ALGEBRA 2 Zestaw 1 Grupy. Rozgrzewka

+ Fundamentalne Tw. o Skończonych Grupach Abelowych

Zadanie 1 Udowodnij, że jeśli G i H są podgrupami pewnej grupy abelowej, $G \cap H = \{e\}$, wówczas $G \oplus H$ także jest grupą.

Zadanie 2 Wykaż, że grupa Kleina jest izomorficzna z $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Zadanie 3 Wykaż, że dla dowolnych podgrup G, H i F pewnej grupy przemiennej, spełniających warunek $G \cap H = G \cap F = \{e\}$ prawdziwa jest równoważność:

$$GH \sim GF \Leftrightarrow H \simeq F$$

Zadanie 4 Podaj rząd elementu a w grupie G.

- $a = (2,5), G = \mathbb{Z}_4 \oplus \mathbb{Z}_7,$
- $a = ((1,2)(3,4,5), (1,2,3,4)), G = S_5 \oplus S_6.$

Zadanie 5 Wskaż przykład grupy G i podgrup H_1, H_2 takich, że $H_1 \cdot H_2$ nie jest podgrupą.

Zadanie 6 Niech p będzie liczbą pierwszą. Udowodnij, że jeśli G jest p-grupą, wówczas

- Każda podgrupa grupy G jest p-podgrupą.
- Dla dowolnej podgrupy normalnej H grupy G grupa ilorazowa G/H jest p-grupą.

Zadanie 7 Wykaż, że jeśli G jest skończoną grupą przemienną, $H, F \leq G$, $H \cap F = \{e\}$, wówczas $|H \otimes F| = |H| \cdot |F|$.

Zadanie 8 Niech G będzie grupą abelową. Wykaż, że $G^n := \{x^n | x \in G\} \le G$.

Zadanie 9 Wykaż, że dla dowolnego $n \in \mathbb{Z}$ i dla dowolnej grupy abelowej G

$$\{x \in G | x^n = e\} < G$$

.

Zadanie 10 Niech G będzie p-grupą abelową, gdzie p jest pewną liczbą pierwszą. Udowodnij, że $G^p < G$.

Zadanie 11 Udowodnij, że jeśli p jest liczbą pierwszą, G grupą, $x \in G$, $x \neq e$ i $x^p = e$ wówczas |x| = p.

Zadanie 12 (Kwaterniony.) Niech $G = \{\pm 1, \pm i, \pm j, \pm k\}$ będzie zbiorem z działaniem multiplikatywnym określonym wzorami $i^2 = j^2 = k^2 = -1, (-1)i = -i, (-1)j = -j, (-1)k = -k, (-1)^2 = 1, ij = -ji = k, jk = -kj = i, ki = -ik = j, 1 jest elementem neutralnym.$

- \bullet Utwórz tablicę Cayleya dla G.
- Wykaż, że G jest grupą (zwaną **grupą kwaternionów** (W. Hamilton 1943)).
- Wykaż, że $H = \{1, -1\}$ jest podgrupą normalną G.
- Skonstruuj tabelę Cayleya grupy G/H. Czy G/H jest izomorficzna z \mathbb{Z}_4 lub $\mathbb{Z}_2\mathbb{Z}_2$?

Zadanie 13 Udowodnij, ż jeśli H jest normalną podgrupą grupy G i $F \leq G$, to $HF \leq G$.

Zadanie 14 Wykaż, że jeśli G jest grupą przemienną, $H, F \leq G, H \cap F = \{e\}$, wówczas $|H \otimes F| = |H| \cdot |F|$.

Zadanie 15 Niech G będzie grupą (niekoniecznie abelową) i niech $H \subseteq G$. Udowodnij, że dla dowolnej podgrupy K' grupy G/H zbiór $K = \{g \in G : gH \in K'\}$ jest podgrupą grupy G.

Zadanie 16 Znajdź rząd grupy $\mathbb{Z}_{12} \oplus \mathbb{Z}_9 / <(3,5) >$.

Zadanie 17 Udowodnij, że iloczyn prosty $G \oplus H$ skończonych grup cyklicznych G i H jest grupą cykliczną wtedy i tylko wtedy gdy rzędy grup G i H są wzglednie pierwsze.

Wykaż twierdzenie ??. Podaj przykład dowodzący, że założenie przemienności jest istotne a więc, że przez opuszczenie tego założenia otrzymujemy zdanie nieprawdziwe.

Zadanie 18 Dla grup:

$$\mathbb{Z}_4 \oplus \mathbb{Z}_8$$
 $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ \mathbb{Z}_{32}

wskaż podgrupy rzędów 2, 4, 8, 16 i 32.

Zadanie 19 Niech p będzie liczbą pierwszą, $k, l \in \mathbb{N}, l \leq k$. Udowodnij, że w \mathbb{Z}_{p^k} element p^{k-l} generuje grupę rzędu p^l .

Zadanie 20 Wskaż wszystkie, z dokładnością do izomorfizmu, grupy rzędu 225.

Zadanie 21 Udowodnij, że istnieją dokładnie 2, z dokładnością do izomorfizmu, grupy rzędu 6.

Zadanie 22 Wskaż iloczyny proste grup cyklicznych izomorficznych z \mathbb{Z}_{18}^* , \mathbb{Z}_{20}^* , \mathbb{Z}_{24}^* , \mathbb{Z}_{36}^* , \mathbb{Z}_{72}^* .

Zadanie 23 Niech $k, l \in N, (k, l) = 1$. Wykaż, że $Z_k \oplus Z_l$ jest izomorficzna z Z_{kl} .

Zadanie 24 Z jakim iloczynem prostym grup cyklicznych jest izomorficzna poniższa skończona grupa abelowa

- 1. $Z_9^*, Z_{15}^*, Z_{20}^*$
- 2. $G = \{1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64\}$ z działaniem mnożenie modulo 65
- 3. $G = \{1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62, 64, 71, 73, 82, 89, 91, 98, 107, 109, 116, 118, 127, 134\}$ z działaniem mnożenia modulo 135
- 4. $G = \{1, 7, 43, 49, 51, 57, 93, 99, 101, 107, 143, 149, 151, 157, 193, 199\}$ z działaniem mnożenia modulo 200
- 5. $G = \{1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44\}$ z działaniem mnożenia moduło 45

Zadanie 25 Oblicz liczbę wszystkich (z dokładnością do izomorfizmu) grup abelowych rzędu:

a) 200, b) 125, c) 35, d) 64

Zadanie 26 Niech G będzie skończoną grupą abelową taką, że $g \in G \Rightarrow 3g = 0$. Z jakim iloczynem prostym grup cyklicznych grupa G może być izmorficzna?

Zadanie 27 Niech |G|=120 będzie grupą abelową taką, że w grupie G nie ma elementów rzędu 4 ani 8. Z jakim iloczynem prostym grup cyklicznych grupa G może być izmorficzna?

Zadanie 28 Niech |G| = 36 będzie grupą abelową taką, że w grupie G nie ma elementów rzędu 9. Z jakim iloczynem prostym cyklicznych grupa G może być izmorficzna?

Zadanie 29 Wykaż, istnieją 4 nieizomorficzne grupy abelowe rzędu 36.

Zadanie 30 Wykaż, że każda grupa abelowa rzędu 45 ma element rzędu 15. Czy każda grupa abelowa rzędu 45 ma element rzędu 9?

 ${\bf Zadanie~31~}$ Wykaż, że istnieją 2 grupy abelowe rzędu 108 które mają dokładnie 4 podgrupy rzędu 3.

Wykaż, że każda skończona grupa abelowa może być przedstawiona jako iloczyn prosty grup rzędu $n_1, n_2, n_3, ..., n_t$ takich, że n_{i+1} dzieli n_i dla i=1,2,...,t-1.

Zadanie 32 Element rzędu 2 nazywamy inwolucją. Oblicz liczbę inwolucji w $Z_{16},Z_8\oplus Z_4,Z_4\oplus Z_4,Z_4\oplus Z_2\oplus Z_4$

Udowodnij, że liczba inwolucji w dowolnej skończonej grupie abelowej jest postaci 2^t-1 dla pewnego $t\in N$

Zadanie 33 Niech G będzie skończoną grupą abelową taką, że G makinwolucji $\{i_1,i_2,...i_k\}.$ Udowodnij, że

$$\sum_{g \in G} g = \left\{ \begin{array}{ll} 0, & k \neq 1; \\ i_1, & k = 1. \end{array} \right.$$