Analyzing Signals

Fourier transform

- frequency content
- linear combination of $sin(\omega t)$ and $cos(\omega t)$

Spectrum

Spectrum

Spectrum

Localized Analysis

Gabor (1940)

- time frequency analysis
- windowed Fourier transform

Gabor Transform

Find

 \blacksquare frequency ω in the vicinity of b

Gabor Transform

Gabor Transform

Problems

- discrete version very difficult to find
- no fast transform
- fixed window size!

Solution

- large windows for low frequencies
- small windows for high frequencies

Gabor Transform

Wavelets

Translates and dilates of one function

$$\psi\!\!\left(\frac{\boldsymbol{x}-\boldsymbol{b}}{\boldsymbol{a}}\right)$$

Mother wavelet

- local in space
- local in frequency
 - smooth: no high frequencies
 - integral zero: no low frequencies

Wavelets

Wavelet Transform

Find

scale a at location b

Wavelet Transform

Summary

Fourier analysis

■ global frequency properties

Picking out local phenomena

■ windowed Fourier transform: Gabor

Wavelets

■ window varies with frequency

Making it Practical

A simple example

■ Haar transform

Building more powerful transforms

■ Lifting scheme

Generalizations

making it work on general domains