บทที่ 3 ขั้นตอนการดำเนินการ

3.1 ขั้นตอนการออกแบบและวิธีดำเนินการ

ปริญญานิพนธ์นี้นำเสนอระบบวัดอัตราการไหลของน้ำในแม่น้ำแสดงผลผ่านอินเตอร์เน็ต สามารถอธิบายหลักการทำงานตามในส่วนของแผนผังการทำงานแบบมีเงื่อนไขนั้นเป็นการวาง แผนการเผื่อให้สามารถเรียงลำดับการดำเนินงานได้อย่างถูกต้องโดยเริ่มจากการศึกหาข้อมูลเพื่อให้ เกิดการผิดพลาดน้อยที่สุดเมื่อลงมือปฏิบัติงานจริง และดำเนินการขั้นตอนถัดไปดังรูปภาพที่ 3-1

ภาพที่ 3-1 ขั้นตอนการออกแบบโครงงาน

3.2 โครงสร้างภาพรวมของระบบ

ภาพที่ 3-2 ระบบควบคุมการทำงาน

ภาพที่ 3-3 บล็อกไดอะแกรมของระบบ

จากภาพที่3-2 และ3-3 เป็นชุดควบคุมการทำงานมีไมโครคอนโทรลเลอร์สามารถแบ่งการ ทำงานออกเป็น 3 ส่วนหลักๆ คือ

- 1. ภาคอินพุต ทำหน้าที่เป็นส่วนรับข้อมูลเข้ามาประมวลผล เป็นการรับค่าจากเครื่องวัด กระแสน้ำแบบใบพัด และคีย์แพด
- 2. ภาคประมวลผล ค่าที่กำหนดจากคีย์แพด และเครื่องวัดกระแสน้ำแบบใบพัดที่หมุนได้ ถูก ส่งไปประมวลในภาคประมวลผล ภาคประมวลผลทำหน้าที่ประมวลผลข้อมูลที่รับเข้าจากภาคอินพุต โดยใช้โปรแกรมอาดุยโน่ และใช้บอร์ดไมโครคอนโทรลเลอร์ในการเชื่อมต่อระหว่างคีย์แพด และ เครื่องวัดกระแสน้ำแบบใบพัด
- 3. ภาคเอาต์พุต ทำหน้าที่รับคำสั่งจากภาคประมวลผลแล้วทำตามคำสั่งที่ได้รับมาจาก โปรแกรมอาดุยโน่ ในส่วนของภาคประมวลผล แล้วค่าที่ได้สำเร็จแล้วนั้นจะถูกส่งไปแสดงที่ จอแสดงผลผลึกเหลวแอลซีดี และเว็บไซด์

3.3 คุณสมบัติทั่วไปของอุปกรณ์

3.3.1 เครื่องวัดกระแสน้ำแบบใบพัด A-OTT C31

ภาพที่ 3-4 เครื่องวัดกระแสน้ำแบบใบพัด A-OTT C31

เมื่อมีกระแสน้ำไหลใบพัดจะหมุน เมื่อใบพัดหมุนไปได้ 1 รอบ แม่เหล็กที่ปลายกระบอก ใบพัดจะดูดหน้าสัมผัสที่อยู่ในตัวเครื่องให้ต่อกัน แล้วส่งผ่านขึ้นมาทางสายสัญญาณมายังเครื่องอ่าน ค่ากระน้ำแบบใบพัด จากนั้นจะถูกคำนวณค่าอัตราการไหลของกระแสก็จะมีตัวเลขแสดงขึ้นทางหน้า จอแสดงผลผลึกเหลว แสดงได้ดังภาพที่ 3-4

ตารางที่ 3-1 คุณสมบัติของเครื่องวัดกระแสน้ำแบบใบพัด A-OTT C31

Operating voltage range : max. 9V DC	Size dia. x length : ø35 x 310mm
Material- meter body : brass - al Ni 8 mt	Material – propeller : gal Ni 12 high glossalternative - plastic - Hostaform C
Weight: 1.26 kg	Current meter : 1 pulse/revolution

3.3.2 คีย์แพด (Keypad 4x4)

ภาพที่ 3-5 คีย์แพด (Keypad)

ตารางที่ 3-2 คุณสมบัติของคีย์แพด (Keypad)

Maximum Rating: 24 VDC. 30 mA	Features : Ultra-thin design
Interface: 8-pin access to 4x4 matrix	Features : Easy interface to any microcontroller
Operating temperature : 32 to 122 °F (0 to 50°C)	Dimensions : Keypad, 2.7 x 3.0 in (6.9 x 7.6 cm) Cable: 0.78 x 3.5 in (2.0 x 8.8 cm)

3.3.3 บอร์ดไมโครคอนโทรลเลอร์ Arduino Due

ภาพที่ 3-6 บอร์ดไมโครคอนโทรลเลอร์ Arduino Due

เป็นบอร์ดไมโครคอนโทรลเลอร์อาดุยโน่ที่เปลี่ยนชิป MCU ใหม่ ซึ่งจากเดิมเป็นตรกูล AVR เปลี่ยนเป็นเบอร์ AT91SAM3X8E (ตระกูล ARM Cortex-M3) แทนทำให้การประมวลผลเร็วขึ้น แต่ ยังคงรูปแบบโค้ดโปรแกรมของอาดุยโน่**ที่ง่ายอยู่ แสดงได้ดังภาพที่ 3-**6

ตารางที่ 3-3 คุณสมบัติของบอร์ดไมโครคอนโทรลเลอร์ Arduino Due

Microcontroller : AT91SAM3X8E	Operating Voltage : 3.3V
Input Voltage (recommended) : 7-12V	Input Voltage (limits) : 6-20V
Analog Input Pins : 12	Clock Speed : 84 MHz
DC Current for 5V PinPin : 800 mA	DC Current for 3.3V Pin : 800 mA
SRAM : 96 KB	Digital I/O Pins : 54 (of which 12 provide PWM output)
Size: 101.52 x 53.3 mm	Weight: 36 g

3.3.4 โมดูลต่อพ่วงเก็บข้อมูล Data Logger Shield

ภาพที่ 3-7 โมดูลต่อพ่วงเก็บข้อมูล Data Logger Shield

ตารางที่ 3-4 คุณสมบัติของโมดูลต่อพ่วงเก็บข้อมูล Data Logger Shield

Real time clock (RTC)	SD card interface works with FAT16 or
	FAT32 formatted cards.
Onboard 3.3v regulator is both a	Arduino Due compatible - 12 analog
reliable reference voltage and also	inputs (12-bit)
reliably runs SD cards that require a lot	
of power to run	
Arduino Mega or ATmega2560	Arduino UNO or ATmega328 compatible
compatible - 16 analog inputs (10-bit)	- 4 analog channels at 10 bit resolution,
	6 if RTC is not used

3.3.5 โมดูลนาฬิกา DS3231

ภาพที่ 3-8 โมดูลนาฬิกา DS3231

ตารางที่ 3-5 คุณสมบัติของโมดูลนาฬิกา DS3231

Two calendars and alarm clock	Real-time clock chip: DS3231	
Real time clock generator for seconds,	Battery socket compatible with LIR2032	
minutes, hours, day, date, month, and	batteries	
year timing		
Can be connected directly to the	Valid until 2100 with leap year	
microcontroller IO ports	compensation	

3.3.6 จอแสดงผลผลึกเหลวแอลซีดี 20x4

ภาพที่ 3-9 จอแสดงผลผลึกเหลวแอลซีดี 20x4

จากภาพที่ 3-9 จอแสดงผลผลึกเหลวแบบแสดงผลเป็นตัวอักขระ Character LCD และขาใน การเชื่อมต่อระหว่างจอแสดงผลผลึกเหลวแอลซีดี กับ ไมโครคอนโทรลเลอร์มีดังนี้

- 1. GND เป็นกราวด์ใช้ต่อระหว่างกราวด์ ของระบบไมโครคอนโทรลเลอร์ กับ จอแสดงผล ผลึกเหลว
 - 2. VCC เป็นไฟเลี้ยงวงจรที่ป้อนให้กับแอลซีดีขนาด +5VDC
 - 3. VO ใช้ปรับความสว่างของหน้าจอแอลซีดี
 - 4. RS ใช้บอกให้แอลซีดีคอนโทรลเลอร์ ทราบว่าโค๊ดที่ส่งมาทางขาเดต้าเป็นคำสั่งหรือข้อมูล
 - 5. RW ใช้กำหนดว่าจะอ่านหรือเขียนข้อมูลกับแอลซีดีคอนโทรลเลอร์
 - 6. E เป็นขา Enable หรือ Chips Select เพื่อกำหนดการทำงานให้กับแอลซีดีคอนโทรลเลอร์
 - 7-14. DB0-DB7 เป็นขาสัญญาณเดต้า 8 บิต ใช้สาหรับเขียนหรืออ่านข้อมูล/คำสั่ง
 - 15. A (LED+) เป็นขา VCC สาหรับ LED backlight (5 โวลต์)
 - 16. K (LED-) เป็นขา GND สาหรับ LED backlight (กราวด์)

ตารางที่ 3-6 คุณสมบัติของจอแสดงผลผลึกเหลวแอลซีดี 20×4

Operating Temp. : 0°C - 50°C	Storage Temp. : -40 to +85 ℃
Display Format : 20 characters × 4 lines	Display Fonts : 5 × 8 dots (1 character)
Weight: 65g	Operating temperature : -40 to +85 ℃
Backlight : Blue	Vibration: 10-55-10 Hz

3.3.7 โมดูลแปลงสัญญาณอนุกรม Serial I²C แอลซีดี

ภาพที่ 3-10 โมดูลแปลงสัญญาณอนุกรม Serial I²C แอลซีดี

โมดูลแสดงผลแบบแอลซีดี เป็นอุปกรณ์อิเล็กทรอนิกส์สำหรับแสดงข้อความตัวเลขหรือ ตัวอักษรแบบ 2 หรือ 4 บรรทัด จำนวน 16 หรือ 20 ตำแหน่งต่อบรรทัดได้แก่ 16x2 20x2 และ20x4 เป็นต้น และขนาดของตัวอักษรที่พบเห็นได้บ่อย คือ 5x7, 5x8 และ 5x10 จุด (dot matrix) โมดูล แอลซีดี โดยทั่วไปมักนิยมใช้การเชื่อมต่อกับไมโครคอนโทลเลอร์แบบขนาน (parallel) สำหรับรับส่ง ข้อมูลทีละ 8 บิต หรือ 4 บิต และยังต้องใช้ขาสัญญาณควบคุมอีกคือ Enable, R/W, RS

ตารางที่ 3-7 คุณสมบัติของโมดูลแปลงสัญญาณอนุกรม Serial I²C แอลซีดี

1 0	
Serial I ² C LCD modules	
Input Voltage : -0.3 to VDD +0.3V	Supply Current : 0.5 to 1.5 mA
Input High Volt. : 0.7 VDD to VDD V	Input Low Volt. : VSS to 0.3 VDD V
Supply Voltage (Logic) : -0.3 to 5.5 V	Supply Voltage (LCD) : VDD-7.0 to VDD+0.3
Operating Temp. : -20 to 70 ℃	Storage Temp. : -30 to 80 ℃

3.4 การออกแบบวงจรที่ใช้ในระบบ

ในการทำโครงงานมีการออกแบบวงจรแสดงค่าจอแอลซีดีวงจรการสื่อสารกับโมดูลต่อพ่วง เก็บข้อมูล (Data Logger Shield) วงจรการสื่อสารกับคีย์แพด และวงจรการสื่อสารกับเครื่องวัด กระแสน้ำแบบใบพัด A-OTT C31

3.4.1 วงจรสื่อสารกับเครื่องวัดกระแสน้ำแบบใบพัด A-OTT C31

ในการต่อเครื่องวัดกระแสน้ำแบบใบพัด A-OTT C31 กับบอร์ดไมโครคอนโทรลเลอร์ Arduino Mega 2560 มีวิธีการดังนี้ ขา 51 ของบอร์ดไมโครคอนโทรลเลอร์ต่อรวมเข้ากับไดโอดและ ตัวต้านทานที่ต่ออนุกรมกันไว้ ส่วนปลายขาของตัวต้านต่อเข้ากับขา 5 โวลต์ ของ และขากราวด์ต่อ เข้ากับสายสีดำของเครื่องวัดกระแสน้ำแบบใบพัด แสดงได้ดังภาพที่ 3-11

ภาพที่ 3-11 การต่อวงจรสื่อสารกับเครื่องวัดกระแสน้ำแบบใบพัด A-OTT C31

3.4.2 วงจรการสื่อสารกับคีย์แพด

ปุ่มกดที่นอกเหนือจากตัวเลขที่ใช้พิมพ์ค่าต่างๆแล้ว ยังมีตัวอักษรภาษาอังกฤษนั้นยังใช้ใน การบันทึกค่าหรือลบค่า และยังเป็นลูกศรอีกด้วย ขาของคีย์แพดทั้ง 8 นั้น ถ้ามองจากด้านหน้า และ นับจากซ้ายไปขวา จะเป็นขาหมายเลข 1-8 ตามลำดับ โดยที่ขา 1-4 จะเป็นขาสำหรับแถวแนวนอน (Rows) และขา 5-8 จะเป็นขาแนวตั้ง (Columns) ในการต่อกับบอร์ดไมโครคอนโทรลเลอร์ Arduino Due มีวิธีการดังนี้ จะต้องต่อขาแนวนอน (ขาหมายเลข 1-4 นับจากซ้ายไปขวา) ของอุปกรณ์คีย์แพด 4x4 ไปยังขา 9 8 7 และ6 ของบอร์ดไมโครคอนโทรลเลอร์ และขาแนวตั้ง (ขาหมายเลข 5-8 นับจาก ซ้ายไปขวา) ของอุปกรณ์คีย์แพด 4x4 ไปยังขา 5 4 3 และ2 ของบอร์ดไมโครคอนโทรลเลอร์ แสดงได้ ดังภาพที่ 3-12

ภาพที่ 3-12 การต่ออวงจรการสื่อสารกับคีย์แพด

3.4.3 วงจรการสื่อสารกับโมดูลต่อพ่วงเก็บข้อมูล Data Logger Shield

จากภาพ 3-13 ใช้ในการเก็บค่าหรือบันทึกค่าข้อมูลที่จะนำไปแสดงผล ส่วนในการต่อโมดูล ต่อพ่วงเก็บข้อมูล Data Logger Shield กับบอร์ดไมโครคอนโทรลเลอร์Arduino Due มีวิธีการดังนี้

IOREF ต่อเข้ากับขา IOREF
ขา RESET ต่อเข้ากับขา RESET
ขา 3.3 โวลต์ ต่อเข้ากับขา 3.3 โวลต์
ขา 5 โวลต์ ต่อเข้ากับขา 5 โวลต์
ขา 5 โวลต์ ต่อเข้ากับขา 5 โวลต์
ขา GND1 ต่อเข้ากับขา GND1
ขา GND2 ต่อเข้ากับขา GND2
ขา VIN ต่อเข้ากับขา VIN
ขา 0 ต่อเข้ากับขา A0
ขา 1 ต่อเข้ากับขา A1
ขา 2 ต่อเข้ากับขา A2
ขา 3 ต่อเข้ากับขา A3
ขา 4 ต่อเข้ากับขา SDA20
ขา 5 ต่อเข้ากับขา 5 CL21
ขา RX ต่อเข้ากับขา 0

ขา 2 ต่อเข้ากับขา 2

ขา 3 ต่อเข้ากับขา 3
ขา 4 ต่อเข้ากับขา 4
ขา 5 ต่อเข้ากับขา 5
ขา 6 ต่อเข้ากับขา 6
ขา 7 ต่อเข้ากับขา 7
ขา 8 ต่อเข้ากับขา 8
ขา 9 ต่อเข้ากับขา 9
ขา 10 ต่อเข้ากับขา 10
ขา 11 ต่อเข้ากับขา 11
ขา 12 ต่อเข้ากับขา 12
ขา 13 ต่อเข้ากับขา GND
ขา AREF ต่อเข้ากับขา SDA1
ขา SCL ต่อเข้ากับขา SCL1

ภาพที่ 3-13 การต่อวงจรการสื่อสารกับ Data Logger Shield

3.4.4 การออกแบบวงจรแสดงค่าจอแสดงผลผลึกเหลวแอลซีดี

เพื่อแสดงค่าหรือข้อมูลที่เรากำหนดไว้ ในการต่อจอแอลซีดี กับบอร์ดไมโครคอนโทรลเลอร์ Arduino Due มีวิธีการต่อดังนี้ ขา GND ต่อเข้ากับขา GND ขา VCC ต่อเข้ากับขา 5V ขา SDA ต่อ เข้ากับขา SDA และขา SCL ต่อเข้ากับขา SCL แสดงได้ดังภาพที่ 3-14

ภาพที่ 3-14 การต่อจอแอลซีดีเข้ากับบอร์ดไมโครคอนโทรลเลอร์

3.5 ผลการทดสอบ

3.5.1 ผลการทดสอบเครื่องวัดกระแสน้ำแบบใบพัด A - OTT C31

ในเบื้องต้นเราได้นำออสซิลโลสโคปมาจับเครื่องวัดกระแสน้ำแบบใบพัดจากนั้นจึงพบว่า เครื่องวัดกระแสน้ำแบบใบพัดนี้ให้สัญญาณที่ออกมาเป็นสัญญาณพัลส์ แสดงได้ดังภาพที่ภาพที่ 3-15 ซึ่งสัญญาณ พัลส์ที่ออกมา 1 ลูก เพื่อบอกว่าใบพัดของเครื่องวัดกระแสน้ำนั้นหมุน 1 รอบ ยิ่งใบพัด หมุนมากเท่าไหร่ก็จะยิ่งส่งสัญญาณพัลส์ถี่มากขึ้นเท่านั้น

ภาพที่ 3-15 สัญญาณพัลส์ของเครื่องวัดกระแสน้ำแบบใบพัด

3.5.2 ผลการทดสอบการแสดงค่าอัตราการไหลของน้ำขึ้นเว็บไซด์

เนื่องจากค่าที่แสดงออกมาจากจอแอลซีดีให้เราเห็นค่าผลการทดลองแล้วยังมีการแสดงการ เก็บค่าผลการทดลองขึ้นระบบอินเตอร์เน็ตอีกด้วย ส่วนในเว็บที่เราได้นำค่าผลการทดลองขึ้น อินเตอร์เน็ตนั้นมีชื่อเว็บว่า "https://flowrate.wordpress.com" ในเว็บนี้จะเป็นการแสดงจังหวัด และสถานีที่เราได้ไปทำการเก็บผลการทดสอบ สถานีที่ทำการทดสอบมีดังนี้ แสดงได้ดังภาพที่ 3-16

ภาพที่ 3-16 เว็บไซต์ https://flowrate.wordpress.com

1. จังหวัดที่ทำการเก็บค่า

ประเทศไทยในปัจจุบันมี 77 จังหวัด ในการเก็บค่าผลการทดสอบที่แสดงบนเว็บไซด์นั้นเริ่ม จาการเก็บค่าที่จังหวัดกาญจนบุรี แสดงได้ดังภาพที่ 3-17

ites 🖬 Reader	Inc.	I	∠ Write
	ระบบการวัดอัตรา	การใหลของน้าในแม่น้ำแสดงผลผ่านอินเตอร์เน็ต	
อันดับ	จังหวัด	พื้นที่ (ดารางกิโลเมตร)	
1	กาญจนบุรี	19,483.148	
2	เชียงใหม่	20,107.057	
3	นครราชสีมา	20,493.964	
4	ตาก	16,406.650	
5	อุบลราชธานี	15,774.000	
6	สุราษฎร์ธานี	12,891.469	
7	ชัยภูมิ	12,778.287	
8	แม่ฮ่องสอน	12,681.259	
9	เพชรบูรณ์	12,668.416	
10	ลำปาง	12,533.961	
11	อุดรธานี	11,730.302	🗶 Customize 🖋 Edit 🔟 Stats

ภาพที่ 3-17 จังหวัดที่ทำการเก็บผลการทดสอบ จังหวัดกาญจนบุรี

2. กดเข้าไปยังจังหวัดกาญจนบุรีแล้วจะพบว่ามีสถานีที่ทำการเก็บผลการทดสอบในจังหวัด กาญจนบุรี เช่น สถานีท้ายเขื่อน อำเภอท่าม่วง จังหวัดกาญจนบุรี สถานีแม่น้ำแควน้อย ตำบลลุ่มสุ่ม อำเภอไทรโยค จังหวัดกาญจนบุรี สถานีบ้านหนองบัว ตำบลหนองบัว อำเภอเมือง จังหวัดกาญจนบุรี เป็นต้น แสดงได้ดังภาพที่ 3-18

ภาพที่ 3-18 สถานีที่ทำการเก็บผลการทดสอบใน จังหวัดกาญจนบุรี

3. ยกตัวอย่างเช่น เมื่อกดเข้าไปสถานีท้ายเขื่อน อำเภอท่าม่วง จังหวัดกาญจนบุรี หรือสถานี อื่นๆก็จะพบว่ามีไฟล์การเก็บค่าผลการทดลองครั้งที่ 1 – 4 และเมื่อเรากดเข้าไปก็จะพบว่ามีการ สรุปผลเป็นกราฟแสดงความลึกและกราฟแสดงอัตราการไหลของสถานีที่ทำการวัดดังภาพ 3-19

ภาพที่ 3-19 ไฟล์การเก็บค่า

ภาพที่ 3-20 การสรุปผลเป็นกราฟ

4. นอกจากจะมีกราฟสรุปให้เห็นดังภาพที่ 3-21 ยังมีไฟล์ที่เป็น Excell ให้ดาวน์โหลดเพื่อไว้ ดูค่าการเก็บผลการทดสอบอีกด้วย

ภาพที่ 3-21 ไฟล์ Excell ที่ทำการดาวน์โหลดจากเว็บไซต์

3.5.3 ค่าระดับน้ำทะเลปานกลางที่ทำการเก็บทดสอบ

ในการเก็บผลการทดสอบค่ากระแสน้ำแต่ละที่ แต่ละจังหวัดนั้นมีค่าระดับน้ำทะเลปลางกลาง ต่างกัน ค่าระดับน้ำทะเลปานกลางเรียกย่อว่าค่า ร.ท.ก. เป็นค่าระดับน้ำทะเลขึ้นสูงสุดและลงต่ำสุด ของแต่ละวันในช่วงระยะเวลาที่กำหนดแล้วนำมาหาค่าเฉลี่ยเป็นระดับน้ำทะเลปลานกลาง และในการ ทดสอบการเก็บผลแต่ละพื้นที่ก็มีค่าระดับน้ำทะเลปานกลางที่ต่างกัน เราสามารถทราบค่า ระดับน้ำทะเลปานกลางที่ใช้อ้างอิงได้จากตาราง 3-8

ตารางที่ 3-8 ค่าระดับน้ำทะเลปานกลาง

ลำดับ	สถานี	ที่ตั้ง	ศูนย์เสา (ร.ท.ก.)
1	K.10	แม่น้ำแควน้อย ต.ลุ่มสุ่ม อ.ไทรโยค จ.กาญจนบุรี	30.400
2	K.38A	ห้วยลิ่นถิ่น ต.ลิ่นถิ่น อ.ทองผาภูมิ จ.กาญจนบุรี	90.000
3	K.39	ห้วยองธิ ต.ท่าขนุน อ.ทองผาภูมิ จ.กาญจนบุรี	81.800
4	K.50	ห้วยดินโส ต.ท่าขนุน อ.ทองผาภูมิ จ.กาญจนบุรี	79.800
5	K.54	แม่น้ำแควน้อย ต.ลิ่นถิ่น อ.ทองผาภูมิ จ.กาญจนบุรี	60.600
6	K.58	แม่น้ำแควน้อย ต.ท่าเสา อ.ไทรโยค จ.กาญจนบุรี	39.500
7	K.35A	บ้านหนองบัว ต.หนองบัว อ.เมือง จ.กาญจนบุรี	84.191