DD 288387

1/9/2
DIALOG(R)File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.
008742221
WPI Acc No: 1991-246237/199134 XRAM Acc No: C91-106926

Prepn. of new poly(ester anhydride) derivs. - via mixed anhydride intermediate with polycondensation at elevated temp. and reduced pressure

Patent Assignee: FR-SCHILLER-UNIV JENA (UYJE) Inventor: HARTMANN M; PINTHER P; SCHULZ V Number of Countries: 001 Number of Patents: 001

Patent Family:

 Patent No
 Kind
 Date
 Applicat No
 Kind
 Date
 Week

 DD 288387
 A 19910328
 DD 333599
 A 19891016
 199134
 B

Priority Applications (No Type Date): DD 333599 A 19891016

Abstract (Basic): DD 288387 A

Prepn. of new polyester anhydride derivs. of formula (I) comprises polycondensation of aromatic dicarboxylic acid derivs. in which the carboxy phenyl gp. is bonded via ester gps. to (oxy) alkyl gps. The reaction proceeds via a mixed anhydride intermediate at elevated temp. and reduced pressure. R = (CH2)m; CH2CH2OCH2CH2; CH2CH2O(CH2CH2C) xCH2CH2; CH2CH2O(CH2) yOCH2CH2; CH2CH2OCH(CH3) CH2CH2OCH2CH2 or CH2CH2OCH(CH3)CH2CH2CH2. m is between 2 and 8. x = 2 or 3. y is between 2 and 8.

The mixed anhydride contains aromatic dicarboxyilic acid and a lower aliphatic dicarboxylic acid esp. acetic acid. It may be isolated. The temp. is 140-220 pref. 150-180 deg.C and pressure is 1Pa-3kPA esp. 1-2 PA.

USE - (I) are useful in pharmacy and agriculture.

In an example 5g adipic acid bis(4-carboxyphenolate) were refluxed with 60 ml. aceticanhydride for 20 mins. The mixt. was filtered and worked up to give 4.5g mixed anhydride of bis-4-carboxyphenylate adipicacid anhydride and acetic acid. The mixt. was polycondensed under Ar at 180 deg.C.. (4pp Dwg.No.0/0)

Title Terms: PREPARATION; NEW; POLY; DERIVATIVE; MIX; ANHYDRIDE; INTERMEDIATE; POLYCONDENSATION; ELEVATE; TEMPERATURE; REDUCE; PRESSURE Index Terms/Additional Words: POLYESTER Derwent Class: A23; A96; A97; B07; C03
International Patent Class (Additional): C08G-067/04; C08L-073/02
File Segment: CPI

(19) BUNDESREPUBLIK DEUTSCHLAND

PATENTSCHRIFT

(12) Ausschließungspatent

(ii) DD 288 387

5(51) C 08 G 67/04 C 08 L 73/02

Erteilt gemäß § 17 Absatz 1
Patentgesetz der DDR
vom 27.10.1983
in Übereinstimmung mit den entsprechenden
Festlegungen im Einigungsvertrag

DEUTSCHES PATENTAMT

In der vom Anmelder eingereichten Fassung veröffentlicht

(21)	DD C 08 G / 333 599 6	(22)	16.10.89	(44)	28.03.91	
(71)	siehe (73)		,		······································	
(72)	Pinther, Peter, Dr.; Hartmann. Manfred, Prof. Dr.; Schulz, Volker, DE Friedrich-Schiller-Universität Jena, August-Bebel-Straße 4, O - 6900 Jena, DE					
(73)						
(54)	Verfahren zur Herstellung von	on Poly(estera	nhydriden)			

(55) Poly(anhydride); Poly(esteranhydride); aromatische Dicarbonsäuren; Alkylen- und Oxyalkylengruppen; Esterbindung; gemischtes Anhydrid; Polykondensation; Depotmaterialien; biologisch aktive Verbindung; Pharmazie (57) Die Erfindung betrifft ein Verfahren zur Herstellung von Poly(esteranhydriden) mit dem Grundstrukturelement. Das Verfahren ist dadurch gekennzeichnet, daß aromatische Dicarbonsäuren, in denen die Carboxyphenylreste mit den Alkylen- und Oxyalkylengruppen über Esterbindungen verknüpft sind, über die Zwischenstufe der gemischten Anhydride bei erhöhter Temperatur und vermindertem Druck zu Poly(esteranhydriden), polykondensiert werden. Die Poly(esteranhydride) eignen sich insbesondere als Depotmaterialien für biologisch aktive Verbindungen und können in der Pharmazie und der Landwirtschaft Verwendung finden. Grundstrukturelement

Patentansprüche:

 Verfahren zur Herstellung von Poly(esteranhydriden), gekennzeichnet dadurch, daß aromatische Dicarbonsäuren, in denen die Carboxyphenylreste mit Alkylen- und Oxyalkylengruppen über Esterbindungen verknüpft sind, über die Zwischenstufe der gemischten Anhydride bei erhöhter Temperatur und vermindertem Druck zu Poly(esteranhydriden) der Struktur

bedeutet, polykondensiert werden.

- 2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, daß die gemischten Anhydride der aromatischen Dicarbonsäuren mit einer anderen niedermolekularen aliphatischen Dicarbonsäure, vorzugsweise mit Essigsäure, verwendet werden.
- 3. Verfahren nach den Ansprüchen 1 und 2, gekennzeichnet dadurch, daß das gemischte Anhydrid als Zwischenstufe in gereinigter Form isoliert wird.
- 4. Verfahren nach den Ansprüchen 1 bis 3, gekennzelchnet dadurch, daß bei Temperaturen zwischen 140°C und 220°C, vorzugsweise zwischen 150°C bis 180°C und bei Drücken von 1PA bis 3kPA, vorzugsweise zwischen 1 bis 2PA, gearbeitet wird.

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung von Poly(esteranhydriden), die vorrangig in der Pharmazie und in der Landwirtschaft Verwendung finden können.

Charakteristik des bekannten Standes der Technik

Über Poly(anhydride) wurde erstmals von Bucher und Slade (J. Am. Chem. Soc. 31, 1319 [1909]) berichtet. Carothers und Hill (J. Am. Chem. Soc. 52, 4110 [1930] und J. Am. Chem. Soc. 54, 1569 [1932]) beschrieben aliphatische Poly(anhydride), die aufgrund ihrer niedrigen Schmelzpunkte und hohen Hydrolyseempfindlichkeit ke'ne technische Bedeutung erlangt haben. Rein aromatische und heterocyklische Poly(anhydride) wie sie z. B. in Bull. Chem. Soc. Jpn. 32, 1120 (1959) oder in Makromol. Chem. 32, 1 (1959) beschrieben sind, besitzen demgegenüber eine höhere Hydrolysestabilität, jedoch erschweren Unlöslichkeit und hohe Schmelzpunkte die technische Verarbeitbarkeit. Gemäß Makromol. Chem. 24, 76 (1957) und J. Polym. Sci. 29, 343 (1958) zeigen Poly/bis(p-carboxyphenoxy)alkenanhydride/gute film- und feserbildende Eigenschaften sowie ein Hydrolyseverhalten, das zwischen dem der rein aliphatischen und der aromatischen Polyanhydridel liegt. Die durch Variation des aliphatischen Restes unter Verwendung von Oligoethylenglykol-, Oligopropylenglykol- oder Propantriolderivaten herstellbaren Bis(p-carboxyphenoxy)-Verbindungen liefern lösliche Poly(anhydride), die zu hydrolytisch abbaubaren Mikrokapseln verarbeitet werden können (DE 3632 251 A1). Durch Copolykondensation von aliphatischen und aromatischen Dicarbonsäuren läßt sich das Polymerrückgrat ebenfalls variieren. So bietet Copoly(anhydride), wie die aus Bis(p-carboxyphenoxy)propan und Sebacinsäure (EP 0260415 A2; J. Am. Chem. Soc. 25, 201 [1984]; Biomatarials 4, 131 [1983]; J. Polymer Sci., Part A, Polymer Chem. 25, 3313 [1987]) den Vorzug, daß sich Schmelzpunkt und Hydrolyseverhalten durch Variation der Monomerbausteine steuern lassen. In allen diesen gemischten aliphatisch-aromatischen Poly(anhydriden) sind aliphatischer und aromatischer Rest über die relativ

stabile Etherbindung verknüpft, so daß ein Abbau zu kleinen Spaltprodukten nur schwer erfolgen kann. Gleiches trifft für die Verknüpfung dieser Reste in der Struktureinheit über Amidbindungen zu. Griffin und MacDonald (EP 0055527 A 1) synthetisierten Copolykondensate mit 5–80% Anhydridverknüpfung und entsprechend 95–20% Ester- oder Amidverknüpfung der Monomerbausteine. Nachteilig ist die geringe Löslichkeit und die hohen Schmeizpunkte dieser thermotropen Polymeren. Poly(esteranhydride) mit gleichen molaren Anteilen an Ester- und Anhydridbindungen im Strukturelement sind bisher nicht bekannt.

Ziel der Erfindung

Das Ziel der Erfindung besteht darin, ein Verfahren zur Herstellung von Poly(esteranhydriden) zu finden, die unter hydrolytischen und/oder enzymatischen Bedingung in zu kleinen Spaltprodukten abgebaut werden können, wodurch eine Verringerung der Rückstandsbelastung zum Einsatz dieser Poly(esteranhydride) erzielt wird.

Darlegung des Wesens der Erfindung

Der Erfindung liegt die Aufgebe zugrunde, ein Verfahren zur Herstellung von Poly(esteranhydriden) zu finden, die aufgrund ihrer chemischen Zusammensetzung unter hydrolytischen und/oder enzymatischen Bedingungen zu kleinen Spaltprodukten abgebaut werden können, wodurch eine Verringerung der Rückstandsbelastung beim Einsatz dieser Poly(anhydride) erzielt wird.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß eromatische Dicarbonsäuren, in denen die Cerboxyphenylreste mit den Alkylen- und Oxyalkylengruppen über Esterbindungen verknüpft sind, über die Zwischenstufe der gemischten Anhydride bei erhöhter Temperatur und vermindertem Druck zu Poly(esterenhydriden) polykondensiert werden. Die erfindungsgemäß hergestellten Poly(esteranhydride) besitzen folgendes Grundstrukturelement:

bedeutet.

Die erfindungsgemäßen Poly(esteranhydride) werden in einfacher Weise dadurch gewonnen, daß zunächst die gemischten Anhydride der verwendeten aromatischen Dicarbonsäuren mit niedermolekularen aliphatischen Carbonsäuren, vorzugsweise mit Essigsäure hergestellt und els Zwischenstufe in gereinigter Form isoliert werden, was zur Erzielung von höheren Molmassen von Bedeutung ist. Die gemischten Anhydride werden anschließend bei Temperaturen zwischen 140°C und 220°C, vorzugsweise zwischen 150°C bis 180°C und bei Drücken zwischen 1 PA bis 3kPA, vorzugsweise zwischen 1 bis 2 PA, polykondensiert. Die erfindungsgemäß hergestellten Poly(esteranhydride) sind in geeigneten Lösungsmitteln wie Chloroform oder Tetrahydrofuran löslich. Dabei weisen die Poly(esteranhydride) mit Oxyalkylengruppen als Rest R eine bessere Löslichkiet auf. Die Schmelztemperaturen lassen sich ebenfalls durch die Struktur des Restes R und die Molmasse veriieren und liegen zwischen 100°C und 200°C. Die erfindungsgemäß hergestellten Poly(esteranhydride) eignen sich als Trägerpolymere zur physikalischen Einlagerung von biologisch aktiven Verbindungen. Dabei können sowohl herkömmliche Methoden des Schmelzpressens zur Darstellung der physikalischen Kombinationen als auch aktivstoffhaltige Poly(anhydrid)lösungen zu Filmen gegossen oder durch Sprühtrocknen bzw. durch Fällverfahren Mikrokepseln hergestellt werden. Besonders vorteilhaft erscheint beim Einsatz dieser Poly(esteranhydride), daß durch die in der Struktureinheit vorhandenen Esterbindungen ein Abbau bis zu kleinen Spaltprodukten erfolgen kann, was zu einer Verringerung der Rückstandsbelastung führt.

Ausführungsbelspiele

Beispiel 1

Gemischtes Anhydrid von Adipinsäure-bis(4-carboxyphenolat) und Essigsäure

5g (0,013 mol) Adipinsäure-bis(4-carboxyphenolat) werden mit 60 ml Acetanhydrid 25 min unter Rückfluß erhitzt. Anschließend wird die Lösung über eine Schlenkfritte abgezogen und das Filtrat durch Abdestillieren von überschüssigem Acetanhydrid/Essigsäuregemisch auf 1/2 eingeengt. Die über Nacht bei 5°C, ausgefallenen Kristelle werden abgesaugt, zweimal mit trockenem Ether gewaschen, 4h in Ether gerührt und im Vakuum über CaCl₂ getrocknet.

Ausbeute 4,5 g (73,9 % d. Yh.)

Schmp. 85°C.

Polykondensation

2,7 g (0,0057 mol) des gemischten Anhydrides 1 werden in einem Schlenkgefäß mit Gaseinleitungsrohr unter leichtem Argonstrom im Ölbad auf 180°C erwärmt. Anschließend wird unter Vakuum (1 bis 2PA) 160 min polykondensiert. In Intervallen von jeweils 15 min wird 30s Argon durchgeblasen. Das Poly(esteranhydrid) wird aus Chloroform/Hexan umgefällt, 4h in Ether gerührt, abgesaugt und Im Vakuum über CaCl₂ getrocknet.

T_m (Maximum im DSC-Peak) = 166°C

 M_a (Osmometrie) = 4300

IR (KBr-Preßling): 1775cm⁻¹, 1720cm⁻¹ Anhydrid, 1760cm⁻¹ Ester.

Beispiel 2

Gemischtes Anhydrid von 1,2-Bis(4-carboxyphenoxycarbonylethoxy)-buten und Essigsäure

Entsprechend Beispiel 1 aus 6g (0,0105 mol) 1,2-Bis(4-carboxyphenoxycarbonylethoxy)buten und 60 ml Acetenhydrid. Nach Abdestillieren des überschüssigen Acetenhydrid/Essigsäuregemisches verbleibt ein öliges Produkt. Ausbeute 4.9g (83% d.Th.)

Polykondensation

2,2g (0,0039 mol) des gemischten Anhydrides 2 werden in einem Schlenkgefäß mit Gaseinleitungsrohr unter leichtem Argonstrom im Ölbad auf 155°C erhitzt. Anschließend wird unter Vakuum (1 bis 2 PA) 360 min polykondensiert. In Intervallen von jeweils 15 min wird 30 s Argon durchgeblasen. Das Poly(esteranhydrid) wird aus Chloroform/Hexan umgefällt, 4 h in Ether gerührt, abgesaugt und im Vakuum über CaCl₂ getrocknet.

T_m (Maximum im DSC-Peak) = 100°C

 M_n (GPC) = 5500

 $M_{w}(GPC) = 15500$

IR (KBr-Preßling): 1777 cm⁻¹, 1725 cm⁻¹ Anhydrid, 1760 cm⁻¹ Ester.