1 Warm-up

Exercise Consider the solid formed when you rotate the region y = 1/x, where 1 < x, about the x-axis. Compute its volume.

2 Improper Integrals

Definition We define $\int_a^\infty f(x) \, dx$ to be $\lim_{b \to \infty} \int_a^b f(x) \, dx$ if this limit exists. In this case, we say $\int_a^\infty f(x) \, dx$ **converges**. If this limit does not exist, we say it **diverges**. (Make sure to read the definition box (especially part (c)) on page 414.)

Exercises

- 1. Consider $\int_{1}^{\infty} \frac{1}{t} dt$. Does this integral converges?
- 2. Does the integral $\int_1^\infty \frac{1}{t^2} dt$ converge?

3. For which values of the constant p does the integral $\int_{1}^{\infty} \frac{1}{t^{p}} dt$ converge? Explain. [Hint: You will need to consider three cases: p > 1, p = 1, and p < 1.]

4. On the interval $[1, \infty]$, we notice that $y = e^{-t}$ is always (greater than/less than) $y = e^{-t^2}$. Use this to decide whether $\int_1^\infty e^{-t^2} dt$ converges. Could you answer this questions by finding an antiderivatives of e^{-t^2} and then evaluating the integral like we did before?

5. On the interval $[2, \infty]$, we notice that $y = \frac{1}{\ln x}$ is always (greater than/less than) $y = \frac{1}{x}$. Use this to decide whether $\int_{2}^{\infty} \frac{1}{\ln x} dx$ converges.

6. Suppose $0 \le f(t) \le g(t)$ for $t \ge a$. Complete the following sentences using converges or diverges:

If
$$\int_a^\infty f(t) dt$$
 ______, then $\int_a^\infty g(t) dt$ ______.

If
$$\int_a^\infty g(t) dt$$
 ______, then $\int_a^\infty f(t) dt$ ______.

7. Does $\int_0^\infty xe^{-x} dx$ converge? If so, to what does it converge?

8. Use $f(x) = x^3$ to show that it is not true that

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{-t}^{t} f(x) \, dx.$$

9. What is "wrong" with the following integrals? What happens if you try to compute Riemann sums near x = 0?

$$\int_0^1 \frac{dx}{\sqrt{x}}$$

$$\int_{-1}^{1} \frac{dx}{x^2}$$

10. Define $\int_0^1 \frac{dx}{\sqrt{x}} = \lim_{b \to 0} \int_b^1 \frac{dx}{\sqrt{x}}$. Compute the value.

- 11. (a) For which values of p does $\int_1^\infty \frac{dx}{x^p}$ converge?
 - (b) For which values of p does $\int_0^1 \frac{dx}{x^p}$ converge?

(c) For which values of p does $\int_0^\infty \frac{dx}{x^p}$ converge?

12. Find $\int_{-1}^{1} \frac{dx}{x^2}$.

13. As before, sometimes a comparison can help us determine whether or not an integral converges or diverges. With that said, does $\int_0^1 \frac{1}{\sqrt{x^2 - 1}} dx$ converge or diverge? [Hint: Compare with $\int_0^1 \frac{1}{x} dx$.]

14. Decide whether each of the following improper integrals converge or diverge.

(a)
$$\int_0^\infty \frac{1}{e^2 + 2^x} \, dx$$

(b)
$$\int_{1}^{\infty} \frac{1 + \sin \theta}{\theta^2} \, d\theta$$

(c)
$$\int_2^\infty \frac{dx}{x(\ln(x))^2}$$

(d)
$$\int_1^2 \frac{dx}{x(\ln(x))^2}$$

(e)
$$\int_0^1 \frac{dx}{x(\ln(x))^2}$$