CSCI-GA.1170-001/002 Fundamental Algorithms

November 25, 2014

Solutions to Problem 1 of Homework 10 (12 (+4) points)

Name: **** INSERT YOUR NAME HERE **** Due: Wednesday, November 26

(a)	(3 points) Assume directed graph G is acyclic. Show that G has at least one vertex v having no outgoing edges.
	Solution: ************************************
(b)	(5 points) Consider the following greedy algorithm for topological sort of a directed graph G : "Find a vertex v with no outgoing edges. If no such v exists, output 'cyclic'. Else put v as the last vertex in the topological sort, remove v from G (by also removing all incoming edges to v), and recurse on the remaining graph G' on $(n-1)$ vertices". If this algorithm is correct, prove it, else give a counter-example.
	Solution: ************************************
(c)	$(4 (+4) \text{ points})$ It is easy to implement the above algorithm in time $O(mn)$. Show how to implement it in time $O(n^2)$. For extra credit , do it in time $O(m+n)$.
	Solution: ************************************

CSCI-GA.1170-001/002 Fundamental Algorithms

November 25, 2014

Solutions to Problem 2 of Homework 10 (6 points)

Name: **** INSERT YOUR NAME HERE **** Due: Wednesday, November 26

Recall, MST finds a spanning sub-tree T of the original graph minimizing the sum of edge weights in T: $\sum_{e \in T} w(e)$. Consider a related problem MST' which attempts to find a spanning sub-tree T' of the original graph minimizing the maximum edge weight in T': $\sum_{e \in T'} w(e)$. Show that the solution T to MST is also an optimal solution T' to MST', and vice versa.

CSCI-GA.1170-001/002 Fundamental Algorithms

November 25, 2014

Solutions to Problem 3 of Homework 10 (10 points)

Name: **** INSERT YOUR NAME HERE **** Due: Wednesday, November 26

L	<i>g</i> ,
(a)	(4 points) Assume that all edge weights of an undirected graph G are equal to the same number w . Design the fastest algorithm you can to compute the MST of G . Argue the correctness of the algorithm and state its run-time. Is it faster than the standard $O(m + n \log n)$ run-time of Prim?
	Solution: ************************************
(b)	(6 points) Now assume the all the edge weights are equal to w , except for a single edge $e' = (u', v')$ whose weight is w' (note, w' might be either larger or smaller than w). Show how to modify your solution in part (a) to compute the MST of G . What is the running time of your algorithm and how does it compare to the run-time you obtained in part (a) (or standard Prim)?
	Solution: ************************************

CSCI-GA.1170-001/002 Fundamental Algorithms

November 25, 2014

Solutions to Problem 4 of Homework 10 (16 points)

Name: **** INSERT YOUR NAME HERE **** Due: Wednesday, November 26

Assume all edge weights in G are integers from 1 to w . (a) (8 points) Show how to modify Prim's algorithm to achieve running time $O(m+nw)$. Hence, if $w = O(1)$, you get optimal time $O(m+n)$. Solution: ************************************		
if $w = O(1)$, you get optimal time $O(m+n)$. Solution: ************************************	A	ssume all edge weights in G are integers from 1 to w .
 (b) (4 points) Now assume w = n, so that the previous solution in part (a) is no longer faster than standard. Show how to modify Kruscal's algorithm instead of Prim's, so that it now takes time O(m + n log n), instead of O(m log n). Solution: ************************************	(a)	
than standard. Show how to modify Kruscal's algorithm instead of Prim's, so that it now takes time $O(m+n\log n)$, instead of $O(m\log n)$. Solution: ************************************		Solution: ************************************
(c) (4 points) What is the largest w for which you can still maintain the $O(m+n\log n)$ run-time in part b ? In particular, can you tolerate $w=n^2$? $w=n^3$?	(b)	than standard. Show how to modify Kruscal's algorithm instead of Prim's, so that it now
in part b ? In particular, can you tolerate $w = n^2$? $w = n^3$?		Solution: ************************************
Solution: ************************************	(c)	
		Solution: ************************************