Analisi 1

Andrea Caldato

Contents

1	Nun	neri	2
	1.1	Insiemi	2
	1.2	Proprietà degli insiemi	2
	1.3	Simboli degli insiemi principali	2
	1.4	Operazioni tra insiemi	2
	1.5	Prodotto cartesiano	3
	1.6	Predicati e affermazioni	3
	1.7	Sommatorie	3
	1.8	Proprietà delle sommatorie	3
	1.9	Serie geometrica	4
	1.10	Binomio di Newton	4
	1.11	Disuguaglianza di Bernoulli	4
		Principio di induzione	4
	1.13	Principio del minimo intero	5
	1.14	Numeri naturali \mathbb{N}	5
	1.15	L'insieme dei numeri interi \mathbb{Z}	5
	1.16	L'insieme dei numeri razionali \mathbb{Q}	6

1 Numeri

1.1 Insiemi

Un *insieme* è una collezione di oggetti distinti, chiamati *elementi*, considerati come un'entità unica. Gli insiemi vengono spesso indicati con lettere maiuscole, mentre i loro elementi con lettere minuscole. Se un elemento a appartiene all'insieme A, si scrive $a \in A$. Se non appartiene, si scrive $a \notin A$.

1.2 Proprietà degli insiemi

Gli insiemi possono avere diverse proprietà:

- Insieme vuoto: È l'insieme che non contiene alcun elemento, indicato con \emptyset .
- Inclusione: Se tutti gli elementi di un insieme A appartengono a un insieme B, si dice che A è un sottoinsieme di B, e si scrive $A \subseteq B$.
- **Uguaglianza**: Due insiemi A e B sono uguali se contengono gli stessi elementi, ossia A = B.

1.3 Simboli degli insiemi principali

Ecco alcuni simboli comuni usati per rappresentare insiemi:

- N: l'insieme dei numeri naturali.
- Z: l'insieme dei numeri interi.
- Q: l'insieme dei numeri razionali.
- R: l'insieme dei numeri reali.
- C: l'insieme dei numeri complessi.

1.4 Operazioni tra insiemi

Le principali operazioni tra insiemi sono:

- Unione: L'unione di due insiemi A e B, indicata con $A \cup B$, è l'insieme degli elementi che appartengono a A, B, o entrambi.
- Intersezione: L'intersezione di due insiemi A e B, indicata con $A \cap B$, è l'insieme degli elementi che appartengono sia a A che a B.

- **Differenza**: La differenza tra due insiemi $A \in B$, indicata con $A \setminus B$, è l'insieme degli elementi che appartengono ad A ma non a B.
- Complemento: Il complemento di un insieme A, indicato con A^c , è l'insieme di tutti gli elementi che non appartengono ad A.

1.5 Prodotto cartesiano

Il **prodotto cartesiano** di due insiemi $A \in B$, indicato con $A \times B$, è l'insieme delle coppie ordinate (a,b) dove $a \in A$ e $b \in B$. Formalmente:

$$A \times B = \{(a, b) \mid a \in A \in b \in B\}.$$

Ad esempio, se $A = \{1, 2\}$ e $B = \{x, y\}$, allora:

$$A \times B = \{(1, x), (1, y), (2, x), (2, y)\}.$$

1.6 Predicati e affermazioni

Un **predicato** è una frase contenente una o più variabili che diventa un'affermazione vera o falsa quando si assegnano valori a queste variabili. Ad esempio, il predicato P(x) con P(x): $x^2 \ge 0$ è vero per ogni numero reale x.

Un'*affermazione* è una frase che può essere vera o falsa. Ad esempio, "2 è un numero pari" è un'affermazione vera.

1.7 Sommatorie

La **sommatoria** è una notazione compatta per indicare la somma di una sequenza di termini. Viene indicata con il simbolo \sum . Se a_i è una sequenza, la sommatoria da i = m a n si scrive:

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n.$$

1.8 Proprietà delle sommatorie

- Somma di costanti: $\sum_{i=1}^{n} c = nc$, dove c è una costante.
- Distribuzione: $\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$.
- Fattore costante: $\sum_{i=1}^{n} c \cdot a_i = c \sum_{i=1}^{n} a_i$, dove c è una costante.

1.9 Serie geometrica

Una *serie geometrica* è una somma della forma:

$$S_n = a + ar + ar^2 + \dots + ar^n,$$

dove a è il primo termine e r è la ragione della progressione geometrica. La somma della serie geometrica è data da:

$$S_n = a \cdot \frac{1 - r^{n+1}}{1 - r}, \text{ se } r \neq 1.$$

1.10 Binomio di Newton

Il *binomio di Newton* fornisce una formula per lo sviluppo della potenza di un binomio:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k,$$

dove $\binom{n}{k}$ è il coefficiente binomiale, calcolato come:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

1.11 Disuguaglianza di Bernoulli

La disuguaglianza di Bernoulli afferma che per ogni numero reale $x \ge -1$ e per ogni $n \ge 0$ intero, vale la seguente disuguaglianza:

$$(1+x)^n > 1 + nx$$
.

Questa disuguaglianza è utile in molte applicazioni dell'analisi matematica.

1.12 Principio di induzione

Il principio di induzione matematica è un metodo per dimostrare che una proprietà P(n) è vera per tutti gli interi $n \geq n_0$. Il principio si basa su due passi:

- 1. Base: Si verifica che la proprietà $P(n_0)$ è vera.
- 2. **Passo induttivo**: Si dimostra che, se P(k) è vera per un certo $k \ge n_0$, allora anche P(k+1) è vera.

Se entrambi i passi sono soddisfatti, si conclude che P(n) è vera per tutti gli $n \ge n_0$.

1.13 Principio del minimo intero

Il principio del minimo intero afferma che ogni insieme non vuoto di numeri naturali ha un minimo. In altre parole, se $S \subseteq \mathbb{N}$ è un insieme non vuoto, allora esiste un elemento $m \in S$ tale che $m \leq s$ per ogni $s \in S$. Questo principio è fondamentale perché permette di individuare un "punto di partenza" per dimostrazioni che coinvolgono i numeri naturali.

In questo modo, il principio del minimo intero fornisce una base per dimostrare utilizzando il principio di induzione.

1.14 Numeri naturali \mathbb{N}

I numeri naturali sono l'insieme dei numeri interi non negativi e vengono indicati con \mathbb{N} . Formalmente, si può scrivere:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$$

I numeri naturali sono utilizzati per contare e ordinare.

Le operazioni fondamentali definite sui numeri naturali includono:

- Somma: Dati due numeri naturali $a \in b$, la somma a + b è un numero naturale. Ad esempio, 3 + 5 = 8.
- Moltiplicazione: Dati due numeri naturali a e b, il prodotto $a \cdot b$ è un numero naturale. Ad esempio, $4 \cdot 6 = 24$.

1.15 L'insieme dei numeri interi \mathbb{Z}

L'insieme dei numeri interi, denotato con \mathbb{Z} , è definito come l'insieme di tutti i numeri interi positivi, negativi e lo zero. Formalmente, possiamo scrivere:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

Per definire \mathbb{Z} in termini di classi di equivalenza, consideriamo la relazione di equivalenza su $\mathbb{N} \times \mathbb{N}$ definita come segue:

$$(a,b) \sim (c,d) \iff a-b=c-d.$$

Questa relazione stabilisce che le coppie (a, b) e (c, d) sono equivalenti se la differenza tra il primo e il secondo elemento della prima coppia è uguale alla differenza tra il primo e il secondo elemento della seconda coppia.

Dalla relazione di equivalenza possiamo definire le classi di equivalenza. Ogni classe di equivalenza corrisponde a un numero intero e può essere rappresentata come:

$$[x] = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a - b = n \text{ per qualche } n \in \mathbb{Z}\}.$$

In questo modo, i numeri interi possono essere costruiti a partire dalle coppie di numeri naturali, evidenziando che ogni numero intero n può essere visto come la differenza tra due numeri naturali:

$$n = a - b$$
 con $a, b \in \mathbb{N}$ e $a \ge b$.

Pertanto, possiamo esprimere \mathbb{Z} come l'insieme delle classi di equivalenza associate alle differenze tra numeri naturali:

$$\mathbb{Z} = \{ [a, b] \mid a, b \in \mathbb{N} \}.$$

L'insieme dei numeri interi \mathbb{Z} è chiuso rispetto alle seguenti operazioni:

i. Somma algebrica: Dati due numeri interi $x, y \in \mathbb{Z}$, la loro somma è definita come:

$$x + y \in \mathbb{Z}$$
.

ii. Moltiplicazione: Dati due numeri interi $x, y \in \mathbb{Z}$, il loro prodotto è definito come:

$$x \cdot y \in \mathbb{Z}$$
.

1.16 L'insieme dei numeri razionali $\mathbb Q$

L'insieme dei numeri razionali, denotato con \mathbb{Q} , è definito come l'insieme di tutti i quozienti di numeri interi, dove il denominatore è diverso da zero. Formalmente, possiamo scrivere:

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}.$$

I numeri razionali possono essere considerati come classi di equivalenza formate da coppie di numeri interi (a, b), dove b è diverso da zero. Due coppie (a_1, b_1) e (a_2, b_2) sono equivalenti se il quoziente è lo stesso, cioè:

$$(a_1, b_1) \sim (a_2, b_2) \iff a_1 \cdot b_2 = a_2 \cdot b_1.$$

Questa relazione stabilisce che le coppie (a_1, b_1) e (a_2, b_2) rappresentano lo stesso numero razionale.

La classe di equivalenza associata a un quoziente $\frac{a}{b}$ può essere espressa come:

 $\left[\frac{a}{b}\right] = \left\{ (\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z} \mid \alpha \cdot b = a \cdot \beta, \, \beta \neq 0 \right\}.$

In questo modo, i numeri razionali possono essere costruiti a partire dalle coppie di numeri interi. Ogni numero razionale $\frac{a}{b}$ rappresenta la classe di equivalenza di tutte le coppie (ka, kb) per ogni intero $k \neq 0$.

L'insieme dei numeri razionali $\mathbb Q$ è chiuso rispetto alle seguenti operazioni:

i. Somma algebrica: Dati due numeri razionali $x=\frac{a}{b}$ e $y=\frac{c}{d}$, la loro somma è definita come:

$$x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

ii. Moltiplicazione: Dati due numeri razionali $x=\frac{a}{b}$ e $y=\frac{c}{d}$, il loro prodotto è definito come:

$$x \cdot y = \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$