Devoir surveillé n°05

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 L'application $u \in \mathcal{L}(E) \mapsto tr(u)$ est une forme linéaire non nulle sur $\mathcal{L}(E)$. \mathcal{T} est donc un hyperplan de $\mathcal{L}(E)$ en tant que noyau de cette forme linéaire non nulle.

 $\boxed{\mathbf{2}}$ Φ est bilinéaire par bilinéarité de la composition des endomorphismes. De plus, pour tout $(u,v) \in \mathcal{L}(E)^2$, $\Phi(v,u) = -\Phi(u,v)$ donc Φ est antisymétrique.

3.a On sait que $\mathbb{K}[u]$ est une sous-algèbre commutative de $\mathcal{L}(E)$. Ainsi pour tout $P \in \mathbb{K}[X]$, uP(u) - P(u)u = 0 de sorte que $\mathbb{K}[u] \subset \operatorname{Ker} \Phi_u$. A fortiori,

$$\operatorname{vect}(\operatorname{Id}, u, \dots, u^{n-1}) \subset \mathbb{K}[u] \subset \operatorname{Ker} \Phi_u$$

Puisque u n'est pas une homothétie, la famille (Id,u) est libre. Ainsi

$$\dim \operatorname{Ker} \Phi_u \ge \operatorname{rg}(\operatorname{Id}, u, \dots, u^{n-1}) \ge \operatorname{rg}(\operatorname{Id}, u) = 2$$

3.b Soit $v \in \text{Ker } \Phi_u$. Alors v commute avec u. D'après le cours, tout sous-espace propre de u est alors stable par v.

4 Pour tout $(u, v) \in \mathcal{L}(E)^2$,

$$\operatorname{tr}(\Phi(u,v)) = \operatorname{tr}(uv) - \operatorname{tr}(vu) = 0$$

par propriété de la trace. Ainsi $\operatorname{Im} \Phi \subset \mathcal{T}$.

Puisque tr(Id) = $n \neq 0$, Id $\notin \mathcal{F}$. A fortiori, Id $\notin \text{Im } \Phi$ i.e. il n'existe pas de couple $(u, v) \in \mathcal{L}(E)^2$ tel que [u, v] = Id. D'après le théorème du rang et la question 3.a,

$$\dim\operatorname{Im}\Phi_u=\dim\mathcal{L}(\mathsf{E})-\dim\operatorname{Ker}\Phi_u\leq n^2-2$$

Or \mathcal{F} est un hyperplan de $\mathcal{L}(E)$ d'après la question 1 donc dim $\mathcal{F} = n^2 - 1$. On ne peut donc pas avoir Im $\Phi_u = \mathcal{F}$.

5.a Supposons que u soit une homothétie. Il existe donc $\lambda \in \mathbb{K}$ tel que $u = \lambda$ Id. Alors, pour tout $x \in \mathbb{E}$, $(x, u(x)) = (x, \lambda x)$ est évidemment liée.

Supposons que pour tout $x \in E$, (x, u(x)) soit liée. Soit (e_1, \dots, e_n) une base de E. Il existe alors $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ tel que $u(e_i) = \lambda_i e_i$ pour tout $i \in [\![1, n]\!]$. Soit $(i, j) \in [\![1, n]\!]^2$ tel que $i \neq j$. Il existe alors $\lambda \in \mathbb{K}$ tel que $u(e_i + e_j) = \lambda(e_i + e_j)$. Mais on a également $u(e_i + e_j) = u(e_i) + u(e_j) = \lambda_i e_i + \lambda_j e_j$ d'où $\lambda_i = \lambda_j = \lambda$ par liberté de (e_i, e_j) . Finalement, il existe $\lambda \in \mathbb{K}$ tel que $u(e_i) = \lambda e_i$ pour tout $i \in [\![1, n]\!]$. Puisque (e_1, \dots, e_n) est une base de E, $u = \lambda$ Id et u est une homothétie.

5.b Supposons que u soit une homothétie. Alors il est clair que pour tout $v \in \mathcal{L}(E)$, $u \circ v = v \circ u = \lambda v$ en notant λ le rapport de l'homothétie u. Ainsi Ker $\Phi_u = \mathcal{L}(E)$.

Réciproquement, supposons que $\text{Ker } \Phi_u = \mathcal{L}(E)$. Soit $x \in E$. Notons p un projecteur sur vect(x). Alors $u(x) = u \circ p(x) = p \circ u(x) \in \text{vect}(x)$ donc (x, u(x)) est liée. D'après la question précédente, u est une homothétie.

6 6.a Notons

$$\mathcal{P}_k: \Phi_u^k(v) = \sum_{p=0}^k \binom{k}{p} u^{k-p} v u^p$$

Initialisation. $\Phi_u^0(v) = v$ et $\sum_{p=0}^0 (-1)^0 \binom{0}{p} u^{0-p} v u^p = \binom{0}{0} v = v$ donc \mathcal{P}_0 est vraie. Hérédité. Supposons \mathcal{P}_k vraie pour un certain $k \in \mathbb{N}$. Alors

$$\begin{split} &\Phi_{u}^{k+1}(v) = \Phi_{u}\left(\Phi_{u}^{k}(v)\right) \\ &= u\left(\sum_{p=0}^{k}(-1)^{p}\binom{k}{p}u^{k-p}vu^{p}\right) - \left(\sum_{p=0}^{k}(-1)^{p}\binom{k}{p}u^{k-p}vu^{p}\right)u \\ &= \sum_{p=0}^{k}(-1)^{p}\binom{k}{p}u^{k+1-p}vu^{p} + \sum_{p=0}^{k}(-1)^{p+1}\binom{k}{p}u^{k-p}vu^{p+1} \\ &= \sum_{p=0}^{k}(-1)^{p}\binom{k}{p}u^{k+1-p}vu^{p} - \sum_{p=1}^{k+1}(-1)^{p}\binom{k}{p-1}u^{k+1-p}vu^{p} \quad \text{par changement d'indice} \\ &= \sum_{p=0}^{k+1}(-1)^{p}\binom{k}{p}u^{k+1-p}vu^{p} - \sum_{p=0}^{k+1}(-1)^{p}\binom{k}{p-1}u^{k+1-p}vu^{p} \quad \text{car}\binom{k}{k+1} = \binom{k}{-1} = 0 \\ &= \sum_{k=0}^{p+1}(-1)^{p}\binom{k}{p} + \binom{k}{p-1}u^{k+1-p}vu^{p} \\ &= \sum_{k=0}^{p+1}(-1)^{p}\binom{k+1}{p}u^{k+1-p}vu^{p} \quad \text{d'après la relation du triangle de Pascal} \end{split}$$

Ainsi \mathcal{P}_{k+1} est vraie.

Conclusion. Par récurrence, \mathcal{P}_k est vraie pour tout $k \in \mathbb{N}$.

6.b Supposons u nilpotent et notons q son indice de nilpotence. Alors, pour tout $v \in \mathcal{L}(E)$,

$$\Phi_u^{2q-1}(v) = \sum_{p=0}^{q-1} (-1)^p \binom{2q-1}{p} u^{2q-1-p} v u^p + \sum_{p=q}^{2q-1} (-1)^p \binom{2q-1}{p} u^{2q-1-p} v u^p$$

Si $p \in [0, q-1], 2q-1-p \ge q$ et $u^{2q-1-p}=0$ tandis que si $p \in [q, 2q-1], u^p=0$. On en déduit que

$$\forall v \in \mathcal{L}(E), \ \Phi_u^{2q-1}(v) = 0$$

i.e. $\Phi_u^{2q-1} = 0$ et Φ_u est nilpotent.

Supposons que u soit une homothétie de rapport λ . Alors $tr(u) = \lambda tr(Id) = n\lambda$. Ainsi u est de trace nulle si et seulement si u est l'endomorphisme nul.

8 Il suffit d'appliquer **5.a**.

9 On pose $e_2 = u(e_1)$. Comme la famille (e_1, e_2) est libre, on peut la compléter en une base (e_1, e_2, \dots, e_n) de E. La matrice de u dans cette base est bien de la forme $\begin{pmatrix} 0 & X^T \\ Y & A_1 \end{pmatrix}$ avec $(X, Y) \in \mathcal{M}_{n-1,1}(\mathbb{K})^2$ et $A_1 \in \mathcal{M}_{n-1}(\mathbb{K})$. On peut même

$$\text{préciser que Y} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

10 10.a Le spectre de U étant fini, on peut choisir $al \in \mathbb{K} \setminus \mathrm{Sp}(U)$. Alors $\mathrm{Ker}(U - \alpha I_{n-1}) = \{0\}$ et $U - \alpha I_{n-1}$ est inversible.

10.b Un calcul par blocs donne

$$U'V' - V'U' = \begin{pmatrix} 0 & \alpha R^{\mathsf{T}} \\ US & UV \end{pmatrix} - \begin{pmatrix} 0 & R^{\mathsf{T}}U \\ \alpha S & VU \end{pmatrix} = \begin{pmatrix} 0 & \alpha R^{\mathsf{T}} - R^{\mathsf{T}}U \\ US - \alpha S & UV - VU \end{pmatrix}$$

Par conséquent,

$$\mathbf{A} = \mathbf{U}'\mathbf{V}' - \mathbf{V}'\mathbf{U}' \iff \begin{cases} \mathbf{X}^\mathsf{T} = \alpha\mathbf{R}^\mathsf{T} - \mathbf{R}^\mathsf{T}\mathbf{U} \\ \mathbf{Y} = \mathbf{U}\mathbf{S} - \alpha\mathbf{S} \end{cases} \iff \begin{cases} \mathbf{X}^\mathsf{T} = -\mathbf{R}^\mathsf{T}(\mathbf{U} - \alpha\mathbf{I}_{n-1}) \\ \mathbf{Y} = (\mathbf{U} - \alpha\mathbf{I}_{n-1})\mathbf{S} \end{cases}$$

Initialisation. Supposons que dim E = 1. Soit $u \in \mathcal{T}$. On va montrer l'inclusion réciproque par récurrence sur $n = \dim E$. Initialisation. Supposons que dim E = 1. Soit $u \in \mathcal{T}$. Comme dim $\mathcal{L}(E) = (\dim E)^2 = 1$, il existe $\lambda \in \mathbb{K}$ tel que $u = \lambda$ Id. Mais $\operatorname{tr}(u) = \lambda = 0$ donc u = 0. On peut apr exemple affirmer que $u = 0 = \Phi(0, 0) \in \operatorname{Im} \Phi$ d'où l'inclusion $\operatorname{Im} \Phi \subset \mathcal{T}$. Hérédité. Supposons avoir prouvé l'inclusion souhaitée lorsque E est un E-espace vectoriel de dimension E0 et considérons maintenant un E-espace vectoriel E1 de dimension E2. Si E3 u est une homothétie, on peut encore affirmer que E3 e E4 de dimension E5 permet d'affirmer qu'il existe une base E4 de

E dans laquelle la matrice de u est $\begin{pmatrix} 0 & X^T \\ Y & A_1 \end{pmatrix}$. Quitte à raisonner en termes d'endomorphismes canoniquement associés,

l'hypothèse de récurrence permet d'affirmer l'existence de $(U,V) \in \mathcal{M}_{n-1}(\mathbb{K})^2$ tel que $A_1 = UV - VU$. On choisit alors $\alpha \in \mathbb{K}$ tel que $U - \alpha I_{n-1}$ soit inversible (cf. question **10.a**) et on pose $R = -((U - \alpha I_{n-1})^{-1})^T X$, $S = (U - \alpha I_{n-1})^{-1} Y$,

$$U' = \begin{pmatrix} \alpha & 0 \\ 0 & U \end{pmatrix}$$
 et $V' = \begin{pmatrix} 0 & R^T \\ S & V \end{pmatrix}$. On vérifie alors que $X^T = -R^T(U - \alpha I_{n-1})$ et $Y = (U - \alpha I_{n-1})S$. La question **10.b**

montre alors que A = U'V' - V'U'. En notant u' et v' les endomorphismes de E dont les matrices dans la base \mathcal{B} sont U' et V', on a donc $u = u'v' - v'u' = \Phi(u', v') \in \operatorname{Im} \Phi$. D'où $\mathcal{T} \subset \operatorname{Im} \Phi$.

Conclusion. On a prouvé par récurrence que $\mathcal{T} \subset \operatorname{Im} \Phi$ quelle que soit la dimension $n \in \mathbb{N}^*$ de E. Par double inclusion, $\operatorname{Im} \Phi = \mathcal{T}$.

La famille $(u_{i,j})_{1 \le i,j \le n}$ est l'image réciproque de la base canonique de $\mathcal{M}_n(\mathbb{K})$ par l'isomorphisme

$$\left\{ \begin{array}{ccc} \mathcal{L}(\mathsf{E}) & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ u & \longmapsto & \mathrm{mat}_{\mathcal{B}}(u) \end{array} \right.$$

On en déduit que $(u_{i,j})_{1 \le i,j \le n}$ est une base de $\mathcal{L}(E)$.

13 Soit $(i, j, k, l) \in [1, n]^4$.

$$\forall m \in [1, n], \ u_{i,j}u_{k,l}(e_m) = u_{i,j}(\delta_{l,m}e_k) = \delta_{l,m}\delta_{j,k}e_i = \delta_{j,k}u_{i,l}(e_m)$$

On en déduit que

$$u_{i,j}u_{k,l} = \delta_{j,k}u_{i,l}$$

Soit
$$(i, j) \in [1, n]^2$$
. Puisque $u = \sum_{k=1}^n \sum_{l=1}^n a_{k,l} u_{k,l}$,

$$\begin{split} \Phi_u(u_{i,j}) &= uu_{i,j} - u_{i,j}u \\ &= \sum_{k=1}^n \sum_{l=1}^n a_{k,l} u_{k,l} u_{i,j} - \sum_{k=1}^n \sum_{l=1}^n a_{k,l} u_{i,j} u_{k,l} \\ &= \sum_{k=1}^n \sum_{l=1}^n a_{k,l} \delta_{l,i} u_{k,j} - \sum_{k=1}^n \sum_{l=1}^n a_{k,l} \delta_{j,k} u_{i,l} \\ &= \sum_{k=1}^n a_{k,i} u_{k,j} - \sum_{l=1}^n a_{j,l} u_{i,l} \\ &= \sum_{k=1}^n a_{k,i} u_{k,j} - \sum_{l=1}^n a_{j,k} u_{i,k} \end{split}$$

14 D'après la question précédente, les coefficients diagonaux de la matrice de Φ_u dans la base $(u_{i,j})_{1 \le i,j \le n}$ sont les $a_{i,i} - a_{j,j}$ pour $(i,j) \in [1,n]^2$. Ainsi

$$\operatorname{tr}(\Phi_u) = \sum_{i=1}^n \sum_{j=1}^n a_{i,i} - a_{j,j} = n \sum_{i=1}^n a_{i,i} - n \sum_{j=1}^n a_{j,j} = 0$$

15. 15.a Remarquons qu'avec les notations précédentes, $a_{i,j} = \delta_{i,j}\mu_i$ pour tout $(i,j) \in [1,n]^2$. D'après la question 13, pour tout $(i,j) \in [1,n]^2$,

$$\Phi_{u}(u_{i,j}) = \sum_{k=1}^{n} a_{k,i} u_{k,j} - \sum_{k=1}^{n} a_{j,k} u_{i,k} = \sum_{k=1}^{n} \delta_{k,i} \mu_{k} u_{k,j} - \sum_{k=1}^{n} \delta_{j,k} \mu_{j} u_{i,k} = \mu_{i} u_{i,j} - \mu_{j} u_{i,j} = (\mu_{i} - \mu_{j}) u_{i,j}$$

15.b D'après la question précédente et la question **12**, la famille $(u_{i,j})_{1 \le i,j \le n}$ est une base de vecteurs propres de Φ_u . On en déduit que Φ_u est diagonalisable et que

$$\operatorname{Sp}(\Phi_u) = \{ \mu_i - \mu_i, \ (i, j) \in [[1, n]]^2 \} = \{ \lambda - \mu, \ (\lambda, \mu) \in \operatorname{Sp}(u)^2 \}$$

16 Soit $v \in \text{Ker } \Phi_u$. Alors d'après la question **3.b**,

$$\forall i \in [1, p], \ v(E_{\lambda_i}(u)) \subset E_{\lambda_i}(u)$$

Réciproquement, soit $v \in \mathcal{L}(E)$ tel que $v(E_{\lambda_i}(u)) \subset E_{\lambda_i}(u)$ pour tout $i \in [1, p]$. Fixons $i \in [1, n]$ et $x \in E_{\lambda_i}(u)$. D'une part, $vu(x) = v(\lambda_i x) = \lambda_i v(x)$ car $x \in E_{\lambda_i}(u)$ et d'autre part, $uv(x) = \lambda_i(x)$ car $v(x) \in E_{\lambda_i}(u)$. Ainsi vu(x) = uv(x).

Comme u est diagonalisable, $E = \bigoplus_{i=1}^{p} E_{\lambda_i}(u)$ de sorte que uv = vu i.e. $v \in \operatorname{Ker} \Phi_u$.

17 Si $v \in \text{Ker }\Phi_u$, v laisse stable les sous-espaces propres $E_{\lambda_i}(u)$ d'après la question précédente et induit donc des endomorphismes $v_{E_{\lambda_i(u)}}$ de ces sous-espaces propres. On peut donc définir l'application

$$\Psi : \left\{ \begin{array}{ccc} \operatorname{Ker} \Phi_u & \longrightarrow & \prod_{i=1}^p \mathcal{L} \left(\operatorname{E}_{\lambda_i}(u) \right) \\ v & \longmapsto & \left(v_{\operatorname{E}_{\lambda_i}(u)} \right)_{1 \leq i \leq p} \end{array} \right.$$

Cette application est clairement linéaire. Comme u est diagonalisable, $E = \bigoplus_{i=1}^p E_{\lambda_i(u)}$ et un théorème du cours affirme

alors que pour tout $(v_1, \dots, v_p) \in \prod_{i=1}^p \mathcal{L}\left(\mathrm{E}_{\lambda_i}(u)\right)$, il existe un unique $v \in \mathcal{L}(\mathrm{E})$ tel que pour tout $i \in [1, p]$, $v_{\mathrm{E}_{\lambda_i}(u)} = v_i$. De plus, d'après la question précédente, cet unique endomorphisme v appartient à $\mathrm{Ker}\,\Phi_u$. L'application Ψ est donc bijective; c'est un isomorphisme.

On en déduit que

$$\dim \operatorname{Ker} \Phi_u = \dim \left(\prod_{i=1}^p \mathcal{L} \left(\operatorname{E}_{\lambda_i}(u) \right) \right) = \sum_{i=1}^p \dim \mathcal{L} \left(\operatorname{E}_{\lambda_i}(u) \right) = \sum_{i=1}^p m_i^2$$

D'après le théorème du rang

$$\operatorname{rg} \Phi_u = \dim \mathcal{L}(E) - \dim \operatorname{Ker} \Phi_u = n^2 - \sum_{i=1}^p m_i^2$$

18 Si u à n valeurs propres distinctes, alors p = n et $m_i = 1$ pour tout $i \in [[1, n]]$. On en déduit que dim Ker $\Phi_u = n$.

Comme u est diagonalisable, le polynôme minimial π_u de u est scindé à racines simples i.e. $\pi_u = \prod_{i=1}^n (X - \lambda_i)$.

Comme deg $\pi_u = n$, on sait alors que (Id, u, \ldots, u^{n-1}) est une base de $\mathbb{K}[u]$. Notamment, $\mathbb{K}[u] = \text{vect}(\text{Id}, u, \ldots, u^{n-1})$ est de dimension n. Or on a vu à la question **3.a** que vect(Id, u, \ldots, u^{n-1}) $\subset \text{Ker } \Phi_u$. Comme $\operatorname{rg}(\text{Id}, u, \ldots, u^{n-1}) = \dim \operatorname{Ker} \Phi_u = n$, $\operatorname{Ker} \Phi_u = \operatorname{vect}(\text{Id}, u, \ldots, u^{n-1})$.

Comme u n'est pas une homothétie, la question **5.a** donne l'existence de $e \in E$ tel que (e, u(e)) est libre. Or dim E = 2 donc (e, u(e)) est une base de E.

Soit $v \in \text{Ker }\Phi_u$. Comme (e, u(e)) est une base de E, il existe $(\alpha, \beta) \in \mathbb{K}^2$ tel que $v(e) = \alpha e + \beta u(e) = (\alpha \operatorname{Id} + \beta u)(e)$. Mais comme u et v commutent, $v(u(e)) = u(v(e)) = \alpha u(e) + \beta u^2(e) = (\alpha \operatorname{Id} + \beta u)(u(e))$. Ainsi les endomorphismes v et $\alpha \operatorname{Id} + \beta u$ coïncident sur la base (e, u(e)) de E : ils sont égaux. On en déduit que $\operatorname{Ker} \Phi_u \subset \operatorname{vect}(\operatorname{Id}, u)$. L'inclusion précédente ayant déjà été montrée, $\operatorname{Ker} \Phi_u = \operatorname{vect}(\operatorname{Id}, u)$.

20 Comme u n'est pas une homothétie, la famille (Id, u) est libre. Ainsi, d'après la question précédente, dim Ker $\Phi_u = \operatorname{rg}(\operatorname{Id}, u) = 2$. 0 est donc une valeur propre de u de multiplicité au moins égale à 2. On en déduit que le polynôme caractéristique de Φ_u est de la forme $X^2(X^2 + \alpha X + \beta)$ avec $(\alpha, \beta) \in \mathbb{K}^2$. Mais $\alpha = -\operatorname{tr}(\Phi_u) = 0$ d'après la question **14** donc le polynôme caractéristique de Φ_u est $X^2(X^2 + \beta)$.

21 Si $\beta = 0$, la multiplicité de la valeur propre 0 vaut 4 tandis que la dimension du sous-espace propre associé à la valeur propre 0 i.e. Ker Φ_u vaut 2. Φ_u n'est pas diagonalisable.

22 Supposons $\mathbb{K} = \mathbb{C}$. Puisque $\beta \neq 0$, $-\beta$ admet deux racines carrées complexes distinctes et opposés λ et $-\lambda$. Ainsi $\chi_{\Phi_u} = X^2(X - \lambda)(X + \lambda)$. Alors $Sp(\Phi_u) = \{0, \lambda, -\lambda\}$. On a vu que $\dim E_0(\Phi_u) = \dim \ker \Phi_u = 2$ et $\dim E_\lambda(\Phi_u) = \dim E_{-\lambda}(\Phi_u) = 1$ puisque λ et $-\lambda$ sont des racines simples du polynôme caractéristique de Φ_u . Finalement les dimensions des sous-espaces propres sont égales aux multiplicités des valeurs propres associées : Φ_u est diagonalisable.

Supposons $\mathbb{K} = \mathbb{R}$. Si $\beta > 0$, χ_{Φ_u} n'est pas scindé sur \mathbb{R} de sorte que Φ_u n'est pas diagonalisable. Si $\beta < 0$, on peut répéter le même raisonnement que dans le cas complexe : Φ_u est diagonalisable.

23 23.a Il suffit de se reporter à la question précédente.

23.b Puisque $\Phi_u(v) = \lambda v$, $uv - vu = \lambda v$. Si v était inversible, on aurait $u - vuv^{-1} = \lambda \operatorname{Id} \operatorname{puis} \lambda \operatorname{tr}(\operatorname{Id}) = \operatorname{tr}(u) - \operatorname{tr}(vuv^{-1}) = 0$, ce qui est impossible puisque $\lambda \neq 0$. Ainsi v n'est pas inversible.

De même, $\lambda \operatorname{tr}(v) = \operatorname{tr}(uv) - \operatorname{tr}(vu) = 0$ donc $\operatorname{tr}(v) = 0$ puisque $\lambda \neq 0$. Comme dim E = 2, $\chi_v = X^2 - \operatorname{tr}(v)X + \operatorname{det}(v)$. Or $\operatorname{tr}(v) = 0$ et $\operatorname{det}(v) = 0$ car v n'est pas inversible. Ainsi $\chi_v = X^2$. D'après le théorème de Cayley-Hamilton, $v^2 = 0$.

23.c Si (e, v(e)) est une base de E, alors $v(e) \neq 0$ i.e. $e \notin \text{Ker } v$. Réciproquement soit $e \in E \setminus \text{Ker } v$ (ceci est possible car $v \neq 0$). Soit $(\alpha, \beta) \in \mathbb{K}^2$ tel que $\alpha e + \beta v(e) = 0$. En appliquant v, on obtient $\alpha v(e) = 0$ puisque $v^2 = 0$. Ainsi $\alpha = 0$ car $v(e) \neq 0$. On en déduit que $\beta v(e) = 0$ et donc $\beta = 0$ pour la même raison. Ainsi (e, v(e)) est libre et est donc une base de E puisque dim E = 2. Finalement, (e, v(e)) est une base de E pour tout $e \in E \setminus \text{Ker } v$.

Comme (e, v(e)) est une base de E, il existe $(\alpha, \beta) \in \mathbb{K}^2$ tel que $u(e) = \alpha e + \beta v(e)$. De plus,

$$u(v(e)) = uv(e) = vu(e) + \lambda v(e) = \alpha v(e) + \beta v^2(e) + \lambda v(e) = (\alpha + \lambda) v(e)$$

La matrice de u dans la base (e, v(e)) est alors $\begin{pmatrix} \alpha & 0 \\ \beta & \alpha + \lambda \end{pmatrix}$, qui est bien triangulaire inférieure. On en déduit que $\chi_u = (X - x)$

$$\alpha)(X-(\alpha+\lambda)). \text{ De plus, } \operatorname{tr}(u) = \alpha + (\alpha+\lambda) = 2\alpha + \lambda \text{ de sorte que } \alpha = \frac{\operatorname{tr}(u) - \lambda}{2} \operatorname{puis} \chi_u = \left(X - \frac{\operatorname{tr}(u) - \lambda}{2}\right) \left(X - \frac{\operatorname{tr}(u) + \lambda}{2}\right).$$
 On en déduit que $\operatorname{Sp}(u) = \left\{\frac{\operatorname{tr}(u) - \lambda}{2}, \frac{\operatorname{tr}(u) + \lambda}{2}\right\}.$

23.d Puisque $\lambda \neq 0$, χ_u est simplement scindé donc u est diagonalisable.

24 Soit $i \in [1, n^2]$. On sait que $\Phi_u(v_i) = \beta_i v_i$ i.e. $uv_i - v_i u = \beta_i v_i$.

$$u(v_i(x)) = \beta_i v_i(x) + v_i(u(x)) = \beta_i v_i(x) + v_i(\lambda x) = (\lambda + \beta_i) v_i(x)$$

L'application Ψ est clairement linéaire (évaluation). Soit $y \in E$. Comme $x \neq 0$, on peut compléter x en une base de E. On sait alors qu'il existe $v \in \mathcal{L}(E)$ tel que v(x) = y et prenant des valeurs arbitraires (par exemple nulles) en les autres vecteurs de la base. Ceci prouve que Ψ est surjective.

Φ est une application linéaire surjective et $(v_i)_{1 \le i \le n^2}$ est une base de $\mathcal{L}(E)$ donc $(\Psi(v_i))_{1 \le i \le n^2} = (v_i(x))_{1 \le i \le n^2}$ est une famille génératrice de E. On peut extraire de cette famille génératrice une base de E. D'après la question **24**, les vecteurs de cette base sont des vecteurs propres de u, qui est donc diagonalisable.

27 27.a Puisque $v \in E_{\lambda}(\Phi_u)$, $uv - vu = \lambda v$. Soit $x \in \mathbb{K}$.

$$v(x \operatorname{Id} - u) = xv - vu = xv + \lambda v - uv = ((x + \lambda) \operatorname{Id} - u)v$$

27.b D'après la question précédente,

$$\det(v) \det(x \operatorname{Id} - u) = \det((x + \lambda) \operatorname{Id} - u) \det v$$

Ainsi si $det(v) \neq 0$,

$$\det(x\operatorname{Id}-u) = \det((x+\lambda)\operatorname{Id}-u)$$

ou encore

$$\forall x \in \mathbb{K}, \ P_u(x) = P_u(x + \lambda)$$

27.c On en déduit notamment que $P_u(k\lambda) = P_u(0)$ pour tout $k \in \mathbb{N}$. Ainsi pour tout $k \in \mathbb{N}$, $k\lambda$ est une racine du polynôme $Q = P_u - P_u(0)$. Comme $\lambda \neq 0$, Q possède une infinité de racines. Par conséquent, Q = 0 puis P_u est constant. C'est absurde puisque deg $P_u = n > 0$. On adonc montré par l'absurde que $\det(v) = 0$ i.e. v n'est pas inversible.

Tout d'abord, $\Phi_u(v) = \lambda v$. Supposons que $\Phi_u(v^k) = k\lambda v^k$ pour un certain $n \in \mathbb{N}^*$. Alors

$$\Phi(v^{k+1}) = uv^{k+1} - v^{k+1}u = (uv^k - v^ku)v + v^k(uv - vu) = \Phi_{v}(v^k)v + v^k\Phi_{v}(v) = k\lambda v^k + \lambda v^{k+1} = (k+1)\lambda v^{k+1}$$

On a donc montré par récurrence que pour tout $k \in \mathbb{N}^*$, $\Phi_u(v^k) = \lambda k v^k$.

Si $v^p \neq 0$ pour un certain $p \in \mathbb{N}^*$, v^p est un vecteur propre de Φ_u associé à la valeur propre $p\lambda$.

29 Si $v^p \neq 0$ pour tout $p \in \mathbb{N}^*$, alors $p\lambda$ est valeur propre de Φ_u pour tout $p \in \mathbb{N}^*$. Comme $\lambda \neq 0$, Φ_u posséderait une infinité de valeurs propres, ce qui est exclu. On en déduit qu'il existe $p \in \mathbb{N}^*$ tel que $v^p = 0$ i.e. v est nilpotent. On sait alors que l'indice de nilpotence de v est majoré par $n = \dim E$ donc $v^n = 0$.

Comme \mathcal{B} possède $n=\dim \mathbb{E}$ éléménts, il suffit de montrer que \mathcal{B} est libre pour affirmer que c'est une base de \mathbb{E} . Soit $(\alpha_0,\dots,\alpha_{n-1})\in \mathbb{K}^n$ tel que $\sum_{k=0}^{n-1}\alpha_kv^k(e)$. Supposons qu'il existe $k\in [\![0,n-1]\!]$ tel que $\alpha_k=0$. On peut alors définir $p=\min\{k\in [\![0,n-1]\!],\ \alpha_k\neq 0\}$. Alors

$$\sum_{k=p}^{n-1} \alpha_k v^k(e) = 0$$

En appliquant v^{n-1-p} à cette égalité, on obtient

$$\sum_{k=p}^{n-1} \alpha_k v^{n-1-p+k}(e) = 0$$

Pour $k \ge p+1$, $n-1-p+k \ge n$ donc $v^{n-1-p-k}=0$ de sorte que l'égalité précédente donne $\alpha_p v^{n-1}(e)=0$. Or $v^{n-1}(e)\ne 0$ donc $\alpha_p=0$, ce qui est contredit la définition de p. On a donc montré par l'absurde que $\alpha_k=0$ pour tout $k\in [\![0,n-1]\!]$. Ainsi $\mathcal B$ est libre et est donc une base de E.

La matrice de v dans la base \mathcal{B} est $V = \begin{pmatrix} 0 & \cdots & 0 & 0 \\ \hline & & & 0 \\ I_{n-1} & & \vdots \\ & & & 0 \end{pmatrix}$.

31. 31.a Pour allgéger les notations, posons $e_k = v^k(e)$. Ainsi $\mathcal{B} = (e_0, \dots, e_{n-1}), v(e_k) = e_{k+1}$ pour $k \in [0, n-1]$ en convenant que $e_n = 0$. Par définition, $w_0(e_k) = k\lambda e_k$ pour tout $k \in [0, n-1]$ et également pour k = n. Pour tout $k \in [0, n-1]$,

$$(w_0v - vw_0)(e_k) = w_0(v(e_k)) - v(w_0(e_k)) = w_0(e_{k+1}) - k\lambda v(e_k) = (k+1)\lambda e_{k+1} - k\lambda e_{k+1} = \lambda e_{k+1} = \lambda v(e_k)$$

Les endomorphismes $w_0v - vw_0$ et λv coïncident sur la base \mathcal{B} : ils sont égaux. Ainsi $w_0 \in \mathcal{A}$.

31.b Soit $w \in \mathcal{L}(E)$. Alors $w \in \mathcal{A} \iff \Phi_v(w - w_0) = 0$. Ainsi $\mathcal{A} = w_0 + \operatorname{Ker} \Phi_v$ est bien un sous-espace affine de direction $\operatorname{Ker} \Phi_v$.

31.c Montrons que (Id, $v, ..., v^{n-1}$) est une base de Ker Φ_v .

Tout d'abord, on a déjà vu que $\operatorname{vect}(\operatorname{Id}, v, \dots, v^{n-1}) \subset \operatorname{Ker} \Phi_v$. Comme v est nilpotent d'indice n, son polynôme minimal est X^n de sorte que $(\operatorname{Id}, v, \dots, v^{n-1})$ est libre. Il reste donc seulement à montrer que $\operatorname{Ker} \Phi_v \subset \operatorname{vect}(\operatorname{Id}, v, \dots, v^{n-1})$.

Soit $w \in \text{Ker } \Phi_v$. Comme $(e, v(e), \dots, v^{n-1}(e))$ est une base de E, il existe $(\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{K}^n$ tel que $w(e) = \sum_{k=0}^{n-1} \alpha_k v^k(e)$.

Comme $w \in \text{Ker } \Phi_v$, u commute avec v et donc avec toutes les puissances de v. Notamment, pour tout $j \in [0, n-1]$,

$$w(v^{j}(e)) = v^{j}(w(e)) = \sum_{k=0}^{n-1} \alpha_k v^{k+j}(e) = \left(\sum_{k=0}^{n-1} \alpha_k v^k\right) (v^{j}(e))$$

Les endomorphismes w et $\sum_{k=0}^{n-1} \alpha_k v^k$ coïncident sur la base \mathcal{B} : ils sont donc égaux. On en déduit que $\ker \Phi_v \subset \operatorname{vect}(\operatorname{Id}, v, \dots, v^{n-1})$. On en conclut donc bien que $(\operatorname{Id}, v, \dots, v^{n-1})$ est une base de $\ker \Phi_v$. Notamment, $\dim \ker \Phi_v = n$.

Comme $u \in \mathcal{A}$, il existe $w \in \text{Ker } \Phi_v$ tel que $u = w_0 + w$. D'après la question précédente, la matrice de W dans la base \mathcal{B} est de la forme

$$\mathbf{W} = \sum_{k=0}^{n-1} \alpha_k \mathbf{V}^k = \begin{pmatrix} \alpha_0 & 0 & \cdots & 0 \\ \alpha_1 & \alpha_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \alpha_{n-1} & \cdots & \alpha_1 & \alpha_0 \end{pmatrix}$$

Comme la matrice de w_0 dans la base \mathcal{B} est diag $(0, \lambda, 2\lambda, ..., (n-1)\lambda)$, la matrice de u dans la base \mathcal{B} est de la forme

$$\mathbf{U} = \sum_{k=0}^{n-1} \alpha_k \mathbf{V}^k = \begin{pmatrix} \alpha_0 & 0 & \cdots & 0 \\ \alpha_1 & \alpha_0 + \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \alpha_{n-1} & \cdots & \alpha_1 & \alpha_0 + (n-1)\lambda \end{pmatrix}$$

33 Notons $\mathcal{B}' = (e_0, \dots, e_{n-1})$. Alors $u(e_k) = (\alpha + k\lambda)e_k$ pour tout $k \in [0, n-1]$. Soit $v \in \mathcal{L}(E)$. Dans ce qui suit, on $\overline{\text{convient que }}e_n = 0 \text{ et que } E_{\alpha + n\lambda}(u) = \{0\}. \text{ Alors }$

$$\begin{split} v \in \mathcal{E}_{\lambda}(\Phi_{u}) &\iff uv - vu = \lambda v \\ &\iff \forall k \in \llbracket 0, n - 1 \rrbracket, \ uv(e_{k}) - vu(e_{k}) = \lambda v(e_{k}) \\ &\iff \forall k \in \llbracket 0, n - 1 \rrbracket, \ uv(e_{k}) = (\alpha + (k + 1)\lambda)v(e_{k}) \\ &\iff \forall k \in \llbracket 0, n - 1 \rrbracket, \ v(e_{k}) \in \mathcal{E}_{\alpha + (k + 1)\lambda}(u) \\ &\iff \forall k \in \llbracket 0, n - 1 \rrbracket, \ v(e_{k}) \in \mathrm{vect}(e_{k + 1}) \end{split}$$

Ceci équivaut à $v(e_{n-1})=0$ et à l'existence pour tout $k\in [\![0,n-2]\!]$, d'un scalaire $c_k\in \mathbb{N}$ ter que $v(e_n)=0$ et à l'existence pour tout $k\in [\![0,n-2]\!]$, d'un scalaire $c_k\in \mathbb{N}$ ter que $v(e_n)=0$ et à l'existence pour tout $k\in [\![0,n-2]\!]$, d'un scalaire $c_k\in \mathbb{N}$ ter que $v(e_n)=0$ et à l'existence pour tout $k\in [\![0,n-2]\!]$, d'un scalaire $c_k\in \mathbb{N}$ ter que $v(e_n)=0$ et à l'existence pour tout $k\in [\![0,n-2]\!]$, d'un scalaire $c_k\in \mathbb{N}$ ter que $v(e_n)=0$ et à l'existence pour tout $e_n=0$ et à l'existence pour to

Le sous-espace propre $E_{\Phi_u}(\lambda)$ est donc de dimension n-1.