The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Test 1 2020/21 Semester 2

Ouestion 1.

(60 marks) Let $f(x) = 2e^{2x} - e^x$, $-\infty < x < \infty$

- (a) Find all critical points and inflection points.
- (b) Find all local (i.e., relative) and global (i.e., absolute) maximum and minimum, if any.
- (c) Find all intervals where the function is increasing, decreasing, concave-up (i.e., convex) or concave-down (i.e., concave).
- (d) Find all asymptotes.
- (e) Sketch the curve of the function f(x).

My work:

(a)
$$f'(x) = 4e^{2x} - e^x = 0 \iff x = -\ln 4$$

The critical point of f is: $x = -\ln 4$

$$f''(x) = 8e^{2x} - e^x = 0 \iff x = -\ln 8$$

x	$(-\infty, -\ln 8)$	- ln8	$(-\ln 8, -\ln 4)$	-ln4	$(-\ln 4, -\ln 2)$	-ln2	$(-\ln 2, +\infty)$
f	\	$-\frac{3}{32}$	<u></u>	$-\frac{1}{8}$)	0	<i>I</i>
f'	_	_	_	0	+	+	+
f"	_	0	+	+	+	+	+

Change of convexity / concavity occurs at $x = -\ln 8$

The inflection point of f is: $x = -\ln 8$

x-intercept:
$$f(x) = 2e^{2x} - e^x = 0 \iff x = -\ln 2$$

(b) f attains local minimum at $x = -\ln 4$ and $f(-1) = -\frac{1}{8}$

f has no local maximum

Since $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to +\infty} f(x) = +\infty$, f has no global maximum and

f attains global minimum at $x = -\ln 4$ with value $-\frac{1}{8}$.

(c) The interval where f is increasing is: $[-\ln 4, +\infty)$

The interval where f is decreasing is: $(-\infty, -\ln 4]$

The interval where f is convex is: $[-\ln 8, +\infty)$ The interval where f is concave is: $(-\infty, -\ln 8]$

(d)
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{2e^{2x} - e^x}{x} = 0$$
, and $\lim_{x \to -\infty} f(x) = 0$
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2e^{2x} - e^x}{x} = \lim_{x \to +\infty} (4e^{2x} - e^x) = +\infty$$

 \Rightarrow y = 0 is a horizontal asymptote of y = f(x), and f has no inclined asymptotes. f is continuous on $(-\infty, +\infty)$ \Rightarrow f has no vertical asymptotes.

(e) y-intercept:
$$f(0) = 2 - 1 = 1$$

x-intercepts: $f(x) = 2e^{2x} - e^x = 0 \iff x = -\ln 2$ (see part (a))

Question 2.

(20 marks) Find the dimensions of the isosceles triangle of largest area that can be inscribed in a circle of radius r. Please specify the lengths of all the three sides.

My work:

Let x be the distance (taking downward positive) from the center of the inscribed circle to the base along the height of the isosceles triangle. Thus, $0 \le x < r$ (or -r < x < r). Base length of the isosceles triangle = $2\sqrt{r^2 - x^2}$

Area of the isosceles triangle = $\frac{1}{2}(r+x) \cdot 2\sqrt{r^2-x^2} = (r+x)^{3/2}(r-x)^{1/2} =: A(x)$

$$A'(x) = (r - 2x) \sqrt{\frac{r + x}{r - x}} = 0 \iff x = \frac{r}{2} \text{ (since } x \neq -r)$$

$$x \quad \begin{bmatrix} 0, \frac{r}{2} \\ \frac{r}{2} \end{bmatrix} & \frac{r}{2} \\ \frac{r}{2} \end{bmatrix} & \frac{r}{2} \\ A(x) \quad \nearrow \quad \frac{\sqrt{3}r^2}{2} \\ A'(x) \quad + \quad 0 \quad -$$

$$\begin{bmatrix} x & (-r, \frac{r}{2}) & \frac{r}{2} & (\frac{r}{2}, r) \\ A(x) & \nearrow & \frac{\sqrt{3}r^2}{2} \\ A'(x) & + & 0 & - \end{bmatrix}$$

Thus, the area A(x) attains global maximum at $x = \frac{r}{2}$, with the corresponding base length

=
$$2\sqrt{r^2 - \left(\frac{r}{2}\right)^2} = \sqrt{3}r$$
, and the length of the equal $\log = \sqrt{(r + \frac{r}{2})^2 + \left(\frac{\sqrt{3}r}{2}\right)^2} = \sqrt{3}r$.

Ouestion 3.

(20 marks) Let $f(x) = x^2 + |x - 1|$. Can you find a real constant c such that f(2) - f(0) = 2f'(c), and why?

My work:

$$f(2) = 5, \ f(0) = 1, \ \frac{f(2) - f(0)}{2 - 0} = 2. \ f'(x) = \begin{cases} 2x - 1, & \text{if } x < 1 \\ 2x + 1, & \text{if } x > 1 \end{cases}$$

$$f'(1) = \lim_{x \to 1^{-}} (x + 1) + \frac{|x - 1|}{x - 1} = 1, \ f'(1) = \lim_{x \to 1^{+}} (x + 1) + \frac{|x - 1|}{x - 1} = 3$$

$$\therefore f'(1) \neq f'(1) \implies f'(1) \text{ does not exist.}$$

Now assume $\exists c$ such that $f(2) - f(0) = 2f'(c) \Leftrightarrow f'(c) = 2$. First, $c \ne 1$ since f'(1) does not exist. If c < 1, then $f'(c) = 2c - 1 = 2 \Rightarrow c = \frac{3}{2} > 1$, which is a contradiction. If c > 1, then $f'(c) = 2c + 1 = 2 \Rightarrow c = \frac{1}{2} < 1$, which is a contradiction again. Such c cannot exist.