

**VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT
AUF DEM GEBIET DES PATENTWESENS**

PCT

INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regeln 43 und 44 PCT)

Aktenzeichen des Anmelders oder Anwalts R. 34507 Kut/Mi	WEITERES VORGEHEN	siehe Mitteilung über die Übermittlung des internationalen Recherchenberichte (Formblatt PCT/ISA/220) sowie, soweit zutreffend, nachstehender Punkt 5
Internationales Aktenzeichen PCT/DE 99/ 03018	Internationales Anmelde datum (Tag/Monat/Jahr) 22/09/1999	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr) 15/10/1998
Anmelder ROBERT BOSCH GMBH et al.		

Dieser Internationale Recherchenbericht wurde von der Internationalen Recherchenbehörde erstellt und wird dem Anmelder gemäß Artikel 18 übermittelt. Eine Kopie wird dem Internationalen Büro übermittelt.

Dieser Internationale Recherchenbericht umfaßt insgesamt 3 Blätter.

Darüber hinaus liegt ihm jeweils eine Kopie der in diesem Bericht genannten Unterlagen zum Stand der Technik bei.

1. Grundlage des Berichts

a. Hinsichtlich der Sprache ist die Internationale Recherche auf der Grundlage der internationalen Anmeldung in der Sprache durchgeführt worden, in der sie eingereicht wurde, sofern unter diesem Punkt nichts anderes angegeben ist.

Die Internationale Recherche ist auf der Grundlage einer bei der Behörde eingereichten Übersetzung der internationalen Anmeldung (Regel 23.1 b)) durchgeführt worden.

b. Hinsichtlich der in der Internationalen Anmeldung offenbarten Nucleotid- und/oder Aminosäuresequenz ist die Internationale Recherche auf der Grundlage des Sequenzprotokolls durchgeführt worden, das

in der Internationalen Anmeldung in schriftlicher Form enthalten ist.

zusammen mit der Internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.

bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.

bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.

Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.

Die Erklärung, daß die in computerlesbarer Form erfaßten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

2. Bestimmte Ansprüche haben sich als nicht recherchierbar erwiesen (siehe Feld I).

3. Mangelnde Einheitlichkeit der Erfindung (siehe Feld II).

4. Hinsichtlich der Bezeichnung der Erfindung

wird der vom Anmelder eingereichte Wortlaut genehmigt.

wurde der Wortlaut von der Behörde wie folgt festgesetzt:

5. Hinsichtlich der Zusammenfassung

wird der vom Anmelder eingereichte Wortlaut genehmigt.

wurde der Wortlaut nach Regel 38.2b) in der in Feld III angegebenen Fassung von der Behörde festgesetzt. Der Anmelder kann der Behörde innerhalb eines Monats nach dem Datum der Absendung dieses Internationalen Recherchenberichts eine Stellungnahme vorlegen.

6. Folgend Abbildung der Zeichnungen ist mit der Zusammenfassung zu veröffentlichen: Abb. Nr. 6

wie vom Anmelder vorgeschlagen

weil der Anmelder selbst keine Abbildung vorgeschlagen hat.

weil diese Abbildung die Erfindung besser kennzeichnet.

keine der Abb.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/03018

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B81B3/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B81B B82B G01P G01L

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 97 49998 A (UNIV FRASER SIMON) 31. Dezember 1997 (1997-12-31) Seite 5 -Seite 6; Abbildungen 3-6 - <i>Dose 5 - Page 5 Dung 3 -></i>	1,2,4,5, 9,10,22, 31
A	DE 196 03 829 A (DAIMLER BENZ AG) 7. August 1997 (1997-08-07) Spalte 6, Zeile 10 - Zeile 51; Abbildung 4 - <i>Col. 6, line 10-51 Dung 4</i>	1,2,4-6, 9,10,23, 31
A	US 5 313 836 A (FUJII TETSUO ET AL) 24. Mai 1994 (1994-05-24) Spalte 5, Zeile 47 -Spalte 6, Zeile 51; Abbildung 3 -/-	1,2,4,5, 9,26,31 - col. 5, line 47- Col. 6, line 51. Dung 3.

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :·
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldeatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem Internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

10. Februar 2000

21/02/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Szarowski, A

INTERNATIONALER FISCHERCHENBERICHT

Internationales Aktenzeichen PCT/DE 99/03018

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 44 20 962 A (BOSCH GMBH ROBERT) 21. Dezember 1995 (1995-12-21) Anmelder - <i>Applicant</i> Spalte 2; Abbildungen 1-3 - <i>Fig. 2, Drawings 1-3</i>	1-3, 9, 10, 31

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 99/03018

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9749998 A	31-12-1997	AU	3162297 A	14-01-1998
DE 19603829 A	07-08-1997	KEINE		
US 5313836 A	24-05-1994	JP	2811768 B	15-10-1998
		JP	3049267 A	04-03-1991
DE 4420962 A	21-12-1995	GB	2290413 A,B	20-12-1995

PCT

ANTRAG

Der Unterzeichnete beantragt, daß die vorliegende internationale Anmeldung nach dem Vertrag über die internationale Zusammenarbeit auf dem Gebiet des Patentwesens behandelt wird

Vom Anmeldeamt auszufüllen

Internationales Aktenzeichen

Internationales Anmeldedatum

Name des Anmeldeamts und "PCT International Application"

Aktenzeichen des Anmelders oder Anwalts (*falls gewünscht*)
(max. 12 Zeichen) R. 34507 Kut/Mi

Feld Nr. I BEZEICHNUNG DER ERFINDUNG

Verfahren zur Bearbeitung von Silizium mittels Ätzprozessen

Feld Nr. II ANMELDER

Name und Anschrift (Familienname, Vorname; bei juristischen Personen vollständige amtliche Bezeichnung. Bei der Anschrift sind die Postleitzahl und der Name des Staats anzugeben. Der in diesem Feld in der Anschrift angegebene Staat ist der Staat des Sitzes oder Wohnsitzes des Anmelders, sofern nachstehend kein Staat des Sitzes oder Wohnsitzes angegeben ist.)

ROBERT BOSCH GMBH
Postfach 30 02 20
70442 Stuttgart
Bundesrepublik Deutschland (DE)

Diese Person ist gleichzeitig Erfinder

Telefonnr.: 0711/811-23 062

Telefaxnr.: 0711/811-33 1 81

Fernschreibnr:

Staatsangehörigkeit (Staat): DE

Sitz oder Wohnsitz (Staat): DE

Diese Person ist Anmelder alle Bestimmungsstaaten mit Ausnahme der Vereinigten Staaten nur die Vereinigten Staaten von Amerika die im Zusatzfeld angegebenen Staaten

Feld Nr. III WEITERE ANMELDER UND/ODER (WEITERE) ERFINDER

Name und Anschrift (Familienname, Vorname; bei juristischen Personen vollständige amtliche Bezeichnung. Bei der Anschrift sind die Postleitzahl und der Name des Staats anzugeben. Der in diesem Feld in der Anschrift angegebene Staat ist der Staat des Sitzes oder Wohnsitzes des Anmelders, sofern nachstehend kein Staat des Sitzes oder Wohnsitzes angegeben ist.)

BECKER, Volker
Im Wiesele 7
76359 Marxzell
DE

Diese Person ist
 nur Anmelder

Anmelder und Erfinder

nur Erfinder (*Wird dieses Kästchen angekreuzt, so sind die nachstehenden Angaben nicht nötig.*)

Staatsangehörigkeit (Staat): DE

Sitz oder Wohnsitz (Staat): DE

Diese Person ist Anmelder alle Bestimmungsstaaten mit Ausnahme der Vereinigten Staaten nur die Vereinigten Staaten von Amerika die im Zusatzfeld angegebenen Staaten

Weitere Anmelder und/oder (weitere) Erfinder sind auf einem Fortsetzungsblatt angegeben.

Feld Nr. IV ANWALT ODER GEMEINSAMER VERTRETER; ZÜSTELLANSCHRIFT

Die folgende Person wird hiermit bestellt/ist bestellt worden, um für den (die) Anmelder vor den zuständigen internationalen Behörden in folgender Eigenschaft zu handeln als:

Anwalt gemeinsamer Vertreter

Name und Anschrift (Familienname, Vorname; bei juristischen Personen vollständige amtliche Bezeichnung Bei der Anschrift sind die Postleitzahl und der Name des Staats anzugeben)

Telefonnr.:

Telefaxnr.:

Fernschreibnr.:

Dieses Kästchen ist anzukreuzen, wenn kein Anwalt oder gemeinsamer Vertreter bestellt ist und statt dessen im obigen Feld eine spezielle Zustellanschrift angegeben ist.

Fortsetzung von Feld Nr. III WEITERE ANMELDER UND/ODER (WEITERE) ERFINDER

<i>Wird keines der folgenden Felder benutzt, so ist dieses Blatt dem Antrag nicht beizufügen.</i>	
<p>Name und Anschrift (Familienname, Vorname; bei juristischen Personen vollständige amtliche Bezeichnung. Bei der Anschrift sind die Postleitzahl und der Name des Staats anzugeben. Der in diesem Feld in der Anschrift angegebene Staat ist der Staat des Sitzes oder Wohnsitzes des Anmelders, sofern nachstehend kein Staat des Sitzes oder Wohnsitzes angegeben ist.)</p> <p>LAERMER, Franz Witikoweg 9 70437 Stuttgart DE</p>	
<p>Diese Person ist</p> <p><input type="checkbox"/> nur Anmelder</p> <p><input checked="" type="checkbox"/> Anmelder und Erfinder</p> <p><input type="checkbox"/> nur Erfinder (<i>Wird dieses Kästchen angekreuzt, so sind die nachstehenden Angaben nicht nötig.</i>)</p>	
Staatsangehörigkeit (Staat): DE	Sitz oder Wohnsitz (Staat): DE
<p>Diese Person ist Anmelder <input type="checkbox"/> alle Bestimmungsstaaten <input type="checkbox"/> alle Bestimmungsstaaten mit Ausnahme der Vereinigten Staaten <input checked="" type="checkbox"/> nur die Vereinigten Staaten von Amerika <input type="checkbox"/> die im Zusatzfeld angegebenen Staaten</p> <p>Name und Anschrift (Familienname, Vorname; bei juristischen Personen vollständige amtliche Bezeichnung. Bei der Anschrift sind die Postleitzahl und der Name des Staats anzugeben. Der in diesem Feld in der Anschrift angegebene Staat ist der Staat des Sitzes oder Wohnsitzes des Anmelders, sofern nachstehend kein Staat des Sitzes oder Wohnsitzes angegeben ist.)</p> <p>SCHILP, Andrea Seelenbachweg 15 73525 Schwaebisch Gmuend DE</p>	
<p>Diese Person ist</p> <p><input type="checkbox"/> nur Anmelder</p> <p><input checked="" type="checkbox"/> Anmelder und Erfinder</p> <p><input type="checkbox"/> nur Erfinder (<i>Wird dieses Kästchen angekreuzt, so sind die nachstehenden Angaben nicht nötig.</i>)</p>	
Staatsangehörigkeit (Staat): DE	Sitz oder Wohnsitz (Staat): DE
<p>Diese Person ist Anmelder <input type="checkbox"/> alle Bestimmungsstaaten <input type="checkbox"/> alle Bestimmungsstaaten mit Ausnahme der Vereinigten Staaten <input checked="" type="checkbox"/> nur die Vereinigten Staaten von Amerika <input type="checkbox"/> die im Zusatzfeld angegebenen Staaten</p> <p>Name und Anschrift (Familienname, Vorname; bei juristischen Personen vollständige amtliche Bezeichnung. Bei der Anschrift sind die Postleitzahl und der Name des Staats anzugeben. Der in diesem Feld in der Anschrift angegebene Staat ist der Staat des Sitzes oder Wohnsitzes des Anmelders, sofern nachstehend kein Staat des Sitzes oder Wohnsitzes angegeben ist.)</p>	
<p>Diese Person ist</p> <p><input type="checkbox"/> nur Anmelder</p> <p><input type="checkbox"/> Anmelder und Erfinder</p> <p><input type="checkbox"/> nur Erfinder (<i>Wird dieses Kästchen angekreuzt, so sind die nachstehenden Angaben nicht nötig.</i>)</p>	
Staatsangehörigkeit (Staat):	Sitz oder Wohnsitz (Staat):
<p>Diese Person ist Anmelder <input type="checkbox"/> alle Bestimmungsstaaten <input type="checkbox"/> alle Bestimmungsstaaten mit Ausnahme der Vereinigten Staaten <input type="checkbox"/> nur die Vereinigten Staaten von Amerika <input type="checkbox"/> die im Zusatzfeld angegebenen Staaten</p> <p>Name und Anschrift (Familienname, Vorname; bei juristischen Personen vollständige amtliche Bezeichnung. Bei der Anschrift sind die Postleitzahl und der Name des Staats anzugeben. Der in diesem Feld in der Anschrift angegebene Staat ist der Staat des Sitzes oder Wohnsitzes des Anmelders, sofern nachstehend kein Staat des Sitzes oder Wohnsitzes angegeben ist.)</p>	
<p>Diese Person ist</p> <p><input type="checkbox"/> nur Anmelder</p> <p><input type="checkbox"/> Anmelder und Erfinder</p> <p><input type="checkbox"/> nur Erfinder (<i>Wird dieses Kästchen angekreuzt, so sind die nachstehenden Angaben nicht nötig.</i>)</p>	
Staatsangehörigkeit (Staat):	Sitz oder Wohnsitz (Staat):
<p>Diese Person ist Anmelder <input type="checkbox"/> alle Bestimmungsstaaten <input type="checkbox"/> alle Bestimmungsstaaten mit Ausnahme der Vereinigten Staaten <input type="checkbox"/> nur die Vereinigten Staaten von Amerika <input type="checkbox"/> die im Zusatzfeld angegebenen Staaten</p> <p>Weitere Anmelder und/oder (weitere) Erfinder sind auf einem Fortsetzungsblatt angegeben.</p>	

Feld Nr. V BESTIMMUNG VON STAATEN

Die folgenden Bestimmungen nach Regel 4.9 Absatz a werden hiermit vorgenommen:

Regionales Patent

AP ARIPO-Patent: GH Ghana, GM Gambia, KE Kenia, LS Lesotho, MW Malawi, SD Sudan, SL Sierra Leone, SZ Swasiland, UG Uganda, ZW Simbabwe und jeder weitere Staat, der Vertragsstaat des Harare-Protokolls und des PCT ist

EA Eurasisches Patent: AM Armenien, AZ Aserbaidschan, BY Belarus, KG Kirgisistan, KZ Kasachstan, MD Republik Moldau, RU Russische Föderation, TJ Tadschikistan, TM Turkmenistan und jeder weitere Staat, der Vertragsstaat des Eurasischen Patentübereinkommens und des PCT ist

EP Europäisches Patent: AT Österreich, BE Belgien, CH und LI Schweiz und Liechtenstein, CY Zypern, DE Deutschland, DK Dänemark, ES Spanien, FI Finnland, FR Frankreich, GB Vereinigtes Königreich, GR Griechenland, IE Irland, IT Italien, LU Luxemburg, MC Monaco, NL Niederlande, PT Portugal, SE Schweden und jeder weitere Staat, der Vertragsstaat des Europäischen Patentübereinkommens und des PCT ist.

OA OAPI-Patent: BF Burkina Faso, BJ Benin, CF Zentralafrikanische Republik, CG Kongo, CI Côte d'Ivorie, CM Kamerun, GA Gabun, GN Guinea, GW Guinea-Bissau, ML Mali, MR Mauretanien, NE Niger, SN Senegal, TD Tschad, TG Togo und jeder weitere Staat, der Vertragsstaat der OAPI und des PCT ist.....

Nationales Patent (falls eine andere Schutzrechtsart oder ein sonstiges Verfahren gewünscht wird, bitte auf der gepunkteten Linie angeben):

<input type="checkbox"/> AE Vereinigte Arabische Emirate	<input type="checkbox"/> LR Liberia.....
<input type="checkbox"/> AL Albanien	<input type="checkbox"/> LS Lesotho.....
<input type="checkbox"/> AM Armenien	<input type="checkbox"/> LT Litauen.....
<input type="checkbox"/> AT Österreich	<input type="checkbox"/> LU Luxemburg.....
<input type="checkbox"/> AU Australien	<input type="checkbox"/> LV Lettland.....
<input type="checkbox"/> AZ Aserbaidschan	<input type="checkbox"/> MD Republik Moldau.....
<input type="checkbox"/> BA Bosnien-Herzegowina	<input type="checkbox"/> MG Madagaskar.....
<input type="checkbox"/> BB Barbados	<input type="checkbox"/> MK Die ehemalige jugoslawische Republik Mazedonien
<input type="checkbox"/> BG Bulgarien.....	<input type="checkbox"/> MN Mongolei
<input type="checkbox"/> BR Brasilien.....	<input type="checkbox"/> MW Malawi.....
<input type="checkbox"/> BY Belarus.....	<input type="checkbox"/> MX Mexiko.....
<input type="checkbox"/> CA Kanada	<input type="checkbox"/> NO Norwegen.....
<input type="checkbox"/> CH und LI Schweiz und Liechtenstein	<input type="checkbox"/> NZ Neuseeland.....
<input type="checkbox"/> CN China.....	<input type="checkbox"/> PL Polen.....
<input type="checkbox"/> CU Kuba	<input type="checkbox"/> PT Portugal.....
<input type="checkbox"/> CZ Tschechische Republik.....	<input type="checkbox"/> RO Rumänien.....
<input type="checkbox"/> DE Deutschland.....	<input type="checkbox"/> RU Russische Föderation.....
<input type="checkbox"/> DK Dänemark.....	<input type="checkbox"/> SD Sudan
<input type="checkbox"/> EE Estland.....	<input type="checkbox"/> SE Schweden
<input type="checkbox"/> ES Spanien.....	<input type="checkbox"/> SG Singapur
<input type="checkbox"/> FI Finnland.....	<input type="checkbox"/> SI Slowenien.....
<input type="checkbox"/> GB Vereinigtes Königreich	<input type="checkbox"/> SK Slowakei.....
<input type="checkbox"/> GD Grenada.....	<input type="checkbox"/> SL Sierra Leone
<input type="checkbox"/> GE Georgien.....	<input type="checkbox"/> TJ Tadschikistan.....
<input type="checkbox"/> GH Ghana	<input type="checkbox"/> TM Turkmenistan.....
<input type="checkbox"/> GM Gambia	<input type="checkbox"/> TR Türkei.....
<input type="checkbox"/> HR Kroatiens	<input type="checkbox"/> TT Trinidad und Tobago.....
<input type="checkbox"/> HU Ungarn.....	<input type="checkbox"/> UA Ukraine.....
<input type="checkbox"/> ID Indonesien	<input type="checkbox"/> UG Uganda.....
<input type="checkbox"/> IL Israel.....	<input checked="" type="checkbox"/> US Vereinigte Staaten von Amerika.....
<input type="checkbox"/> IN Indien	<input type="checkbox"/> UZ Usbekistan.....
<input type="checkbox"/> IS Island	<input type="checkbox"/> VN Vietnam.....
<input checked="" type="checkbox"/> JP Japan.....	<input type="checkbox"/> YU Jugoslawien.....
<input type="checkbox"/> KE Kenia.....	<input type="checkbox"/> ZA Südafrika.....
<input type="checkbox"/> KG Kirgisistan.....	<input type="checkbox"/> ZW Simbabwe.....
<input type="checkbox"/> KP Demokratische Volksrepublik Korea.....	
<input type="checkbox"/> KR Republik Korea.....	Kästchen für die Bestimmung von Staaten, die dem PCT nach der Veröffentlichung dieses Formblatts beigetreten sind:
<input type="checkbox"/> KZ Kasachstan.....	<input type="checkbox"/>
<input type="checkbox"/> LC Saint Lucia	<input type="checkbox"/>
<input type="checkbox"/> LK Sri Lanka	<input type="checkbox"/>

Erklärung bzgl. vorsorglicher Bestimmungen: zusätzlich zu den oben genannten Bestimmungen nimmt der Anmelder nach Regel 4.9 Absatz b auch alle anderen nach dem PCT zulässigen Bestimmungen vor mit Ausnahme der im Zusatzfeld genannten Bestimmungen, die von dieser Erklärung ausgenommen sind. Der Anmelder erklärt, daß diese zusätzlichen Bestimmungen unter dem Vorbehalt einer Bestätigung stehen und jede zusätzliche Bestimmung, die vor Ablauf von 15 Monaten ab dem Prioritätsdatum nicht bestätigt wurde, nach Ablauf dieser Frist als vom Anmelder zurückgenommen gilt. (Die Bestätigung einer Bestimmung erfolgt durch die Einreichung einer Mitteilung, in der diese Bestimmung angegeben wird, und die Zahlung der Bestimmungs- und der Bestätigungsgebühr. Die Bestätigung muß beim Anmeldeamt innerhalb der Frist von 15 Monaten eingehen.)

Feld Nr. VI PRIORITYANSUCH		Weitere Priorityansprüche sind im Zusatzfeld angegeben		
Anmeldedatum der früheren Anmeldung (Tag/Monat/Jahr)	Aktenzeichen der früheren Anmeldung	Ist die frühere Anmeldung eine:		
		nationale Anmeldung: Staat	regionale Anmeldung: * regionales Amt	internationale Anmeldung: Anmeldeamt
Zeile (1) 15. Oktober 1998 (15.10.1998)	198 47 455.5	Bundesrepublik Deutschland		
Zeile (2)				
Zeile (3)				

Das Anmeldeamt wird ersucht, eine beglaubigte Abschrift der oben in Zeile(n) (1) bezeichneten früheren Anmeldung(en) zu erstellen und dem Internationalen Büro zu übermitteln.

Feld Nr. VII INTERNATIONALE RECHERCHENBEHÖRDE

Wahl der Internationalen Recherchenbehörde (ISA) (falls zwei oder mehr als zwei Internationale Recherchenbehörden für die Ausführung der internationalen Recherche zuständig sind, geben Sie die von Ihnen gewählte Behörde an: (der: Zweisilben-Code kann benutzt werden)) ISA/

Antrag auf Nutzung der Ergebnisse einer früheren Recherche: Bezugnahme auf diese frühere Recherche (falls eine frühere Recherche bei der internationalen Recherchenbehörde beantragt oder von ihr durchgeführt worden ist): Datum (Tag/Monat/Jahr): Aktenzeichen Staat (oder regionales Amt)

Feld Nr. VIII KONTROLLISTE; EINREICHUNGSSPRACHE

Diese internationale Anmeldung enthält die folgende Anzahl von Blättern:

Antrag : 4 Blätter

Beschreibung (ohne Sequenzprotokollteil) : 22 Blätter

Ansprüche : 7 Blätter

Zusammenfassung : 1 Blätter

Zeichnungen : 4 Blätter

Sequenzprotokollteil der Beschreibung : Blätter

Blattzahl insgesamt : 38 Blätter

Dieser internationalen Anmeldung liegen die nachstehend angekreuzten Unterlagen bei:

- 1. Blatt für die Gebührenberechnung
- 2. Gesonderte unterzeichnete Vollmacht
- 3. Kopien der allgemeinen Vollmacht; Aktenzeichen (falls vorhanden)
- 4. Begründung für das Fehlen einer Unterschrift
- 5. Prioritätsbeleg(e), in Feld VI durch folgende Zeilennummer gekennzeichnet:
- 6. Übersetzung der internationalen Anmeldung in die folgende Sprache:
- 7. Gesonderte Angaben zu hinterlegten Mikroorganismen oder biologischem Material
- 8. Sequenzprotokolle für Nucleotide und/oder Aminosäuren (Diskette)
- 9. Sonstige (einzelnen aufführen):

Abbildung der Zeichnungen, die mit der Zusammenfassung veröffentlicht werden soll (Nr.): 6

Sprache, in der die internationale Anmeldung eingereicht wird: Deutsch

Feld Nr. IX UNTERSCHRIFT DES ANMELDERS ODER DES ANWAHTS

Der Name jeder unterzeichnenden Person ist neben der Unterschrift zu wiederholen, und es ist anzugeben, sofern sich dies nicht eindeutig aus dem Antrag ergibt, in welcher Eigenschaft die Person unterzeichnet.

ROBERT BOSCH GMBH
Nr. 19/95 AV

Brix

Volker Becker

Franz Laermmer

Andrea Schilp

Vom Anmeldeamt auszufüllen

1. Datum des tatsächlichen Eingangs dieser internationalen Anmeldung

3. Geändertes Eingangsdatum aufgrund nachträglich, jedoch fristgerecht eingegangener Unterlagen oder Zeichnungen zur Vervollständigung dieser internationalen Anmeldung:

4. Datum des fristgerechten Eingangs der angeforderten Richtigstellung nach Artikel 11(2) PCT:

5. Vom Anmelder benannte Internationale Recherchenbehörde:

ISA/

2. Zeichnungen

einge-gangen:

nicht ein-gegangen:

6. Übermittlung des Recherchenexemplars bis zur Zahlung der Recherchengebühr aufgeschoben

Vom Internationalen Büro auszufüllen
Datum des Eingangs des Aktenexemplars beim Internationalen Büro:

Siehe Anmerkungen zu diesem Antragsformular

**VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT
AUF DEM GEBIET DES PATENTWESENS**

PCT

INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regeln 43 und 44 PCT)

Aktenzeichen des Anmelders oder Anwalts R. 34507 Kut/Mi	WEITERES VORGEHEN	siehe Mitteilung über die Übermittlung des internationalen Recherchenberichts (Formblatt PCT/ISA/220) sowie, soweit zutreffend, nachstehender Punkt 5
Internationales Aktenzeichen PCT/DE 99/ 03018	Internationales Anmelde datum (Tag/Monat/Jahr) 22/09/1999	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr) 15/10/1998
Anmelder ROBERT BOSCH GMBH et al.		

Dieser internationale Recherchenbericht wurde von der Internationalen Recherchenbehörde erstellt und wird dem Anmelder gemäß Artikel 18 übermittelt. Eine Kopie wird dem Internationalen Büro übermittelt.

Dieser internationale Recherchenbericht umfaßt insgesamt 3 Blätter.

Darüber hinaus liegt ihm jeweils eine Kopie der in diesem Bericht genannten Unterlagen zum Stand der Technik bei.

1. Grundlage des Berichts

a. Hinsichtlich der **Sprache** ist die internationale Recherche auf der Grundlage der internationalen Anmeldung in der Sprache durchgeführt worden, in der sie eingereicht wurde, sofern unter diesem Punkt nichts anderes angegeben ist.

Die internationale Recherche ist auf der Grundlage einer bei der Behörde eingereichten Übersetzung der internationalen Anmeldung (Regel 23.1 b)) durchgeführt worden.

b. Hinsichtlich der in der internationalen Anmeldung offenbarten **Nucleotid- und/oder Aminosäuresequenz** ist die internationale Recherche auf der Grundlage des Sequenzprotokolls durchgeführt worden, das

in der internationalen Anmeldung in Schriftlicher Form enthalten ist.

zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.

bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.

bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.

Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.

Die Erklärung, daß die in computerlesbarer Form erfaßten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

2. Bestimmte Ansprüche haben sich als **nicht recherchierbar erwiesen** (siehe Feld I).

3. Mangelnde Einheitlichkeit der **Erfahrung** (siehe Feld II).

4. Hinsichtlich der Bezeichnung der Erfahrung

wird der vom Anmelder eingereichte Wortlaut genehmigt.

wurde der Wortlaut von der Behörde wie folgt festgesetzt:

5. Hinsichtlich der Zusammenfassung

wird der vom Anmelder eingereichte Wortlaut genehmigt.

wurde der Wortlaut nach Regel 38.2b) in der in Feld III angegebenen Fassung von der Behörde festgesetzt. Der Anmelder kann der Behörde innerhalb eines Monats nach dem Datum der Absendung dieses internationalen Recherchenberichts eine Stellungnahme vorlegen.

6. Folgende Abbildung der Zeichnungen ist mit der Zusammenfassung zu veröffentlichen: Abb. Nr. 6

wie vom Anmelder vorgeschlagen

weil der Anmelder selbst keine Abbildung vorgeschlagen hat.

weil diese Abbildung besser kennzeichnet.

keine der Abb.

/\

INTERNATIONALES RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 99/03018

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B81B3/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B81B B82B G01P G01L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 97 49998 A (UNIV FRASER SIMON) 31. Dezember 1997 (1997-12-31) Seite 5 -Seite 6; Abbildungen 3-6 ---	1, 2, 4, 5, 9, 10, 22, 31
A	DE 196 03 829 A (DAIMLER BENZ AG) 7. August 1997 (1997-08-07) Spalte 6, Zeile 10 - Zeile 51; Abbildung 4 ---	1, 2, 4-6, 9, 10, 23, 31
A	US 5 313 836 A (FUJII TETSUO ET AL) 24. Mai 1994 (1994-05-24) Spalte 5, Zeile 47 -Spalte 6, Zeile 51; Abbildung 3 ---	1, 2, 4, 5, 9, 26, 31
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
 - "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 - "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 - "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 - "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 - "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
10. Februar 2000	21/02/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Szarowski, A

INTERNATIONALES RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 99/03018

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 44 20 962 A (BOSCH GMBH ROBERT) 21. Dezember 1995 (1995-12-21) Anmelder Spalte 2; Abbildungen 1-3 -----	1-3, 9, 10, 31

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 99/03018

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9749998	A	31-12-1997	AU	3162297 A	14-01-1998
DE 19603829	A	07-08-1997		NONE	
US 5313836	A	24-05-1994	JP	2811768 B	15-10-1998
			JP	3049267 A	04-03-1991
DE 4420962	A	21-12-1995	GB	2290413 A,B	20-12-1995

PCTWELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : B81B 3/00	A1	(11) Internationale Veröffentlichungsnummer: WO 00/23376
		(43) Internationales Veröffentlichungsdatum: 27. April 2000 (27.04.00)

(21) Internationales Aktenzeichen: PCT/DE99/03018	(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 22. September 1999 (22.09.99)	
(30) Prioritätsdaten: 198 47 455.5 15. Oktober 1998 (15.10.98) DE	Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, D-70442 Stuttgart (DE).	
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): BECKER, Volker [DE/DE]; Im Wiese 7, D-76359 Marxzell (DE). LAERMER, Franz [DE/DE]; Witikoweg 9, D-70437 Stuttgart (DE). SCHILP, Andrea [DE/DE]; Seelenbachweg 15, D-73525 Schwae- bisch Gmuend (DE).	

(54) Title: METHOD FOR PROCESSING SILICON USING ETCHING PROCESSES

(54) Bezeichnung: VERFAHREN ZUR BEARBEITUNG VON SILIZIUM MITTELS ÄTZPROZESSEN

(57).Abstract

The invention relates to a method for etching a first silicon layer (15) which is provided with an etching mask (10) for defining lateral recesses (21). Trenches (21') are produced in the area of the lateral recesses (21) in a first plasma etching process by means of anisotropic etching. As soon as a barrier layer (12, 14, 14', 16) buried between the first silicon layer (15) and another silicon layer (17) is reached, the first etching process virtually comes to a stop (17). This barrier layer is then etched through in the exposed areas (23, 23') using a second etching process. An etching of the other silicon layer (17, 17') is then effected in a subsequent third etching process. This enables the production of free-standing structures for sensor elements using a simplified process which is fully compatible with the process steps in IC integration technology.

(57) Zusammenfassung

Es wird ein Verfahren zum Ätzen einer ersten Siliziumschicht (15) vorgeschlagen, die mit einer Ätzmaskierung (10) zur Definition lateraler Aussparungen (21) versehen ist. In einem ersten Plasmaätzprozeß werden im Bereich der lateralen Aussparungen (21) durch anisotrope Ätzung Trenchgräben (21') erzeugt. Der erste Ätzprozeß kommt nahezu zum Erliegen, sobald eine zwischen der ersten Siliziumschicht (15) und einer weiteren Siliziumschicht (17) vergrabene Trennschicht (12, 14, 14', 16) erreicht wird. Danach wird diese Trennschicht in freiliegenden Bereichen (23, 23') mittels eines zweiten Ätzprozesses durchgeätzt. Ein nachfolgender dritter Ätzprozeß bewirkt dann eine Ätzung der weiteren Siliziumschicht (17, 17'). Dadurch können in einem einfachen Prozeß freistehende Strukturen für Sensorelemente erzeugt werden, der zu den Verfahrensschritten in der IC-Integrationstechnik voll kompatibel ist.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauritanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

10 **Verfahren zur Bearbeitung von Silizium mittels Ätzprozessen****Stand der Technik**

15 Die Erfindung geht aus von einem Verfahren zum Ätzen eines Siliziumschichtkörpers nach der Gattung des Hauptanspruchs.

20 Die Offenlegungsschrift DE 195 37 814 A1 offenbart ein Verfahren zur Herstellung von Siliziumschichtsystemen, mit dem oberflächenmikromechanische Sensoren hergestellt werden können. Dazu wird auf einem Siliziumsubstrat zunächst ein thermisches Oxid abgeschieden, auf das eine dünne Schicht hochdotierten Polysiliziums zur Verwendung als vergrabene Leiterbahn aufgebracht wird. Daraufhin wird auf der Polysiliziumschicht eine weitere Oxidschicht und hierauf beispielsweise eine dicke Epipoly siliziumschicht abgeschieden. Zuletzt erfolgt die Abscheidung und Strukturierung einer oberflächlichen Aluminiummetallisierung. Anschließend werden die freizulegenden Sensorstrukturen, vorzugsweise mit einem in der Patentschrift DE 42 41 045 beschriebenen fluorbasierten Siliziumtiefenätzverfahren herausgeätzt. Die Freilegung des Sensorelementes geschieht mittels einer Opferschichtätzung, bei der durch flußsäurehaltige Medien über ein Dampfätzverfahren das Oxid unter den Sensorbereichen entfernt wird. Nachteilig bei dieser Unterätztechnik ist, daß das Oxid nicht nur unter dem freizulegenden Sensorbereich entfernt

wird, sondern auch über und teilweise auch unter den Polysilizi-
umleiterbahnen, so daß die Gefahr von Nebenschlüssen und
Kriechströmen besteht. Ein Schutz der Oxidbereiche, deren Un-
terätzung verhindert werden soll, etwa durch Schutzlacke ist nur
5 mit erheblichem Aufwand möglich, da dampfförmige Flußsäure na-
hezu alle praktikablen polymeren Schutzschichten sehr schnell
durchdringt und überdies stark korrosiv wirken kann.

Ein Trockenätzverfahren in Silizium zur Herstellung von Sensor-
strukturen durch Kombination von anisotroper und isotroper
10 Plasmaätztechnik wird in DE 44 20 962 A1 offenbart. Ein nach-
träglicher Naßätzschritt oder ein Ätzen in der Dampfphase ist
dabei nicht erforderlich. Alle Prozeßschritte können in einer
einzigsten Plasmaätzanlage durchgeführt werden. Dazu wird zunächst
15 mit Hilfe des in der DE 42 41 045 beschriebenen anisotropen Tie-
fenätzverfahrens die Sensorstruktur mit vertikalen Wänden er-
zeugt. Dabei wechseln Depositionsschritte, bei denen auf der
Seitenwand ein teflonartiges Polymer abgeschieden wird, und an
sich isotrope, fluorbasierte Ätzschritte, die durch Vorwärts-
20 treiben des Seitenwandpolymers während der Ätzung lokal ani-
sotrop gemacht werden, einander ab. Anschließend wird mit einem
fluorbasierten Ätzschritt das Siliziumsubstrat so lange isotrop
eingätzt, bis die Siliziumstruktur für das Sensorelement voll-
ständig freigelegt ist. Dieses Verfahren hat jedoch zwei gra-
vierende Nachteile. Einerseits kommt es infolge des sogenannten
25 „Microloading-Effektes“ dazu, daß schmale Ätzgräben langsamer
als breite Ätzgräben geätzt werden, was dann auch für die Ge-
schwindigkeit der nachfolgenden lateralen Unterätzung gilt, d.h.
die Unterätzung schreitet bei schmalen Gräben langsamer voran
als bei breiten Gräben. Zum anderen werden die freizulegenden
30 Strukturen auch von ihrer Unterseite bzw. Boden angegriffen.
Dies hat zur Folge, daß Strukturen, die von breiten Trenchgräben
umgeben sind, eine geringere Resthöhe haben als Strukturen, die

von schmalen Trenchgräben umgeben sind, was häufig zu irreproduzierbaren und unbefriedigenden mechanischen Eigenschaften der hergestellten Sensorelemente führt.

5 Aufgabe der Erfindung ist es, ein Verfahren zum Ätzen von Silizium oder Siliziumschichten bereitzustellen, mit dem in einer Siliziumschicht zunächst über eine Ätzmaske definierte Trenchgräben anisotrop geätzt werden können. Dabei soll die in den Trenchgräben erreichte Ätztiefe nicht von der Breite der Trenchgräben abhängig sein, sondern lediglich von der Ätzzeit.
10 Außerdem soll eine definierte Unterätzung, insbesondere freistehender, durch Trenchgräben eingeschlossener Strukturen, beispielsweise zur Herstellung von Sensorelementen, ermöglicht werden. Während der Unterätzung soll zudem eine Ätzung des Bodens der freistehenden Strukturen unterbleiben.
15

Vorteile der Erfindung

Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat gegenüber dem Stand der Technik den Vorteil, daß definierte Unterätzungen möglich sind, die es erlauben, freistehende Strukturen reproduzierbar und definiert herzustellen, wobei alle mikromechanischen Strukturierungsschritte in einer Ätzkammer ausgeführt werden können, ohne daß der Siliziumkörper zwischendurch ausgeschleust werden muß. Ein Ätzangriff auf die freistehenden Strukturen, ausgehend von deren Boden oder den Seitenwänden, erfolgt nicht. Überdies wird erreicht, daß alle Strukturen eine definierte Höhe aufweisen, die durch die Dicke der aufgebrachten Siliziumschicht definiert wird, unabhängig von Microloading-Effekten, Trenchgrabenbreiten und dem Grad einer isotropen Unterätzung.
20
25
30

Daneben werden durch das erfindungsgemäße Verfahren Korrosionsprobleme beispielsweise durch Flußsäuredämpfe und elektrische Nebenschlüsse durch Unterätzen von Leiterbahnen vermieden. Vergrabene Leitschichten können vollständig durch eine ausreichend dicke Siliziumdioxidschicht eingeschlossen werden, um sie vor Unterätzungen und Ätzangriffen zu schützen.

Ein weiterer Vorteil des Verfahrens ist auch, daß tiefe Unterätzungen realisiert werden können und damit große Abstände zwischen Struktur und Siliziumsubstratschicht möglich sind. Dies reduziert bei einem Sensor beispielsweise die Gefahr eines ungewollten Aufschlagens der Sensorelemente auf die darunter befindliche Schicht im Überlastfall mit anschließendem irreversiblen Ankleben aneinander (sog. „sticking“). Der Abstand zwischen Sensorelement und Siliziumschicht kann dabei so groß gewählt werden, daß diese sich auch im Überlastfall niemals berühren.

Das erfindungsgemäße Verfahren kann sehr vorteilhaft in bestehenden Siliziumtiefenätzanlagen gemäß DE 42 41 045 durchgeführt werden, so daß keine zusätzlichen Investitionskosten anfallen. Dabei können mit diesem zunächst anisotropen Plastmatrockenätzverfahren durch das Ausschalten der Ionenbeschleunigung zum Substrat während eines Ätzschrittes Siliziumstrukturen auch isotrop eingeätzt werden, um so ein Unterätzen der freizulegenden Siliziumstrukturen zu erreichen.

Da die während der Ätzprozesse aufgebrachte Ätzmaskierung beispielsweise in Form einer Photolackmaske auf der Siliziumschicht erst nach Abschluß aller Ätzungen entfernt wird, sind beispielsweise Aluminiumkontakteflächen an der Oberfläche der Siliziumschicht während der Ätzungen vollständig vor Korrosion ge-

schützt, die ansonsten bei fluorhaltigen Ätzgasen häufig unvermeidlich ist. Damit kann in besonders vorteilhafter Weise auch eine Systemintegration erreicht werden, d.h. eine Herstellung eines Sensorelementes mit integrierter Schaltung auf ein und demselben Chip. Überdies ist das erfindungsgemäße Verfahren beispielsweise zur Herstellung von Sensorelementen zu Verfahrensschritten in der IC-Integrationstechnik voll kompatibel.

10 Da ein Unterätzen von Leitschichten und eine unkontrollierte Entstehung von Ätztaschen in der geätzten Siliziumschicht durch das erfindungsgemäße Verfahren vermieden wird, ist auch eine Einschwemmung von Partikeln in diese Taschen, die ansonsten kaum wieder zu entfernen sind und die zu 15 mechanischen und elektrischen Fehlern in Sensorelementen führen, verfahrenstechnisch bereits unterbunden.

20 Weitere Vorteile und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen aufgeführten Maßnahmen.

Zeichnung

Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt schematisch den Aufbau eines Siliziumschichtkörpers mit einer Ätzmaskierung, Figur 2 den Siliziumschichtkörper nach Figur 1 mit Trenchgräben und Figur 3 den Siliziumschichtkörper nach Figur 1 und 2 mit einer Unterätzung ausgehend vom freiliegenden Bereich der Trenchgräben. Figur 4 zeigt den Aufbau eines Siliziumschichtkörpers mit einer vollständig eingeschlossen Zwischenschicht als Opferschicht, Figur 5 den Siliziumschichtkörper nach Figur 4

mit geätzten Trenchgräben, Figur 6 den Siliziumschichtkörper nach Figur 4 bzw. 5 mit einer Unterätzung ausgehend vom freiliegenden Bereich der Trenchgräben, die durch Trennschichten lateral und vertikal begrenzt ist, und Figur 5 eine Variante des Aufbaus des Siliziumschichtkörpers entsprechend Figur 6, wobei die Trennschicht mit einer darin eingeschlossenen strukturierten dünnen Leitschicht durchgehend ausgebildet ist. Die Figuren 8 bis 11 erläutern ein weiteres Ausführungsbeispiel als Weiterbildung des 10 Ausführungsbeispiels gemäß Figur 7, wobei eine Unterätzung ausgehend von einer Zwischenschicht in freistehende Strukturen hinein durch Unterbrechung der Trennschicht gezielt zugelassen wird.

15 **Ausführungsbeispiele**

Die Figur 1 zeigt einen Siliziumschichtkörper mit einer Siliziumschicht, die im folgenden als weitere Siliziumschicht 17 bezeichnet wird, auf der eine Trennschicht aufgebracht ist, die selbst aus mehreren Trennschichtabschnitten 12, 14, 16 besteht. Ein erster Trennschichtabschnitt 12 besteht aus thermisch oxidiertem Silizium (sogenanntes Siliziumdioxid). Auf diesem befindet sich bereichsweise eine dünne, gegebenenfalls strukturierte Leitschicht 13 aus leitfähigem hochdotierten Polysilizium, der ein zweiter Trennschichtabschnitt 16 aus Siliziumdioxid folgt, das über eine Abscheidung von Silanen aus der Gasphase erzeugt wurde. In den von der Leitschicht 13 freien Bereichen, die gemäß Figur 1 von einem dritten Trennschichtabschnitt 14 eingenommen werden, erfolgte eine vollständige Rückätzung des ersten und zweiten 25 Trennschichtabschnittes 12, 16 bis auf die weitere Siliziumschicht 17 und ein anschließendes Aufwachsen des dritten Trennschichtabschnittes 14 mit einer Dicke von lediglich 10 nm bis 30

100 nm an gleicher Stelle, der aus Siliziumdioxid besteht. Oberhalb der Trennschichtabschnitte 12, 14, 16 befindet sich eine erste Siliziumschicht 15 aus Epipolysilizium. Die erste Siliziumschicht 15 ist oberflächlich metallisiert und mit einer Ätzmaskierung 10 zur Definition lateraler Aussparungen 21 strukturiert.

Figur 2 verdeutlicht das Ergebnis eines ersten anisotropen Plasmaätzprozesses mit alternierenden Depositions- und Ätzschritten, der im Bereich der lateralen Aussparungen 21 Trenchgräben 21' ätzt, wobei sich an den Seitenwänden der Trenchgräben 21' ein teflonartiger Film 20 aufbaut. Beim Erreichen der Trennschichtabschnitte 12, 14, 16 kommt der erste Ätzprozeß nahezu vollständig zum Erliegen, da dieser eine sehr hohe Selektivität für Silizium gegenüber Siliziumdioxid aufweist und somit Siliziumdioxid nahezu nicht geätzt wird. Die erreichte Tiefe der Trenchgräben 21' wird somit jeweils durch die Tiefe der vergraben Trennschichtabschnitte 12, 14, 16 d.h. die Dicke der ersten Siliziumschicht 15 definiert. Am Boden der Trenchgräben 21' befinden sich freiliegende Bereiche 23 bzw. 24.

Figur 3 erläutert, wie in einem zweiten, beispielsweise anisotropen Plasmaätzprozeß unter starkem Ionenbeschluß freiliegende Bereiche 23 des dünnen dritten Trennschichtabschnittes 14 durchbrochen bzw. entfernt werden. Da der zweite Trennschichtabschnitt 16 oberhalb der Leitschicht 13 in den freiliegenden Bereichen 24 erheblich dicker ausgebildet ist, als der dritte Trennschichtabschnitt 14, wird der zweite Schichtabschnitt 16 beim Durchbrechen des Trennschichtabschnittes 14 lediglich geringfügig abgedünnt. Dadurch bleibt die Leitschicht 13 vollständig von den Trennschichtabschnitten 12, 16 umschlossen. Nach dem Durchbrechen des dünnen dritten Trennschichtabschnittes 14 im freiliegenden Bereich 23 erfolgt eine weitere, vorzugsweise

isotrope Ätzung der weiteren Siliziumschicht 17 zur Erzeugung einer Mulde 31. Dabei kommt es zu einer Unterätzung und Erzeugung einer freistehenden Struktur 32 mit einem Boden 30, der aus dem Material des Trennschichtabschnittes 14 besteht. Dieser Boden 30 verhindert gegebenenfalls zusammen mit einem Trennschichtrest 25 des dritten Trennschichtabschnittes 14 sowie mit den teflonartigen Filmen 20 eine Rückätzung und einen Strukturverlust der freistehenden Struktur 32.

10 Nachfolgend werden weitere Details der einzelnen Verfahrensschritte entsprechend ihrer Reihenfolge beispielhaft erläutert.

15 Zunächst wird auf der weiteren Siliziumschicht 17 ein dicker erster Trennschichtabschnitt 12 abgeschieden. Der erste Trennschichtabschnitt 12 enthält vorzugsweise Siliziumdioxid, ein sonstiges Siliziumoxid, Siliziumnitrid, Glas, eine Keramik oder eine Mischung davon und wird über an sich bekannte Abscheideverfahren aus der Halbleitertechnik und insbesondere durch thermische Oxidation entsprechend der Lehre der DE 195 37 20 814 A1 abgeschieden. Die weitere Siliziumschicht 17 ist ein Siliziumwafer.

25 Die Dicke des Trennschichtabschnittes 12 beträgt beispielsweise 2,5 µm. Die abgeschiedene und gegebenenfalls strukturierte dünne Leitschicht 13 enthält vorzugsweise leitfähiges Polysilizium, das zur Verbesserung der Leitfähigkeit stark dotiert sein kann. Auf diesem Schichtsystem wird danach ein weiteres Oxid, vorzugsweise Siliziumdioxid, als Trennschichtabschnitt 16 abgeschieden. Diese Abscheidung erfolgt beispielsweise aus der Gasphase über Silane gemäß dem an sich aus DE 195 37 814 A1 bekannten Verfahren und weist eine Schichtdicke von ca. 1,5 µm auf. Dabei wird die Leitschicht 13 bevorzugt vollständig eingeschlossen bzw. vergraben.

Nachfolgend wird im Bereich des dritten Trennschichtabschnittes 14, in dem später eine freistehende Struktur 32 durch Unterätzung erzeugt werden soll, das sich dort befindliche Oxid auf eine Dicke von ca. 10 nm bis 100 nm abgedünnt. Dies kann durch zeitkontrolliertes Rückätzen der Trennschichtabschnitte 12 und 16 erfolgen. In einem weiteren Ausführungsbeispiel erfolgt das Rückätzen der Trennschichtabschnitte 12 und 16 im dritten Trennschichtabschnitt 14 vollständig bis zum Erreichen der weiteren Siliziumschicht 17, um anschließend eine gewünschte Dicke des dritten Trennschichtabschnittes 14 von beispielsweise 10 nm bis 100 nm wieder aufwachsen zu lassen. Dieses Aufwachsen des dritten Trennschichtabschnittes 14 kann entweder nur in den zuvor rückgeätzten Bereichen oder aber ganzflächig in den rückgeätzten Bereichen und auf dem verbliebenen zweiten Trennschichtabschnitt 16 erfolgen, da die Dicke des aufgewachsenen dritten Trennschichtabschnittes 14 gegenüber der Dicke des zweiten Trennschichtabschnittes 16 nahezu vernachlässigbar ist. Bei dieser Verfahrensvariante des vollständigen Rückätzens und nachfolgenden Aufwachsens ist die Dicke des dritten Trennschichtabschnittes 14, der vorzugsweise aus thermisch aufgewachsenem Siliziumdioxid besteht, sehr genau definiert.

Der erste Trennschichtabschnitt 12 weist in bevorzugter Ausführung eine größere Dichte auf, als der zweite Trennschichtabschnitt 16. Weiterhin sollte die Dicke des zweiten Trennschichtabschnittes 16 erheblich größer, insbesondere mehr als zehnmal bis tausendmal größer als die Dicke des rückgeätzten Trennschichtabschnittes oder des aufgewachsenen dritten Trennschichtabschnittes 14 sein. Die Dicke des ersten und zweiten Trennschichtabschnittes 12 bzw. 16 liegt absolut jeweils zwischen 500 nm bis 50 µm, insbesondere zwischen 1 µm bis 10 µm.

Im anschließenden Verfahrensschritt wird auf die Trennschichtabschnitte 12, 14, 16 eine dicke erste Siliziumschicht 15, vorzugsweise aus Epipolysilizium aufgewachsen, die oberflächlich gegebenenfalls metallisiert ist und beispielsweise mit der Ätzmaskierung 10 zur Definition der lateralen Aussparungen 21 strukturiert. Die erste Siliziumschicht 15 kann außerdem dotiert sein. Die metallisierte Oberfläche der ersten Siliziumschicht 15 kann eine Aluminiumkontakte Schicht sein, die durch die Ätzmaskierung 10, beispielsweise in Form einer Photolackmaske, gleichzeitig vor dem Angriff fluorhaltiger Gase geschützt wird.

Danach werden mittels eines aus DE 42 41 045 oder DE 44 20 962 Al an sich bekannten, anisotropen Tiefenätzprozesses als erstem Ätzprozeß Trenchgräben 21' an den Stellen der lateralen Aussparungen 21 geätzt. Dieser erste Ätzprozeß kommt beim Erreichen der Trennschichtabschnitte 12, 14, 16 in den freiliegenden Bereichen 23 bzw. 24 nahezu vollständig zum Erliegen, da das aus DE 42 41 045 bekannte Ätzverfahren, auf das sich dieses Ausführungsbeispiel bezieht, eine sehr hohe Selektivität von ca. 200-300:1 gegenüber Siliziumdioxid aufweist, was bedeutet, daß auf den Trennschichtabschnitten 12, 14, 16, die bevorzugt aus Siliziumdioxid bestehen, nahezu ein Ätzstopp eintritt. Das Eintreten des Ätzstopps wird neben der Zusammensetzung der Trennschicht insbesondere vom gewählten Ätzprozeß bestimmt. Die Wahl der Verfahrensparameter ist immer derart zu gestalten, daß mit Erreichen der Trennschichtabschnitte 12, 14, 16 nahezu ein Ätzstopp eintritt.

Der bevorzugte erste Ätzprozeß gemäß DE 42 41 045 ist ein Trockenätzverfahren, bei dem Depositionsschritte alternierend mit an sich isotropen Ätzschritten ausgeführt werden, wobei während der Depositionsschritte ein polymerbildende Monomere lieferndes Depositionsgas, vorzugsweise Octafluorocyclobutan C₄F₈ oder

Perfluoropropylen C_3F_6 , einem hochdichten Plasma, insbesondere
einem PIE-Plasma (propagation ion etching) oder einem ICP-Plasma
(inductively coupled plasma) ausgesetzt wird, das auf den
Seitenwänden der Trenchgräben 21' den teflonartigen Film 20 von
5 $(CF_2)_n$ aufbaut und bei dem während der Ätzprozesse ein Fluorradikale lieferndes Ätzgas, insbesondere Schwefelhexafluorid SF_6 ,
eingesetzt wird, dem zur Unterdrückung einer Schwefelausscheidung im Abgasbereich Sauerstoff beigemischt sein kann.
Durch Vorwärtstreiben des teflonartigen Seitenwandfilmes 20
10 während der an sich isotropen Ätzschritte werden diese lokal
anisotrop.

In einem zweiten Ätzprozeß werden nun die Trennschichtabschnitte
12, 14, 16 in den freiliegenden Bereichen 23 bzw. 24 mit einem
15 für die Ätzung der Trennschichtzusammensetzung geeigneten Ätz-
prozeß weitergeätzt. Diese Weiterätzung erfolgt so lange, bis
der Trennschichtabschnitt 14 in den freiliegenden Bereichen 23
vollständig durchgeätzt ist. Dies geschieht vorzugsweise durch
ein Plasmaätzverfahren mit einer Ätzvorrichtung gemäß der Lehre
20 der DE 42 41 045 unter Verwendung der Ätzgase CF_4 , C_2F_6 , C_3F_8 ,
 CHF_3 , C_3F_6 oder C_4F_8 unter Einsatz von starkem Ionenbeschuß d.h.
hoher Substratbiasspannung. Speziell bei Einsatz der
fluorreichen Ätzgase CF_4 , C_2F_6 , C_3F_8 oder einem Gemisch von CF_4
und CHF_3 ist dieser Oxidätzprozeß unproblematisch für den
25 Zustand der Plasmaätzkammer hinsichtlich anschließender
Siliziumätzungen. Falls die fluorärmeren Oxidätzgase CHF_3 , C_3F_6
oder C_4F_8 , beispielsweise aus Gründen einer höheren
Selektivität, verwendet werden sollen, müssen die
Prozeßparameter sehr sorgfältig optimiert werden, um zu
verhindern, daß spätere Siliziumätzungen in der Kammer durch
Querkontaminationen vergiftet werden. Es ist jedoch auch
möglich, die Oxidätzung in einer eigens dafür vorgesehenen
Ätzanlage durchzuführen. Hierzu verwendet man insbesondere eine
30

Clusteranlage, bei der ein einziges Handlingsystem mehrere Plasmaätzkammern bedient und bei der der Siliziumkörper stets im Vakuum verbleibt.

5 In weiteren Verfahrensvarianten kann die Oxidätzung der freiliegenden Bereiche 23 bzw. 24 der Trennschichtabschnitte 12, 14, 16 auch naßchemisch erfolgen, indem die beispielsweise auf einem Wafer hergestellte Schichtabfolge aus der Plasmaätzkammer ausgeschleust wird und dann eine Siliziumdioxidschicht in den freiliegenden Bereichen 23 bzw. 24 mit verdünnter Flußsäure oder einer hinreichend gepufferten Flußsäurelösung geätzt und in den freiliegenden Bereichen 23 vollständig entfernt wird. Die bevorzugte Ausgestaltung der Erfindung ist jedoch die Ätzung trockenchemisch mittels eines Plasmas, da diese Methode insbesondere die Oxidkanten des Bodens 30 oder der Trennschichtreste 25 nicht hinterschneidet.

Während der Durchätzung des dritten Trennschichabschnittes 14 in den freiliegenden Bereichen 23 werden unvermeidlich auch die Trennschichtabschnitte in dem freiliegenden Bereich 24 des zweiten Trennschichtabschnittes 16 teilweise mitabgetragen, da dieser zweite Ätzprozeß unmaskiert und damit ganzflächig auf allen freiliegenden Bereichen 23 bzw. 24 erfolgt. Da der zweite Trennschichtabschnitt 16 jedoch eine erheblich größere Dicke von beispielsweise 1,5 µm gegenüber lediglich ca. 50 nm des dritten Trennschichtabschnittes 14 aufweist, ist diese Ätzung des zweiten Trennschichtabschnittes 16 bei der Durchätzung der freiliegenden Bereiche des dünnen dritten Trennschichtabschnittes 14, selbst bei einer zweifachen Überätzung beim Durchätzen aus Gründen der Prozeßsicherheit, nicht von Bedeutung. Damit bleibt insbesondere die vergrabene Leitschicht 13 überall durch eine dicke, intakte Siliziumdioxidschicht geschützt.

Nach Abschluß des Durchätzens des dritten Trennschichtabschnittes 14 in den freiliegenden Bereichen 23, wird gemäß Figur 3 in einem dritten Ätzprozeß eine isotrope Ätzung der weiteren Siliziumschicht 17 vorgenommen. Vor dieser Ätzung kann eine zusätzliche Passivierung der Seitenwände der Trenchgräben 21' mit einem teflonartigen Plasmapolymer gemäß der Lehre von DE 44 20 962 A1 vorgenommen werden, sofern diese Seitenwandpassivierung nicht bereits während des Ätzens der Trenchgräben 21' gemäß Figur 2 entstanden und während des Durchätzens des dritten Trennschichtabschnittes 14 in den freiliegenden Bereichen 23 unversehrt und vollständig erhalten geblieben ist. Die isotrope Ätzung der weiteren Siliziumschicht 17 ist vorzugsweise eine Unterätzung im Bereich 31, die zum Freilegen der freizulegenden Struktur 32 führt. Während dieser Ätzung der weiteren Siliziumschicht 17 kann eine Ätzung des Bodens 30 oder der Seitenwände der freistehenden Struktur 32 nicht auftreten, da der Boden 30 beispielsweise durch eine dünne Siliziumdioxidschicht aus dem dritten Trennschichtabschnitt 14 geschützt ist und die Seitenwände durch den teflonartigen Film 20 geschützt werden. Gleiches gilt für eine Rückätzung in die erste Siliziumschicht 15 oder eine Rückätzung in die Leitschicht 13, die ebenfalls durch im zweiten Ätzprozeß nicht durchgeätzten Trennschichtreste 25 geschützt sind.

Im einzelnen erfolgt der dritte Ätzprozeß zur isotropen Ätzung der weiteren Siliziumschicht 17 indem zunächst möglicherweise noch vorhandene Reste eines Fluorpolymers auf der weiteren Siliziumschicht 17 nach dem Durchätzen des dritten Trennschichtabschnittes 14 entfernt werden. Dies geschieht indem kurzzeitig Argon und/oder Sauerstoff in die Ätzkammer eingelassen und das Plasma erneut gezündet wird. Dabei wird in an sich bekannter Weise durch Ioneneinwirkung selektiv auf dem

Ätzgrund ein sehr schneller Polymerabtrag erreicht, so daß sich eine polymerfreie weitere Siliziumschicht 17 und eine weiterhin intakte Seitenwandpassivierung durch die teflonartigen Filme 20 ergibt. Die Gegenwart von Sauerstoff fördert diesen

5 physikalischen Ätzabtrag durch gerichtete Ionen, indem chemische Reaktionen zwischen Fluorkohlenwasserstoffen und Sauerstoff induziert werden. Danach wird in an sich bekannter Weise gemäß DE 42 41 045 ein isotropes Siliziumätzverfahren mit einem Fluorplasma durchgeführt, wobei in einer induktiven Plasmaquelle ein SF₆-Plasma gezündet wird und gleichzeitig der aus DE 42 41 045 bekannte Seitenwandfilmtransportmechanismus unterbunden wird, indem man einen hohen Prozeßdruck verwendet und keine Substratbiasspannung anlegt. Ein geeigneter Gasfluß für diesen Teil des dritten Ätzprozesses ist beispielsweise 100 sccm SF₆ bei

10 einem Druck von 50 bis 100 mTorr. In einer Variante dieses Ätzprozesses kann der initiale Abtrag der Reste eines Fluorpolymers auf der weiteren Siliziumschicht 17 auch dadurch erfolgen, daß man das Siliziumätzverfahren gemäß DE 42 41 045 mit einem Fluorplasma und den genannten Parametern für einige Sekunden mit einer hohen Substratbiasleistung von 50 bis 100 W startet, und diese Substratbiasleistung dann vollständig abschaltet. Damit werden innerhalb der wenigen Sekunden die Reste des Fluorpolymers auf der weiteren Siliziumschicht 17 abgetragen, während die teflonartigen Seitenwandfilme 20 im wesentlichen unverändert

15 20 25 bleiben.

Alternativ kann der isotrope Fluorätzschritt im dritten Ätzprozeß zur isotropen Ätzung der weiteren Siliziumschicht 17 nach der Entfernung von Resten des Fluorpolymers auf der weiteren Siliziumschicht 17 auch ohne Plasmaunterstützung mit Ätzgasen wie beispielsweise Xenondifluorid, Chlortrifluorid, Bromtrifluorid oder Iodpentafluorid durchgeführt werden, die bekanntermaßen freie Siliziumflächen unter Bildung von flüchtigem

Siliziumtetrafluorid sofort isotrop in heftiger Reaktion angreifen. Die Selektivität dieser Gase gegenüber Nicht-Silizium ist extrem hoch, so daß bereits dünnte Passivierschichten zum Schutz vor Ätzangriffen ausreichen.

5

Da das Siliziumdioxid beim isotropen Unterätzen am Boden 30 der freizulegenden Struktur 32 verbleibt, muß der dritte Trennschichtabschnitt 14 möglichst dünn sein, um die mechanischen Eigenschaften der freistehenden Struktur 32, die beispielsweise als Sensorelement verwendet werden kann, nicht nachteilig zu beeinflussen. Eine praktikable untere Grenze der Dicke ist ca. 10 nm. Durch die Siliziumdioxidschicht am Boden 30 der freistehenden Struktur 32 wird zudem eine Druckspannung induziert, die eine geringfügige Verwölbung des Bodens 30 nach oben bewirkt. Diese Verwölbung ist bei einer Schichtdicke von ca. 10 nm in den meisten Fällen vernachlässigbar. Es ist jedoch auch möglich, diese Druckspannung durch eine Dotierung der ersten Siliziumschicht 15 von oben vollständig zu kompensieren.

10

Durch das erfindungsgemäße Verfahren haben die freistehenden Strukturen 32 insbesondere eine Höhe, die nur durch die Dicke der ersten Siliziumschicht 15 bestimmt ist und die unabhängig von Microloading-Effekten, dem Grad an isotroper Ätzung bzw. Unterätzung und den Trenchgrabenbreiten ist.

25

Nach Ausschleusen aus der Plasmaätzanlage wird der geätzte Siliziumkörper in einem Sauerstoffplasmastrpper von der Ätzmaskierung 10, beispielsweise in Form einer Photolackmaske, und den verbliebenen passivierenden, teflonartigen Filmen 20 mittels eines an sich in der Halbleitertechnik bekannten Sauerstoffplasmaverarbeitungsprozesses befreit. Erst in diesem Stadium wird somit auch die metallisierte Oberfläche der ersten Siliziumschicht 15 und dort gegebenenfalls angebrachte

30

Aluminiumkontakteflächen freigelegt, die bisher vollständig vor Korrosion und Ätzangriffen unter der Ätzmaskierung 10 lagen. So mit kann jedwede Nachbehandlung dieser Kontaktflächen entfallen. Insbesondere eignet sich dieses Verfahren zur Herstellung von Sensorelementen mit freistehenden Strukturen, bei denen die da zugehörige integrierte Schaltung auf dem gleichen Wafer ange ordnet wird.

Da die teflonartigen Filme 20 ein ausgezeichnetes Mittel dar stellen, um ein irreversibles Verkleben von mikromechanischen Strukturen bei Kontakt von Silizium mit Silizium („sticking“) zu vermeiden, ist es für viele Anwendungen zweckmäßig, diese teflonartigen Filme 20, die beim Entfernen der Ätzmaskierung 10 in einem Sauerstoffveraschungsprozeß mitentfernt werden, nachträglich durch eine erneute Teflonbeschichtung wieder aufzubringen. Man kann dies bereits im Sauerstoffplasmastrpper tun, indem abschließend anstelle von Sauerstoff kurzzeitig ein teflonbildende Monomere lieferndes Gas wie C_3F_6 , C_4F_8 oder CHF_3 eingelassen wird und das Plasma erneut gezündet wird. Dadurch wird jedoch auch eine Aluminiummetallisierung an der Oberfläche der Siliziumschicht 15 mit Teflon bedeckt, was Probleme bei einer späteren Kontaktierung mit sich bringen kann. In besonders vorteilhafter Ausgestaltung der Erfindung werden daher die teflonartigen Filme 20 nach dem Sauerstoffveraschungsprozeß mit dem bereits aus DE 42 41 045 bekannten Depositionsschritt im Ätzreaktor wieder ganzflächig auf allen zugänglichen Siliziumflächen aufgebracht und anschließend mit Hilfe eines kurzzeitigen starken Ionenbeschusses auf allen für den senkrechten Ioneneinfall zugänglichen Flächen wieder entfernt, so daß die teflonartigen Filme 20 nur auf den Seitenwänden der freistehenden Struktur 32, dem Boden 30 und allen vom Ioneneinfall abgeschatteten Silizium- oder Siliziumoxidflächen erhalten bleiben. Insbesondere werden somit Kontaktflächen

wieder von einer unerwünschten Teflonschicht befreit. Alternativ kann sehr vorteilhaft auch anstelle eines nachträglichen Entfernes der teflonartigen Filmen auf allen für den senkrechten Ioneneinfall zugänglichen Stellen bereits während des

5 Aufbringens der teflonartigen Filme gemäß DE 42 41 045 im Ätzreaktor ein Ionenbeschuß eingesetzt werden, so daß sich die teflonartigen Filme insbesondere auf den Kontaktflächen erst gar nicht bilden (selektive Beschichtung der Seitenwände).

10 Die Figuren 4, 5 und 6 zeigen als weiteres Ausführungsbeispiel eine Variante des mit Hilfe der Figuren 1 bis 3 beschriebenen Ausführungsbeispiels, das sich von diesem dadurch unterscheidet, daß auf dem dritten Trennschichtabschnitt 14 vor dem Aufwachsen der ersten Siliziumschicht 15 zunächst über an sich bekannte

15 Abscheide- und Strukturierungsverfahren zusätzlich eine Zwischenschicht als weitere Siliziumschicht aufgebracht wird, die anschließend von einer weiteren Trennschicht 14' oberflächlich und seitlich umgeben wird. Die als Opferschicht verwendete Zwischenschicht 17' kann entsprechend der benötigten Geometrie strukturiert werden. In dieser Variante kann der

20 dritte Trennschichtabschnitt 14 sehr vorteilhaft hinsichtlich Dicke und Zusammensetzung dem ersten Trennschichtabschnittes 12 entsprechen, da nunmehr die weitere Trennschicht 14' die Rolle des dritten Trennschichtabschnittes 14 aus dem

25 Ausführungsbeispiel gemäß Figur 1 bis 3 übernimmt. Die weitere Trennschicht 14' besteht somit insbesondere aus thermisch ausgewachsenem Siliziumdioxid mit einer Dicke von 10 nm bis 100 nm. Insofern ist ein Rückätzen des dritten Trennschichtabschnittes 14 oder ein Aufwachsen des dritten

30 Trennschichtabschnittes 14 nach einem vollständigen Rückätzen bis auf die weitere Siliziumschicht 17, wie in dem Ausführungsbeispiel gemäß den Figuren 1 bis 3 erläutert, nicht mehr erforderlich, da nicht der dritte Trennschichtabschnitt 14

sondern die weitere Trennschicht 14' im zweiten Ätzprozeß durchgeätzt wird, und der dritte Ätzprozeß damit eine Ätzung der Zwischenschicht 17' als weitere Siliziumschicht bewirkt.

Besonders vorteilhaft kann die Zwischenschicht 17' nunmehr auch aus der Leitschicht 13 herausstrukturiert werden, die aus Polysilizium besteht, so daß ein zusätzlicher Prozeßschritt zum Aufwachsen der Zwischenschicht 17' entfällt.

Die als Opferschicht eingesetzte Zwischenschicht 17' ist beispielsweise wie die weitere Siliziumschicht 17 zusammengesetzt. Sie kann auch aus Polysilizium oder Epipolysilizium entsprechend der Leitschicht 13 oder der ersten Siliziumschicht 15 bestehen. Der erste Ätzprozeß stoppt somit entsprechend dem vorangegangenen Ausführungsbeispiel in den freiliegenden Bereichen 23' auf der weiteren Trennschicht 14' sowie auf den freiliegenden Bereichen 24. Im zweiten Ätzprozeß wird dann gemäß Figur 5 und 6 erneut in einem anisotropen Plasmaätzprozeß entsprechend dem vorangegangenen Ausführungsbeispiel unter starkem Ionenbeschuß diese dünne weitere Trennschicht 14' in den freiliegenden Bereichen 23' durchbrochen. Abschließend wird dann, wie in Figur 6 dargestellt, durch einen dritten Ätzprozeß, entsprechend dem vorangegangenen Ausführungsbeispiel, eine weitere isotrope Ätzung der als Opferschicht eingesetzten Zwischenschicht 17' vorgenommen, was in dem Ausführungsbeispiel gemäß Figur 3 der isotropen Ätzung der weiteren Siliziumschicht 17 zur Erzeugung der Mulde entspräche. Dadurch, daß die Zwischenschicht 17' in diesem Ausführungsbeispiel zunächst vollständig von der Trennschicht 14' bzw. dem dritten Trennschichtabschnitt 14 umschlossen ist, stoppt die Ätzung im dritten Ätzprozeß automatisch nach dem vollständigen Wegätzen der als Opferschicht eingesetzten Zwischenschicht 17', so daß einerseits eine freistehende Struktur 32 mit definiertem Boden 30 und definierten

Seitenwänden entsteht, und andererseits eine Mulde 31' mit lateral und vertikal über die Strukturierung bzw. Geometrie und Dicke der weiteren Trennschicht 14' exakt definierten Rändern 33.

5

Eine weiteres Ausführungsbeispiel, das ansonsten weitgehend analog dem Ausführungsbeispiel gemäß Figur 4, 5 und 6 ist und das mit Hilfe von Figur 7 erläutert wird, sieht zunächst vor, daß die Trennschicht 12, 14, 16 auf der weiteren Siliziumschicht 17 durchgehend mit gleichmäßiger Dicke ausgebildet ist, und daß darin die gegebenenfalls strukturierte Leitschicht 13 eingeschlossen ist. Auf dieser Trennschicht 12, 14, 16 wird dann analog Figur 4 und dem vorangegangenen Ausführungsbeispiel über an sich bekannte Abscheide- und Strukturierungsverfahren zusätzlich die Zwischenschicht als weitere Siliziumschicht aufgebracht und anschließend von der weiteren Trennschicht 14' oberflächlich und seitlich umgeben, die beispielsweise durch thermisches Aufwachsen einer Siliziumdioxidschicht erzeugt wird. Die Zusammensetzung dieser weiteren Trennschicht 14' und ihre Dicke entspricht vorzugsweise wiederum der des dritten Trennschichtabschnittes 14. Die Zwischenschicht 17' ist insbesondere wie die weitere Siliziumschicht 17, die Leitschicht 13 oder die erste Siliziumschicht 15 zusammengesetzt.

25 Mit dieser Variante des erfindungsgemäßen Verfahrens können somit Elektrodenflächen unter aktiven bzw. freistehenden Strukturen angebracht werden, wobei man eine gegebenenfalls strukturierte Ebene mit der Zwischenschicht 17' als Opferschicht zur freien Verfügung hat, die zur Erzeugung freistehender Strukturen 32 entfernt wird, sowie eine darunter befindliche Ebene mit Elektroden- und Leiterbahngeometrien, die von den Trennschichtabschnitten 12, 14, 16 insbesondere vor Ätzangriffen geschützt wird. In beiden Ebenen können somit unabhängig von-

einander Strukturierungen vorgenommen werden. Weiterhin liegen sämtliche, elektrisch funktionelle strukturierten Leitschichten 13 nach dem Entfernen der Zwischenschicht 17' noch nach allen Seiten vollständig elektrisch isoliert vor.

5

Eine weitere vorteilhafte Weiterbildung der Erfindung wird als Ausführungsbeispiel anhand der Figuren 8 bis 11 erläutert, wobei die verschiedenen Ätzprozesse, Schichtzusammensetzungen und Schichtdicken wie bereits bei den vorangehenden Ausführungsbeispielen erläutert gewählt werden. Dieses Beispiel sieht allerdings in Weiterbildung der Figur 7 vor (siehe Figur 8), daß die weitere Trennschicht 14' und der dritte Trennschichtabschnitt 14 die Zwischenschicht 17' durch eine geeignete, an sich bekannte Strukturierung der weiteren Trennschicht 14' nicht vollständig einschließen.

Der Schichtaufbau des dargestellten Schichtkörpers wird im Detail wie bereits in den vorangehenden Ausführungsbeispielen beschreiben realisiert. Danach werden, wie in Figur 9 gezeigt, 20 in einem ersten Ätzprozeß die Trenchgräben 21' unter gleichzeitigem Aufbau der Seitenwandpassivierung über die teflonartigen Filme 20 erzeugt, wobei der erste Ätzprozeß am Boden 23' der Trenchgräben 21' zum Erliegen kommt. Im zweiten Ätzprozeß wird dann die dünne weitere Trennschicht 14' am Boden 23' der Trenchgräben 21' durchbrochen. Dabei wird gleichzeitig auch der dritte Trennschichtabschnitt 14 am Boden 23 an den Stellen geätzt, an denen eine darüberliegende weitere Trennschicht 14' fehlt. Diese Ätzung ist jedoch angesichts der geringen Dicke der weiteren Trennschicht 14' und des unterhalb 25 des dritten Trennschichtabschnittes 14 vorliegenden zweiten Trennschichtabschnittes 16 vernachlässigbar.

Insbesondere kann man in diesem Ausführungsbeispiel in einer vorteilhaften Weiterbildung der Erfindung auf den dritten Trennschichabschnitt 14 ganz verzichten, da dessen Aufgabe von der weiteren Trennschicht 14' und von dem zweiten
5 Trennschichtabschnitt 16 übernommen wird. Nach dem Durchbrechen der weiteren Trennschicht 14' am Boden 23' der Trenchgräben 21' wird der zweite Ätzprozeß unterbrochen. Es folgt der bereits im vorangehenden erläuterte dritte Ätzprozeß, der eine Ätzung der Zwischenschicht 17', die als Opferschicht dient, bewirkt. Der
10 Ätzangriff im dritten Ätzprozeß ist dabei beschränkt auf den durch die dünne weitere Trennschicht 14' und den dritten Trennschichtabschnitt 14 oder den zweiten Trennschichtabschnitt 16 begrenzten Bereich, wobei jedoch in diesem Ausführungsbeispiel abweichend von Figur 7 durch die
15 Strukturierung der weiteren Trennschicht 14' in sehr vorteilhafter Weise auch eine von unten kommende Ätzung innerhalb eines Steges 40 erfolgen kann. Der Fortschritt der Ätzfront in dem Steg 40 ist dabei durch die Seitenwandpassivierung durch die teflonartigen Filme 20 und
20 durch die obere Passivierung der Stege 40 durch die Ätzmaskierung 10 beschränkt, so daß der Steg 40 weitgehend ausgehöhlt bzw. bei fortschreitender Ätzung lokal unterbrochen wird. Durch dieses Ausführungsbeispiel der Erfindung kann somit durch selektives Weglassen oder eine definierte Strukturierung
25 der weiteren Trennschicht 14' ein Ätzangriff im dritten Ätzprozeß von unten gezielt zugelassen werden. Damit kann, wie in Figur 11 gezeigt, sehr vorteilhaft beispielsweise eine zunächst erzeugte Siliziumbrücke unter einer oberflächlich in der ersten Siliziumschicht 15 vorhandenen
30 Aluminiummetallisierung, die in Form von dielektrisch isolierten Leiterbahnen ausgebildet ist, durch einen Ätzangriff von unten selektiv durchtrennt werden. Man erhält somit zumindest lokal eine freie Leiterbahn, die zur weiteren Kontaktierung zur

Verfügung steht, sowie eine elektrische Isolation der freistehenden Struktur 32 vom umgebenden Silizium. Dieses Ausführungsbeispiel bietet somit insbesondere unter Integrationsgesichtspunkten d.h. der Verbindung von 5 Mikromechanik mit elektronischer Schaltungstechnik neue Möglichkeiten und Vorteile.

Insbesondere wenn die oberflächliche Aluminiummetallisierung durch eine zusätzliche, geeignet strukturierte elektrisch isolierende Zwischenschicht beispielsweise aus Siliziumdioxid 10 von der eigentlichen ersten Siliziumschicht 15 getrennt ist, wobei diese Zwischenschicht beim dritten Ätzprozeß nicht geätzt wird, kann selektiv eine elektrische Verbindung und insbesondere eine Anbindung eines Sensors an eine elektronische 15 Auswerteschaltung über eine oberflächliche Metallisierung der ersten Siliziumschicht 15 erreicht werden, die wie eine Brücke über einen Abgrund gespannt ist und die von unten durch die elektrisch isolierende, im dritten Ätzprozeß nicht geätzte Zwischenschicht geschützt wird.

5

10

Ansprüche

1. Verfahren zum Ätzen eines Siliziumschichtkörpers mit einer ersten Siliziumschicht (15), die mit einer Ätzmaskierung (10) zur Definition lateraler Aussparungen (21) versehen ist, wobei in einem ersten Ätzprozeß mit einem Plasma gearbeitet wird und im Bereich der lateralen Aussparungen (21) durch anisotrope Ätzung Trenchgräben (21') erzeugt werden, dadurch gekennzeichnet, daß zwischen der ersten Siliziumschicht (15) und einer weiteren Siliziumschicht (17, 17') mindestens eine Trennschicht (12, 14, 14', 16) vergraben ist, bei deren Erreichen der erste Ätzprozeß zumindest nahezu zum Erliegen kommt, daß danach die Trennschicht (12, 14, 14', 16) in einem freiliegenden Bereich (23, 23') mittels eines zweiten Ätzprozesses durchgeätzt wird und daß anschließend ein dritter Ätzprozeß eine Ätzung der weiteren Siliziumschicht (17, 17') bewirkt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mindestens zwischen zwei Trenchgräben (21') durch den dritten Ätzprozeß eine vollständige isotrope Unterätzung derart erzeugt wird, daß eine freistehende Struktur (32) entsteht.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der erste Ätzprozeß ein Trockenätzverfahren ist, bei dem Depositi-onsschritte alternierend mit an sich bekannten isotropen Ätz-

schriften ausgeführt werden, wobei während der Depositionsschritte ein polymerbildende Monomere lieferndes Depositionsgas, vorzugsweise Octafluorocyclobutan C₄F₈ oder Perfluoropropylen C₃F₆, einem hochdichten Plasma, insbesondere einem PIE-Plasma (propagation ion etching) oder einem ICP-Plasma (inductively coupled plasma) ausgesetzt wird, das auf den Seitenwänden der Trenchgräben (21') einen teflonartigen Film (20) von (CF₂)_n aufbaut und daß während der Ätzprozesse ein Fluorradikale lieferndes Ätzgas, insbesondere Schwefelhexafluorid SF₆ mit zugesetztem Sauerstoff, eingesetzt wird.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der erste, anisotrope Ätzprozeß der Trenchgräben (21') eine hohe Selektivität gegenüber Siliziumdioxid aufweist.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Trennschicht (12, 14, 14', 16) aus mindestens einem ersten Trennschichtabschnitt (12) und einem zweiten Trennschichtabschnitt (16) ausgebildet ist, wobei der erste Trennschichtabschnitt (12) Siliziumdioxid, ein sonstiges Siliziumoxid, Siliziumnitrid, Glas, eine Keramik oder eine Mischung davon enthält und über bekannte Abscheideverfahren aus der Halbleitertechnik abgeschieden wird und wobei der zweite Trennschichtabschnitt (16) vorzugsweise eine Siliziumdioxidschicht ist.

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Ätzprozeß zum Durchätzen der Trennschicht (12, 14, 14', 16) im freiliegenden Bereich (23, 23') der Trenchgräben (21') trockenchemisch, vorzugsweise mittels Plasmaätzen erfolgt.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Plasmaätzen unter starkem Ionenbeschuß und mit Hilfe eines Ätz-

gases, vorzugsweise CF₄, C₂F₆, C₃F₈, CHF₃, C₃F₆ oder C₄F₈, erfolgt.

8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Ätzprozeß zum Durchätzen der Trennschicht (12, 14, 14', 16) im freiliegenden Bereich (23, 23') der Trenchgräben (21') naßchemisch durchgeführt wird und insbesondere mit Hilfe verdünnter Flußsäure oder Flußsäurelösungen erfolgt.

10 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die freiliegenden Strukturen (32) einen Boden (30) aufweisen, der beim Ätzen, insbesondere beim Unterätzen im dritten Ätzprozeß zumindest weitgehend frei von einem Ätzangriff ist.

15 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vor oder während des dritten Ätzprozesses die Seitenwände der Trenchgräben (21') vor dem Unterätzen selektiv mit einem Plasmapolymer zur Erzeugung eines teflonartigen Filmes (20) beschichtet werden.

20 11. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß auf die weitere Siliziumschicht (17) der erste Trennschichtabschnitt (12) aufgebracht wird, auf den dann zumindest bereichsweise eine Leitschicht (13) abgeschieden und gegebenenfalls strukturiert wird, die vorzugsweise aus leitfähigem hochdotiertem Polysilizium besteht, und daß danach auf die Leitschicht (13) der zweite Trennschichtabschnitt (16) abgeschieden wird.

25 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Abscheidung des ersten und zweiten Trennschichtabschnittes (12, 16) derart erfolgt, daß die Leitschicht (13) vollständig eingeschlossen wird.

13. Verfahren nach Ansprüche 5 oder 11, dadurch gekennzeichnet, daß der zweite Trennschichtabschnitt (16) aus der Gasphase, insbesondere durch Zersetzung von Silanen abgeschieden wird.

5 14. Verfahren nach Anspruch 5 oder 11, dadurch gekennzeichnet, daß der erste Trennschichtabschnitt (12) aus thermisch aufgewachsenem Siliziumdioxid gebildet wird.

10 15. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Trennschichtabschnitte (12) und (16) jeweils eine Dicke von 500 nm bis 50 µm, insbesondere von 1 µm bis 10 µm aufweisen.

15 16. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der erste und/oder der zweite Trennschichtabschnitt (12, 16) in der Umgebung mindestens eines Trenchgrabens (21') oder einer frei-liegenden Struktur (32) durch Rückätzzen auf einen rückgeätzten Trennschichtabschnitt mit einer Dicke von 10 nm bis 100 nm abgedünnt werden oder vollständig entfernt werden und stattdessen anschließend ein dritter Trennschichtabschnitt (14) geringer Dicke, vorzugsweise aus Siliziumdioxid, aufgewachsen wird.

20 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß der dritte Trennschichtabschnitt (14) mit einer Dicke von 10 nm bis 100 nm erzeugt wird.

25 18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß auf den zweiten Trennschichtabschnitt (16) und den rückgeätzten Trennschichtabschnitt oder auf den Trennschichtabschnitt (16) und den aufgewachsenen dritten Trennschichtabschnittes (14) die erste Siliziumschicht (15) aufgewachsen wird.

30 19. Verfahren nach Anspruch 16, 17 oder 18, dadurch gekennzeichnet, daß der zweite Trennschichtabschnitt (16) dicker, ins-

besondere mehr als zehnmal bis tausendmal dicker als der rückgeätzte Trennschichtabschnitt oder der dritte Trennschichtabschnitt (14) ist.

- 5 20. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erste Siliziumschicht (15) aus Epipolysilizium besteht, das gegebenenfalls dotiert und/oder oberflächlich metallisiert und/oder strukturiert wird.
- 10 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die metallisierte Oberfläche der ersten Siliziumschicht (15) eine Aluminiumkontakte Schicht ist, die durch eine Photolackmaske als Ätzmaskierung (10) vor dem Angriff fluorhaltiger Gase geschützt wird.
- 15 22. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Tiefe der im ersten Ätzprozeß geätzten Trenchgräben (21') unabhängig von dem Verhältnis von Breite zu Höhe der Trenchgräben (21') ist und über die Ätzeit zum Erreichen der freiliegenden Bereiche (23, 23') des ersten Trennschichtabschnittes (16), des aufgewachsenen dritten Trennschichtabschnittes (14) oder der weiteren Trennschicht (14') eingestellt wird.
- 20 23. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß alle Ätzprozesse in einer einzigen Ätzkammer durchgeführt werden und daß insbesondere der Siliziumschichtkörper während der Ätzprozesse in der Ätzkammer verbleibt.
- 25 24. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der geätzte Siliziumschichtkörper abschließend in einem Sauerstoffplasmastrpper von der Ätzmaskierung (10) und den verbliebenen

teflonartigen Filmen (20) durch einen Sauerstoffveraschungsprozeß befreit wird.

25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß nach dem Entfernen der verbliebenen teflonartigen Filme eine teflonartige Beschichtung auf den Seitenwänden der freistehenden Struktur (32), den Seitenwänden der Trenchgräben (21') und allen von senkrechttem Ioneneinfall abgeschatteten Flächen aufgebracht wird, wobei insbesondere elektrische Kontaktflächen frei von einer teflonartigen Beschichtung bleiben.

10
15
20
25
30

26. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß vor dem Aufwachsen der ersten Siliziumschicht (15) auf den aufgewachsenen dritten Trennschichtabschnitt (14) oder den rückgeätzten Trennschichtabschnitt zunächst eine Zwischenschicht (17'), die als Opferschicht die weitere Siliziumschicht bildet, aufgebracht wird, und daß diese Zwischenschicht (17') anschließend mit einer weiteren Trennschicht (14') zumindest in den freiliegenden Bereichen (23, 23') abgedeckt wird.

27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die Zwischenschicht (17') aus Silizium, Epipolysilizium, Polysilizium oder leitfähigem und/oder dotiertem Polysilizium aufgewachsen wird.

28. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die weitere Trennschicht (14') aus thermisch aufgewachsenem Siliziumdioxid erzeugt wird.

29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß die weitere Trennschicht (14') eine Dicke von 10 nm bis 100 nm aufweist.

30. Verfahren nach mindestens einem der Ansprüche 26 bis 29, dadurch gekennzeichnet, daß die Zwischenschicht (17') durch eine Strukturierung der weiteren Trennschicht (14') nicht vollständig von der weiteren Trennschicht (14') und von einem Trennschichtabschnitt (14, 16) umgeben wird.

5
31. Verfahren nach mindestens einem der vorangehenden Ansprüche zur Herstellung von Sensorelementen mit freistehenden Strukturen (32).

Fig. 1

Fig. 2

Fig. 3

3/4

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 99/03018

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B81B3/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B81B B82B G01P G01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 49998 A (UNIV FRASER SIMON) 31 December 1997 (1997-12-31) page 5 -page 6; figures 3-6 ---	1,2,4,5, 9,10,22, 31
A	DE 196 03 829 A (DAIMLER BENZ AG) 7 August 1997 (1997-08-07) column 6, line 10 - line 51; figure 4 ---	1,2,4-6, 9,10,23, 31
A	US 5 313 836 A (FUJII TETSUO ET AL) 24 May 1994 (1994-05-24) column 5, line 47 -column 6, line 51; figure 3 --- -/-	1,2,4,5, 9,26,31

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

10 February 2000

Date of mailing of the international search report

21/02/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Szarowski, A

INTERNATIONAL SEARCH REPORT

Int'l. Application No.
PCT/DE 99/03018

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 44 20 962 A (BOSCH GMBH ROBERT) 21 December 1995 (1995-12-21) Anmelder column 2; figures 1-3 -----	1-3, 9, 10, 31

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 99/03018

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9749998	A	31-12-1997	AU	3162297 A		14-01-1998
DE 19603829	A	07-08-1997		NONE		
US 5313836	A	24-05-1994	JP	2811768 B		15-10-1998
			JP	3049267 A		04-03-1991
DE 4420962	A	21-12-1995	GB	2290413 A,B		20-12-1995

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/03018

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B81B3/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B81B B82B G01P G01L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ³	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 97 49998 A (UNIV FRASER SIMON) 31. Dezember 1997 (1997-12-31) Seite 5 -Seite 6; Abbildungen 3-6 ---	1,2,4,5, 9,10,22, 31
A	DE 196 03 829 A (DAIMLER BENZ AG) 7. August 1997 (1997-08-07) Spalte 6, Zeile 10 - Zeile 51; Abbildung 4 ---	1,2,4-6, 9,10,23, 31
A	US 5 313 836 A (FUJII TETSUO ET AL) 24. Mai 1994 (1994-05-24) Spalte 5, Zeile 47 -Spalte 6, Zeile 51; Abbildung 3 --- -/-	1,2,4,5, 9,26,31

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

³ Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

10. Februar 2000

21/02/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Szarowski, A

INTERNATIONALER RECHERCHENBERICHTInternationales Aktenzeichen
PCT/DE 99/03018**C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN**

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 44 20 962 A (BOSCH GMBH ROBERT) 21. Dezember 1995 (1995-12-21) Anmelder Spalte 2; Abbildungen 1-3 -----	1-3, 9, 10, 31

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 99/03018

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9749998 A	31-12-1997	AU 3162297 A	14-01-1998
DE 19603829 A	07-08-1997	KEINE	
US 5313836 A	24-05-1994	JP 2811768 B JP 3049267 A	15-10-1998 04-03-1991
DE 4420962 A	21-12-1995	GB 2290413 A,B	20-12-1995

