

Programación Lineal

Marcelo PAZ Investigación de Operaciones

24 de marzo de 2024

Diagrama de flujo: Programación Lineal

1. Modelo de Programación Lineal

$$\begin{pmatrix} \operatorname{Max} \\ \operatorname{o} \\ \operatorname{Min} \end{pmatrix} \quad Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$
s.a $a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \begin{pmatrix} \leq \\ = \\ \geq \\ \leq \\ = \\ \end{pmatrix} b_1$

$$\stackrel{\leq}{\leq} b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n \begin{pmatrix} \leq \\ = \\ \geq \\ \end{pmatrix} b_m$$

$$x_1, x_2, \ldots, x_n \geq 0$$
Restrictiones

Donde:

- \blacksquare Z es la función objetivo.
- c_1, c_2, \ldots, c_n son los coeficientes de Costo.
- a_{ij} son los coeficientes Tecnologicos.
- b_i son Constantes RHS(Right Hand Side).
- x_j son las Variables de Decisión.

Problema 1: Método gráfico

Un colegio va a realizar un paseo. En total participarán 400 personas entre alumnos y profesores. Se requiere contratar buses para el traslado de dichas personas. Al llamar a una empresa de transportes se obtiene la siguiente información: La empresa dispone de 8 buses con 40 asientos y 10 buses con 50 asientos. Para el día del paseo habrá 9 choferes disponibles. El costo de arriendo es de \$ 30.000 por cada bus de 40 asientos y de \$40.000 por cada bus de 50 asientos. Antes de contratar los buses, el Director del colegio debe decidir cuántos buses de cada tipo les conviene arrendar para que el arriendo resulte lo más económico posible. Cuál será la decisión de menor costo?

Variables de Decisión:

- $x_1 = \text{Cantidad de buses de 40 asientos por contratar.}$
- $x_2 = \text{Cantidad de buses de } 50 \text{ asientos por contratar.}$

Función Objetivo:

Min
$$Z = 30000x_1 + 40000x_2$$

s.a $40x_1 + 50x_2 \ge 400$
 $x_1 \le 8$
 $x_2 \le 10$
 $x_1 + x_2 \le 9$
 $x_1, x_2 \ge 0$

Solución por método gráfico:

Vertice (x_1, x_2)	Z	
A(5, 4)	310000	*
B(0, 9)	360000	
C(0, 8)	320000	

Problema 2:

Función Objetivo: Restricción redundante

$$\begin{array}{lll} \text{Min} & Z=2x_1-6x_2\\ \text{s.a} & x_1+x_2\leq 5 & \textbf{No Activa}\\ & x_2\leq 3 & \textbf{Activa}\\ & x_1-x_2\leq 1 & \textbf{No Activa}\\ & x_1\geq 1 & \textbf{Activa}\\ & x_1-2x_2\leq 2 & \textbf{No Activa}\\ & x_1,x_2\geq 0 \end{array}$$

Solución por método gráfico:

OBS:

- La restriccion (5) de color verde es redundante.
- Lo de activo y no activo tengo que investigarlo mas o pedirle a alguien que me lo explique.

Vertice (x_1, x_2)	Z	
A(1, 0)	2	
B(3, 2)	-6	
C(2, 3)	-14	
D(1, 3)	-16	*

1.1. Algunas definiciones:

- Solución factible: todos los puntos (x_1, x_2) deben satisfacer todas las restricciones.
- Región factible: conjunto de todas las soluciones factibles.
- Vértices: puntos de esquina o extremos de la región factible.
- Optimo de un modelo lineal: es un vértice de la región factible que maximiza o minimiza la función objetivo.

Problema 3: Optimos Alternativos

Función Objetivo:

$$\begin{array}{lll} \text{Max} & Z=4x_1+3x_2\\ \text{s.a} & 12x_1+9x_2\leq 84 & \textbf{Activa}\\ & x_2\leq 4 & \textbf{Activa}\\ & x_1,x_2\geq 0 & \end{array}$$

Solución por método gráfico:

Vertice (x_1, x_2)	Z	
A(0, 0)	0	
B(7, 0)	28	*
C(4, 4)	28	*
D(0, 4)	12	

OBS:

• Se puede observar que el vertice B y C son optimos alternativos.

Problema 4: Variables sin restriccion de signo (S.R.S) Función Objetivo:

Solución por método gráfico:

Vertice (x_1, x_2)	Z	
A(3, 0)	-9	
B(7, 0)	-21	
C(637/64, 120/67)	-22,695	
D(195/53, 342/53)	14,774	
E(0, 4)	16	*
F(0, 2)	8	

Problema 5: Región factible no acotada

Un atleta debe tomar por lo menos 4 unidades de vitamina A, 6 unidades de vitamina B y 12 unidades de vitamina C cada día. Hay dos productos en polvo, P1 y P2, que por cada frasco, contienen las siguintes unidades de esas vitaminas:

	Vitamina A	Vitamina B	Vitamina C
P1	4	1	4
P2	1	6	6

Si el precio de un frasco de P1 es de \$5000 y el de un frasco de P2 es de \$8000, se quiere averiguar cómo deben mezclarse ambos productos para obtener las vitaminas deseadas con el minimo precio. Formular Modelo y resolver por método gráfico.

Variables de Decisión:

- x_1 : Cantidad de frascos de P1 a comprar.
- x_2 : Cantidad de frascos de P2 a comprar.

Función Objetivo:

Solución por método gráfico:

Vertice (x_1, x_2)	Z	
A(0, 4)	32000	
B(3/5, 8/5)	15800	
C(2, 2/3)	15333	*
D(6, 0)	30000	

Problema 6: Formulación con más de 2 variables de decisión

La empresa MADERAS C.A es un fabricante de muebles. Hace tres estilos diferentes de mesas, A,B y C. Cada modelo de mesa requiere de una cierta cantidad de tiempo para el corte de las piezas, su montaje y pintura. MADERAS C.A, puede vender todas las unidades que fabrica. Es más, el modelo B se puede vender sin pintar. Utilizando los datos indicados, obtener el modelo lineal que permita determinar la máxima utilidad mensual que puede obtener la Empresa.

Modelo	Utilidad por mesa	Corte	Ensamblado	Pintura
A	17500	1	2	4
В	20000	2	4	4
B sin pintar	10000	2	4	0
С	25000	3	7	5
	Disponibilidad mensual de HH	200	298	148

Variables de Decisión:

- x_1 : Cantidad de mesas A a fabricar.
- x_2 : Cantidad de mesas B a fabricar.
- x_3 : Cantidad de mesas B sin pintar a fabricar.
- x_4 : Cantidad de mesas C a fabricar.

Función Objetivo:

Max
$$Z = 17500x_1 + 20000x_2 + 10000x_3 + 25000x_4$$

s.a $x_1 + 2x_2 + 2x_3 + 3x_4 \le 200$
 $2x_1 + 4x_2 + 4x_3 + 7x_4 \le 298$
 $4x_1 + 4x_2 + 5x_4 \le 148$
 $x_1, x_2, x_3, x_4 \ge 0$

OBS:

 Cuando son más de 2 variables de decisión, el método gráfico no es la mejor opción, pues para calcular las intersecciones se vuelve caotico.

1.2. Diagrama de flujo: Método Simplex

Un poco de Teoría

- Variables de holgura s_i : Al introduccir variables de holgura cada restriccion se transforma en igualdad.
 - n: cantidad de variables.
 - m: cantidad de restricciones.
- Un sistema con n > m tiene infinitas soluciones. Para estos sistemas se define:
 - Como n-m: cantidad de variables libres. Para encontrar soluciones al sistema se dan valores arbitrarios a las variables libres y se resuelve para el resto de variables.
 - Si damos el valor cero a las variables obtenemos lo que llamaremos soluciones básicas.
 - Si ademas los valores de las variables son mayor o igual a cero tenemos una solucion basica factible (S.B.F).

OBS:

- S.B.F corresponde a un vertice de la región factible.
- o Para un sistema $n \times m$ la cantidad de S.B.F es menor o igual a $\binom{n}{m}$.
- o Dos vertices o S.B.F son adyacentes cuando tienen una arista de la R.F. en común.

Problema 7: Método Simplex

Función Objetivo:

Solución por método Simplex:

Paso 1: Agregar variables de holgura y eliminar desigualdades.

Max
$$Z = 4x_1 + 3x_2$$

s.a $12x_1 + 14x_2 + s_1 = 84$
 $3x_1 + 2x_2 + s_2 = 18$
 $x_2 + s_3 = 4$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Paso 2: Crear tabla Simplex inicial.

		4	3	0	0	0		
c_j	V.B	x_1	x_2	s_1	s_2	s_3	RHS	$\frac{RHS}{coef_{ij^*}}$
0	s_1	12	14	1	0	0	84	84/12 = 7
0	s_2	3	2	0	1	0	18	18/3 = 6
0	s_3	0	1	0	0	1	4	4/0 = -
	Z_j	0	0	0	0	0	0	
	$c_j - Z_j$	4	3	0	0	0		

OBS:

• Para calcular $Z_j = c_j \times x_j$

Ejemplo:
$$Z_{x_1} = c_1 \times x_1 + c_2 \times x_1 + c_3 \times x_1 = 0 \times 12 + 0 \times 3 + 0 \times 0 = 0$$

- Creo que deberia ser la columna c_i y no c_j .
- De hecho c_j deberia estar arriba de **V.B**.

Paso 3: Buscamos la variable que entra.

$$V_{in} = \text{columna Max}\{c_i - Z_i\} = X_{i^*} \Rightarrow V_{in} = 4 = x_1$$

OBS:

• Como estamos máximizando la función objetivo, buscamos el valor más grande en la fila de $c_j - Z_j$.

Paso 4: Buscamos la variable que sale.

$$V_{out} = \operatorname{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = 6 = s_2$$

OBS:

• Como estamos máximizando la función objetivo, buscamos el valor más pequeño en la columna de $\frac{RHS}{coef_{ij^*}}$, pues es la holgura que es menos influyente.

Paso 5: Calculamos el pivote.

Pivote =
$$a_{i^*i^*} = a_{21} = 3$$

Paso 6: Creamos una ecuación pivote.

$$\mathbf{N.E.P} = \frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{3 \ 2 \ 0 \ 1 \ 0 \ 18}{3} = 1 \ \frac{2}{3} \ 0 \ \frac{1}{3} \ 0 \ 6$$

OBS:

- N.E.P: Nueva Ecuación Pivote (como entra x_1 en la tabla se escribe esta ecuación).
- **E.P.A**: Ecuación Pivote Actual (como sale s_2 ocupamos esa ecuación).
- P = Pivote

Paso 7: Actualizamos las ecuación que se quedan.

$$s_1:$$
 12 14 1 0 0 84
 $-(12)$ 1 2/3 0 1/3 0 6
0 6 1 -4 0 12
 $s_3:$ 0 1 0 0 1 4
 $-(0)$ 1 2/3 0 1/3 0 6

Paso 8: Actualizamos la tabla simplex con las nuevas ecuaciones.

1

0

0

1 4

0

		4	3	0	0	0		
c_j	V.B	x_1	x_2	s_1	s_2	s_3	RHS	$\frac{RHS}{coef_{ij^*}}$
0	s_1	0	6	1	-4	0	12	12/6 = 2
4	x_1	1	2/3	0	1/3	0	6	6/(2/3) = 9
0	s_3	0	1	0	0	1	4	4/1 = 4
	Z_j	4	8/3	0	4/3	0	<u>24</u>	
	$c_j - Z_j$	0	1/3	0	-4/3	0		

Paso 9: Utilizamos el criterio de optimalidad.

$$c_i - Z_i \le 0 \quad \forall j$$

Como $c_i - Z_i$ no es menor o igual a 0, entonces repetimos el ciclo desde el paso 3.

Paso 10: Buscamos la variable que entra.

$$V_{in} = \text{columna Max}\{c_i - Z_i\} = X_{i^*} \Rightarrow V_{in} = 3 = x_2$$

Paso 11: Buscamos la variable que sale.

$$V_{out} = \operatorname{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = 2 = s_1$$

Paso 12: Calculamos el pivote.

Pivote =
$$a_{i^*j^*} = a_{12} = 6$$

Paso 13: Creamos una ecuación pivote.

$$\mathbf{N.E.P} = \frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{0 \ 6 \ 1 \ -4 \ 0 \ 12}{6} = 0 \ 1 \ 1/6 \ -2/3 \ 0 \ 2$$

Paso 14: Actualizamos las ecuación que se quedan.

$$x_1: 1 2/3 0 1/3 0 6 -(2/3) 0 1 1/6 -2/3 0 2$$

$$1 \quad 0 \quad -1/9 \quad 7/9 \quad 0 \quad 14/3$$

$$s_3: 0 1 0 0 1 4 \\ -(1) 0 1 1/6 -2/3 0 2$$

$$0 \quad 0 \quad -1/6 \quad 2/3 \quad 1 \quad 2$$

Paso 15: Actualizamos la tabla simplex con las nuevas ecuaciones.

		4	3	0	0	0		
c_j	V.B	x_1	x_2	s_1	s_2	s_3	RHS	$\frac{RHS}{coef_{ij^*}}$
3	x_2	0	1	1/6	-2/3	0	2	
4	x_1	1	0	-1/9	7/9	0	14/3	
0	s_3	0	0	-1/6	2/3	1	2	
	Z_j	4	3	1/18	10/9	0	$\frac{74/3}{}$	
	$c_j - Z_j$	0	0	-1/18	-10/9	0		

Paso 16: Utilizamos el criterio de optimalidad.

$$c_j - Z_j \le 0 \quad \forall j$$

Como $c_j - Z_j$ es menor o igual a 0, entonces hemos llegado a la solución óptima. Solución:

$$x_1 = 14/3$$

$$x_2 = 2$$

$$s_3 = 2$$

$$Z = 74/3$$

Solución por método gráfico

Vertice (x_1, x_2)	Z	
A(0, 0)	0	
B(6, 0)	24	
C(14/3, 2)	74/3	*
D(7/3, 4)	64/3	
E(0, 4)	12	

Por lo tanto, queda demostrado que el método Simplex y el método gráfico nos entregan el valor optimo.