Estadística

Facultad de Ingeniería – Maestría en Explotación de Datos y Gestión del Conocimiento Universidad Austral

Variables Aleatorias

Ejercicio nº 1

Sea la variable aleatoria X, con la siguiente distribución de probabilidades:

x	0	1	2	3	4	5
P[X = x]	2/15	1/3	0	1/5	1/15	4/15

Se pide,

- a) Graficar la función de probabilidad y la de distribución.
- b) Hallar
- 1. P[X > 2]
- 2. $P[X \ge 2]$
- 3. $P[X \le 1]$
- 4. P[X < 1]
- 5. F[X = 1]
- 6. $P[3 \le X \le 4]$

Ejercicio nº 2

Sea la variable aleatoria X, con la siguiente distribución de probabilidades:

x	0	2	5	6	10
P[X = x]	1/30	3/30	12/30	8/30	6/30

Definir la variable aleatoria Z y calcular su Esperanza Matemática y Desvío estándar, si Z=2X-20.

Ejercicio nº 3

Supongamos que X, Y y W son variables aleatorias independientes, siendo:

$$E(X) = 2$$
, $E(Y) = 4$, $E(W) = 1$, $Var(X) = 2$, $Var(Y) = 2$, $Var(W) = 1$.

Hallar,

- a) E(X + Y + W)
- b) E(2X)
- c) E(3X + Y)
- d) E[W(X+Y)]
- e) Var(X + Y + W)
- f) Var(2X)
- g) Var(3X Y)
- h) ¿Cuál de los valores calculados no podría haberse hallado sin suponer que las tres variables son independientes?

Facultad de Ingeniería – Maestría en Explotación de Datos y Gestión del Conocimiento Universidad Austral

Ejercicio nº 4

El 10% de las piezas que produce una máquina son defectuosas. Si se toma al azar una muestra de 20 piezas.

- a) ¿Cuál es la probabilidad de que contenga 3 piezas defectuosas como máximo?
- b) ¿Cuál es la probabilidad de que contenga 3 piezas defectuosas como mínimo?
- c) ¿Cuál es la probabilidad de que se den los dos sucesos descriptos anteriormente?

Ejercicio nº 5

El 15% de los operarios de una fábrica no tienen hijos a cargo, el 28% tiene solamente uno a cargo, el 41% posee 2 hijos, el 13% tiene 3 hijos y el resto tiene 4 hijos. Se sabe que, a fin de año, se abona un adicional cuyo monto se fija de la siguiente forma,

- i. \$200 para los operarios que no tienen hijos a cargo
- ii. \$250 para los operarios con hijos a cargo que poseen menos de 3 hijos;
- iii. \$400 para el resto de los operarios.
- a) Calcular el valor esperado y el desvío estándar de la variable aleatoria definida como "cantidad de hijos a cargo de un operario".
- b) Si en la fábrica trabajan 1.000 operarios, ¿Cuánto se espera tener que abonar en total este fin de año en concepto de adicionales?

Ejercicio nº 6

El 34% de los vendedores de un comercio están casados, se toma una muestra al azar de 15 de ellos y se desea conocer las siguientes probabilidades de encontrar:

- a) Exactamente 7 vendedores casados
- b) A lo sumo 3 vendedores casados
- c) Menos de 5 vendedores casados
- d) Como mínimo 8 vendedores casados
- e) Más de 10 vendedores casados
- f) Entre 4 y 9 vendedores casados
- g) Por lo menos un vendedor casado
- h) Como máximo 6 vendedores no casados
- ¿Cuántos vendedores casados se espera encontrar? (Calcular la varianza y el desvío estándar correspondiente)

Facultad de Ingeniería – Maestría en Explotación de Datos y Gestión del Conocimiento Universidad Austral

Ejercicio nº 7

Un curso de Estadística de la Universidad de Buenos Aires posee 10 alumnos, de los cuales 4 son mujeres y el resto hombres. Se eligieron al azar 7 estudiantes del curso para tomarles un examen. Hallar la probabilidad de que, entre los alumnos seleccionados, haya tres mujeres.

Ejercicio nº 8

El retorno diario de cierto activo financiero sigue una distribución normal, con una media de 0,60% y un desvío típico de 0,15%.

- a) ¿Cuál es la probabilidad de que, en un día cualquiera, este activo haya brindado un retorno entre el 0,42% y el 0,90%, si se sabe que fue superior al 0,51%?
- b) ¿Cuál es el retorno diario que no es superado el 1% de las veces?
- c) Un inversor piensa comprar acciones de este activo y venderlas 15 ruedas más tarde (es decir, 15 días hábiles posteriores) y desea saber la probabilidad de que en más de dos ruedas, la rentabilidad diaria sea por lo menos del 0,75%

Ejercicio nº 9

El peso de los paquetes de harina marca A, que se envasan automáticamente, tienen distribución normal con un promedio de 500 gramos. Se sabe que el 32% de los paquetes pesa como mínimo 513 gramos, contestar:

- a) ¿Cuánto vale el desvío estándar?
- b) Se elige al azar un paquete y se comprueba que su peso es inferior al peso promedio, ¿Cuál es la probabilidad de que pese por lo menos 475 gramos?
- c) Se vende un lote de 15 paquetes de harina, ¿Cuál es la probabilidad de que a lo sumo las dos quintas partes de los paquetes del lote pesen menos de 493 gramos?

Ejercicio nº 10

Una fábrica de cartuchos de tinta para impresora comercializa su producción en cajas que contienen 12 unidades. En base a información histórica de la empresa, se sabe que el 7% resultan defectuosos y que la ganancia obtenida por cada caja se encuentra en función de la cantidad de unidades defectuosas según el siguiente esquema,

- Si la caja no contiene ningún cartucho defectuoso, la ganancia es de \$2,50.
- Si la caja contiene uno o dos cartuchos defectuosos, la ganancia es de \$1,80.
- Si la caja contiene tres o cuatro cartuchos defectuosos, la ganancia es de \$1,20.

Estadística

Facultad de Ingeniería – Maestría en Explotación de Datos y Gestión del Conocimiento Universidad Austral

- Si la caja contiene más de 4 cartuchos defectuosos es devuelta y origina una pérdida de \$2,40.
- a) Calcular la ganancia que se espera obtener por la venta de 200 cajas.
- b) ¿Cuál es la probabilidad de que una caja produzca como mínimo \$1,50 de ganancia?
- c) Se vendieron 4 cajas, ¿Cuál es la probabilidad de obtener una ganancia total de \$10 por dicha venta?