

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody analizy i wizualizacji dużych zbiorów danych Laboratorium 4 - LargeVis

1. Opis zagadnienia

Laboratorium 4 poświęcone było metodzie LargeVis, w szczególności porówaliśmy ją do MDS, t-SNE bh-SNE.

Zadaniem domowym było przetestowanie jakie wpływ na wyniki mają wartości parametrów **sample**, **neighbours** oraz **perplexity**.

1.1. Zbiór danych

Zbiorem użytym do testów będzie Fashion-MNIST dostępny pod adresem:

https://www.kaggle.com/zalando-research/fashionmnist

Jest to zbiór czarno-białych obrazków przedstawiających elementy garderoby, które podzielone są na następujące klasy:

- 0. T-Shirt / top
- 1. Trouser
- 2. Pullover
- 3. Dress
- 4. Coat
- 5. Sandal
- 6. Shirt
- 7. Sneaker
- 8. Bag
- 9. Ankle boot

Pobrany zbiór składa się z 70000 obrazków, lecz w racji dużej ilości obliczeń ograniczyliśmy je do pierwszych 10000 obrazków z czterech wybranych grup.

2. Testowane parametry

Testy przeprowadzać będziemy dla różnych wartości trzech parametrów (każdy testowany będzie osobno):

samples – (default: size/100) ilość próbkowanych krawędzi (w milonach)

neighbours – (default: 150) ilość sąsiadów (K) w K-NNG

perplexity – (deafult: 50) definiuje balans pomiędzy lokalnymi i globalnymi aspektami danych

3. Parametr "samples"

Samples	Czas [s]	Rezultat
5	13.8042	20 33 5 0 -5 -10 -20 -20 -25 -10 -3 0 5 10 10 10 10 10 10 10 10 10 10 10 10 10
10	16.6009	20 10 -10 -20 -30 -10 6 10 20
30	23.9173	20
50	32.1755	20 13 10 5 -5 -10 -20 -30 -20 -10 0 10 20
100	52.0394	30 - 20 - 10 - 10 20 - 20
250	113.8634	30 20 -10 -20 -40 -30 -20 -10 0 10 20 30

3.1. Wnioski

Dla małych wartości sample obliczenia są stosunkowo szybkie lecz mamy do czynienia z szumem, im większa wartość sample tym grupy są bardziej wyraźne, ale rośnie też czas.

Za optymalną wartość możemy przyjąć **50** gdyż klastry już są wyraźnie oddzielone, a czasy jeszcze są nie są bardzo duże.

4. Parametr "neighbours"

Neighbours	Czas [s]	Rezultat
1	365.0772	100 - 50 0 50 100
10	388.4651	72 - 10 0 20 40 6C
50	379.6224	-70 -40 -30 70 -10 0 10 23 30
100	416.9872	-20 -40 -23 10 0 13 70
500	447.7580	15 - 22

4.1. Wnioski

Im większa wartość tym lepszy podział na klastry, podczas gdy wzrost czasu nie jest zbyt znaczący.

Warto zauważyć, że domyślną wartością dla tego parametru jest 150, a zważywszy że zarówno dla 50 jak i 100 otrzymujemy całkiem zadowalające wyniki, warto ją dostosowywać w praktyce, jako że 150 to już niepotrzebnie dużo.

5. Parametr "perplexity"

Perplexity	Czas [s]	Rezultat
10	17.4205	20 30 -10 -30 30 70 10 0 10 25 30
20	18.4632	20 20 0 -15 -20 -20 -10 70 -10 70 90
50	17.1908	20 10 -10 -20 10 10 10 20 10 20
100	17.4334	20 -10 c .10 25
300	18.4589	26 - 10 - 10 - 20 - 20 - 20 - 20 - 20 - 20
1000	18.2168	20 31 10 -10 -10 -10 -10 -10 -10 -10 -10 -10

5.1. Wnioski

Zgodnie z tym informacją podaną w opisie LargeVis, parametr perplexity jest dosyć skomplikowany, w tym sensie że trudno jednoznacznie powiązać jego zmianę z wynikami. Warto jednak zauważyć że poniżej 50 mieliśmy do czynienia z szumami, natomiast paramter ten nie miał wpływu na czasy.

Zatem przyjęcie domyślnej wartości (50) lub też trochę wyższej powinno mieć dobry wpływ na wyniki.

Metoda LargeVis, jako jedyr	a z dotvchczas testowa	nvch. dobrze radzi sob	ie z oddzielaniem klastró
dla zbiorów średniego rozmi			