# CAAP 2019 Genetics & Lab 6

# What can modern genetics teach us?

**Author: Chris Porras** 

```
import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import matplotlib as mpl
       from mpl toolkits import mplot3d
       import plotly.express as px
       import seaborn as sns
       np.random.seed(42)
       %matplotlib inline
       import matplotlib.font manager as fm
       fm.findSystemFonts(fontpaths=['/Library/Fonts/'], fontext='ttf')
       mpl.rcParams['font.family'] = "Arial"
       mpl.rcParams['font.sans-serif'] = "Arial"
       mpl.rcParams['font.size'] = 8
       rc = {'lines.linewidth': 3,
             'axes.labelsize': 18,
             'axes.titlesize': 18,
             'axes.facecolor': 'DFDFE5'}
       sns.set context('notebook', rc=rc)
       sns.set style('darkgrid', rc=rc)
       sns.set palette('colorblind')
       plt.rc('font', family="Arial")
       mpl.font manager. rebuild()
In [2]: ### Load in data files
       df = pd.read csv('data/1K genomes PCA.csv')
```

```
df = pd.read_csv('data/1K_genomes_PCA.csv')
PC_load = np.load('data/1kGenomesPCloading.npy')
superpop_key = pd.read_csv("data/20131219.superpopulations.tsv", sep='\t')
pop_key = pd.read_csv('data/20131219.populations.tsv',sep='\t').iloc[:,0:3]
```

#### Peek at the data set we'll be studying

In [3]: df.iloc[[i for i in np.arange(5)\*200]]

Out[3]:

|     | Sample_ID | PC1_0.03008 | PC2_0.01143 | PC3_0.00354 | Super_Population | Population | Population_  |
|-----|-----------|-------------|-------------|-------------|------------------|------------|--------------|
| 0   | HG00096   | 0.475450    | -1.353762   | 0.507889    | UNKNOWN          | UNKNOWN    |              |
| 200 | HG00446   | 0.797393    | 1.689049    | -0.395801   | EAS              | CHS        | Southern F   |
| 400 | HG01204   | 0.322578    | -1.194499   | -0.103794   | AMR              | PUR        | Puerto Ric   |
| 600 | HG01767   | 0.529042    | -1.086297   | -0.288918   | EUR              | IBS        | Iberian p    |
| 800 | HG02128   | 0.675850    | 1.839144    | 0.212096    | EAS              | KHV        | Kinh in Ho C |

We want to infer the population that our first sample was chosen from by comparing genetic data across a global sample from the <a href="mailto:1000Genomes Project">1000 Genomes Project</a> (<a href="https://en.wikipedia.org/wiki/1000Genomes Project">https://en.wikipedia.org/wiki/1000Genomes Project</a>).

# **Unlabeled PCA plot**

```
In [4]: plt.figure(figsize=(10,8))
    plt.plot(df['PC1_0.03008'],df['PC2_0.01143'],'.')
    plt.title('IK Genomes test PCA plot')
    plt.xlabel(f'PC1 {np.round(PC_load[0],2)*100}% '+r'$\sigma^2$')
    plt.ylabel(f'PC2 {np.round(PC_load[1],2)*100}% '+r'$\sigma^2$')
    plt.show()
```



We can plot the first two principal components for each sample, but this doesn't tell us much without labels!

In [5]: #### Key for Population codes ####
superpop\_key

#### Out[5]:

|   | Description | Population Code |
|---|-------------|-----------------|
| 0 | East Asian  | EAS             |
| 1 | South Asian | SAS             |
| 2 | African     | AFR             |
| 3 | European    | EUR             |
| 4 | American    | AMR             |
| 5 | UNKNOWN     | UNKNOWN         |

### Label PCA plot by super population

```
In [6]: plt.figure(figsize=(10,8))
    plt.title('1K Genomes PCA by super population')
    plt.xlabel(f'PC1 {np.round(PC_load[0],2)*100}% '+r'$\sigma^2$')
    plt.ylabel(f'PC2 {np.round(PC_load[1],2)*100}% '+r'$\sigma^2$')
    for pop in superpop_key['Population Code']:
        PCs = df.loc[df['Super_Population']==pop].iloc[:,1:3]
        if pop == 'UNKNOWN':
            marker = 's'
        else:
            marker = '.'
        plt.scatter(PCs['PC1_0.03008'],PCs['PC2_0.01143'],label=pop,marker=marketer)
        plt.legend(fontsize=18)
        plt.show()
```





Now we're getting somewhere! Still, we can use another dimension to better view our unknown.

```
In [7]: fig = plt.figure(figsize=(10,8))
    ax = plt.axes(projection='3d')
    ax.set_title('1K Genomes PCA by super population')
    ax.set_xlabel(f'PC1 {np.round(PC_load[0],2)*100}% '+r'$\sigma^2$',labelpad=1
    ax.set_ylabel(f'PC2 {np.round(PC_load[1],2)*100}% '+r'$\sigma^2$',labelpad=1
    for pop in superpop_key['Population Code']:
        PCs = df.loc[df['Super_Population']==pop].iloc[:,1:4]
        if pop == 'UNKNOWN':
             marker = 's'
        else:
             marker = '.'
        ax.scatter(PCs['PC1_0.03008'],PCs['PC2_0.01143'],PCs['PC3_0.00354'],labeleax.legend(fontsize=18,loc='upper left')
```

Out[7]: <matplotlib.legend.Legend at 0x11271ff60>



If only we could rotate our plot around to see different angles...



Try clicking other populations on the legend to hide them from view!

### Label PCA plot by sub population

In [9]: #### Key describing sub population codes #### pop\_key

| 17 | British in England and Scotland                | GBR | EUR |
|----|------------------------------------------------|-----|-----|
| 18 | Finnish in Finland                             | FIN | EUR |
| 19 | Iberian populations in Spain                   | IBS | EUR |
| 20 | Toscani in Italy                               | TSI | EUR |
| 21 | Utah residents with Northern and Western Europ | CEU | EUR |
| 22 | Colombian in Medellin, Colombia                | CLM | AMR |
| 23 | Mexican Ancestry in Los Angeles, California    | MXL | AMR |
| 24 | Peruvian in Lima, Peru                         | PEL | AMR |
| 25 | Puerto Rican in Puerto Rico                    | PUR | AMR |
| 26 | Total                                          | NaN | NaN |
| 27 | NaN                                            | NaN | NaN |
| 28 | NaN                                            | NaN | NaN |





Try hiding various combinations of subpopulations to identify which of these cluster most closely to our unknown.

#### Where is our unknown individual from?

Your answer here