INFO 5709 Data Visualization and Communications

Importance of data in monitoring COVID-19 spread

Amulya Akinapuram 11558530

```
# Import Python Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

Loading the .csv file

country_wise_df=pd.read_csv("country_wise_latest.csv")

country_wise_df.head()
```

	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered	/ 100 Cases	/ 100 Cases	100 Recovered
0	Afghanistan	36263	1269	25198	9796	106	10	18	3.50	69.49	5.04
1	Albania	4880	144	2745	1991	117	6	63	2.95	56.25	5.25
2	Algeria	27973	1163	18837	7973	616	8	749	4.16	67.34	6.17
3	Andorra	907	52	803	52	10	0	0	5.73	88.53	6.48
4	Angola	950	41	242	667	18	1	0	4 32	25 47	16 94

country_wise_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 187 entries, 0 to 186
Data columns (total 15 columns):

Ducu	COTAIIII (COCAT TO COTAIII	13).	
#	Column	Non-Null Count	Dtype
0	Country/Region	187 non-null	object
1	Confirmed	187 non-null	int64
2	Deaths	187 non-null	int64
3	Recovered	187 non-null	int64
4	Active	187 non-null	int64
5	New cases	187 non-null	int64
6	New deaths	187 non-null	int64
7	New recovered	187 non-null	int64
8	Deaths / 100 Cases	187 non-null	float64
9	Recovered / 100 Cases	187 non-null	float64
10	Deaths / 100 Recovered	187 non-null	float64
11	Confirmed last week	187 non-null	int64
12	1 week change	187 non-null	int64
13	1 week % increase	187 non-null	float64

14 WHO Region 187 non-null object

dtypes: float64(4), int64(9), object(2)

memory usage: 22.0+ KB

country_wise_df.describe()

	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered	Deaths 100 Case
count	1.870000e+02	187.000000	1.870000e+02	1.870000e+02	187.000000	187.000000	187.000000	187.00000
mean	8.813094e+04	3497.518717	5.063148e+04	3.400194e+04	1222.957219	28.957219	933.812834	3.01951
std	3.833187e+05	14100.002482	1.901882e+05	2.133262e+05	5710.374790	120.037173	4197.719635	3.45430
min	1.000000e+01	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000	0.000000	0.00000
25%	1.114000e+03	18.500000	6.265000e+02	1.415000e+02	4.000000	0.000000	0.000000	0.94500
50%	5.059000e+03	108.000000	2.815000e+03	1.600000e+03	49.000000	1.000000	22.000000	2.15000
75%	4.046050e+04	734.000000	2.260600e+04	9.149000e+03	419.500000	6.000000	221.000000	3.87500
max	4.290259e+06	148011.000000	1.846641e+06	2.816444e+06	56336.000000	1076.000000	33728.000000	28.56000

Checking for missing values

country_wise_df.isnull().sum()

Country/Region Confirmed Deaths Recovered Active New cases New deaths New recovered Deaths / 100 Cases Recovered / 100 Cases 0 Deaths / 100 Recovered Confirmed last week 0 1 week change 0 1 week % increase 0 WHO Region dtype: int64

#sorting values

ConfirmedCases=country_wise_df[['Country/Region','Confirmed']].sort_values(by=['Confirmed'],ascending=False).head(10) ConfirmedCases

```
Country/Region Confirmed 🧦
```

#plotting bar plot
sns.barplot(ConfirmedCases,x='Confirmed',y='Country/Region')

<Axes: xlabel='Confirmed', ylabel='Country/Region'>

#correlation and heatmap
corr=country_wise_df.corr()
f, ax = plt.subplots(figsize=(12, 6))
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, annot=True, mask = mask,cmap="Blues")

```
<Axes: >
# Import label encoder
from sklearn import preprocessing
# label encoder object knows
# how to understand word labels.
label encoder = preprocessing.LabelEncoder()
# Encode labels in column 'species'.
country_wise_df['Country/Region']= label_encoder.fit_transform(country_wise_df['Country/Region'])
country_wise_df['WHO Region']= label_encoder.fit_transform(country_wise_df['WHO Region'])
print(country_wise_df['Country/Region'].unique())
print(country_wise_df['WHO Region'].unique())
     Γ 0
           1
               2
                   3
                       4
                           5
                               6
                                   7
                                       8
                                           9
                                              10 11 12 13
                                                              14 15
           19
               20
                  21
                      22
                           23
                              24
                                  25
                                      26
                                          27
                                              28
                                                  29
                                                      30
                                                          31
                                                              32
                                                                  33
       36 37
                          41 42
                                                              50
              38
                  39
                      40
                                  43 44
                                          45
                                              46
                                                  47
                                                      48
                                                          49
                                                                  51
       54 55 56 57
                      58 59 60 61 62 63 64 65 66 67 68 69
                                                                          71
       72 73 74 75 76 77 78 79 80
                                          81 82 83 84 85 86 87
       90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
      108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
      162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
      180 181 182 183 184 185 1861
     [2 3 0 1 5 4]
predicting the death rate
# Putting feature variable to X
X = country_wise_df[['Country/Region','WHO Region','Confirmed','Active','Recovered']]
# Putting response variable to y
y = country_wise_df['Deaths']
# now lets split the data into train and test
from sklearn.model_selection import train_test_split
# Splitting the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train.shape, X_test.shape
     ((149, 5), (38, 5))
from sklearn.ensemble import RandomForestClassifier
classifier_rf = RandomForestClassifier(random_state=42, n_jobs=-1, max_depth=5,
                                      n_estimators=100, oob_score=True)
classifier_rf.fit(X_train, y_train)
# checking the oob score
classifier_rf.oob_score_
     0.06711409395973154
#prediction
y_pred=classifier_rf.predict(X_test)
y_pred
                                                         0, 44022,
     array([
               78,
                      69,
                              1,
                                  165,
                                         543,
                                                165,
                                                                      51,
                                                                    8777,
              345.
                     15.
                            228.
                                   45,
                                           0,
                                               4652,
                                                       474.
                                                               20.
                      7,
                                           7,
                                                         7,
              165,
                                                  0,
                            285,
                                                               80,
                                                                     167.
                                   11,
            44022,
                                                        285,
                                                                0, 44022,
                    1676,
                           1676,
                                   11,
                                         165,
                                                285,
               11,
                   5842])
```

```
from sklearn.metrics import accuracy_score
accuracy=accuracy_score(y_test,y_pred)
print('Accuracy:', round(accuracy, 2), '%.')
```

Accuracy: 0.11 %.

This algorithm is not a good model to predict the death rates

Loading .csv file

```
covid_df=pd.read_csv("covid_19_clean_complete.csv")
```

covid_df.head()

	Province/State	Country/Region	Lat	Long	Date	Confirmed	Deaths	Recovered	Active	WHO Region
0	NaN	Afghanistan	33.93911	67.709953	2020- 01-22	0	0	0	0	Easterr Mediterranear
1	NaN	Albania	41.15330	20.168300	2020- 01-22	0	0	0	0	Europe
2	NaN	Algeria	28.03390	1.659600	2020- 01-22	0	0	0	0	Africa
_			10 50000		2020-	^	^	^	^	-

covid_df.describe()

	Lat	Long	Confirmed	Deaths	Recovered	Active
count	49068.000000	49068.000000	4.906800e+04	49068.000000	4.906800e+04	4.906800e+04
mean	21.433730	23.528236	1.688490e+04	884.179160	7.915713e+03	8.085012e+03
std	24.950320	70.442740	1.273002e+05	6313.584411	5.480092e+04	7.625890e+04
min	-51.796300	-135.000000	0.000000e+00	0.000000	0.000000e+00	-1.400000e+01
25%	7.873054	-15.310100	4.000000e+00	0.000000	0.000000e+00	0.000000e+00
50%	23.634500	21.745300	1.680000e+02	2.000000	2.900000e+01	2.600000e+01
75%	41.204380	80.771797	1.518250e+03	30.000000	6.660000e+02	6.060000e+02
max	71.706900	178.065000	4.290259e+06	148011.000000	1.846641e+06	2.816444e+06

covid_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 49068 entries, 0 to 49067
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Province/State	14664 non-null	object
1	Country/Region	49068 non-null	object
2	Lat	49068 non-null	float64
3	Long	49068 non-null	float64
4	Date	49068 non-null	object
5	Confirmed	49068 non-null	int64
6	Deaths	49068 non-null	int64
7	Recovered	49068 non-null	int64
8	Active	49068 non-null	int64
9	WHO Region	49068 non-null	object
dtyp	es: float64(2),	int64(4), object	(4)

memory usage: 3.7+ MB

Checking for missing values

```
covid_df.isnull().sum()
```

Province/State	34404
Country/Region	0
Lat	0
Long	0
Date	0
Confirmed	0
Deaths	0
Recovered	0
Active	0
WHO Region	0
dtype: int64	

Dropping missing values

covid_df=covid_df.dropna()

covid_df

	Province/State	Country/Region	Lat	Long	Date	Confirmed	Deaths	Recovered	Active	WHO Region
8	Australian Capital Territory	Australia	-35.4735	149.0124	2020- 01-22	0	0	0	0	Western Pacific
9	New South Wales	Australia	-33.8688	151.2093	2020- 01-22	0	0	0	0	Western Pacific
10	Northern Territory	Australia	-12.4634	130.8456	2020- 01-22	0	0	0	0	Western Pacific
11	Queensland	Australia	-27.4698	153.0251	2020- 01-22	0	0	0	0	Western Pacific
12	South Australia	Australia	-34.9285	138.6007	2020- 01-22	0	0	0	0	Western Pacific
49052	Anguilla	United Kingdom	18.2206	-63.0686	2020- 07-27	3	0	3	0	Europe
49053	British Virgin Islands	United Kingdom	18.4207	-64.6400	2020- 07-27	8	1	7	0	Europe

Again checking of missing values

```
Province/State 0
Country/Region 0
Lat 0
Long 0
Date 0
Confirmed 0
Deaths 0
Recovered 0
Active 0
WHO Region 0
```

covid_df.isnull().sum()

dtype: int64

```
#Renaming the column
covid_df=covid_df.rename(columns={'Country/Region':'Country'})
covid_df
```

	Province/State	Country	Lat	Long	Date	Confirmed	Deaths	Recovered	Active	WHO Region
8	Australian Capital Territory	Australia	-35.4735	149.0124	2020- 01-22	0	0	0	0	Western Pacific
9	New South Wales	Australia	-33.8688	151.2093	2020- 01-22	0	0	0	0	Western Pacific
10	Northern Territory	Australia	-12.4634	130.8456	2020- 01-22	0	0	0	0	Western Pacific
11	Queensland	Australia	-27.4698	153.0251	2020- 01-22	0	0	0	0	Western Pacific
12	South Australia	Australia	-34.9285	138.6007	2020- 01-22	0	0	0	0	Western Pacific

#correlation and heatmap
corr=covid_df.corr()
f, ax = plt.subplots(figsize=(8, 5))
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, annot=True, mask = mask,cmap="Blues")

#Plotting pairplot
sns.pairplot(covid_df)


```
#choropleth map as GIS
import plotly.express as px
df1 = covid_df[covid_df[ 'Date' ] == max(covid_df[ 'Date'])]
df2 = df1.groupby('Country')['Confirmed'].max().reset_index()
fig = px.choropleth(df2, locations="Country",
locationmode='country names', color="Confirmed", range_color=[1,100000], color_continuous_scale="teal", title='Countries with Configue to the color of the country of the color of the country of the color of the country of the color of
```

Countries with Confirmed Cases

```
#choropleth map as GIS
import plotly.express as px
df1 = covid_df[covid_df[ 'Date' ] == max(covid_df[ 'Date'])]
df2 = df1.groupby('Country')['Active'].max().reset_index()
fig = px.choropleth(df2, locations="Country",
locationmode='country names', color="Active", range_color=[1,100000], color_continuous_scale="teal", title='Countries with Activ
fig.update(layout_coloraxis_showscale=True)
fig.update_layout(margin=dict(t=80,l=0, r=0,b=0))
fig
```

Countries with Active Cases


```
#choropleth map as GIS
import plotly.express as px
df1 = covid_df[covid_df[ 'Date' ] == max(covid_df[ 'Date'])]
df2 = df1.groupby('Country')['Recovered'].max().reset_index()
fig = px.choropleth(df2, locations="Country",
locationmode='country names', color="Recovered", range_color=[1,10000], color_continuous_scale="teal", title='Countries with Refig.update(layout_coloraxis_showscale=True)
fig.update_layout(margin=dict(t=80,l=0, r=0,b=0))
fig
```

Countries with Recovered Cases


```
#choropleth map as GIS
import plotly.express as px
df1 = covid_df[covid_df[ 'Date' ] == max(covid_df[ 'Date'])]
df2 = df1.groupby('Country')['Deaths'].max().reset_index()
fig = px.choropleth(df2, locations="Country",
locationmode='country names', color="Deaths", range_color=[1,10000], color_continuous_scale="teal", title='Countries with Death
fig.update(layout_coloraxis_showscale=True)
fig.update_layout(margin=dict(t=80,l=0, r=0,b=0))
fig
```

Countries with Death Cases

pacific americas

europe americas

western pacific americas europe europe western

americas americas

europe europe

americas western

Loading .csv file

world_df=pd.read_csv("worldometer_data.csv")
world_df.head()

	Country/Region	Continent	Population	TotalCases	NewCases	TotalDeaths	NewDeaths	TotalRecovered	NewRecovered	Act
0	USA	North America	3.311981e+08	5032179	NaN	162804.0	NaN	2576668.0	NaN	1
1	Brazil	South America	2.127107e+08	2917562	NaN	98644.0	NaN	2047660.0	NaN	
2	India	Asia	1.381345e+09	2025409	NaN	41638.0	NaN	1377384.0	NaN	
3	Russia	Europe	1.459409e+08	871894	NaN	14606.0	NaN	676357.0	NaN	
4	South Africa	Africa	5.938157e+07	538184	NaN	9604.0	NaN	387316.0	NaN	
7										
4										•

world_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209 entries, 0 to 208
Data columns (total 16 columns):
```

Data	COTUMNIS (COCAT TO	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	Country/Region	209 non-null	object
1	Continent	208 non-null	object
2	Population	208 non-null	float64
3	TotalCases	209 non-null	int64
4	NewCases	4 non-null	float64
5	TotalDeaths	188 non-null	float64
6	NewDeaths	3 non-null	float64
7	TotalRecovered	205 non-null	float64
8	NewRecovered	3 non-null	float64
9	ActiveCases	205 non-null	float64
10	Serious,Critical	122 non-null	float64
11	Tot Cases/1M pop	208 non-null	float64
12	Deaths/1M pop	187 non-null	float64
13	TotalTests	191 non-null	float64
14	Tests/1M pop	191 non-null	float64
15	WHO Region	184 non-null	object
d+vn	os: floo+64(12) in	+64(1) object(۵١

dtypes: float64(12), int64(1), object(3)

memory usage: 26.2+ KB

#dropping unnecessary columns
world_df=world_df.drop(columns=['NewCases','NewDeaths','NewRecovered'])

world_df=world_df.dropna()

world df

	Country/Region	Continent	Population	TotalCases	TotalDeaths	TotalRecovered	ActiveCases	Serious,Critical	Cases
0	USA	North America	3.311981e+08	5032179	162804.0	2576668.0	2292707.0	18296.0	151
1	Brazil	South America	2.127107e+08	2917562	98644.0	2047660.0	771258.0	8318.0	137
2	India	Asia	1.381345e+09	2025409	41638.0	1377384.0	606387.0	8944.0	14
3	Russia	Europe	1.459409e+08	871894	14606.0	676357.0	180931.0	2300.0	59
4	South Africa	Africa	5.938157e+07	538184	9604.0	387316.0	141264.0	539.0	90
153	Bahamas	North America	3.936160e+05	761	14.0	91.0	656.0	1.0	19
160	Guyana	South America	7.869360e+05	538	22.0	189.0	327.0	2.0	6
185	Monaco	Europe	3.927000e+04	125	4.0	105.0	16.0	2.0	31
187	Antigua and Barbuda	North America	9.801000e+04	92	3.0	76.0	13.0	1.0	9
189	Belize	North America	3.983120e+05	86	2.0	31.0	53.0	2.0	2

103 rows × 13 columns

world_df.isnull().sum()

```
Country/Region
                       0
    Continent
                       0
    Population
                       0
    TotalCases
    TotalDeaths
                       0
    TotalRecovered
                       0
    ActiveCases
                       0
    Serious, Critical
                       0
    Tot Cases/1M pop
                       0
    Deaths/1M pop
                       0
                       0
    TotalTests
    Tests/1M pop
                       0
    WHO Region
                       0
    dtype: int64
world_sum = world_df.groupby(by = 'Continent').sum()
print(world_sum)
                        Population TotalCases TotalDeaths TotalRecovered \
    Continent
    Africa
                      1.343515e+09
                                      1011867
                                                   22114.0
                                                                 693620.0
                                                  100627.0
                                                                 3508170.0
    Asia
                      3.173656e+09
                                      4689794
    Australia/Oceania 4.095791e+07
                                       21735
                                                     281.0
                                                                  12620.0
    Europe
                      7.476775e+08
                                       2982576
                                                  205232.0
                                                                1587302 Q
    North America
                     5.895035e+08
                                      5919209
                                                  229855.0
                                                                3151678.0
    South America
                      4.311105e+08
                                      4543273
                                                  154885.0
                                                                3116150.0
                      ActiveCases Serious, Critical Tot Cases/1M pop \
    Continent
    Africa
                         296133.0
                                            1187.0
                                                            64456.0
    Asia
                        1080997.0
                                           18749.0
                                                            192429.0
    Australia/Oceania
                           8834.0
                                              52.0
                                                             1446.0
    Europe
                         475261.0
                                            5200.0
                                                            209454.0
    North America
                        2537676.0
                                           25709.0
                                                            88547.0
    South America
                        1272238.0
                                           14295.0
                                                            108441.0
                      Deaths/1M pop TotalTests Tests/1M pop
    Continent
                                                    806042.0
    Africa
                            1003.28 8673853.0
    Asia
                                                   3433453.0
                            1846.80 65353821.0
    Australia/Oceania
                             15.30 5152811.0
                                                   347083.0
                                                   8286140.0
    Europe
                            9673.00 96125611.0
```

3097.00 70173584.0

2818.00 22379618.0

2069875.0

1093646.0

#correlation and heatmap
corr=world_df.corr()
f, ax = plt.subplots(figsize=(8, 5))
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, annot=True, mask = mask,cmap="Blues")

North America

South America

<Axes: >

#wordCloud

from wordcloud import WordCloud, STOPWORDS

```
Region = world_df['Country/Region']
comment_words = ''
stopwords = set(STOPWORDS)
```

iterate through the csv file
for val in Region:

```
# typecaste each val to string
val = str(val)
```

```
# split the value
tokens = val.split()
```

```
# Converts each token into lowercase
for i in range(len(tokens)):
    tokens[i] = tokens[i].lower()
```

```
comment_words += " ".join(tokens)+" "
```

```
# plot the WordCloud image
plt.figure(figsize = (5, 5), facecolor = None)
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.tight_layout(pad = 0)
plt.show()
```



```
#side-by-side bar graph
import matplotlib.pyplot as plt
plt.figure(figsize = (12,7))
N = 6
ind = np.arange(N)
width = 0.25
bar1 = plt.bar(ind, world_sum['TotalDeaths'] , width, color = 'cyan')
bar2 = plt.bar(ind+width, world_sum['TotalRecovered'], width, color='lightblue')
bar3 = plt.bar(ind+width*2, world_sum['ActiveCases'], width, color = 'blue')
plt.xlabel("Continent")
plt.ylabel('Count')
plt.title("Continent wise cases")

plt.xticks(ind+width,['Africa', 'Asia', 'Australia/Oceania', 'Europe', 'North America', 'South America'])
plt.legend( (bar1, bar2, bar3), ('Total Deaths', 'Total Recovered', 'Active cases') )
plt.show()
```



```
# Group the data by continent and calculate the total population and cases
continent_data = world_df.groupby('Continent').agg({'Population': 'sum', 'TotalCases': 'sum'})

# Create a pie chart for population by continent
plt.pie(continent_data['Population'], labels=continent_data.index, autopct='%1.1f%%')
plt.title('Population by Continent')
my_circle=plt.Circle((0,0), 0.7, color='white')
p=plt.gcf()
p.gca().add_artist(my_circle)
plt.show()
```

Create a pie chart for total cases by continent
plt.pie(continent_data['TotalCases'], labels=continent_data.index, autopct='%1.1f%%')
plt.title('Total Cases by Continent')
my_circle=plt.Circle((0,0), 0.7, color='white')
p=plt.gcf()
p.gca().add_artist(my_circle)
plt.show()

Population by Continent

Total Cases by Continent

Loading .csv file

day_df=pd.read_csv('day_wise.csv')
day_df.head()

	Date	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered	Deaths / 100 Cases	Recovered / 100 Cases	Deaths / 100 Recovered	No. o countrie
0	2020- 01-22	555	17	28	510	0	0	0	3.06	5.05	60.71	

day_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 188 entries, 0 to 187
Data columns (total 12 columns):

Data	COTUMNIS (COCAT 12 COTUMN	13).	
#	Column	Non-Null Count	Dtype
0	Date	188 non-null	object
1	Confirmed	188 non-null	int64
2	Deaths	188 non-null	int64
3	Recovered	188 non-null	int64
4	Active	188 non-null	int64
5	New cases	188 non-null	int64
6	New deaths	188 non-null	int64
7	New recovered	188 non-null	int64
8	Deaths / 100 Cases	188 non-null	float64
9	Recovered / 100 Cases	188 non-null	float64
10	Deaths / 100 Recovered	188 non-null	float64
11	No. of countries	188 non-null	int64
d+vn/	$ac \cdot float64(2) int64(9)$	object(1)	

dtypes: float64(3), int64(8), object(1)

memory usage: 17.8+ KB

day_df.describe()

	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered	Death 100 Ca
count	1.880000e+02	188.000000	1.880000e+02	1.880000e+02	188.000000	188.000000	188.000000	188.000
mean	4.406960e+06	230770.760638	2.066001e+06	2.110188e+06	87771.021277	3478.824468	50362.015957	4.860
std	4.757988e+06	217929.094183	2.627976e+06	1.969670e+06	75295.293255	2537.735652	56090.892479	1.579
min	5.550000e+02	17.000000	2.800000e+01	5.100000e+02	0.000000	0.000000	0.000000	2.040
25%	1.121910e+05	3935.000000	6.044125e+04	5.864175e+04	5568.500000	250.750000	2488.250000	3.510
50%	2.848733e+06	204190.000000	7.847840e+05	1.859759e+06	81114.000000	4116.000000	30991.500000	4.850
75%	7.422046e+06	418634.500000	3.416396e+06	3.587015e+06	131502.500000	5346.000000	79706.250000	6.297
max	1.648048e+07	654036.000000	9.468087e+06	6.358362e+06	282756.000000	9966.000000	284394.000000	7.180

#correlation and heatmap
corr=day_df.corr()
f, ax = plt.subplots(figsize=(8, 5))
mask = np.triu(np.ones_like(corr, dtype=bool))

sns.heatmap(corr, annot=True, mask = mask,cmap="Blues")

<Axes: >

dates=day_df.groupby('Date')['Recovered','Deaths','Confirmed','Active','No. of countries'].max().reset_index()
dates

	Date	Recovered	Deaths	Confirmed	Active	No. of countries
0	2020-01-22	28	17	555	510	6
1	2020-01-23	30	18	654	606	8
2	2020-01-24	36	26	941	879	9
3	2020-01-25	39	42	1434	1353	11
4	2020-01-26	52	56	2118	2010	13
183	2020-07-23	8710969	633506	15510481	6166006	187
184	2020-07-24	8939705	639650	15791645	6212290	187
185	2020-07-25	9158743	644517	16047190	6243930	187
186	2020-07-26	9293464	648621	16251796	6309711	187
187	2020-07-27	9468087	654036	16480485	6358362	187

188 rows × 6 columns

#area plot

fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))

fig

Spread of Disease across the countries

USA_df=pd.read_csv('usa_county_wise.csv')
USA_df

	UID	iso2	iso3	code3	FIPS	Admin2	Province_State	Country_Region	Lat	Long_
0	16	AS	ASM	16	60.0	NaN	American Samoa	US	-14.271000	-170.132000
1	316	GU	GUM	316	66.0	NaN	Guam	US	13.444300	144.793700
2	580	MP	MNP	580	69.0	NaN	Northern Mariana Islands	US	15.097900	145.673900
3	63072001	PR	PRI	630	72001.0	Adjuntas	Puerto Rico	US	18.180117	-66.754367
4	63072003	PR	PRI	630	72003.0	Aguada	Puerto Rico	US	18.360255	-67.175131
627915	84070016	US	USA	840	NaN	Central Utah	Utah	US	39.372319	-111.575868
627916	84070017	US	USA	840	NaN	Southeast Utah	Utah	US	38.996171	-110.701396
627917	84070018	US	USA	840	NaN	Southwest Utah	Utah	US	37.854472	-111.441876
627918	84070019	US	USA	840	NaN	TriCounty	Utah	US	40.124915	-109.517442
627919	84070020	US	USA	840	NaN	Weber- Morgan	Utah	US	41.271160	-111.914512

627920 rows × 14 columns

USA_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 627920 entries, 0 to 627919
Data columns (total 14 columns):

columns (total	14 columns):	
Column	Non-Null Count	Dtype
UID	627920 non-null	int64
iso2	627920 non-null	object
iso3	627920 non-null	object
code3	627920 non-null	int64
FIPS	626040 non-null	float64
Admin2	626792 non-null	object
Province_State	627920 non-null	object
Country_Region	627920 non-null	object
Lat	627920 non-null	float64
Long_	627920 non-null	float64
Combined_Key	627920 non-null	object
Date	627920 non-null	object
	Column UID iso2 iso3 code3 FIPS Admin2 Province_State Country_Region Lat Long_ Combined_Key	UID 627920 non-null iso2 627920 non-null iso3 627920 non-null code3 627920 non-null Admin2 626792 non-null Province_State 627920 non-null Country_Region 627920 non-null Lat 627920 non-null Long_ 627920 non-null Combined_Key 627920 non-null

12 Confirmed 627920 non-null int64
13 Deaths 627920 non-null int64
dtypes: float64(3), int64(4), object(7)

memory usage: 67.1+ MB

#Checking for missing values
USA_df.isnull().sum()

UID 0 iso2 0 0 iso3 0 code3 FIPS 1880 Admin2 1128 Province_State 0 Country_Region 0 Lat Long_ 0 Combined_Key 0 0 Date Confirmed 0 Deaths dtype: int64

#dropping missing values
usa_df=USA_df.dropna()
usa_df

	UID	iso2	iso3	code3	FIPS	Admin2	Province_State	Country_Region	Lat	Long_	(
3	63072001	PR	PRI	630	72001.0	Adjuntas	Puerto Rico	US	18.180117	-66.754367	
4	63072003	PR	PRI	630	72003.0	Aguada	Puerto Rico	US	18.360255	-67.175131	
5	63072005	PR	PRI	630	72005.0	Aguadilla	Puerto Rico	US	18.459681	-67.120815	
6	63072007	PR	PRI	630	72007.0	Aguas Buenas	Puerto Rico	US	18.251619	-66.126806	
7	63072009	PR	PRI	630	72009.0	Aibonito	Puerto Rico	US	18.131361	-66.264131	
627904	84090051	US	USA	840	90051.0	Unassigned	Virginia	US	0.000000	0.000000	
627905	84090053	US	USA	840	90053.0	Unassigned	Washington	US	0.000000	0.000000	
627906	84090054	US	USA	840	90054.0	Unassigned	West Virginia	US	0.000000	0.000000	
627907	84090055	US	USA	840	90055.0	Unassigned	Wisconsin	US	0.000000	0.000000	,
627908	84090056	US	USA	840	90056.0	Unassigned	Wyoming	US	0.000000	0.000000	

624912 rows × 14 columns

#area plot

fig=px.area(usa_df, y='Confirmed',x='Province_State',title='Spread of Disease across the Provience in USA')

 $\label{eq:fig_update_layout(margin=dict(t=80,l=0,r=0,b=0))} \text{fig}$

Spread of Disease across the Provience in USA

√ 1s completed at 4:07 PM