Cours

Charles Vin

Date

Nouveau cours de la rentrée

•••

Nouveau cours du 17/01

Rappel:

$$(P)\min f(x)$$

$$S.C \left\{ g(x) = 0h(x) \le 0x \in \Omega \ \mathcal{A} = \left\{ x \in \Omega : g(x) = 0, h(x) \le 0 \right\} \right.$$

Convexité

Un ensemble E est un convexe si

$$\forall x, y \in E, \forall t \in 0, 1tx + (1-t)y \in E.$$

— Soit f une fonction de \mathbb{R}^n dans \mathbb{R} défini sur un convexe E. Alors f est une fonction convexe si

$$\forall x, y \in E, \forall t \in [0, 1]: f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

0.1 Problème convexes

(P) est un problème convexe si f est une fonction convexe et $\mathcal A$ est un convexe. En plus si f est une fonction strictement convexe alors (P) est un problème strictement convexe.

Théorème 0.1. Si (P) est un problème convexe et si x^* , (λ^*, mu^*) vérifient les conditions KKT, alors X^* est solution optimale de (P).

Théorème 0.2. Tout minimum locale de (P) est également minimum globales de (P). En plus l'ensemble des minimums globales est un convexe.

Théorème 0.3. Si (P) est un problème strictement convexe et (P) admet une solution optimale, alors cette solution optimale est unique.

1 Programmation linéaire

problème linéaire (peut s'écrire avec des matrices)

$$(P) \min C^T x \text{ (ou bien } < c, x >)$$

$$S.C \begin{cases} Ax = b \\ Cx \le d \\ x \in \Omega \end{cases}$$

Exemple 1.1 (exemple 2.1.1.2).

$$(P) \min c_1 x_1 + c_2 x_2$$

$$S.C \begin{cases} x_1 + 3x_2 \le 18 \\ x_1 + x_2 \le 8 \\ 2x_1 + x_2 \le 14 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Résolution graphique $c_1=3, c_2=8$ traduire les contraintes en droite, les dessiner trouver la zone admissible.

On défini les courbes de niveau.

$$C_k = \{x \in \mathcal{A} : f(x) = k\}$$

= \{x_1, x_2 \in \mathcal{A} : 3x_1 + 8x_2 = k\}

On a fait un truc avec ces courbe de niveau pour dire que c'était croissant puis on a choisis de prendre l'intersection de deux des équations

$$\begin{cases} x_1 + x_2 = 8 \\ x_1 + 3x_2 = 18 \end{cases} \Leftrightarrow \begin{cases} 2x_2 = 10((II) - (I)) \\ 2x_1 = 6(3(I) - (II)) \end{cases} \Leftrightarrow \begin{cases} x_1 = 3 \\ x_2 = 5 \end{cases}$$
 solution optimale.

Valeur optimale : 9 + 40 = 49

Exemple 1.2.

$$c_1 = c_2 = 3$$

$$\begin{cases} x_1 + x_2 = 8 \\ 3x_2 + X_1 \le 18 \Leftrightarrow \begin{cases} x_2 = 8 - x_1 \\ x_2 = \frac{18 - x_1}{3} \\ x_2 \le 14 - 2x_1 \end{cases}$$

$$C_k = \{x_1, x_2 \in \mathbb{R} : 3x_1 + 3x_2 = k\}$$

étape que j'ai pas compris lol + un dessin au tableau

Solution optimales $S = \{(x_1, 8 - x_1 : 3 \le x_1 \le 6)\} = \{(8 - x_2, x_2) : 2 \le X_2 \le 5\}$

Exemple 1.3 (numéros 3).

$$\min 20x_1 + 25x_2$$

$$\begin{cases} x_1 + 5x_2 \ge 5 \\ 2x_2 + X_1 \ge 4 \\ 3x_1 + 3x_2 \ge 6 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

$$C_k = \{x_1, x_2 \in \mathbb{R} : 3x_1 + 3x_2 = k\} \Leftrightarrow C_100 = \{20x_1 + 25x_2 = 100\} = \{\text{la courbe entre (0,4) et (5,0)}\}$$

On dessine cette courbe

La fonction à min est décroissante car ...

Donc on suis les courbes parallèle à celle de Ck jusqu'a arriver au minimum

Solution optimales
$$\begin{cases} x_1 = 0 \\ x_2 = 2 \end{cases}$$
, Valeur Optimale $= 50$

Définition 1.1. 1. Un polyèdre est une intersection de demiplans

$$H(a_k, b_k) = \{x \in \mathbb{R}^n, a_k x \le b_k\}.$$

- 2. Un simplexe est un polyèdre borné
- 3. Un sommet est un point du polyèdre qu'on

Nouveau cours du 24/01

Rappel:

- 1. Une contraintes $h(x) \leq 0$ est saturée (ou «active») au point $x^* \in \mathcal{A}$ si $h(x^*) = 0$. Remarque : les contraintes d'égalitées g(x) = 0 sont saturées en tout $x \in \mathcal{A}$
- 2. Une matrice est de rang r si il existe une sous-matrice carrée de taille r dont le déterminant est non-null et pour toute sous-matrice de taillel plus élever le déterminant vaut 0.

Théorème 1.1 (4, p13). Un point x est un sommet du polyèdre A si la matrice de contraintes saturées est de rang n.

Si le nombre de contraintes saturées vaut exactement n alors x est un sommet non-dégénéré. En revanche, si le nombre de contraintes saturées est strictement supérieur à n, alors x est un sommet dégénéré.

Supposons qu'on a p contraintes d'égalité, q contraintes d'inégalités, n variables. Alors le nombre de sommets du polyèdre est limité à $\binom{q}{n-p}=\frac{q!}{(n-p)!(q-n-p)!}$

Exemple 1.4 (Exercice 12, p28).

$$\begin{pmatrix}
x_1 + 2x_2 + 3x_3 \le 11 \\
-x_1 - 2x_3 \le -1 \\
x_1 \le 2 \\
x_3 \le 3, p)0, q = 7, n = 3 \\
-x_1 \le 0 \\
-x_2 \le 0 \\
-x_3 \le 0
\end{pmatrix}$$

Le nombre de sommets est limité par ${7 \choose 3}=\frac{7!}{3!4!}=\frac{7*6*5}{1*2*3}=35$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & -2 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad P_1(2,0,0), \begin{cases} 2 < 11 \\ 2 < -1 \\ 2 = 2 \\ 0 < 3 \\ 2 < 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

$$m=3=n, A_S=egin{pmatrix} 1,0,0\ 0,-1,0\ 0,0,-1 \end{pmatrix} \det A_S=1
eq 0 \ {
m donc} \ rang(A_S)=3.$$

On en déduit que P_1 est un sommet non-dégénéré.

Autre Point : $P_2(2, 0, 3)$

$$P_1(2,0,0), \begin{cases} 11 = 11 \\ 8 < -1 \\ 2 = 2 \\ 3 = 3 \\ 2 < 0 \\ 0 = 0 \\ 3 \le 0 \end{cases}$$

Les contraintes saturées sont là ou les trucs sont égales!! On remet ces équations dans la matrice A_S .

$$A_S = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \det(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}) = 1 \neq 0 \text{ donc } Rang(A_S) = 3(=n).$$

Donc matrice dégénéré (car y'a un truc avec 3 = n < m).

Autre Point : $P_3(0, 5, 3)$

$$P_1(2,0,0), \begin{cases} 11 = 11 \\ 1 = -1 \\ 1 < 2 \\ 0 < 3 \ m = 3(=n) \\ 1 < 0 \\ 5 < 0 \\ 0 = 0 \end{cases}$$

Les contraintes saturées sont là ou les trucs sont égales!! On remet ces équations dans la matrice A_S .

$$A_S = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & -2 \\ 0 & 0 & -1 \end{pmatrix}, \det(A_S) = -1\det(\begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}) = -2 \neq 0 \text{ donc } Rang(A_S) = 3(=n).$$

Donc P_3 est un sommet non-dégénéré

Théorème 1.2 (6). Si (P_L) admets des solutions optimales et si la matrice des contraintes est de rang n, alors au moins une des solutions optimales est une sommet de A

1.1 La forme standard

$$(P_L) \min f^T x$$

$$s.c \begin{cases} A_x = b \\ Cx \le dx \in \mathbb{R}^n \end{cases}$$

$$(P_S) \min f^T x$$

$$s.c \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

Tout problème (P_L) peut s'écrire sous la forme (P_S) car

1. $\max f^T x \Leftrightarrow \min -f^T x$

2.
$$a^T x \leq b \Leftrightarrow \begin{cases} a^T x + y = b \\ y \geq 0 \end{cases} \Leftrightarrow \begin{cases} a^T x \geq b \\ y \geq 0 \end{cases} \Leftrightarrow \begin{cases} a^T x - y = b \\ y \geq 0 \end{cases}$$

3.
$$x_k \in \mathbb{R} \Leftrightarrow \begin{cases} x_k = x_{k_1} - x_{k_2} \\ x_{k_1}, x_{k_2} \ge 0 \end{cases}$$

Exemple 1.5 (Exercice 14 page 28).

$$(P_L) \max x_1 + 5x_2 + 2x_3$$

$$S.C \begin{cases} x_1 + 3x_2 \le 10 \\ x_1 + x_2 + x_3 \le 9 \\ x_1, x_3 \ge 0 \\ x_2 \in \mathbb{R} \end{cases} \Leftrightarrow$$

$$(P_S) \min -(x_1 + 5(x_{2,1} - x_{2,2}) + 2x_3)$$

$$S.C \begin{cases} x_1 + 3(x_{21} - x_{22}) + y_1 = 10 \\ x_1 + (x_{21} - x_{22}) + x_3 + y_2 = 9 \\ x_1, x_{22}, x_{21}, x_3 \ge 0 \\ y_1, y_2 \ge 0 \end{cases}$$

$$(P_L) \max -x_1 + x_2 - x_3$$

$$S.C \begin{cases} 3x_1 - 3x_2 \ge 7 \\ x_1 + 2x_1 + x_3 \le 9 \\ x_1 \le 0 \end{cases} \Leftrightarrow$$

$$x_2 \in \mathbb{R}$$

$$x_3 \ge 0$$

$$(P_S) - x_1' - x_{21} + x_{22} + x_3$$

$$S.C \begin{cases} -3x_1' - 3x_{21} + 3x_{22} - y_1 = -7 \\ -x_1' + 2x_{21} - 2x_{22} + x_3 + y_2 = 9 \\ x_1' \ge 0 \\ x_{21}, x_{22} \ge 0 \\ x_3 \ge 0 \\ y_1, y_2 \ge 0 \end{cases}$$

Considérons la partition de $\{1,2,\ldots,n\}$ en — en $B=\{i_1,i_2,\ldots,i_p\}$ (indices des variables de base) — et $H=\{i_{p+1},\ldots,i_n\}$ (indices des variables h de base (?)) de facon que $B\cup H=\{1,2,\ldots,n\}$ et $B\cap H=\varnothing$

$$x = (x_B, x_H)$$
$$A = (A^B, A^H)$$
$$f^T = (f_B^T, f_H^T)$$

Si il existe B et H to

1. (A^B) est inversible

2.
$$x_B = (A^B)^{-1}b \ge 0$$

alors $x(B) = (x_b, x_h)$ est un sommet.

Exemple 1.6 (Exo 17, p 29).

$$\begin{aligned} \min 2x_1 + 2x_2 \\ \begin{cases} x_1 + x_2 + x_3 &= 4 \\ -5x_1 + x_2 + x_4 - 1 & p = 2, n = 4 \\ x_1, x_2, x_3, x_4 &\geq 0 \end{cases} \\ B_1 &= \{2, 4\}, H_1 = \{1, 3\} \\ A &= \begin{pmatrix} 1 & 1 & 1 & 0 \\ -5 & 1 & 0 & 1 \end{pmatrix} \\ A^{B_1} &= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \det A^{B_1} = 1 \neq 0 \text{ donc } A^B \text{ est inversible} \end{cases}$$

$$x_{B_1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix} \not\geq 0$$

La base B_1 n'est pas «réalisable» (elle ne correspond à aucun sommet)

Exemple 1.7.

$$\begin{split} B_q &= \{1,2\}, \text{ donc } H_2 = \{3,4\} \\ A^{B_2} &= \begin{pmatrix} 1 & 1 \\ -5 & 1 \end{pmatrix}, \det A^{B_2} = 6 \neq 0, \text{ donc } A^{B_2} \text{ est inversible} \\ x_{B_2} &= \frac{1}{6} \begin{pmatrix} 1 & -1 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5 \\ 19 \end{pmatrix} = \begin{pmatrix} 5/6 \\ 19/6 \end{pmatrix} > 0 \end{split}$$

Donc B_2 est une base réalisable non-dégénéré. Sommet non-dégénéré $P(\frac{5}{6},\frac{19}{6},0,0)$

Exemple 1.8.

$$x_{B_3} = \begin{pmatrix} 1/5 \\ 12/5 \end{pmatrix} > 0$$

donc B_3 est une base réalisable non dégénéré.

Nouveau cours du 31/01

Algorithme du simplexe

 $\begin{array}{l} - \ B_k = \{i_1, \ldots, i_p\} \text{ (les indices des variables de base)} \\ - \ H_k = \{i_{p+1}, \ldots, i_n\} \text{ (les indices des variables hors base)} \\ \text{Si } A^{B_c} \text{ est inversible et si } X_{B_k} = (A^{B_k})^{-1}b \geq 0 \text{ alors } X_{B_k} = (X_{b_k}, X_{H_k}) \text{ avec } X_{H_k} = 0 \text{ est un sommet de base} \\ \end{array}$ l'ensemble \mathcal{A} et on dit que la base B_k est réalisable.

- Si $X_{b_k}>0$ alors $X(B_k)$ est un sommet non-dégénéré et B_k est uen base non-dégénéré
- Si $X_{b_k} \ge 0$ mais pas strictement positif alors $X(B_k)$ est un sommet dégénéré et B_k est une base dégénéré

Le but est maintenant de construre une suite minimisante $\{B_k\}_{k\geq 0}$ tel que $\forall k,l\in\mathbb{N}$ avec k< l: $f(X(B_k)) > f(X(B_l)).$

Comme $\forall k, l \in \mathbb{N}$ avec $k \neq l$ on a $B_k \neq B_l$ et puisque le nombre de sommet est fini, cette suite converge vers la solution optimale dans un nombre fini d'itération.

Soit donner la réalisable B_k

$$\begin{split} AX(B_k) &= b \Leftrightarrow [A^{B_k}, A^{H_k}] \binom{X_{B_k}, X_{H_k}}{=} b \\ &\Leftrightarrow A^{B_k} X_{B_k} + A^{H_k} X_{H_k} = b \\ &\Leftrightarrow A^{B_k} X_{b_k} = b - A^{H_k} X_{H_k} \\ &\Leftrightarrow X_{B_k} = (A^{B_k})^{-1} b - (A^{B_k})^{-1} A^{H_k} X_{H_k} \\ &= f_{B_k}^T X_{B_k} + f^T ?^{H_k} X_{H_k} \\ &= f^T (A^{B_k})^{-1} b - f_{B_k}^T (A^{B_k})^{-1} A^{H_k} X_{H_k} + f_{H_k}^T X_{H_k} \\ &= f_{B_k}^T (A^{B_k})^{-1} b - [f_{B_k}^T (A_{B_k})^{-1} A^{H_k} - f_{H_k}^T] X_{H_k} \\ &= f_{B_k}^T (A^{B_k})^{-1} b - C^{H_k} X_{H_k} \text{ (les couts reduits)} \end{split}$$

Si $C^{H_k} \geq 0$ alors $X(B_k)$ est minimum global. Sinon on prend $e = \arg\min(C^{H_k}) \to X_e$ variable entrente, $e \in H_k, e \notin B_k$ sinon $e \in B_{k+1}, e \notin H_{k+1}$

Déterminer la variable sortante

Soit $t \in \mathbb{R}^+$, Il faut que

$$(A^{B_k})^{-1}b - [(A^{B_k})^{-1}A^{H_k}]_e t \ge 0$$

$$\Leftrightarrow t = \min\{\frac{(A_k)^{-1}b}{[\dots]_e}\} \text{ composant par composant}$$

$$\arg\min\{\frac{(A^{B_k})^{-1}}{[\dots]_e}\} = s$$

$$B_{k+1} = (B_k \setminus \{s\}) \cup \{e\}$$

Exemple 2.1 (Exercice 17).

$$\min 2x_1 + 2x_2$$

$$S.C. \begin{cases} x_1 + x_2 + x_3 = 4 \\ -5x_1 + x_2 + x_4 = -1 \\ X_i \ge 0, i \in [1, 4] \end{cases}$$

$$f^T = (2, 2, 0, 0)A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -5 & 1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

Avec $B_1=\{2,4\}$ (et alors $H_1=\{1,3\}$)

$$A^{B_1}=egin{pmatrix} 1 & 0 \ 1 & 1 \end{pmatrix}, \det A^{B_1}=1
eq 0$$
 donc inversible.

Puis on a

$$X_{B_1}=(A^{B_1})^{-1}b=\begin{pmatrix}1&0\\-1&1\end{pmatrix}\begin{pmatrix}4\\-1\end{pmatrix}=\begin{pmatrix}5\\-5\end{pmatrix}\not\geq 0 \text{ donc } B_1 \text{ n'est pas r\'ealisable}.$$

Avec $B_2 = \{1, 2\}$ (et alors $H_2 = \{3, 4\}$)

$$A^{B_2}=egin{pmatrix}1&1\-5&1\end{pmatrix}, \det A^{B_2}=1+5=6
eq 0$$
 donc inversible.

Puis on a

$$X_{B_2} = (A^{B_2})^{-1}b = \frac{1}{6}\begin{pmatrix}1 & -1\\5 & 1\end{pmatrix}\begin{pmatrix}4\\-1\end{pmatrix} = \frac{1}{6}\begin{pmatrix}5\\19\end{pmatrix} = \begin{pmatrix}5/6\\19/6\end{pmatrix} \geq 0 \text{ donc } B_2 \text{ est une base réalisable non dégénéré.}$$

Enfin

$$\begin{split} C^{H_2} &= f_{H_2}^T - f_{B_2}^T (A^{B_2})^{-1} A^{H_2} \\ &= (0,0) - (2,2) \begin{pmatrix} 1/6 & -1/6 \\ 5/6 & 1/6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &= -(2,2) \begin{pmatrix} 1/6 & -1/6 \\ 5/6 & 1/6 \end{pmatrix} \\ &= -(12/6,0) = (-2,0) \not\geq \end{split}$$

Donc B_2 ne satisfait pas les CSO (condition suffisante d'optimalité) Avec $B_3=\{1,3\}$ (et alors $H_2=\{2,4\}$)

$$A^{B_3}=egin{pmatrix} 1 & 1 \ -5 & 0 \end{pmatrix}, \det A^{B_3}=5
eq 0$$
 donc inversible.

Puis on a

$$X_{B_3} = \frac{1}{5} \begin{pmatrix} 0 & -1 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 \\ 19 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 19/5 \end{pmatrix} \geq 0 \text{ donc } B_3 \text{ est une base réalisable non dégénéré.}$$

Enfin

$$\begin{split} C^{H_3} &= f_{H_3}^T - f_{B_3}^T (A^{B_3})^{-1} A^{H_3} \\ &= (2,0) - (2,0) \begin{pmatrix} 0 & -1/5 \\ 1 & 1/5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \\ &= (2,0) - (0,-2/5) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \\ &= (2,0) - (-2/5,-2/5) = (12/5,2/5) \geq \text{ donc } B_3 \text{ satisfait les CSOs} \end{split}$$

On en déduit que la solution optimale est $ar{X} = \begin{pmatrix} 1/5 & 0 \\ 0 & 19/5 \\ 0 & 0 \end{pmatrix}$

Exemple 2.2. Voir one note

Nouveau cours du 07/02

3 Mise en oeuvre de l'algo du simplexe

- 1. Initialisation d'une base réalisable non-dégénérée
 - Choix triviale, s'il existe
 - Méthode à deux phases (voir plus tard)
 - A partir d'une base de données
- 2. Construire le tableau correspondant : voir poly 2.5.4

$$T = (A^{B})^{-1}A = [I, (A^{B})^{-1}A^{H}]$$

$$X_{b} = (A^{B})^{-1}$$

$$C = f^{T} - f_{B}^{T}T = [0, f_{H}^{T} - f_{B}^{T}T^{H}]$$

$$Z = f_{B}^{T}X_{B}$$

- 3. Tester la base ($C^H \geq 0$?)
- 4. Tant que la base ne satisfait pas les CSL, faire
 - (a) Déterminer la variable entrante
 - (b) Déterminer la variable sortante
 - (c) Mise à jour du tableai correspondant

(d) Tester la base

Voir poly le chapitre 2.5 entier

Exemple 3.1 (Exercice 7 p26). OneNote

Nouveau cours du 07/03

3.1 Initialisation

- Si $\exists B:A^B=I_p,b\geq 0$ alors B est le **choix trivial** pour la base de départ
- Sinon on utilise la méthode à 2 phases
 - 1. 1ère phase : (on supposera que $b \geq 0$) il faut résoudre un problème auxilière :

$$(P) \min \sum_{i=1}^{P} Y_i$$

$$S.C. \begin{cases} Ax + y = b \\ x \ge 0, y \ge 0 \end{cases}$$

Donnera le choix trivial $B_0 = \{n+1, n+2, \dots, n+p\}$ y est la variable de base et X est la variable hors base.

Soit B_5 la base optimale sol.opti = $\binom{X(B_5)}{Y(B_5)}$ avec $Y(B_5) = 0$ et $\begin{cases} Ax(B_5) = b \\ x(B_5) \geq 0 \end{cases}$.

Soit $\tilde{B}_0 = B_5$ alors \tilde{B}_0 est une base réalisable pour (P_5)

2. Résoudre (P_5) avec base de départ \tilde{B}_0

Remarque. Si b < 0 on remplace $a^{(i)}x = b_i$ par $-a^{(i)}x = -b_i > 0$

Exemple 3.2. Résoudre pas la méthode du simplexe le problème suivant :

$$(P_s) \min 5x_1 + x_2 - x_3$$

$$S.C. \begin{cases}
-x_1 + x_2 = 1 \\
2x_1 - x_3 = 5 \\
x_i > 0, i \in [1, 3]
\end{cases}$$

$$f^{T} = \begin{pmatrix} 5 & 1 & -1 \end{pmatrix} A = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

1. 1 ère phase

$$\min y_1 + y_2$$

$$S.C. \begin{cases}
-x_1 + x_2 + y_1 = 1 \\
2x_1 - x_3 + y_2 = 5 \\
x_i \ge 0, y_j \ge 0
\end{cases}$$

 $B_0 = \{4, 5\}$ On a toujours

(a)
$$T^H = A$$

(b)
$$C^H = f_H^T - f_B^T T^H = 0 - (1,1) \begin{pmatrix} -1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} = (-1,-1,-1)$$

(c)
$$y_{B_0} = b = (1,5)$$

(d)
$$Z = (1,1)\binom{1}{5}$$

B_0	0	x_1	x_2	x_3	y_1	y_2	
y_1		-1	1	0	1	0	1
y_2		2	0	-1	0	0	5
		-1	-1	-1	0	0	6

$B_1 = \{2, 1\}$	x_1	x_2	x_3	y_1	y_2	
x_2	0	1	-1/2	1	1/2	7/2
x_1	1	0	-1/2	0	1/2	5/2
	0	-1	1/2	0	1/2	7/2

Variable entrante : x_1 (on prends l'indice le plus petit), variable sortante : y_2

$$x_1 = y_5/2$$
 $c = z = 6 + (-1)5/2 = 7/2$

Variable entrante : x_2 , variable sortante : y_1

$$x_2 = Y_4/1$$
 $x_1 = c = c = z = 7/2 + (-1)7/2$

2. 2ème phase : Soit $B_0=\{2,1\}$, On peut copier coller les données de l'ancien tableau

$$C^{H_0} = f_{H_0}^T - f_{B_0} T^{H_0}$$

$$= -1 - (1,5)(-1/2, -1/2)^T = -1 + 1/2 + 5/2 = 2$$

$$Z = f_{B_0}^T X_{B_0} = (1,5)(7/2,5/2)^T = 7/2 + 25/2 = 16$$

 B_0 satisfait les CSO ($C^{H_0} \geq 0$). La solution optimale est $x^* = \begin{pmatrix} 5/2 \\ 7/2 \\ 0 \end{pmatrix}$, valeur optimale = 16

Exemple 3.3 (Exo 15, p29). One Note

Nouveau cours du 14/03

4 La dualité en programmation linéaire

- forme général
- Forme standard, toujours forme min

$$\min f^T x$$

$$SC \begin{cases} Ax = b \\ X \ge 0 \end{cases}$$

Forme canonique, toujours forme max

$$\max f^T x$$

$$SC \begin{cases} Ax \le b \\ X \ge 0 \end{cases}$$

Si c'est une question directe : "mettre sous forme canonique" on utilise le max. Si c'est une partie pour le résoudre

Exemple 4.1 (Conversion d'un problème général en problème canonique). One note

4.1 Définition du problème du dual

Voir poly

Exemple 4.2. Onenote

Théorème 4.1 (de dualité). *Soit* x^* *sol.opt. de* (P) *et* y^* *sol.opt de* (D) *alors*

$$C^T x^* = b^T y^*.$$

Autrement dit, la valeur opt de (P) et la valeur opt. de (D) sont pareilles

Théorème 4.2 (des écarts complémentaires). *Soit* x^* *sol. opt. de* (P) *et* y^* *sol.opt de* (D) *alors*

- 1. Si $y_i^*>0$ alors la j ème constrainte de (P) est saturée en x^*
- 2. Si la ième contrainte de (D) n'est pas saturée en y^* alors $X_i^*=0$

Exemple 4.3. One Note

Nouveau cours du 21/03

Examen:

- 1. Modélisation
- 2. Ecrire sous forme
 - (a) Standard (minimisation)
 - (b) Canonique (maximisation)
- 3. Déterminer le nombre maximum de sommet. Etudier les bases ((non-)réalisable, (nom-)dégénérée, CSO)
- 4. Résoudre par la méthode à 2 phases (algo du simplexe)
- 5. (a) Déterminer le dual
 - (b) Etudier l'existence d'une sol.opt par le dual
- 6. Résoudre graphiquement par le dual en utilisant le TEC et le TD