

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Практическое занятие №1

Расчет АЧС АМ-сигнала

Методы и средства передачи информации

	(наименование дисциплины (модуля) в соответствии с учебным планом)				
Уровень	специалитет				
	(бакалавриат, магистратура, специалитет)				
Форма					
обучения	очная				
	(очная, очно-заочная, заочная)				
Направление(-я) подготовки	10.05.04 «Информационно-аналитические системы безопасности»				
	(код(-ы) и наименование(-я))				
Институт	Институт кибербезопасности и цифровых технологий (ИКБ))				
	(полное и краткое наименование)				
Кафедра	Информационно-аналитические системы кибербезопасности (КБ-2)				
	(полное и краткое наименование кафедры, реализующей дисциплину (модуль))				
Используются в данной редакции с учебного года		2023/24			
		(учебный год цифрами)			
Проверено и сог.	ласовано «»20г.				
		(подпись директора Института/Филиала			
		с расшифровкой)			

Москва 2024 г.

Задание на практическую работу.

Задача 1. «Расчет спектров АМ радиосигналов»

Условие 1.1.

Дано:

 U_0, f_0 - амплитуда и частота несущих колебаний;

 m_1 - глубина амплитудной модуляции;

 F_{MI} - частота колебаний модулирующего сигнала.

Найти:

 A_0 - амплитуда центральной гармоники;

 $A_{H.бок}$ - верхней боковой гармоники;

 $A_{6.60\kappa}$ - амплитуда нижней боковой гармоники;

 $f_{H.бок}$ - частота нижней боковой гармоники;

 $f_{\theta.\delta o \kappa}$ - частота верхней боковой гармоники.

 Δf_c - ширину спектра сигнала.

Записать:

- аналитическое выражение сигнала.

Построить графики:

- временной диаграммы сигнала;
- АЧС сигнала.

Условие 1.2

Рассчитать и построить спектр AM сигнала, если он модулирован двухтональным управляющим сигналом вида

$$u_{_{M}}(t) = U_{_{M1}} \cos(2\pi F_{_{M1}}t) + U_{_{M2}} \cos(2\pi F_{_{M2}}t)$$

где $U_{M2}=U_{M1}, F_{M2}=2F_{M1}$ и $m_2=m_{1.}$

Условие 1.3

Выполнить задание по условию 1.2, если $F_{M2}=2F_{M1}$ и $m_2=0.5m_1$.

В выводах:

оценить зависимость спектра AM сигнала от параметров (F_M и m) и пояснить от чего зависит его ширина.

Пример решения задачи 1.

Условие 1.1

Дано:

 $U_0 = 1 \text{MB} = 10^{-3} \text{B};$

 $m_1 = 100\% = 1$;

 $f_0 = 100 \text{ M}\Gamma \text{ц} = 10^6 \Gamma \text{ц};$

 F_{MI} =200к Γ ц =2·10⁵ Γ ц.

Найти:

 A_0 ; $A_{H,\delta o \kappa}$; $A_{\theta,\delta o \kappa}$;

 $f_{\rm B.~ 60K}$; $f_{\rm H.~ 60K}$; $\Delta f_{\rm C}$.

Построить:

- временную диаграмму сигнала;
- АЧС сигнала.

Решение:

1. Аналитическое выражение однотонального АМ сигнала имеет следующий вид:

$$u_{AM}(t) = U_0 \cos(2\pi f_0 t) + \frac{m_1 U_0}{2} \cos(2\pi (f_0 + F_{M1})t) + \frac{m_1 U_0}{2} \cos(2\pi (f_0 - F_{M1})t)$$

следовательно:

- а) амплитуда центральной гармоники $A_0 = U_0 = 1$ мB;
- в) частоты верхней и нижней боковых гармоник

$$f_{6 \text{ } 60\text{K}} = f_0 + F_{M1} = 1000 \ 10^5 + 2 \ 10^5 = 100, 2[M\Gamma y]$$

$$f_{_{H}\ \delta o \kappa} = f_0 - F_{M1} = 1000\ 10^5 - 2\ 10^5 = 99,8 [M \Gamma y]$$

г) ширина спектра сигнала:

$$\Delta f_c = 2F_{M1} = 2 \ 2 \ 10^5 = 4 \ 10^5 = 400 [\kappa \Gamma y]$$

2. Временная диаграмма однотонального АМ сигнала имеет вид (рис.1):

Рис. 1

3. АЧС радиосигнала с однотональной АМ будет иметь вид, как показано на рис.2:

Рис. 2

Выводы:

- 1. Чем больше m_1 , тем больше амплитуды $A_{\text{в.бок}}, A_{\text{н.бок}}$.
- 2. Ширина спектра АМ сигнала прямо пропорциональна частоте модулирующего сигнала.

В третьей части семинара предлагаемые выше задачи решаются по индивидуальным вариантам, приведенным в табл. 3. Необходимо из таблицы выбрать номер варианта исходных данных, соответствующий вашему номеру по классному журналу, и решить предложенные задачи.

Таблица 1

№ вар.	<i>U</i> ₀ , мВ	f ₀ , МГц	<i>m</i> ₁ , %	F_{MI} , К Γ μ
1	1	100	100	200
2	2	110	90	250
3	3	115	80	300
4	4	120	70	350
5	5	125	60	400
6	6	130	50	450
7	7	135	40	500
8	8	140	30	550
9	9	145	20	600
10	10	150	10	650
11	11	155	20	700
12	12	160	30	750
13	13	165	40	800
14	14	170	50	850
15	15	175	60	900
16	16	180	70	950
17	17	185	80	1000
18	18	190	90	1100
19	19	195	100	1200
20	20	200	100	1300
21	21	120	50	700
22	22	125	40	800
23	23	130	60	200
24	24	140	70	250
25	25	150	10	400