

XXII International Seminar on Physics and Chemistry of Solids

Book of Abstracts

June 17-19, 2020 Lviv, Ukraine

Lviv City Council Lviv Convention Bureau Ivan Franko National University of Lviv Jan Dlugosz University in Czestochowa

XXII International Seminar on Physics and Chemistry of Solids

Book of Abstracts

SCIENTIFIC COMMITTEE

ORGANIZING COMMITTEE

Zygmunt Bąk

Wojciech Ciesielski

Grygoriy Dmytriv

Jozef Drabowicz

Jacek Filipecki

Roman Gladyshevskii (chairman)

Janusz Kapuśniak (co-chairman)

Volodymyr Kapustianyk

Małgorzata Makowska-Janusik

Stepan Mudry

Vasyl Stadnyk

Volodymyr Tkachuk

Anatolii Voloshinovskii

Petro Yakibchuk

Oleg Bovgyra

Yaroslav Chornodolskyy

Andryj Korolyshyn

Stepan Mudry (chairman)

Volodymyr Pavlyuk

Yuriy Plevachuk

Viktor Prysyazhnyuk

Ihor Shtablavyi

Vasyl Sklyarchuk

Anatolii Voloshinovskii (co-chairman)

Ivan Shcherba

SEMINAR SECRETARY Ther Shtablayvi

Ihor Shtablavyi

Faculty of Physics Ivan Franko National University of Lviv Kyryla and Mefodia Str., 8a, Lviv, 79005, Ukraine.

Phone: +38-032-239-45-94 Phone: +38-067-451-59-52 e-mail: ispcs2020@gmail.com

MODELING OF IDEALITY FACTOR VALUE IN SILICON SOLAR CELLS

Olikh O.Ya., Zavhorodnii O. V.

¹ Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine olikh@univ.kiev.ua

Ideality factor (n) is one of a commonly used parameter of solar cell (SC). In the simplest case, n = 2 is used for Shockley-Read-Hall recombination current. But in fact, n depends on ambient conditions and recombination center parameters. The purpose of this work is to evident such dependencies for Si-SC.

The current-voltage characteristics of silicon n^+ -p- p^+ structure were calculated by using of one-dimensional code SCAPS in the temperature range 290-340 K. The both base depth d and acceptor (boron) concentration $N_{\rm A}$ were varied over 150-240 μ m and $10^{15} \div 10^{17}$ cm⁻³ respectively. The iron atoms are suggested to be present in p-layers with $N_{\rm Fe} = 10^{10} \div 10^{13}$ cm⁻³. The case of Fe_iB_s pairs as well as the case of interstitial Fe_i was under consideration. The ideality factor was determined according to the two-diode model. Some results are presented in Fig.1.

Figure 1: Dependencies of ideality factor in equilibrium state (n, upper surfaces) and alteration in ideality factor after Fe-B pair dissociation (δn , lower surfaces). $N_{\rm Fe} = 10^{10} \, {\rm cm}^{-3}, \, d = 240 \, {\rm \mu m}$ (a), $N_{\rm A} = 10^{17} \, {\rm cm}^{-3}, \, T = 340 \, {\rm K}$ (b).

It was established that i) the base depth affects the ideality factor value in the case of minority carrier diffusion length $L_n >> d$; ii) the influence of temperature and doping level deals with change in a recombination level population mainly; iii) the dependence of n on the iron concentration is a monotonic function.