ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Журнал практики

Обучающийся .	<u>Иванов Иван Иванович</u>
Факультет №8	«Компьютерные науки и прикладная математика»
Кафедра №806	«Вычислительная математика и программирование»
Учебная группа	a <u>M8O-199Б-29</u>
Направление п	одготовки (специальность) $\frac{01.03.00}{\text{(шифр)}}$
«Информацион	ные технологии и прикладная математика»
(на	аименование направления, специальности)
Вид практики	ознакомительная
	(учебной, производственной, преддипломной или другой вид практики)
Руководитель і	ірактики от МАИ
Крыл	ов С. С.
(фамилия,	имя, отчество) (подпись)
	$_{-}$ / Иванов И. И. / 12 июля 2022 г.
(подпись обуча	ающегося) (дата)

1	$M_{\alpha\alpha\alpha\alpha}$	TT (notett.	TTOODO	потита	TTOOTET	
T	Место	и	роки	npose,	дения	практ	ики

Сроки проведения практики
-дата начала практики 17.09.2021
-дата окончания практики <u>12.07.2022</u>
Наименование организации:
Московский авиационный институт (национальный исследовательский универститет)
Название структурного подразделения (отдел, лаборатория):
кафедра №806 «Вычислительная математика и программирование»
2 Инструктаж по технике безопасности
/ <u>Крылов С. С.</u> / <u>17 сентября</u> 2021 г. $_{\rm (дата\ проведения)}$
3 Индивидуальное задание обучающегося
Принять участие в тренировках и соревнованиях по олимпиадному программированию для студенто первого курса в $2021/2022$ учебном году: посетить и проработать установочные лекции, решать прорешивать конкурсные задания, принять участие в разборе. Объём практики 108 часов.
Руководитель практики от МАИ:
Крылов С. С. / / $\underline{17}$ сентября $\underline{2021}$ г.
Руководитель от организации:
/ / <u>17 сентября</u> 2021 г.
/ <u>Иванов И. И.</u> / 17 сентября $2021 {\rm г.}$ $_{\rm (дата)}$

4 План выполнения индивидуального задания

№	Тема	Дата
1	Основы С++	17.09.2021
2	Основы С++	24.09.2021
3	Библиотека С++	01.10.2021
4	Библиотека С++	08.10.2021
5	Теория чисел	15.10.2021
6	Основы ДП	22.10.2021
7	Арифметика в кольце, комбинаторика, функция Эйлера	22.10.2021
8	Префиксные суммы, сортировка событий, метод двух указателей	05.11.2021
9	Двумерное ДП, задача о рюкзаке	12.11.2021
10	Геометрия, тернарный поиск	19.11.2021
11	Осенняя олимпиада первого курса	05.12.2021
12	Основы теории графов	11.02.2022
13	Кратчайшие пути во взвешенных графах	18.02.2022
14	СНМ, минимальное остовное дерево	25.02.2022
15	Деревья, наименьший общий предок	04.03.2022
16	Паросочетания в двудольном графе, потоки в транспортной сети	11.03.2022
17	Строки, Z-функция, хеши, префиксное дерево	18.03.2022
18	ДП по подмножествам, ДП по профилю	25.03.2022
19	Теория игр, функция Шпрага-Гранди	01.04.2022
20	Дерево отрезков	08.04.2022
21	Дерево отрезков с отложенными обновлениями	15.04.2022
22	Декартово дерево	22.04.2022
23	Весенняя олимпиада первого курса	15.05.2022
24	Оформление журнала с электронным приложением	11.07.2022
25	Защита практики	12.07.2022

_____ / <u>Иванов И. И.</u> / <u>17 сентября</u> 2021 г. $_{\rm (дата)}$

5 Отзыв руководителя практики от организации

Принято участие в N контестах, прослушаны установочные лекции и разборы задач, решено M и дорешано K задач контестов, оформлен журнал практики с электронным приложением. Задание практики выполнено. Рекомендую оценку

Руководитель	от организации:		
	/		/ <u>12 июля</u> 2022 г.
(подпись)	(фамилия, имя, отчество)	М.П. (печать)	,

6 Отчёт обучающегося по практике

Codeforces Round #768 (Div. 2)

Е. Раскрась середину

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Дано n элементов, пронумерованных от 1 до n. Элемент i имеет значение a_i и цвет c_i . Изначально $c_i=0$ для всех i.

Можно выполнять следующую операцию:

• Выбрать три элемента i, j и k $(1 \le i < j < k \le n)$ такие, что c_i, c_j и c_k равны 0 и $a_i = a_k$, и затем присвоить $c_i = 1$.

Найдите максимальное значение $\sum_{i=1}^{n} c_i$, которое можно получить, выполнив описанную операцию некоторое (любое) количество раз.

Входные данные

Первая строка содержит целое число n (3 $\leq n \leq 2 \cdot 10^5$) — количество элементов.

Вторая строка содержит n целых чисел a_1, a_2, \ldots, a_n ($1 \le a_i \le n$) — где a_i равно значению i-го элемента.

Выходные данные

Напечатайте одно целое число — максимальное значение $\sum_{i=1}^{n} c_i$, которое можно получить, выполнив описанную операцию некоторое (любое) количество раз.

Примеры

выходные данные	Скопировать
7 1 2 1 2 7 4 7	
входные данные	Скопировать

Идея решения

Описать идею решения, оценить сложность, сравнить с другими возможными идеями.

Например

Переборное решение работает O(n!), это очень долго. Использую метод динамического программирования, dp_i — это минимальное количество белочек при условии чего-то там для i веточек. Это позволяет решить задачу за $O(n^2)$. Дерево отрезков с отложенными обновлениями позволяет улучшить асимптотику до $O(n \cdot \log n)$, так как все операции с деревом соврешаются за $O(\log n)$.

Исходный код

Исходный код необходимо комментировать, но не более 25% строк

```
1 #include <bits/stdc++.h>
2 |
3 | using pii = std::pair<int, int>;
4 |
5 | const int INF = 1e9;
```

```
void set_pos(std::vector<int> & pos, int x, int i) {
    if (pos[x] == -1) {
       pos[x] = i;
}
struct seg_t {
    int 1, r;
    seg_t() {
       1 = 1e9;
       r = 1e9;
    seg_t(int _1, int _r) {
       1 = _1;
       r = _r;
    friend bool operator == (const seg_t & lhs, const seg_t & rhs) {
       return lhs.1 == rhs.1 and lhs.r == rhs.r;
    friend bool operator < (const seg_t & lhs, const seg_t & rhs) {</pre>
       if (lhs.l != rhs.l) {
           return lhs.l < rhs.l;</pre>
       } else {
           return lhs.r < rhs.r;</pre>
    }
};
/* KTO PROCHIAL, TOT ZAKROET SESSIU! */
#ifndef SEGMENT_TREE
#define SEGMENT_TREE
template<class T>
class segment_tree_t {
private:
    size_t _size;
    std::vector<T> _data;
    std::vector<T> _delay;
public:
    segment_tree_t(const size_t & n) : _size(n), _data(4 * n), _delay(4 * n) {}
    ~segment_tree_t() = default;
    void update_delay(size_t id, size_t l, size_t r) {
       if (_delay[id] == T()) {
           return;
        _data[id] = std::min(_data[id], _delay[id]);
       if (id * 2 < 4 * _{size}) {
           _delay[id * 2] = std::min(_delay[id * 2], _delay[id]);
       if (id * 2 + 1 < 4 * _size) {
           _delay[id * 2 + 1] = std::min(_delay[id * 2 + 1], _delay[id]);
       }
```

8

9

10 11

12 13

14

15 16

17

18

19 20 21

22

23

242526

27

28 29 30

31

32

33

34

35 36

37

38 39

 $\frac{40}{41}$

42

 $\frac{43}{44}$

45

46

47

48

49

50

51

52 53

5455

56

57

58 59

60

61 62 63

64

65

```
_{delay[id]} = T();
   }
   T operator [] (int id) {
       return get(1, id, id, 1, _size);
   T get(size_t ql, size_t qr) {
       return get(1, ql, qr, 1, _size);
   T get(size_t id, size_t ql, size_t qr, size_t l, size_t r) {
       update_delay(id, 1, r);
       if (ql \le l \text{ and } r \le qr) {
           return _data[id];
       }
       size_t m = (1 + r) / 2;
       if (qr \ll m) {
           return get(id * 2, ql, qr, l, m);
       }
       if (ql > m) {
           return get(id * 2 + 1, ql, qr, m + 1, r);
       // return get(id * 2, ql, qr, l, m) + get(id * 2 + 1, ql, qr, m + 1, r);
   }
   void delay(size_t ql, size_t qr, const T & val) {
       if (ql <= qr) {
           delay(1, ql, qr, 1, _size, val);
       }
   }
   void delay(size_t id, size_t ql, size_t qr, size_t l, size_t r, const T & val) {
       update_delay(id, l, r);
       if (ql \le l \text{ and } r \le qr) {
           _delay[id] = val;
           return;
       size_t m = (1 + r) / 2;
       if (qr \ll m) {
           delay(id * 2, ql, qr, l, m, val);
       } else if (ql > m) {
           delay(id * 2 + 1, ql, qr, m + 1, r, val);
       } else {
           delay(id * 2, ql, qr, l, m, val);
           delay(id * 2 + 1, ql, qr, m + 1, r, val);
       }
   }
};
#endif /* SEGMENT_TREE */
int main() {
   std::ios::sync_with_stdio(false);
   std::cin.tie(0);
    int n;
   std::cin >> n;
   std::vector<int> a(n);
   for (int i = 0; i < n; ++i) {
```

66

67 68 69

70

71 72 73

74

75 76 77

78

79

80

81

82

83

84

85

86

87

88 89

90 91 92

93

94

95

96

97

98 99

100

101

102

 $\begin{array}{c} 103 \\ 104 \end{array}$

105

106

107

108

109

110

111

112

113

114

115 116

117118

119

120

121 122

123

124

125

```
126
            std::cin >> a[i];
        }
127
128
        std::vector<int> pos(n + 1, -1);
129
130
        for (int i = 1; i \le 2; ++i) {
131
            set_pos(pos, a[i - 1], i);
132
133
         segment_tree_t<seg_t> st(n);
134
        std::vector<int> dp(n + 1, 0);
         for (int i = 3; i \le n; ++i) {
135
136
            int num = a[i - 1];
137
            int pos_num = pos[num];
138
            dp[i] = dp[i - 1];
139
            if (pos_num != -1) {
140
                seg_t cur_cov = seg_t(pos_num, i);
                dp[i] = std::max(dp[i], dp[pos_num - 1] + (i - pos_num - 1));
141
                st.delay(pos_num + 1, i - 1, cur_cov);
142
143
                seg_t last_covered = st[pos_num];
144
                // std::cout << last_covered.l << ', ', << last_covered.r << '\n';
145
                if (last_covered.l <= pos_num and pos_num <= last_covered.r) {</pre>
146
                    dp[i] = std::max(dp[i], dp[last_covered.r] - 1 + (i - last_covered.r));
147
                    st.delay(last_covered.r + 1, i - 1, cur_cov);
                }
148
149
            }
            set_pos(pos, a[i - 1], i);
150
151
         // for (int i = 0; i <= n; ++i) {
152
153
         // std::cout << "i = " << i << ", dp = " << dp[i] << std::endl;
154
         // }
155
         std::cout << dp.back() << std::endl;</pre>
156 || }
```

Фрагмент турнирной таблицы контеста

Выводы

Задача решена. ИЛИ Задача дорешана. ИЛИ Не принята чекером.

Ошибки, неудачи, как они преодолевались.

Например

Задача решена. Основные события процесса отладки: неправильный ответ на претесте 3, исправил дерево отрезков.

Если задач много (более одной на контест), то часть отчёта может быть представлена в электронном виде (на компакт диске или на плоской флешке, оглавление прилагаемого носителя должно быть распечатано рекурсивным обходом и должно однозначно интерпретироваться как контесты и задачи). На носитель следует поместить журнал в формате pdf и в виде исходного кода (в случае LaTeX должен быть makefile). Для каждого контеста следует завести отдельную директорию (например: в папку «20220630» поместить файлы «а.cpp», «b.cpp» и условия задач).