Titre Modèle

Description du modèle :

Le modèle décrit ci-après est tiré de [1].

Nomenclature:

- $\overline{}$ X_1 la grandeur 1 en Unit1 $\overline{}$ X_2 la grandeur 2 en Unit2

 \mathbf{E} quations: $-X_1^2 = X_2$

Cahier des Charges:

Dans cet exemple, on fixe X_1 ainsi qu'un certain nombre de grandeurs désignées comme paramètres et on cherche les variables de décision qui minimisent l'objectif en respectant les contraintes.

Variables de Décision							
Paramètre	Valeur min	Valeur max	Valeur initiale	Unité			
X_1	0.1	1.0	0.5	Unit1			
X_2		1.0		Unit2			

Sorties						
Paramètre	Type	Valeur	Unité			
X_1	Fixe	10	Unit1			
X_2	Libre	_	Unit2			

Fonction Objectif:

$$f_{obj}(V) = X_1^2 + \sqrt{X_2}$$

Test de Fiabilité:

Afin de vérifier la validité du modèle proposé, il convient de tester ce dernier avec plusieurs sets de valeurs. Vous trouverez ci-après un ensemble de valeurs d'entrée et les résultats attendus sur la base des valeurs de [1].

Numéro du set	Set 1	Set 2	Set 3	Set 4
X_1	X_1^1	X_{1}^{2}	X_1^3	X_1^4
X_2	X_2^1	X_2^2	X_2^3	X_2^4

Références

[1] A. U. Teurin and A. U. Teurdeu, "Titre de l'article," *Journal de parution*, pp. 1–14, avr 1998.