D5: Randon Signals

In this section, we will consider the problem of detecting a random signal with known statistics. Assume that the signal of interest yields data samples with a sers-men transfer pdf that has a known corresponce. Assume that the noise is WGN with known variance or and is independent from the signal. We have (for sEn) ~ wan with voroz2): No = x En] = w En] n= 0,1,-, (~-) M1: x En] = s En]+w En] n=0,1,-,(N-1)

The NP detecter decides \mathcal{H} , if $L(x) = \frac{p(x; \mathcal{H}_0)}{p(x; \mathcal{H}_0)} > 8$. Here $x \sim \frac{2}{\sqrt{(o, o^2 I)}}$ under \mathcal{H}_0 and the \ln -likelihood is: $\sqrt{\sqrt{(o, (o_s^2 + o^2)I)}}$ under \mathcal{H}_0

 $\ell(x) = \frac{N}{2} \left(\frac{\sigma^2}{\sigma_s^2 + \sigma^2} \right) + \frac{1}{2} \frac{\sigma_s^2}{\sigma^2 (\sigma_s^2 + \sigma^2)} \sum_{n=0}^{N-1} x^2 (n)$ which leads to deciding \mathcal{H}_1 if $T(x) = \sum_{n=0}^{N-1} x^2 (n) > 8'$.

In this example, we have an energy detector. Considering $T'(x) = \frac{T(x)}{N}$ as an estimator of the variance, and noticing that 5 T(x)/02~ XN under Hs, we get (T(x)/(052+02)~ YN under H,

PFA = Pr {T(x) > 8'; Ho? = Pp { T(x) > 8'; Ho? = Qx2 (8') PD = Pr {T(x)>8'; H, } = Q x3 (\frac{8'}{\sigma_1^2 + \sigma_1}) = Q x3 (\frac{8'/\sigma^2}{\sigma_1^2 \sigma_2^2 + 1}). Note that as os/or increases, Po increases. General Now consider the case of entirting signal consider: Then $L(x) = \frac{(2\pi)^{-N/2} \det^{-1/2} (c_s + \sigma^2 I) e^{-\frac{1}{2} x^T (c_s + \sigma^2 I) x}}{(2\pi \sigma^2)^{-N/2} e^{-x^T x / (2\sigma^2)}} > r$ L (or l(x)= - 1 ln(Cs+02) + Nlno - 2 xT(Cs+02])x+1 - xTx x8 which reduces to - = xT(Cs+02I)"- = I] × >8' or equivolently T(x) = o2 x [= I - (Cs+o2I)-1] x > 28 o2. Matrix loversion benna: (A+BCD) = A-1-A-1B(DA-1B+C-1)-1DA-1. Letting A=02I, B=D=I, C=Cs, me get $\left(\sigma^{2}I+C_{S}\right)^{-1}=\frac{1}{\sigma^{2}}I-\frac{1}{\sigma^{2}}\left(\frac{1}{\sigma^{2}}I+C_{S}\right)^{-1}$ and $T(x) = x^T \left[\frac{1}{r^2} \left(\frac{1}{r^2} I + C_s^{-1} \right)^{-1} \right] \times$. Let $\hat{S} = \frac{1}{\sigma^2} \left[\frac{1}{\sigma^2} I + C_{5}^{-1} \right]^{-1} \times = \frac{1}{\sigma^2} \left[\frac{1}{\sigma^2} \left(C_5 + \sigma^2 I \right) C_5^{-1} \right] \times = C_5 \left(C_5 + \sigma^2 I \right) X$:. We decide \mathcal{H}_i if $T(x) = x T \hat{s} > \delta''$. This is an estimator-(signal estimate)

In fact, \hat{s} is the MMSE (wiener) estimate of the signal. Recall that if θ and \times are jointly Gransson with the aro-near, $\hat{\theta}_{\text{MMSE}} = C_{\text{OX}} C_{\text{XX}} \times$, where $C_{\text{OX}} = \text{El}\theta \times \text{T}$] and $C_{\text{XX}} = \text{E}[\times \times \text{T}]$. Here, we have $\theta = s$, $\times = s + w$ with s & w uncorrelated. The MMSE estimator of s is: $\hat{s}_{\text{MMSE}} = \text{E}[s(s+w)^{T}](\text{E}[s+w)(s+w)^{T}])^{T} \times = C_{s}(C_{s} + \sigma^{2}I)^{T} \times (\text{after simplifications})$,

The estimater-correlator for detection of Gaussian signal in WGN:

Ex) if the seprel is white, then $C_s = \sigma_s^2 I$ and $\hat{s} = \sigma_s^2 I \left(\sigma_s^2 I + \sigma^2 I \right)^{-1} \times = \frac{\sigma_s^2}{\sigma_s^2 + \sigma^2} \times$

 $T(x) = x^{T}\hat{s} = \frac{\sigma_{s}^{2}}{\sigma_{s}^{2} + \sigma^{2}} \times T \times > 8'' \iff x^{T} \times > 8'' (\sigma_{s}^{2} + \sigma^{2})/\sigma_{s}^{2},$ as before.

[X] Correlated signal with N=2, Cs=052 [1 1] where

I is the correlation coefficient between 5003 and 581].

 $T(x) = x^{T}C_{S}(C_{S}+\sigma^{2}I)^{-1}x$ $= x^{T}VV^{T}C_{S}VV^{T}(C_{S}+\sigma^{2}I)^{-1}VV^{T}x$ $= y^{T}(V^{T}C_{S}V)(V^{T}C_{S}V+\sigma^{2}I)^{-1}y$ $\geq back V^{T}C_{S}V = \Lambda_{S}(diagonal)$

= y + 1/s (1/s + 02 I) - 1/y = 03 (1+ P) 0

= yTAY

where
$$A = \begin{cases} \frac{\sigma_s^2(1+\rho)}{\sigma_s^2(1+\rho) + \sigma^2} & 0 \\ 0 & \frac{\sigma_s^2(1-\rho)}{\sigma_s^2(1-\rho) + \sigma^2} \end{cases}$$

In the peneral case of N samples and arbitrary C_S , if we determine $y = V^T \times s$ of that $V^T C_S V = \Lambda_S$ grading $C_S = E[yy^T] = E[V^T \times x^T V] = V^T C_X V = V^T (C_S + \sigma^2 I) V$ $= V^T C_S V + \sigma^2 I = \Lambda_S + \sigma^2 I,$

we have $T(x) = x^T C_S(C_S + \sigma^2 I)^T x = y^T \Lambda_S(\Lambda_S + \sigma^2 I)^T y$ $= \sum_{n=0}^{N-1} \frac{\lambda_{S_n}}{\lambda_{S_n} + \sigma^2} y^2 \mathcal{E}_n J.$

Cononied detector of Gravisier rondon signal in WGN:

Decorrelator
$$S_{N}$$
 S_{N} S_{N}

After the orthonormal transformation of data: y~ [N(0,1021, Ho

= Pr } \frac{\frac{1}{500}}{2500} = \frac{1}{500} = \frac{1}{5

Now, $\pi(x) = \frac{\pi}{2} \times \pi^2 \text{En}$ where $\pi(x)$ are it'd with $\pi(x) \neq 0$

Rush the characteristic gractions: $\phi_{\times}(\omega) = E[e^{j\omega_{\times}}].$

$$\phi_{T}(\omega) = E\left[e^{j\omega T}\right] = E\left[e^{j\omega}\sum_{n=0}^{N-1} a_{n}z^{2}c_{n}z\right]$$

$$= \prod_{n=0}^{N-1} E\left[e^{j\omega}a_{n}z^{2}c_{n}z\right] = \prod_{n=0}^{N-1} \phi_{z^{2}}(a_{n}\omega)$$
Then $P_{T}(t) = \begin{cases} \int_{-\infty}^{\infty} \phi_{T}(\omega)e^{-j\omega t} d\omega \\ 0 \end{cases}$, then
$$\phi_{T}(t) = \begin{cases} \int_{-\infty}^{\infty} \phi_{T}(\omega)e^{-j\omega t} d\omega \\ 0 \end{cases}$$
We have $z^{2}c_{n}z \sim x^{2}$ and $\phi_{\chi z}(\omega) = \frac{1}{\sqrt{1-z_{j}\omega}}$. Thus
$$\phi_{T}(\omega) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{1-z_{j}\omega_{n}\omega}}, \text{ where } z_{n} = \frac{\lambda_{s,n}\sigma^{2}}{\lambda_{s,n}\tau\sigma^{2}}. \text{ Are yields:}$$

$$P_{FA} = \int_{z''}^{\infty} \int_{-\infty}^{\infty} \prod_{n=0}^{N-1} \frac{1}{\sqrt{1-z_{j}\omega_{n}\omega}} e^{-j\omega t} d\omega dt,$$
and similarly $P_{D} = \int_{z''}^{\infty} \int_{-\infty}^{\infty} \prod_{n=0}^{N-1} \frac{1}{\sqrt{1-z_{j}\omega_{n}\omega}} e^{-j\omega t} d\omega dt.$

$$P_{FA} \text{ and } P_{D} \text{ could be approximated numerically using there.}$$

When the observation noise wind is Granssian, but notwhite,
the estimator-correlator is generalized as Jollows:

T(x) = x T Cm's, where 3 = Cs (Cs + Cm) x

with Co denoting the coverience matrix for noise.

Linear Model

Assure that x=HO+W where x= [xco], --, x [N-1]],
H EIRNXP is known, & NO(0, Co) and WNU(0, or I) is
independent of Q.

2 CS=HCOHT

Then $\mathcal{H}_o: \chi = \mathcal{W}$ and $S = \mathcal{H}\partial \mathcal{W}(O, \mathcal{H}G \mathcal{H}^T)$. $\mathcal{H}_i: \chi = \mathcal{H}\partial \mathcal{H}\mathcal{W}$

Thus, the estimeter-correlator decides H. . J

T(x) = xTCs (Cs +o2I) x>8"

or T(x) = xTHCoHT(HCoHT+orI).x>8"

or T(x) = xTS = xTHOMMSE

Ex Poyligh Fading Sinusord

x [n] = A cos (2Tfon+p) + w En) n=0,--, (N-1) 02/62/2

and who In was with ver or Note that

s En] = Acos(zūfon+p) = a cos(zūfon) + b sm (zūfon)

where $a = A\cos \phi$, $b = -A\sin \phi$. Let $\theta = \begin{bmatrix} 9 \\ 6 \end{bmatrix} \sim \mathcal{N}(0, \sigma_5^2 I)$,

and orsome OIL WEND. Then sENDN WSS Gaussian

Since [[sin] = Ela] cos (zijon) + E[b] sin (zijon) = 0

and E[sEn]sEntle]] = ... = os cos(z4fok) (efter some effort).

:. Iss[k]= os cos(zūfok). Here, A= Vaz+152 is Rayleph

distributed: $p(A) = \begin{cases} \frac{A}{0}e^{-A^2/(2V_s^2)}, A>0 \text{ and } \\ 0 \end{cases}$

\$= arcter(-b/e) is U[0,211) distributed. A 4 \$. This

situation is referred to as "Royleigh fealing".

The signal model is x = HO+W, where

$$H = \begin{bmatrix} \cos(2\pi f_0) & \sin(2\pi f_0) \\ \cos(2\pi f_0(N-1)) & \sin(2\pi f_0(N-1)) \end{bmatrix}, \quad \forall \sim \mathcal{N}(0, \sigma_s^2 I) \quad \exists I Lw.$$

The NP defector is T(x)=xTHCoHT(HCoHT+02I)-1x,

matrix inv. tenme $= \sigma_s^2 \times^T HH^T \left(\sigma_s^2 HH^T + \sigma^2 I \right)^T \times$ $= \sigma_s^2 \times^T HH^T \left(\frac{1}{\sigma^2} I - \frac{1}{\sigma^2} \sigma_s^2 H \left(\frac{\sigma_s^2 H^T H}{\sigma^2} + I \right)^T H^T \right) \times$ $\times \text{Note that } H^T H = \begin{bmatrix} \sum_{n=0}^{N-1} \cos^2(2\pi i f_{0n}) & \sum_{n=0}^{N-1} \cos(2\pi i f_{0n}) \sin(2\pi i f_{0n}) \\ \sum_{n=0}^{N-1} \cos(2\pi i f_{0n}) \sin(2\pi i f_{0n}) \end{bmatrix}$ $\times \sum_{n=0}^{N-1} \cos^2(2\pi i f_{0n}) \sin^2(2\pi i f_{0n})$ $\times \sum_{n=0}^{N-1} \cos^2(2\pi i f_{0n}) \cos^2(2\pi i f_{0n})$

:. $T(x) \approx \sigma_s^2 \times^T HH^T \left(\frac{1}{\sigma^2} I - \frac{\sigma_s^2}{\sigma^2} H \frac{1}{N\sigma_s^2 + 1} \right) \times$ $= \frac{\sigma_s^2}{\sigma^2} \times^T HH^T \times - \frac{(N\sigma_s^4)/(10^4)}{(N\sigma_s^2)/(10^4)} \times^T HH^T \times = \frac{c}{N} \times^T HH^T \times$ with $c = \frac{N\sigma_s^2}{(N\sigma_s^2 + \sigma^2)} > 0$. Equivalently, $T'(x) = \frac{1}{N} \times^T HH^T \times = \frac{1}{N} ||HA|_2^2$

 $T'(x) = \frac{1}{N} \left\| \left\{ \sum_{n=0}^{N-1} x \, \text{Endens} \left(\text{titifon} \right) \right\} \right\|^{2} = \frac{1}{N} \left| \sum_{n=0}^{N-1} x \, \text{Indender} \right|^{2}$ to decide H_{i} .

To determine PFA and PD, consider $C_s = H C_0 H^T = H \sigma_s^2 I H^T = \sigma_s^2 [h_0 h_i] [h_i^T] = \frac{N \sigma_s^2}{2} \frac{h_0}{\sqrt{m_2}} \frac{h_0^T}{\sqrt{m_2}} + \frac{N \sigma_s^2 h_i}{2} \frac{h_i^T}{\sqrt{m_2}}$

With $\lambda_{so} = \lambda_{s_1} = N \sigma_s^2/2$, $V_o = \frac{h_o}{\sqrt{N/2}}$, $V_i = \frac{h_i}{\sqrt{M/2}}$: Cs = > so vovot + > si vivi where vot vi & o for lape N. (vo v, = 2 E cos (rifor) son (rifor)). With this approximate ergen decomposition of Cs, $\lambda_{SZ} = -- = \lambda_{S_{N-1}} = O\left(nak(s=2)\right)$ and PFA = Pr {T'(x)>6" ; Ho}=Pr{T(x)>8"; Ho}=e===== where $\lambda_0 = \frac{\lambda_{50}\sigma^2}{\lambda_{50}+\sigma^2} = \frac{N\sigma_5^2\sigma^2/2}{N\sigma_5^2/2+\sigma^2} = \frac{c\sigma^2}{2}$. But 8'' = c8'''so PFA = e - 8" / 02 Also PD = e - 2/50 = e NOS2 (see the book for details). Defining $\bar{\eta} = N E [A^2/2]/\sigma^2 = N \sigma s^2/\sigma^2$ (energy noise rate) we can show that PD = PFA 1+9/2. Estmater-Correlator for Large Data Rewords Recoll that for zero-near WSS Gransson x En's with PSD Pxx(f), we have where I(f) = 1/ = xinJe-jzrija/2 is the perodoprom.

The NP detector desirbes H, if l(x) = l(x) + l(x) + l(x) + l(x) > 8'.

Under Ho, x En]=WE1], Pxx(t)=02 and under M1, x En]= s Cn In En], Pxx (+) = Pss (+) +02. The 1(x) = - 1/2 (Pss(+)+02) of - 2 5 (12 I(+)) of - 4 + \frac{1}{2} \int_{-1/2} \log \frac{1}{2} \log \frac{1}{ $= -\frac{N}{2} \int_{-1/2}^{1/2} \left(\frac{P_{1S}(f)}{\sigma^{2}} + 1 \right) df + \frac{N}{2} \int_{-1/2}^{1/2} \frac{P_{SS}(f)}{P_{SS}(f) + \sigma^{2}} df$:. We decide H, if T(x) = N (2 Pss(4)) I(f) of >8". Note that $M(f) = \frac{Pss(f)}{Pss(f)+o^2}$ is the VWI ener foller for an nonconsel IIR our sopral model. Herce T(x) = \int \(\(\(\) = \(\langle \text{X(t)} \hat{S}*(t) \, \text{ol} \) = \(\times \text{X,5} \) in \(f \text{-domain.} \)

estimated signal.

General Gransson Detection

for A.: X=W where waw(O,Cw) and sllw, the A.: X=Stw Saw (ys,Cs) NP descript used decide \mathcal{H}_{i} if $\frac{P(x, \mathcal{H}_{i})}{P(x, \mathcal{H}_{o})} > \delta$, or (officialism) T(x) = x T Cw x - (x-Ms) T (Cs+Cw) - (x-Ms) > 8' from the matrix processor lenne

 $C_{\mathbf{w}}' - (C_S + C_{\mathbf{w}})' = C_{\mathbf{w}}' C_S (C_S + C_{\mathbf{w}})^{-1}, so$ $T'(x) = x^T (C_S + C_{\mathbf{w}})^{-1} M_S + \frac{1}{2} x^T C_{\mathbf{w}}' C_S (C_S + C_{\mathbf{w}})' \times .$

Special cases: $C_s = O\left(s = \mu_s \text{ deterministic}\right) \Rightarrow T'(x) = x^T C_m \mu_s$ $\mu_s = O\left(s \sim \mathcal{N}(o, c_s)\right) \Rightarrow T'(x) = \frac{1}{2} x^T C_m s$,

where $\hat{s} = C_s(C_s + C_w)^T x$ is the must estimator.

Ex] Assume $\mathcal{H}_0: \times [n] : w [n]$ where $w [n] \sim w G v$ and $\mathcal{H}_1: \times [n] : s [n] + w [n]$ where $w [n] \sim w (A, \sigma_s^2)$ $w \mathcal{H}_1: \times [n] : s [n] + w [n]$. Then, $C_w = \sigma^2 I$, $\mathcal{H}_s = A I$, $C_s = \sigma_s^2 I$; so

 $T'(x) = xT(\sigma_{s}^{2}I + \sigma^{2}I)^{-1}A1 + \frac{1}{2}xT - \frac{1}{\sigma^{2}}I\sigma_{s}^{2}I(\sigma_{s}^{2}I + \sigma^{2}I)x$ $= \frac{NA}{\sigma_{s}^{2} + \sigma^{2}} \times + \frac{1}{2} \frac{\sigma_{s}^{2}/\sigma^{2}}{\sigma_{s}^{2} + \sigma^{2}} \sum_{n=0}^{N/2} x^{2} [n]$

For the Boylsian linear model in which s=HO, DNN (40,6), and GILW, we have Ms=Hylo and Cs=HCOHT:

71(x)=xT(HCOHT+CW)-1HMg+=xTCW1HCOHT(HCOHT+CW)-x

Suggested Problems: 2, 5, 11, 24 (check out sec 5-7 first)...