

Abschlussbericht

Praxisforschungsprojekt

Integration einer Roboterfertigungszelle in den Fahrzeugherstellungsprozess

Hochschulbetreuer: Prof. Dr.-Ing. Andreas Pretschner

Betriebl. Betreuer: Elias Froschauer

Vorgelegt von: Ronny Döring

Studiengang: Elektrotechnik und Informationstechnik

Seminargruppe: 13EIM-AT Matrikelnummer: 62308

Emailadresse: RonnyDoering.lng@gmail.com

Datum der Abgabe: dd.mm.2016

Inhaltsverzeichnis

ΑŁ	bbildungsverzeichnis	iii				
1	Einleitung 1.1 Ausgangspunkt	. 1				
2	Planung 2.1 Vorbereitung 2.2 Steuerungskonzept 2.2.1 Überblick 2.2.2 Sicherheitstechnik 2.2.3 Antriebstechnik 2.2.4 Softwarestruktur und Kommunikationswege 2.3 PROFINET Liste 2.4 Anlagenkennzeichnung	. 4 . 4 . 6 . 6				
3	Test- und Präsentationsaufbau 3.1 Motivation					
4	Anbindung der IPS-X Systeme	16 17				
In	nternetquellen					

Abbildungsverzeichnis

1.1	Roboterzelle: Schematische Darstellung	2
2.1	Anlagenentstehungsprozess: Roadmap	4
2.2	Steuerungskonzept: Überblick	5
2.3	Steuerungskonzept: Sicherheitstechnik	6
2.4	Steuerungskonzept: Antriebstechnik	7
2.5	Steuerungskonzept: Softwarestruktur und Kommunikationswege	8
2.6	PROFINET-Liste	9
2.7	Anlagenkennzeichnungssystem: Masterstring	9
2.8	Anlagenkennzeichnungssystem: Überblick Gesamtanlage	10
2.9	Anlagenkennzeichnungssystem: Detaillierte Betriebsmittelkennzeichnung	11
3.1	Präsentationsaufbau: 3D-Prinzipdarstellung	15

1 Einleitung

1.1 Ausgangspunkt

Die OSB AG ist ein Unternehmen mit deutschlandweit zwölf Niederlassungen und über 500 Mitarbeitern. Der Standort Leipzig ist in den Bereichen der Software und Automation tätig. Zu den Kunden zählen hauptsächlich lokal ansässige Produktionsunternehmen aus verschiedensten Industriezweigen. Dabei spielen die im Leipziger Einzugsgebiet vertretenen Automobilhersteller eine große Rolle. Das BMW Group Werk Leipzig gehört zu den langjährigen Kunden der OSB AG. Speziell für die Abteilung CFK wurde eine Vielzahl an Projekten durchgeführt.

Den Löwenanteil der BMW Niederlassung in Leipzig bildet jedoch der Technologiebereich Montage. Dieser Bereich ist hochautomatisiert mit verschiedensten Anlagen unterschiedlicher Hersteller und ausgelegt auf einen nahezu unterbrechungsfreien Betrieb. Um eine derartige Komplexität zu beherrschen, stützen sich die Anlagenhersteller auf einen sehr umfangreichen und detaillierten Standard, dem *TMO V1* Standard, welcher eigens von BMW für die Montage entwickelt wurde.

Der genannte Standard stellt einen kompletten Leitfaden für den Anlagenhersteller von Projektbeginn bis zur Übergabe an BMW dar. Damit wird sichergestellt, dass während der gesamten Projektphase die Konformität zum Standard eingehalten wird und bei der späteren Integration der Anlage in die Produktion keine Kompatibilitätsprobleme auftreten.

Um Anlagen herzustellen, zu betreuen oder zu erweitern verlangt BMW von potentiellen Dienstleistern einen Nachweis der Konformität zu diesem Standard. Im Fall der OSB AG am Standort Leipzig besteht dieser Nachweis in der Bearbeitung eines fiktiven Projektes, im Folgenden *Testprojekt* genannt, welches einen Großteil der geforderten Design-Richtlinien und Prozesse des Anlagenentstehungsprozesses abdeckt. Neben der Konformitätsbewertung der OSB AG hinsichtlich des TMO V1 Standards bildet das Testprojekt den thematischen Rahmen für diesen Bericht.

1.2 Projektumfang

Gegenstand des Testprojektes ist die Projektierung einer Montagestation. Dabei handelt es sich um eine Roboterzelle mit Fördertechnik entsprechend der schematischen Darstellung in Abbildung 1.1. Weiterhin sind zwei Bedien-Panels, sinnvoll angeordnete

Abb. 1.1: Roboterzelle: Schematische Darstellung

NOT-HALT Taster, eine Sicherheitstür sowie Lichtvorhänge zum Absichern der Ein- und Ausfahrtbereiche spezifiziert.

Die Station soll dabei folgende Funktionen erfüllen:

- 1. Übernahme des Fahrzeugs von Vorgängerstation
- 2. Bearbeitung in Abhängigkeit des Fahrzeugtyps
- 3. Übergabe des Fahrzeugs an Nachfolgestation
- 4. Kommunikation mit übergeordneten IT-Systemen

Da es sich um ein fiktives Projekt handelt wird die in Punkt 2 beschriebene Funktion nur beispielhaft implementiert. Es ist vorgesehen einen Art Greifer für den Roboter zu projektieren, der über zwei Zylinder verfügt. Auf Basis einer Typverwaltung wird dann entscheiden, bei welchem Fahrzeugtyp welcher Zylinder aktiv wird.

1.3 Aufgabenstellung

Integration einer Roboterzelle in den Fahrzeugherstellungsprozess

Teilaufgaben:

- 1. Einarbeitung in die herstellerspezifischen Richtlinien
- 2. Konzeption der Steuerungstechnik
- 3. Konzeption interner und externer Schnittstellen
- 4. Auswahl und Aufbau eines Testsystems
- 5. Softwaretechnische Umsetzung

2 Planung

2.1 Vorbereitung

Der Anlagenentstehungsprozess ist an eine im Standard enthaltene Roadmap geknüpft. Abbildung 2.1 zeigt eine gegliederte Darstellung dieser Roadmap in etwas vereinfachter Weise. Der gesamte Prozess lässt sich in sechs Abschnitte gliedern. Jeder Abschnitt enthält wiederum verschiedene Schritte. Ein neuer Schritt wird erst abgearbeitet, wenn der vorangegangene abgeschlossen und durch BMW abgenommen ist.

Vor der eigentlichen Bearbeitung des Projektumfanges erhält der Anlagenhersteller eine aktuelle Version der Dokumente, die den Standard bilden. Das sind Dokumente folgender Kategorien:

- Kaufteile
- Planung
- EPLAN
- · Hardware Konstruktion
- Antriebstechnik
- IT-System Schnittstellen
- Roboter
- Visualisierung mit TIA-WinCC
- Classic SPS Siemens SIAMTIC
- Dokumentation
- Fördertechnik
- Allgemeines

In seiner Gesamtheit umfasst der TMO V1 Standard über 250 Dokumente, die zu einem großen Teil im Excel-, Word- oder PDF-Format vorliegen. Neben einer ganzen Reihe an Richtlinien, steht eine Vielzahl an fertigen Projektvorlagen zur Verfügung. Diese erleichtern die spätere Bearbeitung und sorgen dafür, dass alle Projekte auf einer gleichen Basis aufbauen.

Abb. 2.1: Anlagenentstehungsprozess: Roadmap

Nach dem der Angebotsprozess abgeschlossen ist und die Formalitäten zwischen Anlagenbetreiber und Hersteller geklärt sind, findet schließlich der Kick Off auf Leitungsebene und anschließend auf technischer Ebene statt.

2.2 Steuerungskonzept

2.2.1 Überblick

Im ersten Projektierungsschritt wird ein Konzept erarbeitet, welches alle wesentlichen Komponenten der zukünftigen Anlage sowie deren Verknüpfung miteinander enthält (siehe Abb. 2.2). Ziel des Steuerungskonzeptes ist es, eine Art Leitfaden für den gesamten Entwicklungsprozess zu schaffen, auf den sich Konstrukteure und Programmierer während des gesamten Projektes stützen können. Die folgenden Abschnitte enthalten jeweils Auszüge und dienen der Veranschaulichung des Inhaltes und Umfanges des Steuerungskonzepts. Das komplette Dokument liegt dem Bericht als Anhang ?? bei.

2.2.2 Sicherheitstechnik

Die Anlagensicherheit ist ein wichtiger Teil der Projektierung. Das Schema in Abbildung 2.3 zeigt die Verwendung einer Safety-SPS. Die Verbindung zu den dezentralen Komponenten wie ET200 SP, ET200 PRO oder den Murr Safety Modulen erfolgt über

Abb. 2.2: Steuerungskonzept: Überblick

den Industrial-Ethernet-Standard PROFINET ¹. Zur Datenübertragung dient das Protokoll PROFIsafe ². An die dezentrale Peripherie werden die sicherheitsrelevanten Baugruppen per digitaler Signale verbunden. Dafür werden spezielle sichere Eingangs- und Ausgangsbaugruppen verwendet. Konkret kommen in diesem Fall NOT-HALT-Taster, Türverriegelungen, Lichtvorhänge und Zustimmtaster zum Einsatz. Im Schema werden die einzelnen Komponenten nur mit jeweils einem Vertreter dargestellt. Der Detaillierungsgrad in der Darstellung der Sicherheitstechnik ist zwar nicht allzu hoch, zeigt aber den grundsätzlichen Aufbau. Aus der Abbildung geht hervor, dass die Verknüpfung aller sicherheitsrelevanter Komponenten innerhalb der Safety-Software geschieht. Hart verdrahtete Sicherheitskreise werden nicht verwendet.

Abb. 2.3: Steuerungskonzept: Sicherheitstechnik

2.2.3 Antriebstechnik

Die zu projektierende Roboterzelle verfügt über ein sehr übersichtliches Antriebskonzept. Lediglich die Fördertechnik wird mit Frequenzumrichter (FU)-Antrieben ausgestattet. Es handelt sich um Movifit FC Antriebe der Firma SEW. Jeder FU ist in der Lage bis zu drei Motoren zu steuern. Darüber hinaus verfügen die Antriebe über sichere digitale Ein- und Ausgänge, welche anstelle dedizierter dezentraler Peripherie verwendet werden können.

Die FUs werden an drei verschiedene Netze angeschlossen. Das 24 V-Netz versorgt die digitalen Ein- und Ausgangsbaugruppen sowie den Steuerteil. Über das 400 V-Netz wird die Leistung für die Motoren übertragen. Zur Kommunikation von Steuerbefehlen und Statusinformationen zwischen SPS und FUs erfolgt per PROFINET.

2.2.4 Softwarestruktur und Kommunikationswege

Etwas komplexer als die Antriebstechnik ist der Aufbau der Softwarestruktur und Kommunikationswege. Abbildung 2.5 veranschaulicht das Zusammenspiel aller Komponenten.

¹Profinet basiert auf Ethernet-TCP/IP und ergänzt die Profibus-Technologie für Anwendungen, bei denen schnelle Datenkommunikation über Ethernet-Netzwerke in Kombination mit industriellen IT-Funktionen gefordert wird. [2]

²Das PROFIsafe-System ist eine Erweiterung des Profibus- und PROFINET-Systems. Mit dem System können frei programmierbare Sicherheitsfunktionen ausgeführt und die hierfür notwendigen sicheren Ein- und Ausgangsdaten von und zu den sicheren I/O-Geräten übertragen werden.[1]

Abb. 2.4: Steuerungskonzept: Antriebstechnik

Innerhalb der Station erfolgt sämtlicher Informationsaustausch Software-basierter Baugruppen mittels PROFINET (grün dargestellt). Das Kernelement bildet die Siemens 319F SPS. In dieser laufen alle Informationen der Panels, FUs, Robotersteuerung und Schraubersteuerung zusammen. Die SPS dient als Kommunikationsknoten zwischen der Station und den übergeordneten IT-Netzen. Die einzige Ausnahme bildet die Schraubersteuerung. Sie kommuniziert ihre Daten ohne Umwege über die Steuerung direkt an das IPM-System. Als Gegenstand des Projektes werden nur die Anbindungen an die Systeme IPS-Q, IPS-L und IPS-T projektiert.

2.3 PROFINET Liste

Ein weiterer Meilenstein im Anlagenentstehungsprozess (s. Abb. 2.1) ist die Abnahme der PROFINET-Liste (PN-Liste). Dabei handelt es sich um ein Excel-Dokument, das nach der BMW-Vorlage angefertigt wird. Ein Ausschnitt der PN-Liste für das Testprojekt ist in Abbildung 2.6 dargestellt.

Der obere Teil der Liste wird von der IT-Abteilung des Auftrag-vergebenden BMW-Standortes ausgefüllt. Neben dem Anlagenkennzeichen (AKZ) und dem Standort der Anlage, wird in diesem Teil die IP-Netzkonfiguration festgelegt.

Den unteren Teil füllt der Projektbearbeiter aus. Jeder PN-Teilnehmer erhält eine feste IP-Adresse im Rahmen der vorgegebenen Subnet-Maske. Weiterhin wird allen Geräten ein DNS-Name zugeordnet. Dieser setzt sich aus dem Kürzel für den Standort, dem AKZ und einer dreistelligen Device-ID zusammen. Die Device-ID ist ebenfalls in der

Abb. 2.5: Steuerungskonzept: Softwarestruktur und Kommunikationswege

PN-Liste zu finden. Zudem wird jedem PN-Teilnehmer ein S7-Gerätename und eine kurze Beschreibung gegeben.

Entsprechend ihrer Typen belegen einige Gerät im PN-Netz einen festen Bereich im Prozessabbild der Eingangs- und Ausgangsdaten der SPS. In der PN-Liste werden jedem dieser Bereiche definierte Adressen zugeordnet. Dabei wird zwischen Standard-Adressen, Safety-Adressen und Diagnose-Adressen (>2048) unterschieden.

2.4 Anlagenkennzeichnung

Masterstring

Jedes Bauteil in einer nach TMO V1 Standard entworfenen Anlage besitzt ein Betriebsmittelkennzeichen (BMK), welches nach dem BMW-Anlagenkennzeichnungssystem ermittelt wird. Als Leitfaden für die Ermittlung der einzelnen BMK enthält der Standard eine sehr umfangreiche Excel-Arbeitsmappe, in der die einzelnen Zeichen und deren Bedeutung detailliert beschrieben sind. Neben der BMK ist im Anlagenkennzeichnungssystem auch die Benennung des Anlagenstandortes sowie des Anlagennamen definiert. Die Aneinanderreihung des Anlagenstandortes, Anlagennamen und des BMK ergibt den Masterstring. Dessen Aufbau ist tabellarisch in Abbildung 2.7 dargestellt. Anhand des Masterstrings ist eine eindeutige Zuordnung jedes Betriebsmittels innerhalb der Montage von BMW möglich. Für das Testprojekt lauten Anlagenstandort und

Abb. 2.6: PROFINET-Liste

Anlagenname ==071090500=M9TA1G01. Die Zusammensetzung geht aus folgender Aufstellung hervor:

- == vorangestelltes Trennzeichen
- **97** BMW-interne Werksnummer (Hauptgruppe)
- **10** BMW-interne Werksnummer (Untergruppe)
- 9 Technologiekennung Fahrzeugmontage
- 050 Gebäudenummer
 - 6 Gebäudeteil
 - = Trennzeichen
- M9 Technologie Montage
- TA1 Testanlage 1
- G01 Gruppensteuerung 1

Abb. 2.7: Anlagenkennzeichnungssystem: Masterstring

Abb. 2.8: Anlagenkennzeichnungssystem: Überblick Gesamtanlage

Überblick Gesamtanlage

Bei der Vergabe der BMK wird ein Top-Down-Verfahren angewendet. Dabei wird zunächst eine Grobgliederung nach Aufstellungsort und Einbauort (Vgl. Abb. 2.7) vorgenommen. Für die vorliegende Roboter-Zelle ergibt sich die nachstehende Einteilung nach dem Schema ++Aufstellungsort+Einbauort:

- ++ST000 Schaltschränke, Panels
 - +CE001 Einspeiseschrank
 - +CC001 Steuerschrank
 - +CD001 Antriebsschrank
 - +0P001 Panel Fertigungstechnik
 - +0P001 Panel Fördertechnik
- ++ST001 Roboterstation
 - +CF001...002 Schutzzäune
 - +CD001 Schutztür
 - +CR001 Robotersteuerung

Abb. 2.9: Anlagenkennzeichnungssystem: Detaillierte Betriebsmittelkennzeichnung

- +IR001 Industrieroboter
- ++FT002 Fördertechnik
 - +TL001 Zuführung
 - +TL002 Bearbeitung
 - +TL003 Weiterführung

Die Kennzeichen für Aufstellungsort und Einbauort weisen die gleiche Syntax auf. Vorangestellt ist jeweils ein Trennzeichen. Dieses wird gefolgt von einem Funktionskürzel, anhand dessen die Art des Aufstellungs-/Einbauortes erkennbar ist (z.B. FT: Fördertechnik, TL: Transportförderer Längs). Zudem hat jedes Kürzel eine angehängte, dreistellige laufende Nummer. Bei dieser Nummer ist zu beachten, dass die Aufstellungsorte unabhängig von ihrem Funktionskürzel hochgezählt werden. Beim Einbauort wird für jedes Funktionskürzel bei der Nummer 001 begonnen.

Im Anschluss an die Grobgliederung folgt die Kennzeichnung einzelner Betriebsmittel wie Sicherungen, SPSn, Netzteile, Zylinder und Sensoren. Eine derartige Kennzeichnung ist in Abbildung 2.9 am Beispiel des Roboters und dessen Greifer dargestellt. In diesem Fall kommen zur eindeutigen Beschreibung der Elemente auch optionale Felder zum Einsatz. Die Bezeichnung ++ST001+IR001.FG001-MM01.01-BG11 des Endlagensensors für die vordere Endlage von Zylinder 1 erklärt sich wie folgt:

- ++ST001 Roboterstation (Aufstellungsort)
- +IR001 Industrieroboter (Einbauort)
- .FG001 Greifer (Einbauort optional)
 - -M Bereitstellung mechanischer Energie
 - M Antrieb durch fluidtechnische, pneumatische Kraft
 - Antriebsrichtung (Allgemein)
 - 1 Antrieb-Nummer
 - .01 Zylinder 1 (lfd. Nummer für Aktor)
 - -BG Endlagensensor (BMK Sensorik)
 - 1 Ifd. Nummer Sensorik mit gleicher Abfrage
 - 1 Eigenschaft der Positionsabfrage (vorn)

Das Anlagenkennzeichnungssystem findet Anwendung bei der Benennung aller Elemente innerhalb der Anlage. Dadurch ist es problemlos möglich die Elektrokonstruktion, Mechanik und Software zu synchronisieren. Neben der Beschriftung der Bauteile im Schaltplan, im Schaltschrank und der Baugruppen direkt in der Anlage werden die Kennzeichen auch für die Benennung von Variablen, Ein-/Ausgängen und Code-Bausteinen innerhalb der Software verwendet. Im Fall von Wartungs-, Instandsetzungsoder Erweiterungsarbeiten erleichtert diese Vorgehensweise die Arbeit enorm. Auch Fremdfirmen finden sich schnell in einer Anlage zurecht, sofern sie den Standard kennen.

3 Test- und Präsentationsaufbau

3.1 Motivation

Das Testprojekt gilt als abgeschlossen, wenn die von BMW gestellten Anforderungen umgesetzt worden sind. Das betrifft zum Einen die formellen Anforderungen an den Anlagenentstehungsprozess und die daraus hervorgehenden Dokumente und zum Anderen die funktionalen Anforderungen an die Software. Zur Software zählen in diesem Fall das SPS-Programm, das HMI und die Anbindung an das IT-Netzwerk.

Damit die funktionalen Anforderungen abgenommen werden können, bedarf es einer Vorführung. Die Anlage entsteht nur virtuell, wodurch es keine Möglichkeit gibt, die Software unter realen Bedingungen zu testen. Für SPS und HMI bestünde die Möglichkeit, eine Simulation mit PLCSim und einer HMI-Desktop-Runtime zu erstellen und so die Funktion nachzuweisen. Selbst für die IPS-X-Systeme liefert BMW eine Simulationsumgebung mit der Bezeichnung ICOMM mit. Mit den aktuellen Versionen von ICOMM und PLCSim ist es allerdings nicht möglich, eine Verbindung untereinander herzustellen. Dadurch entsteht die Notwendigkeit, die entwickelte Software auf einer realen SPS laufen zu lassen.

3.2 Komponentenauswahl und Aufbau

Als Grundlage für die Hardware-Projektierung dient eine Bauteil-Liste, die Bestandteil der Standard-Dokumentensammlung ist. Diese Liste liegt in Form einer sehr umfangreichen Excel-Arbeitsmappe vor. Darin enthalten ist eine Vielzahl an Bauteilen aus den Domänen Elektrotechnik, Steuerungstechnik, Mechatronik und Mechanik, auf die bei der Projektierung vorzugsweise zurückgegriffen werden soll. Abweichungen von der Liste dürfen nur in Absprache mit dem verantwortlichen BMW-Projektleiter stattfinden.

Bei dem Testaufbau werden die technischen Anforderungen, welche sich aus dem Umfang der Aufgabe ergeben, begleitet von nicht technischen Anforderungen, die seitens der OSB gelten. Da es sich um ein Non-Profit-Projekt handelt und eine Wiederverwendbarkeit der Hardware für zukünftige Projekte nicht garantiert ist, sind die Hardware-Kosten so niedrig wie möglich zu halten. Das hat zur Folge, dass für den Testaufbau lediglich gebrauchte Baugruppen verwendet werden. Tabelle 3.1 zeigt eine Auswahl an steuerungstechnischen Baugruppen, die der Realisierung des Testaufbaus dienen.

Tabelle 3.1: Bauteilliste Testaufbau

Gerät	Bezeichnung	Artikelnummer	Anzahl
S7-300	SIMATIC S7-300, Profilschiene L=480mm	6ES7390-1AE80-0AA0	1
S7-300	PS 307 Stromversorgung 5A	6ES7307-1EA01-0AA0	1
S7-300	SIMATIC S7-300 CPU317F-2 PN/DP	6ES7317-2FK14-0AB0	1
S7-300	IP-20 Switch 8P SCALANCE XF208	6GK5208-0BA00-2AF2	1
ET 200SP	IM 155-6 PN ST inkl. Servermodul inkl. Busadapter	6ES7155-6AA00-0BN0	1
ET 200SP	Base-Unit BU15-P16+A0+2D, BU-Typ A0	6ES7193-6BP00-0DA0	3
ET 200SP	digitales Eingangsmodul, DI 8x DC 24V	6ES7131-6BF00-0BA0	1
ET 200SP	digitales Ausgangsmodul, DQ 8x 24VDC/0,5A	6ES7132-6BF00-0BA0	1
ET 200SP	sicheres digitales Eingangsmodul, F-DI 8x 24VDC	6ES7136-6BA00-0CA0	1
	HF		

Zusätzlich zu den aufgelisteten Baugruppen werden Bauelemente aus der Elektrotechnik benötigt, um eine Verbindung der Baugruppen untereinander herzustellen. Dazu gehören:

Tabelle 3.2: Elektrotechnisches Zusatzmaterial

lfd. Nr.	Bezeichnung	Variante	Anzahl
1	NOT-HALT Taster mit Meldeleuchte, zweikanalig		1
2	Reihenklemmen	1,5 mm ²	15
3	Reihenklemmen Abschlussplatten		2
4	Klemmleisten Endklemmen		4
5	Aderleitung schwarz	1,0 mm ²	10 m
6	Aderleitung blau	1,0 mm ²	10 m
7	Netzwerkkabel mit RJ45 Stecker	1 m	3
8	Hutschiene	35 mm x 7,5 mm	0,5 m
9	Verdrahtungskanal	45 mm x 45 mm	2,5 m
10	Anschlussleitung mit Schutzkontakt-Stecker	3 x 1,5 mm ²	1,5 m

Damit ein ganzheitlicher Präsentationsaufbau entsteht, werden alle Komponenten auf einem Testgestellt ähnlich dem Modell in Abbildung 3.1 montiert. Dafür wird ein simpler Aufbau, bestehend aus einem Aluminiumprofil-Rahmen, einer verzinkten Lochrasterplatte und den darauf montierten Verdrahtungskanälen und Hutschienen vorgesehen.

Der Testaufbau verfügt über eine Einspeise-Klemmleiste, die mittels Anschlussleitung an das 230 V-Netz angeschlossen ist. Die Spannungsversorgung der Automatisierungskomponenten erfolgt über ein Netzteil der Firma Siemens (siehe 3.1). Die 24 V Gleichspannung wird schließlich mithilfe einer zweiten Klemmleiste auf die Verbraucher verteilt. Die beiden Kanäle des NOT-HALT-Tasters werden direkt auf die sichere Eingangsbaugruppe gelegt.

Für die Vernetzung der CPU und der ET 200 kommt ein SCALANCE 8-Port Switch (nicht in der Darstellung vorhanden) zum Einsatz. Dieser ist durch den TMO V1 Stan-

Abb. 3.1: Präsentationsaufbau: 3D-Prinzipdarstellung

dard vorgeschrieben und bietet den Vorteil, den Aufbau sehr einfach mit zusätzlichen PROFINET-Teilnehmern zu erweitern. Zudem kann ein freier Port zum Anschluss des Programmier-Laptops genutzt werden.

4 Anbindung der IPS-X Systeme

Internetquellen

- [1] CONTACT, PHOENIX: PROFIsafe. https://www.phoenixcontact.com/online/portal/de?1dmy&urile=wcm:path:/dede/web/main/products/technology_pages/subcategory_pages/Safety/916ff0d6-5046-4fa4-9a36-00e3abbeca60/916ff0d6-5046-4fa4-9a36-00e3abbeca60. Zugriff: 04.08.2017
- [2] FELDBUSSE.DE: *Profinet*. http://www.feldbusse.de/Profinet/profinet.shtml. Zugriff: 04.08.2017