Growth

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Spring 2018

Readings

- ► GLS Ch. 4 (facts)
- ► GLS Ch. 5-6 (Solow Growth Model)
- ► GLS Ch. 7 (cross-country income differences)

Economic Growth

- ► When economists say "growth," typically mean average rate of growth in real GDP per capita over long horizons
- ▶ Long run: frequencies of time measured in decades
- Not period-to-period fluctuations in the growth rate
- "Once one begins to think about growth, it is difficult to think about anything else" – Robert Lucas, 1995 Nobel Prize winner

US Real GDP per capita

Summary Stats

- ► Average (annualized) *growth rate* of per capita real GDP: 1.8%
- Implies that the *level* of GDP doubles roughly once every 40 years
- ► Growing just 0.2 percentage points faster (2% growth rate): level doubles every 35 years
- ▶ Rule of 70: number of years it takes a variable to double is approximately 70 divided by the growth rate
- Consider two countries that start with same GDP, but country A grows 2% per year and country B grows 1% per year. After 100 years, A will be 165% richer!
- Small differences in growth rates really matter over long horizons

Key Question

- What accounts for this growth?
- ▶ In a mechanical sense, can only be two things:
 - Growth in productivity: we produce more output given the same inputs
 - Factor accumulation: more factors of production help us produce more stuff
 - Two key factors of production on which we focus are capital and labor
 - Labor input per capita is roughly trendless empirically not a source of growth in per capita output
 - ► The key factor of production over the long run is *capital*: physical stuff that must itself be produced that in turn helps us produce more stuff (e.g. machines).
- Which is it? Productivity or capital accumulation? What are policy implications?
- What accounts for differences in standards of living across countries? Productivity or factor accumulation?

Stylized Facts: Time Series

- 1. Output per worker grows at an approximately constant rate over long periods of time picture
- 2. Capital per worker grows at an approximately constant rate over long periods of time picture
- 3. The capital to output ratio is roughly constant over long periods of time picture
- 4. Labor's share of income is roughly constant over long periods of time picture
- 5. The return to capital is roughly constant over long periods of time picture
- 6. The real wage grows at approximately the same rate as output per worker over long periods of time picture

Stylized Facts: Cross-Section

- 1. There are large differences in income per capita across countries table
- There are some examples where poor countries catch up (growth miracles), otherwise where they do not (growth disasters) • table
- 3. Human capital (e.g. education) strongly correlated with income per capita table

Solow Model

- Model we use to study long run growth and cross-country income differences is the Solow model, after Solow (1956)
- Model capable of capturing stylized facts
- Main implication of model: productivity is key
 - Productivity key to sustained growth (not factor accumulation)
 - Productivity key to understanding cross-country income differences (not level of capital)
- Important implications for policy
- Downside of model: takes productivity to be exogenous. What is it? How to increase it?

Model Basics

- ► Time runs from t (the present) onwards into infinite future
- Representative household and representative firm
- Everything real, one kind of good

Production Function

Production function:

$$Y_t = A_t F(K_t, N_t)$$

- ▶ *K_t*: capital. Must be itself produced, used to produce other stuff, does not get completely used up in production process
- ► N_t: labor
- ► *Y_t*: output
- A_t: productivity (exogenous)
- ► Think about output as units of fruit. Capital is stock of fruit trees. Labor is time spent picking from the trees

Properties of Production Function

- ▶ Both inputs necessary: $F(0, N_t) = F(K_t, 0) = 0$
- ▶ Increasing in both inputs: $F_K(K_t, N_t) > 0$ and $F_N(K_t, N_t) > 0$
- ► Concave in both inputs: $F_{KK}(K_t, N_t) < 0$ and $F_{NN}(K_t, N_t) < 0$
- ▶ Constant returns to scale: $F(qK_t, qN_t) = qF(K_t, N_t)$
- Capital and labor are paid marginal products:

$$w_t = A_t F_N(K_t, N_t)$$

$$R_t = A_t F_K(K_t, N_t)$$

Example production function: Cobb-Douglas:

$$F(K_t, N_t) = K_t^{\alpha} N_t^{1-\alpha}, \quad 0 < \alpha < 1$$

Consumption, Investment, Labor Supply

- ▶ Fruit can either be eaten (consumption) or re-planted in the ground (investment), the latter of which yields another tree (capital) with a one period delay
- Assume that a constant fraction of output is invested, $0 \le s \le 1$. "Saving rate" or "investment rate"
- ▶ Means 1 s of output is consumed
- Resource constraint:

$$Y_t = C_t + I_t$$

- Abstract from endogenous labor supply labor supplied inelastically and constant
- Current capital stock is exogenous depends on past decisions
- ▶ Capital accumulation, $0 < \delta < 1$ depreciation rate:

$$K_{t+1} = I_t + (1 - \delta)K_t$$

Equations of Model

$$Y_t = A_t F(K_t, N_t)$$

$$Y_t = C_t + I_t$$

$$K_{t+1} = I_t + (1 - \delta) K_t$$

$$C_t = (1 - s) Y_t$$

$$I_t = s Y_t$$

$$w_t = A_t F_N(K_t, N_t)$$

$$R_t = A_t F_K(K_t, N_t)$$

▶ Six endogenous variables $(Y_t, C_t, K_{t+1}, I_t, w_t, R_t)$ and three exogenous variables (A_t, K_t, N_t)

Central Equation

First four equations can be combined into one:

$$K_{t+1} = sA_tF(K_t, N_t) + (1 - \delta)K_t$$

▶ Define lowercase variables as "per worker." $k_t = \frac{K_t}{N_t}$. In per-worker terms:

$$k_{t+1} = sA_t f(k_t) + (1 - \delta)k_t$$

ightharpoonup One equation describing dynamics of k_t . Once you know dynamic path of capital, you can recover everything else

Plot of the Central Equation of the Solow Model

The Steady State

- ▶ The steady state capital stock is the value of capital at which $k_{t+1} = k_t$
- ▶ We call this k*
- ▶ Graphically, this is where the curve (the plot of k_{t+1} against k_t) crosses the 45 degree line (a plot of $k_{t+1} = k_t$)
- Via assumptions of the production function along with auxiliary assumptions (the Inada conditions), there exists one non-zero steady state capital stock
- ▶ The steady state is "stable" in the sense that for any initial $k_t \neq 0$, the capital stock will converge to this point
- "Once you get there, you sit there"
- ▶ Since capital governs everything else, all other variables go to a steady state determined by k^*
- Work through dynamics

Algebraic Example

▶ Suppose $f(k_t) = k_t^{\alpha}$. Suppose A_t is constant at A^* . Then:

$$k^* = \left(\frac{sA^*}{\delta}\right)^{\frac{1}{1-\alpha}}$$

$$y^* = A^*k^{*\alpha}$$

$$c^* = (1-s)A^*k^{*\alpha}$$

$$i^* = sA^*k^{*\alpha}$$

$$R^* = \alpha A^*k^{*\alpha-1}$$

$$w^* = (1-\alpha)A^*k^{*\alpha}$$

Dynamic Effects of Changes in Exogenous Variables

- Want to consider the following exercises:
 - What happens to endogenous variables in a dynamic sense after a permanent change in A^* (the constant value of A_t)?
 - ▶ What happens to endogenous variables in a dynamic sense after a permanent change in s (the saving rate)?
- For these exercises:
 - 1. Assume we start in a steady state
 - 2. Graphically see how the steady state changes after the change in productivity or the saving rate
 - 3. Current capital stock cannot change (it is predetermined/exogenous). But $k_t \neq k^*$. Use dynamic analysis of the graph to figure out how k_t reacts dynamically
 - 4. Once you have that, you can figure out what everything else is doing

Permanent Increase in A*

Impulse Response Functions: Permanent Increase in A^*

Permanent Increase in s

Impulse Response Functions: Permanent Increase in s

Discussion

- ► Neither changes in A* nor s trigger sustained increases in growth
- ► Each triggers faster growth *for a while* while the economy accumulates more capital and transitions to a new steady state
- ► Aren't we supposed to be studying growth? In the long run, there is *no growth* in this model it goes to a steady state!
- ▶ We'll fix that. You can kind of see, however, that sustained growth must come from increases in productivity. Why?
 - No limit on how high A can get − it can just keep increasing. Upper bound on s
 - Repeated increases in s would trigger continual decline in R_t, inconsistent with stylized facts
- ▶ Bottom line: sustained growth must be due to productivity growth, not factor accumulation. You can't save your way to more growth
- Key assumption: diminishing returns to capital

Golden Rule

- What is the "optimal" saving rate, s?
- Utility from consumption, not output
- ► Higher s has two effects the "size of the pie" and the "fraction of the pie":
 - More capital → more output → more consumption (bigger size of the pie)
 - Consume a smaller fraction of output → less consumption (eat a smaller fraction of the pie)
- ► Golden Rule: value of *s* which maximizes steady state consumption, *c**
 - s = 0: $c^* = 0$
 - s = 1: $c^* = 0$
- ▶ Implicity characterized by $A^*f'(k^*) = \delta$. Graphical intuition.

Growth

- Wrote down a model to study growth
- ▶ But model converges to a steady state with no growth
- ► Isn't that a silly model?
- ▶ It turns out, no
- Can modify it

Augmented Solow Model

Production function is:

$$Y_t = A_t F(K_t, Z_t N_t)$$

- ► Z_t: labor-augmenting productivity
- $ightharpoonup Z_t N_t$: efficiency units of labor
- Assume Z_t and N_t both grow over time (initial values in period 0 normalized to 1):

$$Z_t = (1+z)^t$$
$$N_t = (1+n)^t$$

- ightharpoonup z = n = 0: case we just did
- ▶ Z_t not fundamentally different from A_t . Mathematically convenient to use Z_t to control growth while A_t controls level of productivity

Per Efficiency Unit Variables

- ▶ Define $\hat{k}_t = \frac{K_t}{Z_t N_t}$ and similarly for other variables. Lower case variables: per-capita. Lower case variables with "hats": per efficiency unit variables
- Can show that modified central equation of model is:

$$\widehat{k}_{t+1} = \frac{1}{(1+z)(1+n)} \left[sA_t f(\widehat{k}_t) + (1-\delta)\widehat{k}_t \right].$$

Practically the same as before

Plot of Modified Central Equation

Steady State Growth

- ▶ Via similar arguments to earlier, there exists a steady state \widehat{k}^* at which $\widehat{k}_{t+1} = \widehat{k}_t$. Economy converges to this point from any non-zero initial value of \widehat{k}_t
- Economy converges to a steady state in which per efficiency unit variables do not grow. What about actual and per capita variables? If $\hat{k}_{t+1} = \hat{k}_t$, then:

$$\begin{split} \frac{K_{t+1}}{Z_{t+1}N_{t+1}} &= \frac{K_t}{Z_tN_t} \\ \frac{K_{t+1}}{K_t} &= \frac{Z_{t+1}N_{t+1}}{Z_tN_t} = (1+z)(1+n) \\ \frac{k_{t+1}}{k_t} &= \frac{Z_{t+1}}{Z_t} = 1+z \end{split}$$

- Level of capital stock grows at approximately sum of growth rates of Z_t and N_t . Per capital stock grows at rate of growth in Z_t
- ► This growth is manifested in output and the real wage, but not the return on capital

Steady State Growth and Stylized Facts

Once in steady state, we have:

$$\frac{y_{t+1}}{y_t} = 1 + z$$

$$\frac{k_{t+1}}{k_t} = 1 + z$$

$$\frac{K_{t+1}}{Y_{t+1}} = \frac{K_t}{Y_t}$$

$$\frac{w_{t+1}N_{t+1}}{Y_{t+1}} = \frac{w_tN_t}{Y_t}$$

$$R_{t+1} = R_t$$

$$\frac{w_{t+1}}{w_t} = 1 + z$$

► These are the six time series stylized facts!

Understanding Cross-Country Income Differences

- Solow model can reproduce time series stylized facts if it is assumed that productivity grows over time
- Let's now use the model to think about cross-country income differences
- ▶ What explains these differences? Three hypotheses for why cross-country income differences exist:
 - 1. Countries initially endowed with different levels of capital
 - 2. Countries have different saving rates
 - 3. Countries have different productivity levels
- Like sustained growth, most plausible explanation for cross-country income differences is productivity
- ► Consider standard Solow model and two countries, 1 and 2. Suppose that 2 is poor relative to 1

Convergence

- ► Suppose two countries are otherwise identical, and hence have the same steady state.
- ▶ But suppose that country 2 is initially endowed with less capital $-k_{2,t} < k_{1,t} = k^*$

Catch Up

▶ If country 2 is initially endowed with less capital, it should grow faster than country 1, eventually catching up with country 1

Is There Convergence in the Data?

► Correlation between growth and initial GDP is weakly negative when focusing on all countries

Focusing on a More Select Group of Countries

- ► Focusing only on OECD countries (more similar) story looks more promising for convergence
- Still, catch up seems too slow for initial low levels of capital to be the main story

Pseudo Natural Experiment: WWII

- ► WWII losers (Germany and Japan) grew faster for 20-30 years than the winners (US and UK)
- But don't seem to be catching up all the way to the US: conditional convergence. Countries have different steady states

Differences in s and A^*

- Most countries seem to have different steady states
- ► For simple model with Cobb-Douglas production function, relative outputs:

$$\frac{y_1^*}{y_2^*} = \left(\frac{A_1}{A_2}\right)^{\frac{1}{1-\alpha}} \left(\frac{s_1}{s_2}\right)^{\frac{\alpha}{1-\alpha}}.$$

- Question: can differences in s plausibly account for large income differences?
- Answer: no

Differences in s

Suppose A^* the same in both countries. Suppose country 1 is US, and country 2 is Mexico: $\frac{y_1^*}{y_2^*} = 4$. We have:

$$s_2=4^{\frac{\alpha-1}{\alpha}}s_1$$

- ▶ Based on data, a plausible value of $\alpha = 1/3$. Means $\frac{\alpha 1}{\alpha} = -2$
- Mexican saving rate would have to be 0.0625 times US saving rate
- This would be something like a saving rate of one percent (or less)
- Not plausible
- **b** Becomes more plausible if α is much bigger

What Could It Be?

- If countries have different steady states and differences in s cannot plausibly account for this, must be differences in productivity
- ► Seems to be backed up in data: rich countries are highly productive

Productivity is King

- Productivity is what drives everything in the Solow model
- Sustained growth must come from productivity
- ▶ Large income differences must come from productivity
- But what is productivity? Solow model doesn't say

Factors Influencing Productivity

- Including but not limited to:
 - 1. Knowledge and education
 - 2. Climate
 - 3. Geography
 - 4. Institutions
 - 5. Finance
 - 6. Degree of openness
 - 7. Infrastructure

Policy Implications

- ▶ If a country wants to become richer, need to focus on policies which promote productivity
- Example: would giving computers (capital) to people in sub-Saharan Africa help them get rich? Not without the infrastructure to connect to the internet, the knowledge of how to use the computer, and the institutions to protect property rights
- Also has implications when thinking about poverty within a country

Output Per Worker over Time

Capital Per Worker over Time

Capital to Output Ratio over Time

Labor Share over Time

Return on Capital over Time

Real Wage over Time

Income Differences

		GDP per Person
High income countries		
9	Canada	\$35,180
	Germany	\$34,383
	Japan	\$30,232
	Singapore	\$59,149
	United Kingdom	\$32,116
	United States	\$42,426
Middle income countries		
	China	\$8,640
	Dominican Republic	\$8,694
	Mexico	\$12,648
	South Africa	\$10,831
	Thailand	\$9,567
	Uruguay	\$13,388
Low income countries		
	Cambodia	\$2,607
	Chad	\$2,350
	India	\$3,719
	Kenya	\$1636
	Mali	\$1,157
	Nepal	\$1,281

Growth Miracles and Disasters

	Growth Miracles		
	1970 Income	2011 Income	% change
South Korea	\$1918	\$27,870	1353
Taiwan	\$4,484	\$33,187	640
China	\$1,107	\$8,851	700
Botswana	\$721	\$14,787	1951
	Growth Disasters		
Madagascar	\$1,321	\$937	-29
Niger	\$1,304	\$651	-50
Burundi	\$712	\$612	-14
Central African Republic	\$1,148	\$762	-34

→ go back

Education and Income Per Capita

