Kernel Logistic Regression

1.Soft-Margin SVM as Regularized Model

最早有Hard-Margin Primal,然后推导出Hard-Margin Dual形式。

后来,为了允许有错误点存在(或者noise),也为了避免模型太过复杂化,造成过拟合,建立了Soft-Margin Primal的数学表达式,并引入了新的参数C作为权衡因子,然后也推导了其Soft-Margin Dual形式。

Hard-Margin Primal $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$ s.t. $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{z}_n + b) \ge 1$

Soft-Margin Primal
$$\min_{b,\mathbf{w},\xi} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \frac{C}{C} \sum_{n=1}^{N} \xi_{n}$$
s.t. $y_{n}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \geq 1 - \xi_{n}, \xi_{n} \geq 0$

Soft-Margin Dual

Hard-Margin Dual

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{1}^{T} \alpha$$
s.t.
$$\mathbf{y}^{T} \alpha = 0$$

$$0 \le \alpha_{n}$$

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{1}^{T} \alpha$$
s.t.
$$\mathbf{y}^{T} \alpha = 0$$

$$0 \le \alpha_{B} \le C$$

- record 'margin violation' by ξ_n
- · penalize with margin violation

$$\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N} \xi_n$$
s.t. $y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1 - \xi_n \text{ and } \xi_n \ge 0 \text{ for all } n$

on any (b, \mathbf{w}) , $\xi_n = \text{margin violation} = \max(1 - y_n(\mathbf{w}^T \mathbf{z}_n + b), 0)$

- (\mathbf{x}_n, y_n) violating margin: $\xi_n = 1 y_n(\mathbf{w}^T \mathbf{z}_n + b)$
- (\mathbf{x}_n, y_n) not violating margin: $\xi_n = 0$

'unconstrained' form of soft-margin SVM:

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

 ξ_n 描述的是点 (x_n,y_n) 距离 $y_n(w^Tz_n+b)=1$ 的边界有多远。

第一种情况是violating margin,即不满足 $y_n(w^Tz_n+b)\geq 1$ 。那么 ξ_n 可表示为: $\xi_n=1-y_n(w^Tz_n+b)>0$ 。第二种情况是not violating margin,即点 (x_n,y_n) 在边界之外,满足 $y_n(w^Tz_n+b)\geq 1$ 的条件,此时 $\xi_n=0$ 。

我们可以将两种情况整合到一个表达式中,对任意点:

$$egin{aligned} \xi_n = max(1-y_n(w^Tz_n+b),0) \end{aligned}$$

上式表明,如果有voilating margin,则 $1-y_n(w^Tz_n+b)>0$, $\xi_n=1-y_n(w^Tz_n+b)$ 如果not violating margin,则 $1-y_n(w^Tz_n+b)<0$, $\xi_n=0$ 。

整合之后,我们可以把Soft-Margin SVM的最小化问题写成如下形式:

$$rac{1}{2} \, w^T w + C \sum_{n=1}^N max(1-y_n(w^T z_n + b), 0)$$

经过这种转换之后,表征犯错误值大小的变量 ξ_n 就被消去了,转而由一个 \max 操作代替。

http://127.0.0.1:51004/view/26

2018/12/19

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T\mathbf{w} \leq \mathbf{C}$
hard-margin SVM	$\mathbf{w}^T\mathbf{w}$	$E_{in} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + \mathbf{E}_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{CN\widehat{E_{in}}}{2}$	

L2 Regularization中的 λ 和Soft-Margin SVM中的C也是相互对应的, λ 越大,w会越小,Regularization的程度就越大;C越小, $\hat{E_{in}}$ 会越大,相应的margin就越大。

所以说增大C,或者减小 λ ,效果是一致的,Large-Margin等同于Regularization,都起到了防止过拟合的作用。

2.SVM versus Logistic Regression

我们已经把Soft-Margin SVM转换成无条件的形式:

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

 $max(1-y_n(w^Tz_n+b),0)$ 倍设置为 \hat{err}

linear score $s = \mathbf{w}^T \mathbf{z}_n + \mathbf{b}$

- $err_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$
 - -often called hinge error measure

err_{SVM}: algorithmic error measure by convex upper bound of err_{0/1}

对于 $err_{0/1}$,它的linear score $s=w^Tz_n+b$

当 $ys \ge 0$ 时, $err_{0/1} = 0$

当ys < 0时, $err_{0/1} = 1$,呈阶梯状。

对于 $e\hat{r}r$, 当 $ys \geq 0$ 时, $err_{0/1} = 0$

当ys < 0时, $err_{0/1} = 1 - ys$,呈折线状。

 \hat{err}_{svm} 始终在 $err_{0/1}$ 的上面,则 \hat{err}_{svm} 可作为err0/1的上界。

所以,可以使用 \hat{err}_{svm} 来代替err0/1,解决二元线性分类问题,而且 \hat{err}_{svm} 是一个凸函数,使它在最佳化问题中有更好的性质。

- $err_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$
- err_{SCE}(s, y) = log₂(1 + exp(-ys)): another upper bound of err_{0/1} used in logistic regression

逻辑回归中, $err_{sce} = log_2(1 + exp(-ys))$, 当ys=0时, $err_{sce} = 1$.

 err_{sce} 也是 $err_{0/1}$ 的上界,而 err_{sce} 与 $e\hat{r}r_{svm}$ 也是比较相近的。

因为当ys趋向正无穷大的时候, err_{sce} 和 err_{svm} 都趋向于零;

当ys趋向负无穷大的时候, err_{sce} 和 $e\hat{r}r_{svm}$ 都趋向于正无穷大。

可以把SVM看成是L2-regularized logistic regression。

_		
PLA	soft-margin SVM	regularized logistic regression for classification
minimize err _{0/1} specially	minimize regularized $\widehat{\operatorname{err}}_{SVM}$ by QP	minimize regularized err _{SCE} by GD/SGD/
 pros: efficient if lin. separable 	pros: 'easy' optimization & theoretical guarantee	 pros: 'easy' optimization & regularization guard
 cons: works only if lin. separable, otherwise needing pocket 	cons: loose bound of err _{0/1} for very negative <i>ys</i>	cons: loose bound of err _{0/1} for very negative <i>ys</i>

PLA是相对简单的一个模型,对应的是 $err_{0/1}$ 通过不断修正错误的点来获得最佳分类线

优点是简单快速

缺点是只对线性可分的情况有用,线性不可分的情况需要用到pocket算法。

Logistic Regression对应的是 err_{sce} ,通常使用GD/SGD算法求解最佳分类线。 优点是凸函数 err_{sce} 便于最优化求解,而且有regularization作为避免过拟合的保证 缺点是 err_{sce} 作为 $err_{0/1}$ 的上界,当ys很小(负值)时,上界变得更宽松,不利于最优化求解。

Soft-Margin SVM对应的是errsvm,通常使用QP求解最佳分类线。 优点和Logistic Regression一样,凸优化问题计算简单而且分类线比较"粗壮"一些 缺点也和Logistic Regression一样,当ys很小(负值)时,上界变得过于宽松。

Logistic Regression和Soft-Margin SVM都是在最佳化err0/1的上界而已。

3.SVM for Soft Binary Classification

第一种简单的方法是先得到SVM的解 (b_{svm},w_{svm}) ,然后直接代入到logistic regression中,得到 $g(x)=\theta(w_{svm}^Tx+b_{svm})$ 。这种方法直接使用了SVM和logistic regression的相似性,一般情况下表现还不错。

但是,这种形式过于简单,与logistic regression的关联不大,没有使用到logistic regression中好的性质和方法。

第二种简单的方法是同样先得到SVM的解 (b_{svm},w_{svm}) ,然后把 (b_{svm},w_{svm}) 作为logistic regression的初始值,再进行迭代训练修正,速度比较快

最后,将得到的b和w代入到g(x)中。

但并没有比直接使用logistic regression快捷多少。

Naïve Idea 1 f run SVM and get (b_{SVM}, w_{SVM}) return g(x) = θ(w_{SVM}^Tx + b_{SVM}) 'direct' use of similarity —works reasonably well

no LogReg flavor

- Naïve Idea 2
 - 1 run SVM and get (b_{SVM} , \mathbf{w}_{SVM})
 - 2 run LogReg with (b_{SVM} , \mathbf{w}_{SVM}) as \mathbf{w}_0
 - **3** return LogReg solution as $g(\mathbf{x})$
 - not really 'easier' than original LogReg
 - SVM flavor (kernel?) lost

构造一个融合两者优势的模型,我们额外增加了放缩因子A和平移因子B 首先利用SVM的解 (b_{svm}, w_{svm}) 来构造这个模型,放缩因子A和平移因子B是待定系数。 然后再用通用的logistic regression优化算法,通过迭代优化,得到最终的A和B。

http://127.0.0.1:51004/view/26 3/5

一般来说,如果 (b_{svm}, w_{svm}) 较为合理的话,满足A>0且B pprox 0。

$$g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)
 - often A > 0 if w_{SVM} reasonably good
 - often B ≈ 0 if b_{SVM} reasonably good

new LogReg Problem:

$$\min_{A,B} \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \left(\underbrace{A} \cdot \left(\underbrace{\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}}_{\mathbf{\Phi}_{\text{SVM}}(\mathbf{x}_n)} \right) + \underbrace{B} \right) \right) \right)$$

得到了新的logistic regression:

其中的 (b_{svm}, w_{svm}) 已经在SVM中解出来了,实际上的未知参数只有A和B两个这种Probabilistic SVM的做法分为三个步骤:

Platt's Model of Probabilistic SVM for Soft Binary Classification

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$
 - -actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})$

这种soft binary classifier方法得到的结果跟直接使用SVM classifier得到的结果可能不一样,这是因为我们引入了系数A和B一般来说,soft binary classifier效果更好

logistic regression的解法,可以选择GD、SGD等等。

4. Kernel Logistic Regression

对于L2-regularized linear model,如果它的最小化问题形式为如下的话,那么最优解 $w_* = \sum_{n=1}^N eta_n z_n$ 。

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

optimal $\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$.

假如最优解 $w_=w_{||}+w_{\perp}$ 。

 w_{\parallel} 和 w_{\perp} 分别是平行z空间和垂直z空间的部分。

我们需要证明的是 $w_{\perp}=0$ 。

利用反证法,假如 $w_{\perp} \neq 0$,考虑 w_* 与 w_{\parallel} 的比较。

第一步先比较最小化问题的第二项: $err(y,w_*^Tz_n)=err(y_n,(w_{||}+w_{\perp})^Tz_n=err(y_n,w_{||}^Tz_n)$,即第二项是相等的。

然后第二步比较第一项: $w_*^Tw_=w_\parallel^Tw_\parallel+2w_\parallel^Tw_\perp+w_\perp^Tw_\perp>w_\parallel^Tw_\parallel$,即 w_* 对应的L2-regularized linear model值要比 w_\parallel 大,

http://127.0.0.1:51004/view/26

这就说明 w_* 并不是最优解,从而证明 w_\perp 必然等于零,即 $w_*=\sum_{n=1}^N \beta_n z_n$ 一定成立, w_* 一定可以写成z的线性组合形式。

将 $w_=\sum_{n=1}^N \beta_n z_n$ 代入到L2-regularized logistic regression最小化问题中,得到: solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \mathbf{w}^{\mathsf{T}} \mathbf{z}_n \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{\beta_n \mathbf{z}_n}$

从另外一个角度来看Kernel Logistic Regression (KLR):

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m}}{\beta_{n} \beta_{m}} K(\mathbf{x}_{n}, \mathbf{x}_{m}) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m}}{\beta_{m}} K(\mathbf{x}_{m}, \mathbf{x}_{n}) \right) \right)$$

上式中log项里的 $\sum_{m=1}^N \beta_m K(x_m,x_n)$ 可以看成是变量 β 和 $K(x_m,x_n)$ 的内积。 上式第一项中的 $\sum_{n=1}^N \sum_{m=1}^N \beta_n \beta_m K(x_n,x_m)$ 可以看成是关于 β 的正则化项 $\beta^T K \beta$ 。 所以,KLR是 β 的线性组合,其中包含了kernel内积项和kernel regularizer。这与SVM是相似的形式。

KLR中的 β_n 与SVM中的 α_n 是有区别的。SVM中的 α_n 大部分为零,SV的个数通常是比较少的;而KLR中的 β_n 通常都是非零值。

http://127.0.0.1:51004/view/26 5/5