آزمایشگاه سیستم های دیجیتال2

آزمایش 3

شمارنده ها

شمارنده ها (Counters)

مدار داخلی هر بلوک

فيليپ فلاپ D دارای پايه Reset

ادامه

انواع شمارنده ها

• شمارنده های آسنکرون (Asynchronous)

• شمارنده های سنکرون (synchronous)

شمارنده های آسنکرون

• شمارنده های آسنکرون صعودی (Up Counter):

CP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Q _A 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
Q _B 0 1 0 1 0 1 0
Q _C 0 1 0 1 0
Q _D 0

پالسساعت	Q_D	$Q_{\mathbf{C}}$	Q_{B}	$Q_{\mathbf{A}}$
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
2 3 4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

ادامه

• شمارنده های آسنکرون نزولی (Down Counter):

تعداد پالسهای	خروجىها			شمارش دەدھى
سأعت ورودى	С	В	Α	خروجی
0	1	1	1	7
1	1	1	0	6
2	1	0	1	5
3	1	0	0	4
4	0	1	1	3
5	0	1	0	2
6	0	0	1	1
7	0	0	0	0
8	1	1	1	7

ادامه

• شمارنده های آسنکرون ده دهی (Binary Coded Decimal) BCD

Q_3	Q_2	Q_1	Q_0	Decimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9

شمارنده های سنکرون

• شمارنده های سنکرون صعودی:

Q_3	Q_2	Q_1	Q_0	معادل دەدھى
O	O	O	O	0
O	O	O	1	1
O	O	1	O	2
O	O	1	1	3
O	1	O	O	4
O	1	O	1	5
O	1	1	O	6
O	1	1	1	7
1	O	O	O	8
1	0	O	1	9
1	O	1	O	10
1	O	1	1	11
1	1	O	O	12
1	1	O	1	13
1	1	1	O	14
1	1	1	1	15

ادامه

• شمارنده های صعودی ونزولی (Up/Down Counter):

$$(-1)^{1}$$
فعال $(-1)^{1}$ فعال $(-1)^{1}$

Basic Memory Components Master-Slave D Flip-Flop

Basic Memory Components All NAND Clocked SR-Latch

Basic Memory Components Master-Slave D Flip-Flop

Basic Memory Components

Master-Slave D Flip-Flop

```
module tb master;
    // Inputs
    reg d;
    reg c;
    // Outputs
    wire q;
    wire q b;
    // Instantiate the Unit Under Test
    master slave uut (
        .d(d),
        .c(c),
        .q(q),
        .q b(q b)
    );
    initial repeat (10) #50 c = \sim c;
```

```
initial begin
        // Initialize
        #20 d = 0;
        #20 d = 1;
        #20 d = 0;
endmodule
```

Basic Memory Components Master-Slave Using Two Feedback Blocks

Basic Memory Components Master-Slave Using Two Feedback Blocks

```
`timescale 1ns/100ps

module master_slave_p #(parameter delay=3) (input d,c, output q);
    wire qm;
    assign #(delay) qm = c ? d : qm;
    assign #(delay) q = ~c ? qm : q;
endmodule
```

Basic Memory Components Master-Slave Using Two Feedback Blocks

```
module tb master;
    // Inputs
    req d;
    req c;
    // Outputs
    wire q;
    // Instantiate the Unit Under Test
    maste_slave_e uut (
        .d(d),
        .c(c),
        .a(a)
```

```
initial repeat (10) #50 c = \sim c;
initial begin
    d = 0;
    c = 0;
    #20 d = 1;
    #20 d = 1;
    #20 d = 0;
    #18 d = 1;
    #20 d = 0;
    #20 d = 1;
    #20 d = 0;
    #20 d = 1;
    #20 d = 1;
    #20 d = 1;
    #20 d = 0;
```

Behavioral memory elements A D-Type Latch Verilog Code

```
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);
   always @( c or d )
      if ( c ) begin
      #4 q = d;
      #3 q_b = ~d;
   end
endmodule
```

Behavioral memory elements Latch Using Nonblocking Assignments

```
`timescale 1ns/100ps

module latch (input d, c, output reg q, q_b);
   always @( c or d )
      if ( c ) begin
          q <= #4 d;
      q_b <= #3 ~d;
   end
endmodule</pre>
```

Behavioral memory elements Positive Edge Trigger Flip-Flop

```
`timescale 1ns/100ps

module d_ff (input d, clk, output reg q, q_b);
   always @( posedge clk ) begin
        q <= #4 d;
        q_b <= #3 ~d;
   end
endmodule</pre>
```

Behavioral memory elements D Type Flip-Flop with Synchronous Control

```
module d_ff_sr_Synch (input d, s, r, clk, output reg q, q b);
   always @(posedge clk) begin
      if( s ) begin
         q \le #4 1'b1;
         ab <= #3 1'b0;
      end else if( r ) begin
         q \le #4 1'b0;
         q b <= #3 1'b1;
      end else begin
         a <= #4 d;
         q b <= #3 ~d;
      end
   end
endmodule
```

Memory vectors and arrays 8-bit Transparent D-Latch

```
`timescale 1ns/100ps

module vector_latch (input [7:0] d, input c, output reg [7:0] q);
   always @( c or d )
      if( c )
      #4 q = d;
endmodule
```

Memory vectors and arrays 8-bit Transparent D-Latch, Test

```
module tb latch;
    // Inputs
    reg [7:0] d;
    reg c;
   // Outputs
    wire [7:0] q;
    // Instantiate the Unit Under Test (UUT)
    vector latch uut (
       .d(d),
        .c(c),
        .q(q) );
    initial repeat (10) #40 c = \sim c;
    //initial repeat (20) #20 c = \sim c;
    initial begin
       // Initialize Inputs
        d = 0;
        c = 0;
        #20 d = 8'b10101010;
        #40 d = 8'b10111011;
        #40 d = 8'b00111001;
    end
endmodule
```

Memory vectors and arrays An 8-bit Register with Tri-State Output

```
module vector_ff (input [7:0] d, input clk, rst, oe,
                  output [7:0] q);
   reg [7:0] internal_q;
   always @( posedge clk )
      if ( rst )
         #4 internal q <= 8'b0000 0000;
      else
         #4 internal q <= d;
   assign q = oe ? internal q : 8'bZ;
endmodule
```

Memory vectors and arrays A Sizable Register

Separate register combinational blocks Up-Down Counter