

DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING EXAMINATIONS 2003

EEE/ISE PART III/IV: M.Eng., B.Eng. and ACGI

COMMUNICATION SYSTEMS

There are FOUR questions (Q1 to Q4)

Answer question ONE (in separate booklet) and TWO other questions.

Question 1 has 20 multiple choice questions numbered 1 to 20, all carrying equal marks. There is only one correct answer per question.

Distribution of marks

Question-1: 40 marks Question-2: 30 marks Question-3: 30 marks Question-4: 30 marks

The following are provided:

- A table of Fourier Transforms
- A "Gaussian Tail Function" graph

Examiner: Dr A. Manikas

2nd Marker: Dr P. L. Dragotti

Information for candidates:

The following are provided on pages 2 and 3:

- a table of Fourier Transforms;
- a graph of the 'Gaussian Tail Function'.

Question 1 is in a separate coloured booklet which should be handed in at the end of the examination

You should answer Question 1 on the separate sheet provided. At the end of the exam, please tie this sheet securely into your main answer book(s).

Special instructions for invigilators:

Please ensure that the three items mentioned below are available on each desk.

- the main examination paper;
- the coloured booklet containing Question 1;
- the separate answer sheet for Question 1;

Please remind candidates at the end of the exam that they should tie their Answer Sheet for Question 1 securely into their main answer book, together with supplementary answer books etc.

Please tell candidates they must **NOT** remove the coloured booklet containing Question 1. Collect this booklet in at the end of the exam, along with the standard answer books.

Communication Systems Page 1 of 7

Tail Function Graph

The graph below shows the Tail function $T\{x\}$ which represents the area from x to ∞ of the Gaussian probability density function N(0,1), i.e.

$$\mathbf{T}\{x\} = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{y^{2}}{2}\right) dy$$

FOURIER TRANSFORMS - TABLES

	DESCRIPTION	FUNCTION	TRANSFORM
1	Definition	g(t)	$G(f) = \int_{-\infty}^{\infty} g(t) \cdot e^{-j2\pi ft} dt$
2	Scaling	$g(\frac{t}{T})$	T . G(fT)
3	Time shift	g(t-T)	$G(f)$. $e^{-j2\pi fT}$
4	Frequency shift	$g(t)$. $e^{j2\pi Ft}$	G(f-F)
5	Complex conjugate	$g^*(t)$	$G^*(-f)$
6	Temporal derivative	$rac{d^n}{dt^n}$. $g(t)$	$(j2\pi f)^n$. $G(f)$
7	Spectral derivative	$(-j2\pi t)^n.g(t)$	$\frac{d^n}{df^n}$. $G(f)$
8	Reciprocity	G(t)	g(-f)
9	Linearity	$A \cdot g(t) + B \cdot h(t)$	$A \cdot G(f) + B \cdot H(f)$
10	Multiplication	$g(t) \cdot h(t)$	G(f) * H(f)
11	Convolution	g(t) * h(t)	G(f) . $H(f)$
12	Delta function	$\delta(t)$	1
13	Constant	1	$\delta(f)$

	DESCRIPTION	FUNCTION	TRANSFORM
14	Rectangular function	$\mathbf{rect}\{t\} \equiv \begin{cases} 1 & \text{if } t < \frac{1}{2} \\ 0 & otherwise \end{cases}$	$\mathbf{sinc}(f) = \frac{\sin \pi f}{\pi f}$
15	Sinc function	$\operatorname{sinc}(t)$	rect (<i>f</i>)
16	Unit step function	$u(t) = \begin{cases} +1, & t > 0 \\ 0, & t < 0 \end{cases}$	$\frac{1}{2}\delta(f) - \frac{j}{2\pi f}$
17	Signum function	$\mathbf{sgn}(t) = \left\{ \begin{array}{ll} +1, & t > 0 \\ -1, & t < 0 \end{array} \right.$	$-\frac{j}{\pi f}$
18	Decaying exponential (two-sided)	$e^{- t }$	$\frac{2}{1+(2\pi f)^2}$
19	Decaying exponential (one-sided)	$e^{- t }.u(t)$	$\frac{1-j2\pi f}{1+(2\pi f)^2}$
20	Gaussian function	$e^{-\pi t^2}$	$e^{-\pi f^2}$
21	Lambda function	$\Lambda\{t\} \equiv \begin{cases} 1 - t & \text{if} 0 \le t \le 1\\ 1 + t & \text{if} -1 \le t \le 0 \end{cases}$	$\operatorname{sinc}^2(f)$
22	Repeated function	$rep_{T}\{g(t)\} = g(t) * rep_{T}\{\delta(t)\}$	$ \frac{1}{T} .\mathbf{comb}_{\frac{1}{T}}\{G(f)\}$
23	Sampled function	$\mathbf{comb}_{T}\{g(t)\} = g(t).\mathbf{rep}_{T}\{\delta(t)\}$	$ \frac{1}{T} .\mathbf{rep}_{\frac{1}{T}}\{G(f)\}$

The Questions

You should answer Question 1 on the separate sheet provided.

Circle the answers you think are correct.

There is only one correct answer per question.

There are no negative marks.

Communication Systems Page 4 of 7

2. Consider a non-white zero-mean Gaussian random source g(t) having an autocorrelation function $R_{gg}(\tau) = \exp(-6000 \mid \tau \mid)$. The signal is sampled at a rate of 12 ksamples/sec and then is applied at the input of the differential quantizer shown below

where T_s is the sample time, k is an integer. The transfer function of the quantizer is shown below:

- a) Calculate the power of the signal $d(kT_s)$. [5]
- **b)** Calculate and sketch the pdf of the signal $d_q(kT_s)$ at the output of the quantizer. [5]
- c) Design a prefix source encoder to encode the output levels from the quantizer.

 [10]
- d) Find the information bit rate and the data bit rate at the output of the source encoder. [10]

Communication Systems Page 5 of 7

3. Consider a PCM system where its quantizer consists of an A-law compander (with A=87.6) followed by a uniform quantizer with "end points" b_i , and "output levels" m_i . The maximum value of the input signal, which is sampled at 18 ksamples/sec, is 5 Volts and the input/output characteristics of the uniform quantizer are given in the following tables:

b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8
-5V	-3.75V	-2.5V	-1.25V	0V	1.25V	2.5V	3.75V	5V

m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8
-4.37V	-3.125V	-1.875V	-0.625V	0.625V	1.875V	3.125V	4.375V

- a) If the signal at the output of the sampler, at time kT_s , is equal to $-3.7 \, Volts$, estimate the instantaneous quantization noise $n_q(kT_s)$ [20]
- **b)** Estimate the average Signal-to-Quantization-Noise Ratio (SNR_q). [5]
- c) How many hours of the audio signal correspond to 2GBytes of PCM data? [5]

Note that *A-law* compression is defined as follows:

output =
$$\begin{cases} \frac{A.|x|}{1+lnA} & 0 < |x| < \frac{1}{A} \\ \frac{1+ln(A.|x|)}{1+lnA} & \frac{1}{A} < |x| < 1 \end{cases}$$

$$\text{where } x = \frac{\text{input value in } Volts}{\text{maximum input value in } Volts}$$

4. Consider a 166.6667 kbits/second binary source of 1's and 0's with the number of ones being equal to the number of zeros. The binary sequence is fed to a triple repetition channel encoder and then to a digital modulator which employs the following two energy signals

with a *one* being sent as the signal (channel symbol) $s_1(t)$ and *zero* being sent as $s_0(t)$. The transmitted signal is corrupted by additive white Gaussian channel noise having a double-sided power spectral density of 10^{-12} W/Hz. The received signal is processed by a matched filter receiver followed by a 'majority logic' channel decoder.

The figure below shows the discrete channel which models the system from the channel encoder's input to the channel decoder's output:

If the bit error rate at the output of the matched filter is 0.3, find:

- a) the time duration T_{cs} of a channel symbol [5]
- **b)** the amplitude A at the receiver's input. [10]
- c) the probability that a bit is correctly detected at the output of the channel decoder. [5]
- **d)** the forward transition channel-matrix \mathbb{F} . [5]
- e) the joint-probability channel-matrix \mathbb{J} , i.e. the matrix with elements the probabilities $Pr(H_i, D_i) \ \forall i, j$ [5]

[END]

Communication Systems Page 7 of 7