CS 223 Computer Architecture and Organization

Main Memory

J. K. Deka

Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

SRAM v DRAM

- Both volatile
 - Power needed to preserve data
- Dynamic cell
 - Simpler to build, smaller
 - More dense
 - Less expensive
 - Needs refresh
 - Larger memory units
- Static
 - Faster
 - Less dense
 - Cache

Read Only Memory (ROM)

- ROM
 - Semiconductor memory
 - Random Access
- Permanent storage
 - Nonvolatile
- Microprogramming
- Library subroutines
- Systems programs (BIOS)
- Function tables

Types of ROM

- Written during manufacture
 - ROM
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Programmable (Read "mostly")
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read

- Memory chip of 16Mbit = 16Mx1
- A 16Mbit chip can be organised as 1M of 16 bit words
- A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on

- A 16Mbit chip can be organised as a 4096 x 4096 array
 - Reduces number of address pins
 - Multiplex row address and column address
 - 12 pins to address (2¹²=4096)
 - Adding one more pin doubles range of values so x4 capacity

Dynamic RAM Structure

Refreshing

- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance

Typical 16 Mb DRAM (4M x 4)

Memory Module Organisation

256K bit Memory chip

Memory Module Organisation

256KByte Module Organisation

Memory Module Organisation

1MByte Module Organisation

Memory Module Organization

Consider memory chip of capacity 1 MB (1Mx8)

- Construct a memory module of capacity 4MB (2Mx16) (Size of Address bus and size of data bus)
- Construct a memory module of capacity 16 MB (8Mx16) (Size of Address bus and size of data bus)
- Construct a memory module of capacity 32 MB (8Mx32) (Size of Address bus and size of data bus)
- Construct a memory module of capacity 128 MB (32Mx32) (Size of Address bus and size of data bus)

Memory Module Organization

Consider memory chip of capacity 1 MB (1Mx8)

- Construct a memory module of capacity 8 MB (4Mx2) (Size of Address bus and size of data bus)

Memory Module Organization

Consider memory chip of capacity 1 MB (1Mx8)

- Construct a memory module of capacity 8 MB (4Mx2)
 - Byte organized (Size of Address bus and size of data bus)

Computer Components: Top Level View

Fetch Sequence (symbolic)

- t1: MAR <- PC
- t2: MBR <- (memory)
- PC <- PC +1
- t3: IR <- MBR

- (tx = time unit/clock cycle)
- (Speed of CPU and Memory)

Memory Read(symbolic)

- t1: MAR <- R1
- t2: MBR <- (memory)
- t3: R2 <- MBR

– (tx = time unit/clock cycle)

Address of the memory location is in register R1 and data to be stored in register R2

Memory Write(symbolic)

- t1: MAR <- R1
- t2: MBR <- R2
- t3: (memory) <- MBR

– (tx = time unit/clock cycle)

Address of the memory location is in register R1 and data is in register R2

Reference

Computer Organization and Architecture –
Designing for Performance
William Stallings, Seventh Edition

Chapter 05: Internal Memory

Computer Organization
Hamacher, Vranesic and Zaky, Fifth Edition

Chapter05: Page No.: 291 - 314