Лабораторная работа #1 Вычисления в Isabelle

Данный материал основан на:

- Книге Тобиаса Нипкоу, Лоуренса Паулсон и Маркуса Уэйнзель «Isabelle/HOL: A Proof Assistant for Higher Logic»
- Материалах сайта, посвященного Isabelle http://isabelle.in.tum.de/
- Книге Кэннета Роузен «Discrete Mathematics and Its Applications»

Подборку материалов их компиляцию и адаптацию к курсу формальных методов выполнили:

- Якимов И.А. <u>ivan.yakimov.research@yandex.ru</u>
- Kyзнецов A.C. <u>askuznetsov@sfu-kras.ru</u>

На лекции вы ознакомились с системой типов в Isabelle. Она должна быть вам знакома по работе с Haskell, так как язык Isabelle/ML очень похож на него.

Типы и термы

Термы это примерно тоже, что и выражения в императивных языках программирования. Чтобы объявить терм в Isabelle можно использовать ключевое слово **term**: Isabelle автоматически выводит типы термов. Давайте посмотрим, как это работает на примере (тип выражения выводится на экран в дополнительном экране редактора Isabelle/Jedit).

Терм	Тип	Комментарий	
term "x"	"'a"	Так как с х <u>не</u> связан конкретный тип, то в качестве типа выступает переменная ' a (переменная типа, вместо которой можно подставить любой конкретный тип).	
term "x::nat"	"nat"	Тип задан явно при помощи конструкции ::nat — можно сказать, что вместо переменной типа 'a из предыдущего примера был подставлен конкретный тип nat.	
term "x + 1"	""a"	Сложение является полиморфной функцией, и если тип х явно не задан, то мы предполагаем что она результат может быть целым числом, рациональной дробью и так далее — иметь любой тип, для которого определена операция сложения.	
term "hd"	"'a list ⇒ 'a"	Функция hd (возвращающая первый элемент списка) является отображением (то есть функцией) списков на единичные элементы.	
term "hd [1::nat,2]"	"'a"	Так как к функции hd уже применен аргумент в виде списка [1::nat,2], то она возвращает константу типа nat . Можете ли вы сказать зачем мы использовали [1::nat,2], а не просто [1,2]? Есть ли разница между двумя этими выражениями и если есть, то в чем?	

Прим.: Комментарий в Isabelle заключается в скобки со звездочками: **(* текст комментария *)**

Составные части терма должны быть одного и того же типа, то есть термы должны быть хорошо типизированными. Ниже приведен пример плохо типизированных термов.

Терм	Ошибка	Комментарий
term "x::nat = True"	Inner syntax error△ Failed to parse term	Мы не можем сравнивать натуральные числа и булевы значения, так как они принадлежат к различным доменам — nat = {1,2,} и bool = {true, false}, соответственно.
term "x::nat ≠ True"	Inner syntax error∆ Failed to parse term	Обратите внимание, в C++ и многих других языках программирования, мы можем сравнивать целые числа и булевы значения, при этом не происходит ошибки компиляции и результат в некоторых случаях может быть true! Можете ли вы сказать почему так происходит? #include <iostream> int main() { int x = 0; bool y = false; if (x == y) std::cerr << "we can compare int and bool in C++" << std::endl; } g++ example.cpp && ./a.out we can compare int and bool in C++"</iostream>

Таблица — некоторые символы. Сначала введите символ, после того как появится подсказка — нажмите на ТАВ и Jedit вставит нужный х-символ.

ASCII-код или аббревиатура	Х-символ	Комментарий
~	٦	Логическое НЕ
\land	٨	Логическое И
V	V	Логическое ИЛИ
<\forall>	\forall	Квантор всеобщности
<\exists>	3	Квантор существования
==	=	Эквивалентность

Вычисления в Isabelle/ML

Вычисления в функциональных языках могут быть реализованы при помощи техники под названием редукция графа. Рассмотрим данный процесс на простом примере.

Пусть у нас есть функция:

$$f x = (x - 2) * (x + 3)$$

По определению функция f с одним аргументом x вычисляет значение выражения

$$(x-2)*(x+3)$$
.

Предположим что мы вызвали

f 8

То есть применили функцию f к аргументу 8. Мы можем представить нашу программу следующим образом:

Где @ обозначает функциональную аппликацию (применение, или «вызов» функции). Результат применение аргумента 8 к функции f дает:

Теперь мы можем вычислить вычитание '8 — 2' и сложение '8 + 3' ϵ любом порядке. В результате получим:

На последнем шаге, умножение дает:

66

Из данного примера видно, что:

- Выполнение функциональной программы состоит из вычисления значения выражения
- Естественным представлением функциональной программы является *дерево* (или, в общем случае, *граф*)
- Вычисление состоит из последовательности простых шагов, называемых *редукциями*. Каждая редукция приводит к локальной трансформации графа (то есть к *редукции графа*) Прим.: мы с вами уже познакомились с бета-редукцией в лекции.
- Редукции подвыражений можно *безопасно* проводить в разном порядке, а именно *параллельно*, так как они не могут пересекаться друг с другом.

• Вычисление заканчивается тогда, когда не остается редуцируемых выражений.

Провести редукцию выражения в Isabelle/HOL можно при помощи команды **value**. Рассмотрим примеры:

Выражение	Результат вычислений	Комментарий
value "2 + 2"	"1 + 1 + (1 + 1)" :: "'a"	Константа 2 на самом деле определена через сумму двух единиц, вычисление выражения 2+2 приводит к выводу на экран "1+1+(1+1)", дальнейшей редукции не происходит.
value "1 * 3"	"1 * (1 + 1 + 1)" :: "'a"	Константа 3 определена через сумму трех единиц. Вычисление 1*3 приводит к выводу на экран "1 * (1 + 1 + 1)", дальнейшей редукции не происходит.

Натуральные числа и натуральный ряд

Натуральные числа (тип **nat**) построены индуктивно по двум простым принципам:

- Ноль является натуральным числом*
- Число, следующее за натуральным, также является натуральными

Посмотрим на (упрощенное) определение натуральных чисел в Isabelle.

Ввод	Комментарий
datatype nat = Zero Suc nat	!Ключевое слово datatype используется для определения алгебраических типов данных (определенных через другие типы, включая самих себя). Определение пат говорит о том, что объект данного типа может иметь значение Zero либо значение, сконструированное из другого значения типа пат добавлением к нему слева конструктора Suc. Пример: Zero = 0 Suc Zero = 1 Suc (Suc Zero) = 2, и так далее О конструкторе Suc можно думать как об операции прибавления единицы, в нашем примере: Zero = 0 Suc Zero = 1 + 0 = 1

^{*}Обычно в натуральный ряд *не* включается ноль и $N = \{1,2,...\}$, а $N^0 = Z^+ = \{0,1,2,...\}$ определяется как множество неотрицательных целых.

Suc (Suc Zero) = 1 + (1 + 0) = 2

Продвинутый материал — мотивация индуктивного определения nat через 0 и Suc.

Натуральные числа определены таким образом, чтобы для них можно было относительно просто задать основные арифметические операции такие как сложение, умножение и так далее, а также доказать основные алгебраические свойства данных операций.

Ввод	Комментарий	
primrec add :: "nat \Rightarrow nat \Rightarrow nat" where "add x 0 = x" "add x (Suc n) = Suc (add x n)"	Здесь вы видите как определена операция сложения над натуральными числами. Вспомним как мы определили натуральное число: • Ноль — натуральное число • Число следующее за натуральным также натуральное	
Для задания операции сложения	нам нужно рассмотреть эти два случая.	
	гь к любому числу ноль, получится это же число:	
	— здесь немного сложнее, но тоже достаточно просто.	
Вспомним что такое сложение — например $x = 2$, $n = 3$, тогда $x + r$ оставляем без изменений, поэтог тоже самое время, нам нужно со используя п как счетчик. Также ч	- x + n означает взять x и прибавить к нему n единиц. Пусть, n = 2 + 3 = 2 + (1 + 1 + 1) = 5. Нужно отметить, что x мы му при вызове функции сложения x передаем как есть. В считать, сколько раз мы прибавили 1, чего можно добиться, насто используют метафору «перетаскивания» единицы в. Рассмотрим пример на конкретных значениях: 2 + 3 2 2)	
Если свернуть все промежуточные значения, мы получим « $1 + 1 + 1 + 2$ », что тоже что и « 2		
+1+1+1» и « $2+3$ » и « 5 ». !Резонный вопрос может заключаться в том, действительно ли мы нашли сумму 2 и 3 ? Ведь		
вывод на экран результата в виде $(1+1+1+1)$ вряд ли удовлетворит кого-нибудь. Но		
на самом деле, все это разные представления числа 5. Чтобы выразить результат в		
десятичной системе счисления, нужно просто написать соответствующую функцию.		

Лямбда-исчисление

Высокоуровненые функциональные программы (написанные на Haskell, ML и так далее) транслируются в нотацию лямбда-счисления, которая далее транслируется в конкретную реализацию (байткод, ассемблер и так далее). Грубо говоря, лямбда-исчисление является своеобразным «ассемблером» для функциональных языков. Мы также можем в явном виде использовать лямбда-функции в коде высокоуровневых программ там, где это необходимо.

Рассмотрим определение функции инкремента λn . n+1 по аналогии с языком Си++

*	Заголовок	Тело функции	Вызов
Isabelle/ML	λn.	.n + 1	(λn. n + 1) 2
C++11	[] (int n)	{return n + 1;}	[](int n){return n+1;}(2)

Для того, чтобы произвести вычисления мы можем воспользоваться командой value

Ввод	Вывод	Комментарий
value "(λn. n + 1) 2::nat"	\ \ \ //	Результат вычислений, как и ожидалось
	:: "nat"	равен трем.

Обсуждение

Вы ознакомились с базовыми возможностями Isabelle/HOL а именно:

- Получили начальные сведения о системе типов, правилах вывода типов.
- Ознакомились с процессом вычислений в Isabelle/ML
- Ознакомились с типом **nat**, задающим натуральные числа
- Разобрали пример использования лямбда-функций

Как выбрать вариант?

Ваш вариант формируется бинарным кодом. Выбираете код из списка ниже (номер кода в списке соответствует вашему номеру в журнале). Далее выбираете для каждого задания один из псевдо-вариантов, проходя бинарный код *слева-направо*:

- 1. 111100
- 2. 110101
- 3. 010101
- 4. 100111
- 5. 000001
- 6. 100010
- 7. 110101
- 8. 101001
- 9. 000101
- 10.000110
- 11,001010

- 12.000110
- 13. 110110
- 14. 101011
- 15. 010111
- 16.011100
- 17. 110000
- 18.000001
- 19. 111001
- 20.010011

Задания

Базовые задания

- 1. Для указанных выражений нужно написать термы, при помощи команды **term**, указать их тип, сопроводив нужным комментарием #1.1.Типы и термы|outline
- 2. Для указанных выражений нужно проверить, являются ли они хорошо типизированными, если нет, то пояснить почему #1.1.Типы и термы outline
- 3. Найти указанных значений выражений при помощи команды **value** #1.2.Вычисления в <u>Isabelle/ML|outline</u>
- 4. Представить выражение в виде дерева #1.2.Вычисления в Isabelle/ML|outline
- 5. Записать указанные числа через 0 и Suc, вычислить значения составленных из них выражений при помощи **value** #1.3.Натуральные числа и натуральный ряд|outline
- 6. Записать описанные функции в виде лямбда-функций, вычислить их значения для указанных аргументов #1.4.Лямбда-исчисление|outline

Задание для указанных в вариантах выражений	Псевдо-вариант 0	Псевдо-вариант 1
1) Объявить термы при помощи команды term , указать их тип, сопроводить ответ нужными комментариями #1.1.Типы и термы outline	переменная х типа bool; логическое отрицание х.	переменная х типа nat; 2 + 2, где оба числа — nat.
2) Проверить, являются ли данные выражения хорошо типизированными, если нет,	логическое отрицание нуля; деление переменной х на ноль.	логическое И нуля и единицы; декремент переменной х.

то почему? Имеют ли они смысл? #1.1.Типы и термы outline		
3) Найти значения выражений при помощи команды value. Что служит результатом, почему? Каков тип результата? Можно ли продолжить вычисления? #1.2.Вычисления в Isabelle/ML outline	Разность 42 и 28; Тоже выражение, но теперь обе константы имеют тип nat .	Сумма 13 и 7; Тоже выражение, но теперь обе константы имеют тип nat ;
4) Представить выражения в виде дерева.	((x + 2) * (x - 2)) / 3; f 16.	(17 - (p + 42)) / (q - 28); g 20.
Можно ли провести вычисления параллельно? Если да, раскрасьте поддеревья с независимыми подвыражениями в разные цвета. Как бы вы описали алгоритм выбора поддеревьев для параллельных вычислений? #1.2.Вычисления в Isabelle/ML outline		
5) Записать указанные числа через 0 и Suc, вычислить значения составленных из них выражений при помощи value #1.3.Натуральные числа и натуральный ряд outline	a = 2, b = 3: • a + b • a * b	a = 6, b = 2: • a - b • a + b
6) Записать выражения в виде лямбда-функций, вычислить их значения для указанных аргументов при помощи value. Что служит результами, почему? Каков тип результатов? #1.4.Лямбда-исчисление	f (x) = x * 2	g(y) = y + y

outling	
<u>outilile</u>	

Источники и материалы для дополнительного чтения

- Richard S. Bird, Philip Wadler. Introduction to Functional Programming, 1st edition, 1998
- Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. A Proof Assistant for Higher-Order Logic, 2016
- Аксиомы Пеано, здесь же вы найдене рекурсивное определение суммы для натуральных чисел, Википедия https://en.wikipedia.org/wiki/Peano axioms