Notes on Lagrangian Singular Dynamics

Yi-Fan Wang (王一帆)

April 18, 2017

1 Classical formalism

Lagrangian with velocity

$$L^{\mathbf{v}} := \left. L \right|_{\dot{a} = v} \tag{1.1}$$

Equations of motion

$$\sum_{j} M_{ij} \dot{v}_j = K_i^{\text{v}}, \quad \dot{q}_i = v_i. \tag{1.2}$$

where

$$M_{ij}(q,v) \coloneqq \frac{\partial^2 L}{\partial v_i \, \partial v_j}. \tag{1.3} \label{eq:mass}$$

2 Examples

2.1 Toy examples

Example 0

Gitman and Tyutin 1990, sec. 1.2

$$L = \frac{1}{2}(\dot{x} - y)^2 \tag{2.1}$$

Example 1

$$L = \frac{1}{2}\dot{x}^2 + \dot{x}y - \frac{1}{2}(x - y)^2. \tag{2.2}$$

Example 2

$$L = \frac{1}{2}\dot{x}^2 + \dot{x}y + \frac{1}{2}(x - y)^2$$
 (2.3)

Example 3

$$L = \frac{1}{2}(\dot{q}_2 - \mathbf{e}^{q_1})^2 + \frac{1}{2}(\dot{q}_3 - q_2)^2. \tag{2.4}$$

2.2 Parametrised systems

Non-relativistic point particle

Kiefer 2012, sec. 3.1.1

$$S[q(t)] := \int_{t_0}^{t_1} \mathrm{d}t \, L\!\left(q, \frac{\mathrm{d}q}{\mathrm{d}t}\right) \tag{2.5}$$

Relativistic charged point particle

Landau and Lifshitz 1975, sec. 16, Kiefer 2012, sec. 3.1.2

$$S := \int_{\gamma} -m \, \mathrm{d}s + e A_{\mu}(x) \, \mathrm{d}x^{\mu} =: \int_{\tau_0}^{\tau_1} \mathrm{d}\tau \, L, \tag{2.6}$$

where the Lagrangian reads

$$L = -m\sqrt{-\eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}} + q\dot{x}^{\mu}A_{\mu}(x). \tag{2.7}$$

$$M_{\mu\nu} := \frac{\partial^2 L}{\partial \dot{x}^{\mu} \, \partial \dot{x}^{\nu}} = m \frac{-\eta_{\mu\nu} \eta_{\alpha\beta} + \eta_{\mu\alpha} \eta_{\nu\beta}}{\left(-\eta_{\rho\sigma} \dot{x}^{\rho} \dot{x}^{\sigma}\right)^{3/2}} \dot{x}^{\alpha} \dot{x}^{\beta}, \tag{2.8}$$

which has one and only one zero eigenvector

$$\dot{x}^{\mu}M_{\mu\nu} = 0.$$
 (2.9)

Euler-Lagrange derivatives

$$E_{\mu} = \left(\frac{\partial}{\partial x^{\mu}} - \frac{\mathrm{d}}{\mathrm{d}\tau} \frac{\partial}{\partial \dot{x}^{\mu}}\right) L \equiv K_{\mu} - M_{\mu\nu} \ddot{x}^{\nu}, \tag{2.10}$$

where

$$K_{\mu} := -qF_{\mu\nu}\dot{x}^{\nu},\tag{2.11}$$

and

$$F_{\mu\nu} \coloneqq \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}. \tag{2.12}$$

Contracting the zero eigenvector with eq. (2.10) yields

$$\dot{x}^{\mu}E_{\mu} = \dot{x}^{\mu}K_{\mu} - \dot{x}^{\mu}M_{\mu\nu}\ddot{x}^{\nu} \equiv 0, \tag{2.13}$$

so that it generates a gauge identity, and no further constraint exists. Thus the system has a symmetry

$$\delta x^{\mu} = \dot{x}^{\mu} \delta \lambda. \tag{2.14}$$

Relativistic point particle with auxiliary coordinate

Blumenhagen, Lüst, and Theisen 2013, sec. 2.1

$$L := \frac{1}{2} \left(e^{-1} \eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} - m^2 e \right) \tag{2.15}$$

Euler-Lagrange derivatives

$$E_{\mu} := \left(\frac{\partial}{\partial x^{\mu}} - \frac{\mathbb{d}}{\mathbb{d}\tau} \frac{\partial}{\partial \dot{x}^{\mu}}\right) L = e^{-1} \eta_{\mu\nu} \left(\frac{\dot{e}}{e} \dot{x}^{\nu} - \ddot{x}^{\nu}\right), \tag{2.16}$$

$$E_e := \left(\frac{\partial}{\partial e} - \frac{\mathrm{d}}{\mathrm{d}\tau} \frac{\partial}{\partial \dot{e}}\right) L = -\frac{1}{2} \left(\frac{1}{e^2} \eta_{\mu\nu} \dot{x}^\mu \dot{x}^\nu + m^2\right), \tag{2.17}$$

and collectively $E^{(0)} = \begin{pmatrix} E_{\mu} & E_{e} \end{pmatrix}^{\mathsf{T}}$.

$$M^{(0)} := M = \begin{pmatrix} e^{-1} \eta_{\mu\nu} & 0^{\mu} \\ 0^{\nu} & 0 \end{pmatrix}, \tag{2.18}$$

so that the system is singular, with $w^{(0)} = (0^{\mu}; 1)$.

One can choose $u^{(0)} = (0^{\mu}; e^2)$, so that

$$\phi^{(0)} := u^{(0)} \cdot E^{(0)} = e^2 E_e \tag{2.19}$$

$$= -\frac{1}{2} (\eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} + m^2 e^2), \tag{2.20}$$

and thus

$$E_1^{(1)} \coloneqq \dot{\phi}^{(0)} = e \big(2 \dot{e} E_e + e \dot{E}_e \big) \tag{2.21}$$

$$=-m^2e\dot{e}-\eta_{\mu\nu}\dot{x}^{\mu}\ddot{x}^{\nu}.$$
 (2.22)

 $\begin{aligned} \text{Collectively, } E^{(1)} &= \left(\left(E^{(0)} \right)^{\mathsf{T}} \quad E_1^{(1)} \right)^{\mathsf{T}}. \\ \text{Straightforwardly,} \end{aligned}$

$$M^{(1)} = \begin{pmatrix} e^{-1} \eta_{\mu\nu} & 0^{\mu} \\ 0^{\nu} & 0 \\ \eta_{\mu\nu} \dot{x}^{\mu} & 0 \end{pmatrix}, \tag{2.23}$$

and the new zero eigenvector $w^{(1)}=(e\dot{x}^{\mu};0,-1).$

One finds that

$$w^{(1)} \cdot E^{(1)} = e \dot{x}^{\mu} E_{\mu} - E_{1}^{(1)} = e \big(\dot{x}^{\mu} E_{\mu} - 2 \dot{e} E_{e} - e \dot{E}_{e} \big) \eqno(2.24)$$

$$= \eta_{\mu\nu} \frac{\dot{e}}{e} \dot{x}^{\mu} \dot{x}^{\nu} + m^2 e \dot{e} = -2e \dot{e} E_e, \tag{2.25}$$

so that a gauge identity

$$G := \dot{x}^{\mu} E_{\mu} - e \dot{E}_{e} \equiv 0 \tag{2.26}$$

is obtained.

$$G\epsilon = E_{\mu}\dot{x}^{\mu}\epsilon + E_{e}(\dot{e}\epsilon + e\dot{\epsilon}) - \frac{\mathbb{d}}{\mathbb{d}\tau}(eE_{e}\epsilon), \tag{2.27}$$

so that

$$\delta x^{\mu} = \dot{x}^{\mu} \epsilon, \tag{2.28}$$

$$\delta e = \dot{e}\epsilon + e\dot{\epsilon}.\tag{2.29}$$

2.2.1 Neutral scalar field

Kiefer 2012, sec. 3.3

2.3 Maxwell-Proca theory

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m^2A_{\mu}A^{\mu} + A_{\mu}J^{\mu}$$
 (2.30)

where m>0 corresponds to the Proca theory Gitman and Tyutin 1990, sec. 2.3, and m=0 the Maxwell theory H. J. Rothe and K. D. Rothe 2010, sec. 3.3.3, Gitman and Tyutin 1990, sec. 2.4.

$$\mathcal{L} \equiv \frac{1}{2} \left(-\eta^{\alpha\beta} \eta^{\mu\nu} + \eta^{\alpha\nu} \eta^{\beta^{\mu}} \right) \left(\partial_{\mu} A_{\alpha} \right) \left(\partial_{\nu} A_{\beta} \right) - \frac{1}{2} m^2 \eta^{\alpha\beta} A_{\alpha} A_{\beta} + A_{\alpha} J^{\alpha} \tag{2.31}$$

$$\begin{split} E^{\alpha} &= \left(\frac{\partial}{\partial A_{\alpha}} - \partial_{\mu} \frac{\partial}{\partial (\partial_{\mu} A_{\alpha})} \right) \mathcal{L} \\ &= -m^{2} A_{\beta} \eta^{\alpha\beta} + J^{\alpha} - (-\eta^{\alpha\beta} \eta^{\mu\nu} + \eta^{\alpha\nu} \eta^{\beta^{\mu}}) \partial_{\mu} \partial_{\nu} A_{\beta}. \end{split} \tag{2.32}$$

2.4 String theories

Nambu-Gotō action

Generalising the kinetic part of (2.6), one has

$$S_{\text{NG}} := -T \int_{\Sigma} dA =: -T \int_{\Sigma} d^2 \sigma \mathcal{L}, \tag{2.33}$$

where the Lagrangian density

$$\mathcal{L} = \sqrt{-\Gamma}, \quad \Gamma := \det \Gamma_{\alpha\beta}, \quad \Gamma_{\alpha\beta} := \frac{\partial X^{\nu}}{\partial \sigma^{\alpha}} \frac{\partial X_{\nu}}{\partial \sigma^{\alpha}}. \tag{2.34}$$

Historically Gotō 1971; Nambu 1970; Reference e.g. Blumenhagen, Lüst, and Theisen 2013 Kiefer 2012, sec. 3.2

Polyakov action

Generalising (2.15)

$$S_{\mathbf{P}}[X^{\mu}, h\alpha\beta] = -\frac{T}{2} \int_{\Sigma} \mathcal{L}, \qquad (2.35)$$

where

$$\mathcal{L} := \sqrt{-h} h^{\alpha\beta} \Gamma_{\alpha\beta}. \tag{2.36}$$

Historically Brink, Di Vecchia, and Howe 1976; Deser and Zumino 1976; Polyakov 1981; Reference Kiefer 2012, sec. 3.2

References

- Blumenhagen, Ralph, Dieter Lüst, and Stefan Theisen (2013). *Basic Concepts of String Theory*. Theoretical and Mathematical Physics. Springer. ISBN: http://id.crossref.org/isbn/978-3-642-29497-6. DOI: 10.1007/978-3-642-29497-6. URL: http://dx.doi.org/10.1007/978-3-642-29497-6.
- Brink, L., P. Di Vecchia, and P. Howe (1976). "A locally supersymmetric and reparametrization invariant action for the spinning string". In: *Physics Letters B* 65.5, pp. 471–474. ISSN: 0370-2693. DOI: 10.1016/0370-2693(76)90445-7. URL: http://dx.doi.org/10.1016/0370-2693(76)90445-7.
- Deser, S. and B. Zumino (1976). "A complete action for the spinning string". In: *Physics Letters B* 65.4, pp. 369–373. ISSN: 0370-2693. DOI: 10.1016/0370-2693(76)90245-8. URL: http://dx.doi.org/10.1016/0370-2693(76)90245-8.
- Gitman, Dmitriy M. and Igor V. Tyutin (1990). Quantization of Fields with Constraints. Springer Series in Nuclear and Particle Physics. Springer Berlin Heidelberg. ISBN: http://id.crossref.org/isbn/978-3-642-83938-2. DOI: 10.1007/978-3-642-83938-2. URL: http://dx.doi.org/10.1007/978-3-642-83938-2. Дмитрий Максимович Гитман and Игорь Викторович Тютин. Каноническое квантование полей со связями. 030077 г. 11овосибирск-77, Станиславского, 25: Наука, 1986.
- Gotō, Tetsuo (1971). "Relativistic Quantum Mechanics of One-Dimensional Mechanical Continuum and Subsidiary Condition of Dual Resonance Model". In: *Progress of Theoretical Physics* 46.5, pp. 1560–1569. ISSN: 0033-068X. DOI: 10. 1143/ptp.46.1560. URL: http://dx.doi.org/10.1143/PTP.46.1560.
- Kiefer, Claus (2012). Quantum Gravity. 3rd. International Series of Monographs on Physics. Oxford University Press. ISBN: http://id.crossref.org/isbn/9780199585205. DOI: 10.1093/acprof:oso/9780199585205.001.0001. URL: http://dx.doi.org/10.1093/acprof:oso/9780199585205.001.0001.
- Landau, Lev Davidovich and Evgeny Mikhailovich Lifshitz (1975). *The Classical Theory of Fields*. 4th. Vol. 2. Course of Theoretical Physics. Butterworth-Heinemann. ISBN: http://id.crossref.org/isbn/9780080250724. DOI: 10.1016/c2009-0-14608-1. URL: http://dx.doi.org/10.1016/c2009-0-14608-1.

- Nambu, Yoichiro (1970). "Quark model and the factorization of the Veneziano amplitude". In: *Symmetries and Quark Models*. Ed. by R. Chand. International Conference on Symmetries and Quark Models, Wayne State U., Detroit Detroit, Mich., USA, June 18-20, 1969, pp. 269–278.
- Polyakov, A.M. (1981). "Quantum geometry of bosonic strings". In: *Physics Letters B* 103.3, pp. 207–210. ISSN: 0370-2693. DOI: 10.1016/0370-2693(81)90743-7. URL: http://dx.doi.org/10.1016/0370-2693(81)90743-7.
- Rothe, Heinz J and Klaus D Rothe (2010). Classical and Quantum Dynamics of Constrained Hamiltonian Systems. World Scientific Lecture Notes in Physics. World Scientific. ISBN: http://id.crossref.org/isbn/978-981-4299-65-7. DOI: 10.1142/7689. URL: http://dx.doi.org/10.1142/7689.