Week 4 Homework

• This is a preview of the published version of the quiz

Started: Jul 2 at 7:48am

Quiz Instructions

Question 1 1 pts

(Lesson 3.1: Solving a Differential Equation.) Suppose that $f(x)=e^{2x}$. We know that if h is small, then

$$f'(x) \approx \frac{f(x+h)-f(x)}{h}$$
.

Using this expression with h=0.01, find an approximate value for $f^\prime(1)$.

d. 14.93

Question 2 1 pts

(Lesson 3.1: Solving a Differential Equation.) Suppose that $f(x)=e^{2x}$. What is the actual value of f'(1)?

$$0 a. 1 \qquad f'(x) = 2e^{2x}$$

 \bigcirc b. epprox 2.72

$$\odot$$
 c. $e^2pprox 7.39$

d.
$$2e^2pprox 14.78$$

○ e. **14.93**

Question 3 1 pts

(Lesson 3.1: Solving a Differential Equation.) Consider the differential equation f'(x) = (x+1)f(x) with f(0) = 1. What is the exact formula for f(x)?

$$\frac{\partial f}{\partial x} = (x+1) f \implies \frac{\partial f}{\partial x} = (x+1) dx$$

$$0 a. f(x) = e^{x}$$

$$\int \frac{1}{f} \int_{0}^{1} f = \int_{0}^{1} (x+1) dx$$

$$\bigcirc$$
 b. $f(x)=e^{2x}$ \Rightarrow $f(x)=\frac{1}{2}x^2+x+c$

$$c. f(x) = \exp\left\{\frac{x^2}{2} + x\right\} \qquad f = c_1 e^{-\frac{x^2}{2} + x} \qquad c_1 = e^{-\frac{x^2}{2}}$$

$$\bigcirc$$
 d. $f(x) = \expig\{x^2 + 2xig\}$

Question 4

CHECK

1 pts

(Lesson 3.1: Solving Differential Equations.) Consider the differential equation f'(x)=(x+1)f(x) with f(0)=1. Solve for f(0.20) using Euler's approximation method with increment h=0.01 for $x\in[0,0.20]$.

approximation method with increment
$$h=0.01$$
 for $x\in[0,0.20]$.

$$f'(x)=\frac{(x+1)+f(x)}{f(x+h)}\approx f(x)+hf'(x)$$

$$=\frac{f(x)+h}{f(x)}$$

○ c.
$$f(0.20) \approx 1.24$$
 = $(1 + hx + 2h^2 + h) + (x)$

Od.
$$f(0.20) \approx 2.49$$
 $f(0+20(0.01)) = (1+0.01(0)+(20-17(0.01)^2+0.01)(1)$

= 1.0119

Question 5 1 pts

(Lesson 3.2: Monte Carlo Integration.) Suppose that we want to use Monte Carlo integration to approximate $I=\int_1^3\frac{1}{1+x}\,dx$. If U_1,U_2,\ldots,U_n are i.i.d. Unif(0,1)'s, what's a good approximation \bar{I}_n for I?

$$I_i = (3-1) g(1+(3-1) U_i)$$

Qn +
$$f'(x) = (x+1)f(x)$$
 from Qn3 $f(x) = e^{\frac{x^2}{2} + x}$
 $f(0)=1$
Straight up I should subst $x = 0.2$ into $f(30)$
 $f(0.2) = e^{\frac{0.2^2}{2} + 0.2} = 1.246$ ≈ 1.24

Using Euler's method note:
$$f'(x) = (x+1)f(x)$$

$$f(x+h) \simeq f(x) + hf'(x)$$

$$= f(x) + h(x+1)f(x) \qquad \begin{bmatrix} because \\ f'(x) = (x+1)f(x) \end{bmatrix}$$

$$= f(x)[1+h(x+1)]$$
Given $f(x) = 1$ ie $x = 0$ and $f(x) = 1$

$$\begin{array}{c|cccc}
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & \\$$

Question 6 1 pts

(Lesson 3.2: Monte Carlo Integration.) Again suppose that we want to use Monte Carlo integration to approximate $I=\int_1^3\frac{1}{1+x}\,dx$. You may have recently discovered that the MC estimator is of the form $\bar{I}_n=\frac{1}{n}\sum_{i=1}^n\frac{1}{1+U_i}$. $\bar{I}_n=\frac{3-1}{n}\sum_{i=1}^n\frac{3-1}{n+1+2U_i}$

Estimate the integral I by calculating \bar{I}_n with the following 4 uniforms: $=\frac{2}{n}\sum_{i=1}^{n}\frac{1}{2+iu_i}$

$$U_1 = 0.3$$
 $U_2 = 0.9$ $U_3 = 0.2$ $U_4 = 0.7$

$$0 \text{ a. 0} \qquad \frac{1}{4} \frac{4}{2} \frac{1}{1+4} = \frac{1}{4} \left(\frac{1}{1\cdot 3} + \frac{1}{1\cdot 9} + \frac{1}{1\cdot 2} + \frac{1}{1\cdot 7} \right)$$

$$0 \text{ b. 0.2} \qquad = \frac{1}{4} \left(2 \cdot 7 + \frac{1}{1} + \frac{1}{1} \right)$$

$$\circ$$
 c. 0.321 $=$ 0.679

O e. 0.8

Question 7 1 pts

(Lesson 3.2: Monte Carlo Integration.) Yet again suppose that we want to use Monte Carlo integration to approximate $I=\int_1^3\frac{1}{1+x}\,dx$. What is the *exact* value of I?

$$0 \text{ a. 0.197} \qquad \int_{1}^{3} \frac{1}{1+x} dx = \left[\ln(1+x) \right]_{1}^{3}$$

b. 0.693	= 1,4-1,2
○ c. 1.386	= O. 697
O d. 2.773	

Question 8 1 pts

(Lesson 3.3: Making Some π .) Inscribe a circle in a unit square and toss n=1000random darts at the square. Suppose that 760 of those darts land in the circle. Using the technology developed in class, what is the resulting estimate for π ?

- \bigcirc a. π
- O b. 4.0 (UGA answer)
- $\frac{\pi}{4} = 0.76 \Rightarrow \pi = 3.04$ O c. 3.2
- od. 3.04 O e. 3.12

Servel At Arrive 13 ۴ **Question 9** 1 pts 8

Service Time leave At

(Lesson 3.4: Single-Server Queue.) Consider a single-server Q with LIFO (last-infirst-out) services. Suppose that three customers show up at times 5, 6, and 8, and that they all have service times of 4. When does customer 2 leave the system?

Year Time Amive enctime O b. 9 √⊘ c. 13 × O d. 17 O e. 19

Question 10 1 pts

d=10, s=4, S=10, k=2, c=4, h=1, p=2

(Lesson 3.5: (s,S) Inventory Model.) Consider our numerical example from the lesson. What would the third day's total profits have been if we had used a (4,10) End End

policy instea		Inventory Order						T		
, ,	Dayi	begin stock	\mathcal{D}_{i}	T_{i}	7 _i	Sales Pev	Ordu	1401) Cos4	Penalty Cost	TOTAL REU
○ a. –22	l	10	5	10- 5 =5	0]×5	0	h x5	0	50-5 -45
○ b. −13	2	5	2	5-2 =3	10-3 = 7	d×2 = 20	K+c(F) =30	hx3 = 3	0	20-30-3 = -13
c. 44	3	10	8	10-8 = 2	10-2 = 8	= 80 7×8	k+<(8) = 34	h×2 = 2	0	80-34-2 = 44
O d. 45									_	

O e. 70

 $\frac{1 - e^{-\lambda x}}{1 - u} = \frac{1}{\lambda x} \ln(1 - u) = -\lambda x \ln u$ $\frac{1 - u}{1 - u} = e^{-\lambda x} = -\frac{1}{\lambda x} \ln(1 - u)$ **Question 11**

1 pts

(Lesson 3.6: Simulating Random Variables.) If $oldsymbol{U}$ is a Unif(0,1) random number, what

is the distribution of $-0.5 \ln(U)$? $-\frac{1}{2} \ln(-1) \sim \pm \pi p(\lambda)$ 0 a. Who knows? both $U_{ni}(\theta^{1}) = \frac{1}{2} \ln(1) \sim \pm \pi p(\lambda)$

b. Exp(2)

- \bigcirc c. Exp(1/2)
- \bigcirc d. Exp(-2)
- Exp(2) \bigcirc e. Exp(-1/2)

Question 12

1 pts

(Lesson 3.6: Simulating Random Variables.) If U_1 and U_2 are i.i.d. Unif(0,1) random variables, what is the distribution of $U_1 + U_2$? Hints: (i) I may have mentioned this in class at some point; (ii) You may be able to reason this out by looking at the

distribution of the sum of two dice tosses; or (iii) You can use something like Excel simulate U_1+U_2 many times and make a histogram of the results.	to
○ a. Unif(0,2)	
○ b. Normal	
○ c. Exponential	
d. Triangular	
Question 13	pts
(Lesson 3.7: Spreadsheet Simulation.) I stole this problem from the Banks, Carson Nelson and Nicol text (5th edition). Expenses for Joey's college attendance next yeare as follows (in \$):	
Tuition = 8400 Dormitory = 5400 Meals \sim Unif(900,1350) Entertainment \sim Unif(600,1200) Transportation \sim Unif(200,600) Books \sim Unif(400,800)	
Here are the income streams the student has for next year: Scholarship = 3000 Parents = 4000 Waiting Tables \sim Unif($3000,5000$) Library Job \sim Unif($2000,3000$)	
Use Monte Carlo simulation to estimate the expected value of the loan that will be needed to enable Joey to go to college next year.	
○ a. \$2500	
O b. \$3250	
ob. \$3250 oc. \$3325	
○ d. \$3450	

○ e. \$4000		
	Not saved	Submit Quiz