Medical Image Classification using Support Vector Machine

Your Name¹ and Teacher Author¹

¹University of Fukui, 3-9-1 Bunkyo, Fukui, 910-0019, Japan

2024.11.30

摘要

This is Abstract chapter.

1 Introduce

支持向量机(SVM)是一种强大的监督式学习算法,主要用于分类和回归任务。它通过在特征空间中寻找最大间隔超平面来区分不同类别,有效提高模型的泛化能力。

2 Related Works

SVM很早应用于文本分类任务[1],如垃圾邮件检测和网页分类。在人脸识别、手写识别[2]和医学图像分析[3]等领域,SVM由于其高效的分类能力被广泛应用。支持向量机的开发和使用历史是机器学习领域中一个成功的案例,展示了理论研究如何转化为实际应用的工具。

3 Method

支持向量机(SVM)用于分类任务的目标是 找到一个决策边界,即一个可以最大化地分隔不同 类别数据点的超平面。超平面可以用以下等式表 达:

$$f(x) = \mathbf{W}^{\mathbb{T}}x + b$$

其中,f(x) 是模型的预测输出,输出一个实数值,表示样本 x_i 落在特定类别的置信度。 \mathbf{W} 是超平面的法向量,b 是偏置项,x 是输入的特征向量。

SVM通过解决一个优化问题来找到最优 件处理这251135份扫描数据。数据集中的受试者的**W**和b,该优化问题旨在最大化两个类别之间 按癌症类型进行标记:类型A代表腺癌,类型B代

的边缘。SVM 通常使用合页损失(Hinge Loss)来训练分类器,这是一种鼓励找到具有最大边缘的决策边界的方法。合页损失函数定义为:

$$L(y_i, f(x_i)) = \max(0, 1 - y_i f(x_i))$$

其中, $f(x_i) = \mathbf{W}^T x_i + b$ 是模型的预测输出,输出一个实数值,表示样本 x_i 落在特定类别的置信度。 y_i 是实际的类标签,它的取值为 $\{-1,1\}$ 。 SVM 的工作原理是构造一个超平面,该超平面不仅可以正确分类所有训练数据点,还能最大化类别间的间隔。本研究将构建一个最基本的支持向量机,使用合页损失优化该向量机来实现一个医学图像的分类器。

4 Experiments

本研究将SVM用于医学图像分类任务,旨在构建一个SVM,输入一个医学图像,判断该医学图像为PET图像还是CT图像。In this study, the Lung PET or CT scan data[4] were powered by the National Cancer Institute Cancer Imagine Program (CIP).该数据集涵盖了355名受试者的肺部扫描图像,共计251135张扫描图。这些数据主要收集自2009年至2011年间,包括了每位受试者的性别、年龄、体重、吸烟史及癌症诊断分类信息。数据集中的所有扫描数据均以DICOM格式存储。本研究利用Windows操作系统中的MicroDicom软件处理这251135份扫描数据。数据集中的受试者按癌症类型进行标记:类型A代表腺癌,类型B代

表小细胞癌,类型E代表大细胞癌,类型G代表鳞状细胞癌。在该数据集中,并非所有受试者的资料均包含PET扫描与CT扫描。因此,本研究筛选仅使用了被诊断为小细胞癌(B类)的38名受试者的扫描数据,这些数据包括PET扫描、多种CT扫描以及融合增强后的扫描图像。在这38名受试者中,仅有9人同时拥有PET扫描与CT扫描的数据,共计12930张扫描图像。通过精确筛选,将切片位置误差不超过0.2mm的PET/CT扫描定义为配对扫描数据,最终获取928张扫描图像。这464对PET/CT肺部扫描数据图像,供本研究使用。

表 1: Experimental Dataset Partition

Params count	128×128	$256{\times}256$	512×512
Channel=1	16385	65537	262145
Channel=2	32769	131073	524289
Channel=3	49153	196609	786433

表 2: Number of Parameters to be Optimized in SVM Decision Functions for Different Input Image Sizes

Params count	$128{\times}128$	$256{\times}256$	512×512
Channel=1	16385	65537	262145
Channel=2	32769	131073	524289
Channel=3	49153	196609	786433

表2中,展示了构建针对不同尺寸的输入图像,构建出的决策函数中需要优化的参数数量。我们将得到的464对PET/CT肺部扫描数据导出为256×256像素的RGB格式的PNG图像。因此,本文需要构建输入数据x为256×256×3=196608维度的列向量的决策函数,因此 \mathbf{W}^{T} 应为196608的行向量,和一个偏置项b。

5 Conclusion

This is Conclusion chapter.

参考文献

- [1] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines. *IEEE Intelligent Systems and their Applica*tions, 13(4):18–28, July 1998.
- [2] C. Bahlmann, B. Haasdonk, and H. Burkhardt. Online handwriting recognition with support vector machines - a kernel approach. In Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition, pages 49–54, Niagara on the Lake, Ont., Canada, 2002. IEEE Comput. Soc.
- [3] Neha Gautam, Avinash Singh, Kailash Kumar, Puneet Kumar Aggarwal, and Anupam. Investigation on performance analysis of support vector machine for classification of abnormal regions in medical image. *Journal of Ambient Intelligence and Humanized Computing*, February 2021.
- [4] Ping Li, Shuo Wang, Tang Li, Jingfeng Lu, Yunxin HuangFu, and Dongxue Wang. A Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis, 2020.