Chp 1 Gateway 2 – What landforms and associated tectonic phenomena are found at plate boundaries?

Main points:

- Formation of landforms at different plate boundaries
 - 1. Fold mountains
 - 2. Rift valleys & block mountains
 - 3. Volcanoes
- Formation of tectonic phenomena at plate boundaries
 - 1. Earthquakes
 - 2. Volcanic eruptions

Landforms at different plate boundaries

Londform	Plate boundaries		
Landform	Divergent	Convergent	
1. Fold mountains	/		
2. Volcanoes	/	/	
3. Rift valleys		/	
4. Block mountains		/	

Fold mountains

Formation

Process	Explanation
	Folding
1. Convergence	• compressional forces → immense pressure
	• rock layers buckle & fold
	Changes of simple fold
2. Increasing	1) asymmetrical fold
compressional force	2) over-fold (one limb of fold rides over another)
	3) recumbent fold (limbs of fold become parallel)
	Fracture occurs & one limb thrust over the other on the fracture
3. Tremendous continual	→ over-thrust fold
compression	anticline: upfold
	syncline: downfold

Rock types

Туре	Formation
1. Sedimentary rocks	Multiple layers of sediments
2. Igneous rocks	Molten rocks cool & solidify
3. Metamorphic rocks	Rocks changed by high temp & pressure within crust

Location

Convergent plate boundaries

Mountain	Plates	Location
1) Himalayas	Indian Plate & Eurasian Plate converge	Southern Asia
2) Rocky Mountains	Juan de Fuca Plate subduct under North American Plate	West coast of North America
3) Andes Mountains	Nazca Plate subduct under South American Plate	West coast of South America

Types of fold mountains

Type Characteristics		Exposure – weathering & erosion	Age (mil. yrs)	Examples
1. Young fold mountains	Impressive heightsSharp peaksSteep slopesJagged edges	Shorter time	100	 Himalayas Andes Rockies
2. Old fold mountains	 Lower in heights Rounded summits Gentle slopes Smooth edges 	Longer time	270 400	Appalachian Mountains Urals

Rift valleys & block mountains Formation & locations

	Rift valleys	Block mountains	
	Faulting		
	• Plates pulled apart → faults (fracture in re	ocks along which rocks are displaced)	
	 Tensional forces → parts of crust being fractured 		
Formation	Sections of crust extend along fault lines		
Formation	• Tensional force → central block to	 Tensional forces → land masses 	
	subside between pair of parallel faults	surrounding block of land subside	
	 Valley with steep sides 	 Block of land with steep slopes left 	
		standing higher than surrounding land	
	1) East African Rift Valley (African Plate	Rhine Valley (Eurasian Plate & North	
Location	Somalian & Nubian boundary)	American Plate)	
Location	2) Hutt Valley , NZ (Australian Plate &	1) Vosges, France	
	Pacific Plate)	2) Black Forest, Germany	

VolcanoesFormation

Process	Explanation
1. Subduction	 Mantle material above subducting plate melt → magma Magma (less dense) rises → magma chamber, pressure builds up
2. Vulcanicity	 Magma (from chamber) rises through vents to surface → lava Lava builds up around vent → volcano
3. Magma eject onto surface	 More magma seeps into magma chamber More pressure builds up → explosive eruption Magma (gases + stream + ash + rock fragments) eject through vent onto surface
4. Building up volcano, with crater on top	 Ejected materials build around vent layer upon layer Lava layer: alternating with ash & cinder layer
5. Secondary cone	 Rapid cooling & solidification of viscous lava → central pipe blocked Magma find new exit route to surface
6. Caldera	 Violent or explosive successive eruptions Lack of structural support → crater collapse inwards → large depression

Types of lava

Lava	Viscosity	Trapping of gas	Result	
1. Low-silica	Low	Gas escape easily, flows more easily through vent	Outer layer of cooling lava → thin crust	
2. High-silica	High	Trap gas more easily	 Pressure build up below surface Magma rises towards surface, gas expand → outward explosion Eject into surrounding lava ash rock fragments gases 	

Classification of volcanoes

Туре	Shape and size	Eruption	Examples
1. Shield volcano	Gently sloping sidesBroad summit + broad base	 Usually less explosive Low-silica lava – low viscosity, flow easily, spread over larger area before solidifying 	(a) Mauna Loa (Hawaii) (b) Mt Washington (USA)
2. Stratovolcano	Concave profileSteep at top, gentle at base	 More explosive High-silica lava – high viscosity, flow more slowly, spread over smaller area before solidifying Develop from successive eruptions of lava + pyroclasts Possess secondary cones (blocked central pipe – find new exit route) Pyroclastic flows + lahar flows flowing down slopes during eruptions 	(a) Mt Pinatubo & Mt

Shield volcano:

Stratovolcano:

Lava: magma ejected onto surface

Magma chamber: reservoir of molten rock

Vents: openings in surface with a pipe leading into magma chamber *Vulcanicity*: upward movement of magma into crust, onto surface

Caldera: large depression due to inwards collapse of crater

Pyroclasts: ash + rock fragments + volcanic bombs

Lahars: pyroclasts + water

Distribution

Plate boundary	Location
Convergent	Pacific Ring of Fire
Divergent	Atlantic Ocean East Africa (Rift Valley)

Structure:

Tectonic phenomena at plate boundaries

Earthquakes

Formation: vibration at surface caused by sudden release of energy stored in the rocks along fault lines

Process	Explanation
1. Plate movement	Build-up of stress on rocks on either side of the fault
2. Energy stored in earth's crust	 Rocks cannot contain the pressure and energy anymore Rocks slip in the form of an earthquake Energy released as seismic waves
3. Energy radiates away from focus as shockwaves	 Shockwaves reach epicentre Rocks break up & move in a series of sudden jerks
4. Aftershocks	Stress within the ground → several smaller earthquakes along fault lines

Focus: source of the earthquake where seismic waves radiate out from

Epicentre: point on earth's surface directly above focus, where seismic waves are strongest

Magnitude: amount of energy released by earthquake **Ritcher Scale**: used to measure magnitude of earthquake

→ for each increasing magnitude, impact becomes 10 times greater

Extent of earthquakes

Factor	Explanation		Examples
1 Magnituda	High	 vibrations <u>stronger</u> <u>more</u> shaking of earth's surface <u>more</u> buildings collapse – <u>more</u> damage 	Valdivia Earthquake
1. Magnitude Low	Low	 vibrations <u>weaker</u> <u>less</u> shaking of earth's surface <u>fewer</u> buildings collapse – <u>less</u> damage 	(Chile): 9.5
2. Population density	High (dense urban areas) Low (sparse rural towns)	more damage, more casualties less damage, fewer casualties	
3. Level of preparedness	Reduce damage 1) evacuation plans 2) trained rescue workers 3) range of action plans		

4. Distance from epicentre	closer	more severe damage	Christchurch Earthquake • epicentre near city	
	further away	<u>less</u> damage	centrecity suffered more damage	
5. Time of	day	people can <u>escape in time</u> → <u>higher</u> chance of surviving	Sun Moon Lake Earthquake • occurred at	
occurrence	night	people are <u>sleeping</u> → <u>lesser</u> chance of surviving	occurred at midnighta lot of people died	
	stable & consolidated		Christchurch Earthquake	
6. Type of soil	loose & unconsolidated	 Seismic waves are amplified → greater damage Liquefaction: ground becomes unstable & saturated soil flows like liquid 	 liquefaction after earthquake many houses & buildings abandoned 	

Measuring earthquakes

Method	Explanation	
1. Seismograph	 Records seismic waves released by earthquake Spring-mounted weight: moves up and down when detect tremors Ink marker: records motions of the ground → make vertical markings on graph paper (attached to rotating drum) 	
2. Global Positioning System (GPS)	Measure how far a location has shifted as a result of earthquake	

Loss of lives

Risks in earthquake zones

Destruction of infrastructure

Destruction of properties

Risks of earthquake zones

Risks	Explanation			Examples
1. Tsunamis	 Unusually large sea wave Formed by: Movement of sea floor during offshore earthquake Explosive underwater volcanic eruption Landslide – materials plunge into water Partial collapse of volcano cone Formation process Seismic energy from offshore earthquake forces out mass of sea water Height and speed 			 Indian Ocean Earthquake damaged coastal communities most damage: low-lying coastal areas of western
	Phase	Height	Speed	Sumatra (city of Banda Aceh)
	Start	low	high	
	Shallower water (greater friction)	increase	decrease	
	Point of impact on coast	great	low	

2. Disruption of services	 Travel long distances, widespread destruction at coastal areas when sweeps inland Disrupt supply of electricity, gas and water Outbreak of fires (i) snap pipes (ii) break cables Communication services affected (i) television broadcasts (ii) telephone connections 	 Kobe Earthquake (Japan) damaged pipes & transmission lines disrupted electricity, gas and water supplies to residents
3. Landslides	 Shaking of ground → weaken slopes of hills & mountains Landslides: rapid downslope movements of soil, rock & vegetation debris from slope Mudflows: mixed soil debris flow down slope heavy rainfall – saturates soil 	Mount Huascaran landslide flattened town of Ranrahirca high death toll
4. Destruction of properties	Homeless → reside at temporary shelters	 Tohoku Earthquake (Japan) tsunami extensive structural damage → a lot of people homeless severe shortage of housing concerns about long-term consequence on health
5. Destruction of infrastructure	 Cracks in infrastructure Disrupt transportation (damage roads) 	 Kobe Earthquake (Japan) many places in city → inaccessible & difficult to reach high cost of repair
6. Loss of lives	Threaten lives	Haiti Earthquake → 300,000 deaths

Volcanic eruptions Volcanoes

Type	Current eruptions	Future eruptions
1. Active volcano	currently erupting	expected to erupt in near future
2. Dormant volcano	currently inactive	may erupt in future
3. Extinct volcano	no current seismic activity	no geological evidence of eruptions for past thousands of years

Risks of living near volcanic areas

Danger	Substances	Explanation		
	1) Lava	 High temperature – burns the areas it flows through Low-silica lava: move rapidly and flow over long distances, damaging larger areas 		
	2) Pyroclastic flow	Destroy everything in its path with hot rock fragments (ash, boulders) travelling at high speeds		
1. Massive destruction	3) Volcanic bombs	Fall in areas surrounding volcano → damage property		
by volcanic materials	4) Landslides	Structural collapse of volcanic cone during volcanic eruption (i) obstruct flow of rivers → floods (ii) block roads (iii) bury villages & farmlands		
	5) Lahar	Flows of wet volcanic debris on the side of volcano		
2. Pollution	Volcanic ash particles	 Disrupt human activities over large distances from volcano Thick plumes of ash settle on the ground (i) block sunlight (ii) suffocate crops (iii) severe respiratory problems 		
2. Foliution	2) Fine ash particles	Carried by wind over long distances → impact areas further away from eruption source		
	3) Harmful gases	(a) carbon monoxide(b) carbon dioxide(c) sulfur dioxide(d) hydrogen		

Examples

Examples		
Eruption of Nevado del Ruiz (Andes)	Eruption of Eyjafjallajokull (Iceland)	
Pyroclastic flow	Extensive volcanic ash clouds (tiny particles of	
 Mixing of pyroclasts + glacial ice → lahars 	abrasive gas + sand + rock)	
	→ danger to aircraft engines & structures	
Lahar engulfed the town of Armero	Closure of air space over much of Europe	
→ killed more than 20,000 people	connecting flights worldwide were cancelled	
	delays 1.2 million passengers daily	
	• costing airline industry US\$1.8 billion	

Benefits of living near volcanic areas

Benefit	Explanation		Examples
1. Fertile soil	Ash + lava → fertile soil for agriculture (a) tea (b) coffee (c) rice		Fertile soils support large rural populations (rely on agriculture as a means of livelihood) (a) Java (b) Bali
2. Precious stones	1) Precious stones	(a) diamonds (b) opals (c) sapphire	Bring income to locals (a) Java: sulfur → make matches &
& minerals	2) Minerals	(a) gold(b) silver(c) diamond(d) sulfur	fertilisers (b) Kimberly: diamond → make industrial tools (scientific research)
3. Tourism	Scenic & great for trekking among tourists → locals earn money from tourism		Attract a lot of tourists (a) Mt Merapi (b) Mt Bromo (c) Mt Batur (culturally rich) (d) Mt Vesuvius (ruins of Pompeii destroyed and covered in ash)
4. Geothermal energy	Derived from the heat in earth's crust • groundwater comes into contact with hot rocks beneath surface • heats up & erupts as hot water / steam		 Use geothermal power to generate electricity 70% homes: heated by volcanic steam