

July 2006

Single-Channel: 6N135, 6N136, HCPL-2503, HCPL-4502 Dual-Channel: HCPL-2530, HCPL-2531 High Speed Transistor Optocouplers

Features

- High speed-1MBit/s
- Superior CMR-10kV/µs
- Dual-Channel HCPL-2530/HCPL-2531
- Double working voltage-480V RMS
- CTR guaranteed 0-70°C
- U.L. recognized (File # E90700)

Applications

- Line receivers
- Pulse transformer replacement
- Output interface to CMOS-LSTTL-TTL
- Wide bandwidth analog coupling

Description

The HCPL-4502/HCPL-2503, 6N135/6 and HCPL-2530/HCPL-2531 optocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector transistor.

A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor.

An internal noise shield provides superior common mode rejection of 10kV/µs. An improved package allows superior insulation permitting a 480V working voltage compared to industry standard of 220V.

Package

Schematic

6N135, 6N136, HCPL-2503, HCPL-4502

Pin 7 is not connected in Part Number HCPL-4502

HCPL-2530/HCPL-2531

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Symbol	Parameter	Condition	Value	Units
T _{STG}	Storage Temperature		-55 to +125	°C
T _{OPR}	Operating Temperature		-55 to +100	°C
T _{SOL}	Lead Solder Temperature		260 for 10 sec	°C
EMITTER				
I _F (avg)	DC/Average Forward Input Current Each Channel ⁽¹⁾		25	mA
I _F (pk)	Peak Forward Input Current Each Channel ⁽²⁾	50% duty cycle, 1ms P.W.	50	mA
I _F (trans)	Peak Transient Input Current Each Channel	≤1 µs P.W., 300pps	1.0	Α
V_R	Reverse Input Voltage Each Channel		5	V
P _D	Input Power Dissipation Each	6N135/6N136 and HCPL-2503/4502	100	mW
	Channel	HCPL-2530/253 ⁽³⁾	45	
DETECTO	R			
I _O (avg)	Average Output Current Each Channel		8	mA
I _O (pk)	Peak Output Current Each Channel		16	mA
V _{EBR}	Emitter-Base Reverse Voltage	6N135, 6N136 and HCPL-2503 only	5	V
V _{CC}	Supply Voltage		-0.5 to 30	V
V _O	Output Voltage		-0.5 to 20	V
I _B	Base Current	6N135, 6N136 and HCPL-2503 only	5	mA
PD	Output Power Dissipation	6N135, 6N136, HCPL-2503, HCPL-4502 ⁽⁴⁾	100	mW
	Each Channel	HCPL-2530, HCPL-2531	35	mW

Notes:

- 1. Derate linearly above 70°C free-air temperature at a rate of 0.8mA/°C.
- 2. Derate linearly above 70°C free-air temperature at a rate of 1.6mA/°C.
- Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C.
- Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C.

Electrical Characteristics (T_A = 0 to 70°C Unless otherwise specified)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTE	3	1	1			1	
V _F	Input Forward Voltage	I _F = 16mA, T _A =25°C			1.45	1.7	V
		I _F = 16mA				1.8	
B _{VR}	Input Reverse Breakdown Voltage	I _R = 10 μA		5.0			V
$\Delta V_F / \Delta T_A$	Temperature Coefficient of Forward Voltage	I _F = 16mA			-1.6		mV/°C
DETECTO	DR	•		•		•	
I _{OH}	Logic High Output Current	$I_F = 0$ mA, $V_O = V_{CC} = 5.5$ V, $T_A = 25$ °C	All		0.001	0.5	μA
		$I_F = 0$ mA, $V_O = V_{CC} = 15$ V, $T_A = 25$ °C	6N135 6N136 HCPL-4502 HCPL-2503		0.005	1	
		$I_F = 0mA, V_O = V_{CC} = 15V$	All			50	
I _{CCL}	Logic Low Supply Current	$I_F = 16$ mA, $V_O = Open$, $V_{CC} = 15$ V	6N135 6N136 HCPL-4502 HCPL-2503		120	200	μА
		I _{F1} = I _{F2} = 16mA, V _O = Open, V _{CC} = 15V	HCPL-2530 HCPL-2531		200	400	
Іссн	Logic High Supply Current	$I_F = 0$ mA, $V_O = 0$ pen, $V_{CC} = 15$ V, $T_A = 25$ °C	6N135 6N136 HCPL-4502 HCPL-2503			1	μА
		$I_F = 0$ mA, $V_O = 0$ pen, $V_{CC} = 15$ V	6N135 6N136 HCPL-4502 HCPL-2503			2	
		$I_F = 0$ mA, $V_O = 0$ pen, $V_{CC} = 15$ V	HCPL-2530 HCPL-2531		0.02	4	

^{*}All Typicals at $T_A = 25^{\circ}C$

Transfer Characteristics ($T_A = 0$ to 70° C Unless otherwise specified)

Symbol	Parameter	Test Conditions		Device	Min.	Тур.*	Max.	Unit
COUPLE								
CTR	TR Current Transfer $I_F = 16\text{mA}, V_O = 0.4 \text{ V},$ $V_{CC} = 4.5\text{V}, T_A = 25^{\circ}\text{C}$		6N135 HCPL-2530	7	18	50	%	
			6N136 HCPL-4502 HCPL-2531	19	27	50	%	
				HCPL-2503	12	27		%
		I _F = 16mA,	$V_{OL} = 0.4V$	6N135	5	21		%
		$V_{CC} = 4.5V$	$V_{OL} = 0.5V$	HCPL-2530	1			
		$V_{OL} = 0.4V$ $V_{OL} = 0.5V$		6N136 HCPL-4502	15	30		%
				HCPL-2531				
			$V_{OL} = 0.4V$	HCPL-2503	9	30		%
V _{OL}	Logic LOW Output	I _F = 16mA, I _O = 1.1mA,		6N135		0.18	0.4	V
	I _F = 1 V _{CC} :	$V_{CC} = 4.5V, T_A = 25^{\circ}C$	$V_{CC} = 4.5V, T_A = 25^{\circ}C$			0.18	0.5	
		$I_F = 16\text{mA}, I_O = 3\text{mA},$ $V_{CC} = 4.5\text{V}, T_A = 25^{\circ}\text{C}$		6N136 HCPL-2503		0.25	0.4	
				HCPL-2531		0.25	0.5	
		$I_F = 16\text{mA}, I_O = 0.8\text{mA}$ $V_{CC} = 4.5\text{V}$	۸,	6N135 HCPL-2530			0.5	
		$I_F = 16\text{mA}, I_O = 2.4\text{mA}$ $V_{CC} = 4.5\text{V}$	۸,	HCPL-4502 HCPL-2531			0.5	

^{*}All Typicals at $T_A = 25^{\circ}C$

5. Current Transfer Ratio is defined as a ratio of output collector current, I_O , to the forward LED input current, I_F , times 100%.

Switching Characteristics ($T_A = 0$ to 70° C unless otherwise specified., $V_{CC} = 5V$)

Symbol	Parameter	Test Conditions	Device	Min.	Тур.*	Max.	Unit
T _{PHL}	Propagation Delay Time to Logic LOW	$T_A = 25^{\circ}C$, $R_L = 4.1k\Omega$, $I_F = 16mA^{(6)}$ (Fig. 7)	6N135 HCPL-2530		0.45	1.5	μs
		$R_L = 1.9k\Omega$, $I_F = 16mA$, $T_A = 25^{\circ}C^{(7)}$ (Fig. 7)	6N136 HCPL-4502 HCPL-2503 HCPL-2531		0.45	0.8	μs
		$R_L = 4.1 \text{k}\Omega, I_F = 16 \text{mA}^{(6)} \text{ (Fig. 7)}$	6N135 HCPL-2530			2.0	μs
		$R_L = 1.9k\Omega$, $I_F = 16mA^{(7)}$ (Fig. 7)	6N136 HCPL-4502 HCPL-2503 HCPL-2531			1.0	μs
T _{PLH}	Propagation Delay Time to Logic HIGH	$T_A = 25$ °C, $(R_L = 4.1k\Omega, I_F = 16mA^{(6)}$ (Fig. 7)	6N135 HCPL-2530		0.5	1.5	μs
		$R_L = 1.9k\Omega$, $I_F = 16mA^{(7)}$ (Fig. 7) $T_A = 25$ °C	6N136 HCPL-4502 HCPL-2503 HCPL-2531		0.3	0.8	μs
		$R_L = 4.1 \text{k}\Omega, I_F = 16 \text{mA}^{(6)} \text{ (Fig. 7)}$	6N135 HCPL-2530			2.0	μs
		$R_L = 1.9k\Omega$, $I_F = 16mA^{(7)}$ (Fig. 7)	6N136 HCPL-4502 HCPL-2503 HCPL-2531			1.0	μs
ICM _H I	Common Mode Transient Immunity at Logic High	$I_F = 0$ mA, $V_{CM} = 10V_{P-B}$, $R_L = 4.1$ k Ω , $T_A = 25$ ° $C^{(8)}$ (Fig. 8)	6N135 HCPL-2530		10,000		V/µs
		$I_F = 0$ mA, $V_{CM} = 10V_{P-P}$ $R_L = 1.9$ k Ω , $T_A = 25$ °C ⁽⁸⁾ (Fig. 8)	6N136 HCPL-4502 HCPL-2503 HCPL-2531		10,000		V/µs
ICM _L I	Common Mode Transient Immunity at Logic Low	$I_F = 16\text{mA}, V_{CM} = 10 V_{P-P}$ $R_L = 4.1 \text{k}\Omega, T_A = 25^{\circ} \text{C}^{(8)} \text{ (Fig. 8)}$	6N135 HCPL-2530		10,000		V/µs
		$I_F = 16\text{mA}, V_{CM} = 10 V_{P-P}$ $R_L = 1.9 \text{k}\Omega^{(8)} \text{ (Fig. 8)}$	6N136 HCPL-4502 HCPL-2503 HCPL-2531		10,000		V/µs

^{**} All Typicals at $T_A = 25^{\circ}C$

Notes:

- 6. The $4.1k\Omega$ load represents 1 LSTTL unit load of 0.36mA and $6.1k\Omega$ pull-up resistor.
- 7. The 1.9k Ω load represents 1 TTL unit load of 1.6mA and 5.6k Ω pull-up resistor.
- 8. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0V$). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8V$).

Isolation Characteristics ($T_A = 0$ to 70° C Unless otherwise specified)

Symbol	Characteristics	Test Conditions	Min	Typ**	Max	Unit
I _{I-O}	Input-Output Insulation Leakage Current	Relative humidity = 45%, $T_A = 25$ °C, $t = 5s$, $V_{I-O} = 3000 \text{ VDC}^{(9)}$			1.0	μА
V _{ISO}	Withstand Insulation Test Voltage	RH \leq 50%, T _A = 25°C, I _{I-O} \leq 2 μ A, t = 1 min. ⁽⁹⁾	2500			V _{RMS}
R _{I-O}	Resistance (Input to Output)	V _{I-O} = 500VDC ⁽⁹⁾		10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output)	f = 1 MHz ⁽⁹⁾		0.6		pF
HFE	DC Current Gain	$I_{O} = 3mA, V_{O} = 5V^{(9)}$		150		
I _{I-I}	Input-Input Insulation Leakage Current	RH \leq 45%, V _{I-I} = 500VDC ⁽¹⁰⁾ t = 5 s, (HCPL-2530/2531 only)		0.005		μA
R _{I-I}	Input-Input Resistance	V _{I-I} = 500 VDC ⁽¹⁰⁾ (HCPL-2530/2531 only)		10 ¹¹		Ω
C _{I-I}	Input-Input Capacitance	f = 1MHz) ⁽¹⁰⁾ (HCPL-2530/2531 only)		0.03		pF

Notes:

- 9. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 10. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Fig. 8 Common Mode Immunity Test Circuit

Package Dimensions All dimensions are in inches (millimeters)

Through Hole

Surface Mount

0.4" Lead Spacing

Recommend Pad Layout for Surface Mount Leadform

Ordering Information

Option	Example Part Number	Description
S	6N135S	Surface Mount Lead Bend
SD	6N135SD	Surface Mount; Tape and reel
W	6N135W	0.4" Lead Spacing
V	6N135V	VDE0884
WV	6N135WV	VDE0884; 0.4" lead spacing
SV	6N135SV	VDE0884; surface mount
SDV	6N135SDV	VDE0884; surface mount; tape and reel

Marking Information

Definiti	Definitions				
1	Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	Two digit year code, e.g., '03'				
5	Two digit work week ranging from '01' to '53'				
6	Assembly package code				

Carrier Tape Specifications

Reflow Profile

- Peak reflow temperature: 225C (package surface temperature)
 Time of temperature higher than 183C for 60–150 seconds
- · One time soldering reflow is recommended

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] FACT Quiet Series [™]		OCX™	SILENT SWITCHER
ActiveArray [™] GlobalOptoisolator [™]		OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I^2C^{TM}	PACMAN™	SuperFET™
CROSSVOLT™	i-Lo™	POP™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench [®]	TCM™
FACT™	MICROCOUPLER™	QFET [®]	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
	Around the world.™	μSerDes™	TruTranslation™
The Power Franch	iise [®]	ScalarPump™	UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFET™ UltraFET® VCX™ Wire™

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I20