TRABALHO 1 - Ficha de estudo dirigido

Construção de um ciclo de Born-Haber para o cálculo de variação de entalpia de formação padrão ($\Delta_f H^0$) de um composto

.

1. Introdução

Neste trabalho pretende-se aplicar um ciclo de Born-Haber ao cálculo de entalpias de formação padrão de compostos.

Um ciclo de Born-Haber consiste numa sequência de processos que começam e terminam no mesmo ponto. A soma das variações de entalpia que ocorrem no ciclo completo é zero pois a entalpia é uma função de estado.

A aplicação mais frequente dos ciclos de Born-Haber é para a determinação de energias de rede de um composto sólido ($\Delta_{\text{rede}}\text{H}^{\text{o}} = \Delta_{\text{m}}\text{H}^{\text{o}}$ (iões, gasosos) - $\Delta_{\text{m}}\text{H}^{\text{o}}$ (sólido)). A energia de rede, ou entalpia de rede, corresponde à formação de um composto iónico a partir dos seus iões gasosos. O ciclo de Born-Haber aplica a Lei de Hess para calcular a entalpia pretendida tendo como ponto de partida a reação de formação padrão do composto. A figura seguinte apresenta o ciclo de Born-Haber para a formação de 1 mole de cloreto de sódio sólido:

O processo de cálculo da entalpia de formação do NaCl sólido através do ciclo de Born-Haber envolve vários passos sucessivos: (1) sublimação de uma

Introdução à Química-Física

mole de átomos de sódio; (2) dissociação de meia mole de Cl₂ gasoso em átomos Cl separados no estado gasoso; (3) ionização de uma mole de átomos de sódio gasoso; (4) adição de 1 mole de electrões a uma mole de átomos de Cl gasoso; (5) combinação de uma mole de Na⁺ e uma mole de Cl⁻ para formar uma mole de NaCl sólido. A soma de todas as variações de entalpias associadas aos processos (1) a (5) é igual à variação de entalpia de formação padrão do composto sólido. Isto resulta directamente da Lei de Hess.

O estudo vai ser realizado durante um período de 1 hora de estudo individual antes da aula e 3 horas lectivas.

As ferramentas principais de estudo são a bibliografia recomendada no programa de trabalhos bem como bibliografia anexa.

2. Objectivos

- 1. Representar através de equações químicas os processos de transições de fase (e.g. vaporização), ionização, afinidade electrónica e reacções de formação de compostos.
- 2. Consultar tabelas para obter dados de entalpias padrão de sublimação, energias de ionização, afinidade electrónica, entalpias de formação.
- 3. Construir o ciclo de Born-Haber para a formação de um dado composto sólido.
- 4. Calcular entalpias de formação de um dado composto utilizando um ciclo de Born-Haber em que se conheçam as restantes variaçõesde entalpia envolvidas.

3. Plano de trabalho

- **1.** Desenhe um ciclo de Born-Haber que permita a determinação da entalpia de formação de um composto MX(s).
- **2.** Escreva a expressão matemática para $\Delta_f H^0$ em termos das variações de entalpias envolvidas nos vários passos.
- **3.** Utilize o algoritmo que desenvolveu nas alíneas anteriores para determinar a entalpia de formação do fluoreto de potássio, KF.

Dados: $\Delta_{atom.}H^{o}$ (K(s)) = 90,00 kJ/mol; $\Delta_{ioniz}H^{o}$ (K(g)) = 424,93 kJ/mol; $\Delta_{dissoc}H^{o}$ (F₂(g)) = 157,99 kJ/mol; $\Delta_{elec}H^{o}$ (F(g)) = -349,7 kJ/mol; Energia de rede (KF(s)) = -806,8 kJ/mol.

- **4.** Construa ciclos de Born-Haber que permitam calcular as entalpias de formação padrão de $MgCl_2$ e do composto hipotético MgCl.
- **5.** Calcule a entalpia de formação padrão de cada um dos compostos MgCl e MgCl₂.

Introdução à Química-Física

6. Discuta a estabilidade relativa dos compostos MgCl e MgCl₂. Pode justificar-se porque é que o composto MgCl não é conhecido?

Referências

"Chemical Principles. The Quest for Insight", P.Atkins and L. Jones, Freeman 5th ed.(2010).

ANEXO -

Tabela 1 Entalpias de rede molares a 25 °C (kJ/mol)

Halogenetos				
LiF	-1046	LiCl	-861	
NaF	-929	NaCl	-787	
KF	-826	KCI	-717	
AgF	-971	AgCl	-916	
BeCl ₂	-3017	$MgCl_2$	-2524	
		MgCl	-676	
Óxidos				
MgO	-3850	CaO	-3461	
SrO	-3283	BaO	-3114	
Sulfuretos				
MgS	-3406	CaS	-3119	
SrS	-2974	BaS	-2832	

Tabela 2 Entalpias de dissociação molares de moléculas diatómicas (kJ/mol)

Molécula	$\Delta_{diss}H^{o}$	Molécula	$\Delta_{diss}H^{o}$
H ₂	+436	Br ₂	+193
N_2	+944	I_2	+151
O_2	+496	ΗF	+565
CŌ	+1074	HCI	+431
F_2	+158	HBr	+366
Cl ₂	+242	HI	+299

[&]quot;Química", R. Chang, 11ª ed., McGraw-Hill (2012).

Introdução à Química-Física

Tabela 3 Entalpias de ionização a 25 °C (kJ/mol)

+519	H -	-73
+495,8	F ·	-328
+418	CI -	-349
+738,1	Br -	-325
+2188,1	1-	-295
+1734,5	0 -	-141
+1467	S ⁻	-200
	+495,8 +418 +738,1 +2188,1 +1734,5	+495,8 F - Cl - +418 Cl - +738,1 Br - +2188,1 I - +1734,5 O -

Tabela 4 Entalpias de sublimação a 25 °C (kJ/mol)

Li	+162
Na	+108
K	+90
Mg	+150,2