List of Symbols

 $E_{\mathbb{R}}, E_{\mathbb{C}}$ real, complex Banach lattice E_{+} positive cone E'dual E^* semigroup dual $E_F^{\mathcal{T}}$ F-product of E with respect to the semigroup $\mathcal T$ F-product of E $E_{\mathcal{F}}$ E_f see C-I,4 (E,φ) see C-I,4 $E \otimes F$ tensor product $\mathcal{L}(E)$ bounded linear operators on E $\mathcal{Z}(E)$ center of E E_n n-th Sobolev space $\mathcal{B}(H)$ W*-algebra of all bounded linear operators on HS(M)state space of a C*-algebra M M_{+} positive cone of the C^* -algebra M M_* predual

M^{sa}	self-adjoint part
M_n	C*-algebra of all $n \times n$ -matrices
AC	absolutely continuous functions
BV	functions of bounded variation
K	compact topological space
X	locally compact topological space
C(K),	continuous functions (with values
C(K, E)	in E)
$C_c(X)$,	continuous functions vanishing in
$C_0(X,E)$	infinity with values in E
$C^b(X)$	bounded continuous functions
$C_{ru}(X)$	uniformly continuous functions
$C^n, C^{(n)}$	continuous differentiable func-
	tions (n-times)
$C_c^{\infty}(\mathbb{R}^n)$	infinitely differentiable functions
	with compact support
$L^p(\mu)$	p-integrable functions
$S(\mathbb{R}^n)$	Schwartz space
M(K)	regular Borel measures
$M_b(X)$	bounded regular Borel measures
T	= (one-parameter) semigroup
$(T(t))_{t\geqslant 0}$	
T	subspace (reduced) semigroup
T/	quotient semigroup
Fix(T)	fixed space of T
A	generator
A'	adjoint

A^*		adjoint generator
$\sigma(A)$		spectrum
$\varrho(A)$		resolvent set
$\sigma_{ess}(A)$		essential spectrum
$\sigma_b(A)$		boundary spectrum
$P_{\sigma}(A)$		point spectrum
$P_{\sigma_b}(A)$		boundary point spectrum
$A_0(A)$		approximate point spectrum
$R_{\sigma}(A)$		residual spectrum
ω	=	growth bound
$\omega(A)$	=	
$\omega(T)$	=	
$\omega(T(t))$		
s(A)		spectral bound
$\omega_I(A)$		growth bound of the solution of
		the (ACP)
$\omega(f)$		growth bound of $T(\cdot)f$
r(T)		spectral radius
$\omega_{ess}(A)$		essential growth bound
$r_{ess}(T)$		essential spectral radius
$R(\lambda, A)$		resolvent operator
$I^d, \{I^d\}_{d=1}^{dd}$	<i>l</i> =1	orthogonal band of I (of I^d)
٨		infimum
٧		supremum
T		modulus of a regular operator
\hat{f},\check{f}		Fourier (inverse Fourier) transfor-
		mation

```
dp(f)
             subdifferential of p in f
dN(f)
              subdifferential of the norm in f
dN^+(f)
              subdifferential of the canonical
              half-norm in f
im
             range
ker
             null-space
Im
             imaginary part
Re
             real part
Re(f), Im(f)
                                                 see C-I,7
ReT, ImT
                                                 see C-I,7
\bar{f}
              complex conjugate of f
S_f
              signum operator with respect to f
\mathrm{sign}\; f
              signum of f
sign f
                                                 see C-II,2.2
f^{[n]}
                                                 B-III,2.2; C-III,2.1
|f|
             absolute value of f
f^+
             positive part of f
f^{-}
              negative part of f
Id
             identity operator
              multiplication operator
M_p
1
             function identically 1
              characteristic function of the set
\mathbb{1}_X
              X
              Dirac measure in x
\delta_x
tr
             trace
span M
             linear subspace generated by M
S(\alpha)
             sector in the complex plane
```

(ACP)	abstract Cauchy problem	
(P)	positive minimum principle	
(P')		B-II,1.21
(K)	Kato's (equality) inequality	
(RCP)	retarded Cauchy problem	
(RE)	retarded equation	
(T)	translation property	