

Europäisches Patentamt European Patent Office

Office européen des brevets

(11) EP 1 006 189 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 07.06.2000 Patentblatt 2000/23

(21) Anmeldenummer: 99123738.9

(22) Anmeldetag: 30.11.1999

(51) Int. Cl.⁷: **C12N 15/52**, C12N 15/54, C12N 15/60, C12N 15/77, C12P 13/02 // C12N1/21 , (C12R1/15, 1:19)

(22) Armeidelag. 30.11.1933

AL LT LV MK RO SI

(84) Benannte Vertragsstaaten: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten:

(30) Priorität: 01.12.1998 DE 19855312

(71) Anmelder:

 Degussa-Hüls Aktiengesellschaft 60287 Frankfurt am Main (DE) FORSCHUNGSZENTRUM JÜLICH GMBH 52425 Jülich (DE)

(72) Erfinder:

Eggeling, Lothar, Dr.
 52428 Jülich (DE)

 Thierbach, Georg, Dr. 33613 Bielefeld (DE)

 Sahm, Herrmann, Prof.Dr. 52428 Jülich (DE)

(54) Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung coryneformer Bakterien

(57) Die Erfindung betrifft in Mikroorganismen der Gattung Corynebacterium replizierbare, gegebenfalls rekombinante DNA mit der Herkunft Corynebacterium, die zumindest eine der folgenden Nucleotidsequenzen enthält, ausgewählt aus der Gruppe:

 a) codierend f
 ür das panB-Gen (Ketopantoathydroxymethyltranferase), dargestellt in der SEQ-ID-No.1,

b) codierend für das panC-Gen (Pantothenatsyn-

Abbildung 2

thetase), dargestellt in der SEQ-ID-No.1, insbesondere das panBC-Operon und gegebenenfalls c) codierend für das ilvD-Gen (Dihydroxysäuredehydratase), dargestellt durch die SEQ-ID-No.4,

und ein Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung von Mikroorganismen der Gattung Corynebacterium, in denen die genannten Gene verstärkt werden.

EP 1 006 189 A2

Beschreibung

Stand der Technik

5 [0001] Die Pantothensäure stellt ein kommerziell bedeutendes Vitamin dar, das in der Kosmetik, der Medizin, der Humanernährung und in der Tierernährung Anwendung findet.

[0002] Pantothensäure kann durch chemische Synthese oder biotechnologisch durch Fermentation geeigneter Mikroorganismen in geeigneten Nährlösungen hergestellt werden. Der Vorteil der biotechnologischen Herstellung durch Mikroorganismen liegt in der Bildung der gewünschten stereo-isomeren D-Form der Pantothensäure.

[0003] Verschiedene Arten von Bakterien, wie z. B. Escherichia coli, Corynebacterium erythrogenes, Brevibacterium ammoniagenes und auch Hefen, wie z. B. Debaromyces castellii können, wie in EP-A 0 493 060 gezeigt, in einer Nährlösung, die Glucose, DL-Pantoinsäure und β-Alanin enthält, D-Pantothensäure produzieren. EP-A 0 493 060 zeigt weiterhin, daß bei Escherichia coli durch Amplifikation von Pantothensäure-Biosynthesegenen mittels der Plasmide pFV3 und pFV5 die Bildung von D-Pantothensäure verbessert wird.

5 [0004] EP-A 0 590 857 betrifft Stämme von Escherichia coli, die Resistenzen gegen verschiedene Antimetabolite, wie z. B. Salizylsäure, α-Ketobuttersäure, β-Hydroxyasparaginsäure etc. tragen und in einer Nährlösung, die Glucose und β-Alanin enthält, D-Pantoinsäure und D-Pantothensäure produzieren. In EP- 0 590 857 wird weiterhin beschrieben, daß durch Amplifikation von nicht näher definierten Pantothensäure-Biosynthesegenen aus E.coli, die auf dem Plasmid pFV31 enthalten sind, die Produktion von D-Pantoinsäure und D-Pantothensäure in E.coli verbessert werden kann.

[0005] In WO 97/10340 wird darüber hinaus gezeigt, daß in Pantothensäure bildenden Mutanten von Escherichia coli durch Erhöhung der Aktivität des Enzyms Acetohydroxysäure-Synthase II, einem Enzym der Valin Biosynthese, di Pantothensäure-Produktion weiter gesteigert werden kann.

Aufgabe der Erfindung

25

30

40

45

50

55

[0006] Die Erfinder haben sich zur Aufgabe gestellt neue Grundlagen für verbesserte Verfahren zur fermentativen Herstellung von D-Pantothensäure mit Hilfe coryneformer Bakterien bereitzustellen.

Beschreibung der Erfindung

[0007] Das Vitamin Pantothensäure stellt ein kommerziell bedeutendes Produkt dar, das in der Kosmetik, der Medizin, der Humanernährung und in der Tierernährung Anwendung findet. Es besteht daher ein allgemeines Interess daran verbesserte Verfahren zur Herstellung von Pantothensäure bereitzustellen.

Wenn im folgenden Text D-Pantothensäure oder Pantothensäure oder Pantothenat erwähnt werden, sind damit nicht nur die freie Säure, sondern auch die Salze der D-Pantothensäure wie z.B. das Calcium-, Natrium-, Ammonium- oder Kaliumsalz gemeint.

Gegenstand der Erfindung sind in Mikroorganismen der Gattung Corynebacterium replizierbare, gegebenfalls rekombinante DNA mit der Herkunft Corynebacterium, die zumindest eine der folgenden Nucleotidsequenzen enthält, ausgewählt aus der Gruppe:

- a) codierend für das panB-Gen (Ketopantoathydroxymethyltranferase), dargestellt in der SEQ-ID-No.1,
- b) codierend für das panC-Gen (Pantothenatsynthetase), dargestellt in der SEQ-ID-No.1, insbesondere das panBC-Operon und gegebenenfalls
- c) codierend für das ilvD-Gen (Dihydroxysäuredehydratase), dargestellt durch die SEQ-ID-No.4.

[0008] Gegenstand der Erfindung sind ebenso replizierbare DNA gemäß dem genannten Anspruch 1 mit:

- (i) den Nucleotidsequenzen, gezeigt in SEQ-ID-No.1, SEQ-ID-No.4,
- (ii) mindestens einer dieser Sequenzen, die den jeweiligen Sequenzen (i) innerhalb des Bereichs der Degeneration des genetischen Codes entsprechen oder
- (iii) mindestens einer dieser Sequenzen, die mit den zu jeweiligen Sequenzen (i) oder (ii) komplementären Sequenzen hybridisieren und gegebenenfalls
- (iiii) funktionsneutrale Sinnmutationen in (i).

[0009] Ebenso werden beansprucht coryneforme Mikroorganismen, insbesondere der Gattung Corynebacterium, transformiert durch die Einführung einer oder mehrer replizierbarer DNA-Stücke.

Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung von D-Pantothensäure unter Verwendung, insbesond-

ere diese Säure bereits produzierender coryneformer Bakterien, in denen die Gene panB und panC einzeln oder kombiniert miteinander gegebenenfalls kombiniert mit einer Defektmutation im ilvA-Gen od r einer Verstärkung der Gene ilvBN, ilvC oder ilvD verstärkt, insbesondere überexprimiert werden.

[0010] Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man z. B. die Kopienzahl des(der) Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

[0011] Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können Pantothensäure aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen, insbesondere aus Glucose oder Saccharose. Es handelt sich um coryneforme Bakterien z. B. der Gattungen Corynebacterium oder Arthrobacter. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt, ist Aminosäuren zu bilden. Zu dieser Art gehören Wildtypstämme wie z. B. Corynebacterium glutamicum ATCC13032, Brevibacterium flavum ATCC14067, Corynebacterium melassecola ATCC17965 und davon abgeleitete Stämme.

[0012] Die Erfinder fanden heraus, dass nach Verstärkung, insbesondere Überexpression, der neu isolierten D-Pantothenatbiosynthesegene panB und panC einzeln oder gemeinsam (panBC-Operon) aus Corynebacterium glutamicum, die für die Enzyme Ketopantoathydroxymethyltransferase und Pantothenatesynthetase kodieren, in verbesserter Weise D-Pantothenat produziert wird.

[0013] Die Erfinder haben weiter festgestellt, daß eine verstärkte Expression des neuen Valinbiosynthesegens ilvD aus Corynebacterium glutamicum, welches für das Enzym Dihydroxysäuredehydratase kodiert, zur erhohten D-Pantothenatbildung beiträgt. Erfindungsgemäss bewirken neben diesem Gen auch die verstärkte Expression der ilvBN-Gene, die für das Enzym Acetohydroxysäuresynthase kodieren, und des ilvC-Gens, das für das Enzym Isomeroreduktase kodiert, in Corynebacterium glutamicum eine erhöhte D-Pantothenatbildung.

Zur Erzielung einer Verstärkung (Überexpression) erhöht man z. B. die Kopienzahl der entsprechenden Gene oder mutiert die Promotor- und Regulationsregion, die sich stromaufwärts des Strukturgens befindet. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich die Expression im Verlaufe der fermentativen D-Pantothenatbildung zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte liegen dabei entweder in Plasmidvektoren mit unterschiedlicher Kopienzahl vor oder sind im Chromosom integriert und amplifiziert. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden. Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift EPS 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)) oder im Handbuch "Manual of Methods for General Bacteriology der American Society for Bacteriology (Washington D.C., USA, 1981) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

[0015] Zur Isolierung der Gene panB und panC aus C. glutamicum wird zunächst eine Genbank dieses Mikrorganismus in E. coli angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495 - 508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E.coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde. Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC19 (Norrander et al., 1983, Gene, 26: 101-106) verwendet werden. Als Wirte eignen sich besonders solche E. coli-Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde.

[0016] Die Genbank wird anschließend in einen Indikatorstamm durch Transformation (Hanahan, Journal of Molecular Biology 166, 557-580, 1983) oder Elektroporation (Tauch et.al., 1994, FEMS Microbiological Letters, 123:343-347) eingebaut. Der Indikatorstamm zeichnet sich dadurch aus, dass er eine Mutation in dem interessierenden Gen besitzt, die einen detektierbaren Phänotyp z.B. eine Auxotrophie hervorruft. Die Indikatorstämme bzw. Mutanten sind aus publizierten Quellen oder Stammsammlungen erhältlich oder werden gegebenfalls selbst hergestellt. Im Rahmen

der vorliegenden Erfindung ist die E. coli Mutante DV39 (Vallari und Rock, Journal of Bacteriology 1985, 164:136-142), die eine Mutation im panC-Gen trägt, von besonderem Interesse. Ein anderes Beispiel für eine Pantothensäure-bedürftige E. coli Mutante ist der Stamm SJ2, der eine Mutation im panB-Gen trägt und vom Genetic Stock Center der Yale University (New Haven, Connecticut, USA) bezogen werden kann. Ein weiteres Beispiel ist die im Rahmen der vorliegenden Erfindung isolierte C. glutamicum Mutante R127/7, die in dem für die Dihydroxysäuredehydratase kodierendem ilvD-Gen defekt ist. Nach Transformation des Indikatorstammes wie z.B. der panB-Mutante SJ2 mit einem rekombinanten Plasmid, welches das interessierende Gen wie z.B. das panB-Gen trägt, und Expression des betreffenden Gens, wird der Indikatorstamm bezüglich der entsprechenden Eigenschaft wie z.B. der Pantothensäure-Bedürftigkeit prototroph.

[0017] Das dergestalt isolierte Gen bzw. DNA-Fragment kann durch Bestimmung der Sequenz, wie z.B. bei Sanger et al. (Proceedings of the National of Sciences of the United States of America USA, 74:5463-5467, 1977) beschrieben, charakterisiert werden.

[0018] Auf diese Weise wurde die neue für die Gene panB und panC kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID NO 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurden aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenzen der entsprechenden Enzyme abgeleitet. In SEQ ID NO 2 ist die sich ergebende Aminosäuresequenz des panB-Genproduktes nämlich der Ketopantoathydroxymethyltransferase und in SEQ ID NO 3 die sich ergebende Aminosäuresequenz des panC-Genproduktes nämlich der Pantothenatsynthetase dargestellt. Weiterhin wurde auf diese Weise die neue für das ilvD-Gen kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID NO 4 Bestandteil der vorliegenden Erfindung ist. In SEQ ID NO 5 ist die sich ergebende Aminosäuresequenz des ilvD-Genproduktes nämlich der Dihydroxysäuredehydratase dargestellt.

[0019] Kodierende DNA-Sequenzen, die sich aus SEQ ID NO 1 und/oder SEQ ID NO 4 durch einen degenerierten genetischen Code ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID NO 1 und/oder SEQ ID NO 4 hybridisieren Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsaure in Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID NO 2, SEQ ID NO 3 und/oder SEQ ID NO 5 ergeben sind ebenfalls Bestandteil der Erfindung.

[0020] Das dergestalt charakterisierte Gen kann anschließend einzeln oder in Kombination mit anderen in einem geeigneten Mikroorganismus zur Expression gebracht werden. Eine bekannte Methode Gene zu exprimieren bzw. überzuexprimieren besteht darin diese mit Hilfe von Plasmidvektoren zu amplifizieren, die überdies mit Expressionssignalen ausgestattet sein können. Als Plasmidvektoren kommen solche in Frage, die in den entsprechenden Mikroorganismen replizieren können. Für Corynebacterium glutamicum kommen z.B. die Vektoren pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pZ8-1 (Europäische Patentschrift 0 375 889) oder pEKEx2 (Eikmanns et al. Microbiology 140: 1817-1828 (1994) oder pECM2 (Jäger et al. Journal of Bacteriology 174(16): 5462-5465 (1992)) in Frage. Beispiele für derartige Plasmide sind pEKEx2panBC und pECM3ilvBNCD, die in den Stämmen DH5αmcr/pEKEx2panBC und DH5αmcr/pECM3ilvBNCD enthalten sind. Plasmid pEKEx2panBC ist ein E. coli/C. glutamicum Pendelvektor der die Gene panB und panC trägt. Plasmid pECM3ilvBNCD ist ein E. coli/C. glutamicum Pendelvektor der neben dem ilvD-Gen weiterhin die Gene ilvBN und ilvC trägt.

[0021] Die Erfinder haben weiterhin gefunden, dass sich die Verstärkung der Gene panB und panC einzeln, gemeinsam oder in Kombination mit den Genen ilvBN, ilvC und ilvD in solchen Mikroorganismen vorteilhaft auswirkt, die eine reduzierte Synthese der Aminosäuren Threonin und Isoleucin aufweisen. Diese reduzierte Synthese kann durch Abschwächung oder Ausschaltung der entsprechenden Biosyntheseenzyme bzw. ihrer Aktivitäten erreicht werden. Hierfür kommen zum Beispiel die Enzyme Homoserindehydrogenase, Homoserinkinase, Threoninsynthase oder auch Threonindehydratase in Frage. Eine Möglichkeit Enzyme und deren Aktivitäten abzuschwächen oder auszuschalten sind Mutageneseverfahren.

[0022] Hierzu gehören ungerichtete Verfahren, die chemische Reagenzien wie z.B. N-methyl-N-nitro-N-nitrosoguanidin oder auch UV-Bestrahlung zur Mutagenese benutzen, mit anschließender Suche der gewünschten Mikroorganismen auf Bedürftigkeit für L-Threonin oder L-Isoleucin. Verfahren zur Mutationsauslösung und Mutantensuche sind allgemein bekannt und können unter anderem bei Miller (A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992)) oder im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) nachgelesen werden.

[0023] Weiterhin gehören hierzu gerichtete rekombinante DNA-Techniken. Mit Hilfe dieser Methoden kann zum Beispiel das für die Threonindehydratase kodierende ilvA-Gen im Chromosom deletiert wird. Geeignete Methoden dazu sind bei Schäfer et al. (Gene (1994) 145: 69-73) oder auch Link et al. (Journal of Bacteriology (1998) 179: 6228-6237) beschrieben. Auch können nur Teile des Gens deletiert werden, oder auch mutierte Fragmente des Threonindehydratasegens ausgetauscht werden. Durch Deletion oder Austausch wird so ein Verlust oder eine Reduktion der Threonindehydrataseaktivität erreicht (Möckel et al., (1994) Molecular Microbiology 13: 833-842; Morbach et al., (1996) Applied Microbiology and Biotechnology 45: 612-620). Ein Beispiel für eine derartige Mutante ist der C. glutamicum Stamm ATCC13032ΔilvA, der eine Deletion im ilvA-Gen trägt.

[0024] Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Pantothensäure-Produktion kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Mikroorganismen genügen. Beschreibungen von Kulturmedien verschiedenener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoff haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies zur zusätzlichen Steigerung der Pantothensäure-Produktion Vorstufen der Pantothensäure wie z. B. Aspartat, β-Alanin; Ketolsovalerat, Ketopantoat, Pantoat und gegebenenfalls deren Salze zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

[0026] Zur pH - Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe z.B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 50°C und vorzugsweise bei 25°C bis 45°C. Die Kultur wird solange fortgesetzt bis sich ein Maximum an Pantothensäure gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

[0027] Die Konzentration an gebildeter Pantothensäure kann mit bekannten Verfahren (Velisek; Chromatographic Science 60, 515-560 (1992)) bestimmt werden. Zur mikrobiologischen Bestimmung von Pantothensäure wird gebräuchlicherweise der Stamm Lactobacillus plantarum ATCC8014 eingesetzt (U.S. Pharmacopeia 1980; AOAC International 1980). Darüberhinaus werden auch andere Testorganismen, wie z.B. Pediococcus acidilactici NCIB6990 zur mikrobiologischen Bestimmung von Pantothenatkonzentrationen eingesetzt (Sollberg and Hegna; Methods in Enzymology 62, 201-204 (1979)).

[0028] Folgende Mikroorganismen wurden bei der Deutschen Sammlung für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag hinterlegt:

- Escherichia coli K12 Stamm DH5αmcr/pEKEx2panBC als DSM12456
 - Escherichia coli K12 Stamm DH5αmcr/pECM3ilvBNCD als DSM12457
 - Corynebacterium glutamicum ATCC13032∆ilvA als DSM12455

Beispiele

55

[0029] Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Beispiel 1

30

40

Klonierung, Sequenzierung und Expression der Gene der Pantothenatbiosynthese panB und panC aus C. glutamicum

1. Klonierung des panB- und des panC-Gens

Chromosomale DNA von C. glutamicum ATCC13032 wurde wie bei Schwarzer und Pühler (Bio/Technology 9 (1990) 84-87) beschrieben isoliert und mit der Restriktionsendonuklease Sau3A geschnitten. Nach geelektrophoretischer Auftrennung wurden DNA-Fragmente in einem Größenbereich von 3 bis 7 kb bzw. von 9 bis 20 kb extrahiert und nachfolgend in die singuläre BamHI Schnittstelle des Vektors pBR322 ligiert. Mit den Ligationsansätzen wurde der E. coli Stamm DH5αmcr (Grant et al., Proceedings of the National Academy of Sciences of the United States of America USA, 87 (1990) 4645-4649) transformiert (Hanahan, Journal of Molecular Biology 166 (1983) 557-580). Inserttragende Kolonien wurden anhand ihrer Tetracyclinsensitivität nach Überimpfen auf 10 µg/ml Tetracyclin enthaltende LB-Agarplatten identifiziert. Durch Plasmidpräparationen (Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press) von vereinigten Klonen wurden 8 Gruppen, welche je 400 Plasmide mit einer Insertgröße von 9 bis 20 kb und 9 Gruppen, welche je 500 Plasmide mit einer Insertgröße von 3 bis 7 kb enthielten isoliert. Die E. coli panB Mutante SJ2 (Cronan et al. 1982, Journal of Bacteriology 149: 916-922) wurde mit dieser Genbank mittels Elektroporation (Wehrmann et al. 1994, Microbiology 140: 3349-3356) transformiert. Die Transformationsansätze wurden direkt auf CGXII-Medium mit 15 g/l Agar (Keilhauer et al., Journal of Bacteriology (1993) 175: 5595-5603) ausplattiert. Von Klonen, welche in der Lage waren ohne Pantothenatsupplementation zu wachsen, wurde Plasmid-DNA isoliert (Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press). Bei 8 Plasmiden konnte durch Retransformation die Fähigkeit, den panB-Defekt der E. coli Mutante SJ2 heterolog zu komplementieren, bestätigt werden.

[0031] Mit diesen 8 Plasmiden wurde eine Restriktionskartierung durchgeführt. Einer der untersuchten Plasmidvektoren, im Folgendem pUR1 genannt enthielt ein Insert von 9,3 kb Länge (Abbildung 1). Die Transformation der E. coli panC Mutante DV39 (Vallari und Rock 1985, Journal of Bacteriology 164: 136-142) ergab, daß der Vektor pUR1 ebenfalls in der Lage war den panC Defekt dieser Mutante zu komplementieren.

2. Sequenzierung des panB- und des panC-Gens

[0032] Ein 2,2 kb großes Fragment des Inserts (Abbildung 1) von pUR1 wurde nach der Dideoxy-Kettenabbruchmethode von Sanger et al. sequenziert (Proceedings of the National Academy of Sciences of the United States of America USA (1977) 74: 5463-5467). Hierzu wurden zunächst mittels Exonuklease III Subklone erzeugt, die mit Hilfe von Standard Primern (Universal und reverse primer der Firma Boehringer Mannheim, Deutschland) sequenziert wurden. Die gelelektrophoretische Analyse der Sequenzieransätze erfolgte mit dem automatischem Laser-Fluoreszenz Sequenziergerät (A.L.F.) von Amersham Pharmacia Biotech (Uppsala, Schweden). Die erhaltene Nukleotidsequenz wurde mit dem Programmpaket HUSAR (Release 4.0, EMBL, Cambridge, GB) analysiert. Die Nukleotidsequenz ist als SEQ ID NO 1 wiedergegeben. Die Analyse ergab die Identizierung von zwei offenen Leserastern. Ein offenes Leseraster von 813 bp Länge, das als panB-Gen identifiziert wurde, kodiert für ein Polypeptid von 271 Aminosäuren und ist als SEQ ID NO 2 wiedergegeben. Das zweite offene Leseraster, das als panC-Gen identifiziert wurde, umfaßt 837 Basenpaare. Es kodiert für ein Polypeptid von 279 Aminosäuren, das als SEQ ID NO 3 wiedergegeben ist.

3. Expression des panB- und des panC-Gens

[0033] Die Gene panB und panC wurden in den C. glutamicum Expressionsvektor pEKEx2 kloniert (Eikmanns et al. 1994, Microbiology 140: 1817-1828 (1994)), in welchem die beiden Gene unter der Kontrolle des starken, durch IPTG induzierbaren tac-Promotors vorliegen. Die Klonierung wurde in zwei Schritten durchgeführt. Zunächst wurde mittels PCR der Anfang des panB Gens amplifiziert. Hierzu wurde mit Hilfe eines emtsprechenden Primers 19 bp vor dem Startcodon von panB eine Sall-Schnittstelle eingefügt (Primer 1: 5'GATCGTCGACCATCACATCTATACT-CATGCCC 3'). Der zweite Primer wurde so gewählt, daß die panB interne EcoRI Schnittstelle im amplifizierten Fragment enthalten war (Primer 2: 5'ACCCG ATGTGGCCGACAACC 3'). Die PCR wurde mit einer Annealingtemperatur von 62°C und dem Plasmid pUR1 als Matrize nach Sambrook et al. (Molecular cloning. A laboratory manual, Cold Spring Harbour Laboratory Press (1989)) durchgeführt. Das resultierende 468 bp große PCR-Produkt wurde mit den Restriktionsendonukleasen Sall und EcoRI geschnitten und in den ebenso behandelten Vektor pEKEx2 ligiert. Mit dem Ligationsansatz wurde der E. coli Stamm DH5αmcr transformiert. Aus einer Transformante vom Typ DH5αmcr/pEKEx2panB' wurde der Vektor pEKEx2panB' isoliert.

[0034] Aus dem Plasmid pUR1 wurde nun ein 1761 bp großes, die zweite Hälfte des panBC-Clusters enthaltendes, EcoRI Fragment mittels Restriktionsverdau ausgeschnitten. Dieses wurde in den schon das panB PCR-Produkt enthal-

tenden, zuvor mit EcoRI linearisierten pEKEx2panB' Vektor kloniert. Mit dem entsprechenden Ligationsansatz wurde der E. coli Stamm DH5amcr transformiert. Aus einer Transformante vom Typ DH5amcr/pEKEx2panBC wurde der Vektor pEKEx2panBC (Abbildung 2) isoliert, in dem das panBC-Gencluster unter der Kontrolle des tac-Promotors vorliegt.

5 Beispiel 2

10

35

40

Klonierung und Sequenzierung des für die Dihydroxysäuredehydratase kodierenden ilvD-Gens aus C. glutamicum

1. Isolierung einer ilvD Mutante von C. glutamicum

[0035] Der Stamm C. glutamicum R127 (Haynes 1989, FEMS Microbiology Letters 61: 329-334) wurde mit N-methyl-N-nitro-N-nitrosoguanidin mutagenisiert (Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press). Dazu wurden 5 ml einer über Nacht angezogenen C. glutamicum Kultur mit 250 μl N-methyl-N-nitro-N-nitrosoguanidin (5 mg/ml Dimethylformamid) versetzt und 30 Minuten bei 30°C und 200 Upm inkubiert (Adelberg 1958, Journal of Bacteriology 76: 326). Die Zellen wurden anschließend zweimal mit steriler NaCl-Lösung (0,9 %) gewaschen. Durch Replikaplattierung auf Minimalmediumplatten CGXII mit 15 g/l Agar (Keilhauer et al Journal of Bacteriology 175: 5595-5603), wurden Mutanten isoliert, die nur bei Zugabe von L-Valin, L-Isoleucin und L-Leucin (je 0,1 g/l) wuchsen.

[0036] Die Enzymaktivität der Dihydroxysäuredehydratase wurde im Rohextrakt dieser Mutanten bestimmt. Dazu wurden die Klone in 60 ml LB-Medium kultiviert und in der exponentiellen Wachstumsphase abzentrifugiert. Das Zellpellet wurde einmal mit 0,05 M Kaliumphosphatpuffer gewaschen und im selben Puffer resuspensiert. Der Zellaufschluß erfolgte mittels 10 minütiger Ultraschallbehandlung (Branson-Sonifier W-250, Branson Sonic Power Co, Danbury, USA). Anschließend wurden die Zelltrümmer durch eine 30 minütige Zentrifugation bei 13000 rpm und 4 °C abgetrennt und der Überstand als Rohextrakt in den Enzymtest eingesetzt. Der Reaktionsansatz des Enzymtests enthielt 0,2 ml 0,25 M Tris/HCl, pH 8, 0,05 ml Rohextrakt, und 0,15 ml 65 mM alpha,β-Dihydroxy-β-methylvalerat. Die Testansätze wurden bei 30 °C inkubiert, nach 10, 20 und 30 Minuten 200 μl Proben genommen und deren Ketomethylvaleratkonzentration mittels HPLC-Analytik bestimmt (Hara et al. 1985, Analytica Chimica Acta 172: 167-173). Wie Tabelle 1 zeigt, weist der Stamm R127/7 keine Dihydroxysäuredehydrataseaktivität auf, wogegen die Isomeroreduktase und Acetohydroxysäuresynthase Aktivitäten als weitere Enzyme der Synthese der verzweigtkettigen Aminosäuren noch vorhanden sind.

Tabelle 1

Spezifiso	he Aktivitäten (µmol/min un ami	d mg Protein) verschie cum Stämmen	edener Enzyme in C. glut-
Stamm	Dihydroxysäure dehydra- tase	Isomero reduktase	Acetohydroxysäure synt- hase
R127	0,003	0,05	0,07
R127/7	0,000	0,06	0.09

2. Klonierung des ilvD-Gens von C. glutamicum

[0037] Chromosomale DNA aus C. glutamicum R127 wurde wie bei Schwarzer und Pühler (Bio/Technology 9 (1990) 84-87) beschrieben isoliert. Diese wurde mit dem Restriktionsenzym Sau3A (Boehringer Mannheim) gespalten und durch Saccharose-Dichte-Gradienten-Zentrifugation (Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring. Harbour Laboratory Press) aufgetrennt. Die Fraktion mit dem Fragmentgrößenbereich von etwa 6-10 kb wurde zur Ligation mit dem Vektor pJC1 (Cremer et al., Molecular and General Genetics 220 (1990) 478-480) eingesetzt. Der Vektor pJC1 wurde hierzu mit BamHI linearisiert und dephosphoryliert. Fünf ng davon wurden mit 20 ng der genannten Fraktion der chromosomalen DNA ligiert und damit die Mutante R127/7 durch Elektroporation (Haynes und Britz, FEMS Microbiology Letters 61 (1989) 329-334) transformiert. Die Transformanten wurden auf die Fähigkeit getestet auf CGXII Agarplatten ohne Zugabe der verzweigtkettigen Aminosäuren wachsen zu können. Von über 5000 getesteten Transformanten wuchsen nach Replicaplattierung und zweitägiger Inkubation bei 30°C 8 Klone auf Minmalmediumplatten. Von diesen Klonen wurden Plasmidpräparationen, wie bei Schwarzer et al. (Bio/Technology (1990) 9: 84-87) beschrieben durchgeführt. Restriktionsanalysen der Plasmid-DNA ergaben, daß in allen 8 Klonen dasselbe Plasmid, im Folgendem pRV genannt, enthalten war. Das Plasmid trägt ein Insert von 4,3 kb und wurde durch Retransformation auf seine Fähigkeit die ilvD-Mutante R127/7 zu komplementieren getestet. Durch Subklonierung

wurde der für die Komplementation der Mutante R127/7 verantwortliche Bereich auf ein 2,9 kb Scal/Xhol-Fragment eingegrenzt.

3. Sequenzierung des ilvD-Gens

[0038] Die Nukleinsäuresequenz des 2,9 kb Scal/Xhol-Fragments wurde nach der Dideoxy-Kettenabbruchmethode von Sanger et al. durchgeführt (Proceedings of the National of Sciences of the United States of America USA (1977) 74: 5463-5467). Dabei wurde der Auto-Read Sequencing kit verwendet (Amersham Pharmacia Biotech, Uppsala, Schweden). Die gelelektrophoretische Analyse erfolgte mit dem automatischem Laser-Fluoreszenz Sequenziergerät (A.L.F.) von Amersham Pharmacia Biotech (Uppsala, Schweden). Die erhaltene Nukleotidsequenz wurde mit dem Programmpaket HUSAR (Release 4.0, EMBL, Cambridge, GB) analysiert. Die Nukleotidsequenz ist als ID SEQ NO 4 wiedergegeben. Die Analyse ergab ein offenes Leseraster von 1836 Basenpaaren, das als ilvD-Gen identifiziert wurde und für ein Polypeptid von 612 Aminosäuren kodiert, das als SEQ ID NO 5 wiedergegeben ist.

15 Beispiel 3

5

Konstruktion einer ilvA Deletionsmutante von C. glutamicum

Der Einbau einer Deletion in das ilvA-Gen von Corynebacterium glutamicum ATCC13032 wurde mit dem bei [0039] Schäfer et al. (Gene 145: 69-73 (1994)) beschriebenen System zum Genaustausch durchgeführt. Zur Konstruktion des Inaktivierungsvektors pK19mobsacB∆ilvA wurde zunächst aus dem auf einem EcoRI-Fragment im Vektor pBM21 (Möckel et al. 1994, Molecular Microbiology 13: 833-842) vorliegenden ilvA-Gen ein internes 241 bp BgIII-Fragment entfernt. Hierzu wurde der Vektor mit Bglll geschnitten und, nach Abtrennung des ilvA internen Bglll-Fragmentes mittels Agarosegelelektrophorese, religiert. Anschließend wurde aus dem Vektor das unvollständige Gen als EcoRI-Fragment isoliert und in den mit EcoRl linearisierten Vektor pK19mobsacB (Schäfer 1994, Gene 145: 69-73) ligiert. Der erhaltene Inaktivierungsvektor pK19mobsacB∆ilvA wurde durch Transformation in den E. coli Stamm S 17-1 eingebracht (Hanahan 1983, Journal of Molecular Biology 166: 557-580) und per Konjugation nach C. glutamicum ATCC13032 transferiert (Schäfer et al. 1990, Journal of Bacteriology 172: 1663-1666). Es wurden Kanamycin-resistente Klone von C. glutamicum erhalten, bei denen der Inaktivierungsvektor im Genom integriert vorlag. Um auf die Excision des Vektors zu selektionieren, wurden Kanamycin-resistente Klone auf Saccharose-haltigem LB-Medium ((Sambrook et al., Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press)) mit 15 g/l Agar, 2% Glucose/ 10% Saccharose) ausplattiert und Kolonien erhalten, welche den Vektor durch ein zweites Rekombinationsereignis wieder verloren haben (Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465). Durch Überimpfen auf Minimalmediumplatten (Medium CGXII mit 15 g/I Agar (Keilhauer et al., Journal of Bacteriology 175 (1993) 5595-5603)) mit und ohne 2 mM L-Isoleucin, bzw. mit und ohne 50 μg/ml Kanamycin wurden 36 Klone isoliert, welche durch die Excision des Vektors Kanamycin sensitiv und Isoleucin auxotroph waren und bei denen nun das unvollständige ilvA Gen (∆ilvA-Allel) im Genom vorlag. Einer dieser Klone wurde als Stamm ATCC13032∆ilvA bezeichnet und weiter verwendet.

Beispiel 4

40

Expression der Gene ilvBN, ilvC und ilvD in C. glutamicum

[0040] Die Gene der Acetohydroxysäuresynthase (ilvBN) und der Isomeroreduktase (ilvC) (Cordes et al. 1992, Gene 112: 113-116 und Keilhauer et al. 1993, Journal of Bacteriology 175: 5595-5603) und der Dihydroxysäuredehydratase (ilvD) (Beispiel 2) wurden zur Expression in den Vektor pECM3 kloniert. Der Vektor pECM3 ist ein Derivat von pECM2 (Jäger et al. 1992, Journal of Bacteriology 174: 5462-5465), das durch Deletion des ca. 1 kbp langen BamHI/BgIII DNA-Fragmentes entstand, welches das Kanamycinresistenzgen trägt.

[0041] In dem Vektor pKK5 (Cordes et al. 1992, Gene 112: 113-116) lagen die Gene ilvBNC bereits im Vektor pJC1 (Cremer et al. 1990, Molecular and General Genetics 220: 478-480) kloniert vor. Aus diesem wurde ein 5,7 kb Xbal-ilvBNC-Fragment isoliert und zusammen mit einem, das ilvD-Gen enthaltende, 3,1 kb-Xbal Fragment des Vektors pRV in den mit Xbal linearisierten Vektor pECM3 eingebracht. Der Ligationsansatz wurde hierbei in den E. coli Stamm DH5amcr transformiert. Aus einer Transformante vom Typ DH5amcr/pECM3ilvBNCD wurde das Plasmid pECM3ilvBNCD (Abbildung 3) erhalten.

[0042] Mittels Elektroporation (Haynes 1989, FEMS Microbiology Letters 61: 329-334) und Selektion auf Chloram-phenicolresistenz wurde das Plasmid pECM3ilvBNCD in den Stamm ATCC13032∆ilvA eingebracht und der Stamm ATCC13032∆ilvA/pECM3ilvBNCD erhalten. Weiterhin wurde mittels Elektroporation (Haynes 1989, FEMS Microbiology Letters 61: 329-334) und Selektion auf Kanamycinresistenz das Plasmid pEKEx2panBC in den Stamm ATCC13032 und in den Stamm ATCC13032∆ilvA eingebracht und die Stämme ATCC13032/pEKEx2panBC und

ATCC13032ΔilvA/pEKEx2panBC erhalten. In den Stamm ATCC13032ΔilvA/pECM3ilvBNCD wurden mittels Elektroporation (Haynes 1989, FEMS Microbiology Letters 61: 329-334) und Selektion auf Kanamycin und Chloramphenicol die Plasmide pEKEx2panBC und pEKEX2 eingebracht. Auf diese Weise entstanden die Stämme ATCC13032ΔilvA/pECM3ilvBNCD pEKEX2 und ATCC13032ΔilvA/pECM3ilvBNCD pEKEx2panBC.

Beispiel 5

Konstruktion einer Pantothensäure bedürftigen panC-Mutante von C. glutamicum

10 [0043] Es wurde mit Hilfe des Inaktivierungsvektors pK18mob (Schäfer et al. 1994, Gene 145: 69-73) eine C. glut-amicum R127 panC Mutante erzeugt.

[0044] Zur Konstruktion des panC-Inaktivierungsvektors wurde zunächst ein 168 bp großes, zentrales Fragment des panC-Gens (Nukleotid 265-432 des 837 bp umfassenden Gens) von C. glutamicum mittels der Polymersasekettenreaktion (PCR) amplifiziert. Als Matrize diente hier der Vektor pUR1 (s. Beispiel 6); als Primer wurden die beiden 20mere Primer 1 und Primer 2 eingesetzt: Primer 1 5' GTTCGCACCCGATGTGGAGG 3', Primer 2 5' ATGCACGATCAGGGCGCACC 3'. Die PCR wurde nach Sambrook et al. (Molecular cloning. A laboratory manual (1989) Cold Spring Harbour Laboratory Press) mit einer Annealingtemperatur von 55°C durchgeführt. Das erhaltene Fragment wurde nach Zwischenklonierung in die Smal Schnittstelle des Vektors pUC18, als EcoRl/Sall Fragment gerichtet in den Inaktivierungsvektor pK18mob (Schäfer et al. 1994, Gene 145: 69-73) ligiert. Der so erhaltene Vektor pK18mob'panC' wurde zur Transformation des E. coli-Stammes S 17-1 benutzt und nachfolgend per Konjugation in C. glutamicum R127 eingebracht. Durch Selektion auf Kanamycinresistenz wurden so Klone von C. glutamicum R127 erhalten, bei denen der Integrationsvektor durch ein homologes Rekombinationsereignis ins panC-Gen integriert ist. Der so erhaltene Stamm R12YpanC::pK18mob'panC' ist zur D-Pantothenatbestimmung geeignet.

5 Beispiel 6

Quantitative Bestimmung von D-Pantothenat

[0045] Zur quantitativen Bestimmung von D-Pantothenat wurde die C. glutamicum panC Mutante R127panC::pK18mob'panC' konstruiert (siehe Beispiel 5), deren Wachstum direkt von der D-Pantothenat Konzentration des Mediums abhängig ist. Dieser Stamm ist Pantothensäure auxotroph und zeigt bei Supplementation mit β-Alanin und D-Pantoat kein Wachstum.

[0046] Zur Bestimmung von Pantothenat mit diesem Indikatorstamm wurde CGXII-Medium (Keilhauer et al., Journal of Bacteriology (1993) 175: 5595-5603) als Testmedium eingesetzt. Dazu wurden je 3 ml 4/3 fach konzentriertes CGXII-Medium in einem Inkubationsröhrchen (Falcon 2057, Becton and Dickinson, New Jersey, USA) mit 1 ml Pantothensäure-haltiger, steriler Eich- oder Probelösung versetzt und mit dem Indikatorstamm inokuliert. Als Inokulum wurden jeweils 60 μl einer Glyzerinkultur des Indikatorstammes eingesetzt. Nach 40 stündiger Inkubation bei 30°C wurde die Zelldichte (OD₆₀₀) (Novaspec 4049 Spectrophotometer, LKB Biochrom,Cambridge, GB) der Testansätze bestimmt und mittels einer Eichkurve die Pantothensäurekonzentration ermittelt. Der Stamm weist bis zu einer Konzentration von 25 μg/l eine lineare Abhängigkeit des Wachstums von der Pantothenatkonzentration auf, bei einer optischen Dichte von 0,5 bis 10. Zur Herstellung der Glyzerinkultur des Indikatorstammes wurde dieser Stamm auf unsupplementiertem CGXII-Medium 24 Stunden inkubiert (Aushungerung an D-Pantothenat). 1050 μl der Kultur wurden anschließend mit 700 μl Glyzerin versetzt. Von dieser bei -70°C zwischengefrorenen Glyzerinkultur wurden 60 μl zu Bestimmung von D-Pantothenat, wie zuvor beschrieben benutzt. Als Referenz wurde Na-Pantothenat verwendet, das von der Firma Sigma (Deisenhofen, Deutschland) bezogen wurde.

Beispiel 7

50

Produktion von D-Pantothenat mit verschiedenen C. glutamicum Stämmen

[0047] Zur Untersuchung ihrer Pantothenatbildung wurden die Stämme ATCC13032, ATCC13032/pEKEx2panBC, ATCC13032ΔilvA und ATCC13032ΔilvA/pEKEx2panBC in 60 ml Brain Heart Infusion-Medium (Difco Laboratories, Detroit, USA) für 14 Stunden bei 30°C vorkultiviert. Anschließend wurden die Zellen zweimal mit 0,9% NaCl-Lösung (w/v) gewaschen und mit dieser Suspension je 60 ml CgXII-Medium so angeimpft, daß die OD600 von 0,5 betrug. Das Medium war identisch mit dem bei Keilhauer et al., (Journal of Bacteriology (1993) 175: 5595-5603) beschriebenen Medium, enthielt aber zusätzlich 2 mM L-Isoleucin. Das von Keilhauer et al. beschriebene Medium CgXII ist in Tabelle 2 dargestellt.

Tabelle 2

Zusammensetzung des Mediun	ns CGXII
Komponente	Konzentration
(NH ₄) ₂ SO ₄	20 g/L
Harnstoff	5 g/L
KH ₂ PO ₄	1 g/L
K₂HPO₄	1 g/L
Mg ₂ O ₄ *7 H ₂ O	0,25 g/L
3-Morpholinopropansulfon- saure	42 g/L
CaCl ₂	10 mg/L
FeSO ₄ •7 H ₂ O	10 mg/L
MnSO ₄ + H ₂ O	10 mg/L
ZnSO ₄ *7 H ₂ O	1 mg/L
CuSO ₄	0,2 mg/L
NiCl ₂ +6 H ₂ O	0,02 mg/L
Biotin (pH7)	0,2 mg/L
Glukose	40 g/L
Protokatechusäure	0,03 mg/L

[0048] Bei der Kultivierung der Stämme ATCC13032/pEKEx2panBC und Stammes ATCC13032ΔilvA/pEKEx2panBC wurde das Medium nach 5 Stunden zusätzlich mit 1 mM Isopropylthio-β-D-galactosid versetzt. Nach 24 stündiger Kultivierung wurden Proben genommen, die Zellen abzentrifugiert und der Überstand sterilfiltriert. Die Pantothenatkonzentration des Überstands wurde mit Hilfe des im Beispiel 6 beschriebenen Pantothenattests bestimmt. Die Ergebnisse sind in Tabelle 3 dargestellt.

Tabelle 3

D-Pantothenatbildung in verschie Stämmen	denen C. glutamicum
Stamm	D-Pantothenat (mg/l)
ATCC13032	0,01
ATCC13032/pEKEx2panBC	0,03
ATCC13032∆ilvA	0,06
ATCC13032∆ilvA/pEKEx2panBC	0,3

50 Beispiel 9

5

10

15

20

25

30

40

45

Produktion von D-Pantothenat mit verschiedenen C. glutamicum Stämmen bei β-Alanin Zugabe

[0049] Zur Quantifizierung der Pantothenatbildung wurden die Stämme ATCC13032ΔilvA/pECM3ilvBNCD pEKEx2 und ATCC13032ΔilvA/pECM3ilvBNCD pEKEx2panBC in 60 ml Brain Heart Infusion-Medium(Difco Laboratories, Detroit, USA) mit 25 mg/l Kanamycin und 3 mg/l Chloramphenicol für 14 Stunden bei 30°C vorkultiviert, zweimal mit 0,9% NaCl-Lösung (w/v) gewaschen und mit dieser Suspension je 60 ml CgXII-Medium so angeimpft, daß die OD600 0,5 betrug. Das Medium enthielt hierbei 2 mM L-Isoleucin, 25 mg/l Kanamycin, 3 mg/l Chloramphenicol und β-Alanin in

einer Endkonzentration von 20 mM. Nach 5 stündiger Kultivierung wurde dem Medium jeweils IPTG (Isopropylthio-β-D-galactosid) in einer Endkonzentration von 1 mM zugefügt. Nach 49 und 74 Stunden wurde eine Probe entnommen, die Zellen wurden abzentrifugiert und der Überstand sterilfiltriert. Die Pantothenatkonzentration des Überstands wurde wie in Beispiel 6 beschrieben bestimmt. Die Ergebnisse sind in Tabelle 4 dargestellt.

Tabelle 4

D-Pantothenatakkumulation in verschiedenen St	ämmen von C. ç	glutamicum
Stamm		at [mg/l] nach tionszeit von
	49 Stunden	74 Stunden
ATCC13032∆ilvA/pECM3ilvBNCD pEKEx2	80	100
ATCC13032∆ilvA/pECM3ilvBNCD pEKEx2panBC	920	980

SEQUENZPROTOKOLL

5	(1) ALLGEMEINE ANGABEN:
10	 (i) ANMELDER: (A) NAME: Degussa Aktiengesellschaft (B) STRASSE: Weissfrauenstr. 9 (C) ORT: Frankfurt am Main (D) BUNDESLAND: Hessen (E) LAND: Deutschland (F) POSTLEITZAHL: D-60311
15	 (A) NAME: Forschungszentrum Juelich GmbH (B) STRASSE: Leo-Brandt Strasse (C) ORT: Juelich (D) BUNDESLAND: Nordrhein-Westfalen
20	(E) LAND: Deutschland (F) POSTLEITZAHL: D-52425
25	(ii) BEZEICHNUNG DER ERFINDUNG: Verfahren zur fermentativen Herstellung von D-Pantothensaeure unter Verwendung coryneformer Bakterien
	(iii) ANZAHL DER SEQUENZEN: 5
30	(iv) COMPUTER-LESBARE FASSUNG: (A) DATENTRAEGER: Floppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version
35	#1.30 (EPA)
	(2) ANGABEN ZU SEQ ID NO: 1:
40	 (i) SEQUENZKENNZEICHEN: (A) LAENGE: 2164 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Doppelstrang (D) TOPOLOGIE: linear
45	(ii) ART DES MOLEKUELS: Genom-DNA
	(iii) HYPOTHETISCH: NEIN
	(iv) ANTISENSE: NEIN
· <i>50</i>	<pre>(vi) URSPRUENGLICHE HERKUNFT: (A) ORGANISMUS: Corynebacterium glutamicum (B) STAMM: ATCC13032</pre>

5 10	<pre>(ix) MERKMAL:</pre>	
15		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
	GCTTCGGGGT ACCAATTCCT TTAAGAACCA TCAGATCAAT CTGTTGTACA TTCTCGGCCA	60
20	GATTCAGCTT TTCGGTAAGG ACGAAACACT TTCACTTGAA TCGGCAGCAA AGTTTCTTAA	120
20	AGTTTCTAAG GCAACTGCAA CGAGGTATTT TAGAACTCTC CGAGAAATGG AATTAGTTCA	180
	CGAGGTCAGC AAACGCCCTT TGCGGTTTGC GCTCACGGAT AAAGGTCGTG AGATAGTAGG	240
	TCTTGAGGTA AAAATTTGAC TCCATAACGA GAACTTAATC GAGCAACACC CCTGAACAGT	300
25	GAATCAAATC GGAATTTATT TATTCTGAGC TGGTCATCAC ATCTATACTC ATG CCC Met Pro 1	356
	ATG TCA GGC ATT GAT GCA AAG AAA ATC CGC ACC CGT CAT TTC CGC GAA Met Ser Gly Ile Asp Ala Lys Lys Ile Arg Thr Arg His Phe Arg Glu 5 10 15	404
30	GCT AAA GTA AAC GGC CAG AAA GTT TCG GTT CTC ACC AGC TAT GAT GCG Ala Lys Val Asn Gly Gln Lys Val Ser Val Leu Thr Ser Tyr Asp Ala 20 25 30	452
	CTT TCG GCG CGC ATT TTT GAT GAG GCT GGC GTC GAT ATG CTC CTT GTT Leu Ser Ala Arg Ile Phe Asp Glu Ala Gly Val Asp Met Leu Leu Val 35 40 50	500
35	GGT GAT TCC GCT GCC AAC GTT GTG CTG GGT CGC GAT ACC ACC TTG TCG Gly Asp Ser Ala Ala Asn Val Val Leu Gly Arg Asp Thr Thr Leu Ser 55 60 65	548
	ATC ACC TTG GAT GAG ATG ATT GTG CTG GCC AAG GCG GTG ACG ATC GCT ile Thr Leu Asp Glu Met Ile Val Leu Ala Lys Ala Val Thr Ile Ala 70 80	596
40	ACG AAG CGT GCG CTT GTG GTG GTT GAT CTG CCG TTT GGT ACC TAT GAG Thr Lys Arg Ala Leu Val Val Val Asp Leu Pro Phe Gly Thr Tyr Glu 85 90 95	644
	GTG AGC CCA AAT CAG GCG GTG GAG TCC GCG ATC CGG GTC ATG CGT GAA Val Ser Pro Asn Gln Ala Val Glu Ser Ala Ile Arg Val Met Arg Glu 100 105 110	692
45	ACG GGT GCG GCT GCG GTG AAG ATC GAG GGT GGC GTG GAG ATC GCG CAG	749

50

	Thr 115	Gly	Ala	Ala	Ala	Val 120	Lys	Ile	Glu	Gly	Gly 125	Val	Glu	Ile	Ala	Gln 130	
5								GCT Ala									788
10								CAT His									836
								AAG Lys 170									884
15								GTT Val									932
								GAT Asp									980
20								GGG Gly									1028
								AAG									1076
25	Phe	Gly	Leu		Arg 230	Gly	Lys	Lys	Pro	Arg	Phe 23		Arg	Glu	Tyr	Ala	240
	ACC Thr	TTG Leu	GGC Gly 245	GAT Asp	TCC Ser	TTG Leu	CAC His	GAC Asp 250	GCC Ala	GCG Ala	CAG Gln	GCC Ala	TAC Tyr 255	ATC Ile	GCC Ala	GAT Asp	1124
30								GGC Gly							ATG (Met (1171
25								CTT Leu 10									1219
35	TCC Ser	GTC Val 20	GCG	CTC Leu	GTC Val	CCC Pro	ACC Thr 25	ATG Met	GG T Gly	GCG Ala	CTA Leu	CAC His 30	AGC Ser	GGA Gly	CAC His	GCC Ala	1267
40	TCG Ser 35	TTG Leu	GTT Val	AAA Lys	GCA Ala	GCA Ala 40	CGC Arg	GCT Ala	GAA Glu	AAC Asn	GAC Asp 45	ACT Thr	GTT Val	GTA Val	GCC Ala	AGT Ser 50	1315
	ATT Ile	TTT Phe	GTC Val	AAT Asn	CCC Pro 55	CTG Leu	CAG Gln	TTT Phe	GAA Glu	GCA Ala 60	Leu	GGT Gly	GAT Asp	TGC Cys	GAT Asp 65	GAT A s p	1363
45	TAC Tyr	CGC Arg	AAC Asn	TAT Tyr 70	CCC Pro	CGC Arg	CAA Gln	CTC Leu	GAC Asp 75	GCC Ala	GAT Asp	TTA Leu	GCA Ala	CTG Leu 80	CTT Leu	GAA Glu	1411
								TTC Phe 90									1459
50	CCC Pro	GGT Gly 100	G1 y	TTG Leu	CCA Pro	CTA Leu	GTG Val 105	TGG Trp	GCG Ala	CGC Arg	ACC Thr	GGT Gly 110	TCC Ser	ATC Ile	GGA Gly	ACA Thr	1507

	AAA TTG GAG GGT GCC AGC AGG CCT GGC CAT TTC GAT GGT GTG GCT ACC Lys Leu Glu Gly Ala Ser Arg Pro Gly His Phe Asp Gly Val Ala Thr 115 120 125 130	1555
5	GTG GTG GCG AAG CTG TTC AAT TTG GTG CGC CCT GAT CGT GCA TAT TTT Val Val Ala Lys Leu Phe Asn Leu Val Arg Pro Asp Arg Ala Tyr Phe 135 140 145	1603
10	GGA CAA AAA GAT GCT CAG CAG GTT GCG GTG ATT CGG CGA TTG GTT GCC Gly Gln Lys Asp Ala Gln Gln Val Ala Val Ile Arg Arg Leu Val Ala 150 155 160	1651
	GAT CTA GAC ATT CCC GTG GAG ATT CGT CCC GTT CCG ATT ATT CGT GGC Asp Leu Asp Ile Pro Val Glu Ile Arg Pro Val Pro Ile Ile Arg Gly 165 170 175	1699
15	GCC GAT GGC TTA GCC GAA TCC AGC CGC AAT CAA CGT CTT TCT GCG GAT Ala Asp Gly Leu Ala Glu Ser Ser Arg Asn Gln Arg Leu Ser Ala Asp 180 185 190	1747
	CAG CGA GCG CAA GCT CTG GTG CTG CCG CAG GTG TTG AGT GGG TTG CAG Gln Arg Ala Gln Ala Leu Val Leu Pro Gln Val Leu Ser Gly Leu Gln 195 200 205 210	1795
20	CGT CGA AAA GCA GCT GGT GAA GCG CTA GAT ATC CAA GGT GCG CGC GAC Arg Arg Lys Ala Ala Gly Glu Ala Leu Asp Ile Gln Gly Ala Arg Asp 215 220 225	1843
25	ACC TTG GCC AGC GCC GAC GGC GTG CGC TTG GAT CAC CTG GAA ATT GTC Thr Leu Ala Ser Ala Asp Gly Val Arg Leu Asp His Leu Glu Ile Val 230 235 240	1891
	GAT CCA GCC ACC CTC GAA CCA TTA GAA ATC GAC GGC CTG CTC ACC CAA Asp Pro Ala Thr Leu Glu Pro Leu Glu Ile Asp Gly Leu Leu Thr Gln 245 250 255	1939
30	CCA GCG TTG GTG GTC GGC GCG ATT TTC GTG GGG CCG GTG CGG TTG ATC Pro Ala Leu Val Val Gly Ala Ile Phe Val Gly Pro Val Arg Leu Ile 260 265 270	1987
	GAC AAT ATC GAG CTC TAGTACCAAC CCTGCGTTGC AGCACGCAGC TTCGCATAAC Asp Asn Ile Glu Leu 275	2042
35	GCGTGCTCAG CTCAGTGTTT TTAGGTGCGC GGTGCGGATC GGAACCGGGA GTTGGCCACT	2102
	GCGGTGGCGT GGCCTCACCC GACAGCGCCC ATGCCGCCTG ACGAGCTGCA CCCAACGCCA	2162
	CA	2164
40	(2) ANGABEN ZU SEQ ID NO: 2:	
	(i) SEQUENZKENNZEICHEN:(A) LAENGE: 271 Aminosaeuren(B) ART: Aminosaeure(D) TOPOLOGIE: linear	
45	(ii) ART DES MOLEKUELS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
	Met Pro Met Ser Gly Ile Asp Ala Lys Lys Ile Arg Thr Arg His Phe 1 5 10 15	
50	Arg Glu Ala Lys Val Asn Gly Gln Lys Val Ser Val Leu Thr Ser Tyr 20 25 30	
	Asp Ala Leu Ser Ala Arg Ile Phe Aso Glu Ala Glv Val Asp Met Leu	

			35					40					45			
5	Leu	Val 50	Gly	Asp	Ser	Ala	Ala 55	Asn	Val	Val	Leu	Gly 60	Arg	Asp	Thr	Thr
	Leu 65	Ser	Ile	Thr	Leu	Asp 70	Glu	Met	Ile	Val	Leu 75	Ala	Lys	Ala	Val	Thr 80
	Ile	Ala	Thr	Lys	Arg 85	Ala	Leu	Val	Val	Val 90	Asp	Leu	Pro	Phe	Gly 95	Thr
10	Tyr	Glu	Val	Ser 100	Pro	Asn	Gln	Ala	Val 105	Glu	Ser	Ala	Ile	Arg 110	Val	Met
	Arg	Glu	Thr 115	Gly	Ala	Ala	Ala	Val 120	Lys	Ile	Glu	Gly	Gly 125	Val	Glu	Ile
15	Ala	Gln 130	Thr	Ile	Arg	Arg	Ile 135	Val	Asp	Ala	Gly	Ile 140	Pro	Val	Val	Gly
	His 145	Ile	Gly	Tyr	Thr	Pro 150	Gln	Ser	Glu	His	Ser 155	Leu	Gly	Gly	His	Val 160
æ	Val	Gln	Gly	Arg	Gly 165	Ala	Ser	Ser	Gly	Lys 170	Leu	Ile	Ala	Asp	Ala 175	Arg
	Ala	Leu	Glu	Gln 180	Ala	Gly	Ala	Phe	Ala 185	Val	Val	Leu	Glu	Met 190	Val	Pro
25	Ala	Glu	Ala 195	Ala	Arg	Glu	Val	Thr 200	Glu	Asp	Leu	Ser	Ile 205	Thr	Thr	Ile
-	Gly	11e 210	Gly	Ala	Gly	Asn	Gly 215	Thr	Asp	Gly	Gln	Val 220	Leu	Val	Trp	Gln
	Asp 225	Ala	Phe	Gly	Leu	Asn 230	Arg	Gly	Lys	Lys	Pro 235	Arg	Phe	Val	Arg	Glu 240
30	Tyr	Ala	Thr	Leu	Gly 245	Asp	Ser	Leu	His	Asp 250	Ala	Ala	Gln	Ala	Tyr 255	Ile
	Ala	Asp	Ile	His 260	Ala	Gly	Thr	Phe	Pro 265	Gly	Glu	Ala	Glu	Ser 270	Phe	
35	(2)	ANG	ABEN	zu s	SEQ :	ID NO	o: 3:	:								
			(2	A) L	AENG	E: 2	EICHI 79 Ar	ninos	saeu	ren						
40			(1	D) TO	POL	GIE:	saeu : lir	near								
		(xi) SE	QUEN	ZBES	CHRE	ELS: (BUNC	3: SI	EQ I							
-	Met 1	Gln	Val	Ala	Thr 5	Thr	Lys	Gln	Ala	Leu 10	Ile	Asp	Ala	Leu	Leu 15	His
45	His	Lys	Ser	Val 20	Gly	Leu	Val	Pro	Thr 25	Met	Gly	Ala	Leu	His 30	Ser	Gly
	His	Ala	Ser 35	Leu	Val	Lys	Ala	Ala 40	Arg	Ala	Glu	Asn	Asp 45	Thr	Val	Val
50	Ala	Ser 50	Ile	Phe	Val	Asn	Pro 55	Leu	Gln	Phe	Glu	Ala 60	Leu	Gly	Asp	Cys
	Asp	Asp	Tyr	Arg	Asn	Туr	Pro	Arg	Gln	Leu	Asp	Ala	Asp	Leu	Ala	Leu
<i>5</i> 5																

	65					70					75					80
5	Leu	Glu	Glu	Ala	Gly 85	Val	Asp	Ile	Val	Phe 90	Ala	Pro	Asp	Val	Glu 95	Glu
	Met	Tyr	Pro	Gly 100	Gly	Leu	Pro	Leu	Val 105	Trp	Ala	Arg	Thr	Gly 110	Ser	Ile
10	Gly	Thr	Lys 115	Leu	Glu	Gly	Ala	Ser 120	Arg	Pro	Gly	His	Phe 125	qeA	Gly	Val
,,	Ala	Thr 130	Val	Val	Ala	Lys	Leu 135	Phe	Asn	Leu	Val	Arg 140	Pro	Asp	Arg	Ala
	Tyr 145	Phe	Gly	Gln	Lys	Asp 150	Ala	Gln	Gln	Val	Ala 155	Val	Ile	Arg	Arg	Leu 160
15	Val	Ala	Asp	Leu	Asp 165	Ile	Pro	Val	Glu	Ile 170	Arg	Pro	Val	Pro	Ile 175	Ile
	Arg	Gly	Ala	Asp 180	Gly	Leu	Ala	Glu	Ser 185	Ser	Arg	Asn	Gln	Arg 190	Leu	Ser
20	Ala	Asp	Gln 195	Arg	Ala	Gln	Ala	Leu 200	Val	Leu	Pro	Gln	Val 205	Leu	Ser	Gly
	Leu	Gln 210	Arg	Arg	Lys	Ala	Ala 215	Gly	Glu	Ala	Leu	Asp 220	lle	Gln	Gly	Ala
25	Arg 225	qeA	Thr	Leu	Ala	Ser 230	Ala	Asp	Gly	Val	Arg 235	Leu	Asp	His	Leu	G1u 240
	Ile	Val	Asp	Pro	Ala 245	Thr	Leu	Glu	Pro	Leu 250	Glu	Ile	Asp	Gly	Le u 255	Leu
30	Thr	Gln	Pro	Ala 260	Leu	Val	Val	Gly	Ala 265	Ile	Phe	Val	Gly	Pro 270	Val	Arg
	Leu	Ile	Asp 275	Asn	Ile	Glu	Leu									
35 [*]	(2)	ANGA): 4: CHEN:									
			(E	3) AF	RT: N	lucle FOR	952 E eotic 1: Do	l oppel	-							
40		(ii)		٠			: lir ELS:		om-Di	IA.						
40	((111)	HYE	отне	ETISC	: H:	NEIN									
						NEI										
45		(vi)	(F	() OF	RGAN I	SMUS ATC	HERN 5: Co CC130 4/ISO	ryne 32	ebact				nicum	n		
50		(ix)	(E	() NA () LA	ME/S AGE: 2 ONSTI /EO /PI	90 GE A L_num oduc	JESSE 2125 ANGAE aber= t= "ilv	SEN:/ 4.2 Dihy	/code	• _				ıse"		

	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:	
_	AGTACTTGGA GCGCCAAAAG GCACTGGGCA AGCCAGTTCA GTTGAACTTC GATGACGACA	50
5	CCGATGGGAA TACAACACAA ACAGAAAGCG TTGAATCCCA AGAGACCGGA CAAGCCGCGT 12	90
•	CTGAAACCTC ACATCGTGAT AACCCTGCGT CACAGCACTA GAGTGTAATA AGCCGTCCGA 18	10
	ACCAAAGGTC CACACCTCTG CACGAGTAGA AGCTCACCCA AGTTTTCAAA GTGCCGTTGA 24	10
10	TTCTTGACAA CCACCCGCCG CTCTTTAGAG CAGATTTGAA AAGCGCATC ATG ATC Met Ile 280)5
15	CCA CTT CGT TCA AAA GTC ACC ACC GTC GGT CGC AAT GCA GCT GGC GCT Pro Leu Arg Ser Lys Val Thr Thr Val Gly Arg Asn Ala Gly Ala 285 290 295	3
	CGC GCC CTT TGG CGT GCC ACC GGC ACC AAG GAA AAT GAG TTC GGC AAG Arg Ala Leu Trp Arg Ala Thr Gly Thr Lys Glu Asn Glu Phe Gly Lys 300 305 310	1
20	CCA ATT GTT GCC ATC GTA AAC TCC TAC ACC CAG TTC GTG CCC GGA CAC Pro Ile Val Ala Ile Val Asn Ser Tyr Thr Gln Phe Val Pro Gly His 315 320 325	9
	GTT CAC CTT AAG AAC GTC GGC GAT ATT GTG GCA GAT GCA GTG CGC AAA Val His Leu Lys Asn Val Gly Asp Ile Val Ala Asp Ala Val Arg Lys 330 335 340 345	7
25	GCC GGT GGC GTT CCA AAG GAA TTC AAC ACC ATC GTC GAT GAC GGC ATC Ala Gly Gly Val Pro Lys Glu Phe Asn Thr Ile Val Asp Asp Gly Ile 350 355 360	5
30	GCC ATG GGA CAC GGC GGC ATG CTG TAC TCC CTG CCA TCC CGT GAA ATC Ala Met Gly His Gly Gly Met Leu Tyr Ser Leu Pro Ser Arg Glu Ile 365 370 375	.3
	ATC GCC GAC TCC GTC GAA TAC ATG GTC AAC GCA CAC ACC GCC GAC GCC Ile Ala Asp Ser Val Glu Tyr Met Val Asn Ala His Thr Ala Asp Ala 380 385 390	1
35	ATG GTG TGT ATC TCC AAC TGT GAC AAG ATC ACC CCA GGC ATG CTC AAC Met Val Cys Ile Ser Asn Cys Asp Lys Ile Thr Pro Gly Met Leu Asn 395 400 405	9
	GCA GCA ATG CGC CTG AAC ATC CCA GTG GTC TTC GTT TCC GGT GGC CCA Ala Ala Met Arg Leu Asn Ile Pro Val Val Phe Val Ser Gly Gly Pro 410 415 420 425	.7
40	ATG GAA GCT GGC AAG GCT GTC GTC GTT GAG CGC GTT GCA CAC GCA CCA Met Glu Ala Gly Lys Ala Val Val Glu Arg Val Ala His Ala Pro 430 435 440	5
45	ACC GAC CTC ATC ACC GCG ATC TCC GCA TCC GCA AGC GAT GCA GTC GAC Thr Asp Leu Ile Thr Ala Ile Ser Ala Ser Ala Ser Asp Ala Val Asp 445 450 455	3
45	GAC GCA GGC CTT GCA GCC GTT GAA CGA TCC GCA TGC CCA ACC TGT GGC Asp Ala Gly Leu Ala Ala Val Glu Arg Ser Ala Cys Pro Thr Cys Gly 460 465 470	1
50	TCC TGC TCC GGT ATG TTC ACC GCG AAC TCC ATG AAC TGC CTC ACC GAA Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Thr Glu 475 480 485	9
	GCT CTG GGA CTT TCT CTC CCG GGC AAC GGC TCC ACT CTG GCA ACC CAC 96	7

	Ala 490	Leu	Gly	Leu	Ser	Leu 495	Pro	Gly	Asn	Gly	Ser 500	Thr	Leu	Ala	Thr	His 505	
5						CTG Leu											1015
						TAC Tyr											1063
10						AAG Lys											1111
15						ACC Thr											1159
						GAC Asp 575											1207
20						CTG Leu											1 <i>2</i> 55
						CGC Arg											1303
25						CTG Leu											1351
30			Leu			TGG Trp		Asp								Lys	1399
30	Asn	Asp 63 ACC	Leu 5 GAA	Glu GTA	Gly GCA		Leu GAA	Asp CTC	Asp 40	Trp	Asp GCA	Ile	Arg CCA	Ser GGT	Gly 645 GGC	Lys ATC	1399
30 35	ACC Thr 650 CGC	ASP 63 ACC Thr	Leu 5 GAA Glu ACC	Glu GTA Val GAA	Gly GCA Ala GCA	Trp ACC Thr	Leu GAA Glu TCC	ASP CTC Leu	Asp 40 TTC Phe	Trp CAC His	GCA Ala 660 CGC	GCC Ala	Arg CCA Pro	Ser GGT Gly GAA	Gly 645 GGC Gly	ATC 11e 665 GAC	
	ASN ACC Thr 650 CGC Arg	ASP 63 ACC Thr ACC Thr	Leu 5 GAA Glu ACC Thr	Glu GTA Val GAA Glu GCC	GCA Ala GCA Ala 670 AAG	ACC Thr 655	GAA Glu TCC Ser	ASP CTC Leu ACC Thr	Asp 40 TTC Phe GAG Glu	CAC His AAC Asn 675	Asp GCA Ala 660 CGC Arg	GCC Ala TGG Trp	CCA Pro GAC Asp	GGT Gly GAA Glu	GGC Gly CTC Leu 680	ATC 11e 665 GAC Asp	1447
	ASN ACC Thr 650 CGC Arg ACC Thr	ASP 63 ACC Thr ACC Thr GAC Asp	Leu 5 GAA Glu ACC Thr GCT Ala	GTA Val GAA Glu GCC Ala 685 GGC	Gly GCA Ala GCA Ala 670 AAG Lys	ACC Thr 655 TTC Phe	GAA Glu TCC Ser TGC Cys	ASP CTC Leu ACC Thr ATC Ile	Asp 40 TTC Phe GAG Glu CGC Arg 690 CGC	CAC His AAC Asn 675 GAC Asp	Asp GCA Ala 660 CGC Arg GTT Val	GCC Ala TGG Trp GAA Glu	Arg CCA Pro GAC Asp CAC His	GGT Gly GAA Glu GCC Ala 695 CCT	GGC GGC CTC Leu 680 TAC Tyr	ATC 11e 665 GAC Asp ACC Thr	1447
35	ASN ACC Thr 650 CGC Arg ACC Thr GCC Ala	ASP 63 ACC Thr ACC Thr GAC Asp	GAA Glu ACC Thr GCT Ala GGC Gly 700 ATC	GTA Val GAA Glu GCC Ala 685 GGC Gly	GCA Ala GCA Ala 670 AAG Lys CTG Leu	ACC Thr 655 TTC Phe GGC Gly	GAA Glu TCC Ser TGC Cys	ACC Thr ATC Ile CTT Leu 705	Asp 40 TTC Phe GAG Glu CGC Arg 690 CGC Arg	CAC His AAC Asn 675 GAC Asp GGC Gly	GCA Ala 660 CGC Arg GTT Val	GCC Ala TGG Trp GAA Glu ATC Ile CTG	CCA Pro GAC Asp CAC His	GGT Gly GAA Glu GCC Ala 695 CCT Pro	GGC Gly CTC Leu 680 TAC Tyr GAC Asp	ATC Ile 665 GAC Asp ACC Thr	1447 1495 1543
35 40	ASD Thr 650 CGC Arg ACC Thr GCC Ala	ASP 63 ACC Thr ACC Thr GAC ASP GAC ASP GTG Val 715 CCA	Leu 5 GAA Glu ACC Thr GCT Ala GGC Gly 700 ATC Ile	GTA Val GAA Glu GCC Ala 685 GGC Gly AAG Lys	GCA Ala GCA Ala 670 AAG Lys CTG Leu TCC Ser	ACC Thr 655 TTC Phe GGC Gly GTT Val	GAA Glu TCC Ser TGC Cys GTT Val	ASP 6 CTC Leu ACC Thr ATC Ile CTT Leu ATC Ile ATC Ile ATC Ile AGC	Asp 40 TTC Phe GAG Glu CGC Arg 690 CGC Arg	CAC His AAC Asn 675 GAC Asp GGC Gly GAA Glu GAA	ASP GCA Ala 660 CGC Arg GTT Val AAC ASn GAG Glu GAG	GCC Ala TGG Trp GAA Glu ATC Ile CTG Leu 725 GCA	Arg CCA Pro GAC Asp CAC His TCC Ser 710 TGG Trp	GGT Gly GAA Glu GCC Ala 695 CCT Pro AAC Asn	GGC GGC GGC TAC TYT GAC ASP	ATC Ile 665 GAC Asp ACC Thr GGC Gly ACC Thr	1447 1495 1543
35 40	ASN ACC Thr 650 CGC Arg ACC Thr GCC Ala GCA Ala GGA Gly 730 CTG	ASP 63 ACC Thr ACC Thr GAC Asp GAC Asp CCA Asp ACC	Leu 5 GAA Glu ACC Thr GCT Ala GGC Gly 700 ATC Ile GCA Ala AAG	GTA Val GAA Glu GCC Ala 685 GGC Gly AAG Lys	GCA Ala GCA Ala 670 AAG Lys CTG Leu TCC Ser GTT Val	ACC Thr 655 TTC Phe GGC Gly GTT Val GCA Ala GTC Val	GAA Glu TCC Ser TGC Cys GTT Val GGT G1y 720 GAA Glu GCT	ASP 6 CTC Leu ACC Thr ATC Ile CTT Leu 705 ATC Ile AGC Ser	Asp 400 TTC Phe GAG Glu CGC Arg GAA Glu CAG GIn GAA	CAC His AAC ASn 675 GAC Asp GGC Gly GAA Glu GAA Glu	ASP GCA Ala 660 CGC Arg GTT Val AAC Asn GAG Glu GAG Glu 740 CTG	GCC Ala TGG Trp GAA Glu ATC Ile CTG Leu 725 GCA Ala	Arg CCA Pro GAC Asp CAC His TCC Ser 710 TGG Trp GTC Val	GGT Gly GAA Glu GCC Ala 695 CCT Pro AAC Asn TCT Ser	Gly 645 GGC Gly CTC Leu 680 TAC Tyr GAC Asp TTC Phe GTC Val	ATC Ile 665 GAC Asp ACC Thr GGC Gly ACC Thr ATC Ile 745 GAA	1447 1495 1543 1591 1639

	Gly Pro Ser Gly Gly Pro Gly Met Gln Glu Met Leu His Pro Thr Ala 765 770 775												
5	TTC CTC AAG GGA TCC GGC CTG GGC AAG AAG TGT GCA CTG ATC ACC GAC Phe Leu Lys Gly Ser Gly Leu Gly Lys Lys Cys Ala Leu Ile Thr Asp 780 785 790	1831											
	GGC CGT TTC TCC GGA GGT TCC TCA GGA CTG TCC ATC GGC CAC GTC TCC Gly Arg Phe Ser Gly Gly Ser Ser Gly Leu Ser Ile Gly His Val Ser 795 800 805	1879											
10	CCA GAA GCA GCA CAC GGC GGA GTC ATT GGT CTG ATC GAA AAC GGC GAC Pro Glu Ala Ala His Gly Gly Val Ile Gly Leu Ile Glu Asn Gly Asp 810 815 820 825	1927											
15	ATC GTC TCC ATC GAC GTT CAC AAC CGC AAG CTC GAA GTT CAG GTC TCC Ile Val Ser Ile Asp Val His Asn Arg Lys Leu Glu Val Gln Val Ser 830 840	1975											
	GAC GAG GAA CTC CAG CGC CGC CGC GAC GCT ATG AAC GCC TCC GAG AAG Asp Glu Glu Leu Gln Arg Arg Asp Ala Met Asn Ala Ser Glu Lys 845 850 855	2023											
20	CCA TGG CAG CCA GTC AAC CGT AAC CGC GTT GTC ACC AAG GCA CTG CGC Pro Trp Gln Pro Val Asn Arg Asn Arg Val Val Thr Lys Ala Leu Arg 860 865 870	2071											
	GCA TAC GCA AAG ATG GCT ACC TCC GCT GAT AAG GGT GCA GTC CGT CAG Ala Tyr Ala Lys Met Ala Thr Ser Ala Asp Lys Gly Ala Val Arg Gln 875 880 885	2119											
25	GTC GAC TAACCCTTTG TGAGTGTTTG AGCACCGGTT CCCTACTTTG GGTTCCGGTG Val Asp 890	2175											
	CTTTTTCATG TCTTGGCCTG TGTGGGCGTG GTGGAGCTCC CCGTTGCAAA TACTCACCAC 2	235											
30	AAGTTGCAGG ATTTCTGCTG GTTGTGGTGG ATTTTCCCGC TTTATAGCCC TATGCGTGCA 2295												
	ACTITICGGAC CGATTCCAAA GGGCAAAGCC CTGTTTGTGG TGGATCCTTG CCCTGGAAGC 2355												
	TTTCAGGAAC CACAACTACC CCACTGACCC CAAAGTGGAT AGGCCCTATT CTTCCGTTTA 2	415											
	AGCGCCTCAA ACACCTCTCC CCACACTTGA CCCATTAGGC AATTACGAAT CCTTAAACAG 2	475											
35	CCTTCTACAG CACCATGCCC CAAACCGAAC CCAGGCATGA AAAAGACCCT CACCAGGAGG 2	2535											
	GTCTTTTTCT AAAACTTTGG CTACGCGATT GGGTTCACAC CCGCACCGAA CCACCACAGC 2	595											
	AGAACTGCCG CTGCGATGCC GATGACCACG AAGATCCACG AGCTCACCAG TGGACGCTTT 2	655											
40	GCCCAACCTC GGCCAGAGTC AAGGGAAATC TTGCCGGGGC CGGTGAACTG AAGTCCGACA 2	715											
	ACCACGATAG TGAGGATCAG TGCCAGCATC AATGGCTCAC TAAGTTCACC CCAACCACCT 2	2775											
	TCATGAGTGT TGACTTGGTG AAGGGTGGTA AAGGATGTCG CCACCGTGGC TACCGCTGCT 2	2835											
45	GCCACTGGGG TCATCAGACC AAGGAGCAGG AAGACACCAG CCGCAAGTTC AATAGATGGA 2	895											
	AGCAGGATCG CGAGGATTTC AGGCCACTGG TAACCAGCGA ACTCTGCCTC GACTCTA	952											

(2) ANGABEN ZU SEQ ID NO: 5:

- (i) SEQUENZKENNZEICHEN:
 (A) LAENGE: 612 Aminosaeuren
 (B) ART: Aminosaeure
 (D) TOPOLOGIE: linear

55

<pre>(ii) ART DES MOLEKUELS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:</pre>																
5	Met 1	Ile	Pro	Leu	Arg 5	Ser	Lys	Val	Thr	Thr 10	Val	Gly	Arg	Asn	Ala 15	Ala
	Gly	Ala	Arg	Ala 20	Leu	Trp	Arg	Ala	Thr 25	Gly	Thr	Lys	G1 u	Asn 30	Glu	Phe
10	Gly	Lys	Pro 35	Ile	Val	Ala	lle	Val 40	Asn	Ser	Tyr	Thr	Gln 45	Phe	Val	Pro
	Gly	#is 50	Val	His	Leu	Lys	Asn 55	Val	Gly	Asp	Ile	Val 60	Ala	Asp	Ala	Val
15	Arg 65	Lys	Ala	Gly	Gly	Val 70	Pro	Lys	Glu	Phe	Asn 75	Thr	Ile	Val	Asp	Asp 80
	Gly	Ile	Ala	Met	Gly 85	His	Gly	Gly	Met	Leu 90	Tyr	Ser	Leu	Pro	Ser 95	Arg
00	Glu	Ile	Ile	Ala 100	Asp	Ser	Val	Glu	Tyr 105	Met	Val	Asn	Ala	His 110	Thr	Ala
20	Asp	Ala	Met 115	Val	Cys	Ile	Ser	Asn 120	Суз	Asp	Lys	Ile	Thr 125	Pro	Gly	Met
	Leu	Asn 130	Ala	Ala	Met	Arg	Leu 135	Asn	Ile	Pro	Val	Val 140	Phe	Val	Ser	Gly
25	Gly 145	Pro	Met	Glu	Ala	Gly 150	Lys	Ala	Val	Val	Val 155	Glu	Arg	Val	Ala	His 160
	Ala	Pro	Thr	Asp	Leu 165	Ile	Thr	Ala	Ile	Ser 170	Ala	Ser	Ala	Ser	Asp 175	Ala
30				180					185					190	Pro	
	Cys	Gly	Ser 195	Суѕ	Ser	Gly	Met	Phe 200	Thr	Ala	Asn	Ser	Met 205	Asn	Cys	Leu
35		210			-		215			_		220			Leu	
	225					230					235				Thr	240
40					245					250					Val 255	
	Pro	Arg	Gly	11e 260	Ala	Thr	Lys	Lys	Ala 265	Phe	Glu	Asn	Ala	Met 270	Ala	Leu
45	Asp	Met	Ala 275	Met	Gly	Gly	Ser	Thr 280	Asn	Thr	Ile	Leu	His 285	Ile	Leu	Ala
10	Ala	Ala 290	Gln	Glu	Gly	Glu	Val 295	Asp	Phe	Asp	Leu	Ala 300	Asp	Ile	Asp	Glu
	Leu 305	Ser	Lys	Asn	Val	Pro 310	Cys	Leu	Ser	Lys	Val 315	Ala	Pro	Asn	Ser	Asp 320
50	Туr	His	Met	Glu	Asp 325	Val	His	Arg	Ala	Gly 330	Arg	Ile	Pro	Ala	Leu 335	Leu
	Gly	Glu	Leu	nsA	Arg	<i>G</i> J À	Gly	Leu	Leu	Asn	Lys	Asp	Val	His	Ser	Val

				340					345					350		
5	His	Ser	Asn 355	Asp	Leu	Glu	Gly	Trp 360	Leu	Asp	Asp	Trp	Asp 365	Ile	Arg	Ser
	Gly	Lys 370	Thr	Thr	Glu	Va1	Ala 375	Thr	Glu	Leu	Phe	His 380	Ala	Ala	Pro	Gly
10	Gly 385	Ile	Arg	Thr	Thr	Glu 390	Ala	Phe	Ser	Thr	Glu 395	Asn	Arg	Trp	Asp	Glu 400
	Leu	qeA	Thr	Asp	Ala 405	Ala	Lys	Gly	Суз	Ile 410	Arg	Asp	Val	Glu	His 415	Ala
15	Tyr	Thr	Ala	Asp 420	Gly	Gly	Leu	Val	Val 425	Leu	Arg	Gly	Asn	Ile 430	Ser	Pro
	Asp	Gly	Ala 435	Val	lle	Lys	Ser	Ala 440	Gly	Ile	Glu	Glu	Glu 445	Leu	Trp	Asn
20	Phe	Thr 450	Gly	Pro	Ala	Arg	Val 455	Val	Glu	Ser	Gln	Glu 460	Glu	Ala	Val	Ser
	Val 465	Ile	Leu	Thr	Lys	Thr 470	Ile	Gln	Ala	Gly	Glu 475	Val	Leu	Val	Val	Arg 480
25	Tyr	Glu	Gly	Pro	Ser 485	Gly	Gly	Pro	Gly	Met 490	Gln	Glu	Met	Leu	His 495	Pro
	Thr	Ala	Phe	Leu 500	Lys	Gly	Ser	Gly	Leu 505	Gly	Lys	Lys	Cys	Ala 510	Leu	Ile
30	Thr	Asp	Gly 515	Arg	Phe	Ser	Gly	Gly 520	Ser	Ser	Gly	Leu	Ser 525	Ile	Gly	His
	Val	Ser 530	Pro	Glu	Ala	Ala	His 535	Gly	Gly	Val	Ile	Gly 540	Leu	Ile	Glu	Asn
35	Gly 545	Asp	Ile	Val	Ser	Ile 550	Asp	Val	His	Asn	Arg 555	Lys	Leu	Glu	Val	Gln 560
	Val	Ser	Asp	Glu	Glu 565	Leu	Gln	Arg	Arg	Arg 570	Asp	Ala	Met	Asn	Ala 575	Ser
40	Glu	Lys	Pro	Trp 580	Gln	Pro	Val	Asn	Arg 585	Asn	Arg	Val	Val	Thr 590	Lys	Ala
	Leu	Arg	Ala 595	Tyr	Ala	Lys	Met	Ala 600	Thr	Ser	Ala	Asp	Lys 605	Gly	Ala	Val
45	Arg	Gln 610	Val	Asp												

Abbildungen

50

55

[0050] Folgende Abbildungen sind beigefügt:

Abbildung 1:

Restriktionskartierung von pUR1 und Lage des sequenzierten Fragments.

Abbildung 2:

Restriktionskarte des Plasmids pEKEx2panBC.

Abbildung 3:

Restriktionskarte des Plasmids pECM3ilvBNCD.

Patentansprüche

15

20

25

35

50

- In Mikroorganismen der Gattung Corynebacterium replizierbare, gegebenfalls rekombinante DNA mit der Herkunft
 Corynebacterium, die zumindest eine der folgenden Nucleotidsequenzen enthält, ausgewählt aus der Gruppe:
 - a) codierend für das panB-Gen (Ketopantoathydroxymethyltranferase), dargestellt in der SEQ-ID-No.1,
 - b) codierend für das panC-Gen (Pantothenatsynthetase), dargestellt in der SEQ-ID-No.1, insbesondere das panBC-Operon und gegebenenfalls
 - c) codierend für das ilvD-Gen (Dihydroxysäuredehydratase), dargestellt durch die SEQ-ID-No.4.
 - Replizierbare DNA gemäß Anspruch 1 mit
 - (i) den Nucleotidsequenzen, gezeigt in SEQ-ID-No.1, SEQ-ID-No.4,
 - (*) mendestens einer dieser Sequenzen, die den jeweiligen Sequenzen (i) innerhalb des Bereichs der Degeneration des genetischen Codes entsprechen oder
 - (m) mindestens einer dieser Sequenzen, die mit den zu jeweiligen Sequenzen (i) oder (ii) komplementären Sequenzen hybridisieren und gegebenenfals.
 - (m) tunktionsneutralen Sinnmutationen in i).
- Mekroorganismen, insbesondere der Gattung Corynbacterium, transformiert durch die Einführung einer oder mehrer er der replizierbaren DNA gemäß einem der Ansprüche 1 oder 2.
 - Pendelvektor (shuttle vector) pECM3ilvBNCD, gekennzelchnet

durch die in der Abb. 3 wiedergegebene Restriktionskarte, hinterlegt als E.coli DH5amcr/pECM3ilvBNCD unter der Bezeichnung DSM 12457.

Pendelvektor (shuttle vector) pEKEx2panBC, gekennzeichnet

durch die in der Abb.2 wiedergegebene Restriktionskarte, hinterlegt als E.coli DH5amcr/pEKEx2panBC unter der Bezeichnung DSM 12456.

 Verlahren zur Herstellung von Pantothensäure, dadurch gekennzeichnet,

> daß man in den Mikroorganismen der Gattung Corynebacterium das panB- und panC-Gen und gegebenenfalls weitere für die entsprechenden Enzyme codierenden Nucleotidsequenzen verstärkt (überexprimiert) und diese Mikroorganismen zur Fermentation einsetzt.

- Verfahren zur Hestellung gemäß Anspruch 6, dadurch gekennzeichnet.
- 55 daß man zusätzlich das ilvD-Gen verstärkt (überexprimiert).
 - Verfahren gem

 ß den Anspr

 üchen 6 oder 7, dadurch gekennzeichnet,

daß man zusätzlich die Gene ilvBNCD verstärkt (überexprimiert).

 Verfahren gem

ß den Anspr

chen 6 oder 7, dadurch gekennzeichnet,

5

10

25

30

35

40

45

daß man zur Erzielung der Verstärkung die Kopienzahl der Gene bzw. Nucleotidsequenzen in den Mikroorganismen durch Transformation mit diesen Gene bzw. Nucleotidsequenzen tragenden Plasmidvektoren erhöht.

 Verfahren gemäß den Ansprüchen 6 oder 7, dadurch gekennzeichnet,

daß man zur Erzielung der Verstärkung die sich stromaufwärts des Strukturgens befindende Promoter- und Regulationsregion mutiert.

15 11. Verfahren gemäß den Ansprüchen 6 oder 7, dadurch gekennzeichnet,

daß man zur Erzielung der Verstärkung stromaufwärts des Strukturgens Expressionskassetten einbaut.

20 12. Verfahren gemäß den Ansprüchen 6 oder 7, dadurch gekennzeichnet,

daß man zur Erzielung der Verstärkung die Lebensdauer der mRNA, die von den oben genannten Sequenzen als Matrize abgelesen wird, verlängert und/oder den Abbau der (des) entsprechenden Enzymproteins(e) verhindert.

 Verfahren gemäß den Ansprüchen 6 bis 12, dadurch gekennzeichnet,

daß man die Gene gemäß Anspruch 1 in Corynebacterien überexprimiert, die weitere Metabolit- bzw. Antimetabolit-Resistenzmutationen aufweisen.

 Verfahren gemäß den Ansprüchen 6 bis 12, dadurch gekennzeichnet,

daß man zur Erzielung der Überexpression das Kulturmedium und/oder die Fermentationsführung ändert.

 Verfahren gemäß den Ansprüche 6 bis 14, dadurch gekennzeichnet,

> daß man zumindest einen der Stoffwechselwege in den Mikroorganismen ausgeschaltet, die die Pantothenat-(Pantothensäure)-bildung verringern.

 Verfahren gemäß den Ansprüchen 6 bis 15, dadurch gekennzeichnet,

daß man Mikroorganismen einsetzt, in denen man zusätzlich zu einem oder mehren der Gene die übrigen Gene des Stoffwechselweges der Pantothensäurebildung, einzeln oder gemeinsam, überexprimiert.

17. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet,

daß man im Stoffwechselweg das ilvA-Gen ausschaltet.

18. Verfahren gem\u00e4\u00e3 einem oder mehreren der Anspr\u00fcche 6 bis 17. dadurch gekennzeichnet,

daß man Mikroorganismen der Gattung Corynebacterium einsetzt, die den Pendelvektor pECM3ilvBNCD ent-

halten.

 Verfahren gemäß einem oder mehreren der Ansprüche 6 bis 17, dadurch gekennzeichnet,

daß man Mikroorganismen der Gattung Corynebacterium einsetzt, die den Pendelvektor pEKEx2panBC enthalten.

20. Verfahren zur Herstellung von Pantothensäure durch Fermentation von Mikroorganismen der Gattung Corynebacterium gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man

- a) zumindest eines der Gene panB oder panC, bevorzugt panBC, gegebenfalls in Kombination mit dem ilvD-Gen, verstärkt (überexprimiert), und
- b) die Pantothensäure im Medium oder in den Zellen der Mikroorganismen anreichert, und
- c) die Pantothensäure isoliert.
- Verfahren gemäß den Ansprüchen 19 und 20, dadurch gekennzeichnet,

daß man während der Fermentation eine Vorstufe der Pantothensäure zusetzt, ausgewählt aus der Gruppe Aspartat, β-Alanin, Ketoisovalerat, Ketopantoat oder Pantoat.

25

15

20

5

30

35

40

45

50

Abbildung l

Abbildung 2

Abbildung 3

