EECS 331: Introduction to Computational Photography

HW3: Flash/No Flash Photography

1. Write an Android Program to capture a Flash/No Flash pair

Backbone project was not used due to Tegra Tab's white balance issue, although the code has been included with this assignment.

**The following are the images given in CANVAS.

Fig. 1: Image with flash

Fig. 2: Image without flash

2. De-noising the No-flash image captured previously

MATLAB program was created to de-noise the images (HW3.m)

Process:

- 1. Load images to MATLAB
- 2. Crop them to required sizes ($\sim 1000 \times 800$)
- 3. Convert to double using im2double function.
- 4. Separate RGB color channels from the image.
- 5. Apply bilateralFilter() to each channel individually using optimal filter settings.
- 6. Concatenate them to form the de-noised image.

Optimal Filter Settings:

Values for σ_s and σ_R are selected by fine-tuning for best results.

 $\sigma_s = 5$

 $\sigma_{R} = 0.05$

Fig.3: De-noised No-flash image

3. Extract the details from the flash image and fuse the images together

Bilateral filter applied to image with Flash.

Optimal Filter Settings (For Flash image):

Values for σ_s and σ_R are selected by fine-tuning for best results.

 $\sigma_s = 4$

 $\sigma_{\scriptscriptstyle R}=0.08$

F is flash image (say)

F_D is the de-noised flash image (say)

A_D is the de-noised no-flash image (say)

 $\varepsilon = 0.02$ (given)

Fusing Image for result:

The images are fused together by using the following equation:

$$Fused = A_D * \frac{F + \varepsilon}{F_D + \varepsilon}$$

RESULT:

Fig.4: Final Fused Image

Comparison:

No-Flash image with high noise

Flash image with high noise

Fused Image with Low Noise right colors

