ОСНОВИ СУЧАСНОЇ ЕЛЕКТРОНІКИ

Модуль 3. Схеми радіоелектроніки

Лекція № 5

Викладач:

Кан.-фіз. мат. наук, доцент КЯФ

Єрмоленко Руслан Вікторович

План лекції

- Імпульсні генератори
- Цифрові сигнали
- Цифрові логічні елементи
- Шифратори / Дешифратори
- Змінна логіка
- Мультивібратор
- RS-тригер
- Регістр набір тригерів

Література

- Исаков.Ю.А., Платонов А.П. Основы промышленной электроники. К.:Техніка, 1976...
- И.П. Степаненко. Основы теории транзисторов и транзисторных схем. М., Энергия, 1977.
- Манаев Е.И. Основы радиоэлектроники. Изд.
 2-е. гл.5, п.13, гл.6, п.8. М.: Радио и связь,
 1985..
- Москатов Е.А. Электронная техника. Таганрог, 2004.

Імпульсні генератори

Імпульси можна генерувати за допомогою лінійних RC ланцюжків: диференціюючего та інтегруючого, але отримані параметри імпульса (тривалість, амплітуда, крутизна фронта) не ϵ задовільними.

Для створення електричних імпульсів слугують імпульсні генератори - тривалість імпульса 10^{-9} - 10^{-1} [c].

За способом збудження поділяють на:

- з самозбудженням (автоколивальні);
- з зовнішнім збудженням;
- очікуючий (загальмований) режим спрацювання (форма та параметри вихідного імпульса не залежать від зовнішних імпульсів).

Для виконання умови самозбудження створюють позитивний зворотній зв'язок ПЗЗ.

- Для роботи у **загальмованому режимі** ланцюг ПЗЗ модифікують на спроцювання від зовнішнього запускаючого імпульса.
- Усі генератори мають **два стійких стани рівноваги**, перехід з одного в інший триває стрибкоподібно (виникає регенеративний процесс лавина).
- Регенеративні пристрої дозволяють генерувати прямокутні імпульси з високою крутизною фронта та зріза, формувати перепади напруги та струмів.

Усі регенеративні генератори поділяються на дві групи:

- пускові пристрої тригери Особливість полягає у відсутності реактивних елементів,перехід з одного стійкого стану в інший триває за допомогою керуючої напруги.
- релаксаційні генератори імпульсів Присутні реактивні елементи (емність), що виконую роль накопичувача енергії. У таких генераторах регенеруючі процеси чергуються з релаксаційними(повільні зміни енергії накопичувача).

Релаксаційні регенеративні генератори імпульсів проділяються на:

- мультивібратори;
- одновібратори;
- блокінг-генератори;
- фантастроні генератори.

Широко разповсюджені генератори на операційних підсилювачах.

Автоколивальний мультивібратор з колекторно-базовими зв'язками. Схема: Двукаскадний підсилювач з позитивним оберненим зі'язком замкненим у ланцюгову схему:

Вихід першого підсилювача з'єднан зі входом другого, а вихід другого з вхідом першого.

Якщо $R_{K1} = R_{K2}, R_{B1} = R_{B2}, C_1 = C_2$ мультивібратор є **симетричний**.

- looplus При підключенні джерела живлення струми проходять крізь транзистори VT1 та VT2.
- © Одночасно починається зарядка конденсаторів С1 та С2. Напруга на конденсаторах U_{C1} та U_{C2} зростає за експоненційним законом.

- © Зі збільшенням колекторних струмів транзисторов збільшуються і коефіціенти підсилення пліч мультивібратора. Доки $\beta K < 1$, (β коефіціент передачі ланцюга ПЗЗ, K коефіціент підсилення) триває збільшення колекторних струмів транзисторів та напруг U_{C1} та U_{C2} . Мультивібратор працює як двукаскадний підсилювач з ПЗЗ.
- igoplus Будь яка асиметрія призводить до збільшення колекторного струма одного з транзисторів. При eta K > 1 з'являється регенераційний процес.
- ullet Нехай $I_{K1}(VT1) > I_{K2}(VT2)$,як наслідок колекторна напруга першого транзистора U_{K1} , що передається крізь конденсатор C1 на базу транзистора VT2 та зменшує колекторний струм I_{K2} цього транзистора.
- ullet Зменшення струма I_{K2} супроводжуєтсья збільшенням колекторної напруги транзистору VT2, яке крізь конденсатор C2 передається на базу VT1, та призводить до ще більшого зростання колекторного струма I_{K1} , зменшенню колекторної напруги U_{K1} у VT1.

Взагалі алгоритм можна описати таким чином:

Процес триває до перехода транзистора VT1 у режим насичення, а VT2 - відсічки.

- $m{Q}$ При відкритому та насиченому транзисторі VT1 конденсатор C1 підключен крізь малий опір r_{KE1} між базою та емітером транзистора VT2. Від'ємна напруга $U_{BE2} = -U_{C1}$ підтримує транзистор VT2 у закритому стані.
- У стані, що називаєтсья квазістійким(квазірівноважним) мультивібратор буде знаходитись протягом часу розрядки C1 по ланцюгу:

$$+E_{\rm n} \rightarrow R_{\rm 62} \rightarrow {\rm C1} \rightarrow {\rm коллектор} - {\rm эмиттер} VTI \rightarrow -E_{\rm n}.$$

В той ж самий час триває зарядка С2 за ланцюгом:

$$+E_{\rm n} \rightarrow R_{\rm K2} \rightarrow C2 \rightarrow$$
 база — эмиттер $VTI \rightarrow -E_{\rm n}$.

- igoplus Елементи R_K та R_B обирають так, щоб час зарядки конденсатора був більше за час перезарядки.
- Φ C2 встигне зарядитись до колекторної напруги закритого транзистора $VT2 \sim +E_{\Pi}$
- 4 Закінчивши зарядку конденсатор С2, транзистор VT1 буде утримуватись у режимі насичення за рахунок протікання струма бази $I_{\text{B1}} = I_{\text{Brac}} = \frac{E_{\Pi}}{R_{\text{B1}}}$
- 4 Конденсатор C1 заряджаєтсья, разом з цим зростає напруга U_{C1} та досягає 0. З цього момента VT2 відкривається, його колекторна напруга U_{KE2} зменьшується та в мультивібраторі вмикається ланцюг ПЗЗ, що викликажє лавиноподібний процесс:

Закінчується закриттям транзистора VT1, та перехідом у режим насичення транзистора VT2.

Ф Мультивібратор перейде у 2 квазістаціонарний стан рівноваги, в якому C1 заряджається за ланцюгом:

$$+E_{\pi} \rightarrow R_{\kappa l} \rightarrow C2 \rightarrow$$
 база — эмиттер $VT2 \rightarrow -E_{\pi}$

та перезарядить конденсатор C2 за ланцюгом:

$$+E_{\rm n} \rightarrow R_{\rm 51} \rightarrow C2 \rightarrow$$
 коллектор — эмиттер $VT2 \rightarrow -E_{\rm n}$.

 \clubsuit Транзистор VT1 підтримується у закритому стані напругою U_{C2} , яка під'єднується крізь малий опір r_{KE2} між його базой та емітером, мінусом до бази. Стан утримається доки U_{C2} не досягне нудевого значення. З цього моменту починається новий лавиноподібний процес.

Часзакритого стану транзистору VT1 або тривалість додатнього імпульса, знимаємо з **виходу 1**, визначається перезарядкою конденсатора C2 та розраховується за:

$$t_{\rm H1} \approx C2R_{\rm 61}ln2 \approx 0.7C2R_{\rm 61}$$

$$t_{\rm H2} \approx C1R_{\rm 62}ln2 \approx 0.7C1R_{\rm 62}$$

Період повторення:

$$T = t_{H1} + t_{H2} = 0.7(C1R_{62} + C2R_{61})$$

Якщо мультивібратор симетричний:

$$C1 = C2 = C$$

$$R_{61} = R_{62} = R_6$$

$$t_{H1} = t_{H2} = 0.7CR_6$$

$$T \approx 1.4CR_6$$

Для покращення форми імпульса в мультивібратори вводять фіксуючі або відсікаючі діоди.

В мультивібраторах з фіксуючими діодами колекторна напруга збільшується не до рівня E_{Π} , а до рівня $E_{\Phi} < E_{\Pi}$.

При $U_{\rm KE} < E_{\Phi}$ відповідний діод відкривається і колекторна напруга фіксується на цьому рівні — зменшується тривалість фронта вихідних імпульсів.

Відсікаючі діоди відключають закритий транзистор від ланцюга заряду конденсаторів С1 С2, тому колекторна напруга не залежить від напруги на під'єднаному конденсаторі — більш крутий фронт імпульса.

Цифровий функціональний генератор

Figure 1. Analog and Digital Siglals

Цифрова схемотехніка

Цифрові сигнали

Якщо проводити аналоги між видами азбуки та сигналами, то:

Цифровий сигнал — електричний сигнал, який описується дискретною функцією часу (дискретний сигнал)

Цифровий сигнал має два логічних стани — **0** та **1**. Кожному із цих станів відповідає певний рівень напруги.

Цифрові сигнали

- Все, що над шумовим прогом, читається, як «чистий» сигнал
- Несприятливий до невеликих коливань амплітуди сигналу
- На цифровому сигналі легше будувати логіку
 - Цифрова інформація краще зберігається

- Всі сигнали в природі— аналогові. Завжди треба робити перетворення
- Аналоговий филинал має більше характеристик його легше розпізнати в умовах високого фону
- Цифрові пристрої повільніші за аналогові

Електронні логічні елементи

Перше, що треба зробити, щоб зробити з набору електронних елементів розрахункові схеми — зорганізувати найпростіші логічні операції.

Логічні елементи— це пристрої, призначені для виконання певних логічних операцій, що працюють в основному з цифровими сигналами.

Логічних задач багато— які логічні елементи охоплять усі цікавлячі нас задачі?

Логіку будь-якої складності можна побудувати на трьох логічних елементах:

I-HI-A50

Логічне «І»

X1	X2	Y
1	1	1
0	1	0
1	0	0
0	0	0

Логічне «АБО»

X1	X2	Υ
1	1	1
1	0	1
0	1	1
0	0	0

Логічне «HI»

Основні правила цифрової логіки

Правила додавання

$$A + 1 = 1$$

$$A + A = A$$

$$A+0=A$$

$$A + \overline{A} = 1$$

Правила множення

$$A \cdot 1 = A$$

$$A \cdot A = A$$

$$A \cdot 0 = 0$$

$$A \cdot \overline{A} = 0$$

$$A + AB = A$$
 $A(A + B) = A$
 $(A + B)(A + C) = A + BC$

Співвідношення де Моргана

$$\overline{A \cdot B \cdot C} \cdot \ldots = \overline{A} + \overline{B} + \overline{C} + \ldots$$

$$\overline{A+B+C+\ldots} = \overline{A} \cdot \overline{B} \cdot \overline{C} \ldots$$

Логічні елементи

- (а) Транзисторний інвертор
- (b) HI-I
- (с) НІ-ДБОКЯФ КНУ, Р.В. Єрмоленко

Логічні елементи та булева алгебра

Α	Х
0	1
1	0

Α	В	Х
0	0	1
0	1	1
1	0	1
1 .	1	0

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

	Α.	В	Χ
	0	0	0
	0	1	1
į	1	0	1
	1	1	1

Еквівалентність схем

Еквівалентність схем (2)

Α	В	C	AB	AC	AB + AC
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	7	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1
(a)					

Α	В	C	A	B + C	A(B + C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

(b)

Деякі закони булевої алгебри

Названия законов	И	или
Законы тождества	1A=A	0+A=A
Законы нуля	OA=0	1+A=1
Законы идемпотентности	AA=A	A+A=A
Законы инверсии	AĀ"=0	$A + \overline{A} = 1$
Коммуникативные законы	AB=BA	A+B=B+A
Ассоциативные законы	(AB)C=A(BC)	(A+B)+C=A+£B+C)
Дистрибутивные законы	A+BC=(A+B)(A+C)	A(B+C)=AB+AC
Законы поглощения	A(A+B)=A	A+AB=A
Законы Де Моргана		Ā+B=ДВ

Реалізація XOR

Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0
(a)		

Інтегральні схеми

Комбінаторні схеми

- мультиплексори
- декодери
- компаратори
- Програмовані логічні матриці

Мультиплексор

- Bxiд 2 ^ N
- Вихід 1
- N ліній управління
- Обраний вхід з'єднується з виходом

Мультиплексори (2)

8-ми входовий мультиплексор

КЯФ КНУ, Р.В. Єрмоленко

Декодери

- Вхід n-розрядне число
- Вихід '1' одна з 2 ^ N вихідних ліній

D_0 D_1 Декодер D_2 Α Ā D_3 В В D_4 Ē D_5 C D_6 A 3-to-8 D_7 decoder

КЯФ КНУ, Р.В. Єрмоленко

circuit

Компаратори

Простий 4битний компаратор

Арифметичні схеми

- схеми зсуву
- суматори
- Арифметико-логічні пристрої

Схеми зсуву

Напівсуматор

Α	В	Сумма	Перенос
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Суматор

Α	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(a) (b)

1-бітний АЛП

КЯФ КНУ, Р.В. Єрмоленко

Тригери

Тригер (триггерная система) - клас електронних пристроїв, що володіють здатністю тривалий час еребувати в одному з двох стійких станів і змінювати їх під впливом зовнішніх сигналів.

Кожен стан тригера легко розпізнається за значенням вихідної напруги. За характером дії тригери відносяться до імпульсних пристроїв - їх активні елементи (транзистори) працюють у ключовому режимі, а зміна станів триває дуже короткий час.

Тригери

Лічильники

Дешифратори

Дешифратор - функціональний логічний вузол, призначений для перетворення кожної комбінації вхідного двійкового коду в керуючий сигнал лише на одному із своїх виходів

X2	X1	F0	F1	F2	F3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Регістри

Змінна логіка

Ми зможемо побудувати будь-яку логічну операцію

А якщо ми захочемо її змінити чи підлаштувати?

Необхідна ПАМ'ЯТЬ

ПЛМ

Програмовані логічні матриці (*ПЛМ*) — вид програмованого логічного пристрою, що представляє собою ПЗП із незапрограмованими зарання зв'язками

ПЛІС (FPGA)

Універсальні, недорогі складні програмовані інтегральні схеми — **FPGA**, вперше розроблені фірмою Xilinx в 1984 р.

Схеми FPGA мають набір *погічних блоків*, що програмуються, та *зв'язки між ними*, що також програмуються.

Спрощена схема FPGA:

АЦП

АЦП, Аналого-цифровиий перетворювач — пристрій, що перетворює вхідний аналоговий сигнал в дискретний код (цифровий сигнал). Зворотне перетворення здійснюється за допомогою ЦАП (цифро-аналогового перетворювача).

При перетворенні напруги в цифровий код використовуються три незалежні операції:

- дискретизація
- квантування
- кодування

Характеристики АЦП

- Розрядність, роздільна здатність
- Частота дискретизації
- Швидкість(час) перетворення
- Лінійність

Розрядність N: кількість дискретних значень, які перетворювач може видати на виході. Вимірюється в бітах.

- 8 біт = 2⁸ = 256 дискретних значень

Роздільна здатність: Мінімальна вимірювана різниця напруг (ширина одного кванту напруги): $V_{in.max}/(2^n-1)$

ullet Приклад ($V_{in.max}=10$ Вольт, 8 біт) розд.здат. $=10/255 \approx 40$ мВ

Опорна напруга: Максимальна напруга, яку АЦП може конвертувати в цифровий код.

$$V_{in} = V_{ref} \cdot (D_0 2^{-1} + D_1 2^{-2} + \ldots + D_{N-1} 2^{-N})$$

• N = 3 біт,
$$V_{ref} = 1$$
B, $D_{out} = '011'$
 $\rightarrow V_{in} = 1$ B $\cdot (2^{-2} + 2^{-3}) = 1$ B $\cdot (0.25 + 0.125) = 0.375$ B

Частота дискретизації: частота вибірки цифрових значень з аналогового сигналу.

Теорема Котельникова: Для того, щоб відновити сигнал на прийомі без втрат, необхідно, щоб частота дискретизації була хоча б у два рази більша за максимальну частоту вхідного сигналу.

Час перетворення: інтервал часу від початку перетворення до появи на виході АЦП стійкого коду вхідного сигналу.

Лінійність: Точність перетворення сигналу на всьому діапазоні. Характерезується значеннями диференційної (DNL) та інтегральної нелінійності(INL)

- велика швидкість
- мала розрядність (до 8 біт)
- Велике енергоспоживання
- Велика кількість елементів

АЦП Вілкінсона

ЦАП на основі додавання струмів

Велика швидкість перетворення

Для 12 бітного ЦАП необхідно: $R_{max} = 8024 \cdot R_{min}$

Мала точність (до 8 біт)