Řešení nurse roastering problem pomocí algoritmu harmony search

Úvod

Tato práce se zabývá problémem přidělování směn zdravotním sestrám (Nurse Roastering Problem), tak aby byli splněný všechny nutné podmínky (hard constraints) a zároveň co nejvíce slabých podmínek (soft constraints). Tento problém je řešen pomocí harmonického vyhledávacího algoritmu (harmony search algorithm), který byl představen v [1]. Zde představený algoritmus byl implementován v jazyce python, k otestování byla použita datová sada, která byla poskytnuta k první mezinárodní soutěži v řešení NRP v 2010 a byly provedeny experimenty experimenty představené v [1].

Teorie

Algoritmus Harmony search [2]

Algoritmus harmony search je optimalizační algoritmus inspirovaný muzikanty, který při skládání nových děl využívají již známe prvky z paměti a tyto prvky následně jemně upravují, tak aby dosáhla co nejlepší harmonie.

Harmony search algorithm tedy využívá množinu možných řešení, která je při inicializaci vygenerována náhodně a nazývá se harmony memory zkráceně HM. Velikost HM je jedním z parametrů algoritmu a značí se HMS (harmony memory size). Kromě velikosti paměti používá další dva parametry HMCR (harmony memory consideration rate) který udavá pravděpodobnosti s kterou bude využit prvek z HM, 1-HMCR je pak pravděpodobnost, že se konkrétní část nového řešení vygeneruje náhodně. Dalším parametrem je PAR (pich adjustem rate), který udává pravděpodobnost, že se konkrétní část řešení mírně upraví.

Průběh algoritmu:

- 1. Náhodné generování HM a ohodnocení jejich řešení
- 2. Tvorba nového řešení
 - 1. S pravděpodobností HMCR je z HM náhodně vybrána část řešení
 - 2. V opačném případě se tato část generuje náhodně
- 3. Konkrétní části řešení se mohou upravit s pravděpodobností PAR
- 4. Ohodnocení nově vytvořeného řešení

- 5. Má-li toto řešení lepší hodnocení je nahrazeno s nejhorším řešením z HM
- 6. opakuj Krok 2-5, dokud nebylo provedeno požadovaný počet iterací, nebo nejsou splněny ukončovací podmínky

Nurse Roastering Problem

Nurse roastering je problém přidělování směn zdravotním sestrám v konkrétním časovém období, tak aby byli splněný všechny nutné podmínky (hard constraints) a zároveň co nejvíce slabých podmínek (soft constraints).

Jedná se o problém optimalizace, který patří do třídy NP problémů, tedy mezi problémy, které nejsme schopni řešit přesně deterministicky na konvenčních počítačích. Řeší se pomocí nedeterministických a stochastických metod, kdy většinou nejsme schopni říci, zda nalezené řešení je optimální či ne.

Nutné podmínky:

- Každá zdravotní sestra může mít přidělenou maximálně jednu směnu za den
- V každé směně musí být minimální počet zdravotní sester s konkrétní kvalifikací

Slabé podmínky:

- Minimální počet přiřazených směn konkrétní sestře
- Maximální počet přiřazených směn konkrétní sestře
- Minimální počet po sobě jdoucích pracovních dní
- Maximální počet po sobě jdoucích pracovních dní
- Minimální počet po sobě jdoucích volných dní
- Maximální počet po sobě jdoucích volných dní
- Pracovní víkend
- Požadované pracovní dny konkrétní sestře
- Požadované volné dny konkrétní sestře
- Požadované konkrétní pracovní směny konkrétní sestře
- Požadované konkrétní volné směny konkrétní sestře

Každá slabá podmínka má svou váhu (weight) a úkolem je nalézt takové přiřazení směn konkrétním sestrám tak, aby byli splněny všechny nutné podmínky a suma všech nesplňujících slabých podmínek byla co nejmenší.

Harmony Search pro nurse roastering problém

Konkrétní řešení je reprezentováno maticí, kde řádek reprezentuje právě jednu sestru a sloupec konkrétní den řešeného období. Hodnota v matici pak značí, která směna (případně volno) je v daný den konkrétní sestře přidělena.

- 0 Volno
- 1 Noční směna
- 2 Denní směna
- 3 Odpolední směna

	Den 1	Den 2	Den 3	••••
Sestra 1	0	2	2	
Sestra 2	1	1	1	
Sestra 3	3	2	2	
Sestra 4	2	3	3	

Harmony memory je pak HMS řešení seřazených od nejlepších po nejhorší.

Pitch adjustem¹:

- 1. Posunutí jedené směny jiné sestře
- 2. Výměna 2 směn v daném dni
- 3. Posunutí směny (směna + 1 mod #směn)
- 4. Výměna směn mezi 2 sestrami ve dvou dnech

Algoritmus probíhá podle výše zmíněného popisu, kde jednotka přiřazení je jeden den se všemi přiřazenými směnami, tj. po sloupcích matice.

Experimenty

Všechny experimenty byli provedeny na datové sadě z INRP2010, konkrétně na typu sprint. V experimentech provedených v [1] byl algoritmus zkoumán s pevně daným počtem iterací, a to 100 000iterací. V této práci byl dle pravidel soutěže INRP2010 výpočet řešení omezen časem 10 sekund. Každý běh byl pak proveden 5 krát.

Vliv parametru HMCR

První experiment zkoušel jaký vliv má pravděpodobnost výběru prvku z harmonické paměti na kvalitu nalezeného řešení. Paramentru HMCR byl nastaven na hodnoty 0.9, 0.95 a 0.99. Dosažené

¹ Ve článku [1] byli představeny další 4 možnosti pro pitch adjustment, které zde z důvodu jiné reprezentace řešení a náročnosti implementace byli vynechány

výsledky jsou v Grafu 1. Stejně jako v citovaném článku se nejlepších výsledků dosáhlo při HMCR = 0.99, tedy náhodné generování genorování bylo použito pouze v 1 % případů.

Vliv parametru PAR

V tomto experimentu se zkoumal parametru PAR (Pitch Ajustment Rate). Byl nastaven na tyto hodnoty 0, 0.1, 0.4 a 0.7 výsledky jsou v Grafu 2. Jak je vidět nejlepších výsledků bylo dosaženo v při hodnotě PAR = 0.4, což je rozdíl oproti citovanému článku, kde nejlepší řešení bylo dosaženo při hodnotě 0.7. Rozdílené výsledky jsou dány vlivem menšího počtu implementovaných možností pro pitch adjustment, víceméně i zde ma pitch adjustment pozitivní efekt na výsledné řešení.

Vliv velikosti harmonické paměti

V dalším emxperiment use zkoušel vliv velikosti harmonické pamětí. Konkrétně bylo zkoušeno na velikosti 10, 30 a 50. Jak ukazuje graf 3, velikosti HM nemělo velký vliv na zkoumaných datech, což odpovídá výsledků v [1], nicméně na datech s větším množstvím podmínek dosahovalo lepších řešení menší HM.

Graf 2

Graf 3

Global best selection

Poslední experiment zkoumal jaký vliv má na řešení výběr možností s lepší hodnotou z HM. Na tento experiment byli použity data sprint_hidden, které obsahují soubory s větším počtem požadavků na výsledné řešení. Výsledky jsou vidět na grafu 4. Stejně jako v [1], má tato možnost pozitivní vliv na soubory s větším počtem omezení, na ostatní soubory to nemá velký vliv.

Graf 4 **Závěr**

V této práci byl implementován algritmus harmony search pro řešení problému nurse roastering problem. Výsledné testování zjistilo, že výsledné řešení má podobné vlastnosti jako v [1], které bylo vzorem této práce.

Zdroje:

[1] AWADALLAH, Mohammed A., Ahamad Tajudin KHADER. Global best Harmony Search with a new pitch adjustment designed for Nurse Rostering: the origin, evolution, and impact of doi moi. *Journal of King Saud University - Computer and Information Sciences*. 2013, 2000, **25**(2), 145-162. DOI: 10.1016/j.jksuci.2012.10.004. ISSN 13191578. Dostupné také z: http://linkinghub.elsevier.com/retrieve/pii/S1319157812000407

[2] WANG, Xiaolei, Xiao-Zhi GAO a Kai ZENGER. The Overview of Harmony Search. *An Introduction to Harmony Search Optimization Method*. Cham: Springer International Publishing, 2015, 2015-7-23, , 5-11. SpringerBriefs in Applied Sciences and Technology. DOI: 10.1007/978-3-319-08356-8_2. ISBN 978-3-319-08355-1. Dostupné také z: http://link.springer.com/10.1007/978-3-319-08356-8_2