Caracterización de la atenuación y la permitividad en líneas de transmisión

Luis Guillermo Macias Rojas

17 de febrero de 2025

Resumen: En este trabajo se presenta la metodología y resultados obtenidos en la caracterización de la atenuación (α) y la permitividad relativa (ε_{Γ}) en líneas de transmisión a partir de datos experimentales obtenidos en el laboratorio. Para la extracción de las componentes de disipación (α_c, α_d) y dispersión $(\beta c, \beta d)$ se realizó una regresión lineal considerando un modelo donde el conductor se supone liso y la línea de transmisión de bajas pérdidas. Los resultados obtenidos muestran una frecuencia de *cross-over* f_{θ} = 27.42 GHz y una permitividad relativa ε_{Γ} que se satura alrededor de 1.87.

Introducción

La disipación (α) y la dispersión (β) en líneas de transmisión son fenómenos que se presentan en la propagación de ondas electromagnéticas a través de un medio conductor. Este trabajo describe la extracción de estos parámetros fundamentales en la caracterización de líneas de transmisión.

Metodología

La extracción de α_c , α_d , β_c y β_d parte de un modelo para líneas de transmisión de bajas pérdidas que puede ser descrito por las ecuaciones (1) y (2).

$$\alpha = \underbrace{\frac{K_s \sqrt{f}}{2Z(s)_{\mathbb{R}}}}_{\alpha_c} + \underbrace{\frac{G}{2}Z(s)_{\mathbb{R}}}_{\alpha_d} \tag{1}$$

$$\beta = \underbrace{\frac{K_s \sqrt{f}}{2Z(s)_{\mathbb{R}}}}_{\beta_c} + \underbrace{\frac{\omega}{\nu_p}}_{\beta_d} \qquad \beta_d = \frac{\omega \sqrt{\epsilon_{r'}}}{c}$$
 (2)

Nótese que $\alpha_{\rm C}$ y $\beta_{\rm C}$ son iguales debido a que el conductor se considera liso.

Debido a que todos los parámetros excepto f son constantes pueden ser agrupados en una sola constante (A_{α} , B_{α} , A_{β} y B_{β}) para simplificar términos, si además se reordenan (1) y (2) conforme a la ecuación de la recta (y = mx + b) pueden reescribirse como (3) y (4) respectivamente.

$$\underbrace{\frac{\alpha}{\sqrt{f}}}_{y} = \underbrace{A_{\alpha}}_{b} + \underbrace{B_{\alpha}\sqrt{f}}_{mx} \tag{3}$$

$$\underbrace{\frac{\beta}{\sqrt{f}}}_{y} = \underbrace{A_{\beta}}_{b} + \underbrace{B_{\beta}\sqrt{f}}_{mx} \tag{4}$$

Posteriormente se pueden hallar los coeficientes de (3) y (4) mediante una regresión lineal y de esa manera obtener las componentes del dieléctrico y del conductor.

Conociendo los coeficientes de dispersión se puede hallar la permitividad relativa ($\epsilon_{r'}$) despejándola de la ecuación (2) tal como se muestra en (5).

$$\epsilon_{r'} = \left[c \left(\frac{\beta - A_{\beta} \sqrt{f}}{\omega} \right) \right]^2 \tag{5}$$

Figura 1: Disipación en función de la frecuencia.

Resultados

La figura 1 muestra las componentes de disipación (α_c , α_d) en función de la frecuencia. Se observa que la frecuencia de *cross-over* f_θ es de 27.42 GHz. La figura 2 muestra la permitividad relativa (ϵ_r) en función de la frecuencia. Se observa que a partir de 6 GHz comienza a saturarse en un valor cercano a 1.87 (semejante al valor constante que se habría obtenido erróneamente si no se hubiera considerado la componente de dispersión del conductor β_c).

Figura 2: Permitividad relativa en función de la frecuencia.