Forecasting and Time Series Econometrics ECO374 Winter 2019

Tianyu Du

February 4, 2019

Contents

1	Introduction and Statistics Review	1
2	Statistics and Time Series 2.1 Stochastic Processes	
1	Introduction and Statistics Review	
D	efinition 1.1. Given random variable X, the k^{th} non-central moment is defined as	
	$\mathbb{E}[X^k] \tag{1}$.1)
D	efinition 1.2. Given random variable X the k^{th} central moment is defined as	

Definition 1.2. Given random variable X, the k^{in} central moment is defined as

$$\mathbb{E}[(X - \mathbb{E}[X])^k] \tag{1.2}$$

Remark 1.1. Moments of order higher than a certain k may not exist for certain distribution.

Definition 1.3. Given the **joint density** f(X,Y) of two *continuous* random variables, the **conditional density** of random Y conditioned on X is

$$f_{Y|X}(y|x) = \frac{f_{Y,X}(y,x)}{f_X(x)}$$
 (1.3)

Definition 1.4. Given discrete variables X and Y, the **conditional density** of Y conditioned on X is defined as

$$P(Y = y | X = x) = \frac{P(Y = y \land X = x)}{P(X = x)}$$
(1.4)

Assumption 1.1. Assumptions on linear regression on time series data:

(i) Linearity

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + u \tag{1.5}$$

(ii) Zero Conditional Mean

$$\mathbb{E}[u|X_1, X_2, \dots, X_k] = 0 \tag{1.6}$$

(iii) Homoscedasitcity

$$\mathbb{V}[u|X_1, X_2, \dots, X_k] = \sigma_u^2 \tag{1.7}$$

(iv) No Serial Correlation

$$Cov(u_t, u_s) = 0 \ \forall t \neq s \in \mathbb{Z}$$
 (1.8)

- (v) No Perfect Collinearity
- (vi) Sample Variation in Regressors

$$V[X_j] > 0 \,\,\forall j \tag{1.9}$$

Theorem 1.1 (Gauss-Markov Theorem). Under assumptions 1.1, the OLS estimators $\hat{\beta}_j$ are best linear unbiased estimators of the unknown population regression coefficients β_j .

Remark 1.2. The *no serial correlation* assumption is typically not satisfied for time series data. And the *linearity* assumption is also too restrictive for time series featuring complex dynamics. Hence, for time series data we typically use other models than linear regression with OLS.

2 Statistics and Time Series

2.1 Stochastic Processes

Definition 2.1 (1.1). A stochastic process (or time series process) is a family (collection) random variables indexed by $t \in \mathcal{T}$ and defined on some given probability space (Ω, \mathcal{F}, P) .

$$\{Y_t\} = Y_1, \dots, Y_T \tag{2.1}$$

Definition 2.2 (1.2). The function $t \to y_t$ which assigns to each point in time $t \in \mathcal{T}$ the realization of the random variable Y_t , y_t is called a **realization** or a **trajectory** or an **outcome** of the stochastic process.

Definition 2.3. An *outcome* of a stochastic process

$$\{y_t\} = y_1, \dots, y_T \tag{2.2}$$

is a **time series**.

Definition 2.4 (1.3). A time series model or a model for the observations (data), $\{y_t\}$, is a specification of the *joint distribution* of $\{Y_t\}$ for which $\{y_t\}$ is a realization.

Assumption 2.1. The **ergodicity** assumption requires the observations cover in principle all possible events.

Definition 2.5. A stochastic process $\{Y_t\}$ is first order strongly stationary if all random variables $Y_t \in \{Y_t\}$ has the same probability density function.

Definition 2.6 (1.7). A stochastic process $\{Y_t\}$ is **strictly stationary** if for all $h, n \ge 1, (X_1, \ldots, X_n)$ and $(X_{1+h}, \ldots, X_{n+h})$ have the same distribution.

Definition 2.7. A stochastic process $\{Y_t\}$ is first order weakly stationary if

$$\forall t \in \mathcal{T}, \ \mu_{Y_t} \equiv \mathbb{E}[Y_t] = \bar{\mu} \tag{2.3}$$

Definition 2.8. A stochastic process $\{Y_t\}$ is **second order weakly stationary**, or **covariance stationary** if all random variables $\{Y_t\}$ have the same mean and variance. And the covariances do not depend on t. That's, for all $t \in \mathcal{T}$,

- (i) $\mathbb{E}[Y_t] = \mu \ \forall t$
- (ii) $\mathbb{V}[Y_t] = \sigma^2 < \infty \ \forall t$
- (iii) $Cov(Y_t, Y_s) = Cov(Y_{t+r}, Y_{s+r}) \ \forall t, s, r \in \mathbb{Z}$

2.2 Auto-correlations

Definition 2.9. Let $\{Y_t\}$ be a stochastic process with $\mathbb{V}[Y_t] < \infty \ \forall t \in \mathcal{T}$, the **auto-covariance** function is defined as

$$\gamma_Y(t,s) \equiv Cov(Y_t, Y_s) \tag{2.4}$$

$$= \mathbb{E}[(Y_t - \mathbb{E}[Y_t])(Y_s - \mathbb{E}[Y_s])] \tag{2.5}$$

$$= \mathbb{E}[Y_t Y_s] - \mathbb{E}[Y_t] \mathbb{E}[Y_s] \tag{2.6}$$

Lemma 2.1. If $\{Y_t\}$ is stationary, then the auto-covariance function does not depend on specific time point t. We can write the $h \in \mathbb{Z}$ degree auto-covariance as

$$\gamma_Y(h) \equiv \gamma_X(t, t+h) \ \forall t \in \mathcal{T}$$
 (2.7)

Proposition 2.1. By the symmetry of covariance,

$$\gamma_Y(h) = \gamma_Y(-h) \tag{2.8}$$

Definition 2.10. The auto-correlation coefficient of order k is given by

$$\rho_{Y_t, Y_{t-k}} = \frac{Cov(Y_t, Y_{t-k})}{\sqrt{\mathbb{V}[Y_t]} \sqrt{\mathbb{V}[Y_{t-k}]}}$$
(2.9)

Definition 2.11. Let $\{Y_t\}$ be a stationary process and the **auto-correlation function** (ACF) is a mapping from order of auto-correlation coefficient to the coefficient $\rho_Y : k \to \rho_{Y_t, Y_{t-k}}$, defined as

$$\rho_Y(k) \equiv \frac{\gamma(k)}{\gamma(0)} = corr(Y_{t+k}, Y_t)$$
(2.10)

Proposition 2.2. Note that

$$\rho_k = \rho_{-k} = \rho_{|k|} \tag{2.11}$$

so the ACF for stationary process can be simplified to a mapping

$$\rho: k \to \rho_{|k|} \tag{2.12}$$

Remark 2.1. Strong stationarity is difficult to test so we will focus on weak stationarity only.

Proposition 2.3. For a non-stationary stochastic process $\{Y_t\}$, $\{\Delta Y_t\}$ becomes first order weakly stationary and $\{\Delta \log(Y_t)\}$ becomes second order weakly stationary.

Definition 2.12 (1.8). A stochastic process $\{Y_t\}$ is called a **Gaussian process** if all *finite* dimensional distribution from the process are multivariate normally distributed. That's

$$\forall n \in \mathbb{Z}_{>0}, \ \forall (t_1, \dots, t_n) \in \mathcal{T}^n, (Y_{t_1}, \dots, Y_{t_n}) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
(2.13)

Notation 2.1. Consider the problem of forecasting Y_{T+1} from observations $\{Y_t\}_{t=1}^T$, the best linear predictor is denoted as

$$\mathbb{P}_T Y_{T+1} = \sum_{i=1}^T a_i L^i Y_{T+1} \tag{2.14}$$

And Y_{T+1} can be expressed as

$$Y_{T+1} = \mathbb{P}_T Y_{T+1} + Z_{T+1} \tag{2.15}$$

where Z_{T+1} denotes the forecast error which is uncorrelated with X_T, \ldots, X_1 .

Definition 2.13 (3.3). The partial auto-correlation function (PACT) $\alpha(h)$ with $h \in \mathbb{Z}_{\geq 0}$ of a stationary process is defined as

$$\alpha(0) = 1 \tag{2.16}$$

$$\alpha(1) = corr(Y_2, Y_1) = \rho(1) \tag{2.17}$$

$$\alpha(h) = corr\Big(Y_{h+1} - \mathbb{P}(Y_{h+1}|1, Y_2, \dots, Y_h), X_1 - \mathbb{P}(Y_1|1, Y_2, \dots, Y_h)\Big)$$
(2.18)

Remark 2.2 (Interpretation of PACF). partial auto-correlation r_k only measures correlation between two variables Y_t and Y_{t+k} while controlling $(Y_{t+1}, \ldots, Y_{t+k-1})$.

Remark 2.3. Properties of ACF and PACF

processes	ACF	PACF
AR(p)	Declines exponentially (monotonic or oscillating) to zero	$\alpha(h) = 0 \ \forall h > p$
MA(q)	$\rho(h) = 0 \ \forall h > q$	Declines exponentially (monotonic or oscillating) to zero

Test for Auto-correlation To test single auto-correlation with

$$H_0: \rho_k = 0$$
 (2.19)

we can use usual t-statistic. While testing the joint hypothesis

$$H_0: \rho_1 = \rho_2 = \dots = \rho_k = 0$$
 (2.20)

we are using the ${\bf Ljung\text{-}Box}$ ${\bf Q\text{-}statistic}:$

$$Q_k = T(T+1) \sum_{j=1}^k \frac{\hat{\rho}_j^2}{T-j} \sim \chi_k^2$$
 (2.21)