The M4RI & M4RIE libraries for linear algebra over \mathbb{F}_2 and small extensions

Martin R. Albrecht

Sage/FLINT Days, 19.12.2011, Warwick (UK)

Outline

M4RI

Multiplication Elimination Projects

M4RIE

Introduction Newton-John Tables Karatsuba Multiplication Results

Outline

M4RI

Multiplication

Elimination

M4RIE

Introduction Newton-John Tables Karatsuba Multiplication

M4RM [ADKF70] I

Consider $C = A \cdot B$ (A is $m \times \ell$ and B is $\ell \times n$).

A can be divided into ℓ/k vertical "stripes"

$$A_0 \dots A_{(\ell-1)/k}$$

of k columns each. B can be divided into ℓ/k horizontal "stripes"

$$B_0 \ldots B_{(\ell-1)/k}$$

of k rows each. We have:

$$C = A \cdot B = \sum_{i=1}^{(\ell-1)/k} A_i \cdot B_i.$$

M4RM [ADKF70] II

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, A_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}, B_0 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}, B_1 = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$A_0 \cdot B_0 = \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ 0 & 0 & 0 & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ 0 & 1 & 1 & 0 \end{pmatrix}, A_1 \cdot B_1 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \end{pmatrix}$$

M4RM: Algorithm $\mathcal{O}(n^3/\log n)$

```
begin
        C \leftarrow create an m \times n matrix with all entries 0;
        k \leftarrow |\log n|;
 3
        for 0 \le i < (\ell/k) do
 4
             T \leftarrow \text{MAKETABLE}(B, i \times k, 0, k);
 5
             for 0 < i < m do
 6
                 id \leftarrow \text{READBITS}(A, j, i \times k, k);
                 add row id from T to row j of C;
 8
        return C;
 9
10 end
```

Algorithm 1: M4RM

Strassen-Winograd [Str69] Multiplication

- ► fastest known pratical algorithm
- ▶ complexity: $\mathcal{O}(n^{\log_2 7})$
- ▶ linear algebra constant: $\omega = \log_2 7$
- ► M4RM can be used as base case for small dimensions
- ightarrow optimisation of this base case

Cache Friendly M4RM I

```
begin
       C \leftarrow create an m \times n matrix with all entries 0;
       for 0 \le i < (\ell/k) do
3
           T \leftarrow \text{MAKETABLE}(B, i \times k, 0, k);
4
           for 0 < i < m do
5
                id \leftarrow \text{READBITS}(A, j, i \times k, k);
6
                add row id from T to row j of C;
7
       return C:
8
9 end
```

Cache Friendly M4RM II

```
begin
        C \leftarrow create an m \times n matrix with all entries 0;
        for 0 < start < m/b_s do
 3
             for 0 \le i < (\ell/k) do
 4
                 T \leftarrow \text{MAKETABLE}(B, i \times k, 0, k);
 5
                 for 0 < s < b_s do
 6
                     i \longleftarrow start \times b_s + s;
                     id \leftarrow \text{READBITS}(A, j, i \times k, k);
 8
                      add row id from T to row j of C;
 9
        return C;
10
11 end
```

t>1 Gray Code Tables I

- actual arithmetic is quite cheap compared to memory reads and writes
- the cost of memory accesses greatly depends on where in memory data is located
- ▶ try to fill all of L1 with Gray code tables.
- ▶ Example: k = 10 and 1 Gray code table $\rightarrow 10$ bits at a time. k = 9 and 2 Gray code tables, still the same memory for the tables but deal with 18 bits at once.
- ➤ The price is one extra row addition, which is cheap if the operands are all in cache.

$\overline{t>1}$ Gray Code Tables II

```
begin
        C \leftarrow create an m \times n matrix with all entries 0;
        for 0 < i < (\ell/(2k)) do
 3
             T_0 \leftarrow \text{MakeTable}(B, i \times 2k, 0, k);
 4
             T_1 \leftarrow \text{MAKETABLE}(B, i \times 2k + k, 0, k);
 5
             for 0 < i < m do
 6
                 id_0 \leftarrow \text{READBITS}(A, j, i \times 2k, k);
                 id_1 \leftarrow READBITS(A, j, i \times 2k + k, k);
 8
                 add row id_0 from T_0 and row id_1 from T_1 to row j of C;
 9
        return C:
10
11 end
```

Results: Multiplication

Figure: 2.66 Ghz Intel i7, 4GB RAM

Small Matrices

M4RI is efficient for large matrices, but not necessarily for small matrices.

	Thomé	M4RI
transpose	$4.5097~\mu s$	0.6352 <i>μs</i>
сору	$0.2019~\mu s$	$0.2674~\mu s$
add	$0.2533~\mu s$	$0.2921~\mu s$
mul	$0.2535~\mu s$	0.4472 μ s

Table: 64×64 matrices (matops.c)

Note

One performance bottleneck is that our matrix structure is much more complicated than Emmanuel's.

Results: Multiplication Revisited

Figure: 2.66 Ghz Intel i7, 4GB RAM

Outline

M4RI

Multiplication Elimination Projects

M4RIE

Introduction Newton-John Tables Karatsuba Multiplication Results

PLE Decomposition I

Definition (PLE)

Let A be a $m \times n$ matrix over a field K. A PLE decomposition of A is a triple of matrices P, L and E such that P is a $m \times m$ permutation matrix, L is a unit lower triangular matrix, and E is a $m \times n$ matrix in row-echelon form, and

$$A = PLE$$
.

PLE decomposition can be in-place, that is L and E are stored in A and P is stored as an m-vector.

PLE Decomposition II

From the PLE decomposition we can

- ▶ read the rank r,
- read the row rank profile (pivots),
- compute the null space,
- ▶ solve y = Ax for x and
- ► compute the (reduced) row echelon form.
- C.-P. Jeannerod, C. Pernet, and A. Storjohann.

 Fast gaussian elimination and the PLE decomposition.

 in preparation, 30 pages, 2011.

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ I

Write

$$A = (A_W A_E) = \begin{pmatrix} A_{NW} A_{NE} \\ A_{SW} A_{SE} \end{pmatrix}$$

Main steps:

- 1. Call PLE on A_W
- 2. Apply row permutation to A_E
- 3. $L_{NW} \leftarrow$ the lower left triangular matrix in A_{NW}
- 4. $A_{NE} \leftarrow L_{NW}^{-1} \times A_{NE}$
- 5. $A_{SE} \leftarrow A_{SE} + A_{SW} \times A_{NE}$
- 6. Call PLE on ASE
- 7. Apply row permutation to A_{SW}
- 8. Compress *L*

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ II

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ III

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ IV

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ V

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ VI

Block Recursive PLE Decomposition $\mathcal{O}(n^{\omega})$ VII

Block Iterative PLE Decomposition I

We need an efficient base case for PLE Decomposition

- block recursive PLE decomposition gives rise to a block iterative PLE decomposition
- ► choose blocks of size $k = \log n$ and use M4RM for the "update" multiplications
- ▶ this gives a complexity $\mathcal{O}\!\left(n^3/\log n\right)$

Block Iterative PLE Decomposition II

Block Iterative PLE Decomposition III

Block Iterative PLE Decomposition IV

Block Iterative PLE Decomposition V

Block Iterative PLE Decomposition VI

Block Iterative PLE Decomposition VII

Block Iterative PLE Decomposition VIII

Block Iterative PLE Decomposition IX

Block Iterative PLE Decomposition X

Block Iterative PLE Decomposition XI

Results: Reduced Row Echelon Form

Figure: 2.66 Ghz Intel i7, 4GB RAM

Results: Row Echelon Form

Using one core – on sage.math – we can compute the echelon form of a 500, 000 \times 500, 000 dense random matrix over \mathbb{F}_2 in

9711 seconds = 2.7 hours (
$$c \approx 10^{-12}$$
).

Using four cores decomposition we can compute the echelon form of a random dense $500,000 \times 500,000$ matrix in

3806 seconds = 1.05 hours.

Anybody got a 256GB RAM machine idlying around so that we can try $1,000,000 \times 1,000,000$ which should take about 20 hours on a single CPU? You know, for science!

Outline

M4RI

Multiplication Elimination Projects

M4RIE

Introduction Newton-John Tables Karatsuba Multiplication Results

Sensitivity to Sparsity

Figure: Gaussian elimination of $10,000\times10,000$ matrices on Intel 2.33GHz Xeon E5345 comparing Magma 2.17-12 and M4RI 20111004.

Linear Algebra for Gröbner Basis

Problem	matrix dimensions	density	PLE	M4RI	GB
HFE 25 matrix 5 (5.1M)	12307 × 13508	0.07600	1.03	0.59	0.81
HFE 30 matrix 5 (16M)	19907 × 29323	0.06731	4.79	2.70	4.76
HFE 35 matrix 5 (37M)	29969 x 55800	0.05949	19.33	9.28	19.51
Mutant matrix (39M)	26075 × 26407	0.18497	5.71	3.98	2.10
random n=24, m=26 matrix 3 (30M)	37587 × 38483	0.03832	20.69	21.08	19.36
random n=24, m=26 matrix 4 (24M)	37576 × 32288	0.04073	18.65	28.44	17.05
SR(2,2,2,4) compressed, matrix 2 (328K)	5640 × 14297	0.00333	0.40	0.29	0.18
SR(2,2,2,4) compressed, matrix 4 (2.4M)	13665 x 17394	0.01376	2.18	3.04	2.04
SR(2,2,2,4) compressed, matrix 5 (2.8M)	11606 × 16282	0.03532	1.94	4.46	1.59
SR(2,2,2,4) matrix 6 (1.4M)	13067 × 17511	0.00892	1.90	2.09	1.38
SR(2,2,2,4) matrix 7 (1.7M)	12058 × 16662	0.01536	1.53	1.93	1.66
SR(2,2,2,4) matrix 9 (36M)	115834 x 118589	0.00376	528.21	578.54	522.98

Multi-core Support

M4RI BOpS & Speed-up

PLE BOpS & Speed-up

GF(2) on GFX

Matrixgröße	GeForce GTX 295	GeForce GTX 480	
9.984 x 10.240	0,9 Sek.	1,2 Sek.	
16.384 x 16.384	2,47 Sek.	2,9 Sek.	
20.000 x 20.480	4,63 Sek.	4,63 Sek.	
32.000 x 32.768	13,3 Sek.	12,2 Sek.	
64.000 x 65.536 Tabell Astrix Dimension	e 3.13: Zeiten auf der M4RI/M4RI	70,74 Sek. CPU 6. M4RI/M4RI	
Tabell		CPU [6].	
Tabell Matrix Dimension	M4RI/M4RI	CPU [6].	
Tabell	M4RI/M4RI 20090105	CPU [6]. M4RI/M4RI 20100817	
Tabell fatrix Dimension 10.000 x 10.000	M4RI/M4RI 20090105	CPU [6]. M4RI/M4RI 20100817 ²¹ 1,050	
Tabell Matrix Dimension 10.000 x 10.000 16.384 x 16.384	M4RI/M4RI 20090105 1,532 6,597	CPU [6]. M4RI/M4RI 20100817 1,050 3,890	

Effizientes Lösen linearer Gleichungssysteme über $\mathsf{GF}(2)$ mit GPUs

Diplomarbeit, TU Darmstadt, September 2010

Outline

M4RI

Multiplication Elimination Projects

M4RIE

Introduction

Newton-John Tables Karatsuba Multiplication

Results

Motivation I

Your NTL patch worked perfectly for me first try. I tried more benchmarks (on Pentium-M 1.8Ghz):

```
[...] //these are for GF(2^8), malb sage: n=1000; m=ntl.mat_GF2E(n,n,[ ntl.GF2E_random() for i in xrange(n^2) ]) sage: time m.echelon_form() 1000
Time: CPU 29.72 s, Wall: 43.79 s
```

This is pretty good; vastly better than what's was in SAGE by default, and way better than PARI. Note that MAGMA is much faster though (nearly 8 times faster):

```
[...] > n := 1000; A := MatrixAlgebra(GF(2^8),n)![Random(GF(2^8)) : i in [1..n^2]]; > time E := EchelonForm(A); Time: 3.440
```

MAGMA uses (1) [...] and (2) a totally different algorithm for computing the echelon form. [...] As far as I know, the MAGMA method is not implemented anywhere in the open source world. But I'd love to be wrong about that... or even remedy that.

- W. Stein in 01/2006 replying to my 1st non-trivial patch to Sage

Motivation II

The situation has not improved much in **2011**:

System	Time in <i>ms</i>
Sage 4.7.2	97,000
NTL 5.4.2	85,000
LinBox SVN + patches	460
GAP 4.412	210
Magma 2.15	13
this work	5.5

Table: Product of two dense $1,000 \times 1,000$ matrix over \mathbb{F}_{2^2} .

...an older version of our code will be in Sage 4.8.

Representation of Elements I

Elements in $\mathbb{F}_{2^e}\cong \mathbb{F}_2[x]/f$ can be written as

$$a_0\alpha^0 + a_1\alpha^1 + \cdots + a_{e-1}\alpha^{e-1}.$$

We identify the bitstring a_0, \ldots, a_{e-1} with

- lacktriangle the element $\sum_{i=0}^{e-1} a_i lpha^i \in \mathbb{F}_{2^e}$ and
- ▶ the integer $\sum_{i=0}^{e-1} a_i 2^i$.

In the datatype mzed_t we pack several of those bitstrings into one machine word:

$$a_{0,0,0},\ldots,a_{0,0,e-1},\ a_{0,1,0},\ldots,a_{0,1,e-1},\ldots,\ a_{0,n-1,0},\ldots,a_{0,n-1,e-1}.$$

Additions are cheap, scalar multiplications are expensive.

Representation of Elements II

- ▶ Instead of representing matrices over \mathbb{F}_{2^e} as matrices over polynomials we may represent them as polynomials with matrix coefficients.
- ▶ For each degree we store matrices over \mathbb{F}_2 which hold the coefficients for this degree.
- ▶ The data type mzd_slice_t for matrices over \mathbb{F}_{2^e} internally stores *e*-tuples of M4RI matrices, i.e., matrices over \mathbb{F}_2 .

Additions are cheap, scalar multiplications are expensive.

Representation of Elements III

$$A = \begin{pmatrix} \alpha^2 + 1 & \alpha \\ \alpha + 1 & 1 \end{pmatrix}$$

$$= \begin{bmatrix} \Box 101 & \Box 010 \\ \Box 011 & \Box 001 \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \end{pmatrix}$$

Figure: 2×2 matrix over \mathbb{F}_8

Outline

M4RI

Multiplication Elimination Projects

M4RIE

Newton-John Tables
Karatsuba Multiplication
Results

The idea I

4

5

```
Input: A - m \times n matrix
 Input: B - n \times k matrix
1 begin
     for 0 < i < m do
2
        for 0 \le j < n do
3
        return C;
6 end
```

The idea II

5

```
Input: A - m \times n matrix
  Input: B - n \times k matrix
  begin
      for 0 < i < m do
          for 0 \le j < n do
3
          C_j \longleftarrow C_j + A_{j,i} \times B_i; // cheap
      return C;
6 end
```

The idea III

3

5

```
Input: A - m \times n matrix
  Input: B - n \times k matrix
  begin
      for 0 < i < m do
          for 0 \le j < n do
           C_j \leftarrow C_j + A_{j,i} \times B_i; // expensive
      return C;
6 end
```

The idea IV

5

```
Input: A - m \times n matrix
  Input: B - n \times k matrix
  begin
      for 0 \le i < m do
           for 0 \le i < n do
3
            C_j \leftarrow C_j + A_{j,i} \times B_i; // expensive
      return C;
6 end
```

But there are only 2^e possible multiples of B_i .

The idea V

```
1 begin
         Input: A - m \times n matrix
        Input: B - n \times k matrix
        for 0 \le i < m do
2
              for 0 < i < 2^e do
3
               T_i \longleftarrow j \times B_i;
4
              for 0 \le i < n do
5
                \begin{array}{c|c} x \longleftarrow A_{j,i}; \\ C_j \longleftarrow C_j + T_x; \end{array}
6
        return C;
8
9 end
```

 $m \cdot n \cdot k$ additions, $m \cdot 2^e \cdot k$ multiplications.

Gaussian elimination & PLE decomposition

```
Input: A - m \times n matrix
 1 begin
        r \leftarrow 0:
        for 0 < i < n do
 3
             for r < i < m do
 4
                 if A_{i,i} = 0 then continue;
                 rescale row i of A such that A_{i,i} = 1;
 6
                 swap the rows i and r in A;
                 T \leftarrow multiplication table for row r of A;
 8
                 for r + 1 \le k \le m do
 9
                    x \longleftarrow A_{k,j};
10
                  A_k \leftarrow A_k + T_x;
11
                 \underline{r} \leftarrow \underline{r} + 1;
12
13
             return r;
14 end
```

Outline

M4RI

Multiplication Elimination Projects

M4RIE

Introduction
Newton-John Tables
Karatsuba Multiplication

The idea

- ► Consider \mathbb{F}_{2^2} with the primitive polynomial $f = x^2 + x + 1$.
- ▶ We want to compute C = AB.
- ▶ Rewrite A as $A_0x + A_1$ and B as $B_0x + B_1$.
- ► The product is

$$C = A_0 B_0 x^2 + (A_0 B_1 + A_1 B_0) x + A_1 B_1.$$

► Reduction modulo *f* gives

$$C = (A_0B_0 + A_0B_1 + A_1B_0)x + A_1B_1 + A_0B_0.$$

► This last expression can be rewritten as

$$C = ((A_0 + A_1)(B_0 + B_1) + A_1B_1)x + A_1B_1 + A_0B_0.$$

Thus this multiplication costs 3 multiplications and 4 adds over \mathbb{F}_2 .

Outline

M4RI

Multiplication Elimination Projects

M4RIE

Introduction Newton-John Tables Karatsuba Multiplication

Results

Results: Multiplication I

e	Magma	GAP	SW-NJ	SW-NJ/	[Mon05]	Bitslice	Bitslice/
	2.15-10	4.4.12		M4RI			M4RI
1	0.100s	0.244s	_	1	1	0.071s	1.0
2	1.220s	12.501s	0.630s	8.8	3	0.224s	3.1
3	2.020s	35.986s	1.480s	20.8	6	0.448s	6.3
4	5.630s	39.330s	1.644s	23.1	9	0.693s	9.7
5	94.740s	86.517s	3.766s	53.0	13	1.005s	14.2
6	89.800s	85.525s	4.339s	61.1	17	1.336s	18.8
7	82.770s	83.597s	6.627s	93.3	22	1.639s	23.1
8	104.680s	83.802s	10.170s	143.2	27	2.140s	30.1

Table: Multiplication of $4,000\times 4,000$ matrices over \mathbb{F}_{2^e}

Results: Multiplication II

Figure: 2.66 Ghz Intel i7, 4GB RAM

Results: Reduced Row Echelon Forms I

e	Magma	GAP	M4RIE
	2.15-10	4.4.12	6b24b839a46f
2	6.040s	162.658s	3.310s
3	14.470s	442.522s	5.332s
4	60.370s	502.672s	6.330s
5	659.030s	N/A	10.511s
6	685.460s	N/A	13.078s
7	671.880s	N/A	17.285s
8	840.220s	N/A	20.247s
9	1630.380s	N/A	260.774s
10	1631.350s	N/A	291.298s

Table: Elimination of $10,000 \times 10,000$ matrices

Results: Reduced Row Echelon Forms II

Figure: 2.66 Ghz Intel i7, 4GB RAM

Fin

V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical construction of the transitive closure of a directed graph. Dokl. Akad. Nauk., 194(11), 1970.

(in Russian), English Translation in Soviet Math Dokl.

- Peter L. Montgomery.

 Five, six, and seven-term Karatsuba-like formulae.

 IEEE Trans. on Computers, 53(3):362–369, 2005.
- Volker Strassen.

 Gaussian elimination is not optimal.

 Nummerische Mathematik, 13:354–256, 1969.