Exercice 1. Quelques calculs de distances dans $M_n(\mathbb{R})$.

Dans cet exercice, n est un entier naturel non nul et le \mathbb{R} -espace vectoriel $M_n(\mathbb{R})$ est muni de son produit scalaire canonique, défini par

$$\forall (A, B) \in (M_n(\mathbb{R}))^2 \quad \langle A, B \rangle = \operatorname{tr} (A^T B).$$

On considère la matrice $T=(t_{i,j})_{1\leq i,j\leq n}$ telle que

$$\forall (i,j) \in [1,n] \quad t_{i,j} = \begin{cases} 1 & \text{si } i \leq j \\ 0 & \text{sinon.} \end{cases}$$

On va calculer ci-dessous certaines distances, qu'on exprimera en fonction de n.

- 1. Que vaut $d(T, I_n)$, la distance entre T et I_n ?
- 2. Que vaut la distance de T au sous-espace vectoriel des matrices triangulaires supérieures ?
- 3. (a) Démontrer que $S_n(\mathbb{R}) \oplus A_n(\mathbb{R}) = M_n(\mathbb{R})$ et, pour $M \in M_n(\mathbb{R})$ exprimer en fonction de M la composante sur $S_n(\mathbb{R})$ et celle sur $A_n(\mathbb{R})$.
 - (b) Justifier que $A_n(\mathbb{R})^{\perp} = S_n(\mathbb{R})$.
 - (c) Calculer la distance de T au sous-espace vectoriel de $S_n(\mathbb{R})$.
- 4. On note H l'ensemble des matrices de trace nulle.
 - (a) Justifier que H est un hyperplan et donner H^{\perp} .
 - (b) Calculer la distance entre T et H.

Exercice 2. Marche aléatoire et distance à l'origine.

Dans cet exercice, on admet l'existence d'un espace probabilisé (Ω, P) et d'une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$ toutes définies sur Ω , indépendantes et de même loi de Rademacher :

$$P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}.$$

On définit la suite de variables aléatoires $(S_n)_{n\in\mathbb{N}}$ par

$$S_0 = 0$$
 et $\forall n \in \mathbb{N}^*$ $S_n = \sum_{k=1}^n X_k$.

On peut voir $(S_n)_{n\in\mathbb{N}}$ comme la suite des positions d'un marcheur sur \mathbb{Z} . Le marcheur est en 0 au temps 0. Au temps k, le marcheur fait un pas vers la droite (+1) ou vers la gauche (-1): S_n est la position après n pas.

- 1. Pour $n \in \mathbb{N}$, que vaut $P(S_{2n+1} = 0)$?
- 2. (a) Soit $n \in \mathbb{N}^*$. La variable $\frac{S_n + n}{2}$ suit une loi usuelle. Laquelle?
 - (b) Déduire de la question précédente les valeurs de $E(S_n)$ et $V(S_n)$.
 - (c) À l'aide de la question (a), montrer que $P(S_{2n} = 0) = \frac{1}{2^{2n}} \cdot {2n \choose n}$. Calculer un équivalent de cette probabilité lorsque $n \to +\infty$.
- 3. (a) Justifier que pour tout $k \in \mathbb{Z}$, on a $|k+1|+|k-1|=2|k|+2\delta_{k,0}$.
 - (b) Soit $n \in \mathbb{N}^*$. En appliquant la formule du transfert à (S_n, X_{n+1}) , démontrer que

$$E(|S_{n+1}|) = E(|S_n|) + P(S_n = 0).$$

- (c) Vérifier que pour tout $n \in \mathbb{N}^*$, $P(S_{2n+2} = 0) = \frac{2n+1}{2n+2}P(S_{2n} = 0)$.
- (d) Démontrer que pour tout $n \in \mathbb{N}^*$, $E(|S_{2n}|) = 2nP(S_{2n} = 0)$.
- (e) En déduire que

$$E\left(|S_n|\right) \underset{n\to+\infty}{\sim} \sqrt{\frac{2n}{\pi}}.$$