Vivekanand Education Society's Institute of Technology Department of AI & DS Engineering

Subject: Cryptography and System Security

Class: D11AD

Roll No: 46	Name: Ashish Patil
Practical No:3	Title:Symmetric Key Agreement
DOP:	DOS:
Grades:	LOs Mapped:
Signature:	

Title: Symmetric Key Agreement

DOP: 23/1/24 DOS: 2/2/24

Aim: To implement Diffie Hellman Algorithm for symmetric key exchange.

Theory:

- 1. Steps of the Diffie Hellman Algorithm.
- 2. Attacks on Diffie Hellman Algorithm.

Steps of the Diffie-Hellman Algorithm:

- 1. Setup: Both parties, let's call them Alice and Bob, agree on two public parameters:
 - A large prime number \(p \)
 - A primitive root $\ (g \)$ modulo $\ (p \)$
- 2. Private Key Generation:
 - Alice selects a private key (a) randomly from the range (1 < a < p-1).
 - Bob selects a private key \setminus (b \setminus) randomly from the range \setminus (1 < b < p-1 \setminus).

3. Public Key Generation:

- Alice computes her public key (A) using the formula $(A = g^a \pmod p)$.

4. Key Exchange:

- Alice sends her public key \(A \) to Bob.
- Bob sends his public key \(B \) to Alice.

5. Shared Secret Calculation:

- Alice computes the shared secret (S_A) using Bob's public key (B) and her private key (a): $(S_A = B^a \mod p)$.
- Bob computes the shared secret \(S_B \) using Alice's public key \(A \) and his private key \(b \): \(S_B = A^b \mod p \).

6. Shared Secret Agreement:

- Both Alice and Bob now have a shared secret: $\langle (S A = S B \rangle)$.
- This shared secret can be used as a symmetric encryption key or for any other secure communication.

Attacks on Diffie-Hellman Algorithm:

1. Man-in-the-Middle (MitM) Attack:

- In this attack, an attacker intercepts the communication between Alice and Bob and establishes separate key exchanges with each party.
- The attacker then relays messages between Alice and Bob, decrypting and re-encrypting them using their own keys.
- To mitigate this attack, Diffie-Hellman key exchange is often combined with digital signatures or other authentication mechanisms to verify the identity of the communicating parties.

2. Discrete Logarithm Problem:

- The security of the Diffie-Hellman algorithm relies on the assumption that computing discrete logarithms (e.g., finding \(x \) in the equation \((g^x \mbox{ mod } p = y \)) is computationally difficult.
- With advancements in computational power and algorithms such as the Number Field Sieve, the discrete logarithm problem can be solved for certain parameter choices, potentially compromising the security of Diffie-Hellman key exchange.

3. Small Subgroup Attacks:

- If the prime modulus (p) is poorly chosen or if the generator (g) generates a small subgroup of $(Z p^*)$, the security of Diffie-Hellman can be compromised.

- In such cases, an attacker may exploit the mathematical properties of small subgroups to derive the shared secret.

4. Pre-computation Attacks:

- An attacker can pre-compute certain values to accelerate the computation of the shared secret once they obtain the public keys exchanged between Alice and Bob.
- This can be mitigated by using ephemeral keys, where new private-public key pairs are generated for each key exchange, thus making pre-computation attacks impractical.

Program:

```
return False
   return True
def generate_primitive_root(p):
      g = random.randint(2, p - 1)
      if pow(g, (p - 1) // 2, p) != 1:
       return g
def generate_private_key(p):
 return random.randint(2, p - 2)
def generate_public_key(g, private_key, p):
  return pow(g, private_key, p)
def generate_shared_secret(public_key, private_key, p):
   return pow(public_key, private_key, p)
p = generate_prime()
print("Large prime number (p):", p)
  g = generate_primitive_root(p)
  print("Primitive root (g):", g)
  private_key_alice = generate_private_key(p)
  private_key_bob = generate_private_key(p)
  public_key_alice = generate_public_key(g, private_key_alice, p)
  public_key_bob = generate_public_key(q, private_key_bob, p)
  shared_secret_alice = generate_shared_secret(public_key_bob, private_key_alice,
  shared_secret_bob = generate_shared_secret(public_key_alice, private_key_bob, p
  print("\nAlice's private key:", private_key_alice)
  print("Bob's private key:", private_key_bob)
  print("\nAlice's public key:", public_key_alice)
  print("Bob's public key:", public_key_bob)
  print("\nShared secret computed by Alice:", shared_secret_alice)
  print("Shared secret computed by Bob:", shared_secret_bob)
  assert shared secret alice == shared secret bob. "Shared secrets do not
```

Output:

```
Description of the large prime number (p): 541
Primitive root (g): 209

Alice's private key: 40
Bob's private key: 139

Alice's public key: 1
Bob's public key: 497

Shared secret computed by Alice: 1
Shared secret computed by Bob: 1
```

Conclusion: We have successfully implemented the diffe-hellman algorithm for symmetric key agreement and studied its vulnerable attacks.p