Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

Nick Gill (OU)

April 15, 2013

Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

Let $\mathcal{G} = (V, E)$ be a graph.

Regular maps and the Euler characteristic

> Nick Gil (OU)

> > Let $\mathcal{G}=(V,E)$ be a graph. Let \mathcal{S} be a surface (usually, but not always, compact and without boundary).

Regular maps and the Euler characteristic

> Nick Gill (OU)

> > Let $\mathcal{G} = (V, E)$ be a graph.

Let $\ensuremath{\mathcal{S}}$ be a surface (usually, but not always, compact and without boundary).

A **map** is a 'nice' embedding of \mathcal{G} in \mathcal{S} .

This isn't nice...

Regular maps and the Euler characteristic

... but this is.

Regular maps and the Euler characteristic

This isn't nice either...

Regular maps and the Euler characteristic

But these are all lovely...

Regular maps and the Euler characteristic

But these are all lovely...

Regular maps and the Euler characteristic

But these are all lovely...

Regular maps and the Euler characteristic

R2.1 {3, 8} 16 triangles $\rightarrow H_1$

R2.1' {3, 8} 6 octagons $\rightarrow H$,

R4.3' {6, 4} 12 hexagons $\rightarrow \{6, 3\}_{11}$

R9.3' {6, 4} 32 hexagons \rightarrow R2.1' \rightarrow H,

R11.1 {4, 6} 60 quads $\rightarrow D$

R2.2 {4, 6} 6 quads $\rightarrow H$,

R2.2' {6, 4} 4 hexagons $\rightarrow H$.

R5.1' {8, 3} 24 octagons $\rightarrow C$

R9.4' {6, 4} 32 hexagons $\rightarrow \{4,4\}_{,,}$

R13.2' {12, 3} 24 faces \rightarrow R3.4' \rightarrow H_{A}

R2.3 {4, 8} 4 quads $\rightarrow \{4, 4\}_{10}$

R2.3' {8, 4} 2 octagons $\rightarrow \{4, 4\}_{10}$

R5.3' {5, 4} 32 pentagons R9.9' {12, 4} 8 faces $\rightarrow \{4,4\}_{20}$

 $\rightarrow \{3, 6\}_{20}$

R17.3' {6, 4} 64 hexagons $\rightarrow \{4,4\}_{4,0}$

And this one is especially groovy...

Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

> Nick Gill (OU)

■ Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.

Regular maps and the Euler characteristic

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where \mathcal{S} is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph \mathcal{G} is finite.

Regular maps and the Euler characteristic

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where \mathcal{S} is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph \mathcal{G} is finite.
- An automorphism of \mathcal{M} is a homeomorphism of \mathcal{S} which preserves the graph \mathcal{G} .

Regular maps and the Euler characteristic

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where \mathcal{S} is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph \mathcal{G} is finite.
- An automorphism of \mathcal{M} is a homeomorphism of \mathcal{S} which preserves the graph \mathcal{G} . $\operatorname{Aut}(\mathcal{M})$ is the quotient of the group of automorphisms of \mathcal{M} by the subgroup of automorphisms which fix \mathcal{G} .

Regular maps and the Euler characteristic

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where \mathcal{S} is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph \mathcal{G} is finite.
- An automorphism of \mathcal{M} is a homeomorphism of \mathcal{S} which preserves the graph \mathcal{G} . $\operatorname{Aut}(\mathcal{M})$ is the quotient of the group of automorphisms of \mathcal{M} by the subgroup of automorphisms which fix \mathcal{G} . In particular $\operatorname{Aut}(\mathcal{M})$ is a finite group.

Regular maps and the Euler characteristic

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where \mathcal{S} is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph \mathcal{G} is finite.
- An automorphism of \mathcal{M} is a homeomorphism of \mathcal{S} which preserves the graph \mathcal{G} . $\operatorname{Aut}(\mathcal{M})$ is the quotient of the group of automorphisms of \mathcal{M} by the subgroup of automorphisms which fix \mathcal{G} . In particular $\operatorname{Aut}(\mathcal{M})$ is a finite group.
- Fact: $Aut(\mathcal{M})$ acts faithfully and semiregularly on the set of flags.

And a flag is...

Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

> Nick Gill (OU)

■ It is clear that $|\operatorname{Aut}(\mathcal{M})|$ is less than or equal to the number of flags.

Regular maps and the Euler characteristic

- It is clear that $|\operatorname{Aut}(\mathcal{M})|$ is less than or equal to the number of flags.
- If $|\operatorname{Aut}(\mathcal{M})|$ equals the number of flags, i.e. $\operatorname{Aut}(\mathcal{M})$ acts transitively on the set of flags, then we call the map \mathcal{M} regular.

Regular maps and the Euler characteristic

- It is clear that $|\operatorname{Aut}(\mathcal{M})|$ is less than or equal to the number of flags.
- If $|\operatorname{Aut}(\mathcal{M})|$ equals the number of flags, i.e. $\operatorname{Aut}(\mathcal{M})$ acts transitively on the set of flags, then we call the map \mathcal{M} regular.
- We would like to classify the regular maps.

Regular maps and the Euler characteristic

- It is clear that $|\operatorname{Aut}(\mathcal{M})|$ is less than or equal to the number of flags.
- If $|\operatorname{Aut}(\mathcal{M})|$ equals the number of flags, i.e. $\operatorname{Aut}(\mathcal{M})$ acts transitively on the set of flags, then we call the map \mathcal{M} regular.
- We would like to classify the regular maps.
- Encouraging fact: For any $g \ge 2$, there are only a finite number of regular maps on a surface of genus g.

Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

> Nick Gill (OU)

 $\operatorname{Aut}(\mathcal{M})$ is solvable except when \mathcal{M} is the dodecahedron or icosahedron, in which case $\operatorname{Aut}(\mathcal{M}) \cong \operatorname{Alt}(5)$.

Regular maps and the Euler characteristic

> Nick Gill (OU)

To answer this we need to define the Euler characteristic χ of a surface \mathcal{S} :

Regular maps and the Euler characteristic

> Nick Gill (OU)

To answer this we need to define the Euler characteristic χ of a surface \mathcal{S} :

■ Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V - E + F$.

Regular maps and the Euler characteristic To answer this we need to define the Euler characteristic χ of a surface \mathcal{S} :

- Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V E + F$.
- Recall that

$$\chi = \left\{ \begin{array}{ll} 2 - 2g, & \mathcal{S} \text{ orientable;} \\ 2 - g, & \mathcal{S} \text{ non-orientable.} \end{array} \right.$$

Regular maps and the Euler characteristic

Nick Gill (OU)

To answer this we need to define the Euler characteristic χ of a surface \mathcal{S} :

- Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V E + F$.
- Recall that

$$\chi = \left\{ \begin{array}{ll} 2 - 2g, & \mathcal{S} \text{ orientable;} \\ 2 - g, & \mathcal{S} \text{ non-orientable.} \end{array} \right.$$

■ Given a map $\mathcal{M} = (\mathcal{G}, \mathcal{S})$, the embedding of \mathcal{G} on \mathcal{S} yields such a homeomorphic CW-complex, and so χ can be thought of as a function of the map.

Regular maps and the Euler characteristic

> Nick Gill (OU)

To answer this we need to define the Euler characteristic χ of a surface \mathcal{S} :

- Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V E + F$.
- Recall that

$$\chi = \left\{ \begin{array}{ll} 2-2\mathsf{g}, & \mathcal{S} \text{ orientable;} \\ 2-\mathsf{g}, & \mathcal{S} \text{ non-orientable.} \end{array} \right.$$

- Given a map $\mathcal{M} = (\mathcal{G}, \mathcal{S})$, the embedding of \mathcal{G} on \mathcal{S} yields such a homeomorphic CW-complex, and so χ can be thought of as a function of the map.
- If \mathcal{M} is regular with $G = \operatorname{Aut}(\mathcal{M})$, then

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

Regular maps and the Euler characteristic

Regular maps and the Euler characteristic

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

Regular maps and the Euler characteristic

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

General principle

If G is complicated then so is χ .

Regular maps and the Euler characteristic

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

General principle

If G is complicated then so is χ .

G is complicated \longleftrightarrow Interesting non-abelian simple groups occur as composition factors of G.

Regular maps and the Euler characteristic

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

General principle

If G is complicated then so is χ .

G is complicated \longleftrightarrow Interesting non-abelian simple groups occur as composition factors of G.

 χ is complicated \longleftrightarrow The prime factorization of χ has many primes and/or high exponents.

Two theorems

Regular maps and the Euler characteristic

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

Two theorems

Regular maps and the Euler characteristic

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

Theorem (G., 2012)

If T is a non-abelian composition factor of G and χ is divisible by exactly x distinct primes, then T is a simple group of Lie type of rank at most x.

Two theorems

Regular maps and the Euler characteristic

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

Theorem (G., 2012)

If T is a non-abelian composition factor of G and χ is divisible by exactly x distinct primes, then T is a simple group of Lie type of rank at most x.

Theorem (Conder, G., Short, Širáň, 2013)

If T is a non-abelian composition factor of G and y is the maximum exponent in the prime factorization of χ , then T is a simple group of Lie type over a field of order p^a where $a \le y + 2$.

Regular maps and the Euler characteristic

> Nick Gill (OU)

■ We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

Regular maps and the Euler characteristic

> Nick Gill (OU)

We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

■ It is easy to see that $|G_e| = 4$. Furthermore G_v and G_f contain cyclic groups of index 4.

Regular maps and the Euler characteristic

> Nick Gill (OU)

We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

- It is easy to see that $|G_e| = 4$. Furthermore G_v and G_f contain cyclic groups of index 4.
- Writing m and n for the order of these two cyclic groups we obtain

$$\chi = -|G|\frac{mn-2m-2n}{4mn} = -\frac{|G|}{4[m,n]}\left(\frac{mn-2m-2n}{(m,n)}\right).$$

Regular maps and the Euler characteristic

Nick Gill (OU)

We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

- It is easy to see that $|G_e| = 4$. Furthermore G_v and G_f contain cyclic groups of index 4.
- Writing m and n for the order of these two cyclic groups we obtain

$$\chi = -|G| \frac{mn - 2m - 2n}{4mn} = -\frac{|G|}{4[m,n]} \left(\frac{mn - 2m - 2n}{(m,n)} \right).$$

■ To restrict the number of (odd) primes dividing χ one needs to find elements of order m and n which are divisible by most of the primes dividing |G|.

Regular maps and the Euler characteristic

Nick Gill (OU)

We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

- It is easy to see that $|G_e| = 4$. Furthermore G_v and G_f contain cyclic groups of index 4.
- Writing m and n for the order of these two cyclic groups we obtain

$$\chi = -|G| \frac{mn-2m-2n}{4mn} = -\frac{|G|}{4[m,n]} \left(\frac{mn-2m-2n}{(m,n)} \right).$$

- To restrict the number of (odd) primes dividing χ one needs to find elements of order m and n which are divisible by most of the primes dividing |G|.
- For large rank groups of Lie type this is impossible. One can establish this formally by studying the prime graph of these groups.

Regular maps and the Euler characteristic

> Nick Gill (OU)

> > Thanks for coming!