Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

17 ноября 2018 г.

1 Введение

Эти лекции были рассказаны студентам групп M3334—M3337, M3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 1

2.1 λ -исчисление

Определение 2.1 (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

- 1. Аппликация левоассациативна.
- 2. Абстракции жадные, едят все что могут.

Пример.
$$(\lambda x.(\lambda f.((fx)(fx)\lambda y.(yf))))$$

Определение 2.2 (α -эквивалентность). $A =_{\alpha} B$, если имеет место одно из следующих условий:

1.
$$A \equiv x$$
, $B \equiv y$ (x,y—переменные) и $x \equiv y$

2.
$$A \equiv P_1Q_1$$
, $B \equiv P_2Q_2$ и $P_1 =_{\alpha} P_2$, $Q_1 =_{\alpha} Q_2$

3.
$$A\lambda x.P_1,\ B\lambda y.P_2$$
и $P_1[x\coloneqq t]=_{\alpha}P_2[y\coloneqq t],$ где t — новая переменная.

Определение 2.3 (β -редекс). β -редекс — выражение вида: ($\lambda x.A$) B

Определение 2.4 (β -редукция). $A \to_{\beta} B$, если имеет мето одно из следующих условий:

1.
$$A \equiv P_1Q_1, B \equiv P_2Q_2$$
 и либо $P_1 =_{\alpha} P_2, Q_1 \rightarrow_{\beta} Q_2$, либо $P_1 \rightarrow_{\beta} P_2, Q_1 =_{\alpha} Q_2$

2.
$$A \equiv (\lambda x.P)\,Q,\, B \equiv P[x \coloneqq Q] - \mathbf{Q}$$
 свободна для подстановки вместо х в \mathbf{P}

Пример. $X \to_{\beta} X$, $(\lambda x.x) y \to_{\beta} y$

Пример. $a(\lambda x.x)y \rightarrow_{\beta} ay$

Пример. $A \equiv \lambda x.P, B \equiv \lambda x.Q, P \rightarrow_{\beta} Q$

2.2 Представление некоторых функций в лямбда исчислении

Boolean значения легко представить в терминах λ -исчисления, к примеру

- $True = \lambda a \lambda b.a$
- $False = \lambda a \lambda b.b$

Также мы можем выражать и более сложные функции If $=\lambda c.\lambda t.\lambda e.(ct)e$

Пример.

2.3 Черчевские нумералы

Определение 2.5 (черчевский нумерал).

$$\overline{n}=\lambda f.\lambda x.f^n x,$$
 где $f^n x=egin{cases} f\left(f^{(n-1)x}
ight) & \text{при } n>0 \ x & \text{при } n=0 \end{cases}$

3 Лекция 2

3.1 Формализация λ -термов, классы α -эквивалентности термов

Определение 3.1 (λ -терм). Рассмотрим классы эквивалентности $[A] = \alpha$ Будем говорить, что $[A] \to_{\beta} [B]$, если $\exists A' \in [A], B' \in [B]$, что $A' \to_{\beta} B'$.

Лемма 3.1. $=_{\alpha}$ — отношение эквивалентности.

Пусть в А есть β -редекс $\lambda x.Q$, но $P[x\coloneqq Q]$ не может быть, тогда найдем $y\notin V[P]$, $y\notin V[Q]$. Сделаем замену $P[x\coloneqq y]$. Тогда замена $P[x\coloneqq y][y\coloneqq Q]$ допустима.

Лемма 3.2. $P[x\coloneqq y]=_{\alpha}P[x\coloneqq y][y\coloneqq Q],$ если замена допустима.

3.2 Нормальная форма, λ -выражения без нормальной формы, комбинаторы $K,\ I,\ \Omega$

Определение 3.2. Нормальня форма — это λ -выражение без β -редексов.

Лемма 3.3. λ -выражение A в нормальноф форме, т.и.т.т, когда $\nexists B$, что $A \to_{\beta} B$.

Определение 3.3. $A - H.\Phi$ B, если $\exists A_1...A_n$, что $B =_{\alpha} A_1 \to_{\beta} A_2 \to_{\beta} ... \to_{\beta} A_n =_{\alpha} A$.

Определение 3.4. Комбинатор — λ -выражение без свободных переменных.

Определение 3.5.

- $I = \lambda x.x$ (Identitant)
- $K = \lambda a.\lambda b.a$ (Konstanz)
- $\Omega = (\lambda x.xx)(\lambda x.xx)$

Лемма 3.4. Ω — не имеет нормальной формы.

Доказательство. $\Omega \to_{\beta} \Omega$

3.3 β -редуцируемость

Определение 3.6. Будем говорить, что $A \to_{\beta} B$, если \exists такие $X_1..Xn$, что $A =_{\alpha} X_1 \to_{\beta} X_2 \to_{\beta} ... \to_{\beta} X_{n-1} \to_{\beta} X_n =_{\alpha} B$.

 $\twoheadrightarrow_{\beta}$ — рефлексивное и транзитивное замыкание \to_{β} . $\twoheadrightarrow_{\beta}$ не обязательно приводит к нормальной форме

Пример. $\Omega \rightarrow_{\beta} \Omega$

3.4 Ромбовидное свойство

Определение 3.7 (Ромбовидное свойство). Отношение R обладает ромбовидным свойством, если $\forall a,b,c$, таких, что $aRb,\ aRc,\ b\neq c,\ \exists d,\$ что bRd и $cRd.\$ Далее будем обозначать ромбовидное свойство как <>.

Пример. (\leq) на множестве натуральных чисел обладает <> (>) не обладает <> на множестве натуральных чисел

3.5 Теорема Чёрча-Россер, следствие о единственности нормальной формы

Теорема 3.5 (Черча-Россер). $(\rightarrow)_{\beta}$) обладает ромбовидным свойством.

Следствие 3.1. Если у A есть $H.\Phi$, то она единтсвенная с точностью до $(=_{\alpha})$ (переименования переменных).

 \mathcal{A} оказательство. Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера $\exists D \colon B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма 3.6. Если $B-\mathrm{H}.\Phi$, то $\not\equiv Q\colon B\to_\beta Q$. Значит если $B\twoheadrightarrow_\beta Q$, то количество шагов редукции равно 0.

Лемма 3.7. Если R — обладает <>, то и R^* (транзитивное, рефлексивное замыкание R) обладает R^* .

Доказательство. content... \Box

Лемма 3.8 (Грустная лемма). (\rightarrow_{β}) не обладает <>

Определение 3.8 (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$, если

1.
$$A =_{\alpha} B$$

2.
$$A \equiv P_1Q_1$$
, $B \equiv P_2Q_2$ и $P_1 \Rightarrow_{\beta} P_2$, $Q_1 \Rightarrow_{\beta} Q_2$

3.
$$A \equiv \lambda x.P_1, B \equiv \lambda x.P_2$$
 и $P_1 \rightrightarrows_{\beta} P_2$

4.
$$A =_{\alpha} (\lambda x.P)Q$$
, $B =_{\alpha} P[x := Q]$

Лемма 3.9. (\Rightarrow_{β}) обладает <>

$$P_1 \rightrightarrows_{\beta} P_2$$
 и $Q_1 \rightrightarrows_{\beta} Q_2$, то $P_1[x \coloneqq Q_1] \rightrightarrows_{\beta} P_2[x \coloneqq Q2]$