R Programming For Natural Resource Professionals

Lecture 5
Data Wrangling II:
Joining and advanced dplyr

Paper discussions

• Open this link now by typing it into a browser: https://bit.ly/3GVPwuV

 Talk with your group to identify one or two thoughts, questions, and epiphanies that resonate then record them in the Google Doc.

Read through the list as it updates.

Working with row names

tibble::column_to_rownames()

tibble::rownames_to_column()

Adding new data

dplyr::mutate

Add a new variable or change an existing variable

mutate(newVar = [calculation])

Adding new data

dplyr::transmute

Compute a new variable while dropping the others

transmute(newVar = [calculation])

Rename variables

dplyr::rename

Change the name of a variable

rename(newName = oldName)

bind_rows()

Returns one tibble pasted above the other

bind_cols()

Returns one tibble pasted next to the other.

Important: Not for combining tibbles with the same variables!

Joining data sets

- Merge data based on given criteria
 - "Relational merging"

Tree	Height					Tree	Height	SciName
Maple	80		Tree	SciName		Maple	80	Acer rubrum
Spruce	57		Maple	Acer rubrum		Spruce	57	Picea pungens
Oak	121	~~	Spruce	Picea pungens		Oak	121	Quercus alba
Oak	109		Oak	Quercus alba		Oak	109	Quercus alba
Maple	92				_	Maple	92	Acer rubrum
		_						

- Key variable in example is "ID"
- Returns all observations from x and all variables from x and y.
- Observations in x with no match in y will be populated with NAs

- Key variable in example is "ID"
- Returns all observations from y and all variables from x and y.
- Observations in y with no match in x will be populated with NAs

inner_join()

Key variable in example is "ID"

Returns all observations from x with matching observations in y

Returns all columns of x and y

If there are multiple matches between x and y, all combinations are returned

Returns all observations and variables of both x and y When not matching, returns NA

semi_join()

<u>Data</u>	frame y
ID	X2
2	b1
3	b2

- A type of "filtering join"
- Returns observations from x that <u>do</u> also occur in y.
- Differs from inner_join() because it doesn't retain variables in y

anti_join()

Data frame y

ID X2
2 b1
3 b2

- A type of "filtering join"
- Returns observations from x that <u>do not</u> also occur in y.

What if the key variable isn't the same in x and y?

length
12
15
16

Tih1

Tib2				
species	genus_species			
Brook trout	Salvelinus fontinalis			
Walleye	Sander vitreus			