Pure functional epidemics

An Agent-Based Approach

JONATHAN THALER, THORSTEN ALTENKIRCH, and PEER-OLAF SIEBERS, University of Nottingham, United Kingdom

Agent-Based Simulation (ABS) is a methodology in which a system is simulated in a bottom-up approach by modelling the micro interactions of its constituting parts, called agents, out of which the global macro system behaviour emerges. So far, the Haskell community hasn't been much in contact with the community of ABS due to the latter's primary focus on the object-oriented programming paradigm. This paper tries to bridge the gap between those two communities by introducing the Haskell community to the concepts of ABS. We do this by deriving an agent-based implementation for the simple SIR model from epidemiology. In our implementations we leverage the basic concepts of ABS with functional reactive programming from Yampa and Dunai which results in a surprisingly fresh, powerful and convenient approach for programming ABS in Haskell.

Additional Key Words and Phrases: Haskell, Functional Programming, Functional Reactive Programming, Agent-Based Simulation

ACM Reference Format:

Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers. 2018. Pure functional epidemics: An Agent-Based Approach. *Proc. ACM Program. Lang.* 9, 4, Article 39 (September 2018), 28 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

The traditional approach to Agent-Based Simulation (ABS) has so far always been object oriented techniques due to the influence of the seminal work of [12] in which the authors claim that "object oriented programming is a particularly natural development environment for Sugarscape specifically and artificial societies generally.". This work established the metaphor in the ABS community, that agents map naturally to objects which still holds up today. In this paper we fundamentally challenge this metaphor and explore ways of approaching ABS in a pure functional way using Haskell. By doing this we expect to leverage the benefits of pure functional programming [14]: higher expressivity through declarative code, being polymorph and explicit about side-effects through monads, more robust and less susceptible for bugs due to explicit data flow and lack of implicit side-effects. As use-case we introduce the simple SIR model of epidemiology with which one can simulate epidemics in a realistic way and over the course of five steps we derive all necessary concepts required for a full agent-based implementation. We start from a very simple solution running in the Random Monad which has all general concepts already there but then refine it in various ways, making the transition to functional reactive programming (FRP) [36] and to monadic stream functions (MSF) [21]. The aim of this paper is to show how ABS can be done in Haskell and what the benefits and drawbacks are. By doing this we give the reader a good understanding of what

Authors' address: Jonathan Thaler, jonathan.thaler@nottingham.ac.uk; Thorsten Altenkirch, thorsten.altenkirch@nottingham.ac.uk; Peer-Olaf Siebers, University of Nottingham, 7301 Wollaton Rd, Nottingham, NG8 1BB, United Kingdom, peer-olaf.siebers@nottingham.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART39

https://doi.org/0000001.0000001

ABS is, what the challenges are when implementing it and how we solved these in our approach. We then discuss details which must be paid attention to in our approach and its benefits and drawbacks. The contribution is a novel approach to implementing ABS with powerful time-semantics and more emphasis on specification and possibilities to reason about the correctness of the simulation.

2 DEFINING AGENT-BASED SIMULATION

Agent-Based Simulation (ABS) is a methodology to model and simulate a system where the global behaviour may be unknown but the behaviour and interactions of the parts making up the system is of knowledge. Those parts, called agents, are modelled and simulated out of which then the aggregate global behaviour of the whole system emerges. So the central aspect of ABS is the concept of an agent which can be understood as a metaphor for a pro-active unit, situated in an environment, able to spawn new agents and interacting with other agents in some neighbourhood by exchange of messages. We informally assume the following about our agents [27], [37], [28], [8]:

- They are uniquely addressable entities with some internal state over which they have full, exclusive control.
- They are pro-active which means they can initiate actions on their own e.g. change their internal state, send messages, create new agents, terminate themselves.
- They are situated in an environment and can interact with it.
- They can interact with other agents which are situated in the same environment by means of messaging.

Epstein [11] identifies ABS to be especially applicable for analysing "spatially distributed systems of heterogeneous autonomous actors with bounded information and computing capacity". Thus in the line of the established simulation methodologies Statistic, Markov, System Dynamics (SD), Discrete Event (DE), ABS is the most powerful one as listed in Table 1:

- Linearity & Non-Linearity actions of agents can lead to non-linear behaviour of the system.
- Time agents act over time, time is also the source of pro-activity.
- States agents encapsulate some state which can be accessed and changed during the simulation.
- Feedback-Loops because agents act continuously and their actions influence each other and themselves in subsequent time-steps, feedback-loops are the norm in ABS.
- Heterogeneity although agents can have same properties like height, sex,... the actual values can vary arbitrarily between agents.
- Interactions agents can be modelled after interactions with an environment or other agents, making this a unique feature of ABS, not possible in the other simulation models.
- Spatiality & Networks agents can be situated within e.g. a spatial (discrete 2d, continuous 3d,...) or network environment, making this also a unique feature of ABS, not possible in the other simulation models.

3 THE SIR MODEL

To explain the concepts of ABS and of our functional reactive approach to it, we introduce the SIR model as a motivating example and use-case for our implementation. It is a very well studied and understood compartment model from epidemiology [17] which allows to simulate the dynamics of an infectious disease like influenza, tuberculosis, chicken pox, rubella and measles [10] spreading through a population. In this model, people in a population of size N can be in either one of three states Susceptible, Infected or Recovered at a particular time, where it is assumed that initially there is at least one infected person in the population. People interact $on\ average$ with a given rate of β other people per time-unit and become infected with a given probability γ when interacting with

	Statistic	Markov	SD	DE	ABS
(Non) Linearity	X	X	X	X	X
Time	X	X	X	X	X
States		X	X	X	X
Feedback			X	X	X
Heterogeneity				X	X
Interactions					X
Spatiality & Networks					X

Table 1. Simulation Methodologies and what they can model

Fig. 1. Transitions in the SIR compartment model.

an infected person. When infected, a person recovers on average after δ time-units and is then immune to further infections. An interaction between infected persons does not lead to re-infection, thus these interactions are ignored in this model. This definition gives rise to three compartments with the transitions as seen in Figure 1.

The dynamics of this model over time can be formalized using the System Dynamics (SD) approach [23] which models a system through differential equations. For the SIR model we get the following equations:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -infectionRate \tag{1}$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = infectionRate - recoveryRate \tag{2}$$

$$\frac{\mathrm{d}R}{\mathrm{d}t} = recoveryRate \tag{3}$$

$$infectionRate = \frac{I\beta S\gamma}{N} \tag{4}$$

$$recoveryRate = \frac{I}{\delta}$$
 (5)

Solving these equations is then done by integrating over time. In the SD terminology, the integrals are called *Stocks* and the values over which is integrated over time are called *Flows*. The 1+ in I(t) amounts to the initially infected agent because if there wouldn't be a single infected one, the system would immediately reach equilibrium - this is also the formal definition of the steady state of the system: as soon as I(t) = 0 the system won't change any more.

Fig. 2. A visual representation of the SD stocks and flows of the SIR compartment model.

Fig. 3. Dynamics of the SIR compartment model using the System Dynamics approach. Population Size N =1,000, contact rate $\beta = \frac{1}{5}$, infection probability $\gamma = 0.05$, illness duration $\delta = 15$ with initially 1 infected agent. Simulation run for 150 time-steps.

$$S(t) = N + \int_0^t -infectionRate \, dt$$
 (6)

$$I(t) = 1 + \int_0^t infectionRate - recoveryRate dt$$
 (7)

$$I(t) = 1 + \int_{0}^{t} infectionRate - recoveryRate dt$$

$$R(t) = \int_{0}^{t} recoveryRate dt$$
(8)

There exist a huge number of software packages which allow to conveniently express SD models using a visual approach like in Figure 2.

Running the SD simulation over time results in the dynamics as shown in Figure 3 with the given variables.

An Agent-Based approach

The SD approach is inherently top-down because the emergent property of the system is formalized in differential equations. The question is if such a top-down behaviour can be emulated using ABS, which is inherently bottom-up. Also the question is if there are fundamental drawbacks and benefits when doing so using ABS. Such questions were asked before and modelling the SIR model using an agent-based approach is indeed possible [18]. The fundamental difference is that SD is operating on averages, treating the population completely continuous which results in non-discrete values of stocks e.g. 3.1415 infected persons. The approach of mapping the SIR model to an ABS is to discretize the population and model each person in the population as an individual agent. The transition between the states are no longer happening according to continuous differential

equations but due to discrete events caused both by interactions amongst the agents and time-outs. According to the model, every agent makes on average contact with β random other agents per time unit. In ABS we can only contact discrete agents thus we model this by generating a random event on average every β time units. Note that we need to sample from an exponential CDF because the rate is proportional to the size of the population as [5] pointed out. Note that an agent does not know the other agents' state when making contact with it, thus we need a mechanism in which agents reveal their state in which they are in at the moment of making contact. This mechanism is an implementation detail which we will derive in our implementation steps. For now we only assume that agents can make contact with each other somehow. Although in the model each agent make contact with each other, in the agent-based implementation we follow the following behaviour:

- *Susceptible*: Only these agents make contact *on average* with β other random agents (excluding themselves). For every *infected* agent they get into contact with, they become infected with a probability of γ . If an infection happens, they make the state-transition to being *Infected*.
- *Infected*: These agents do *not* contact other agents (TODO: why? what is the theory behind that?). An infected agent recovers *on average* after δ time units. This is implemented by drawing the duration from an exponential distribution [5] with $\lambda = \frac{1}{\delta}$ and making the transition to *Recovered* after this duration.
- *Recovered*: These agents do nothing because this state is a terminating state from which there is no escape: recovered agents stay immune and can not get infected again in this model ¹.

For a more in-depth introduction of how to approximate an SD model by ABS see [18] who discusses a general approach and how to compare dynamics and [5] which explain the need to draw the illness-duration from an exponential-distribution. For comparing the dynamics of the SD and ABS approach to real-world epidemics see [1].

4 DERIVING A FUNCTIONAL APPROACH

For a programming language agnostic view The authors of [32] give a programming language agnostic view on the fundamental concepts of implementing an agent-based simulation.

In this section we will derive a functional approach for implementing an agent-based simulation of the SIR model. We will start out with a very naive approach and show its limitations which can be overcome by bringing in FRP. Then in three steps we will add more concepts and generalisations, ending up at the final approach which utilises monadic stream functions (MSF) [21], a generalisation of FRP. Although we presented a high-level agent-based approach to the SIR model in the previous section, which focused only on the states and the transitions, we haven't talked about technical implementation details on how to actually implement such a state-machine. In these steps we will ultimately present four different approaches on how to implement these states and transitions. Although all result *on average* in the same dynamics, not all of them are equally expressive and testable.

4.1 Step I: Naive beginnings

In our first step we start with modelling the states of the agents for which we simply use an Algebraic Data Type (ADT):

```
data SIRState = Susceptible | Infected | Recovered
```

Also agents are ill for some duration meaning we need to keep track when a potentially infected agent recovers. Also as previously mentioned, a simulation is stepped in discrete or continuous time-steps thus we introduce a notion of *time* and Δt by defining:

¹There exists an extended SIR model, called SIRS which adds a cycle to the state-machine by introducing a transition from recovered back to susceptible but we don't consider that here.

```
type Time = Double
type TimeDelta = Double
```

Now we can represent every agent simply as a tuple of its SIR-state and its potential recovery time. We hold all our agents simply in a list and define helper functions:

```
type SIRAgent = (SIRState, Time)
type Agents = [SIRAgent]

is :: SIRState -> SIRAgent -> Bool
is s (s',_) = s == s'

susceptible :: SIRAgent
susceptible = (Susceptible, 0)

infected :: Time -> SIRAgent
infected t = (Infected, t)

recovered :: SIRAgent
recovered = (Recovered, 0)
```

Next we need to think about how to actually step our simulation. For this we define a function which simply steps our simulation with a fixed Δt until a given time t where in each step the agents are processed and the output is fed back into the next step. TODO: need a much better explanation and maybe split up into more steps? As already mentioned in previous sections, the agent-based implementation of the SIR model is inherently stochastic which means we need access to a random-number generator. We decided to use the Rand Monad at this point as threading a generator through the simulation and the agents is very cumbersome. Thus our simulation stepping runs in the Rand Monad:

```
runSimulation :: RandomGen g
              => Time
              -> TimeDelta
              -> Agents
              -> Rand g [Agents]
runSimulation tEnd dt as = runSimulationAux 0 dt as []
    runSimulationAux :: RandomGen g
                     => Time
                     -> TimeDelta
                     -> Agents
                     -> [Agents]
                     -> Rand g [Agents]
    runSimulationAux t dt as acc
      | t >= tEnd = return $ reverse (as : acc)
      | otherwise = do
        as' <- stepSimulation dt as
        runSimulationAux (t + dt) dt as' (as : acc)
stepSimulation :: RandomGen g => TimeDelta -> Agents -> Rand g Agents
stepSimulation dt as = mapM (processAgent dt as) as
```

Now we can implement the behaviour of an individual agent. First we need to distinguish between the agents SIR-states:

An agent gets fed all the agents states so it can draw random contacts. Note that this includes also the agent itself thus we would need to omit the agent itself to prevent making contact with itself. We decided against that as it complicates the solution and for larger numbers of agent population the probability for an agent to make contact with itself is so small that it can be neglected.

From our implementation it becomes apparent that only the behaviour of a susceptible agent involves randomness and that a recovered agent is simply a sink: it does nothing - its state stays constant.

Lets look how we can implement the behaviour of a susceptible agent. It simply makes contact on average with a number of other agents and gets infected with a given probability if an agent it has contact with is infected. When the agent gets infected it calculates also its time of recovery by drawing a random number from the exponential distribution meaning it is ill on average for illnessDuration.

```
susceptibleAgent :: RandomGen g => Agents -> Rand g SIRAgent
susceptibleAgent as = do
    rc <- randomExpM (1 / contactRate)</pre>
    cs <- doTimes (floor rc) (makeContact as)</pre>
    if elem True cs
      then infect
      else return susceptible
    makeContact :: RandomGen g => Agents -> Rand g Bool
    makeContact as = do
      randContact <- randomElem as</pre>
      if is Infected randContact
        then randomBoolM infectivity
        else return False
    infect :: RandomGen g => Rand g SIRAgent
    infect = do
      randIllDur <- randomExpM (1 / illnessDuration)</pre>
      return infected randIllDur
```

The infected agent is trivial. It simply recovers after the given illness duration which is implemented as follows:

4.1.1 Results. We run the simulation for t=150 time-units with a fixed $\Delta t=1.0$. With increasing number of agents the dynamics approach the one of the SD simulation. TODO: add pictures

Reflecting on our first naive approach we can conclude that it already introduced the most fundamental concepts of ABS

• Time - the simulation occurs over virtual time which is modelled explicitly divided into *fixed* Δt where at each the agents are executed.

- Agents we implement each agent as an individual behaviour which depends on the agents state.
- Feedback the output state of the agent in the current time-step t is the input state for the next time-step t + 1.
- Environment as environment we implicitly assume a fully-connected network where every agent 'knows' every other agents, including itself and thus can make contact with every other agent (including itself).
- Stochasticity its an inherently stochastic simulation, which is indicated by the Rand Monadic type.
- Deterministic repeated runs with the same initial random-number generator result in same dynamics. This may not come as a surprise but in Haskell we can guarantee that property statically already at compile time because our simulation runs in the Rand monad and NOT in the IO Monad. This guarantees that no external, uncontrollable sources of randomness can interfere with the simulation.
- Dynamics it works as expected: with increasing number of agents our solution approaches the SD dynamics

Nonentheless our approach has also weaknesses and dangers:

- (1) Δt is passed explicitly as argument to the agent and needs to be dealt with explicitly. It seems to be not very elegant and a potential source of errors can we do better and find a more elegant solution?
- (2) The way our agents are represented is not very elegant: the state of the agent is explicitly encoded in an ADT and when processing the agent the function needs always first distinguish between the states. Can we express it in a more implicit, functional way?
- (3) The states of all agents of the current step are fed back into every agent in the next step so that an agent can pick its contacts. Although agents cannot change the states, this reveals too much information e.g. the illness duration is of no interest to the other agents. Although we could just feed in the SIRStates without the illness duration, the problem is more of conceptual nature: it should be the agent which decides to whom it reveals which information.

We move now to the next step in which we will address points 1 and 2, point 3 will be solved in step 3.

4.2 Step II: Adding FRP

As shown in the first step, the need to handle Δt explicitly can be quite messy, is inelegant and a potential source of errors, also the explicit handling of the state of an agent and its behavioural function is not very functional. We can solve both these weaknesses by switching to the functional reactive programming (FRP) paradigm, because it allows to express systems with discrete and continuous time-semantics. TODO: need more introduction. In this step we are focusing on arrowized FRP using the library Yampa. In it, time is handled implicit and cannot be messed with and the whole system is built on the concept of signal-functions (SF). A signal-function is basically a continuation which allows then to capture state using closures. Both these fundamental features allow us to tackle the weaknesses of our first step and push our approach further towards a truly functional approach.

We start by defining our agents now as a signal-function which receives the states of all agents as input and outputs the state of the agent:

```
type SIRAgent = SF [SIRState] SIRState
```

Now we can re-define the behaviour of an agent to be the following:

```
sirAgent :: RandomGen g => g -> SIRState -> SIRAgent
sirAgent g Susceptible = susceptibleAgent g
sirAgent g Infected = infectedAgent g
sirAgent _ Recovered = recoveredAgent
```

Depending on the initial state we return one of three functions. Most notably is the difference that we are now passing a random-number generator instead of running in the random-monad because signal-functions as implemented in Yampa are not capable of being monadic. We see that the recovered agent ignores the random-number generator which is in accordance with the implementation of step 1 where it acts as a sink which returns constantly the same state:

```
recoveredAgent :: SIRAgent
recoveredAgent = arr (const Recovered)
```

The implementation of a susceptible agent in FRP is a bit more involved but much more expressive and elegant:

```
susceptibleAgent :: RandomGen g => g -> SIRAgent
susceptibleAgent g =
    switch
      (susceptible g)
      (const TODO DOLLAR infectedAgent g)
    susceptible :: RandomGen g => g -> SF [SIRState] (SIRState, Event ())
    susceptible g = proc as -> do
      makeContact <- occasionally g (1 / contactRate) () -< ()</pre>
      -- NOTE: strangely if we are not splitting all if-then-else into
      -- separate but only a single one, then it seems not to work,
      -- dunno why
      if isEvent makeContact
        then (do
          a <- drawRandomElemSF g -< as
          if (Infected == a)
            then (do
              i <- randomBoolSF g infectivity -< ()</pre>
                 then returnA -< (Infected, Event ())</pre>
                 else returnA -< (Susceptible, NoEvent))</pre>
            else returnA -< (Susceptible, NoEvent))</pre>
        else returnA -< (Susceptible, NoEvent)</pre>
```

The implementation works as follows: the agent behaves as susceptible until it becomes infected, then it behaves as an infected agent by switching into the infectedAgent SF. Instead of randomly drawing the number of contacts to make we now follow a fundamentally different approach by using the occasionally function. It generates on average an event after the given time - the important difference is that in each time-step we generate either a single event or no event. This requires a fundamental different approach in selecting the right Δt and sampling the system as will be shown in results. When occasionally generates an event we then draw a random element from the other agents state and if we picked an infected agent we need to draw a random boolean which results in True with a uniform probability of 0.05 given in infectivity. If the boolean is True this means the agent got infected thus returning the Infected state and an Event with unit which signals that the agent will switch now into the infected behaviour - the state and behaviour is now implicit and much more expressive.

We deal with randomness different now and implement signal-functions built on the noiseR function provided by Yampa. This function takes a range of values and the random-number generator

as input and returns the *next* value in the range. This is another example of the statefulness of a signal-function as it needs to keep track of the changed random-number generator internally through the use of continuations and closures. Here we provide the implementation of *randomBoolSF*, drawRandomElemSF function works similar but takes the list as input:

```
randomBoolSF :: RandomGen g => g -> Double -> SF () Bool randomBoolSF g p = proc \_ -> do r <- noiseR ((0, 1) :: (Double, Double)) g -< () returnA -< (r <= p)
```

Implementing the infected agent in FRP is also a bit more involved but much more expressive too:

```
infectedAgent :: RandomGen g => g -> SIRAgent
infectedAgent g =
    switch
    infected
    (const recoveredAgent)
where
    infected :: SF [SIRState] (SIRState, Event ())
    infected = proc _ -> do
        recEvt <- occasionally g illnessDuration () -< ()
    let a = event Infected (const Recovered) recEvt
    returnA -< (a, recEvt)</pre>
```

The infected agent behaves as infected until it recovers on average after the illness duration after which it behaves then as a recovered agent by switching into *recoveredAgent*. As in the susceptible agent we use the occasionally function to generate the event when the agent recovers. Note that the infected agent ignores the states of the other agents as its behaviour is completely independent of them.

Running and stepping the simulation works now a bit different:

Yampa provides the function *embed* which allows to run a signal-function for a given number of steps where in each step one provides the Δt and an optional input. We run the signal-function *stepSimulation*:

```
stepSimulation :: [SIRAgent] -> [SIRState] -> SF () [SIRState]
stepSimulation sfs as =
   dpSwitch
   (\_ sfs' -> (map (\sf -> (as, sf)) sfs'))
   sfs
   (switchingEvt >>> notYet)
   stepSimulation
```

```
where
  switchingEvt :: SF ((), [SIRState]) (Event [SIRState])
  switchingEvt = arr (\ (_, newAs) -> Event newAs)
```

This function takes all the signal-functions and current states of all agents and returns a signalfunction which has the unit-type as input and returns a list of agent-states. What we need to do is to run all agents signal-functions in parallel where all the agent-states are passed as inputs and collect the output of all signal-functions into a list. Fortunately Yampa provides the function dpSwitch for this task TODO: explain the d in p, and why we use it. Its first argument is the pairing-function which pairs up the input to the signal-functions, the second argument is the collection of signal-functions, the third argument is a signal-function generating the switching event and the last argument is a function which generates the continuation after the switching event has occurred. pSwitch then returns a new signal-function which runs all the signal-functions in parallel (thus the p) and switching into the continuation when the switching event occurs. The continuation-generation function gets passed the signal-functions after they were run in parallel and the data of the switching event which in combination allows us to recursively switch back into the stepSimulation function. In every step we generate a switching event which passes the final agent-states to the continuation-generation which in turn simply returns stepSimulation recursively but now with the new signal-functions and the new agent-states. Note that we delay the switching event always by one step because the continuations are evaluated always upon switching which would result in an infinite switching loop if not delayed using notYet.

4.2.1 Results. As already mentioned, because we are now using the occasionally function we need a different approach of sampling the system. In the infected agent occasionally determines the time when an agent recovers so its a discrete transition but in a susceptible agent it determines the average number of contacts per time unit: it is a rate with an exponential distribution. This requires us to sample the system with small enough Δt to arrive at the correct solution - if we choose a too large Δt , we loose events which will result in dynamics which do not approach the SD dynamics. We investigated the behaviour of occasionally under varying Δt , which we added as Appendix TODO add appendix. From this it becomes apparent that we need to step our simulation with a $\Delta t <= 0.1$ to arrive at a sufficiently close approximation of the SD dynamics. TODO: show results

TODO: ALARM ALARM !!!! our dynamics do not approach the ones of SD yet, Step 1 solution is much better, probably because we need supersampling! when reducing time-deltas to 0.001 we arrive at good solutions. TODO: compare the results to random-monad solution 100 agents. with smaller and smaller time-delta we need only 1 infected agent and arrive already at a good approximation. this is not the case in random-monad where because of 1.0 time-delta it results in too non fine-grained resolution

By moving on to FRP using Yampa we made a huge improvement in clarity, expressivity and robustness of our implementation. Also by using explicit time-semantics with *occasionally* we can achieve extremely fine grained stochastics: as opposed to draw random number of events we create only a single event or not. This requires then to sample the system with a much smaller Δt : we are treating it as a truly continuous system. Still we are not too happy about our approach as we feed back all agents states into every agent, something we want to omit in an agent-based simulation. We now move on to step 3 in which we introduce a more general and much more controlled mechanism for feeding back agent-states.

4.3 Step III: Adding arbitrary data-flow

In this step we will introduce a data-flow mechanism between agents which makes the feedback explicit. As already mentioned in the previous step, by revealing the state of every agent to all

other agents makes the interactions implicit and deprives the agent of its control over which other agent sees its data. As a remedy we introduce data-flows which allow an agent to send arbitrary data to other agents. The data will be collected from the sending agents and distributed to the receivers after each step, which means that we have a delay of one Δt and a round-trip takes $2\Delta t$ - which is exactly the behaviour we had before: feedback. This change requires then a different approach of how the agents interact with each other: a susceptible agent then sends to a random agent a data-flow indicating a contact. Only infected agents need to reply to such contact requests by revealing that they are infected. The susceptible agents then need to check for incoming replies which means they were in contact with an infected agent.

First we need a way of addressing agents, which we do by introducing unique agent ids. Also we need a data-package which identifies the receiver and carries the data:

```
type AgentId = Int
type AgentData d = (AgentId, d)
```

Next we need more general input and output types of our agents signal-functions. We introduce a new input type which holds both the agent-id of the agent and the incoming data-flows from other agents:

```
data AgentIn d = AgentIn
  {
    aiId :: !AgentId
    , aiData :: ![AgentData d]
}
```

We also introduce a new output type which holds both the outgoing data-flows to other agents and the observable state the agent wants to reveal to the outside world:

Note that by making the observable state explicit in the types we give the agent further control of what it can reveal to the outside world which allows an even stronger separation between the agents internal state / data and what the agent wants the world to see.

Now we can then generalise the agents signal-functions to the following type:

```
type Agent o d = SF (AgentIn d) (AgentOut o d)
```

For our SIR implementation we need concrete types, so we need to define what the type parameters o and d are. For d we simply define an ADT which defines a contact-message, and for o which defines the type of the observable state, we use the existing SIR-state. Now we can define the type synonyms for our SIR implementation:

```
data SIRMsg = Contact SIRState deriving (Show, Eq)
type SIRAgentIn = AgentIn SIRMsg
type SIRAgentOut = AgentOut SIRState SIRMsg
type SIRAgent = Agent SIRState SIRMsg
```

Obviously the existing implementation from step 2 needs to be adjusted. Lets look at the initial agent-behaviour:

```
sirAgent :: RandomGen g => g -> [AgentId] -> SIRState -> SIRAgent
sirAgent g ais Susceptible = susceptibleAgent g ais
sirAgent g _ Infected = infectedAgent g
sirAgent _ _ Recovered = recoveredAgent
```

It still takes a random-number generator, the initial sir-state and returns the corresponding signal-function depending on the state now in addition it now takes a list of agent ids. When using

data-flow we need to know the ids of the agents we are communicating with - we need to know our neighbourhood, or seen differently: we need to have access to the environment we are situated in. In our case our environment is a fully connected read-only network in which all agents know all other agents. The easiest way of representing a fully connected network is simply using a list. Again when we look at the functions which are returned we see that recovered agent is still the same: it is a sink which ignores the environment and the random-number generator.

```
recoveredAgent :: SIRAgent
recoveredAgent = arr (const TODO DOLLAR agentOut Recovered)
```

The implementation is nearly the same as in step 2 but instead of returning only the sir-state now the output of an agents signal-function is of type *AgentOut*:

```
agentOut :: o -> AgentOut o d
agentOut o = AgentOut {
    aoData = []
    , aoObservable = o
}
```

The behaviour of the infected agent now explicitly ignores the environment which was not apparent in step 2 on this level:

```
infectedAgent :: RandomGen g => g -> SIRAgent
infectedAgent g =
    switch
    infected
        (const recoveredAgent)
where
    infected :: SF SIRAgentIn (SIRAgentOut, Event ())
    infected = proc ain -> do
        recEvt <- occasionally g illnessDuration () -< ()
    let a = event Infected (const Recovered) recEvt
    let ao = respondToContactWith Infected ain (agentOut a)
    returnA -< (ao, recEvt)</pre>
```

The implementation of the infected agent now basically works the same as in step 2 but it additionally needs to reply to incoming contact data-flows with an "Infected" reply. This makes the difference to step 2 very explicit: in the data-flow approach agents now make explicit contact with each other which means that the susceptible agent sends out contact data-flows to which only infected agents need to reply. Note that at the moment of recovery the agent can still infect others because it will still reply with Infected. The response mechanism is implemented in <code>respondToContactWith</code>:

```
respondToContactWith :: SIRState -> SIRAgentIn -> SIRAgentOut -> SIRAgentOut
respondToContactWith state ain ao = onData respondToContactWithAux ain ao
   where
    respondToContactWithAux :: AgentData SIRMsg -> SIRAgentOut -> SIRAgentOut
    respondToContactWithAux (senderId, Contact _) ao = dataFlow (senderId, Contact state) ao
onData :: (AgentData d -> acc -> acc) -> AgentIn d -> acc -> acc
onData dHdl ai a = foldr (\msg acc'-> dHdl msg acc') a (aiData ai)
dataFlow :: AgentData d -> AgentOut o d -> AgentOut o d
dataFlow df ao = ao { aoData = df : aoData ao }
```

Note that the order of data packages in a data-flow is not specified and must not matter as it happens virtually at the same time, thus we always append at the front of the outgoing data-flow list.

Lets look at the susceptible agent behaviour. As already mentioned before, the feedback interaction between agents works now very explicit due to the data-flow but needs a different approach in our implementation:

```
susceptibleAgent :: RandomGen g => g -> [AgentId] -> SIRAgent
susceptibleAgent g ais =
    switch
      (susceptible g)
      (const TODO DOLLAR infectedAgent g)
    susceptible :: RandomGen g
                -> SF SIRAgentIn (SIRAgentOut, Event ())
    susceptible g0 = proc ain -> do
      rec
        g <- iPre g0 -< g'
        let (infected, g') = runRand (gotInfected infectivity ain) g
      if infected
        then returnA -< (agentOut Infected, Event ())</pre>
        else (do
          makeContact <- occasionally g (1 / contactRate) () -< ()</pre>
          contactId <- drawRandomElemSF g</pre>
                                                                -< ais
          if isEvent makeContact
            then returnA -< (dataFlow (contactId, Contact Susceptible) TODO DOLLAR agentOut Susceptible, NoEver
            else returnA -< (agentOut Susceptible, NoEvent))</pre>
gotInfected :: RandomGen g => Double -> SIRAgentIn -> Rand g Bool
gotInfected p ain = onDataM gotInfectedAux ain False
    gotInfectedAux :: RandomGen g => Bool -> AgentData SIRMsg -> Rand g Bool
    gotInfectedAux False (_, Contact Infected) = randomBoolM p
    gotInfectedAux x = return x
onDataM :: (Monad m)
        => (acc -> AgentData d -> m acc)
        -> AgentIn d
        -> acc
        -> m acc
onDataM dHdl ai acc = foldM dHdl acc (aiData ai)
```

Again the implementation is very similar to step 2 with the fundamental difference how contacts are made and how infections occur. First the agent checks if it got infected. This happens if an infected agent replies to the susceptible agents contact AND the susceptible agent got infected with the given probability. Note that *gotInfected* runs in the Random-Monad which we run using *runRand* and the random-number generator. To update our random-number generator to the changed one, we use the *rec* keyword of Arrows, which allows us to refer to a variable after it is defined. In combination with iPre we introduced a local state - the random-number generator - which changes in every step. If the agent got infected, it simply returns an AgentOut with Infected as observable state and a switching event which indicates the switch to infected behaviour. If the agent is not infected it draws from occasionally to determine if it should make contact with a random agent. In case it should make contact it simply sends a data-package with the contact susceptible data to the receiver - only an infected agent will reply.

Stepping the simulation now works a little bit different as the input/output types have changed and we need to collect and distribute the data-flow amongst the agents:

```
stepSimulation :: [SIRAgent] -> [SIRAgentIn] -> SF () [SIRAgentOut]
stepSimulation sfs ains =
    dpSwitch
        (\_ sfs' -> (zip ains sfs'))
        sfs
        (switchingEvt >>> notYet)
        stepSimulation

where
    switchingEvt :: SF ((), [SIRAgentOut]) (Event [SIRAgentIn])
    switchingEvt = proc (_, aos) -> do
    let ais = map aiId ains
        aios = zip ais aos
        nextAins = distributeData aios
    returnA -< Event nextAins</pre>
```

The distribution of the data-flows happens in the <code>switchingEvt</code> signal-function and is then passed on to the continuation-generation function as in step 2. The difference is that it creates now a list of AgentIn for the next step instead of a list of all the agents sir-states of the previous step. Again the continuation-generation function recursively returns the stepSimulation signal-function. The pairing function of pSwitch is now slightly more straightforward as it just pairs up the AgentIn with its corresponding signal-function.

4.3.1 Emulating SD. Having data-flows at hand we can now emulate the SD approach because it allows us to express a system with parallel continuous-time flows between stocks and flows. Each stock S(t), I(t), R(t) and each flow infectionRate, recoveryRate is implemented as an agent with a fixed agent-id. The connections between them are implemented using the previously introduced data-flow mechanism. We start by refining the types for our SIR implementation:

The message-data is now a plain double and the observable data has been changed to a *Maybe Double*: instead of discrete agent-states we are dealing now we stocks and flows which are already aggregates represented by continuous values. Note that we use a Maybe type as flows only connect stocks and transform their values but don't have any observable state themselves. Note also that the population size and number of infected is specified now as doubles as we are dealing with continuous aggregates.

We give hard-coded agent-ids to our stocks and flows. This allows then for setting up hard-coded connections between them at compile time.

```
susceptibleStockId :: AgentId
susceptibleStockId = 0
infectiousStockId :: AgentId
```

```
infectiousStockId = 1
recoveredStockId :: AgentId
recoveredStockId = 2
infectionRateFlowId :: AgentId
infectionRateFlowId = 3
recoveryRateFlowId :: AgentId
recoveryRateFlowId :: AgentId
```

Next we give the implementation of the infectious stock (the implementations of the susceptible and recovered stock work in a similar way and are left as a trivial exercise to the reader):

```
infectiousStock :: Double -> SIRAgent
infectiousStock initValue = proc ain -> do
  let infectionRate = flowInFrom infectionRateFlowId ain
    recoveryRate = flowInFrom recoveryRateFlowId ain

stockValue <- (initValue+) ^<< integral -< (infectionRate - recoveryRate)

let ao = agentOut (Just stockValue)
    ao' = dataFlow (infectionRateFlowId, stockValue) ao
    ao'' = dataFlow (recoveryRateFlowId, stockValue) ao'
returnA -< ao''</pre>
```

The stock receives flows from both the infection-rate and recovery-rate flow using the function flowInFrom (see below). Then the current stock value is calculated using the integral function of Yampa with an initial value added which are the initially infected people. Note that we can directly express the SD equation using Yampas DSL for continuous-time systems. The current stock value is then set as the observable value of the stock and sent to the infection-rate and recovery-rate flows. For convenience we implemented an additional function flowInFrom which returns the value sent from the corresponding agent-id or 0.0 if none was sent.

```
flowInFrom :: AgentId -> AgentIn SIRMsg -> Double
flowInFrom senderId ain = foldr filterMessageValue 0.0 dsFiltered
where
   dsFiltered = filter ((==senderId) . fst) (aiData ain)

filterMessageValue :: AgentData SIRMsg -> Double -> Double
filterMessageValue (_, v) _ = v
```

The *infectionRate* flow is implemented as follows (the implementations of the recovery-rate flow works in a similar way and is left as a trivial exercise to the reader):

```
infectionRateFlow :: SIRAgent
infectionRateFlow = proc ain -> do

let susceptible = flowInFrom susceptibleStockId ain
    infectious = flowInFrom infectiousStockId ain

flowValue = (infectious * contactRate * susceptible * infectivity) / totalPopulation

ao = agentOut Nothing
    ao' = dataFlow (susceptibleStockId, flowValue) ao
    ao'' = dataFlow (infectiousStockId, flowValue) ao'

returnA -< ao''</pre>
```

Instead of integrating a value over time a stock just transforms incoming values from the connected stocks - in this case the susceptible and infectious stocks. Note again how directly we can express the formula for the infection rate as provided in the SD background.

When running the simulation one must make sure to use a small enough Δt as *integral* of Yampa is implemented using the rectangle rule which leads to considerable numerical errors with large Δt . Figure 3 was created with this SD emulation for which we used a $\Delta t = 0.01$.

Reflection. It seems that by introducing the data-flow mechanism we have complicated things but this is not so. Data-flows make the feedback between agents explicit and gives the agents full control over the data which is revealed to other agents. This also makes the fact even more explicit, that we cannot fix the connections between the agents already at compile time e.g. by connecting SFs which is done in many Yampa applications (TODO: cite Henrik papers) because agents interact with each other randomly. One can look at the data-flow mechanism as a kind of messaging but there are fundamental differences: messaging almost always comes up as an approach to managing concurrency and involves stateful message-boxes which can be checked an emptied by the receivers - this is not the case with the data-flow mechanism which behaves indeed as a flow where data is not stored in a messagebox but is only present in the current simulation-step and if ignored by the agent will be gone in the next step. Also by distinguishing by the internal and the observable state of the agent, we give the agent even more control of what is visible to the outside world. So far we have a pretty decent implementation of an agent-based SIR approach. The next three steps focus - as this 3rd one - on introducing more concepts and generalising our implementation so far. What we are lacking at the moment is a general treatment of the environment and of synchronised transactional behaviour between agents. To be able to conveniently introduce both we want to make use of monads which is not possible using Yampa. In the next step we make the transition to Monadic Stream Functions (MSF) as introduced in Dunai [21]. The authors of Dunai implement BearRiver which is a re-implementation of Yampa on top of MSF which should allow us to easily replace Yampa with MSFs in our implementation of Step 3.

4.4 Step IV: Generalising to Monadic Stream Functions

TODO: write a bit introductory words for this subsection

4.4.1 Identity Monad. We start by making the transition to BearRiver by simply replacing Yampas signal-function by BearRivers which is the same but takes an additional type-parameter m which indicates the monad. If we replace this type-parameter with the identity monad we should be able to keep the code exactly the same, except from a few type-declarations, because BearRiver re-implements all necessary functions we are using from Yampa 2 . We start by re-defining our general agent signal-function, introducing the monad (stack) our SIR implementation runs in and the sir-agents signal-function:

```
type Agent m o d = SF m (AgentIn d) (AgentOut o d)
type SIRMonad = Identity
type SIRAgent = Agent SIRMonad SIRState SIRMsg
```

We also have to add the *SIRMonad* to the existing *stepSimulation* type-declarations and we are nearly done. The function *embed* for running the simulation is not provided by BearRiver but by Dunai which has important implications. Dunai does not know and care about time in MSFs, which is exactly what BearRiver builds on top of MSFs. It does so by adding a *ReaderT Double* which carries the Δt . This means that *embed* returns a computation in the *ReaderT Double* Monad which

²This was not quite true at the time we wrote this paper, where occasionally, noiseR and dpSwitch were missing. We simply implemented these functions and created a pull request using git.

we need to run explicitly using *runReaderT*. This then results in an identity computation which we simply peel away using *runIdentity*. Here is the complete code of *runSimulation*:

```
runSimulation :: RandomGen g
              => g
              -> Time
              -> DTime
              -> [(AgentId, SIRState)]
              -> [[SIRState]]
runSimulation g t dt as = map (map aoObservable) aoss
  where
    steps = floor TODO DOLLAR t / dt
    dts = replicate steps ()
   n = length as
    (rngs, _) = rngSplits g n []
    ais = map fst as
    sfs = map (\ (g', (_, s)) \rightarrow sirAgent g' ais s) (zip rngs as)
    ains = map (\ (aid, _{-}) \rightarrow agentIn aid) as
    aossReader = embed (stepSimulation sfs ains) dts
    aossIdentity = runReaderT aossReader dt
    aoss = runIdentity aossIdentity
```

Note that embed does not take a list of Δt any more but simply a list of inputs for each step to the top level signal-function.

4.4.2 Random Monad. Using the Identity Monad does not gain us anything but it was a first step towards a more general solution. Our next step is to replace the Identity Monad by the Random Monad which will allow us to get rid of the RandomGen arguments to our functions and run the whole simulation within the RandomMonad again just as we started but now with the full features functional reactive programming! We start by re-defining the SIRMonad and SIRAgent:

```
type SIRMonad g = Rand g
type SIRAgent g = Agent (SIRMonad g) SIRState SIRMsg
```

Note that we parametrise the Random Monad with a RandomGen g thus this requires to add the RandomGen type-class to all functions where it was not yet added. We also simply remove all RandomGen arguments to all functions except *runSimulation*. The question is now how to access this random monad functionality within the MSF context. For the function *occasionally*, there exists a monadic pendant *occasionallyM* which requires a MonadRandom type-class. Because we are now running within a MonadRandom instance we simply replace *occasionally* with *occasionallyM*. Running *gotInfected* is now much easier. Using the function *arrM* of Dunai allows us to run a monadic action in the stack as an arrow. We then directly run gotInfected by lifting it into the random-monad. This can be seen in the susceptible agent running in the random monad SF:

Note also that *drawRandomElemSF* doesn't take a random number generator as well as it has been reimplemented to make full use of the MonadRandom in the stack:

```
drawRandomElemS :: MonadRandom m => SF m [a] a
drawRandomElemS = proc as -> do
    r <- getRandomRS ((0, 1) :: (Double, Double)) -< ()
let len = length as
let idx = fromIntegral len * r
let a = as !! floor idx
returnA -< a</pre>
```

Instead of *noiseR* which requires a RandomGen, it makes use of Dunai *getRandomRS* stream function which simply runs *getRandomR* in the MonadRandom.

Finally because our innermost monad is now the Random Monad instead of the Identity in *runSimulation* we need to replace *runIdentity* by *evalRand*:

```
aossReader = embed (stepSimulation sfs ains) dts
aossRand = runReaderT aossReader dt
aoss = evalRand aossRand g
```

4.4.3 Reflections. By making the transition to MSFs we can now stack arbitrary number of Monads. As an example we could add a StateT monad on the type of AgentOut which would allow to conveniently manipulate the AgentOut e.g. in case where one sends more than one message or the construction of the final AgentOut is spread across multiple functions which allows easy composition. When implementing this one needs to replace the dpSwitch with an individual implementation in which one runs the state monad isolated for each agent. We could even add the IO monad if our agents require arbitrary IO e.g. reading/writing from files or communicating over TCP/IP. Although one could run in the IO monad, one should not do so as we would loose all guarantees about the reproducibility of our simulation. In ABS we need deterministic behaviour under all circumstances where repeated runs with the same initial conditions, including the randomnumber generator, should result in the same dynamics. If we allow IO we loose the ability to guarantee the reproducibility at compile-time even if the agents never use IO facilities and just run in the IO for printing debug messages. So far making the transition to MSFs does not seem as compelling as making the move from the RandomMonad in step 1 to FRP in step 2. Running in the RandomMonad within FRP is convenient but we could achieve the same with passing RandomGen around as we showed in Step 3. In the next step we introduce the concept of a read/write environment which we realise using a StateT monad. This will show the real benefit of the transition to MSFs as without it, implementing a general Environment access would be quite cumbersome.

4.5 Step V: Adding an environment

In this step we will add an environment in which the agents exist and through which they interact with each other. This is a fundamental different approach to agent-agent interaction but is as valid as the interactions in the previous steps. In ABS agents are often situated within a discrete 2d environment TODO: cite sugarscape, schelling, agentzero, which is simply a finite nxm grid with

either a moore or neumann neighbourhood. Agents are either static or can move freely around with cells allowing either single or multiple occupants. We can directly transfer the SIR model to a discrete 2d environment by placing the agents on a corresponding 2d grid with an unrestricted neighbourhood. The behaviour of the agents is the same but they select their neighbours directly from the environment using the provided neighbourhood. Also instead of using data-flow to communicate, agents now communicate through the environment by revealing their current state to their neighbours by placing it on their cell. Agents can read (actually they could write too) then the states of all their neighbours which tells them if a neighbour is infected or not. This allows us to implement the infection mechanism close to step 1 and 2.

4.5.1 Implementation. We start by defining our discrete 2d environment for which we use an indexed 2-dimensional array. In each cell the agents will store their current state, thus we use the SIRState as type for our array data:

```
type Disc2dCoord = (Int, Int)
type SIREnv = Array Disc2dCoord SIRState
```

Next we redefine our monad-stack and agent signal-function. We use a StateT transformer on top of our Random Monad from step 4 with the previously defined SIREnv as type for the state. Our agent signal-function now has only unit input and output type as we removed the data-flow mechanism for reasons of clarity. This also indicates through the types that the actions of the agents are only visible in side-effects through the monad stack they are running in.

```
type SIRMonad g = StateT SIREnv (Rand g) type SIRAgent g = SF (SIRMonad g) () ()
```

Instead of having a unique AgentId an agent is now initialised through its Disc2dCoord and its initial state.

```
sirAgent :: RandomGen g => Disc2dCoord -> SIRState -> SIRAgent g
sirAgent c Susceptible = susceptibleAgent c
sirAgent c Infected = infectedAgent c
sirAgent _ Recovered = recoveredAgent
```

Again the recovered agent behaviour is the shortest one:

```
recoveredAgent :: RandomGen g => SIRAgent g
recoveredAgent = arr (const ())
```

The implementation of a susceptible agent is now a bit different and a mix of step 1 and step 4. Instead of using data-flows the agent directly queries the environment for its neighbours and randomly selects one of them. The remaining behaviour is similar to the previous steps:

```
susceptibleAgent :: RandomGen g => Disc2dCoord -> SIRAgent g
susceptibleAgent coord =
    switch
      susceptible
      (const TODO DOLLAR infectedAgent coord)
  where
    susceptible :: RandomGen g
               => SF (SIRMonad g) () ((), Event ())
    susceptible = proc _ -> do
      makeContact <- occasionallyM (1 / contactRate) () -< ()</pre>
      if not TODO DOLLAR isEvent makeContact
        then returnA -< ((), NoEvent)
        else (do
          e <- arrM (\_ -> lift get) -< ()
          --let ns = neighbours e coord agentGrid moore
          let ns = allNeighbours e
```

Note that the susceptible agent itself changes its state in the environment from Susceptible to Infected upon infection.

The behaviour of an infected agent is nearly the same with the difference that upon recovery the infected agent updates its state in the environment from Infected to Recovered.

```
infectedAgent :: RandomGen g => Disc2dCoord -> SIRAgent g
infectedAgent coord =
    switch
    infected
        (const recoveredAgent)
where
    infected :: RandomGen g => SF (SIRMonad g) () ((), Event ())
    infected = proc _ -> do
        recovered <- occasionallyM illnessDuration () -< ()
    if isEvent recovered
        then (do
        e <- arrM (\_ -> lift get) -< ()
        arrM (\e -> put TODO DOLLAR changeCell coord Recovered e) -< e
        returnA -< ((), Event ()))
    else returnA -< ((), NoEvent)</pre>
```

Running the simulation is now slightly different as we have an initial environment and also need to peel away the StateT transformer:

```
runSimulation :: RandomGen g
              => g
              -> Time
              -> DTime
              -> SIREnv
              -> [(Disc2dCoord, SIRState)]
              -> [SIREnv]
runSimulation g t dt e as = es
  where
    steps = floor TODO DOLLAR t / dt
    dts = replicate steps ()
    sfs = map (uncurry sirAgent) as
    esReader = embed (stepSimulation sfs) dts
    esState = runReaderT esReader dt
    esRand = evalStateT esState e
    es = evalRand esRand g
```

As initial state we use the initial environment and instead of returning agent-states we simply return a list of environments, one for each step. The agent-states can then be extracted from each environment.

Due to the different approach of returning the SIREnv in every step, we implemented our own MSF:

4.5.2 Results. In addition to plotting the dynamics we implemented rendering functionality of the environments using the gloss library. This allows us to cycle arbitrarily through the steps and inspect the spreading of the disease over time visually.

When using an unrestricted neighbourhood we should arrive at the same dynamics of the SD approach. TODO: show dynamics AND 2d-grid renderings of unrestricted neighbourhood

In agent-based simulation the neighbourhood on a discrete neighbourhood is often restricted to either a moore or von neumann neighbourhood (TODO: draw small diagrams). This should result in different dynamics as agents have now a reduced subset of agents they can infect.

TODO: show dynamics AND 2d-grid renderings using a moore neighbourhood TODO: add analysis from the first draft paper

4.5.3 Reflection. At first the environment approach might seem a bit overcomplicated and one might ask what we have gained over using an unrestricted neighbourhood where all agents can contact all others we arrive at the same dynamics as in SD. The real win is that we can introduce arbitrary restrictions on the neighbourhood as shown using the moore or von neumann neighbourhood. Of course the environment is not restricted to a discrete 2d grid and can be anything from a continuous n-dimensional space to a complex network - one only needs to change the type of the StateT monad and provide corresponding neighbourhood querying functions. The ability to place the heterogeneous agents in a generic environment is also the fundamental advantage of an agent-based over a SD approach as it allows to simulate much more realistic scenarios.

Note that for reasons of clarity we have removed the data-flow approach from this implementation which results in the unit-types of input and output. Of course in a full blown agent-based simulation library we would combine both approaches and leave the AgentIn/AgentOut types with the data-flow functionality in place as implemented in step 4.

In step 3 and 4 we already have one variant of possible environment scenarios: the non-proactive read-only one. Implementing a pro-active read-only is easy: we use an agent as environment which broadcasts updates to all agents through data-flows. Implementing non pro-active read/write environments is very easy possible using MSFs and the StateT monad as shown in this step. If we want our environment to be pro-active e.g. regrowing some resources, then we simply add an environment-agent which acts upon the environment state. The convenient thing is that although conceptually all agents act at the same time, technically by using *mapM* in *stepSimulation* they are run after another which also serialises the environment access which gives every agent exclusive read/write access while it is active.

Attempting to introduce a non/pro-active read/write environment to the Yampa implementation is quite cumbersome. A possible solution would be to add another type-parameter e which captures the type of the environment and then pass it in through the input and allow it to be returned in the output of an agent signal-function. We would then end up with n copies of the environment - one for each agent - which we need to fold back into a single environment. When we have a pro-active environment we could also add it as another agent but this results in even more problems when folding it back - the solution would be to run a separate environment signal-function which acts

on the folded environment after all agents are run. All these problems are not an issue when using MSFs with a StateT which is a compelling example for making the transition to the more general MSFs.

In the last step we will introduce synchronised agent-transaction as the final agent-agent interaction mechanism. This is a quite sophisticated concept: synchronised agent-transactions which allow an arbitrary number of interactions between two agents without time lag. The use-case for this are price negotiations between multiple agents where the agents need to come to an agreement in the same time-step as described in TODO cite sugarscape.

5 RELATED RESEARCH

TODO: read these papers again, they also simulate epidemics using FRP but not in the way we present it here, also their papers are targeted ad a different audience. The authors of [25] and [34] present a domain-specific language for developing functional reactive agent-based simulations. This language called FRABJOUS is human readable and easily understandable by domain-experts. It is not directly implemented in FRP/Haskell but is compiled to Yampa code which they claim is also readable. This supports our initial claim that FRP is a promising approach to implement ABS in Haskell.

The amount of research on using the pure functional paradigm using Haskell in the field of ABS has been moderate so far. Most of the papers look into how agents can be specified using the belief-desire-intention paradigm [9], [30], [15]. A library for Discrete Event Simulation (DES) and System Dynamics (SD) in Haskell called Aivika 3 is described in [29]. It comes with very basic features for ABS but only allows to specify simple state-based agents with timed transitions. The authors of [15] discuss using functional programming for DES and explicitly mention the paradigm of FRP to be very suitable to DES. In his talk [31], Tim Sweeney CTO of Epic Games discussed programming languages in the development of game-engines and scripting of game-logic. Although the fields of games and ABS seem to be very different, Gregory [13] defines computer-games as "soft real-time interactive agent-based computer simulations" and in the end they have also very important similarities: both are simulations which perform numerical computations and update objects in a loop either concurrently or sequential. In games these objects are called game-objects and in ABS they are called agents but they are conceptually the same thing. The two main points Sweeney made were that dependent types could solve most of the run-time failures and that parallelism is the future for performance improvement in games. He distinguishes between pure functional algorithms which can be parallelized easily in a pure functional language and updating game-objects concurrently using software transactional memory (STM).

The thesis of [4] constructs two frameworks: an agent-modelling framework and a DES framework, both written in Haskell. They put special emphasis on parallel and concurrency in their work. The author develops two programs with strong emphasis on parallelism: HLogo which is a clone of the NetLogo agent-modelling framework and HDES, a framework for discrete event simulation.

TODO: whats the difference to other formalisms e.g. DEVS? isnt it all the same?

6 CONCLUSIONS AND FURTHER RESEARCH

by leveraging on FRP we gain all the benefits and drawbacks of it. testing, exploring: [22], [20]

Criticism of the FRP approach: - can lead to infinite loops and needs much care of the programmer who has to consider operational details. This is already visible in the SIR model where we need to be careful to break a potential infinity loop in our simulation stepping. Also the state-machine of the SIR model is quite simple and thus the implementation quite straightforward, for more complex models with more complex e.g. nested state-machines, things will get pretty rough. - having a two layer (arrows and pure functions) language in Yampa [16] and three a layer (arrows, monadic

and pure functions) language in Dunai / BearRiver adds expressivity and power but can makes things quite complex already in the simple SIR example. Fortunately with a more complex model the complexity in this context does not increase - in the end it is the price we need to pay for this high expressivity like occasionally.

We have also implemented synchronous interactions, which we termed agent-transactions in a 6th step but which we omitted due to lack of space (but can be looked at our github repo). Agent-transactions are necessary when TODO: explain. In the end, they can be seen as a kind of method-call emulation of oop with stronger typing.

In the light of the promises of dependent types, we can identify weaknesses of our FRP approach. The authors [26] show that the type-system of Yampa is not safe as FRP is sacrificing the safety of FP for sake of expressiveness. Amongst others they showed that well-formed feedback does depend on the programmer and cannot be guaranteed at compile time through the type system. Feedback is an inherent feature of ABS where agents update their state at time t+1 depending on time t - this is only visible in step 2 where we used feedback to update the random-number generator (rec/iPre/feedback makes the inherently feedback nature of ABS very explicit) but in more complex ABS models with a more complex state than in the SIR model, feedback is the core feature to keep and update the state of an agent. Also a chain of switches could result in an infinite loop - this cannot be checked at compile time and needs to be carefully designed by the programmer and results sometimes in popping up of operational details (e.g. the need to use >>> notYet in parallel switches for stepping the simulation). Another weakness of the approach is that implementing a more complicated agent-transaction protocol correctly can get very challenging. This might not seem directly evident from the implementation in Step 6 but the problem is that there are lots of operational details which the programmer needs to keep in mind and get right to arrive at a correctly working transaction. It would be nice if we have support from the type-system which enforces a given protocol but this is not possible with our approach so far. Note that beside failing to stick to the protocol it is also possible to implement non-total transactions. Note that making the transition from Yampa to the general MSF approach provided by Dunai and BearRiver does not solve this fundamental problem. We could opt for a re-implementation of FRP in Idris by building on the work of [26] and [16] who have laid out ideas for adopting arrowized FRP to dependent types in Agda ³. Unfortunately we would lack Ross Patersons [19] arrow notation which would force us to program our system in a point-free style which can get quite cumbersome and unreadable if the model to implement is complicated (which is easily the case in ABS). Thus we decide not to follow this road also for the sake of a fresh start, to free us from the FRP background and to see what a fresh approach in dependent types could offer to ABS.

Generally one can say that this pure functional approach is not as superior over traditional object-oriented approaches as one might think at first. There are the single real benefit is the lack of implicit side-effects and reproducibility guaranteed at compile time. The next step would be to make the move to dependent type which would pose a unique benefit over the object-oriented approach and builds on the existing pure functional approach.

Dependent Types are the holy grail in functional programming as they allow to express even stronger guarantees about the correctness of programs and go as far where programs and types become constructive proofs [35] which must be total by definition [33], [3], [2], [24]. Thus the next obvious step is to apply them to our pure functional approach of agent-based simulation. So far no research in applying dependent types to agent-based simulation exists at all and it is not clear whether dependent types do make sense in this setting. We explore this for the first time and

³We have actually found an attempt of implementation of Yampa in Idris on GitHub: https://github.com/BartAdv/idris-yampa but we haven't tried it and development of the project seems to be inactive since 2 years.

ask more specifically how we can add dependent types to our pure functional approach, which conceptual implications this has for ABS and what we gain from doing so. Note that we can only scratch the surface and lay down basic ideas and leave a proper in-depth treatment of this topic for further research. We use Idris [6], [7] as language of choice as it is very close to Haskell with focus on real-world application and running programs as opposed to other languages with dependent types e.g. Agda and Coq which serve primarily as proof assistants.

We barely scratched the surface when discussing the use of dependent types in ABS. In contrast to many dependently typed programs in our approach there is actually an interest and need in running them as only then the dynamics of the simulation unfold over time. So far we looked only at how we can ensure the correctness of our mechanisms when using dependent types. It would be of immense interest whether we could apply dependent types also to the model meta-level or not this boils down to the question if we can encode our model specification in a dependent type way? This would allow the ABS community for the first time to reason about a proper formalisation of a model, something the ABS community hasn't been very fond of so far. Also could we reason about the dynamics in the types e.g. positive/negative feedback?

6.1 Benefits

- 6.1.1 Continuous Time. It seems that in our approach we combine the benefits of SD and ABS: we have continuous time-semantics but with individual, heterogenous agents.
- 6.1.2 Code close to specification. When looking at the code of the agent-based implementation in Appendix ?? and SD implementation in Appendix ??, both look very much like a specification. By creating this EDSL which allows to express powerful time-semantics it is possible to now create an ABS in a declarative style in Haskell where the agent-implementation looks very much like a model-specification thus being correct by definition. We claim that this is not only true for models with time-semantics but also with models which lack time-semantics and resemble a more imperative style of behaviour. We can also capture this using monadic programming using the State Monad for which we provide EDSL primitives as well which support all necessary operations in a monadic context.
- Being pure. Because no part of the simulation runs in the IO monad and we do not use unsafePerformIO we can rule out a serious class of bugs caused by implicit data-dependencies and side-effects which can occur in traditional imperative implementations. Note that we actually use unsafePerformIO when one wants to generate unique agent-ids for new agents which are created during the simulation. This is necessary because in this case we need to guarantee that two invocations will result in two different ids, which would be difficult / impossible when running the simulation in the parallel update-strategy. This is not a problem as long as an agent does not rely on the absolute value of an agent-id but just uses it as an opaque identifier for messaging. Also we can statically guarantee the reproducibility of the simulation. Within the agents there are no side effects possible which could result in differences between same runs (e.g. file access, networking, threading, random-number seeding). Every agent has access to its own random-number generator, allowing randomness to occur in the simulation but the random-generator seed is fixed in the beginning and can never be changed within an agent to come from e.g. the current system time, which would require to run within the IO Monad. This means that after initialising the agents, which could run in the IO Monad, the simulation itself runs completely deterministic. We provide functionality to render the output to a window (using the Gloss library) or writing to a text-file, meaning, parts of the simulation would run in the IO Monad. Here we rely on Yampas reactimate function which provides a well-defined way of communicating with the world in such a system. This function provides the Δt for the next step, which *could* come from IO Monad but we forbid

this and keep the Δt always fixed, thus removing another source of non-reproducibility where Δt is influenced by sytem dependent non deterministic rendering-performance every step as happens in games or described by [22] in the context of FRP.

- 6.1.4 Robust time handling. The actual Δt is never visible leads to an even more declarative style and supports the EDSL greatly. This also makes it impossible to mess around with time.
- 6.1.5 Replications. We nearly get replications for free without having to worry about side-effects and can even run them in parallel without headaches.

6.2 Drawbacks

We identify two main drawbacks.

- 6.2.1 Performance. Performance is currently no where near imperative object-oriented implementations. The reason for this is that we don't have in-place updates of data-structures and make no use of references. This results in lots of copying which is simply not necessary in the imperative languages with implicit effects. Also it is much more difficult to reason about time and space in our approach. Thus we see performance clearly as the main drawback of the functional approach and the only real advantage of the imperative approach over our.
- 6.2.2 Steep learning curve. Our approach is quite advanced in three ways. First it builds on the already quite involved FRP paradigm. Second it forces one to think properly of time-semantics of the model, how to sample it, how small Δt should be and whether one needs super-sampling or not and if yes how many samples one should take. Third it requires to think about agent-interaction and update-strategies, whether one should use conversations which forces one to run sequentially or if one can run agents in parallel and use normal messaging which incurs a time-delay which in turn would need to be considered when setting the Δt .

6.3 Agents As Signals

Due to the underlying nature and motivation of FRP and Yampa, agents can be seen as signals which are generated and consumed by a signal-function which is the behaviour of an agent. If an agent does not change, the output-signal should be constant and if the agent changes e.g. by sending a message, changing its state,... the output-signal should change as well. A dead agent then should have no signal at all. The question is if the agents of our agent-based SIR implementation are true signals: do the dynamics stay constant when we sample the system with $\Delta t = 0$? We hypothesize that our agents are true signals, thus they should not change when time does not change because they are completely time-dependent and rely completely on time-semantics. When actually running the simulation with $\Delta t = 0$ one gets the results as seen in Figure ??.

ACKNOWLEDGMENTS

The authors would like to thank I. Perez, H. Nilsson, J. Greensmith, T. Schwarz and H. Vollbrecht for constructive comments and valuable discussions.

REFERENCES

- [1] Aslam Ahmed, Julie Greensmith, and Uwe Aickelin. 2013. Variance in System Dynamics and Agent Based Modelling Using the SIR Model of Infectious Disease. *arXiv:1307.2001 [cs]* (July 2013). http://arxiv.org/abs/1307.2001 arXiv: 1307.2001.
- [2] Thorsten Altenkirch, Nils Anders Danielsson, Andres LÃűh, and Nicolas Oury. 2010. Pi_Sigma: Dependent Types Without the Sugar. In Proceedings of the 10th International Conference on Functional and Logic Programming (FLOPS'10). Springer-Verlag, Berlin, Heidelberg, 40–55. https://doi.org/10.1007/978-3-642-12251-4_5

- [3] Thorsten Altenkirch, Conor Mcbride, and James Mckinna. 2005. Why dependent types matter. In *In preparation*, http://www.e-pig.org/downloads/ydtm.pdf.
- [4] Nikolaos Bezirgiannis. 2013. Improving Performance of Simulation Software Using HaskellâĂŹs Concurrency & Parallelism. Ph.D. Dissertation. Utrecht University Dept. of Information and Computing Sciences.
- [5] Andrei Borshchev and Alexei Filippov. 2004. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. Oxford.
- [6] EDWIN BRADY. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal of Functional Programming 23, 05 (2013), 552-593. https://doi.org/10.1017/S095679681300018X
- [7] Edwin Brady. 2017. Type-Driven Development with Idris. Manning Publications Company. Google-Books-ID: eWzEjwEACAAJ.
- [8] D. Dawson, P. O. Siebers, and Tuong Manh Vu. 2014. Opening pandora's box: Some insight into the inner workings of an Agent-Based Simulation environment. In 2014 Federated Conference on Computer Science and Information Systems. 1453–1460. https://doi.org/10.15439/2014F335
- [9] Tanja De Jong. 2014. Suitability of Haskell for Multi-Agent Systems. Technical Report. University of Twente.
- [10] Richard H. Enns. 2010. It's a Nonlinear World (1st ed.). Springer Publishing Company, Incorporated.
- [11] Joshua M. Epstein. 2012. Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press. Google-Books-ID: 6jPiuMbKKJ4C.
- [12] Joshua M. Epstein and Robert Axtell. 1996. Growing Artificial Societies: Social Science from the Bottom Up. The Brookings Institution, Washington, DC, USA.
- [13] Jason Gregory. 2018. Game Engine Architecture, Third Edition. Taylor & Francis.
- [14] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. 2007. A History of Haskell: Being Lazy with Class. In *Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages (HOPL III)*. ACM, New York, NY, USA, 12–1–12–55. https://doi.org/10.1145/1238844.1238856
- [15] Peter Jankovic and Ondrej Such. 2007. Functional Programming and Discrete Simulation. Technical Report.
- [16] Alan Jeffrey. 2013. Causality for Free!: Parametricity Implies Causality for Functional Reactive Programs. In Proceedings of the 7th Workshop on Programming Languages Meets Program Verification (PLPV '13). ACM, New York, NY, USA, 57–68. https://doi.org/10.1145/2428116.2428127
- [17] W. O. Kermack and A. G. McKendrick. 1927. A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 115, 772 (Aug. 1927), 700–721. https://doi.org/10.1098/rspa.1927.0118
- [18] Charles M. Macal. 2010. To Agent-based Simulation from System Dynamics. In Proceedings of the Winter Simulation Conference (WSC '10). Winter Simulation Conference, Baltimore, Maryland, 371–382. http://dl.acm.org/citation.cfm? id=2433508.2433551
- [19] Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP '01). ACM, New York, NY, USA, 229–240. https://doi.org/10.1145/507635.507664
- [20] Ivan Perez. 2017. Back to the Future: Time Travel in FRP. In Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell (Haskell 2017). ACM, New York, NY, USA, 105–116. https://doi.org/10.1145/3122955.3122957
- [21] Ivan Perez, Manuel BAdrenz, and Henrik Nilsson. 2016. Functional Reactive Programming, Refactored. In Proceedings of the 9th International Symposium on Haskell (Haskell 2016). ACM, New York, NY, USA, 33–44. https://doi.org/10. 1145/2976002.2976010
- [22] Ivan Perez and Henrik Nilsson. 2017. Testing and Debugging Functional Reactive Programming. *Proc. ACM Program. Lang.* 1, ICFP (Aug. 2017), 2:1–2:27. https://doi.org/10.1145/3110246
- [23] Donald E. Porter. 1962. Industrial Dynamics. Jay Forrester. M.I.T. Press, Cambridge, Mass.; Wiley, New York, 1961. xv + 464 pp. Illus. \$18. Science 135, 3502 (Feb. 1962), 426–427. https://doi.org/10.1126/science.135.3502.426-a
- [24] The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study.
- [25] Oliver Schneider, Christopher Dutchyn, and Nathaniel Osgood. 2012. Towards Frabjous: A Two-level System for Functional Reactive Agent-based Epidemic Simulation. In Proceedings of the 2Nd ACM SIGHIT International Health Informatics Symposium (IHI '12). ACM, New York, NY, USA, 785–790. https://doi.org/10.1145/2110363.2110458
- [26] Neil Sculthorpe and Henrik Nilsson. 2009. Safe Functional Reactive Programming Through Dependent Types. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP '09). ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/1596550.1596558
- [27] Peer-Olaf Siebers and Uwe Aickelin. 2008. Introduction to Multi-Agent Simulation. arXiv:0803.3905 [cs] (March 2008). http://arxiv.org/abs/0803.3905 arXiv: 0803.3905.
- [28] P. O. Siebers, C. M. Macal, J. Garnett, D. Buxton, and M. Pidd. 2010. Discrete-event simulation is dead, long live agent-based simulation! *Journal of Simulation* 4, 3 (Sept. 2010), 204–210. https://doi.org/10.1057/jos.2010.14
- [29] David Sorokin. 2015. Aivika 3: Creating a Simulation Library based on Functional Programming.

- [30] Martin Sulzmann and Edmund Lam. 2007. Specifying and Controlling Agents in Haskell. Technical Report.
- [31] Tim Sweeney. 2006. The Next Mainstream Programming Language: A Game Developer's Perspective. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '06). ACM, New York, NY, USA, 269–269. https://doi.org/10.1145/1111037.1111061
- [32] Jonathan Thaler and Peer-Olaf Siebers. 2017. The Art Of Iterating: Update-Strategies in Agent-Based Simulation. Dublin.
- [33] Simon Thompson. 1991. *Type Theory and Functional Programming*. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.
- [34] Ivan Vendrov, Christopher Dutchyn, and Nathaniel D. Osgood. 2014. Frabjous: A Declarative Domain-Specific Language for Agent-Based Modeling. In Social Computing, Behavioral-Cultural Modeling and Prediction, William G. Kennedy, Nitin Agarwal, and Shanchieh Jay Yang (Eds.). Number 8393 in Lecture Notes in Computer Science. Springer International Publishing, 385–392. http://link.springer.com/chapter/10.1007/978-3-319-05579-4_47 DOI: 10.1007/978-3-319-05579-4_47.
- [35] Philip Wadler. 2015. Propositions As Types. Commun. ACM 58, 12 (Nov. 2015), 75-84. https://doi.org/10.1145/2699407
- [36] Zhanyong Wan and Paul Hudak. 2000. Functional Reactive Programming from First Principles. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation (PLDI '00). ACM, New York, NY, USA, 242–252. https://doi.org/10.1145/349299.349331
- [37] Michael Wooldridge. 2009. An Introduction to MultiAgent Systems (2nd ed.). Wiley Publishing.

Received March 2018; revised March 2018; accepted March 2018