

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ELECTROTECNIA LICENCIATURA EM ENGENHARIA INFORMÁTICA ENGENHARIA DE SOFTWARE II

Relatório de Projecto De Interoperabilidade

Data início: 18/09/2024

Data fim prevista: 14/11/2024

Estudante: Docentes:

Lino, Miro Pedro Tipaneque

Sérgio Mavie Kalid Bapú

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ELECTROTECNIA LICENCIATURA EM ENGENHARIA INFORMÁTICA ENGENHARIA DE SOFTWARE II

Relatório de Projecto De Interoperabilidade

Data início: 18/09/2024

Data fim prevista: 14/11/2024

Estudante:

Lino, Miro Pedro Tipaneque

Índice

1. Introdução
2. Objectivos
Geral5
Específicos
3. Revisão de Conceitos
3.1. Sistemas de Informação Académica
3.2. Certificados Académicos 6
3.3. Interoperabilidade entre Sistemas
3.4. Plataforma X-Road7
3.5. API (Interface de Programação de Aplicações)
3.6. Desenvolvimento de Sistemas Informatizados
4. Metodologia
4.1. Estrutura Organizacional do Projecto
4.2. Metodologia Scrum Aplicada no Projecto9
4.3. Ferramentas de Apoio
4.4. Desafios Enfrentados
5. Actividades Desenvolvidades
6. Principais Conquistas
7. Desafios e riscos
8. Necessidade e suporte
9. Avaliação da cadeira
10. Conclusão
11. Referências: 18
12 Apêndices 19

1. Introdução

Introdução

A gestão académica eficiente é um dos pilares fundamentais para o sucesso de qualquer instituição de ensino superior. Na Universidade Eduardo Mondlane, a digitalização dos processos tornou-se indispensável para atender à crescente demanda por eficiência, segurança e acessibilidade. Este projeto teve como objetivo principal desenvolver dois sistemas interconectados: o Sistema de Gestão de Estudantes, para gerir informações académicas, e o Sistema de Emissão de Certificados, para automatizar a geração de certificados académicos.

A interoperabilidade entre os sistemas foi implementada utilizando a plataforma X-Road, que permite a troca segura de dados entre diferentes sistemas. O projeto, conduzido por estudantes da Faculdade de Engenharia, reflete um esforço colaborativo para solucionar os desafios enfrentados pela universidade, como o excesso de processos manuais, atrasos e inconsistências na emissão de documentos.

Ao longo do desenvolvimento, foram utilizados métodos ágeis para garantir a entrega de soluções funcionais e adaptáveis às necessidades da universidade, com foco em inovação, segurança e eficiência administrativa. Este relatório apresenta as etapas do projeto, os resultados alcançados, bem como os desafios superados para transformar a gestão académica na instituição.

2. Objectivos

Geral

• Desenvolver e implementar dois sistemas interoperáveis – o Sistema de Gestão de Estudantes e o Sistema de Emissão de Certificados – utilizando a plataforma X-Road, visando a digitalização, automação e integração segura dos processos acadêmicos da Universidade Eduardo Mondlane, com foco na melhoria da eficiência administrativa e redução de erros operacionais.

Específicos

- Automatizar a gestão de dados académicos: Criar um Sistema de Gestão de Estudantes que permita o cadastro, consulta e atualização eficiente das informações académicas, como matrículas, disciplinas e notas.
- Digitalizar a emissão de certificados: Desenvolver um Sistema de Emissão de Certificados que automatize o processo de geração e validação de certificados académicos, garantindo a confiabilidade e segurança dos documentos.
- Implementar a interoperabilidade: Utilizar a plataforma X-Road para integrar os dois sistemas, permitindo a troca segura de dados entre eles, especialmente no acesso às informações de notas e disciplinas.

3. Revisão de Conceitos

A revisão de conceitos é fundamental para contextualizar e fundamentar os aspectos técnicos e teóricos que sustentam o desenvolvimento do Sistema de Emissão de Certificados (SISEC). Nesta secção, serão abordados os conceitos-chave relacionados à gestão académica, interoperabilidade, sistemas de informação e tecnologias utilizadas.

3.1. Sistemas de Informação Académica

Os sistemas de informação académica são ferramentas computacionais projetadas para gerir e automatizar processos administrativos e pedagógicos em instituições de ensino. Esses sistemas centralizam informações sobre estudantes, disciplinas, notas, cursos e demais dados académicos, promovendo maior eficiência e organização.

Segundo Laudon & Laudon (2020), "os sistemas de informação são essenciais para gerir dados e transformar informações em conhecimento, facilitando a tomada de decisões e optimizando processos administrativos".

No contexto deste projecto, o SIGE é o responsável por armazenar e processar os dados académicos, sendo essencial para alimentar o Sistema de Emissão de Certificados (SISEC).

Beneficios:

- ✓ Redução de erros humanos associados à gestão manual.
- ✓ Centralização e padronização de informações.
- ✓ Aumento da eficiência operacional.

3.2. Certificados Académicos

Os certificados académicos são documentos oficiais emitidos por instituições de ensino que atestam a conclusão de cursos, disciplinas ou actividades específicas. Eles devem conter informações precisas e verificáveis, como nome do estudante, curso, disciplinas concluídas, e data de emissão.

De acordo com Oliveira (2018), "a digitalização dos certificados académicos reduz custos, aumenta a segurança e facilita o acesso, atendendo às demandas de um mundo cada vez mais informatizado".

Características dos Certificados Académicos Digitalizados:

Formato padrão e padronizado.

Inclusão de mecanismos de autenticação, como QR codes ou códigos de

validação.

Disponibilidade em formatos físico e digital (PDF).

3.3. Interoperabilidade entre Sistemas

A interoperabilidade é a capacidade de diferentes sistemas e organizações trabalharem

em conjunto de maneira eficiente e segura, compartilhando dados e processos.

Segundo Gottschalk (2009), "a interoperabilidade é um aspecto crítico para sistemas

complexos, permitindo a integração de serviços e a troca de dados de maneira segura

e escalável".

No projecto, a interoperabilidade é implementada pela plataforma X-Road, que

conecta o SIGE ao SISEC.

3.4. Plataforma X-Road

X-Road é uma infraestrutura de troca de dados segura e padronizada, que permite a

comunicação entre diferentes sistemas de forma confiável.

Segurança: Garante criptografia e autenticação em todas as comunicações.

Escalabilidade: Suporta o crescimento do sistema e o aumento no número de

transações.

Auditabilidade: Regista todas as transações realizadas entre os sistemas.

3.5. API (Interface de Programação de Aplicações)

Uma API (Application Programming Interface) é um conjunto de definições e

protocolos que permitem que diferentes sistemas se comuniquem entre si. No

contexto do projecto, a API do SIGE disponibiliza os dados necessários para o SISEC

consultar as informações académicas.

7

Características da API:

✓ **RESTful APIs**: Adotadas pela simplicidade e compatibilidade com protocolos HTTP.

✓ **Documentação:** Necessária para facilitar a integração e manutenção.

✓ **Segurança:** Uso de autenticação por tokens para garantir que apenas sistemas autorizados acessem os dados.

Como citado por Fielding (2000), "as APIs RESTful são amplamente utilizadas devido à sua simplicidade, escalabilidade e eficiência em sistemas distribuídos".

3.6. Desenvolvimento de Sistemas Informatizados

A construção de sistemas informatizados segue metodologias ágeis, como Scrum, para garantir que os requisitos sejam atendidos de maneira eficiente.

Etapas de Desenvolvimento:

i. Levantamento de Requisitos: Identificação de necessidades e funcionalidades.

ii. **Modelagem do Sistema:** Definição da arquitetura, banco de dados e fluxos de informação.

iii. **Implementação:** Codificação das funcionalidades com linguagens modernas e ferramentas adequadas.

iv. **Testes:** Verificação e validação para garantir o funcionamento correto.

v. **Implantação:** Integração do sistema no ambiente operacional.

De acordo com Schwaber & Sutherland (2020), "metodologias ágeis permitem que equipas entreguem software funcional com maior eficiência, respondendo rapidamente a mudanças nos requisitos".

4. Metodologia

Para garantir a organização, a eficiência e a qualidade no desenvolvimento, foi adoptada uma metodologia ágil, baseada principalmente no framework **Scrum**. Essa metodologia foi escolhida por ser amplamente utilizada em projectos de desenvolvimento de software devido à sua capacidade de promover a colaboração,

priorização de tarefas e entrega incremental de funcionalidades. Além disso, considerando a divisão do grupo em subgrupos especializados, o Scrum permite flexibilidade e integração contínua das equipas.

4.1. Estrutura Organizacional do Projecto

A turma foi dividida em dois grupos principais:

Grupo 1: Desenvolvimento do Sistema de Gestão de Estudantes (SIGE).

Grupo 2: Desenvolvimento do Sistema de Emissão de Certificados (SISEC).

Responsáveis pelo cada área

Sistemas	Backend	Frontend	Administração	Cybersecurity
SISEC	Tembe, Hector	Macaneta, Lino	Deve, Yuren	Pacule, Manuel
SIGE	Da Fonseca,	Bata, Isidro	Nhachengo,	Sabão, Karen
	Clifton		Diana	

Tabela 1: Responsáveis

Essa divisão permitiu que cada equipa se concentrasse em sua área de especialização, promovendo maior produtividade e qualidade nas entregas.

4.2. Metodologia Scrum Aplicada no Projecto

4.2.1. Papéis no Projecto

- i. **Product Owner:** Representado pelo Docente, **Sérgio Mavie**, que definiu os objectivos do sistema e priorizou os requisitos de acordo com as necessidades da instituição.
- ii. Scrum Masters: Miro Pedro, Amosse Jasse e Adwilson Taquedir como gedtores principais que coordenaram a execução das tarefas, remoção impedimentos e garantia da aplicabilidade coerente da metodologia.
- iii. **Equipas de Desenvolvimento:** Formadas pelos subgrupos (backend, frontend, administração e cybersecurity), que executaram as tarefas específicas.

4.2.2. Etapas do Scrum no Projecto:

i. planeamento do Sprint (Sprint Planning):
 No início de cada sprint (um ciclo de trabalho com duração de 1 a 2 semanas),
 as equipas se reuniram para:

- ✓ Definir as funcionalidades a serem desenvolvidas.
- ✓ Dividir as tarefas em itens menores e atribuí-los aos membros do grupo.
- ✓ Estabelecer metas claras para cada sprint.

ii. Reuniões Diárias (Daily-Standups):

Cada equipa realizou reuniões rápidas (15 minutos) para:

- ✓ Relatar o que foi feito no dia anterior.
- ✓ Compartilhar o que seria feito no dia atual.
- ✓ Identificar e discutir possíveis impedimentos.

iii. Desenvolvimento Iterativo:

As tarefas foram divididas em ciclos curtos e iterativos, permitindo a entrega incremental de funcionalidades.

- ✓ O grupo de Backend focou na criação de APIs REST para atender às solicitações do Frontend e garantir a integração com o banco de dados.
- ✓ O grupo de Frontend desenvolveu e testou as interfaces do usuário, garantindo responsividade e usabilidade.
- ✓ Os grupos de Administração e CyberSecurity concentraram-se na configuração segura e no teste de interoperabilidade via X-Road.

iv. Revisão do Sprint (Sprint Review):

- ✓ Ao final de cada sprint, as equipas apresentaram os resultados ao Product Owner e aos colegas.
- ✓ O feedback recebido foi incorporado aos sprints subsequentes.
- ✓ Alterações ou melhorias foram priorizadas e planeadas para os próximos ciclos.

v. Retrospectiva do Sprint (Sprint Retrospective):

Após cada sprint, as equipas avaliaram:

- ✓ O que funcionou bem.
- ✓ O que poderia ser melhorado.
- ✓ Planos de ação para aumentar a produtividade e minimizar problemas futuros.

4.3. Ferramentas de Apoio

Durante o projecto, várias ferramentas foram utilizadas para apoiar a metodologia ágil e o trabalho colaborativo:

Ferramenta	Descrição
Trello	Para gestão de tarefas e acompanhamento do progresso dos sprints.
GitHub	Para controle de versão e integração contínua do código.
Postman	Para testar e validar as APIs desenvolvidas pelo grupo de Backend.
Docker	Para padronização de ambientes e garantir que os sistemas funcionem uniformemente em diferentes plataformas.

Tabela 2: Ferramentas de apoio

4.4. Desafios Enfrentados

Apesar das vantagens do Scrum, o projecto enfrentou alguns desafios:

- ♦ Coordenação entre Subgrupos: A integração entre o backend e o frontend exigiu um alinhamento constante para evitar incompatibilidades.
- ♦ Aprendizado da Plataforma X-Road: A configuração inicial e o entendimento dos mecanismos de segurança da X-Road demandaram mais tempo do que o previsto.
- ♦ Gestão de Conflitos de Agenda: Com a participação de vários membros em diferentes equipas, a coordenação de horários foi um desafio.

5. Actividades Desenvolvidades

Abaixo temos tabela de actividades para o projecto, incluindo os responsáveis por cada subgrupo, as actividades realizadas e as datas correspondentes.

Actividade	Subgrupo Responsável	Responsável	Data de Início	Data de Término	Descrição
Planeamento do projecto	Todos	Todos	18/09/2024	20/09/2024	Reuniões iniciais para definir escopo, requisitos e divisão de tarefas.
Configuração do ambiente de backend	Backend	Hector Tembe	21/09/2024	28/09/2024	Instalação e configuração do Laravel, banco de dados e preparação de

					endpoints
					iniciais.
Desenvolvimento	Frontend	Gabriel	21/09/2024	05/10/2024	Criação das
do frontend		Nhambire			interfaces básicas
inicial					em ReactJS,
					incluindo telas de
					login e
					solicitação.
Integração inicial		Yuren Deve	28/09/2024	06/10/2024	Configuração
com X-Road					inicial da
	Administração				interoperabilidade
					entre sistemas
					utilizando a
					plataforma X-
					Road.
Implementação	Cibersegurança	Manuel	28/09/2024	08/10/2024	Configuração de
de medidas de	,	Pacule			certificados
segurança					digitais e
,					políticas de
					acesso seguro.
Desenvolvimento	Backend	Hector	29/09/2023	12.10/2024	Desenvolvimento
de endpoints de		Tembe			de APIs REST
API					para atender às
					funcionalidades
					de emissão de
					certificados.
Desenvolvimento	Frontend	Gabriel	06/10/2024	15/10/2024	Implementação
avançado de		Nhambiri			de
frontend					funcionalidades
					detalhadas e
					integração com
					APIs do backend.
Testes de	Administração	Yuren Deve	09/10/2024	20/10/2024	Testes para
interoperabilidade					validar a
					comunicação
					entre sistemas
					utilizando X-
					Road.
Auditoria de	Cibersegurança	Manuel	16/10/2024	22/10/2024	

segurança do sistema		Pacule			Verificação das vulnerabilidades e melhorias na segurança dos dados trocados.
Testes funcionais e ajustes	Todos	Todos	23/10/2024	06/11/2024	Validação das funcionalidades desenvolvidas e correção de erros.
Documentação do sistema	Todos	Todos	07/11/2024	12/11/2024	Elaboração da documentação técnica e manual do sistema.
Entrega e apresentação final	Todos	Todos	13/11/2024	14/11/2024	Apresentação do projecto para a turma/docente, destacando resultados e desafios superados.

Tabela 3: Actividades realizadas

6. Principais Conquistas

Apesar das dificuldades enfrentadas, o projecto alcançou resultados notáveis, incluindo:

- Desenvolvimento dos Sistemas (SIGE e SISEC): A equipa conseguiu implementar funcionalidades principais, como a emissão automatizada de certificados, integrando o sistema de gestão de estudantes via X-Road.
- Configuração Inicial do X-Road: Mesmo enfrentando limitações técnicas, a equipa de administração conseguiu configurar parcialmente a plataforma, possibilitando a interoperabilidade básica entre os sistemas.
- Capacitação em Novas Tecnologias: Os membros do backend e frontend desenvolveram maior proficiência em Laravel e ReactJS, o que representou um aprendizado significativo.

7. Desafios e Riscos

I. Equipa de Administração

- a) **Falta de Conhecimento Técnico:** A falta de familiaridade com o X-Road dificultou a configuração da interoperabilidade.
- b) **Hardware Insuficiente:** A incapacidade de executar a virtualização do Ubuntu devido à falta de computadores com memória RAM suficiente atrasou o progresso.

II. Equipa de Backend

a) Aprendizado do Laravel: Muitos membros da equipa não possuíam experiência prévia com Laravel, o que resultou em atrasos no desenvolvimento das APIs.

III. Equipa de Frontend:

a) Integração Frontend e Backend: Dificuldades em conectar as interfaces desenvolvidas com os endpoints do backend prejudicaram o fluxo de dados esperado.

IV. Gestão do Projecto

- a) Gestão de Problemas Técnicos: Os gestores enfrentaram desafios significativos ao tentar resolver os problemas técnicos das equipas, especialmente por não possuírem total domínio de todas as ferramentas usadas.
- b) Gestão do Tempo: Ajustar o cronograma às dificuldades técnicas foi um desafio constante.

Riscos Identificados:

- a) Atraso no Prazo: As dificuldades técnicas poderiam comprometer o prazo final do projecto.
- b) Falhas na Interoperabilidade: Caso o X-Road não fosse configurado corretamente, o principal objectivo do projecto (emissão de certificados automatizada) não seria alcançado.
- c) **Desmotivação das Equipas:** As barreiras técnicas e a pressão por resultados poderiam desmotivar os membros, afetando a produtividade.

8. Necessidades e Suporte

As necessidades identificadas foram:

- a) Capacitação Técnica: Treinamento em X-Road para a equipa de administração, abordando tanto a configuração quanto a integração segura. Cursos ou workshops sobre Laravel e ReactJS para as equipas de backend e frontend, reduzindo a curva de aprendizado.
- b) **Melhoria de Hardware:** Computadores com maior capacidade de RAM e processamento para suportar ambientes de virtualização e ferramentas de desenvolvimento mais avançadas.
- c) **Documentação Técnica:** Acesso a guias e manuais detalhados sobre Laravel, ReactJS e X-Road para facilitar a resolução de problemas.

O suporte que se achou necessários foi:

- *a)* Orientação de Especialistas: Consultores externos ou profissionais com experiência em X-Road poderiam auxiliar na configuração e na superação de dificuldades técnicas. Mentores em Laravel e ReactJS poderiam ajudar as equipas de backend e frontend a resolver problemas complexos.
- b) **Recursos Financeiros:** Investimentos para adquirir hardware adequado e financiar capacitações técnicas para os membros do projecto.

9. Avaliação da Cadeira

A cadeira de Engenharia de Software II ofereceu uma oportunidade prática de aplicar conceitos fundamentais de desenvolvimento de sistemas em um projecto desafiador e interconectado. A experiência proporcionou uma compreensão mais profunda sobre:

I. Gestão de Projectos:

- ✓ O uso de técnicas para planeamento e divisão de tarefas, incluindo a aplicação de metodologias ágeis como Scrum, contribuiu para organizar os esforços das equipas.
- ✓ No entanto, as dificuldades na gestão de problemas técnicos evidenciaram a importância de maior treinamento em liderança e resolução de crises.

II. Trabalho em Equipa

- ✓ A divisão de responsabilidades entre subgrupos (backend, frontend, administração e cibersegurança) refletiu a dinâmica do trabalho colaborativo no setor de TI.
- ✓ A necessidade de comunicação eficiente destacou a relevância de boas práticas de integração entre equipas.

III. Tecnologias Utilizadas

- ✓ Ferramentas como Laravel, ReactJS e X-Road foram desafiadoras, mas enriqueceram o aprendizado, proporcionando competências práticas que podem ser aplicadas em contextos reais.
- ✓ As limitações técnicas enfrentadas por algumas equipas também demonstraram a importância de preparar o ambiente tecnológico antes de iniciar um projecto.

Apesar dos desafios encontrados, a cadeira incentivou os estudantes a buscar soluções criativas, trabalhar sob pressão e desenvolver habilidades que vão além da programação, incluindo gestão de recursos e colaboração interdisciplinar.

10. Conclusão

O projecto de interoperabilidade entre o Sistema de Gestão de Estudantes e o Sistema de Emissão de Certificados representa um marco significativo na modernização dos processos académicos da Universidade Eduardo Mondlane. Ao integrar tecnologia de ponta, como a plataforma X-Road, o projecto não apenas automatizou processos críticos, mas também promoveu segurança, eficiência e confiabilidade na gestão académica.

Embora desafios técnicos e organizacionais tenham surgido durante a execução, as equipes demonstraram resiliência e adaptabilidade, superando limitações e alcançando os objetivos propostos. Os resultados evidenciam o potencial da digitalização para transformar a gestão académica, criando uma base sólida para futuras inovações na universidade.

As principais lições aprendidas incluem:

- A importância do planeamento detalhado e da preparação técnica antes de iniciar um projecto.
- O valor da comunicação eficiente e da colaboração entre equipas multidisciplinares.
- A necessidade de investir em capacitação contínua para lidar com tecnologias emergentes.

11. Referências

Fielding, R. T. (2000). Architectural Styles and the Design of Networkbased Software Architectures.

Gottschalk, P. (2009). Maturity Model for IT Interoperability in Digital Government.

Laudon, K. C., & Laudon, J. P. (2020). Management Information Systems: Managing the Digital Firm.

Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of Applied Cryptography.

Oliveira, A. S. (2018). Digital Transformation in Education: Opportunities and Challenges.

Schwaber, K., & Sutherland, J. (2020). The Scrum Guide.

Stallings, W. (2020). Cryptography and Network Security: Principles and Practice.

APÊNDICES

WBS DO SIGE

WBS DO SISEC

Produto final

