Sistemas Multimédia

Vídeo

Professor: Paulo Gomes

Email: paulo.gomes@uportu.pt

Introdução

- ∠ A invenção da fotografia(Daguerre em 1837 e Talbot em 1841);
- Película fotográfica/filme fotográfico (Eastman 1880);
- ∠ Cinetoscópio (Edison 1884);
- ∠ Cinematógrafo (irmãos Lumière 1895).

Introdução (Cont.)

Ø O mérito dos irmãos Lumière recai na invenção de um aparelho que servia para filmar e projectar. Para a projecção de um filme bastava colocar uma lâmpada por detrás do mesmo.

Introdução (Cont.)

O principal problema a resolver, fora a passagem de um avanço contínuo do filme no aparelho para o avanço descontínuo diante da objectiva.

Introdução (Cont.)

- Todos os métodos utilizados pelo homem para apresentar imagens em movimento, tiram partido da síntese do movimento.
- Esta é conseguida com base na persistência retiniana; deve-se ao atraso de resposta que o sistema visual humano possui na presença de novos estímulos visuais.
- Quando na presença de uma sucessão de imagens que registam poucas diferenças entre si e sendo estas projectadas a uma velocidade superior a 1/10 ps, o sistema visual interpreta como tendo existido movimento dos elementos na imagem.

Modelos de cor em Vídeo

- ∠ Os modelos de cor usados em vídeo são: RGB, YUV e YIQ.
 - O modelo de cor RGB é usado, essencialmente em ambiente computacional, na representação de vídeo num dispositivo de saída emissor de luz.
 - Os modelos de cor YUV e YIQ foram criados de modo a permitirem a compatibilidade das emissões de televisão dos sistemas a cores com os receptores a preto e branco.
 - Em vídeo digital por componentes é utilizado o modelo de cor YCbCr (ou simplesmente YCC, variante do YUV) definido pela norma CCIR 601.

Modelos de cor em Vídeo (Cont.)

- A visão humana é mais sensível à luminância do que à crominância.
- ∠ A relação entre o número de amostras relativas à luminância e à crominância é descrita recorrendo à terminologia X:Y:Z.

Modelos de cor em Vídeo (Cont.)

- ∠ Os tipos de amostragens de cor de YCbCr são:
 - Amostragem 4:4:4, o componente de luminância e os de crominância encontram-se presentes em cada pixel das imagens do vídeo.

Modelos de cor em Vídeo (Cont.)

Amostragem 4:2:2, o componente de luminância encontra-se presente em todos os pixeis, enquanto que os componentes de crominância estão unicamente presentes em cada dois pixeis na direcção horizontal das imagens do vídeo.

Modelos de cor em Vídeo (Cont.)

Amostragem 4:1:1, por cada quatro pixeis com o componente de luminância existe um pixel com os componentes de crominância.

Modelos de cor em Vídeo (Cont.)

Amostragem 4:2:0, por cada quatro pixeis com o componente de luminância existe um pixel com um componente de crominância (Cb ou Cr). Este componente de crominância difere de linha para linha, quer seja par ou impar.

Varrimento entrelaçado e progressivo

- No varrimento entrelaçado, cada imagem de vídeo é dividida em dois campos.
- Ø O primeiro campo contém as linhas ímpares, o segundo campo as linhas pares.
- Ambos os campos são projectados no ecrã, inicialmente o campo com as linhas ímpares seguido do das linhas pares (factor de entrelaçamento de 2:1).

Varrimento entrelaçado e progressivo (Cont.)

- No processo de varrimento progressivo todas as linhas de uma imagem são projectadas no ecrã sequencialmente.
- Ø O varrimento progressivo permite uma melhor qualidade na definição de contornos e menor cintilação das imagens.
- O período de tempo que o processo de varrimento progressivo leva a projectar uma linha de uma imagem de vídeo é idêntico ao varrimento entrelaçado.

Representação de Vídeo analógico

- Ø O vídeo analógico é um sinal eléctrico onde a informação visual, luminância e crominância é codificada através da variação da amplitude de onda do sinal.

Representação de Vídeo analógico - Vídeo Composto

- No vídeo composto, os sinais de luminância e crominância combinam-se num único sinal eléctrico.
- ∠ Os sinais de vídeo composto são afectados por ruído denominado de chroma crawl.

Rep. de Vídeo analógico - Vídeo Composto (Cont.)

- As três normas de difusão de televisão e vídeo, definem formatos de sinal de vídeo composto:
 - ∠ PAL 625 linhas, 25 ips, 4:3 RA e 2:1 factor de entrelaçamento;

Rep. de Vídeo analógico – Vídeo por Componentes

- No vídeo por componentes, cada componente (luminância e os dois de crominância) corresponde a um sinal eléctrico independente.
- A separação dos sinais de luminância e crominância minimiza a interferência electromagnética entre sinais, possibilitando uma melhor qualidade do vídeo.

Rep. de Vídeo analógico – Vídeo por Componentes (Cont.)

- As normas PAL, SECAM e NTSC, definem igualmente formatos para sinais de vídeo por componentes.
- Ø O formato de vídeo por componentes da norma PAL e SECAM é o YUV 625/50 (625 linhas de varrimento e 50 campos por segundo),

Rep. de Vídeo analógico - S-Vídeo

- ∠ Utiliza dois sinais separados, um sinal
 Y (luminância) e C (combinação dos
 componentes de crominância).

Representação de Vídeo Digital

- A digitalização de vídeo analógico compreende os passos descritos em "Digitalização de sinais analógicos".
- Na fase de digitalização, os principais factores que determinam a qualidade e ritmo binário do vídeo digital são:

Rep. de Vídeo Digital (Cont.)

- O formato de vídeo digital composto resulta da digitalização de um sinal de vídeo analógico composto, com uma frequência de amostragem quádrupla da frequência da subportadora de cor (4fsc).
- As frequências de amostragem para sinais das normas PAL e SECAM são: − 17,7 MHz e NTSC − 14,3 MHz.
- A dimensão da amostra é geralmente de 8, extensível a 10 bits.

Rep. de Vídeo Digital (Cont.)

- A recomendação CCIR 601 define os parâmetros básicos para a digitalização de vídeo analógico por componentes dos sistemas PAL e NTSC.
- Ø O vídeo digital por componentes é obtido através da amostragem dos componentes YUV ou YIQ, a frequências de amostragem múltiplas de 3,375 MHz.

Rep. de Vídeo Digital (Cont.)

- O CCIR 601 especifica ainda uma família de formatos de vídeo digital por componentes.
- Os formatos são especificados de acordo com a amostragem de cor YCbCr pretendida para o vídeo.
- Os valores indicados na amostragem de cor Y, Cb e Cr são factores de multiplicação da frequência de amostragem base (3,375 MHz).
- No caso do formato 4:2:2, a frequência de amostragem do sinal do componente de luminância é de 13,5 MHz, para os sinais dos componentes de crominância de 6,75 MHz.
- São exemplo de resoluções de imagens de Digital Video Studio Standards, as seguintes: CCIR 601 4:2:2 (625/50) - Y= 720x576, CbCr= 360x576; CCIR 601 4:2:2 (525/59,94) Y= 720x480, CbCr= 360x480.

Compressão de vídeo

- Ø Os sinais de vídeo digital sem compressão produzem grande quantidade de dados, consumindo tempo de processamento, armazenamento e largura de banda de transmissão.
- Ø O ritmo binário de um vídeo digital por componentes PAL sem compressão e som, codificado segundo a recomendação CCIR 601 formato 4:2:2 (Y = 13,5 MHz, Cb e Cr = 6,75 MHz e 8 bits por amostra) é de 216 Mbps.

Tipos de Compressão

- Existem várias técnicas de compressão/descompressão de vídeo digital, designadas de codec.
- Os codecs (acrónimo das palavras inglesas COmpression/DECompression) utilizam algoritmos que substituem a informação original por descrições matemáticas mais compactadas.

Tipos de Compressão (Cont.)

- ∠ A compressão efectuada pelos codecs de podem ser classificadas em:
 - Compressão sem perdas (ou Lossless), a compressão seguida da descompressão, dá origem a uma cópia exacta do media original.
 - Compressão com perdas (ou Lossy), a compressão seguida da descompressão, conduz à perda de informação do media. Este tipo de compressão suprime dados redundantes e irrelevantes à percepção humana

Tipos de Compressão (Cont.)

Compressão e codificação de vídeo digital

- - i-frame;

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i

 i
 - ∠ p-frame;
 - ∠ b-frame;
 - ∠ pb-frame.

Compressão e codificação de vídeo digital – *I-frame*

- O método de compressão espacial utilizado pelas normas de compressão de vídeo, ITU-T H261, ITU-T H263 e ISO MPEG-1, 2 e 4 visual, combina a codificação de transformada DCT, quantização e codificação entrópica.

- Na codificação de transformada DCT, uma imagem é dividida inicialmente num conjunto de blocos.
- Cada bloco contém 8 linhas, cada linha contém 8 amostras relativas a valores de luminância ou crominância.
- ✓ O conjunto de 4 blocos de luminância e de blocos de crominância formam um macrobloco (macroblock).

Compressão e codificação de vídeo digital – *I-frame* (Cont.)

- O número de blocos de crominância varia de acordo com o formato de amostragem de cor YCbCr do vídeo.
- ∠ A Figura ilustra a constituição de um macrobloco 4:1:1 ou 4:2:0.

- A codificação de transformada DCT é aplicada a blocos Y, Cb e Cr de forma independente.
- A cada bloco é aplicada a transformada Discret Cosine Transformation (DCT), obtendo como resultado uma matriz de 8x8 com 64 coeficientes espaciais.
- As frequências espaciais reflectem como os diversos valores de luminância ou crominância variam de acordo com a posição no bloco.
- As frequências espaciais reflectem como os diversos valores de luminância ou crominância variam de acordo com a posição no bloco.

Compressão e codificação de vídeo digital – *I-frame* (Cont.)

- A posição F[0,0] da matriz de transformada DCT é denominada de coeficiente DC e representa o valor médio dos 64 valores da matriz.
- Os restantes coeficientes são denominados de AC, os quais contêm um dos componentes de frequência, horizontal, vertical ou ambos relacionados.

- Imagem com regiões com pouca variação dos valores de luminância e crominância apresentam matrizes de transformada com coeficientes DC idênticos ou próximos e a maioria dos coeficientes AC nulos.
- ∠ A transformada DCT só por si não introduz perdas na imagem.
- A codificação de transformada DCT é totalmente inversiva, aplicando para tal a transformada DCT inversa.

Compressão e codificação de vídeo digital - *I-frame* (Cont.)

- ∠ Compressão com perdas pode ser realizada explorando as limitações da visão humana.
- O sistema visual humano apresenta pouca sensibilidade à variação de luminância e crominância à medida que as frequências espaciais aumentam.
- Esta característica é utilizada na fase de quantização para descartar coeficientes que estejam acima de um determinado limite.
- Os coeficientes da matriz de transformada DCT são divididos por uma matriz de quantização que diminui os coeficientes proporcionalmente à posição dos mesmos na matriz de transformada DCT.

- A informação descartada é no caso ideal imperceptível ao olho humano.
- As matrizes de quantização para a luminância e crominância são definidas pelas normas de compressão.
- O processo de quantização pode ser manipulado por um factor de compressão, o qual permite ajustar o nível de coeficientes AC a descartar.

Compressão e codificação de vídeo digital – *I-frame* (Cont.)

- As técnicas de codificação entrópica que serão aplicadas aos coeficientes DC e AC quantizados operam com base em símbolos na forma de um vector unidimensional.
- A vectorização Zig-Zag apresenta no final um vector unidimensional cuja primeira posição corresponde ao coeficiente DC, seguido imediatamente pelos coeficientes AC de menor frequência espacial e no final os coeficientes AC de maior frequência espacial.

- ∠ Depois da vectorização, os coeficientes DC quantizados dos diversos blocos são codificados por diferenças.
- ✓ Os coeficientes AC quantizados são codificados por Run-length (a compressão é realizada substituindo a sequência de símbolos repetidos por apenas um único símbolo e a indicação da quantidade do mesmo) seguido da codificação Huffman ou aritmética.

Compressão e codificação de vídeo digital - *I-frame* (Cont.)

- A codificação de *i-frame* permitem relações de compressão de 10:1 a 20:1, dependendo da qualidade de imagem pretendida e da complexidade das texturas existentes nas imagens do vídeo.

Compressão e codificação de vídeo digital – *I-frame* (Cont.)

Ø O número de imagens *p-frame*, *b-frame* e/ou *pb-frame* entre cada *i-frame*, é denominado de *group* of pictures e expresso com o símbolo N.

Existem codecs de vídeo, como Motion JPEG e DV25, que codificam apenas imagens i-frame, implementando assim apenas compressão espacial.

Compressão e codificação de vídeo digital - *P-frame*

- ∠ P-frame é a abreviatura do termo inglês pedictive frame.
- A imagem p-frame é codificada em relação a uma i-frame ou p-frame anterior.
- A codificação é realizada utilizando a método de estimação e compensação de movimento.

- Ma codificação de imagens p-frame, cada macrobloco de uma imagem é comparado com o macrobloco correspondente na imagem de referência (i-frame ou p-frame, denominada de reference frame).
- Normalmente só o componente Y é utilizado na estimação de movimento.
- Se for encontrada redundância entre os macroblocos comparados, somente o endereço do macrobloco é codificado.
- Caso contrário a busca segue na área ao redor do macrobloco de referência.

Compressão e codificação de vídeo digital - *P-frame* (Cont.)

- Dependendo do algoritmo de estimação do movimento usado, diz-se que um macrobloco é achado quando a média do erro absoluto entre os valores dos pixeis dos macroblocos estiver abaixo de um determinado limite.
- As deslocações dos macroblocos são registadas num vector de movimento (motion vector) o qual indica a posição (x,y) do macrobloco em relação à posição original, bem como a posição original.

- ∠ Juntamente com o vector de movimento é também codificado o erro de predição, composto por três matrizes (Y, Cb e Cr) de diferenças dos valores dos pixeis entre o macrobloco alvo e o macrobloco seleccionado na imagem de referência.
- Os diversos vectores de movimento são posteriormente comprimidos usando para tal a codificação por diferenças e a codificação Huffman.

Compressão e codificação de vídeo digital - *P-frame* (Cont.)

- As matrizes de diferenças, são codificadas com o auxílio da codificação transformada DCT, quantização e codificação Run-length e Huffman.
- Se não for encontrada correspondência de um macrobloco em relação à imagem de referência, o macrobloco é comprimido com a técnica de compressão espacial anteriormente apresentada.

- Erros ocorridos em uma p-frame são propagados para as p-frames subsequentes, motivo pelo qual o número de p-frames sucessivas entre i-frames é reduzido.
- Ø O número de imagens entre uma imagem i-frame e uma imagem p-frame é denominado de prediction span e denotado pelo símbolo M.
- As imagens *p-frame* proporcionam relações de compressão na ordem de 20:1 a 30:1, dependendo da eficiência do método de estimação de movimento.

Compressão e codificação de vídeo digital – *B-frame*

- B-frame é a abreviatura do termo inglês bidirectional frame.
- Este tipo de imagem de vídeo é uma extensão da ideia base da *p-frame*, efectuando a estimação e compensação de movimento não apenas em relação à imagem *i-frame* ou *p-frame* anterior, mas também à imagem *i-frame* ou *p-frame* posterior.
- As imagens *b-frame* obtêm relações de compressão na ordem de 30:1 a 50:1, dependendo da eficiência do método de estimação de movimento bidimensional.
- Tendo como prejuízo o tempo de processamento na codificação e descodificação.

Compressão e codificação de vídeo digital - *PB-frame*

- As imagens pb-frame são basicamente a combinação de imagem p-frame e b-frame numa única imagem.
- ∠ Uma imagem pb-frame é codificada com base em uma p-frame produzida a partir da p-frame anterior e uma b-frame gerada a partir da p-frame anterior e da própria predição (p-frame da pb-frame).

Formato DV

- ∅ O formato standard DV, formato DV registado pelas camcorders MiniDV, emprega o codec DV25 para a compressão de sinal de vídeo entrelaçado YUV.
- O codec DV25 utiliza um algoritmo de compressão espacial baseado em transformada DCT, quantização e codificação entrópica; produz uma relação de compressão de 5:1, amostragem de cor 4:2:0 e ritmo binário de 25 Mbps.
- Ø O áudio codificado em PCM e informação de controlo são incluídos no formato DV, o ritmo binário total aproximado é de 3,6 Mbps.
- Ø Ó áudio pode ser digitalizado à frequência de amostragem de 32 KHz com dimensão de amostra de12 bits e 44,1 ou 48 KHz ambas com dimensão de amostra de 16 bits.

Formato DV (Cont.)

- A operação de transcrição dos conteúdos de vídeo registados na cassete *MiniDV* pela camcorder é realizada recorrendo à ligação *i.link*, designação da *Sony* para o *bus* de transporte de dados IEEE 1394.
- A norma IEEE 1394, também vulgarmente designada de *FireWire*, permite uma velocidade de transferência de 400 Mbps.
- A versão IEEE 1394b permite uma velocidade máxima de transferência de 800 Mbps.

ITU-T H.261

- Teve como objectivo do seu desenvolvimento, a criação de uma norma de compressão de vídeo digital para aplicações de videotelefone e videoconferência em Rede Digital com Integração de Serviços (RDIS).
- A norma H.261 produz um ritmo binário múltiplo de px64 Kbps com p entre 1 e 30 (ritmo binário entre 64 e 1920 Kbps).

ITU-T H.261 (Cont.)

- - - ≤ Y=352x288;
 - ∠ Cb=Cr=176x144.
 - ∠ Quarter Common Intermediate Format (QCIF),

 - ∠ Cb=Cr=88x72.

ITU-T H.261 (Cont.)

- ∠ O número de imagens por segundo permitido é de 30 ips para CIF e/ou 15 ou 7,5 ips para QCIF.
- A norma H.261 utiliza um algoritmo de compressão que combina imagens de vídeo codificadas do tipo *i-frame* e *p-frame*. Esta norma define o número de três *p-frames* entre *i-frames* sucessivas.

ISO MPEG-1 Video

- Ø O grupo Motion Pictures Expert Group (MPEG) foi formado pela ISO com o objectivo de formular um conjunto de normas de compressão de vídeo e áudio digital.
- As normas MPEG abrangem um conjunto diverso de normas que cobrem:
 - ∠ Compressão de vídeo digital (MPEG video),

ISO MPEG-1 Video (Cont.)

- Ø O ritmo binário produzido pela norma MPEG-1 é de aproximadamente 1,5 Mbps com vídeo de qualidade semelhante à VHS.

ISO MPEG-1 Video (Cont.)

- ∠ A norma MPEG 1 video, utiliza o formato de imagem de vídeo SIF (Source Intermedite Format);
 - ∠ (PAL): Y= 352x288, Cb=Cr=176x144
 - ∠ (NTSC): Y= 352x240, Cb=Cr=176x120.
- Ø O algoritmo de compressão MPEG-1 combina imagens de vídeo do tipo i-frame, p-frame e b-frame.
- A norma permite a compressão de vídeo com uso de apenas imagens codificadas do tipo *i-frame*, imagens *i-frame* e *p-frame* ou *i-frame*, *p-frame* e *b-frame*.

ISO MPEG-2 Video

- Ø O MPEG-2 (ISO 13818) teve como objectivo do seu desenvolvimento, a criação de uma norma de compressão de vídeo e áudio digital para o suporte a uma série de aplicações de vídeo, tais como:

 - ු etc.
- ∠ O MPEG-2 video usa os mesmos métodos de compressão utilizados no MPEG-1 video.
- Ø O algoritmo de compressão pode combinar imagens de video codificadas do tipo i-frame, p-frame e bframe.

ISO MPEG-2 Video (Cont.)

- Ao contrário do MPEG-1 video, o MPEG-2 video permite vídeo digital comprimido com uma maior gama de resoluções espaciais, diversidade de amostragem de cor, compatibilidade com varrimento entrelaçado e escalabilidade de vídeo.
- A escalabilidade de vídeo permite abranger um maior número de aplicações com diferentes requisitos de qualidade.
- A norma prevê a utilização de diferentes camadas de serviço. É possível ter diferentes streams de video que se complementam mutuamente.
- ∠ Os tipos de escalabilidade são:

ISO MPEG-2 Video (Cont.)

Na prática, o MPEG-2 video corresponde a uma érie de normas de compressão de video digital organizadas em quatro níveis e cinco perfis.

Niveis\Perfil	Simple 4:2:0	Main 4:2:0	SNR Scala- ble 4:2:0	Spatially Sca- lable 4:2:0	High 4:2:0/4:2:2
Law (SIF)		≈ 4 Mbps 1. P c B	≈ 4 Mbps I, P e B		
Main (CCIR 601)	= 15 Mbps 1 e P	* 15 Mbps 1, P e B	* 15 Mbps 4, P e B		= 20 Mbps 1, P e B
High-1440 (1440x1152)		* 60 Mbps LP eB		~ 60 Mbps I, P c B	* 80 Mbps I, P e B
High level (1920x1152)		= 80 Mbps I, P e B			= 100 Mbps I, P c B

ISO MPEG-2 Video (Cont.)

- ∠ Cada nível da codificação MPEG 2 video representa uma aplicabilidade em termos de exigência de qualidade, assim sendo:
 - ∠ Low level qualidade VHS;

 - ∠ High-1440 level qualidade HDTV
 - ∠ High level qualidade de produção de filme.

ITU-T H.263

- A norma ITU-T H.263 foi desenvolvida com o objectivo de criar um padrão de compressão de vídeo digital com mecanismos de resistência à ocorrência de erros de transmissão para o uso em aplicações de redes telefónica analógica e sem fio.
- As aplicações incluem videotelefone, videoconferência, vídeo vigilância, jogos interactivos ou qualquer aplicação que requeira vídeo digital em tempo real e/ou ritmo binário inferior a 64 Kbps.

ITU-T H.263 (Cont.)

- - ≤ SQCIF: Y=128x96, Cb=Cr=64x48;
 - ∠ 4CIF: Y=704x576, Cb=Cr=352x288;
- Produz vídeo digital comprimido de varrimento progressivo.
- Ø O número de imagens por segundo é de 30, 15 ou 7,5 ips.

ITU-T H.263 (Cont.)

- De forma a obter uma maior taxa de compressão do vídeo digital, o algoritmo de compressão da norma ITU-T H.263 combina imagens de vídeo codificadas do tipo *i-frame*, *p-frame*, *b-frame* e opcionalmente *pb-frame*.

ISO/IEC MPEG-4 Visual

- A norma ISO/IEC MPEG-4 foi desenvolvida pelo grupo MPEG, com o objectivo de fornecer um conjunto de tecnologias que satisfaçam as necessidades:
 - ∠ Dos autores dos conteúdos produção de material audiovisual reutilizável, independente da aplicação e protegido;
 - Fornecedores de serviços de redes fornecer conteúdos a utilizadores de redes de comunicação heterogéneas;
 - ∠ Utilizador final conteúdos com interactividade a taxas de transmissão reduzidas.

ISO/IEC MPEG 4 video (Cont.)

- Ma codificação MPEG-4, uma cena audiovisual é composta por um conjunto de objectos audiovisuais.
- Os objectos audiovisuais são denominados de AVO (Audio-Visual Object).
- Cada AVO pode ser composto por um ou mais objectos visuais e/ou objectos de áudio.
- Num nível superior, a uma cena é-lhe associado um descritor. Este, define como os vários AVOs são compostos, se correlacionam e a sua relação espacial na cena.

ISO/IEC MPEG 4 video (Cont.)

- Uma cena pode ser representada por uma estrutura hierárquica, usando para tal um grafo.
- Esta representação possibilita a compressão de cada objecto individualmente, tendo em atenção as suas características e importância na cena.
- É possível a convivência de múltiplas versões de compressão de AVOs, a primeira contendo uma camada base de compressão do áudio e vídeo streams e as várias outras camadas de compressão contendo enriquecimento de detalhes (escalabilidade).

ISO/IEC MPEG 4 video (Cont.)

A norma MPEG-4 suporta várias funcionalidades e taxas de transmissão para a codificação de vídeo capturado (como ilustra a figura subsequente).

ISO/IEC MPEG 4 video (Cont.)

- Na base encontra-se o VLBV core (Very Low Bit-rate Video), codificação para taxas de transmissão entre 4,8 e 64 Kbps, resolução espacial até CIF e resolução temporal até 15 ips.
- As funcionalidades básicas do núcleo são: codificação VLB (Very Low Bit-rate) de imagens convencionais, com elevada robustez a erros e pequenos atrasos, para aplicações multimédia de tempo real e possibilidade de acesso aleatório ao conteúdo.
- As mesmas funcionalidades são suportadas pelo HBV (High Bit-rate Vídeo) com base em algoritmos similares (colecção organizada de ferramentas) aos usados no VLBV, maior resolução espacial e temporal, com taxas de transmissão entre 64 Kbps e 10 Mbps.
- As "Content-based functionalities" operam com base no conteúdo, suportam a codificação e descodificação dos vários objectos de vídeos existentes em separado.

ISO/IEC MPEG 4 video (Cont.)

- Na codificação MPEG 4 VLBV core (perfil simple), cada Video Object (VO) é segmentado em instâncias do objecto, denominadas de Video Object Planes (VOP).
- ∠ A codificação dos diversos VOP do VO é realizada de forma similar à usada pela norma ITU-T H.263.

MPE G.4 VLBV Core Codes Video Object Plane (5 in Bete H263 MF EG-1) MPE G.4 VLBV Core Codes bitstream

Genetic MPEG-4 Coder

ISO/IEC MPEG 4 video (Cont.)

- Na codificação baseada no conteúdo, cada imagem/cena é segmentada em vários VOs.
- Cada VO é codificado separadamente com base na sua forma, movimento na cena e textura.

