16.7 EXERCISES

- **1.** Let S be the boundary surface of the box enclosed by the planes x = 0, x = 2, y = 0, y = 4, z = 0, and z = 6. Approximate $\iint_S e^{-0.1(x+y+z)} dS$ by using a Riemann sum as in Definition 1, taking the patches S_{ij} to be the rectangles that are the faces of the box S and the points P_{ij}^* to be the centers of the rectangles.
- **2.** A surface *S* consists of the cylinder $x^2 + y^2 = 1$, $-1 \le z \le 1$, together with its top and bottom disks. Suppose you know that *f* is a continuous function with

$$f(\pm 1, 0, 0) = 2$$
 $f(0, \pm 1, 0) = 3$ $f(0, 0, \pm 1) = 4$

Estimate the value of $\iint_S f(x, y, z) dS$ by using a Riemann sum, taking the patches S_{ij} to be four quarter-cylinders and the top and bottom disks.

- **3.** Let *H* be the hemisphere $x^2 + y^2 + z^2 = 50$, $z \ge 0$, and suppose *f* is a continuous function with f(3, 4, 5) = 7, f(3, -4, 5) = 8, f(-3, 4, 5) = 9, and f(-3, -4, 5) = 12. By dividing *H* into four patches, estimate the value of $\iint_H f(x, y, z) dS$.
- **4.** Suppose that $f(x, y, z) = g(\sqrt{x^2 + y^2 + z^2})$, where g is a function of one variable such that g(2) = -5. Evaluate $\iint_S f(x, y, z) dS$, where S is the sphere $x^2 + y^2 + z^2 = 4$.
- **5–18** Evaluate the surface integral.
- **5.** $\iint_S x^2 yz \, dS$, S is the part of the plane z = 1 + 2x + 3y that lies above the rectangle $[0, 3] \times [0, 2]$
- **6.** $\iint_S xy \, dS$, S is the triangular region with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2)
- 7. $\iint_S yz \, dS$, S is the part of the plane x + y + z = 1 that lies in the first octant
- **8.** $\iint_S y \, dS$, *S* is the surface $z = \frac{2}{3}(x^{3/2} + y^{3/2})$, $0 \le x \le 1$, $0 \le y \le 1$
- 9. $\iint_S yz \, dS$, *S* is the surface with parametric equations $x = u^2$, $y = u \sin v$, $z = u \cos v$, $0 \le u \le 1$, $0 \le v \le \pi/2$
- **10.** $\iint_{S} \sqrt{1 + x^2 + y^2} \ dS,$ S is the helicoid with vector equation $\mathbf{r}(u, v) = u \cos v \, \mathbf{i} + u \sin v \, \mathbf{j} + v \, \mathbf{k}, \ 0 \le u \le 1, \ 0 \le v \le \pi$
- 11. $\iint_S x^2 z^2 dS$, *S* is the part of the cone $z^2 = x^2 + y^2$ that lies between the planes z = 1 and z = 3
- 12. $\iint_{S} z \, dS,$ S is the surface $x = y + 2z^{2}$, $0 \le y \le 1$, $0 \le z \le 1$

- 13. $\iint_S y \, dS$, S is the part of the paraboloid $y = x^2 + z^2$ that lies inside the cylinder $x^2 + z^2 = 4$
- **14.** $\iint_S y^2 dS$, S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane
- **15.** $\iint_{S} (x^{2}z + y^{2}z) dS$, *S* is the hemisphere $x^{2} + y^{2} + z^{2} = 4$, $z \ge 0$
- **16.** $\iint_S xz \, dS$, S is the boundary of the region enclosed by the cylinder $y^2 + z^2 = 9$ and the planes x = 0 and x + y = 5
- 17. $\iint_S (z + x^2 y) dS$, S is the part of the cylinder $y^2 + z^2 = 1$ that lies between the planes x = 0 and x = 3 in the first octant
- **18.** $\iint_S (x^2 + y^2 + z^2) dS$, S is the part of the cylinder $x^2 + y^2 = 9$ between the planes z = 0 and z = 2, together with its top and bottom disks
- **19–30** Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface S. In other words, find the flux of \mathbf{F} across S. For closed surfaces, use the positive (outward) orientation.
- **I9.** $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$, *S* is the part of the paraboloid $z = 4 x^2 y^2$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$, and has upward orientation
- **20.** $\mathbf{F}(x, y, z) = y\mathbf{i} + x\mathbf{j} + z^2\mathbf{k}$, *S* is the helicoid of Exercise 10 with upward orientation
- **21.** $\mathbf{F}(x, y, z) = xz e^y \mathbf{i} xz e^y \mathbf{j} + z \mathbf{k}$, *S* is the part of the plane x + y + z = 1 in the first octant and has downward orientation
- **22.** $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z^4\mathbf{k}$, *S* is the part of the cone $z = \sqrt{x^2 + y^2}$ beneath the plane z = 1 with downward orientation
- **23.** $\mathbf{F}(x, y, z) = x\mathbf{i} z\mathbf{j} + y\mathbf{k}$, S is the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant, with orientation toward the origin
- **24.** $\mathbf{F}(x, y, z) = xz \mathbf{i} + x \mathbf{j} + y \mathbf{k}$, S is the hemisphere $x^2 + y^2 + z^2 = 25$, $y \ge 0$, oriented in the direction of the positive y-axis
- **25.** $\mathbf{F}(x, y, z) = y\mathbf{j} z\mathbf{k}$, S consists of the paraboloid $y = x^2 + z^2$, $0 \le y \le 1$, and the disk $x^2 + z^2 \le 1$, y = 1
- **26.** $\mathbf{F}(x, y, z) = xy\mathbf{i} + 4x^2\mathbf{j} + yz\mathbf{k}$, *S* is the surface $z = xe^y$, $0 \le x \le 1$, $0 \le y \le 1$, with upward orientation

- **28.** $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + 5\mathbf{k}$, *S* is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2
- **29.** $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$, *S* is the boundary of the solid half-cylinder $0 \le z \le \sqrt{1 y^2}$, $0 \le x \le 2$
- **30.** $\mathbf{F}(x, y, z) = y \mathbf{i} + (z y) \mathbf{j} + x \mathbf{k}$, *S* is the surface of the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1)
- **[AS] 31.** Evaluate $\iint_S xyz \, dS$ correct to four decimal places, where S is the surface z = xy, $0 \le x \le 1$, $0 \le y \le 1$.
- **(AS) 32.** Find the exact value of $\iint_S x^2 yz \ dS$, where *S* is the surface in Exercise 31.
- **33.** Find the value of $\iint_S x^2 y^2 z^2 dS$ correct to four decimal places, where *S* is the part of the paraboloid $z = 3 2x^2 y^2$ that lies above the *xy*-plane.
- (AS **34.** Find the flux of

$$\mathbf{F}(x, y, z) = \sin(xyz)\,\mathbf{i} + x^2y\,\mathbf{j} + z^2e^{x/5}\,\mathbf{k}$$

across the part of the cylinder $4y^2 + z^2 = 4$ that lies above the xy-plane and between the planes x = -2 and x = 2 with upward orientation. Illustrate by using a computer algebra system to draw the cylinder and the vector field on the same screen.

- **35.** Find a formula for $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ similar to Formula 10 for the case where *S* is given by y = h(x, z) and \mathbf{n} is the unit normal that points toward the left.
- **36.** Find a formula for $\iint_S \mathbf{F} \cdot d\mathbf{S}$ similar to Formula 10 for the case where *S* is given by x = k(y, z) and \mathbf{n} is the unit normal that points forward (that is, toward the viewer when the axes are drawn in the usual way).
- **37.** Find the center of mass of the hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$, if it has constant density.
- **38.** Find the mass of a thin funnel in the shape of a cone $z = \sqrt{x^2 + y^2}$, $1 \le z \le 4$, if its density function is $\rho(x, y, z) = 10 z$.

- **39.** (a) Give an integral expression for the moment of inertia I_z about the z-axis of a thin sheet in the shape of a surface S if the density function is ρ .
 - (b) Find the moment of inertia about the *z*-axis of the funnel in Exercise 38.
- **40.** Let *S* be the part of the sphere $x^2 + y^2 + z^2 = 25$ that lies above the plane z = 4. If *S* has constant density *k*, find (a) the center of mass and (b) the moment of inertia about the *z*-axis.
- **41.** A fluid has density 870 kg/m^3 and flows with velocity $\mathbf{v} = z \mathbf{i} + y^2 \mathbf{j} + x^2 \mathbf{k}$, where x, y, and z are measured in meters and the components of \mathbf{v} in meters per second. Find the rate of flow outward through the cylinder $x^2 + y^2 = 4$, $0 \le z \le 1$.
- **42.** Seawater has density 1025 kg/m^3 and flows in a velocity field $\mathbf{v} = y\mathbf{i} + x\mathbf{j}$, where x, y, and z are measured in meters and the components of \mathbf{v} in meters per second. Find the rate of flow outward through the hemisphere $x^2 + y^2 + z^2 = 9$, $z \ge 0$.
- **43.** Use Gauss's Law to find the charge contained in the solid hemisphere $x^2 + y^2 + z^2 \le a^2$, $z \ge 0$, if the electric field is

$$\mathbf{E}(x, y, z) = x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}$$

44. Use Gauss's Law to find the charge enclosed by the cube with vertices $(\pm 1, \pm 1, \pm 1)$ if the electric field is

$$\mathbf{E}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

- **45.** The temperature at the point (x, y, z) in a substance with conductivity K = 6.5 is $u(x, y, z) = 2y^2 + 2z^2$. Find the rate of heat flow inward across the cylindrical surface $y^2 + z^2 = 6$, $0 \le x \le 4$.
- **46.** The temperature at a point in a ball with conductivity *K* is inversely proportional to the distance from the center of the ball. Find the rate of heat flow across a sphere *S* of radius *a* with center at the center of the ball.
- **47.** Let **F** be an inverse square field, that is, $\mathbf{F}(r) = c\mathbf{r}/|\mathbf{r}|^3$ for some constant c, where $r = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Show that the flux of **F** across a sphere S with center the origin is independent of the radius of S.

16.8

STOKES' THEOREM

Stokes' Theorem can be regarded as a higher-dimensional version of Green's Theorem. Whereas Green's Theorem relates a double integral over a plane region D to a line integral around its plane boundary curve, Stokes' Theorem relates a surface integral over a surface S to a line integral around the boundary curve of S (which is a space curve). Figure 1 shows