The ξ Parameter and Particle Differentiation in T0 Theory:

Mathematical Analysis, Geometric Interpretation, and Universal Field Patterns

Johann Pascher

July 23, 2025

Abstract

This comprehensive analysis addresses two fundamental aspects of the T0 model: the mathematical structure and significance of the ξ parameter, and the differentiation mechanisms for particles within the unified field framework. The ξ parameter exhibits remarkable mathematical properties, with the calculated value $\xi = 1.319372 \times 10^{-4}$ showing striking proximity to the geometric constant 4/3, suggesting deep connections to three-dimensional space geometry. Multiple ξ variants across different geometric contexts (flat, spherical, cosmic) reveal a systematic hierarchy from quantum field theory to spacetime geometry. Meanwhile, particle differentiation emerges through five fundamental factors: field excitation frequency, spatial node patterns, rotation/oscillation behavior, field amplitude, and interaction coupling patterns. All particles manifest as excitation patterns of a single universal field $\delta m(x,t)$ governed by $\partial^2 \delta m = 0$ in 4/3-characterized spacetime, reducing Standard Model complexity to elegant field pattern diversity.

Contents

1	Intr	oducti	ion: The Dual Foundation of T0 Theory					
	1.1	The M	Sathematical Foundation					
	1.2		Inified Field Paradigm					
2	Mat	Mathematical Analysis of the ξ Parameter						
	2.1	Exact	vs. Approximated Values					
		2.1.1	Higgs-Derived Calculation					
		2.1.2	Commonly Used Approximation					
	2.2	Remai	rkable Proximity to $4/3$					
		2.2.1	The 4/3 Connection					
		2.2.2	Geometric Significance of 4/3					
		2.2.3	Theoretical Implications					
	2.3	Mathe	ematical Structure and Factorization					
		2.3.1	Prime Factorization					
		2.3.2	Rational Approximations					
	2.4	Conne	ection to Golden Ratio					
		2.4.1	Golden Ratio Analysis					
		2.4.2	Relationships to ξ					

3	Geo	ometry-Dependent ξ Parameters	4
	3.1	The ξ Parameter Hierarchy	4
		3.1.1 Critical Clarification	4
		3.1.2 Four Fundamental ξ Values	5
	3.2	Electromagnetic Geometry Corrections	5
		3.2.1 The Square Root Factor	5
		3.2.2 Geometric Progression	5
	3.3	4/3 as Geometric Bridge	5
		3.3.1 Bridge Position Analysis	5
		3.3.2 Physical Interpretation	6
4	Thr	ree-Dimensional Space Geometry Factor	6
_	4.1	The Universal 3D Geometry Constant	6
	1.1	4.1.1 Fundamental Geometric Interpretation	6
		4.1.2 Geometric Unity	6
	4.2	Connection to Particle Physics	6
	4.4	4.2.1 Universal Geometric Framework	
			6
		4.2.2 Unification Principle	6
5		ticle Differentiation in Universal Field	7
	5.1	The Five Fundamental Differentiation Factors	7
		5.1.1 Factor 1: Field Excitation Frequency	7
		5.1.2 Factor 2: Spatial Node Patterns	7
		5.1.3 Factor 3: Rotation/Oscillation Behavior (Spin)	8
		5.1.4 Factor 4: Field Amplitude and Sign	8
		5.1.5 Factor 5: Interaction Coupling Patterns	8
	5.2	Universal Klein-Gordon Equation	8
		5.2.1 Single Equation for All Particles	8
		5.2.2 Boundary Conditions Create Diversity	8
6	Uni	fication of Standard Model Particles	9
	6.1	The Musical Instrument Analogy	9
		6.1.1 One Instrument, Infinite Melodies	9
		6.1.2 Infinite Creative Potential	9
	6.2	Standard Model vs T0 Comparison	9
		6.2.1 Complexity Reduction	9
		6.2.2 Ultimate Unification Achievement	9
7	Exp	perimental Implications and Predictions	10
	7.1	-	10
	,		10
			10
	7.2		10
	1.4		10
		•	10
O	Dl-2		
8		1	$\frac{11}{11}$
	8.1	v	11
		,	11
	0.2		11
	8.2	Implications for Fundamental Physics	11

		8.2.1	Theory of Everything Candidate	11
		8.2.2	Paradigm Shift Summary	11
9	Con	clusio	ns and Future Directions	11
	9.1	Summ	nary of Key Findings	11
		9.1.1	ξ Parameter Mathematical Structure	12
			Particle Differentiation Mechanisms	
	9.2	Revolu	utionary Achievements	12
		9.2.1	Unification Success	12
		9.2.2	Elegant Simplicity	12
	9.3	Future	e Research Directions	12
		9.3.1	Immediate Priorities	12
		9.3.2	Long-term Investigations	13
	9.4		Philosophical Reflection	
		9.4.1	The Deep Unity of Nature	13
		942	The Promise of Geometric Physics	13

1 Introduction: The Dual Foundation of T0 Theory

This document provides a comprehensive analysis of two interconnected pillars of T0 theory: the mathematical structure of the ξ parameter and the mechanisms that distinguish particles within the unified field framework. These aspects are intimately connected through the fundamental principle that all physics emerges from geometric relationships in a universe characterized by the universal constant 4/3.

1.1 The Mathematical Foundation

The T0 model rests on the profound insight that a single dimensionless parameter ξ , derived from Higgs sector physics, encodes fundamental geometric relationships:

$$\xi = \frac{\lambda_h^2 v^2}{16\pi^3 m_h^2} \approx 1.33 \times 10^{-4} \tag{1}$$

This parameter's proximity to 4/3 suggests deep connections between quantum field theory and three-dimensional space geometry.

1.2 The Unified Field Paradigm

Simultaneously, T0 theory revolutionizes particle physics through the principle:

Central T0 Principle

"Every particle is simply a different way the same universal field chooses to dance."

Reality =
$$\delta m(x, t)$$
 dancing in ξ -characterized spacetime (2)

2 Mathematical Analysis of the ξ Parameter

2.1 Exact vs. Approximated Values

2.1.1 Higgs-Derived Calculation

Using Standard Model parameters:

$$\lambda_h \approx 0.13$$
 (Higgs self-coupling) (3)

$$v \approx 246 \text{ GeV} \quad \text{(Higgs VEV)}$$

$$m_h \approx 125 \text{ GeV} \quad \text{(Higgs mass)} \tag{5}$$

The exact calculation yields:

$$\xi_{\text{exact}} = 1.319372 \times 10^{-4}$$
 (6)

2.1.2 Commonly Used Approximation

In practical calculations, the value is approximated as:

$$\xi_{\text{approx}} = 1.33 \times 10^{-4}$$
 (7)

Relative error: Only 0.81%, making this approximation highly accurate for most applications.

2.2 Remarkable Proximity to 4/3

2.2.1 The 4/3 Connection

The most striking feature of the ξ parameter is its proximity to the fundamental geometric constant:

$$\frac{4}{3} = 1.3333333\dots$$
 (8)

The calculated coefficient 1.319372 differs from 4/3 by only 1.058%.

2.2.2 Geometric Significance of 4/3

The constant 4/3 appears fundamentally in three-dimensional geometry:

Geometric Meaning of 4/3

- Sphere volume: $V = \frac{4\pi}{3}r^3$ (coefficient 4/3)
- 3D field integration: $\oint \oint d^3r \to 4\pi$ solid angle $\times r^2/3$ normalization
- Space-time coupling: Time field interaction with 3D spatial geometry

2.2.3 Theoretical Implications

If $\xi = 4/3 \times 10^{-4}$ exactly, this would suggest:

- 1. Exact geometric value: Derived from fundamental 3D space principles
- 2. Parameter-free theory: No arbitrary constants, all from geometry
- 3. Unified physics: Quantum mechanics emerges from spacetime geometry

2.3 Mathematical Structure and Factorization

2.3.1 Prime Factorization

The decimal representation reveals interesting structure:

$$1.33 = \frac{133}{100} = \frac{7 \times 19}{4 \times 5^2} = \frac{7 \times 19}{100} \tag{9}$$

Notable features:

- Both 7 and 19 are prime numbers
- Clean factorization suggests underlying mathematical structure
- Factor $100 = 4 \times 5^2$ connects to fundamental geometric ratios

Expression	Value	Difference from 1.33	Error [%]
4/3	1.333333	+0.003333	0.251
133/100	1.330000	0.000000	0.000
$\sqrt{7/4}$	1.322876	-0.007124	0.536
$\frac{1}{21}$	1.312500	-0.017500	1.316

Table 1: Rational approximations to ξ coefficient

2.3.2 Rational Approximations

2.4 Connection to Golden Ratio

2.4.1 Golden Ratio Analysis

The golden ratio $\phi = (1 + \sqrt{5})/2 \approx 1.618034$ provides interesting comparisons:

$$\phi = 1.618034 \tag{10}$$

$$\frac{1}{\phi} = 0.618034\tag{11}$$

$$\phi^2 = 2.618034 \tag{12}$$

2.4.2 Relationships to ξ

Expression	Value	Ratio to 1.33
$1.33/\phi$	0.821985	-
$1.33 imes \phi$	2.151985	-
$\sqrt{1.33 \times 2}$	1.630951	$pprox \phi$
$2/\phi$	1.236068	0.929

Table 2: Golden ratio relationships with ξ coefficient

While no direct golden ratio connection exists, the mathematical proportions suggest underlying harmonic relationships.

3 Geometry-Dependent ξ Parameters

3.1 The ξ Parameter Hierarchy

3.1.1 Critical Clarification

CRITICAL WARNING: ξ Parameter Confusion

COMMON ERROR: Treating ξ as "one universal parameter"

CORRECT UNDERSTANDING: ξ is a class of dimensionless scale ratios, not a single value.

 ξ represents any dimensionless ratio of the form:

$$\xi = \frac{\text{To characteristic scale}}{\text{Reference scale}} \tag{13}$$

3.1.2 Four Fundamental ξ Values

Context	Value $[\times 10^{-4}]$	Physical Meaning	Application
Flat geometry	1.3165	QFT in flat spacetime	Local physics
Higgs-calculated	1.3194	QFT + minimal corrections	Effective theory
4/3 universal	1.3300	3D space geometry	Universal constant
Spherical geometry	1.5570	Curved spacetime	Cosmological physics

Table 3: The four fundamental ξ parameter values

3.2 Electromagnetic Geometry Corrections

3.2.1 The $\sqrt{4\pi/9}$ Factor

The transition from flat to spherical geometry involves the correction:

$$\frac{\xi_{\text{spherical}}}{\xi_{\text{flat}}} = \sqrt{\frac{4\pi}{9}} = 1.1827 \tag{14}$$

Physical origin:

- 4π factor: Complete solid angle integration over spherical geometry
- Factor $9 = 3^2$: Three-dimensional spatial normalization
- Combined effect: Electromagnetic field corrections for spacetime curvature

3.2.2 Geometric Progression

The ξ values form a systematic progression:

flat
$$\rightarrow$$
 higgs: 1.002182 (0.22% increase) (15)
higgs \rightarrow 4/3: 1.008055 (0.81% increase) (16)
4/3 \rightarrow spherical: 1.170677 (17.07% increase) (17)

3.3 4/3 as Geometric Bridge

3.3.1 Bridge Position Analysis

The 4/3 value occupies a special position in the geometric transformation:

Bridge position =
$$\frac{\xi_{4/3} - \xi_{\text{flat}}}{\xi_{\text{spherical}} - \xi_{\text{flat}}} = 5.6\%$$
 (18)

This suggests that 4/3 marks the **fundamental geometric threshold** where 3D space geometry begins to dominate field physics.

ξ Range	Physical Regime	
Flat $\rightarrow 4/3$	Quantum field theory dominates	
4/3 threshold	3D geometry takes control	
$4/3 \rightarrow Spherical$	Spacetime curvature dominates	

Table 4: Physical regimes in ξ parameter hierarchy

3.3.2 Physical Interpretation

4 Three-Dimensional Space Geometry Factor

4.1 The Universal 3D Geometry Constant

4.1.1 Fundamental Geometric Interpretation

The ξ parameter encodes fundamental 3D space geometry through the factor 4/3:

Three-Dimensional Space Geometry Factor

The factor 4/3 in $\xi \approx 4/3 \times 10^{-4}$ represents the universal three-dimensional space geometry factor that:

- Connects quantum field dynamics to 3D spatial structure
- Emerges naturally from sphere volume geometry: $V = (4\pi/3)r^3$
- Characterizes how time fields couple to three-dimensional space
- Provides the geometric foundation for all particle physics

4.1.2 Geometric Unity

This interpretation reveals that:

- 1. Space-time has intrinsic geometric structure characterized by 4/3
- 2. Quantum mechanics emerges from geometry, not vice versa
- 3. All particles experience the same 3D geometric factor
- 4. No free parameters everything derives from 3D space geometry

4.2 Connection to Particle Physics

4.2.1 Universal Geometric Framework

All Standard Model particles exist within the same universal 4/3-characterized spacetime:

4.2.2 Unification Principle

The 4/3 geometric factor provides the universal foundation that:

- Unifies all particle types under one geometric principle
- Eliminates arbitrary particle classifications

Particle	Energy [GeV]	Geometric Context
Electron	5.11×10^{-4}	Same 4/3 geometry
Proton	9.38×10^{-1}	Same 4/3 geometry
Higgs	1.25×10^{2}	Same $4/3$ geometry
Top quark	1.73×10^{2}	Same $4/3$ geometry

Table 5: Universal 4/3 geometry for all particles

- Reduces complex physics to simple geometric relationships
- Connects microscopic and cosmological scales

5 Particle Differentiation in Universal Field

5.1 The Five Fundamental Differentiation Factors

Within the universal 4/3-geometric framework, particles distinguish themselves through five fundamental mechanisms:

5.1.1 Factor 1: Field Excitation Frequency

Particles represent different frequencies of the universal field:

$$E = \hbar \omega \quad \Rightarrow \quad \text{Particle identity} \propto \text{Field frequency}$$
 (19)

Particle	Energy [GeV]	Frequency Class
Neutrinos	$\sim 10^{-12} - 10^{-7}$	Ultra-low
Electron	5.11×10^{-4}	Low
Proton	9.38×10^{-1}	Medium
W/Z bosons	$\sim 80 - 90$	High
Higgs	125	Very high

Table 6: Particle classification by field frequency

5.1.2 Factor 2: Spatial Node Patterns

Different particles correspond to distinct spatial field configurations:

Particle	Spatial Pattern	Characteristics
Electron/Muon	Point-like rotating node	Localized, spin-1/2
Photon		Wave-like, massless
	tern	
Quarks	Multi-node bound clusters	Confined, color charge
Higgs	Homogeneous background	Scalar, mass-giving

Table 7: Spatial field patterns for particle types

5.1.3 Factor 3: Rotation/Oscillation Behavior (Spin)

Spin emerges from field node rotation patterns:

Spin from Field Node Rotation

- Fermions (Spin-1/2): 4π rotation cycle for field nodes
- Bosons (Spin-1): 2π rotation cycle for field nodes
- Scalars (Spin-0): No rotation, spherically symmetric

Pauli exclusion: Identical node patterns cannot occupy same spacetime region

5.1.4 Factor 4: Field Amplitude and Sign

Field strength and sign determine mass and particle vs antiparticle:

Particle mass
$$\propto |\delta m|^2$$
 (20)

Antiparticle:
$$\delta m_{\rm anti} = -\delta m_{\rm particle}$$
 (21)

This eliminates the need for separate antiparticle fields in the Standard Model.

5.1.5 Factor 5: Interaction Coupling Patterns

Particles differentiate through interaction coupling mechanisms:

- Electromagnetic: Charge-dependent coupling strength
- Strong: Color-dependent binding (quarks only)
- Weak: Flavor-changing interactions
- Gravitational: Universal mass-dependent coupling

5.2 Universal Klein-Gordon Equation

5.2.1 Single Equation for All Particles

The revolutionary T0 insight: all particles obey the same fundamental equation:

$$\left| \partial^2 \delta m = 0 \right| \tag{22}$$

This single Klein-Gordon equation replaces the complex system of different field equations in the Standard Model.

5.2.2 Boundary Conditions Create Diversity

Particle differences arise from:

- Initial conditions: Determine excitation pattern
- Boundary conditions: Define spatial constraints
- Coupling terms: Specify interaction strengths
- Symmetry requirements: Impose conservation laws

6 Unification of Standard Model Particles

6.1 The Musical Instrument Analogy

6.1.1 One Instrument, Infinite Melodies

The T0 particle framework can be understood through musical analogy:

Musical Concept	T0 Physics Equivalent	
One violin	One universal field $\delta m(x,t)$	
Different notes	Different particles	
Frequency	Particle mass/energy	
Harmonics	Excited states	
Chords	Composite particles	
Resonance	Particle interactions	
Amplitude	Field strength/mass	
Timbre	Spatial node pattern	

Table 8: Musical analogy for T0 particle physics

6.1.2 Infinite Creative Potential

Just as one violin can produce infinite melodies, the universal field $\delta m(x,t)$ can manifest infinite particle patterns within the 4/3-geometric framework.

6.2 Standard Model vs T0 Comparison

6.2.1 Complexity Reduction

Aspect	Standard Model	T0 Model
Fundamental fields	20+ different	1 universal (δm)
Free parameters	19+ arbitrary	1 geometric $(4/3)$
Particle types	200+ distinct	Infinite field patterns
Antiparticles	17 separate fields	Sign flip $(-\delta m)$
Governing equations	Force-specific	$\partial^2 \delta m = 0$ (universal)
Geometric foundation	None explicit	4/3 space geometry
Spin origin	Intrinsic property	Node rotation pattern
Mass origin	Higgs mechanism	Field amplitude $ \delta m ^2$

Table 9: Standard Model vs T0 Model comparison

6.2.2 Ultimate Unification Achievement

T0 Unification Achievement

From: 200+ Standard Model particles with arbitrary properties and 19+ free parameters **To**: ONE universal field $\delta m(x,t)$ with infinite pattern expressions in 4/3-characterized spacetime

Result: Complete elimination of fundamental particle taxonomy through geometric unification

7 Experimental Implications and Predictions

7.1 ξ Parameter Precision Tests

7.1.1 Testing the 4/3 Hypothesis

Precision measurements of Higgs parameters could resolve whether $\xi = 4/3 \times 10^{-4}$ exactly:

Parameter	Current Precision	Required for ξ test
Higgs mass	$\pm 0.17~\mathrm{GeV}$	$\pm 0.01~{\rm GeV}$
Higgs self-coupling	$\pm 20\%$	$\pm 1\%$
Higgs VEV	$\pm 0.1~{\rm GeV}$	$\pm 0.01~{\rm GeV}$

Table 10: Precision requirements for testing $\xi = 4/3$ hypothesis

7.1.2 Geometric Transition Experiments

Experiments could test the geometric ξ hierarchy:

- Local measurements: Should yield ξ_{flat} values
- Cosmological observations: Should show $\xi_{\text{spherical}}$ effects
- Intermediate scales: Should exhibit geometric transitions

7.2 Universal Field Pattern Tests

7.2.1 Universal Lepton Corrections

All leptons should exhibit identical anomalous magnetic moment corrections:

$$a_{\ell}^{(T0)} = \frac{\xi}{2\pi} \times \frac{1}{12} \approx 2.34 \times 10^{-10}$$
 (23)

This provides a direct test of universal field theory.

7.2.2 Field Node Pattern Detection

Advanced experiments might directly observe:

- Node rotation signatures: Spin as physical rotation
- Field amplitude correlations: Mass-amplitude relationships
- Spatial pattern mapping: Direct field structure visualization
- Frequency spectrum analysis: Particle-frequency correspondence

8 Philosophical and Theoretical Implications

8.1 The Nature of Mathematical Reality

8.1.1 4/3 as Universal Constant

If $\xi = 4/3 \times 10^{-4}$ exactly, this suggests that:

- 1. Mathematics is the language of nature: 3D geometry determines physics
- 2. No arbitrary constants: All physics emerges from geometric principles
- 3. Unity of scales: Same geometry governs quantum and cosmic phenomena
- 4. **Predictive power**: Theory becomes truly parameter-free

8.1.2 Geometric Reductionism

The T0 framework achieves ultimate reductionism:

All physics =
$$3D$$
 geometry + field dynamics (24)

8.2 Implications for Fundamental Physics

8.2.1 Theory of Everything Candidate

The T0 model exhibits key "Theory of Everything" characteristics:

- Complete unification: One field, one equation, one geometric constant
- Parameter-free: No arbitrary inputs required
- Scale invariant: Same principles from quantum to cosmic scales
- Experimentally testable: Makes specific, falsifiable predictions

8.2.2 Paradigm Shift Summary

Old Paradigm	New T0 Paradigm
Many fundamental particles	One universal field
Arbitrary parameters	Geometric constants $(4/3)$
Complex field equations	$\partial^2 \delta m = 0$
Phenomenological physics	Geometric physics
Separate force descriptions	Unified field dynamics
Quantum vs classical divide	Continuous scale connection

Table 11: Paradigm shift from Standard Model to T0 theory

9 Conclusions and Future Directions

9.1 Summary of Key Findings

This comprehensive analysis reveals several profound insights:

9.1.1 ξ Parameter Mathematical Structure

- 1. The calculated value $\xi = 1.319372 \times 10^{-4}$ lies remarkably close to $4/3 \times 10^{-4}$
- 2. Multiple ξ variants (flat, Higgs, 4/3, spherical) form a systematic geometric hierarchy
- 3. The 4/3 factor represents the universal three-dimensional space geometry constant
- 4. Mathematical factorization $(7 \times 19)/100$ suggests deeper structural relationships

9.1.2 Particle Differentiation Mechanisms

- 1. All particles are excitation patterns of one universal field $\delta m(x,t)$
- 2. Five fundamental factors distinguish particles: frequency, spatial pattern, rotation, amplitude, coupling
- 3. Universal Klein-Gordon equation $\partial^2 \delta m = 0$ governs all particle types
- 4. Standard Model complexity reduces to elegant field pattern diversity

9.2 Revolutionary Achievements

9.2.1 Unification Success

T0 Theory Revolutionary Achievements

- Parameter reduction: 19+ Standard Model parameters \rightarrow 1 geometric constant (4/3)
- Field unification: 20+ different fields $\to 1$ universal field $\delta m(x,t)$
- Equation unification: Multiple force equations $\rightarrow \partial^2 \delta m = 0$
- Geometric foundation: Arbitrary physics \rightarrow 3D space geometry
- Scale connection: Quantum-classical divide \rightarrow continuous hierarchy

9.2.2 Elegant Simplicity

The T0 model demonstrates that:

The universe is not complex—we just didn't understand its elegant simplicity (25)

9.3 Future Research Directions

9.3.1 Immediate Priorities

- 1. Precision Higgs measurements: Test $\xi = 4/3 \times 10^{-4}$ hypothesis
- 2. Geometric transition studies: Map ξ hierarchy experimentally
- 3. Universal lepton tests: Verify identical g-2 corrections
- 4. Field pattern simulations: Model particle emergence computationally

9.3.2 Long-term Investigations

- 1. Complete pattern taxonomy: Classify all possible field excitations
- 2. Cosmological applications: Apply T0 theory to universe evolution
- 3. Quantum gravity unification: Extend to gravitational field quantization
- 4. **Technological applications**: Develop T0-based technologies

9.4 Final Philosophical Reflection

9.4.1 The Deep Unity of Nature

The T0 analysis reveals that beneath the apparent complexity of particle physics lies a profound unity:

Reality = Universal field dancing in
$$4/3$$
-characterized spacetime (26)

The remarkable proximity of the Higgs-derived ξ parameter to the geometric constant 4/3 suggests that quantum field theory and three-dimensional space geometry are not separate domains, but unified aspects of a single, elegant mathematical reality.

9.4.2 The Promise of Geometric Physics

If the T0 framework proves correct, it represents a return to the Pythagorean vision of mathematics as the fundamental language of nature—but with a modern understanding that recognizes geometry not as static structure, but as the dynamic dance of universal field patterns in the eternal theater of 4/3-characterized spacetime.

References

- [1] Pascher, J. (2025). Mathematical Analysis of the ξ Parameter in T0 Theory. Present work markdown analysis.
- [2] Pascher, J. (2025). Simplified Dirac Equation in T0 Theory: From Complex 4×4 Matrices to Simple Field Node Dynamics.
 GitHub Repository: T0-Time-Mass-Duality.
- [3] Pascher, J. (2025). Simple Lagrangian Revolution: From Standard Model Complexity to T0 Elegance.
 GitHub Repository: T0-Time-Mass-Duality.
- [4] Pascher, J. (2025). The T0 Revolution: From Particle Complexity to Field Simplicity. GitHub Repository: T0-Time-Mass-Duality.
- [5] Pascher, J. (2025). Field-Theoretic Derivation of the ξ Parameter in Natural Units. GitHub Repository: T0-Time-Mass-Duality.
- [6] Pascher, J. (2025). Geometry-Dependent ξ Parameters and Electromagnetic Corrections. GitHub Repository: T0-Time-Mass-Duality.
- [7] Pascher, J. (2025). Deterministic Quantum Mechanics via T0-Energy Field Formulation. GitHub Repository: T0-Time-Mass-Duality.

[8]	Pascher, J. (2025). Elimination of Mass as Dimensional Placeholder in the T0 Model. GitHub Repository: T0-Time-Mass-Duality.