Chapter 36 MIPI CSI-2 Host Controller

36.1 Overview

The CSI-2 Host Controller implements the CSI-2 protocol on the host side. The CSI-2 link protocol specification is a part of communication protocols defined by MIPI Alliance standards intended for mobile system chip-to-chip communications. The CSI-2 specification is for the image application processor communication in cameras.

The CSI-2 Host Controller is designed to receive data from a CSI-2 compliant camera sensor. A D-PHY configured as a Slave acts as the physical layer.

The MIPI CSI-2 Host Controller supports the following features:

- Compliant with MIPI Alliance Specification for CSI-2, Version 1.01.00-9 November 2010
- Interface with MIPI D-PHY following PHY Protocol Interface, as defined in MIPI Alliance Specification for D-PHY, Version 1.1-7 November 2011
- Up to four D-PHY RX data lanes
- Dynamically configurable multi-lane merging
- Long and Short packet decoding
- Timing accurate signaling of Frame and Line synchronization packets
- Several Frame formats
 - General Frame or Digital Interlaced Video with or without accurate sync timing
 - Data Type (Packet or Frame Level) and Virtual Channel interleaving
- 32-bit Image Data Interface delivering data formatted as recommended in CSI-2 Specification
- All primary and secondary data formats
 - RGB, YUV, and RAW color space definitions
 - From 24-bit down to 6-bit per pixel
 - Generic or user-defined byte-based data types
- Error detection and correction
 - PHY level
 - Packet level
 - Line level
 - Frame level

36.2 Block Diagram

The following diagram shows the MIPI CSI-2 Host Controller architecture.

Fig. 36-1 MIPI CSI-2 Host Controller architecture

PHY Adaptation Layer: Manages the D-PHY PPI interface **Packet Analyzer:** Merges the data from the different lanes

Image Data Interface: Reorders pixels into 32-bit data for memory storage and generates

timing accurate video synchronization signals

AMBA-APB Register Bank: Provides access to configuration and control registers

36.3 Function Description

36.3.1 Supported Resolutions and Frame Rates

The CSI-2 specification does not define the supported standard resolutions or frame rates. Camera sensor resolution, blanking periods, synchronization events, frame rates, and pixel color depth play a fundamental role in the required bandwidth. All these variables make it difficult to define a standard procedure to estimate the minimum lane rate and the minimum number of lanes that support a specific CSI-2 device.

Table 37-1 presents some predefined and supported camera settings, assuming the following:

- Clock lane frequency is 500 MHz or 750 MHz that results in a bandwidth of 1 Gbps or 1.5 Gbps respectively, for each data lane.
- No significant control/reserved traffic is present on the link when pixel data is being transmitted.

The last column of Table 37-1 presents the minimum number of lanes required for each configuration.

Table 36-1 Supported Camera Settings

Table 30-1 Supported Camera Settings						
Mega	Mega Pixels	Refresh	Color Depth	CSI2 BW	D-PHY at 1 Gbps	D-PHY at 1.5Gbps
Pixels	with Overhead	Rate (Hz)	(bpp)	(Mbits)	Number of Lanes	Number of Lanes
2MP	2560000	15	24	922	1	1
2MP	2560000	30	24	1843	2	2
3MP	3840000	15	16	922	1	1
3MP	3840000	30	16	1843	2	2
3MP	3840000	30	24	2765	3	2
5MP	6400000	15	16	1536	2	2
5MP	6400000	15	24	2304	3	2
5MP	6400000	30	16	3072	4	3
8MP	10240000	15	16	2458	3	2
8MP	10240000	15	24	3686	4	3
8MP	10240000	30	12	3686	4	3
12MP	15360000	15	12	2765	3	2
12MP	15360000	15	16	3686	4	3
14MP	17920000	15	12	3226	4	3
16MP	20480000	15	12	3686	4	3
Video Forma	ts		7	1 7		
1280x720	921600	30	24	664	1	1
pixels(720p))				
1280x720	921600	60	24	1327	2	1
pixels(720p)						
1920x1080	2073600	60	24	2986	3	2
pixels(1080						
p)						

36.3.2 Error Detection

The CSI-2 Host Controller analyzes the received packets and determines if there are protocol errors. It is possible to monitor the following errors:

- Frame errors such as incorrect Frame sequence, reception of a CRC error in the most recent frame, and the mismatch between Frame Start and Frame End
- Line errors such as incorrect line sequence and mismatch between Line Start and Line End
- Packet errors such as ECC or CRC mismatch
- D-PHY errors such as synchronization pattern mismatch

Table 37-2 shows all the errors that CSI-2 Host Controller can identify.

Table 36-2 Errors Identified by the CSI-2 Host Controller

	Table 50 2 Billots faciliti	nea by en	c doi 2 1100t doiltí oilei
Error	Description	Level	Action

phy_errsotsynchs_*	Start of transmission error on data lane* with no synchronization achieved	PHY	Packets with this error are not delivered in IDI interface
phy_erresc_*	Escape entry error (ULPM) on data lane*	PHY	Informative only. Error is acknowledged in the register and the interrupt pin is raised.
phy_errsoths_*	Start of transmission error on data lane* but synchronization can still be achieved	PHY	Informative only since PHY can recover from this error. Error is acknowledged in register and the interrupt pin is raised.
vc*_err_crc	Checksum error detected on virtual channel*	Packet	Informative only. Error is acknowledged in the register and Interrupt pin is raised.
vc*_err_crc	Header ECC contains one error detected on virtual channel*	Packet	Informative only since controller can recover the correct header. Error is acknowledged in the register and the interrupt pin is raised.
err_ecc_double	Header ECC contains two errors. Unrecoverable.	Packet	Packets with this error are not delivered in IDI.s
err_id_vc*	Unrecognized or unimplemented data type detected in virtual channel*	Packet	Informative only. Error is acknowledged in the register and the interrupt pin is raised
err_f_bndry_match_vc*	Error matching Frame Start with Frame End for virtual channel*	Frame	Informative only. Error is acknowledged in register and the interrupt pin is raised if not masked.
err_f_seq_vc*	Incorrect Frame Sequence detected in virtual channel*	Frame	Informative only. Error is acknowledged in register and the interrupt pin is raised if not masked.
err_frame_data_vc*	Last received frame, in virtual channel*, had at least one CRC error	Frame	Informative only. Error is acknowledged in the register and the interrupt pin is raised.

36.4 Register Description

This section describes the control/status registers of the design.

36.4.1 Register Summary

A				
Name	Offset	Size	Reset Value	Description
CSIHOST_VERSION	0x0000	W	0x0000000	Version of the CSI2 Host
CSIHOST_N_LANES	0x0004	W	0x0000001	Number of active data lanes
CSIHOST_PHY_SHUT DOWNZ	0x0008	W	0x00000000	PHY shutdown control
CSIHOST_DPHY_RST Z	0x000c	W	0x00000000	DPHY reset control
CSIHOST_CSI2_RES ETN	0x0010	W	0x00000000	CSI-2 Controller reset
CSIHOST_PHY_STAT E	0x0014	W	0x00000000	General settings for all blocks
CSIHOST_ERR1	0x0020	W	0x0000000	Error state register 1
CSIHOST_ERR2	0x0024	W	0x0000000	Error state register 2
CSIHOST_MSK1	0x0028	W	0x0000000	Masks for errors 1
CSIHOST_MSK2	0x002c	W	0x0000000	Masks for errors 2
CSIHOST_PHY_TEST _CTRL0	0x0030	W	0x00000000	D-PHY test interface control 0

Name	Offset	Size	Reset Value	Description
CSIHOST_PHY_TEST _CTRL1	0x0034	W	0x00000000	D-PHY test interface control 1

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

36.4.2 Detail Register Description

CSIHOST_VERSION

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description	
21.0	D.O.	0×00000000	VERSION	
31:0	RO		Version of the mipi csi2 host	

CSIHOST_N_LANES

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			N_LANES
	0 0 0 1		Number of active data lanes
		RW 0x1	00: 1 data lane (lane 0)
1:0			01: 2 data lanes (lanes 0 and 1)
1.0	KVV		10: 3 data lanes (lanes 0, 1, and 2)
			11: 4 data lanes (All)
			Can only be updated when the D-PHY lane is in
			Stop state.

CSIHOST_PHY_SHUTDOWNZ

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0x0	PHY_SHUTDOWNZ D-PHY shutdown input. active low

CSIHOST_DPHY_RSTZ

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	IRW 10x0	W 0×0	DPHY_RSTZ
U		D-PHY reset output. active low	

CSIHOST_CSI2_RESETN

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	IRW 10x0	00	CSI2_RESETN
U		CSI-2 controller reset output. active low	

CSIHOST_PHY_STATE

Address: Operational Base + offset (0x0014)

Bit	Attr	Reset Value	Description
31:11	RO	0x0	reserved
10	RO	0×0	PHY_STOPSTATECLK
10	KU	UXU	Clock lane in stop state
			PHY_RXULPSCLKNOT
9	RO	0×0	This signal indicates that the clock lane
		0.00	module has entered the Ultra Low Power
			state, active low
			PHY_RXCLKACTIVEHS
8	RO	0x0	Indicates that the clock lane is actively
			receiving a DDR clock
7	RO	0×0	PHY_STOPSTATEDATA_3
,	iko -	0.00	Data lane 3 in stop state
6	RO	0×0	PHY_STOPSTATEDATA_2
	iko -	NO UNU	Data lane 2 in stop state
5	RO	0x0	PHY_STOPSTATEDATA_1
	i co	OXO	Data lane 1 in stop state
4	RO	0x0	PHY_STOPSTATEDATA_0
	iko -	OXO	Data lane 0 in stop state
			PHY_RXULPSESC_3
3	RO	0x0	lane module 3 has entered the Ultra Low
			Power mode
			PHY_RXULPSESC_2
2	RO	0x0	lane module 2 has entered the Ultra Low
			Power mode
		A	PHY_RXULPSESC_1
1	RO	0x0	lane module 1 has entered the Ultra Low
		C \ Y	Power mode
		1 U'	PHY_RXULPSESC_0
0	RO	0x0	lane module 0 has entered the Ultra Low
		Y' C	Power mode

CSIHOST_ERR1

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28	RO	0×0	err_ecc_double Header ECC contains 2 errors, unrecoveralbe
27	RO	0×0	vc3_err_crc Checksum error detected on virtual channel 3
26	RO	0x0	vc2_err_crc Checksum error detected on virtual channel 2
25	RO	0x0	vc1_err_crc Checksum error detected on virtual channel 1
24	RO	0x0	vc0_err_crc Checksum error detected on virtual channel 0

Bit	Attr	Reset Value	Description
22	D.O.	0.40	err_l_seq_di3
23	RO	0x0	Error in the sequence of lines for vc3 and dt3
22	D.O.	0.40	err_l_seq_di2
22	RO	0x0	Error in the sequence of lines for vc2 and dt2
21	D.O.	0.40	err_l_seq_di1
21	RO	0x0	Error in the sequence of lines for vc1 and dt1
20	RO	0×0	err_l_seq_di0
20	KO	UXU	Error in the sequence of lines for vc0 and dt0
			err_l_bndry_match_di3
19	RO	0x0	Error matching line start with line end for vc3
			and dt3
			err_l_bndry_match_di2
18	RO	0x0	Error matching line start with line end for vc2
			and dt2
			err_l_bndry_match_di1
17	RO	0x0	Error matching line start with line end for vc1
			and dt1
			err_l_bndry_match_di0
16	RO	0x0	Error matching line start with line end for vc0
			and dt0
			err_frame_data_vc3
15	RO	0x0	Last received frame, in virtual channel 3, had
			at least one CRC error
			err_frame_data_vc2
14	RO	0x0	Last received frame, in virtual channel 2 had
		4	at least one CRC error
			err_frame_data_vc1
13	RO	0x0	Last received frame, in virtual channel 1, had
		1 0	at least one CRC error
			err_frame_data_vc0
12	RO	0x0	Last received frame, in virtual channel 0, had
			at least one CRC error
11	RO	0x0	err_f_seq_vc3
		on o	Error in the sequence of lines for vc3 and dt3
10	RO	0x0	err_f_seq_vc2
	1.0	0,0	Error in the sequence of lines for vc2 and dt2
9	RO	0x0	err_f_seq_vc1
	INO.	UXU	Error in the sequence of lines for vc1 and dt1
8	RO	0×0	err_f_seq_vc0
	1.0	UXU	Error in the sequence of lines for vc0 and dt0
			err_f_bndry_match_vc3
7	RO	0x0	Error matching frame start with frame end for
			virtual channel 3

Bit	Attr	Reset Value	Description
			err_f_bndry_match_vc2
6	RO	0x0	Error matching frame start with frame end for
			virtual channel 2
			err_f_bndry_match_vc1
5	RO	0x0	Error matching frame start with frame end for
			virtual channel 1
			err_f_bndry_match_vc0
4	RO	0x0	Error matching frame start with frame end for
			virtual channel 0
			phy_errsotsynchs_3
3	RO	0x0	Start of transmission error on data lane 3(no
			synchronization achieved)
			phy_errsotsynchs_2
2	RO	0x0	Start of transmission error on data lane 2 (no
			synchronization achieved)
			phy_errsotsynchs_1
1	RO	0x0	Start of transmission error on data lane 1 (no
			synchronization achieved)
			phy_errsotsynchs_0
0	RO	0x0	Start of transmission error on data lane 0 (no
			synchronization achieved)

CSIHOST_ERR2 Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description	
31:24	RO	0x0	reserved	
23	RO	0×0	err_l_seq_di7	
25	iko -	OXO	Error in the sequence of lines for vc7 and dt7	
22	RO	0×0	err_l_seq_di6	
	NO A	0.00	Error in the sequence of lines for vc6 and dt6	
21	RO	0x0	err_l_seq_di5	
		OX.0	Error in the sequence of lines for vc5 and dt5	
20	RO	RO 0x0	0x0	err_l_seq_di4
		OXO.	Error in the sequence of lines for vc4 and dt4	
			err_l_bndry_match_di7	
19	RO	0x0	Error matching line start with line end for vc7	
			and dt7	
			err_l_bndry_match_di6	
18	RO	0x0	Error matching line start with line end for vc6	
			and dt6	
			err_l_bndry_match_di5	
17	RO	0x0	Error matching line start with line end for vc5	
			and dt5	
			err_l_bndry_match_di4	
16	.6 RO		Error matching line start with line end for vc4	
			and dt4	

Bit	Attr	Reset Value	Description
			err_id_vc3
15	RO	0x0	Unrecognized or unimplemented data type
			detected in virtual channel 3
			err_id_vc2
14	RO	0x0	Unrecognized or unimplemented data type
			detected in virtual channel 2
			err_id_vc1
13	RO	0x0	Unrecognized or unimplemented data type
			detected in virtual channel 1
			err_id_vc0
12	RO	0x0	Unrecognized or unimplemented data type
			detected in virtual channel 0
			vc3_err_ecc_corrected
11	RO	0x0	Header error detected and corrected on virtual
			channel 3
			vc2_err_ecc_corrected
10	RO	0x0	Header error detected and corrected on virtual
		, 0,0	channel 2
			vc1_err_ecc_corrected
9	RO	0x0	Header error detected and corrected on virtual
		OXO	channel 1
			vc0_err_ecc_corrected
8	RO	0x0	Header error detected and corrected on virtual
			channel 0
			phy_errsoths_3
7	RO	0x0	Start of transmission error on data lane 3
			(synchronization can still be achieved)
			phy_errsoths_2
6	RO	0x0	Start of transmission error on data lane 2
			(synchronization can still be achieved)
			phy errsoths 1
5	RO	0x0	Start of transmission error on data lane 1
			(synchronization can still be achieved)
1			phy errsoths 0
4	RO	0x0	Start of transmission error on data lane 0
			(synchronization can still be achieved)
			phy_erresc_3
3	RO	0x0	Escape entry error (ULPM) on data lane 3
			phy_erresc_2
2	RO	0x0	Escape entry error (ULPM) on data lane 2
		0x0	phy_erresc_1
1	RO		Escape entry error (ULPM) on data lane 1
			phy_erresc_0
0	RO	0x0	Escape entry error (ULPM) on data lane 0
			Escape enery error (our m) on data lane o

CSIHOST_MSK1

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
20	D 111	0.0	mask_err_ecc_double
28	RW	0x0	Mask for err_ecc_double
27	DW	0.0	mask_vc3_err_crc
27	RW	0x0	Mask for vc3_err_crc
26	DW	00	mask_vc2_err_crc
26	RW	0x0	Mask for vc2_err_crc
25	RW	0×0	mask_vc1_err_crc
23	KVV	UXU	Mask for vc1_err_crc
24	RW	0×0	mask_vc0_err_crc
24	KVV	0.00	Mask for vc0_err_crc
23	RW	0×0	mask_err_l_seq_di3
25	IXVV	0.00	Mask fro err_l_seq_di3
22	RW	0x0	mask_err_l_seq_di2
		0.00	Mask fro err_l_seq_di2
21	RW	0x0	mask_err_l_seq_di1
	1000	UNU UNU	Mask fro err_l_seq_di1
20	RW	0x0	mask_err_l_seq_di0
		one -	Mask fro err_l_seq_di0
19	RW	0x0	mask_err_l_bndry_match_di3
			Mask for err_I_bndry_match_di3
18	RW	0x0	mask_err_I_bndry_match_di2
			Mask for err_I_bndry_match_di2
17	RW	0x0	mask_err_l_bndry_match_di1
			Mask for err_I_bndry_match_di1
16	RW	0x0	mask_err_l_bndry_match_di0
		1 0'	Mask for err_I_bndry_match_di0
15	RW	0x0	mask_err_frame_data_vc3
		Y	Mask for err_frame_data_vc3
14	RW	0x0	mask_err_frame_data_vc2
			Mask for err_frame_data_vc2
13	RW	0x0	mask_err_frame_data_vc1
		<u> </u>	Mask for err_frame_data_vc1
12	RW	0x0	mask_err_frame_data_vc0
			Mask for err_frame_data_vc0
11	RW	0x0	mask_err_f_seq_vc3
	0 RW		Mask for err_f_seq_vc3
10		0x0	mask_err_f_seq_vc2
			Mask for err_f_seq_vc2
9	RW	0x0	mask_err_f_seq_vc1
	1		Mask for err_f_seq_vc1
8	RW	0x0	mask_err_f_seq_vc0 Mask for err_f_seq_vc0
		ויומא וטו פוו_ו_אפע_ענט	

Bit	Attr	Reset Value	Description
7	RW	0×0	mask_err_f_bndry_match_vc3
/	RVV	UXU	Mask for err_f_bndry_match_vc1
6	RW	0×0	mask_err_f_bndry_match_vc2
O	RVV	UXU	Mask for err_f_bndry_match_vc1
5	RW	0×0	mask_err_f_bndry_match_vc1
5	KVV	UXU	Mask for err_f_bndry_match_vc1
4	RW	0.40	mask_err_f_bndry_match_vc0
4	KVV	0x0	Mask for err_f_bndry_match_vc0
3	RW	RW 0x0	mask_phy_errsotsynchs_3
3			Mask for phy_errostsynchs_3
2	RW	0.40	mask_phy_errsotsynchs_2
2		KW U	0x0
1	RW	N 0x0	mask_phy_errsotsynchs_1
1			Mask for phy_errostsynchs_1
0	DW	00	mask_phy_errsotsynchs_0
0	RW	RW 0x0	Mask for phy_errostsynchs_0

CSIHOST_MSK2

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23	RO	0×0	err_l_seq_di7 Error in the sequence of lines for vc7 and dt7
22	RO	0x0	err_l_seq_di6 Error in the sequence of lines for vc6 and dt6
21	RO	0x0	err_l_seq_di5 Error in the sequence of lines for vc5 and dt5
20	RO	0x0	err_l_seq_di4 Error in the sequence of lines for vc4 and dt4
19	RO	0x0	err_l_bndry_match_di7 Error matching line start with line end for vc7 and dt7
18	RO	0x0	err_l_bndry_match_di6 Error matching line start with line end for vc6 and dt6
17	RO	0x0	err_I_bndry_match_di5 Error matching line start with line end for vc5 and dt5
16	RO	0x0	err_l_bndry_match_di4 Error matching line start with line end for vc4 and dt4
15	RO	0x0	err_id_vc3 Unrecognized or unimplemented data type detected in virtual channel 3

Bit	Attr	Reset Value	Description
			err_id_vc2
14	RO	0x0	Unrecognized or unimplemented data type
			detected in virtual channel 2
			err_id_vc1
13	RO	0x0	Unrecognized or unimplemented data type
			detected in virtual channel 1
			err_id_vc0
12	RO	0x0	Unrecognized or unimplemented data type
			detected in virtual channel 0
			vc3_err_ecc_corrected
11	RO	0x0	Header error detected and corrected on virtual
			channel 3
			vc2_err_ecc_corrected
10	RO	0x0	Header error detected and corrected on virtual
			channel 2
			vc1_err_ecc_corrected
9	RO	0x0	Header error detected and corrected on virtual
			channel 1
			vc0_err_ecc_corrected
8	RO	0x0	Header error detected and corrected on virtual
			channel 0
			phy_errsoths_3
7	RO	0x0	Start of transmission error on data lane 3
			(synchronization can still be achieved)
			phy_errsoths_2
6	RO	0x0	Start of transmission error on data lane 2
			(synchronization can still be achieved)
			phy_errsoths_1
5	RO	0x0	Start of transmission error on data lane 1
			(synchronization can still be achieved)
		Y C	phy_errsoths_0
4	RO	0x0	Start of transmission error on data lane 0
			(synchronization can still be achieved)
3	RW	0×0	mask_phy_erresc_3
3	KVV	UXU	Mask for phy_erresc_3
2	RW	0.0	mask_phy_erresc_2
	IZ VV	.W 0x0	Mask for phy_erresc_2
1	RW	0.40	mask_phy_erresc_1
1	IZ VV	0x0	Mask for phy_erresc_1
0	RW	N/ 0×0	mask_phy_erresc_0
0	IK VV	0x0	Mask for phy_erresc_0

CSIHOST_PHY_TEST_CTRL0

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved

Bit	Attr	Reset Value	Description
		0×0	phy_testclk
			D-PHY test interface strobe signal
1	RW		It is used to clock TESTDIN bus into the
			D-PHY. In conjunction with TESTEN signal
			controls controls the operation selection
	RW	0x0	phy_testclr
0			D-PHY test interface clear
			It is used when active performs vendor
			specific interface initialization (active high)

CSIHOST_PHY_TEST_CTRL1

Address: Operational Base + offset (0x0034)

Bit	Attr	Reset Value	Description
31:17	RO	0x0	reserved
16	RW	0x0	phy_testen D-PHY test interface operation selector: 1: configures address write operation on the falling edge of TESTCLK 0: configures a data write operation on the rising edge of TESTCLK
15:8	RO	0x00	phy_testdout D-PHY output 8-bit data bus for read-back and internal probing functionalities
7:0	RW	0x00	phy_testdin D-PHY test interface input 8-bit data bus for internal register programming and test functionlities access

36.5 Application Notes