הקורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: החוברת "מבוא מהיר ללוגיקה"

מספר השאלות: 13 מספר השאלות: 13

סמסטר: 2019 מועד הגשה: 5.3.2019

את התשובות לממ״ח יש לשלוח באמצעות מערכת שאילת״א

http://www.openu.ac.il/sheilta/ בכתובת

הממ"ח נבדק בצורה ממוחשבת. אין לשלוח את פתרון הממ"ח למנחה!

בכל שאלה במטלה זו מופיעות שתי טענות. סמנו:

א - אם רק טענה 1 נכונה, ב - אם רק טענה 2 נכונה,

ג - אם שתי הטענות נכונות, ד - אם שתי הטענות אינן נכונות.

שאלה 1

נ. "משה הכה בסלע ויצאו ממנו מים" - זהו פסוק.

ארבעים שנה" - זהו פסוק.

שאלה 2

שלילת הפסוק אברסט הוא ההר הגבוה ביותר בכדור הארץ.

היא הפסוק אברסט הוא ההר הנמוך ביותר בכדור הארץ.

1+1<2 שלילת הפסוק 1+1>2 היא הפסוק 2

שאלה 3

הוא אמת. 2+3>5 או 1+1=2 הוא אמת.

הוא אמת. 3+3>2 וגם 1+1=2 הוא אמת.

שאלה 4

2 < 3 אם 2 < 3 הוא אמת.

2 = 4 אמת. אם 2 > 3 הוא אמת.

שאלה 5

3 < 4 אמת. 2 < 3 הוא אמת. 1.

4 < 3 אמת. אמת אמת. 2 אז 4 < 3 הוא אמת.

p	q	r	α
T	T	T	T
T	T	F	F
T	F	T	F
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	T

 $\alpha = (p \! o \! q) \wedge (p \! o \! r)$ באיור משמאל מופיע לוח האמת של הפסוק .1

٠

הוא סתירה. $(\neg p) \land \neg (p \rightarrow q)$ הוא סתירה. .2

שאלה 7

- . $\left((\neg p) \wedge (\neg q) \right) \vee \neg r$ שקול טאוטולוגית ל- $\neg \left((p \wedge q) \vee r \right)$.1
 - . $q \wedge \neg (q \wedge p)$ שקול טאוטולוגית ל- $p \wedge \neg (p \wedge q)$.2

שאלה 8

- 1. שלילת הפסוק היום חם ולח שקולה לפסוק היום לא חם או היום לא לח.
- 2. שלילת הפסוק אסע לתאילנד השנה או בשנה הבאה שקולה לפסוק לא אסע לתאילנד השנה ולא אסע לתאילנד בשנה הבאה.

שאלה 9

- . r נובע טאוטולוגית הפסוק ($p
 ightarrow q) \wedge (q
 ightarrow r) \wedge p$ מתוך הפסוק .1

שאלה 10

- . אם מ- α נובע β אז $\alpha \wedge \neg \beta$ הוא סתירה.
- $. \neg \beta$ נובע α אם מ- $\alpha \land \neg \beta$ נובעת סתירה אז מ- $\alpha \land \neg \beta$.2

שאלה 11

נתבונן בפסוק: לכל מספר הגדול מ- 1, הריבוע שלו גדול ממנו.

- $\forall x \big((x>1) \wedge (x^2>x) \big)$: את הפסוק האמור ניתן לרשום כך .1
- $\forall x ((x>1) \rightarrow (x^2>x))$: את הפסוק האמור ניתן לרשום כך .2

שאלה 12

נתבונן שוב בפסוק: לכל מספר הגדול מ- 1, הריבוע שלו גדול ממנו.

- $\forall x ((x \le 1) \lor (x^2 > x))$: את הפסוק האמור ניתן לרשום כך .1
- $\left(\forall x\,(x>1)\right)$ \rightarrow $\forall x(x^2>x)$: 2 באמור ניתן לרשום מדים.

שאלה 13

- x את שלילת הפסוק א קיים y קיים לכל הפסוק .1
- x או ביתן לנסח כך: לכל x לא קיים y שהריבוע שלו הוא
 - x את שלילת הפסוק לכל x קיים y שהריבוע שלו הוא 2
- x שונה מ- y שונה מ- y , ביתן לנסח כך: y שונה מ- y שונה מ- y

חומר הלימוד למטלה: תורת הקבוצות פרק 1 קורס: 20476 מתמטיקה בדידה

3 נקודות משקל המטלה: מספר השאלות: 4

19.3.2019 מועד הגשה: סמסטר: 2019ב

מטלת מנחה ניתן להגיש באחת הדרכים הבאות (הסבר מפורט ביינוהל הגשת מטלות מנחהיי):

- במערכת המטלות המקוונת (קובץ מוקלד. לגבי הגשת קובץ סרוק יש להתעדכן אצל המנחה\בודק של קבוצת הלימוד שלך). כניסה מאתר הקורס או משאילתייא
 - על דפי נייר, עם טופס נלווה, באופן ישיר למנחה במפגש ההנחיה
 - על דפי נייר, עם טופס נלווה, באמצעות דואר ישראל, לכתובתו של המנחה.

שאלה 1 (24 נקי)

לכל אחת מהטענות הבאות קבעו אם היא נכונה או לא.

בשאלה זו בלבד אין צורך לנמק, די לרשום בכל סעיף נכון / לא נכון.

$$T. \{\emptyset\}, [1] \supset \{\emptyset\}$$

$$\{\emptyset\} \subseteq \{1, \{\emptyset\}\}\ .$$
7 $\{2\} \subseteq \{1, \{1\}, \{2\}\}\ .$ λ

$$1 \in \{\{1\}\}$$
 .ם

$$1 \in \{1, \{1\}\}$$
 .א

$$|\mathcal{P}(\{2,\varnothing\})| = 2 \cdot |\mathcal{P}(\{\varnothing\})|$$
 .n $|\{1,\mathbf{N}\}| = |\{1,2\}|$.t $\{1\} \in \{\mathbf{N}\}$.1 $\{\varnothing\} \subseteq \{\varnothing,\{1\}\}\}$.n

$$|\{1, \mathbf{N}\}| = |\{1, 2\}|$$
 .

$$\{1\} \in \{N\}$$
 .

$$\{\emptyset\}\subseteq \{\emptyset,\{1\}\}$$

שאלה 2 (24 נקי)

: יהיו A,B,C יהיו את הטענות הבאות A,B,C

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$
 .

$$\mathcal{P}(A) \subset \mathcal{P}(B)$$
 אז $\{A\} \subset \mathcal{P}(B)$ ב. אם

$$B \subset A$$
 או $A \subset B$ או $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ ג. אם

שאלה 3 (24 נקי)

: הבאות הטענות את הוכיחו U הוניברסלית לקבוצה אוניברסליות קבוצות חלקיות הבאות הבאות אוניברסלית

$$A = U$$
 in $(A \cap B)^c \subset A$ dh .

$$C = B^c$$
 in $A^c \wedge B = A \wedge C$.

$$x \notin A \triangle B \triangle C$$
 אז $x \in (A \cap B) \setminus C$ אם ...

שאלה 4 (28 נקי)

 $A_n = \{0,1,2,3,...,n\}$ נסמן $n \in \mathbb{N}$ נסמן אוניברסלית. האוניברסלית. לכל

 \mathbb{Z} עבור כל אחת מן הקבוצות הבאות, קבעו אם היא שווה או לא לאחת הקבוצות $\{0\}$, $\{0\}$, $\{0\}$ נמקו טענותיכם.

$$\bigcup_{n=0}^{\infty} (A_{n+1} \cap A_n^{\ c})$$
 .T

$$igcup_{n=0}^{\infty}(A_{n+1}\cap A_n^{\ c})$$
 .7 $igcup_{n=0}^{\infty}(A_{2n}\setminus A_n)$.3 $igcup_{n=0}^{\infty}A_n^{\ c}$.3 $igcup_{n=0}^{\infty}A_n^{\ c}$.8

$$\bigcap_{n=0}^{\infty} A_n^{c}$$
.

$$\bigcup_{n=0}^{\infty} A_n^c$$
 .

קורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: תורת הקבוצות פרקים 2,1

מספר השאלות: 20 נקודות

26.3.2019 : מועד הגשה: 2019

את התשובות לממ"ח יש לשלוח באמצעות מערכת שאילת"א http://www.openu.ac.il/sheilta/ בכתובת

הממ"ח נבדק בצורה ממוחשבת. אין לשלוח את פתרון הממ"ח למנחה!

בכל שאלה במטלה זו מופיעה טענה אחת. סמנו:

א - אם הטענה נכונה ב - אם הטענה לא נכונה

. הם יחסים R,S הן קבוצות, A,B,C הם יחסים

שאלה 1

 $\{2,3\} \cap \{\{2\},\{3\}\} = \{\{2\},3\} \cap \{2,\{3\}\}$

שאלה 2

B=C אם $A\cup B=A\cup C$ אם

שאלה 3

 $A\subseteq C$ או $A\subseteq B$ או $A\subseteq B\cup C$ אם

שאלה 4

 $|\mathcal{P}(A)\cup\mathcal{P}(B)|=2^{|A|}+2^{|B|}$ אם A,B קבוצות סופיות זרות אז

שאלה 5

 $A \subseteq \mathcal{P}(A)$

שאלה 6

 $B \subseteq A$ אם $A \Delta B = A \setminus B$ אם

שאלה 7

 $x \notin A \cap B$ in $x \in A \Delta B \Delta C$ dn

שאלה 8

 $x \in A \cap B$ in $x \notin A^c \cap B^c$ dr

שאלה 9

 $C \neq \emptyset$ וגם $B \neq \emptyset$ אז $A \subset B \times C$ אם

$$\bigcup_{n=1}^{\infty} \left(1 + \frac{1}{n}, 2 - \frac{1}{n}\right) \subseteq \bigcap_{n=1}^{\infty} \left(1 - \frac{1}{n}, 2 + \frac{1}{n}\right)$$

שאלה 11

 $A = B \times C$ -ש כל איבר של B,C הוא זוג סדור אז קיימות קבוצת אם כל איבר של

שאלה 12

 $R^2=R$ יחס רפלקסיבי וטרנזיטיבי אז R אם R

ועעלה 13

. אז R מקיים R מקיים R אז R הוא יחס רפלקסיבי וטרנזיטיבי

ועאלה 14

אם אנטי-סימטריים אנטי-סימטריאז הם R,S אם אנטי-סימטריים אנטי

שאלה 15

מספר יחסי השקילות השונים שניתן להגדיר על הקבוצה $\{1,2,3\}$ קטן ממספר יחסי הסדר המלא שניתן להגדיר על קבוצה זו.

שאלה 16

. כל יחס רפלקסיבי R המקים $R^2=R$ המקים או סדר חלקי.

שאלה 17

 $\mid R \mid \geq n+2$ אם ליחס שקילות R על $\{1,2,3,...,n\}$ יש פחות מ- n מחלקות אז

שאלה 18

אם של השקילות השקילות ב $_m$ היא יחס המוגדרת על-ידי אז החלוקה של בעיים אז החלוקה של ב $_m$ היא מספרים בעיים החלוקה של ב $_m$ יחס המוגדרת של ידי יחס השקילות החלוקה של ב

שאלה 19

איבר אחרון A קבוצה סדורה (סדר מלאי) אינסופית אז אין ב- A איבר אחרון

ועאלה 20

אם איברים מינימליים שני אברים איברים איברים איברים איברים אם $\langle A, \prec \rangle$ הוא איברים או $A = \{1,2,3,4\}$ מקסימליים אז כל איבר של A הוא מינימלי או מקסימליי.

קורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: תורת הקבוצות פרקים 2, 3

מספר השאלות: 4 מספר השאלות: 4

סמסטר: 2019 מועד הגשה: 2.4.2019

מטלת מנחה ניתן להגיש באחת הדרכים הבאות (הסבר מפורט ביינוהל הגשת מטלות מנחהיי):

- במערכת המטלות המקוונת (קובץ מוקלד. לגבי הגשת קובץ סרוק יש להתעדכן אצל המנחה\בודק של קבוצת הלימוד שלד). כניסה מאתר הקורס או משאילת״א
 - על דפי נייר, עם טופס נלווה, באופן ישיר למנחה במפגש ההנחיה
 - על דפי נייר, עם טופס נלווה, באמצעות דואר ישראל, לכתובתו של המנחה.

שאלה 1

 $A,B\in\mathcal{P}(\{1,2,3,4\})$ על הקבוצה R,S נתונים שני יחסים $\mathcal{P}(\{1,2,3,4\})$ נתונים שני יחסים ASB - ו $A\cap\{1,2\}\subset B\cap\{1,2\}$ אם ורק אם ARB

- א. קבעו אם אחד מהיחסים הוא יחס שקילות ואם התשובה חיובית, מיצאו את מחלקות השקילות שלו.
- ב. קבעו אם אחד היחסים הוא יחס סדר חלקי או מלא ואם התשובה חיובית, מיצאו את האיברים המינימליים והמקסימליים בקבוצה הסדורה שגיליתם.

שאלה 2

על הקבוצה xRy , $x,y\in A$ כך: לכל R,S כך: אם ורק אם $A=\mathbf{N}\setminus\{0\}$ אם ורק אם $\cdot \frac{y}{x}=2^j$ כך שלם i>0 כך שלם i>0 קיים מספר טבעי i>0 כך של $\frac{y}{x}=2^j$ אם ורק אם קיים מספר טבעי

- א. הוכיחו שאחד משני היחסים הוא יחס שקילות.
- ב. מיצאו את מחלקות השקילות של יחס השקילות שגיליתם בסעיף אי.
 - ג. הוכיחו שאחד משני היחסים הוא סדר חלקי.
- ד. מיצאו את האיברים המינימליים ואת האיברים המקסימליים (אם יש) לגבי היחס האחרון.

. פונקציה $f: \mathbf{N} \to \mathbf{N}$ תהי הי $A_{-1} = \varnothing$ ובנוסף נסמן הבנוסף $A_n = \{0,1,2,...,n\}$ לכל הי

- $,m,n\in\mathbf{N}\cup\{-1\}$ לכל $f[A_n]\neq f[A_m]$ אם ורק אם ורק אם היא חד-חד-ערכית fהיא הוכיחוf . $m\neq n$
- $m \neq n$, $m,n \in \mathbf{N} \cup \{-1\}$ לכל $f^{-1}[A_n] \neq f^{-1}[A_m]$ היא על אם ורק אם f

שאלה 4

 $f(m,n)=\langle 2m+3n,3m+2n \rangle$, $m,n\in {f Z}$ לכל המוגדרת כך: לכל $f:{f Z}\times{f Z}\to{f Z}\times{f Z}\to{f Z}\times{f Z}$ נתונה פונקציה $\pi_1(m,n)=m$ לכל את ההטלה על הרכיב הראשון ($m,n\in {f Z}$ לכל $\pi_1(m,n)=m$ לכל את. הוכיחו ש- f היא חד-חד-ערכית ולא על.

- ב. הוכיחו ש- $\pi_1 \circ f$ היא על ולא חד-חד-ערכית.
- ג. הוכיחו שהפונקציה $g : \mathbf{Q} \times \mathbf{Q} \to \mathbf{Q} \times \mathbf{Q} \to \mathbf{Q} \times \mathbf{Q}$ לכל הוכיחו שהפונקציה $g : \mathbf{Q} \times \mathbf{Q} \to \mathbf{Q} \times \mathbf{Q}$ לכל הוכיחו שהפונקציה ומיצאו את הפונקציה ההפכית לה. $x,y \in \mathbf{Q}$

קורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: "תורת הקבוצות" פרקים 4,3

מספר השאלות: 20 נקודות

סמסטר: 2019 מועד הגשה: 15.4.2019

את התשובות לממ"ח יש לשלוח באמצעות מערכת שאילת"א

http://www.openu.ac.il/sheilta/ בכתובת

הממ"ח נבדק בצורה ממוחשבת. אין לשלוח את פתרון הממ"ח למנחה!

בכל אחת מהשאלות הבאות מופיעה טענה.

סמנו: א - אם הטענה נכונה ; ב - אם הטענה לא נכונה

במטלה זו האותיות f,g מסמנות פונקציות

שאלה 1

 $\left\langle \mathbf{R},\mathbf{R},\left\{ \left\langle x,1+x+x^2+\cdots+x^n \right
angle \mid x\in \mathbf{R} \right\}
ight
angle$ השלשות $n\in \mathbf{N}$ עבור כל מספר תבור כל מספר השלשות $\left\langle \mathbf{R},\mathbf{R},\left\{ \left\langle 1,n+1 \right\rangle \right\} \cup \left\{ \left\langle x,\left(1-x^{n+1}\right) \middle/ (1-x) \right\rangle \mid x\in \mathbf{R}\setminus \{1\} \right\}
ight
angle$ ר-

שאלה 2

. $f[C_1]\cap f[C_2]=\varnothing$ אז גם $C_1\cap C_2=\varnothing$, $C_1,C_2\subseteq A$ -ו היא פונקציה $f:A\to B$ אם אם היא פונקציה ו

שאלה 3

 $.\,f^{\,-1}[D_1]\cap f^{\,-1}[D_2]=\varnothing$ אז גם $D_1\cap D_2=\varnothing$, $D_1,D_2\subseteq B$ ים פונקציה ו- $f:A\to B$ אם אם אם

שאלה 4

 $\left| f[C] \right| = \left| C \right|$ מתקיים מתקיים לכל קבוצה אם לכל חד-חד-ערכית אם היא היא לכל קבוצה לכל היא היא לכל היא היא היא לכל חד-חד-ערכית אם היא היא לכל היא היא חד

שאלה 5

 $\left|f^{-1}[D]
ight|=\left|D
ight|$ מתקיים מתקיים לכל קבוצה סופית $D\subseteq B$ היא על אם ורק אם לכל קבוצה סופית

שאלה 6

 $\chi_A^{-1}(\{1\}) \cap \chi_B^{-1}(\{0\}) = A \setminus B$ אם אוניברסלית של קבוצה אוניברסלית אוניברסלית A,B

שאלה ז

. אם $f: \mathbf{N} \to \mathbf{N}$ אם $f: \mathbf{N} \to \mathbf{N}$ אם

שאלה 3

. אם $f: \mathbf{N} \to \mathbf{N}$ היא על אז $f: \mathbf{N} \to \mathbf{N}$

שאלה 9

. אם $f \circ g = I_{\mathbf{N}}$ ואם $f,g:\mathbf{N} \to \mathbf{N}$ אז ואם $f,g:\mathbf{N} \to \mathbf{N}$

-ט ק $g: \mathbf{N} \to \mathbf{N}$ אז קיימת פונקציה קבועה f(n) = n+3 , $f: \mathbf{N} \to \mathbf{N}$ אם $f \circ g = g \circ f$

שאלה 11

קבוצת המספרים הטבעיים שמתחלקים ב- 7 שקולה לקבוצת המספרים הטבעיים שאינם מתחלקים ב- 7.

שאלה 12

. $|A|=\aleph_0$ אם קבוצה אינסופית שקולה לכל קבוצה לכל אינסופית א שקולה אינסופית א

שאלה 13

N - אם B קבוצת הקבוצות החלקיות ל- N ששקולות ל- N ששקולות ל- N אם א קבוצת החלקיות ל- B אז A שקולה ל- B שקולה ל- B

שאלה 14

. אם A אט אז א מכילה מנוון אז $\left|A\right|>\aleph_{0}$ ואם אם $A\subseteq\mathbf{R}$

שאלה 15

 $|\mathbf{R} \setminus [0,\infty)| < |\mathbf{R} \setminus [0,1)|$

שאלה 16

הקבוצות און ו- $\mathbf{N}^{\{1,2,3\}}$ הן שקולות זו לזו. $\mathbf{N}^{\{1,2\}}$

שאלה 17

הקבוצות $\{1,2,3\}^N$ ו- $\{1,2,3\}^N$ הן שקולות זו לזו.

שאלה 18

הקבוצות או ו- $\{1,2\}^{N}$ הן שקולות זו לזו. $\{1,2\}^{N}$

שאלה 19

 $\left| igcup_{A \in \mathcal{F}} A \right| < \left| igcup_{A \in \mathcal{F}} \mathcal{P}(A) \right|$ אז \mathbf{N} אם \mathcal{F} היא קבוצת כל התת-קבוצות הסופיות של

שאלה 20

. א $_0+\kappa_1\neq\aleph_0+\kappa_2$ אז אינסופית אינסופית ו- עוצמה אופית א עוצמה אינסופית א κ_1

קורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: תורת הקבוצות פרק 4

מספר השאלות: 4 מספר המטלה: 3 נקודות

סמסטר: 2019 מועד הגשה: 18.4.2019

מטלת מנחה ניתן להגיש באחת הדרכים הבאות (הסבר מפורט ביינוהל הגשת מטלות מנחהיי):

- במערכת המטלות המקוונת (קובץ מוקלד. לגבי הגשת קובץ סרוק יש להתעדכן אצל המנחה\בודק של קבוצת הלימוד שלך). כניסה מאתר הקורס או משאילת"א
 - על דפי נייר, עם טופס נלווה, באופן ישיר למנחה במפגש ההנחיה
 - על דפי נייר, עם טופס נלווה, באמצעות דואר ישראל, לכתובתו של המנחה.

שאלה 1 (28 נקי)

מיצאו את העוצמות של כל אחת מן הקבוצות הבאות. נמקו את התשובות.

א. קבוצת כל המספרים הממשיים בקטע (0,1) אשר בפיתוח שלהם כשבר עשרוני אינסופי מופיעות רק ספרות אי-זוגיות.

$$\{x + y\sqrt{2} + z\sqrt{3} \mid x, y, z \in \mathbf{Q}\}$$
 ...

$$\mathcal{P}((0,1)\setminus\mathbf{Q})$$
 .

$$\mathcal{P}(\mathbf{Q} \cap (0, 10^{-10}))$$
.7

שאלה 2 (28 נקי)

- . מיצאו את העוצמה של הקבוצה $\displaystyle \bigcup_{n=1}^{\infty} \mathbf{Q}^n$. נמקו את התשובה.
- $a_0+a_1x+a_2x^2+\dots+a_nx^n$ ב. פולינום ממעלה n עם מקדמים רציונליים הוא ביטוי מהצורה $a_0,a_1,a_2,\dots,a_n\in \mathbf{Q}$ כאשר כאשר (מכל המעלות האפשריות). נמקו את התשובה. רציונליים (מכל המעלות האפשריות). נמקו
- ג. כל מספר ממשי שהוא שורש של פולינום עם מקדמים רציונליים נקרא מספר **אלגברי**. מספר מספר מספר מספר של פולינום ממעלה 6 הוכיחו שהמספר $\alpha=\sqrt[3]{2+\sqrt{5}}$ הוא אלגברי (הראו ש- α הוא שורש של פולינום ממעלה 6 עם מקדמים רציונליים).
 - ד. הוכיחו שקבוצת כל המספרים האלגבריים היא אינסופית ובת מנייה.

שאלה 3 (16 נקי)

: נסמן

.($\mathbf{R} \times \mathbf{R}$ - כרגיל כ- מזהים מזהים במישור של נקודות של נקודות ל

. קבוצת כל העיגולים במישור B

. הלוח של עיגולים במישור שזרים \mathcal{C}

. |
 C | < |
 B | < | A | $\,$ -ש

שאלה 4 (28 נקי)

 $F_n = F_{n-1} + F_{n-2}$: טבעי $n \geq 2$ ולכל , $F_1 = 1$, $F_0 = 1$: באופן הבא מוגדרת מוגדרת מיבונציי מוגדרת הבא

. $\sum_{i=0}^n F_i = F_{n+2} - 1$: טבעי מתקיים אלכל שלכל שלכל הוכיחו אינדוקציה שלכל

 $a_0, a_1, ..., a_k \in \{0,1\}$ ומספרים מספר טבעי קיימים מספר שלכל חלכל הוכיחו באינדוקציה שלכל ח

.
$$n = \sum_{i=0}^{k} a_i F_i$$
 כך ש-

נסמן ב- $\langle a_0,a_1,a_2,a_3...\rangle$ אינסופיות כל הסדרות מספרים את A -ב נסמן ב- $a_n=a_{n-1}+a_{n-2}$ את התנאי המקיימות את המקיימות את התנאי

A ג. מיצאו את העוצמה של

. A -ם סדרה ב- $\mathbf{R} \times \mathbf{R}$ שיבר של הפיכה המתאימה פונקציה הפיכה מיצאו פונקציה הפיכה המתאימה לכל איבר של

ד. מהי העוצמה של קבוצת כל הסדרות מ- A שבהן מופיעים רק מספרים רציונליים?

קורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: "קומבינטוריקה" פרקים 1-2

מספר השאלות: 20 נקודות

סמסטר: 2019 מועד הגשה: עד 2019

את התשובות לממ״ח יש לשלוח באמצעות מערכת שאילת״א

http://www.openu.ac.il/sheilta/ בכתובת

הממ"ח נבדק בצורה ממוחשבת. אין לשלוח את פתרון הממ"ח למנחה!

בכל אחת מהשאלות הבאות מופיעה טענה.

סמנו: **א** - אם הטענה נכונה ; ב - אם הטענה לא נכונה

שאלה 1

A - B - B אם (א ב-2 אם הפונקציות מ- A + B או מספר הפונקציות מ- B + B או מספר הפונקציות מ- B + B

צאלה 2

תהי מספרים זוגיים מספרים הפונקציות מ- א ל- Aה מספר הפונקציות מספרים . $A = \{1, 2, 3, 4, 5, 6\}$

 18^3 זוגיים הוא

שאלה 3

תהי A לאחד כל מספר של A - אחד מספר הפונקציות מ- A ל- מספר הפונקציות מספר של A - אחד מספר של A

 2^33^2 המחלקים של אותו מספר הוא

שאלה 4

תהי A : A : A המעתיקות מספרים . $A = \{1,2,3,4,5,6\}$ תהי . A : A : A המעתיקות מספרים . A : A : A המעתיקות מספרים זוגיים שווה למספר הפונקציות מ-

שאלה 5

מספר אונה המעתיקות החד-חד-ערכיות מהקבוצה $\{1,2,3,4,5\}$ לעצמה המעתיקות החד-חד-ערכיות מספר מספר

מ- 1 הוא !4 –5!

שאלה 6

מספר הפונקציות החד-חד-ערכיות מהקבוצה $\{1,2,3,4,5\}$ לעצמה המעתיקות את 1 למספר שונה מספר הפונקציות החד-חד-ערכיות מהקבוצה $2\cdot 4!$ למספר שונה מ- 2 הוא $2\cdot 4!$

שאלה 7

 $A = \{1,2,3,4\}$ מספר הפונקציות מ- $A = \{1,2,3,4\}$ על אוא $A = \{1,2,3,4\}$

שאלה 8

מספר הקבוצות איברים שווה למספר הקבוצות $A = \{1,2,3,4,5,6\}$ שבהן שווה למספר הקבוצות מספר הקבוצות ל- A שבהן שלכל היותר 3 אברים.

מספר החלוקות השונות של הקבוצה $A = \{1,2,3,4,5,6\}$ למחלקות בנות 3 איברים כל אחת שווה מספר החלוקות של הקבוצה של קבוצה בעלת 3 איברים מתוך A

שאלה 10

מספר הסידורים השונים של המחרוזת AAABBC גדול ממספר הסידורים השונים של המחרוזת AABBCC

שאלה 11

מספר הסידורים השונים של המחרוזת AABBCC שבהן לא מופיע הרצף AA גדול ממספר הסידורים שלה שבהם מופיע הרצף AA.

שאלה 12

מספר הסידורים השונים של המחרוזת AABBCC מספר החלוקות של הקבוצה מספר הסידורים בנות 2 איברים כל $\{1,2,3,4,5,6\}$

שאלה 13

מספר הסידורים השונים של המחרוזת AABBCC שווה למספר הדרכים שבהן יכולים 6 תלמידים להגיש 3 עבודות שונות בזוגות.

שאלה 14

מספר הדרכים לפיזור 3 כדורים זהים ב- 4 תאים שונים שווה למספר הדרכים השונות לפיזור 4 כדורים זהים ב- 3 תאים שונים.

שאלה 15

מספר הדרכים לפיזור 4 כדורים זהים ב- 4 תאים שונים שווה למספר הדרכים השונות לפיזור 3 כדורים זהים ב- 5 תאים שונים.

שאלה 16

מספר הדרכים לפיזור 4 כדורים שונים ב- 4 תאים שונים גדול פי 16 ממספר הדרכים לפיזור 4 כדורים זהים ב- 4 תאים שונים.

שאלה 17

מספר הדרכים לפיזור 4 כדורים שונים ב- 4 תאים זהים הוא קטן מ- 10.

ועאלה 18

מספר הפתרונות הטבעיים של המשוואה $x_1+x_2+x_3+x_4=14$ שווה הטבעיים של הספר הפתרונות מספר הפתרונות השלמים $x_1+x_2+x_3+x_4=10$ החיוביים של המשוואה

שאלה 19

מספר הפתרונות בטבעיים אווה אווה $x_1+x_2+x_3+x_4=14$ מספר המשוואה אווה למספר בטבעיים אי-זוגיים של המשוואה אוואה $x_1+x_2+x_3+x_4=14$ בטבעיים אי-זוגיים של המשוואה בטבעיים אי-זוגיים של המשוואה אוואה בטבעיים אי-זוגיים של המשוואה בערכה בער

שאלה 20

.10 הוא , $x_1, x_2, x_3, x_4 \in \{-1, 1\}$ שבהם $x_1 + x_2 + x_3 + x_4 \geq 0$ מספר הפתרונות לאי-שוויון

קורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: קומבינטוריקה פרקים 4,3

מספר השאלות: 5 נקודות

סמסטר: 2019 מועד הגשה: 13.5.2019

מטלת מנחה ניתן להגיש באחת הדרכים הבאות (הסבר מפורט ביינוהל הגשת מטלות מנחהיי):

- במערכת המטלות המקוונת (קובץ מוקלד. לגבי הגשת קובץ סרוק יש להתעדכן אצל המנחה\בודק של קבוצת הלימוד שלך). כניסה מאתר הקורס או משאילת"א
 - על דפי נייר, עם טופס נלווה, באופן ישיר למנחה במפגש ההנחיה
 - על דפי נייר, עם טופס נלווה, באמצעות דואר ישראל, לכתובתו של המנחה.

שאלה 1 (20 נקודות)

- א. מיצאו את מספר הקבוצות החלקיות לקבוצה A בעלת המכילות ממש קבוצה א. מיצאו את מספר הקבוצות החלקיות לקבוצה A איברים מתוך א
- ב. לבובספוג יש $k \ge 4$ של חברים. בכל ערב הוא מזמין מספר כלשהו $k \ge 4$ של חברים לסעוד אתו ולאחר מכן הוא תמיד מזמין שלושה מהם לשחק בביתו. (אף אחד לא מסרב!) ספרו בשתי דרכים את מספר האופציות השונות שיש לבובספוג לבלות עם חברים בערב אחד,

. בדרך קומבינטורית.
$$\sum_{k=4}^{n} \binom{n}{k} \binom{k}{3} = \binom{n}{3} (2^{n-3} - 1)$$
 את הזהות $n \ge 4$ בדרך הוכיחו עבור

(כלומר ללא בפישוט מראש של האגפים).

ג. הוכיחו את השוויון מסעיף ב' בדרך אלגברית (על ידי חישוב ישיר).

שאלה 2 (20 נקודות)

A נתונה $A = \{1,2,3,4,5,6,7,8,9\}$ נתונה $A = \{1,2,3,4,5,6,7,8,9\}$

- $i \in \{2,3,4\}$ א. מיצאו את מספר הפונקציות $f:A \to \{2,3,4\}$ המקבלות כל אחד מן מיצאו א. בדיוק i פעמים.
 - 2,3,4 מספר הפונקציות $f:A \to \{2,3,4,5,6\}$ המקבלות כל אחד מהערכים ב. מיצאו את מספר הפונקציות בדיוק פעמיים.
 - :את התנאיימות המספר המונקציות החד-חד-ערכיות המספר הפונקציות מספר מיצאו את מספר הפונקציות החד-חד-ערכיות המספר הפונקציות החד

$$\{f(1), f(2), f(3)\} \cap \{1, 2, 3\} = \emptyset$$

שאלה 3 (20 נקודות)

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 8$ נתונה המשוואה

- $x_1 + x_2 + x_3 \neq 5$ א. מיצאו מספר הפתרונות בטבעיים של המשוואה כאשר
- $1.1 \leq i \leq 4$ לכל לכל $x_{2i-1} + x_{2i} \neq 2$ -ש כך של המשוואה של הפתרונות בטבעיים של הפתרונות מספר הפתרונות המשוואה או

שאלה 4 (20 נקודות)

A,A,A,B,B,C,C,D,D,D בשאלה זו נתייחס לכל המילים באורך 10 הכתובות באותיות

- א. מיצאו את מספר המילים שאין בהן שלוש אותיות מאותו סוג הצמודות זו לזו.
- ב. מיצאו את מספר המילים שבהן יש **לפחות שתי אותיות** מסוג A הצמודות זו לזו.

שאלה **5** (20 נקודות)

: רמי מציע לדינה את האתגר הבא

 $1.10 \le n \le 36$ דינה תבחר 8 מספרים טבעיים שונים כלשהם דינה תבחר

רמי ינסה ליצור, תוך שימוש **רק במספרים שדינה בחרה או בחלק מהם**, שני סכומים שווים.

למשל, אם דינה בחרה את המספרים 10,11,12,15,18,25,32,36

.11 + 25 = 36 רמי יכול לרשום את השוויון

1.10 + 12 + 18 = 15 + 25 לחלופין, הוא יכול לרשום

כל המספרים צריכים להילקח מהרשימה של דינה, ואין חזרות על אותו מספר.

אם רמי מצליח לרשום שוויון כזה – הוא מנצח. אם הוא לא מצליח – דינה מנצחת.

בהנחה שאחרי שדינה בוחרת יש לרמי די זמן - או מחשב - לבדוק את כל האפשרויות,

הוכיחו כי רמי תמיד ינצח!

הדרכה: עקרון שובך היונים.

קורס: 20476 מתמטיקה דיסקרטית חומר הלימוד למטלה: קומבינטוריקה פרקים 7,6

מספר השאלות: 4 נקודות

סמסטר: 22019 מועד הגשה: 27.5.2019

מטלת מנחה ניתן להגיש באחת הדרכים הבאות (הסבר מפורט ביינוהל הגשת מטלות מנחהיי):

- במערכת המטלות המקוונת (קובץ מוקלד. לגבי הגשת קובץ סרוק יש להתעדכן אצל המנחה\בודק של קבוצת הלימוד שלך). כניסה מאתר הקורס או משאילת"א
 - על דפי נייר, עם טופס נלווה, באופן ישיר למנחה במפגש ההנחיה
 - על דפי נייר, עם טופס נלווה, באמצעות דואר ישראל, לכתובתו של המנחה.

שאלה 1 (25 נקי)

 $(a+b+c+d)^{10}$ שאלה זו מתייחסת לפיתוח המולטינומי

- (5 נקי) א. מהו מספר האיברים בפיתוח? (לאחר כינוס איברים דומים)
 - (10 נקי) ב. לכמה איברים יש מקדם שלא מתחלק ב- 5!
- י 2 שונות a,b,c,d אותיות של כל האותיות שבהם החזקות של מספר האיברים שונים מ- 2 (מותר לחזקות של אותיות אלה להיות מספרים זוגיים אחרים, ששונים מ- 2)

שאלה 2 (20 נקי)

a,b והאותיות 1,2,3,4 הספרות המחרוזות באורך a, שאיבריהן הם הספרות מספר המחרוזות מחרוזות מותרות בעלות התכונה שמימין לספרה **חייבת** להופיע אות. למשל a2b3aa ו- a2b4 הן מחרוזות אסורות. את a3 מגדירים כ- 1.

. a_1, a_2 מיצאו בעזרת חישוב ישיר את

- . מתאימים ליחס הנסיגה a_n, a_1, a_2 שהערכים של a_n, a_1, a_2 מתאימים ליחס הנסיגה.
 - a_n ב. פתרו את יחס הנסיגה וקבלו נוסחה מפורשת עבור

שאלה 2 (25 נקי)

$$f(x)(1+2x+2x^2+x^3)=rac{1}{\left(1-x
ight)^3}$$
 -נתון שי $f(x)=\sum_{i=0}^{\infty}a_ix^i$ תהי

 a_0, a_1, a_2 א. חשבו את (5 נקי)

לכל
$$a_n = D(3,n) - ra_{n-1} - sa_{n-2} - ta_{n-3}$$
 כך ש- r,s,t כך מפאים (10) נקי) ב. מצאו מספרים $a_n = a_{n-1} - sa_{n-2} - ta_{n-3}$ בעזרת הנוסחה הזו. $n \geq 3$

ג. רשמו פונקציה יוצרת מתאימה לחישוב מספר הפתרונות הטבעיים של המשוואה האואה n=7 מצאו את מספר הפתרונות במקרה ש- $x_1+2x_2+3x_3=n$ (רמז: שימו לב לקשר שבין f(x) לבין הפונקציה מסעיף x_1

שאלה 4 (30 נקי)

- א. מיצאו פונקציה יוצרת מתאימה לחישוב מספר הפתרונות בטבעיים של המשוואה א. מיצאו פונקציה יוצרת מתאימה לחישוב מספר $x_1+x_2+\cdots+x_k=n$. (רמז לפישוט: אפשר להוציא את $x_1+x_2+\cdots+x_k=n$
 - n=32 , k=10 מיצאו את מספר פתרונות המשוואה מסעיף אי כאשר
- ג. מצאו פונקציה יוצרת מתאימה לחישוב מספר הפתרונות בטבעיים של המשוואה ... מצאו פונקציה יוצרת מתאימה לחישוב מספר הפתרונות בטבעיים של המשוואה $x_1+x_2+\dots+x_k+y_1+\dots+y_k=n$ ((1+x+\dots+\dots+x^5=\frac{1-x^6}{1-x}: מיצאו את מספר פתרונות המשוואה מסעיף א' כאשר n=24 , k=10

קורס: 20476 מתמטיקה בדידה חומר הלימוד למטלה: תורת הגרפים

מספר השאלות: 20 נקודות

סמסטר: 2019 מועד הגשה: 12.6.2019

תשובות לממ"ח יש לשלוח באמצעות מערכת שאילת"א

http://www.openu.ac.il/sheilta/ בכתובת

הממ"ח נבדק בצורה ממוחשבת. אין לשלוח את פתרון הממ"ח למנחה!

בכל אחת מהשאלות הבאות מופיעה טענה.

סמנו: א - אם הטענה נכונה ; ב - אם הטענה לא נכונה

שאלה 1

כל גרף פשוט על 6 צמתים שבו 11 קשתות הוא קשיר

שאלה 2

 $\sum_{v \in A} \deg_G(v) = \mid E \mid$ אז (1.5 הגדרה כמו בהגדרה דו-צדדי הוא $G = (A \cup B, E)$ אם $G = (A \cup B, E)$

שאלה 3

אם לגרף \overline{G} יש שני מרכיבי קשירות בדיוק, אז הגרף המשלים \overline{G} הוא דו-צדדי

שאלה 4

,אם הוא גרף דו-צדי אז הגרף המשלים \overline{G} יש שני מרכיבי קשירות בדיוק אם G

בשאלות G פיים המתקבל הוא הרף שבו הוא הרף שבו מסלול אוילר האינו מעגל הוא הוא הרף המתקבל מ- בשאלות החיקת האחת המחברת בין שני צמתים שונים של G

שאלה 5

אין מסלול אוילר שאינו מעגל $G_{\scriptscriptstyle \perp}$ בגרף

שאלה 6

אינו אוילרי G_1

שאלה 7

הוא גרף אוילרי G_1

שאלה 8

אם G המילטוני אז הם G אם המילטוני

בגרף G קיים מסלול המילטון

1,2,3,... נתייחס לעצים המתוייגים שבהם הצמתים מסומנים במספרים עוקבים בשאלות 10-14 נתייחס לעצים המתוייגים שבהם הצמתים מספר שלם חיובי. שהם בעלי סדרת פרופר מהצורה (3,3,k,5,5), כאשר k

שאלה 10

כל עץ כזה הוא בעל 5 צמתים בדיוק

שאלה 11

מספר העצים המקיים את התנאים הנתונים הוא 7

שאלה 12

לכל העצים הנייל יש אותו מספר עלים.

שאלה 13

כל שניים מן העצים הנתונים הם איזומורפיים (לפי הגדרה 2.8)

שאלה 14

כל שניים מן העצים הנתונים הם לא איזומורפיים (לפי הגדרה 2.8)

.4 בשאלות 20 – 20 הוא גרף פשוט על 6 צמתים שבו הדרגה של כל צומת היא $G\,$

שאלה 15

הוא גרף אוילרי G

שאלה 16

הוא גרף המילטוני G

שאלה 17

קיים ב-G זיווג מושלם

שאלה 18

הוא גרף מישורי G

שאלה 19

הוא לא גרף מישורי G

שאלה 20

G מספר הצביעה של

קורס: 20476 – מתמטיקה בדידה חומר הלימוד למטלה: תורת הגרפים

מספר השאלות: 5 נקודות

סמסטר: 2019 מועד הגשה: 17.6.2019

מטלת מנחה ניתן להגיש באחת הדרכים הבאות (הסבר מפורט ביינוהל הגשת מטלות מנחהיי):

- במערכת המטלות המקוונת (קובץ מוקלד. לגבי הגשת קובץ סרוק יש להתעדכן אצל המערכת המטלות המקוונת (קובץ שלד). כניסה מאתר הקורס או משאילת"א
 - על דפי נייר, עם טופס נלווה, באופן ישיר למנחה במפגש ההנחיה
 - על דפי נייר, עם טופס נלווה, באמצעות דואר ישראל, לכתובתו של המנחה.

שאלה 1 (20נקודות)

G = (V, E) נתון גרף אוילרי קשיר

- . הוא קשיר ($V,E-\{e\}$) הגרף $e\in E$ הוא קשיר.
- ב. הוא $(V,E-\{e_1,e_2,e_3\})$ כך ש- $e_1,e_2,e_3\in E$ אוילרי אז G הוא הוא הוכיחו שאם קיימות קשתות לא גרף דו-צדדי.
- . הוכיחו שאם בעלי אותה בעלי אותה G אז קיימים בV אז אותה בעלי אותה בעלי אותה דרגה. ג.

שאלה 2 (15 נקודות)

1,2,3,...,8 בשאלה זו נתייחס לעצים על 8 צמתים המתויגים במספרים

- א. מיצאו את מספר העצים שבהם העלים הם חמשת הצמתים 4,5,6,7,8 ורק הם.
 - ב. מיצאו את מספר העצים שבהם קיים צומת בעל דרגה 5.

שאלה 3 (15 נקודות)

יהי k עץ על n צמתים שבו יש T יהי

- $d_T(v) \le k$, $v \in V$ א. הוכיחו שלכל צומת
- ב. הוכיחו שאם $\frac{T}{2}$ הוא הגרף המשלים $k \leq \frac{n}{2}$ הוא המילטוני

שאלה 4 (20 נקודות)

, ($\{1,2,3\}$ ל- יהיו החלקיות ל- $A = P(\{1,2,3\}) \setminus \{\emptyset\}$ יהיו $A = P(\{1,2,3\}) \setminus \{\emptyset\}$

 $t \in B$ ולכל $S \in A$ ולכל הדו-צדדי המוגדר כך: $B = \{1, 2, 3, 4, 5, 6\}$

t שווה לסכום או למכפלה או שווה t אם ורק אם אם יש קשת בין אם לי- א ל

הוכיחו על ידי דוגמה או הפריכו בעזרת משפט הול כל אחת מן הטענות הבאות

- A איווג המזווג את כל צומתי G א.
- B זיווג המזווג את כל צומתי ב. קיים ב-
- ג. אם משמיטים ב- G את הצומת $\{3\}$ ואת כל הקשתות הסמוכות לו, מתקבל גרף שיש בו זיווג מושלם.

שאלה 5 (20 נקודות)

- M=2k+1 פן מספר הקשתות של הוכיחו שקיים מספר טבעי א כך ש-m=2k+1 א. הוכיחו שקיים מספר טבעי
 - ישורי ב. הוכיחו ש- G הוא גרף מישורי (9 נקי)
 - .2 אינו תלוי כלל במספר הצמתים בעלי דרגה G אינו שמספר הצמתים בעלי דרגה G
- . עץ. הוא G ובמקרה זה G הוא 17 ובמקרה אוח בעלי דרגה G הוא עץ.