Publication: May 25th ______ Presentation of solutions: June 2nd

Applied Data Analysis

Exercise Sheet 4

Exercise 14

Consider a normal linear model

$$Y = B\beta + \varepsilon$$

as given in Definition I.4.3 with $n \geq \operatorname{rank}(B) = p \geq 2$, (unknown) parameter vector $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)' \in \mathbb{R}^p$ and error term $\boldsymbol{\varepsilon} \sim N_n(0, \sigma^2 I_n)$, where $\sigma > 0$ is also unknown.

- (a) Explain, how to test the following hypotheses
 - (i) $H_0: \beta_1 = \beta_2 \longleftrightarrow H_1: \beta_1 \neq \beta_2$,
 - (ii) $H_0: \beta_1 = \cdots = \beta_p \longleftrightarrow H_1: \beta_j \neq \beta_k$ for at least one pair (j,k) with $j \neq k$,

by using general linear hypothesis testing and nested model comparison.

(b) For $\alpha \in (0,1)$, construct two confidence regions for $\beta_1 - \beta_2$ of confidence level $1 - \alpha$, one based on the F-distribution and one based on the t-distribution.

Hint: Confidence regions can be constructed by inverting a statistical hypothesis test procedure in the sense of constructing the non-rejecting region corresponding to that statistical test.

(c) If for the testing problem (a),(ii) H_0 is rejected, one might ask, which pairs in

$$M := \{(j,k) \in \{1,\ldots,p\} \mid j \neq k\}$$

have significantly different effects.

To answer this question, the multiple pairwise comparison problem

$$H_0^{(j,k)}: \beta_j = \beta_k \longleftrightarrow H_1^{(j,k)}: \beta_j \neq \beta_k$$

for all $m := \binom{p}{2}$ pairs $(j, k) \in M$ could be considered.

Show for $\alpha \in (0,1)$ that if each single hypothesis $H_0^{(j,k)}$, $(j,k) \in M$, is tested on significance level $\frac{\alpha}{m}$, the multiple pairwise comparison tests all together hold a family-wise error rate of α (so-called *Bonferroni correction*).

To formalize this task, for $\beta \in \mathbb{R}^p$, let $I_0(\beta) \subseteq M$ denote the subset of all pairs (j,k) for which $H_0^{(j,k)}$ is true (i.e. $\beta_j = \beta_k$) and for $(j,k) \in M$, let $A^{(j,k)}$ denote the event that the corresponding testing procedure decides in favour for $H_1^{(j,k)}$.

Then, you have to show for for $\beta \in \mathbb{R}^p$:

$$P_{\beta} \left(\bigcup_{(j,k) \in I_0(\beta)} A^{(j,k)} \right) \leq \alpha$$

(with P_{β} denoting the underlying probability distribution corresponding to β).

Exercise 15

Consider the model of simple linear regression as given in Example I.4.6 with $n \ge 2 = \text{rank}(B)$ and corresponding sums of squares as given in Theorem I.5.11:

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2, SSR = \sum_{i=1}^{n} (\widehat{\beta}_0 + \widehat{\beta}_1 x_i - \overline{Y})^2, SSE = \sum_{i=1}^{n} (Y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i))^2.$$

According to Definition I.5.43, the corresponding coefficient of determination is defined by

$$R^2 := \frac{\text{SSR}}{\text{SST}} \stackrel{\text{Th. I.5.11,(1)}}{=} \frac{\text{SST} - \text{SSE}}{\text{SST}}.$$

Show:

(a)
$$(\widehat{\beta}_0, \widehat{\beta}_1)' = \left(\overline{Y} - \frac{s_{xY}}{s_{xx}} \overline{x}, \frac{s_{xY}}{s_{xx}}\right)'$$

(b) SSE =
$$(n-1) s_{YY} (1 - r_{xY}^2)$$
,

(c)
$$R^2 = r_{xY}^2$$
,

using the usual notations of the corresponding sample variances, sample covariance and Pearson correlation coefficient

$$s_{xx} := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 , \quad s_{YY} := \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2 ,$$

$$s_{xY} := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (Y_i - \overline{Y})^2 , \quad r_{xY} := \frac{s_{xY}}{\sqrt{s_{xx} s_{YY}}}.$$

Exercise 16

Consider the one factorial analysis of variance model in effect representation as given in Definition I.6.15 with the side condition

$$\sum_{i=1}^{p} n_i \, \alpha_i = 0 .$$

For the corresponding sum of squares SSR = $\sum_{i=1}^{p} n_i (\overline{Y}_{i\bullet} - \overline{Y}_{\bullet\bullet})^2$ (defined on slide 165), show:

$$E(SSR) = (p-1) \sigma^2 + \sum_{i=1}^{p} n_i \alpha_i^2.$$

Exercise 17

Consider the following two classes of univariate probability distributions:

- (i) The class of all univariate (regular) normal distributions $\{\mathcal{N}(\mu,\sigma^2) \mid \mu \in \mathbb{R}, \sigma > 0\}$,
- (ii) the class of all Poisson distributions $\{\mathcal{P}(\mu) \mid \mu \in (0, \infty)\}$.
- (a) Show that each of these two classes is a member of the (univariate) Exponential Dispersion Family (EDF) by finding suitable representations of the corresponding density functions or probability mass functions, respectively, as in Definition II.2.3.
 - In particular, for each class, confirm the representations for the natural parameter θ and the functions b, a and c given in Example II.2.5.
- (b) Using the results of (a), confirm the expressions for the mean E(Y) and for the variance Var(Y) given in Example II.2.5 for each of the two classes.