Elementos de conectividad

Conmutación capa 2

Referencia al modelo OSI

Repetidor

Concentrador

- Los concentradores (hub) son repetidores con muy poca funcionalidad adicional
 - Ejemplo: Monitoreo, activación y desactivación de un puerto
- Todos los dispositivos en un concentrador comparten el "núcleo colapsado". Están en el mismo dominio de colisión, por lo que solamente un dispositivo a la vez puede transmitir
- Principales ventajas
 - Cableado estructurado
 - Facilidades de administración

Puente

Puente/conmutador

- Interconecta dos o más segmentos, separando los dominios de colisión
- Las decisiones de re-envío entre segmentos se basan en las direcciones MAC
- Todos los segmentos en el puente pertencen al mismo dominio de difusión (a la misma red local)
- En ethernet, el puente es transparente a los equipos terminales
- Los conmutadores típicamente utilizan la misma tecnología de red para cada puerto. Algunos puentes pueden intercambiar tecnología de red local

Enrutador

- Conectan dos o mas redes
- Cada red tiene una dirección IP distinta (de red o de subred)
- Rompen los dominios de difusión
- Pueden interconectar distintos tipos de red

Pasarela

- Las pasarelas (gateway) y los conmutadores de capas superiores (capa 4 y capa 7) toman decisiones de conmutación en función de los protocolos de aplicación
- Permiten definir y ejecutar políticas sofisticadas de administración, seguridad y operación
- Algunas permiten el intercambio de información entre pilas de protocolos heterogéneas

Puentes y conmutadores

Cambios en la naturaleza de tráfico

- La forma tradicional La nueva forma
 - cómputo departamental
 - patrones de tráfico local (la regla "80 / 20")
- - cómputo empresarial
 - granjas de servidores

Requerimientos en ancho de banda

- La forma tradicional
 - cómputo departamental
 - relación 10 a 1 era

- La nueva forma
 - cómputo empresarial
 - relación 2 a 1 es lo normal

Evolución de las arquitecturas de redes

Flexibilidad
Orientado a servicios

Bajo retardo Escalabilidad

Seguridad

Segmentación

Acceso local a alta velocidad

Conmutador

Segmentación con conmutadores

Segmentación con enrutadores

(Cualquiera de los dos iconos para el conmutador se utilizará indistintamente)

Migración de medio compartido a conmutado

Aumento del desempeño

Evolución a una red conmutada

Evolución a una red conmutada (2)

(Hoy los enrutadores pueden tener puertos de muy alta velocidad)

Evolución a una red conmutada (3)

Tecnología de conmutación

Operación de un conmutador

Mecanismos de conmutación (store and forward)

Mecanismos de conmutación (Cut-Through)

Operación

Operación

Aprendizaje

 Al recibir una trama, revisa la dirección fuente y la vincula al puerto donde llegó la trama (actualiza temporizador)

Filtrado y reenvío

 En función de la dirección destino determina el puerto por el que la expedirá nuevamente expedirá

Inundación

 Si desconoce la dirección destino o si se trata de una trama de difusión, la reenvía por todos los puertos excepto por el que la recibió

Depuración

 Si un temporizador llega a 0, se elimina la entrada de la tabla

Operación

Tabla de conmutación

Lazos activos

Topología con conmutadores redundantes

Loop de difusión

Loop Unicast

Protocolo *spanning-tree* (IEEE 802.1D)

- Es un mecanismo de intercambio de mensajes entre puentes (y conmutadores) para crear una topología lógica libre de ciclos en la red local (nivel capa 2).
- Los ciclos en las redes basadas en conmutadores traen problemas ya que las tramas no contienen un campo que decremente su tiempo de vida como ocurre con el protocolo IP.

Algoritmo spanning tree

- Se establece un puente raiz
- Cada puente determina un puerto raiz, el que lo conduce con el menor costo hacia el puente raíz
- Los puentes intercambian BPDUs montadas sobre LLC
 - SAP 0x42
- Se utiliza una dirección de difusión restringida
 - 01-80-C2-00-00

Algoritmo spanning tree

- Cada puente tiene un identificador formado por una prioridad configurable y por su dirección MAC
- A cada puerto se le asigna un costo que depende de su velocidad de transmisión:

Velocidad	802.1D	802.1t
4 Mbps	250	-
10	100	2,000,000
16	62	-
100	19	200,000
1 Gbps	4	2,000
10	2	200

Conceptos básicos

- Puente raíz. Aquél a partir del cual se construye la topología lógica. Tiene el menor BID
- Puerto raíz. Puerto que conecta a un puente con el puente raíz por la mejor trayectoria (la de menor costo)
- Puente designado. El puente en un segmento encargado de encaminar tramas desde y hacia el puente raíz
- Puerto designado. El puerto no bloqueado que conecta un segmento con su puente designado
- Puerto bloqueado. No encamina tramas

Secuencia de STP

Paso 1: Selección del puente raíz

Paso 2: Selección de los puertos raíces

Paso 3: Selección de puertos designados

BID Raíz	Costo	BID switch	ID Puerto	BPDU
-------------	-------	---------------	--------------	------

Paso 1: Seleccionar el Puente Raíz

Puente Raíz

BID: 32768.AA-AA-AA-AA-AA

Paso 2: Seleccionar los Puertos Raíces

Paso 3: Seleccionar los puertos designados

Criterios de selección:

1: El menor costo al puente raíz

2: Menor ID del puente

Importancia del puente raíz

Consideraciones del puente raíz

- Algunas recomendaciones al asignar la prioridad para elegir un puente raíz, son las siguientes
 - Se debe elegir un puente que esté al centro de la topología lógica
 - Reduce trayectorias entre equipos terminales
 - Disminuye distancias de los mensajes hello
 - Debe ser robusto, contar con redundancia, y de fácil acceso en caso de reconfiguración
 - Debe tener un ancho de banda suficiente
 - Tipicamente se localiza en el núcleo de la red

Estados de los puertos

Temporizadores de STP

Temporizador	Default	Propósito
Hello Time	2 seg	Tiempo entre el envío de BPDU por el Puente raíz
Forwarding Delay	15 seg	Duración de los estados <i>Listening</i> y <i>Learning</i>
Max Age	20 seg	Tiempo que se almacena un BPDU

Ejemplo de valores de STP

4006ccrh1> sho spantree VLA Spanning tree Spanning tree type	aN 1 enabled Estadísticas globales							
Designated Root Cost Designated Root Port	00-04-c1-96-e5-00 16384 4 3/1 Time 2 sec Forward Delay 15 sec Estadísticas del Puente Raíz							
Bridge ID MAC ADDR Bridge ID Priority 32768 Bridge Max Age 20 sec Hello Time 2 sec Forward Delay 15 sec Estadísticas locales del Puente								
Port Vlan Port-State 1/2 1 forwardir 3/2 1 forwardir	Estadísticas ng 4 de los puertos							

BPDU de Configuración

```
ETHERNET: Destination address: 0180C2000000
ETHERNET: Source address: 0007501E0AE6
ETHERNET: Frame Length: 60 (0x003C)
LLC: DSAP = 0x42 : INDIVIDUAL : Protocol Data Unit (BPDU)
LLC: SSAP = 0x42: COMMAND : Protocol Data Unit (BPDU)
LLC: Frame Category: Unnumbered Frame
BPDU: Protocol ID: 802.1D (0x0000)
BPDU: Version: 0 (0x00)
BPDU: Message Type = Configuration (0x00)
BPDU: Flags: Configuration (0x00)
BPDU: Root ID Priority = 8192 (0x2000)
BPDU: Root ID @MAC = 0004C1A6DE05
BPDU: Cost = 7 (0x00000007)
BPDU: Bridge ID Priority = 32768 (0x8000)
BPDU: Bridge ID @MAC = 0007501E0AC5
BPDU: Port ID = 32822 (0x8036)
BPDU: Message Age = 5
BPDU: Max Age = 5120, 20.00 sec
BPDU: Hello Time = 512, 2.00 sec
BPDU: Forward Delay = 3840, 15.00 sec
```

Ejercicio spanning tree

Ejercicio. Selección de puente raíz

Ejercicio. Selección de puertos raíz

Ejercicio. Selección de ptos. designados

Ejercicio. Estado de puertos y topología

Ejercicio spanning tree

	Sw1,1	Sw1,2	Sw2,1	Sw2,2	Sw2,3	Sw3,1	Sw3,2	Sw3,3	Sw4,1	Sw4,2	Sw4,3	Sw5,1	Sw5,2
t_0													
t_1													
t_2													
t ₃													

Escribir en la tabla los BPDU generados por los switches en cada uno de sus puertos en los diferentes tiempos, recordar que el BPDU tiene el formato:

SwRaiz,Costo,SwEmisor,Puerto

- t₀ Estado inicial (cuando todos creeen ser el puente raíz)
- **t**₁ Cuando terminaron de seleccionar al puente raíz
- **t**₂ Cuando terminaron de seleccionar al puerto raíz
- t₃ Ya estable el algoritmo de spanning-tree

Ejercicio spanning tree

	Sw1,1	Sw1,2	Sw2,1	Sw2,2	Sw2,3	Sw3,1	Sw3,2	Sw3,3	Sw4,1	Sw4,2	Sw4,3	Sw5,1	Sw5,2
t_0	Sw1,0, Sw1,1	Sw1,0, Sw1,2	Sw2,0, Sw2,1	Sw2,0, Sw2,2	Sw2,0, Sw2,3	Sw3,0, Sw3,1	Sw3,0, Sw3,2	Sw3,0, Sw3,3	Sw4,0, Sw4,1	Sw4,0, Sw4,2	Sw4,0, Sw4,3	Sw5,0, Sw5,1	Sw5,0, Sw5,2
t_1		Sw3,8, Sw1,2	Sw3,4, Sw2,1		Sw3,4, Sw2,3	Sw3,0, Sw3,1	Sw3,0, Sw3,2	Sw3,0, Sw3,3	Sw3,4, Sw4,1			Sw3,19, Sw5,1	
t ₂		Sw3,8, Sw1,2	Sw3,4, Sw2,1		Sw3,4, Sw2,3	Sw3,0, Sw3,1	Sw3,0, Sw3,2	Sw3,0, Sw3,3	Sw3,4, Sw4,1			Sw3,19, Sw5,1	
t ₃			Sw3,4, Sw2,1		Sw3,4, Sw2,3	Sw3,0, Sw3,1	Sw3,0, Sw3,2	Sw3,0, Sw3,3					

Escribir en la tabla los BPDU generados por los switches en cada uno de sus puertos en los diferentes tiempos, recordar que el BPDU tiene el formato: SwRaiz,Costo,SwEmisor,Puerto

- **t**₀ Estado inicial (cuando todos creeen ser el puente raíz)
- t₁ Cuando terminaron de seleccionar al puente raíz
- t₂ Cuando terminaron de seleccionar al puerto raíz
- t₃ Ya estable el algoritmo de spanning-tree

Agregación de enlaces. IEEE 802.3ad

El uso de varios enlaces entre dos dispositivos no permite aumentar el ancho de banda disponible con el protocolo de spanning tree, pues los enlaces redundantes quedarían bloqueados.

IEEE 802.3ad permite agrupar estos enlaces físicos como uno solo virtual

Agregación de enlaces

- Aumenta la disponibilidad al contar con enlaces redundantes.
- Aumenta el desempeño al permitir que estos enlaces participen en el intercambio de información
- Los enlaces deben ser full-duplex,
- Enlaces en un mismo grupo deben operar a la misma velocidad
- Una misma dirección MAC para el grupo

Agregación de enlaces

- Una capa intermedia de agregación es la encargada de negociar el agrupamiento de puertos y de multiplexar y de-multiplexar las tramas
- Se permite configurar flujos que deben respetar estrictamente el orden de llegada
 - Conversaciones
 - Dirección fuente o destino, puerto destino, protocolo superior

Rapid STP (802.1w)

- Principal objetivo: reducir drásticamente los tiempos de convergencia cuando el árbol debe reconfigurarse
 - Ciclo de bloqueado a activo ~1min en STP
- Reconfiguración se inicia con la pérdida de tres BPDU consecutivos (6 seg)
 - No pasa por las fases de learning y listening

Nuevas propuestas

- Limitaciones STP
 - No permite una ingeniería de tráfico eficiente.
 - No necesariamente utiliza la ruta más corta
 - Muy complejo para grandes redes con muchas
 VLANs (y, actualmente, metro-ethernet)
- IETF "Transparent interconnection of lots of links" TRILL RFC 5556
- IEEE 802.1aq. Shortest path bridging (SPB)