Introduction to Probability and Statistics

Prof. Mohammed-Slim Alouini & Prof. Hesham ElSawy slim.alouini@kaust.edu.sa & hesham.elsawy@kfupm.edu.sa

Eng. Chaouki Bem Issaid & Eng. Lama Niyazi chaouki.benissaid@kaust.edu.sa & lama.niyazi@kaust.edu.sa

STC Academy, Riyadh, KSA

23 June to 4 July 2019

Progress

- Last set of lectures
 - Basic concepts
 - Discrete random variables
 - Continuous random variables
 - Generation of random variables and Probabilistic Inequalities
 - Two random variables
 - Multivariate random variables
- Today
 - Sum of random variables
 - · Central limit theorem
 - Types of Convergence

Sum Statistically Independent Random Variables

- Let W = X + Y, where X and Y are two independent random variables
- The distribution function of W is given by

$$F_W(w) = \int_{-\infty}^{\infty} f_Y(y) F_X(w - y) dy$$
$$= \int_{-\infty}^{\infty} f_X(x) F_Y(w - x) dx$$

• The density function of W is given by

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$
$$= \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$$

• For
$$W = X + Y$$
, $F_W(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$

• For W = X + Y, $F_W(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$

$$F_W(w) = \mathbb{P}(W \le w)$$

$$F_W(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$$

$$F_W(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$$
$$= \mathbb{P}(X \le w - Y)$$

$$F_W(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$$
$$= \mathbb{P}(X \le w - Y)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{w - v} f_{X,Y}(u, v) du dv$$

$$F_W(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$$

$$= \mathbb{P}(X \le w - Y)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{w - v} f_{X,Y}(u, v) du dv$$

$$= \int_{-\infty}^{\infty} f_Y(v) \int_{-\infty}^{w - v} f_X(u) du dv$$

$$F_{W}(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$$

$$= \mathbb{P}(X \le w - Y)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{w - v} f_{X,Y}(u, v) du dv$$

$$= \int_{-\infty}^{\infty} f_{Y}(v) \int_{-\infty}^{w - v} f_{X}(u) du dv$$

$$= \int_{-\infty}^{\infty} f_{Y}(v) F_{X}(w - v) dv$$

The distribution function of W can be obtained as follows

$$F_W(w) = \mathbb{P}(W \le w) = \mathbb{P}(X + Y \le w)$$

$$= \mathbb{P}(X \le w - Y)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{w - v} f_{X,Y}(u, v) du dv$$

$$= \int_{-\infty}^{\infty} f_Y(v) \int_{-\infty}^{w - v} f_X(u) du dv$$

$$= \int_{-\infty}^{\infty} f_Y(v) F_X(w - v) dv$$

The density function of W can be obtained as follows

$$f_W(w) = \frac{dF_W(w)}{dw}$$

• The distribution function of W can be obtained as follows

$$\begin{split} F_W(w) &= \mathbb{P}(W \leq w) = \mathbb{P}(X + Y \leq w) \\ &= \mathbb{P}(X \leq w - Y) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{w - v} f_{X,Y}(u, v) du dv \\ &= \int_{-\infty}^{\infty} f_Y(v) \int_{-\infty}^{w - v} f_X(u) du dv \\ &= \int_{-\infty}^{\infty} f_Y(v) F_X(w - v) dv \end{split}$$

ullet The density function of W can be obtained as follows

$$f_W(w) = \frac{dF_W(w)}{dw}$$
$$= \int_{-\infty}^{\infty} f_Y(v) f_X(w - v) dv$$

 Consider two independent gaussian random variables X and Y with the following density function

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

• Find the PDF of W = X + Y

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w - y)^2}{2}} dy$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w - y)^2}{2}} dy$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{2y^2 - 2wy + w^2}{2}} dy$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$\begin{split} f_W(w) &= \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w-y)^2}{2}} dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{2y^2 - 2wy + w^2}{2}} dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(y^2 - wy + \frac{w^2}{2})} \end{split}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$\begin{split} f_W(w) &= \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w-y)^2}{2}} dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{2y^2 - 2wy + w^2}{2}} dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(y^2 - wy + \frac{w^2}{2} - \frac{w^2}{4} + \frac{w^2}{4})} dy \end{split}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$\begin{split} f_W(w) &= \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w-y)^2}{2}} dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{2y^2 - 2wy + w^2}{2}} dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(y^2 - wy + \frac{w^2}{2} - \frac{w^2}{4} + \frac{w^2}{4})} dy \\ &= \frac{e^{-\frac{w^2}{4}}}{2\pi} \left[\int_{-\infty}^{\infty} e^{-(y - \frac{w}{2})^2} dy \right] \end{split}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$\begin{split} f_W(w) &= \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w-y)^2}{2}} dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{2y^2 - 2wy + w^2}{2}} dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(y^2 - wy + \frac{w^2}{2} - \frac{w^2}{4} + \frac{w^2}{4})} dy \\ &= \frac{e^{-\frac{w^2}{4}}}{2\pi} \left[\int_{-\infty}^{\infty} e^{-(y - \frac{w}{2})^2} dy \right] = \frac{e^{-\frac{w^2}{4}}}{2\pi} \sqrt{\pi} \left[\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(y - \frac{w}{2})^2} dy \right] \end{split}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W − Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$\begin{split} f_W(w) &= \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w-y)^2}{2}} dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{2y^2 - 2wy + w^2}{2}} dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(y^2 - wy + \frac{w^2}{2} - \frac{w^2}{4} + \frac{w^2}{4})} dy \\ &= \frac{e^{-\frac{w^2}{4}}}{2\pi} \left[\int_{-\infty}^{\infty} e^{-(y - \frac{w}{2})^2} dy \right] = \frac{e^{-\frac{w^2}{4}}}{2\pi} \sqrt{\pi} \left[\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(y - \frac{w}{2})^2} dy \right] \\ &= \frac{e^{-\frac{w^2}{4}}}{\sqrt{4\pi}} \end{split}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{and} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

- Find the PDF of W = X + Y
- Let X = W − Y
- The range of W is $-\infty \le W \le \infty$
- The PDF of W is

$$\begin{split} f_W(w) &= \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} e^{-\frac{(w-y)^2}{2}} dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{2y^2 - 2wy + w^2}{2}} dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(y^2 - wy + \frac{w^2}{2} - \frac{w^2}{4} + \frac{w^2}{4})} dy \\ &= \frac{e^{-\frac{w^2}{4}}}{2\pi} \left[\int_{-\infty}^{\infty} e^{-(y - \frac{w}{2})^2} dy \right] = \frac{e^{-\frac{w^2}{4}}}{2\pi} \sqrt{\pi} \left[\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(y - \frac{w}{2})^2} dy \right] \\ &= \frac{e^{-\frac{w^2}{4}}}{\sqrt{4\pi}} \quad \Longrightarrow \text{Normal distribution with } \bar{W} = 0 \text{ and } \sigma_W^2 = 2 \end{split}$$

 Consider two independent exponential random variables X and Y with the following joint density function

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

• Find the PDF of W = X + Y

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let X = W Y

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let $X = W Y \ge 0$

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let $X = W Y \ge 0$
- The range of W is $0 \le W \le \infty$

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

 Consider two independent exponential random variables X and Y with the following joint density function

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

 Consider two independent exponential random variables X and Y with the following joint density function

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

$$f_W(w)\int_0^w e^{-y-(w-y)}dy$$

 Consider two independent exponential random variables X and Y with the following joint density function

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

$$f_W(w) \int_0^w e^{-y-(w-y)} dy = e^{-w} \int_0^w dy$$

 Consider two independent exponential random variables X and Y with the following joint density function

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

$$f_W(w) \int_0^w e^{-y-(w-y)} dy = e^{-w} \int_0^w dy = we^{-w}$$

$$f_W(w) = u(w)we^{-w}$$

 Consider two independent exponential random variables X and Y with the following joint density function

$$f_{X,Y}(x,y) = e^{-x-y}; \quad 0 \le x, y \le \infty$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le \infty$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

$$f_W(w) \int_0^w e^{-y-(w-y)} dy = e^{-w} \int_0^w dy = we^{-w}$$

$$f_W(w) = u(w)we^{-w} \Longrightarrow$$
 Gamma distribution with $\overline{W} = 2$

 \bullet Consider two independent uniform random variables X and Y with the following density functions

$$f_X(x) = \begin{cases} \frac{1}{a} & 0 \leq x \leq a \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} \frac{1}{b} & 0 \leq y \leq b \\ 0 & \text{elsewhere} \end{cases}$$

• Find the PDF of W = X + Y

 \bullet Consider two independent uniform random variables X and Y with the following density functions

$$f_X(x) = \begin{cases} \frac{1}{a} & 0 \leq x \leq a \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} \frac{1}{b} & 0 \leq y \leq b \\ 0 & \text{elsewhere} \end{cases}$$

- Find the PDF of W = X + Y
- Let X = W Y

 Consider two independent uniform random variables X and Y with the following density functions

$$f_X(x) = \begin{cases} \frac{1}{a} & 0 \leq x \leq a \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} \frac{1}{b} & 0 \leq y \leq b \\ 0 & \text{elsewhere} \end{cases}$$

- Find the PDF of W = X + Y
- Let $X = W Y \ge 0$

 Consider two independent uniform random variables X and Y with the following density functions

$$f_X(x) = \begin{cases} \frac{1}{a} & 0 \leq x \leq a \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} \frac{1}{b} & 0 \leq y \leq b \\ 0 & \text{elsewhere} \end{cases}$$

- Find the PDF of W = X + Y
- Let $X = W Y \ge 0$
- The range of W is $0 \le W \le a + b$

 Consider two independent uniform random variables X and Y with the following density functions

$$f_X(x) = \begin{cases} \frac{1}{a} & 0 \leq x \leq a \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} \frac{1}{b} & 0 \leq y \leq b \\ 0 & \text{elsewhere} \end{cases}$$

- Find the PDF of W = X + Y
- Let $X = W Y \ge 0$
- The range of W is $0 \le W \le a + b$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

 Consider two independent uniform random variables X and Y with the following density functions

$$f_X(x) = \begin{cases} \frac{1}{a} & 0 \leq x \leq a \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} \frac{1}{b} & 0 \leq y \leq b \\ 0 & \text{elsewhere} \end{cases}$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le a + b$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

Note that

$$f_X((w-y)) = \begin{cases} \frac{1}{a} & 0 \le w-y \le a \\ 0 & \text{elsewhere} \end{cases}$$

 Consider two independent uniform random variables X and Y with the following density functions

$$f_X(x) = \begin{cases} \frac{1}{a} & 0 \leq x \leq a \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} \frac{1}{b} & 0 \leq y \leq b \\ 0 & \text{elsewhere} \end{cases}$$

- Find the PDF of W = X + Y
- Let X = W Y > 0
- The range of W is $0 \le W \le a + b$
- The PDF of W is

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

Note that

$$f_X((w-y)) = \begin{cases} \frac{1}{a} & 0 \leq w-y \leq a \\ 0 & \text{elsewhere} \end{cases} \Rightarrow f_X((w-y)) = \begin{cases} \frac{1}{a} & w-a \leq y \leq w \\ 0 & \text{elsewhere} \end{cases}$$

$$\begin{array}{cccc} w-a \leq y \leq & w \\ 0 & \leq y \leq & b \\ 0 & \leq w \leq a+b \end{array} \Rightarrow \begin{array}{cccc} \max(0,w-a) \leq y \leq \min(w,b) \\ 0 & \leq w \leq a+b \end{array}$$

$$\begin{array}{cccc} w-a \leq y \leq w & \\ 0 \leq y \leq b & \Rightarrow & \max(0,w-a) \leq y \leq \min(w,b) \\ 0 \leq w \leq a+b & & 0 & \leq w \leq a+b \end{array}$$

$$\begin{array}{cccc} w-a \leq y \leq w & & \\ 0 & \leq y \leq b & \Rightarrow & \max(0,w-a) \leq y \leq \min(w,b) \\ 0 & \leq w \leq a+b & & \end{array}$$

$$\begin{array}{cccc} 0 \leq w \leq a & \Rightarrow & 0 \leq y \leq \textcolor{red}{w} \\ a \leq w \leq b & \Rightarrow & \textcolor{red}{w-a} \leq y \leq \textcolor{red}{w} \\ b \leq w \leq a+b & \Rightarrow & \textcolor{red}{w-a} \leq y \leq \textcolor{red}{b} \end{array}$$

ullet The piecewise partitions for w and integration boundaries for y are

$$\begin{array}{cccc} 0 \leq w \leq a & \Rightarrow & 0 \leq y \leq w \\ a \leq w \leq b & \Rightarrow & w-a \leq y \leq w \\ b \leq w \leq a+b & \Rightarrow & w-a \leq y \leq b \end{array}$$

ullet The piecewise partitions for w and integration boundaries for y are

$$\begin{array}{cccc} 0 \leq w \leq a & \Rightarrow & 0 \leq y \leq w \\ a \leq w \leq b & \Rightarrow & w-a \leq y \leq w \\ b \leq w \leq a+b & \Rightarrow & w-a \leq y \leq b \end{array}$$

Hence

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

ullet The piecewise partitions for w and integration boundaries for y are

$$\begin{array}{cccc} 0 \leq w \leq a & \Rightarrow & 0 \leq y \leq w \\ a \leq w \leq b & \Rightarrow & w-a \leq y \leq w \\ b \leq w \leq a+b & \Rightarrow & w-a \leq y \leq b \end{array}$$

Hence

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

$$f_W(w) = \begin{cases} \int_0^w \frac{1}{ab} dy & 0 \le w \le a \\ \int_{w-a}^w \frac{1}{ab} dy & a \le w \le b \end{cases}$$

$$\int_{w-a}^b \frac{1}{ab} dy & b \le w \le a + b$$

$$0 \qquad \text{elsewhere}$$

ullet The piecewise partitions for w and integration boundaries for y are

$$\begin{array}{ccc} 0 \leq w \leq a & \Rightarrow & 0 \leq y \leq w \\ a \leq w \leq b & \Rightarrow & w-a \leq y \leq w \\ b \leq w \leq a+b & \Rightarrow & w-a \leq y \leq b \end{array}$$

Hence

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

$$f_W(w) = \begin{cases} \int_0^w \frac{1}{ab} dy & 0 \le w \le a \\ \int_{w-a}^w \frac{1}{ab} dy & a \le w \le b \end{cases} \Rightarrow f_W(w) = \begin{cases} \frac{w}{ab} & 0 \le w \le a \\ \frac{1}{b} & a \le w \le b \end{cases}$$

$$0 \quad \text{elsewhere}$$

Sum Statistically Independent Random Variables

Sum Statistically Independent Random Variables

- Let W = X + Y, where X and Y are two independent random variables
- The density function of W are given by

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$
$$= \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$$

Sum Statistically Independent Random Variables

Sum Statistically Independent Random Variables

- Let W = X + Y, where X and Y are two independent random variables
- The density function of W are given by

$$f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$
$$= \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$$

ullet The density of the W is the convolution of the densities of X and Y

$$f_W(w) = f_X(x) * f_Y(y)$$

Sum Statistically Independent Random Variables

Sum Statistically Independent Random Variables

- Let W = X + Y, where X and Y are two independent random variables
- The density of the W is the convolution of the densities of X and Y

$$f_W(w) = f_X(x) * f_Y(y)$$

Exploiting the Fourier transform identities

$$\Phi_W(w) = \Phi_X(\omega) \times \Phi_Y(\omega)$$

Sum Statistically Independent Random Variables

Sum Statistically Independent Random Variables

- Let W = X + Y, where X and Y are two independent random variables
- The density of the W is the convolution of the densities of X and Y

$$f_W(w) = f_X(x) * f_Y(y)$$

Exploiting the Fourier transform identities

$$\Phi_W(w) = \Phi_X(\omega) \times \Phi_Y(\omega)$$

• For $W = \sum_{i=1}^N X_i$, where $X_i, i \in \{1, 2, \dots, N\}$ are independent random variables

$$f_W(w) = f_{X_1}(x_1) * f_{X_2}(x_2) * f_{X_3}(x_3) * \cdots * f_{X_N}(x_N)$$

Exploiting the Fourier transform identities

$$\Phi_W(w) = \prod_{i=1}^N \Phi_{X_i}(\omega)$$

Progress...

- Last section
 - Sum of two random variables
- Current section
 - Law of large number
 - Central limit theorem

- Consider eleven samples are taken for the daily used data in Mega Bytes as $\mathbf{x} = \{0.1,\ 0.4,\ 0.9,\ 1.4,\ 2.0,\ 2.8,\ 3.7,\ 4.8,\ 6.4,\ 9.2,\ 12.0\}$
- Find the sample mean and variance
- Calculate the estimation error if the true mean is 4 and the true variance is 16

- Consider eleven samples are taken for the daily used data in Mega Bytes as $\mathbf{x} = \{0.1,\ 0.4,\ 0.9,\ 1.4,\ 2.0,\ 2.8,\ 3.7,\ 4.8,\ 6.4,\ 9.2,\ 12.0\}$
- Find the sample mean and variance
- Calculate the estimation error if the true mean is 4 and the true variance is 16
- The sample mean is

$$\hat{\bar{X}} = \frac{(0.1 + 0.4 + 0.9 + 1.4 + 2.0 + 2.8 + 3.7 + 4.8 + 6.4 + 9.2 + 12.0)}{11} = 3.973$$

- Consider eleven samples are taken for the daily used data in Mega Bytes as $\mathbf{x} = \{0.1,\ 0.4,\ 0.9,\ 1.4,\ 2.0,\ 2.8,\ 3.7,\ 4.8,\ 6.4,\ 9.2,\ 12.0\}$
- Find the sample mean and variance
- Calculate the estimation error if the true mean is 4 and the true variance is 16
- The sample mean is

$$\hat{\bar{X}} = \frac{(0.1 + 0.4 + 0.9 + 1.4 + 2.0 + 2.8 + 3.7 + 4.8 + 6.4 + 9.2 + 12.0)}{11} = 3.973$$

The sample variance is

$$\widehat{\sigma_X^2} = \frac{1}{10} \left((0.1 - 3.973)^2 + (0.4 - 3.973)^2 + (0.9 - 3.973)^2 + (1.4 - 3.973)^2 + (2.0 - 3.973)^2 + (2.8 - 3.973)^2 + (3.7 - 3.973)^2 + (4.8 - 3.973)^2 + (6.4 - 3.973)^2 + (9.2 - 3.973)^2 + (12.0 - 3.973)^2 \right)$$

- Consider eleven samples are taken for the daily used data in Mega Bytes as $\mathbf{x} = \{0.1,\ 0.4,\ 0.9,\ 1.4,\ 2.0,\ 2.8,\ 3.7,\ 4.8,\ 6.4,\ 9.2,\ 12.0\}$
- Find the sample mean and variance
- Calculate the estimation error if the true mean is 4 and the true variance is 16
- The sample mean is

$$\hat{\bar{X}} = \frac{(0.1 + 0.4 + 0.9 + 1.4 + 2.0 + 2.8 + 3.7 + 4.8 + 6.4 + 9.2 + 12.0)}{11} = 3.973$$

The sample variance is

$$\widehat{\sigma_X^2} = \frac{1}{10} \left((0.1 - 3.973)^2 + (0.4 - 3.973)^2 + (0.9 - 3.973)^2 + (1.4 - 3.973)^2 + (2.0 - 3.973)^2 + (2.8 - 3.973)^2 + (3.7 - 3.973)^2 + (4.8 - 3.973)^2 + (6.4 - 3.973)^2 + (9.2 - 3.973)^2 + (12.0 - 3.973)^2 \right)$$

$$\Longrightarrow \widehat{\sigma_X^2} = 14.75$$

- Consider eleven samples are taken for the daily used data in Mega Bytes as $\mathbf{x} = \{0.1,\ 0.4,\ 0.9,\ 1.4,\ 2.0,\ 2.8,\ 3.7,\ 4.8,\ 6.4,\ 9.2,\ 12.0\}$
- Find the sample mean and variance
- Calculate the estimation error if the true mean is 4 and the true variance is 16
- The sample mean is

$$\hat{\bar{X}} = \frac{(0.1 + 0.4 + 0.9 + 1.4 + 2.0 + 2.8 + 3.7 + 4.8 + 6.4 + 9.2 + 12.0)}{11} = 3.973$$

The sample variance is

$$\widehat{\sigma_X^2} = \frac{1}{10} \left((0.1 - 3.973)^2 + (0.4 - 3.973)^2 + (0.9 - 3.973)^2 + (1.4 - 3.973)^2 + (2.0 - 3.973)^2 + (2.8 - 3.973)^2 + (3.7 - 3.973)^2 + (4.8 - 3.973)^2 + (6.4 - 3.973)^2 + (9.2 - 3.973)^2 + (12.0 - 3.973)^2 \right)$$

$$\implies \widehat{\sigma_Y^2} = 14.75$$

• The estimation error for the mean and variance are

$$\frac{|\hat{\bar{X}}-\bar{X}|}{\bar{X}}=0.675\% \quad \text{and} \quad \frac{|\widehat{\sigma_X^2}-\sigma_X^2|}{\sigma_X^2}=7.8\%$$

- ullet Consider a randomly selected sample of size n from a certain population
- The mean value of such sample is

$$M_n = \hat{\bar{X}}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Let X_i for all i be identically distributed with finite mean and are pairwise independent

- \bullet Consider a randomly selected sample of size n from a certain population
- The mean value of such sample is

$$M_n = \hat{\bar{X}}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- Let X_i for all i be identically distributed with finite mean and are pairwise independent
- Then the sample mean M_n is a random variable
- The expected value of the sample mean is

$$\mathbb{E}[M_n] = \frac{\mathbb{E}[X_1 + X_2 + \dots + X_n]}{n} = \mathbb{E}[X]$$

- \bullet Consider a randomly selected sample of size n from a certain population
- The mean value of such sample is

$$M_n = \hat{\bar{X}}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- Let X_i for all i be identically distributed with finite mean and are pairwise independent
- Then the sample mean M_n is a random variable
- The expected value of the sample mean is

$$\mathbb{E}[M_n] = \frac{\mathbb{E}[X_1 + X_2 + \dots + X_n]}{n} = \mathbb{E}[X]$$

• The variance of the sample mean is

$$\operatorname{\mathsf{Var}}[M_n] = \operatorname{\mathsf{Var}}\left(\frac{\mathbb{E}X_1 + X_2 + \dots + X_n}{n}\right) = \frac{\operatorname{\mathsf{Var}}(X)}{n}$$

• For very large sample size $n \to \infty$ we have

$$\lim_{n \to \infty} M_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \bar{X}$$

This is because

$$\underset{n\to\infty}{\lim} \mathsf{Var}[M_n] = \frac{\mathsf{Var}(X)}{n} = 0$$

Weak Law of Large Number

Weak Law of Large Number

Consider the mean estimator of a sample of size n

$$M_n = \hat{\bar{X}}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

where X_i for all i are identically distributed with finite mean and are pairwise independent

• Then, for any $\epsilon > 0$, the following is true

$$\lim_{n \to \infty} \mathbb{P}(|\hat{\bar{X}}_n - \bar{X}| > \epsilon) = 0$$

Weak Law of Large Number

Weak Law of Large Number

$$\lim_{n \to \infty} \mathbb{P}(|\hat{\bar{X}}_n - \bar{X}| > \epsilon) = 0$$

Proof: using Chebyshev's inequality

$$\mathbb{P}(|M_n - \bar{X}| > \epsilon) \leq \frac{\mathsf{Var}(M_n)}{\epsilon^2} = \frac{\mathsf{Var}(X)}{n\epsilon^2}$$

Then

$$\lim_{n\to\infty}\frac{\operatorname{Var}(X)}{n\epsilon^2}=0$$

- Consider a sample size of n=50 where the empirical average need to be estimated with an accuracy of 5% of its true value with probability (confidence) 95%
- Find the range of means and variances of the samples such that the above accuracy is achieved

- Consider a sample size of n=50 where the empirical average need to be estimated with an accuracy of 5% of its true value with probability (confidence) 95%
- Find the range of means and variances of the samples such that the above accuracy is achieved
- Using Chebyshev's inequality with $\epsilon = 0.05\bar{X}$

$$\mathbb{P}(|M_n - \bar{X}| > 0.05\bar{X}) < \frac{\sigma_X^2}{50(0.05\bar{X})^2} \le 0.05$$

- Consider a sample size of n=50 where the empirical average need to be estimated with an accuracy of 5% of its true value with probability (confidence) 95%
- Find the range of means and variances of the samples such that the above accuracy is achieved
- Using Chebyshev's inequality with $\epsilon = 0.05\bar{X}$

$$\mathbb{P}(|M_n - \bar{X}| > 0.05\bar{X}) < \frac{\sigma_X^2}{50(0.05\bar{X})^2} \le 0.05$$

Hence,

$$\frac{\sigma_X^2}{50(0.05\bar{X})^2} \ge 0.05 \quad \Longrightarrow \quad \bar{X} \ge 12.65 \ \sigma_X$$

- Consider that you will conduct a poll to find the fraction of population that prefer STC over other telecom operators
- What is the required sample size such that the estimate is within 0.01 accuracy with confidence 95%?

- Consider that you will conduct a poll to find the fraction of population that prefer STC over other telecom operators
- What is the required sample size such that the estimate is within 0.01 accuracy with confidence 95%?
- Let X_i be a Bernoulli random variable that is equal to 1 if the vote is in favor of STC and 0 otherwise
- The fraction that prefers STC can be calculated via the sample mean

$$M_n = \hat{p}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Mathematically, we need to have $\mathbb{P}(|M_n - \bar{X}| > 0.01) \le 0.05$?

- Mathematically, we need to have $\mathbb{P}(|M_n \bar{X}| > 0.01) \leq 0.05$?
- Using Chebyshev's inequality we have

$$\mathbb{P}(|M_n - \bar{X}| > 0.01) \le \frac{\sigma_X^2}{n(0.01)^2} \le 0.05$$

- Mathematically, we need to have $\mathbb{P}(|M_n \bar{X}| > 0.01) \leq 0.05$?
- Using Chebyshev's inequality we have

$$\mathbb{P}(|M_n - \bar{X}| > 0.01) \le \frac{\sigma_X^2}{n(0.01)^2} \le 0.05$$

- Note that for Bernoulli random variable $\bar{X}=p$ and $\sigma_X^2=p(1-p)$
- The maximum value of $\sigma_X^2=0.25$, hence

- Mathematically, we need to have $\mathbb{P}(|M_n \bar{X}| > 0.01) \leq 0.05$?
- Using Chebyshev's inequality we have

$$\mathbb{P}(|M_n - \bar{X}| > 0.01) \le \frac{\sigma_X^2}{n(0.01)^2} \le 0.05$$

- Note that for Bernoulli random variable $\bar{X}=p$ and $\sigma_X^2=p(1-p)$
- The maximum value of $\sigma_X^2=0.25$, hence

$$\frac{\sigma_X^2}{n(0.01)^2} \le \frac{1}{4n(0.01)^2} = 0.05$$

• This requires a simple size of n = 50,000

- Mathematically, we need to have $\mathbb{P}(|M_n \bar{X}| > 0.01) \leq 0.05$?
- Using Chebyshev's inequality we have

$$\mathbb{P}(|M_n - \bar{X}| > 0.01) \le \frac{\sigma_X^2}{n(0.01)^2} \le 0.05$$

- Note that for Bernoulli random variable $\bar{X}=p$ and $\sigma_X^2=p(1-p)$
- $\bullet~$ The maximum value of $\sigma_X^2=0.25,$ hence

$$\frac{\sigma_X^2}{n(0.01)^2} \le \frac{1}{4n(0.01)^2} = 0.05$$

- This requires a simple size of n = 50,000
- Caution: Keep in mind that you used Chebyshev's inequality

Central Limit Theorem

Central Limit Theorem: i.i.d case

- Let X_i , $i=1,2,3,\ldots$ be independent and identically distributed (i.i.d) random variables with finite means \bar{X} and finite variances σ_X
- Let $Y = X_1 + X_2 + \cdots + X_n$
- Define $W=rac{Y-ar{Y}}{\sigma_Y}=rac{Y-nar{X}}{\sqrt{n}\sigma_x}$ such that

$$\bar{W}=0$$
 and $\sigma_W^2=1$

• As $N \to \infty$, for every c

$$F_W(c) \to \Phi(c)$$

$$\mathbb{P}(W < c) \to \mathbb{P}(Z < c)$$

where Z is a standardized gaussian random variable

Assumptions:

- $X_1, X_2 \dots$ are iid Bernoulli(p).
- $Z_n = \frac{X_1 + X_2 + \ldots + X_n np}{\sqrt{np(1-p)}}.$

We choose $p = \frac{1}{3}$.

$$Z_1 = \frac{X_1 - p}{\sqrt{p(1-p)}}$$

$$Z_2 = \frac{X_1 + X_2 - 2p}{\sqrt{2p(1-p)}}$$

$$Z_3 = \frac{X_1 + X_2 + X_3 - 3p}{\sqrt{3p(1-p)}}$$

$$Z_{30} = \frac{\sum_{i=1}^{30} X_i - 30p}{\sqrt{30p(1-p)}}$$

Assumptions:

- $X_1, X_2 \dots$ are iid Uniform(0,1).
- $Z_n = \frac{X_1 + X_2 + \ldots + X_n \frac{n}{2}}{\sqrt{\frac{n}{12}}}$.

$$Z_1 = \frac{X_1 - \frac{1}{2}}{\sqrt{\frac{1}{12}}}$$

PDF of
$$Z_1$$

$$Z_2 = \frac{X_1 + X_2 - 1}{\sqrt{\frac{2}{12}}}$$

PDF of
$$Z_2$$

$$Z_3 = \frac{X_1 + X_2 + X_3 - \frac{2}{3}}{\sqrt{\frac{3}{12}}} \quad \text{PDF of } Z_3$$

$$Z_{30} = \frac{\sum\limits_{i=1}^{30} X_i - \frac{30}{2}}{\sqrt{\frac{30}{12}}} \qquad \qquad \text{PDF of } Z_{30}$$

- Consider that you will conduct a poll to find the fraction of population that prefer STC over other telecom operators
- What is the required sample size such that the estimate is within 0.01 accuracy with confidence 95%?

- Consider that you will conduct a poll to find the fraction of population that prefer STC over other telecom operators
- What is the required sample size such that the estimate is within 0.01 accuracy with confidence 95%?
- Let X_i be a Bernoulli random variable that is equal to 1 if the vote is in favor of STC and 0 otherwise
- The fraction that prefers STC can be calculated via the sample mean

$$M_n = \hat{p}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Mathematically, we need to have $\mathbb{P}(|M_n - \bar{X}| > 0.01) \le 0.05$?

- Mathematically, we need to have $\mathbb{P}(|M_n \bar{X}| > 0.01) \leq 0.05$?
- Using the CLT

$$\mathbb{P}(|M_n - \bar{X}| > 0.01) = \mathbb{P}\left(\left|\frac{M_n - n\bar{X}}{n}\right| > 0.01\right)$$

$$= \mathbb{P}\left(\left|\frac{M_n - n\bar{X}}{\sqrt{n}\sigma}\right| > \frac{0.01\sqrt{n}}{\sigma}\right)$$

$$\approx \mathbb{P}(|Z| > \frac{0.01\sqrt{n}}{\sigma}) \le \mathbb{P}(|Z| > \frac{0.01\sqrt{n}}{2}) = \frac{\mathbb{P}(Z > \frac{0.01\sqrt{n}}{0.5})}{2}$$

- Mathematically, we need to have $\mathbb{P}(|M_n \bar{X}| > 0.01) \leq 0.05$?
- Using the CLT

$$\mathbb{P}(|M_n - \bar{X}| > 0.01) = \mathbb{P}\left(\left|\frac{M_n - n\bar{X}}{n}\right| > 0.01\right)$$

$$= \mathbb{P}\left(\left|\frac{M_n - n\bar{X}}{\sqrt{n}\sigma}\right| > \frac{0.01\sqrt{n}}{\sigma}\right)$$

$$\approx \mathbb{P}(|Z| > \frac{0.01\sqrt{n}}{\sigma}) \le \mathbb{P}(|Z| > \frac{0.01\sqrt{n}}{2}) = \frac{\mathbb{P}(Z > \frac{0.01\sqrt{n}}{0.5})}{2}$$

Hence, we need to find n that satisfies

- Mathematically, we need to have $\mathbb{P}(|M_n \bar{X}| > 0.01) \leq 0.05$?
- Using the CLT

$$\mathbb{P}(|M_n - \bar{X}| > 0.01) = \mathbb{P}\left(\left|\frac{M_n - n\bar{X}}{n}\right| > 0.01\right)$$

$$= \mathbb{P}\left(\left|\frac{M_n - n\bar{X}}{\sqrt{n}\sigma}\right| > \frac{0.01\sqrt{n}}{\sigma}\right)$$

$$\approx \mathbb{P}(|Z| > \frac{0.01\sqrt{n}}{\sigma}) \le \mathbb{P}(|Z| > \frac{0.01\sqrt{n}}{2}) = \frac{\mathbb{P}(Z > \frac{0.01\sqrt{n}}{0.5})}{2}$$

Hence, we need to find n that satisfies

$$\Phi(0.02\sqrt{n}) = 0.975$$

 $F_Z(0.02\sqrt{N}) = 0.975$

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9773	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.999
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.999:
3.3	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	.999
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.999
3.6	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
3.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
3.8	.9999	9999	.9999	.9999	.9999	.9999	.9999	1.0000	1.0000	1.0000

$$F_Z(0.02\sqrt{N}) = 0.975$$

Using Table

 $0.02\sqrt{N}=1.96$

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.651
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.722
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.754
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.785
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	883
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.931
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	9750	.9756	.9761	.976
2.0	.9773	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.995
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.996
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.997
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.999
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.999
3.3	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	.99
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.999
3.6	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.99
3.7	9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
3.9	9000	0000	9000	9999	9999	9999	9999	1.0000	1.0000	1.000

$$F_Z(0.02\sqrt{N}) = 0.975$$
 Using Table
$$0.02\sqrt{N} = 1.96$$

$$N = 9604$$

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7853
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	883
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.931
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	(9750)	.9756	.9761	.976
2.0	.9773	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.995
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.996
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.997
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.999
3.2	9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.999
3.3	.9995	9995	.9996	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	.999
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.999
3.6	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
3.7	9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
3.8	.9999	.9999	9999	.9999	.9999	.9999	.9999	1.0000	1.0000	1.000

Central limit theorems (CLT)

- Consider a case where $Y = \sum_{i=1}^{n} a_i X_i$ for very large n
- Exact characterization of Y becomes overwhelming
- CLT can be used to find probabilities of Y

$$\begin{split} \mathbb{P}\{y_1 \leq Y \leq y_2\} &= \mathbb{P}\{\frac{y_1 - n\bar{X}}{\sigma\sqrt{n}} \leq \frac{Y - n\bar{X}}{\sigma\sqrt{n}} \leq \frac{y_2 - n\bar{X}}{\sigma\sqrt{n}}\} \\ &= \mathbb{P}\{\frac{y_1 - n\bar{X}}{\sigma\sqrt{n}} \leq Z \leq \frac{y_2 - n\bar{X}}{\sigma\sqrt{n}}\} \\ &= \Phi\left(\frac{y_2 - n\bar{X}}{\sigma\sqrt{n}}\right) - \Phi\left(\frac{y_1 - n\bar{X}}{\sigma\sqrt{n}}\right) \end{split}$$

Continuity Correction for CLT

- The CLT applies to both discrete and continuous random variables
- To improve the CLT accuracy for discrete RVs, we apply the continuity correction
- Consider that the random variable Y only takes integer values $\{1, 2, 3, \dots\}$, then

$$\mathbb{P}\{y_1 - \frac{1}{2} \le Y \le y_2 + \frac{1}{2}\}\$$

Recall: Weak Law of Large Number

Recall: Weak Law of Large Number

· Consider the sample mean estimator

$$\hat{\bar{X}}_N = \frac{1}{N} \sum_{i=1}^N X_i$$

where X_i for all i are identically distributed with finite mean and are pairwise independent

• Then, for any $\epsilon > 0$, the following is true

$$\lim_{N \to \infty} \mathbb{P}(|\hat{\bar{X}}_N - \bar{X}| \le \epsilon) = 1$$

Strong Law of Large Numbers

Strong Law of Large Numbers

· Consider the sample mean estimator

$$\hat{\bar{X}}_N = \frac{1}{N} \sum_{i=1}^N X_i$$

where X_i for all i are identically distributed with finite mean and are pairwise independent

• Then the following is true

$$\lim_{N \to \infty} \mathbb{P}(\hat{\bar{X}}_N = \bar{X}) = 1$$

Progress

- Last section
 - Sum of two random variables
 - · Law of large number
 - · Central limit theorem
- Current section
 - Convergence of random variables

Definition 7.2.

A sequence a_1 , a_2 , a_3 , \cdots converges to a limit L if

$$\lim_{n\to\infty} a_n = L.$$

That is, for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$
, for all $n > N$.

Before discussing convergence for a sequence of random variables, let us remember what convergence means for a sequence of real numbers. If we have a sequence of real numbers a_1, a_2, a_3, \cdots , we can ask whether the sequence converges. For example, the sequence

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$$

is defined as

$$a_n = \frac{n}{n+1}$$
, for $n = 1, 2, 3, \dots$

This sequence converges to 1. We say that a sequence a_1 , a_2 , a_3 , \cdots converges to a limit L if a_n approaches L as n goes to infinity.

Convergence in Distribution

A sequence of random variables X_1 , X_2 , X_3 , \cdots converges **in distribution** to a random variable X, shown by $X_n \stackrel{d}{\longrightarrow} X$, if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x),$$

for all x at which $F_X(x)$ is continuous.

Theorem 7.1 Consider the sequence X_1 , X_2 , X_3 , \cdots and the random variable X. Assume that X and X_n (for all n) are non-negative and integer-valued, i.e.,

$$R_X \subset \{0, 1, 2, \cdots\},\$$

 $R_{X_n} \subset \{0, 1, 2, \cdots\},\$ for $n = 1, 2, 3, \cdots.$

Then $X_n \stackrel{d}{\longrightarrow} X$ if and only if

$$\lim_{n \to \infty} P_{X_n}(k) = P_X(k), \quad \text{for } k = 0, 1, 2, \dots.$$

Convergence in Probability

A sequence of random variables X_1 , X_2 , X_3 , \cdots converges **in probability** to a random variable X, shown by $X_n \stackrel{p}{\to} X$, if

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0, \quad \text{for all } \epsilon > 0.$$

Convergence in Mean

Let $r \ge 1$ be a fixed number. A sequence of random variables X_1, X_2, X_3, \cdots converges **in the** r**th mean** or **in the** L^r **norm** to a random variable X, shown by $X_n \stackrel{L^r}{\longrightarrow} X$, if

$$\lim_{n\to\infty} E\left(|X_n - X|^r\right) = 0.$$

If r=2, it is called the **mean-square convergence**, and it is shown by $X_n \xrightarrow{m.s.} X$.

Almost Sure Convergence

A sequence of random variables X_1 , X_2 , X_3 , \cdots converges **almost surely** to a random variable X, shown by $X_n \xrightarrow{a.s.} X$, if

$$P\left(\left\{s\in S: \lim_{n\to\infty}X_n(s)=X(s)\right\}\right)=1.$$

Questions?

