Exercises in Foundations in Representation Theory

Exercise Sheet 6

Jendrik Stelzner

Exercise 1.

(i)

Let $Z \in \mathrm{Ob}(\mathcal{C})$ be an object and let $\alpha \colon Z \to X$ and $\delta \colon Z \to Y''$ be two morphisms in \mathcal{C} with $f \circ \alpha = g \circ h \circ \delta$, i.e. such the diagram

commutes. By applying the right-hand pull-back square to the morphisms $\alpha\colon Z\to X$ and $h\circ\delta\colon Z\to Y'$, we find that there exist a unique morphism $\beta\colon Z\to X'$ with $g'\circ\beta=\alpha$ and $f'\circ\beta=h\circ\delta$, i.e. such that the diagram

commutes. By applying the left-hand pull-back square to the morphisms $\beta\colon Z\to X'$ and and $\delta\colon Z\to Y''$, we find that there exist a unique morphism $\gamma\colon Z\to X''$ with $h'\circ\gamma=\beta$

and $f'' \circ \gamma = \delta$, i.e. such that the diagram

commutes.

Suppose that $\gamma' \colon Z \to X''$ is another morphism which makes the diagram

commute. Then by setting $\beta' := h' \circ \gamma'$ we get the following commutative diagram:

Then $\beta' = \beta$ by the uniqueness of β and thus $\gamma' = \gamma$ by the uniqueness of γ .

(ii)

Let $Z \in \text{Ob}(\mathcal{C})$ be an object and let $\delta \colon Z \to Y''$ and $\beta \colon Z \to X'$ be two morphisms in \mathcal{C} with $h \circ \delta = f' \circ \beta$, i.e. such that the diagram

commutes. For the morphism $\alpha' := g' \circ \beta \colon Z \to X$ we get following commutative diagram:

By using the outer pull-back square for the morphisms $\alpha\colon Z\to X$ and $\delta\colon Z\to Y''$, we find that there exists a unique morphism $\gamma\colon Z\to X''$ with $g'\circ h'\circ\gamma=\alpha$ and $f''\circ\gamma=\delta$, i.e. such that the diagram

commutes. We claim that already the whole diagram

commutes. For this we still have to check that $h' \circ \gamma = \beta$. The right-hand square is a pushout square, so it follows for any two morphisms $k_1, k_2 \colon Z \to X'$ that $k_1 = k_2$ if and only if both $g' \circ k_1 = g' \circ k_2$ and $f' \circ k_1 = f' \circ k_2$. This holds true for $k_1 = \beta$ and $k_2 = h' \circ \gamma$ because

$$g' \circ \beta = \alpha = g' \circ h' \circ \gamma$$

by construction of γ , and

$$f' \circ \beta = h \circ \delta = h \circ f'' \circ \gamma = f' \circ h' \circ \gamma$$

by choice of β and δ and construction of γ .

Suppose that $\gamma' \colon Z \to X''$ is another morphism which makes the diagram

commute. Then $f'' \circ \gamma' = \delta$ and $g' \circ h' \circ \gamma' = \alpha$, and therefore $\gamma' = \gamma$ by the uniqueness of γ .

Exercise 2.

If $h: Z \to X$ is any morphism in \mathcal{C} , then for $\alpha := g' \circ h$ and $\beta := f' \circ h$ the following diagram commutes:

The morphism h is uniquely determined by the compositions α and β because the given diagram is a pull-back square. The morphisms α is uniquely determined by the composition $f \circ \alpha$ because f is a monomorphism, and this composition is given by $f \circ \alpha = g \circ \beta$. Hence h is uniquely determined by $\beta = f' \circ h$, which shows that f' is a monomorphism.

Remark 1. In an abelian category \mathcal{A} the converse also holds, i.e. if the diagram

$$X' \xrightarrow{g'} X$$

$$\downarrow^{f'} \qquad \downarrow^{f}$$

$$Y' \xrightarrow{g} Y$$

in \mathcal{A} is a pull-back square and f' is a monomorphism then f is also a monomorphism. Indeed, the canonical morphism $\ker(f) \to X$ fits into the following commutative diagram:

It follows that there exist a unique morphism $\lambda \colon \ker(f) \to X'$ which makes the diagram

commute. It follows from $0 = f' \circ \lambda$ and f being a monomorphism that also $\lambda = 0$. The canonical morphism $\ker(f) \to X$ is therefore given by

$$g' \circ \lambda = g' \circ 0 = 0$$
.

This shows that ker(f) = 0 and hence that f is a monomorphism.

Remark 2. It holds dually for a pushout square

$$\begin{array}{ccc}
X & \xrightarrow{g} & X' \\
f \downarrow & & f' \downarrow \\
Y & \xrightarrow{g'} & Y'
\end{array}$$

that if f is an epimorphism, then f' is also an epimorphism; in an abelian category, the converse also holds.

Exercise 3.

Proposition 3. Let \mathcal{A} be an additive category. Then a diagram

$$X' \xrightarrow{g'} X$$

$$\downarrow^{f'} \qquad \downarrow^{f}$$

$$Y' \xrightarrow{g} Y$$

in \mathcal{A} is a pull-back square if and only if in the squence

$$X' \xrightarrow{\left[g'\atop f'\right]} X \oplus Y' \xrightarrow{\left[f-g\right]} Y \tag{1}$$

the morphism $X' \to X \oplus Y'$ is a kernel of the morphism $X \oplus Y' \to Y$ (i.e. the sequence is left exact).

Proof. Let $p: X \oplus Y' \to X$ and $q: X \oplus Y' \to Y'$ be the canonical projections belonging to the biproduct $X \oplus Y$, and let

$$d: X \oplus Y' \xrightarrow{[f-g]} Y$$
.

It then holds for every object $Z \in \mathrm{Ob}(\mathcal{C})$ and every two morphisms $\alpha \colon Z \to X$ and $\beta \colon Z \to Y$ that

$$f\circ\alpha=g\circ\beta\iff f\circ\alpha-g\circ\beta=0\iff \begin{bmatrix}f&-g\end{bmatrix}\begin{bmatrix}\alpha\\\beta\end{bmatrix}=0\iff d\circ\begin{bmatrix}\alpha\\\beta\end{bmatrix}=0.$$

Let now $k: X' \to X \oplus Y'$ be a morphism, which is uniquely of the form

$$k = \begin{bmatrix} g' \\ f' \end{bmatrix}$$

for some morphisms $g' \colon X' \to X$ and $f' \colon X' \to Y'$. We find from the above calculation that the square

$$X' \xrightarrow{g'} X$$

$$\downarrow^{f'} \qquad \downarrow^{f}$$

$$Y' \xrightarrow{g} Y$$

$$(2)$$

commutes if and only if $d \circ k = 0$. We moreover find that

the diagram (2) is a pull-back square

- $\iff \begin{array}{l} \text{there exist for all morphisms } \alpha \colon Z \to X \text{ and } \beta \colon Z \to Y' \text{ with } f \circ \alpha = g \circ \beta \\ \text{a unique morphism } \lambda \colon Z \to X' \text{ with } g' \circ \lambda = \alpha \text{ and } f' \circ \lambda = \beta \end{array}$
- $\iff \text{ there exist for all morphisms } \alpha \colon Z \to X \text{ and } \beta \colon Z \to Y' \text{ with } d \circ \left[\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right] = 0$ a unique morphism $\lambda \colon Z \to X' \text{ with } k \circ \lambda = \left[\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right]$
- $\iff \begin{array}{l} \text{there exist for every morphism } \gamma\colon Z\to X\oplus Y' \text{ with } d\circ\gamma=0\\ \text{a unique morphism } \lambda\colon Z\to X' \text{ with } k\circ\lambda=\gamma \end{array}$
- $\iff k \text{ is a kernel for } d.$

This shows the claimed equivalence.

Remark 4. Instead of the sequence (1) one can also use variations such as

$$X' \xrightarrow{\begin{bmatrix} g' \\ f' \end{bmatrix}} X \oplus Y' \xrightarrow{\begin{bmatrix} -f \ g \end{bmatrix}} Y,$$

$$X' \xrightarrow{\begin{bmatrix} g' \\ -f' \end{bmatrix}} X \oplus Y' \xrightarrow{\begin{bmatrix} f \ g \end{bmatrix}} Y,$$

$$X' \xrightarrow{\begin{bmatrix} -g' \\ f' \end{bmatrix}} X \oplus Y' \xrightarrow{\begin{bmatrix} f \ g \end{bmatrix}} Y.$$

Remark 5. The dual version of Proposition 3 states that in an additive category A, a diagram

$$X \xrightarrow{g} X'$$

$$\downarrow^f \qquad \downarrow^{f'}$$

$$Y \xrightarrow{g'} Y'$$

is a pushout square if and only if in the sequence

$$X \xrightarrow{\left[\begin{smallmatrix} g \\ f \end{smallmatrix}\right]} X' \oplus Y \xrightarrow{\left[\begin{smallmatrix} f' & -g' \end{smallmatrix}\right]} Y'$$

the morphism $X' \oplus Y \to Y'$ is a cokernel of the morphism $X \to X' \oplus Y$ (i.e. the sequence is right exact). One can again vary this sequence, just as done in Remark 4 for pullbacks.

Exercise 4.

Lemma 6. Let $X, Y_1, Y_2 \in \text{Ob}(\mathcal{C})$ be objects, let $f_1 \colon X \to Y_1$ be an epimorphism and let $f_2 \colon X \to Y_2$ be a morphism. Then the morphism

$$f \colon X \xrightarrow{\left[f_1\atop f_2\right]} Y_1 \oplus Y_2$$

is also an epimorphism.

Proof. Let $g_1, g_2: Y_1 \oplus Y_2 \to Z$ be two parallel morphism with $g_1 \circ f = g_2 \circ f$. If $i: Y_1 \to Y_1 \oplus Y_2$ is the canonical morphism into the first summand then

$$g_1 \circ f = g_2 \circ f \implies g_1 \circ f \circ i = g_2 \circ f \circ i \implies g_1 \circ f_1 = g_2 \circ f_1 \implies g_1 = g_2$$

because f_1 is an epimorphism.

Lemma 7. Let $f: X \to Y$ be an epimorphism in an abelian category. Then f is a cokernel of its kernel.

Proof. The zero morphism $Y \to \operatorname{coker}(f)$ is a cokernel of f because f is an epimorphism, and the identity morphism $\operatorname{id}_Y \colon Y \to Y$ is therefore an image of f. Together with the canonical factorization $\tilde{f} \colon \operatorname{coim}(f) \to \operatorname{im}(f) = Y$ of the morphism f, which is an isomorphism beause \mathcal{A} is abelian, we get the following commutative triangle:

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

The coimage $X \to \text{coim}(f)$ is a cokernel of $\ker(f) \to X$. It hence follows from the commutativity of the above diagram and \tilde{f} being an isomorphism that f is also a cokernel of $\ker(f) \to X$.

Let now

$$X' \xrightarrow{g'} X$$

$$\downarrow_{f'} \qquad \downarrow_{f}$$

$$Y' \xrightarrow{g} Y$$

$$(3)$$

be a pullback diagram in $\mathcal A$ such that f is an epimorphism. It follows from Proposition 3 that in the sequence

$$X' \xrightarrow{\left[\begin{smallmatrix}g'\\f'\end{smallmatrix}\right]} X \oplus Y' \xrightarrow{\left[\begin{smallmatrix}f-g\end{smallmatrix}\right]} Y$$

the morphism $X' \to X \oplus Y'$ is a kernel of the morphism $X \oplus Y' \to Y$. It follows from Lemma 6 that the morphism $X \oplus Y' \to Y$ is again an epimorphism, and it hence follows from Lemma 7 that the morphism $X \oplus Y' \to Y$ is a cokernel of the morphism $X' \to X \oplus Y'$. The diagram (3) is therefore a pushout square by Remark 5. It hence follows from Remark 2 that f' is again an epimorphism (beause \mathcal{A} is abelian).