ALGEBRA LINEAL - Práctica N°6 - Segundo cuatrimestre de 2022 Autovalores y autovectores - Diagonalización

Ejercicio 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos (analizar por separado los casos $K = \mathbb{R}$ y $K = \mathbb{C}$):

i)
$$A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$$
, $a \in \mathbb{R}$ ii) $A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$ iii) $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$

iv)
$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}, a \in \mathbb{R}$$
 v) $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

Ejercicio 2. Para cada una de las matrices A del ejercicio anterior, sea U una base de K^n y sea $f: K^n \to K^n$ la tranformación lineal tal que $|f|_U = A$. Decidir si es posible encontrar una base B de K^n tal que $|f|_B$ sea diagonal. En caso afirmativo, calcular C(B, U).

Ejercicio 3. Sea $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ la transformación lineal derivación. Mostrar que todo número real es un autovalor de δ y exhibir un autovector correspondiente.

Ejercicio 4. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$f(x, y, z) = (-x - 2y + 6z, 4y, -x - 3y + 4z).$$

- i) Encontrar una base B de \mathbb{R}^3 tal que $|f|_B$ sea diagonal.
- ii) Calcular $\begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}^n \text{ para cada } n \in \mathbb{N}.$
- iii) Hallar, si es posible, una matriz $P \in \mathbb{R}^{3\times 3}$ tal que $P^2 = \begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}$.

Ejercicio 5. Diagonalizar las matrices $A \in \mathbb{R}^{n \times n}$ y $B \in \mathbb{R}^{6 \times 6}$ encontrando sus autovectores:

$$A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \end{pmatrix}.$$

Ejercicio 6. Sea $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

- i) Probar que $A^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix}$ para todo $n \in \mathbb{N}$, donde F_i es el *i*-ésimo término de la sucesión de Fibonacci (es decir, $F_0 = 0$, $F_1 = 1$ y $F_{i+1} = F_i + F_{i-1}$).
- ii) Encontrar una matriz $P \in GL(2,\mathbb{R})$ tal que PAP^{-1} es diagonal.
- iii) Hallar la fórmula general para el término F_n para cada $n \in \mathbb{N}_0$.
- iv) Se define una sucesión $(a_n)_{n\in\mathbb{N}_0}$ de la siguiente manera:

$$\begin{cases} a_0 = 0, \ a_1 = 1, \ a_2 = 1, \\ a_{n+3} = 6a_{n+2} - 11a_{n+1} + 6a_n \quad (n \in \mathbb{N}_0). \end{cases}$$

Hallar una fórmula general para el término a_n para cada $n \in \mathbb{N}_0$.

Ejercicio 7. Resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'(t) = 6x(t) + 2y(t) \\ y'(t) = 2x(t) + 3y(t) \end{cases}$$

con condiciones iniciales x(0) = 3, y(0) = -1.

Sugerencia: Hallar una matriz $C \in GL(2,\mathbb{R})$ tal que $C^{-1}\begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}C$ es diagonal y hacer el cambio de variables $\begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = C^{-1}\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

Ejercicio 8. Sea $A \in K^{n \times n}$. Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.

Ejercicio 9.

- i) Sea $A \in \mathbb{R}^{3\times 3}$ diagonalizable con tr(A) = -4. Calcular los autovalores de A sabiendo que los autovalores de $A^2 + 2A$ son -1, 3 y 8.
- ii) Sea $A \in \mathbb{R}^{4\times 4}$ tal que $\det(A) = 6$; 1 y -2 son autovalores de A y -4 es autovalor de la matriz $A 3I_4$. Hallar los restantes autovalores de A.

Ejercicio 10.

- i) Sea $f:K^n\to K^n$ un proyector con dim $(\operatorname{Im}(f))=s$. Calcular \mathcal{X}_f . ¿Es f diagonalizable?
- ii) Sea K un cuerpo incluido en \mathbb{C} y $f:K^n\to K^n$ un endomorfismo nilpotente. Calcular \mathcal{X}_f . ¿Es f diagonalizable?

Ejercicio 11. Sea $A \in \mathbb{R}^{n \times n}$ una matriz que satisface $A^2 + I_n = 0$. Probar que A es inversible, que no tiene autovalores reales y que n debe ser par.

Ejercicio 12. Sea V un K-espacio vectorial de dimensión finita y $f: V \to V$ una transformación lineal tal que dim(Im(f)) = 1. Probar que f es diagonalizable si y sólo si $\text{Nu}(f) \cap \text{Im}(f) = \{0\}$.

Ejercicio 13. Sea $f: \mathbb{C}^n \to \mathbb{C}^n$ una transformación lineal. Probar que existe una base B de \mathbb{C}^n tal que $|f|_B$ es triangular superior.

Ejercicio 14. Sean $A \in K^{m \times n}$ y $B \in K^{n \times m}$.

- i) Probar que las matrices $\begin{pmatrix} AB & 0 \\ B & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 0 \\ B & BA \end{pmatrix}$ de $K^{(m+n)\times(m+n)}$ son semejantes.
- ii) Deducir que si n = m, entonces $\mathcal{X}_{AB} = \mathcal{X}_{BA}$.

Ejercicio 15. Dadas las matrices $A \in \mathbb{C}^{2\times 2}$ y los polinomios $P \in \mathbb{C}[X]$, calcular P(A) para:

i)
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, a) $P = X - 1$, b) $P = X^2 - 1$, c) $P = (X - 1)^2$.

ii)
$$A = \begin{pmatrix} i & 0 \\ 1 & -i \end{pmatrix}$$
, $P = X^3 - i X^2 + 1 + i$.

Ejercicio 16. Hallar el polinomio minimal de las siguientes matrices (comparar con el polinomio característico):

Ejercicio 17. Sea $A \in K^{n \times n}$ la matriz

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & -a_2 \\ \vdots & & \ddots & 0 & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}.$$

Calcular su polinomio minimal y su polinomio característico.

Ejercicio 18. Calcular el polinomio minimal de cada una de las siguientes transformaciones lineales:

i)
$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X], \ f(P) = P' + 2P.$$

ii)
$$f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$
, $f(A) = A^t$.

Ejercicio 19. Sea $\delta : \mathbb{R}[X] \to \mathbb{R}[X]$ la transformación lineal derivada. Probar que δ no admite ningún polinomio minimal.

Ejercicio 20. Sea $A \in \mathbb{R}^{n \times n}$. Probar que el polinomio minimal de A como matriz real y el polinomio minimal de A como matriz compleja coinciden.

Ejercicio 21. Sea $A \in K^{n \times n}$. Probar que A y A^t tienen el mismo polinomio característico y el mismo polinomio minimal.

Ejercicio 22. Utilizando el Teorema de Hamilton-Cayley:

- i) Calcular $A^4 4A^3 A^2 + 2A 5I_2$ para $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$.
- ii) Calcular A^{1000} para $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$
- iii) Dada $A = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$, expresar a A^{-1} como combinación lineal de A y de I_2 .
- iv) Dada $A = \begin{pmatrix} 1 & -1 \\ 2 & 5 \end{pmatrix}$, expresar a $(2A^4 12A^3 + 19A^2 29A + 37I_2)^{-1}$ como combinación lineal de A y de I_2 .
- v) Calcular $\begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}^n$ para cada $n \in \mathbb{N}$.
- vi) Calcular $\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}^n$ para cada $n \in \mathbb{N}$.

Ejercicio 23. Exhibir una matriz $A \in \mathbb{C}^{n \times n}$ tal que $A^2 + I_n = 0$. Comparar con el Ejercicio 11.