Math 130B - More on Joint Random Variables

1. Let X and Y be independent variables having the exponential distribution with parameters λ and μ , respectively. Find the density function of X + Y.

2. Let X and Y be independent random variables, X being equally likely to take any value in $\{0, 1, ..., m\}$ and Y similarly in $\{0, 1, ..., n\}$. Find the mass function of Z = X + Y.

- 3. Suppose that n points are independently chosen at random on the circumference of a circle, and we want the probability that they all lie in a semicircle. That is, we want the probability that there is a line passing through the center of the circle such that all the points are on one side of that line.
 - Let P_1, \ldots, P_n denote the *n* points. Let $A^{(n)}$ denote the event that all the points are contained in some semicircle, and let $A_i^{(n)}$ be the event that all the points lie in the semicircle beginning at the point P_i and going clockwise for 180° , $i = 1, \ldots, n$.
 - (a) Express $A^{(n)}$ in terms of the $A_i^{(n)}$.
 - (b) Find $Pr[A^{(n)}]$ and show that it is o(1).