] Петербург

ЧЕМПИОНАТ НЕФТЯНОЙ ОТРАСЛИ

КЕЙС

Искусственный интеллект против внеплановых простоев: разработка интеллектуальной системы диагностики

ОГЛАВЛЕНИЕ

<u>О ЧЕМПИОНАТЕ</u>	3
<u>О КОМПАНИИ</u>	4
ЗАДАНИЕ	6
<u>ТЕОРЕТИЧЕСКАЯ ЧАСТЬ</u>	11
ТРЕБОВАНИЯ И КРИТЕРИИ ОЦЕНКИ	14
ПОЛЕЗНЫЕ МАТЕРИАЛЫ	17

ПАРТНЕРЫ

Министерство энергетики Российской Федерации

Федеральный орган исполнительной власти Российской Федерации, осуществляющий функции по выработке и реализации государственной политики и нормативно-правовому регулированию в сфере топливно-энергетического комплекса.

Центр компетенций технологического развития ТЭК при Минэнерго России

Центр компетенций, созданный при взаимодействии Минэнерго РФ с Минпромторгом РФ для содействия реализации проектов создания отечественной техники и технологий для нужд ТЭК.

ПАО «Газпром нефть»

Вертикально-интегрированная нефтяная компания, основные виды деятельности которой – разведка и разработка месторождений нефти И газа. нефтепереработка, а также производство и сбыт нефтепродуктов. Компания входит в число лидеров российской нефтяной индустрии по эффективности.

ОРГАНИЗАТОР

П Энерготехнохаб Петербург

«Энерготехнохаб Петербург»

Экосистема развития инноваций в области традиционной и альтернативной энергетики, созданная совместно с Правительством Санкт-Петербурга. Проект стимулирует создание стартапов, которые помогают преодолевать технологические вызовы энергетических корпораций.

ОПЕРАТОР

Международный инженерный чемпионат «CASE-IN» ®

Международная система соревнований по решению инженерных кейсов для школьников, студентов и молодых специалистов топливно-энергетического и минерально-сырьевого комплексов, атомной промышленности и смежных отраслей. Проект входит в платформу «Россия – страна возможностей» и реализуется в соответствии с Планом мероприятий, направленных популяризацию рабочих и инженерных профессий, утвержденным распоряжением Правительства РФ от 5 марта 2015 г. № 366-р.

«Газпром нефть» — вертикально-интегрированная нефтяная компания, которая занимается разведкой и разработкой месторождений нефти и газа, нефтепереработкой, производством и реализацией нефтепродуктов. В структуру «Газпром нефти» входят более 70 нефтедобывающих, нефтеперерабатывающих и сбытовых предприятий.

По объему добычи и переработки нефти «Газпром нефть» входит в тройку крупнейших компаний России. Ключевой акционер «Газпром нефти» – ПАО «Газпром» (95,68%). Остальные акции находятся в свободном обращении.

Разведка и добыча

«Газпром нефть» ведет работу в крупнейших российских нефтегазоносных регионах: Ханты-Мансийском и Ямало-Ненецком автономных округах, Томской, Омской, Оренбургской областях, республике Саха. Кроме того, компания реализует проекты в сфере добычи за пределами России.

Переработка и продажа нефтепродуктов

Компания демонстрирует одно из лучших в российской отрасли соотношение добычи и переработки. Основные перерабатывающие мощности компании находятся в Омске, Москве и Ярославле, а также в сербском городе Панчево.

«Газпром нефть» реализует масштабную программу технологической и экологической модернизации своих НПЗ, направленную на повышение эффективности нефтепереработки и снижение воздействия предприятий на окружающую среду.

Сеть автозаправочных станций под управлением «Газпром нефти» насчитывает порядка 2,4 тысячи АЗС в России и за рубежом. Компания также заправляет своим топливом самолеты, морской и речной транспорт, производит высокотехнологичные масла для промышленной и автомобильной техники, битум для строительства качественных дорог, развивает проекты альтернативной энергетики.

Омский нефтеперерабатывающий завод (Омский НПЗ) — один из крупнейших и наиболее современных нефтеперерабатывающих заводов России, расположенный в городе Омске. Входит в состав компании «Газпром нефть» и является ключевым звеном в её производственной цепочке. История завода началась в 1955 году, когда он был построен для переработки нефти, добываемой в Западной Сибири.

Омский НПЗ обладает мощностью переработки около 21 миллиона тонн нефти в год, что делает его одним из лидеров среди российских НПЗ по объему производства. Завод производит широкий ассортимент продукции, включая автомобильные бензины, дизельное топливо, авиа керосин, мазут, битумы и другие нефтепродукты. Особое внимание уделяется выпуску экологически чистого топлива класса Евро-5, что соответствует самым строгим международным стандартам.

В последние годы на предприятии реализован ряд масштабных проектов модернизации, направленных на повышение эффективности переработки, снижение экологической нагрузки и расширение ассортимента продукции. Благодаря внедрению современных технологий, завод значительно увеличил выпуск светлых нефтепродуктов и снизил долю мазута в структуре выпуска.

Омский НПЗ играет важную роль в экономике региона, обеспечивая рабочие места для тысяч человек и поддерживая развитие смежных отраслей. Также предприятие активно участвует в социальных и экологических программах, направленных на улучшение качества жизни местного населения и минимизацию воздействия на окружающую среду.

Сегодня Омский НПЗ остается символом промышленного потенциала Сибири и примером успешной интеграции передовых технологий в традиционную нефтеперерабатывающую отрасль.

ОТ АВТОРОВ КЕЙСА

Организаторы Чемпионата разработали данный кейс исключительно в образовательных целях. В частности, кейс впервые будет использован в рамках IT-чемпионата нефтяной отрасли

Проблематика

- Ежегодно только на объектах переработки происходит множество отказов электрического и динамического оборудования.
 Множество единиц динамического оборудования не оснащены системами мониторинга технического состояния, соответственно их отказы являются внезапными, что влечет дополнительные расходы на устранение последствий отказов;
- Высокая стоимость оснащения динамического оборудования системами вибродиагностики и вибромониторинга;
- Не всегда имеется возможность вмешательства в конструкцию агрегатов для установки датчиков вибрации

Гипотезы

- С помощью сигналов тока электродвигателя возможно оценивать техническое состояние динамического оборудования в реальных условиях эксплуатации и выявлять дефекты на ранней стадии развития;
- Стоимость оснащения динамического оборудования системой токовой диагностики значительно ниже по сравнению с системой вибродиагностики

Дорогие участники!

О чём этот кейс

Задание – разработать решение с использованием технологий машинного обучения, которое поможет:

- Сократить материальные и трудовые затраты на оснащение динамического оборудования системами мониторинга и диагностики;
- Расширить охват динамического оборудования системами диагностики и мониторинга

ЗАДАЧИ КЕЙСА

Анализ существующих подходов

- Исследования методов диагностики оборудования;
- Индентификация перспективных технологий (включая ML)

Формулировка требований

- Бизнес-требования;
- Функционально-технические требования и нефункциональные требования, включая информационную безопасность и требования к вычислительной инфраструктуре;
- Расчет экономического эффекта (затраты и окупаемость), в том числе оценка рыночного потенциала

Обоснование выбора компонентов

- Отечественные технологии;
- Современные подходы к диагностике

Разработка архитектуры и инфраструктуры решения

- Проектирование системы в соответствии с требованиями;
- Преимущества и недостатки выбранных технологий;
- Проектирование возможной схемы сбора, обработки, хранения и передачи данных, от объекта до информационной системы

Реализация продукта

• Разработка прототипа для демонстрации

ИСХОДНЫЕ ДАННЫЕ

КРАТКОЕ ОПИСАНИЕ СТЕНДА ДЛЯ МОДЕЛИРОВАНИЯ ДЕФЕКТОВ

ПАРАМЕТР	ЗНАЧЕНИЕ
Тип ЭД	Асинхронный
Номинальная мощность ЭД, кВт	3
Подшипники	NSK6205DDU
Номинальная частота вращения ЭД, об/мин	1770
Номинальная частота вращения выходного вала мультипликатора, об/мин	3010
Частота дискретизации сигналов тока потребления ЭД, кГц	25,6

Сигналы тока записываются синхронно. Формат файлов – CSV. Каждая строка в файле - мгновенные значения тока по каждой фазе в амперах.

Требуется для каждого испытания установить:

Наличие дефекта

Вид дефекта (дефект наружного кольца подшипника, дефект внутреннего кольца подшипника, дефект тел качения, дефект сепаратора, дисбаланс, расцентровка)

Степень его развития (в неких относительных единицах)

Основные данные

СХЕМА СБОРА ИСХОДНЫХ ДАННЫХ

ОГРАНИЧЕНИЯ

Соответствие предлагаемых решений:

- 1. Юридические и правовые ограничения
 - Патентная чистота решения
 - Соблюдение авторских прав на используемые технологии
- 2. Технические ограничения
 - Доступность компонентов (аппаратные компоненты / программное обеспечение)
 - Совместимость с существующими системами
- 3. Архитектурные ограничения
 - Модульность решения для удобства модернизации
 - Возможность масштабирования
 - Интеграция новых алгоритмов без значительных изменений базовой архитектуры
- 5. Операционные ограничения
 - Простота внедрения и использования (наличие инструкций, минимальные затраты ресурсов для внедрения, удобство использования)
 - Время настройки системы
 - Процедуры обновления ПО/оборудования
 - Резервирование и отказоустойчивость
- 6. Переносимость и адаптивность
 - Возможность применения решения в разных отраслях
 - Адаптация к различным типам оборудования
 - Переносимость на различные платформы (облако, локальные серверы, edge-устройства)
- 7. Безопасность
 - Защита данных и конфиденциальность
 - Предотвращение несанкционированного доступа

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Доля отказов и распределение причин отказов центробежных насосных агрегатов

Перечень дефектов, которые возможно обнаружить с помощью токовой диагностики

1. Дефекты ротора:

- Обрыв стержней ротора;
- Ослабление соединительной муфты;
- Асимметрия ротора.

2. Дефекты статора:

- Асимметрия фазных токов;
- Межвитковые замыкания в обмотке статора;
- Однофазное и междуфазное короткие замыкания (КЗ).

3. Дефекты подшипников

- Тела качения;
- Внутренняя дорожка;
- Внешняя дорожка

4. Эксцентриситет воздушного зазора

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Современные технологии стремительно развиваются, и одним из перспективных направлений области управления в технических системах является применение методов искусственного интеллекта (ИИ) для мониторинга и диагностики промышленного оборудования. Многие современные методы предиктивной аналитики берут своё начало в диагностике вращающихся механизмов, основой которых в подавляющем большинстве случаев выступают электродвигатели. Они являются ключевыми элементами практически всех отраслей промышленности.

Токовая диагностика электродвигателей — это метод оценки состояния оборудования на основе анализа параметров тока, потребляемого двигателем. Однако классические методы часто не справляются с обработкой больших объемов данных или выявлением сложных аномалий, что затрудняет работу в реальном времени. Применение методов ИИ совместно с классическими методами может стать мощным инструментом для повышения точности и эффективности диагностики.

Идея заключается в том, что использование алгоритмов машинного обучения и глубокого обучения позволит значительно повысить точность и скорость выявления дефектов в электродвигателях по данным токовой диагностики. Это станет возможным благодаря способности методов ИИ находить скрытые закономерности в данных, которые трудно или невозможно обнаружить с помощью традиционных методов.

Раннее предупреждение

КОМАНДА

ДЛЯ РЕШЕНИЯ ЗАДАЧИ ПРЕДЛАГАЕМ СФОРМИРОВАТЬ КОМПЛЕКСНУЮ КОМАНДУ СПЕЦИАЛИСТОВ*. ВАРИАНТ КОМАНДЫ ПРОЕКТА:

Бизнес-аналитик

формализует бизнес- и функциональные требования проекта, выявит эффекты от внедрения решения

Архитектор

разработает архитектуру решения

Специалист по информационной безопасности

обеспечит защищенность решения

Системный аналитик

сформирует функциональные и нефункциональные требования

Разработчик

будет ответственный за реализацию продукта

Специалист по инфраструктуре

выберет и предложит как использовать инфраструктуру (как программную так и аппаратную)

^{*} В зависимости от количества членов команды на одного участника может возлагаться несколько ролей

КРИТЕРИИ ОЦЕНКИ

KI MIEI MM OGENKM					
КРИТЕРИИ	1 балл	2 балла	3 балла	4 балла	5 баллов
Техническая реализация решения 0,25	Решение не реализовано в соответствии с заявленной архитектурой и требованиями. Интерфейс интуитивно не понятен, не содержит графики/ диаграммы/ мнемосхемы/ тренды, не реализованы дополнительные возможности (формирование отчетов, оперативное информирование). Оценивается производительность системы (время отклика, задержки при обработке данных, использование ресурсов).	Решение реализовано в соответствии с заявленной архитектурой и не по всем представленным в задании требованиям. Интерфейс интуитивно не понятен, не содержит графики/ диаграммы/ мнемосхемы/ тренды, не реализованы дополнительные возможности (формирование отчетов, оперативное информирование). Оценивается производительность системы (время отклика, задержки при обработке данных, использование ресурсов).	Решение реализовано в соответствии с заявленной архитектурой и требованиями. Интерфейс интуитивно не понятен, не содержит графики/ диаграммы/мнемосхемы/ тренды, не реализованы дополнительные возможности (формирование отчетов, оперативное информирование). Оценивается производительность системы (время отклика, задержки при обработке данных, использование ресурсов).		Решение реализовано в соответствии с заявленной архитектурой и требованиями. Интерфейс интуитивно понятен, содержит графики/ диаграммы/ мнемосхемы/тренды, реализовано разделение ролей, реализованы дополнительные возможности (формирование отчетов, оперативное информирование). Оценивается производительность системы (время отклика, задержки при обработке данных, использование ресурсов).
Демонстрация решения 0,15	Решение не готово к демонстрации. Решение не выявляет отклонения от нормы и не выявляет дефекты оборудования.	Демонстрация возможна, но требует доработки. Демонстрация решения не последовательна и не интерактивна. Демонстрация решения осуществляется с помощью скриншотов и фотографий. Слабый интерфейс, непродуманная логика. Решение выявляет отклонения от нормы, но не выявляет дефекты оборудования.	Демонстрация возможна, но требует доработки. Демонстрация решения не последовательна и не интерактивна (показывают решение, не скриншоты или фотографии решения). Демонстрация решения осуществляется с помощью скриншотов и фотографий. Решение выявляет отклонения от нормы и выявляет дефекты оборудования.	Продемонстрирован полный функционал решения (в соответствии с БТ и ФТТ и НФТ). Демонстрация решения не последовательна и не интерактивна (показывают решение, не скриншоты или фотографии решения). Демонстрация решения осуществляется в реальном времени (не скриншоты и фотографии). Решение выявляет отклонения от нормы и выявляет дефекты оборудования.	Продемонстрирован полный функционал решения (в соответствии с БТ и ФТТ и НФТ). Демонстрация решения последовательна и интерактивна (показывают решение, не скриншоты или фотографии решения). Демонстрация решения осуществляется в реальном времени (не скриншоты и фотографии). Решение выявляет отклонения от нормы и выявляет дефекты оборудования.

КРИТЕРИИ ОЦЕНКИ

REMILEMM OULLIKM					
КРИТЕРИИ	1 балл	2 балла	3 балла	4 балла	5 баллов
Архитектура решения и используемы е технологии и компоненты 0,1	Архитектура отсутствует или не соответствует решаемой задаче. Нет обоснования, слабая технологическая база, не инновационные компоненты.	Архитектура частично соответствует БД, ФТТ и НФТ. Архитектура частично логична, но без гибкости и масштабируемости. Компоненты отвечают за реализацию своих функций (микросервисная архитектура). Архитектура предполагает слабый рост нагрузки на решения и не имеет масштабируемости. Архитектура предполагает использование стандартизированных протоколов и интерфейсы взаимодействия Отдельные технологические элементы не соответствуют задачам.	Архитектура соответствует БД, ФТТ и НФТ. Архитектура логична, но без гибкости и масштабируемости. Компоненты отвечают за реализацию своих функций (микросервисная архитектура). Архитектура предполагает слабый рост нагрузки на решения и не имеет масштабируемости. Архитектура предполагает использование стандартизированных протоколов и интерфейсы взаимодействия. Технологии применимы, но не полностью обоснованы.	Архитектура соответствует БД, ФТТ и НФТ. Архитектура имеет модульную структуру, но не до конца раскрыта. Компоненты отвечают за реализацию своих функций (микросервисная архитектура). Архитектура предполагает слабый рост нагрузки на решения и имеет небольшую масштабируемость. Архитектура предполагает использование стандартизированных протоколов и интерфейсы взаимодействия. Учитываются задачи диагностики, есть инновационные подходы, но неполная реализация.	Архитектура соответствует БД, ФТТ и НФТ. Архитектура имеет модульную структуру, каждый компонент отвечает за реализацию своих функций (микросервисная архитектура). Архитектура предполагает рост нагрузки на решения и имеет масштабируемость. Архитектура предполагает использование стандартизированных протоколов и интерфейсы взаимодействия. Архитектура предполагает использование в качестве реального решения для реальных технологических объектов. Учитываются задачи диагностики (технологии применимы), полная реализация инновационных подходов.
Конкурентосп особность и перспективы внедрения 0,1	У представленной экономической модели нет потенциала для внедрения. Анализ решений не проведен. Решение не готово к внедрению. Не представлены юридические и регуляторные аспекты.	Представлена экономическая модель с ограниченной применимостью, без коммерциализации. В анализе существующих подходов не оценены текущие решения на рынке, нет рыночного потенциала. Готовность к внедрению решения минимальная. Юридические и регуляторные аспекты (используются разрешенные к применению библиотеки/решения) ограничены.	Представлена реалистичная экономическая модель, но применимость ограниченна и без четкой коммерциализации. В анализе существующих подходов оценены текущие решения на рынке, без рыночного потенциала. Готовность к внедрению решения низкая. Учтены юридические и регуляторные аспекты (используются разрешенные к применению библиотеки/решения).	Представлена реалистичная экономическая модель, но применимость ограниченна. В анализе существующих подходов оценены текущие решения на рынке и рыночный потенциал. Решение готово к внедрению с небольшими корректировками (разработка завершена). Оценка юридических и регуляторных аспектов (используются разрешенные к применению библиотеки/решения).	Представлены экономические эффекты решения. В анализе существующих подходов оценены текущие решения на рынке и рыночный потенциал. Оценивается готовность к внедрению решения (разработка завершена). Оценка юридических и регуляторных аспектов (используются разрешенные к применению библиотеки/решения).

КРИТЕРИИ ОЦЕНКИ

КРИТЕРИИ	1 балл	2 балла	3 балла	4 балла	5 баллов
Использование инструментов искусственного интеллекта 0,1	Производится определение аномалий на основе методов ИИ.	Производится определение аномалий с их нелокализованной классификацией на основе методов ИИ.	Производится определение аномалий с их точной классификацией и локализацией на основе методов ИИ.	Производится определение аномалий с их точной классификацией и локализацией на основе методов ИИ. Оператору выдается интерпретированная информация о текущих аномалиях.	Производится определение аномалий с их точной классификацией и локализацией на основе методов ИИ. Оператору выдается интерпретированная информация о текущих аномалиях, предложен прогнозный алгоритм.
Презентация и оценка требований 0,1	Презентация не готова к демонстрации. Презентация не имеет описания решения. БТ/ФТТ/НФТ включены в состав презентации. Отсутствует экономический расчет.	Презентация не готова к демонстрации. Презентация имеет неполное описание решения. Перечень БТ/ФТТ/НФТ является необходимым и полным. Отсутствует экономический расчет.	Существуют заметные недостатки в презентации. БТ/ФТТ/НФТ трактуются однозначно и согласованы между собой. Экономический расчет произведен неточно.	Презентация готова к демонстрации с незначительными отклонениями, не влияющими на общий результат. Презентация имеет описание решения. БТ/ФТТ/НФТ свободны от технической реализации и верифицированы. Экономический расчет, отдельные элементы требуют корректировки.	Презентация готова к демонстрации. Презентация представлена по шаблону. В презентации отражены существующие подходы. Для всей группы БТ/ФТТ/НФТ прослеживается согласованность, полнота и реализуемость. Экономический расчет, обоснование выбора компонентов, архитектура, решение (интерфейс, возможности) не требуют корректировок.
Инфраструктура решения 0,1	Не предусмотрена схема хранения, передачи и обработки данных, используются только данные представленные в кейсе.	Разработан автоматический сбор данных с неопределенной частотой, предусмотрено локальное хранение данных.	Разработана система автоматического сбора и обработки данных, продумано централизованное хранение данных, предусмотрена аналитика и мониторинг системы.	Разработана система автоматического сбора и обработки данных, продумано централизованное хранение данных, проведен расчет каналов связи, продуманы механизмы устойчивости инфраструктуры, предусмотрена аналитика и мониторинг системы.	Разработана система автоматического сбора и обработки данных, продумано централизованное хранение данных, проведен расчет каналов связи, продуманы механизмы устойчивости инфраструктуры, предусмотрена аналитика и мониторинг системы, предложена схема граничных вычислений, вычисления распределены между компонентами инфраструктуры системы.
Информационная безопасность 0,1	Верно определен класс системы (по назначению) приведено обоснование выбора ответа.	Представлен список требований ИБ к технологиям используемым в решении и классу системы.	Выбор технологий защиты предложен в соответствии с угрозами и источниками этих угроз.	Ко всем обоснованным требованиям предложены решения с точки зрения информационной безопасности.	Ко всем обоснованным требованиям предложены решения с точки зрения информационной безопасности. Комплекс решений по ИБ соответствует промышленным стандартам, определены требования по безопасности алгоритмов, предложен механизм мониторинга и аудита аномалий, проработаны схемы реагирования на угрозы.

ПОЛЕЗНЫЕ МАТЕРИАЛЫ И ССЫЛКИ НА ИСТОЧНИКИ

- Диагностика динамического оборудования;
- Вибродиагностика;
- ГОСТ ISO 20958-2015 «СИГНАТУРНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ»
- ГОСТ Р 55100-212 Методы токовой диагностики электрооборудования
- РД 34.35-51.300-97 Объем и нормы испытаний электрооборудования
- ГОСТ Р 56542-2015 Диагностика технического состояния электрооборудования
- ГОСТ Р 57700.37-2021 Компьютерные модели и моделирование. Цифровые двойники изделий. Общие положения
- https://drive.fondsmena.ru/s/3fiHapYG8cpbafk основные данные задания Чемпионата.
- https://www.elibrary.ru/download/elibrary_41412297_19051034.pdf
 статья о прогнозировании ресурса кабельных линий с использованием метода искусственных нейронных сетей
- https://www.elibrary.ru/download/elibrary_13037097_77781197.pdf статья о разработки методики токовой диагностики асинхронных двигателей по осциллограммам нестационарных режимом работы
- https://www.elibrary.ru/download/elibrary 67215603 45447060.pdf статья, описывающая архитектуру киберфизической системы прогнозирования электропотребления на основе нейронной сети
- https://www.elibrary.ru/download/elibrary_44451349_90738198.pdf статья посвящена исследования вопросам создания диагностики и прогнозирования термофлуктуационных процессов изоляционных материалов силовых кабельных линий (СКЛ) электроэнергетических систем на основе методов искусственного интеллекта.
- https://www.elibrary.ru/download/elibrary 61788662 48638589.pdf рассматривается програмно-моделируеммый комплекс системы управления энергосетью и её элементами.
- <u>https://www.mdpi.com/1996-1073/12/21/4029</u> Evaluation of Current Signature in Bearing Defects by Envelope Analysis of the Vibration in Induction Motors
- https://www.extrica.com/article/15126 Vibration and motor current analysis of induction motors to diagnose mechanical faults
- https://power-mi.com/content/typical-bearing-defects-and-spectral-identification
 Typical bearing defects and spectral identification

УДАЧИ В РЕШЕНИИ КЕЙСА!

Данный кейс (содержание кейса) является интеллектуальной собственностью, право на которую принадлежит Партнерам ІТчемпионата. Данный кейс (содержание кейса) охраняется законом РФ о защите прав на результаты интеллектуальной деятельности, международным законодательством в этой области, а также законодательством в области защиты информации. Данный кейс и/или любая его часть могут быть использованы исключительно в рамках и в период проведения ІТ-чемпионата нефтяной отрасли. Лица, виновные в нарушении авторских прав и исключительных прав на использование кейса (содержания кейса), будут привлечены к гражданско-правовой, административной, уголовной ответственности в соответствии с действующим на территории РФ законодательством - Гражданским кодексом РФ (в частности глава 4), Кодексом РФ об административных нарушениях, Уголовным кодексом РΦ. а также международным законодательством.

