

MACHINE-ASSISTED TRANSLATION (MAT):

(19)【発行国】

日本国特許庁(JP)

(19)[ISSUING COUNTRY]

Japanese Patent Office (JP)

(12)【公報種別】

公開特許公報(A)

Laid-open (kokai) patent application number (A)

(11)【公開番号】

特開平7-192721

(11)[UNEXAMINED PATENT NUMBER]

Unexamined Japanese Patent 7-192721

(43)【公開日】

平成7年(1995)7月28 日

(43)[DATE OF FIRST PUBLICATION]

Heisei 7 (1995) July 28

(54)【発明の名称】

非水系電池

(54)[TITLE]

A non-aqueous battery

(51)【国際特許分類第6版】

H01M 4/02 C

(51)[IPC]

4/5810/40

H01M-4/02-

Ζ

4/58

10/40 Z

[EXAMINATION REQUEST]

UNREQUESTED

【審査請求】 未請求

【請求項の数】 4

【出願形態】 F D [Application form] FD

【全頁数】 1 0 [NUMBER OF PAGES] Ten

[NUMBER OF CLAIMS] Four

(21)【出願番号】

特願平6-257623

(21)[APPLICATION NUMBER]

Japanese Patent Application No. 6-257623

(22)【出願日】

平成6年 (1994) 9月26 September 26th, Heisei 6 (1994)

(22)[DATE OF FILING]

H

(31)【優先権主張番号】

特願平5-314533

(31)[PRIORITY FILING NUMBER]

Japanese Patent Application No. 5-314533

(32)【優先日】

平5 (1993) 11月18日

(32)[DATE OF **EARLIEST CLAIMED**

PRIORITY

Heisei 5 (1993) November 18th

(33)【優先権主張国】

日本(JP)

(33)[COUNTRY OF EARLIEST PRIORITY]

Japan (JP)

(71)【出願人】

(71)[PATENTEE/ASSIGNEE]

【識別番号】

000001889

[ID CODE]

000001889

【氏名又は名称】

三洋電機株式会社

Sanyo Electric Co., Ltd.

【住所又は居所】

大阪府守口市京阪本通2丁目5

番5号

[ADDRESS]

(72)【発明者】

(72)[INVENTOR]

【氏名】 上原 真弓

Mayumi Uehara

【住所又は居所】

大阪府守口市京阪本通2丁目5 番 5 号 三洋電機株式会社内

[ADDRESS]

(72)【発明者】

(72)[INVENTOR]

【氏名】 小路 良浩

Yoshihiro Shoji

【住所又は居所】

大阪府守口市京阪本通2丁目5

番 5 号 三洋電機株式会社内

[ADDRESS]

(72)【発明者】

(72)[INVENTOR]

【氏名】 山崎 幹也

Mikiya Yamazaki

【住所又は居所】

[ADDRESS]

大阪府守口市京阪本通2丁目5 番 5 号 三洋電機株式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 西尾 晃治 Koji Nishio

【住所又は居所】

[ADDRESS]

大阪府守口市京阪本通2丁目5 番 5 号 三洋電機株式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 斎藤 俊彦 Toshihiko Saito

【住所又は居所】

[ADDRESS]

大阪府守口市京阪本通2丁目5 番 5 号 三洋電機株式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 前田 丈志

Takeshi Maeda

【住所又は居所】

[ADDRESS]

大阪府守口市京阪本通2丁目5 番 5 号 三洋電機株式会社内

(74)【代理人】

(74)[PATENT AGENT]

【弁理士】

[PATENT ATTORNEY]

【氏名又は名称】 松尾 智弘

Tomohiro Matsuo

(57)【要約】

(57)[SUMMARY]

【構成】

[SUMMARY OF THE INVENTION]

リチウムを負極活物質とする負 In a non-aqueous cell equipped with the

極と、式:LixNiュン My Oフ (但し、0 < X < 1.3、0 ≦ $Y \le 1, 1. 8 < Z < 2. 2$ あり、且つ、Mはコバルト又は コバルトを含む2種以上の遷移 金属である。)で表されるリチウ ムー遷移金属複合酸化物を正極 活物質とする正極とを備える非 水系電池において、前記正極活 物質に対して、ナトリウム、マ グネシウム、アルミニウム、カ リウム、カルシウム、スカンジ ウム、チタン、バナジウム、ク ロム、マンガン、鉄、コバルト、 ニッケル、銅及び亜鉛よりなる 群から選ばれた金属の、塩及び /又は水酸化物の1種又は2種 以上が、総量で0.1~20モ ル%添加されてなる。

negative electrode made of lithium as a negative electrode active material, and the positive electrode composed lithiumof transition metal composite oxide expressed by formula: LiX Ni1-Y MY OZ (wherein, 0< X<1.3 and 0=<Y=<1,1.8<Z<2.2. Also, M is cobalt or 2 or more sorts of transition metals including cobalt) as a positive electrode active material, 0.1-20 mol % in total of one or more kinds of salts and/or hydroxides of metals selected from the group consisting of sodium, magnesium, aluminium, potassium, calcium, scandium. titanium, vanadium, chrome, manganese, iron, cobalt, nickel, copper, and zinc, are added into the above-mentioned positive electrode active material.

【効果】

/又は金属水酸化物が添加され ているので、高温保存時に電解 液の分解が起こりにくい。この ため、電池の内部抵抗の上昇が 小さく、保存特性に優れる。

[EFFECTS]

正極活物質に特定の金属塩及でーAddingーaーspecificーmetalーsaltーand/orーmetal hydroxide to the positive electrode active material makes difficult the decomposition of the electrolyte at the time of storage at high temperatures.

For this reason, a rise of the internal resistance of a battery is small and it excels in a storing characteristic.

【特許請求の範囲】

[CLAIMS]

【請求項1】

リチウムを負極活物質とする負 極と、式:Li_xNi_{1-Y}M_YO_z (但し、0 < X < 1.3、0 ≦ $Y \le 1$, 1, 8 < Z < 2, 2 σ あり、且つ、Mはコバルト又は コバルトを含む2種以上の遷移 金属である。)で表されるリチウ ムー遷移金属複合酸化物を正極 活物質とする正極とを備える非 水系電池において、前記正極活 物質に対して、ナトリウム、マ グネシウム、アルミニウム、カ リウム、カルシウム、スカンジ ウム、チタン、バナジウム、ク ロム、マンガン、鉄、コバルト、 ニッケル、銅及び亜鉛よりなる 群から選ばれた金属の、塩及び

[CLAIM 1]

A non-aqueous battery, in which in a nonaqueous battery equipped with a negative electrode made of lithium as a negative electrode active material, and the positive electrode composed of lithium- transition metal composite oxide expressed by formula: LiX Ni1-Y MY OZ (however, 0< X<1.3 and 0=<Y=<1,1.8<Z<2.2. Also, M is cobalt or 2 or more sorts of transition metals including cobalt) as a positive electrode active material, 0.1-20 mol % in total of one or more kinds of salts and/or hydroxides of metals selected out of the group consisting of sodium, magnesium, aluminium, potassium, calcium, scandium, titanium, a vanadium, chrome, manganese, iron, cobalt, nickel, copper, and zinc, are added into the above-mentioned positive electrode active material.

/又は水酸化物の1種又は2種 以上が、総量で0.1~20モ ル%添加されていることを特徴 とする非水系電池。

【請求項2】

前記塩が炭素を含有する金属塩 である請求項1記載の非水系電 池。

【請求項3】

前記炭素を含有する金属塩が炭 酸塩である請求項2記載の非水 系電池。

【請求項4】

/又は炭酸ニッケルである請求 項3記載の非水系電池。

【発明の詳細な説明】

[CLAIM 2]

The non-aqueous battery of the Claim 1 wherein an above-mentioned salt is the metal salt containing carbon.

[CLAIM 3]

The non-aqueous battery of Claim 2 wherein metal salt containing an above-mentioned carbon is carbonate.

[CLAIM 4]

前記炭酸塩が炭酸コバルト及び The non-aqueous battery of the Claim 3 wherein the above-mentioned carbonate is the cobalt carbonate and/or carbonic acid nickel.

[DETAILED DESCRIPTION OF INVENTION]

[0001]

【産業上の利用分野】

本発明は、非水系電池に係わり、 詳しくは非水系電池の高温にお ける保存特性を改善することを 目的とした、正極の改良に関す る。

[0002]

【従来の技術及び発明が解決し ようとする課題】

近年、金属リチウム又はリチウ ムイオンを吸蔵、放出し得る合 金若しくは炭素材料などを負極 材料とし、リチウムー遷移金属 複合酸化物を正極材料とする非 [0001]

[INDUSTRIAL APPLICATION]

This invention relates to a non-aqueous battery. In detail it relates to improvement in the positive electrode aiming at improving the storing characteristic of a non-aqueous battery at high temperatures.

[0002]

ſΑ PRIOR **ART** and а **PROBLEM** ADDRESSED]

In recent years, the non-aqueous battery using the alloy or the carbon material etc. which occludes and may discharge metal lithium or a lithium ion as negative electrode material, and a lithium- transition metal composite oxide as a positive electrode material is drawing attention

水系電池が、高エネルギー密度 を有する電池として注目されつ つある。

水系電池が、高エネルギー密度 as the battery which has a high energy density.

[0003]

上記リチウムー遷移金属複合酸化物としては、 $LiMnO_2$ 、 $LiFeO_2$ 及び $Li_XNi_{1Y}Co_YO_Z$ (但し、0<X<1.3、 $0\leq Y\leq 1$ 、1.8<Z<2.2)などがよく知られているが、なかでも、 $Li_XNi_{1Y}Co_YO_Z$ は、容量が大きく、最も注目されている正極活物質の一つである。

[0004]

しかしながら、 Li_xNi_{xy} C o_yO_z を正極活物質として用いた非水系電池を長期間高温場保存したり、特に二次電池の場合において、充電後の状態(正極活物質からリチウムイオン高いの場合において、大変を表したりすると、電池のは、次の出たが上昇する。このは、次の理由によると考えられる。

[0005]

[0003]

As an above lithium- transition metal composite oxide, LiMnO2, LiFeO2, LiXNi1-YCoYOZ (however, 0< X<1.3, 0=<Y=<1,1.8<Z<2.2), etc. are known well.

However, among them, LiXNi1-YCoYOZ has large volume. It is one of the positive electrode active materials which attract attention most.

[0004]

However, when the non-aqueous battery using LiXNi1-YCoYOZ as a positive electrode active material is stored at high temperature for a long period of time, and especially when a secondary cell is stores at high temperatures in the state (state where the lithium ion was discharged from the positive electrode active material) of after charging for a long period of time, the internal resistance of a battery rises.

That an internal resistance thus rises is considered based on the following reason.

[0005]

That is, at the charging time, lithium was discharged from the above positive electrode active material.

As for charging back, the nickel in an active material or the oxidation number of cobalt exceeds 3. Moreover the oxidation number of the nickel or cobalt in an active material is over 3 also at the time of discharge.

Furthermore, also in the primary battery, the oxidation number of the nickel or cobalt in an active material is over 3 at the time of discharge.

Thus when the oxidation number of a nickel or cobalt exceeds 3, the electrolyte

らの正極活物質の触媒作用により電解液が分解してガスが発生し、この発生したガスにより、正極の極板形状に変形が起こり、正極活物質層と芯体(集電体)などとの密着性が低下して内部抵抗が上昇するのである。

[0006]

このように、この種の正極活物質を使用した非水系電池には、 高温下で長期間放置される自動 車電話などの電源としては不向 きであるという問題があったため、その改善が要望されていた。

[0007]

本発明は、かかる要望に応えるべくなされたものであって、その目的とするところは、高温保存特性に優れた $Li_XNi_{1-Y}C$ の $Y\Theta_Z$ を正極活物質とする非水系電池を提供するにある。

[0008]

decomposes by the catalysis of these positive electrode active materials, and gas generated. By this gas that generated, a deformation happens to the plate shape of a positive electrode. Adhesion of a positive electrode active material layer with a core (collector) reduces, and an internal resistance rises.

[0006]

Thus, the non-aqueous battery which used these species of positive electrode active material had a problem that it was unsuitable as electric power units, such as the vehicle telephone which is left at high temperatures for a long period of time. Therefore, the improvement was demanded.

[0007]

This invention was made that it should respond to such a request.

The object is to provide the non-aqueous battery which uses LiXNi1-YCoYOZ excellent in the storing characteristic at high temperatures as a positive electrode active material.

[8000]

[SOLUTION OF THE INVENTION]

The non-aqueous battery based on this invention for realizing the above object (the "this invention battery" is called below) is

a non-aqueous battery equipped with a negative electrode made of lithium as a negative electrode active material, and the positive electrode composed of the lithium-transition metal composite oxide expressed by formula: LiX Ni1-Y MY OZ (However, 0< X<1.3. 0=<Y=<1,1.8<Z<2.2. And, M is cobalt or 2 or more sorts of transition metals including cobalt) as a positive electrode active material, wherein 0.1-20 mol % in total of one or more kinds of salts and/or hydroxides of metals selected out of the group consisting of sodium, magnesium, aluminium, potassium, calcium.

ウム、アルミニウム、カリウム、 カルシウム、スカンジウム、チ タン、バナジウム、クロム、マ ンガン、鉄、コバルト、ニッケ ル、銅及び亜鉛よりなる群から 選ばれた金属の、塩及び/又は 水酸化物の1種又は2種以上 が、総量で0.1~20モル% 添加されてなる。 scandium, titanium, a vanadium, chrome, manganese, iron, cobalt, nickel, copper, and zinc are added to the above-mentioned positive electrode active material.

[0009]

本発明における金属塩として は、塩化ナトリウム、塩化カリ ウム、塩化マグネシウム、塩化 銅等のハロゲン化物、シュウ酸 ナトリウム、シュウ酸カリウム 等のシュウ酸塩、酢酸ナトリウ ム、酢酸カリウム等の酢酸塩、 炭酸ナトリウム、炭酸カリウム、 炭酸アルミニウム等の炭酸塩、 硝酸銅等の硝酸塩、硫酸銅等の 硫酸塩が代表的なものとして例 示されるが、なかでもシュウ酸 塩、酢酸塩、炭酸塩などの炭素 を含有する塩が好ましく、それ らのなかでも炭酸塩が特に好ま しく、炭酸塩のなかでも炭酸コ バルト及び炭酸ニッケルが最も 好ましい。

[0010]

金属塩及び/又は金属水酸化物の添加量が、正極活物質に対して総量で0.1~20モル%(正極活物質100モル部に対して極活物質100モル部に規制は不動質100モル部)に規制ででは、0.1モル%未満では添加効果(触媒毒としてさずるが充分に発現されず、一方20年ル%を超えると、これらの金属塩及び金属水酸化物の導電性

[0009]

As the metal salt in this invention, halide, such as sodium chloride, a potassium chloride, magnesium chloride, and copper chloride, oxalate, such as sodium oxalate and potassium oxalate, acetate, such as sodium acetate and potassium acetate, carbonate, such as sodium carbonate, potassium carbonate, and alminum carbonate, nitrate, such as copper nitrate, sulfates, such as copper sulfate, are illustrated as typical substances.

However, among them the salt which contains carbons, such as oxalate, acetate, and carbonate, is desirable. Carbonate is especially preferable among them. Cobalt carbonate and a carbonic acid nickel are the most desirable among carbonates.

[0010]

The additional amount of a metal salt and/or metal hydroxide is regulated into 0.1-20 mol % in total (it is a 0.1-20 mol part to the 100 mols part of positive electrode active materials) with respect to a positive electrode active material. It is because if it is less than 0.1 mol %, an addition effect (effect which suppresses decomposition of the role electrolyte as a catalyst poison) is not expressed sufficiently. On the other hand, if exceeding 20 mol %, the internal resistance of a battery will rise because of low electroconductivity of these metal salts and a metal hydroxide. Also since a diffusion

が低いことに起因して電池の内 部抵抗が上昇するとともに、充 放電時の正極におけるリチウム の拡散が悪くなるため充放電効 率が低下するからである。

of lithium in the positive electrode at the time of a charging and discharging becomes bad, a charging and discharging efficiency reduces.

[0011]

金属塩又は金属水酸化物は、それぞれ必要に応じて2種以上添加しても良い。この場合においても、それらの総量を、正極活物質に対して0.1~20モル%に規制する必要がある。

[0012]

本発明におけるリチウムを負極活物質とする負極としては、金属リチウム、及び、リチウムイオンを吸蔵、放出し得る合金又は炭素材料を電極材料として用いたものが例示される。

[0013]

[0014]

非水電解液としては、エチレン カーボネート、ビニレンカーボ ネート、プロピレンカーボネー

[0011]

2 or more sorts of metal salts or metal hydroxides may respectively be added as required.

Also in this case, those total amounts need to be regulated to 0.1-20 mol % to a positive electrode active material.

[0012]

As the negative electrode made of lithium as a negative electrode active material in this invention, the thing using the alloy or the carbon material which occludes and discharge metal lithium and a lithium ion, as an electrode material is mentioned.

[0013]

This invention suppresses decomposition of the electrolyte which raised the problem when LiXNi1-YCoYOZ is used as a positive electrode active material, by adding a metal salt and/or metal hydroxide to a positive electrode active material.

Thereby it succeeded in improving the storing characteristic under the high temperature of a non-aqueous battery.

Therefore, as for the other member which comprises batteries, such as the electrolyte, it proposes as a non-aqueous battery conventionally. Or it is possible to use various material currently used without limitation especially.

[0014]

As a non-aqueous electrolyte, the solution which dissolved solute such as LiPF6, LiCIO4, LiCF3SO3 at a ratio of 0.7-1.5M (a mole/liter) in organic solvents, such as ethylene carbonate,

トなどの有機溶媒や、これらとジメチルカーボネート、ジエチルカーボネート、1, 2-ジメトキシエタン、1, 2-ジエトキシエタン、エトキシメトキシエタンなどの低沸点溶媒とのに入る溶媒に、 $LiPF_6$ 、 $LiCP_3SO_3$ などの溶質を0. $7\sim1$. 5M (モル/リットル) の割合で溶かした溶が例示される。

vinylene carbonate, and propylene carbonate, the mixed solvent of these with low boiling point solvent, such as a dimethyl carbonate, a diethyl carbonate, 1,2- dimethoxyethane, 1,2- diethoxy ethane, and an ethoxymethoxy ethane is mentioned.

[0015]

[0015]

【作用】

本発明においては、金属塩及び /又は金属水酸化物が、電解液 の分解反応において触媒毒とし て働くので、長期間保存しても (特に、二次電池にあって充電 後の状態で長期間保存しても)、 ガスが発生しにくい。このため、 正極の極板形状に変形が起こり にくくなり、電池の内部抵抗の 上昇が抑制される。

[0016]

【実施例】

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。

[0017]

(実施例1)扁平型の非水系電池(本発明電池)を作製した。

[EFFECT]

In this invention, a metal salt and/or metal hydroxide works as a catalyst poison in the decomposition reaction of the electrolyte. Whether especially are in a secondary cell, and it preserves in the state of charging back for a long period of time or it preserves for a long period of time, gas-seldom occurred.

For this reason, a deformation comes to seldom happen to the plate shape of a positive electrode.

A rise of the internal resistance of a battery is suppressed.

[0016]

[Example]

Hereafter, this invention is explained in greater detail based on an Example.

However, this invention is not limited to the following Example at all. It is possible to alter suitably and to perform it in the range which does not alter the gist.

[0017]

(Example 1) The non-aqueous battery (this invention battery) of a flat type was produced.

[0018]

[0018]

【正極】

LiOHと、Ni (OH) $_2$ と、Co (OH) $_2$ と、 $_2$ と: $_1$ とをモル比 $_2$ と: $_1$ に $_2$ とこれ $_3$ に $_4$ とこれ $_5$ に $_5$

[0019]

次いで、上記塩化カリウム粉末を添加混合した正極活物質粉末と、導電剤としてのアセチレブラックと、結着剤としてのまかとない。 リフッ化ビニリデンとを、正極分とは、4で混合して正極合に、250でにかった。 後、250°Cで2時間熱処理して正極を作製した。

[0020]

【負極】

所定の厚みを有する金属リチウムの圧延板を直径20mmの円板状に打ち抜いて負極を作製した。

[0021]

[Positive electrode]

After LiOH, Ni(OH)2 and Co (OH)2 were mixed with the blending bowl by molar ratio 2:1:1, this mixture is heat-processed for 20 hours at 750 degrees C in a dry air atmosphere.

The positive electrode active material shown by LiNi0.5Co0.5O2 was obtained. subsequently, it is ground the inside of a Ishikawa type mixing blending bowl.

The positive electrode active material powder whose average particle diameter is 5 micrometers was obtained. After that, 0.1 mol % of potassium chloride powders was add-mixed to this positive electrode active material powder.

[0019]

Subsequently, the positive electrode active material powder which add-mixed the above potassium chloride powder, acetylene black as an electroconductive agent, and the polyvinylidene fluoride as a binder are mixed by the weight ratio 90:6:4, and the anode mix is prepared. Pressure application molding of this anode mix was carried out by the pressure of 2t/cm2 at the disk shape with a diameter of 20 mm. After that, it heat-processed for 2 hours at 250 degrees C, and the positive electrode was produced.

[0020]

[Negative electrode]

The rolling plate of metal lithium which has predetermined thickness was pierced to the disk shape with a diameter of 20 mm, and the negative electrode was produced.

[0021]

【非水電解液】

プロピレンカーボネートと1,2ージメトキシエタンとの等体積混合溶媒に、過塩素酸リチウムを1M(モル/リットル)の割合で溶かして非水電解液を調製した。

[0022]

【電池の作製】

以上の正負両極及び非水電解液を用いて扁平型の本発明電池 B A 1 を作製した(電池寸法:直径 2 4.0 mm、厚さ 3.0 mm)。なお、セパレータとしては、ポリプロピレン製の微多孔膜(ヘキストセラニーズ社製、商品名「セルガード」)を使用し、これに先の非水電解液を含浸させた。

[0023]

図1は、作製した本発明電池BA1を模式的に示す断面図であり、同図に示す本発明電池BA1は、正極1、負極2、これら両電極1,2を互いに離間するセパレータ3、正極缶4、負極生活5、正極集電体6、負極集配体7及びポリプロピレン製の絶縁パッキング8などからなる。

[0024]

正極1及び負極2は、非水電解液を含浸したセパレータ3を介して対向して正負両極缶4,5が形成する電池ケース内に収納されており、正極1は正極集電体6を介して正極缶4に、また

[Non-aqueous electrolyte]

The lithium perchlorate was dissolved to mixed solvents of a propylene carbonate and 1,2-dimethoxyethane in an equal volume, at a ratio of 1M (a mole/liter), and the non-aqueous electrolyte was prepared.

[0022]

[Production of a battery]

this invention battery BA1 of a flat type was produced using the above positive and/or negative two poles and non-aqueous electrolyte. (Battery dimension: The diameter of 24.0 mm, 3.0 mm in thickness).

In addition, as a separator, the fine porous film made from a polypropylene (made in a Hoechst "cellars" company, brand name "a cell guard") is used.

This was made to impregnate a previous non-aqueous electrolyte.

[0023]

Fig. 1 is a sectional drawing showing typically the produced this invention battery BA1.

This invention battery BA1 shown in said figure consists of a positive electrode 1, a negative electrode 2, a separator 3 which separates these both electrodes 1 and 2 mutually, a positive electrode can 4, a negative electrode can 5, a positive electrode collector 6, a negative electrode collector 7, and the insulated packing 8 made from a polypropylene:

[0024]

The positive electrode 1 and the negative electrode 2 are housed in the battery case formed by positive and/or negative two poles cans 4 and 5 facing to each other via the separator 3 which impregnated the non-aqueous electrolyte.

A positive electrode 1 is connected to the

負極2は負極集電体7を介して 負極缶5に接続され、電池内部 に生じた化学エネルギーを正極 缶4及び負極缶5の両端子から 電気エネルギーとして外部へ取 り出し得るようになっている。

positive electrode can 4 via the positive electrode collector 6. Moreover a negative electrode 2 is connected to the negative electrode can 5 via the negative electrode collector 7. It is constituted that the chemical energy produced within the battery can be taken out from both terminals of the positive electrode can 4 and the negative electrode can 5 to the outside as an electrical energy.

[0025]

(実施例2~5) 正極活物質粉 末に対する塩化カリウム粉末の 添加量を、それぞれ5モル%、 10モル%、15モル%、20 モル%としたこと以外は上記実 施例1と同様にして、正極を作 製した。次いで、これらの正極 を用いたこと以外は実施例1と 同様にして、順に本発明電池B A2(塩化カリウム粉末の添加 量:5モル%)、BA3 (塩化カ リーウム粉末の添加量:-1-0-モ ル%)、BA4(塩化カリウム粉 末の添加量:15モル%)、BA 5 (塩化カリウム粉末の添加 量:20モル%)を作製した。

[0026]

[0025]

(Examples 2-5) The additional amount of the potassium chloride powder opposing to a positive electrode active material powder was respectively made into 5 mol %, 10 mol %, 15 mol %, and 20 mol %. It is made to be the same as that of above Example 1 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA2 (additional amount:5 mol % of a potassium chloride powder), BA3 (additional amount:10 mol % of a potassium chloride powder), BA4 (additional amount:15 mol % of a potassium chloride powder), and BA5 (additional amount:20 mol % of a potassium chloride powder) were produced in order.

[0026]

(Examples 6-10) It replaced the potassium chloride powder with the potassium oxalate powder. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA6 (additional amount:0.1 mol % of a potassium oxalate powder), BA7 (additional amount:5 mol % of a potassium oxalate powder), BA8 (additional amount:10 mol % of a potassium oxalate powder), BA9 (additional amount:15 mol % of a potassium oxalate powder), and BA10 (additional amount:20 mol % of a potassium

ル%)、BA10(シュウ酸カリウム粉末の添加量:20モル%) を作製した。

ル%)、BA10 (シュウ酸カリ oxalate powder) were produced in order.

[0027]

(実施例11~15) 塩化カリ ウム粉末に代えて酢酸カリウム 粉末を用いたこと以外は実施例 1~5と同様にして、正極を作 製した。次いで、これらの正極 を用いたこと以外は実施例1と 同様にして、順に本発明電池B A11 (酢酸カリウム粉末の添 加量: 0.1モル%)、BA12 (酢酸カリウム粉末の添加量: 5モル%)、BA13(酢酸カリ ウム粉末の添加量:10年 ル%)、BA14 (酢酸カリウム 粉末の添加量:15モル%)、B A15 (酢酸カリウム粉末の添 加量:20モル%)を作製した。

[0027]

(Examples 11-15) It replaced the potassium chloride powder with the potassium acetate powder. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA11 (additional amount:0.1 mol % of a potassium acetate powder), BA12 (additional amount:5 mol % of a potassium acetate powder), BA13 (additional amount:10 mol % of a potassium acetate powder), BA14 (additional amount:15 mol % of a potassium acetate powder), and BA15 (additional amount:20 mol % of a potassium acetate powder) were produced in order.

[0028]

(実施例16~20) 塩化カリ ウム粉末に代えて炭酸カリウム 粉末を用いたこと以外は実施例 1~5と同様にして、正極を作 製した。次いで、これらの正極 を用いたこと以外は実施例1と 同様にして、順に本発明電池B A16 (炭酸カリウム粉末の添 加量:0.1モル%)、BA17 (炭酸カリウム粉末の添加量: 5モル%)、BA18 (炭酸カリ ウム粉末の添加量:10モ ル%)、BA19 (炭酸カリウム 粉末の添加量:15モル%)、B A20(炭酸カリウム粉末の添 加量:20モル%)を作製した。

[0029]

(比較例1) 正極活物質粉末に

[0028]

(Examples 16-20) It replaced the potassium chloride powder with the potassium carbonate powder. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA16 (additional amount:0.1 mol % of a potassium carbonate powder), BA17 (additional amount:5 mol % of a potassium carbonate powder), BA18 (additional amount:10 mol % of a potassium carbonate powder), BA19 (additional amount:15 mol % of a potassium carbonate powder), and BA20 (additional amount:20 mol % of a potassium carbonate powder) were produced in order.

[0029]

(Comparative Example 1) The potassium

塩化カリウム粉末を添加混合しなかったこと以外は実施例1と同様にして、正極を作製した。 次いで、この正極を用いたこと 以外は実施例1と同様にして、 比較電池BC1を作製した。

[0030]

(比較例2)正極活物質粉末に対する塩化カリウム粉末の添加量を25モル%としたこと以外は実施例1と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC2を作製した。

[0031]

(比較例3)正極活物質粉末に 対するシュウ酸カリウム粉末の 添加量を25モル%としたこと 以外は実施例6と同様にして、 正極を作製した。次いで、この 正極を用いたこと以外は実施例 1と同様にして、比較電池BC 3を作製した。

[0032]

(比較例4)正極活物質粉末に対する酢酸カリウム粉末の添加量を25モル%としたこと以外は実施例11と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC4を作製した。

chloride powder was not add-mixed to the positive electrode active material powder. It is made to be the same as that of Example 1 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC1 was produced.

[0030]

(Comparative Example 2) The additional amount of the potassium chloride powder opposing to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 1 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC2 was produced.

[0031]

(Comparative Example 3) The additional amount of the potassium oxalate powder opposing to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 6 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC3 was produced.

[0032]

(Comparative Example 4) The additional amount of the potassium acetate powder opposing to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 11 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC4 was produced.

[0033]

(比較例5) 正極活物質粉末に対する炭酸カリウム粉末の添加量を25モル%としたこと以外は実施例16と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC5を作製した。

[0034]

(比較例6~11) 塩化カリウ ム粉末に代えて炭酸リチウム粉 末を用いたこと以外は実施例1 ~5及び比較例2と同様にし て、正極を作製した。次いで、 これらの正極を用いたこと以外 は実施例1と同様にして、順に 比較電池BC6(炭酸リチウム 粉末の添加量: 0.1モル%)、 BC7 (炭酸リチウム粉末の添 加量:5モル%)、BC8 (炭酸 リチウム粉末の添加量:10モ ル%)、BC9(炭酸リチウム粉 末の添加量:15モル%)、BC 10 (炭酸リチウム粉末の添加 量:20モル%)、BC11 (炭 酸リチウム粉末の添加量:25 モル%)を作製した。

[0035]

本発明電池BA1~BA15及び比較電池BC1~BC4の各正極の作製において正極活物質粉末に添加した金属塩粉末の種類及び添加量を、次の表1にまとめて示し、本発明電池BA16~BA20及び比較電池BC5~BC11の各正極の作製に

[0033]

(Comparative Example 5) The additional amount of the potassium carbonate powder opposing to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 16 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC5 was produced.

[0034]

(Comparative Example 6-11) It replaced the potassium chloride powder with the lithium carbonate powder. It is made to be the same as that of Example 1-5 and Comparative Example 2 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

The comparison batteries BC6 (additional amount:0.1 mol % of a lithium carbonate powder), BC7 (additional amount:5 mol % of a lithium carbonate powder), BC8 (additional amount:10 mol % of a lithium carbonate powder), BC9 (additional amount:15 mol % of a lithium carbonate powder), BC10 (additional amount:20 mol % of a lithium carbonate powder), and BC11 (additional amount:25 mol % of a lithium carbonate powder) were produced in order.

[0035]

In production of each positive electrode of this invention battery BA1- BA15 and comparison battery BC1- BC4, the kind and the additional amount of a metal salt powder which were added to the positive electrode active material powder are collectively shown in next Table 1.

In production of each positive electrode of this invention batteries BA16-BA20 and the comparison batteries BC5-BC11, the kind and

た金属塩粉末の種類及び添加量 (モル%)を、次の表2にまと めて示す。

おいて正極活物質粉末に添加し the additional amount (mol%) of a metal salt powder which were added to the positive electrode active material powder are collectively shown in the next table 2.

[0036]

[0036]

【表1】

[Table 1]

	r	·
電池	添加した塩	添加量 (モル%)
BC1	なし	無添加
BA1	塩化カリウム	0.1
BA2	а	5
BA3	"	10
BA4	"	1 5
B A 5	"	2 0
BC2	"	2 5
BA6	シュウ酸カリウム	0.1
B A 7	"	5
B A 8	ď	1 0
BA9	~	1 5
BA10	"	2 0
BC3	W	2 5
BA11	酢酸カリウム	0.1
B A 1 2	"	5
BA13		1 0
BA14	Ar .	1 5
BA15		2 0
BC4	"	2 5

[0037]

[0037]

【表2】

[Table 2]

電池	添加した塩	添加量 (モル%)
BA16	炭酸カリウム	0.1
BA17	,,	5
BA18	"	1 0
BA19	"	1 5
BA20	И	2 0
BC5	"	2 5
BC6	炭酸リチウム	0.1
BC7	*	5
BC8	"	10
BC9	*	1 5
BC10	. "	2 0
BC11	n	2 5

[0038]

[0038]

【保存特性】

本発明電池BA1~BA20及び比較電池BC1~BC11を充電した後、80°Cで30日間保存し、各電池の保存特性を調べた。結果を図2に示す。保存特性は電池の内部抵抗の上昇率(%)で評価した。電池の内部抵抗を1kHzで測定し、内部抵抗の上昇率を下式により算出した。

[0039]

電池の内部抵抗の上昇率 (%) = (保存後の内部抵抗-保存前の内部抵抗) × 100/保存前の内部抵抗

[Storing characteristic]

This invention battery BA1- BA20 and comparison battery BC1- BC11 were charged. After that, it will store for 30 days at 80 degrees C.

The storing characteristic of each battery was investigated.

A result is shown in Fig. 2.

Increasing rate (%) of the internal resistance of a battery evaluated the storing characteristic. The internal resistance of a battery is measured by 1kHz.

The R/C of an internal resistance was calculated by the following expression.

[0039]

Increasing rate (%) of the internal resistance of a battery = (The internal resistance after preservation - Internal Resistance before Preservation) *100/ the internal resistance before preservation

[0040]

図2は、各電池の保存特性を、 縦軸に電池の内部抵抗の上昇率 (%)を、また横軸に金属塩の 添加量(モル%)をとって示し たグラフであり、同図に示すよ うに本発明電池BA1~BA2 0では電池の内部抵抗の上昇率 が50%以下と低いのに対し て、比較電池BC1~BC11 では電池の内部抵抗の上昇率が 100%以上と高い。このこと から、高温で保存したときの電 池の内部抵抗の上昇が、カリウ ム塩を正極活物質に対して0. 1~20モル%添加することに より抑制されることが分かる。 特に、シュウ酸カリウム、酢酸 カリウム又は炭酸カリウムを添 加した本発明電池BA6~BA -2-0-では電池の内部抵抗の上昇 率が40%以下と低く、そのな かでも炭酸カリウムを添加した 本発明電池BA16~BA20 では電池の内部抵抗の上昇率が 数%と極めて低い。したがって、 シュウ酸塩、酢酸塩、炭酸塩な どの炭素を含む塩が好ましく、 なかでも炭酸塩が特に好ましい ことが分かる。また、図2より、 炭酸リチウム(リチウム塩)を 正極活物質に添加した場合(比 較電池BC6~BC11)、電池 の内部抵抗の上昇を抑制できな いどころか、むしろ無添加(比 較電池BC1) のときよりも電 池の内部抵抗の上昇が大きくな り、却って保存特性が悪くなる ことが分かる。

[0040]

Fig. 2 is the graph which shows the storing characteristic of each battery setting the increasing rate (%) of the internal resistance of a battery as the vertical axis, and the additional amount (mol%) of a metal salt as the horizontal axis.

As shown in said figure, in this invention battery BA1- BA20, the increasing rate of the internal resistance of a battery is as low as 50% or less. On the other hand, in comparison battery BC1- BC11, the increasing rate of the internal resistance of a battery is as high as 100 % or more.

This shows suppressing a rise of the internal resistance of the battery when storing at high temperatures by adding 0.1-20 mol % of potassium salts to a positive electrode active material.

Especially in this invention batteries BA6-BA20 which added potassium oxalate, potassium acetate, or potassium carbonate, the increasing rate of the internal resistance of a battery is as low as a 40% or less. By this invention batteries BA16-BA20 which added potassium carbonate among them, the increasing rate of the internal resistance of a battery is extremely as low as a several percent.

Accordingly, the salt including carbons, such as oxalate, acetate, and carbonate, is desirable. Among them it turns out that carbonate is especially preferable.

Moreover, from Fig. 2, when lithium carbonate (lithium salt) is added to a positive electrode active material (comparison batteries BC6-BC11), a rise of the internal resistance of a battery cannot be suppressed. Also the rise of the internal resistance of a battery becomes larger than the time of the non-addition (comparison battery BC1) rather.

It turns out that a storing characteristic becomes bad on the contrary.

[0041]

[0041]

(実施例21~25) 塩化カリ ウム粉末に代えて塩化ナトリウ ム粉末を用いたこと以外は実施 例1~5と同様にして、正極を 作製した。次いで、これらの正 極を用いたこと以外は実施例1 と同様にして、順に本発明電池 BA21 (塩化ナトリウム粉末 の添加量: 0.1モル%)、BA 22 (塩化ナトリウム粉末の添 加量:5モル%)、BA23(塩 化ナトリウム粉末の添加量:1 0 モル%)、BA24 (塩化ナト リウム粉末の添加量:15年 ル%)、BA25 (塩化ナトリウ ム粉末の添加量:20モル%) を作製した。

[0042]

(実施例26~30) 塩化カリ ウム粉末に代えて塩化マグネシ ウム粉末を用いたこと以外は実 施例1~5と同様にして、正極 を作製した。次いで、これらの 正極を用いたこと以外は実施例 1と同様にして、順に本発明電 池BA26 (塩化マグネシウム 粉末の添加量:0.1モル%)、 BA27(塩化マグネシウム粉 末の添加量:5モル%)、BA2 8 (塩化マグネシウム粉末の添 加量:10モル%)、BA29(塩 化マグネシウム粉末の添加量: 15モル%)、BA30(塩化マ グネシウム粉末の添加量:20 モル%)を作製した。

[0043]

(実施例31~35)塩化カリウム粉末に代えて塩化銅粉末を用いたこと以外は実施例1~5と同様にして、正極を作製した。

(Examples 21-25) It replaced the potassium chloride powder with the sodium chloride powder. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA21 (additional amount:0.1 mol % of a sodium chloride powder), BA22 (additional amount:5 mol % of a sodium chloride powder), BA23 (additional amount:10 mol % of a sodium chloride powder), BA24 (additional amount:15 mol % of a sodium chloride powder), and BA25 (additional amount:20 mol % of a sodium chloride powder) were produced in order.

[0042]

(Examples 26-30) It replaced the potassium chloride powder with the magnesium chloride powder.—It—is—made—to—be—the—same—as—that—of—Example 1-5 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA26 (additional amount:0.1 mol % of a magnesium chloride powder), BA27 (additional amount:5 mol % of a magnesium chloride powder), BA28 (additional amount:10 mol % of a magnesium chloride powder), BA29 (additional amount:15 mol % of a magnesium chloride powder), and BA30 (additional amount:20 mol % of a magnesium chloride powder) were produced in order.

[0043]

(Examples 31-35) It replaced the potassium chloride powder with the chlorinated copper powder. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

次いで、これらの正極を用いたこと以外は実施例1と同様にして、順に本発明電池BA31(塩化銅粉末の添加量:0.1モル%)、BA32(塩化銅粉末の添加量:5モル%)、BA33(塩化銅粉末の添加量:15モル%)、BA35(塩化銅粉末の添加量:20モル%)を作製した。

[0044]

(比較例12)正極活物質粉末に対する塩化ナトリウム粉末の添加量を25モル%としたこと以外は実施例21と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC12を作製した。

[0045]

(比較例13) 正極活物質粉末 に対する塩化マグネシウム粉末 の添加量を25モル%としたこ と以外は実施例26と同様にし て、正極を作製した。次いで、 この正極を用いたこと以外は実 施例1と同様にして、比較電池 BC13を作製した。

[0046]

(比較例14)正極活物質粉末に対する塩化銅粉末の添加量を25モル%としたこと以外は実施例31と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC14を作製した。

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA31 (additional amount:0.1 mol % of a chlorinated copper powder), BA32 (additional amount:5 mol % of a chlorinated copper powder), BA33 (additional amount:10 mol % of a chlorinated copper powder), BA34 (additional amount:15 mol % of a chlorinated copper powder), and BA35 (additional amount:20 mol % of a chlorinated copper powder) were produced in order.

[0044]

(Comparative Example 12) The additional amount of the sodium chloride powder to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 21 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC12-was produced.

[0045]

(Comparative Example 13) The additional amount of the magnesium chloride powder to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 26 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC13 was produced.

[0046]

(Comparative Example 14) The additional amount of the chlorinated copper powder to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 31 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC14 was produced.

[0047]

本発明電池BA21~BA35 及び比較電池BC12~BC1 4の各正極の作製において正極 活物質粉末に添加した金属塩粉 末の種類及び添加量(モル%) を、次の表3にまとめて示す。

[0048]

[0047]

In production of each positive electrode of this invention batteries BA21-BA35 and comparison batteries BC12-BC14, the kind and the additional amount (mol%) of a metal salt powder which were added to the positive electrode active material powder are collectively shown in the next table 3.

[0048]

【表3】

[Table 3]

電池	添加した塩	添加量 (モル%)
B A 2 1	塩化ナトリウム	0.1
B A 2 2	"	5
-B-A-2-3-		1-0
BA24	И	1 5
BA25	a	2 0
BC12	"	2 5
B A 2 6	塩化マグネシウム	0.1
B A 2 7	**	5
B A 2 8	W	1 0
B A 2 9	"	1 5
B A 3 0	π	2 0
BC13	"	2 5
B A 3 1	塩化銅	0.1
B A 3 2	•	5
B A 3 3	N	1 0
B A 3 4		1 5
B A 3 5	7	2 0
BC14	N	2 5

[0049]

[0049]

【保存特性】

先と同様にして、本発明電池BA21~BA35及び比較電池BC12~BC14の保存特性(80°Cで30日間保存)を調べた。結果を図3に示す。なお、図3中には、比較の便宜のために、比較電池BC1の結果(図2より転記)も示してある。

[0050]

図3は、各電池の保存特性を、 縦軸に電池の内部抵抗の上昇率 (%) を、また横軸に金属塩の 添加量(モル%)をとって示し たグラフであり、同図に示すよ うに本発明電池BA21~BA 35では電池の内部抵抗の上昇 率が50%以下と低いのに対し て、比較電池BC12~BC1 4では電池の内部抵抗の上昇率 が100%以上と高い。このこ とから、高温で保存したときの 電池の内部抵抗の上昇が、塩化 ナトリウム等の金属塩を正極活 物質粉末に対して0.1~20 モル%添加することにより顕著 に抑制されることが分かる。

[0051]

[Storing characteristic]

It is made to be the same as that of the point.

The storing characteristic (it will preserve for 30 days by 80 degrees C) of this invention batteries BA21-BA35 and the comparison batteries BC12-BC14 was investigated.

A result is shown in Figure 3.

In addition, in Fig. 3, in order that a comparison is expedient, the result (it posts from Fig. 2) of the comparison battery BC1 is also shown.

[0050]

Fig. 3 is the graph which showed the storing characteristic of each battery setting increasing rate (%) of the internal resistance of a battery as vertical axis, and the additional amount (mol%) of a metal salt as the horizontal axis.

As shown in said figure, by this invention batteries BA21-BA35, the increasing rate of the internal resistance of a battery is as low as a 50% or less. By the comparison batteries BC12-BC14, the increasing rate of the internal resistance of a battery is as high as 100 % or more.

This shows suppressing notably the rise of the internal resistance of the battery when storing at high temperatures by adding 0.1-20 mol % of metal salts, such as sodium chloride, to a positive electrode active material powder.

[0051]

(Examples 36-48) It replaces a potassium chloride powder with each hydroxide powder of aluminium, potassium, calcium, scandium, titanium, a vanadium, chrome, manganese, iron, cobalt, nickel, copper, and zinc. And the additional amount of each hydroxide powder was made into 5 mol %. It is made to be the same as that of Example 1 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of

と同様にして、正極を作製した。 次いで、これらの正極を用いた こと以外は実施例1と同様にし て、順に本発明電池 B A 3 6 (水 酸化アルミニウム添加)、BA3 7(水酸化カリウム添加)、BA 38 (水酸化カルシウム添加)、 BA39 (水酸化スカンジウム 添加)、BA40(水酸化チタン 添加)、BA41(水酸化バナジ ウム添加)、BA42(水酸化ク ロム添加)、BA43 (水酸化マ ンガン添加)、BA44(水酸化 鉄添加)、BA45(水酸化コバ ルト添加)、BA46(水酸化ニ ッケル添加)、BA47(水酸化 銅添加)、BA48(水酸化亜鉛 添加)を作製した。

Example 1 except an above.

This invention batteries BA36 (aluminium hydroxide addition), BA37 (potassium hydroxide addition), BA38 (calcium hydroxide addition), BA39 (hydroxylation scandium addition), BA40 addition), hydroxide (titanium **BA41** vanadium **BA42** (hydroxylation addition). (hydroxylation chrome addition), **BA43** (hydroxylation manganese addition), BA44 (iron hydroxide addition), BA45 (cobalt hydroxide addition), BA46 (nickel hydroxide addition), BA47 (hydroxylation copper addition) and BA48 (zinc hydroxide addition) were produced in order.

[0052]

[0052]

【保存特性】

先と同様にして、本発明電池BA36~BA48の保存特性(80°Cで30日間保存)を調べた。結果を図4に示す。

[0053]

[Storing characteristic]

It is made to be the same as that of the point.

The storing characteristic (it will preserve for 30 days by 80 degrees C) of this invention batteries BA36-BA48 was investigated.

A result is shown in Fig. 4.

[0053]

Fig. 4 is the graph which showed the storing characteristic of each battery setting increasing rate (%) of the internal resistance of a battery the vertical axis, and the metallic element in a hydroxide as the horizontal axis.

As shown in said figure, the increasing rate of the internal resistance of this invention batteries BA36-BA48 is as low as about 10%.

This shows that a rise of the internal resistance of the battery when storing at high temperatures is notably suppressed by adding metal hydroxides, such as potassium hydroxide, to a positive electrode active material powder.

[0054]

(実施例49~53) 塩化カリ ウム粉末に代えて、炭酸コバル ト粉末を用いたこと以外は実施 例1~5と同様にして、正極を 作製した。次いで、これらの正 極を用いたこと以外は実施例1 と同様にして、順に本発明電池 BA49(炭酸コバルトの添加 量: 0.1モル%)、BA50(炭 酸コバルトの添加量:5モ ル%)、BA51 (炭酸コバルト の添加量:10モル%)、BA5 2 (炭酸コバルトの添加量:1 5モル%)、BA53(炭酸コバ ルトの添加量:20モル%)を 作製した。

[0055]

(実施例54~58) 塩化カリ ウム粉末に代えて、炭酸ニッケ ル粉末を用いたこと以外は実施 例1~5と同様にして、正極を 作製した。次いで、これらの正 極を用いたこと以外は実施例1 と同様にして、順に本発明電池 BA54 (炭酸ニッケルの添加 量: 0.1モル%)、BA55(炭 酸ニッケルの添加量:5モ ル%)、BA56(炭酸ニッケル の添加量:10モル%)、BA5 7 (炭酸ニッケルの添加量:1 5モル%)、BA58(炭酸ニッ ケルの添加量:20モル%)を 作製した。

[0056]

(実施例59~63)塩化カリウム粉末に代えて、炭酸ナトリウム粉末を用いたこと以外は実施例1~5と同様にして、正極

[0054]

(Examples 49-53) It replaces a potassium chloride powder with the cobalt carbonate powder was used. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA49 (additional amount:0.1 mol % of cobalt carbonate), BA50 (additional amount:5 mol % of cobalt carbonate), BA51 (additional amount:10 mol % of cobalt carbonate), BA52 (additional amount:15 mol % of cobalt carbonate), and BA53 (additional amount:20 mol % of cobalt carbonate) were produced in order.

[0055]

(Examples 54-58) It replaces a potassium chloride powder with the carbonic acid nickel powder was used. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA54 (additional amount:0.1 mol % of a carbonic acid nickel), BA55 (additional amount:5 mol % of a carbonic acid nickel), BA56 (additional amount:10 mol % of a carbonic acid nickel), BA57 (additional amount:15 mol % of a carbonic acid nickel), and BA58 (additional amount:20 mol % of a carbonic acid nickel) were produced in order.

[0056]

(Examples 59-63) It replaces a potassium chloride powder with the sodium carbonate powder was used. It is made to be the same as that of Example 1-5 except an above.

The positive electrode was produced.

を作製した。次いで、これらの 正極を用いたこと以外は実施例 1と同様にして、順に本発明電 池BA59(炭酸ナトリウムの 添加量:0.1モル%)、BA6 0(炭酸ナトリウムの添加量:5モル%)、BA61(炭酸ナトリウムの添加量:10モル%)、BA63(炭酸ナトリウムの添加量:15モル%)、BA63(炭酸ナトリウムの添加量:20モル%)を作製した。

[0057]

(比較例15)正極活物質粉末に対する炭酸コバルト粉末の添加量を25モル%としたこと以外は実施例49と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC15を作製した。

[0058]

(比較例16)正極活物質粉末に対する炭酸ニッケル粉末の添加量を25モル%としたこと以外は実施例54と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実施例1と同様にして、比較電池BC16を作製した。

[0059]

(比較例17)正極活物質粉末に対する炭酸ナトリウム粉末の添加量を25モル%としたこと以外は実施例59と同様にして、正極を作製した。次いで、この正極を用いたこと以外は実

Subsequently, these positive electrodes were used. It is made to be the same as that of Example 1 except an above.

This invention batteries BA59 (additional amount:0.1 mol % of sodium carbonate), BA60 (additional amount:5 mol % of sodium carbonate), BA61 (additional amount:10 mol % of sodium carbonate), BA62 (additional amount:15 mol % of sodium carbonate), and BA63 (additional amount:20 mol % of sodium carbonate) were produced in order.

[0057]

(Comparative Example 15) The additional amount of the cobalt carbonate powder to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 49 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1-except an above.

The comparison battery BC15 was produced.

[0058]

(Comparative Example 16) The additional amount of the carbonic acid nickel powder opposing to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 54 except an above.

The positive electrode was produced.

Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC16 was produced.

[0059]

(Comparative Example 17) The additional amount of the sodium carbonate powder opposing to a positive electrode active material powder was made into 25 mol %. It is made to be the same as that of Example 59 except an above.

The positive electrode was produced.

施例1と同様にして、比較電池 BC17を作製した。 Subsequently, this positive electrode was used. It is made to be the same as that of Example 1 except an above.

The comparison battery BC17 was produced.

[0060]

本発明電池BA49~BA63 及び比較電池BC15~BC1 7の各正極の作製において正極 活物質粉末に添加した金属塩粉 末の種類及び添加量(モル%) を、次の表4にまとめて示す。

[0061]

【表4】

[0060]

In production of each positive electrode of this invention batteries BA49-BA63 and the comparison batteries BC15-BC17, the kind and the additional amount (mol%) of a metal salt powder which were added to the positive electrode active material powder are collectively shown in the next table 4.

[0061]

[Table 4]

電池	添加した塩	添加量 (モル%)
BA49	炭酸コバルト	0.1
BA50	炭酸コバルト	5
B A 5 1	炭酸コパルト	1 0
B A 5 2	炭酸コバルト	1 5
B A 5 3	炭酸コバルト	2 0
BC15	炭酸コパルト	2 5
B A 5 4	炭酸ニッケル	0.1
B A 5 5	炭酸ニッケル	5
BA56	炭酸ニッケル	1 0
BA57	炭酸ニッケル	1 5
B A 5 8	炭酸ニッケル	2 0
BC16	炭酸ニッケル	2 5
B A 5 9	炭酸ナトリウム	0.1
B A 6 0	炭酸ナトリウム	5
B A 6 1	炭酸ナトリウム	10
B A 6 2	炭酸ナトリウム	1 5
B A 6 3	炭酸ナトリウム	2 0
BC17	炭酸ナトリウム	2 5

[0062]

【保存特性】

先と同様にして、本発明電池BA49~BA63及び比較電池BC15~BC17の保存特性(80°Cで30日間保存)を調べた。結果を図5に示す。なお、図5中には、比較の便宜のために、比較電池BC1、BC5及び本発明電池BA16~BA20の結果(図2より転記)も示してある。

[0063]

図5は、このときの各電池の保 存特性を図2及び図3と同じ座 標系のグラフに示したものであ り、同図に示すように本発明電 池BA16~BA20及びBA 49~BA63では電池の内部 抵抗の上昇率が数%と極めて低 いのに対して、比較電池BC1, BC5, BC15~BC17で は電池の内部抵抗の上昇率が1 00%以上と高い。このことか ら、高温で保存したときの電池 の内部抵抗の上昇が、炭酸塩を 正極活物質粉末に対して0.1 ~20モル%添加することによ り顕著に抑制されることが分か る。

[0064]

次に、本発明電池BA16~B A20及びBA49~BA63 及び比較電池BC1, BC5, BC15~17を充電した後、 80°Cで60日間保存し、各

[Storing characteristic]

It is made to be the same as that of the point.

The storing characteristic (it will preserve for 30 days by 80 degrees C) of this invention batteries BA49-BA63 and the comparison batteries BC15-BC17 was investigated.

A result is shown in Fig. 5.

In addition, in Fig. 5, in order that a comparison is expedient, the result (it posts from Fig. 2) of the comparison batteries BC1 and BC5 and this invention batteries BA16-BA20 is also shown.

[0063]

[0062]

Fig. 5 shows the storing characteristic of each battery at this time to the graph of the same coordinate system as Fig. 2 and 3.

As shown in said figure, in this invention batteries BA16-BA20, and BA49-BA63, the increasing rate of the internal resistance of a battery is extremely as low as a several percent. On the other hand, in the comparison batteries BC1, BC5, BC15,-BC17, the increasing rate of the internal resistance of a battery is as high as 100 % or more.

This shows suppressing notably the rise of the internal resistance of the battery when storing at high temperatures by adding 0.1-20 mol % of carbonate to a positive electrode active material powder.

[0064]

Next, this invention batteries BA16-BA20, BA49-BA63, and the comparison batteries BC1, BC5, and BC 15-17 were charged. After that, it will preserve for 60 days by 80 degrees C.

The storing characteristic of each battery was investigated.

電池の保存特性を調べた。結果 を図6に示す。 A result is shown in Fig. 6.

[0065]

図6は、このときの各電池の保 存特性を図2及び図3と同じ座 標系のグラフに示したものであ り、同図に示すように本発明電 池BA16~BA20及びBA 49~BA63では電池の内部 抵抗の上昇率が50%以下と低 いのに対して、比較電池 B C 1, BC5, BC15~BC17で は電池の内部抵抗の上昇率が1 00%以上と高い。このことか ら、高温で長期間保存したとき の電池の内部抵抗の上昇が、炭 酸塩を正極活物質粉末に対して 0. 1~20モル%添加するこ とにより顕著に抑制されること が分かる。特に炭酸コバルト又 は炭酸ニッケルを添加した本発 明電池BA49~BA58では 電池の内部抵抗の上昇率が1 0%以下と極めて低い。炭酸塩 の中でも、炭酸コバルト又は炭 酸ニッケルが特に好ましいこと が分かる。

[0066]

叙上の実施例では、本発明を扁平型電池に適用する場合を例に 挙げて説明したが、本発明は電 池形状に特に制限はなく、円筒 型、角型など、他の種々の形状 の非水系一次電池又は非水系二 次電池に適用し得るものであ る。

[0067]

また、実施例では金属塩として、 コバルト塩、ニッケル塩、カリ

[0065]

Fig. 6 shows the storing characteristic of each battery at this time to the graph of the same coordinate system as Fig. 2 and 3.

As shown in said figure, in this invention batteries BA16-BA20, and BA49-BA63, the increasing rate of the internal resistance of a battery is as low as a 50% or less. On the other hand, in the comparison batteries BC1, BC5, BC15,-BC17, the increasing rate of the internal resistance of a battery is as high as 100 % or more.

This shows suppressing notably the rise of the internal resistance of the battery when storing at high temperatures for a long period of time by adding 0.1-20 mol % of carbonate to a positive electrode active material powder.

Especially by this invention batteries BA49-BA58 which added cobalt carbonate or a carbonic acid nickel, the increasing rate of the internal resistance of a battery is extremely as low as a 10% or less.

It turns out among them that cobalt carbonate or a carbonic acid nickel is especially preferable of carbonate.

[0066]

The case where this invention was applied to a flat type battery was mentioned as the example, and the above Example explained it.

However, especially limitation does not have this invention in a battery shape. It can apply to the non-aqueous primary battery or the nonaqueous secondary cell of the other various shapes, such as a cylindric type and a square shape.

[0067]

Moreover, in the Example, a cobalt salt, a nickel salt, the potassium salt, the sodium salt, the

[0068]

さらに、実施例では正極活物質 としてLiNi $_{0.5}$ С $_{0.5}$ О $_{2}$ を 用いたが、本発明で規制する他 のリチウムー遷移金属複合酸化 物を用いた場合においても、上 記実施例と同様の優れた効果が 得られる。

[0069]

なお、本発明者らは電池系内のガスの発生は主に非水電解液の分解によるものと考えたが、結着剤の分解によるガスの発生も考えられる。本発明による保存性の向上が、後者のガスも特性の向上が、本発明によるとすれば、本発明はであるとすれば、本発明はであるとすれば、本発明はであるとすれば、本発明はであるとすれば、本発明はであるとすれば、本発明はであるとすれば、本発明はであるとすれば、本発明はであるとすれば、本発明はである。

[0070]

【発明の効果】

正極活物質に特定の金属塩及び /又は金属水酸化物が添加され ているので、高温保存時に電解 magnesium salt, and the copper salt were used as a metal salt.

However, even when it uses an aluminium salt, a calcium salt, a scandium salt, a titanium salt, a vanadium salt, a chromium salt, a manganese salt, an iron salt, and a zinc salt, the non-aqueous battery excellent in the high temperature storing characteristic is obtained.

Moreover as a metal hydroxide, even when it uses sodium hydroxide and magnesium hydroxide, the non-aqueous battery excellent in the high temperature storing characteristic is obtained.

[0068]

Furthermore, in the Example, LiNi0.5Co0.5O2 was used as a positive electrode active material.

However, when the other lithium- transition metal composite oxide regulated with this invention is used, the similar superior effect as an above Example is obtained.

[0069]

In addition, the present inventors considered that generation of gas of a battery inside system was mainly based on decomposition of a nonaqueous electrolyte.

However, generation of gas by decomposition of a binder is also considered.

When the improvement in the storing characteristic by this invention is based on the latter of having suppressed generation of gas, This invention is not restricted to a liquid electrolyte battery, but is considered that application is possible by the solid electrolyte cell.

[0070]

[EFFECT OF THE INVENTION]

Since the specific metal salt and/or metal hydroxide is added to the positive electrode active material, decomposition of the electrolyte

ため、電池の内部抵抗の上昇が 小さく、保存特性に優れる。

液の分解が起こりにくい。この is made difficult at the time of storage at high temperatures.

> For this reason, a rise of the internal resistance of a battery is small and it excels in a storing characteristic.

【図面の簡単な説明】

[BRIEF EXPLANATION OF DRAWINGS]

【図1】

扁平型の本発明電池の断面図で ある。

[FIGURE 1]

It is the sectional drawing of this invention battery of a flat type.

【図2】

本発明電池及び比較電池の保存 特性(80°Cで30日間保存) を示すグラフである。

[FIGURE 2]

It is the graph which shows the storing characteristic (it will preserve for 30 days by 80 degrees C) of this invention battery and a comparison battery.

【図3】

本発明電池及び比較電池の保存 特性(80°Cで30日間保存) を示すグラフである。

[FIGURE 3]

It is the graph which shows the storing characteristic (it will preserve for 30 days by 80 degrees C) of this invention battery and a comparison battery.

【図4】

本発明電池の保存特性(80° Cで30日間保存)を示すグラ フである。

[FIGURE 4]

It is the graph which shows the storing characteristic (it will preserve for 30 days by 80 degrees C) of this invention battery.

【図5】

本発明電池及び比較電池の保存 特性(80°Cで30日間保存) を示すグラフである。

[FIGURE 5]

It is the graph which shows the storing characteristic (it will preserve for 30 days by 80 degrees C) of this invention battery and a comparison battery.

【図6】

本発明電池及び比較電池の保存 特性(80°Cで60日間保存) を示すグラフである。

[FIGURE 6]

It is the graph which shows the storing characteristic (it will preserve for 60 days by 80 degrees C) of this invention battery and a comparison battery.

【符号の説明】

B A 1 本発明電池

- 1 正極
- 2 負極

[EXPLANATION OF DRAWING]

This invention battery BA1

- Positive Electrode 1
- 2 **Negative Plate**

3 セパレータ

3 Separator

【図1】

[FIGURE 1]

【図2】

[FIGURE 2]

【図3】

[FIGURE 3]

【図4】

[FIGURE 4]

【図6】

[FIGURE 6]

【図5】

[FIGURE 5]

DERWENT TERMS AND CONDITIONS

Derwent shall not in any circumstances be liable or responsible for the completeness or accuracy of any Derwent translation and will not be liable for any direct, indirect, consequential or economic loss or loss of profit resulting directly or indirectly from the use of any translation by any customer.

Derwent Information Ltd. is part of The Thomson Corporation

Please visit our home page:

"WWW.DERWENT.CO.UK" (English)
"WWW.DERWENT.CO.JP" (Japanese)