BST 6200 Spatial Statistics and Disease Mapping

Steven E. Rigdon

©2020

Spring 2020

Section 6.7: Interpolation of Point Patterns with Continuous Attributes

A **point process** is a set of point locations (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) in some domain.

A marked point process is a set of point locations $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ in some domain together with some "marked" variable z_i .

In this section we consider marked point processes where the "mark" is a continuous measurement such as a measure of air pollution. Data is of the form $[(x_1, z_1), (x_2, z_2), \ldots, (x_n, z_n)]$.

Longitude Latitude Measurement

x_{11}	x ₁₂	z_1
x ₂₁	x ₂₂	z_2
x ₃₁	x ₃₂	Z 3

The Problem and Three Solutions

Objective: estimate the value of z at a point x_{new} that is not one of the original points

Three solutions:

- 1. Nearest neighbor interpolation
- 2. Inverse distance weighting
- 3. Kriging

Example to be used for illustration

We have eight monitoring sites for PM 2.5.

X	У	Z
0.10	0.35	4.5
0.22	0.23	5.5
0.84	0.63	10.8
0.61	0.90	7.4
0.88	0.21	7.5
0.55	0.81	9.3
0.04	0.78	4.1
0.47	0.59	6.2

Solution 1: Nearest Neighbor Interpolation

Let x_{new} denote a new point that is not one of the observation points.

Objective: Estimate the outcome at x_{new} .

Solution: Find the nearest observation point to x_{new} and use the PM2.5 at that point as an estimate of the PM2.5 at x_{new} .

More precisely:

Step 1: Find *i* that minimizes $||x_i - x_{new}||$. Call it i_{min} .

Step 2: Estimate $\hat{z}_{new} = z_{i_{min}}$.

Voronoi Diagram and Voronoi Polygons

Work through the R code to do plot the nearest neighbor estimator.

The Fulmar Data Set

Fulmaris glacialis is a sea bird that live in the North Sea between England and the Netherlands.

Counts of the bird were taken in 1998 and 1999 using arial photos. The recorded value for z is the density of birds observed: number/area.

The path taken by the plane is called the a transect and is visible in plots of the observation points.

Students should work through the R code on the fulmar data described in the textbook, section 6.7. Note however, that the book's website gives the code (incorrectly) under Section 6.8.

Solution 2: Inverse Distance Weighting

Idea: Use a weighted average of outcomes at all other points x_{new} and make the weights be inversely related to distance. Thus, close points get high weight and far away points get less weight.

Step 1: For a given x_{new} point, assign the weights

$$w_i = ||\mathbf{x} - \mathbf{x}_{\text{new}}||^{-\alpha}$$

for all other observation points.

Step 2: Estimate the outcome at x_{new} to be

$$\hat{z}(\mathbf{x}_{\text{new}}) = \frac{\sum_{i=1}^{n} w_i z_i}{\sum_{i=1}^{n} w_i}$$

The Effect of α

If $\alpha = 0$ then all weights are equal to 1, and the estimate of the outcome is the average of all z values.

If $\alpha=1$ then the weights are inversely proportional to the distance between ${\it x}_i$ and ${\it x}_{\rm new}$.

If $\alpha=2$ then the weights are inversely proportional to the squared distance between \boldsymbol{x}_i and $\boldsymbol{x}_{\text{new}}$. This gives nearer points higher weight and farther away points lesser weight than using $\alpha=1$.

If α is very large, then the weight of the nearest neighbor dominates all of the other weights and IDW behaves like the nearest neighbor method.

If x_{new} is actually one of the observation points, say the ith one, then $\hat{z}=z_i$

Apply IDW to the Fulmar Data Set in R