Processing short nanopore reads with dada2

Marko Suokas

The document utilizes previously computed objects saved as RDS files. These objects are reloaded as needed. The original code can be executed by setting eval = TRUE or by running the chunk directly in RStudio

Preprocess Ion Torrent Adapter Reads

1. Trim forward reads using Adapter A and the reverse complement of the trP1 sequence:

```
cutadapt --trimmed-only -e 0.05 -o ev_forward.fastq.gz \
-g "CCATCTCATCCCTGCGTGTCTCCGACTCAG;o=30...ATCACCGACTGCCCATAGAGAGG;o=23" \
ev_reads_hq.fastq.gz
```

2. Trim reverse reads using trP1 and the reverse complement of Adapter A:

```
cutadapt --trimmed-only -e 0.05 -o ev_reverse.fastq.gz \
-g "CCTCTCTATGGGCAGTCGGTGAT;o=23...CTGAGTCGGAGACACGCAGGGATGAGATGG;o=30" \
ev_reads_hq.fastq.gz
```

3. Generate reverse complements of the trimmed reverse reads:

```
seqkit seq -rp -t DNA -o ev_rcomp.fasta.gz ev_reverse.fastq.gz
```

4. Merge forward reads with reverse-complemented reverse reads:

```
cat ev_forward.fastq.gz ev_rcomp.fastq.gz > raw_005.fastq.gz
```

Import Data into QIIME2

5. Import the merged reads into QIIME2:

```
qiime tools import --type 'MultiplexedSingleEndBarcodeInSequence' \
--input-path raw_005.fastq.gz --output-path raw_005.qza
```

Demultiplexing

6. Demultiplex the reads:

```
qiime cutadapt demux-single --i-seqs raw_005.qza \
--m-barcodes-file jt_meta.tsv --m-barcodes-column Barcode_seq \
--output-dir demuxed --p-error-rate 0 --p-anchor-barcode
```

Trim PCR Primers

- 7. Trim the PCR primers (519F and 926R):
 - Trim forward primers (519F):

```
qiime cutadapt trim-single --p-front ACAGCMGCCGCGGTAATWC --p-overlap 15 \
--i-demultiplexed-sequences demuxed/per_sample_sequences.qza \
--p-discard-untrimmed --o-trimmed-sequences trim1.qza
```

• Trim reverse primers (926R):

```
qiime cutadapt trim-single --i-demultiplexed-sequences trim1.qza \
--p-adapter AAACTCAAAKGAATTGACGG \
--o-trimmed-sequences trimmed-sequences.qza
```

Decompress QIIME Artifact

8. Extract the sequences from the QIIME2 artifact:

```
unzip trimmed-sequences.qza
```

Notes

- **Error allowances**: The parameters allow one sequencing error in the adapters, no errors in barcode sequences, and 1-2 errors in the PCR primers.
- Command formatting: Some options use double dashes (--), but they may not render correctly in some text formats.

Load libraries

```
library(dada2)
library(wgan)
library(vegan)
library(sacter)
library(Biostrings)
library(tidyverse)
library(knitr)
library(kableExtra)
library(gapta)
library(gapta)
library(gapta)
```

Set parameters

```
# Path variables
path <- "data/reads/"
silva <- "-/feature_classifiers/silva_nr99_v138.1_train_set.fa.gz"
species <- "-/feature_classifiers/silva_species_assignment_v138.1.fa.gz"
training <- "-/feature_classifiers/SILVA_SSU_r138_2019.RData"
meta_file <- "data/jt_meta.tsv"
exportloc <- "results/"
# Variables: truncation length, phix (Illumina)
truncation <- 350
#Creates results directory
dir.create(exportloc)
#metadata
metadata <- data.frame(read_tsv(meta_file, show_col_types = F))
#set knitr cache path
knitr::opts_chunk$set(cache.path = "cache/")</pre>
```

Import reads

Sample nr072 was removed from dataset (0 reads)

```
# Forward fastq filenames have format: SAMPLENAME_R1_001.fastq
fnFs <- sort(list.files(path, pattern="L001_R1_001.fastq.gz", full.names = T))
# Extract sample names, assuming filenames have format: SAMPLENAME_XXX.fastq.gz
sample.names <- sapply(strsplit(basename(fnFs), "_"), `[`, 1)</pre>
```

Check read quality of first samples

```
# Base quality plot
p <- plotQualityProfile(fnFs[1:4], n = 50000)
p

# Load base quality plot from saved object
p <- readRDS("rds/qplot.rds")
p</pre>
```


Filter and trim reads

Learn and plot error profile

```
# Forward read error rate
errF <- learnErrors(filtFs, multithread = T)
saveRDS(errF, file = "rds/errF.rds")

# Load previously saved object
errF <- readRDS("rds/errF.rds")</pre>
```

Plot error profile

Plotting error rate profile for forward reads
plotErrors(errF, nominalQ = T)

Denoise sequences

```
dadaFs <- dada(filtFs, err = errF, multithread = T, verbose = F)
saveRDS(dadaFs, file = "rds/dadaFs.rds")

# Load previously saved object
dadaFs <- readRDS("rds/dadaFs.rds")</pre>
```

Build ASV table

```
seqtab <- makeSequenceTable(dadaFs)
# Dimensions of ASV table
dim(seqtab)</pre>
```

[1] 131 8404

Remove chimeric variants

[1] 131 7634

Amount of data remaining after chimera removal

sum(seqtab.nochim)/sum(seqtab)

[1] 0.9959133

Summary table

Table 1: Summary table

	Input	Filtered	DenoisedF	Nonchimeric	N:o of variants
nr001	4558	3737	3589	3589	96
nr002	101469	82272	82017	82017	449
nr003	139054	113872	113654	113612	359
nr004	256204	207763	207374	207160	361
nr005	104757	85575	85340	85153	413
nr006	125276	101867	101438	101135	407
nr007	16776	13466	13352	13352	179
nr008	60779	50372	50261	50261	259
nr009	57496	46090	45844	45777	250
nr010	58884	48417	48302	48287	239
nr011	57804	46828	46648	46648	315
nr012	63184	51624	51355	51279	291
nr013	184184	151003	150506	150337	305
nr014	37034	30255	30059	30059	167
nr015	52921	42498	42295	42214	256
nr016	57780	47377	47221	47198	184
nr017	32249	27015	26761	26761	223
nr018	32343	26457	26235	26204	238
nr019	211	182	152	152	8
nr020	17466	14548	14312	14309	271
nr021	13454	10843	10407	10368	298
nr022	36958	30203	29950	29916	330
nr023	5863	4939	4760	4760	169
nr024	39062	32944	32682	32675	287
nr025	18358	15039	14839	14839	234
nr026	54181	45020	44705	44689	461
nr027	57462	46962	46734	46734	281
nr028	6385	5190	4976	4976	135
nr029	1149	915	809	809	57
nr030	2978	2463	2280	2280	72
nr031	55110	44610	44399	44191	303
nr032	53814	42979	42625	42284	219
nr033	41001	32923	32685	32664	287
nr034	25124	20580	20298	20296	288
nr035	1028	835	761	761	34
nr036	55738	45478	45334	45302	332
nr037	52126	42022	41630	41550	325
nr038	63365	52054	51762	51391	404
nr039	62495	50482	50215	50090	428

Table 1: Summary table (continued)

	Input	Filtered	DenoisedF	Nonchimeric	N:o of variants
nr040	66486	54623	54394	54325	364
nr041	50049	41199	41048	41028	288
nr042	56406 62973	47601	47412	47302	201
nr043		52026	51849	51794	248
nr044 nr045	51860 62931	42460 51359	42297 50996	42212 50953	259 410
111045	02931	31339			
nr046	57953	47598	47331	46941	259
nr047	59138	49654	49488	49442	260
nr048	55998	46407	46245	46231	284
nr049	59015	49029	48942	48940	252
nr050	58770	48128	47929	47881	367
nr051	58199	48129	48011	47938	241
nr052	59722	48648	48421	48387	456
nr053	52295	42909	42812	42810	206
nr054	54222	44000	43814	43761	255
nr055	44896	36482	36250	36211	327
nr056	56564	46213	46048	46037	340
nr057	57220	44611	44384	44384	340
nr058	29071	21680	21628	21628	101
nr059	49673	37678	37585	37585	184
nr060	56441	44838	44765	44720	204
nr061	39464	31746	31592	31558	203
nr062	57638	47417	47311	47311	121
nr063	41622	34042	33991	33847	116
nr064	57665	45751	45672	45672	151
nr065	31057	24009	23923	23923	115
nr066	46974	36323	36192	36192	160
nr067	28068	23098	22969	22967	116
nr068	29823	24238	24203	24203	86
nr069	30168	24183	24129	24127	128
nr070	60493	50010	49839	49598	200
nr071	53242	41175	41058	40969	179
nr073	49981	40478	40360	40357	179
nr074	57395	46109	46003	46003	153
nr075	56378	46525	46362	46362	181
nr076	50105	39042	38965	38965	198
nr077	53839	45055	44930	44903	272
nr078	49264	40522	40432	40428	324
nr079	1023	865	775	775	25
nr080	76644	64132	63928	63928	348
nr081	77967	62167	61521	61008	1391
nr082	39055	32857	32731	32731	161
nr083	33607	27830	27742	27719	227
nr084	6891	5655	5515	5515	88
nr085	63220	52028	51855	51853	218
nr086	28118	21641	21539	21515	165
nr087	1547	1240	1214	1214	44
nr088	355	291	248	248	19

Table 1: Summary table (continued)

	Input	Filtered	DenoisedF	Nonchimeric	N:o of variants
nr089	94933	75244	74715	73698	62
nr090	49193	39043	38697	38660	56
nr091	43492	34421	34160	34137	35
nr092	87487	69403	69153	69153	64
nr093	170090	138581	137950	137467	90
nr094	183908	136075	135427	135250	92
nr095	187778	149971	149441	149364	86
nr096	152388	120640	120247	120041	86
nr097	151106	122605	122173	122018	69
nr098	61905	49312	49062	49001	50
nr099	6228	5126	5003	5003	32
nr100	181	137	91	91	11
nr101	118	86	47	47	7
nr102	65	48	23	23	4
nr103	196	145	78	78	9
nr104	198	153	100	100	13
nr105	179	145	82	82	11
nr106	107	83	42	42	5
nr107	176	144	68	68	7
nr108	92	71	29	29	5
nr109	139	113	67	67	9
nr110	447	360	269	269	32
nr111	122	96	52	52	4
nr112	212	174	114	114	11
nr113	144	116	74	74	5
nr114	127	103	57	57	7
nr115	502	393	378	378	11
nr116	73	52	16	16	2
nr117	127	103	46	46	6
nr118	120	94	47	47	5
nr119	170311	133480	132659	129636	87
nr120	157	126	64	64	8
nr121	161	131	72	72	11
nr122	199	161	117	117	14
nr123	60	48	14	14	2
nr124	100	83	47	47	10
nr125	84	66	35	35	6
nr126	81	63	25	25	2
nr127	208327	163285	162177	159439	112
nr128	72407	59091	58754	58652	56
nr129	45752	37244	37008	36922	44
nr130	192968	154678	153444	145777	122
nr131	19	17	13	13	2
nr132	14	11	1	1	1

Assign taxonomy

```
#Create a DNAStringSet from the ASV sequences
#taxonomy <- assignTaxonomy(seqtab.nochim, silva, multithread=3)
taxonomy <- addSpecies(taxonomy, species, n = 500)
saveRDS(taxonomy, "rds/taxonomy.rds")

# Load previously saved object
taxonomy <- readRDS("rds/taxonomy.rds")</pre>
```

Create tse object

```
#Counts table
counts <- t(seqtab.nochim)
repseq <- DNAStringSet(rownames(counts))</pre>
rownames(counts) <- NULL
ASV_names <- paste0("ASV", seq(nrow(counts)))
#Taxonomy table
rownames(taxonomy) <- NULL
#Metadata
tse <- TreeSummarizedExperiment(assays = list(counts = counts),</pre>
                                                 rowData = DataFrame(taxonomy),
colData = DataFrame(metadata))
names(repseq) <- ASV_names</pre>
referenceSeq(tse) <- repseq
tse
class: TreeSummarizedExperiment
dim: 7634 131
metadata(0):
assays(1): counts rownames: NULL
rowData names(7): Kingdom Phylum ... Genus Species colnames(131): nr001 nr002 ... nr131 nr132 colData names(5): SampleID Name Source Type Barcode_seq
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
rowLinks: NULL
rowTree: NULL
collinks: NULL
referenceSeq: a DNAStringSet (7634 sequences)
```

Some additional pruning

[1] 7533 131

Write data

Last step is to save data to suitable file formats.

```
saveRDS(tse, "rds/tse.rds")
```

Variant sequences are saved to fasta

Taxonomy is read from rowData and written

```
taxfile <- as.data.frame(rowData(tse))
taxfile %>% rownames_to_column(var = "Variant") %>%
  write_tsv(file=paste0(exportloc,"/taxonomy.tsv"))
```

Metadata is read from colData and written

```
metadf <- data.frame(Sampleid = rownames(colData(tse)), colData(tse))
write_tsv(metadf, paste0(exportloc, "/metadata.tsv"))</pre>
```

Counts are read from counts and written

```
ASV_counts <- as.data.frame(assays(tse)$counts)
ASV_counts %>% rownames_to_column(var= "Variant") %>%
write_tsv(file = paste0(exportloc, "/asvs.tsv"))
```

Vsearch denovo clustering (99%) data from Qiime

```
class: TreeSummarizedExperiment
dim: 127854 132
metadata(0):
assays(1): counts
rownames(127854): ASV1 ASV2 ... ASV127853 ASV127854
rowData names(7): Kingdom Phylum ... Genus Species
colnames(132): nr001 nr002 ... nr132 nr072
colData names(5): SampleID Name Source Type Barcode_seq
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
rowLinks: NULL
rowTree: NULL
colLinks: NULL
collinks: NULL
colTree: NULL
```

Pruning data before comparison

```
#Remove sampleid nr072
tseq <- tseq[, colnames(tseq) != "nr072"]

class: TreeSummarizedExperiment
    dim: 127854 131
    metadata(0):
    assays(1): counts
    rownames(127854): ASVI ASVI ... ASVI27853 ASVI27854
    rowData names(7): Kingdom Phylum ... Genus Species
    colnames(131): nr001 nr002 ... nr118 nr132
    colData names(5): SampleID Name Source Type Barcode_seq
    reducedDimAmes(0):
    mainExpName: NULL
    altExpName: NULL
    altExpNames(0):
    rowLinks: NULL
    rowTree: NULL
    colLinks: NULL
    colTree: NULL
    colTree:
```

[1] 125822 13:

Filter low abundance otus

```
# Extract the counts matrix from tseq and convert to data frame
qiime_data <- assays(tseq)$counts

# Add row sums, filter rows where sum > 9, and retain row names
qiime_data <- data_frame(ASV = rownames(tseq),qiime_data) %>%
mutate(sum = rowSums(qiime_data)) %>%
filter(sum > 9) %>% column_to_rownames("ASV")
tseq_filtered <- tseq[rownames(qiime_data),]

# Check the result
tseq_filtered

class: TreeSummarizedExperiment
dim: 15581 151
metadata(0):
assays(1): counts
rownames(15581): ASV1 ASV2 ... ASV126176 ASV127537
rowData names(7): Kingdom Phylum ... Genus Species
colnames(131): nr001 nr002 ... nr118 nr132
collbata names(5): SampleID Name Source Type Barcode_seq
reducedDimNames(0):
mainExpName: NULL
altExpName: NULL
collinks: NULL
collinks: NULL
collinks: NULL
collinks: NULL
collinks: NULL
collinks: NULL
collines: NULL
```

Remove samples containing less than 10 000 counts in total

```
#create column for total counts
colData(tse)$Sum <- colSums(assays(tse)$counts)
colData(tseq)$Sum <- colSums(assays(tseq)$counts)
colData(tseq filtered)$$\text{Sum} <- colSums(assays(tseq)$counts)

#filter samples that have over 10 000 counts

tse <- tse[, colData(tseq)$Sum >= 10000]

tseq <- tseq[, colData(tseq)$Sum >= 10000]

tseq filtered <- tseq_filtered[, colData(tseq_filtered)$Sum >= 10000]

dim(tseq)

[1] 7533 91

dim(tseq)

[1] 125822 91

dim(tseq_filtered)

#create second copies

#tseq 2 <- tseq

#tseq 2 <- tseq
```

Calculate shannon index and compare denoising ja clustering results

Calculate bray-curtis and compare denoising ja clustering results

Combine dataframes

Observations

- Customized sup basecalling produces high-quality reads.
- The error profiles of short amplicons (truncated to 350 bp) align with expected frequencies using the DADA2 learnErrors function.
- The proportion of unique reads is much smaller compared to long amplicons.
- Number of unique perfect matches found by DADA2addSpecies is well within expected range
- Overall, the findings suggest that denoising can effectively process short ONT reads.
- Shannon diversity is higher when using VSEARCH. Clustering at 99% identity produces a large number of variants, potentially causing overestimation. Filtering OTUs with fewer than 10 counts brings the Shannon index closer to DADA2 results.
- Bray-Curtis plots are very similar for samples with more than 10,000 counts.

Advantages of Nanopore

- Read length is not a limiting factor when designing amplicon targets.
- Base quality does not decrease with read length.
- Low-diversity libraries are not a problem for nanopore sequencing chemistry.
- Libraries prepared for other platforms can be conveniently converted to nanopore.
- Live basecalling allows real-time control of sequencing throughput, and in some cases, the flow cell can be reused.
- Cost per base in amplicon sequencing is competitive compared to MiSeq.

Disadvantages of Nanopore

- Homopolymer region accuracy is not as good as Illumina.
- High-accuracy basecalling is computationally intensive.
- Software tools are less mature compared to other platforms and require more technical expertise.
- The consistency of flow cells (e.g., number of functional pores) and sequencing repeatability are not yet fully clear. The shelf life of flow cells is uncertain; Oxford Nanopore provides a 3-month guarantee from the delivery date.
- Pores may degrade if the library preparation contains contaminants from samples (especially a concern for genomic or transcriptomic sequencing).