Physical Experiments I

Experiment Title-Newton's rings

Your Chinese Name-张立澄 (Student Number-2017200602011)

Instructor: Jing Wu

Teaching Assistant: Hao Wen

Date Performed: 2018.3.16

Score

Abstract (About 50 words, 10 points)

The purpose of the Newton's rings experiment is to observe the phenomenon of Newton's rings formed by thin film interference, demonstrate the wave-like properties of the light, and get the radius of curvature of lens by measuring and calculating the experiment data after interference takes place with producing dark and bright circular fringes. Since errors must be reduced, I have to do above steps successively. Although the process is a little bit inconvenient, I have learn a lot from observing images, calculating, and analyzing reasons for different patterns by myself.

Calculations and Results (Calculations, data tables and figures,

more than 150 words, 20 points)

On the whole, configure the experimental setup, finish the experimental procedure step by step, and then analyze data combined physical experiments with the mathematical method to compute the radius of curvature, \bar{R} of the lens, and the uncertainty of R.

(1) After measuring and calculating the experiment data successively, I get a table as following:

The order of the dark rings		30 th	25 th	20 th	15 th	10 th	5 th		
readings (mm)	Left, $D_{\rm L}$	37.270	36.789	36.241	35.653	34.946	34.010		
	Right, $D_{\rm R}$	25.701	26.178	26.701	27.303	27.995	28.910		
Diameter(mm) $D= D_L-D_R $		11.569	10.611	9.540	8.350	6.951	5.100		
D^2 (mm ²)		133.865	112.572	91.012	69.723	48.303	26.010		
$ D_m^2 - D_n^2 \text{(mm)}^2 \text{ (m-n=15)}$		$D_{30}^2 - D_{15}^2$ =64.142		$D_{25}^2 - D_1^2$	₀ =64.269	$D_{20}^2 - D_5^2$ =65.002			
$\overline{D_m^2 - D_n^2} \ (\text{mm})^2$		64.471							
\bar{R} (mm)		1823.398							

(2) The calculation process is shown as following:

(I)
$$30^{\text{th}}: D = |D_L - D_R| = |37.270 - 25.701| = 11.569 (mm)$$

$$25^{\text{th}}: D = |D_L - D_R| = |36.789 - 26.178| = 10.611 (mm)$$

$$20^{\text{th}}: D = |D_L - D_R| = |36.241 - 26.701| = 9.540 \ (mm)$$

$$15^{\text{th}}: D = |D_L - D_R| = |35.653 - 27.303| = 8.350 (mm)$$

$$10^{\text{th}}: D = |D_L - D_R| = |34.946 - 27.995| = 6.951 (mm)$$

$$5^{\text{th}}: D = |D_L - D_R| = |34.010 - 28.910| = 5.100 \ (mm)$$

(II)
$$30^{\text{th}}: D^2 = |D_L - D_R|^2 = 133.865 (mm^2)$$

$$25^{\text{th}}: D^2 = |D_L - D_R|^2 = 112.572 (mm^2)$$

$$20^{\text{th}}: D^2 = |D_L - D_R|^2 = 91.012 (mm^2)$$

$$15^{\text{th}}: D^2 = |D_L - D_R|^2 = 69.723 (mm^2)$$

$$10^{\text{th}}: D^2 = |D_L - D_R|^2 = 48.303 (mm^2)$$

$$5^{\text{th}}: D^2 = |D_L - D_R|^2 = 26.010 (mm^2)$$
(III)
$$D_{30}^2 - D_{15}^2 = 64.142 (mm^2)$$

$$D_{25}^2 - D_{10}^2 = 64.269 (mm^2)$$

$$D_{20}^2 - D_5^2 = 65.002 (mm^2)$$
(IV)
$$\overline{D_m^2 - D_n^2} = \frac{64.142 + 64.269 + 65.002}{3} = 64.471 (mm^2)$$
(IV)
$$\overline{R} = \frac{\overline{D_m^2 - D_n^2}}{4(m-n)\lambda} = \frac{64.471}{4 \times 15 \times 588.9950 \times 10^{-6}} = 1823.398 (\lambda = 588.9950 \text{ nm})$$

(3) The uncertainty of R and some steps are shown as following:

(I)
$$S_{(D_m^2 - D_n^2)} = \sqrt{\frac{\sum[(D_m^2 - D_n^2)_i - \overline{(D_m^2 - D_n^2)}]^2}{3 \times (3 - 1)}} = \sqrt{\frac{(64.142 - 64.471)^2 + (64.269 - 64.471)^2 + (65.002 - 64.471)^2}{3 \times (3 - 1)}} = \sqrt{\frac{0.108241 + 0.040804 + 0.281961}{3 \times (3 - 1)}} = \sqrt{\frac{0.431006}{3 \times (3 - 1)}} = 0.268 \text{ (mm)}$$
(II) $\mu_{(D_m^2 - D_n^2) - Read.} = \frac{\Delta_{Read.} - 0.002}{\sqrt{3}} = 0.00115 \text{ (mm)}$
(III) $\mu_{(D_m^2 - D_n^2) - Instr.} = \frac{\Delta_{Instr.} - 0.005}{\sqrt{3}} = 0.00289 \text{ (mm)}$
(IV) $\sigma_{(D_m^2 - D_n^2)} = \sqrt{S_{(D_m^2 - D_n^2)}^2 + \mu_{(D_m^2 - D_n^2) - Read.}^2 + \mu_{(D_m^2 - D_n^2) - Instr.}^2} = \sqrt{(0.268)^2 + (0.00115)^2 + (0.00289)^2} = 0.268 \text{ (mm)}}$
(V) $\sigma_{\bar{R}} = \frac{\sigma_{(D_m^2 - D_n^2)}}{4(m-n)^2} = \frac{0.268}{4 \times 15 \times 588.9950 \times 10^{-6}} = 7.991 \text{ (mm)}$

(4) After comprehensive analysis and calculation repeatedly by myself. Ultimately, I get $R=\overline{R}+\sigma_{\overline{R}}=1823.398\pm7.991=1823\pm8 \text{(mm)}$

Score

Answers to Questions (10 points)

- (1) At the center, the central connection point of the lens and the glass plate, a dark circle is formed. The rings alternate colorful (like rainbow colors) concentric rings around the center, and the distance of fringes is sparse inside and dense outside with color changed periodically.
- (2) There is interspace between the lens and the glass plate (the contact is dusty, or damaged), causing optical path difference increased. It will not affect the measurement results if we keep the bright circle in the center.
- (3) No, it isn't. The distance of fringes is sparse inside and dense outside, because the center slopes gently and the slope changes more dramatically when close to the convex of lens (as can be seen from the following picture).

Appendix

(Scanned data sheets)

3.6.5 Experiment Data

Data Table 3.6-1 Purpose: To measure the radius of curvature of a lens

wavelength
$$\bar{\lambda} = \frac{1}{2}(\lambda_1 + \lambda_2) = \frac{1}{2}(288.916 - 189.1924 - 189.2926)$$

The order of the dark rings		30 th	25 th	20 th	15 th	10 th	5 th		
Readings	Left, D _L	37. 27	936.789	136.24	135.65	334.94	-> 6 34.01	0	
/mm	Right, D _R	25.70	126.176	26.70	127.30	27.99	28.910		
	Diameter /mm $D = D_{L} - D_{R} $		10.61	9.540	8.350	6.951	5.100		
D^2/mm^2		133.865	112.572	91.012	69.723	48.30	26.0	0	
$ D_m^2 - D_n^2 / \text{mm}^2 \ (m-n = 15)$		D ₃₀ -	64.1 D ₁₅ =	42 D ₂₅ -	64. D ₁₀ =24=	269 24 D20 -	$-D_5^2 = 22$	293	
$\left \overline{D_m^2 - D_n^2}\right / \mathrm{mm}^2$		64.471							
$\overline{R} = \frac{D_m^2 - D_n^2}{4(m-n)\lambda} / \text{mm}$		$\frac{64.471}{4 \times 15 \times 589.2937 \times 10^{-6}} = 1823.398$							

Your name and student number: 3 3 1 Instructor's initial: Jing im.