DEPARTMENT OF MATHEMATICS

MATHS 315 Assignment 2 Due: August 13, 4pm

- 1. (2 marks) Show that the set of connectives $\{\rightarrow\}$ is not complete. (See the slides for Chapter 1, near the end, for the definition of a complete set of connectives. They are posted on Canvas.)
- **2.** The formal systems \mathcal{F}_1 and \mathcal{F}_2 are defined as follows.

Both have an alphabet consisting only of the symbol A. In both cases, the wff's are all strings and the single axiom is A.

- (a) (1 marks) The single rule of \mathcal{F}_1 is: from x infer xAA. Describe the set of theorems of \mathcal{F}_1 .
- (b) (3 marks) The single rule of \mathcal{F}_2 is: from x infer xx. Describe the set of theorems of \mathcal{F}_2 . Prove your claim.
- **3.** (2 marks) Show that $\{A\} \vdash_L \neg \neg A$ for any wff A, without actually giving a derivation in L. You can use any Theorem we proved in class.
- **4.** (4 marks) Prove that the set of finite subsets of \mathbb{Z} is countable. During the course of your proof state precisely which of the results in Section 2.6 you use.
- 5. (a) (1 marks) Show that if \mathcal{A} is a tautology and $\Sigma \subseteq \text{form}(L)$ is a set such that $\Sigma \vdash_L \neg \mathcal{A}$, then Σ is inconsistent. (You can use theorems from class if you reference them properly.)
 - (b) (1 marks) Prove that for each set $\Sigma \subseteq \text{form}(L)$ and each statement form \mathcal{A} , Σ does not entail \mathcal{A} if and only if $\Sigma \cup \{\neg \mathcal{A}\}$ is satisfiable. Do not use the adequacy or soundness theorems for L.
 - (c) (2 marks) Prove that for wff \mathcal{A}, \mathcal{B} of the system L, if $\{\mathcal{A}\} \vdash_L \mathcal{B}$, then $(\mathcal{A} \to \mathcal{B})$ is a tautology. You can use theorems from class, if you reference them properly.