# 1 Register Description

## 1.1 COMMON BANK

## 1.1.1 WHO\_AM\_I

| REG Name             | WHO_AM_I: Device Identifier                     |  |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------|--|--|--|--|--|--|--|--|
| REG Address          | Bank COMMON - 0x20 (Hex) - 32 (Dec)             |  |  |  |  |  |  |  |  |
|                      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |  |
| Type - Def.<br>Value | R-10110001                                      |  |  |  |  |  |  |  |  |
| Content              | WHOAMI                                          |  |  |  |  |  |  |  |  |

#### **Description**

Device Identifier register. This number uniquely identifies the device type

#### **Parameters**

• WHOAMI: Device Identifier 0xB1 (Hex)

## 1.1.2 BANK\_SELECT

| REG Name             | BANK_SELE | BANK_SELECT: Bank Selector                      |  |  |  |          |       |  |  |  |  |
|----------------------|-----------|-------------------------------------------------|--|--|--|----------|-------|--|--|--|--|
| REG Address          | Bank COM  | Bank COMMON - 0x21 (Hex) - 33 (Dec)             |  |  |  |          |       |  |  |  |  |
|                      | Bit 7     | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |          |       |  |  |  |  |
| Type - Def.<br>Value |           | R-0000                                          |  |  |  | RW       | -0000 |  |  |  |  |
| Content              |           | RFU                                             |  |  |  | BANK_SEL |       |  |  |  |  |

## **Description**

User Bank selection register. It is used to have at any time 32 locations available for read and write operations, although more than 32 registers are available. The locations from 0x20 up to 0x3F (Common Bank) are always available, while locations from 0x00 to to 0x1F can be selected using the BANK\_SEL parameter.

## **Parameters**

BANK\_SEL: These four bits allow addressing 16 different pages of register other than the common bank. Page size is of 32 byte. Default bank is the user (0h) bank. Valid Combinations are:

0000 -> Bank 0 (User bank)

0001 -> Bank 1 (Interrupt bank)

Banks beyond Bank 1 are reserved.

#### 1.1.3 SYSTEM STATUS

| REG Name             | SYSTEM_                             | SYSTEM_STATUS: System Status                    |          |            |     |     |     |     |  |  |  |
|----------------------|-------------------------------------|-------------------------------------------------|----------|------------|-----|-----|-----|-----|--|--|--|
| REG Address          | Bank COMMON - 0x22 (Hex) - 34 (Dec) |                                                 |          |            |     |     |     |     |  |  |  |
|                      | Bit 7                               | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |          |            |     |     |     |     |  |  |  |
| Type - Def.<br>Value | R-0                                 | R-0                                             | R-0      | R-0        | R-0 | R-0 | R-0 | R-0 |  |  |  |
| Content              |                                     |                                                 | DR_ERROR | DATA_READY |     |     |     |     |  |  |  |

#### **Description**

This is the System Status register. It reports two fundamental flags necessary to properly manage the communication with the MAX21000. Ideally, every new data-reading operation from the MAX21000 should only take place when at least a new DATA\_READY event has occurred. Failure to have a data reading every DATA\_READY may result in either reading twice the same data or missing the data. That is particularly true when the FIFO is disabled. The DR\_ERR flag indicates the occurence of either one of the events described above. If the FIFO is used, multiple data can be read safely, according to the FIFO COUNT (0x3C) register, even though many DATA\_READY have been generated.

The way the DATA\_READY flag is reset can be configured using register DR\_CFG (0x13). Bits[7:3] are reserved.

#### **Parameters**

- DR\_ERROR: This bit goes high when a new data is generated before or during data reading
- DATA\_READY: DATA\_READY flag: it goes high when a new set of gyroscope data is available

## 1.1.4 GYRO\_X\_H

| REG Name             | GYRO_X_H: | Gyro Data, ) | K-axis, MSB   | •      |       |       |       |       |
|----------------------|-----------|--------------|---------------|--------|-------|-------|-------|-------|
| REG Address          | Bank COMM | ION - 0x23 ( | Hex) - 35 (De | ec)    |       |       |       |       |
|                      | Bit 7     | Bit 6        | Bit 5         | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Type - Def.<br>Value |           |              |               | R-0000 | 0000  |       |       |       |
| Content              |           |              |               | GYRO_X | _MSB  |       |       |       |

#### Description

This register stores the most recent gyroscope measurement, specifically the MSB of the X-axis.

Gyroscope measurements are written to these registers at the Output Data Rate as defined in Register CFG2.

The user is responsible for ensuring a set of single byte reads correspond to a single sampling instant by checking the Data Ready bit, optionally configured as interrupt source.. Each 16-bit gyroscope measurement has a full scale defined in <a href="SENSE CFGO">SENSE CFGO</a>.

#### **Parameters**

GYRO\_X\_MSB: Gyroscope X output (MSBs). These bits become LSBs if Endian bit = 1.

# 1.1.5 GYRO\_X\_L

| REG Name    | GYRO_X_L: Gyro Data, X-axis, LSB                |  |  |  |  |  |  |  |
|-------------|-------------------------------------------------|--|--|--|--|--|--|--|
| REG Address | Bank COMMON - 0x24 (Hex) - 36 (Dec)             |  |  |  |  |  |  |  |
|             | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |
| Type - Def. | R-00000000                                      |  |  |  |  |  |  |  |
| Value       |                                                 |  |  |  |  |  |  |  |
| Content     | GYRO_X_LSB                                      |  |  |  |  |  |  |  |

#### **Description**

LSB of the X-axis. See GYRO\_X\_H for additional details.

#### **Parameters**

• GYRO\_X\_LSB: Gyroscope X output (LSBs). These bits become MSBs if Indian = 1.

# 1.1.6 GYRO\_Y\_H

| REG Name             | GYRO_Y_H: Gyro Data, Y-axis, MSB                |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------|--|--|--|--|--|--|--|
| REG Address          | Bank COMMON - 0x25 (Hex) - 37 (Dec)             |  |  |  |  |  |  |  |
|                      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |
| Type - Def.<br>Value | R-0000000                                       |  |  |  |  |  |  |  |
| Content              | GYRO_Y_MSB                                      |  |  |  |  |  |  |  |

## **Description**

MSB of the Y-axis. See GYRO\_X\_H for additional details.

## **Parameters**

• **GYRO\_Y\_MSB**: Gyroscope Y output (MSBs). These bits become LSBs if <u>Endian</u> bit = 1.

# 1.1.7 GYRO\_Y\_L

| REG Name             | GYRO_Y_L: 0 | Gvro Data. \                        | Y-axis. LSB |        |       |       |       |       |  |
|----------------------|-------------|-------------------------------------|-------------|--------|-------|-------|-------|-------|--|
| REG Address          |             | Bank COMMON - 0x26 (Hex) - 38 (Dec) |             |        |       |       |       |       |  |
|                      | Bit 7       | Bit 6                               | Bit 5       | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
| Type - Def.<br>Value |             |                                     |             | R-0000 | 00000 |       |       |       |  |
| Content              |             |                                     |             | GYRO_  | Y_LSB |       |       |       |  |

## Description

LSB of the Y-axis. See GYRO\_X\_H for additional details.

#### **Parameters**

• **GYRO\_Y\_LSB**: Gyroscope Y output (LSBs). These bits become MSBs if <u>Endian</u> bit = 1.

# 1.1.8 GYRO\_Z\_H

| REG Name             | GYRO_Z_H: Gyro Data, Z-axis, MSB                |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------|--|--|--|--|--|--|--|
| REG Address          | Bank COMMON - 0x27 (Hex) - 39 (Dec)             |  |  |  |  |  |  |  |
|                      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |
| Type - Def.<br>Value | R-00000000                                      |  |  |  |  |  |  |  |
| Content              | GYRO_Z_MSB                                      |  |  |  |  |  |  |  |

## **Description**

MSB of the Z-axis. See GYRO\_X\_H for additional details.

#### **Parameters**

• GYRO\_Z\_MSB: Gyroscope Z output (MSBs). These bits become LSBs if Indian bit = 1

# 1.1.9 GYRO\_Z\_L

| REG Name             | GYRO_Z_L: Gyro Data, Z-axis, LSB                |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------|--|--|--|--|--|--|--|
| REG Address          | Bank COMMON - 0x28 (Hex) - 40 (Dec)             |  |  |  |  |  |  |  |
|                      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |
| Type - Def.<br>Value | R-0000000                                       |  |  |  |  |  |  |  |
| Content              | GYRO_Z_LSB                                      |  |  |  |  |  |  |  |

## **Description**

LSB of the Z-axis. See GYRO\_X\_H for additional details.

## **Parameters**

• **GYRO\_Z\_LSB**: Gyroscope Z output (LSBs). These bits become MSBs if <u>Endian</u> bit = 1.



## 1.1.10 TEMP\_H

| REG Name             | TEMP_H: Temperature Sensor, MSB                 |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------|--|--|--|--|--|--|--|
| REG Address          | Bank COMMON - 0x29 (Hex) - 41 (Dec)             |  |  |  |  |  |  |  |
|                      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |
| Type - Def.<br>Value | R-00000000                                      |  |  |  |  |  |  |  |
| Content              | TEMP_MSB                                        |  |  |  |  |  |  |  |

#### **Description**

MSB of the temperature sensor. The temperature data is provided as an absolute value expressed in Celsius degrees. The sensitivity is 256 LSB/deg, which means that the TEMP\_H registers changes whenever the temperature varies by 1 degree.

Temperature data cannot be read through the FIFO, it must be read using data registers.

## **Parameters**

• **TEMP\_MSB**: Temperature sensor output (MSBs). These bits become LSBs if Endian bit = 1.

## 1.1.11 TEMP\_L

| REG Name             | TEMP_L: Te | mperature S                         | Sensor, LSB |       |       |       |       |       |  |
|----------------------|------------|-------------------------------------|-------------|-------|-------|-------|-------|-------|--|
| <b>REG Address</b>   | Bank COMM  | Bank COMMON - 0x2A (Hex) - 42 (Dec) |             |       |       |       |       |       |  |
|                      | Bit 7      | Bit 6                               | Bit 5       | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
| Type - Def.<br>Value |            | R-00000000                          |             |       |       |       |       |       |  |
| Content              |            | TEMP_LSB                            |             |       |       |       |       |       |  |

#### **Description**

LSB of the temperature sensor. The temperature data is provided as an absolute value expressed in Celsius degrees. The sensitivity is 256 LSB/deg, which means that the TEMP\_L registers changes 256 times whenever the temperature varies by 1 degree.

Temperature data cannot be read through the FIFO, it must be read using data registers.

#### **Parameters**

• **TEMP\_LSB:** Temperature sensor output (LSBs). These bits become MSBs if <u>Endian</u> bit = 1.

## 1.1.12 HP\_RST

| REG Name          | HP_RST: High Pass filter reset      |           |       |       |       |       |       |       |
|-------------------|-------------------------------------|-----------|-------|-------|-------|-------|-------|-------|
| REG Address       | Bank COMMON - 0x3B (Hex) - 59 (Dec) |           |       |       |       |       |       |       |
|                   | Bit 7                               | Bit 6     | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Type - Def. Value |                                     | R-0000000 |       |       |       |       |       |       |
| Content           |                                     |           |       | HP_R  | ESET  |       |       |       |

## **Description**

High Pass filter reset register.

#### **Parameters**

• **HP\_RESET**: Reading this address causes the HP filter to be reset.

# 1.1.13 FIFO\_COUNT

| REG Name             | FIFO_COUNT | FIFO_COUNT: Number of samples available in the FIFO |       |       |       |       |       |       |  |  |
|----------------------|------------|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|
| <b>REG Address</b>   | Bank COMM  | Bank COMMON - 0x3C (Hex) - 60 (Dec)                 |       |       |       |       |       |       |  |  |
|                      | Bit 7      | Bit 6                                               | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |
| Type - Def.<br>Value |            |                                                     |       | R-000 | 00000 |       |       |       |  |  |
| Content              |            | FIFO_CNT                                            |       |       |       |       |       |       |  |  |

## **Description**

FIFO Count Register. This register should be read whenever the FIFO is enabled to make sure that the data read from the FIFO are only valid data. In fact, attention must be paid to the The completed procedure to read data from the FIFO is described in the <a href="Programming Examples section">Programming Examples section</a>.

#### **Parameters**

• **FIFO\_CNT**: The content of this register is the number of samples available, LSB of number of FIFO words filled (from 0 to 256)

## 1.1.14 FIFO\_STATUS

| REG Name             | FIFO_STATUS: Status of the FIFO     |                                             |              |               |         |           |                |  |  |
|----------------------|-------------------------------------|---------------------------------------------|--------------|---------------|---------|-----------|----------------|--|--|
| <b>REG Address</b>   | Bank COMMON - 0x3D (Hex) - 61 (Dec) |                                             |              |               |         |           |                |  |  |
|                      | Bit7                                | Bit 7 Bit 6:5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |              |               |         |           |                |  |  |
| Type - Def.<br>Value | R-0                                 | R-00                                        | R-0          | R-0           | R-0     | R-0       | R-0            |  |  |
| Content              | FIFO_CNT                            | RFU                                         | FIFO_WR_FULL | FIFO_RD_EMPTY | FIFO_TH | FIFO_FULL | FIFO_EM<br>PTY |  |  |

## **Description**

FIFO status register. This register gathers all the bits defining the status of the FIFO. Bits [6:5] are unused.

#### **Parameters**

• FIFO\_CNT : the MSB of FIFO words filled (from 0 to 256)

FIFO\_WR\_FULL : At least one data was written (and lost) whilst the FIFO was full
 FIFO\_RD\_EMPTY : At least one read has occurred whilst the FIFO was empty

FIFO\_TH : The FIFO contains data above the threshold

FIFO\_FULL : The FIFO is fullFIFO\_EMPTY : The FIFO is empty.



Figure 1: FIFO Flags

- A) The difference between the Write Pointer and the Read Pointer reaches the programmed threshold
- B) FIFO is full, next write operation will cause data to be lost
- C) At least one data has been lost
- D) Read access clears FIFO\_FULL and FIFO\_WR\_FULL flags
- E) Wp-Rp < programmed threshold
- F) FIFO is empty: all the available new data have been read

## **1.1.15 FIFO\_DATA**

| REG Name             | FIFO_DATA: Gyroscope data available through the FIFO |  |  |  |  |  |  |
|----------------------|------------------------------------------------------|--|--|--|--|--|--|
| REG Address          | Bank COMMON - 0x3E (Hex) - 62 (Dec)                  |  |  |  |  |  |  |
|                      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0      |  |  |  |  |  |  |
| Type - Def.<br>Value | R-0000000                                            |  |  |  |  |  |  |
| Content              | FIFO_DAT                                             |  |  |  |  |  |  |

#### **Description**

This register is used to read and write data from the FIFO buffer.

The contents of the sensor data registers are written into the FIFO buffer when their corresponding FIFO enable flags are set to 1 in FIFO EN.

If the FIFO buffer has overflowed, the status bit **FIFO\_WR\_FULL** is automatically set to 1. This bit is located in the <u>FIFO\_STATUS (0x3D)</u> register. When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO if the override bit is set in the <u>FIFO\_CFG (0x18)</u> register.

If the FIFO buffer is empty, reading this register will return the last byte that was previously read from the FIFO until new data is available. The user should check FIFO COUNT (0x3C) to ensure that the FIFO buffer is not read when empty.

#### **Parameters**

• FIFO\_DAT: When FIFO is enabled reading this address with burst reading all the data stored in the FIFO are readable.

Burst reading allows FIFO address to increment and the FIFO memory to be scrolled



# 1.1.16 PAR\_RST

| REG Name | PAR_RST: Parity Reset register                  |  |  |  |  |  |  |
|----------|-------------------------------------------------|--|--|--|--|--|--|
|          | Bank COMMON - 0x3F (Hex) - 63 (Dec)             |  |  |  |  |  |  |
|          | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |
|          | R-0000000                                       |  |  |  |  |  |  |
|          |                                                 |  |  |  |  |  |  |
| Content  | PARITY_RST                                      |  |  |  |  |  |  |

# Description

Parity Reset Register.

## **Parameters**

• PARITY\_RST: Reading this register clears the parity error flag (IT[1]).



# 1.2 USER BANK #0 (Bank\_sel = 0000)

# 1.2.1 POWER\_CFG

| REG Name             | POWER_CFG: Power Configuration |                   |           |           |           |  |  |  |
|----------------------|--------------------------------|-------------------|-----------|-----------|-----------|--|--|--|
| REG Address          | Bank 0 - 0x00 (Hex) - 0 (Dec)  |                   |           |           |           |  |  |  |
|                      | Bit 7 Bit 6                    | Bit 5 Bit 4 Bit 3 | Bit 2     | Bit 1     | Bit 0     |  |  |  |
| Type - Def.<br>Value | RW-00                          | RW-000            | RW-1      | RW-1      | RW-1      |  |  |  |
| Content              | FS                             | PW                | EN_Z_RATE | EN_Y_RATE | EN_X_RATE |  |  |  |

## **Description**

Full Scale, Power Mode and axes configuration register.

#### **Parameters**

• **FS**: Full scale configuration bits:

Table 1: Full Scale configuration

| OIS FS | FS | full scale                   |
|--------|----|------------------------------|
| 0      | 00 | 2000 dps (default)           |
| 0      | 01 | 1000 dps                     |
| 0      | 10 | 500 dps                      |
| 0      | 11 | 250 dps                      |
| 1      | 00 | 250 dps (default when OIS=1) |
| 1      | 01 | 125 dps                      |
| 1      | 10 | 62.5 dps                     |
| 1      | 11 | 31.25 dps                    |

• **PWR\_MODE**: configuration of the power mode of the:

Table 2: Power Mode Configuration

| PWR_MODE(bit field) | DSYNC (pin) | Power Mode |
|---------------------|-------------|------------|
| 000                 | X           | Power Down |
| 001                 | X           | Normal     |
| 010                 | X           | Standby    |
| 011                 | X           | ECO        |
| 100                 | 0           | Standby    |
| 100                 | 1           | ECO        |
| 101                 | 0           | Power Down |
| 101                 | 1           | ECO        |
| 110                 | 0           | Standby    |
| 110                 | 1           | Normal     |
| 111                 | 0           | Power Down |
| 111                 | 1           | Normal     |

EN\_Z\_RATE: Z direction enable bit . '1' means enabled.
 EN\_Y\_RATE: Y direction enable bit . '1' means enabled.
 EN\_X\_RATE: X direction enable bit . '1' means enabled.

## 1.2.2 SENSE\_CFG1

| REG Name          | SENSE_CFG1: Sensing chain configuration register #1 |             |         |       |       |       |        |       |  |
|-------------------|-----------------------------------------------------|-------------|---------|-------|-------|-------|--------|-------|--|
| REG Address       | Bank 0 - 0x01 (Hex) - 1 (Dec)                       |             |         |       |       |       |        |       |  |
|                   | Bit 7                                               | Bit 6       | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0 |  |
| Type - Def. Value | RW                                                  | -00         | RW-1010 |       |       | RW-0  | RW-0   |       |  |
| Content           | SELF_                                               | ELF_TEST BW |         |       |       | RFU   | OIS_FS |       |  |

## **Description**

Low Pass filter, OIS and Self Test configuration register.

## **Parameters**

• **SELF\_TEST**: Bit 6 is used to activate the self-test mode. When activated, an offset is generated on the digital output whose amount depends on the full scale selected. Bit 7 can be used to invert the sign of the self-test output. The output of this parameter is affected by a strong spread, in the order of +/- 50%. This test allows detecting both electrical and mechanical issues. The table below summarizes the expected values.

Table 3: Self-Test Output

| Axis   | FS= 2000 | FS= 1000 | FS=500 FS=250 |
|--------|----------|----------|---------------|
| X[dps] | 450      | 225      | 110 55        |
| Y[dps] | -450     | -225     | -110 -55      |
| Z[dps] | 450      | 225      | 110 55        |

• SNS\_LPF\_BND: Output bandwidth selection bits

Table 4: Bandwidth configuration

| Table 1. Ballawiath configuration |                 |
|-----------------------------------|-----------------|
| BW                                | bandwidth       |
| 0                                 | 2Hz             |
| 1                                 | 4Hz             |
| 2                                 | 6Hz             |
| 3                                 | 8Hz             |
| 4                                 | 10Hz            |
| 5                                 | 14Hz            |
| 6                                 | 22Hz            |
| 7                                 | 32Hz            |
| 8                                 | 50Hz            |
| 9                                 | 75Hz            |
| 10                                | 100Hz (default) |
| 11                                | 150Hz           |
| 12                                | 200Hz           |
| 13                                | 250Hz           |
| 14                                | 300Hz           |
| 15                                | 400Hz           |

• OIS\_FS: Full scale for OIS applications

0: normal full scale (from 250 to 2000 dps)
1: OIS full scale (from 31.25 to 250 dps)

# 1.2.3 SENSE\_CFG2

| REG Name          | SENSE_CFG2: Sensing chain configuration register #2 |       |       |       |       |       |       |       |
|-------------------|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| REG Address       | Bank 0 - 0x02 (Hex) - 2 (Dec)                       |       |       |       |       |       |       |       |
|                   | Bit 7                                               | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Type - Def. Value | RW-00010011                                         |       |       |       |       |       |       |       |
| Content           |                                                     |       |       | 00    | OR    |       |       |       |

## **Description**

Output Data Rate configuration register. This register selects the preferred Output Data Rate (ODR) according to the description that follows.

When it ECO mode, the two least significant bits are used to configure the ODR.



# 1.2.4 SENSE\_CFG3

| REG Name          | SENSE_CFG3: Sensing chain configuration register #3 |       |         |       |         |       |       |       |  |
|-------------------|-----------------------------------------------------|-------|---------|-------|---------|-------|-------|-------|--|
| REG Address       | Bank 0 - 0x03 (Hex) - 3 (Dec)                       |       |         |       |         |       |       |       |  |
|                   | Bit 7                                               | Bit 6 | Bit 5   | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 |  |
| Type - Def. Value | R-00                                                |       | RW-00   |       | RW-0000 |       |       |       |  |
| Content           | RFU                                                 |       | SRC_CFG |       | HP_CUT  |       |       |       |  |

## **Description**

High Pass filter configuration register.

This register comprises 2 fields. The 4 LSBs can be used to select the cut-off frequency of the high-pass filter.

Bit [5:4] are used to activate/de-activate the high pass filter and to optionally force the ODR at the highest rate, disregarding the ODR settings.

Bits [7:6] are reserved.

- **SRC\_CFG**: Output data can be chosen as follow:
- 00 -> data at ODR without hi-pass filtering
- 01 -> data at ODR with hi-pass filtering
- 10 -> data at 10k without hi-pass filtering
- 11 -> data at 10k with hi-pass filtering
- **SNS\_HPF\_CO**: Configuration for the HP filter cutoff frequency:

Table 5: High Pass Filter configuration

| HP_CUT | bandwidth       |
|--------|-----------------|
| 0      | 0.1Hz (default) |
| 1      | 0.2Hz           |
| 2      | 0.3Hz           |
| 3      | 0.5Hz           |
| 4      | 0.7Hz           |
| 5      | 1.0Hz           |
| 6      | 1.7Hz           |
| 7      | 3.0Hz           |
| 8      | 4.5Hz           |
| 9      | 7.0Hz           |
| 10     | 11Hz            |
| 11     | 17Hz            |
| 12     | 26Hz            |
| 13     | 40Hz            |
| 14     | 64Hz            |
| 15     | 100Hz           |

## 1.2.5 DR\_CFG

| REG Name          | DR_CFG: Data Ready Configuration |                                |             |             |         |  |  |
|-------------------|----------------------------------|--------------------------------|-------------|-------------|---------|--|--|
| REG Address       | Bank 0 - 0x13 (Hex)              | Bank 0 - 0x13 (Hex) - 19 (Dec) |             |             |         |  |  |
|                   | Bit 7 Bit 6                      | Bit 5 Bit 4                    | Bit 3 Bit 2 | Bit 1       | Bit 0   |  |  |
| Type - Def. Value | R-00                             | RW-00                          | R-00        | RW-0        | RW-1    |  |  |
|                   |                                  |                                |             |             |         |  |  |
| Content           | RFU                              | DR_RST_MODE RFU                |             | COARSE_TEMP | TEMP_EN |  |  |
|                   |                                  |                                |             |             |         |  |  |

#### **Description**

Data Ready configuration register. Bits [7:6] and [3:2] are reserved.

#### **Parameters**

• **DR\_RST\_MODE**: These bits control the way the DATA\_READY is reset and the way the data are updated. 3 available modes:

00: ALL - DATA\_READY is cleared when all the active channels are read.

Data Set is updated only when all the data are read

01: ANY - DATA\_READY is cleared when at least one half active channel is read.

Data Set is not guaranteed because data can be updated immediately

10: STATUS - DATA\_READY is cleared when status register is read.

Data Set is maintained until status register is read.

• **COARSE\_TEMP**: '0' is fine, '1' is for coarse. If "fine", temperature data is updated only when both bytes are read. If "coarse", reading MSB enables the data update.

• **TEMP\_EN** : Enable (1) or **Disab**le (0) the temperature sensor



# 1.2.6 IO\_CFG

| REG Name             | IO_CFG: Inp     | IO_CFG: Input/output Configuration |                |                |                |                |                |                |
|----------------------|-----------------|------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| REG<br>Address       | Bank 0 - 0x1    | Bank 0 - 0x14 (Hex) - 20 (Dec)     |                |                |                |                |                |                |
|                      | Bit 7           | Bit 6                              | Bit 5          | Bit 4          | Bit 3          | Bit 2          | Bit 1          | Bit 0          |
| Type - Def.<br>Value | RW-0            | RW-0                               | RW-0           | RW-0           | RW-0           | RW-0           | RW-0           | RW-0           |
| Content              | DSYNC_P<br>D_EN | DSYNC_PU<br>_EN                    | INT1_PD<br>_EN | INT1_PU<br>_EN | INT2_PD<br>_EN | INT2_PU<br>_EN | SCL_PU<br>_DIS | SDA_PU<br>_DIS |

# Description

I/O configuration Register. This register controls the pull-up and pull-down resistors of the pins DSYNC, INT1 and INT2.

Bit [1: 0] are reserved.

| • | DCVNC DD FN. | When 1 the internal mult down of the madic convected     |
|---|--------------|----------------------------------------------------------|
| • | DSYNC_PD_EN: | When 1, the internal pull down of the pad is connected   |
| • | DSYNC_PU_EN: | When 1, the internal pull up of the pad is connected     |
| • | INT1_PD_EN:  | When 1, the internal pull down of the pad is connected   |
| • | INT1_PU_EN:  | When 1, the internal pull up of the pad is connected     |
| • | INT2_PD_EN:  | When 1, the internal pull down of the pad is connected   |
| • | INT2_PU_EN:  | When 1, the internal pull up of the pad is connected     |
| • | SCL_PU_DIS:  | When 0, the internal pull up of the SCL pad is connected |
| • | SDA PU DIS   | When 0, the internal null up of the SDA pad is connected |



# 1.2.7 I2C\_CFG

| REG Name           | I2C_CF | I2C_CFG: I2C Configuration     |             |       |         |  |  |
|--------------------|--------|--------------------------------|-------------|-------|---------|--|--|
| <b>REG Address</b> | Bank 0 | Bank 0 - 0x15 (Hex) - 21 (Dec) |             |       |         |  |  |
|                    | Bit 7  | Bit 6 Bit 5 Bit 4              | Bit 3 Bit 2 | Bit 1 | Bit 0   |  |  |
| Type - Def. Value  | RW-0   | RW-000                         | RW-01       | RW-0  | RW-0    |  |  |
|                    |        |                                |             |       |         |  |  |
| Content            | RFU    | I2C_SETTING                    | DRIVE       | RFU   | I2C_OFF |  |  |
|                    |        |                                |             |       |         |  |  |

## **Description**

I2C configuration register.

Bit 7 and 1 are reserved.

## **Parameters**

#### I2C\_SETTING:

000 -> I2C Fast Mode without anti-spike filter

001 -> I2C Fast Mode standard configuration

010 -> I2C High Speed standard configuration

011 -> I2C High Speed without anti-spike filter

100 -> I2C Fast Mode without filters and delays

101 -> SPI interface recommended

110 -> Reserved for future use

111 -> Reserved for future use

• **DRIVE\_1, DRIVE\_0** Change the current of the pad according to the following table:

Table 6: I/O Current Configuration

| Tubic C | . I/O Carror | it comigai an |          |                        |
|---------|--------------|---------------|----------|------------------------|
| DRIVE   |              |               |          | Os Output Current [mA] |
| 0       |              | 0             | <b>T</b> | 3                      |
| 0       | de           | 1             |          | 6                      |
| 1       |              | 0             |          | 6                      |
| 1       |              | 1             |          | 12                     |

• I2C\_OFF: This bit is used for turn off the I2C interface. By default I2C is active. Setting to 1 this bit I2C is turned off. It may be used when connecting several SPI devices in parallel.



## 1.2.8 ITF\_OTP

| REG<br>Name             | ITF_OTP:   | ITF_OTP: Interface and OTP control |            |             |        |                |         |
|-------------------------|------------|------------------------------------|------------|-------------|--------|----------------|---------|
| REG<br>Address          | Bank 0 - 0 | x16 (Hex) - 22 (De                 | c)         |             |        |                |         |
|                         | Bit 7      | Bit 6                              | Bit 5      | Bit Bit 4 3 | Bit 2  | Bit 1          | Bit 0   |
| Type -<br>Def.<br>Value | R-0        | R-0                                | RW-0       | RW-00       | RW-0   | R-0            | RW-0    |
| Content                 | RFU        | PARITY_ERROR                       | SPI_3_WIRE | IF_PARITY   | ENDIAN | MEMORY_RUNNING | RESTART |

#### **Description**

Interface and OTP configuration register

#### **Parameters**

• PARITY\_ERROR: Error in SPI/I2C address

• SPI\_3\_WIRE : 3 or 4 wires SPI mode. When set SPI 3 wire is enabled

IF\_PARITY : Interface bit 6 configuration bits;

00 -> bit 6 of the register address is used for auto increment mode (default)

01 -> bit 6 of the register address represents the even parity bit 10 -> bit 6 of the register address represents the odd parity bit

• ENDIAN: Big little endian configuration bit.

0 is for big endian (MS Byte, LS Byte),
 1 for little (LS Byte, MS Byte)

• MEMORY\_RUNNING: Flag indicating that the OTP is being downloaded

• **RESTART** : Command to reload the OTP trimming values: set it to '1' to start. It automatically reverts to 0 immediately after write. Use memory\_running flag to understand when OTP downloading is done.

Note: when IF\_PARTY ?= 0, then the burst is auto-incremental by default.

Note: ENDIAN bit only affects the way data are stored into the registers, not the way data are saved into the FIFO.



# 1.2.9 FIFO\_TH

| REG Name          | FIFO_TH: F | FIFO_TH: FIFO threshold for the interrupt generation |       |         |        |       |       |       |
|-------------------|------------|------------------------------------------------------|-------|---------|--------|-------|-------|-------|
| REG Address       | Bank 0 - 0 | Bank 0 - 0x17 (Hex) - 23 (Dec)                       |       |         |        |       |       |       |
|                   | Bit 7      | Bit 6                                                | Bit 5 | Bit 4   | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
| Type - Def. Value |            | RW-0000000                                           |       |         |        |       |       |       |
| Content           |            |                                                      |       | FIFO_SA | AMPLES |       |       |       |

## **Description**

FIFO Threshold configuration register. This register defines the number of samples that should be used as threshold to set the FIFO\_OVTHOLD bit

#### **Parameters**

• **FIFO\_SAMPLES**: When the number of samples yet to be read stored in FIFO crosses this number, an interrupt is generated on **FIFO\_OVTHOUS** 

Note: This parameter specifies the number of Gyroscope output samples expressed in words (16-bit OR 2 bytes). It does not refer to one single axis but to the overall number of samples coming from entire set the selected axis



## 1.2.10 FIFO\_CFG

| REG    | FIFO_CFG: FIFO     |
|--------|--------------------|
| Name   | configuration bits |
| REG    | Bank 0 - 0x18      |
| Addres | (Hex) - 24 (Dec)   |
| S      |                    |
|        | D:+ 7.C            |

|                         | Bit 7:6   | Bit 5            | Bit 4            | Bit 3               | Bit 2            | Bit 1            | Bit 0            |
|-------------------------|-----------|------------------|------------------|---------------------|------------------|------------------|------------------|
| Type -<br>Def.<br>Value | RW-00     | RW-0             | RW-0             | RW-0                | RW-0             | RW-0             | RW-0             |
| Conte<br>nt             | FIFO_MODE | FIFO_INT<br>_SEL | FIFO_OVE<br>RRUN | FIFO_STORE_<br>TEMP | FIFO_STO<br>RE_Z | FIFO_STO<br>RE_Y | FIFO_STO<br>RE_X |

#### **Description**

FIFO configuration register. This register determines which sensor measurements are loaded into the FIFO buffer and selects the desired FIFO behavior.

Data stored inside the sensor data registers will be loaded into the FIFO buffer if a sensor's respective FIFO\_store bit is set to 1 in this register. The behavior of FIFO writes when the FIFO buffer is full can be configured with the FIFO\_MODE bit. In order to read the data in the FIFO buffer, the FIFO\_MODE must be set to a value >0.

When the FIFO\_STORE\_{X,Y,Z} bit is enabled in this register, data will be loaded into the FIFO buffer for the corresponding axis.

The sensors are written into the FIFO at the Output Data Rate defined in Register 0x02.

For further information regarding sensor data registers, please refer to Registers 0x23 to 0x28.

- **FIFO\_MODE**: These bits are used to configure the FIFO mode:
- 00 -> OFF
- 01 -> NORMAL
- 10 -> INTERRUPT
- 11 -> SNAPSHOT
- FIFO\_INT\_SEL: When an interrupt mode is selected, this bits define which kind of mask must be used:
- 0: use OR mask
- 1: use AND mask
- FIFO\_OVERRUN: When set to TRUE, FIFO data are overwritten and oldest are lost. When FALSE, FIFO is a buffer that stops when full
- FIFO\_STORE\_TEMP: When set to TRUE, 16-bits temperature data is stored in FIFO
   FIFO\_STORE\_Z: When set to TRUE, 16-bits Z direction data is stored in FIFO
   FIFO\_STORE\_Y: When set to TRUE, 16-bits Y direction data is stored in FIFO
   FIFO\_STORE\_X: When set to TRUE, 16-bits X direction data is stored in FIFO

## 1.2.11 DSYNC\_CFG

| REG Name          | DSYNC_CFG: [  | DSYNC_CFG: DSYNC Configuration |         |         |         |      |             |
|-------------------|---------------|--------------------------------|---------|---------|---------|------|-------------|
| REG Address       | Bank 0 - 0x1A | Bank 0 - 0x1A (Hex) – 26 (Dec) |         |         |         |      |             |
|                   | Bit 7         | Bit 6                          | Bit 5   | Bit 4   | Bit 3   | 2:1  | 0           |
| Type - Def. Value | RW-0          | RW-0                           | RW-0    | RW-0    | RW-0    | R-00 | RW-0        |
| Content           | DSQ_ENR       | DSQ_ENF                        | DSW_EDG | DSW_LOW | DSM_ENB | RFU  | DS_TE<br>MP |

#### **Description**

DSYNC configuration register. This register has to be used to configure the way the MAX21000 manages events occurring on the DSYNC pin. Multiple different actions can be taken simultaneously, like changing the power mode, mapping the DSYNC pin value onto the gyroscope LSB data and concurrently triggering the capture of new data.

When the DSYNC pin is configured as active on edge and a dynamic power mode is configured, only the active edge determines the transition. The opposite transition must be done wither in SW or by reversing the active edge.

Bit 0 is reserved.

#### **Parameters**

DSQ\_ENR: When 1, enable data queuing with DSYNC rising

• DSQ ENF: When 1, enable data queuing with DSYNC falling

• **DSW\_EDG**: When 1, DSYNC is an active on edge. When 0, DSYNC is an active on level

• **DSW\_LOW**: When 1, DSYNC is an active low level control to wake up. When 0, DSYNC is an active high level to wake up. This bit affects both the edge and the level modes.

DSM\_ENB: When 1, the DSYNC signal is mapped onto the Gyro LSB

• DS TEMP: When 1, the DSYNC signal is mapped onto the temperature LSB.

# **1.2.12 DSYNC\_CNT**

| REG Name             | DSYNC_CNT: DSYNC Counter     |
|----------------------|------------------------------|
| REG Address          | Bank - 0x1B (Hex) – 27 (Dec) |
|                      | Bit 7:0                      |
| Type - Def.<br>Value | RW-0000000                   |
| Content              | DSYNC_COUNTER                |

#### Description

DSYNC counter configuration register. This register can be used to track the evolution of the rate signal from the gyroscope immediately after an external event captured on the DSYNC pin.

#### **Parameters**

• **DSYNC\_COUNTER**: This register specifies the number of samples to be stored into the FIFO upon detecting a DSYNC active edge

# 1.3 USER BANK #1 (Bank\_sel = 0001)

## 1.3.1 INT\_REF\_X

| REG Name          | INT_REF  | INT_REF_X: Interrupt Reference for X-axis, MSB  |  |      |        |  |  |  |  |  |
|-------------------|----------|-------------------------------------------------|--|------|--------|--|--|--|--|--|
| REG Address       | Bank 1 - | Bank 1 - 0x00 (Hex) - 0 (Dec)                   |  |      |        |  |  |  |  |  |
|                   | Bit 7    | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |      |        |  |  |  |  |  |
| Type - Def. Value |          | RW-0000000                                      |  |      |        |  |  |  |  |  |
| Content           |          |                                                 |  | INT_ | _REF_X |  |  |  |  |  |

## **Description**

Rate Interrupt Reference, X-axis.

#### **Parameters**

• INT\_REF\_X: These are the 8 MSB of the reference for interrupt of X direction. 8 LSB are assumed = 0x00. If INT\_SINGLE\_REF = '1', then the reference is { INT\_REF\_X, INT\_REF\_Y }, with INT\_REF\_X used as MSB and INT\_REF\_Y used as LSB.

## 1.3.2 INT\_REF\_Y

| REG Name          | INT_REF | INT_REF_Y: Interrupt Reference for Y-axis, MSB                |  |      |        |  |  |  |  |  |
|-------------------|---------|---------------------------------------------------------------|--|------|--------|--|--|--|--|--|
| REG Address       | Bank 1- | Bank 1- 0x01 (Hex) - 1 (Dec)                                  |  |      |        |  |  |  |  |  |
|                   | Bit 7   | 3it 7   Bit 6   Bit 5   Bit 4   Bit 3   Bit 2   Bit 1   Bit 0 |  |      |        |  |  |  |  |  |
| Type - Def. Value |         | RW-0000000                                                    |  |      |        |  |  |  |  |  |
| Content           |         |                                                               |  | INT_ | _REF_Y |  |  |  |  |  |

## **Description**

Rate Interrupt Reference, Y-axis

## **Parameters**

• INT\_REF\_Y: These are the 8 MSB of the reference for interrupt of Y direction. 8 LSB are assumed = 0x00. If INT\_SINGLE\_REF = '1', then the reference is {INT\_REF\_X, INT\_REF\_Y}, with INT\_REF\_X as MSB and INT\_REF\_Y as LSB.

## 1.3.3 INT\_REF\_Z

| REG Name          | INT_REF_  | INT_REF_Z: Interrupt Reference for Z-axis, MSB                                                          |  |      |       |  |  |  |  |  |
|-------------------|-----------|---------------------------------------------------------------------------------------------------------|--|------|-------|--|--|--|--|--|
| REG Address       | Bank 1- C | Bank 1- 0x02 (Hex) - 2 (Dec)                                                                            |  |      |       |  |  |  |  |  |
|                   | Bit 7     | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |  |      |       |  |  |  |  |  |
| Type - Def. Value |           | RW-0000000                                                                                              |  |      |       |  |  |  |  |  |
| Content           |           |                                                                                                         |  | INT_ | REF_Z |  |  |  |  |  |

#### **Description**

Rate Interrupt Reference, Z-axis.

#### **Parameters**

• INT\_REF\_Z: These are the 8 MSB of the reference for interrupt of Z direction. 8 LSB are assumed = 0x00. If INT\_SINGLE\_REF = '1' the reference is {INT\_REF\_X, INT\_REF\_Y}, with INT\_REF\_X used as MSB and INT\_REF\_Y used as LSB.

## 1.3.4 INT\_DEB\_X

| REG Name          | INT_DEB   | INT_DEB_X: Interrupt Debounce on X-axis         |  |      |       |  |  |  |  |  |
|-------------------|-----------|-------------------------------------------------|--|------|-------|--|--|--|--|--|
| REG Address       | Bank 1- ( | Bank 1- 0x03(Hex) - 3 (Dec)                     |  |      |       |  |  |  |  |  |
|                   | Bit 7     | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |      |       |  |  |  |  |  |
| Type - Def. Value |           | RW-0000000                                      |  |      |       |  |  |  |  |  |
| Content           |           |                                                 |  | INT_ | DEB_X |  |  |  |  |  |

#### **Description**

Rate Interrupt debounce register on X-axis.

This register determines how long (measured in number of samples) the selected AND/OR rate interrupt configuration has to stay asserted before the corresponding interrupt source bit is set and the interrupt on either INT1 or INT2 is eventually generated.

When the selected AND/OR rate interrupt configuration de-asserts (goes to 0) the corresponding interrupt source bit de-asserts immediately, without debounce.

#### **Parameters**

• INT\_DEB\_X: This register allows to count the number of samples (@ODR) requested to generate the rate interrupt signal for the X direction.

# 1.3.5 INT\_DEB\_Y

| REG Name          | INT_DEB  | INT_DEB_Y: Interrupt Debounce on Y-axis         |  |      |       |  |  |  |  |
|-------------------|----------|-------------------------------------------------|--|------|-------|--|--|--|--|
| REG Address       | Bank - 0 | Bank - 0x04 (Hex) - 4 (Dec)                     |  |      |       |  |  |  |  |
|                   | Bit 7    | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |      |       |  |  |  |  |
| Type - Def. Value |          | RW-0000000                                      |  |      |       |  |  |  |  |
| Content           |          |                                                 |  | INT_ | DEB_Y |  |  |  |  |

#### **Description**

Rate Interrupt debounce register on Y-axis.

This register determines how long (measured in number of samples) the selected AND/OR rate interrupt configuration has to stay asserted before the corresponding interrupt source bit is set and the interrupt on either INT1 or INT2 is eventually generated.

When the selected AND/OR rate interrupt configuration de-asserts (goes to 0) the corresponding interrupt source bit de-asserts immediately, without debounce

## **Parameters**

• INT\_DEB\_Y: This register allows to count the number of samples (@ODR) requested to generate the interrupt signal for the Y direction.

# 1.3.6 INT\_DEB\_Z

| REG Name          | INT_DEB   | INT_DEB_Z: Interrupt Debounce on Z-axis         |  |      |       |  |  |  |  |  |
|-------------------|-----------|-------------------------------------------------|--|------|-------|--|--|--|--|--|
| REG Address       | Bank 1- ( | Bank 1- 0x05 (Hex) - 5 (Dec)                    |  |      |       |  |  |  |  |  |
|                   | Bit 7     | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |      |       |  |  |  |  |  |
| Type - Def. Value |           | RW-0000000                                      |  |      |       |  |  |  |  |  |
| Content           |           |                                                 |  | INT_ | DEB_Z |  |  |  |  |  |

## **Description**

Rate Interrupt debounce register on Z-axis.

This register determines how long (measured in number of samples) the selected AND/OR rate interrupt configuration has to stay asserted before the corresponding interrupt source bit is set and the interrupt on either INT1 or INT2 is eventually generated. When the selected AND/OR rate interrupt configuration de-asserts (goes to 0) the corresponding interrupt source bit de-asserts immediately, without debounce

#### **Parameters**

• INT\_DEB\_Z: This register allows to count the number of sample s(@ODR) requested to generate the interrupt signal for the Z direction. If INT\_SINGLE\_DEB = '1' the debounce is {INT\_DEB\_X, INT\_DEB\_Y}, with INT\_DEB\_X used as MSB and INT\_DEB\_Y used as LSB.



## 1.3.7 INT\_MSK\_X

| REG Name          | INT_MSK_X: Interrupt Mask X-axis |                                 |           |            |           |  |  |  |  |  |  |
|-------------------|----------------------------------|---------------------------------|-----------|------------|-----------|--|--|--|--|--|--|
| REG Address       | Bank 1- 0x06 (Hex) -             | Bank 1- 0x06 (Hex) - 6 (Dec)    |           |            |           |  |  |  |  |  |  |
|                   | Bit 7:4                          | Bit 7:4 Bit 3 Bit 2 Bit 1 Bit 0 |           |            |           |  |  |  |  |  |  |
| Type - Def. Value | RW-0000                          | RW-0000 R-0 R-0 R-0             |           |            |           |  |  |  |  |  |  |
| Content           | INT_MASK_X                       | X_HIGH_POS                      | X_LOW_POS | X_HIGH_NEG | X_LOW_NEG |  |  |  |  |  |  |

#### **Description**

Rate Interrupt, X-axis configuration register.

This register comprises 2 fields. The 4 LSBs are read-only one-hot encoded bits which indicate whether the rate is positive or negative and whether it is above or below the rate threshold.

The 4 MSBs are writable bits which enable, when set to 1, the generation of interrupts based on configurable AND/OR combination of some of them.

#### **Parameters**

- INT\_MASK\_X: For each bit, enables ('1') or disables ('0') the interrupt generation for the threshold event detection on the X-axis.
  - Bit4: enable ('1')/ disable ('0') the event X LOW NEG.
  - Bit5: enable ('1')/ disable ('0') the event X\_HIGH\_NEG.
  - Bit6: enable ('1')/ disable ('0') the event X\_LOW\_POS.
  - Bit7: enable ('1')/ disable ('0') the event X\_HIGH\_POS.

For example, writing INT\_MASK\_X = 4'b0100 enables the condition with X\_LOW\_POS only active to generate an interrupt.

X\_HIGH\_POS:
 X\_LOW\_POS:
 X\_HIGH\_NEG:
 X\_LOW\_NEG:
 Signal is positive, above threshold
 Signal is negative, above threshold
 Signal is negative, below threshold

See also Interrup Zones drawing.



## 1.3.8 INT\_MSK\_Y

| REG Name          | INT_MSK_Y: Interrupt Mask Y-axis |                                 |           |            |           |  |  |  |  |  |
|-------------------|----------------------------------|---------------------------------|-----------|------------|-----------|--|--|--|--|--|
| REG Address       | Bank 1- 0x07 (Hex) -             | Bank 1- 0x07 (Hex) – 7 (Dec)    |           |            |           |  |  |  |  |  |
|                   | Bit 7:4                          | Bit 7:4 Bit 3 Bit 2 Bit 1 Bit 0 |           |            |           |  |  |  |  |  |
| Type - Def. Value | RW-0000                          | RW-0000 R-0 R-0 R-0             |           |            |           |  |  |  |  |  |
| Content           | INT_MASK_Y                       | Y_HIGH_POS                      | Y_LOW_POS | Y_HIGH_NEG | Y_LOW_NEG |  |  |  |  |  |

#### **Description**

Rate Interrupt, Y-axis configuration register.

This register comprises 2 fields. The 4 LSBs are read-only one-hot encoded bits which indicate whether the rate is positive or negative and whether it is above or below the rate threshold.

The 4 MSBs are writable bits which enable, when set to 1, the generation of interrupts based on configurable AND/OR combination of some of them.

#### **Parameters**

- INT\_MASK\_Y: For each bit, enables ('1') or disables ('0') the interrupt generation for threshold event detection on the Y-axis.
  - Bit4: enable ('1')/ disable ('0') the event Y LOW NEG.
  - o Bit5: enable ('1')/ disable ('0') the event Y HIGH NEG.
  - Bit6: enable ('1')/ disable ('0') the event Y\_LOW\_POS.
  - Bit7: enable ('1')/ disable ('0') the event Y\_HIGH\_POS.

For example, writing INT\_MASK\_Y = 4'b0100 enables the condition with Y\_LOW\_POS only to generate an interrupt.

## Here is the meaning of the other bits:

Y\_HIGH\_POS:
 Y\_LOW\_POS:
 Y\_HIGH\_NEG:
 Y\_LOW\_NEG:
 Signal is positive, below threshold
 Signal is negative, above threshold
 Signal is negative, below threshold

See also interrunt Zones drawing.

## 1.3.9 INT\_MSK\_Z

| REG Name          | INT_MSK_Z: Interrupt Mask Z-axis |                                 |           |            |           |  |  |  |  |  |  |
|-------------------|----------------------------------|---------------------------------|-----------|------------|-----------|--|--|--|--|--|--|
| REG Address       | Bank 1- 0x08 (Hex) -             | Bank 1- 0x08 (Hex) - 8 (Dec)    |           |            |           |  |  |  |  |  |  |
|                   | Bit 7:4                          | Bit 7:4 Bit 3 Bit 2 Bit 1 Bit 0 |           |            |           |  |  |  |  |  |  |
| Type - Def. Value | RW-0000                          | RW-0000 R-0 R-0 R-0             |           |            |           |  |  |  |  |  |  |
| Content           | INT_MASK_Z                       | Z_HIGH_POS                      | Z_LOW_POS | Z_HIGH_NEG | Z_LOW_NEG |  |  |  |  |  |  |

#### Description

Rate Interrupt, Z-axis configuration register.

This register comprises 2 fields. The 4 LSBs are read-only one-hot encoded bits which indicate whether the rate is positive or negative and whether it is above or below the rate threshold.

The 4 MSBs are writable bits which enable, when set to 1, the generation of interrupts based on configurable AND/OR combination of some of them.

#### **Parameters**

- INT\_MASK\_Z: For each bit, enables ('1') or disables ('0') the interrupt generation for the threshold event detection on the Z-axis.
  - Bit4: enable ('1')/ disable ('0') the event Z\_LOW\_NEG.
  - o Bit5: enable ('1')/ disable ('0') the event Z HIGH NEG.
  - Bit6: enable ('1')/ disable ('0') the event Z\_LOW\_POS.
  - o Bit7: enable ('1')/ disable ('0') the event Z\_HIGH\_POS.

For example, writing  $INT\_MASK\_Z = 4'b0100$  enables the condition with  $Z\_LOW\_POS$  only to generate an interrupt.

## Here is the meaning of the other bits:

Z\_HIGH\_POS: Signal is positive, above threshold
 Z\_LOW\_POS: Signal is positive, below threshold
 Z\_HIGH\_NEG: Signal is negative, above threshold
 Z\_LOW\_NEG: Signal is negative, below threshold

See also <u>Interrupt Zones</u> drawing.



## 1.3.10 INT\_MSK\_AO

| REG Name          | INT_MA  | INT_MASK_AO: Interrupt AND and Interrupt OR masks |                    |           |     |     |          |       |  |  |  |
|-------------------|---------|---------------------------------------------------|--------------------|-----------|-----|-----|----------|-------|--|--|--|
| REG Address       | Bank 1- | Bank 1- 0x09 (Hex) - 9 (Dec)                      |                    |           |     |     |          |       |  |  |  |
|                   | Bit 7   | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0   |                    |           |     |     |          |       |  |  |  |
| Type - Def. Value | R-0     | RW-0                                              | RW-0 RW-000 RW-000 |           |     |     |          |       |  |  |  |
| Content           | RFU     | INT_FREEZE                                        | INT_               | MASK_XYZ_ | AND | INT | _MASK_X\ | /Z_OR |  |  |  |

## **Description**

Interrupt AND/OR masks register.

#### **Parameters**

## INT\_FREEZE:

0 -> disables interrupts on threshold freeze;

1 -> enables interrupts on threshold freeze.

When INT\_FREEZE = '1' the {X,Y,Z}\_{HIGH,LOW}\_{NEG,POS} flags hold values until interrupt will be cleared. The INT\_FREEZE bit does not affect the behavior of the Interrupt Status Registers at locations 0x0E and 0x0F.

- INT\_MASK\_XYZ\_AND: When the bit is set to 1 it's indicates that the corresponding direction is used in AND, X mask in 0x20, Y mask in 0x10, Z mask in 0x08
- INT\_MASK\_XYZ\_OR: When the bit is set to 1 it's indicates that the corresponding direction is used in OR, X mask in 0x04, Y mask in 0x02, Z mask in 0x01



## 1.3.11 INT\_CFG1

| REG Name          | INT_CFG1: Interrupt 1 Configuration Register |                                         |              |                |                |              |  |  |  |  |  |
|-------------------|----------------------------------------------|-----------------------------------------|--------------|----------------|----------------|--------------|--|--|--|--|--|
| REG Address       | Bank 1- 0xA (F                               | Bank 1- 0xA (Hex) – 10 (Dec)            |              |                |                |              |  |  |  |  |  |
|                   | Bit 7:6                                      | Bit 7:6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1:0 |              |                |                |              |  |  |  |  |  |
| Type - Def. Value | RW-00                                        | RW-00 RW-0 RW-0 RW-0 RW-00              |              |                |                |              |  |  |  |  |  |
| Content           | SNS_INTP_FSC                                 | INT1_CLK_OUT                            | INT2_CLK_OUT | INT_SINGLE_DEB | INT_SINGLE_REF | SNS_INTP_CFG |  |  |  |  |  |

#### Description

Interrupt 1 configuration register.

- SNS\_INTP\_FSC: These two bits are used for set the Full scale used by rate interrupts:
  - o 00 2000 dps (default)
  - o 01 1000 dps
  - o 10 500 dps
  - o 11 250 dps
- INT1\_CLK\_OUT: INT1 pad drives out the internal clock (8.8MHz)
   INT2\_CLK\_OUT: INT2 pad drives out the internal clock (8.8MHz)
- INT\_SINGLE\_DEB: Single duration is used for all the direction.
  - int\_deb\_x used as MSB
  - int\_deb\_y used as LSB
- INT\_SINGLE\_REF: Single threshold is used for all the direction.
  - o int\_ref\_x used as MSB
  - int\_ref\_y used as LSB
- **SNS\_INTP\_CFG:** Interrupt data can be chosen as follow:
  - 00 -> data at ODR without hi-pass filtering
  - o 01 -> data at ODR with hi-pass filtering
  - 10 -> data at 10k without hi-pass filtering
  - 11 -> data at 10k with hi-pass filtering



## 1.3.12 INT\_CFG2

| REG Name             | INT_CFG2  | INT_CFG2: Interrupt 2 Configuration Register |              |           |             |              |           |  |  |  |  |
|----------------------|-----------|----------------------------------------------|--------------|-----------|-------------|--------------|-----------|--|--|--|--|
| REG Address          | Bank 1- 0 | Bank 1- 0xB (Hex) – 11 (Dec)                 |              |           |             |              |           |  |  |  |  |
|                      | Bit 7:6   | Bit 7:6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 1  |              |           |             |              |           |  |  |  |  |
| Type - Def.<br>Value | R-00      | RW-1                                         | RW-0         | RW-0      | RW-1        | RW-0         | RW-0      |  |  |  |  |
| Content              | RFU       | INT1_ENABLE                                  | INT1_ACT_LVL | INT1_MODE | INT2_ENABLE | INT2_ACT_LVL | INT2_MODE |  |  |  |  |

## **Description**

Interrupt 2 configuration register. This register determines how the interrupt lines INT1 and INT2 will behave in terms of :

- Being enabled/disabled
- Push-Pull vs Open-Drain configuration
- Active level

When the interrupt lines are disabled, they will stay at the selected un-active level regardless the settings in the INT1\_MSK and INT2\_MSK registers.

- INT1\_ENABLE :
  - o 0 -> disable interrupt on INT1
  - o 1 -> enable interrupt on INT1
- INT1\_ACT\_LVL:
  - 0 -> INT1 active High.
  - 1 -> INT1 active low
- INT1\_MODE :
  - 0 -> push pull configuration
  - 1 -> open drain configuration
- INT2\_ENABLE
  - 0 -> disable interrupt on INT2
  - 1 -> enable interrupt on INT2
- INT2\_ACT\_LVL:
  - 0 -> INT2 active High
    - 1 -> INT2 active low
- INT2\_MODE :
  - 0- push pull configuration
  - 1 -> open drain configuration

## 1.3.13 INT\_TMO

| REG Name          | INT_TMO: Interrupt time    | INT_TMO: Interrupt timeout and interrupt mode configuration |             |  |  |  |  |  |  |  |
|-------------------|----------------------------|-------------------------------------------------------------|-------------|--|--|--|--|--|--|--|
| REG Address       | Bank 1- 0x0C (Hex) - 12 (D | Bank 1- 0x0C (Hex) - 12 (Dec)                               |             |  |  |  |  |  |  |  |
|                   | Bit 7:6                    | Bit 7:6 Bit 5:4 Bit 3:0                                     |             |  |  |  |  |  |  |  |
| Type - Def. Value | RW-00                      | RW-00                                                       | RW-0000     |  |  |  |  |  |  |  |
| Content           | INT1_LATCH_MODE            | INT2_LATCH_MODE                                             | INT_TIMEOUT |  |  |  |  |  |  |  |

#### **Description**

Interrupt Timeout and Interrupt Mode configuration register.

This register allows to configure the interrupt lines to operate as either un-latched, latched

As un-latched, they can be further configured in such a way that interrupt sources (INT1 STS and INT2 STS) can be cleared when they are read or cleared when they are written with a logic 1.

Clearing an interrupt source by writing a logic 1 allows clearing single bits rather than the entire register.

- **INT1 LATCH MODE:** 
  - o 00 -> interrupt is not latched
  - o 01-> latched mode. Interrupt is maintained until cleared on Read
  - o 10 -> latched mode. Interrupt is maintained until cleared on Write
  - 11 -> Timed (see INT\_TIMEOUT)
- INT2\_LATCH\_MODE:
  - o 00 -> interrupt is not latched
  - o 01-> latched mode. Interrupt is maintained until cleared on Read
  - o 10 -> latched mode. Interrupt is maintained until cleared on Write
  - 11 -> Timed (see INT\_TIMEOUT)
- INT\_TIMEOUT: Interrupt temporary period. This is shared between INT1 and INT2:
  - o 0000 Temporary: 100us
  - 0001 Temporary: 200us
  - 0010 Temporary: 500us
  - 0011 Temporary: 1ms
  - o 0100 Temporary: 2ms
  - 0101 Temporary: 5ms
  - 0110 Temporary: 10ms

  - o 0111 Temporary: 20ms
  - 1000 Temporary: 50ms 1001 Temporary: 100ms
  - o 1010 Temporary: 200ms
  - 1011 Temporary: 500ms

## 1.3.14 INT\_STS\_UL

| REG Name          | INT_STS_U  | INT_STS_UL: Interrupt sources, unlatched        |          |         |         |        |         |       |  |
|-------------------|------------|-------------------------------------------------|----------|---------|---------|--------|---------|-------|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x0D (Hex) - 13 (Dec)                   |          |         |         |        |         |       |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |          |         |         |        |         |       |  |
| Type - Def. Value | R-0        | R-O R-O R-O R-O R-O R-O                         |          |         |         |        |         |       |  |
| Content           | DATA_RDY   | FIFO_EMPTY                                      | FIFO_OVR | FIFO_TH | INT_AND | INT_OR | RESTART | DSYNC |  |

#### **Description**

Interrupt sources, un-latched. These bits are the un-latched version of the interrupt status registers; as these signals are shared by the INT1 generator and the INT2 generator, there is a unique register shared.

This register is the actual source for the interrupt lines when the interrupts are configured as un-latched.

When the interrupt lines are configured as latched, be it both or just one of them, these bits can be used to keep monitoring the status of an interrupt source, previously identified by means of its latched version, to see how it changes after the event.

#### **Parameters**

DATA\_RDY : DATA\_READY status bit (0x22[0])
 FIFO\_EMPTY : FIFO empty status bit (0x3D[0])
 FIFO\_OVR : FIFO overrun status bit (0x3D[4])
 FIFO\_TH : FIFO threshold status bit (0x3D[2])

INT\_AND : rate interrupt OR status
 INT\_OR : rate interrupt AND status

RESTART : restart status (0x1C[0])
 DSYNC : DSYNC pin status, according to DSYNC CFG

## 1.3.15 INT1\_STS

| REG Name          | INT1_STS:  | INT1_STS: Interrupt 1 Status register (latched) |          |         |         |        |         |       |  |  |
|-------------------|------------|-------------------------------------------------|----------|---------|---------|--------|---------|-------|--|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x0E (Hex) - 14 (Dec)                   |          |         |         |        |         |       |  |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |          |         |         |        |         |       |  |  |
| Type - Def. Value | R-0        | R-0                                             | R-0      | R-0     | R-0     | R-0    | R-0     | R-0   |  |  |
| Content           | DATA_RDY   | FIFO_EMPTY                                      | FIFO_OVR | FIFO_TH | INT_AND | INT_OR | RESTART | DSYNC |  |  |

#### **Description**

Interrupt 1, status register. These are the latched interrupt sources.

When INT1 is configured to operate as latched, it can be cleared, when asserted, in two ways:

- Clear-On-Read: by reading the entire INT1\_STS register
- Clear-On-Write: by selectively writing with ,1' the specific interrupt source bit in INT1\_STS register, until they are all cleared. Many bits can be cleared at once by forming the appropriate mask.

When INT1 is configured to operate as either latched or timed, these registers are set to 0.

#### **Parameters**

DATA\_RDY : DATA\_READY status bit

• **FIFO\_EMPTY** : <u>FIFO empty</u> status bit (unlatched if INT1 configured to be timed)

FIFO\_OVR : FIFO overrun status bit
 FIFO\_TH : FIFO threshold status bit
 INT\_AND : rate interrupt OR status
 INT\_OR : rate interrupt AND status

• **RESTART** : <u>restart</u> status

• **DSYNC** : DSYNC pin status, according to <u>DSYNC CFG</u>



## 1.3.16 INT2\_STS

| REG Name          | INT2_STS:  | INT2_STS: Interrupt 2 Status register (latched) |          |         |         |        |         |       |  |
|-------------------|------------|-------------------------------------------------|----------|---------|---------|--------|---------|-------|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x0F (Hex) - 15 (Dec)                   |          |         |         |        |         |       |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |          |         |         |        |         |       |  |
| Type - Def. Value | R-0        | R-0                                             | R-0      | R-0     | R-0     | R-0    | R-0     | R-0   |  |
| Content           | DATA_RDY   | FIFO_EMPTY                                      | FIFO_OVR | FIFO_TH | INT_AND | INT_OR | RESTART | DSYNC |  |

#### **Description**

Interrupt 2, status register. These are the latched interrupt sources.

When INT2 is configured to operate as latched, it can be cleared, when asserted, in two ways:

- Clear-On-Read: by reading the entire INT2\_STS register
- Clear-On-Write: by selectively writing with ,1' the specific interrupt source bit in INT2\_STS register, until they are all cleared. Many bits can be cleared at once by forming the appropriate mask.

When INT2 is configured to operate as either latched or timed, these registers are set to 0.

#### **Parameters**

• DATA\_RDY : DATA\_READY status bit

• FIFO\_EMPTY : FIFO empty status bit (unlatched if IN72 configured to be timed)

FIFO\_OVR : FIFO overrun status bit
 FIFO\_TH : FIFO threshold lengths bit
 INT\_AND : rate interrupt OR status
 INT\_OR : rate interrupt AND status

• **RESTART** : restart status

• **DSYNC** : DSYNC pin status, according to <u>DSYNC CFG</u>



## 1.3.17 INT1\_MSK

| REG Name          | INT1_MSK   | INT1_MSK: Interrupt 1 Generation Mask           |          |         |         |        |         |       |  |  |
|-------------------|------------|-------------------------------------------------|----------|---------|---------|--------|---------|-------|--|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x10 (Hex) - 16 (Dec)                   |          |         |         |        |         |       |  |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |          |         |         |        |         |       |  |  |
| Type - Def. Value | RW-1       | RW-1 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0              |          |         |         |        |         |       |  |  |
| Content           | DATA_RDY   | FIFO_EMPTY                                      | FIFO_OVR | FIFO_TH | INT_AND | INT_OR | RESTART | DSYNC |  |  |

#### **Description**

Interrupt 1 generation, mask register. This register is meant to be used to enable selected interrupt sources in the INT1\_STS (0x0E) register to activate the INT1 interrupt line. Interrupt sources are masked (prevented from generating an interrupt) as long as the corresponding bit in the mask register is 0.

Valid configurations are with None, One, Multiple or Every bit set to 1; having multiple possible interrupt sources will require the Interrupt Service routine to identify the correct one(s).

#### **Parameters**

• DATA RDY : DATA READY status bit

• FIFO\_EMPTY : FIFO empty status bit (unlatched if INT1 configured to be timed)

• FIFO\_OVR : FIFO overrun status bit.

FIFO\_TH : FIFO threshold status it
 INT\_AND : rate interrupt OR status
 INT\_OR : rate interrupt ND status

• **RESTART** : restart status

• **DSYNC** : DSYNC pin status, according to <u>DSYNC CFG</u>



## 1.3.18 INT2\_MSK

| REG Name          | INT2_MSK   | INT2_MSK: Interrupt 2 Generation Mask           |          |         |         |        |         |       |  |  |
|-------------------|------------|-------------------------------------------------|----------|---------|---------|--------|---------|-------|--|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x11 (Hex) - 17 (Dec)                   |          |         |         |        |         |       |  |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |          |         |         |        |         |       |  |  |
| Type - Def. Value | RW-0       | RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-0              |          |         |         |        |         |       |  |  |
| Content           | DATA_RDY   | FIFO_EMPTY                                      | FIFO_OVR | FIFO_TH | INT_AND | INT_OR | RESTART | DSYNC |  |  |

#### **Description**

Interrupt 2 generation, mask register. This register is meant to be used to enable selected interrupt sources in the INT2\_STS (0x0F) register to activate the INT2 interrupt line. Interrupt sources are masked (prevented from generating an interrupt) as long as the corresponding bit in the mask register is 0.

Valid configurations are with None, One, Multiple or Every bit set to 1; having multiple possible interrupt sources will require the Interrupt Service routine to identify the correct one(s).

#### **Parameters**

• DATA RDY : DATA READY status bit

• FIFO\_EMPTY : FIFO empty status bit (unlatched if INT2 configured to be timed)

• FIFO\_OVR : FIFO overrun status bit.

FIFO\_TH : FIFO threshold status it
 INT\_AND : rate interrupt OR status
 INT\_OR : rate interrupt ND status

• **RESTART** : <u>restart</u> status

• **DSYNC** : DSYNC pin status, according to <u>DSYNC CFG</u>

# 1.3.19 (OTP\_STATUS)

| REG Name          | OTP_STATUS: OTP status Register |         |
|-------------------|---------------------------------|---------|
| REG Address       | Bank 1- 0x19 (Hex) – 25 (Dec)   |         |
|                   | Bit 7:2                         | Bit 1:0 |
| Type – Def. Value | R-000000                        | R-00    |
| Content           | OTP status                      |         |

#### Description

OTP status register. This register provides the OTP download status. If read the two LSB, it could get the code of different download status.

OTP\_STATUS[1:0] = 00 OTP download OK, no error.

OTP\_STATUS[1:0] = 01 OTP download OK, 1 bit corrected.

OTP\_STATUS[1:0] = 10 OTP download OK, after n trays.

OTP STATUS[1:0] = 11 OTP download completed with errors.

# 1.3.20 SERIAL\_0

| REG Name          | SERIAL_0:  | SERIAL_0: Serial Number byte 0                  |   |      |      |   |   |   |  |
|-------------------|------------|-------------------------------------------------|---|------|------|---|---|---|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x1A (Hex) – 26 (Dec)                   |   |      |      |   |   |   |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |   |      |      |   |   |   |  |
| Type – Def. Value | R          | R                                               | R | R    | R    | R | R | R |  |
| Content           |            |                                                 |   | SERI | AL_0 |   |   |   |  |

## Description

Serial number, byte 0 register. SERIAL\_X registers (with X going from 0 to 5) are 6 registers used to assign a unique identifier to every single MAX21000 sample to enable a complete track-ability of each of them, in terms of LOTs, Assembly history and Test equipment.





# 1.3.21 SERIAL\_1

| REG Name          | SERIAL_1:  | SERIAL_1: Serial Number byte 1                  |   |      |      |   |   |   |  |
|-------------------|------------|-------------------------------------------------|---|------|------|---|---|---|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x1B (Hex) – 27 (Dec)                   |   |      |      |   |   |   |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |   |      |      |   |   |   |  |
| Type – Def. Value | R          | R                                               | R | R    | R    | R | R | R |  |
| Content           |            |                                                 |   | SERI | AL_1 |   |   |   |  |

## Description

Serial number, byte 1 register.

## **Parameters**

• **SERIAL\_1** : Serial number, byte 1

# 1.3.22 SERIAL\_2



# **Description**

Serial number, byte 2 register.

## **Parameters**

• SERIAL\_2 : Serial number, byte 2

# 1.3.23 SERIAL\_3

| REG Name          | SERIAL_3:  | SERIAL_3: Serial Number byte 3                  |   |      |      |   |   |   |  |  |
|-------------------|------------|-------------------------------------------------|---|------|------|---|---|---|--|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x1D (Hex) – 29 (Dec)                   |   |      |      |   |   |   |  |  |
|                   | Bit 7      | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |   |      |      |   |   |   |  |  |
| Type – Def. Value | R          | R                                               | R | R    | R    | R | R | R |  |  |
| Content           |            |                                                 |   | SERI | AL_3 |   |   |   |  |  |

## **Description**

Serial number, byte 3 register. SERIAL\_X registers (with X going from 0 to 5) are 6 registers used to assign a unique identifier to every single MAX21000 sample to enable a complete track-ability of each of them, in terms of LOTs, assembly history and Test equipment.

#### **Parameters**

• **SERIAL\_3** : Serial number, byte 3

## 1.3.24 SERIAL\_4

| REG Name          | SERIAL_4:  | Serial Numb                                    | er byte 4 | , i | W. Assessment |   |   |   |  |  |
|-------------------|------------|------------------------------------------------|-----------|-----|---------------|---|---|---|--|--|
| REG Address       | Bank – 0x1 | ank – 0x1E (Hex) – 30 (Dec)                    |           |     |               |   |   |   |  |  |
|                   | Bit 7      | it 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |           |     |               |   |   |   |  |  |
| Type – Def. Value | R          | R                                              | R         | R   | R             | R | R | R |  |  |
| Content           |            | SERIAL_4                                       |           |     |               |   |   |   |  |  |

## **Description**

Serial number, byte 4 register.

#### **Parameters**

• SERIAL\_4 Serial number, byte 4

# 1.3.25 SERIAL\_5

| REG Name          | SERIAL_5:  | SERIAL_5: Serial Number byte 5                                                                          |   |       |      |   |   |   |  |
|-------------------|------------|---------------------------------------------------------------------------------------------------------|---|-------|------|---|---|---|--|
| REG Address       | Bank 1- 0x | Bank 1- 0x1F (Hex) – 31 (Dec)                                                                           |   |       |      |   |   |   |  |
|                   | Bit 7      | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |   |       |      |   |   |   |  |
| Type – Def. Value | R          | R                                                                                                       | R | R     | R    | R | R | R |  |
| Content           |            |                                                                                                         |   | SERIA | AL_5 |   |   |   |  |

## **Description**

Serial number, byte 5 register.

#### **Parameters**

• **SERIAL\_5** : Serial number, byte 5