

COURSEPACK

SCHEME

The scheme is an overview of work-integrated learning opportunities and gets students out into the real world. This will give what a course entails.

Course Title	Theory of Comp	utation		Cou	Course Type Elective				
Course Code	E2UC501T			Clas	SS		B.T	B.Tech(Sem-V)	
	Activity	Weekly Hours	Tota			-		sment in	
	Lecture	3	3	Clas	ses p	er S	emester	emester Weightage	
Instruction delivery	Tutorial	0	0	ıry	Tutorial	Practical	b.		
ľ	Practical	0	0	Theory		rac	Self- study	CIE	SEE
	Self-study	0	6		L		SO SO		%
	Total	3	3	45	0	0	90	50%	50%
Course Lead	Mr. Mithlesh Ku	mar Yadav	Course Coordinator	Mr. I	Mr. Raj Kumar Parida				
Names of	r	Гheory		Practical					
Course	Dr. Pooja								
Instructors	Mr. V. Gokul Ra Mr. Mithlesh Yad Mr. Raj Kumar F DR. Shruti Sachd Mr. Sheo Kumar Dr. Anil Gankoti Dr. Ragini Kuma Dr. Arvind Dagu Dr. Pradeep Bed Dr. P Sudhakar Dr. Tarun Kuma Mr. Pradeep Cha Dr. Aanjey Mani	dav Parida deva Tya Iri r di r auhan							

COURSE OVERVIEW

This course emphasizes computability and computational complexity theory. Topics include regular language, context-free languages, decidable and undecidable problems, reducibility, recursive function theory, completeness, hierarchy theorems, inherently complex problems, and interactive proof systems.

PREREQUISITE COURSE

PREREQUISITE COURSE REQUIRED	YES	
If, yes please fill in the Details	Prerequisite course code	Prerequisite course name
		Discrete Mathematics

COURSE OBJECTIVE

This Course will introduce students to Design automata, regular expressions and context free grammars for accepting or generating a certain language. To classify machines by their power to recognize languages and comprehend the hierarchy of problems.

COURSE OUTCOMES (Cos)

After the completion of the course, the student will be able to:

E2UC501T.1	Prove Mathematical Induction problems.
	Construct regular expressions for different languages and create Deterministic Finite Automata (DFA) and Non Deterministic Finite Automata Machine.
E2UC501T.3	Model Push Down Automata (PDA) for Context Free Languages (CFLs).
E2UC501T.4	Design Turing Machine for various recursive enumerable languages.

BLOOM'S LEVEL OF THE COURSE OUTCOMES

CO No.	Remember KL1	Understand KL 2	Apply KL 3	Analyze KL 4	Evaluate KL 5	Create KL 6
E2UC501T.1			J			
E2UC501T.2			J			
E2UC501T .3			J			
E2UC501T.4			J			Ţ

PROGRAM OUTCOMES (POs):

PO1 Computing Science knowledge: Apply the knowledge of mathematics, statistics, computing science and information science fundamentals to the solution of complex computer application problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex computing science problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and computer sciences.

PO3 Design/development of solutions: Design solutions for complex computing problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern computing science and IT tools including prediction and modeling to complex computing activities with an understanding of the limitations.

PO6 IT specialist and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional computing science and information science practice.

PO7 Environment and sustainability: Understand the impact of the professional computing sciencesolutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and normsof the computing science practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the IT analyst community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the computing science and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOME (PSO):

PSO1: Have the ability to work with emerging technologies in computing requisite to Industry 4.0.

PSO2: Demonstrate Engineering Practice learned through industry internship and research project tosolve live problems in various domains.

COs#/ POs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
E2UC501T.1	2	1	1											
E2UC501T.2	2	2	1											
E2UC501T.3	2	2	2											
E2UC501T.4	2	2	2		1							1		

COURSE ARTICULATION MATRIX

Note: 1-Low, 2-Medium, 3-High

COURSE ASSESSMENT

The course assessment patterns are the assessment tools used both in formative and summative examinations.

Type of		CIE			S	Final Marks
Course (T)	IA1# (Assignment)	MTE	IA2 [#] (Assignment)	CIE SEE CIE*0.5		CIE*0.5+SEE*0.5
THEORY	25	50	25	100	100	100

^{*}Assignment, Quiz, Class test, SWAYAM/NPTEL/MOOCs and etc.

COURSE CONTENT

ויו	Ц		(D	V	
	п	III.	u	אי	- 1	

			4			4
	OI	n	T	21	n	т
•	.,,		u	_		L

FINITE AUTOMATA (**FA**): Introduction, Proof Techniques, Deterministic Finite Automata (DFA) -Formal definition, simpler notations (state transition diagram, transition table), language of a DFA. Nondeterministic Finite Automata (NFA)- Definition of NFA, language of an NFA, Equivalence of Deterministic and Nondeterministic Finite Automata, Applications of Finite Automata, Finite Automata with Epsilon Transitions, Eliminating Epsilon transitions, Minimization of Deterministic Finite Automata, Finite automata with output (Moore and Mealy machines)

REGULAR EXPRESSIONS (RE): Introduction, Identities of Regular Expressions, Finite Automata and Regular Expressions- Converting from DFA's to Regular Expressions, Converting Regular Expressions to Automata, applications of Regular Expressions.

REGULAR GRAMMARS: Definition, regular grammars and FA, FA for regular grammar, Regular grammar for FA. Proving languages to be non-regular -Pumping lemma, applications, and Closure properties of regular languages.

CONTEXT FREE GRAMMER (CFG): Derivation Trees, Sentential Forms, Rightmost and Leftmost derivations of Strings. Ambiguity in CFG's, Minimization of CFG's, CNF, GNF, Pumping Lemma for CFL's, Enumeration of Properties of CFL (Proof's omitted).

PUSHDOWN AUTOMATA: Definition, Model, Acceptance of CFL, Acceptance by Final State and Acceptance by Empty stack and its Equivalence, Equivalence of CFG and PDA. TURING MACHINES (TM): Formal definition and behaviour, Languages of a TM, TM as accepters, and TM as a computer of integer functions, Types of TMs.

RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES (REL): Properties of recursive and recursively enumerable languages, Universal Turing machine, The Halting problem, Undecidable problems about TMs. Context sensitive language and linear bounded automata (LBA), Chomsky hierarchy, Decidability, Post's correspondence problem (PCP), un-decidability of PCP.

LESSON PLAN FOR THEORY COURSES (THEORY AND TUTORIAL CLASSES)

FOR THEORY 15 weeks * 3 Hours = 45 Classes (1credit = 1 Lecture Hour)

L-No	Topic for Delivery	Tutorial/ Practical Plan	Skill	Competency
1	Introduction	NA		
1	Background on Sets, Relations		Write and	
2	and Graphs		Understand	
	Background on different types of		Mathematic	
	mathematical proofs: Deductive,		al Proof	CO1
	Contradiction, Induction,			
3	Contrapositive.			
	Formal Definition of			
4	Deterministic Finite Automata			
5	State transition Diagram		Formal	
	Examples of languages accepted		Definition	
6	by DFA Using JFlap	NA	Of DFA	
7	NFA formal definition			
	Language accepted by NFA		Constructio	
8	Using JFlap		n of State	
9	NFA with epsilon transition		Transition	
10	Elimination of epsilon transition	NA	Diagram	
	Equivalence of DFA and NFA			
11	Using JFlap		Minimizati	
	Minimization of DFA Using		on of	
12	JFlap	NA	Automata	
			Construct	
			equivalent	
			automata	
			with	
1.0	Minimization of DFA and	37.4	possibly	
13	Myhill Nerode Theorem	NA	fewer states	
1.4	FA with output Moore and			
14	Mealy machine		Constructing	
	Interconversion of Moore and		automata	
15	Mealy machine	NA	with output	
16	Regular Expression Introduction	2 12 2	output	
17	Regular Expression Introduction			
18	DFA to Regular Expression		Conversion	
19	DFA to Regular Expression		from	
20	Regular Expression to DFA		regular	
	1	NT A	expression	CO2
21	Regular Expression to DFA	NA	to DFA	CO2

Algebraic Laws for Regular 22 Expressions Pumping Lemma for Regular 23 Languages Pumping Lemma for Regular 24 Languages Closure Properties of Regular 25 Languages Decision Properties of Regular 26 Languages Equivalence and Minimization 27 of Automata Context-Free Grammars Introduction, Leftmost and 28 Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA of CFG Inference, Derivation and Parse Inference, Derivation and Parse Inference, Derivation and Parse Inference, Official State of CFG Ambiguous Grammar and 28 removing ambiguity NA Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) Introduction 35 Language of PDA Designing Designing Designing Designing Designing Designing Designing Deciding Which languages Analyze An				T	
Pumping Lemma for Regular 23 Languages Pumping Lemma for Regular 24 Languages Closure Properties of Regular 25 Languages Decision Properties of Regular 26 Languages Equivalence and Minimization 27 of Automata Context-Free Grammars Introduction, Leftmost and 28 Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA of CFG Derivations and Parse trees for Threes NA CFG Ambiguous Grammar and removing ambiguity NA Applications of Context Free 31 Language YACC parser Push Down Automata (PDA) Al Introduction 35 Language of PDA Designing Designing Designing Deciding Which languages Rightmost Derivation Deciding Which languages Robert Properties Closure and Decision Properties Turing Closure and Decision Properties Analyze Properties of Regular Analyze Analyze Analyze Analyze Analyze Analyze Analyze Properties of Regular Analyze Analyze Properties of Regular Analyze Anal		Algebraic Laws for Regular			
23	22	1			
Pumping Lemma for Regular Languages Closure Properties of Regular Decision Properties of Regular Changuages Decision Properties of Regular Changuages Decision Properties of Regular Changuages Equivalence and Minimization Tof Automata Context-Free Grammars Introduction, Leftmost and Rightmost Derivation Parse Trees NA of CFG Derivations Ambiguous Grammar and Trees NA of CFG Ambiguous Grammar and Parse trees of CFG Ambiguous Grammar and CPFG Ambiguous Grammar and Applications of Context Free Bush Down Automata (PDA) Introduction Bliminating epsilon, useless and unit production Bliminating epsilon, useless and unit production Conversion Bliminating epsilon, useless and unit production Conversion Bliminating Lemma for CFL NA CFL Closure and Decision Properties Closure and Decision Properties Closure and Decision Properties Analyze Properties Analyze Properties Of Regular Analyze Properties Properties Of Regular Analyze Properties Of Regular Derivation Shall Languages Analyze Properties Of Regular Derivation Analyze Properties Of Regular Derivation Shall Languages Analyze Properties Of Regular Derivation Shall Languages Analyze Properties Of Regular Derivation Shall Analyze Properties Of Regular Derivation Shall Analyze Properties Of Regular Derivation Shall Analyze Derivation Shall Analyze Properties Of Regular Derivation Shall Analyze Derivation Shall Analyze Properties Of Regular Derivation Shall Analyze Properties Of Regular NA Languages Analyze Derivation Shall Analyze Properties Of Regular NA Languages Analyze Derivation Shall Analyze Properties Of Regular NA Languages Analyze Derivati					
Closure Properties of Regular Closure Properties of Regular	23	<u> </u>			
Closure Properties of Regular 25 Languages Decision Properties of Regular 26 Languages Fequivalence and Minimization 27 of Automata Context-Free Grammars Introduction, Leftmost and Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA of CFG Ambiguous Grammar and 27 emoving ambiguity Applications of Context Free 31 Trees NA of CFG Ambiguous Grammar and 28 removing ambiguity NA Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) Al Introduction 35 Language of PDA Designing Deciding Which Languages are Not Conversion Lo normal To form NA CFL Closure and Decision Properties Turing Closure and Decision Properties Turing Analyze Properties Froperties Of Regular Languages Of Regular Languages NA Languages NA Derivation Derivation And Parse trees for NA CFG Ambiguous Grammar and Serious Application NA Deciding Which Language Of POA NA Deciding Which Languages Are Not CFL To formally describe computatio ns by a Turing		Pumping Lemma for Regular			
Decision Properties of Regular Decision Properties of Regular	24				
Decision Properties of Regular 26 Languages NA Languages		Closure Properties of Regular		Analyze	
Equivalence and Minimization of Automata Context-Free Grammars Introduction, Leftmost and Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA of CFG Inference, Derivation and Parse Inference, Derivation and Pa	25	Languages		Properties	
Equivalence and Minimization 27 of Automata Context-Free Grammars Introduction, Leftmost and 28 Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA of CFG Derivations and Parse Inference, Derivation and Parse 31 Trees NA CFG Ambiguous Grammar and 32 removing ambiguity NA Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Bliminating epsilon, useless and unit production 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computatio ns by a Closure and Decision Properties Turing		Decision Properties of Regular		of Regular	
Context-Free Grammars Introduction, Leftmost and 28 Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA Derivation 30 Parse Trees NA Derivation 30 Parse Trees NA Derivation 31 Trees NA CFG Ambiguous Grammar and 32 removing ambiguity NA Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA Designing De	26	Languages	NA	Languages	
Context-Free Grammars Introduction, Leftmost and 28 Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA of CFG Derivations and Parse Inference, Derivation Inference, Deriva		Equivalence and Minimization			
Introduction, Leftmost and Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA Derivation Derivation Derivation and Parse trees for Trees NA CFG Ambiguous Grammar and removing ambiguity Applications of Context Free 31 Language YACC parser Push Down Automata (PDA) Introduction 35 Language of PDA 36 DPDA and CFG Derivations NA Applications S of CFG PDA Conversion to normal form NA Deciding which languages are Not CFL To formally describe computation s by a Closure and Decision Properties Turing	27	of Automata			
28 Rightmost Derivation 29 Language of a Grammar 30 Parse Trees NA of CFG Derivations and Parse trees for CFG Inference, Derivation and Parse 31 Trees NA CFG Ambiguous Grammar and removing ambiguity NA Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) Introduction 35 Language of PDA 36 DPDA and CFG Designing PDA 37 Unit production 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computation so by a Closure and Decision Properties Closure and Decision Properties Derivation Derivation Derivation Derivation Derivation AN A CFG NA CFG Application Applica		Context-Free Grammars			
29 Language of a Grammar 30 Parse Trees NA of CFG Derivation of CFG Derivations and Parse trees for Trees NA CFG Ambiguous Grammar and removing ambiguity NA Applications of Context Free Language YACC parser Push Down Automata (PDA) Introduction Designing Designing Designing Designing Designing Designing NA PDA Conversion to normal form Deciding which languages are Not Shows Normal Form Deciding which languages are Not CFL Closure and Decision Properties Closure and Decision Properties Derivation Of CFG Derivations Applications Application NA Application Designing Designing Designing NA Deciding Which languages are Not CFL To formally describe computatio ns by a Turing		Introduction, Leftmost and			
Derivations and Parse trees NA Of CFG	28	Rightmost Derivation			
Derivations and Parse trees NA Of CFG	29	Language of a Grammar		Derivation	
Inference, Derivation and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference, Derivations and Parse Trees Inference Infere	30		NA		
Inference, Derivation and Parse 31 Trees Ambiguous Grammar and 32 removing ambiguity Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Pliminating epsilon, useless and unit production 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computation so by a Closure and Decision Properties Application NA Application Application Sof CFG Push Down Automata (PDA) Application NA Designing Designing Conversion to normal form NA Conversion To formally describe computation Turing		1100	1.111	01 01 0	
Inference, Derivation and Parse 31 Trees Ambiguous Grammar and 32 removing ambiguity Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Pliminating epsilon, useless and unit production 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computation so by a Closure and Decision Properties Application NA Application Application Sof CFG Push Down Automata (PDA) Application NA Designing Designing Conversion to normal form NA Conversion To formally describe computation Turing					
Inference, Derivation and Parse Trees NA CFG Ambiguous Grammar and 32 removing ambiguity NA Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Eliminating epsilon, useless and unit production 38 Chomsky Normal Form NA Deciding which languages are Not 39 Pumping Lemma for CFL NA Closure and Decision Properties Turing					
31 Trees Ambiguous Grammar and 32 removing ambiguity Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Eliminating epsilon, useless and unit production 38 Chomsky Normal Form Deciding which languages are Not 39 Pumping Lemma for CFL NA CFG NA CFG NA Deciding which languages are Not CFL To formally describe computatio ns by a Closure and Decision Properties Closure and Decision Properties					
Ambiguous Grammar and removing ambiguity Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Eliminating epsilon, useless and unit production 38 Chomsky Normal Form Deciding which languages are Not CFL To formally describe computation so by a Closure and Decision Properties Application Application Sof CFG Application Applicatio					
32 removing ambiguity Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Eliminating epsilon, useless and an unit production 38 Chomsky Normal Form NA Deciding which languages are Not 39 Pumping Lemma for CFL NA Closure and Decision Properties NA Closure and Decision Properties NA Application Applic	31		NA	CFG	
Applications of Context Free 33 Language YACC parser Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG Eliminating epsilon, useless and 37 unit production 38 Chomsky Normal Form NA Deciding which languages are Not 39 Pumping Lemma for CFL NA Closure and Decision Properties Application so f CFG NA Designing NA Designing NA Deciding Which languages Application Sof CFG NA Designing NA Conversion To formally describe computation In the production of the properties of					
33 Language YACC parser NA S of CFG Push Down Automata (PDA) 34 Introduction 35 Language of PDA Designing 36 DPDA and CFG NA PDA Eliminating epsilon, useless and unit production 38 Chomsky Normal Form NA Deciding which languages are Not 39 Pumping Lemma for CFL NA CFL To formally describe Computation Sof CFG Conversion Convers	32		NA		
Push Down Automata (PDA) 34 Introduction 35 Language of PDA 36 DPDA and CFG NA PDA Conversion to normal form 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computatio ns by a Turing		* *			
34 Introduction 35 Language of PDA Designing D	33		NA	s of CFG	
35 Language of PDA 36 DPDA and CFG NA PDA Conversion to normal form 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computatio ns by a Closure and Decision Properties Turing					
36 DPDA and CFG Eliminating epsilon, useless and an ito normal form 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computation is by a Closure and Decision Properties Conversion to normal form NA Deciding which languages are Not CFL To formally describe computation is by a Turing	-				
Eliminating epsilon, useless and 37 unit production 38 Chomsky Normal Form NA Deciding which languages are Not CFL To formally describe computatio ns by a Closure and Decision Properties Conversion to normal form NA Deciding which languages are Not CFL To formally describe computatio ns by a Turing	35	<u> </u>		Designing	
Eliminating epsilon, useless and unit production 38 Chomsky Normal Form Deciding which languages are Not CFL To formally describe computatio as by a Closure and Decision Properties To normal form To normal form NA Closure and Decision Properties	36	DPDA and CFG	NA	PDA	
37 unit production 38 Chomsky Normal Form Deciding which languages are Not CFL To formally describe computatio ns by a Closure and Decision Properties form NA Deciding which languages are Not CFL To formally describe computatio ns by a Turing				Conversion	
38 Chomsky Normal Form Deciding which languages are Not Pumping Lemma for CFL NA CFL To formally describe computatio ns by a Closure and Decision Properties Turing				to normal	
Deciding which languages are Not 39 Pumping Lemma for CFL NA CFL To formally describe computation is by a Closure and Decision Properties Closure Turing	37	unit production		form	
Deciding which languages are Not 39 Pumping Lemma for CFL NA CFL To formally describe computation is by a Closure and Decision Properties Closure Turing	38	Chomsky Normal Form	NA	<u> </u>	
39 Pumping Lemma for CFL NA CFL To formally describe computation ns by a Closure and Decision Properties To formally describe computation ns by a Turing				Deciding	
are Not CFL To formally describe computatio ns by a Closure and Decision Properties To formally describe computation ns by a Turing				which	
are Not CFL To formally describe computatio ns by a Closure and Decision Properties To formally describe computation ns by a Turing				languages	
To formally describe computatio ns by a Closure and Decision Properties					
To formally describe computatio ns by a Closure and Decision Properties Turing	39	Pumping Lemma for CFL	NA	CFL	
describe computatio ns by a Closure and Decision Properties Turing					
computatio ns by a Closure and Decision Properties Turing				To formally	
computatio ns by a Closure and Decision Properties Turing				•	
Closure and Decision Properties ruring					
Closure and Decision Properties Turing				_	
		Closure and Decision Properties		_	
	40	-	NA	_	CO3

41	Turing Machine			
	Recursive and Recursive		То	
42	enumerable sets		recognize	
43	Undecidability		undecidabl	
44	Undecidability	NA	e languages	
			Analysis of	
			complexity	
	Post's correspondence problem		of	
45	(PCP)	NA	languages	CO4

BIBLIOGRAPHY

Text Book

Introduction to Automata Theory, Languages and Computation 3rd Edition by John E Hopcroft, Rajeev Motwani and Jeffrey D. Ullman [Availaible Online]

Reference Books

Introduction to the Theory of Computation Second Edition by Michael Sipser [Availaible Online]

Introduction to Formal Languages, Automata Theory and Computation by Kamala Krithivasan and Rama R

Journals/Magazines/Govt.Reports/Gazette/Industry Trends https://theory.report

https://thmatters.wordpress.com/tcs-blogs/

ALGORITHMICA, Springer Publications [Journal]

THEORY OF COMPUTATION, Elsevier [Journal]

We bliography (Two electronic documents or websites that relate to the Course)

https://math.mit.edu/~sipser/18404/

https://www.math.ias.edu/avi/book

https://cs-people.bu.edu/mbun/courses/332_F21/

SWAYAM/NPTEL/MOOCs Certification (One from Each Platform, Max 3 Platforms)

https://onlinecourses.nptel.ac.in/noc21_cs83/preview

PROBLEM-BASED LEARNING

Exercises in Problem-based Learning (Assignments)

SNo	ses in Problem-b	aseu Learning (Assignments) Problem					
1	Prove that the su	m of first n noture	al numbers is equal					
1			•					
2		, , , ,	ba, ab, bab} find 1	•				
3	Find SUFIX and	PREFIX of the st	ring "GALGOTIA	SUNIVERSITY".				
4	Explain proof by construction, proof by contradiction and proof by induction through examples.							
5	Design DFA for the following language over input alphabet (a,b): L = String doesn't start with aab. Using JFlap.							
6	Design DFA for the following language over input alphabet (a,b): L = Starting with a and end with b. Using JFlap.							
7			guage over input a 1's. Using JFlap.	lphabet(0,1):				
8				t of the binary input.				
9	How do you remo	ove epsilon transi	tions from an NFA	?				
10	Prove that regular	r languages is clo	sed under union, in	ntersection.				
11	Design DFA for t	he following Lan	guage over input a	lphabet(0.1)·				
	Design DFA for the following Language over input alphabet(0,1): L = Starting with 01 and end with 10. Using JFlap.							
12	Design DFA where String does not end with 001. Using JFlap.							
12	Give formal desc	ription of Pumpin	g Lemma for Regu	ılar Languages.				
13	Convert ε-NFA to	o DFA of the give	en State Diagram. A	And Show the Step by	Step Process.			
	$ \begin{array}{c c} \hline & & & & & \\ \hline Start & & & & \\ \hline & & & & \\ $							
14	Define – Moore machine:	machine. Conve	ert the following	Moore machine into	its equivalent Mealy			
	Present Input Input Output							
	State	0	1					
	A	A	В	0				
	L	l						

	В	С	В	1	
	С	В	С	0	
	D	С	С	1	
15	Given a CFL. How would you construct a PDA for it?				
16	Explain derivation of a CFL sentence from a CFG through example.				
17	What are Type 0, Type 1 and Type 2 languages?				
18	S -> aSS / aSaS/ aSab b find left factoring for the given grammar.				
19	Apply Pumping Lemma for CFL to show a certain language is not CFL				
20	Check whether string W \in L(G) or not using membership algorithm. W = baab S -> AB A -> BB a B -> AB b				
21	What are ambiguous grammar? Explain through examples				
22	Convert Context Free Grammar to GNF (Greibach normal form) . S -> CB / AB A -> a / AA B -> b				
23	C -> d Write Context Free Grammar for the following languages: i) L={an bn n>=1}				
24	ii) L={am bn m=2n, n>=0} What are recursive enumerable and recursive language?				
25	Prove equivalence between PDA with two stacks and TMs				
26	Explain Church Turing Thesis.				
27	What are decidable and undecidable languages? Give Examples				
28	Design a PDA, a to accept $L = \{ a2n bn n \ge 1 \}$				
29	Write Context Free Grammar for the language $L=\{a_m b_n m=2n, n>=0\}$.				
30	Construct the DPDA Machine for language L={a m b n c m m, n>=0}.				
31	Prove that the following language is ambiguous and convert into unambiguous $S \rightarrow S + S \mid S * S \mid a \mid b$ Where $W = a + a * b$.				
32	Design a Turing Machine to convert the Binary value to 2's Complement.				
33	Recursive Enumerable Languages are Decidable in case of Emptiness, Finiteness and Equivalence. TRUE / FALSE. Justify your answer.				

COURSEPACK

34	Construct the Turing Machine for language $L = \{W C W \mid W \in (0, 1)^*\}.$		
35	Design the Turing Machine for the Language L={a n b n c n n>=0}		
36	Construct the Turing Machine to implement adder for unary value.		
37	What is PCP problem? Is it decidable or undecidable?		
38	Prove that PCP is undecidable?		
39	Differentiate between Decidable and Undecidable problem.		
40	Identify the language $L=\{a \land x \text{ where } x \text{ is a prime number}\}.$		