

Building a Cloud Data Pipeline for Financial Analysis with SARIMAX

LINK TO DASHBOARD

Muhamad Tartila Sahid mtartila@gmail.com

DIAGRAM

Backend Cloud Technicalities

System Information & API

Alibaba ECS:

1. Zone : Singapore C

2. Instance type : ecs.t5-lc1m1.small

3. CPU and Memory: 1 Core (vCPUs), 1 GiB

4. Operating System: Ubuntu 20.04 64 bit

Finnhub API:

1. Rate limit 60 calls per seconds

2. Call method used : Finnhub Quote Call

Aiven DB:

1. CPU:1

2. RAM: 1 GB

3. Storage: 5 GB

4. Version: MySQL 8.0.30

PIPELINE

Data Extraction - Scripts

- Fetching and storing data from finnhub API to Aiven DB: <u>Extraction</u>
- Data is fetched from 8.30 PM 3 AM (GMT +7) for every 10 minutes daily : Scheduler

sumb al	record data	onon	high	low	clo	_	provious	incorted data
symbol	record_date	open	nign	iow	CIO	е	previous_	inserted_date
AAPL	6/7/2024 2:16	195.685	196.5	194.95		195.08	195.87	6/7/2024 2:16
AAPL	6/7/2024 2:26	195.685	196.5	194.95		195.25	195.87	6/7/2024 2:26
AAPL	6/7/2024 2:36	195.685	196.5	194.95		195.12	195.87	6/7/2024 2:36
AAPL	6/7/2024 2:46	195.685	196.5	194.95	1	95.035	195.87	6/7/2024 2:46
AAPL	6/7/2024 2:56	195.685	196.5	194.38		194.42	195.87	6/7/2024 2:56
AAPL	6/7/2024 20:36	195.06	195.75	194.55		194.67	194.48	6/7/2024 20:36
AAPL	6/7/2024 20:46	195.06	195.75	194.14	1	94.515	194.48	6/7/2024 20:46
AAPL	6/7/2024 20:56	195.06	195.75	194.14		194.58	194.48	6/7/2024 20:56
AAPL	6/7/2024 21:06	195.06	195.75	194.14		194.76	194.48	6/7/2024 21:06
AAPL	6/7/2024 21:16	195.06	195.75	194.14	1	94.956	194.48	6/7/2024 21:16
AAPL	6/7/2024 21:26	195.06	195.75	194.14		194.94	194.48	6/7/2024 21:26
AAPL	6/7/2024 21:36	195.06	195.75	194.14		195.03	194.48	6/7/2024 21:36
AAPL	6/7/2024 21:46	195.06	195.75	194.14		195.72	194.48	6/7/2024 21:46
AAPL	6/7/2024 21:56	195.06	195.97	194.14	1	95.685	194.48	6/7/2024 21:56
AAPL	6/7/2024 22:06	195.06	195.97	194.14	1	95.105	194.48	6/7/2024 22:06

Data ETL - Scripts

- Fetching and transforming data from table finnhub_stock_data to finnhub_stock_data_daily: <u>ETL</u>
- Job scheduler to run every 4 AM (GMT+7) right after the stock market closes: <u>ETL</u> <u>Scheduler</u>

```
0 4 * * * /root/my_python_project/etl_cron.sh
```


SARIMAX Model - Training

- Models were trained locally using jupyter notebook and saved with joblib
- Using datasets from yahoo finance from 9/6/2023 7/6/2024: <u>Dataset Creation</u>
- Scripts for training each model: Model Training

SARIMAX Model - Scoring

Daily scoring to predict the next 5 business day forecast: <u>Forecasting</u>

Render Dashboard

- Required GITHUB to deploy dashboard : Render Deployment
- Python Script for dynamic dashboard : <u>Plotly Dash Web Component</u>

EDA

SARIMAX

- Statistical model that Combines autoregressive (AR), Integration (I), and moving average (MA) components with Seasonal and
 eXogenous factors (p, d, q)(P, D, Q, s).
- AR: takes past values to predict current values (p) to a linear regression

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

• I: differencing of observations to make time series stationary so it can be predicted

$$Y_t' = Y_t - Y_{t-1}$$

• MA: takes past errors in predictions (q) to a linear regression

$$X_t = \varepsilon_t + \phi_1 X_{t-1} + \dots + \phi_p X_{t-p}$$

- P: Number of seasonal autoregressive term (P = 1 indicates value from 12 months ago as one season back).
- D : Seasonal differencing substracts the value of the same period in previous season from current value.
- Q: Number of seasonal moving average terms.
- s: number of time steps per season.

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \Theta(L) \varepsilon_t + \Phi(L^s) \varepsilon_{t-s} + \Theta_Q(L^s) \varepsilon_{t-Qs}$$

Augmented Dickey-Fuller (ADF)

- Statistical test used to determine whether a given time series is stationary
- p-value: The probability that the observed data would occur if the null hypothesis were true. A low p-value (typically < 0.05)
 indicates that we can reject the null hypothesis in favor of the alternative hypothesis, suggesting that the time series is stationary.
- With the p-value of several stocks below, it indicates the needs of differencing by one order to achieve stationarity (I = 1).

AAPL

GOOGL

MSFT

Determining AR and MA Components

• ACF and PACF concludes no correlation of AR (0) and MA (0) (this shows how complex stock prices are to predict).

DATA MODELLING

Defining Parameters

The parameter used for each stocks are (0,1,0) (1,1,1,5) with assumption:

- Seasonal autoregressive of P = 1, the value is influenced by 5 periods ago which indicates the total business days in a week.
- Seasonal differencing of D = 1, the model has differencing it once at lag of 5 periods.
- Seasonal moving average of $\mathbf{Q} = \mathbf{1}$, the value of the series is influenced by the noise 5 periods ago.
- Seasonal Periodicity of s = 5, indicating seasonality repeats every 5 time periods. Which is actually 5 business days of the week.
- Autoregressive of p = 0.
- Integration of **d** = **1**.
- Moving average of **q = 0**.

Results Example

SARIMAX Results

Dep. Variabl		close_	MSFT	No. Obs	260		
Mode	MAX(0, 1, 0)x(1, 1, [1], 5)			Log Likelihood		-689.053	
Dat	Wed, 12 Jun 2024				1390.106		
Tim	11:27:27				1411.330		
Sampl	06-12-2023				HQIC	1398.645	
			- 06-0	7-2024			
Covariance Typ	opg						
	coef	std err	Z	P> z	[0.025	0.975]	
close_AAPL	0.5255	0.103	5.079	0.000	0.323	0.728	
close_AMZN	0.8649	0.101	8.522	0.000	0.666	1.064	
close_GOOGL	0.2448	0.080	3.061	0.002	0.088	0.402	
ar.S.L5	0.1206	0.085	1.423	0.155	-0.046	0.287	
ma.S.L5	-0.9994	2.738	-0.365	0.715	-6.365	4.366	
sigma2	12.3702	33.442	0.370	0.711	-53.174	77.914	
Ljung-Box (5.06 Jarque-Bera (JB):			299.70			
P	0.02 Prob(JB):			0.00			
Heteroskedastic	0.97 Skew:			0.58			
Prob(H) (two	0.89 Kurtosis:			8.20			

- While having good correlation between close prices of AAPL, AMZN, and GOOGL to MSFT, the model needs more refinement due to having non significant seasonal terms.
- Refining these seasonal parameters is needed find the **optimal model**.

KEY LEARNING

Conclusion

- Model output a **random walk** to represent the series gradually increase or decrease over time with several **drift** in nature.
- With said **unpredictability** and **stationarity**, one important thing to learn is that price changes are "**random**" and cannot be fully predicted using past price data.

Area of Improvement

- Using hyper parameter **optimization** (Grid Search, Random Search, Bayesian Optimization, Genetic Algorithm, Particle Swarm Optimization) by taking intuitive of the range of parameters.
- Using other model methods to compare (ARCH/GARCH/LSTM/Prophet).
- Optimize the cloud **scheduling** method to ensure that the ECS instances operate only when necessary, reducing unnecessary resource usage.
- Setting up monitoring and logging to track performances of ECS.
- Auto-Scaling to the ECS to adjust resources based on workload.

THANK YOU