Generating Random WMC Instances An Empirical Analysis with Varying Primal Treewidth

Paulius Dilkas

National University of Singapore

30th May 2024

Which Algorithm Is Better? It Depends on the Data

The runtime data is from Dilkas and Belle (2021): various Bayesian networks encoded using the approach by Darwiche (2002)

The Problem: Weighted Model Counting (WMC)

- A generalisation of propositional model counting (#SAT)
- Applications:
 - graphical models
 - probabilistic programming
 - neuro-symbolic Al
- WMC algorithms use:
 - dynamic programming
 - knowledge compilation
 - SAT solvers

Example

$$w(x) = 0.3, \ w(\neg x) = 0.7,$$

 $w(y) = 0.2, \ w(\neg y) = 0.8$

$$WMC(x \lor y) = w(x)w(y) + w(x)w(\neg y) + w(\neg x)w(y) = 0.44$$

(Some of the) WMC Algorithms

- CACHET (Sang et al. 2004)
 - a SAT solver with clause learning and component caching
- C2D (Darwiche 2004)
 - knowledge compilation to d-DNNF
- D4 (Lagniez and Marquis 2017)
 - knowledge compilation to decision-DNNF
- MINIC2D (Oztok and Darwiche 2015)
 - knowledge compilation to decision-SDDs
- DPMC (Dudek, Phan and Vardi 2020)
 - dynamic programming with ADDs and tree decomposition based planning

Q: Why isn't SharpSAT-TD included in the experiments?

A: Because I started setting up these experiments eight days after the SharpSAT-TD paper came out

- Q: Why isn't SharpSAT-TD included in the experiments?
- A: Because I started setting up these experiments eight days after the SharpSAT-TD paper came out
- Q: Why isn't GANAK included in the experiments?
- A: Because it's easy to argue that probabilistic algorithms are out of scope (and I had lots of algorithms already)

- Q: Why isn't SharpSAT-TD included in the experiments?
- A: Because I started setting up these experiments eight days after the SharpSAT-TD paper came out
- Q: Why isn't GANAK included in the experiments?
- A: Because it's easy to argue that probabilistic algorithms are out of scope (and I had lots of algorithms already)
- Q: Why am I giving a talk about this now?

Negation normal form: ¬ is only applied to variables

Negation normal form: ¬ is only applied to variables

Decomposability: for every $\alpha \wedge \beta$, $Vars(\alpha) \cap Vars(\beta) = \emptyset$

Negation normal form: ¬ is only applied to variables

Decomposability: for every $\alpha \wedge \beta$,

 $\mathsf{Vars}(\alpha) \cap \mathsf{Vars}(\beta) = \emptyset$

Determinism: for every $\alpha \vee \beta$, $\alpha \wedge \beta \equiv \bot$

Negation normal form: ¬ is only applied to variables

Decomposability: for every $\alpha \wedge \beta$,

 $\mathsf{Vars}(\alpha) \cap \mathsf{Vars}(\beta) = \emptyset$

Determinism: for every $\alpha \vee \beta$, $\alpha \wedge \beta \equiv \bot$

Decision: all disjunctions are of the

form

A formula in CNF:

$$\phi = \frac{(x_1 \lor x_2) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_4) \land (x_3 \lor x_5) \land (x_4 \lor x_5 \lor x_6)}{\land (x_5 \lor x_6 \lor x_7) \land (x_6 \lor x_7)}$$

A formula in CNF:

$$\phi = \frac{(x_1 \lor x_2) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_4) \land (x_3 \lor x_5) \land (x_4 \lor x_5 \lor x_6)}{\land (x_5 \lor x_6 \lor x_7) \land (x_6 \lor x_7)}$$

The primal graph of ϕ is:

A formula in CNF:

$$\phi = \frac{(x_1 \lor x_2) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_4) \land (x_3 \lor x_5) \land (x_4 \lor x_5 \lor x_6)}{\land (x_5 \lor x_6 \lor x_7) \land (x_6 \lor x_7)}$$

The primal graph of ϕ is:

Its minimum-width tree decomposition:

A formula in CNF:

$$\phi = \frac{(x_1 \lor x_2) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_4) \land (x_3 \lor x_5) \land (x_4 \lor x_5 \lor x_6)}{\land (x_5 \lor x_6 \lor x_7) \land (x_6 \lor x_7)}$$

The primal graph of ϕ is:

 \therefore the primal treewidth of ϕ is 2

Its minimum-width tree decomposition:

Formally...

Definition (Robertson and Seymour 1984)

A tree decomposition of a graph G is a pair (T, χ) , where T is a tree and $\chi \colon \mathcal{V}(T) \to 2^{\mathcal{V}(G)}$ is a labelling function, with the following properties:

- $\bigcup_{t\in\mathcal{V}(T)}\chi(t)=\mathcal{V}(G)$;
- for every edge $e \in \mathcal{E}(G)$, there is $t \in \mathcal{V}(T)$ s.t. e has both endpoints in $\chi(t)$;
- for all $t, t', t'' \in \mathcal{V}(T)$, if t' is on the path between t and t'', then $\chi(t) \cap \chi(t'') \subseteq \chi(t')$.

The width of tree decomposition (T, χ) is $\max_{t \in \mathcal{V}(T)} |\chi(t)| - 1$. The treewidth of graph G is the smallest w such that G has a tree decomposition of width w.

The Parameterised Complexity of WMC Algorithms

Let n be the number of variables and m be the number of clauses.

- Component caching (used in CACHET) is $2^{\mathcal{O}(w)}n^{\mathcal{O}(1)}$, where w is the branchwidth of the underlying hypergraph (Bacchus, Dalmao and Pitassi 2009)
 - Branchwidth is within a constant factor of primal treewidth
- C2D is based on an algorithm, which is $\mathcal{O}(2^w mw)$, where w is at most primal treewidth (Darwiche 2001; Darwiche 2004)
- DPMC can be shown to be $\mathcal{O}(4^w mn)$, where w is an upper bound on primal treewidth

Generating Random WMC Instances: The Algorithm

```
\phi \leftarrow \text{empty CNF formula};
 G \leftarrow \text{empty graph};
for i \leftarrow 1 to m do \leftarrow
                                                                                                                                                                                                                                                                                                                                        ----- the number of
                               X \leftarrow \emptyset:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   clauses
                             for i \leftarrow 1 to k do \leftarrow
                                                            x \leftarrow \text{newVariable}(X, G); \leftarrow 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              clause width
                                                           \mathcal{V}(G) \leftarrow \mathcal{V}(G) \cup \{x\};
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   a variable
                                                          \mathcal{E}(G) \leftarrow \mathcal{E}(G) \cup \{\{x,y\} \mid y \in X\};
                                                                                                                                                                                                                                                                                                                                                                                                                                     ____ a (fair) coin flip
                                         X \leftarrow X \cup \{x\};
                               \phi \leftarrow \phi \cup \{\{I \leftarrow \mathcal{U}\{x, \neg x\} \mid x \in X\}\}\}
```

How to Pick a Variable

Parameter $\rho \in [0,1]$ biases the probability distribution towards adding variables that would introduce fewer new edges.

Function newVariable (set of variables X, primal graph G):

```
\begin{split} & N \leftarrow \{\, e \in \mathcal{E}(G) \mid |e \cap X| = 1 \,\}; \\ & \text{if } N = \emptyset \text{ then return } x \leadsto \mathcal{U}(\{\, x_1, x_2, \ldots, x_n \,\} \setminus X); \\ & \text{return} \\ & x \leadsto \left( \{\, x_1, x_2, \ldots, x_n \,\} \setminus X, y \mapsto \frac{1-\rho}{n-|X|} + \rho \frac{|\{\, z \in X \mid \{\, y, z\,\} \in \mathcal{E}(G)\,\}|}{|N|} \,\right); \end{split}
```

From Random SAT to Random WMC

We introduce parameter $\rho \in [0,1]$ that biases the probability distribution towards adding variables that would introduce fewer new edges to the primal graph.

Example partially-filled formula:

$$(\neg x_5 \lor x_2 \lor x_1) \land (x_5 \lor ?)$$

Its primal graph:

The probability distribution for the next variable

Base probability of each variable being chosen:

$$\frac{1-\rho}{4}$$

Both x_1 and x_2 get a bonus probability of $\rho/2$ for each being the endpoint of one out of the two neighbourhood edges.

The Relationship Between ρ and Primal Treewidth

Experiment 1 (Validation)

- Set the number of variables to 100
- Consider a geometric sequence of 11 densities from 0.4 to 14.1
- Let ρ range from zero to one in steps of 0.01
- Generate ten 2-, 3-, 4-, and 5-CNF formulas

The Relationship Between ρ and Primal Treewidth

Density, Primal Treewidth, and Runtime

Experiment 2 (The Main One)

- Set the number of variables to 70
- Consider densities ranging from 1 to 4.3 in steps of 0.3
- Let ρ range from 0 to 0.5 in steps of 0.01
- Generate one 3-CNF formula

Peak Hardness w.r.t. Density

Let μ denote the density, i.e., the number of clauses divided by the number of variables.

- CACHET is known to peak at $\mu = 1.8$ (Sang et al. 2004)
- Bayardo Jr. and Pehoushek (2000) show some #SAT algorithms to peak at $\mu=1.2$ and $\mu=1.9$

Peak Hardness w.r.t. Density

Let μ denote the density, i.e., the number of clauses divided by the number of variables.

- CACHET is known to peak at $\mu = 1.8$ (Sang et al. 2004)
- Bayardo Jr. and Pehoushek (2000) show some #SAT algorithms to peak at $\mu=1.2$ and $\mu=1.9$
- In our experiments:
 - DPMC peaks at $\mu = 2.2$
 - ullet all other algorithms peak at $\mu=1.9$

Peak Hardness w.r.t. Density (when $\rho = 0$)

Hardness w.r.t. Primal Treewidth (when $\mu = 1.9$)

Is The Relationship Exponential: Two Approaches

Linear Regression

We fit the model $\ln t \sim \alpha w + \beta$, i.e., $t \sim e^{\beta} (e^{\alpha})^{w}$, where t is runtime, and w is primal treewidth

Empirical Scaling Analyzer (ESA) v2 (Pushak and Hoos 2020)

Prepare a list of hypotheses about scalability, e.g.:

```
exponential: t \sim \alpha \beta^{w}, polynomial: t \sim \alpha w^{\beta}
```

- 2 Use 30 % of the data with the largest values of w for testing
- For each hypothesis, ESA produces:
 - estimates of parameter values,
 - support loss, and
 - challenge loss

How Well Does Linear Regression Explain the Data?

4.3 -	0.62	0.33	1	0.94	0.53
4 -		0.49	0	0.97	0.43
3.7 -	0.57	0.71	0.83	0.94	0.18
3.4 -	0.47	0.85	0.8	0.97	0.53
3.1 -	0.88	0.92	0.91	0.91	0.9
3 2.8 -	0.97	0.96	0.98	0.98	0.95
2.5 -	0.98	0.98	0.97	1	0.98
2.2 -	0.99	0.98	0.98	0.99	0.98
1.9 -	0.98	0.99	0.98	0.99	0.98
1.6 -	0.99	0.99	0.98	1	0.96
1.3 -	0.98	1	0.99	0.99	0.9
1 -	0.91	0.99	0.99	0.87	0.79
	c2d	CACHET	D4	DPMC	MINIC2D

The Base of the Exponential

Does Real Data Confirm Our Observations?

Bonus 1: How DPMC Reacts to Redundancy in Weights

Let ϵ be the proportion of variables x s.t. $w(x) = w(\neg x) = 0.5$

Bonus 2: 0/1 Weights Make Counting Easy

Summary

- This work introduced a random model for WMC instances with a parameter that indirectly controls primal treewidth
- Observations:
 - All algorithms scale exponentially w.r.t. primal treewidth
 - The running time of DPMC:
 - peaks at a higher density
 - and scales worse w.r.t. primal treewidth
- Future work:
 - ullet A theoretical relationship between ho and primal treewidth
 - Non-k-CNF instances
 - Algorithm portfolios for WMC

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

Definition (Bischl et al. 2016)

