Some Set Properties Underlying Geometry and Physics

George. M. Van Treeck

ABSTRACT. The Euclidean volume, inner product, and Minkowski distance equations are proved to be instances of a set of n-tuples. A symmetry property is proved to limit a cyclic set to at most 3 members. Where distance is a symmetric cyclic set, higher dimensions have different types (are members of different sets), with unit-factoring ratios of a distance unit to units of other types (time, mass, and charge). The proofs and ratios are used to derive the gravity, charge, vacuum permittivity, vacuum permeability, Planck, and fine structure constants, and used to provide simple derivations of well-known gravity, charge, electromagnetic equations, special and general relativity equations, and quantum physics equations. All the proofs are verified in Rocq.

Contents

1.	Introduction	1
2.	Ruler measure and convergence	3
3.	Volume	4
4.	Distance	5
5.	Applications to physics	8
6.	Insights and implications	15
References		20

1. Introduction

The Riemann integral, Lebesgue integral, and Lebesgue measure define Euclidean volume as the product of interval sizes. And Euclidean distance, inner product, vector, metric space, etc. are definitions, in analysis. [Gol76] [Rud76]

A function returns a value corresponding to an n-tuple of domain values. In this article, volume and distance equations are derived from countable, ordered sets of combinations (n-tuples) and permutations of domain set elements, which:

1) provides a different perspective on the relation of distance to volume, 2) shows the insufficiency of ad hoc definitions of distance measures, like metric space, and 3) provides new insights into both geometry and physics.

²⁰¹⁰ Mathematics Subject Classification. Primary 28A75, 28E15. Secondary 03E75, 51M99. Copyright © 2025 George M. Van Treeck. Creative Commons Attribution License.

Using integral calculus and σ -algebras (for example, the Lebesgue measure) to prove the volume and distance theorems in this article would result in circular logic. Therefore, a "ruler" measure of intervals, $[a,b] \subset \mathbb{R}$, will be used to prove the theorems. All the proofs in this article have been verified using using the Rocq proof verification system [Roc25]. The formal proofs are in the Rocq files, "euclidrelations.v" and "threed.v," at: https://github.com/treeck/RASRGeometry.

Step 1 will be to prove that the *only* equation implied by a countable set of n-tuples is the Euclidean volume equation and the *only* countable set implied by the Euclidean distance equation is that same countable set of n-tuples.

Where $|x_i|$ is the cardinal of (number of elements in) a countable set, x_i , the countable number of n-tuples, v_c , of disjoint sets x_i , it will be proved that:

(1.1)
$$\forall x_i \in \{x_1, \dots, x_n\} = X$$
, $\bigcap_{x_i \in X} x_i = \emptyset$: $v_c = \prod_{i=1}^n |x_i|$
 $\Leftrightarrow v = \prod_{i=1}^n s_i$, $[a_i, b_i] \subset \mathbb{R}$, $s_i = b_i - a_i$.

Step 2 will be to prove that, where the countable volume, v_c , is a bijective function (for each n, $\exists !\ d_c: v_c = f(d_c)$ and $d_c = f^{-1}(v_c)$), v_c implies specific real-valued distance equations in an Euclidean volume. Where:

(1.2)
$$\exists d_c, v_c, |x_i| \in \{0, \mathbb{N}\}: v_c = \prod_{i=1}^n |x_i| = \prod_{i=1}^n d_c = d_c^n,$$

the ruler measure will be used to prove that:

$$(1.3) \quad d_c^n = \sum_{i=1}^m v_{c_i} = \sum_{i=1}^m (\prod_{j=1}^n |x_{i,j}|) \iff d^n = \sum_{i=1}^m v_i = \sum_{i=1}^m (\prod_{j=1}^n s_{i,j}).$$

Where the total n-volume is both the sum and subtraction of n-volumes, the domain values are \pm signed and the n=2 case is the vector inner product:

$$(1.4) d^2 = \sum_{i=1}^m a_i b_i := \mathbf{a} \cdot \mathbf{b}.$$

Where $v_{c_i} = d_{c_i}^n$, the ruler measure will be used to prove that:

(1.5)
$$d_c^n = \sum_{i=1}^m d_{c_i}^n \iff d^n = \sum_{i=1}^m d_i^n.$$

d is the p-norm (Minkowski distance) [Min53], which will be proved to imply the metric space properties [Rud76]. Every sum of volumes distance, $d: d^n = \sum_{i=1}^m (\prod_{j=1}^n s_{i,j})$, has a corresponding Minkowski distance, $d: d^n = \sum_{i=1}^m d_i^n$. Therefore, all sum of volumes distances have the properties of a metric space.

Defining all Euclidean and non-Euclidean distance measures as the inverse (bijective) function of an n-volume that is the sum of n-volumes:

- shows the intimate relation between distance and volume that definitions, like vector space and metric space, ignore [Wey52] [Gol76] [Rud76];
- (2) is a more simple and concise definition of a distance measure that includes all the properties used in the definitions of vector space, inner product space, and metric space [Wey52] [Gol76] [Rud76];

Step 3 will be to prove there are combinatorial properties that can limit a domain set to $n \leq 3$ elements:

The computation of volume and distance require multiplying a sequentially ordered set of domain values. The commutative properties of multiplication allows sequencing an ordered set of domain values in all n! permutations. And there is no intrinsic property of a domain value that gives it a particular position of first, second, \cdots , last in the multiplication sequence.

The *only* sequentially ordered set, where any member can be selected first, is a cyclic set. And sequencing a cyclic set in all n! permutations, is termed here as an

"immediate symmetric" cyclic set, where every set member is either an *immediate* cyclic successor or an *immediate* cyclic predecessor to every other set member. An immediate symmetric cyclic set will be proved to have $n \leq 3$ members.

If $\{s_1, s_2, s_3\}$ is an immediate symmetric cyclic set of 3 intervals $\subset \mathbb{R}$, then another interval, $s_4 \subset \mathbb{R}$, must have a different type $(s_4$ is a member of a different set). If s_1 having length r is divided into μ -sized subintervals (units) and s_4 having length τ is divided into ν -sized subintervals (units), then: $r = (\mu/\nu)\tau$.

Step 4 will apply the previous results to physics:

Where distance is an immediate cyclic set of dimensions, the 3D proof requires more dimensions to have non-distance types, where for each unit length, r_c , of distance interval length, r, there are unit lengths: t_c of time interval length, t; m_c of mass interval length, m; and q_c of charge interval length, q, such that: $r = (r_c/t_c)t = (r_c/m_c)m = (r_c/q_c)q$.

Where the space at each coordinate point is Euclidean-like (for example, on all Riemann and pseudo-Riemann surfaces), the ratio is constant in every coordinate frame of reference. For example, the constant ratio, $r_c/t_c = c$, is the speed of light.

The proofs and the 3 direct proportion ratios are used to provide simple derivations of the Newton, Gauss, and Poisson gravity equations, Coulomb charge, Gauss, and Faraday electromagnetic equations [and the constants: gravity (G), charge (k_e) , vacuum permittivity (ε_0) , and vacuum permeability (μ_0)]. They are also used to derive all the special relativity equations, the Schwarzchild time dilation and black hole metric equations pointing to a simplified method of finding solutions to Einstein's general relativity equations.

Next, algebraic manipulation of the 3 direct proportion ratios yields 3 inverse proportion ratios: $r = t_c r_c/t = m_c r_c/m = q_c r_c/q$. The direct and inverse proportion ratios are combined to derive quantitative values for the 4 quantum units: r_c , t_c , m_c , and q_c . And the Planck units and the fine structure constant, α , are each derived from the 4 quantum units as the ratios of subtypes.

The combination of the direct and inverse proportion ratios are used to derive the Planck relation, the Planck constant, h, the Compton, Schrödenger, and Dirac wave equations. And finally, the inverse proportion ratios are used to add quantum extensions to some general relativity and classical physics equations.

2. Ruler measure and convergence

A ruler (measuring stick) measures the size of each interval approximately as the sum of the nearest integer number, p, of size κ subintervals. The ruler is both an inner and outer measure of an interval.

Definition 2.1. Ruler measure,
$$M = \sum_{i=1}^p \kappa = p\kappa$$
, where $\forall [a,b] \subset \mathbb{R}$, $s = b - a \land 0 < \kappa \leq 1 \land (p = floor(s/\kappa) \lor p = ceiling(s/\kappa))$.

Theorem 2.2. Ruler convergence: $M = \lim_{\kappa \to 0} p\kappa = s$.

The formal proof, "limit_c_0_M_eq_exact_size," is in the file, euclidrelations.v.

Proof. (epsilon-delta proof)

By definition of the floor function, $floor(x) = max(\{y: y \le x, y \in \mathbb{Z}, x \in \mathbb{R}\})$:

$$(2.1) \quad \forall \; \kappa > 0, \; p = floor(s/\kappa) \; \; \wedge \; \; 0 \leq |floor(s/\kappa) - s/\kappa| < 1 \; \; \Rightarrow \; \; |p - s/\kappa| < 1.$$

Multiply both sides of inequality 2.1 by $\kappa :$

$$(2.2) \forall \kappa > 0, |p - s/\kappa| < 1 \Rightarrow |p\kappa - s| < |\kappa| = |\kappa - 0|.$$

$$(2.3) \quad \forall \ \epsilon = \delta \quad \land \quad |p\kappa - s| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |p\kappa - s| < \delta = \epsilon \quad := \quad M = \lim_{\kappa \to 0} p\kappa = s. \quad \Box$$

The following is an example of ruler convergence for the interval, $[0, \pi]$: $s = \pi - 0$, and $p = floor(s/\kappa) \Rightarrow p \cdot \kappa = 3.1_{\kappa = 10^{-1}}, 3.14_{\kappa = 10^{-2}}, 3.141_{\kappa = 10^{-3}}, ..., \pi_{\lim_{\kappa \to 0}}$.

Lemma 2.3.
$$\forall n \geq 1, \quad 0 < \kappa < 1 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa.$$

PROOF. The formal proof , "lim_c_to_n_eq_lim_c," is in the Rocq file, euclidrelations.v.

$$(2.4) \quad n \ge 1 \quad \land \quad 0 < \kappa < 1 \quad \Rightarrow \quad 0 < \kappa^n < \kappa \quad \Rightarrow \quad |\kappa - \kappa^n| < |\kappa| = |\kappa - 0|.$$

$$(2.5) \quad \forall \ \epsilon = \delta \quad \land \quad |\kappa - \kappa^n| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |\kappa - \kappa^n| < \delta = \epsilon \quad := \quad \lim_{\kappa \to 0} \kappa^n = 0.$$

$$(2.6) \qquad \lim_{\kappa \to 0} \kappa^n = 0 \quad \wedge \quad \lim_{\kappa \to 0} \kappa = 0 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa. \qquad \quad \Box$$

3. Volume

DEFINITION 3.1. A countable n-volume is the number of ordered combinations (n-tuples), v_c , of the members of n number of disjoint, countable domain sets, x_i :

$$(3.1) x_i \in \{x_1, \dots, x_n\} = X, |x_i| \in \{0, \mathbb{N}\}: \bigcap_{x_i \in X} x_i = \emptyset \wedge v_c = \prod_{i=1}^n |x_i|.$$

THEOREM 3.2. Euclidean volume,

(3.2)
$$\forall [a_i, b_i] \in \{[a_1, b_1], \dots [a_n, b_n]\}, [v_a, v_b] \subset \mathbb{R}, s_i = b_i - a_i, v = v_b - v_a : v_c = \prod_{i=1}^n |x_i| \Leftrightarrow v = \prod_{i=1}^n s_i.$$

The formal proof, "Euclidean_volume," is in the Rocq file, euclidrelations.v.

Proof.

(3.3)
$$v_c = \prod_{i=1}^n |x_i| \Leftrightarrow v_c \kappa = (\prod_{i=1}^n |x_i|) \kappa \Leftrightarrow \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa$$
.

Apply the ruler (2.1) and ruler convergence (2.2) to equation 3.3:

$$(3.4) \quad \exists \ v, \kappa \in \mathbb{R} : \ v_c = floor(v/\kappa) \quad \Rightarrow \quad v = \lim_{\kappa \to 0} v_c \kappa \quad \wedge \\ \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa \quad \Rightarrow \quad v = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa.$$

Apply lemma 2.3 to equation 3.4:

$$(3.5) \quad v = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i|) \kappa \quad \wedge \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa$$

$$\Rightarrow \quad v = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i|) \kappa^n = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i| \kappa).$$

Apply the ruler (2.1) and ruler convergence (2.2) to s_i :

$$(3.6) \exists s_i, \kappa \in \mathbb{R} : floor(s_i/\kappa) = |x_i| \Rightarrow \lim_{\kappa \to 0} (|x_i|\kappa) = s_i.$$

$$(3.7) \quad v = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i| \kappa) \quad \wedge \quad \lim_{\kappa \to 0} (|x_i| \kappa) = s_i$$

$$\Leftrightarrow \quad v = \lim_{\kappa \to 0} (|x_i| \kappa) = \prod_{i=1}^{n} s_i \quad \Box$$

4. Distance

Definition 4.1. Countable distance,

(4.1)
$$\exists n \in \mathbb{N}, v_c, d_c \in \{0, \mathbb{N}\}, x_i \in \{x_1, \dots, x_n\} = X : \bigcap_{x_i \in X} x_i = \emptyset \land d_c = |x_1| = \dots = |x_n| \land v_c = \prod_{i=1}^n |x_i| = \prod_{i=1}^n d_c = d_c^n.$$

Lemma 4.2. A volume is the sum of volumes,

$$v_c = d_c^n = \sum_{i=1}^m v_{c_i} \quad \Leftrightarrow \quad v = \sum_{i=1}^m v_i, \quad v, v_i \in \mathbb{R}.$$

The formal proof, "sum_of _volumes," is in the Rocq file, euclidrelations.v.

PROOF. From the condition of this theorem:

$$(4.2) v_c = \sum_{i=1}^m v_{c_i} \Leftrightarrow \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} \sum_{i=1}^m (v_{c_i} \kappa).$$

Apply lemma 2.3 to equation 4.2:

$$(4.3) \quad \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} \left(\sum_{j=1}^m v_{c_i} \right) \kappa \quad \wedge \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa$$

$$\Leftrightarrow \quad \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} \sum_{j=1}^m (v_{c_j}) \kappa^n \quad \Leftrightarrow \quad \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} \sum_{j=1}^m (v_{c_i} \kappa).$$

Apply the ruler (2.1) and ruler convergence theorem (2.2) to equation 4.3:

$$(4.4) \quad \exists \ v, v_i : \ v = floor(d/\kappa), \ v = \lim_{\kappa \to 0} v_c \kappa$$

$$\wedge \quad v_{c_i} = floor(v_i/\kappa), \ v_i = \lim_{\kappa \to 0} v_{c_i} \kappa \quad \wedge \quad \lim_{\kappa \to 0} (d_c \kappa)^n = \lim_{\kappa \to 0} \sum_{j=1}^m (v_{c_i} \kappa)$$

$$\Leftrightarrow \quad v = \lim_{\kappa \to 0} (d_c \kappa)^n = \lim_{\kappa \to 0} \sum_{j=1}^m (v_{c_i} \kappa) = \sum_{j=1}^m v_i^n. \quad \Box$$

4.1. Sum of volumes distance.

Theorem 4.3. Sum of volumes distance:

$$v_c = d_c^n = \sum_{i=1}^m v_{c_i} \quad \Leftrightarrow \quad d^n = \sum_{i=1}^m (\prod_{j=1}^n s_{i_j}).$$

 $The \ formal \ proof, \ "sum_of_volumes_distance," \ is \ in \ the \ Rocq \ file, \ euclidrelations. v.$

PROOF. From lemma 4.2 and the Euclidean volume theorem 3.2:

(4.5)
$$v_c = d_c^n = \sum_{i=1}^m v_{c_i} \Leftrightarrow d^n = \sum_{i=1}^m (\prod_{j=1}^n v_i) \wedge v_i = \prod_{j=1}^n s_{i_j}$$

 $v_c = d_c^n = \sum_{i=1}^m v_{c_i} \Leftrightarrow d^n = \sum_{i=1}^m (\prod_{j=1}^n s_{i_j}). \square$

4.2. Minkowski distance (p-norm).

Theorem 4.4. Minkowski distance (p-norm):

$$v_c = d_c^n = \textstyle \sum_{i=1}^m v_{c_i} = \textstyle \sum_{i=1}^m d_{c_i}^n \quad \Leftrightarrow \quad d^n = \textstyle \sum_{i=1}^m d_i^n.$$

The formal proof, "Minkowski_distance," is in the Rocq file, euclidrelations.v.

PROOF. From lemma 4.2 and the Euclidean volume theorem 3.2:

$$(4.6) v_c = d_c^n = \sum_{i=1}^m v_{c_i} \Leftrightarrow d^n = \sum_{i=1}^m v_i \wedge v_i = \prod_{j=1}^n d_i = d_i^n$$

$$v_c = d_c^n = \sum_{i=1}^m v_{c_i} \Leftrightarrow d^n = \sum_{i=1}^n d^n. \Box$$

4.3. Distance inequality. The formal proof, distance_inequality, is in the Rocq file, euclidrelations.v.

Theorem 4.5. Distance inequality

$$\forall n \in \mathbb{N}, \ v_a, v_b \ge 0: \ (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}.$$

PROOF. Expand $(v_a^{1/n} + v_b^{1/n})^n$ using the binomial expansion:

$$(4.7) \quad \forall v_a, v_b \ge 0: \quad v_a + v_b \le v_a + v_b + \\ \sum_{i=1}^n \binom{n}{i} (v_a^{1/n})^{n-k} (v_b^{1/n})^k + \sum_{i=1}^n \binom{n}{i} (v_a^{1/n})^k (v_b^{1/n})^{n-k} = (v_a^{1/n} + v_b^{1/n})^n.$$

Take the n^{th} root of both sides of the inequality 4.7:

$$(4.8) \ \forall v_a, v_b \ge 0, n \in \mathbb{N} : v_a + v_b \le (v_a^{1/n} + v_b^{1/n})^n \Rightarrow (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}. \quad \Box$$

4.4. Distance sum inequality. The formal proof, distance_sum_inequality, is in the Rocq file, euclidrelations.v.

Theorem 4.6. Distance sum inequality

$$\forall m, n \in \mathbb{N}, \ a_i, b_i \ge 0: \ (\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}.$$

PROOF. Apply the distance inequality (4.5):

$$(4.9) \quad \forall m, n \in \mathbb{N}, \ v_a, v_b \ge 0: \quad v_a = \sum_{i=1}^m a_i^n \quad \land \quad v_b = \sum_{i=1}^m b_i^n \quad \land$$

$$(v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n} \quad \Rightarrow \quad ((\sum_{i=1}^m a_i^n) + (\sum_{i=1}^m b_i^n))^{1/n} =$$

$$(\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}. \quad \Box$$

4.5. Metric Space. All Minkowski distances (*p*-norms) imply the metric space properties. The formal proofs: triangle_inequality, symmetry, non_negativity, and identity_of_indiscernibles are in the Rocq file, euclidrelations.v.

Theorem 4.7. Triangle Inequality:

$$d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \le d(u, v) + d(v, w).$$

PROOF. $\forall p \geq 1, \quad k > 1, \quad u = s_1, \quad w = s_2, \quad v = w/k$:

$$(4.10) (u^p + w^p)^{1/p} \le ((u^p + w^p) + 2v^p)^{1/p} = ((u^p + v^p) + (v^p + w^p))^{1/p}.$$

Apply the distance inequality (4.5) to the inequality 4.10:

$$(4.11) \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \wedge (v_{a} + v_{b})^{1/n} \leq v_{a}^{1/n} + v_{b}^{1/n}$$

$$\wedge \quad v_{a} = u^{p} + v^{p} \wedge v_{b} = v^{p} + w^{p}$$

$$\Rightarrow \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p}$$

$$\Rightarrow \quad d(u, w) = (u^{p} + w^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p} = d(u, v) + d(v, w). \quad \Box$$

Theorem 4.8. Symmetry: $d(s_1, s_2) = (\sum_{i=1}^{2} s_i^p)^{1/p} \implies d(u, v) = d(v, u)$.

PROOF. By the commutative law of addition:

(4.12)
$$\forall p : p \ge 1$$
, $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} = (s_1^p + s_2^p)^{1/p}$
 $\Rightarrow d(u, v) = (u^p + v^p)^{1/p} = (v^p + u^p)^{1/p} = d(v, u)$. \square

THEOREM 4.9. Non-negativity: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \ge 0.$

PROOF. By definition, the length of an interval is always ≥ 0 :

$$(4.13) \forall [a_1, b_1], [a_2, b_2], u = b_1 - a_1, v = b_2 - a_2, \Rightarrow u \ge 0, v \ge 0.$$

$$(4.14) p \ge 1, \ u, v \ge 0 \quad \Rightarrow \quad d(u, v) = (u^p + v^p)^{1/p} \ge 0.$$

Theorem 4.10. Identity of Indiscernibles: d(u, u) = 0.

PROOF. From the non-negativity property (4.9):

$$(4.15) \quad d(u,w) \ge 0 \quad \land \quad d(u,v) \ge 0 \quad \land \quad d(v,w) \ge 0$$
$$\Rightarrow \quad \exists d(u,w) = d(u,v) = d(v,w) = 0.$$

$$(4.16) d(u,w) = d(v,w) = 0 \Rightarrow u = v.$$

$$(4.17) d(u,v) = 0 \wedge u = v \Rightarrow d(u,u) = 0.$$

4.6. Set properties limiting a set to at most 3 members. The following definitions and proof use first order logic. A Horn clause-like expression is used, here, to make the proof easier to read. By convention, the proof goal is on the left side and supporting facts are on the right side of the implication sign (\leftarrow) . The formal proofs in the Rocq file threed.v are:

Lemmas: adj111, adj122, adj212, adj123, adj133, adj233, adj213, adj313, adj323, and not_all_mutually_adjacent_gt_3.

DEFINITION 4.11. Immediate Cyclic Successor of m is n:

(4.18)
$$\forall x_m, x_n \in \{x_1, \dots, x_{setsize}\}$$
:
 $Successor(m, n, setsize) \leftarrow (m = setsize \land n = 1) \lor (n = m + 1 < setsize).$

Definition 4.12. Immediate Cyclic Predecessor of m is n:

(4.19)
$$\forall x_m, x_n \in \{x_1, \dots, x_{setsize}\}:$$

 $Predecessor(m, n, setsize) \leftarrow (m = 1 \land n = setsize) \lor (n = m - 1 > 1).$

DEFINITION 4.13. Adjacent: Member m is sequentially adjacent to member n if the immediate cyclic successor of m is n or the immediate cyclic predecessor of m is n. Notionally:

(4.20)
$$\forall x_m, x_n \in \{x_1, \dots, x_{setsize}\}$$
:
 $Adjacent(m, n, setsize) \leftarrow Successor(m, n, setsize) \lor Predecessor(m, n, setsize).$

Definition 4.14. Immediate Symmetric (every set member is sequentially adjacent to every other member):

$$(4.21) \forall x_m, x_n \in \{x_1, \cdots, x_{setsize}\}: Adjacent(m, n, setsize).$$

Theorem 4.15. An immediate symmetric cyclic set is limited to at most 3 members.

Proof.

Every member is adjacent to every other member, where $setsize \in \{1, 2, 3\}$:

$$(4.22) \qquad Adjacent(1,1,1) \leftarrow Successor(1,1,1) \leftarrow (m = setsize \land n = 1).$$

$$(4.23) \qquad \textit{Adjacent}(1,2,2) \leftarrow Successor(1,2,2) \leftarrow (n=m+1 \leq setsize).$$

$$(4.24) \qquad \textit{Adjacent}(2,1,2) \leftarrow Successor(2,1,2) \leftarrow (n = setsize \land m = 1).$$

$$(4.25) \qquad Adjacent(1,2,3) \leftarrow Successor(1,2,3) \leftarrow (n=m+1 \leq setsize).$$

$$(4.26) \qquad Adjacent(2,1,3) \leftarrow Predecessor(2,1,3) \leftarrow (n=m-1 \geq 1).$$

$$(4.27) \qquad Adjacent(3,1,3) \leftarrow Successor(3,1,3) \leftarrow (n = setsize \land m = 1).$$

$$(4.28) \qquad Adjacent(1,3,3) \leftarrow Predecessor(1,3,3) \leftarrow (m=1 \land n=setsize).$$

$$(4.29) \qquad Adjacent(2,3,3) \leftarrow Successor(2,3,3) \leftarrow (n=m+1 \leq setsize).$$

$$(4.30) \qquad Adjacent(3,2,3) \leftarrow Predecessor(3,2,3) \leftarrow (n=m-1 \geq 1).$$

Member 2 is the only immediate successor of member 1 for all $setsize \ge 3$, which implies member 3 is not (\neg) an immediate successor of member 1 for all $setsize \ge 3$:

$$(4.31) \quad \neg Successor(1, 3, setsize \ge 3)$$

$$\leftarrow Successor(1, 2, setsize \geq 3) \leftarrow (n = m + 1 \leq setsize).$$

Member n = setsize > 3 is the only immediate predecessor of member 1, which implies member 3 is not (\neg) an immediate predecessor of member 1 for all setsize > 3:

$$(4.32) \quad \neg Predecessor(1, 3, setsize \ge 3)$$

$$\leftarrow Predecessor(1, set size, set size > 3) \leftarrow (m = 1 \land n = set size > 3).$$

For all setsize > 3, some elements are not (\neg) sequentially adjacent to every other element (not immediate symmetric):

$$(4.33) \quad \neg Adjacent(1, 3, set size > 3)$$

$$\leftarrow \neg Successor(1, 3, set size > 3) \land \neg Predecessor(1, 3, set size > 3). \quad \Box$$

The Symmetric goal matches Adjacent goals 4.22 and fails for all "setsize" greater than three.

5. Applications to physics

Where distance is an immediate cyclic set of dimensions, the 3D proof requires more dimensions to have non-distance types, where for each unit length, r_c , of distance interval length, r, there are unit lengths: t_c of time interval length, t; m_c of mass interval length, m; and q_c of charge interval length, q, such that:

(5.1)
$$r = (r_c/t_c)t = (r_c/m_c)m = (r_c/q_c)q = \cdots.$$

5.1. Derivation of the constant, G, and the gravity laws of Newton, Gauss, and Poisson. From equation 5.1:

(5.2)
$$r = (r_c/m_c)m$$
 \wedge $r = (r_c/t_c)t = ct$ \Rightarrow $r/(ct)^2 = (r_c/m_c)m/r^2$ \Rightarrow $r/t^2 = ((r_c/m_c)c^2)m/r^2 = Gm/r^2$,

where Newton's constant, $G = (r_c/m_c)c^2$, conforms to the SI units: $m^3 \cdot kg^{-1} \cdot s^{-2}$.

Newton's law follows from multiplying both sides of equation 5.2 by m:

(5.3)
$$r/t^2 = Gm/r^2 \Leftrightarrow F := mr/t^2 = Gm^2/r^2.$$

(5.4)
$$F = Gm^2/r^2 \land \forall m \in \mathbb{R} : \exists m_1, m_2 \in \mathbb{R} : m_1m_2 = m^2 \Rightarrow F = Gm_1m_2/r^2$$
.

From equation 5.3, Gauss's gravity field, **g** and Poisson's gravity field, $\Phi(r,t)$:

$$(5.5) \quad \mathbf{g} = \nabla \Phi(\overrightarrow{r}, t) = -r/t^2 = -Gm/r^2$$

$$\Rightarrow \quad \nabla \cdot \mathbf{g} = \nabla^2 \Phi(\overrightarrow{r}, t) = -2Gm/r^3 = (-2Gm/r^3)(2\pi/2\pi) \quad \wedge \quad \rho = m/2\pi r^3$$

$$\Rightarrow \quad \nabla \cdot \mathbf{g} = \nabla^2 \Phi(\overrightarrow{r}, t) = -4\pi G \rho.$$

5.2. Derivation of Coulomb's charge constant, k_e and charge force.

(5.6)
$$\forall q \in \mathbb{R} : \exists q_1, q_2 \in \mathbb{R} : q_1 q_2 = q^2 \land r = (r_c/q_c)q$$

 $\Rightarrow \exists q_1, q_2 \in \mathbb{R} : q_1 q_2 = q^2 = ((q_c/r_c)r)^2 \Rightarrow (r_c/q_c)^2 q_1 q_2/r^2 = 1.$

(5.7)
$$r = (r_c/t_c)t = ct \land r = (r_c/m_c)m = ct$$

 $\Rightarrow mr = (m_c/r_c)rct = (m_c/r_c)(ct)^2 \Rightarrow ((r_c/m_c)/c^2)mr/t^2 = 1.$

(5.8)
$$((r_c/m_c)/c^2)mr/t^2 = 1 \quad \land \quad (r_c/q_c)^2 q_1 q_2/r^2 = 1$$

$$\Rightarrow \quad F := mr/t^2 = ((m_c/r_c)c^2)(r_c/q_c)^2 q_1 q_2/r^2 = k_e q_1 q_2/r^2.$$

where Coulomb's constant, $k_e = ((m_c/r_c)c^2)(r_c/q_c)^2$, has the units $kg \cdot m^3 \cdot s^{-2} \cdot C^{-2}$, which is equivalent to the SI units: $N \cdot m^2 \cdot C^{-2}$.

5.3. Vacuum permittivity, ε_0 , and Gauss's law for electric fields. From Coulomb's charge force equation 5.8, where $r = \overrightarrow{\mathbf{r}_1}$, and $\overrightarrow{\mathbf{r}_2}$, $\overrightarrow{\mathbf{r}_3} = 0$:

(5.9)
$$\exists q \in \mathbb{R} : F = k_e q_1 q_2 / r^2 = k_e q^2 / r^2 := q \mathbf{E} \quad \Rightarrow \quad \mathbf{E} = k_e q / r^2,$$
 where \mathbf{E} has the SI units $N \cdot C^{-1}$.

(5.10)
$$\mathbf{E} = k_e q/r^2 \quad \Rightarrow \quad \nabla \cdot \mathbf{E} = -2k_e q/r^3.$$

(5.11)
$$\nabla \cdot \mathbf{E} = -(2k_e q/r^3)(2\pi/2\pi) \quad \wedge \quad \rho = q/2\pi r^3 \quad \wedge \quad \varepsilon_0 := 1/4\pi k_e$$

$$\Rightarrow \quad \nabla \cdot \mathbf{E} = -4\pi k_e \rho = -\rho/\varepsilon_0.$$

5.4. Vacuum permeability, μ_0 , and Faraday's law. $\mathbf{B} = \mathbf{E}/c$ has the base SI units: $kg \cdot s^{-1} \cdot C^{-1} = kg \cdot s^{-2} \cdot A^{-1} = T$. From equation 5.9:

(5.12)
$$\mathbf{B} := \mathbf{E}/c = (k_e/c)q/r^2 \quad \land \quad r = ct \quad \Rightarrow \quad \mathbf{B} = (k_e/c^3)q/t^2.$$

(5.13)
$$\mathbf{B} = (k_e/c^3)q/t^2 \quad \Rightarrow \quad \partial \mathbf{B}/\partial t = -(2k_e/c^3)q/t^3.$$

(5.14)
$$\partial \mathbf{B}/\partial t = -(2k_e/c^3)q/t^3 \wedge r = ct \Rightarrow \partial \mathbf{B}/\partial t = -2k_eq/r^3.$$

 $\nabla \times$ has the opposite signed (orthogonal) direction of $\nabla \cdot$. From equation 5.10:

(5.15)
$$\nabla \cdot \mathbf{E} = -2k_e q/r^3 \quad \Rightarrow \quad \nabla \times \mathbf{E} = 2k_e q/r^3.$$

Combining equations 5.13 and 5.15 yields Faraday's law:

(5.16)
$$\nabla \times \mathbf{E} = 2k_e q/r^3 \wedge \partial \mathbf{B}/\partial t = -2k_e q/r^3 \Rightarrow \nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t.$$

(5.17)
$$\partial \mathbf{B}/\partial t = -(2k_e q/r^2)(2\pi/2\pi) \quad \wedge \quad \rho = q/2\pi r^3 \quad \wedge \quad \mu_0 := 4\pi k_e/c^2$$

$$\Rightarrow \quad \partial \mathbf{B}/\partial t = -4\pi k_e \rho = -\mu_0 \rho.$$

5.5. Space-time-mass-charge. From the Minkowski distance proof (4.4), the Euclidean distance is the sum of Euclidean distances, for example, $r^2 = r'^2 + r_v^2$. From equation 5.1, there ratios μ and ν such that:

(5.18)
$$\forall \tau \in \{t, m, q\}, \ r^2 = r'^2 + r_v^2, \ \exists \ \mu, \nu : \land r = \mu \tau \land r_v = \nu \tau$$

 $\Rightarrow (\mu t)^2 = r'^2 + (\nu r_v)^2 \Rightarrow r' = \sqrt{(\mu \tau)^2 - (\nu \tau)^2} = \mu \tau \sqrt{1 - (\nu/\mu)^2}.$

Rest frame distance, r', contracts relative to stationary frame distance, r, as $\nu \to \mu$:

(5.19)
$$r' = \mu \tau \sqrt{1 - (\nu/\mu)^2} \quad \land \quad \mu \tau = r \quad \Rightarrow \quad r' = r \sqrt{1 - (\nu/\mu)^2}.$$

Stationary frame type, τ , dilates relative to the rest frame type, τ' , as $\nu \to \mu$:

(5.20)
$$\mu \tau = r' / \sqrt{1 - (\nu/\mu)^2} \quad \land \quad r' = \mu \tau' \quad \Rightarrow \quad \tau = \tau' / \sqrt{1 - (\nu/\mu)^2}.$$

Where τ is type, time, the space-like flat Minkowski spacetime event interval is:

(5.21)
$$dr^2 = dr'^2 + dr_v^2 \wedge dr_v^2 = dr_1^2 + dr_2^2 + dr_3^2 \wedge d(\mu\tau) = dr$$

$$\Rightarrow dr'^2 = d(\mu\tau)^2 - dr_1^2 - dr_2^2 - dr_3^2.$$

5.6. Derivation of Schwarzchild's gravitational time dilation and black hole metric. [Sch16] [AL99] From equations 5.19 and 5.1:

(5.22)
$$\sqrt{1 - (v^2/c^2)} = \sqrt{1 - (v^2/c^2)(r/r)} \wedge r = (r_c/m_c)m$$

$$\Rightarrow \sqrt{1 - (v^2/c^2)} = \sqrt{1 - ((r_c/m_c)m)v^2/rc^2}.$$

Where v_{escape} is the escape velocity:

(5.23)
$$\sqrt{1 - (v^2/c^2)} = \sqrt{1 - ((r_c/m_c)m)v^2/rc^2} \wedge KE = mv^2/2 = mv_{escape}^2$$

$$\Rightarrow \sqrt{1 - (v^2/c^2)} = \sqrt{1 - 2(r_c/m_c)mv_{escape}^2/rc^2}.$$

(5.24)
$$\sqrt{1 - (v^2/c^2)} = \lim_{v_{escape} \to c} \sqrt{1 - 2(r_c/m_c)mv_{escape}^2/rc^2}$$

= $\sqrt{1 - 2(r_c/m_c)mc^2/rc^2}$.

Combining equation 5.24 with the derivation of G (5.4):

(5.25)
$$(r_c/m_c)c^2 = G$$
 \wedge $\sqrt{1 - (v^2/c^2)} = \sqrt{1 - 2(r_c/m_c)mc^2/rc^2}$
 $\Rightarrow \sqrt{1 - (v^2/c^2)} = \sqrt{1 - 2Gm/rc^2}.$

Combining equation 5.25 with equation 5.20 yields Schwarzchild's gravitational time dilation:

(5.26)
$$\sqrt{1 - (v^2/c^2)} = \sqrt{1 - 2Gm/rc^2} \quad \land \quad t' = t\sqrt{1 - (v^2/c^2)}$$

 $\Rightarrow \quad t' = t\sqrt{1 - 2Gm/rc^2}.$

Schwarzchild defined the black hole event horizon radius, $r_s := 2Gm/c^2$.

$$(5.27) r_s = 2Gm/c^2 \wedge t' = t\sqrt{1 - 2Gm/rc^2} \Rightarrow t' = t\sqrt{1 - r_s/r}.$$

From equations 5.19 and 5.27:

(5.28)
$$r' = r\sqrt{1 - (v/c)^2} \quad \land \quad \sqrt{1 - (v/c)^2} = \sqrt{1 - 2Gm/rc^2}$$

 $\Rightarrow \quad r' = r\sqrt{1 - 2Gm/rc^2} = r\sqrt{1 - r_s/r}.$

Using the time-like spacetime interval, where ds^2 is negative:

(5.29)
$$r' = r\sqrt{1 - r_s/r} \wedge ds^2 = dr'^2 - dr^2$$

$$\Rightarrow ds^2 = (\sqrt{1 - r_s/r}dr')^2 - (dr/\sqrt{1 - r_s/r})^2 = (1 - r_s/r)dr'^2 - (1 - r_s/r)^{-1}dr^2.$$

(5.30)
$$ds^{2} = (1 - r_{s}/r)dr'^{2} - (1 - r_{s}/r)^{-1}dr^{2} \wedge dr' = d(ct) \wedge c = 1$$
$$\Rightarrow ds^{2} = (1 - r_{s}/r)dt^{2} - (1 - r_{s}/r)^{-1}dr^{2}.$$

Translating from 2D to 4D yields Schwarzchild's black hole metric:

(5.31)
$$ds^{2} = (1 - r_{s}/r)dt^{2} - (1 - r_{s}/r)^{-1}dr^{2} = f(r, t)$$

$$\Rightarrow ds^{2} = (1 - r_{s}/r)dt^{2} - (1 - r_{s}/r)^{-1}dr^{2} - r^{2}(d\theta^{2} + sin^{2}\theta d\phi^{2}) = f(r, t, \theta, \phi)$$

$$\Rightarrow g_{\mu,\nu} = diag[1 - r_{s}/r), (1 - r_{s}/r)^{-1}, r^{2}(d\theta^{2}), r^{2}(sin^{2}\theta d\phi^{2})].$$

5.7. Simplifying Einstein's general relativity (field) equation. Step 1) Use the unit-factoring ratios to define functions returning scalar values for each component of the metric, $g_{\nu,\mu}$, in Einstein's field equations [Ein15] [Wey52]: All functions derived from the ratios are valid metrics, for example, the previous Schwarzschild black hole metric derivation using the unit-factoring ratios (5.6).

Step 2) Express the EFE as 2D tensors: As shown in equation 5.31, the Schwarzschild metric was first derived as a 2D metric and then expanded to a 4D metric. Further, the 4D flat spacetime interval equation (5.21) is an instance of the 2D equation, $dr'^2 = d(ct)^2 - dr_v^2$, where dr_v^2 is the magnitude of a 3-dimensional vector.

The 2D metric tensor allows using the much simpler 2D Ricci curvature and scalar curvature. And the 2D tensors reduce the number of independent equations to solve.

Step 3) One simple method to translate from 2D to 4D is to use spherical coordinates, where r and t remain unchanged and two added dimensions are the angles, ϕ , and θ . For example, the 2D Schwarzschild metric was translated to 4D using this method in equation 5.31.

5.8. 3 fundamental direct proportion ratios. c_t , c_m , and c_q :

(5.32)
$$c_t = r_c/t_c \approx 2.99792458 \cdot 10^8 m \ s^{-1}.$$

(5.33)
$$G = (r_c/m_c)c_t^2 = c_m c_t^2 \quad \Rightarrow \quad c_m = r_c/m_c \approx 7.4261602691 \cdot 10^{-28} m \ kg^{-1}.$$

$$(5.34) \quad k_e = (c_t^2/c_m)(r_c/q_c)^2 \quad \Rightarrow \quad c_q = r_c/q_c \approx 8.6175172023 \cdot 10^{-18} m \ C^{-1}.$$

5.9. 3 fundamental inverse proportion ratios. k_t , k_m , and k_q :

(5.35)
$$r/t = r_c/t_c$$
, $r/m = r_c/m_c \Rightarrow (r/t)/(r/m) = (r_c/t_c)/(r_c/m_c) \Rightarrow (mr)/(tr) = (m_c r_c)/(t_c r_c) \Rightarrow mr = m_c r_c = k_m$, $tr = t_c r_c = k_t$.

(5.36)
$$r/t = r_c/t_c$$
, $r/q = r_c/q_c \Rightarrow (r/t)/(r/q) = (r_c/t_c)/(r_c/q_c) \Rightarrow (qr)/(tr) = (q_cr_c)/(t_cr_c) \Rightarrow qr = q_cr_c = k_q$, $tr = t_cr_c = k_t$.

5.10. Planck relation and constant, h. [Jail1] Applying both the direct proportion ratio (5.32), and inverse proportion ratio (5.35):

$$(5.37) r = ct \wedge m = k_m/r \Rightarrow m(ct)^2 = (k_m/r)r^2 = k_m r.$$

(5.38)
$$m(ct)^2 = k_m r$$
 \wedge $r/t = r_c/t_c = c$
 \Rightarrow $E := mc^2 = k_m r/t^2 = (k_m(r/t)) (1/t) = (k_m c)(1/t) = hf,$

where the Planck constant, $h = k_m c$, and the frequency, f = 1/t.

(5.39)
$$k_m = m_c r_c = h/c \approx 2.2102190943 \cdot 10^{-42} \ kg \ m.$$

(5.40)
$$k_t = t_c r_c = k_m c_m / c_t \approx 5.4749346710 \cdot 10^{-78} \text{ s m.}$$

(5.41)
$$k_q = q_c r_c = k_t c_t / c_q \approx 1.9046601056 \cdot 10^{-52} \ C \ m.$$

5.11. Compton wavelength. [Jai11] From equations 5.35 and 5.38:

$$(5.42) mr = k_m \wedge h = k_m c \Rightarrow r = k_m/m = (k_m/m)(c/c) = h/mc.$$

5.12. 4 quantum units. Distance (r_c) , time (t_c) , mass (m_c) , and charge (q_c) :

$$(5.43) r_c = \sqrt{r_c^2} = \sqrt{c_t k_t} = \sqrt{c_m k_m} = \sqrt{c_q k_q} \approx 4.0513505432 \cdot 10^{-35} m.$$

- $(5.44) t_c = r_c/c_t \approx 1.3513850782 \cdot 10^{-43} s.$
- $(5.45) m_c = r_c/c_m \approx 5.4555118613 \cdot 10^{-8} \ kg.$
- (5.46) $q_c = r_c/c_q \approx 4.7012967286 \cdot 10^{-18} C.$
- **5.13. Subtype ratios.** The ratio of two subtypes of direct proportion ratio constants, $(x_{\tau_1}/x_{\tau_2})/(x_{\tau_1}/x_{\tau_2}) = 1$. The ratio of two subtypes of inverse proportion ratios, $\forall x_{\tau_1}/x_{\tau_2} > 0 := (x_{\tau_1}/x_{\tau_2})(x_{\tau_1}/x_{\tau_2}), = (x_{\tau_1}x_{\tau_1})/(x_{\tau_2}x_{\tau_2}) = x_{\tau_1}^2/x_{\tau_2}^2 > 0$:

Planck length, r_p : $r_c^2/r_p^2=2\pi$ \Rightarrow $r_p=r_c/\sqrt{2\pi}\approx 1.6162550244\cdot 10^{-35}~m.$

Planck time, $t_p : t_c^2/t_p^2 = 2\pi \implies t_p = t_c/\sqrt{2\pi} \approx 5.3912464472 \cdot 10^{-44} \ s.$

Planck mass, m_p : $m_c^2/m_p^2 = 2\pi \Rightarrow m_p = m_c/\sqrt{2\pi} \approx 2.176434343 \cdot 10^{-8} \ kg$.

 $\mbox{Planck charge, } q_p \colon \, q_c^2/q_p^2 = 2\pi \quad \Rightarrow \quad q_p = q_c/\sqrt{2\pi} \approx 1.875546038 \cdot 10^{-18} \; C.$

Where q_e is the elementary (electron) charge $(1.60217663 \cdot 10^{-19} C)$, the fine structure constant, α , is also the ratio of two inverse proportion ratios:

$$(5.47) \ \ q_c^2/q_e^2 = 2\pi/\alpha \ \Rightarrow \ \alpha = 2\pi q_e^2/q_c^2 = q_e^2/(q_c/\sqrt{2\pi})^2 = q_e^2/q_p^2 \approx 0.0072973526.$$

5.14. Schrödenger's equation. Start with the previously derived Planck relation 5.38 and multiply the kinetic energy component by mc/mc:

$$(5.48) \ h/t = mc^2 \Rightarrow \exists V(r,t) : h/t = h/2t + V(r,t) \Rightarrow h/t = hmc/2mct + V(r,t).$$

And from the distance-to-time (speed of light) ratio (5.32):

(5.49)
$$h/t = hmc/2mct + V(r,t) \wedge r = ct \Rightarrow h/t = hmc^2/2mcr + V(r,t).$$

(5.50)
$$h/t = hmc^2/2mcr + V(r,t) \wedge h/t = mc^2 \Rightarrow h/t = h^2/2mcrt + V(r,t).$$

$$(5.51) h/t = h^2/2mcrt + V(r,t) \wedge r = ct \Rightarrow h/t = h^2/2mr^2 + V(r,t).$$

Replace the Planck constant in equation 5.51 with the reduced Planck constant:

(5.52)
$$h/t = h^2/2mr^2 + V(r,t) \wedge \hbar = h/2\pi \Rightarrow 2\pi\hbar/t = (2\pi)^2\hbar^2/2mr^2 + V(r,t)$$
. Multiply both sides of equation 5.52 by a function, $\Psi(r,t)$.

Wintiply both sides of equation 0.02 by a function, $\pm (r, t)$

(5.53)
$$2\pi\hbar/t = (2\pi)^2\hbar^2/2mr^2 + V(r,t)$$

 $\Rightarrow (2\pi\hbar/t)\Psi(r,t) = ((2\pi)^2\hbar^2/2mr^2)\Psi(r,t) + V(r,t)\Psi(r,t).$

$$(5.54) \quad (2\pi\hbar/t)\Psi(r,t) = ((2\pi)^2\hbar^2/2mr^2)\Psi(r,t) + V(r,t)\Psi(r,t) \quad \wedge$$

$$\forall \ \Psi(r,t) : \ \partial^2\Psi(r,t)/\partial r^2 = (-(2\pi)^2/r^2)\Psi(r,t) \quad \wedge \quad \partial\Psi(r,t)/\partial t = (i\ 2\pi/t)\Psi(r,t)$$

$$\Rightarrow \quad i\hbar\partial\Psi(r,t)/\partial t = -(\hbar^2/2m)\partial^2\Psi(r,t)/\partial r^2 + V(r,t)\Psi(r,t),$$

which is Schrödenger's equation in one dimension of space.

$$(5.55) \quad i\hbar\partial\Psi(r,t)/\partial t = -(\hbar^2/2m)\partial^2\Psi(r,t)/\partial r^2 + V(r,t)\Psi(r,t) \quad \wedge \quad ||\overrightarrow{\mathbf{r}}|| = r$$

$$\Rightarrow \quad \exists \ \overrightarrow{\mathbf{r}}: \ i\hbar\partial\Psi(\overrightarrow{\mathbf{r}},t)/\partial t = -(\hbar^2/2m)\partial^2\Psi(\overrightarrow{\mathbf{r}},t)/\partial\overrightarrow{\mathbf{r}}^2 + V(\overrightarrow{\mathbf{r}},t)\Psi(\overrightarrow{\mathbf{r}},t),$$
 which is Schrödenger's equation in three dimensions of space.

5.15. Dirac's wave equation. Using the derived Planck relation 5.38:

(5.56)
$$mc^2 = h/t \implies \exists V(r,t) : mc^2/2 + V(r,t) = h/t \implies 2h/t - 2V(r,t) = mc^2.$$

(5.57)
$$\forall V(r,t): V(r,t) = ih/t \land r = ct \land 2h/t - 2V(r,t) = mc^2$$
 $\Rightarrow 2h/t - i2hc/r = mc^2.$

Use the charge ratio, c_q , and time ratio, $c_t = c$ to multiply each term on the left side of equation 5.57 by 1:

(5.58)
$$qc_q/r = qc_q/ct = 1 \quad \land \quad 2h/t - i2hc/r = mc^2$$

 $\Rightarrow \quad 2h(-qc_q/c)/t^2 - i2h((-qc_q/c)/r^2)c = mc^2.$

where a negative sign is added to q to indicate an attractive force between an electron and a nucleus.

Applying a quantum amplitude equation in complex form to equation 5.59:

(5.59)
$$A_0 = (c_q/c)((1/t)) - i(1/r)) \wedge 2h(-qc_q/c)/t^2 - i2h((-qc_q/c)/r^2)c = mc^2$$

 $\Rightarrow 2h\partial(-qA_0)/\partial t - i2h(\partial(-qA_0)/\partial r)c = mc^2.$

Translating equation 5.59 to moving coordinates via the Lorentz factor, $\gamma_0 = 1/\sqrt{1-(v/c)^2}$:

$$(5.60) \quad 2h\partial(-qA_0)/\partial t - i2h(\partial(-qA_0)/\partial r)c = mc^2$$

$$\Rightarrow \quad \gamma_0 2h\partial(-qA_0)/\partial t - \gamma_0 i2h(\partial(-qA_0)/\partial r)c = mc^2.$$

Multiplying both sides of equation 5.60 by $\Psi(r,t)$:

$$(5.61) \quad \gamma_0 2h\partial(-qA_0)/\partial t - \gamma_0 i2h(\partial(-qA_0)/\partial r)c = mc^2$$

$$\Rightarrow \quad \gamma_0 2h(\partial(-qA_0)/\partial t)\Psi(r,t) - \gamma_0 i2h(\partial(-qA_0)/\partial r)c\Psi(r,t) = mc^2\Psi(r,t).$$

Applying the vectors to equation 5.61:

$$(5.62) \quad \gamma_0 2h(\partial(-qA_0)/\partial t)\Psi(r,t) - \gamma_0 i2h(\partial(-qA_0)/\partial r)c\Psi(r,t) = mc^2\Psi(r,t) \wedge ||\overrightarrow{\mathbf{r}}|| = r \quad \wedge \quad ||\overrightarrow{\mathbf{A}}|| = A_0 \quad \wedge \quad ||\overrightarrow{\gamma}|| = \gamma_0 \quad \wedge \quad \Leftrightarrow \quad \exists \overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{A}}, \overrightarrow{\gamma} :$$

$$\gamma_0 2h(\partial(-qA_0)/\partial t)\Psi(r,t) - \overrightarrow{\gamma} \cdot i2h(\partial(-q\overrightarrow{\mathbf{A}})/\partial r)c\Psi(\overrightarrow{\mathbf{r}},t) = mc^2\Psi(\overrightarrow{\mathbf{r}},t).$$

Adding a $\frac{1}{2}$ angular rotation (spin- $\frac{1}{2}$) of π to equation 5.59 allows substituting the reduced Planck constant, $\hbar = h/2\pi$, into equation 5.62, which yields Dirac's wave equation:

$$(5.63) \quad \gamma_0 2h(\partial(-qA_0)/\partial t)\Psi(r,t) - \overrightarrow{\gamma} \cdot i2h(\partial(-q\overrightarrow{\mathbf{A}})/\partial r)c\Psi(\overrightarrow{\mathbf{r}},t) = mc^2\Psi(\overrightarrow{\mathbf{r}},t)$$

$$\wedge A_0 = \pi(c_q/c)((1/t) - i(1/r))$$

$$\Rightarrow \quad \gamma_0 \hbar(\partial(-qA_0)/\partial t)\Psi(r,t) - \overrightarrow{\gamma} \cdot i\hbar(\partial(-q\overrightarrow{\mathbf{A}})/\partial r)c\Psi(\overrightarrow{\mathbf{r}},t) = mc^2\Psi(\overrightarrow{\mathbf{r}},t).$$

5.16. Total mass. The total mass of a particle is $m = \sqrt{m_0^2 + m_{ke}^2}$, where m_0 is the rest mass and m_{ke} is the kinetic energy-equivalent mass. Applying both the direct (5.32) and inverse proportion ratios (5.35):

(5.64)
$$m_0 = r/(r_c/m_c) = r/c_m \wedge m_{ke} = (m_c r_c)/r = k_m/r \wedge m = \sqrt{m_0^2 + m_{ke}^2} \Rightarrow m = \sqrt{(r/c_m)^2 + (k_m/r)^2}.$$

5.17. Quantum extension to general relativity. The simplest way to demonstrate how to add quantum physics to general relativity is by extending the Schwarzschild's black hole metric (5.6). Start by changing equation 5.22 in the Schwarzschild derivation:

(5.65)
$$\sqrt{1 - (v^2/c^2)} = \sqrt{1 - (v^2/c^2)(r/r)} \wedge r = \sqrt{(c_m m)^2 + (k_m/m)^2} = Q_m$$

$$\Rightarrow \sqrt{1 - (v^2/c^2)} = \sqrt{1 - Q_m v^2/rc^2}.$$

(5.66)
$$\sqrt{1 - (v^2/c^2)} = \sqrt{1 - Q_m v^2/rc^2} \wedge KE = mv^2/2 = mv_{escape}^2$$

$$\Rightarrow \sqrt{1 - (v^2/c^2)} = \sqrt{1 - 2Q_m v_{escape}^2/rc^2}.$$

(5.67)
$$\sqrt{1 - (v^2/c^2)} = \lim_{v_{escape} \to c} \sqrt{1 - 2Q_m v_{escape}^2 / rc^2}$$

$$\Rightarrow \sqrt{1 - (v^2/c^2)} = \sqrt{1 - 2Q_m c^2 / rc^2} = \sqrt{1 - 2Q_m / r}.$$

Combining equation 5.67 with equation 5.20 yields Schwarzchild's gravitational time dilation with a quantum mass effect:

(5.68)
$$\sqrt{1 - (v^2/c^2)} = \sqrt{1 - 2Q_m/r} \quad \land \quad t' = t\sqrt{1 - (v^2/c^2)}$$

 $\Rightarrow \quad t' = t\sqrt{1 - 2Q_m/r}.$

Schwarzschild defined the black hole event horizon radius, $r_s := 2Gm/c^2$. The radius with the quantum extension is $r_s := 2Q_m$. At this point the exact same equations 5.27 through 5.31 yield what looks like the same Schwarzschild black hole metric.

5.18. Quantum extension to Newton's gravity force. The quantum mass effect is easier to understand in the context Newton's gravity equation than in general relativity, because the metric equations and solutions in the EFEs are much more complex. From equation 5.1:

(5.69)
$$m/\sqrt{(r/c_m)^2 + (k_m/r)^2} = 1 \quad \land \quad r^2/(ct)^2 = 1$$

$$\Rightarrow \quad r^2/(ct)^2 = m/\sqrt{(r/c_m)^2 + (k_m/r)^2}$$

$$\Rightarrow \quad r^2/t^2 = c^2 m/\sqrt{(r/c_m)^2 + (k_m/r)^2}.$$

$$(5.70) r^2/t^2 = c^2 m/\sqrt{(r/c_m)^2 + (k_m/r)^2}$$

$$\Rightarrow (m/r)(r^2/t^2 = (m/r)(c^2 m/\sqrt{(r/c_m)^2 + (k_m/r)^2})$$

$$\Rightarrow F := mr/t^2 = c^2 m^2/(r\sqrt{(r/c_m)^2 + (k_m/r)^2}) = c^2 m^2/\sqrt{(r^4/c_m^2) + k_m^2}.$$

(5.71)
$$F = c^2 m^2 / \sqrt{(r^4/c_m^2) + k_m^2}$$
 \wedge $\forall m \in \mathbb{R}, \exists m_1, m_2 \in \mathbb{R} : m_1 m_2 = m^2$
 $\Rightarrow F = c^2 m_1 m_2 / \sqrt{(r^4/c_m^2) + k_m^2}.$

5.19. Quantum extension to Coulomb's force.

(5.72)
$$q^2/((r/c_q)^2 + (k_q/r)^2) = 1 \quad \land \quad r^2/(ct)^2 = 1$$

$$\Rightarrow \quad r^2/(ct)^2 = q^2/((r/c_q)^2 + (k_q/r)^2)$$

$$\Rightarrow \quad r^2/t^2 = c^2q^2/((r/c_q)^2 + (k_q/r)^2).$$

(5.73)
$$\forall q \in \mathbb{R} : \exists q_1, q_2 \in \mathbb{R} : q_1 q_2 = q^2 \land r^2/t^2 = c^2 q^2/((r/c_q)^2 + (k_q/r)^2)$$

 $\Rightarrow \exists q_1, q_2 \in \mathbb{R} : r^2/t^2 = c^2 q_1 q_2/((r/c_q)^2 + (k_q/r)^2)$
 $\Rightarrow r/t^2 = c^2 q_1 q_2/(r((r/c_q)^2 + (k_q/r)^2)).$

$$(5.74) r/t^2 = c^2 q_1 q_2 / (r((r/c_q)^2 + (k_q/r)^2)) \wedge m = \sqrt{(r/c_m)^2 + (k_m/r)^2}$$

$$\Rightarrow F := mr/t^2 = c^2 q_1 q_2 \sqrt{(r/c_m)^2 + (k_m/r)^2} / (r((r/c_q)^2 + (k_q/r)^2))$$

$$= c^2 q_1 q_2 \sqrt{(r^4/c_m^2) + k_m^2} / ((r^4/c_q^2) + k_q^2).$$

6. Insights and implications

- (1) The ruler measure (2.1) and convergence theorem (2.2) were shown to be useful tools for proving the bidirectional implication that a real-valued equation is the only instance of an abstract, countable set relation and that set relation is the only instance of that same equation.
- (2) Combinatorics, the ordered combinations of countable, disjoint sets (n-tuples), $v_c = \sum_{i=1}^m v_{c_i}$, was proven to imply the Euclidean volume equation 3.2.
- (3) Combinatorics, the bijective function constraint on v_c , where $v_c = \sum_{i=1}^m v_{c_i}$, was proven to bidirectionally imply the sum of volumes equation 4.3

(which includes the inner product), and the Minkowski distance equation 4.4 (which includes the Manhattan and Euclidean distance equations), without relying on the geometric primitives and relations in Euclidean geometry [Joy98], axiomatic geometry [Lee10], and vector analysis [Wey52].

(4) Euclid's proof that Euclidean distance is the smallest distance between two distinct points equate Euclidean distance to a straight line, where it is assumed that the straight line length is the smallest distance [Joy98]. And analytic proofs that the straight line length is the smallest distance equate the straight line length to Euclidean distance.

Without using the notion of a straight line: All distance measures in an Euclidean volume have corresponding Minkowski distances (4.4). For all 2-volumes, all Minkowski distances are limited to $n \in \{1,2\}$: n=1 is the larger (Manhattan) distance case, $d = \sum_{i=1}^m s_i$. n=2 is the smaller (Euclidean) distance case, $d = (\sum_{i=1}^m s_i^2)^{1/2}$. That is: $\sum_{i=1}^m s_i \leq (\sum_{i=1}^m s_i^2)^{1/2}$. Where $1 \leq n \leq 2$, d decreases monotonically as $n \to 2$.

(5) The left side of the distance sum inequality (4.6),

(6.1)
$$(\sum_{i=1}^{m} (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^{m} a_i^n)^{1/n} + (\sum_{i=1}^{m} b_i^n)^{1/n},$$

differs from the left side of Minkowski's sum inequality [Min53]:

(6.2)
$$(\sum_{i=1}^{m} (a_i^n + b_i^n)^{\mathbf{n}})^{1/n} \le (\sum_{i=1}^{m} a_i^n)^{1/n} + (\sum_{i=1}^{m} b_i^n)^{1/n}.$$

The two inequalities are only the same where n=1.

- (a) The distance sum inequality (4.6) is a more fundamental inequality because the proof does not require the convexity and Hölder's inequality assumptions of the Minkowski sum inequality proof [Min53].
- (b) The Minkowski sum inequality term, $\forall n > 1 : ((a_i^n + b_i^n)^{\mathbf{n}})^{1/n}$, is **not** a Minkowski distance spanning the n-volume, $a_i^n + b_i^n$. But the distance sum inequality term, $(a_i^n + b_i^n)^{1/n}$, is the Minkowski distance spanning the n-volume, $a_i^n + b_i^n$, which makes it directly related to geometry (for example, the metric space triangle inequality was derived from the m = 1 case for all $n \geq 1$ (4.7)).
- (6) Combinatorics, the sequencing through an ordered set to yield all n! permutations of its members (without jumping around) was proved to be a cyclic set having $n \leq 3$ members (4.15). Higher dimensions must have different types (members of different sets).
 - (a) For example, the vector inner product space (which includes Riemann and pseudo-Riemann spaces) can only be extended beyond 3 dimensions if and only if the higher dimensions have non-distance types, for example, time.
 - (b) But order and symmetry probably limit the number of fundamental types to a very small number. For example, temperature, measured in Kelvins, is not a true type because temperature is more correctly a measure of (kinetic or electromagnetic) energy which is a function of distance, time, mass, and charge. The derivation of Gauss's electric field (5.11) and Faraday's law (5.13) show that both the electric and magnetic force are functions of charge. Likewise, one should not immediately assume the strong force field, weak force field, etc. are types. As will be discussed later, quantum effects might allow

- radioactivity without a weak force.
- (c) Each of 3 immediate symmetric cyclic dimensions of space can have at most 3 immediate symmetric cyclic state values, for example, an immediate symmetric cyclic of 3 vector orientations, {-1,0,1}, per dimension of space and at most 3 spin states per plane, etc.
- (d) If the states are not ordered (a bag of states), then a state value is undetermined until observed (like Schrödenger's poisoned cat being both alive and dead until the box is opened). For a bag of states, there is no "axiom of choice", an axiom often used in math proofs that allows selecting a particular set element (in this case, selecting a particular state).
- (e) A discrete value has measure 0 (no size). The ratio of a time or distance interval length to zero is undefined (infinite), which is the reason quantum entangled particles change discrete state values together with no propagation delay and independent of distance.
- (7) For each unit, r_c . of a 3-dimensional distance interval having a length, r, there are units of other types of intervals forming unit ratios (5.8): $c_t = r_c/t_c$, $c_m = r_c/m_c$, $c_q = r_c/q_c \Leftrightarrow$ the inverse proportion ratios (5.9): $k_t = r_c t_c$, $k_m = r_c m_c$, $k_t = r_c q_c$, where the combination of the direct and inverse ratios implies the quantum units (5.12): r_c , t_c , m_c , q_c .
- (8) The gravity, G (5.4), charge k_e (5.8), and Planck h (5.38) constants were all derived directly from the ratios. And vacuum permittivity, ε_0 and vacuum permeability, μ_0 , are both definable in terms of k_e : $\varepsilon_0 := 1/4\pi k_e$ and $\mu_0 := 1/c_t^2 \varepsilon_0 = 4\pi k_e/c_t^2$.
 - (a) Therefore, G, k_e , ε_0 , μ_0 , and h are **not** "fundamental" constants.
 - (b) Using the ratios instead of those constants in equations would show the shared principles underlying the different laws of physics. For example, the speed of light ratio, c_t , is a component of the constants: $G = c_m c_t^2$, $k_e = (c_q^2/c_m)c_t^2$, $\varepsilon_0 = 1/(4\pi(c_q^2/c_m)c_t^2)$, $h = k_m c_t$.
- (9) The derivations of: $\nabla \cdot \mathbf{g} = -4\pi G \rho$ from $\nabla \cdot \mathbf{g} = -2Gm/r^3$ (5.5), $\nabla \cdot \mathbf{E} = -\rho/\varepsilon_0$ (5.11) from $\nabla \cdot \mathbf{E} = -2k_eq/r^3$ (5.10), and $\partial \mathbf{B}/\partial t = -\mu_0\rho$ from $\partial \mathbf{B}/\partial t = -2k_eq/r^3$ (5.17), show that the use of mass and charge density, ρ , and the definitions of ε_0 and μ_0 are unnecessary complications that obfuscate the commonality, $-2k_Xy/r^3$, and the inverse square commonality, $\mathbf{X} = -k_Xy/r^2$. Likewise, the $4\pi G$ in $\kappa = 2(4\pi G)/c^4$ and the energy density in the stress-energy tensor, $T_{\mu,\nu}$, in Einstein's field equations [Wey52] also obfuscates the inverse square basis.
- (10) The derivation of Faraday's law (5.13) shows that:
 - (a) $c = \mathbf{E}/\mathbf{B}$.
 - (b) ${\bf B}$ does not rely on Gauss's magnetic "dipole" assumption, $\nabla \cdot {\bf B} = 0$. Note that "dipoles" have only been measured for electrons in chemical bonds, which might be measuring the interaction of positive and negative charge fields.
- (11) The derivation of Schwarzchild's time dilation and black hole metric (5.6) [Sch16] [AL99] using ratios:
 - (a) was much shorter and simpler;
 - (b) did not require the complexity of manipulating Christoffel symbols, calculating determinants, partial derivatives, etc.;

- (c) points to a way of simplifying the finding of solutions to Einstein's field equations: 1) the ratios can be used to derive the components of the metric, $g_{\mu,\nu}$, independent of Einstein's field equations, and 2) the field equations can be first solved as 2-dimensional tensors and then generalized to 4-dimensional tensors (5.7).
- (12) The Planck relation and constant, h, has been hypotheses. In this article, the Planck relation and constant were derived from the ratios (5.10).
- (13) The derivation of the Compton wavelength equation, using the ratios (5.42), is much simpler than deriving from momentum and conservation of energy.
- (14) The derivation of the Compton wavelength equation, r = h/mc, (5.11) shows that the computation of the wavelength, r, is overly complex (because it assumes the Planck constant is a fundamental constant) and can be simplified to $r = k_m/m$.
- (15) Using the quantum units, r_c and t_c : $r_c/t_c^2 \approx 2.2184088232 \cdot 10^{51} \ m \ s^{-2}$, which suggests a maximum acceleration for masses.
- (16) The simplification of μ_0 into the quantum units shows two interesting relationships:

(6.3)
$$\mu_0 := \frac{1}{c_t^2 \varepsilon_0} = \frac{4\pi k_e}{c_t^2} = 4\pi \frac{c_q^2}{c_m} = 4\pi \frac{(r_c/q_c)^2}{r_c/m_c} = 4\pi \frac{m_c r_c}{q_c^2} = 4\pi \frac{k_m}{q_c^2}$$
$$\approx 4\pi \frac{2.2102190930 \cdot 10^{-42}}{2.2102190930 \cdot 10^{-35}} \approx 4\pi \cdot 10^{-7} \ kg \ m \ C^{-2} = 4\pi \cdot 10^{-7} \ H \ m^{-1}.$$

- (a) The first time $k_m = m_c r_c$ appears is in the derivation of the Planck relation and Planck constant, $h = k_m c$ (5.10), the second time in the Compton wavelength, $r = k_m/m$ (5.11). And now, k_m appears as a component of μ_0 .
- (b) At least the first 10 significant digits of k_m and q_c^2 being equal is not a coincidence. The term, 10^{-7} , is an artifact of the relative scales of the units of measurement.
- (17) Two subtypes are related via the ratios of two inverse proportion ratios (5.13).
 - (a) For example, the quantum charge and reduced Planck charge units are related via the ratio: $q_c^2/q_p^2 = 2\pi \Rightarrow q_p = q_c/\sqrt{2\pi}$.
 - (b) The CODATA electron coupling version of the fine structure constant, α is defined as: $\alpha = q_e^2/4\pi\varepsilon_0\hbar c = q_e^2/2\varepsilon_0\hbar c$ [COD22].
 - (i) The derivation of α , in this article (5.13), is much simpler because it is the ratio of two subtypes: elementary (electron) charge ratio constant, q_e^2 and charge wave (Planck) ratio, q_p^2 : $\alpha = 2\pi q_e^2/q_e^2 = q_e^2/q_p^2 \approx 0.0072973526$, which is the empirical CODATA value [COD22].
 - (ii) The following steps show that the CODATA definition reduces to the ratio-derived equation:

(6.4)
$$\varepsilon_0 := 1/4\pi k_e = 1/(4\pi (c_q^2/c_m)c_t^2) \quad \wedge \quad h = k_m c_t$$

$$\Rightarrow \quad \varepsilon_0 h c = k_m c_t^2/(4\pi (c_q^2/c_m)c_t^2) = k_m/(4\pi (c_q^2/c_m))$$

$$= m_c r_c/(4\pi ((r_c/q_c)^2/(r_c/m_c))) = q_c^2/4\pi.$$

(6.5)
$$\alpha = q_e^2 / 2\varepsilon_0 hc \quad \wedge \quad \varepsilon_0 hc = q_c^2 / 4\pi = q_p^2 / 2 \quad \Rightarrow \quad \alpha = q_e^2 / q_p^2.$$

- (iii) As shown above, CODATA defines the fine structure constant in terms of a relationship to the Planck constant, hence, the ratio containing the reduced Planck unit, q_p : $\alpha = q_e^2/q_p^2$. The quantum unit, q_c , appears naturally in the derivation of k_e , where $\varepsilon_0 := 1/4\pi k_e$. Therefore, a better definition to describe particle interaction with a charge (electromagnetic) wave is: $\alpha = q_e^2/q_c^2$, where the current CODATA value would be divided by 2π .
- (iv) Other fine structure constants can also be expressed more simply as the ratios of two subtypes of fields, for example, an electron gravity coupling constant can be expressed as the ratio of a stationary electron mass to a quantum mass unit: $\alpha_m = m_e^2/m_p^2$ or $\alpha_m = m_e^2/m_c^2$.
- (18) Special and general relativity assume covariance, which states that the laws of physics are invariant in every coordinate frame of reference [Ein15]. The infinitesimal volume around every point on Riemann and pseudo-Riemann surfaces is Euclidean-like. Therefore, the same ratios exist near every coordinate point on the surfaces, which causes the same laws of physics at every coordinate frame of reference.
 - (a) The ratio-based derivations of the spacetime equations, in this article (5.5), do not rely on the Lorentz transformations or Einsteins' postulates [Ein15]. The derivations do not even require the notion of light.
 - (b) The ratio-based derivations are also valid for spacemass and space-charge.
 - (c) The special relativity time dilation equation 5.20 was derived from the distance-to-time ratio, $r = (r_c/t_c)t$, and combined with the distance-to-mass ratio, $r = (r_c/m_c)m$, (5.8) yielded Schwarzchild's gravitational time dilation and black hole metric equations (5.27).
- (19) The derivation of Schrödenger (5.14) and Dirac wave equations (5.15), in this article, differs from other derivations:
 - (a) Other derivations are based on the Hamiltonian (energy-momentum) operator, which is defined rather than derived. In contrast, the derivations, in this article, rely on the ratio-derived Planck (energyfrequency) relation.
 - (b) The derivations here are more rigorous because the energy-momentum term, $h^2/2m$, was derived, in this article, from the Planck relation (5.51), where the Planck relation was also rigorously derived (5.10). Other derivations **incorrectly** assume (define) the energy-momentum relation as: $(\mathbf{p} \cdot \mathbf{p})/2m = \hbar^2/2m$. But the more rigorous derivation, in this article, shows that the reduced Planck constant is only valid if the equations contain compensating π based terms. For example, in Schrödenger's equation, the compensating 2π terms: $\partial^2 \Psi(r,t)/\partial r^2 = (-(2\pi)^2/r^2)\Psi(r,t)$ and $\partial \Psi(r,t)/\partial t = (i 2\pi/t)\Psi(r,t)$. And in Dirac's equation, the compensating π term: $A_0 = \pi(c_q/c)((1/t)+(1/r))$. Finding solutions to Schrödenger's equation would be simpler if the full Planck constant is used because it

would reduce the complexity of $\Psi(r,t)$.

- (20) The quantum extensions to: Schwarzchild's time dilation 5.68 black hole metric (5.31), Newton's gravity force (5.71), and Coulomb's charge force (5.74) make quantifiable predictions:
 - (a) The gravitation and charge forces peak at finite amounts as $r \to 0$: $\lim_{r\to 0} F = c^2 m_1 m_2/k_m$ and $\lim_{r\to 0} F = c^2 q_1 q_2 k_m/k_q^2$. Finite maximum gravity and charge forces allows radioactivity, finite sloped energy well walls, and possibly black hole evaporation.
 - (b) Both the gravity and charge equations reduce to the classic equations, where the distance between masses and charges is sufficiently large or the masses and charges sufficiently large that the quantum effect is not measurable. **Note** that G, k_e , ε_0 , μ_0 , and κ (Einstein's constant, which contains G) are not valid, where the quantum effects becomes measurable.
 - (c) And the covariant tensor components, in Einstein's field equations, that had the units $1/distance^2$, will now have the more complex units, $1/\sqrt{(distance^4/c_m^2) + k_m^2}$.
 - (d) $1/\sqrt{(distance^4/c_m^2) + k_m^2}$ implies that as distance $\to 0$, spacetime curvature peaks at a finite amount, which predicts that black holes probably have sizes > 0 (are probably not singularities). The big bang might not have originated from a singularity.
 - (e) Schwarzchild defined the black hole event horizon radius, $r_s := 2Gm/c^2$, where $2Gm/c^2 = 2(c_mc^2)m/c^2 = 2c_mm$. The event horizon radius with the quantum extension is $r_s := 2Q_m = 2\sqrt{(c_mm)^2 + (k_m/m)^2}$. Where the mass is sufficiently large that the quantum effect, k_m/m , is not measurable, the two equations are the same.

References

- [AL99] S. Antoci and A. Loinger, An english translation of k. schwarzschild's 1916 article:

 On the gravitational field of a mass point according to einstein's theory (1999). https:
 //arxiv.org/abs/physics/9905030. ↑10, 17
- [COD22] CODATA, Fine structure constant, NIST, 2022. https://physics.nist.gov/cgi-bin/cuu/Value?alph|search_for=fine+structure. \u00c418
 - [Ein15] A. Einstein, Relativity, the special and general theory, Princeton University Press, 2015.
 ↑11, 19
 - [Gol76] R. R. Goldberg, Methods of real analysis, John Wiley and Sons, 1976. ↑1, 2
 - [Jai11] M.C. Jain, Quantum mechanics: A textbook for undergraduates, PHI Learning Private Limited, New Delhi, India, 2011. ↑12
 - [Joy98] D. E. Joyce, Euclid's elements, 1998. http://aleph0.clarku.edu/~djoyce/java/elements/elements.html. \u00f316
 - [Lee10] J. M. Lee, Axiomatic geometry, American Mathematical Society, 2010. †16
 - [Min53] H. Minkowski, Geometrie der zahlen, Chelsea, 1953. reprint. ↑2, 16
 - [Roc25] Rocq, Rocq proof assistant, 2025. https://rocq-prover.org/docs. †2
- [Rud76] W. Rudin, Principles of mathematical analysis, McGraw Hill Education, 1976. ↑1, 2
- [Sch16] K. Schwarzschild, Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 7 (1916), 198-196. https://archive.org/stream/sitzungsberichte1916deutsch#page/ 188/mode/2up. ↑10, 17
- [Wey52] H. Weyl, Space-time-matter, Dover Publications Inc, 1952. ↑2, 11, 16, 17