

Engineering metals and alloys

Selection of Engineering Materials 2022

Courses in the master programme

- Engineering metals and alloys, 5 cr
 - Period V
- Engineering materials laboratory, 5 cr
 - Periods I-II

Metals and alloys course content

- Classification, properties and applications
 - Steels, light alloys (AI, Mg, Ti), nickel and copper alloys
- Steel metallurgy
- Heat treatments and strengthening
 - Hardenability of steels
 - Thermomechanical treatments
 - Precipitation hardening (aluminium alloys)
- Metal alloys in demanding applications
 - High pressure, creep, corrosion, ...
- Casting materials
- Assignments

Motivation

- Metals, especially steels, are still the most important materials in mechanical engineering
 - have the best combination of strength, stiffness, and toughness
 - are relatively cheap
 - can be easily to shaped and joined
 - are good thermal and electrical conductors
 - are well known

Literature

"Callister"

"Ashby"

"Honeycombe" "Krauss"

"Polmear"

"Hertzberg"

Metals Handbook

"Chan-Haasen"

Composition + Processing → Microstructure + Properties

Risto Ilola 26.09.2022

Properties, structure and scale

Microstructure-insensitive properties

- Density
- Melting point
- Modulus
- Specific heat
- Expansion coefficient
- Heat of fusion, heat of vaporization
- Saturation magnetization

Microstructure-sensitive properties

- Strength
- Toughness
- Elongation
- Thermal conductivity
- Electrical conductivity
- Coercive field
- Energy product

© 2010 Michael Ashby, et. al

Taxonomy of metals

Light alloys

- Aluminum
- Magnesium
- Titanium
- (Beryllium)

Copper alloys

- Copper
- Brasses

Nickel alloys

- Nickel
- Ni-Cu
- Ni-Fe
- Superalloys

Refractory metals

- Molybdenum
- Niobium
- Tantalum
- Tungsten

Precious metals

- Gold
- Platinum
- Silver...

Rare earth metals

- Cerium
- Neodymium
- Yttrium...

Metal structure

metallic bond

metal grains

face centered cubic

- Aluminium alloys
- Nickel alloys
- Copper and α-brass alloys
- Austenitic stainless steels
- Silver, gold, platinum, lead

body centered cubic

- Carbon steels
- Alloys steels
- β-titanium alloys
- Tungsten, chromium

- α-titanium alloys
- Magnesium alloys
- · Zinc, cobalt, beryllium

Strengthening of metals

- High strength, ductility and toughness are desirable (often exclusive)
- Strenghening in metals is based on reducing dislocation mobility
- Several ways to strengthen metals
 - alloying
 - cold working
 - heat treatments
 - thermomechanical treatments
- Respective strengthening mechanisms
 - solid solution strengthening by substitutional or interstiatial atoms
 - work hardening by dislocations
 - precipitation hardening
 - refinement of grain size...
- Certain analogy exists in heat treatments of metals but details are different

Drilling down: control of microstructure

Solid solution hardening (Composition)

Precipitation hardening

(Composition and microstructure)

Work hardening (Microstructure)

Examples:

Heat-treatable Al alloys (age hardening)

Carbon & alloy steels (quench and temper)

Strenghening mechanisms

- All strengthening mechanisms work together
- Contribution to yield stress for a martensitic steel

Electrical resistivity and strength of

copper

Microstructure-sensitive properties

- Strength
- Toughness
- Elongation
- Thermal conductivity
- Electrical conductivity
- Coercive field
- Energy product

Solid solution hardening (Composition)

Property control: composition and microstructure

Aluminum alloys: strengthening and primary shaping

Control by composition: steels

Steels: strength, toughness and carbon content

Ferrous materials

practical limits of C

Figure C34. The BCC unit cell.

Figure C33. The FCC unit cell.

Adapted from Fig. 9.24, *Callister 7e.* (Fig. 9.24 adapted from *Binary Alloy Phase Diagrams*, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Austenite decomposition of carbon steel during slow cooling

Cast irons

gray iron

malleable iron

nodular (ductile iron) graphite

compacted graphite iron

Alloying effect on eutectoid point

Effect of cooling rate on austenite

Basic low carbon steel

- C < 0.2 wt.%, Mn < 1.6 wt.%
- Strength (ys) 235-550 MPa, good elongation (25 %), toughness, formability and weldability
- Basic ferritic-pearlitic structural steel (e.g. S235, S355)
- Microstructure mainly ferritic with small amount of pearlite
- Steel structures, car sheet

HSLA steels (high strength low alloy)

- C 0.05...0.25 wt.%, Mn < 2.0 wt.%
- Microalloyed steels
 - Small quantities of Cr, Ni, Mo, Cu, N, V, Nb, Ti, Zr in various combinations (microalloyed when < 0.15 % in total)
 - good strength, toughness, weldability and formability
- High strength steels (HSS)
 - Modern HSS have ys > 1000 MPa
- Examples: weathering steels, DP (dual phase) steels, TRIP (transformation induced plasticity), TMCP (thermomechanically controlled process), CP (complex phase)
- Strengthened by fine grain size, heat treatment, or thermomechanical treatment
- Complex microstructures: fine grains, ferrite, bainite, retained austenite, martensite, dislocations
- Low impurity levels
- Examples S420N, P355NH, HSLA 350, CP 1000, Strenx 1300
- Bridges, cars, ships, pressure vessels, lifting booms

Medium carbon steels

- 0.25-0.6 wt.% C
- Heat treated by austenizing, quenching and tempering
- Good combination of strength, fatigue resistance and toughness
 - properties depend on carbon content, alloying and heat treatment
- Typical microstructure tempered martensite
- Plain carbon steels
 - low hardenability
 - e.g. C45 steel
 - simple geometries and small parts
 - ys 500-1000 MPa
- Low alloy steels (Cr, Ni, Mn, Mo)
 - hardenability increases with alloying
 - quenched and tempered steels, e.g. 42CrMo4
 - case hardening steels, e.g. 21CrNiMo2 (note! 0.15-0.25 %C)
 - ys 700-1900 MPa
- Gears, shafts, springs, pistons, blades,...

Control by microstructure: steels

Steels: Change of microstructure at constant composition

High carbon steels

- Usually quenched and tempered
 - ys > 750 MPa
- Plain carbon (with 0.3...0.9 % Mn)
 - e.g. rails, tools, blades, wires, springs, wear resistant plates
 - e.g. AISI 1095
- Alloyed high carbon tool steels
 - Cr, V, W, Mo forms hard and wear resistant compounds (e.g. Cr₂₃C₆, V₄C₃, WC)
 - low and high alloy steels
 - e.g. cold work, hot work, high speed, shock resisting steels
 - e.g. AISI D2
- Strength and hardness increase with carbon content (weldability, ductility and impact toughness reduce)

Cutting tool

- Properties required?
- Material?
- Processing?
- Microstructure?

Strength, toughness, corr. resistance, machinability, formability, weldability ...

Phases, grain size, dislocation structure, ...

- High strength at elevated temperatures
- Good toughness
- Wear resistance, low cost...
- Cemented carbides (WC-Co), high speed steel (ex. AISI M2)

Heat treatment and microstructure of AISI M2 tool

steel

austenite

martensite and retained austenite

tempered martensite and carbides

Typical analysis %	C 0.85/0.90	Mn 0.25	Cr 4.10	Mo 5.00	V 1.90	W 6.40
Standard specification	~AISI M2, DIN/EN 1.3343					
Color code	Gold/Green					

Microstructure of M-2 High-Speed Tool Steel

Hardenability of steels

- Important property for steels in engineering
- Ability to form martensite (not the martensite strength!)
- Depends on chemical composition
 - TTT and CCT diagrams
 - Critical cooling rate
- Evaluation with jominy test

CCTs for AISI 4340 and M2

Fe-0.4C-2Ni-1Cr-0.2Mo

Fe-0.8C-4Cr-5Mo-6W-2V

Stainless steels

- A protective and passive oxide layer of Cr₂O₃ is formed when Cr > 11 wt.%
- Enhanced by Ni and Mo additions
- Main types
 - Austenitic grades(e.g. 304, 316)
 - Ferritic grades (e.g. 409)
 - Martensitic grades (e.g. 410)
 - Duplex grades (e.g. 2205)
 - PH grades (e.g. 17-7PH)
- Properties depends on alloying and microstructure
- Architecture, process industry, exhaust systems, flatware, tools, blades, aerospace,...

Aluminum alloys

- Age-hardening alloys
 - 2000 series (Al-Cu)
 - 6000 series (Al-Mg-Si)
 - 7000 series (Al-Zn-Mg)

Strengthening mechanisms in

precipitation hardening

Logarithm of aging time

Again: all strengthening mechanisms work together

oherency stress

Solid solution

Aluminum alloys

- Non age-hardening Al alloys
 - 1000 series (> 99% AI)
 - 3000 series (Al-Mn)
 - 5000 series (Al-Mg)

High-performance materials

- For example gas turbine materials
- Ni-base superalloys
 - Creep
 - Oxidation
 - Fatigue
 - High-temperature corrosion resistance
- Titanium alloys
 - High strength-to-weight ratio

Specific strength

Fig. 1.6 Relationship of specific 0.2% proof stress (ratio of proof stress to relative density) with temperature for light alloys, steels and nickel alloys

Microstructure of precipitation hardened Ni-based superalloys

Car frame material

Which one is the best material?

- Low-carbon steel?
- Aluminum alloy?
- Stainless steel?
- (CFRP)

Desired properties?

- Safety
- Lifetime
- Weight
- Technological properties (formability, weldability, ...)
- Price (life cycle costs and environmental effects)

Car frame and panel materials

Aluminum

- Audi A8, Tesla, Jaguar XE, ...
- light but expensive, difficult to repair
- 5xxx (strain hardening), 2xxx, 6xxx and 7xxx (precipitation hardening) alloys are used

Stainless steel

- corrosion resistant, high strength-to-toughness ratio (safety),
- applications in car frames under investigation, used in buses
- exhaust systems
- expensive, but has a long lifetime

Carbon steel

- majority of cars
- heavy, less expensive, good technological properties
- advanced high strength structural steels (AHSS)

Thermomechanical treatments

- Simultaneous heat treatment and processing
 - purpose to improve strength, toughness and ductility
- Traditional hot working is a thermomechanical treatment
 - shaping and repeated dynamic recrystallisation in austenite field
 - fine grain size, breaking of non-metallic inclusions
- Controlled rolling is a more sophistigated method
 - precisely defined rolling parameters (temperature, strain, number of passes, finishing temperature, cooling,...)
 - e.g. HSLA, TMCP, AHSS, UHSS, DP, TRIP,...

HSLA steels (high strength low alloy)

Development of HSLA steels

Yield strength and ductility of various alloys

Laboratory course structure MEC-E6006

Lecture Work in laboratory Homework

Assignments

Metallography basics

- sample preparation
- optical microscopy and micrographing
- hardness measurement

Hardenability of steels

- hardenability test
- microstructures and mechanisms in austenite decomposition and tempering of martensite

Stainless steels

- advanced sample preparation and microscopy
- properties of stainless steels

Failure analysis

- examination of fracture surfaces
- SEM and EDS

Steam diffuser made of X35CrMo17 martensitic stainless steel, operated at 540C/147 bar

