Ejemplo 12

Estudiar los extremos locales de f(x,y,z)=xyz en la superficie de la esfera unidad $x^2+y^2+z^2=1$ utilizando el criterio de la derivada segunda.

Solución

Igualando a cero las derivadas parciales de la función auxiliar $h(x, y, z, \lambda) = xyz - \lambda(x^2 + y^2 + z^2 - 1)$ se obtiene

$$yz = 2\lambda x$$

$$xz = 2\lambda y$$

$$xy = 2\lambda z$$

$$x^{2} + y^{2} + z^{2} = 1.$$

Por tanto, $3xyz = 2\lambda(x^2 + y^2 + z^2) = 2\lambda$. Si $\lambda = 0$, las soluciones son $(x,y,z,\lambda) = (\pm 1,0,0,0)$, $(0,\pm 1,0,0)$ y $(0,0,\pm 1,0)$. Si $\lambda \neq 0$, entonces tenemos $2\lambda = 3xyz = 6\lambda z^2$ y, por tanto, $z^2 = \frac{1}{3}$. De manera análoga, $x^2 = y^2 = \frac{1}{3}$. Por tanto, las soluciones están dadas por $\lambda = \frac{3}{2}xyz = \pm\sqrt{3}/6$. Los puntos críticos de h y los valores correspondientes de f se proporcionan en la Tabla 3.1. En ella vemos que los puntos E, F, G y K son puntos de mínimo. Los puntos D, H, I y J son puntos de máximo. Para ver si esto concuerda con el criterio de la segunda derivada, tenemos que considerar dos determinantes. Veamos en primer lugar este determinante:

$$|\overline{H}_{2}| = \begin{vmatrix} 0 & -\partial g/\partial x & -\partial g/\partial y \\ -\partial g/\partial x & \partial^{2}h/\partial x^{2} & \partial^{2}/\partial x \partial y \\ -\partial g/\partial y & \partial^{2}h/\partial x \partial y & \partial^{2}h/\partial y^{2} \end{vmatrix} = \begin{vmatrix} 0 & -2x & -2y \\ -2x & -2\lambda & z \\ -2y & z & -2\lambda \end{vmatrix}$$
$$= 8\lambda x^{2} + 8\lambda y^{2} + 8xyz = 8\lambda(x^{2} + y^{2} + 2z^{2}).$$

Obsérvese que signo $(|\overline{H}_2|) = \text{signo } \lambda = \text{signo } (xyz)$, donde el signo de un número es 1 si dicho número es positivo, o es -1 si dicho número es negativo. En segundo lugar, consideramos

$$|\overline{H}_{3}| = \begin{vmatrix} 0 & -\partial g/\partial x & -\partial g/\partial y & -\partial g/\partial z \\ -\partial g/\partial x & \partial^{2}h/\partial x^{2} & \partial^{2}h/\partial x \partial y & \partial^{2}h/\partial x \partial z \\ -\partial g/\partial y & \partial^{2}h/\partial x \partial y & \partial^{2}h/\partial y^{2} & \partial^{2}h/\partial y \partial z \\ -\partial g/\partial z & \partial^{2}h/\partial x \partial z & \partial^{2}h/\partial y \partial z & \partial^{2}h/\partial z^{2} \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -2x & -2y & -2z \\ -2x & -2\lambda & z & y \\ -2y & z & -2\lambda & x \\ -2z & y & x & -2\lambda \end{vmatrix},$$

que resulta ser +4 en los puntos $\pm A$, $\pm B$, y $\pm C$ y $-\frac{16}{3}$ en los otros ocho puntos. En E, F, G y K, tenemos $|\overline{H}_2| < 0$ y $|\overline{H}_3| < 0$, de modo que el criterio indica que son puntos de mínimo local. En D, H, I y J tenemos $|\overline{H}_2| > 0$ y $|\overline{H}_3| < 0$, y por tanto el criterio dice que se trata de puntos de máximo local. Por último, el criterio de la segunda derivada muestra que $\pm A$, $\pm B$ y $\pm C$ son puntos de silla.