Pioneer sound.vision.soul

Service Manual

ORDER NO. CRT3060

MULTI-CD CONTROL HIGH POWER CD/MP3/WMA PLAYER WITH FM/AM TUNER

DEH-P850MP xn/uc DEH-P8500MP xn/uc

This service manual should be used together with the following manual(s):
For the parts numbers, adjustments, etc. which are not shown in this manual, refer to the following manual(s).

Mod	del No.	Order No.	Mech. Module	Remarks
DEH-	P840MP/XN/UC	CRT2845		
CX-3	3007	CRT2820	S9MP3	CD Mech. Module:Circuit Description, Mech.Description, Disassembly

EXPLODED VIEWS AND PARTS LIST

PACKING (Page 4)

PACKING SECTION PARTS LIST

*	:	Non	spare	part

		Part No.				
Mark No.	Symbol and Description	DEH-P840MP/XN/UC	DEH-P850MP/XN/UC			
1-1	Owner's Manual	CRD3569	CRD3774			
1-2	Installation Manual	CRD3570	CRD3775			
15	Carton	CHG4661	CHG5057			
16	Contain Box	CHL4661	CHL5057			

		Part No.			
Mark No.	Symbol and Description	DEH-P8400MP/XN/UC	DEH-P8500MP/XN/UC		
1-1	Owner's Manual	CRD3571	CRD3776		
1-2	Installation Manual	CRD3572	CRD3777		
15	Carton	CHG4662	CHG5056		
16	Contain Box	CHI 4662	CHL5056		

EXTERIOR(1) (Page 10)

● EXTERIOR(1) SECTION PARTS LIST

		Part No.			
Mark No.	Symbol and Description	DEH-P840MP/XN/UC	DEH-P850MP/XN/UC		
20	Tuner Amp Unit	CWM8042	CWM8943		

	Part No.			
Mark No. Symbol and Description	DEH-P8400MP/XN/UC	DEH-P8500MP/XN/UC		
20 Tuner Amp Unit	CWM8043	CWM8944		

EXTERIOR(2) (Page 12)

● EXTERIOR(2) SECTION PARTS LIST

		Part No.		
Mark No.	Symbol and Description	DEH-P840MP/XN/UC	DEH-P850MP/XN/UC	
8	Keyboard Unit(OEL)	CWM8051	CWM8945	
14	Sub Grille Assy	CXB9363	CXC1805	
16	Detach Grille Assy	CXB8092	CXC1747	
36	Grille Unit	CXB7942	CXC1632	

		Part No.			
Mark No.	Symbol and Description	DEH-P8400MP/XN/UC	DEH-P8500MP/XN/UC		
8	Keyboard Unit(OEL)	CWM8052	CWM8946		
14	Sub Grille Assy	CXB9362	CXC1804		
16	Detach Grille Assy	CXB8093	CXC1748		
36	Grille Unit	CXB7941	CXC1631		

2

DEH-P850MP/XN/UC

7

8

В

С

Е

F

ELECTRICAL PARTS LIST(Page 48)

TUNER AMP UNIT

5

	Part	No.
	DEH-P840MP/XN/UC	DEH-P850MP/XN/UC
Symbol and Description	DEH-P8400MP/XN/UC	DEH-P8500MP/XN/NC
IC 601	PD5741A	PD5867A
L 401	LCTB4R7K2125	LCTC4R7K2125

KEYBOARD UNIT(OEL)

5

	Part	No.
	DEH-P840MP/XN/UC	DEH-P850MP/XN/UC
Symbol and Description	DEH-P8400MP/XN/UC	DEH-P8500MP/XN/NC
IC 1801	PD5745B	PD5868A

3

DEH-P850MP/XN/UC

A TUNER AMP UNIT

SIDE B

В

D

4.2 KEYBOARD UNIT(OEL)

4.3 KEYBOARD UNIT(LCD)

В

С

ı

1.73

4.4 CD MECHANISM MODULE

В

С

D

3

2

4.5 SWITCH PCB

4.6 CONNECTOR PCB

F CONNECTOR PCB

SIDE A

F CONNECTOR PCB

SIDE B

В

3

D

5. ELECTRICAL PARTS LIST

NOTES:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

 $\mathsf{RS1/} \bigcirc \mathsf{S} \bigcirc \bigcirc \cup \mathsf{J,RS1/} \bigcirc \cup \mathsf{S} \bigcirc \bigcirc \cup \mathsf{J}$

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

===	===Circu		d No.===Part Name	Part No.	===	==Circ	uit Symbol and No.===Part Name	Part No.
	Unit	Number	: CWM8042(DEH	-P840MP/XN/UC)	Q	951	Transistor	2SA1037K
			: CWM8043(DEH	DO 400MD/VNI/LIC)	Q	961	Transistor	2SC2412K
	_				Q	962	Transistor	2SD1767
			: CWM8044(DEH		Q	963	Transistor	IMD2A
	Unit	Name	: Tuner Amp Ur	nit	Q	971	Transistor	2SB808
MI	SCELLA	ANEOUS			Q	972	Transistor	DTC114EK
					D	231	Diode	RB706F-40
IC	102	IC		HA12187FP	D	301	Diode	1SR139-400
IC	131	IC		PML009A	D	501	Diode	DAN202U
IC	251	IC		BA3834F	D	502	Diode	HZS9L(A2)
IC	301	IC		PAL007A				
IC	571	IC		PA2028A	D	503	Diode	1SS133
					D	751	Diode	HZS9L(B1)
IC	601	IC (DEH-P84	IOMP, P8400MP)	PD5741A	D	811	Diode	HZS7L(B2)
IC	601	IC (DEH-P84	150MP)	PD5740A	D	812	Diode	1SS133
IC	651	IC		S-80735ANDZI	D	813	Diode	1SS133
IC	811	IC		BA6288FS				
IC	871	IC		NJM2360M	D	833	Diode	DAN202U
					D	834	Diode	DAP202U
Q	101	Transistor		2SA1037K	D	835	Diode	DAN202U
Q	102	Transistor		DTC124EK	D	836	Diode	DAP202U
Q	251	Transistor		2SA1037K	D	837	Diode	DAN202U
Q	252	Transistor		DTC144EK				
Q	253	Transistor		2SC2412K	D	838	Diode	DAP202U
					D	839	Diode Network	DA204U
Q	301	Transistor		DTC124EK	D	841	Diode	HZS6L(A2)
Q	351	Transistor		IMH3A	D	842	Diode	HZS9L(A1)
Q	352	Transistor		IMH3A	D	871	Diode	RB411D
Q	353	Transistor		IMH3A	_			
Q	401	Transistor		2SC2412K	D	872	Diode	HZS11L(A1)
_					D	901	Diode	HZS6L(B1)
Q	501	Transistor		2SC2412K	D	902	Diode	1SR139-400
Q	503	Transistor		IMD2A	D	911	Diode	HZS6L(B2)
Q	651	Transistor		2SC2412K	D	921	Diode	HZS9L(B3)
Q	751	Transistor		IMD2A	-	001	D' de	117071 (00)
Q	752	Transistor		2SD2396	D D	931 932	Diode Diode	HZS7L(C3) HZS7L(A1)
_	044	T		000470055	D	932	Diode	
Q	811	Transistor		2SD1760F5	D		Diode	1SR139-400
Q	812	Transistor		IMD3A	D	951 964	Diode	DAN202U HZS11L(A1)
Q	831	Transistor		2SB808	D	304	Diode	HZ3 I IL(A I)
Q Q	832	Transistor Transistor		DTC114EK 2SA1037K	D	981	Diode	1SR139-400
u	833	Transistor		25A 1037K	D	982	Diode	1SR139-400
Q	834	Transistor		DTC114EK	D	983	Diode	1SR139-400
Q	835	Transistor		DTC114EK	ZNR		Surge Protector	DSP-201M-A21F
Q	836	Transistor		2SC2412K	L	105	Ferri-Inductor	LAU2R2K
Q	837	Transistor		IMD2A	_	100	Terri maactor	EAGENER
Q	871	Transistor		2SD1760F5	L	401	Inductor	LCTB4R7K2125
Q	071	11411313101		230170013	Ĺ	402	Inductor	LAU1R0K
Q	872	Transistor		IMD2A	Ĺ	403	Inductor	LAU100K
ã	901	Transistor		2SD1760F5	Ē	572	Ferri-Inductor	LAU101K
ã	902	Transistor		IMD2A	Ĺ	601	Inductor	LAU100K
Q	911	Transistor		2SD1760F5	_			=
ã	912	Transistor		IMD2A	L	701	Inductor	LAU100K
-	· · -				Ē	831	Inductor	LAU100K
Q	921	Transistor		2SD2396	Ĺ	872	Inductor	CTF1510
ã	922	Transistor		2SB1238	Ĺ	951	Inductor	CTF1530
ã	923	Transistor		DTC114EK	Ĺ	971	Inductor	LAU100K
ã	931	Transistor		IMX1				
ã	941	Transistor		DTC114EK				

===	==Circu	it Symbol and No.===Part Name	Part No.	==	===Circ	uit Symbol and No.===Part Name	Part No.
X IL VR MIC	601 961 231 231	Radiator 10.00MHz Lamp 14V 40mA Semi-fixed 10kΩ(B) Microphone FM/AM Tuner Unit	CSS1475 CEL1593 CCP1229 CPM1011 CWE1563	R R R R	366 367 368 369 370		RS1/16S471J RS1/16S471J RS1/16S471J RS1/16S0R0J RS1/16S0R0J
SP RES	601 SISTO	Buzzer RS	CPV1050	R R R	371 372 373 374		RS1/16S0R0J RS1/16S0R0J RS1/16S0R0J RS1/16S0R0J
R R R R	101 102 103 104 105		RS1/16S181J RS1/16S181J RS1/16S223J RS1/16S223J RS1/16S102J	R R R R R	401 402 403 404 405		RS1/16S272J RS1/16S272J RS1/16S162J RS1/16S162J RS1/16S0R0J
R R R R	106 113 114 115 116		RS1/16S102J RS1/16S150J RS1/16S470J RS1/16S101J RS1/16S101J	R R R R	406 407 408 409 410		RS1/16S0R0J RS1/16S473J RS1/16S473J RS1/16S681J RS1/16S681J
R R R R	117 118 119 120 131		RS1/16S222J RS1/16S103J RS1/16S332J RS1/16S562J RS1/16S102J	R R R R	412 413 414 415		RS1/16S681J RS1/16S103J RS1/16S681J RS1/16S681J
R R R R	132 133 134 139 140		RS1/16S102J RS1/16S102J RS1/16S102J RS1/16S101J RS1/16S101J	R R R R R	416 417 418 419 420		RS1/16S681J RS1/16S393J RS1/16S473J RS1/16S472J RS1/16S473J
R R R R	141 142 143 144 145		RS1/16S101J RS1/16S101J RS1/16S101J RS1/16S101J RAB4C102J	R R R R R	421 422 423 424 501		RS1/16S473J RS1/16S473J RS1/16S222J RS1/16S222J RS1/16S103J
R R R R	231 233 234 235 251		RS1/16S222J RS1/16S560J RS1/16S104J RS1/16S104J RS1/16S102J	R R R R	502 503 504 505 571		RS1/16S473J RS1/16S223J RS1/16S223J RS1/16S102J RS1/16S103J
R R R R	252 253 254 255 256		RS1/16S104J RS1/16S473J RAB4C102J RS1/16S224J RS1/16S224J	R R R R	572 601 607 608 609		RS1/16S103J RS1/16S472J RS1/16S682J RS1/16S102J RS1/16S0R0J
R R R	257 258 259 260		RS1/16S104J RS1/16S102J RS1/16S103J RS1/16S103J	R R R R	611 612 613 614 615		RS1/16S104J RS1/16S0R0J RS1/16S104J RS1/16S104J
R R R R	261 262 301 302 303		RS1/16S223J RS1/16S822J RS1/16S103J RS1/16S103J RS1/16S103J	R R R	621 625 626 627	(DEH-P8400MP)	RS1/16S104J RS1/16S0R0J RS1/16S473J RS1/16S104J RS1/16S104J
R R R R	304 351 352 353 354		RS1/16S331J RS1/16S820J RS1/16S820J RS1/16S820J RS1/16S820J	R R R R	628 629 630 651 652	(DEH-P840MP, P8450MP)	RS1/16S104J RS1/16S104J RS1/16S102J RS1/16S102J RS1/16S102J
R R R R	355 356 357 358		RS1/16S820J RS1/16S820J RS1/16S223J RS1/16S223J	R R R	653 654 655 723		RS1/16S222J RS1/16S473J RS1/16S183J RS1/16S682J
R R R R R R	359 360 361 362 363 364 365		RS1/16S223J RS1/16S223J RS1/16S223J RS1/16S223J RS1/16S471J RS1/16S471J RS1/16S471J	R R R R	724 725 726 727		RS1/16S221J RS1/16S221J RS1/16S221J RS1/16S221J

===:	==Circuit Symbol and No.===Part Name	Part No.			uit Symbol and No.===Part Name	Part No.
R	728	RS1/16S221J		PACIT		
R R	730 731	RS1/16S221J RS1/16S473J	_	110		CKCDVD104K1C
R	732	RS1/16S682J	C	112 131		CKSRYB104K16 CEAL1R0M50
R	733	RS1/16S682J	Ċ	132		CEAL1ROM50
••		,	č	133		CEALR22M50
R	751	RD1/4PU271J	č	134		CEALR22M50
R	753	RD1/4PU221J	_			
R	811	RS1/16S102J	С	135		CEAL1R0M50
R	812	RS1/16S102J	С	136		CEAL1R0M50
R	813	RD1/4PU391J	C	137		CEAL1R0M50
R	814	RAB4C102J	C	138		CEAL1R0M50
n R	831	RS1/16S102J	С	139		CEJQ470M10
R	832	RS1/16S472J	С	140		CKSRYB104K16
R	833	RS1/16S222J	č	141		CEALNP4R7M16
R	834	RS1/16S222J	Č	142		CEALNP4R7M16
_			С	145		CEALNP4R7M16
R	835	RS1/16S472J	С	146		CEALNP4R7M16
R R	836 837	RS1/16S103J RS1/16S222J	_	4.47		OF ALMIDADZMAC
R	838	RS1/16S222J	C C	147 148		CEALNP4R7M16
R	839	RS1/16S473J	Ċ	140		CEALNP4R7M16 CEALNP4R7M16
••			č	150		CEALNP4R7M16
R	840	RS1/16S104J	Č	157		CEAL100M16
R	841	RS1/16S222J				
R	842	RS1/16S222J	С	159		CCSQCH152J50
R	843	RS1/16S222J	C	160		CCSQCH152J50
R	844	RS1/16S222J	C	161		CCSQCH152J50
R	845	RS1/16S103J	C C	162 231		CCSQCH152J50 CEJQ100M16
R	846	RS1/16S104J	C	231		CLJQ100IVI10
R	847	RS1/16S104J	С	232		CEJQ220M25
R	848	RS1/16S222J	С	233		CEAL100M16
R	852	RS1/16S332J	С	234		CKSRYB474K10
В	072	DD4/4DLI202 I	С	235		CKSRYB474K10
R R	872 873	RD1/4PU302J RD1/4PU302J	С	251		CKSRYB104K16
R	874	RS1/16S0R0J	С	252		CKSRYB104K16
R	875	RS1/16S391J	Č	253		CKSRYB104K10
R	876	RS1/16S121J	č	254		CEJQ1R0M50
_			С	255		CKSRYB104K16
R	877	RS1/16S1R0J	С	256		CKSRYB104K16
R R	878 879	RS1/16S331J RS1/16S331J	_	057		CI/CD\/Doo4I/40
R	901	RS1/16S223J	C C	257 258		CKSRYB224K10 CKSRYB104K16
R	902	RS1/16S821J	Č	301		CKSRYB474K10
		,	č	302		CKSRYB474K10
R	903	RS1/16S821J	C	303		CKSRYB474K10
R	904	RS1/16S0R0J				
R	913	RS1/16S681J	C	304		CKSRYB474K10
R R	914 921	RS1/16S681J RD1/4PU221J	C	305		CKSRYB474K10
n	921	ND 1/4F 022 IS	C	306		CKSRYB4/4K10
R	922	RS1/16S122J	C	307 308		CKSRYB474K10 CKSRYB474K10
R	924	RD1/4PU272J		230		5.1057741110
R	925	RS1/16S223J	С	309		CEHAR330M10
R	931	RS1/16S104J	C	310	3300μF/16V	CCH1433
R	932	RS1/16S473J	C	311		CKSRYB104K16
R	933	RS1/16S103J	C C	312 313		CEHAR100M16
R	934	RS1/16S473J	C	313		CKSQYB225K10
R	935	RS1/16S472J	С	314		CKSQYB225K10
R	941	RS1/16S103J	Č	351		CEAL100M16
R	951	RS1/16S102J	С	352		CEAL100M16
_		D04/4004T04	С	353		CEAL100M16
R R	952 953	RS1/16S472J	С	354		CEAL100M16
R	953 954	RS1/16S472J RS1/16S153J	С	355		CEAL100M16
R	961	RS1/16S1R0J	C	355 356		CEAL 100M 16
R	962	RS1/16S103J	č	357		CKSRYB222K50
			С	358		CKSRYB222K50
R	963	RS1/16S682J	С	359		CKSRYB222K50
R	964 065	RD1/4PU391J	_	000		OKOD (Boos)(Es
R R	965 971	RS1/16S1R0J RS1/16S472J	C C	360		CKSRYB222K50
n R	972	RS1/16S102J	C	361 362		CKSRYB222K50 CKSRYB222K50
			č	401		CKSRYB183K50
R	973	RS1/16S472J	Č	402		CKSRYB183K50

====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	
C 408 C 409 C 411 C 413	CKSRYB473K50 CKSRYB103K50 CEJQ101M10		I-P840MP/XN/UC) I-P8400MP/XN/UC) I-P8450MP/XN/ES)
C 413 C 414	CKSRYB223K50 CKSRYB472K50	Unit Name : Keyboard Uni	
C 415 C 416 C 501 C 571	CKSRYB223K50 CEJQ220M10	MISCELLANEOUS	
C 501 C 571	CEJQ220M16 CKSRYB105K10	IC 1801 IC IC 1802 IC (DEH-P840MP)	PD5745A PD8091A
C 572	CKSRYB105K10	IC 1802 IC (DEH-P8400MP, P8450MP) IC 1805 IC	PD8092A S-818A33AUC-BGN
C 573 C 574	CKSRYB105K10 CKSRYB105K10	IC 1806 IC	TC7SET08FU
C 575	CKSRYB105K10	Q 1806 Transistor	2SC4617
C 576 C 580	CKSRYB105K10 CEAL4R7M35	Q 1807 Transistor D 1803 Diode	2SD1664 1SS355
C 582	CEJQ101M16	D 1804 Diode D 1805 Diode	DAN202U DAP202U
C 583	CASAQ3R3M16		
C 585 C 586	CKSYB684K25 CEAL100M16	L 1801 Inductor L 1803 Inductor	CTF1530 CTF1530
C 587	CKSQYB225K10	TH 1901 Thermistor	CCX1037
0 500	CE 10000M0E	X 1801 Radiator 10.0MHz	CSS1577
C 588 C 589 C 601 C 602	CEJQ330M25 CEJQ330M25	S 1801 Switch	CSG1107
C 601	CEAL4R7M35	S 1802 Switch	CSG1107
C 602 C 603	CKSRYB103K50 CCSRCH180J50	S 1803 Switch S 1804 Switch	CSG1107 CSG1107
	CCSHCITIOUSSU	VR 1801 Semi-fixed 15kΩ(B)	CCP1230
C 604 C 605 C 652 C 653	CCSRCH101J50	OEL Unit	MXS8018
C 605 C 652	CCSRCH220J50 CKSRYB104K16	RESISTORS	
	CKSRYB105K10	D 1005	DC4/40C0D0 I
C 702 470µF/16V	CCH1331	R 1805 R 1807	RS1/16S0R0J RS1/16S222J
C 751	CKSRYB102K50	R 1808	RS1/16S222J
C 751 C 752 C 753 C 811	CEJQ101M16 CKSRYB473K50	R 1809 R 1815	RS1/16S820J RS1/16S222J
C 811	CCSRCH101J50	D 4040	DC4/40C0D0 I
C 812	CEJQ220M10	R 1816 R 1817	RS1/16S0R0J RS1/16S154J
C 813	CKSRYB104K16	R 1818	RS1/16S473J
C 814 C 815 C 816	CKSRYB102K50 CKSRYB102K50	R 1819 R 1820	RS1/16S473J RAB4C102J
	CCSRCH101J50	D 4004	D04/4004701
C 833	CKSRYB104K16	R 1821 R 1822	RS1/16S473J RS1/16S333J
C 837	CKSRYB103K50	R 1823	RS1/16S222J
C 872 4.7μF C 873	CCG1111 CEJQ100M50	R 1824 R 1825	RS1/16S682J RS1/16S393J
C 874	CEJQ330M25		•
C 875	CKSRYB103K50	R 1826 R 1827	RS1/16S0R0J RS1/16S683J
C 876	CCSRCH331J50	R 1828	RS1/16S0R0J
C 877 C 878	CEJQ470M16 CKSRYB104K16	R 1830 R 1831	RS1/16S392J RAB4C101J
C 879	CKSRYB104K16		
C 880	CEJQ101M10	R 1832 R 1833	RS1/16S473J RS1/16S473J
C 901	CEJQ470M10	R 1834	RS1/16S102J
C 902 C 903	CKSRYB103K50 CKSRYB472K50	R 1835 R 1836	RS1/16S102J RS1/16S101J
C 904 470µF/16V	CCH1331		•
C 905 470µF/16V	CCH1331	R 1837 R 1838	RAB4C101J RS1/16S101J
C 911	CEJQ470M10	R 1839	RAB4C101J
C 912 C 921	CKSRYB472K50 CEJQ221M10	R 1840 R 1841	RAB4C101J RAB4C101J
C 922	CKSRYB103K50		
C 923	CEJQ101M16	R 1842 R 1843	RAB4C101J RAB4C101J
C 931	CKSRYB104K25	R 1843 R 1844	RAB4C101J RAB4C101J
C 941	CKSRYB105K10	R 1845	RAB4C101J
C 970 C 972	CKSRYB473K50 CCSRCH101J50	R 1846	RAB4C101J
		R 1847	RS1/16S682J
		R 1848	RS1/16S473J

====Circu	iit Symbol and No.===Part Name	Part No.	=====Circuit Symbol and No.===Part Name	Part No.
CAPACIT	ORS		R 1920	RS1/16S560J
C 1805 C 1806 C 1807 C 1808		CKSRYB102K50 CSZSR4R7M10 CSZSR4R7M10	R 1922 R 1924 R 1926 R 1928	RS1/16S560J RS1/16S271J RS1/16S271J RS1/16S331J
C 1808 C 1809		CKSRYB103K50 CKSRYB104K25	R 1929 R 1930	RS1/16S331J RS1/16S271J
C 1811 C 1812 C 1813 C 1814 C 1815		CKSRYB473K50 CKSRYB103K50 CSZSR4R7M10 CKSRYB104K16 CKSRYB104K25	CAPACITORS C 1901 C 1903	CKSRYB104K25 CSZSR4R7M10
C 1815 C 1816 C 1817 C 1819		CKSRYB104K25 CKSRYB104K25 CKSRYB104K25 CKSRYB104K16	C 1904 C 1905 C 1908	CKSRYB104K16 CCSRCH101J50 CKSRYB104K16
C 1820 C 1821	: Number : CWM8056	CKSRYB103K50 CKSRYB103K50	C 1909 C 1910 C 1911 C 1912	CKSRYB104K16 CKSRYB104K16 CKSRYB104K16 CKSRYB104K16
	Name : Keyboard Un	it(LCD)	C 1913	CKSRYB104K16
MISCELL	ANEOUS		C 1914 Unit Number:	CKSRYB104K16
IC 1901 IC 1902 D 1903 D 1905 D 1906	IC IC LED LED LED	RS-140 PD6340A NSSW440-9159 CL190UBX CL190UBX	Unit Name : Switch PCB MISCELLANEOUS	
D 1907 D 1908 D 1909	LED LED LED	CL1900BX CL190UBX CL190UBX CL190UBX	S 951 Switch(OPEN) S 952 Spring Switch(CLOSE) S 953 Switch(EJECT)	CSN1051 CSN1052 CSN1058
D 1910 D 1911	LED LED	CL190UBX CL190UBX	Unit Number: CWX2618 Unit Name: CD Core Unit(S	S9MP3)
L 1902 X 1901	Inductor Ceramic Resonator 4.97MHz	CTF1530 CSS1422	MISCELLANEOUS	
S 1901 S 1902 S 1903	Switch Encoder Switch	CSG1110 CSD1042 CSG1110	IC 201 IC IC 202 IC IC 203 IC IC 301 IC	UPD63760GJ MSM51V4265EP-70TS BA033SFP BA5996FM
S 1904 S 1905 S 1906	Push Switch Push Switch Push Switch	CSG1111 CSG1111 CSG1111	IC 501 IC	UPD61002GC
S 1907 S 1908 S 1909	Push Switch Switch	CSG1111 CSG1107 CSG1107	IC 502 IC IC 701 IC IC 702 IC IC 703 IC	BA25BC0WFP PE5269A TC74VHCT08AFT S-818A33AUC-BGN
S 1910 S 1911	Switch Push Switch	CSG1107 CSG1112	IC 704 IC	PD9023A
S 1912 S 1913 S 1914	Switch Switch Switch	CSG1107 CSG1107 CSG1107	O 101 Transistor O 601 Transistor O 602 Transistor O 603 Transistor	2SB1132 DTC323TK DTC323TK 2SB709A
S 1915 S 1916 S 1917 S 1918	Switch Switch Switch Push Switch	CSG1107 CSG1107 CSG1107 CSG1112	Q 701 Transistor D 101 Diode D 201 Diode	UN2111 1SS355 1SR154-400
S 1919 LCD1901	Push Switch LCD	CSG1112 CAW1704	D 202 Diode D 203 Diode D 501 Diode	1SR154-400 1SR154-400 1SR154-400
RESISTO	RS		D 502 Diode	1SR154-400
R 1901 R 1902 R 1903		RS1/16S222J RS1/16S222J RS1/16S104J	D 503 Diode D 504 Diode D 601 Chip Diode L 201 Inductor	1SR154-400 1SR154-400 MA151WA CTF1546
R 1904 R 1905 R 1906 R 1907		RS1/16S103J RS1/16S121J RS1/16S2R2J	L 202 Inductor L 204 Inductor L 701 Inductor L 702 Inductor	CTF1546 CTF1546 CTF1546 LCYBR22J1608
R 1907 R 1908 R 1910		RS1/16S101J RS1/16S101J RS1/16S0R0J	TH 701 Thermistor	CCX1037
R 1918	R 1910 RS1/16S0R0J R 1918 RS1/16S560J	X 201 Ceramic Resonator 16.93MHz X 202 Ceramic Resonator 24.57MHz X 701 Ceramic Resonator 16.00MHz S 901 Spring Switch (HOME) S 902 Spring Switch (CLAMP)	CSS1569 CSS1570 CSS1576 CSN1051 CSN1052	

===	===Circu	uit Symbol and No.===Part Name	Part No.	==:	===Circuit Symbol and No.===Part Name	Part No.
s s s RE	903 904 905 SISTO	Spring Switch (DSCSNS) Spring Switch (12EJ) Spring Switch (8EJ) RS	CSN1051 CSN1052 CSN1051	R R R R	605 701 707 708 709	RS1/16SS103J RS1/16SS0R0J RS1/16SS0R0J RS1/16SS102J RS1/16SS102J
R R R R	101 102 103 104 105		RS1/10S1R5J RS1/10S1R5J RS1/10S1R5J RS1/10S1R5J RS1/10S1R5J	R R R R	710 711 712 713 714	RS1/16SS102J RS1/16SS102J RS1/16SS102J RS1/16SS102J RS1/16SS473J
R R R R	201 202 203 204 206		RS1/16SS102J RS1/16SS333J RS1/16SS333J RS1/16SS333J RS1/16SS0R0J	R R R R	715 716 717 718 719	RAB4CQ221J RAB4CQ221J RAB4CQ221J RAB4CQ221J RAB4CQ221J
R R R R	208 210 212 213 214		RS1/16SS0R0J RS1/16SS0R0J RS1/16SS221J RS1/16SS1002D RS1/16SS1002D	R R R R	720 721 722 723 724	RS1/16SS471J RS1/16SS471J RAB4CQ221J RS1/16SS102J RN1/16SE1302D
R R R R	215 216 217 218 219		RS1/16SS1002D RS1/16SS1002D RS1/16SS1002D RS1/16SS1002D RS1/16SS1002D	R R R R	725 726 727 728 729	RS1/16SS222J RS1/16SS103J RS1/16SS473J RS1/16SS473J RS1/16SS223J
R R R R	220 221 222 223 224		RS1/16SS1002D RS1/16SS103J RS1/16SS103J RS1/16SS103J RS1/16SS103J	R R R R	730 731 732 733 734	RS1/16SS473J RS1/16SS104J RS1/16SS104J RS1/16SS104J RS1/16SS472J
R R R R	225 226 227 228 229		RS1/16SS103J RS1/16SS393J RS1/16SS103J RS1/16SS182J RS1/16SS103J	R R R R	735 737 739 740 741	RS1/16SS473J RAB4CQ473J RAB4CQ473J RS1/16SS473J RS1/16SS104J
R R R R	233 237 238 301 302		RS1/16SS183J RS1/16SS104J RS1/16SS473J RS1/16SS183J RS1/16SS822J	R R R R	742 745 746 747 748	RS1/16SS104J RS1/16SS473J RS1/16SS104J RS1/16SS104J RS1/16SS104J
R R R R	303 304 305 306 307		RS1/16SS0R0J RS1/16SS183J RS1/16SS822J RS1/16SS0R0J RS1/16SS183J	R R R R	750 801 802 803 901	RS1/16SS473J RS1/16SS104J RS1/16SS473J RS1/16SS273J RS1/16SS221J
R R R R	308 309 310 311 501		RS1/16SS822J RS1/16SS183J RS1/16SS822J RS1/16SS0R0J RS1/16SS221J	R R R R	902 903 904 905 906	RS1/16SS221J RS1/16SS221J RS1/16SS221J RS1/16SS221J RS1/16SS221J
R R R R	502 503 504 505 506		RS1/16SS221J RS1/16SS221J RAB4CQ223J RAB4CQ223J RAB4CQ223J	CCCC	PACITORS 101 102 103 104	CKSSYB104K10 CKSSYB104K10 CEV101M16 CEV101M4
R R R R	507 508 509 510 511		RS1/16SS223J RS1/16SS223J RS1/16SS102J RS1/16SS223J RS1/16SS223J	CCCCC	105 106 108 109 201	CKSSYB104K10 CKSRYB102K50 CKSSYB104K10 CEV100M16 CKSSYB471K50
R R R R	512 601 602 603 604		RS1/16SS223J RS1/16S101J RS1/16S101J RS1/16S223J RS1/16S223J	CCCCC	202 203 204 205 206 207	CKSSYB104K10 CKSSYB104K10 CEV220M6R3 CKSSYB103K16 CKSSYB103K16 CEV221M4

===	===Circu	iit Symbol and No.===Part Name	Part No.	===	==Circu	uit Symbol and No.===Part Name	Part No.
C C C C	208 209 210 211 216		CKSSYB104K10 CKSSYB104K10 CKSSYB104K10 CKSSYB104K10 CKSSYB332K50	Mi M M	scellar 1 2 951	Pickup Unit(Service)(P9MP3) Motor Unit(SPINDLE) Motor Unit(LOADING/CARRIAGE) Motor Unit(AUTOMATIC FLAP)	CXX1550 CXB6007 CXB5903 CXB8939
C	217 218 219 220 221		CKSSYB104K10 CKSSYB223K16 CKSSYB104K10 CKSSYB103K16 CKSSYB104K10				
C C C C	222 223 224 225 226		CCSSCH270J50 CCSSCJ3R0C50 CKSSYB104K10 CKSSYB103K16 CCSSCH680J50				
C C C C	227 228 230 232 233	47μF/6.3V	CCSSCH470J50 CKSSYB682K25 CKSSYB104K10 CKSSYB104K10 CCH1436				
C C C C	234 235 237 238 240		CEV221M4 CKSRYB224K16 CKSSYB104K10 CKSSYB104K10 CCSSCH100D50				
C C C C	301 302 303 304 305		CKSSYB331K50 CKSSYB331K50 CKSSYB472K25 CKSSYB472K25 CEV101M16				
C	306 501 502 503 504	47μF/6.3V	CKSRYB224K16 CKSSYB104K10 CKSSYB471K50 CKSSYB104K10 CCH1436				
C C C C	505 506 508 509 510		CKSRYB224K16 CKSSYB104K10 CKSSYB104K10 CKSSYB104K10 CKSSYB104K10				
C C C C	511 601 602 603 604		CKSSYB104K10 CCSRCH102J50 CCSRCH102J50 CSZS4R7M10 CSZS4R7M10				
C C C C	701 702 703 704 705		CKSSYB104K10 CKSSYB471K50 CKSSYB103K16 CEV1R0M50 CKSSYB104K10				
C C C C	706 707 708 709 710		CKSSYB471K50 CKSSYB104K10 CKSSYB104K10 CKSSYB103K16 CKSSYB104K10				
C	711 712 713 714 715	10μF/10V	CCH1349 CKSRYB224K16 CKSSYB104K10 CKSSYB104K10 CKSSYB103K16				
C C	716 901 903		CKSSYB103K16 CKSSYB104K10 CCSRCH101J50				

6. ADJUSTMENT

6.1 JIG CONNECTION DIAGRAM

6.2 OEL UNIT ADJUSTMENT

Adjustment point

KEYBOARD UNIT(OEL) (SIDE B)

<When the OEL Unit has been replaced>

1. Use VR1801 to adjust the resistance between TP1 and TP2 to $6.1k\Omega$.

6.3 CD ADJUSTMENT

1) Precautions

• This unit uses a single power supply (+3.3V) for the regulator. The signal reference potential, therefore, is connected to REFO1(approx. 1.65V) instead of GND. If REFO1 and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the following.

Do not connect the negative probe of the measuring equipment to REFO1 and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to REFO1 with the channel 2 negative probe connected to GND.

Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status.

If by accident REFO1 comes in contact with GND, immediately switch the regulator or power OFF.

- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON, let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- The RFI and RFO signals are easy to oscillate because of a wide band. When observing them, insert a resistor of about 1 $k\Omega$ to the series.
- This equipment will not guarantee the load ejection operation when the mechanical unit is turned upside down. In particular, if the ejection operation is incorrectly performed and recovery is disabled, the recovery is enabled by resetting a product or turning ACC off to on.

2) Test Mode

This mode is used for adjusting the CD mechanism module of the device.

- Test mode starting procedure
 Reset while pressing the 4 and 6 keys together.
- Test mode cancellation Switch ACC, back-up OFF.
- After pressing the EJECT key, do not press any other key until the disk is completely ejected.
- If the

 or

 key is pressed while focus search is in progress, immediately turn the power off (otherwise the actuator may be damaged due to adhesion of the lenses).
- Jump operation of TRs other than 100TR continues after releasing the key. CRG move and 100TR jump operations are brought into the "Tracking close" status when the key is released.
- Powering Off/On resets the jump mode to "Single TR(91)", the RF AMP gain setting to 0 dB, and the automatic adjustment value to the initial value.

Flow Chart

[Key]	Operation				
[Key]	Test Mode	New Test Mode			
[BAND]	Power On/Off	Error occurrence time/ cause display switching			
[▶]	CRG +/TR Jump+ (Direction of the external surface)	TRK+/FF			
[◀]	CRG -/TR Jump- (Direction of the internal surface)	TRK-/REV			
[1]	T.CLS and AGC and Applicable servomechanism/ AGC,AGC display switching	SCAN			
[2]	RF Gain switching/Offset adjustment display/ T.Balance adjustment/T.OPN	MODE			
[3]	F.CLS,S.Curve/Rough Servo and RF AGC/ F,T,RF AGC	(ITP)			
-	SPDL 1X/2X switching (Double-speed compatibility only)	-			
-	Error rate measurement	-			
[6]	F.Mode switching/T.CLS/CRG,TR Jump switching	Auto/Manual switching			

6.4 CHECKING THE GRATING AFTER CHANGING THE PICKUP UNIT

• Note:

The grating angle of the PU unit cannot be adjusted after the PU unit is changed. The PU unit in the CD mechanism module is adjusted on the production line to match the CD mechanism module and is thus the best adjusted PU unit for the CD mechanism module. Changing the PU unit is thus best considered as a last resort. However, if the PU unit must be changed, the grating should be checked using the procedure below.

Purpose :

To check that the grating is within an acceptable range when the PU unit is changed.

• Symptoms of Mal-adjustment :

If the grating is off by a large amount symptoms such as being unable to close tracking, being unable to perform track search operations, or taking a long time for track searching.

· Method:

Measuring Equipment

· Oscilloscope, Two L.P.F.

Measuring Points

• E, F, REFO1

• Disc

• ABEX TCD-782

• Mode

• TEST MODE

CD CORE UNIT(S9MP3)

· Checking Procedure

- 1. In test mode, load the disc and switch the 5V regulator on.
- 2. Using the ▶ and ◀ buttons, move the PU unit to the innermost track.
- 3. Press key 3 to close focus, the display should read "91". Press key 2 to implement the tracking balance adjustment the display should now read "81". Press key 3. The display will change, returning to "81" on the fourth press.
- 4. As shown in the diagram above, monitor the LPF outputs using the oscilloscope and check that the phase difference is within 75°. Refer to the photographs supplied to determine the phase angle.
- 5. If the phase difference is determined to be greater than 75° try changing the PU unit to see if there is any improvement. If, after trying this a number of times, the grating angle does not become less than 75° then the mechanism should be judged to be at fault.

• Note

Because of eccentricity in the disc and a slight misalignment of the clamping center the grating waveform may be seen to "wobble" (the phase difference changes as the disc rotates). The angle specified above indicates the average angle.

Hint

Reloading the disc changes the clamp position and may decrease the "wobble".

Grating waveform

 $\begin{aligned} & Ech \rightarrow Xch & 20mV/div, AC \\ & Fch \rightarrow Ych & 20mV/div, AC \end{aligned}$

6.5 CD TEST MODE

Error Messages

If a CD is not operative or stopped during operation due to an error, the error mode is turned on and cause(s) of the error is indicated with a corresponding number. This arrangement is intended at reducing nonsense calls from the users and also for facilitating trouble analysis and repair work in servicing.

(1) Basic Indication Method

1) When SERRORM is selected for the CSMOD (CD mode area for the system), error codes are written to DMIN (minutes display area) and DSEC (seconds display area). The same data is written to DMIN and DSEC. DTNO remains in blank as before.

2) Head unit display examples

Depending on display capability of LCD used, display will vary as shown below. xx contains the error number.

8-digit display	6-digit display	4-digit display
ERROR-xx	ERR-xx	E-xx

(2) Error Code List

(Z) LII	JI Code List		
Code	Class	Displayed error code	Description of the code and potential cause(s)
10	Electricity	Carriage Home NG	CRG can't be moved to inner diameter.
		SERVO LSI Com-	CRG can't be moved from inner diameter.
		munication Error	ightarrow Failure on home switch or CRG move mechanism.
			Communication error between microcomputer and SERVO LSI.
11	Electricity	Focus Servo NG	Focusing not available.
			ightarrow Stains on rear side of disc or excessive vibrations on REWRITABLE.
12	Electricity	Spindle Lock NG	Spindle not locked. Sub-code is strange (not readable).
		Subcode NG	ightarrow Failure on spindle, stains or damages on disc, or excessive vibrations.
			A disc not containing CD-R data is found.
			Turned over disc are found, though rarely.
			CD signal error.
17	Electricity	Setup NG	AGC protection doesn't work. Focus can be easily lost.
			ightarrow Damages or stains on disc, or excessive vibrations on REWRITABLE.
30	Electricity	Search Time Out	Failed to reach target address.
			ightarrow CRG tracking error or damages on disc.
44	Electricity	ALL Skip	Skip setting for all track.
			(CD-R/RW)
50	Mechanism	CD On Mech Error	Mechanical error during CD ON.
			ightarrow Defective loading motor, mechanical lock and mechanical sensor.
A0	System	Power Supply NG	Power (VD) is ground faulted.
			ightarrow Failure on SW transistor or power supply (failure on connector).

Remarks: Mechanical errors are not displayed (because a CD is turned off in these errors).

Unreadable TOC does not constitute an error. An intended operation continues in this case.

Upper digits of an error code are subdivided as shown below:

1x: Setup relevant errors, 3x: Search relevant errors, Ax: Other errors.

New Test Mode

S-CD plays the same way as before.

If an error such as off focus, spindle unlocking, unreadable sub-code, or sound skipping occurs after setup, its cause and time occurred (in absolute time) are displayed.

During setup, operational status of the control software is displayed.

These displays and functions are prepared for enhancing aging in the servicing and efficiency of trouble analysis.

(1) Shifting to the New Test Mode

- 1) Turn on the current test mode by starting the reset from the key.
- ② Select S-CD for the source through the specified procedure including use of the [SOURCE] key, and inserting the disc. Then, press the [Jump Mode Selector] key while maintaining the regulator turned off.
- ③ After the above operations, the new test mode remains on irrespective of whether the S-CD is turned on or off.
 You can reset the new test mode by turning on the reset start.

(2) Key Correspondence

Key	Test	mode	Ne	ew test mode
	Regulator Off	Regulator On	In-play	Error Production
BAND	To regulator on	To regulator off	_	Time/Err.No. switching
>	_	FWD-Kick	FF/TR+	_
⋖	_	REV-Kick	REV/TR-	_
1	_	Tracking Close	Scan	_
2	_	Tracking Open	Mode	_
3	_	Focus Close	_	_
_	_	Focus Open	-	_
_	_	Jump Off	_	_
6	To new test mode	Jump mode switching	Auto/Manu	_

Note: Eject and CD on/off is performed in the same procedure as that for the normal mode.

(3) Cause of Error and Error Code

Code	Class	Contents	Description and cause
Code	Ciass	Contents	Description and cause
40	Electricity	Off focus detected.	FOK goes low.
			ightarrow Damages/stains on disc, vibrations or failure on servo.
41	Electricity	Spindle unlocked.	LOCK = Low continued for 150 msec.
			ightarrow Damages/stains on disc, vibrations or failure on servo.
42	Electricity	Sub-code unreadable.	Sub-code was unreadable for 500 msec.
			ightarrow Damages/stains on disc, vibrations or failure on servo.
43	Electricity	Sound skipping detected.	Last address memory function was activated.
			ightarrow Damages/stains on disc, vibrations or failure on servo.

Note: Mechanical errors during aging are not displayed.

(4) Display of Operational Status during Setup

	f Operational Status during Setup	
Status No.	Contents	Protective action
21	Focus search start	Focus search timeout.
22	Focus search 2	Focus search timeout.
23	Focus search 3	Focus search timeout.
24	Focus search 4	Focus search timeout.
25	Focus search(Setup protection)	Focus slips off.
26	Focus search(Fast recovery)	Focus slips off.
27	RF detection	Focus slips off.
28	Spindle rough servocontrol	Focus slips off.
29	Tracking balance adjustment start	Focus slips off.
30	Tracking balance adjustment 2	Focus slips off.
31	Tracking balance adjustment 3	Focus slips off.
32	Tracking close start(Spindle stationary servocontrol setting)	Focus slips off.
33	Tracking close 2	Focus slips off.
34	Tracking close 3	Focus slips off.
35	Focus/Tracking AGC start	Focus slips off.
36	Focus/Tracking AGC 2	Focus slips off.
37	Focus/Tracking AGC 3	Focus slips off.
38	Focus/Tracking AGC 4	Focus slips off.
39	Focus/Tracking AGC 5	Focus slips off.
40	Focus/Tracking AGC 6	Focus slips off.
41	Focus/Tracking AGC 7	Focus slips off.
42	Focus/Tracking AGC 8	Focus slips off.
43	FE bias start	Focus slips off.
44	FE bias 2	Focus slips off.
45	RF AGC start	Focus slips off.
46	RF AGC 2	Focus slips off.
47	Lock check start	Focus slips off.
48	Lock is being checked	Focus slips off.
49	Subcode check start	Focus slips off, spindle lock is not performed.
50	Subcode is being checked	Focus slips off, no subcode can be read.

(5) Display Examples

1) During Setup

8-digit display, 6-digit display 4-digit display(Auto setting) 4-digit display(Manual setting)

TNO. Min Sec TNO. Min Sec 11 11' 11" 11 11' 11"

2) During Operation (TOC read, TRK search, Play, FF and REV)

The same as in the normal mode.

3) When a Protection Error Occurred

(A) Error display ((A) $\leftarrow\rightarrow$ (B), (C) : BAND key)

8-digit display 6-digit display 4-digit display ERROR-xx ERR-xx E-xx

(B) Error occurrence timing display in track no. ((B) $\leftarrow \rightarrow$ (C): Auto/Manual key)

8-digit display, 6-digit display 4-digit display(Auto setting)

TNO. Min Sec TNO. 10 40' 05" 10

(C) Error occurrence timing display in absolute time. ((B) $\leftarrow \rightarrow$ (C): Auto/Manual key)

8-digit display, 6-digit display 4-digit display(Manual setting)

TNO. Min Sec Min Sec 10 40' 05" 40' 05"

7. GENERAL INFORMATION

7.1 DIAGNOSIS

7.1.1 DISASSEMBLY

■ Removing the Case Unit (Fig.1)

Remove the screw and then remove the Case Unit.

*) Release the latches in order of the number indicated in Fig.1.

Fig.1

Removing the CD Mechanism Module (Fig.2)

Remove the four screws.

Disconnect the connector and then remove the CD Mechanism Module.

CD Mechanism Module

Fig.2

Moving the Arm Unit position (Fig.3)

Use the finger. Rotate the gear in the direction indicated by arrow in Fig.3 until the Arm Unit moves to the 3 positions of a Fig.3.

*) There is a possibility of bending if load is added to the arm parts, It becomes the cause of defect of move of the grille parts. When you place a product, please go in the CLOSE POSITION.

Removing the Detach Grille Assy and Grille Assy

Move the Arm Unit to the OPEN POSITION. (Fig.3)

Remove the two screws. (Fig.4)

Disconnect the connector and then remove the Detach Grille Assy.

*) When installing the screws, please make sure that the spring is also installed.

Remove the two screws. (Fig.4)

Move the Arm Unit to the EJECT POSITION. (Fig.3)

Disconnect the connector and then remove the Grille Assy.

Fig.4

Removing the Panel Unit

Move the Arm Unit to the OPEN POSITION. (Fig.3)

Remove the two screws and then remove the Panel Unit. (Fig.5)

Removing the Gear Unit

Move the Arm Unit to the CLOSE POSITION. (Fig.3)

Remove the four screws and then remove the Gear Unit. (Fig.6)

*) When you remove or intall the Gear Unit, do so with the Arm Unit in the CLOSE POSITION.

Fig.6

Checkpoints for the Gear Unit

- 1. When you disassemble or assemble the Gear Unit, do so with the Arm Unit in the CLOSE POSITION.
 - Make sure that the Arm Unit is in the CLOSE POSITION by seeing the other side of the unit through the fully circular hole shown in the figure.
- 2. When you install the motor, fix the screws holding the motor in the direction of the arrow shown in the figure.

Removing the Tuner Amp Unit (Fig.7)

There are two ways of removing the Tuner Amp Unit.

One is to remove the Gear Unit (Fig.6), then Tuner Amp Unit, and the other is to remove the Panel (Fig.5), then Tuner Amp Unit.

Remove the two screws.

Release the two latches and then remove the Holder.

Remove the screw.

Remove the two screws.

Straight the tabs at three locations indicated.

Remove the screw and then remove the Tuner Amp Unit.

*) Tuner Amp Unit is different partially from this photo.

Fig.7

Removing the OEL Unit

- Apply hot air to the cable pins for the anode terminal using a blower used for removing a flat-packaged IC or something like that. When all the pins are peeling off from the PCB, pinch the cable with a pair of tweezers and remove it slowly from the PCB. (Fig.8)
- * Be careful not to remove other electrical parts when you use a blower. Especially, when hot air is appropriated to the VR1902 too much, the volume will destroy.
- * Flexible cable may not remove easily by transforming the Bosses by the hot air of the Blower.

- 3. Slowly set up the OEL Unit. At this time, the stress is prevented from hanging to flexible cable in the Cathode terminal. (Fig.9)
- The Cathode terminal is removed according to the procedure same as the Anode terminal, and the OEL Unit is removed. (Fig.9)
- 5. Remove the Holder. (Remove after removing the Cathode terminal without fail.) (Fig.9)

Fig.8

Installing the OEL Unit

- 1. Install the Holder in the OEL Unit. (Fig.10)
- 2. When soldering the flexible cable for the Cathode terminal on the PCB, use a pair of tweezers. First, insert the tips of tweezers into 2 holes in the flexible cable, then into the 2 holes in the PCB. (Fig.10)
- 3. Position the flexible cable on the PCB so that their lands touch each other. (Fig.10)
- 4. Apply solder to each pin of the flexible cable. (Fig.10)
- * Appropriate soldering iron lightly so that the stress should not hang to Flexible cable.
- 5. Lay down the OEL Unit. (Fig.10)
- 6. Install the Holder. (Fig.8)
- 7. When soldering the flexible cable for the Anode terminal on the PCB, first, insert the Bosses on the PCB into the 2 holes in the flexible cable. Then, take the same procedures 2 and 3 as that for the Cathode terminal to solder the cable pins. (Fig.8)

How to hold the Mechanical Unit

- 1. Hold the top and bottom frame.
- 2. Do not squeeze top frame's front portion too tight, because it is fragile.

How to remove the Top and Bottom Frame

- 1. When the disk is in "clamp" state, unlock Spring A (6 pieces) and Spring B (2 pieces), and unscrew screws (4 pieces).
- 2. Unlock each 1 of pawl at the both side of the frame, then remove the top frame.
- 3. Remove the Carriage Mechanical part in such way that; you remove the mechanical part from 3 pieces of Damper while slowly pulling up the part.
- 4. Now, the top frame has been removed, and under this state, fix the genuine Connector again, and eject the disk.

(Caution)

When you reassemble the Carriage Mechanical part, apply a bit of alcohol to Dampers.

● How to remove the Guide Arm Assy

- 1. Unlock the spring (1 piece) at the right side of the assembly.
- 2. Unscrew screws (2 pieces), then remove the Screw Gear Bracket.
- 3. Shift the Guide Arm Assy to the left and slowly rotate it to the upper direction.
- 4. When the Guide Arm Assy rotates approximately 45 degree, shift the Assy to the right side direction and remove it.

● How to remove the CD Core Unit(S9MP3)

- Give jumper-solder treatment to the Flexible Wire of the Pickup unit, then remove the wire from the Connector.
- 2. Remove all 4 points of solder-treatment on the Lead Wire. Also, unscrew the screw(1 piece).
- 3. Then, Remove the CD Core Unit(S9MP3). (Caution)
 - Be careful not to damage SW when you reassemble the CD Core Unit(S9MP3) into the device.

How to remove the Loading Arm Assy

- 1. Unlock the spring (1 piece) and remove the E ring (1 piece) of the Fulcrum Shaft.
- 2. Shift the arm to the left side direction and unlock pins (2 pieces).

How to remove the Pickup Unit

- Unscrew 2 pieces of screws, then remove the Pulley Cover.
- 2. Remove the Feed Screw unit from the pawl of the Feed Screw Guide (The pawl is located inside the quide).
- 3. Remove the belt from the Pulley, then remove the Pickup unit.

(Caution)

Make sure not to stain the belt with grease when you fix the belt.

(2) Button (CAC7247) Lubricants (GEM1016) Application to all points.

(3) Case Unit (CXB7968) Lubricants (PN-38KE) Application to all points.

7.1.2 CONNECTOR FUNCTION DESCRIPTION

7.2 PARTS

7.2.1 IC

PD5741A UPD63760GJ PD9023A PD5740A MSM51V4265EP-70TS UPD61002GC

PAL007A BA033SFP PD8091A BA5996FM PD8092A PE5269A

PD5745A S-818A33AUC-BGN PD6340A BA25BC0WFP

● Pin Functions (PD5741A)(DEH-P840MP/XN/UC, P8400MP/XN/UC)

Pin No. Pin Name I/O Function and Operation 1 BSO 0 P-BUS:Data output 2 BSCK 0 P-BUS:Clock output 3 DUALILM 0 LCD:Illumination color select output 4 CD5VON 0 CDS:Eject sense output 5 VDT 0 EVOL:Data output 6 VST 0 EVOL:Strobe output 7 VCK 0 EVOL:Clock output 8 BYTE Vss 9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW 0 Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT 0 Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc) 17 NMI Not used(Vcc)(Pull up)	
2 BSCK O P-BUS:Clock output 3 DUALILM O LCD:Illumination color select output 4 CD5VON O CDS:Eject sense output 5 VDT O EVOL:Data output 6 VST O EVOL:Strobe output 7 VCK O EVOL:Clock output 8 BYTE Vss 9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
3 DUALILM O LCD:Illumination color select output 4 CD5VON O CDS:Eject sense output 5 VDT O EVOL:Data output 6 VST O EVOL:Strobe output 7 VCK O EVOL:Clock output 8 BYTE Vss 9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
4 CD5VON O CDS:Eject sense output 5 VDT O EVOL:Data output 6 VST O EVOL:Strobe output 7 VCK O EVOL:Clock output 8 BYTE Vss 9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
5 VDT O EVOL:Data output 6 VST O EVOL:Strobe output 7 VCK O EVOL:Clock output 8 BYTE Vss 9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
6 VST O EVOL:Strobe output 7 VCK O EVOL:Clock output 8 BYTE Vss 9 VSS Vss 10 TELIN I 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
7 VCK O EVOL:Clock output 8 BYTE Vss 9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
8 BYTE Vss 9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
9 VSS Vss 10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
10 TELIN I TEL:Telephone mute input 11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
11 FLPPW O Auto flap motor power supply control output 12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
12 RESET I Reset input(RESET) 13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
13 XOUT O Clock output 14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
14 VSS Power supply input(Vss) 15 XIN I Clock input 16 VCC Power supply input(Vcc)	
15 XIN I Clock input 16 VCC Power supply input(Vcc)	
16 VCC Power supply input(Vcc)	
17 NMI Not used(Vcc)(Pull up)	
The second of th	
18,19 NC Not used	
20 DALMON O Consumption current reduction output	
21 IPBUSIN2 I IP-BUS:Input 2	
22 OELPW O OEL Unit:Power supply output(16.5V)	
23 SYSPW O System power control output	
24 PEE O Beep tone output	
25 NC Not used	
26 ROMCS O External ROM:Chip select output	
27 ROMCK O External ROM:Clock output	
28 ROMDATA I/O External ROM:Data input / output	
29 IPBUSIN I IP-BUS:Data input	
30 IPBUSOUT O IP-BUS:Data output	
31 DPDT1 O OEL Unit:Grille microcomputer communication data output	
32 KYDT1 I OEL Unit:Grille microcomputer communication data input	
33,34 NC Not used	
35 DPDT2 O LCD:Grille microcomputer communication data output	
36 KYDT2 I LCD:Grille microcomputer communication data input	
37, 38 ROT1, 0 I Rotary encoder pulse input 1, 0	
39 PCL O Clock adjustment output	
40 SWVDD1 O OEL Unit:Grille microcomputer power supply output(5.1V)	
41 DISPPW O LCD:Power supply control output	
42 ILMPW1 O OEL Unit:Illumination power supply output(9.3V)	
43 ILMPW2 O LCD:Illumination power supply output	
44-48 NC Not used	

DEH-P840MP,P8400MP,P8450MP

Pin No.	Pin Name	I/O	Function and Operation			
49	ST	1/0	TUNER:Stereo input			
50	SD	1	TUNER:SD input			
51-53	NC	ı	Not used			
	LOCH		Local H output			
54		0	TUNER:PLL data output			
55	TUNPDO	0				
56	TUNPDI	I	TUNER:PLL data input			
57	TUNPCK	0	TUNER:PLL clock output			
58	LOCL	0	Local L output			
59	BRXEN	I/O	P-BUS:Communication input / output			
60	BRST	0	P-BUS:Reset output			
61	NC		Not used			
62	VCC		Power supply input(Vcc)			
63	NC		Not used			
64	VSS		Connect to GND			
65	FLPCLS	0	Auto flap close output			
66	FLPOPN	0	Auto flap open output			
67	FLPEJSW	I	Auto flap eject sense input			
68	FOPNSW	I	Auto flap open sense input			
69	FCLSSW	I	Auto flap close sense input			
70	FLPILM	0	DISC loading slot illumination output			
71	TUNPCE2	0	TUNER:PLL chip enable output 2			
72	TUNPCE	0	TUNER:PLL chip enable output			
73	BSENS	I	Backup sense input			
74	ASENS	I	ACC sense input			
75	NC		Not used			
76-78	SMPXS2-0	0	Multiplexor select output 2-0			
79	SWVDD2	0	LCD:Grille microcomputer power supply output(5V)			
80	NC		Not used			
81	IPPW	0	IP-BUS:Driver power supply control output			
82	ASENBO	0	IP-BUS:Slave ACC sense output			
83	ĪSĒNS	ı	Illumination sense input			
84	DIMMER	0	LCD:Dimmer output			
85	BSRQ	Ī	P-BUS:Communication request input			
86	NC		Not used			
87	MUTE	0	Mute output			
88	TESTIN	I	Test program input			
89	SAIN	Ιi	Spectrum Analyzer input			
90	ASLIN	İ	ASL input			
91	MODEL	i	Model select input			
92,93	NC	<u> </u>	Not used			
94	DSENS	1	Detach sense input			
95	NC NC	<u> </u>	Not used			
96	AVSS		A/D converter power supply input(Vss)			
97	SL	1	TUNER:Signal level input			
98	VREF	<u> </u>	A/D converter reference voltage(Vref)			
99	AVCC		A/D converter power supply input(Vcc)			
100	BSI	1	P-BUS:Data input			
100	וטטו	<u> </u>	ו -DOS.bata Iliput			

IC's marked by * are MOS type.

Be careful in handling them because they are very liable to be damaged by electrostatic induction.

● Pin Functions (PD5740A)(DEH-P8450MP/XN/ES)

			H-P8450IVIP/XIV/ES)			
Pin No.	Pin Name	I/O	Function and Operation			
1	BSO	0	P-BUS:Data output			
2	BSCK	0	P-BUS:Clock output			
3	DUALILM	0	LCD:Illumination color select output			
4	CD5VON	0	CDS:Eject sense output			
5	VDT	0	EVOL:Data output			
6	VST	0	EVOL:Strobe output			
7	VCK	0	EVOL:Clock output			
8	BYTE		Vss			
9	VSS		Vss			
10	TELIN	I	TEL:Telephone mute input			
11	FLPPW	0	Auto flap motor power supply control output			
12	RESET	ı	Reset input(RESET)			
13	XOUT	0	Clock output			
14	VSS		Power supply input(Vss)			
15	XIN	I	Clock input			
16	VCC		Power supply input(Vcc)			
17	NMI		Not used(Vcc)(Pull up)			
18,19	NC		Not used			
20	DALMON	0	Consumption current reduction output			
21	IPBUSIN2	ı	IP-BUS:Input 2			
22	OELPW	0	OEL Unit:Power supply output(16.5V)			
23	SYSPW	0	System power control output			
24	PEE	0	Beep tone output			
25	NC		Not used			
26	ROMCS	0	External ROM:Chip select output			
27	ROMCK	0	External ROM:Clock output			
28	ROMDATA	I/O	External ROM:Data input / output			
29	IPBUSIN	Ī	IP-BUS:Data input			
30	IPBUSOUT	0	IP-BUS:Data output			
31	DPDT1	0	OEL Unit:Grille microcomputer communication data output			
32	KYDT1	I	OEL Unit:Grille microcomputer communication data input			
33,34	NC		Not used			
35	DPDT2	0	LCD:Grille microcomputer communication data output			
36	KYDT2	I	LCD:Grille microcomputer communication data input			
37, 38	ROT1, 0	ı	Rotary encoder pulse input 1, 0			
39	PCL	0	Clock adjustment output			
40	SWVDD1	0	OEL Unit:Grille microcomputer power supply output(5.1V)			
41	DISPPW	Ō	LCD:Power supply control output			
42	ILMPW1	0	OEL Unit:Illumination power supply output(9.3V)			
43	ILMPW2	Ō	LCD:Illumination power supply output			
44-48	NC		Not used			
		-	1			

DEH-P840MP,P8400MP,P8450MP

Din No	Din Nama	1/0	Function and Operation		
Pin No.	Pin Name ST	I/O	Function and Operation TUNER:Stereo input		
49		!			
50	SD	I	TUNER:SD input		
51-53	NC		Not used		
54	LOCH	0	Local H output		
55	TUNPDO	0	TUNER:PLL data output		
56	TUNPDI		TUNER:PLL data input		
57	TUNPCK	0	TUNER:PLL clock output		
58	LOCL	0	Local L output		
59	BRXEN	I/O	P-BUS:Communication input / output		
60	BRST	0	P-BUS:Reset output		
61	NC		Not used		
62	VCC		Power supply input(Vcc)		
63	NC		Not used		
64	VSS		Connect to GND		
65	FLPCLS	0	Auto flap close output		
66	FLPOPN	0	Auto flap open output		
67	FLPEJSW	l l	Auto flap eject sense input		
68	FOPNSW	l	Auto flap open sense input		
69	FCLSSW		Auto flap close sense input		
70	FLPILM	0	DISC loading slot illumination output		
71	TUNPCE2	0	TUNER:PLL chip enable output 2		
72	TUNPCE	0	TUNER:PLL chip enable output		
73	BSENS	I	Backup sense input		
74	ASENS	I	ACC sense input		
75	NC		Not used		
76-78	SMPXS2-0	0	Multiplexor select output 2-0		
79	SWVDD2	0	LCD:Grille microcomputer power supply output(5V)		
80	NC		Not used		
81	IPPW	0	IP-BUS:Driver power supply control output		
82	ASENBO	0	IP-BUS:Slave ACC sense output		
83	ISENS	I	Illumination sense input		
84	DIMMER	0	LCD:Dimmer output		
85	BSRQ	ı	P-BUS:Communication request input		
86	NC		Not used		
87	MUTE	0	Mute output		
88	TESTIN	I	Test program input		
89	SAIN	I	Spectrum Analyzer input		
90	ASLIN	I	ASL input		
91	MODEL	I	Model select input		
92,93	NC		Not used		
94	DSENS	I	Detach sense input		
95	NC		Not used		
96	AVSS		A/D converter power supply input(Vss)		
97	SL	1	TUNER:Signal level input		
98	VREF		A/D converter reference voltage(Vref)		
99	AVCC		A/D converter power supply input(Vcc)		
100	BSI	ı	P-BUS:Data input		

*PD5740A

PAL007A

^{*}PD8091A(DEH-P840MP/XN/UC)

^{*}PD8092A(DEH-P8400MP/XN/UC, DEH-P8450MP/XN/ES)

DEH-P840MP,P8400MP,P8450MP

● Pin Functions (PD5745A)

	tions (PD5/4					
Pin No.	Pin Name	I/O	Function and Operation			
1-5	NC		Not used			
6	BYTE	I	GND connection			
7	CNVSS	I	GND connection			
8, 9	NC		Not used			
10	RESET	ı	Reset input			
11	XOUT	Ö	Crystal oscillating element connection pin			
12	VSS		VSS connection			
13	XIN	1	Crystal oscillating element connection pin			
	VDD	1				
14			VDD connection			
15	NMI	I	NVI input			
16-19	NC		Not used			
20	CKC	0	Fixed pulse output for cathode driver			
21	NC		Not used			
22	CKA	0	Fixed pulse output for anode driver			
23	NC		Not used			
24	LS	0	Line sink signal output			
25	NC		Not used			
26	CKD	0	Data transport / driver clock output			
27	DPDT	ī	Display data input			
28	KYDT	Ö	Key data output			
29	DA2	Ō	Display data MSB output			
30	NC		Not used			
31	CLK1	ı	Clock input for UART1			
32	ILMD	Ö	Dual illumination select output			
33	DA1	0	Display data LSB output			
34	NC	-	Not used			
	CLK0	ı				
35		Į.	Clock input for UART0			
36	NC RDY	-	Not used			
37		I	Pull up			
38	NC		Not used			
39	HOLD	I	Pull up			
40,41	NC	_	Not used			
42	RD	0	Read strobe output			
43-45	NC	_	Not used			
46	CS2	0	Bank address select output			
47	CS1	0	Bank address select output			
48	CS0	0	External ROM chip select output			
49	A19	0	Address bus 19 output			
50	NC		Not used			
51-59	A17-A9	0	Address bus 17-9 output			
60	VDD		VDD connection			
61	A8	0	Address bus 8 output			
62	VSS		GND connection			
63-69	A7-A1	0	Address bus 7-1 output			
70	NC		Not used			
71-86	D15-D0	I/O	Data bus 15-0 input / output			
87,88	KS1,2	I/O	key strobe input / output			
89-92	NC		Not used			
93	KD2	I	key data input			
94	AVSS		VSS connection			
95	KD1	I	key data input			
96	VREF		VSS connection			
97	AVCC		VCC connection			
98-100	NC		Not used			
00 100	. 10	1	1.00.000			

*PD5745A

● Pin Functions (PD6340A)

I III I UIII	ידטט ון פווטוזק	וחט				
Pin No.	Pin Name	I/O	Function and Operation			
1-5	SEG4-0	0	LCD segment output			
6-9	COM3-0	0	LCD common output			
10	VLCD		LCD drive power supply			
11-14	KST3-0	0	Key strobe output			
15,16	KDT0,1	1	Key data input (analogue input)			
17	REM	1	Remote control reception			
18	DPDT	I	Display data input			
19	NC		Not used			
20	KYDT	0	Key data output			
21	MODA		GND			
22	X0		Crystal oscillator connection pin			
23	X1		Crystal oscillator connection pin			
24	VSS		GND			
25,26	KDT2,3	1	Key data input			
27	NC		Not used			
28	KST4	0	Key strobe output			
29-32	NC		Not used			
33-55	SEG35-13	0	LCD segment output			
56	VDD		Power supply			
57-64	SEG12-5	0	LCD segment output			

*PD6340A

● Pin Functions (UPD63760GJ)

~ <u> </u>	ons (UPD637600			
Pin No.	Pin Name	I/O	Function and Operation	
1	R.GND		GND for DRAM I/F	
2	RST	1	Input of reset	
3-7	AB12-8	1	Address bus 12-8 from the microcomputer	
8-15	AD7-0	I/O	Address/data bus 7-0 to the microcomputer	
16	CS	I	Chip selection	
17	ASTB	1	Address strobe	
18	READ	I	Control signals (read)	
19	WRITE	I	Control signals (write)	
20	WAIT	0	Control signals (wait)	
21	INTQ		Interruption signals to the external microcomputer	
22	IFMODE	ı	Switching between the data buses (16bit/8bit)	
23	D.VDD	•	Power supply for digital circuits	
24	XTALEN1	1	Permission to oscillate 16.9344MHz	
25	XTALEN2	i	Permission to oscillate 24.576MHz	
26	DA.VDD		Power supply for DAC	
27	ROUT	0	Output of audio for the right channel	
28	DA.GND	0	GND for DAC	
29	R+	0	Output of the right channel audio PWM	
30	R-	0	Output of the right channel audio PWM Output of the right channel audio PWM	
31	REGC	U		
			Connected to the capacitor for band gap	
32	L-	0	Output of the left channel audio PWM	
33	L+	0	Output of the left channel audio PWM	
34	DA.GND	_	GND for DAC	
35	LOUT	0	Output of audio for the left channel	
36	DA.VDD		Power supply for DAC	
37	X.VDD		Power supply for the crystal oscillator	
38	XTAL1		Connected to the crystal oscillator (16.9344MHz)	
39	XTAL1		Connected to the crystal oscillator (16.9344MHz)	
40, 41	X.GND		Ground for the crystal oscillator	
42	XTAL2		Connected to the crystal oscillator (24.576MHz)	
43	XTAL2		Connected to the crystal oscillator (24.576MHz)	
44	X.VDD		Power supply for the crystal oscillator	
45	D.GND		GND for digital circuits	
46	DIN	1	Input of audio data	
47	DOUT	0	Output of audio data	
48	SCKIN	I	Clock input for audio data	
49	SCKO	0	Clock output for audio data	
50	LRCKIN	ı	Input of LRCK for audio data	
51	LRCK	0	Output LRCK for audio data	
52	TESTX	0	Output for tests	
53	RFOK	0	Output of RFOK	
54	C16M	0	Output of 16.9344MHz	
55	TESTEN	Ī	Connected to GND	
56	TEST4	1	Connected to GND	
57	D.VDD	•	Power supply for digital circuits	
58	RFCK/HOLD	0	Output of RFCK/HOLD signal	
59	WFCK/MIRR	0	Output of WFCK/MIRR signal	
60	PLCK	0	Output of PLCK	
61	LOCK	0	Output of FLCK Output of LOCK	
62	C1D1	0	Information on error correction	
63	C1D1	0	Information on error correction Information on error correction	
		0		
64	C2D1(RMUTE)		Information on error correction (mute for Rch)	
65	C2D2(LMUTE)	0	Information on error correction (mute for Lch)	
66	C2D3	0	Information on error correction	
67	D.GND	0	Ground for digital circuits	
68	RAS	0	Output of DRAM RAS	

Pin No. Pin Name I/O Function and Operation		
69 CASO O Output of DRAM Lower CAS		
70 CAS1 O Output of DRAM Upper CAS		
71 WE O Output of DRAM WE		
72 OE O Output of DRAM OE		
73-88 RDB0-15 I/O Input/output of DRAM Data0-15		
	Ground for digital circuits	
90-99 RA0-9 O Output of DRAM Address0-9		
100 D.VDD Power supply for digital circuits		
101-104 TEST0-3 I Connected to GND		
105 FD O Output of focus drive PWM		
106 TD O Output of tracking drive PWM		
107 SD O Output of thread drive PWM		
108 MD O Output of spindle drive PWM		
109 A.VDD Power supply for the analog system		
110 ATEST O Analog tests		
111 EFM O Output of EFM signals		
112 ASY I Input of asymmetry		
113 C3T Connection to the capacitor for detecting 3T		
114 A.GND Ground for the analog system		
115 RFI I Input of RF		
116 AGCO O Output of RF		
117 AGCI I Input of AGC		
	Output of RF(AGC)	
119, 120 EQ2, 1 Equalizer 2, 1		
121 RF2- I Reversal input of RF2		
122 RF- I Reversal input of RF		
123 A.GND Ground for the analog system		
124 A I Input of A		
125 C I Input of C		
126 B I Input of B		
127 D I Input of D		
128 F I Input of F		
129 E I Input of E		
130 A.VDD Power supply for the analog system		
131 REFOUT O Output of reference voltage		
132 REFC Connected to the capacitor for output of REFC	TUC	
133 FE- I Reversal input of FE		
134 FEO O Output of FE		
135 TE- I Reversal input of TE		
136 TEO O Output of TE		
137 TE2 O TE2		
138 TEC I TEC		
139 A.GND Ground for the analog system		
140 LDREGO O Output of REG voltage for APC		
141 PD I Input of PD		
142 LD O Output of LD		
143 PN I Assignment of pickup polarity		

DEH-P840MP,P8400MP,P8450MP

*UPD63760GJ

*MSM51V4265EP-70TS

BA033SFP

● Pin Functions(BA5996FM)

Pin No.	Pin Name	Function and Operation
1	VR	Input pin for reference voltage
2	OPIN2(+)	Input pin for non-inverting input for CH2 preamplifier
3	OPIN2(-)	Input pin for inverting input for CH2 preamplifier
4	OPOUT2	Output pin for CH2 preamplifier
5	OPIN1(+)	Input pin for non-inverting input for CH1 preamplifier
6	OPIN1(-)	Input pin for inverting input from CH1 preamplifier
7	OPOUT1	Output pin for CH1 preamplifier
8	GND	Ground pin
9	MUTE	Mute control pin
10	POWVCC1	Power supply pin for CH1, CH2, and CH3 at "Power" stage
11	VO1(-)	Driver CH1 - Negative output
12	VO1(+)	Driver CH2 - Positive output
13	VO2(-)	Driver CH2 - Negative output
14	VO2(+)	Driver CH2 - Positive output
15	VO3(+)	Driver CH2 - Positive output
16	VO3(-)	Driver CH2 - Negative output
17	VO4(+)	Driver CH4 - Positive output
18	VO4(-)	Driver CH4 - Negative output
19	POWVCC2	Power supply pin for CH4 at "Power" stage
20	GND	Ground pin
21	CNT	Control pin
22	LDIN	Loading input
23	OPOUTSL	Output pin for preamplifier for thread
24	OPINSL	Input pin for preamplifier for thread
25	OPOUT3	CH3 preamplifier output pin
26	OPIN3(-)	Input pin for inverting input for CH3 preamplifier
27	OPIN3(+)	Input pin for non-inverting input for CH3 preamplifier
28	PREVCC	PreVcc

BA5996FM

● Pin Functions (PE5269A)

	ons (PE5269A)			
Pin No.	Pin Name	I/O	Format	Function and Operation
1	FTXD	0	С	For rewriting Flash EP-ROM (sending signals)
2	NC			Open
3	BSI	ı		Input of P-Bus serial data
4	BSO	0	С	Output of P-Bus serial data
5	BSCK	I/O	/C	Input/output of P-Bus serial clock
6, 7	DFS1, 2	0	C	Output 1, 2 of settings of DA I/F IC sampling frequency
8	DCKS	0	C	Output for selection of DA I/F IC clock subharmonic number
9	EVDD			Positive power supply for E power
10	EVSS			Potential of GND of E power
	NC			
11			-	Open Charter of DA WEIGHT
12	DCOPY	0	С	Output of settings of DA I/F IC copy flag
13	CRST	0	С	Output of reset control of Compression IC
14-16	CBANK0-2	0	С	Output 0-2 of bank settings of Compression IC
17	EMPH	0	С	Output of information on emphasis
18	DSPMUTE	0	С	Output of DOUT Mute
19	DSET	0	С	Output for lighting the disc set indicator
20	ADENA	0	С	Output of control of A/D reference voltage supply
21	IC/VPP			IC: connected directly to VSS / VPP: Pull-down
22	BRXEN	I/O	/C	P-Bus receiving enabled
23	BSRQ	I/O	/C	Request for P-Bus service request
24	XTALEN1	0	С	Output of permission to oscillate CD LSI 16.9344MHz
25	XTALEN2	0	С	Output of permission to oscillate CD LSI 24.576MHz
26	XRST	0	C	Output of control of CD LSI reset
27	VDCONT	0	C	Output of control of VD power supply
28	CD3VON	0	C	Output of control of CD +3.3V power supply
29	CONT	0	C	Output of control of power supply to servo driver
30	XWAIT		C	Input of control signals of CD LSI wait
	LOEJ	0	_	
31		0	С	Output for switching between LOAD/EJECT directions
32	CLCONT	0	C	Output for switching between driver inputs
33	CDMUTE	0	C	Output of control of CD Mute
34	RESET	<u>!</u>		Input of system reset
35	XT1	ı		Connected to the oscillator for subclock
				(connected to VSS via the resistor)
36	XT2			Connected to the oscillator for subclock (Open)
37	REGC			Connected to the capacity stabilizing output of the regulator
				(an electrolytic capacitor of about 1µF)
38	X2			Connected to the oscillator for the main clock
39	X1	I		Connected to the oscillator for the main clock
40	VSS			Potential of GND
41	VDD			Positive power supply (5V)
42	CLKOUT	0	С	Output of internal system clock (Open)
43	XWRITE	0		Output of control signals of CD LSI light
44	UBEN	0		Not used (Open)
45	WR/W	0		Output of Read/Write control signals of WMA decoder
46	XREAD	0		Output of read control signals of CD LSI
47	XASTB	0		Output of CD LSI address strobe
48	LOCK	Ī		Input of spindle lock
49	WRST	0	С	Output for reset control of WMA decoder
50-57	AD0-7	I/O	/C	Address/Data Bus 0-7
50-57	BVDD	1/0	/C	B power supply, positive supply (3.3V)
59	BVSS			
		1/0	10	B power supply, potential of GND
60-67	AD8-15	I/O	/C	Address/Data Bus 8-15
68	XCS	0	С	Output for chip selection of CD LSI
69	WCS	0	С	Output for chip selection of WMA decoder
70, 71	DBBWRDY0, 1	<u> </u>		Input of write-ready flag with WMA decoder DBBI0, 1
72, 73	DBBRRDY0, 1	I		Input of read-ready flag with WMA decoder DBBO0, 1
74	AVDD			A power supply, positive supply (5V)
75	AVSS		i .	A power supply, potential of GND

Pin No.	Pin Name	I/O	Format	Function and Operation
76	AVREF			Input of reference voltage for A/D converter
77	VDSENS			Input of sensing short of VD power supply
78	DSCSNS			Input of sensing disc status
79	TEMP			Input of sensing information on temperature
80	HOME	I		Input of sensing Home SW
81	CSENS	I		Input of sensing the flap closed
82-85	NC			Connected to AVDD or AVSS via the resistor
86	WMAARI	I		Input of sensing existence of WMA decoder & DA I/F IC
87	DRAMARI	I		Input of sensing existence of external DRAM for CD LSI
88	TESTIN	I		Input with starting test program for checking chips
89	NC			Connected to EVDD or EVSS via the resistor
90	XINT			Input of interruption signals of CD LSI
91	WINT			Input of interruption signals of WMA decoder
92	BRST	I		Input of reset of P-Bus
93	EJSW	I		Input of Eject key
94-96	NC			Open
97	ROMDATA	I/O	/C	Input/output of E2PROM data
98	ROMCS	0	С	Output for chip selection of E2PROM
99	ROMCK	0	С	Output of clock of E2PROM
100	FRXD	I		For rewriting Flash EP-ROM (receiving signals)

*PE5269A

Format	Meaning
С	C MOS

DEH-P840MP,P8400MP,P8450MP

*S-818A33AUC-BGN

BA25BC0WFP

*PD9023A

● Pin Function (UPD61002GC)

Pin Function (UPD61002GC)					
Pin No.	Pin Name	I/O	Function and Operation		
1	VDD3	I/O	Power supply (3.3V)		
2-4	NC		Not used		
5	GND3		GND		
6,7	NC		Not used		
8	DO0	0	PCM output data		
9	VDD2		Power supply (2.5V)		
10	CKI		Clock input		
11	DVDD		Power supply (PLL) (Digital)		
12	AVDD		Power supply (PLL) (Analog)		
13	AGND		GND (PLL) (Analog)		
14	DGND		GND (PLL) (Digital)		
15	VDD3I		Interface terminal protection		
16	LRCKO	0	PCM output LRCK		
17	ВСКО	0	PCM output bit clock		
18	NC		Not used		
19	VDD3		Power supply (3.3V)		
20	GND2		GND		
	MCK44				
21		!	Audio master clock input		
22	MCK48		Audio master clock input		
23,24	P10, 11	I/O	Port		
25	VDD2		Power supply (2.5V)		
26	GND3		GND		
27-32	P12-17	I/O	Port		
33	VDD2		Power supply (2.5V)		
34	P00/INTP00	I/O	Port		
35,36	NC	., 0	Not used		
37	P03/INTP03	I/O	Port		
38	P04/INTP04	I/O	Port		
		1/0			
39	P05/INTP05	1/0	Port		
40	GND2		GND		
41,42	P06, 07	I/O	Port		
43	VDD3		Power supply (3.3V)		
44-49	HAD0-5	I/O	Host address / Data bus		
50	GND3		GND		
51	VDD3		Power supply (3.3V)		
52-55	HAD6-9	I/O	Host address / Data bus		
56	GND3		GND		
57-59	HAD10-12	I/O	Host address / Data bus		
60	VDD2	., 0	Power supply (2.5V)		
61-63	HAD13-15	I/O	Host address / Data bus		
		1/0			
64	VDD3		Power supply (3.3V)		
65	HAST	!	Host address strobe		
66	HCSB		Host chip select		
67	HR/WB		Host read / Write status		
68	HDSTB		Host data strobe		
69	GND2		GND		
70	NC		Not used		
71	EXTDIR	ı	Bus direction flag from external		
72,73	DBBWRDY0, 1	Ö	DBB write ready flag		
74	DBBRRDY0	0	DBB read ready flag		
75	VDD2		Power supply (2.5V)		
76	GND3		GND		
77	DBBRRDY1	0	DBB read ready flag		
78	GND3	.	GND		
79	RESETB		Reset		
80	GND3		GND		
81	VDD3		Power supply (3.3V)		
82	GND3		GND		
83	PLLCONT	1	PLL control		
84	GND3		GND		
<u> </u>	-		-		

DEH-P840MP,P8400MP,P8450MP

Pin No.	Pin Name	I/O	Function and Operation
85	NC		Not used
86	GND2		GND
87	DI3	I	PCM input data
88	LRCKI3	I	PCM input LRCK
89	BCKI3	I	PCM input bit clock
90	DI2	I	PCM input data
91	LRCKI2	I	PCM input LRCK
92	BCKI2	I	PCM input bit clock
93	DI1	I	PCM input data
94	LRCKI1	I	PCM input LRCK
95	BCKI1	1	PCM input bit clock
96	VDD2		Power supply (2.5V)
97	DI0	ı	PCM input data
98	LRCKI0	I	PCM input LRCK
99	BCKI0	I	PCM input bit clock
100	GND2		GND

*UPD61002GC

● FM/AM Tuner Unit

No.	Symbol	I/O	Explain	
	STIND	Ō	stereo	"Low" when the FM stereo signals are received.
			indicator	To be pulled up to the "VDD" at $47k\Omega$.
2	FMSD	0	FM station	"High" when signals are received. To be pulled up to the "VDD" at $47k\Omega$
			detector	Meanwhile, $10k\Omega$ should be used when taking diver FIX trigger from here
				and "High: 0.9VDD or more" and "Low: 250mV or less".
				(Should satisfy the diver IC specifications)
3	NL1	0	noise level-1	"High" when noise is received. Output for the RDS. GND at $47k\Omega$ //1,800pF.
	NL2	Ō	noise level-2	"High" when noise is received. Output for the RDS. GND at $36k\Omega$ //330pF.
	Rch	Ō	R channel	FM stereo "R-ch" signal output or AM audio output.
	11011	_	output	Add the specified de-emphasis constant.
6	Lch	0	L channel	FM stereo "L-ch" signal output or AM audio output.
"	LUII		output	Add the specified de-emphasis constant.
7	WC		write control	EEPROM write control. Writing permissible at "Low". Normally open.
/ Q	SDBW	0	SD bandwidth	SD bandwidth signal output. For detection of detuning data for the RDS.
	NC		3D Danawidin	Not used
	VDD		power	Power supply pin for the digital section.
10	۷۵۵		supply	DC 5V +/- 0.25V. Be careful about overlapping noise in the logic section.
11	DGND		digital ground	Grounding for the digital section.
	CE2	ı	chip enable-2	EEPROM chip enable. Active a "Low"
12	CEZ	'	chip enable-z	To be pulled up to the "VDD" at $47k\Omega$
13	SL	1/0	signal level	Received FM/AM signal level (strength) output.
13	SL	1/0	signal level	Connect the specified load resistor and capacitor (10k Ω + 39k Ω //4,700pF)
1.1	DI/DO	I/O	data input/	Data input/Data output
14	טטוט	1/0		To be pulled up to the "VDD" at $47k\Omega$
15	CV	1	data output clock	Clock input To be pulled up to the "VDD" at $47k\Omega$
15	CE1	l I	chip enable-1	AF-RF chip enable. Active at "High" To be grounded at 47kΩ
17		1	chip enable- i	Not used
	LDET		lock detector	Active at "Low". To be pulled up to the "VDD" at $47k\Omega$
	CREQ	0		
		1	current request	Active at "Low". To be grounded at $47k\Omega$
20				Not used
	COMP	0	composite signal	FM composite signal output. r out < 100Ω
	VCC		power supply	Analog section power supply pin.DC 8.4V +/- 0.3V
	LOCH		local high	FM local high pin. When seeking local high, apply 5V together with "LOCL".
24	FMLOCL		FM local low	FM local low pin. When seeking local low, apply 5V to the base of the NPN
				transistor with which the specified resistor is being connected to the emitter.
	1.00			Keep it open in case of ordinary marketed models.
25	LOCL	I	local low	FM/AM local low pin. When seeking local low, apply 5V to the base of the
				NPN transistor. Since this pin is exclusive for AM when the FMLOCL is in use,
	DE0::-			do not drive it under FM.
	RFGND		RF ground	Grounding for the antenna section.
	FMANT	1	FM antenna input	FM antenna input. 75 Ω . Surge absorber (DSP-201M-S00B) is necessary.
28	AMANT		AM antenna input	AM antenna input. High impedance.
				Connect to the antenna through an L (LAU type) of 4.7µH.To cope with the
				power transmission line hums, insert a series circuit consisting of an L
				(a coil of about 100mH) + R (a resistor of 470 Ω to 2.2k Ω) between the GND.

7.2.2 DISPLAY

• CAW1704

7.3 OPERATIONAL FLOW CHART

Completes power-on operation. (After that, proceed to each source operation)

7.4 CLEANING

Portions to be cleaned	Cleaning tools
CD pickup lenses	Cleaning liquid : GEM1004
	Cleaning paper : GED-008

8. OPERATIONS AND SPECIFICATIONS

8.1 OPERATIONS

HEAD UNIT

CLOSE POSITION

OPEN POSITION

REMOTE CONTROL ASSY

● DEH-P840MP/XN/UC, P8450MP/XN/ES

REMOTE CONTROL UNIT

● DEH-P8400MP/XN/UC

(High)+11 dB (100 Hz)

8.2 SPECIFICATIONS

DEH-P840MP/XN/UC

Specifications

Speci	fications	
General		
Power so	ource	. 14.4 V DC (10.8 – 15.1 V allowable)
Groundii	ng system	Negative type
Max. cur	rent consumptio	in
Backup c	urrent	. 5mA or less
Dimensio	ons (W x H x D):	
(When cl		
(DIN) Chassis	. 178 x 50 x 157 mm
		[7 x 2 x 6-1/8 in]
	Nose	. 188 x 58 x 28 mm
(D)	Chassis	[7-3/8 x 2-1/4 x 1-1/8 in] . 178 x 50 x 162 mm
(D)	C11a5515	[7 x 2 x 6-3/8 in]
	Nose	. 170 x 44 x 23 mm
		[6-3/4 x 1-3/4 x 7/8 in]
(When o		
(DIN) Chassis	. 178 x 50 x 157 mm
		[7 x 2 x 6-1/8 in]
	Nose	. 188 x 68 x 50 mm [7-3/8 x 2-5/8 x 2 in]
(D)	Chaesis	. 178 x 50 x 162 mm
(D)	C1105515	[7 x 2 x 6-3/8 in]
	Nose	. 170 x 64 x 45 mm
		[6-3/4 x 2-1/2 x 1-3/4 in]
Weight		. 1.7 kg (3.74 lbs.)
Audio		
		t is 22 W per channel min. into 4 ohms, both
		000 Hz with no more than 5% THD.
Maximui	n power output	
I a a al !		for subwoofer (70 W x 1 ch/2 Ω)
Load imp	bedance	. 4 Ω (4 – 8 Ω [2 Ω for 1 ch] allowable)
Preout m	ax output level/	output impedance
	r (3-Band Parame	
(Low		
		. 40/80/100/160 Hz
(Q Factor	. 0.35/0.59/0.95/1.15
	Gain	(+6 dB when boosted)
(Mid		. ± 12 UB
		. 200/500/1 k/2 k Hz
		. 0.35/0.59/0.95/1.15
		(+6 dB when boosted)
	Gain	. ±12 dB
(Higl		2.15 k/0 k/10 k/12 5 k L
		. 3.15 k/8 k/10 k/12.5 k Hz . 0.35/0.59/0.95/1.15
'	αι αυιυι	(+6 dB when boosted)
	Gain	
Loudnes	s contour:	
(Low	·)	. +3.5 dB (100 Hz)
		+3 dB (10 kHz)
(Mid		. +10 dB (100 Hz)

+6.5 dB (10 kHz)

```
+11 dB (10 kHz)
                         (Volume: -30 dB)
Tone controls:
    (Bass)
        Frequency ....... 40/63/100/160 Hz
        Gain ..... ±12 dB
    (Treble)
        Frequency ....... 2.5 k/4 k/6.3 k/10 k Hz
        Gain ..... ±12 dB
        Frequency ...... 50/80/125 Hz
        Slope ..... -12 dB/oct
Subwoofer:
        Frequency ...... 50/80/125 Hz
        Slope ..... -18 dB/oct
        Gain ......±12 dB
Phase ......Normal/Reverse
System ...... Compact disc audio
                         system
Usable discs ...... Compact disc
Signal format:
    Sampling frequency 44.1 kHz
    Number of quantization bits
     ...... 16; linear
Frequency characteristics
  ...... 5 – 20,000 Hz (±1 dB)
Signal-to-noise ratio ...... 94 dB (1 kHz)
                        (IHF-A network)
Dynamic range ...... 92 dB (1 kHz)
Number of channels ...... 2 (stereo)
MP3 decoding format ..... MPEG-1&2 Audio Layer-3
WMA decoding format..... Ver. 7 & 8
FM tuner
Frequency range ...... 87.9 - 107.9 MHz
Usable sensitivity .......... 9 dBf (0.8 \muV/75 \Omega, mono,
                        S/N:30 dB)
50 dB quieting sensitivity 15 dBf (1.5 µV/7 Signal-to-noise ratio ...... 70 dB (IHF-A network) Distortion ....... 0.3% (at 65 dBf, 1 kHz,
                               15 dBf (1.5 μV/75 Ω, mono)
                         stereo)
(Desire signal level) . 30 dBf
                                 (two undesire signal level: 100 dBf)
Frequency range ...... 530 - 1,710 kHz (10 kHz)
Note
```


· Specifications and the design are subject to possible modifications without notice due to improvements.

DEH-P8400MP/XN/UC

Specifications

General		
	urce	. 14.4 V DC
		(10.8 – 15.1 V allowable)
Groundin	ng system	. Negative type
Max. cur	rent consumptio	n
Backup c	urrent	. 5mA or less
D: .	5	
	ons (W x H x D):	
(When cl		170 50 157
(DIIV	Chassis	. 178 x 50 x 157 mm [7 x 2 x 6-1/8 in]
	Nose	. 188 x 58 x 28 mm
	14036	[7-3/8 x 2-1/4 x 1-1/8 in]
(D)	Chassis	. 178 x 50 x 162 mm
(2)		[7 x 2 x 6-3/8 in]
	Nose	. 170 x 44 x 23 mm
		[6-3/4 x 1-3/4 x 7/8 in]
(When o	pened)	
(DIN	Chassis	. 178 x 50 x 157 mm
		[7 x 2 x 6-1/8 in]
	Nose	. 188 x 68 x 50 mm
(D)		[7-3/8 x 2-5/8 x 2 in]
(D)	Chassis	. 178 x 50 x 162 mm
	Nasa	[7 x 2 x 6-3/8 in] . 170 x 64 x 45 mm
		[6-3/4 x 2-1/2 x 1-3/4 in]
Weight		. 1.7 kg (3.74 lbs.)
Audio		
		t is 22 W per channel min. into 4 ohms, both
		000 Hz with no more than 5% THD.
iviaximur	n power output	for subwoofer (70 W x 1 ch/2 Ω)
Loadimr	odanco	. 4 Ω (4 – 8 Ω [2 Ω for 1 ch]
Load IIIIp	redance	allowable)
Prequit m	ax output level/	output impedance
	(3-Band Parame	
. (Low		•
I	requency	. 40/80/100/160 Hz
(2 Factor	. 0.35/0.59/0.95/1.15
		(+6 dB when boosted)
	Gain	. ±12 dB
(Mid		000/500/41/0111
		. 200/500/1 k/2 k Hz
,	2 Factor	. 0.35/0.59/0.95/1.15 (+6 dB when boosted)
	Gain	
(High		. ± 12 UD
		. 3.15 k/8 k/10 k/12.5 k Hz
		. 0.35/0.59/0.95/1.15
		(+6 dB when boosted)
(Gain	
	s contour:	
(Low	·)	. +3.5 dB (100 Hz)

+3 dB (10 kHz)

+6.5 dB (10 kHz)

(Mid)+10 dB (100 Hz)

```
+11 dB (10 kHz)
                        (Volume: -30 dB)
Tone controls:
    (Bass)
        Frequency ...... 40/63/100/160 Hz
        Gain ..... ±12 dB
    (Treble)
        Frequency ....... 2.5 k/4 k/6.3 k/10 k Hz
        Gain ..... ±12 dB
HPF:
        Frequency ...... 50/80/125 Hz
        Slope ..... -12 dB/oct
Subwoofer:
        Frequency ...... 50/80/125 Hz
        Slope .....-18 dB/oct
        Gain ..... ±12 dB
        Phase ...... Normal/Reverse
CD player
System ...... Compact disc audio
                         system
Usable discs ...... Compact disc
Signal format:
    Sampling frequency 44.1 kHz
    Number of quantization bits
    ..... 16; linear
Frequency characteristics
 .....5 – 20,000 Hz (±1 dB)
Signal-to-noise ratio ...... 94 dB (1 kHz)
                (IHF-A network)
Dynamic range ...... 92 dB (1 kHz)
Number of channels ...... 2 (stereo)
MP3 decoding format ..... MPEG-1&2 Audio Layer-3
WMA decoding format.... Ver. 7 & 8
Frequency range ...... 87.9 – 107.9 MHz
Usable sensitivity .......... 9 dBf (0.8 \muV/75 \Omega, mono,
                        S/N:30 dB)
50 dB quieting sensitivity 15 dBf (1.5 \muV/75 \Omega, mono) Signal-to-noise ratio ...... 70 dB (IHF-A network)
Distortion ...... 0.3% (at 65 dBf, 1 kHz,
                       stereo)
Frequency response ...... 30 - 15,000 \text{ Hz} (\pm 3 \text{ dB})
Stereo separation .......... 40 dB (at 65 dBf, 1 kHz)
Selectivity ...... 70 dB
Three signal intermodulation
    (Desire signal level) . 30 dBf
                                 (two undesire signal level: 100 dBf)
AM tuner
Frequency range ...... 530 – 1,710 kHz (10 kHz)
Usable sensitivity ........... 18 \mu V (S/N: 20 dB)
Selectivity ...... 50 dB (± 10 kHz)
```

(High)+11 dB (100 Hz)

Specifications and the design are subject to possible modifications without notice due to improvements.

DEH-P8450MP/XN/ES

Specifications

General		
Power so	urce	
		(10.8 – 15.1 V allowable)
	g system	
	ent consumption	
	urrent	
Dimensio	ns (W x H x D):	
(When clo		
(DIN)	Chassis	178 x 50 x 157 mm
	Nose	188 x 58 x 28 mm
(D)		178 x 50 x 162 mm
		170 x 44 x 23 mm
(When op		
(DIN)		178 x 50 x 157 mm
(D)		188 x 68 x 50 mm
(D)		178 x 50 x 162 mm
Weight	Nose	170 x 64 x 45 mm
vveigiit		1.7 kg
Audio		
		is 22 W per channnel min. into 4 ohms,
		o 15,000 Hz with no more than 5% THD.
Maximun	n power output	
		for subwoofer (70 W x 1 ch/2 Ω)
Load imp		$4 \Omega (4 - 8 \Omega [2 \Omega \text{ for 1 ch}]$
Produt m		allowable) utput impedance
	ax output level/o	
	(3-Band Parame	•
(Low		= 4444
		40/80/100/160 Hz
		0.35/0.59/0.95/1.15
		(+6 dB when boosted)
	Gain	±12 dB
(Mid)		
		200/500/1 k/2 k Hz
C		0.35/0.59/0.95/1.15
		(+6 dB when boosted)
	ain	±12 0B
(High		3.15 k/8 k/10 k/12.5 k Hz
		0.35/0.59/0.95/1.15
		(+6 dB when boosted)
(ain	
Loudness		±12 d5
)	+3.5 dB (100 Hz)
		+3 dB (10 kHz)
(Mid)		
		+6.5 dB (10 kHz)
(High)	
		+11 dB (10 kHz)
_		(Volume: –30 dB)
Tone con		
(Bass	i)	

Frequency 40/63/100/160 Hz Gain ±12 dB

```
(Treble)
        Frequency ....... 2.5 k/4 k/6.3 k/10 k Hz
        Gain ..... \pm 12~\text{dB}
HPF:
        Frequency ...... 50/80/125 Hz
        Slope ..... -12 dB/oct
Subwoofer:
        Frequency ...... 50/80/125 Hz
        Slope .....-18 dB/oct
        Gain ..... ±12 dB
        Phase ...... Normal/Reverse
CD player
System ...... Compact disc audio
                         system
Usable discs ...... Compact disc
Signal format:
    Sampling frequency 44.1 kHz
    Number of quantization bits
     ......16; linear
Frequency characteristics
  ..... 5 – 20,000 Hz (±1 dB)
Signal-to-noise ratio ...... 94 dB (1 kHz)
Number of channels ...... 2 (stereo)
MP3 decoding format ..... MPEG-1&2 Audio Layer-3
WMA decoding format ... Ver. 7 & 8
FM tuner
Frequency range ...... 87.5 – 108 MHz
Usable sensitivity ......... 9 dBf (0.8 \muV/75 \Omega, mono,
                        S/N:30 dB)
50 dB quieting sensitivity 15 dBf (1.5 \muV/7 Signal-to-noise ratio ...... 70 dB (IEC-A network)
                               15 dBf (1.5 μV/75 Ω, mono)
Distortion ...... 0.3% (at 65 dBf, 1 kHz,
                        stereo)
Frequency response ...... 30 - 15,000 \text{ Hz} (\pm 3 \text{ dB})
Stereo separation .......... 40 dB (at 65 dBf, 1 kHz)
Frequency range ...... 530 – 1,640 kHz (10 kHz)
                        531 - 1,602 kHz (9 kHz)
531-1,602~\text{kHz}~(9) Usable sensitivity .................. 18 \mu\text{V}~(\text{S/N}\text{: 20 dB})
Selectivity ...... 50 dB (\pm 10~kHz)
                         50 dB (±9 kHz)
Infrared Remote Control
Wavelength ...... 940 nm \pm 50 nm
Output ...... typ; 12 mw/sr per Infrared
 Note
```


Specifications and the design are subject to possible modifications without notice due to improvements.

Pioneer sound.vision.soul

Service Manual

ORDER NO. CRT2820

CX-3007

- This service manual describes the operation of the CD mechanism module incorporated in models listed in the table below.
- When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Module
DEH-P740MP/XN/UC	CRT2783	CXK5555
DEH-P7400MP/XN/UC		
DEH-P7450MP/XN/ES		
DEH-P7400MP/XN/EW	CRT2784	

CONTENTS

1.	. CIRCUIT DESCRIPTIONS	2
2.	. MECHANISM DESCRIPTIONS	.18
3.	DISASSEMBLY	.20

PIONEER CORPORATION
4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS (USA) INC.
PIONEER EUROPE NV Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium
PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936

1. CIRCUIT DESCRIPTIONS

Recently, most CD LSI's have included DAC, RF amplifier and other peripheral circuits, as well as the core circuit DSP. This series of mechanisms employ a multi-task LSI UPD63760GJ, which has CD-ROM decoder and MP3 decoder in addition to the CD block as shown in the Fig.1.0.1. This enables to reproduce a CD-ROM where MP3 data is recorded.

Plus, in this lineup, there are WMA supported models available where WMA decoder UPD61002GC is added.

CXK5555 --- WMA non-supported

CXK5556 and CXK5557 --- WMA supported

Fig.1.0.1 Block diagram of CD LSI UPD63760GJ

1.1 PREAMPLIFIER BLOCK (UPD63760GJ: IC201)

In the preamplifier block, the pickup output signals are processed to generate signals that are used for the next-stage blocks: the servo block, demodulator, and control.

After I/V-converted by the preamplifier with built-in photo detectors (inside the pickup), the signals are applied to the preamplifier block in the CD LSI UPD63760GJ (IC201). After added by the RF amplifier in this block, these signals are used to produce necessary signals such as RF, FE, TE, and TE zero-cross signals.

The CD LSI employs a single power supply system of + 3.3V. Therefore, the REFO (1.65V) is used as the reference voltage both for this CD LSI and the pickup. The LSI produces the REFO signal by using the REFOUT via the buffer amplifier and outputs from the pin 131. All the measurements should be made based on this REFO.

Caution: Be careful not to short the REFO and GRD when measuring.

1.1.1 APC (Automatic Power Control)

A laser diode has extremely negative temperature characteristics in optical output at constant-current drive. To keep the output constant, the LD current is controlled by monitor diodes. This is called the APC circuit. The LD current is calculated at about 30mA, which is the voltage between LD1 and V3R3D divided by 7.5 (ohms).

Fig. 1.1.1 APC

1.1.2 RF and RFAGC amplifiers

The photo-detector outputs (A + C) and (B + D) are added, amplified, and equalized inside this LSI, and then provided as the RF signal from the RFI terminal. The RF signal can be used for eye-pattern check.

The low frequency component of the RFO voltage is:

$$RFO = (A + B + C + D) \times 2$$

The RFO is used for the FOK generation circuit and RF offset adjustment circuit.

The RFI output from the pin 118 is A/C-coupled outside this LSI, and returned to the pin 117 of this LSI. The signal is amplified in the RFAGC amplifier to obtain the RFAGC signal. This LSI is equipped with the RFAGC auto-adjustment function as explained below. This function automatically controls the RFO level to keep at 1.5V by switching the feedback gain for the RFAGC amplifier.

The RFO signal is also used for the EFM, DFCT, MIRR, and RFAGC auto-adjustment circuits.

Fig. 1.1.2 RF/AGC/FE

1.1.3 Focus error amplifier

The photo-detector outputs (A + C) and (B + D) are applied to the differential amplifier and the error amplifier to obtain the (A + C - B - D) signal, which is then provided from the pin 91 as the FE signal.

The low frequency component of the FE voltage is:

 $FE = (A + C - B - D) \times 8.8/10k \times 111k/61k \times 160k/72k$

$$= (A + C - B - D) \times 3.5$$

The FE output shows 1.5Vp-p S-shaped curve based on the REFO. For the next-stage amplifiers, the cutoff frequency is 14.6kHz.

1.1.4 RFOK

The RFOK circuit generates the RFOK signal, which indicates focus-close timing and focus-close status during the play mode, and outputs from the pin 53. This signal is shifted to "H" when the focus is closed and during the play mode.

The DC level of the RFI signal is peak-held in the digital block and compared with a certain threshold level to generate the RFOK signal. Therefore, even on a non-pit area or a mirror-surface area of a disc, the RFOK becomes "H" and the focus is closed.

This RFOK signal is also applied to the microcomputer via the low-pass filer as the FOK signal, which is used for protection and RF amplifier gain switching.

1.1.5 Tracking error amplifier

The photo-detector outputs E and F are applied to the differential amplifier and the error amplifier to obtain the (E - F) signal, and then provided from the pin 136 as the TE signal.

The low frequency component of the TE voltage is:

 $FEO = (E - F) \times 160 \text{k}/112 \text{k} \times 90.6 \text{k}/45.36 \text{k} \times 160 \text{k}/45.4 \text{k}$

$$= (E - F) \times 5.7$$

The TE output provides the TE waveform of about 1.3Vp-p based on the REFO. For the next-stage amplifiers, the cutoff frequency is 21.1kHz.

Fig. 1.1.3 TE

1.1.6 Tracking zero-cross amplifier

The tracking zero-cross signal (hereinafter TEC signal) is obtained by amplifying the TE signal 4 times, and used to detect the tracking-error zero-cross point.

By using the information on this point, the following two operations can be performed:

- 1. Track counting in the carriage move and track jump modes
- 2. Sensing the lens-moving direction at the moment of the tracking close (The sensing result is used for the tracking brake circuit as explained below.)

The frequency range of the TEC signal is between 300Hz and 20kHz.

TEC voltage = TE level x 4

The TEC level can be calculated at 5.2V. This level exceeds the D range of the operation amplifier, and the signal gets clipped. However, it can be ignored because the CD LSI only uses the signal at the zero-cross point.

1.1.7 EFM

The EFM circuit converts the RF signal into a digital signal expressed in binary digits 0 and 1. The AGCO output from the pin 116 is A/C-coupled in the peripheral circuit, fed back to the LSI from the pin 115, and sent to the EFM circuit inside the LSI.

On scratched or dirty discs, part of the RF signal recorded may be missing. On other discs, part of the RF signal recorded may be asymmetric, which was caused by dispersion in production quality. Such lack of information cannot be completely eliminated by this AC coupling process. Therefore, by utilizing the fifty-fifty occurrence ratio of binary digits (0 and 1) in the EFM signal, the EFM comparator reference voltage ASY is controlled, so that the comparator level always stays around the center of the RFO signal. The reference voltage ASY is made from the EFM comparator output via the low-pass filter. The EFM signal is put out from the pin 111.

Fig. 1.1.4 EFM

1.2 SERVO BLOCK (UPD63760GJ: IC201)

The servo block controls the servo systems for error signal equalizing, in-focus, track jump and carriage move and so on. The DSP block is a signal-processing block, where data decoding, error correction, and compensation are performed.

After A/D-converted, the FE and TE signals (generated in the preamplifier block) are applied to the servo block and used to generate the drive signals for the focus, tracking, and carriage servos.

The EFM signal is decoded in the DSP block, and finally sent out as the audio signal after D/A-converted. In this decoding process, the spindle servo error signal is generated, supplied to the spindle servo block, and used to generate the spindle drive signal.

The drive signals for focus, tracking, carriage, and spindle servos (FD, TD, SD, and MD) are provided as PWM3 data, and then converted to the analog data by the low-pass filter in the driver IC BA5996FM (IC301). These analog drive signals can be monitored by the FIN, TIN, CIN, and SIN signals respectively. Afterwards, the signals are amplified and applied to each servo's actuator and motor.

1.2.1 Focus servo system

In the focus servo system, the digital equalizer block works as its main equalizer. The figure 1.2.1 shows the block diagram of the focus servo system.

To close the focus loop circuit, the lens should be moved to within the in-focus range. While moving the lens up and down by using the focus search triangular signal, the system tries to find the in-focus point. In the meantime, the spindle motor rotation is kept at the prescribed one by using the kick mode.

The servo LSI monitors the FE and RFOK signals and automatically performs the focus close operations at an appropriate timing. The focus loop will close when the following three conditions are satisfied at the same time:

- 1) The lens moves toward the disc surface.
- 2) The RFOK signal is shifted to "H".
- 3) The FE signal is zero-crossed. At last, the FE signal comes to the zero level (or REFO).

When the focus loop is closed, the FSS bit is shifted from "H" to "L". The microcomputer starts monitoring the RFOK signal obtained through the low-pass filter 10msec after that.

If the RFOK signal is detected as "L", the microcomputer will take several actions including protection.

The timing chart for focus close operations is shown in fig. 1.2.2. (This shows the case where the system fails focus close.)

In the test mode, the S-shaped curve, search voltage, and actual lens movement can be confirmed by pressing the focus close button when the focus mode selector displays 01.

Fig. 1.2.1 Block diagram of the focus servo system

Fig. 1.2.2 Timing chart for focus close operations

1.2.2 Tracking servo system

In the tracking servo system, the digital equalizer block is used as its main equalizer. The figure 1.2.3 shows the block diagram of the focus servo system.

(a) Track jump

Track jump operation is automatically performed by the auto-sequence function inside the LSI with a command from the microcomputer. In the search mode, the following five track jump modes are available: 1, 4, 10, 32, and 32*3 In the test mode, 1, 32, and 32*3 track jump modes, and carriage move mode are available and can be switched by selecting the mode.

For track jumps, first, the microcomputer sets about half the number of tracks to be jumped as the target. (Ex. For 10 track jumps, it should be 5 or so.) Using the TEC signal, the microcomputer counts up tracks. When the counter reaches the target set by the microcomputer, a brake pulse is sent out to stop the lens. The pulse width is determined by the microcomputer. Then, the system closes the tracking loop and proceeds to the normal play. At this moment, to make it easier to close the tracking loop, the brake circuit is kept ON for 50msec after the brake pulse, and the tracking servo gain is increased.

In the normal operation mode, the FF/REW operation is realized by continuously repeating single jumps about 10 times faster than the normal single jump operation.

(b) Brake circuit

The brake circuit stabilizes the servo-loop close operation even under poor conditions, especially in the setting-up mode or track jump mode. This circuit detects the lens-moving direction and emits only the drive signal for the opposite direction to slow down the lens. Thus, this makes it easier to close the tracking servo loop. The off-track direction is detected from the phases of the TEC and MIRR signals.

Fig. 1.2.3 Block diagram of the tracking servo system

Fig. 1.2.4 Single-track jump

Fig. 1.2.5 Multi-track jump

Note : Equalizer output assumed to have same phase as TEC.

Fig. 1.2.6 Track brake

1.2.3 Carriage servo system

In the carriage servo system, the low frequency component from the tracking equalizer (the information on the lens position) is transferred to the carriage equalizer, where the gain is increased to a certain level, and then sent out from the LSI as the carriage drive signal. This signal is applied to the carriage motor via the driver IC.

During the play mode, when the lens offset reaches a certain level, it is necessary to move the pickup toward the FORWARD direction. The equalizer gain is adjusted so that the output over the carriage motor starting voltage is sent out in such a case. In actual operations, only when the equalizer output exceeds the threshold level preset in the servo LSI, the drive signal is sent out. This can reduce the consumption power.

With an eccentric disc loaded, before the whole pickup starts moving, the equalizer output may exceed the threshold level a few times. In this case, the drive signal applied from the LSI shows pulse-like waveforms.

Fig. 1.2.7 Block diagram for the carriage servo block

Fig. 1.2.8 Waveforms of the carriage signal

1.2.4 Spindle servo system

In the spindle servo system, the following six modes are available:

1) Kick

Used to accelerate the disc rotation in the setting-up mode.

- 2) Offset
- a. Used in the setting-up mode until the AGC completes after the kick mode.
- b. Used when the focus loop is unlocked during the play mode and until it is locked again.

In both cases, the mode is to keep the disc rotation near to the appropriate one.

3) Applicable servo

In the normal operation, the CLV servo mode is used.

The EFM demodulation block detects through WFCK/16 sampling whether or not the frame sync signal and the internal frame counter output are synchronized, and generates the status signal based on the sampling result, synchronized or non-synchronized. If eight consecutive "non-sync" signals are obtained, the system senses the status as "non-sync". If not, the system senses as "sync". In the applicable servo mode, the leading-in servo mode is automatically selected at the non-sync status, and the normal servo mode is at the sync status.

4) Brake

Used to stop the spindle motor.

In accordance with the microcomputer's command, the brake voltage is sent out from the servo LSI. At this moment, the EFM waveform is being monitored in this LSI. When the longest EFM pattern exceeds a certain cycle (or the rotation slows down enough), a flag is set inside the LSI, and the microcomputer switches off the brake voltage. If a flag is not set within a certain period, the microcomputer shifts the mode from the brake mode to the stop mode, and keeps this for a certain period. In the eject mode, after the mode is shifted to the stop mode and a certain period passes, the loaded disc is ejected.

5) Stop

Used when the power is turned on and during the eject mode. At this moment, the voltage through the spindle motor is 0V

6) Rough servo

Used when the carriage is moved (or in the carriage move mode such as long search).

By obtaining the linear velocity from the EFM waveform, "H" or "L" is applied to the spindle equalizer. In the test mode, this mode is used for grating confirmation.

Fig.1.2.9 Block diagram of the spindle servo system

1.3 AUTOMATIC ADJUSTMENT FUNCTION

This system automatically handles the circuit adjustment inside the CD LSI. All adjustments are performed whenever a disc is inserted or the CD mode is selected by pressing the source key. Each adjustment will be explained below.

1.3.1 TE, FE, and RF offset auto-adjustment

This adjustment is made to adjust the offsets of the TE, FE, and RF amplifiers in the preamplifier block to their target values on the basis of the REFO when the power is turned on. (The target values for TE, FE, and RE offsets are 0V, 0V, and -0.8V respectively.)

<Adjusting procedures>

- 1) With the LD OFF status, the microcomputer reads each offset through the servo LSI.
- 2) The microcomputer calculates the voltages for correction from the measured values, and inputs the calculated results as the offset adjustment values.

1.3.2 Tracking balance (T.BAL) auto-adjustment

This adjustment is to equalize the pickup output offsets for E-ch and F-ch by changing the amplifier gain inside the LSI. Actually, the gain is adjusted so that the TE waveform becomes symmetrical on each side of the REFO.

<Adjusting procedures>

- 1) The focus loop is closed.
- 2) The lens is kicked in the radial direction to make certain that the TE waveform is generated.
- 3) The microcomputer reads the TE offset calculated in the LSI through the servo LSI.
- 4) The microcomputer takes either of the following steps depending on the calculated offset:
- When the offset is 0, the adjustment completes.
- When the offset is positive or negative, the amp gains for E-ch and F-ch should be changed.

The steps 2) to 4) are repeatedly taken until the offset becomes 0 or the repeating time reaches the limit frequency.

1.3.3 EF bias auto-adjustment

This adjustment obtains the best focus point during the play mode and maximizes the RFI level by utilizing the phase difference between the 3T level of the RF signal and that of the signal obtained when focus error disturbance is applied to the focus loop. At this moment, the auto-gain control (AGC), where focus error disturbance is applied to the focus and tracking loops, is also performed as explained below.

<Adjusting procedures>

- 1) The microcomputer transmits the command to apply disturbance component to the focus loop (inside the servo LSI).
- 2) In the LSI, the 3T-offset component of the RF signal is detected.
- 3) From the relation between the 3T detected component and the disturbance, the LSI obtains the volume and direction of the focus offset.
- 4) The microcomputer transmits the command and reads out the detecting result from the servo LSI.
- 5) The microcomputer calculates the necessary correction and inputs the result as the bias adjustment value to the servo LSI.

The adjusting steps are repeated a few times for higher adjustment accuracy as same as those for the AGC.

1.3.4 Focus and tracking AGC

This function automatically adjusts the focus and tracking servo loop gains.

<Adjusting procedures>

- 1) Disturbance component is applied to the servo loop.
- 2) The error signals (FE and TE) are extracted through the band pass filter as the G1 and G2 signals.
- 3) The microcomputer reads the G1 and G2 signals through the servo LSI.
- 4) The microcomputer calculates the necessary correction and performs the loop gain adjustment inside the servo LSI. For higher adjustment accuracy, the above steps are repeated a few times.

1.3.5 RF level auto-adjustment (RFAGC)

This adjustment minimizes the dispersion of the RF level (RFO), which may be caused by disc-related errors, for more stable signal transmission by changing the amp gain between RFI and RFO.

- <Adjusting procedures>
- 1) The microcomputer sends the command to the servo LSI to read out the output from the RF level detecting circuit inside the servo LSI.
- 2) The microcomputer calculates the appropriate amp gain by using the output read out to adjust the RFO level at the prescribed one.
- 3) The microcomputer sends the command to the servo LSI to adjust the amp gain into the calculated one.

This adjustment is automatically performed when:

- 1) During the setting-up mode, only the focus close operation ends.
- 2) Immediately before the setting-up ends (or right before the play mode starts)
- 3) During the play mode, the focus loop is locked again after unlocked.

1.3.6 Pre-amp gain adjustment

In this adjustment, when the reflected beams from disc surface are extremely weak (ex. when the lens is dirty, and a CD-RW is loaded), the whole gain in the RFAMP block (FE, TE, and RF amplifiers) is increased by +6dB or +12dB.

<Adjusting procedures>

When the system senses that the reflected beams from disc surface are extremely weak during the setting-up mode, the whole RFAMP gain is increased by +6dB or +12dB.

After the gain is changed, the setting-up mode is restarted.

If the whole RFAMP gain is always increased to the +6dB level in the play mode, the +6dB level will be employed at the starting of the setting-up mode from the next playback.

Fig.1.3.1 Pre-amp gain adjustment

1.3.7 Initial values in adjustment

For each auto-adjustment, the last adjustment results are basically used as the initial settings of the next adjustment unless the microcomputer is turned off (or the backup is off). When the microcomputer (or the backup) is turned off, the last adjustment results are not used, but the factory settings.

1.3.8 Adjustment result display

For some of the adjustments (FE and RF offset, FZD cancel, F and T gain, and RFAGC), the adjustment results can be displayed and confirmed in the test mode.

1) FE and RF offset

Reference coefficient = 32 ("32" indicates no adjustment required)

The display is expressed in the unit of about 32mV.

Ex. When the FE offset coefficient is 35:

 $35 - 32 = 3 \times 32 \text{mV} = 96 \text{mV}$

This means that the correction is about +96mV, and the FE offset before adjustment is -96mV.

2) F and T gain adjustment

Reference coefficient for focus and tracking = 20

The displayed coefficient / the reference coefficient indicates the adjusted gain.

Ex. When the AGC coefficient is 40:

40/20 = 2 times (+6dB)

That is, the gain was adjusted by +6dB.

(The original loop gain was half the target one. So, the whole gain was doubled.)

3) RF level adjustment (RFAGC)

Reference coefficient = 8

The coefficient 9 to 15 indicates increasing the RF level.

The coefficient 0 to 7 indicates decreasing the RF level.

When the coefficient display changes by 1, the gain changes by 0.7 to 1dB.

When the coefficient is 15, the gain is maximum or TYP + 6.5dB.

When the coefficient is 0, the gain is minimum or TYP - 6.0dB.

1.4 POWER SUPPLY AND LOADING BLOCK

The VD (8.3 + 0.5V) and the VDD (5.0 + 0.25V), which are supplied from the mother PC board, are used for the power supply. In this system, the following four power-supply signals are available: the VD (for the drive system), the V3R3 obtained from the VD via the 3.3V regulator (for the control system: 3.3V), the VDD (for the microcomputer: 5V), and the 3VDD obtained from the VDD via the 3.3V regulator (for the microcomputer: 3.3V)

In the WMA-supported mechanism CXK5556, the V2R5 (for WMA decoder: 2.5V) is also used.

The microcomputer can turn on/off the CD driver (except for the load and eject modes) and the 5V signal by controlling the "CONT" and "CD5VON" signals respectively. To turn on/off the loading drive, there is no control terminal in the microcomputer, but the "LOEJ" input signal works as the control one. In the LCO output block, the "CLCONT" signal is used to switch between the loading mode and carriage mode.

Fig. 1.4.1 Power supply/loading block (*: CXK5556, CXK5557)

Fig. 1.4.2 Loading/carriage mode shift

To control the load and eject operations, the clamp switch located in the mechanism unit and the three detecting switches located in the control unit are used. Depending on the combination of these switches' ON/OFF status, the DSCSNS voltage changes.

The microcomputer can detect the status (A to E) by observing the voltage at the A/D port. The disc size detection (8 or 12cm) is also performed through this status change. The DSCSNS status and the status change in the load and eject modes are shown in the figures 1.4.3 and 1.4.4 respectively.

STATUS	Α	В	С	D	E
SW1(S903)	ON	OFF	OFF	OFF	ON
SW2(S905)	OFF	OFF	ON	ON	OFF
SW3(S904)	OFF	OFF	OFF	ON	OFF
SW4(S902)	OFF	OFF	OFF	OFF	ON
MECH. STATUS	NO DISK				CLAMP

Fig.1.4.3 DSCSNS status

Fig.1.4.4 Status change in LOAD and EJECT modes

2. MECHANISM DESCRIPTIONS

Loading actions

- 1. When a disk is inserted, SW Arm L and R rotate. Due to the rotation of Arm L, SW1 is switched from ON to OFF and the Load Carriage Motor starts.
- 2. If the disk is 12cm-disk, when it is carried to the position shown with the dotted line in the drawing, SW 3 switches to ON due to such rotation of Arm L. Then, the microcomputer judges that the disk is 12cm-disk.
- 3. In case of 8cm-disk, the disk cannot reach such dotted line position, and from such limitation of approach, the microcomputer judges that the disk is 8cm-disk and simply triggers clamp actions.
 - (Movement of SW Arm L and R are connected together. So, if pushing force is fed to only one arm, the distance between tow arms cannot be widened beyond the specific degree, because the coupling part is locked in such case.)

Disk centering mechanism

- 1. In case of 12cm-disk, the 12cm-Disk Detection Arm rotates, and with such rotation, it raises the Centering Arms to retreat the arms from disk's trace. The disk passes through under the arms, and at the inner part, it is centered.
- 2. In case of 8cm-disk, it is just centered at the position where its edge touches the front portion of the Centering Arm.

Clamp actions

- 1. When centering of 12 or 8cm-disk onto the Spindle is completed, the Detection Arm starts driving.
- 2. Then, the Detection Arm, via the Detection Reversion Arm, triggers driving of the Plunging Rack, which is on the Mode Switching Arm unit, in order to engage the rack with the 2-Stage Gear.
- 3. With such engaging, the Mode Switching Arm rotates, and with the rotation, slides the Clamp-Up Lever and pushes down the Clamp Arm. At the same time, the Mode Switching Arm slides the Loading-Up lever, and separates the Loading Arm from the disk. Also, the Loading-Up Lever rotates the Mechanics Lock Arm, releases the Mechanics Lock, and switches on the Clamp SW. Now, at this position (the position where the disk is situated when the Clamp SW is switched on), clamping actions are completed.
- 4. Then, upon the completion of clamping actions, the Plunging Rack lets the Pickup Lock Arm start rotating, and this Pickup Lock Arm, with such rotation, feeds the Pickup to Feed Screw's screw portion. Now, Carriage actions start.

Eject actions

- 1. Eject actions start when the Pickup is fed to the position inner than "Home SW ON" point in the internal circumference of the circle, caused by backward rotation of the Load Carriage Motor. Eject actions follow the foregoing procedures (steps taken in loading, centering and clamping actions), but each action in those steps is performed in reversed manner.
- 2. In case of 12cm-disk, Eject is completed when SW3 completes its condition- transition of OFF \rightarrow ON \rightarrow OFF.
- 3. For 8cm-disk, Eject is completed when SW2 completes its condition-transition of OFF \rightarrow ON \rightarrow OFF.

3. DISASSEMBLY

How to hold the Mechanical Unit

- 1. Hold the top and bottom frame.
- 2. Do not squeeze top frame's front portion too tight, because it is fragile.

How to remove the Top and Bottom Frame

- 1. When the disk is in "clamp" state, unlock Spring A (6 pieces) and Spring B (2 pieces), and unscrew screws (4 pieces).
- 2. Unlock each 1 of pawl at the both side of the frame, then remove the top frame.
- 3. Remove the Carriage Mechanical part in such way Carriage that; you remove the mechanical part from 3 pieces Mechanical part of Damper while slowly pulling up the part.
- 4. Now, the top frame has been removed, and under this state, fix the genuine Connector again, and eject the disk.

(Caution)

When you reassemble the Carriage Mechanical part, apply a bit of alcohol to Dampers.

Carriage Mechanical Part Bottom Frame Damper

How to remove the Guide Arm Assy

- 1. Unlock the spring (1 piece) at the right side of the assembly.
- 2. Unscrew screws (2 pieces), then remove the Screw Gear Bracket.
- 3. Shift the Guide Arm Assy to the left and slowly rotate it to the upper direction.
- 4. When the Guide Arm Assy rotates approximately 45 degree, shift the Assy to the right side direction and remove it.

How to remove the Control Unit

- Give jumper-solder treatment to the Flexible Wire of the Pickup unit, then remove the wire from the Connector.
- 2. Remove all 4 points of solder-treatment on the Lead Wire. Also, unscrew the screw(1 piece).
- 3. Then, Remove the Control unit. (Caution)

Be careful not to damage SW when you reassemble the Control Unit into the device.

How to remove the Loading Arm Assy

- 1. Unlock the spring (1 piece) and remove the E ring (1 piece) of the Fulcrum Shaft.
- 2. Shift the arm to the left side direction and unlock pins (2 pieces).

How to remove the Pickup Unit

- Unscrew 2 pieces of screws, then remove the Pulley Cover.
- 2. Remove the Feed Screw unit from the pawl of the Feed Screw Guide (The pawl is located inside the quide).
- 3. Remove the belt from the Pulley, then remove the Pickup unit.

(Caution)

Pulley Cover

Make sure not to stain the belt with grease when you fix the belt.

● How to remove the Load Carriage Motor Assy

- 1. Unscrew the screw (1 piece).
- 2. Remove the Load Carriage Motor Assy.

● How to remove the Clamp Arm Assy

- 1. Unlock springs (3 pieces).
- 2. Remove the Clamp-Up Lever.
- 3. Remove the Assy in such way that; you shift the Assy to the left side direction while you rotate it to the upper direction slowly.

 Spring

■ How to remove the Spindle Motor

1. Unscrew 2 pieces of screws. Then you can remove the motor.

