11.1 Cartesian Coordinates in Space

- Know how to sketch xy-plane, xz-plane, yz-plane
- 3 axes divide 3D space into 8 octants, the first octant is where x,y,z > 0
- Know how to plot a point in 3D space (First locate x,y on xy-plane, then go up/down)
- Distance formula: $P = (x_0, y_0, z_0)$, $Q = (x_1, y_1, z_1)$

dist =
$$|PQ| = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2}$$

- Circle/Disk vs. Sphere/Closed. Distinguish equations for them and sketch
- Sphere: Supposed $P = (x_0, y_0, z_0)$ is the center of a sphere and R is the radius $(\mathbf{x} \mathbf{x_0})^2 + (\mathbf{y} \mathbf{y_0})^2 + (\mathbf{z} \mathbf{z_0})^2 = \mathbf{R}^2$

11.2 Vectors in Space

- Notation: $\bar{u} = 8\hat{\imath} + 2\hat{\jmath} 3\hat{k}$ where $\hat{\imath} = (1,0,0)$, $\hat{\jmath} = (0,1,0)$, $\hat{k} = (0,0,1)$
- Note: Write $\bar{v} = 4\hat{i} + 0\hat{j} 1\hat{k}$ instead of $\bar{v} = 4\hat{i} 1\hat{k}$
- Must know to compute 2D vectors with trigonometry (Memorize values of $sin/cos\ from\ 0-\pi$)
- Associated Definitions:
 - (A) Zero-vector is all 0's, denoted by $\bar{0}$
 - (B) Supposed P = (x_0, y_0, z_0) and Q = (x_1, y_1, z_1) $\overrightarrow{PQ} = "Q - P" = <math>(x_1 - x_0)\hat{i} + (y_1 - y_0)\hat{j} + (z_1 - z_0)\hat{k}$
 - (C) Given $\bar{v}=a\hat{\imath}+b\hat{\jmath}+c\hat{k}$, we define the length (aka magnitude/norm): $\left||\overline{v}|\right|=\sqrt{a^2+b^2+c^2}$
 - (D) A unit vector is a vector with length 1
 - (E) Supposed we have a vector $\bar{\mathbf{v}}$ and we want the unit vector which points in the same direction as $\bar{\mathbf{v}}$:

$$\frac{\overline{\mathbf{v}}}{||\overline{\mathbf{v}}||}$$

(F) Two nonzero vectors are parallel if one is a scalar multiple of the other

11.3 The Dot Product (Scalar Product)

- Definition: Let $\bar{a}=a_1\hat{\imath}+a_2\hat{\jmath}+a_3\hat{k}$ $\bar{b}=b_1\hat{\imath}+b_2\hat{\jmath}+b_3\hat{k}$ $\bar{a}\cdot\bar{b}=a_1b_1+a_2b_2+a_3b_3$
- Product Properties:
 - (A) $\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$
 - (B) $\bar{a} \cdot (\bar{b} \pm \bar{c}) = \bar{a} \cdot \bar{b} \pm \bar{a} \cdot \bar{c}$
 - (C) $\bar{a} \cdot \bar{a} = ||a||^2 = a_1^2 + a_2^2 + a_3^2$
- Additional Properties:
 - (A) $\overline{a}\cdot\overline{b}=\left||\overline{a}||.\left||\overline{b}|\right|.\cos\theta$, where θ = angle between $\overline{a},\overline{b}$
 - (B) $\overline{a} \cdot \overline{b} = 0$ iff $\overline{a} \perp \overline{b}$
 - (C) $\cos \theta = \frac{\bar{a} \cdot \bar{b}}{||\bar{a}||.||\bar{b}||}$
- Vector Projection:

$$Proj_{\overline{b}}\overline{a} = \frac{\overline{a}\cdot\overline{b}}{\overline{b}\cdot\overline{b}}.\overline{b}$$

11.4 The Cross Product

- Pre-definition: Define $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$
- Definition: Given $\bar{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$

$$\overline{b} = b_1 \hat{\imath} + b_2 \hat{\jmath} + b_3 \hat{k}$$

$$\overline{a} \times \overline{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \hat{\imath} + \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} \hat{\jmath} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \hat{k} \text{ (Trick } \begin{vmatrix} a_2 & a_3 & a_1 & a_2 \\ b_2 & b_3 & b_1 & b_2 \end{vmatrix})$$

- Product Properties:
 - (A) $\bar{a} \times (\bar{b} \pm \bar{c}) = \bar{a} \times \bar{b} \pm \bar{a} \times \bar{c}$
 - (B) $\bar{a} \times \bar{b} = -\bar{b} \times \bar{a}$ /anticommutativity/
- Additional Properties:
 - (A) $||a \times b|| = ||\overline{a}|| ||\overline{b}|| \sin \theta$
 - (B) $\overline{a} \times \overline{b} = \overline{0}$ iff \overline{a} and \overline{b} are parallel
 - (C) $\overline{a} \times \overline{b}$ is \bot to both \overline{a} and \overline{b} via right-hand rule!

11.5 Lines in Space

- Idea: Start with a single point $P=(x_0,y_0,z_0)$ and a direction vector $\bar{L}=a\hat{\imath}+b\hat{\jmath}+c\hat{k}$ If we attached \bar{L} to P, we see a line that goes forever!
- Parametric form: Suppose we have $P=(x_0,y_0,z_0)$ and $\bar{L}=a\hat{\imath}+b\hat{\jmath}+c\hat{k}$, the parametric equations of the corresponding line are:

```
x = x_0 + at

y = y_0 + bt where t = any number

z = z_0 + ct
```

- Vector equation of a line: All we do is put x,y,z from above into a vector:

$$\bar{r}(t) = (x_0 + at)\hat{i} + (y_0 + bt)\hat{j} + (z_0 + ct)\hat{k}$$

- Symmetric Equation:
 - + Normal case $(a,b,c \neq 0)$ $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$
 - + Special case A: (either one of a,b,c=0)

Ex: P = (1,2,3) and $\bar{L} = 0\hat{\imath} + 8\hat{\jmath} + 7\hat{k}$

Here's the parametric form: x = 1 + 0t

$$y = 2 + 8t$$

z = 3 + 7t

=> Symmetric form: $\frac{y-2}{8} = \frac{z-3}{7}, x = 1$

+ Special case B: (2 of a,b,c=0)

Ex: P = (1,2,3) and $\bar{L} = 42\hat{i} + 0\hat{j} + 0\hat{k}$

Here's the parametric form: x = 1 + 42t

$$y = 2$$

=> Symmetric form: y = 2, z = 3 (No need to mention x)

- Distance between a point and line: Suppose we have a line with point P and direction \bar{L} and suppose Q is some other point, then the perpendicular distance from Q to the line:

$$dist = \frac{\left|\left|\overline{PQ} \times \overline{L}\right|\right|}{\left|\left|\overline{L}\right|\right|}$$
 (Note: We can extract P and \overline{L} from a line given its form)

11.6 Planes in Space

- Definition: A plane is a flat surface extending forever in two directions
- What soft of info could give us a plane?
 - + a point + a perpendicular line
 - + 3 points
 - + 2 agreeable lines
- Equation: Start with a point $P=(x_0,y_0,z_0)$ and a normal vector $\bar{n}=a\hat{\imath}+b\hat{\jmath}+c\hat{k}$ we get a plane containing P and \bot to \bar{n}

$$a.(x-x_0)+b.(y-y_0)+c.(z-z_0)=0$$

- Notes:
 - (A) This can be rewritten: 2x + 5y 3z = 18 (Lost point but still get normal vector)
 - (B) In this form, we've lost the "original point"
 - (C) We still see $\bar{n} = 2\hat{i} + 5\hat{j} 3\hat{k}$ from the coefficients
 - (D) We can still find points on the plane any point satisfying the equation Example: (9,0,0) or (0,0,-6) or ...
 - (E) This equation is equivalent to 4x + 10y 6z = 36This changes \bar{n} but that's fine – the plane is unchanged!
 - (F) If you're not given a point and a vector, you must obtain them

Example: Suppose you're given 3 points P, Q, R => Normal vector $\overline{n} = \overrightarrow{PQ} \times \overrightarrow{PR}$

- Pictures: Suppose our plane is ax + by cz = d
 - (A) Two of (a, b, c) = 0

Ex:
$$2z = 10 \implies z = 5$$
 (xy-plane but up at $z = 5$)

(B) One of (a, b, c) = 0

Ex: 2x + 4y = 8 (first draw the line as if z = 0, then extend up/down)

(C) None of (a, b, c) = 0

Ex:
$$x + 2y + 4z = 0$$
 (int: $x = 8$, $y = 4$, $z = 2$, then connect them)

- Distance: Suppose a plane has point P and normal vector \bar{n} and Q is another point

$$\mathbf{dist} = \frac{|\overrightarrow{PQ} \cdot \overrightarrow{n}|}{||\overline{n}||}$$