MAT 444 Honors Contract

Grant Marshall

April 3, 2014

Conjecture 1. \mathbb{Z}_n^* is cyclic iff n < 8, $n = p^k$, or $n = 2p^k$ where p is an odd prime and $k \ge 1$.

Proposition 1. If $n = p^k$ where p is an odd prime and $k \in \mathbb{Z}^+$, \mathbb{Z}_n^* is cyclic.

Proof. Suppose that p is an odd prime and $k \geq 1$. We will show that $\mathbb{Z}_{p^k}^* \cong \mathbb{Z}_{p^{k-1}(p-1)}$. From Euler's Theorem, we know that $\phi(p^k) = p^{k-1}(p-1)$, so $|\mathbb{Z}_{p^k}^*| = p^{k-1}(p-1) = |\mathbb{Z}_{p^{k-1}(p-1)}|$. Let's define a function $\phi: \mathbb{Z}_{p^k}^* \to \mathbb{Z}_{p^{k-1}} \times \mathbb{Z}_{(p-1)}$ by $pq + r \mapsto (q, r)$.

Proposition 2. If n = 4m where m > 1, \mathbb{Z}_n^*