PATENT ABSTRACTS OF JAPAN

(11) Publication number:

05-129473

(43) Date of publication of application: 25.05.1993

(51)Int.CI.

H01L 23/28 H01L 23/12

H01L 23/50

(21)Application number: 03-289882

(71)Applicant: SONY CORP

(22)Date of filing:

06.11.1991

(72)Inventor: FUKAZAWA HIROYUKI

(54) RESIN-SEALED SURFACE-MOUNTING SEMICONDUCTOR DEVICE

(57)Abstract:

PURPOSE: To reduce the size and thickness of the title semiconductor device while a mechanism which prevents the deformation of external electrodes or fluctuation of the electrodes at the machining time is secured by using the rear sections of inner leads connected to internal wiring as external electrodes at the time of directly mounting the semiconductor device.

CONSTITUTION: A semiconductor chip 1 is placed on the die pad 2 of a lead frame. After electrically connecting the chip 1 to inner leads 6, the rear of which become external electrodes 8, through bonding wires 3, the upper part is sealed with a resin. Similarly, the chip 1 is electrically connected to the leads through bumps 4. In other words, the rear of the electrically connected inner leads 6 are used as the electrical connecting sections 8 of the semiconductor device to the outside. Therefore, the size of the semiconductor device can be reduced to nearly the same size as that of the chip 1. In addition, the thickness of the semiconductor device can also be reduced.

LEGAL STATUS

[Date of request for examination]

28.10.1998

[Date of sending the examiner's decision of rejection]

30.11.1999

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the surface mount type semiconductor device by which the resin seal was carried out.

[0002]

[Description of the Prior Art] It connects electrically to the interior derivation lead 6 of direct by the connection electrode called bump 4 as it connects electrically to the internal derivation lead 6 by the bonding wire 3 as a semiconductor chip 1 is carried in the die pad 2 of the leadframe made with the metal (0.1–0.3mm of board thickness [For example, being 42%nickel/Fe alloy.]) as a former and surface mount type semiconductor device shown to drawing 10 in the cross section of the example and it is shown in drawing 10 A, or shown in drawing 10 B. And after closing these with the sealing agents 5, such as an epoxy resin, the external derivation lead 7 and the external electrode 8 are bent and formed in a necessary configuration.

[0003] And as shown to <u>drawing 11</u> A in a side elevation, as shown in a soldering paste 13 or <u>drawing 11</u> B, adhesives 14 are applied to the pattern of a substrate 12 at the substrate 12, alignment of the surface mount type semiconductor device is carried out to this, and it is put on it. When a soldering paste 13 is used like <u>drawing 11</u> A, this substrate 12 is heated by hot blast or infrared radiation, and is soldered. On the other hand, when adhesives 14 are used like <u>drawing 11</u> B, it solders by being immersed in a solder tub.

[0004] However, the surface mount type semiconductor device mentioned above Since bending of the external derivation lead 7 and the external electrode 8 is carried out on the outside of the sealing agent 5 shown in drawing 10 A and B, According to the force from the variation of this process tolerance, and the outside after fabrication, as shown in the perspective diagram of drawing 12 A As shown in the variation of the position of the height direction of the inferior surface of tongue of the external electrode 8 to the base of the sealing agent 5 of a semiconductor device, and the plan of <u>drawing 12</u> B, it is easy to produce deformation of the external derivation lead 7 to a longitudinal direction and the external electrode 8. These become a cause and a suitable surface mount becomes impossible the time of the above–mentioned substrate mounting. Or the technical problem of it becoming impossible to flow electrically occurred.

[0005] Then, in order to cancel this technical problem, like the semiconductor device currently indicated by JP,3-3354,A shown in <u>drawing 13</u>, in the external electrode 8, it is the same field as the base of a sealing agent 5, and the configuration which drew in parallel with the base is proposed.

[0006]

[Problem(s) to be Solved by the Invention] by the way, it miniaturizes and electronic equipment thin-shape-izes in recent years — having — ****** — the semiconductor device used is also required as achieving a miniaturization and thin shape-ization as much as possible, and it has a size of the semiconductor chip by which the size of a sealing agent is carried in the interior closely now, and the thin shape semiconductor device 1.0mm or less has been put in practical use also for thickness However, in such small and the thin shape semiconductor device, the technical problem that a size, and about [becoming large far from a semiconductor chip size] and thickness will become thick occurred in a configuration which is indicated by JP,3-3354,A shown in abovementioned drawing 13. while this invention maintains the mechanism in which deformation of an external

electrode or the variation at the time of processing is prevented -- moreover -- a miniaturization -- a thin shape -- it aims at offering the resin-seal surface mount type semiconductor device [-izing / a semiconductor device] [0007]

[Means for Solving the Problem] In order to solve a technical problem which was described previously, this invention used as the electrical installation portion, i.e., external electrode, with the exterior of a semiconductor device the rear face of an internal derivation lead electrically connected with an internal derivation lead by a semiconductor chip, a bonding wire, or the bump using the leadframe which has a die pad in the same flat surface.

[8000]

[Function] Therefore, since the resin-seal surface mount type semiconductor device of this invention used as the electrical installation portion, i.e., external electrode, with the exterior of a semiconductor device the rear face of an internal derivation lead electrically connected with an internal derivation lead by a semiconductor chip, a bonding wire, or the bump using the leadframe which has a die pad in the same flat surface, it can make the size of a semiconductor device small to the almost same size as the size of a semiconductor chip. Moreover, thickness of a semiconductor device can be made thin.

[0009]

[Example] Hereafter, the resin-seal surface mount type semiconductor device of the example of this invention is explained in full detail with a drawing. The cross section of the 1st example is shown in <u>drawing 1</u>. First, <u>drawing 1</u> A lays a semiconductor chip 1 in the die pad 2 of a leadframe with a thickness of 0.1–0.3mm, connects electrically the internal derivation lead 6 with which a semiconductor chip 1 and a rear face serve as the external electrode 8 by the bonding wire 3, and has structure which carried out the resin seal of the upper part. <u>Drawing 1</u> B shows the example with which it is made to connect electrically a semiconductor chip 1 and the internal derivation lead 6 by the bump 4 similarly. Although there is an advantage that the electrical installation by the bump 4 can make still smaller the size of the structure top sealing agent 5 from the electrical installation method by the bonding wire 3, since the thickness of the resin of the undersurface of a semiconductor chip 1 also becomes thin so that the board thickness of a leadframe is thin, it becomes easy to generate faults, such as a void at the time of a resin seal (air bubbles).

[0010] The creation method of the semiconductor device of the 1st example is briefly explained using the cross section of drawing 2 and drawing 3. First, the cross section of drawing 2 explains the 1st creation method. As shown in drawing 2 A, the internal derivation lead 6 connects electrically the semiconductor chip 1 and the internal derivation lead 6 with a die pad 2 by the bonding wire 3 after laying a semiconductor chip 1 using the leadframe in a coplanar by the same method as usual. Next, the sealing agents 5, such as an epoxy resin, are used and closed. And it is made the configuration which shaves off the rear-face resin section of a semiconductor device, and is shown in drawing 2 B. Then, in order to improve the soldering nature at the time of performing substrate mounting, it becomes like drawing 2 C by giving sheathing plating 9 of solder etc. to the portion which the external electrode 8 exposed. In this way, if the excessive portion of the outside of the external derivation lead 7 of the semiconductor device which was able to be done is cut using metal mold etc., the semiconductor device of this example shown in drawing 2 D will be obtained. Below, the cross section of drawing 3 explains the 2nd creation method. After laying a semiconductor chip 1 and connecting electrically like the 1st creation method, it becomes the configuration shown in drawing 3 A by performing a resin seal with the metal mold which has a cavity (******) only in the upper surface. Then, the semiconductor device of this example shown in drawing 3 B is obtained like the 1st creation method by performing cutting of the sheathing plating 9 and the external derivation lead 7. Although pretreatment called de-burring by high-pressure water etc. is needed before giving sheathing plating 9 since the barricade at the time of a resin seal etc. may have adhered to the portion which is going to give sheathing plating 9 in the case of this creation method, the work of shaving off a stiff closure resin like the 1st creation method is omissible.

[0011] The cross section of the 2nd example is shown in <u>drawing 4</u>. Although not structurally divided ******** with the 1st three operations, the thickness of the die pad 2 which lays a semiconductor chip, and the external electrode 8 consists of very thin (about 10-30 micrometers) conductors, such as copper foil. The structure of this example becomes possible [making thin hundreds of micrometers thickness of a semiconductor device

compared with the 1st example]. Moreover, since the rear face of a semiconductor chip 1 has structure exposed outside through direct or a metal part, there is also an advantage of being easy to miss the heat generated from a semiconductor device, after substrate mounting at the time of use. The creation method of the semiconductor device of this 2nd example is briefly explained using the cross section of drawing 5. Although a leadframe is used in the 1st example mentioned above Laminate thin conductors, such as copper foil, on the films 10, such as a polyimide which the hole opened partially as shown in drawing 5 A by this example, and a die pad 2, the internal derivation lead 6, and the external wiring 11 are formed. this conductor -- a semiconductor chip 1 is laid in the with **** film 10 like the above-mentioned method, and it connects with it electrically, and if a resin seal and sheathing plating 9 are given, it will become the structure which shows the cross section in drawing 5 B Furthermore, if a film 10 is exfoliated giving heating etc., it will become the structure of this example as shown in drawing 5 C. In addition, in case a film 10 is exfoliated on the outside of the external electrode 8 used for this example, it is good to make thin beforehand external wiring 11 connected to an external electrode as shown in the plan of drawing 5 D so that a portion with an excessive conductor may cut simultaneously. [0012] The cross section of the 3rd example is shown in drawing 6 . In the 3rd example, it has the films 10, such as a polyimide, under the die pad 2 which lays a semiconductor chip 1. Although there are not an example mentioned above and a changing place out of it, since only the part of the thickness of the external electrode 8 has a film 10 in a high place to the height of the base of the external electrode 8 used as a part for the connection at the time of substrate mounting in the case of this example, there is an advantage that there is a cleaning effect of the flux after substrate mounting. Moreover, since there is no portion electrically connected with the rear face of a semiconductor chip 1 in the center of a semiconductor device, there is also imitation or an advantage that there is nothing, about which short fault generated at the time of substrate mounting. In addition, although drawing where a die pad 2 exists has explained by this example, on the occasion of operation, it is not not necessarily the need. The creation method of the semiconductor device of the 3rd example is briefly explained using the cross section of drawing 7. In the 3rd example, thin conductors, such as copper foil, are

thin beforehand external wiring 11 of the outside of the external electrode 8 like the 2nd example, so that it may be easy to cut in case a film 10 is exfoliated.

[0013] Furthermore, as the 4th and 5th examples, as a cross section is shown in drawing 8, it is created more easily than the example which has also mentioned above the structure which has arranged the external electrode 8 doubly. In the case of the structure of this example, although the size of a semiconductor device becomes somewhat large from the above-mentioned example, since the interval of external electrode 8 comrades is made widely, there is an advantage of being hard to generate the bridge (inter-electrode short-circuit) by the solder at the time of substrate mounting.

laminated on the films 10, such as a polyimide which the hole opened partially as shown in <u>drawing 7</u> A, a die pad 2, the internal derivation lead 6, and the external wiring 11 are formed, and it becomes the structure which shows the cross section in it at <u>drawing 7</u> B when a semiconductor chip 1 is laid in the film 10 to which this conductor was attached like the above-mentioned method, it connects with it electrically and a resin seal and sheathing plating 9 are given to Furthermore, if the film 10 of the semiconductor device circumference is exfoliated giving heating etc., it will become the structure of this example as shown in <u>drawing 7</u> C. In addition, it is good to make

[0014] Moreover, it sets in the 3rd example shown in the cross section of drawing 6 as the 6th example. Since the field which minded the rear-face section of a semiconductor chip 1 or resin material other than sealing agent 5 by removing the film 10 in the center section of the completed semiconductor device as shown in a cross section is made still more highly than the undersurface of the external electrode 8 There is an advantage that the cleaning effect at the time of foundation mounting which the 3rd example described by the way goes up more. [0015]

[Effect of the Invention] Since the rear face of the node of an internal derivation lead was used as the external electrode of a semiconductor device, with the semiconductor device of this invention, the semiconductor device of the size near the size of a semiconductor chip can be offered, so that clearly from the above explanation. Moreover, the semiconductor device of the thickness around about 0.5mm can be offered also about thickness.

[Translation done.]

RESIN-SEALED SURFACE-MOUNTING SEMICONDUCTOR **DEVICE**

Patent Number:

JP5129473

Publication date:

1993-05-25

Inventor(s):

FUKAZAWA HIROYUKI

Applicant(s):

SONY CORP

Requested Patent: III JP5129473

Application Number: JP19910289882 19911106

Priority Number(s):

IPC Classification:

H01L23/28; H01L23/12; H01L23/50

EC Classification:

Equivalents:

Abstract

PURPOSE: To reduce the size and thickness of the title semiconductor device while a mechanism which prevents the deformation of external electrodes or fluctuation of the electrodes at the machining time is secured by using the rear sections of inner leads connected to internal wiring as external electrodes at the time of directly mounting the semiconductor device.

CONSTITUTION: A semiconductor chip 1 is placed on the die pad 2 of a lead frame. After electrically connecting the chip 1 to inner leads 6, the rear of which become external electrodes 8, through bonding wires 3, the upper part is sealed with a resin. Similarly, the chip 1 is electrically connected to the leads through bumps 4. In other words, the rear of the electrically connected inner leads 6 are used as the electrical connecting sections 8 of the semiconductor device to the outside. Therefore, the size of the semiconductor device can be reduced to nearly the same size as that of the chip 1. in addition, the thickness of the semiconductor device can also be reduced.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-129473

(43)公開日 平成5年(1993)5月25日

技術表示與所		
	に続く	
,		
37番35号ソニー		

(54) 【発明の名称】 樹脂封止表面実装型半導体装置

(57)【変約】

【目的】 小型化、特型化可能な半導体装置を提供する。

【様成】 内部第出リード 8 とダイパッド 2 が同一平面 にあるリードフレームを用い、半導体チップ 1 とポンディングワイヤ 8 あるいはパンプ 4 により電気的に接続されている内部等出リード 6 の裏面を、半導体装置の外部 との電気的接続部分として機能する外部電極 8 とする。

(2)

特別平5-129473

I

【特許請求の範囲】

【請求項1】 半導体衆子を搭載し、その衆子表面の電 極を内部等出リードに配線し、その配線部および前記半 導体架子部を樹脂封止してなる樹脂封止表面実装型半導 体装置において、

前距内部配線の接続される内部導出リードの裏面部が、 直接半等体装置を実装する際の外部電極となることを特 徴とする樹脂封止衷面実験型半導体展置。

【請求項2】 半導体業子の裏面が直接あるいは封止樹 ていることを特徴とする酵求項1配載の樹脂封止表面実 鼓型半導体鼓價。

【請求項3】 半導体素子の裏面部あるいは封止樹脂以 外の樹脂材料を介した面が、外部電極の面よりも一段高 く形成されていることを特徴とする請求項1記載の樹脂 封止表面夹装型半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は樹脂封止された表面実 装型半導体装置に関するものである。

[0 0 0 2]

【従来の技術】従来、表面実装型半導体装置は図10に その一例の断面図で示すように、金属(例えば、42% Ni/Fe合金で、板原O. 1~0. 8mm) でできた リードフレームのダイバッド2に半導体チップ1を搭載 し、図10Aに示すように、ポンディングワイヤ3によ り内部等出リード6に俄気的に接続するか、あるいは図 10日に示すように、パンプ4と呼ばれる接続電極によ って直接内部導出リード6に電気的に接続する。そし て、これらをエポキシ樹脂などの封止材5で封止した 30 後、外部導出リード7および外部電極8を所要の形状に 曲げ形成している。

【0008】そして、図11Aに側面図で示すように、 基板12のパターンに半田ペースト13を、あるいは図 11Bに示すように、基板12に接着剤14を整布して おき、これに表面実装型半導体装置を位置合わせして载 せる。この基板12を、図11Aのように半田ペースト 13を使用した場合には、熱風あるいは赤外線などによ り加熱し半田付けする。一方、関118のように接着剤 14を使用した場合には、半田楠に浸漬して半田付けを 40

【0004】しかしながら、前述した表面実装塑半導体 装置は、図10A、Bに示す對止材5の外側において、 外部導出リード7および外部電極8を曲げ加工している ため、この加工精度のパラツキおよび成形後の外部から の力により、図12Aの斜視図に示すように、半導体装 置の封止材 5 の底面に対する外部電極 8 の下面の高さ方 向の位置のパラツキおよび図12Bの平面図に示すよう に、横方向への外部導出リード7 および外部電極8 の変 時、好適な表面実勢ができなくなる。または、電気的に 導通できなくなるという課題が発生した。

【0005】そこで、この課題を解消するため、図13 に示した特開平3-9354号公報に開示されている半 導体装置のように、外部電極8を封止材5の底面と同一 面で、かつ底面と並行に導出した形状が提案されてい **3.**

[0006]

【発明が解決しようとする課題】ところで、近年、電子 脂以外の樹脂材料を介して、半導体装置の外側に露出し 10 機器が小型化、釋型化されるにしたっがって、使用され る半導体装置もできるだけ小型化、 導型化をはかるよう に要求され、現在では封止材の大きさが内部に搭載され ている半導体チップの大きさと近くなってきており、ま た、序みも1. 0mm以下の得型半導体装置が実用化さ れてきている。しかし、このような小型、帯型半等体装 畳において、前述の図13に示す特関平3-3354号 公報に記載されているような形状では、大きさも半導体 チップサイズよりはるかに大きくなってしまうばかり か、厚さも厚くなってしまうという課題が発生した。こ 20 の発明は、外部電極の変形あるいは加工時のパラツキを 防止する機構を保ちながら、しかも、小型化、溶型化可 能な樹脂對止表面実験型半導体機能を提供することを目 的とする。

[0007]

【課題を解決するための手段】先に述べたような課題を 解決するために、この発明は、内部導出リードとダイバ ッドが同一平面にあるリードフレームを用い、半等体チ ップとポンディングワイヤあるいはパンプにより電気的 に接続される内部導出リードの裏面を、半導体装留の外 部との電気的接続部分すなわち外部電極とした。

[8000]

【作用】したがってこの発明の樹脂封止表面忠璧型半萬 体装置は、内部導出リードとダイパッドが同一平面にあ るリードフレームを用い、半導体チップとポンディング リイヤあるいはパンプにより電気的に接続される内部等 出リードの裏面を半導体装置の外部との電気的接続部分 すなわち外部電極としたので、半導体装置の大きさを半 等体チャプの大きさとほぼ同じ大きさまで小さくするこ とができる。また、半導体装置の厚みを導くすることが できる。

[0000]

【実施例】以下、この発明の実施例の樹脂對止表面実装 型半導体装置を関面とともに許述する。 図1に第1の実 施研の断面図を示す。まず、図1Aは、厚さ0、1~ 0. 8mmのリードフレームのダイバッド2に半導体チ ップ1を載置し、半導体チップ1と裏面が外部電極8と なる内部導出リード6とをポンディングワイヤ3で電気 的に接続させて、その上部を樹脂封止した構造となって いる。図1Bは、阿様に半導体チップ1と内部専出リー 形が生じやすい。これらが原因となって輸述の基板実験 60 ド6とをパンプ4で電気的に癌糖をさせている例を示

(8)

特別平5-129473

す。ポンディングワイヤ3による電気的接続法よりパンプ4による電気的接続の方が、その構造上対止材5の大ささをさらに小さくできるという利点があるが、リードフレームの板厚が薄いほど半導体チップ1の下面の鞍崩の厚みも薄くなるため、樹脂封止時のポイド(気泡)などの不具合が発生しやすくなる。

3

【0010】第1の実施例の半導体装置の作成方法を図 2、図3の断面図を用いて簡単に説明する。まず、第1 の作成方法を図2の断面図で説明する。図2Aに示すよ うに、従来と同様の方法でダイバッド2と内部導出リー ド6が同一平面上にあるリードフレームを用い、半導体 チップ1を戦闘後その半導体チップ1と内部導出リード 6とをポンディングワイヤ3により電気的に接続を行 う。つざに、エポキシ樹脂などの封止材5を用いて對止 する。そして、半導体装置の裏面樹脂部を削り取り図2 Bに示す形状にする。その後、基板実装を行う際の単田 付け性をよくするために、外部電板8の露出した部分に 半田などの外装メッキ9を施すことにより図2Cのよう になる。こうしてできた半導体装置の外部導出リード? の外側の余分な部分を会型などを用いて切断すると図2 Dに示す本実施例の半導体裝置が得られる。つぎに、第 2の作成方法を図3の断面図で説明する。第1の作成方 法と同様に、半導体テップ1を載置して電気的に接続し た後、上面にのみキャビティ(爆り混み)のある金型で 樹窟封止を行うことにより、図3Aに示す形状となる。 この後、第1の作成方法と同様に、外装メッキ9および 外部導出リード7の切断を行うことにより、図3Bに示 す本実施例の半導体装置が得られる。この作成方法の場 合、樹脂封止時のパリなどが外銭メッキ9を施そうとし ている部分に付着していることがあるため、外装メッキ 9を施す前に高圧水などによるパリ取りという前処理が 必要となるが、第1の作成方法のような硬い封止樹脂を 削り取るという作業は省略できる。

【0011】図4に第2の実施例の断面図を示す。構造 的には第1の実施3例とほどんど変わらないが、半導体 チップを載置するダイパッド2および外部電極8の厚み が銅箔などの非常に薄い(約10~30 μm) 導体で構 成されている。本実施例の構造は第1の実施例に比べ半 導体装置の厚みを数百μπも薄くすることが可能とな る。また、半導体チップ1の裏面が、直接あるいは食属 部分を介して外部に露出している符遣となっているの で、基板実装後、使用時に半導体装置から発生する熱を 逃がしやすいという利点もある。この第2の実施例の半 等体装置の作成方法を図5の断面図を用いて簡単に説明 する。前述した第1の実施例では、リードフレームを使 用するが、本実施例では図5Aに示すような部分的に欠 の囲いたポリイミドなどのフィルム10に網絡などの等 い等体をラミネートしてダイパッド2、内部導出リード 6および外部配線11を形成し、この導体付いたフィル ム10に、前述の方法と同様に半導体チップ1 転置し て電気的に接続を行い、樹脂対止および外装メッキ9を施すと図6Bにその断面図を示す構造になる。さらに、加熱などを施しながらフィルム10を剥離すると図5Cに示すような本実施例の構造となる。なお、本実施例に用いられる外部電極8の外側に、フィルム10を剥離する際に等体の余分な部分が同時に切断してしまうように、図5Dの平面図に示したように外部電極に接続される外部配線11をあらかじめ細くしておくとよい。

【0012】図6に第3の実施例の断面図を示す。第3 の実施例では半導体チップ1を執資するダイバッド2の 下にポリイミドなどのフィルム10を有する。その外に は前述してきた実施例と変わるところはないが、本実施 例の場合、基板実装時の接続部分となる外部電極Bの底 面の高さに対し、外部電極8の厚さの分だけ高いところ にフィルム10があるため、基板実装後のフラックスの 洗浄効果があるという利点がある。また、半準体装置の 中央に半導体チップ1の裏面と電気的に接続される部分 がないので、基板実装時に発生するショートなどの不具 合をまねかないという利点もある。なお、本実施例では ダイバッド2が存在する図で説明してきたが、実施に際 しては必ずしも必要とは限らない。第3の実施例の半導 体装置の作成方法を図7の断面図を用いて簡単に説明す る。第3の実施例では、図7Aに示すような部分的に穴 の限いたポリイミドなどのフィルム10に網箱などの薄 い媒体をラミネートしてダイバッド 2、内部導出リード 8 および外部配線11を形成し、この導体の付いたフィ ルム10に、前述の方法と同様に半導体チップ1を軟優 して電気的に投続を行い、樹脂封止および外装メッキ9 を施すと図7Bにその新面を示す構造になる。さらに、 加熱などを施しながら半導体装置周辺のフィルム10を 剥離すると図7Cに示すような本実施例の構造となる。 なお、第2の実施例と同様に外部電極8の外側の外部配 終11を、フィルム10を剥離する際、切断しやすいよ うにあらかじめ細くしておくとよい。

【0018】さらに、第4および第5の実施例として、 図8に断面図を示すように、外部電極8を2里に配置した構造も、前述してきた実施例より容易に作成される。 本実施例の構造の場合、前述の実施例より半導体装置の 大きさは少し大きくなるが、外部電極8同士の間隔が広 くできるために基板突接時の半田によるブリッジ(電極 間ショート)が発生しにくいという利点がある。

【0014】また、第8の実施例として図8の断面図に 示した第3の実施例において、完成した半導体装置の中 央部にあるフィルム10を除去することにより、図9に 断面図に示すように、半端体チップ1の裏面部あるいは 對止材5以外の樹脂材料を介した面が、外部電極8の下 面よりさらに高くできるので、第3の実施例のところで 述べた地盤実装時の洗浄効果がよりあがるという利点が ある。

50 [0015]

(4)

特開平5-129473

【発明の効果】以上の説明から明らかなように、この発明の半導体装置では内部導出リードの接続点の裏面を半導体装置の外部電極としたので、半導体チップの大きさに近い寸法の半導体装置を提供できる。また、厚みに関しても、約0.5mm前後の厚みの半導体装置を提供できる。

5

【図面の簡単な説明】

【閉1】この発明の第1の実施例の断面関。

【図2】第1の実施例の半等体裝置の第1の作成方法を 説明する前面図。

【図3】第1の実施例の半等体整例の第2の作成方法を 説明する断面図。

【図4】この発明の第2の実施例の断面図。

【図5】第2の実施例の半等体装置の作成方法を説明する新面図。

【図6】この発明の第8の失施例の斯面図。

【関7】第3の実施例の半導体装置の作成方法を説明する斯面図。

【図8】この発明の第4 および第5の実施例の断面図で、Aは第4の実施例、Bは第5の実施例である。

【図9】この発明の第6の実施例の新面図。

【図10】従来例の表面実装型半導体装置の新面図。

【図11】 従来例の表面実装型半導体装置を基板に実装 した状態の断面図。

6

【図12】従来例の表面実裁型半導体数置の外部導出リードの変形状態を示した説明図で、Aは斜視図、Bは平図図である。

【図13】従来例の没面実装型半等体装置の断面図である。

【符号の説明】

10 1 半導体チップ

2 ダイバッド

3 ポンディングワイヤ

4 パンプ

5 封止材

6 内部専出リード

7 外部等出リード

8 外部電極

9 外差メッキ

10 フィルム

20 11 外部配線

-418-

(5)

特別平5-129473

フロントページの統合

В

(51) Int. Cl. 5 HO1L 28/50 識別配号

庁内被理番号

ΡI

技術表示做所

R 9272-4M