1. Consider the following sequences.

$$a = 0, 1, 2, ..., 10, b = 7, 9, 11, ..., 17, c = 0, 0.5, 1, 1:5, ..., 2,$$

 $d = 0, -1.5, -3, ..., -18$

Use np.arange, np.linspace and np.r functions to create each sequence.

Give names as:

a_arrange	b_arrange	c_arrange	d_arrange
a_linspace	b_linspace	c_linspace	d_linspace
a_r	b_r	c_r	d_r

- 2. Generate some random numbers by x=np.random.randn(20) with np.random.seed(1)! Compute y=np.cumsum(x) and z=np.sum(x). Which element of y is equal to z? Write your answers as answer = "nth element of y equals to z". n is the index! Compute w=np.diff(np.cumsum(x)). Check if w is the same as x by using the np.array_equal function and give the variable name as checking. checking= np.array_equal......
- 3. Consider the following arrays

Compute the maximum, minimum, mean, median, variance, first quartile, third quartile and interquartile range of each array. Note: The numpy functions for these statistics are given at https://docs.scipy.org/doc/numpy/reference/routines.statistics.html

Variable names:

maximum_value, minimum_value, mean_value, median_value, variance, first_quartile, third_quartile, interquartile

- 4. Consider the following **array** (!) x=[-10,-4,3,2,1.5,6,8,9,0,11,12,2.5,3.3,7,-4]. Use <u>the logical operators</u> to extract the elements that are greater than 3 and less than or equal to 9 from x. Store the result under the name **question4**.
- 5. Use the following code to generate a 15 x 30 array

Use logical operators to do following tasks.

- (a) How many elements of x are greater than 1 and less than or equal to 2. Store the result under the name $\frac{1}{2}$ a.
- (b) Extract the elements of x that are greater than 0.9 and less than 1. Store the result under the name **question5_b** .