

GBI Tutorium Nr.

Foliensatz 0333

Vincent Hahn – vincent.hahn@student.kit.edu | 6. November 2012

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 。 < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Outline/Gliederung

Formale Sprachen

2 Aufgaben

Definition

Definition: formale Sprache

Eine formale Sprache (über einem Alphabet A) ist eine Teilmenge $L\subseteq A*$.

Erklärung

Erklärung

L ist also eine Menge. Darin sind alle syntaktisch korrekten Gebilde enthalten.

Beispiel

Beispiel

- ① Das Alphabet ist $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- ② Die Sprache L sind alle Dezimalzahlen

Beispiel

Beispiel

- ① Das Alphabet ist $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- ② Die Sprache L sind alle Dezimalzahlen
- $3 \Rightarrow -22 \in L$

Beispiel

Beispiel

- ① Das Alphabet ist $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- ② Die Sprache *L* sind alle Dezimalzahlen
- 3 ⇒ -22 ∈ L
- **4** \Rightarrow 22 − 0 − − − 3 \notin *L* (aber \in *A*!)

Produkt

Definition: Produkt

Seien L_1 und L_2 zwei formale Sprachen. Dann bezeichnet

$$L_1 \cdot L_2 = \{ w_1 w_2 | w_1 \in L_1 \text{ und } w_2 \in L_2 \}$$

das Produkt der Sprachen L_1 und L_2 .

Potenzen

Definition: Potenzen

L sei eine formale Sprache. Rekursiv lässt sich auch die Potenz davon definieren.

$$L^{0} = \{\epsilon\}$$
$$L^{i+1} = L^{i} \cdot L$$

Konkatenationsabschluss

Definition: Konkatenationsabschluss

L sei eine formale Sprache. Dann ist der Konkatenationsabschluss:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Der ϵ -freie Konkatenationsabschluss ist:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Konkatenationsabschluss

ϵ -freier Konkatenationsabschluss

Falls $\epsilon \in L$, so enthält der ϵ -freie Konkatenationsabschluss auch ϵ .

Beispiele

Beispiele

- IP4-Adressen
- Programmiersprache C
- 3 HTML
- E-Mail (RFC 5322)

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- 3 $L = \{a\}^* \cdot \{b\} \cdot \{a\}^* \text{ oder }$

- 1 Was ist L^3 ?
- ② Was ist $L^i \{b\}^*$?

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- 2 Alphabet: $A = \{a, b\}$
- 3 $L = \{a\}^* \cdot \{b\} \cdot \{a\}^* \text{ oder }$

- 1 Was ist L^3 ?
- Was ist $L^i \{b\}^*$?

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- 2 Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^* \text{ oder }$

- 1 Was ist L^3 ?
- ② Was ist $L^i \{b\}^*$?

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- 2 Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- Was ist L^3 ?
- \bigcirc Was ist $L^i \{b\}^*$?

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- 2 Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- Was ist L³?
- **a** Was ist $L^i \{b\}^*$?

Winter 2010/2011

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}$, a, b, ϵ , $\{ \}$,

- 1 die Menge aller Wörter über A, die das Teilwort "ab" enthalten
- die Menge aller Wörter über A, deren vorletztes Zeichen ein "b" ist
- die Menge aller Wörter über A, in denen nirgends zwei "b"s hintereinander vorkommen

Lösung

- $(a,b)^* \cdot \{ab\} \cdot \{a,b\}^*$
- **2** $\{a,b\}^* \cdot \{b\} \cdot \{a,b\}^1$

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

3 $\{a, ba\}^* \cdot \{b, \epsilon\}$

Winter 2008/2009

Es sei A = a, b. Die Sprache L \subset A* sei definiert durch

$$L = (\{a\}^* \{b\} \{a\}^*)^*$$

Zeigen Sie, dass jedes Wort w aus $\{a,b\}^*$, das mindestens einmal das Zeichen b enthält, in L liegt. (Hinweis: Führen Sie eine Induktion über die Anzahl der Vorkommen des Zeichens b in w durch.)

Induktionsanfang

Für k = 1: In diesem Fall lässt sich das Wort w aufteilen in

$$w = w_1 \cdot b \cdot w_2$$

wobei w_1 und w_2 keine b enthalten und somit in $\{a\}^*$ liegen. Damit gilt $w \in \{a\}^*$ $\{b\}$ $\{a\}^*$ und somit auch

$$w \in (\{a\}^* \{b\} \{a\}^*)^* = L$$

Induktionsannahme

Für ein festes $k \in \mathbb{N}$ gilt, dass alle Wörter über $\{a, b\}^*$, die genau k-Mal das Zeichen b enthalten, in L liegen.

Induktionsschritt

Wir betrachten ein Wort w, das genau k+1 Mal das Zeichen "b" enthält. Dann kann man w zerlegen in $w=w_1\cdot w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k Mal das Zeichen "b". Nach Induktionsanfang liegt w_1 in $\{a\}^*$ $\{b\}$ $\{a\}^*$. Nach Induktionsvoraussetzung liegt w_2 in $(\{a\}^*$ $\{b\}$ $\{a\}^*)^*$, was bedeutet, dass $w=w_1\cdot w_2$ in $(\{a\}^*$ $\{b\}$ $\{a\}^*)(\{a\}^*$ $\{b\}$ $\{a\}^*)^*\subset (\{a\}^*$ $\{b\}$ $\{a\}^*)^*=L$ liegt und die Behauptung ist gezeigt.

