DIN TITTEL HER

DITT NAVN

Thesis submitted for the degree of Master of Science in Astronomy

Institute of Theoretical Astrophysics University of Oslo

DIN DATO

Copyright \bigodot 20XX, DITT NAVN

This work, entitled "DIN TITTEL HER" is distributed under the terms of the Public Library of Science Open Access License, a copy of which can be found at http://www.publiclibraryofscience

Abstract

Acknowledgments

Contents

	Abstract	iii			
	Acknowledgments	v			
	List of Figures	vii			
1	Introduction				
2	Background Theory				
	2.1 History of cosmology and how we model the universe	3			
	2.2 Cosmological parameters and distances	3			
	2.2.1 Evolution of the universe and the Λ CDM model	3			
	Appendicies	4			

viii CONTENTS

List of Figures

Chapter 1

Introduction

2 Introduction

Chapter 2

Background Theory

2.1 History of cosmology and how we model the universe

2.2 Cosmological parameters and distances

When describing an expanding universe

2.2.1 Evolution of the universe and the Λ CDM model

In modern cosmology, the dominating model for describing the universe is the Λ CDM model. Its name is an abbreviation for what is considered the main energy contributions governing the expansion of the universe. The cosmological constant Λ represents dark energy, CDM is an abbrevation for cold dark matter and lastly we have ordinary matter which is what we interact with in our everyday lives. The current estimates suggest that approximately 69% of the universe consists of dark energy while the remaining 31% (Dette er hentet fra Planck 2018) is attributed to dark matter at around 27% and 4% for regular matter leaving only trace contributions from other energy contributing factors such as photons (γ) and neutrinos (ν).(Kanskje v $\tilde{\Lambda}$ |re mer spesifikk her). When modelling the universe these quantites enter into what is called density parameters Ω_i , where i represents a certain type of energy contribution to the universe i.e dark matter or CDM. The density parameter is defined as

$$\Omega_i = \frac{\rho_i}{\rho_c},\tag{2.1}$$

where ρ_i is the density of the current energy contribution and $\rho_c \hat{A}$ is the critical density of the universe. The critical density is the density at which the (blabla). For a flat universe we have

$$\sum_{i} \Omega_i = 1. \tag{2.2}$$

