Mechanical energy

$$E = T + V = \sum_{i} \frac{1}{2} m_i v_i^2 + m_i g h_i$$

Before releasing pendulums, kinetic energy is 0.

Total energy of system: $E = V_0$

Energy of the pendulum

Potential energy of the system:

$$E = V_0 = -m_1 g \frac{1}{2} l_1 \cos \theta_1 - m_2 g \left(l_1 \cos \theta_1 + \frac{1}{2} l_2 \cos \theta_2 \right)$$
$$= -\frac{1}{2} m g (3 l_1 \cos \theta_1 + l_2 \cos \theta_2)$$

Energy of the system

$$E = -\frac{1}{2}mg(3l_1\cos\theta_1 - l_2\cos\theta_2)$$

Energy of state 1.

$$E_1 = -\frac{1}{2} mg(3l_1 + l_2)$$

 $V_0 = 0$ State 1 State 2

Energy of state 2.

$$E_2 = -\frac{1}{2} mg(3l_1 - l_2)$$

If $E > E_2$, energy used to flip is enough.

Bifurcation

Motion changes when energy is beyond a threshold.

$$E = E_2$$

$$E < E_2$$

$$E > E_2$$

Single-pendulum-like motion. Chaotic motion.

Energy of the pendulum

By comparing E and E_2

Energy of the pendulum

By comparing E and E_2

$$E > E_2$$

$$-\frac{1}{2}m(3l_1\cos\theta_1 + l_2\cos\theta_2) > -\frac{1}{2}m(3l_1 - l_2)$$

In this case $3\cos\theta_1 + \cos\theta_2 < 2$

$$m = 10 (kg) l_1 = 1 (m) l_2 = 1 (m)$$

Phase diagram

Detecting the angle of lower pendulum

Observe time: 10000 (s) T_w: Waiting time before first flipping Initial angle: $\theta_1=-180^\circ{\sim}180^\circ$ $\theta_2=-180^\circ{\sim}180^\circ$ Delay time: 0.05 (s)

Compare with the energy result

Why there are two empty regions?

Phase diagram

We focus on the edge of flipping

Time series

Initial condition

(64.336, 115)

States nearby empty regime

Nearby stable states

Taking lots of time to flip Why?

Flipping with long waiting time

Condition of flipping:

 $\theta_1 \approx 0, \omega_1 \approx 0$

Low total energy

Few states can flip.

