Security Lab								
Course Code	19IS704	CIE Marks	50					
Teaching Hours/Week (L:T:P:S)	0:0:2:0	SEE Marks	50					
Total Hours	2 Hours / week	Credits	1					

Course Learning Objectives:

This Course will enable students to

- Develop code for classical Encryption Techniques to solve the problems.
- Build cryptosystems by applying symmetric and public key encryption algorithms.
- Construct code for authentication algorithms.
- Develop a signature scheme using Digital signature standard.
- Demonstrate the network security system using open source tools

Course Content

Week-1

1. Perform encryption, decryption using the Caesar cipher substitution techniques

Week-2

2. Perform encryption, decryption using the Monoalphabetic cipher substitution techniques

Week-3

3. Perform encryption, decryption using the Playfair cipher substitution techniques

Week-4

4. Perform encryption, decryption using the Hill Cipher substitution techniques

Week - 5

5. Perform encryption, decryption using the Vigenere cipher (Polyalphabetic) substitution techniques

Week-6

6. Write a program to demonstrate the working of Feistel Cipher algorithm

Week-7

7. Implement RSA Algorithm to encrypt a certain Plain text and verify the received ciphertext.

Week - 8

8. Implement Diffie-Hellman Algorithm to establish a shared secret between two parties that can be used for secret communication to exchange data over a public network.

Week-9

9.	Implement encryption/decryption using Elliptic curve cryptographic function
----	---

Week – 10

10.	Implement key generatio	n technique used in D	Oata Encryption Standard (I	DES)
-----	-------------------------	-----------------------	-----------------------------	------

Week 11, 12, 13 and 14 students will be working on mini project on the following topics:

- 1. Implement SSL with HTTP to secure the web applications.
- 2. Configure and Manage the network traffic using firewall rules to meet the system and user requirements for the incoming and outgoing traffic.
- 3. Demonstration of internet packet analysis using Wireshark.
- 4. Perform wireless audit on an access point or a router and decrypt WEP and WPA
- 5. Demonstrate how to provide secure data storage, secure data transmission and for creating digital signatures (GnuPG)
- 6. Setup a honey pot and monitor the honeypot on network (KF Sensor)
- 7. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)

Course Outcomes:

At the end of the course the student will be able to

Sl. No.	Course Outcomes (CO)	Bloom's Taxonomy Level (BTL)
CO 1	An Ability to develop code for classical Encryption Techniques to solve the problems.	L2
CO 2	An Ability to Build cryptosystems by applying symmetric and public key encryption algorithms	L3
CO 3	An Ability to Construct code for authentication algorithms.	L3
CO 4	An Ability to Develop knowledge of securing web applications	L2
CO 5	An Ability to Demonstrate the network security system using open source tools	L3

Mapping of POs & Cos:

POs COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1	3	3	3											
CO 2	3	3	3											
CO 3		3	3											
CO 4			2	3										
CO 5		3		2	3									

(L/1 = Low 30%-49%, M/2 = Medium 50%-69%, H/3 = High > 70%)

Table: Mapping of COs to PIs, POs and BTL							
Course Outcomes (COs)	Program Outcomes (POs) Addressed	Performance Indicators (PI)	Bloom's Taxonomy Level (BTL)				
CO1	1, 2, 3	1.1.1, 1.3.1, 1.4.1, 2.1.3, 2.2.4, 2.3.1, 2.4.1, 2.4.3, 2.4.4, 3.2.2, 3.3.1	L2				
CO2	1, 2, 3	1.1.1, 1.3.1, 1.4.1, 2.1.3, 2.2.4, 2.3.1, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.2.2, 3.4.3	L3				
CO3	2, 3	2.1.3, 2.2.4, 2.3.1, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.2.2, 3.4.3	L3				
CO4	3,4	2.1.3, 2.2.4, 2.3.1, 2.4.1, 2.4.3, 2.4.4, 3.2.2, 3.3.1, 4.1.1	L2				
CO5	2,4,5	2.1.3, 2.2.4, 2.3.1, 2.4.1, 2.4.3, 2.4.4, 4.1.1,5.1.1	L3				

TEXTBOOK:

1. William Stallings: Cryptography and Network Security, Pearson 7th Edition, 2017.

REFERENCE BOOK:

1. V K Pachghare: Cryptography and Information Security, PHE, 2013.