Miejsce na naklejkę z kodem

dys	leks	įį

PRÓBNY EGZAMIN **MATURALNY Z INFORMATYKI**

Arkusz II

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 5 stron, a na stanowisku przy komputerze są dwie podpisane dyskietki: DANE oraz WYNIKI. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Jeśli rozwiązanie zadania lub jego części przedstawia algorytm program komputerowy, to zapisz go w języku programowania, ale tylko tym, który wybrałeś przed egzaminem.
- 3. Jeśli zechcesz wydrukować zawartość swojego pliku, to musisz nagrać go na dyskietkę WYNIKI i podnieść rękę z dyskietką do podejdzie Ciebie członek Wtedy do nadzorującego, odbierze dyskietkę i po krótkiej chwili zwróci ją wraz z wydrukowaną przez specjalistę d.s. sprzętu zawartością
- 4. Przed upływem czasu przeznaczonego na egzamin nagraj na dyskietkę WYNIKI wszystkie pliki stanowiące rozwiązanie zadań i przeznaczone do oceny (i tylko te pliki).
- 5. Obok każdego zadania podana jest maksymalna liczba punktów, która można uzyskać za jego poprawne rozwiązanie.
- 6. Do ostatniej kartki arkusza dołączona jest karta odpowiedzi, którą wypełnia nauczyciel.

Życzymy powodzenia!

ARKUSZ II

STYCZEŃ ROK 2005

Za rozwiazanie wszystkich zadań można otrzymać łacznie 60 punktów.

PESEL ZDAJĄCEGO

Zadanie 5. (24 pkt) Baza danych

Ponizsza tabela zawiera dane o uczniach i nauczycielach pewnej szkoły.

Nazwa przedmiotu	Nr nauczyciela	Nazwisko nauczyciela	Nr ucznia	Nazwisko ucznia	Ocena
Język polski	1	Nowak Anna	56	Kowalski Jan	4
					3
			51	Skok Tomasz	5
	3	Kowala Maria	12	Nowak Dorota	5
			15	Kos Monika	2
					4
Matematyka	7	Nowy Adam	56	Kowalski Jan	2
			54	Kłos Daria	4
					5
	8	Stary Piotr	15	Kos Monika	3
					3
Chemia	4	Dosadny Jarosław	104	Marny Jan	2
					1
Fizyka	6	Borowa Janina	104	Marny Jan	2
			12	Nowak Dorota	4
					5
					5
			51	Skok Tomasz	3
					4

Na podstawie danych zawartych w powyższej tabeli, zaprojektuj bazę danych zawierającą odpowiednie tabele. Zbuduj formularz umożliwiający dodanie oceny uczniowi oraz raport umożliwiający wydruk ocen każdego ucznia z poszczególnych przedmiotów. Do oceny oddajesz plik o nazwie

(wpisz nazwę pliku z bazą danych)

Zadanie 6. (18 pkt) Wektory

W pliku dane.txt znajdują się w kolejnych wierszach współrzędne (będące liczbami całkowitymi z zakresu <-500;500>) 100 wektorów w formacie: x y (pierwsza_współrzędna odstęp druga współrzędna).

W wybranym przed egzaminem języku programowania napisz program realizujący poniższe zadania:

a) Do pliku o nazwie wynik1.txt zapisz listę (w formacie identycznym jak w pliku z danymi) wektorów równoległych do osi *OX* lub osi *OY* układu współrzędnych *XOY* oraz (w ostatnim wierszu) ich liczbę.

Do oceny oddajesz plik źródłowy o naz	wie
	(wpisz wybraną przez siebie nazwę)
b) Do pliku o nazwie wynik2.txt zapis wektorów (z dokładnością do 0,01).	sz w kolejnych wierszach długości poszczególnych
Do oceny oddajesz plik źródłowy o naz	wie
	(wpisz wybraną przez siebie nazwę)
c) Do pliku o nazwie wynik3.txt zapis do najdłuższego.	z długości wektorów w kolejności od najkrótszego
Do oceny oddajesz plik źródłowy o naz	wie
	(wpisz wybraną przez siebie nazwę)

Uwaga: Jeśli któryś z plików posłużył Ci do rozwiązania więcej niż jednego podpunktu, wpisz nazwę tego pliku przy danych podpunktach.

Zadanie 7. (18 pkt) Gra

Pola pewnej planszy ponumerowane są kolejnymi liczbami całkowitymi od 0 do 400. Pionek w sytuacji wyjściowej stoi na polu o numerze 0. Rzucamy sześcienną kostką do gry (ścianki są ponumerowane standardowo liczbami: 1, 2, 3, 4, 5, 6). Jeśli wyrzucimy parzystą liczbę oczek, to przesuwamy pionka do przodu o liczbę pól równą tej liczbie. W przypadku nieparzystej liczby oczek, cofamy pionka o liczbę pól równą tej liczbie. W obu wypadkach, jeśli pionek miałby wyjść poza planszę – pozostaje bez ruchu. Wynikiem gry jest ostatnia pozycja pionka.

- a) W arkuszu kalkulacyjnym wykonaj po dwie symulacje tej gry dla 100, 200 oraz 300 rzutów kostką.
- b) Wyniki przedstaw w tabeli wg wzoru:

Liczba rzutów	Wynik symulacji gry		Średnia arytmetyczna	
LICZDA I ZULOW	Symulacja pierwsza	Symulacja druga	wyników symulacji gry	
100				
200				
300				

c) Wykonaj wykres przedstawiający zależność wyników symulacji gry (w tym średniej) od liczby rzutów.

Rozwiązanie zapisz w pliku o nazwie gra.xls

Brudnopis