Customer-Behavior-MySQL2Hive Visualization

```
In [159...
          # Import Libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from collections import Counter
In [160...
          # Display Setting
          pd.set_option('display.max_columns', None)
          sns.set(style="whitegrid")
          sns.set_palette("magma")
In [161... df=pd.read_csv("E-commerce Customer Behavior.csv")
          print("Data Loaded Successfully!")
          print("\nShape of DataSet:",df.shape)
         Data Loaded Successfully!
         Shape of DataSet: (350, 11)
In [162...
         print("\nData Info:")
          df.info()
         Data Info:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 350 entries, 0 to 349
         Data columns (total 11 columns):
         # Column
                                     Non-Null Count Dtype
         --- -----
                                       -----
         0 Customer ID
                                      350 non-null int64
                                      350 non-null object
350 non-null int64
         1
            Gender
         2 Age
                                      350 non-null object
         3 City
                                    350 non-null object
         4 Membership Type
         5 Total Spend
                                      350 non-null float64
         6 Items Purchased
7 Average Rating
                                     350 non-null int64
350 non-null float64
         7 Average Rating 350 non-null float
8 Discount Applied 350 non-null bool
         9 Days Since Last Purchase 350 non-null int64
         10 Satisfaction Level
                                      348 non-null object
         dtypes: bool(1), float64(2), int64(4), object(4)
         memory usage: 27.8+ KB
In [163... print("\nFirst 5 Rows:")
          df.head()
```

First 5 Rows:

Out[163...

	Customer ID	Gender	Age	City	Membership Type	Total Spend	Items Purchased	Average Rating	Discount Applied	Days Since Last Purchase	Satisfaction Level
0	101	Female	29	New York	Gold	1120.20	14	4.6	True	25	Satisfied
1	102	Male	34	Los Angeles	Silver	780.50	11	4.1	False	18	Neutral
2	103	Female	43	Chicago	Bronze	510.75	9	3.4	True	42	Unsatisfied
3	104	Male	30	San Francisco	Gold	1480.30	19	4.7	False	12	Satisfied
4	105	Male	27	Miami	Silver	720.40	13	4.0	True	55	Unsatisfied

Q1: Total Customers

```
In [164...
total_customers = df['Customer ID'].nunique()
print("Total Customers:", total_customers)
```

Total Customers: 350

Q2. Average Total Spend

```
In [165... avg_spend = df['Total Spend'].mean()
```

```
print("Average Total Spend:", round(avg_spend, 2))
```

Average Total Spend: 845.38

Q3. City with Highest Average Spend

```
In [188...
city_spend = df.groupby('City')['Total Spend'].mean().sort_values(ascending=False)
city_spend.plot(kind='bar', color='skyblue', figsize=(7,4))
plt.title("Average Spend by City")
plt.xlabel("City")
plt.ylabel("Average Spend")
plt.show()
city_spend
```



```
Out[188... City
San Francisco 1459.772414
New York 1165.035593
Los Angeles 805.491525
Miami 690.389655
Chicago 499.882759
Houston 446.894828
Name: Total Spend, dtype: float64
```

Q4. Customers per Membership Type

```
In [192... # sns.countplot(data=df, x='Membership Type', palette='cool')
sns.countplot(data=df, x='Membership Type', hue='Membership Type', palette='cool', legend=False)
print()
plt.title("Customers by Membership Type")
plt.show()
```


Distribution of Membership Types

Out[191... Membership Type
Gold 117
Silver 117
Bronze 116
Name: count, dtype: int64

Q5. Satisfaction Level Distribution

```
hue='Satisfaction Level',
palette='Set1',
```

legend=True)
plt.title("Satisfaction Level Distribution")

plt.legend(title='Satisfaction Lavel', loc='lower right')

plt.show()

Satisfaction Level Distribution

Customer Satisfaction Level Distribution

Satisfaction Level
Satisfied 125
Unsatisfied 116
Neutral 107
Name: count, dtype: int64

Q6. Average Rating by Gender

```
In [196...
    avg_rating = df.groupby('Gender')['Average Rating'].mean().reset_index()
    sns.barplot(data=avg_rating, x='Gender', y='Average Rating', legend=False, hue='Gender', palette='cool')
    plt.title("Average Rating by Gender")
    plt.show()
    print(round(avg_rating,1))
```


Gender Average Rating 0 Female 3.7 1 Male 4.3

Q7. Customers Who Used Discount and Were Satisfied

```
In [172... discount_satisfied = df[(df['Discount Applied'] == True) & (df['Satisfaction Level'] == 'Satisfied')]
sns.barplot(data=discount_satisfied, x='Gender', hue='Gender', y='Total Spend', palette='viridis')
```

plt.title("Satisfied Customers Who Used Discount")
plt.show()
print('first 5 records')
discount_satisfied.head()

first 5 records

Out[172...

	Customer ID	Gender	Age	City	Membership Type	Total Spend	Items Purchased	Average Rating	Discount Applied	Days Since Last Purchase	Satisfaction Level
0	101	Female	29	New York	Gold	1120.2	14	4.6	True	25	Satisfied
6	107	Female	31	New York	Gold	1150.6	15	4.5	True	28	Satisfied
12	113	Female	30	New York	Gold	1200.8	16	4.3	True	21	Satisfied
18	119	Female	32	New York	Gold	1170.3	14	4.7	True	29	Satisfied
24	125	Female	31	New York	Gold	1140.6	15	4.6	True	27	Satisfied

Q8. Top 3 Customers by Spend

```
top3 = df.nlargest(3, 'Total Spend')[['Customer ID', 'City', 'Total Spend']]
sns.barplot(data=top3, x='Customer ID', y='Total Spend', hue='Customer ID', palette='cool', legend=False)
plt.title("Top 3 Customers by Total Spend")
# plt.legend(title="City", loc='lower right')
plt.show()
top3
```


Out[173...

	Customer ID	City	Total Spend
9	110	San Francisco	1520.1
27	128	San Francisco	1500.1
57	158	San Francisco	1500.1

Q9. Revenue by Membership Type

```
In [174...
membership_revenue = df.groupby('Membership Type')['Total Spend'].sum().sort_values(ascending=False)
membership_revenue.plot(kind='bar')
plt.title("Total Revenue by Membership Type")
plt.ylabel("Total Spend")
plt.show()
membership_revenue
```


Out[174... Membership Type
Gold 153403.9
Silver 87566.6
Bronze 54913.1
Name: Total Spend, dtype: float64

Q10. Average Days Since Last Purchase per Satisfaction Level

```
In [181...
    days_avg = df.groupby('Satisfaction Level')['Days Since Last Purchase'].mean().reset_index()
    sns.barplot(
        data=days_avg,
        x='Satisfaction Level',
        hue='Satisfaction Level',
        legend=True,
        y='Days Since Last Purchase',
        palette='cool')
    plt.title("Avg Days Since Last Purchase by Satisfaction")
    plt.show()
    # days_avg['Last Purchase']= round(days_avg['Last Purchase'],2)
    days_avg
```

Avg Days Since Last Purchase by Satisfaction

Out[181... Satisfaction Level Days Since Last Purchase

0	Neutral	19.289720
1	Satisfied	17.696000
2	Unsatisfied	42.982759

Q11. Which Gender Spends More on Average?

```
In [197... avg_spend_by_gender = df.groupby('Gender')['Total Spend'].mean().reset_index()

plt.figure(figsize=(6,4))
sns.barplot(data=avg_spend_by_gender, x='Gender',hue='Gender', y='Total Spend', palette='coolwarm')
plt.title("Average Total Spend by Gender", fontsize=14)
plt.xlabel("Gender")
plt.ylabel("Average Spend")
plt.show()
avg_rating_by_gender
```


Out[197... Gender

Female 3.731429 Male 4.306857

Name: Average Rating, dtype: float64

Q12. Find Customers Who Purchased More Than 15 Items & Less Than 20 Items.

```
In [199... filtered_customers = df[(df['Items Purchased'] > 15) & (df['Items Purchased'] < 20)]

# Visualization
plt.figure(figsize=(16,4))
sns.barplot(data=filtered_customers, x='Customer ID', y='Items Purchased', hue='City', palette='cool')
plt.title("Customers Who Purchased Between 15 and 20 Items", fontsize=14)
plt.xlabel("Customer ID")
plt.ylabel("Items Purchased")
# plt.xticks(rotation=10, ha='right')
plt.legend(title= 'City', loc='lower right')
plt.show()
filtered_customers.head()</pre>
```


Out[199...

	Customer ID	Gender	Age	City	Membership Type	Total Spend	Items Purchased	Average Rating	Discount Applied	Days Since Last Purchase	Satisfaction Level	Spend per Item
3	104	Male	30	San Francisco	Gold	1480.3	19	4.7	False	12	Satisfied	77.910526
12	113	Female	30	New York	Gold	1200.8	16	4.3	True	21	Satisfied	75.050000
15	116	Male	29	San Francisco	Gold	1360.2	18	4.9	False	11	Satisfied	75.566667
30	131	Female	30	New York	Gold	1190.8	16	4.5	True	20	Satisfied	74.425000
33	134	Male	29	San Francisco	Gold	1370.2	18	4.7	False	10	Satisfied	76.122222

```
In [200...
```


Out[200...

Membership Type Spend per Item

0	Bronze	56.209825
1	Gold	74.775524
2	Silver	64.624438