

STRUTTURE RELAZIONALI, GRAFI E ORDINAMENTI

(parte 1)

Stefania Bandini

REPETITA IUVANT

Quest locuzione significa "le cose ripetute aiutano": una cosa, a forza di essere ripetuta, viene appresa da chi ascolta.

RELAZIONI BINARIE

Una relazione binaria R tra due insiemi S e T è un insieme di coppie ordinate $\langle x,y \rangle$ con $x \in S$ e $y \in T$: $R \subseteq S \times T$).

Rappresentazione di una relazione (I)

Le relazioni possono essere rappresentate di diverse forme:

Rappresentazione per elencazione descrivere l'insieme di coppie ordinate

$$R = \{\langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 6 \rangle\}$$

Rappresentazione sagittale collegare con delle frecce gli elementi che verificano la relazione

Rappresentazione di una relazione (II)

Rappresentazione tramite diagramma cartesiano se S

e T sono sottoinsiemi di \mathbb{R} , rappresentare coppie ordinate come coordinate sul piano cartesiano

Rappresentazione di una relazione (III)

Rappresentazione tramite tabella con colonne gli elementi dell'insieme di arrivo, e righe l'insieme di partenza

S	1	2	3	4	5	6
0						
1		×				
2				×		
3						×
4						

Una Matrice Booleana se le crocette si scrivono con un 1 e le celle vuote con 0

Relazioni in un insieme

Una relazione $R \subseteq S \times S$ è detta **relazione in** S

In una relazione in S, la rappresentazione sagittale collassa ad un **grafo**. Usiamo lo stesso insieme per l'origine e la destinazione di ogni freccia

Formalmente, un grafo è costituito da **nodi** collegati tra loro da frecce (o **spigoli**)

Grafo

Se $\langle x, y \rangle \in R$, disegniamo uno spigolo da x a y

coppie	grafo	
$\langle x, y \rangle \in R$	× y	
$\langle x, x \rangle \in R$	x y	
$\langle x,y\rangle\in R$ e $\langle y,x\rangle\in R$	$X \longrightarrow Y$	

Proprietà fondamentali delle relazioni

Data una relazione binaria R su un insieme (dominio) S diciamo che:

R è transitiva se $\langle x,y\rangle\in R$ e $\langle y,z\rangle\in R$ comporta che $\langle x,z\rangle\in R$.

Riflessività

- "x ha la stessa età di y" è riflessiva
- "x è figlio di y" non è riflessiva

Visualizzazione

Ogni nodo ha un cappio

Tabella

	1	2	3	4
1	×	×		
2		×		
3			×	
4		×		×

Ogni casella della diagonale principale ha una crocetta

Diagramma cartesiano

Ogni punto sulla bisettrice è contrassegnato

Irriflessività

- "x è figlio di y" è irriflessiva
- "x è divisore di y" non è irriflessiva

Nessun nodo ha un cappio

Tabella

	1	2	3	4
1		×		×
2				×
2				
4		×		

Nessuna casella della diagonale ha una crocetta

Diagramma cartesiano

Nessun punto sulla bisettrice è contrassegnato

Riflessività ed irriflessività

Ci sono relazioni che non sono né riflessive né irriflessive

- Non è riflessiva perchè $\langle 2, 2 \rangle \notin R$
- Non è irriflessiva perchè $\langle 1, 1 \rangle \in R$

Simmetria

- "x è fratello o sorella di y" è simmetrica
- "x è figlio di y" non è simmetrica

Per ogni freccia c'è anche l'inverso

Tabella

	1	2	3	4
1	×	×		
3	×			×
- 1			×	
4		×		

La tabella è simmetrica rispetto alla diagonale

Diagramma cartesiano

Il diagramma è simmetrico rispetto alla bisettrice

Antisimmetria

Per ogni $x, y \in S$, se $x \neq y$ e xRy, allora $\langle y, x \rangle \notin R$

- "x è figlio di y" è antisimmetrica
- "x è fratello di y" non è antisimmetrica

Per ogni freccia, non c'è l'inverso (tranne i cappi)

 Tabella

 1
 2
 3
 4

 1
 ×
 ×

 2

 ×

 3
 ×
 ×

 4
 ×

Per ogni crocetta, la cella opposta sulla diagonale è libera

Diagramma cartesiano

Per ogni punto, l'opposto sulla bisettrice è libero

UNIVERSITA ODLE ITBEDA

FONDAMENTI DELL'INFORMATICA

Simmetria ed antisimmetria

Ci sono relazioni che non sono né simmetriche né antisimmetriche

- Non è simmetrica perchè $\langle 1,2\rangle \in R$ ma $\langle 2,1\rangle \notin R$
- Non è antisimmetrica perchè $\langle 2, 3 \rangle \in R$ e $\langle 3, 2 \rangle \in R$

Transitività

- "x e y sono dallo steso anno" è transitiva
- "x è figlio di y" non è transitiva

In questo caso, l'unica rappresentazione utile è tramite grafo.

 Ogni nodo che è raggiungibile è direttamente collegato

2. Se un nodo può raggiungere se steso allora ha un cappio

Esempio: Relazioni transitive

Esempio: Relazioni non transitive

Proprietà

Una relazione $R \subseteq S \times S$ in S è

connessa se ogni due elementi sono collegati. Per ogni $x,y \in S$, se $x \neq y$ allora $\langle x,y \rangle \in R$ oppure $\langle y,x \rangle \in R$

relazione di equivalenza se è riflessiva, transitiva e simmetrica

A DEGLI STUDII MILANO BICOCCA

FONDAMENTI DELL'INFORMATICA

Esempio

Sia $A = \{marco, luca, giorgio, eva, anna\}$ e $AmicoDi \subseteq A \times A$ la relazione definita estensionalmente per

$$AmicoDi = \{ \langle luca, giorgio \rangle, \langle giorgio, luca \rangle, \langle luca, eva \rangle, \\ \langle eva, luca \rangle, \langle eva, anna \rangle, \langle anna, eva \rangle \}$$

Rappresentare AmicoDi con una matrice Booleana ed indicare le sue proprietà

AmicoDi è una relazione di equivalenza?

La relazione è simmetrica ma non riflessiva né transitiva

Proprietà delle relazioni

$$R \subseteq S \times S$$
 è:

riflessiva se $\langle x, x \rangle \in R$ per ogni $x \in S$ **irriflessiva** se $\langle x, x \rangle \notin R$ per ogni $x \in S$ **simmetrica** se $\langle x, y \rangle \in R$ qualora $\langle y, x \rangle \in R$ **asimmetrica** se $\langle x, y \rangle \in R$ implica che $\langle y, x \rangle \notin R$ antisimmetrica se $\langle x, y \rangle \in R$ e $\langle y, x \rangle \in R$ implica x = y**transitiva** se $\langle x, y \rangle \in R$ e $\langle y, z \rangle \in R$ implica che $\langle x, z \rangle \in R$

UNIVERSITA' ONE THE STATE OF T

FONDAMENTI DELL'INFORMATICA

Esempio 1. • Proprietà di relazioni

- 1. La relazione "essere sposati con" sull'insieme U degli esseri umani non è riflessiva, è simmetrica, non è transitiva.
- 2. La relazione "essere figlio di" sull'insieme U degli esseri umani non è riflessiva, non è simmetrica (è asimmetrica), non è transitiva.
- 3. La relazione "essere avo di" sull'insieme U degli esseri umani non è riflessiva, non è simmetrica (è asimmetrica), è transitiva.
- 4. $R = \{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x \neq y \}$, R è la relazione di diseguaglianza ed è irriflessiva, non è transitiva, è simmetrica.
- 5. $R = \emptyset \subseteq S \times S$ è la relazione vuota sull'insieme S. R non è riflessiva, poiché $\langle x, x \rangle \notin R$, per tutti gli elementi di S.

ADECI STUDIO BIRDO CONTRA CONT

FONDAMENTI DELL'INFORMATICA

Proposizione 1. Siano R ed R' relazioni su S,

- 1. se R è riflessiva anche R^{-1} è riflessiva;
- 2. R è riflessiva sse \overline{R} è irriflessiva;
- 3. se R ed R' sono riflessive anche $R \cup R'$ e $R \cap R'$ sono riflessive.

Indichiamo con \Im_S la *relazione di uguaglianza* o *identità* su un generico insieme S:

$$\Im_S = \{ \langle x, x \rangle | x \in S \}$$

 \Im_S è riflessiva e il suo complemento $\overline{\Im_S}$ è irriflessiva.

Proprietà di relazioni

Proposizione 2. Siano R ed R' relazioni su S,

- 1. R è simmetrica sse $R = R^{-1}$;
- 2. se R è simmetrica anche R^{-1} e \overline{R} sono simmetriche;
- 3. $R \ \hat{e} \ antisimmetrica sse <math>R \cap R^{-1} \subseteq \Im_S$;
- 4. $R \ \hat{e} \ asimmetrica \ sse \ R \cap R^{-1} = \emptyset;$
- 5. se R ed R' sono simmetriche anche $R \cup R'$ e $R \cap R'$ sono simmetriche.

Proposizione 3. Siano R ed R' relazioni su S, se R ed R' sono transitive anche $R \cap R'$ è transitiva.

RELAZIONI *n*-ARIE

Una relazione n-aria su un insieme S è un sottoinsieme di S^n , $n \geq 1$. Se n = 1 la relazione R su S si dice *unaria*.

Se n=2 la relazione R su S si dice binaria.

Se n=3 la relazione R su S si dice ternaria.

. . .

TABELLE E MATRICI BOOLEANE

Le relazioni n-arie vengono di solito visualizzate mediante tabelle a n colonne. Se la relazione R è un sottoinsieme del prodotto cartesiano $S_1 \times S_2 \times \cdots \times S_n$, la colonna i-esima della tabella che la rappresenta conterrà gli elementi dell'insieme S_i che fanno parte di n-uple per cui la relazione R vale.

La seguente tabella rappresenta una parte della relazione ternaria che associa a un certo insieme di persone il relativo anno di nascita e la nazione di origine.

Giorgio	1946	Italia
Giulio	1952	Italia
Harry	1972	USA
Wolfgang	1989	Germania

GRAFI BIPARTITI

Sia R un relazione su $S \times S'$. Un grafo bipartito viene visualizzato elencando gli elementi dei due insiemi e collegando con frecce (che vanno da elementi del primo insieme ad elementi del secondo) quelle coppie di elementi che sono in R.

GRAFI BIPARTITI

Esempio

Siano dati due insiemi; $S = \{s_1, s_2, s_3, s_4\}$ e Q = $\{q_1,q_2,q_3,q_4,q_5\}$. Sia data la relazione binaria G su S imes Q

$$\{\langle s_1,q_2\rangle,\langle s_1,q_4\rangle,\langle s_3,q_2\rangle,\langle s_3,q_4\rangle,\langle s_3,q_1\rangle,\langle s_4,q_5\rangle\}$$

RAPPRESENTAZIONE TABELLARE DI RELAZIONI BINARIE

Esempio

La stessa relazione dell'esempio precedente può essere rappresentata mediante la seguente tabella

s_1	q_2
s_1	q_4
s_3	q_2
s_3	q_4
s_3	q_1
s_4	q_5

MATRICI BOOLEANE

Una relazione binaria può anche essere rappresentata mediante una matrice booleana a valori in $\{0,1\}$.

Siano $S = \{s_1, s_2, \dots s_n\}$ e $T = \{t_1, t_2, \dots t_m\}$ due insiemi finiti rispettivamente di cardinalità n ed m. Sia $R \subseteq S \times T$. La matrice booleana M_R associata a R ha n righe ed m colonne (che corrispondono rispettivamente agli n elementi di S e agli m elementi di T), e gli elementi sono così definiti

$$m_{ij} = \begin{cases} 1 & \text{sse } \langle s_i, t_j \rangle \in R \\ 0 & \text{altrimenti} \end{cases}$$

MATRICI BOOLEANE

Esempio

La matrice booleana M_R associata alla relazione R introdotta precedentemente ha 4 righe (n=4) e 5 colonne (m=5) ed è la seguente

s_1	q_2
s_1	q_4
s_3	q_2
s_3	q_4
s_3	q_1
s_4	q_5

0	1	0	1	0
0	0	0	0	0
1	1	0	1	0
$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	0	0	0	1

A DEGLI STUDIO B I C O C C I

FONDAMENTI DELL'INFORMATICA

MATRICI BOOLEANE

Proprietà di \mathbf{M}_R

Sia R una relazione su S.

- 1. R è riflessiva sse M_R ha tutti 1 sulla diagonale principale;
- 2. R è irriflessiva sse M_R ha tutti 0 sulla diagonale principale;
- 3. R è simmetrica sse M_R è una matrice simmetrica;
- 4. R è asimmetrica sse in M_R si ha che se $m_{ij}=1$, per $i\neq j$, allora $m_{ji}=0$.

MATRICI BOOLEANE

Proprietà di \mathbf{M}_R

Sia R una relazione su S.

1. $M_{\overline{R}}$ è costituita dai seguenti elementi

$$\overline{m}_{ij} = \begin{cases} 1 & \text{sse } m_{ij} = 0 \\ 0 & \text{sse } m_{ij} = 1 \end{cases}$$

2. $M_{R^{-1}}$ è la trasposta di M_R .

MATRICI BOOLEANE

Sia
$$S = \{a, b, c\}$$
, $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle c, c \rangle\}$.

$$M_R = \left| egin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right|$$

R non è nè riflessiva, nè simmetrica. Sia $R' = R \cup \{\langle b, b \rangle\}$.

$$M_{R'} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

R' è riflessiva, non è simmetrica. Sia $R'' = \{\langle a,a \rangle, \langle b,b \rangle, \langle c,c \rangle\}$.

$$M_{R''} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

R'' è la relazione di uguaglianza \Im_S e $M_{R''}$ è la matrice identità.

OPERAZIONI SU MATRICI BOOLEANE

Siano $A = [a_{ij}]$ e $B = [b_{ij}]$ due matrici booleane di dimensioni $n \times m$. $A \sqcup B = C$ è il join di A e B, dove C è una matrice booleana i cui elementi sono

$$c_{ij} = \begin{cases} 1 & \text{se } a_{ij} = 1 \text{ o } b_{ij} = 1 \\ 0 & \text{se } a_{ij} = 0 \text{ e } b_{ij} = 0 \end{cases}$$

 $A\sqcap B=C$ è il *meet* di A e B, dove C è una matrice booleana i cui elementi sono

$$c_{ij} = \begin{cases} 1 & \text{se } a_{ij} = 1 \text{ e } b_{ij} = 1 \\ 0 & \text{se } a_{ij} = 0 \text{ o } b_{ij} = 0 \end{cases}$$

□ e □ sono operazioni commutative, associative e distributive.

PRODOTTO BOOLEANO

Siano $A=[a_{ij}]$ e $B=[b_{ij}]$ due matrici booleane rispettivamente di dimensioni $n\times m$ e $m\times p$. Definiamo $A\odot B=C$ il prodotto booleano di A e B, dove C è una matrice booleana di dimensioni $n\times p$ i cui elementi sono

$$c_{ij} = \left\{ \begin{array}{ll} 1 & \text{se } a_{ik} = 1 \text{ e } b_{kj} = 1 \text{ per qualche } k, 1 \leq k \leq m \\ 0 & \text{altrimenti} \end{array} \right.$$

1. ⊙ è associativa, ma non commutativa.

ADECI STUDIO BIOLOGICA AD DO DO BIOLOGICA STUDIO BIOLOGIC

FONDAMENTI DELL'INFORMATICA

COMPOSIZIONE DI RELAZIONI

Data una relazione R_1 su $S \times T$ e una relazione R_2 su $T \times Q$ si può definire una nuova relazione $R_2 \circ R_1$ su $S \times Q$ come segue

$$\langle a,c\rangle\in R_2\circ R_1$$
 sse esiste un $b\in T$ tale che $\langle a,b\rangle\in R_1$ e $\langle b,c\rangle\in R_2$.

La relazione $R_2 \circ R_1$ è detta *composizione* di R_1 e R_2 .

Si può facilmente verificare che se M_{R_1} è la matrice booleana associata alla relazione R_1 , e M_{R_2} è la matrice booleana associata alla relazione R_2 , allora

$$M_{R_2 \circ R_1} = M_{R_1} \odot M_{R_2}$$

dove ⊙ è il prodotto booleano

In generale $R_2 \circ R_1 \neq R_1 \circ R_2$.

Esempio

Siano
$$S=\{a,b\}$$
, $R_1=\{\langle a,a\rangle,\langle a,b\rangle,\langle b,b\rangle\}$ e $R_2=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,b\rangle\}$, avremo:

$$R_1 \circ R_2 = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle\}$$

mentre

$$R_2 \circ R_1 = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle\}.$$

UNIVERSITA OUNTER SITA

FONDAMENTI DELL'INFORMATICA

RELAZIONI

Siano A = $\{1,3,7,9\}$ e B = $\{1,2,3,4,5,6,7,9\}$.

- Rappresentare estensionalmente la relazione $R = \{ \langle x, y \rangle \in A \times B \mid y = succ(x) \}$
 - o {<1,2>,<3,4>}
- Disegnare il grafo bipartito che rappresenta la relazione R e dire se la relazione R è una funzione.
 - R è una funzione (anche se parziale)
- Definire una estensione R' di R tale che R' = $\{ \langle x, y \rangle \in A \times B \mid y = succ(x) \text{ or } y = succ(succ(x)) \}$
 - o {<1,2>,<3,4>,<1,3>,<3,5>,<7,9>}

STRUTTURE RELAZIONALI, GRAFI E ORDINAMENTI

(parte 1)

END