Most - Often - Needed

1962

Volume R-22

RADIO DIAGRAMS

and Servicing Information

Compiled by

M. N. BEITMAN

SUPREME PUBLICATIONS

SUPREME Radio Manuals

20 RADIO VOLUMES

RADIO DIAGRAMS

radios, stereo, combinations, transistor portables, FM, auto sets. Only \$2 for many volumes. Every manual has large schematics, all needed alignment facts, printed boards, voltages, dial stringing, trimmers, and hints. Volumes are big, 8½x11 inches, about 190 pages. Amazing values at special low prices. See coupon below for list diagrams and service material. Covers of these popular radio manuals. radios to everything from most recent Your best source for all needed RADIO pre-war old-timers; home 1961

TELEVISION SERVICING COURSE

Let this new course help you in TV servicing. Amazing bargain complete, only \$3, full price for all lessons. Giant in size, mammoth in scope, topics just like a \$200.00 correspondence course. Lessons on picture faults, circuits, adjustments, short-cuts, UHF, alignment facts, hints, antenna problems, trouble-shooting, test equipment, picture analysis. Special, only

Fix any radio easily. New, different COMPARISON method finds faults quickly. Covers every radio set—new and old models. Introductory training included. Simple picture suggestions tell you where to look for faults. No testers needed for most jobs. Explains parts, transsistors, etc. Manual form, large pages, 8½x11". Special price, only SIMPLIFIED RADIO SERVICING BY COMPARISON

PRACTICAL RADIO COURSE

at onl

Popul

Here is your amazing bargain in radio training. For only \$3.95 (full price) you can obtain a practical radio and electronics course of 35 easy-to-follow lessons. Review fundamentals, learn new servicing tricks. Compares lesson-by-lesson with the best \$150.00 home-study-type correspondence course. Large size, 81/2x11". New 1960 edition. \$ 95 Answer booklet to self-test questions.

926-1938

Manual, \$2.50

EACH

Name: .. Address:

New 1962 TV manual covers all important sets of every make. Includes all data needed for faster TV servicing. Amazing bargain. A whole year of service material for only...

save money with Supreme. 174,000 wise servicemen. Get the best and changes, waveforms, voltage charts, etc. double-page schematics, needed alignment Only \$3 giant TV manuals have complete, accurate plify TV servicing and adjustment. use, practical, factory-prepared data sim-TV set of every important make. Easy-tofacts, printed board views, recommended per large volume. The choice of These

repairs. All needed material on every popular

Use Supreme TV manuals for faster, easier

ALL NEEDED TV DATA

AMAZING BARGAIN

try the new 1962 TV manual for only \$3 in your shop all 15 volumes listed in coupon. Special price for all 15 only \$42. Or and priced at only \$3 for a mammoth yearly Repair any TV model ever made by having manual. Greatest bargain in service data. tions to help you do expert work quicker: See no risk coupon below. Here are your error-free service instruc-

NO-RISK TRIAL ORDER COUPON

T
7
XEME
_
٦.
2
PUBLICATIONS,
13
6
-
L/
-
1
170
1760
1760 1
1760 Bc
1760 Ba
1760 Ba
1760 Ba
1760 Ba
1760 Balsam Re
1760 Ba
1760 Ba
1760 Ba
1760 Balsam Rd., Hig
1760 Ba

)	These annual RADIO volumes specially priced at only \$ 250 each	Popular RADIO Diagram Manuals at only \$ 250 each
☐ I am enclosing \$ Send postpaid.	□ 1961 TV Manual, \$3. □ 1960 TV Manual, \$3. □ Additional 1959 TV, \$3. □ Early 1959 TV, \$3. □ 1958 TV Manual. \$3. □ Additional 1957 TV, \$3. □ Early 1957 TV, \$3. □ 1956 TV Manual. \$3. □ Additional 1955 TV, \$3. □ Early 1955 TV, \$3. □ 1954 TV, \$3. □ 1953 TV, \$3. □ 1952 TV, \$3. □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □ Master Index to all Manuals. 25c □ 1951 TV, \$3. □	Popular RADIO Rush RADIO and TV manuals checked in coupon. Diagram Manuals New Television Servicing Course, complete\$3. at only \$ 250 Practical Radio Course (all 35 lessons)\$3.95 each

VOLTAGE PRECAUTION

The etched circuit common ground of this receiver is connected directly to one side of the power line. To prevent damage to etched wiring, do not place chassis directly on a metal bench, or other metal objects.

When taking voltage or resistance measurements, use test prods with needle points.

ALIGNMENT PROCEDURE

- a. Use an isolation transformer or connect a .l mf.
 capacitor in series with low side of signal generator.
 CAUTION: DO NOT CONNECT AN EARTH
 GROUND WIRE DIRECTLY TO CHASSIS.
- b. Set Volume control full on.
- Connect output meter across output secondary.
 Disconnect speaker, use 3.2 ohm load.
- d. Use lowest setting of signal generator capable of producing adequate indication on lowest scale of output meter.

chassis. Chassis will now slide out.

Unplug and remove back. Remove the knobs from

the front of the cabinet. Remove the screw outside

from under the Tuning knob and the screws inside

that hold the Volume control bracket to the cabinet.

Remove etched circuit board support at rear of

- e. By using alignment tool (Part No. 98A30-7) both IF transformer slugs can be aligned
- f. Repeat adjustments to insure good results.

Step	Connection of Signal Generator	Signal Gen. Frequency	Receiver Gang Setting	Adjustment Description	Adjustment (A) and (B) for maximum output (C) for maximum output	
1.	Through a .1 mf capacitor to pin 1 of the 12AU6 (Converter) tube.	455 KC	Gang fully open	IF Primary IF Secondary		
2	Same as "STEP 1".	1620 KC	Gang fully open	Oscillator Trimmer		
3	Radiated Signal. Loop of several turns of wire, or place generator lead close to receiver loop for adequate signal pickup.	1400 KC	Tune in generator signal	Antenna Loop Gimmick	D for maximum output (Rock gang for optimum results)	

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION

ADMIRAL

Chassis 7B2C, Models Y2081A, Y2082A, Y2083A Chassis 7B2D, Models Y2252, Y2253, Y2256

Alignment of a transistor radio is similar to alignment of an ordinary vacuum-tube radio. However, there is somewhat more interaction between the RF and IF circuits, thus requiring greater care in the setting of the adjustments as well as repetition of some of the steps. Therefore, for best results, follow the alignment procedure exactly as given below.

- a. Fresh batteries should be used.
- b. Set Volume control at maximum.
 - Connect output meter across speaker voice coil For best results, connect 25 ohm resistive load through earphone jack, if used.
- d. Use lowest output of signal generator that will produce adequate indication on lowest scale of output meter. IMPORTANT Output level should be held at 25 mw, or less. The voltage reading at the 25 mw, level is approximately 0.8 volts across the 25 other lead

Step	Connection of Signal Generator	Signal Gen. Frequency	Receiver Gang Setting	Adjustment Description	Adjustment					
1	Radiated Signal. †Loop of several turns of wire, or place generator lead close to receiver for adequate signal.	Gang fully 455 KC open		3rd IF 2nd IF 1st IF	* (A) (B) and (C) for maximum output.					
2	Same as "Step 1".	1620 KC	Gang fully open	Oscillator Trimmer	D for maximum outp					
3	Repeat 'Step 1" several times until there is no further increase in the output,									
4	Same as "Step 1".	§ 1400 KC	Tune in gen- erator signal	0						
	NOTE After completing 'Step 4 the tuning range should be 1620 KC to 535 KC, +5 KC If this range cannot be obtained, continue with Steps 5, 6 and 7.									
5	Same as "Step 1".	535 KC	Gang fully closed	Oscillator Coil Core	F for maximum out					
6	Repeat "Step 2", then repeat Steps	5 and 2 severa	il times until osci	llator covers requ	ured range.					
7	Repeat 'Step 4".									
	f signal generator does not produce (F stator plates terminal of gang, cl sable output only. Then return to "	ip ground lead								

Q5)

(CR-2)

(e)

CR-I

(B)

Q3

(Q6)

(CR-3)

Opening the Cabinet for Battery Replacement, in Models Using the 7B2D Chassis

§ Antenna trimmer (E) should first be adjusted for maximum output with generator tuned to 1400 KC. Then try to increase output by rocking gang or generator slightly while readjusting trimmer.

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION

ARVIN PHONOGRAPH MODEL 80P78, CODE 1. 62001

ARVIN PHONOGRAPH MODEL 81P68, CODE 1. 65301

G

Emerson Radio

MODEL 941-B CH. 120569-B

MODEL 943-B CH. 120569-D

(For circuit diagram see next page adjacent at right)

CONTROL SHAFTS (REFER TO FIG. 2 FOR FUNCTION) AM SECTION STEREO/MONAURAL FM SECTION

FIG. 2A, B - DIAL CORD STRINGING

FIG. 3 - TUBE LOCATIONS AND ALIGNMENT POINTS

RESISTANCE READINGS CHART, CHASSIS 120569-B, 569-D

-												
IL	SYM	TUBE	SW-2	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
	V-1	12AX7	AM	*570K	6.8 Meg	0	0 0	0	*570K	6.8 Meg	0	3
	V-2	25EH5	AM FM	33	470K	23	33 33	470K	*970	*360		
	V-3	25EH5	AM FM	33 33	470K 470K	33 33	43 43	470K 470K	‡1 Meg	*360		
	V-4	6BE6	AM FM	22K	1	20 20	17 17	*970 *INF	*970 *INF	22Meg 22 Meg		
	V-5	6BA6	AM	4 Meg	0	20 20	23	*970 *INF	*970 *INF	150 150		
	V-6	6DT8	AM FM	5.5 Meg	0	56	3 3	INF	5.5 Meg	100K	0	0
	V-7	6BA6	AM FM	470K	0	8	11	•INF	*INF	0	_	
	V-8	68.A6	AM FM	1	0	13	15	*INF 1K	*INF	100	_	_
_						~		w .		/		

NOTES: * Measured with low side of VTVM connected to junction of R-18, C-16 (B+ point).

‡ Capacitor charge-wait until meter settles (about 30 seconds).

Gamble-Skogmo, Inc.

This is exact service material for Model RA48-8260A. Model RA48-8261A is practically identical. Model RA48-8266A is similar but uses clock with switching network and has somewhat different parts placement.

model WH-822M

To Test Oscillator TELESCOPIC ANTENNA SOCKET

TRS 2N215 ISTAF

TRS 2N215 2NDAF

8⊃11.L

SPEAKER 232

Holder

4444 Japan LW3X4

ALIGNMENT PROCEDURE

Turn votume control to maximum.

Modulate the test oscillator at 400 c/s or 1,000 c/s. Connect it with the rod antenna through 10 pF and connect oscillator ground wire to radio chassis.

Take out output from earphone jack and measure it using and AC voltmeter of the tester or V. T.V. M. at the range below 3 volts. As the output voltage increases as the adjustment proceeds, restrict the output of the oscillator so that the pointer swing is kept within 0.5 volt.

Adjustment of the intermediate frequency

Prepara- tion	Adjust the band switch at BC.			
Adjust- ment Order	Division on Dial	Oscillator Frequency	Adjustment Place	Ī.
1	Max. BC Division	455 kc	Т3	Ī
2	Max. BC Division	455 kc	Т2	
3	Max. BC Division	455 kc	T1 (Right)	
4	Max. BC Division	455 kc	Tl (Left)	
5	Max. BC Division	455 kc	Repeat 1-4	

Adjustment of high frequency circuit (BC)

Prepara- tion	Adjust the band switch at BC			
Adjust- ment Order	Division on Dial	Osciliator Frequency	Adjustment Place 4	
6	Max. BC Division	1,650 kc	C6	
7	Min. BC Division	525 kc	L4	
8	Repeat 6 & 7		Repeat 6 & 7	
9	Receive 600 kc	600 kc	L2	
10	Receive 1,400 kc	1,400 kc	C4	
11	Repeat 9 & 10		Repeat 9 & 10	

Adjustment of high frequency circuit (MA)

Prepara- tion	Adjust	the band sw	itch at MA	
Adjust- ment Order	Division on Dial	Oscillator Frequency	Adjustment Place	Remarks
12	Max. MA Division	4.7 Mc	C5	*1
13	Min. MA Division	1.55 Mc	L3	
14	Repeat 12 & 13		Repeat 12 & 13	
15	Receive MA 11 Mc	4 Mc	C3	*2
16	Recieve MA 4 Mc	1.65 Mc	L1	
17	Repeat 15 & 16		Repeat 15 & 16	-4

*1. When you adjust 12 & 15, watch image. When you adjust 12 & 10, watch image. When you turn oscillator at 12, it must receive another signal at 5.6 Mc. However, if you receive the signal at 3.8 Mc, you must readjust the oscillator, as it is possible that the signal is tuned with the image. The same applies to 15. When you adjust 15, the receiving frequency will slip out if you move C3. Move the frequency of the oscillator & try to adjust, keeping it always at the maximum.

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION

Kitachi.Ltd. Model TH-660 Circuit Schematic Diagram

SPECIFICATIONS:

DIMENSIONS		29 %"W × 31%H × 11/8D
WEIGHT	7 ozs	, Including batteries
TUNING RANG	E	5351605 kc
	E FREQUENCY	455 kc
TRANSISTOR (COMPONENTS:	
Hitachi Tran	nsistor, 2SA94 (Converter)	
Hitachi Tran	nsistor, 2SA151 (I.F. Amp.,	1st. stages
Hitachi Tran	sistor, 2SA133 (2 nd stages)	
Hitachi Tran	eictor 2SR77 (A F Amn)	

Hitachi Transistor, 2SB156×2 (Push-pull Power Amp.)

GERMANIUM DIODEHitachi Crystal Diode. 1N34A (2nd Detector, and Automatic Volume Controller) THERMISTOR Hitachi Thermistor, B-1A (Temperature Compensator) POWER OUTPUT ,100 mW (Undistorted) 150mW (Maximum) LOUD SPEAKER 2 inch P. M. Speaker EL-214 can be plugged in. RECOMMENDED BATTERIES EVEREADY 1015 or its equivalent

HITACHI 7-Transistor Portable Radio TH-759

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION Ţ G 0 M E R W A R D 0 M N MODELS GPS-1688A AND GPS-1865A SI 12AU6 CDNV 50EH5 AUDID OUT 150 RIO 66 U 2200 IW C7+C9=250µµF 10000 95v ALL PARTS MARKED # ARE PART OF NI NOTE VOLTAGES MEASURED WITH A VTVM AT 120V 60°V FROM B- UNDER ND SIGNAL COND. 30 HF 25 HF C12C MODEL-GPS-IBBBA SWITCH SWI MOUNTED ON VOL CONTROL 12AUE 12 AV MODEL-GPS-1885A SWITCH SW2 MOUNTED ON CLOCK MECH COIL RESISTANCES READ WITH COIL IN CIRCUIT SWI NOT USED IN 1885A AUTO SW2 CLOCK ∞ OFF SWITCH OPERATED BY CLOCK **CLOCK** ON-OFF AUTO CONTROL 0 **13 MOUNTED ON SPEAKER** AUDIO OUTPUT LEAD CONNECTIONS: RED LEAD TO SECTION B OF CI2 BLUE LEAD TO PIN 7 OF \$3 A.C. INTERLOCK 16201 -CIB Cı CHASSIS-PANEL REMOVAL INFORMATION 0 CIA 1500 KC 455 KC. 12AV6 1. Remove the two screws holding on the back, and remove the hack. Remove the screw holding the perma-circuit panel C12 (screw located through the volume control frame into the boss of the cahinet). 3. Remove knobs -- (leads going to the output transformer 35W4 50EH5 do not have to be unsoldered, as they are long enough to permit panel removal). A/C INTERLOCK TIME SET CONTROL 4. Remove Perma-Circuit Panel.

It is possible to domage a translator when testing circuit continuity. Since a translator needs only a low voltage applied to its terminols for conduction, use of an ohmeter having an internal bottery voltage of more than 7.5 volts, will damage the translator. Testing continuity of a circuit which includes a translator can result in misleading indications, as the resistance of a translator in the conduction direction is low in comparison to the resistance in the non-conduction direction. It is more reliable to make voltage measurements and check whether voltages shown on the schematic are present. Reference to the schematic diagram and to the printed circuit board artwork will permit tracing the circuit and locating components on the printed board.

2. ALL CAPACITANCE VALUES IN MICROFARADS. ALL RESISTANCE VALUES IN OHMS UNLESS
OTHERWISE SPECIFIED

 VOLTAGE MEASUREMENTS MADE WITH A V.T.V.M FROM POINTS INDICATED TO GROUND WITH TUNING CAPACITOR AT MAXIMUM, VOLUME CONTROL AT MAXIMUM, BATTERY SOURCE AT 5.6 VOLTS. I.F. 455 KC.

To check for a circuit defect which would cause excessive battery drain, an overall current measurement and supplementary voltage measurement should be made.

Signol tracing by injection of a signal from a signal generator is done on transistor radios in exactly the same manner as has been done for many years with the conventional vacuum tube radios. The signal generator should be connected in series with a capacitor to avoid shorting out bias voltages. The base of a transistor is the signal input terminal (Corresponding to the signal grid of a tube). The collector is the signal output terminal (Corresponding to the plate of a tube). The emitter is the common terminal (Corresponding to the cathode of a tube). Oscillator performance can not be judged by measurement of a DC voltage developed across a resistor. Measurement of oscillator signal strength with an AC VTVM at the emitter will give an indication of oscillator performance. In class "B" output, used in the receiver, the battery current increases greatly with increased signal input (over 30 MA with volume control set at maximum). If all other circuit components have been checked and a faulty transistor is suspected, replacement of the transistor is the surest check. Transistors should not be soldered or unsoldered in the circuit when voltage is applied to the circuit. In some cases replacement of an IF transistor will offect IF olignment.

Do not short across the base and collector terminals of the transistors while the radio is operating, as permanent damage to the transistor may result.

CHASSIS REMOVAL

MODEL A15, A16

- 1. Remove cabinet back 2 screws hold it in place.
- 2. Remove chassis mtg. screw at base of chassis.
- 3. Pull off volume knob ONLY (Do not pull captivated tuning knob).
- 4. From front, unscrewpalnut under volume control knob.
- 5. Unsolder appropriate leads to slide chassis out of tuning knob & cabinet.

MODEL A17, C15, C16, C17

- 1. Remove cabinet back 2 screws hold it in place.
- 2. Pull off volume & tuning knobs.
- 3. From rear, remove chassis mtg. screw located on volume control mounting bracket.
- 4. Unsolder appropriate leads to slide chassis from cabinet.

MODEL C18

- Remove cabinet back 2 screws hold it in place.
- 2. Pull off volume & tuning knobs.
- 3. From front, unscrew palnut under volume control knob.
- 4. Unsolder antenna leads.
- 5. Remove 3 chassis mtg. screws.
- 6. Unsolder appropriate leads to slide chassis from cabinet.

ALIGNMENT

Use an isolation transformer between the power line and the receiver. If not available, connect low side of generator to B- through a.1 mf capacitor. Connect a low range output meter across speaker voice coil and set volume control to max. Attenuate generator output to maintain 50 milliwatts on output meter to prevent overloading. (50 milliwatts is 40 volts across 3.2 ohm output (A15-A16) or .64 volts across 8 ohm output (A17, C15 to C19).

STEP Al5 to Al7 Cl5 to C19	GENERATOR CONNECTION	GENERATOR FREQ. (400 cycle mod)	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT	Grid of conv (Pin 7 12BE6) thru .1 mf & B-	455 Kc	Fully opened	1, 2, 3 & 4	Adjust for max.
RF ALIGNMENT 2	11	1620 Kc	Fully opened	5	Adjust for max.
TOP BOT OF TOP BOT OF TRIM	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		(5) OSC TRIM 17, C15, 16, 17 8 19	(3) BOT (0) (1) BOT (0) MO	SOSC TRIM

ackard Bell

MODEL 7R4 RADIO

Model 7R4 is an AM-FM radio receiver containing seven electron tubes and three crystal diodes. The FM section contains AFC circuitry. A phono input socket is provided at the rear of the set,

Frequencies

AM radio: 530 kc to 1620 kc; I-F 455 kc

STEP	SIGNAL GENERATO	OR	RADIO			
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	ADJUST	
1	Connect signal generator through a .1-uf. condenser to ant. section of gang.	455 kc.	Tuning gang fully open.	Adjust for maximum output in order given.	T4—3rd i-f pri. T3—2nd i-f pri. T2—bot. core T2—top core	
2	Use radiating loop. (See NOTE 1 below).	600 kc.	600 kc.	Adj. for maximum output. Rock tuning gang while making adj.	T1—ocs. core	
3	Same as step 2.	1620 kc.	1620 kc. (Tuning gang fully open)	Adjust for maximum output.	C1B—osc. trim.	
4	Same as step 2.	1400 kc.	1400 kc.	Adjust for maximum output.	C1A-ant. trim.	
5	Repeat steps 2, 3 and 4 until no further improvement is obtained. Always stop on step 4.					

indicated in chart. Keep voltage across voice coil

below 1.5 volts (reduce generator output).

NOTE 1. Use a 6-to-8-turn, 6-inch diameter loop made up of insulated wire. Connect to generator terminals, and place about one foot from radio loop.

PHILCO MODELS K-777, K-778, K-849 AND K-850

(Service material below and on page 81, at right)

Figure 1. Bottom View of Perma Circuit Panel Component Layout Models K-849, K-850

ALIGNMENT CHART

STEP	SIGNAL GENERATOR			RADIO	
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	ADJUST
1.	Ground lead to B—; output lead through a .1 mf condenser to grid (pin 7) of 12BE6 or top of r-f tuning condenser.	455 kc.	Tuning gang fully open.	Adjust tuning cores, in order given, for maximum output.	T3—top T3—bottom T2—bottom T2—top
2.	Radiating loop (See Note below).	1620 kc.	1620 kc.	Adjust for maximum output.	C1-B—osc.
3.	Same as step 2.	1500 kc.	1500 kc.	Adjust for maximum output.	C1-A—aerial

NOTE: Make up a 6-8 turn, 6 inch diameter loop from insulated wire, connect to signal-generator leads, and place near radio loop.

PHILCO HOME RADIO MODELS K-777, K-778, K-849 AND K-850

(For alignment and other service data see page 80, at left)

Figure 3. Bottom View of Perma Circuit Panel Component Layout Model K-778

SLEEP SWITCH—Model K-778 employs a "sleep" switch which is set to turn the radio off after a desired length of time (up to 60 minutes).

LULLAWAY—All clock radio models except K-777 have the on-off switch in the filament return line. When the switch is opened, the set fades out rather than cuts off. Model K-777 has a conventional switching arrangement located in the B— line.

PHILCO

PHILCO AM/FM MODELS K-912, K-914

(Continued on the next page at right)

TV Trap Adjustment - This trap, factory adjusted for maximum attenuation at 203mc, will reduce interference it may be minimized by tuning this trap to that particular To do this, connect a VTVM to the junction from channel 9 through channel 13 television stations. of C19 and R8, tune the receiver for maximum interfer-If severe interference occurs on one particular channel

PHILCO AM/FM TABLE RADIOS MODELS K-912, K-914

(Continued from preceding page)

PARTS LIST

PARTS LIST					
Sym- bol	Loca- tion	Description	Service Part No.		
Cı	A3 1	Capacitor, 2.2 mmf, ant. trap	30-1221-6		
C2	•	Capacitor, 10 mmf FM Ant. trans. secondary	30-1251-35		
C3	A2 1	Capacitor, 18 mmf, 5%, FM Os- cillator grid circuit	30-1251-48		
C4	A3 1	Capacitor, 18 mmf, 5%, FM Os- cillator grid circuit	30-1251-48		
C5	B3 1	Capacitor, 10 mmf, 5%, Oscilla- tor tank circuit	30-1251-44		
C7	A2 2	Capacitor, 10 mmf, 10%, Disc., Oscillator feedback	30-1251-35		
C8	A2 1	Capacitor, 15 mmf, ceramic Disc, Plate by-pass	30-1251-36		
C9	B3 1	Capacitor, 15 mmf, Ceramic * Disc, Tl Secondary	30-1251-36		
C10	B3 ¹	Capacitor, 56 mmf, 10%, neutralizing	30-1251-37		
Cll	A3 1	Capacitor, .001 mfd, FM r-f by-pass	30-1238-13		
C12	B3 1	Capacitor, .001 mfd, 12DT8 Filament by-pass	30-1238-13		
C13	B2 1	Capacitor, .001 mfd, 12DT8 filament by-pass	30-1238-13		
C14	C4 1	Capacitor, .01 mfd, B+ by-pass	30-1238-33		
C15	B5	Capacitor, 100 mmf, FM i-f	30-1251-38		
C16	C6	Capacitor, .0022 mfd, FM i-f screen	30-1262-7		
C17	F5	Capacitor, .01 mfd, V3 cath- ode by-pass	30-1262		
C18	F5	Capacitor, .0047 mfd, V3 i-f screen by-pass	30-1262-3		
C19	15	Capacitor, 22 mmf, V4 i-f grid	30-1263-19		
C20	K5	Capacitor, .01 mfd, V4 screen by-pass	30-1262		
C21	B4	Capacitor, 150 mmf, 19T8 (V5) cathode by-pass	30-1262-28		
C22	N4	Capacitor, .001 mfd, 19T8 (V5) cathode by-pass	30-1262-12		
C23	C4	Capacitor, .01 mfd, FM B+ by-pass	30-1262		
C24	E2	Capacitor, 47 mmf, AM Os- cillator grid	30-1230-4		
C25	F2	Capacitor, 7.5 mmf, AM Os- cillator compensation	30-1224-83		
C26	F4	Capacitor, .047 mfd, AVC by-pass	30-4650-45		
C27	12	Capacitor, 220 mmf, AM Diode Det. Output	30-1262-41		
C28	J2	Capacitor, 220 mmf, AM Det. Filter	30-1262-41		
C30	К3	Capacitor, .0033 mfd, Audio Grid Coupling	30-1262-42		
C31	N2	Capacitor, 220 mmf, Output Grid by-pass	30-1262-41		
C32	K2	Capacitor, .01 mfd, Output Grid coupling	30-1262		

Panel Removal - First remove knobs, and cabinet back (note that three screws must be extracted - one in handle depression and two on set bottom). Next, remove the two panel mounting screws located at the bottom left corner, and $2\text{-}1/4^{"}$ in from bottom right corner. Panel will now slide out of its end holders, (tuning dial will pull free as panel is removed).

PHILCO MODELS K-780, K-782, K-783, K-784, K-785, K-847 (Continued) K-851, K-852, K-853, K-855, K-856, K-858

Figure 2. Bottom View of Perma Circuit Ponel Component Loyout Models K-782, K-783, K-784

Figure 3. Bottom View of Permo Circuit Component Loyout Model K-785 (Loyout Model K-858 is similar,)

BLACK

RED

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION PHILCO MODEL K-1526 RIGHT CH. LEFT CH. BLUE G38 <u>* 30000</u> QBA Some SH + SSOV CJ4C G38 BLUE **A992+** 22X 722 RED CI3 40LF/150V SILICON RECT. 180-7W 20BV R21 BLUE 555 BAL IMEG RI9 **┤(─┤**||₩ .033 8 Schematic Diagram, K-1526 c5 .0082 MAIN CHASSIS 5 4 FONDNESS SSAB CONTROL CHASSIS ≖ (∦ BLACK RED CHANGER

RCA VICTOR

Models 1-RH-10, 1-RH-11, 1-RH-12, 1-RH-13,

1-TP-1E, HE, JE (Late Prod.) Model 1-RJ-19 Chassis No. RC-1199D

CHASSIS REMOVAL

- Unsolder the battery spring contacts from the circuit board.
 DO NOT ATTEMPT TO REMOVE CONTACTS FROM CASE.
 The battery contacts are heat sealed to the plastic case front.
- 2. Pull the dial knob off of tuning condenser shaft.
- 3. Remove the knurled nut holding the earphone jack to the case.
- Remove the two screws holding the circuit board to the case and lift chassis from the case.
- If necessary to separate chassis and speaker, unsolder speaker leads from wiring side of board. AVOID UNSOLDERING LEADS AT SPEAKER TERMINALS SINCE EXCESSIVE HEAT WILL DAMAGE VOICE COIL LEADS.

CRITICAL LEAD DRESS

- Dress lead from diode to volume control between speaker magnet and top of battery.
- 2. Keep leads to earphone jack as short as possible.
- Dress leads from output transistors to speaker towards the edge of the board (away from speaker pot) so as to provide sufficient room for 0.3 mf capacitor.

C3 R7

RCA Victor Models 1-RC-30, 1-RC-31, 1-RC-34, Chassis RC-1201D, Continued

Models of the 1-RC-3 Series are 6 tube (plus silicon rectifier) clock radios designed for reception on both the AM and FM bands. These instruments operate only on a 110-120 volt, 60 cycle power supply. The clock timer features five push buttons which select OFF, ON, DROWSE, RADIO alarm, and auto ALARM. A ferrite rod antenna is utilized for AM reception, and a power line antenna for FM reception.

CRITICAL LEAD DRESS

- 1. Dress all bus leads short and direct as possible.
- Dress all by-pass capacitors and coupling capacitor leads short and direct as possible.
- Dress all insulated leads down to chassis and away from any hot resistors.
- Dress power line antenna away from ferrite rod and secure against front by hold down clips.
- 5. Dress grid capacitor away from oscillator coil.
- 6. Dress output transformer leads away from tuning drum.

THE CHASSIS IS CONNECTED DIRECTLY TO ONE SIDE OF THE POWER LINE. AN ISOLATION TRANSFORMER SHOULD BE USED DURING ALIGNMENT OR OTHER SERVICE WORK.

AM ALIGNMENT

Turn SELECTOR switch to AM position, and turn LOUDNESS control to maximum. Connect output meter across voice coil of speaker. Keep generator output low to avoid AVC action.

Step	Connect high side of signal gen, to—	Set signal gen. to	Set radio dial to	Adjust for maximum		
1	Antenna gang (C25A)	455 kc	Gang fully	T5 (2nd AM IF) top & bottom		
2	through 0.01 mf capacitor	(modulated)	open	T4 (1st AM IF) top and bottom		
3	Repeat steps 1 and 2.					
4		1620 kc (modulated)	l620 kc (gang fully open)	C27 (osc. trimmer)		
5	Short wire placed near AM antenna to radiate	1400 kc (modulated)	1400 kc signal (rock gang)	C26 (ant. trimmer)		
6	signal	600 kc (modulated)	600 kc signal (rock gang)	L2 (osc. coil)		
7	Repeat steps 4, 5, and 6.					

RCA VICTOR

RK-295

Chassis No. RS-200

ALL CAPACITANCE VALUES LESS THAN 1.0 ARE

ALL VALUES 1.0 & ABOVE ARE IN MMF EXCEPT

VOLTAGES MEASURED TO CHASSIS
GROUND WITH VOLTOHMYST B SHOULD HOLD WITHIN ± 20% WITH 275 V. B4 SOURCE (PIN *4 OF P3-M), NO SIGNAL APPLIED

FM STEREO (MULTIPLEX) OPERATION

The FM-Stereo (Multiplex) broadcasting system that has been approved by the FCC is compatible. This means that present FM tuners not equipped for the reception of an FM-Stereo signal will be able to receive a complete balanced program rather than only one channel, or an unbalanced program, as in former methods of stereocasting.

The FM-Stereo composite signal is composed of three pieces of information: the L+R signal, the L-R signal, and a 19 KC pilot signal. These are placed in the channel spectrum as shown.

Composite Signal

The L+R signal is the in-phase combination of the left channel and the right channel information and is used to frequency modulate the main carrier. The L-R signal is the out-of-phase combination of the same channels and is used to amplitude modulate a 38 KC carrier signal which is then suppressed leaving only the sidebands. This is the portion of the composite signal that, when matrixed with the L+R signal, separates the two channels. The 19 KC pilot signal is effectively the syncronizing signal and is used to reinsert the carrier in the L-R signal, thus making a local osciliator unnecessary.

Present FM tuners need only the L+R signal to reproduce the full and complete program. As this signal is the combination of the two stereo channels, none of the information is lost or suppressed for monophonic reproduction. In an FM-Stereo system, however, additional circuity is necessary to separate the combined channels. This is the function of the L-R and 19 KC pilot signals.

After reception through the normal FM channel of the receiver. in a FM-Stereo system, the signal from the FM detector (discriminator or ratio-detector) is fed into two amplifier stages (V1Å & V2A). From the cathode of V2A the L+R signal is fed directly to the matrix from the Balance control which is a part of the cathode circuit, and the L-R signal is filtered out and fed to Tl- α mixing transformer. The 19 KC pilot signal is taken off at the plate of V2A and fed to a frequency doubler stage V2B. In V2B the grid is tuned to 19 KC and the plate is tuned to 38 KC. From the plate of V2B the 38 KC signal is fed to the mixing transformer, T1, where the 38 KC carrier is reinserted in the L-R signal. This signal is now demodulated in CR1 and passed on to a phaseinverter stage (V1B). In the phase inverter the $\mathbf{L} - \mathbf{R}$ signal is taken off at the plate and the -L+R signal is taken off at the cathode. These two signals are now fed to the matrix where they combine with the L+R signal. By simple algebra (L+R) + (L-R) = 2L, and (L+R) + (-L+R) = 2R, thus the left and right channels are recovered and fed to the stereo amplifier.

This system, although similar in some respects to the color TV signal, differs in the fact that a local oscillator is not necessary for reinsertion of the carrier. Instead of sync pulse being supplied, an actual sync frequency is transmitted.

It is also possible for a commercial service keying signal (S. C. A.—such as is presently in use) to be transmitted in the composite signal.

RCA VICTOR

Tuner Chassis RC-1206A Amplifier Chassis Nos. RS-193A, B, D

1-VE-0 Series, Models 1VE075, 1VE086, 1VE094,

1-VE-1 Series, Models 1VE105, 1VE106, 1VE107,

1-VE-2 Series, Models 1VE205, 1VE207, 1VE224, 1VE229, 1VE246,

1-VF-1 Series, Models 1VF105, 1VF106, 1VF107,

1-VF-2 Series, Models 1VF205, 1VF207, 1VF224, 1VF229, 1VF246.

Diagram of Tuner Chassis RC-1206A is on the next page, over; and the diagram of the amplifier is on the page following. Use this related material together.

The 1-VE-2 Series, the 1-VF-1 Series, and the 1-VF-2 Series instruments use a four tube dual-channel audio amplifier (RS-193A) consisting of a preamplifier stage and an output stage in each channel. The phono input and the tuner input are fed to the function switch which selects STEREO phono, MONO phono, or RADIO tuner operation. Dual controls are provided to regulate the BASS, TREBLE, and LOUDNESS in each channel simultaneously, and a BALANCE control is provided to permit adjustment of the relative strength of each channel.

The RS-193A chassis contains output jacks for AC power to the record changer and to the tuner. A multiplex power output jack provides filament and B+ power for a multiplex adapter.

The 1-VE-1 Series instruments use the RS-193B audio amplifier which is similar to the RS-193A except that it does not contain a function switch, a tuner input, a tuner AC power output, or a multiplex power output.

The 1-VE-0 Series instruments use the RS-193D audio amplifier. The RS-193D chassis is similar to the RS-193A except that it does not contain a function switch, a tuner input, a tuner AC power output, a multiplex power output, or a dial light.

MULTIPLEX ADAPTER

Models of the 1-VF-1 Series and the 1-VF-2 Series have provision for the connection of a multiplex adapter (RCA Model RK-295). Three jacks provide for the input, output, and power connections of the adapter. The signal input jack (J1) and the signal output jack (J2) are mounted on a bracket fastened to the cabinet underneath of the AM/FM tuner (RC-1206A). (These jacks are shown as a part of the tuner circuitry.) The MPX POWER jack is mounted on the amplifier chassis (RS-193A), and provides filament and B+ power for the adapter.

To receive FM multiplex broadcasts:

- Connect the cables from the multiplex adapter (RK-295) to the MPX INPUT jack (J1) and the MPX OUTPUT jack (J2) on the tuner chassis, and the MPX POWER jack (J205) on the amplifier chassis.
- 2. Turn the FUNCTION selector switch to FM MPX.
- 3. Turn the STEREO-MONO-RADIO switch to RADIO.

RCA VICTOR TAPE RECORDER

Model 1-YC-11

Amplifier Chassis No. RS-196
Tape Transport TCT-3A

CHASSIS REMOVAL

The amplifier chassis is fastened to the tape transport and is removed with it. For normal servicing it will not be necessary to separate the chassis from the transport.

To remove chassis and transport:

- 1. Turn REWIND-STOP-PLAY knob to rewind position.
- Pull off RECORD, REWIND-STOP-PLAY, SPEED CONTROL and VOLUME knobs. Note: To remove SPEED control knob, twist while gently pulling the knob. When the knob is replaced, push it on firmly until the knob seats with α click.
- The control escutcheon is held in place by three spring clips
 (2 at the front and one at the back), and one screw. Remove
- the screw and plastic washer from the center of the escutcheon and lift the escutcheon straight up and off.
- 4. Block the carrying handle in its extended position.
- Remove the four (4) red screws at the corners of the tape transport.
- Lift right side of motor board sufficently to permit disconnecting the speaker.
- 7. Lift out motor board and chassis.

Note: Support the transport mechanism on blocks or a rack if it is to be operated while outside of the case.

8. To reassemble, reverse the foregoing procedure.

THE ANNOUNCENTS I AND ALL AND AN ADDRESS OF

TUNER SCHEMATIC

111

SONY

T R - 8 4

	Cz-2. Cz-3 Cz-1	R4						
Symbol	Description	Symbol	Description	Symbol	Descript	ion	Symbol	Description
$\begin{array}{c} & \\ & \\ C_{1^{-1},2,3} \\ & \\ C_{2^{-1},2,3} \\ & \\ C_{3} \\ & \\ C_{4} \\ & \\ C_{5} \\ & \\ C_{8} \\ & \\ C_{7} \\ & \\ C_{8} \\ & \\ C_{9} \\ & \\ C_{10} \\ & \\ C_{11} \\ \hline \end{array}$	3 ganged C max. 200, 165 PF " trimmer 0.05 μF MXL (Maylor) 10 μF 3 V (Electrolytic) 0.005 μF MXL (Maylor) 2~20 PF Cylindrical trimmer 0.05 μF MXL (Maylor) 0.05 μF " (") 0.02 μF " (") 0.002 μF " (")	C ₂₃ C ₂₄ C ₂₅ C ₂₆ C ₂₇ C ₂₈ C ₂₉ C ₃₀ C ₃₁ C ₃₂ R ₁ R ₂	0.02 μF " (") 10 μF 3 V (Electritic) 30 μF 3 V (") 0.05 μF MXL (Maylor) 10 μF 3 V (Electritic) 30 μF 6 V ("") 100 μF 6 V ("") 0.05 μF MXL (Maylor) 0.1 μF PS191 (Maylor) 100 μF 6 V (Electrolytic) 150 ΚΩ RL ½8W 8.7 ΚΩ " "	R_{14} R_{15} R_{18} R_{17} R_{18} R_{19} R_{20} R_{21} R_{22}	15 K Ω " 470 Ω " 470 Ω " 3.3 K Ω "	me control // // // // // // // // // // // // /	X ₈ X ₇ X ₈ D ₁ D ₂ D ₃ L _{1,2,3} L _{4,5}	Description AF ₂ 2T650 (2SD65) PA 2T69 or 2T31 (2SD69 or 2SB31) PA 2T69 or 2T31 (2SD69 or 2SB31) Mix. 1T23G Det. 1T23G Varistor 1T51 Ferrite bar antenna 10\$\pi\$×160 mm LA-040-1F RF Transformer (LH-003) Oscillator coil
C ₁₂ C ₁₃ C ₁₄ C ₁₅ ② C ₁₈ ① C ₁₈ ① C ₁₇ C ₁₈ C ₁₉ C ₂₀ ①	0.02 μF MXL (Maylor) 10 μF 3 V (Electrolytic 0.05 μF MXL (Maylor) 2 PF (Styrol) 180 PF 0.02 μF MXL (Maylor) 0.02 μF " " ") 2 PF (Styrol) 180 PF	R ₃ R ₄ R ₅ R ₆ R ₇ R ₈ R ₉ R ₁₀	560 \(\Omega \) " " " " " " " " " " " " " " " " " "	R ₂₆ R ₂₇ R ₂₈ R ₂₉ R ₃₀ R ₃₁ X ₁ X ₂ X ₃	220 \(\Omega \) " 60 \(\Omega \) " 2.2 \(\mathbb{K} \Omega \) RL 5 \(\Omega \) " 5 \(\Omega \) " RF 2T734 (2 Osc. 2T732 (2)	", %W ", 2SC73)	$ \begin{array}{c c} L_{6,7,8} \\ IFT_1 \\ IFT_2 \\ IFT_3 \\ T_1 \\ T_2 \\ SP \end{array} $	CSCHATOF COII (LQ-025 Q) LI-023AP LI-008BP LI-008CP 1.5 K2 : 2 K2 (TI-007 200 2 : 8 2 (TX-003) 3½" 8 2 DS-008-1
C ₂₁ C ₂₂	0.05 \(\mu \) F MXL (Maylor) 0.02 \(\mu \) F \(n \) (\(n \))	R ₁₂ R ₁₃	470 Ω " " 2.2 KΩ " "	X ₄ X ₅		2SC75)		ilt in IFT be adjusted

IF frequency Sensitivity Antenna system Output power Current drain

: 535~1,605 Kc

: 455 Kc

: 100 µV/m (10 mW output) : Built-in ferrite bar antenna

: 50 mW (undistorted) : 8 mA (at zero signal)

: $2\frac{1}{4}$ " PM dynamic speaker 8Ω

Parts list for TR-86

Circuit board of TR-86 (Printed side)

Audio Transformer

Input transformer TI-002

 $6 K\Omega : 3 K\Omega$

DC resistance 500Ω : 280Ω

Output transformer TX-002

 $1.4 \text{ K} \Omega: 8 \Omega$

DC resistance $100 \Omega : 0.5 \Omega$

		st for TI	V-00
Symb ol	Description	Symbol	Description
L	Antenna coil	R ₂₆	22 Ω " "
	LA-033-LE	R ₂₇ ①	33 KΩ " "
L_2	Oscillator coil	R ₂₈	270 Ω " 20%
	LO-002Q	C ₁₋₁ , ₁₋₂	Variable condens
IFT,	LI-008AP	C ₂₋₁ , ₂₋₂	CV_007_02
IFT ₂	LI-008-BP	C ₃	$0.005~\mu\mathrm{F}$
IFT ₃	LI-008-CP	C ₄	$0.01~\mu\mathrm{F}$
T,	TI-002-03	C ₅	$0.005 \mu extbf{F}$
T_2	TX-002-03	C ₈	0.01 μF
SP	2¼" 8Ω	C7	180 PF
	DS 004-1	C_8	2 PF
J	Earphone jack	C ₉ ③	30 μ F 3 V
R_1	10 KΩ ¼ W 20%	C10	$180\mu\mathrm{F}$
\mathbb{R}_2	56 KΩ " "	C ₁₂	2 PF
R_3	2.2 KΩ " "	C ₁₄	180 PF
R_4	2.2 KΩ " "	C ₁₅	$0.02 \mu \mathbf{F}$
R ₅ (1)	820 Q " 10%	C ₁₈ ③	$5\mu\mathrm{F}6\mathrm{V}$
R_{b}	82 KΩ " 20%	, C ₁₇ ③	20 μ F 10 V 3 in block
R_7	470 Ω " "		
R_{s}	820 Ω " "	C ₁₈ ③	$5 \mu F 6 V$
R_9	18 KΩ " "	C ₁₉ ③	30 μ F 3 V
R ₁₀	7.5 KΩ " "	C29	$0.05\mu\mathrm{F}$
R ₁₁	470 Ω " "	C ₂₁	$0.001~\mu\mathrm{F}$
R ₁₂ 2	5 KΩ (RV-234)	C ₇₂	$0.01~\mu\mathrm{F}$
R ₁₃	1.5 KΩ ¼W 20%	X ₁	Mixer 2 T 7 (2SC76
R_{14}	10 KΩ ¼W 20%	X_2	Oscillator 2T7
R ₁₅	56 K Ω " "		(2SC73)
R ₁₅	820 Ω " "	X_3	IF 2 T 7 (2SC76)
R ₁₇	2.2 KΩ " " 10 KΩ " "	X ₄	IF 2T7
R ₁₈ R ₁₉	10 KΩ " " 56 KΩ " "	v	(2SC76)
R ₁₉	50 KΩ " " " 5Ω " 10%	Xs	Audio 2 T 6 (2SD66)
R ₂₁	680 Ω " 20%	X ₈	Audio 2T6
R22	220 Ω " "	v v	(2SD66)
R ₂₃	220 Ω " "	X ₇ , X ₈	Power stage 2 T 6 (2SD65)
R ₂₄	5.6 kO " "	D_1	Deterctor 1 T 23
R ₂₅	22 Ω " 10%	D_2	Varistor 1 T 52
	To be adjusted.	(2) V	Vith switch.
	Electrolytic.	•	
0	arcon or y tite.		

SONY

TR-610

L_1L_2	Antenna Coil	R_{σ}	470 Ω ±20% 1/4 W	
L_3L_4	Oscillator Coil	R ₀	8.2 kQ ±10% "	
IFT ₁	I.F. transformer	R ₁₀	5 kΩ VR with switch	7
IFT2	"	Ru	470 Ω ±20% 1/4 W	2
\mathbf{IFT}_{a}	"	\mathbf{R}_{12}	8.2 kΩ ±10% "	
T_1	Interstage transformer	R ₁₃	1.5 kΩ ±20% "	
T_2	Output transformer	R ₁₄	27 kΩ " "	
J	Earphone Jack	R_{15}	220 Ω " "	2
SP	2 ¹ / ₄ " PM Speaker 8Ω	R ₁₆	7.5 k\Q \pm 10\% "	ì
$\mathbf{R}_{\mathbf{i}}$	8.2 kΩ ±5% 1/4 W	R ₁₇	22 \Q \pm 20\% "	ì
\mathbb{R}_2	110 kΩ ±20% "	\mathbf{R}_{16}	22 Ω " "	C
\mathbf{R}_{a}	1.5 kΩ ±5% "	R ₁₉	150 Ω " "	C
\mathbb{R}_4	130 kΩ ±20% "	R_{20}	220 kQ " "	C
\mathbf{R}_{s}	470 Ω " "	R ₂₁	220 Ω " "	6
R_{ϵ}	1.5 kΩ " "	Cı	PVC-2 M. Tuning	
\mathbf{R}_{7}	33 kΩ ±10% "	C ₂	condenser Trimmer condenser	0
		02	, arminer condenser	•

 C_4 $0.005 \mu F$ C_5 200 pF (Built in IFT) C_6 C₇ 200 pF (Built in IFT) C_6 $0.02 \mu F$ C₉ $0.005 \mu F$ 200 pF (Built in IFT) C_{11} $0.02 \, \mu \mathrm{F}$ C_{12} C_{13} 10 μF 3V $20 \,\mu \mathrm{F}$ $10 \,\mathrm{V}$ 20 μF 10 V Block C_{14-2} 20 μF 10 V C14-3 $0.04 \, \mu F$ C₁₅ C₁₆ $0.005 \, \mu F$ 100 pF C17

TR-610 Circuit board printed side

IF frequency: 455 kc

Sensitivity : $400 \,\mu\text{V/m}$ at $10 \,\text{mW}$ autput Selectivity : $18 \,\text{db}$ at $10 \,\text{kc}$ off resonance Current drain : Approx. $5 \,\text{mA}$ at zero signal Speaker : $2\frac{1}{4}^{n}$ PM dynamic $8 \,\Omega$

Coils

(a) Oscillator coil (bottom view)

(b) IFT (bottom view)

To C7 (built-in) 00000 To X2 C

IFT2

How to remove Cabinet

- (a) Remove 2 small Philips screws on both side of the Cabinet.
- (b) Open the Back cover and remove a screw on the back of the speaker. The circuit board can be easily taken out.

SONY

TR - 620

※ Built in IFT
 △ To be adjusted
 All resistors are 1/10 watt.

Adjustment

1) Lower limit: 520 kc Adjust L_2 Upper limit: 1680 kc " C_{2-2}

2) Tracking adjustment

Checking point

620 kc Adjust L_1 1400 kc " C_{2-1}

Covering range: 535~1605 kc

IF frequency: 455 kc

Current drain: 6 mA at 0 signal

Speaker: 21/4" PM dynamic (8 \Omega)

Voltage & current distribution

	Collector current	Emitter voltage
X,	190~250 μA	2,85∼3.75 V
X ₂	310∼390 µA	$0.145{\sim}0.18\mathrm{V}$
X _a	550~680 μ A	$0.26{\sim}0.32\mathrm{V}$
X_4	1.1~1.4 mA	1,65∼2.1 V
X ₅ X ₆	0.8~1.5 mA for 2	0.008~0.015 V

(Current drain at 0 signal: Approx. 6 mA)

How to remove the cabinet

- 1) Loosen and remove Philips screw on the back cover.
- 2) Loosen and remove Philips screw on the right below the tuning condenser.
- 3) Loosen and remove Philips screw on the left below the volume control.
- 4) Dismount external aerial jack.

SYLVAN

must

grouping

same

necessary

replacement

maintained

-3 CHASSIS -2CHASSIS (-I CHASSIS CHASSIS: 682-1,-2,-3 MODELS: 4P19WD 4 PI9 WC **4PI9W**

GROUP	CONVERTER	IF REFLEX	DETECTOR	OUTPUT
I	2N212 (SYL2133)	SYL2132	SYL2130	SYL2136
II	2N212 (SYL2133)	SYL2132	SYL2I3I	SYL2134
III	2N212 (SYL2133)	SYL2131	SYL2I3I	SYL2135
1<	SYL 2133	SYL2132	SYL2131	SXL2136

٠ ک

CARTRIDGE STEREO

Westinghouse

Model H-816L5, Chassis V-2259-7, Model H-803T5, Chassis V-2259-8, is the same except for clock circuit.

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION WESTINGHOUSE Models H-746T5A, H-747T5A, Chassis V-2395-1A, and Models H-808L5, H-809L5, Chassis V-2395-7, with clock circuit not shown. IZBE6 CONVERTER 12 AV6 12846 DET B IST AUDIO 4DV TI IST LE TRANS ZI .005 200 READS .4.0 VOICE COIL 2.65/ COMBINATION BOTH .3.0 R6 15K 6 8M CS CONTROL 35W4 NOTES I. ALL VOLTAGES MEASURED FROM COMMON NEGATIVE USING A VTVM, VOLUME CONTROL AT MINIMUM, TUNING CAPACITOR AT MAXIMUM LINE VOLTAGE SET AT 117 VA.C READINGS SHOULD BEAS SHOWN ± 20%. 2 ALL CAPACITANCE VALUES IN MFO AND ALL RESISTANCE SWI AC DFF ON SWITCH 128E6 128A8 50C5 VALUES IN OHMS UNLESS OTHERWISE SPECIFIED INTERLOCK _470K 6.8M TO SW2 DO5 22D √^ 150 ⊢⊢ TO SPEAKER T2 12AV6 0 12BA6 0 455 KC. 455 KC. R3 TRIM "B' 1400 Kt 12BE6 Ţ̇̃R≀M "D" 3 EVOL. 1625 KG **-□□Ⅲ-**Rı ((L2)) LOOP ANTENNA LI RED TO T3 Top View of Chassis V-2395-1A TUNING 12BA6 5 6 35W4 2 3 128E6 (7) 50C5 **(6)** BLUE RED 000000000000000 Bottom View of Chassis V-2395-1A TO T3 3. Loosen screw on bottom of cabinet slightly; then push

PRINTED BOARD REMOVAL

- 1. Disengage volume control knob (located on side of cabinet) from volume control shaft.
- 2. Remove two screws from rear of cabinet.

- forward on this screw to disengage AC line cord interlock.
- 4. Remove screw from bottom of cabinet. Front panel and attached PC board can now be removed from cabinet.
- 5. For PC board installation reverse the above procedure.

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION WESTINGHOUSE Models H-804L5, H-805L5, H-806L5, Chassis V-2398-3 CONTROL 220 13 MMF T4 APPLIANCE OUTLET 12AV6 12BE6 12BA6 50C5 CLOCK SWITCH APPLIANCE OUTLET CLOCK OMOTOR -0 0-1 117 V. AC FRAME 4 3 3 9 5 335W4 6 1 2 2) 12BE6 6 12BA63 **@**0 TRIM 66 @ 5 C6 OSC. 3_{12AV6} "D" T2 ĮË D **TO T3** Top View Of Chossis 35W4 12BE6 "CI" **12BA6** Ti all ቻ R3 48°C 455 KC. 50C5 **C6** T2 455. KG I ANT. R5 LOOP **Bottom View Of Chossis** OSC COIL 131 TUNING VOLUME CONTROL

AUDIO OUTPUT

Westinghouse

Models H-761N7, H-762N7, Chassis V-2407-1, Models H-764N7, H-765N7, H-777N7, H-778N7, H-779N7, H-780N7, Chassis V-2407-2, are very similar to sets covered on this page and continued on the next page, adjacent at right.

FM TUNER

chassis be isolated from the power line by means of an

isolation transformer.

slug can be adjusted (ex. I indicates a bottom slug adjust-

able from the bottom --- I indicates a bottom slug

adjustable from the top --- I indicates a bottom slug

adjustable from top or bottom.)

KEY TO SLUG REPRESENTATION

2. A band is used to indicate the location of the slug (ex.

a top slug --- I indicates a bottom slug).

1. The body of the slug is represented by [

indicates

Westinghouse

MODEL H-69ACS1 CHASSIS V-2507-7 PORTABLE - STEREO PHONO

RED/YEL 47 31#

900

V2A /2 7025 OR 12AX7 PRE - AMPLIFIER

æ∜

POWER CORD POLARITY

Gently pull clip slightly open with finger. Slip stylus under clip making certain that stylus shaft rests in center of

CARTRIDGE REPLACEMENT

coupler (#4).

STYLUS REPLACEMENT (See Figure 1)

Loudness controls are set at maximum. Leave the plug in To remove the possibility of hum due to incorrect power plug polarity, try reversing this plug while the Bass and the minimum hum position. Always check the AC power plug polarity first when servicing a hum problem.

PHASING

speaker terminals Each speaker is coded with a dot on one terminal. The to the speaker leads must go striped speaker leads marked with a color dot.

Write down the sequence of colored wires connecting to the four terminals at rear of cartridge. Remove the mounting screws securing the cartridge in the tone arm. Remove the push-on connectors from the cartridge terminals. Push the connectots onto the rerminals of the replacement cartridge with the wire-colors in the sequence previously noted for the original carttidge

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION Westinghouse MODELS H-79ACS1, H-79ACS2 **CHASSIS V-2507-12** 1/2 12AX7 OR 1/2 7025 R7A 3 M 50C5 R6A IM UNTINNED COP RIDGE ON INSULATION RIGHT SPEAKER C7 .0047 TINNED COPPER 1177 DUAL TREBLE CONT. R5. UNTINNED COPPER RIDGE ON INSULATION -C8 -0047 50C5 TINNED COP LEFT SPEAKER RED/WHT 47 G9 470 MMF RH 1177 1200 TERMINAL NEAREST COLOR DOT - 40 MF 150V 50**65** 50G5 IZAK7 NOTES: L DC VOLTAGES MEASURED FROM GIRCUIT GROUND USING A VIVM, LOUONESS CONTROL AT MINIMUM. 2. ALL CAPACITANCE VALUES ARE IN MFD, & ALL RESISTANCE VALUES IN OHMS, 1/2 WATT, UNLESS OTHERWISE SPECIFIED. 3. BOTH TRANSFORMER WINDINGS ARE IN THE SAME DIRECTION. CIO CII TI (0 O(0 T2 0 CI2 CI3 50C5 50C5 12AX7 **R8** R7A R6A RIA R7B R6B RIB DUAL DUAL DUAL BASS LOUDNESS CONTROL BALANCE TREBLE CONTROL CONTROL

WESTINGHOUSE Models H-72MP1 and H-72MP2

WESTINGHOUSE Models H-76ACS1, H-76ACS2 Chassis V-2508-11

CHASSIS REMOVAL

- Remove the perforated tube-service cover which is attached by 2 phillips screws.
- Remove the 4 phillips screws holding the motor board.
 Lift the motor board.
- Disengage the amp-lok from the changer and unsolder the leads to the changer terminal board.
- 4. Remove Volume control knobs.
- Remove the 2 speed nuts holding the chassis to the cabinet front.

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION Œ. MATCHED IZI-61 OUTPUT MATCHED -T6 OSCILLATOR TRANS + (3) Z B BATTERIES T2 2ND 13 3RD <u>\$</u> REO'D DRIVER 121 - 179 CONV. 121-64 19-121 ក្តស S ND IE I2I-61 Output Matched 0 ر ما2ا -⋛ ş 19 VOLUME CONTROL <u>^</u> 0 0 CIC OSCILLATOR. Continued 270 0% 오 % 121 - 180 Õ TRIM (BOTTOM) TRIM (TOP) IST I.F. TRANS IST CIA ANTENNA 4 0 0 C19 50 MFD 4.5 V 0 Chassis 6GT42Z2, O -4.0 25V 121 -64 DRIVER - C18 + 50 MFD 4.5V Set Oscillator to dial scale. gardless of dial accuracy. 220 Supplier While rocking gang adjust T6 for maximum output re-RCA For. I. F. Alignment 5600 NOTES:
ALL RESISTORS ARE CARBON, 1/2 WATT, ±20% TOLERANCE UNLESS
OTHERWISE SPECIFIED. Purpose ALL CONDENSERS ARE IN MICROFIRADS UNLESS OTHERWISE SPECIFIED. D.C. VOLTAGES SHOWN ARE NEASURED FROM CHASSIS WITH NO SIGNAL Matched Pair PNP PNP Align loop ant. Output-Output 121-61 2N 407 ZENITH RADIO Model Royal 150, ALL VOLTAGES ARE D.C. UNLESS OTHERWISE SPECIFIED. 8 121-64 R497 PNP Adj. Tl, T2, T3 for maxi-Adjust slug in T6 Driver S mum output. 390 58 Set Dial At Trimmers -4.3V ClA 121-181 2ND IF c1cı Crystal Detector 103-19 1N87G Diode 28 22 K 28 CHASSIS INFORMATION CHART 'ide open. \$ \$ \$ Near 600 KC ALIGNMENT PROCEDURE 600 KC 1260 KC 8 8 1 2nd I.F. 8 121-181 2N1525 58 PNP Connect Outer Shield 5 8 Conductor From 330 Oscillator To lst I.F. 121-180 IST 1F 121-180 2N1525 PNP Chassis 88 1 C6 TSMFD €V ₹ 26 36 36 36 5.5 3.3 MMF 121-179 2N1527 Conv. PNP Conductor From WAVEMAGNET Connect Inner 응 Oscillator To ONE TURN LOOSELY COUPLED Zenith E1A Type Part \$ \$ \$ No. Transistor ¥0 Black 102-8668 ž Layout Label 88 Color 121 - 179 CONV. STEPS 2 & 3 Input Signal Frequency REPEAT 455 KC 600 KC 1260 KC 1620 KC ξ 유 00 Chassis 6CT42Z2 Operation 88 'n a က

151

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION

ZENITH RADIO Model Royal 400, Chassis 7GT40Z2, Continued

This transistor portable chassis is a conventional superheterodyne receiver using an individual mixer and oscillator to produce the 455Kc intermediate frequency. The first and second intermediate frequency amplifiers are conventional. A (103-19) is used as the diode detector and AVC voltage source. This is then followed by à driver stage and a class "B" push-pull output stage. As you can see from the chart, the chassis uses a pair of matched transistors in the final output stage and therefore should one transistor fail, both transistors must be replaced simultaneously as chances are they will not perform properly unless so matched.

ALIGNMENT PROCEDURE

Operation	Input Signal Frequency	Connect Inner Conductor From Oscillator To			Trimmers
1	455 KC	ONE	Chessis	600 KC	Adj. T1, T2, T3 for mexi- mum output.
2	1620 KC	TURN LOOSELY COUPLED	_	Gang wide open.	CIC
3	535 KC	TO WAVEMAGNET		Gang Closed	Adjust slug in T6
4	REPEAT STEPS 2 & 3			-	_
5	1260 KC		_	1260 KC	C1A

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION

ZENITH RADIO Chassis 5G29 used in Models SFF2504T-1, SFF2505T-1, SFF2604-1, SFF2605-1, SFF2607-1, and G3388

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION ZENITH RADIO Chassis 9G26 used in Model SFF2535-1 IS ISAX7A IST AUDIO 9G26 SCHEMATIC FOR MODEL SFF2535-1

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION							
	Arvin, Cont.	G.E. Cont.	Motorola, Cont.	Motorola, Cont.			
INDEX	1.62201 11	P825A 32	C16 65	HS-938 65			
INDEA	1.62402 14	P826A 32	Al7 65	HS-939 65			
	1.64901 10	P835A 31	Cl7 65	HS-942 67			
Admiral Corp.	1.65301 12	P850B,C 32	Cl8 65	HS-943 67			
4R3 3	1.65501 13	P851C 32	C19 65	HS-944 68			
	i	RP1135A 34	X23 58	HS-945 68			
6M3A 4	Bulova Watch	RP1155A,C 36	24ME 51	HS-946 69			
7B2 5		RC1200 36-37	24MF 51	HS-947 69			
7B2B 6		RC1201 36	24MY 51	HS-948 70			
7B2C 7		RC1202 36-37	X24 58	HS-949 70			
7B2D 7	1 000000	RC1203 36	SP25 67	HS-950 70			
8A2 8	100000	RC1210 36-37	X25 59	HS-951 70			
Y2081 5		RC1211 36	SP26 67	HS-952 67			
Y2081A 7		RC1212 36-37					
A5085		RC1213 36		HS-953 73			
Y2082A 7		RP1550A,D 35	SP27 68	HS-954 73			
Y2083 5		INTICOUNT OF	X27 61	HS-963 72			
Y2083A 7		RP1551A,D 35	SP28 69	HS-968 72			
Y2091 8	G-1701 19	RP1590A 36	X28 62	HS-969 71			
Y2093 8	G-1702 19	RP1170 36-37	SP29 70				
Y2098 8	G-1704 20	P9001A 33	X29 63	<u>Oldsmobile</u>			
Y2101 6		P9011A 33	SP30 70	989393 17			
Y2102 6		*****	X31 64				
Y2108 6		Hitachi, Ltd.	HK 45 66	Packard-Bell			
Y2221 4		TH-660 40	SK56-1 71	7R4 74			
Y2223 4		TH-661 40	SK57-1 71				
Y2226 4		TH-759 40	CA61X 52	Philco .Corp.			
Y2229 4	1	WH-761 39	OEA61X 53	T-61 75			
Y2252 7	120581 20	WH-822M 38	PCA61X 54	T-71 76			
Y2253 7			CTA 62 55	T-77 77			
Y2256 7		<u>International</u>	CTM62 55	T-88 78			
Y3133 3		<u>Harvester</u>	SK65 67	K-777 81			
Y3137 3	rura	244079-R91 47	SK66 73	K-778 81			
1010	C2AZ-18805 51	244113-R91 47	SK67 73	K-780 84-86			
American	C2GY-18805 51		SK73 72	K-782 84			
Motors	C2YY-18805 51	Magnavox	SK74 72	K-783 84			
899098 1 50		65 41	SK75 72	K-784 84-86			
Caacact oc	Gamoro-Orogino	71 42	SK76 72	K-785 84			
Amrin	RA48-8260A 24		SK77 71	T-803 79			
Arvin	RA48-8261A 24	Montgomery	SK78 71	K-847 84			
31R25 10	MA 40-0200A 24	Ward	SK79 71	K-849 80			
31R26 10	I THE CO. SOUTH EO	GEN-1213A 44	SK80 71	K-850 80			
61R13 9		GNT-1215 45	117 56	K-851 84-86			
61R16 9		GNT-1215A 45	119 56	K-852 84			
61R19 9	General	GPS-1688A 43	120 56	K-853 84			
61R23 9	Electric	GEN-1691A 46	202 57	K-855 84-86			
61R26 9	T170A 27	GPS-1865A 43	203 57	K-856 84			
61R29 9	T171A 27	GEN-1869A 46	204 57	K-858 84			
61R35 9	T230A 28		HS-744 65	K-912 82-83			
61R39 9	C495A 26	Motorola	HS-813 65	K-912 82 82 82			
61R48 11	C496A 26	2TMR 50	HS-822 66	K-1414 87			
61R49 11	C500A 26	2TMXD 49	HS-880 58	K-1424 87			
61R58 14	C510 27	C2AZ-18805 51	HS-881 58				
80P78 12		C2GY-18805 51	HS-882 59				
81 P 68 12	C517A 27	C2YY-18805 51		K-1526 89			
81P75 13	P795A,B 29	- ·	HS-883 60	K-1628 90			
81P78 13	P796A,B 29		HS-884 62	K-1632 91			
1.61601 9	P797A,B 29		HS-885 63	Dambe			
1.61701 9		A15 65	HS-894 64	Pontiac			
1.62001 12	1	C15 65	HS-915 61	989692 18			
	P821A 30	A1 6 65	HS-922 65	989831 16			

VOLUME R-22, MOST-OFTEN-NEEDED 1962 RADIO SERVICING INFORMATION

RCA Victor		RCA, Continued		Sears, Cont.		Sylvania, Cont. Westinghouse+			
1RA11	94	1VC15	105	1038	107		123	H-M1410	144
1RA20	94	1-VE-0	101	1073	110		123	H-M1411	144
1RA23	94	1-VE-1	101	1074	110	691-1	124	H-M1412	144
							125	H-M1413	144
1RA25	94	1-VE-2	101	1075	110				
1RA26	94	1VE075	101	1083	110	702-1	126	H-M1700	143
1RA30	96	1VE086	101	1084	110	711-1,-2	127	H-M1701	143
1RA33	96	1VE094	101	1085	110	711-3	127	H-M1702	143
1RA35	96	1VE105	101	1212	108	6022	127	H-M1703	143
1RA36	96	1 VE 106	101	1213	108	6025	127	V-2259-7	128
1RA42	96	lvelo7	101	1214	108	6028	127	V-2259-8	128
lra43	96	1VE205	101	2000	109	6029	127	V-2393-4	129
1RA44	96	1VE207	101	2018	111			V-2395-1A	130
1RA45	96	1VE224	101	2019	111	Westinghou	se	V-2395-7	130
1RA50	96	1VE229	101	2035	112		139	V-2398-3	131
1RA50	96	1VE246	101			H-72MP1	142	V-2401-4	132
	96		101	2036	112		142	V-2401-4 V-2403-1	133
1RA 52		1-VF-1		2037	112	H-72MP2			136
1RA55	96	1-VF-2	101	2038	112	H-76ACS1	142	V-2403-3	
1RA60	96	1VF105	101	2075	110	H-76ACS2	142	V-2403-4	133
1RA61	96	1VF106	101	2076	110	H-78ACS1	138	V-2403-5	136
1RA 64	96	1VF107	101	2077	110	H-78ACS2	138	V-2407-1	134
1RA65	96	1VF205	101	8038	113	H-79ACS1	141	V-2407-2	134
1RC30	98-99	1VF207	101	9040,A	113	H-79ACS2	141	V-2420-1	137
lRC31	98	1VF224	101	132.63901	109	H-81ACS1	140	V-2506-6	138
1RC34	98	1VF229	101		111	H-81AC\$2	140	V-2507-7	139
1RD11	94	1VF246	101	528.53071		H-732P7	133	V-2507-11	140
1RD30	95	1YC11	104	528.53580		H-732P7GP	133	V-2507-12	141
1RD32	95	RS-193A	101	528.53740		H-733P7,+		V-2508-11	142
1RD33	95	RS-193B	101	528.53760	112	H-746T5A	130	V-2510-7	144
1RD37	95	RS-193D	101	528.53880	106	H-747T5A	130	V-2511-5	144
1RD40	95	RS-196	104			H-761N7	134	V-2515-1	143
1RD40	95	RS-197	105		107	H-762N7	134	1 2010 1	
1RD41	95	RS-198	105	528.54071	110	H-764N7	134	Zenith Rad	dia
		RS-200	100	0000		H-765N7			
1RD45	95	RK-295	100	Sony			134	4G24	156
1RD 50	95			TR-84	114	H-766L4A	137	5F02	146
1RD 52	95	RC-1199D	92	TR-86	115	H-775L6A	132	5G29	157
1RD 53	95	RC-1200C	93	TR-608	116	H-776L6A	132	5HO7	147
1RD56	95	RC-1201D	98	TR-610	117	H-777N7	134	6GT42Z2	150
1RD60	95	RC-1202F	94	TR-620	118	H-778N7	134	6H03	148
1RD61	95	RC-1202H	94	TR-815B,Y	119	H-779N7	134	6H06	149
1RD63	95		95			H-780N7	134	7GT40Z2	152
1RD65	95	RC-1202L	96	Sylvania		H-790P6	129	8HT40Z2	154
lRGll	9 3	RC-1202M	96	4P19W,+	123	H-790P6GP		9G26	158
lRG14	9 3	RC-1202N	96	6P08	121	H-791P6,+		GV21	156
1RG15	9 3	RC-1202P	95		121	H-795P6,+		GP\$80	156
1RG31	97	RC-1202R		AK15	127			150	150
1RG33	97	RC-1202T	95	AT15	127	H-798P7,+		400	152
1RG34	97	RC-1206A	101	AK16	127			500H	154
1RG41	9 7	RC-1208A	97	AT16	127			H509C,P,W	
1RG43	9 7	RC-1208B	9 7			H-803T5	128	н519	147
	9 7	1.0-15000	J !	TH16	125	H-804L5	131	H624	148
1RG46		Panaul+		AK17	127	H-805L5	131		
1RH10	92	Renault	40	AK18	127	H-806L5	131	H722C,G,W	
1RH11	92	555 55	4 9		124		130	SFF2504T	157
1RH12	92			45P18	120		130	SFF2505T	157
1RH13	92	Sears, Roebuck			122	H-816L5	128	SFF2535-1	
1 RJ19	92	1031		Y55C2O	126	H-M1310B	144	SFF2604-1	
lTPlE,HE		1035		664-1	120		144	SFF2605-1	
lTPlJE	92	1036		666-1,-2	121	H-M1312B	144		
lVAl4	105	1037	107	681-1	122	H-M1313B	144	G3388	157
l						V			