Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждениевысшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники

Кафедра электронных вычислительных машин

Лабораторная работа №6 по курсу «Математическая логика и теория алгоритмов»

Объединение граф-схем алгоритмов

Выполнил студент группы ИВТ-11	/Рзаев А. Э./
Проверил преподаватель	/Долженкова М. Л./

Цель работы: получить навыки построения объединенных графических схем алгоритмов.

Задание:

- 1. Построить графическую схему для каждого из заданных алгоритма.
- 2. По граф-схемам построить матричные схемы.
- 3. В соответствии с принципом соседнего кодирования ввести дополнительные условные вершины.
- 4. Построить набор определяющих функций.
- 5. На основе матричных схем и набора определяющих функций построить объединенную матричную схему.
- 6. Преобразовать матричную схему алгоритма в эквивалентную графическую схему. В ходе преобразования выполнить минимизацию длины логической схемы.

Граф-схемы алгоритмов:

Первый алгоритм:

Второй алгоритм:

Третий алгоритм:

Матричные схемы алгоритмов:

Первый алгоритм:

		opiiim.						
	A_0	A_1	A_2	A_3	A`	A``	A```	A_k
A_0	P_3		$\neg P_3$					
A_1								1
A_2					1			
A ₃						1		
A`		P_2		$\neg P_2 P_4$		$\neg P_2 \neg P_4$		
A``		$\neg P_1 P_6 P_5$			$\neg P_1 \neg P_6$	P_1	$\neg P_1 P_6 \neg P_5$	
A```		P_5					$\neg P_5$	

Второй алгоритм:

	A ₀	A ₁	A_2	A ₃	A`	A``	A_k
A_0		1					
A_1				1			
A_2							1
A ₃					1		
A`	$\neg P_1 P_6$				P_1	$\neg P_1 \neg P_6$	
A``			$P_4 P_2 P_3 \lor P_4 \neg P_2$	$\neg P_4$		$P_4P_2 \neg P_3$	

Третий алгоритм:

	A_0	A_1	A_2	A_3	A`	A_k
A_0			P_3	$\neg P_3$		
\mathbf{A}_1						1
A_2					$P_5 \vee \neg P_5 P_4$	$\neg P_5 \neg P_4$
A ₃		P_1P_6	$\neg P_1 P_3$	$\neg P_1 \neg P_3$	$P_1 \neg P_6 P_4$	$P_1 \neg P_6 \neg P_4$
A`		P_2		$\neg P_2$		

Выбор значений дополнительных условных переменных:

$$U_1 - U_2$$
: 0

$$U_1 - U_3$$
: 2

$$U_1-U_{\text{o}}\text{: }14$$

$$U_2 - U_3$$
: 0

$$U_2-U_{\text{\tiny g}}{:}\ 10$$

$$U_3-U_{\text{\it o}}\text{: }14$$

Набор определяющих функций:

$$\begin{split} \beta_0^1 &= \beta_1^1 = \beta_2^1 = \beta_3^1 = \beta_1^1 = r_1 r_2 \vee \frac{\neg r_1 \neg r_2}{0} = r_1 r_2 \\ \beta_0^2 &= \beta_1^2 = \beta_2^2 = \beta_3^2 = \beta_1^2 = r_1 \neg r_2 \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \beta_0^3 &= \beta_1^3 = \beta_2^3 = \beta_3^3 = \beta_1^3 = \neg r_1 r_2 \vee \frac{\neg r_1 \neg r_2}{0} = \neg r_1 \frac{r_2}{1} \\ \beta_{11}^1 &= r_1 r_2 \vee \frac{\neg r_1 r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} r_2 \end{split}$$

$$\begin{split} \beta_{|||}^2 &= r_1 \neg r_2 \vee \frac{\neg r_1 r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \beta_{||||}^1 &= r_1 r_2 \vee \frac{\neg r_1 r_2}{0} \vee \frac{r_1 \neg r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \beta_0^1 &= \beta_1^1 = \beta_2^1 = \beta_3^1 = \beta_1^1 = r_1 r_2 \vee \frac{\neg r_1 \neg r_2}{0} = r_1 r_2 \\ \beta_0^2 &= \beta_1^2 = \beta_2^2 = \beta_3^2 = \beta_1^2 = r_1 \neg r_2 \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \beta_0^3 &= \beta_1^3 = \beta_2^3 = \beta_3^3 = \beta_1^3 = \neg r_1 r_2 \vee \frac{\neg r_1 \neg r_2}{0} = \neg r_1 \frac{r_2}{1} \\ \beta_{|||}^1 &= r_1 r_2 \vee \frac{\neg r_1 r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \beta_{|||}^1 &= r_1 r_2 \vee \frac{\neg r_1 r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \beta_{|||}^1 &= r_1 r_2 \vee \frac{\neg r_1 r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \beta_{|||}^1 &= r_1 r_2 \vee \frac{\neg r_1 r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} \vee \frac{\neg r_1 \neg r_2}{0} = \frac{r_1}{1} \neg r_2 \\ \end{pmatrix}$$

МСА объединенного алгоритма

	A_0	A_1	A_2	A ₃	A`	A``	A```	A_k
A_0	$r_1r_2P_3$	$\frac{r_1}{1} \neg r_2$	$ \begin{array}{c} A_2 \\ r_1r_2 \neg P_3 \\ \lor \\ \neg r_1 \frac{r_2}{1} P_3 \end{array} $	$\neg r_1 \frac{r_2}{1} \neg P_3$				
A_1				$\frac{r_1}{1} \neg r_2$				r_1r_2 V r_2 r_2 r_1
A_2					$ \begin{vmatrix} r_1 r_2 \\ \lor \\ \neg r_1 \frac{r_2}{1} P_5 \\ \lor \\ \neg r_1 \frac{r_2}{1} \\ \neg P_5 P_4 \end{vmatrix} $			$ \begin{array}{c} \frac{r_1}{1} \neg r_2 \\ \lor \\ \neg r_1 \frac{r_2}{1} \\ \neg P_5 \neg P_4 \end{array} $
A ₃					$P_4 - P_2 P_4$	r_1r_2		$ \begin{array}{c} r_2 \\ \neg r_1 \overline{1} \\ P_1 \neg P_6 \neg P_4 \end{array} $
A`	$\begin{array}{c} \frac{r_1}{1} \neg r_2 \\ \neg P_1 P_6 \end{array}$	$ \begin{array}{c} r_1 r_2 P_2 \\ \lor \\ \neg r_1 \frac{r_2}{1} P_2 \end{array} $		$ \begin{array}{c c} r_1r_2 \neg P_2P_4 \\ \lor \\ \neg r_1 \frac{r_2}{1} \neg P_2 \end{array} $	$\frac{r_1}{1} \neg r_2 P_1$	$ \begin{matrix} r_1r_2 \neg P_2 \neg P_4 \\ \lor \\ \frac{r_1}{1} \neg r_2 \\ \neg P_1 \neg P_6 \end{matrix} $		
A``			$\begin{array}{c} \frac{r_1}{1} \neg r_2 \\ P_4 P_2 P_3 \\ \lor \\ \frac{r_1}{1} \neg r_2 \\ P_4 \neg P_2 \end{array}$	$r_1 \over 1 \neg r_2 \neg P_4$	$ \frac{r_1}{1}r_2 $ $ \neg P_1 \neg P_6 $	$ \begin{array}{c c} r_1 \\ \hline 1 \\ 1 \\ \hline 1 \\ $		
A```		$\frac{r_1}{1}r_2P_5$					$\frac{r_1}{1}r_2 \neg P_5$	

Системы формул переходов:

Система переходов S₁:

$$A_{0} \rightarrow r_{1}r_{2}P_{3}A_{0} \vee \frac{r_{1}}{1} \neg r_{2}A_{1} \vee r_{1}r_{2} \neg P_{3}A_{2} \vee \neg r_{1}\frac{r_{2}}{1}P_{3}A_{2} \vee \neg r_{1}\frac{r_{2}}{1} \neg P_{3}A_{3}$$

$$A_{1} \rightarrow \frac{r_{1}}{1} \neg r_{2}A_{3} \vee r_{1}r_{2}A_{k} \vee \neg r_{1}\frac{r_{2}}{1}A_{k}$$

$$A_{2} \rightarrow r_{1}r_{2}A' \vee \neg r_{1}\frac{r_{2}}{1}P_{5}A' \vee \neg r_{1}\frac{r_{2}}{1} \neg P_{5}P_{4}A' \vee \frac{r_{1}}{1} \neg r_{2}A_{k} \vee \neg r_{1}\frac{r_{2}}{1} \neg P_{5} \neg P_{4}A_{k}$$

$$A_{3} \rightarrow \neg r_{1}\frac{r_{2}}{1}P_{1}P_{6}A_{1} \vee \neg r_{1}\frac{r_{2}}{1} \neg P_{1}P_{3}A_{2} \vee \neg r_{1}\frac{r_{2}}{1} \neg P_{1} \neg P_{3}A_{3} \vee \frac{r_{1}}{1} \neg r_{2}A' \vee \neg r_{1}\frac{r_{2}}{1}P_{1} \neg P_{6}P_{4}A' \vee r_{1}r_{2}A'' \vee \neg r_{1}\frac{r_{2}}{1}P_{1} \neg P_{6} \neg P_{4}A_{k}$$

$$A' \rightarrow \frac{r_{1}}{1} \neg r_{2} \neg P_{1}P_{6}A_{0} \vee r_{1}r_{2}P_{2}A_{1} \vee \neg r_{1}\frac{r_{2}}{1}P_{2}A_{1} \vee r_{1}r_{2} \neg P_{2}P_{4}A_{3} \vee \neg r_{1}\frac{r_{2}}{1} \neg P_{2}A_{3} \vee \frac{r_{1}}{1} \neg r_{2}P_{1}A' \vee r_{1}r_{2} \neg P_{2} \neg P_{4}A'' \vee \frac{r_{1}}{1} \neg r_{2} \neg P_{1} \neg P_{6}A''$$

$$A''' \rightarrow \frac{r_{1}}{1}r_{2} \neg P_{1}P_{6}P_{5}A_{1} \vee \frac{r_{1}}{1} \neg r_{2}P_{4}P_{2}P_{3}A_{2} \vee \frac{r_{1}}{1} \neg r_{2}P_{4} \neg P_{2}A_{2} \vee \frac{r_{1}}{1} \neg r_{2} \neg P_{4}A_{3} \vee \frac{r_{1}}{1} \neg r_{2}P_{4}P_{2} \neg P_{3}A'' \vee \frac{r_{1}}{1} \neg r_{2}P_{4}P_{2}$$

Система скобочных формул S2:

$$\begin{split} A_0 &\to r_1(r_2(P_3A_0 \vee \neg P_3A_2) \vee \neg r_2A_1) \vee \neg r_1(\frac{r_2}{1}(P_3A_2 \vee \neg P_3A_3)) \\ A_1 &\to r_1(r_2A_k \vee \neg r_2A_3) \vee \neg r_1A_k \\ A_2 &\to r_1(r_2A' \vee \neg r_2A_k) \vee \neg r_1(\frac{r_2}{1}(P_5A' \vee \neg P_5(P_4A' \vee \neg P_4A_k))) \\ A_3 &\to r_1(r_2A'' \vee \neg r_2A') \vee \neg r_1(\frac{r_2}{1}(P_1(P_6A_1 \vee \neg P_6(P_4A' \vee \neg P_4A_k)) \vee \neg P_1(P_3A_2 \vee \neg P_3A_3))) \\ A' &\to r_1(r_2(P_2A_1 \vee \neg P_2(P_4A_3 \vee \neg P_4A'')) \vee \neg r_2(P_1A' \vee \neg P_1(P_6A_0 \vee \neg P_6A''))) \\ &\vee \neg r_1(\frac{r_2}{1}(P_2A_1 \vee \neg P_2A_3)) \\ A'' &\to \frac{r_1}{1}(r_2(P_1A'' \vee \neg P_1(P_6(P_5A_1 \vee \neg P_5A''') \vee \neg P_6A')) \vee \neg r_2((P_4(P_2(P_3A_2 \vee \neg P_3A'') \vee \neg P_2A_2) \vee \neg P_4A_3))) \\ A''' &\to \frac{r_1}{1}r_2(P_5A_1 \vee \neg P_5A''') \end{split}$$

Система схемных формул S₃:

$$\begin{split} &A_{\mathbf{0}} \rightarrow r_{1} \, \stackrel{r_{1}}{\uparrow} \, r_{2} \, \stackrel{r_{2}}{\uparrow} \, P_{3} \, \stackrel{1}{\uparrow} \, A_{0} \, \stackrel{1}{\ast} \stackrel{r_{2}}{\downarrow} \, A_{1} \, \stackrel{r_{1}}{\ast} \stackrel{r_{2}}{\downarrow} \, P_{3} \, \stackrel{1}{\uparrow} \, A_{2} \, \stackrel{2}{\ast} \stackrel{1}{\downarrow} \, A_{3} \\ &A_{\mathbf{1}} \rightarrow r_{1} \, \stackrel{1}{\uparrow} \, r_{2} \, \stackrel{1}{\uparrow} \, A_{k} \, \stackrel{1}{\ast} \stackrel{1}{\downarrow} \, A_{3} \, \stackrel{1}{\ast} \stackrel{1}{\downarrow} \, A_{k} \\ &r_{5} \quad r_{6} \quad r_{6} \quad r_{5} \quad 3 \quad 3 \quad 4 \quad 4 \\ &A_{\mathbf{2}} \rightarrow r_{1} \, \stackrel{1}{\uparrow} \, r_{2} \, \stackrel{1}{\uparrow} \, A' \, \stackrel{1}{\ast} \stackrel{1}{\downarrow} \, A_{k} \, \stackrel{1}{\ast} \stackrel{1}{\downarrow} \, P_{5} \, \stackrel{1}{\uparrow} \, A' \, \stackrel{1}{\ast} \stackrel{1}{\downarrow} \, P_{4} \, \stackrel{1}{\uparrow} \, A' \, \stackrel{1}{\ast} \stackrel{1}{\downarrow} \, A_{k} \end{split}$$

```
\downarrow \downarrow A_0 \rightarrow r_1 \uparrow r_2 \uparrow P_3 \uparrow \omega \uparrow
```

Логическая схема объединенного алгоритма:

Вывод: в данной лабораторной работе были получены навыки построения объединенных графических схем алгоритмов.