Podstawy modelowania w języku UML

dr hab. Bożena Woźna-Szcześniak, prof. UJD

Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie

Wykład 5

Plan wykładu

Diagram sekwencji

Diagramy komunikacji

Diagram sekwencji - wprowadzenie I

- Diagram sekwencji (ang. sequence diagram) jest jednym z czterech diagramów interakcji (ang. interaction diagram). Pozostałe to:
 - diagram komunikacji (ang. communication diagram),
 - diagramy czasowe (ang. timing diagram),
 - przeglądowe diagramy interakcji (ang. interaction overview diagrams).
- Diagramy sekwencji posiadają dwa wymiary:
 - wymiar pionowy reprezentuje czas,
 - wymiar poziomy reprezentuje różne obiekty (kolejność obiektów nie ma znaczenia).
- Orientację wymiarów można zmienić, tzn. :
 - wymiar pionowy reprezentuje różne obiekty
 - wymiar poziomy reprezentuje czas.

Diagram sekwencji - wprowadzenie II

- Diagram sekwencji ilustruje kolejność w czasie wysyłania komunikatów pomiędzy różnymi uczestnikami systemu; Uwaga ! nie jest istotna rzeczywista miara czasu.
- Dla systemów zależnych od czasu, czas można reprezentować w pewnej mierzalnej skali.
- Diagramy sekwencji przydatne są do pokazywania uczestników, którzy komunikują się z innymi uczestnikami oraz do pokazywania widomości wywołujacych komunikację.
- Diagramy sekwencji rysuje się dla jednego przypadku użycia, przez co pokazuje się jak ten przypadek realizowany jest przez system.

Diagram sekwencji - uczestnicy i aktorzy I

- Podstawowymi składowymi diagramów sekwencji są uczestnicy wymieniający między sobą komunikaty oraz aktorzy inicjujący komunikację.
- Uczestnicy są zaznaczani w postaci prostokątów z wpisaną wewnątrz nazwą uczestnika komunikacji.
- Aktorzy są zaznaczani tak samo jak w diagramach przypadków użycia.
- Każdy uczestnik posiada <u>przerywaną linię</u> reprezentująca jego *linię życia (czasu)* (ang. lifeline).
- Każdy aktor posiada <u>pionowy słupek</u> reprezentująca jego *linię życia (czasu)*.

Diagram sekwencji - uczestnicy i aktorzy II

Rysunek: Aktor i uczestnik.

Diagram sekwencji - nazwy uczestników I

- 1 Uczestnik nosi nazwę admin, ale nie ma przypisanej klasy.
- 2 Klasa uczestnika nosi nazwę **Administrator**, ale uczestnik nie ma swojej własnej nazwy.
- 3 Uczestnik nosi nazwę admin i utworzony jest na podstawie klasy Administartor.
- 4 Uczestnik jest elementem tablicy o indeksie 2, utworzonej na podstawie klasy **Administartor**.

Diagram sekwencji - robustness diagrams

 Diagram sekwencji może mieć linię życia z symbolem reprezentującym elementy tzw. robustness diagrams: elementy brzegowe (ang. boundary), element sterowania (ang. control) oraz elementów jednostki (ang. entity).

Robustness diagrams I

Diagramy typu robustness są w zasadzie uproszczonymi diagramami komunikacji UML, które wykorzystuje symbole graficzne do reprezentacji:

- aktorów to samo znaczenie co w UML
- elementów brzegowych (ang. boundary elements)
 zwanych również interfejsem reprezentują one elementy
 oprogramowania takie jak: ekrany, raporty, strony HTML,
 lub interfejsy systemowe, które współdziałają z aktorami.
- elementów sterujących (ang. control elements), zwanych również kontrolerami - służą jako spoiwo między elementami brzegowymi i elementami jednostki oraz implementują logikę niezbędną do zarządzania różnych elementów i ich wzajemnych interakcji.

Robustness diagrams II

- elementów jednostki (ang. entity elements) to typy jednostki, które zazwyczaj znajdują się w modelu koncepcyjnym, np. student, lista uzytkowników.
- Więcej infomacji na: http://www.agilemodeling.com/ artifacts/robustnessDiagram.htm

- Komunikaty są reprezentowane jako strzałki łączące linie życia poszczególnych uczestników.
- Rodzaje komunikatów:
 - Komunikaty mogą być synchroniczne (oznaczane przez linie ciągłą zakończoną wypełnionym grotem) i asynchroniczne (oznaczane przez linie ciągłą zakończoną niewypełnionym grotem).
 - Komunikaty mogą być wywołaniem procedury (oznaczenie linia ciągła), powrotem z wywołania procedury (oznaczenie linia przerywana).
- Każdy komunikat wewnątrz interakcji opatrzony jest kolejnym numerem, co pozwala na łatwe śledzenie jej przebiegu

- Cienki prostokąt wzdłuż linii życie oznacza tzw. słupek aktywności.
- Słupek aktywności oznacza wystąpienie komunikacji.

 Komunikat typu self message lub recursion może reprezentować fakt wywołania jednej metody przez inną metodę należącą do tego samego obiektu, lub rekurencyjne wywołanie pewnej operacji.

Diagram sekwencji - komunikaty zagubione i odnalezione

- Komunikaty zagubione (ang. lost messages) komunikaty, które albo zastały wysłane i nie dotarły do adresata, albo zostały wysłane do odbiorcy, który nie jest pokazany na bieżącym diagramie.
- Komunikaty odnalezione (ang. found messages) komunikaty wysłane przez nieznanego nadawcę lub przez nadawcę, który nie jest pokazany na bieżącym diagramie.

Diagram sekwencji

- Uczestnicy mogą być tworzeni lub niszczeni przez innego uczestnika.
- Linia życia zakończona symbolem krzyża reprezentuje zatrzymaną linię życia danego uczestnika.
- Uczestnik pokazany na poziomie słupka aktywności należącego do linii życia innego uczestnika, został przez tego uczestnika utworzony.
- Poniższy diagram pokazuje obiekt tworzony i niszczony.

Diagram sekwencji - czas

- Domyślnie komunikaty ilustrowane są przy pomocy linii poziomej.
- Podczas modelowania systemów czasu rzeczywistego, czy też procesów biznesowych, ważne jest, aby wziąć pod uwagę czas potrzebny do wykonywania czynności.
- Komunikat z ograniczeniami czasowymi reprezentowany jest przez linię pochyłą.

Diagram sekwencji - bloki I

- **Blok** definiuje grupę komunikatów wspólnie posiadającą pewną właściwość.
- Bloki obejmuje się prostokątem, w którego lewym górnym narożniku, w pięciokącie umieszcza się słowo kluczowe lub opis określający znaczenie danego bloku, tzw. operator interakcji:
 - alt (od alternative) reprezentuje instrukcję if-else; warunek umieszcza się wewnątrz bloku w nawiasach kwadratowych
 - **opt** (od optional) reprezentuje instrukcję *if* (bez else)
 - break wykonanie fragmentu i zakończenie interakcji
 - par (od parallel) nakazujący wykonać operacje równolegle

Diagram sekwencji - bloki II

- seq (od weak sequencing) zamyka szereg sekwencji, dla których wszystkie komunikaty muszą być przetwarzane w danym segmencie zanim następny fragment diagramu może się wykonać;
- strict (od strict sequencing) zamyka szereg komunikatów, które muszą być przetwarzane w podanej kolejności.
- neg (od negative) zamyka nieprawidłową serię wiadomości.
- critical oznacza obszar krytyczny
- ignore/consider ignore(komunikat1, komunikat2, ...)
 oznacza, że na diagramie nie pokazano wymienionych
 komunikatów, choć mogą wystąpić. Consider =
 odwrotnie

Diagram sekwencji - bloki III

 loop - definiuje pętlę typu for (o określonej z góry liczbie iteracji) lub while (wykonywanej dopóki pewien warunek jest prawdziwy)

Diagram sekwencji - niezmiennik/kontynuacja

- Niezmiennik jest warunkiem umieszczonym na linii życie i musi być spełniony w czasie wykonywania.
- Niezmiennik jest przedstawiony jako prostokąt o półokrągłych końcach.
- Kontynuacja ma ten sam zapis jak niezmiennik, ale jest używana w połączeniu z blokami i może rozciągać się na więcej niż jedną linię życie.

Diagram sekwencji- częściowa dekompozycja

- Częściowa dekompozycja (and. part decomposition) oznacza, że uczestnik może mieć więcej niż jedną linię życia.
- Częściowa dekompozycja pozwala na przesyłanie wiadomości między i wewnątrz uczestnikami.

Diagram sekwencji- bramki

- Brama jest punktem łączenia komunikatów wewnątrz bloku z komunikatami poza blokiem.
- Bramka oznaczana jest przez mały kwadrat na ramie bloków.
- Bramki działają jak off-strony do diagramów sekwencji, reprezentujących źródło komunikatów przychodzących lub cel komunikatów wychodzących.

Diagram sekwencji a diagramy aktywności

- Diagram aktywności opisuje co będzie robione, ale nie wskazuje realizatora.
- Diagram sekwencji wskazuje realizatora zadania i opisuje współpracę realizotra zadania z otoczeniem podczas wykonywania danego zadania.

Diagramy komunikacji

- Diagram komunikacji (ang. communication diagram), dawniej nazywany diagramem współpracy (ang. collaboration diagram), jest jednym z czterech diagramów interakcji (ang. interaction diagram).
- Diagram komunikacji pokazuje informacje podobne do tych co diagram sekwencji, ale jego głównym celem jest ilustracja relacji pomiędzy uczestnikami komunikacji.
- Elementy diagramu komunikacji:
 - uczestnicy (aktorzy, obiekty, klasy biorące), nazywani również *lifelines*, ale nie posiadają pionowych linii życia, tylko same "głowy".
 - asocjacje główny związek pomiędzy uczestnikami, reprezentowany przez linie łączące uczestników
 - komunikaty realizacja interakcji, opisywane etykietowanymi krótkimi strzałkami (strzałka powinna wskazywać kierunek przepływu komunikatu.)

Diagramy komunikacji - przykład

Diagramy komunikacji - przykład

Diagramy komunikacji - nazwy uczestników

Diagramy komunikacji - modelowanie współbeżności

• Instancja klasy A wysyła komunikat *rysuj()* jednocześnie (współbieżnie) do instancji klasy B i instancji klasy C.

Diagramy komunikacji - modelowanie komunikatów z ograniczeniami

 Instancja klasy A wysyła komunikat rysuj() jednocześnie (współbieżnie) do instancji klasy B i instancji klasy C, jeśli x > y.

Diagramy komunikacji - modelowanie komunikatów z ograniczeniami

• Wprowadzenie ograniczeń w VP:

Diagramy komunikacji - modelowanie komunikatów z iteracją

Komunikat szukaj() będzie wykonany nrazy

Diagramy komunikacji I

- Przy pomocy diagramiu komunikacji można modelować podział systemu na komponenty. Służą do tego tzw. swimlanes.
- Kolejny slajd pokazuje system oparcji transferu pieniędzy, który podzielony jest na dwa podsystemy: Client oraz Main frame.
- Kroki do powstania diagramiu komunikacji dla oparcji transferu pieniędzy:
 - Aby utworzyć diagram komunikacji, wybierz z menu Diagram > New.
 - W oknie New Diagram, wybierz Communication
 Diagram i zatwierdź z nazwą Transfer Money.
 - Dodaj dwie swimlanes, aby zamodelować podział systemu na aplikację klienta Client oraz system po stronie banku Main frame.

Diagramy komunikacji II

- Po stronie klienta utwórz aktora o nazwie User.
- *User* kontaktuje się z systemem poprzez swoje konto internetowe *account page*.
- Kontakt *Usera* z account page jest modelowany poprzez wysłanie komunikatu (Message -> LifeLine) z opisem visit.
- Konto internetowe skieruje wniosek użytkownika o przekazanie pieniędzy do systemu bankowego do zatwierdzania i realizacji poprzez moduł *Transaction*, reprezentowany jako uczestnik.
- komunikat wysłany od Account Page do Transaction to transfer (targetAccount, amount).

Diagramy komunikacji III

- Proces transferu pieniędzy polega na wypłacanie pieniędzy z konta użytkownika, a następnie wplaceniu tych pieniędzy na konto docelowe. Zanim ta operacja zostanie wykonana, musimy mieć pewność, że na koncie użytkownika jest wystarczająco dużo pieniędzy.
- Aby zamodleować powyższą sytuację, tworzymy uczestnika po stronie systemu bankowego o nazwie *User* Account i wysyłamy do niego od uczestnika *Transaction* komunikat: hasBalance (amount): boolean.
- Gdy saldo konta użytkawnika zostanie sprawdzone, możemy wypłacić pieniądze z jego konta. Można to zamodelować wysyłając komunikat od *Transaction* do *User Accoun* o treści withdraw (amount).

Diagramy komunikacji IV

- Aby zamodelować wpłacanie pieniędzy na konto docelowe, można utworzyć uczestnika Target Account i wysłać do niego komunikat credit (amount) od uczestnika Transaction.
- Any zamodelować w systemie informacje o zrealizowanej tranzakcji, uczestnik Transaction może wysłać komunikat do siebie o treści dispose.
- Na koniec, aby poinformować użytkownika, że transakcja jest zakończona, wysyłamy komunikat displayResult() od uczestnika Transaction do uczestnika Account Page.

Diagramy komunikacji - operacja transferu pieniędzy online

Diagram powstały na podstawie tutorialu: http://www.visual-paradigm.com/tutorials/communicationdiagram.jsp

Diagramy komunikacji

Źródło:http://www.uml-diagrams.org/communication-diagrams.html

Różnice między diagramami komunikacji a sekwencji

- Diagramów sekwencji używa się, gdy zainteresowani jesteśmy głównie przepływem komunikatów w danej interakcji.
- Diagramów komunikatów używa się, gdy chcemy się skoncentrować głownie na połączeniach pomiędzy uczestnikami danej interakcji.