IA: concepts fondamentaux

- ✓ AI/ML/DL
- ✓ Différents types d'apprentissage
- ✓ Classification vs Régression
- ✓ Les données
 - ✓ Représentation
 - ✓ Prétraitement
 - ✓ Entraînement/test
- ✓ Evaluation
- ✓ Principe général de l'apprentissage

Françoise Bouvet

francoise.bouvet@ijclab.in2p3.fr

Intelligence artificielle: Simulation du comportement du cerveau

Machine Learning Apprentissage Automatique: Approche statistique de l'IA

Clustering

SVM

Decision Tree

Régression

Deep Learning Apprentissage Profond ~ Réseaux de Neurones

ANN

CNN

RNN

SVM: Support Vector Machine

ANN: Artificial Neural Network

CNN: Convolution NN **RNN: Recurrent NN**

Identifier le problème

Types d'apprentissage (1)

Apprentissage supervisé

Les données sont **étiquetées**, l'algorithme apprend à **prédire**

- Classification
- Segmentation
- Génération de texte, d'images, ...

Fleur

Animal

Apprentissage non supervisé

Les données ne sont **pas étiquetées**, l'algorithme apprend leur **structure** inhérente

- Détection d'anomalies
- Clustering

Types d'apprentissage (2)

Apprentissage par renforcement

Basé sur un cycle **expérience / récompense** ; améliore les performances à chaque itération

- Robot
- Réseaux sociaux (like, temps passé)
- Jeux vidéo

Apprentissage semi-supervisé

Seules certaines données sont étiquetées

Idée : Utiliser les données non annotées pour compléter l'apprentissage supervisé (coût de l'annotation)

Co-apprentissage

• Etiquetage (texte, image)

Apprentissage supervisé / non supervisé

Classification / Régression

Régression

La valeur en sortie est **continue** (nombre réel)

Classification

La valeur en sortie est discrète (catégorie)

Il est **essentiel** d'identifier le problème car de nombreux algorithmes fonctionnent dans les deux cas mais avec des paramètres différents

Classification

Binaire (2 classes)

- Oui/ non
- Bénin/malin
- ...

Régression logistique : classification à 2 classes

Multi-classes

- Objets
- Pays
- Pathologie
- ...

Labels ordonnés (ranking)

- Taille d'en vêtement
- Classe d'âge
- ...

Prétraitement des données : test / apprentissage

Le modèle ne doit jamais être évalué sur les données utilisées pour le construire.

Utiliser les mêmes données pour entrainer et pour tester un modèle est une erreur méthodologique.

L'ensemble de données est divisé en 2 sous-ensembles.

Sur-apprentissage

Prétraitement des données : encodage/normalisation

Le prétraitement des données est essentiel pour beaucoup de modèles.

Données catégorielles

- Encodage ordinal
 - > Attribution d'une valeur entière à chaque classe
- Encodage « One-hot »
 - la catégorie est représentée par un vecteur de 0, sauf une valeur à 1.

Données continues

- Centrage et normalisation
- Discrétisation

Ensemble de données : principaux défis

- 1. Quantité insuffisante de données
- 2. Données non representatives (biais d'échantillonnage)
- 3. Données de piètre qualité
 - Bruitées
 - Incomplètes
- 4. Données inutiles ou non corrélées avec le problème
- 5. Classes non équilibrées (imbalanced classes)
- Des données inadaptées peuvent conduire à du sur- ou sous- entraînement

Evaluation

Définir un critère d'évaluation du modèle est essentiel

- Après l'apprentissage : évaluation
- Pendant l'apprentissage : minimisation de l'erreur
- Le critère depend de la classe de problème
 - Régression
 - Classification
- Le critère peut être modifié pour s'adapter au problème à traiter
 - Classes non balancées (imbalanced classes)
 - Information a priori

Evaluation - Régression

Mean Squarred Error (MSE)

- Pénalise les grandes valeurs -> sensible aux valeurs aberrantes (outliers)
- Facilement différentiable

Score R²

- Utilisé pour comparer différents modèles
- Aucune information sur l'erreur moyenne du modèle

$$ext{MSE}(y, \hat{y}) = \frac{1}{N_{ ext{samples}}} \sum_{i=0}^{N_{ ext{samples}-1}} (y_i - \hat{y}_i)^2$$

$$R^{2}(y,|\hat{y}) = 1 - \frac{\sum_{i=0}^{N_{\text{samples}-1}} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=0}^{N_{\text{samples}-1}} (y_{i} - \bar{y})^{2}}$$

Evaluation – Classification binaire (1)

Précision (accuracy)

$$\operatorname{accuracy}(y, \hat{y}) = \frac{1}{N_{\text{samples}}} \sum_{i=0}^{N_{\text{samples}}-1} 1(y_i = \hat{y}_i) = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{FP} + \text{TP} + \text{TN}}$$

False True actual negative Negative Positive False True actual positive Negative Positive predicted negative predicted positive

Accuracy=0.9 dans tous les cas

Evaluation – Classification binaire (2)

Precision

Capacité du modèle à ne pas prévoir négativemement des valeurs positives

$$precision = \frac{TP}{TP + FP}$$

Recall

Capacité du modèle à prédire les valeurs positives

$$recall = \frac{TP}{TP + FN}$$

F1-score

Moyenne harmonique entre la précision et le recall

$$F = 2 \frac{\text{precision} - \text{recall}}{\text{precision} + \text{recall}}$$

Evaluation – Classification binaire (3)

ROC Curve (Receiver Operating Characteristic) Montre les performances du modèle en fonction

du seuil de classification

AUC (Area Under the Curve) Sorte de mesure de la séparabilité du modèle.

Evaluation – Classification multi-classe

Métriques binaires

Les métriques utilisées en classification binaire peuvent être calculées classe par classe.

Matrice de confusion Résumé des prédictions.

Classification d'iris : matrice de confusion

Classification d'iris : matrice de confusion normalisée

Principe général de l'apprentissage

