Let A be in $\mathbb{K}^{D\times D}$. Let s_1,\ldots,s_r be the invariant factors of tI-A, ordered in such a way that s_2 divides s_1 , s_3 divides s_2 , etc, and let $d_i = \deg(s_i)$ for all i; for i > r, we let $s_i = 1$, with $d_i = 0$.

We fix an integer M and we define $\nu = d_1 + \cdots + d_M \leq D$ and $\delta = \lceil \nu/M \rceil \leq \lceil D/M \rceil$. We choose matrices $X, Y \in \mathbb{K}^{D \times M}$, and we let $F_X^{A,Y}$ be the minimal generator in Popov form of the sequence $(X^{\perp} A^i Y)_{i \geq 0}$. We also denote by $\sigma_1, \ldots, \sigma_t$ the invariant factors of $F_X^{A,Y}$, for some $t \leq M$. As above, for i > t, we let $\sigma_i = 1$.

Theorem 1. For a generic choice of X and Y, we have:

- $F_X^{A,Y}$ has degree δ ;
- $s_i = \sigma_i$ for $1 \le i \le M$.

Proof. Let $F^{A,Y}$ be the minimal generating polynomial of the sequence $(A^iY)_{i\geq 0}$. We denote by $\langle Y \rangle$ the vector space generated by the columns of Y, AY, A^2Y, \ldots We also write $N_Y = \dim(\langle Y \rangle)$.

First, we prove that for any Y in $\mathbb{K}^{N\times M}$, for a generic X in $\mathbb{K}^{N\times M}$, $F_X^{A,Y}=F^{A,Y}$. Indeed, by [?, Lemma 4.2], there exists matrices P_Y in $\mathbb{K}^{N\times N_Y}$ and $A_Y\in\mathbb{K}^{N_Y\times N_Y}$, with P_Y of full rank N_Y , and where A_Y is a matrix of the restriction of A to $\langle Y \rangle$, such that $F_X^{A,Y}=F^{A,Y}$ if and only if the dimension of the span of $[Z \ B_Y Z \ B_Y^2 Z \ \cdots]$ is equal to N_Y , with $B_Y=A_Y^{\perp}$ and $Z=P_Y^{\perp}X\in\mathbb{K}^{N_Y\times M}$.

We prove that this is the case for a generic X. By construction, one can find a basis of $\langle Y \rangle$ in which the matrix of A_Y is block-companion, with $M' \leq M$ blocks (take the A_Y -span of the first column of Y, then of the second column, working modulo the previous vector space, etc.) Thus, B_Y is similar to a block-companion matrix with M' blocks as well; since Z has M columns, S has full dimension N_Y for a generic Z (and for a generic X, since P_Y has rank N_Y). Thus, for generic choices of X and Y, $F_X^{A,Y} = F^{A,Y}$.

Let us next introduce a matrix \mathscr{Y} of indeterminates of size $N \times M$, and let $F^{A,\mathscr{Y}}$ be the minimal generating polynomial of the "generic" sequence $(A^i\mathscr{Y})_{i\geq 0}$. The notation $\langle \mathscr{Y} \rangle$ and $N_{\mathscr{Y}}$ are defined as above. In particular, by [?, Proposition 6.1], the minimal generating polynomial $F^{A,\mathscr{Y}}$ has degree δ and determinantal degree ν .

Now, for a generic Y in $\mathbb{K}^{N\times M}$, $N_Y=N_{\mathscr{Y}}$. Indeed, $\langle \mathscr{Y} \rangle$ is the span of $[\mathscr{Y} A\mathscr{Y} \cdots A^{N-1}\mathscr{Y}]$, whereas $\langle Y \rangle$ is the span of $[Y AY \cdots A^{N-1}Y]$. Take a maximal non-zero minor μ of $K_{\mathscr{Y}}$; as soon as $\mu(Y) \neq 0$, we have equality of the dimensions. On the other hand, by [?], Lemma 4.3, for any Y (including \mathscr{Y}), the degree of $F^{A,Y}$ is equal to the first index d such that $\dim(\operatorname{span}([Y AY \cdots A^{d-1}Y])) = N_Y$. As a result, for generic Y, $F^{A,Y}$ and $F^{A,\mathscr{Y}}$ have the same degree, that is, δ . The first item is proved.

We conclude by proving that for generic X, Y, the invariant factors $\sigma_1, \ldots, \sigma_M$ of $F_X^{A,Y}$ are s_1, \ldots, s_M . By [?, Theorem 2.12], for any X and Y in $\mathbb{K}^{N \times M}$, for $i = 1, \ldots, M$, the i^{th} invariant factor σ_i of $F_X^{A,Y}$ divides s_i , so that $\deg(\det(F_X^{A,Y})) \leq \nu$, with equality if and only if $\sigma_i = s_i$ for all $i \leq M$.

For Y as above and any integers e, d, we let $Hk_{e,d}(Y)$ be the block Hankel matrix

$$\operatorname{Hk}_{e,d}(Y) = \begin{bmatrix} I \\ A \\ A^2 \\ \vdots \\ A^{e-1} \end{bmatrix} \begin{bmatrix} Y & AY & A^2Y & \cdots & A^{d-1}Y \end{bmatrix}$$

By [?, Eq. (2.6)], $\operatorname{rank}(\operatorname{Hk}_{e,d}(Y)) = \operatorname{deg}(\operatorname{det}(F^{A,Y}))$ for $d \geq \operatorname{deg}(F^{A,Y})$ and $e \geq N$. We take e = N, so that $\operatorname{rank}(\operatorname{Hk}_{N,d}(Y)) = \operatorname{deg}(\operatorname{det}(F^{A,Y}))$ for $d \geq \operatorname{deg}(F^{A,Y})$. On the other hand, the sequence $\operatorname{rank}(\operatorname{Hk}_{N,d}(Y))$ is constant for $d \geq N$; as a result, $\operatorname{rank}(\operatorname{Hk}_{N,N}(Y)) = \operatorname{deg}(\operatorname{det}(F^{A,Y}))$. For the same reason, we also have $\operatorname{rank}(\operatorname{Hk}_{N,N}(\mathscr{Y})) = \operatorname{deg}(\operatorname{det}(F^{A,\mathscr{Y}}))$, so that for a generic Y, $F^{A,Y}$ and $F^{A,\mathscr{Y}}$ have the same determinantal degree, that is, ν . As a result, for generic X and Y, we also have $\operatorname{deg}(\operatorname{det}(F^{A,Y})) = \nu$, and the conclusion follows. \square