# Formale Grundlagen der Informatik II 3. Übungsblatt



Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Stéphane Le Roux, Ph.D. Sommersemester 2013 17. 06. 2013

#### Gruppenübung

**Aufgabe G7** (Erfüllbarkeit unendlicher Menge)

Seien  $p_1, p_2, \ldots$  AL-Variablen und seien die Formel<br/>n  $\varphi_n$  induktiv definiert durch

$$\varphi_1 := 1, \quad \varphi_{n+1} := \varphi_n \to (p_n \oplus p_{n+1}).$$

Ist die Formelmenge  $\Phi:=\{\varphi_n\mid n\geq 1\}$  erfüllbar? Wenn ja, finden Sie alle Modelle, die  $\Phi$  erfüllen.

**Lösung:** Wir suchen alle  $\Im$ , sodass  $\Im \models \varphi_n$  für alle n. Wenn das gilt, bemerkt man, dass  $\Im \models \varphi_{n+1} \leftrightarrow (p_n \oplus p_{n+1})$  für alle n. Zunächst nehmen wir an, dass  $\Im(p_1) = 0$ . Durch Induktion zeigen wir, dass  $\Im(p_{2n+1}) = 0$  und  $\Im(p_{2n+2}) = 1$  für alle n. Falls n = 0,  $\Im(p_{2n+1}) = 0$  wegen der Annahme und  $\Im(p_{2n+2}) = 1$  wegen  $\Im \models \varphi_2 \leftrightarrow (p_1 \oplus p_2)$  (und da  $\varphi_2$  erfüllt werden muss). Nehmen wir jetzt an, dass die Eigenschaft für ein beliebiges n gilt, insbesondere trifft  $\Im(p_{2n+2}) = 1$  zu. Aus  $\Im \models \varphi_{2n+3} \leftrightarrow (p_{2n+2} \oplus p_{2n+3})$  folgt, dass  $\Im(p_{2n+3}) = 0$ . Noch ein weiterer ähnlicher Schritt zeigt, dass  $\Im(p_{2n+4}) = 1$ . Also jetzt wissen wir, wie  $\Im$  aussehen sollte, wenn  $\Im(p_1) = 0$  und  $\Im \models \varphi_n$  für alle n. Es ist dann einfach, durch Induktion zu zeigen, dass so ein  $\Im$  ein Modell von  $\Phi$  ist. Gleichfalls zeigt man, dass das einzige andere Modell so definiert werden kann:  $\Im(p_1) := 1$  und  $\Im(p_{n+1}) := 1 - \Im(p_n)$  für alle n.

#### **Aufgabe G8** (Kompaktheitssatz)

(a) Für (möglicherweise unendliche) Formelmengen  $\Phi$  und  $\Psi$  schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jede Interpretation, die alle Formeln  $\varphi \in \Phi$  wahr macht, auch mindestens eine Formel  $\psi \in \Psi$  wahr macht. Zeigen Sie, dass  $\bigwedge \Phi \models \bigvee \Psi$  impliziert, dass es endliche Teilmengen  $\Phi_0 \subseteq \Phi$  und  $\Psi_0 \subseteq \Psi$  gibt, so dass  $\bigwedge \Phi_0 \models \bigvee \Psi_0$ .

(b) Sei  $V = \{p_1, p_2, p_3, ...\}$ . Eine Interpretation  $\mathfrak{I}: V \to \mathbb{B}$  kann aufgefasst werden als die unendliche Bit-Sequenz  $\mathfrak{I}(p_1)\mathfrak{I}(p_2)\mathfrak{I}(p_3)...$ 

P sei irgendeine Teilmenge aller solchen Sequenzen, so dass sowohl P als auch das Komplement P durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$P = \{ \mathfrak{I} \mid \mathfrak{I} \models \Phi \}$$

$$\overline{P} = \{ \mathfrak{I} \mid \mathfrak{I} \models \Psi \}$$

für geeignete  $\Phi, \Psi \subseteq AL(V)$ .

Zeigen Sie, dass dann sowohl P als auch  $\overline{P}$  jeweils schon durch eine einzelne AL-Formel spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).

## Lösung:

- (a) Wenn  $\bigwedge \Phi \models \bigvee \Psi$  gilt, dann hat die Menge  $\Phi \cup \neg \Psi$  keine Modelle, wobei  $\neg \Psi \vcentcolon= \{ \neg \psi \mid \psi \in \Psi \}$ . Der Kompaktheitssatz impliziert dann, dass schon eine endliche Teilmenge  $\Gamma_0 \subseteq \Phi \cup \neg \Psi$  keine Modelle hat. Setzen wir  $\Phi_0 \vcentcolon= \{ \varphi \in \Phi \mid \varphi \in \Gamma_0 \}$  und  $\Psi_0 \vcentcolon= \{ \psi \in \Psi \mid \neg \psi \in \Gamma_0 \}$ , dann heißt das, dass  $\Gamma_0 = \Phi_0 \cup \neg \Psi_0$  keine Modelle hat, also  $\bigwedge \Phi_0 \models \bigvee \Psi_0$ .
- (b) Da P und  $\overline{P}$  disjunkt sind, gilt  $\bigwedge \Phi \models \bigvee \neg \Psi$ . Nach Aufgabenteil (a) gibt es also endliche  $\Phi_0 \subseteq \Phi$  und  $\Psi_0 \subseteq \Psi$ , so dass  $\bigwedge \Phi_0 \models \bigvee \neg \Psi_0$ . Wir behaupten, dass  $P = \{\Im \mid \Im \models \bigwedge \Phi_0\}$ .  $P \subseteq \{\Im \mid \Im \models \bigwedge \Phi_0\}$  ist klar nach Definition von P, also zeigen wir die andere Richtung:

$$\mathfrak{I} \models \bigwedge \Phi_0 \implies \mathfrak{I} \models \bigvee \neg \Psi_0 \implies \exists \, \psi \in \Psi \,. \, \mathfrak{I} \models \neg \psi \implies \mathfrak{I} \notin \overline{P} \implies \mathfrak{I} \in P.$$

Ein analoges Argument mit vertauschten Rollen von  $\Phi$  uns  $\Psi$  könnte eine Formel  $\bigwedge \Psi_0$  liefern, die  $\overline{P}$  definiert, aber man bemerkt schon, dass die Formel  $\neg \bigwedge \Phi_0$  die Menge  $\overline{P}$  genau beschreibt.

## Aufgabe G9 (Resolutionsverfahren)

Seien 
$$\varphi := (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q),$$
  

$$\psi := (p \land q) \lor (\neg p \land \neg q) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land \neg r).$$

Zeigen Sie mithilfe des Resolutionsverfahrens, dass

- (a)  $\varphi$  erfüllbar ist;
- (b)  $\varphi \models \psi$  gilt.

## Lösung:

(a)

$$Res^{0}(K) = \{ \{p, \neg q, \neg r\}, \{\neg p, q, \neg r\}, \{\neg p, \neg q\} \}$$

$$Res^{1}(K) = Res^{0}(K) \cup \{ \{q, \neg q, \neg r\}, \{\neg q, \neg r\}, \{p, \neg p, \neg r\}, \{\neg p, \neg r\} \}$$

$$Res^{2}(K) = Res^{1}(K) \cup \{ \{\neg p, \neg q, \neg r\} \}$$

$$Res^{3}(K) = Res^{2}(K)$$

(b)  $\varphi \wedge \neg \psi \equiv (p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge (\neg p \vee \neg q) \wedge (\neg p \vee \neg q) \wedge (p \vee q) \wedge (p \vee \neg q \vee r) \wedge (\neg p \vee q \vee r),$  daher betrachten wir die Klauseln:  $\{p, \neg q, \neg r\}, \{\neg p, q, \neg r\}, \{\neg p, q, r\}, \{p, q\}, \{p, \neg q, r\}, \{\neg p, q, r\}\}.$ 



Da  $\square$  aus den Klauseln ableitbar ist, gilt  $\varphi \models \psi$ .

## Hausübung

# Aufgabe H7 (Graphenfärbung)

(5 Punkte)

Sei G = (V, E) ein einfacher Graph (V ist die Menge der Knoten,  $E \subseteq V \times V$  die Menge der Kanten). Wir erlauben, dass V und E unendlich sind, aber wir nehmen an, dass sie abzählbar sind.

Eine k-Färbung des Graphen G ist per Definition eine Abbildung  $f:V \to \{1,\ldots,k\}$  mit der Eigenschaft, dass für jede Kante  $(v,w) \in E$  gilt  $f(v) \neq f(w)$ . Man sagt, dass G k-färbbar ist, wenn er eine k-Färbung besitzt.

- (a) Geben Sie einen Graphen G' = (V', E') an, für den Sie beweisen, dass er nicht 4-färbbar ist.
- (b) Geben Sie einen 4-färbbaren Graphen G'' = (V'', E'') an, zusammen mit seiner 4-Färbung. Für volle Punktzahl seien V'' und E'' unendlich und sei G'' nicht 3-färbbar.
- (c) Fixiere  $k \in \mathbb{N}$  und einen beliebigen Graphen G = (V, E). Geben Sie eine (möglicherweise unendliche) AL-Formelmenge  $\Phi$  an, abhängig von k und G, für die Sie zeigen, dass sie genau dann erfüllbar ist, wenn G k-färbbar ist.
- (d) Beweisen Sie die folgende Aussage: Ein Graph ist genau dann k-färbbar, wenn jeder seiner endlichen Teilgraphen k-färbbar ist.

#### Lösung:

- (b) 1 P Sei  $V := \mathbb{N}$  die menge der Natürlichen Zahlen. Sei E so definiert:  $(i, j) \in E$  genau dann, wenn existiert n mit  $4n \le i, j < 4(n+1)$ . Diesen Graphen kann man auch als unendlich viele Kopien von einem Quadrat mit seinen zwei Diagonalen beschreiben.

Jetzt nehmen wir an, dass eine Belegung  $\mathfrak I$  die Formel  $\Phi$  erfüllt, und wir beschreiben eine k-färbende Funktion f. Sei  $u \in V$  und sei i, sodass  $\mathfrak I(p_u^1) \dots \mathfrak I(p_u^{k-1}) = 1^i 0^{k-1-i}$ . Wir definieren f(u) := i+1. Es ist klar, dass  $f: V \to \{1, \dots, k\}$ . Für beliebige u, v nehmen wir an, dass  $(u, v) \in E$ . Wegen  $\varphi_{u,v}$  gilt  $f(u) \neq f(v)$ .

Umgekehrt nehmen wir an, dass  $f: V \to \{1, \dots, k\}$  den Graphen G färbt, und wir beschreiben eine Belegung, die  $\Phi$  erfüllt. Sei  $u \in V$  und  $j \in \{1, \dots, k\}$ . Wenn j < f(u), definieren wir  $p_u^j := 1$ , sonst  $p_u^j := 0$ . Die so definierte Belegung erfüllt  $\psi_u$ , weil  $\Im(p_u^1) \dots \Im(p_u^{k-1}) = 1^{f(u)-1}0^{k-f(u)}$ , und erfüllt  $\varphi_{u,v}$ , weil f eine Färbung ist.

(d)  $\boxed{1 \text{ P.}}$  Offensichtlich wenn ein Graph k-färbbar ist, ist auch jeder seine Teilgraph k-färbbar (durch Einschränkung der färbenden Funktion).

Umgekehrt nehmen wir an, dass alle endlichen Teilgraphen von G k-färbbar sind. Sei  $\Phi_0$  eine endliche Teilmenge von  $\Phi$ . Sei  $G_0 = (V_0, E|_{V_0 \times V_0})$  ein endlicher Teilgraph von G, sodass jede Variable, die in Formeln in  $\Phi_0$  auftritt, tritt auch in  $V_0$ ; somit  $\Phi_0 \subseteq \{\psi_u \mid u \in V_0\} \cup \{\varphi_{u,v} \mid (u,v) \in E|_{V_0 \times V_0}\}$ . Da  $G_0$  k-färbbar ist, ist (per voriger Teilaufgabe)  $\Phi_0$  erfüllbar. Wegen dem Kompaktheitssatz ist auch  $\Phi$  erfüllbar und somit G k-färbbar.

## Aufgabe H8 (Resolutionsverfahren)

(5 Punkte)

(a) Überprüfen Sie mithilfe der Resolutionsmethode, ob die folgende Formel unerfüllbar ist:

$$(p \vee \neg r) \wedge (q \vee r) \wedge (\neg p \vee \neg s) \wedge (p \vee \neg q \vee r \vee s) \wedge (q \rightarrow (s \rightarrow r)) \wedge (r \vee s) \wedge ((p \wedge r) \rightarrow s)$$

(b) Weisen Sie mithilfe der Resolutionsmethode die folgende Folgerungsbeziehung nach:

$$(p \vee \neg q \vee r) \wedge (p \vee q \vee \neg r) \models (p \wedge q \wedge \neg r) \vee (\neg q \wedge \neg r) \vee (\neg r \to 0)$$

(c) Bestimmen Sie das minimale Modell der folgenden Horn-Formelmenge:

$$H_0 = \{p, (p \land q) \rightarrow s, (r \land t) \rightarrow s, t \rightarrow r, t\}$$

## Lösung:

(a) 2 P. Klauseln:  $\{q, r\}, \{p, \neg r\}, \{p, \neg q, r, s\}, \{\neg q, \neg s, r\}, \{r, s\}, \{\neg p, s, \neg r\}, \{\neg p, \neg s\}$ 



Da  $\square$  aus den Klauseln ableitbar ist, ist die Formel unerfüllbar.

(b) 1,5 P. Wir zeigen die Unerfüllbarkeit von  $((r \lor \neg q \lor p) \land (\neg r \lor q \lor p)) \land \neg ((\neg r \land q \land p) \lor (\neg r \land \neg q) \lor r)$ . Die Umwandlung dieser Formel in KNF ergibt die folgenden Klauseln:

$$\{r, \neg q, p\}, \{\neg r, q, p\}, \{r, \neg q, \neg p\}, \{r, q\}, \{\neg r\}$$

Wir zeigen jetzt die Unerfüllbarkeit durch Ableitung von □:



(c) 1,5 P. Die Hornklauselmenge  $H_0$  enthält keine negativen Hornklauseln, daher gibt es nach Lemma 5.12 (FGdI Skript zur Aussagenlogik) ein minimales Modell  $\mathfrak{I}_0$  der Variablen in  $H_0$ . Wir verfahren wie im (konstruktiven) Beweis des Lemmas, konstruieren also schrittweise die Mengen  $X_i$ :

$$X_0 = \emptyset, \quad X_1 = X_0 \cup \{p,t\}, \quad X_2 = X_1 \cup \{r\}, \quad X_\infty = X_3 = X_2 \cup \{s\}.$$

Das minimale Modell  $\mathfrak{I}_0$  ist demnach geben durch

$$\mathfrak{I}_0(p) = \mathfrak{I}_0(t) = \mathfrak{I}_0(r) = \mathfrak{I}_0(s) = 1$$
 und  $\mathfrak{I}_0(q) = 0$ .

## Minitest

#### **Aufgabe M6** (Resolutionsverfahren)

Seien  $\varphi$  und  $\psi$  AL-Formeln und  $K(\varphi)$  die Klauselmenge zu  $\varphi$ . Betrachte die folgenden Aussagen.

- 1.  $\varphi$  is unerfüllbar.
- 2.  $\varphi$  is erfüllbar.
- 3.  $\varphi$  ist allgemeingültig.
- 4.  $\varphi$  ist nicht allgemeingültig.
- 5.  $\varphi \models \psi$
- 6. Eine endliche Menge  $\Phi$  von AL-Formeln ist unerfüllbar.
- 7. Eine unendliche Menge  $\Phi$  von AL-Formeln ist unerfüllbar.

Für jede Aussage oben identifizieren Sie die äquivalente Bedingung unten.

 $( ) \ \Box \in \operatorname{Res}^*(K(\neg \varphi))$   $( ) \ \Box \notin \operatorname{Res}^*(K(\neg \varphi))$   $( ) \ \Box \notin \operatorname{Res}^*(K(\varphi))$   $( ) \ \Box \in \operatorname{Res}^*(K(\bigwedge \Phi_0)) \text{ für ein endliches } \Phi_0 \subseteq \Phi$   $( ) \ \Box \in \operatorname{Res}^*(K(\varphi \land \neg \psi))$   $( ) \ \Box \in \operatorname{Res}^*(K(\varphi))$   $( ) \ \Box \in \operatorname{Res}^*(K(\bigwedge \Phi))$ 

#### Lösung:

- (3.)  $\square \in \operatorname{Res}^*(K(\neg \varphi))$
- (4.)  $\Box \notin \operatorname{Res}^*(K(\neg \varphi))$
- (2.)  $\square \notin \operatorname{Res}^*(K(\varphi))$
- (7.)  $\square \in \text{Res}^*(K(\bigwedge \Phi_0))$  für ein endliches  $\Phi_0 \subseteq \Phi$
- (5.)  $\square \in \operatorname{Res}^*(K(\varphi \wedge \neg \psi))$
- (1.)  $\square \in \operatorname{Res}^*(K(\varphi))$
- (6.)  $\square \in \operatorname{Res}^*(K(\bigwedge \Phi))$

Begründung: Siehe Skript, Abschnitt 5.3.

## **Aufgabe M7** (Kompaktheitssatz)

Bestimmen Sie die korrekten Implikationen für allgemeine (abzählbare) AL-Formelmenge Φ.

es gibt eine endliche Teilmenge von  $\Phi$ , die erfüllbar ist  $\Box \Longrightarrow \Phi$  ist erfüllbar  $\Box \Longrightarrow \Phi$  alle endlichen Teilmenge von  $\Phi$  sind erfüllbar

# Lösung:

es gibt eine endliche Teilmenge von  $\Phi$ , die erfüllbar ist  $\Phi$  ist erfüllbar  $\Phi$  ist erfüllbar  $\Phi$  alle endlichen Teilmengen von  $\Phi$  sind erfüllbar

Begründung: Die linkste Aussage ist immer wahr, denn  $\emptyset \subseteq \Phi$  ist eine endliche erfüllbare Teilmenge; das macht die linken Implikationen klar. Die rechten Implikationen gelten per Kompaktheitssatz (Satz 4.1 im Skript).