Operações Ponto a Ponto

- Transformação nos níveis de cinza;
- Cada ponto na imagem de entrada gera um só ponto na imagem de saída;

T[f(x,y)]: operação sobre cada pixel da imagem de entrada

Histogramas

- ■Histograma: representação gráfica de uma função H(k) que representa o número de ocorrências de uma determinada grandeza;
- ■No caso de uma imagem em tons de cinza, H(k) representa o número de ocorrências de cada nível de cinza na imagem.

 $0 \le k \le L - 1$, L: número de níveis de cinza da imagem

Histogramas (normalização)

- A normalização é feita no intervalo [0,1] quando se divide H(k) pelo número $n = N \times M$ de pixels da imagem.
- Neste caso, o histograma representa a distribuição de probabilidade dos valores dos pixels.

$$P_r(r_k) = \frac{n_k}{n}$$
$$0 \le r_k \le 1$$

 $k=0,1,\ldots,L-1;\,L$: número de níveis de cinza da imagem;

n: número total de pixels na imagem; n_k : número de pixels cujo nível de cinza corresponde a k;

 $P_{\rm r}(rk)$: probabilidade do K-ésimo nível de cinza;

Seja uma imagem de 128x128 pixels cujas quantidades de pixels em cada nível de cinza (8 níveis de cinza) são dadas na tabela;

n =	128 x	128 =	16384	pixels
. •	,			P

$$P_r(r_k) = \frac{n_k}{n}$$
$$0 \le r_k \le 1$$

$$P_r(0) = \frac{1120}{16384} = 0,068$$

$$P_r(3) = \frac{3425}{16384} = 0.209$$

Nível de Cinza (r _k)	$\mathbf{n}_{\mathbf{k}}$	$P_r(r_k)=n_k/n$
0	1120	0,068
1	3214	0,196
2	4850	0,296
3	3425	0,209
4	1995	0,122
5	784	0,048
6	541	0,033
7	455	0,028

Histogramas (características)

- Um histograma é uma função de distribuição de probabilidades;
- $\sum P_r(rk) = 1$;
- O histograma não traz informação posicional sobre os pixels da imagem;

Exemplos de Histogramas

Exemplos de Histogramas

- Alterações globais no brilho
 - Clarear ou escurecer uma imagem;
 - Somar ou subtrair uma constante em todos os pixels da imagem;
 - 0: Preto; Max: Branco

Alterações no contraste e no brilho

- Alterações no contraste e no brilho
- Lineares

•
$$g = c * f + b$$

onde c: contraste; b: brilho

• Aumento de contraste

Binarização ("Thresholding")

"Thresholding": transforma a imagem em uma imagem binária (2 níveis de cinza)

Binarização ("Thresholding")

"Thresholding": transforma a imagem em uma imagem binária (2 níveis de cinza)

Desafio: determinar o valor de corte

• Aumento de contraste e binarização

Priorização de níveis específicos

Priorização de níveis específicos

- Alterações no contraste e no brilho
- Não lineares
 - $g = a * \log(f + 1)$

Imagem negativa

$$s = L - 1 - r$$

Imagem negativa

Transformação logarítmica

$$s = c \log(1 + r)$$

Transformação logarítmica

Transformação de lei de potência

$$s = cr^{\gamma}$$

Transformação de lei de potência

• Transformação de lei de potência

• Transformação de lei de potência

= 4 $\gamma =$

Exemplos de Histogramas

Exemplos de Histogramas

Equalização do histograma:

Aumentar o contraste geral na imagem espalhando a distribuição de níveis de cinza.

Equalização do histograma:

Considerando a versão discreta da equação:

$$S_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$
, $k = 0, 1, ..., L-1$

Exemplo:

• Imagem de 64x64 pixels (MN = 64 x 64 = 4096) com 3 bits ($L=2^3=8$) e assim, com níveis de intensidade no intervalo [0,L-1]=[0,7]}. As distribuições de intensidade e valores de histograma da imagem estão na tabela.

r_k	n_k	$p_r(r_k)=n_k/MN$	$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) = rac{(L-1)}{M N} \sum_{j=0}^k n_j$	s_k Arredondado
$r_0=0$	790	0,19	1,33	1
$r_1=1$	1.023	0,25	3,08	3
$r_2=2$	850	0,21	4,55	5
$r_3=3$	656	0,16	5,67	6
$r_4=4$	329	0,08	6,23	6
$r_5=5$	245	0,06	6,65	7
$r_6=6$	122	0,03	6,86	7
$r_7=7$	81	0,02	7,00	7

Exemplo:

