MA 108-ODE- D3

Lecture 15

Debanjana Mitra

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

May 30, 2023

Laplace Transforms

Let $f:(0,\infty)\to\mathbb{R}$ be a function. The Laplace transform $\mathcal{L}(f)$ of f is the function defined by

$$\mathcal{L}(f)(s) = \int_0^\infty e^{-st} f(t) dt = \lim_{a \to \infty} \int_0^a e^{-st} f(t) dt,$$

for all values of s for which the integral exists. Sometimes we denote $F(s) = \mathcal{L}(f)(s)$.

The integral above may not converge for every s.

We may impose suitable restrictions on f later under which the intergral exists. What is the meaning of the improper integral?

Definition

Let a,b be two real numbers such that $0 < a < b < \infty$. A function $f:[a,b] \to \mathbb{R}$ is said to be piecewise continuous on [a,b] if there is a partition

$$a = t_0 < t_1 < \ldots < t_{n-1} < t_n = b$$

such that

- (i) f is continuous on (t_{i-1}, t_i) for i = 1, 2, ..., n.
- (ii) $\lim_{t \to t_i^+} f(t)$ and $\lim_{t \to t_i^-} f(t)$ both exist for $i = 1, 2, \dots, n-1$ and $\lim_{t \to t_0^+} f(t)$ and $\lim_{t \to t_0^-} f(t)$ both exist.

A piecewise continuous function on an interval [a, b] is continuous except possibly for finitely many jump discontinuties.

- ▶ Let $f:[a,\infty) \to \mathbb{R}$ be a function. If f is such that, for any $b \ge a$, $f:[a,b] \to \mathbb{R}$ is piecewise continuous, then we say that f is piecewise continuous on $[a,\infty)$.
- ▶ Note that such an f is bounded on [a, b] for every $b \ge a$.
- ▶ Note that, for f as above, the usual Riemann integral

$$I(b) = \int_a^b f(x) \ dx$$

exists for any $b \ge a$.

Definition

An improper integral of first kind of the function f with the property mentioned above is defined to be

$$\int_{a}^{\infty} f(x) \ dx := \lim_{b \to \infty} \int_{a}^{b} f(x) \ dx,$$

if this limit exists.

If the above limit exists, we say that $\int_a^\infty f(x) \ dx$ converges, otherwise it is said to diverge.

Example: Consider the improper integral $\int_{1}^{\infty} \frac{dx}{x^{s}}$ for $s \in \mathbb{R}$.

For $s \neq 1$, consider $I(b) = \int_1^b \frac{dx}{x^s} = \frac{b^{1-s}-1}{1-s}$.

$$I(b) = \begin{cases} \frac{b^{1-s}-1}{1-s} & \text{if } s \neq 1, \\ \ln b & \text{if } s = 1. \end{cases}$$

So that

$$\lim_{b\to\infty} I(b) = \begin{cases} \frac{1}{s-1} & \text{if } s>1, \\ \infty & \text{if } s\leq 1. \end{cases}$$

Example: Consider the improper integral $\int_0^\infty \sin x \ dx$. Consider

$$I(b) = \int_0^b \sin x \, dx = 1 - \cos b.$$

Since $\lim_{b\to\infty} I(b)$ does not exist, the integral $\int_0^\infty \sin x \ dx$ diverges.

Laplace Transforms

Example: Let f(t) = 1 for all $t \ge 0$. Then, $\mathcal{L}(f)(s) = \frac{1}{s}$, $\forall s > 0$.

Proof.

$$\mathcal{L}(f)(s) = \int_0^\infty e^{-st} dt = \left[-\frac{e^{-st}}{s} \right]_0^\infty = \frac{1}{s}$$

for s > 0.

Example:

Let
$$f(t) = e^{at}$$
, $t \ge 0$ where a is a constant. Then $\mathcal{L}(f)(s) = \frac{1}{s-a}$, $\forall s > a$.

Proof.

$$\mathcal{L}(f)(s) = \int_0^\infty e^{-st} e^{at} dt = \int_0^\infty e^{(a-s)t} dt = \frac{1}{s-a},$$

for s > a.

Laplace Transforms

Example: Let $f(t) = \sin at$, $t \ge 0$, where a is a constant.

Then
$$\mathcal{L}(f)(s) = \frac{a}{s^2 + s^2}, \quad \forall s > 0.$$

Proof. If s > 0, then

$$\mathcal{L}(f)(s) = \int_0^\infty e^{-st} \sin at \ dt$$

$$= \lim_{b \to \infty} \int_0^b e^{-st} \sin at \ dt$$

$$= \lim_{b \to \infty} \left[-\frac{e^{-st} \cos at}{a} \right]_0^b - \frac{s}{a} \int_0^\infty e^{-st} \cos at \ dt$$

$$= \frac{1}{a} - \frac{s}{a} \int_0^\infty e^{-st} \cos at \ dt$$

$$= \frac{1}{a} - \frac{s^2}{a^2} \int_0^\infty e^{-st} \sin at \ dt$$

$$= \frac{1}{a} - \frac{s^2}{a^2} \mathcal{L}(f)(s)$$

Therefore, for s > 0 $\mathcal{L}(f)(s) = \frac{a}{s^2 + a^2}$.

Gamma function

Definition

For any given a > 0, the gamma function is given by

$$\Gamma(a) = \int_0^\infty e^{-t} t^{a-1} dt.$$

Properties of Gamma function

- 1. $\Gamma(a+1) = a\Gamma(a), \quad a > 0.$
- 2. $\Gamma(1) = 1$, $\Gamma(k+1) = k!, k \in \mathbb{N}$.
- 3. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

The justification of the convergence of the Gamma function and its properties are given in the Appendix, at the end of the slides.

Example: Let $f(t) = t^p$, for any given p > -1. Determine $\mathcal{L}(t^p), p > -1.$

For p = n, where n = 1, ..., i.e, $f(t) = t^n$, $\mathcal{L}(f)(s) = \frac{n!}{s^{n+1}}$,

$$\mathcal{L}(f)(s) = \int_0^\infty e^{-st} t^p dt.$$

Put
$$x = st$$
. Thus, $dt = \frac{dx}{s}$. Thus,
$$\mathcal{L}(f)(s) = \int_{0}^{\infty} e^{-x} \left(\frac{x}{s}\right)^{p} \cdot \frac{dx}{s}$$

$$\mathcal{L}(f)(s) = \int_{0}^{\infty} e^{-x} \left(\frac{x}{s}\right)^{p} \cdot \frac{dx}{s}$$
$$= \frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} dx$$

$$\mathcal{L}(f)(s) = \int_0^\infty$$

For $p = \frac{-1}{2}$, i.e., $f(t) = t^{-\frac{1}{2}}$, for all s > 0,

 $= \frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{(1+p)-1} dx$

 $=\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0.$

 $\mathcal{L}(f)(s) = \frac{\Gamma(1/2)}{s^{1/2}} = \sqrt{\frac{\pi}{s}},$

Laplace Transforms

Exercise: Show that

- 1. For $f(t) = \cos at$, $\mathcal{L}(f)(s) = \frac{s}{s^2 + a^2}$, s > 0.
- 2. For $f(t) = \cosh at$, $\mathcal{L}(f)(s) = \frac{s}{s^2 a^2}$, $s > a \ge 0$.
- 3. For $f(t) = \sinh at$, $\mathcal{L}(f)(s) = \frac{a}{s^2 a^2}$, $s > a \ge 0$.

Existence of Laplace transforms

- ▶ For a given f, $\mathcal{L}(f)$ may or may not exist.
- ▶ Sufficient conditions under which convergence is guaranteed for the integral in the definition of the Laplace transform is that f is piecewise continuous on $[0,\alpha]$, for all $\alpha>0$ and is of exponential order on $(0,\infty)$.

A function $f:(0,\infty)\to\mathbb{R}$ is said to be of exponential order if there exists $a\in\mathbb{R}$ and positive constants t_0 and K such that

$$|f(t)| \leq Ke^{at}$$
,

for all $t \geq t_0 > 0$.

Examples

- 1. Every bounded function is of exponential order with the constant a=0. Thus, $\sin bt$ and $\cos bt$ are of exponential order. Also, if $|f(t)| \leq K$ for $t \geq t_0 > 0$, then f is of exponential order.
- 2. $e^{\alpha t} \sin bt$ is of exponential order, with constant $a = \alpha$.
- 3. t^n for n>0 is of exponential order, since for a>0, $\lim_{t\to\infty}e^{-at}t^n=0$ and thus, there exists K>0 and $t_0>0$ such that

$$e^{-at}|f(t)| = e^{-at}t^n < K, \text{ for } t > t_0.$$

4. e^{t^2} is not of exponential order, for in this case,

$$e^{-at}|f(t)|=e^{t^2-at}$$

and this becomes unbounded as $t \to \infty$, no matter what is value of a.

5. Sum of functions of exponential order is also of exponential order.

Existence theorem

Theorem

Suppose $f(\cdot)$ is piecewise continuous on $[0, \alpha]$ for all $\alpha > 0$. Further suppose

$$|f(t)| \leq Ke^{at}$$
,

for $t \ge t_0 > 0$, where K > 0, $a, t_0 \in \mathbb{R}$. Then

$$\mathcal{L}(f)(s) = F(s) = \int_0^\infty e^{-st} f(t) dt$$

exists for s > a.

Proof: We have:

$$\mathcal{L}(f)(s) = \int_0^{t_0} e^{-st} f(t) dt + \int_{t_0}^{\infty} e^{-st} f(t) dt.$$

As f is piecewise continuous on $[0, t_0]$, $\int_0^{t_0} e^{-st} f(t) dt$ exists.

Proof contd...

We need to show that $\int_{t_0}^{\infty} e^{-st} f(t) dt$ converges. For $t \geq t_0$, we have:

$$|e^{-st}f(t)| \leq e^{-st}Ke^{at} = Ke^{-(s-a)t}.$$

For s > a, $\int_{t_0}^{\infty} e^{-(s-a)t} dt$ converges. Hence,

$$\int_{t_0}^{\infty} |e^{-st}f(t)|dt,$$

and thus

$$\int_{t_0}^{\infty} e^{-st} f(t) dt$$

converges (Why?) Use comparison test.

Assume that f is piecewise continuous on $[a, \infty)$.

Theorem (Comparison Test)

Suppose $0 \le f(x) \le g(x)$ for every $x \ge a$. If $\int_a^\infty g(x) \ dx$ converges, then $\int_a^\infty f(x) \ dx$ also converges and

$$\int_a^\infty f(x) \ dx \le \int_a^\infty g(x) \ dx.$$

Example: As

$$0 \le \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$$

on $[1,\infty)$, and $\int_1^\infty \frac{1}{x^2} \ dx$ converges, it follows that $\int_1^\infty \frac{\sin^2 x}{x^2} \ dx$ also converges.

Theorem

If $\int_a^\infty |f(x)| dx$ converges, then $\int_a^\infty f(x) dx$ converges.

List of Laplace tranforms

Often, in practice to simplify the notation, the notation $\mathcal{L}(e^t)(s)$, $\mathcal{L}(\sin at)(s)$... are used instead of $\mathcal{L}(f)(s)$, where $f(t)=e^t$, $f(t)=\sin at$ respectively...

- 1. $L(1)(s) = \frac{1}{s}, s > 0.$
- 2. $L(e^{at})(s) = \frac{1}{s-a}, s > a$.
- 3. $L(\sin at)(s) = \frac{a}{s^2+a^2}, s > 0.$
- 4. $L(\cos at)(s) = \frac{s}{s^2+a^2}, s > 0.$
- 5. $L(\sinh at)(s) = \frac{a}{s^2 a^2}, s > a \ge 0.$
- 6. $L(\cosh at)(s) = \frac{s}{s^2 a^2}, s > a \ge 0.$
- 7. For p > -1, $L(t^p)(s) = \frac{\Gamma(p+1)}{s^{p+1}}$, s > 0.

Laplace Transforms: Linearity

Theorem

Let f, g be two functions such that $\mathcal{L}(f)(s)$ and $\mathcal{L}(g)(s)$ exist for $s > a_1$ and $s > a_2$ respectively. Then for $s > \max\{a_1, a_2\}$,

$$\mathcal{L}(c_1f+c_2g)(s)=c_1\mathcal{L}(f)(s)+c_2\mathcal{L}(g)(s),$$

where $c_1, c_2 \in \mathbb{R}$.

Proof: For $s > \max\{a_1, a_2\}$,

$$\mathcal{L}(c_1f + c_2g)(s) = \int_0^\infty e^{-st} \left(c_1f(t) + c_2g(t)\right) dt$$

$$= \int_0^\infty e^{-st} c_1f(t) dt + \int_0^\infty e^{-st} c_2g(t) dt$$

$$= c_1\mathcal{L}(f)(s) + c_2\mathcal{L}(g)(s).$$

Application of the above property

Find the Laplace transform of $f(t) = e^t + t^n + \sin at + c$, where a, c are given constants.

Ans. Note that $\mathcal{L}(e^t)(s)$ exists for all s > 1, and $\mathcal{L}(t^2)(s)$, $\mathcal{L}(\sin at)(s)$, $\mathcal{L}(c)(s)$ exist for all s > 0.

Using the linearity property of Laplace transform, for all s > 1,

$$\mathcal{L}(f)(s) = \mathcal{L}(e^t)(s) + \mathcal{L}(t^2)(s) + \mathcal{L}(\sin at)(s) + \mathcal{L}(c)(s)$$
$$= \frac{1}{s-1} + \frac{2}{s^3} + \frac{a}{s^2+a^2} + \frac{c}{s}, \quad \forall \, s > 1.$$

Scaling

Theorem (Scaling)

Let f be a function such that $\mathcal{L}(f)(s)$ exists for s > a, for some $a \in \mathbb{R}$, and let c > 0 a constant. Let g(t) = f(ct) for all t > 0. Then for s > ca,

$$\mathcal{L}(g)(s) = \frac{1}{c}\mathcal{L}(f)(\frac{s}{c}).$$

Proof: Let g(t) = f(ct) for all t > 0, where c > 0 and $\mathcal{L}(f)(s)$ exists for s > a. Then for all s > ca,

$$\mathcal{L}(g)(s) = \int_0^\infty e^{-st} f(ct) dt = \frac{1}{c} \int_0^\infty e^{-\frac{s}{c}\tau} f(\tau) d\tau = \frac{1}{c} \mathcal{L}(f)(\frac{s}{c}).$$

Example. Find $\mathcal{L}(f)$, where $f_{\pi}(t) = \sin(\pi t)$.

Shifting

Theorem (Shifting)

Let f be a function such that $\mathcal{L}(f)(s)$ exists for s > a, for some $a \in \mathbb{R}$, and let c be a constant. Let $g(t) = e^{ct} f(t)$ for all t > 0. Then for s > a + c,

$$\mathcal{L}(g)(s) = \mathcal{L}(f)(s-c).$$

Proof:

$$L(e^{ct}f(t))(s) = \int_0^\infty e^{-st}e^{ct}f(t)dt$$
$$= \int_0^\infty e^{-(s-c)t}f(t)dt$$
$$= \mathcal{L}(f)(s-c), \quad \forall s > a+c.$$

Example. Let $f(t) = e^{2t} \sin t$. Check $\mathcal{L}(f)(s) = \frac{1}{(s-2)^2+1}$, $\forall s > 2$.

Lerch's Cancellation Law

Theorem

Suppose f, g are continuous functions and

$$\int_0^\infty e^{-st} f(t) dt \text{ and } \int_0^\infty e^{-st} g(t) dt,$$

converge for some s and that $\mathcal{L}(f)(s) = \mathcal{L}(g)(s)$ for all s for which both integrals converge. Then f(t) = g(t) for all t > 0.

Application of Lerch's cancellation law

Qn. For a continuous function $\phi:[0,\infty)\to\mathbb{R}$, it is given that $\mathcal{L}(\phi)(s)=\frac{c}{s-a}$, for all s>a, where c,a are constants. Find ϕ .

Ans. Recall for $f(t)=ce^{at}$, $\mathcal{L}(f)(s)=\frac{c}{s-a}$, for all s>a. Under the condition that ϕ is continuous, and $\mathcal{L}(\phi)(s)=\mathcal{L}(f)(s)$ for all s>a, using Lerch's Cancellation Law we get

$$\phi(t) = ce^{at}, \quad \forall \ t > 0.$$