Plotting and Visualization

plot

In [138]: plt.plot(x, y)
plt.show()


```
In [141]:  plt.plot(x, y, color='red', linestyle='dashed', linewidth = 2)
  plt.show()
```



```
In [145]: 

plt.plot(x, y, marker='o', markersize=20, markerfacecolor='green')
plt.show()
```


subplot

In [150]:

plt.plot(x, y)
plt.show()

In [151]:
$$\bigvee z = [-4, -3, -2, -1, 0, 1, 2, 3, 4]$$

 $w = [16, 9, 4, 1, 0, 1, 4, 9, 16]$

In [152]:

plt.plot(z, w)
plt.show()


```
In [156]: ► # subplots
```


scatter

```
In [158]: \mathbf{y} = [1, 2, 5, 12]
\mathbf{y} = [3, 5, 11, 25]
```

In [159]:

plt.scatter(x, y)
plt.show()

In [160]: ▶ plt.scatter(x, y, color= "g", marker= "*", s=200)
plt.show()


```
In [161]:  plt.scatter(x, y, label= "stars")
  plt.legend()
  plt.show()
```


bar

```
In [165]: M dars = ['C++', 'Python', 'PHP', 'Java'] score = [18, 20, 16, 17]
```



```
In [167]: ▶ plt.bar(dars, score, color='g', width=0.5)
plt.show()
```


histogram

```
In [172]: Age = [1,1,2,3,3,5,7,8,9,10,10,11,11,13,13,15,16,17,18,18,18,19,20,21,21,23,24,24,25,25,25,25,26,26,26,27,27,27,27,27,29,30,30,31,33,34,34,34,35,36,36,37,37,38,38,39,40,41,41,42,43,44,45,45,46,47,48,48,49,50,51,52,53,54,55,55,56,57,58,60,61,63,64,65,66,68,70,71,72,74,75,77,81,83,84,87,89,90,90,91]
```

```
In [173]:  plt.hist(age)
  plt.grid(axis='y')
  plt.show()
```


In [174]: plt.hist(age, rwidth=0.95, bins=9)
plt.show()

pie


```
In [179]: N data = [61, 12, 13, 1, 13]
labels = ["Asia", "Europe", "Africa", "Oceania", "America"]

p = plt.pie(data, autopct='%1.1f%%')

plt.legend(p[0], labels)

plt.title('Nationality')
plt.show()
```


Box Plot

```
In [183]:
            ⋈ score = [1, 3, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 13, 13, 17, 20]
            ▶ plt.boxplot(score)
In [184]:
               plt.grid()
               plt.show()
                                            0
                 20.0
                 17.5
                                            0
                 15.0
                 12.5
                 10.0
                 7.5
                 5.0
                 2.5
```

1

```
In [185]: 
plt.boxplot(score, vert=False)
plt.grid()
plt.show()
```


Out[187]: 9.0

Out[188]: 10.75

In [189]: | iqr = q3 - q1 | iqr

Out[189]: 3.75

Out[190]: 1.375

In [191]: ► hv = q3 + 1.5 * iqr hv

Out[191]: 16.375

```
In [192]:
            H
In [193]:
               score1 = [5, 12, 15, 17, 18, 19, 20]
                score2 = [3, 4, 5, 7, 10, 11, 20]
               data = np.array(score1),np.array(score2)
               plt.boxplot(data)
               plt.show()
                 20.0
                 17.5
                 15.0
                 12.5
                 10.0
                 7.5
                 5.0
                                0
                 2.5
                                1
In [194]:
            \bowtie fig, (ax1, ax2) = plt.subplots(1, 2)
               f = dict(markerfacecolor='g', marker='s')
               b1 = ax1.boxplot(data, patch_artist=True, labels=['Python', 'Java'], flierpro
               b2 = ax2.boxplot(data, patch_artist=True, labels=['Python', 'Java'], notch=Tr
               for b in (b1, b2):
                    for p, c in zip(b['boxes'], ['r', 'b']):
                        p.set_facecolor(c)
               plt.show()
                                                               0
                 20.0
                                           20.0
                 17.5
                                           17.5
                                           15.0
                 15.0
                 12.5
                                           12.5
                 10.0
                                           10.0
                 7.5
                                            7.5
                                            5.0
                 5.0
                                            2.5
                 2.5
                        Python
                                    Java
                                                  Python
```

Plotting with pandas

Out[195]:

speed		lifespan
elephant	40	70.0
rabbit	48	1.5
giraffe	52	25.0
horse	88	28.0

In [198]: ▶ #

Out[199]:

gender		height	
0	men	155	
1	men	158	
2	men	160	
3	men	161	
4	men	162	
5	men	165	
6	men	169	
7	men	170	
8	men	173	
9	men	175	
10	men	180	
11	men	185	
12	men	185	
13	men	190	
14	women	145	
15	women	150	
16	women	156	
17	women	157	
18	women	158	
19	women	150	
20	women	156	
21	women	158	
22	women	160	
23	women	161	
24	women	178	

In [202]: ▶ #

Out[203]:

	gender	age
0	female	49
1	male	33
2	male	54
3	male	33
4	female	30

plot.box

seaborn

```
In [207]: ▶ #!pip install seaborn
```

```
In [208]: ▶ import seaborn as sns
```

```
In [209]:  plt.figure(figsize=(3, 4))
    sns.boxplot(x='gender', y='age', data=dfage)
    plt.show()
```



```
In [210]: ► # iris
```

Out[211]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

In [212]: sns.boxplot(y=df["sepal_length"], width=0.2);

In [213]: sns.boxplot(x=df["sepal_length"], y=df["species"]);

In [214]: Sns.boxplot(x=df["species"], y=df["sepal_length"]); #, palette="Blues", de

8.0

7.5

7.0

4.5

setosa

versicolor
species

virginica

In [216]: sns.violinplot(x=df["species"], y=df["sepal_length"]);

دانشگاه شهید مدنی آذربایجان برنامه نویسی پیشرفته با پایتون امین گلزاری اسکوئی ۱۲۰۰-۱٤۰۱

Codes and Projects (click here) (https://github.com/Amin-Golzari-Oskouei/Python-Programming-Course-Advanced-2021) slides and videos (click here) (https://drive.google.com/drive/folders/1Dx3v7fD1QBWL-MNP2hd7ilxaRbeALkkA)