

Software Engineering

Marcel Lüthi, Universität Basel

Historischer Kontext

Innovation löst immer ein Problem.

Problem und Lösung entstehen in Kontext.

Historischer Kontext hilft Methodik und Ansatz einzuordnern.

This Photo by Unknown Author is licensed under CC BY-ND

Vor 1950

1:1 zwischen Programmierer und Computer

- Kein Software-Engineering Nur Programmierung
- Wohldefinierte Probleme
 - Beispiel: Lösen einer Differentialgleichung
- Programmierer waren meistens Physiker

Programmiersprachen

Assembler

Vor 1950: Beispielprogramm

```
FACT EQU
FACTO CSECT
                                                                         L R2,0(R1)
          USING FACTO, R13
                                                                         L R3,12(R2)
SAVEAREA B STM-SAVEAREA(R15)
                                                                         ZAP L,0(L'N,R2)
          DC 17F'0'
                                                                         ZAP R,=P'1'
          DC CL8'FACTO'
                                                                         ZAP I,=P'2'
STM STM R14,R12,12(R13)
                                                               LOOP CP
                                                                         I,L
          ST R13,4(R15)
                                                                         BH ENDLOOP
          ST R15,8(R13)
                                                              MP R,I
          LR R13,R15
                                                              AP I,=P'1'
          ZAP N,=P'1'
                                                              B LOOP
LOOPN CP N,NN
          BH ENDLOOPN
                                                               ENDLOOP EQU *
          LA R1,PARMLIST
                                                                         LA R1,R
          L R15,=A(FACT)
                                                                         BR R14
          BALR R14,R15
                                                                         DS 0D
ZAP F,0(L'R,R1)
                                                               NN DC PL16'29'
DUMP EQU *
                                                                   DS PL16
MVC S,MASK
                                                                   DS PL16
ED S,N
                                                                   DS CL16
          MVC WTOBUF+5(2),S+30
                                                                   DS PL16
MVC S.MASK
                                                               PARMLIST DC A(N)
ED S,F
                                                                   DS CL33
          MVC WTOBUF+9(32),S
                                                               MASK DC X'40',29X'20',X'212060' CL33
          WTO MF=(E,WTOMSG)
                                                               WTOMSG DS 0F
AP N,=P'1'
                                                                   DC H'80',XL2'0000'
B LOOPN
                                                               WTOBUF DC CL80'FACT(..)=.....'
ENDLOOPN EQU *
                                                                   DS PL16
RETURN EQU *
                                                                   DS PL16
              R13,4(0,R13)
                                                                   DS PL16
          LM R14,R12,12(R13)
                                                                   LTORG
          XR R15,R15
          BR R14
                                                                   YREGS
                                                                   END FACTO
```

- Programmierer:in wird zum Beruf
- Programmieren bleibt single-player Game
 - Neu: Programmierer != User
- Erste grosse Software Projekte entstehen

Anforderungen müssen kommuniziert werden

Programmiersprachen

• Fortan, Cobol, Lisp

Programmiersprachen

Fortran, LISP

FUNCTION FACT(N)
INTEGER N,I,FACT
FACT=1
DO 10 I=1,N
10 FACT=FACT*I
END

```
(defun fact (n)
(if (< n 2)
1
(* n (fact(- n 1)))))
```

- Erste grosse, kommerzielle Softwaresysteme
- Grenzen des Programmierens werden ersichtlich.
 - Programmiertechniken skalieren nicht
- Begriff der Softwarekrise

Probleme:

- Kommunikationsoverhead
- Was passiert wenn Programmierer geht
- Teueres "on boarding"
- Änderungen in einem System beeinflusst andere Systeme

Lösungsansätze

- Teamorganisation
- Neue Programmiersprachen
- Programmierrichtlinien
- Formale Modelle

Software Engineering wird erfunden

Kommunikation/Informationsfluss und Modularisierung werden wichtig.

<u>This Photo</u> by Unknown Author is licensed under CC BY-SA

Programmiersprachen

Simula, Basic, PL/I

```
factorial: procedure (N) returns (fixed decimal (30));
    declare N fixed binary nonassignable;
    declare i fixed decimal (10);
    declare F fixed decimal (30);

if N < 0 then signal error;
    F = 1;
    do i = 2 to N;
        F = F * i;
    end;
    return (F);
    end factorial;
```

Stetiger Fortschritt

- Bessere Sprachen / Tools
 - Mainstream: Strukturierte Programmierung
 - Forschung: Objektorientierte Programmierung
- Besseres Verständnis der Prozesse

Einsicht: Es ist schwierig! (There is no silver bullet)

Programmiersprachen

• C, Smalltalk, ML

```
int factorial(int n) {
  int result = 1;
  for (int i = 1; i <= n; ++i)
    result *= i;
  return result;
}</pre>
```

```
fun factorial n =
if n <= 0 then 1
else n * factorial (n-1)
```

1990 - Heute

Computer sind günstig und allgegenwärtig

- Internet immer verfügbar
- Open source als Entwicklungsmodell
- Programmiersprachen und Tooling verbessern sich enorm

Agile Methoden statt schwerfälliger Prozesse.

1990 - Heute

Programmiersprachen

• Python, Haskell, Java

```
factorial :: Integral -> Integral factorial 0 = 1 factorial n = n * factorial (n-1)
```

```
def factorial(n):
    result = 1
    for i in range(1, n+1):
        result *= i
    return result
```

Heute - ???

- Big Data / Cloud computing
- Programmieren über Computergrenzen hinweg
- Deep-Learning / Large Language models
 - Programme werden aus Daten gelernt
 - Spezifikation wird wichtig
- Internet of Things
 - Security wird wichtig

