

Fluid Dynamics Assessments of Deposition and Infiltration Models

by Josip Z. Šoln

ARL-TR-1525

October 1997

19971215 124

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 3

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21010-5423

ARL-TR-1525

October 1997

Fluid Dynamics Assessments of Deposition and Infiltration Models

Josip Z. Šoln Survivability/Lethality Analysis Directorate, ARL

Abstract

The fluid dynamics assessments of deposition and infiltration models, such as the chemical-agent deposition analysis for rotorcraft surfaces (CADARS) and the aerosol and vapor infiltration analysis (AVIA) models, are carried out. Although these models address different needs of the Army and deal with enclosures surrounded by a toxic environment, we believe that there are enough similarities between them to be given the same type of fluid dynamics analysis.

Table of Contents

		Page
1.	Introduction	1
2.	Descriptions of Models	2
3.	Some Physical Aspects of the Models	3
4.	Discussion and Conclusion	13
5.	References	15
	Distribution List	17
	Report Documentation Page	31

INTENTIONALLY LEFT BLANK.

1. Introduction

Modeling of deposition and infiltration in general is, no doubt, a complex problem. Primarily, this is due to the fact that this modeling involves a great deal of fluid dynamics, which, however, cannot be solved exactly, forcing one to rely on approximate methods. An example of such a method is the Galerkin residual method, where one transforms the fluid equations from the differential forms into a matrix system of equations. Even with these kind of approximate methods, one still has a lot of work to do before satisfactory results are obtained. Sometimes, however, one may be able to avoid such difficult procedures by translating a difficult problem into a simpler one, which, however, still adequately represents the situation in practice. In fact, we show a specific example where this is the case when dealing with water droplets whose diameters are less than 5 mm; instead of droplets (which have only approximate shapes of spheres), these can actually be treated as rigid spheres with the same water density as droplets. Although our remarks will be of general nature, the emphasis in this report will be on two recent models (i.e., the chemical-agent deposition analysis for rotorcraft surfaces [CADARS] and aerosol and vapor infiltration analysis [AVIA] models).

Now, finding the appropriate approximate computational methods is just one of the problems. The other problem is the fact that helicopter cockpit (CADARS model) and the shelter with the communication gear (AVIA model) by themselves represent geometries of high complexities. Modeling how fluids behave inside and/or outside such complex geometries, even with approximate computational methods, is, generally, not a simple task.

In section 2, we give a general idea as to what CADARS and AVIA models are supposed to accomplish and, from the computational point of view, possible ways to do so. Section 3 deals with some specific physics type of questions for these models, while a discussion and a conclusion are given in section 4.

2. Descriptions of Models

The AVIA model is supposed to determine the infiltration of chemical-agent aerosols and vapors into an enclosure.

Initial development has been based on the S280 shelter, which is $5 \text{ ft} \times 5 \text{ ft} \times 7 \text{ ft}$. It can contain a lot of communication gear. The medium in a shelter is predominantly air; however, with one or more openings containing one or more obstacles and a pressure differential and/or concentration differential between the inside and the outside, one is faced with finding the amount and location of deposits and concentration of material in the interior of the shelter (i.e., in the air and on surfaces at any real time). On a specific level, to the model shelter (modeled after the S280 shelter), the average ballistic event is represented by about 37 holes. One hole has a 3-in diameter, and the rest of the 36 holes have a total surface area that is equivalent to the surface area of a single hole with the 3-in diameter. Clearly, the positions of the holes will affect the propagation of agents into the interior of the shelter. The most economical way to discuss the penetration of agents into the interior of the shelter is by employing the fluid dynamics, dynamically following the agent droplets through the holes, and seeing how and where they accumulate. This, of course, to be done properly, one needs the initial conditions of droplets before entering the shelter.

The CADARS computer model has been developed by Continuum Dynamics, Inc., under the contract with the U.S. Army Research Laboratory (ARL). It models the rotorcraft operating in a chemical-agent cloud by predicting the airflow around the airframe and using particle trajectory algorithms to determine the chemical-agent deposition on the airframe surface.

Essentially, the CADARS model is supposed to find out the mass deposition of harmful droplets on the helicopter panels; these panels are the result of subdividing the helicopter's surface into panels, about 7,340 in the case of the Comanche helicopter, in order to make the computations easier. Here, the problem is not just the deposition of droplets as the helicopter goes through a chemical cloud, but also the effects of rotor blades on this deposition. The chemical cloud is either

modeled as a constant concentration level or as the vapor, liquid, and solid tracking (VLSTRACK) computer model [1].

Regardless of whether we are dealing with the AVIA or the CADARS model, the problem, we believe, is essentially how to solve the fluid dynamics equations that incorporate inertial, as well as friction (viscous)-generated forces on the element of any portion of the fluid (gas). There is, however, a simple limit—the Knudsen gas limit—that one can take when dealing with the fluid/gas flow in a container (shelter or helicopter cockpit in this case). In this limit, no external (inertial or viscous) forces act on the fluid/gas molecules; the only forces are the ones from the interaction with the walls of the container. This is actually more realistic than it may sound. Namely, any rare gas, to a good approximation, is a Knudsen gas. Hence, when just taking a gas density to be small in flow simulations, one should obtain results that are consistent with a Knudsen gas; this, of course, will happen after a sufficiently long time when, in addition to gas density becoming low, the particle distribution becomes increasingly random.

Furthermore, as previously mentioned, the shelter or the cockpit of the helicopter represents a complex geometry. In order to simulate a fluid flow in such a geometry, one has to be very careful as to what method is used. Namely, even the finite-difference method, as opposed to the finite-element one, will yield very good and accurate results if the so-called Cartesian-structured meshes are employed; the advantage being that no explicit mesh-generation methods are needed and, therefore, greatly reduce human efforts involved in complex flow computations.

3. Some Physical Aspects of the Models

Let us first discuss the CADARS model. The mass deposition of harmful droplets will be affected not only by the speed of the helicopter, but also by the action of rotor blades as the helicopter goes through a chemical cloud. For the computational purposes, one actually calculates the mass deposition of harmful droplets on the helicopter panels; these panels, as mentioned earlier, are the result of subdividing the helicopter's surface. On average, there can be ~100 such flat panels;

the exact number depends on the desired accuracy of calculations. While the fluid dynamics methods that the contractor, Continuum Dynamics, uses appear to be adequate, the assumption that all of the droplets that hit the panels will actually stay there is a simplifying assumption that does not accurately represent the actual phenomenon.

We can try to remedy the situation by adding additional terms into the mass-rate accumulation equation that will make the droplet staying with the helicopter more realistic. For example, an additional term could even be an empirical term, which should be taken with the opposite sign and simply be proportional to the square of the helicopter velocity; as such, it would measure the "tearing" away of the droplets from the helicopter. This would happen faster with a larger velocity, and, with the suitable choice of the coefficient, it could be made negligible at small to normal velocities. Taking all of this into account, in fact, for the rate of droplet-mass deposition on the k-th panel, we can write the following equation:

$$\frac{dm}{dt} = -A_k \left(\hat{n}_k \cdot \vec{s}_k \right) \rho_d \left[1 - \frac{\left(\hat{n}_k \cdot \vec{s}_k \right)}{\left(\hat{n}_k \cdot \vec{s}_c \right)} \right], \qquad (1)$$

where A_k is the area of the k-th panel, ρ_d is the density of droplets, \hat{n}_k the unit vector looking outwardly from the panel, \vec{s}_k is the average droplet-fluid velocity at the k-th panel, and \vec{s}_c is the critical average droplet-fluid velocity at which no more droplet-mass deposition occurs. Numerically, this velocity could be taken as velocity of sound.

Next, we discuss some physical aspects of the AVIA model. Taking into account that the model shelter will have 36 holes whose surface area equals that of a single 3-in hole, we see that on average, a diameter of the 36 holes is ~1 cm. As a consequence, it is safe to assume that droplets passing through these 36 holes will be less than 1 cm in diameter. Droplets of such small diameters undergo a minimum of deformations and can therefore be treated with the same type of equations of motion as for solid spheres with the droplet density. That, of course, simplifies the calculation

of droplet trajectories through air, which is described next for the special case of vertical motion by computing the vertical components of terminal velocities.

First of all, let us write down the equations of motion in the x - y plane for a sphere (droplet) due to the viscous drag plus inertial (gravity plus buoyancy) forces. They are

$$(m + m') \frac{d^2x}{dt^2} = f_x,$$
 (2a)

$$(m + m') \frac{d^2y}{dt^2} = f_y - (m - m_f)g,$$
 (2b)

and

$$m' = \frac{m_f}{2}, \qquad (2c)$$

where m_f is the mass of displaced fluid. Here we have chosen the y – axis to be the vertical axis parallel and antiparallel with buoyancy and gravitational forces, respectively. Next, we define various vector quantities with notation $\vec{V} = (V_x, V_y)$:

$$\vec{\mathbf{w}} = (\mathbf{u}, \ \mathbf{v}) = \left(\frac{d\mathbf{x}}{d\mathbf{t}}, \frac{d\mathbf{y}}{d\mathbf{t}}\right)$$
 (3)

is the velocity of the sphere situated at the position $\vec{r} = (x, y)$, while

$$\vec{\mathbf{w}}_{\mathbf{f}} = (\mathbf{u}_{\mathbf{f}}, \mathbf{v}_{\mathbf{f}}) \tag{4}$$

is the velocity of the fluid element at the position $\vec{r} = (x, y)$ in which the sphere is immersed. Finally, the relative velocity between the fluid element and the sphere at the position $\vec{r} = (x, y)$ is given as

$$\vec{w}_r = \vec{w}_f - \vec{w} = (u_f - u, v_f - v).$$
 (5)

A very important case is when $\vec{w}_f = 0$; then

$$\vec{\mathbf{w}}_{\mathbf{f}} = \mathbf{0} \rightarrow \vec{\mathbf{w}}_{\mathbf{r}} = -\vec{\mathbf{w}}. \tag{6}$$

The viscous drag force \vec{f} has the absolute value

$$f = |\vec{f}| = \frac{1}{8} \pi \rho_f d^2 c_d w_r^2,$$
 (7a)

and

$$w_r = \sqrt{\vec{w}_r^2}, \ \vec{w}_r^2 = (u_f - u)^2 + (v_f - v)^2.$$
 (7b)

Here, ρ_f is the fluid density, d is the diameter of the sphere, and c_d is the drag coefficient, which, in most cases, can be obtained from the Reynolds number R_e . In what follows, we shall assume it to be known for the velocities in question.

Now, if the sphere does not rotate, then $\vec{f} = (f_x, f_y)$ becomes a viscous drag in the direction of relative velocity \vec{w}_r . But this velocity makes an angle θ with x - axis; therefore, $\cos \theta = (u_f - u)/w_r$, and $\sin \theta = (v_f - v)/w_r$. This allows us to write the following expressions for the components of \vec{f} :

$$f_x = f \cos \theta = \frac{1}{8} \pi \rho_f c_d (u_f - u) w_r,$$
 (8a)

and

$$f_y = f \sin \theta = \frac{1}{8} \pi \rho_f c_d (v_f - v) w_r.$$
 (8b)

We are now ready to rewrite equations (2a), (2b), and (2c) in a true fluid dynamics form (i.e., without reference to masses explicitly). This is done by noticing that

$$m = \frac{4\pi d^3}{24} \rho, \tag{9a}$$

and

$$m_f = \frac{4\pi d^3}{24} \rho_f.$$
 (9b)

When combining equations (2a), (2b), (2c), (7a), (7b), (8a), (8b), (9a) and (9b), we obtain

$$\frac{d^2x}{dt^2} = \frac{3\bar{\rho}}{4d\left(1 + \frac{\bar{\rho}}{2}\right)} c_d(u_f - u)w_r, \qquad (10a)$$

$$\frac{d^2y}{dt^2} = \left(1 + \frac{\bar{p}}{2}\right) \left[-(1 - \bar{p}) g + \frac{3\bar{p}}{4d} c_d (v_f - v) w_r \right], \tag{10b}$$

and

$$\bar{\rho} = \frac{\rho_{\rm f}}{\rho}.\tag{10c}$$

These are a correct set of equations to determine positions of spheres. However, since they generally can be solved only numerically, they should be linearized, which facilitates their solutions through the so-called Runge-Kutta numerical methods. Their numerical solutions are beyond the scope of this report.

However, already from equation (10b), we can deduce that spheres (and or droplets) whose diameters are 5 mm or less should execute very similar dynamic motions, as long as their densities are the same. This, in fact, can be deduced analytically when the motion of the sphere is restricted to just a vertical direction.

To see this, we note that the left-hand sides of equations (10a) and (10b) are nothing more than accelerations in horizontal and vertical directions, respectively. Conveniently, they can be written in a vector form as $\vec{a} = (a_x, a_y)$. Next, let us simplify the situation by assuming that the fluid velocity satisfy $\vec{w}_f = 0$. Then, the relative velocity between the fluid element and the projectile (droplet) \vec{w}_r , at the position $\vec{r} = (x, y)$ is negative of the velocity of the sphere, $\vec{w}_r = -\vec{w}$. With these, our equations (10a) and (10b) now look like

$$\frac{d^2x}{dt^2} = -\frac{3\bar{\rho}}{4d\left(1 + \frac{\bar{\rho}}{2}\right)} c_d uw, \qquad (11a)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \left(1 + \frac{\bar{\rho}}{2}\right) \left[-(1 - \bar{\rho}) g - \frac{3\bar{\rho}}{4\mathrm{d}} c_\mathrm{d} v w\right],\tag{11b}$$

and

$$w = \sqrt{\vec{w}^2}, \ \vec{w}^2 = u^2 + v^2.$$
 (11c)

It is easily seen that in the vertical direction, the sphere will reach a terminal velocity component, $v = -v_t$, where v_t now looks in a downward direction. This follows from the fact that acceleration in the vertical direction is zero, $a_y = 0$, when equation (11b) vanishes; that is, when

$$(1 - \bar{\rho}) g - \frac{3\rho}{4d} c_d v_t \sqrt{u^2 + v_t^2} = 0.$$
 (12)

We see that for every horizontal velocity component u there is a terminal vertical velocity component v_t .

Now we know that eventually in the horizontal direction, the sphere will stop moving, which we denote as the asymptotic case

$$u(asymptotic) = 0.$$
 (13)

For the situation like this, or when u = 0 from the very beginning, from equation (12), we obtain the expression for the terminal vertical velocity component v_t to be

$$v_t = \sqrt{\frac{4g (1 - \bar{\rho}) d}{c_d 3\bar{\rho}}}$$
 (14)

Of course if the initial conditions are such that the horizontal component of the sphere velocity is zero, then we would have only equation (11b) in the form

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \left(1 + \frac{\bar{\rho}}{2}\right) \left[-\left(1 - \bar{\rho}\right) g - \frac{3\bar{\rho}}{4\mathrm{d}} c_{\mathrm{d}} v |v|\right],\tag{15}$$

from which, when equated to zero, equation (14) follows immediately.

In order to compute v_t from equation (14), we have to specify some parameters. We wish to study the terminal velocities of "solid" water spheres of various diameters in air. Thus,

$$\rho = 1000.0 \text{ kg/m}^3$$
, $\rho_f = 1.22 \text{ kg/m}^3$, $\bar{\rho} = \frac{\rho_f}{\rho} = 0.0012$, and $g = 9.8 \text{ m/s}^2$. (16)

Clearly, as equation (14) indicates, we also need to know c_d , the drag coefficient, which depends on the (dimensionless) Reynolds number R_e ; generally, the dependence of C_d on R_e is only known empirically.

$$c_d = c_d(R_c), \tag{17}$$

where R_e, on the other hand, in terms of the sphere velocities [compare with equation (15)], is given as

$$R_e = \frac{wd}{v}, \qquad (18a)$$

and

$$R_{e}(u = 0) = \frac{vd}{v}, \qquad (18b)$$

where v is the viscosity of the medium. For the air, its value is

$$v = 0.0000149 \text{ m}^2/\text{s}.$$
 (19)

Implicitly, this makes c_d also dependent on w, or when u = 0, on v. Unfortunately, this dependence, again, is only empirical. Usually, in numerical computations, one takes R_e and, consequently, c_d from a last-step calculation assuming, of course, that it does not change too much as going from one step to the next (this one can verify afterwards).

In our case, this means that using equations (17), (18a), and (18b), we look for the converging result for v_t , as we start with some "arbitrary" initial $v_t = v$. The process is as follows. Starting with initial v_t in equations (17), (18a), and (18b), we substitute the calculated c_d into equation (14), which yields a new v_t . This v_t is taken again as $v_t = v$ in equations (17), (18a), and (18b), yielding a new c_d , which, in turn, is substituted into equation (14), giving an improved v_t . The process is repeated until the resulting v_t 's do not change from each other. Of course, this procedure can be done only if the empirical equation (17) is known.

To be specific, we take

$$d = 0.001 \text{ m}.$$
 (20)

Then, for step 0, we simply take for v_t the initial value,

step (0):
$$v_t = 3 \text{ m/s}.$$
 (21)

We use this for step (1).

step (1):
$$R_e = 201.342.$$
 (22)

For this kind of R_e's, the empirical equation (17) can be represented as [2]

$$c_d = \frac{24}{R_e^{0.646}}, 1 < R_e \le 400,$$
 (23)

yielding for c_d:

step (1):
$$c_d = 0.78$$
. (24a)

Combining these into equation (14) yields

step (1):
$$v_t = 3.73408 \text{ m/s}.$$
 (24b)

We now proceed with the step (2). From equation (18b) we have

step (2):
$$R_e = 250.609,$$
 (25a)

which, with the help of equation (23), gives

step (2):
$$c_d = 0.68$$
. (25b)

Equation (14) gives

step (2):
$$v_t = 3.999 \text{ m/s}.$$
 (25c)

For step (3), we obtain

step (3):
$$R_e = 268.389$$
, (26a)

$$c_d = 0.65,$$
 (26b)

and

$$v_t = 4.1 \text{ m/s}.$$
 (26c)

We take equation (26c) as a final value of v_t. The Reynolds number that goes with it is

$$R_e = 275.2$$
 (27)

According to Blanchard [2], the measured terminal velocity of the raindrop with d = 0.001 m is

$$v_t(raindrop) \approx 4 \text{ m/s},$$
 (28)

which indeed is very close to computed value of the terminal velocity of the solid water sphere, equation (26c).

One can do similar calculations for terminal velocities for other diameters for solid spheres of water and compare them with measured terminal velocities of rain droplets. The results are summarized in Table 1 [2]. From this table, one sees that the agreement between measured terminal velocities of a raindrop agrees very well with that computed for a rigid sphere for diameters less than 4.5 mm, or equivalently, for Reynolds numbers less than 3,000. Beyond these diameters and Reynolds numbers, while the terminal velocities keep increasing, the measured terminal velocities of raindrops are practically constant. Consequently, the calculations with rigid spheres will not approximate the real situation when $R_e \geq 3,000$. We believe that this is also true for other situations rather than just the terminal velocities.

Table 1. Comparison of Calculated Terminal Velocity of a Water—"Rigid Sphere" (With a Diameter d and calculated Reynolds number $R_{\rm e}$) to Measured Terminal Velocity of a Raindrop

d (mm)	Re	v _t (sphere) (m/s)	v _t (droplet) (m/s)
0.5	59	0.18	0.2
1.0	275	4.1	4.0
1.5	570	5.6	5.5
2.0	878	6.5	6.6
2.5	1227	7.4	7.5
3.0	1613	8.0	8.2
3.5	2033	8.7	8.7
4.0	2483	9.3	9.0
4.5	2963	9.8	9.1
5.0	3471	10.4	9.1
5.5	4004	10.8	9.2
6.0	4562	11.4	9.2

4. Discussion and Conclusion

The intent of the example with terminal velocities was to show that when using natural tricks, one may utilize fluid dynamics to address a variety of problems dealing with harmful liquids and vapors. While these problems may not be solved exactly according to the fundamental dynamic equations, nevertheless, these approximate methods may give completely satisfactory answers to practical problems that one is facing in the real world. The importance of terminal velocities themselves lies in the fact that droplets achieve them quickly as they travel through the air. Hence, one may obtain satisfactory answers to a variety of questions just by evaluating the terminal velocities. For example, the knowledge of terminal velocities should allow us to find the density of deposited chemical agent on objects inside the shelter after it entered. Furthermore, when a large size blob of fluid undergoes a breakup in the air, the resultant droplets will again achieve the respective terminal velocities quickly; these should then enable us to determine their distribution on the ground.

Therefore, when dealing with problems such as penetration and/or deposition of harmful chemical/biological compounds, the fluid dynamics, in a simple form, should, in the majority of cases, give completely satisfactory answers. We believe that equations (2a) through (11c) could be used as the basis for such a simplified treatment of deposition and infiltrations models of enclosed structures.

INTENTIONALLY LEFT BLANK.

5. References

- 1. Smith, B. G. "Preliminary Analysis of the Rah-66 Comanche Operating in a Chemical Agent Environment." ARL-TR-1261, U.S. Army Research Laboratory, Aberdeen proving Ground, MD, March 1997.
- 2. Blanchard, D. C. From Raindrops to Volcanoes. Doubleday, Garden City, NY, 1967.

INTENTIONALLY LEFT BLANK.

NO. OF COPIES ORGANIZATION

- 2 DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218
- 1 HQDA
 DAMO FDQ
 DENNIS SCHMIDT
 400 ARMY PENTAGON
 WASHINGTON DC 20310-0460
- 1 CECOM
 SP & TRRSTRL COMMCTN DIV
 AMSEL RD ST MC M
 H SOICHER
 FT MONMOUTH NJ 07703-5203
- 1 PRIN DPTY FOR TCHNLGY HQ
 US ARMY MATCOM
 AMCDCG T
 M FISEITE
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 PRIN DPTY FOR ACQUSTN HQS
 US ARMY MATCOM
 AMCDCG A
 D ADAMS
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 DPTY CG FOR RDE HQS
 US ARMY MATCOM
 AMCRD
 BG BEAUCHAMP
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 DPTY ASSIST SCY FOR R&T SARD TT T KILLION THE PENTAGON WASHINGTON DC 20310-0103
- 1 OSD
 OUSD(A&T)/ODDDR&E(R)
 J LUPO
 THE PENTAGON
 WASHINGTON DC 20301-7100

NO. OF COPIES ORGANIZATION

- 1 INST FOR ADVNCD TCHNLGY THE UNIV OF TEXAS AT AUSTIN PO BOX 202797 AUSTIN TX 78720-2797
- 1 USAASA MOAS AI W PARRON 9325 GUNSTON RD STE N319 FT BELVOIR VA 22060-5582
- 1 CECOM PM GPS COL S YOUNG FT MONMOUTH NJ 07703
- 1 GPS JOINT PROG OFC DIR COL J CLAY 2435 VELA WAY STE 1613 LOS ANGELES AFB CA 90245-5500
- 1 ELECTRONIC SYS DIV DIR CECOM RDEC J NIEMELA FT MONMOUTH NJ 07703
- 3 DARPA
 L STOTTS
 J PENNELLA
 B KASPAR
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714
- 1 SPCL ASST TO WING CMNDR 50SW/CCX CAPT P H BERNSTEIN 300 O'MALLEY AVE STE 20 FALCON AFB CO 80912-3020
- 1 USAF SMC/CED
 DMA/JPO
 M ISON
 2435 VELA WAY STE 1613
 LOS ANGELES AFB CA
 90245-5500
- 1 US MILITARY ACADEMY
 MATH SCI CTR OF EXCELLENCE
 DEPT OF MATHEMATICAL SCI
 MDN A MAJ DON ENGEN
 THAYER HALL
 WEST POINT NY 10996-1786

NO. OF COPIES ORGANIZATION

- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AL TP
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AL TA
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

4 DIR USARL AMSRL CI LP (305)

NO. OF COPIES ORGANIZATION

- 1 OSD OUSD AT
 STRT TAC SYS
 DR SCHNEITER
 3090 DEFNS PENTAGON RM 3E130
 WASHINGTON DC 20301-3090
- 1 ASST SECY ARMY RESEARCH DEVELOPMENT ACQUISITION SARD ZD RM 2E673 103 ARMY PENTAGON WASHINGTON DC 20310-0103
- 1 ASST SECY ARMY RESEARCH DEVELOPMENT ACQUISITION SARD ZP RM 2E661 103 ARMY PENTAGON WASHINGTON DC 20310-0103
- 1 ASST SECY ARMY RESEARCH DEVELOPMENT ACQUISITION SARD ZS RM 3E448 103 ARMY PENTAGON WASHINGTON DC 20310-0103
- 1 ASST SECY ARMY RESEARCH DEVELOPMENT ACQUISITION SARD ZT RM 3E374 103 ARMY PENTAGON WASHINGTON DC 20310-0103
- 1 UNDER SEC OF THE ARMY DUSA OR RM 2E660 102 ARMY PENTAGON WASHINGTON DC 20310-0102
- 1 ASST DEP CHIEF OF STAFF OPERATIONS AND PLANS DAMO FDZ RM 3A522 460 ARMY PENTAGON WASHINGTON DC 20310-0460
- 1 DEPUTY CHIEF OF STAFF OPERATIONS AND PLANS DAMO SW RM 3C630 400 ARMY PENTAGON WASHINGTON DC 20310-0400

NO. OF COPIES ORGANIZATION

- 1 ARMY RESEARCH LABORATORY AMSRL SL PROGRAMS AND PLANS MGR WSMR NM 88002-5513
- 1 ARMY TRADOC ANL CTR ATRC W MR KEINTZ WSMR NM 88002-5502
- 1 ARMY TRNG & DOCTRINE CMND ATCD B FT MONROE VA 23651

ABERDEEN PROVING GROUND

- 1 CDR USATECOM AMSTE-TA
- 2 DIR USAMSAA AMXSY-ST AMXSY-D
- 4 DIR USARL
 AMSRL-SL
 J WADE (433)
 M STARKS (433)
 AMSRL-SL-C, J BEILFUSS (E3331)
 AMSRL-SL-B, P DEITZ (328)
- 1 CDR CBDCOM TECHNICAL LIBRARY BLDG E3330
- 1 DIR CBIAC BLDG E3330, RM 150

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	DEP ASST SEC DEF CBM DR PROCIV 2451 CRYSTL PARK DR ALEXANDRIA VA 22245	3	ASARDA SARD DOV C S BERRY RM 23673 SARD ZD H FALLIN RM 2E673 T KILLION RM 3E480
1	DFNS INTLGNC AGNCY D ROSS PAG ID BOWLING GREEN AFB WASHINGTON DC	1	103 ARMY PENTAGON WASHINGTON DC 20310-0103 UNDR SEC OF THE ARMY
1	DFNS MPNG AGNCY TID T HENNING 8613 LEE HWY	•	DAUS OR D WILLARD 102 ARMY PENTAGON WASHINGTON DC 20310-0102
	FAIRFAX VA 22031-2137	2	CDR AMC AMCDCG A D G ADAMS
3	DFNS NCLR AGNCY DEP DIR G ULLRICH OFTA M SHORE WE M GILTRUDE		AMCDCG T M FISETTE 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001
3	6801 TLGRPH RD ALEXANDRIA VA 22310-3398 PL STC MSL DENIS OR CANTEN	3	CDR AMC AMCRD AMCRD IT P EHLE
	BLSTC MSL DFNS ORGNZTN DPTY TCHNLGY G PAYTON RM 1E148 W DYER RM 13168		M DAILEY 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001
	DTE LTC D TIETZ THE PENTAGON WASHINGTON DC 20310-7100	2	CDR USAATC AMSAT G AMSAT R ZT R KENNEDY 4300 GOODFELLOW BLVD
	DEP COS INTLGNC DAMI ST B SMITH 1001 ARMY PENTAGON	1	ST LOUIS MO 63120-1798 CDR USAATC
	WASHINGTON DC 20301-1700 ODDRNE AT WPNS TCHNLGY		AMSAT R TV FT EUSTIS VA 23604-5577
	C W KITCHENS 3080 DFNS PENTAGON WASHINGTON DC 20301-3080	1	CDR USASTIC AMCP DIS J ETCHECHURY 12350 RSCH PKWY
	DIR OPRTNL T&E J F O'BRYON RM 1C730A T R JULIAN RM 1C730A		ORLANDO FL 32826-3276 CDR STRTGC DEFNS CMD
	S C DALY RM 1C730A 1700 DFNS PENTAGON WASHINGTON DC 20301-1700		CSSD SL C CSSD SL S HUNTSVILLE AL 35807-3801
]]]	DIR OPRTNL T&E P E COYLE RM 3E318 H MAIR E SEGLIE RM 3E318 1700 DFNS PENTAGON WASHINGTON DC 20301-1700		CDR BMDSC ATC PO BOX 1500 HUNTSVILLE AL 35807-3801

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	CDR CECOM ASQNC ELC IS L R R&D TECH LIB FT MONMOUTH NJ 07703-5000	22	DIR USARL AMSRL SL LTC MALONEY AMSRL SL E G MARES AMSRL SL EA L ESCUDERO
3	CDR MRDEC		R FLORES G GUZIE
3	AMSMR CG		T MCDONALD
	AMSMR RD P L JACOBS		K NIX
	W MCCORKLE		R SHELBURNE
	REDSTONE ARSENAL AL		AMSRL SL EG D HEMMINGWAY
	35898-5000		J PALOMO
1	DID LICADI		R PRICE AMSRL SL EM R FLORES
1	DIR USARL AMSRL CB PI T WHITE		AMSRL SLEM R FLORES AMSRL SLEP D ALVAREZ
	2800 POWDER MILL RD		L ANDERSON
	ADELPHI MD 20783-1197		D HUNT
			J PALOMO
1	DIR USARL		AMSRL SL ES T ATHERTON
	AMSRL CS WT L		AMSRL SL EU A ESTORGA
	WATERTOWN MA 02172-0001		AMSRL SL EV J CUELLAR K MORRISON
1	DIR USARL		O PAYAN
1	AMSRL D J LYONS		E ZARRET
	2800 POWDER MILL RD		WHITE SANDS MISSILE RANGE NM
	ADELPHI MD 20783-1197		88002-5513
2	DIR USARL	3	DIR USARL
	AMSRL EP		AMSRL SS V DEMONTE
	M V GELNOVATCH		AMSRL SS IC
	AMSRL EP EF M DUTTA		PEMMERMAN
	FT MONMOUTH NJ 07703-5601		R WINKLER
1	DIR USARL		2800 POWDER MILL RD ADELPHI MD 20783-1197
1	AMSRL PB P	•	ADELFHI MD 20/63-119/
	J SCZEPANSKI	1	DIR USARL
	2800 POWDER MILL RD	•	AMSRL ST
	ADELPHI MD 20783-1197		DR FRASIER
			2800 POWDER MILL RD
1	DIR USARL		ADELPHI MD 20783-1197
	AMSRL SL CA		DD 110 ADI
	WHITE SANDS MISSILE RANGE NM	1	DIR USARL
	88002-5513		AMSRL WT NH H E BRANDT
1	DIR USARL		2800 POWDER MILL RD
•	AMSRL SL EI J NOWAK		ADELPHI MD 20783-1197
	FT MONMOUTH NJ 07703-5601		

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
4	DIR ARO TECH LIB MCD J CHANDRA K CLARK	1	CMDT CGSC FT LEAVENWORTH KS 66027
	M LING DR WU PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211	2	CDR USA MRDEC AMSMI RDCS R DCMNTS AMSTA CG REDSTONE ARSENAL AL 35898-5000
1	DIR IDA LBRY 1801 BEAUREGARD ST ALEXANDRIA VA 22311	1	CDR USA TEXCOM CSTE TTD B BARR FT HOOD TX 76544-5065
1	CDR USAASC AMSAV ES 4300 GDFLW BLVD ST LOUIS MO 63120-1798	3	CDR USA TRADOC ATCD H COL HARTMAN ATCD L R STEWART ATCD M COL VOLZ FT MONROE VA 23651-5000
1	CDR USALMC DFNS LGSTCS STUDIES FT LEE VA 23801	2	DIR USA TRADOC ANLYS CTR ATRC WMB L DOMINGUEZ ATRC WS A KIENTZ WHITE SANDS MISSILE RANGE NM
1	CDR USA AVN TRP CMD AMSAT D TS W KILLIAN 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798	2	88002-5502 CDR USA AIR DFNS CTR & SCHL
	CDR USA OPTEC CSTE ZT H DUPIN LTC CRABTREE PK CTR IV		ATSA CD M A VANE ATSA TSM TM W T SMITH FT BLISS TX 79916-0002
	4501 FORD AVE ALEXANDRIA VA 22302-1458		CHRMN USADRB ARMD FRCS RDBLGY RSCH INST E G DAXSON MSC
	CDR USA TARDEC AMSTA TR W WHEELOCK AMSTA TR D COL SCHREPPLE AMSTA TR R J PARKS WARREN MI 48397-5000	2	BETHESDA MD 20889-5603 CDR USA ARMR CTR & SCHL ATZK TS J KALB ATZK XX1 MAJ SHUFELT BLDG 1109 FT KNOX KY 40121-5201
; ;	CDR ARDEC AMSTA AR ASM F SCHUHMANN AMSTA AR TD PICATINNY ARSENAL NJ 07806-5000	3	CDR USA ARMR CTR & SCHL ATSB CD E BRYLA ATZK MW D PORTER ATZK SM S MAIN FT KNOX KY 40121-5000
1	CDR USA CECOM ASQNC ELC IS L R R&D TECH LIB FT MONMOUTH NJ 07703-5000		CDR USA AVN CTR & SCHL ATZQ TSM C C GANT ATZQ TSM LB R MITCHELL FT RUCKER AL 36362-5012

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	<u>ORGANIZATION</u>
1	CDR USA AVN CTR & SCHL ATZQ CD D AHEARN FT RUCKER AL 36362-5000	1	PM SFAE AR SD USA SNS AND DSTRY ARMR PICATINNY ARSENAL NJ
1	CMDT USA AVN LOG SCHL AVN TRDS TRNG		07806-5000
	BLDG 2715F A MATHEWSON FT EUSTIS VA 23604-5439	1	PEO ASM SFAE ASM WARREN MI 48397-5000
1	CDR USA ENGR CTR & FT LEONARD WOOD	1	PM ABRAMS
	ATSE TSM C FERGUSON FT LEONARD WOOD MO 65473-5000	1	SFAE ASM AB G PATTEN WARREN MI 48397-5000
4	CDR USA FLD ARTY CTR & SCHL	1	PM ARMRD SYS INTGRTN SFAE ASM AS COL NEWLIN
*	ATSF CD T STRICKLIN ATSF CN B WILLIAMS		WARREN MI 48397-5000
	ATSF FSC 3A R SHERWOOD ATSF RMS R VALLARIO	2	PM BFVS SFAE ASM BV
1	FT SILL OK 73503-5600 CDR USAIDO		T JOHNSON G PATTEN WARREN MI 48397-5000
1	CDI A MAGILL MC WLTR RD ARMY INST OF RSCH	3	PM CMBT MBLTY SYS
	WASHINGTON DC 20307-5100		SFAE ASM CV S M CANNON
3	CMDT USA INF SCHL ATSH CD W PATTERSON		D P KOTCHMAN R B LEES JR WARREN MI 48397-5000
	ATZB BV T STRAUSS ATZB FS J GRIBSHAW FT BENNING GA 31905-5403	1	PM MCD
1	CMDT USAIS		SFAE ASM MCD R D NIDEL
	ATRC WSR WHITE SANDS MISSILE RANGE NM 88002-5502		PICATINNY ARSENAL NJ 07806-5000
1	CMDT USA TRANS SCHL	1	PM TMAS SFAE ASM TMA
-	ATZF TW J WEBSTER FT EUSTIS VA 23604-5457		R BREGARD PICATINNY ARSENAL NJ 07806-5000
_	DIR USA JSESG D HAKENSON	1	PEO AVN
	7798 CISSNA RD STE 101 SPRINGFIELD VA 22150-3197		SFAE AV D T IRBY JR 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798
1	CDR USA WLTR RD ARMY MDCL CTR	1	PM AAH
	R R BLANCK H T BOLTON MSC USNAFPMB WASHINGTON DC 20307-5001		SFAE AV AAH S KEE BLDG 105 4300 GOODFELLOW BLVD
			ST LOUIS MO 63120-1798

NO. OF NO. OF **COPIES ORGANIZATION COPIES ORGANIZATION** 1 PM KIOWA WARRIOR 1 PM SADARM SFAE AV ASH E GOOSEN SFAE FAS SD **BLDG 102** J E UNTERSEHER 4300 GOODFELLOW BLVD PICATINNY ARSENAL NJ ST LOUIS MO 63120-1798 07806-5000 2 PM LONGBOW 1 **PEO IEWF** SFAE AV LB SFAE IEW RD J WELLS R RYLES REDSTONE ARSENAL AL H BRAMBLETT BLDG 105 35898 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798 1 PEO MSL DFNS SFAE MD 1 PM COMANCHE D L MONTGOMERY SFAE AV RAH PO BOX 16686 J SNIDER **ARLINGTON VA 22215-1686** 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798 1 **PM PATRIOT** SFAE MD PA 1 PM COMANCHE S KUFFNER SFAE AV RAH PO BOX 1500 **BLDG 105 HUNTSVILLE AL 35807-3801** 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798 1 PM SFAE MD SM 1 PM T HALLER SFAE AV SOA PO BOX 1500 M ROGERS BLDG 105F **HUNTSVILLE AL 35807-3801** 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798 PEO TCTCL MSLS 1 SFAE MSL 1 PM **G G WILLIAMS** SFAE CH J WINKELER REDSTONE ARSENAL AL 4300 GOODFELLOW BLVD 35898-8000 ST LOUIS MO 63120-1798 PM ARMY TCTCL MSL BA 2 PEO AFAS SFAE MSL AB R ARNONE SFAE FAS K LENHARD J F MICHITSCH R WALLACE SFAE FAS AF **B WARD** PICATINNY ARSENAL NJ REDSTONE ARSENAL AL 07806-5000 35898-5650 1 PM LW155 1 PM JAVELIN SFAE FAS J S C WARD SFAE MSL AM PICATINNY ARSENAL NJ M RODDY III 07806-5000 REDSTONE ARSENAL AL 35898-5720 1 PM PALADIN FAASV SFAE FAS PAL PM AAWS C CARTWRIGHT SFAE MSL CC PICATINNY ARSENAL NJ

07806-5000

R ARMBRUSTER

35898-5710

REDSTONE ARSENAL AL

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	PM FAAD SFAE MSL FAD GTAM J A SHEEHAN REDSTONE ARSENAL AL 35898-5630	1	DEP DIR NAVY T&E TECH REQ DEPT OF NAVY L LUNBERG RM 5C686 PENTAGON WASHINGTON DC 20350
1	PM LB HELLFIRE SFAE MSL HD D WILBOURN REDSTONE ARSENAL AL 35898-5610	1	OFC OF NAVAL RSCH TECH AREA MGR SURF AERO WEAPONRY CODE 35 D SIEGEL 800 N QUINCY ST ARLINGTON VA 22217-5660
1	PM MLRS SFAE MSL ML S FLOHR REDSTONE ARSENAL AL 35898-5700	1	NAVAL POST GRD SCHL CODE AA BP R E BALL MONTEREY CA 93943-5000
1	PM NLOSCA SFAE MSL NL R MILLAR REDSTONE ARSENAL AL 35898-5700	1	CDR NAVAL SFTY CTR CODE 471 D C WEIGHTMAN NORFOLK VA 23501
1	PM AMCPM SA J CAMBRON PICATINNY ARSENAL NJ 07806-5000	1	USN ENVRNMNTL & PRVNTV MDCN S W BERG MSC 1887 POWHATAN ST NORFOLK VA 23511-3394
2	PEO TWV SFAE TWV W J STODDART SFAE TWV PLS	1	CDR NAWC D SCHRINER 526E00D 1 ADMNSTRTN CRCL CHINA LAKE CA 93555-6100
1	WARREN MI 48397-5000 PM FMTV	1	CDR NSWC CARDEROCK DIV F FISCH BETHESDA MD 20084-5000
	SFAE TWV FMTV M W BOUDREAU WARREN MI 48397-5000	1	CDR NSWC DAHLGREN DIV T WASMUND G24 17320 DAHLGREN RD
2	PM HDSB SFAE TWV HTV J A WANK J D WEAVER WARREN MI 48397-5000	1	DAHLGREN VA 22448-5100 NWSCDL JTCG ME PRGRM OFC G A WILLIAMS BLDG 221 RM 245
1	PM LTV SFAE TWV LTV B R NAEGLE	1	DAHLGREN VA 22448-5100 USAF ASC XRA
1	WARREN MI 48397-5000 CDR NASC		H GRIFFIS BLDG 16 2275D ST STE 10 WRIGHT PATTERSON AFB OH
	D BUTLER 1421 JFRSN DVS HWY ARLINGTON VA 22243		45433-7227

NO. OF NO. OF COPIES ORGANIZATION **COPIES ORGANIZATION** 1 **USAF OCTEC** 1 **DIR LANL M WILLIAMS** CWT J REPA MS A133 8500 GIBSON BLVD SE DDO G MCCALL MS B218 KIRKLAND AIR FORCE BASE NM PO BOX 1663 87117-5558 LOS ALAMOS NM 87545 1 DIR USAF PHLPS LAB 1 DIR LLNL PL WS W BAKER M FINGER L159 3550 ABERDEEN AVE SE **PO BOX 808** KIRKLAND AIR FORCE BASE NM LIVERMORE CA 94551 87117-5576 US MLTRY ACDMY 1 1 **USAF SPCL OPS CMD** DEPT OF MATH SCI LGMW P PEACOCK D OLWELL 100 BARLEY ST THAYER HALL **HURLBURT FIELD FL 32536** WEST POINT NY 10996-1786 2 **DEP DIR USAF T&E** 1 CDR USSSDC **HLEAF** HELSTFCSSD HD J MANCLARK L ANDERSON 1650 AF PENTAGON WHITE SANDS MISSILR RANGE NM **WASHINGTON DC 20330-1650** 88002-5148 3 **USAF WL** 2 **DIR ENV & EPDMLGY SVC 116E** R LAUZZE **DEPT OF VTRNS AFRS** FIVS M LENTZ N A DALAGER D VOYLS ST BLDG 63 **H KANG** 1901 TENTH ST 1120 20TH ST NW STE 950 WRIGHT PATTERSON AIR **WASHINGTON DC 20036-3406** FORCE BASE OH 45433-7605 1 PRSN GLF VTRNS CRDNTN BD 3 USAF WL ADTMD COS OF VTRNS AFRS MN J PLETCHER MEDICAL CENTER MNP W MAINE **EXCTV DIR** MNS L G BURDGE R H ROSWELL 101 W EGLIN BLVD STE 302 700 S 19TH ST EGLIN AIR FORCE BASE FL **BIRMINGHAM AL 35233** 32542-6810 1 **DIR INST OF DFNS ANLYS** 1 ARMD FRCS INST OF PTHLGY **LIBRARY** CHRMN DEPT OF ENV 1801 BEAUREGARD ST AND TXCLGC PTHLGY **ALEXANDRIA VA 22311** N S IREY WASHINGTON DC 20306-6000 1 OK RDG INST FOR SCI & EDCTN 1 **GNRL ACCTG OFC** MSD S A FRY MB MPH PEPS K CHAN RM 4062 OAK RIDGE TN 37830 441 G ST NW **WASHINGTON DC 20548** 1 **ENVRNMNT & OH SCI INST** OHD S N MOHR R W JOHNSON MDCL SCHL PISCATAWAY NJ 08854

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	<u>ORGANIZATION</u>
1	FRNKLN & MRSHL COLLEGE DEPT OF BSNS ADMN M K NELSON PO BOX 3003	1	UNIV OF WI MADISON DEPT OF INDSTRL ENGNRNG S M ROBINSON MADISON WI 53706-1572
1	GEORGE MASON UNIV	1	ADPA M BILOWICH
	CTR FOR CMPTNL STSTCS E WEGMAN FAIRFAX VA 22030		2101 WILSON BLVD STE 400 ARLINGTON VA 22201-3061
1	GA INST OF TCHNLGY T&E RSCH & EDCTN CTR S BLANKENSHIP ML CD 0840 CRB BLDG RM 631 400 TENTH ST	2	APPLIED RSCH ASSOC INC B HACKER F MAESTAS 4300 SAN MATEO BLVD STE A220 ALBUQUERQUE NM 87110
	ATLANTA GA 30318	2	APPLIED RSCH ASSOC INC M BURDESHAW
3	INST FOR DFNS ANLYS L TONNESSEN B W TURNER L WELCH		R SCUNGIO 219 W BEL AIR AVE STE 5 ABERDEEN MD 21001
	1801 N BEAUREGARD ST ALEXANDRIA VA 22311-1772	1	ASI SYSTMS INTL L ULLYAT 56 IVERNESS DR E STE 260
1	INST FOR DFNS ANLYS D HARDISON 3807 BENT BRANCH RD FALLS CHURCH VA 22041	1	ENGLEWOOD CO 80112-5114 ASI TEST CNSLTNT G BURGNER
1	LOGISTICS MGMT INST J WALLICK		825 N DOWNS STE C RIDGECREST CA 93555
	2000 CORPORATE RIDGE MCLEAN VA 22103-7805	1	BOOZ ALLEN & HAMILTON INC WL FIVS SURVIAC K CROSTHWITE
1	DIR OCPTNL & ENVRNMNTL MDCN UNIV OF TX MDCL SCHL PLMNRY DIV HOUSTON TX 77030		2130 EIGHTH ST STE 1 WRIGHT PATTERSON AIR FORCE BASE OH 45433-7542
1	TX LUNG INST G K FRIEDMAN	1	BRIGS COMPANY J BACKOFEN 2668 PETERSBOROUGH ST
	11757 KATY FRWY STE 1540 HOUSTON TX 77079	•	HERNDON VA 20171
2	UNIV OF MD SCHL OF MDCN DEPT OF PTHLGY M W KAHNG DEPT OF PHRMCLGY & EXPRMNTL	1	DIRECTED TECH INC N CHESSER 4001 N FAIRFAX DR STE 775 ARLINGTON VA 22203
	THRPTCS C D HUDSON BALTIMORE MD 21201	1	DUAL INC G TILLERY 2101 WILSON BVLD STE 600 ARLINGTON VA 22201-3078

NO. OF NO. OF **COPIES ORGANIZATION COPIES ORGANIZATION** 1 HICKS & ASSOC INC 1 SURVICE ENGNRNG CO D FREDERICKSEN J FOULK 1710 GOODRIDGE DR STE 1300 1003 OLD PHILADELPHIA RD STE 3 MCLEAN VA 22044 ABERDEEN MD 21001 1 **K&B ENGNRNG ASSOC** 1 **B BARR** C BENARD **18605 CABIN RD** 6109 G ARLINGTON BVLD TRIANGLE VA 22172-1505 **FALLS CHURCH VA 22044** 1 R DEITZ 1 LCKHD MRTN PERKINS COIE **VOUGHT SYS CORP** 607 FOURTEENTH ST NW J URBANOWICZ MS EM 36 **WASHINGTON DC 20005-2011** PO BOX 650003 DALLAS TX 75265-0003 1 A O KRESSE 11709 COLDSTREAM DR 1 LOGICON RDA POTOMAC MD 20854 W LESE 2100 WASHINGTON BLVD 1 T PARKER **ARLINGTON VA 22204** 3061 MIMOM RD **ANNAPOLIS MD 21403** 1 QUANTUM RSCH INTL D BRISTOL CRYSTL SQ 5 STE 703 ABERDEEN PROVING GROUND 1755 JFRSN DVS HWY **ARLINGTON VA 22202-3509** 1 CDR USA APGSA STEAC-RS 1 **OUESTECH INC** M EGGLESTON CDR USA ATC 1 901 N STUART ST STE 605 STECS **ARLINGTON VA 22203** CDR USA CBDA 1 1 RAYTHEON CO EXEC OFCS AMSCB-CII F KENDALL 141 SPRING ST CDR **LEXINGTON MA 02173** USA MDCL RSCH INST OF CHMCL DFNS ROCKWELL INTL 1 AMCPM-NNA, R. E. FOSTER **ROCKETDYNE DIV D STEVENSON EB58** 1 CDR USAOC&S 6633 CANOGA AVE ATSL-CD-BD-AR, R. GEHR CANOGA PARK CA 91309 1 SAIC 2301 YALE BLVD SE STE E **ALBUQUERQUE NM 87106** 2 SAIC TST EVLTN & ANLYS OPS R E HELMUTH **B F ROGERS** 8301 GRNSBR DR STE 460 PO BOX 50132

MCLEAN VA 22102

NO. OF COPIES	ORGANIZATION		ORGANIZATION
18	CDR OPTEC EAC ATTN CSTE-EAC, L. DELATTRE BLDG 245 L. KRAVITZ K. TARQUINI A. LAGRANGE BLDG 243 L. FILLINGER BLDG 244 T. NOLAN M. RITONDO BLDG 314 L. WEST A. BENTON BLDG 327 R. REDWINSKI BLDG 328 J. CHERNICK BLDG 4117 T. FISHER D. HASKELL B. HUGHES J. MYERS R. POLIMADEI L. WILSON R. WOJCIECHOWSKI		AMSRL-SL-CM, R. ZUM BRUNNEN L. DAVIS L. DELICIO D. FARENWALD E. FIORAVANTE R. JOLLIFFE R. KUNKEL M. MAR B. RUTH D. SLOOP J. Z. SOLN (30 CPS) R. TYTUS AMSRL-SL-CO, D. BAYLOR C. GARRETT R. PROCHAZKA AMSRL-SL-CS, J. BEILFUSS M. BUMBAUGH J. CAPOBIANCO
2	CDR TECOM ATTN AMSTE-TD AMSTE-TM, G. L. HOLLOWAY		D. DAVIS T. FLORY J. FRANZ M. KAUFMAN
242	DIR USARL ATTN AMSRL-IS-CI, B. BODT AMSRL-SL, J. SMITH R. REITZ AMSRL-SL-B, P. DEITZ (9 CPS) W. WINNER AMSRL-SL-BA (23 CPS), J. HANES R. KUNKEL J. MORRISSEY L. ROACH AMSRL-SL-BG (24 CPS), A. YOUNG AMSRL-SL-BL (20 CPS) AMSRL-SL-BS (26 CPS), D. BELY T. KLOPCIC AMSRL-SL-BV (26 CPS), W. MERMAGEN, JR. R SANDMEYER AMSRL-SL-C (26 CPS), MAJ GILMAN W J HUGHES J SEIGH	1	G. KUCINSKI T. MAK D. MANYAK J. NEALON R. PARSONS R. POLIMADEI B. SMITH M. SMITH R. WEISS AMSRL-SL-I, D. BASSETT J. FEENEY D. HASKELL J. LIU E. PANUSKA R. REITZ M. VOGEL A. YOUNG R. ZIGLER AMSRL-TT-TA, M. RAUSA BLDG 459 AMSRL-WM, I. MAY AMSRL-WM-M, J. WALBERT DIR USA ERDEC SCBRD-RT

INTENTIONALLY LEFT BLANK.

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of inform gathering and maintaining the data needed, and cor						
collection of information, including suggestions for Davis Highway, Suite 1204, Artington, VA 22202-430	radicing this burden to Weeklagton Heads	reserve No	ervices, Directorate for Information (rwork Reduction Project(0704-0188)	. Washington.	DC 20503.	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		3. REPORT TYPE AND	DATES CO	VERED	
	October 1997		Final, Jun 96 - Mar	97		
4. TITLE AND SUBTITLE				5. FUNDI	NG NUMBERS	
Fluid Dynamics Assessments o	f Deposition and Infiltration	on Mo	dels	6656	04D675	
6. AUTHOR(S)				0050	040013	
Josip Z. Šoln						
7. PERFORMING ORGANIZATION NAI	ME(S) AND ADDRESS(ES)				RMING ORGANIZATION IT NUMBER	
U.S. Army Research Laborator	y					
ATTN: AMSRL-SL-CM				ARI	-TR-1525	
Aberdeen Proving Ground, MI	21005-5068					
9. SPONSORING/MONITORING AGEN	CY NAMES(S) AND ADDRESS(E	ES)		10.SPON	SORING/MONITORING	
o. or oncommonionina August	0 ; 	,		AGEN	CY REPORT NUMBER	
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY S1	ATEMENT			12b. DIST	RIBUTION CODE	
Approved for public release; distribution is unlimited.						
Approved for public release, di	istroution is unmined.					
13. ABSTRACT (Maximum 200 words) The fluid dynamics assessments of deposition and infiltration models, such as the chemical-agent deposition analysis						
The fluid dynamics assessing	ients of deposition and inf	ilitratic	on models, such as mo	e chemic	al-agent deposition analysis	
for rotorcraft surfaces (CADA	ARS) and the aerosol and	d vapo	or infiltration analysi	IS (AVIA	ded by a tayin anyiranment	
Although these models address	different needs of the Arm	my and	i deal with enclosures	s surroun	den by a toxic environment,	
we believe that there are enoug	n similarities detween thei	шюю	e given me same type	OI Huiu	dynamics analysis.	
14. SUBJECT TERMS	14. SUBJECT TERMS				15. NUMBER OF PAGES 31	
fluid dynamics, deposition, inf	iltration/penetration model	ls		!	16. PRICE CODE	
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	N	19. SECURITY CLASSIFIC	CATION	20. LIMITATION OF ABSTRACT	
OF REPORT	OF THIS PAGE LINCLASSIFIED		OF ABSTRACT UNCLASSIFIED		UL	

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Num	ber/Author ARL-TR-1525 (Šoln)	Date of Report October 1997
2. Date Report Rece	ived	
	atisfy a need? (Comment on purpose, related p	project, or other area of interest for which the report will
4. Specifically, how	is the report being used? (Information source	e, design data, procedure, source of ideas, etc.)
	•	gs as far as man-hours or dollars saved, operating costs
	s. What do you think should be changed to immat, etc.)	prove future reports? (Indicate changes to organization,
	Organization	
CURRENT	Name	E-mail Name
ADDRESS	Street or P.O. Box No.	
	City, State, Zip Code	
7. If indicating a Cha or Incorrect address t	-	provide the Current or Correct address above and the Old
	Organization	
OLD	Name	
ADDRESS	Street or P.O. Box No.	
	City, State, Zip Code	
	(Remove this sheet, fold as indicate (DO NOT STA	

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL SL CM
ABERDEEN PROVING GROUND MD 21010-5423

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES