多人数ゲームにおける交渉選択手法の提案

伊藤 義章 03-120394

東京大学工学部電子情報工学科

指導教員:近山 隆 教授·鶴岡 慶雅 准教授 2014年2月17日

背景

- 交渉の研究
 - 現実社会において多種多様交渉
 - 自分の利益を最大化
 - 相手の利益を考慮
- 交渉の課題
 - 実世界のモデル化 e.g.) 株取引
 - 利益見積もり手法
 - 自分の利益を最大化しつつ交渉案の提示

研究目的

交渉の成功率を考慮し 自分の利益を最大化する交渉案を選択する

モデル化

プレイヤー<u>A</u> プレイヤー B 交渉案 i 利益 R_A(i) R_B(i) 成功確率 P(i)

ex) 株取引

利益 **見積もり**

交渉案 の選択

案1

Aの利益:<u>1000</u> Bの利益:- 500 成功確率:1%

案2

Aの利益:<u>300</u> Bの利益:200 成功確率:50%

<u>案3</u>

Aの利益:<u>0</u> Bの利益:400 成功確率:80%

実世界のモデル化

- 知能ゲームの利点
 - 実世界の要素を抽出
 - → 多人数、不完全情報、非決定性
 - 方針がたてやすい (ルールによる知識制限)
 - 結果が明確に分かる (勝敗)

人口知能の 基礎理論 機械学習,木探索,.. テストベッド..

フィードバック,改善..

知能ゲーム 囲碁,チェス,カタン..

実世界のモデル化:交渉の知能ゲーム

- カタンの開拓者
 - 実世界の要素を抽出
 - → 多人数(4人)、不完全情報、非決定性
 - 交渉がゲームの勝敗に重要な要素
 - 近年交渉の研究が盛んである[SeineDiel 2012]

カタンの開拓者を評価測定に用いる

提案手法

- UCTアルゴリズムを利益計算に用いることを提案
- ・交渉案の選択を行なう評価関数を提案

①提案: 利益見積もり(UCTアルゴリズム[L.Kocsis et al., 2006])

UCTアルゴリズムを利益計算に用いることを提案

<評価値の式>

 X_i : 平均勝率

C:定数

 N_i :着手iが選ばれた回数

 $N:N_{i}$ の合計

②提案: 交渉案の選択

交渉案の期待値を計算する複数の評価関数を提案

- 評価関数
 - 交渉の評価関数を作成する重要な要素を検証

	自分の利益	交渉の受諾率	補足
自己中心的交渉		×	ベースライン 自分の利益最優先
利益優先交渉	0	Δ	相手の利益を考慮し 自分の利益を最大化
受諾優先交渉	Δ	©	交渉の 受諾率を優先
和交渉	0	0	自分の利益と相手の 利益の和を最大化
積交渉	0	0	自分の利益と相手の 利益の積を最大化

①実験設定: UCTアルゴリズムの利益見積もり

自分にとって有利な交渉案を提示出来ているか

<対戦相手>

■受諾プレイヤー

提案:全く交渉を提示しない

受諾:全ての交渉を受諾

■ランダムプレイヤー

提案:ランダムに交渉案を選択し提案

受諾:ランダムに受諾・拒否を選択

①実験結果: UCTアルゴリズムの利益見積もり

■結果

(各4000戦)

	vs 受諾プレイヤー	vs ランダムプレイヤー
UCTプレイヤー (N=100)	23.6%	25.0%
ルールベース プレイヤー	42.1%	41.3%

UCTアルゴリズムの利益見積もりで有効性は示せなかった

②実験設定: 交渉案の選択

■ 設定

- ルールベースに基づく利益の見積もり
- vs 3人の自己中心的プレイヤー

	自分の利益	交渉の受諾率	補足
自己中心的交渉		×	ベースライン 自分の利益最優先
利益優先交渉		Δ	相手の利益を考慮し 自分の利益を最大化
受諾優先交渉	Δ	©	交渉の 受諾率を優先
和交渉	0	0	自分の利益と相手の 利益の和を最大化
積交渉	0	0	自分の利益と相手の 利益の積を最大化

②実験結果:自己中心的交渉との対戦結果

(各4000戦)

	利益優先交渉	受諾優先交渉	和交渉	積交渉
勝率	32.4%	23.7%	30.4%	29.9%

■ 検証

- 自分の利益を最大にしつつ相手の利益を考慮する

②実験結果:自己中心的交渉との対戦

* 楽観的な利益見積もりを行なう環境

(各4000戦)

	利益優先交渉	受諾優先交渉	和交渉	積交渉
勝率	24.8%	12.8%	28.0%	22.2%
提案成功率	90.4%	93.2%	88.2%	92.1%
受諾率	26.4%	74.0%	44.0%	32.0%

■ 検証

- 相手に不利な交渉を提示する
 - → "相手"の評価関数 と "自分"の評価関数の違い により誤って受諾

②検証: 勝率と受諾率・提案成功率の関係性

- ○「提案成功率」・「受諾率」と勝率に関係
- ○「自分の得られる利益」と「相手に与える損益」を考慮

評価関数の勝率と交渉成功率

まとめ

- ■目的
 - 「交渉の成功率を考慮し自分の利益を 最大化する交渉案を選択する」
- 提案手法
 - UCTアルゴリズムによる利益計算
 - 交渉案の期待値を計算するいくつかの評価関数

■結果

- UCTアルゴリズムの利益見積もりにおいて 有効性は示せなかった
- 交渉成功率・受諾率・自分の利益・相手の損益 が重要な要素である

今後の課題

- UCTアルゴリズムの改善
 - プレイアウト回数
- 評価関数
 - 4要素を考慮した最適な関数の作成