確率と統計 第3回 総計データの記述

4月27日

前回の復習

前回の復習

前回の授業では『研究テーマと着目する変数を 決めたら、まずは集めたデータをデータ行列の 形式に整理する』というデータ分析の鉄則を学 んだ. 例: ある薬についての対照実験

例: ある薬についての対照実験

事例	处理	冬症 ←支数
2 3	新薬 プラセボ プラセギ	なり なし なし
• • • • • • • • • • • • • • • • • • • •	*	•
500	斩栗	な C.

例: 消費者金融の顧客データ

例: 消費者金融の顧客データ

	贷付金额	全利	返海期间	グレード	持5农
/	8000	5	36	В	あり
2	100	3	/2	A	なし
3	1000	5	3	C	なし.
,	(•	•	•	
•	((((
	1		•		
50	200	10	24	PC	ふしょ
	数	ク値复数~	<i>/</i>	p C 17jysh	鱼级

今回の授業では収集したデータの特徴を表す基本的な図や特徴量を学ぶ.

(数)

今回の授業では収集したデータの特徴を表す基本的な図や特徴量を学ぶ.

基本的な図には,散布図,ドット・プロット,度数分布表,ヒストグラム,箱ひげ図などがあり,

今回の授業では収集したデータの特徴を表す基本的な図や特徴量を学ぶ.

基本的な図には, 散布図, ドット・プロット, 度数分布表, ヒストグラム, 箱ひげ図などがあり, 特徴量には平均, 分散, 標準偏差や, 中央値などがある.

今回の授業では収集したデータの特徴を表す基本的な図や特徴量を学ぶ.

基本的な図には, 散布図, ドット・プロット, 度数分布表, ヒストグラム, 箱ひげ図などがあり, 特徴量には平均, 分散, 標準偏差や, 中央値などがある.

データ行列の型に集めたデータを分析するために、まずは図を描いてから特徴量を求めるとよい.

散布図: 街の平均収入と貧困率

散布図: 街の平均収入と貧困率

(a) 2 つの変数には正の相関があるか, 負の相関があるか, あるいは独立か?

- (a) 2 つの変数には正の相関があるか, 負の相関があるか, あるいは独立か?
- (b) この相関関係は線形 (直線的) か, 非線形 (曲線的) か?

- (a) 2 つの変数には正の相関があるか, 負の相関があるか, あるいは独立か?
- (b) この相関関係は線形 (直線的) か, 非線形 (曲線的) か?
- (c) なにかこの散布図から読み取れるか?

1 から 10 までの数字が描かれた球が 1000 個入ったくじ引きから 10 個の球を選ぶ.

1 から 10 までの数字が描かれた球が 1000 個入ったくじ引きから 10 個の球を選ぶ. (この時, 母集団がくじ引きの球全体で標本が選ばれた 10 個の球.)

1 から 10 までの数字が描かれた球が 1000 個入ったくじ引きから 10 個の球を選ぶ. (この時, 母集団がくじ引きの球全体で標本が選ばれた 10 個の球.)

標本のドットプロットが以下のようになった。

ドット・プロットの例

ドット・プロットの例

ドット・プロットの例

標本平均は?

標本 x_1, x_2, \ldots, x_n の標本平均

標本 x_1, x_2, \ldots, x_n の標本平均

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \tag{1}$$

標本 x_1, x_2, \ldots, x_n の標本平均

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \tag{1}$$

から母集団 Xの母平均 μ (ミュー) の大体の値を 予想することができる.

標本 x_1, x_2, \ldots, x_n の標本平均

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \tag{1}$$

から母集団 Xの母平均 μ (ミュー) の大体の値を 予想することができる.

このような足し算による平均はもっとも基本的なデータの特徴量だけれども,以下のような場合には注意が必要.

例: ある国の一人当たりの平均所得は?

例: ある国の一人当たりの平均所得は?

	州名	人口(6人)	平均所得。(石門)
1	A	200	200
2	В	16	300
3	C	100	200
4	Ь	10	500
5	E	50	100
			<u> </u>

ヒストグラム

ヒストグラム

データの分布を表現する最も基本的な図がヒストグラム。

ヒストグラム

データの分布を表現する最も基本的な図が<mark>ヒス</mark>トグラム.

データの数が多い場合には、ドット・プロットではなく度数分布表とヒストグラムにデータをまとめる.

度数分布表とヒストグラムの例

度数分布表とヒストグラムの例

140~149	150~159	160~169	190~199	130~154
0	2	5	7	3

山の数はいくつか? (ピーク)

山の数はいくつか?

大事で特徴①山(ピーク)の数、

右に歪んでいるか? 左に歪んでいるか? 対称か?

右に歪んでいるか? 左に歪んでいる か? 対称か?

ヒストグラムが右に広がっているとき右に歪んでいるといい、左に広がっているとき左に歪んでいるという。

右に歪んでいるか? 左に歪んでいる か? 対称か?

ヒストグラムが右に広がっているとき右に歪んでいるといい、左に広がっているとき左に歪んでいるという。

グラクの系み

データのばらつきを表す量に分散と標準偏差がある.

データのばらつきを表す量に分散と標準偏差がある.標本 $\{x_1, x_2, ..., x_n\}$ の標本分散と標準偏差をそれぞれ s^2 , s と表す.

データのばらつきを表す量に分散と標準偏差がある.標本 $\{x_1, x_2, \dots, x_n\}$ の標本分散と標準偏差をそれぞれ s^2 , s と表す.また母集団 X の母分散と標準偏差をそれぞれ σ^2 , σ と表す.

データのばらつきを表す量に分散と標準偏差がある.標本 $\{x_1, x_2, \dots, x_n\}$ の標本分散と標準偏差をそれぞれ s^2 , s と表す.また母集団 X の母分散と標準偏差をそれぞれ σ^2 , σ と表す. \bar{x} を標本平均として,

$$s^{2} = \frac{1}{n-1} \{ (x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2} \},$$

$$s = \sqrt{s^{2}}$$

と定義する.

全体の約 70%が (平均) ± (標準偏差) の範囲に 入ることが多く, 全体の約 70%が (平均) \pm (標準偏差) の範囲に入ることが多く, 全体の約 95%が (平均) \pm $2 \times$ (標準偏差) の範囲に入ることが多い. 全体の約70%が(平均)±(標準偏差)の範囲に入ることが多く, 全体の約95%が(平均)±2×(標準偏差)の範囲に入ることが多い。

このように平均と標準偏差でデータの大体の分 布がわかる.

しかし、

全て同じ平均と標準偏差をもつデータのヒスト グラム.

全て同じ平均と標準偏差をもつデータのヒスト グラム. **ズ** S

全て同じ平均と標準偏差をもつデータのヒスト グラム. **デ** S

A A MARTIN MANNE

左右への歪みや山の数は平均と標準偏差には反映されない. ゆえにヒストグラムを描いたり, 平均値と中央値を比較したりする必要がある.