CURSUL 2

ȘIRURI DE NUMERE REALE ȘI FUNCȚII REALE. INEGALITĂȚI REMARCABILE.

1. Multimea numerelor reale

Presupunem că cititorul este deja familiarizat cu proprietățile algebrice ale mulțimilor \mathbb{N} (*numere naturale*), \mathbb{Z} (*numere intregi*), \mathbb{Q} (*numere raționale*) și \mathbb{R} (*numere reale*). Vom reaminti doar definiția mulțimii numerelor reale:

DEFINIȚIE. O mulțime de numere reale este un corp ordonat Dedekind-complet, adică un cvadruplet ($\mathbb{R}, +, \cdot, \leq$), unde \mathbb{R} este o mulțime cu cel puțin două elemente, + (adunarea) și · (înmulțirea) sunt două operații algebrice pe \mathbb{R} , iar \leq este o ordine totală pe \mathbb{R} astfel încât:

- $(F_1) x + (y + z) = (x + y) + z, \forall x, y, z \in \mathbb{R};$
- (F₂) $\exists 0 \in \mathbb{R}, \forall x \in \mathbb{R} : x + 0 = 0 + x = x;$
- $(F_3) \ \forall x \in \mathbb{R}, \ \exists (-x) \in \mathbb{R} : x + (-x) = (-x) + x = 0;$
- (F₄) x + y = y + x, $\forall x, y \in \mathbb{R}$;
- (F₅) $(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in \mathbb{R};$
- $(\mathbf{F}_6) \ \exists 1 \in R : x \cdot 1 = 1 \cdot x = x, \ \forall x \in \mathbb{R};$
- $(\mathbf{F}_7) \ \forall x \in \mathbb{R}^*, \ \exists x^{-1} \in \mathbb{R} : x \cdot x^{-1} = x^{-1} \cdot x = 1;^1$
- (F₈) $x \cdot y = y \cdot x$, $\forall x, y \in \mathbb{R}$;
- (F₉) $x \cdot (y+z) = x \cdot y + x \cdot z, \ \forall x, y, z \in \mathbb{R};$
- $(O_1) \ x \le y \Rightarrow x + z \le y + z, \ \forall x, y, z \in \mathbb{R};$
- (O_2) $(x \le y) \land (0 \le z) \Rightarrow x \cdot z \le y \cdot z;$
- (C) mulțimea ordonată (\mathbb{R}, \leq) este Dedekind-completă.

Orice proprietate a numerelor reale poate fi dovedită pornind de la aceste "axiome". Ca de obicei, *scăderea* și *împărțirea* pot fi introduse de:

$$x - y := x + (-y), \ x, y \in \mathbb{R};$$

 $\frac{x}{y} = x/y := x \cdot (y^{-1}), \ x, y \in \mathbb{R}.$

Se poate arăta (dar nu o vom face, acest lucru depășind cadrul cursului) că există o unică mulțime a numerelor reale (până la un homeomorfism de corpuri ordonate), așa că $\mathbb R$ va fi numită mulțimea numerelor reale (sau dreapta reală), iar elementele acesteia numbere reale. De fapt, se poate construi $\mathbb R$ pornind cu $\mathbb N$ (construit în cursul precedent ca ω), iar apoi continuând cu $\mathbb Z$, $\mathbb Q$ și $\mathbb R$.

Putem proceda și invers, având deja dată mulțimea \mathbb{R} , putem defini $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$ după cum urmează:

- $\mathbb{N} := \bigcap \{ N \in \mathscr{P}(\mathbb{R}) \mid 0 \in \mathbb{N}, \ n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N}, \ \forall n \in \mathbb{N} \} = \{0,1,1+1,(1+1)+1,\ldots\} = \{0,1,2,3,\ldots\};$
- $\mathbb{Z} := \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\};$
- $\mathbb{Q} := \{ m/n \mid m \in \mathbb{Z}, n \in \mathbb{N}^* \}.$

De acum încolo vom adopta acest punct de vedere.

Valoarea~absolută a unui număr x este definită ca

$$|x| := \begin{cases} x, & x \ge 0; \\ -x, & x < 0. \end{cases}$$

Propoziția 1.1. Avem:

- i) $|x| \geq 0, \ \forall x \in \mathbb{R};$
- *iii*) $|xy| = |x| \cdot |y|, \forall x, y \in \mathbb{R}$;
- *ii*) $|x| = 0 \Leftrightarrow x = 0, \forall x \in \mathbb{R}$:
- *iv*) $|x + y| \le |x| + |y|$, $\forall x, y \in \mathbb{R}$.

În ceea ce privește marginile superioară și inferioară a lui $\mathbb R$, acestea pot fi caracterizate după cum urmează:

Propoziția 1.2. Fie A o submulțime nevidă a lui \mathbb{R} .

- *i*) Un element $\alpha \in \mathbb{R}$ este marginea superioară a lui A dacă și numai dacă:
 - (a) $x \le \alpha$, $\forall x \in A$;
 - (b) $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in A : \alpha \varepsilon < x_{\varepsilon}$.

1

 $^{{}^{1}\}mathbb{R}^{*}$ este abreviere pentru $\mathbb{R} \setminus \{0\}$; notații similare avem pentru \mathbb{N}, \mathbb{Z} și \mathbb{Q}

- ii) Un element $\beta \in \mathbb{R}$ este marginea inferioară a lui A dacă și numai dacă:
 - (a) $x \ge \beta$, $\forall x \in A$;
 - (b) $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in A : \beta + \varepsilon > x_{\varepsilon}$.

Demonstrație. Vom arăta doar prima proprietate, cea legată de marginea inferioară fiind similară.

- ⇒ Deoarece $\alpha = \sup A$, α este un majorant pentru A; de aceea, $x \le \alpha$, $\forall x \in A$. Pe de altă parte, este cel mai mic majorant; așadar există $\varepsilon > 0$ astfel încât $\alpha \varepsilon$ să nu fie un majorant pentru A. În consecință, ordinea ≤ fiind totală, există $x_{\varepsilon} \in A$ astfel încât $\alpha \varepsilon < x_{\varepsilon}$.
- \Leftarrow Fie $\alpha \in \mathbb{R}$ ce satisface (a) şi (b). Atunci, datorită (a), α este un majorant pentru A. Să presupunem atunci că ar mai exista un alt majorant al lui A, $\eta \in \mathbb{R}$, astfel încât $\alpha > \eta$. Atunci, luând $\varepsilon := \alpha \eta > 0$, din (b) concludem că există $x_{\varepsilon} \in A$ astfel încât $\alpha \varepsilon < x_{\varepsilon}$, adică $\eta < x_{\varepsilon}$. Dar acest lucru contrazice faptul că η este un majorant pentru A.

În concluzie, α este marginea superioară a lui A.

Este ușor de verificat că, pentru $a,b \in \mathbb{R}$ cu a < b, avem:

- $\inf[a,b] = \inf[a,b) = \inf(a,b] = \inf(a,b) = a;$
- $\sup[a, b] = \sup[a, b] = \sup(a, b] = \sup(a, b) = b$.

După recapitularea acestor proprietăți algebrice și de teoria mulțimilor ale lui \mathbb{R} , ne vom concentra pe așa-zisele proprietăți "topologice" ale *dreptei reale*.

2. Siruri de numere reale

Un şir de numere reale este o funcție $x: \mathbb{N} \to \mathbb{R}$. Se obișnuiește a se nota x_n în loc de x(n), pentru $n \in \mathbb{N}$; de asemenea, funcția x va fi notată $(x_n)_{n \in \mathbb{N}}$, $(x_n)_{n \geq 0}$ sau chiar (x_n) . Dacă $p \in \mathbb{N}^*$, prin $(x_n)_{n \geq p}$ înțelegem șirul $(x_{n+p})_{n \in \mathbb{N}}$ sau chiar funcția $x: \{n \in \mathbb{N} \mid n \geq p\} \to \mathbb{R}$. Prin $\{x_n\}_{n \in \mathbb{N}}$ înțelegem mulțimea $\{x_n \mid n \in \mathbb{N}\}$. Câteodată, dacă $A \subseteq \mathbb{R}$ este o mulțime şi $(x_n)_{n \in \mathbb{N}}$ este un şir, notăm (prin abuz de limbaj) $(x_n)_{n \in \mathbb{N}} \subseteq A$ în loc de $\{x_n\}_{n \in \mathbb{N}} \subseteq A$, adică $x_n \in A$, $\forall n \in \mathbb{N}$.

Definiție. Spunem că un șir $(x_n)_{n\in\mathbb{N}}$ este:

- a) mărginit superior dacă $\{x_n\}_{n\in\mathbb{N}}$ este mărginit superior, adică există $M\in\mathbb{R}$ astfel încât $x_n\leq M,\ \forall n\in\mathbb{N};$
- b) mărginit inferior dacă $\{x_n\}_{n\in\mathbb{N}}$ este mărginit inferior, adică există $m\in\mathbb{R}$ astfel încât $x_n\geq m,\ \forall n\in\mathbb{N};$
- c) mărginit dacă $\{x_n\}_{n\in\mathbb{N}}$ este mărginit, adică există $m,M\in\mathbb{R}$ astfel încât $m\leq x_n\leq M,\ \forall n\in\mathbb{N};$
- d) nemărginit dacă $\{x_n\}_{n\in\mathbb{N}}$ nu este mărginit.

De exemplu, şirul $((-1)^n)_{n\geq 1}$ este mărginit (devreme ce $\{(-1)^n\}_{n\geq 1}=\{-1,1\}$), dar $(2^n)_{n\in\mathbb{N}}$ nu este mărginit (este mărginit inferior, dar nu mărginit superior).

Definiție. Spunem că un şir $(x_n)_{n\in\mathbb{N}}$ este:

- *a)* crescător dacă $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}$;
- b) descrescător dacă $x_n \ge x_{n+1}, \ \forall n \in \mathbb{N};$
- c) monoton dacă este crescător sau descrescător;
- *d)* strict crescător dacă $x_n < x_{n+1}, \ \forall n \in \mathbb{N}$;
- *e)* strict descrescător dacă $x_n > x_{n+1}, \ \forall n \in \mathbb{N}$;
- f) strict monoton dacă este strict crescător sau strict descrescător.

Din nou, şirul $((-1)^n)_{n\geq 1}$ nu este monoton, dar $(2^n)_{n\in\mathbb{N}}$ şi $(\frac{1}{n})_{n\geq 1}$ sunt (primul este strict crescător, al doilea strict descrescător).

DEFINIȚIE. Spunem că un şir $(x_n)_{n\in\mathbb{N}}$ este *convergent* dacă există un element $x\in\mathbb{R}$, numit *limita* șirului $(x_n)_{n\in\mathbb{N}}$, astfel încât pentru orice $\varepsilon>0$ există $n_\varepsilon\in\mathbb{N}$ astfel încât:

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon}, \ |x_n - x| < \varepsilon.$$

În acest caz spunem că $(x_n)_{n\in\mathbb{N}}$ converge la x și scriem $x_n \xrightarrow[n\to\infty]{} x$ (sau, mai simplu, $x_n \to x$) sau $\lim_{n\to\infty} x_n = x$.

Ultima notație este legitimizată de următorul rezultat:

Propoziția 2.1. Limita unui șir de numere reale este unică.

Demonstrație. Să presupunem că șirul $(x_n)_{n \in \mathbb{N}}$ are două limite distincte x și y. Fie $\varepsilon := |x - y|/2 > 0$. Atunci, din definiție, există n_{ε} , $m_{\varepsilon} \in \mathbb{N}$ astfel încât:

$$|x_n-x|<\varepsilon, \ \forall n\geq n_{\varepsilon};$$

$$|x_n - y| < \varepsilon, \ \forall n \ge m_{\varepsilon}.$$

Dacă $n \ge \max\{n_{\varepsilon}, m_{\varepsilon}\}$ vom avea

$$|x-y| \le |x-x_n| + |x_n-y| < 2\varepsilon = |x-y|,$$

ceea ce este absurd, întrucât |x - y| > 0. Prin urmare, nu putem avea $x \neq y$.

Propoziția 2.2. Orice șir convergent este mărginit.

Demonstrație. Fie $(x_n)_{n\in\mathbb{N}}$ un șir ce converge la $x\in\mathbb{R}$. Atunci, luând $\varepsilon:=1$, există $n_1\in\mathbb{N}$ astfel încât $|x_n-x|<1$, $\forall n\geq n_1$. Acest lucru implică

$$|x_n| \le |x_n - x| + |x| < 1 + |x|, \ \forall n \ge n_1.$$

Luând $M := \max\{|x_1|, \dots, |x_{n_1-1}|, 1+|x|\}$, vedem că

$$|x_n| \leq M, \ \forall n \in \mathbb{N},$$

adică șirul (x_n) este mărginit.

Exemple.

• Un prim exemplu este şirul $\left(\frac{1}{n}\right)_{n>1}$. Avem

$$\lim_{n\to\infty}\frac{1}{n}=0,$$

deoarece pentru orice $\varepsilon > 0$ există $n_{\varepsilon} := \left| \frac{1}{\varepsilon} \right| + 1$ astfel încât² that $n \ge n_{\varepsilon}$ implies

$$-\varepsilon < 0 < \frac{1}{n} \le \frac{1}{n_{\varepsilon}} < \varepsilon.$$

- Şirul constant $(c)_{n \in \mathbb{N}}$ (pentru $c \in \mathbb{R}$) este crescător și descrescător în același timp; evident, converge la c.
- Şirul $(a^n)_{n\geq 1}$ este convergent pentru $a\in (-1,1]$ și divergent pentru $a\in \mathbb{R}\setminus (-1,1]$; avem

$$\lim_{n \to \infty} a^n = \begin{cases} 0, & -1 < a < 1; \\ 1, & a = 1. \end{cases}$$

O altă limită bine cunoscută este

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=\mathrm{e},$$

unde e este numărul lui *Euler* (de fapt, şirul $\left(\left(1+\frac{1}{n}\right)^n\right)_{n\geq 1}$ este crescător şi mărginit, aşa încât e poate fi definit ca limita acestui şir – vezi Teorema 2.6 de mai jos).

Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Un *subşir* al lui $(x_n)_{n\in\mathbb{N}}$ este un altşir $(x_{n_k})_{k\in\mathbb{N}}$, unde $(n_k)_{k\in\mathbb{N}}\subseteq\mathbb{N}$ este un şir strict crescător de numere naturale.

Propoziția 2.3. Fie $(x_n)_{n\in\mathbb{N}}$ un şir ce converge la $x\in\mathbb{R}$. Dacă $(x_{n_k})_{k\in\mathbb{N}}$ este un subşir al lui $(x_n)_{n\in\mathbb{N}}$, atunci $(x_{n_k})_{k\in\mathbb{N}}$ converge la x.

Demonstrație. Fie $\varepsilon > 0$. Deoarece $x_n \to x$, există $n_{\varepsilon} \in \mathbb{N}$ astfel încât $|x_n - x| < \varepsilon$, $\forall n \ge n_{\varepsilon}$. Pe de altă parte, şirul $(n_k)_{k \in \mathbb{N}}$ este strict crescător, deci există k_{ε} astfel încât

$$n_k \ge n_{\varepsilon}, \ \forall k \ge k_{\varepsilon}$$

(altfel am avea $\{n_k\}_{k\in\mathbb{N}}\subseteq\{0,1,\ldots,n_{\varepsilon}-1\}$). În concluzie,

$$|x_{n_k} - x| < \varepsilon, \ \forall k \ge k_{\varepsilon},$$

ceea ce demonstrează că $\lim_{k\to\infty} x_{n_k} = x$.

Astfel, un mod simplu de a demonstra că șirul $(x_n)_{n\in\mathbb{N}}$ nu converge este să găsim două subșiruri $(x_{n_k})_{k\in\mathbb{N}}$ și $(x_{m_k})_{k\in\mathbb{N}}$ care converg la limite diferite. De exemplu, șirul $((-1)^n)_{n\geq 1}$ nu este convergent, deoarece subșirul $((-1)^{2k})_{k\geq 1}$ este șirul constant ce converge la 1, iar subșirul $((-1)^{2k+1})_{k\geq 0}$ este șirul constant ce converge la -1.

În ceea ce privește legătura între șiruri și operațiile pe 🏿 , avem următoarele proprietăți:

Propoziția 2.4. Fie (x_n) și (y_n) șiruri de numere reale, convergente la $x \in \mathbb{R}$, repectiv la $y \in \mathbb{R}$. Atunci:

- $i) \lim_{n\to\infty} (x_n + y_n) = x + y;$
- ii) $\lim_{n\to\infty}(x_ny_n)=xy;$
- $iii) \lim_{n\to\infty} (x_n y_n) = x y;$
- iv) dacă $y \neq 0$, atunci există $n_0 \in \mathbb{N}$ astfel încât $y_n \neq 0$, $\forall n \geq n_0$ și $\lim_{n \to \infty} \left(\frac{x_n}{y_n}\right) = \frac{x}{n}$;

²pentru $x \in \mathbb{R}$, $|x| := \sup \{ n \in \mathbb{Z} \mid n \le x \}$ se numește partea întreagă a lui x.

- v) $dacă x_n \leq y_n$, $\forall n \in \mathbb{N}$, $atunci x \leq y$;
- vi) (criteriul cleştelui) dacă şirul (z_n) este astfel încât $x_n \le z_n \le y_n$, $\forall n \in \mathbb{N}$ şi x = y, atunci (z_n) este convergent şi $\lim_{n\to\infty} z_n = x$.

O consecință imediată a ultimei proprietăți este următorul criteriu de convergență:

Propoziția 2.5. Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale și $x\in\mathbb{R}$. Dacă există un șir $(\alpha_n)_{n\in\mathbb{N}}$ care converge la 0 astfel încât

$$|x_n - x| \le \alpha_n, \ \forall n \in \mathbb{N},$$

atunci (x_n) converge la x.

Următorul rezultat este cunoscut drept Teorema convergenței monotone.

Teorema 2.6 (Weierstrass). Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

- i) Dacă $(x_n)_{n\in\mathbb{N}}$ este crescător și mărginit superior, atunci el converge la sup $\{x_n\}_{n\in\mathbb{N}}$.
- ii) Dacă $(x_n)_{n\in\mathbb{N}}$ este descrescător și mărginit inferior, atunci el converge la inf $\{x_n\}_{n\in\mathbb{N}}$.

Putem rezuma teorema de mai sus în felul următor: orice șir mărginit și monoton este convergent.

Demonstrație. Vom arăta doar prima parte, cealaltă demonstrându-se de o manieră asemănătoare.

Deoarece mulțimea nevidă $\{x_n\}_{n\in\mathbb{N}}$ este mărginită superior, ea are margine superioară; fie $\alpha:=\sup\{x_n\}_{n\in\mathbb{N}}$. Datorită Propoziției 1.2,

$$x_n \leq \alpha, \ \forall n \in \mathbb{N}$$

şi

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N} : \alpha - \varepsilon < x_{n_{\varepsilon}}.$$

Deoarece (x_n) este crescătoare, avem $x_n \ge x_{n_{\varepsilon}}$, $\forall n \ge n_{\varepsilon}$. Combinând cele două inegalități, obținem, pentru $\varepsilon > 0$,

$$\alpha - \varepsilon < x_n, \ \forall n \geq n_{\varepsilon}.$$

În consecință,

$$|x_n - \alpha| = \alpha - x_n < \varepsilon, \ \forall n \ge n_{\varepsilon}.$$

Această relație exprimă faptul că (x_n) converge la α , ε fiind ales într-un mod arbitrar.

Lema 2.7. Orice şir $(x_n)_{n\in\mathbb{N}}$ de numere reale are un subşir monoton.

Demonstrație. Pentru $n \in \mathbb{N}$, fie mulțimea $A_n \subseteq \mathbb{N}$ definită de

$$A_n := \{k > n \mid x_k \ge x_n\}.$$

- I. Să presupunem mai întâi că există $n_0 \in \mathbb{N}$ astfel încât A_n este o mulțime nevidă pentru orice $n \ge n_0$. Atunci, începând cu k := 0, se poate construi un şir strict crescător $(n_k)_{k \in \mathbb{N}}$ astfel încât $n_{k+1} \in A_{n_k}$, $\forall k \in \mathbb{N}$. Acest lucru implică faptul că şirul $(x_{n_k})_{k \in \mathbb{N}}$ este crescător.
 - II. Cealaltă posibilitate este ca mulțimea

$$A := \{ n \in \mathbb{N} \mid A_n = \emptyset \}$$

să fie infinită. Fie $(n_k)_{k \in \mathbb{N}}$ un șir strict crescător astfel încât $A = \{n_k\}_{k \in \mathbb{N}}$ (un astfel de șir poate fi construit pe baza existenței unei funcții bijective între \mathbb{N} și A).

De aceea, pentru orice $k \in \mathbb{N}$, $A_{n_k} = \emptyset$, ceea ce implică faptul că $x_{n_{k+1}} < x_{n_k}$. Astfel, şirul $(x_{n_k})_{k \in \mathbb{N}}$ este strict descrescător.

Următorul rezultat nu este acum decât o simplă consecință a Teoremei 2.6 și a rezultatului de mai sus.

Teorema 2.8 (Bolzano-Weierstrass). Dacă un şir $(x_n)_{n\in\mathbb{N}}$ este mărginit, atunci el posedă un subşir convergent $(x_{n_k})_{k\in\mathbb{N}}$.

Definiție. Spunem că un șir $(x_n)_{n\in\mathbb{N}}$ este Cauchy (sau fundamental) dacă

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n, m \ge n_{\varepsilon}, \ |x_n - x_m| < \varepsilon.$$

Următorul rezultat reprezintă un criteriu important pentru determinarea convergenței unui șir, fără a cunoaște presupusa lui limită.

Teorema 2.9. Un şir de numere reale este convergent dacă și numai dacă este Cauchy.

Afirmația "dacă" a acestui rezultat, aplicată unor spații mai generale unde poate fi definit conceptul de convergență, este definiția unui *spațiu complet*; în felul acesta, teorema de mai sus ne spune că \mathbb{R} este un spațiu complet. Demonstrație.

⇒ Fie $(x_n)_{n \in \mathbb{N}}$ un şir convergent la un element $x \in \mathbb{R}$. Atunci, conform definiției convergenței, pentru orice $\varepsilon > 0$, există $n_{\varepsilon} \in \mathbb{N}$ astfel încât

$$|x_n-x|<\varepsilon/2, \ \forall n\geq n_{\varepsilon}.$$

Aşadar, dacă $m, n \ge n_{\varepsilon}$, avem

$$|x_m - x_n| \le |x_m - x| + |x - x_n| < \varepsilon.$$

Acest lucru demonstrează că (x_n) este un şir Cauchy.

 \Leftarrow Să presupunem că $(x_n)_{n\in\mathbb{N}}$ este un şir Cauchy. Atunci $(x_n)_{n\in\mathbb{N}}$ este mărginit (demonstrația este asemănătoare celei a Propoziției 2.2: dacă $\varepsilon := 1$, atunci $|x_n| \le |x_{n_1}| + |x_{n_1} - x_n| < 1 + |x_{n_1}|$, $\forall n \ge n_1$). Conform teoremei Bolzano-Weierstrass, acesta are un şir convergent $(x_{n_k})_{k\in\mathbb{N}}$. Fie $x \in \mathbb{R}$ limita acestui subșir. Să arătăm acum că întregul şir $(x_n)_{n\in\mathbb{N}}$ converge la x.

Fie acum $\varepsilon > 0$. Deoarece $x_{n_k} \to x$, există $k_{\varepsilon} \in \mathbb{N}$ astfel încât

$$|x_{n_k} - x| < \varepsilon/2, \ \forall k \ge k_{\varepsilon}.$$

Pe de altă parte, cum (x_n) este Cauchy, există un $n_{\varepsilon} \in \mathbb{N}$ astfel încât

$$|x_m-x_n|<\varepsilon/2, \ \forall m,n\geq n_{\varepsilon}.$$

Fie $n_{\varepsilon}':=\max\{n_{\varepsilon},n_{k_{\varepsilon}}\}$ și k_{ε}' astfel încât $n_{k_{\varepsilon}'}\geq n_{\varepsilon}'$. Dacă $n\geq n_{k_{\varepsilon}'}$, atunci

$$|x_n-x| \leq |x_n-x_{n_{k'_{\varepsilon}}}| + |x_{n_{k'_{\varepsilon}}}-x| < \varepsilon,$$

deoarece $n \ge n_{k'_{\varepsilon}} \ge n_{\varepsilon}$ și $k'_{\varepsilon} \ge k_{\varepsilon}$.

3. Dreapta reală extinsă. Puncte de acumulare

În mod evident, nu orice submulțime a lui \mathbb{R} posedă o margine inferioară și superioară (de exemplu, chiar \mathbb{R}); o condiție necesară pentru acest lucru este ca mulțimea respectivă să fie mărginită. Dacă vrem să eliminăm această restricție, trebuie să adăugăm "margini" lui \mathbb{R} , una inferioară și una superioară.

Fie $+\infty$ şi $-\infty$ două obiecte distincte, nicunul element al lui \mathbb{R} ($-\infty$, $+\infty \notin \mathbb{R}$), pe care le vom numi "plus infini", respectiv "minus infinit". Notăm $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$, dreapta reală extinsă. Extindem de asemenea ordinea naturală \leq de la \mathbb{R} la $\overline{\mathbb{R}}$ în modul următor:

- $-\infty \le +\infty$;
- $-\infty \le x$, $x \le +\infty$, $\forall x \in \mathbb{R}$ (de fapt, inegalitățile sunt stricte, fiindcă elementele comparate sunt distincte).

Cu această ordine extinsă, fiecare submulțime a lui $\mathbb R$ admite margine superioară și inferioară. Astfel, pentru $A \subseteq \mathbb R$, avem:

- $\sup A = +\infty$ dacă şi numai dacă A nu este mărginită superior;
- $\inf A = -\infty$ dacă și numai dacă A nu este mărginită inferior;
- $\sup A = -\infty \Leftrightarrow \inf A = +\infty \Leftrightarrow A = \emptyset$.

Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Scriem $\lim_{n\to\infty}x_n=+\infty$ $(x_n\to+\infty)$ sau $\lim_{n\to\infty}x_n=-\infty$ $(x_n\to-\infty)$ dacă pentru orice $a\in\mathbb{R}$, există $n_a\in\mathbb{N}$ astfel încât:

$$x_n > a, \ \forall n \ge n_a,$$

respectiv

$$x_n < a, \ \forall n \geq n_a$$

Propoziția 3.1. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

- i) Dacă $(x_n)_{n\in\mathbb{N}}$ este crescător și nemărginit, atunci $\lim_{n\to\infty} x_n = +\infty$.
- ii) Dacă $(x_n)_{n\in\mathbb{N}}$ este descrescător și nemărginit, atunci $\lim_{n\to\infty} x_n = -\infty$.

Aşadar, orice şir monoton în \mathbb{R} are o limită în $\overline{\mathbb{R}}$.

În ceea ce privește operațiile uzuale, ele pot fi extinse parțial la $\overline{\mathbb{R}}$ astfel încât să obținem un rezultat analog Propoziției 2.4 privind operațiile cu șiruri (exercițiu: formulați și demonstrați un astfel de rezultat!). Mai precis, vom introduce:

- $(-\infty) + a = a + (-\infty) := -\infty$, pentru $-\infty \le a < +\infty$; $(+\infty) + a = a + (+\infty) := +\infty$, pentru $-\infty < a \le +\infty$;
- $(-\infty) \cdot a = a \cdot (-\infty) := -\infty$, $(+\infty) \cdot a = a \cdot (+\infty) := +\infty$, pentru $0 < a \le +\infty$;
- $(-\infty) \cdot a = a \cdot (-\infty) := +\infty, (+\infty) \cdot a = a \cdot (+\infty) := -\infty, \text{ pentru } -\infty \le a < 0;$
- $-(-\infty) := +\infty, -(+\infty) := -\infty, 1/(-\infty) = 1/(+\infty) = 0.$

Operațiile $(-\infty) + (+\infty)$, $(+\infty) + (-\infty)$, $(-\infty) - (+\infty)$, $(+\infty) - (-\infty)$, $0 \cdot (-\infty)$, $0 \cdot (+\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{\pm \infty}{0}$ (parțial) rămân nedefinite.

DEFINIȚIE. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

- a) Numim $x \in \mathbb{R}$ punct de acumulare al șirului $(x_n)_{n \in \mathbb{N}}$ dacă există un subșir $(x_{n_k})_{k \in \mathbb{N}}$ astfel încât $x_{n_k} \to x$.
- b) Mulțimea punctelor de acumulare a șirurilor $(x_n)_{n\in\mathbb{N}}$ va fi notată $L_{(x_n)}$.

O aplicare imediată a Lemei 2.7 arată că $L_{(x_n)} \neq \emptyset$ pentru orice şir $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$.

DEFINIȚIE. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

a) Numim *limită inferioară* a lui $(x_n)_{n\in\mathbb{N}}$ numărul (din $\overline{\mathbb{R}}$):

$$\liminf_{n\to\infty} x_n = \underline{\lim}_{n\to\infty} x_n := \inf L_{(x_n)}.$$

b) Numim *limită superioară* a lui $(x_n)_{n\in\mathbb{N}}$ numărul (din $\overline{\mathbb{R}}$):

$$\limsup_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n := \sup L_{(x_n)}.$$

Remarci. Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

Avem

$$\liminf_{n\to\infty} x_n \leqslant \limsup_{n\to\infty} x_n.$$

• Dacă $x\in\overline{\mathbb{R}}$, atunci $\lim_{n\to\infty}x_n=x$ dacă și numai dacă $\mathcal{L}_{(x_n)}=\{x\}$, adică

$$\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = x.$$

• Se poate arăta (vezi demonstrația Lemei 2.7) că există un subșir monoton al lui $(x_n)_{n\in\mathbb{N}}$ care are limita $\varliminf_{n\to\infty} x_n$ și există un subșir monoton al lui $(x_n)_{n\in\mathbb{N}}$ care are limita $\varlimsup_{n\to\infty} x_n$.

4. Şiruri de funcţii

Câteodată, termenii unui şir depind de un *parametru*, ca de exemplu şirul $\left(\left(1+\frac{x}{n}\right)^n\right)_{n\geq 1}$, unde $x\in\mathbb{R}$ (ştim deja că acest şir converge la e^x). Putem privi un astfel de şir ca un şir de funcții (în acest exemplu, funcțiile sunt $x\mapsto \left(1+\frac{x}{n}\right)^n$). În general, fie E o mulțime şi, pentru fiecare $n\in\mathbb{N}$, $f_n:E\to\mathbb{R}$ o funcție. Prin analogie cu şirurile numerice, spunem că funcția $F:\mathbb{N}\to\mathscr{F}(E;\mathbb{R})$ definită prin $F(n):=f_n$, este un şir de funcții. De asemenea, vom nota $(f_n)_{n\in\mathbb{N}}$ în loc de F. În cele mai multe aplicații, E va fi o submulțime a lui \mathbb{R} (sau, spre finalul cursului, a lui \mathbb{R}^m). Spre deosebire de sirurile de numere reale, vom avea mai multe tipuri de convergență:

Definiție. Fie $(f_n)_{n\in\mathbb{N}}$ un șir de funcții de la E la \mathbb{R} și $f:E\to\mathbb{R}$. Spunem că:

- a) $(f_n)_{n\in\mathbb{N}}$ converge punctual la f dacă $f_n(x)\to f(x)$, $\forall x\in E$ (notăm $f_n\stackrel{\mathrm{p}}{\to} f$ sau $f_n\stackrel{\mathrm{p}}{\to} f$, dacă vrem să specificăm mulțimea de convergență);
- b) $(f_n)_{n\in\mathbb{N}}$ converge uniform la f dacă

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon}, \ \forall x \in E, \ |f_n(x) - f(x)| < \varepsilon.$$

În acest caz notăm $f_n \stackrel{\mathrm{u}}{\to} f$ sau $f_n \stackrel{\mathrm{u}}{\to} f$.

Bineînțeles, dacă $(f_n)_{n\in\mathbb{N}}$ converge uniform la f, atunci va converge și punctual la f (exercițiu!). De asemenea, $f_n \stackrel{\mathrm{u}}{\to} f$ dacă și numai dacă $\sup_{x\in E} |f_n(x) - f(x)| \in \mathbb{R}$ pentru n suficient de mare și

$$\lim_{n\to\infty} \sup_{x\in E} |f_n(x) - f(x)| = 0. \tag{*}$$

Exemplu. Fie $f_n:[0,1]\to\mathbb{R}$ definite prin $f_n(x):=x^n$, pentru $n\geq 1$. Este clar că

$$\lim_{n\to\infty} x^n = \begin{cases} 0, & x \in [0,1); \\ 1, & x=1. \end{cases}$$

Aşadar, $(f_n)_{n \in \mathbb{N}}$ converge punctual la f, unde $f : [0,1] \to \mathbb{R}$ este definită ca $f(x) \coloneqq \begin{cases} 0, & x \in [0,1); \\ 1, & x = 1. \end{cases}$

Pe de altă parte,

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1)} x^n = 1,$$

deci $\sup_{x \in [0,1]} |f_n(x) - f(x)| \not\to 0$. Conform (*), acest lucru înseamnă că $(f_n)_{n \in \mathbb{N}}$ nu converge uniform la f.

Următoarele rezultate precizează câteva criterii de convergență uniformă ale șirurilor de funcții:

Propoziția 4.1. Fie $(f_n)_{n\in\mathbb{N}}$ un șir de funcții definite pe E cu valori reale și $f:E o\mathbb{R}$. Dacă există un șir de numere reale $(\alpha_n)_{n\in\mathbb{N}}$ care converge la 0 astfel încât

$$|f_n(x) - f(x)| \le \alpha_n, \ \forall n \in \mathbb{N}, \ \forall x \in E$$

atunci (f_n) converge uniform la f.

Teorema 4.2. Fie $(f_n)_{n\in\mathbb{N}}$ un şir de funcţii definite pe E cu valori reale. Atunci există o funcţie $f:E\to\mathbb{R}$ astfel încât $f_n \stackrel{\mathrm{u}}{\to} f$ dacă și numai dacă $(f_n)_{n \in \mathbb{N}}$ este un șir de funcții uniform Cauchy, adică for any there exists such that:

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall m, n \ge n_{\varepsilon}, \ \forall x \in E, \ |f_m(x) - f_n(x)| < \varepsilon.$$

După cum vom vedea mai târziu, convergența uniformă păstrează proprietăți precum mărginirea, continuitatea sau integrabilitatea.

5. Inegalități remarcabile

O primă inegalitate pe care o vom prezenta este așa-zisa inegalitate a mediilor.

Fie $n \in \mathbb{N}^*$ şi $x_1, \ldots, x_n \in \mathbb{R}$. Numerele

$$m_a := \frac{x_1 + \cdots + x_n}{n},$$

$$m_g := \sqrt[n]{x_1 \cdot \cdots \cdot x_n},$$

$$m_{\text{arm}} := \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}}$$

se numesc *mediile aritmetică*, *geometrică*, respectiv *armonică* a numerelor x_1, \ldots, x_n , ori de câte ori acestea sunt definite.

Propoziția 5.1 (inegalitatea mediilor). Fie $n \in \mathbb{N}^*$ și $x_1, \ldots, x_n \in \mathbb{R}_+^*$. Atunci

$$\frac{x_1+\cdots+x_n}{n} \geq \sqrt[n]{x_1\cdots x_n} \geq \frac{n}{\frac{1}{x_1}+\cdots+\frac{1}{x_n}}.$$

Fiecare dintre aceste relații devine egalitate dacă și numai dacă $x_1 = \cdots = x_n$.

Propoziția 5.2 (inegalitatea lui Hölder). Fie $n \in \mathbb{N}^*$, $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}_+$ şi $p, q \in \mathbb{R}_+^*$ 3 astfel încât $\frac{1}{p} + \frac{1}{q} = 1$. Atunci:

$$\sum_{i=1}^{n} a_i b_i \leq \left(\sum_{i=0}^{n} a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=0}^{n} b_i^q\right)^{\frac{1}{q}}.$$

Este usor de demonstrat (exercițiu!) o variantă a acestei inegalități, numită inegalitatea lui Hölder cu ponderi:

$$\sum_{i=1}^n \lambda_i a_i b_i \leq \left(\sum_{i=1}^n \lambda_i a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n \lambda_i b_i^q\right)^{\frac{1}{q}},$$

unde $n \in \mathbb{N}^*$, $\lambda_1, \ldots, \lambda_n$, a_1, \ldots, a_n , $b_1, \ldots, b_n \in \mathbb{R}_+$ și $p, q \in \mathbb{R}_+^*$ astfel încât $\frac{1}{p} + \frac{1}{q} = 1$. În cazul p = q = 2 obținem inegalitatea Cauchy-Buniakowski-Schwarz:

$$\sum_{i=1}^{n} a_i b_i \leq \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}}.$$

Egalitatea are loc dacă și numai dacă există $u, v \in \mathbb{R}$ cu $u^2 + v^2 \neq 0$, astfel încât $ua_i + vb_i = 0, \forall i \in \{1, 2, ...n\}$.

Propoziția 5.3 (inegalitatea lui Minkowski). Fie $n \in \mathbb{N}^*$, $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}_+^*$ şi $p \in \mathbb{R}_+^*$

i) Dacă $p \ge 1$, atunci

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}}.$$

³reamintim că \mathbb{R}_+ := [0, +∞) și \mathbb{R}_+^* := \mathbb{R}_+ \ {0} = (0, +∞)

ii) Dacă 0 , atunci

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} \ge \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}}.$$

În ambele cazuri, dacă $p \neq 1$, egalitatea are loc dacă n-uplele (a_0, a_1, \ldots, a_n) și (b_0, b_1, \ldots, b_n) sunt proporționale.

Propoziția 5.4 (inegalitatea lui Carleman). *Pentru orice* $n \in \mathbb{N}^*$ *și* $a_1, a_2, \ldots, a_n \in \mathbb{R}_+$ *are loc*

$$\sum_{k=1}^{n} (a_1 a_2 \dots a_k)^{\frac{1}{k}} \le e \sum_{k=1}^{n} a_k.$$

Egalitatea are loc dacă și numai dacă $a_1 = a_2 = \ldots = a_n = 0$.

BIBLIOGRAFIE SELECTIVĂ

- [1] D. Buşneag, D. Piciu, Lecții de algebră, Ed. Universitaria, Craiova, 2002.
- [2] C. G. Denlinger, Elements of Real Analysis, International Series in Mathematics, Jones and Bartlett Publishers International, London, 2012.
- [3] M. O. Drâmbe, Inegalități. Idei și metode., Ed. GIL, Zalău, 2003.
- [4] R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iași, 2005.
- [5] G. Păltineanu, Analiză matematică. Calcul diferențial, Editura AGIR, București, 2002.
- [6] M. Postolache, Analiză matematică (teorie și aplicații), Ed. Fair Partners, București, 2011.
- [7] A. Precupanu, Bazele analizei matematice, Editura Polirom, Iași, 1998.