Anvendt matematikk for grunnskole og VGS

"Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt"

"Det er ikke å vite, men å lære, ikke å eie, men å tilegne seg, ikke å være til stede, men å komme dit, som gir den største gleden."

— Carl Friedrich Gauss

Dokumentet er laget av Sindre Sogge Heggen. Teksten er skrevet i LATEX og figurane er lagd vha. Asymptote.

Matematikkens byggesteiner by Sindre Sogge Heggen is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

Innhold

T	De fire regneartene	4
	1.1 Addisjon	5
	1.2 Subtraksjon	7
	1.3 Ganging	10
	1.4 Divisjon	13
	1.5 Standardform	17
2	Statistikk	18
	2.1 Presentasjonsmetoder	21
	2.2 Tolking av tendenser; sentralmål	24
	2.3 Tolking av forskjeller; spredningsmål	27
3	Geometri	31
	3.1 Symmetri	31
	3.2 Størrelser, enheter og prefikser	35
	3.3 Volum	38
	3.4 Omkrets, areal og volum med enheter	42
4	Brøkregning	43
	4.1 Brøkdeler av helheter	44
	4.2 Prosent	46
	4.2.1 Prosentvis endring	49
	4.2.2 Vekstfaktor	51
	4.2.3 Prosentpoeng	56
	4.3 Forhold	59
	4.3.1 Målestokk	60
	4.3.2 Blandingsforhold	62
	Oppgaver	66
5	Likninger, formler og funksjoner	69
	5.1 Å finne størrelser	69
	5.1.1 Å finne størrelser direkte	69
	5.1.2 Å finne størrelser indirekte	72
	5.2 Funksjoners egenskaper	77
	5.2.1 Funksjoner med samme verdi; skjæringspunkt	77
	5.2.2 Null-, bunn- og toppunkt	80
	Oppgaver	80
6	Økonomi	84
J	6.1 Indeksregning	85

		6.1.1 Konsumprisindeks og basisår 8	5
		6.1.2 Kroneverdi	7
		6.1.3 Reallønn og nominell lønn 8	8
		6.1.4 Regning med indekser 8	9
	6.2	Lån og prosentvis endring over tid 9	1
		6.2.1 Lån	1
		6.2.2 Prosentvis endring over tid 9	4
	6.3	Skatt	8
		6.3.1 Bruttolønn, fradrag og skattegrunnlag 9	8
		6.3.2 Trygdeavgift	9
		6.3.3 Trinnskatt	0
		6.3.4 Nettolønn	
	6.4	Budsjett og regnskap	
		6.4.1 Budsjett	
		6.4.2 Regnskap	
	Орр	gaver	
7	San	nsynlighet 10	
	7.1	Grunnprinnsippet	
	7.2	Hendelser med og uten felles utfall	
		7.2.1 Hendelser uten felles utfall	
		7.2.2 Summen av alle sannsynligheter er 1 11	
		7.2.3 Felles utfall	2
		7.2.4 Venndiagram	6
		7.2.5 Krysstabell	9
	7.3	Gjentatte trekk	0
		7.3.1 Kombinasjoner	0
		7.3.2 Sannsynlighet ved gjentatte trekk	2
		7.3.3 Valgtre	3
	Opp	gaver	7
Ve	dleg	g 13	0
Ex	cel	13	
		Introduksjon	
	E.2	Cellereferanser	
		Kopiering av celler	
		Småtriks	
	Орр	gaver	9
Ge	eoGe	bra 14	3
	G.1	Skrive inn en funksjon	.4
		Finne verdien til en funksjon/linie	

G.3	Finne skjæringspunkt	147
G.4	Finne nullpunkt	148
G.5	Finne topp- eller bunnpunkt	149
G.6	Tegne linjen mellom to punkt	150
G.7	Tegne graf på gitt intervall	151
G.8	Oppgaver	152

Kapittel 1

De fire regneartene

1.1 Addisjon

Oppstilling

Addisjon med oppstilling baserer seg på plassverdisystemet, der man trinnvis rekner summen av enerne, tierne, hundrerne, o.l.

Eksempel 1

Eksempel 2

Eksempel 3

Eksempel 4

Eksempel 1 (forklaring)

6

- a) Vi legger sammen enerne: 4 + 2 = 6
- b) Vi legger sammen tierne: 3 + 1 = 4
- c) Vi legger sammen hundrerne: 2+6=8

Eksempel 2 (forklaring)

- a) Vi legger sammen enerne: 3 + 6 = 9
- b) Vi legger sammen tierne: 7+8=15. Siden 10 tiere er det samme som 100, legger vi til 1 på hundreplassen, og skriver opp de resterende 5 tierne på tierplassen.
- c) Vi legger sammen hundrerne: 1 + 2 = 3.

1.2 Subtraksjon

Oppstilling

Subtraksjon med oppstilling baserer seg på plassverdisystemet, der man trinnvis rekner differansen mellom enerne, tierne, hundrerne, o.l. Metoden tar også utgangspunkt i et mengdeperspektiv, og tillater derfor ikke differanser med negativ verdi (se forklaringen til *Eksempel 2*).

Eksempel 1 (forklaring)

- a) Vi finner differansen mellom enerne: 9-4=5
- b) Vi finner differansen mellom tierne: 8 2 = 6.
- c) Vi finner differansen mellom hundrerne: 7 3 = 4.

8

Eksempel 2 (forklaring)

- a) Vi merker oss at 7 er større enn 3, derfor tar vi 1 tier fra de 8 på tierplassen. Dette markerer vi ved å sette en strek over 8. Så finner vi differansen mellom enerne: 13-7=6
- b) Siden vi tok 1 fra de 8 tierne, er der nå bare 7 tiere. Vi finner differansen mellom tierne: 7 6 = 1.

Tabellmetoden

Tabellmetoden for subtraksjon tar utgangspunkt i at subtraksjon er en omvendt operasjon av addisjon. For eksempel, svaret på spørsmålet "Hva er 789-324?" er det samme som svaret på spørsmålet "Hvor mye må jeg legge til på 324 for å få 789?". Med tabellmetoden følger du ingen spesiell regel underveis, men velger selv tallene du mener passer best for å nå målet.

Eksempel 1
$$789 - 324 = 465$$

$$\begin{array}{r|rrrr} & 324 \\ \hline & 6 & 330 \\ \hline & 70 & 400 \\ \hline & 389 & 789 \\ \hline & 465 & \\ \end{array}$$

Eksempel 2
$$83 - 67 = 16$$

$$\begin{array}{r|rrrr}
 & 67 \\
\hline
 & 3 & 70 \\
\hline
 & 13 & 83 \\
\hline
 & 16 & \\
\end{array}$$

Eksempel 3

$$564 - 478 = 86$$

	478
2	480
20	500
64	564
86	

$$206,1 - 31,7 = 174,4$$

	31,7
0,3	32
70	102
104,1	206,1
174,4	

Eksempel 1 (forklaring)

	324	
6	330	
70	400	
389	789	
(d)		

	324	
6	330	
70	400	
389	789	
465		
(e)		

- (a) Vi starter med 324.
- (b) Vi legger til 6, og får 324 + 6 = 330
- (c) Vi legger til 70, og får 70 + 330 = 400
- (d) Vi legger til 389, og får 389 + 400 = 789. Da er vi framme på 789.
- (e) Vi adderer tallene vi har lagt til: 6+70+389=465

1.3 Ganging

Ganging med 10, 100, 1000 osv.

1.1 Å gange heltall med 10, 100 osv.

- Når man ganger et heltall med 10, får man svaret ved å legge til sifferet 0 bak heltallet.
- Når man ganger et heltall med 100, får man svaret ved å legge til sifrene 00 bak heltallet.
- Det samme mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$6 \cdot 10 = 60$$

$$79 \cdot 10 = 790$$

$$802 \cdot 10 = 8020$$

Eksempel 2

$$6 \cdot 100 = 600$$

$$79 \cdot 100 = 7900$$

$$802 \cdot 100 = 80\,200$$

Eksempel 3

$$6 \cdot 1000 = 6000$$

$$79 \cdot 10000 = 790000$$

$$802 \cdot 100\,000 = 80\,200\,000$$

1.2 Å gange desimaltall med 10, 100 osv.

- Svaret når man gangar et desimaltall med 10 får man ved å flytte komma en plass til høgre.
- Svaret når man gangar et heltall med 100, får man ved å flytte komma to plasser til høgre.
- Det samme mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$7.9 \cdot 10 = 79. = 79$$

$$38,02 \cdot 10 = 380,2$$

$$0.57 \cdot 10 = 05.7 = 5.7$$

$$0.194 \cdot 10 = 01.94 = 1.94$$

Eksempel 2

$$7.9 \cdot 100 = 790 = 790$$

$$38,02 \cdot 100 = 3802, = 3802$$

$$0.57 \cdot 100 = 057, = 57$$

$$0.194 \cdot 100 = 019.4 = 19.4$$

Eksempel 3

$$7.9 \cdot 1000 = 7900 = 7900$$

$$38,02 \cdot 10000 = 38020, = 38020$$

$$0.57 \cdot 100\,000 = 05.7 = 57000, = 57\,000$$

Merk

Regel 1.1 er bare et spesialtilfelle av Regel 1.2. For eksempel, å bruke Regel 1.1 på reknestykket $7 \cdot 10$ gir samme resultat som å bruke Regel 1.2 på reknestykket $7,0 \cdot 10$.

Å gange tall med 10, 100 osv. (forklaring)

Titallsystemet baserer seg på grupper av ti, hundre, tusen osv., og tideler, hundredeler og tusendeler osv (se MB, s. 13). Når man ganger et tall med 10, vil hvert siffer i tallet "forskyves" én gruppe til venstre. (Se også opplegget på side ??)

Ganging på utvidet form

Ganging på utvidet form baserer seg på distributiv lov (se MB, s. 30).

Eksempel 1

$$\begin{vmatrix} 2 & 4 & \cdot & 3 & = & 7 & 2 \\ 2 & 0 & \cdot & 3 & = & 6 & 0 \\ 4 & \cdot & 3 & = & 1 & 2 \\ \hline 7 & 2 & & & 7 & 2$$

Eksempel 2

$$200 \cdot 30 = 6000 \qquad 200 \cdot 4 = 800 \qquad 8370
70 \cdot 30 = 2100 \qquad 70 \cdot 4 = 280 \qquad 1116
9 \cdot 30 = 270 \qquad 9 \cdot 4 = 36 \qquad 9486$$

 $279 \cdot 34 = 9486$

Kompaktmetoden

Kompaktmetoden bygger på de samme prinsippene som ganging på utvidet form, men har en skrivemåte som gjør utrekningen kortere.

Eksempel 1

$$\frac{{\overset{2}{8}}{\overset{3}{8}}{\overset{6}{6}}{\overset{2}{17}}}{9486}$$

 $279 \cdot 34 = 9486$

1.4 Divisjon

Deling med 10, 100, 1000 osv.

1.3 Deling med 10, 100, 1000 osv.

- Når man deler et desimaltall med 10, får man svaret ved å flytte komma en plass til venstre.
- Når man deler et desimaltall med 10, får man svaret ved å flytte komma to plasser til venstre.
- Det samme mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$200: 10 = 200,0: 10$$

$$= 20,00$$

$$= 20$$

$$45:10 = 45,0:10$$

= 4,50
= 4,5

Eksempel 2

$$200:100 = 200,0:100$$
 $= 2,000$
 $= 2$
 $45:100 = 45,0:100$
 $= 0,450$
 $= 0,45$

Eksempel 3

$$143.7:10=14.37$$

$$143.7:100 = 1.437$$

$$143.7:1000 = 0.1437$$

$$93.6:10=9.36$$

$$93.6:100 = 0.936$$

$$93.6:1000 = 0.0936$$

Deling med 10, 100, 1000 osv. (forklaring)

La oss bruke 53,14 som et eksempel. Av definisjonen av titallsystemet (se \overline{MB} , s. 13) følger det at

$$53,7 = 5 \cdot 100 + 3 \cdot 10 + 7 \cdot \frac{1}{10}$$

Oppstilling

Divisjon med oppstilling baserer seg på divisjon tolket som inndeling av mengder (se MB,s. 23)

Tabellmetoden

Tabellmetoden baserer seg på divisjon som omvendt operasjon av ganging. For eksempel er svaret på spørsmålet "Hva er 76 : 4" det samme som svaret på spørsmålet "Hvilket tall må jeg gange 4 med for å få 76?". På samme vis som for tabellmetoden ved subtraksjon er det opp til en selv å velge passende tall for å nå målet.

Eksempel 1
$$76: 4 = 19$$

Eksempel 2
$$894:3 = 298$$

• 4		
10	40	40
9	36	76
19		

. 3		
200	600	600
60	120	720
60	120	840
10	30	870
8	24	894
298		

Eksempel 3

894:3=298

$\cdot 3$		
300	900	900
-2	-6	894
298		

Merk: Samme reknestykke som i $Eksempel\ 2$, men en annen utrekning.

1.5 Standardform

Kapittel 2

Statistikk

I en *undersøkelse* henter vi inn informasjon. Denne informasjonen kan gjerne være tall eller ord, og kalles *data*. En samling av innhentet data kalles et *datasett*.

For eksempel, tenk at du spør to mennesker om de liker kaviar. Den ene svarer "ja', den andre "nei". Da er "ja" og "nei" datene du har samlet inn, og ["ja", "nei"] er datasettet ditt.

Statistikk handler grovt sett om to ting; å presentere og å tolke innsamlet data. For begge disse formålene har vi noen verktøy som vi i kommende seksjoner skal vise ved hjelp av noen forskjellige undersøkelser. Disse finner du på 20.

Det er ikke noen fullstendige fasitsvar på hvordan man presenterer eller tolker data, men to retningslinjer bør du alltid ta med deg:

- La det alltid komme tydelig fram hva du har undersøkt og hvilke data som er skaffet.
- Tenk alltid over hvilke metoder du bruker for å tolke dataene.

Undersøkelse 1

10 personer testet hvor mange sekunder de kunne holde pusten. Resultatene ble disse:

47 124 61 38 97 84 101 79 56 40

Undersøkelse 2

15 personer ble spurt hvor mange epler de spiser i løpet av en uke. Svarene ble disse:

 $7 \quad 4 \quad 5 \quad 4 \quad 1 \quad 0 \quad 6 \quad 5 \quad 4 \quad 8 \quad 1 \quad 6 \quad 8 \quad 0 \quad 14$

Undersøkelse 3

300 personer ble spurt hva deres favorittdyr er.

- 46 personer svarte tiger
- 23 personer svarte løve
- 17 personer svarte krokodille
- 91 personer syarte hund
- 72 personer svarte katt
- 51 personer svarte andre dyr

Undersøkelse 4

Telefoner med smartfunksjoner (app-baserte) kom på det norske markedet i 2009. Tabellen¹ under viser det totale salget mobiltelefoner i tidsperioden 2009-2014.

År	2009	2010	2011	2012	2013	2014
mobiltelefoner	2365	2500	2250	2200	2400	2 100
uten smartfnk.	1665	1250	790	300	240	147
med smartfnk.	700	1250	1 460	1 900	2160	1953

¹Tallene er hentet fra medienorge.uib.no. .

2.1 Presentasjonsmetoder

Skal vi presentere vår undersøkelser, bør vi vise datasett slik at det er lett for andre å se hva vi har funnet. Dette kan vi gjøre blant annet ved hjelp av frekvenstabeller, søylediagram, sektordiagram eller linjediagram.

Frekvenstabell

I en frekvenstabell setter man opp dataene i en tabell som viser hvor mange ganger hver unike data dukker opp. Dette antallet kalles frekvensen.

Undersøkelse 2

I vår undersøkelse har vi to 0, to 1, tre 4, to 5, to 6, én 7, to 8 og én 14. I en frekvenstabell skriver vi da

Antall epler	Frekvens
0	2
1	2
4	3
5	2
6	2
7	1
8	2
14	1

Søylediagram (stolpediagram)

Med et søylediagram presenterer vi dataene med søyler som viser frekvensen.

Sektordiagram (kakediagram)

I et sektordiagram vises frekvensene som sektorer av en sirkel:

Linjediagram

I et linjediagram legger vi inn dataene som punkt i et koordinatsystem, og trekker en linje mellom dem. Linjediagram brukes oftest når det er snakk om en form for utvikling.

2.2 Tolking av tendenser; sentralmål

I datasett vil det ofte være svar som er helt eller veldig like, og som gjentar seg. Dette betyr at vi kan si noe om hva som gjelder for mange. De matematiske begrepene som forteller noe om dette kalles sentralmål. De vanligste sentralmålene er typetall, gjennnomsnitt og median.

2.1 Typetall

Typetallet er verdien det er flest eksemplarer av i datasettet.

Undersøkelse 1

I datasettet er det tallet 4 som opptrer flest (tre) ganger. Dette kan vi se både fra selve datasett på s?? eller frekvenstabellen på s??, søylediagrammet på s?? eller sektordiagrammet??.

4 er altså typetallet.

Når et datasett består av svar i form av tall kan vi finne summen av svarene. Når vi spør oss hva gjennomsnittet er, spør vi om dette:

"Hvis alle svarene var like, men summen den samme, hvilken verdi måtte alle svarene da ha hatt?"

Dette er jo ingenting annet enn divisjon (se MB, s. 23):

2.2 Gjennomsnitt

 $gjennomsnitt = \frac{summen \text{ av verdiene fra datasettet}}{antall \text{ verdier}}$

Undersøkelse 1

Vi summerer verdiene fra datasettet, og deler med antall verdier:

gjennomsnitt =
$$\frac{47 + 124 + 61 + 38 + 97 + 84 + 101 + 79 + 56 + 40}{10}$$
$$= \frac{727}{10}$$
$$= 72.7$$

Altså, i gjennomsnitt holdt de 10 deltakerne pusten i 72,7 sekunder.

Undersøkelse 2

Metode 1

gjennomsnitt =
$$\frac{7+4+5+4+1+0+6+5+4+8+1+6+8+0+14}{15}$$
 =
$$\frac{73}{15}$$
 ≈ 4.87

Metode 2

Vi utvider frekvenstabellen fra side ?? for å finne summen av verdiene fra datasettet (vi har også tatt med summen av frekvensene):

Antall epler	Frekvens	$antall \cdot frekvens$
0	2	$0 \cdot 2 = 0$
1	2	$1 \cdot 2 = 2$
4	3	$4 \cdot 3 = 12$
5	2	$5 \cdot 2 = 10$
6	2	$6 \cdot 2 = 12$
7	1	$7 \cdot 1 = 14$
8	1	$8 \cdot 2 = 16$
14	1	$14 \cdot 1 = 14$
sum	15	73

Nå har vi at

gjennomsnitt =
$$\frac{73}{15}$$

 ≈ 4.87

Altså, i gjennomsnitt spiser de 15 respondentene 4,87 epler i uka.

2.3 Median

Medianen er tallet som ender opp i midten av datasettet når det rangeres fra tallet med lavest til høyest verdi.

Hvis datasettet har partalls antall verdier, er medianen gjennomsnittet av de to verdiene i midten (etter rangering).

Undersøkelse 1

Vi rangerer datasettet fra lavest til høyest verdi:

De to tallene i midten er 61 og 79. Gjennomsnittet av disse er

$$\frac{61+79}{2} = 70$$

Altså er medianen 70.

Undersøkelse 2

Vi rangerer datasettet fra lavest til høyest verdi:

Tallet i midten er 5, altså er medianen 5.

2.3 Tolking av forskjeller; spredningsmål

Ofte vil det også være store forskjeller (stor spredning) mellom dataene som er samlet inn. De matematiske begrepene som forteller noe om dette er variasjonsbredde, kvartilbredde, varians og standardavvik.

2.4 Variasjonsbredde

Differansen mellom svarene med henholdsvis høyest og lavest verdi.

Undersøkelse 1

Svaret med henholdsvis høyest og lavest verdi er 124 og 38. Altså er

variasjonsbredden =
$$124 - 38 = 86$$

Undersøkelse 2

Svaret med henholdsvis høyest og lavest verdi er 14 og 0. Altså er

variasjonsbredden =
$$14 - 0 = 14$$

Undersøkelse 4

• Variasjonsbredde for mobiltelefoner:

$$2500 - 2100 = 400$$

• Variasjonsbredde for mobiltelefoner uten smartfunksjoner:

$$1665 - 147 = 518$$

• Variasjonsbredde for mobiltelefoner med smartfunksjoner:

$$2160 - 700 = 1460$$

2.5 Kvartilbredde og øvre og nedre kvartil

- 1. Ranger datasettet fra høyest til lavest.
- 2. Skill det rangerte datasettet på midten, slik at to nye sett oppstår. (Viss det er oddetalls antall verdier i datasettet, utelates medianen).
- 3. Finn de respektive medianene i de to nye settene.
- 4. Differansen mellom medianene fra punkt 3 er kvartilbredden til det opprinnelige datasettet.

Om medianene fra punkt 3: Den med høyest verdi kalles øvre kvartil og den med lavest verdi kalles nedre kvartil.

Undersøkelse 2

- 1. 38 40 47 56 61 79 84 97 101 124
- 2. 38 40 47 56 61 79 84 97 101 124
- 3. Medianen i det blå settet er 47 (nedre kvartil) og medianen i det røde settet er 97 (øvre kvartil).

4. Kvartilbredde = 97 - 47 = 50

Undersøkelse 1

- 1. 0 0 1 1 4 4 4 5 5 6 6 7 8 8 14
- 2. 0 0 1 1 4 4 4 5 5 6 6 7 8 8 14
- 3. Medianen i det blå settet er 1 (nedre kvartil) og medianen i det røde settet er 7 (øvre kvartil).

4. Kvartilbredde = 7 - 1 = 6

Undersøkelse 4

- For mobiltelefoner er kvartilbredden
- For mobiltelefoner uten smartfunksjoner er kvartilbredden
- For mobiltelefoner med smartfunksjoner er kvartilbredden

2.6 Varians

Kvadrer differansene mellom hver enkelt verdi og gjennomsnittet til datasettet, og summer disse. Divider med antallet verdier i datasettet.

Differansen mellom en verdi og gjennomsnittet kalles avviket til verdien.

Eksempel

Gitt datasettet

Da har vi at

gjennomsnitt =
$$\frac{2+5+9+6+8}{5} = 6$$

Og videre er

variansen =
$$\frac{(2-6)^2 + (5-6)^2 + (9-6)^2 + (6-6)^2 + (8-6)^2}{5}$$

Undersøkelse 1

(Utrekningen er utelatt)

Variansen er

Undersøkelse 2

Gjennomsnittet fant vi på side ??. Vi utvider frekvenstabellen vår fra side ??:

Antall epler	Frekvens	Kvadrert avvik
0	2	$\left(0 - \frac{73}{15}\right)^2$
1	2	$\left(1 - \frac{73}{15}\right)^2$
4	3	$\left(4 - \frac{73}{15}\right)^2$
5	2	$\left(5 - \frac{73}{15}\right)^2$
6	2	$\left(6 - \frac{73}{15}\right)^2$
7	1	$\left(7 - \frac{73}{15}\right)^2$
8	2	$\left(8 - \frac{73}{15}\right)^2$
14	1	$\left(9 - \frac{73}{15}\right)^2$
	sum	??

Tips

Det kan være fristende å bruke det rangerte datasettene, men dette øker sjansen for følgefeil.

Kapittel 3

Geometri

3.1 Symmetri

Mange figurer² kan deles inn i minst to deler hvor den éne delen bare er en vridd, vendt eller forskjøvet utgave av den andre. Dette kalles *symmetri*.

3.1 Translasjonssymmetri (parallellforskyvning)

En symmetri hvor minst to deler er forskjøvne utgaver av hverandre kalles en *translasjonssymmetri*.

Eksempel 1

Figuren under viser en translasjonssymmetri som består av to sommerfugler.

Eksempel 2

Under vises $\triangle ABC$ og et blått linjestykke.

Under vises $\triangle ABC$ og $\triangle ABC$ forskjøvet med det blå linjestykket.

3.2 Speiling

En symmetri hvor minst to deler er vendte utgaver av hverandre, kalles *speilingssymmetri*.

To speilvendte punkt har lik avstand til symmetrilinja.

Eksempel 1

Den røde linja er symmetrilinja til sommerfuglen.

Eksempel 2

Den røde linja er symmetrilinja til den blå trekanten

Eksempel 3

Den røde linja og den blå linja er begge symmetrilinjer til det grønne rektangelet.

Eksempel 4

Under vises en form laget av punktene A,B,C,D,E og F, og denne formen speilet om den blå linja.

3.3

Rotasjonssymmetri

3.2 Størrelser, enheter og prefikser

Det vi kan måle og uttrykke med tall, kaller vi størrelser. Videre har vi størrelser med dimensjoner og dimensjonsløse størrelser.

Et eksempel på en størrelse med dimensjon er "2 meter". Dimensjonen er da 'lengde', som vi gjerne måler i meter. Vi sier at meter er en enhet for dimensjonen lengde.

Et eksempel på en størrelse uten dimensjon er "to hester". Mens det bare finnes én lengde som er "2 meter", "to hester" se veldig forskjellig ut, avhengig av hvile to hester det er snakk om.

Regning med dimensjoner

Når vi regner med størrelser med dimensjoner må vi passe på at alle enhetene er like, hvis ikke gir ikke regnestykkene våre mening. I denne boka skal vi se på disse enhetene:

Enhet	Forkortelse
meter	m
gram	g
liter	L

Noen ganger har vi veldig store eller veldig små størrelser, for eksempel er det ca 40 075 000 m rundt ekvator! For så store tall er det vanlig å bruke en *prefiks*, da kan vi si at det er ca 40 075 km rundt ekvator. Her står 'km' for 'kilometer' og 'kilo' betyr '1 000'. Så 1 000 meter er altså 1 kilometer. Her er de viktigste prefiksene:

Prefiks	Forkortelse	Betydning
kilo	k	1 000
hekto	h	100
deka	da	10
desi	d	0,1
centi	c	0,01
milli	m	0,001

Bruker vi denne tabellen i kombinasjon med enhetene kan vi for eksempel se at:

$$1000 \,\mathrm{g} = 1 \,\mathrm{kg}$$

 $0.1 \,\mathrm{m} = 1 \,\mathrm{dm}$
 $0.01 \,\mathrm{L} = 1 \,\mathrm{cL}$

Enda ryddigere kan vi få det hvis vi lager en vannrett tabell, med meter, gram eller liter lagt til i midten:

Vi har sett hvordan prefiksene egentlig bare betyr et tall, og m, g eller L kan vi si har et 1-tall foran seg $(4 \cdot 1 \text{ m} \text{ er jo det samme som } 4 \text{ m})$. Vi kan da legge merke til at for å komme fra én rute til en annen i tabellen, er det bare snakk om å flytte komma:

3.4 Omgjøring av prefiks

Når vi skal endre prefikser kan vi bruke denne tabellen:

Komma må flyttes like mange ganger som antall bokser vi må flytte oss fra opprinnelig prefiks til ny prefiks.

Obs! For lengde brukes også enheten 'mil' (1 mil er 10 000 m). Denne kan legges på til venstre for 'kilo'.

Eksempel 1

Gjør om 23,4 mL til L.

Svar:

Vi skriver tabellen vår med L i midten og legger merke til at vi må tre bokser til venstre for å komme oss fra mL til L:

Dét betyr at vi må flytte kommaet vårt tre plasser til venstre for å gjøre om mL til L:

$$23.4 \,\mathrm{mL} = 0.0234 \,\mathrm{L}$$

Eksempel 2

Gjør om 30 hg til cg.

Svar:

Vi skriver tabellen vår med g i midten og legger merke til at vi må fire bokser til høyre for å komme oss fra hg til cg:

Dét betyr at vi må flytte kommaet vårt fire plasser til høyre for å gjøre om hg til cg:

$$30 \,\mathrm{mg} = 300 \,000 \,\mathrm{cg}$$

Eksempel 3

Gjør om 12500 dm til mil.

Svar:

Vi skriver tabellen vår med m i midten, legger til 'mil', og merker oss at vi må fem bokser til høyre for å komme oss fra hg til cg:

Dét betyr at vi må flytte kommaet vårt fem plasser til høyre for å gjøre om mil til cg:

$$30 \, dm = 3000000 \, mil$$

Merk: 'mil' er en egen enhet, ikke en prefiks. Vi skriver derfor ikke 'milm', men bare 'mil'.

3.3 Volum

Når vi ønsker å si noe om hvor mye det er plass til inni en gjenstand, snakker vi om *volumet* av den. Som et mål på volum tenker vi oss *en kube* som har 1 som både bredde, lengde og høyde:

En slik kube kan vi kalle"enhetskuben". Si vi har en firkantet boks med bredde 3, lengde 4 og høyde 2:

Vi kan må merke oss at vi har plass til akkurat 24 enhetskuber i denne boksen:

Og dette kunne vi ha regnet ut slik:

$$3 \cdot 4 \cdot 2 = 24$$

Altså:

 $bredde \cdot lengde \cdot høyde$

Grunnflate

For å regne ut volumet av de mest elementære figurene vi har, kan det være lurt å bruke begrepet grunnflate. Slik som for en grunnlinje, er det vårt valg av grunnflate som bestemer hvordan vi skal regne ut høyden. For en slik boks som vi akkurat så på, er det naturlig å velge flaten som "ligger ned" til å være grunnflaten, og for å indikere dette brukes ofte G:

Grunnflaten har arealet $3 \cdot 4 = 12$, mens høyden er 2. Volumet av hele boksen er grunnflaten ganger høyden:

$$V = G \cdot h$$
$$= 12 \cdot h$$
$$= 24$$

3.5 Volum

Volumet V av en firkantet boks eller en sylinder med grunnflate G og høyde h er:

$$V=G\cdot h$$

$$G \qquad \qquad h$$

$$G \qquad \qquad r$$

$$Boks \qquad \qquad Sylinder$$

Volumet V av en kjegle eller en pyramide med grunnflate G og høyde h er:

Volumet av ei kule

Som vanlig skiller ting seg ut når vi snakker om renit sirkelformede figurer, og ei *kule* er ikke noe unntak. For den spesielt interesserte kan et bevis for volumformelen leses her, men det er altså helt lov til å bykse rett på formelen:

3.6 Volumet av ei kule

Volumet V av ei kule med radius r er:

$$V = \frac{4 \cdot \pi \cdot r^3}{3}$$

3.4 Omkrets, areal og volum med enheter

Når me måler lengder med linjal eller liknande må me passe på å ta med eininga i svaret vårt:

Omkretsen til rektangelet =
$$5 \text{ cm} + 2 \text{ cm} + 5 \text{ cm} + 2 \text{ cm}$$

= 14 cm

Arealet til rektangelet =
$$2 \text{ cm} \cdot 5 \text{ cm}$$

= $2 \cdot 5 \text{ cm}^2$
= 10 cm^2

Vi skriv cm² fordi vi har ganga saman 2 lengder som vi har målt i cm.

Kapittel 4

Brøkregning

4.1 Brøkdeler av helheter

I MB (s. 35-47) har vi sett hvordan brøker er definert ut ifra en inndeling av 1. I hverdagen bruker vi også brøker for å snakke om inndelinger av en helhet:

- (a) Helheten er 8 ruter. $\frac{7}{8}$ av rutene er blå.
- (b) Helheten er et kvadrat. $\frac{1}{4}$ av kvadratet er rødt.
- (c) Helheten er 5 kuler. $\frac{3}{5}$ av kulene er svarte.

Brøkdeler av tall

Si at rektangelet under har verdien 12.

Når vi sier " $\frac{2}{3}$ av $\frac{12}{3}$ " mener vi at vi skal

- a) dele 12 inn i 3 like grupper
- b) finne ut hvor mye 2 av disse gruppene utgjør til sammen.

Vi har at

a) 12 delt inn i 3 grupper er lik 12:3=4.

$$= \begin{array}{|c|c|} \hline & 4 \\ \hline & 4 \\ \hline & 4 \\ \hline \end{array}$$

b) 2 grupper som begge har verdi 4 blir til sammen $2 \cdot 4 = 8$.

$$\frac{4}{4}$$
 = 8

Altså er

$$\frac{2}{3}$$
 av $12 = 8$

For å finne $\frac{2}{3}$ av 12, delte vi 12 med 3, og ganget kvotienten med 2. Dette er det samme som å gange 12 med $\frac{2}{3}$ (se MB, s. 45 og 50).

4.1 Brøkdelen av et tall

For å finne brøkdelen av et tall, ganger vi brøken med tallet.

$$\frac{a}{b}$$
 av $c = \frac{a}{b} \cdot c$

Eksempel 1

Finn $\frac{2}{5}$ av 15.

Svar:

$$\frac{2}{5}$$
 av $15 = \frac{2}{5} \cdot 15 = 6$

Eksempel 2

Finn $\frac{7}{9}$ av $\frac{5}{6}$.

Svar:

$$\frac{7}{9}$$
 av $\frac{5}{6} = \frac{7}{9} \cdot \frac{5}{6} = \frac{35}{54}$

4.2 Prosent

Brøker er ypperlige til å oppgi andeler av en helhet fordi de gir et raskt bilde av hvor mye det er snakk om. For eksempel er lett å se (omtrent) hvor mye $\frac{3}{5}$ eller $\frac{7}{12}$ av en kake er. Men ofte er det ønskelig å raskt avgjøre hvilke andeler som utgjør mest, og da er det best om brøkene har samme nevner.

Når andeler oppgis i det daglige, er det vanlig å bruke brøker med 100 i nevner. Brøker med denne nevneren er så mye brukt at de har fått sitt eget navn og symbol.

4.2 Prosenttall

$$a\% = \frac{a}{100}$$

Språkboksen

% uttales *prosent*. Ordet kommer av det latinske *per centum*, som betyr *per hundre*.

Eksempel 1

$$43\% = \frac{43}{100}$$

Eksempel 2

$$12,7\% = \frac{12,7}{100}$$

Merk: Det er kanskje litt uvant, men ikke noe galt med å ha et desimaltall i teller (eller nevner).

Eksempel 3

Gjør om brøkene til prosenttall.

- **a**) $\frac{34}{100}$
- **b**) $\frac{203}{100}$

Svar:

a)
$$\frac{34}{100} = 34\%$$

b)
$$\frac{203}{100} = 203\%$$

Eksempel 4

Finn 50% av 800. Av Regel~4.1 og Regel~4.2 har vi at

Svar:

$$50\% \text{ av } 800 = \frac{50}{100} \cdot 800 = 400$$

Eksempel 5

Finn 2% av 7,4.

Svar:

$$2\%$$
 av $7.4 = \frac{2}{100} \cdot 7.4 = 0.148$

Tips

Å dele med 100 er såpass enkelt, at vi gjerne kan uttrykke prosenttall som desimaltall når vi foretar utregninger. I $\it Eksempel~5$ over kunne vi har regnet slik:

$$2\%$$
 av $7.4 = 0.02 \cdot 7.4 = 0.148$

Prosentdeler

Hvor mange prosent utgjør 15 av 20?

15 er det samme som $\frac{15}{20}$ av 20, så svaret på spørsmålet får vi ved å gjøre om $\frac{15}{20}$ til en brøk med 100 i nevner. Siden $20 \cdot \frac{100}{20} = 100$, utvider vi brøken vår med $\frac{100}{20} = 5$:

$$\frac{15 \cdot 5}{20 \cdot 5} = \frac{75}{100}$$

15utgjør altså 75% av 20. Det er verdt å merke seg at vi kunne fått 75 direkte ved utregningen

$$15 \cdot \frac{100}{20} = 75$$

4.3 Antall prosent a utgjør av b

Antall prosent autgjør av $b = a \cdot \frac{100}{b}$

Eksempel 1

Hvor mange prosent utgjør 340 av 400?

Svar:

$$340 \cdot \frac{100}{400} = 85$$

340 utgjør 85% av 400.

Eksempel 2

Hvor mange prosent utgjør 119 av 500?

Svar:

$$119 \cdot \frac{100}{500} = 23.8$$

119 utgjør 23,8% av 500.

Tips

Å gange med 100 er såpass enkelt å ta i hodet at man kan ta det bort fra selve utregningen. Eksempel 2 over kunne vi da

$$\frac{119}{500} = 0.238$$

119 utgjør altså 23,8% av 500. (Her regner man i hodet at 0,238 · 100 = 23,8.)

4.2.1 Prosentvis endring

Minkende størrelse

I mange situasjoner har noe økt eller minket med en viss prosent. I en butikk kan man for eksempel komme over en skjorte som originalt kostet 500 kr, men selges med 40% rabatt. Dette betyr at vi skal trekke ifra 40% av originalprisen.

Her er to måter vi kan tenke på for å finne prisen:

• Vi starter med å finne det vi skal trekke ifra:

$$40\% \text{ av } 500 = \frac{40}{100} \cdot 500$$

= 200

Videre er

$$500 - 200 = 300$$

Altså må vi betale 300 kr for skjorten.

 Skal vi betale full pris, må vi betale 100% av 500. Men får vi 40% i rabatt, skal vi bare betale 60% av 500:

$$100\% - 40\% = 60\%$$

$$60\%$$
 av $500 = \frac{60}{100} \cdot 500$
= 300

Svaret blir selvsagt det samme, vi må betale 300 kr for skjorten.

Økende størrelse

Det er ikke alltid vi er så heldige at vi får rabatt på et produkt, ofte må vi faktisk betale et tillegg. Mervardiavgiften er et slikt tillegg. I Norge må vi betale 25% i merverdiavgift på mange varer. Det betyr at vi må betale et tillegg på 25%, altså 125% av originalprisen.

Merverdiavgift forkortes til mva.

100% + 25% = 125%

For eksempel koster øreklokkene på bildet 999,20 kr *eksludert* mva. Men *inkludert* mva. må vi betale

$$125\%$$
 av $999,20 = \frac{125}{100} \cdot 999,20$
= 1249

Altså 1249 kr.

Oppsummering

4.4 Prosentvis endring

- Når en størrelse synker med a%, ender vi opp med (100% a%) av størrelsen.
- Når en størrelse øker med a%, ender vi opp med (100% + a%) av størrelsen.

Eksempel 1

Hva er 210 senket med 70%?

Svar:

$$100\% - \frac{70\%}{100\%} = \frac{30\%}{100\%}$$
, altså er

210 senket med
$$70\% = 30\%$$
 av 210
$$= \frac{30}{100} \cdot 210$$

$$= 63$$

Eksempel 2

Hva er 208,9 økt med 124,5%?

Svar:

$$100\% + 124,5\% = 224,5\%$$
, altså er

208,9 økt med 124,5 = 224,5% av 208,9
$$= \frac{224,5}{100} \cdot 208,9$$

4.2.2 Vekstfaktor

På side 49 ble prisen til en skjorte redusert med 40%, og da endte vi opp med å betale 60% av originalprisen. Vi sier da at *vekstfaktoren* er 0,6. På side 50 måtte vi legge til 25% mva., og da endte vi med å betale 125% av originalprisen. Da er vekstfaktoren 1,25.

Mange stusser over at ordet vekstfaktor brukes selv om en størrelse synker, men slik er det. Kanskje et bedre ord ville være endringsfaktor?

4.5 Vekstfaktor I

Når en størrelse endres med a%, er vekstfaktoren verdien til¹ $100\% \pm a\%$.

 1 \pm betyr at man skal velge enten + eller -.

Eksempel 1

En størrelse skal økes med 15%. Hva er vekstfaktoren?

Svar:

100% + 15% = 115%, altså er vekstfaktoren 1,15.

Eksempel 2

En størrelse skal reduseres med 19,7%. Hva er vekstfaktoren?

Svar:

 $100\%-19{,}7\%=80{,}3\%,$ altså er vekstfaktoren $80{,}3\%$

La oss se tilbake til $Eksempel\ 1$ på side 50, hvor 210 skulle senkes med 70%. Da er vekstfaktoren 0,3. Videre er

$$0.3 \cdot 210 = 63$$

Altså, for å finne ut hvor mye 210 senket med 70% er, kan vi gange 210 med vekstfaktoren (forklar for deg selv hvorfor!).

4.6 Prosentvis endring med vekstfaktor

endret originalverdi = vekstfaktor \cdot originalverdi

Eksempel 1

En vare verd 1000 kr er rabattert med 20%.

- a) Hva er vekstfaktoren?
- **b)** Finn den nye prisen.

Svar:

a) Siden det er 20% rabbatt, må vi betale

$$100\% - 20\% = 80\%$$

av originalprisen. Vekstfaktoren er derfor 0,8.

b) Vi har at

$$0.8 \cdot 1000 = 800$$

Den nye prisen er altså 800 kr.

Eksempel 2

En sjokolade koster 9,80 kr, ekskludert mva. På matvarer er det 15% mva.

- a) Hva er vekstfaktoren?
- b) Hva koster sjokoladen inkludert mva?

Svar:

a) Med 15% i tillegg må man betale

$$100\% + 15\% = 115\%$$

av prisen eksludert mva. Vekstfaktoren er derfor 1,15.

b)

$$1.15 \cdot 9.90 = 12.25$$

Sjokoladen koster 12,25 kr inkludert mva.

Vi kan også omksrive likningen fra Regel 4.6 for å få et uttrykk for vekstfaktoren:

4.7 Vekstfaktor II

$$\mbox{vekstfaktor} = \frac{\mbox{endret original verdi}}{\mbox{original verdi}}$$

Å finne den prosentvise endringen

Når man skal finne en prosentvis endring, er det viktig å være klar over at det er snakk om prosent av en helhet. Denne helheten man har som utgangspunkt er den originale verdien.

La oss som et eksempel si at Jakob tente 10 000 kr i 2019 og 12 000 kr i 2020. Vi kan da stille spørsmålet "Hvor mye endret lønnen til Jakob seg med fra 2019 til 2020 i prosent?". Spørsmålet tar utgangspunkt i lønnen fra 2019, dette betyr at 10 000 er vår originale verdi. To måter å finne den prosentvise endringen på er disse (vi tar ikke med 'kr' i utregningene):

• Lønnen til Jakob endret seg fra 10 000 til 12 000, en forandring på $12\,000 - 10\,000 = 2\,000$. Videre er (se Regel 4.3)

Antall prosent 2 000 utgjør av
$$10\,000 = 2\,000 \cdot \frac{100}{10\,000}$$

= 20

Fra 2019 til 2020 økte altså lønnen til Jakob med 20%.

Vi har at

$$\frac{12\,000}{10\,000} = 1,2$$

Fra 2019 til 2020 økte altså lønnen til Jakob med en vekstfaktor lik 1,2 (se Regel 4.7). Denne vekstfaktoren tilsvarer en endring lik 20% (se Regel 4.5). Det betyr at lønnen økte med 20%.

4.8 Prosentvis endring I

$$\label{eq:prosentvis} \text{prosentvis endring} = \frac{\text{endret original} \text{verdi} - \text{original} \text{verdi}}{\text{original} \text{verdi}} \cdot 100$$

Obs! Hvis 'endret originalverdi' er mindre enn 'original verdi', må man i steden regne ut 'originalverdi – endret original'

Kommentar

Regel 4.8 kan se litt voldsom ut, og er ikke nødvendigvis så lett å huske. Hvis du virkelig har forstått seksjon ??, kan du uten å bruke denne formelen finne prosentvise endringer trinnvis. I påfølgende eksempler viser vi derfor både en trinnvis løsningsmetode og en metode ved bruk av formel.

Eksempel 1

I 2019 hadde et fotballag 20 medlemmer. I 2020 hadde laget 12 medlemmer. Hvor mange prosent av medlemmene fra 2019 hadde sluttet i 2020?

Svar:

Vi starter med å merke oss at det det medlemstallet fra 2019 som er originalverdien vår.

Løsningsmetode 1; trinnvis metode

Fotballaget gikk fra å ha 20 til 12 medlemmer, altså var det 20-12=8 som sluttet. Vi har at

Antall prosent 4 utgjør av
$$20 = 8 \cdot \frac{100}{20} = 40$$

I 2020 hadde altså 40% av medlemmene fra 2019 sluttet.

Løsningsmetode 2; formel

Vi legger merke til at originalverdien er større enn den endrede verdien, da har vi at

prosent
vis endring =
$$\frac{20-12}{20} \cdot 100$$

= $\frac{8}{20} \cdot 100$
= 40

I 2020 hadde altså 40% av medlemmene fra 2019 sluttet.

4.9 Prosentvis endring II

prosentvis endring =
$$100 \left(\frac{\text{endret original} \text{verdi}}{\text{original} \text{verdi}} - 1 \right)$$

Obs! Hvis 'endret originalverdi' er mindre enn 'original verdi', må man "snu" regnestykket inni parantesen til $1-\frac{\text{endret originalverdi}}{\text{originalverdi}}$.

Merk

Regel 4.8 og Regel 4.9 gir begge formler som kan brukes til å finne prosentvise endringer. Her er det opp til en selv å velge hvilken man liker best. Som allerede nevnt angående Regel 4.8, er også Regel 4.9 en litt kronglete formel, og man trenger den ikke hvis man har forstått seksjonn ?? og ??. Her vil vi også i påfølgende eksempler vise to løsningsmetoder.

Eksempel 1

I 2019 hadde et fotballag 20 medlemmer. I 2020 hadde laget 12 medlemmer. Hvor mange prosent av medlemmene fra 2019 hadde sluttet i 2020?

Svar:

Vi starter med å merke oss at det det medlemstallet fra 2019 som er originalverdien vår.

 $L \emptyset sningsmetode\ 1;\ trinnvis\ metode$

Fotballaget gikk fra å ha 20 til 12 medlemmer, da har vi at (se Regel~4.7)

$$vekstfaktor = \frac{12}{20} = 0.6$$

En vekstfaktor lik 0.6 tilsvarer en endring på 40% (se Regel 4.5). I 2020 hadde altså 40% av medlemmene fra 2019 sluttet.

Løsningsmetode 2; formel

Vi legger merke til at originalverdien er større enn den endrede

verdien, da har vi at

prosentvis endring =
$$100 \left(1 - \frac{12}{20}\right)$$

= $100 \left(1 - 0.6\right)$
= $100 \cdot 0.4$
= 40

I 2020 hadde altså 40% av medlemmene fra 2019 sluttet.

4.2.3 Prosentpoeng

Ofte snakker vi om mange størrelser samtidig, og når man da bruker prosent-ordet kan setninger bli veldig lange og knotete hvis man også snakker om forskjellige originalverdier. For å forenkle setningene har vi begrepet prosentpoeng.

Tenk at et par solbriller først ble solgt med 30% rabatt av originalprisen, og deretter med 80% rabatt av originalprisen. Da sier vi at rabatten har økt med 50 prosentpoenq.

$$80\% - 30\% = 50\%$$

Hvorfor kan vi ikke si at rabatten har økt med 50%?

Si at solbrillene hadde originalpris 1 000 kr. 30% rabatt på 1 000 kr tilsvarer 300 kr i rabatt. 80% rabatt på 1000 kr tilsvarer 800 kr i rabatt. Men hvis vi øker 300 med 50% får vi 300 \cdot 1,5 = 450, og det er ikke det samme som 800! Saken er at vi har to forskjellige originalverdier som utgangspunkt:

"Rabatten var først 30%, så økte rabatten med 50 prosentpoeng. Da ble rabatten 80%."

Forklaring: "Rabatten" er en størrelse vi regner ut i fra orignalprisen til solbrillene. Når vi sier "prosentpoeng" viser vi til at **originalprisen fortsatt er utgangspunktet** for den kommende prosentregningen. Når prisen er 1 000 kr, starter vi med $1\,000\,\mathrm{kr}\cdot 0.3 = 300\,\mathrm{kr}$ i rabatt. Når vi legger til 50 prosentpoeng,

legger vi til 50% av originalprisen, altså $1\,000\,\mathrm{kr}\cdot0.5=500\,\mathrm{kr}$. Totalt blir det $800\,\mathrm{kr}$ i rabatt, som utgjør 80% av originalprisen.

"Rabatten var først 30%, så økte rabatten med 50%. Da ble rabatten 45%."

Forklaring: "Rabatten" er en størrelse vi regner ut i fra orignalprisen til solbrillene, men her viser vi til at **rabatten er utgangspunktet** for den kommende prosentregningen. Når prisen er 1 000 kr, starter vi med 300 kr i rabatt. Videre er

$$300 \,\mathrm{kr} \,\, \text{økt} \,\, \mathrm{med} \,\, 50\% = 300 \,\mathrm{kr} \cdot 1,5 = 450 \,\mathrm{kr}$$

og

Antall prosent 450 utgjør av
$$1000 = \frac{450}{100} = 45$$

Altså er den nye rabatten 45%.

I de to (gule) tekstboksene over regnet vi ut den økte rabatten via originalprisen på solbrillene (1 $000\,\mathrm{kr}$). Dette er streng tatt ikke nødvendig:

Rabatten var først 30%, så økte rabatten med 50 prosentpoeng.
 Da ble rabatten

$$30\% + 50\% = 80\%$$

• Rabatten var først 30%, så økte rabatten med 50%. Da ble rabatten

$$30\% \cdot 1.5 = 45\%$$

4.10 Prosentpoeng

a%økt/minket med b prosentpoeng = $a\% \pm b\%.$

a% økt/minket med $b\% = a\% \cdot (1 \pm b\%)$

Merk

Andre linje i Regel 4.10 er egentlig identisk med Regel 4.6.

Eksempel

En dag var 5%av elevene på en skole borte. Dagen etter var

7.5% av elevene borte.

- a) Hvor mye økte fraværet i prosentpoeng?
- b) Hvor mye økte fraværet i prosent?

Svar:

- a) 7.5% 5% = 2.5%, derfor har fraværet økt med 2,5 prosentpoeng.
- **b)** Her må vi svare på hvor mye endringen, altså 2,5%, utgjør av 5%. Dette er det samme som å finne hvor mye 2,5 utgjør av 5. (Se tilbake til ligning (??)). 1% av 5 er 0,05, derfor får vi:

Antall prosent 2,5 utgjør av
$$5 = \frac{2,5}{0,05}$$

= 50

Altså har fraværet økt med 50%.

4.3 Forhold

Med forholdet mellom to størrelser mener vi den éne størrelsen delt på den andre. Har vi for eksempel 1 rød kule og 5 blå kuler i en bolle, sier vi at

forholdet mellom antall røde kuler og blå kuler = $\frac{1}{5}$

Forholdet kan vi også skrive som 1 : 5. Verdien til dette regnestykket er

$$1:5=0.2$$

I denne sammenhengen kalles 0,2 forholdstallet.

Om vi skriver forholdet som brøk eller som delestykke vil avhenge litt av oppgavene vi skal løse.

4.11 Forhold

forholdet mellom a og $b = \frac{a}{b}$

Verdien til brøken over kalles forholdstallet a:b.

Eksempel 1

I en klasse er det 10 handballspillere og 5 fotballspillere.

- a) Hva er forholdet mellom antall handballspillere og fotballspillere?
- **b)** Hva er forholdet mellom antall fotballspillere og handballspillere?

Svar:

a)

$$\frac{10}{5} = 2$$

Forholdet mellom antall fotballspillere og handballspillere er $2.\,$

b)

$$\frac{5}{10} = 0.5$$

Forholdet mellom antall handballspillere og fotballspillere er 0,5.

Eksempel 2

Du skal lage et lotteri der forholdet mellom antall vinnerlodd og taperlodd er $\frac{1}{8}$. Hvor mange taperlodd må du lage hvis du skal ha 160 vinnerlodd?

Svar:

Vi vet at:

$$\frac{\text{antall vinnerlodd}}{\text{antall taperlodd}} = \frac{1}{8}$$

Siden "antall vinnerlodd" er ukjent, kaller vi størrelsen for x, og får da at

$$\frac{x}{160} = \frac{1}{8}$$

$$\frac{x}{160} \cdot 160 = \frac{1}{8} \cdot 160$$

$$x = 20$$

Vi må altså lage 20 vinnerlodd.

4.3.1 Målestokk

I MB (s.145 - 149) har vi sett på formlike trekantar. Prinsippet om at forholdet mellom samsvarande sider er det samme kan utvides til å gjelde de fleste andre former, som f. eks. firkanter, sirkler, prismer, kuler osv. Dette er et fantastisk prinsipp som gjør at små tegninger eller figurer (modeller) kan gi oss informasjon om størrelsene til virkelige gjenstander.

4.12 Målestokk

En målestokk er forholdet mellom en lengde på en modell av en gjenstand og den samsvarende lengden på den virkelige gjenstand.

$$\label{eq:malestokk} \text{målestokk} = \frac{\text{en lengde i en modell}}{\text{den samsvarende lengde i virkeligheten}}$$

Eksempel 1

Kartet under har målestokk 1:25000.

a) Luftlinjen (den blå) mellom Helland og Vike er $10.4\,\mathrm{cm}$ på

kartet. Hvor langt er det mellom Helland og Vike i virkeligheten?

b) Tresfjordbrua er ca 1300 m i virkeligheten. Hvor lang er Tresfjordbrua på kartet?

Svar:

a) Avstanden mellom Helland og Vike på kartet samsvarer med avstanden mellom Helland og Vike. Vi setter

x = avstanden mellom Helland og Vike i virkeligheten

Da har vi at

$$\frac{10.4 \text{ cm}}{x} = \frac{1}{25000}$$
$$x = 10.4 \text{ cm} \cdot 25000$$
$$= 260000 \text{ cm}$$

Altså er det 2,6 km mellom Helland og Vike.

b) Vi setter"

 $x={\rm lengden}$ til Tresfjordbrua på kartet

Da har vi at

$$\frac{x}{1300 \,\mathrm{m}} = \frac{1}{25000}$$
$$x = \frac{1300 \,\mathrm{m}}{25000}$$
$$= 0.052 \,\mathrm{m}$$

Altså er Tresfjordbrua 5,2 cm lang på kartet.

Tips

Målestokk er omtrent alltid gitt som en brøk med teller lik 1. Dette gjør at man kan lage seg disse reglene:

lengde i virkelighet = lengde på kart · nevner til målestokk

lengde i virkelighet =
$$\frac{\text{lengde på kart}}{\text{nevner til målestokk}}$$

Oppgavene fra Eksempel 1 kunne vi da løst slik:

a) Virkelig avstand mellom Helland og Vike = $10.4 \,\mathrm{cm} \cdot 25\,000$

 $= 260\,000\,\mathrm{cm}$

b) Lengde til Tresfjordbrua på kart = $\frac{1300 \text{ m}}{25000}$ = 0,0052 m

4.3.2 Blandingsforhold

lage saften i riktig forhold.

I mange sammenhenger skal vi blande to sorter i riktig forhold. På en flaske med solbærsirup kan du for eksempel lese symbolet "2 + 5", som betyr at man skal blande sirup og vann i forholdet 2:5. Så heller vi 2dL sirup i en kanne, må vi fylle på med 5 dL vann for å

Blander du solbærsirup og vann, får du solbærsaft:)

Noen ganger bryr vi oss ikke om hvor mye vi blander, så lenge forholdet er rikitig. For eksempel kan vi blande én bøtte med solbærsirup med fem bøtter vann, og fortsatt være sikker på at forholdet er riktig – selv om vi ikke vet hvor mange liter bøtta rommer! Når vi bare bryr

oss om forholdet, bruker vi ordet del. Symbolet "2+5" på sirupflasken leser vi da som "2 deler sirup på 5 deler vann". Dette betyr at saften vår i alt inneholder 2+5=7 deler:

Dette betyr én del utgjør $\frac{1}{7}$ av blandingen, sirupen utgjør $\frac{2}{7}$ av blandingen og vann utgjør $\frac{5}{7}$ av blandingen.

4.13 Deler i et forhold

En blanding med forholdet a:b har til sammen a+b deler.

- én del utgjør $\frac{1}{a+b}$ av blandingen.
- a utgjør $\frac{a}{a+b}$ av blandingen.
- b utgjør $\frac{b}{a+b}$ av blandingen.

Eksempel 1

I et malerspann er grønn og rød maling blandet i forholdet 3:7, og det er $5\,\mathrm{L}$ av denne blandingen. Du ønsker å gjøre om forholdet til 3:11.

Hvor mye rød maling må du helle oppi spannet?

Svar:

I spannet har vi 3+7=10 deler. Siden det er $5\,\mathrm{L}$ i alt, må vi ha at:

$$én del = \frac{1}{10} \text{ av } 5 L$$

$$= \frac{1 \cdot 5}{10} L$$

$$= 0.5 L$$

Når vi har 7 deler rødmaling, men ønsker 11, må vi blande oppi 4 deler til. Da trenger vi:

$$4 \cdot 0.5 L = 2 L$$

Vi må helle oppi 2L rødmaling for å få forholdet 3:11.

Eksempel 2

En kanne som rommer 21 dL er fylt med en saft der sirup og vann er blandet i forholdet 2 : 5.

- a) Hvor mye vann er det kannen?
- b) Hvor mye sirup er det i kannen?

Svar:

a) Til sammen består saften av 2+5=7 deler. Fordi 5 av disse er vann, må vi ha at:

mengde vann =
$$\frac{5}{7}$$
 av 21 dL
= $\frac{5 \cdot 21}{7}$ dL
= 15 dL

b) Vi kan løse denne oppgaven på samme måte som i oppgave a), men det er raskere å merke oss at hvis vi har $15 \,\mathrm{dL}$ vann av i alt $21 \,\mathrm{dL}$, må vi ha $(21-15) \,\mathrm{dL} = 6 \,\mathrm{dL}$ sirup.

Eksempel 3

I en ferdig blandet saft er forholdet mellom sirup og vann lik 3:5.

Hvor mange deler saft og/eller vann må du legge til for at forholdet skal bli 1 : 4?

Svar:

Løsningsmetode 1

Brøken vi ønsker, $\frac{1}{4}$, kan vi skrive om til en brøk med samme teller som brøken vi har (altså $\frac{3}{5}$):

$$\frac{1\cdot 3}{4\cdot 3} = \frac{3}{12}$$

3:12 er altså det samme forholdet som 1:4. Og 3:12 kan vi få hvis vi legger til 7 deler vann i blandingen med forholdet 3:5:

$$\frac{3}{5+7} = \frac{3}{12}$$

Løsningsmetode 2

Vi krever at x ganger $\frac{3}{5}$ skal gi oss det samme forholdet som $\frac{1}{4}$:

$$\frac{3}{5} \cdot x = \frac{1}{4}$$
$$x = \frac{1}{4} \cdot \frac{5}{3}$$
$$= \frac{5}{12}$$

Forholdet vi søker er derfor:

$$\frac{3}{5} \cdot \frac{5}{12} = \frac{3}{12}$$

Som vi får hvis vi legger til 7 deler vann i blandingen med forholdet 3:5.

Oppgaver for kapittel 4

4.1.1

Finn verdien til brøkene:

a) $\frac{1}{2}$ b) $\frac{1}{4}$ c) $\frac{1}{5}$ d) $\frac{10}{5}$ e) $\frac{6}{8}$

4.2.1

Regn ut:

a) $\frac{4}{3} \cdot 5$ **b)** $\frac{3}{5} \cdot (-6)$

4.2.2

Finn $\frac{2}{3}$ av 9.

4.3.1

Regn ut:

a)
$$\frac{4}{3}$$
: 5 **b)** $\frac{3}{5}$: (-6)

4.4.1

Regn ut:

a)
$$\frac{4}{3} \cdot \frac{5}{9}$$
 b) $\frac{7}{8} \cdot \frac{2}{4}$

4.4.2

Finn $\frac{2}{3}$ av $\frac{4}{5}$.

4.6.1

Forkort brøkene:

a)
$$\frac{28}{16}$$
 b) $\frac{12}{36}$

4.6.2

- a) Uvid $\frac{2}{3}$ til en brøk med 24 som nevner.
- b) Utvid $\frac{11}{9}$ til en brøk med 27 som nevner.

4.7.1

Regn ut:

a)
$$\frac{2}{5} + \frac{5}{6}$$
 b) $\frac{2}{3} + \frac{1}{2} - \frac{3}{4}$

4.8.1

Regn ut:

a)
$$\frac{2}{5} : \frac{5}{6}$$
 b) $\frac{12}{3} \cdot \frac{3}{2}$

4.8.2

Se tilbake til svarene i oppgave 4.1.1a)-c). Fyll inn tallet som mangler der det står "_" i setningene under:

- (a) Å dele med 0,5 er det samme som å gange med _ .
- (b) Å dele med 0.25 er det samme som å gnage med $_$.
- (c) Å dele med 0,2 er det samme som å gnage med _.

4.8.3

Regn ut:

a)
$$\frac{1}{2} \cdot h$$
 b) $\frac{1}{2} : h$ **c)** $\frac{\pi}{2} \cdot \frac{a}{b}$

4.8.4

Forkort brøken:

$$\frac{2\pi ac}{4c\pi}$$

4.9.1

Finn forholdet og forholdstallet mellom antall hester og griser når vi har:

a) 5 hester og 2 griser. b) 12 griser og 4 hester.

4.9.2

Totaktsmotorer krever som regel bensin som er tilsatt en viss mengde motorolje. STHIL er en produsent av motorsager drevet av slike motorer, på deres hjemmesider kan vi lese dette:

Vi anbefaler følgende blandingsforhold:

Ved STIHL 1 : 50-totaktsmotorolje: 1 : 50 => 1 del olje + 50 deler bensin

Si at vi skal fylle på 2,5 L bensin på motorsage vår, hvor mye olje må vi da tilsette?

Merk: I de to neste oppgavene går vi ut ifra at både 1 dL vann og 1 dL saftsirup veier $100\,\mathrm{g}$.

4.9.3

Coca-Cola inneholder $10\,\mathrm{g}$ karbohydrater. En type saftsirup inneholder $44\,\mathrm{g}$ karbohydrater per $100\,\mathrm{g}$. Saften skal lages med 2 deler sirup og 9 deler vann.

Inneholder saften mer eller mindre karbohydrater per 100 g enn Coca-Cola?

4.9.4

På *Lærums solbærsirup* står det at 100 g ferdig utblandet saft inneholder 12,5 g sukker. Saften inneholder sirup og vann blandet i forholdet 1:5.

Hvor mye sukker inneholder 100 g solbærsirup? (Rent vann inneholder ikke sukker i det hele tatt).

Kapittel 5

Likninger, formler og funksjoner

5.1 Å finne størrelser

Likninger, formler og funksjoner (og utttrykk) er begreper som dukker i forskjellige sammenhenger, men i bunn og grunn handler de om det samme; de uttrykker relasjoner mellom størrelser. Når alle størrelsen utenom den ene er kjent, kan vi finne den siste størrelsen enten direkte eller indirekte.

5.1.1 Å finne størrelser direkte

Når formelen er kjent

Når formler er gitt, er det snakk om å sette inn verdier og regne ut. Formler har vi brukt i mange kapitler allerede, omtrent alle regelboksene i boka inneholder en formel. Men så langt har vi brukt formler med dimensjonsløse størrelser. Når vi har størrelser med enheter er det helt avgjørende at vi passer på at enhetene som er involvert er de samme.

Eksempel 1

Hvis du kjører med konstant fart, er strekningen du har kjørt etter en viss tid gitt ved formelen

 $strekning = fart \cdot tid$

a) Hvor langt kjører en bil som holder farten 50 km/h i 3 timer?

b) Hvor langt kjører en bil som holder farten $90 \,\mathrm{km/h}$ i $45 \,\mathrm{minutt?}$

Svar:

a) I formelen er nå farten 50 og tiden 3, og da er

strekning =
$$50 \cdot 3 = 150$$

Altså har bilen kjørt 150 km

b) Her har vi to forskjellige enheter for tid involvert; timer og minutt. Da må vi enten gjøre om farten til km/min eller tiden til timer. Vi velger å gjøre om minutt til timer:

$$45 \text{ minutt} = \frac{45}{60} \text{ timer}$$
$$= \frac{3}{4} \text{ timer}$$

I formelen er nå farten 90 og tiden $\frac{3}{4}$, og da er

strekning =
$$90 \cdot \frac{3}{4} = 67.5$$

Altså har bilen kjørt $67.5\,\mathrm{km}$.

Eksempel 2

Kiloprisen til en vare er hva en vare koster per kg. For en hvilken som helst vare har vi at

$$kilopris = \frac{pris}{vekt}$$

- a) $10\,\mathrm{kg}$ tomater koster $35\,\mathrm{kr}$. Hva er kiloprisen til tomatene?
- b) Safran går for å være verdens dyreste krydder, 5 g kan koste 600 kr. Hva er da kiloprisen på safran?

Svar:

a) I formelen er nå prisen 35 og vekten 10, og da er

kilopris =
$$\frac{35}{10} = 3.5$$

Altså er kiloprisen på tomater 3,5 kr/kg

b) Her har vi to forskjellige enheter for vekt involvert; kg og gram. Vi gjør om antall g til antall kg (se??):

$$5 g = 0.005 kg$$

I formelen vår er nå prisen 600 og vekten 0,005, og da er

kilopris =
$$\frac{600}{0.005}$$
 = 120 000

Altså koster safran 120 000 kr/kg.

Når formlene er ukjente

Når vi bare får en beskrivelse av en situasjon, må vi selv lage formlene. Da gjelder det å identifisere hvilke størrelser som er ukjente, og finne relasjonen mellom dem.

Eksempel 1

For en taxi er det følgende kostnader:

- Du må betale 50 kr uansett hvor langt du blir kjørt.
- I tillegg betaler du 15 kr for hver kilometer du blir kjørt.
- a) Sett opp et uttrykk for hvor mye taxituren koster for hver kilometer du blir kjørt.
- b) Hva koster en taxitur på 17 km?

Svar:

a) Her er det to ukjente størrelser; kostnaden for taxituren og antall kilometer kjørt. Relasjonen mellom dem er denne:

kostnaden for taxituren = $50+15\cdot \mathrm{antall}$ kilometer kjørt

b) Vi har nå at

kostnaden for taxituren = $50 + 15 \cdot 17 = 305$

Taxituren koster altså 305 kr.

Tips

Ved å la enkeltbokstaver representere størrelser får man kortere uttrykk. La k stå for kostnad for taxituren og x stå for antall kilometer kjørt. Da blir uttrykket fra Eksempel 1 over dette:

$$k = 50 + 15x$$

I tillegg kan man gjerne bruke skrivemåten for funksjoner:

$$k(x) = 50 + 15x$$

5.1.2 Å finne størrelser indirekte

Når formlene er kjente

Eksempel 1

Vi har sett (*Eksempel 1*, s. ??) at strekningen s vi har kjørt, farten f vi har holdt og tiden t vi har brukt kan settes i sammenheng via formelen¹:

$$s = f \cdot t$$

Siden s står alene på én side av likhetstegnet, sier vi at dette er en formel for s. Ønsker vi en formel for f, kan vi gjøre om formelen ved å følge prinsippene for likninger (se MB, s. ??):

$$s = f \cdot t$$

$$\frac{s}{t} = \frac{f \cdot t}{t}$$

$$\frac{s}{t} = f$$

 $^{^{1}}$ strekning = fart · tid

Eksempel 2

 $Ohms\ lov\ sier\ at\ strømmen\ I$ gjennom en metallisk leder (med konstant temeperatur) er gitt ved formelen

$$I = \frac{U}{R}$$

hvor U er spenningen og R er resistansen.

a) Skriv om formelen til en formel for R.

Strøm måles i Ampere (A), spenning i Volt (V) og motstand i Ohm (Ω).

b) Hvis strømmen er 2 A og spenningen 12 V, hva er da resistansen?

Svar:

a) Vi gjør om formelen slik at R står alene på én side av likhetsregnet:

$$I \cdot R = \frac{U \cdot \cancel{R}}{\cancel{R}}$$

$$I \cdot R = U$$

$$\frac{\cancel{I} \cdot R}{\cancel{I}} = \frac{U}{I}$$

$$R = \frac{U}{I}$$

b) Vi bruker formelen vi fant i a) og får at:

$$R = \frac{U}{I}$$
$$= \frac{12}{2}$$
$$= 6$$

Resistansen er altså $6\,\Omega$.

Eksempel 3

Si vi har målt en temperatur T_C i grader Celsius (°C). Temperaturen T_F målt i Fahrenheit (°F) er da gitt ved formelen:

$$T_F = \frac{9}{5} \cdot T_C + 32$$

- a) Skriv om formelen til en formel for T_C .
- **b)** Hvis en temperatur er målt til 59°F, hva er da temperaturen målt i °C?

Svar:

a)

$$T_F = \frac{9}{5} \cdot T_C + 32$$

$$T_F - 32 = \frac{9}{5} \cdot T_C$$

$$5(T_F - 32) = \cancel{5} \cdot \frac{9}{\cancel{5}} \cdot F_C$$

$$5(T_F - 32) = 9T_C$$

$$\frac{5(T_F - 32)}{9} = \frac{\cancel{9}T_C}{\cancel{9}}$$

$$\frac{5(T_F - 32)}{9} = T_C$$

b) Vi bruker formelen fra a), og finner at:

$$T_C = \frac{5(59 - 32)}{9}$$

$$= \frac{5(27)}{9}$$

$$= 5 \cdot 3$$

$$= 15$$

Når formlene er ukjente

Eksempel 1

Tenk at klassen ønsker å dra på en klassetur som til sammen koster $11\,000\,\mathrm{kr}$. For å dekke utgiftene har dere allerede skaffet $2\,000\,\mathrm{kr}$, resten skal skaffes gjennom loddsalg. For hvert lodd

som selges, tjener dere 25 kr.

- a) Lag en ligning for hvor mange lodd klassen må selge for å få råd til klasseturen.
- b) Løs ligningen.

Svar:

a) Vi starter med å tenke oss regnestykket i ord:

 $penger\ allerede\ skaffet+\ antall\ lodd\cdot\ penger\ per\ lodd=\ prisen\ på\ turen$

Den eneste størrelsen vi ikke vet om er $antall \ lodd$. Vi erstatter derfor $antall \ lodd$ med x, og setter inn verdien til de andre:

$$2\,000 + x \cdot 25 = 11\,000$$

b)
$$25x = 11\,000 - 2\,000$$
$$25x = 9\,000$$
$$\frac{25x}{25} = \frac{9\,000}{25}$$
$$x = 360$$

 $x \cdot 25$ er skrevet om til 25x.

Eksempel 2

"Broren min er dobbelt så gammel som meg. Til sammen er vi 9 år gamle. Hvor gammel er jeg?".

Svar:

"Broren min er dobbelt så gammel som meg." betyr at:

 $brors\ alder = 2 \cdot min\ alder$

"Til sammen er vi 9 år gamle." betyr at:

 $brors\ alder + min\ alder = 9\ år$

Erstatter vi brors alder med " $2 \cdot min \ alder$ ", får vi:

 $2 \cdot min \ alder + min \ alder = 9 \ ar$

Det som er ukjent for oss er min alder:

$$2x + x = 9$$
$$3x = 9$$
$$\frac{3x}{3} = \frac{9}{3}$$
$$x = 3$$

"Jeg" er altså 3 år gammel.

Eksempel 2

En vennegjeng ønsker å spleise på en bil som koster $50\,000$ kr, men det er usikkert hvor mange personer som skal være med på å spleise.

- a) Kall "antall personer som blir med på å spleise" for P og "utgift per person i kroner" for U og lag en formel for U.
- b) Finn utgiften per person hvis 20 personer blir med.

Svar:

a) Siden prisen på bilen skal deles på antall personer som er med i spleiselaget, må formelen bli:

$$U = \frac{50\,000}{P}$$

b) Vi erstatter $P \mod 20$, og får:

$$U = \frac{50000}{20} = 2500$$

Utgiften per person er altså $2\,500$ kr.

5.2 Funksjoners egenskaper

5.2.1 Funksjoner med samme verdi; skjæringspunkt

5.1 Skjæringspunktene til grafer

Et punkt hvor to funksjoner har samme verdi kalles et *skjæringspunkt* til funksjonene.

Eksempel 1

Gitt de to funksjonene

$$f(x) = 2x + 1$$

$$g(x) = x + 4$$

Finn skjæringspunktet til f(x) og g(x)?

Svar:

Vi kan finne skjæringspunktet både ved en grafisk og en algebraisk metode.

Grafisk metode

Vi tegner grafene¹ til funksjonene inn i det samme koordinatsystemet:

Vi leser av at funksjonene har samme verdi når x = 3, og da har begge funksjonene verdien 7. Altså er skjæringspunktet (3,7).

Algebraisk metode

At f(x) og g(x) har samme verdi gir likningen

$$f(x) = g(x)$$
$$2x + 1 = x + 4$$
$$x = 3$$

Videre har vi at

$$f(3) = 2 \cdot 3 + 1 = 7$$
$$q(3) = 3 + 4 = 7$$

Altså er (3,7) skjæringspunktet til grafene.

Merk: Det hadde selvsagt holdt å bare finne én av f(3) og g(3).

Eksempel 2

En klasse planlegger en tur som krever bussreise. De får tilbud fra to busselskap:

• Busselskap 1

Klassen betaler 10000 kr uansett, og 10 kr per km.

• Busselskap 2

Klassen betaler $4\,000\,\mathrm{kr}$ uansett, og $30\,\mathrm{kr}$ per km.

For hvilken lengde kjørt tilbyr busselskapene same pris?

Svar:

Vi innfører følgende variabler:

- x =antall kilometer kjørt
- f(x) = pris for Busselskap 1
- g(x) = pris for Busselskap 2

 $^{^{1}}$ For hvordan tegne en graf, se MB, s. ?? og ??. Hvor langt x-aksen bør strekke seg vet man ikke på forhånd, men kan avgjøres ved å sette inn enkle x-verdier i funksjonene.

Da er

$$f(x) = 10x + 10000$$
$$q(x) = 30x + 4000$$

Videre løser vi nå oppgaven både med en grafisk og en algebraisk metode.

$Grafisk\ metode$

Vi tegner grafene til funksjonene inn i samme koordinatsystem:

Vi leser av at funksjonene har samme verdi når x=200. Dette betyr at busselskapene tilbyr samme pris hvis klassen skal kjøre $200 \, \mathrm{km}$.

Algebraisk metode

Busselskapene har samme pris når

$$f(x) = g(x)$$

$$10x + 10000 = 30x + 6000$$

$$4000 = 20x$$

$$x = 200$$

Busselskapene tilbyr altså samme pris hvis klassen skal kjøre $200\,\mathrm{km}.$

5.2.2 Null-, bunn- og toppunkt

5.2 Null-, bunn- og toppunkt

• Nullpunkt

En x-verdi som gir funksjonsverdi 0.

• Bunnpunkt

Punkt hvor funksjonen har sin laveste verdi.

• Toppunkt

Punkt hvor funksjonen har sin høyeste verdi.

Eksempel 1

Funksjonen

$$f(x) = x^2 - 6x + 8$$
 , $x \in [0, 10]$

har

- Nullpunkt x = 1 og x = 5.
- Bunnpunkt (3, -4).
- Toppunkt (7, 12).

Oppgaver for kapittel 5

5.2.1

Ola og Kari tilbyr et matematikk-kurs. For hvert kurs tjener de til sammen 12 000 kr. Ola er assistenten til Kari, og Kari skal ha dobbelt så mye av inntekten som Ola.

Hvor mye tjener Ola og hvor mye tjener Kari for hvert kurs?

5.2.2

Du skal snekre et gjerde som er 3,4 m langt. For å lage gjerdet skal du bruke 8 planker som er 0,25 m breie, som vist i figuren under:

Det skal være den samme avstanden mellom alle plankene. Hvor lang er denne avstanden?

5.2.3

Etter å ha blitt satt ned med 35%, koster en vare nå 845 kr. Hva kostet varen før prisen ble satt ned?

5.2.4

For å regne ut et veldig kjent tall kan vi starte med å gjøre dette:

- 1. Start med tallet 2.
- 2. Gang så med to 2ere og del med 1 ganger 3.
- 3. Gang så med to 4ere og del med 3 ganger 5.
- 4. Gang så med to 6ere og del med 5 ganger 7.

Verdien til tallet vi søker får vi hvis vi fra punkt 4 fortsetter uendelig mange punkt videre!

- a) Skriv opp punkt 5 og 6.
- **b)** Gjør som punkt 1 til 6 sier. Hvilket tall tror du vi snakker om?

5.2.5

Makspuls er et mål på hvor mange hjerteslag hjertet maksimalt kan slå i løpet av et minutt. På siden trening.no kan man lese dette:

"Den tradisjonelle metoden å estimere maksimalpuls er å ta utgangspunkt i 220 og deretter trekke fra alderen."

- a) Kall "maksimalpuls" for m og "alder" for a og lag en formel for m, som beskrevet i sitatet.
- b) Bruk formelen fra a) til å regne ut makspulsen din.

På den samme siden kan vi lese at en ny og bedre metode er slik:

"Ta din alder og multipliser dette med 0,64. Deretter trekker du dette fra 211."

- c) Lag en formel for m, som beskrevet i sitatet.
- d) Bruk formelen fra c) til å regne ut makspulsen din.

For å fysisk måle makspulsen din kan du gjøre dette:

- Hopp opp og ned opp og ned i ca. 10 sekunder (da vil hjertet ditt omtrent slå så raskt det kan en liten stund etter).
- Tell hjerteslag umiddelbart etter hoppingen.
- Tell i 15 sekunder.
- e) Kall "antall hjerteslag i løpet av 15 sekunder" for A og lag en formel for m.
- f) Bruk formelen fra e) til å regne ut makspulsen din.
- **g)** Sammenlign resultatene fra b), d) og f), er de like eller forskjellige?

5.3.1

På nettsiden viivilla.no får vi vite at dette er formelen for å lage en perfekt trapp:

- "2 ganger opptrinn (trinnhøyde) pluss 1 gang inntrinn (trinndybde) bør bli 62 centimeter (med et slingringsmonn på et par centimeter)."
- a) Kall "trinnhøyden" for h og "trinndybden" for d og skriv opp formelen i sitatet (uten slingringsmonn).

- b) Sjekk trappene på skolen, er formelen oppfylt eller ikke?
- c) Hvis ikke: Hva måtte trinnhøyden vært for at formelen skulle blitt oppfylt?
- d) Skriv om formelen til en formel for h.

5.3.2

Effekten P (målt i Watt) i en elektrisk krets er gitt ved formelen:

$$P = R \cdot I^2$$

hvor R er motstanden og I er strømmen i kretsen.

- a) Hvis $R = 5 \Omega$ og I = 10 A, hva er da effekten?
- b) Skriv om formelen til en formel for I^2 .

5.3.3

På klikk.no finner man disse formelene for å regne ut hvor høy et barn kommer til å bli:

For jenter:

- 1. Legg sammen mors høyde i cm + fars høyde i cm
- 2. Trekk fra 13 cm
- 3. Del tallet på to

For gutter:

- 1. Legg sammen mors høyde i c
m+fars høyde i cm
- 2. Legg til 13 cm
- 3. Del tallet på to

Kall barnets (fremtidige) høyde for B, mors høyde for M og fars høde for F.

- a) Lag en formel for B når barnet er ei jente.
- b) Lag en formel for B når barnet er en gutt.
- c) Gjør om formelen fra a) til en formel for F.
- d) Ei jente har en mor som er 165 cm. Når jenta er utvokst kommer hun til å bli 171 cm. Hvor høy er faren til jenta?

Kapittel 6

Økonomi

Mål for opplæringen er at eleven skal kunne:

- gjøre greie for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter
- vurdere forbruk og bruk av kredittkort og sette opp budsjett og regnskap ved hjelp av regneark
- undersøke og vurdere ulike former for lån og sparing

6.1 Indeksregning

Innenfor økonomi er *indekser* forholdstall som forteller oss hvor mye størrelser har forandret seg. For eksempel kostet kroneisen 0,75 kr (!) da den ble lansert i 1953, mens den i 2017 kostet ca 27 kr . Forholdet mellom prisen i 2017 og i 1953 er altså:

$$\frac{\text{pris } 2018}{\text{pris } 1953} = \frac{27}{0.75} = 36$$

Dette forteller oss at prisen for kroneis har blitt 36 ganger mer enn den var. Eller vi kan si at den nye prisen utgjør 3600% av den originale. I denne sammenhengen kunne vi kalt både 36 og 3600% for en *indeks*, siden begge tallene forteller noe om hvordan prisen for kroneis har endret seg fra 1953 til 2017. Velger man å bruke prosenttall som indeks er det vanlig å kutte prosentsymbolet, i vårt eksempel ville da indeksen blitt 3600.

6.1.1 Konsumprisindeks og basisår

Konsumprisindeksen (KPI) er en indeks som beskriver prisnivået på varer og tjenester som en typisk husstand i Norge bruker penger på i løpet av et år. Disse varene er:

- Matvarer og alkoholfrie drikkevarer
- Alkoholholdige drikkevarer og tobakk
- Klær og skotøy
- Bolig, lys og brensel
- Møbler, husholdningsartikler og vedlikehold av innbo
- Helsepleie

- Transport
- Post- og teletjenester
- Kultur og fritid
- Utdanning
- Hotell- og restauranttjenester
- Andre varer og tjenester

For å sammenligne noe må man alltid starte med noe å sammenligne med, og konsumprisindeksen tar utgangspunkt i prisnivået på de nevnte varene/tjenestene i året 2015. 2015 kalles derfor *basisåret*, og i dette

året er indeksen bestemt til å være 100.

6.1 Basisår

I et basisår er verdien til indeksen 100. For konsumprisindeksen er basisåret 2015.

Tabellen under er hentet fra SSB sine nettsider og viser KPI (konsumprisindeks) for de 7 siste årene:

År	KPI
2017	105,5
2016	103,6
2015	100
2014	97,9
2013	95,9
2012	93,9
2011	93,3

Table 6.1: Kunsumprisindeksen for årene 2010-2017

Ut ifra tabellen kan vi for eksempel lese dette:

- Fordi KPI for 2017 er 105,5 har prisene steget med 5,5% siden 2015.
- Fordi KPI i 2011 er 93,3 var prisene 7,7% lavere i 2011 enn i 2015.

6.2 Prosentvis endring fra basisår

indeks - 100 = prosentvis endring fra basisår

Eksempel

I 2017 var prisindeksen for en vare 109. Hvor mye har har prisen endret seg siden basisåret?

Svar:

$$109 - 100 = 9$$

Prisen har altså endret seg 9% siden basisåret.

6.1.2 Kroneverdi

Vi har nevnt at en kroneis kostet 0,75 kr i 1953 og 27 kr i 2018. Når vi ved to tidspunkt må betale forskjellig pris på den samme varen skyldes det ofte at kroneverdien har forandret seg; Prisen på kroneisen har gått opp blant annet fordi kroneverdien har gått ned — du fikk altså kjøpt mindre varer for hver 1-krone i 2017 enn i 1953.

Verdien av 1 krone, altså kroneverdien ved et år, beregner vi ut ifra konsumprisindeksen. Vi tar da konsumprisindeksen til basisåret (100) og deler med KPI for

Kroneverdien i basisåret (2015) er alltid lik 1.

året vi ønsker å finne kroneverdien til. For eksempel var KPI i 1953 lik 6,9, mens den i 2017 105,5. Kroneverdien for disse årene blir derfor:

Kroneverdi i 2017 =
$$\frac{100}{105,5}$$

 ≈ 0.94
Kroneverdi i 1953 = $\frac{100}{6,9}$
 ≈ 14.49

Dette forteller oss at $1 \,\mathrm{kr}$ i $2017 \,\mathrm{er}$ verd $0,94 \,\mathrm{ganger} \,\,mindre \,\mathrm{enn} \,\,1 \,\mathrm{kr}$ i $2015, \,\mathrm{mens} \,\,1 \,\mathrm{kr}$ i $1953 \,\mathrm{er} \,\,\mathrm{verd}$ $14,49 \,\mathrm{ganger} \,\,mer.$

Om man ganger med et tall som er mindre enn 1, får man et svar som er mindre enn utgangspunktet.

6.3 Kroneverdi

$$Kroneverdi = \frac{100}{KPI}$$

Eksempel

KPI i 2012 var 93,9. Regn ut kroneverdien i 2012.

Svar:

Kroneverdi i 2012 =
$$\frac{100}{93,9}$$
 ≈ 1.06

Å betale 1 kr i 2012 ville vært dete samme som å betale 1,06 kr i

2015 (basisåret).

6.1.3 Reallønn og nominell lønn

Hvor god råd vi har avhenger av hvor mye vi tjener og hva prisnivået er. Tenk nå at hadde en årslønn på 500 000 kr i både 2011, 2015 og 2017. Tabell 6.1 forteller oss at du hadde du best råd i 2011 — fordi da var prisnivået lavest (siden KPI var mindre enn for de to andre årene). I praksis ville dette betydd at selv om lønnen din var den samme alle årene, ville du kunne kjøpt flere varer i 2011 siden de da var billigere. I denne sammenhengen sier vi at reallønnen din var høyere i 2011 enn i 2015 og 2017.

At prisnivået har blitt høyere er det samme som at kroneverdien har blitt lavere. For å regne ut selve verdien til reallønnen, ganger vi den nominelle lønnen med kroneverdien (se ??:

Nominell lønn er lønnen du får fra arbeidsgiveren din, altså det vi som oftest bare kaller lønnen.

Reallønn i 2017 =
$$500\,000 \cdot \frac{100}{105,5}\,\mathrm{kr}$$

 $\approx 473\,934\,\mathrm{kr}$
Reallønn i 2015 = $500\,000 \cdot \frac{100}{100}\,\mathrm{kr}$
 $\approx 500\,000\,\mathrm{kr}$
Reallønn i 2011 = $500\,000 \cdot \frac{100}{93.3}$

 $\approx 535\,905\,\mathrm{kr}$

Legg merke til at reallønnen i basisåret 2015 alltid vil ha samme verdi som den nominelle lønnen!

6.4 Reallønn

 $reallønn = nominell lønn \cdot kroneverdien$

Eksempel

I 2016 tjente Per $450\,000$ kr, mens han i 2012 tjente $420\,000$ kr. I 2016 var KPI = 103,6, mens i 2012 var KPI = 93,9. I hvilket av disse årene hadde Per best råd?

Svar:

For å finne ut hvilket av årene Per hadde best råd, sjekker vi hvilket år han hadde høyest reallønn (KPI-verdiene i utregningen henter vi fra *Tabell 1*):

Reallønn i 2016 =
$$450\,000 \cdot \frac{100}{103,6} \,\mathrm{kr}$$

 $\approx 434\,363 \,\mathrm{kr}$
Reallønn i 2012 = $420\,000 \cdot \frac{100}{93,9}$
 $\approx 447\,284 \,\mathrm{kr}$

Vi ser at reallønnen til Per var høyest i 2012, derfor hadde han bedre råd dette året enn i 2016.

6.1.4 Regning med indekser

Vi har sett hvordan både verdien av en pris eller en reallønn forandrer seg når KPI øker eller minker. Hvis en verdi har forandret seg, men forholdet mellom verdien og indeksen forblir det samme, sier vi at verdien har fulgt indeksen.

6.5 Verdi som følger indeks

Hvis en verdi følger indeksen, forblir forholdet mellom verdi og indeksen det samme:

$$\frac{\text{verdi 1}}{\text{indeks 1}} = \frac{\text{verdi 2}}{\text{indeks 2}}$$

Eksempel 1

I 2013 fikk Sofie 600 000 kr i lønn. I 2013 var KPI 95,9, mens den i 2017 var 105,5. Hva måtte Sofie få i lønn i 2017 for at lønnen skulle fulgt indeksen? (Obs! Dette er det samme som å si at reallønnen skal forbli den samme).

Svar:

Skal lønnen følge indeksen, må forholdet mellom lønnen og KPI være lik for de to årene:

$$\frac{\text{lønn i } 2017}{\text{KPI i } 2017} = \frac{\text{lønn i } 2013}{\text{KPI i } 2013}$$

Siden lønnen i 2017 er ukjent, kaller vi
 denne for \boldsymbol{x} i den videre utregningen:

$$\frac{x}{105,5} = \frac{600\,000}{95,9}$$
$$= \frac{600\,000}{95,9} \cdot 105,5$$
$$\approx 660\,000$$

Lønnen til Sofie bør altså være 660 000 kr for at lønnen skal følge konsumprisindeksen.

Eksempel 2

I 2005 kostet en sykkel 1 $500\,\mathrm{kr}$, mens den i 2014 ville kostet 1 $784\,\mathrm{kr}$ om prisen hadde fulgt konsumprisindeksen. I 2005 var KPI 82,3. Hva var den i 2014?

Svar:

Skal prisen følge indeksen må forholdet mellom pris og indeks være det samme:

$$\frac{\text{pris i } 2014}{\text{KPI i } 2014} = \frac{\text{pris i } 2005}{\text{KPI i } 2005}$$

Siden KPI i 2014 er ukjent, kaller vi denne for x. Vi utnytter også at vi for en ligning med én brøk på hver side kan "snu brøkene på hodet":

$$\frac{x}{\text{pris i } 2014} = \frac{\text{KPI i } 2005}{\text{pris i } 2005}$$
$$\frac{x}{1784} = \frac{82,3}{1500}$$
$$x = \frac{82,3}{1500} \cdot 1784$$
$$\approx 97,9$$

KPI i 2014 var altså 97,9.

6.2 Lån og prosentvis endring over tid

6.2.1 Lån

Noen ganger har vi ikke nok penger til å kjøpe det vi ønsker oss og må derfor ta opp et lån fra en bank. Banken gir oss da en viss *lånesum* mot at vi betaler tilbake denne, og renter, i løpet av en bestemt tid. Det vanligste er at vi underveis betaler banken det som kalles terminbeløp, som på sin side består av avdrag og renter. Det vi til enhver tid skylder banken kaller vi gjelden. La oss se på et eksempel for å prøve å holde styr på alle disse begrepene:

Si at en bank låner oss $100\,000\,\mathrm{kr}$, som da blir lånesummen. Lånet skal tilbakebetales i løpet av 5 år, med ett terminbeløp hvert år, og renten er 10%. Det finnes forskjellige måter å betale tilbake et lån på, men følgende vil som regel gjelde:

• Summen av alle avdragene skal tilsvare lånesummen.

For å gjøre det enkelt i vårt eksempel, bestemmer vi oss for å betale tilbake lånet med like avdrag hvert år. Siden 100 000 kr skal fordeles likt over 5 år, må det årlige avdraget bli $\frac{100\,000}{5}$ kr = $20\,000$ kr.

• Det man betaler i avdrag skal trekkes fra gjelden.

Startgjelden er 100 000, men det første året betaler vi 20 000 kr i avdrag, og da blir gjelden $100\,000\,\mathrm{kr}-20\,000\,\mathrm{kr}=80\,000\,\mathrm{kr}$. Det andre året betaler vi nye $20\,000\,\mathrm{kr}$, og da blir gjelden $80\,000\,\mathrm{kr}-20\,000\,\mathrm{kr}=60\,000\,\mathrm{kr}$. Og slik fortsetter det de neste tre årene.

• Renter skal beregnes av gjelden.

Siden gjelden det første året er $100\,000\,\mathrm{kr}$, må vi betale (se ??) $100\,000\,\mathrm{kr} \cdot 0,10\,000 = 10\,000\,\mathrm{kr}$ i renter. Siden gjelden det andre året er $80\,000\,\mathrm{kr}$ må vi betale $80\,000\,\mathrm{kr} \cdot 0,10\,000 = 80\,000\,\mathrm{kr}$. Og slik fortsetter det de neste tre årene.

• Terminbeløpet er summen av avdrag og renter.

Av første og tredje punkt får vi at terminbeløpet for de to første årene blir:

	1. år	2. år
	$20000\mathrm{kr} + 10000\mathrm{kr}$	$20000\mathrm{kr} + 80000\mathrm{kr}$
Terminbeløp	=	=
	$30000\mathrm{kr}$	$28000\mathrm{kr}$

Og slik fortsetter det de neste tre årene.

Serielån og annuitetslån

To veldig vanlige typer lån er *serielån* og *annuitetslån*. Lånet fra eksempelet vi akkurat har sett på er et serielån fordi avdragene er like Hvis terminbeløpene hadde vært like

store, ville det isteden vært et annuitetslån. Hvis lånesum, rente og nedbetalingstid er lik, vil et serielån alltid medføre
store. minst utgifter totalt sett. For privatpersoner er det likevel veldig populært å
velge annuitetslån på grunn av at det er
lettere å planlegge økonomien når man
betaler det samme beløpet hvar gang.

Merk: Du har alltid rett til å betale resterende gjeld når du selv ønsker det. Da avsluttes lånet og du betaler hverken flere avdrag eller renter.

Kredittkort

Kredittkort er et bankkort som virker slik at hvis du f.eks bruker kortet for å betale for 10 000 kr i en butikk, så blir ikke 10 000 kr trekt fra kontoen din — isteden låner du pengene fra banken. Etter en tid som er avtalt med banken vil banken kreve renter av gjelden din. Hvordan du betaler

denne gjelden er delvis opp til deg selv, men generelt har kredittkort veldig høye renter, så det lureste er å betale før rentekravet engang har startet!

6.6 Lån

Lånesum Beløpet vi låner av banken.

Gjeld Det vi til enhver tid skylder banken.

Rente Prosent av gjeld som skal betales.

Avdrag Det vi betaler ned på gjelden.

Summen av avdragene tilsvarer lånesummen.

Ny gjeld = Gammel gjeld - Avdrag

Renter Gjeld · Rente

Terminbeløp Avdrag + Renter

Serielån Lån hvor avdragene er like store.

Annuitetslån Lån hvor terminbeløpene er like store.

Kredittkort Bankkort hvor man låner penger istedenfor å

trekke dem ifra kontoen.

Eksempel 1

Fra en bank låner du $300\,000$ kr
 med 3% i årlig rente. Lånet skal betales tilbake som et seriel
ån med 5 årlige terminbeløp.

a) Hva blir det årlige avdraget?

b) Hva er gjelden din etter at du har betalt tredje terminbeløp?

c) Hvor mye må du betale i renter ved fjerde terminbeløp?

d) Hvor stort blir det fjerde terminbeløpet?

Svar:

a) Siden $300\,000\,\mathrm{kr}$ skal betales over 5 år, blir det årlige avdraget:

$$\frac{300\,000\,\mathrm{kr}}{5} = 60\,000\,\mathrm{kr}$$

b) Når tredje terminbeløp er betalt, har du betalt tre avdrag. Det betyr at gjelden din er:

$$300\,000 - 60\,000 \cdot 3 = 300\,000 - 180\,000$$

= $120\,000$

Altså 120 000 kr.

c) Ut ifra oppgave b) vet vi at gjelden er 180 000 kr når fjerde terminbeløp skal betales. 3% av gjelden blir da:

$$180\,000 \cdot 0.03 = 5\,400$$

Altså 5400 kr.

- d) Terminbeløpet tilsvarer avdrag pluss renter. Ut ifra oppgave
- a) og c) vet vi da at det fjerde terminbeløpet blir:

$$60\,000\,\mathrm{kr} + 5\,400\,\mathrm{kr} = 65\,400\,\mathrm{kr}$$

Eksempel 2

Fra en bank låner du $100\,000\,\mathrm{kr}$ med 6,4% årlig rente. Lånet skal betales tilbake som et annuitetslån over 5 år, og banken har da regnet ut at terminbeløpet blir $24\,000$.

Regn ut avdrag og renter for det første terminbeløpet.

Svar:

Det første året er gjelden $100\,000\,\mathrm{kr}$, i renter må du betale 6.4% av denne:

$$100\,000 \cdot 0.064 = 6\,400$$

Altså må du betale 6400 kr i renter det første året.

Siden terminbel p = avdrag + renter, må avdrag = terminbel p - avdrag:

$$= 24\,000 - 6400 = 17\,600$$

Altså må du betale 17600 i avdrag det første året.

6.2.2 Prosentvis endring over tid

Vi har sett hvordan vi må betale renter når vi låner penger, men hvis vi isteden sparer penger i en bank får vi renter. Renten kalles da *sparerente*. Hvis den årlige sparerenten f. eks. er 10%, betyr dette at vi hvert år skal få 10% av beløpet vi har spart i banken.

Si nå at vi setter $15\,000$ kr inn i en bank som gir nettopp 10% sparerente. Etter å ha spart i 1 år skal vi altså motta 10% av $15\,000$, og legge dette til de $15\,000$ vi allerede har. Dette blir det samme som å øke $15\,000$ med 10% (se ??):

Per dags dato er 10% sparerente veldig urealistisk, tallet er valgt for å gjøre utregninger enkle.

Antall kr etter 1 år = $15\,000 \cdot 1.10 = 16\,500$

Sparer vi også disse $16\,500$ kronene i et år, skal vi ha 10% av denne pengesummen. Det betyr at vi 2 år etter at vi startet å spare har:

Antall kr etter 2 år =
$$16500 \cdot 1{,}10 = 18150$$

Sparer vi også disse 18150 kronene i et år, får vi at:

Antall kr etter
$$3 \text{ år} = 18150 \cdot 1{,}10 = 19965$$

Utregningen for de to første årene går helt greit, men hva om vi ønsker å vite hvor mye penger vi har i banken om 20 år? Da blir det ganske kjipt å regne seg skritt for skritt fram til svaret. Men om vi skriver opp utregningen for de tre første årene kan vi oppdage en vakkert mønster. Det vi legger merke til er at alle regnestykkene består av forrige års pengesum ganger 1,10. Om vi nå skriver selve regnestykkene for pengesummene istedenfor svaret, får vi dette:

Antall kr etter 1 år =
$$15\,000 \cdot 1,10 = 16\,500$$

Antall kr etter 2 år = $15\,000 \cdot 1,10 \cdot 1,10 = 18\,150$
Antall kr etter 3 år = $15\,000 \cdot 1,10 \cdot 1,10 \cdot 1,10 = 19\,965$

Og bruker vi skrivemåten for potenser blir mønsteret enda tydeligere:

Antall kr etter 1 år =
$$15\,000 \cdot 1,10^1 = 16\,500$$

Antall kr etter 2 år = $15\,000 \cdot 1,10^2 = 18\,150$
Antall kr etter 3 år = $15\,000 \cdot 1,10^3 = 19\,965$

Mønsteret er altså at for å vite hvor mange penger vi har i banken tar vi startverdien og ganger med vekstfaktoren, opphøyd i antall år. F. eks. kan vi da finne at:

Antall kr etter 20 år =
$$15\,000 \cdot 1,10^{20} \approx 100\,912$$

Det samme mønsteret vil dukke opp i alle tilfeller hvor vi snakker om at noe endrer seg med et bestemt prosenttall over en viss tid:

6.7 Vekst eller nedgang over tid

ny verdi = $startverdi \cdot vekstfaktor^{tid}$

Eksempel 1

Du setter inn $20\,000\,\mathrm{kr}$ i en bank som gir 2% i årlig sparerente. Hvor mye penger har du i banken etter 8 år?

Svar:

Siden renten er 2%, er vekstfaktoren 1,02. Startverdien er $20\,000$ og tiden er 8:

$$20\,000 \cdot 1,02^8 \approx 23\,433$$

Du har altså ca. 23 433 kr i banken etter 8 år med sparing.

Eksempel 2

Du betaler 27 000 kr med et kreddittkort som krever 1,4% rente for hver måned du betaler for seint.

- a) Hvor mye har du i gjeld to år etter for sein betaling?
- b) Hva er den årlige renten ved for sein betaling?

Svar:

a) Siden renten er 1,4%, er vekstfaktoren 1,014. Siden renten er månedlig må vi måle tiden i måneder, og to år er $2 \cdot 12 = 24$ måneder. Siden starverdien er 27 000, får vi:

$$27\,000 \cdot 1.014^8 \approx 37\,649$$

Etter to år har du altså ca 37 649 kr i gjeld.

b) Siden ett år er det samme som 12 måneder blir vekstfaktoren gitt ved:

$$1,014^{12} \approx 1.182$$

Eksempel 3

Marion har kjøpt seg en ny bil til en verdi av $300\,000$ kr, og hun forventer at verdien vil synke med 12% de neste fire årene. Hva er bilen i så fall verd om fire år?

Svar:

Siden den årlige nedgangen er 12%, blir vekstfaktoren 0,88. Starverdien er 300 000 og tiden er 4:

$$300\,000 \cdot 0.88^4 \approx 179\,908$$

Marion forventer altså at bilen er verdt ca 179 908 kr om fire år.

6.3 Skatt

Om du har en inntekt må du som regel betale en del av disse pengene til staten. Disse pengene kalles skatt (og noen ganger avgift). Hensikten med skatt er at staten skal ha råd til å gi innbyggerne tilbud som skole, helsetjenester og mye mer. I dag blir blir skatten i stor grad beregnet av datasystemer, men det er ditt ansvar å sjekke at beregningene er riktige — og da er det viktig å forstå hvordan skattesystemet fungerer.

Obs! I eksamensoppgaver vil du oppdage at skattesystemer er presentert på en litt annen måte enn i denne boka. Dette er blant annet fordi skattereglene kan forandre seg fra år til år, og i denne boka har vi valgt å presentere skattereglene for 2018. Det viktigste er likevel ikke at du husker spesifikt disse reglene, men at du lærer deg hva som menes med begrepene bruttolønn, fradrag, skattegrunnlag, tyrgdeavgift og nettolønn

6.3.1 Bruttolønn, fradrag og skattegrunnlag

De fleste må betale 23% av det som kalles skattegrunnlaget, som er bruttolønnen minus fradrag. Bruttolønnen er lønnen du mottar fra arbeidsgiver, mens fradrag kan være mye forskjellig. Personfradrag og minstefradrag er noe alle

skattebetalere får, i tillegg kan man blant annet få fradrag hvis man betaler fagforeningskontigent eller har gitt penger til veldedige formål.

Skattegrunnlag kalles noen ganger trekkgrunnlag.

Fagforeningskontigent er det du betaler for å være med i en fagforening.

6.8 Bruttolønn, fradrag og skattegrunnlag

Bruttolønn

- Fradrag

= Skattegrunnlag

Eksempel

Bruttolønnen til Magnus er $500\,000\,\mathrm{kr}$. Han får $56\,000\,\mathrm{kr}$ i personfradrag $97\,600\,\mathrm{kr}$ i minstefradrag, i tilleg betaler han $1\,000\,\mathrm{kr}$ for årlig medlemskap i fagforeningen Tekna.

Hva må Magnus betale hvis han skatter 23% av skattegrunnlaget?

Svar:

Vi starter med å regne ut skattegrunnlaget, som er bruttolønnen minus fradragene:

	500000	$\operatorname{Bruttol} olimits$
_	56000	Personfradrag
_	97600	Minstefradrag
_	1000	Fagforeningskontigent
=	345 400	Skattegrunnlag

6.3.2 Trygdeavgift

Alle lønnsmottakere må også betale trygdeavgift. Dette er en inntekt staten bruker til å dekke Folketrygden. Hva man må betale i trygdeavgift kommer an på hvor gammel du er og hvilken type inntekt du har, men her skal vi bare bry oss om det man må betale for lønn fra en arbeidsgiver. Da er trygdeavgiften avhengig av alderen:

6.9 Trygdeavgift

Alder	Trygdeavgift
17-69 år	8,2 %
Under 17 år eller over 69 år	$5{,}1\%$

Trygdeavgiften skal beregnes av bruttolønnen.

Eksempel

Jonas og bestemoren hans, Line, har begge $150\,000\,\mathrm{kr}$ i lønn. Jonas er 18 år og Line er 71 år.

- a) Hva må Jonas betale i trygdeavgift?
- b) Hva må Line betale i trygdeavgift?

Svar:

a) Siden Jonas er mellom 17 år og 69 år, skal han betale 8,2% i tygdeavgift:

$$150\,000 \cdot 0.082 = 12\,300$$

Altså skal Jonas betale 1 230 kr i trygdeavgift. Fordi Line er over 69 år, skal hun betale 5,1% i tygdeavgift:

$$150\,000 \cdot 0.051 = 7\,650$$

Altså skal Line betale 7650 kr i trygdeavgift.

6.3.3 Trinnskatt

Av lønnen din må du også betale en viss prosent av forskjellige intervall, dette kalles *trinnskatt*:

6.10 Trinnskatt				
	Intervall	Skatt		
Trinn 1	$169\ 000 - 237\ 900\mathrm{kr}$	1,4%		
Trinn 2	$237\ 900 - 598\ 050\mathrm{kr}$	$3,\!3\%$		
Trinn 3	$598\ 050 - 962\ 050\mathrm{kr}$	$12,\!4\%$		
Trinn 4	Over 962 050 kr	$15,\!4\%$		

Trinnskatt betales av bruttolønnen.

Eksemp	el
Hvis du tj	ener 550 000 blir utregningen av trinnskatt slik:
Trinn 1	Fordi hele lønnen liger over $237900\mathrm{kr},$ må du betale $1,4\%$ av $(237900-169000)\mathrm{kr}=68900\mathrm{kr}.$
	Skatt for trinn 1 blir altså $68900\mathrm{kr}\cdot 0{,}014\approx 965\mathrm{kr}.$
	Siden 550 000 kr er over 237 900 kr, men under 598 050 kr.
Trinn 2	må du betale $3,3\%$ av $(550000 - 237900) \mathrm{kr} = 312100\mathrm{kr}$.
	Skatt for trinn 2 blir altså $312100\mathrm{kr}\cdot 0{,}033\approx 10299\mathrm{kr}.$
Totalt	Totalt må du betale $965\mathrm{kr} + 10299\mathrm{kr} = 11264\mathrm{kr}$
Totati	i trinnskatt.

6.3.4 Nettolønn

Det du sitter igjen med etter å ha betalt skatt, trygdeavgift og fagforeningskontigent kalles *nettolønnen*. Med tanke på de tre tidligere delseksjonene kan vi sett opp et regnestykke som dette:

6.11 Nettolønn

	$\operatorname{Bruttol} olimits$
_	Fagforeningskontigent
_	23% skatt
_	Trygdeavgift
_	Trinnskatt
=	Nettolønn

Eksempel

Emblas bruttolønn er $550\,000\,\rm kr.$ Hun betaler $1500\,\rm kr$ i året for medlemskap iLO (Norges største fagforening) og har $409\,900$ som skattegrunnlag. Embla er 28 år.

Hva er nettolønnen til hennes?

Svar:

	550000	Bruttolønn
_	1500	Fradrag for fagforening
_	93127	23% av skattegrunnlaget
_	45100	8,2% av bruttolønn
_	11264	Total skatt for trinn 1 og 2
=	399009	Nettolønn

(Den totale trinnskatten har vi hentet fra utregningen i $\it Eksempel~1$ fra $\it delseksjon~6.3.3.$)

Embla har altså 399009 kr i nettolønn.

6.4 Budsjett og regnskap

6.4.1 Budsjett

Når man skal planlegge økonomien sin kan det være lurt å sette opp en oversikt over det man forventer av inntekter og utgifter, en slik oversikt kalles et *budsjett*. Når man regner ut hva inntekter minus utgifter er, finner man et *resultat*. Er tallet positivt går man med *overskudd*, er tallet negativt går man med *underskudd*.

Eksempel

Lisa prøver å tenke på sine månedlige inntekter og utfiter, og kommer fram til dette:

- Hun tar på seg kveldsvakter på en gamlehjem. Av dette forventer hun ca. 4 000 i nettolønn.
- Hun bruker ca. 4500 kr i måneden på mat.
- Hun får 4360 i borteboerstipend.
- Hun bruker ca. 1 200 på klær, fritidsaktiviteter o.l.

Sett opp et månedsbudsjett for Lisa.

Svar:

${\bf Inntekter}$	Budsjett
Lønn	4 000
Stipend	4360
Sum	8 360
${f Utgifter}$	
Mat	4500
Klær, fritid o.l.	1200
Sum	5 700
Resultat	2 660

Budsjettet viser at Lisa forventer $2\,660\,\mathrm{kr}$ i overskudd.

6.4.2 Regnskap

I et budsjett fører man opp antatte inntekter og utgifter, mens i et regnskap fører man opp faktiske inntekter og utgifter. Forskjellen mellom budsjett og regnskap kalles avviket. For avviket er det vanlig at man for inntekter og resultat regner ut regnskap - budsjett, mens man for utgifter regner ut budsjett - regnskap. Dette fordi vi ønsker positive tall hvis inntektene er større enn forventet, og negative tall hvis utgiftene er større enn forventet.

Eksempel

I eksempelet fra forrige delseksjon (6.4.1) satt vi opp et månedsbudsjett for Lisa. I mars viste det seg at dette ble de faktiske inntektene og utfitene hennes:

- Hun ble så opphengt i å lese om funksjoner at hun ikke fikk jobbet så mye som hun hadde tenkt. Nettolønnen ble derfor 3 500 kr.
- Hun brukte 4 200 kr i måneden på mat.
- Hun fikk 4360 i borteboerstipend.
- I bursdagsgave fikk hun i alt 2000 kr.
- Hun brukte ca. 3600 på klær, fritidsaktiviteter o.l.

Sett opp et regnskap for Lisas mars måned.

S	va	r:

Inntekter	Budsjett	Regnskap	Avvik
Lønn	4000	3500	-500
Stipend	4360	4360	0
Bursdagsgave	0	2000	2000
Sum	8 360	9 860	2000
${f Utgifter}$			
Mat	4 500	4 200	300
Klær, fritid o.l.	1200	3600	-2400
\overline{Sum}	5 700	7800	1 900
Resultat	2660	2 0 6 0	-600

D-- -1-:--44 D-------1----

Lisa gikk altså med $2\,060\,\mathrm{kr}$ i overskudd, men $600\,\mathrm{kr}$ mindre enn forventet ut ifra budsjettet.

Oppgaver for kapittel 6

År	KPI	År	KPI
2017	105,5	2007	84.8
2016	103,6	2006	84.2
2015	100	2005	82.3
2014	97,9	2004	81
2013	95,9	2003	80.7
2012	93,9	2002	78.7
2011	93,3	2001	77.7
2010	92.1	2000	75.5
2010	92.1	1999	73.2
2009	89.9	1998	71.5
2008	88	1997	69.9

6.1.1

Regn ut kroneverdien i årene:

- **a)** 1998
 - **b)** 2014
- **c)** 2017

6.1.2 (H)

I 2016 var KPI 103,6. Hvor mye høyere var prisnivået i 2016 enn i 2015?

6.1.3

I 2017 tjente Else 490 000 kr, mens hun i 2012 tjente 410 000 kr. I 2017 var KPI = 105.5, mens i 2012 var KPI = 93.9. I hvilket av disse årene hadde Else best råd?

6.1.4

(Oppgaven er hentet fra eksamen høsten 2017, Del 2).

I 2010 var konsumprisindeksen 92,1. I 2014 var konsumprisindeksen 97,9. Helene hadde like stor kjøpekraft i 2014 som i 2010. I 2014 hadde hun en nominell lønn på 540 000 kroner. Hva var den nominelle lønna hennes i 2010?

6.1.5 (H)

(Oppgaven er hentet fra eksamen våren 2017, Del 1).

I 2006 var indeksen for en vare 125. Varen kostet da 1 000 kroner. I 2016 var indeksen for den same varen 150. Hvor mye kostet

varen i 2016 dersom prisen har fulgt indeksen?

6.2.1 (H)

Fra en bank låner du $200\,000$ kr med 2% i årlig rente. Lånet skal betales tilbake som et serielån med 10 årlige terminbeløp.

- a) Hva blir det årlige avdraget?
- b) Hva er gjelden din etter at du har betalt sjette terminbeløp?
- c) Hvor mye må du betale i renter det sjuende terminbeløp?
- d) Hvor stort blir det sjuende terminbeløpet?

6.2.2 (H)

Fra en bank låner du $100\,000\,\mathrm{kr}$ med 2% årlig rente. Lånet skal betales tilbake som et annuitetslån over 15 år, og banken har da regnet ut at terminbeløpet blir 7783.

Regn ut avdrag og renter for det første terminbeløpet.

6.2.3 (H)

Hvilken av figurene skisserer et serielån og hvilken skisserer et annuitetslån? Forklar hvorfor.

6.2.4

Du oppretter en sparekonto i en bank som gir 2,3% årlig rente og setter inn 45 000 kr. Hvor mye har du på kontoen etter 15 år?

6.2.5 (H)

Tenk at kredittkortet ditt har 45 dagers lån uten renter, og 10% månedlig rente etter dette. Du kjøper en scooter for 50 000 kr med kredittkortet. (Regn måneder som 30 dager).

- a) Hvor mye skylder du banken hvis ingenting er betalt innen 75 dager?
- **b)** Hvor mye skylder du banken hvis ingenting er betalt innen 105 dager?
- c) Hvor mye skylder du banken etter 75 dager hvis du betalte 20 000 kr innen de første 45 dagene?

6.2.6

(Oppgaven er hentet fra eksamen høsten 2016, Del 2).

Christoffer har kjøpt ny båt til ein verdi av 850 000 kroner. Tenk deg at båten vil falle i verdi med 20 % det første året og så med 3.5 % per år de neste fem åra.

Hva vil verdien av båten vere etter 6 år?

6.3.1

Børge har 350 000 kr i lønn. Børge er pensjonist, og skal da ha 56 000 kr i personfradrag og 83 000 kr i minstefradrag. I tillegg betaler han 700 kr i fagforeningskontigent.

- a) Beregn skattegrunnlaget til Børge.
- **b)** Av skattegrunnlaget betaler Børge 23% skatt. Finn hvor mye dette er.

6.3.2

Mira er 19 år og tjener 200 000 i året, mens 74 år gamle Børge tjener $350\,000$ i året.

Hvem av de to betaler mest trygdeavgift (i antall kroner)?

6.3.3

Beregn trinnskatten til Børge (nevnt i oppgave 6.3.1 og 6.3.2).

6.3.4

Beregn nettolønnen til Børge (nevnt i oppgave 6.3.1-6.3.3).

6.4.1 (H)

I februar antok Nora at dette ville bli hennes utgifter og inntekter:

- 23 000 kr i nettolønn
- 6000 kr for leie av hybel
- 4500 kr på mat
- 1500 kr på andre utgifter
- a) Sett opp et budsjett for Noras inntekter og utgifter i februar.
- b) Det viste seg at de faktiske utgiftene og inntektene ble disse:
 - 23 000 kr i nettolønn
 - 6000 kr for leie av hybel
 - 5500 på mat
 - Kjøp av fire FLAX-lodd som kostet 25 kr hver.
 - Gevinst på 1 000 kr fra FLAX-loddene
 - 1800 på andre utgifter.

Sett opp et regnskap for Nora. Gikk hun med overskudd eller underskudd i februar? Ble overskuddet/underskuddet større eller mindre enn i budsjettet?

Grubleoppgave

(Oppgaven er hentet fra eksamen høsten 2017, Del 2).

Basisåret for konsumprisindeksen er nå 2015. Tidligere var basisåret 1998.

Da 1998 ble brukt som basisår, var konsumprisindeksen 139,8 i 2015 og 144,8 i 2016.

- a) Vis at konsumprisindeksen i 1998 nå er 71,5.
- b) Hva er nå konsumprisinndeksen i 2016?

Kapittel 7

Sannsynlighet

7.1 Grunnprinnsippet

Selve prinsippet bak sannsynlighetsregning er at vi spør oss hvor mange $gunstige\ utfall$ vi har i et utvalg av $mulige\ utfall$. Sannsynligheten for en hendelse er da gitt som et forholdstall mellom disse:

sannsynlighet for en hendelse =
$$\frac{\text{gunstige utfall}}{\text{mulige utfall}}$$

Når vi kaster en terning, kaller vi det å få en sekser for en hendelse. Og fordi en terning har seks forskjellige sider, sier vi at det er seks mulige utfall. Av disse sidene er det bare én som er en sekser, derfor har vi ett gunstig utfall.

Sannsynligheten for å få en sekser er altså $\frac{1}{6}$:

sannsynlighet for å få en sekser =
$$\frac{\text{gunstige utfall}}{\text{mulige utfall}}$$

= $\frac{\text{sider med sekser på}}{\text{totalt antall sider}}$
= $\frac{1}{6}$

For å unngå lange uttrykk bruker vi ofte enkeltbokstaver for å indikere en hendelse. Istedenfor å skrive få en sekser, kan vi bruke bokstaven S, og for å indikere at vi spør om sannsynligheten for en hendelse bruker

vi bokstaven P. Når vi skriver P(S) betyr dette sannsynligheten for å få en sekser:

 $P(S) = \frac{1}{6}$

Hva med det motsatte, altså sannsynligheten for å ikke få en sekser? For å uttrykke at noe er motsatt av en hendelse, setter vi en strek over navnet. Hendelsen å ikke få en sekser skriver vi altså som \bar{S} . Å ikke få en sekser er det samme som å få enten en ener, en toer, en treer, en firer eller en femmer, derfor har denne hendelsen fem gunstige utfall. Det betyr at:

 $P(\bar{S}) = \frac{5}{6}$

7.2 Hendelser med og uten felles utfall

7.2.1 Hendelser uten felles utfall

La oss nå i tillegg kalle hendelsen å få en femmer for F. Hendelsen å få en femmer eller en sekser skriver vi da som $F \cup S$. Det er to av seks sider på en terning som er fem eller seks, sannsynligheten for å få en femmer eller en sekser er derfor $\frac{2}{6}$:

Symbolet \cup kalles union.

$$P(F \cup S) = \frac{2}{6}$$

Det samme svaret hadde vi fått ved å legge sammen sannsynlighetene P(F) og P(S):

$$P(F \cup S) = P(F) + P(S) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$$

Å finne $P(F \cup S)$ ved å legge sammen P(F) og P(S) kan vi gjøre fordi F og S ikke har noen felles utfall. F og S har ingen felles utfall på grunn av dette: Hvis man får en femmer, kan man umulig ha fått en sekser samtidig. Og får man en sekser, kan man umulig ha fått en femmer samtidig.

7.1 Hendelser uten felles utfall

For to hendelser A og B som ikke har noen felles utfall, er sannsynligheten for A eller B lik sannsynligheten for A pluss sannsynligheten for B:

$$P(A \cup B) = P(A) + P(B)$$

Eksempel

Du trekker opp en kule fra en bolle hvor det ligger én rød, to blå og én grønn kule. Hva er sannsynligheten for at du trekker opp en rød (R) eller en blå (B) kule?

Svar:

- Det er i alt fire mulige utfall.
- Siden alle kulene bare har én farge, er det ingen av hen-

delsene R, B eller G som har felles utfall.

- Sannsynligheten for å trekke en rød kule er: $P(R) = \frac{1}{4}$
- Sannsynligheten for å trekke en blå kule er: $P(B) = \frac{2}{4}$.

Sannsynligheten for å få en rød eller en blå kule blir derfor:

$$P(R \cup B) = P(R) + P(B)$$
$$= \frac{1}{4} + \frac{2}{4}$$
$$= \frac{3}{4}$$

7.2.2 Summen av alle sannsynligheter er 1

Tenk nå at vi kaster en terning og at vi godtar hendelsen å få en sekser (S) eller hendelsen å ikke få en sekser (\bar{S}) . Vi har tidligere sett at $P(S) = \frac{1}{6}$ og at $P(\bar{S}) = \frac{5}{6}$. Av ?? vet vi at sannsynligheten for å få en sekser eller å ikke få en sekser er:

$$P(S \cup \bar{S}) = P(S) + P(\bar{S})$$
$$= \frac{1}{6} + \frac{5}{6}$$
$$= 1$$

Dette er egentlig ikke så overraskende, for kaster vi en terning er det to ting som kan skje: Enten får vi en sekser, eller så får vi det ikke. Summen $P(S) + P(\bar{S})$ er derfor summen av sannsynlighetene for alle hendelser

Alle hendelser som kan skje? Hva med få en ener, få en toer osv.? Jo, de ligger alle innbakt i \bar{S} .

som kan skje. Hvis vi "godtar" alle hendelser, så er alle utfall gunstige. Antall gunstige utfall blir derfor det samme som antall mulige utfall, og forholdet mellom dem blir da 1:

7.2 Summen av alle sannsynligheter

Summen av sannsynlighetene for alle hendelser er alltid lik 1.

Slik som i tilfellet av å få en sekser/å ikke få en sekser, vil det alltid være slik at en hendelse A og den motsatte hendelsen \bar{A} til sammen

utgjør alle hendelser. Av ?? har vi da at:

$$P(A) + P(\bar{A}) = 1$$
$$P(\bar{A}) = 1 - P(A)$$

7.3 Motsatte hendelser

Sannsynligheten for at en hendelse A ikke vil skje er gitt som:

$$P(\bar{A}) = 1 - P(A)$$

Eksempel

I en klasse med 25 elever er det 12 jenter og 13 gutter. Èn elev skal tilfeldig trekkes ut til å være med i en matematikkonkurranse.

- a) Hva er sannsynligheten for at en gutt (G) blir trukket?
- b) Hva er sannsynligheten for at en gutt ikke blir trukket?

Svar:

- a) Sannsynligheten for at en gutt blir trukket er: $P(G) = \frac{13}{25}$
- b) Sannsynligheten for at en gutt ikke blir trukket er:

$$P(\bar{G}) = 1 - P(G)$$

= $1 - \frac{13}{25}$
= $\frac{12}{25}$

Merk: At en gutt ikke blir trukket er det samme som at en jente blir trukket.

7.2.3 Felles utfall

Noen ganger er det slik at to hendelser kan ha *felles utfall*. La oss se på en vanlig kortstokk med 52 kort som er likt delt inn i typene spar, hjerter, ruter og kløver. Kort som er av arten knekt, dame, kong eller ess kalles honnørkort.

Tenk at vi trekker opp et kort fra en blandet kortstokk. Vi ønsker å finne sannsynligheten for at kortet som trekkes er kløver eller honnør eller begge deler. Vi starter med å telle opp de gunstige utfallene for kløverkort og finner at antallet er 13.

Et kort som kløver kong er et kløverkort, men det er også et honnørkort, og derfor er det begge deler: både kløverkort og honnørkor.

Etterpå teller vi opp gunstige utfall for honnørkort og finner at antallet er 16.

Så vi har altså telt opp 13+16=29 gunstige utfall. Men nå støter vi på et problem. For da vi fant alle kløverkort, telte vi blant andre kløver knekt, dame, kong og ess. Disse fire kortene telte vi også da vi fant alle honnørkort, noe som betyr at vi har telt de samme kortene to ganger!

Men det finnes jo for eksempel ikke to kløver ess i en kortstokk, så skal vi regne ut hvor mange kort som oppfyller kravet om å være kløver, honnør *eller* begge deler — ja, så må vi trekke ifra antallet kort vi har telt dobbelt:

$$13 + 16 - 4 = 25$$

La nå K være hendelsen trekke et kløverkort og H være hendelsen trekke et honnørkort. Siden det er 25 kort som er kløver, honnør eller begge deler av i alt 52, får vi:

$$P(K \cup H) = \frac{25}{52}$$

Siden vi har 13 kløverkort og 16 honnørkort, får vi videre at:

$$P(K) = \frac{13}{52}$$
 og $P(H) = \frac{16}{52}$

Vi har sett at fire kort er *både* kløver *og* honnørkort, dette skriver vi som:

Symbolet \cap kalles snitt.

$$K \cap H = 4$$

Vi sier da at K og H har fire felles utfall. Sannsynligheten for $K \cap H$ blir:

$$P(K \cap H) = \frac{4}{52}$$

Nå som vi har funnet P(K), P(H) og $P(K \cup H)$ kan vi igjen finne $P(K \cap H)$ på følgende måte:

$$P(K \cup H) = P(K) + P(H) - P(K \cap H)$$
$$= \frac{13}{52} + \frac{16}{52} - \frac{4}{52}$$
$$= \frac{25}{52}$$

7.4 Hendelser med felles utfall

For to hendelser A og B er sannsynligheten for A eller B, lik sannsynligheten for A pluss sannsynligheten for B, fratrukket sannynligheten for $b\mathring{a}de$ A og B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Eksempel

I en klasse på 20 personer spiller 7 personer fotball (F), og 10 personer spiller handball (H). Av disse er det 4 som spiller både fotball og handball. Tenk deg at du trekker ut én person fra klassen. Hva er sjansen for at denne personen spiller fotball eller handball?

Svar:

- Sannsynligheten for at en person spiller fotball er: $P(F) = \frac{7}{20}$
- Sannsynligheten for at en person spiller handball er: $P(H) = \frac{10}{20}$
- Sannsynligheten for at en person spiller *både* fotball og handball er: $P(F \cap H) = \frac{4}{20}$

Sannsynligheten for at en person spiller fotball *eller* handball er derfor:

$$P(F \cup H) = P(F) + P(H) - P(F \cap H)$$
$$= \frac{7}{20} + \frac{10}{20} - \frac{4}{20}$$
$$= \frac{13}{20}$$

Sjansen er altså $\frac{13}{20}$.

7.2.4 Venndiagram

Noen ganger blir vi bedt om å sette opp informasjonen vi får i et *ven-ndiagram*. Målet med et venndiagram er å lage en figur som beskriver antallet av de enkelte utfallene og de *felles* utfallene. La oss bruke eksempelet over til å lage en slik figur. For klassen der noen spiller fotball, noen handball og noen begge deler, kan vi lage et venndiagram som vist under.

Den grønne ellipsen (strekt sirkel) representerer de som spiller fotball (F) og den blå de som spiller handball (H). Fordi noen spiller begge sportene $(F \cap H)$, har vi tegnet ellipsene litt over i hverandre. Nå vet vi at 7 spiller fotball, 10 spiller handball og fire av disse gjør begge deler. Dette kan vi skrive inn i diagrammet vårt på følgende måte:

Diagrammet forteller slik at tre personer spiller bare fotball og 6 spiller bare handball. Men så er det fire stykker som spiller både fotball og handball, til sammen er det derfor syv som spiller fotball og ti som spiller handball.

Eksempel 1

I en matematikklasse på Akademiet VGS Ålesund er det 31 elever. I denne klassen er det 15 elever som tar buss til skolen og 9 elever som tar båt. Av disse er det 3 stykker som tar både buss og båt.

- a) Sett opp et venndiagram som beskriver informasjonen som er gitt.
- b) Én person trekkes tilfeldig ut av klassen. Hva er sannsynligheten for at denne personen tar buss eller båt til skolen?

Svar:

a) Siden 3 elever tar *både* buss og båt, er det 15 - 3 = 12 som bare tar buss og 9 - 3 som bare tar båt. Vi lar A bety tar buss og B bety tar båt, venndiagrammet vårt blir da seende slik ut:

b) Sannsynligheten for at en person tar buss eller båt kan vi skrive som $P(A \cup B)$. Siden 15 elever tar buss, 9 tar båt og 3 tar begge deler, er det i alt 15 + 9 - 3 = 21 elever som tar buss eller båt. Siden det er 31 elever i alt å velge mellom, får vi at:

$$P(A \cup B) = \frac{21}{31}$$

Eksempel 2

Om en klasse med 29 elever vet vi følgende:

- 10 elever spiller fotball
- 8 elever spiller handball
- 6 elever spiller volleyball
- 2 elever spiller både fotball og handball, men ikke volleyball
- 3 elever spiller både fotball og volleyball, men ikke handball
- ingen elever spiller både handball og volleyball, men ikke fotball.
- ullet 1 elev spiller alle tre sportene.
- a) Sett opp et venndiagram som beskriver fordelingen av de tre sportene i klassen. La F bety spiller fobtall, H bety spiller handball og V bety spiller volleyball.
- **b)** Én person trekkes tilfeldig ut av klassen. Hva er sannsynligheten for at denne personen spiller enten fotball, handball eller volleyball?

c) Personen som trekkes ut viser seg å spille fotball. Hva er sjansen for at denne personen også spiller handball?

Svar:

Når vi skal lage et venndiagram er det lurt å skrive inn de felles utfallene først. Ut ifra fjerde til syvende punkt kan vi tegne dette:

Da ser vi videre at 10-2-1-3=4 elever spiller bare fotball, 8-2-1=5 spiller bare handball og 6-3-1-0=2 spiller bare volleyball:

b) Av diagrammet vårt ser vi at det er 5+2+4+3+1+2+0=17 uniker elever som spiller én eller flere av sportene. Sjansen for å

trekke én av disse 17 i en klasse med 29 elever er $\frac{17}{29}$.

c) Vi leser av diagrammet at av de totalt 10 som spiller fotball, er det 2+1=3 som også spiller handball. Sjansen for at personen som er trukket ut spiller handball er derfor $\frac{3}{7}$.

7.2.5 Krysstabell

Når det er snakk om to hendelser kan vi også sette opp en kryssta-bell for å skaffe oss oversikt. Si at det på en skole med 300 elever deles ut melk og epler til de elevene som ønsker det i lunsjen. Si videre at 220 av elevene får melk, mens 250 får eple. Av disse er det 180 som får både melk og eple. Hvis vi lar M bety får melk og E bety får eple, vil krysstabellen vår først se slik ut:

	M	$ \bar{M} $	sum
E			
$ar{E}$			
sum			

Deretter fyller vi inn tabellen ut ifra informasjonene vi har:

• får både melk og epple: $M \cap E = 180$

- får melk, men ikke eple: $M\cap \bar{E}=220-180=40$

• får eple, men ikke melk: $E \cap M = 250 - 180 = 70$

• får hverken melk eller eple: $\bar{M} \cap \bar{E} = 300 - 180 - 40 - 70 = 10$

	M	\bar{M}	sum
E	180	70	250
\bar{E}	40	10	50
sum	220	80	300

7.3 Gjentatte trekk

7.3.1 Kombinasjoner

La oss tenke oss at vi har en bolle med fire kuler som er nummererte fra 1 til 4. I et forsøk trekker vi opp én og én kule fram til vi har trukket opp tre kuler. Etterpå leser vi opp kombinasjonen vi har fått. Hvis vi for eksempel først trekker kule 2, deretter kule 4, og så kule 3, får vi kombinasjonen 2 4 3.

Legger vi kulene tilbake og foretar trekningen på nytt, får vi kanskje kombinasjonen 1 3 4, eller kanskje 4 1 2, eller en helt annen kombinasjon. Så hvor mange forskjellige kombinasjoner kan vi få? La oss lage en figur som hjelper oss. Før første trekning ligger det fire kuler i bollen, vi kan derfor si at vi har 4 veier å gå. Enten trekker vi kule 1, eller kule 2, eller kule 3, eller kule 4:

1. trekning

Kula vi trekker opp legger vi ut av bollen og trekker så andre gang. For hver av de fire veiene vi kunne gå i første trekning får vi nå tre nye veier å følge – altså har vi nå $3 \cdot 4 = 12$ veier vi kan gå.

1. trekning

2. trekning

3. trekning

Den andre kula vi trekker opp legger vi også ut av bollen, så for hver av de 12 veiene fra 2. trekning, får vi nå to nye mulige veier å gå. Totalt antall veier blir derfor $12 \cdot 2 = 24$.

Denne utregningen kunne vi også ha skrevet slik:

$$4 \cdot 3 \cdot 2 = 24$$

Dette fordi vi har fire veier å gå i første trekning, for hver av disse tre veier å gå i andre trekning og for hver av disse to veier å gå i tredje trekning. Vi sier da at vi har 24 mulige kombinasjoner.

7.5 Kombinasjoner

Når vi foretar flere trekninger etter hverandre, finner vi alle mulige kombinasjoner ved å gange sammen de mulige utfallene i hver trekning.

Eksempel

I en klasse med 15 personer trekker vi tilfeldig ut tre elever som skal danne et klasseråd. Hvor mange forskjellige klasseråd kan dannes?

Svar:

Å trekke ut tre personer kan sees på som en trekning hvor vi tilfeldig tar ut én og én, fram til vi har tre personer. Antall forskjellige klasseråd som da kan oppstå er:

$$\underbrace{15}_{\mbox{mulige utfall}} \cdot \underbrace{14}_{\mbox{mulige utfall}} \cdot \underbrace{13}_{\mbox{mulige utfall}} = 2730$$

Eksempel 2

Vi kaster om krone eller mynt fire ganger etter hverandre. Hvor mange mulige utfall har vi da?

$$2 \cdot 2 \cdot 2 \cdot 2 = 16$$

7.3.2 Sannsynlighet ved gjentatte trekk

La oss tenke at vi har en med bolle sju kuler. Tre av dem er grønne, to er blå og to er røde. Si at vi tar opp først én kule av bollen, og deretter én til. Vi spør oss nå hva sannsynligheten er for at vi trekker opp to grønne kuler. Hvis vi lar G bety trekke en grønn kule, kan vi skrive denne sannsynligheten som P(GG).

For å komme fram til et svar, starter vi med å spørre oss hvor mange gunstige kombinasjoner vi har. Siden vi i første trekning har 3 gunstige utfall, og i andre trekning 2 gunstige utfall, har vi $3 \cdot 2 = 6$ gunstige kombinasjoner. Totalt velger vi blant 7 kuler i første trekning og 6 kuler i andre trekning. Antall mulige kombinasjoner er derfor $7 \cdot 6 = 42$. Sannsynligheten for å få to grønne kuler blir da:

$$P(GG) = \frac{3 \cdot 2}{7 \cdot 6} = \frac{6}{42}$$

La oss nå i hver trekning se på sannsynligheten for å få en grønn kule, med krav om at dette skal skje i begge trekninger. I første trekning har vi 3 grønne av i alt 7 kuler, dermed får vi at:

$$P(G \text{ i første trekning}) = \frac{3}{7}$$

I andre trekning tas det for gitt at en grønn kule er plukket opp ved første trekning, og dermed er ute av bollen. Vi har da 2 av 6 kuler som er grønne:

Symbolet | betyr gitt at ... har skjedd. P(G|G) er derfor en forkortelse for sannsynligheten for å trekke en grønn kule, gitt at en grønn kule er trukket.

$$P(G|G) = \frac{2}{6}$$

Hvis vi nå ganger sammen sannsynligheten fra første trekning, med sannsynligheten fra andre trekning, ser vi at regnestykket blir det samme som i ligning (7.3.2):

$$P(GG) = \frac{3}{7} \cdot \frac{2}{6} = \frac{6}{42}$$

7.6 Sannsynlighet ved gjentatte trekk

Sannsynligheten for at A vil skje, gitt at B har skjedd, skrives som P(A|B).

Sannsynligheten for at A trekkes først, deretter B, deretter C og så videre (...) er:

$$P(ABC...) = P(A) \cdot P(B|A) \cdot P(C|AB) \cdot ...$$

Eksempel

I en bolle ligger to blå og to røde kuler. Vi lar B bety blå kule trekkes og R bety rød kule trekkes. Vi trekker én og én kule opp av bollen, fram til vi har hentet opp tre kuler. Hva er sannsynligheten for at vi først trekker en blå kule, deretter en rød, og til slutt en blå?

Svar:

Sannsynligheten for først en blå, så en rød, så en blå kule, kan vi skrive som P(BRB).

- Sannsynligheten for B i første trekning er: $P(B) = \frac{2}{4}$.
- Sannsynligheten for R i andre trekning, gitt B i første er: $P(R|B) = \frac{2}{3}$.
- Sannsynligheten for B i tredje trekning, gitt B i første og R i andre er: $P(B|RB) = \frac{1}{2}$.

Vi får dermed:

$$P(BRB) = P(B) \cdot P(R|B) \cdot P(B|RB)$$
$$= \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{1}{2}$$
$$= \frac{4}{24}$$

7.3.3 Valgtre

Vi kan utnytte ?? for å lage en hjelpetegning når vi har å gjøre med gjentatte trekk. Tegningen vi her skal ende opp med kalles et *valgtre*. Vi tegner da en lignende figur som vi gjorde i delkapittel 7.3, men

langs alle veier skriver vi nå på sannsynligheten for utfallet veien leder oss til.

La oss igjen se på bollen med de syv kulene. Trekk av grønn, blå eller rød kule betegner vi henholdsvis med bokstavene G, B og R. Ved første trekning er sjansen for å trekke en grønn kule $\frac{3}{7}$, derfor skriver vi denne brøken på veien som fører oss til G. Gitt at vi har trukket en grønn kule, er sannsynligheten for også å trekke en grønn kule i andre trekning lik $\frac{2}{6}$. Denne brøken skriver vi derfor langs veien som fører oss fra G til G.

Og sånn fortseter vi til vi har ført opp alle sannsynlighetene til hver vei:

1. trekning

2. trekning

For å få en rask oversikt over de forskjellige kombinasjonene veiene fører til, kan det være lurt å skrive opp disse under hver ende av treet: La oss nå bruke valgtret over for å finne sannsynligheten for å trekke én grønn og én blå kule. GB og BG er da de gunstige kombinasjonene. Ved å gange sammen sannsynlighetene langs veien til GB, finner vi at:

$$P(GB) = \frac{3}{7} \cdot \frac{2}{6} = \frac{6}{42}$$

På samme måte kan vi finne P(BG):

$$P(BG) = \frac{2}{7} \cdot \frac{3}{6} = \frac{6}{42}$$

Sannsynligheten for at GB eller BG inntreffer blir (se Regel 7.1):

$$P(GB \cup BG) = P(GB) + P(BG)$$
$$= \frac{6}{42} + \frac{6}{42}$$
$$= \frac{12}{42}$$

7.7 Kobinasjoner på et valgtre

For å finne sannsynlighetene til en kombinasjon på et valgtre, ganger vi sammen sannsynlighetene langs veien vi må følge for å komme til kombinasjonen.

Eksempel

I en bolle med 10 kuler er tre kuer grønne, to er blå og fem er røde. Du trekker to kuler ut av bollen. La G, B og R henholdsvis bety å trekke en blå, grønn eller rød kule.

- a) Tegn et valgtre som skisserer hvilke kombinasjoner av B, G og R du kan få.
- b) Hva er sannsynligheten for at du trekker to røde kuler?
- **c)** Hva er sannsynligheten for at du trekker én blå og én grønn kule?
- d) Hva er sannsynligheten for at du trekker *minst* én blå eller én grønn kule?

Svar:

a)

b) Av valgtreet vårt ser vi at:

$$P(RR) = \frac{2}{10} \cdot \frac{1}{9}$$
$$= \frac{2}{90}$$
$$= \frac{1}{45}$$

c) Både kombinasjonen GB og BG gir oss én blå og én grønn kule. Vi starter med å finne sannsynligheten for hver av dem:

$$P(GB) = \frac{3}{10} \cdot \frac{5}{9}$$
$$= \frac{15}{90}$$
$$= \frac{1}{6}$$

$$P(BG) = \frac{5}{10} \cdot \frac{3}{9}$$
$$= \frac{1}{6}$$

Sannsynligheten for GB eller BG er summen av P(GB) og P(BG):

$$P(GB \cup BG) = P(GB) + P(BG)$$

$$= \frac{1}{6} + \frac{1}{6}$$

$$= \frac{2}{6}$$

$$= \frac{1}{2}$$

d) For å svare på denne oppgaven kan vi selvsagt legge sammen sannsynligheten for kombinasjonene GG, GB, GR, BG, BB, BR, RG og RB, men vi sparer oss veldig mye arbeid hvis vi merker oss dette: Å få minst én blå eller én grønn kule er det motsatte av å bare få røde kuler. Sjansen for dette, å få to røde

kuler, fant vi i oppgave b). Av Regel 7.3 har vi at:

$$P(\bar{R}) = 1 - P(R)$$

$$= 1 - \frac{1}{45}$$

$$= \frac{45}{45} - \frac{1}{45}$$

$$= \frac{44}{45}$$

Sjasen for å få minstén blå eller én grønn kule er altså $\frac{44}{45}.$

Oppgaver for kapittel 7

7.2.1 (H)

Du trekker et kort fra en kortstokk.

- a) Hva er sannsynligheten for at kortet er et kløverkort?
- **b)** Hva er sannsynligheten for at kortet er et kløverkort eller et sparkort?
- c) Hva er sannsynligheten for at kortet ikke er er kløverkort? Bruk to forskjellige regnemåter for å finne svaret.

7.2.2 (H)

Du trekker et kort fra en kortstokk.

- a) Hva er sannsynligheten for at du trekker et 8-kort?
- b) Hva er sannsynligheten for at du trekker et hjerterkort?
- c) Hva er sannsynligheten for at du trekker et 8-kort eller et hjerterkort?
- **d)** Hva er sannsynligheten for at kortet du trekker hverken er et 8-kort eller et hjerterkort?

7.2.3 (H)

(Oppgaven er hentet fra eksamen våren 2017, del 1. Besvar denne oppgaven ved hjelp av et venndiagram.)

Ved en skole leser 80 % av elevene aviser på nett, 50 % leser papiraviser, og 2 % leser ikke aviser.

- a) Systematiser opplysningene gitt i teksten ovenfor i et venndiagram eller i en krysstabell.
- b) Bestem sannsynligheten for at en tilfeldig valgt elev ved skolen leser både aviser på nett og papiraviser.

En elev ved skolen leser aviser på nett.

c) Bestem sannsynligheten for at denne eleven ikke leser papiraviser.

7.2.4 (H)

(Oppgaven er hentet fra eksamen høsten 2015, del 1)

Forskere skal prøve ut en ny test for å avgjøre om en person er smittet av en bestemt sykdom.

Testen skal prøves ut på 360 personer. På forhånd vet forskerne at 60 av disse personene er smittet av sykdommen, mens resten ikke er smittet.

Det viser seg at 68 av personene tester positivt (det vil si at testen viser at de er smittet av sykdommen). Av disse 68 er det 10 personer som forskerne vet ikke er smittet.

a) Tegn av og fyll ut krysstabellen nedenfor.

	Smittet	Ikke smittet	Sum
Tester positivt			
Tester ikke positivt			
Sum			

- b) Bestem sannsynligheten for at en person som er smittet, tester positivt.
- c) Bestem sannsynligheten for at en person som tester positivt, ikke er smittet.

7.3.1 (H)

(Oppgaven er hentet fra eksamen våren 2015, del 1)

Tenk deg at du har ni flasker med smoothie i kjøleskapet, to «Surf», tre «Jump» og fire «Catch». Du tar tilfeldig to flasker.

- a) Bestem sannsynligheten for at du ikke tar en «Jump»-smoothie.
- b) Bestem sannsynligheten for at du tar én «Surf»- og én «Catch»-smoothie.

Vedlegg

Definisjonsmengde

Definisjonsmengden til en funskjon f(x) er x-verdiene f(x) er gyldige for.

Verdimengde

Verdimengden til en funskjon f(x) er alle verdiene f(x) kan ha. Verdimengden er bestemt av funksjonsuttrykket og funksjonens definisjonsmengde.

Proporsjonale størrelser

Gitt en konstant a og to variabler x og y. Hvis

$$y = ax$$

er x og y proporsjonale størrelser.

Proporsjonale størrelser

Gitt en konstant a og to variabler x og y. Hvis

$$y = \frac{a}{x}$$

er x og y omvendt proporsjonale størrelser.

Polynomfuksjon

En funksjon som består av en sum av potenser med positive eksponenter og en variabel som grunntal.

Polynomfunksjoner har undertitler som bestemmes av den største eksponenten i funksjonsuttrykket. For konstantene $a,\,b,\,c$ og d, og en variabel x, har vi at

funksjonsuttyrykk	funksjonsnavn
ax + b	1. gradsfunksjon (lineær)
$ax^2 + bx + c$	2. gradsfuksjon (kvadratisk)
$ax^3 + bx^2 + cx + d$	3. gradsfunksjon (kubisk)

Excel

Mål for opplæringen er at eleven skal kunne

- gjøre greie for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter
- vurdere forbruk og bruk av kredittkort og sette opp budsjett og regnskap ved hjelp av regneark
- undersøke og vurdere ulike former for lån og sparing

E.1 Introduksjon

Når du åpner et Excelark vil du få opp en tabell hvor *radene* er nummerert med tall (1, 2 3 osv), mens *kolonnene* er indeksert med bokstaver (A, B, C osv.). Hvordan radene og kolonnene brukes er avgjørende

for å forstå Excel. I figuren har vi markert det vi kaller $celle\ B3$. Dette er altså cellen hvor $rad\ 3$ og $kolonne\ B$ krysser hverandre:

	Α	В	С
1			
2			
3			
4			

I hver celle kan vi skrive inn både tall og tekst. Si at Ole har en jobb med 250 kr i timelønn, og at han jobber 7 timer i uka. Denne informasjonen kan vi skrive inn i Excel slik:

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4		
Е		

Ukelønnen til Ole er $timelønn \cdot timer \ i \ uka$. Denne utregningen kan vi gjøre ved å skrive =250*7 i celle B4:

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	=250*7
_		

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	1750
-		

E.2 Cellereferanser

Excels kanskje viktigste egenskap er *cellereferanser*. Dette betyr kort sagt at vi bruker celler istedenfor tall når vi skal gjøre utregninger. I forrige seksjon regnet vi lønnen til Ole ved å gange 250 (timelønnen) med 7 (timer i uka). Ved å bruke cellereferanser kunne vi isteden gjort dette:

Tallet tilhørende timelønnen (250) står i celle B2, mens tallet tilhørende timer (35) står i celle B3. For å gange tallene i disse cellene kan vi skrive =B2*B3:

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	=B2*B3

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	1750
_		

Én av fordelene med å bruke cellereferanser er at det blir mye lettere å rette opp i feil som har blitt gjort. Si f.eks. at det skulle stått 300 istedenfor 250 i B3. Om vi derfor endrer B3, vil resultatet i B4 endre seg deretter:

	Α	В	
1		Ole	
2	Timelønn	300	
3	Timer i uka	7	
4	Ukelønn	2100	
_			

Merk: Du kan også trykke på cellene du ønsker å bruke i formlene dine, slik som vist her.

E.3 Kopiering av celler

Kopiering av cellene er en metode som hindrer deg i å skrive de samme formlene om og om igjen. Vi ønsker nå å lage at ark som passer til følgende informasjon:

- Timelønnen til Ole, Dole og Doffen er henholdsvis $300\,\mathrm{kr}$, $200\,\mathrm{kr}$ og $500\,\mathrm{kr}$.
- Alle tre jobber 7 dager i uka.
- Vi ønsker å regne ut hvor mange timer de jobber til sammen og hvor mye ukelønn de har til sammen.

Vi starter med å sette opp dette regnearket:

	Α	В	С	D
1		Ole	Dole	Doffen
2	Timelønn	300	200	500
3	Timer i uka			
4	Ukelønn			

Her har vi bare fylt inne informasjonen som er *unik* for Ole, Dole og Doffen, nettopp fordi de andre cellene enten inneholder de samme tallene eller den samme regnemåten. For cellene som ikke er unike bør vi bruke kopieringsmulighetene, og dette vises i denne videoen. Her er en liten beskrivelse av hva som blir gjort:

- 1. Siden alle tre jobber i 7 timer, skriver vi =7 i celle B4. Etterpå kopierer vi (det er helt avgjørende at man trykker musepekeren helt nede i høyre hjørne) cellen bortover til C2 og D2.
- 2. Siden regnemåten av ukelønn er den samme for alle tre, skriver vi den (med cellereferanser) inn i B4, og kopierer den bortover til celle C4 og D4.
- 3. Regnemåten for summen av timene og summen av ukelønnene er også den samme, vi skriver den derfor inn i celle E3 og kopierer den *nedover* til E4.

Resultatet ble dette:

	Α	A B		D	E	
1		Ole	Dole	Doffen		
2	Timelønn	300	200	500	Sum	
3	Timer i uka	7	7	7	21	
4	Ukelønn	2100	1400	3500	7000	

	Α	В	С	D	Е
1		Ole	Dole	Doffen	
2	Timelønn	300	200	500	Sum
3	Timer i uka	=7	=7	=7	=B3+C3+D3
4	Ukelønn	=B2*B3	=C2*C3	=D2*D3	=B4+C4+D4

Av det vi har sett i videoen og figurene over kan vi ta med oss tre generelle regler:

- 1. For å kopiere tall må man skrive = foran.
- 2. Hver gang man kopierer en i formel én celle bortover, vil kolonnene i formelen øke med én bokstav i alfabetet. (A blir til B, B blir til C osv.)
- 3. Hver gang man kopierer en formel i én celle *nedover*, vil radene i formelen øke med 1 (1 blir 2 B, 2 blir til 3 osv.).

Låsing av celler

Når man kopierer celler er det viktig å se opp for celler man ønsker å bruke i alle kopiene, for disse cellen må *låses*. Si for eksempel at Ole, Dole og Doffen alle jobber 48 arbeidsuker i året. For å finne årslønnen deres må vi altså gange ukeslønnen til hver av dem med 48.

Igjen merker vi oss at regnemetoden for å finne årslønnen er den samme for alle tre, men hvis vi bruker celle B8 i en formel, og kopierer slik vi har gjort hittil, vil bokstaven B endre seg i formlene. For å unngå dette skriver vi \$ foran B i formelen — dette gjør at kolonnebokstaven ikke endrer seg, selv om vi kopierer formelen. Dette er vist i denne videoen, og resultatet ser vi her:

	Α	В	С	D	E
1	Arbeidsuker	48			
2					
3		Ole	Dole	Doffen	
4	Timelønn	300	200	500	Sum
5	Timer i uka	7	7	7	21
6	Ukelønn	2100	1400	3500	7000
7	Årslønn	100800	67200	168000	

	Α	В	С	D	Е
1	Arbeidsuker	48			
2					
3		Ole	Dole	Doffen	
4	Timelønn	300	200	500	Sum
5	Timer i uka	=7	=7	=7	=B5+C5+D5
6	Ukelønn	=B4*B5	=C4*C5	=D4*D5	=B6+C6+D6
7	Årslønn	=\$B1*B6	=\$B1*C6	=\$B1*D6	

Skal vi låse en celle *nedover* isteden må vi sette dollaren foran radnummeret, slik som vist her. Resultatet blir dette:

	Α	В	С
1	Låst celle	10	
2			
3	Tall 1	15	150
4	Tall 2	25	250
5	Tall 3	35	350

	Α	В	С
1	Låst celle	10	
2			
3	Tall 1	15	=B\$1*B3
4	Tall 2	25	=B\$1*B4
5	Tall 3	35	=B\$1*B5

E.4 Småtriks

- Sum bort og sum ned
- Justere bredde på rad/kolonne
- Sette inn rad/kolonne
- Formelvisning
- Regne med prosenttall
- Endre antall desimaler

Oppgaver for Excel

$\mathbf{E.1}$

Gjør oppgave 6.3.4 og 6.4.1 i Excel.

E.2

- a) Sett opp et serielån hvor:
 - Lånesummen er 300 000 kr
 - Renten er 2,1%
 - Lånet skal betales med 15 årlige terminbeløp.

Avrund alle kronebeløp til hele kroner.

b) Hvor mye koster lånet totalt? (Summen av alle terminbeløpene.)

E.3

- a) Sett opp et annuitetslån hvor:
 - Lånesummen er 300 000 kr
 - Renten er 2,1%
 - Lånet skal betales med 15 årlige terminbeløp, som er $23\,523\,\mathrm{kr}.$

Avrund alle kronebeløp til hele kroner.

- b) Hvor mye koster lånet totalt?
- c) Sammenlign svaret du fikk i oppgave b) med svaret fra oppgave E.2b, hvilket lån koster mest penger?

E.4

Sjekk at du i oppgave E.2 og E.3 har fåt samme svar som nettsiden laanekalkulator.no. (Velg *Tinglysning: Ingen* og sett alle gebyrer til 0).

E.5

(Oppgaven er hentet fra del 2, eksamen høsten 2017.)

Per har deltidsjobb i en matvarebutikk. Han er ikke sikker på hvor mye han kommer til å tjene i løpet av 2017. Han kan velge mellom to alternative skattetrekk.

Alternativ 1 - Frikort

Han kan tjene inntil 55 000 kroner uten skattetrekk. Dersom han tjener mer enn 55 000 kroner, får han et skattetrekk på 50 % av den delen av lønna som er over 55 000 kroner.

Alternativ 2 - Prosentkort

Han får et skattetrekk på 10 % av alt han tjener.

Anta at Per kommer til å tjene 60 000 kr i 2017.

Bestem Pers nettolønn med hvert av alternativene ovenfor.

Per ønsker å lage en oversikt i et regneark for å finne ut hvor mye han vil få i nettolønn ved ulike inntekter etter de to alternativene ovenfor. I regnearket nedenfor har vi lagt inn ulike mulige inntekter for Per i 2017.

4	Α	В	C	D	E F	G
1						
2			Alternativ 1 - Frikort		Alternativ 2	- Prosentkort
3			Fribeløp:	kr 55 000	Fribeløp:	kr 0
4			Trekkprosent:	50 %	Trekkprosent:	10 %
5						
6	Inntek	t	Skattetrekk (kroner)	Nettolønn	Skattetrekk (kroner)	Nettolønn
7	kr 56	000				
8	kr 57	000				
9	kr 58	000				
10	kr 59	000				
11	kr 60 (000				
12	kr 61	000				
13	kr 62 (000				
14	kr 63 (000				
15	kr 64 (000				
16	kr 65	000				
17	kr 66	000				
18	kr 67	000				
19	kr 68	000				
20	kr 69					
21	kr 70	_				
22	kr 71	000				
23	kr 72	000				
24	kr 73	000				
25	kr 74	000				
26	kr 75 (000				

- Lag et regneark som vist ovenfor. Du skal sette inn formler i de blå cellene og beregne skattetrekk og nettolønn.
- c) Hvor mye må Per tjene for at de to alternativene skal gi nøyaktig like stort skattetrekk?

E.6 (Oppgaven er hentet fra del 2, eksamen våren 2016.)

Fra og med måneden etter at et barn blir født, og til og med måneden før barnet fyller 18, får foreldrene utbetalt barnetrygd. Satsen for barnetrygd har vært 970 kroner per barn per måned siden 1996.

Stian ble født i september 1996.

a) Hvor mye fikk foreldrene hans totalt utbetalt i barnetrygd?

Tabellen til høyre viser konsumprisindeksen hvert år fra 1996 til 2015.

Stian mener at satsen for barnetrygd burde vært regulert i samsvar med konsumprisindeksen.

- Vis at satsen for barnetrygd da skulle vært 1 423 kroner per barn per måned i 2015.
- Lag et regneark som viser hvor mye Stians foreldre totalt ville fått utbetalt dersom satsen for barnetrygd hvert år hadde blitt regulert i samsvar med konsumprisindeksen.

År	KPI				
1996	95,3				
1997	97,8				
1998	100				
1999	102,3				
2000	105,5				
2001	108,7				
2002	110,1				
2003	112,8				
2004	113,3				
2005	115,1				
2006	117,7				
2007	118,6				
2008	123,1				
2009	125,7				
2010	128,8				
2011	130,4				
2012	131,4				
2013	134,2				
2014	136,9				
2015	139,8				

E.7 (Oppgaven er hentet fra del 2, eksamen våren 2016.)

I regnearket nedenfor har vi lagt inn timelønn, skatteprosent og antall timer Sara, Vilde og Peder arbeidet i juli.

	A		В		C	D	
1			Sara Vilde		Peder		
2	Antall timer med ordinær timelønn		30		32		28
3	Antall timer med 40 % overtidstillegg		9		7		11
4	Ordinær timelønn	kr	147,00	kr	155,00	kr	152,00
5	Lønn for ordinært arbeid						
6	Lønn for overtidsarbeid						
7	Bruttolønn						
8	Skattetrekk av ordinær lønn (prosent)		12 %		15 %		10 %
9	Skattetrekk av overtidslønn (prosent)		40 %		40 %		40 %
10	Skattetrekk (kroner)						
11	Nettolønn juli						
12	Gjennomsnittlig skatteprosent		20,3 %				

 Lag et regneark som vist ovenfor. Du skal sette inn formler i de blå cellene og beregne bruttolønn, skattetrekk og nettolønn.

Sara har regnet ut at hun i gjennomsnitt betalte 20,3 % i skatt av bruttolønnen hun hadde i juli. Hun har derfor satt opp at hun har en gjennomsnittlig skatteprosent på 20,3.

b) Vis hvilke beregninger Sara har gjort. Legg inn formler i de røde cellene i siste rad i regnearket fra oppgave a), slik at du også får med gjennomsnittlig skatteprosent for Vilde og Peder.

GeoGebra

Mål for opplæringen er at eleven skal kunne

- gjøre overslag over svar, regne praktiske oppgaver, med og utan digitale verktøy
- redegjøre for omgrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske eksempel, også digitalt

G.1 Skrive inn en funksjon

Funksjon

Si vi har funksjonen

$$f(x) = \frac{3}{2}x^2 + 3x - 3$$

For å bruke f(x) i GeoGebra, skriver vi:

$$3/2x^2+3x$$

Når vi ikke gir funksjonen noen navn, vil GeoGebra automatisk gi funksjonen navnet f. I algebrafeltet får vi derfor:

$$f(x) = \frac{3}{2} x^2 + 3x$$

Hvis vi istedenfor har funksjonen

$$P(x) = 0.15x^3 - 0.4x$$

er det to ting vi må passe på. Det første er at alle desimaltall må skrives med punktum istedenfor komma i GeoGebra . Det andre er at vi ønsker å gi funksjonen navnet P(x). Vi skriver da:

$$P(x) = 0.15x^3 - 0.4x$$

og får:

P(x) =
$$0.15 x^3 - 0.4 x$$

ADVARSEL: Man kan aldri gi funksjoner navnet y(x) i GeoGebra. y kan bare brukes når man skriver inn uttrykk for en rett linje, altså y = ax + b, hvor a og b er to valgfrie tall.

Linje

Si vi har dette uttrykket for ei linje:

$$y = 2x + 4$$

I GeoGebra lager vi denne linjen ved å skrive akkurat det samme:

$$2x+4$$

Og får dette:

Ønser vi å lage ei linje som går vannrett gjennom verdien 3 på y-aksen og ei linje som går loddrett gjennom verdien 2 på x-aksen skriver vi:

$$y = 3$$

og

$$x = 2$$

Da får vi denne figuren:

G.2 Finne verdien til en funksjon/linje

Funksjon

Si vi har funksjonen

$$H(x) = x^2 + 3x - 3$$

Hvis ønsker å vite hva H(2) er, skriver vi

som resulterer i dette:

$$H(x) = x^2 + 3x - 3$$

$$a = H(2)$$

$$\rightarrow 7$$

Da vet vi at H(2) = 7.

Linje

Skriver vi inn ei linje blir saken litt annerledes, noe vi her skal vise ved å bruke de to linjene gitt ved uttrykkene:

$$y = x - 3$$
$$y = -2x + 1$$

Vi skriver disse linjene inn i GeoGebra og får:

Ønsker vi nå å finne hva verdien til y = x - 3 er når x = 2, må vi legge merke til at GeoGebra har kalt denne linja for f. Svaret vi søker får vi da ved å skrive f(2). Ønsker vi samtidig å vite hva y = -2x + 1 er når x = 0 må vi skrive g(0):

$$a = f(2)$$

$$\rightarrow -1$$

$$b = g(0)$$

$$\rightarrow 1$$

G.3 Finne skjæringspunkt

Se videoen skj.

G.4 Finne nullpunkt

Se videon nullpkt.

G.5 Finne topp- eller bunnpunkt

Se videoen ekstrmpkt.

G.6 Tegne linjen mellom to punkt

Se videoen linpkt.

G.7 Tegne graf på gitt intervall

I denne videoen her vi tegnet inn funksjonen:

$$f(x) = 0.0.0013x^3 - 0.59x^2 + 61x + 2000$$
 , $0 \le x \le 300$

G.8 Oppgaver

G.1

- a) Skriv den lineære funksjonen f(x) = 2x + 4 og linja y = 2x + 2 inn i GeoGebra. Lag f(x) blå og y grønn. Hva ser du ut ifra grafen til de to linjene?
- **b)** Finn verdien til f(x) når x = 4.
- c) Finn verdien til y når x = -3.

G.2

- a) Tegn punktene (-1,2) og (2,8).
- b) Finn uttrykket til linja som går gjennom disse punktene.

G.3

- a) Skriv inn funksjonen $f(x) = x^2 + 2x 3$.
- **b)** Finn f(4).
- c) Finn nullpunktene til f(x).
- d) Finn bunnpunktet til f(x).
- e) Finn skjæringspunktet mellom f(x) og linja y = 5.