GUARDIAN TRANSACTION WITH AI POWERED CREDIT CARD FRAUD DETECTION & PREVENTION

program

```
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
import joblib
# === Ensure required directories exist ===
os.makedirs("model", exist_ok=True)
os.makedirs("data", exist_ok=True)
# === Load dataset ===
DATA PATH = 'data/creditcard.csv'
if not os.path.exists(DATA_PATH):
  raise FileNotFoundError(
   f"\n X Dataset not found at '{DATA_PATH}'.\n"
   " * Please download 'creditcard.csv' from:\n"
   " https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud\n"
   "and place it inside the 'data/' folder."
 )
# Load dataset
df = pd.read_csv(DATA_PATH)
```

```
# === Preprocessing ===
X = df.drop(['Class'], axis=1)
y = df['Class']
# === Split the data ===
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42, stratify=y
)
# === Train the model ===
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# === Evaluate the model ===
y_pred = model.predict(X_test)
print("\n=== Model Evaluation ===")
print(classification_report(y_test, y_pred, zero_division=0))
# === Save the model ===
MODEL_PATH = 'model/fraud_model.pkl'
joblib.dump(model, MODEL_PATH)
# === Prediction function ===
def predict_transaction(data):
  Predict if a transaction is fraudulent.
  :param data: List of 30 numerical features
  :return: Tuple (prediction, probability)
  .....
  if len(data) != 30:
   raise ValueError(" X Input must have exactly 30 features.") if not
os.path.exists(MODEL_PATH):
    raise FileNotFoundError("Trained model not found at 'model/fraud_model.pkl:")
```

```
model = joblib.load(MODEL_PATH)
 data_array = np.array(data).reshape(1, -1)
 prediction = model.predict(data_array)[0]
 probability = model.predict_proba(data_array)[0][1]
 return int(prediction), round(probability, 4)
# === Simulate a transaction ===
def simulate_transaction():
 print("\n=== Simulating Transaction ===")
 sample_transaction = [0.0] * 30 # Dummy input, replace with real values if needed
 try:
   result, prob = predict_transaction(sample_transaction)
   status = "FRAUDULENT" if result else "LEGITIMATE"
   print(f" Prediction: {status} | Representation of Fraud: {prob:.2f}")
   if result == 1:
     print(" 👗 ALERT: Fraud detected. Transaction blocked.")
   else:
     print(" <a>Transaction approved.")</a>
 except Exception as e:
   print(f" \times Error: {str(e)}")
# === Run simulation ===
if __name__ == "__main__":
 simulate transaction()
```

Output

Δ		В	C	U		L			1/0	V9	V10	V11	V12
-	1	/1	V2	V3	V4	V5			V8	Y			
Time		-		2 526247	1 279155	-n 33832	0.462388	0.239599	0.098698	0.363787	0.090794	-0.5516	
				2.536347			0.00006	0.0788	0.085102	-0.25543	-0.1669/	1.612/2/	1.06523
	0	1.191857	0.266151	0.16648	0.448154	0.060018	-0.08236	-0.0788	0.000102	1 51165	0.207643	0.624501	0.066084
	1	1 35835											
	1	-1.55055	0.10523	1 702003	0.86329	-0.01031	1.247203	0.237609	0.377436	-1.38702	-0.05495	-0.22649	0.1/022
	1	-0.9662/				0 40740	0 005021	0 502041	-0 //053	0.01//33	0.70007		
	2	-1.15823	0.877737	1.548718	0.403034	-0.40/19	0.093921	0.002041	0.000314	0.56867	-0.37141	1.341262	0.35989
	-	4 000000	0.141004	0.045371	4 0000010	0 101001	0 2 /2 /08	-0 00510	0.001213	0.70700			
3					0 4000	0 0 0 0 0 0 0 2 /	0 498118	LCODST	-3.00/00	0.0100,0			The second second second
9			1.417964			2 0.940954	0.720110	0.270145	0.851084	-0.39205	-0.41043	-0.70512	-0.1104
0	7	-0.89429	0.286157	-0.11319	-0.27153	3 2.669599	3.721818	0.3/0145	0.031004	0.00200	0.36695	1 017614	0.8363
	0	0 33838	1 119593	1 044367	7 0 22210	0.499361	-0.24676	0.651583	0.069539	-0./36/3	-0.36685	1.017014	0.0000
	9	-0.33020			1 2756	7 1 97138	-0.62915	-1.42324	0.048450	-1./2041	1.020000	1.1000	
12	10	1.449044	4 -1.17634		3 -1.3730	0 000150	2 217027	0 470455	0.538247	-0.55889	0.309755	-0.25912	-0.3261
13	10	0.384978	8 0.616109	9 -0.874					0.000217	2.00401	1.323729	0 227666	-0.2426
14	10	1 24999	9 -1.2216	4 0.3839	3 -1.234	9 -1.48542	2 -0.75323	-0.6894	-0.22748	-2.09401	1.525725	0.227000	0 22228
				2 0.82861	3 2.7125	2 -0.178	4 0.337544	1 -0.09672	0.115982	-0.22108	0.46023	-0.77366	0.32330
15	1.	1.06937	4 0.20//2	- 10147	F 4 76747	2 0 1365	0 807596	-0.42291	-1.90711	0.755713	1.151087	0.844555	0.79294