Lista 2

- 1. Seja X uma variável aleatória (v.a.) com densidade $f(x) = C/x^k$, se x > 1, e f(x) = 0, se $x \le 1$, onde k é um número inteiro e C um número real.
 - (a) Para que valores de k essa função é de fato uma densidade? Dado k satisfazendo essa condição, determine o valor necessário para C.
 - (b) Dado k satisfazendo o item a, para que valores de n temos $E(|X|^n) < \infty$?
 - (c) Prove a seguinte propriedade, válida para uma v.a. Y qualquer: Se $E(|Y|^n) < \infty$, e m < n, então $E(|Y|^m) < \infty$, embora possivelmente $E(|Y|^n) < E(|Y|^m)$. (Dica: para que valores de x vale $x^n < x^m$?)
- 2. Seja X com distribuição exponencial, ou seja, com densidade $f(x) = \lambda e^{-\lambda x}$ para $x \geq 0$, e f(x) = 0 para x < 0, onde $\lambda > 0$. Calcule a distribuição de X, E(X) e Var(X).
- 3. Para X uma v.a. não negativa $(X \ge 0)$, mostre que vale

$$E[X] = \int_0^\infty (1 - F_X(x)) dx$$

Você pode supor que X é absolutamente contínua (a.c.), embora a fórmula valha em geral.¹

- 4. Se X é uma v.a. com densidade $f_X=(1/\sqrt{2\pi})e^{-x^2/2}$, qual é a densidade de Y=|X|? Qual é a esperança e variância de Y?
- 5. (Atirando para todo lado) Uma parede (extendendo-se infinitamente para cima e para baixo) é posta a um metro de um canhão. Um ângulo X em radianos ao acaso é escolhido para o canhão (ou seja, $f_X(x)$ =

 $^{^1}$ Uma variável aleatória X é absolutamente contínua se existe um f(x) tal que $F_X(x)=\int_{-\infty}^x f(t)dt$. Nesse caso, F_X é contínua e diferenciável em quase todo ponto (i.e. exceto em conjuntos de medida zero), com $F_X'(x)=f_X(x)$.

 $1/\pi$, para $X \in [-\pi/2, \pi/2]$ e 0 caso contrário). Seja Y a altura do local onde a bala do canhão vai bater na parede, supondo uma trajetória reta.

- (a) Compute a densidade de Y.
- (b) Mostre que a altura mediana m do tiro é 0, onde m é o número que satisfaz $P(Y \le m) = 1/2$.
- (c) Mostre que contrariando expectativas, $n\tilde{a}o$ podemos afirmar que a altura esperada E[Y] do tiro é 0.
- 6. (P1 de 2012)
 - (a) Para duas variáveis aleatórias X e Y quaisquer, prove que

$$E[\max(X, Y)] = E[X] + E[Y] - E[\min(X, Y)]$$

(b) Utilize a equação anterior para provar que, dados dois eventos A e B num espaço amostral,

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

- 7. (P1 de 2019) Seja X uma v.a. normal $(\mu,1)$, com densidade $f_X(x)=\frac{1}{\sqrt{2\pi}}e^{-(x-\mu)^2/2}$. Seja Z uma v.a. discreta com Z=1 com probabilidade 1/2 e Z=-1 com probabilidade 1/2. Considere Y=ZX.
 - (a) (X,Y) tem distribuição conjunta absolutamente contínua? Se sim, obtenha uma expressão para a densidade. Se não, justifique.
 - (b) Y tem distribuição marginal absolutamente contínua? Se sim, obtenha uma expressão para a densidade. Se não, justifique.
 - (c) Obtenha uma expressão para a esperança de Y, como função de μ .
 - (d) Obtenha uma expressão para a covariância de X e Y, como função de μ .
 - (e) Quando $\mu=0$, qual a covariância de X e Y? Nesse caso, podemos afirmar que X e Y são independentes? Podemos afirmar que X e Y são identicamente distribuídas?
- 8. A função $F(x,y) = 1 e^{-x-y}$ para $x,y \ge 0$ (e = 0 caso contrário) é estritamente crescente e varia de valor entre 0 e 1. No entanto, não é uma função distribuição conjunta. Por quê?