The Seo-Yee conjecture

Nonmodular infinite products, seaweed algebras, and integer partitions

Shane Chern

陈小航

Universität Wien (维也纳大学) chenxiaohang92@gmail.com

Seminar on Discrete Mathematics

© Xiamen University

Xiamen

Jul 22, 2024

Leibniz–Bernoulli Correspondence — "Divulsions" of integers?

How many representations are there to write a natural number n as a sum of positive integers if the order of the summands is not taken into account?

LEIBNITII AD BERNOULLIUM.

An unquam confiderafti numerum discerptionum vel divulsionum numeri dati, quot scilicet modis possit divelli in partes duas, tres, &c. Videtur mihi ejus determinatio non facilis, & tamen digna quæ habeatur. Dabam Hanovera 28. Julii 1699.

> Deditiffimus G. G. LEIRNITIUS.

Integer partition — A non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell$ with $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$, a given natural number.

- λ_i : Parts in the partition;
- n: Size of the partition;
- ℓ : Length of the partition;
- p(n): Number of partitions of n (\bowtie partition function)

n	p(n)	partitions of <i>n</i>
0	1	Ø
1	1	1
2	2	2, 1+1
3	3	3, 2+1, 1+1+1
4	5	4, 3+1, 2+2, 2+1+1, 1+1+1+1
5	7	5, 4+1, 3+2, 3+1+1, 2+2+1,
		2+1+1+1, $1+1+1+1+1$

3/39

Generating function (Euler's Introductio in Analysin Infinitorum)

$$\begin{split} \sum_{n\geq 0} p(n)q^n &= (q^{0\cdot 1} + q^{1\cdot 1} + q^{2\cdot 1} + q^{3\cdot 1} + \cdots) \\ &\times (q^{0\cdot 2} + q^{1\cdot 2} + q^{2\cdot 2} + q^{3\cdot 2} + \cdots) \\ &\times (q^{0\cdot 3} + q^{1\cdot 3} + q^{2\cdot 3} + q^{3\cdot 3} + \cdots) \\ &\times \cdots \\ &= \prod_{k\geq 1} (1 + q^k + q^{2k} + q^{3k} + \cdots) \\ &= \prod_{k>1} \frac{1}{1 - q^k} = \frac{1}{(q;q)_{\infty}}. \end{split}$$

***q*-Pochhammer symbol**
$$(A; q)_n = \prod_{k=0}^{n-1} (1 - Aq^k)$$

Example (frequency notation). The partition 3+3+1+1+1 of 9 corresponds to

Dedekind eta function

$$\eta(au) = q^{1/24}(q;q)_{\infty}$$

with $q = e^{2\pi i \tau}$ where $\tau \in \mathbb{H}$.

4/39

Euler's Pentagonal Number Theorem

$$\prod_{k\geq 1} (1-q^k) = 1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + \dots = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2}.$$

Recall that

$$\prod_{k\geq 1} \frac{1}{1-q^k} = \sum_{n\geq 0} p(n)q^n.$$

Hence,

$$(1-q-q^2+q^5+q^7-q^{12}-q^{15}+\cdots)\sum_{n\geq 0}p(n)q^n=1.$$

Equivalently,

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - \cdots$$

S. Chern (Wien) Integer Partitions Jul 22, 2024

TABLE IV *: p(n).

					1 , ,		
1	1	51	239943	101	214481126	151	4506062458
2	2	52	281589	102	241265379	152	4968628842
3	3	53	329931	103	271248950	153	5477033632
4	5	54	386155	104	304801365	154	6035667328
5	7	55	451276	105	342325709	155	6649318209
6	11	56	526823	106	384276336	156	7323224375
7	15	57	614154	107	431149389	157	
8	22	58	715220	108	483502844	158	8875177880
9	30	59	831820	109	541946240	159	9766272855
0	42	60	966467	110	607163746	160	10743815946
1	56	61	1121505	111	679903203		11815906842
2	77	62	1300156	112	761002156		12991390463
3	101	63	1505499	113	851376628	163	142798995930
4	135	64	1741630		952050665		15691947529
5	176	65	2012558	115	1064144451	165	17238980025
6	231	66	2323520		1188908248	166	189334822579
7	297	67	2679689		1327710076		20789042010
8	385	68	3087735		1482074143		22820473275
9	490	69	3554345		1653668665	169	250438925114
0	627	70	4087968		1844349560		274768617130
1	792	71	4697205		2056148051	171	301384802048
2	1002	72	5392783		2291320912	172	33049549961;
3	1255	73	6185689		2552338241	173	362326859898
4	1575	74	7089500	124	2841940500	174	397125074750
5	1958	75	8118264		3163127352		435157697830
6	2436	76	9289091	126	3519222692	176	476715857290
7	3010	77	10619863	127	3913864295	177	522115831193
8	3718	78	12132164	128	4351078600	178	571701605655
9	4565	79	13848650	129	4835271870		625846753120
0	5604	80	15796476	130	5371315400	180	684957390936
1	6842	81	18004327	131	5964539504	181	749474411781
	8349	82	20506255	132	6620830889		819876908323
	10143	83	23338469	133	7346629512	183	896684817527
	12310		26543660		8149040695		980462880430
	14883		30167357	135	9035836076		071823774337
6	17977	86	34262962		0015581680		171432692378
7	21637	87	38887673	1371	1097645016		280011042268
8	26015	88	44108109	1381	2292341831		398341745571
9	31185	89	49995925		3610949895		527273599623
	37338	90	56634173	1401	5065878135		667727404093
	44583	91	64112359		6670689208		820701100652
2	53174		72533807	1421	8440293320		987276856363
3	63261	93	82010177		0390982757		168627105469
ŧ	75175	94	92669720		2540654445		366022741845
5	89134	951	04651419		4908858009		580840212973
	05558		18114304		7517052599		814570987591
	24754		33230930		0388671978		068829878530
	47273		50198136		3549419497		345365983698
)l	73525	991	69229875	1493	7027355200	1993	646072432125

150...40853235313

MacMahon's Table (in 1910s)

$$p(200) = 3,972,999,029,388$$

Theorem (Hardy–Ramanujan, 1918)

As
$$n \to \infty$$
.

$$p(n) \sim \frac{1}{4\sqrt{3}} n^{-1} e^{\frac{2\pi\sqrt{n}}{\sqrt{6}}}.$$

200...3972999029388

The Man Who Knew Infinity (1:11:30):

(M stands for MacMahon and R stands for Ramanujan.)

 $\it M: Well, here we are. p(200), the moment of truth ... Well, you first. What has your formula given you?$

R: Three trillion and nine hundred and seventy two thousand nine hundred and ninety eight million.

M: My God! You are close [*silent for 5 seconds*] within two percent. Well, I will be damned.

•

0

• Cauchy's integral formula: Suppose $\mathcal C$ is a simple closed curve and the function f(z) is analytic on a region containing $\mathcal C$ and its interior. if $\mathcal C$ is oriented counterclockwise, then for any z_0 inside $\mathcal C$:

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\mathcal{C}} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

$$P(q) := \frac{1}{(q;q)_{\infty}} = \prod_{k \ge 1} \frac{1}{1 - q^k} = \sum_{n \ge 0} p(n)q^n.$$

$$p(n) = \frac{1}{2\pi i} \oint_{\mathcal{C}:|q|=r} \frac{P(q)}{q^{n+1}} dq,$$

where 0 < r < 1 (we will choose r to be close to 1 so that the contour is close to the *poles* of P(q)).

$$P(q) = \frac{1}{1-q} \frac{1}{1-q^2} \frac{1}{1-q^3} \frac{1}{1-q^4} \frac{1}{1-q^5} \frac{1}{1-q^6} \cdots$$

has poles at roots of unity.

• The pole at q=1 is dominant; The pole at -1 is 1/2 as "important" as the pole at 1; The pole at primitive cubic roots of unity is 1/3 as "important";

•

- Divide the contour into two parts: one close to q=1 and the other away from q=1. The former gives a main contribution to the contour integral.
- In analytic number theory, we call the arcs in the contour integral that makes a dominant contribution the **major arcs**, and the rest the **minor arcs**.
- For the evaluation for the major arcs, we may utilize the **modular transformation** of the Dedekind eta function.

Hans Rademacher

ON THE PARTITION FUNCTION p(n).

By HANS RADEMACHER.

[Received 30 November, 1936.—Read 10 December, 1936.]

University of Pennsylvania, Philadelphia.

Theorem (Rademacher, 1937)

$$p(n) = \frac{1}{2\sqrt{2}\pi} \sum_{k \ge 1} A_k(n) \sqrt{k} \frac{d}{dn} \left(\frac{2}{\sqrt{n - \frac{1}{24}}} \sinh\left(\frac{\pi}{k} \sqrt{\frac{2}{3} \left(n - \frac{1}{24}\right)}\right) \right),$$

where
$$A_k(n) = \sum_{\substack{0 \le h < k \\ \gcd(h,k) = 1}} e^{\pi i (s(h,k) - 2nh/k)}$$
 with $s(h,k)$ the Dedekind sum.

Let us use the first 8 terms in Rademacher's formula to estimate p(200):

$$+3,972,998,993,185.896$$
 $+36,282.978$
 -87.584
 $+5.147$
 $+1.424$
 $+0.071$
 $+0.000$
 $+0.044$
 $\hline 3,972,999,029,387.975$

Eureka! We are only .025 away from the exact value

$$p(200) = 3,972,999,029,388.$$

$$\prod_{j=1}^J (q^{m_j};q^{m_j})^{\delta_j}_{\infty}$$
 $\prod_{j=1}^J (q^{r_j},q^{m_j-r_j};q^{m_j})^{\delta_j}_{\infty}$

S. Chern, Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory **199** (2019), 168–191.

S. Chern, Asymptotics for the Taylor coefficients of certain infinite products, Ramanujan J. 55 (2021), no. 3, 987-1014.

Conjecture (Seo-Yee, 2019)

The series expansion of

$$\frac{1}{(q, -q^3; q^4)_{\infty}} = \prod_{k \ge 0} \frac{1}{1 - q^{4k+1}} \frac{1}{1 + q^{4k+3}}$$

has nonnegative coefficients.

Do the coefficients in the series expansion count something?

Seaweed Algebra!

Conjecture (Seo-Yee, 2019)

The series expansion of

$$\frac{1}{(q, -q^3; q^4)_{\infty}} = \prod_{k \ge 0} \frac{1}{1 - q^{4k+1}} \frac{1}{1 + q^{4k+3}}$$

has nonnegative coefficients.

Do the coefficients in the series expansion count something?

Integer Partitions!

- Let λ and μ be two partitions of n. E.g. $\lambda=(3,2,1,1)$ and $\mu=(4,3)$ are partitions of 7.
- The meander associated to λ and μ :

• The index $\operatorname{ind}_{\mu}(\lambda) := 2C + P - 1$. Here C and P count the number of cycles and paths in the meander. (Note. Each isolated vertex is treated as a path).

$$\operatorname{ind}_{\mu}(\lambda) = 2 \times 0 + 2 - 1 = 1.$$

• The case where $\mu=(\textit{n})$ corresponds to the maximal parabolic seaweed algebra.

- Let λ and μ be two partitions of n. E.g. $\lambda=(3,2,1,1)$ and $\mu=(4,3)$ are partitions of 7.
- The meander associated to λ and μ :

• The index $\operatorname{ind}_{\mu}(\lambda) := 2C + P - 1$. Here C and P count the number of cycles and paths in the meander. (Note. Each isolated vertex is treated as a path).

$$\operatorname{ind}_{\mu}(\lambda) = 2 \times 0 + 2 - 1 = 1.$$

• The case where $\mu = (n)$ corresponds to the maximal parabolic seaweed algebra.

- \bullet \mathcal{O} : The set of partitions into odd parts.
- o(n): The number of $\lambda \in \mathcal{O}$ of size n such that $\operatorname{ind}_{(n)}(\lambda)$ is odd.
- e(n): The number of $\lambda \in \mathcal{O}$ of size n such that $\operatorname{ind}_{(n)}(\lambda)$ is even.

Conjecture (Coll-Mayers-Mayers, 2018)

$$\sum_{n\geq 0} |o(n) - e(n)| q^n \stackrel{?}{=} \frac{1}{(q, -q^3; q^4)_{\infty}}.$$

This conjecture is true up to sign.

Theorem (Seo-Yee, 2019)

$$\sum_{n \geq 0} (-1)^{\lceil \frac{n}{2} \rceil} (o(n) - e(n)) q^n = \frac{1}{(q, -q^3; q^4)_{\infty}}.$$

Theorem (C., 2023, Adv. Math.)

Let

$$G(q) := \sum_{n \ge 0} g(n)q^n = \frac{1}{(q, -q^3; q^4)_{\infty}}.$$

We have, as $n \to \infty$,

$$\mathbf{g}(\mathbf{n}) \sim \frac{\pi^{\frac{1}{4}}\Gamma(\frac{1}{4})}{2^{\frac{9}{4}}3^{\frac{3}{8}}n^{\frac{3}{8}}}\mathbf{I}_{-\frac{3}{4}}\left(\frac{\pi}{2}\sqrt{\frac{\mathbf{n}}{3}}\right) + (-1)^{\mathbf{n}}\frac{\pi^{\frac{3}{4}}\Gamma(\frac{3}{4})}{2^{\frac{11}{4}}3^{\frac{5}{8}}n^{\frac{5}{8}}}\mathbf{I}_{-\frac{5}{4}}\left(\frac{\pi}{2}\sqrt{\frac{\mathbf{n}}{3}}\right),$$

where $I_s(x)$ is the modified Bessel function of the first kind. Further, when $n \ge 2.4 \times 10^{14}$, we have g(n) > 0.

Why is the Seo-Yee Conjecture difficult?

- The infinite product is different from products of Dedekind eta function or Jacobi theta function and indeed it is no longer modular. Hence, a Rademacher-type exact formula is out of reach.
- If we rewrite the product as

$$rac{(q^3;q^4)_{\infty}}{(q;q^4)_{\infty}(q^6;q^8)_{\infty}},$$

then the numerator $(q^3;q^4)_\infty$ prevents us using a powerful approach of Meinardus, which treats

$$\prod_{k>1} \frac{1}{(1-q^k)^{\delta_k}} \qquad (\delta_k \ge 0).$$

Emil Grosswald

TRANSACTIONS

OF THE

AMERICAN MATHEMATICAL SOCIETY

VOLUME 89 SEPTEMBER TO DECEMBER, 1958

SOME THEOREMS CONCERNING PARTITIONS(1)

BY
EMIL GROSSWALD

University of Pennsylvania, Philadelphia, Pa.

$$\frac{1}{(q^{\mathbf{a}};q^{\mathbf{p}})_{\infty}} = \prod_{k \geq 0} \frac{1}{1 - q^{k\mathbf{p} + \mathbf{a}}} \quad (\mathbf{p} \text{ prime})$$

- Incorrect evaluation of residues
- Mistakes on the uniformness of error terms
- Prime moduli

Let M be a positive integer and a be any of 1, 2, ..., M. We shall investigate the asymptotic behavior of

$$\Phi_{\mathsf{a},\mathsf{M}}(q) := \log \left(\frac{1}{(q^{\mathsf{a}};q^{\mathsf{M}})_{\infty}} \right)$$

when the complex variable q with |q| < 1 approaches an arbitrary root of unity:

- $|q| \to 1^-$;
- $\operatorname{Arg}(q) \approx \frac{2\pi h}{k}$.

$$q:=e^{-\tau+\frac{2\pi ih}{k}}$$

- $\tau := X^{-1} + 2\pi i Y$ with $|Y| \leq \frac{1}{kN}$;
- $1 \le h \le k \le \lfloor \sqrt{2\pi X} \rfloor =: N \text{ with } (h, k) = 1.$

Why do we choose $|Y| \leq \frac{1}{kN}$?

A covering of \mathbb{R}/\mathbb{Z}

Let $Q_{h/k}$ be the set of q with respect to h/k as defined before, that is,

$$\mathcal{Q}_{h/k} := \big\{ e^{-\frac{1}{X} + 2\pi i (\frac{h}{k} - Y)} \, : \, |Y| \le \frac{1}{kN} \big\}.$$

For any q with $|q|=e^{-\frac{1}{\chi}}$, we are always able to find a certain h/k such that $q\in\mathcal{Q}_{h/k}$. This is a direct consequence of Dirichlet's approximation theorem, asserting that \mathbb{R}/\mathbb{Z} can be covered by intervals

$$\bigcup_{\substack{1 \le h \le k \le N \\ (h,k)=1}} \left[\frac{h}{k} - \frac{1}{kN}, \frac{h}{k} + \frac{1}{kN} \right].$$

Theorem (C., 2023, Adv. Math.)

Let $X \geq 16$ be a sufficiently large positive number. Let $q := e^{-\tau + \frac{2\pi i h}{k}}$ where $1 \leq h \leq k \leq \lfloor \sqrt{2\pi X} \rfloor =: N$ with (h,k) = 1 and $\tau := X^{-1} + 2\pi i Y$ with $|Y| \leq \frac{1}{kN}$. Let M be a positive integer and a be any of $1,2,\ldots,M$. If we denote by b the unique integer between 1 and (k,M) such that $b \equiv -ha \pmod {k,M}$ and write

$$b^* := \begin{cases} (k, M) - b & \text{if } b \neq (k, M), \\ (k, M) & \text{if } b = (k, M), \end{cases}$$

then

$$\log\left(\frac{1}{(q^{a};q^{M})_{\infty}}\right) = \frac{1}{\tau} \frac{(k,M)^{2}}{k^{2}M} \left[\pi^{2}\left(\frac{b^{2}}{(k,M)^{2}} - \frac{b}{(k,M)} + \frac{1}{6}\right) + 2\pi i\left(-\zeta'\left(-1,\frac{b}{(k,M)}\right) + \zeta'\left(-1,\frac{b^{*}}{(k,M)}\right)\right)\right] + E,$$

where

$$|\Re(E)| \ll_M X^{\frac{1}{2}} \log X.$$

$$\Phi_{\mathsf{a},\mathsf{M}}(q) = \log\left(\frac{1}{(q^\mathsf{a};q^\mathsf{M})_\infty}\right) = \sum_{\substack{m \geq 1 \\ m \equiv \mathsf{a} \bmod M}} \sum_{\ell \geq 1} \frac{q^{\ell m}}{\ell}.$$

ullet Classify ℓ and m with the same contribution to $e^{rac{2\pi i \hbar \ell m}{k}}$. Recall that

$$q = e^{-\tau + \frac{2\pi ih}{k}}.$$

Write

•

$$\ell = \mathit{rk} + \mu \quad (1 \leq \mu \leq \mathit{k}) \quad \& \quad \mathit{m} = \mathit{tK} + \lambda \quad (1 \leq \lambda \leq \mathit{K}, \ \lambda \equiv \mathit{a} \bmod \mathit{M}),$$
 where $\mathit{K} = \mathit{k} \frac{\mathit{M}}{(\mathit{k}.\mathit{M})}$. Then

$$\Phi_{\mathbf{a},\mathbf{M}}(\mathbf{q}) = \sum_{\substack{1 \leq \lambda \leq K \\ \lambda \equiv \mathbf{a} \bmod M}} \sum_{1 \leq \mu \leq k} \mathrm{e}^{\frac{2\pi i \hbar \mu \lambda}{k}} \sum_{\mathbf{r},\mathbf{t} \geq 0} \frac{1}{\mathbf{r} k + \mu} \mathrm{e}^{-(\mathbf{r} k + \mu)(\mathbf{t} K + \lambda)\tau}.$$

S. Chern (Wien) Integer Partitions Jul 22, 2024 23/3

• Applying the inverse Mellin transform $e^{-t}=rac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\Gamma(s)t^{-s}\;ds$,

$$\Phi_{\mathsf{a},\mathsf{M}}(\mathsf{q}) = \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \sum_{1 \leq \mu \leq \mathsf{k}} \mathrm{e}^{\frac{2\pi i h \mu \lambda}{\mathsf{k}}} \frac{1}{2\pi \mathsf{i}} \int_{\left(\frac{3}{2}\right)} \frac{\Gamma(\mathsf{s})}{\tau^{\mathsf{s}} \mathsf{k}^{\mathsf{s}+1} \mathsf{K}^{\mathsf{s}}} \zeta\!\left(\mathsf{s}, \frac{\lambda}{\mathsf{K}}\right) \zeta\!\left(1 + \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \mathsf{d}\mathsf{s}.$$

Here the path of integration (α) is from $\alpha - i\infty$ to $\alpha + i\infty$.

• Recall the functional equation of Hurwitz zeta function

$$\zeta\left(\mathbf{s}, \frac{\lambda}{\kappa}\right) = 2\Gamma(1 - \mathbf{s})(2\pi\kappa)^{\mathbf{s} - 1} \left(\sin\frac{\pi\mathbf{s}}{2} \sum_{1 \le \nu \le \kappa} \cos\frac{2\pi\lambda\nu}{\kappa} \,\zeta\left(1 - \mathbf{s}, \frac{\nu}{\kappa}\right) + \cos\frac{\pi\mathbf{s}}{2} \sum_{1 \le \nu \le \kappa} \sin\frac{2\pi\lambda\nu}{\kappa} \,\zeta\left(1 - \mathbf{s}, \frac{\nu}{\kappa}\right)\right),$$

and Euler's reflection formula for the Gamma function

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)} = \frac{\pi}{2\sin\frac{\pi s}{2}\cos\frac{\pi s}{2}}.$$

• Let
$$z = \frac{\tau k}{2\pi}$$
.

$$\begin{split} &\Phi_{\mathsf{a},\mathsf{M}}(q) \\ &= \frac{1}{4\pi i k \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod{M}}} \sum_{\substack{1 \leq \mu \leq k \\ \mathsf{M} \ 1 \leq \nu \leq \mathsf{K}}} \cos \frac{2\pi h \mu \lambda}{k} \cos \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta\left(1+\mathsf{s},\frac{\mu}{k}\right) \zeta\left(1-\mathsf{s},\frac{\nu}{\mathsf{K}}\right)}{z^{\mathsf{s}} \cos \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &+ \frac{1}{4\pi i k \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod{M}}} \sum_{\substack{1 \leq \mu \leq k \\ \mathsf{M} \ 1 \leq \nu \leq \mathsf{K}}} \cos \frac{2\pi h \mu \lambda}{k} \sin \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta\left(1+\mathsf{s},\frac{\mu}{k}\right) \zeta\left(1-\mathsf{s},\frac{\nu}{\mathsf{K}}\right)}{z^{\mathsf{s}} \sin \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &+ \frac{1}{4\pi k \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod{M}}} \sum_{\substack{1 \leq \mu \leq k \\ \mathsf{M} \ 1 \leq \nu \leq \mathsf{K}}} \sin \frac{2\pi h \mu \lambda}{k} \sin \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta\left(1+\mathsf{s},\frac{\mu}{k}\right) \zeta\left(1-\mathsf{s},\frac{\nu}{\mathsf{K}}\right)}{z^{\mathsf{s}} \sin \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &+ \frac{1}{4\pi k \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod{M}}} \sum_{\substack{1 \leq \mu \leq k \\ \mathsf{M} \ 1 \leq \nu \leq \mathsf{K}}} \sin \frac{2\pi h \mu \lambda}{k} \cos \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta\left(1+\mathsf{s},\frac{\mu}{k}\right) \zeta\left(1-\mathsf{s},\frac{\nu}{\mathsf{K}}\right)}{z^{\mathsf{s}} \cos \frac{\pi \mathsf{s}}{2}} d\mathsf{s}. \end{split}$$

4□ > 4□ > 4 = > 4 = > = 90

25 / 39

S. Chern (Wien) Jul 22, 2024

• Replacing s by -s, reversing the direction of the integration path and shifting the path back to $(\frac{3}{2})$, one has, with $\rho \equiv -h\lambda \pmod{k}$,

$$\begin{split} \Phi_{\mathsf{a},\mathsf{M}}(q) &= \frac{1}{4\pi i \mathsf{k} \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \sum_{\substack{1 \leq \mu \leq \mathsf{k} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \cos \frac{2\pi \mu \rho}{\mathsf{k}} \cos \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta \left(1 - \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \zeta \left(1 + \mathsf{s}, \frac{\nu}{\mathsf{K}}\right)}{\mathsf{z}^{-\mathsf{s}} \cos \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &- \frac{1}{4\pi i \mathsf{k} \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \sum_{\substack{1 \leq \mu \leq \mathsf{k} \\ \mathsf{M} 1 \leq \nu \leq \mathsf{K}}} \cos \frac{2\pi \mu \rho}{\mathsf{k}} \sin \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta \left(1 - \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \zeta \left(1 + \mathsf{s}, \frac{\nu}{\mathsf{K}}\right)}{\mathsf{z}^{-\mathsf{s}} \sin \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &+ \frac{1}{4\pi \mathsf{k} \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \sum_{\substack{1 \leq \mu \leq \mathsf{k} \\ \mathsf{M} 1 \leq \nu \leq \mathsf{K}}} \sin \frac{2\pi \mu \rho}{\mathsf{k}} \sin \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta \left(1 - \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \zeta \left(1 + \mathsf{s}, \frac{\nu}{\mathsf{K}}\right)}{\mathsf{z}^{-\mathsf{s}} \sin \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &- \frac{1}{4\pi \mathsf{k} \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \sum_{\substack{1 \leq \mu \leq \mathsf{k} \\ \mathsf{M} 1 \leq \nu \leq \mathsf{K}}} \sin \frac{2\pi \mu \rho}{\mathsf{k}} \cos \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta \left(1 - \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \zeta \left(1 + \mathsf{s}, \frac{\nu}{\mathsf{K}}\right)}{\mathsf{z}^{-\mathsf{s}} \cos \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &- 2\pi \mathsf{i} (\mathsf{R}_1 + \mathsf{R}_2 + \mathsf{R}_3 + \mathsf{R}_4) \end{split}$$

where the R_j 's come from the sum of residues of the corresponding integrand inside the strip $-\frac{3}{2} < \Re(s) < \frac{3}{2}$.

26/39

 $=: \Upsilon_1 + \Upsilon_2 + \Upsilon_3 + \Upsilon_4 - 2\pi i (R_1 + R_2 + R_3 + R_4).$

Residues

The residues are essentially from

$$\frac{\zeta(1-s,\frac{\mu}{k})\zeta(1+s,\frac{\nu}{K})}{z^{-s}\operatorname{trig}\frac{\pi s}{2}},$$

where the trig function is cos or sin:

$$\begin{split} \mathcal{R}_{\cos} &:= \sum_{|\Re(s)| < \frac{3}{2}} \operatorname{Res}_s \frac{\zeta \left(1 - s, \frac{\mu}{k}\right) \zeta \left(1 + s, \frac{\nu}{K}\right)}{z^{-s} \frac{\cos \frac{\pi s}{2}}{2}} = \underset{s = 0}{\operatorname{Res}} (*) + \underset{s = 1}{\operatorname{Res}} (*) + \underset{s = 1}{\operatorname{Res}} (*) \\ &= -\log z - \frac{\Gamma'}{\Gamma} \left(\frac{\mu}{k}\right) + \frac{\Gamma'}{\Gamma} \left(\frac{\nu}{K}\right) + \frac{2\zeta \left(2, \frac{\mu}{k}\right) \zeta \left(0, \frac{\nu}{K}\right)}{\pi z} - \frac{2z\zeta \left(0, \frac{\mu}{k}\right) \zeta \left(2, \frac{\nu}{K}\right)}{\pi}, \end{split}$$

and that

$$\mathcal{R}_{\sin} := \sum_{|\Re(s)| < \frac{3}{2}} \operatorname{Res}_{s} \frac{\zeta \left(1 - s, \frac{\mu}{k}\right) \zeta \left(1 + s, \frac{\nu}{K}\right)}{z^{-s} \sin \frac{\pi s}{2}} = \operatorname{Res}_{s=0}(*)$$

$$= -\frac{\pi}{12} - \frac{(\log z)^{2}}{\pi} - \frac{2 \log z}{\pi} \frac{\Gamma'}{\Gamma} \left(\frac{\mu}{k}\right) + \frac{2 \log z}{\pi} \frac{\Gamma'}{\Gamma} \left(\frac{\nu}{K}\right)$$

$$+ \frac{2}{\pi} \frac{\Gamma'}{\Gamma} \left(\frac{\mu}{k}\right) \frac{\Gamma'}{\Gamma} \left(\frac{\nu}{K}\right) + \frac{2}{\pi} \gamma_{1} \left(\frac{\mu}{k}\right) + \frac{2}{\pi} \gamma_{1} \left(\frac{\nu}{K}\right).$$

Residues

• $R_1 = R_{11} + R_{12} + R_{13} + R_{14}$:

$$-2\pi i R_{11} = \frac{1}{\tau} \frac{\pi^2}{6k^2 M} (6b^2 - 6b(k, M) + (k, M)^2),$$

and

$$\begin{split} |\Re(-2\pi i R_{12})| &\leq \frac{1}{24} M X^{-1} \ll X^{-1}, \\ |\Re(-2\pi i R_{13})| &\leq \frac{1}{2} \log X + 0.92 \ll \log X, \\ |\Re(-2\pi i R_{14})| &\leq \frac{1}{2} \frac{M}{(k,M)} \ll 1. \end{split}$$

• $R_2 = R_{21} + R_{22} + R_{23}$:

$$|\Re(-2\pi i R_{21})| \le 0.44 X^{\frac{1}{2}} \log X + 1.3 X^{\frac{1}{2}} + 0.25 \log X + 0.75 \ll X^{\frac{1}{2}} \log X,$$

$$|\Re(-2\pi i R_{22})| \le \frac{1}{2} \log X + 0.92 \ll \log X,$$

 $|\Re(-2\pi iR_{23})| \le \frac{1}{4}\log X + \frac{1}{2}\frac{M}{(k,M)} + \frac{1}{2}\log\frac{M}{(k,M)} + \log\Gamma(\frac{(k,M)}{M}) + 2.59 \ll \log X.$

28 / 39

Residues

•

$$|\Re(-2\pi iR_3)|=0.$$

• $R_4 = R_{41} + R_{42}$:

$$-2\pi i R_{41} = \begin{cases} 0 & \text{if } b = (k, \textit{M}), \\ -\frac{1}{\tau} \frac{(k, \textit{M})^2}{\textit{M}} \frac{2\pi i}{k^2} \bigg(\zeta' \left(-1, \frac{b}{(k, \textit{M})} \right) - \zeta' \left(-1, \frac{(k, \textit{M}) - b}{(k, \textit{M})} \right) \bigg) & \text{if } b \neq (k, \textit{M}), \end{cases}$$

and

$$|\Re(-2\pi i R_{42})| \le \frac{1}{12} \frac{M}{(k,M)} \log X + 0.25 \frac{M}{(k,M)} \ll \log X.$$

Shifted integrals

• Trouble arising from $|Y| \leq \frac{1}{kN}$ (where $N = \lfloor \sqrt{2\pi X} \rfloor$):

$$\int_{(\frac{3}{2})} \frac{\zeta\left(1-s,\frac{\mu}{k}\right)\zeta\left(1+s,\frac{\nu}{K}\right)}{z^{-s}\cos\frac{\pi s}{2}} ds.$$

Write $s = \frac{3}{2} + it$. Then

$$|\mathsf{integrand}| \ll |\mathsf{z}|^{\frac{3}{2}} |t|^\mathsf{C} \exp\bigg(\left(-\frac{\pi}{2} + |\operatorname{Arg}(\mathsf{z})|\right) |t|\bigg).$$

Recall that $\mathbf{z} = \frac{\tau \mathbf{k}}{2\pi}$ and $\tau = \mathbf{X}^{-1} + 2\pi i \mathbf{Y}$ so that $\operatorname{Arg}(\mathbf{z}) = \operatorname{Arg}(\tau)$.

- Usual choice of Y: $|Y| \le cX^{-1} \Rightarrow |\operatorname{Arg}(z)| \le \theta < \frac{\pi}{2}$
- Our choice of Y: $|Y| \le \frac{1}{kN} \Rightarrow |\operatorname{Arg}(z)|$ can be arbitrarily close to $\frac{\pi}{2}$ as $X \to \infty$ for small k

Shifted integrals

• Introduce an auxiliary function

$$\Psi_{a,M}(q^*) := \log \left(\prod_{\substack{m \geq 1 \\ m \equiv -ha \bmod M^*}} \frac{1}{1 - e^{\frac{2\pi i \alpha a}{M}} (q^*)^m} \right),$$

where $M^*=(k,M)$, α and β are such that $\alpha k+\beta M=M^*$, h' is such that $hh'\equiv -1\pmod k$, and $q^*:=\exp\left(\frac{2\pi i\beta h'}{k}-\frac{2\pi}{Kz}\right)$.

Shifted integrals

•

$$\begin{split} &\Psi_{\mathsf{a},\mathsf{M}}(q^*) \\ &= \frac{1}{4\pi i \mathsf{k} \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \sum_{\substack{1 \leq \mu \leq \mathsf{k} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \cos \frac{2\pi \mu \rho}{\mathsf{k}} \cos \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta \left(1 - \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \zeta \left(1 + \mathsf{s}, \frac{\nu}{\mathsf{K}}\right)}{\mathsf{z}^{-\mathsf{s}} \cos \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &+ \frac{1}{4\pi i \mathsf{k} \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ \lambda \equiv \mathsf{a} \bmod \mathsf{M}}} \sum_{\substack{1 \leq \mu \leq \mathsf{k} \\ \mathsf{k} \geq \mathsf{k}}} \sin \frac{2\pi \mu \rho}{\mathsf{k}} \cos \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta \left(1 - \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \zeta \left(1 + \mathsf{s}, \frac{\nu}{\mathsf{K}}\right)}{\mathsf{z}^{-\mathsf{s}} \sin \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \\ &+ \frac{1}{4\pi \mathsf{k} \mathsf{K}} \sum_{\substack{1 \leq \lambda \leq \mathsf{K} \\ 1 \leq \lambda \leq \mathsf{K}}} \sum_{\substack{1 \leq \mu \leq \mathsf{k} \\ 1 \leq \mu \leq \mathsf{k}}} \sin \frac{2\pi \mu \rho}{\mathsf{k}} \sin \frac{2\pi \nu \lambda}{\mathsf{K}} \int_{\left(\frac{3}{2}\right)} \frac{\zeta \left(1 - \mathsf{s}, \frac{\mu}{\mathsf{k}}\right) \zeta \left(1 + \mathsf{s}, \frac{\nu}{\mathsf{K}}\right)}{\mathsf{z}^{-\mathsf{s}} \sin \frac{\pi \mathsf{s}}{2}} d\mathsf{s} \end{split}$$

$$+\frac{1}{4\pi kK}\sum_{\substack{1\leq\lambda\leq K}}\sum_{\substack{1\leq\mu\leq k\\ k}}\cos\frac{2\pi\mu\rho}{k}\sin\frac{2\pi\nu\lambda}{K}\int_{(\frac{3}{2})}\frac{\zeta(1-s,\frac{\mu}{k})\zeta(1+s,\frac{\nu}{K})}{z^{-s}\cos\frac{\pi s}{2}}ds$$

$$=: J_1 + J_2 + J_3 + J_4.$$

イロト (倒) イミト イミト ヨーのくべ

Shifted integrals

•

$$\Upsilon_1 = J_1 \qquad \text{and} \qquad \Upsilon_3 = J_3.$$

•

$$2(J_1 + J_3) = \Psi_{a,M}(q^*) + \Psi_{M-a,M}(q^*).$$

• For Υ_2 and Υ_4 , we define

$$\Upsilon_* \pm J_* := egin{cases} \Upsilon_* + J_* & \text{if } \Im(z) \geq 0, \\ \Upsilon_* - J_* & \text{if } \Im(z) < 0. \end{cases}$$

•

$$\begin{split} |\Re(\Upsilon_1 + \Upsilon_2 + \Upsilon_3 + \Upsilon_4)| &\leq |\Re(\Upsilon_1 + \Upsilon_3)| + |\Re(\Upsilon_2 + \Upsilon_4)| \\ &\leq |\Re(J_1 + J_3)| + |\Re(J_2 + J_4)| + |\Upsilon_2 \pm J_2| + |\Upsilon_4 \pm J_4| \\ &\leq |\Re(\Psi_{a,M}(q^*))| + 2|\Re(J_1 + J_3)| + |\Upsilon_2 \pm J_2| + |\Upsilon_4 \pm J_4| \\ &\leq 2|\Re(\Psi_{a,M}(q^*))| + |\Re(\Psi_{M-a,M}(q^*))| + |\Upsilon_2 \pm J_2| + |\Upsilon_4 \pm J_4|. \end{split}$$

33 / 39

Shifted integrals

•

$$\begin{split} |\Re(\Upsilon_1 + \Upsilon_2 + \Upsilon_3 + \Upsilon_4)| &\leq \frac{3e^{-0.28\pi^2\frac{(k,M)}{M}}}{\left(1 - e^{-0.28\pi^2\frac{(k,M)}{M}}\right)^2} + 13.02\frac{\textit{M}^{\frac{3}{2}}}{(\textit{k},\textit{M})^{\frac{5}{2}}}\textit{X}^{\frac{1}{2}} \\ &\ll \textit{X}^{\frac{1}{2}}. \end{split}$$

Observation:

$$G(q) = \frac{1}{(q, -q^3; q^4)_{\infty}} = \frac{1}{1 - q} \frac{1}{1 + q^3} \frac{1}{1 - q^5} \frac{1}{1 + q^7} \cdots$$

So G(q) is mainly dominated at $q = \pm 1$.

Major arcs Close to $q=\pm 1$

Minor arcs Away from $q = \pm 1$

Recall that

$$Q_{h/k} := \left\{ e^{-\frac{1}{X} + 2\pi i (\frac{h}{k} - Y)} : |Y| \le \frac{1}{kN} \right\}, \qquad (N := \lfloor \sqrt{2\pi X} \rfloor).$$

Major arcs "Part of $\mathcal{Q}_{1/1}$ " plus "Part of $\mathcal{Q}_{1/2}$ "

Minor arcs "Rest of $Q_{1/1}$ & $Q_{1/2}$ " plus "Other $Q_{h/k}$ "

Theorem

For any q with $|q| = e^{-\frac{1}{X}}$ such that it is not in $\mathcal{Q}_{1/1}$ and $\mathcal{Q}_{1/2}$, we have, if $X \geq 3.4 \times 10^7$, then

$$|G(q)| \le \exp\left(\left(\frac{\pi^2}{48} - \frac{1}{100}\right)X\right).$$

Also, if $q=e^{-\tau+\frac{2\pi i\hbar}{k}}$ with $\tau=X^{-1}+2\pi i Y$ is in $\mathcal{Q}_{1/1}$ or $\mathcal{Q}_{1/2}$, then the above bound still holds under the assumption $X\geq 3.4\times 10^7$ provided that $|Y|\geq \frac{1}{2\pi X}$.

Theorem

Let
$$\tau = X^{-1} + 2\pi i Y$$
 with $|Y| \leq \frac{1}{2\pi X}$. Then

$$\log \textit{G}(\textit{e}^{-\tau}) = \frac{\pi^2}{48} \frac{1}{\tau} - \frac{1}{4} \log \tau - \frac{3}{4} \log 2 - \frac{1}{2} \log \pi + \log \Gamma(\frac{1}{4}) + \textit{E}_+,$$

where

$$|E_+| \le 0.66 X^{-\frac{3}{4}}.$$

Also,

$$\log G(-e^{-\tau}) = \frac{\pi^2}{48} \frac{1}{\tau} + \frac{1}{4} \log \tau - \frac{1}{4} \log 2 - \frac{1}{2} \log \pi + \log \Gamma(\frac{3}{4}) + E_{-},$$

where

$$|E_{-}| \le 0.82 X^{-\frac{3}{4}}.$$

Outlook¹

Conjecture (Seo-Yee, 2019)

The series expansion of

$$\frac{1}{(q,-q^{m-1};q^m)_{\infty}}$$

has nonnegative coefficients whenever $m \ge 4$.

Conjecture (C., 2018(?))

The series expansion of

$$\frac{(q^{m-1};q^{2m})_{\infty}}{(q;q^m)_{\infty}}$$

has nonnegative coefficients whenever $m \ge 1$.

I formulated this conjecture when reading a paper of Song Heng Chan and Hamza Yesilyurt on Ramanujan's continued fraction $(q^2;q^3)_\infty/(q;q^3)_\infty$.

Thank You!

