(necessarily contractive) semigroup. At first we present some consequences of p-dissipativity.

Theorem 2.7. Let A be a p-dissipative operator. If D(A) is dense, then A is strictly p-dissipative.

<u>Proof.</u> Let $f \in D(A)$, $\phi \in dp(f)$. Then for every t > 0 and $g \in D(A)$ we have

$$\langle Af, \phi \rangle = 1/t (\langle f + tAf, \phi \rangle - \langle f, \phi \rangle) \le 1/t(p(f + tAf) - p(f))$$

$$\leq 1/t(p(f + tg) + tp(Af - g) - p(f))$$

$$\leq 1/t(p((Id - tA)(f + tg)) + tp(Af - g) - p(f))$$
 (by (2.7))

$$\leq 1/t(p(f) + tp(g - Af) + t^2p(-Ag) + tp(Af - g) - p(f))$$

$$\leq 1/t (2tc\|g - Af\| + t^2c\|Ag\|)$$
 (by (2.3))

$$= 2c ||g - Af|| + tc ||Ag||.$$

Letting t \rightarrow 0 we obtain $\langle Af, \phi \rangle \le 2c \|g - Af\|$ for all $g \in D(A)$. Since D(A) is dense in E, this implies that $\langle Af, \phi \rangle \le 0$

We now impose stronger conditions on p . A continuous sublinear function $p: E \to \mathbb{R}$ is called half-norm if

(2.11) p(f) + p(-f) > 0 whenever $f \neq 0$;

and p is called a <u>strict half-norm</u> if in addition there exists some constant d > 0 such that

 $(2.12) \quad p(f) + p(-f) \ge d||f|| \quad \text{for all } f \in E.$

If p is a half-norm, then

(2.13)
$$\|f\|_{D} = p(f) + p(-f)$$
 (f $\in E$)

defines a norm on E which is equivalent to the given norm if and only if p is strict.

Remark 2.8. Every half-norm p induces a closed proper cone $E_p := \{f \in E : p(-f) \le 0\}$ on E . Any p-contractive operator T on E leaves the cone E_p invariant (i.e. T is positive for the corresponding ordering).

Conversely, given a closed proper cone E_+ on E, then p(f):= dist $(-f,E_+)=\inf\{\|f+g\|:g\in E_+\}$ defines a half-norm on E such that $E_+=E_p$. This half-norm is called the <u>canonical half-norm</u> on the ordered Banach space (E,E_+) . The canonical half-norm is strict if and only if the cone E_+ is <u>normal</u> (this is equivalent to the fact that for every $\phi\in E'$ there exist positive linear forms ϕ_1 and ϕ_2 on E such that $\phi=\phi_1-\phi_2$ (see [Batty-Robinson (1984)] and [Schaefer (1966), Chap.V]).