# Support Vector Machine

prof. Edson Cilos Vargas Júnior Universidade Federal de Santa Catarina



### Introdução

Máquina de vetores de suporte (SVM em inglês) é um conjunto de métodos de aprendizado supervisionado usado para classificação, regressão e detecção de outliers.

### Support Vector Machine

Até então temos ilustrado, de maneira vaga, o SVM.

- ► Foi dito que o SVM tenta encontrar hiperplanos que separam os dados;
- Mas o quê significa na prática e como funciona o algoritmo?

# Encontrando hiperplano



# Essa seria uma opção melhor?



### Ou esta?





# Ou seria essa? → *X*1 Qual critério para decidir?





### Sensibilidade à escala do SVM



**Figura 1:** Extraído de Gron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol: O'Reilly Media, Inc, 2017.

# Separação de hiperplanos

Considere uma função:

$$f_{w,b} \colon \mathbb{R}^m \to \mathbb{R}$$
  
  $x \mapsto \langle x, w \rangle + b.$ 

parametretrizada por  $w \in \mathbb{R}^m$  e  $b \in \mathbb{R}$ .

### Separação de hiperplanos

Considere uma função:

$$f_{w,b} \colon \mathbb{R}^m \to \mathbb{R}$$
  
  $x \mapsto \langle x, w \rangle + b.$ 

parametretrizada por  $w \in \mathbb{R}^m$  e  $b \in \mathbb{R}$ .

- Hyperplanos são subespaços afins;
- Um hiperplano pode ser escrito na forma:

$$H_{b,w} := \{x \in \mathbb{R}^m \colon f_{b,w}(x) = 0\};$$

▶  $\mathcal{H} := \{f_{w,b} : w \in \mathbb{R}^m \text{ e } b \in \mathbb{R}\}$  é um conjunto de hipóteses que representa todos os hiperplanos que separam  $\mathbb{R}^m$  em dois conjuntos (daí a aplicação para um problema de classificação binária).

### Vejamos que o vetor w é sempre ortogonal ao hiperplano H.

- ► Considere x' e x'' dois pontos do hiperplano H;
- ightharpoonup f(x') = f(x'') = 0 e além disso:

$$\langle x'' - x', w \rangle = f(x'') - f(x') = 0;$$

ightharpoonup Ou seja, w é ortogonal a qualquer vetor de H.



Um pouco da geometria...



Um pouco da geometria...



Um pouco da geometria...



### Visualizando em 2D



Considerando uma amostra rótulada  $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \cdots, (x^{(N)}, y^{(N)})\}$  na qual  $y^{(i)} \in \{-1, +1\}$ , decidimos o rótulo da seguinte maneira:

$$< x^{(n)}, w > + b \ge 0 \iff y^{(n)} = +1$$

$$< x^{(n)}, w > + b < 0 \iff y^{(n)} = -1$$

Considerando uma amostra rótulada  $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \cdots, (x^{(N)}, y^{(N)})\}$  na qual  $y^{(i)} \in \{-1, +1\}$ , decidimos o rótulo da seguinte maneira:

$$< x^{(n)}, w > + b \ge 0 \iff y^{(n)} = +1$$
  
 $< x^{(n)}, w > + b < 0 \iff y^{(n)} = -1$ 

Podemos considerar uma única desigualdade:

$$> y^{(n)} (< x^{(n)}, w > + b) \ge 0$$

Considere  $x^{(n)}$  o ponto mais próximo ao hiperplano H



Considere  $x^{(n)}$  o ponto mais próximo ao hiperplano H



Considere  $x^{(n)}$  o ponto mais próximo ao hiperplano H



Considere  $x^{(n)}$  o ponto mais próximo ao hiperplano H



Margem é a distância do vetor de suporte até o hiperplano!





► Eventualmente o vetor de suporte não é único!



# Voltando a questão da margem...



- A distância  $x^{(n)} Pr_H(x^{(n)})$  está na mesma direção de w!
- $ightharpoonup x^{(n)} = Pr_H(x^{(n)}) + d\frac{w}{||w||}.$

### Dedução do problema - Ridge SVM

Considere  $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \cdots, (x^{(N)}, y^{(N)})\}$  a nossa amostra rotulada.

▶ Assuma que exista  $w \in \mathbb{R}^m$  e  $b \in \mathbb{R}$  tais que:

$$y^{(k)}\left(\langle w,x\rangle+b\right)>0,$$

para todo  $k \in \{1, \dots, N\}$ .

Na prática, essa hipótese afirma que os nossos dados são (perfeitamente) linearmente separáveis.

Podemos considerar  $w \in \mathbb{R}^m$  e  $b \in \mathbb{R}$  tais que

$$y^{(k)}(\langle w,x\rangle+b)\geq 1,$$

para todo  $k \in \{1, \dots, N\}$ . Além disso, podemos assumir  $\min_{k \in \{1, \dots, N\}} y^{(k)} (\langle w, x \rangle + b) = 1$ .

ightharpoonup De fato, seja  $\alpha > 0$  tal que

$$\alpha = \min_{k \in \{1, \dots, N\}} y^{(k)} \left( \langle \tilde{w}, x \rangle + \tilde{b} \right) > 0.$$

Tomando  $w = \frac{1}{\alpha}\tilde{w}$  e  $b = \frac{1}{\alpha}b$  a afirmação segue.

Podemos considerar  $w \in \mathbb{R}^m$  e  $b \in \mathbb{R}$  tais que

$$y^{(k)}(\langle w,x\rangle+b)\geq 1,$$

para todo  $k \in \{1, \dots, N\}$ . Além disso, podemos assumir  $\min_{k \in \{1, \dots, N\}} y^{(k)} (\langle w, x \rangle + b) = 1$ .

ightharpoonup De fato, seja  $\alpha > 0$  tal que

$$\alpha = \min_{k \in \{1, \dots, N\}} y^{(k)} \left( \langle \tilde{w}, x \rangle + \tilde{b} \right) > 0.$$

Tomando  $w = \frac{1}{\alpha}\tilde{w}$  e  $b = \frac{1}{\alpha}b$  a afirmação segue.

Observe que na verdade ambas as formulações são equivalentes!

ightharpoonup Sem perda de generalidade, assuma que  $x^{(n)}$  está na parte positiva.

$$0 = \left\langle Pr_H(x^{(n)}), w \right\rangle + b = \left\langle x^{(n)} - d \frac{w}{||w||}, w \right\rangle + b$$

ightharpoonup Sem perda de generalidade, assuma que  $x^{(n)}$  está na parte positiva.

$$0 = \left\langle Pr_{H}(x^{(n)}), w \right\rangle + b = \left\langle x^{(n)} - d \frac{w}{||w||}, w \right\rangle + b$$
$$= \left\langle x^{(n)}, w \right\rangle + \left\langle -d \frac{w}{||w||}, w \right\rangle + b$$

ightharpoonup Sem perda de generalidade, assuma que  $x^{(n)}$  está na parte positiva.

$$0 = \left\langle Pr_{H}(x^{(n)}), w \right\rangle + b = \left\langle x^{(n)} - d \frac{w}{||w||}, w \right\rangle + b$$
$$= \left\langle x^{(n)}, w \right\rangle + \left\langle -d \frac{w}{||w||}, w \right\rangle + b$$
$$= \left\langle x^{(n)}, w \right\rangle - \frac{d}{||w||} \left\langle w, w \right\rangle + b$$

ightharpoonup Sem perda de generalidade, assuma que  $x^{(n)}$  está na parte positiva.

$$0 = \left\langle Pr_{H}(x^{(n)}), w \right\rangle + b = \left\langle x^{(n)} - d \frac{w}{||w||}, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle + \left\langle -d \frac{w}{||w||}, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle - \frac{d}{||w||} \left\langle w, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle - \frac{d}{||w||} ||w||^{2} + b$$

ightharpoonup Sem perda de generalidade, assuma que  $x^{(n)}$  está na parte positiva.

$$0 = \left\langle Pr_{H}(x^{(n)}), w \right\rangle + b = \left\langle x^{(n)} - d \frac{w}{||w||}, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle + \left\langle -d \frac{w}{||w||}, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle - \frac{d}{||w||} \left\langle w, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle - \frac{d}{||w||} ||w||^{2} + b$$

$$= \left\langle x^{(n)}, w \right\rangle + b - d||w||$$

ightharpoonup Sem perda de generalidade, assuma que  $x^{(n)}$  está na parte positiva.

$$0 = \left\langle Pr_{H}(x^{(n)}), w \right\rangle + b = \left\langle x^{(n)} - d \frac{w}{||w||}, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle + \left\langle -d \frac{w}{||w||}, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle - \frac{d}{||w||} \left\langle w, w \right\rangle + b$$

$$= \left\langle x^{(n)}, w \right\rangle - \frac{d}{||w||} ||w||^{2} + b$$

$$= \left\langle x^{(n)}, w \right\rangle + b - d||w||$$

$$= 1 - d||w||.$$

Resolvendo para d, segue que  $d=\frac{1}{||w||}$  é o comprimento da margem.  $^1$ 

<sup>&</sup>lt;sup>1</sup> Ou meia margem, dependendo da bibliografia.

Resolvendo para d, segue que  $d=rac{1}{||w||}$  é o comprimento da margem.  $^1$ 

- Queremos sempre uma margem maior possível!
- Por quê?

<sup>&</sup>lt;sup>1</sup> Ou meia margem, dependendo da bibliografia.

# Margem pequena







# Formulação do problema

Então o nosso problema é dado por:

$$\max_{w,b} \frac{1}{||w||}$$
 sujeito a  $y^{(k)}(< w, x^{(k)} > + b) \ge 1$ , para  $k \in \{1, \cdots, N\}$ .

# Formulação do problema

Então o nosso problema é dado por:

$$\max_{w,b} \frac{1}{||w||}$$
 sujeito a  $y^{(k)}(< w, x^{(k)} > + b) \ge 1$ , para  $k \in \{1, \cdots, N\}$ .

que é equivalente a

$$\min_{w,b} \frac{1}{2} ||w||^2$$
 sujeito a  $y^{(k)} (< w, x^{(k)} > + b) \ge 1$ , para  $k \in \{1, \dots, N\}$ .

Problema de otimização convexa - forma quadrática com restrições por desigualdades lineares.

# Sensibilidade à outliers da margem rígida!



**Figura 2:** Extraído de Gron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol: O'Reilly Media, Inc, 2017.

## Soft Margin SVM

Quando os nossos dados não são linearmente separáveis, gostaríamos de permitir alguns exemplos ficarem dentro da margem ou até no lado errado do hiperplano.

▶ O modelo que permite tais propriedades é chamado de Máquina de Vetores de Suporte de Margem Suave.

# Intuição



### Ideia

Para cada  $n \in \{1, \dots, N\}$  introduzimos variáveis de relaxamento  $\xi_n \ge 0$  associado a um par  $(x^{(n)}, y^{(n)})$ .

### Ideia

Para cada  $n \in \{1, \cdots, N\}$  introduzimos variáveis de relaxamento  $\xi_n \geq 0$  associado a um par  $(x^{(n)}, y^{(n)})$ .

Fixe H um hiperplano (com paramêtros  $w \in \mathbb{R}^n$  e  $n \in \mathbb{R}$ )

▶ Suponha que exista  $n \in \{1, \dots, N\}$  de forma que

$$y^{(n)}(< w, x^{(n)} > +b) < 0.$$

Afirmamos que existe  $\xi_n > 0$  de modo que:

$$y^{(n)}\left(\left\langle w, x^{(n)} + y^{(n)}\xi_n \frac{w}{||w||^2} \right\rangle + b\right) > 0.$$

Afirmamos que existe  $\xi_n \geq 0$  de modo que:

$$y^{(n)}\left(\left\langle w, x^{(n)} + y^{(n)}\xi_n \frac{w}{||w||^2} \right\rangle + b\right) > 0.$$
 (1)

Afirmamos que existe  $\xi_n \ge 0$  de modo que:

$$y^{(n)}\left(\left\langle w, x^{(n)} + y^{(n)}\xi_n \frac{w}{||w||^2} \right\rangle + b\right) > 0.$$
 (1)

Note que

$$y^{(n)}\left(\left\langle w, x^{(n)} + y^{(n)}\xi_n \frac{w}{||w||^2} \right\rangle + b\right) > 0$$
  

$$\iff y^{(n)}\left(\langle w, x^{(n)} \rangle + b\right) + \xi_n > 0$$
  

$$\iff \xi_n > -y^{(n)}\left(\langle w, x^{(n)} \rangle + b\right).$$

Afirmamos que existe  $\xi_n \ge 0$  de modo que:

$$y^{(n)}\left(\left\langle w, x^{(n)} + y^{(n)}\xi_n \frac{w}{||w||^2} \right\rangle + b\right) > 0.$$
 (1)

Note que

$$y^{(n)}\left(\left\langle w, x^{(n)} + y^{(n)}\xi_n \frac{w}{||w||^2} \right\rangle + b\right) > 0$$

$$\iff y^{(n)}\left(\langle w, x^{(n)} \rangle + b\right) + \xi_n > 0$$

$$\iff \xi_n > -y^{(n)}\left(\langle w, x^{(n)} \rangle + b\right).$$

Para cada n tal que  $y^{(n)}(< w, x^{(n)} > +b) < 0$ , escolhendo  $\xi_n$  como acima a desigualdade (1) é verdadeira.

# SVM Soft Margin

$$\begin{aligned} \min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \xi_n \\ \text{sujeito a } y^{(k)} (< w, x^{(k)} > + b) \geq 1 - \xi_k, \\ \xi_k \geq 0, \text{ para } k \in \{1, \cdots, N\}. \end{aligned}$$

- ► Classificações erradas ocorrem quando  $\xi_k > 1$ ;
- ▶ o problema acima poderia ser reescrito como (cte é  $n^\circ$  max de rótulos errados):  $\min_{w,h} \frac{1}{2} ||w||^2$

$$w,b \ge 1$$
 sujeito a  $y^{(k)}(< w, x^{(k)} > + b) > 1 - \xi_k$ ,

n=1

$$\xi_k \ge 0, \ \sum_{n=1}^{N} \xi_n \le \mathsf{Cte}, \ \mathsf{para} \ k \in \{1, \cdots, N\}.$$

#### Equilíbrio:

- ► Manter a via mais larga, ou seja, minizar  $\frac{1}{2}||w||^2$ ;
- Limitar a violação de margens, ou seja, manter  $\sum_{n=1}^{N} \xi_n$  pequeno.

$$\begin{split} \min_{w,b} \frac{1}{2}||w||^2 + C\sum_{n=1}^N \xi_n \\ \text{sujeito a } y^{(k)}(< w, x^{(k)} > + b) \geq 1 - \xi_k, \\ \xi_k \geq 0, \text{ para } k \in \{1, \cdots, N\}. \end{split}$$

## Hiperparâmetro C

### Observe que o (hiper)parâmetro C não é minimizado no problema

- ► No Sklearn, você pode ajustar *C*;
- ▶ Quanto C menor, temos margem mais larga, mas com maiores chances de violação de margem!

$$\begin{aligned} \min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \xi_n \\ \text{sujeito a } y^{(k)} (< w, x^{(k)} > + b) \geq 1 - \xi_k, \\ \xi_k \geq 0, \text{ para } k \in \{1, \cdots, N\}. \end{aligned}$$

## Tamanho margem v.s. violação de margem

- Quanto maior C maior a penalização no erro de classificação e portanto teremos uma margem mais estreita;
- ▶ Menor C teremos uma menor penalização (...).

$$\begin{split} \min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n \\ \text{sujeito a } y^{(k)} (< w, x^{(k)} > + b) \geq 1 - \xi_k, \\ \xi_k \geq 0, \text{ para } k \in \{1, \cdots, N\}. \end{split}$$

## violações margem v.s. grandes margens



**Figura 3:** Extraído de Gron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol: O'Reilly Media, Inc, 2017.

## Dicas e comentários

► Como encontrar o melhor *C*?



#### Dicas e comentários

- Como encontrar o melhor C? GridSearch!
- Ao contrário da Regressão logística, os classidores SVM não fornecem probabilidade para cada classe;
- ▶ Podemos treinar um modelo SVM linear usando a classe LinearSVC com algum C (digamos, C = 1) com loss = "hinge".

## Hinge-loss

Outra maneira de formular o problema do SVM é minizar a função custo:

$$J(w,b) := \frac{1}{2} ||w||^2 + C \sum_{n=0}^{N} \max \left\{ 0, 1 - y^{(n)} \left( \left\langle w, x^{(n)} \right\rangle + b \right) \right\}.$$

#### SGDClassifier v.s. LinearSVC

Uma abordagem é usar o gradiente descendente na classe SGDClassifier do Sklearn:

$$clf = SGDClassifier(loss = "hinge", alpha = 1/m*C).$$

- Não converge tão rápido quanto a classe LinearSVC (usa Programação Quadrática);
- Útil para trabalhar com grande conjuntos de dados que não cabem na memória (out-of-core);
- Útil para tarefas de classificação online.

#### Problema Dual

Outra maneira de formular o problema é o seguinte:

$$\begin{split} \min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j \left\langle x^{(i)}, x^{(j)} \right\rangle - \sum_{n=1}^{N} \alpha_n \\ \text{sujeito a } \sum_{i=1}^{N} y^{(i)} \alpha_i = 0 \\ 0 \leq \alpha_k \leq C, \text{ para } k \in \{1, \cdots, N\}. \end{split}$$

- Por padrão o parâmetro "dual" é "True" na classe LinerSVC;
- Devemos usar a formulação dual quando tivermos mais características do que instâncias, do contrário devemos usar dual=False!

### SVM não linear

Embora os classificadores lineares SVM sejam eficientes e funcionem surpreendentemente bem em muitos casos, muitos conjuntos de dados estão longe de serem linearmente separáveis!

#### Ideia: Adicionar características não lineares!



**Figura 4:** Extraído de Gron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol: O'Reilly Media, Inc, 2017.

### Dados com características polinomiais



**Figura 5:** Extraído de Gron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol: O'Reilly Media, Inc, 2017.

## Características polinomiais

#### Prós:

- Simples de implementar;
- ▶ Pode funcionar bem em qualquer outro tipo de algoritmo de ML.

#### Contras:

- Polinômios de grau baixo podem não captar padrões complexos;
- Polinômios de grau muito alto podem tornar o algoritmo lento!

### Núcleos

Técnica "milagrosa", chamada de truque do núcleo (kernal trick)



### Núcleos

### Técnica "milagrosa", chamada de truque do núcleo (kernal trick)

- ▶ É possível obter o mesmo resultado de adicionar características polinômiais, mas sem acrescentá-las de fato;
- Evitamos a explosão combinatória de características!
- No Sklearn o hiperparâmetro "coef0" controla o quanto o modelo é influenciado por polinômios de alto grau versus polinômios de baixo grau.

### Truqe do núcleo



Figura 6: Extraído do blog Medium, autoria: Analytics Vidhya.

### Exemplos

- ► Linear:  $K(x, y) = \langle x, y \rangle$ ;
- ▶ Polinômio de grau *d*:  $K(x, y) = (k_1 + k_2 < x, y >)^d$ ;
- ► Base radial:  $K(x,y) = exp(-\gamma||x-y||^2)$ ;
- ▶ Rede neural(sigmóide):  $K(x,y) = tanh(k_1 < x, y > +k_2)$ ;

### SVM Kernalizado

Suponha que precisamos aplicar uma transformação polinômial de grau 2 para um conjunto de treino bidimensional (moon dataset por ex)

- Depois queremos usar o SVM no conjunto transformado;
- Considere a função:

$$\phi(x) = \phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2);$$

Note que os dados agora são 3d ao invés de 2d.

$$<\phi(a),\phi(b)> = (a_1^2,\sqrt{2}a_1a_2,a_2^2)^T(b_1^2,\sqrt{2}b_1b_2,b_2^2)$$

$$<\phi(a),\phi(b)> = (a_1^2,\sqrt{2}a_1a_2,a_2^2)^T(b_1^2,\sqrt{2}b_1b_2,b_2^2)$$
  
=  $a_1^2b_1^2+2a_1b_1a_2b_2+a_2^2b_2^2$ 

$$<\phi(a),\phi(b)> = (a_1^2,\sqrt{2}a_1a_2,a_2^2)^T(b_1^2,\sqrt{2}b_1b_2,b_2^2)$$
  
=  $a_1^2b_1^2 + 2a_1b_1a_2b_2 + a_2^2b_2^2$   
=  $(a_1b_1 + a_2b_2)^2$ 

$$<\phi(a), \phi(b)> = (a_1^2, \sqrt{2}a_1a_2, a_2^2)^T(b_1^2, \sqrt{2}b_1b_2, b_2^2)$$
  
 $= a_1^2b_1^2 + 2a_1b_1a_2b_2 + a_2^2b_2^2$   
 $= (a_1b_1 + a_2b_2)^2$   
 $= < a, b >^2$ 

## Voltando ao problema Dual

$$\begin{aligned} \min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j \left\langle x^{(i)}, x^{(j)} \right\rangle - \sum_{n=1}^{N} \alpha_n \\ \text{sujeito a } \sum_{i=1}^{N} y^{(i)} \alpha_i = 0 \\ 0 \leq \alpha_k \leq C, \text{ para } k \in \{1, \cdots, N\}. \end{aligned}$$

Aplicando a transformação do núcleo nas instância  $x^{(i)}$ , temos então o novo problema:

Aplicando a transformação do núcleo nas instância  $x^{(i)}$ , temos então o novo problema:

$$\begin{split} \min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j \left\langle \phi(x^{(i))}, \phi(x^{(j)}) \right\rangle - \sum_{n=1}^{N} \alpha_n \\ \text{sujeito a } \sum_{i=1}^{N} y^{(i)} \alpha_i = 0 \\ 0 \leq \alpha_k \leq C, \text{ para } k \in \{1, \cdots, N\}. \end{split}$$

Mas 
$$<\phi(x^{(i)}), \phi(x^{(j)}) = < x^{(i)}, x^{(j)} >^2$$
!

## Finalmente

$$\begin{aligned} \min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j \left\langle x^{(i)}, x^{(j)} \right\rangle^2 - \sum_{n=1}^{N} \alpha_n \\ \text{sujeito a } \sum_{i=1}^{N} y^{(i)} \alpha_i = 0 \\ 0 \leq \alpha_k \leq C, \text{ para } k \in \{1, \cdots, N\}. \end{aligned}$$

Truque: No final das contas, você não precisou na verdade transformar o conjunto de treino, apenas trocou o produto interno pelo quadrado!

#### Teorema de Mercer

Se  $K(\cdot,\cdot)$  for continua, simétria e não negativa, existe  $\phi$  (de dimensão bem alta, possivelmente infinita) tal que:

$$K(a,b) = \langle \phi(a), \phi(b) \rangle$$

#### Teorema de Mercer

Se  $K(\cdot, \cdot)$  for continua, simétria e não negativa, existe  $\phi$  (de dimensão bem alta, possivelmente infinita) tal que:

$$K(a,b) = <\phi(a),\phi(b)>$$

- Você pode usar o truqe do Kernel pois sabe que  $\phi$  existe, mesmo não sabendo  $\phi$ ;
- No caso do núcleo Gaussiano RBF, é possível mostrar que  $\phi$  leva o conjunto de treino em um espaço de dimensão infinita!
- ► Alguns núcleos não satisfazem as condições do Teorema de Mercer, mas funcionam bem na prática!

# Na prática...

$$\begin{split} \min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j \mathcal{K}(x^{(i)}, x^{(j)}) - \sum_{n=1}^{N} \alpha_n \\ \text{sujeito a } \sum_{i=1}^{N} y^{(i)} \alpha_i = 0 \\ 0 \leq \alpha_k \leq C, \text{ para } k \in \{1, \cdots, N\}. \end{split}$$



- 1. Ideia fundamental do SVM
  - ► Adequar a "margem" mais larga possível entre as classes;

- Adequar a "margem" mais larga possível entre as classes;
- ► Maior margem possível entre a fronteira de decisão, que separa as duas classes, e as instâncias de treinamento;

- Adequar a "margem" mais larga possível entre as classes;
- Maior margem possível entre a fronteira de decisão, que separa as duas classes, e as instâncias de treinamento;
- ► Ao realizar a classificação de margem suave, a SVM procura um compromisso entre a separação perfeita das duas classes e a existência da margem mais ampla possível;

- Adequar a "margem" mais larga possível entre as classes;
- Maior margem possível entre a fronteira de decisão, que separa as duas classes, e as instâncias de treinamento;
- ► Ao realizar a classificação de margem suave, a SVM procura um compromisso entre a separação perfeita das duas classes e a existência da margem mais ampla possível;
- ► Pode-se usar o truque do Kernel.

► Um vetor de suporte é qualquer instância localizada na "margem" após o treinamento de uma SVM (veja a resposta anterior), incluindo sua borda;

- ► Um vetor de suporte é qualquer instância localizada na "margem" após o treinamento de uma SVM (veja a resposta anterior), incluindo sua borda;
- A fronteira de decisão é inteiramente determinada pelos vetores de suporte;

- Um vetor de suporte é qualquer instância localizada na "margem" após o treinamento de uma SVM (veja a resposta anterior), incluindo sua borda;
- A fronteira de decisão é inteiramente determinada pelos vetores de suporte;
- Qualquer instância que não seja um vetor de suporte (isto é, fora da margem) não terá influência alguma; você pode removê-los, adicionar mais instâncias ou movê-los e, desde que permaneçam fora da margem, eles não afetarão a fronteira de decisão;

- Um vetor de suporte é qualquer instância localizada na "margem" após o treinamento de uma SVM (veja a resposta anterior), incluindo sua borda;
- ► A fronteira de decisão é inteiramente determinada pelos vetores de suporte;
- Qualquer instância que não seja um vetor de suporte (isto é, fora da margem) não terá influência alguma; você pode removê-los, adicionar mais instâncias ou movê-los e, desde que permaneçam fora da margem, eles não afetarão a fronteira de decisão;
- O cálculo das previsões envolve apenas os vetores de suporte, não todo o conjunto de treinamento.

3. Por que é importante dimensionar as entradas ao utilizar SVM?

- 3. Por que é importante dimensionar as entradas ao utilizar SVM?
  - As SVM tentam ajustar a maior "margem" possível entre as classes (veja a primeira resposta), portanto, se o conjunto de treinamento não for escalonado, a SVM tenderá a negligenciar pequenas características;

- 3. Por que é importante dimensionar as entradas ao utilizar SVM?
  - As SVM tentam ajustar a maior "margem" possível entre as classes (veja a primeira resposta), portanto, se o conjunto de treinamento não for escalonado, a SVM tenderá a negligenciar pequenas características;
  - ► Lembrar da aula de Feature Scaling!



4. Um classificador SVM pode produzir uma pontuação de confiança quando classifica uma instância? E quanto a uma probabilidade?

- 4. Um classificador SVM pode produzir uma pontuação de confiança quando classifica uma instância? E quanto a uma probabilidade?
  - Um classificador SVM pode gerar a distância entre a distância de teste e o limite de decisão, e você pode utilizar isso como uma pontuação de confiança. Entretanto, essa pontuação não poderá ser convertida diretamente em uma estimativa da probabilidade da classe;

- 4. Um classificador SVM pode produzir uma pontuação de confiança quando classifica uma instância? E quanto a uma probabilidade?
  - Um classificador SVM pode gerar a distância entre a distância de teste e o limite de decisão, e você pode utilizar isso como uma pontuação de confiança. Entretanto, essa pontuação não poderá ser convertida diretamente em uma estimativa da probabilidade da classe;
  - Se você configurar probability=True quando criar um SVM no Scikit-Learn, então, depois do treinamento, ele calibrará as probabilidades usando Regressão Logística nas pontuações da SVM (treinadas por uma validação cruzada de cinco dobras nos dados de treinamento), o que adicionará os métodos predict\_proba() e predict\_log\_proba() à SVM.

5. Você deve utilizar a forma primal ou dual do problema SVM no treinamento de um modelo em um conjunto de treinamento com milhões de instâncias e centenas de características?

- 5. Você deve utilizar a forma primal ou dual do problema SVM no treinamento de um modelo em um conjunto de treinamento com milhões de instâncias e centenas de características?
  - Esta questão se aplica apenas às SVM lineares, já que a kernelizada só pode utilizar a forma dual;

- 5. Você deve utilizar a forma primal ou dual do problema SVM no treinamento de um modelo em um conjunto de treinamento com milhões de instâncias e centenas de características?
  - Esta questão se aplica apenas às SVM lineares, já que a kernelizada só pode utilizar a forma dual;
  - ► A complexidade dos cálculos do problema SVM da forma primal é proporcional ao número de instâncias de treinamento m, enquanto a complexidade dos cálculos da forma dual é proporcional a um número entre m² e m²;

- 5. Você deve utilizar a forma primal ou dual do problema SVM no treinamento de um modelo em um conjunto de treinamento com milhões de instâncias e centenas de características?
  - Esta questão se aplica apenas às SVM lineares, já que a kernelizada só pode utilizar a forma dual;
  - ► A complexidade dos cálculos do problema SVM da forma primal é proporcional ao número de instâncias de treinamento m, enquanto a complexidade dos cálculos da forma dual é proporcional a um número entre m² e m²;
  - Caso existam milhões de instâncias, você definitivamente deveria utilizar a forma primal, porque a forma dual será muito lenta.

6. Digamos que você treinou um classificador SVM com o kernel RBF. Parece que ele se subajusta ao conjunto de treinamento: você deve aumentar ou diminuir  $\gamma$ ? E quanto ao C?

- 6. Digamos que você treinou um classificador SVM com o kernel RBF. Parece que ele se subajusta ao conjunto de treinamento: você deve aumentar ou diminuir  $\gamma$ ? E quanto ao C?
  - Caso um classificador SVM treinado com um kernel RBF se subajuste ao conjunto de treinamento, poderá haver muita regularização. Para diminuí-la, você precisará aumentar γ ou C (ou ambos).

# Obrigado!

#### Contato:

edson.junior@ufsc.br

