CSCI 4560/6560 Evolutionary Computation Final Exam - Fall 2023

NAME:		
Problem(1):		
Problem(2):		
Problem(3):		
Problem(4):		
Total:		

1. [25 Points]

The 3-WayPartition problem is stated as follows. Given a set of N positive integers $X=\{x_1,x_2,\ldots,x_n\}$ separate them into three subsets P_1 and P_2 and P_3 such that the sums of the subsets are as similar as possible. For example, if N=7 and the set $X=\{10,17,3,24,5,26,2\}$, the sets $P_1=\{5,24\}$, $P_2=\{17,10,2\}$ and $P_3=\{3,26\}$ constitute an optimal solution for the 3-WayPartition problem in this example as they have equal sums.

Formulate the 3-WayPartition problem as a Genetic or Evolutionary Algorithm optimization. you should specify:

- A representation.
- A fitness function. Give 3 examples of individuals and their fitness values if you are solving the above example (i.e. $X = \{10, 17, 3, 24, 5, 26, 2\}$).
- A set of mutation and/or crossover and/or repair operators. Intelligent operators that are suitable for this particular problem domain will earn more credit.
- A termination criterion for the evolutionary optimization.

2. [25 points]: Short answers please

- (a) Give brief definitions for the following:
 - i. Multimodal optimization problems
 - ii. The Pareto Front in multi-objective optimization
- (b) Briefly describe two different methods for adaptive parameter control in evolutionary optimization.
- (c) Give the name of one genetic operator that exhibits positional bias and one that exhibits distributional bias.

3. [25 points]:

Consider a genetic algorithm using binary representation with strings of length 5. The fitness is to be maximized. Assume that the initial population was as follows:

Individual	Genotype	Fitness
1	10001	A
2	11100	В
3	00011	\mathbf{C}
4	01110	D

Assume also that a Goldberg-style canonical generational GA (using proportional selection, 1-point crossover and bit mutation) is used with mutation probability $p_m = 0.01$ and crossover probability $p_c = 1.0$. The population size is kept constant at 4 individuals and all intermediate populations have 4 individuals also.

- (a) If A = B = C = D = 10, what is the expected number of instances of the following schemata in the next generation: 1^{****} , 001^{**} .
- (b) If A = B = 10 and C = D = 20, what is the expected number of instances of the following schemata in the next generation: 0^{****} , 100^{**} .
- (c) Give a set of values for A, B, C, and D which makes the expected number of instances of schema 1**** in the **mating pool** twice the expected number of instances of schema 0**1* in the same pool.

4. [25 points]: Short answers please

- (a) Give brief definitions for the following:
 - i. The Building Block hypothesis
 - ii. Deception in Genetic Algorithms
- (b) Briefly mention one major difference between each of the following pairs:
 - i. Fitness sharing and crowding.
 - ii. Parameter Tuning and Parameter Control in evolutionary algorithms.
- (c) What is over-selection in genetic programming?