# DSC 1408 Representation Learning

Lecture 03 | Part 1

**Functions of a Vector** 

#### **Functions of a Vector**

- In ML, we often work with functions of a vector:  $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ .
- Example: a prediction function,  $H(\vec{x})$ .
- Functions of a vector can return:
  - ightharpoonup a number:  $f: \mathbb{R}^d \to \mathbb{R}^1$
  - ightharpoonup a vector  $\vec{f}: \mathbb{R}^d \to \mathbb{R}^{d'}$
  - something else?

#### **Transformations**

- A transformation  $\vec{f}$  is a function that takes in a vector, and returns a vector of the same dimensionality.
- ▶ That is,  $\vec{f} : \mathbb{R}^d \to \mathbb{R}^d$ .

## **Visualizing Transformations**

- A transformation is a vector field.
  - Assigns a vector to each point in space.
  - ► Example:  $\vec{f}(\vec{x}) = (3x_1, x_2)^T$



## **Example**

$$\vec{f}(\vec{x}) = (3x_1, x_2)^T$$



# **Arbitrary Transformations**

Arbitrary transformations can be quite complex.



# **Arbitrary Transformations**

Arbitrary transformations can be quite complex.



#### **Linear Transformations**

- Luckily, we often<sup>1</sup> work with simpler, linear transformations.
- ► A transformation *f* is linear if:

$$\vec{f}(\alpha \vec{x} + \beta \vec{y}) = \alpha \vec{f}(\vec{x}) + \beta \vec{f}(\vec{y})$$

<sup>&</sup>lt;sup>1</sup>Sometimes, just to make the math tractable!

# **Checking Linearity**

► To check if a transformation is linear, use the definition.

**Example:**  $\vec{f}(\vec{x}) = (x_2, -x_1)^T$ 

#### **Exercise**

Let  $\vec{f}(\vec{x}) = (x_1 + 3, x_2)$ . Is  $\vec{f}$  a linear transformation?

# **Implications of Linearity**

Suppose  $\vec{f}$  is a linear transformation. Then:

$$\begin{split} \vec{f}(\vec{x}) &= \vec{f}(x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}) \\ &= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) \end{split}$$

▶ I.e.,  $\vec{f}$  is **totally determined** by what it does to the basis vectors.

# The Complexity of Arbitrary Transformations

- Suppose f is an arbitrary transformation.
- ► I tell you  $\vec{f}(\hat{e}^{(1)}) = (2,1)^T$  and  $\vec{f}(\hat{e}^{(2)}) = (-3,0)^T$ .
- $\vdash \text{I tell you } \vec{x} = (x_1, x_2)^T.$
- ▶ What is  $\vec{f}(\vec{x})$ ?

# The Simplicity of Linear Transformations

- Suppose f is a linear transformation.
- ► I tell you  $\vec{f}(\hat{e}^{(1)}) = (2,1)^T$  and  $\vec{f}(\hat{e}^{(2)}) = (-3,0)^T$ .
- $\vdash \text{I tell you } \vec{x} = (x_1, x_2)^T.$
- ▶ What is  $\vec{f}(\vec{x})$ ?

#### **Exercise**

- Suppose f is a linear transformation.
- I tell you  $\vec{f}(\hat{e}^{(1)}) = (2,1)^T$  and  $\vec{f}(\hat{e}^{(2)}) = (-3,0)^T$ . I tell you  $\vec{x} = (3,-4)^T$ .
- ▶ What is  $\vec{f}(\vec{x})$ ?

#### **Key Fact**

- Linear functions are determined **entirely** by what they do on the basis vectors.
- I.e., to tell you what f does, I only need to tell you  $\vec{f}(\hat{e}^{(1)})$  and  $\vec{f}(\hat{e}^{(2)})$ .
- This makes the math easy!



## **Example Linear Transformation**

$$\vec{f}(\vec{x}) = (x_1 + 3x_2, -3x_1 + 5x_2)^T$$



# Another Example Linear Transformation

$$\vec{f}(\vec{x}) = (2x_1 - x_2, -x_1 + 3x_2)^T$$



#### **Note**

Because of linearity, along any given direction  $\vec{f}$  changes only in scale.

$$\vec{f}(\lambda \hat{x}) = \lambda \vec{f}(\hat{x})$$







#### **Linear Transformations and Bases**

We have been writing transformations in coordinate form. For example:

$$\vec{f}(\vec{x}) = (x_1 + x_2, x_1 - x_2)^T$$

- To do so, we assumed the **standard basis**.
- If we use a different basis, the formula for  $\vec{f}$  changes.

#### **Example**

- Suppose that in the standard basis,  $\vec{f}(\vec{x}) = (x_1 + x_2, x_1 x_2)^T$ .
- Let  $\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1,1)^T$  and  $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1,1)^T$ .
- ► Write  $[\vec{x}]_{t/t} = (z_1, z_2)^T$ .
- ▶ What is  $[\vec{f}(\vec{x})]_{\mathcal{U}}$  in terms of  $z_1$  and  $z_2$ ?

# DSC 1408 Representation Learning

Lecture 03 | Part 2

**Matrices** 

#### **Matrices?**

► I thought this week was supposed to be about linear algebra... Where are the matrices?

#### **Matrices?**

► I thought this week was supposed to be about linear algebra... Where are the matrices?

What is a matrix, anyways?

# What is a matrix?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

#### **Recall: Linear Transformations**

- A **transformation**  $\vec{f}(\vec{x})$  is a function which takes a vector as input and returns a vector of the same dimensionality.
- ightharpoonup A transformation  $\vec{f}$  is **linear** if

$$\vec{f}(\alpha \vec{u} + \beta \vec{v}) = \alpha \vec{f}(\vec{u}) + \beta \vec{f}(\vec{v})$$

#### **Recall: Linear Transformations**

- ▶ **Key** consequence of **linearity**: to compute  $\vec{f}(\vec{x})$ , only need to know what  $\vec{f}$  does to basis vectors.
- Example:

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$

$$\vec{f}(\vec{x}) =$$

#### **Matrices**

- ▶ **Idea**: Since  $\vec{f}$  is defined by what it does to basis, place  $\vec{f}(\hat{e}^{(1)})$ ,  $\vec{f}(\hat{e}^{(2)})$ , ... into a table as columns
- ► This is the matrix representing  $\vec{f}$

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)} = \begin{pmatrix} -1\\3 \end{pmatrix}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)} = \begin{pmatrix} 2\\0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2\\3 & 0 \end{pmatrix}$$

<sup>&</sup>lt;sup>2</sup>with respect to the standard basis  $\hat{e}^{(1)}$ ,  $\hat{e}^{(2)}$ 

#### Exercise

Write the matrix representing  $\vec{f}$  with respect to the standard basis, given:

$$\vec{f}(\hat{e}^{(1)}) = (1, 4, 7)^{T}$$
  
 $\vec{f}(\hat{e}^{(2)}) = (2, 5, 7)^{T}$   
 $\vec{f}(\hat{e}^{(3)}) = (3, 6, 9)^{T}$ 

#### Exercise

Suppose  $\vec{f}$  has the matrix below:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Let  $\vec{x} = (-2, 1, 3)^T$ . What is  $\vec{f}(\vec{x})$ ?

#### Main Idea

A square  $(n \times n)$  matrix can be interpreted as a compact representation of a linear transformation  $f: \mathbb{R}^n \to \mathbb{R}^n$ .

## What is matrix multiplication?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

### A low-level definition

$$(A\vec{x})_i = \sum_{j=1}^n A_{ij} x_j$$

# A low-level interpretation

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} + 3 \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$$

# In general...

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = x_1 \vec{a}^{(1)} + x_2 \vec{a}^{(2)} + x_3 \vec{a}^{(3)}$$

# **Matrix Multiplication**

$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + x_3 \hat{e}^{(3)} = (x_1, x_2, x_3)^T$$

$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \end{pmatrix}$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$

$$A\vec{x} = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$AX = \begin{cases} f(e^{(1)}) & f(e^{(2)}) & f(e^{(3)}) \\ \downarrow & \downarrow \end{cases} \begin{cases} x_2 \\ x_3 \end{cases}$$
$$= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

# **Matrix Multiplication**

- Matrix A represents a linear transformation  $\vec{f}$ 
  - With respect to the standard basis
  - If we use a different basis, the matrix changes!
- Matrix multiplication  $A\vec{x}$  evaluates  $\vec{f}(\vec{x})$

# What are they, really?

- Matrices are sometimes just tables of numbers.
- But they often have a deeper meaning.

#### Main Idea

A square  $(n \times n)$  matrix can be interpreted as a compact representation of a linear transformation  $\vec{f}: \mathbb{R}^n \to \mathbb{R}^n$ .

What's more, if A represents  $\vec{f}$ , then  $A\vec{x} = \vec{f}(\vec{x})$ ; that is, multiplying by A is the same as evaluating  $\vec{f}$ .

# **Example**

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \qquad A =$$

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$

$$\vec{f}(\vec{x}) =$$

$$A\vec{x} =$$

#### **Note**

- ightharpoonup All of this works because we assumed  $\vec{f}$  is **linear**.
- ▶ If it isn't, evaluating  $\vec{f}$  isn't so simple.

#### **Note**

- ightharpoonup All of this works because we assumed  $\vec{f}$  is **linear**.
- ▶ If it isn't, evaluating  $\vec{f}$  isn't so simple.
- Linear algebra = simple!

# **Matrices in Other Bases**

► The matrix of a linear transformation wrt the **standard basis**:

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \cdots & \vec{f}(\hat{e}^{(d)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$

ightharpoonup With respect to basis  $\mathcal{U}$ :

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \end{pmatrix}$$

# **Matrices in Other Bases**

Consider the transformation  $\vec{f}$  which "mirrors" a vector over the line of 45°.



What is its matrix in the standard basis?

# **Matrices in Other Bases**



Let 
$$\hat{u}^{(1)} = \frac{1}{\sqrt{2}}(1,1)^{\frac{1}{2}}$$

Let 
$$\hat{u}^{(1)} = \frac{1}{\sqrt{2}} (1, 1)^T$$
  
Let  $\hat{u}^{(2)} = \frac{1}{\sqrt{2}} (-1, 1)^T$   
What is  $[\hat{f}(\hat{u}^{(1)})]_{\mathcal{U}}$ ?

- $\vdash [\vec{f}(\hat{u}^{(2)})]_{i,j}$ ?
- What is the matrix?

# DSC 1408 Representation Learning

Lecture 03 | Part 3

**The Spectral Theorem** 

# **Eigenvectors**

Let A be an  $n \times n$  matrix. An eigenvector of A with eigenvalue  $\lambda$  is a nonzero vector  $\vec{v}$  such that  $A\vec{v} = \lambda \vec{v}$ .

# Eigenvectors (of Linear Transformations)

Let  $\vec{f}$  be a linear transformation. An eigenvector of  $\vec{f}$  with eigenvalue  $\lambda$  is a nonzero vector  $\vec{v}$  such that  $f(\vec{v}) = \lambda \vec{v}$ .

# **Importance**

We will see why eigenvectors are important in the next part.

For now: what are they?

# **Geometric Interpretation**

- Mhen  $\vec{f}$  is applied to one of its eigenvectors,  $\vec{f}$  simply scales it.
  - Possibly by a negative amount.



#### **Exercise**

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$$



# **Finding Eigenvectors**

- We typically compute the eigenvectors of a matrix with a computer.
- But it can help our understanding to find them "graphically".

#### **Procedure**

Given a matrix A (or transformation  $\vec{f}$ ), to find an eigenvector "graphically".

- 1. Think about (or draw) the output of  $\vec{f}$  for a handful of unit vector inputs.
  - Linear transformations are continuous so you can "interpolate".
- 2. Find place(s) where the input vector and the output vector are parallel.

#### **Exercise**

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$



#### **Exercise**

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvectors of the transformation.



# Alternate Procedure: Guess and Check

- 1. Guess a vector  $\vec{x}$ .
- 2. Check that  $\vec{f}(\vec{x}) = \lambda \vec{x}$ .

#### **Exercise**

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$



### **Caution!**

- ► Not all matrices have even one eigenvector!<sup>3</sup>
- When does a matrix have multiple (linearly independent) eigenvectors?

<sup>&</sup>lt;sup>3</sup>That is, with a *real-valued* eigenvalue.

# **Symmetric Matrices**

► Recall: a matrix A is **symmetric** if  $A^T = A$ .

# The Spectral Theorem<sup>4</sup>

► **Theorem**: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

<sup>&</sup>lt;sup>4</sup>for symmetric matrices

#### What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

# **Example Linear Transformation**



$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

# **Example Linear Transformation**



$$A = \begin{pmatrix} -2 & -1 \\ -5 & 3 \end{pmatrix}$$

# Example Symmetric Linear Transformation



$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$



Symmetric linear transformations have axes of symmetry.



► The axes of symmetry are **orthogonal** to one another.



The action of  $\vec{f}$  along an axis of symmetry is simply to scale its input.



The size of this scaling can be different for each axis.

#### Main Idea

The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.

# **Diagonal Matrices**

► If A is diagonal, its eigenvectors are simply the standard basis vectors.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}$$



# **Off-diagonal elements**



$$A = \begin{pmatrix} 2 & -0.1 \\ -0.1 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.2 \\ -0.2 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.3 \\ -0.3 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.4 \\ -0.4 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.5 \\ -0.5 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.6 \\ -0.6 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.7 \\ -0.7 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.8 \\ -0.8 & 5 \end{pmatrix}$$



$$A = \begin{pmatrix} 2 & -0.9 \\ -0.9 & 5 \end{pmatrix}$$

#### **Non-Diagonal Symmetric Matrices**

- When a symmetric matrix is not diagonal, its eigenvectors are not the standard basis vectors.
- But they can be used to form an orthonormal basis!

## The Spectral Theorem<sup>5</sup>

Theorem: Let A be an n x n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.



<sup>&</sup>lt;sup>5</sup>for symmetric matrices

#### What about total symmetry?



Every vector is an eigenvector.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

#### **Computing Eigenvectors**

