Package 'plotlsirm'

October 1, 2025

Type Package
Title Plot Toolkit for Latent Space Item Response Models
Version 0.1.3
Description Provides publication-quality and interactive plots for exploring the posterior output of Latent Space Item Response Models, including Posterior Interaction Profiles, radar charts, 2-D latent maps, and item-similarity heat maps. The methods implemented in this package are based on work by Jeon, M., Jin, I. H., Schweinberger, M., Baugh, S. (2021) <doi:10.1007 s11336-021-09762-5="">.</doi:10.1007>
License GPL (>= 3)
Encoding UTF-8
Depends R (>= 4.1.0)
Imports ggplot2 (>= 3.4), rlang, dplyr, tidyr, patchwork, scales, grid
Suggests plotly, testthat (>= 3.0.0), spelling
RoxygenNote 7.2.3
<pre>URL https://github.com/jevanluo/plotlsirm</pre>
<pre>BugReports https://github.com/jevanluo/plotlsirm/issues</pre>
Author Jinwen Luo [aut, cre] (ORCID: https://orcid.org/0000-0002-8511-7165), Minjeong Jeon [aut] (ORCID: https://orcid.org/0000-0002-5880-4146)
Maintainer Jinwen Luo <jevanluo@ucla.edu></jevanluo@ucla.edu>
Config/testthat/edition 3
NeedsCompilation no
Repository CRAN
Date/Publication 2025-10-01 07:10:02 UTC
Contents
crossdist_fast

crossdist_fast

intermap2d	
interprofile	1
itemheatmap	1
itemsimilarity	1
lsirmicc	1
pip_fountain	1
pip_waterfall	2
radarplot	2
rescale_to_range	2
strengthplot	2
vec_mat_dist	2
	2

crossdist_fast

Fast pairwise (cross) Euclidean distances

Description

Index

Computes the Euclidean distance between every row of a "person" matrix (z, shape $N \times d$) and every row of an "item" matrix (w, shape $I \times d$). An optional item_labels argument lets you collapse items into groups first, replacing each group with its centroid before distances are calculated.

Usage

```
crossdist_fast(z, w, item_labels = NULL)
```

Arguments

z Numeric matrix of shape $N \times d$. Each row is a point in a d-dimensional latent space representing a person.

W Numeric matrix of shape $I \times d$. Each row is a point in a d-dimensional latent space representing an item.

item_labels Optional character or factor vector of length *I* giving a group label for each item row in w.

- If supplied, the function first replaces the items in each group with their centroid (mean position) so the output contains distances to those centroids rather than to individual items.
- If NULL (default), distances are computed to every item.

Details

The computation exploits the identity

$$||z_j - w_i||^2 = ||z_j||^2 + ||w_i||^2 - 2z_j^\top w_i.$$

allowing all pairwise squared distances to be obtained with a single matrix multiplication. Negative rounding errors are clipped at zero before taking the square root.

iccsurface 3

Value

A numeric distance matrix.

- ullet When item_labels is NULL, the result is N imes I: distance from every person to every item.
- When item_labels is provided, the result is $N \times G$, where G is the number of distinct groups.

Examples

```
set.seed(42)
z <- matrix(rnorm(15), nrow = 5)  # 5 persons in 3-D
w <- matrix(rnorm(30), nrow = 10)  # 10 items in 3-D
# Person-item distances
d_full <- crossdist_fast(z, w)
# Person-group distances (items grouped into two sets)
grp <- rep(c("A", "B"), each = 5)
d_group <- crossdist_fast(z, w, item_labels = grp)</pre>
```

iccsurface

Latent-Space Item Characteristic Surface

Description

Evaluates the LSIRM probability

$$P(Y_{pi} = 1) = \text{logit}^{-1}(\alpha + \beta - \gamma d)$$

on a rectangular grid of *ability* (α) and *person-item distance* (d) values and, by default, renders the resulting surface interactively with plotly.

Usage

```
iccsurface(
  beta,
  alpha_lim = c(-4, 4),
 n_{alpha} = 60,
 dist_lim = c(0, 4),
  n_{dist} = 60,
  gamma = 1,
  colour_mode = c("uniform", "gradient"),
  surface_col = "steelblue",
  palette = "Viridis",
  dark_high = TRUE,
  surface_opacity = NULL,
  show_grid = TRUE,
 grid_step = 5,
 plot = TRUE
)
```

4 iccsurface

Arguments

beta Numeric scalar β_i shifting the surface along the probability axis (item "easiness").

alpha_lim, n_alpha

Numeric. Range c(min, max) and grid size for the ability axis. Default is $\alpha \in [-4, 4]$ with 60 points.

dist_lim, n_dist

Numeric. Range c(min, max) and grid size for the distance axis. Default is $d \in [0, 4]$ with 60 points.

gamma Positive scalar controlling how strongly the probability decays with distance.

colour_mode "uniform" (default) or "gradient".

surface_col Single colour used when colour_mode = "uniform".

palette Character name of a plotly continuous palette (e.g. "Viridis", "Hot", "Blues");

only used when colour_mode = "gradient".

dark_high Logical. If TRUE (default) reverses the palette so high probabilities map to darker

shades.

surface_opacity

Numeric in (0, 1]. By default the function chooses 1 for uniform and 0.9 for

gradient surfaces so the wire-frame remains visible.

show_grid Logical. Overlay a wire-frame? Default TRUE.

grid_step Positive integer: draw every grid_step-th row/column when show_grid = TRUE.

plot Logical. If TRUE (default) return an interactive plotly surface; if FALSE return

the raw numeric grid.

Details

Colour options:

- **Uniform** a single-colour surface (colour_mode = "uniform", default). The colour is set by surface_col.
- **Gradient** a continuous plotly palette (colour_mode = "gradient"); the palette is chosen via palette, and dark_high = TRUE reverses the scale so higher probabilities appear darker.

Wire-frame:

Setting show_grid = TRUE overlays a black wire-frame every grid_step rows/columns to emphasise the surface curvature.

The scene's aspect is fixed to a cube, and bold zero-lines are drawn on the α - and *distance* axes so their origins align visually.

Value

- plot = TRUE a plotly htmlwidget (prints automatically).
- plot = FALSE a list with components alpha, distance, and prob (an $n_{\alpha} \times n_{\rm dist}$ matrix of probabilities).

Dependencies

Rendering the surface requires the plotly package (install.packages("plotly")). No external packages are needed when plot = FALSE.

Examples

intermap2d

2-D latent-space interaction map (persons vs. items)

Description

Persons (z) and items (w) in a 2D latent space with flexible styling. Person parameter α_p , item parameter β_i .

Usage

```
intermap2d(
 z,
 W,
 gamma = NULL,
 person_group = NULL,
  item_group = NULL,
  person_colors = NULL,
  item_colors = NULL,
  alpha = NULL,
 beta = NULL,
  z_shape_size_scale = FALSE,
 w_shape_size_scale = FALSE,
  z_{shape_size_range} = c(2, 6),
 w_shape_size_range = c(2, 8),
  z_shape_size = 2.5,
 w_shape_size = 3,
```

```
z_label_size_scale = NULL,
 w_label_size_scale = NULL,
  z_{\text{label\_size\_range}} = c(3, 7),
  w_label_size_range = c(3, 7),
  z_label_color = "navy",
 w_label_color = "firebrick",
  z_{\text{label_size}} = 4,
  w_label_size = 4,
  z_shape_opacity_scale = FALSE,
 w_shape_opacity_scale = FALSE,
  z_{shape_opacity_range} = c(0.3, 1),
 w_shape_opacity_range = c(0.3, 1),
  z_shape_fixed_opacity = NULL,
  w_shape_fixed_opacity = NULL,
  z_shape_color_gradient = FALSE,
  w_shape_color_gradient = FALSE,
  z_shape_color_values = NULL,
  w_shape_color_values = NULL,
  shape_color_gradient_low = "grey80",
  shape_color_gradient_high = "navy",
  z_shape_color_gradient_low = NULL,
  z_shape_color_gradient_high = NULL,
  w_shape_color_gradient_low = NULL,
  w_shape_color_gradient_high = NULL,
  show_ticks = FALSE,
  xlim_range = NULL,
  ylim_range = NULL,
  itemlabels = NULL,
  personlabels = NULL,
  figuretitle = NULL,
  z_shape = 16,
 w_shape = 17,
  z_shape_color = "navy",
  w_shape_color = "firebrick",
  z_border_width = 0.5,
  show_z_labels = FALSE,
  show_w_labels = FALSE,
  show_z_shapes = TRUE,
  show_w_shapes = TRUE,
  legend_title = "legend",
  show_size_legend = FALSE,
  share_gradient_scale = FALSE,
  legend_title_z = expression(alpha[p]),
  legend_title_w = expression(beta[i])
)
```

Arguments

z, w Numeric matrices with 2 columns: coordinates for persons/items.

gamma Optional scalar stretch factor applied to both z and w.

person_group, item_group

Optional factor/character for grouping colors.

person_colors, item_colors

Optional explicit color vectors (length N/I).

alpha, beta Optional vectors used to scale shape/label sizes, opacity, and (optionally) gradients for persons/items, respectively.

z_shape_size_scale, w_shape_size_scale

Logical: scale shape sizes by alpha/beta.

z_shape_size_range, w_shape_size_range

Length-2 numeric: shape size ranges (when scaling).

z_shape_size, w_shape_size

Numeric: fixed shape sizes when size scaling is OFF.

z_label_size_scale, w_label_size_scale

Logical: scale label sizes. If NULL, defaults to the corresponding shape-size flag.

z_label_size_range, w_label_size_range

Length-2 numeric: label size ranges.

z_label_color, w_label_color

Label colors; if NULL, labels follow the layer's color (group/gradient) or fixed color/vector as appropriate.

z_label_size, w_label_size

Fixed label sizes when not scaling.

z_shape_opacity_scale, w_shape_opacity_scale

Logical: scale shape opacity by alpha/beta.

z_shape_opacity_range, w_shape_opacity_range

Length-2 numeric: opacity ranges.

z_shape_fixed_opacity, w_shape_fixed_opacity

Optional constant opacity (0..1) for shapes.

z_shape_color_gradient, w_shape_color_gradient

Logical: color shapes by a gradient (darker indicates higher). Overrides groups/colors for that layer. If both are TRUE, the gradients can be shared (share_gradient_scale = TRUE) or separated (share_gradient_scale = FALSE, default).

z_shape_color_values, w_shape_color_values

Optional numeric drivers for gradients (defaults: alpha / beta respectively).

shape_color_gradient_low, shape_color_gradient_high

Global colors for the gradient palette. Used directly when share_gradient_scale = TRUE, or as fallbacks for layer-specific palettes when share_gradient_scale = FALSE.

z_shape_color_gradient_low, z_shape_color_gradient_high

Optional colors for the persons (z) gradient when using separate scales. If NULL, fall back to shape_color_gradient_low/high.

w_shape_color_gradient_low, w_shape_color_gradient_high

Optional colors for the items (w) gradient when using separate scales. If NULL, fall back to shape_color_gradient_low/high.

show_ticks Logical: draw axis ticks/labels.

```
xlim_range, ylim_range
                  Optional axis limits (symmetric if NULL).
itemlabels, personlabels
                  Optional labels (defaults: "I1..", "P1..").
figuretitle
                  Optional plot title.
z_shape, w_shape
                 ggplot2 shape codes for persons/items (see ?ggplot2::geom_point).
z_shape_color, w_shape_color
                 Fixed fallback shape colors when not mapping.
z_border_width Stroke width for z shapes (when applicable).
show_z_labels, show_w_labels
                 Logical: draw labels for z/w.
show_z_shapes, show_w_shapes
                 Logical: draw shapes for z/w.
legend_title
                 Character or expression: the legend title (when shown).
show_size_legend
                 Logical: show a size legend (default FALSE).
share_gradient_scale
                 Logical. If TRUE, persons and items share one gradient/legend (uses shape_color_gradient_low/high
                  and legend_title). If FALSE (default), persons and items use separate gradi-
                 ents/legends: persons mapped to color (title legend_title_z) and items mapped
                 to fill (title legend_title_w).
legend_title_z, legend_title_w
                 Titles (character or expressions) for the separate z and w gradient legends, used
                  only when share_gradient_scale = FALSE and both gradient mappings are
```

Details

Coloring & legends

enabled.

- A color legend appears when colors are mapped via groups or gradients. For fixed colors/shapes on both layers, the function creates a simple two-entry legend ("Persons", "Items") using constant mappings; when shapes are off but labels are on, it builds a labels-only legend with colored swatches. The legend title is controlled by legend_title.
- When both persons and items use gradient coloring (z_shape_color_gradient = TRUE and w_shape_color_gradient = TRUE), you can either **share one gradient and legend** by setting share_gradient_scale = TRUE (uses shape_color_gradient_low/high and legend_title), or show **separate gradients/legends** for z and w by keeping share_gradient_scale = FALSE (default). In separate mode, persons use the color scale with title legend_title_z, and items use the fill scale with title legend_title_w. Layer-specific palettes can be supplied via z_shape_color_gradient_low/high and w_shape_color_gradient_low/high; if NULL, the global shape_color_gradient_low/high are used as fallbacks.
- Opacity (ggplot "alpha") and size legends are hidden by default. Set show_size_legend = TRUE to show a size legend when size mapping is used.

• When person_colors / item_colors are **vectors** and z_label_color / w_label_color are NULL, label colors follow those per-observation vectors.

Opacity

Transparency is called *opacity* to avoid confusion with the statistic alpha. When you supply explicit fixed colors (single color or vector), default opacity is full (1) unless you enable *_shape_opacity_scale or set *_shape_fixed_opacity.

Sizes

- Shape sizes are fixed by z_shape_size/w_shape_size unless z_shape_size_scale/w_shape_size_scale are TRUE, in which case sizes are scaled by alpha/beta into z_shape_size_range/w_shape_size_range.
- Label text sizes are fixed by z_label_size / w_label_size unless z_label_size_scale / w_label_size_scale are TRUE, in which case they are scaled by alpha/beta into z_label_size_range / w_label_size_range.

Value

Invisibly returns a ggplot object; also prints the plot.

```
### example data
set.seed(1)
z \leftarrow matrix(rnorm(40), 20, 2) \# persons
w <- matrix(rnorm(30), 15, 2) # items</pre>
alpha <- rnorm(nrow(z))  # person alpha</pre>
beta <- rnorm(nrow(w))</pre>
                               # item beta
### 1) minimal, fixed colors & shapes
intermap2d(z, w)
### 2) minimal, fixed shapes for persons and labels for items
intermap2d(
  z, w,
  show_w_shapes = FALSE, show_w_labels = TRUE
)
### 3) Grouped colors + sized shapes, formal legend title
intermap2d(
  z, w,
  person_group = rep(c("Cohort A", "Cohort B"), length.out = nrow(z)),
  item_group = rep(c("Domain X", "Domain Y", "Domain Z"), length.out = nrow(w)),
  alpha = alpha, beta = beta,
  z_shape_size_scale = TRUE, z_shape_size_range = c(2, 6),
  w_shape_size_scale = TRUE, w_shape_size_range = c(2, 8),
  show_z_shapes = TRUE, show_w_shapes = FALSE,
  show_w_labels = TRUE, legend_title = "Cohort / Domain"
)
### 4) Gradient for persons only (darker = higher alpha), labels scaled by alpha
intermap2d(
```

```
Z, W,
 alpha = alpha,
 z_shape_color_gradient = TRUE,
                                    # z by gradient
 w_shape_color = "red",
                                  # w fixed color
                        = TRUE,
                                     # label size proportional to alpha
 z_label_size_scale
 show_w_shapes = FALSE,
 show_w_labels = TRUE,
  # shape_color_gradient_low = "grey80", shape_color_gradient_high = "navy",
 legend_title = expression(alpha[p])
)
### 5) Gradient for both alpha (persons) and beta (items), shared legend
intermap2d(
 z, w,
 alpha = alpha, beta = beta,
 z_shape_color_gradient = TRUE, w_shape_color_gradient = TRUE,
 shape_color_gradient_low = "grey80", shape_color_gradient_high = "navy",
 z_shape_size_scale = TRUE, w_shape_size_scale = TRUE,
 show_z_shapes = TRUE, show_w_shapes = TRUE,
 show_z_labels = FALSE, show_w_labels = FALSE,
 legend_title = "Intensity (alpha persons, beta items)"
)
### 6) Explicit per-observation colors (vectors) + label-only
z_{cols} \leftarrow ifelse(alpha > 0, "#1f77b4", "#AEC7E8")
w_cols <- ifelse(beta > 0, "#d62728", "#FF9896")
intermap2d(
 z, w,
 person_colors = z_cols, item_colors = w_cols,
 show_z_shapes = FALSE, show_w_shapes = FALSE,
 show_z_labels = TRUE, show_w_labels = TRUE
)
### 7) Opacity scaling + fixed shape sizes
intermap2d(
 z, w,
 alpha = alpha, beta = beta,
 z_shape_opacity_scale = TRUE, z_shape_opacity_range = c(0.2, 1.0),
 w_shape_opacity_scale = TRUE, w_shape_opacity_range = c(0.4, 1.0),
 z_shape_color = "black", w_shape_color = "orange3",
 z_shape_size = 3, w_shape_size = 3.5,
                                               # fixed sizes (no size scaling)
 show_z_shapes = TRUE, show_w_shapes = TRUE
### 8) Label-only scaling; shape sizes fixed; custom legend title for groups
intermap2d(
 z, w,
 person_group = rep(c("High", "Low"), length.out = nrow(z)),
 alpha = alpha, beta = beta,
 z_label_size_scale = TRUE, w_label_size_scale = TRUE,
 z_{abel_size_range} = c(3, 7), w_{abel_size_range} = c(3, 7),
 show_z_labels = TRUE, show_w_labels = FALSE,
  show_z_shapes = FALSE, show_w_shapes = TRUE,
```

interprofile 11

```
legend_title = "Performance Group"
)
### 9) Stretch coordinates + axis ticks + symmetric limits
intermap2d(
    z, w,
    gamma = 1.5,
    show_ticks = TRUE,
    xlim_range = c(-4, 4), ylim_range = c(-4, 4),
    person_group = rep(c("Train","Test"), length.out = nrow(z)),
    legend_title = "Set Membership"
)
```

interprofile

Draw a Posterior Interaction Profile in either style

Description

Convenience wrapper that calls pip_fountain() (default) or pip_waterfall() depending on the style argument. All additional arguments are forwarded unchanged to the selected function, so you can pass alpha, beta, distance_mat, HDI bounds, grouping factors, and so on in exactly the same way as you would when calling the underlying plotting functions directly.

Usage

```
interprofile(style = c("fountain", "waterfall"), ...)
```

Arguments

Style Character string choosing the layout. Accepts "fountain" (default) or "waterfall".

Matching is case-insensitive and only the first few letters are required (e.g., "wat").

Further arguments passed on to either pip_fountain() or pip_waterfall().

See those functions for a full description of valid parameters.

Value

Whatever the chosen PIP function returns: a patchwork object that combines the two ggplot2 panels, invisibly returned after being printed.

See Also

```
• pip_fountain() - "base at -\beta, arrow up" style
```

```
• pip_waterfall() - "base at \beta, arrow down" style
```

12 itemheatmap

Examples

```
# Small simulated example -----
set.seed(42)
N <- 6; I <- 10
alpha <- rnorm(N)</pre>
beta <- rnorm(I, sd = 0.7)
dist <- abs(matrix(rnorm(N * I, sd = 0.8), N, I)) # fake distances
# pip_profile() defaults to the fountain view
interprofile(alpha = alpha,
           beta = beta,
           distance_mat = dist,
           focal_id = 2)
# Switch to waterfall with the same data
interprofile("waterfall",
           alpha = alpha,
           beta = beta,
           distance_mat = dist,
           item_group = rep(LETTERS[1:2], length.out = length(beta)),
           y_{limits=c(-3,2)}
```

itemheatmap

Heat-map of item-item similarity in latent space

Description

Draws a lower-triangle heat-map (including the main diagonal) of the similarity between item positions in a latent space. Similarity is defined as

$$\exp(-\gamma d_{ij})$$

where d_{ij} is the Euclidean distance between items i and j, and $\gamma > 0$ is a scale parameter controlling how quickly similarity decays with distance. The function can optionally reorder items via hierarchical clustering so that similar items are placed next to one another, making block-structure easier to see.

Usage

```
itemheatmap(
   w,
   gamma = 1,
   item_names = NULL,
   reorder = FALSE,
   digits = 2,
   title = NULL
)
```

itemsimilarity 13

Arguments

W	Numeric matrix or data frame with one row per item and two (or more) columns giving the latent coordinates of each item.
gamma	Positive numeric scalar. Controls the steepness of the similarity decay; larger values make similarity drop off more quickly. Default is 1.
item_names	Optional character vector of item labels. Must have the same length as nrow(w). Defaults to "I1", "I2", if NULL.
reorder	Logical. If TRUE (default is FALSE) the heat-map is reordered using hierarchical clustering of the distance matrix so that similar items are grouped along the diagonal.
digits	Integer. Number of decimal places used when printing similarity values inside the cells. Default is 2.
title	Optional character string for the plot title.

Value

(Invisibly) a ggplot object containing the heat-map. The plot is also displayed as a side effect.

Examples

```
set.seed(123)
w <- matrix(rnorm(40), ncol = 2)  # 20 items in 2-D latent space
# Default heat-map
itemheatmap(w)

# Stronger decay (gamma = 3) and custom item names
itemheatmap(w, gamma = 3, item_names = paste("Item", 1:nrow(w)))

# Turn off re-ordering
itemheatmap(w, reorder = FALSE, title = "Fixed item ordering")</pre>
```

itemsimilarity

Similarity profile for a focal item

Description

Plots the similarity between one **focal item** and every other item in latent space, optionally including posterior uncertainty bands when a list of draws is supplied. Similarity is defined as

$$\exp(-\gamma d_{ij})$$

where d_{ij} is the Euclidean distance between items i and j. Bars can be color-coded by a grouping factor, reordered by decreasing similarity, displayed horizontally or vertically, and annotated with credible intervals.

14 itemsimilarity

Usage

```
itemsimilarity(
  focal_item,
  gamma = 1,
  item_group = NULL,
  item_names = NULL,
  ci_level = 0.95,
  reorder = FALSE,
 vertical = TRUE,
  title = NULL,
  use_gradient = TRUE,
  gradient_low = "#d9f0d3",
  gradient_high = "#1b7837",
  show_gradient_legend = TRUE,
  single_fill_color = "steelblue"
)
```

Arguments

Numeric matrix $(I \times d)$ of item coordinates or a list of such matrices (posterior draws). When a list is given the function summarises similarity across draws and plots medians with ci_level credible intervals.

focal item Index (integer) **or** name (character) of the item whose similarity profile is to be displayed.

Positive numeric scalar controlling how quickly similarity decays with distance. gamma

Default is 1.

Optional character/factor vector of length *I* indicating group membership for item_group

each item. Used for bar colors and legend.

Optional character vector of item labels (length I). Defaults to "I1", "I2", ... if item_names

NULL.

ci_level Numeric between 0 and 1 giving the width of the credible interval when w is a

posterior list. Ignored for a single draw.

reorder Logical. Reorder items on the axis by decreasing similarity to the focal item?

Default FALSE.

Logical. TRUE (default) plots vertical bars; FALSE flips the axes for a horizontal vertical

layout.

Optional character string added as the plot title. title

Logical. When item_group is NULL, color bars by a similarity gradient (lowuse_gradient

>high). Default TRUE.

gradient_low, gradient_high

Colors for the similarity gradient when use_gradient = TRUE. Defaults "#d9f0d3"

(low) to "#1b7837" (high).

show_gradient_legend

Logical. Show legend for the similarity gradient (only when item_group is NULL and use_gradient = TRUE)? Default TRUE.

Isirmicc 15

```
single_fill_color
```

Single fill color when use_gradient = FALSE and item_group is NULL. Default "steelblue".

Value

(Invisibly) a ggplot object. The plot is also drawn as a side effect.

Examples

```
set.seed(1)
w <- matrix(rnorm(40), ncol = 2) # 20 items</pre>
gp <- sample(c("Math", "Verbal"), nrow(w), replace = TRUE)</pre>
## 1) Single estimate, default gradient (ungrouped)
itemsimilarity(w, focal_item = 3, gamma = 2,
               title = "Similarity to item 3 (gradient)")
## 2) Single estimate, turn off gradient and use one color (ungrouped)
itemsimilarity(w, focal_item = 3, gamma = 2,
               use_gradient = FALSE, single_fill_color = "tomato",
               title = "Similarity to item 3 (single color)")
## 3) Grouped bars (gradient ignored because groups are used)
itemsimilarity(w, focal_item = 3, gamma = 2, item_group = gp,
               title = "Similarity to item 3 (grouped)")
## 4) Posterior list with credible intervals (ungrouped, gradient)
draws <- replicate(100, w + matrix(rnorm(length(w), sd = 0.1),</pre>
                                    nrow(w), ncol(w)), simplify = FALSE)
itemsimilarity(draws, focal_item = "I10", ci_level = 0.9,
               vertical = FALSE, show_gradient_legend = FALSE)
```

lsirmicc

Latent-Space Item Characteristic Curve (ICC)

Description

Plots the LSIRM ICC for **one item** on a user-defined grid of ability values (alpha_grid). The function supports two ways of supplying inputs:

Usage

```
lsirmicc(
  item_id,
  posterior = NULL,
  beta = NULL,
  gamma = NULL,
```

16 Isirmicc

```
w_pos = NULL,
z_pos = NULL,
alpha_grid = seq(-4, 4, length.out = 201),
person_id = NULL,
compare = TRUE,
credibleRibbon = FALSE,
cred_level = 0.95,
reference = c("item", "person-global", "origin"),
ref_col = "grey40",
person_cols = NULL
)
```

Arguments

item_id	Scalar index of the item to plot.
posterior	Optional list of draws with components
	beta $M \times I$ matrix of item intercepts.
	gamma Length-M vector of distance weights.
	w Either an $M \times I \times D$ array or a length-M list of $I \times D$ matrices of item coordinates.
	z Optional array/list of person coordinates (same format as w). Only needed if you request person_id or reference = "person-global".
beta, gamma	Numeric point estimates used ${f only}$ when posterior = NULL. beta may be scalar or length-I.
w_pos, z_pos	Matrices of point estimates for item $(I \times D)$ and person $(N \times D)$ coordinates, used only when posterior = NULL.
alpha_grid	Numeric vector of ability values (default seq(-4, 4, length.out = 201)).
person_id	NULL (no person curves) or integer vector of respondent indices to overlay.
compare	Logical. If TRUE (default) the reference curve is drawn in addition to any person curves; if FALSE only person curves appear.
credibleRibbon	Logical. Draw the credible ribbon for draws-based inputs? Ignored (forced FALSE) when posterior = NULL. Default FALSE to keep plots uncluttered.
cred_level	Width of the credible ribbon (e.g., 0.95).
reference	One of "item", "origin", or "person-global"; see Details.
ref_col	Colour for the reference curve.
person_cols	Optional vector of colours for person curves; recycled or auto-generated as needed.

Details

• **Point-estimate inputs (default)** - leave posterior = NULL and supply deterministic beta, gamma, w_pos, and (if needed) z_pos. A single curve per requested group is drawn (no ribbon).

Isirmicc 17

• **Draws-based inputs** - supply a posterior list with draws of beta, gamma, w, and optionally z. The plotted curve is the **posterior-predictive mean probability** at each θ (i.e., average over draws). Optionally add a credible ribbon via credible Ribbon = TRUE with width cred_level.

The probability model is

$$P(Y_{ij} = 1 \mid \theta_j, d_{ij}) = \text{logit}^{-1}(\theta_j + \beta_i - \gamma d_{ij})$$

where $d_{ij} = ||z_j - w_i||$. Choice of the reference position (reference = "item", "origin", or "person-global") determines how d_{ij} is computed for the *baseline* (grey) curve.

Value

(Invisibly) a **ggplot2** object; the plot is displayed as a side-effect.

Curve types

- **Reference curve** distance is computed from the chosen reference position to the item for every posterior draw (or once with point-estimate inputs). Shown unless compare = FALSE.
- **Person curve(s)** distance is computed from the latent position(s) of respondent(s) listed in person_id. Requires z (posterior draws or point estimates).

```
## --- reproducible demonstration ------
set.seed(1)
I <- 6; N <- 40; D <- 2; M <- 300
                                         # toy dimensions
## 1. Point-estimate inputs (default) ------
beta_hat <- 0.3
gamma_hat <- 1.2
w_hat
      <- matrix(rnorm(I * D), I, D)</pre>
         <- matrix(rnorm(N * D), N, D)
# population curve + one person (no ribbon in point-estimate usage)
lsirmicc(item_id = 4,
        beta
             = beta_hat,
        gamma = gamma_hat,
        w_pos = w_hat,
        z_{pos} = z_{hat}
        person_id = 7)
## 2. Draws-based inputs (posterior list) ------
w_base < -matrix(0, I, D); w_base[, 1] < -seq(-1.2, 1.2, length.out = I)
z_{base} \leftarrow matrix(0, N, D); z_{base}[, 1] \leftarrow rep(c(-0.6, 0.6), length.out = N)
posterior <- list(</pre>
 beta = matrix(rnorm(M * I, 0, 0.25), M, I),
 gamma = rgamma(M, shape = 300, rate = 300),
       = array(rep(w_base, each = M), c(M, I, D)) +
         array(rnorm(M * I * D, sd = 0.12), c(M, I, D)),
```

pip_fountain

pip_fountain

Posterior Interaction Profile - Fountain style

Description

Generates the **fountain** variant of a Posterior Interaction Profile (PIP) plot. The layout is identical to pip_waterfall() on the left (posterior density for the focal respondent's ability) but **inverts** the right-hand panel: each item dot is placed at - β_i (the "fountain base") and an arrow rises to the personalized easiness

$$\delta_{ij} = \beta_i - d_{ij}$$

. Distance is taken from distance_mat. If gamma is supplied, distances are scaled before computing deltas, i.e. $\delta_{ij} = \beta_i - \gamma d_{ij}$. Uncertainty bounds in distance_low/distance_up are scaled by the same γ . Arrows that extend **above** the base indicate the item is *easier* for the respondent than average; arrows that fall short indicate it is *harder*.

Usage

```
pip_fountain(
   alpha,
   beta,
   distance_mat,
   gamma = NULL,
   alpha_lower = NULL,
   distance_low = NULL,
   distance_up = NULL,
   item_group = NULL,
   focal_id = 1,
   density_adjust = 2,
   y_limits = NULL
)
```

pip_fountain 19

Arguments

alpha	Numeric vector of length <i>N</i> . Posterior means (or draws) of person ability parameters.
beta	Numeric vector of length <i>I</i> . Posterior means of item easiness parameters.
distance_mat	Numeric matrix $N \times I$ containing the latent distances d_{ij} between persons and items.
gamma	Optional numeric scalar used to multiplicatively rescale all distances (and distance_low/distance_up, if provided) before computing personalized easiness. Defaults to NULL (no rescaling).
alpha_lower,alp	pha_upper
	Optional numeric vectors (length N) providing lower/upper posterior intervals (e.g., 95% HDI) for each respondent's α_j . The focal respondent's band is shaded.
distance_low, distance_up	
	Optional matrices matching distance_mat that give lower/upper HDI bounds for each distance. When both are supplied, dotted vertical lines depict the uncertainty in every personalized easiness.
item_group	Optional character/factor vector of length I defining item groupings. Enables color coding and a legend.
focal_id	Integer ($1 \le \text{focal_id} \le N$) selecting the respondent to highlight. Defaults to the first row.
density_adjust	Positive numeric scalar passed to ggplot2::geom_density(adjust =) to control the smoothness of the left-panel density estimate. Values > 1 increase the bandwidth (smoother curve); values < 1 decrease it (more detail). Default is 2.

y_limits

both panels.

Value

A patchwork object containing the combined left- and right-hand ggplot2 panels. The plot is

Optional numeric length-2 vector c(min, max) that fixes the y-axis range for

See Also

pip_waterfall() for the alternative "waterfall" framing, and interprofile() for a wrapper that switches between the two.

Examples

automatically displayed; the value is returned invisibly for further tweaking.

20 pip_waterfall

pip_waterfall

Posterior Interaction Profile - Waterfall style

Description

Creates the **waterfall** flavour of a Posterior Interaction Profile (PIP) plot, visualizing how a single respondent's latent position (α_p) interacts with every item. The left panel shows the posterior density (and optional HDI) of the chosen respondent's ability. The right panel ("waterfall") plots each item's easiness β_i as the starting point of a vertical arrow whose tip marks the personalized easiness $\delta_{ij} = \beta_i - d_{ij}$, where d_{ij} is the latent distance taken from distance_mat. If gamma is supplied, distances are scaled before computing deltas, i.e. $\delta_{ij} = \beta_i - \gamma d_{ij}$. Uncertainty bounds in distance_low/distance_up are scaled by the same γ . Arrows pointing **up** indicate the Arrows pointing **up** indicate the item is *easier* for the focal respondent than for the average person, whereas arrows pointing **down** indicate it is *harder*.

Usage

```
pip_waterfall(
   alpha,
   beta,
   distance_mat,
   gamma = NULL,
   alpha_lower = NULL,
   distance_low = NULL,
   distance_up = NULL,
   item_group = NULL,
   focal_id = 1,
   density_adjust = 2,
   y_limits = NULL
)
```

Arguments

alpha

Numeric vector of length *N*. Posterior means (or draws) of person ability parameters.

pip_waterfall 21

Numeric vector of length *I*. Posterior means of item easiness parameters.

distance_mat Numeric matrix $N \times I$ containing the latent distances d_{pi} between persons and items. Optional numeric scalar used to multiplicatively rescale all distances (and distance_low/distance_up, gamma if provided) before computing personalized easiness. Defaults to NULL (no rescaling). alpha_lower, alpha_upper Optional numeric vectors (length N) giving lower/upper bounds (e.g., 95% HDI) for each person's α_i . If provided, the focal respondent's interval is shaded in distance_low, distance_up Optional matrices the same size as distance_mat providing lower/upper HDI bounds for the distances. When both are supplied, dotted lines visualize the uncertainty in each personalised easiness. Optional character/factor vector of length I assigning item_group focal_id Integer index $(1 \le \text{focal_id} \le N)$ of the respondent to highlight. Default is 1. density_adjust Positive numeric scalar passed to ggplot2::geom_density(adjust = ...) to control the smoothness of the left-panel density estimate. Values > 1 increase the bandwidth (smoother curve); values < 1 decrease it (more detail). Default is

Value

y_limits

both panels.

beta

A patchwork object containing two ggplot2 panels. The plot is also displayed as a side effect, so the returned object is mainly for further customization.

Optional numeric length-2 vector c(min, max) that fixes the y-axis range for

See Also

pip_fountain() for the complementary "fountain" layout, and interprofile() for a thin wrapper that chooses between the two styles.

```
set.seed(42)
N <- 6; I <- 10
alpha <- rnorm(N)
beta <- rnorm(I, sd = 0.7)
dist <- abs(matrix(rnorm(N * I, sd = 0.8), N, I))  # fake distances

# Basic waterfall plot for the first respondent
pip_waterfall(alpha, beta, gamma = 1.5, dist, focal_id = 2)

# Add grouping and uncertainty bands
groups <- rep(c("A", "B"), length.out = I)
d_low <- dist * 0.9; d_up <- dist * 1.1
a_l <- alpha - 0.25; a_u <- alpha + 0.25</pre>
```

22 radarplot

radarplot

Radar plot of branch-specific abilities (single or multiple subjects)

Description

Draws a radar / spider chart in which each axis ("branch") represents a domain-specific ability and the radial extent marks the attained score. *Single-subject mode* shades the overall-ability circle and fills the polygon formed by the branch scores. *Multi-subject mode* overlays several polygons on a common background, optionally coloring, labelling, and annotating each subject.

Usage

```
radarplot(
  data = NULL,
  labels,
 max_radius = 100,
 branch_max = 10,
 overallAbility = NA,
  ability_range = c(-3, 3),
  abilityCutoffs = c(-1.68, 1.68),
 bgColors = c("red", "yellow", "green"),
 markerInd = NULL,
 point_cex = 4,
  subjectLabels = NULL,
  sampleColors = NULL,
  showOverallAbility = FALSE,
  title = NULL,
  plot_margin = margin(t = 20, r = 20, b = 20, l = 20),
  label_angle_offset = 0
)
```

Arguments

data	Numeric vector (one subject) or matrix/data-frame $(m \times n)$ of scores, where $n = \text{length(labels)}$ is the number of branches. Rows correspond to subjects when data is two-dimensional.
labels	Character vector of length n giving the label for each branch / axis.
max_radius	Numeric. Maximum drawing radius in plot units after the scores in ability_range have been linearly rescaled. Default 100.
branch_max	Numeric. Reserved for future branch-specific scaling. Currently ignored.

radarplot 23

overallAbility	Numeric scalar or length- m vector giving the overall ability for each subject. Used to set the radius of the shaded background circle for that subject. If NA the maximum of ability_range is used.
ability_range	Numeric length-2 vector [min, max] defining the scale of the input scores. These limits are mapped to the interval [0, max_radius].
${\it ability} {\it Cutoffs}$	Numeric. Reserved for future color gradations; not used in the current version.
bgColors	Character vector of colors for the shaded background circles. Only the first element is used at present.
markerInd	Numeric vector (0 = hollow, 1 = solid) of length n indicating the point style for each branch. When data is a matrix this can be supplied as an $m \times n$ matrix so each subject has its own marker pattern.
point_cex	Numeric point size for branch markers. Default 4.
subjectLabels	Optional character vector of length m naming each subject in multi-subject mode. Row names of data are used when available; otherwise "Subject 1", "Subject 2", are generated.
sampleColors	Character vector of length m giving the polygon/point color for each subject. Defaults to a distinct hue palette if NULL.
showOverallAbil	lity
	Logical. If TRUE, prints each subject's overall ability beneath their label.
title	Optional plot title.
plot_margin	A ggplot2::margin() object controlling the outer whitespace around the figure. Default adds 20 pt on every side.
label_angle_offset	
	Numeric scalar or length- n vector specifying (in degrees) how much to rotate each branch label relative to its default tangential orientation. Useful for fine-

Value

A ggplot object representing the radar chart (also printed as a side effect).

tuning readability.

24 rescale_to_range

```
dimnames = list(NULL, c("item1", "item2", "item3", "item4", "item5")))
radarplot(dat, labels = colnames(dat),
    overallAbility = c(-1.8, 0.5, 2.5),
    subjectLabels = c("Alice", "Bob", "Cara"),
    sampleColors = c("#1b9e77", "#d95f02", "#7570b3"),
    showOverallAbility = TRUE,
    title = "Class-level comparison")
```

rescale_to_range

Rescale a numeric vector to a new range

Description

Linearly transforms the values in x so they fall within a specified interval. Useful, for example, when mapping latent-space coordinates to aesthetic ranges (point sizes, color scales, etc.) in a plot.

Usage

```
rescale_to_range(x, to = c(0, 1), na.rm = TRUE)
```

Arguments

X	Numeric vector. The data to be rescaled.
to	Numeric vector of length 2 giving the lower and upper limits of the target range. Defaults to $c(0, 1)$.
na.rm	Logical. Should missing values be ignored when computing the source range? Defaults to TRUE. Any NAs in x are returned unchanged.

Details

If all non-missing values in x are identical, the function returns the midpoint of the target range (mean(to)) for those elements to avoid division by zero.

Value

A numeric vector the same length as x, with values rescaled to lie within to[1] and to[2]. The function preserves the positions of NAs.

```
set.seed(123)
x <- rnorm(5)

# Default 0~1 range
rescale_to_range(x)

# Rescale to -1~1</pre>
```

strengthplot 25

```
rescale_to_range(x, to = c(-1, 1))

# Preserve NAs but ignore them when determining the range x_with_na <- c(x, NA, 10)
rescale_to_range(x_with_na, to = c(0, 100))
```

strengthplot

Item-strength profile for a single person

Description

For a chosen respondent (person_index) this function plots the **strength** (likelihood of endorsement) for every item, defined as

$$\exp(-\gamma d_{ij})$$

, where d_{ij} is the Euclidean distance between the person's latent position z_j and each item position w_i . When z and w are supplied as *lists* of matrices (posterior draws), the function summarizes the distribution of strengths with medians and a ci_level credible interval. Bars can be colored by an item grouping factor, reordered by decreasing strength, and displayed either vertically or horizontally.

Usage

```
strengthplot(
 Ζ,
 W,
  person_index,
  gamma = 1,
  item_group = NULL,
  item_names = NULL,
  ci_level = 0.95,
  reorder = FALSE,
  vertical = TRUE,
  title = NULL,
  use_gradient = TRUE,
  gradient_low = "#d9f0d3",
  gradient_high = "#1b7837",
  show_gradient_legend = TRUE,
  single_fill_color = "steelblue"
)
```

Arguments

- z A numeric matrix $(N \times d)$ of person coordinates **or** a *list* of such matrices representing posterior draws.
- w A numeric matrix $(I \times d)$ of item coordinates **or** a *list* of such matrices, matching the structure of z.

26 strengthplot

person_index	Integer giving the row of z (or each draw in z) corresponding to the focal respondent.
gamma	Positive numeric scalar controlling the decay of strength with distance; default is 1.
item_group	Optional character/factor vector of length I assigning each item to a group for color coding and legend.
item_names	Optional character vector of item labels. If NULL defaults to "I1", "I2",
ci_level	Width of the credible interval (between 0 and 1) when posterior draws are given. Ignored for a single point estimate.
reorder	Logical. Reorder items on the axis by decreasing strength? Default FALSE.
vertical	Logical. TRUE (default) draws vertical bars; FALSE flips the axes for a horizontal layout.
title	Optional character string to appear as the plot title.
use_gradient	Logical. When item_group is NULL, color bars by a strength gradient (low -> high)? Default TRUE.
<pre>gradient_low, gradient_high</pre>	
	Colors for the gradient when use_gradient = TRUE. Defaults "#d9f0d3" (low) to "#1b7837" (high).
show_gradient_legend	
	Logical. Show a legend for the gradient (only when item_group is NULL and use_gradient = TRUE)? Default TRUE.
single_fill_color	
	Single fill color used when use_gradient = FALSE and item_group is NULL. Default "steelblue".

Details

When no item_group is provided, bars are color-mapped by a similarity gradient (low -> high) by default. You can disable this behavior and use a single fill color instead via use_gradient = FALSE.

Value

(Invisibly) a ggplot object containing the bar plot. The plot is also printed.

vec_mat_dist 27

vec_mat_dist

Euclidean distance from a single vector to each row of a matrix

Description

Calculates the Euclidean distance between a reference vector v and every row of a matrix mat. This is a thin wrapper around rowSums() and avoids an explicit loop, so it is fast even for large matrices.

Usage

```
vec_mat_dist(v, mat)
```

Arguments

٧

Numeric vector of length d. The reference point in d-dimensional space.

mat

Numeric matrix with n rows and d columns. Each row is treated as a point whose distance from v is to be computed. The number of columns in mat must match length(v).

Details

Internally the function replicates v into an $n \times d$ matrix, subtracts it from mat, squares the elementwise differences, sums across columns, and finally takes the square root, i.e.

$$d_{i} = \sqrt{\sum_{k=1}^{d} (m_{ik} - v_{k})^{2}}$$

for each row i. Because the computation is fully vectorised it is considerably faster than a simple apply() or a for-loop implementation.

Value

A numeric vector of length n containing the Euclidean distance between v and each corresponding row of mat.

28 vec_mat_dist

Index

```
{\tt crossdist\_fast}, {\color{red} 2}
iccsurface, 3
intermap2d, 5
interprofile, \\ 11
interprofile(), 19, 21
itemheatmap, 12
itemsimilarity, \\ 13
lsirmicc, 15
pip\_fountain, 18
pip_fountain(), 11, 21
pip_waterfall, 20
pip_waterfall(), 11, 18, 19
radarplot, 22
rescale_to_range, 24
strengthplot, 25
vec_mat_dist, 27
```