

Ricerca Operativa Modellizzare problemi di ottimizzazione Parte 1

Laurea triennale in Matematica Applicata Anno Accademico 2021/2022

Alice Raffaele - alice.raffaele@univr.it

Introduzione

Esempio 1 – Insalata e pomodori

Un'azienda agricola deve determinare quanti ettari di terreno devono essere dedicati alla produzione di lattuga e pomodori. Si è stimato che, coltivando un ettaro di terreno, si possono produrre annualmente 20 quintali di lattuga e 30 quintali di pomodori. Per portare a termine le coltivazioni, l'azienda dovrà assegnare un suo bracciante ad ogni ettaro coltivato a lattuga e due braccianti ad ogni ettaro coltivato a pomodori. Per avere sufficiente manodopera per le altre coltivazioni, l'azienda non vuole utilizzare più di 100 lavoratori. Sapendo che l'azienda vende ogni chilogrammo di lattuga e pomodoro rispettivamente a 1 euro e a 1.5 euro, e vuole assicurarsi un profitto annuo di almeno 50000 euro dalla vendita di questi due prodotti, quanti ettari dovrà dedicare alla coltivazione di lattuga e quanti alla coltivazione di pomodori per minimizzare il numero complessivo di ettari coltivati?

Esempio 2 – Mansioni domestiche

Anna e Zeno sono appena andati a convivere e vogliono suddividere tra loro i principali lavori domestici: fare la spesa, cucinare, lavare i piatti, fare il bucato, stirare e buttare la spazzatura. La loro bravura nei vari lavori è tuttavia diversa, e si riflette sui tempi necessari per svolgerli, riportati nella tabella seguente (in minuti):

	Spesa	Cucinare	Piatti	Bucato	Ferro da stiro	Rifiuti
Anna	25	30	10	8,5	42	6
Zeno	37	20	12	13	35	4

Come possono organizzarsi, in modo tale che ognuno di loro svolga esattamente tre mansioni e che il tempo totale impiegato sia minimo?

Elementi principali di un problema di ottimizzazione

- · Un problema, *n* istanze
- In ogni problema di ottimizzazione, ci sono tre elementi principali:

Vincoli

Funzione obiettivo

Variabili decisionali

- Quali sono le decisioni da prendere nel problema che stiamo considerando?
- Quali sono le incognite che possono influenzare il valore della soluzione che si otterrebbe?
- Nota: occhio alla differenza con i parametri del problema, ovvero le informazioni che potrebbero sì variare da istanza a istanza, ma che sono comunque determinate.

Esempio 1 – Variabili decisionali

Si introducono:

- *x_L*, indicante il numero di ettari da dedicare alla coltivazione di lattuga;
- *x_P*, indicante il numero di ettari da dedicare alla coltivazione di pomodori.

Sia x_L sia x_P sono quantità:

- non negative $\rightarrow x_L \ge 0, x_P \ge 0$;
- continue $\to x_L, x_P \in \mathbb{R}^+$.

In forma compatta: $x_i \in \mathbb{R}^+$, $\forall i \in \{L, P\}$.

Vincoli

- Alcune variabili potrebbero non poter assumere tutti i valori possibili perché ci sono alcune **restrizioni** che limitano il loro dominio.
- Un vincolo è rappresentato da un'equazione o una disequazione formulata usando le variabili del problema.
- · In molti casi, queste funzioni sono lineari.

Esempio 1 – Vincoli

Si deve tenere in considerazione che:

 per ogni ettaro coltivato a lattuga si impegna un bracciante, per ogni ettaro coltivato a pomodori se ne impegnano due, e il massimo numero di braccianti è 100:

$$x_L + 2x_P \le 100$$
;

 ogni ettaro di terreno produce 20 quintali di lattuga o 30 quintali di pomodori all'anno; ogni chilogrammo di lattuga è venduto a 1 € e ogni chilogrammo di pomodori è venduto a 1,5 €; il profitto annuo dev'essere almeno di 50000 euro:

$$20 \cdot 100 \cdot 1 \cdot x_L + 30 \cdot 100 \cdot 1.5 \cdot x_P \ge 50000.$$

Funzione obiettivo

- · In base a quale criterio decidiamo che una soluzione sia ottima?
- Tale criterio è definito dalla funzione obiettivo, un'altra funzione (molto spesso lineare) delle variabili.

Esempio 1 – Funzione obiettivo e modello risultante

Si vuole minimizzare il numero complessivo di ettari coltivati:

min
$$x_L + x_P$$
.

Modello risultante:

min
$$x_L + x_P$$

 $x_L + 2x_P \le 100$
 $2000x_L + 4500x_P \ge 50000$
 $x_i \in \mathbb{R}^+, \quad \forall i \in \{L, P\}.$

Esempio 2 – Modellizzazione

Costruiamo il modello:

- Sia $N := \{A, Z\}$ l'insieme delle persone (Anna e Zeno) e sia $M := \{S, C, P, B, F, R\}$ l'insieme delle mansioni.
- **Variabili**: introduciamo una *variabile binaria* $x_{i,j}$ per ogni persona i e per ogni mansione j, tale che

$$x_{i,j} = \begin{cases} 1, \text{ se } i \text{ compie la mansione } j; \\ 0, \text{ altrimenti.} \end{cases}$$

Per esempio, $x_{A,S} = 1$ indica che Anna si occuperà di fare la spesa.

· Vincoli:

· ogni persona deve svolgere tre mansioni:

$$x_{A,S} + x_{A,C} + x_{A,P} + x_{A,B} + x_{A,F} + x_{A,R} = 3$$

 $x_{Z,S} + x_{Z,P} + x_{Z,B} + x_{Z,F} + x_{Z,R} = 3$

in forma compatta:

$$\sum_{i\in M} x_{i,j} = 3, \quad \forall i\in N$$

· ogni mansione può essere svolta solo da una persona:

$$x_{A,S} + x_{Z,S} = 1$$

$$x_{A,C} + x_{Z,C} = 1$$

$$\dots$$

$$x_{A,R} + x_{Z,R} = 1$$

in forma compatta:

$$\sum_{i\in N} x_{i,j} = 1, \quad \forall j \in M$$

· Funzione obiettivo: minimizzare il tempo totale impiegato

min
$$25x_{A,S} + 30x_{A,C} + 10x_{A,P} + 8, 5x_{A,B} + 42x_{A,F} + 6x_{A,R} + 37x_{Z,S} + 20x_{Z,C} + 12x_{Z,P} + 13x_{Z,B} + 35x_{Z,F} + 4x_{Z,R}$$

in forma compatta:

$$\min \quad \sum_{i \in N} \sum_{j \in M} t_{i,j} x_{i,j}.$$

Modello risultante:

$$\begin{split} \min & \quad \sum_{i \in \mathcal{N}} \sum_{j \in M} t_{i,j} x_{i,j} \\ & \quad \sum_{j \in M} x_{i,j} = 3, \quad \forall i \in \mathcal{N} \\ & \quad \sum_{i \in \mathcal{N}} x_{i,j} = 1, \quad \forall j \in \mathcal{M} \\ & \quad x_{i,j} \in \{0,1\}, \quad \forall i \in \mathcal{N}, \forall j \in \mathcal{M}. \end{split}$$

Programmazione Matematica

- La Programmazione Matematica è lo sforzo condiviso della comunità scientifica per definire e studiare modelli di ottimizzazione.
- Ogni volta che consideriamo classi di variabili, vincoli e funzioni obiettivo diverse, otteniamo un modello diverso.
- Noi ci concentreremo su alcuni paradigmi lineari, ma in realtà è un'area molto più ampia che include anche la programmazione:
 - · multi-obiettivo;
 - · stocastica;
 - · robusta:
 - · e tante altre tipologie.

Programmazione Lineare, Lineare Intera, e Mista

Paradigma	Caratteristica	Complessità	
Programmazione	tutte le variabili	Р	
Lineare (PL)	sono continue		
Programmazione	tutte le variabili	NP-HARD	
Lineare Intera (PLI)	sono intere	INF-HARD	
Programmazione	alcune variabili		
Lineare Mista	sono continue	NP-HARD	
Lilleare Mista	e altre sono intere		
Programmazione	tutte le variabili		
Binaria (0-1 PL)	possono assumere	NP-HARD	
Dilialia (U-1 PL)	solo o o 1 come valore		

Dalla teoria della complessità computazionale:

- P: classe di problemi per i quali esiste un algoritmo di tempo polinomiale per risolverli → Questi problemi sono FACILI;
- NP: classe di problemi le cui soluzioni possono essere verificate in tempo polinomiale ($P \subset NP$);
- NP-HARD: classe di problemi che sono "almeno tosti quanto i problemi più tosti in NP" → Questi problemi sono DIFFICILI.

E dopo la formulazione del modello?

La libreria PuLP per Python

Link: https://github.com/coin-or/pulp

Esempio 1 – Implementazione con PuLP

```
from pulp import *
# Inizializzazione del problema asseanando un nome e la direzione dell'ottimizzazione
model = LpProblem("Ettari", LpMinimize)
# Variabili
xL = LpVariable ("Num_ettari_lattuga", o. None, LpContinuous)
xP = LpVariable("Num_ettari_pomodori", o, None, LpContinuous)
# Vincoli
model += 1*xl + 2*xP <= 100
model += 2000*xL + 4500*xP >= 50000
# Funzione objettivo
model += xI + xP
# Chiamata al solver
model.solve()
# Stampa soluzione ottima trovata
for v in model variables ():
    print(v.name, "==", round(v.varValue,2))
# Valore della funzione obiettivo
print("Numero_minimo_di_ettari_richiesti_=_{{}}".format(round(value(model.objective),2)))
```

Esempio 2 – Implementazione con PuLP

model.solve()

```
from pulp import *
# Inizializzazione del problema (nome + min/max)
model = LpProblem("MansioniDomestiche", LpMinimize)
# Variabili
xAS = LpVariable("Anna-Spesa", o, 1, LpBinary)
xAC = LpVariable("Anna-Cucinare", O. 1. LpBinary)
xAP = LpVariable("Anna-Piatti", O. 1, LpBinary)
xAB = LpVariable("Anna-Bucato", O. 1, LpBinary)
xAF = LpVariable("Anna-Ferro", o. 1, LpBinary)
xAR = LpVariable("Anna-Rifiuti", o. 1, LpBinary)
xZS = LpVariable("Zeno-Spesa", o. 1, LpBinary)
xZC = LpVariable("Zeno-Cucinare", 0, 1, LpBinary)
xZP = LpVariable("Zeno-Piatti", O. 1. LpBinary)
xZB = LpVariable("Zeno-Bucato", O. 1, LpBinary)
xZF = LpVariable("Zeno-Ferro", O. 1. LpBinary)
xZR = LpVariable ("Zeno-Rifiuti", o, 1, LpBinary)
# Funzione objettivo
model += 25*xAS + 30*xAC + 10*xAP + 8.5*xAB + 42*xAF + 6*xAR +
        + 37*xZS + 20*xZC + 12*xZP + 13*xZB + 35*xZF + 4*xZR
# Vincoli
model += xAS + xAC + xAP + xAB + xAF + xAR == 3
model += x7S + x7C + x7P + x7B + x7F + x7R == 3
model += xAS + xZS == 1
model += xAC + xZC == 1
model += xAP + xZP == 1
model += x\Delta R + x7R == 1
model += x\Delta E + x7E == 1
model += x\Delta R + x7R == 1
# Chiamata al solver
```

Esempio 2 – Implementazione con PuLP (più compatta)

```
from pulp import *
# Inizializzazione del problema assegnando un nome e la direzione dell'ottimizzazione
model = LpProblem("MansioniDomestiche", LpMinimize)
# Set e parametri
N = ["Anna", "Zeno"]
M = ["Spesa", "Cucinare", "Piatti", "Bucato", "Ferro", "Rifiuti"]
tempi = {
    "Anna": {"Spesa": 25, "Cucinare": 30, "Piatti": 10, "Bucato": 8.5, "Ferro": 42. "Rifiuti": 6}.
    "Zeno": {"Spesa": 37, "Cucinare": 20, "Piatti": 12, "Bucato": 13, "Ferro": 35, "Rifiuti": 4}
Assegnamenti = [(i.i) for i in N for i in M]
# Variabili
vars = LpVariable.dicts("x". (N. M). o. 1. LpBinary)
# Funzione obiettivo
model += lpSum(vars[i][i] * tempi[i][i] for (i.i) in Assegnamenti)
# Vincoli
for i in No
    model += lpSum(vars[i][j] for j in M) == len(M)/2
for i in M:
    model += lpSum(vars[i][j] for i in N) == 1
# Chiamata al salver
model solve()
# Stampa soluzione ottima trovata
for v in model.variables():
    print(v.name, "_=_", v.varValue)
# Valore della funzione obiettivo
print("Tempo_totale_minimo_richiesto_=_{{}} minuti".format(round(value(model.objective),2)))
```

Problemi classici

Zaino – Una vecchia chiavetta USB

Volete realizzare una playlist musicale avendo a disposizione una raccolta di brani alta risoluzione e una vecchia chiavetta USB, parzialmente usata, in cui sono disponibili soltanto 140 MB. Volete che la vostra playlist consti almeno di 6 brani di cui al massimo 2 con titolo inglese. L'indice di gradimento (in una scala da 1 a 10) e la dimensione in MB di ogni file sono riportati nella tabella seguente:

	Canzone	Gradimento	Dimensione (MB)
1	Perfect	9,5	25
2	No roots	8	20
3	La musica non c'è	9	30
4	Musica leggerissima	7	20
5	Zitti e buoni	6,5	18
6	Resta qui	9	22
7	Famous blue raincoat	10	27
8	Rolling in the deep	8,5	19

Volete decidere quali canzoni inserire sulla chiavetta, in modo tale da massimizzare il gradimento complessivo senza eccedere la capacità disponibile.

Costruiamo il modello:

- Sia $I = \{1, 2, 3, 4, 5, 6, 7, 8\}$ l'insieme delle canzoni; ogni canzone i è associata a una preferenza p_i e a una dimensione d_i .
- **Variabili**: introduciamo una variabile binaria x_i per ogni $i \in I$, che indica se la canzone i viene caricata sulla chiavetta USB $(x_i = 1)$ oppure no $(x_i = 0)$.
- · Vincoli:
 - · capacità massima della chiavetta USB: $\sum_{i \in I} d_i x_i \leq 140$;
 - almeno sei brani: $\sum_{i \in I} x_i \ge 6$
 - al massimo due brani con titolo inglese: $x_1 + x_2 + x_7 + x_8 \le 2$;
- Funzione obiettivo: massimizzare il gradimento delle canzoni selezionate: max $\sum_{i} p_i x_i$.

Modello risultante:

$$\begin{aligned} \max & \sum_{i \in I} p_i x_i \\ & \sum_{i \in I} d_i x_i \leq 140 \\ & \sum_{i \in I} x_i \geq 6 \\ & x_1 + x_2 + x_7 + x_8 \leq 2 \\ & x_i \in \{0, 1\}, \quad \forall i \in I \end{aligned}$$

Implementazione con PuLP:

```
from pulp import *
# Inizializzazione del problema assegnando un nome e la direzione dell'ottimizzazione
model = LpProblem("ChiavettaUSB", LpMaximize)
# Set e parametri
I = [1.2.3.4.5.6.7.8]
preferenze = {1: 9.5, 2: 8, 3: 9, 4: 7, 5: 6.5, 6: 9, 7: 10, 8: 8.5}
dimensione = {1: 25, 2: 20, 3: 30, 4: 20, 5: 18, 6: 22, 7: 27, 8: 19}
capacita_USB = 140
# Variabili
vars = LpVariable.dicts("x", I, O, 1, LpBinary)
# Funzione objettivo
model += lpSum(vars[i] * preferenze[i] for i in |)
# Vincoli
model += lpSum(vars[i]*dimensione[i] for i in 1) <= 140
model += lpSum(vars[i] for i in 1) >= 6
model += vars[1] + vars[2] + vars[7] + vars[8] <= 2
# Chiamata al solver
model.solve()
# Stampa soluzione ottima trovata
for v in model.variables():
    print(v.name, "_=_", v.varValue)
# Valore della funzione obiettivo
print("Gradimento_totale_canzoni_=={}".format(round(value(model.objective),2)))
```

Produzione - Su due ruote

L'azienda Passione2ruote di Catania produce tre prodotti: biciclette, ciclomotori, e tricicli per bambini. Per un periodo di produzione, sono disponibili i seguenti dati riguardanti il profitto, il costo di produzione (in euro) e lo spazio occupato in magazzino (storage, in m³) di ogni unità prodotta:

	Biciclette	Ciclomotori	Tricicli
Profitto	100	300	50
Costo	300	1200	120
Storage	0.5	1	0.5

L'azienda dispone di un capitale massimo di 93.000 euro e possiede uno storage disponibile di 101 m³. Quante unità di ciascun prodotto dovrebbero essere prodotte per massimizzare il profitto totale?

Costruiamo il modello:

- Sia $P := \{B, C, T\}$ l'insieme dei prodotti dell'azienda; ogni unità del prodotto i è associata a un profitto p_i , un costo c_i e uno spazio occupato s_i .
- **Variabili**: si introduce una variabile intera non negativa $x_i \geq 0$ per ogni prodotto $i \in P$, indicante quante unità del prodotto idevono essere realizzate.
- Vincoli:

 - capitale massimo: $\sum_{i \in P} c_i x_i \leq 93000$; storage disponibile: $\sum_{i \in P} s_i x_i \leq 101$;
- Funzione obiettivo: massimizzare il profitto: max $\sum p_i x_i$.

Modello risultante:

$$\max \sum_{i \in I} p_i x_i$$

$$\sum_{i \in P} c_i x_i \le 93000$$

$$\sum_{i \in P} s_i x_i \le 101$$

$$x_i \ge 0, \quad \forall i \in P.$$

Implementazione con PuLP:

```
from pulp import *
# Inizializzazione del problema assegnando un nome e la direzione dell'ottimizzazione
model = LpProblem("2Ruote", LpMaximize)
# Set e parametri
P = {"Biciclette", "Ciclomotori", "Tricicli"}
profitti = {"Biciclette": 100, "Ciclomotori": 300, "Tricicli": 50}
costi = {"Biciclette": 300. "Ciclomotori": 1200. "Tricicli": 50}
storage = {"Biciclette": 0.5, "Ciclomotori": 1, "Tricicli": 0.5}
capitale = 93000
storage_max = 101
# Variabili
vars = LpVariable.dicts("x", P, o, None, LpContinuous)
# Funzione objettivo
model += lpSum(vars[i] * profitti[i] for i in P)
# Vincoli
model += lpSum(vars[i]*costi[i] for i in P) <= capitale
model += lpSum(vars[i]*storage[i] for i in P) <= storage_max
# Chiamata al solver
model_solve()
# Stampa soluzione ottima trovata
for v in model.variables():
    print(v.name, "_=_", v.varValue)
# Valore della funzione obiettivo
print("Profitto_massimo_=_{{}}".format(round(value(model.objective),2)))
```

Dieta – Dal nutrizionista

Secondo un nutrizionista sostenitore della dieta mediterranea, le quantità minime di nutrienti che devono essere assunte ogni giorno sono 1700 chilocalorie, 200 g di carboidrati, 70 g di proteine, 60 g di grassi e 0,7 g di calcio. Generalmente, il nutrizionista è solito prescrivere una dieta composta da otto alimenti: pane, pasta, latte, uova, pollo, tonno, cioccolato e verdure. La seguente tabella mostra quante calorie (in Kcal), carboidrati, proteine, grassi (in grammi) e calcio (in mg) fornisce una porzione di ogni alimento:

	Pane	Pasta	Latte	Uova	Pollo	Tonno	Cioccolato	Verdure
Calorie (kcal)	150	390	70	70	150	150	112	45
Carboidrati (g)	30	75	5	0	2	0	7	8
Proteine (g)	5	11	5	6	36	25	2	3
Grassi (g)	2	3	3	6	5	15	10	2
Calcio (mg)	52	5	150	50	22	4	11	50

Il nutrizionista raccomanda anche almeno due porzioni di verdura al giorno, mentre il numero massimo di porzioni per ogni alimento è riportato nella tabella seguente:

	Pane	Pasta	Latte	Uova	Pollo	Tonno	Cioccolato	Verdure
N° max di porzioni	2	2	2	1	1	2	2	6

Il numero di porzioni di pane e pasta non può essere maggiore di 3, mentre quello delle porzioni di latte, pollo e tonno deve essere almeno 4. Il costo (in €) di una porzione di ogni alimento è il seguente:

	Pane	Pasta	Latte	Uova	Pollo	Tonno	Cioccolato	Verdure
Costo per porzione	0,50	3,50	1,00	1,50	4,50	2,00	1,50	4,00

Determinare quali alimenti dovranno essere mangiati in un giorno per rispettare tutte le prescrizioni della dieta indicata dal nutrizionista, in modo tale da minimizzare il costo totale.

Costruiamo il modello:

- Siano
 - $C := \{Pane, Pasta, Latte, Uova, Pollo, Tonno, Cioccolato, Verdure\}$ e $N := \{Kcal, Carboidrati, Proteine, Grassi, Calcio\}$ gli insiemi dei cibi e dei nutrienti. Ogni porzione di un cibo $c \in C$ fornisce un certo valore $v_{c,n}$ per ogni nutriente $n \in N$ e costa s_c .
- Devono considerarsi un numero minimo n_{min_c} e massimo n_{max_c} di porzioni di un cibo c. Inoltre, anche un valore minimo q_n per ogn nutriente $n \in N$ deve essere raggiunto.
- Variabili: si introduce una variabile continua non negativa x_c per ogni c ∈ C, indicante il numero di porzioni del cibo c da inserire nella dieta.
- · Vincoli:
 - · porzioni minime e massime di ogni cibo:

$$n_{min_c} \leq x_c \leq n_{max_c}, \quad \forall c \in C;$$

· quantità minima da raggiungere per ogni nutriente:

$$\sum_{c \in C} v_{c,n} x_c \ge q_n, \quad \forall n \in N;$$

- · Vincoli:
 - · massimo numero di porzioni di pane e pasta:

$$x_{Pane} + x_{Pasta} \leq 3$$
;

· minimo numero di porzioni di latte, uova, pollo e tonno:

$$x_{Latte} + x_{Uova} + x_{Pollo} + x_{Tonno} \ge 4;$$

· Funzione obiettivo: minimizzare il costo totale

$$\min \quad \sum_{c \in C} s_c x_c.$$

Modello risultante:

$$\begin{aligned} & \min & \sum_{c \in C} s_c x_c \\ & \sum_{c \in C} v_{c,n} x_c \geq q_n, \quad \forall n \in N \\ & x_{Pane} + x_{Pasta} \leq 3 \\ & x_{Latte} + x_{Uova} + x_{Pollo} + x_{Tonno} \geq 4 \\ & n_{min_c} \leq x_c \leq n_{max_c}, \quad \forall c \in C \\ & x_c \geq 0, \quad \forall c \in C. \end{aligned}$$

Implementazione con PuLP:

```
from pulp import *
# Inizializzazione del problema assegnando un nome e la direzione dell'ottimizzazione
model = LpProblem("DietaMediterranea", LpMinimize)
# Set e parametri
C = ["Pane", "Pasta", "Latte", "Uova", "Pollo", "Tonno", "Cioccolato", "Verdure"]
N = ["Kcal", "Carboidrati", "Proteine", "Grassi", "Calcio"]
quantita_minime = {"Kcal": 1700. "Carboidrati": 200. "Proteine": 70. "Grassi": 60. "Calcio": 700}
valori = {
    "Pane": {"Kcal": 150, "Carboidrati": 30, "Proteine": 5, "Grassi": 2, "Calcio": 52},
    "Pasta": {"Kcal": 390, "Carboidrati": 75, "Proteine": 11, "Grassi": 3, "Calcio": 5},
    "Latte": {"Kcal": 70. "Carboidrati": 5. "Proteine": 5. "Grassi": 3. "Calcio": 150}.
    "Uova": {"Kcal": 70, "Carboidrati": 0, "Proteine": 6, "Grassi": 6, "Calcio": 50},
    "Pollo": {"Kcal": 150, "Carboidrati": 2, "Proteine": 36, "Grassi": 5, "Calcio": 22},
    "Tonno": {"Kcal": 150. "Carboidrati": 0. "Proteine": 25. "Grassi": 15. "Calcio": 4}.
    "Cioccolato": {"Kcal": 112, "Carboidrati": 7, "Proteine": 2, "Grassi": 10, "Calcio": 11},
    "Verdure": {"Kcal": 45. "Carboidrati": 8. "Proteine": 3. "Grassi": 2. "Calcio": 50}.
CN = [(i,j) \text{ for } i \text{ in } C \text{ for } j \text{ in } N]
porzioni_minime = {"Pane": o, "Pasta": o, "Latte": o, "Uova": o, "Pollo": o, "Tonno": o,
                   "Cioccolato": o. "Verdure": 2}
porzioni_massime = {"Pane": 2, "Pasta": 2, "Latte": 2, "Uova": 1, "Pollo": 1, "Tonno": 2,
                   "Cioccolato": 2, "Verdure": 6}
costo_porzione = {"Pane": 0.5, "Pasta": 3.5, "Latte": 1, "Uova": 1.5, "Pollo": 4.5, "Tonno": 2,
                   "Cioccolato": 1.5, "Verdure": 4}
max_porzioni_pane_pasta = 3
min_porzioni_latte_pollo_tonno = 4
```

```
# Variabili
vars = LpVariable.dicts("x", C, O, None, LpContinuous)
# Funzione objettivo
model += lpSum(vars[c] * costo_porzione[c] for c in C)
# Vincoli
for n in N:
    model += lpSum(vars[c]*valori[c][n] for c in C) >= quantita_minime[n]
for c in C.
   model += vars[c] >= porzioni_minime[c]
   model += vars[c] <= porzioni_massime[c]</pre>
model += vars["Pane"] + vars["Pasta"] <= max_porzioni_pane_pasta
model += vars["Latte"] + vars["Pollo"] + vars["Tonno"] >= min_porzioni_latte_pollo_tonno
# Chiamata al solver
model.solve()
# Stampa soluzione ottima trovata
for v in model.variables():
    print(v.name, "_=_", round(v.varValue,2))
# Valore della funzione obiettivo
print("Costo_minimo_dieta_=_{{}}".format(round(value(model.objective).2)))
```

Trasporto – Buongiornissimo, kaffè?

Una catena di bar ha stipulato un contratto commerciale con un'industria di torrefazione per la fornitura esclusiva di caffè. L'industria ha a disposizione due impianti di torrefazione T_1 e T_2 con cui potrà rifornire i tre bar B_1, B_2 e B_3 della catena. Vista la differente distanza tra gli impianti e i bar e i differenti mezzi di trasporto utilizzati, i costi di trasporto $\$ /Kg di caffè da un impianto a un bar risultano differenti e sono riassunti nella seguente tabella:

	B_1	B_2	B_3
T_1	0,4	0,3	0, 2
T_2	0,2	0,3	0,5

Sapendo che gli impianti di torrefazione T_1 e T_2 possono produrre giornalmente al massimo 54 e 44 kg di caffè e che i tre bar necessitano di 35, 30 e 33 kg di caffè, qual è la quantità da trasportare da ogni impianto a ogni bar per minimizzare i costi?

Costruiamo il modello:

- Siano T := {1,2} e B := {1,2,3} l'insieme degli impianti di torrefazione e dei bar. Sia c_{i,j} il costo di trasporto €/Kg dall'impianto i al bar j. Sia p_i la massima quantità in Kg di caffè che può produrre l'impianto i e sia d_j la domanda del bar j.
- **Variabili**: si introduce una variabile continua e non negativa $x_{i,j}$ per ogni impianto $i \in T$ e per ogni bar $j \in B$, che indica la quantità in Kg di caffè da trasportare dall'impianto i al bar j.
- · Vincoli:
 - · capacità di produzione di ogni impianto:

$$\sum_{i\in B} x_{i,j} \leq p_i, \quad \forall i\in T;$$

· domanda dei bar:

$$\sum_{i\in\mathcal{T}}x_{i,j}\geq d_j,\quad\forall j\in B;$$

• Funzione obiettivo: minimizzare i costi di trasporto

$$\min \quad \sum_{i \in T} \sum_{i \in B} c_{i,j} x_{i,j}.$$

Modello risultante:

$$\begin{aligned} &\min \quad \sum_{i \in T} \sum_{j \in B} c_{i,j} x_{i,j} \\ &\sum_{j \in B} x_{i,j} \leq p_i, \quad \forall i \in T \\ &\sum_{i \in T} x_{i,j} \geq d_j, \quad \forall j \in B \\ &x_{i,j} \geq 0, \quad \forall i \in T, \forall j \in B. \end{aligned}$$

Implementazione con PuLP:

```
from pulp import *
# Inizializzazione del problema assegnando un nome e la direzione dell'ottimizzazione
model = LpProblem("TrasportoCaffe", LpMinimize)
# Set e parametri
T = [1.2]
B = [1,2,3]
capacita_prod = {1: 54, 2: 44}
domanda = {1: 35, 2: 30, 3: 33}
costi = {
    1: {1: 0.4, 2: 0.3, 3: 0.2},
    2: {1: 0.2, 2: 0.3, 3: 0.5}}
# Variabili
x = LpVariable.dicts("x", (T, B), o, None, LpContinuous)
# Funzione obiettivo
model += lpSum(x[i][j]*costi[i][j] for i in T for j in B)
# Vincoli
for i in T:
    model += lpSum(x[i][j] for j in B) <= capacita_prod[i]
for i in B:
    model += lpSum(x[i][j] for i in T) >= domanda[j]
# Chiamata al solver
model.solve()
# Stampa soluzione ottima trovata
for v in model.variables():
    print(v.name, "_=_", v.varValue)
# Valore della funzione obiettivo
print("Costouminimouperuilutrasportou=u{}".format(round(value(model.objective),2)))
```

Assegnamento – Incarichi e bonus

Una compagnia finanziaria deve decidere chi assumere fra i tre candidati C1, C2 e C3. In base ai loro differenti curriculum, l'azienda sa che in caso di assunzione dovrà assicurare loro uno stipendio mensile fisso rispettivamente di 1450, 1600 e 1300 euro. Inoltre, nel mese corrente, la compagnia ha necessità di portare a termine tre progetti (LAV1, LAV2, LAV3) che richiedono diverse abilità ed esperienza. Al progetto LAV1 dovranno essere assegnate almeno 2 persone, agli altri due progetti almeno 1 persona ciascuno. In base all'assegnazione dei lavori ai candidati, la compagnia finanziaria dovrà retribuire i dipendenti con uno o più bonus in busta paga. La stima di tale bonus (€), riferito a ciascun candidato se fosse assegnato a ciascuno dei tre lavori, è riportata nella tabella seguente:

	LAV1	LAV2	LAV3
C1	150	230	110
C2	100	90	150
C 3	350	410	210

Quali candidati assume e assegna ai vari lavori la compagnia finanziaria, in modo da minimizzare i costi totali?

Costruiamo il modello:

• Sia $C := \{1,2,3\}$ il set di candidati e $L := \{1,2,3\}$ il set di lavori da portare a termine. Sia s_i lo stipendio mensile del candidato i e sia $b_{i,j}$ il bonus da dare al candidato i qualora venisse assegnato al lavoro j. Ogni lavoro j deve essere svolto da almeno n_i persone.

· Variabili:

- una variabile binaria y_i per ogni candidato i ∈ C, per indicare se i viene assunto o no;
- una variabile binaria $x_{i,j}$ per ogni candidato $i \in C$ e per ogni lavoro $j \in L$, per indicare se il candidato i è assegnato al lavoro j.

- · Vincoli:
 - · ogni lavoro deve essere svolto da almeno n_j persone:

$$\sum_{i\in C} x_{i,j} \geq n_j, \quad \forall j\in L;$$

• il candidato *i* può svolgere un lavoro *j* solo se viene assunto:

$$x_{i,j} \leq y_i, \quad \forall i \in C, \forall j \in L$$

· Funzione obiettivo: minimizzare i costi totali

$$\min \quad \sum_{i \in C} s_i y_i + \sum_{i \in C} \sum_{j \in L} b_{i,j} x_{i,j}.$$

Modello risultante:

$$\begin{aligned} &\min \quad \sum_{i \in C} s_i y_i + \sum_{i \in C} \sum_{j \in L} b_{i,j} x_{i,j} \\ &\sum_{i \in C} x_{i,j} \geq n_j, \quad \forall j \in L \\ &x_{i,j} \leq y_i, \quad \forall i \in C, \forall j \in L \\ &x_{i,j}, y_i \in \{0,1\}, \quad \forall i \in C, \forall j \in L. \end{aligned}$$

Implementazione con PuLP:

```
from pulp import *
# Inizializzazione del problema asseanando un nome e la direzione dell'ottimizzazione
model = LpProblem("AssegnazioneIncarichi", LpMinimize)
# Set e parametri
C = [1.2.3]
L = [1.2.3]
num_min_candidati_lavori = {1: 2, 2: 1, 3: 1}
stipendi = {1: 1450, 2: 1600, 3: 1300}
bonus = {
   1: {1: 150, 2: 230, 3: 110},
   2: {1: 100, 2: 90, 3: 150},
    3: {1: 350, 2: 410, 3: 210}}
Assegnazioni = [(i,j) for i in C for j in L]
# Variabili
vars_v = LpVariable.dicts("y", C, o, 1, LpBinary)
vars_x = LpVariable.dicts("x", (C, L), o, 1, LpBinary)
# Funzione objettivo
model += lpSum(vars_v[i] * stipendi[i] for i in C) + lpSum(vars_x[i][j]*bonus[i][j] for i in C for j in L)
# Vincoli
for i in C
    for | in L:
        model += vars_x[i][j] <= vars_v[i]
for i in L:
    model += lpSum(vars_x[i][i] for i in C) >= num_min_candidati_lavori[i]
# Chiamata al salver
model.solve()
# Stampa soluzione ottima trovata
for v in model variables ().
    print(v.name, "===", v.varValue)
# Valore della funzione obiettivo
print("Costo_minimo_per_la_compagnia_finanziaria_=_{{}}".format(round(value(model.objective),2)))
```