FMI, Info, Anul I

Logică matematică și computațională

Seminar 4

(S4.1) Să se arate că pentru orice formulă φ , numărul parantezelor deschise care apar în φ coincide cu numărul parantezelor închise care apar în φ .

Demonstrație: Notăm, pentru orice $\varphi \in Form$, cu $l(\varphi)$ numărul parantezelor deschise și cu $r(\varphi)$ numărul parantezelor închise care apar în φ . Definim următoarea proprietate \boldsymbol{P} : pentru orice formulă φ ,

$$\varphi$$
 are proprietatea \boldsymbol{P} dacă și numai dacă $l(\varphi) = r(\varphi)$.

Demonstrăm că orice formulă φ are proprietatea P folosind Principiul inducției pe formule. Avem următoarele cazuri:

- Formula φ este în V, deci există $n \in \mathbb{N}$ cu $\varphi = v_n$. Atunci $l(\varphi) = l(v_n) = 0 = r(v_n) = r(\varphi)$.
- Există $\psi \in Form$ cu $\varphi = (\neg \psi)$. Presupunem că ψ satisface \boldsymbol{P} . Obținem

$$l(\varphi) = l(\psi) + 1 = r(\psi) + 1 = r(\varphi).$$

 \bullet Există $\psi,\chi\in Form$ cu $\varphi=(\psi\to\chi).$ Presupunem că ψ,χ satisfac $\textbf{\textit{P}}.$ Obținem

$$l(\varphi) = l(\psi) + l(\chi) + 1 = r(\psi) + r(\chi) + 1 = r(\varphi).$$

 ${\bf (S4.2)}$ Să se dea o definiție recursivă a mulțimii variabilelor unei formule.

Demonstrație: Se observă că $Var: Form \rightarrow 2^V$ satisface următoarele condiții:

$$(R0) \qquad Var(v) \qquad = \{v\}$$

$$(R1) \hspace{0.5cm} Var(\neg\varphi) \hspace{0.5cm} = Var(\varphi)$$

$$(R2) \quad Var(\varphi \to \psi) = Var(\varphi) \cup V(\psi).$$

Aplicăm Principiul recursiei pe formule pentru $A=2^V$ și pentru

$$G_0: V \to A, \qquad G_0(v) = \{v\},$$

 $G_{\neg}: A \to A, \qquad G_{\neg}(\Gamma) = \Gamma,$
 $G_{\to}: A \times A \to A, \quad G_{\to}(\Gamma, \Delta) = \Gamma \cup \Delta.$

pentru a concluziona că Var este unica funcție care satisface (R0), (R1) și (R2).

(S4.3) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \text{ din } \{0, 1\}$ avem:

(i)
$$((x_0 \to x_1) \to x_0) \to x_0 = 1$$
;

(ii)
$$(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$$
.

Demonstraţie:

(ii) Notăm $f(x_1, x_3, x_4) := (x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)).$

x_1	x_3	x_4	$x_3 \rightarrow x_4$	$x_4 \rightarrow x_1$	$x_3 \rightarrow x_1$	$(x_4 \to x_1) \to (x_3 \to x_1)$	$f(x_1, x_3, x_4)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1
0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1
0	0	0	1	1	1	1	1

(S4.4) Să se arate că pentru orice $e: V \to \{0,1\}$ și pentru orice formule φ, ψ avem:

(i)
$$e^+(\varphi \lor \psi) = e^+(\varphi) \lor e^+(\psi);$$

(ii)
$$e^+(\varphi \wedge \psi) = e^+(\varphi) \wedge e^+(\psi);$$

(iii) $e^+(\varphi \leftrightarrow \psi) = e^+(\varphi) \leftrightarrow e^+(\psi)$.

Demonstraţie:

(i) $e^{+}(\varphi \lor \psi) = e^{+}(\neg \varphi \to \psi) = e^{+}(\neg \varphi) \to e^{+}(\psi) = \neg e^{+}(\varphi) \to e^{+}(\psi) \stackrel{(*)}{=} e^{+}(\varphi) \lor e^{+}(\psi).$

Pentru (*), demonstrăm că pentru orice $x, y \in \{0, 1\}$, avem $\neg x \rightarrow y = x \lor y$:

\boldsymbol{x}	y	$\neg x$	$\neg x \to y$	$x \lor y$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	1	0	0

(ii)

$$e^{+}(\varphi \wedge \psi) = e^{+}(\neg(\varphi \rightarrow \neg \psi))$$

$$= \neg e^{+}(\varphi \rightarrow \neg \psi)$$

$$= \neg(e^{+}(\varphi) \rightarrow e^{+}(\neg \psi))$$

$$= \neg(e^{+}(\varphi) \rightarrow \neg e^{+}(\psi))$$

$$\stackrel{(*)}{=} e^{+}(\varphi) \wedge e^{+}(\psi).$$

Pentru (*), demonstrăm că pentru orice $x,y\in\{0,1\},$ avem $\neg(x\rightarrow \neg y)=x \land y$:

\boldsymbol{x}	y	$\neg y$	$x \rightarrow \neg y$	$\neg(x \to \neg y)$	$x \wedge y$
1	1	0	0	1	1
1	0	1	1	0	0
0	1	0	1	0	0
0	0	1	1	0	0

(iii)

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}((\varphi \to \psi) \land (\psi \to \varphi))$$

$$\stackrel{\text{(ii)}}{=} e^{+}(\varphi \to \psi) \land e^{+}(\psi \to \varphi)$$

$$= (e^{+}(\varphi) \to e^{+}(\psi)) \land (e^{+}(\psi) \to e^{+}(\varphi))$$

$$\stackrel{\text{(*)}}{=} e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Pentru (*), demonstrăm că pentru orice $x, y \in \{0, 1\}$, avem $(x \to y) \land (y \to x) = x \leftrightarrow y$:

\boldsymbol{x}	y	$x \to y$	$y \rightarrow x$	$(x \to y) \land (y \to x)$	$x \leftrightarrow y$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1

(S4.5) Să se găsească câte un model pentru fiecare din formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

Demonstraţie:

(i) Fie funcția $e: V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e(x) := \begin{cases} 0, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_2 \\ 0, & \text{altfel.} \end{cases}$$

Atunci:

$$e^+(v_0 \to v_2) = e^+(v_0) \to e^+(v_2) = e(v_0) \to e(v_2) = 0 \to 1 = 1.$$

(ii) Fie funcția $e:V\rightarrow \{0,1\},$ definită, pentru orice $x\in V,$ prin:

$$e(x) := \begin{cases} 1, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_3 \\ 0, & \text{dacă } x = v_4 \\ 1, & \text{altfel.} \end{cases}$$

Atunci:

$$e^{+}(v_{0} \wedge v_{3} \wedge \neg v_{4}) = e^{+}(v_{0}) \wedge e^{+}(v_{3}) \wedge \neg e^{+}(v_{4})$$

$$= e(v_{0}) \wedge e(v_{3}) \wedge \neg e(v_{4})$$

$$= 1 \wedge 1 \wedge \neg 0$$

$$= 1 \wedge 1 \wedge 1$$

$$= 1.$$

- (S4.6) Să se demonstreze că, pentru orice formulă φ ,
 - (i) φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.
 - (ii) φ este nesatisfiabilă dacă și numai dacă $\neg \varphi$ este tautologie.

Demonstrație:

(i) Avem:

```
\varphi \text{ este tautologie } \iff \text{ pentru orice } e:V\to\{0,1\},\ e^+(\varphi)=1 \iff \text{ pentru orice } e:V\to\{0,1\},\ \neg e^+(\varphi)=0 \iff \text{ pentru orice } e:V\to\{0,1\},\ e^+(\neg\varphi)=0 \iff \text{ pentru orice } e:V\to\{0,1\},\ \text{ nu avem că } e^+(\neg\varphi)=1 \iff \text{ nu avem că există } e:V\to\{0,1\}\ \text{ cu } e^+(\neg\varphi)=1 \iff \text{ nu avem că } \neg\varphi \text{ e satisfiabilă} \iff \neg\varphi \text{ nu e satisfiabilă} \iff \neg\varphi \text{ e nesatisfiabilă}.
```

(ii) Avem:

```
\varphi este nesatisfiabilă \iff \varphi nu e satisfiabilă \iff nu avem că \varphi e satisfiabilă \iff nu avem că există e:V\to\{0,1\} cu e^+(\varphi)=1 \iff pentru orice e:V\to\{0,1\},\; nu avem că e^+(\varphi)=1 \iff pentru orice e:V\to\{0,1\},\;e^+(\varphi)=0 \iff pentru orice e:V\to\{0,1\},\;\neg e^+(\varphi)=1 \iff pentru orice e:V\to\{0,1\},\;e^+(\neg\varphi)=1 \iff \neg \varphi este tautologie.
```