VII. Постоянный ток

1. Упорядоченная скорость

Электрический ток - упорядоченное движение заряженных частиц, т. е. такое движение, при котором через поперечное сечение проводника происходит перенос заряда.

Носители тока - заряженные частицы, движение которых образует ток.

Обычно заряженные частицы в веществе движутся беспорядочно — "хаотично". Среди направлений движения этих частиц нет преимущественного — все направления встречаются одинаково часто, поэтому через любое сечение проводника проходит в обе стороны в среднем одинаковое число носителей. Среднее значение вектора скорости заряженных частиц при таком движении в

любой момент равно нулю: $\vec{\vec{v}} = \frac{\vec{v}_1 + \vec{v}_2 + \ldots + \vec{v}_N}{N} = 0$. Но если, продолжая беспорядочное движение, вся эта масса хаотически

движущихся носителей начинает смещаться в какую-либо сторону (это называется "дрейф"), то такое движение считается упорядоченным и образует электрический ток. В этом случае среднее значение вектора скорости уже не равно нулю и называется

<u>скоростью упорядоченного движения носителей</u>: $\vec{v}_{\text{уп}} = \overline{\vec{v}} = \frac{\vec{v}_1 + \vec{v}_2 + \ldots + \vec{v}_N}{N}$. $\vec{v}_{\text{уп}}$ направлена туда, куда смещается масса

хаотично движущихся частиц - в сторону дрейфа. Можно представить себе ток в проводе так: цилиндрический сосуд, заполненный хаотически движущимися носителями тока, медленно (по сравнению со скоростями теплового движения носителей) перемещается. Скорость сосуда в этой модели - \vec{v}_{vn} . Если сосуд мысленно рассечь неподвижной плоскостью $\perp \vec{v}_{\text{vn}}$, то через эту плоскость будет

2. Сила тока Модуль силы тока-

Елиница измерения силы тока в СИ: $1 A = 1 K \pi/c$

Модуль заряда, перенесенного через поперечное сечение

проводника за время tI = const

Если сила тока меняется ($I \neq const$), то вычисляют мгновенные значения силы тока (для каждого момента): $\frac{dq}{dt} = q'(t)$ поперечное сечение проводника за

такое малое время dt, за которое сила тока не успевает существенно

измениться. S одинаковы *j* 4. Закон Ома для участка цепи,

3. Плотность тока вектор /, направление которого совпадает с направлением, в котором модуль вектора ј переносится положительный заряд: $I \leftarrow$ сила тока через $\vec{j} \uparrow \uparrow \vec{v}_{\text{vir}(+)}; \vec{j} \uparrow \downarrow \vec{v}_{\text{vir}(-)}$ поперечное

сечение Ѕ во всех точках сечения

Скорость упорядоченного $ec{j}=q_0 n ec{v}_{
m yn}$ движения носителей тока Концентрация носителей тока

не содержащего ЭДС Напряжение (разность Заряд одного носителя. Модуль силы тока

потенциалов) между концами проводника $U = \varphi_1 - \varphi_2$, (если ток течет от точки 1 к

точке 2).

Площадь поперечного сечения провода

сопротивления металла

Единица измерения сопротивления в СИ: 1 OM = 1 B/AЕдиница измерения удельного сопротивления в СИ: 1 Ом⋅м

5. Закон Ома для участка цепи, содержащего ЭДС

Температура проводника в °С.

Сопротивление проводника

Удельное сопротивление

материала, из которого

изготовлен провод

в проводнике

Суммарная текущего по сопротивление ЭДС на участку 1 - 2 участка 1-2 участке 1-2

I > 0, если ток $\uparrow \uparrow$ обходу $1 \rightarrow 2$ I < 0, если ток $\uparrow \downarrow$ обходу $1 \rightarrow 2$

-Температурный коэффициент

Hаправление обхода om 1→ κ 2

Источник тока — проводник, в котором действуют сторонние силы. <u>Сторонние силы</u> — любые силы не электростатического происхождения, понуждающие носители тока к упорядоченному движению.

Работа сторонних сил источника над зарядом q при его перемещении через источник в направлении обхода $1 \rightarrow 2$

Внутреннее сопротивление источника

6. Закон Ома для полной (замкнутой) цепи

Сила тока, текущего через каждый элемент

-Суммарная ЭДС цепи Полное (суммарное) сопротивление цепи

8. <u>Параллельное соединение проводников</u> — соединение, при котором каждый проводник

присоединен одним концом к (+) выходу системы, а $I_{\text{общ}}^{\text{пар}} = I_1 + I_2 + \dots$ другим концом к (–) выходу.

$$U_{
m oбіц}^{
m nap} = U_1 = U_2 = \dots$$
 $U_{
m oбіц}^{
m nap} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ Если $R_1 = R_2 = \dots = R_N = R$, то $R_{
m oбіц}^{
m nap} = \frac{R}{N}$

10. КПД электрической цепи

 $V = \varphi_a$ - φ_b — напряжение на нагрузке.

11. Условие выделения максимальной

$$R = r$$

12. Закон Фарадея для электролиза

