

CLAIMS

1 3 What is claimed is:

1 1. An isolated nucleic acid comprising a nucleotide sequence encoding a protein
2 selected from the group consisting of a normal CalDAG-GEFI protein, a mutant CalDAG-GEFI
3 protein, a normal CalDAG-GEFII protein, and a mutant CalDAG-GEFII protein.

4

1 2. An isolated nucleic acid comprising a nucleotide sequence encoding a protein
2 selected from the group consisting of a normal cAMP-GEFI protein, a mutant cAMP-GEFI
3 protein, a normal cAMP-GEFII protein, and a mutant cAMP-GEFII protein.

4

1 3. An isolated nucleic acid as in claim 1 wherein said nucleic acid encodes a normal
2 CalDAG-GEF protein and wherein said nucleotide sequence is selected from the group
3 consisting of

4 (a) a sequence encoding a protein comprising the human CalDAG-GEFI amino acid
5 sequence of SEQ ID NO: 4;

6 (b) a sequence encoding a protein comprising the murine CalDAG-GEFI amino acid
7 sequence of SEQ ID NO: 2;

8 (c) a sequence encoding a protein comprising the human CalDAG-GEFII amino acid
9 sequence of SEQ ID NO: 8; and

10 (d) a sequence encoding a protein comprising the murine CalDAG-GEFII amino acid
11 sequence of SEQ ID NO: 6; and

12 (e) a sequence encoding a normal CalDAG-GEF protein and capable of hybridizing to
13 a sequence complementary to any sequence of (a) - (d) under stringent hybridization conditions.

14

1 4. An isolated nucleic acid as in claim 2 wherein said nucleic acid encodes a normal
2 cAMP-GEF protein and wherein said nucleotide sequence is selected from the group consisting
3 of

4 (a) a sequence encoding a protein comprising the human cAMP-GEFI amino acid
5 sequence of SEQ ID NO: 12;
6 (b) a sequence encoding a protein comprising the alternatively spliced human cAMP-
7 GEFI amino acid sequence of SEQ ID NO: 14;
8 (c) a sequence encoding a protein comprising the rat cAMP-GEFI amino acid
9 sequence of SEQ ID NO: 10;
10 (d) a sequence encoding a protein comprising the human cAMP-GEFII amino acid
11 sequence of SEQ ID NO: 18;
12 (e) a sequence encoding a protein comprising the rat cAMP-GEFII amino acid
13 sequence of SEQ ID NO: 16; and
14 (f) a sequence encoding a normal cAMP-GEF protein and capable of hybridizing to a
15 sequence complementary to any sequence of (a) - (e) under stringent hybridization conditions.
16

1 5. An isolated nucleic acid comprising a nucleotide sequence of at least 8 consecutive
2 nucleotides selected from the group consisting SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5,
3 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO.
4 17, and a sequence complementary to any of these sequences.

1 6. An isolated nucleic acid comprising a nucleotide sequence of at least 10 consecutive
2 nucleotides selected from the group consisting SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5,
3 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO.
4 17, and a sequence complementary to any of these sequences.

1 7. An isolated nucleic acid comprising a nucleotide sequence of at least 15 consecutive
2 nucleotides selected from the group consisting SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5,
3 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO.
4 17, and a sequence complementary to any of these sequences.

1 8. An isolated nucleic acid comprising a nucleotide sequence encoding at least one
2 functional domain of a CalDAG-GEF protein selected from the group consisting of a normal
3 CalDAG-GEFI protein, a mutant CalDAG-GEFI protein, a normal CalDAG-GEFII protein, and a
4 mutant CalDAG-GEFII protein.

5

1 9. An isolated nucleic acid comprising a nucleotide sequence encoding at least one
2 functional domain of a cAMP-GEF protein selected from the group consisting of a normal
3 cAMP-GEFI protein, a normal cAMP-GEFII protein, a mutant cAMP-GEFI protein, and a
4 mutant cAMP-GEFII protein.

5

1 10. An isolated nucleic acid comprising a nucleotide sequence encoding an antigenic
2 determinant of a CalDAG-GEF protein selected from the group consisting of a normal CalDAG-
3 GEFI protein, a normal CalDAG-GEFII protein, a mutant CalDAG-GEFI protein, and a mutant
4 CalDAG-GEFII protein.

5

1 11. An isolated nucleic acid comprising a nucleotide sequence encoding an antigenic
2 determinant of a cAMP-GEF protein selected from the group consisting of a normal cAMP-GEFI
3 protein, a normal cAMP-GEFII protein, a mutant cAMP-GEFI protein, and a mutant cAMP-
4 GEFII protein.

5

1 12. A method for identifying an allelic variant or heterospecific homologue of a human
2 CalDAG-GEF gene comprising:

3 choosing a nucleic acid probe or primer capable of hybridizing to a human CalDAG-
4 GEF gene sequence under stringent hybridization conditions;

5 mixing said probe or primer with a sample of nucleic acids which may contain a
6 nucleic acid corresponding to said variant or homologue; and

7 detecting hybridization of said probe or primer to said nucleic acid corresponding to
8 said variant or homologue.

9

1 13. A method as in claim 12 wherein said human CalDAG-GEF gene sequence is
2 selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 7.
3

1 14. A method as in claim 12 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of human genomic DNA, human mRNA, and human cDNA.
3

1 15. A method as in claim 12 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of mammalian genomic DNA, mammalian mRNA, and
3 mammalian cDNA.
4

1 16. A method as in claim 12 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of invertebrate genomic DNA, invertebrate mRNA, and
3 invertebrate cDNA.
4

1 17. A method as in claim 12 further comprising the step of isolating said nucleic acid
2 corresponding to said variant or homologue.
3

1 18. A method as in claim 12 wherein said nucleic acid is identified by hybridization.
2

1 19. A method as in claim 12 wherein said nucleic acid is identified by PCR amplification.
2

1 20. A method for identifying allelic variants or heterospecific homologues of a human
2 cAMP-GEF gene comprising:

3 choosing a nucleic acid probe or primer capable of hybridizing to a human cAMP-
4 GEF gene sequence under stringent hybridization conditions;

5 mixing said probe or primer with a sample of nucleic acids which may contain a
6 nucleic acid corresponding to said variant or homologue; and

7 detecting hybridization of said probe or primer to said nucleic acid corresponding to
8 said variant or homologue.

9

1 21. A method as in claim 12 wherein said human cAMP-GEF gene sequence is selected
2 from the group consisting of SEQ ID NO: 11, SEQ ID NO: 13, and SEQ ID NO: 17.

3

1 22. A method as in claim 20 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of human genomic DNA, human mRNA, and human cDNA.

3

1 23. A method as in claim 20 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of mammalian genomic DNA, mammalian mRNA, and
3 mammalian cDNA.

4

1 24. A method as in claim 20 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of invertebrate genomic DNA, invertebrate mRNA, and
3 invertebrate cDNA.

4

1 25. A method as in claim 20 further comprising the step of isolating said nucleic acid
2 corresponding to said variant or homologue.

3

1 26. A method as in claim 20 wherein said nucleic acid is identified by hybridization.

2

1 27. A method as in claim 20 wherein said nucleic acid is identified by PCR amplification.

2

1 28. A method for identifying an allelic variant or heterospecific homologue of a human
2 CalDAG-GEF gene comprising:

3 choosing an antibody capable of selectively binding to a human CalDAG-GEF
4 protein;

5 mixing said antibody with a sample of proteins which may contain a protein
6 corresponding to said variant or homologue; and

7 detecting binding of said antibody to said protein corresponding to said variant or
8 homologue.

9
1 29. A method as in claim 28 wherein said sample comprises a sample of proteins selected
2 from the group consisting of human proteins, human fusion proteins, and proteolytic fragments
3 thereof.

4
1 30. A method as in claim 28 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of mammalian proteins, mammalian fusion proteins, and
3 proteolytic fragments thereof.

4
1 31. A method as in claim 28 wherein said sample comprises a sample of nucleic acids
2 selected from the group consisting of invertebrate proteins, invertebrate fusion proteins, and
3 proteolytic fragments thereof.

4
1 32. A method as in claim 28 further comprising the step of substantially purifying said
2 protein corresponding to said variant or homologue.

3
1 33. A method for identifying an allelic variant or heterospecific homologue of a human
2 cAMP-GEF gene comprising:

3 choosing an antibody capable of selectively binding to a human cAMP-GEF protein;
4 mixing said antibody with a sample of proteins which may contain a protein
5 corresponding to said variant or homologue; and
6 detecting binding of said antibody to said protein corresponding to said variant or
7 homologue.

8
1 34. A method as in claim 33 wherein said sample comprises a sample of proteins selected
2 from the group consisting of human proteins, human fusion proteins, and proteolytic fragments
3 thereof.

4

1 35. A method as in claim 33 wherein said sample comprises a sample of proteins selected
2 from the group consisting of mammalian proteins, mammalian fusion proteins, and proteolytic
3 fragments thereof.

4

1 36. A method as in claim 33 wherein said sample comprises a sample of proteins selected
2 from the group consisting of invertebrate proteins, invertebrate fusion proteins, and proteolytic
3 fragments thereof.

4

1 37. A method as in claim 33 further comprising the step of substantially purifying said
2 protein corresponding to said variant or homologue.

3

1 38. An isolated nucleic acid comprising an allelic variant or a heterospecific homologue
2 of a gene selected from the group consisting of a human CalDAG-GEF gene, and a human
3 cAMP-GEF gene.

4

1 39. An isolated nucleic acid encoding an allelic variant or heterospecific homologue of a
2 protein selected from the group consisting of a human CalDAG-GEF protein, and a human
3 cAMP-GEF protein.

4

1 40. An isolated nucleic acid comprising a recombinant vector including a nucleotide
2 sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5,
3 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO:
4 17, and a sequence complementary to any of these sequences.

5

1 41. An isolated nucleic acid as in claim 40 wherein said vector is an expression vector
2 and said nucleotide sequence is operably joined to a regulatory region.

3

1 42. An isolated nucleic acid as in claim 41 wherein said expression vector may express
2 said nucleotide sequence in mammalian cells.
3

1 43. An isolated nucleic acid as in claim 42 wherein said cells are selected from the group
2 consisting of fibroblast, liver, kidney, spleen, bone marrow, and neurological cells.
3

1 44. An isolated nucleic acid as in claim 42 wherein said vector is selected from the group
2 consisting of vaccinia virus, adenovirus, retrovirus, neurotropic viruses, and Herpes simplex.
3

1 45. An isolated nucleic acid as in claim 41 wherein said expression vector encodes at
2 least a functional domain of a protein selected from the group consisting of normal CalDAG-
3 GEFI, a normal CalDAG-GEFII, a mutant CalDAG-GEFI, a mutant CalDAG-GEFII, a normal
4 cAMP-GEFI, a normal cAMP-GEFII, a mutant cAMP-GEFI, and a mutant cAMP-GEFII.
5

1 46. An isolated nucleic acid as in claim 41 wherein said vector further comprises
2 sequences encoding an exogenous protein operably joined to said nucleotide sequence and
3 whereby said vector encodes a fusion protein.
4

1 47. An isolated nucleic acid as in claim 46 wherein said exogenous protein is selected
2 from the group consisting of lacZ, trpE, maltose-binding protein, poly-His tags, and glutathione-
3 S-transferase.
4

1 48. An isolated nucleic acid comprising a recombinant expression vector including
2 nucleotide sequences corresponding to an endogenous regulatory region of a gene selected from
3 the group consisting of a CalDAG-GEF gene, and a cAMP-GEF gene.
4

1 49. An isolated nucleic acid as in claim 48 wherein said endogenous regulatory region is
2 operably joined to a marker gene.
3

1 50. A host cell transformed with an expression vector of any one of claims 41-49, or a
2 descendant thereof.

3

1 51. A host cell as in claim 50 wherein said host cell is selected from the group consisting
2 of bacterial cells and yeast cells.

3

1 52. A host cell as in claim 50 wherein said host cell is selected from the group consisting
2 of fetal cells, embryonic stem cells, zygotes, gametes, and germ line cells.

3

1 53. A host cell as in claim 50 wherein said cell is selected from the group consisting of
2 fibroblast, liver, kidney, spleen, bone marrow and neurological cells.

3

1 54. A host cell as in claim 50 wherein said cell is an invertebrate cell.

2

1 55. A non-human animal model for cancer, wherein a genome of said animal, or an
2 ancestor thereof, has been modified by at least one recombinant construct, and wherein said
3 recombinant construct has introduced a modification selected from the group consisting of

4 (a) insertion of nucleotide sequences encoding at least a functional domain of
5 a heterospecific normal CalDAG-GEF gene;

6 (b) insertion of nucleotide sequences encoding at least a functional domain of
7 a heterospecific mutant CalDAG-GEF gene;

8 (c) insertion of nucleotide sequences encoding at least a functional domain of
9 a conspecific homologue of a heterospecific mutant CalDAG-GEF gene;

10 (d) inactivation of an endogenous CalDAG-GEF gene;

11 (e) insertion of nucleotide sequences encoding at least a functional domain of
12 a heterospecific normal cAMP-GEF gene;

13 (f) insertion of nucleotide sequences encoding at least a functional domain of a
14 heterospecific mutant cAMP-GEF gene;

- (g) insertion of nucleotide sequences encoding at least a functional domain of a conspecific homologue of a heterospecific mutant cAMP-GEF gene; and
- (h) inactivation of an endogenous cAMP-GEF gene.

18

1 56. A non-human animal model as in claim 55 wherein said cancer is related to the Ras-
2 pathway.

3

1 57. A non human animal model as in claim 56 wherein said cancer is selected from the
2 group consisting of lung cancer, pancreatic cancer, breast cancer, colorectal cancer, and myeloid
3 leukemia.

4

1 58. An animal model as in claim 55 wherein said modification is an insertion of a
2 nucleotide sequence encoding at least a functional domain of a protein selected from the group
3 consisting of a normal human CalDAG-GEF, and a normal cAMP-GEF gene.

4

1 59. An animal model as in claim 55 wherein said modification is an insertion of a
2 nucleotide sequence encoding at least a functional domain of a protein selected from the group
3 consisting of a mutant human CalDAG-GEF, and a mutant human cAMP-GEF gene

4

1 60. An animal as in claim 55 wherein said animal is selected from the group consisting of
2 rats, mice, hamsters, guinea pigs, rabbits, dogs, cats, goats, sheep, pigs, and non-human primates.

2

1 01. An animal as in claim 55 wherein said animal is an invertebrate.

2

1 62. A method for producing at least a functional domain of a protein selected from the
2 group consisting of a CalDAG-GEF protein, and a cAMP-GEF protein, said method comprising
3 culturing a host cell of any of claims 50-54 under suitable conditions to produce said protein by
4 expressing said nucleic acid.

5

1 63. A substantially pure preparation of a protein selected from the group consisting of a
2 normal CalDAG-GEF protein, a mutant CalDAG-GEF protein, a normal cAMP-GEF protein,
3 and a mutant cAMP-GEF protein.

4

1 64. A substantially pure preparation as in claim 63 wherein said protein comprises a
2 normal protein selected from the group consisting of

- 3 (a) a protein comprising the amino acid sequence of SEQ ID NO: 2;
4 (b) a protein comprising the amino acid sequence of SEQ ID NO: 4;
5 (c) a protein comprising the amino acid sequence of SEQ ID NO: 6;
6 (d) a protein comprising the amino acid sequence of SEQ ID NO: 8;
7 (e) a protein comprising the amino acid sequence of SEQ ID NO: 10;
8 (f) a protein comprising the amino acid sequence of SEQ ID NO: 12;
9 (g) a protein comprising the amino acid sequence of SEQ ID NO: 14;
10 (h) a protein comprising the amino acid sequence of SEQ ID NO: 16; and
11 (i) a protein comprising the amino acid sequence of SEQ ID NO: 18.

12

1 65. A substantially pure preparation of a polypeptide comprising an amino acid sequence
2 of at least 4 consecutive amino acid residues selected from the group consisting of SEQ ID NO:
3 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID
4 NO: 14, SEQ ID NO: 16, and SEQ ID NO: 18.

5

1 66. A substantially pure preparation of a polypeptide comprising an amino acid sequence
2 of at least 10 consecutive amino acid residues selected from the group consisting of SEQ ID NO:
3 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID
4 NO: 14, SEQ ID NO: 16, and SEQ ID NO: 18.

5

1 67. A substantially pure preparation of a polypeptide comprising an amino acid sequence
2 of at least 15 consecutive amino acid residues selected from the group consisting of SEQ ID NO:

3 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID
4 NO: 14, SEQ ID NO: 16, and SEQ ID NO: 18.

5

1 68. A substantially pure preparation of a polypeptide comprising at least one functional
2 domain of a protein selected from the group consisting of a normal CalDAG-GEF protein, a
3 mutant CalDAG-GEF protein, a normal cAMP-GEF protein, and a mutant cAMP-GEF protein.

4

1 69. A substantially pure preparation of a polypeptide comprising an antigenic determinant
2 of a protein selected from the group consisting of a normal CalDAG-GEF protein, a mutant
3 CalDAG-GEF protein, a normal cAMP-GEF protein, and a mutant cAMP-GEF protein.

4 —

1 70. A method of producing antibodies which selectively bind to a CalDAG-GEF protein
2 comprising the steps of

3 administering an immunogenically effective amount of a CalDAG-GEF immunogen
4 to an animal;

5 allowing said animal to produce antibodies to said immunogen; and

6 obtaining said antibodies from said animal or from a cell culture derived therefrom.

7

1 71. A method of producing antibodies which selectively bind to a cAMP-GEF protein
2 comprising the steps of

3 administering an immunogenically effective amount of a cAMP-GEF immunogen to
4 an animal;

5 allowing said animal to produce antibodies to said immunogen; and

6 obtaining said antibodies from said animal or from a cell culture derived therefrom.

7 —

1 72. A substantially pure preparation of an antibody which selectively binds to an
2 antigenic determinant of a protein selected from the group consisting of a normal CalDAG-GEF
3 protein, a mutant CalDAG-GEF protein, a normal cAMP-GEF protein, and a mutant cAMP-GEF
4 protein.

5

1 73. A substantially pure preparation of an antibody as in claim 72 wherein said antibody
2 selectively binds to an antigenic determinant of a mutant CalDAG-GEF and fails to bind to a
3 normal CalDAG-GEF protein.

4

1 74. A substantially pure preparation of an antibody as in claim 72 wherein said antibody
2 selectively binds to an antigenic determinant of a mutant cAMP-GEF and fails to bind to a
3 normal cAMP-GEF protein.

4

1 75. A cell line producing an antibody of any one of claims 72-74.

2

1 76. A method for identifying compounds which can modulate the expression of a
2 CalDAG-GEF gene comprising:
3 contacting a cell with a test candidate wherein said cell includes a regulatory region of
4 a CalDAG-GEF gene operably joined to a coding region; and
5 detecting a change in expression of said coding region.

6

1 77. A method for identifying compounds which can modulate the expression of a cAMP-
2 GEF gene comprising:
3 contacting a cell with a test candidate wherein said cell includes a regulatory region of
4 a cAMP-GEF gene operably joined to a coding region; and
5 detecting a change in expression of said coding region.

6

1 78. A method as in claim 76 or 77 wherein said change comprises a change in a level of
2 an mRNA transcript encoded by said coding region.

3

1 79. A method as in claim 78 wherein said change comprises a change in a level of a
2 protein encoded by said coding region.

3

1 80. A method as in claim 78 wherein said change is a result of an activity of a protein
2 encoded by said coding region.

3

1 81. A method as in claim 78 wherein said coding region encodes a marker protein
2 selected from the group consisting of β -galactosidase, alkaline phosphatase, green fluorescent
3 protein, and luciferase.

4

1 82. A method for identifying compounds which can selectively bind to a CalDAG-GEF
2 protein comprising the steps of

3 providing a preparation including at least one CalDAG-GEF component;
4 contacting said preparation with a sample including at least one candidate compound;
5 and
6 detecting binding of said CalDAG-GEF component to said candidate compound.

7

1 83. A method for identifying compounds which can selectively bind to a cAMP-GEF
2 protein comprising the steps of

3 providing a preparation including at least one cAMP-GEF component;
4 contacting said preparation with a sample including at least one candidate compound;
5 and
6 detecting binding of said cAMP-GEF component to said candidate compound.

7

1 84. The method in claim 82 wherein said binding to said CalDAG-GEF component is
2 detected by an assay selected from the group consisting of: affinity chromatography, co-
3 immunoprecipitation, a Biomolecular Interaction Assay, and a yeast two-hybrid system.

4

1 85. The method in claim 83 wherein said binding to said cAMP-GEF component is
2 detected by an assay selected from the group consisting of: affinity chromatography, co-
3 immunoprecipitation, a Biomolecular Interaction Assay, and a yeast two-hybrid system.

4

- 1 86. A method of identifying compounds which can modulate activity of a CalDAG-GEF
2 comprising the steps of
3 providing a cell expressing a normal or mutant CalDAG-GEF gene;
4 contacting said cell with at least one candidate compound; and
5 detecting a change in a marker of said activity.
6
- 1 87. A method of identifying compounds which can modulate activity of a cAMP-GEF
2 comprising the steps of
3 providing a cell expressing a normal or mutant cAMP-GEF gene;
4 contacting said cell with at least one candidate compound; and
5 detecting a change in a marker of said activity.
6
- 1 88. A method as in claim 86 wherein measurement of said marker indicates a difference
2 between cells bearing an expressed mutant CalDAG-GEF gene and otherwise identical cells free
3 of an expressed mutant CalDAG-GEF gene.
4
- 1 89. A method as in claim 86 wherein said change comprises a change in a non-specific
2 marker of cell physiology selected from the group consisting of pH, intracellular calcium, cyclic
3 AMP levels, GTP/GDP ratios, phosphatidylinositol activity, and protein phosphorylation.
4
- 1 90. A method as in claim 86 wherein said change comprises a change in expression of
2 said CalDAG-GEF.
3
- 1 91. A method as in claim 86 wherein said change comprises a change in occurrence or
2 rate of apoptosis or cell death.
3
- 1 92. A method as in claim 86 wherein said cell is a cell cultured *in vitro*.
2

1 93. A method as in claim 92 wherein said cell is a transformed host cell of any one of
2 claims 50-54.

3

1 94. A method as in claim 92 wherein said cell is explanted from a host bearing at least
2 one mutant CalDAG-GEF gene.

3

1 95. A method as in claim 92 wherein said cell is explanted from a transgenic animal of
2 any one of claims 55-61.

3

1 96. A method as in claim 86 wherein said cell is a cell in a live animal.

2

1 97. A method as in claim 96 wherein said cell is a cell of a transgenic animal of any one
2 of claims 55-61.

3

1 98. A method as in claim 86 wherein said cell is in a human subject in a clinical trial.

2

1 99. A method as in claim 87 wherein measurement of said marker indicates a difference
2 between cells bearing an expressed mutant cAMP-GEF gene and otherwise identical cells free of
3 an expressed mutant cAMP-GEF gene.

4

1 100. A method as in claim 87 wherein said change comprises a change in a non-specific
2 marker of cell physiology selected from the group consisting of pH, intracellular calcium, cyclic
3 AMP levels, GTP/GDP ratios, phosphatidylinositol activity, and protein phosphorylation.

4

1 101. A method as in claim 87 wherein said change comprises a change in expression of
2 said cAMP-GEF.

3

1 102. A method as in claim 87 wherein said change comprises a change in occurrence or
2 rate of apoptosis or cell death.

3

1 103. A method as in claim 87 wherein said cell is a cell cultured *in vitro*.

2

1 104. A method as in claim 103 wherein said cell is a transformed host cell of any one of
2 claims 50-54.

3

1 105. A method as in claim 103 wherein said cell is explanted from a host bearing at least
2 one mutant cAMP-GEF gene.

3

1 106. A method as in claim 103 wherein said cell is explanted from a transgenic animal of
2 any one of claims 55-61.

3

1 107. A method as in claim 87 wherein said cell is a cell in a live animal.

2

1 108. A method as in claim 107 wherein said cell is a cell of a transgenic animal of any one
2 of claims 55-61.

3

1 109. A method as in claim 87 wherein said cell is in a human subject in a clinical trial.

2

1 110. A diagnostic method for determining if a subject bears a mutant CalDAG-GEF gene
2 comprising the steps of

3 providing a biological sample of said subject; and

4 detecting in said sample a mutant CalDAG-GEF nucleic acid, a mutant CalDAG-GEF
5 protein, or a mutant CalDAG-GEF activity.

6

1 111. A method as in claim 111, wherein a mutant CalDAG-GEF nucleic acid is detected
2 by an assay selected from the group consisting of direct nucleotide sequencing, probe specific
3 hybridization, restriction enzyme digest and mapping, PCR mapping, ligase-mediated PCR

4 detection, RNase protection, electrophoretic mobility shift detection, and chemical mismatch
5 cleavage.

6

1 112. A method as in claim 110, wherein a mutant CalDAG-GEF protein is detected by an
2 assay selected from the group consisting of an immunoassay, a protease assay, and an
3 electrophoretic mobility assay.

4

1 113. A diagnostic method for determining if a subject bears a mutant cAMP-GEF gene
2 comprising the steps of

3 providing a biological sample of said subject; and
4 detecting in said sample a mutant cAMP-GEF nucleic acid, a mutant cAMP-GEF
5 protein, or a mutant cAMP-GEF activity.

6

1 114. A method as in claim 113, wherein a mutant cAMP-GEF nucleic acid is detected by
2 an assay selected from the group consisting of direct nucleotide sequencing, probe specific
3 hybridization, restriction enzyme digest and mapping, PCR mapping, ligase-mediated PCR
4 detection, RNase protection, electrophoretic mobility shift detection, and chemical mismatch
5 cleavage.

6

1 115. A method as in claim 113, wherein a mutant cAMP-GEF protein is detected by an
2 assay selected from the group consisting of an immunoassay, a protease assay, and an
3 electrophoretic mobility assay.

4

1 116. A pharmaceutical preparation comprising a substantially pure CalDAG-GEF protein
2 and a pharmaceutically acceptable carrier.

3

1 117. A pharmaceutical preparation comprising a substantially pure cAMP-GEF protein and
2 a pharmaceutically acceptable carrier.

3

1 118. A pharmaceutical preparation comprising an expression vector operably encoding a
2 protein selected from the group consisting of a CalDAG-GEF protein, and a cAMP-GEF protein,
3 wherein said expression vector may express said CalDAG-GEF protein or said cAMP-GEF
4 protein in a human subject, and a pharmaceutically acceptable carrier.

5

1 119. A pharmaceutical preparation comprising an expression vector operably encoding a
2 CalDAG-GEF antisense sequence, wherein said expression vector may express said CalDAG-
3 GEF antisense sequence in a human subject, and a pharmaceutically acceptable carrier.

4

1 120. A pharmaceutical preparation comprising an expression vector operably encoding a
2 cAMP-GEF antisense sequence, wherein said expression vector may express said cAMP-GEF
3 antisense sequence in a human subject, and a pharmaceutically acceptable carrier.

4

1 121. A pharmaceutical preparation comprising a substantially pure antibody, and a
2 pharmaceutically acceptable carrier,

3 wherein said antibody selectively binds to a mutant protein selected from the group
4 consisting of a mutant CalDAG-GEF protein, and a mutant cAMP-GEF protein.

5

1 122. A pharmaceutical preparation as in claim 121 wherein said preparation is essentially
2 free of an antibody which selectively binds a normal CalDAG-GEF protein.

3

1 123. A pharmaceutical preparation as in claim 121 wherein said preparation is essentially
2 free of an antibody which selectively binds a normal cAMP-GEF protein.

3

1 124. A pharmaceutical preparation comprising a substantially pure preparation of an
2 antigenic determinant of a mutant CalDAG-GEF protein or a mutant cAMP-GEF protein.

3

1 125. A pharmaceutical preparation as in claim 124 wherein said preparation is essentially
2 free of an antigenic determinant of a normal CalDAG-GEF protein.

3

1 126. A pharmaceutical preparation as in claim 124 wherein said preparation is essentially
2 free of an antigenic determinant of a normal cAMP-GEF protein.

3

1 127. A method for identifying compounds according to claim 83, wherein the cAMP-GEF
2 component is a cAMP-GEF domain selected from the group consisting of SCR1, SCR2, SCR3,
3 and cAMP-binding domain.

4

1 128. A method for identifying compounds according to claim 82, wherein the CalDAG-
2 GEF component is a CalDAG-GEF domain selected from the group consisting of SCR1, SCR2,
3 SCR3, DAG-binding and an EF hand domain.

4

1 129. A substantially pure preparation of a polypeptide comprising a domain selected from
2 the group consisting of a CalDAG-GEF SCR1 domain, a CalDAG-GEF SCR2 domain,
3 CalDAG-GEF SCR3 domain, CalDAG-GEF DAG-binding domain, CalDAG-GEF EF hand
4 domain.

5

1 130. A substantially pure preparation of a polypeptide comprising a domain selected from
2 the group consisting of a cAMP-GEF SCR1 domain, a cAMP-GEF SCR2 domain, cAMP-GEF
3 SCR3 domain, cAMP-GEF cAMP-binding domain.

4