Model Theory of Valued Fields: Midterm

Li Ling Ko lko@nd.edu

October 20, 2017

Exercise 12: Show that for local rings $R_0 \sqsubseteq R$ we have $m_0 = m \cap R_0$.

Proof. We are assuming that R_0 is a subring of R.

 $m_0 \subseteq m \cap R_0$ follows by definition of $R_0 \sqsubseteq R$. For the reverse containment, since R_0 is local, it suffices to show that $m \cap R_0$ is an ideal of R_0 , and that $m \cap R_0$ is not equal to R_0 . To prove the second claim, observe that R_0 cannot be contained in contain m, because as a subring of R_0 , R_0 must contain the identity of R, which does not lie in m since m is a non-trivial ideal of R. Thus $m \cap R_0 \neq R_0$.

To prove the first claim, observe that as rings, both m and R_0 are closed under subtraction. As an ideal of R, m is closed under multiplication with elements of R_0 . R_0 is also clearly closed under multiplication with elements of R_0 .

Q5: Let R < K be domains and every $k \in K$ is integral over R. If K is a field, show that R is a field as well.

Proof. Let $r \in R^*$. We want to show that $r^{-1} \in F$ also lies in R. Since r^{-1} is integral over R, there exists $r_0, \ldots, r_{n-1} \in R$ such that

$$r^{-n} + r_{n-1}r^{-n+1} + \ldots + r_1r^{-1} + r_0 = 0.$$

Rearranging, we get

$$r(-r_0r^{n-1} - r_1r^{n-2} - \dots - r_{n-2}r - r_{n-1}) = 1.$$

So

$$-r_0r^{n-1} - r_1r^{n-2} - \ldots - r_{n-2}r - r_{n-1} \in R$$

is the multiplicative inverse of r, and it lies in R, as required.

Q7: (Corollary 9.6) For a fixed prime p the theory of p-adically closed fields in the language \mathcal{L}_v is complete and model complete.

Proof. Since T_p^c has QE in the expanded language \mathcal{L}_p^c (Theorem 9.4), and therefore is model-complete with respect to \mathcal{L}_p^c . Since no new axioms were added in the expanded language, the models of T_p^c in the original language are the same as the models in the expanded one. Thus T_p^c is model-complete.

To prove completeness, fix an arbitrary model \mathcal{M} of T_p^c . Then \mathcal{M} must embed \mathbb{Q} as a valued field with p-adic valuation, and thus also embeds \mathbb{Q}_p^h , the hensalization of \mathbb{Q} . So \mathbb{Q}_p^h is a substructure of \mathcal{M} , thus by model-completeness, is an elementary substructure of \mathcal{M} . In particular, \mathbb{Q}_p^h and \mathcal{M} are elementary equivalent. Since \mathcal{M} is an arbitrary model of T_p^c , T_p^c is the complete theory of \mathbb{Q}_p^h . \square