# A LOW-COST SENSOR PLATFORM FOR MEASURING SOIL RESPIRATION

Patrick McCornack<sup>1</sup> Renée brown<sup>2</sup>

<sup>1</sup> Washington State University

<sup>2</sup> University of New Mexico

#### **ABOUT ME**

- Undergraduate at Washington State University
- Major in Environmental and Ecosystem Sciences
- Minor in Engineering
- Honors College









#### SEVILLETA NATIONAL WILDLIFE REFUGE

#### RESEARCH QUESTIONS

 How does the data generated by low-cost sensors compare with data generated by commercial probes

 Are these low-cost sensors accurate enough for scientific research?



# SOIL RESPIRATION

 Plant roots and microbes in the soil release CO2

 CO2 passes from soil to atmosphere



#### Atmosphere Plant respiration Microbial / animal Photosynthesis respiration / decompositon cryptobiotic crust よりてんしょうかのくくつりょうして SHALLOW SOIL ORGANIC CARBON from shallow roots, litter, crust (faster turnover) DEEP SOIL ORGANIC CARBON from shrub roots (slow turnover)

Ford et al. (2012)

#### CARBON FLUX

 Net amount of carbon passing through the soil

- Soils
  - Largest terrestrial carbon pool
  - Second largest source of terrestrial carbon flux
- Carbon dynamics poorly understood



 Soils store twice as much carbon as the atmosphere

 4 per mille Soils for Food Security and Climate initiative

Sequestration by improved soil management

More data needed

### QUANTIFYING RESPIRATION

- Autonomous sensors can capture change over time
  - Long term data with little labor involved

- IRGA sensors
  - High quality data
  - Expensive



## RESEARCH OBJECTIVE

- Reduce cost barriers associated with soil respiration measurements
  - Commercial Probes: ~\$700
  - Low-cost Probes: ~\$70

Increase spatial resolution of respiration processes





#### DATALOGGER PROTOTYPE

- Based on design by Gyawali et al. (2019)
- Three low-cost CO2 sensors
  - Wrapped in gore-tex
- Arduino microcontroller
- Datalogger shield
  - SD card
  - Real-time clock

# MONSOON RAINFALL MANIPULATION EXPERIMENT

- Evaluate effect of precipitation variability on ecosystem processes
- Two rainfall treatments
  - Small weekly
  - Large monthly





# RESULTS





#### **ROADBLOCKS**

- Battery life: ~16 hours
- 12V Solar infrastructure on site
- Components failed
- Unstable power
- Opportunities for growth







## **OVERALL**

More data needed

Stable power supply

Lessons learned



# GOING FORWARD

- Continue to collect data throughout the monsoon season
- Potential testing in the lab

- Long term deployment in remote settings
  - Different configuration
- How to connect to existing infrastructure

#### **ACKNOWLEDGEMENTS**

- Renee Brown Mentor
- Stephanie Baker Field Station Manager
- Alesia Hallmark R and Statistics Consultant
- Fish and Wildlife Service
- University of New Mexico
- National Science Foundation









