

Concept House Cardiff Road Newport South Wales NP10 800

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with patent application GB0405658.6 filed on 12 March 2004.

I further certify that attached hereto is a true copy of the entries made to date in the Register of Patents in respect of the patent.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc. P.L.C. or P.L.C.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 18 April 2007

Ander Gensey

1969-4 ESP0-21-4 003512 ____P0177/90 0.00~0405653.4 WC/S INT CHO

Request for grant of a patent (See the notes on the back of this form, You can also get

an explanatory leaflet from the Patent Office to help you f in this form)

THE PATENT OFFICE 1 2 MAR 2004 **LONDON**

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1. Your reference GBP89064

2. Patent application number (The Patent Office will fill in this part)

0405658.6

1 2 MAR 2004

3. Full name, address and postcode of the or of each applicant (underline all sumames)

Sun Chemical B.V., Lecuwenveldseweg 3 1382 LV Weesn Netherlands

8506305001

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

Netherlands

4. Title of the invention

LOW MIGRATION, LOW ODOUR OFFSET INKS OR VARNISHES

5. Name of your agent (if you have one) "Address for service" in the United Kingdom

to which all correspondence should be sent (including the postcode)

Marks & Clerk 90 Long Acre LONDON WC2E 9RA

ADP No. 00000018001

Patents ADP number (if you know it)

6. Priority: Complete this section if you are declaring priority from one or more earlier patent applications, filed in the last 12 months

Country

nority application No (if you know it)

Date of filing (day / month / year)

7. Divisionals, etc: Complete this section only if this application is a divisional, application or resulted from an entitlement dispute

Number of earlier application

Date of filing (day / month / year)

8. Is a Patents Form 7/77 (Statement of inventorship and of right to grant of a patent) required in support of this request?

Yes

(Answer 'Yes' if: a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an applicant, or c) any named applicant is a corporate body. See note (d))

Patents Form 1/77

Accompanying documents: A patent application must include a piption of the invention. Not counting duplicates, please enter the number of pages of each item accompanying this form:

Continuation sheets of this form

0. 0.00

Description Claim(s)

Abstract

Drawing(s)

 If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

> Any other documents (please specify)

> > I/We request the grant of a patent on the basis of this application.

Date: 12 March 2004

signature(s) Marks & ClaM

 Name and daytime telephone number of person to contact in the United Kingdom

11.

Patent Chemical Formalities 020 7400 3000

15

20

25

Document : 966444

Document : 966444

LOW MIGRATION, LOW ODOUR OFFSET INKS OR VARNISHES

1

The present invention relates to novel low migration, low odour inks useful for offset lithographic printing, especially sheetfed offset lithographic printing.

Sheetfed offset lithography is the dominant printing process for the printing of folding cartons for many purposes, including for use as food packaging. However, where an ink is to be used on food packaging, it is essential, from the point of view of customer acceptance, that it should not contaminate the food or impart any unnatural odour to it. Moreover, there is an increasing tendency for legislation to prescribe very low levels of contaminants in foods and other matter which could affect public health. Contamination, in this context, can result from migration of components of an ink into the foodstuff or other packaged material or from undesirable odours imparted to the packaged material by the ink.

There is, therefore, a need for a printing ink which can be used for sheetfed offset lithography and which allows little or no migration of its components whilst being essentially odourless or having little odour. The nature of the offset lithography process also implies severe restrictions on the ink formulation, as explained in *The Printing Ink Manual* by R.H. Leach et al. [Fifth edition (1993) pages 342-346], and meeting all of these requirements is not an easy task.

One of the main odorous components of offset inks is the solvent used. It is in the nature of offset lithography that the solvent must be organic and insoluble in water. Many solvents having these properties are not only highly odorous but also many of them are toxic to a greater or lesser extent. The choice of solvents for this purpose is, therefore, highly restricted.

US Patent No. 6,613,813 attempts to overcome these problems by the use, *inter alia*, of a solvent comprising an ester of a multivalent alcohol with a fatty acid. The composition can optionally contain a multifunctional allyl ester of a multivalent organic

acid, however, the function of these esters is to enhance the drying process by undergoing oxidative drying, rather than to serve as a substantial part of the solvent system. Whilst the solution proposed in US Patent No. 6,613,813 is effective, the Examples of the patent seem to suggest that an additional drying agent is necessary to achieve the required drying in a reasonable time.

We have now discovered that a class of compounds based on polycarboxylic acids are useful as solvents for offset printing inks and are capable giving a number of improvements over the known inks of US Patent No. 6,613,813, including equivalent or lower odour, equivalent or lower migration, and equivalent or improved stability on the press.

Thus, the present invention consists in an offset printing ink or varnish, particularly useful in sheetfed offset lithographic printing, characterised in that the solvent comprises at least one water-insoluble ester of a polycarboxylic acid with a monohydric alcohol having at least 4 carbon atoms.

10

15

20

25

As the oxidative drying process and the by-products generated by it are an important source of odour development in finished prints, a careful selection of raw materials is necessary. Driers as well as raw materials with oxidative drying potential as used in conventional sheetfed offset inks should preferably be excluded. Good rub resistance of the print job may be achieved by using the inks of the present invention in combination with a water based overprint varnish (OVP).

The composition of printing inks or varnishes for offset lithographic printing, including sheetfed offset lithographic printing, is very well known, and is described in considerable detail in, for example, *The Printing Ink Manual (supra)* pages 342-452, and in US Patents No 5.382.282. No. 5.725.646 and No. 6.489.375.

In general terms, a lithographic printing ink should have a low surface tension, be water-repellent, be capable of emulsifying with a fount solution, and, for conventional sheetfed offset lithography, must be capable of drying without radiation. These very particular requirements are met by careful formulation and choice of the various components and is well known in the printing ink industry.

5

10

15

25

30

The solvent used in the ink or varnish composition of the present invention is a water-insoluble ester of a polycarboxylic acid with an alcohol having at least 4 carbon atoms. The polycarboxylic acid may be aromatic or aliphatic, although it is preferably aromatic, and should have more than one carboxylic acid group. Preferably, the acid has from 2 to 4, more preferably 3, carboxylic acid groups.

Examples of aromatic polycarboxylic acids include: trimellitic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,2,3-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, 1,2,3,5-benzenetetracarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, 1,3,6-naphthalenetriacetic acid, 6-carboxy-1-(carboxymethyl)-2-naphthalenepropionic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 3,3',4,4'-biphenyltetracarboxylic acid and 3,4,9,10-perylenetetracarboxylic acid. Of these, trimellitic acid is preferred.

Examples of aliphatic polycarboxylic acids include: dicarboxylic acids, such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, tartronic acid, malic acid and tartaric acid; tricarboxylic acids, such as citric acid, acetylcitric acid, 2-hydroxy-2-methylpropane-1,2,3-tricarboxylic acid, pentane-1,3,5-tricarboxylic acid, 1,2,3-propanetricarboxylic acid, and 7-methyl-1,7,9-decanetricarboxylic acid; and tetracarboxylic acids, such as 1,2,3,4-butanetetracarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid, 2,3,4,5-tetracarboxylic acid, and 1,1,12,12-dodecanetetracarboxylic acid.

The monohydric alcohol with which these polycarboxylic acids form esters has at least 4 carbon atoms, and preferably from 4 to 20, more preferably from 4 to 18, and still more preferably from 6 to 10, carbon atoms. Examples of such alcohols include: butanol, see-butanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, icosanol, hexan-2-ol, 2,3-dimethylbutan-2-ol, 3-methyl-pentan-1-ol, 3,3-dimethylbutan-2-ol, and 2,3,3-trimethylbutan-2-ol.

A particularly preferred polycarboxylic acid ester solvent in accordance with the present invention is that sold under the trade name Uraplast 525 by DSM Resins by.

This is a low viscosity trialkyl trimellitate based on C_8-C_{10} alcohols. It has previously been used as a plasticiser. Other suitable solvents include tributyl citrate and acetyl tributyl citrate.

In order that the ester of the polycarboxylic acid and the monohydric alcohol should be able to function as a solvent, it is normally important that its molecular weight be within a specific range. In general, a molecular weight of at least 250, and more preferably at least 300, is preferred, the maximum preferred molecular weight being 1000. Thus, the molecular weight is preferably from 250 to 1000, more preferably from 300 to 1000 and still more preferably from 500 to 800.

5

10

15

20

25

Although the polycarboxylic acid ester may be used as the sole solvent in the compositions of the present invention, it may be necessary, in order to achieve the correct rheological properties, to include also another solvent. This other solvent, if present, preferably does not exceed 60% of the total solvent present in the composition. More preferably, from 45% to 90%, still more preferably from 50% to 80%, and most preferably from 55% to 65%, by weight of said solvent comprises the polycarboxylic acid ester.

If another solvent is present, any solvent conventionally used in lithographic inks may be employed. Examples of such other solvents include triglycerides of C_8 – C_{20} aliphatic carboxylic acids, for example, coconut oil, such as that sold under the trade name Kokosől by Lechner and Crebert.

The solvent, or mixture of solvents, used in the present invention preferably has a melting point such that it is liquid at the temperature at which the printing ink or varnish is to be used. This normally means that it should be liquid at the temperature of the printing press, and preferably at ambient temperature, e.g. at temperatures above 10-15°C. In some cases, however, for example if the printing ink or varnish is to be used only in a warm atmosphere, it may be possible that the solvent is solid at these temperatures, provided that it melts at a somewhat higher temperature, for example about 25°C.

10

15

20

The resin component in a lithographic ink composition or varnish functions, among other things, as a film former to bind the varnish and pigment together and, when the ink or varnish dries, to bind the same to the receiving substrate. The resin component also contributes to the properties of hardness, gloss, adhesion and flexibility of an ink and must be compatible with the solvent component of the varnish. In conventional oleoresinous systems, the resin component commonly comprises a first or hard resin component and a second resin component which typically is an alkyd or polyester resin, but which can comprise various other compositions and resins as well.

Hard resins usable in the lithographic inks or varnishes of the present invention include, for example, natural or processed resins such as rosins, rosin esters, maleic modified resins, rosin modified fumaric resins, dimerized and polymerised rosins, , phenolics, rosin modified phenolics, terpenes, polyamides, cyclised rubber, acrylics, hydrocarbons and modified hydrocarbons. Also included among the available resins are those identified in *The Printing Ink Manual*, supra, the substance of which is incorporated herein by reference.

The lithographic inks of the present invention will usually include at least one pigment, the nature of which is not critical to the present invention, and which may be chosen from any of those pigments well known to those skilled in the art. Alternatively, the ink may include an extender. Varnishes will not normally include any pigment or extender in their composition.

In addition, there may, if desired, be present other additives, such as antioxidants, waxes, anti-set-off compounds, lithographic additives and rheology modifiers. These are likewise well known to those skilled in the art.

The invention is further illustrated by the following non-limiting Examples.

25

EXAMPLES 1-4

Preparation of inks

The components shown in the following Table 1 were blended as described below to produce inks suitable for use in sheet fed offset lithographic printing.

Table 1

		6 <u>Table 1</u>				
				Exam	Example No.	
			-	7	6	4
Name	Supplier	Material	Yellow	Magenta	Cyan	Black
Talkum Finntalk M 05	Отуа	Talcum	2.00	1.00		
Aerosil R 972 V	Fischer	Pigment White 27	1.10	1.10	2.10	1.10
Irgalith LB1W	Ciba	Pigment Yellow 13	00.9			
Permanent Yellow GRX 86	Clariant	Pigment Yellow 176	00.9			<u> </u> .
Diacetanil Orange R 3426C	Capelle	Pigment Orange 34	0.04			
Symuler Brilliant Carmin 6B 308	DIC	Pigment Red 57:1		8.00		1.00
Symuler Brilliant Carmin 6B 303	DIC	Pigment Red 57:1		8.00		
Fastogen Blue H 5375 SD	DIC	Pigment Blue 15:3			16.00	4.00
Russ Elftex 415	Cabot	Pigment Black 7				8.50
Russ Printex 25	Degussa	Pigment Black 7				8.50
Tergraf ND 2030	Cray Valley	Phenolic modified rosin ester	13.40	12.70	13.00	11.80

Tergraf 902	Cray Valley	Phenolic modified rosin ester 13.40	13.40	12.70	13.00	11.80
Uraplast 525	DSM	Trialkyl trimellitate	31.40	31.10	29.70	29.50
Coconut oil	Lechner & Crebert Coconut oil refined	Coconut oil refined	24.75	23.52	24.31	21.96
Printwax ME 0520	Deurex	Polyethylene	1.20	1.20	1.20	1.20
Additol VXL 12	Surface Chemie	Aluminium gelling agent	0.61	0.58	0.59	0.54
мтвно	Eastman	t-butylhydroquinone	0.10	01.0	0.10	01.0
Total			100.00	100.00	100.00	100.00

The coconut oil and approximately one half of the Uraplast 525 were added to a reaction vessel, stirred and heated to 180°C. Tergraf ND 2030 and Tergraf 902 were then added, ensuring that the temperature did not fall below 160°C. The mixture was heated up to 180°C and held at that temperature for 60 minutes. Approximately another one half of the total amount of the Uraplast 525 was then added and the mixture was allowed to cool to 160°C. The gelling agent was then added with quick stirring, and the whole varnish was heated to 180°C and maintained at that temperature for 30 minutes. External cooling then reduced the temperature to 110°C, and the varnish was discharged from the reaction vessel.

The pigment(s) and other solid components (except the polyethylene wax) were dispersed in the varnish and the mixture was thoroughly mixed with a triple roller mill. The polyethylene wax was then added and the mixture was again passed over the triple roller mill for de-airing. The viscosity and tack were adjusted by addition of small amounts of the trialkyl trimellitate, to give the final composition shown in Table 1.

EXAMPLE 5

Preparation of ink

The following components were mixed to form a magenta ink, following essentially the same procedure as described in Examples 1-4. The amounts are parts by weight.

10

15

Name	Supplier	Material	Amount
Citrofol B1	Jungbunzlauer	Tributyl citrate	23.10
Beckosol HS 201-100	Reichhold	Unsaturated polyester	10.00
		Sodium aluminium silicate	0.80
Talkum Finntalk M 05	Omya	Talc	1.00
Symuler Brilliant Carmine	DIC	PR 57:1	16.50
Coconut oil	Lechner & Crebert	Coconut oil refined	23.50
Krumbhaar LR 10040	Eastman	Phenolic modified rosin ester	8.20
Tergraf 902	Cray Valley	Phenolic modified rosin ester	16.40
Additol VXL 12	Surface Chemie	Aluminium gelling agent	0.50
			100.00

Preparation of ink

The following components were mixed to form a magenta ink, following

5 essentially the same procedure as described in Examples 1-4. The amounts are parts by weight.

_	-	•
	7	_

Name	Supplier	Material	Amount
Citrofol BII	Jungbunzlauer	Acetyltributyl citrate	17.90
Citrofol BI	Jungbunzlauer	Tributyl citrate	4.20
Foralyn 5020 F	Eastman	Hydrogenated resin	10.00
		Sodium aluminium silicate	0.80
Talkum Finntalk M 05	Omya	Talc	1.00
Symuler Brilliant	DIC	PR 57:1	16.50
Carmine6B 305			
Coconut oil	Lechner & Crebert	Coconut oil refined	24.50
Krumbhaar LR 10040	Eastman	Phenolic modified rosin ester	11.50
Tergraf 902	Cray Valley	Phenolic modified rosin ester	13.10
Additol VXL 12	Surface Chemie	Aluminium gelling agent	0.50
			100.00

Preparation of ink

The following components were mixed to form a magenta ink, following essentially the same procedure as described in Examples 1-4. The amounts are parts by weight.

	-	
•	1	

Name	Supplier	Material	Amount
Citrofol B1	Jungbunzlauer	Tributyl citrate	20.90
Uraplast 525	DSM	Trialkyl mellitate	10.00
		Sodium aluminium silicate	0.80
Talkum Finntalk M 05	Omya	Talc	1.00
Symuler Brilliant Carmine 6B 306	DIC	PR 57:1	16.50
Coconut oil	Lechner & Crebert	Coconut oil refined	25.00
Krumbhaar LR 10040	Eastman	Phenolic modified rosin ester	8.40
Tergraf 902	Cray Valley	Phenolic modified rosin ester	16.90
Additol VXL 12	Surface Chemie	Aluminium gelling agent	0.50
			100.00

Preparation of ink

The following components were mixed to form a magenta ink, following essentially the same procedure as described in Examples 1-4. The amounts are parts by weight.

Name	Supplier	Material	Amoun
Citrofol B1	Jungbunzlauer	Tributyl citrate	8.00
Uraplast 525	DSM	Trialkyl mellitate	49.00
		Sodium aluminium silicate	0.80
Talkum Finntalk M 05	Omya	Talc	1.00
Symuler Brilliant Carmine 6B 306	DIC	PR 57:1	16.50
Krumbhaar LR 10040	Eastman	Phenolic modified rosin ester	11.30
Tergraf 902	Cray Valley	Phenolic modified rosin ester	12.90
Additol VXL 12	Surface Chemie	Aluminium gelling agent	0.50
			100.00

•

EXAMPLE 9

Preparation of printed material

Test prints were produced on a Heidelberg MO 4-colour press including a unit for application of water-based overprint varnishes. Press speed was between 7000-9000 sheets/hour, using a fountain solution containing 6-9% by volume isopropanol. Printing was carried out with standard optical densities, yellow = 1.35, magenta = 1.50, cyan = 1.40 and black = 1.80, using Fuji plates and Astral Premium blankets. The substrate used was Invercote G, which is a standard substrate for packaging. Prints were produced using a water-based overprint varnish. Rub tests were done after 24 hours, and all of the printing inks of the present invention gave satisfactory results.

EXAMPLE 10

Robinson test

15

20

25

The odour and taint caused by the inks of the present invention were tested by the well known Robinson test

This is a test originally devised by the Technical Committee of the International Office of Cocoa and Chocolate to determine whether odours from packaging materials are transferred to cocoa and chocolate products. It is now also used more generally to check on the odour and taint likely to transfer from packaging materials used in the food industry. The test was carried out as follows:

A petri dish containing about 25 g of fresh grated milk chocolate was placed in a clean 1 litre preserving jar. 16 representative round samples (9 cm diameter, total area of the 16 samples 1017 cm²) of the packaging material to be evaluated were placed in the jar, so that sample and chocolate were not in contact with one another. A jar, the "blank", in all respects similar, but without the sample, was also prepared. The jars were closed with a lid. They were then stored for 24 hours in a dark, odourless place at 23°C. A panel of tasters then compared the odour and then the flavour of the chocolate in each sample jar with the chocolate in the blank. The results were evaluated on the following scale:

5

10

- 0 = No difference in odour/flavour
- 1 = Odour/Flavour difference just perceptible
- 2 = Noticeable change in odour/flavour
- 3 = Significant change in odour/flavour
- 4= Intense change in odour/flavour

Four-colour (Black, Cyan, Magenta, Yellow) prints were produced by printing as described in Example 9, and were then tested. The results are shown in Table 2 below.

Table 2

Sample	Odour rating	Taint rating	
Blank substrate	0	0	
Standard Offset Ink A)	3.5	3.0	
Irocart GN Low Hex B)	0.5	0.5	
Example 1	0.5	0.5	
Example 7	1.5	0.5	
Ink from US 6,613,813	1.5	1.0	
Reference/blank	0	0	

A) Irocart G2800, a currently available Sun Chemical conventional sheetfed offset ink containing driers.

B) Irocart GN Low Hex, a currently available Sun Chemical conventional sheetfed offset ink formulated for low odour and low taint.

It can be seen from these results that the compositions of the present invention

(Examples 1 and 7) gave printed matter having comparable or better odour and comparable or lesser taint than the product of US 6,613,813.

Migration test

Prints were prepared as described in Example 9 using the inks of Examples 1-4, or - for inks of Example 8 - using a standard Prüfbau laboratory proofing press.

In all cases, the prints were individually placed in a petri dish, and 1 g of clean

Tenax® (an absorbent used to simulate dry and/or fatty foods; available from Akzo

Nobel) was placed on the reverse of each print. After 10 days at room temperature, the

Tenax® was extracted into diethyl ether and analysed using GC-MS (Gas

Chromatography - Mass Spectrometry). The material analysed for was Uraplast 525

and Citrofol BI. None was found within the detection limits of the analysis.

CLAIMS:

- An offset printing ink or varnish characterised in that the solvent comprises at least one water-insoluble ester of a polycarboxylic acid with an alcohol having at least 4 carbon atoms.
- An offset printing ink or varnish according to Claim 1, in which from 45% to 90% by weight of said solvent comprises an ester of a polycarboxylic acid with an alcohol having at least 4 carbon atoms.
- 3. An offset printing ink or varnish according to Claim 2, in which from 50% to 80% by weight of said solvent comprises an ester of a polycarboxylic acid with an alcohol having at least 4 carbon atoms.
- 4. An offset printing ink or varnish according to Claim 2, in which from 55% to 65% by weight of said solvent comprises an ester of a polycarboxylic acid with an alcohol having at least 4 carbon atoms.
- 5. An offset printing ink or varnish according to any one of the preceding Claims, in which said alcohol has from 4 to 20 carbon atoms.
- An offset printing ink or vamish according to Claim 5, in which said alcohol has from 6 to 10 carbon atoms.
- An offset printing ink or varnish according to any one of the preceding Claims, in which said polycarboxylic acid has from 2 to 4 carboxylic acid groups.
- An offset printing ink or varnish according to Claim 7, in which said polycarboxylic acid has 3 or 4 carboxylic acid groups.
- An offset printing ink or varnish according to any one of the preceding Claims, in which said polycarboxylic acid is an aromatic polycarboxylic acid.
- 10. An offset printing ink or varnish according to Claim 9, in which said polycarboxylic acid is a benzenepolycarboxylic acid.

- An offset printing ink or varnish according to Claim 10, in which said benzenepolycarboxylic acid is trimellitic acid.
- 12. An offset printing ink or vamish according to Claim 11, in which the ester is an ester of trimellitic acid with one or more straight chain saturated C_8-C_{10} aliphatic alcohols.
- 13. An offset printing ink or varnish according to Claim 11, in which the ester is an ester of citric acid or acetylcitric acid.
- 14. An offset printing ink or varnish according to Claim 13, in which said ester is the butyl ester.
- 15. An offset printing ink or varnish according to any one of the preceding Claims, in which said solvent additionally comprises at least one triglyceride of $C_8 C_{20}$ aliphatic carboxylic acids.
- 16. An offset printing ink or varnish according to Claim 15, in which said triglyceride is a triglyceride of $C_{10} C_{18}$ aliphatic carboxylic acids.
- 17. An offset printing ink or varnish according to Claim 16, in which said triglyceride is occupated.

ABSTRACT:

Low Migration, Low Odour Offset Inks or Varnishes

An offset printing ink or vamish uses as a solvent at least one water-insoluble ester of a polycarboxylic acid with an alcohol having at least 4 carbon atoms.

REGISTER ENTRY FOR GB2411900

Form 1 Application No GB0405658.6 filing date 12.03.2004

Title LOW MIGRATION, LOW ODOUR OFFSET INKS OR VARNISHES

Applicant/Proprietor

SUN CHEMICAL B.V., Incorporated in the Netherlands, Leeuwenveldseweg 3, 1382 LV Weesp, Netherlands [ADP No. 08506305001]

Inventors

WOLFRAM FALKENBERG, Buchenweg 7, D-61118 Bad Vibel, Federal Republic of Germany [ADP No. 08828659001]

TILLMANN PULINA, Im Munchsgraben 11, D-61130 Nidderau-Heldenbergen,
Federal Republic of Germany [ADP No. 08828667001]

Classified to C4A C09D

Address for Service

MARKS & CLERK, 57-60 Lincoln's Inn Fields, LONDON, WC2A 3LS, United
Kingdom [ADP No. 00000018001]

Publication No GB2411900 dated 14.09.2005

Application/Patent Terminated before grant 15.03.2006

04.01.2005 Notification of change of Address For Service address of MARKS & CLERK, 57-60 Lincoln's Inn Fields, LONDON, NC2A 3LS, United Kingdom [ADP No. 00000018001] to MARKS & CLERK, 90 Long Acre, LONDON, WC2E 9RA, United Kingdom

dated 20.12.2004. Written notification filed on GB2400961

Entry Type 7.3 Staff ID. MH1 Auth ID. B3

**** END OF REGISTER ENTRY ****

VOSSIUS & PARTNER PATENTANVÄLTE • RECHTSANVÄLTE SIEBERTSTR. 4 81675 MÜNCHEN

0 3. Mai 2007

our rel: WELDEP