EECS 215 Winter 2004 Midterm 2

Name:	tred	Terry			
Lecture Sect	ion $\stackrel{\angle}{\sim}$	Solution.	5		
4. Calculators N5. Work to be d6. DO NOT W	, Closed No heet is provesired. No of leeded and one in Example TITE ON	otes, etc. rided on the ba other pages sho Allowed	ck of this uld be rer	exam and can noved.	be
8. Show your w	rork and <i>bri</i> =i1+i2 ,noo RK IS SHO	efly explain made A, KCL). N	O CRED	IT WILL BE	GIVEN
_	as over 19 p	ages (includin			
Sign the College given for the ex	_	_		ow (NO credi	t will be
I have neithe	er given i	nor receive	d aid or	n this exam	ination.
Signed:					
Do not write on thi	s page below	this line – Instru	ctional Stat	f Use Only!	
[] Prob 1] Prob 3	
[] Prob 2			[] Prob 4	

Problem 1: Op-Amps (20 points total)

Problem has parts a & b. You may draw directly on the circuits if you want, but be sure to clearly explain your reasoning to qualify for partial credit.

a) For the circuit below, what is v_0 ? (10 points)

$$v_0 = \underline{+2}v$$

additional space for 1(a) if needed

b) For the circuit below, what is v_0 ? (10 points)

$$v_0 = \frac{-27}{4} = \frac{-6.75V}{V}$$

$$i_{1} = (0V/10KR) = 1mA$$

$$i_{2} = \frac{V_{01} - 4V}{1KR}$$

$$V_{0} = 2V - (5K\sigma)i_{2} = 2V - (5V_{01} - 20V)$$

$$= 22V - 5V_{01}$$

$$i_{3} = \frac{V_{0}}{1KR} \implies i_{4} = \frac{V_{0}}{1KR} + i_{1} = \frac{V_{0}}{1KR} + 1mA$$

$$V_{01} = (-1K\Omega)i_{4} = -V_{0} - 1V$$

$$V_{0} = 22V + 5V_{0} + 5V$$

$$\implies 4V_{0} = -27V \implies V_{0} = -\frac{27}{4}V$$

Same idea, more elegance!

additional workspace for 1(b) if needed

After using
$$V_{+}=V_{-}$$
 on both op-amps
+ Doing the simple KVL for the 4V point, we have a
2 node KCL/notal problem (at the 2 V_ nodes)

$$\frac{V_{A}-4V}{1K^{2}} + \frac{V_{0}-2V}{5K^{2}} = 0 \Rightarrow 5V_{A}+V_{0} = 22V$$

$$\frac{1}{1} \begin{bmatrix} V_{A} \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 23/4 \\ -27/4 \end{bmatrix} V = \begin{bmatrix} V_{0} \\ V_{0} \end{bmatrix}$$

additional workspace for 1(b) if needed

Problem 2: First Order Circuits (30 points total)

Problem has only 1 part (all quantities in the box below)

For the circuit below, find the following quantities (box below). Show your work clearly. *No credit will be given without clear supporting work.*

$$v_{0}(0) = \frac{15V}{v_{0}(0^{+}) = \frac{15V}{v_$$

 $\frac{1}{3kr} = \frac{360}{3kr} = \frac{$

$$20v = (5kn)io + (15kn)io KVL/0hm$$

$$= (20kn)io$$

$$= (3io)5kn = 15V$$

$$\Rightarrow io = 1mA + 150 = (3io)5kn = 15V$$

Additional Workspace for problem 2

Workspace for problem 2

$$20V \stackrel{t=0}{\longrightarrow} \frac{i_0}{2k\Omega} + \frac{i_0}{2k\Omega}$$

$$20V \stackrel{t=0}{\longrightarrow} \frac{i_0}{2k\Omega} + \frac{i_0}{2k\Omega}$$

$$20V \stackrel{t=0}{\longrightarrow} \frac{i_0}{2k\Omega} + \frac{i_0}{2k\Omega}$$

$$4 \text{ Req} = 5k\Omega$$

$$4 \text{ Req} = 6k\Omega$$

$$4 \text{ Req}$$

Problem 3: Second Order Circuits (20 points total)

Problem has only 1 part

result in zero credit.

For the circuit picture above, find the differential equation that relates $V_{c1}(t)$ to $i_g(t)$. Write the equation in standard form - $\frac{d^2V_{c1}}{dt^2} + A\frac{dV_{c1}}{dt} + BV_{c1} = function(i_g) \cdot V_{c1} \text{ must be}$ the only unknown (assuming $i_g(t)$ is known). You may use KVL/KCL/time domain methods or s-domain, but you must clearly show your work to receive full or partial credit. Warning: Attempts to mix time-domain and s-domain approaches are likely to

Differential Equation:
$$\frac{\left(\frac{d^{2}V_{Cl}}{dt^{2}}\right) + \left[\frac{R_{1}+R_{2}}{R_{1}R_{2}C_{2}} + \frac{\left(\frac{1-A}{A}\right)}{R_{2}C_{1}}\right] \frac{dV_{Cl}}{dt} + \left(\frac{1}{R_{1}R_{2}C_{1}C_{2}}\right)V_{Cl}}{= \frac{1}{2}\left(\frac{R_{2}C_{1}C_{2}}{R_{2}C_{1}C_{2}}\right)}$$

Note that you can check this numerically using the component values and the numerically specified differential equation in problem 4. Also note that the units all work (v/s^2 on is the unit for all terms) and that the D.C. steady state forced response (if ig=const) is Vc1=R1ig which agrees with D.C. circuit analysis.

Time Domoin

Workspace for problem 3

$$kVL'$$
: $R_2\dot{c}_{c1} + V_{c1} = V_{c2} + AV_{c1} = \dot{c}_1R_1$

$$\Rightarrow V_{c2} = R_2\dot{c}_{c1} + (1-A)V_{c1}$$

KCL:
$$i_{q} = i_{1} \pm i_{C1} + i_{C2}$$

$$i_{1} = \frac{R_{2}}{R_{1}} i_{C1} + \frac{1}{R_{1}} V_{C1} \quad \text{from } KVL/3hm's L_{nw}$$

$$i_{C1} = C_{1} \frac{dV_{C1}}{dt}$$

$$i_{C2} = C_{2} \frac{dV_{C2}}{dt}$$

$$= R_{2}C_{2}C_{1} \frac{d^{2}V_{C1}}{dt^{2}} + (1-A)C_{2} \frac{dV_{C1}}{dt}$$

$$i_{g} = \frac{R_{2}}{R_{1}} C_{1} \frac{dV_{c1}}{dE} + \frac{V_{c1}}{R_{1}} + C_{1} \frac{dV_{c1}}{dE} + C_{1} \frac{dV_{c1}}{dE} + R_{2}C_{1}C_{2} \frac{d^{2}V_{c1}}{dE^{2}} + (1-A)C_{2} \frac{dV_{c1}}{dE}$$

additional workspace for problem 3

$$i_{g}(t) = R_{1} \underbrace{\begin{cases} R_{2} & V_{c2}(t) \\ V_{c1}(t) & V_{c1}(t) \\ \\ C_{1} & V_{c1}(t) \\ \\ C_{1} & V_{c1}(t) \\ \\ C_{2} & V_{c1}(t) \\ \\ C_{3} & V_{c1}(t) \\ \\ C_{4} & V_{c1}(t) \\ \\ C_{1} & V_{c1}(t) \\ \\ C_{2} & V_{c1}(t) \\ \\ C_{3} & V_{c1}(t) \\ \\ C_{4} & V_{c1}(t) \\ \\ C_{5} & V_{c2}(t) \\ \\ C_{5} & V_{c1}(t) \\ \\ C_{5} & V_{c2}(t) \\$$

S-Pomain Nodal

Workspace for problem 3

$$V_{A} = V_{C_{1}} = V_{A} = V_{C_{1}} =$$

Problem 4: Second Order Circuits (30 points total)

Problem has parts a, b, c, and d

Now suppose we have the circuit above with the following component values:

$$\mathbf{R_1} = 1K\Omega$$
 $\mathbf{R_2} = 5K\Omega$ $A = 0.7$ $C_1 = 1nF$ $C_2 = 5nF$

and we will let $i_g(t) = [3 mA]u(t)$

This results in a differential equation for this circuit (for t>0):

$$(2.5x10^{-11}s^2)\frac{d^2V_{c1}}{dt^2} + (7.5x10^{-6}s)\frac{dV_{c1}}{dt} + V_{c1} = 3V$$

where s denotes seconds, not the Laplace differential operator

a) Find the quantities below. Show your work on the following 2 pages (5 pts)

$v_{c1}(0)=$		V
v _{c2} (0 ⁻)=	O	V
$i_{c1}(0^{-})=$	O	<u>A</u>
$i_{c2}(0)=$	0	A
62()		

$$v_{c1}(0^{+}) =$$
 V
 $v_{c2}(0^{+}) =$ V
 $i_{c1}(0^{+}) =$ V
 $i_{c2}(0^{+}) =$ V

12

Workspace for (a)

$$R_{1} = IK\Omega \quad R_{2} = 5K\Omega \quad A = 0.7 \quad C_{1} = InF \quad C_{2} = 5nF$$

$$i_{g}(t) = [3mA]u(t) \qquad C_{2}$$

$$R_{1} = V_{c2}(t)$$

$$R_{1} = V_{c2}(t)$$

$$R_{2} = V_{c2}(t)$$

$$R_{3} = V_{c2}(t)$$

$$R_{4} = V_{c2}(t)$$

$$R_{1} = V_{c2}(t)$$

$$R_{2} = V_{c2}(t)$$

$$R_{2} = V_{c2}(t)$$

$$R_{3} = V_{c2}(t)$$

$$R_{4} = V_{c2}(t)$$

$$R_{2} = V_{c2}(t)$$

$$R_{4} = V_{c2}(t)$$

$$R_{5} = V_{c2}(t)$$

$$R_{6} = V_{c2}(t)$$

$$R_{7} =$$

additional workspace for (a) if needed

b) Find $v_{c1}(\infty)$, $v_{c2}(\infty)$, $i_{c1}(\infty)$, and $i_{c2}(\infty^{+})$. (10 pts)

$$v_{c1}(\infty) = \frac{+3V}{V}$$

$$v_{c2}(\infty) = \frac{+0.9V}{V}$$

$$i_{c1}(\infty)^{=} \frac{0}{A}$$

$$i_{c2}(\infty) = \frac{A}{A}$$

Workspace for (b)

$$\mathbf{R}_1 = 1K\Omega$$
 $\mathbf{R}_2 = 5K\Omega$ $A = 0.7$ $C_1 = 1nF$ $C_2 = 5nF$ $i_g(t) = [3mA]u(t)$

ici = 0 icz = 0 DC steady state

KCL i1 = 3mA

KVL
$$R_{z}i_{c1}+V_{c1}=R_{1}i_{1}=3V$$

$$\Rightarrow V_{c1}=3V$$

KVL
$$R_{zicz} + V_{c1} = V_{cz} + AV_{c1}$$

 $\Rightarrow (1-A)V_{c1} = V_{cz} = (0.3)3V$
 $\Rightarrow (1-A)V_{c1} = V_{cz} = 0.9V$

additional workspace for (b) if needed

c) Find the <u>natural</u> solution for Vc1 (with 2 and only 2 unknown coefficients). (5 pts)

$$v_{cl,n}(t) = \frac{[B_1 \cos(\omega_0 t) + B_2 \sin(\omega_0 t)]_e^{-\alpha t}}{(\omega_0 t)^2} V$$
(with 2 and only 2 unknown coefficients)
$$\omega_0 \approx 1.323 \times 10^5 a^{-1}$$

workspace for (c):

$$w^{2} = \frac{1}{2.5 \times 10^{-11} a^{2}} = 4 \times 10^{5} a^{-2}$$

$$\Rightarrow w_{0} = 2 \times 10^{5} a^{-1} \qquad \text{from given diff. e.g.n.}$$

$$2 \alpha = \frac{7.5 \times 10^{-6} a}{2.5 \times 10^{-11} a} = 3 \times 10^{5} a^{-1}$$

$$\Rightarrow \alpha = 1.5 \times 10^{5} a^{-1}$$

$$\alpha < \omega_{0} \Rightarrow \text{Underdamped response}$$

$$\forall < \omega_{0} \Rightarrow \text{Underdamped response}$$

$$\forall < \omega_{0} \Rightarrow \text{Underdamped response}$$

$$\Rightarrow V_{c1,n}(t) = \left[\beta_{1} \cos(\omega_{0} t) + \beta_{2} \sin(\omega_{0} t)\right] e^{-\alpha t}$$

$$\omega_{0} = \left[\omega_{0}^{2} - \alpha^{2}\right]^{\frac{1}{2}} \approx \left[1.75 \times 10^{10} a^{2}\right]^{\frac{1}{2}}$$

$$\approx 1.3229 \times 10^{5} a^{-1}$$

d) Match the initial conditions to the complete solution to find the final numerical solution for $v_{c1}(t)$ for this problem. (10 pts)

$$v_{c1}(t) = \frac{3 - [3\cos(\omega dt) + 3.40175/n(\omega dt)]^{-\alpha t}}{\alpha = 1.5 \times 10^{5} 2^{-1}} \quad \omega_{d} \approx 1.327 \times 10^{5} 2^{-1}$$

workspace for (d):

$$V_{c1}(t) = 3V + [B_{1} c \rightarrow s(\omega + t) + B_{2} sin(\omega + t)]e^{-\alpha t}$$

$$V_{c1}(0) = 0 = 3V + B_{1} \Rightarrow B_{1} = -3V$$

$$V_{c1}(0) = 0 = C[B_{1}(-\alpha) + B_{2}\omega d]$$

$$\Rightarrow B_{2} = \frac{+B_{1}\alpha}{\omega d} = -3V(\frac{\alpha}{\omega d})$$

$$\Rightarrow -3.4017 V$$