CS641

Modern Cryptology

LECTURE 11

KEY EXCHANGE

- Exchanging keys in private-key cryptography is very challenging.
- Methods adopted include:
 - Exchange of keys in bulk at one time
 - ► Transfer of keys through a highly secure mechanism
- Is there a way to exchange keys without complicated methods?

KEY EXCHANGE

- If following is possible, we can exchange keys remotely:
 - ▶ There is an efficiently computable function $f: D \times D' \mapsto D$, where D, D' are suitably large sets of elements,
 - ► There is a $\alpha \in D$ such that for every $c, d \in D'$, $f(f(\alpha, c), d) = f(f(\alpha, d), c)$, and $f(\alpha, \cdot)$ is 1-1,
 - From α and $f(\alpha, c)$ for any $c \in D'$, it is hard to compute c.
- Given such a function f and $\alpha \in D$, a new key can be computed as follows:
 - ▶ Anubha randomly chooses $c \in D'$ and sends $f(\alpha, c)$ to Braj.
 - ▶ Braj randomly chooses $d \in D'$ and sends $f(\alpha, d)$ to Anubha.
 - ▶ Anubha computes $f(f(\alpha, d), c)$ and Braj computes $f(f(\alpha, c), d)$ as common key.
 - ▶ Ela knows α , $f(\alpha, c)$ and $f(\alpha, d)$, but cannot compute either c or d easily.

EXPONENTIATION FUNCTION

- Function f has the property that it is easy to compute but hard to invert.
- Are there any such functions?
- Exponentiation in finite fields is believed to be one such function:
 - ▶ Let *F* be a finite field of size *s*.
 - ▶ Define $\text{Exp}(a, c) = a^c$ for $a \in F$ and $c \in [1, s 2]$.
- Function Exp is easy to compute:
 - ▶ Given a and c, compute a^2 , a^4 , a^8 , ... by repeated squaring.
 - ▶ Multiply a subset of these as specified by number *c*.
- There is no easy way to compute inverse of Exp:
 - ▶ Given a and a^c , the only way appears to compute a^2 , a^3 , a^4 , ... and compare with a^c .
 - ► The inverse problem is called Discrete Log problem.

MULTIPLICATION FUNCTION

- Multiplication of integers is believed to be another such function:
 - ▶ Define Mult(c, d) = c * d for $c, d \in \mathbb{Z}$.
 - It is clearly easy to compute.
 - ► Given a product cd, it is not easy to compute c from it when both c and *d* are large prime numbers.
- Can any of these be used for key exchange?

DIFFIE-HELLMAN KEY EXCHANGE

- Proposed by Diffie and Hellman in 1976.
- Uses exponentiation in finite fields.
- First method to make remote key-exchange feasible.

DIFFIE-HELLMAN KEY EXCHANGE

- Choose a large prime number p, and consider field F_p .
- Find a generator $g \in F_p$ of cyclic group F_p^* .
- Numbers p and g are known publicly.
- Key exchange protocol runs as follows:
 - Anubha chooses a random number $c \in [1, p-2]$ and sends $g^c \pmod{p}$ to Braj.
 - ▶ Braj chooses a random number $d \in [1, p-2]$ and sends $g^d \pmod{p}$ to Anubha.
 - ▶ Anubha computes $(g^d)^c \pmod{p}$ and Braj computes $(g^c)^d \pmod{p}$ as common key.

SECURITY OF DIFFIE-HELLMAN KEY EXCHANGE

- Ela knows g, p, g^c and g^d and wants to compute g^{cd} .
- The obvious way is compute either c or d and use it to compute g^{cd} .
- Computing c or d requires solving Discrete Log Problem in F_p , believed to be hard.
- The fastest known algorithm for solving Discrete Log Problem takes time $2^{\Omega((\log p)^{1/3}(\log\log p)^{2/3})}$.
- Secure provided p is chosen to be at least 1024 bits long.

PUBLIC-KEY ENCRYPTION

- Proposed by Diffie-Hellman inspired by key exchange protocol.
- In this, encryption key k_E is publicly known. Only decryption key k_D is secret.
- No need for key exchange now, as k_E is known to everyone.
- To communicate to Braj remotely, Anubha needs to ask Braj for his public key and use it to encrypt the secret message.

PUBLIC-KEY ENCRYPTION

- Following makes public-key encryption possible:
 - ▶ There is an efficiently computable function $f : D \mapsto D$, where D is a suitably large set of elements.
 - ► Function *f* is 1-1, and hard to invert.
 - ▶ There are efficiently computable functions E and D such that $D(E(m, f(k_D)), k_D) = m$ for every m and k_D .
 - ▶ Function $E(\cdot, f(k_D))$ is also hard to invert.
- We set $k_E = f(k_D)$ and use E and D for encryption and decryption.
- This requires two hard to invert functions: f and E.

RSA PUBLIC KEY ALGORITHM

- Proposed by Rivest, Shamir, and Adleman in 1977.
- Uses both exponentiation and multiplication functions:
 - ▶ Multiplication to define function *f*,
 - ► Exponentiation to define *E* and *D*.

Group Z_n^*

- Let $n \in \mathbb{Z}$, n > 1.
- Let $(Z_n, +, *)$ be the ring with $Z_n = \{0, 1, ..., n-1\}$, and addition and multiplication modulo n.
 - ▶ Division may not always be possible in \mathbb{Z}_n for composite n.
 - ▶ For example, division by 2 is not possible in Z_6 since 2 * 3 = 0.
- Let $Z_n^* = \{a \mid \gcd(a, n) = 1\}.$
- Z_n^* is a commutative group under multiplication inside Z_n :
 - ▶ For any $a \in \mathbb{Z}_n^*$, gcd(a, n) = 1, that is, ab + kn = 1 for some $b, k \in \mathbb{Z}$.
 - ► Therefore, $a * b = 1 \pmod{n}$, implying that division by a is possible in Z_n .
 - ▶ If $gcd(a_1, n) = 1 = gcd(a_2, n)$, then $gcd(a_1a_2, n) = 1$ too.
- If gcd(a, n) = k > 1, then $a * \frac{n}{k} = 0$ in Z_n , implying that division by a is not possible.

Group Z_n^*

- Let $\phi(n)$ be the count of numbers < n that are relatively prime to n.
- Then, $|Z_n^*| = \phi(n)$.
- If $n = \prod_{i=1}^r p_i^{e_i}$, then $\phi(n) = \prod_{i=1}^r p_i^{e_i-1}(p_i-1)$.
- Specifically, if n = pq for primes p and q, then $\phi(n) = (p-1)(q-1)$.

RSA KEY GENERATION

- Choose two large prime numbers p and q, each of ℓ bits long.
- Compute n = pq.
- Randomly choose a number e such that:
 - ▶ $1 < e < \phi(n)$, and
 - ▶ $gcd(e, \phi(n)) = 1$.
- Compute **d** such that:
 - ▶ $1 < d < \phi(n)$, and
 - $de = 1 \pmod{\phi(n)}$.
- Encryption key $k_E = (e, n)$. Also called public key.
- Decryption key $k_D = (d, n)$. Also called private key.

RSA ENCRYPTION

- Given a plaintext, break it into blocks of size $2\ell 1$ bits. Recall size of n is 2ℓ bits.
- Treat each block as a number in Z_n .
- Let *m* be any such block.
- Define $c = E(m, (e, n)) = m^e \pmod{n}$.
- Define $D(c, (d, n)) = c^d \pmod{n}$.
- Suppose $m \in \mathbb{Z}_n^*$. Then:

$$c^d = m^{ed} = m^{1+k\phi(n)} = m * (m^{\phi(n)})^k = m \pmod{n},$$

since $a^{\phi(n)} = 1 \pmod{n}$ for every $a \in \mathbb{Z}_n^*$.

RSA ENCRYPTION

- Suppose $m \notin \mathbb{Z}_n^*$.
- This implies that gcd(m, n) equals either p or q.
- Suppose gcd(m, n) = p.
- Then $\phi(n) = (p-1)(q-1)$ can be computed easily.
- Then $d = e^{-1} \pmod{\phi(n)}$ can be computed easily.
- This breaks the encryption!