An Effective Approach to the Repeated Cross-Sectional Design

Patrick Kraft Christopher Weber Matthew Lebo

Stony Brook University

University of Arizona

November 18, 2015

Model Estimation Outlook

Introduction

Overview

- ▶ Implementation of ArfimaMLM approach presented by Lebo and Weber ("An Effective Approach to the Repeated Cross-Sectional Design", AJPS 2015) in R.
- ▶ Basic idea: Correcting for temporal autocorrelation in repeated cross-sectional data (as well as panel data).
- Key Aspects:
 - Individual observations are embedded within multiple, sequential time-points.
 - ▶ Retrieve estimates at the individual-level and at the aggregate level.
 - Allows use of variables that vary only within cross-sections and some that vary between cross-sections (e.g., unemployment rate)
 - Box-Jenkins and fractional differencing techniques can control for autocorrelation at level-2. (e.g. Box-Steffensmeier and Smith, 1996; Lebo et al., 2000; Clarke and Lebo, 2003)
 - ▶ Introduce double filtering to clean up two kinds of autocorrelation.

Kraft, Weber, Lebo R Package ArfimaMLM November 18, 2015 2 / 18

Description of Package I

```
arfimaMLM(formula, data, timevar
   , d = "Hurst", arma = NULL
   , ecmformula = NULL, decm = "Hurst"
   , drop = 5, report.data = TRUE, ...)
```

3 / 18

Overview

Description of Package III

Description of Package IV

Simulational Scenario

- Scenario: repeated cross-sectional data set with 100 time points and 500 units within each time point
- ► Independent variables:
 - $x_1 \sim \mathcal{N}(\mu = \bar{X}_{1t}, \sigma^2 = 2)$; \bar{X}_{1t} follows a fractionally integrated series with d = 0.3 and a mean of 5
 - $x_2 \sim \mathcal{N}(\mu = 0, \sigma^2 = 40)$
 - $z_1 \sim \mathcal{N}(\mu = \bar{Z}_{1t}, \sigma^2 = 3); \; \bar{Z}_{1t} \; \text{follows a fractionally integrated series}$ with d = 0.1 and a mean of 2
 - ▶ Z_{2t} follows a fractionally integrated series with d = 0.25 and a mean of 3 (Z_{2t} does not differ within time points)
- ► Dependent Variable:

$$\begin{split} y &= \bar{Y}_t + \beta_{1t} * x_1 - 0.05 * x_2 + 0.3 * \bar{Z}_{1t} + 0 * Z_{2t} + \epsilon \quad \text{, where} \\ \beta_{1t} &\sim \mathcal{N}(\mu = 0.2, \sigma^2 = 0.1) \\ \epsilon &\sim \mathcal{N}(\mu = 0, \sigma^2 = 1), \end{split}$$

where \bar{Y}_t follows a fractionally integrated series with d=0.4 and a mean of 10

Kraft, Weber, Lebo R Package ArfimaMLM November 18, 2015 7 / 18

Data Overview I

```
data[496:505,]
```

	time	x1	x2	z1	z2	У	
496	1	2.782894	99.649591	4.52390786	2.222936	6.556912	
497	1	4.666993	15.769259	4.58101935	2.222936	10.326180	
498	1	3.479995	-23.151975	-0.05688266	2.222936	13.371325	
499	1	4.927197	-3.963808	6.34666239	2.222936	12.706198	
500	1	4.671967	33.751661	0.60743779	2.222936	9.181135	
501	2	2.888744	26.234304	2.96382521	1.969999	10.004992	
502	2	3.334345	-22.937614	3.75093669	1.969999	13.311789	
503	2	5.516160	5.706410	6.43928311	1.969999	11.906759	
504	2	8.195076	31.802270	4.88271529	1.969999	14.047000	
505	2	7.086206	95.629309	2.69268251	1.969999	6.587762	

Simulational Scenario

Data Overview II

00000

Figure: Plot of Dependent Variable y Across Time

November 18, 2015

Figure: Plot of Independent Variables Across Time

Figure: Plot of Independent Variables Across Time

Results without ArfimaMLM II

Table: Results for Simple OLS and Multilevel Model

_		Dependent variable:	
		у	
	OLS	line. mixed-e	
	(1)	(2)	(3)
×1	0.200***	0.207***	0.207***
×2	(0.003) -0.050***	(0.002) 0.050***	(0.011) 0.050***
z1	(0.0002) 0.025***	(0.0001) 0.003*	(0.0001) 0.003*
z2	(0.002) -0.223***	(0.002) -0.224**	(0.001) -0.181*
	(0.006)	(0.106)	(0.099)
Constant	11.546*** (0.024)	11.567*** (0.325)	11.455*** (0.304)
Observations	50,000	50,000	50,000
R^2	0.655		
Log Likelihood Bayesian Inf. Crit.		-72,501.370 145,078.500	-71,566.660 143,230.700

Note:

*p<0.1; **p<0.05; ***p<0.01

→□▶→同▶→三▶→三 めへ○

Table: Results for ArfimaMLM

	Dependent variable: y.ydif		
	(1)	(2)	
x1.xdif	0.203***	0.204***	
	(0.002)	(0.011)	
×2	-0.050***	-0.050 [*] **	
	(0.0001)	(0.0001)	
z1.fd	0.204*	0.233**	
	(0.118)	(0.105)	
z2.fd	-0.071	-0.034	
	(0.107)	(0.095)	
Constant	0.055	0.055	
	(0.110)	(0.110)	
Observations	47,500	47,500	
Log Likelihood	-69,004.340	-68,091.650	
Akaike Inf. Crit.	138,022.700	136,201.300	
Bayesian Inf. Crit.	138,084.100	136,280.200	

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

- ► Implement new estimator for fractional differencing parameter *d* (whittleFML)
- Simultaneous estimation in Stan
- ArfimaMLM for categorical outcomes
- ▶ Other improvements (better output, integrate pacf plots etc.)

Getting the Package

- ▶ on CRAN: http://cran.r-project.org/web/packages/ArfimaMLM/
- on GitHub (development version): https://github.com/pwkraft/ArfimaMLM/

ulational Scenario Model Estimation Ou

References

- Box-Steffensmeier, Janet M and Renee M Smith. 1996. "The dynamics of aggregate partisanship." *American Political Science Review* 90(3):567–580.
- Clarke, Harold D and Matthew Lebo. 2003. "Fractional (co) integration and governing party support in Britain." *British Journal of Political Science* 33(02):283–301.
- Lebo, Matthew and Christopher Weber. 2015. "An Effective Approach to the Rolling Cross Sectional Design." *American Journal of Political Science* 59(1):242–258.
- Lebo, Matthew J, Robert W Walker and Harold D Clarke. 2000. "You must remember this: dealing with long memory in political analyses." *Electoral Studies* 19(1):31–48.

4 D > 4 A > 4 E > 4 E > 9 Q Q

References