Análise Complexa

Índice

1	Aul	a 1	1
	1.1	1. Funções holomorfas	1
		111 11 Limite e continuidade	-

1 Aula 1

1.1 1. Funções holomorfas

1.1.1 1.1 Limite e continuidade

Seja f : $A \subset \mathbb{C} \to \mathbb{C}$ com $A \subset \mathbb{C}$ aberto.

Definition 1 (Límite) Seja $z_0 \in A$. $L := \lim_{z \to z_0} f(z)$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon, z_0) > 0$ tal que $z \in A$, $0 < |z - z_0| < \delta$, $\implies |f(z) - L| < \varepsilon$.

Remark 1 Podemos assumir z_0 ou L como sendo ∞ .

Remark 2 "Usando propriedades básicas de números complexos, i.e. que |ab| = |a||b| e que $|a+b| \le |a| + |b|$, a nossa definição de limite permite calcular limite da soma, produto e quociente."

Remark 3 Pode verificar usando a definição que $L = \lim_{z \to z_0} f(z) \iff \overline{L} = \lim_{z \to z_0} \overline{f(z_0)}$. Então

$$\lim_{z \to z_0} \operatorname{Re} f(z) = \operatorname{Re} L \qquad \operatorname{e} \qquad \lim_{z \to z_0} \operatorname{Im} f(z) = \operatorname{Im} L$$

Definition 2 A função f(z) é *contínua* em $z_0 \in A$ se $\lim_{z\to z_0} f(z) = f(z_0)$. A função f(z) é *contínua em* A se ela é contínua em cada ponto de A.