Normalizarea Bazelor de Date Relationale (partea 2)

Ioana Ciuciu <u>ioana.ciuciu@ubbcluj.ro</u> http://www.cs.ubbcluj.ro/~oana/

Ioana Ciuciu

Planificare

Saptama na	Curs	Seminar	Laborator	
SI	I. Concepte fundamentale ale bazelor de date. Modelare conceptuala	I. Modelul Entitate-Relatie. Modelul relational	I. Modelarea unei BD in modelul ER si implementarea ei in SQL Server	
S2	2. Modelul relational de organizare a bazelor de date. Modelare conceptuala			
S3	3. Gestiunea bazelor de date relationale cu limbajul SQL (DDL)	2. Limbajul SQL – definirea si actualizarea datelor	2. Interogari SQL	
S4	4. Gestiunea bazelor de date relationale cu limbajul SQL (DML)			
S5-6	5-6. Dependente functionale, forme normale	3. Limbajul SQL – regasirea datelor	3. Interogari SQL avansate	
S7	7. JDBC (Java Database Connectivity)	4. Proceduri stocate	4. Proceduri stocate. View. Trigger	
\$8	8. Interogarea bazelor de date relationale cu operatori din algebra relationala			
S9	9. Structura fizica a bazelor de date relationale	5. View-uri. Functii definite de utilizator. Trigger		
S10-11	10-11. Indecsi. Arbori B. Fisiere cu acces direct	6. Formele normale ale unei relatii. Indecsi		
S12	12. Evaluarea interogarilor in bazele de date relationale			
\$13	13. Extensii ale modelului relational si baze de date NoSQL	7. Probleme	Examen practic	
\$14	14. Aplicatii			

Planul cursului

Curs 5:

- Normalizarea bazelor de date relationale
- Prima forma normala (INF)
- ▶ A 2-a forma normala (2NF)
- ▶ A 3-a forma normala (3NF)

Curs 6:

- Forma normala Boyce-Codd (BCNF)
- A 4-a forma normal (4NF)
- ► A 5-a forma normala (5NF)

Formele normale ale unei relatii

<u>Definitie</u> (INF). O relatie este de <u>prima forma normala</u> daca ea contine doar atribute **atomice** si **nu contine atribute repetitive**.

Definitie (**2NF**). O relatie este de <u>a doua forma normala</u> daca si numai daca:

- Este de prima forma normala si
- Orice **atribut** (simplu sau compus) **neprim** (deci care nu este inclus intr-o cheie) **este complet dependent functional de oricare cheie a relatiei**.

Definitie (**3NF**): O relatie este de <u>a treia forma normala</u> daca si numai daca:

- Este de 2NF si
- orice atribut neprim <u>nu este tranzitiv dependent</u> de oricare cheie a relatiei.

Descompunerea unei relatii: operatorul de proiectie Compunerea relatiilor: operatorul de join natural

Exemplul I:

Fie relatia:

Student(Nume, Anul Nasterii, Grupa, Disciplina, Nota)

Cheia relatiei: {Nume}

Atribut compus repetitiv: {Disciplina, Nota}

Nume	A nul N asterii	Grupa	Disciplina	Nota
Pop Ioana	1996	321	Baze de Date Sisteme de Operare Probabilitati	10 8 9
Muresan Silviu	1997	322	Baze de Date Sisteme de Operare Probabilitati si Statistica Proiect Individual	9 7 8 10

- Exemplul I:
- Relatia Student se descompune in urmatoarele 2 relatii:

DateStudent(<u>Nume</u>, AnulNasterii, Grupa)
RezultateStudent(<u>Nume</u>, <u>Disciplina</u>, Nota)

Nume	A nul N asterii	Grupa
Pop Ioana	1996	321
Muresan Silviu	1997	322

- Relatia este in INF
- 2NF,3NF?

Nume	Disciplina	Nota
Pop Ioana	Baze de Date	10
Pop Ioana	Sisteme de Operare	8
Pop Ioana	Probabilitati	9
Muresan Silviu	Baze de Date	9
Muresan Silviu	Sisteme de Operare	7
Muresan Silviu	Probabilitati si Statistica	8
Muresan Silviu	Proiect Individual	10

Exemplul 2:

Fie relatia urmatoare care memoreaza contractele de studiu: Contracte(<u>CNP</u>, <u>CodDisciplina</u>, Nume, Prenume, DenumireDisciplina)

- Cheia relatiei: {CNP, CodDisciplina}
- Exista doua DF: {CNP}->{Nume, Prenume} si {CodDisciplina}->{DenumireDisciplina}
- Pentru eliminarea acestor dependente, se descompune relatia in urmatoarele trei relatii:

Studenti(<u>CNP</u>, Nume, Prenume)

Discipline(CodDisciplina, DenumireDisciplina)

Contracte(CNP, CodDisciplina)

Relatia este acum in 3NF

Exemplul 3:

Fie urmatoarea relatie, care retine adresele unui grup de persoane:

Adrese(CNP, Nume, Prenume, Localitate, CodPostal, Strada, Nr)

- Cheia relatiei: CNP
- Exista urmatoarea DF: {CodPostal}->{Localitate}
 - Deoarece la unele localitati codul postal se stabileste la nivel de strada, sau chiar portiuni de strada
- Relatia nu este in 3NF, deci este necesara descompunerea ei

Domiciliu(<u>CNP</u>, Nume, Prenume, CodPostal, Strada, Nr) Localitate(<u>CodPostal</u>, Localitate)

Boyce-Codd Normal Form (BCNF)

Notiuni Preliminare

Exemplu:

Sa consideram urmatoarea relatie care memoreaza o eventuala planificare a studentilor pentru examene

Planificare_Ex(Data, Ora, Cadru_did, Sala, Grupa)

- cu cateva restrictii case se transpun prin definirea de chei sau prin respectarea unei/unor dependente functionale
 - O grupa de studenti da maximum un examen intr-o zi, deci {Data, Grupa} este cheie
 - 2. Un cadru didactic are examen cu o singura grupa la o anumita data si ora, deci {Cadru_did, Data, Ora} este cheie
 - La un moment dat (zi, ora) intr-o sala este planificat cel mult un examen, deci **{Sala, Data, Ora}** este cheie
 - Intr-o zi cadrul didactic nu schimba sala, in sala respectiva pot fi planificate si alte examene, dar la alte ore, deci exista urmatoarea dependenta functionala: {Cadru_did, Data} →{Sala}

Boyce-Codd Normal Form (BCNF)

Notiuni Preliminare

Exemplu:

 Sa consideram urmatoarea relatie care memoreaza o eventuala planificare a studentilor pentru examene

Planificare_Ex(Data, Ora, Cadru_did, Sala, Grupa)

- Toate atributele din aceasta relatie apar in cel putin o cheie, deci nu exista atribute neprime
- Putem deci spune ca relatia este in 3NF, conform definitiilor precizate anterior
- Pentru a elimina si dependenta functionala amintita mai sus, s-a introdus o noua forma normala

Boyce-Codd Normal Form (BCNF)

O relatie este in **3NF Boyce-Codd** (sau **BCNF**) daca **este in 3NF** si **orice determinant** (pentru o dependenta functionala) **este cheie**, deci **nu exista dependente functionale** X \rightarrow Y **astfel incat** X **sa nu fie cheie**

Pentru a elimina dependenta functionala din exemplul de mai sus, {Cadru_did, Data} → {Sala}, trebuie sa facem urmatoarea descompunere pentru relatia Planificare_Ex(Data, Ora, Cadru_did, Sala, Grupa):

Planificare_Ex(<u>Data,Cadru_did,Ora,Grupa</u>)
Repartizare Sali(<u>Cadru_did,Data,</u>Sala)

Dupa aceasta descompunere nu mai exista DF, deci relatiile sunt de tipul **BCNF**, dar a disparut cheia asociata restrictiei precizate la punctul 3 de mai sus: {Sala, Data, Ora}

Daca se mai doreste pastrata o astfel de restrictie, atunci ea trebuie verificata altfel (de exemplu, prin program)

Consecinte metodologice

- ▶ Fiecare DF trebuie sa se traduca printr-o relatie
- Intr-un SGBD relational, singura modalitate de a lua in considerare o DF este de a declara determinantul acesteia ca si cheie a unei relatii
- Se interzice astfel duplicarea valorilor identice si se asigura coerenta valorilor stocate in BD

Consecinte metodologice

 Cand o relatie contine cel putin o DF, aceasta nu poate fi decat de INF, 2NF, 3NF sau de BCNF

Exercitii

- Gasiti formele normale ale relatiilor urmatoare si propuneti o descompunere daca e necesar:
 - ▶ RI(n<u>r_client,nr_produs</u>, cantit_comandata, nume_produs)
 - ▶ R2(<u>nr_comanda,nr_produs,</u> cantit_comandata)
 - R3(<u>nr_client</u>, nume_client, nume_reprezentant)
 - ▶ R4(<u>nr_produs</u>, nume_produs, nr_atelier, nume_sef_atelier)
 - ▶ R5(<u>nr_client</u>, nume_client, nr_reprezentant, nume_reprezentant)
 - ▶ R6(<u>nr_produs, nr_furnizor, pret, nume_furnizor</u>)

Notiuni Preliminare

Fie relatia:

DCS(Departament, CadruDidactic, DataSedinta), unde atributele CadruDidactic si DataSedinta sunt repetitive

- O inregistrare in aceasta relatie ar putea sa fie de tipul dat in tabelul alaturat (sus)
- Pentru a nu avea atribute repetitive (pentru ca relatia sa fie cel putin in INF) trebuie sa memoram datele din aceasta inregistrare ca in tabelul de jos (s-au trecut date numai pentru o inregistrare din primul tabel)
- In acest tabel, fiecare cadru didactic are aceleasi date pentru sedinta (<u>cadrele didactice dintr-un department sunt independente de datele sedintelor din acel departament</u>); deci la adaugarea, modificarea sau stergerea liniilor din tabel **trebuie facute unele verificari suplimentare**

Informatica	CDII CDI2 CDIm	DII DI2 DIn
Matematica	CDMI CDM2 CDMp	DMI DM2 DMq

Informatica	CDII	DII
Informatica	CDII	DI2
•••••	•••	•••
Informatica	CDII	Dln
Informatica	CDI2	DII
Informatica	CDI2	DI2
		•••

Notiuni Preliminare

- Dupa cum s-a precizat in cursul anterior, dependenta functionala simpla X→Y inseamna ca fiecarei valori a lui X i se asociaza o valoare unica a lui Y
- ▶ Dependenta functionala multipla X ⇒ Y (Y este multiplu dependent functional de X) presupune ca o valoare <u>u a lui X</u> are asociata o <u>multime de valori v pentru Y: X(u) = {v1, v2, ..., vn}</u>, iar aceasta asociere este valabila indiferent de valorile din Z = A −Y −X (unde A este multimea de atribute din relatie, deci A = X UY U Z)
- Proprietate: daca $X \Longrightarrow Y$ si $A = X \cup Y \cup Z$, atunci $X \Longrightarrow Z$

Notiuni Preliminare

Pentru relatia DCS din ex. precedent avem

- Daca R are in schema numai atributele X si Y, deci R[X,Y], atunci avem numai o dependenta functionala multipla triviala

O relatie R este in **4NF** daca si numai daca este in **BCNF** si **nu contine dependente functionale multiple netriviale**

NB: o relatie de forma 4NF este redusa la cheia sa (toate atributele sunt incluse in cheie)

▶ Daca R[X,Y,Z] si exista $X \Longrightarrow Y$, atunci R se descompune astfel:

$$R_1[X,Y] = \prod_{X \cup Y} (R)$$

$$R_2[X,Z] = \prod_{X \cup Z} (R)$$

Pentru relatia DCS din exemplul dat se obtine descompunerea:

DC(Departament, CadruDidactic)

DS(Departament, DataSedinta)

- DC si DS sunt deci in 4NF
- Observatie: in cazul in care cadrele didactice ale unui department nu aveau toate aceleasi date de sedinta, relatia ar fi fost in 4NF de la inceput

Notiuni Preliminare

- Cand apare o DF (simpla, multipla) ea se elimina prin descompunerea relatiei in relatii noi
- Totusi, exista relatii fara DF care inca mai contin informatii redundante, deci care pot genera erori in BD
- Exemplu: fie relatia

PrSeDi(Profesor, Sectie, Disciplina)

care memoreaza sectiile si disciplinele la care predau cadrele didactice

Aceasta relatie nu are DF; cheia relatiei este {Profesor, Sectie, Disciplina}

Notiuni Preliminare

Consideram urmatoarele date in relatie:

Pr	Se	Di
PI	SI	D2
PI	S2	DI
P2	SI	DI
PI	SI	DI

Exista unele date redundante (apar unele asocieri intre mai multe inregistrari):

- Profesorul PI preda la sectia SI
- Profesorul PI preda disciplina DI
- La sectia SI se preda disciplina DI

Daca se doreste sa se schimbe valorile din relatie, ca de exemplu:

- "profesorul PI sa predea disciplina D3 în locul disciplinei DI", atunci trebuie facute mai multe modificari, fara sa se stie în câte înregistrari.

La fel se întâmpla pentru modificarile:

- "la sectia SI în locul disciplinei DI sa se predea disciplina D3",
- "profesorul PI preda la sectia S3 în locul sectiei SI".

Notiuni Preliminare

- Relatia anterioara nu se poate descompune in doua relatii (prin proiectie), pentru ca prin join se introduc date noi.
- Justificam aceasta afirmatie prin cele trei proiectii posibile pe doua atribute

PrSe	Pr	Se
	PI	SI
	PI	S2
	P2	SI

SeDi	Se	Di
	SI	D2
	S2	DI
	SI	DI

PrDi	Pr	Di
	PI	D2
	PI	DI
	P2	DI

- Daca se evalueaza PrSe * SeDi se obtin datele:
- In aceasta relatie rezultat se obtine o linie suplimentara fata de relatia initiala

R'= PrSe * SeDi	Pr	Se	Di
	PI	SI	D2
	PI	SI	DI
	PI	S2	DI
	P2	SI	D2
	P2	SI	DI

Notiuni Preliminare

La fel se intampla si pentru alte combinatii de join: **PrSe** * **PrDi** si

SeDi * PrDi

- Daca insa se calculeaza R' * PrDi, deci se evalueaza PrSe * SeDi * PrDi, atunci se obtine relatia initiala PrSeDi
- Concluzie: PrSeDi nu se descompune in doua proiectii, dar se poate descompune in trei proiectii, deci PrSeDi este 3-decompozabila:

PrSeDi = PrSe * SeDi * PrDi, sau PrSeDi = *(PrSe, SeDi, PrDi)

Notiuni Preliminare

- Concluzia anterioara (PrSeDi este 3-decompozabila) este valabila pentru datele precizate in relatie
- Pentru a fi adevarata indiferent de date, trebuie sa fie indeplinite anumite restrictii
- O astfel de restrictie ar fi:

if (PI,SI) apartine PrSe and (PI,DI) apartine PrDi and (SI,DI) apartine SeDi then (PI,SI,DI) apartine PrSeDi

Aceasta restrictie se poate inlocui cu alta:

if (P1,S1,D2) apartine PrSeDi and (P1,S2,D1) apartine PrSeDi and (P2,S1,D1) apartine PrSeDi then (P1,S1,D1) apartine PrSeDi

Consideram urmatoarele date in relatie, cu respectarea restrictiei de mai sus:

Pr	Se	Di
PI	SI	D2
PI	S2	DI

Daca (P2,S1,D1) se adauga la relatie, atunci trebuie adaugata si inregistrarea (P1,S1,D1)

Notiuni Preliminare

Consideram urmatoarele date in relatie, cu respectarea restrictiei de mai sus:

Pr	Se	Di
PI	SI	D2
PI	S2	DI

Daca (P2,S1,D1) se adauga la relatie, atunci trebuie adaugata si inregistrarea (P1,S1,D1)

Pr	Se	Di
PI	SI	D2
PI	S2	DI
P2	SI	DI
PI	SI	DI

Daca se sterge (PI,SI,DI) din relatie, atunci trebuie sterse si alte date, cel putin (P2,SI,DI) pentru ca restrictia sa fie indeplinita

Notiuni Preliminare

- Dependenta join: Fie R[A] o relatie si Ri[Xi], i=,...,m, proiectiile relatiei R pe Xi. In R exista o dependenta join daca R=RI*...*Rm, m≥2
- Exemplu: In PrSeDi exista o dependenta join deoarece PrSeDi = PrSe * SeDi * PrDi

▶ Dependenta join triviala: dependenta join R=RI*...*Rm, Ri[Xi], este triviala daca Xi este cheie pentru R, i=1,...,m

O relatie R este in **5NF** daca si numai daca este in **4NF** si nu exista dependente join netriviale.

▶ Daca intr-o relatie R exista o dependenta join R=RI*...*Rm, atunci se descompune in relatiile Ri, i=I,...,m

Recapitulare

- Fie R(C1,C2,C3)
- ▶ I caz: 4NF
 - A. Exista o DF multipla intre C1 si C2/C3, atunci putem descompune relatia R:

R(CI,C2,C3)=RI(CI,C2)*R2(CI,C3)

B. Nu exista DF multipla

Atunci R(CI,C2,C3) nu se descompune, si este in 4NF

- ▶ II-lea caz: 5NF
 - A. exista o DJ intre C1, C2 si C3, atunci

R(CI,C2,C3) = RI(CI,C2) * R2(CI,C3) * R3(C2,C3)

▶ B. Nu exista DJ, si deci R(C1,C2,C3) nu se poate descompune si este in 5NF

Algoritm de identificare a formei normale a unei relatii

Referinte

- Date, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2004, chapters 11, 12
- ▶ Garcia-Molina, H., Ullman, J., Widom, J., Database Systems: The Complete Book, Pearson Prentice Hall, 2008, chapter 3
- Ramakrishnan, R., Database Management Systems. McGraw-Hill, 2007, *cap. 15*
- Leon Tambulea, Curs de baze de date, UBB Cluj-Napoca
- Christine Verdier, curs Systèmes d'Information et Bases de Données, UJF Grenoble

