Trigger Studies Update

J. Pela

Imperial College London

2013-10-21

Introduction and Motivation

Motivation

- Understand the possible improvement brought by lower threshold from parked data triggers
- Quantify the possible loss of signal efficiency by selecting only L1T_ETM40/50 seeded HLT triggers
- Compare at parked/prompt datasets at first few cuts (QCD dominated) to check how much more data slips in from addition trigger efficiency over offline variables.

Notes:

Last signal efficiency study:

- Did not include PU weighting of sample.
- Was over Pythia 120 GeV mass point, not POWHEG 125 GeV.
- Only HLT and no other cuts.

MC POWHEG Signal $m_H = 125 \ [GeV]$

Total processed events 100047.

HLT (no L1 selection) HLTMetClean Ref | Algorithm Count Eff [%] HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v 0.118617 HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v 7840 0.0783716 Y&&B 7363 0.0736024 NOT(Y)&&B 4503 0.0450147 JetPair Ref | Algorithm Count | Eff [%] HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v 7611 0.368179 HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v 5174 0.250319 5060 0.244792 Y&&B NOT(Y)&&B2550 0.123387 Ref | Algorithm Count | Eff [%] HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v 0.852306 HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v 2762 0.786315 Y&&B 2755 0.784286 NOT(Y)&&B 230 0.0681106 TightMjj Ref | Algorithm Count | Eff [%] HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v 0.897424 HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v 1766 0.895625 Y & & B1766 0.895625

$HLT + L1_ETM40$

Ref	Algorithm	Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v	11838	0.118328			
Υ	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v		7840 0.078371			
	Y&&B	7363	0.0736024			
	NOT(Y)&&B	4474	0.044725			
	JetPair					
Ref	Algorithm	Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v	7584	0.36686			
Υ	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v	5174	0.25031			
	Y&&B	5060	0.24479			
	NOT(Y)&&B	2523	0.1220			
	MET					
Ref	Algorithm	Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v	2993	0.852052			
Υ	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v	2762	0.786315			
	Y&&B	2755	0.784286			
	NOT(Y)&&B	238	0.067766			
	TightMjj					
Ref	Algorithm	Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v	1768	0.89681			
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v	1766	0.895625			
	Y&&B	1766	0.895625			
	NOT(Y)&&B	2	0.00118483			

NOT(Y)&&B

Signal loss by cut

Some conclusions:

- \bullet By selecting HLT + L1_ETM40 the signal losses are very small.
 - We can ignore safely L1_HTT* seed, events and have only L1_ETM(40/50) seeded events.
- Extra signal captured by parked HLT paths gets completely cut at TightMjj level.

By selection cut:

Cut	Extra parked data only		
HLTMetClean	+57.06%		
JetPair	+36.60%		
MET	+8.62%		
TightMjj	+0.11%		

- Extra signal loss happens over Dijet selection, MET and TightMjj.
- Biggest losses in order MET, Dijet and TightMjj.

Looking at parked data

HLT (no L1 selection)

	HLTMetClean						
Ref	Algorithm		Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3o5_VBF_v	440	729619	0.662568			
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF_v	235	130753	0.353483			
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v	189	001007	0.284134			
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v		814693	0.00272811			
	Y&&(B D)		790408	0.0026916			
	NOT(Y)&&(B D)	544	396898	0.818416			
JetPair							
Ref	Algorithm		Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v	310	907131	0.712993			
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF_v		694485	0.304304			
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v		121953	0.284645			
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v		283460	0.00294331			
	Y&&(B D)	1268120		0.00290814			
NOT(Y)&&(B D) 35:				0.805406			
MET							
Ref	Algorithm		Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v		20359	0.933043			
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF	v	8216	0.376535			
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v		8419	0.385839			
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJet	s_v 14987		0.686847			
	Y&&(B D)		14897	0.682722			
	NOT(Y)&&(B D)		5902	0.270486			
TightMjj							
Ref	Algorithm		Count	Eff [%]			
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v		14622	0.973372			
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF_v		5830	0.388097			
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v			0.41559			
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v			0.767608			
	Y&&(B D)		11525	0.767208			
	NOT(Y)&&(B D)		3145	0.20936			
$\overline{}$							

$HLT + L1_ETM40$

	HLTMetClean							
Ref	Algorithm		Count	Eff [%]				
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v	345	421106	0.519287				
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF_v		551498	0.268424				
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v		920851	0.228389				
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v		814693	0.00272811				
	Y&&(B D)		790408	0.0026916				
	NOT(Y)&&(B D)	426	594673	0.641319				
	Jet Pair							
Ref	Algorithm		Count	Eff [%]				
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v		908346	0.55476				
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF_v		093083	0.22266				
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v		087820	0.224941				
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v		283460	0.00294331				
	Y&&(B D)	1268120		0.00290814				
$oxed{oxed}$	NOT(Y)&&(B D) 271250542 0.62205							
	MET							
Ref	Algorithm		Count	Eff [%]				
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v		18499	0.8478				
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF.	v	7345	0.336618				
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v	7555		0.346242				
Y	HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJet			0.686847				
	Y&&(B D)		14897	0.682722				
	NOT(Y)&&(B D)		4031	0.184739				
	TightMjj							
Ref	Algorithm		Count	Eff [%]				
В	HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v	LT_DiJet35_MJJ700_AllJets_DEta3p5_VBF_v 13045		0.868393				
D	HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF.	v 505		0.336773				
E	HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF_v		5471	0.364199				
Y				0.767608				
				0.767208				
	NOT(Y)&&(B D)		1565	0.104181				

Conclusions

- All extra parked data passing TightMjj cuts of current analysis is most likely only background.
- Assuming the number of event from prompt data analysis at TightMjj level (12118 events) we have additionally in parked:
 - Without L1 selection: +25.95%
 - With L1T_ETM seed: +12.91%
- This difference is most likely due to recovered events with offline variables passing the requirements of parked data only.
 - Implies (something we already knew) current working point is not where trigger is fully efficient.
- Need to optimize at least variables up to TightMjj level, to even recover signal to background ration at TightMjj level.

