MATH1902 LINEAR ALGEBRA (ADVANCED)

Semester 1

Board Tutorial for Week 6

2017

Preparatory exercises should be attempted before coming to the tutorial. Questions labelled with an asterisk are suitable for students aiming for a credit or higher.

Important Ideas and Useful Facts:

- (i) A line in space is determined by two points, or by one point and a direction.
- (ii) A plane in space is determined either by three non-collinear points, or by one point and a perpendicular (normal) direction.
- (iii) If the vector \mathbf{v} points in the direction of a line \mathcal{L} containing the point P_0 , then the parametric vector equation of \mathcal{L} is

$$\mathbf{r} - \mathbf{r}_0 = t\mathbf{v}$$
 or equivalently $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$

where \mathbf{r} is the position vector of a typical point on \mathcal{L} , \mathbf{r}_0 is the position vector of P_0 and t is a parameter which varies over all real numbers.

(iv) If the vector $\mathbf{v} = a\,\mathbf{i} + b\,\mathbf{j} + c\,\mathbf{k}$ points in the direction of a line \mathcal{L} containing the point $P_0(x_0, y_0, z_0)$, then the parametric scalar equations of \mathcal{L} are

$$\left. \begin{array}{rcl} x & = & x_0 + ta \\ y & = & y_0 + tb \\ z & = & z_0 + tc \end{array} \right\} \ t \in \mathbb{R}$$

and the Cartesian equations are (in the case that a, b, c are all nonzero):

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$
.

(v) The shortest distance d from a point P to a line containing the point Q and pointing in the direction of \mathbf{v} is

$$d = \frac{|\mathbf{v} \times \overrightarrow{PQ}|}{|\mathbf{v}|}.$$

(vi) If the vector \mathbf{n} is normal to a plane \mathcal{P} containing the point P_0 , then the vector equation of \mathcal{P} is

$$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$$
 or equivalently $\mathbf{r} \cdot \mathbf{n} = \mathbf{r}_0 \cdot \mathbf{n}$

where **r** is the position vector of a typical point and \mathbf{r}_0 is the position vector of P_0 .

(vii) If the vector $\mathbf{n} = a \mathbf{i} + b \mathbf{j} + c \mathbf{k}$ is normal to the plane \mathcal{P} containing the point $P_0(x_0, y_0, z_0)$, then the Cartesian equation of \mathcal{P} is

$$ax + by + cz = d$$

where $d = ax_0 + by_0 + cz_0$.

(viii) If P_1 , P_2 , P_3 are non-collinear points on a plane, then a normal vector to the plane is

$$\mathbf{n} = \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}$$
.

(ix) The shortest distance d from a point P to a plane containing the point Q and with normal vector \mathbf{n} is

$$d = \frac{|\mathbf{n} \cdot \overrightarrow{PQ}|}{|\mathbf{n}|}.$$

Tutorial Exercises:

- For each of (i)–(vii), find two matching descriptions from (a)–(n). 8.
 - line containing (0,0,0) in the direction of $\mathbf{i} + \mathbf{j} + \mathbf{k}$ (i)
 - line containing (-1, 2, -1) in the direction of $-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ (ii)
 - line containing (-1, 2, -1) and (0, 0, -2)(iii)
 - plane containing (0,0,0) with normal vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ (iv)
 - (\mathbf{v}) plane containing (-1, 2, -1) with normal vector $-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$
 - (vi) plane containing (-1, 2, -1), (0, 0, -2) and (1, 3, 3)
 - plane containing (-1, 2, -1), (0, 0, -2) and (1, 3, 2)(vii)

(a)
$$x + y + z = 0$$
 (b) $x = y = z$ (c) $x + y - z = 2$

(d)
$$x+1 = \frac{y-2}{-2} = \frac{z+1}{-2}$$
 (e) $7x + 6y - 5z = 10$

(f)
$$x+1 = \frac{y-2}{-2} = \frac{z+1}{-1}$$
 (g) $x-2y-2z = -3$

(h)
$$(\mathbf{r} + 2\mathbf{k}) \cdot (7\mathbf{i} + 6\mathbf{j} - 5\mathbf{k}) = 0$$
 (i) $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 5\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} - 2\mathbf{k})$
(j) $(\mathbf{r} + 2\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} - \mathbf{k}) = 0$ (k) $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$
(l) $(\mathbf{r} + 3\mathbf{i}) \cdot (\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}) = 0$ (m) $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$

(j)
$$(\mathbf{r} + 2\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} - \mathbf{k}) = 0$$
 (k) $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$

(1)
$$(\mathbf{r} + 3\mathbf{i}) \cdot (\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}) = 0$$
 (m) $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$

- (n) $\mathbf{r} = \mathbf{i} + \mathbf{i} + \mathbf{k} t(\mathbf{i} + \mathbf{i} + \mathbf{k})$
- 9. Consider the following points in space:

$$P(1,1,1)$$
, $Q(5,-5,-3)$, $R(6,-3,-1)$, $S(2,3,3)$.

- (i) Find the parametric vector, parametric scalar and Cartesian equations of the line \mathcal{L}_1 passing through P and R, and also the line \mathcal{L}_2 passing through Q and S.
- (ii) Find the intersection point T of \mathcal{L}_1 and \mathcal{L}_2 .
- (iii) Verify that T is the midpoint of both PR and QS. Are you surprised?
- 10. The following planes intersect in a line:

$$x + y + z = 2$$
 and $x - y + 3z = 0$.

Find a point on this line of intersection and its direction. Now write down parametric and Cartesian equations for this line.

2

11. What do we mean by the angle between two planes? Find the cosine of the angle between the two planes given by equations

$$x + y + z = 6$$
 and $x - 2y - z = 3$.

12. Let P and Q be fixed points in space. Suppose R is a point in space (which varies) such that

$$\overrightarrow{OR} = \lambda \overrightarrow{OP} + \mu \overrightarrow{OQ}$$

for real numbers λ and μ , subject to the constraint

$$\lambda + \mu = 1.$$

Prove that R varies over the line that passes through P and Q. Describe the values of λ such that R is located:

- (i) somewhere on the line segment joining P to Q
- (ii) somewhere on the line beyond P on the side away from Q
- (iii) somewhere on the line beyond Q on the side away from P
- (iv) twice as far from P as it is from Q.
- 13. Let r be a fixed positive real number. Describe geometrically the configuration S in space of points whose position vectors \mathbf{r} satisfy the equation

$$|\mathbf{r}| = r$$
.

Let $P(x_0, y_0, z_0)$ be a point on S. Find the Cartesian equation of the tangent plane to S at P.

- 14. Suppose that P is a point in space and \mathcal{P} is a plane not containing P. Let Q be any point on \mathcal{P} and let R be the closest point on \mathcal{P} to P. Explain why the dot product $\overrightarrow{PQ} \cdot \overrightarrow{PR}$ must be positive.
- 15.* Find the distance from P(3,0,-1) to the plane \mathcal{P} described by the equation

$$4x + 2y - z = 6.$$

3

Find the closest point to P which lies on \mathcal{P} .