Examen d'Analyse I - Durée: 2h (2h40 pour les tiers-temps).

Les calculatrices, les téléphones portables et les documents sont interdits.

(Barême donné à titre indicatif.)

Exercice 1 (4 points)

On rappelle que $\sum f_n$ converge normalement sur $D \subseteq \mathbb{R}$ si et seulement si $\sum ||f_n||_{\infty}$ converge où $||\cdot||_{\infty}$ est définie pour tout $f: \mathbb{R} \to \mathbb{R}$ par $||f||_{\infty} = \sup_{x \in D} |f(x)|$.

1. Montrer que si $\sum f_n$ converge normalement sur D alors $\sum f_n$ converge simplement sur D. On note $S: \mathbb{R} \to \mathbb{R}$ la limite simple.

 $\forall x \in D$, on a $|f_n(x)| \leq ||f_n||_{\infty}$. Donc d'après le théorème de comparaison pour les séries positives, $\sum |f_n(x)|$ converge absolument pour tout $x \in D$. On en déduit que $\sum f_n$ converge simplement sur D. On note S sa somme.

2. Montrer que si $\sum f_n$ converge normalement sur D alors $\sum f_n$ converge uniformément vers S sur D.

On pose $S_n(x) = \sum_{k=0}^{+\infty} f_n(x)$. Pour tout $x \in D$:

$$|S(x) - S_n(x)| = |\sum_{k=n+1}^{+\infty} f_n(x)|$$
 (1)

$$\leq \sum_{k=n+1}^{+\infty} |f_n(x)|(\operatorname{car} \sum f_n \text{ converge})$$
(2)

$$\leq \sum_{k=n+1}^{+\infty} ||f_n||_{\infty}. \text{(théorème de comparaison)}$$
(3)

On en déduit que $||S-S_n||_{\infty} \leq \sum_{k=n+1}^{+\infty} ||f_n||_{\infty}$. Or $\lim_{n\to+\infty} \sum_{k=n+1}^{+\infty} ||f_n||_{\infty} = 0$ puisque $\sum ||f_n||_{\infty}$ converge. Donc (S_n) converge uniformément vers S. On en déduit que $\sum f_n$ converge uniformément vers S.

Exercice 2 (8 points)

Soit α un nombre réel. Pour tout $n \in \mathbb{N}^*$, on définit $f_n : \mathbb{R} \to \mathbb{R}$ par :

$$f_n(x) = \frac{xe^{-nx^2}}{n^{\alpha}}.$$

- I / On considère la suite de fonctions $(f_n)_{n\geq 1}$.
 - 1. Déterminer le domaine de convergence simple D_1 et la limite simple de la suite de fonctions $(f_n)_{n>1}$.

Pour tout α et tout $x \neq 0$, la suite $(f_n(x))$ converge vers 0 par croissances comparées. De plus $f_n(0) = 0$. On en déduit que (f_n) converge simplement vers 0 sur $D_1 = \mathbb{R}$.

2. Déterminer les valeurs de α pour lesquelles la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur D_1 .

On a
$$f'_n(x) = \frac{e^{-nx^2}}{n^{\alpha}}(1 - 2nx^2)$$
. Donc $f'_n(x) = 0 \leftrightarrow x = \frac{1}{\sqrt{2n}}$. Et $f_n(\frac{1}{\sqrt{2n}}) = \frac{e^{-1/2}}{\sqrt{2}n^{\alpha+1/2}}$. Donc (f_n) CVU vers 0 sur \mathbb{R} si et seulement si $\alpha > -1/2$.

- II / On considère la série de fonctions $\sum f_n$.
 - 1. Déterminer le domaine de convergence simple D_2 de la série de fonctions $\sum f_n$. On utilise la règle de d'Alembert. $\lim_{n\to +\infty} \frac{f_{n+1}(x)}{f_n(x)} = e^{-x^2}$. Or $e^{-x^2} < 0$ pour tout $x\neq 0$. Donc $\sum f_n$ CVS sur \mathbb{R}^* . De plus, $\sum f_n(0) = 0$, donc $\sum f_n$ converge simplement sur $D_2 = \mathbb{R}$.
 - 2. Déterminer les valeurs de α pour les quelles la série de fonctions $\sum f_n$ converge normalement sur D_2 .

On a déjà vu que $||f_n||_{\infty} = \frac{e^{-1/2}}{\sqrt{2}n^{\alpha+1/2}}$. Donc $\sum ||f_n||_{\infty}$ a la même nature que les séries de Riemann : elle converge si et seulement si $\alpha+1/2>1$, i.e. $\alpha>1/2$.

III/ 1. Montrer que $\forall \alpha > 1$, la série de fonctions $\sum f_n$ converge et sa somme $S(x) = \sum_{k=1}^{+\infty} f_k(x)$ est dérivable sur D_1 .

D'après la question précédente, pour $\alpha > 1$, $\sum f_n$ converge normalement et converge donc aussi sur D_2 .

Pour la dérivabilité de la somme, il faut étudier la convergence uniforme de la série $\sum f_n' \text{ (cf. poly)}. \text{ On a } f_n''(x) = \frac{2x \cdot e^{-nx^2}}{n^{\alpha-1}} (-3 + 2nx^2). \text{ Donc } f_n'' \text{ s'annule en } \pm \sqrt{\frac{3}{2n}}.$ Et $|f_n'(\pm \sqrt{\frac{3}{2n}})| = \frac{2e^{-3/2}}{n^{\alpha}}.$ Donc $\sum f_n' \text{ converge normalement si et seulement si } \alpha > 1.$ Pour $\alpha > 1$, la somme est donc dérivable est $S' = \sum_{k=0}^{+\infty} f_n'.$

2. On suppose que $\alpha = 1$. A l'aide des développements en série entière usuels, calculer la somme S de la série. La fonction S est-elle dérivable sur D_1 ? (Indication : pensez à poser un changement de variable.)

On pose $\tilde{S}(X) = \sum_{k=0}^{+\infty} \frac{X^n}{n}$. Avec ces notations $S(x) = x\tilde{S}(e^{-x^2})$. Or pour tout $X \in [-1,1[,\sum_{k=0}^{+\infty} \frac{X^n}{n} = -ln(1-X)$. Et $e^{-x^2} \in [-1,1[,\forall x \in \mathbb{R}^*]$. Donc $S(x) = -xln(1-e^{-x^2})$ pour tout $x \in \mathbb{R}^*$. De plus on a $\lim_{x\to 0} -xln(1-e^{-x^2}) = 0$. Donc on peut prolonger $-xln(1-e^{-x^2})$ par continuité en 0.

2

Pour la dérivabilité de S seul le point x=0 pose problème. On a $\lim_{x\to 0} \frac{-x\ln(1-e^{-x^2})-0}{x} = +\infty$, donc la somme n'est pas dérivable en 0.

Exercice 3 (4 points)

Soient $\sum e^n z^n$ et $\sum \frac{z^n}{n^{\alpha}}$ deux séries entières.

1. Déterminer le rayon de convergence et le domaine de convergence simple de ces deux séries pour $z \in \mathbb{R}$.

Pour les deux séries on peut utiliser le critère de d'Alembert. On trouve que $\sum e^n z^n$ a pour rayon 1/e et $\sum \frac{z^n}{n^{\alpha}}$ a pour rayon 1 pour tout $\alpha \in \mathbb{R}$.

- Pour $z = \pm 1/e$, $\sum e^n z^n = \sum (\pm 1)^n$ qui diverge. donc le domaine de convergence simple de $\sum e^n z^n$ est]-1/e,1/e[.
- Pour $z=1, \sum \frac{z^n}{n^{\alpha}}$ converge si et seulement si $\alpha>1$. Dans ce cas, D=[-1,1]. Pour $\alpha\in]0,1[$, et $z=-1,\sum \frac{z^n}{n^{\alpha}}$ est une série alternée décroissante, donc D=[-1,1[. Pour $\alpha\leq 0,\,D=]-1,1[$.
- 2. Déterminer le rayon de convergence et le domaine de convergence simple de ces deux séries pour $z \in \mathbb{C}$.

Le rayon de convergence ne change pas dans le corps des complexes. Par contre les domaines sont plus complexes...

- Pour $\sum e^n z^n$... Le domaine contient la boule ouverte de centre 0 et de rayon 1/e. Si $z = \frac{e^{i\theta}}{e}$, alors on s'intéresse à la convergence de $\sum e^{in\theta}$. Clairement cette série complexe ne converge pas. Donc le domaine de convergence est la boule complexe ouverte de centre 0 et de rayon 1/e.
- Pour $\sum \frac{z^n}{n^{\alpha}}$... Là c'est bien plus compliqué, mais on l'a déjà fait en cours. On s'intéresse à la convergence de la série pour $z=e^{\mathbf{i}\theta}$ avec $\theta\in[0,2\pi[$. On considère donc $\sum \frac{e^{\mathbf{i}n\theta}}{n^{\alpha}}$. On pose $a_n=\frac{1}{n^{\alpha}}$ et $b_n=e^{\mathbf{i}n\theta}$. On utilise la transformation d'Abel. La somme partielle de $\sum_{n\geq 1}b_n$ est $B_n=e^{\mathbf{i}\theta}\frac{1-e^{\mathbf{i}n\theta}}{1-e^{\mathbf{i}\theta}}$ pour $\theta\neq 0$. Donc (B_n) est bornée pour tout $\theta\neq 0$.

Clairement pour $\alpha \leq 0$, la série ne converge pas puisque son terme général ne tend pas vers 0. Pour $\alpha > 0$, (a_n) est positive et décroît vers 0 donc $\sum a_n b_n$ converge d'après la règle d'Abel. Conclusion : pour $\alpha > 0$, le domaine de convergence est la boule complexe fermée de centre 0 et de rayon 1 privée du point 1. Pour $\alpha \leq 0$, le domaine de convergence est la boule ouverte de centre 0 et de rayon 1.

Exercice 4 (4 points)

Soit E l'espace vectoriel des suite réelles convergentes vers 0. On munit cet espace de la norme

$$||u|| = \sum_{i=1}^{+\infty} 2^{-i} |u_i| \text{ pour } u = (u_1, u_2, ...) \in E.$$

1. Montrer que $||\cdot||$ définit bien une norme sur E.

 $||\cdot||$ est bien définie sur E car comme $u_n \to 0$, (u_n) est bornée. Donc $|u_n| \le M \ \forall n \in \mathbb{N}$. Et donc $||u|| \le \sum_{i=1}^{+\infty} \frac{M}{2^i}$ qui converge.

Ensuite les 3 axiomes de la norme sont très simples à vérifier.

• $||u|| = 0 \leftrightarrow u = 0$ (évident).

- Homogénéité évidente.
- Soient u et v deux éléments de E. On a $\sum_{i=1}^{+\infty} \frac{|u_i+v_i|}{2^i} \leq \sum_{i=1}^{+\infty} \frac{|v_i|}{2^i} + \sum_{i=1}^{+\infty} \frac{|u_i|}{2^i}$ d'après le théorème de comparaison des séries à termes positifs.
- 2. Montrer que $(E, ||\cdot||)$ n'est pas un Banach, c'est-à-dire que toutes ses suites de Cauchy ne convergent pas. On pourra étudier la suite (u_n) de terme général $u_n = (\underbrace{1,1,...,1}, 0,0,0,...)$. n premiers termes

 (u_n) est bien de Cauchy dans $(E, ||\cdot||)$. En effet :

$$||u_{n+p} - u_n|| = \sum_{i=n+1}^{n+p} \frac{1}{2^i}$$
 (4)

$$= \frac{1}{2^{n}} (1 - \frac{1}{2^{p}})$$

$$\leq \frac{1}{2^{n}}.$$
(5)

$$\leq \frac{1}{2^n}.\tag{6}$$

Donc $\lim_{n\to+\infty} ||u_{n+p}-u_n||=0$. (u_n) est donc bien de Cauchy. Sa limite, si elle existe est forcément la suite u = (1, 1, 1, 1, ...). En effet si ce n'était pas le cas, on ne pourrait pas avoir $\lim_{n\to+\infty} ||u-u_n|| = 0$ (d'après le premier axiome). Or la suite (1,1,1,1,...)n'appartient pas à E, donc (u_n) ne converge pas sur $(E, ||\cdot||)$. On conclut que $(E, ||\cdot||)$ n'est pas un Banach.

Exercice 5 (Hors barême - Lemme d'Hadamard)

Soit $\sum a_n z^n$ une série entière.

1. Montrer que son rayon de convergence vaut $\frac{1}{\limsup \sqrt[n]{a_n}}$, où $\limsup a_n = \lim_{n \to +\infty} \sup_{k > n} a_k$. Par exemple $\limsup (-1)^n = 1$.

Pour cette preuve je vous renvois par exemple à

http://ljk.imag.fr/membres/Bernard.Ycart/MC2/node39.html cours en ligne où la demonstration apparait.

2. Application : donner le rayon de convergence de la série entière $\sum e^{\sqrt{n}}z^{2n}$.

Bien sûr, l'idée était d'appliquer le théorème précédent et j'enleverai une partie des points si ce n'est pas le cas. On se rend compte que dans ce cas :

$$a_k = \begin{cases} 0 & \text{si } k = 2n + 1\\ e^{\sqrt{n}} \text{si } k = 2n \end{cases}$$

Donc $\limsup_{n\to+\infty} (a_n)^{1/n} = \lim_{n\to+\infty} e^{\sqrt{n}/n} = 1$. Donc R=1. On voit que le lemme de Hadamard permet de simplifier certaines situations...