KNN Workbook for CS145 Homework 3

PRINT YOUR NAME AND UID HERE!

NAME: [Wong, Kai] UID: [704451679]

Please follow the notebook linearly to implement k-nearest neighbors.

Please print out the workbook entirely when completed.

The goal of this workbook is to give you experience with the data, training and evaluating a simple classifier, k-fold cross validation, and as a Python refresher.

Import the appropriate libraries

```
In [1]: import numpy as np # for doing most of our calculations
    import matplotlib.pyplot as plt# for plotting
    from cs145.data_utils import load_CIFAR10 # function to load the CIFAR-10 data
    set.

# Load matplotlib images inline
    %matplotlib inline

# These are important for reloading any code you write in external .py files.
    # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipyt
    hon
    %load_ext autoreload
    %autoreload 2
```

```
In [2]: # Set the path to the CIFAR-10 data
    cifar10_dir = './cs145/datasets/cifar-10-batches-py'
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
    print('Training data shape: ', X_train.shape)
    print('Training labels shape: ', y_train.shape)
    print('Test data shape: ', X_test.shape)
    print('Test labels shape: ', y_test.shape)
Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
```

Test data shape: (10000, 32, 32, 3)

Test labels shape: (10000,)

```
In [3]: # Visualize some examples from the dataset.
        # We show a few examples of training images from each class.
        classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'shi
        p', 'truck']
        num_classes = len(classes)
        samples_per_class = 7
        for y, cls in enumerate(classes):
            idxs = np.flatnonzero(y train == y)
            idxs = np.random.choice(idxs, samples_per_class, replace=False)
            for i, idx in enumerate(idxs):
                plt_idx = i * num_classes + y + 1
                 plt.subplot(samples_per_class, num_classes, plt_idx)
                 plt.imshow(X_train[idx].astype('uint8'))
                 plt.axis('off')
                if i == 0:
                    plt.title(cls)
        plt.show()
```



```
In [4]: # Subsample the data for more efficient code execution in this exercise
    num_training = 5000
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]

    num_test = 500
    mask = list(range(num_test))
    X_test = X_test[mask]
    y_test = y_test[mask]

# Reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    print(X_train.shape, X_test.shape)
```

(5000, 3072) (500, 3072)

K-nearest neighbors

In the following cells, you will build a KNN classifier and choose hyperparameters via k-fold cross-validation.

```
In [5]: # Import the KNN class
    from lib import KNN

In [6]: # Declare an instance of the knn class.
    knn = KNN()

# Train the classifier.
    # We have implemented the training of the KNN classifier.
    # Look at the train function in the KNN class to see what this does.
    knn.train(X=X_train, y=y_train)
```

Questions

- (1) Describe what is going on in the function knn.train().
- (2) What are the pros and cons of this training step of KNN?

Answers

- (1) Lazy Learning (instance-based learning): Simply stores training data and waits until given a test tuple.
- (2) Pros: Lazy Learning effectively uses a richer hypthesis space since it uses many local linear functions to form an implicit global approximation to the target function. On the other hand, Eager Learning must commit to a single hypothesis that covers the entire instance space and may therefore result in a less accurate classifier.

Cons: Lazy Learning takes up less time in training but more time in predicting/inference compared to Eager Learning.

KNN prediction

In the following sections, you will implement the functions to calculate the distances of test points to training points, and from this information, predict the class of the KNN.

```
In [7]: # Implement the function compute_distances() in the KNN class.
# Do not worry about the input 'norm' for now; use the default definition of t
he norm
# in the code, which is the 2-norm.
# You should only have to fill out the clearly marked sections.

import time
time_start =time.time()

dists_L2 = knn.compute_distances(X=X_test)

print('Time to run code: {}'.format(time.time()-time_start))
print('Frobenius norm of L2 distances: {}'.format(np.linalg.norm(dists_L2, 'fro')))
```

Time to run code: 21.693020582199097 Frobenius norm of L2 distances: 7906696.077040902

Really slow code

Note: This probably took a while. This is because we use two for loops. We could increase the speed via vectorization, removing the for loops. Normally it may takes 20-40 seconds.

If you implemented this correctly, evaluating np.linalg.norm(dists L2, 'fro') should return: ~7906696

KNN vectorization

The above code took far too long to run. If we wanted to optimize hyperparameters, it would be time-expensive. Thus, we will speed up the code by vectorizing it, removing the for loops.

```
In [9]: # Implement the function compute_L2_distances_vectorized() in the KNN class.
# In this function, you ought to achieve the same L2 distance but WITHOUT any
for Loops.
# Note, this is SPECIFIC for the L2 norm.

time_start =time.time()
dists_L2_vectorized = knn.compute_L2_distances_vectorized(X=X_test)
print('Time to run code: {}'.format(time.time()-time_start))
print('Difference in L2 distances between your KNN implementations (should be
0): {}'.format(np.linalg.norm(dists_L2 - dists_L2_vectorized, 'fro')))
Time to run code: 0.22140717506408691
Difference in L2 distances between your KNN implementations (should be 0): 0.
```

0

Speedup

Depending on your computer speed, you should see a 20-100x speed up from vectorization and no difference in L2 distances between two implementations.

On our computer, the vectorized form took 0.20 seconds while the naive implementation took 26.88 seconds.

Implementing the prediction

Now that we have functions to calculate the distances from a test point to given training points, we now implement the function that will predict the test point labels.

```
In [19]: # Implement the function predict labels in the KNN class.
      # Calculate the training error (num_incorrect / total_samples)
      # from running knn.predict labels with k=1
      error = 1
      # YOUR CODE HERE:
         Calculate the error rate by calling predict labels on the test
         data with k = 1. Store the error rate in the variable error.
      predictions = knn.predict_labels(dists_L2_vectorized, k=1)
      total_samples = len(predictions)
      num correct = np.count nonzero(predictions==y test)
      error = (total_samples - num_correct) / total_samples
      # ----- #
      # END YOUR CODE HERE
      print(error)
```

0.726

If you implemented this correctly, the error should be: 0.726. This means that the k-nearest neighbors classifier is right 27.4% of the time, which is not great.

Optimizing KNN hyperparameters

In this section, we'll take the KNN classifier that you have constructed and perform cross-validation to choose a best value of k, as well as a best choice of norm.

Create training and validation folds

First, we will create the training and validation folds for use in k-fold cross validation.

```
In [20]:
      # Create the dataset folds for cross-valdiation.
      num folds = 5
      X_train_folds = []
      y_train_folds = []
      # YOUR CODE HERE:
         Split the training data into num folds (i.e., 5) folds.
         X_train_folds is a list, where X_train_folds[i] contains the
      #
           data points in fold i.
         y train folds is also a list, where y train folds[i] contains
           the corresponding labels for the data in X_train_folds[i]
      X_train_folds = np.array_split(X_train, num_folds)
      y_train_folds = np.array_split(y_train, num_folds)
      # END YOUR CODE HERE
      X train folds = np.asarray(X train folds)
      y_train_folds = np.asarray(y_train_folds)
```

Optimizing the number of nearest neighbors hyperparameter.

In this section, we select different numbers of nearest neighbors and assess which one has the lowest k-fold cross validation error.

```
In [28]: | time start = time.time()
        ks = [1, 3, 5, 7, 10, 15, 20, 25, 30]
        # YOUR CODE HERE:
           Calculate the cross-validation error for each k in ks, testing
           the trained model on each of the 5 folds. Average these errors
           together and make a plot of k vs. cross-validation error. Since
           we are assuming L2 distance here, please use the vectorized code!
           Otherwise, you might be waiting a long time.
        results = np.zeros(len(ks))
        # Your implementation
        for i,k in enumerate(ks):
           temp_results = []
           for fold_i in range(num_folds):
               # Partition data for cross-validation
              test_X = X_train_folds[fold_i]
              test_y = y_train_folds[fold_i]
               train X = np.concatenate(np.delete(X train folds, fold i, 0))
               train_y = np.concatenate(np.delete(y_train_folds, fold_i, 0))
               # Compute new L2 matrix and predictions
               new knn = KNN()
               new_knn.train(X=train_X, y=train_y)
               new dists = new knn.compute L2 distances vectorized(X=test X)
               new_preds = new_knn.predict_labels(new_dists, k=k)
               # Compute accuracy
               samples = len(new preds)
               corrects = np.count nonzero(new preds==test y)
               new error = (samples - corrects) / samples
               temp results.append(new error)
           results[i] = np.average(temp results)
        ks min = ks[np.argsort(results)[0]]
        results_min = min(results)
        print('Set k = {0} and get minimum error as {1}'.format(ks_min,results_min))
        # Plot of k vs. cross-validation error
        plt.plot(ks,results)
        plt.xlabel('ks')
        plt.ylabel('Average Cross Validation Error')
        plt.show()
        # END YOUR CODE HERE
        print('Computation time: %.2f'%(time.time()-time_start))
```

Set k = 10 and get minimum error as 0.7198

Computation time: 22.57

Questions:

- (1) What value of k is best amongst the tested k's?
- (2) What is the cross-validation error for this value of k?

Answers:

- (1) k = 10 gave the best accuracy among the tested k's.
- (2) The cross-validation error for k = 10 is 0.7198.

Evaluating the model on the testing dataset.

Now, given the optimal k and norm you found in earlier parts, evaluate the testing error of the k-nearest neighbors model.

```
In [29]:
      error = 1
      # YOUR CODE HERE:
        Evaluate the testing error of the k-nearest neighbors classifier
         for your optimal hyperparameters found by 5-fold cross-validation.
      opt knn = KNN()
      opt knn.train(X=X_train, y=y_train)
      opt_dists = opt_knn.compute_L2_distances_vectorized(X=X_test)
      opt_preds = opt_knn.predict_labels(opt_dists, k=ks_min)
      # Compute new accuracy
      opt_samples = len(opt_preds)
      opt_corrects = np.count_nonzero(opt_preds==y_test)
      error = (opt_samples - opt_corrects) / opt_samples
      # END YOUR CODE HERE
      print('Error rate achieved: {}'.format(error))
```

Error rate achieved: 0.718

Question:

How much did your error improve by cross-validation over naively choosing k=1 and using the L2-norm?

Answer:

Naive (k = 1, L2-norm): Error was 0.726.

Optimal (k = 10, L2-norm): Error is 0.718. There is an improvement of 0.008.

The End of KNN Workbook

Please export this workbook as PDF file (see instructions) after completion.