ICML 2009 Tutorial Survey of Boosting from an Optimization Perspective

Part I: Entropy Regularized LPBoost

Part II: Boosting from an Optimization Perspective

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research

Updated: August 15, 2009
ICML '09 Boosting Tutorial

- Introduction to Boosting
- What is Boosting?
- 3 LPBoost
- Entropy Regularized LPBoost
- 5 Overview of Boosting algorithms
- 6 Conclusion and Open Problems

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 LPBoost
- 4 Entropy Regularized LPBoost
- Overview of Boosting algorithms
- 6 Conclusion and Open Problems

Setup for Boosting

[Giants of field: Schapire, Freund]

- examples: 11 apples
- -1 if artificial+ 1 if natural
- goal: classification

Setup for Boosting

- \bullet -1/+1 examples
- weight $d_n \approx \text{size}$

Weak hypotheses

- weak hypotheses: decision stumps on two features
- goal: find convex combination of weak hypotheses that classifies all

Boosting: 1st iteration

First hypothesis:

- error: $\frac{1}{11}$
- edge: $\frac{9}{11}$

edge = 1 - 2 errorlow error = high edge

Update after 1st

Misclassified examples

increased weights

After update

 edge of hypothesis decreased

Before 2nd iteration

Boosting: 2nd hypothesis

Pick hypotheses with high edge

Update after 2nd

After update

 edges of all past hypotheses should be small

3rd hypothesis

Update after 3rd

4th hypothesis

Update after 4th

Final convex combination of all hypotheses

Decision: $\sum_{t=1}^{T} w_t h^t(\mathbf{x}) \geq 0$?

Positive total weight - Negative total weight

- Maintain distribution on $N \pm 1$ labeled examples
- At iteration t = 1, ..., T:
 - Receive "weak" hypothesis h^t of high edge
 - Update \mathbf{d}^{t-1} to \mathbf{d}^t more weights on "hard" examples
- Output convex combination of the weak hypotheses $\sum_{t=1}^{T} w_t h^t(x)$

Two sets of weights:

- distribution on **d** on examples
- distribution on w on hypotheses

Edge of a hypothesis h for a distribution \mathbf{d} on the examples

$$\sum_{n=1}^{N} \overbrace{y_n h(\mathbf{x}_n)}^{\text{goodness of example}} d_n \qquad \mathbf{d} \in \mathcal{P}^N$$
 average goodness of hypothesis

Margin of example n for current hypothesis weighting \mathbf{w}

Edge of a hypothesis h for a distribution \mathbf{d} on the examples

$$\sum_{n=1}^{N} \overbrace{y_n h(\mathbf{x}_n)}^{\text{goodness of example}} d_n \qquad \mathbf{d} \in \mathcal{P}^N$$
 average goodness of hypothesis

Margin of example n for current hypothesis weighting \mathbf{w}

Objectives

Edge

- Edges of past hypotheses should be small after update
- Minimize maximum edge of past hypotheses

Margin

 Choose convex combination of weak hypotheses that maximizes the minimum margin

Connection between objectives?

Edge vs. margin

min max edge = max min margin

$$\min_{\mathbf{d} \in \mathcal{S}^N} \max_{q=1,2,\dots,t-1} \underbrace{\sum_{n=1}^N y_n h^q(x_n) d_n}_{\text{edge of hypothesis q}} = \max_{\mathbf{w} \in \mathcal{S}^{t-1}} \min_{n=1,2,\dots,N} \underbrace{\sum_{q=1}^{t-1} y_n h^q(x_n) w_q}_{\text{margin of example } n}$$

Linear Programming duality

Boosting as zero-sum-game

[FS97]

Rock, Paper, Scissors game

Single row is pure strategy of row player and **d** is mixed strategy

Single column is pure strategy of column player and **w** is mixed strategy

Row player minimizes Column player maximizes

payoff =
$$\mathbf{d}^{\mathsf{T}} \mathbf{U} \mathbf{w}$$

= $\sum_{i,j} d_i U_{i,j} \mathbf{w}_j$

Optimum strategy

• Min-max theorem:

Connection to Boosting?

- Rows are the examples
- Columns the weak hypothesis
- $U_{i,j} = h^j(\mathbf{x}_i)y_i$
- Row sum: margin of example
- Column sum: edge of weak hypothesis
- Value of game:

min max edge = max min margin

Van Neumann's Minimax Theorem

Weak hypothesis = column of game matrix \mathbf{U}

examples x_n	labels y _n	1st stump $h^1(x_n)$	$U_{*,1}=\mathbf{u}_1$
	-1	-1	1
	-1	-1	1
<u>=</u>	-1	-1	1
	-1	1	- 1
	1	1	1
	1	1	1
	1	1	1
	1	- 1	_1

Edges/margins

Value of game 0

New column added: boosting

Value of game increases from 0 to .11

Row added: on-line learning

Value of game decreases from 0 to -.11

Boosting: maximize margin incrementally

w_1^1	$w_1^2 w_2^2$		w_{1}^{3}	w_{2}^{3}	w_{3}^{3}
$d_1^1 = 0$	$d_1^2 = 0 -1$			-1	
d_2^1 1	$d_2^2 = 1 = 0$	d_{2}^{3}	1	0	-1
d_3^1 -1	d_3^2 -1 1	d_{3}^{3}	-1	1	0
iteration 1	iteration 2		iterat	tion 3	

- In each iteration solve optimization problem to update d
- Column player / oracle provides new hypothesis
- Boosting is column generation method in d domain and coordinate/gradient descent in w domain

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 LPBoost
- 4 Entropy Regularized LPBoost
- Overview of Boosting algorithms
- 6 Conclusion and Open Problems

Boosting = greedy method for increasing margin

Converges to optimum margin w.r.t. all hypotheses

Want small number of iterations

Assumption on next weak hypothesis

For current weighting of examples, oracle returns hypothesis of edge $\geq g$

Goal

- For given ϵ , produce convex combination of weak hypotheses with margin $\geq g \epsilon$
- Number of iterations $O(\frac{\log N}{\epsilon^2})$

Min max thm for the inseparable case

Slack variables in \mathbf{w} domain = capping in \mathbf{d} domain

$$\max_{\mathbf{w} \in \mathcal{S}^t, \boldsymbol{\psi} \geq \mathbf{0}} \min_{n=1,2,\dots,N} \underbrace{\left(\sum_{q=1}^t u_n^q w_q + \psi_n\right)}_{\text{margin of example } n} - \frac{1}{\nu} \sum_{n=1}^N \psi_n$$

$$= \min_{\mathbf{d} \in \mathcal{S}^N, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q=1,2,\dots,t} \underbrace{\mathbf{u}^q \cdot \mathbf{d}}_{\text{edge of hypothesis q}}$$

Notation:
$$u_n^q = y_n h^q(x_n)$$

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 LPBoost
- 4 Entropy Regularized LPBoost
- Overview of Boosting algorithms
- 6 Conclusion and Open Problems

LPBoost

[GS98,RSS+00,DBST02]

Choose distribution that minimizes the maximum edge via LP

$$\min_{\sum_{n} d_{n} = 1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \underbrace{\max_{q = 1, 2, \dots, t} \mathbf{u}^{q} \cdot \mathbf{d}}_{f(\mathbf{d})}$$

- All weight is put on examples with minimum soft margin
- Brittle: iteration bound can be linear in *N* on carefully constructed artificial data sets

[WGR07]

LPBoost may require $\Omega(N)$ iterations

		α_1	α_2	α_3	α_4	α_5	margin
		0	0	0	0	0	
d_1	.125	+1	95	93	91	99	_
d_2	.125	+1	95	93	91	99	_
d_3	.125	+1	95	93	91	99	_
d_4	.125	+1	95	93	91	99	_
d_5	.125	98	+1	93	91	+.99	_
d_6	.125	97	96	+1	91	+.99	_
d_7	.125	97	95	94	+1	+.99	_
d_8	.125	97	95	93	92	+.99	_
edge		.0137	7075	6900	6725	.0000	
مبياه	1						

value -1

		α_1	α_2	α_3	α_4	α_{5}	margin
		1	0	0	0	0	
d_1	0	+1	95	93	91	99	1
d_2	0	+1	95	93	91	99	1
d_3	0	+1	95	93	91	99	1
d_4	0	+1	95	93	91	99	1
d_5	1	98	+1	93	91	+.99	98
d_6	0	97	96	+1	91	+.99	97
d_7	0	97	95	94	+1	+.99	97
d_8	0	97	95	93	92	+.99	97
edge		98	1	93	91	.99	
/alue	-1	98					

		α_1	α_{2}	α_3	α_4	α_{5}	margin
		0	1	0	0	0	
d_1	0	+1	95	93	91	99	95
d_2	0	+1	95	93	91	99	95
d_3	0	+1	95	93	91	99	95
d_4	0	+1	95	93	91	99	95
d_5	0	98	+1	93	91	+.99	1
d_6	1	97	96	+1	91	+.99	96
d_7	0	97	95	94	+1	+.99	95
d_8	0	97	95	93	92	+.99	95
edge		97	96	1	91	.99	
value	-1	- 98	- 96				

		α_1	α_{2}	$lpha_{3}$	α_4	α_{5}	margin
		0	0	1	0	0	
d_1	0	+1	95	93	91	99	93
d_2	0	+1	95	93	91	99	93
d_3	0	+1	95	93	91	99	93
d_4	0	+1	95	93	91	99	93
d_5	0	98	+1	93	91	+.99	93
d_6	0	97	96	+1	91	+.99	1
d_7	1	97	95	94	+1	+.99	94
d_8	0	97	95	93	92	+.99	93
edge		97	95	94	1	.99	
value	-1	98	96	94			

		α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$	α_{5}	margin
		0	0	0	1	0	
d_1	0	+1	95	93	91	99	91
d_2	0	+1	95	93	91	99	91
d_3	0	+1	95	93	91	99	91
d_4	0	+1	95	93	91	99	91
d_5	0	98	+1	93	91	+.99	91
d_6	0	97	96	+1	91	+.99	91
d_7	0	97	95	94	+1	+.99	1
d_8	1	97	95	93	92	+.99	92
edge		97	95	94	92	.99	
value	-1	- 98	- 96	_ 94	- 92		

		$lpha_{1}$.5	α_2 .0026	$lpha_{3}$ 0	$lpha_{ extsf{4}}$ 0	$lpha_{ extsf{5}}$.4975	margin
d_1	0.4974	+1	95	93	91	99	.0051
d_2	0	+1	95	93	91	99	.0051
d_3	0	+1	95	93	91	99	.0051
d_4	0	+1	95	93	91	99	.0051
d_5	0	98	+1	93	91	+.99	.0051
d_6	.4898	97	96	+1	91	+.99	.0051
d_7	0	97	95	94	+1	+.99	.0051
d_8	.0127	97	95	93	92	+.99	.0051
edge		.0051	.0051	.9055	.9100	.0051	
value	-1	98	96	94	92	.0051	

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 LPBoost
- Entropy Regularized LPBoost
- Overview of Boosting algorithms
- 6 Conclusion and Open Problems

Entropy Regularized LPBoost

$$\min_{\sum_{n} d_{n} = 1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q = 1, 2, \dots, t} \mathbf{u}^{q} \cdot \mathbf{d} + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^{0})$$

•

$$\mathbf{d}_n = \frac{\exp^{-\eta \text{ soft margin of example } n}}{7}$$

"soft min"

• Form of weights first in ν -Arc algorithm

[RSS+00]

- Regularization in d domain makes problem strongly convex
- Gradient of dual Lipschitz continuous in **w** [e.g. HL93,RW97]

The effect of entropy regularization

Different distribution on the examples

LPBoost: lots of zeros / brittle

ERLPBoost: smoother

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 LPBoost
- 4 Entropy Regularized LPBoost
- **5** Overview of Boosting algorithms
- 6 Conclusion and Open Problems

[FS97]

$$d_n^t := \frac{d_n^{t-1} \exp(-w_t u_n^t)}{\sum_{n'} d_{n'}^{t-1} \exp(-w_t u_{n'}^t)},$$

where w_t s.t. $\sum_{n'} d_{n'}^{t-1} \exp(-w u_{n'}^t)$ is minimized

- Easy to implement
- Adjusts distribution so that edge of last hypothesis is zero
- Gets within half of the optimal hard margin but only in the limit

[RSD07]

Corrective versus totally corrective

Processing last hypothesis versus all past hypotheses

Corrective	Totally Corrective
AdaBoost	LPBoost
LogitBoost	TotalBoost
AdaBoost*	SoftBoost
SS,Colt08	ERLPBoost

From AdaBoost to FRI PBoost

AdaBoost

(as interpreted in [KW99,La99])

Primal:

$$\min_{\mathbf{d}} \ \Delta(\mathbf{d}, \mathbf{d}^{t-1})$$

$$\max_{\mathbf{w}} -\ln \sum_{n} d_{n}^{t-1} \exp(u_{n}^{t-1} w_{t-1})$$

Dual:

s.t. $\mathbf{d} \cdot \mathbf{u}^{t-1} = 0$, $\|\mathbf{d}\|_1 = 1$ s.t. $\mathbf{w} > 0$

Achieves half of optimum hard margin in the limit

AdaBoost*

[RW05] Dual:

Primal:

$$\min_{\mathbf{d}} \quad \Delta(\mathbf{d}, \mathbf{d}^{t-1})
\text{s.t.} \quad \mathbf{d} \cdot \mathbf{u}^{t-1} \leq \gamma_{t-1},
\|\mathbf{d}\|_{1} = 1$$

$$\max_{\mathbf{w}} -\ln \sum_{n} d_{n}^{t-1} \exp(u_{n}^{t-1} w_{t-1}) \\ -\gamma_{t-1} ||\mathbf{w}||_{1}$$
 s.t. $\mathbf{w} > 0$

where edge bound γ_t is adjusted downward by a heuristic

Good iteration bound for reaching optimum hard margin

Overview of Boosting algorithms

SoftBoost

[WGR07]

[WGV08]

Primal:

Dual:

$$\begin{array}{ll} \min\limits_{\mathbf{d}} & \Delta(\mathbf{d},\mathbf{d}^0) \\ \text{s.t.} & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \leq \frac{1}{\nu}\mathbf{1} \\ & \mathbf{d} \cdot \mathbf{u}^q \leq \gamma_{t-1}, \\ & 1 \leq q \leq t-1 \end{array}$$

$$\min_{\mathbf{w}, \boldsymbol{\psi}} \quad -\ln \sum_{n} \mathbf{d}_{n}^{0} \exp(-\eta \sum_{q=1}^{t-1} u_{n}^{q} w_{q} \\ -\eta \psi_{n}) - \frac{1}{\nu} \|\boldsymbol{\psi}\|_{1} - \gamma_{t-1} \|\mathbf{w}\|_{1}$$
 s.t.
$$\mathbf{w} > 0, \ \boldsymbol{\psi} > 0$$

where edge bound γ_{t-1} is adjusted downward by a heuristic

Good iteration bound for reaching soft margin

ERLPBoost

Primal:

Dual:

$$\begin{aligned} \min_{\mathbf{d},\gamma} & & \gamma + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^0) \\ \text{s.t.} & & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \leq \frac{1}{\nu} \mathbf{1} \\ & & \mathbf{d} \cdot \mathbf{u}^q \leq \gamma, \\ & & 1 < q < t - 1 \end{aligned}$$

$$\min_{\mathbf{w}, \boldsymbol{\psi}} \quad -\frac{1}{\eta} \ln \sum_{n} \mathbf{d}_{n}^{0} \exp(-\eta \sum_{q=1}^{t-1} u_{n}^{q} w_{q} - \eta \psi_{n}) - \frac{1}{\nu} \|\boldsymbol{\psi}\|_{1}$$
s.t.
$$\mathbf{w} \geq 0, \ \|\mathbf{w}\|_{1} = 1, \ \boldsymbol{\psi} \geq 0$$

where for the iteration bound η is fixed to $\max(\frac{2}{\epsilon} \ln \frac{N}{\nu}, \frac{1}{2})$

Good iteration bound for reaching soft margin

Iteration bounds

Corrective	Totally Corrective
AdaBoost	LPBoost
LogitBoost	TotalBoost
AdaBoost*	SoftBoost
SS,Colt08	ERLPBoost

- Strong oracle: returns hypothesis with maximum edge
- Weak oracle: returns hypothesis with edge $\geq g$
- In $O(\frac{\log \frac{N}{\nu}}{\epsilon^2})$ iterations within ϵ of maximum soft margin for strong oracle or within ϵ of g for weak oracle
- Ditto for hard margin case
- In $O(\frac{\log N}{g^2})$ iterations consistency with weak oracle

Synopsis

- LPBoost often unstable
- For safety, add relative entropy regularization
- Corrective algs
 - Sometimes easy to code
 - Fast per iteration
- Totally corrective algs
 - Smaller number of iterations
 - Nevertheless faster overall time
- Weak versus strong oracle makes a big difference in practice

$$O(\frac{\log N}{\epsilon^2})$$
 iteration bounds

Good

- Bound is major design tool
- Any reasonable Boosting algorithm should have this bound

Bad

$$\begin{array}{c|c} & \frac{\ln N}{\epsilon^2} \geq N \\ \hline \bullet \text{ Bound is weak} & \epsilon = .01 & N \leq 1.2 \times 10^5 \\ \epsilon = .001 & N \leq 1.7 \times 10^7 \end{array}$$

• Why are totally corrective algorithms much better in practice?

Lower bounds on the number of iterations

- Majority of $\Omega(\frac{\log N}{g^2})$ hypotheses for achieving consistency with weak oracle of guarantee g [Fr95]
- Later: $\Omega(\frac{1}{\epsilon^2})$ iteration bound for getting within ϵ of hard margin with strong oracle

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 LPBoost
- 4 Entropy Regularized LPBoost
- Overview of Boosting algorithms
- 6 Conclusion and Open Problems

Conclusion

- Adding relative entropy regularization of LPBoost leads to good boosting alg.
- Boosting is instantiation of MaxEnt and MinxEnt principles
 [Jaines 57,Kullback 59]
- Relative entropy regularization smoothens one-norm regularization

Open

- When hypotheses have one-sided error then $O(\frac{\log N}{\epsilon})$ iterations suffice [As00,HW03] Does ERLPBoost have $O(\frac{\log N}{\epsilon})$ bound when hypotheses one-sided?
- Strengthen general lower bound to $\Omega(\frac{\log N}{\epsilon^2})$
- Compare ours with Freund's algorithms that don't just cap, but forget examples

Acknowledgement

- Rob Schapire and Yoav Freund for pioneering Boosting
- Gunnar Rätsch for bringing in optimization
- Karen Glocer for helping with figures and plots