Sheet06

Computational Physics

1. Juni 2023

1 Solution 1

1. Zum Warmlaufen wird die Abbildung N=30 mal durchiteriert. Die Zahl wird relativ willkürlich gewählt, solle aber nicht zu niedrig sein.

Überlegungen für das Maximale r: Werden die möglichen Werte $f(x) \equiv x_{n+1}$ gegen x_n aufgetragen entstehen umgedrehte Parabeln, wobei die x-position des Maximums/Scheitelpunkts r-unabhägig ist:

$$f'(x) = r(1 - 2x) \stackrel{!}{=} 0 \tag{1}$$

$$\Rightarrow x_0 = 0.5 \tag{2}$$

$$\Rightarrow x_0 = 0.5$$
 (2)

$$\Rightarrow f(x_0) = r(x_0 - x_0^2) \stackrel{!}{=} 1$$
 (3)

$$\Rightarrow r = 4 \tag{4}$$

r ist also Mximal 4.

- b) Es wird grafisch herausgefunden, dass $r \leq 3$ sein darf.
- 2./3. r wird systematisch in Schritten $\Delta r=0.001$ vati
iert. Jeder r- Wert erzeugt jeweilige Fixpunkte, welche dann in r-Abhängigkeit in ein Diagramm aufgetragen werden. Es werden verschiedene Startwerte x_0 verwendet.

b)

Abbildung 1: Bifurkationsdiagramm der logistischen Abbildung.

Abbildung 2: Bifurkationsdiagramm der kubischen Abbildung.

Tabelle 1: Werte r_{∞} für die logistische Abbildung.

x_0	r_{∞}
0.1	3.853
0.3	3.632
0.5	3.889
0.7	3.632
0.9	3.732

Tabelle 2: Werte r_{∞} für die kubische Abbildung.

x_0	r_{∞}
0.1	2.421
0.3	2.102
0.5	2.457
0.7	2.346
0.9	2.323

2 Solution 2

a) In the second exercise we were asked to solve the Lorentz equations

$$\begin{split} \dot{X} &= -\sigma X + \sigma Y \\ \dot{Y} &= -XZ + rX - Y \\ \dot{Z} &= XY - bZ \end{split}$$

with the fourth order Runge-Kutta scheme. The implementation can be found in file "2.cpp". The parameters r, σ and b were given as:

$$r = 20 \text{ or } 28$$

 $\sigma = 10$
 $b = 8/3$

In the following plots one can clearly see that a change in the starting parameter such as r results in a different behaviour. One gives a stable orbit around an attractor, the other falls into the attractor. Other parameters show even different behaviour. However, the starting position does not influe the trajectory.

- b) After the implementation we were asked to visualize our solution. This should be done in three ways
 - 1. First as a projection of the trajectory on the xy-plane.

Abbildung 3: The projection of the trajectory onto the xy-plane with the starting parameter r=20.

Abbildung 4: The projection of the trajectory onto the xy-plane with the starting parameter r=28.

2. As a Poincare slice at Z=20 with the condition that $\dot{Z}<0$. We tested for this condition by subtracting the $\vec{f}(t_i)$ with $\vec{f}(t_{i+1})$. If the result is basically a linear interpolation between point $\vec{f}(t_i)$ and $\vec{f}(t_{i+1})$. We then plotted all points that forfill the two conditions onto a xy-plane.

Abbildung 5: The Poincare slice of the trajectory onto the xy-plane with the starting parameter r = 20.

Abbildung 6: The Poincare slice of the trajectory onto the xy-plane with the starting parameter r=28.

3. For the last part we plotted the whole xyz-trajectory onto a 3d-plot.

Abbildung 7: The 3d-Plot of the trajectory with the starting parameter r=20.

Abbildung 8: The 3d-Plot of the trajectory with the starting parameter r=28.