Question 1 (1 point)	✓ Saved
	ng algorithms requires as input explicit matches between point
pairs from two point	clouds BEFORE it starts executing?

Kabsch algorithm & alporithm used during local alignment	
○ FPFH	
Spin Images	
○ ICP	

Question 2 (1 point)

Please select the correct among the following statements concerning the Iterative Closest Points (ICP) algorithm:

ICP provides a rigid transformation between 2 point clouds
ICP works best if the 2 point clouds are far from each other.
ICP provides an affine transformation between 2 point clouds
ICP works best if an initial rough estimation of the alignment of 2 point clouds is known.
ICP is guaranteed to provide the optimal transformation that best aligns 2 point clouds

Question 3 (1 point)

Which of the following clustering results could have been produced using k-means? (choose all correct answers)

A = 5 pts > 4 - + Core

C = 5 pts > 4 - + Core

B = 3 pts < 4 but is in

I a core nighbor (A&C)

Border

How would points A, B and C be characterized according to DBSCAN? (assume ϵ =1 and MinPts=4)

- A: noise | B: core | C: noise
- A: core | B: border | C: border
- A: border | B: noise | C: border
- A: noise | B: border | C: noise

A: core | B: border | C: core

- A: core | B: core | C: core
- A: core | B: noise | C: core
- A: noise | B: border | C: core

Question 5 (1 point)

Consider a color image with dimensions 640x480 pixels. We would like to cluster its pixels making full use of both geometric and color information (including intensity/lightness).

1 pixel = 1 clustes:

How many clusters will the Mean Shift algorithm consider initially? (provide the exact number below)

Dim= 640 × 480 Dim= 307200

Question 6 (1 point)

Consider a color image with dimensions 640x480 pixels. We would like to cluster its pixels making full use of both geometric and color information (including intensity/lightness).

What would be the dimensionality of the problem in this case?

- () 2
- **4**
- 3