### RFID MODULE

## Mifare Reader / Writer

# **SL025B User Manual**



E CE

Version 1.4 **Nov 2012 StrongLink** 

## CONTENT

| 1. MAIN FEATURES                       | 3  |
|----------------------------------------|----|
| 2. PINNING INFORMATION                 | 4  |
| 3. BAUD RATE SETTING                   | 5  |
| 4. COMMUNICATION PROTOCOL              | 5  |
| 4-1. COMMUNICATION SETTING             | 5  |
| 4-2. COMMUNICATION FORMAT              | 5  |
| 4-3. COMMAND OVERVIEW                  | 6  |
| 4-4. COMMAND LIST                      | 7  |
| 4-4-1. Select Mifare card              | 7  |
| 4-4-2. Login to a sector               | 7  |
| 4-4-3. Download Key into SL025         | 7  |
| 4-4-4. Login sector via stored key     | 8  |
| 4-4-5. Read a data block               | 8  |
| 4-4-6. Write a data block              | 8  |
| 4-4-7. Read a value block              | 8  |
| 4-4-8. Initialize a value block        | 9  |
| 4-4-9. Write master key (key A)        | 9  |
| 4-4-10. Increment value                | 9  |
| 4-4-11. Decrement value                | 10 |
| 4-4-12. Copy value                     | 10 |
| 4-4-13. Read a data page (UltraLight)  | 10 |
| 4-4-14. Write a data Page (UltraLight) |    |
| 4-4-15. Manage Red Led                 |    |
| 4-4-16 Get firmware version            | 11 |

#### 1. MAIN FEATURES



- Tags supported: Mifare 1k, Mifare 4k, Mifare UltraLight and NFC NTAG203
- Auto-detecting tag, Built-in antenna
- RS232 interface, baud rate 9,600 ~ 115,200 bps
- $4.4 \sim 12.0$ VDC power supply
- Work current less than 80mA
- Operating distance: Up to 70mm, depending on tag
- Storage temperature:  $-40 \, ^{\circ}\text{C} \sim +85 \, ^{\circ}\text{C}$
- Operating temperature:  $-25 \,^{\circ}\text{C} \sim +70 \,^{\circ}\text{C}$
- Dimension:  $86 \times 55$  mm
- Two LEDs, green led is auto light when tag in detection range, red led is controlled by host
- The OUT pin at low level indicates tag in detective range, and high level indicating tag out

#### 2. PINNING INFORMATION





Connector: Würth Elektronik 653 105 131 822

| PIN | SYMBOL | TYPE   | DESCRIPTION                                                                                         |
|-----|--------|--------|-----------------------------------------------------------------------------------------------------|
| 1   | TagSta | Output | Tag detect signal, RS232 level Logic 0 indicating tag in detection range Logic 1 indicating tag out |
| 2   | TXD    | Output | Serial output port                                                                                  |
| 3   | RXD    | Input  | Serial input port                                                                                   |
| 4   | VCC    | PWR    | Power Supply                                                                                        |
| 5   | GND    | PWR    | Ground                                                                                              |

#### 3. BAUD RATE SETTING

Two 820 ohm resistances R6 & R7 are used for setting baud rate as follows sheet

|           | R6  | R7   | Baud rate bps |
|-----------|-----|------|---------------|
| Assembled | no  | no   | 9,600         |
|           | yes | no   | 19,200        |
|           | no  | yes  | 57,600        |
|           |     | **** | 115,200       |
|           | yes | yes  | ( default )   |

### 4. COMMUNICATION PROTOCOL

#### 4-1. Communication Setting

The communication protocol is byte oriented. Both sending and receiving bytes are in hexadecimal format. The communication parameters are as follows

Baud rate: 9,600 ~ 115,200 bps

8 bits Data: Stop: 1 bit Parity: None Flow control: None

#### **4-2.** Communication Format

| l | Preamble  | Len                                                            | Command                                           | Data | Checksum |  |  |  |
|---|-----------|----------------------------------------------------------------|---------------------------------------------------|------|----------|--|--|--|
|   | Preamble: | 1 byte                                                         | e equal to 0xB                                    | BA   |          |  |  |  |
|   | Len:      | 1 byte indicating the number of bytes from Command to Checksum |                                                   |      |          |  |  |  |
|   | Command:  | 1 byte Command code, see Table 3                               |                                                   |      |          |  |  |  |
|   | Data:     | Variable length depends on the command type                    |                                                   |      |          |  |  |  |
|   | Checksum: | 1 byte                                                         | 1 byte XOR of all the bytes from Preamble to Data |      |          |  |  |  |

| SL025 to Host: |                                                                |              |          |         |                |    |  |
|----------------|----------------------------------------------------------------|--------------|----------|---------|----------------|----|--|
| Preamble       | Len                                                            | Command      | Status   | Data    | Checksum       |    |  |
| Preamble:      | 1 byte equal to 0xBD                                           |              |          |         |                |    |  |
| Len:           | 1 byte indicating the number of bytes from Command to Checksum |              |          |         |                |    |  |
| Command:       | 1 byte Command code, see Table 3                               |              |          |         |                |    |  |
| Status:        | 1 byte Command status, see Table 4                             |              |          |         |                |    |  |
| Data:          | Variable length depends on the command type.                   |              |          |         |                |    |  |
| Checksum:      | 1 byte                                                         | XOR of all t | he bytes | from Pa | reamble to Dat | ta |  |

### **4-3. Command Overview**

#### Table 3

| Command | Description                              |
|---------|------------------------------------------|
| 0x01    | Select Mifare card                       |
| 0x02    | Login to a sector                        |
| 0x03    | Read a data block                        |
| 0x04    | Write a data block                       |
| 0x05    | Read a value block                       |
| 0x06    | Initialize a value block                 |
| 0x07    | Write master key (key A)                 |
| 0x08    | Increment value                          |
| 0x09    | Decrement value                          |
| 0x0A    | Copy value                               |
| 0x10    | Read a data page (UltraLight & NTAG203)  |
| 0x11    | Write a data page (UltraLight & NTAG203) |
| 0x12    | Download Key                             |
| 0x13    | Login sector via stored Key              |
| 0x40    | Manage Red Led                           |
| 0xF0    | Get firmware version                     |

### **Status Overview**

#### Table 4

| Status | Description                |
|--------|----------------------------|
| 0x00   | Operation succeed          |
| 0x01   | No tag                     |
| 0x02   | Login succeed              |
| 0x03   | Login fail                 |
| 0x04   | Read fail                  |
| 0x05   | Write fail                 |
| 0x06   | Unable to read after write |
| 0x08   | Address overflow           |
| 0x09   | Download Key fail          |
| 0x0D   | Not authenticate           |
| 0x0E   | Not a value block          |
| 0xF0   | Checksum error             |
| 0xF1   | Command code error         |

#### 4-4. Command List

#### 4-4-1. Select Mifare card

| 0xBA L | en 0x01 | Checksum |
|--------|---------|----------|
|--------|---------|----------|

**Response:** 

0xBD Len 0x01 Status UID Type Checksum

Status: 0x00: Operation succeed

0x01: No tag

0xF0: Checksum error

UID: The uniquely serial number of Mifare card,

Type: 0x01: Mifare 1k, 4 byte UID

0x02: Mifare 1k, 7 byte UID [1]

0x03: Mifare UltraLight or NATG203<sup>[2]</sup>, 7 byte UID

0x04: Mifare 4k, 4 byte UID 0x05: Mifare 4k, 7 byte UID [1] 0x06: Mifare DesFire, 7 byte UID

0x0A: Other

4-4-2. Login to a sector

|   |      | 0   |      |        |      |     |          |
|---|------|-----|------|--------|------|-----|----------|
| ļ | 0xBA | Len | 0x02 | Sector | Type | Key | Checksum |

Sector: Sector need to login, 0x00 - 0x27

Type: Key type (0xAA: authenticate with KeyA, 0xBB: authenticate with KeyB)

Key: Authenticate key, 6 bytes

**Response:** 

| 0xBD | Len | 0x02 | Status | Checksum |
|------|-----|------|--------|----------|

Status: 0x02: Login succeed

0x01: No tag 0x03: Login fail

0x08: Address overflow 0xF0: Checksum error

4-4-3. Download Key into SL025

| 0xBA Len 0x12 | Sector | Type | Key | Checksum |
|---------------|--------|------|-----|----------|
|---------------|--------|------|-----|----------|

Sector: 0x00 - 0x27

Type: Key type (0xAA: KeyA, 0xBB: KeyB)

Key: 6 bytes, stored into SL025

**Response:** 

| 0xBD    | Len   | 0x12              | Status | Checksum |  |  |
|---------|-------|-------------------|--------|----------|--|--|
| Status: | 0x00: | Operation succeed |        |          |  |  |

0x08: Address overflow 0x09: Download fail 0xF0: Checksum error

4-4-4. Login sector via stored key

0xBA Len 0x13 Sector Type Checksum

Sector: Sector need to login, 0x00 - 0x27Type: Key type (0xAA: KeyA, 0xBB: KeyB)

Response:

0xBD Len 0x13 Status Checksum

Status: 0x02: Login succeed 0x03: Login fail

0x08: Address overflow 0xF0: Checksum error

#### 4-4-5. Read a data block

0xBA Len 0x03 Block Checksum

Block: The absolute address of block to be read, 1 byte

**Response:** 

 0xBD
 Len
 0x03
 Status
 Data
 Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x0D: Not authenticate 0xF0: Checksum error

Data: Block data returned if operation succeeds, 16 bytes.

#### 4-4-6. Write a data block

| 0xBA | Len | 0x04 | Block | Data | Checksum |
|------|-----|------|-------|------|----------|

Block: The absolute address of block to be written, 1 byte.

Data: The data to write, 16 bytes.

**Response:** 

0xBD Len 0x04 Status Data Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0xF0: Checksum error

Data: Block data written if operation succeeds, 16 bytes.

#### 4-4-7. Read a value block

| 0xBA   Len   0x05   Block   Checksum |
|--------------------------------------|
|--------------------------------------|

Block: The absolute address of block to be read, 1 byte.

**Response:** 

| 0xBD | Len | 0x05 | Status | Value | Checksum |
|------|-----|------|--------|-------|----------|

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x0D: Not authenticate 0x0E: Not a value block 0xF0: Checksum error

Value: Value returned if the operation succeeds, 4 bytes.

#### 4-4-8. Initialize a value block

| 0xBA | Len | 0x06  | Block | Value | Checksum  |
|------|-----|-------|-------|-------|-----------|
| 0    |     | 01100 |       | ,     | C110 0111 |

Block: The absolute address of block to be initialized, 1 byte.

Value: The value to be written, 4 bytes.

0xF0: Checksum error

**Response:** 

| 0xBD    | Len   | 0x06       | Status                     | Value | Checksum |  |  |  |
|---------|-------|------------|----------------------------|-------|----------|--|--|--|
| Status: | 0x00: | Operat     | Operation succeed          |       |          |  |  |  |
|         | 0x01: | No tag     | <del>,</del>               |       |          |  |  |  |
|         | 0x05: | Write fail |                            |       |          |  |  |  |
|         | 0x06: | Unable     | Unable to read after write |       |          |  |  |  |
|         | 0x0D: | Not au     | thenticate                 | 2     |          |  |  |  |

Value: Value written if the operation succeeds, 4 bytes.

#### 4-4-9. Write master key (key A)

| 0xBA | Len | 0x07 | Sector | Key | Checksum |
|------|-----|------|--------|-----|----------|
|      |     |      |        |     |          |

Sector: The sector number to be written, 0x00 - 0x27

Key: Authentication key, 6 bytes

**Response:** 

| 0xBD    | Len   | 0x07             | Status            | Key | Checksum |  |  |  |
|---------|-------|------------------|-------------------|-----|----------|--|--|--|
| Status: | 0x00: | Opera            | Operation succeed |     |          |  |  |  |
|         | 0x01: | No tag           | 5                 |     |          |  |  |  |
|         | 0x05: | Write            | Write fail        |     |          |  |  |  |
|         | 0x08: | Addre            | Address overflow  |     |          |  |  |  |
|         | 0x0D: | Not authenticate |                   |     |          |  |  |  |
|         | 0xF0: | Check            | sum error         |     |          |  |  |  |

Key: Authentication key written if the operation succeeds, 6 bytes.

Attention: Be sure KeyB is readable, otherwise KeyB will be change to 000000000000 after this command.

#### 4-4-10. Increment value

| 0xBA | Len | 0x08 | Block | Value | Checksum |
|------|-----|------|-------|-------|----------|
|      |     | 0    |       |       | 0 0 0,   |

Block: The absolute address of block to be increased, 1 byte.

Value: The value to be increased by, 4 bytes.

**Response:** 

| 0xBD | Len | 0x08 | Status | Value | Checksum |  |
|------|-----|------|--------|-------|----------|--|

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block 0xF0: Checksum error

Value: The value after increment if the operation succeeds, 4 bytes

#### 4-4-11. Decrement value

| 0xBA | Len | 0x09 | Block | Value | Checksum |
|------|-----|------|-------|-------|----------|
|------|-----|------|-------|-------|----------|

Block: The absolute address of block to be decreased, 1 byte

Value: The value to be decreased by, 4 bytes

**Response:** 

| 0xBD | Len | 0x09 | Status | Value | Checksum |
|------|-----|------|--------|-------|----------|

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block 0xF0: Checksum error

Value: The value after decrement if the operation succeeds, 4 bytes

#### **4-4-12.** Copy value

| 0xBA | Len | 0x0A | Source | Destination | Checksum |
|------|-----|------|--------|-------------|----------|
|------|-----|------|--------|-------------|----------|

Source: The source block copy from, 1 byte Destination: The destination copy to, 1 byte

Attention: The source and destination must in the same sector

#### **Response:**

| 0xBD    | Len   | 0x0A                       | Status            | Value | Checksum |  |
|---------|-------|----------------------------|-------------------|-------|----------|--|
| Status: | 0x00: | Operat                     | Operation succeed |       |          |  |
|         | 0x01: | No tag                     |                   |       |          |  |
|         | 0x05: | Write fail                 |                   |       |          |  |
|         | 0x06: | Unable to read after write |                   |       |          |  |
|         | 0x0D: | Not authenticate           |                   |       |          |  |

0x0E: Not a value block (Source)

0xF0: Checksum error

Value: The value after copy if the operation succeeds, 4 bytes

#### 4-4-13. Read a data page (UltraLight & NTAG203)

| 0xBA Len 0x10 | Page | Checksum |
|---------------|------|----------|
|---------------|------|----------|

Page: The page number to be read, 0x00 - 0x0F

#### **Response:**

| 0xBD | Len | 0x10 | Status | Data | Checksum |
|------|-----|------|--------|------|----------|
|      |     | _    | _      | _    |          |

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x08: Address overflow 0xF0: Checksum error

Data: Block data returned if operation succeeds, 4 bytes.

#### 4-4-14. Write a data Page (UltraLight & NTAG203)

| 0xBA   Len   0x11   Page   Data   Checksum |
|--------------------------------------------|
|--------------------------------------------|

Page: The page number to be written, 0x00 - 0x0F

Data: The data to write, 4 bytes.

#### **Response:**

| 0xBD | Len | 0x11 | Status | Data | Checksum |
|------|-----|------|--------|------|----------|

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x08: Address overflow 0xF0: Checksum error

Data: Page data written if operation succeeds, 4 bytes.

#### 4-4-15. Manage Red Led

| i i ita iyidinage itaa zaa |     |      |      |          |  |  |  |
|----------------------------|-----|------|------|----------|--|--|--|
| 0xBA                       | Len | 0x40 | Code | Checksum |  |  |  |

Code: 0 command red led turn off, other red led turn on, 1 byte

#### **Return:**

| 0xBD | Len | 0x40 | Status | Checksum |  |  |  |
|------|-----|------|--------|----------|--|--|--|

Status: 0x00: Operation succeed 0xF0: Checksum error

#### 4-4-16. Get firmware version

#### Response: [3]

| 0xBD | Len | 0xF0 | Status | Data | Checksum |
|------|-----|------|--------|------|----------|

Status: 0x00: Operation success

0xF0: Checksum error

Data: firmware version.

#### Remark

 $^{[1]}\,$  In order to support 7 byte UID Mifare class, the firmware of SL025 has been updated to Ver1.2 in Mar 2011.

And older firmware version (such as Ver1.0, 1.1) only supports 4 byte UID. Please refer to NXP <u>Customer Letter UID</u> for detailed information of 4 byte & 7 byte UID of Mifare products.

To support NATG203, the firmware of SL025 has been updated to Ver1.6 in May 2012. The older firmware version only supports reading/writing data page address less than 16.

[3] One sample of SL025 response

|       | 1        |     | 1       |        |                    |          |
|-------|----------|-----|---------|--------|--------------------|----------|
|       | Preamble | Len | Command | Status | Data               | Checksum |
|       |          |     |         |        | (Firmware version) |          |
| HEX   | BD       | 0C  | F0      | 00     | 53 4C 30 32 35 2D  | 69       |
|       |          |     |         |        | 312E 32            |          |
| ASCII |          |     |         |        | "SL025-1.2"        |          |