Algorithmic Mechanism Design

Qianhui Wang

Mechanism Design

"a field in economics and game theory that explores how businesses and institutions can achieve desirable social or economic outcomes given the constraints of individuals' self-interest and incomplete information."

Where Algorithm Comes In

Economics	Computer Science
real-world Bayesian distributions - Average Case Analysis	abstraction - Worst Case Analysis
Solution exactness	Approximations
Ignore	Efficiency - computation time - memory - communication

Big O Complexity Chart

input size

Strategic Models

- Rational Agents:
 - Utility Maximising Strategic Moves
 - Selfishness & Lying
- Utility Model:
 - Quasi-linear utility
 - Auction: Bidder i has valuation v_i
 - utility $u_i = v_i(m_i) p_i$
 - Value transfer

Combining Strategy and Computation

- Goal
 - Design truthful mechanisms
 - Run in polynomial time
 - Determine "optimal" social outcome

Nash Equilibrium

[ˈnɑsh ˌē-kwə-ˈli-brē-əm]

A scenario in game theory in which no player in a non-cooperative game has anything to gain by changing only their strategy.

Truthfulness:

- aka Incentive compatibility
 - Reporting false value is no better than true value
- Internalise "Dominant strategy" into the mechanism
 - Direct Revelation principle in Mechanism Design

Multi-unit Auction

Problem Definition

- Algorithmic Perspective:
 - m identical items
 - n bidders with private valuation functions (willingness to pay)
 - Give an efficient algorithm that outputs allocation (m_1, m_2, \ldots, m_n)
 - Maximize total social welfare $\sum v_i(m_i)$
 - Constraint $\sum m_i \leq m$
- Additional Strategic Considerations:
 - output payments (p_1, p_2, \dots, p_n)
 - ensure truthfulness

Memory Considerations

- Input Representation
 - valuations for m items $v_i(1), v_i(2), \ldots, v_i(m)$ for $\forall i$

Examples

• step function
$$v(k) = \begin{cases} 0 \\ p \end{cases}$$

Efficiency Requirements

A theory perspective:

size of input encoding

Two data query models

- 1. concrete functions (bidding language)
 - length of all valuations
 - n, bidders
 - logm, #bits to represent #items we bid
 - t, #bits to represent a value
 - aka precision

- 2. black-box communication
 - no precise input representation
 - number of "value-queries"
 - length of answer bits

• still require sublinear in m!

eg, \sqrt{m} , $\ln m$, $\log m$

General Allocation Algorithm

- Dynamic Programming (DP)
 - Divide-and-Conquer & Optimal Substructure
 - Subproblem:
 - Optimal allocation of first k items among the first i bidders

•
$$s(i,k) = \max_{0 \le j \le k} v_i(j) + s(i-1,k-j)$$

#bidders\ items	0	1	2	 m-1	m
0					
1	~		^		
2			s(i, k)		
n					s(n, m)

Intractability

- Consider the simplest step function $v(k) = \begin{cases} 0 \text{ for } k < k^* \\ p \text{ for } k \ge k^* \end{cases}$
- "Knapsack problem"
 - player i = item i with value p;
 - m = knapsack capacity
 - allocate k items to player i = packing item i with weight k
 - $\sum k_i \leq m$
- NP-complete
- Communication model O(m)
 - number of value queries
 - length of answer bits

Approximate Optimality

- Fully polynomial-time approximation scheme (FPTAS)
 - additional parameter $\epsilon < 1$
 - specifies how close our approximation should be
 - additional polynomial time requirement $Poly(\frac{1}{\epsilon})$
 - for maximisation problem: $f(Approx) \ge (1 \epsilon)f(Opt)$
- lpha approximation
 - for maximisation problem: $f(Approx) \ge \alpha * f(Opt)$

Truncation

- Previously, m columns in the table
 - O(m) tries for each subproblem

#bidders/ total value constraint		0	1			n^2/e
0						
1	look at p	orevi	ous n	/e cells in t	he row abov	ve
				` `	(i, w)	
n						

- A FPTAS by value truncation:
 - number of possible values $w \leq n/\epsilon$
- New subproblem:
 - minimum number of items that yields total value $\geq w \delta$
- carefully choose truncation precision $\delta = \epsilon * \max v/n$
 - total relative error less than ϵ
 - (1ϵ) approximation

Truthful Auctions

VCG Mechansim

- Choice of payment function
 - Align players' max utility with total social welfare

$$u_i=v_i(m_i)-p_i=v_i(m_i)+\sum_{j
eq i}v_j(m_j)-\sum_{j
eq i}v_j(m_j')$$
 1. no particles

- 1. no positive transfer
- 2. individual rationality

optimal allocation that maximises other players' welfare

- Sadly,
 - $O(nm^2)$ General Allocation Algorithm

Truthful Approximation?

- Counter Example

• Idea:

$$p_i = \sum_{j \neq i} v_j(m'_j) - \sum_{j \neq i} v_j(m_j)$$

allocation that "approximately" maximises total welfare

- 2 players, 2 items; v(1) = 1.9 and v(2) = 3.1
- Truncation scheme: $p_i = \sum_{i \neq j} v_j(m'_j) \sum_{i \neq j} v_j(m_j)$
 - v(1) = 1 and v(2) = 3 $j \neq i$
 - Optimal allocation: 2 items to single player
 - payment = 3.1-0 = 3.1; net utility = 3.1-3.1 = 0!
 - false reporting v(1) = v(2) = 3
 - Optimal allocation: 1 item to each
 - payment = 3.1-1.9=1.2; net utlity = 1.9-1.2 > 0!

Not incentive compatible!

Restricted VCG

- Maximum in Range

- 2-approximation scheme
- Idea:
 - maximise over a restricted range of possible allocations
 - use General Allocation Algorithm
- bundles of items
 - manipulate m into some form in n
 - eg. m/n^2 items in a bundle -> n^2 items in total

Proof

- bidder who gets the most number of items
 - Case 1: at least half total value from him
 - -> give everything to him

-> take everything from him; distribute to all others

our allocation always ≥ half total optimal

Truthful Auctions

non- VCG Mechansim (Single Parameter)

- Two properties for Truthfulness
 - Monotonicity
 - win with bid (ki, vi) => win with bid (ki' < ki, vi' > vi)
 - Critical payment
 - the minimum value for a win with k items
- Idea:
 - still use δ scale truncation to keep range of values small -> efficiency
 - monotone way of choosing δ -> truthfulness
 - simultaneously try multiple values of δ
 - independent of bids (k*, m) -> but trim down search space to $\frac{2n^2}{}$

FPTAS!

$$v(k) = \begin{cases} 0 \text{ for } k < k^* \\ p \text{ for } k \ge k^* \end{cases}$$

Beyond

- Randomisation
 - maximise expected social welfare
 - maximum-in-distributional-range
 - FPTAS
 - reduce the number of values to consider for each player
- Combinatorial Auctions
 - m heterogenous items
 - allocation of a subset of items
 - valuation of all subsets

References

"Algorithmic mechanism design", (Nisan, A. Ronen), Proceedings of IEEE Symp. on Foundations of Computer Science (FOCS), 2001

Central Issue

with Algorithmic Mechanism Design

Algorithm Efficiency

Truthfulness

Beyond Multi-unit Auctions