MP2I PV

Exercice.

On munit $M_n(\mathbb{R})$ du produit scalaire canonique $\langle A, B \rangle = \operatorname{tr}(A^{\top}B)$. $D_n(\mathbb{R})$ désigne le sous-espace vectoriel des matrices diagonales de $M_n(\mathbb{R})$.

Déterminer $(D_n(\mathbb{R}))^{\perp}$.

Soit J la matrice de $M_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1. Quelle est sa distance à $D_n(\mathbb{R})$? (question ajoutée)

Problème. Matrices orthogonales et décomposition QR.

On dit que $A \in M_n(\mathbb{R})$ est **orthogonale** si $A^{\top}A = I_n$.

L'ensemble des matrices orthogonales est noté $O_n(\mathbb{R})$.

L'espace vectoriel \mathbb{R}^n peut être confondu avec $M_{n,1}(\mathbb{R})$ et il est muni du produit scalaire canonique, noté $\langle \cdot, \cdot \rangle$. On rappelle que si X et Y sont dans $M_{n,1}(\mathbb{R})$,

$$\langle X, Y \rangle = X^{\top} Y.$$

On notera aussi $\|\cdot\|$ la norme associée à ce produit scalaire.

<u>Partie I</u>. Faits sur le groupe orthogonal.

- 1. Établir que $O_n(\mathbb{R})$ est un sous-groupe de $GL_n(\mathbb{R})$. $(O_n(\mathbb{R}), \times)$ porte le nom de groupe orthogonal.
- 2. Soit $A \in M_n(\mathbb{R})$ et (C_1, \ldots, C_n) la famille de ses colonnes. Démontrer l'équivalence

$$A \in \mathcal{O}_n(\mathbb{R}) \iff (C_1, \dots, C_n) \text{ est une b.o.n. de } \mathbb{R}^n.$$

3. Soit $A = (a_{i,j}) \in O_n(\mathbb{R})$. Démontrer que

$$\sum_{i,j} a_{i,j}^2 = n$$
 et $\left| \sum_{i,j} a_{i,j} \right| \le n$

Indication : pour la deuxième inégalité, on pourra écrire la somme comme le produit scalaire de deux vecteurs de $M_{n,1}(\mathbb{R})$.

- 4. Soit $A \in \mathcal{O}_n(\mathbb{R})$ et $f \in \mathcal{L}(\mathbb{R}^n)$ l'endomorphisme canoniquement associé.
 - (a) Démontrer que

$$\forall x \in \mathbb{R}^n \quad ||f(x)|| = ||x||.$$

Pourquoi dit-on que f est une isométrie?

(b) Démontrer que f préserve l'orthogonalité, c'est-à-dire :

$$\forall (x,y) \in (\mathbb{R}^n)^2 \quad \langle x,y \rangle = 0 \Longrightarrow \langle f(x), f(y) \rangle = 0.$$

Partie II. Décomposition QR: exemple introductif.

Soit
$$P = \begin{pmatrix} 1 & -3 & 4 \\ 2 & 0 & -1 \\ -2 & 3 & 1 \end{pmatrix}$$
.

On note c_1, c_2, c_3 les colonnes de P, considérées comme des vecteurs de \mathbb{R}^3 .

- 5. Justifier que la famille (c_1, c_2, c_3) est une base de \mathbb{R}^3 .
- 6. Appliquer le procédé d'orthonormalisation de Gram-Schmidt à la base $\mathcal{B}_1 = (c_1, c_2, c_3)$ pour construire $\mathcal{B}_2 = (u_1, u_2, u_3)$ une b.o.n. de \mathbb{R}^3 .
- 7. Soit Q la matrice de passage de la base canonique \mathcal{B} de \mathbb{R}^3 à la base \mathcal{B}_2 . Justifier que $Q \in O_3(\mathbb{R})$.
- 8. Déterminer la matrice de passage R de la base \mathcal{B}_2 à la base \mathcal{B}_1 .

 On constate que R est triangulaire supérieure à coefficients diagonaux strictement positifs.
- 9. Justifier que P = QR.

Partie III. Sur l'ensemble des matrices triangulaires supérieures.

On redémontre, avec les outils de l'algèbre linéaire, quelques résultats standard sur l'ensemble des matrices triangulaires supérieures de taille n, noté ici $T_n(\mathbb{R})$.

La base canonique de \mathbb{R}^n est notée (e_1, \ldots, e_n) .

10. Soit $T \in M_n(\mathbb{R})$ et t l'endomorphisme de \mathbb{R}^n canoniquement associé. Prouver que $T \in T_n(\mathbb{R})$ si et seulement si

$$\forall i \in [1, n] \quad \text{Vect}(e_1, \dots, e_i) \text{ est stable par } t.$$

- 11. En utilisant la caractérisation donnée dans la question précédente, redémontrer que le produit de deux matrices de $T_n(\mathbb{R})$ est dans $T_n(\mathbb{R})$. Vérifier que les coefficients diagonaux d'un produit de triangulaires supérieures sont obtenus comme produits des coefficients diagonaux des deux matrices.
- 12. Soit T une matrice triangulaire inversible. Justifier que

$$\varphi: \left\{ \begin{array}{ccc} T_n(\mathbb{R}) & \to & T_n(\mathbb{R}) \\ X & \mapsto & TX \end{array} \right.$$

est un isomorphisme, et en déduire que l'inverse d'une matrice triangulaire supérieure est triangulaire supérieure.

Partie IV. Décomposition QR: le cas général.

- 13. Soit $P \in M_n(\mathbb{R})$ une matrice inversible. En s'inspirant de la démarche mise en oeuvre en partie II, montrer qu'il existe une matrice Q orthogonale et une matrice R triangulaire supérieure à coefficients diagonaux strictement positifs telles que P = QR.
- 14. Soit $B \in M_{n,1}(\mathbb{R})$ et P une matrice inversible de $M_n(\mathbb{R})$. Expliquer l'intérêt de la décomposition P = QR avec Q orthogonale et une matrice R triangulaire supérieure à coefficients diagonaux strictement positifs pour résoudre le système linéaire PX = B d'inconnue $X \in M_{n,1}(\mathbb{R})$.

Les deux questions qui suivent permettent de démontrer l'unicité de la décomposition QR.

- 15. Soit M une matrice à la fois orthogonale et triangulaire supérieure à coefficients diagonaux strictement positifs. Montrer que $M=I_n$. Indication: On a $M^{-1}=M^{\top}$...
- 16. On considère quatre matrices Q_1, Q_2, R_1, R_2 de $M_n(\mathbb{R})$ telles que Q_1 et Q_2 sont orthogonales et R_1 et R_2 triangulaires supérieures à coefficients diagonaux strictement positifs. Montrer que $Q_1 = Q_2$ et $R_1 = R_2$.