高性能GridRPCアプリケーション の開発環境

小林孝嗣 ; 渡邊啓正 ; 本多弘樹 ;

†電気通信大学 大学院情報システム学研究科

目次

- 1. 研究の背景
- 2. 研究の目的
- 3. ツールの設計および実装
- 4. ツールの有用性の検証
- 5. 結論
- 6. GridRPCシステムへの期待

GridRPCアプリケーション 開発における問題

- ▼高性能なGridRPCアプリケーションの開発
 - ●障害の発生が開発を困難にしている
 - 障害を考慮したプログラミング
 - ・アプリケーション実行中に起きた問題の原因究明
 - 障害の特定にはRPCの実行情報および計算資源の負荷情報を調べる必要がある
 - ⇒様々な要因によりプログラマに手間がかかる

- 資源の状態が 動的に変化
- 大規模環境では情報量が増大
- 情報収集のため のソースコード 変更が必要

- 資源の状態が 動的に変化
- 大規模環境では情報量が増大
- 情報収集のため のソースコード 変更が必要

- 資源の状態が 動的に変化
- 大規模環境では 情報量が増大
- 情報収集のため のソースコード 変更が必要

- 資源の状態が 動的に変化
- 大規模環境では情報量が増大
- ・情報収集のため のソースコード 変更が必要

障害の特定を困難にしている要因の例

資源の状態 動的に変化 障害の特定が アプリケーション開発 メモリ性能 大規模環境 において大きな手間となる 情報量が CPU負荷 情報収集のため 開始 ON のソースコード メモリ性能 ドル初期化 変更が必要

研究の目的

- ▼ GridRPCアプリケーションのデバッグおよび性能改善を支援するツールを開発
 - RPC実行情報の収集
 - ●計算資源情報の収集
 - ●収集した情報の可視化
- ⇒プログラマの障害特定のための手間を軽 減する

補足: 本研究ではNinf-G[1]を用いたGridRPCアプリケーションの開発を支援の対象としている

[1] 田中良夫, 中田秀基, 朝生正人, 関口智嗣: Ninf-G2: 大規模環境での利用に即した高機能, 高性能GridRPCシステム, 情報処理学会研究報告 2003-HPC-95, pp.89-95(2003).

ツールの位置づけ

ツールの設計

- RPC実行情報および計算資源情報の収集 機能
 - プログラマに手間をかけることなく自動的に行 なう
- 収集した情報の可視化機能
 - ●計算資源の状態やRPC実行状況を可視化する
 - ・プログラマが必要とする情報のみを提示する

ツールの動作概要

MDS: Globus Toolkit[2]における資源情報管理システム

[2] Globus Toolkit: http://www.globus.org/

ツールの実装

- ・情報収集のためのヘッダファイルを提供 ⇒インクルードすることで情報を自動収集
 - RPC実行情報
 - 計算資源情報
- ▼ 収集した情報はログファイルへ出力
- ▼ ログファイルをJavaで実装したGUIツールで可視 化
- プログラマは数行のコードを追加するだけでこれらの機能を利用可能

アプリケーション全体の情報

アプリケーション全体の情報

Program Information			
Program Name	./test_pi		
Date	2005/7/26 12:28:26		
Client HostName	sun.yuba.is.uec.ac.jp(C		
Num Of Server	3		
Execution Time	12.469821		
Times Of RPC	2		
Quit			

- 開始時刻
- 実行時間
- RPC実行回数
- etc...

実行環境の略図

実行環境の略図

- 利用した計算資源の表示
- 高負荷な計算資源の特定
- エラーの起きた 計算資源の特定
- プフィルタ機能

RPC実行状況のグラフ

RPC実行状況のグラフ

- 計算資源ごとの処理状況の比較
- 長時間を要した処理の特定
- プロセス間通信の表示
- プフィルタ機能

RPC実行状況のグラフ

計算資源の静的情報

計算資源の静的情報

- 性能情報
- 平均負荷情報
- RPC実行回数
- etc...

API呼び出しの詳細情報

API呼び出しの詳細情報

Event Information				
Handlelnit 1 2	Wait			
RPC Name	rpc/pi			
Туре	Async			
SessionID	2			
Server Name	mj.yuba.is.uec.ac.jp			
Execution Time	0.555035			
Time Of Begin RPC	2.079799			
Time Of End Call RPC	2.375155			
Error Code Of Call	No error			
Time Of Return RPC	2.602779			
Time Of End RPC	2.634834			
Info Request Time	0.004043			
Gram Invoke Time	0.638735			
Transfer Argument Time	0.040085			
Calculating Time	0.179708			
Transfer Result Time	0.047916			
Error Code	No error			
Close				

- 処理開始時刻
- **が** 所要時間
- **エラーコード**
- etc...

ツールの利用手順

- 1. RPCアプリケーションのプログラムを記述
- 2. 本ツールヘッダファイルをインクルード
- 3. コンパイルおよび実行
- 4. 生成されたログファイルをGUIツールによ り可視化

ツールの有用性の検証

- ▼ モンテカルロ法を用いて円周率を求める アプリケーションを利用
- るサーバに一回ずつRPCを実行
 - 通常なら10秒程度で終了する
- 1つのサーバの負荷を意図的に高くして実行
 - 実行に60秒程度かかってしまった
- ⇒性能低下の原因を特定できるかを検証

- 実行環境の状態 を可視化する
 - 負荷の高い計算 資源が見つかる
- ⇒これが性能低下 の原因ではない か?

計算資源の状 態を調べる

Resource Information					
mj.yuba.is.uec.ac.jp					
Host Name		mj.yuba.	is.uec.ac.jp		
Num Of CPU		1			
CPU Performanc	е	1816MH	Z		
Memory		493000KB			
Average Of CPU Usage		100.0%			
Average Of Memory Usa		39.6%			
Times Of RPC	-	1			
CPU Graph	Memory		Close		

- 計算資源の状態を調べる
- ⇒CPU使用率が 100%

RPC実行状況を 調べる

- RPC実行状況を 調べる
- ⇒長時間を要した処 理が見つかる

処理の詳細情報 を調べる

Event Information	40		
2			
RPC Name	rpc/pi		
Туре	Async		
SessionID	2		
Server Name	mj.yuba.is.uec.ac.jp		
Execution Time	5.132727		
Time Of Begin RPC	41.172247		
Time Of End Call RPC	43.720948		
Error Code Of Call	No error		
Time Of Return RPC	46.265228		
Time Of End RPC	46.304974		
Info Request Time	1.536976		
Gram Invoke Time	10.039255		
Transfer Argument Time	0.040014		
Calculating Time	2.499350		
Transfer Result Time	0.044930		
Error Code	No error		
Close			

- 処理の詳細情報 を調べる
- ⇒高負荷な計算資 源上での処理

- 正常に終了した場合と比較する
 - ⇒どの程度の性 能低下が起き ているかが分 かる
- ⇒原因究明完了

性能改善へのツール利用

- RPCにタイムアウトを設定したい
 - ⇒正常な場合とそうでない場合の動作内容の 比較が必要
 - API呼出しごとに処理時間などを出力するため のコードを挿入
 - 得られた情報から動作内容を把握
- ⇒本ツールのRPC実行状況のグラフ化機能 を用いれば容易に行うことが可能

結論

- GridRPCアプリケーションのデバッグおよび性能 改善を支援するツールを開発した
 - RPC実行情報の収集
 - 計算資源情報の収集
 - 収集した情報の可視化
- ッツール利用によってグリッド特有の再現性のない 問題の原因究明も行なえることを示した
 - ●高負荷な計算資源の特定

GridRPCシステムへの期待

- 自動的な資源割り当て・障害回復
 - RPCの再スケジュール・再実行
 - 負荷分散
- GridRPCの実行履歴にアクセスするための標準インタフェース
 - 現状:独自形式のログファイル

以下予備資料

RPC実行情報収集機能の実装

- 「情報収集のためのヘッダファイルを提供
 - インクルードすることでGridRPCのAPI利用時に自動で情報を収集
- 収集した情報はログファイルへ出力
- プログラマは3行程度のコードを追加する だけでRPC実行情報収集機能を利用可能

計算資源情報収集機能の実装

- 「情報収集のためのヘッダファイルを提供
- MDSから計算資源情報を取得
- ▼アプリケーションの開始時および終了時に 自動で情報を収集
 - ⇒本ツールのAPIを利用することで任意のタイミングでも収集可能
- 収集した情報はログファイルへ出力

可視化機能の実装

- Javaで実装したGUIツールで情報を可視化
 - ●アプリケーション全体の情報の表示
 - ●実行環境の略図の表示
 - RPC実行状況のグラフの表示
 - ●計算資源の静的情報の表示
 - ●API呼び出しの詳細情報の表示

評価項目

- 実行時オーバヘッドの計測
 - RPC実行情報収集処理
 - 計算資源情報収集処理
- ツールの有用性の検証
 - ●性能低下の原因特定
 - ●性能改善におけるツール利用

評価環境

	CPU	ネットワーク
ホストA	Pentium4M 1794(MHz)	100 BASE-T
ホストB	Pentium4 1816(MHz)	100 BASE-T
ホストC	Pentium4 1816(MHz)	100 BASE-T

OS:

Redhat Linux9

グリッドミドルウェア: Globus Toolkit 2.4.3 Ninf-G 2.3

RPC実行情報収集による実行時オーバヘッドの計測

- アピンテカルロ法を用いて円周率を求める アプリケーションを利用
- RPCの実行回数を変えながら実行時間を 計測
- ホスト1をクライアント,ホスト2をサーバとして利用

評価結果

⇒最大で実行時間の2.4%程度

計算資源情報収集による実行時オーバヘッドの計測

収集回数(回)	オーバヘッド(ミリ秒)
1	4.0
4	10.6
16	60.8
64	245.8

⇒1回の計測につき約4ミリ秒必要

関連研究

- 並列プログラムの可視化ツール[3][4][5]
 - ⇒以下の点が考慮されていない
 - 資源が不均一で変動する
 - 規模が大きくなると情報量が膨大になる
 - 実行環境の構成が動的に変化する
- ⇒グリッド特有の問題点の解決が困難
 - ■実行環境の状態によるアプリケーション性能の低下
 - 大規模環境利用による情報量の肥大化
- [3] 丸山真佐夫, 津邑公暁, 中島浩: データ再演法による並列プログラムデバッキング, 先進的計算基盤システムシンポジウムSACSIS2005, pp61-70(2005).
- [4] 上島明, 小畑正貴, 金田悠紀夫: Omni OpenMPコンパイラ用並列プログラム可視化ツール, 先進的計算基盤システムシンポジウムSACSIS2005, pp53-60(2005).
- [5] Trace Analyzer: http://www.intel.com/cd/software/products/asmo-na/eng/cluster/tanalyzer/index.htm

関連研究

- Grid Explorer[6]
 - グリッド運用のためのツール
 - 分散環境において一括してコマンド実行が可能
 - ⇒psコマンドを実行するすることで 各資源の負荷情報が分かる
 - コマンド実行結果はテキストで出力
 - ⇒情報量が増えるとテキストでは把握が困難
- ⇒情報のフィルタ機能や可視化機能が必要となる
- [6] Kenjiro Taura: Grid Explorer: A Tool for Discovering, Selecting, and Using Distributed Resources Efficiently, SWoPP2004, pp235-240.

今後の課題

- ▼大規模な環境においての有効性の検証
- 可視化結果を元にしたアプリケーションの 修正を支援する機能の実装
- 現在対応していないNinf-GのAPIへの対応

ツール公開

以下のウェブページにてダウンロード可能

http://www.yuba.is.uec.ac.jp/~kobayashi/