Faugère's F5 algorithm-Criterion

Hojin Lee

Dec 2024

Outline

- 1. Preliminaries
- 2. Gröbner Bases
- 3. Tuples of polynomials
- 4. Signature
- 5. The Criterion
- 6. Formalization

Preliminaries

We follow A New Attempt On The F5 Criterion by Christian Eder.

Definition

Fix a monomial order. If $f \in k[x_1, \dots, x_n]$, define

- 1. $\mathsf{HM}(f) = c_{\alpha} x^{\alpha}$
- 2. $HT(f) = x^{\alpha}$
- 3. $HC(f) = c_{\alpha}$

where α is the maximal element among the monomials of f.

Preliminaries

Definition

Let f and g be nonzero polynomials in $k[x_1, \ldots, x_n]$. The S-polynomial is defined as

$$\mathsf{Spol}(f,g) = \mathsf{HC}(g) \frac{\tau}{\mathsf{HT}(f)} f - \mathsf{HC}(f) \frac{\tau}{\mathsf{HT}(g)} g$$

where $\tau = \text{lcm}(HT(f), HT(g))$.

Preliminaries

Definition

Let $P \subset k[x_1, \dots, x_n]$ be a finite set, f a nonzero polynomial, and t a term. A representation

$$f = \sum_{p \in P} \lambda_p p$$

where the λ_p are in the polynomial ring, $p \in P$, is called a t-representation of f wrt P, if for all $p \in P$ such that $\lambda_p \neq 0$, we have $HT(\lambda_p p) \leq t$.

If t = HT(f), then a t-representation of f is called a standard representation.

Gröbner Bases

Here is the Gröbner basis characterization we use:

Theorem

Let $G = \{g_1, \dots, g_N\}$ be a finite subset of $k[x_1, \dots, x_n]$ with $0 \notin G$. If for all $f \in I = \langle G \rangle$, f has a standard representation, then G is a Gröbner basis of I.

We will work with m-tuples of polynomials in $k[x_1, \ldots, x_n]$, rather than single polynomials. This is because we want to define the *signature* of a polynomial.

Consider the free module $k[x_1, ..., x_n]^{\oplus m}$. For the sake of brevity, we will denote this as $k[\mathbf{x}]^m$.

Definition

Let $\mathbf{g} = \sum_{k=1}^{m} g_k \mathbf{e}_k \in k[\mathbf{x}]^m$, where the \mathbf{e}_k are unit vectors. The index of \mathbf{g} is the smallest i such that $g_i \neq 0$. We do not consider the case $\mathbf{g} = 0$, so the index is defined.

We extend our monomial ordering to *m*-tuples of polynomials.

Definition

If **g** and **h** are elements of $k[\mathbf{x}]^m$ with index i and j, then define the order $\mathbf{g} < \mathbf{h}$ if and only if i > j or i = j and $\mathrm{HT}(g_i) < \mathrm{HT}(h_i)$ where g_i and h_i are obvious. As the zero tuple does not have an index, we define $0 < \mathbf{g}$ for any nonzero \mathbf{g} .

Definition

We define the module head term MHT of nonzero $\mathbf{g} \in k[\mathbf{x}]^m$ to be

$$\mathsf{MHT}(\mathbf{g})=\mathsf{HT}(g_i)\mathbf{e}_i,$$

where i is the index of \mathbf{g} .

Lemma

The module ordering < on $k[\mathbf{x}]^m$ is well-founded, i.e., every nonempty subset has a minimal element.

Proof.

Let P be a nonempty subset of $k[\mathbf{x}]^m$. If $0 \in P$, we are done. If $0 \notin P$, then for $\mathbf{p} \in P$ its index is defined and is bounded by m. Thus $i_{\max} = \max\{\inf(\mathbf{p}|\mathbf{p} \in P)\}$ and $t_{\min} = \min\{\operatorname{HT}(p_k)|\mathbf{p} \in P, \operatorname{index}(\mathbf{p}) = k\}$ are defined, and the set of \mathbf{p} such that the index is i_{\max} and the head term of $p_{i_{\max}}$ is t_{\min} is the set of minimal elements of P.

Signature

Definition

A labeled polynomial r is a pair $(u\mathbf{e}_k, p)$ where u is a term of $k[\mathbf{x}]$ and $p \in k[\mathbf{x}]$.

Given such r, its signature is defined as $S(r) = u\mathbf{e}_k$ and the polynomial is defined as p, its index is k.

A labeled polynomial r is admissible with respect to an m-tuple F if there exists a nonzero m-tuple \mathbf{g} such that $v_F(\mathbf{g}) = p$ and $\mathsf{MHT}(\mathbf{g}) = \mathcal{S}(r)$.

The Criterion

Need a lot more definitions: Normalized pairs etc...

Will not cover, as even the most basic lemmas were challenging to formalize. Anyways, here is the statement:

Theorem (F5 criterion)

Suppose we are given an m-tuple $F = (f_i)$ of polynomials, and a set $G = (r_i)$ of labeled polynomials admissible wrt F, containing all elements of the form (\mathbf{e}_i, f_i) . If for all pairs (r_i, r_j) normalized wrt G, $Spol(r_i, r_j)$ has a t-representation where $t < lcm(HT(p_i), HT(p_j))$, then p_i form a Gröbner basis of $I = \langle p_1, \ldots, p_{n_G} \rangle$ where the p_i are the polynomial parts of the r_i .

Formalization

See code

References

On the criteria of the F5 algorithm, Christian Eder