University of Tlemcen Faculty of Sciences

Academic year 2023-2024

(L1 ING-INF)

Department of Informatic

Algebra (First Year)

Worksheet N°3/ "Relations"

Exercise 01: (catch-up 22-23) The relation \Re is defined in \mathbb{R}^* as:

$$x\Re y \iff x^2 - \frac{1}{x^2} = y^2 - \frac{1}{y^2}.$$

- (1) Show that \Re is an equivalence relation on \mathbb{R}^* .
- (2) What is the equivalence class of $a \in \mathbb{R}^*$ for this equivalence relation.
- (2) Find the quotient set.

Exercise 02: The relation \Re is defined in $\mathbb{Z} \times \mathbb{N}^*$ as:

$$(x,y)\Re(x',y') \Leftrightarrow xy' - x'y = 0.$$

- (1) Show that \Re is an equivalence relation on $\mathbb{Z} \times \mathbb{N}^*$.
- (2) Identify cl((1,2)) and cl((-1,2)).

Exercise 03: Let E be a non-empty set and F a non-empty sub-set of E.

In P(E) the power set of E, we defined \Re by:

$$\forall (A, B) \in P(E) \times P(E), A\Re B \Leftrightarrow A \cap F = B \cap F.$$

- (1) Prove that \Re is an equivalence relation.
- (2) What is the equivalence class of \emptyset .
- (3) Have they: $E \in Cl(\emptyset)$? Justify.
- (4) Find Cl(E). Deduce Cl(F).

Exercise 04: The relation Φ is defined in \mathbb{N}^* as:

$$x\Phi y \Leftrightarrow \exists n \in \mathbb{N}^* \text{ such as: } x^n = y.$$

- (1) Prove that \Re is an order relation.
- (2) Is it a total order? Justify.
- (3) Let $A = \{1, 4, 8\}$. Determine if they exist, $\max A$ and $\min A$ for the order Φ .

Exercise 05: (Final exam 22-23) In $]1, +\infty[$, the relation \Re is defined:

$$x\Re y \Leftrightarrow \frac{y}{y^2+1} \ge \frac{x}{x^2+1}$$

- (1) Show that \Re is an order relation in $]1, +\infty[$.
- (2) Is it a total order? Justify.
- (3) Let $A = \{2, 7, 8\}$. Determine if they exist $\sup A$ and $\inf A$.

Exercise 06: In \mathbb{R}^2 , the relation \leq is defined:

$$(x,y) \le (x',y') \Leftrightarrow x \le x' \text{ and } y \le y'.$$

- (1) Show that it is an order relation. Is it a total order?
- (2) Specify two lower bounds, two upper bounds, supremum and infimum of the part:

$$A = \{(1, 2), (3, 1)\}.$$

(3) Does part A have a Maximum - ? a minimum?

Sincere wishes you success (MESSIRDI BACHIR)