Rotations

The basic restructuring step for binary search trees are left and right rotation:

- 1. Rotation is a local operation changing O(1) pointers.
- 2. An in-order search tree before a rotation *stays* an in-order search tree.
- 3. In a rotation, one subtree gets one level closer to the root and one subtree one level further from the root.

```
\begin{aligned} \mathsf{LEFT\text{-}ROTATE}(\mathsf{T}, \mathsf{x}) \\ y &\leftarrow right[x] \; (* \; \mathsf{Set} \; y^*) \\ right[x] &\leftarrow left[y] \; (* \; \mathsf{Turn} \; y'\mathsf{s} \; \mathsf{left} \; \mathsf{into} \; x'\mathsf{s} \; \mathsf{right}^*) \\ \mathsf{if} \; left[y] &\neq \mathsf{NIL} \\ \mathsf{then} \; p[left[y]] &\leftarrow x \\ p[y] &\leftarrow p[x] \; (* \; \mathsf{Link} \; \mathsf{x's} \; \mathsf{parent} \; \mathsf{to} \; \mathsf{y} \; *) \\ \mathsf{if} \; p[x] &= \mathsf{NIL} \\ \mathsf{then} \; root[T] &\leftarrow y \\ \mathsf{else} \; \mathsf{if} \; x &= left[p[x]] \\ \mathsf{then} \; left[p[x]] &\leftarrow y \\ \mathsf{else} \; right[p[x]] &\leftarrow y \\ left[y] &\leftarrow x \\ p[x] &\leftarrow y \end{aligned}
```

Note the in-order property is preserved.

Red-Black Insertion

Since red-black trees have $\Theta(\lg n)$ height, if we can preserve all properties of such trees under insertion/deletion, we have a balanced tree!

Suppose we just did a regular insertion. Under what conditions does it stay a red-black tree?

Since every insertion take places at a leaf, we will change a black NIL pointer to a node with two black NIL pointers.

To preserve the black height of the tree, the new node must be *red*. If its *new* parent is black, we can stop, otherwise we must restructure!

How can we fix two reds in a row?

It depends upon our uncle's color:

If our uncle is red, reversing our relatives' color either solves the problem or pushes it higher!

Note that after the recoloring:

- 1. The black height is unchanged.
- 2. The shape of the tree is unchanged.
- 3. We are done if our great-grandparent is black.

If we get all the way to the root, recall we can always color a red-black tree's root black. We always will, so initially it was black, and so this process terminates.

The Case of the Black Uncle

If our uncle was black, observe that all the nodes around us have to be black:

Left as RB trees by our color change or are nil

Solution - rotate right about B:

Since the root of the subtree is now black with the same black-height as before, we have restored the colors and can stop!