Abgabemodalitäten

Abgabetermin: 21.05.2019 15:00 Uhr.

Die Übungsblätter sollen als Gruppe bearbeitet und abgegeben werden.

Um sich als Gruppe für die Übungen anzumelden bitte bis **17.05.2019 12:00** eine Email mit den Namen aller Gruppenmitglieder an johannes.fauser@gris.informatik.tu-darmstadt.de senden. Sie werden dann in Moodle als Gruppe gekennzeichnet.

Laden Sie ihre Lösung bitte in Moodle hoch oder geben Sie ihre Lösung **geheftet** handschriftlich zu Beginn der Übung ab. Bei der handschriftlichen Abgabe bitte Name **und** Matrikelnummer aller Gruppenmitglieder angeben.

Aufgabe 1 Interpolation in verschiedenen Darstellungsformen (5 Punkte)

Gegeben seien drei Stützstellen

$$t_0 = 0$$
, $t_1 = 2$ und $t_2 = 4$

mit den Werten

$$\mathbf{P}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{P}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ und $\mathbf{P}_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

sowie der Grad q = 2.

a) Bestimmen Sie die polynomiale Kurve $\mathbf{P}_M(t) = \sum_{i=0}^q \mathbf{a}_i t^i$ (Monom-Darstellung), welche die Werte an den Stützstellen interpoliert. Werten Sie weitere Punkte der Kurve aus und fertigen Sie eine recht genaue Skizze an.

1 Punkt

b) Bestimmen Sie nun die polynomiale Kurve $\mathbf{P}_L(t) = \sum_{i=0}^q \ell_i(t) \mathbf{P}_i$ (Lagrange-Darstellung), welche die Werte an den Stützstellen interpoliert. Zeigen oder widerlegen Sie, dass $\mathbf{P}_M(t)$

1

und $\mathbf{P}_L(t)$ identisch sind.

1 Punkt

c) Bestimmen Sie nun die polynomiale Kurve $\mathbf{P}_N(t) = \sum_{i=0}^q \omega_i(t) \Delta(t_0,...,t_i)$ (Newton-Darstellung) mit Hilfe des Dreiecksschemas, welche die Werte an den Stützstellen interpoliert. Zeigen oder widerlegen Sie, dass $\mathbf{P}_N(t)$, $\mathbf{P}_M(t)$ und $\mathbf{P}_L(t)$ identisch sind.

1 Punkt

d) Wir nehmen eine vierte Stützstelle $t_3 = 3$ mit Stützpunkt $\mathbf{P}_3 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ hinzu. Welche der drei obigen Darstellungsformen eignet sich besonders gut, um die neue polynomiale Kurve mit geringem Aufwand aufzustellen? Stellen Sie die Gleichung dieser Kurve in Ihrer gewählten Darstellung auf.

2 Punkte

Aufgabe 2 Bernstein-Bézier-Darstellung (5 Punkte)

Vorgegeben sei die folgende polynomiale Kurve vom Grad 3 in Bernstein-Bézier-Darstellung:

$$\mathbf{P}(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} B_{30}(t) + \begin{pmatrix} 4 \\ 6 \end{pmatrix} B_{21}(t) + \begin{pmatrix} 9 \\ 4 \end{pmatrix} B_{12}(t) + \begin{pmatrix} 9 \\ 2 \end{pmatrix} B_{03}(t), \ t \in [0, 2].$$

a) Wenden Sie den de Casteljau-Algorithmus für die Stellen $\xi=1$ und $\xi=3$ an und geben Sie jeweils eine möglichst genaue Skizze über den Verlauf der Kurve an. Zeichnen Sie ebenfalls die berechneten Punkte $\mathbf{b}_{ij}^{[\ell]}$, $i+j=3-\ell$, $\ell=0,\ldots,3$ ein.

2 Punkte

b) Bestimmen Sie mit den Berechnungen aus a) die Bernstein-Bézier-Darstellung von **P** hinsichtlich den Parameterintervallen [0,1], [1,2], [0,3] und [2,3].

1 Punkt

c) Bestimmen Sie mit den Berechnungen aus a) die Werte

$$\mathbf{P}(\xi)$$
, $\mathbf{P}'(\xi)$, $\mathbf{P}''(\xi)$, $\mathbf{P}'''(\xi)$

für $\xi = 1$ und $\xi = 3$.

2 Punkte

Aufgabe 3 Approximation in Bernstein-Bézier-Darstellung (4 Punkte)

In dieser Aufgabe soll eine *approximierende Bernstein-Bézier-Kurve* (d.h. die Kurve interpoliert die Datenpunkte i.A. nicht) $\mathbf{P}(t)$ mit $t \in [a,b] = [0,1]$ berechnet werden. Dabei seien die folgenden Datenpunkte und Parameter vorgegeben:

$$\mathbf{d}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ \mathbf{d}_1 = \begin{pmatrix} 7 \\ 3 \end{pmatrix}, \ \mathbf{d}_2 = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \ \mathbf{d}_3 = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$$
$$t_0 = 0, \quad t_1 = \frac{1}{4}, \quad t_2 = \frac{3}{4}, \quad t_3 = \frac{4}{4}$$

Weiter sei der Grad q = 2 der Bézierkurve vorgegeben.

a) Wieviele Kontrollpunkte und Bernstein-Polynome wird die approximierende Bézierkurve besitzen? Stellen Sie alle Bernstein-Polynome $B_{ij}(t)$ mit obigen Vorgaben auf.

1 Punkt

b) Stellen Sie das Gleichungssystem in der Matrix-Form $\mathbf{d} = \mathbf{B} \cdot \mathbf{b}$ auf, so dass gilt

$$\mathbf{d}_k = \mathbf{P}(t_k) \quad \text{mit} \quad \mathbf{P}(t_k) = \sum_{i+j=q} B_{ij}(t_k) \mathbf{b}_{ij}, \quad k = 0, 1, 2, 3.$$

Berechnen Sie anschließend die Einträge der Matrix **B**. Wieso kann dieses Gleichungssystem nicht direkt gelöst werden?

1 Punkt

c) Aus der linearen Algebra ist bekannt, dass solch ein Gleichungssystem mit folgenden Umformungen im Sinne der kleinsten Fehlerquadrate gelöst werden kann.

$$\mathbf{d} = \mathbf{B} \cdot \mathbf{b}$$

$$\mathbf{B}^{\mathsf{T}} \cdot \mathbf{d} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{B} \cdot \mathbf{b}$$

$$\mathbf{d}^* = \mathbf{B}^* \cdot \mathbf{b}$$

$$(\mathbf{B}^*)^{-1} \cdot \mathbf{d}^* = \mathbf{b}$$

Berechnen Sie die Matrix **B*** und die modifizierten Datenpunkte **d***.

Lösen Sie anschließend das Gleichungssystem und berechnen Sie die Kontrollpunkte b.

1 Punkt

- d) Fertigen Sie eine (erkennbare) Skizze an (mit verschiedenen Farben und / oder Symbolen), welche folgendes enthält:
 - Die Datenpunkte
 - Das Kontrollpolygon mit den Kontrollpunkten der approximierenden Kurve
 - Den Verlauf der approximierenden Kurve

1 Punkt

GDV2 Übungsblatt 2 (20 Punkte)

SoSe 19 30. April 2019

Aufgabe 4 B-Splines vom Grad 2 (6 Punkte)

Der Verlauf einer B-Spline Kurve vom Grad 2 lässt sich einfach per Hand konstruieren und soll hier untersucht werden. Dazu muss das Verhalten der B-Spline-Basisfunktionen genau betrachtet werden.

Gegeben sei ein allgemeiner Knotenvektor eines B-Splines vom Grad 2 im Intervall [a, b] mit k + 1 Spline-Segmenten:

$$\underbrace{x_{-2} = x_{-1}}_{\text{Hilfsknoten}} = \underbrace{x_0 = a}_{\text{Randknoten}} < \underbrace{x_1 < ... < x_k}_{\text{innere Knoten}} < \underbrace{x_{k+1} = b}_{\text{Randknoten}} = \underbrace{x_{k+2} = x_{k+3}}_{\text{Hilfsknoten}}$$

Weiter gehen wir davon aus, dass es keine vielfachen inneren Knoten gibt.

a) Wir wollen das Verhalten des B-Splines an seinen Knoten untersuchen und beginnen mit einem inneren Knoten, welcher nicht zu vielfachen Knoten benachbart ist, also an x_j mit 1 < j < k.

Welche zwei Basisfunktionen $B_i^2(x_j)$ sind am Knoten x_j ungleich 0? Vereinfachen Sie diese zwei Basisfunktionen weitestmöglich, so dass sie nur von den umliegenden Knoten x_{j-1} , x_j und x_{j+1} abhängig sind. Stellen Sie anschließend die B-Spline-Funktion $\mathbf{S}(x_j)$ auf.

1 Punkt

b) Angenommen der Knotenvektor ist uniform, also $x_{i+1} - x_i = \Delta x$ für i = 0, ..., k. Wo liegt der Punkt $\mathbf{S}(x_i)$? Beschreiben Sie die Lage auch in Worten.

1 Punkt

c) Stellen Sie einen beliebigen Knotenvektor auf, so dass

$$\mathbf{S}(x_j) = \frac{4}{6}\mathbf{b}_{j-2} + \frac{2}{6}\mathbf{b}_{j-1}.$$

Welche Knoten sind dabei relevant?

Bemerkung: Wir haben in a) und b) einen Knoten und die Position des zugehörigen Punktes untersucht, welcher **nicht** zu vielfachen Knoten benachbart ist. Bei den Knoten x_1 und x_k setzen sich die Basisfunktionen anders zusammen. Ohne Beweis sei aber vermerkt, dass die Auswertung des B-Splines an x_1 und x_k identisch zu den untersuchten Knoten x_j ist. Für die Randknoten und für vielfache Knoten gelten allerdings andere Vorschriften.

1 Punkt

d) Wir wollen nun die Tangente $\mathbf{S}'(x_j)$ an einem Knoten x_j mit 1 < j < k berechnen. Zur Vereinfachung nehmen wir einen **uniformen** Knotenvektor mit $\Delta x = 1$ an.

Nehmen Sie hierzu die Basisfunktionen aus Aufgabenteil a), bilden Sie die Ableitungen $B_i^{2'}(t)$ der Funktionen und werten Sie diese an $t = x_i$ aus.

Stellen Sie nun die komplette Ableitung $\mathbf{S}'(x_j)$ der B-Spline-Funktion auf und beschreiben Sie die Ausrichtung der Tangente in Worten.

Bemerkung: Die Tangente verändert sich nicht bei einem nicht uniformen Knotenvektor, macht aber die Ableitung wesentlich komplexer. Lediglich die Länge der Tangente ändert sich mit anderem Δx oder nicht uniformen Knotenvektor. Weiter schenken wir uns die Untersuchung der Tangente an den Knoten x_1 und x_k mit benachbarten vielfachen Knoten. Das Ergebnis ist letztendlich das gleiche Tangentenverhalten.

Weiter sei vermerkt, dass ein B-Spline vom Grad 2 und einem doppelten Knoten x_i den Kontrollpunkt \mathbf{b}_{i-1} mit mindestens C^0 -Stetigkeit interpoliert, tangential zu den Geraden des Kontrollpolygons an \mathbf{b}_{i-1} .

1 Punkt

e) Wenden Sie das erlangte Wissen an folgendem Beispiel an. Berücksichtigen Sie dabei die Bemerkungen aus den Aufgabenteilen c) und d).

Gegeben sei ein B-Spline zweiten Grades mit dem Knotenvektor

und den Kontrollpunkten

$$\begin{aligned} \mathbf{b}_{-2} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ , } \mathbf{b}_{-1} &= \begin{pmatrix} 0 \\ 8 \end{pmatrix} \text{ , } \mathbf{b}_{0} &= \begin{pmatrix} 8 \\ 8 \end{pmatrix} \text{ , } \mathbf{b}_{1} &= \begin{pmatrix} 8 \\ 3 \end{pmatrix} \\ \mathbf{b}_{2} &= \begin{pmatrix} 12 \\ 0 \end{pmatrix} \text{ , } \mathbf{b}_{3} &= \begin{pmatrix} 12 \\ 8 \end{pmatrix} \text{ , } \mathbf{b}_{4} &= \begin{pmatrix} 16 \\ 8 \end{pmatrix} \text{ , } \mathbf{b}_{5} &= \begin{pmatrix} 18 \\ 4 \end{pmatrix} \text{ , } \mathbf{b}_{6} &= \begin{pmatrix} 16 \\ 0 \end{pmatrix} \text{ .} \end{aligned}$$

Zeichnen Sie die Punkte und Tangenten des B-Splines an allen Randknoten und inneren Knoten ein. Machen Sie dabei erkenntlich, welcher Punkt zu welchem Knoten gehört. Skizzieren Sie ebenfalls den Verlauf der Kurve.

2 Punkte