Lösungen zum 4. Übungsblatt

1. Aufgabe.

Matrix A: Eigenwerte: $\lambda_1=4, \quad \lambda_2=-2 \quad \lambda_3=5, \quad \lambda_4=2$ Eigenvektor zum Eigenwert $\lambda_1=4$:

$$\vec{x_1} = (1; 0; 0; 0)^T$$

Eigenvektor zum Eigenwert $\lambda_2 = -2$:

$$\vec{x_2} = (0; 1; 0; 0)^T$$

Eigenvektor zum Eigenwert $\lambda_3 = 5$:

$$\vec{x_3} = (0; 0; 1; 0)^T$$

Eigenvektor zum Eigenwert $\lambda_4 = 2$:

$$\vec{x_4} = (0; 0; 0; 1)^T$$

Matrix B: Eigenwerte: $\lambda_1=1,\quad \lambda_2=5\quad \lambda_3=4$ Eigenvektor zum Eigenwert $\lambda_1=1$:

$$\vec{x_1} = \frac{1}{\sqrt{70}} \cdot (-6; \ 3; \ 5)^T$$

Eigenvektor zum Eigenwert $\lambda_2 = 5$:

$$\vec{x_2} = \frac{1}{\sqrt{2}} \cdot (0; \ 1; \ 1)^T$$

Eigenvektor zum Eigenwert $\lambda_3 = 4$:

$$\vec{x_3} = (0; 0; 1)^T$$

Matrix C: Eigenwerte: $\lambda_1=-5, \quad \lambda_2=2 \quad \lambda_3=7$ Eigenvektor zum Eigenwert $\lambda_1=-5$:

$$\vec{x_1} = (1; 0; 0)^T$$

Eigenvektor zum Eigenwert $\lambda_2 = 2$:

$$\vec{x_2} = \frac{1}{\sqrt{50}} \cdot (1; 7; 0)^T$$

Eigenvektor zum Eigenwert $\lambda_3 = 7$:

$$\vec{x_3} = \frac{1}{\sqrt{73}} \cdot (-1; 6; 6)^T$$

2. Aufgabe.

- a) Eigenwerte: $\lambda_1 = 3$, $\lambda_2 = 6$ $\lambda_3 = 0$
- b) Sp(A) = 9, det A = 0.
- c) Eigenvektoren zum Eigenwert $\lambda_1 = 3$:

$$\vec{x_1} = \alpha \cdot (-2; \ 0; \ 1)^T$$
.

Eigenvektoren zum Eigenwert $\lambda_2 = 6$:

$$\vec{x_2} = \beta \cdot (2, 5; 1, 5; 1)^T$$
.

Eigenvektoren zum Eigenwert $\lambda_3 = 0$:

$$\vec{x_3} = \gamma \cdot (2, 5; -1, 5; 1)^T$$
.

d) Die Eigenvektoren der Matrix A sind linear unabhängig.

3. Aufgabe.

- a) Eigenwerte: $\lambda_1 = \alpha$, $\lambda_2 = \alpha + \sqrt{2}\beta$, $\lambda_3 = \alpha \sqrt{2}\beta$ $Sp(A) = 3\alpha$, $\det A = \alpha(\alpha^2 2\beta^2)$.
- b) Eigenwerte: $\lambda_{1,2} = 2$, $\lambda_3 = 7$ Sp(A) = 11, $\det A = 28$.

4. Aufgabe.

Eigenwerte: $\lambda_{1,2} = 2$, $\lambda_{3;4} = \pm i$ Sp(A) = 4, det A = 4.

5. Aufgabe.

Eigenwerte: $\lambda_1 = 0$, $\lambda_2 = \sqrt{2}$ $\lambda_3 = -\sqrt{2}$ Eigenvektoren zum Eigenwert $\lambda_1 = 0$:

$$v_1 = \alpha(-1; 0, 1)^T$$

Eigenvektoren zum Eigenwert $\lambda_2 = \sqrt{2}$:

$$v_2 = \beta(1; \sqrt{2}, 1)^T$$

Eigenvektoren zum Eigenwert $\lambda_3 = -\sqrt{2}$:

$$v_3 = \gamma(1; -\sqrt{2}, 1)^T$$

Man zeigt mit Hilfe des Skalarproduktes, dass die Vektoren $\vec{v_1},~\vec{v_2}$ und $\vec{v_3}$ orthogonal sind.