A variable may be classified as:

- Quantitative: numeric or integer
- Ordinal: ordered, like integers
- Qualitative: categorical, nominal, or factors

A data frame may contain variables of different types. Also, data may have additional structure. For example, when data are collected over time we have <u>time series data</u>, which has a time index. Similarly, when data are collected in space we have <u>spatial data</u>, which has information about the location.

Example: body and brain size of mammals (two quantitative

variables)

> library(MASS)

> head(mammals)

?mammals gives you information about these data

Arctic fox Owl monkey 0.480 15.5 Mountain beaver Cow

Grey wolf

Goat

body brain

3.385 44.5

1.350 8.1

465.000 423.0

36.330 119.5

27.660 115.0

> summary(mammals)

body

Min. : 0.005

1st Qu.: 0.600

Median : 3.342

Mean : 198.790

3rd Qu.: 48.203

Max. :6654.000

brain

Min. : 0.14

1st Qu.: 4.25

Median : 17.25

Mean : 283.13

3rd Qu.: 166.00

Max. :5712.00

Extreme observations!

- > boxplot(mammals,col=c('green','blue'))
- > plot(mammals,pch=19)


```
>boxplot(log(mammals),names=c("log(body)","log(brain)"),
col=c('green','blue'))
>plot(log(mammals$body),log(mammals$brain),pch=19,
ylab="log(brain)",xlab="log(body)")
```


Correlation

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\text{SD}(X) \times \text{SD}(Y)} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Sample correlation:

$$r_{XY} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

> cor(mammals)

body brain body 1.0000000 0.9341638 brain 0.9341638 1.0000000 > cor(log(mammals)) body brain

body 1.0000000 0.9595748 brain 0.9595748 1.0000000

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \quad \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

Example: analysis of bivariate data by group

Table 2.1 IQ of twins separated near birth. The data is given in three columns in the file "twinIQ.txt".

Foster	Biological	Social	Foster	Biological	Social	Foster	Biological	Social
82	82	high	71	78	middle	63	68	low
80	90	high	75	79	middle	77	73	low
88	91	high	93	82	middle	86	81	low
108	115	high	95	97	middle	83	85	low
116	115	high	88	100	middle	93	87	low
117	129	high	111	107	middle	97	87	low
132	131	high				87	93	low
						94	94	low
						96	95	low
						112	97	low
						113	97	low
						106	103	low
						107	106	low
						98	111	low

Foster: IQ for twin raised with foster parents

Biological: IQ for twin raised with biological parents

Social: Social status of biological parent

- Boxplots of the difference in IQ scores by social status:
 - > boxplot(Foster Biological ~ Social, twins)

Another way to display these data is using a scatterplot:

```
> plot(Foster ~ Biological, data=twins,pch=status,col=status)
> legend("topleft", c("high","low","middle"), pch=1:3,
col=1:3,inset=.02)
```

> abline(0,1)

no dramatic differences, but high social status may correspond to higher IQ scores for twins with biological parents

• Conditional plots: the function coplot displays several plots on the same scale. Syntax: $y \sim x \mid a$ means plots of y vs x are conditional on a

```
>coplot(Foster ~ Biological|Social, data=twins)
```

- The library lattice also allows us to do conditional plots (nicer because one does not have to remember the order...)
 - > xyplot(Foster~Biological|Social, data=twins)

Order is from the bottom and from the left

middle

Foster

Multivariate data: Several quantitative variables

Example: data from a study comparing brain size and intelligence; 40 individuals; brain size measured by MRI; 8 variables:

Variable	Description			
Gender	Male or Female			
FSIQ	Full Scale IQ scores based on four Wechsler (1981) subtests			
VIQ	Verbal IQ scores based on four Wechsler (1981) subtests			
PIQ	Performance IQ scores based on four Wechsler (1981) subtests			
Weight	Body weight in pounds			
Height	Height in inches			
MRI_Count total pixel Count from the 18 MRI scans				

```
> summary(brain)
   Gender
                 FSIQ
                                 VIQ
                                                PIQ
                                                                Weight
Female:20 Min.
                            Min.
                                   : 71.0
                                           Min.
                                                            Min.
                                                                   :106.0
                   : 77.00
                                                : 72.00
Male :20 1st Qu.: 89.75
                            1st Qu.: 90.0
                                            1st Qu.: 88.25
                                                            1st Qu.:135.2
            Median :116.50
                            Median:113.0
                                           Median :115.00
                                                            Median: 146.5
                                          Mean :111.03
            Mean :113.45
                            Mean :112.3
                                                                   :151.1
                                                            Mean
                                            3rd Qu.:128.00
            3rd Qu.:135.50
                            3rd Qu.:129.8
                                                            3rd Qu.:172.0
  table
            Max.
                   :144.00
                            Max. :150.0
                                                  :150.00
                                                            Max.
                                                                   :192.0
                                           Max.
                                                            NA's
                                                                   : 2
    Height
                 MRI Count
Min. :62.00
                Min. : 790619
 1st Qu.:66.00
                1st Qu.: 855918
                Median : 905399
Median:68.00
                                                      missing values
Mean
     :68.53
                Mean : 908755
```


NA's :1

3rd Qu.:70.50

Max. :77.00

missing values

3rd Qu.: 950078

Max.

:1079549

Missing values:

```
> mean(brain$Weight)
[1] NA
> mean(brain$Weight, na.rm=TRUE)
[1] 151.0526
```

The function by allows us to consider summaries by group:

 The function pairs can be used to display scatterplots for all pairs of variables...

The variables FSIQ, VIQ and PIQ have positive correlation:

```
> round(cor(brain[, 2:7]), 2)
         FSIQ VIQ PIQ Weight Height MRI Count
FSIQ
         1.00 0.95 0.93
                                           0.36
                            NA
                                   NA
        0.95 1.00 0.78
                                          0.34
VIQ
                            NA
                                   NA
         0.93 0.78 1.00
                                          0.39
PIQ
                            NA
                                  NA
Weight
           NA
                NA
                     NA
                                   NA
                                            NA
Height
           NA
                NA
                     NA
                            NA
                                    1
                                            NA
MRI Count 0.36 0.34 0.39
                            NA
                                   NA
                                           1.00
> round(cor(brain[, 2:7], use="pairwise.complete.obs"), 2)
          FSIQ VIQ PIQ Weight Height MRI Count
           1.00 0.95 0.93
                            -0.05 -0.09
                                             0.36
FSIQ
          0.95
               1.00
                      0.78
                            -0.08
                                  -0.07
                                             0.34
VIQ
          0.93 0.78
                     1.00
                             0.00
                                  -0.08
                                             0.39
PIQ
         -0.05 - 0.08
                      0.00 1.00 0.70
                                             0.51
Weight
Height
         -0.09 - 0.07 - 0.08 0.70
                                    1.00
                                             0.60
                                    0.60
                                             1.00
MRI Count
         0.36
                0.34
                      0.39 0.51
```

Controlling for body size (measured as weight):

```
> mri = MRI_Count / Weight
> cor(FSIQ, mri, use="pairwise.complete.obs")
[1] 0.235308
```

Identifying missing data:

```
> which(is.na(brain), arr.ind=TRUE)
    row col
[1,] 2 5
[2,] 21 5
[3,] 21 6
> brain[21,]
    Gender FSIQ VIQ PIQ Weight Height MRI_Count
21 Male 83 83 86 NA NA 892420
```

 Time series data: Average yearly temperatures for New Haven from 1912-1971:

```
>nhtemp
Time Series:
Start = 1912
End = 1971
Frequency = 1
[1] 49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9
50.8 49.6 49.3 50.6 48.4 50.7 50.9 50.6
[19] 51.5 52.8 51.8 51.1 49.8 50.2 50.4 51.6 51.8 50.9
48.8 51.7 51.0 50.6 51.7 51.5 52.1 51.3
[37] 51.0 54.0 51.4 52.7 53.1 54.6 52.0 52.0 50.9 52.6
50.2 52.6 51.6 51.9 50.5 50.9 51.7 51.4
[55] 51.7 50.8 51.9 51.8 51.9 53.0
```

>plot(nhtemp)

- Is there a trend?
- Seasonal pattern?
- Extreme observations?

First differences:

```
> d=diff(nhtemp)
> plot(d,ylab="first differences of mean annual temperature")
> points(d,pch=19)
> abline(h=0,lty=3,lwd=2,col='blue')
> lines(lowess(d),lwd=3,col='red')
```


The Central Limit Theorem

The data frame randu contains 400 triples of successive random numbers that were generated using the Fortran function RANDU. If the numbers are truly from a U(0,1) their expected value should be 1/2 and their variance 1/12.

```
>library(lattice)
>cloud(z~x+y,data=randu)
```


• Each row is assumed to be a sample of size 3 from U(0,1):

```
>means=apply(randu,1,mean)
>hist(means,col='lightblue')
```


How does this distribution compare to the N(1/2, 1/36)?

```
>truehist(means,col='lightblue')
>curve(dnorm(x,1/2,sd=sqrt(1/36)),add=TRUE)
```


- > qqnorm(means)
- > qqline(means)

Normal Q-Q Plot

