DATE	
DATE PAGE	
ATAO I	•

	_
AI61003 Lineau Algebra for AI & MZ	=
AI61003 Lineau Algebra fon AI & M2 Assignment og - Puoblem 07	7 7 7
	_
ousidur left invertible mateix A& 15 ousidur left invertible mateix A& 15 ousidur left invertible mateix A& 15 ousidur left invertible mateix A& 15	<u>ح</u>
	_

$$\chi^{(k+1)} = \chi^{(k)} = 1 \quad A^{T} \left(A \chi^{(k)} - b \right)$$

x = (ATA)ATb

(a) Let $C = I - A^T A$ $d = A^T b$ $||A||^2 \qquad ||A||^2$ $||A||^2 \qquad ||A||^2$ $||A||^2 \qquad ||A||^2$ $||A||^2 \qquad ||A||^2$

 $= C (C_{\chi}(k-1) + d) + d$ $= C^{2} \chi^{(k-1)} + (C + I) d$ $= C^{2} (C_{\chi}(k-2) + d) + (C+I) d$ $= C^{3} \chi^{(k-2)} + (C^{2} + C + I) d$

 $\chi^{(k+1)} = ck \chi^{(1)} + (ck-1 + ck-2 + ... + c+ I) d$

(Put x (1) = 0)

 $\frac{\text{where }D_{k}=|I+\sum_{i=1}^{k-1}C_{i}|}{|i-1|}$


```
DK
is invertible: gran-matrix
is invertible: A has linearly
 (k+1)
                 DKd =/
sequence d'2(h) à converges
       be the computat in cost
```

Scanned with CamScanner

(2mn-1 + 4mn + n computed just once (c) Solution/code attached after part (d).

Scanned with CamScanner

To compute direct sol of ATA $\hat{x} = A^Tb$ we do QR decomposition using (n-1) juffectors.

In estretep est to compute que will be $O((m-u+1)^2)$ and the cost of multiplicat is on both sides would be m2 ('n+1)

 $\frac{u-1}{cst_2} = \sum_{n=1}^{\infty} o((m-n+1)^2) + m^2(n+1) + \lambda$ $= 0 (m^{3} - (m-n)^{3}) + m^{2} (n^{2}-1) + \lambda$ $= 0 (nm^{2}) + m^{2}(n^{2}-1) + o(m)$ (\(\lambda\) = o(m) is the cost of solving back\(\lambda\) cst_2 = o(m^{2}n^{2}).

Substitution)

Given that mon iterative method be better when is very large (which usually is the case when we ove fitting a model to some 'm' observat is). Also fou smaller m, if k = o(m²) then also iterative method

	can be used.
	since k depends on the precision
A 10 10 10 10 10 10 10 10 10 10 10 10 10	bound we choose there has to be a
(3+K)	trade-off between computation cost
	and pue cision. So it we always
	choose k bounded (upper) by m2
	then it enative method is computation
	-ally more beneficial.
-074	- I ATA to the trustile they were to
THAT	Step 1 200 Letter our 20 20 20 20 20 20 20 20 20 20 20 20 20
Mil	IN SET SES CONNERS NI
- Landing	4 - 1 20 months (of (14 20 - 1/10)) of 20 3 3
23 k	word will another the site of the site is
	0 - W + (- (1+11-10) 0 0 - 2 = 27 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	The second secon
A LITTE	- MY + (- (M-M)) MY) - (= 1) - (= 1)
Carrier C	The the transfer of the transf
33	solver in July - a strong out classer in a child
	(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
	War and the street of
- X L. 3 - X - 1 - 1	CARLE RESERVE CONTROL MINISTER SERVELLE
	Property of the strain of the
	- 3/1/02 8th 1/t. 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
	The land with the second of th

Al61003 Linear Algebra for Al & ML

Assignment 02 - Problem 07(c)

import numpy as np import matplotlib.pyplot as plt

A = np.random.random((30,10))

A = np.random.random((30,10))

while (np.linalg.matrix rank(A) != 10) :

Out[2]: array([[0.81980106, 0.42996646, 0.41615019, 0.98430451, 0.93769169, 0.58924779, 0.14459998, 0.44589338, 0.61616546, 0.18664659], [0.29107368, 0.06805186, 0.36074467, 0.42482159, 0.3545573 , 0.3450397 , 0.5074016 , 0.5150124 , 0.3092849 , 0.89517556], [0.32151458, 0.79746882, 0.954158 , 0.27269424, 0.02404356, 0.64509807, 0.56109553, 0.31085449, 0.81704991, 0.78111818], [0.11971831, 0.88079203, 0.11966085, 0.13687322, 0.61148393, 0.30866281, 0.81607906, 0.73583471, 0.24833083, 0.73040046], [0.4815946 , 0.10399506, 0.65647304, 0.11455872, 0.91596897, 0.81292872, 0.53984366, 0.1149081 , 0.04396539, 0.33583807], [0.85383771, 0.68203454, 0.67873883, 0.6558534 , 0.83623116, 0.55723611, 0.91480051, 0.96374728, 0.77412123, 0.0260353], [0.31426056, 0.98280783, 0.53492562, 0.60532414, 0.21599211, $\hbox{\tt 0.42912918, 0.21266872, 0.12017493, 0.66048191, 0.52448224], }$ $\hbox{\tt [0.54810691, 0.13374302, 0.07774595, 0.60410785, 0.38799723, }$ 0.16074371, 0.71045098, 0.34372977, 0.53973293, 0.50902906], [0.38366538, 0.62302586, 0.89389346, 0.95025641, 0.85836699,

0.20360161, 0.74591915, 0.91590952, 0.83114474, 0.23014518], [0.92438232, 0.29977718, 0.59180457, 0.06342131, 0.44287027, 0.46416829, 0.43064176, 0.96906091, 0.27234166, 0.2845511], [0.20462559, 0.30465399, 0.48182444, 0.71067542, 0.70876339,0.33477579, 0.34423615, 0.93459177, 0.10093228, 0.83065679], [0.63500087, 0.68794475, 0.15508567, 0.01135181, 0.84850045, 0.82840067, 0.64978488, 0.19204162, 0.03204361, 0.54380025], [0.16282619, 0.79200229, 0.48821751, 0.7833585 , 0.69572059, 0.58541616, 0.31012815, 0.56515481, 0.42800159, 0.50353083], [0.82273882, 0.7021514 , 0.62276854, 0.83429301, 0.04599685, 0.64578558, 0.59926309, 0.39768276, 0.42934445, 0.20895766], [0.96061186, 0.77539804, 0.40683559, 0.52687573, 0.7415859, $\hbox{\tt 0.74423827, 0.99049875, 0.84828223, 0.26360248, 0.38218057],}$ [0.98067119, 0.23628664, 0.09800299, 0.34001359, 0.06018575,0.07995535, 0.7142485 , 0.23706771, 0.519438 , 0.71931112], [0.49041783, 0.42244442, 0.16046367, 0.69652082, 0.7219762, 0.65634297, 0.84270132, 0.45833186, 0.61286096, 0.12233731], [0.17816601, 0.7896144 , 0.33801624, 0.82760683, 0.78153822, 0.40534441, 0.79888435, 0.60277682, 0.45901291, 0.2521117], [0.16904507, 0.13581976, 0.24510051, 0.1616989, 0.68286133,0.48122541, 0.32136895, 0.91705931, 0.59659212, 0.31909352], [0.88368057, 0.8690898 , 0.0544669 , 0.05906441, 0.98058663, 0.08838753, 0.73928041, 0.10764699, 0.79046888, 0.8146803], [0.33481186, 0.66816816, 0.35443772, 0.73958502, 0.85332037, 0.05165348, 0.487779 , 0.3755133 , 0.74786882, 0.99614905], [0.15174328, 0.66172835, 0.63719409, 0.87020065, 0.40137977, 0.06665967, 0.70127195, 0.28845003, 0.95781089, 0.39756189], [0.81236705, 0.8514267, 0.91991452, 0.97458269, 0.5182986,0.48650803, 0.02244829, 0.50451316, 0.93027415, 0.49094939],

[0.11981365, 0.86366056, 0.83811764, 0.48499536, 0.06086256, [0.55785317, 0.72283637, 0.39401701, 0.15357451, 0.54493467, [0.38170023, 0.60182646, 0.19231264, 0.65547251, 0.65976714, [0.69831849, 0.31797701, 0.02222312, 0.68901288, 0.04860829, 0.09842817, 0.312874 , 0.46986162, 0.74021504, 0.21319171], [0.12234586, 0.90497426, 0.93205661, 0.97755675, 0.57417258, [0.47635546, 0.11045758, 0.44875562, 0.65269748, 0.49220525, [0.73113694, 0.06219508, 0.23476929, 0.69011119, 0.6169071 ,

0.45154169, 0.32418712, 0.25549257, 0.70359518, 0.04899737], 0.58412555, 0.91456881, 0.20005191, 0.98797197, 0.57049667], 0.55764093, 0.21238237, 0.46266941, 0.81495384, 0.4449997], , 0.53943996, 0.19228697, 0.85047273, 0.84012811], 0.97447606, 0.20535875, 0.15956735, 0.13524868, 0.6890902], 0.85889576, 0.53954772, 0.39676034, 0.82613368, 0.41090069]]) In [3]: b = np.random.random((30,1)) Out[3]: array([[0.9191341],

[0.40263561], [0.05076489], [0.17102826], [0.57805781], [0.11518178], [0.98061788], [0.40685732], [0.0150959], [0.67988549], [0.17869277], [0.25771637], [0.40772774], [0.8273833], [0.01153663], [0.76857179], [0.41669874],

[0.44037906], [0.03080953], [0.05987474], [0.05280064], [0.47283542], [0.13334114], [0.65478657], [0.85649523], [0.79392571], [0.80332512], [0.27556753], [0.4526037],[0.02776457]]) def Iterative Least Squares Solution (A , b , iters = 100) : m, n = A.shape # A is an mxn matrix x = np.zeros((n, 1)) # x(0) is an n-vector with all zeros $x \ ks = [\ x \] \ \# \ x \ ks$ stores the intermediate solns from all iterations $\# x_ks = [x(0), x(1), ..., x(100)]$ for it in range(iters) : # implement formula $x(k+1) = x(k) - A t \cdot (Ax(k) - b) / ||A||^2$

In [4]:

where A t is transpose of A and ||.|| is Frobenius norm t = np.matmul(A, x) - bt = np.matmul(np.transpose(A), t) t = t / (np.linalg.norm(A) ** 2)x = x - tx ks.append(x)return x, x ks def Least Squares Solution (A , b) : # Compute and return (A t . A) inv . A t . b # where A t is transpose of A and B inv is inverse of B t = np.matmul(np.transpose(A), A) t = np.linalg.inv(t) t = np.matmul(t, np.transpose(A)) x h = np.matmul(t, b)return x h # x h stands for x(hat). It is the exact least-squares solution.

[0.13326228], [-0.07038971], [0.23618725], [-0.213896], [0.23340391], [0.001701], [-0.11116346], [0.12455191], [0.0354009311)

Out[5]: array([[0.34539319],

iterative soln, iterations = Iterative Least Squares Solution(A, b, iters = 100)

Clearly, the plot is monotonically decreasing and converges towards 0. Hence proved

iterative soln # iterative LS solution after 100 iterations

In [6]: direct_soln = Least_Squares_Solution(A, b) direct soln # exact LS solution using direct formula Out[6]: array([[0.35861194], [0.19713635], [-0.19178886], [0.28446213], [-0.29176198], [0.30905134], [-0.01797044], [-0.08369256], [0.10310435], [0.0419859]]) # In order to prove the convergence of iteratve solution to the exact solution x h, # we plot the 2-norm of the difference between x(i) and x h as i progresses from 0# to 100. Here, ||.||2 stands for 2-norm. y = [np.linalg.norm(t - direct_soln) for t in iterations] step = list(range(0, 101))plt.plot(step, y, linewidth = 2.5)plt.xlabel('Iteration (i)') plt.ylabel(' $\mid \mid x(i) - x h \mid \mid 2'$) plt.title('CONVERGENCE OF ITERATIVE SOLN x(i) TO EXACT SOLN x h') plt.show()

CONVERGENCE OF ITERATIVE SOLN x(i) TO EXACT SOLN x_h 0.7 0.6 0.5 0.4 0.3 0.2 80 100 20 60 Iteration (i) 0.6473404141850903, 0.6337938174605499, 0.6220973528992194, 0.6107881147625894, 0.5997953157712982, 0.5891061302227172, 0.5787104773089428,

that the algorithm converges to the exact solution x h.

The 2-norm of the difference between x(i) and x h decreases from 0.697 to 0.186 # over 100 iterations. Also, if you compare, the entries of "iterative soln" vector # with "direct soln" they turn out to be pretty close. Out[8]: [0.6967965429432338, 0.5685987260127596, 0.5587615868688481, 0.5491900947074819, 0.5398755957837982, 0.5308097356811119, 0.5219844478053426, 0.5133919424310147, 0.5050246962669844, 0.4968754425120481, 0.4889371613722774, 0.48120307101354065, 0.473666618924196, 0.46632147366440124, 0.4591615169798816, 0.4521808362593117, 0.44537371731573233, 0.43873463747361235, 0.4322582589443068, 0.42593942247372985, 0.4197731412470888, 0.41375459503648304, 0.40787912457808745, 0.4021422261665002, 0.39653954645464407, 0.3910668774483805, 0.3857201516857081, 0.38049543759110066,

0.37538893499616754, 0.3703969708184177, 0.36551599489046377 0.36074257593251885, 0.3560733976615288, 0.3515052550307292, 0.3470350505938383, 0.34265979098848726, 0.3383765835338497, 0.33418263293776773, 0.3300752381089826, 0.3260517890703603, 0.3221097639692708, 0.3182467261815185, 0.3144603215054457, 0.310748275443037, 0.3071083905650382, 0.30353854395727603, 0.3000366847455253, 0.2966008316964081. 0.2932290708919482, 0.2899195534755182, 0.28667049346702944, 0.2834801656453155, 0.2803469034957469, 0.277269097221205, 0.2742451918146109 0.2712736851912823. 0.26835312637944925, 0.2654821137673211, 0.2626592934051492, 0.2598833573607795. 0.25715304212723467, 0.2544671270809077, 0.25182443298898727 0.24922382056477255, 0.2466641890695687, 0.24414447495988684, 0.24166365057870218, 0.2392207228895536, 0.23681473225229394, 0.23444475123932923, 0.23210988349120718, 0.22980926261044254, 0.22754205109248907, 0.22530743929279204, 0.2231046444288764, 0.2209329096164499, 0.21879150293852032, 0.21667971654654855, 0.21459686579268025, 0.21254228839211886, 0.21051534361472518, 0.20851541150494693, 0.20654189212920426, 0.20459420484987498 0.2026717876250457, 0.20077409633321225, 0.19890060412213476, 0.19705080078107012,

> 0.19522419213562522, 0.19342029946449277, 0.19163865893735058, 0.1898788210732237, 0.18814035021862743, 0.18642282404482696]