MSc Project Title: Simulation of Brain Functional Connectivity on Empirical and Randomized Complex Networks

Şeyma Bayrak

Supervisors: P. Hövel, V. Vuksanovic

Resting state

BOLD-fMRI & DW-MRI

Purpose:

Resting state networks

• Storti et al. (2013)

[Vuksanovic and Hoevel, 2013]

FitzHugh-Nagumo Model

Local Dynamics

$$\dot{x} = \tau \left(x + \gamma u - \frac{x^3}{3} \right)$$

$$\dot{y} = -\frac{1}{\tau}(y - \alpha + bx)$$

FHN - Local Dynamics : α = 0.85 γ = 1.0 b = 0.2 τ = 1.25

FitzHugh-Nagumo Model

Global Dynamics

$$\dot{x}_i = \tau \left(y_i + \gamma x_i - \frac{x_i^3}{3} \right) - c \sum_{j=1}^N a_{ij} x_j (t - \Delta t_{ij}) + n_x$$
$$\dot{y}_i = -\frac{1}{\tau} (x_i - \alpha + b y_i - I) + n_y$$

FHN - time series : α = 0.85 γ = 1.0 b = 0.2 τ = 1.25 C = 0.9 $\Delta au_{ij} = d_{ij}/v$

FitzHugh Nagumo Model

Time-series

$$\dot{x}_i = \tau \left(y_i + +\gamma x_i - \frac{x_i^3}{3} \right) - c \sum_{j=1}^N a_{ij} x_j (t - \Delta t_{ij}) + n_x$$
$$\dot{y}_i = -\frac{1}{\tau} (x_i - \alpha + b y_i - I) + n_y$$

FHN - time series : α = 0.85 γ = 1.0 b = 0.2 au = 1.25 C = 0.9 $\Delta au_{ij} = d_{ij}/v$

Adjacency Matrix

How to generate randomized network?

* Erdos-Renyi graph (N, L)

* swapping double edges

* degree sequence preserved graph

* degree distribution preserved graph

* partially randomized graph

Tools: networkx and BCT

Network Measures

FUTURE DIRECTION

- * Simulate neuronal and BOLD signal on randomized networks
- * Compare simulations and experimental data
- * Parameter Analysis

Questions?