1 Characteristics of Functions

Definition:

For sets X and Y, a ______ is a relation from X to Y with the property that, for each element x in X, there is exactly one element y in Y such that x f y. Note that because a relation from X to Y is a subset of $X \times Y$, a function is a subset S of $X \times Y$ such that for each $x \in X$, there is a unique $y \in Y$ with $(x, y) \in S$ (notation: $f: X \to Y$).

Example: Suppose $X = \{1, 3, 5, 7\}$ and $Y = \{2, 4, 6, 8\}$.

- (a) Is $f = \{(1,2), (3,4), (5,6), (7,8)\}$ a function from X to Y? Why or why not?
- (b) Is $g = \{(1,2), (3,2), (5,2), (7,2)\}$ a function from X to Y? Why or why not?
- (c) Is $h = \{(1,2), (1,4), (1,6), (1,8)\}$ a function from X to Y? Why or why not?
- (d) Is $j = \{(1, 2), (3, 4), (5, 6)\}$ a function from X to Y? Why or why not?

Definition:

For function $f: X \to Y$, the _____ is the set of all possible inputs, here X.

The unique element of Y such that x f y is called the _____ (notation: f(x)).

The ____ is the set of all images under function f.

____: The set Y, which contains the range of function f.

Example: Suppose $k: X \to Y$, where $X = Y = \{x: x \text{ is a real number}\}$ is given by $k(x) = x^2$.

- (a) What is the image of x = 3?
- (b) What are the domain, codomain, and range of k?

Example: Suppose $m: X \to Y$, where $X = \{x: x \ge 0\}$, $Y = \{y: y \text{ is a real number}\}$ is given by m(x) = x + 5.

- (a) What is the image of x = 3?
- (b) What are the domain, codomain, and range of m?

Example: Suppose $n: X \to Y$, where $X = Y = \{x: x \text{ is a real number}\}$ is given by $n(x) = x^3 - x$.

- (a) What is the image of x = 3?
- (b) What are the domain, codomain, and range of n?

Example: Suppose $p: X \to Y$, where $X = \{9, 10, 11, 12\}$ and $Y = \{0, 1, 2\}$ is given by p(x) is the remainder when x is divided by 3.

- (a) What is the image of x = 9?
- (b) What are the domain, codomain, and range of p?

Definition:

A function $f: X \to Y$ is called _____ if $f(x_1) = f(x_2)$ implies $x_1 = x_2$; that is, for each output of function f, there is precisely one input that creates it.

If the range and codomain of a function are equal, then the function is _____.

A function that is both one-to-one and onto is called a ____.

For any set X, the function $I_X: X \to X$ defined by $I_X(x) = x$ is a one-to-one correspondence called the

Example: Revisit functions k-p. Which are one-to-one, which are onto, and which are one-to-one correspondences?

2 Composition and Inverses of Functions

Definition:

Suppose $f: X \to Y$ and $g: Y \to Z$. The _____ of g and f is defined as the image of x under gf = g(f(x)) for all $x \in X$.

Example: Suppose X, Y, and Z all denote the set of real numbers. Define $f: X \to Y$ by $f(x) = x^2$ and $g: Y \to Z$ by g(y) = 3y + 2. Find gf and fg.

Example: Suppose $X = \{x : x \ge 1\}$, $Y = \{y : y \ge 1\}$, and $Z = \{z : z \text{ is a real number}\}$. Define $f: X \to Y$ by $f(x) = \sqrt{x-1}$ and $g: Y \to Z$ by $g(y) = y^2 + 1$. Find gf and fg.

Definition:

Suppose $f: X \to Y$ is a one-to-one correspondence. The function with domain Y and codomain X that associates to each $y \in Y$ the unique $x \in X$ such that y = f(x) is the _____ of function f (notation: f^{-1}).

Theorem 2.7:

Let $f: X \to Y$ be a one-to-one correspondence. Then

- (a) $f^{-1}: Y \to X$ is a one-to-one correspondence.
- (b) The inverse function of f^{-1} is f.
- (c) For all $x \in X$, $f^{-1}f(x) = x$ and for all $y \in Y$, $ff^{-1}(y) = y$. That is, $f^{-1}f = I_X$ and $ff^{-1} = I_Y$.

Example: Which example above included inverse functions?

Example: Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$. Does f have an inverse? If so, find it. If not, why not?

Example: Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^3 - 1$. Does f have an inverse? If so, find it. If not,why not?

Example: Suppose $X = \{1, 3, 5, 7\}$ and $f: X \to X$ is given by $f = \{(1, 3), (3, 5), (5, 7), (7, 1)\}$. Does f have an inverse? If so, find it. If not, why not?

Why is paying attention to the domain and codomain of a function important for computer scientists?

Example: Let $A = \{1, 2, 3, 4\}$, $B = \{5, 6, 7, 8, 9\}$, and $C = \{2, 4, 6, 8, 10\}$. Let $f = \{(1, 7), (2, 8), (3, 5)\}$, $g = \{(5, 4), (6, 6), (7, 2), (8, 8), (9, 10)\}$, and $h = \{(2, 9), (4, 8), (6, 6), (8, 7), (10, 5)\}$. Determine whether each of the following statements are true or false and explain.

- (a) f is a one-to-one function from A to B.
- (b) g is an onto function from B to C.
- (c) h is a one-to-one function from C to B.
- (d) $h \circ g(7) = 9$
- (e) $g \circ h(8) = 8$
- (f) $h \circ g$ is onto.