IP CORE MANUAL

Serial Peripheral Interface IP

px_serial_int

Pentek, Inc. One Park Way Upper Saddle River, NJ 07458 (201) 818–5900 http://www.pentek.com/

Copyright © 2017

Manual Part Number: 807.48405 Rev: 1.0 – September 8, 2017

Manual Revision History

<u>Date</u>	Version		Comments
9/8/17	1.0	Initial Release	

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/ contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2017, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI–SIG are trademarks or registered trademarks of PCI–SIG. Texas Instruments is a trademark of Texas Instruments, Incorporated. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

	Page
IP Facts	
Description	3
Features	
Table 1–1: IP Facts Table	3
Chapter 1: Overview	
Functional Description	5
Figure 1–1: Serial Peripheral Interface Core Block Diagram	
Applications	6
System Requirements	6
Licensing and Ordering Information	6
Contacting Technical Support	
Documentation	6
Chapter 2: General Product Specifications	
Standards	7
Performance	7
2.2.1 Maximum Frequencies	
Resource Utilization	
Table 2–1: Resource Usage and Availability	
Limitations and Unsupported Features	
Generic Parameters	
Table 2–2: Generic Parameters	8
Chapter 3: Port Descriptions	
Table 3–1: I/O Signals	9
Chapter 4: Register Space	
Chapter 5: Designing with the Core	
General Design Guidelines	12
Clocking	

Table of Contents

		Page	
5.3	Resets	13	
5.4	Interrupts		
5.5	Interface Operation		
5.6	1		
5.7 Timing Diagrams			
	5.7.1 3–Wire Sequences (data_width = 8, addr_width = 4)		
	5.7.2 4–Wire Sequences (data_width = 8, addr_width = 4)		
	Chapter 6: Design Flow Steps		
	Figure 6-1: Serial Peripheral Interface Core in Pentek IP Catalog.	15	
	Figure 6-2: Serial Peripheral Interface Core IP Symbol		
6.2	User Parameters	17	
6.3	Generating Output	17	
6.4	Constraining the Core		
6.5	Simulation	18	
6.6	Synthesis and Implementation		

IP Facts

Description

Pentek's NavigatorTM Serial Peripheral Interface Core is a generic address width and data width, 3-wire or 4-wire selectable SPI interface module. The interface involves local software control address, data and read/write pulse signal, that initiate a read/write cycle across the SPI interface to access registers in an external device that uses a SPI serial interface.

This core complies with the ARM® AMBA® AXI4 Specification. This user manual defines the hardware interface, software interface, and parameterization options for the Serial Peripheral Interface Core.

Features

- Generic Serial Peripheral Interface
- 3–Wire or 4–Wire mode
- Supports any address and data size
- Requires a separate Pentek Control and Status Register IP Core (px_axil_csr) for software access

Table 1-1: IP Facts Table		
Core Specifics		
Supported Design Family ^a	Kintex [®] Ultrascale	
Supported User Interfaces	AXI4-Lite	
Resources	See Table 2-1	
Provided with the Core		
Design Files	VHDL	
Example Design	Not Provided	
Test Bench	Not Provided	
Constraints File	Not Provided ^b	
Simulation Model	N/A	
Supported S/W Driver	HAL Software Support	
Tested Design Flows		
Design Entry	Vivado [®] Design Suite 2016.4 or later	
Simulation	Vivado VSim	
Synthesis	Vivado Synthesis	
Support		
Provided by Pentek fpgasupport@pentek.com		

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top-level module of the user design.

This page is intentionally blank

Chapter 1: Overview

1.1 Functional Description

The Serial Peripheral Interface Core is a generic address width and data width, 3—wire or 4—wire selectable SPI interface module. The interface involves local software control address, data and read/write pulse signal, that initiate a read/write cycle across the SPI interface to access registers in an external device that uses a SPI serial interface.

Figure 1–1 is a top–level block diagram of the Serial Peripheral Interface Core. The modules in the block diagram are explained in other sections of this manual.

Figure 1–1: Serial Peripheral Interface Core Block Diagram

- ☐ Local Interface: Local interface controlled VIA software register access using Pentek Control and Status Register IP Core module (px_axil_csr).
- ☐ **SPI Interface:** Serial interface to external devices, such accessing internal register of ADC's and DAC's.

1.2 Applications

This core can be used with SPI interfaces that are either 3–wire or 4–wire, with any data and address width selectable with generics. Refer to datasheet of external device for proper IP Core configuration.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201–818–5900 ext. 238, 9 am to 5 pm EST).

1.6 Documentation

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging
- 3) *ARM AMBA AXI4 Protocol Version 2.0 Specification*http://www.arm.com/products/system-ip/amba-specifications.php

NOTE: To obtain proper settings, please also refer to the relevant documents for any devices that you are attempting to interface with this core.

Chapter 2: General Product Specifications

2.1 Standards

The Serial Peripheral Interface Core complies with the *ARM AMBA AXI4–Lite Protocol Specification*.

2.2 Performance

The performance of the Serial Peripheral Interface Core is limited only by the FPGA logic speed. The values presented in this section should be used as an estimation guideline. Actual performance can vary.

2.2.1 Maximum Frequencies

The maximum clock rate frequency for the SPI Core is 10 MHz.

2.3 Resource Utilization

The resource utilization of the Serial Peripheral Interface Core is shown in Table 2–1. Resources have been estimated for the Kintex Ultrascale XCKU060 –2 speed grade device. These values were generated using the Vivado Design Suite.

Table 2–1: Resource Usage and Availability		
Resource	# Used	
LUTs	122	
Flip-Flops	110	

2.4 Limitations and Unsupported Features

SPI signals require direction to external FPGA pins.

2.5 Generic Parameters

The generic parameters of the Serial Peripheral Interface Core are described in Table 2–2. These parameters can be set as required by the user while customizing the core.

Table 2-2: Generic Parameters		
Port/Signal Name	Туре	Description
data_reg_width	Integer	Generic Data Width
addr_reg_width	Integer	Generic Address Width
bustype_3wire_4wire	std_logic	Bus Type: 0 = select 3 wire interface - Default 1 = select 4 wire interface
rd_wr_pol	std_logic	Read/Write Polarity: 0 = Default: The Read bit on the serial line is high and the Write bit on the serial line is low. This setting is for most applications. 1 = The Read bit on the serial line is low and the Write bit on the serial line is high.

Chapter 3: Port Descriptions

CSR and AXI4– Stream interfaces are not applicable for this IP core. The I/O port/signal descriptions of the top–level module of the Sample Clock Receiver Core are described in Table 3–1.

Table 3-1: I/O Signals			
Port/Signal Name	Туре	Direction	Description
		CI	lock Signals
clk	std_logic	Input	Input Clock: typically pcie_clk
sclk	std_logic	Output	Serial Interface clock: Frequency = clk/
		Local (Softw	vare) Interface Signals
wr_pls	std_logic	Input	Write Pulse: One clock cycle pulse signal initiates a write to the SPI interface. The data and address are provided on the Addr and Data_in ports
rd_pls	std_logic	Input	Read Pulse: One clock cycle pulse signal initiates a read from the SPI interface. The address is provided on the Addr port and readback is available on Data_out.
sm_rdy	std_logic	Input	Interface ready: '0' indicates serial data transaction in progress. '1' indicates serial interface ready.
addr	std_logic _vector	Input	Serial Interface Address
data_in	std_logic _vector	Input	Serial Interface Data Write
data_out	std_logic _vector	Output	Serial Interface Register Readback
		SPI In	nterface Signals
sclk	std_logic	Output	Serial interface clock: It is generated internally from clk. Frequency = clk/32.
sdi	std_logic	Bi-direction	Serial output/input line to external device: In 3-wire mode, this serves as a bi-direction line. In 4-wire mode, this serves as the output line to external device only.
sdo	std_logic	Input	Input serial line from external device: This is only used during 4-wire mode. In 3-wire mode, this is set to '0'.
sdenb	std_logic	Output	Device Enable Signal

Page 10

This page is intentionally blank

Chapter 4: Register Space

NOTE: The Serial Peripheral Interface Core does not have an internal register space. The Pentek IP core **px_axil_csr** needs to be instantiated externally in order to provide software register accesses.

Page 12

This page is intentionally blank

Chapter 5: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the Serial Peripheral Interface Core.

5.1 General Design Guidelines

The Serial Peripheral Interface IP Core is designed to operate with any data and address width, which is selected through the IP Core GUI interface. Refer to the datasheet of the external device that the SPI Core will be connected in order to properly set the data, address width, and wire operation settings (either 3–wire or 4–wire).

NOTE: Most SPI interfaces indicate a read operation as a high on the SDI line and a write operation as a low. Most SPI interfaces have an active low device enable.

5.2 Clocking

The SPI Core generates a low frequency clock on **sclk** derived from **clk_in**. For most SPI interfaces **sclk** has a maximum operating frequency of 10 Mhz.

sclk = clk in / 32 MHz

For Pentek Navigator FPGA kits, clk_in is typically s_axi_csr_clk, which is derived from the pcie_clk of 250 Mhz.

In Navigator FPGA kits, **sclk** operates at 250/32 = 7.8125 MHz.

5.3 Resets

Rst n is an active low reset assigned from s axi csr aresetn.

5.4 Interrupts

There are no interrupts in this IP core.

5.5 Interface Operation

Software control of rd_pls, wr_pls, data_in, addr, sm_rdy and data_out is accomplished by interconnecting to a Pentek control and status register (px_axil_csr) instantiated at a higher level.

5.6 Programming Sequence

Read: Verify that the interface is ready for transaction by reading **sm_rdy** = '1'. The software provides the address and pulses the **rd_pls**. Wait for **sm_rdy** to return a '1' and read the return data on **data_out**.

Write: Verify that the interface is ready for transaction by reading **sm_rdy** = '1'. The software provides the address and the write data and pulses the **wr_pls** signal.

5.7 Timing Diagrams

5.7.1 3-Wire Sequences (data_width = 8, addr_width = 4)

Write Sequence:

Read Sequence:

5.7.2 4-Wire Sequences (data_width = 8, addr_width = 4)

Write Sequence:

Read Sequence:

Rev. 1.0

Chapter 6: Design Flow Steps

6.1 Pentek IP Catalog

This chapter describes customization and generation of the Pentek Serial Peripheral Interface Core. It also includes simulation, synthesis, and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as **px_serial_int_v1_0** as shown in Figure 6–1.

× IP Catalog **Project Summary** Cores | Interfaces Q-AXI4 Name Status License VLNV px_s_axil_plc_hldr_v1_0 AXI4 Production Included pentek.com:px_ip:px_s_axil_plc_hldr:1.0 px_sample_clk_rcvr_v1_2 AXI4 Production Included pentek.com:px_ip:px_sample_clk_rcvr:1.2 px_scalar2vctr_v1_0 Production Included pentek.com:px_ip:px_scalar2vctr:1.0 px_scalar_andor_v1_0 Production Included pentek.com:px_ip:px_scalar_andor:1.0 px_scalar_const_v1_0 Production Included pentek.com:px_ip:px_scalar_const:1.0 px_scalar_hardsync_v1_0 Production Included pentek.com:px_ip:px_scalar_hardsync:1.0 px_serial_int_v1_0 Production Included pentek.com:px_ip:px_serial_int:1.0 px_sig2pxaxis_v1_1 AXI4-Stream Production Included pentek.com:px_ip:px_sig2pxaxis:1.1 px_subset_vctr_v1_1 Production Included pentek.com:px_ip:px_subset_vctr:1.1 px_syncbus_intrfc1_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_syncbus_intrfc1:1.0 px_syncbus_intrfc2_v1_1 pentek.com:px_ip:px_syncbus_intrfc2:1.1 AXI4, AXI4-Stream Production Included px_syncbus_intrfc48_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_syncbus_intrfc48:1.0 px_test_sig_gen_48_v1_0 AXI4, AXI4-Stream Included Production pentek.com:px_ip:px_test_sig_gen_48:1.0 px_test_sig_gen_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_test_sig_gen:1.0 Details Name: px_serial_int_v1_0 Version: 1.0 (Rev. 7) Description: Pentek Generic SPI Core Status: Production License: Included Vendor: Penkte, Inc.

Figure 6-1: Serial Peripheral Interface Core in Pentek IP Catalog

6.1 Pentek IP Catalog (continued)

When you select the **px_serial_int_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 6–2). The core's symbol is the box on the left side.

A Customize IP px_serial_int_v1_0 (1.0) 1 Documentation Place IP Location C Switch to Defaults Component Name px_serial_int_0 Show disabled ports Data Reg Width 16 Addr Reg Width 16 BusType 0 = 3-Wire SPI configuation - clk_in data_out[15:0] = 1 = 4-Wire SPI configuation sm_rdy = sdi = sdenb = sclk = data_in[15:0] = addr[15:0] = wr - rd - sdo Bustype 3wire 4wire "0" The read/write polarity on SDI bus line 0 - Read is '1', Write is '0' 1 - Read is '0', Write is '1' Rd Wr Pol 0 OK Cancel

Figure 6-2: Serial Peripheral Interface Core IP Symbol

6.2 User Parameters

- Data Reg Width: The width of the data field
- Address Reg Width: The width of the address field.
- Bus Type: Selects either 3–wire or 4–wire mode.
- Read/Write polarity: Read write polarity on the SPI line. Most devices use '1' as a read, '0' for a write.

The user parameters of this IP core are also described in Section 2.5 of this user manual.

6.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide – Designing with IP*.

6.4 Constraining the Core

This section contains information about constraining the core in Vivado Design Suite environment.

Required Constraints

The XDC constraints are not provided with this core. The necessary constraints can be applied at the top level of the user design.

Device, Package, and Speed Grade Selections

This IP works for the Kintex Ultrascale FPGAs.

Clock Frequencies

It is recommended to use the AXI4–Lite interface clock (**s_axi_csr_aclk**). It has a maximum frequency of 250 MHz.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

6.4 Constraining the Core (continued)

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

6.5 Simulation

See Section 5.7.

6.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide – Designing with IP*.