

Ventilatori e Ventilazione

Paolo Groff

ED

Ospedale «Madonna del Soccorso» San Benedetto del Tronto, Italy

Bertinoro, 12.09.2016

Ventilatore meccanico a pressione positiva (cos'era)

- Promuove l'inspirazione in un soggetto completamente passivo applicando in modo intermittente una pressione positiva all'apertura delle vie aeree (l'estremità di un tubo endotracheale o di una cannula tracheostomica)
- Consente l'espirazione interrompendo l'erogazione della pressione che ha causato l'inspirazione e sfruttando il ritorno elastico della gabbia toracica

Ventilatore meccanico a pressione positiva (Che cos'è oggi per la NIV)

■ Facilita **l'ispirazione** in Un soggetto <u>vigile e collaborante</u> applicando una pressione intermittente all'apertura delle vie aeree (una maschera a tenuta) <u>seguendo il</u> <u>suo spontaneo drive respiratorio</u>

■ Consente l'espirazione interrompendo l'erogazione della pressione che ha facilitato l'inspirazione, sfruttando il ritorno elastico della gabbia toracica, <u>quando il flusso inspiratorio è</u> <u>interrotto spontaneamente dal paziente</u>

Obiettivi della NIV

- Ridurre il lavoro respiratorio (WOB)
- Migliorare lo scambio dei gas
- Dare tempo alla terapia medica
- Garantire il comfort, perché questi pz generalmente sono vigili e collaboranti e desiderano interagire con l'ambiente nel modo più normale possibile e l'intolleranza alla metodica correla con il fallimento delle NIV (cerca di ottenere una buona sincronizzazione!)

Ventilators for NIV

	Simple Bilevel	Advanced Bilevel	ICU Ventilators
Gas-supplying system	Turbine(Piston)	Turbine	Pneumatic compressor
Inspiratory/Ex- piratory valves	Simple on-off	Simple on-offPorportional- servocontrolled	Proportional servocontrolled
Circuit	single	singledouble	double
Synchronization system	Trigger, Cycling, Leak compensation	Adjustable trigger and cycling, Leak compensation	Adjustable trigger and cycling NIV-mode
Operating system (setting, monitoring, alarms)	Simple, one modality available, No graphics	Complex, main modalities available, graphics	Complex, all modalities available, graphics, respiratory mechanics

Simple Bilevel

Ventilatore a turbina

Ventilatore da terapia intensiva

Sistema di alimentazione dei gas

Turbina: rapida risposta a improvvise necessità di incrementare il flusso (compensazione delle perdite). Incostante performance nel caso di necessità di pressioni o flussi molto alti Rapido consumo della batteria interna.

Sistema di alimentazione dei gas

Tubi per gas pre-compressi

Sistema pneumatico ad alta pressione:

Performance costante e indipendente dalle modificazioni della meccanica respiratoria e dalla richiesta ventilatoria. Consente il monitoraggio della meccanica respiratoria

Inspiratory and expiratory valves

Servo-controlled inspiratory valve

The same ventilator can fit a volume-controlled or a pressure-controlled modality

Servo-controlled expiratory valve

- Unidirectional
- •Achievement of ePEEP with:
- Stability of performance
- •Integration of PEEP function in the electronic operation of the ventilator, with particular effects on pressure-trigger setting

Circuit: humidification

Circuit: humidification

- Heated humidifier
- Heat and Moist Exchanger (HME)

- •Increased flow-resistances
- •To be substituted every 24 h

Circuit: single vs double

Rebreathing when PEEP < 4 Cm H₂O

No Rebreathing

Oxygen supply

The FiO₂ depends on: O₂ flow; Flow rates in the circuit; position of exhalation port. Rarely > 50%

Constant performance; possible Setting of a high FiO₂

Sistema di sincronizzazione

Promuove la sincronizzazione consentendo al ventilatore di adeguarsi alla meccanica respiratoria spontanea del paziente

Sistema di sincronizzazione

Trigger inspiratorio: viene impostato per dare inizio al flusso inspiratorio(trigger a pressione o flusso)

Trigger espiratorio: viene impostato per garantire il ciclaggio da inspirazione ad espirazione (trigger a flusso)

Limiti del trigger a pressione

- C'è un tempo, per quanto breve, in cui il Pz respira in un circuito chiuso senza generare flusso
- In questo tempo il Pz compie un lavoro respiratorio isometrico.
- Esiste quindi un **ritardo** nell'erogazione del flusso inspiratorio (peggiorato anche dalla fisiologica latenza tra stimolo neurale e contrazione muscolare TRIGGER NEURALE, e dalla latenza intrinseca della macchina <100ms) percepito dal paziente come dispnea
- Se presente una PEEPi questa richiede ulteriore lavoro respiratorio a carico del Pz per controbilanciarla e raggiungere la soglia del trigger

26

Vantaggi del trigger a flusso

• Quando il Pz inizia l'inspirazione e non vi è ancora l'erogazione del flusso inspiratorio da parte della macchina, egli trova comunque nel circuito una quota di flusso (flow by) che in qualche modo colma questa latenza, eliminando parte del lavoro isometrico necessario all'attivazione del trigger

"Rampa" o Rise-time

Rise-time

Better muscular unloading in COPD, but

Flow-related inspiratory terminating reflex

Early cycling

Possible increase in airleaks

Comfort?

<u>Individual titration should aim for tolerance and minimal airleaks with a relatively high pressurization rate</u>

Trigger espiratorio a flusso

Expiratory trigger

Fig. 4. Examples of flow-termination criteria of 10%, 25%, and 50%, with pressure support of 15 cm H₂O and PEEP of 5 cm H₂O. Note the effect of flow-termination criteria on inspiratory time. (Adapted from Reference 44.)

BPCO, Ti eTrigger Espiratorio

- Nel BPCO l'inspirazione deve essere breve, con flussi elevati, per consentire un adeguato tempo espiratorio
- Lo stimolo neurogeno e la contrazione diaframmatica cessano precocemente in questi Pz durante l'inspirazione
- Un trigger settato al 25% del picco di flusso può ingenerare un ciclaggio all'espirazione tardivo, percepito come non confortevole da parte del paziente che si sente sovrassistito dal ventilatore
- Aumentare questa percentuale significa anticipare il ciclaggio migliorando la sincronizzazione e quindi l'adattamento del Pz (comfort)

Perdite!

- La differenza fondamentale tra la ventilazione convenzionale e la NIV è il fatto che questa tipicamente comporta delle perdite all'interfaccia
- Le perdite nel sistema di distribuzione possono causare problemi nel passagio da espirazione ad inspirazione (delayed trigger; sforzi inspiratori inefficaci; autotriggering); durante l'ispirazione (ridotta velocità di pressurizzazione); durante il ciclaggio (hanging on the ventilator); e durante l'espirazione (perdita della PEEP)

Leak compensation

Table 5. Algorithm of the Auto-Track System in the BiPAP Vision Ventilator

"Enhanced leak estimation" identifies the leak by comparing the original baseline flow to the new baseline flow, and uses complex digital signal processing to recognize the differences as leaks and to quickly adjust.

"Volume trigger" feature triggers IPAP during spontaneous breathing in the spontaneous/timed mode. When patient effort generates inspiratory flow and causes 6 mL of volume to accumulate above the baseline leak, IPAP is triggered.

"Flow reversal", "shape trigger", and "spontaneous expiratory threshold" recognize an abnormal increase in flow due to a leak during the latter part of inspiration with an immediate return to EPAP, keeping a good synchronization with the patient's breathing effort.

IPAP = inspiratory positive airway pressure

EPAP = expiratory positive airway pressure

L'atto respiratorio meccanico

Variabili di Controllo

Sono le variabili su cui i ventilatori intervengono per promuovere l'inspirazione. Una variabile di controllo rimane costante, cioè non modifica il suo profilo d'onda, mentre le condizioni meccaniche del sistema che dipendono da Compliance e Resistenze si modificano

Variabili di fase

Condizionano determinate fasi dell'inspirazione

Trigger: è la variabile che determina l'inizio dell'ispirazione

Limite: è la variabile che esprime il"target" di pressione, volume o flusso durante l'inspirazione

Ciclaggio: è il valore di tempo, pressione, volume o flusso che determinano la fine dell'ispirazione

Interazione paziente-ventilatore

	trigger	limit	cycle
spontaneous	patient	patient	patient
supported	patient	ventilator	patient
assisted	patient	ventilator	ventilator
controlled	ventilator	ventilator	ventilator

CMV A/C A PSV Bilevel

sost
Il ventila preimpos possono pz, egli respiratori spontanei

Pressure Support Ventilation

- Fornisce un supporto variabile
- Il paziente controlla tutte le fasi dell'atto respiratorio ad eccezione del limite di pressione
- Il pz. attiva il trigger; il ventilatore fornisce un flusso per raggiungere un determinato livello di pressione, in finalizzato al Vtexp desiderato; il pz. mantiene l'atto inspiratorio per quanto tempo desidera, il flusso si interrompe quando scende al di sotto di una determinata percentuale del PIF
- I volumi correnti hanno un'ampiezza variabile, esattamente come nel respiro spontaneo

Pressure Support Ventilation

