Electrical and Computer Engineering Department University of Puerto Rico at Mayagüez

COMMUNICATION THEORY I MATLAB CLASSWORK 03 DSB-SC Communications System and Speech & DTMF Signal Transmissions

For
Prof. Domingo Antonio Rodríguez
Electrical and Computer Engineering Department
University of Puerto Rico at Mayagüez
domingo.rodriguez1@upr.edu

HW03 - Due: Friday, Oct. 29, before 11:50 PM Speech & DTMF Signal Transmissions

The objective of this homework is to model a double sideband suppressed carrier (**DSB-SC**) communications system for the transmission and reception of **speech signals** as well as voice-like (**DTMF**) signals in an **underwater medium**.

The <u>maximum frequency content</u> of all transmitted signals is assumed to be equal to $F_V = 4000Hz$ and the "<u>one-sided</u>" <u>channel bandwidth</u> is said to be equal to B = 16000Hz. For the proper reception of the transmitted signal, a receiver must be designed to recover such signal: $x_r(t) \approx s(t)$ (see <u>Fig. 3</u>).

The channel itself is modeled as a composition of two basic systems, an <u>ideal</u>, <u>linear phase</u>, <u>low-pass filter</u> T_C , with <u>cut-off frequency</u> $f = F_L$, and a signal <u>summing system</u>, T_N , where the channel <u>underwater noise signal</u>, n(t), is added to the output of the linear phase filter T_C . This DSB-SC communications channel is given the name $T_{CN} = T_{AM}$. Thus, it is given by cascading T_C and T_N (see <u>Fig. 2</u>).

The sampling frequency of the <u>DSB-SC communications</u> system must be set to more than twice the maximum frequency (<u>Nyquist-Shannon sampling theorem</u>) content of the output of the demodulator at the receiver side. That is, $F_S > 2(2f_c + F_V)$, where f_c is the carrier frequency of the modulator (demodulator) and must be $8000 < f_c < 12000$.

The input signal $x_m(t)$ to the modulator is the sum of a "wanted" speech signal s(t) and an "unwanted" interference signal g(t). After the demodulator, an ideal, linear phase, low-pass filter, T_L is used, with cut-off frequency $F_M = 4000Hz$, to recover "wanted" speech or voice signal s(t) (see <u>Fig. 1</u>).

Tasks to Perform

Task 01.- (10 points): Proceed to modify the given MATLAB m-script located in the course main webpage under the heading **DSBSC Draft** in the by adding instructions in order to plot the modulating signal in the time-domain. For this task, you must also load the speech signal "**Star Story**." Rename this file hw03gpzzt01.m where zz is group number.

Task 02.- (10 points): Proceed to modify the given MATLAB m-script located in the course main webpage under the heading **DSBSC Draft** in the by adding instructions in order to plot the magnitude of the spectrum of the modulating signal in the time-domain. For this task, you must also load the speech signal "**Star Story**" and rename this file hw03gpzzt02.m where zz is group number.

Task 03.- (10 points): Proceed to modify the given MATLAB m-script located in the course main webpage under the heading **DSBSC Draft** in the by adding instructions in order to plot the interfering signal in the time-domain. For this task, you must also load the speech signal "**Star Story**" and rename this file hw03gpzzt03.m where zz is group number.

Task 04.- (10 points): Proceed to modify the given MATLAB m-script located in the course main webpage under the heading **DSBSC Draft** in the by adding instructions in order to plot the magnitude of the spectrum of the interfering signal in the time-domain. You must also load the speech signal "**Star Story**" and rename this file hw03gpzzt04.m where zz is group number.

Tasks 05 to 08 (15 points each): Proceed to repeat **Tasks 01** to **04** by changing the input signal to a **DTMF voice-like** signal. Rename, from hw03gpzzt05.m to hw03gpzzt08.m, the resulting m-scripts, accordingly. Use hw03gpzzt05.wav to hw03gpzzt08.wav to name your **DTMF** files in **.wav** format.

REMARKS:

A.- This homework does not require a written report. All that is required is for each group to send a **.zip** folder with the requested eight (8) m-script files, with the required TAT document in **.PDF** format, as well as this document, both, in **.DOCX** and **.PDF** formats. A total of **11 documents**, nothing else, should be sent inside the **.zip** folder.

B.- Name of .zip folder and the name of the e-mail subject:

INEL4301_MCW03_SXXX_GPYY

E-mail to: domingo.rodriguez1@upr.edu

STANDARD TABLE FOR DEMERITS

01 Script file does NOT execute well	-05 pts.
02 Correct script file NOT included	-05 pts.
03 Task assignment table NOT included	-05 pts.
04 <u>Unzipped folder</u> does NOT have same name	-05 pts.
05 Missing INEL4301_MCW03_SXXX_GPYY.docx	-03 pts.
06 Missing INEL4301_MCW03_SXXX_GPYY.pdf	-03 pts.
07 Missing class section number sxxx	-03 pts.
08 Missing student's group number gpyy	-03 pts.
09 Missing script or program number pgzz	-03 pts.
10 Missing or incorrect e-mail subject name	-03 pts.