Dynamic Control-Aware Noise Modeling for Qiskit (Physically Motivated, Executable, and Calibratable)

1 Scope

These notes specify a physically motivated, control-aware framework intended for implementation and verification in Qiskit. The framework models observable effects of control and noise processes and couples them dynamically. It comprises: (i) stateful system and environment parameters; (ii) control primitives (modulated entangling drive, Ramsey probe with explicit delay, controller confidence update); (iii) algorithmic layers (Bell, GHZ, Grover, QAOA with optional optimization); (iv) measurement parsing with optional SPAM error; and (v) performance metrics tied to a noise model. Control choices influence a driven, damped environment proxy and thereby the noise; the evolving environment feeds back onto subsequent operations. Classical controller metrics guide control selection but do not directly modulate physical noise channels.

Clarification: the environment proxy aggregates effects such as resonator photon population, TLS defect excitation, and low-frequency flux/charge noise; it is not a literal single mode. The model is designed to capture memory effects and control-hardware interaction phenomenologically rather than to simulate bath dynamics from first principles.

2 System and Environment

The register has n qubits. All normalized frequencies $\omega \in [0,1]$ reference a hardware frequency ω_q (physical frequency ω_q). Time is in seconds unless noted. Dimensionless rates (e.g., γ_0, c_A) can be converted to physical rates (Hz or rad/s) via a characteristic frequency ω_q or timescale τ_{ref} by multiplying with ω_q (for angular rates) or dividing by τ_{ref} as calibrated. A global factor $\iota \in [0, \infty)$ denotes a quasi-static thermal load or calibration-drift knob; $\iota = 0$ corresponds to a baseline, well-calibrated state.

2.1 Per-Qubit Control and Crosstalk

Per-qubit system drive parameters $(\boldsymbol{\omega}_s, \boldsymbol{\phi}_s, \boldsymbol{A}_s) \in [0, 1]^n \times \mathbb{R}^n \times [0, 1]^n$ define a local drive Hamiltonian

$$H_{\text{drive}}(t) = \sum_{q=0}^{n-1} A_{s,q} \left[\cos(\omega_{s,q} t + \phi_{s,q}) \, \sigma_x^{(q)} + \sin(\omega_{s,q} t + \phi_{s,q}) \, \sigma_y^{(q)} \right].$$

This two-quadrature form aligns with microwave control; in an appropriate rotating frame it reduces to an effective single-quadrature picture.

A static linear crosstalk matrix $G \in \mathbb{R}^{n \times n}$ maps intended controls to effective parameters: $\mathbf{A}_{\text{eff}} = G_A \, \mathbf{A}_s$, $\phi_{\text{eff}} = G_\phi \, \phi_s$, $\omega_{\text{eff}} = G_\omega \, \omega_s$. If amplitude crosstalk dominates, set $G_\phi = I$, $G_\omega = I$ and use $G \equiv G_A$. We assume a static, linear crosstalk model as a first-order approximation. A potential extension could model G as dependent on the drive frequencies or on the environment

state A_e . Crosstalk also induces coherent rotations on non-driven qubits; see the noise section for the induced coherent error model.

Entanglement is introduced via digital interactions (e.g., CX or ZX/ZZ rotations) layered with drive-induced rotations.

2.2 Environment as a Driven, Damped Complex Field (Proxy)

The environment proxy $(\boldsymbol{\omega}_e, \boldsymbol{E})$ represents, per qubit/control line, a dominant driven, damped field. For each q, use the complex phasor $E_q = X_{e,q} + iP_{e,q} = A_{e,q}e^{i\phi_{e,q}}$ and the effective complex drive $D_q := A_{\text{eff},q}e^{i\phi_{\text{eff},q}}$ at frequency $\omega_{\text{eff},q}$.

Define instantaneous detuning and relaxation rate (elementwise):

$$\Delta_q := |\omega_{\mathrm{eff},q} - \omega_{e,q}|,$$

$$\Gamma_q(\Delta_q, \iota, A_{\mathrm{eff},q}) := (\Gamma_0 + \Gamma_1 \iota) \underbrace{\left(1 + \kappa A_{\mathrm{eff},q}^2\right)}_{\text{drive-induced heating/power broadening}} \underbrace{e^{-k_\Gamma \Delta_q}}_{\text{off-resonant drive less effective}},$$

with example defaults $\Gamma_0 = 0.02$, $\Gamma_1 = 0.12$, $k_{\Gamma} = 2.0$, $\kappa = 0.5$.

Environment updates over duration Δt :

$$E_q \leftarrow D_q + (E_q - D_q) e^{-\Gamma_q \Delta t},$$

$$\omega_{e,q} \leftarrow \omega_{\text{eff},q} + (\omega_{e,q} - \omega_{\text{eff},q}) e^{-\Gamma_q \Delta t}.$$

Extract amplitude and phase afterward: $A_{e,q} \leftarrow |E_q|$ clipped to $[0,1], \phi_{e,q} \leftarrow \arg(E_q)$.

3 Control Primitives and Noise Coupling

Each primitive acts for a duration Δt and triggers environment updates and noise insertion. Maintain an internal controller diagnostic $CQ \in [0,1]$ (initialized 0); it influences control selection but does not directly appear in physical noise probabilities.

Instantaneous dephasing rate $\gamma_{\phi,q}$ and baseline $T_{1,q}$ define time-dependent noise per qubit q. Noise channels per segment of duration Δt : - Depolarizing with global and local components:

$$\bar{A}_e := \frac{1}{n} \sum_{q} A_{e,q}, \quad p_{\text{depol},q} = \text{clip}\Big(p_{\text{dep,glob},0} + c_{\text{dep,glob}} \bar{A}_e + p_{\text{dep,loc},0} + c_{\text{dep,loc}} A_{e,q}, \ 0, 1\Big).$$

- Coherent detuning error per qubit as a Z rotation:

$$R_z(\epsilon_{z,q}), \quad \epsilon_{z,q} := 2\pi \,\Delta_q \,\Delta t.$$

- Coherent crosstalk-induced rotations and parasitic ZZ: For a drive on qubit k with amplitude $A_{\text{eff},k}$,

$$\delta\theta_{j\leftarrow k} = \chi G_{jk} A_{\text{eff},k} \Delta t, \quad R_{x/y}^{(j)}(\delta\theta_{j\leftarrow k}),$$

and for spectator j,

$$R_{ZZ}^{(j,k)}(\zeta G_{jk} A_{\text{eff},k} \Delta t), \quad \chi, \zeta \ge 0.$$

Aggregate over active k during the segment. - Phase damping per qubit:

$$p_{\phi,q} = 1 - e^{-\gamma_{\phi,q} \Delta t}, \quad \gamma_{\phi,q} := \gamma_0 + \gamma_A A_{e,q} + \gamma_\Delta \Delta_q,$$

with defaults $\gamma_0 = 0.01$, $\gamma_A = 0.10$, $\gamma_{\Delta} = 0.05$. The $\gamma_{\Delta}\Delta_q$ term models shot-to-shot fluctuations in the AC Stark shift induced by a detuned drive. - Amplitude damping (T1-like) per qubit:

$$p_{\mathrm{amp},q} = 1 - \exp\left(-\Delta t \left(\frac{1}{T_{1,q}} + c_A A_{e,q}\right)\right),$$

where $T_{1,q} > 0$ and $c_A \ge 0$.

For segmented primitives with beat duration δt , compute $p_{\phi,q}(\delta t)$, $p_{\text{amp},q}(\delta t)$, $p_{\text{depol},q}$, apply $R_z(\epsilon_{z,q}(\delta t))$, and insert coherent crosstalk rotations and parasitic ZZ per beat from current state.

3.1 Modulated Entangling Drive (MED): Direct CR-Like Model

This primitive models a digital approximation of a CR-like interaction. For higher fidelity, the underlying analog Hamiltonian H(t) could be simulated directly, with this Trotterized version serving as a computationally efficient alternative. The beat duration δt is the Trotter step.

Inputs: $s \in [0, 1]$, beats $T \ge 1$, beat duration $\delta t > 0$, total $\Delta t = T \delta t$.

Per beat t = 0, ..., T - 1 and per qubit q define

$$drive_angle_{t,q} = s A_{eff,q} \pi \sin(2\pi \omega_{eff,q} (t + \frac{1}{2}) \delta t + \phi_{eff,q}).$$

For each nearest-neighbor pair (q, q + 1), model a simplified CR step driven by control q on target q + 1:

Apply $R_x^{(q)}(\text{drive_angle}_{t,q})$ and simultaneously on target $q+1: R_x^{(q+1)}(\kappa_{IX} \text{ drive_angle}_{t,q})$ and $R_z^{(q+1)}(\kappa_{ZX} \text{ drive_angle}_{t,q})$ with $\kappa_{ZX} \geq 0$ and $\kappa_{IX} \geq 0$.

After each beat, apply: - Depolarizing with $p_{\text{depol},q}$ on 1- and 2-qubit gates, - Per-qubit coherent $R_z(\epsilon_{z,q})$ with $\epsilon_{z,q} = 2\pi \, \Delta_q \, \delta t$, - Coherent crosstalk rotations $\{R_{x/y}^{(j)}(\sum_k \delta \theta_{j\leftarrow k})\}$ and parasitic R_{ZZ} terms, - Per-qubit phase damping with $p_{\phi,q} = 1 - e^{-\gamma_{\phi,q}\delta t}$, - Per-qubit amplitude damping with $p_{\text{amp},q} = 1 - \exp(-\delta t(1/T_{1,q} + c_A A_{e,q}))$.

Controller metric update (per beat; diagnostic only):

$$Q_{\text{beat}} := \min \left\{ 1, \ (0.75 + 0.25 \, s) \, \exp \left(-\frac{1}{n} \sum_{q} \eta \, \Delta_q \right) \right\}, \ \eta = 2.0,$$

$$CQ \leftarrow \text{clip}\Big(CQ \, e^{-\bar{\gamma}_{\phi}\delta t} + (1 - e^{-\bar{\gamma}_{\phi}\delta t}) \, Q_{\text{beat}}, \ 0, 1\Big), \quad \bar{\gamma}_{\phi} = \frac{1}{n} \sum_{q} \gamma_{\phi, q}.$$

Environment update per beat using the complex-field rule with $\Gamma_q = \Gamma_q(\Delta_q, \iota, A_{\text{eff},q})$ and duration δt .

3.2 Ramsey Probe with Explicit Delay

Inputs: interrogation frequencies $\tilde{\omega} \in [0,1]^n$ (default $\tilde{\omega} = \omega_{\text{eff}}$), delay $\tau \geq 0$, pulse duration $\delta t_{\pi/2}$. Procedure (true Ramsey): 1) Set $\omega_s \leftarrow \tilde{\omega}$. Apply first $\pi/2$ pulse: $\prod_q R_x(\pi/2)^{(q)}$ (duration $\delta t_{\pi/2}$). 2) Free evolution of duration τ ; relative phase accumulates at detuning $\delta_q := \tilde{\omega}_q - \omega_{e,q}$ and is revealed by the second pulse. No terminal R_z is applied. 3) Apply second $\pi/2$ pulse with the same phase reference as step 1: $\prod_q R_x(\pi/2)^{(q)}$ (duration $\delta t_{\pi/2}$). The measured expectation values oscillate as $\langle X \rangle_q \sim e^{-(\Gamma_{2,q}\tau)} \cos(2\pi\delta_q\tau)$ and $\langle Y \rangle_q \sim e^{-(\Gamma_{2,q}\tau)} \sin(2\pi\delta_q\tau)$, where $\Gamma_{2,q}$ emerges from the inserted decoherence channels. Noise: - After each pulse and during the delay, insert depolarizing with $p_{\text{depol},q}$, phase damping $p_{\phi,q} = 1 - e^{-\gamma_{\phi,q}\Delta t_{\text{seg}}}$, amplitude damping $p_{\text{amp},q} = 1 - \exp(-\Delta t_{\text{seg}}(1/T_{1,q} + c_A A_{e,q}))$, coherent detuning $R_z(\epsilon_{z,q})$ with $\epsilon_{z,q} = 2\pi \Delta_q \Delta t_{\text{seg}}$, and coherent crosstalk rotations induced by the pulses. - Associate time-dependent noise directly to the delay instruction of duration τ ; apply only dephasing, amplitude damping, and detuning R_z during the delay (no crosstalk if no active drive).

Controller metric during delay (diagnostic):

$$Q_{\text{Ramsey}} := \exp \left(-\frac{1}{n} \sum_{q} \eta_R |\tilde{\omega}_q - \omega_{e,q}| \right), \ \eta_R = 2.0, \quad \text{CQ} \leftarrow \text{clip} \Big(\text{CQ} \, e^{-\bar{\gamma}_\phi \tau} + (1 - e^{-\bar{\gamma}_\phi \tau}) \, Q_{\text{Ramsey}}, \ 0, 1 \Big).$$

Environment updates after each pulse and during free evolution with the corresponding durations using the complex-field rule.

3.3 Controller Confidence Update (Controller Only)

The controller confidence update models an automated calibration agent's confidence about attractor bitstrings. Maintain a confidence $S_b \in [0,1]$ for bitstring $b \in \{0,1\}^n$ in target set \mathcal{A} . Let $\epsilon_0 = 0.01$ and $\epsilon := \epsilon_0 \iota$. Define

$$\lambda_b := \frac{1}{1 + \epsilon/\epsilon_0} e^{-k_A \bar{A}_e}, \quad k_A = 0.5, \quad \bar{A}_e = \frac{1}{n} \sum_q A_{e,q},$$

$$S_b \leftarrow \operatorname{clip}(\lambda_b S_b + (1 - \lambda_b), 0, 1), \quad \mathcal{A} \leftarrow \mathcal{A} \cup \{b\}.$$

Beliefs $\{S_b\}$ guide controller decisions (e.g., choice of ω_s or algorithm parameters) but do not directly enter physical noise formulas. In a closed-loop simulation, the controller could use ResonanceFidelity (CQ) to trigger recalibration routines; for example, if CQ drops below a threshold, launch a Ramsey probe to update the controller's estimate of ω_e .

4 Algorithmic Layers

Noise inserted per gate or per block duration.

Bell pairs (even n, m = n/2):

$$\left(\prod_{i=0}^{m-1} H^{(i)}\right) \left(\prod_{i=0}^{m-1} \mathrm{CX}_{i,\,i+m}\right).$$

GHZ:

$$H^{(0)} \prod_{i=0}^{n-2} CX_{i,i+1}.$$

Grover (marked 11...1): initialize with Hadamards; per iteration apply the phase oracle on 11...1 and diffusion; iterations

$$R = \max\left(1, \left\lfloor \frac{\pi}{4}\sqrt{2^n} \right\rfloor\right).$$

QAOA (MaxCut ring), depth p = 2 default:

init
$$H^{\otimes n}$$
; for $\ell = 1, 2$: $\left(\prod_{q=0}^{n-2} R_{ZZ}(\gamma_{\ell})_{q,q+1}\right) \left(\prod_{q=0}^{n-1} R_x(2\beta_{\ell})^{(q)}\right)$,

with heuristics $\gamma_{\ell} = 2\pi\bar{\omega}_{\text{eff}}$ and $\beta_{\ell} = \frac{\pi}{4\ell}$, $\bar{\omega}_{\text{eff}} = \frac{1}{n}\sum_{q}\omega_{\text{eff},q}$. Optionally optimize $(\gamma_{\ell}, \beta_{\ell})$ to maximize $\mathcal{F}_{\text{QAOA}}$ or a scalarized control objective. A primary goal is to track the optimal (γ, β) as a function of the evolving environment state (ω_{e}, A_{e}) .

5 Measurement and Parsing

Measurement returns counts; parser strips whitespace and maps to $\{0,1\}^L$. For a data register of length k use

$$tail_k(x) := last k bits of x.$$

Endianness: rightmost bit is least significant in Qiskit. Optional SPAM: independently flip each bit with probability $p_{\text{spam}} \in [0, 1]$ before computing metrics.

6 Metrics

Let parsed counts $C: \{0,1\}^L \to \mathbb{N}$ with $N = \sum_x C(x)$; if N = 0, metrics are 0. Alignment (entropy reduction):

$$p_x = C(x)/N$$
, $H(C) = -\sum_{x:C(x)>0} p_x \log_2 p_x$, $H_{\text{max}} = n$, Align := $1 - \frac{H(C)}{H_{\text{max}}}$ (0/0 := 0).

Stability for target subspace $\mathcal{A} \subseteq \{0,1\}^k$:

Stab :=
$$\begin{cases} \frac{1}{N} \sum_{x} C(x) \mathbf{1} \{ tail_{k}(x) \in \mathcal{A} \}, & \mathcal{A} \neq \emptyset, \\ 0, & \mathcal{A} = \emptyset. \end{cases}$$

Resonance Fidelity (diagnostic; replaces CQ): internal CQ \in [0, 1]. Environment Quiescence: EnvQ := clip(1 - \bar{A}_e , 0, 1) with $\bar{A}_e = \frac{1}{n} \sum_q A_{e,q}$. Vector performance for analysis:

$$M := (Align, Stab, CQ, EnvQ).$$

Scalarized objective (default weighted sum) for optimization:

$$EffCtrl := clip(w_1 Align + w_2 Stab + w_3 CQ + w_4 EnvQ, 0, 1),$$

with defaults $(w_1, w_2, w_3, w_4) = (0.4, 0.4, 0.15, 0.15)$. Multiplicative alternative:

$$EffCtrl_{\Pi} := \left(\max\{10^{-6}, Align\} \cdot \max\{10^{-6}, Stab\} \cdot \max\{10^{-6}, CQ\} \cdot \max\{10^{-6}, EnvQ\}\right)^{1/4}.$$

7 Task-Oriented Fidelities

GHZ, target $\mathcal{T} = \{00...0, 11...1\}$:

$$\mathcal{F}_{GHZ} := \frac{1}{N} \sum_{x} C(x) \mathbf{1} \{ tail_n(x) \in \mathcal{T} \}.$$

Bell pairs (even n, m = n/2, pairs (i, i + m)). For $x \in \{0, 1\}^n$:

$$p_{ab}^{(i)} := \frac{1}{N} \sum_{x} C(x) \mathbf{1} \{ x_i = a, \ x_{i+m} = b \}, \ a, b \in \{0, 1\}.$$

Per-pair fidelity

$$\mathcal{F}_{\text{pair}}^{(i)} := p_{00}^{(i)} + p_{11}^{(i)}, \quad \mathcal{F}_{\text{BellPairs}} := \frac{1}{m} \sum_{i=0}^{m-1} \mathcal{F}_{\text{pair}}^{(i)}.$$

Grover (marked w = 11...1):

$$\mathcal{F}_{\text{Grover}} := \frac{1}{N} \sum_{x} C(x) \mathbf{1} \{ \text{tail}_{n}(x) = w \}.$$

QAOA (MaxCut ring; edges $(q, q + 1), q = 0, \dots, n - 2$):

$$\langle \widehat{Z_q Z_{q+1}} \rangle = \frac{1}{N} \sum_{x} C(x) (-1)^{x_q \oplus x_{q+1}}, \quad \mathcal{F}_{\text{QAOA}} := \frac{1}{n-1} \sum_{q=0}^{n-2} \left(\frac{1 - \langle \widehat{Z_q Z_{q+1}} \rangle}{2} \right).$$

8 Execution Template

A typical run: (i) MED with chosen $s, T, \delta t$; (ii) Ramsey at ω_{eff} with delay τ ; (iii) controller confidence updates (e.g., 0^n and 1^n); (iv) an algorithm layer (optionally optimize QAOA and track (γ, β) vs. (ω_e, A_e)); (v) optional interleaved MED or probes; (vi) after each segment, insert noise parameterized by current $(\gamma_\phi, T_1, A_e, G_A, A_{\text{eff}})$; apply coherent R_z errors, coherent crosstalk rotations, and parasitic ZZ; measure per shot; apply optional SPAM; and (vii) compute M = (Align, Stab, CQ, EnvQ), EffCtrl, and task fidelities. In closed loop, use low CQ to trigger recalibration (e.g., a Ramsey probe to update ω_e).

9 Assumptions and Conventions

- Frequency normalization: $\omega \mapsto \omega \omega_q$. - Endianness: use $tail_k$ for lower-order bits. - Clipping: $clip(x,0,1) = min\{1, max\{0,x\}\}$. - Internal state: \mathcal{A} accumulates attractors; S_b are controller stabilization confidences. - Stochasticity: from sampling, optional SPAM, and simulator randomness. - Coefficients: all numeric constants are calibration knobs with roles noted parenthetically above.

10 Proposed Qiskit Implementation Architecture

Implement a Qiskit BackendV2-compatible fake backend class ControlAwareBackend encapsulating per-qubit (ω_s, ϕ_s, A_s) , effective parameters $(\omega_{\text{eff}}, \phi_{\text{eff}}, A_{\text{eff}})$ via (G_ω, G_ϕ, G_A) , environment (ω_e, E) , ι , G_A , $T_{1,q}$, and $(CQ, A, \{S_b\})$. - Front-end orchestrator: QuantumOrchestrator to build circuits with segments: med(s,T,delta_t), ramsey(tilde_omega_vec,tau,t_pi2), update_confidence(b), run_ghz(), run_bell(), run_grover(), run_qaoa(p, params=None, optimize=False). Use transpile(..., backend=ControlAwareBackend()). - Backend run responsibilities: 1) Parse circuit, detect segment barriers, 2) For each segment/beat, compute $(\{p_{\phi,q}\}, \{p_{amp,q}\}, \{p_{depol,q}\}, \{\epsilon_{z,q}\}, \{\delta\theta_{j\leftarrow k}\}, \{\zeta G_{jk}A_{\text{eff},k}\})$, 3) Update environment via complex-field rule for the segment duration, 4) Inject coherent rotations $(R_z$, crosstalk $R_{x/y}$, parasitic R_{ZZ}) and Kraus errors; attach noise to delay instructions, 5) Update CQ via primitive-specific rule (diagnostic and available to the controller), 6) Execute on

a density-matrix or shot-based simulator. - Performance: the most performant approach is a custom transpiler pass that iterates through the circuit, computes state-dependent error parameters per instruction/delay, and inserts concrete QuantumError/Kraus operators and coherent rotations directly into the circuit, avoiding repeated NoiseModel construction at runtime.

11 Verification Plan

- Environment: relaxation increases with ι and A_{eff} ; decays with detuning Δ_q ; amplitude and phase co-relax via complex update; frequency tracks drive with same rate. - Noise: $p_{\phi,q}$ increases with $A_{e,q}$ and detuning; amplitude damping rises with $A_{e,q}$ and duration while preserving baseline $T_{1,q}$; $p_{\text{depol},q}$ grows with both local $A_{e,q}$ and global \bar{A}_e ; coherent R_z captures detuning phase; crosstalk includes spectator rotations and parasitic ZZ. - Ramsey: oscillations in $\langle X \rangle, \langle Y \rangle$ vs. τ at detuning; environment drifts during τ ; noise active on delay; no terminal R_z is inserted. - MED: CR-like ZX and IX terms proportional to control-qubit drive amplitude; crosstalk yields coherent spectator rotations and parasitic ZZ. - Algorithms: GHZ mass on $\{0^n, 1^n\}$; Bell pairs correlated; Grover peaks at 11...1; QAOA parameters shift as (ω_e, A_e) evolve. - Metrics: vector M exposes tradeoffs; CQ (ResonanceFidelity) improves near-resonant $\omega_{\text{eff}} \approx \omega_e$; multiplicative EffCtrl $_{\Pi}$ penalizes weak components.