Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis

Chrysostomos Kalyvas¹, Loukia M Spineli²

Hannover Medical School

¹Department of Health Technology Assessment Statistics, Merck Sharp & Dohme, Brussels, Belgium

²Midwifery Research and Education Unit, Hannover Medical School, Hannover, Germany

What is already known

- Missing outcome data (MOD) are inevitable in systematic reviews.
- Reviewers tend to handle MOD as missing at random (MAR).
- Available MAR methods:
 - exclusion and ignorance of MOD;
 - exclusion but accountability of MOD;
 - imputation of observed risks;
 - pattern-mixture model.

Exclusion and ignorance of MOD

	Completers	MOD			Completers
Active	00000000000000000000000000000000000000	800 888		Active	0000008 0000008
Placebo	88880 88880	88888 88899	Í	Placebo	88889

Truth	Risk	Risk Ratio
Active	13/20	2.60
Placebo	5/20	(1.14, 5.93)

Exclusion	Risk	Risk Ratio
Active	11/14	2.62
Placebo	3/10	(0.98, 7.01)

Exclusion but accountability of MOD (1)

Gamble C, Hollis S. Uncertainty method improved on bestworst case analysis in a binary meta-analysis. J Clin Epidemiol. 2005;58(6):579-88.

Exclusion but accountability of MOD (2)

within-trial:

$$se(logOR) = \frac{U - L}{2 \cdot 1.96}$$

Imputation of observed risks

Truth	Risk	%MOD	Risk Ratio
Active	13/20	30%	2.60
Placebo	5/20	50%	(1.14, 5.93)

Observed	to impute	
$\frac{11}{14} \cdot (1 - 0.3)$	$\frac{11}{14} \cdot 0.3$	
$\frac{3}{10} \cdot (1 - 0.5)$	$\frac{3}{10} \cdot 0.5$	

- Same RR with Exclusion (and ignorance of MOD)...
- but more precise for maintaining the randomised sample

Imputation	Risk	Risk Ratio
Active	11/14	2.62
Placebo	3/10	(1.29, 5.31)

Pattern-mixture model

$$p = p^o \cdot (1 - q) + p^m \cdot q$$

Informative Missingness Odds Ratio

Under pattern-mixture model

$$IMOR = \frac{p^m/(1-p^m)}{p^o/(1-p^o)}$$

'Odds of an event being missing to odds of an event being observed'

$$log(IMOR) = \delta_{ik} \sim N(\Delta_{ik}, \sigma_{ik}^2)$$
 arm k of trial i

Δ	interpretation
$\Delta > 0$	more likely that a missing case to be an event
$\Delta < 0$	less likely that a missing case to be an event
$\Delta = 0$	Missing at random (on average)

Pattern-mixture model with IMOR

- Risk ratio (RR) same with Exclusion.
- Variance of RR

Variance due to sampling error

Variance arising from IMOR | MAR

IMOR	Risk	Risk Ratio
Active	11/14	2.62
Placebo	3/10	(0.78, 8.76)

Bring all methods together

ignores uncertainty due to MOD
 accounts uncertainty due to MOD

Aims of the study

Empirical study

- Agreement of the methods regarding network meta-analysis
 (NMA) parameters:
 - Exclude and ignore MOD
 - Exclude but account MOD
 - Impute observed risks

vs. IMOR under MAR

Simulation study

- Performance of methods in terms of:
 - Bias (NMA log odds ratio, τ²)
 - Coverage (NMA log odds ratio)

Empirical study: Methods used

- Database: 29 networks from various health fields.
- MOD distinction: low, moderate and large w/o balanced arms.
- Bland-Altman scatterplots to assess agreement.
- Random-effects NMA model based on electrical network theory.
- All analyses were ran using the netmeta R package.

Posterior standard deviation of NMA log OR

Simulation study: Methods used

Scenarios based on 29 networks

- PBO-ctrl studies have less patients
- Baseline risk higher in OLD than PBO
 - IMOR = 2 for NEW and OLD
 - IMOR = 0.5 for PBO

Comparison Moderate %MOD		Large %MOD			
NEW	PBO				
OLD	PBO	U(0.05,0.10)	U(0.11,0.20)	U(0.21,0.30)	U(0.31,0.40)
NEW	OLD				

Veroniki AA, Mavridis D, Higgins JPT, Salanti G. Characteristics of a loop of evidence that affect detection and estimation of inconsistency: a simulation study. BMC Med Res Methodol. 2014;14:106.

Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20:3875–89.

Mean bias for log OR (new vs. old): substantial τ^2

Mean bias for τ²: typical loop

95% coverage for log OR (new vs. old): substantial τ^2

Take home message

- X Methods that ignore uncertainty due to MOD are simple, but suboptimal overall.
- Methods that account for uncertainty due to MOD should be preferred.
 - ? 'Exclusion with accountability' shares same shortcoming with 'Exclusion but ignorance'.
 - IMOR is computationally intensive but adjusts results for MOD while maintaining randomised sample.
 - P. Interpret IMOR with caution when: large MOD, substantial τ² and/or inconsistency.

Brussels

https://theculturetrip.com/europe/belgium/articles/10-things-to-know-when-traveling-in-brussels-belgium/

Hannover

https://www.h-hotels.com/_Resources/Persistent/3020895c2c2ffbdf673e16bcd5b3a0022fa24ab5/hannover-rathaus-2-1985x1116-600x337.jpg

Thank you for your attention!