INTRODUÇÃO À INVESTIGAÇÃO OPERACIONAL

Departamento de Matemática

Soluções dos exercícios

Programação Linear / Algoritmo Simplex

1. (a)
$$(x^*, y^*) = \left(\frac{8}{3}, \frac{1}{3}\right), \quad F^* = -2.$$

(b) Não, porque a solução óptima não verifica a nova restrição. Nova solução ótima $(x^*, y^*) = \left(\frac{12}{7}, \frac{4}{7}\right)$ de valor ótimo $F^* = -\frac{4}{7}$.

2. (a)
$$(x^*, y^*) = \left(\frac{19}{3}, \frac{23}{6}\right), \quad F^* = \frac{61}{6}.$$

(b)
$$(x^*, y^*) = (6, 4)$$
, com $F^* = 10$.

$$\begin{array}{ll} \text{(c) Se} & \theta < \frac{1}{2} \colon & (x^*,y^*) = (2,6), \quad F^* = 2\theta + 6; \\ & \text{Se} & \theta = \frac{1}{2} \colon & (x^*,y^*) = \lambda \left(\frac{19}{3},\frac{23}{6}\right) + (1-\lambda)(2,6), \; \lambda \in [0,1], \quad F^* = 7; \\ & \text{Se} & \theta > \frac{1}{2} \colon & (x^*,y^*) = \left(\frac{19}{3},\frac{23}{6}\right), \quad F^* = \frac{19}{3}\theta + \frac{23}{6}. \end{array}$$

$$\begin{array}{ll} \text{(d) Se} & \theta < \frac{1}{2} \colon & (x^*,y^*) = (2,6), \quad F^* = 2\theta + 6; \\ & \text{Se} & \theta = \frac{1}{2} \colon & (x^*,y^*) = (2,6) \text{ ou } (4,5) \text{ ou } (6,4), \quad F^* = 7; \\ & \text{Se} & \theta > \frac{1}{2} \colon & (x^*,y^*) = (6,4), \quad F^* = 6\theta + 4. \end{array}$$

3. (a)
$$(x^*, y^*) = (2, 3), F^* = 8.$$

(b) Se
$$\theta \le 5$$
: $(x^*, y^*) = (2, 3)$, $F^* = 8$;
Se $\theta > 5$: Não existe solução.

4. (a)
$$(x^*, y^*) = (6, 5), F^* = 11.$$

(b)
$$(x^*, y^*, F_1^*) = (6, 5, 3).$$

5. (a) Minimização. Se fosse de maximização, admitiria solução ótima única (exercício 4).

(b)
$$(x^*, y^*) = \lambda(6, 2) + (1 - \lambda)(3, 5), \ \lambda \in [0, 1], \quad F^* = 8.$$

(c) $(x^*, y^*) = (4, 4)$, $F^* = 8$. Não é uma solução básica porque apresenta apenas uma variável não básica $(x^*, y^*, F_1^*, F_2^*, F_3^*) = (4, 4, 0, 2, 1)$.

6. (a)
$$(x^*, y^*) = \left(\frac{15}{2}, 5\right); \quad F^* = \frac{45}{2}$$
 (por exemplo).

(b)
$$(x^*, y^*) = \lambda(3, 5) + (1 - \lambda)(12, 2), \lambda \in [0, 1]; \quad F^* = 18.$$

(c) Max
$$G = 2x + y$$
; $G^* = 26$.

(d) Min
$$H = -4x - 6y$$
.

7. (a)
$$(x^*, y^*) = \left(\frac{11}{2}, \frac{5}{2}\right), \quad F^* = \frac{27}{2}.$$

(b)
$$(x^*, y^*, F_2^*, F_3^*) = \left(\frac{11}{2}, \frac{5}{2}, 3, 6\right).$$

8. (a)
$$(x^*, y^*) = (6, 3), F^* = 27.$$

(b) Na forma standard, o problema tem 3 restrições e 5 variáveis. A solução ótima é o vértice de intersecção da 2^a e 3^a restrições, logo F_2^* e F_3^* são nulas (variáveis não básicas), o que implica que F_1^* é básica, assim como x^* e y^* .

(c) Se
$$\theta < \frac{5}{3}$$
: $(x^*, y^*) = (0, 5)$, $F^* = 25$;

Se
$$\theta = \frac{5}{3}$$
: $(x^*, y^*) = \lambda(0, 5) + (1 - \lambda)(6, 3), \lambda \in [0, 1], F^* = 25$;

Se
$$\frac{5}{3} < \theta < \frac{5}{2}$$
: $(x^*, y^*) = (6, 3)$, $F^* = 6\theta + 15$;

Se
$$\theta = \frac{5}{2}$$
: $(x^*, y^*) = \lambda(6, 3) + (1 - \lambda)(8, 2), \ \lambda \in [0, 1], \quad F^* = 30;$

Se
$$\frac{5}{2} < \theta < 5$$
: $(x^*, y^*) = (8, 2)$, $F^* = 8\theta + 10$;

Se
$$\theta = 5$$
: $(x^*, y^*) = \lambda(10, 0) + (1 - \lambda)(8, 2), \lambda \in [0, 1], F^* = 50$;

Se
$$\theta > 5$$
: $(x^*, y^*) = (10, 0), F^* = 10 \theta.$

(d) Se
$$\theta < \frac{5}{3}$$
: $(x^*, y^*) = (0, 5)$, $F^* = 25$;

Se
$$\theta = \frac{5}{3}$$
: $(x^*, y^*) = (6, 3)$ ou $(3, 4)$ ou $(0, 5)$, $F^* = 25$;

Se
$$\frac{5}{3} < \theta < \frac{5}{2}$$
: $(x^*, y^*) = (6, 3)$, $F^* = 6\theta + 15$;

Se
$$\theta = \frac{5}{2}$$
: $(x^*, y^*) = (6, 3)$ ou $(8, 2)$, $F^* = 30$;

Se
$$\frac{5}{2} < \theta < 5$$
: $(x^*, y^*) = (8, 2)$, $F^* = 8\theta + 10$;

Se
$$\theta = 5$$
: $(x^*, y^*) = (10, 0)$ ou $(9, 1)$ ou $(8, 2)$, $F^* = 50$;

Se
$$\theta > 5$$
: $(x^*, y^*) = (10, 0), F^* = 10 \theta.$

9. (a) i.
$$(x^*, y^*) = \left(\frac{19}{5}, \frac{14}{5}\right), \quad F^* = \frac{179}{5}.$$

ii.
$$(x^*, y^*) = \left(4, \frac{5}{2}\right)$$
 ou $\left(3, \frac{10}{3}\right)$, $F^* = 35$.

iii.
$$(x^*, y^*) = \left(\frac{7}{2}, 3\right), \quad F^* = \frac{71}{2}.$$

iv.
$$(x^*, y^*) = (2, 4), F^* = 34.$$

- (b) O problema de maximização com variáveis inteiras apresenta o menor valor ótimo. Ao relaxar as condições de integralidade das variáveis aumentamos o valor ótimo da função objectivo. A relaxação linear corresponde à melhor solução $(F^* = \frac{179}{5})$.
- 10. I) Falsa (ver exercício 9 a)).
 - II) Verdadeira (se o conjunto de soluções inteiras admissíveis for não vazio).
 - III) Verdadeira.
 - IV) Falsa. Seja A o problema

$$\begin{array}{ll} Max & x+y \\ s.a. & 2x+4y \leq 20 \\ & 6x+3y \leq 30 \end{array}, \quad (x^*,y^*) = \left(\frac{10}{3},\frac{10}{3}\right) \ , \quad F^* = \left(\frac{20}{3}\right) \\ & x,y \geq 0 \end{array}$$

e B o problema

$$\begin{array}{ll} Max & x+y \\ s.a. & 2x+4y \leq 20 \\ & 6x+3y \leq 30 \\ & x,y \geq 0, \text{ e inteirss} \end{array}, \quad (x^*,y^*) = (3,3) \text{ ou } (4,2) \ , \quad F^* = 6.$$

V) Falsa. Seja A o problema

$$\begin{array}{ll} Max & 2x+y \\ s.a. & 2x+4y \leq 15 \\ & 6x+3y \leq 30 \end{array}, \quad (x^*,y^*) = \lambda \left(\frac{25}{6},\frac{5}{3}\right) + (1-\lambda)(5,0), \lambda \in [0,1] \ , \quad F^* = 10 \\ & x,y \geq 0 \end{array}$$

O correspondente problema B tem como solução $(x^*, y^*) = (5, 0)$, e valor ótimo $F^* = 10$.

- VI) Falsa (ver exemplo IV).
- VII) Falsa (ver exemplo V).
- VIII) Verdadeira.
 - IX) Verdadeira (se o conjunto de soluções inteiras admissíveis for não vazio).
 - X) Verdadeira.
 - XI) Verdadeira.
- XII) Falso.

11.

$$\alpha, \beta \in \mathbb{R}^+, \ \gamma, \delta \in \mathbb{R}, \ \mu, \theta \in \mathbb{R}_0^+$$

$$12. \ (x^*,y^*,z^*) = \lambda\left(\frac{5}{2},0,\frac{1}{2}\right) + (1-\lambda)(0,5,3), \ \lambda \in [0,1], \quad F^* = 16.$$

13.
$$(x^*, y^*, z^*) = (30000, 0, 15000), F^* = 165000.$$

14.
$$(x^*, y^*, z^*) = (50, 0, 40), F^* = 350.$$

15.
$$(x^*, y^*, z^*, w^*) = \left(0, \frac{3}{7}, 0, \frac{1}{7}\right), \quad F^* = \frac{50}{7}.$$

16.
$$(x^*, y^*) = \lambda(0, 5) + (1 - \lambda)\left(\frac{20}{3}, \frac{10}{3}\right), \ \lambda \in [0, 1], \quad F^* = 40.$$

17.
$$(x^*, y^*, z^*) = (0, 50, 50), \quad F^* = 350.$$

18.
$$(x^*, y^*) = (6, 3), F^* = 27.$$

19. (a)
$$(x^*, y^*) = (3, 2), F^* = 4.$$

(b)
$$(x^*, y^*, F_2^*)$$
.

20. (a)
$$(x^*, y^*) = (6, 5), F^* = 11.$$

(b)
$$(x, y, F_3) = (6, 2, 3)$$
 ou $(x, y, F_2) = (3, 5, 3)$, com $F = 8$.

21. (a)
$$(x^*, y^*) = (3, 2), F^* = 11.$$

(b)
$$(x, y, F_3) = (1, 2, 2)$$
 com $F = 5$ ou $(x, y, F_2) = (1, 4, 2)$ com $F = 7$.

22.
$$(x, y, z) \in \left\{ (0, 0, 0), (0, 0, 4), (0, 6, 0), (3, 0, 0), \left(\frac{54}{13}, 0, \frac{25}{13}\right) \right\}.$$

23.

$$Max \qquad \begin{bmatrix} 1 & 3 & -1 \end{bmatrix} \quad \begin{bmatrix} A \\ D \\ F \end{bmatrix} + \begin{bmatrix} \frac{25}{3} & 22 & -\frac{8}{3} \end{bmatrix} \begin{bmatrix} B \\ C \\ E \end{bmatrix}$$

$$s.a. \qquad \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} A \\ D \\ F \end{bmatrix} + \begin{bmatrix} -1 & 3 & 2 \\ 0 & -2 & 2 \\ -3 & 1 & 0 \end{bmatrix} \begin{bmatrix} B \\ C \\ E \end{bmatrix} = \begin{bmatrix} 10 \\ 6 \\ 4 \end{bmatrix}$$

$$A, B, C, D, E, F \geq 0.$$

24. (a)
$$(x^*, y^*) = \left(\frac{19}{3}, \frac{23}{6}\right), \quad F^* = \frac{61}{6}.$$

(b)
$$(x^*, y^*, F_1^*)$$
.

(a)

25. (a)
$$(x^*, y^*) = \left(\frac{8}{3}, \frac{1}{3}\right), \quad F^* = -2.$$

(b)
$$(x^*, y^*, F_3^*)$$
.

(c) Seia
$$G = -F$$

$\operatorname{dej} a G = -I$								
	x	y	F_1	F_2	F_3	T.I.		
x	1	0	4/3	1/3	0	8/3		
y	0	1	-1/3	-1/3	0	1/3		
F_1	0	0	5/3	2/3	1	7/3		
\overline{G}	0	0	2	1	0	2		

(b) Não é admissível nem é ótima.

27. (a)
$$(x^*, y^*, F_2^*, F_3^*) = (5, 5, 3, 5), F^* = 15.$$

(b) $\Delta \geq -1$, com Δ a variação relativamente ao coeficiente da variável x no problema original.

(c)
$$(x^*, y^*) = \lambda(5, 5) + (1 - \lambda)\left(\frac{7}{2}, \frac{13}{2}\right), \ \lambda \in [0, 1], \quad F^* = 10.$$

(d) Se $0 < \theta \le 5$ não há alteração na solução ótima (com θ o aumento do termo independente da 3^a restrição, relativamente ao problema original). Se $\theta > 5$, a solução ótima altera-se.

(e) Não. Solução ótima
$$(x^*,y^*,z^*)=\left(\frac{19}{5},\frac{31}{5},\frac{3}{5}\right);$$
 valor ótimo $F^*=\frac{84}{5}.$

- (f) Sim. Não altera a solução ótima, porque a solução ótima verifica a nova restrição.
- (g) Sim, porque a solução ótima da alínea a) não é admissível.
- 28. (ver exercício 7).
- 29. (ver exercício 17).

30. (a)
$$(x^*, y^*, z^*, w^*) = \left(0, \frac{3}{7}, 0, \frac{1}{7}\right), \quad F^* = \frac{50}{7}.$$

(b) $5 \le \theta \le 19$, com θ o coeficiente de y na função objectivo.

31. (a)
$$r = \begin{bmatrix} 13 & \frac{4}{17} & \frac{110}{17} \end{bmatrix}$$

(c) Não porque
$$r_w = -\frac{29}{17}$$
. $(x^*, y^*, z^*, w^*) = \left(0, 0, \frac{85}{4}, \frac{425}{4}\right)$, $F^* = \frac{2125}{4}$.

32. (a)
$$(x^*, y^*) = \left(\frac{19}{5}, \frac{14}{5}\right), F^* = \frac{179}{5}.$$

(b) (x^*, y^*) .

(c)
$$(x^*, y^*) = \left(3, \frac{10}{3}\right)$$
 ou $\left(4, \frac{5}{2}\right)$, $F^* = 35$.

(d)
$$(x^*, y^*) = \left(\frac{7}{2}, 3\right), F^* = \left(\frac{71}{2}\right).$$

(e)
$$(x^*, y^*) = (2, 4), F^* = 34.$$

(f) Dado que a solução ótima de a) não é inteira, o valor da função objectivo diminui quando se exige integralidade de variáveis.

Problemas de Transportes e Afetação

- 1. $(X_{AF_1}, X_{AF_2}, X_{AF_3}, X_{BF_1}, X_{BF_2}, X_{BF_3}, X_{CF_1}, X_{CF_2}, X_{CF_3}) = (0, 50, 0, 200, 0, 50, 0, 0, 100);$ $C_{TOT} = 800 \ u.m..$
- 2. $(X_{AF_1}, X_{AF_2}, X_{AF_3}, X_{BF_1}, X_{BF_2}, X_{BF_3}, X_{CF_1}, X_{CF_2}, X_{CF_3}) = (100, 0, 0, 0, 100 \theta, 50 + \theta, 0, \theta, 50 \theta),$ com $\theta \in [0, 50], C_{TOT} = 1550 u.m.$
- 3. Se $0 < \theta < 5$: $(X_{F_1A}, X_{F_1B}, X_{F_2A}, X_{F_2B}, X_{F_3A}, X_{F_3B}) = (65, 0, 35, 65, 0, 85)$; $C_{TOT} = 495 + 35\theta u.m.$

Se
$$\theta = 5$$
: $(X_{F_1A}, X_{F_1B}, X_{F_2A}, X_{F_2B}, X_{F_3A}, X_{F_3B}) = (65, 0, \Delta, 100 - \Delta, 35 - \Delta, 50 + \Delta)$, com $\Delta \in [0, 35]$; $C_{TOT} = 670 \ u.m.$.

Se
$$\theta > 5$$
: $(X_{F_1A}, X_{F_1B}, X_{F_2A}, X_{F_2B}, X_{F_3A}, X_{F_3B}) = (65, 0, 0, 100, 35, 50)$; $C_{TOT} = 670 \text{ u.m.}$.

- 4. $(X_{AF_1}, X_{AF_2}, X_{AF_3}, X_{BF_1}, X_{BF_2}, X_{BF_3}, X_{CF_1}, X_{CF_2}, X_{CF_3}) = (\theta, 100 \theta, 200, 200 \theta, \theta, 0, 0, 100, 0),$ com $\theta \in [0, 100]; C_{TOT} = 7800 \ u.m..$
- 5. $(X_{AX}, X_{AY}, X_{AZ}, X_{BX}, X_{BY}, X_{BZ}, X_{CX}, X_{CY}, X_{CZ}) = (100, 150, 50, 200, 0, 0, 0, 0, 100);$ $C_{TOT} = 1650 \text{ } u.m..$
- 6. $(X_{AX}, X_{AY}, X_{AZ}, X_{BX}, X_{BY}, X_{BZ}, X_{CX}, X_{CY}, X_{CZ}) = (10, 0, 0, 0, 20 \theta, \theta, 0, 30 + \theta, 10 \theta) \text{ com } \theta \in [0, 10]; C_{TOT} = 160 \text{ u.m.}.$
- 7. $(X_{AX}, X_{AY}, X_{AZ}, X_{AW}, X_{BX}, X_{BY}, X_{BZ}, X_{BW}, X_{CX}, X_{CY}, X_{CZ}, X_{CW}, X_{DX}, X_{DY}, X_{DZ}, X_{DW}) = (0, 0, 0, 30, 0, 50, 20, 10, 0, 0, 20, 0, 20, 10, 0, 0); C_{TOT} = 410 u.m..$
- 8. A solução não é ótima porque existem variáveis não básicas que apresentam custos unitários negativos $(c'_{BX} = -7, c'_{BY} = -2, c'_{CX} = -4)$. A solução ótima é $(X_{AX}, X_{AY}, X_{AZ}, X_{AW}, X_{BX}, X_{BY}, X_{BZ}, X_{BW}, X_{CX}, X_{CY}, X_{CZ}, X_{CW}) = (0,70,0,0,20,15,\theta,15-\theta,0,0,35-\theta,15+\theta)$, com $\theta \in [0,15]$; $C_{TOT} = 490 \ u.m.$.
- 9. (a) Solução ótima do Produto A: $(X_{F_1G_1}, X_{F_1G_2}, X_{F_1G_{Fict.}}, X_{F_2G_1}, X_{F_2G_2}, X_{F_2G_{Fict.}}) = (\theta, 30 \theta, 70, 50 \theta, 150 + \theta, 0) \text{ com } \theta \in [0, 30]; C_{ProdutoA} = 1210 \ u.m..$

Solução ótima do Produto B: $(X_{F_1G_1}, X_{F_1G_2}, X_{F_2G_1}, X_{F_2G_2}) = (100, 50, 0, 50); C_{ProdutoB} = 400 u.m.$. O custo total de transporte é de 1610 u.m..

- (b) Sim. E a solução ótima apresentada, considerando $\theta = 15$.
- 10. (a) António → Livre; Carlos → Costas; Daniel → Mariposa; Eduardo → Bruços; (Bernardo → Estilo Fictício) ou alternativamente,
 António → Bruços; Carlos → Costas; Daniel → Mariposa; Eduardo → Livre; (Bernardo → Estilo Fictício)
 Tempo Total = 246 segundos.
 - (b) Sim. Algoritmo Húngaro.

- 11. (a) 1 \rightarrow A; 2 \rightarrow D; 3 \rightarrow B; 5 \rightarrow C; (4 \rightarrow Função Fictícia); Resultado total: 315.
 - (b) Sim. Algoritmo Húngaro.
- 12. $(X_{AS_1}, X_{AS_2}, X_{AS_3}, X_{AS_4}, X_{BS_1}, X_{BS_2}, X_{BS_3}, X_{BS_4}, X_{Fict.S_1}, X_{Fict.S_2}, X_{Fict.S_3}, X_{Fict.S_4}) = (0, 100, 50, 0, 150, 0, 0, 100, 0, 0, 30, 0); C_{TOT} = 27700 u.m..$
- 13. $(X_{AX}, X_{AY}, X_{AZ}, X_{BX}, X_{BY}, X_{BZ}, X_{Fict.X}, X_{Fict.Y}, X_{Fict.Z}) = (0, 100, 100, 200, 100, 0, 0, 100, 0);$ Lucro Total = 28400 u.m.
- 14. (a) Lisboa \rightarrow A e E; Porto \rightarrow D; Coimbra \rightarrow B; Cidade Fictícia \rightarrow C; Lucro total: 68 u.m..
 - (b) Sim. Algoritmo Húngaro.
- 15. $(X_{AP_1}, X_{AP_2}, X_{AP_3}, X_{AP_4}, X_{BP_1}, X_{BP_2}, X_{BP_3}, X_{BP_4}, X_{CP_1}, X_{CP_2}, X_{CP_3}, X_{CP_4}, X_{DP_1}, X_{DP_2}, X_{DP_3}, X_{DP_4}) = (20, 0, 180, 0, 0, 240, 160, 0, 50, 0, 0, 100, 250, 0, 0, 0);$ Lucro Total = 44180 u.m..
- 16. (a) 1 \rightarrow D; 2 \rightarrow C; 3 \rightarrow F; 4 \rightarrow A; (Vaga Fictícia \rightarrow B; Candidato E excluído das vagas); Aptidão total: 307.
 - (b) Sim. Algoritmo Húngaro.

Algoritmo Branch and Bound

1.
$$(x^*, y^*) = (1, 2), F^* = 8.$$

2.
$$(x^*, y^*, z^*) = (50, 62, 12), F^* = 286.$$

3.
$$(x^*, y^*, z^*, v^*) = (2, 2, 1, 0), F^* = 22.$$

4.
$$(x^*, y^*, z^*, u^*, v^*) = (0, 0, 1, 1, 1), F^* = 6.$$

- 5. (a) O limite superior para o valor ótimo de F é 225 porque, os coeficientes da função objectivo são inteiros, as variáveis são inteiras e $F^* < 225, 13$.
 - (b) O subproblema 6 porque é, de entre os problemas ainda não pesquisados, o que apresenta melhor valor de função objectivo.

As restrições da ramificação seriam na variável y, por ser a primeira variável que não satisfaz a condição de integralidade. PL61 $\rightarrow y \leq 39$; PL62 $\rightarrow y \geq 40$.

- (c) O subproblema PL31, correspondente à ramificação do subproblema 3, por introdução da restrição $y \leq 37$ tem a solução ótima $(x^*,y^*,z^*) = \left(\frac{46}{3},37,0\right)$ com valor ótimo $F^* = \frac{674}{3}$, pelo que esta solução ainda não é a solução ótima do problema PLI.
- 6. (a) $(x^*, y^*, z^*, w^*) = (23, 0, 0, 17);$ $F^* = 137.$
 - (b) É a solução ótima do PLI, porque a relaxação linear tem valor ótimo 137.5 e dado que os coeficientes da função objectivo são inteiros, o valor ótimo do PLI é menor ou igual a 137.

(c)
$$\begin{aligned} Max & 3x + 2y + z + 4w \\ s.a. & x + y + z + w \leq 40 \\ 2x + y - z - 2w \geq 10 \\ x - y + 2w \geq 10 \\ x \leq 22 \\ x, y, z, w \geq 0 \end{aligned}$$

Não é necessário resolver este subproblema porque o PLI tem solução ótima única.

Teoria da Decisão

- 1. (a) Decisão A.
 - (b) Decisão A.
 - (c) Decisão A, quer seja em situação de incerteza ou em situação de risco.
- 2. (a) Se $0 \le \alpha < \frac{2}{3}$ recomenda-se a decisão D_3 . Se $\alpha = \frac{2}{3}$ é indiferente a decisão D_1 ou D_3 .

Se $\frac{2}{3} < \alpha \le 1$ recomenda-se a decisão D_1 .

(b)

Custo oportunidade	θ_1	θ_2	θ_3
D_1	1	0	2
D_2	0	4	0
D_3	1	1	0
D_4	2	2	1

(c) Se $0 \le \alpha < 1$ recomenda-se a decisão D_3 .

Se $\alpha = 1$, são indiferentes as decisões D_1 , D_2 ou D_3 .

(a) Um agente de decisão pessimista opta por investir o capital.

Um agente de decisão optimista opta por comprar a nova empresa.

- (b) Se o agente de decisão for francamente pessimista opta por investir o capital. Caso contrário, opta por comprar a nova empresa.
- (c) i) Investir o capital.
 - ii) Comprar a nova empresa.
- (a) Basta ser moderadamente pessimista para escolher a decisão A, porque, para um grau de optimismo abaixo de 0.55 já se deve escolher A.

É preciso ser claramente pessimista para escolher a decisão B ($\alpha < 0.2$).

Basta ser moderadamente optimista para escolher a decisão C, porque, para um grau de optimismo acima de 0.55 já se deve escolher C.

(b) Se $0 \le P(\theta_3) < 0.025$ recomenda-se a decisão B.

Se $P(\theta_3) = 0.025$ são indiferentes as decisões B ou C.

Se $0.025 < P(\theta_3) < 0.3$ recomenda-se a decisão C.

Se $P(\theta_3) = 0.3$ é indiferente optar por C ou A.

Se $0.3 < P(\theta_3) \le 0.5$ recomenda-se a decisão A.

(c) c1) Para valores de lucro inferiores a 7 u.m. a satisfação é quase nula.

O valor de lucro de 9 u.m. é o que este agente de decisão desejaria obter.

A partir de 9 u.m. de lucro, um mesmo incremento produz um aumento mínimo de satisfação do decisor e mais do que 16 u.m. já não lhe trazem vantagem nenhuma.

- c2) Só um agente extremamente optimista optaria pela decisão C. Caso contrário, optaria pela decisão B.
- (a) Decisão A, porque apresenta o menor valor esperado do custo.
 - (b) Este agente de decisão tolera bem custos até 20 u.m., mas é totalmente intolerante a dispender nem que seja mais uma unidade monetária acima disso. No entanto, dispender 21 u.m. ou 41 u.m. é-lhe quase indiferente!

- (c) Decisão A, porque apresenta maior valor esperado de utilidade. De facto, esta decisão é a única que não entra na zona de custo que o agente mais receia, qualquer que seja o estado da natureza que ocorra.
- 6. (a) Decisão B, pois só um agente de decisão com grau de optimismo $\alpha < 0.1944$ deveria optar pela decisão C.
 - (b) Se optasse por C, seria um agente de decisão francamente pessimista. Nenhum agente de decisão deveria optar pela decisão A.

$7. \quad (a)$

Figura 1: Árvore de decisão do exercício 7 a).

- (b) Se $0 < \alpha < 0.3425$ recomenda-se a renovação imediata da frota. Se $\alpha = 0.3425$ é indiferente renovar já a frota ou deixar a renovação para mais tarde. Se $\alpha > 0.3425$ recomenda-se que a renovação não seja efectuada de imediato.
- (c) Não renovar a frota agora.
- (d) Não renovar a frota agora.
- 8. (a) O "comboio rápido" para Alcântara.
 - (b) O "comboio que pára em todas as estações" porque garante a chegada à FCT às 8:55, independentemente do atraso que o comboio possa sofrer.

- 9. E(satisfação de apoiar o referendo) = 0 u.s.; E(satisfação de não apoiar o referendo) = 42 u.s..
- 10. Não trocar já o apartamento.
- 11. (a) Não comprar já o veículo.
 - (b) A decisão proposta em a) manter-se-ia para qualquer valor de θ (admitindo que a satisfação θ é um valor não negativo).
- 12. (a) Falsa, porque o jogador totalmente pessimista escolhe o jogo B, e o grau de indiferença entre as decisões A e B é inferior a 0.35.
 - (b) Jogo B.
 - (c) Jogo A.

Filas de Espera

- 1. 0.7788
 - 0.44
 - 0.018
- 2. O processo de chegadas de chamadas telefónicas à CT é um Processo de Poisson, com taxa igual a 2737 chegadas por hora;
 - o número de chamadas telefónicas a cada 10 segundos segue uma distribuição Poisson de taxa igual a 7.603 chamadas;
 - o número de chamadas telefónicas a cada 15 segundos segue uma distribuição Poisson de taxa igual a 11.404 chamadas;
 - a probabilidade de chegarem mais do que 10 chamadas telefónicas à CT em cada intervalo de Δ segundos é:
 - Se $\Delta = 10$: 0.1467
 - Se $\Delta = 15$: 0.5874
 - Se $\Delta = 20$: 0.8912
 - Se $\Delta = 25$: 0.9817
 - Se $\Delta = 30$: 0.9978

3.

4.

- 5. (a) 25.1%.
 - (b) 10.1%.
 - (c) 1.98 automóveis.
 - (d) 8.19 minutos.
 - (e) 4.04 euros por hora.
- 6. (a) 41.5%.
 - (b) 1.04%.
 - (c) 0.966 automóveis.
 - (d) 0.857 minutos.
 - (e) 0.42 euros por hora.
- 7. Seria recomendável a contratação de um terceiro técnico de manutenção, pois permite reduzir os custos totais. Para minimizar o custo global, a fábrica deveria ter cinco técnicos de manutenção.
- 8. (a) $P_0=0.166(6)$; L=5 clientes; W=2 minutos.
 - (b) c = 0.3.
 - (c) $P_0=0.3224$; L=1.5388 clientes; W=0.6155 minutos.
- 9. (a) $P_0=0.166(6)$; L=5 clientes; W=2 minutos.
 - (b) b = 0.6198.
 - (c) $P_0=0.3889$; L=1.0612 clientes; W=0.5788 minutos.
- 10. (a) $P_0=0.166(6)$; L=5 clientes; W=2 minutos.

(b) $P_0=0.4801$; L=0.6562 clientes; W=0.3282 minutos.

11.

	ρ	P_0	L	L_q	W	W_q
M/D/1	0.667	0.333	1.333	0.667	0.667	0.333
M/M/1	0.667	0.333	2.000	1.333	1.000	0.667
$M/E_2/1$	0.667	0.333	1.667	1.000	0.833	0.500

12.

Sendo Classe 1, os pacientes em estado crítico, classe 2 os pacientes em estado grave e Classe 3 os pacientes em estado estável, obtém-se:

	Prioridades "não Absolutas"		Prioridai	DES "ABSOLUTAS"
N^{o} de servidores	s = 1	s=2	s=1	s=2
Tempos médios a aguardar				
o início do atendimento (h)				
$\overline{W_{q_1}}$	0.2381	0.0287	0.0238	0.0004
W_{q_2}	0.3247	0.0332	0.1537	0.0079
W_{q_3}	0.9091	0.0481	1.0303	0.0654
Tempos médios de				
permanência no sistema (h)				
$\overline{W_1}$	0.5714	0.3621	0.3571	0.3337
W_2	0.6580	0.3665	0.4870	0.3413
W_3	1.2424	0.3814	1.3636	0.3988
Nº médio de pacientes				
na fila de espera				
L_{q_1}	0.0476	0.0057	0.0048	0.0001
L_{q_2}	0.1948	0.0199	0.0922	0.0048
$L_{q_3}^-$	1.0909	0.0577	1.2364	0.0785
Nº médio de pacientes				
no sistema				
$\overline{}$ L_1	0.1143	0.0724	0.0714	0.0667
L_2	0.3948	0.2199	0.2922	0.2048
L_3	1.4909	0.4577	1.6364	0.4785

13.

	CA	IXA	CA	FÉS	Во	LOS
	M/M/1	M/M/2	M/M/2	M/M/3	M/M/1	M/M/2
$\overline{\rho}$	0.7500	0.3750	0.7500	0.5000	0.8333	0.4167
L	3.0000	0.8727	3.4286	1.7368	5.0000	1.0084
L_q	2.2500	0.1227	1.9286	0.2368	4.1667	0.1751
W	0.3000	0.0873	0.3429	0.1737	0.5000	0.1008
W_q	0.2250	0.0123	0.1929	0.0237	0.4167	0.0175
P_0	0.2500	0.4545	0.1429	0.2105	0.1667	0.4118

	Sem Polivalência		Com Polivalência			
	s=4 $s=5$		M/M/4	M/M/5		
\overline{L}	11.4286	7.4370	6.6219	3.9867		
W	1.1429	0.7437	0.6622	0.3987		
P_0	0.60%	1.47%	2.13%	3.18%		

- 14. O gerente deveria afetar 4 funcionários aos cafés, 1 funcionário aos bolos e 3 funcionários aos jornais. Para esta proposta, $L_{Tot}=15.0473,\,W_{Tot}=0.6019$ e $P_0=0.04\%$.
- 15. (a) 6.25 minutos.
 - (b) 10.05556 minutos.

- (c) Com "Cartão Mega VIP" terá de esperar 5.3571 minutos. Sem "Cartão Mega VIP" terá de esperar 14.2857 minutos.
- 16. (a) As taxas de entrada directamente do exterior para os sectores A, B e C são respectivamente 4.99995, 8.24431 e 16.27827 clientes por hora.
 - (b) A melhor distribuição será 2 funcionários no sector A, 1 funcionário no sector B e 2 funcionários no sector C, com um tempo médio de permanência no sistema de 0.448352 horas.
 - (c) 0.028187
- 17. (a) Sector A: 39.158; Sector B: 70.838; Sector C: 73.473; Sector D: 41.598; Sector E: 29.985.
 - (b) 23.9716 minutos.
 - (c) A introdução de mais 1 servidor no sector B e de mais um servidor no sector C praticamente reduz a metade o tempo médio de permanência no sistema (W = 12.26032 minutos).
- 18. (a) Processos Poissonianos de chegadas aos 4 sectores, com taxas médias iguais a 3.178945, 1.23263, 1.789472, 4.178946 clientes/minuto, respectivamente para os sectores 1 a 4.
 - (b) P_0 sistema = 0.009331.
 - (c) Ltot = 8.474819 clientes; Wtot = 1.210688 minutos.

Simulação

Quando nada em contrário for referido, assume-se que u_i é um NPA U[0;1].

1. (a) Gerar ux = a + (b - a)u.

Figura 2: Fluxograma do exercício 1 a).

(b) $x = u_1 + u_2$.

Uma resolução alternativa mais trabalhosa, seria usando o método de inversão, cujos passos se apresentam seguidamente.

Gerar uSe $u \leq \frac{1}{2}$ então $x = \sqrt{2u}$. Caso contrário, $x = 2 - \sqrt{2 - 2u}$.

Uma terceira alternativa, seria usar o método de rejeição, embora seja a resolução menos eficiente.

Figura 3: Fluxograma do exercício 1 b), usando o método de inversão.

- (c) $S_{12} = 0$ Repetir i = 1, ..., 12
 - Gerar u
 - $S_{12} = S_{12} + u$

$$x = \mu + (S_{12} - 6) \sigma.$$

Alternativamente, poderia utilizar o Método da Rejeição, truncando a distribuição no intervalo $[\mu - 3\sigma; \mu + 3\sigma]$. O Método da Inversão não pode ser utilizado. Porquê? No entanto, no Excel, podemos lembrar-nos do Método da Inversão e fazer = INV.NORMAL(ALEATÓRIO(); ;,).

(d)
$$x = -\frac{1}{\lambda} \ln(u)$$
.

Figura 4: Fluxograma do exercício 1 c).

(e) Utilizando o método da rejeição

x = Random

$$Pa = -4x^2 + 4x$$

Gerar u

Se Pa $\geq u$, aceitar x. Caso contrário, voltar ao passo inicial.

(f) Utilizando o método da rejeição

x = Random

$$Pa = x^2 - 2x + 1$$

Gerar u

Se Pa $\geq u$, aceitar x. Caso contrário, voltar ao passo inicial.

(g) Caso particular de a).

Alternativamente, mas mais trabalhoso, poderia utilizar-se o método da inversão

Gerar uSe $u<\frac{1}{6}, \quad x=-1+\sqrt{6u};$ Se $u<\frac{5}{6}, \quad x=3u-\frac{1}{2}.$ Caso contrário, $x=3-\sqrt{6(1-u)}.$

(h) $F_X(x)=0.25x^2+0.5x+0.25$, para $x\in[-1;1]$. Pelo método de inversão $x=-1+2\sqrt{u}$.

2. (a) Gerar u

Se
$$u < \frac{1}{6}$$
, $x = 1$;
Se $u < \frac{1}{3}$, $x = 2$;
Se $u < \frac{1}{2}$, $x = 3$;
Se $u < \frac{2}{3}$, $x = 4$;
Se $u < \frac{5}{6}$, $x = 5$. Caso contrário, $x = 6$.

(b) Se tivermos em conta que $X \sim Bin(n=5; p=0.3) \sim Y_1 + Y_2 + \ldots + Y_5$, com Y_i i.i.d. e $Y_i \sim Bernoulli(0,3)$, poderemos fazer

$$k = 0; x = 0$$

Repetir $k = 1, \ldots, 5$

- Gerar u
- Se u < 0.3, então x = x + 1.

Alternativa: Calcular as probabilidades

k	0	1	2	3	4	5
P(X = k)	0.1681	0.3602	0.3087	0.1323	0.0284	0.0023
P(X < k)	0.1681	0.5283	0.8370	0.9693	0.9977	1.0000

Gerar u

Se
$$u < 0.1681, \quad x = 0;$$

Se
$$u < 0.5282, \quad x = 1;$$

Se
$$u < 0.8369$$
, $x = 2$;

Se
$$u < 0.9692$$
, $x = 3$;

Se
$$u < 0.9976$$
, $x = 4$. Caso contrário, $x = 5$.

- (c) Para um dado valor de **m** só temos de calcular as probabilidades e utilizar o Método da Inversão, aplicado a uma variável discreta. Cuidado, porque a v.a. Poisson(m) toma os valores $0, 1, 2, 3, \ldots$ Como m é o valor médio e a variância desta v.a., recomendamos que determine probabilidades para o domínio $m \pm 3\sqrt{m}$ (naturalmente, considerando apenas valores pertencentes a \mathbb{N}_0 .
 - A v.a. Poisson $(m = \lambda \Delta T)$ pode ser utilizada para descrever o número de ocorrências num Processo Poissoniano com taxa média de chegadas igual a λ num intervalo de tempo ΔT .

Ora, como num Processo Poissoniano com taxa média de chegadas igual a λ os intervalos de tempo entre chegadas consecutivas são descritos pela v.a. Exponencial(λ), poderemos adotar o seguinte procedimento para gerar valores da v.a. Poisson(m):

i.
$$T = 0$$
; $x = 0$

ii. Gerar
$$u$$

iii.
$$DT = -\frac{1}{m} \ln(u)$$

iv.
$$T = T + DT$$

- v. Se T > 1, terminar. Caso contrário, x = x + 1. Voltar ao passo i.
- (d) Gerar u

Se
$$u < \frac{1}{3}$$
, $x = \text{Azul}$;

Se
$$u < \frac{1}{2}$$
, $x = \text{Verde}$;

Se $u < \frac{2}{3}$, x =Amarelo. Caso contrário, x =Branco.

- (a) $F_X(x) = -0.25x^2 + 0.5x + 0.75$ para $x \in [-1, 1]$. Pelo método de inversão $x = 1 2\sqrt{u}$.
 - (b) Método da rejeição

Gerar
$$u$$

$$x = -1 + u$$

$$x = -1 + u$$

$$Pa = \frac{2}{5} + \frac{3}{5}x^2$$

Gerar u

Se Pa > u, aceitar x. Caso contrário, voltar ao passo inicial.

- (c) $F_X(x) = -0.5\cos(x) + 0.5$ para $x \in [0, \pi]$. Pelo método da inversão $x = \arccos(1 2u)$.
- (d) $F_X(x) = -x^2 + 1$ para $x \in [-1; 0]$. Método da inversão $x = -\sqrt{1 u}$.
- (e) $F_X(x) = \ln(x)$ para $x \in [1; e]$. Método de inversão $x = e^u$.
- (f) x = Random

$$Pa = \frac{1}{2}x^3 + \frac{1}{2}x^2$$

Gerar ι

Se Pa $\geq u$, aceitar x. Caso contrário, voltar ao passo inicial.

4. $X \sim Lognormal(m, \sigma)$ $x = m.e^{(\sigma.z)}$, com $z = u_1 + u_2 + ... + u_{12} - 6$, o que se resume aos seguintes passos:

$$S_{12} = 0$$

Repetir $i = 1, \dots, 12$

- Gerar u
- $S_{12} = S_{12} + u$

 $x = m e^{\sigma(S_{12} - 6)}.$

- 5. $X \sim Gama(n = 5, \lambda = 0, 5)$ $x = -\frac{\ln(u_1)}{0.5} \frac{\ln(u_2)}{0.5} \frac{\ln(u_3)}{0.5} \frac{\ln(u_4)}{0.5} \frac{\ln(u_5)}{0.5}$
 - (a) x = 0

Repetir $i = 1, \dots, 5$

- Gerar u
- $x = x 2 \ln(u)$.
- (b) Considerem-se 24 classes (CL) de valores do máximo, com amplitude 3 cada uma. A Figura 5 esquematiza o fluxograma pedido.
- 6. (a) $Z \sim Normal(0; 1)$ $z = u_1 + u_2 + \ldots + u_{12} 6$

$$S_{12} = 0$$

Repetir $i = 1, \dots, 12$

- Gerar u
- $S_{12} = S_{12} + u$

$$Z = (S_{12} - 6).$$

(b) $X \sim \chi_n^2$ $x = z_1^2 + z_2^2 + \ldots + z_n^2$

$$QUI5 = 0$$

Repetir $i = 1, \dots, 5$

- Z = NOR01
- QUI5 = QUI5 $+Z^2$
- (c) Rotina Maximo

$$Max = 0$$

Repetir $i = 1, \ldots, 3$

- Q5= QUI5
- Se Q5 > Max, então Max= Q5.

Figura 5: Fluxograma do exercício 5 b).

Rotina Estatística

w = Max

$$W = \text{Max}$$

 $S_1 = S_1 + w; \quad S_2 = S_2 + w^2; \quad S_3 = S_3 + w^3; \quad S_4 = S_4 + w^4$
Se $w \ge 42$, então, $CL = 15$. Caso contrário, $CL = Trunc\left(\frac{w}{3} + 1\right)$
 $\text{Hist}[CL] = \text{Hist}[CL] + 1$

Programa Principal

Input n (n=1000, por exemplo) Repetir $k = 1, \dots, 15$

• Hist
$$[k] = 0$$

 $S_1 = 0$; $S_2 = 0$; $S_3 = 0$; $S_4 = 0$
Repetir $k = 1, ..., n$

- w=Maximo
- Estatistica

$$Med = \frac{S_1}{n}$$

$$Desv = \sqrt{\frac{n}{n-1} \left(\frac{S_2}{n} - Med^2\right)}$$

$$G_1 = \frac{\frac{S_3}{n} - 3S_1 \frac{S_2}{n^2} + 2\frac{S_1^3}{n^3}}{Desv^3}$$

$$G_2 = \frac{\frac{S_4}{n} - 4S_1 \frac{S_3}{n^2} + 6S_1^2 \frac{S_2}{n^3} - 3\frac{S_1^4}{n^4}}{Desv^4}$$

$$Output Med Description Graph Highlight$$

Output Med, Desv, G_1 , G_2 , Hist[k].

- 7. (a) $X \sim Normal(\mu = 2; \sigma = 3)$ e $Y \sim Exponencial(\lambda = 0.5)$. Gerar x como em 1 c) e gerar y como em 1 d). w = x - y.
 - (b) Determinar a frequência com que w > 0 (número de casos em que a desigualdade seja verdadeira, a dividir pelo número de simulações).
- 8. Idêntico ao exercício 6.
- 9. Rotina Máximo de Intensidade Anual

i. Max =0:
$$T = 0$$

ii. Gerar
$$u$$

iii. DT =
$$-\frac{1}{156}\ln(u)$$

iv.
$$T = T + DT$$

v. Se T> 1, ir para rotina Estatistica e sair.

vi. Caso contrário, $S_{12} = 0$.

vii. Repetir $k = 1, \dots, 12$

- Gerar u

 $-S_{12} = S_{12} + u$

viii. $I = 2(S_{12} - 6) + 10$

ix. Se I > Max, então Max= I e voltar ao Passo ii. Caso contrário, voltar ao Passo ii.

10. Inicializar.

Repetir 1000 vezes:

Gerar u; se u < 0,1, então x = "azul"; caso contrário, se u < 0,3, então x = "branco"; se u < 0,7, então x = "verde"; caso contrário, x = "negro".

Gerar u; se u < 0.5, então y = "azul"; caso contrário, se u < 0.55, então y = "branco"; se u < 0.62, então y = "verde"; caso contrário, y = "castanho".

Se x=y= "azul", então Prémio = 100 u.m.; caso contrário, se x=y= "branco", então Prémio = 500 u.m.; caso contrário, se x=y= "verde", então Prémio = 200 u.m.; caso contrário, Prémio = 0.

Lucro = Prémio - 20 u.m.

Registar o valor do Lucro.

Tratar estatisticamente os 1000 valores de lucro.

Apresentar resultados.

11. Assumir que a rotina DADO afeta à variable D um NPA Unif {1; 2; 3; 4; 5; 6} Inicializar.

Repetir 1000 vezes:

```
N_{lançamentos}=0
5\ N_{lançamentos}=N_{lançamentos}+1
DADO
X1=D
DADO
X2=D
Se\ X1=X2,\ então\ flag_a=1;\ caso\ contrário,\ flag_a=0.
DADO
Y1=D
DADO
Y2=D
Se\ Y1=Y2,\ então\ flag_b=1;\ caso\ contrário,\ flag_b=0.
Se\ flag_a+flag_b\neq 1\ então\ vai\ para\ a\ linha\ 5
```

Tratar estatisticamente os 1000 valores de $N_{lancamentos}$.

Registar o valor de N_{lancamentos}.

Apresentar resultados.

12. (a) De 501 a 1500 (incluindo ambos) temos 1000 números inteiros.

Gerar u. Se u < 1/1000, então x = 501; caso contrário, se u < 2/1000, então x = 502; ...; caso contrário, se u < 999/1000, então x = 1499; caso contrário, x = 1500.

(b) Assumir que a rotina UNIF501_1500 afeta à variable X um NPA Unif {501; ...; 1500}

Asumir que a rotina NOR01 afeta à variable Z um NPA N(0;1)

Assumir que o stock, S, é inicialmente igual a zero: S=0 Inicializar.

Dia = 0

Repetir 1000 vezes:

$$Dia = Dia + 1$$

Se o resto da divisão inteira de Dia por 5 for 0 ou 1, então med =800 e dp =150; caso contrário, se o resto da divisão inteira de Dia por 5 for 2, então med =1000 e dp =180; caso contrário, med =1200 e dp =220. (Estamos a assumir semanas de 5 dias)

UNIF501_1500

Produção = X

S = S + Produção

NOR01

Procura = Z*dp + med

Se Procura S, então vai para a linha 5; caso contrário, vai para a linha 10

5 S = S - Procura

 $\mathrm{NF}=0$ (nº unidades não fornecidas)

vai para a linha 20

10 NF = Procura - S

$$S = 0$$

20 Registar os valores de S e de NF.

Tratar estatisticamente os 1000 pares de valores de S e NF. Apresentar resultados.

- 13. Consultar os "Elementos de Apoio às Aulas Teóricas", onde este exemplo é tratado. A construção de um modelo de Simulação de Filas de Espera não é trivial e não é objecto desta unidade curricular. Trataremos exclusivamente da simulação manual de Filas de Espera.
- 14. Como o processo de chegadas de clientes é Poissoniano com taxa média igual a 0,7 por minuto, então teremos o intervalo de tempo entre duas chegadas consecutivas, DT ~ Exponencial(= 0,7) em minutos. Ou seja, poderemos gerar DT muito facilmente: $dt = -\frac{\ln(u)}{\lambda} = -\frac{\ln(u)}{0,7}$ (em minutos).

A duração do atendimento de cada cliente é Tiangular [30; 60; 90] (*) segundos e, assim, podemos gerar: da = $(u_1 + u_2)*30 + 30$ (em segundos).

(a)

u	dt (min)	t (hh:mm:ss)
		09:00:00
$0,\!1526$	2,6856	09:02:41
0,3063	1,6903	09:04:22
0,4413	1,1686	09:05:32
0,8898	$0,\!1668$	09:05:42
0,0202	5,5744	09:11:17
0,7723	0,3691	09:11:39
0,1453	2,7556	09:14:24
0,702	0,5055	09:14:54
0,4005	1,3072	09:16:13
0,3174	1,6394	09:17:51

(b)

u_1	u_2	da (seg)	\rightarrow	da (seg) (*)
0,2114	0,394	48,162		48
0,8961	$0,\!1503$	$61,\!392$		61
0,0415	0,074	$33,\!465$		33
0,7574	$0,\!3742$	63,948		64
0,4862	0,9603	$73,\!395$		73
0,4763	0,7584	67,041		67
0,9575	0,6057	$76,\!896$		77
0,0823	$0,\!2855$	41,034		41
0,9456	0,5159	$73,\!845$		74
0,2451	0,9534	$65,\!955$		66

Nota (*): Arredondando para valores inteiros

(c)

\mathbf{T}	Acontecimento	N	T espera	T fim	Tlivre
09:00:00	Início do Serviço				
09:02:41	Chegada do Cliente nº 1 1				
09:02:41	Início do Atendimento do Cliente nº 1	1	0	09:03:29	00:02:41
09:03:29	Final do Atendimento do Cliente nº 1	0			
09:04:22	Chegada do Cliente nº 2 1				
09:04:22	Início do Atendimento do Cliente nº 2	1	0	09:05:23	00:00:53
09:05:23	Final do Atendimento do Cliente nº 2	0			
09:05:32	Chegada do Cliente nº 3 1				
09:05:32	Início do Atendimento do Cliente nº 3	1	0	09:06:05	00:00:42
09:05:42	Chegada do Cliente nº 4 2				
09:06:05	Final do Atendimento do Cliente nº 3	1			
09:06:05	Início do Atendimento do Cliente nº 4	1	00:00:23	09:07:09	00:00:00

Proseguir até à entrada do 10° cliente.

⁽d) Determinar as medidas de desempenho da fila de espera, a partir dos valores do quadro da alínea anterior.