Advanced Statistical Modelling

Module number: DALT7009

Student Number: 19132761

MSc Course: Data Analytics

Word count: 1252

Table of Contents

1.	
	The statistical model
	Produce a profile plot for repeated measures data4
2.	
	Visualising the Correlation Structure
	Fitting a few covariance structures to the data and comparing the fit statistics. $\dots 9$
3.	
	CS model: 10
	TOEP model:
4.	Fit a linear growth curve treating age as a continuous variable
	CS model: 13
	TOEP model:
5.	
	Add the GROUP=gender option
	Fit a growth curve model with GROUP=gender17
6.	Fit a random coefficient model with an unstructured covariance
	Fit random coefficient model
	The predicted growth measurement for the first person at age 13
7.	Fit a random coefficient model plus an AR(1) structure with GROUP=gender 20

1. Describe the statistical model and produce a profile plot

The statistical model

Medical researchers are interested in growth measurements for children. The growth measurements included dental measurements from the pituitary gland's center to the pterygomaxillary fissure for 11 girls and 16 boys at ages 8, 10, 12, and 14 years. The subjects are individual children, and there are four repeated measures on each. The data is stored in the SAS Growth data set. The variables included in the data set are people, Gender, Age, and growth rate.

The data has a nested classification because Age is nested within Gender. Age and Gender are considered fixed effects because only four ages (8, 10, 12, and 14) and two genders (boy and girl) are used in the study, and we are only interested in making inference about these four age groups in girl and boy. Person is considered a random effect because they are randomly selected from a population.

Nested Classifications

Gender		G	irl			Во	ру	
Age	8	10	12	14	8	10	12	14
Person	1.11	111	111	111	1227	1227	1227	1227

The purpose of the study is to:

- Estimate and compare the growth means over the entire population of children.
- Account for the variability in the response variable (growth) due to the Person variance.

The Model:

$$y_{ijk} = \mu + \alpha_i + \gamma_k + (\alpha \gamma)_{ik} + \varepsilon_{ijk}$$

$$\varepsilon_{ijk} \sim N(0, R)$$

 y_{ijk} the growth measurement at the ith Gender on the jth Person and kth Age

 μ overall mean and an unknown fixed effect

 α_i the fixed intercept effect of the ith Gender

 γ_k the fixed effect of the kth Age

 $(\alpha \gamma)_{ik}$ the fixed effect of the interaction between the ith Gender and the kth Age

 $\boldsymbol{\varepsilon}_{ijk}$ the random error associated with the jth Person at ith Gender at Age k.

Produce a profile plot for repeated measures data

```
/* 1 */
proc sgplot data=Growth;
vline age / group=gender stat=mean response=growth;
title 'Average Growth vs. Age by Gender';
run;
title;
```


The average growth measurements for boys and girls are relatively linear. Boys seem to have a more significant growth measure than girls. Boys also have a slightly faster growth rate than girls starting at 10 years old.

2. Determine the appropriate covariance structure

Visualising the Correlation Structure

Step 1: Model the mean structure

$$\mu + \alpha_i + \gamma_j + (\alpha \gamma)_{ij}$$

 $\mu + gender + age + (age*gender)$

 μ overall mean

 α_i the fixed intercept effect of the ith Gender

 γ_j the fixed effect of the jth Age

 $(\alpha\gamma)_{ij}$ the interaction between the ith Gender and the jth Age

Step 2: Specify the Covariance Structure

```
/* 2.b */
proc mixed data=Growth;
class gender age;
model growth=gender age gender*age / ddfm=kr2;
repeated age / type=un subject=person r rcorr;
ods output covparms=cov rcorr=corr;
run;
```

The variances and covariances appear to be pretty constant.

Estimated R Matrix for Subject 1							
Row	Col1	Col2	Col3	Col4			
1	5.4155	2.7168	3.9102	2.7102			
2	2.7168	4.1848	2.9272	3.3172			
3	3.9102	2.9272	6.4557	4.1307			
4	2.7102	3.3172	4.1307	4.9857			

It shows the covariance matrix for the first block (person 1) and every block because every block has an identical covariance structure. The diagonal elements show the variances of repeated measures at each time point; the off-diagonal elements represent the covariance of repeated measures taken at different time points. It might be easier to see the patterns of the variances and covariances from the plot produced later.

Estimated R Correlation Matrix for Subject 1								
Row	Col1	Col2	Col3	Col4				
1	1.0000	0.5707	0.6613	0.5216				
2	0.5707	1.0000	0.5632	0.7262				
3	0.6613	0.5632	1.0000	0.7281				
4	0.5216	0.7262	0.7281	1.0000				

The correlation matrix is showed for the first block (person 1) and every block because every block has an identical correlation structure. The diagonal elements are always equal to one; the off-diagonal elements show the correlation of repeated measures taken at different time points.

Step 3: Produce a plot of covariance versus distance in time.

```
/* 2.c */
data times;
do time1=1 to 4;
do time2=1 to time1;
distance=time1-time2;
output;
end;
end;
run;
data covplot;
merge times cov;
proc print data=covplot;
run;
proc sgplot data=covplot noautolegend;
label distance='Distance in Time';
series y=estimate x=distance / group=time1 datalabel=time1;
title 'Covariance vs. Distance in Time';
run;
title;
```

The times data set produces time pairs, and the hourly distance between them corresponds to the covariance parameter estimates in the data set cov.

As the distance between pairs of observations increases, covariance tends to decrease.

The pattern of decreasing covariance with distance is roughly the same for all reference times, indicated by each line's number.

The values plotted at a distance of 0 are the variances among the observations at each of the four-time points. They range from 4.2 to 6.5 and do not seem to be increasing or decreasing in variances with time. The values plotted at distances 1, 2, and 3 represent the covariances between pairs 1, 2, or 3 distances apart. On average, they seem to be pretty constant. Therefore, concluding that a model with constant variance over time is probably adequate for the data.

```
/* 2.d */
%macro forplot(corrdata, dim); proc datasets;
delete corrplot; run;
%do i=1 %to %eval(&dim-1);
data corrplot&i(rename=(col&i=corr row=time1));
set &corrdata(keep=col&i row); distance=row-&i;
time2=&i;
if distance > 0; run;
proc append base=corrplot data=corrplot&i; run;
%end;
 %mend;
 %forplot(corr, 4);
proc print data=corrplot; run;
proc sgplot data=corrplot noautolegend;
label distance='Distance in Time';
series y=corr x=distance / group=time1 datalabel=time1;
yaxis min=0 max=1;
xaxis integer;
title 'Correlation vs. Distance in Time';
run; title;
```


The correlations between pairs of observations at distances 1, 2, and 3 apart in time seem to be relatively stable. A compound symmetry (CS) covariance structure might be appropriate.

Fitting a few covariance structures to the data and comparing the fit statistics.

```
/* 2.e */
ods listing close;
proc mixed data=Growth;
class gender age person;
model growth=gender age gender*age / ddfm=kr2;
repeated age / type=un subject=person;
ods output FitStatistics=FitUn(rename=(value=UN)); run;
proc mixed data=Growth;
class gender age person;
model growth=gender age gender*age / ddfm=kr2;
repeated age / type=ar(1) subject=person;
ods output FitStatistics=FitAR1(rename=(value=AR1)); run;
proc mixed data=Growth;
class gender age person;
model growth=gender age gender*age / ddfm=kr2;
repeated age / type=toep subject=person;
ods output FitStatistics=FitToep(rename=(value=Toep));run;
proc mixed data=Growth;
class gender age person;
model growth=gender age gender*age / ddfm=kr2;
repeated age / type=cs subject=person;
ods output FitStatistics=FitCS(rename=(value=CS));run;
data fits; merge FitUN FitAR1 FitToep FitCS; by descr; run;
ods listing; proc print data=fits; run;
```

Obs	Descr	UN	AR1	Тоер	cs
1	-2 Res Log Likelihood	414.0	434.5	418.9	423.4
2	AIC (Smaller is Better)	434.0	438.5	426.9	427.4
3	AICC (Smaller is Better)	436.5	438.7	427.4	427.5
4	BIC (Smaller is Better)	447.0	441.1	432.1	430.0

The CS model and TOEP model seem to provide similar fits to the data.

3. Make statistical inference

CS model:

```
**CS Model;
proc mixed data=Growth;
class gender age person;
model growth = gender age gender*age / ddfm=kr2;
repeated age / type=cs subject=person;
lsmeans gender*age / slice=gender slice=age;
run;
```

Covariance	Parameter	Estimates
Cov Parm	Subject	Estimate
cs	person	3.2854
Residual		1.9750

Fit Statistics				
-2 Res Log Likelihood	423.4			
AIC (Smaller is Better)	427.4			
AICC (Smaller is Better)	427.5			
BIC (Smaller is Better)	430.0			

Type 3 Tests of Fixed Effects								
Effect	Num DF	Den DF	F Value	Pr > F				
gender	1	25	9.29	0.0054				
age	3	75	35.35	<.0001				
gender*age	3	75	2.36	0.0781				

The covariance of the growth measurements between any pair of the repeated measures for a given subject is estimated to be 3.29. The residual variance is estimated to be 1.98. The gender*age interaction has a p-value of 0.078, which is marginally significant.

	Least Squares Means								
Effect	Effect gender ag		Estimate	Standard Error	DF	t Value	Pr > t		
gender*age	F	8	21.1818	0.6915	46.1	30.63	<.0001		
gender*age	F	10	22.2273	0.6915	46.1	32.14	<.0001		
gender*age	F	12	23.0909	0.6915	46.1	33.39	<.0001		
gender*age	F	14	24.0909	0.6915	46.1	34.84	<.0001		
gender*age	М	8	22.8750	0.5734	46.1	39.89	<.0001		
gender*age	М	10	23.8125	0.5734	46.1	41.53	<.0001		
gender*age	М	12	25.7188	0.5734	46.1	44.85	<.0001		
gender*age	М	14	27.4688	0.5734	46.1	47.91	<.0001		

The output from the SLICE=gender option in the LSMEANS statement suggests that Age is a significant factor for both boys and girls.

Tests of Effect Slices								
Effect	gender	age	Num DF	Den DF	F Value	Pr > F		
gender*age	F		3	75	8.55	<.0001		
gender*age	М		3	75	33.84	<.0001		
gender*age		8	1	46.1	3.55	0.0658		
gender*age		10	1	46.1	3.11	0.0843		
gender*age		12	1	46.1	8.56	0.0053		
gender*age		14	1	46.1	14.14	0.0005		

The output from the SLICE=age option indicates that at ages 12 and 14, the p-values are 0.0053 and 0.0005, respectively. Hence, the growth measurements between boys and girls are significantly different. At ages 8 and 10, the p-values are 0.066 and 0.084, respectively, showing that the differences in growth measurements between boys and girls are marginally significant.

TOEP model:

```
**TOEP Model;

proc mixed data=Growth;

class gender age person;

model growth = gender age gender*age / ddfm=kr2;

repeated age / type=toep subject=person;

lsmeans gender*age / slice=gender slice=age;

run;
```

Covariance Parameter Estimates					
Cov Parm	Subject	Estimate			
TOEP(2)	person	3.3325			
TOEP(3)	person	3.7210			
TOEP(4)	person	2.4870			
Residual		5.3195			

Fit Statistics					
-2 Res Log Likelihood	418.9				
AIC (Smaller is Better)	426.9				
AICC (Smaller is Better)	427.4				
BIC (Smaller is Better)	432.1				

Type 3 Tests of Fixed Effects								
Effect Num DF Den DF F Value Pr > F								
gender	1	25.3	9.19	0.0055				
age	3	40.5	29.03	<.0001				
gender*age	3	40.5	2.27	0.0953				

	Least Squares Means							
Effect	gender	age	Estimate	Standard Error	DF	t Value	Pr > t	
gender*age	F	8	21.1818	0.6954	45.8	30.46	<.0001	
gender*age	F	10	22.2273	0.6954	45.8	31.96	<.0001	
gender*age	F	12	23.0909	0.6954	45.8	33.20	<.0001	
gender*age	F	14	24.0909	0.6954	45.8	34.64	<.0001	
gender*age	М	8	22.8750	0.5766	45.8	39.67	<.0001	
gender*age	М	10	23.8125	0.5766	45.8	41.30	<.0001	
gender*age	М	12	25.7188	0.5766	45.8	44.60	<.0001	
gender*age	М	14	27.4688	0.5766	45.8	47.64	<.0001	

	Tests of Effect Slices								
Effect gender age Num DF Den DF F Value Pr > F									
gender*age	F		3	40.5	6.77	0.0008			
gender*age	М		3	40.5	28.56	<.0001			
gender*age		8	1	45.8	3.51	0.0673			
gender*age		10	1	45.8	3.08	0.0860			
gender*age		12	1	45.8	8.46	0.0056			
gender*age		14	1	45.8	13.98	0.0005			

The results are very similar to the CS model.

4. Fit a linear growth curve treating age as a continuous variable

CS model:

```
**CS Model;
proc mixed data=Growth;
class gender person;
model growth=gender age gender*age/ ddfm=kr2 outp=preddata s;
repeated / type=cs subject=person;
run;
proc sgplot data=preddata;
series y=pred x=age / group=gender;
titlel 'Predicted Growth Curve';
title2 'CS Model';
run; title;
```

Solution for Fixed Effects							
Effect	gender	Estimate	Standard Error	DF	t Value	Pr > t	
Intercept		16.3406	0.9813	104	16.65	<.0001	
gender	F	1.0321	1.5374	104	0.67	0.5035	
gender	М	0					
age		0.7844	0.07750	79	10.12	<.0001	
age*gender	F	-0.3048	0.1214	79	-2.51	0.0141	
age*gender	М	0					

The linear regression models are:

- boys: growth = 16.3406 + 0.7844 * age
- girls: growth = (16.3406+1.0321) + (0.7844-0.3048)*age = 17.3727+0.4796*age

Type 3 Tests of Fixed Effects							
Effect Num DF Den DF F Value Pr > F							
gender	1	104	0.45	0.5035			
age	1	79	108.36	<.0001			
age*gender	1	79	6.30	0.0141			

The age * gender interaction is significant, indicating the need of an unequal slope model. The age effect is also significant, which indicates that the overall slope is nonzero.

TOEP model:

```
**TOEP Model;
proc mixed data=Growth;
class gender person;
model growth=gender age gender*age/ ddfm=kr2 outp=preddata s;
repeated / type=toep subject=person;
run;
proc sgplot data=preddata;
series y=pred x=age / group=gender;
title1 'Predicted Growth Curve';
title2 'TOEP Model';
run; title;
```

	Solution for Fixed Effects							
Effect	gender	Estimate	Standard Error	DF	t Value	Pr > t		
Intercept		16.2704	1.0723	41.2	15.17	<.0001		
gender	F	1.1385	1.6799	41.2	0.68	0.5017		
gender	М	0						
age		0.7973	0.08674	28.1	9.19	<.0001		
age*gender	F	-0.3214	0.1359	28.1	-2.37	0.0252		
age*gender	М	0						

These linear regression models are similar to the CS model:

- boys: growth = 16.2704 + 0.7973 * age
- girls: growth = (16.2704+1.1385) + (0.7973-0.3214)*age = 17.4089+0.4759*age

Type 3 Tests of Fixed Effects							
Effect Num DF Den DF F Value Pr > F							
gender	1	41.2	0.46	0.5017			
age	1	28.1	87.78	<.0001			
age*gender	1	28.1	5.59	0.0252			

The results are very similar to the CS model.

5. Add the GROUP=gender option

Add the GROUP=gender option

```
**CS Model;
proc mixed data=Growth;
class gender age person;
model growth = gender age gender*age / ddfm=kr2;
repeated age / type=cs subject=person group=gender;
run;
```

GROUP=gender

without GROUP

Fit Statistics			
-2 Res Log Likelihood	406.4		
AIC (Smaller is Better)	414.4		
AICC (Smaller is Better)	414.8		
BIC (Smaller is Better)	419.5		

Fit Statistics		
-2 Res Log Likelihood	423.4	
AIC (Smaller is Better)	427.4	
AICC (Smaller is Better)	427.5	
BIC (Smaller is Better)	430.0	

Compared with the model without the GROUP = option, both AICC and BIC values from this model are smaller, concluding that the GROUP = option is helpful for the data.

```
**TOEP Model;

proc mixed data=Growth;

class gender age person;

model growth = gender age gender*age / ddfm=kr2;

repeated age / type=toep subject=person group=gender;

run;
```

GROUP=gender

without GROUP

Fit Statistics	
-2 Res Log Likelihood	401.2
AIC (Smaller is Better)	417.2
AICC (Smaller is Better)	418.8
BIC (Smaller is Better)	427.6

Fit Statistics			
-2 Res Log Likelihood	418.9		
AIC (Smaller is Better)	426.9		
AICC (Smaller is Better)	427.4		
BIC (Smaller is Better)	432.1		

The CS model seems to be the best fitting model with GROUP = gender option.

Fit a growth curve model with GROUP=gender

```
** for CS Model;
proc mixed data=Growth;
class gender person;
model growth=gender age gender*age/ ddfm=kr2 outp=preddata s;
repeated / type=cs subject=person group=gender;
run;

proc sgplot data=preddata;
series y=pred x=age / group=gender;
title1 'Predicted Growth Curve';
title2 'CS Model with GROUP=gender';
run; title;
```

Solution for Fixed Effects							
Effect	gender	Estimate	Standard Error	DF	t Value	Pr > t	
Intercept		16.3406	1.1287	60	14.48	<.0001	
gender	F	1.0321	1.4183	86.5	0.73	0.4687	
gender	М	0					
age		0.7844	0.09382	47	8.36	<.0001	
age*gender	F	-0.3048	0.1076	70.9	-2.83	0.0060	
age*gender	М	0					

The linear regression models are as follows:

- boys: growth = 16.3406 + 0.7844 * age
- girls: growth = (16.3406+1.0321) + (0.7844-0.3048)*age = 17.3727+0.4796*age

Type 3 Tests of Fixed Effects								
Effect Num DF Den DF F Value Pr > F								
gender	1	86.5	0.53	0.4687				
age	1	70.9	138.11	<.0001				
age*gender	1	70.9	8.03	0.0060				

The Type 3 tests indicate that Age*gender is a significant factor (p-value is small).

The slopes for Age are not the same between the boys and the girls.

6. Fit a random coefficient model with an unstructured covariance

Fit random coefficient model

```
/* 6.a */
proc mixed data=Growth;
class gender person;
model growth=gender age gender*age / s ddfm=kr2;
random int age / type=un subject=person s;
run;
```

Covariance Parameter Estimates						
Cov Parm Subject Estimate						
UN(1,1)	person	5.7864				
UN(2,1)	person	-0.2896				
UN(2,2)	person	0.03252				
Residual 1.7162						

Fit Statistics				
-2 Res Log Likelihood	432.6			
AIC (Smaller is Better)	440.6			
AICC (Smaller is Better)	441.0			
BIC (Smaller is Better)	445.8			

Solution for Fixed Effects							
Effect	gender	Estimate	Standard Error	DF	t Value	Pr > t	
Intercept		16.3406	1.0185	25	16.04	<.0001	
gender	F	1.0321	1.5957	25	0.65	0.5237	
gender	М	0					
age		0.7844	0.08600	25	9.12	<.0001	
age*gender	F	-0.3048	0.1347	25	-2.26	0.0326	
age*gender	М	0					

Solution for Random Effects							
Effect	person	Estimate	Std Err Pred	DF	t Value	Pr > t	
Intercept	1	-0.6413	2.3457	3.18	-0.27	0.8014	
age	1	-0.04475	0.2043	2.58	-0.22	0.8428	
Intercept	2	-0.6602	2.3457	3.18	-0.28	0.7957	
age	2	0.09029	0.2043	2.58	0.44	0.6930	
Intercept	3	-0.2489	2.3457	3.18	-0.11	0.9218	
age	3	0.1136	0.2043	2.58	0.56	0.6230	
Intercept	4	1.6611	2.3457	3.18	0.71	0.5273	
age	4	0.02821	0.2043	2.58	0.14	0.9003	
Intercept	5	0.5710	2.3457	3.18	0.24	0.8226	
age	5	-0.05496	0.2043	2.58	-0.27	0.8080	
Intercept	6	-0.8263	2.3457	3.18	-0.35	0.7467	
age	6	-0.04806	0.2043	2.58	-0.24	0.8315	
Intercept	7	0.05820	2.3457	3.18	0.02	0.9817	
age	7	0.02348	0.2043	2.58	0.11	0.9169	
Intercept	8	1.4133	2.3457	3.18	0.60	0.5871	
age	8	-0.07178	0.2043	2.58	-0.35	0.7521	
Intercept	9	-0.5389	2.3457	3.18	-0.23	0.8323	
age	9	-0.07478	0.2043	2.58	-0.37	0.7423	
Intercept	10	-2.9842	2.3457	3.18	-1.27	0.2884	
age	10	-0.06270	0.2043	2.58	-0.31	0.7821	

Example of equation for person 1 (girl) is:

growth =
$$(16.3406 + 1.0321) + (0.7844 - 0.3048) * age - 0.6413 - 0.04475 * age$$

= $16.7314 + 0.4349 * age$

The predicted growth measurement for the first person at age 13

```
/* 6.b */
data new;
input person gender $ age;
datalines;
1 F 13
; run;
data growth;
set Growth new;
run;
proc mixed data=growth;
class gender person;
model growth=gender age gender*age / ddfm=kr2 outp=pred;
random int age / type=un subject=person;
proc print data=pred;
where age=13;
run;
```

Obs	person	gender	growth	age	Pred	StdErrPred	DF	Alpha	Lower	Upper	Resid
109	1	F		13	22.3837	0.77389	69.6779	0.05	20.8401	23.9273	

The predicted growth measurement for the first person at age 13 is 22.3837.

7. Fit a random coefficient model plus an AR(1) structure with GROUP=gender

```
/* 7 */
proc mixed data=Growth;
class gender person;
model growth = gender age gender*age / s ddfm=kr2;
random int age / type=un subject=person;
repeated / type=ar(1) group=gender subject=person;
run;
```

Covariance Parameter Estimates						
Cov Parm Subject Group Estimate						
UN(1,1)	person		5.4638			
UN(2,1)	person		-0.2909			
UN(2,2)	person		0.03737			
Variance	person	gender F	0.3870			
AR(1)	person	gender F	-0.1314			
Variance	person	gender M	2.2322			
AR(1)	person	gender M	-0.2555			

Fit Statistics				
-2 Res Log Likelihood	410.5			
AIC (Smaller is Better)	424.5			
AICC (Smaller is Better)	425.6			
BIC (Smaller is Better)	433.6			

Type 3 Tests of Fixed Effects								
Effect Num DF Den DF F Value Pr > F								
gender	1	24.7	0.73	0.4018				
age	1	26.7	118.46	<.0001				
age*gender	1	26.7	7.20	0.0124				

This model has more minor fit statistics than the model fitted for the previous random coefficient model with independent errors. It seems to fit the data better. The Type 3 Tests of Fixed Effects also remains the same conclusion.