

Leon, Shahin, Matias and Eliasz

Dependency Parsing

(courtesy of spacy.io)

Overview

- Implemented the baseline
 - transition based dependency parsing
- Language data:
 - English
 - Arabic
 - Spanish
 - Swedish

(courtesy of Marco)

So how did we improve? - Bidirectional LSTM

 $x_i = e(w_i) \circ e(p_i)$

input element as its (deep) BiLSTM vector, v_i :

 $v_i = \text{BiLstm}(x_{1:n}, i)$

Why did we choose this project?

- Natural extension to baseline.
- The idea.

Algorithm 1 Greedy transition-based parsing

- 1: **Input:** sentence $s = w_1, \ldots, x_w, t_1, \ldots, t_n$, parameterized function $SCORE_{\theta}(\cdot)$ with parameters θ .
- 2: $c \leftarrow \text{INITIAL}(s)$
- 3: while not TERMINAL(c) do
- 4: $\hat{t} \leftarrow \arg\max_{t \in LEGAL(c)} SCORE_{\theta}(\phi(c), t)$
- 5: $c \leftarrow \hat{t}(c)$
- 6: return tree(c)

(Kiperwasser and Goldberg, 2016)

Why did we choose this project?

- Natural extension to baseline.
- The idea.

Algorithm 1 Greedy transition-based parsing

- 1: **Input:** sentence $s = w_1, \ldots, x_w, t_1, \ldots, t_n$, parameterized function $SCORE_{\theta}(\cdot)$ with parameters θ .
- 2: $c \leftarrow \text{INITIAL}(s)$
- 3: while not TERMINAL(c) do
- 4: $\hat{t} \leftarrow \arg\max_{t \in LEGAL(c)} SCORE_{\theta}(\phi(c), t)$
- 5: $c \leftarrow \hat{t}(c)$
- 6: return tree(c)

(Kiperwasser and Goldberg, 2016)

Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations

Dependency Parsing: Simple vs Hard

Traditional state-of-the-art

from single words

 S_0wp ; S_0w ; S_0p ; N_0wp ; N_0w ; N_0p ; N_1wp ; N_1w ; N_1p ; N_2wp ; N_2w ; N_2p ;

from word pairs

 S_0wpN_0wp ; S_0wpN_0w ; S_0wN_0wp ; S_0wpN_0p ; S_0pN_0wp ; S_0wN_0w ; S_0pN_0p N_0pN_1p

from three words

 $N_0pN_1pN_2p$; $S_0pN_0pN_1p$; $S_{0h}pS_0pN_0p$; $S_0pS_{0l}pN_0p$; $S_0pS_{0r}pN_0p$; $S_0pN_0pN_0p$

Table 1: Baseline feature templates. w – word; p – POS-tag.

distance

 S_0wd ; S_0pd ; N_0wd ; N_0pd ; S_0wN_0wd ; S_0pN_0pd ;

valency

 S_0wv_r ; S_0pv_r ; S_0wv_l ; S_0pv_l ; N_0wv_l ; N_0pv_l ;

unigrams

 $S_{0h}w$; $S_{0h}p$; $S_{0l}l$; $S_{0l}w$; $S_{0l}p$; $S_{0l}l$; $S_{0r}w$; $S_{0r}p$; $S_{0r}l$; $N_{0l}w$; $N_{0l}p$; $N_{0l}l$;

third-order

 $S_{0h2}w; S_{0h2}p; S_{0h}l; S_{0l2}w; S_{0l2}p; S_{0l2}l;$ $S_{0r2}w; S_{0r2}p; S_{0r2}l; N_{0l2}w; N_{0l2}p; N_{0l2}l;$ $S_{0p}S_{0l}pS_{0l2}p; S_{0p}S_{0r}pS_{0r2}p;$ $S_{0p}S_{0h}pS_{0h2}p; N_{0p}N_{0lp}N_{0l2}p;$

label set

 S_0ws_r ; S_0ps_r ; S_0ws_l ; S_0ps_l ; N_0ws_l ; N_0ps_l ;

Table 2: New feature templates. w – word; p – POS-tag; v_l , v_r – valency; l – dependency label, s_l , s_r – labelset.

Scientific background

- Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations.
 - O Nivre (2004 & 2008)
 - O BiLSTMs (Graves, 2008)

Experiment and Results

Universal Dependencies (UD) Dataset

Training settings and Hyper-parameters:

- Max Sentences Per Epoch: 4000
- Epochs: 5
- Word Embedding Dimension: 100
- POS tag embedding dimension: 25
- Hidden Units in MLP: 100
- Bi-LSTM layers: 2
- Bi-LSTM Dimensions (Hidden / Output): 125 / 125
- Learning Rate: 1e-3

Experiment and Results Universal Dependencies (UD) Dataset

Results (UAS: unlabeled attachment score) on dev data:

Dataset	1 Epoch	2 Epoch	3 Epoch	4 Epoch	5 Epoch	Time per Sentence (s)
English	80.23%	81.59%	80.36%	81.86%	82.66%	0.40
Arabic	75.34%	78.07%	77.83%	79.36	-	0.75
Spanish	85.31%	86.37%	86.62%	86.59%	86.57%	0.65
Swedish	81.37%	82.34%	83.52%	82.43	82.74%	0.43

Experiment and Results

Universal Dependencies (UD) Dataset

Results UAS Larger Dataset:

- Spanish Dataset, 3 Epochs, 4000 sentences per epoch:
 - 3 * 4000 Same Sentences: 86.62%
- Spanish Dataset, 1 Epoch, 10000 sentences per epoch:
 - 10000 Different Sentences: 87.64%
- Spanish Dataset, 2 Epoch, 10000 sentences per epoch:
 - 10000 Different Sentences: 88.18%

Conclusion

- New classifier gives significant accuracy improvement compared to original
 - +14 percent points on English data
 - +1 percent points on Arabic data
 - +12 percent points on Spanish data
 - +14 percent points on Swedish data
- However, generally worse accuracy results compared to paper
 - Static vs. dynamic oracle
 - Cross-entropy loss vs. hinge loss
 - Dataset differences?