Covariances

Thursday, 24 February 2022 11:49

Thursday, 24 February 2022 11:49

$$X \downarrow Y$$
 $P.df: f(X,Y) \rightarrow f(X)$
 $p(X) = \int_{X} f(X,Y) dY$
 $p(Y) = \int_{Y} f(X,Y) dX \leftarrow Marginal dist$
 $p(Y) = \int_{Y} f(X,Y) dX \leftarrow With respect to Y$.

Ex: Roll two Dice. let X bethe value on the first dice and T be the total on both Sides. Joint Probability table.

$$X = \{1, 2, 3, 4, 5, 6\}$$

 $T = \{2, 3, 4, \dots, 12\}$

71	2	3	ч	5	6	7	8	9	10	U	12	P(xi)
			1.	431			O	0	0	0	10	XC
2	/ 38	436	V36	436	134			0	Ó	Ō	0	76
3	0	0	V34	136	1/36	136	4	136	6	6	6	(YL)
4	O	0	Ø	K34	136	1/34	134	/36	136	0	0	YL
5	O	0	δ	δ	¥36			134		196	0	1/6
6	O	0	٥	0	0	1 /3	i kg	d 1/30	1/86	131	1/36	Y6
P(4+)	k.	2/2,	3/21	(42)	Sh	(4/2)	5/6	y 4/2	. 3/	36 436	V21	_
(49)	136	756	12	W AP	1/>	(1)	6 73	* / ;	% /	24 / 76	1 76	

Continuous Care:

OneNote 24.02.22, 13:15

 $f(x_iy) = 46 \times J$ were $(x_iy) = 46 \times J$ were $(x_iy) = 24 \times J$ Targinal densities: $f_{\chi}(x) = 24 \times J$ Targinal densities: $f_{\chi}(x) = 4 \times J$ $f_{\chi}(x) = 4 \times J$ $f_{\chi}(x) = 4 \times J$ $f_{\chi}(x) = f_{\chi}(x) f_{\chi}(y) = (24 \times J) (4 \times J) = 96 \times J$

(2) $f(xy) = 1.5(x^2 + y^2)$ rever the unit square. $X \in [0,1]$ $Y \in [0,1]$. $X \perp Y$ are independent? No: $f(x,y) \neq f_X(X) f_Y(y)$.

 $f(x,y) = 96 x^{2}y^{3}. \quad x \in [0, 1/2]$ $f_{x}(x) = \int_{0}^{1} dy \ f(x,y)$ $= \int_{0}^{1} dy \ 96 x^{2}y^{3} = 96 x^{2}y^{4} \int_{0}^{1} = 24 x^{2}.$ $f_{y}(y) = \int_{0}^{1} dy \ 9(x^{2}y^{3}) = \frac{96 x^{2}y^{3}}{4} \int_{0}^{1} = 24 x^{2}.$ $f_{y}(y) = \int_{0}^{1} dy \ 9(x^{2}y^{3}) = \frac{96 x^{2}y^{3}}{3} \int_{0}^{1/2} dy = \frac{96 x^{2}y^{3}}{3} \int_{0}^{1/2$

Covariance is a measure of how much two random variables vary together

Def: Suppose X 1 Y are random variables with mean fix and pry. The Covaniana of X and Y is defined by $Con(x(\lambda)) = E((\lambda - \mu^{x})(\lambda - \mu^{\lambda})) = E((\lambda - \mu^{x})(\lambda - \mu^{\lambda}))$

Properties of Covariance:

1. Cov (ax+b, cY+d) = ac Cov (X,Y)
for constant abject.

2. $Gov(X_1+X_2,Y) = Gov(X_1,Y) + Gov(X_2,Y)$.

3. Cov (x, x) = Var(x).

4. Cov (x,Y) = E(XY) - µx µy. ←

5. Var(x+Y) = Var(x)+Var(Y)+2 Cov (x, Y).

Var(X+Y)= Var(x)+ Var(x) if and Dny if X & Y are independent

when x f y are independent: Cov(x, Y)=0.

6. If X & Y are independent Then Cos(K, Y)=0.

MARNING: The Converse is false.

Zero covariance does not always imply independence.

If
$$X=Y$$
:
 $Cor(x,y) = E(x,x) - \mu_x \mu_x$.
 $Vav(x) = E(\chi^2) - \mu_x^2$. (property 4)

$$x \rightarrow ax + b = x'$$
 a.b are constant.
 $Var(ax+b) = a^2 Var(x)$.

$$Var(x'+y') = Var(x') + Var(y') + 2cau(x',y')$$

$$= \alpha^2 Var(x) + c^2 Var(Y) + 29c Gov(XiY)$$
.

Sums and lutegrals for Computing Govariance:

Discrete Case:

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_{i} y_{j})(x_{i} - \mu_{x})(\mu_{j} - \mu_{y})}{\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_{i} y_{j})(x_{i} - \mu_{x})(\mu_{j} - \mu_{y})} \rightarrow \frac{p(x_{i} y_{j})x_{i} x_{j} - \mu_{x}}{p(x_{i} y_{j})y_{j} \mu_{x} + \mu_{x}} = \left(\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_{i} y_{j})(x_{i} y_{j}) - \mu_{x} \mu_{y}, \mu_{x} \mu_{y} p(x_{i} y_{j})\right)$$

$$= \left(\int_{a}^{b} \int_{c}^{d} f(x,y) xy dxdy\right) - \int_{a}^{b} \int_{c}^{d} f(x,y) xy dxdy$$

Example.

Flip a fair Coin 3 times. let X be The number of heads in the first 2 flips. and let Y be the number of heads in the Carl (X,Y).

X > d 0, 1, 2} X=x=x=TTT

Y = d 0, 1, 2}. Y=1 H IT

				$-x = 6$ $\frac{T}{T}$ $\frac{T}{T}$
XY	0	1	2	$P(x_i) = 0$
D	1/8	1/8	0	X = 0 I I H
1	V8	2/8	YZ	1/2 Y=1
2	0	1/8	1/3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
P(Y;)	1/4	1/2	1/4	A Y = A H (T) H
J				X2 THT

OneNote 24.02.22, 13:15

E(X) = 1 E(Y) = 1 $Cov(X,Y) = E((X-\mu_X)(Y-\mu_Y))$ $= \sum_{i,j} P(\pi_i,y_j)(\pi_i-1)(y_j-1)$ $\pi_i = 1 \text{ by } y_i = 1 \text{ by } P = 0$ $Cov(X,Y) = \frac{1}{2}(0-1)(0-1)+\frac{1}{2}(2-1)(2-1) = \frac{1}{4}.$

$$E(xy) = 1 - 2 + 2 \cdot \frac{1}{2} + 4 \cdot \frac{1}{8} = \frac{3}{4}$$

$$So \quad Cov(x,y) = E(xy) - \mu \times \mu \cdot = \frac{3}{4} - (1)(1) = \frac{3}{4} - 1 = \frac{1}{4}.$$

Next lecture:

- Covariance and correlations
- Bivariet Gaurian Listribution.