数字逻辑设计

Digital Logic Design

张春慨

School of Computer Science ckzhang@hit.edu.cn

Unit 3 Boolean Algebra

- 。逻辑运算
- 布尔表达式和真值表

George Boole

- 逻辑代数定理及规则
- 代数化简法

各种逻辑运算

- 基本逻辑运算 (Basic Operations)
 - >与(AND)
 - ➤ 或(OR)
 - ▶ 非(NOT)
- 复合逻辑运算(Other Operations)

基本运算(Basic Operations)

1. AND (逻辑"与")

$$F=A\cdot B$$

① 也称为: 逻辑"乘"

Truth Table

AB	F
00	0
01	0
10	0
11	1

② AND gate (与门) 逻辑符号

③ Typical Chip: 74LS08

基本运算(Basic Operations)

2. OR (逻辑"或")

$$F=A+B$$

①也称为:逻辑"加"

Truth Table

AB	Ŀ
00	0
01	1
10	1
11	1

② OR gate (或门) 逻辑符号

③ Typical Chip: 74LS32

基本运算(Basic Operations)

3. NOT (逻辑"非")

(or F=A')

①也称为:反相器

True table

Α	F
0	1
1	0
4	

② NOT gate (非门) 逻辑符号

③ Typical Chip: 74LS04

- 基本逻辑运算(Basic Operations)
 - >与(AND)
 - ➤ 或(OR)
 - ▶ 非(NOT)

■ 复合逻辑运算 (Other Operations)

4. 与非门 (NAND gate)

$$F = \overline{AB}$$

Typical Chip: 74LS00

5. 或非门 (NOR gate)

$$F = \overline{A + B}$$

Typical Chip: 74LS02

6. 与或非门 (AND-OR-NOT gate)

Typical Chip: 74LS51,74LS55

7. 异或门 (⊕, Exclusive-OR operation)

F= A
$$\oplus$$
 B= AB+AB

Truth Table

1	逻辑符号

AB	F
00	0
01	1
10	1
11	0

2 Typical Chip: 74LS86

- ③ Applications
 - 全加器 (Full adder)
 - 半加器 (Half-adder)

■ 半加器 (Half-adder)

输入		输出	
Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

逻辑表达式: $S = A \oplus B$; $C = A \cdot B$ 。

半加器的逻辑实现

■ 全加器 (Full adder)

输入			输出	ı
Ci-1	Ai	Bi	Si	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$
$$C_{out} = (A \cdot B) + (C_{in} \cdot (A \oplus B))$$

8. 同或门 (⊙ or ≡, Equivalence operation)

① 逻辑符号

I	u	u	ı	an	IE

AB	F
00	1
01	0
10	0
11	1

2 Typical Chip: 74LS266

如何构造1位等值比较器??

—— 利用异或门(同或门)

EQ : equal

EQ

DIFF: different

③ Applications

■ 等值比较器

4 性质

$$A \oplus 1 = \overline{A}$$
 $A \odot 1 = A$

$$\mathbf{A} \oplus \mathbf{0} = \mathbf{A} \qquad \qquad \mathbf{A} \odot \mathbf{0} = \mathbf{\overline{A}}$$

$$\mathbf{A} \oplus \mathbf{A} = \mathbf{0} \qquad \qquad \mathbf{A} \odot \mathbf{A} = \mathbf{1}$$

$$A \oplus \overline{A} = 1$$
 $A \odot \overline{A} = 0$

Applications

Unit 2 Boolean Algebra

- 各种逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 代数化简法

1. 布尔表达式(Boolean Expressions)

$$F = AB + \overline{AB}$$

$$F=[A(C+D)]'+BE$$

 Boolean expressions are formed by application of the basic operations (and, or, not) to one or more variables or constants.

逻辑图

Example
$$F = AB + \overline{AB}$$

 Each expression corresponds directly to a circuit of logic gates

2. 真值表(Truth Table)

Example $F = AB + \overline{AB}$

Truth Table

AB	F
00	1
01	0
10	0
11	1

- A truth table specifies the values of a Boolean expression for every possible combination of values of the variables in the expression.
- \mathbf{n} 个输入变量有 $\mathbf{2}^n$ 种取值组合

■ 如果两个逻辑表达式的真值表相等,则这两个 逻辑表达式相等.

$$AB'+C = (A+C)(B'+C)$$

ABC	AB' + C	(A+C)(B'+C)
0 0 0	0	0
0 0 1	1	1
0 1 0	0	0
0 1 1	1	1
1 0 0	1	1
1 0 1	1	1
1 1 0	0	0
1 1 1	1	1

适用情况:逻辑 表达式简单,逻 辑变量较少

Unit 2 Boolean Algebra

- 各种逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 。代数化简法

1. 公理(Axiom)

(1)
$$0 \cdot 0 = 0$$

(2)
$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$(4) \quad \overline{\mathbf{0}} = \mathbf{1}$$

$$(1)' 0+0=0$$

$$(2)$$
' $1+0=0+1=1$

$$(3)$$
' $1+1=1$

$$(4)' \quad \overline{1} = \mathbf{0}$$

2. 基本定理(Basic Theorems)

single variable is involved

$$(6) \quad \mathbf{A} + \mathbf{0} = \mathbf{A}$$

$$(6)' \quad \mathbf{A} \cdot \mathbf{0} = \mathbf{0}$$

$$(7) \quad \mathbf{A+1=1}$$

$$(7)' \quad \mathbf{A} \cdot \mathbf{1} = \mathbf{A}$$

$$(8)' \quad \mathbf{A} \cdot \mathbf{\bar{A}} = \mathbf{0}$$
 互补律

A+A = 1

A+A=A

2. 基本定理(Basic Theorems)

Applications——

0-1律

重叠率

■ 与普通代数相似的定理

交換律

$$(10) A + B = B + A$$

$$(10)$$
' $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$

结合律

$$(11)(A+B)+C=A+(B+C)$$

$$(11)(A+B)+C=A+(B+C)$$
 $(11)'(A \cdot B) \cdot C=A \cdot (B \cdot C)$

分配律

$$(12) \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

(12)
$$A \cdot (B+C) = AB+AC$$
 (12) $A+BC=(A+B) \cdot (A+C)$

普通代数 不支持

第二分配律

■ 第二分配律证明

$$(A+B) \cdot (A+C)$$

$$=A+AC+AB+BC$$

$$=A \cdot 1 + AC + AB + BC$$
 0-1律

$$=A+BC$$
 0-1律

■ 第二分配律证明(第2种证明)

$$(A+B) \cdot (A+C)$$

$$=A+AC+AB+BC$$

$$=(A+AC)+(A+AB)+BC$$
 交換律

$$=A(1+C)+A(1+B)+BC$$
 分配律

$$=A+A+BC$$
 0-1律

$$=A+BC$$

■ 特殊定理

德摩根定理(DeMorgan's Laws)

(13)
$$\overline{\mathbf{A}+\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$$
 (13) $\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

$$(14) \quad \overline{\overline{A}} = A$$

■ 特殊定理

DeMorgan's Laws 🙂

◆ Applications: 表达式化简

(1)
$$\overline{X_1 X_2 \dots X_n} = \overline{X_1} + \overline{X_2} + \dots + \overline{X_n}$$

(2)
$$\overline{X_1 + X_2 + ... + X_n} = \overline{X_1} \overline{X_2} ... \overline{X_n}$$

■ 特殊定理

对偶规则 🙂

Applications: Algebraic Simplification

 ・
 不变

 ・
 → +

 +
 → •

 ⊕
 → •

 (\cdot)

不能改变原 来的优先级

■ 特殊定理

对偶规则

Example

Laws and Theorems

■ 特殊定理

Inference of Dual Rule

- ① F Dual Rule (F)D
- ② 两个逻辑表达式相等,它们的对偶也相等

Example
$$A+BCD = (A+B)(A+C)(A+D)$$
Dual Rule $Dual Rule$

$$A \cdot (B+C+D) = AB+AC+AD$$

Laws and Theorems

From (18):

=(A+A)(A+B)

A+AB 第二分配律

3. 常用公式

(15)
$$\mathbf{AB} + \mathbf{AB} = \mathbf{A}$$
 (合并律

$$(16) \quad A + AB = A$$

(吸收律

(17)
$$\mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{A} + \mathbf{B}$$
 (消除律 = $\mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$

(18)
$$AB + \overline{A}C + BC = AB + \overline{A}C$$

(蕴含律)

(18)
$$AB + \overline{A}C + BCD = AB + \overline{A}C$$

(18)"
$$(A+B)(B+C)(A'+C) = (A+B)(A'+C)$$

Laws and Theorems

(19)
$$A \overline{B} + \overline{AB} = \overline{A} \overline{B} + AB$$

$$\overline{\mathbf{A}} \overline{\mathbf{B}} + \overline{\mathbf{A}} \overline{\mathbf{B}}$$

$$= \overline{\mathbf{A}} \overline{\overline{\mathbf{B}}} \cdot \overline{\overline{\mathbf{A}}} \overline{\mathbf{B}}$$

$$= (\overline{\mathbf{A}} + \mathbf{B}) \cdot (\mathbf{A} + \overline{\mathbf{B}})$$

$$= \overline{\mathbf{A}} \overline{\mathbf{B}} + \mathbf{A} \mathbf{B}$$

Unit 2 Boolean Algebra

- 各种逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 。代数化简法

Algebraic Simplification

■ 一个逻辑函数有多种不同的表达式

$$=\overline{AB+AC}$$

$$=\overline{\overline{AB} \cdot \overline{AC}}$$
 $= #-=#$

$$=(\overline{A}+\overline{B}) \cdot (\overline{A}+C) \cdots \overline{\cancel{X}} - \cancel{3} \cancel{\sharp}$$

$$= (\overline{A} + \overline{B}) + (\overline{A} + C) \dots _{\overline{N}} # - \overline{N}$$

$$F=(A+B) \cdot (A+\overline{C})$$
或-与

$$= \overline{(A+B) \cdot (A+\overline{C})}$$

$$= \overline{(A+B)} + \overline{(A+C)} \cdot \cdot \cdot \cdot \cdot \overrightarrow{y} + \cdot \cdot \overrightarrow{y} + \cdot \cdot \overrightarrow{y} + \cdot \overrightarrow{y} + \cdot \overrightarrow{y} + \cdot \cdot \overrightarrow{y} + \cdot \overrightarrow{y}$$

$$=\overline{\overline{A} \cdot \overline{B} + \overline{A} \cdot C}$$
 … 与 或 非

$$=\overline{\overline{A}}\,\overline{\overline{B}}\cdot\overline{\overline{AC}}$$
 $=$ $=$ $=$ $=$

■ 同一类型的表达式也不是唯一的

$$F=AB+\overline{A}C$$
① F_1 = $AB+\overline{A}C+BC$ ② F_2 = $ABC+AB\overline{C}+\overline{A}BC+\overline{A}BC$ ③ F_3 ③ F_3 ③ F_4 ④ F_4 ④ F_5 ④ F_7 ④ F_7 ④ F_7 ④ F_8 ④ F_8 ④ F_8 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 0 F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F_9 ④ F

Algebraic Simplification

最简(Minimum Expressions)?

- ① 与项(和项)的个数最少
- ② 每个与项(和项)中变量的个数最少

minimum cost

- 逻辑门的数量最少
- 逻辑门的输入个数最少

目的:

- 降低成本
- 提高可靠性

- 代数法(Algebraic techniques)卡诺图法(K. map method)

Simplification Methods

代数化简法

example

$$F = A + AB\overline{C} + \overline{A}CD + \overline{C}E + \overline{D}E$$

$$= A + \overline{A}CD + \overline{C}E + \overline{D}E$$

$$= A + CD + \overline{C}E + \overline{D}E$$

$$= A + CD + E(\overline{C} + \overline{D})$$

$$= A + CD + E\overline{C}D$$

$$= A + CD + E\overline{C}D$$

example

$$F = AB + A\overline{C} + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F + G)$$

$$= A(\overline{BC}) + \overline{BC} + B\overline{C} + \overline{BD} + B\overline{D} + ADE(F+G)$$

$$= A + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F + G)$$

$$= \mathbf{A} + \mathbf{B}\mathbf{C} + \mathbf{B}\mathbf{C} + \mathbf{B}\mathbf{D} + \mathbf{B}\mathbf{D} + \mathbf{C}\mathbf{D}$$

$$= \mathbf{A} + \mathbf{\overline{B}C} + \mathbf{B}\mathbf{\overline{C}} + \mathbf{\overline{B}D} + \mathbf{C}\mathbf{\overline{D}}$$

$$= \mathbf{A} + \mathbf{\overline{B}C} + \mathbf{B}\mathbf{\overline{C}} + \mathbf{\overline{B}D} + \mathbf{C}\mathbf{\overline{D}}$$

$$= A + B\overline{C} + \overline{B}D + C\overline{D}$$

Simplification Methods

$$\mathbf{F} = (\mathbf{\overline{B}} + \mathbf{D})(\mathbf{\overline{B}} + \mathbf{D} + \mathbf{A} + \mathbf{G})(\mathbf{C} + \mathbf{E})(\mathbf{\overline{C}} + \mathbf{G})(\mathbf{A} + \mathbf{E} + \mathbf{G})$$

Dual Rule:
$$J = \overline{BD} + \overline{BDAG} + CE + \overline{CG} + AEG$$

$$= \overline{\mathbf{B}}\mathbf{D} + \mathbf{C}\mathbf{E} + \overline{\mathbf{C}}\mathbf{G} + \mathbf{A}\mathbf{E}\mathbf{G}$$

$$= \overline{\mathbf{B}}\mathbf{D} + \mathbf{C}\mathbf{E} + \overline{\mathbf{C}}\mathbf{G}$$

Dual Rule:

$$F = (\overline{B} + D)(C + E)(\overline{C} + G)$$

example

$$F = A + AB + \overline{A}C + BD + ACEF + \overline{B}E + DEF$$

$$= A+C+BD+\overline{B}E$$

代数化简法

优点——

- 不受变量数目的约束;
- 对公理、定理和规则十分熟练时,化简较方便。

缺点——

- ■技巧性强
- 在很多情况下难以判断化简结果是否最简单。

Unit 2 Boolean Algebra

- 各种逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 代数化简法