

音视频编码库项目

视频编码库 API 文档

概述

编写目的

设计视频编码库的对外 API 接口及相关的数据结构。指导基于视频编码库的开发和使用。

适用范围

适用于公司带有 VE 模块的各个芯片平台的 Android 系统 SDK 和 Linux SDK。

相关人员

基于视频编码库开发和使用的相关人员。

模块介绍

功能介绍

视频编码库是一个提供视频编码功能的库,编译输出的库文件为 libvencoder.so。基于视频编码库,应用程序可以在全志公司的各个 IC 平台上实现高效的、多种压缩格式的视频编码功能,所支持的压缩格式为: JPEG、H264, VP8(仅 A80 支持)。

相关术语介绍

QP: 量化参数;

SVC: 可伸缩编码;利用了 AVC 编解码器的各种高效算法工具,在编码产生的编码视频时间上(帧率)、空间上(分辨率)可扩展,并且是在视频质量方面可扩展的,可产生不同帧速率、分辨率或质量等级的解码视频。

Exif: 一种图像文件格式,它的数据存储与 JPEG 格式是完全相同的。实际上 Exif 格式就是在 JPEG 格式头部插入了数码照片的信息,包括拍摄时的光圈、快门、白平衡、ISO、焦距、日期时间等各种和拍摄条件以及相机品牌、型号、色彩编码、拍摄时录制的声音以及 GPS 全球定位系统数据、缩略图等。

接口说明

接口函数

视频编码库 APIs	
<u>VideoEncCreate</u>	创建一个视频编码器
VideoEncDestroy	销毁视频编码器
VideoEncInit	初始化视频编码器
VideoEncUnInit	去初始化视频编码器
AllocInputBuffer	通过 vencoder 申请输入图像帧 buffer
<u>GetOneAllocInputBuffer</u>	获取一块由 vencoder 分配的图像帧
FlushCacheAllocInputBuffer	刷 cache 保持数据的一致性
<u>ReturnOneAllocInputBuffer</u>	还回由 vencoder 申请的图像帧
ReleaseAllocInputBuffer	释放由 vencoder 申请的图像帧
<u>AddOneInputBuffer</u>	添加一块输入的图像帧到编码器
<u>VideoEncodeOneFrame</u>	编码一帧图像
AlreadyUsedInputBuffer	获取编码器已经使用过的图像帧
<u>ValidBitstreamFrameNum</u>	获取有效的输出码流 buffer 的个数
<u>GetOneBitstreamFrame</u>	获取一个码流 buffer
<u>FreeOneBitStreamFrame</u>	还回码流 buffer
<u>VideoEncGetParameter</u>	获取编码器参数
<u>VideoEncSetParameter</u>	设置编码器参数
VideoEncoderReset	重启编码器
<u>VideoEncoderGetUnencodedBufferNum</u>	获取编码器未完成编码的输入 buffer 个数

VideoEncCreate

函数原型	VideoEncoder* VideoEncCreate(VENC_CODEC_TYPE eCodecType)
功能	创建一个视频编码器
参数	eCodecType: 创建的编码器 codec 类型
返回值	成功: 视频编码器指针;
	失败:返回 NULL;
调用说明	视频编码器支持创建多个编码器,支持多路编码

VideoEncDestroy

函数原型	void VideoEncDestroy(VideoEncoder* pEncoder)
功能	销毁视频编码器
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针
返回值	无
调用说明	无

${\tt VideoEncInit}$

函数原型	int VideoEncInit(VideoEncoder* pEncoder, VencBaseConfig* pConfig);
功能	初始化视频编码器
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针
	pConfig:编码器基本初始化信息,包括是否做 scaler,颜色格式等
返回值	成功: 返回 0;
	失败: 返回-1,
调用说明	pConfig: 编码器基本初始化信息;
	1. nInputWidth: 输入图像帧的宽度,以像素为单位;
	2. nInputHeight: 输入图像帧的高度,以像素为单位;
	3. nDstWidth:编码前对输入图像做 scale 后的宽度,以像素为单位;
	如果不需要做 scale, nDstWidth 的值保持和 nInputWidth 一致;
	4. nDstHeight:编码前对输入图像做 scale 后的高度,以像素为单位;
	如果不需要做 scale, nDstHeight 的值保持和 nInputHeight 一致;
	5. eInputFormat: 输入的颜色格式;
	6. nStride: 输入图像帧在内存中的行宽,以像素为单位,编码器要求
	nStride 必须 16 对齐;
	7. Memops:编码器内部内存管理的数据结构,该数据结构由调用者初始化,
	其定义在 memory 模块中,具体请参看 memory 相关文档;

VideoEncUnInit

函数原型	int VideoEncUnInit(VideoEncoder* pEncoder)
功能	去初始化视频编码器
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	无

${\tt AllocInputBuffer}$

函数原型	int AllocInputBuffer(VideoEncoder* pEncoder,
	VencAllocateBufferParam *pBufferParam)
功能	通过 vencoder 申请输入图像帧 buffer
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;
	pBufferParam: 指定申请 buffer 的格式和 size;
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	1. 当需要由编码器来提供输入图像帧的 buffer 时,由此接口来申请图像帧
	buffer;
	2. 当外部模块有自己的 buffer 管理模块,并且所使用的 buffer 为物理连续
	的 buffer 的时候,从效率上考虑可以不使用此接口来申请输入图像帧
	buffer,可以直接把相应的 buffer 的物理地址配给 VE,从而可以少一次数
	据 copy;

${\tt GetOneAllocInputBuffer}$

函数原型	int GetOneAllocInputBuffer(VideoEncoder* pEncoder,
	VencInputBuffer* pInputbuffer)
功能	获取到的由 AllocInputBuffer 申请的输入图像帧
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;
	pInputbuffer (输出): 获取到的由 AllocInputBuffer 申请的输入图像帧 buffer;
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	pInputbuffer 的相应变量的说明:
	1. nID: 用来区分不同的 buffer;
	2. nPts: 当前图像帧的时间戳,以 us 为单位;
	3. pAddrPhyY: 当前图像帧 Y 分量的物理地址,配给硬件使用;
	4. pAddrPhyC: 当前图像帧的 C 分量的物理地址,配给硬件使用;
	5. pAddrVirY: 当前图像帧 Y 分量的虚拟地址,可由 CPU 来搬移图像数据到
	此 buffer;
	6. pAddrVirC: 当前图像帧 C 分量的虚拟地址,可由 CPU 来搬移图像数据到
	此 buffer;

FlushCacheAllocInputBuffer

函数原型	Int FlushCacheAllocInputBuffer(VideoEncoder* pEncoder,
	VencInputBuffer * pInputbuffer)
功能	刷 cache 保存数据的一致性
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;
	pInputbuffer (输入):由 AllocInputBuffer 申请的输入图像帧 buffer;
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	当调用 GetOneAllocInputBuffer 获取到由 AllocInputBuffer 申请的输入图像帧
	buffer的时,如果通过CPU来搬移输入的图像帧数据到此buffer,在把此buffer
	送给编码器之前,需要调用此接口来保证 dram 和 cache 中的数据一致性;

ReturnOneAllocInputBuffer

函数原型	Int ReturnOneAllocInputBuffer(VideoEncoder* pEncoder,
	VencInputBuffer *pInputbuffer)
功能	还回由 AllocInputBuffer 申请的输入图像帧 buffer
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针
	pInputbuffer (输入):由 AllocInputBuffer 申请的输入图像帧 buffer
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	无

ReleaseAllocInputBuffer

函数原型	int ReleaseAllocInputBuffer(VideoEncoder* pEncoder)
------	---

功能	释放由 AllocInputBuffer 申请的输入图像帧 buffer
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	无

Add One Input Buffer

函数原型	int AddOneInputBuffer(VideoEncoder* pEncoder,
	VencInputBuffer* pInputbuffer)
功能	添加输入图像帧到编码器
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;
	pInputbuffer (输入): 输入图像帧 buffer;
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	pInputbuffer 的来源可以是由 AllocInputBuffer 申请的输入图像帧 buffer, 也可
	以由外部模块来提供;

VideoEncodeOneFrame

函数原型	int VideoEncodeOneFrame(VideoEncoder* pEncoder);	
功能	编码一帧数据	
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针	
返回值	VENC_RESULT_ERROR(-1): 编码出错;	
	VENC_RESULT_OK (0): 编码成功; VENC_RESULT_NO_FRAME_BUFFER (1): 无法获取到输入帧; VENC_RESULT_BITSTREAM_IS_FULL (2): 输出码流 buffer 已经溢出;	
调用说明	无 /	

${\tt AlreadyUsedInputBuffer}$

函数原型	int AlreadyUsedInputBuffer(VideoEncoder* pEncoder,	
	VencInputBuffer* pBuffer)	
功能	获取 VideoEncodeOneFrame 已经使用过的输入图像帧;	
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;	
	pInputbuffer (输出): 图像帧 buffer;	
返回值	成功: 返回 0;	
	失败: 返回-1;	
调用说明	无	

ValidBitstreamFrameNum

函数原型	ValidBitstreamFrameNum(VideoEncoder* pEncoder)	
功能	获取有效的的输出码流 buffer 的格式;	
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;	
返回值	有效的输出码流的个数 (value>=0);	

调用说明 无

GetOneBitstreamFrame

函数原型	int GetOneBitstreamFrame(VideoEncoder* pEncoder,		
	VencOutputBuffer* pBuffer);		
功能	获取有效的的输出码流 buffer 的格式		
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;		
	pBuffer (输出): 输出码流 buffer;		
返回值	成功: 返回 0;		
	失败: 返回-1;		
调用说明	pBuffer 中结构体变量说明:		
	1.nID: 用来识别不同的 buffer:		
	2.nPts:编码器不对时间戳信息做处理,输出 buffer 中的 pts 对应相应输入		
	buffer 中的 pts;		
	3.nSize0: 输出码流的第一部分的大小;		
	4.nSize1:输出码流的第二部分的大小;		
	5.pData0: 输出码流的第一部分的地址;		
	6.pData1:输出码流的第二部分的地址;		
	输出的一笔码流可能由两部分组成: nSize0 表示第一部分的大小, nSize1		
	表示第二部分的大小;		
	nSize0 一定大于 0, 当 nSize1 = 0 的时候, 输出码流只在地址 pData0 中;		
	当 nSize1 > 0 时,输出码流由两部分组成,第一部分在 pData0 中,第二部分		
	在 pData1 中,此时需要外部应用程序把这两部分数据组合成一帧;		

FreeOneBitStreamFrame

函数原型	int FreeOneBitstreamFrame(VideoEncoder* pEncoder,
VencOutputBuffer* pBuffer);	
功能	还回输出码流 buffer
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;
	pBuffer (输入): 由 GetOneBitstreamFrame 获取到的输出码流 buffer;
返回值	成功: 返回 0;
	失败: 返回-1;
调用说明	pBuffer 表示由 GetOneBitstreamFrame 获取到的输出码流 buffer

VideoEncGetParameter

函数原型	int VideoEncGetParameter(VideoEncoder*pEncoder,		
	VENC_INDEXTYPE indexType, void* paramData);		
功能	获取编码器参数;		
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;		
	indexType: 参数类型索引号;		
	paramData (输出): 参数数据指针;		
返回值	成功: 返回 0;		
	失败: 返回-1;		

调用说明 | 调用成功后将会返回参数到 paramData 指针所指的地址中;

VideoEncSetParameter

函数原型	int VideoEncSetParameter(VideoEncoder*pEncoder,	
	VENC_INDEXTYPE indexType, void* paramData);	
功能	设置编码器参数;	
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;	
	indexType: 参数类型索引号;	
	paramData (输出): 参数数据指针;	
返回值	成功: 返回 0;	
	失败: 返回-1;	
调用说明	编码器将从 paramData 指针所指的地址中获取参数信息;	

VideoEncoderReset

函数原型	int VideoEncoderReset(VideoEncoder*pEncoder);		
功能	重启编码器;		
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;		
返回值	成功: 返回 0;		
	失败: 返回-1;		
调用说明	编码器配置参数不变,仅把输入帧 buffer 队列和输出比特流 buffer 队	、列清零;	

Video Encoder Get Unencoded Buffer Num

函数原型	int VideoEncoderGetUnencodedBufferNum(VideoEncoder*pEncoder);		
功能	获取编码器未完成编码的输入 buffer 个数;		
参数	pEncoder: 通过 VideoEncCreate 函数创建的视频编码器指针;		
返回值	成功: 返回 0;		
	失败: 返回-1;		
调用说明	无;		

数据结构说明

VencBaseConfig

名称	VencBaseConfig	
功能描述	初始化编码器时的基本配置信息	
属性	类型	描述
nInputWidth	unsigned int	输入图像帧的宽度;
nInputHeight	unsigned int	输入图像帧的高度;
nDstWidth	unsigned int	编码输出的图像宽度;
nDstHeight	unsigned int	编码输出的图像高度;
nStride	unsigned int	输入图像在内存中的宽度;
eInputFormat	VENC_PIXEL_FMT	输入图像的颜色格式:

VencH264ProfileLevel

名称	VencH264ProfileLevel	
功能描述	H264 编码的 profile 和 level	
属性	类型	描述
nProfile	VENC_H264PROFILETYPE	
nLevel	VENC_H264LEVELTYPE	

VencQPRange

名称	VencQPRange	
功能描述	H264 编码的 QP 区间	
属性	类型	描述
nMaxqp	int	取值范围 (0~51)
nMinqp	int	取值范围 (0~51)

MotionParam

名称	MotionParam	
功能描述	移动侦测的参数	
属性	类型	描述
nMotionDetectEnable	int	0: 关闭移动侦测;

		1: 打开移动侦测;
		取值范围 (0~12);
nMotionDetectRatio	int	0 为最高灵敏度,值越小灵敏
		度越高,值越大灵敏度越低;

VencHeaderData

名称	VencHeaderData	
功能描述	存储头信息的结构体	
属性	类型	描述
		在 H264 编码的时候,会用此
pBuffer	unsigned char*	来存储 SPS、PPS 信息; JPEG
		编码不需要此结构体
nLength	unsigned int	头信息的长度

${\tt VencInputBuffer}$

名称	VencInputBuffer	
功能描述	输入图像帧的信息	
属性	类型	描述
nID	int	用来区分不同的 buffer
nPts	long long	当前图像帧的时间戳
Els		标记此 buffer 的数据是否属
nFlag	unsigned int	于关键帧
» A dd Dhy V	ungionad shar*	当前图像帧 Y 分量的物理地
pAddrPhyY	unsigned char*	址,配给硬件使用
a Adda Dhar C	vanion o dahan*	当前图像帧的C分量的物理地
pAddrPhyC	unsigned char*	址,配给硬件使用
pAddrVirY	unsigned char*	当前图像帧Y分量的虚拟地址
pAddrVirC	unsigned char*	当前图像帧C分量的虚拟地址
h Enghla Com	bEnableCorp int	0: 关闭 corp;
bEnableCorp	int	1: 打开 corp;
a Cua n Infa	VencRect	当 corp 打开的时候的 corp 矩
sCropInfo	venekeet	形区域
ian Dia Van	int	isp 对 YUV 数据的噪声评价,
ispPicVar	int	默认不使用
		图像处理识别的 ROI 区域,编
roi_param[4]	VencROIConfig	码器会对这些区域进行 QP 特
		殊调整,仅个别芯片会用到

VencOutputBuffer

名称	VencOutputBuffer	
功能描述	输出图像帧的信息	
属性	类型	描述

nID	int	用来区分不同的 buffer
nPts	long long	当前输出 buffer 的时间戳
nFlag	int	用来标记是否为关键帧
nSize()	. 1.	输出码流的第一部分长度,存
nsizeu	unsigned int	储的数据在地址 pData0 中
nSize1	unsigned int	输出码流的第二部分长度,存
		储的数据在地址 pData1 中,
		当 nSize1 = 0 的时候,码流只
		有一部分,不存在第二部分;
pData0	unsigned char*	输出码流的第一部分地址
pData1	unsigned char*	输出码流的第二部分地址
frame_info	FrameInfo	buffer 中的数据所属帧的 QP
	Framemio	和 GOP 信息,用于码率控制

VencAllocateBufferParam

名称	VencAllocateBufferParam	
功能描述	申请图像帧内存的参数	
属性	类型	描述
nBufferNum	unsigned int	申请的图像帧个数;
nSizeY	unsigned int	申请图像帧 Y 分量的大小;
nSizeC	unsigned int	申请图像帧的 C 分量的大小;

VencH264FixQP

名称	VencH264FixQP	
功能描述	固定 QP 参数	
属性	类型	描述
bEnable	int	0:码率控制固定 QP 模式关闭; 1:码率控制估计 QP 模式打开;
nIQp	int	I 帧的 QP (0~51);
nPQp	int	P 帧的 QP (0~51);

VencCyclicIntraRefresh

名称	VencCyclicIntraRefresh	
功能描述	Cyclic Intra Refresh 信息	
属性	类型	描述
bEnable	int	0: 关闭;
облабіе	int	1: 打开;
nBlockNumber	int	一个图像帧划分的区域个数

VencH264Param

名称	VencH264Param

功能描述	H264 参数	
属性	类型	描述
sProfileLevel	VencH264ProfileLevel	Profile 和 level 信息;
bEntropyCodingCABAC	int	0: 熵编码使用 CAVLC; 1: 熵编码使用 CABAC;
sQPRange	VencQPRange	设置 QP 区间;
nFramerate	int	单位为: fps
nBitrate	int	单位为: bps
nMaxKeyInterval	int	关键帧间隔
nCodingMode	VENC_CODING_MODE	可以选择帧编码,还是场编码: VENC_FRAME_CODING VENC_FIELD_CODING

VencROIConfig

2000年	VencROIConfig	
功能描述	ROI 感兴趣区域设置	
属性	类型	描述
bEnable	int	0: 关闭; 1: 打开;
		可使用4个ROI,区域,index
index	int	的值可设为 (0^3) ,来选择这
		四个 ROI 区域;
		通过 nQPoffset 可以设置 QP:
		ROI 区域的 QP 为码率控制产
		生的QP与用户设定的
		nQPoffset 的差;
nQPoffset	int	例如:
		一帧图像使用固定 QP=30;
		nQPoffset = 10;
		那么 ROI 区域的 QP 为:
		30 - 10 = 20;
D	V D	感兴趣区域所表示的矩形区
sRect	VencRect	域

VencH264AspectRatio

名称	VencH264AspectRatio	
功能描述	VUI 扩展选项,对播放视频时的	力显示比例限制
属性	类型	描述
aspect_ratio_idc	unsigned char	一般取值 255,表示启用自定

		义显示比例;
sar_width	unsigned short	显示比例宽度;
sar_height	unsigned short	显示比例高度;

VencH264VideoSignal

名称	VencH264VideoSignal	
功能描述	VUI 扩展选项,对颜色空间控制	IJ
属性	类型	描述
video_format	VENC_VIDEO_FORMAT	视频制式,一般取值5;
full_range_flag	unsigned char	全范围色彩空间标识;
		输入源色彩空间;
		typedef enum {
		RESERVEDO = 0,
		VENC_BT709 = 1,
		RESERVED1 = 2,
ana salaun muimanisa	VENC COLOD SDACE	RESERVED2 = 3,
src_colour_primaries	VENC_COLOR_SPACE	RESERVED3 = 4,
		VENC_BT601 = 5,
	- 1 W	BT601_525 = 6,
		RESERVED4 = 7,
		VENC_YCC = 8,
		} VENC_COLOR_SPACE;
dst_colour_primaries	VENC_COLOR_SPACE	输出图色彩空间;

VencH264SVCSkip

名称	VencH264SVCSkip	
功能描述	时域可伸缩编码及跳帧,不能与插帧混用	
属性	类型	描述
nTemporalSVC	T_LAYER	时域分层数:
		typedef enum {
		$NO_T_SVC = 0$,
		$T_LAYER_2 = 2,$
		$T_LAYER_3 = 3,$
		$T_LAYER_4 = 4$
		} T_LAYER;
nSkipFrame	SKIP_FRAME	跳帧倍数,若 nTemporalSVC
		为 0,则可独立使用;否则没
		意义, 实际跳帧受
		nTempora1SVC 控制;
		typedef enum {

全志科技版权所有, 侵权必究

•
$NO_SKIP = 0$,
$SKIP_2 = 2$,
$SKIP_4 = 4$,
$SKIP_8 = 8$
} SKIP_FRAME;

VENC_INDEXTYPE

对函数 VideoEncGetParameter 与 VideoEncSetParameter 中用到的枚举变量 VENC_INDEXTYPE 进行说明:

VENC_INDEXTYPE	引用的数据类型	描述
VENC_IndexParamBitrate	int	单位为: bps
VENC_IndexParamFramerate	int	单位为: fps
VENC_IndexParamMaxKeyInter	int	设置关键帧最大间隔
val		
VENC_IndexParamIfilter	int	I帧滤波开关
VENC_IndexParamRotation	int	设置旋转方向(支持4个方向):
		0: 不旋转;
		90: 旋转 90 度;
		180: 旋转 180 度;
		270: 旋转 270 度;
VENC_IndexParamSliceHeight	int	设置一个 slice 的高度,一帧图
		像可以支持多个 slice, 单位为
		像素,16对齐;
VENC_IndexParamForceKeyFra	int	在编码过程中,可以强制设置下
me		一帧为关键帧
VENC_IndexParamMotionDetec	MotionParam	移动侦测开关
tEnable		
VENC_IndexParamMotionDetec	int	编码一帧结束后,可以使用此接
tStatus		口获取当前图像帧是否有物体
		运动:
		0: 静止;
		1: 移动;
VENC_IndexParamRgb2Yuv	VENC_COLOR_SPACE	颜色空间转换
VENC_IndexParamYuv2Yuv	VENC_YUV2YUV	颜色空间标准转换
VENC_IndexParamROIConfig	VencROIConfig	人眼感兴趣区域增强
VENC_IndexParamStride	int	图片在内存中的行宽值
VENC_IndexParamColorFormat	int (VENC_PIXEL_FMT)	输入编码器数据的颜色格式
VENC_IndexParamSize	VencSize	只读。获取图片输入的宽高
VENC_IndexParamSetVbvSize	unsigned int	预设申请 VBV (编码输出) buffer
		大小
VENC_IndexParamVbvInfo	VbvInfo	只读。获取 VBV (编码输出)

		buffer 信息
VENC_IndexParamSuperFrameC	VencSuperFrameConfig	超大帧重编码处理设置
onfig		
VENC_IndexParamSetPSkip	unsigned int	插帧开关
VENC_IndexParamResetEnc	int	复位编码器输入输出 buffer, I
		帧 QP 更改
VENC_IndexParamH264QPRange	VencQPRange	设置 QP 波动范围
VENC_IndexParamH264Profile	VencProfileLevel	nProfile 和 nLevel 取值参考
Level		vencoder.h
VENC_IndexParamH264Entropy	int	设置熵编码格式。0: CAVLC;
CodingCABAC		1:CABAC
VENC_IndexParamH264CyclicI	VencCyclicIntraRefre	循环帧内刷新,网络码流使用。
ntraRefresh	sh	
VENC_IndexParamH264FixQP	VencH264FixQP	不使用码率控制,固定 QP
VENC_IndexParamH264SVCSkip	VencH264SVCSkip	此选项不能与插帧选项混用。时
		域 SVC 和跳帧, 时域分层取值
		0/2/3/4 。 跳 帧 倍 数 取 值
		0/2/4/8。若时域分层不为 0,则
		跳帧倍数受时域分层控制,对其
		取值无意义; 否则跳帧倍数可独
		立使用。
VENC_IndexParamH264AspectR	VencH264AspectRatio	VUI 扩展选项。限制视频播放时
atio		的显示比例。一般把
		aspect_ratio_idc 设为 255, 显
		示比例取 sar_width 和
		sar_height 的比值。
VENC_IndexParamH264FastEnc	unsigned int	快速编码开关,简化编码操作,
		编码速度加快,但图像质量和压
		缩率下降。
VENC_IndexParamH264VideoSi	VencH264VideoSignal	VUI 扩展选项。选择编码颜色空
gnal		间。video_format 一般为 5。
		src_colour_primaries 取 5,
		dst_colour_primaries 取 8,颜
		色最明亮;两者取值相反,效果
		次之;其它取值颜色最灰暗。
VENC_IndexParamH264IQpOffs	int	I 帧 QP 偏移值
et		
VENC_IndexParamJpegEncMode	int	JPEG 编码方式,若编单幅图片,
		设为 0; 若编 MJPEG 序列, 设为
WDMO T 1 D T W.1 C.	и т и т о т	
VENC_IndexParamJpegVideoSi	VencJpegVideoSignal	颜色空间选择,同 H264 类似选
gnal		项。
VENC_IndexParamJpegQuality	int	(0 [~] 100)值越大,编码质量越
		高

VENC_IndexParamJpegExifInf	EXIFInfo	JPEG 图片的描述信息,包括快门
o		速度,曝光时间,GPS 信息,缩
		略图信息等

