

Proposta de teste de avaliação

Matemática A

12.º ANO DE ESCOLARIDADE

Duração: 150 (+30) minutos | **Data:**

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

Um recipiente com uma substância à temperatura de 4 °C foi colocado numa sala onde a temperatura 1. ambiente de 22 °C permanece constante.

Admita que a temperatura dessa substância, em graus Celsius, após t minutos, é dada por:

$$T(t) = 22 + Ae^{kt}$$

em que A e k são constantes reais.

- **1.1.** Mostre que A = -18.
- Sabendo que, nos primeiros 8 minutos, a temperatura da substância aumentou a uma taxa 1.2. média de 0,9 °C por minuto, determine a que temperatura estava ao fim de 16 minutos.
- 2. Na figura está representada, num referencial o.n. xOy, a circunferência de centro na origem e raio 1.

Sabe-se que:

- os pontos A, B e C têm coordenadas (-1,0), (1,0) e (0,1), respetivamente;
- o ponto P se desloca sobre o arco BC;
- o segmento de reta [AP] interseta o eixo Oy no ponto Q.

Para cada posição do ponto P, seja α a amplitude, em radianos, do ângulo $BOP\left(\alpha \in \left[0, \frac{\pi}{2}\right]\right)$.

Qual das seguintes expressões dá o comprimento do segmento de reta [OQ], em função de α ?

(A)
$$\frac{\tan\frac{\alpha}{2}}{1+\cos\alpha}$$

(B)
$$1-\cos \alpha$$

(C)
$$\frac{\sin \alpha}{1 + \cos \alpha}$$

(B)
$$1-\cos\alpha$$
 (C) $\frac{\sin\alpha}{1+\cos\alpha}$ (D) $\frac{1-\cos\alpha}{1+\sin(2a)}$

3. Considere as funções f e g , definidas nos domínios \mathbb{R}^+ e \mathbb{R} , respetivamente, por:

$$f(x) = \frac{3\ln x}{x}$$
 e $g(x) = xe^{x-a} + b$ $(a,b \in \mathbb{R})$

- 3.1. Estude a função f quanto à monotonia e quanto à existência de extremos relativos e determine, caso existam, esses extremos.
- **3.2.** Seja r a reta tangente ao gráfico de f no ponto de abcissa 1. Sabendo que a reta r também é tangente ao gráfico de g no ponto de abcissa 2, determine os valores de a e de b.
- 4. Seja S, conjunto finito, o espaço amostral associado a uma certa experiência aleatória.

Sejam $A \in B$ dois acontecimentos $(A \subset S \in B \subset S)$.

Sabe-se que:

- $P(\overline{A} \cap \overline{B}) = 0.2$
- $P(A|B) = 2P(B|A) = \frac{1}{3}$

O valor de $P(A \cap B)$ é:

- (A) 0,1
- **(B)** 0.2
- **(C)** 0,3
- **(D)** 0,4
- Um saco A tem 5 bolas brancas e 15 bolas pretas numeradas de 1 a 15. 5.

Um saco B tem 10 bolas das quais algumas são brancas.

Todas as bolas são indistinguíveis ao tato.

- 5.1. Ao tirar, ao acaso, uma bola de cada saco, a probabilidade de sair uma, e uma só, bola branca é igual a 55%. Quantas bolas brancas estão no saco B?
- As quinze bolas pretas do saco A vão ser distribuídas, em partes iguais, por 3 caixas diferentes. De quantas maneiras diferentes podem as bolas ficar colocadas nas caixas?
- 6. Seja \mathbb{C} o conjunto dos números complexos e sejam $A \in B$ os seguintes subconjuntos de \mathbb{C} :

$$A = \{z \in \mathbb{C} : z^8 = 1\}$$

$$B = \{z \in \mathbb{C} : \operatorname{Re}(z) \ge 0\}$$

Escolhe-se, ao acaso, um elemento de A.

Qual é probabilidade de esse elemento pertencer ao conjunto B?

- (A) $\frac{1}{8}$
- **(B)** $\frac{3}{8}$ **(C)** $\frac{1}{2}$ **(D)** $\frac{5}{8}$

7. Na figura está representado, num referencial o.n. *Oxyz*, o cone reto de vértice *V* cuja base é o círculo de diâmetro [*AB*].

Sabe-se que A, B e V têm coordenadas (5,1,3), (-3,3,5) e (4,8,10), respetivamente.

- 7.1. Defina por uma equação cartesiana o plano que contém a base do cone.
- **7.2.** Determine as coordenadas do ponto de interseção da reta BV com o plano xOy.
- **8.** Considere a função g, de domínio \mathbb{R} , definida por:

$$g(x) = \begin{cases} \frac{x e^{-x} - x}{x^2} & \text{se } x < 0 \\ -1 & \text{se } x = 0 \\ \frac{\ln(2x+1)^2}{8x^2 - 4x} & \text{se } x > 0 \end{cases}$$

- **8.1.** Averigue se a função g é contínua em x = 0.
- **8.2.** Estude a função g quanto à existência de assintotas horizontais ao seu gráfico.
- **9.** De uma sucessão (u_n) sabe-se que $u_n u_{n+1} = 1$, $\forall n \in \mathbb{N}$.

Sabe-se ainda que a soma dos primeiros 100 termos de (u_n) é igual a 0.

O valor de u_1 é:

- **(A)** 99
- **(B)** 50,5
- **(C)** 50
- **(D)** 49,5

- Seja f a função definida em \mathbb{R} por $f(x) = x \sin x$. 10.
 - **10.1.** Utilizando a definição de derivada de uma função num ponto, calcule $f'(\pi)$.
 - 10.2. A circunferência de centro no ponto de coordenadas (1,-1) e raio 2 interseta, no intervalo $]0,\pi[$, o gráfico da função f num único ponto.

Determine a abcissa desse ponto, recorrendo à calculadora gráfica.

Na sua resposta deve:

- apresentar a equação que lhe permite resolver o problema;
- reproduzir o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial;
- apresentar o valor pedido arredondado às centésimas.
- Em \mathbb{C} , conjunto dos números complexos, seja w=1-i. 11.
 - **11.1.** Em qual das seguintes opções está representado o número complexo w^3 ?

(A)
$$2\sqrt{2}e^{-\frac{3\pi}{4}i}$$
 (B) $2\sqrt{2}e^{\frac{3\pi}{4}i}$ (C) $\sqrt{2}e^{-\frac{3\pi}{4}i}$ (D) $\sqrt{2}e^{\frac{3\pi}{4}i}$

(B)
$$2\sqrt{2} e^{\frac{3\pi}{4}}$$

(C)
$$\sqrt{2} e^{-\frac{3\pi}{4}}$$

$$(D) \qquad \sqrt{2} \, e^{\frac{3\pi}{4}}$$

11.2. De todas as soluções da condição $z(w+1)+\overline{z}(\overline{w}+1)=4$ determine aquela cujo argumento é igual a $\frac{\pi}{4}$.

Apresente o resultado na forma a + bi, $a, b \in \mathbb{R}$.

FIM

Cotações:

	Item																	
	Cotação (em pontos)																	
1.1.	1.2.	2.	3.1.	3.2.	4.	5.1.	5.2.	6.	7.1.	7.2.	8.1.	8.2.	9.	10.1.	10.2.	11.1.	11.2.	Total
11	12	10	12	12	10	11	11	10	11	12	11	12	10	11	12	10	12	200

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; \ r - \text{raio})$

Área lateral de um cone: $\pi rg(r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3 \ (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \ e^{i\theta}} = \sqrt[n]{\rho} \ e^{i\frac{\theta+2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \ \mathbf{e} \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Proposta de resolução

1.
$$T(t) = 22 + Ae^{kt}$$

1.1. Para
$$t = 0$$
, temos $T = 4$ °C.

$$T(0) = 22 + Ae^{k \times 0} \Leftrightarrow 4 = 22 + Ae^0 \Leftrightarrow$$

$$\Leftrightarrow 4-22 = A \times 1 \Leftrightarrow A = -18$$

1.2.
$$T(t) = 22 - 18e^{kt}$$

Se, nos primeiros 8 minutos, a temperatura da água aumentou a uma taxa média de 0.9 °C por minuto, significa que a taxa média de variação da função T no intervalo $\begin{bmatrix} 0,8 \end{bmatrix}$ foi de 0.9 °C/min.

$$\frac{T(8) - T(0)}{8 - 0} = 0.9 \Leftrightarrow \frac{22 - 18e^{k \times 8} - 4}{8} = 0.9 \Leftrightarrow$$

$$\Leftrightarrow 18 - 18e^{k \times 8} = 8 \times 0.9 \Leftrightarrow -18e^{k \times 8} = 7.2 - 18 \Leftrightarrow$$

$$\Leftrightarrow -18e^{8k} = -10.8 \Leftrightarrow e^{8k} = \frac{-10.8}{-18} \Leftrightarrow$$

$$\Leftrightarrow e^{8k} = 0.6 \Leftrightarrow 8k = \ln(0.6) \Leftrightarrow$$

$$\Leftrightarrow k = \frac{\ln(0,6)}{8}$$

$$T(t) = 22 - 18e^{\frac{\ln(0,6)}{8}t}$$

$$T(16) = 22 - 18e^{\frac{\ln(0.6)}{8} \times 16} = 22 - 18e^{2\ln(0.6)} =$$

$$= 22 - 18e^{\ln(0.6)^{2}} = 22 - 18e^{\ln(0.36)} =$$

$$= 22 - 18 \times 0.36 = 15.52$$

A temperatura da substância, decorridos 16 minutos, era 15,52 °C.

2. Seja S o ponto de [OB] tal que $[PS] \perp [OB]$.

Dado que os triângulos [AOQ] e [ASP] são

semelhantes (critério AA) temos: $\frac{\overline{OQ}}{\overline{SP}} = \frac{\overline{AO}}{\overline{AS}}$ Como $\overline{OS} = \cos \alpha$, $\overline{SP} = \sin \alpha$ e $\overline{AO} = 1$, vem

$$\frac{\overline{OQ}}{\sin \alpha} = \frac{1}{1 + \cos \alpha} \Leftrightarrow \overline{OQ} = \frac{\sin \alpha}{1 + \cos \alpha}$$

Resposta: (C)

3.
$$f(x) = \frac{3\ln x}{x}, g(x) = xe^{x-a} + b$$

3.1.
$$f'(x) = 3 \times \left(\frac{\ln x}{x}\right)' = 3 \times \frac{(\ln x)' x - (\ln x) x'}{x^2} = 3 \times \frac{\frac{1}{x} x - \ln x}{x^2} = 3 \times \frac{1 - \ln x}{x^2}$$

$$f'(x) = 0 \Leftrightarrow 3 \times \frac{1 - \ln x}{x^2} = 0 \Leftrightarrow 1 - \ln x = 0 \land x > 0 \Leftrightarrow$$

$$\Leftrightarrow \ln x = 1 \land x > 0 \Leftrightarrow x = e$$

х	0		e	+∞
f'		+	0	-
f		7	$\frac{3}{e}$	>

$$f(e) = \frac{3 \ln e}{e} = \frac{3 \times 1}{e} = \frac{3}{e}$$

A função f é estritamente crescente em [0,e] e estritamente decrescente em $[e,+\infty[$.

f admite um máximo relativo (e absoluto) igual a $\frac{3}{e}$ para x = e.

3.2. Equação da reta r, tangente ao gráfico de f no ponto de abcissa 1:

$$f(1) = \frac{3\ln 1}{1} = 0$$

Ponto de tangência: (1,0)

$$f'(1) = 3 \times \frac{1 - \ln 1}{1^2} = 3 \times \frac{1 - 0}{1} = 3$$

Declive de r: m = f'(1) = 3

$$r: y-0=3\times(x-1) \Leftrightarrow y=3x-3$$

Se a reta r: y = 3x - 3 também é tangente ao gráfico da função g, no ponto de abcissa 2, então g'(2) = m = 3 e $g(2) = 3 \times 2 - 3 = 3$ dado que o ponto de tangência pertence à reta r e ao gráfico da função g.

$$g'(x) = (xe^{x-a} + b)' = x'e^{x-a} + x(e^{x-a})' + 0 = e^{x-a} + xe^{x-a} = e^{x-a}(1+x)$$

$$g(2) = 2e^{2-a} + b$$

$$g'(2) = e^{2-a}(1+2) = 3e^{2-a}$$

$$g'(2) = 3 \Leftrightarrow 3e^{2-a} = 3 \Leftrightarrow e^{2-a} = 1 \Leftrightarrow 2-a = \ln 1 \Leftrightarrow a = 2$$

$$g(2) = 3 \land a = 2 \Leftrightarrow 2e^{2-a} + b = 3 \land a = 2 \Leftrightarrow$$

$$\Leftrightarrow$$
 2e²⁻²+ h = 3 \Leftrightarrow 2e⁰+ h = 3 \Leftrightarrow h = 3-2 \Leftrightarrow h = 1

$$a = 2 e b = 1$$

4. •
$$P(\overline{A} \cap \overline{B}) = 0,2 \Leftrightarrow P(\overline{A \cup B}) = 0,2 \Leftrightarrow$$

 $\Leftrightarrow 1 - P(A \cup B) = 0,2 \Leftrightarrow P(A \cup B) = 0,8$

•
$$P(A|B) = \frac{1}{3} \Leftrightarrow \frac{P(A \cap B)}{P(B)} = \frac{1}{3} \Leftrightarrow P(B) = 3P(A \cap B)$$

•
$$2P(B|A) = \frac{1}{3} \Leftrightarrow P(B|A) = \frac{1}{6} \Leftrightarrow \frac{P(B \cap A)}{P(A)} = \frac{1}{6} \Leftrightarrow P(A) = 6P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.8 = 6P(A \cap B) + 3P(A \cap B) - P(A \cap B) \Leftrightarrow$$

$$\Leftrightarrow 0.8 = 8P(A \cap B) \Leftrightarrow P(A \cap B) = \frac{0.8}{8} \Leftrightarrow P(A \cap B) = 0.1$$

Resposta: (A)

5.

5.1 Seja n o número de bolas brancas no saco B.

A probabilidade de sair bola branca no saco $A \in P(B_A) = \frac{5}{20} = \frac{1}{4}$.

A probabilidade de sair bola branca no saco $B \in P(B_B) = \frac{n}{10}$.

Ao tirar, ao acaso, uma bola de cada saco, a probabilidade de sair uma, e uma só, bola branca é dada por:

$$P(B_A \cap \overline{B}_B) + P(\overline{B}_A \cap B_B) =$$

$$= \frac{1}{4} \times \frac{10 - n}{10} + \frac{3}{4} \times \frac{n}{10} =$$

$$= \frac{10 - n}{40} + \frac{3n}{40} = \frac{10 - n + 3n}{40} =$$

$$= \frac{10 + 2n}{40} = \frac{5 + n}{20}$$

$$P(B_A \cap \overline{B_B}) + P(\overline{B_A} \cap B_B) = 55\% \Leftrightarrow$$

$$\Leftrightarrow \frac{5+n}{20} = \frac{55}{100} \Leftrightarrow \frac{5+n}{20} = \frac{11}{20} \Leftrightarrow$$

$$\Leftrightarrow 5+n = 11 \Leftrightarrow n = 6$$

5.2. ${}^{15}C_5 \times {}^{10}C_5 \times {}^5C_5 = 756756$

ou

$$\frac{15!}{5! \times 5! \times 5!} = 756756$$
 ou

As bolas podem ficar colocadas nas caixas de 756 756 maneiras diferentes.

6. $A = \{z \in \mathbb{C} : z^8 = 1\}; B = \{z \in \mathbb{C} : \text{Re}(z) \ge 0\}$

Os elementos de A são as oito raízes de índice 8 da unidade. Os afixos desses elementos são os vértices de um octógono regular inscrito na circunferência de centro na origem do referencial e raio igual a $\sqrt[8]{1} = 1$. Um dos vértices é o afixo de $z_0 = 1$ dado que $1^8 = 1$. Cinco dos oito elementos de $A(z_0, z_1, z_2, z_6 \ e \ z_7)$ pertencem a B, ou seja, têm a parte real maior ou igual a zero.

Logo, a probabilidade pedida é $\frac{5}{8}$.

Resposta: (D)

7. 7.1. A(5,1,3), B(-3,3,5) e V(4,8,10)

O centro da base do cone é C, ponto médio de [AB].

$$C\left(\frac{5-3}{2}, \frac{1+3}{2}, \frac{3+5}{2}\right)$$
, ou seja, $C(1, 2, 4)$

$$\overrightarrow{CV} = V - C = (4, 8, 10) - (1, 2, 4) = (3, 6, 6)$$

Seja α o plano da base do cone. Como o cone é reto, [CV] é perpendicular aos raios da base pelo que $\overrightarrow{CV}(3,6,6)$ é perpendicular ao plano α .

Logo, uma equação do plano α é do tipo 3x + 6y + 6z + d = 0.

Como o ponto C(1, 2, 4) pertence ao plano α , vem $3 \times 1 + 6 \times 2 + 6 \times 4 + d = 0$.

$$3 \times 1 + 6 \times 2 + 6 \times 4 + d = 0 \Leftrightarrow 39 + d = 0 \Leftrightarrow d = -39$$

Portanto, $3x + 6y + 6z - 39 = 0 \Leftrightarrow x + 2y + 2z - 13 = 0$ é uma equação do plano α .

7.2. $\overrightarrow{BV} = V - B = (4, 8, 10) - (-3, 3, 5) = (7, 5, 5)$

Equação vetorial da reta BV:

$$(x, y, z) = (-3, 3, 5) + k(7, 5, 5), k \in \mathbb{R}$$

Ponto genérico da reta BV:

$$(x, y, z) = (-3 + 7k, 3 + 5k, 5 + 5k), k \in \mathbb{R}$$

O plano xOy é definido pela equação z = 0.

O ponto $(-3+7k, 3+5k, 5+5k), k \in \mathbb{R}$, pertence ao plano yOz se

$$5+5k=0 \Leftrightarrow 5k=-5 \Leftrightarrow k=-1$$

O ponto pedido obtém-se para k = -1:

$$(-3+7\times(-1), 3+5\times(-1), 5+5\times(-1)) = (-10, -2, 0).$$

Logo, o ponto de interseção da reta BV com o plano xOy tem coordenadas (-10, -2, 0)

8.
$$g(x) = \begin{cases} \frac{xe^{-x} - x}{x^2} & \text{se } x < 0 \\ -1 & \text{se } x = 0 \\ \frac{\ln(2x+1)^2}{8x^2 - 4x} & \text{se } x > 0 \end{cases}$$

8.1.
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{x e^{-x} - x}{x^{2}} = \lim_{x \to 0^{-}} \frac{x(e^{-x} - 1)}{x^{2}} = \lim_{x \to 0^{-}} \frac{e^{-x} - 1}{x} = \lim_{x \to 0^{-}} \frac{e^{y} - 1}{y} = -\lim_{x \to 0^{+}} \frac{e^{y} - 1}{y} = -1$$

$$\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} \frac{\ln(2x+1)^{2}}{8x^{2} - 4x} = \lim_{x \to 0^{+}} \frac{2\ln(2x+1)}{4x(2x-1)} =$$

$$= \lim_{x \to 0^{+}} \frac{\ln(2x+1)}{2x} \times \lim_{x \to 0^{+}} \frac{1}{2x-1} = \lim_{y \to 0^{+}} \frac{y}{e^{y} - 1} \times \frac{1}{0-1} = \begin{vmatrix} y = \ln(2x+1) \Leftrightarrow e^{y} = 2x + 1 \Leftrightarrow \\ \Leftrightarrow 2x = e^{y} - 1 \\ \text{Se } x \to 0^{+}, y \to 0^{+} \end{vmatrix}$$

$$= \frac{1}{\lim_{y \to 0^{+}} \frac{e^{y} - 1}{y}} \times (-1) = \frac{1}{1} \times (-1) = -1$$

$$g(0) = -1$$

Como $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^+} g(x) = g(0)$, existe $\lim_{x\to 0} g(x)$. Logo, g é contínua em x=0.

8.2. g é continua em \mathbb{R} .

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \frac{x e^{-x} - x}{x^2} = \lim_{x \to -\infty} \frac{x (e^{-x} - 1)}{x^2} = \lim_{x \to -\infty} \frac{e^{-x} - 1}{x} = \lim_{x \to -\infty} \frac{e^{-x} - 1}{x} = \lim_{x \to -\infty} \frac{1 - e^{-x}}{-x} = \lim_{x \to -\infty} \frac{1}{-x} - \lim_{x \to -\infty} \frac{e^{-x}}{-x} = 0 - \lim_{y \to +\infty} \frac{e^{y}}{y} = -\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{\ln(2x + 1)^2}{8x^2 - 4x} = \lim_{x \to +\infty} \frac{2\ln(2x + 1)}{2(4x^2 - 2x)} = \lim_{x \to +\infty} \frac{\ln(2x + 1)}{4x^2 - 2x} = \lim_{x \to +\infty} \frac{\ln(2x + 1)}{2x + 1} \times \lim_{x \to +\infty} \frac{2x + 1}{4x^2 - 2x} = \lim_{x \to +\infty} \frac{\ln y}{y} \times \lim_{x \to +\infty} \frac{2x}{4x^2} = 1 \times \lim_{x \to +\infty} \frac{1}{2x} = 1 \times 0 = 0$$

A reta de equação y = 0 é a única assíntota ao gráfico da função g (quando $x \to +\infty$)

9. $u_n - u_{n+1} = 1$, $\forall n \in \mathbb{N} \Leftrightarrow u_{n+1} = u_n - 1$, $\forall n \in \mathbb{N}$

 (u_n) é uma progressão aritmética de razão -1.

Logo,
$$u_n = u_1 + (n-1) \times r$$
, $\forall n \in \mathbb{N} \iff u_n = u_1 + (n-1) \times (-1)$, $\forall n \in \mathbb{N} \iff u_n = u_1 - n + 1$, $\forall n \in \mathbb{N}$

$$S_{100} = 0 \Leftrightarrow \frac{u_1 + u_{100}}{2} \times 100 = 0 \Leftrightarrow \frac{u_1 + u_1 - 100 + 1}{2} \times 100 = 0 \Leftrightarrow$$
$$\Leftrightarrow \frac{2u_1 - 99}{2} \times 100 = 0 \Leftrightarrow 2u_1 - 99 = 0 \Leftrightarrow u_1 = 49,5$$

Resposta: (D)

10.
$$f(x) = x \sin x$$

10.1.
$$f'(\pi) = \lim_{h \to 0} \frac{f(\pi + h) - f(\pi)}{h} =$$

$$= \lim_{h \to 0} \frac{(\pi + h)\sin(\pi + h) - \pi\sin(\pi)}{h} =$$

$$= \lim_{h \to 0} \frac{(\pi + h)(-\sin h) - 0}{h} =$$

$$= -\lim_{h \to 0} (\pi + h) \times \lim_{h \to 0} \frac{\sin h}{h} =$$

$$= -\pi \times 1 = -\pi$$

10.2. Pretende-se determinar a abcissa do ponto P, do gráfico da função f, no intervalo $]0,\pi[$, cuja distância ao ponto C(1,-1) é igual a 2.

Como P tem coordenadas $(x, \sin x)$ a distância \overline{CP} é dada por $d(x) = \sqrt{(x-1)^2 + (x\sin x + 1)^2}$

A solução da equação d(x) = 2, no intervalo $]0, \pi[$, é o valor que se pretende.

Recorrendo à calculadora gráfica determinou-se, no intervalo referido, a abcissa do ponto de interseção dos gráficos das funções

$$y_1 = d(x) = \sqrt{(x-1)^2 + (x\sin x + 1)^2}$$
 e $y_2 = 2$

tendo-se obtido o resultado indicado.

Portanto a abcissa pedida é aproximadamente igual a 1,11.

11. w = 1 - i

11.1
$$|w| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

Seja θ um argumento de w

$$\begin{cases} \tan \theta = \frac{-1}{1} = -1 \\ (1, -1) \in 4.^{\circ} \text{ Q} \end{cases} \Rightarrow -\frac{\pi}{4} \text{ \'e um argumento de } w$$

$$w = \sqrt{2} e^{-\frac{\pi}{4}i}$$

$$w^{3} = \left(\sqrt{2} e^{-\frac{\pi}{4}i}\right)^{3} = \left(\sqrt{2}\right)^{3} e^{3\times\left(-\frac{\pi}{4}i\right)} = \left(\sqrt{2}\right)^{2} \sqrt{2} e^{-\frac{3\pi}{4}i} = 2\sqrt{2} e^{-\frac{3\pi}{4}i}$$

Resposta: (A)

11.2. Fazendo z = x + yi, $x, y \in \mathbb{R}$, vem

$$z(w+1) + \overline{z}(\overline{w}+1) = 4 \Leftrightarrow$$

$$\Leftrightarrow (x+yi)(1-i+1) + (x-yi)(1+i+1) = 4 \Leftrightarrow$$

$$\Leftrightarrow (x+yi)(2-i) + (x-yi)(2+i) = 4 \Leftrightarrow$$

$$\Leftrightarrow 2x - xi + 2yi + y + 2x + xi - 2yi + y = 4 \Leftrightarrow$$

$$\Leftrightarrow 4x + 2y = 4 \Leftrightarrow 2x + y = 2 \Leftrightarrow y = -2x + 2$$

São soluções da condição dada todos os números complexos cujos afixos pertencem à reta de equação y = -2x + 2.

Os afixos dos números complexos cujo argumento é igual a $\frac{\pi}{4}$ pertencem à bissetriz do 1.º quadrante, isto é, pertencem à semirreta definida por y = x com x > 0 e y > 0.

$$\begin{cases} y = -2x + 2 \\ y = x \end{cases} \Leftrightarrow \begin{cases} x = -2x + 2 \\ y = x \end{cases} \Leftrightarrow \begin{cases} 3x = 2 \\ y = x \end{cases} \Leftrightarrow \begin{cases} x = \frac{2}{3} \\ y = \frac{2}{3} \end{cases}$$

O número complexo que satisfaz a condição dada e tem argumento igual a $\frac{\pi}{4}$ é $z = \frac{2}{3} + \frac{2}{3}i$.