Statistical Data Analysis

Dr. Jana de Wiljes

9. November 2021

Universität Potsdam

Empirical cdf of a sample set

The empirical cdf of a sample set $(x_1, \ldots, x_n) \in \mathbb{R}^n$ is defined through

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{x_i \le 1} = \frac{1}{n} \# \{ i \in \{1, \dots, n\} : x_i \le t \}, \quad t \in \mathbb{R} \quad (1)$$

Empirical cdf

Empirical cdf

The empirical cdf of a sample set $(x_1, \ldots, x_n) \in \mathbb{R}^n$ is defined through

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{X_i \le 1} \tag{2}$$

Proposition

 $\textbf{Proposition:} \ \mathsf{Let} \ (X_1, X_2....) \ \mathsf{independent} \ \mathsf{and} \ \mathsf{identical} \ \mathsf{distributed} \ \mathsf{random} \ \mathsf{variabel} \ \mathsf{with} \ \mathsf{cdf} \ \mathsf{F}. \ \mathsf{Then}$

•

$$n\widehat{F}_n(t) \sim Bin(n, F(t)).$$
 (3)

This means

$$\mathbb{P}\Big[\widehat{F}_n(t) = \frac{k}{n}\Big] = \binom{n}{k} F(t)^k (1 - F(t))^{n-k}, \quad k = 0, 1, \dots, n.$$

• The expect value and variance of $\widehat{F}_n(t)$ are given by

$$\mathbb{E}[\widehat{F}_n(t)] = F(t), \quad \text{Var}[\widehat{F}_n(t)] = \frac{F(t)(1 - F(t))}{n}$$
 (5)

i.e., $\widehat{F}_n(t)$ is an unbiased estimator of F(t).

• For all $t \in \mathbb{R}$ it holds that

$$\widehat{F}_n(t) o F(t)$$
 $n o \infty$ almost everywhere (6)

• For all $t \in \mathbb{R}$ with $F(t) \neq 0$ or 1 the following holds:

$$\sqrt{n} \frac{\widehat{F}_n(t) - F(t)}{\sqrt{F(t)(1 - F(t))}} \to \mathcal{N}(0, 1) \text{ for } n \to \infty \text{ (in distribution)}$$
 (7)

Theoretical distribution

Def: Let X be a random. The theoretical distribution of X is a probability measure μ on $(\mathbb{R}, \mathcal{B})$ with

$$\mu(A) = \mathbb{P}[X \in A]$$
 for every Borel set $A \subset \mathbb{R}$ (8)

Note: the relationship between the theoretical distribution μ and the theoretical cdf F is;

$$F(t) = \mu((-\infty, t]), \quad t \in \mathbb{R}$$
 (9)

Empirical distribution

Def: The empirical distribution of a sample set $(x_1, \ldots, x_n) \in \mathbb{R}^n$ is defined through

$$\widehat{\mu}_n(A) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{x_i \in A} = \frac{1}{n} \# \{ i \in \{1, \dots, n\} : x_i \in A \}, \qquad (10)$$

for every Borel set $A \subset \mathbb{R}$

Dirac δ measure

Def: Let $x \in \mathbb{R}$ be a real number. The dirac- δ measure δ_x is a probability measure on $(\mathbb{R}, \mathcal{B})$ with with

$$\delta_{x}(A) \begin{cases} 1, & \text{for } x \in A \\ 0, & \text{for } x \notin A \end{cases}$$
 (11)

for all Borel set $A \subset \mathbb{R}$

Remark: Then the empirical measure $\hat{\mu}_n$ can be written as

$$\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i} \tag{12}$$

and further note that

$$\widehat{F}_n(t) = \widehat{\mu}_n((-\infty, t])$$
 (13)

Proposition

Proposition: Let (X_1, X_2, \ldots) independent and identical distributed random variabel with distribution μ and let $A \subset \mathbb{R}$ a Borel set. Then

 $n\widehat{\mu}_n(A) \sim Bin(n, \mu(A)). \tag{14}$

The expect value and variance of μ

n(A) are given by

$$\mathbb{E}[\widehat{\mu}_n(A)] = \mu(A), \quad \mathsf{Var}[\widehat{\mu}_n(A)] = \frac{\mu(A)(1 - \mu(A))}{n}$$
 (15)

i.e., $\widehat{\mu}_n(A)$ is an unbiased estimator of $\mu(A)$.

 \bullet Further it follows that $\widehat{\mu}_{\textit{n}}$ is a consistent estimator, i.e.,

$$\widehat{\mu}_{\it n}(A)
ightarrow \mu(A) \quad n
ightarrow \infty$$
 almost everywhere (16)

• For $\mu(A) \neq 0$ or 1 the following holds:

$$\sqrt{n} \frac{\widehat{\mu}_n(A) - \mu(A)}{\sqrt{\mu(A)(1 - \mu(A))}} \to \mathcal{N}(0, 1) \text{ for } n \to \infty \text{ (in distribution)}$$
 (17)

Plugin Estimator

Setting: Let (X_1, \ldots, X_n) be independent and identical distributed random variables with the distribution μ . Further we assume that a reliasation $(x_1, \ldots, x_n) \in \mathbb{R}^n$ of the respective random variables

Goal: approximate $\Psi(\mu)$ where $\Psi:\mathcal{M}\to\mathbb{R}$

Def: $\Psi(\widehat{\mu}_n)$ is called the plugin estimator of $\Psi(\mu)$.

Example

Example

Kolmogorov-distance

Def: The Kolmogorov-distance between the empirical cdf $\widehat{F}_n(t)$ and the theoretical cdf F is defined as follows

$$D_n := \sup_{t \in \mathbb{R}} |\widehat{F}_n(t) - F(t)| \tag{18}$$

Theorem of Gliwenko-Cantelli

Theorem: For the Kolmogorov-distance D_n the following holds

$$D_n \to 0$$
 for $n \to \infty$ almost everywhere (19)

i.e.,

$$\mathbb{P}\Big[\lim_{n\to} D_n = 0\Big] = 1 \tag{20}$$