การออกแบบแผนผังสำหรับรองรับการย้ายแขนกลเพื่อเพิ่มประสิทธิภาพ โดยรวมของสายการผลิตตัวถัง

(Designing Line Layout to Accommodate Robot Relocation for Increasing Overall Effectiveness of Body Line)

ความเป็นมาและความสำคัญ

อันเนื่องมาจากในปัจจุบัน แผนก Production Engineering ฝ่ายการดูแล และออกแบบการผลิต ตัวถังรถยนต์ประเภทรถกระบะส่วนบุคคล ของบริษัท มิตซูบิชิ มอเตอร์ส (ประเทศไทย) จำกัด ได้มีแผนใน การขนย้ายตำแหน่งของแขนกลจากสายการผลิตรถยนต์ที่มีการยุติ เพื่อนำกลับมาใช้ใหม่ในสายการผลิต ปัจจุบันที่มีการใช้แรงงานคนเป็นจำนวนมาก โดยมีจุดประสงค์เพื่อการนำมาใช้ทดแทนแรงงานมนุษย์ พร้อม ด้วยการเพิ่มประสิทธิภาพด้านต้นทุนและเวลาที่เกิดจากการทำงาน และลดความผิดพลาดที่ไม่สามารถคาด เดาได้อันเกิดมาจากผู้ทำงานเอง ด้วยเหตุนี้ ทางผู้จัดทำจึงได้รับมอบหมายให้ช่วยออกแบบรูปแบบการวาง การแบ่งภาระงานในแต่ละสถานี การจัดสรรเวลาให้เป็นไปตามเวลาที่กำหนด และปรับปรุงสถานีที่เคยเป็น สายการผลิตด้วยแรงงานมนุษย์ให้มีความเป็นอัตโนมัติมากยิ่งขึ้น พร้อมทั้งการประเมินราคาการลงทุน เบื้องตัน เป็นตัน ซึ่งแขนกลที่ทำการขนย้ายเป็นที่เรียบร้อยในปัจจุบันมีจำนวนทั้งสิ้น 15 ตัว โดยจะนำไป ติดตั้งทั้งหมด 2 ไลน์การผลิต แบ่งเป็น 11 สถานีย่อย

ขอบเขตุของโปรเจค

- 1. การเรียนรู้หลักการทำงานของแขนกล, Jig fixture, เครื่องมือที่จะนำมาติดตั้งกับแขนกล (เครื่องมือ สำหรับการทำ Spot welding, เครื่องมือการขนย้ายชิ้นส่วนระหว่างสถานี) และกระบวนการการ เบิกของบประมาณ เป็นต้น
- 2. การเรียนรู้แผนลำดับการผลิต (Process Plan) ในแต่ละสถานี

- 3. การออกแบบ Layout การวางแขนกลให้สอดคล้องกับรูปแบบของลำดับการทำในแต่ละสถานี เบื้องต้น และทำการประเมินราคาที่ต้องจ่ายเพื่อประเมินระยะเวลาคืนทุน [Internal Return Rate (IRR) >= 20%]
- 4. การจ่ายหน้าที่ให้แขนกลแต่ละตัว (การทำ Spot Welding, การขนย้ายชิ้นส่วนระหว่างสถานี เป็นต้น) พร้อมด้วยการดุลงาน (Job Balancing) เพื่อให้เวลาทำงาน (cycle Time) เป็นไปตามเวลา ที่กำหนด (Takt Time)
- 5. การทำ Simulation เพื่อยืนยันความเป็นไปได้ ด้วยโปรแกรม Roboguide เมื่อได้วิดีโอยืนยันความ เป็นไปได้ จึงถือเป็นอันสิ้นสุดของโปรเจค

ขั้นตอนการดำเนินงาน

โดยในปัจจุบัน (10 กรกฎาคม 2567) สถานะโดยรวมมีความคืบหน้าไปแล้ว 58.33% โดยมีการ ดำเนินการวาง Layout เบื้องต้น มีการประเมินต้นทุน และผลตอบแทนการลงทุนเป็นที่เรียบร้อยแล้ว หลังจากรอการได้รับการอนุมัติจาก General Manager จะมีการแบ่งโหลดงานตามแผนต่อไป

ประโยชน์ที่คาดว่าจะได้รับ

• ด้านผู้จัดทำ

ผู้จัดทำสามารถเข้าใจในศาสตร์ของการผลิตรถยนต์และการทำงานร่วมกันในบริษัท อีกทั้ง ความรู้ในศาสตร์ที่ผู้จัดทำไม่ทราบมาก่อน ทั้งเรื่องการประเมินราคาการก่อสร้าง การตั้งไลน์การ ผลิต จากทางผู้เชี่ยวชาญ เพื่อใช้ในการต่อยอดไปใช้ในการวิเคราะห์ และแก้ไขปัญหาในอนาคต ต่อไป

ด้านสถานประกอบการ

สถานประกอบการสามารถลดต้นทุน อันเนื่องมาจากการลดแรงงานคนหน้าสายการผลิต และไม่ต้องออกแบบสายการผลิตโดยใช้วิศวกรพนักงานประจำที่อาจต้องใช้เวลาศึกษามาก หาก จะจ้างบริษัทภายนอกก็จะใช้เงินทุนมหาศาล ทั้งนี้ การใช้การ simulation แขนกลก่อนการติดตั้งจะ ช่วยลดความเสียหายที่อาจจะเกิดขึ้นได้ในอนาคต

ระบบที่เกี่ยวข้อง

Hardware

- 1. Fanuc Robotic arm (R-2000iC/210F etc.)
- 2. On-Field Sensors

3. JIG & Fixture

Software

- 1. GStarCAD (สำหรับการวาง Layout ไลน์การผลิต)
- 2. Roboguide (สำหรับการ simulation)
- 3. MS Excel (สำหรับคำนวณการประเมินราคา)

เนื้อหาวิชาที่เกี่ยวข้อง

- 1. Automotive Engineering (Mechanical Engineering)
- 2. Automatic Control (Mechanical Engineering)
- 3. Manufacturing Processes (Mechanical Engineering)
- 4. Production Planning and Control (Industrial Engineering)
- 5. Basic Sensors and Measurement (Instrument Engineering)
- 6. Mechanical Drawing (Mechanical Engineering)

บริษัทที่ร่วมดำเนินงาน

บริษัท มิตซูบิชิ มอเตอร์ส (ประเทศไทย) จำกัด