数字电路与数字逻辑实验

-实验5:数据选择器电路原理及应用

陈刚 副教授,无人系统研究所 数据科学与计算机学院 中山大学

https://www.usilab.cn/team/chengang/

实验目的

- 熟悉选择器的功能与使用方法
- 选择器的使用:最小项法+或电路
 - 数据选择器也可以产生最小项+或电路形式
 - 相比于3-8译码器, 更简单
 - 和3-8译码器对比
- 使用3-8译码器设计组合电路
- 对应教材实验3.4

8/26/2018

组合逻辑:8路选择器

- 数据选择器:从一组输入数据中选出某一个信号输出。
- 经常用于输入选择
 - 比如,我们有8组信号,希望有一个这样的功能,可以动态 从8组信号中选择信号到输出管脚上
 - 对于8组信号,比如输入001,会将第一组信号输出到输出 管脚上
- 74LS151 (8路数据选择器)
- 74LS150(16路数据选择器)

8路选择器:74LS151

•8路选择器: 74LS151

表 3-7 74LS151 的真值表

	输入						
С	В	A	Z				
0	0	0	10				
0	0	1	I1				
0	1	0	I2				
0	1	1	I3				
1	0	0	I4				
1	0	1	I5				
1	1	0	I6				
1	1	1	I7				

8路选择器:74LS151

表 3-7 74LS151 的真值表

	输入							
С	В	A	Z					
0	0	0	10					
0	0	1	I1					
0	1	0	I2					
0	1	1	I3					
1	0	0	I4					
1	0	1	I5					
1	1	0	I6					
1	1	1	I7					

• 8路选择器

- 产生最小项,同时产生或电路
- 相比于3-8译码器,电路更加完备性
- 可以大大简化电路设计
 - 主要在10-17输入0或者1选通相应的 最小项就可以
 - 不需要额外的电路
- 一个输出需要用一个数据选择器

 $Z = \overline{C} \, \overline{B} \, \overline{A} \, I0 + \overline{C} \, \overline{B} \, A \, I1 + \overline{C} \, B \, \overline{A} \, I2 + \overline{C} \, B \, A \, I3 + C \, \overline{B} \, \overline{A} \, I4 + C \, \overline{B} \, A \, I5 + C \, B \, \overline{A} \, I6$

74LS151应用举例

• 8路选择器实现全减器

	输入	输	出	
A	В	\mathbf{B}_{n}	D	B _{n-1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\begin{split} D &= \overline{A} \ \overline{B} \ \overline{B_n} \cdot \mathbf{0} + \overline{A} \ \overline{B} \ B_n \cdot \mathbf{1} + \overline{A} \ B \ \overline{B_n} \cdot \mathbf{1} + \overline{A} \ B B_n \cdot \mathbf{0} \ + A \ \overline{B} \ \overline{B_n} \cdot \mathbf{1} + A \ \overline{B} \ B_n \cdot \mathbf{0} \\ &+ A \ B \ \overline{B_n} \cdot \mathbf{0} + A \ B \ B_n \cdot \mathbf{1} \end{split}$$

$$B_{n-1} = \overline{A} \overline{B} \overline{B_n} \cdot \mathbf{0} + \overline{A} \overline{B} B_n \cdot \mathbf{1} + \overline{A} B \overline{B_n} \cdot \mathbf{1} + \overline{A} B B_n \cdot \mathbf{1} + A \overline{B} \overline{B_n} \cdot \mathbf{0} + A \overline{B} B_n \cdot \mathbf{0}$$
$$+ A B \overline{B_n} \cdot \mathbf{0} + A B B_n \cdot \mathbf{1}$$

16路选择器应用举例

• 16路选择器: 74LS150

'150
FUNCTION TABLE

L		OUTPUT			
	SEL	ECT	•	STROBE	w
٥	С	В	_A	Ğ	VV
х	Х	X	Х	Н	H
L	L	L	L	L	EÔ
L	L	L	H	L	<u>E1</u>
L	L	H	L	L	E2
L	L	Н	Н	L	Ē3
L	Н	L	L	Ļ	Ē4
L	Н	L	н	L	E5
L	Н	Н	Ļ	Ļ	<u>E6</u>
L	н	Н	н	L	Ē7
Н	L	L	L	L	<u>€8</u>
н	L	L	H	L	Ē9
Н	L	H	L	L	E10
н	L	Н	н	L	E11
н	н	L	L	L	E12
н	Н	L	н	L	E13
н	Н	Н	L	L	E14
н	н	Н	н	L	E15

16路选择器应用举例

• 举例: 16路选择器74LS150实现7段数码管编码器

表 3-3 二进制码七段数码管译码器的真值表

衣 3-3 二处则时 6 校 数 时 目 中 时 前 的 共 直 衣											
	输	入			输出						七段数码管
Q3	Q2	Q1	Q0	a	ь	с	d	e	f	g	显示内容
0	0	0	0	1	1	1	1	1	1	0	"0"
0	0	0	1	0	1	1	0	0	0	0	"1"
0	0	1	0	1	1	0	1	1	0	1	"2"
0	0	1	1	1	1	1	1	0	0	1	"3"
0	1	0	0	0	1	1	0	0	1	1	"4"
0	1	0	1	1	0	1	1	0	1	1	"5"
0	1	1	0	1	0	1	1	1	1	1	"6"
0	1	1	1	1	1	1	0	0	0	0	"7"
1	0	0	0	1	1	1	1	1	1	1	"8"
1	0	0	1	1	1	1	1	0	1	1	"9"
1	0	1	0	1	1	1	0	1	1	1	"A"
1	0	1	1	0	0	1	1	1	1	1	"b"
1	1	0	0	1	0	0	1	1	1	0	"C"
1	1	0	1	0	1	1	1	1	0	1	"d"
1	1	1	0	1	0	0	1	1	1	1	"E"
1	1	1	1	1	0	0	0	1	1	1	"F"

a= Q2 Q2 Q1 Q0 + Q2 Q2 Q1 Q0+
Q, Q, Q, Q0 + Q, Q, Q, Q, Q, +
Q, Q, Q, Q, + Q3 Q, Q, Qo+
Q3 Q, Q, Q2 + Q3 Q2 Q, Q0+
Q3 Q2 Q1 Q0 + Q3 Q2 Q1 Q0+
Q3020100 + Q3020100

16路选择器应用举例

• 举例: 16路选择器74LS150实现7段数码管编码器

8

思考

• 能否用8路选择器实现(比如a的输出)?

表 3-3 二进制码七段数码管译码器的真值表

	输	入			输出						七段数码管
Q3	Q2	Q1	Q0	a	ь	с	d	е	f	g	显示内容
0	0	0	0	1	1	1	1	1	1	0	"0"
0	0	0	1	0	1	1	0	0	0	0	"1"
0	0	1	0	1	1	0	1	1	0	1	"2"
0	0	1	1	1	1	1	1	0	0	1	"3"
0	1	0	0	0	1	1	0	0	1	1	"4"
0	1	0	1	1	0	1	1	0	1	1	"5"
0	1	1	0	1	0	1	1	1	1	1	"6"
0	1	1	1	1	1	1	0	0	0	0	"7"
1	0	0	0	1	1	1	1	1	1	1	"8"
1	0	0	1	1	1	1	1	0	1	1	"9"
1	0	1	0	1	1	1	0	1	1	1	"A"
1	0	1	1	0	0	1	1	1	1	1	"b"
1	1	0	0	1	0	0	1	1	1	0	"C"
1	1	0	1	0	1	1	1	1	0	1	"d"
1	1	1	0	1	0	0	1	1	1	1	"E"
1	1	1	1	1	0	0	0	1	1	1	"F"

对比总结

- 举例: 16路选择器74LS150实现7段数码管编码器
- 7段数码管需要7个74LS150实现 (不灵活)
 - 每个输出需要1个74LS150(最小项不能复用)
 - 连线简单
- 3-8译码器 (复用比较灵活)
 - 只需要1个3-8译码器(最小项可以复用)+与非门
 - 需要独立期间

实验内容

- •使用 74LS151 实现AU(Arithmetic Unit, 算术单元)设计。设计一个带控制端的半加半减器,输入为 S、 A、 B,其中 S 为功能选择口。
 - S=0, 输出加法计算结果
 - S=1, 输出减法计算机结果
- 静态测试和动态测试(参照实验教材)

表 3-9 带控制端的半加半减器功能表

S	输入1	输入2	输出 Y	进/借位 C _n
0	A	В	A+B	进位
1	A	В	A-B	借位

实验内容

使用 74LS151 实现 LU(Logic Unit,逻辑单元)设计。设计一个函数发生器电路它的功能如下表 3-10 所示。 输入为 S0、S1、A、B,其中 S0、S1 为功能选择口。 当 S0、S1 取 0、1 不同组合时, A、B 进行相应的与、或、非、异或运算,输出运算结果 Y。

输	输出	
S_1	S_0	Y
0	0	A · B
0	1	A+B
1	0	А⊕В
1	1	Ā

• 静态测试和动态测试(参照实验教材)

8/26/2018

实验报告

- 写出详细的设计过程;用 Proteus 软件画出电路图 并进行仿真测试。
- 按实验内容分别描述每个实验过程,分析实验中出现的问题,记录实验波形,打印波形并分析波形与电路功能之间的联系。
- 总结组合逻辑电路的本质与设计实现方法,陈述实验过程所得。

8/26/2018

Questions?

Comments?

Discussion?