

EMAIL: neildouglas@cmail.carleton.ca **OFFICE:** CSAS, 4th Floor MacOdrum Library

•

COURSE: ECOR2606 OFFICE HOURS: Fridays 3:00 pm to 4:00 pm

WEEK: 10

Opener

Core concepts covered today:

- Interpolation
 - o Difference between interpolation and regression
 - o Finding an interpolating polynomial for a set of data using MATLAB
 - Finding an interpolating polynomial for a set of data using Newton's formula

Quick Activity: Difference between interpolation and regression

Fill in the table below. You may want to look at the Lecture 18 slides for help.

Regression	Interpolation
Used to find a curve (of some chosen form) that:	Used to find a curve that can:
The curve must to pass through all of the points. True or False?	The curve must pass through all of the points. True or False?
p = polyfit(x,y,n):	p = polyfit(x,y,n):
n is the number of data points minus one.	n is the number of data points minus one.
Fits a order polynomial to the data.	Fits an to the data.

WEEK: 10

EMAIL: neildouglas@cmail.carleton.ca **OFFICE:** CSAS, 4th Floor MacOdrum Library

COURSE: ECOR2606

OFFICE HOURS: Fridays 3:00 pm to 4:00 pm

Activity 1

The following MATLAB code uses polynomial interpolation and all data points to estimate the value of y at x=4.3 and x=7.8. It also plots the data points and the interpolating polynomial on the same graph. All you need to do is fill in the blanks!

```
% Our data points:
x = [2 \ 4 \ 6 \ 8];
y = [5 7 10 18];
p = \underline{\qquad} (x,y,\underline{\qquad}); % Fits the interpolating
polynomial (IP) to the data
% The code below evaluates the interpolating polynomial
at 100 evenly spaced values of x between 2 and 8.
xIP = linspace(2,8,100);
yIP = \underline{\qquad} (p,xIP);
% Figure(1) created below is a plot containing the data
points and the interpolating polynomial
figure(1)
title('Graph of Data Points & Interpolating
Polynomial')
xlabel('x')
ylabel('y')
plot(x,y,'____') % Used to plot just the data points
grid on
plot( , ,'--') % Used to plot the IP
% The code below outputs the estimated value of y at
x=4.3 and x=7.8 (i.e. outputs the value of the IP at
these points).
fprintf('The estimated value of y at x=4.3 is f^n,
polyval(_____,___))
fprintf('The estimated value of y at x=7.8 is f^n,
polyval(____,__))
```


EMAIL: neildouglas@cmail.carleton.ca **OFFICE:** CSAS, 4th Floor MacOdrum Library

WEEK: 10

COURSE: ECOR2606

OFFICE HOURS: Fridays 3:00 pm to 4:00 pm

Activity 2

Determine the equation of the interpolating polynomial for the data in Activity 1 using Newton's formula. What is the value of the interpolating polynomial at x=4.3 and x=6?

Х	у
2	5
4	7
6	10
8	18

Here's what you are given on your formula sheet for Newton's interpolating polynomials:

$$p(x) = a_1 + a_2(x - x_1) + a_3(x - x_1)(x - x_2) + \dots + a_N(x - x_1) \dots (x - x_{N-1})$$

$$a_1 = y_1 \quad a_2 = Dy_1 \quad a_3 = D^2 y_1 \quad \dots \quad a_N = D^{N-1} y_1$$

$$Dy_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \quad D^2 y_i = \frac{Dy_{i+1} - Dy_i}{x_{i+2} - x_i} \quad D^k y_i = \frac{D^{k-1} y_{i+1} - D^{k-1} y_i}{x_{i+k} - x_i}$$

COURSE: ECOR2606

WEEK: 10

EMAIL: neildouglas@cmail.carleton.ca **OFFICE:** CSAS, 4th Floor MacOdrum Library

OFFICE HOURS: Fridays 3:00 pm to 4:00 pm

Homework: Try finding the interpolating polynomial for this data set using Lagrange's method.

EMAIL: neildouglas@cmail.carleton.ca **OFFICE:** CSAS, 4th Floor MacOdrum Library

WEEK: 10

COURSE: ECOR2606

OFFICE HOURS: Fridays 3:00 pm to 4:00 pm

Closer

Believe it or not, soon it will be time for me to start preparing your mock final!

So, this week I would like know what are some of the non-MATLAB topics that you would like to see on it. Note there will be some MATLAB questions on it as well, but for now I want to hear about the manual stuff.

Write down three post-midterm topics that we have covered so far that you would most like to see covered on the mock-final.

Just as a refresher, here are the main (non-MATLAB) topics that we have covered since the midterm:

- Solving series of linear equations
 - Using Gaussian Elimination
 - Using Gauss-Jordan Elimination
 - Using the Jacobi Method
 - Using the Gauss-Seidel Method
 - Using LU Factorization
- Curve-fitting
 - Fitting a linear regression (straight line) to a data set
 - Fitting a general least squares regression to a data set $(Z^TZa = Z^Ty)$
 - Fitting special functions to a data set
 - Exponential growth/decay equations
 - Power equations
 - Saturation growth rate equations
- Interpolation
 - Newton's method for finding interpolating polynomials
 - Lagrange's method for finding interpolating polynomials (NO I WILL NOT DO THIS!!)