Задача 0.1. Можно ли разложить в прямое произведение собственных подгрупп следующие группы: S_3, A_4, S_4, Q_8 ?

Решение. В каждой из этих групп нет двух нетривиальных подгрупп, удовлетворяющих указанным выше свойствам, например, нет нетривиальных нормальных подгрупп, пересекающихся только по единице, и произведение порядков которых равно порядку группы, а, скажем, в Q_8 вообще нет нетривиальных подгрупп, пересекающихся только по единице. Поэтому нет, не разлагаются.

Задача 0.2. Найти $Q_8/\{\pm 1\}$.

Подгруппы в Q_8 : $\{1, -1\}, \{1, -1, i, -i\}, \{1, -1, j, -j\}, \{1, -1, k, -k\}$. Все подгруппы нормальны. Первая подгруппа – это C_2 , остальные изоморфны C_4 $Q_8/\{1, -1\} = \{\{1, -1\}, \{i, -i\}, \{j, -j\}, \{k, -k\}\}$. $Q_8/\{1, -1, i, -i\} = \{\{1, -1, i, -i\}, \{j, -j, k, -k\}$.

Первая факторгруппа изоморфна V_4 , факторгруппы по трем подгруппам 4-го порядка изоморфны C_2 .

Задача 0.3. Положим

$$G = GL^+(n, \mathbb{R}) = \{A \in M_{n \times n} : \det A > 0\}, \ G_1 = \{\lambda E \mid \mathbb{R} \ni \lambda > 0\}, G_2 = SL(n, \mathbb{R}).$$

Тогда $G \cong G_1 \times G_2$.

Доказательство. Подгруппы G_1, G_2 — нормальны и пересекаются только по единичной матрице. К тому же $G = G_1G_2 : \operatorname{GL}^+(n,\mathbb{R}) \ni A = \lambda A_1 = (\lambda E)A_1$, где $\lambda = \sqrt[n]{\det A}, \ A_1 = \frac{1}{\lambda}A \in \operatorname{SL}(n,\mathbb{R})$. Действительно, $\det \left(\frac{1}{\lambda}A\right) = \frac{1}{\lambda^n} \det A = \frac{\det A}{\det A} = 1$.

Задача 0.4. Верно ли, что при нечетном n группа $\mathrm{GL}(n,\mathbb{R})$ изоморфна $G_1\times G_2$, где $G_1=\{\lambda E\mid \mathbb{R}\ni \lambda\neq 0\},\ G_2=\mathrm{SL}(n,\mathbb{R})?$

Ответ: Да, верно.

[Поскольку корень отрицательной степени модно взять и у отрицательного числа, рассуждения из предыдущей задачи прямо переносятся на рассматриваемый случай.]

Задача 0.5. Докажите, что $S_n = A_n \setminus \langle (12) \rangle_2$.

Доказательство. Имеется равенство:
$$|S_n| = |A_n| |\langle (12) \rangle_2|$$
. Также имеем $A_n \triangleleft S_n, \langle (12) \rangle_2 < S_n,$ и $A_n \cap \langle (12) \rangle_2 = \{e\}$.

Задача 0.6. Показать, что в предыдущей задаче вместо транспозиции (12) можно взять любую другую транспозицию.

Задача 0.7. Показать, что группу кватернионов Q_8 нельзя разложить ни в прямое, ни в полупрямое произведение своих подгрупп.

Решение. Группу кватернионов Q_8 нельзя разложить ни в прямое, ни в полупрямое произведение своих подгрупп, так как любая подгруппа Q_8 содержит 1 и -1, следовательно пересечение двух подгрупп (все подгруппы в Q_8 нормальны) содержит по крайней мере -1, не считая единицы.

Задача 0.8. $S_4 \cong V_4 \setminus S_3$. Как определяется $\varphi: S_3 \to \operatorname{Aut}(V_4)$?

Доказательство. Для начала вспомним, что $V_4 \triangleleft S_4$. Группа S_3 вложена в S_4 в виде подгруппы, оставляющей на месте 4. Для каждого $k \in \{1,2,3,4\}$ в V_4 имеется единственная подстановка, переводящая 4 в k. Значит, каждая подстановка $\sigma \in S_4$ предствляется единственным образом в виде $\sigma = \alpha\beta$, где $\alpha \in V_4, \beta \in S_3$.

Обозначим через $j: S_3 \to S_4$ описанное выше вложение группы S_3 в S_4 в качестве подгруппы. Тогда $\varphi_{\tau}(h) = i_{j(\tau)}(h)$ для $\tau \in S_3, h \in V_4$.

Задача 0.9. Показать, что

$$GL(n,\mathbb{R}) = SL(n,\mathbb{R}) \times \left\{ \begin{pmatrix} \lambda & \dots & 0 \\ 0 & 1 \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 1 \end{pmatrix} \in GL(n,\mathbb{R}) \mid \lambda \in \mathbb{R}^* \right\}.$$

Доказательство. Известно, что $SL(n, \mathbb{R}) \triangleleft GL(n, \mathbb{R})$.

Также ясно, что
$$SL(n,\mathbb{R})\cap \left\{ \begin{pmatrix} \lambda & \dots & 0 \\ 0 & 1 \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 1 \end{pmatrix} \mid \lambda \neq 0 \right\} = \{E\}$$
, где E — единичная

матрица. Группа $\mathrm{GL}(n,\mathbb{R})$ представляется в виде произведения указанных подгрупп слеующим образом:

$$\operatorname{GL}(n,\mathbb{R}) \ni A = \widetilde{A} \cdot \begin{pmatrix} \det A & \dots & 0 \\ 0 & 1 \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 1 \end{pmatrix},$$

где первый столбец матрицы \widetilde{A} получается из первого столбца матрицы A делением всех элементов столбца на $\det A$, а остальные столбцы такие же как у A. Действительно, обозначим через C_{λ} диагональную матрицу из второй подгруппы. Тогда $C_{\lambda_1}C_{\lambda_2}=C_{\lambda_1\lambda_2},\ C_1=E$ и $\det C_{\lambda}=\lambda$. Имеем $A=AC_{\frac{1}{\lambda}}C_{\lambda}$. Возьмем $\lambda=\det A$ и положим $\widetilde{A}=AC_{\frac{1}{\lambda}}$. Тогда $\det \widetilde{A}=\det \left(AC_{\frac{1}{\lambda}}\right)=\det A\det C_{\frac{1}{\lambda}}=\det A/\det A=1$ и $A=\widetilde{A}C_{\lambda}$. Это – требуемое разложение. Кроме того, умножение матрицы A справа на $C_{\frac{1}{\lambda}}$ изменяет только ее первый столбец – он делится на λ , т.е. на $\det A$.

Задача 0.10. Можно ли в предыдущей задаче вместо второй подгруппы взять подгруппу матриц вида

$$\{B_{\lambda}=(b_{ij})\,|\,b_{nn}=\lambda\neq 0,\,\,b_{ii}=1\,$$
 для $1\leq i\leq n-1,\,\,b_{ij}=0$ при $i\neq j\}?$ Ответ: Да, можно.

Задача 0.11. Пусть $N=A_3$ и $H=C_2$. Найти все полупрямые произведения $N \leftthreetimes H$.

Решение. Группа четных подстановок $A_3 = \{e, (123), (132)\} = C_3 = \{e, a, a^2\}$ имеет порядок $|A_3| = 3$. Группа $C_2 = \{e, s\}$ — циклическая группа порядка 2.

Для того, чтобы найти все полупрямые произведения $C_3 > C_2$, рассмотрим все возможные гомоморфизмы $\varphi: C_2 \longrightarrow \operatorname{Aut} C_3$.

Cлучай 1: $\varphi(e_{C_2})=\mathrm{id}=\mathrm{id}_{C_3},\ \varphi(s)=\mathrm{id}$. Тогда $\mathrm{id}\,(e_{C_3})=e,\ \mathrm{id}\,(a)=a,\ \mathrm{id}(a^2)=a^2$ и $C_3 \leftthreetimes_{\varphi} C_2=C_3 \rightthreetimes C_2$ — прямое произведение.

Случай 2: $\varphi(e)=\operatorname{id}$, $\varphi(s)=\varphi_s$: $\varphi_s(e)=e$, $\varphi_s(a)=a^2$, $\varphi_s(a^2)=a$. Значит, $C_3 \searrow_{\varphi} C_2=\{(e,e),(a,e),(a^2,e),(e,s),(a,s),(a^2,s)\}.$

Проверим получившуюся группу на коммутативность:

$$(a,e)(a^2,s) = (a\varphi_e(a^2),es) = (aa^2,s) = (e,s),$$

 $(a,s)(a^2,s) = (a\varphi_s(a^2),ss) = (a^2,e).$

Групп 6-го порядка всего две: $C_6 \cong C_2 \times C_3$ и D_3 . Но наша группа не коммутативна, следовательно, она изоморфна D_3 . Итак,

$$A_3 \setminus \langle (12) \rangle_2 = S_3 \cong D_3.$$

Отметим, что во втором случае $\varphi_s(g) = g^{-1}$ для любого $g \in C_3$.

Задача 0.12. Пусть A – абелева группа.

1. Показать, что

$$D(A) = \{(a, \varepsilon) \mid a \in A, \varepsilon = \pm 1\}$$

с операцией умножения $(a_1, \varepsilon_1)(a_2, \varepsilon_2) = (a_1 a_2^{\varepsilon_1}, \varepsilon_1 \varepsilon_2)$ является группой.

- 2. Показать, что если $A = < a >_n$, то D(A) изоморфна диэдральной группе D_n .
- 3. Показать, что $D(A)\cong A\leftthreetimes C_2$. Как определяется φ ? Верно ли, что $\varphi_1=\operatorname{id}_A,\ \varphi_{-1}(a)=a^{-1}$?

Задача 0.13. Пусть группа A неабелева. Показать, что в этом случае умножение, введенное на D(A) в предыдущей задаче, неассоциативно (тем самым D(A) в этом случае даже не полугруппа).

Задача 0.14. Изоморфна ли группа $GL(n,\mathbb{R})$ прямому, или полупрямому, произведению групп $GL^+(n,\mathbb{R})$ и $C_2=\{\pm 1\}$?

Указание: Если n нечетно, то подгруппа $\{\pm E\} \cong C_2$ нормальна и получается прямое произведение. Для произвольного n рассмотрим, например, подгруппу $\{E, \operatorname{diag}(-1, 1, \dots, 1)\} \cong C_2$. Получается полупрямое произведение.

Задача 0.15. Показать, что дробно линейные отображения расширенной комплексной плоскости образуют группу.

Доказательство. Расширенная комплексная плоскость: $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$. Дробно линейное отображение:

$$z \mapsto \frac{az+b}{cz+d}$$
, $a,b,c,d \in \mathbb{C}$, $ad-bc \neq 0$.

$$-d/c \mapsto \infty$$
, $\infty \mapsto \lim_{z \to \infty} \frac{az+b}{cz+d} = a/c$.

Дробно линейное отображение – биекция расширенной комплексной плоскости на себя. Композиция дробно линейных отображений является дробно линейным отображением.

Тождественное отображение $z\mapsto z$ является единицей этой группы. Обратное отображение к $z\mapsto \frac{az+b}{cz+d}$ — это дробно линейное отображение $z\mapsto \frac{dz-b}{-cz+a}$.

Сопоставляя матрице $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,\mathbb{C})$ дробно линейное отображение $z \mapsto$

 $\frac{az+b}{cz+d}$ получаем эпиморфизм. Ядро состоит из скалярных матриц. Фактор по ядру обозначается как $PGL(2,\mathbb{C})$ и называется проективной линейной группой.

Задача: Показать, что $PGL(2,\mathbb{C})\cong PSL(2,\mathbb{C})$, где $PSL(2,\mathbb{C}):=SL(2,\mathbb{C})/\{\pm E\}$.

Задача 0.16. Найти $Z(S_n)$ и Int S_n для $n \geqslant 3$.

Решение. Пусть $\alpha \in S_n$, и $\alpha \neq \mathrm{id}$, то есть существуют такие $i \neq j$, что $\alpha(i) = j$. Так как $n \geqslant 3$, то существует $k \leq n$, отличное от i и j. Рассмотрим $\beta = (jk)$. Тогда $\beta\alpha\beta^{-1}(i) = \beta\alpha(i) = \beta(j) = k$. Значит, $\beta\alpha\beta^{-1}(i) = k \neq j = \alpha(i)$, то есть подстановки α и β не коммутируют. Таким образом, мы показали, как для данной нам неединичной подстановки найти такую, которая с ней не коммутирует. Поэтому $Z(S_n) = \{e\}$.

$$\operatorname{Int} S_n = S_n/Z(S_n) = S_n/\{e\} = S_n.$$

Задача 0.17. Доказать, что $Z(D_n) = \langle a^m \rangle$, если n = 2m, где a — поворот на угол $\frac{2\pi}{n}$, и $Z(D_n) = \{e\}$, если n = 2m + 1.

Задача 0.18. $Z(GL(n,\mathbb{C})) = \{\lambda E\}, \ \lambda \neq 0$

Задачи 0.19. 1. a) $\operatorname{End}(\mathbb{Z}) = \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$.

- b) $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$.
- 2. a) $\operatorname{Hom}(\mathbb{Z}_m, \mathbb{Z}_n) = 0$, если (m, n) = 1.
- b) $\operatorname{End}(\mathbb{Z}_m) = \operatorname{Hom}(\mathbb{Z}_m, \mathbb{Z}_m) = \mathbb{Z}_m$
- 3. $\operatorname{Hom}(A \oplus B, C) \cong \operatorname{Hom}(A, C) \oplus \operatorname{Hom}(B, C)$.
- 4. $\operatorname{Hom}(A, B \oplus C) \cong \operatorname{Hom}(A, B) \oplus \operatorname{Hom}(A, C)$.
- 5. Пусть $f \colon A \to F$ эпиморфизм и F свободна.

Показать, что тогда $A = \ker f \oplus B$, где $B \cong F$.

6. Показать, что \mathbb{Q} , \mathbb{R} и \mathbb{C} не являются конечно порожденными.

Задача 0.20. Сравнение $x^2 \equiv a \pmod{p}$ для a, не делящегося на простое p > 2, имеет два решения (отличающихся знаком), если $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, и не имеет решения, если $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Если решение есть, то a сравнимо с одним из чисел списка

$$1^2, 2^2, 3^2, \dots, \left(\frac{p-1}{2}\right)^2$$
.

[В силу малой теоремы Ферма $a^{p-1}=1$ для a, не делящегося на простое p>2, поэтому $a^{\frac{p-1}{2}}\equiv \pm 1\ (\mathrm{mod}\ p).$]

0.1 Силовские подгруппы

Определение 0.21. Конечная группа G называется p-группой, где p – простое число, если ее порядок является степенью числа p, m. e. $|G| = p^n$.

В частности, тривиальная группа (содержащая только единичный элемент) является p-группой для любого простого p. Поскольку по теореме Лагранжа порядок подгруппы делит порядок группы, мы видим, что любая подгруппа p-группы сама является p-группой.

Теорема 0.22. Центр нетривиальной р-группы нетривиален.

Предложение 0.23. Всякая группа порядка p^2 , где p - простое число, является абелевой.

Абелевых групп порядка p^2 с точностью до изоморфизма всего две – циклическая \mathbb{Z}_{p^2} и $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

Определение 0.24. Силовской р-подгруппой группы G называется всякая ее подгруппа, индекс которой не делится на p, т.е. любая подгруппа порядка p^n , где $|G| = p^n m$ и (m, p) = 1.

Теорема 0.25. Силовская р-подгруппа существует.

Теорема 0.26. Всякая p-подгруппа группы G содержится в некоторой силовской p-подгруппе. Все силовские p-подгруппы сопряжены.

Теорема 0.27. Число силовских p-подгрупп делит индекс силовской p-подгруппы и сравнимо c 1 по модулю p, m. e. eсли $|G| = mp^n$, где m не делится на p, то число силовских p-подгрупп делит m и сравнимо c 1 по модулю p.

Пример 0.28. Положим $GL(n,q):=GL(n,\mathbb{F}_q)$, где $q=p^d$, p – простое число. Обозначим через UT(n,q) подгруппу в GL(n,q) верхне-треугольных матриц с 1-ми на главной диагонали. Покажем, что UT(n,q) является силовской p-подгрупой в GL(n,q).

Имеем $|GL(n,q)| = (q^n-1)(q^n-q)(q^n-q^2)\dots(q^n-q^{n-1}) = \prod_{i=0}^{n-1}(q^n-q^i)$. Действительно, столбцы матрицы должны быть линейно независимы, поэтому первый столбец матрицы может быть любым ненулевым вектором из \mathbb{F}_q^n , т.е. имеем q^n-1 возможностей, второй столбец – любым вектором не коллинеарным первому столбцу (дает q^n-q вариантов), третий – любым вектором, не лежащим в двумерном подпространстве, натянутом на первые два столбца (дает q^n-q^2 вариантов), и т. д. Далее, имеем

$$|GL(n,q)| = \prod_{i=0}^{n-1} (q^n - q^i) = m \prod_{i=1}^{n-1} q^i = m q^{\sum_{i=1}^{n-1} i} = m q^{\frac{n(n-1)}{2}} = p^{\frac{dn(n-1)}{2}} m,$$

где $m = \prod_{i=0}^{n-1} (q^{n-i} - 1)$ и, следовательно, (m, p) = 1.

Число наддиагональных элементов в матрицах из UT(n,q), которые могут быть произвольными элементами поля \mathbb{F}_q , равно $(n^2-n)/2=\frac{n(n-1)}{2}$. Поэтому $|UT(n,q)|=q^{\frac{n(n-1)}{2}}=p^{\frac{dn(n-1)}{2}}$, откуда и следует, что UT(n,q) — силовская p-подгруппа группы GL(n,q).

Задача 0.29. Если p — простой делитель порядка группы, то в группе существует элемент порядка p.

Решение. Возьмем какую-нибудь силовскую p-подгруппу. Из условия следует, что она нетривиальна, поэтому в ней имеется нетривиальный элемент a. Его порядок делит порядок силовской p-подгруппы и, следовательно, равен p^k с $k \ge 1$. Тогда $a^{p^{k-1}}$ – искомый элемент порядка p.

Задача 0.30. Показать, что всякая группа G порядка 45 абелева.

Решение. Обозначим через N_p , число силовских p-подгупп группы G, p=3,5. Имеем $N_3\equiv 1\pmod 3$ и $N_3\mid 5$ (число силовских p-подгрупп делит индекс силовской p-подгруппы). Отсюда следует, что $N_3=1$. Следовательно, силовская 3-подгруппа единственна и значит нормальна. Обозначим ее через G_3 . Поскольку порядок группы G_3 равен квадрату простого числа – $|G_3|=3^2$, она абелева.

Аналогично получаем $N_5 \equiv 1 \pmod{5}$ и $N_5 \mid 9$, откуда $N_5 = 1$, и следовательно, силовская 5-подгруппа единственна, а значит нормальна. Обозначим ее через G_5 . Поскольку $|G_5| = 5$, группа G_5 изоморфна \mathbb{Z}_5 , и поэтому абелева.

Из того, что $G_3 \cap G_5 = \{e\}$ и нормальности подгрупп G_3 и G_5 , следует, что группа G является прямым произведением $G = G_3 \times G_5$. Из абелевости сомножителей вытекает абелевость группы G.

Поскольку G абелева имеются только две возможности – либо G изоморфна $\mathbb{Z}_9 \oplus \mathbb{Z}_5$, либо – $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$.

Задача 0.31. Показать, что если каждый элемент группы, отличный от единицы, имеет порядок 2, то группа абелева.

Решение. Пусть $a \neq b$ – два произвольных элемента группы, отличных от единицы. Тогда $a^2 = e = b^2$, откуда $a = a^{-1}$, $b = b^{-1}$, поэтому $ab \neq e$, и, значит, тоже имеет порядок 2, т.е. $(ab)^2 = e$. Следовательно,

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba,$$

T.e. ab = ba.

Например, пользуясь этим утверждением, легко показать, что группа порядка 4 абелева и изоморфна либо \mathbb{Z}_4 , либо $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. В частности, четверная группа Клейна V_4 изоморфна группе $\mathbb{Z}_2 \oplus \mathbb{Z}_2$, поскольку не является циклической (в ней все три отличных от e элемента имеют порядок 2).

Задача 0.32. Доказать, что группа порядка 2p, где p – простое число большее 2, либо изоморфна циклической группе $\mathbb{Z}_{2p} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_p$, либо диэдральной группе D_p .

Доказательство. Поскольку порядок группы делится на простые числа 2 и p, в ней имеется элемент a порядка p и элемент b порядка a, причем $b \notin \langle a \rangle = \langle a \rangle_p$, поскольку в циклической группе $\langle a \rangle_p$ все элементы, кроме a имеют порядок a0. Нетрудно видеть, что среди a3 элементов

$$e, a, a^2, \dots, a^{p-1}, b, ab, a^2b, \dots, a^{p-1}b$$

нет равных, поэтому группа порождается элементами a и b. Индекс подгруппы $\langle a \rangle_p$ равен двум, поэтому она нормальна. Следовательно, $bab = bab^{-1} = i_b(a) \in \langle a \rangle_p$ и, значит, $i_b(a) = a^m$ для некоторого $m \in 1, \ldots, p-1$. Если m=1, то ab=ba и этот элемент имеет порядок 2p, т.е. наша группа изоморфна циклической группе \mathbb{Z}_{2p} . Если же m>1, то применив внутренний автоморфизм i_b к равенству $i_b(a)=a^m$ получим

$$i_b(i_b(a)) = i_b(a^m) = (i_b(a))^m = (a^m)^m = a^{m^2}.$$

Но $i_b(i_b(a)) = i_{b^2}(a) = i_e(a) = a$, поэтому $a = a^{m^2}$, откуда $a^{m^2-1} = e$. Следовательно $m^2 - 1 = (m-1)(m+1)$ делится на p, и поскольку $1 \le m \le p-1$, либо m=1, либо m=p-1. При m=1 получаем рассмотренный выше случай, а при m=p-1 имеем $bab = a^{p-1} = a^{-1}$, и тогда $G \cong D_p$, см. задачу ниже.

Задача 0.33. Предположим, что $G = \langle a, b \rangle$ имеет порядок 2n, порядки элементов a и b равны n и 2 соответственно, и $bab = a^{-1}$. Тогда $G \cong D_n$.

Решение. Ясно, что $b \notin \langle a \rangle_n$, и легко видеть, что $G = \langle a \rangle_n \cdot \langle b \rangle_2$. Кроме того, подгруппа $\langle a \rangle_n$ нормальна так как ее индекс равен двум и $\langle a \rangle_n \cap \langle b \rangle_2 = \{e\}$. Поэтому наша группа является внутренним полупрямым произведением этих подгрупп, причем точно таким же каким является D_n , если под $a,b \in D_n$ понимать те образующие диэдральной группы, которые были введены нами выше при определении этой группы (a – поворот комплексной плоскости против часовой стрелки на угол $2\pi/n$, b – сопряжение).

Задача 0.34. Найти классы сопряженных элементов в группе D_n .

Решение. Мы знаем, что D_n порождается элементами $a,b \in D_n$, такими, что $a^n = e = b^2$ и $bab = a^{-1}$. Последнее равенство записывается в виде $i_b(a) = a^{-1}$, поскольку $b = b^{-1}$. Имеем $ba^kb = i_b(a^k) = (i_b(a))^k = (a^{-1})^k = a^{-k}$, т.е. $ba^k = a^{-k}b$. В частности, $ba^{-1} = ab$.

$$i_{a^m b}(a^k) = i_{a^m}(i_b(a^k)) = i_{a^m}(a^{-k}) = a^m a^{-k} a^{-m} = a^{-k} = a^{n-k}.$$

Таким образом, a^k и a^{-k} лежат в одном классе и других элементов там нет. Если n нечетно, получаем классы $\{e\}$, $\{a,a^{n-1}\}$, $\{a^2,a^{n-2}\}$, ..., $\{a^{\frac{n-1}{2}},a^{\frac{n+1}{2}}\}$. Число этих классов равно $\frac{n+1}{2}$. При четном n имеем классы

$$\{e\},\{a,a^{n-1}\},\{a^2,a^{n-2}\},\ldots,\{a^{\frac{n}{2}-1},a^{\frac{n}{2}+1}\},\{a^{n/2}\},$$
 число которых равно $\frac{n}{2}+1$. Далее,
$$i_b(b)=bbb^{-1}=b,$$

$$i_a(b)=aba^{-1}=aab=a^2b,$$

$$i_a(a^kb) = i_a(a^k)i_a(b) = a^ka^2b = a^{k+2}b,$$

$$i_{a^2}(b) = i_a(i_a(b)) = i_a(a^2b) = i_a(a^2)i_a(b) = a^2i_a(b) = a^4b,$$

$$i_{a^m}(b) = a^{2m}b.$$

Из этих равенств видно, что b и $a^{2m}b$ сопряжены, поэтому при нечетном n все элементы вида a^kb принадлежат одному классу сопряженных элементов. При четном n элементы ab и $a^{2m+1}b$ сопряжены, но не сопряжены с b и получается два класса сопряженных элементов. Сказанное следует из вычислений:

$$i_b(a^k b) = ba^k = a^{-k}b,$$

$$i_{a^m}(a^k b) = i_{a^m}(a^k)i_{a^m}(b) = a^k i_{a^m}(b) = a^{2m+k}b,$$

$$i_{a^m b}(a^k b) = i_{a^m}(i_b(a^k b)) = i_{a^m}(a^{-k}b) = a^{2m-k}b.$$

Итак общее число классов сопряженных элементов равно $\frac{n+1}{2}+1=\frac{n+3}{2}$ при нечетном n, и равно $\frac{n}{2}+3=\frac{n+6}{2}$ при четном n.