Big Data on AWS: The Big Picture

INTRODUCTION: BIG DATA CONCEPTS

Andrew Brust
FOUNDER & CEO, BLUE BADGE INSIGHTS

@andrewbrust www.bluebadgeinsights.com

Concepts: Big Data

100

Cliché: Volume, velocity, variety Literal: 100s of TB or higher Credo: Aggregations/analysis on raw data, in standalone files

Business:
Analyze data that is:
Relevant & important;
not conformed to
traditional systems

Technology: Hadoop was foundational; Spark is successor

Concepts: Data Lakes

Euphemism for Hadoop and Big Data?

Storage systems and agnostic file formats together treated as virtual database

Multiple engines against same data

Initial importance of HDFS

New importance of cloud object storage

Concepts: NoSQL

Big Data tie-in: semi-structured data + schema flexibility

Important producer of data for Big Data analytics

Big Data and NoSQL overlap, in HBase

Dominant indies: MongoDB, DataStax Cloud providers taking market share

Most NoSQL platforms now support SQL!

Concepts: Internet of Things

IoT: Internet connectivity for low-powered devices

Provides telemetry, sensor data

Time series format works well for analytics

Broad use cases:

- Maintenance, remote monitoring and asset tracking

Common applications:

- Preventive/proactive maintenance
- Usage/traffic data for municipalities
- Social media sentiment analysis
- Financial market data analysis
- Consumer: thermostats, appliances

Concepts: Machine Learning/Al

Historical data, relationships can be modeled to support predictions of future outcomes

Numerous algorithms and frameworks, open source and proprietary

Picking the right algorithm and "hyperparameter" value beyond most developers

- But automation is emerging

Development, deployment, monitoring and managing are all needed.

- Some are more evolved than others

Concepts:
MapReduce &
Massively
Parallel
Processing

Both algorithms based on divide and conquer for large data volumes

- Create a cluster with lots of servers
- Node get subset of data to work on
- Work in parallel; output quickly
- Got more data? Add more servers
- Cloud, elasticity work well here

MR: two passes (parsing and aggregating)

MPP: partitions query across RDBMS nodes

Concepts: Streaming

Streaming data produced is high-volume/small-payload

Bread and butter of real-time analytics

Produced in various scenarios:

- Internet of Things/sensors, financial markets, social media, Web analytics

Small number of dominant open source technologies

Major cloud providers offer proprietary streaming platforms

Concepts: SQL

Structured Query Language, around since the 70s

Huge pool of technologists with basic competency

Newer startups tried to abandon it; failed

Universally understood, declarative query language too valuable to abandon

Used by:

- Operational relational databases
- Data Warehouses
- NoSQL platforms
- Big data, data lake query engines

Summary

Big Data used to just mean Hadoop

Now encompasses:

- Cloud object storage
- Data warehousing
- Streaming data
- Data integration pipelines
- Data visualization
- And even machine learning/AI

AWS has services for each of these, and sometimes more than one

