(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 April 2004 (08.04.2004)

PCT

(10) International Publication Number WO 2004/029989 A1

(51) International Patent Classification⁷: G21F 9/30

G21C 19/46,

(21) International Application Number:

PCT/GB2003/004097

(22) International Filing Date:

26 September 2003 (26.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0222475.6

27 September 2002 (27.09.2002) GB

(71) Applicant (for all designated States except US): BRITISH NUCLEAR FUELS PLC [GB/GB]; Risley, Warrington, Cheshire WA3 6AS (GB).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): RANCE, Peter, Johathan, Watson [GB/GB]; British Nuclear Fuels Plc, Sellafield, Seascale, CA20 1PG (GB).
- (74) Agent: HARRISON GODDARD FOOTE; Belgrave Hall, Belgrave Street, Leeds LS2 8DD (GB).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE DISSOLUTION OF ACTINIC OXIDES

(57) Abstract: The invention provides a process for dissolving actinic oxides, the process comprising performing the steps of (a) introducing the actinic oxides into a solution of nitric acid; (b) treating the acidic solution in order to substantially remove palladium; and (c) treating with divalent silver. Preferably, the actinic oxides are comprised in spent nuclear fuel. Optionally, the process comprises a second treatment of the acidic solution in order to substantially remove palladium and a second treatment with divalent silver. The steps may be performed on a batchwise or continuous basis. The treatment to remove palladium is preferably carried out by solvent extraction or ion exchange, and provides greatly improved rates of dissolution of oxides of plutonium. The treatment with divalent silver preferably involves the addition of a source of monovalent silver, followed by an electrolysis treatment to generate divalent silver.

10

15

20

25

30

PROCESS FOR THE DISSOLUTION OF ACTINIC OXIDES

The present invention relates to a process for the dissolution of oxides of plutonium and materials containing these oxides. More specifically, it is concerned with a process for the treatment of materials comprising mixtures of plutonium dioxide (PuO₂) with uranium dioxide (UO₂), and/or mixed uranium and plutonium oxides ((U, Pu)O₂), the latter being known as "MOx".

The dissolution of oxides of uranium and plutonium is a constant requirement in the nuclear industry where, for example, the recovery of residues resulting from fuel reprocessing necessitates the use of such techniques on a regular basis. Consequently, there are several well-established methods used for the dissolution of these materials. Thus, it is well known that UO₂ dissolves relatively easily in a solution of nitric acid, whilst the dissolution of PuO₂ requires the use of more sophisticated means, the most effective of which involves the use of divalent silver in solution.

A particularly effective technique for dissolving PuO₂ is an electrolytic dissolution procedure wherein the divalent silver functions as an oxidation intermediate. The method is disclosed in FR-A-2562314, and involves introducing the oxide into a nitric acid solution containing silver nitrate, then passing the mixture through the anode component of an electrolyser. During the process of electrolysis, divalent silver is generated close to the anode and this causes oxidation of the plutonium of the PuO₂ to occur, the oxidised plutonium then dissolving in the nitric acid. When dissolution is complete, the solution containing dissolved uranium and plutonium is extracted.

Such a process, though generally highly effective, may only be operated discontinuously, so that the treatment capacity is relatively limited. Furthermore, the electrolysis process is associated with a high consumption of electricity, with the

10

15

20

consequence that the overall process is less than attractive in financial and commercial terms.

An attempt to improve the commercial viability of this method is proposed in EP-B-767465, which describes a process designed to deliver much lower operating costs by significantly reducing consumption of both silver and electricity. The technique involves a first step wherein oxides which are soluble therein - principally UO₂ - are dissolved in nitric acid by addition of the oxide mixture to a circulating solution of the acid, whilst the solution is continuously extracted at a set rate through a filter. During this first step, addition of oxide and acid is carried out on a continuous basis, and it is intended that all the UO₂ should be dissolved. The method then provides a second step wherein the insoluble residue - principally comprising PuO₂ - which has been collected in the filter is dissolved in nitric acid using divalent silver, generated in situ by electrolysis from monovalent silver which is only introduced into the system at the beginning of the second step; likewise, electrolysis only commences after the conclusion of the first step, by which time addition of oxide and acid has ceased.

The method proposed by EP-B-767465 is, therefore, commercially more attractive than the process disclosed in the earlier French patent specification, and the modified technique enables significant cost savings to be achieved. However, the present inventors have found that the rates of dissolution of PuO2 achieved by these prior art methods are much less than would be desired and are, on occasions, extremely poor.

25 Following extensive investigations into the causes of these unsatisfactory results, the inventors have now established that the rate at which PuO2 may be dissolved by the action of divalent silver is markedly retarded in the presence of even small amounts of palladium, which is found to be present in increased quantities in irradiated fuel; this effect is apparent whether the palladium is present in solid form or in solution. 30

They have gone on to show that notable improvements in the rates of dissolution of

10

15

 PuO_2 – and, therefore, in the overall efficiency of the process – may be achieved by the removal of palladium from the system prior to attempting to dissolve the PuO_2 .

In addition to this specific problem, the methods of the prior art suffer from additional drawbacks in the light of the present requirements. Thus, in the case of EP-B-767465, the process is directed at the treatment of PuO₂ residues, whereas the present inventors were particularly concerned with the processing of spent MOx fuel, which comprises (U, Pu)O₂, and it was found that the earlier process did not adapt well to the different requirements. Furthermore, whilst both the prior art methods relate to the treatment of unirradiated nuclear fuel, the problem addressed by the present inventors was the treatment of irradiated fuel. As a consequence of the poor rates of dissolution of PuO₂ associated with the methods of the prior art, the commercial viability of these processes is detrimentally affected, and many of the advances provided by the two step technique over its predecessor in economic terms are effectively nullified. Hence, the present inventors sought to devise a process which would overcome the deficiencies shown by the prior art methods; specifically, the method seeks to achieve the removal of palladium from the system prior to attempting to dissolve the actinic oxides.

- Thus, according to the present invention there is provided a process for dissolving actinic oxides, the process comprising performing the steps of:
 - (a) introducing the actinic oxides into a solution of nitric acid;
- 25 (b) treating the acidic solution in order to substantially remove palladium; and
 - (c) treating with divalent silver.
- 30 Optionally, the process additionally comprises a second treatment of the acidic solution in order to substantially remove palladium, this treatment being carried out

following the treatment with divalent silver, and a second treatment with divalent silver, which follows the aforesaid second treatment to substantially remove palladium.

Thus, in a first embodiment of the invention, the component steps of the process are carried out in the stated order, and a single treatment with divalent silver is employed, whereas a second embodiment of the invention envisages a process wherein a first treatment with divalent silver takes place following the initial treatment of the acid solution to remove palladium and the resulting mixture is then further treated to substantially remove palladium prior to a second treatment with divalent silver.

Generally, the actinic oxides comprise mixtures of UO₂ and PuO₂, or the mixed oxide (U, Pu)O₂ ("MOx"). The oxides may be in the form of a solid or may be supplied as a slurry or suspension in a liquid. Preferably, the actinic oxides are comprised in spent nuclear fuel. As specific examples of MOx fuels suitable for treatment by the process of the present invention could be mentioned spent MOx fuel from thermal reactors having a U:Pu ratio in the region of 95:5, and spent MOx fuel from fast breeder reactors, having a U:Pu ratio in the region of 75:25.

20

25

30

15

Any of the standard techniques which would be familiar to the skilled person may be used for the removal of palladium from the system. Specific examples would include ion exchange or, preferably, solvent extraction. Efficient removal of palladium may be achieved by extraction with a variety of solvents including, for example, tertiary amines such as trilaurylamine, optionally in combination with mixtures of other solvents such as phosphate esters and liquid hydrocarbons; thus, a mixture of the commercially available tertiary ester Alamine 336 in combination with tributyl phosphate and kerosene has been successfully employed for this purpose. Further examples of suitable solvents include dialkyl sulphides and organic phosphine sulphides and their derivatives, such as alkyl phosphorothioic triamides, (RNH)₃PS. An alternative approach to the removal of palladium involves denitration of the

10

25

30

system by the addition of formic acid, whereupon palladium precipitates from solution as the metal.

The nitric acid is provided as an aqueous solution, preferably at a concentration of 4M to 12M, most preferably 6M to 8M and the temperature of the solution is preferably maintained in the region of 10-50°C, most preferably 20-40°C, i.e. around the ambient.

The treatment with divalent silver generally comprises an electrolytic dissolution process. Preferably, the process involves the addition of a source of monovalent silver to the system combined with treatment in an electrolyser, divalent silver being electrolytically regenerated during the electrolysis process. Typically, the source of monovalent silver comprises a silver salt such as silver nitrate.

In view of the fact that the divalent silver ion is a highly reactive species, the efficiency of its reaction with PuO₂ may be impaired as a consequence of a competing reaction of the ion with water. However, since the activation energy of this competing reaction is very much higher than that of the PuO₂/Ag(II) reaction, then its effect may be minimised by carrying out the treatment with divalent silver at moderate temperatures. Specifically, the optimum rate of dissolution of PuO₂ is achieved at temperatures between 5° and 50°C, preferably between 15° and 40°C, most preferably between 20° and 30°C.

The steps of the process may be carried out in either continuous or batchwise fashion, and the mode of operation is usually chosen having regard to the specific requirements of the situation. Thus, in a process according to the first embodiment of the invention, the oxides of uranium and plutonium and the nitric acid are simultaneously introduced into a vessel on a continuous basis to dissolve the oxides of uranium, oxides of plutonium being separated by filtration; the solution is subjected to, for example, a batchwise solvent extraction treatment to effect removal of palladium, silver nitrate is then added to the filtered oxides of plutonium and the

10

15

resulting slurry is subjected to a continuous electrolysis process in order to effect dissolution of all the actinic oxides.

A corresponding process according to the second embodiment of the invention would envisage filtration to remove undissolved PuO₂ following the treatment with divalent silver, the filtered solution being subjected to a further batchwise solvent extraction treatment to effect removal of palladium; thereafter, a second treatment with divalent silver is performed, silver nitrate being added to the plutonium oxides and the resulting slurry being subjected to a continuous electrolysis process in order to effect dissolution of all the actinic oxides.

Any embodiment of the process according to the present invention provides significant improvements in the rate of dissolution of oxides of plutonium when compared with the methods of the prior art, thereby allowing greater recovery of plutonium from the residues and waste streams frequently encountered in the nuclear industry. Consequently, it affords major benefits in terms of efficiency, with the attendant economic and environmental benefits.

Furthermore, the process of the invention facilitates the dissolution, and recovery of plutonium from irradiated MOx fuels which result from MOx fuel reprocessing; no process had previously been available for readily performing these tasks.

CLAIMS

1. A process for dissolving actinic oxides, the process comprising performing the steps of:

5

- (a) introducing the actinic oxides into a solution of nitric acid;
- (b) treating the acidic solution in order to substantially remove palladium; and

10

- (c) treating with divalent silver.
- 2. A process as claimed in claim 1 which additionally comprises performing the steps of:

15

- (d) further treating the acidic solution in order to substantially remove palladium; and
- (e) further treating with divalent silver.

20

- 3. A process as claimed in claim 1 or 2 wherein the actinic oxides comprise mixtures of UO₂ and PuO₂ or the mixed oxide (U, Pu)O₂.
- 4. A process as claimed in claim 3 wherein the actinic oxide has a U:Pu ratio in the region of 95:5.
 - 5. A process as claimed in claim 3 wherein the actinic oxide has a U:Pu ratio in the region of 75:25.
- 30 6. A process as claimed in any one of claims 1 to 5 wherein the actinic oxides are comprised in spent nuclear fuel.

- 7. A process as claimed in any one of claims 1 to 6 wherein the actinic oxides are in the form of a solid, a slurry or a suspension.
- 8. A process as claimed in any preceding claim wherein the treatment to substantially remove palladium comprises treatment by solvent extraction.
 - 9. A process as claimed in claim 8 wherein said solvent extraction comprises extraction with trilaurylamine, Alamine 336 in combination with tributyl phosphate and kerosene, a dialkyl sulphide or an organic phosphine sulphides or its derivative.
 - 10. A process as claimed in any one of claims 1 to 7 wherein the treatment to substantially remove palladium comprises ion exchange.
- 15 11. A process as claimed in any one of claims 1 to 7 wherein the treatment to substantially remove palladium comprises denitration of the system by the addition of formic acid to cause palladium to precipitate from solution as the metal.
- 20 12. A process as claimed in any preceding claim wherein the nitric acid is provided as an aqueous solution at a concentration of 4M to 12M.
 - 13. A process as claimed in claim 12 wherein the concentration is 6M to 8M.
- 25 14. A process as claimed in any preceding claim wherein the temperature of the nitric acid is maintained in the region of 10-50°C.
 - 15. A process as claimed in claim 14 wherein the temperature is maintained in the region of 20-40°C.

- 16. A process as claimed in any preceding claim wherein the treatment with divalent silver comprises an electrolytic dissolution process.
- 17. A process as claimed in claim 16 wherein the process comprises the addition
 5 of a source of monovalent silver to the system and treatment in an electrolyser
 to electrolytically regenerate divalent silver.
 - 18. A process as claimed in claim 17 wherein the source of monovalent silver is silver nitrate.
- 19. A process as claimed in any preceding claim wherein the treatment with divalent silver is carried out at a temperature between 5° and 50°C.
- 20. A process as claimed in claim 19 wherein said temperature is between 15° and 40°C.
 - 21. A process as claimed in claim 20 wherein said temperature is between 20° and 30°C.
- 20 22. A process as claimed in any preceding claim wherein the steps of the process are carried out in either a batchwise or a continuous fashion.

•

PCT/GB 03/04097

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G21C19/46 G21F9/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 G21C G21F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to daim No.
Y	US 5 171 546 A (GUY ALAIN ET AL) 15 December 1992 (1992-12-15) column 1, line 5 -column 4, line 49	1-22
Υ .	US 5 745 835 A (MOULINEY MARIE—HELENE ET AL) 28 April 1998 (1998-04-28) cited in the application the whole document	1-22
Y	US 4 749 519 A (KOEHLY GERARD ET AL) 7 June 1988 (1988-06-07) cited in the application the whole document	1-22
Y	US 5 437 847 A (YONEYA MASAYUKI ET AL) 1 August 1995 (1995-08-01) column 1, line 5 -column 3, line 15	1-22

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.		
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 *T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&' document member of the same patent family 		
Date of the actual completion of the international search 23 January 2004	Date of mailing of the international search report 02/02/2004		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Lohberger, S		

INTERNATIONAL SEARCH REPORT

PCT/GB 03/04097

		FC1/4B 03	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	US 5 069 827 A (MACHURON-MANDARD XAVIER ET AL) 3 December 1991 (1991-12-03) the whole document		1-22
A	VLASOV M M ET AL: "LASER STIMULATED EXTRACTION OF PALLADIUM FROM SOLUTIONS" PHYSICS DOKLADY, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 38, no. 9, 1 September 1993 (1993-09-01), pages 394-395, XP000429301 ISSN: 1063-7753 the whole document		1-22
A	WEI Y-Z ET AL: "Separation of actinides from simulated spent fuel solutions by an advanced ion-exchange process" JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 271-273, 12 June 1998 (1998-06-12), pages 693-696, XP004181879 ISSN: 0925-8388 the whole document		1-22

PCT/GB 03/04097

				101745	00, 0 100,
Patent document dted in search report		Publication date		Patent family member(s)	Publication date
US 5171546	A	15-12-1992	FR CA CN CS EP FI JP	2662159 A1 2042428 A1 1056714 A 9101398 A3 0459854 A1 912366 A 5105973 A	22-11-1991 16-11-1991 04-12-1991 15-01-1992 04-12-1991 16-11-1991 27-04-1993
US 5745835	А	28-04-1998	FR DE DE EP JP JP RU	2738165 A1 69602153 D1 69602153 T2 0767465 A1 3395875 B2 9315820 A 2171506 C2	07-03-1997 27-05-1999 28-10-1999 09-04-1997 14-04-2003 09-12-1997 27-07-2001
US 4749519	A	07-06-1988	FR DE EP JP JP JP	2562314 A1 3568232 D1 0158555 A1 1834828 C 5045000 B 60224097 A	04-10-1985 16-03-1989 16-10-1985 11-04-1994 07-07-1993 08-11-1985
US 5437847	Α	01-08-1995	JP FR GB	6180392 A 2699318 A1 2273496 A ,B	28-06-1994 17-06-1994 22-06-1994
US 5069827	A	03-12-1991	FR DE DE EP JP JP	2621578 A1 3871710 D1 3871710 T2 0312433 A1 2107530 A 2762281 B2	14-04-1989 09-07-1992 17-12-1992 19-04-1989 19-04-1990 04-06-1998