

Horizon 2020 European Union funding for Research & Innovation

Pinocchio

Fast forward & inverse dynamics

Nicolas Mansard (CNRS)

Gurus

Justin Carpentier (INRIA)

Roy Featherstone (IIT)

WWW Material

- Web site
 - https://stack-of-tasks.github.io/pinocchio
- Doxygen
 - Documentation tab on github.io
- □ Tutorials:
 - Practical exercices in the documentation

Also use the ? In Python

Contributing to Pinocchio

- GitHub project
 - https://github.com/stack-of-tasks/pinocchio

Post issues for contributing

- We are looking for doc-devs!
 - Feedback some material as a thank-you note
 - In the doc: "examples" is waiting for you

C++ / Python

- □ C++ Library
 - □ Fast, careful implementation
 - Using curiously recursive template pattern (CRTP)
 - You likely don't want to develop code there
 - Using it is not so complex (think Eigen)
- Python bindings
 - A 1-to-0.99 map from C++ API to Python API
 - Start by developing in Python
 - Beware of the lack of accuracy ... speed is ok

Modeling and optimizing

- Pinocchio is a modeling library
 - Not an application
 - Not a solver
 - Some key features directly available
- You don't want the solver inside Pinocchio
 - Inverse dynamics: TSID
 - Planning and contact planning: HPP
 - Optimal control: Crocodyl
 - Optimal estimation, reinforcement learning, inverse kinematics, contact simulation ...

List of features

- URDF parser
- Forward kinematics and Jacobians
- Mass, center of mass and gen.inertia matrix
- Forward and inverse dynamics
- Model display (with Gepetto-viewer)
- Collision detection and distances (with HPP-FCL)
- Derivatives of kinematics and dynamics
- Type templatization and code generation

TSID

- Pinocchio for
 - Computing the inertia matrix, jacobians, kinematics

- Formulation of tasks
- Contact models
- QP resolution

Crocoddyl

- Pinocchio for
 - Kinematics and dynamics
 - And their derivatives
 - Display with Gepetto-viewer

- DDP optimizer
- Task/cost formulation

HPP planner

- Pinocchio for
 - Geometry, collision (hpp-fcl)
 - Projectors with inverse kinematics
 - Balance constraint with dynamics

- Pinocchio encapsulated in hpp-Pinocchio
- Stochastic exploration algorithm (RRT)
- Contact checking
- Re-arrangement algorithms

Representing the physical world

This is a point

This is not a point
This is the representation of a point

Representing the physical world

- Pinocchio is a model
 - Of course, models are wrong
- The way you represent geometry matters
- Example of SO(3)
 - \square r is a map from E(3) to E(3)
 - R is a othonormal positive matrix
 - w is a 3D vector
 - q is a quaternion represented as a 4D vector
 - Roll-Pitch-Yaw & other Euler angles should not be used

Pinocchio bases

Load a model

Pin.buildFromUrdf

- Package example_robot_data
 - A small library of our favorite robots
 - Python scripts to load them easily

```
import example_robot_data as robex
robot =robex.loadTalosArm()
```


Kinematic tree

Wrist 2 Wrist 1

Elbow

Shoulder 3 Shoulder 2 Shoulder 1

Torso

Universe (joint #0)

Name

Type

Parent

Placement

Mass CoM

Geometries
Op frames

Kinematic tree

- Inside robot model:
 - joints: joint types and indices
 - names: joint names
 - jointPlacements: constant placement wrt parent
 - parents: hierarchy of joints representing the tree
- No bodies
 - masses and geoms are attached as tree decorations
- First joint represent the universe
 - If nq==7 then len(rmodel.joints)==8

Display

- External display servers
 - Python can create a client to this server
 - Gepetto viewer
 - MeshCat
 - Beta version of a Panda server

- The viewers does not know the kinematic tree
 - Pinocchio must place the bodies
 - pin.visualize is doing that for you (not in C++)

Model, data and algorithms

- pinocchio. Model should be constant
 - Kinematic tree, joint model, masses, placements ...
 - Plain names used here
- pinocchio. Data is modified by the algorithms
 - □ oMi, v, a
 - □ J, Jcom
 - \square M,
 - □ tau, nle
- 1 Model, several Data

Model, data and algorithms

$$\min_{X,U} l_T(x_T) + \sum_{t=0}^{T-1} l(x_t, u_t)$$

1 model

s.t.
$$\boldsymbol{x}_{t+1} = f(\boldsymbol{x}_t, \boldsymbol{u}_t)$$

Model, data and algorithms

- Algorithms:
 - With model and data in input
 - Store final (and some intermediary) results in data
 - Often return the main results

```
pin.randomConfiguration(rmodel)
```

```
pin.forwardKinematics(rmodel, rdata, q)
rdata.oMi[jointIndex]
```


Forward kinematics

- pin.forwardKinematics(rmodel, rdata,
 q, vq, aq)
- □ q -> propagates placements (= forward geometry)
- □ vq -> also propagates velocity (= differential kinematics)
- □ aq -> also propagates accelerations (= 2nd order FK)
- Compute all the joint placements in data.oMi
- M = data.oMi[jointIndex] : placement of
 <jointIndex>
- \square R = M.rotation
- □ p = M.translation

Placement

$${}^{\mathsf{A}}\mathsf{M}_{\mathsf{B}} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}\overline{A}\overline{B} \\ 0 & 1 \end{bmatrix}$$

$$^{A}p = {}^{A}M_{B} {}^{B}p$$
 $^{A}M_{B} {}^{B}M_{C} = {}^{A}M_{C}$

Frames

- Attached to the joint output
- \Box F_0 is the "universe" world frame

- Name
- Placement
- parent

Joint and frames

- Joint frames
 - Skeleton of the kinematic chain
 - Computed by forward kinematics in rdata.oMi
- "Operational" frames
 - Added as decoration to the tree
 - Placed with respect to a joint parent
 - Stored in rmodel.frames
 - Computed by updateFramePlacements in rdata.oMf

Frames

```
for f in rmodel.frames:
    print(f.name, f.parent)
```



```
frameIndex = \
rmodel.getFrameId('myname')
rdata.oMf[frameIndex]
```


Cost model

- For this tutorial only (ad-hoc code)
 - ... but similar to the organization in crocoddyl

```
class Cost:
    def init (self, rmodel, rdata, viz=None):
        self.rmodel = rmodel
        self.rdata = rdata
        self.viz = viz
    def calc(self,q):
        ### Add the code to recompute your cost here
        cost = 0
        return cost
    def callback(self,q):
        if viz is None: return
        # Display something in viz ...
```


SciPy optimizer

- Make the optimization problem a class:
 - Problem parameters in the ___init___
 - Cost method taking x as input
 - Gradient and callback method if need be

SciPy optimizer

```
class OptimProblem:
     def __init_ (self,rmodel):
           # Put your parameters here
            self.rmodel = rmodel
           self.rdata = self.rmodel.createData()
      def cost(self,x): return sum(x**2)
      def callback(self,x): print(self.cost(x))
pbm = OptimProblem(robot.model)
fmin slsqp(x0=x0,func=pbm.cost,callback=pbm.callback)
```


Displacement

https://upload.wikimedia.org/wikipedia/common s/b/b8/Inviscid_flow_around_a_cylinder.gif Between 2 frames:

Each point moves to another point

 $m: p \in E^3 \rightarrow m(p) E^3$

Rigid displacement

https://gfycat.com/fr/sleepycleanarcherfish

Between 2 frames:

Each point
moves to another point
Distances are kept
Angles are kept

$$m: p \in E^3 \rightarrow m(p) E^3$$

Rigid displacement

□ ^AM_B=(^AR_B, ^AAB) represents the motion of all the points of the body

$$^{A}p = {}^{A}M_{B} {}^{B}p$$

Distance between placements

- Rigid velocities
 - = linear + angular velocity
 - What is the velocity to transform \mathcal{F}_A into \mathcal{F}_B in 1 second ?

"SE(3) Logarithm" $log(^{A}M_{B})$

M=pin.SE3.Random()
pin.log(M).vector

Position versus placement

- Difference of positions
 - □ residuals = p-p*

- Diffence of rotations
 - \square residuals = $\log_3(R^TR^*)$

pin.log3

- Diffence of placements
 - \square residuals = $\log_6(M^{-1}M^*)$

pin.log6

pin.log
(auto-switch
based on type)

1.5 redundancy

Posture cost

Redundancy

- □ Same 6D cost
- Hessian is ill-defined

Sum of costs

$$c(q) = w_1 c_1(q) + w_2 c_2(q)$$

$$\nabla c(q) = w_1 \nabla c_1(q) + w_2 \nabla c_2(q)$$

SciPy optimizer

```
from scipy.optimize import fmin_bfgs fmin bfgs?
```


Whole body dynamics

$$M(q) a_q + b(q, v_q) = \tau_q$$

Explain vq,aq,tauq,M,b,

Whole body dynamics

$$M(q) a_q + b(q, v_q) = \tau_q$$

Explain Lagrange d/dv Ldot – d/dq L

Whole body dynamics

$$M(q) a_q + b(q, v_q) = \tau_q$$

Explain b and g

Gravity torque

Gravity

$$g(q) = b(q,v_q=0)$$

```
pin.computeGeneralizedGravity \
     (rmodel,
          rdata,q)
```


Inverse and forward dynamics

Inverse dynamics

$$\tau_q = invdyn(q, v_q, a_q)$$

Direct / forward dynamics

$$a_q = dirdyn(q, v_q, \tau_q)$$

Explain control / simu ... explicit invdyn / dirdyn equations

Inverse and forward dynamics

Inverse dynamics

Direct / forward dynamics

Generalized inertia " mass " matrix

```
M = pin.crab(rmodel, rdata, q)
```


Weighted gravity

$$c(q) = g(q)^{T} M(q)^{-1} g(q)$$

Compute c from rnea and aba

Free flyer joint

- Revolute joint
 - lacksquare q of dimension one, $v_q=\dot{q}$
- □ Free flyer

Integrate and differenciate

$$\textbf{q}_{\text{next}} = \text{pin.integrate}\left(\textbf{q,v}_{\textbf{q}}\right) \quad \in \textbf{Q}$$

$$q_{\text{next}} = \textbf{q} \oplus \textbf{v}_{\textbf{q}}$$

$$\Delta \text{q=}$$
 vq= pin.difference(q_1,q_2) $\in T_{q1}Q$
$$\Delta \text{q} = \text{q}_2 \text{(-)} \text{ q}_1$$

$$q = pin.normalize(rand(nq)) \in Q$$

Optimization with Q / TQ

 \square q = (x,y,z, \underline{q} , ...) with \underline{q} unitary

What is the result with a solver?

Solution 1: normalized

def constraint_q(self, x):

return norm(x[3:7])-1)

Solution 2: normalize

```
def cost(q):
    q = pin.normalize(rmodel,q)
    ... # compute the cost
```


Solution 3: reparametrize

- We represent q
 - as the displacement v_q
 - \Box from a reference configuration q_0

$$q = q_0 \oplus v_q$$

Exercice

With humanoid Talos or quadruped Solo

- Choose contact location
 - 3d contacts for the quadruped or the humanoid hand
 - 6d contacts for the humanoid feet

- From a random configuration ...
 - Optimize the 3d/6d costs + posture cost
 - Project the feet in contact

