

Handbook of Physics

Department of Physics, RVCE, Bengaluru

For course: Condensed Matter Physics for Engineers

Fundamental Constants

All the constants in this table are taken from *The NIST Reference on Constants*, *Units &* Uncertainty found in http://physics.nist.gov/constants.

Quantity	Symbol	Value	Unit
Speed of light in vacuum	c	299 792 458	$\mathrm{m}\mathrm{s}^{-1}$
Magnetic constant	μ_0	$4\pi \times 10^{-7}$	NA^{-2}
Electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$
Newtonian constant of	G	6.67384×10^{-11}	$m^3kg^{-1}s^{-2}$
gravitation			
Planck constant	h	$6.62606957 \times 10^{-34}$	Js
$h/2\pi$	\hbar	$1.054571726 \times 10^{-34}$	Js
Elementary charge	e	$1.602176565 \times 10^{-19}$	C
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.400968 \times 10^{-26}$	$ m JT^{-1}$
Nuclear magneton $e\hbar/2m_{\rm p}$	$\mu_{ m N}$	$5.05078353 \times 10^{-27}$	$ m JT^{-1}$
Fine-structure constant	α	$7.2973525698 \times 10^{-3}$	
$e^2/4\pi\epsilon_0\hbar c$			
Rydberg constant $\alpha^2 m_e c/2h$	R_{∞}	10 973 731.568 539	m^{-1}
Bohr radius	a_0	$0.52917721092 \times 10^{-10}$	m
$\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_{\rm e}e^2$			
Electron mass	$m_{ m e}$	$9.10938291 \times 10^{-31}$	kg
energy equivalent	$m_{ m e}c^2$	0.510 998 928	MeV
Proton mass	$m_{ m p}$	$1.672621777 \times 10^{-27}$	kg
energy equivalent	$m_{ m p}c^2$	938.272 046	MeV
Neutron mass	$m_{ m n}$	$1.674927351 \times 10^{-27}$	kg
energy equivalent	$m_{ m n}c^2$	939.565 379	MeV

Quantity	Symbol	Value	Unit
Avogadro constant	N_{A}	6.02214129×10^{23}	mol^{-1}
Atomic mass constant	$m_{ m u}$	$1.660538921 \times 10^{-27}$	kg
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 1{\rm u}$			
energy equivalent	$m_{ m u}c^2$	$1.492417954 \times 10^{-10}$	J
		931.494 061	MeV
Faraday constant $N_A e$	F	96 485.336 5	$C \text{mol}^{-1}$
Universal gas constant	R_u	8.314 462 1	$J \text{mol}^{-1} \text{K}^{-1}$
Boltzmann constant R/N_A	k	$1.3806488 \times 10^{-23}$	$ m JK^{-1}$
Stefan-Boltzmann constant	σ_{cho}	5.670373×10^{-8}	${ m W}{ m m}^{-2}{ m K}^{-4}$
$(\pi^2/60)k^4/\hbar^3c^2$		nas V	
First radiation constant	c_1	$3.74177153 \times 10^{-16}$	$\mathrm{W}\mathrm{m}^2$
$2\pi hc^2$			
Second radiation constant	c_2	1.4387770×10^{-2}	m K
hc/k			
Wien displacement law			
constant $b = \lambda_{\max} T$	b	2.8977721×10^{-3}	m K
constant $b' = v_{\text{max}}/T$	b'	5.8789254×10^{10}	$Hz K^{-1}$
Molar mass constant	$M_{ m u}$	1×10^{-3}	kg mol ⁻¹
Molar mass of ¹² C	$M(^{12}C)$	12×10^{-3}	$kg mol^{-1}$
Standard atmosphere		101.325	k Pa
Standard acceleration of	g	9.806 65	${ m ms^{-2}}$
gravity			

Quantum Mechanics

Quantity	Formula	Glossary
Planck's formula for the blackbody radiation: Power radiated per unit area per unit solid angle per unit frequency by a black body at temperature <i>T</i> :	$U(\nu, T) = \frac{8\pi h \nu^3 / c^3}{\left[\exp\left(\frac{h\nu}{kT}\right) - 1\right]}$	h = Planck constant c = speed of light in vacuum k = Boltzmann constant v = frequency of the electromagnetic radiation

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Einstein's fundamental equation for photoelectric effect:	$E_K = hv - \Phi$	E_K = kinetic energy of the ejected electron v = frequency of photon Φ = work function of the metal
Energy of the discrete emission or absorption of radiation by atoms:	$hv = \left E_i - E_f \right $	E_i = initial state energy E_f = final state energy
Energy of the emitted photon:	$E = hv = \frac{hc}{\lambda}$	λ = wavelength of the emitted photon
Compton formula:	$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$	λ = wavelength of the incident photon λ' = wavelength after scattering m_e = electron rest mass c = speed of light θ = scattering angle
Compton wavelength of the electron:	$\lambda_e = \frac{h}{m_e c}$ $= 2.43 \times 10^{-12} \text{ m}$	
Compton formula in terms of the energies:	$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \theta)}$	$E_{\gamma} = hc/\lambda = \text{incident}$ energy $E_{\gamma'} = \text{scattered photon}$ energy
de Broglie wavelength:	$\lambda = \frac{h}{p}$ $\lambda = \frac{h}{\sqrt{2mqV}}$	p = momentum of the particle $m =$ mass of the particle $q =$ charge of the particle $V =$ potential with which the particle is accelerated
Phase velocity:	$v_p = \frac{\omega}{k} = \nu \lambda$	ω = angular frequency $k = 2\pi/\lambda$ = wave number ν = frequency
Group velocity:	$v_g = \frac{d\omega}{dk}$	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Relation between group velocity and phase velocity:	$v_g = v_p - \frac{2\pi}{k} \left(\frac{dv_p}{d\lambda} \right)$	
Heisenberg uncertainty relationships:	$\Delta x \Delta p_x \ge \frac{h}{4\pi}$ $\Delta E \Delta t \ge \frac{h}{4\pi}$ $\Delta J \Delta \theta \ge \frac{h}{4\pi}$	Δx , Δp_x , ΔE , Δt , ΔJ and $\Delta \theta$ are the uncertainties in the measurement of the position, momentum, energy, time, angular momentum and angular position respectively.
Time independent Schrödinger wave equation in one dimension:	$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$	$\psi \equiv \psi(x)$ = wave function E = total energy V = potential energy
Probability density:	$P(x,t) = \Psi^*\Psi = \Psi(x,t) ^2$	Trust
Normalization condition:	$\int_{x} \Psi(x,t) ^2 dx = 1$	
Schrödinger equation in operator form:	$\hat{H}\psi = E\psi$	$\hat{H}=$ Hamiltonian operator
Particle in one-dimensional of infinite depth:	7	
a) Differential equation:	$\frac{d^2\psi}{dx^2} + k^2\psi = 0$	
b) Solution:	$k^{2} = \frac{8m\pi^{2}E}{h^{2}}$ $\psi = A\cos(kx) + B\sin(kx)$	
c) Energy eigen values:	$E = \frac{n^2 h^2}{8ma^2}$ $n = 1, 2, 3 \dots$	a = width of the well
d) Normalized wave function:	$\psi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$	

Electrical Conductivity in Solids and Band Theory of Solids

Quantity	Formula	Glossary
Ohm's Law:	V = IR	V = voltage applied
Resistivity:	$\rho = \frac{RA}{L}$	I = current flowingR = resistanceA = area of
Conductivity:	$\sigma = \frac{1}{\rho} = \frac{L}{RA}$	A = area of cross-section $L = $ length of the
Electric field:	$E = \frac{V}{L}$	n = 1 carrier
Current density:	$E = \frac{v}{L}$ $J = \frac{I}{A} = \sigma E$	concentration $e = \text{electronic charge}$
Electric current in a conductor:	$I = nev_d A$	v_d = drift velocity m = mass of the
Drift velocity:	$v_d = \frac{eE}{m}\tau$	electron τ =mean collision time
Electrical conductivity of a conductor:	$\sigma = \frac{ne^2\tau}{m}$	9/
Mobility of electrons:	$\mu = \frac{v_d}{E} = \frac{e\tau}{m}$	
Fermi factor:	$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$	E = energy level $E_F = \text{Fermi level}$
Density of states in a material in the energy range $E \& E + dE$:	$g(E)dE = \frac{4\pi}{h^3} (2m)^{3/2} E^{1/2} dE$	k = Boltzmann constant $T = temperature of the$ material
Number of free electrons per unit volume in the energy range $E \& E + dE$:	N(E) dE = g(E)f(E) dE	materiai
Total number of free electrons per unit volume in metals:	$n = \frac{8\pi}{3h^3} (2m)^{3/2} E_F^{3/2}$	m = mass of the electron

Fermi energy at 0 K:	$E_F = \frac{h^2}{8m} \left(\frac{3n}{\pi}\right)^{2/3}$		
Carrier concentration in in	Carrier concentration in intrinsic semiconductor:		
a) for electrons:	$n = N_C e^{-(E_C - E_F)/kT}$ $N_C = 2 \left[\frac{2\pi m_e^* kT}{h^2} \right]^{3/2}$	N_C and N_V are effective density of states in the conduction	
b) for holes:	$p = N_V e^{-(E_F - E_V)/kT}$ $N_V = 2 \left[\frac{2\pi m_h^* kT}{h^2} \right]^{3/2}$	and valence band. $m_{\rm e}^*={ m effective\ mass}$ of electron in the material $m_{\rm h}^*={ m effective\ mass}$ of	
Fermi level in intrinsic semiconductor:	$E_F = \left(\frac{E_C + E_V}{2}\right)$	hole in the material E_C = lowest energy level in the conduction	
Sciniconductor.	$+\frac{3}{4}kT\ln\left(\frac{m_{\rm h}^*}{m_{\rm e}^*}\right)$	band $E_V = $ is the highest	
a) For small kT :	$E_F = \frac{E_C + E_V}{2}$	energy level in the valence band	
b) With $E_C - E_V = E_g$:	$E_F = \frac{E_g}{2} + E_V$	E_g = is the energy gap	
Intrinsic charge carrier concentration:	$n_i = \sqrt{np} = 2 \left(\frac{2\pi k}{h^2}\right)^{3/2}$ $(m_e^* m_h^*)^{3/4} T^{3/2} e^{-E_g/2kT}$		
Conductivity of an intrinsic semiconductor:	$\sigma_i = e n_i (\mu_{\rm e} + \mu_{\rm h})$	$\mu_{\rm e} = { m mobility} \ { m of}$ electrons $\mu_{ m h} = { m mobility} \ { m of} \ { m holes}$	
Fermi energy for extrinsic s			
a) n-type	$E_{F_n} = \frac{E_C + E_D}{2} - \frac{kT}{2} \ln \frac{N_C}{N_d}$	$N_d = $ donor concentration	
b) p-type	$E_{F_p} = \frac{E_V + E_A}{2} + \frac{kT}{2} \ln \frac{N_V}{N_a}$	N_a = acceptor concentration	
Law of Mass Action:	$np = n_i^2 = \text{constant}$		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Hall voltage:	$V_H = R_H \frac{BI}{t}$	R_H = Hall coefficient B = applied magnetic
Hall coefficient:		field
a) For metals and <i>n</i> -type semiconductors:	$R_H = \frac{-1}{ne}$	I = current flowingt = thickness of thematerial
b) For <i>p</i> -type semiconductors:	$R_H = \frac{1}{pe}$	

Semiconductor Devices

Quantity	Formula	Glossary
Internal Potential barrier:	$V_0 = rac{kT}{e} \ln \left(rac{N_D N_A}{n_i^2} ight)$	$k = \text{Boltzmann}$ constant $T = \text{temperature}$ $e = \text{electronic charge}$ $N_D = \text{donors}$ concentration $N_A = \text{acceptors}$ concentration
The diode equation:	$I = I_0 \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$	n_i = intrinsic carrier concentration
Wavelength of light emitted by LED:	$\lambda = rac{hv}{E_g}$	V = voltage across the diode
Relation between currents in a transistor:	$I_E = I_B + I_C$	I = current through the diode $I_0 = \text{reverse saturation}$
Common base current gain factor:	$\alpha_{dc} = \frac{I_C}{I_E}$	current $E_q = \text{energy gap}$
Common emitter dc current gain:	$\beta_{dc} = \frac{I_C}{I_B}$	I_E = emitter current I_B = base current
Voltage gain of an amplifier:	$Gain = \frac{Output \ Voltage}{Input \ Voltage}$	I_C = collector current

Dielectrics and Transducers

Quantity	Formula	Glossary
Dipole moment of two	$\mu = (2a)q$	2a distance between
charges $-q$ and $+q$:	$\mu = (2u)q$	the charges
Induced dipole moment:	$\mu = \alpha E$	$\alpha = \text{polarizability}$
Torque on the dipole in	$\tau = qE2a\sin\theta = \mu E\sin\theta$	E = applied electric
an electric field:	τ φυμοιίτο μυσίιτο	field
Polarization (total dipole	$\mu_{ m total}$	V = volume of the
moment / unit volume):	$P = \frac{\mu_{\text{total}}}{V}$	dielectric
.2	200	ϵ_0 = permittivity of free
Electric displacement:	$D = \epsilon_0 \epsilon_r E$	space
Electric displacement.	$D = \epsilon_0 \epsilon_r E$	ϵ_r = relative
		permittivity
Relation for dielectric		= \
susceptibility, χ , for	$P = \chi \epsilon_o E$	50
linear dielectrics:		
Relation between ϵ_r and	$\epsilon_r = 1 + \gamma$	
χ:	X	
Electronic or Atomic	$P_e = N\alpha_e E$	N = number of atoms
Polarization:		per unit volume
Electronic polarizability:	$\alpha_e = \frac{\epsilon_0(\epsilon_r - 1)}{N}$	α_e = electronic
		polarizability
Ionic Polarization:	$P_i = N\alpha_i E$	α_i = ionic polarizability
		k = Boltzmann
Orientation or dipole	$P_o = \frac{N\mu^2 E}{3kT}$	constant
Polarization:	$P_o \equiv \frac{1}{3kT}$	T = temperature
0:11:		μ = dipole moment
Orientation	$\alpha_o = \frac{\mu^2}{3kT}$	
polarizability:	$\alpha_o = \frac{1}{3kT}$	
Internal field in a solid		1 41-:-1
for one dimensional	$E_i = E + \frac{1.2\mu}{\pi\epsilon_0 d^3}$	d = thickness of the dielectric slab
infinite array of dipoles:	$\pi \epsilon_0 d^3$	ulelectric stab
Clausius Mosotti	$\frac{\epsilon_r - 1}{\epsilon_r} = \frac{N\alpha_e}{\epsilon_r}$	
equation:	$\frac{r}{\epsilon_r + 2} = \frac{\epsilon}{3\epsilon_0}$	
	-, : =0	

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Piezoelectric transducer formula:		F = applied force
The charge generated Q is given by,		d = piezoelectric
a) For longitudinal	Q = Fd	coefficient of the
arrangement:	$Q = \Gamma u$	crystal ($d_{\text{quartz}} = 2.3 \times 10^{-12} \text{ C/N}$)
b) For transverse	Q = Fd(b/a)	$2.3 \times 10^{-12} \text{C/N}$
arrangement:	Q = Fu(b/u)	b/a = thickness/width

Lasers

Quantity	Formula	Glossary
Boltzmann factor:	$\frac{N_2}{N_1} = e^{-h\nu/kT}$	h = Planck constant $k = $ Boltzmann
Einstein's coefficients:	$\frac{A_{21}}{B_{21}} = \frac{8\pi h v^3}{c^3}$ $B_{12} = B_{21}$	constant $T = \text{temperature}$ $v = \text{frequency of the}$ electromagnetic $radiation$ $A = A_{21}$ $B = B_{21}$
Energy density at thermal equilibrium:	$U(\nu, T) = \frac{A}{B} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$	
Length of the resonator cavity:	$L=n\frac{\lambda}{2}, n=1,2,3,\ldots$	$\lambda = \text{wavelength}$

Optical Fibers

Quantity	Formula	Glossary
Snell's law:	$n_1\sin\theta_1=n_2\sin\theta_2$	n_1 and n_2 are the refractive indices. θ_1 and θ_2 are angle of incidence & refraction.
Absolute refractive index:	$n = \frac{c}{v}$	c and v are velocities of light in vacuum and the medium.

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Numerical aperture:	$NA = \sin \theta_0 = \frac{\sqrt{n_1^2 - n_2^2}}{n_0}$	θ_0 = acceptance angle n_0 , n_1 and n_2 are the refractive indices of
Fraction Index Change:	$\Delta = \frac{n_1 - n_2}{n_1}$	surrounding medium, core and cladding.
Relation between NA and Δ:	$NA = n_1 \sqrt{2\Delta}$	
V-number if surrounding medium is air:	$V = \frac{\pi d}{\lambda}$ NA	$d = $ core diameter $\lambda = $ wavelength of light
Number of modes for step index fiber:	$pprox rac{V^2}{2}$	
Number of modes for graded index fiber:	$pprox rac{V^2}{4}$	=
Attenuation co-efficient (loss per unit length):	$\alpha = -\frac{10}{L} \log \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)$	P_{out} = output power P_{in} = input power L = length of the optical fiber