Metrische und normierte Räume, Prähilberträume

Def Sei X eine Menge. Eine Abbildung $d: X \times X \to \mathbb{R}$ heißt Metrik auf X, falls für alle $x, y, z \in X$ gilt:

(M1)
$$d(x,y) \ge 0$$
, und $d(x,y) = 0 \Leftrightarrow x = y$ (Definitheit)

(M2)
$$d(x,y) = d(y,x)$$
 (Symmetrie)

(M3)
$$d(x, z) \le d(x, y) + d(y, z)$$
 (Dreiecksungleichung)

X zusammen mit einer Metrik heißt metrischer Raum und wird mit (X, d) bezeichnet.

Def Sei V ein Vektorraum über $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Eine Abbildung $\|\cdot\|: V \to \mathbb{R}$ heißt *Norm*, falls für alle $x, y \in V$ und $\alpha \in \mathbb{K}$ gilt:

(N1)
$$||x|| \ge 0$$
, und $||x|| = 0 \Leftrightarrow x = 0$ (Definitheit)

(N2)
$$\|\alpha x\| = |\alpha| \|x\|$$
 (Homogenität)

(N3)
$$||x+y|| \le ||x|| + ||y||$$
 (Dreiecksungleichung)

V zusammen mit einer Norm heißt normierter Raum und wird mit $(V, \|\cdot\|)$ bezeichnet.

Satz 1.1 Sei $(V, \|\cdot\|)$ ein normierter Raum. Dann ist (V, d) mit

$$d(x,y) := ||x - y||$$

ein metrischer Raum.

Def Sei V ein Vektorraum über $\mathbb{K} = \mathbb{R}$ bzw. über $\mathbb{K} = \mathbb{C}$. Eine Abbildung $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{K}$ heißt Skalarprodukt, falls für alle $x, y, z \in V$ und $\alpha, \beta \in \mathbb{K}$ gilt:

(S1)
$$\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$$
 (Linearität im ersten Argument)

(S2)
$$\langle x, y \rangle = \langle y, x \rangle$$
 bzw. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (Symmetrie bzw. Hermitizität)

(S3)
$$\langle x, x \rangle \ge 0$$
, und $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ (positive Definitheit)

V zusammen mit einem Skalarprodukt heißt *Prähilbertraum*. (Oft benutzt man in dem Fall auch die Bezeichnung *euklidischer Raum* bzw. *unitärer Raum*.)

Satz 1.2 (Cauchy-Schwarz Ungleichung) Sei V ein Prähilbertraum mit dem Skalarprodukt $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{K}$ und $||x|| := \sqrt{\langle x, x \rangle}$. Dann gilt $|\langle x, y \rangle| < ||x|| ||y||$.

Satz 1.3 Sei V ein Prähilbertraum mit dem Skalarprodukt $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{K}$. Dann wird durch

$$||x|| := \sqrt{\langle x, x \rangle}$$

eine Norm auf V definiert und somit ist $(V, \|\cdot\|)$ ein normierter Raum.

Def Sei (X, d) ein metrischer Raum. Unter der offenen Kugel mit Mittelpunkt $a \in X$ und Radius r > 0 versteht man die Menge

$$B_r(a) := \{ x \in X : d(a, x) < r \}.$$

Def Sei (X, d) ein metrischer Raum. Eine Teilmenge $U \subset X$ heißt Umge-bung von $a \in X$, wenn ein $\varepsilon > 0$ existiert, so dass $B_{\varepsilon}(a) \subset U$. $B_{\varepsilon}(a)$ heißt auch ε -Umgebung von a.

Def Sei (X, d) ein metrischer Raum, $(x_k)_{n \in \mathbb{N}}$ eine Folge in X und $a \in X$. Die Folge (x_k) heißt konvergent gegen den Punkt a, wenn $d(x_k, a) \to 0$ für $k \to \infty$ gilt, d.h.

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall n \geq N \colon d(x_k, a) < \varepsilon$$

In diesem Fall heißt a Grenzwert und man schreibt dafür $\lim_{k\to\infty} x_k = a$ oder $x_k \to a$.