Quadratic Equations

DAY 1

In chapter polynomials, we've already discussed quadratic polynomial (with degree 2) A polynomial $p(x) = ax^2 + bx + c = 0$; $a \ne 0$ is said to be quadratic polynomial.

If p(x) = 0 means $ax^2 + bx + c = 0$, $a \ne 0$ then It is standard form or general form of quadratic equation. e. g. $2x^2 + x - 3 = 0$, $4x^2 - 2x = 0$ or $3x^2 - 1 = 0$ etc. Now we shall discuss some examples about any equation is quadratic or not:

1. Which of the following are quadratic equations?

i)
$$4x^2 - 2x + 3 = 0$$

ii)
$$4x^2 + 6 = 0$$

ii)
$$4x^2 + 6 = 0$$
 iii) $3x^2 - \sqrt{2x} + 1 = 0$

iv)
$$2x - \frac{5}{x^2} + 3 = 0$$

v)
$$x^2 + 4x - 3\sqrt{x} + 4 = 0$$
 vi) $x + \frac{1}{x} = 4$

vii)
$$x(x+3) = x^2 - 4x + 3$$
 viii) $(x-2)^2 + 1 = 2x - 3$

ix)
$$(x-2)(x+1) = (x-1)(x+3)$$

$$ix$$
) $(x-2)(x+1) = (x-1)(x+3)$ come-become-educated

Sol :- **i**) Given equation is $4x^2 - 2x + 3 = 0$ Since it is of type $ax^2 + bx + c = 0$

∴ It is a quadratic equation

ii) Given equation is $4x^2 + 6 = 0$

Since It is of type $ax^2 + bx + c = 0$ (having b = 0 in given equation)

It is a quadratic equation.

iii) Given equation is $3x^2 - \sqrt{2x} + 1 = 0$

Since it is not of type $ax^2 + bx + c = 0$ because Given equation contain term involving $x^{1/2}$ whose power is not a non-negative integer.

So it is not a quadratic equation.

iv) Given equation si
$$2x - \frac{5}{x^2} + 3 = 0$$

 $\Rightarrow 2x^3 + 3x^2 - 5 = 0$

$$\Rightarrow \frac{2x^3 - 5 + 3x^2}{x^2} = 0$$

Degree of given equation is 3 but in quadratic equation degree is 2.

∴ It is not a quadratic equation.

Given equation is $x^2 + 4x - 3\sqrt{x} + 4 = 0$ v)

In given equation, one term having $x^{1/2}$

∴ It is not a quadratic equation

vi) Given equation is $x + \frac{1}{x} = 4$

$$\Rightarrow \frac{x^2 + 1}{x} = 4$$
$$\Rightarrow x^2 - 4x + 1 = 0$$

$$\Rightarrow x^2 + 1 = 4x$$

$$\Rightarrow x^2 - 4x + 1 = 0$$

Since it is of type $ax^2 + bx + c = 0$

∴ It is a quadratic equation

vii) Given equation is $x(x + 3) = x^2 - 4x + 3$

$$\Rightarrow x^{2} + 3x = x^{2} - 4x + 3 \Rightarrow x^{2} + 3x - x^{2} + 4x - 3 = 0$$

$$\Rightarrow$$
 $7x - 3 = 0$

Since it is not of type $ax^2 + bx + c = 0$, as term x^2 is missing

∴ It is not a quadratic equation

viii) Given equation is $(x-2)^2 + 1 = 2x - 3$

$$\Rightarrow x^{2} + 4 - 4x = 2x - 3 \Rightarrow x^{2} - 4x + 4 - 2x + 3 = 0$$

$$\Rightarrow x^2 - 6x + 7 = 0$$

Since it is of type $ax^2 + bx + c = 0$

∴ It is a quadratic equation

ix) Given equation is (x - 2)(x + 1) = (x - 1)(x + 3)

$$\Rightarrow$$
 $x^2 - 2x + x - 2 = x^2 + 3x - x - 3$

$$\Rightarrow$$
 $x^2 - x - 2 - x^2 - 2x + 3 = 0 \Rightarrow $-3x + 1 = 0$$

Since it is not of type $ax^2 + bx + c = 0$, as term x^2 is missing

∴ It is not a quadratic equation

EXERCISEne-become-educated

- 1. Example 2
- 2. Exercise 4.1, Q1