NAME:	SOLUTIONS_	UNumber:	Computer Logic Design
Duration: 75 Minutes		CDA 3201	October 1, 2015
Closed Book, Notes, HW		Exam 1	R. Kasturi
	One sheet of Let	ter size paper written on front	and back is allowed.
SHOW A	LL WORK TO GET	PARTIAL CREDIT. MAKE I	REASONABLLE ASSUMPTIONS.

I (One point each) Answer True or False. Unless otherwise noted, all numbers are in decimal.

- _T_ a. An *Essential Prime Implicant* must include at least one element of the on-set that is not covered by any other implicant.
- _T_ b. For any given Boolean Expression, there is one and only one Truth Table.
- _T_ c. The Boolean expression $A \cdot B + \overline{A} \cdot \overline{B}$ represents the output of a two-input Exclusive OR gate.
- _F_ d. The sum of a negative number in 8 bit sign-magnitude form and the same number in its 8 bit two's complement form results in all 8 bits becoming 0.
- _F_ f. A NOR gate cannot be implemented using only NAND gates.
- _T_ e. In a 6-bit Twos-Complement representation, $-27 = (100101)_2$.

$$_{\mathrm{T}}$$
_g. $(\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}) = \overline{(\overline{\mathbf{A} + \mathbf{C}})(\overline{\mathbf{B} + \mathbf{D}})}$.

- _T_ h. The sign-magnitude representation of a positive number N and the corresponding negative number (-N) differ only in one bit.
- _T_ i. A P-Channel MOS transistor forms a conducting channel when its gate is negative with respect to its source.
- _F_ j. Carry-lookahead circuit increases the carry propagation time of the corresponding ripple carry adder.

NAME:	UNumber:	Computer Logic Design
Duration: 75 Minutes	Exam 1 CDA 3201	October 1, 2015

II (10 points) Use the Quine-McCluskey Method to find the minimum sum of products form for the Boolean expression $F(A, B, C, D) = \Sigma m(0,2,8,10,11,13,14,15) + \Sigma d(3,4)$

QUINE-McCLUSKEY IMPLICATION TABLE

Minterms	Column 1	Column 2	Column 3
0	00001	00-01	×
2	00101	-000	-0-0
4	01001	001-	
8	100001	10-0	-01-
3	1010	COLIN	
11	10/1/	101-	1-1-
13	1110	1-11	
l5	11 11	$\frac{1}{11} \frac{1}{1} \frac{1}{1}$	·

PRIME IMPLICANT CHART

	Minterms Prime Implicants	0	2	8	10	11	13	14	15	
0,2,8,10	0_0	¥ —	- X		×	r same	<u>-</u>			EPI
2,3,10,11			*		*	*			~~~	NOT NEEDGD
	. 1				×	×-		- 89 -	*	EPI
10,11,14,15	0_00	*								NOT NEEDED
13,15							€		*	FPT

FINAL BOOLEAN EXPRESSION: $F = \overline{B} \overline{D} + AC + ABD$

III Consider a function F(A, B, C, D, E) as described by the K-Map below. The input variables are available in both True and Complement form.

- a. (3 points) Find the minimized Product of Sums expression of F.
- b. (2 points) Implement the PoS using only NOR gates.
- c. (3 points) Find the minimized Sum of Products expression of F.
- d. (2 points) Implement the SoP using only NAND gates.

NAME:	UNumber:	Computer Logic Design
Duration: 75 Minutes	Exam 1 CDA 3201	October 1, 2015

IV (a) Draw lines connecting items on list A to their corresponding items with same value in list B. Subscript TC indicates *Twos-Complement* representation. Numbers without subscripts are in Decimal notation.

(b) (5 points) Show the arrangement of CMOS transistors to realize the function $\overline{(A.B) + C + D}$

