

数据结构与算法

Data Structure and Algorithm

极夜酱

目录

0.1 红黑树

0.1.1 红黑树 (Red Black Tree)

红黑树是一种自平衡的二叉查找树,除了符合二叉查找树的基本特性外,它还具有如下附加特性:

- 1. 结点是红色或黑色的。
- 2. 根结点是黑色的。
- 3. 叶子结点都是黑色的空结点 NIL。
- 4. 红色结点的两个子结点都是黑色的,即从叶子到根的所有路径上不能有连续的两个红色结点。
- 5. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。

图 1: 红黑树

天呐,这条条框框的太多了吧!

正是因为这些规则限制,才保证了红黑树的自平衡,红黑树从根到叶子的最长路 径不会超过最短路径的 2 倍。

红黑树的应用有很多,其中 JDK 的集合类 TreeMap 和 TreeSet 底层就是红黑树实现的。在 Java8 中,连 HashMap 也用到了红黑树。

0.1.2 失衡调整

当插入或删除结点时, 红黑树的规则可能被破坏, 需要调整使其重新符合规则。

例如向红黑树中插入新结点 14,由于父结点 15 是黑色结点,这种情况不会破坏 红黑树的规则,无需做任何调整。

图 2: 插入 14

向红黑树中插入新结点 21,由于父结点 22 是红色结点,违反了红黑树的规则 4 (红色结点的两个子结点都是黑色的)。

图 3: 插入 21

调整的方法有变色和旋转两种,而旋转又包含左旋转和右旋转两种方式。

为了重新符合红黑树的规则,有时需要把红色结点变为黑色,或是把黑色结点变为红色。

例如对于红黑树的一部分(子树),新插入的结点 Y 是红色结点,它的父结点 X 也是红色结点,不符合规则 4(红色结点的两个子结点都是黑色的),因此可以把结点 X 变为黑色。

图 4: 违反规则 4

图 5: 变色

但是,如果这是简单的把一个结点变色,会导致相关路径凭空多出一个黑色结点,这样就会打破规则 5 (从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点),因此还需要其它的调整策略。

0.1.3 红黑树插入结点

红黑树插入新结点时,可以分为五种不同的局面。每一种局面有不同的调整方法。

局面 1

新结点(A)位于树根,没有父结点。

图 6: 局面 1

这种局面,直接让新结点变色为黑色,规则 2 (根结点是黑色的)满足。同时黑色的根结点使每条路径上的黑色结点数目都增加了 1,因此并没有打破规则 5 (从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点)。

局面 2

新结点 (B) 的父结点是黑色的。新插入的红色结点 B 并没有打破规则,无需调整。

图 7: 局面 2

局面 3

新结点(D)的父结点和叔叔结点都是红色。

图 8: 局面 3

这种局面,两个红色结点 B 和 D 连续,违反了规则 4(红色结点的两个子结点都是黑色的),因此需要先让结点 B 变为黑色。

但是这样一来,结点 B 所在路径凭空多出了一个黑色结点,打破了规则 5 (从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点),因此再让结点 A 变为红色。

这时结点 A 和 C 又成为了连续的红色结点,再将结点 C 变为黑色。

局面 4

新结点(D)的父结点是红色,叔叔结点是黑色或者没有叔叔,且新结点是父结点的右孩子,父结点是祖父结点的左孩子。

图 9: 局面 4

这个局面可以以结点 B 为轴,做一次左旋转,使得新结点 D 成为父结点,结点 B 成为 D 的左孩子。这样一来进入了局面 5。

局面 5

新结点(D)的父结点是红色,叔叔结点是黑色或者没有叔叔,且新结点是父结点的左孩子,父结点是祖父结点的左孩子。

图 10: 局面 5

这一局面可以以结点 A 为轴,做一次右旋转,使得结点 B 成为祖父结点,结点 A 成为 B 的右孩子。

再将结点 B 变为黑色,结点 A 变为红色。

红黑树的插入操作设计到这 5 种局面。如果局面 4 中父结点 B 是右孩子,则成为了局面 5 的镜像,原本的右旋转改为左旋转;如果局面 5 中父结点 B 是右孩子,则成为了局面 4 的镜像,原本的左旋转改为右旋转。

例如在一个红黑树中插入新结点 21, 需要根据不同局面进行调整。

新结点 21 和它的父结点 22 是连续的红色结点,违背了规则 4。当前情况符合局面 3 (新结点的父结点和叔叔结点都是红色)。于是经过三次变色 (22 变为黑色, 25 变为红色, 27 变为黑色),将以结点 25 为根的子树符合了红黑树的规则。

但结点 25 和结点 17 成为了连续的红色结点, 违背了规则 4。于是可以将结点 25

看做一个新结点,当前正好符合局面 5 的镜像(新结点的父结点是红色,叔叔是 黑色或者没有叔叔,且新结点是父结点的右孩子,父结点是祖父结点的右孩子)。 因此可以以根结点 13 为轴进行左旋转,使得结点 17 成为新的根结点。

再让结点 17 变为黑色, 13 变为红色, 使红黑树重新符合规则。

0.1.4 二叉查找树删除结点

在介绍红黑树的删除操作之前,需要先理解二叉查找树的删除操作。

二叉查找树的删除可分为三种情况:

待删除结点无子结点

如果待删除结点没有子结点,直接删除即可。

图 11: 删除结点 12

待删除结点只有一个孩子

如果待删除结点只有一个孩子,让孩子取代待被删除结点。

图 12: 删除结点 13

待删除结点有两个孩子

选择仅小于或仅大于待删除结点的结点取代,习惯上更多地会选择仅大于待删除结点的结点。

图 13: 删除结点 5

0.1.5 红黑树删除结点

红黑树的删除操作要比插入操作复杂得多。

第一步

如果待删除结点有两个非空的孩子结点,转化成待删除结点只有一个孩子(或没有孩子)的情况。

例如删除结点 8:

因为结点 8 有两个孩子,可以选择仅大于 8 的结点 10 复制到 8 的位置,结点颜色变成待删除结点的颜色。

结点 10 能成为仅大于 8 的结点,必定没有左孩子结点,所以问题转换成了待删除结点只有一个右孩子(或者没有孩子)的情况。

第二步

根据待删除结点和其唯一子结点的颜色,分情况处理。

情况 1: 自身是红色,子结点是黑色。直接按照二叉查找树的删除操作,删除结点 1 即可。

情况 2: 自身是黑色,子结点是红色。按照二叉查找树的删除操作,删除结点 1。 此时这条路径凭空少了一个黑色结点,因此需要将结点 2 变成黑色即可。

情况 3: 自身是黑色,子结点也是黑色,或者子结点是空叶子结点。这种情况最为复杂,涉及到很多变化。首先还是按照二叉查找树的删除操作,删除结点 1。此时这条路径凭空少了一个黑色结点,而且并不能改变结点 2 的颜色来解决问题。这时需要进入第三步,专门解决父子双黑的情况。

第三步

遇到双黑结点,在子结点顶替父结点后,可分为6种情况处理。

情况 1: 结点 2 是红黑树的根。此时所有路径都减少了一个黑色结点,并未打破规则,无需调整。

情况 2: 结点 2 的父亲、兄弟和侄子结点都是黑色。

直接把结点 2 的兄弟结点变为红色。这样结点 B 所在路径少了一个黑色结点,两边扯平了。

