Московский государственный университет Кафедра суперкомпьютеров и квантовой информатики

Отчет по четвертому практическому заданию.

Плужников Иван, 323

Задание

Реализовать гейты H/H^n/CNOT/ROT/CROT/NOT для каждого написать тесты на корректность (canonization + blackbox). Оформить в виде библиотеки сделать цель check/test(проверка тестов) Тесты реализовать отдельно от библиотеки. Провести анализ ускорения и масштабируемости гейтов H^n и CNOT.

Начальное состояние вектора должно генерироваться случайным образом.

Ускорение и масштабируемость

CNOT:

Количество кубитов	Количество МРІ процессов	Время работы программы(сек)		УСКОРЕНИЕ	
		K =1, I = 2	K = 1, l = 25	1, 2	1, 25
25	2	3.20381	4.5509	1	1
	4	1.60192	2.63075	1,999981	1,729886914
	8	0.800977	1.13778	3,999877	3,999806641
	16	0.400511	0.657741	7,9993	6,918984828
	32	0.200283	0.284508	15,9964	15,995683777
	64	0.100155	0.164456	31,9885	27,672447342
	128	0.0500953	0.10438	63,9543	43,599348534

к-во процессов

к-во процессов

Результаты nHadamar совпадают с CNOT с точностью до 5 знаков после запятой.

Вычисления программы проводились на системе IBM Bluegene.

использовалась функция MPI_Wtime

Ускорением параллельного алгоритма называют отношение времени выполнения лучшего последовательного алгоритмам к времени выполнения параллельного алгоритма.

Выводы

Результат измерений наглядно показывает, что при увеличении числа процессов время выполнения уменьшается почти пропорционально за счет уменьшения количества вычислений на каждом отдельно взятом процессе, чему не помешало возросшее число обменов.