CLAIMS

1. A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

$$(R^{1})_{m}$$

$$(CH_{2})_{t}$$

$$(H_{2})_{t}$$

5

15

wherein

A and B are independently aryl or heteroaryl;

Q is C, CH or together with the group V or group D forms a 5 - 7 membered heterocyclic ring:

10 D is hydrogen, C₁₋₆alkyl or together with the group Q forms a 5 - 7 membered heterocyclic ring:

 R^1 , R^2 and R^3 are independently $C_{1\text{-}6}$ alkyl, halogen, $C_{1\text{-}6}$ alkoxy, hydroxy, cyano, CF_3 , nitro, $C_{1\text{-}6}$ alkylthio, amino, mono- or di- $C_{1\text{-}6}$ alkylamino, carboxy, $C_{1\text{-}6}$ alkanoyl, amido, mono- or di- $C_{1\text{-}6}$ alkylamido, NHCOR 9 or NHSO $_2$ R 9 in which R^9 is $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl or phenyl (optionally substituted by up to three groups selected from $C_{1\text{-}6}$ alkyl, halogen, $C_{1\text{-}6}$ alkoxy, cyano, phenyl or CF_3) or is a group -E-(CH_2)₁₋₆NR X R Y in which E is a single bond or -OCH $_2$ - and R^X and R^Y are independently hydrogen, $C_{1\text{-}6}$ alkyl or

R⁴ is hydrogen, C₁₋₆alkyl, halogen or C₁₋₆alkoxy;

combine together to form a 5 - 7 membered heterocyclic ring;

V is O, S, NH, N-C₁₋₆alkyl, NNO₂, NCN or together with the group Q forms a 5 - 7 membered heterocyclic ring;

W, X, Y and Z are independently C, CH or CH₂;

represents a single or double bond;

L is $-(CH_2)q^-$ or $-(CH_2)q^+O^-$ where q is 0, 1, 2 or 3 and q' is 2 or 3;

- 25 J is (i) a group $CR^5 = CR^6$ where R^5 and R^6 are independently hydrogen or C_{1-6} alkyl; or
 - (ii) a group -CHR⁷-CHR⁸- where R⁷ and R⁸ are independently hydrogen.

 C_{1-6} alkyl, C_{3-7} cycloalkyl, aryl, heteroaryl, a group -NHCOR 9 - or -NHSO $_2$ R 9 - in which R 9 is as defined above or a group -(CH $_2$) $_{1-6}$ NR x R y - in which R x and R y are as defined above; or

- (iii) a single bond; or
- (iv) -CHR⁶- where R⁶ is as defined above; or
- (v) a group -O-CHR¹⁰-, -NR¹¹-CHR¹⁰- or -CR¹²R¹³-CHR¹⁰- where R¹⁰ and R¹¹ are independently hydrogen or C₁₋₆alkyl and R¹² and R¹³ are independently C₁₋₆alkyl or R¹² and R¹³ combine together to form a C₃₋₇cycloalkyl or a 5 7 membered heterocyclic ring;
- m, n and p are independently 0, 1, 2 or 3; and t is 0, 1 or 2.
 - 2. A compound according to claim 1, wherein A is phenyl or pyridyl.
- 15 3. A compound according to claim 1 or 2, wherein B is phenyl.
 - 4. A compound according to any of the preceding claims, wherein

R¹, R² and R³ are independently C₁₋₆alkyl, halogen, C₁₋₆alkoxy, hydroxy, cyano, CF₃, nitro, C₁-6alkylthio, amino, mono- or di-C₁-6alkylamino, carboxy, C₁₋₆alkanoyl, amido, mono- or di-C₁₋₆alkylamido, NHCOR⁹ or NHSO₂R⁹ in which R⁹ is C₁₋₆alkyl, C₃₋₇cycloalkyl or phenyl (optionally substituted by up to three groups selected from C₁₋₆alkyl, halogen, C₁₋₆alkoxy, cyano, phenyl or CF₃) or is a group -E-(CH₂)₁₋₆NR^xR^y in which E is a single bond or -OCH₂- and R^x and R^y are independently hydrogen, C₁₋₆alkyl or combine together to form a ring including piperidinyl, piperazinyl, pyrrolidinyl or morpholinyl group in which ring is optionally substituted by C₁₋₆alkyl;

When Q and V combine together to form a ring including piperidinyl, piperazinyl, pyrrolidinyl or morpholinyl group, which is optionally substituted by C₁₋₆alkyl;

When Q and D combine together to form a ring including piperidinyl, piperazinyl, pyrrolidinyl or morpholinyl group, which is optionally substituted by C_{1-6} alkyl;

30

5

- J is (i) a group CR^5 = CR^6 where R^5 and R^6 are independently hydrogen or $C_{1\text{-}6}$ alkyl; or
 - (ii) a group -CHR 7 -CHR 8 where R 7 and R 8 are independently hydrogen, C $_{1-6}$ alkyl, C $_{3-7}$ cycloalkyl, phenyl, naphthyl, thienyl, furyl, pyrrolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, oxadiazolyl, isothiazolyl, isoxazolyl, thiadiazolyl, pyrazolyl, pyrimidyl, pyridazinyl, pyrazinyl, pyridyl quinolinyl, isoquinolinyl, indolyl, benzofuryl, benzothienyl, benzimidazolyl, benzoxazolyl, a group -NHCOR 9 or -NHSO $_2$ R 9 in which R 9 is as defined above or a group -(CH $_2$) $_{1-6}$ NR x R y in which NR x and R y are as defined above; or
- 10 (iii) a single bond; or

5

15

- (iv) -CHR⁶- where R⁶ is as defined above; or
- (v) a group -O-CHR 10 -, -NR 11 -CHR 10 or -CR 12 R 13 CHR 10 where R 10 and R 11 are independently hydrogen or C $_{1-6}$ alkyl and R 12 and R 13 are independently C $_{1-6}$ alkyl or R 12 and R 13 combine together to form C $_{3-7}$ cycloalkyl, tetrahydropyranyl, piperidinyl, piperazinyl, pyrrolidinyl or morpholinyl;

the ring containing W, X, Y and Z is

- 5. A compound according to any of the preceding claims, wherein
- 20 R^1 , R^2 and R^3 are independently C_{1-6} alkyl, halogen or C_{1-6} alkoxy;

Q is C, CH or together with the group V or group D form part of a benzimidazole, benzoxazole or indoline ring;

D is hydrogen, C₁₋₆alkyl or together with the group Q form part of a benzimidazole or benzoxazole ring;

V is O or together with the group Q form part of an indoline ring;

R⁴ is hydrogen or halogen;

J is (i) a group - $CR^5 = CR^6$ - where R^5 and R^6 are independently hydrogen or C_{1-6} alkyl; or

- (ii) a group -CHR 7 -CHR 8 where R 7 and R 8 are independently hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, phenyl, a group -NHCOR 9 in which R 9 is C₁₋₆alkyl; or
- (iii) a single bond;
- (iv) -CHR⁶- where R⁶ is as defined above; or
- 5 (v) a group -O-CHR 10 -, -NR 11 -CHR 10 or -CR 12 R 13 CHR 10 where R 10 and R 11 are independently hydrogen or C $_{1-6}$ alkyl and R 12 and R 13 are independently C $_{1-6}$ alkyl or R 12 and R 13 combine together to form C $_{3-7}$ cycloalkyl group.
- 6. A compound according to claim 1, wherein the compound is of formula (Ia) or a pharmaceutically acceptable derivative thereof:

$$(R^{1})_{m}$$

$$(CH_{2})_{i}$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

wherein:

R¹, R², R³, R⁴, L, J, m, n, p and t are as defined in formula (I).

15

20

- 7. A compound according to any one of the preceding claims wherein:
- R^1 , R^2 and R^3 are independently C_{1-6} alkyl, halogen, C_{1-6} alkoxy, hydroxy, cyano, CF_3 , nitro, C_{1-6} alkylthio, amino, mono- or di- C_{1-6} alkylamino, carboxy, C_{1-6} alkanoyl, amido, mono- or di- C_{1-6} alkylamido, NHCOR 9 or NHSO $_2$ R 9 in which R^9 is C_{1-6} alkyl, C_{3-7} cycloalkyl or phenyl optionally substituted by up to three groups selected from C_{1-6} alkyl, halogen, C_{1-6} alkoxy, cyano, phenyl or CF_3 ;

L is $-(CH_2)_{0}$ where q is 0, 1, 2 or 3; and

- J is (i) a group CR^5 = CR^6 where R^5 and R^6 are independently hydrogen or C_{1-6} alkyl; or
- 25 (ii) a group -CHR 7 -CHR 8 where R 7 and R 8 are independently hydrogen, C $_{1-}$ 6alkyl or a group -NHCOR 9 or -NHSO $_2$ R 9 in which R 9 is as defined in claim 1.

- 8. A compound according to any of the preceding claims wherein J is a group -CH = CH-, -(CH₂)₂-, -CHR⁷-CH₂- in which R⁷ is C₁₋₆alkyl.
- 9. A compound according to claim 1 which is selected from the group consisting of
 5 E1 E 51 or a pharmaceutically acceptable derivative thereof.
 - 10. A compound according to claim 1 which is selected from the group consisting of E5, E9, E32, E41, E42 and E51 or a pharmaceutically acceptable derivative thereof.
- 10 11. A process for the preparation of a compound of formula (I) which comprises hydrolysis of a carboxylic acid ester derivative of formula (II):

$$(R^{1})_{m}$$

$$(CH_{2})_{t}$$

$$(R^{2})_{n}$$

$$(CH_{2})_{t}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

in which R¹ - R⁴, m, n, p, t, A, B, D, L, J, Q, V, W, X, Y and Z are as defined in formula (I)
and R is a group capable of forming a carboxylic acid ester and optionally thereafter forming a pharmaceutically acceptable derivative thereof.

- 12. A compound according to any one of claims 1 to 10 for use in therapy.
- 20 13. A pharmaceutical composition which comprises a therapeutically effective amount of a compound according to any one of claims 1 to 10 or a pharmaceutically acceptable salt thereof in admixture with a pharmaceutically acceptable carrier or diluent.
- 14. A pharmaceutical composition comprising a compound according to any one of
 25 claims 1 10 or a pharmaceutically acceptable derivative thereof together with another therapeutically active agent.

- 15. The use of a compound according to any one of claims 1 to 10 in the manufacture of a medicament for use in the treatment or prophylaxis of conditions in which an inhibitor of α_4 mediated cell adhesion is beneficial.
- 5 16. A method for the treatment or prophylaxis of conditions in which an inhibitor of α_4 mediated cell adhesion is beneficial which comprises administering to a patient in need thereof a safe and effective amount of a compound according to any one of claims 1 to 10.
- 17. The method according to claim 16, wherein said condition is selected from the 10 group consisting of rheumatoid arthritis; asthma; allergic conditions; adult respiratory distress syndrome; AIDS-dementia; Alzheimer's disease; cardiovascular diseases; thrombosis or harmful platelet aggregation; reocclusion following thrombolysis; reperfusion injury; skin inflammatory diseases; diabetes; multiple sclerosis; systemic lupus erythematosus; inflammatory bowel disease; diseases associated with leukocyte 15 infiltration to the gastrointestinal tract; diseases associated with leukocyte infiltration to epithelial lined tissues; pancreatitis; mastitis; hepatitis; cholecystitis; cholangitis or pericholangitis; bronchitis; sinusitis; inflammatory diseases of the lung; collagen disease; sarcoidosis; osteoporosis; osteoarthritis; atherosclerosis; neoplastic diseases; wound; eye diseases; Sjogren's syndrome; rejection after organ transplantation; host vs. graft or graft 20 vs. host diseases; intimal hyperplasia; arteriosclerosis; reinfarction or restenosis after surgery; nephritis; tumor angiogenesis; malignant tumor; multiple myeloma and myelomainduced bone resorption; sepsis, central nervous system injury and Meniere's disease.
- 18. The method according to claim 16, wherein said condition is asthma, allergic conditions, inflammatory bowel disease, rheumatoid arthritis, atopic dermatitis, multiple sclerosis or rejection after organ transplantation.