经典力学 Classical Mechanics

Dait

目 录

第一部	分 Newton 力学	1
第一章	运动学	3
1.1	Galileo 时空	3
	1.1.1 仿射空间	3
	1.1.2 Galileo 时空	4
	1.1.3 Galileo 时空中粒子的运动	5
1.2	约束系统	6
	1.2.1 微分流形	7
第二部	分 Lagrange 力学	10
第二章	变分原理	12
2.1	最小作用量原理	12
第三部	分 Hamilton 力学	13

第一部分

Newton 力学

Newton 力学研究质点 (组) 在三维 Euclid 空间中的运动.

实验事实

经典力学的基础是一些实验事实.

空间与时间 我们所在的空间是三维 Euclid 空间,最简单的数学模型是 \mathbb{R}^3 . 时间是一个一维序列,并且两个事件之间的时间间隔可以任意小,最简单的数学模型是 \mathbb{R} .

Galileo 相对性原理 存在一些参考系 (reference frame) 称为惯性系 (inertial frame), 其具有以下两个性质:

- 在任何时刻,一切自然规律在所有惯性系中都相同;
- 相对于一个惯性系做匀速直线运动的参考系也是惯性系.

Newton 决定性原理 一个力学系的初始状态 (即各点在初始时刻的位置和速度) 唯一地决定其运动.

本章主要讨论质点和质点系统的运动学 (kinematics). 运动学描述系统 (点、物体、点的系统等等) 的运动,而不关心系统为什么会这么运动 (这是动力学的内容).

1.1 Galileo 时空

1.1.1 仿射空间

基于 Galileo 相对性原理,我们需要研究一个"去掉原点的线性空间".

定义 1.1.1: 仿射空间

一个仿射空间 (affine space) (A, V) 是一个集合 A 和一个与之相伴的线性空间 V. 且存在映射

$$f: A \times V \to A: (a, v) \mapsto a + v, \tag{1.1}$$

满足:

- 右幺 (right identity): V 中的零向量 0 满足 $\forall a \in A$ 有 a+0=a;
- 结合律 (associativity): $\forall u, v \in V, \forall a \in A$ 有 (a+u)+v=a+(u+v);
- 正则性: $\forall a \in A$, 映射 $V \to A : v \mapsto a + v$ 是一个双射.

注.

- 仿射空间与线性空间的区别在于其没有原点, 所以仿射空间没有定义加法;
- 前两个性质定义了 V 作为加法群在 A 上的右作用,正则性等价于这个作用具有:
 - 传递性 (transitive): $\forall a, b \in A, \exists v \in V$ 使得 b = a + v;
 - 自由 (free): $u, v \in V$, 如果存在 $a \in A$ 使得 a + u = a + v, 则 u = v;
- $\forall v \in V$, v 在 A 上的右作用可定义映射:

$$q_v: A \to A: a \mapsto a + v$$

 g_v 是一个双射, 称为 A 上的一个平移 (translation), 故 V 也叫 A 的平移空间;

• 减法: $\forall a, b \in A$, 存在唯一的 $v \in V$ 使得 b = a + v. 记 v = b - a.

例 1.1.1

V 是一个线性空间,则 (V, V) 是一个仿射空间,其右作用就是线性空间的加法。 V 是 \mathbb{R}^n 中一个 m 维的线性子空间, $v \in \mathbb{R}^n$,则 (V + v, V) 是一个仿射空间.

后面我们用 \mathbb{A}^n 表示平移空间为 \mathbb{R}^n 的 n 维仿射空间.

定义 1.1.2: 仿射标架

仿射空间 (A, V) 的仿射标架 (affine frame) 是集合 $\{o; v_1, \ldots, v_n\}$,其中 $o \in A$ 是原点 (origin), (v_1, \ldots, v_n) 是 V 的一组基. 由定义, $\forall a \in A$ 都可以被唯一地写成

$$a = o + \lambda^1 v_1 + \dots + \lambda^n v_n, \tag{1.2}$$

 $(\lambda^1,\ldots,\lambda^n)$ 是 a 在仿射标架 $\{o;v_1,\ldots,v_n\}$ 中的仿射坐标 (affine coordinates).

仿射标架定义了一一映射 $A \to \mathbb{R}^n : a \mapsto (\lambda^1, \dots, \lambda^n)$

1.1.2 Galileo 时空

经典力学的时空模型是 Galileo 时空.

定义 1.1.3: Galileo 时空

Galileo 时空 (spacetime) 是一个拥有 Galileo 结构 (structure) 的四维仿射空间 (A⁴, ℝ⁴):

- 时间 T 是非零线性映射 T: ℝ⁴ → ℝ.
 ∀a,b∈ A⁴,事件 a 和事件 b 的时间间隔为 T(b-a);
- 若 T(b-a)=0,则 a 和 b 是同时的 (simultaneous). 事件 a 的同时空间是 $\mathbb{A}_a=\{b\in\mathbb{A}^4\,|\,T(b-a)=0\}$,同构于 \mathbb{A}^3 ;
- $\forall a, b \in \mathbb{A}_c$, 同时事件 a, b 之间的距离定义为

$$d(a,b) \equiv |a-b| = \sqrt{(a-b,a-b)},$$
 (1.3)

其中 (\cdot,\cdot) 是 \mathbb{R}^3 中的 Euclid 内积. 即每个同时空间 \mathbb{A}_c 相伴的平移空间是一个 Euclid 空间.

例 1.1.2: Galielo 坐标时空

考虑 $\mathbb{R} \times \mathbb{R}^3$ 作为仿射空间,并在 \mathbb{R}^3 的平移空间上赋予通常的 Euclid 度量,则 $\mathbb{R} \times \mathbb{R}^3$ 是一个 Galileo 时空,也记为 $\mathbb{R}_t \times \mathbb{R}^3$. 时间 T 为投影映射

$$\pi_t : \mathbb{R}_t \times \mathbb{R}^3 \to \mathbb{R}_t : (t, \boldsymbol{x}) \mapsto t.$$
 (1.4)

这个仿射空间也叫 Galielo 坐标时空.

定义 1.1.4: Galileo 群

Galileo 群 Gal(3) 是 \mathbb{A}^4 上所有保持 Galileo 结构的仿射变换构成的群. 即 $\forall g \in \text{Gal}(3)$:

- $\forall a, b \in \mathbb{A}^4, T(g(a) g(b)) = T(a b);$
- $\forall a, b \in \mathbb{A}_c, d(g(a), g(b)) = d(a, b);$

定理 1.1.1

 $\mathbb{R} \times \mathbb{R}^3$ 上的 Galileo 群 Gal(3) 由以下三类变换的复合生成:

- 匀速运动 $g_1:(t,x)\mapsto (t,x+vt)$, 其中速度 $v\in\mathbb{R}^3$;
- 平移 $g_2:(t, \boldsymbol{x})\mapsto (t+s, \boldsymbol{x}+\boldsymbol{s})$, 其中 $(s, \boldsymbol{s})\in \mathbb{R}\times \mathbb{R}^3$;
- 转动 $g_3:(t, x) \mapsto (t, Sx)$, 其中 $S \in O(3)$

 $\forall g \in \text{Gal}(3)$ 都可以被唯一地写成 $g = g_1 \circ g_2 \circ g_3$.

例 1.1.3

映射 $(t, \mathbf{x}) \mapsto (t, \mathbf{x} + \mathbf{a}t^2/2) \notin \text{Gal}(3)$, 因为它不是仿射变换.

定理 1.1.2

所有 Galileo 时空都互相同构;特别地,也都同构于 Galileo 坐标时空 $\mathbb{R} \times \mathbb{R}^3$.

因此如无额外说明,以后提到的 Galileo 时空都指 $\mathbb{R} \times \mathbb{R}^3$.

1.1.3 Galileo 时空中粒子的运动

当我们不关心对象的内部结构,只关心对象的位置的时候,我们可以用一个点来代表它,称之为粒子 (particle).

定义 1.1.5: 世界线

Galileo 时空中,一个粒子的运动轨迹 (trajectory) 或世界线 (world line) 是 $\mathbb{R}_t \times \mathbb{R}^3$ 的 一个可微^I截面 $\sigma: \mathbb{R}_t \to \mathbb{R}_t \times \mathbb{R}^3$.

更一般的,我们可以用可微映射 $q:I\to\mathbb{R}^3$ 描述单个粒子的运动,其中 I 是 \mathbb{R}_t 的一个区间. 映射 q 的陪域 \mathbb{R}^3 也叫做位形空间 (configuration space).

当位形空间是 \mathbb{R}^n 的时候,我们也将 q 记为 x 或者 x(t).

伽利略时空中单粒子的位形空间即是 \mathbb{R}^3 .

定义 1.1.6: 速度

若某粒子在 Galileo 时空中的运动由 x(t) 描述,则 x(t) 的一阶导

$$\dot{\boldsymbol{x}} = \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t},\tag{1.5}$$

是速度 (velocity) 矢量.

I此处指总是具有所需要的可微性质.

例 1.1.4

考虑匀速直线运动 $x(t)=x_0+vt$, $\dot{x}(t)=v$ 是一个常映射. 匀速直线运动在 Galileo 变换下仍然是匀速直线运动.

定义 1.1.7: 多粒子运动

Galileo 时空中 N 个粒子的运动可以用 $\mathbb{R}_t \times \mathbb{R}^3$ 中的 N 个截面 $\sigma_1, \ldots, \sigma_N$ 描述. 但是为了体现经典力学中的绝对时间,即不同粒子的运动共用一个时间轴 \mathbb{R}_t ,我们应该用

$$\underbrace{(\mathbb{R}_t \times \mathbb{R}^3) \times_{\mathbb{R}_t} \cdots \times_{\mathbb{R}_t} (\mathbb{R}_t \times \mathbb{R}^3)}_{N}$$

中的一个截面来描述这 N 个粒子的运动轨迹. 其中 $\times_{\mathbb{R}_t}$ 是 \mathbb{R}_t 上的纤维积 (fiber product),其定义为

$$(\mathbb{R}_t \times \mathbb{R}^3) \times_{\mathbb{R}_t} (\mathbb{R}_t \times \mathbb{R}^3) \equiv \{ (t_1, \boldsymbol{x}_1, t_2, \boldsymbol{x}_2) \in (\mathbb{R}_t \times \mathbb{R}^3) \times (\mathbb{R}_t \times \mathbb{R}^3) \mid t_1 = t_2 \}$$
 (1.6)

等价地,Galileo 时空中 N 个粒子的运动可以用映射 $\boldsymbol{x}(t): \mathbb{R}_t \to \mathbb{R}^{3N}$ 或 $\boldsymbol{x}(t): I \to \mathbb{R}^{3N}$ 描述.此时位形空间为 \mathbb{R}^{3N} .

1.2 约束系统

定义 1.2.1: 约束

很多时候粒子的位置 x(t) 需要满足额外的方程 f(x) = 0,这些方程叫做对系统的约束 (constraints).

例 1.2.1: 球面约束

考虑一个被限制在半径为 ℓ 的球面上的粒子, 其坐标 x 满足约束

$$|\boldsymbol{x}|^2 = \ell^2,$$

这个约束在变换 $(t, \mathbf{x}) \mapsto (t, \mathbf{x} + \mathbf{v}t)$ 下变成一个与时间 t 相关的约束,因此其与 Galileo 结构不相容. 因为这个约束将球面的球心看作一个特殊的点.

例 1.2.2: 刚性杆约束

考虑被长为 ℓ 的刚性杆连接的两个粒子, 其坐标 (x_1, x_2) 满足约束

$$|\boldsymbol{x}_1 - \boldsymbol{x}_2|^2 = \ell^2,$$

这个约束在 Galileo 变换下始终保持同样的形式,因此其与 Galileo 结构相容.

当有约束的时候,选取不同的坐标系可能会让约束简化.

例 1.2.3: 球面约束・续

接例 1.2.1,约束在直角坐标系下是关于 $\mathbf{x}=(x,y,z)$ 三个分量的方程.但若选取球坐标 (r,θ,ϕ) 满足

$$\boldsymbol{x} = (r\sin\theta\cos\phi, r\sin\sin\theta\phi, r\cos\theta)$$

约束 $|x|^2 = \ell^2$ 在球坐标下变为

$$|r|^2 = \ell^2,$$

与 θ, ϕ 无关. 此时粒子的位形空间为区域 $0 \le \theta < \pi$ 和 $0 \le \phi < 2\pi$.

1.2.1 微分流形

有约束的系统的位形空间是一个微分流形.

定义 1.2.2: 拓扑

集合 X 上的拓扑 (topology) \mathcal{T} 是 X 的子集族,其元素称为 X 的开集 (open set),满足:

- \emptyset , X 是 X 的开集: $\emptyset \in \mathcal{T}$, $X \in \mathcal{T}$;
- 有限个 X 的开集之交是 X 的开集: $\forall U_i \in \mathcal{T}, \bigcup_{i=1}^n U_i \in \mathcal{T}$;
- 任意个 X 的开集之并是 X 的开集: $\forall U_i \in \mathcal{T}, \bigcap_{i=1}^{\infty} U_i \in \mathcal{T}$.

并称 (X, \mathcal{T}) 是拓扑空间 (topological space).

在明确了拓扑 T 后,可以只用 X 表示拓扑空间.

定义 1.2.3: 同胚

两个拓扑空间 (X, \mathcal{T}_X) 和 (Y, \mathcal{T}_Y) 之间的同胚映射 (homeomorphism)

$$f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y) \tag{1.7}$$

满足: f 是一个双射, 且 f 和 f^{-1} 是连续的.

此时称 X,Y 是同胚的 (homeomorphic) 或拓扑同构的 (topological isomorphic),记作 $X \cong Y$.

定理 1.2.1

同胚是一种等价关系:

- 自反性: $X \cong X$, 即任何拓扑空间都与其自身同胚;
- 对称性: $X \cong Y \iff Y \cong X$;
- 传递性: $X \cong Y, Y \cong Z \implies X \cong Z$.

例 1.2.4

在 Euclid 度量空间 (\mathbb{R}, ρ) 中,任何开区间都是同胚的,比如可以找到 (0,1) 与 $(1, +\infty)$ 之间的同胚映射:

$$f:(0,1)\to (1,+\infty): x\mapsto \frac{1}{x}.$$

同时,任何闭区间都是同胚的.

定义 1.2.4: 坐标卡

一个 n 维的坐标卡 (coordinate chart) 是拓扑空间 X 中的一个开集 U 到 \mathbb{R}^n 的开集 V 的同胚映射

$$\phi: U \to V \subset \mathbb{R}^n. \tag{1.8}$$

其中 U 和 V 上各自赋予子空间拓扑.

物理上的坐标系一般指某个坐标卡. 我们也将坐标卡记为 (U,ϕ) .

定义 1.2.5: 连接函数

若 $\phi: U_1 \to V_1$ 和 $\psi: U_2 \to V_2$ 是 X 上的两个坐标卡,且 $U_1 \cap U_2 \neq \emptyset$,则 ϕ, ψ 之间的连接函数 (transition function) 为

$$\psi \circ \phi^{-1} : \phi(U_1 \cap U_2) \mapsto \psi(U_1 \cap U_2).$$
 (1.9)

若 $\psi \circ \phi^{-1}$ 可微,则 ϕ, ψ 是相容或相关的 (compatible). 若 $U_1 \cap U_2 = \emptyset$,则默认相容.

定义 1.2.6: 图册

对于拓扑空间 X,若存在一族两两相容的坐标卡 $\mathcal{A} = \{U_i\}_{i \in I}$ 使得 $X = \cup_{i \in I} U_i$,则称 $\mathcal{A} \in X$ 的一个图册 (atlas).

定理 1.2.2: 图册的等价关系

X 上的两个图册 A_1, A_2 等价当且仅当其并 $A_1 \cup A_2$ 也是 X 上的一个图册.

定义 1.2.7: 微分流形

拓扑空间 X 上的一个微分结构 \mathcal{D} 是 X 上等价图册的类. X 和其上微分结构 \mathcal{D} 构成一个微分流形 (differentiable manifold) $M=(X,\mathcal{D})$.

微分结构 \mathcal{D} 中所有图册的并 $\mathcal{A}_{\mathcal{D}} = \cup \{\mathcal{A} \mid \mathcal{A} \in \mathcal{D}\}$ 叫做 \mathcal{D} 的最大图册. 如果一个微分结构中图册的连接函数都是 C^r 函数 (r 阶导连续),则称相应的微分流形为 C^r 流形. 特别的,如果连接函数都是 C^∞ 函数 (光滑函数),我们得到 C^∞ 流形 (光滑流形). 如果微分流形 M 是连通的,则它的一个图册中的每个坐标卡的维数都相同,此时这个维数也就是 M 的维数.我们考虑的位形空间基本上都是连通流形.

例 1.2.5

(A,V) 是一个 n 维仿射空间. 选取仿射标架 $(o;v_1,\ldots,v_n)$ 后得到坐标卡

$$\phi: A \to \mathbb{R}^n: a \mapsto (\lambda^1, \dots, \lambda^n),$$

此时坐标卡本身构成一个图册.

例 1.2.6

 \mathbb{R}^3 中的单位球面 \mathbb{S}^2

$$x^2 + y^2 + z^2 = 1 (1.10)$$

上的一个开覆盖 $U_N \cap U_S$,其中 $U_N = \mathbb{S}^2 \setminus \{S = (0,0,-1)\}$ 和 $U_S = \mathbb{S}^2 \setminus \{N = (0,0,1)\}$. 可通过球极投影构造如下坐标卡

$$\phi_N: U_N \to \mathbb{R}^2: (x, y, z) \mapsto \left(\frac{2x}{1+z}, \frac{2y}{1+z}, 1\right);$$
 (1.11a)

$$\phi_S: U_S \to \mathbb{R}^2: (x, y, z) \mapsto \left(\frac{2x}{1-z}, \frac{2y}{1-z}, -1\right).$$
 (1.11b)

其连接函数

$$\phi_{NS} \equiv \phi_N \circ \phi_S^{-1} : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\} : (X,Y) \mapsto \left(\frac{2X}{X^2 + Y^2}, \frac{2Y}{X^2 + Y^2}\right)$$
(1.12)

是光滑的. 这样我们就得到了 \mathbb{S}^2 上的一个图册,这个图册所属的等价类就是 \mathbb{S}^2 上的一个光滑结构.

我们还可以在 S² 上定义另一个图册,它也包含两个坐标卡

$$\phi_1^{-1}: (0,\pi) \times (0,2\pi) \to (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta); \tag{1.13a}$$

$$\phi_2^{-1}: (0,\pi) \times (0,2\pi) \to (\sin\theta\sin\phi,\cos\theta,\sin\theta\cos\phi).$$
 (1.13b)

这两个坐标卡来源于直角坐标变换成球坐标. 可以验证它和之前的图册是等价的.

第二部分 Lagrange 力学 本章讨论动力学 (dynamics). 动力学研究系统如何随时间演化,通常体现为一系列跟系统有关的微分方程 (运动方程),系统的运动为这组微分方程满足特定边界条件的解. 换句话说,运动学告诉我们系统的运动对应曲线 $q(t):\mathbb{R}_t\to M$,动力学告诉我们曲线 q(t) 满足的额外条件. 本章将介绍经典力学中的 Lagrange 表述,从最小作用量原理出发导出系统的运动方程.

第二章 变分原理

2.1 最小作用量原理

第三部分 Hamilton 力学