CSE 4117 Parallel and Distributed Processing

rmShoeb

CSE-16

Distributed Systems - Maarten van Steen and Andrew S. Tanenbaum, first edition

- Chapter 1: Introduction
 - o 1.1: Definition of Distributed System
 - o 1.2: Goals
 - 1.2.1: Connecting Users and Resources
 - 1.2.2: Transparency
 - 1.2.3: Openness
 - 1.2.4: Scalability
 - 1.3: Hardware Concepts
 - 1.3.1: Multiprocessors
 - 1.3.2: Homogeneous Multicomputer Systems
 - 1.3.3: Heterogeneous Multicomputer Systems
 - o 1.4: Software Concepts
 - 1.4.1: Distributed Operating Systems
 - Uniprocessor Operating Systems
 - Multiprocessor Operating Systems
 - Multicomputer Operating Systems
 - Distributed Shared Memory Systems
 - 1.4.2: Network Operating Systems
 - 1.4.3: Middleware
 - A Comparison between Systems
 - o 1.5: The Client-Server Model
 - 1.5.1: Clients and Servers
 - 1.5.2: Application Layering
 - User-Interface Level
 - Processing Level
 - Data Level
- Chapter 2: Communication
 - o 2.2: Remote Procedure Call
 - 2.2.1: Basic RPC Operation
 - Conventional Procedure Call
 - Client and Server Stub
 - 2.2.2: Parameter Passing
 - Passing Value Parameters
 - Passing Reference Parameters
 - Parameter Specification and Stub Generation
 - 2.2.3: Extended RPC Models
 - Asynchronous RPC
- Chapter 3: Processes
 - o 3.4: Code Migration

- 3.4.1: Approaches to Code Migration
 - Reasons for Migrating Code
 - Models for Code Migration
- 3.4.2: Migration and Local Resources
- Chapter 5: Synchronization
 - o 5.1: Clock Synchronization
 - 5.1.1: Physical Clocks
 - 5.1.2: Clock Synchronization Algorithms
 - Cristian's Algorithm
 - The Berkeley Algorithm
 - o 5.2: Logical Clocks
 - 5.2.1: Lamport Timestamps
 - o 5.4: Election Algorithms
 - 5.4.1: The Bully Algorithm
 - 5.4.2: A Ring Algorithm
 - o 5.5: Mutual Exclusion
 - 5.5.1: A Centralized Algorithm
 - 5.5.2: A Distributed Algorithm
 - 5.5.3: A Token Ring Algorithm
 - 5.5.4: A Comparison of the Three Algorithms

<u>Distributed Operating System - Andrew S. Tanenbaum</u>

- Chapter 1: Introduction to Distributed Systems
 - o 1.1: What is a Distributed System
 - o 1.2: Goals
 - 1.2.1: Advantages of Distributed Systems over Centralized Systems
 - 1.2.2: Advantages of Distributed Systems over Independent PC's
 - 1.2.3: Disadvantages of Distributed Systems
 - o 1.3: Hardware Concepts
 - 1.3.1: Bus-Based Multiprocessors
 - 1.3.2: Switched Multiprocessors
 - 1.3.3: Bus-Based Multicomputers
 - 1.3.4: Switched Multicomputers
- Chapter 2: Communication in Distributed Systems
 - o 2.4: Remote Procedure Call
 - 2.4.1: Basic RPC Operation
 - 2.4.2: Parameter Passing
 - 2.4.3: Dynamic Binding
 - 2.4.4: RPC Semantics in the Presence of Failures
 - 2.4.5: Implementation Issues
 - Critical Path

- Chapter 3: Synchronizations in Distributed Systems
 - o 3.1: Clock Synchronization
 - 3.1.1: Logical Clocks
 - 3.1.2: Physical Clocks
 - 3.1.3: Clock Synchronization Algorithms
 - Cristian's Algorithm
 - The Berkeley Algorithm
 - o 3.2: Mutual Exclusion
 - 3.2.1: A Centralized Algorithm
 - 3.2.2: A Distributed Algorithm
 - 3.2.3: A Token Ring Algorithm
 - 3.2.4: A Comparison of the Three Algorithms
 - o 3.3: Election Algorithms
 - 3.3.1: The Bully Algorithm
 - 3.3.2: A Ring Algorithm
 - o 3.5: Deadlocks in Distributed Systems
 - 3.5.1: Distributed Deadlock Detection
 - Centralized Deadlock Detection
 - Distributed Deadlock Detection
 - 3.5.2: Distributed Deadlock Prevention
- Chapter 4: Processes and Processors in Distributed Systems
 - o 4.5: Fault Tolerance
 - 4.5.1: Component Faults
 - 4.5.2: System Failures
 - 4.5.3: Synchronous versus Asynchronous Systems
 - 4.5.4: Use of Redundancy
 - 4.5.5: Fault Tolerance Using Active Replication
 - 4.5.6: Fault Tolerance Using Primary Backup

Computer Organization and Architecture: Designing for Performance - William Stallings, tenth edition

- Chapter 17: Parallel Processing
 - o 17.1: Multiple Processor Organizations
 - o 17.2: Symmetric Multiprocessors
 - o 17.3: Cache Coherence and the MESI Protocol
 - o 17.4: Multithreading and Chip Multiprocessors
 - o 17.5: Clusters
 - o 17.6: Nonuniform Memory Access
 - o 17.7: Cloud Computing
- Chapter 18: Multicore Computers
 - 0 18.1

- 0 18.2
- 0 18.3
- 0 18.4
- Chapter 19: General Purpose Graphics Processing Units
 - 0 19.1
 - 0 19.2
 - 0 19.3
 - 0 19.4
 - 0 19.5

Computer Architecture and Parallel Processing - Kai Hwang and Faye A. Briggs

- Chapter 1: Introduction to Parallel Processing
 - 1.1: Evolution of Computer Systems
 - 1.1.2: Trends Towards Parallel Processing
 - o 1.2: Parallelism in Uniprocessor Systems
 - 1.2.1: Basic Uniprocessor Architecture
 - 1.2.2: Parallel Processing Mechanisms
 - Multiplicity of Functional Units
 - Parallelism and Pipelining within the CPU
 - Overlapped CPU and I/O Operations
 - Use of Hierarchical Memory System
 - 1.2.3: Balancing of Subsystem Bandwidth
 - Bandwidth balancing between CPU and Memory
 - Bandwidth balancing between Memory and I/O devices
 - 1.2.4: Multiprogramming and Time Sharing
 - Multiprogramming
 - Time Sharing
 - 1.3: Parallel Computer Structures
 - 1.3.1: Pipeline Computers
 - 1.3.2: Array Computers
 - 1.3.3: Multiprocessor Systems
 - 1.4: Architectural Classification Schemes
 - 1.4.1: Multiplicity of Instruction-Data Streams
 - SISD Computer Organization
 - SIMD Computer Organization
 - MISD Computer Organization
 - MIMD Computer Organization
- Chapter 7: Multiprocessor Architecture and Programming
 - o 7.2: Interconnection Networks
 - 7.2.1: Time Shared or Common Buses
 - 7.2.3: Multistage Networks for Multiprocessors