a_j = 0$

Опр

Ряд Лейбница
$$\sum\limits_{j=0}^{\infty}(-1)^ja_j,\ a_j>0,\ arrho$$
де $\lim\limits_{j o\infty}a_j=0,\ a_j\searrow$

Теорема

 $\Pi ycmb \sum_{j=0}^{\infty} (-1)^j a_j$ - ряд Лейбница, тогда:

- 1. Ряд Лейбница сходится
- $2. S_{2n} \searrow, S_{2n-1} \nearrow$
- 3. $|S S_n| < a_{n+1}$

Теорема

Критерий Коши для числовых последовательностей.

$$\sum_{j=1}^{\infty} a_j - cx \Leftrightarrow \forall \mathcal{E} > 0 \ \exists N : \forall m > n > N \ |S_m - S_n| < \mathcal{E}$$

16 Признаки сравнения для положительных рядов.

Опр

Eсли $a_j\geqslant 0,\ mo\sum_{j=1}^\infty a_j$ - положительный ряд

Теорема

Положительный ряд сходится $\Leftrightarrow S_n$ - ограничены

Следствие

Пусть $0 \leqslant a_j \leqslant b_j$, тогда:

- 1. $\sum b_j$ $cx \Rightarrow \sum a_j$ cx (первый признак сходимости)
- 2. $\sum a_i$ $pacx \Rightarrow \sum b_i$ pacx (первый признак сравнения)

Следствие

$$a_k \geqslant 0, \ b_k \geqslant 0, \ \exists c, d > 0 \ \exists N : \forall n > N \ 0 < c \leqslant \frac{a_n}{b_n} \leqslant d \leqslant \infty$$

Tогда $\sum a_k \ u \sum b_k \ cx$. или расх. одновременно

Док-во

$$(m.e. \sum a_k - cx \Leftrightarrow \sum b_k - cx)$$

 $(\Leftarrow) \ 0 \leqslant a_n \leqslant db_n \ m.\kappa. \ db_n - cx \Rightarrow a_n - cx$
 $(\Rightarrow) \ 0 \leqslant cb_n \leqslant a_n \ m.\kappa. \ a_n - cx \Rightarrow cb_n - cx \Rightarrow b_n - cx$

Следствие (второй признак сравнения)

Пусть $a_n, b_n \geqslant 0$, тогда если

 $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = L \in (0, +\infty), \ mo \sum a_n \ u \sum b_n \ cx$ или расх одновременно

Возъмём
$$\mathcal{E}:=rac{L}{2}\Rightarrow\exists N: \forall n>N\; \left|rac{a_n}{b_n}-L
ight|<rac{L}{2}\Rightarrow 0<rac{L}{2}<rac{a_n}{b_n}<rac{3L}{2}<+\infty\Rightarrow no\; предыдущему\; следствию\; верно$$

17 Признаки Даламбера и Коши для положительных рядов.

Теорема (радикальный признак Коши для положительных рядов)

$$a_k \geqslant 0, \ c := \overline{\lim_{k \to \infty}} \sqrt[k]{a_k}$$

$$Ecnu \ c < 1, \ mo \sum a_k - cx$$

$$Ecnu \ c > 1, \ mo \sum a_k - pacx$$

Док-во

a)
$$0 \le c < 1$$

 $q:=\frac{c+1}{2},\ c< q< 1,\ no\ xapakmepucmuke\ \overline{\lim}:\exists N:\forall n>N\ \sqrt[n]{a_n}< q$ $m.\kappa.\ 0\leqslant a_n< q^n\ u\ \sum q^n\ -\ cx\Rightarrow \sum a_n\ -\ cx$

(6) c > 1

 $q:=rac{c+1}{2},\ 1 < q < c,\ no\ xapaкmepucmuke\ \overline{\lim}: \forall N: \exists n > N\ \sqrt[n]{a_n} > q$ $m.e.\ \exists\ beckoherhoe}$ мн-во $\sqrt[n_k]{a_{n_k}} > q,\ a_{n_k} > q^{n_k} > 1$ $\Rightarrow \lim a_{n_k} \neq 0 \Rightarrow \sum a_n - pacx$

Теорема (признак Даламбера сходимости положительных рядов)

$$egin{aligned} \overline{a_k} \geqslant 0, \ \mathcal{D} := \lim_{k o \infty} rac{a_{k+1}}{a_k} \ Ecnu \ \mathcal{D} < 1, \ mo \sum a_k - cx \ Ecnu \ \mathcal{D} > 1, \ mo \sum a_k - pacx \end{aligned}$$

Док-во

$$\overline{a)} \mathcal{D} < 1, \ q := \frac{\mathcal{D}+1}{2} \mathcal{E} := \frac{1-\mathcal{D}}{2}$$

$$\xrightarrow[0 \quad \mathcal{D} \quad q \quad 1]{+\mathcal{E}}$$

$$\exists N: \forall k>N \ \mathcal{D}-\mathcal{E}<rac{a_{k+1}}{a_k}<\mathcal{D}+\mathcal{E}=q$$
 - reom $np.\ q<1$

 $a_{k+1} < qa_k < q^2a_{k-1} < \dots < q^{k-N+1}a_N, \sum q^{k-N+1}a_k - cx \Rightarrow \sum a_{k+1} - cx$ no nepsomy np. $cxo\partial umocmu$

6)
$$\mathcal{D} < 1, \ q := \frac{\mathcal{D}+1}{2} \ \mathcal{E} := \frac{\mathcal{D}-1}{2}$$

$$\begin{array}{c|c} & -\mathcal{E} \\ \hline 0 & 1 & q & \mathcal{D} \end{array}$$

$$\exists N : \forall k > N \ q = \mathcal{D} - \mathcal{E} < \frac{a_{k+1}}{a_k} < \mathcal{D} + \mathcal{E}, \ q > 1$$

 $a_{k+1}>qa_k>q^2a_{k-1}>\ldots> q^{k-N+1}a_N, \ \sum q^{k-N+1}a_N$ - pacx $\Rightarrow \sum a_{k+1}$ - pacx по первому пр. сравнения

18 Абсолютная и условная сходимость рядов. Сходимость следует из абсолютной сходимости.

$$\frac{\mathbf{Onp}}{\sum\limits_{j=1}^{\infty}a_{j}}$$
 - cx абсолютно, если $\sum\limits_{j=1}^{\infty}|a_{j}|$ - cx

Опр

Ряд сходится условно если сходится, но не абсолютно

Теорема

Если ряд сходится абсолютно, то он сходится

Док-во

$$\sum\limits_{j=1}^{\infty}|a_j|$$
 - cx, no критерию Коши $\forall \mathcal{E}>0$ $\exists N:\forall m>n>N:$

 $||a_{n+1}|+...+|a_m||<\mathcal{E},$ по неравенству треугольника:

$$|a_{n+1} + \dots + a_m| < \mathcal{E} \Rightarrow \sum_{j=1}^{\infty} a_j - cx.$$

19 Абсолютная и условная сходимость. При-

Mep:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

Определения см. в предыдущем билете.

Ряд не сходится абсолютно, т.к. $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ - расх. ряд, т.к.:

Теорема (критерий Коши сходимости последовательности)

$$x_n$$
 - $cx \Leftrightarrow x_n$ - cx в себе.

Покажем, что для $S_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$ $\exists \mathcal{E}>0: \forall N\ \exists m,n\geqslant N: |x_m-x_n|>\mathcal{E}$:

Возьмём
$$\mathcal{E} = \frac{1}{4}$$
 n $= N, m = 2N$:

$$|S_{2N} - S_N| = \left| \frac{1}{N+1} + \dots + \frac{1}{2N} \right| > N \frac{1}{2N} = \frac{1}{2} > \mathcal{E}$$

Но ряд сходится (значит условно сходится) по признаку Лейбница (или это можно показать прямо, доказав что $S_{2n}\nearrow$ и ограничена сверху единицей, а $S_{2n+1}=S_{2n}$ в пределе)

20 Перестановка абсолютно сходящегося ряда. Теорема Римана (б/д).

Опр

Пусть есть ряд $\sum\limits_{k=1}^\infty a_k$ и биективная функция $\mathbf{\phi}: \mathbb{N} o \mathbb{N}$, тогда ряд $\sum_{k=1}^{\infty} a_{\varphi(k)}$ называется перестановкой ряда $\sum_{k=1}^{\infty} a_k$

Теорема (Римана v1)

Пусть ряд $\sum a_n$ - условно сходится, тогда:

$$\forall S \in \overline{\mathbb{R}} \ \exists \varphi : \mathbb{N} \to \mathbb{N} : \sum a_{\varphi(k)} = S$$

$$\frac{\mathbf{Onp}}{a_k^+ = \max\{a_k, 0\}, \ a_k^- = \max\{-a_k, 0\}}$$

Теорема (Дирихле, о перестановке абсолютно сходящегося ряда)

$$Ecnu \sum_{n=1}^{\infty} a_n = S \ cx \ абсолютно, \ mo$$
 $\forall \varphi : \mathbb{N} \to \mathbb{N}, \ r\partial e \ \varphi - биекция \Rightarrow \sum_{n=1}^{\infty} a_{\varphi(n)} = S$

Док-во

a) $\Pi ycmv \ a_n \geqslant 0 \ \forall n \in \mathbb{N}$

$$S:=\sum\limits_{n=1}^{\infty}a_n$$
 - $cx\Leftrightarrow$ все частичные суммы ограничены, $S_n\leqslant S\ \forall n\in\mathbb{N}$

Частичные суммы $\sum\limits_{k=1}^n a_{\phi(k)}$ обозначим перестановками ряда $T_n:=\sum\limits_{k=1}^n a_{\phi(k)}$

Пусть $m := \max\{\varphi(1), \varphi(2), ..., \varphi(n)\}$

$$T_n \leqslant S_m := \sum_{n=1}^m a_{\varphi(a_n)} \leqslant S \Rightarrow T_n \nearrow - orp \Leftrightarrow psd T := \sum_{n=1}^\infty a_{\varphi(a_n)} \ cxodumcs.$$

Предельный переход даёт $T \leqslant S$, но так как S - тоже перестаовка T

$$\Rightarrow S \leqslant T$$

Значит
$$S=T,\ mo\ ecm b\ \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty a_{\phi(a_n)}$$

б) Общий случай,
$$a_k \in \mathbb{R}$$

$$a_k = a_k^+ - a_k^-, \ |a_k| = a_k^+ + a_k^- \Rightarrow a_k^+ = \frac{a_k + |a_k|}{2}, \ a_k^- = \frac{|a_k| - a_k}{2}$$
 $m.к. \sum a_k$ - cx абсолютно $\Rightarrow \sum |a_k|$ - cx $\Rightarrow \sum a_k^+, \sum a_k^-$ - cx (причем абсолютно)

$$\sum_{k=0}^{\infty} a_{\varphi(k)} = \sum_{k=0}^{\infty} (a_{\varphi(k)}^{+} - a_{\varphi(k)}^{-}) = \sum_{k=0}^{\infty} a_{\varphi(k)}^{+} - \sum_{k=0}^{\infty} a_{\varphi(k)}^{-} = (n. \ a) \ \sum_{k=0}^{\infty} (a_{k}^{+} - a_{k}^{-}) = \sum_{k=0}^{\infty} a_{k}$$

Теорема (Римана v2)

 $\overline{\Pi y c m b}$ ряд $\sum a_n$ - условно сходится. Тогда $\sum a_n^+ - \sum a_n^- = +\infty$

Док-во

Можно доказать одну из теорем

Асимптотика частичных сумм расходяще-21 гося ряда (случай гармонического ряда). Постоянная Эйлера.

$$\frac{1}{1+k} = \frac{\frac{1}{k}}{\frac{1}{k}+1} < \ln(1+\frac{1}{k}) < \frac{1}{k} \Rightarrow 0 < \frac{1}{k} - \ln(1+\frac{1}{k}) < \frac{1}{k} - \frac{1}{k+1}$$

Значит,

$$0 < \sum_{k=1}^{n} \left(\frac{1}{k} - \ln(1 + \frac{1}{k}) \right) < \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) =$$

$$= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n-1} =$$

$$= 1 - \frac{1}{n+1} = \frac{n}{n+1} < 1 \ \forall n \in \mathbb{N}$$

$$\Rightarrow S_n := \sum_{k=1}^n \left(\frac{1}{k} - \ln(1 + \frac{1}{k})\right) \nearrow$$
 и ограничено сверху $\Rightarrow \exists \lim_{n \to \infty} S_n$

$$\sum_{k=1}^n \ln(1+\frac{1}{k}) = \sum_{k=1}^n (\ln(k+1) - \ln(k)) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n) +$$

$$= \ln(n+1) \Rightarrow \exists \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \ln(n+1) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n\right)$$

$$rac{\mathbf{O}\pi\mathbf{p}}{\gamma}:=\lim_{n o\infty}(\sum\limits_{k=1}^nrac{1}{k}-\ln n)=0,5722...$$
 - постоянная Эйлера

22 Несобственные интегралы. Примеры. Несобственный интеграл в смысле главного значения. Критерий Больцано-Коши для несобственных интегралов.

$\frac{\text{Onp}}{f:[a,+\infty)\to\mathbb{R},\ f\in R[a,b]\ \forall b\in(a,+\infty).}$

 $Ecnu \; \exists \lim_{b \to \infty} \int\limits_a^b f, \; mo \; roворят, \; что \; несобственный интеграл$

$$\int\limits_{a}^{+\infty}f$$
 - $cxoдumc$ я u равен $\lim\limits_{b o\infty}\int\limits_{a}^{b}f$

 $\frac{\mathbf{Onp}}{f: [a, \omega) \to \mathbb{R}, \ -\infty < a < \omega \leqslant +\infty, \ f \in R[a, b] \ \forall b \in (a, +\infty).}$

 $Ecлu \; \exists \lim_{b o \omega_-} \int\limits_a^b f, \; mo \; roворят, \; что \; несобственный интеграл$

$$\int\limits_{a}^{\omega}f - cx \ u \ paseн \lim_{b \to \omega_{-}} \int\limits_{a}^{b} f$$

 $\frac{\mathbf{Oпр}}{f} \ (\mathbf{3})$ $f: \mathbb{R} \to \mathbb{R} \ u \ \forall a < b \in \mathbb{R} : f \in R[a,b], \ mor \partial a \int\limits_{-\infty}^{+\infty} f := \lim_{a \to -\infty} \int\limits_{a}^{0} f + \lim_{b \to +\infty} \int\limits_{0}^{b} f,$ $E c \wedge u \ o \delta a \ n p e \partial e \wedge a \ \exists \ u \ к o h e \vee h u, \ mo \ r o b o p s m \ v mo \int\limits_{-\infty}^{+\infty} f \ - \ c x o \partial u m c s$

 $\frac{\mathbf{Oпр}}{A} \underbrace{A}_{\mu a}^{\mathbf{O}} \underbrace{A}_{\omega_1}^{\mathbf{O}}, \ ecnu \ f \in R[a,b] \ \forall [a,b] \subset (\omega_1,\omega_2). \ \int\limits_{\omega_1}^{\omega_2} f = \int\limits_{\omega_1}^{c} f + \int\limits_{c}^{\omega_2} f = \int\limits_{c}^{c} f + \int\limits_{c}^{\omega_2} f = \int\limits_{c}^{\omega_1} f + \int\limits_{c}^{\omega_2} f = \int\limits_{c}^{\omega_2} f + \int\limits_{c}^{\omega_$

$$\frac{\mathbf{\Pi}\mathbf{pимеp}}{1}. \ \ \alpha=1, \ \int\limits_{1}^{+\infty}\frac{dx}{x^{\alpha}}=\lim_{b\to +\infty}\ln|x|\big|_{1}^{b}=+\infty \ \ - \ pacx$$

2.
$$\alpha > 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{b} = 0 - \frac{1}{1-\alpha} - cx$

3.
$$\alpha < 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = +\infty$ - $pacx$

Пример

$$\int\limits_{-1}^{1} \frac{dx}{x} = \lim_{a \to 0_{-}} \int\limits_{-1}^{a} \frac{dx}{x} + \lim_{b \to 0_{+}} \int\limits_{b}^{1} \frac{dx}{x} \text{ - pacx no onp, m.к. оба предела расх}$$

Опр

$$f:\mathbb{R} o \mathbb{R} \ u \ orall a < b \in \mathbb{R}: f \in R[a,b], \ mor\partial a \ (V.P.) \int\limits_{-\infty}^{+\infty} f := \lim_{A o +\infty} \int\limits_{-A}^{A} f = \lim_{A o +\infty} \int\limits_{-A}^{$$

Пример

(V.P.)
$$\int_{-\infty}^{+\infty} x = \lim_{A \to +\infty} \int_{-A}^{A} x = \lim_{A \to +\infty} \frac{x^{2}}{2} \Big|_{-A}^{A} = 0$$

$$(Ho \int_{-\infty}^{+\infty} x = \lim_{a \to -\infty} \int_{a}^{0} x + \lim_{b \to +\infty} \int_{0}^{b} x - pacx)$$

Теорема (критерий Больцано-Коши для несобственных интегралов)

$$f: [a, \omega) \to \mathbb{R}, \quad -\infty < a < \omega \leqslant +\infty, \quad f \in R[a, b] \quad \forall b \in (a, +\infty), \quad mor\partial a:$$

$$\int_{a}^{\omega} f - cx \iff \forall \mathcal{E} > 0 \; \exists B \in (a, \omega) : \forall b_1, b_2 \in (B, \omega) \mid \int_{b}^{b_2} | < \mathcal{E}$$

Док-во

$$\int_{a}^{\omega} f - cx \Leftrightarrow \exists \lim_{b \to \omega} \int_{a}^{b} f \Leftrightarrow (\kappa p \ Kouu \ \partial \Lambda A \ npedeлob \ \phi.)$$

$$\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall b_1, b_2 \in (\omega - \delta, \omega) \; | \int_a^{b_1} f - \int_a^{b_2} f | < \mathcal{E} \Rightarrow | \int_{b_1}^{b_2} f | < \mathcal{E}$$

23 Свойства несобственных интегралов (линейность, аддитивность, монотонность, формула Ньютона-Лейбница).

Свойство (1, линейность)

$$\int_{a}^{\omega} f_{1}, \int_{a}^{\omega} f_{2} - cx \implies \forall k_{1}, k_{2} \in \mathbb{R} \quad \int_{a}^{\omega} (k_{1}f_{1} + k_{2}f_{2}) = k_{1} \int_{a}^{\omega} f_{1} + k_{2} \int_{a}^{\omega} f_{2}$$

Свойство (2, монотонность)

$$f, g : [a, \omega) \to \mathbb{R}, \quad f, g \in R[a, b], \quad \forall b \subset [a, \omega), \quad f(x) \leqslant g(x),$$

$$\forall x \in [a, \omega) \Rightarrow \int_{a}^{\omega} f \leqslant \int_{a}^{\omega} g f(x) dx$$

Лемма

$$f:[a,\omega) o\mathbb{R},\quad f\in R[a,b],\ \forall b\in(a,\omega).$$
 Пусть $c\in(a,\omega),\ mor\partial a\int\limits_a^\omega f\ u\int\limits_c^\omega f\ -\ cx\ u$ ли расх одновременно

Док-во

$$\int_{a}^{\omega} f - cx \Leftrightarrow \lim_{b \to \omega_{-}} \int_{a}^{b} f = A \in \mathbb{R}$$

Тогда
$$\int\limits_{c}^{\omega}f=\lim_{b\to\omega_{-}}\int\limits_{c}^{b}f=\lim_{b\to\omega_{-}}(\int\limits_{a}^{b}f-\int\limits_{a}^{c}f)=A-\int\limits_{a}^{c}f\in\mathbb{R}\Rightarrow\int\limits_{c}^{\omega}f-cx$$

Свойство (3, аддитивность)

$$f:[a,\omega)\to\mathbb{R},\quad f\in R[a,b]\ \forall b\subset[a,\omega)$$

$$orall c \in [a,\omega) \Rightarrow \int\limits_a^\omega f = \int\limits_a^c f + \int\limits_c^\omega f, \ \mathit{npurem} \ \int\limits_a^\omega f \ \mathit{u} \ \int\limits_c^\omega f \ \mathit{-cx} \ \mathit{unu} \ \mathit{pacx} \ \mathit{od}$$
новременно

Свойство (4, формула Н-Л)

Eсли F - первообразная f, то:

$$\int_{a}^{\omega} f = \lim_{b \to \omega_{-}} (F(b) - F(a)) =: F \Big|_{a}^{\omega_{-}} = F(\omega_{-}) - F(a)$$

Свойство (5)

$$E$$
сли $f \in R[a, \mathbf{w}] \ (\mathbf{w} \in \mathbb{R}), \ mo \ (несоб. \ uнm) \int\limits_a^{\mathbf{w}} f = \int\limits_a^{\mathbf{w}} f(uнm \ Puмана)$

$$\frac{e^{\mathbf{B}\mathbf{G}}}{f \in R[a, \mathbf{\omega}]} \Rightarrow F(x) := \int\limits_{a}^{x} f \in C[a, \mathbf{\omega}],$$
 (несоб. инт) $\int\limits_{a}^{\mathbf{\omega}} f = \lim\limits_{b \to \mathbf{\omega}} \int\limits_{a}^{b} f (= F(b) \; (\text{непр. 6 m } \mathbf{\omega})) = F(\mathbf{\omega}) = \int\limits_{a}^{\mathbf{\omega}} f \; (\text{инт} P \text{имана})$

24 Свойства несобственных интегралов (интегрирование по частям, замена переменной).

Свойство (интегрирование по частям)

Пусть
$$f,g\in C^1[a,\mathbf{w}), \quad \exists \lim_{x\to \mathbf{w}_-} f(x)g(x)\in \mathbb{R}, \ \text{тогда}:$$

$$\int_a^{\mathbf{w}} f'g\ u\int_a^{\mathbf{w}} fg' - cx\ \text{или расх одновременно, причем}$$

$$\int_a^{\mathbf{w}} fg' = fg|_a^{\mathbf{w}} - \int_a^{\mathbf{w}} f'g(fg|_a^{\mathbf{w}} = \lim_{x\to \mathbf{w}_-} (f(x)g(x) - f(a)g(a))$$

Свойство (замена переменной)

$$E$$
сли $\int\limits_a^\omega f$ - cx , $\varphi: [\alpha, \upsilon) o [a, \omega)$, $\varphi \in C^1[\alpha, \upsilon)$, φ - монот.,
$$\varphi(\alpha) = a, \quad \lim_{t \to \upsilon} \varphi(t) = \omega, \ \mathit{morda} \ \int\limits_a^\omega f = \int\limits_\alpha^\upsilon (f \circ \varphi) \varphi'$$

25 Интегральный признак Коши сходимости несобственных интегралов и рядов.

Теорема

 $\overline{\Pi ycm}$ ь $f:[1,+\infty)\to[0,+\infty),\ f\in R[1,A]\ \forall A>1,\ f$ - строго убывает (можно строго возрастает)

Tогда $\int\limits_{1}^{\infty} f \ u \ \sum\limits_{n=1}^{\infty} f(n)$ - cx или pacx одновременно, причем

$$\sum_{n=1}^{\infty} f(n+1) \leqslant \int_{1}^{\infty} f \leqslant \sum_{n=1}^{\infty} f(n)$$

Лемма

Если
$$f > 0$$
, $f \in [a, \omega] \to [0, +\infty)$, $f \in R[a, b] \ \forall b \in (a, \omega)$
Тогда $\int_{a}^{\omega} f - cx \Leftrightarrow F(x) = \int_{a}^{x} f$, $\exists M < \infty : F(x) \leqslant M \ \forall x \in [a, \omega)$

Док-во

 (\Rightarrow) очевидно

$$(\Leftarrow)$$
 почти очевидно, $f \geqslant 0 \Rightarrow F \nearrow u$ ог $p \Rightarrow \exists \lim_{x \to \omega} F(x) = \int_a^{\omega} f < +\infty$

$$\underline{\mathcal{A}}$$
ок-во $f(n+1)\leqslant \int\limits_{n}^{n+1}f\leqslant f(n)$ (видно через суммы \mathcal{A} арбу) $|\sum\limits_{n=1}^{N}$

$$\sum\limits_{n=1}^{N}f(n+1)\leqslant \int\limits_{1}^{N+1}f\leqslant \sum\limits_{n=1}^{N}f(n),\; npu\;N\to +\infty\; noлучим$$
 наше уравнение

1) Если
$$\sum_{1}^{\infty} f(n)$$
 - $cx \Leftrightarrow \sum_{1}^{N} f(n) \leqslant A \in \mathbb{R} \Rightarrow F(N+1) = \int_{1}^{N+1} f \leqslant A \in \mathbb{R}$ cx

2) Если
$$\int_{1}^{\infty} f - cx \Rightarrow \sum_{1}^{N} f(n+1) \leqslant \int_{1}^{N+1} f \leqslant \int_{1}^{\infty} f \in \mathbb{R} - orp \Rightarrow \sum_{1}^{N} f(n+1) cx$$

$$\frac{\textbf{Примеры}}{1.\sum\limits_{n=1}^{\infty}\frac{1}{n^2}.\ Paccмompu_{\mathcal{M}}\int\limits_{1}^{\infty}\frac{1}{x^2}=-\frac{1}{x}|_{1}^{\infty}=0-(-1)\ \text{-}\ cx}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
. Cx. npu $\alpha > 1$, pacx. npu $\alpha \leqslant 1$ (аналогично интегралу $\int_{1}^{\infty} \frac{1}{x^{\alpha}}$)

26 Признаки сравнения для несобственных интегралов.

Теорема (І признак сравнения)

$$f,g:[a,\omega)\to\mathbb{R},\quad f,g\geqslant 0,\quad f,g\in R[a,b],\quad b\in (a,\omega),$$
 $0\leqslant f(x)\leqslant g(x)\quad \forall x\in [a,\omega)$ Тогда $\int\limits_a^\infty g\, -\, cx\Rightarrow \int\limits_a^\omega f\, -\, cx\, (\int\limits_a^\omega f\, -\, pacx\Rightarrow \int\limits_a^\infty g\, -\, pacx)$

Док-во

$$F(b) := \int_{a}^{b} f \leqslant \int_{a}^{b} g \leqslant \int_{a}^{\omega} g \in \mathbb{R}$$

То есть $\int\limits_a^\omega f$ - cx, $m.к. <math>F \nearrow u$ огр сверху на $[a, \omega)$

Теорема (II признак сравнения)

$$f,g:[a,\omega)\to(0,+\infty),\ f,g\in R[a,b]\ \forall b\in(a,\omega)$$

Тогда если $\exists \lim_{x \to \omega_-} \frac{f(x)}{g(x)} \in (0, +\infty)$, то $\int_a^\omega f \ u \int_a^\omega g$ - cx или расх одновременно

Док-во

$$k := \lim_{x \to \omega_{-}} \frac{f(x)}{g(x)} \in (0, +\infty), \ \mathcal{E} := \frac{k}{2}$$

$$\Rightarrow \exists b \in (a, \omega) : \forall x \in (b, \omega) \ |\frac{f(x)}{g(x)} - k| < \mathcal{E} \Rightarrow \mathcal{E} < \frac{f(x)}{g(x)} < 3\mathcal{E}$$

То есть с некоторого места $f(x) \leqslant g(x)$, а так как $\int_a^\omega = \int_a^b + \int_b^\omega u \int_a^b f, \int_a^b g$

- конечные числа, то $\int\limits_a^\omega f \ u \int\limits_a^\omega g$ - cx или расх одновременно по первому признаку

Пример

$$\int_{0}^{+\infty} e^{-x^{2}} dx = \int_{0}^{1} + \int_{1}^{+\infty}$$

$$e^{-x^2} \geqslant e^{-x} \Rightarrow x \in [0,1], \quad \int_{0}^{1} e^{-x} = \frac{1}{e} \underset{no \ I}{\Rightarrow} \int_{np. \ cp.}^{+\infty} e^{-x^2} - cx$$

Пример

$$\int_{1}^{+\infty} \sin^2 \frac{1}{x} dx$$

$$\lim_{x\to\infty}\frac{\sin^2\frac{1}{x}}{\frac{1}{x^2}}=1\in(0,+\infty)\Rightarrow\int\limits_1^{+\infty}\sin^2\frac{1}{x}dx\ u\int\limits_1^{+\infty}\frac{1}{x^2}dx\ -\ cx\ unu\ pacx\ oднов p\Rightarrow\ cx$$

27 Абсолютная и условная сходимость интегралов. Сходимость следует из абсолютной сходимости.

$$\frac{\mathbf{Onp}}{f:[a,\omega)\to\mathbb{R},\ f\in R[a,b]\ \forall b\in(a,\omega)}$$

$$\int\limits_{a}^{\omega}f\ -\ cx\ aбсолютно\Leftrightarrow\int\limits_{a}^{\omega}|f|\ -\ cx$$

$$\int\limits_{a}^{\omega}f\ -\ cx\ ycловно\Leftrightarrow\int\limits_{a}^{\omega}f\ -\ cx,\int\limits_{a}^{\omega}|f|\ -\ pacx$$

 $\underbrace{\mathbf{Y}_{\mathbf{TB}}}_{\mathcal{G}} \ _{\mathcal{G}} \ _{\mathcal{G}} \ f \ - \ cx \ aбсолютно \Rightarrow cxodumcs$

 $\frac{\mathcal{A}$ ок-во ω $\Pi y cmb \int |f| - cx \Leftrightarrow (\kappa p. \ Больцано-Коши) <math>\forall \mathcal{E} > 0 \ \exists A \in (a, \omega) : \forall b_1, b_2 \in \mathcal{E}$ $(A, \boldsymbol{\omega}) \mid \int_{\cdot}^{b_2} |f|| < \mathcal{E} \Rightarrow m.\kappa. \mid \int_{\cdot}^{b_2} f| \leqslant |\int_{\cdot}^{b_2} |f|| < \mathcal{E}, \text{ mo no } \kappa p. \text{ B-K} \int_{\cdot}^{b_2} f - cx$

Пример

$$\int_{1}^{\infty} \frac{1}{t^{\frac{5}{3}}} = -\frac{3}{2} t^{-\frac{2}{3}} \Big|_{1}^{\infty} = \frac{3}{2} - cx \underset{no}{\Rightarrow} \int_{1}^{\infty} \frac{|\sin t|}{t^{\frac{5}{3}}} - cx$$
Значит
$$\int_{0}^{\infty} \frac{\sin t}{t^{\frac{5}{3}}} - a6c \ cx \ \Rightarrow \int_{0}^{+\infty} \cos(x^{3}) - cx$$

28 Абсолютная и условная сходимость. При-

$$\mathbf{Mep:} \int_{0}^{\infty} \frac{\sin x}{x}$$

Определения и теорему см. в билете 27

Пример

$$\int_{0}^{\infty} \frac{\sin x}{x} = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} + \int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x}$$

1)
$$\int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x} = \frac{-\cos x}{x} \Big|_{\frac{\pi}{2}}^{\infty} - \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2} = \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$$

Исследуем
$$\int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$$
 на абс сходимость. $\frac{|\cos x|}{x^2} \leqslant \frac{1}{x^2}$, $a\int\limits_{\frac{\pi}{2}}^{\infty} \frac{1}{x^2}$ - сходится

$$\Rightarrow$$
 no 1 признаку сравнения $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{|\cos x|}{x^2} - cx \Rightarrow \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2} - cx$ абс $\Rightarrow \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x} - cx$

$$2) \quad \int_{0}^{\frac{\pi}{2}} \frac{|\sin x|}{x}$$

Знаем, что $\lim_{x\to 0} \frac{|\sin x|}{x} = 1$. Кроме того, $\frac{|\sin x|}{x} < 1$, значит на конечном

промежутке
$$(0,\frac{\pi}{2}]$$
 интеграл конечный $\Rightarrow \int\limits_0^\infty \frac{\sin x}{x}$ - cx

3) Покажем, что
$$\int_{\frac{\pi}{2}}^{\infty} \frac{|\sin x|}{x}$$
 - pacx. $\Rightarrow \int_{0}^{\infty} \frac{|\sin x|}{x}$ - pacx

$$|\sin x| \geqslant |\sin^2 x|, \quad \int_{\frac{\pi}{2}}^{\infty} \frac{\sin^2 x}{x} = \int_{\frac{\pi}{2}}^{\infty} \frac{1 - \cos 2x}{x} = \frac{1}{2} \int_{\frac{\pi}{2}}^{\infty} \frac{dx}{x} (pacx) + \int_{\frac{\pi}{2}}^{\infty} \frac{\cos 2x}{x} (cx)$$

29 Признаки Дирихле и Абеля для несобственных интегралов (док-во одного из них).

Теорема (признак Абеля-Дирихле)

$$f,g:[a,\omega)\to\mathbb{R},\quad f\in C[a,\omega),\quad g\in C^1[a,\omega),\ g$$
 - монотонна.

Тогда если выполнено одно из условий:

$$(A) \int_{a}^{\omega} f - cx, g - ozp$$

$$(\mathcal{A})\ F(x) := \int\limits_a^x f$$
 - orp, $g(x) \underset{x \to \omega_-}{\longrightarrow} 0$

Тогда
$$\int_{a}^{\omega} fg - cx$$

Док-во

(Д) без теоремы Бонне

$$|F(x)| \leqslant C : g(x) \underset{x \to \omega_{-}}{\longrightarrow} 0$$

$$\lim_{b \to \omega_{-}} \int_{a}^{b} fg = \lim_{b \to \omega_{-}} (Fg|_{a}^{b} - \int_{a}^{b} Fg') = F(a)g(a) - \lim_{b \to \omega_{-}} \int_{a}^{b} Fg'$$

Исследуем интеграл на абс сходимость.

$$\int\limits_a^b |Fg'|\leqslant C\int\limits_a^b |g'|=(m.\kappa.\ g\ \text{- монотонна})C|\int\limits_a^b g'|=C|g(b)-g(a)|\underset{b\to \omega_-}{\longrightarrow} C|g(a)|$$

 $extit{Tаким образом инт. ограничен} \Rightarrow extit{uзначальный сходится}$

30 Признаки Дирихле и Абеля для рядов (докво одного из них).

 $\frac{\mathbf{Onp}}{A_n} := \sum_{k=1}^n a_k, \ A_0 = 0$

Теорема (преобразование Абеля)

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Док-во

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k =$$

$$= \sum_{k=1}^{n} A_k b_k - \sum_{k=0}^{n-1} A_k b_{k+1} = A_n b_n + \sum_{k=0}^{n-1} A_k (b_k - b_{k+1})$$

Теорема (признак Дирихле для рядов)

 $\overline{\Pi y c m b} \ A_n$ - $orp.,\ b_k o 0,\ b_k$ - монотонно. $Tor\partial a \sum_{k=1}^\infty a_k b_k$ - cx

Док-во

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) \underset{n \to \infty}{\to} \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

$$P \mathcal{A} \partial \sum_{k=1}^{\infty} a_k b_k - cx \Leftrightarrow \sum_{k=1}^{\infty} A_k (b_k - b_{k+1}) - cx \Leftrightarrow \textit{все частичные суммы огр}$$

$$\sum_{k=1}^{N} |A_k| |b_k - b_{k+1}| \leqslant M \sum_{k=1}^{N} |b_k - b_{k+1}| = M |b_1 - b_{N+1}| \leqslant 2M |b_1| \Rightarrow \textit{исх ряд сх}$$

Теорема (признак Абеля для рядов)

 $\overline{\Pi y c m b} \ A_n$ - $cx.\ b_k$ - монотонно, b_k - $orp.\ Tor\partial a \sum_{k=1}^\infty a_k b_k$ - cx

31 Применение интеграла Римана для вычисления площадей и объемов. Примеры.

Опр (школьное)

Пусть $P \in \mathbb{R}^2$ ("фигрура"), \mathcal{P} - некоторый набор плоских "фигур", $P_i \in \mathcal{P}$ $g: \mathcal{P} \to [0, +\infty)$ - называется площадью, если:

1.
$$\forall P \in \mathcal{P}, S(P) \geqslant 0$$

2.
$$\forall P_1, P_2 \in \mathcal{P} : P_1 \cap P_2 = \emptyset \Rightarrow S(P_1 \cup P_2) = S(P_1) + S(P_2)$$

Опр

 $\tau: \mathbb{R}^2 o \mathbb{R}^2$, сохраняет расстояние

3.
$$\forall P \in \mathcal{P} \ \tau$$
-движения $S(\tau(P)) = S(P)$

Площадь криволинейной трапеции.

Опр

Подграфиком $f \in R[a,b]$ называется $P_f := \{(x,y) | a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant f(x) \}$

Возьмём разбиение и верх. и нижн. суммы Дарбу. S - монотонна, т.е.

$$P_1 \subset P_2 \Rightarrow S(P_1) \leqslant S(P_2), \ S_*(\tau) = S(P_*(\tau)), \ S^*(\tau) = S(P^*(\tau))$$

$$P_*(f, \tau) \subset P(f) \subset R^*(f, \tau)$$

$$S(P_*(f,\tau)) = S_*(f,\tau) \to \int_a^b f, \ S(P^*(f,\tau)) = S^*(f,\tau) \to \int_a^b f, \ S(P_f) := \int_a^b f$$

Пример

Первая четверть эллипса с радиусами (a, b).

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad y = b\sqrt{1 - \frac{x^2}{a^2}}, \quad S = \int\limits_0^a b\sqrt{1 - \frac{x^2}{a^2}} dx - \text{сложно, перейдём в поляры}$$

$$\begin{cases} x = a\cos t \\ y = b\sin t \end{cases}$$

$$\int\limits_{0}^{a}f(x)dx=\int\limits_{\frac{\pi}{2}}^{0}b\sin td(a\cos t)=ab\int\limits_{\frac{\pi}{2}}^{0}\sin^{2}tdt=-ab(t-\frac{\sin 2t}{2})|_{\frac{\pi}{2}}^{0}=0-(-\frac{\pi ab}{4})=\frac{\pi ab}{4}$$

Вычисление объемов

y_{TB}

Принцип Кавальери. Если у двух тел одни сечения на одном уровне, то их объемы равны.

$$\sum\limits_{k=0}^{n-1}S(\xi_k)\Delta_k$$
 - сумма Римана $V=\int\limits_a^bS(x)dx$ - измельчаем плоскости

Пример

 $\frac{\mathbf{Mep}}{(\textit{на}\ \textit{самом}\ \textit{деле}\ \textit{тела}\ \textit{вращения}\ \textit{можно}\ \textit{считать}\ \textit{как}\ V = \pi\int\limits_a^b f^2(x)dx)$

32 Путь. Длина пути. Спрямляемый путь. Аддитивность длины пути.

 $\frac{\mathbf{Oпр}}{\mathbf{\gamma}} : [a,b] \to \mathbb{R}^n, \ \mathbf{\gamma} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \dots \\ \gamma_n \end{pmatrix}, \ \mathbf{\gamma}_k : [a,b] \to \mathbb{R}. \ \textit{Расстояние считается как}$ $d(x,y) = ||x-y||_2 = \sqrt{\sum_{k=1}^n (x_k - y_k)^2}, \ \mathbf{\gamma} - \textit{путь, если } \forall i \in \{1, \dots k\} \ \mathbf{\gamma}_i \in C[a,b]$

Опр

Путь называется r-гладким, если $\forall i \in \{1,...k\} \ \gamma_i \in C^r[a,b]$

Опр

Два пути считаются эквивалентными если можно сделать замену переменной. Т.е. пусть $\gamma:[a,b] \to \mathbb{R}$, $\widetilde{\gamma}:[\alpha,\beta] \to \mathbb{R}$, тогда:

 $\gamma \sim \widetilde{\gamma} \Leftrightarrow \exists \varphi : [a,b] \to [\alpha,\beta]$ - строго возрастающая, $\alpha = \varphi(a)$, $\beta = \varphi(b)$, $\gamma = \widetilde{\gamma} \circ \varphi$

Опр

Кривая - класс эквивалентности путей. \forall путь - представитель класса эквивалентности называется "параметризацией"

Пример

$$\gamma_1: \begin{cases} x = \cos t & 0 \leqslant t \leqslant 2\pi \\ y = \sin t & 0 \leqslant t \leqslant 2\pi \end{cases} \qquad \gamma_2: \begin{cases} x = \cos t^2 & 0 \leqslant t \leqslant 2\pi \\ y = \sin t^2 & 0 \leqslant t \leqslant 2\pi \end{cases}$$

 $\gamma_1 \sim \gamma_2$, определяют одну и ту же кривую (окружность)

Опр

Кривая называется r-гладкой, если у неё есть r-гладкая параметризация

Опр

 γ - простой путь $\Leftrightarrow \gamma$ - биекция на (a,b), т.е. $\forall t_1,t_2 \in (a,b): \gamma(t_1) \neq \gamma(t_2)$ (без самопересечений). Если $\gamma(a) = \gamma(b)$, γ - замкнутый путь.

Опр (длины пути)

 $\gamma : [a,b] \to \mathbb{R}^m$, $\tau - [a,b] : a = t_0 < t_1 < ... < t_n = b$. Соединим $[\gamma(t_k), \gamma(t_{k+1})]$ отрезками - получим вписанную ломанную.

Длина
$$k$$
-ого звена: $\sqrt{\sum_{j=0}^m (\gamma_j(t_{k+1}) - \gamma_j(t_k))^2}$

$$T$$
огда длина вписанной ломанной: $l=\sum_{k=0}^{n-1}\sqrt{\sum_{j=0}^m(\gamma_j(t_{k+1})-\gamma_j(t_k))^2}$

Длиной пути назовём $S_{\gamma}:=\sup_{\tau}l_{\tau}$ - всевозможных ломанных

Опр

Путь называется спрямляемым, если $S_{\gamma} < +\infty$

y_{TB}

Аддитивность длины пути. $\gamma:[a,b]\to\mathbb{R},\ c\in(a,b),\ пусть\ \gamma_1$ - сужение γ на $[a,c],\ \gamma_2$ - сужение γ на [c,b]. Тогда $S_{\gamma}=S_{\gamma_1}+S_{\gamma_2}$

Док-во

а)
$$S_{\gamma} \geqslant S_{\gamma_1} + S_{\gamma_2}$$
?

 $\Pi y c m b \ \tau_1 - p a s b u e h u e \ [a, c], \ \tau_2 - p a s b u e h u e \ [c, b],$
 $\tau = \tau_1 + \tau_2, \ l_{\tau_1} + l_{\tau_2} = l_{\tau} \leqslant S_{\gamma}$
 $(m.\kappa. \ S_{\gamma} - \sup)$

Возьмём \sup по всем раз $u e h u s m$ отрез $u e h u s m$ от $u e h u s m$ отрез $u e h u s m$ от $u e h$

Примеры

Неспрямляемые пути:

1) Кривая Пеано

В пределе $\gamma:[0,1]\to [0,1]^2$ - сюръективное отображение. В итоге получается прямая заполняющая весь квадрат с пересеченями (в смысле дополнение до подкривых пределе пусто)

Докажем, что прямая не является спямляемой. Пусть $\tau:0<\frac{1}{N}<\frac{1}{N-1}<...<1,\ t_N=\frac{1}{N},\ mor\partial a$

$$y(t_k) = \frac{1}{k}\cos\pi k = \frac{1}{k}(-\pi)^k$$

Длина к-ого звена:

$$\frac{1}{k} - \left(-\frac{1}{k+1}\right) \geqslant \frac{2}{k} \Rightarrow l_{\tau} \geqslant \sum_{k=1}^{N} \frac{1}{k} \Rightarrow \sup l_{\tau} = +\infty$$

33 Кривая. Длина кривой.

Опр. см. в билете 32

Теорема (о длинах эквивалентных путей)

$$\overline{\Pi yc}mb\ \gamma_1:[a_1,b_1]\to\mathbb{R}^m,\ \gamma_2:[a_2,b_2]\to\mathbb{R}^m.\ \textit{Если}\ \gamma_1\sim\gamma_2\Rightarrow S_{\gamma_1}=S_{\gamma_2}$$

Док-во

 $\overline{\gamma_1} \sim \gamma_2 \Rightarrow \exists \varphi : [a_1, b_1] \rightarrow [a_2, b_2]$ - строго возрастающая, $\gamma_1(t) = \gamma_2(\varphi(t))$, $\varphi(\tau_1) = \tau_2$ - разбиение $[a_2, b_2]$,

$$l_{\tau_1} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} = l_{\tau_2} \leqslant S_{\tau_2}$$

Перейдём к sup по всем τ_1 : $\sup_{\tau_1}(l_{\tau_1}) = S_{\tau_1} \leqslant S_{\tau_2}$ Аналогично получим неравенство $S_{\tau_2} \leqslant S_{\tau_1}$

Замечание

Корректность определения (с классами эквивалентности) длины пути следует из доказанной выше теоремы

34 Теорема о вычислении длины гладкого пути.

Теорема

$$\overline{\gamma:[a,b]} o \mathbb{R}^m$$
 - C^1 -гладкая кривая, тогда γ - спрямляется, $S_\gamma=\int\limits_a^b|\gamma'|$

Док-во

1) γ - спрямляемая?

 $\gamma_j \in C^1[a,b] \ \forall j \in \{1,2,...,m\} \Rightarrow ($ ф-ия достигает min u max на [a,b] no m.Вейерштрасса)

$$m_j \leqslant \gamma_j \leqslant M_j, \ M := \sqrt{\sum_{j=1}^m M_j}, \ m := \sqrt{\sum_{j=1}^m m_j}, \ \gamma' = \begin{pmatrix} \gamma'_1 \\ \gamma'_2 \\ \dots \\ \gamma'_n \end{pmatrix}$$

$$\forall au$$
-разбиения $[a,b]: l_{ au} = \sum\limits_{k=0}^{n-1} \sqrt{\sum\limits_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} =$

(по т. Лагранжа $\forall k=0,1,...n-1 \; \exists \xi_k \in [t_k,t_{k+1}] : \gamma_j(t_{k+1})-\gamma_j(t_k)=\gamma_j'(\xi_k)\Delta_{t_k}$)

$$= \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma'_{j}(\xi_{k}))^{2} \Delta_{t_{k}}^{2}} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma'_{j}(\xi_{k}))^{2}} \Delta_{t_{k}} \Rightarrow m \sum_{k=0}^{n-1} \Delta_{t_{k}} \leqslant l_{\tau} \leqslant M \sum_{k=0$$

$$\Rightarrow m(b-a) \leqslant l_{\tau} \leqslant M(b-a) \xrightarrow[\sup]{} m(b-a) \leqslant S_{\gamma} \leqslant M(b-a) \Rightarrow -\infty < S_{\gamma} < +\infty$$

2)
$$S_{\gamma} = \int_{a}^{b} |\gamma'|$$
?

Пусть $\gamma^{(k)}$ - сужение γ на $[t_k, t_{k+1}]$. Для него выполняется пункт (1):
переобозначим γ' как $\stackrel{\bullet}{\gamma}$ из-за сложности обозначений

$$m_j^{(k)} = \min_{t \in [t_k, t_{k+1}]} | \stackrel{\bullet}{\gamma_j}(t) |, \ M_j^{(k)} = \max_{t \in [t_k, t_{k+1}]} | \stackrel{\bullet}{\gamma_j}(t) |$$

$$m^{(k)} = \sqrt{\sum_{j=1}^{m} (m_j^{(k)})^2}, \ M^{(k)} = \sqrt{\sum_{j=1}^{m} (M_j^{(k)})^2}$$

$$m^{(k)}\Delta t_k \leqslant S_{\gamma^{(k)}} \leqslant M^{(k)}\Delta t_k \Rightarrow \sum_{k=1}^{n-1} \leqslant S_{\gamma} \leqslant \sum_{k=1}^{n-1} M^{(k)}\Delta t_k$$

$$m_j^{(k)} \leqslant |\dot{\gamma}_j^{\bullet(k)}(t)| \leqslant M_j^{(k)}| t_k \leqslant t \leqslant t_{k+1}, \ \forall j = 1, ..., m$$

Суммируем, возводим в квадрат, иззвлекаем корень:

$$m^{(k)} \leqslant |\stackrel{\bullet}{\gamma}^{(k)}(t)| \leqslant M^{(k)}| \ t_k \leqslant t \leqslant t_{k+1}$$

$$Ilpounmerpupyem \ no \ \int_{t_k}^{t_{k+1}} dt : \ m^{(k)} \Delta t_k \leqslant \int_{t_k}^{t_{k+1}} |\stackrel{\bullet}{\gamma}^{(k)}(t)| dt \leqslant M^{(k)} \Delta t_k$$

$$\Rightarrow \sum_{k=1}^{n-1} \leqslant \int_{t_k}^{t_{k+1}} |\stackrel{\bullet}{\gamma}^{(k)}(t)| dt \leqslant \sum_{k=1}^{n-1} M^{(k)} \Delta t_k, \ oughum \ \sum_{k=1}^{n-1} (M^{(k)} - m^{(k)} \Delta t_k) :$$

$$M^{(k)} - m^{(k)} = \frac{(M^{(k)})^2 - (m^{(k)})^2}{M^{(k)} + m^{(k)}} = \sum_{j=1}^{m} (M_j^{(k)} - m_j^{(k)}) \frac{M_j^{(k)} + m_j^{(k)}}{M^{(k)} + m^{(k)}} \leqslant \sum_{j=1}^{m} (M_j^{(k)} - m_j^{(k)})$$

$$\gamma_j \in C^1[a, b] \Rightarrow \gamma'_j \in C[a, b] \Rightarrow p/n \Leftrightarrow \forall \mathcal{E} > 0 \ \exists \delta_j > 0 :$$

$$\lambda(\tau) < \delta_j \Rightarrow 0 \leqslant M_j^{(k)} - m_j^{(k)} \leqslant \frac{\mathcal{E}}{m(b-a)} \underset{1 \leqslant j \leqslant m}{\overset{\sum}{\Longrightarrow}} 0 \leqslant M^{(k)} - m^{(k)} \leqslant \frac{\mathcal{E}}{b-a}$$

$$\Rightarrow \sum_{k=1}^{n-1} (M^{(k)-m^{(k)}} \Delta t_k < \frac{\mathcal{E}}{b-a} \sum_{k=1}^{n-1} \Delta t_k = \mathcal{E} \Rightarrow S_{\gamma} = \int_{-\infty}^{b} |\stackrel{\bullet}{\gamma}|$$

35 Функциональные последовательности и ряды. Поточечная и равномерная сходимость. Примеры.

36 Критерий Коши для равномерной сходимости функциональной последовательности.

37 Сохранение непрерывности при равномерном предельном переходе. Теорема Дини (б/д). Теорема о предельном переходе под знаком интеграла.

38 Дифференцируемость и равномерная сходимость.

39 Признак Вейерштрасса равномерной сходимости функциональных рядов.

40 Степенной ряд (в С). Радиус сходимости. Формула Коши-Адамара. 41 Теорема о комплексной дифференцируемости степенного ряда. Следствие: единственность разложения в степенной ряд. **42** Ряд Тейлора. Примеры $(e^x, \sin x, \ln(1+x), e^{-\frac{1}{x^2}})$.

43 Биномиальный ряд $(1+x)^{\alpha}$

44 Признак Абеля-Дирихле для равномерной сходимости функциональных рядов (доказательство одного).

45 Теорема Абеля. Сумма ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

46 Интеграл комплекснозначной функции. Скалярное произведение и норма в пространстве $C(\mathbb{C} \setminus \mathbb{R})$, в пространстве R([a;b]). Ортогональность. Пример: $e_k(x) = e^{2\pi i k x}$.

47 Свойства скалярного произведения и нормы (теорема Пифагора, неравенство Коши-Буняковского-Шварца, неравенство треугольника).

48 Коэффициенты Фурье функции по ортогональной системе e_k . Ряд Фурье. Пример: тригонометрический полином.

49 Свойства коэффициентов Фурье (коэффициенты Фурье сдвига, производной).

50 Неравенство Бесселя. Лемма Римана-Лебега (light).

51 Вычисление интеграла Дирихле $\int\limits_0^\infty \frac{\sin x}{x}$.

52 Ядра Дирихле, их свойства. Выражение частичных сумм ряда Фурье через ядра Дирихле.

53 Свертка. Простейшие свойства. Свертка с тригонометрическими и алгебраическими полиномами.

54 Принцип локализации Римана.

55 Теорема о поточечной сходимости ряда Фурье для локально-Гельдеровой функции.

56 Ядра Фейера, их свойства. Связь с $\sigma_N(f)$.

57 Аппроксимативная единица. Определение, примеры. Теорема о равномерной сходимости свертки с аппроксимативной единицей.

58 Теорема Фейера. Теорема Вейерштрасса.

59 Среднеквадратичное приближение функций, интегрируемых по Риману, тригонометрическими полиномами.

60 Равенство Парсеваля.

61 Замечания из конспектов, которые не вошли в билеты

61.1 Множества меры ноль

Опр

 $E \subset \mathbb{R}$, говорят, что E - мн-во меры ноль, если:

$$\forall \mathcal{E} > 0 \quad \exists I_j = (\alpha_j, \beta_j) : E \subset \bigcup_{j \in \mathbb{N}} I_j \sum_{j=1}^{\infty} |I_j| < \mathcal{E} \ (|I_j| = \beta_j - \alpha_j)$$
ne bosee yem cy.
nabop omep. unm.

Примеры

1) ∀ Конечное множество - мн-во меры ноль

$$E = \{x_1, ..., x_n\}, I_j := (x_j - \frac{\mathcal{E}}{4n}, x_j + \frac{\mathcal{E}}{4n}), \sum_{i=1}^n |I_j| = \frac{\mathcal{E}}{2}$$

- 2) $A = \{a_j\}_{j \in \mathbb{N}}$ счётное \Rightarrow имеет меру 0. Как покрыть \mathbb{N} ? $|I_j| = \frac{\mathcal{E}}{2^{j+1}}$ - геом. прогрессия
- 3) Несчетное множество меры ноль: Канторовское мн-во (Канторовский компакт), построение:

$$C = \bigcap_{n=1}^{\infty} C_n$$

Определим $C_{\frac{1}{3p}}$ как множество отрезков, получинных для $\mathcal{E} = \frac{1}{3^p}$ для крайних точек каждого отрезка из C_p (они их покроют "вплотную" и по краям будет немного лишнего). На каждом шаге p у нас 2^p отрезков

$$\Rightarrow |C_{\frac{1}{3^p}}| = 5 \frac{2^{p-1}}{3^p} \underset{p \to \infty}{\to} 0$$

Критерий Лебега интегрируемости функции 61.2

Теорема

Пусть $f:[a,b]\to\mathbb{R}$, тогда: $f \in R[a,b] \Leftrightarrow f$ имеет ограниченное мн-во точек разрыва и меру θ

$$\frac{\textbf{Примеры}}{\textit{1) Функция Дирихле }}\mathcal{D}(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

 $\mathcal{D} \notin R[0,1]$. Проверим по критерию Лебега. Множество точек разрыва - \mathbb{R} , но оно не множество меры 0 (слишком много точек).

2) Функция Римана
$$\Phi(x)=egin{cases} 0,&x\notin\mathbb{Q}\\ \frac{1}{n},&x=\frac{m}{n} \ \text{-}\ \text{несократимая}\ \partial pobs \end{cases}$$

Оказывается, она интегрируема по Риману на любом отрезке. Рассмотрим [0,1]:

- $a) \ \forall a \in \mathbb{Q}$ точка разрыва Φ :
- $\Phi(a) > 0$ по определению. C другой стороны как угодно близко найдётся иррациональная точка, в которой функция принимает значение 0.
 - б) $\forall a \notin \mathbb{Q}$ непрерывна:

Для произвольного $\mathcal{E}>0$ рассмотрим множество $M=\{x\in\mathbb{R}:$ $f(x) \geq \mathcal{E}$.

Никакая иррациональная точка не лежит в M, поскольку в иррациональных точках функция f обращается в ноль.

Если $x \in M$, тогда x есть рациональное число вида $x = \frac{m}{n}$, где $m \in$ $\mathbb{Z},\ n\in\mathbb{N},\ \partial pob \frac{m}{n}$ несократима, и тогда $f(x)=\frac{1}{n}\geq\mathcal{E}$ и, следовательно, $n \leq \frac{1}{\varepsilon}$. Из ограничения на n следует, что пересечение множества M uлюбого ограниченного интервала состоит из конечного числа точек.

Пусть α - произвольное иррациональное число. По определению $f(\alpha)=$ 0. Мы можем выбрать окрестность точки α так, чтобы в ней не содержалась ни одна точка множества M. Если же $x \notin M$, то $f(x) < \mathcal{E}$. Таким образом, мы нашли интервал, который требуется в определении непрерывности.