CVPR 2020

Unsupervised Model Personalization while Preserving Privacy and Scalability: An Open Problem

Matthias De Lange¹ Ales Leonardis²

Xu Jia² Gregory Slabaugh²

Sarah Parisot^{2,3} Tinne Tuytelaars¹

¹KU Leuven ²Huawei, Noah's Ark Lab

³Mila

{firstname.lastname}@kuleuven.be {firstname.lastname}@huawei.com

₩ HUAWEI WMila

Roadmap

- Model Personalization: What and how?
- **Novel Benchmarks**
- Adaptation on the server
- Adapting locally
- Conclusion

Model Personalization

- User-Adaptation on the server:
 - + High Capacity

Privacy

Scalability

- User-Adaptation local on user device:
 - Low capacity
 - + No privacy issues
 - + No scalability issues

Supervision

NO LABELS

De Lange, Matthias, et al. "Unsupervised Model Personalization while Preserving

Privacy and Scalability: An Open Problem.", CVPR (2020).

USER

KU LEUVEN

On the server: Locally:

- + High Capacity
- Privacy
- Scalability
- Unlabeled user-data

- Low Capacity
- + Privacy
- + Scalability
- Unlabeled user-data

On the server:

Locally:

- + High Capacity
- Privacy
- Scalability
- Unlabeled user-data

- Low Capacity
- + Privacy
- + Scalability
- Unlabeled user-data

One Framework

On the server:

Locally:

- + High Capacity
- Privacy
- Scalability
- Unlabeled user-data

- Low Capacity
- + Privacy
- + Scalability
- Unlabeled user-data

One Framework 2x adaptation

Dual User-Adaptation framework (DUA)

SERVER

USER

Roadmap

- Model Personalization: What and how?
- **Novel Benchmarks**
- Adaptation on the server
- Adapting locally
- Conclusion

Benchmarks

- 2 components
 - Users with different preferences (prior) → Validation/ Evaluation sets
 - Server with large dataset → Training set
- Task incremental continual learning, see [1]
 - Divide into sequence of tasks

Benchmarks: Numbers

5 tasks of 2 subsequent numbers

Benchmarks: CatPrior

Each user has 3 local category (scene) preferences per Task (Supercategory)

Benchmarks: TransPrior

10 users, Each user has 1 transformation

User 5

Spatters, elastic transformation, saturation, defocus blur, Gaussian noise, brightness, Gaussian blur, jpeg compression, contrast and impulse noise.

User 6

User 10

Roadmap

- Model Personalization: What and how?
- **Novel Benchmarks**
- Adaptation on the server
- Adapting locally
- Conclusion

Server adaptation in a

fashion?

Server adaptation in a

Scalable

Privacy Preserving

Unsupervised

fashion?

Continual Learning

- Continual learning major focus on Catastrophic Forgetting
- Many of its properties suit our setting:

Local scalability \rightarrow limit user resources to model learning multiple tasks

Distributed scalability \rightarrow limit server resources to many personalized models e.g. task incremental with IMM [2]

Continual Learning

Distributed scalability with IMM

- Learn task-specific models
- Get model importance weights
- Merge using importance weights

→ #models = #tasks

Dual User-Adaptation framework (DUA)

SERVER

USER

USER

SERVER

√ Scalable

USER

SERVER

- √ Scalable
- ✓ Privacy

USER

- ✓ Scalable
- ✓ Privacy

Supervision

NO LABELS

SERVER

USER

KU LEUVEN

Merging IMM-models

- Originally importance weights diagonal Fisher Information Matrix (FIM)
 - Loss-based → Requires labels
- Instead unsupervised MAS [3] importance weights, based on output function?

Data Setup	Model	MAS-IMM	FIM-IMM
CatPrior	AlexNet	67.39 (0.73)	67.42 (0.23)
	VGG11	76.77 (0.30)	76.29 (0.43)
TransPrior	AlexNet	46.51 (-0.14)	46.68 (-0.35)
	VGG11	53.49 (-0.17)	53.14 (0.07)
Numbers	MLP	84.36 (-0.40)	87.68 (0.07)

Remote Adaptive Continual Learning (RACL)

User-Adaptation

- RACL/IMM → User-specific/General model
- MAS/FIM → Unsupervised/supervised importance weights

Method	Alexnet		VG	G11	MLP	Adapt.	Unsup.
	CatPrior	TransPrior	CatPrior	TransPrior	Numbers		
MAS-RACL	66.97 (0.88)	47.04 (-0.27)	77.32 (0.77)	53.59 (-0.14)	84.01 (-0.22)	√	√
MAS-IMM	67.39 (0.73)	46.51 (-0.14)	76.77 (0.30)	53.49 (-0.17)	84.36 (-0.40)	×	√
FIM-RACL	67.20 (0.73)	47.32 (-0.51)	76.53 (0.68)	53.73 (-0.13)	87.83 (0.30)	✓	X
FIM-IMM	67.42 (0.23)	46.68 (-0.35)	76.29 (0.43)	53.14 (0.07)	87.68 (0.07)	X	×

Improvements insignificant → Why?

Analyzing Importance Weights

We found consistently:

- High correlations for different datasets on a same model
- Low correlation for same data on different models

Importance weights indicate parameter importance for the specific model, rather than the data they are estimated from!

Roadmap

- Model Personalization: What and how?
- **Novel Benchmarks**
- Adaptation on the server
- **Adapting locally**
- Conclusion

USER

- ✓ Scalable
- ✓ Privacy
- ✓ Unsupervised

(2) Local Adaptation

USER

SERVER

- ✓ Scalable
- ✓ Privacy
- ✓ Unsupervised
- √ 2 x Adaptation

ADAPTATION

Local Adaptation

- Adapt from general Server domain → User domain
- With limited user resources
 - Adapt Batch Normalization stats (AdaBN) → Unsupervised
 - Train few BN parameters (AdaBN-S) → Supervised

Method		CatPrior		TransPrior			
	\overline{BN}	AdaBN	AdaBN-S	\overline{BN}	AdaBN	AdaBN-S	
MAS-RACL	58.05 (2.74)	58.30 (2.34)	60.68 (2.67)	30.14 (2.69)	30.19 (2.50)	32.82 (3.25)	
FIM-RACL	59.58 (2.14)	59.71 (1.61)	62.43 (1.84)	32.15 (1.53)	32.04 (1.33)	34.80 (2.13)	
Task Experts	80.78 (5.61)	n/a	n/a	68.22 (11.35)	n/a	n/a	
MAS-IMM	55.55 (2.69)	55.89 (2.69)	58.87 (2.81)	29.36 (2.63)	29.15 (2.45)	31.73 (3.22)	
FIM-IMM	61.50 (-0.03)	61.35 (-0.46)	63.99 (-0.16)	32.08 (1.32)	31.86 (1.21)	34.48 (2.05)	
MAS	65.58 (3.96)	64.15 (4.04)	67.10 (4.66)	37.32 (2.64)	35.64 (2.88)	40.51 (2.69)	
EWC	66.20 (2.88)	64.03 (3.43)	67.54 (3.90)	37.16 (2.85)	35.44 (3.12)	40.05 (3.18)	
LWF	70.76 (0.73)	70.37 (0.43)	72.73 (1.03)	40.22 (0.43)	39.51 (0.12)	43.07 (0.52)	
Joint	75.75 (n/a)	72.13 (n/a)	76.39 (n/a)	46.53 (n/a)	41.18 (n/a)	48.50 (n/a)	

Local Adaptation

- Still open problem lightweight, unsupervised domain adaptation
- Relaxing unsupervised user training → Consistent improvements ≈ 3%

Method	CatPrior			TransPrior			
	BN	AdaBN	AdaBN-S	BN	AdaBN	AdaBN-S	
MAS-RACL	58.05 (2.74)	58.30 (2.34)	60.68 (2.67)	30.14 (2.69)	30.19 (2.50)	32.82 (3.25)	
FIM-RACL	59.58 (2.14)	59.71 (1.61)	62.43 (1.84)	32.15 (1.53)	32.04 (1.33)	34.80 (2.13)	
Task Experts	80.78 (5.61)	n/a	n/a	68.22 (11.35)	n/a	n/a	
MAS-IMM	55.55 (2.69)	55.89 (2.69)	58.87 (2.81)	29.36 (2.63)	29.15 (2.45)	31.73 (3.22)	
FIM-IMM	61.50 (-0.03)	61.35 (-0.46)	63.99 (-0.16)	32.08 (1.32)	31.86 (1.21)	34.48 (2.05)	
MAS	65.58 (3.96)	64.15 (4.04)	67.10 (4.66)	37.32 (2.64)	35.64 (2.88)	40.51 (2.69)	
EWC	66.20 (2.88)	64.03 (3.43)	67.54 (3.90)	37.16 (2.85)	35.44 (3.12)	40.05 (3.18)	
LWF	70.76 (0.73)	70.37 (0.43)	72.73 (1.03)	40.22 (0.43)	39.51 (0.12)	43.07 (0.52)	
Joint	75.75 (n/a)	72.13 (n/a)	76.39 (n/a)	46.53 (n/a)	41.18 (n/a)	48.50 (n/a)	

Roadmap

- Model Personalization: What and how?
- **Novel Benchmarks**
- Adaptation on the server
- Adapting locally
- Conclusion

Dual User-Adaptation

USER

SERVER

- √ Scalable
- ✓ Privacy
- ✓ Unsupervised

(2) Local Adaptation

USER

SERVER

- √ Scalable
- ✓ Privacy
- ✓ Unsupervised
- √ 2 x Adaptation

(2) Local Adaptation

USER

SERVER

- ✓ Scalable
- ✓ Privacy
- ✓ Unsupervised
- √ 2 x Adaptation

Open Problem:

- Data-dependent importance weights
- Domain Adaptation

Code https://github.com/mattdl/DUA

Questions? matthias.delange@kuleuven.be

