Contents

1 Equational Unification

2

1 Equational Unification

In the following let E be a set of identities of the form $\{e_1 \approx f_1, \dots, e_n \approx f_n\}$. Furthermore let Sig(E) denote the set of all function symbols occurring in E.

Definition 1.1. An *E*-unification Problem over Σ is a finite set *S* of the form $S = \left\{ s_1 \stackrel{?}{\approx}_E t_1, \dots, s_n \stackrel{?}{\approx}_E t_n \right\}$ with $s_1, \dots, s_n, t_1, \dots, t_n \in T(\Sigma, V), V$ being a countable set of Variables.

A substitution σ is an E-unifier of S iff $\sigma(s_i) \approx_E \sigma(t_i)$ for all $1 \leq i \leq n$. The set of all E-unifiers of S is denoted by $\mathcal{U}_E(S)$. S is E-unifiable iff $\mathcal{U}_E(S) \neq \emptyset$.

Definition 1.2. Let S be an E-unification problem over Σ .

- S is an elementary E-unification problem iff $Sig(E) = \Sigma$.
- S is an E-unification problem with constants iff $\Sigma Sig(E) \subseteq \Sigma^{(0)}$
- S is an **general** E-unification problem iff $\Sigma Sig(E)$ contains an at least unary function symbol.