Investigating the Empirical Existence of Static User Equilibrium

J. Raimbault^{1,2} juste.raimbault@parisgeo.cnrs.fr

¹UMR CNRS 8504 Géographie-cités ²UMR-T IFSTTAR 9403 LVMT

EWGT 2016 - Istanbul

Session Transportation Modeling - MoST2-B

5th September 2016

Traffic Modeling: User Equilibrium Frameworks

Equilibrium frameworks central in Transportation Research since Wardrop [Wardrop, 1952]

Diverse developments:

- → Dynamic Stochastic User Equilibrium [Han, 2003]
- ightarrow Restricted Stochastic User Equilibrium [Rasmussen et al., 2015] more realistic in alternatives
- → Boundedly User Equilibrium [Mahmassani and Chang, 1987]
- \rightarrow Assignment techniques inspired from other fields such as Network Science [Puzis et al., 2013]

Validation and Practical Use

Static User Equilibrium lacks empirical validation in the literature

 \rightarrow Some examples such as the behavioral study of user route choices ("Wardrop's first principle") in [Zhu and Levinson, 2010]

However still largely used

- \rightarrow in theoretical literature, as for example [Leurent and Boujnah, 2014] : do refinements in the model such as adding parking cruising flows have a sense if the core is not validated ?
- \rightarrow in real-world application, such as the MODUS model for Paris Metropolitan area : what are the implications of basing decision-making and traffic management on an unvalidated framework ?

Empirical Investigation of SUE Existence

Research Objective: Investigate empirically the spatio-temporal stationarity of traffic flows, combining different complementary quantitative approaches

- ightarrow Construction of a real-time dataset for major links of Paris region on 6 month by data crawling
- \rightarrow Complementarity of approaches (Complex Systems general paradigm) : Spatio-temporal data visualization, Network analysis, Spatial analysis

Dataset Construction

Difficulty to find Open Data on Transportation Systems [Bouteiller and Berjoan, 2013]

ightarrow Construction of an open historical travel time dataset for major links in the region of Paris, collecting in real time public traffic data from www.sytadin.fr

Data collection: Each two minutes, automated python script

- fetch raw webpage giving traffic information
- parse html code
- store in a sqlite database

Openly available (CC Licence) at http://37.187.242.99/files/public/sytadin_latest.sqlite3

Data summary: 10 month (since Feb. 2016), 2min time granularity, effective travel time for 101 links (\simeq 10km spatial granularity)

Interactive Data Visualization

Interactive web-application for spatio-temporal exploration http://shiny.parisgeo.cnrs.fr/transportation

Spatio-temporal Variability: Example

Very high spatial variability on 10min time interval, here on 11/02/2016 00:06-00:16

Spatio-temporal Variability

Maximal travel time and spatial variabilities on a two week sample

Stability of Network Measures

Network Betweenness Centrality

$$b_i = \frac{1}{N(N-1)} \cdot \sum_{o \neq d \in V} \mathbb{1}_{i \in p(o \to d)} \tag{1}$$

Temporal Maximal Betweenness Variability

$$\Delta b(t) = \frac{|\max_i(b_i(t+\Delta t)) - \max_i(b_i(t))|}{\max_i(b_i(t))}$$
(2)

 \rightarrow Reveals either a proportion of rerouted travels (negative variation) or a minimal proportion of load increase for a single node (positive variation)

Stability of Network Measures

Temporal maximal betweenness variability on a two weeks period

Spatial Heterogeneity

Spatial Autocorrelation as an index of spatial variability, for link i

$$\rho_i = \frac{1}{K} \cdot \sum_{i \neq j} w_{ij} \cdot (c_i - \bar{c})(c_j - \bar{c}) \tag{3}$$

with spatial weights $w_{ij} = \exp\left(\frac{-d_{ij}}{d_0}\right)$

ightarrow Indirect measure of the spatial stationarity of flows : a decreasing correlation implies a chaotic system

Spatial Heterogeneity

Spatial autocorrelation on a two weeks period for different decays

Theoretical and Practical Implications

Theoretical Implications

- \rightarrow Need for more systematic comparison of framework validity ([Kryvobokov et al., 2013] compares two LUTI models e.g.)
- \rightarrow Can still be used e.g. for integration within more complex models

Practical Implications

 \rightarrow Difficulty of transferring academic results to real-world engineering, that can be tied to habits, myths, political interests, etc. [Commenges, 2013] ; [Offner, 1993]

Possible Developments

Conclusion

References I

- Bouteiller, C. and Berjoan, S. (2013).
 - Open data en transport urbain: quelles sont les données mises à disposition? quelles sont les stratégies des autorités organisatrices?
- Commenges, H. (2013).
 - The invention of daily mobility: Performative aspects of the instruments of economics of transportation.
 - Theses, Université Paris-Diderot-Paris VII.
- Han, S. (2003).
 - Dynamic traffic modelling and dynamic stochastic user equilibrium assignment for general road networks.
 - Transportation Research Part B: Methodological, 37(3):225–249.

References II

Comparison of static and dynamic land use-transport interaction models.

Transportation Research Record: Journal of the Transportation Research Board, 2344(1):49–58.

🖬 Leurent, F. and Boujnah, H. (2014).

A user equilibrium, traffic assignment model of network route and parking lot choice, with search circuits and cruising flows.

Transportation Research Part C: Emerging Technologies, 47:28–46.

Mahmassani, H. S. and Chang, G.-L. (1987).
On boundedly rational user equilibrium in transportation systems.

Transportation science, 21(2):89–99.

References III

Les "effets structurants" du transport: mythe politique, mystification scientifique.

Espace géographique, 22(3):233-242.

Puzis, R., Altshuler, Y., Elovici, Y., Bekhor, S., Shiftan, Y., and Pentland, A. (2013).

Augmented betweenness centrality for environmentally aware traffic monitoring in transportation networks.

Journal of Intelligent Transportation Systems, 17(1):91–105.

Rasmussen, T. K., Watling, D. P., Prato, C. G., and Nielsen, O. A. (2015).

Stochastic user equilibrium with equilibrated choice sets: Part ii–solving the restricted sue for the logit family.

Transportation Research Part B: Methodological, 77:146–165.

References IV

Wardrop, J. G. (1952).

Some theoretical aspects of road traffic research.

Proceedings of the institution of civil engineers, 1(3):325–362.

Zhu, S. and Levinson, D. (2010).

Do people use the shortest path? an empirical test of wardrop's first principle.

In 91th annual meeting of the Transportation Research Board, Washington, volume 8. Citeseer.