Gradient Descent

Review: Gradient Descent

• In step 3, we have to solve the following optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

Suppose that
$$\theta$$
 has two variables $\{\theta_1, \theta_2\}$ for the property of the standard standard θ and θ are the standard standard formula and θ are the standard for

Review: Gradient Descent

Gradient Descent

Tip 1: Tuning your learning rates

小儿记

自动值 Learning

Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - · At the beginning, we are far from the destination, so we use larger learning rate

- After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$ 月与次 15万美。
 - Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

不同参数给不同的 Learning Rate

Adagrad

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \qquad g^t = \frac{\partial L(\theta^t)}{\partial w}$$

· Divide the learning rate of each parameter by the root mean square of its previous derivatives 三族 了饱分值

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

w is one parameters

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 $\sigma^{\mathfrak{r}}$: **root mean square** of the previous derivatives of

Parameter dependent

何惨数的分都例

Adagrad

σ^t: **root mean square** of the previous derivatives of parameter w

$$\begin{split} w^1 &\leftarrow w^0 - \frac{\eta^0}{\sigma^0} g^0 \qquad \sigma^0 = \sqrt{(g^0)^2} \\ w^2 &\leftarrow w^1 - \frac{\eta^1}{\sigma^1} g^1 \qquad \sigma^1 = \sqrt{\frac{1}{2} [(g^0)^2 + (g^1)^2]} \\ w^3 &\leftarrow w^2 - \frac{\eta^2}{\sigma^2} g^2 \qquad \sigma^2 = \sqrt{\frac{1}{3} [(g^0)^2 + (g^1)^2 + (g^2)^2]} \\ & \vdots \\ w^{t+1} &\leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t \qquad \sigma^t = \sqrt{\frac{1}{t+1} \sum_{i=0}^t (g^i)^2} \end{split}$$

Adagrad

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Contradiction?
$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

那块 n 和 gradient

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t \underline{g}^t$$
 Larger gradient, larger step

<u>Adagrad</u>

Larger gradient, η larger step

Gradient Descent

Tip 2: Stochastic Gradient Descent

Make the training faster

让traing更快

Stochastic Gradient Descent

Regression [5] Loss [
$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n} \right) \right)^{2}$$
Loss is the summation over all training examples

- $igl \bullet \underline{\textit{Gradient Descent}} \quad heta^i = heta^{i-1} \eta
 abla Ligl(heta^{i-1}igr)$
- **♦ Stochastic Gradient Descent** Faster!

Pick an example xⁿ

$$L^{n} = \left(\hat{\mathfrak{P}}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2} \qquad \theta^{i} = \theta^{i-1} - \eta \nabla L^{n} \left(\theta^{i-1}\right)$$

$$\text{Loss for only one example}$$

$$\text{与人拿 } \uparrow \text{ example Bolis}$$

$$\text{不用款 } \flat \text{ 3}$$

• Demo

Gradient Descent

Tip 3: Feature Scaling

特征陷故 特征归一化

Feature Scaling

Source of figure: http://cs231n.github.io/neuralnetworks-2/

$$y = b + w_1 x_1 + w_2 x_2$$

把他们的range 改刻一样

Make different features have the same scaling

Question

• When solving:

$$\frac{\theta^*}{\Delta} = \arg\min_{\theta} L(\theta)$$
 by gradient descent

• Each time we <u>update the parameters</u>, we obtain $\underline{\theta}$ that makes $L(\theta)$ smaller.

$$L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$$

Is this statement correct?

这个陈述是对的吗?

威后, Loss不龙下降

Warning of Math

Formal Derivation

Taylor Series 秦勒展于 泰勒级数

• Taylor series: Let h(x) be any function infinitely differentiable around $x = x_0$.

$$h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= h(x_0) + h'(x_0)(x - x_0) + \frac{h''(x_0)}{2!} (x - x_0)^2 + \dots$$

When x is close to
$$x_0 \Rightarrow h(x) \approx h(x_0) + h'(x_0)(x - x_0)$$

131

E.g. Taylor series for h(x)=sin(x) around $x_0=\pi/4$

$$\sin(\mathbf{x}) = \frac{1}{\sqrt{2}} + \frac{x - \frac{\pi}{4}}{\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^2}{2\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^3}{6\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^4}{24\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^5}{120\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^6}{720\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^7}{5040\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^8}{40320\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^9}{362880\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^{10}}{3628800\sqrt{2}} + \dots$$

$$\frac{x - \frac{\pi}{4}}{\sqrt{2}} + \frac{x - \frac{\pi}{4}}{\sqrt{2$$

教

Multivariable Taylor Series

$$h(x,y) = h(x_0,y_0) + \frac{\partial h(x_0,y_0)}{\partial x} (x-x_0) + \frac{\partial h(x_0,y_0)}{\partial y} (y-y_0)$$
+ something related to $(x-x_0)^2$ and $(y-y_0)^2 + \dots$

When x and y is close to x_0 and y_0

$$h(x,y) \approx h(x_0,y_0) + \frac{\partial h(x_0,y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0,y_0)}{\partial y} (y - y_0)$$

Back to Formal Derivation

Based on Taylor Series:

$$L(\theta) \approx L(a,b) + \frac{\partial L(a,b)}{\partial \theta_1} (\theta_1 - a) + \frac{\partial L(a,b)}{\partial \theta_2} (\theta_2 - b) \leq 18$$

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

$$\mathsf{L}(heta)$$

$$\approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is small enough, in the red circle

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Find θ_1 and θ_2 in the red circle

minimizing L(θ)

$$(\theta_1 - a)^2 + (\theta_2 - b)^2 \le d^2$$

Simple, right?

Gradient descent – two variables

Red Circle: (If the radius is small)

$$L(\theta) \approx 1 + u(\underline{\theta_1 - a}) + v(\underline{\theta_2 - b})$$

$$\left(\underline{\theta_1 - a}\right)^2 + \left(\underline{\theta_2 - b}\right)^2 \le d^2$$

$$\Delta \theta_1$$

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = -\eta \begin{bmatrix} u \\ v \end{bmatrix} \longrightarrow \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix}$$

$$\begin{bmatrix} \theta_1 - q \\ \theta_2 - b \end{bmatrix} = -\eta \begin{bmatrix} y \\ y \end{bmatrix}$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is **small enough**, in the red circle

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$u = \frac{\partial L(a, b)}{\partial \theta_1}, v = \frac{\partial L(a, b)}{\partial \theta_2}$$

constant

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

Find θ_1 and θ_2 yielding the smallest value of $L(\theta)$ in the circle

Find
$$\theta_1$$
 and θ_2 yielding the smallest value of $L(\theta)$ in the circle
$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial \theta_1} \\ \frac{\partial L(a,b)}{\partial \theta_2} \end{bmatrix}$$
 This is gradient descent.

Not satisfied if the red circle (learning rate) is not small enough ightarrow ightarrow

You can consider the second order term, e.g. Newton's method.

使上面的式子成立

与こ次数分

End of Warning

Acknowledgement

· 感謝 Victor Chen 發現投影片上的打字錯誤