

Hệ nhúng (Embedded Systems)

Đỗ Công Thuần

Bộ môn Kỹ thuật Máy tính

Email: thuandc@soict.hust.edu.vn

Chương 4: Ghép nối ngoại vi với 8051

Nội dung

- Ghép nối cổng vào ra song song
- Ghép nối ngắt ngoài
- Ghép nối nút bấm
- Ghép nối bộ định thời
- Lập trình C với 8051

Ghép nối cổng nối tiếp UART

- UART (<u>Universal Asynchronous Receiver Transmitter</u>)
- Là thiết bị phục vụ truyền thông nối tiếp không đồng bộ rất phổ biến
 - Ví dụ: giao tiếp máy tính, giao tiếp mô-đun SIM, mô-đun GPS, ...
- Tốc độ truyền không cao
- Phần cứng gọn nhẹ, dễ thiết kế, giá thành thấp

UART/RS232

Microcontroller

PC

Chế độ làm việc

Có 4 chế độ làm việc

SM0	SM1	Mode	Description	Baud rate		
0 0 1 1	0 1 0 1	0 1 2 3	Shift register 8-bit UART 9-bit UART 9-bit UART	$f_{\rm osc}/12$ Variable $f_{\rm osc}/32$ or $f_{\rm osc}/64$ Variable		

Cấu trúc khung dữ liệu

- START bit: bắt đầu giao tiếp nối tiếp, luôn mức thấp.
- Các bit dữ liệu: từ 5 đến 9 bit, gửi sau Start bit, thường là 8 bit.
- STOP bit: 1 hoặc 2 bit, để cho biết kết thúc khung, được gửi sau khi các bit dữ liệu, luôn mức cao.

Tốc độ truyền dữ liệu

- Tốc độ truyền dữ liệu được đo bằng bit trên giây (bps).
- Trong hệ nhị phân được gọi là tốc độ truyền (số lần thay đổi tín hiệu mỗi giây) – Baudrate.
- Một số tốc độ truyền chuẩn: 1200, 2400, 4800, 9600, 19200, 38400, 57600 và 115200.
- 9600 bps thường được sử dụng.
- Trong 8051, tốc độ baudrate được xác định qua Timer 1 (TMOD)

Ví dụ

- Cài đặt Timer 1 để baudrate = 9600?
 - Thạch anh (Xtal) ở tần số 11.0592 MHz và UART hoạt động ở Mode 1.
 - TH1 =256 F(crystal)/12/32/baudrate
 - → TH1 = 256 (11059200/12/32/9600) = 253
- Cài đặt Timer 1 để baudrate = 19200, 38400?

Thanh ghi SCON

SCON F	Register		(Serial		Port		Control		Register)
	0	0	0	0	0	0	0	0	Value after reset
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	Bit name
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	

- SM0, SM1: xác định chế độ làm việc
- SM2: sử dụng cho truyền thông giữa các VĐK
- REN: cho phép nhận dữ liệu, mức cao (=1)
- TB8, RB8: bit thứ 9 của truyền/nhận trong chế độ truyền 9 bit
- TI, RI: cờ báo ngắt truyền, ngắt nhận

Thanh ghi SBUF

- Dữ liệu truyền/nhận nối tiếp được ghi vào thanh ghi SBUF.
- Để truyền → Ghi dữ liệu vào SBUF
- Để nhận → Đọc dữ liệu từ SBUF

Thủ tục truyền/nhận dữ liệu

1) Thiết lập chế độ truyền, baudrate

- TMOD = 0x20 → cài đặt sử dụng Timer 1, ở chế độ 8 bit, tự nạp lại (Mode 2).
- Cài đặt giá trị thích hợp vào TH1 để chọn baudrate.
- SCON = 0x50 (SM0 = 0, SM1 = 1, REN = 1) → thiết lập chế độ truyền 8 bit, 1 bit start, 1 bit stop (Mode 1).
- TR1 = 1 (TCON)→ khởi động Timer 1.

2) Truyền/nhận ký tự

- a) Truyền 1 ký tự:
 - Ghi ký tự (ASCII code) vào SBUF để truyền đi.
 - Chờ cho cờ TI (SCON) được bật.
 - Xóa cờ TI để sử dụng cho lần truyền ký tự tiếp theo.

b) Nhận 1 ký tự:

- Chờ cờ RI (SCON) được bật báo có dữ liệu đến.
- Đọc dữ liệu từ SBUF.
- Xóa cờ RI cho lần nhận dữ liệu tiếp theo.

Thiết lập chế độ truyền, baudrate

Truyền 1 ký tự

Nhận 1 ký tự

```
unsigned char GetCharacter(void)
unsigned char temp;
while(RI == 0); //wait for RI = 1
temp = SBUF; //read SBUF
       //clear RI
RI = 0;
return temp;
```

© Có thể sử dụng thủ tục phục vụ ngắt (số hiệu ngắt = 4)

Ví dụ ghép nối thực tế

Bài tập

• Tìm hiểu IC MAX232

https://pdf1.alldatasheet.com/datasheet-pdf/view/27251/TI/MAX232.html

Bài tập: Lập trình ghép nối cổng UART

Bài tập: Lập trình ghép nối cổng UART

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Cảm ơn đã lắng nghe!

