

SQLite Veri Tabanına Bağlanma, SQL ve dplyr ile Sorgulama

İçindekiler

- RSQLite paketi ile veri tabanı oluşturma, bağlanma ve tablo sorgulama
- SQLDF paketi ile sorgulama
- DPLYR paketi ile sorgulama

Commercial Databases

SQL Nedir?

- SQL (Structed Query Language) bir veri tabanı sorgu dilidir. Özellikle bir veri tabanı ile etkileşim için tasarlanmış bir dildir.
- Veri eklemek, çıkarmak, değiştirmek, oluşturmak vb. için söz dizimi (syntax) sunar. Bu amaçla, genellikle bir sunucu veri tabanındaki verilere erişirken kullanılır.
- Verilere erişmek için SQL kullanan çeşitli veri tabanları (SQLite, Microsoft SQL Server, PostgreSQL vb.) vardır. Her bir veri tabanına bağlanma yöntemi farklı olabilir.
- RSQLite, SQLDF, DPLYR paketleri verilere erişmek, temizlemek, filtrelemek ve değiştirmeye izin verir.

NELERE DİKKAT ETMELİ?

SQL de değişken ve veri tabanı adları küçük harfle yazılır. SQL dizimi(syntax) büyük küçük harf duyarsızdır.

- "SELECT * FROM iris"
- "select * from iris"
- "SELECT * from IRIS"

Değişken ismi "." ile bağlanmışsa tırnak içinde çağırılmalıdır.

• 'SELECT "Petal.Width" FROM iris'

• 'SELECT Petal.Width FROM iris'

Hangi Paketlerle Veri Tabanına Bağlanıyoruz?

 DBI, R ve ilişkisel veri tabanı yönetim sistemleri arasındaki iletişim için bir arayüz tanımlar. Bu paketteki tüm sınıflar sanaldır ve çeşitli R / DBMS uygulamaları (SQLite, MySQL, PostgreSQL, MonetDB, vb.) tarafından genişletilmelidir.

```
library(DBI)
# Create an ephemeral in-memory RSQLite database
con <- dbConnect(RSQLite::SQLite(), ":memory:")</pre>
```

 RSQLite () ve dbConnect () birlikte bir SQLite veri tabanı dosyasına bağlanmanıza izin verir.

R ortamında RSQLite Paketi

SQLite, dünyada en yaygın kullanılan veri tabanından biri. Android, iPhone ve IOS cihazlarında ve Firefox, Chrome ve Safari web tarayıcılarında bulunur.

- Install.package("RSQLite")
- library(RSQLite)

SQLite veri tabanına bağlanma

> conn<-dbConnect(SQLite(),"chinook.db")

conn: dbConnect ile veri tabanına bağlantı nesnesi oluşturulur.

https://www.sqlitetutorial.net/sqlite-sample-database/

DbListTables(): Veri tabanı içindeki tabloları gösterir. **DbListFields():** Tablo içindeki sütunları gösterir.

dbReadTable(): Belirli bir tabloya ulaşır. Aynı şekilde bir isimle data frame dönüştürülür.

> Table_1<-dbReadTable(conn,"genres")

Nam	reId	(
Roc	1	1	
Jaz	2	2	
Meta	3	3	
Alternative & Pun	4	4	
Rock And Rol	5	5	
Blue	6	6	
Lati	7	7	
Regga	8	8	
Po	9	9	
Soundtrac	10	10	
Bossa Nov	11	11	
Easy Listenin	12	12	
Heavy Meta	13	13	
R&B/Sou	14	14	
Electronica/Danc	15	15	
Worl	16	16	
Hip Hop/Ra	17	17	
Science Fiction	18	18	
TV Show	19	19	
Sci Fi & Fantas	20	20	
Dram	21	21	
Comed	22	22	
Alternativ	23	23	
Classica	24	24	
Open	25	25	

dbGetQuery(): İstediğimiz sorgu sütunları gerçekleştirilir.

> Table_2<-dbGetQuery(conn, "SELECT * FROM artists LIMIT 25")</p>

	ArtistId	Name
1	1	AC/DC
2	2	Accept
3	3	Aerosmith
4	4	Alanis Morissette
5	5	Alice In Chains
6	6	Antônio Carlos Jobim
7	7	Apocalyptica
8	8	Audioslave
9	9	BackBeat
10	10	Billy Cobham
11	11	Black Label Society
12	12	Black Sabbath
13	13	Body Count
14	14	Bruce Dickinson
15	15	Buddy Guy
16	16	Caetano Veloso
17	17	Chico Buarque
18	18	Chico Science & Nação Zumbi
19	19	Cidade Negra
20	20	Cláudio Zoli
21	21	Various Artists
22	22	Led Zeppelin
23	23	Frank Zappa & Captain Beefheart
24	24	Marcos Valle
25	25	Milton Nascimento & Bebeto

Seçtiğimiz(Table_1 ve Table_2) tabloları yeni veri tabanı(newdb) içine dbWriteTable() ile yazdıralım.

	GenreId	Name		ArtistId	Name
1	1	Rock	1	1	AC/DC
2	2	Jazz	2	2	Accept
3	3	Metal	3	3	Aerosmith
4	4	Alternative & Punk	4	4	Alanis Morissette
5	5	Rock And Roll	5	5	Alice In Chains
6	6	Blues	6	6	Antônio Carlos Jobim
7	7	Latin	7	7	Apocalyptica
8	8	Reggae	8	8	Audioslave
9	9	Pop	9	9	BackBeat
10	10	Soundtrack	10		Billy Cobham
11	11	Bossa Nova	11		Black Label Society
12	12	Easy Listening	12		Black Sabbath
13	13	Heavy Metal	13		Body Count
14	14	R&B/Soul	14		Bruce Dickinson
15	15	Electronica/Dance	15		Buddy Guy
16	16	World	16		Caetano Veloso
17	17	Hip Hop/Rap	17		Chico Buarque
18		Science Fiction	18		Chico Science & Nação Zumbi
19	19	TV Shows	19		Cidade Negra
20	20	Sci Fi & Fantasy	20		Cláudio Zoli
21	21	Drama	21		Various Artists
22	22	Comedy	22		Led Zeppelin
23	23	Alternative	23		
24	24	Classical	24		Frank Zappa & Captain Beefheart Marcos Valle
25	25	0pera	25		Milton Nascimento & Bebeto
			23	25	HITTON MASCIMENTO & DEDETO

- > con<-dbConnect(SQLite(),"newdb")
- > dbWriteTable(con, "Table_1", Table_1)
- > dbWriteTable(con, "Table_2", Table_2)
- > dbListTables(con)
- [1] "Table_1" "Table_2"

✓ III Tablolar (2)		
✓ III Table_1		CREATE TABLE 'Table_1' ('Genreld' INTEGER, 'Name' TEXT)
Genreld	INTEGER	"Genreld" INTEGER
Name	TEXT	"Name" TEXT
➤ III Table_2		CREATE TABLE 'Table_2' ('Artistld' INTEGER, 'Name' TEXT)
Artistld	INTEGER	"ArtistId" INTEGER
Name	TEXT	"Name" TEXT

dbExecute() ile çağrılan satır güncellenir.

```
> dbExecute(conn, "DELETE FROM Table_1 WHERE Name= 'Rock'")
[1] 1
>dbExecute(conn, "INSERT INTO Table_1 VALUES (1,'Jazz')")
[1] 1
>dbGetQuery(conn, "SELECT * FROM Table_1")
```

dbDisconnect() veri bağlantısıyla bağlantı kesilir.

> dbDisconnect(con)

	GenreId	Name
4		
1	2	Jazz
2	3	Metal
3	4	Alternative & Punk
3 4 5	5	Rock And Roll
5	6	Blues
6	7	Latin
7	8	Reggae
8	9	Pop
9	10	Soundtrack
10	11	Bossa Nova
11	12	Easy Listening
12	13	Heavy Metal
13	14	R&B/Soul
14	15	Electronica/Dance
15	16	World
16	17	Hip Hop/Rap
17	18	Science Fiction
18	19	TV Shows
19	20	Sci Fi & Fantasy
20	21	Drama
21	22	
		Comedy
22	23	Alternative
23	24	Classical
24	25	Opera
25	1	Jazz

R ortamında SQLDF Paketi

RSQLite harici çeşitli sqldf paketini kullanarak veri tabanında sorgulama yapmayı sağlar. Veri çerçevesini bir tabloymuş gibi sorgulamanızı sağlar ve genellikle sorguyu bir dize olarak sqldf işlevine geçirmek kadar basittir.

- Install.package("sqldf")
- library(sqldf)

R, merkezi olarak konumlandırılmış ilişkisel veri tabanlarından veri almak için SQL kullanımını destekler. Bununla birlikte, R'deki birkaç paket, bu alanın ötesine geçmenize ve verilerin orijinal kaynağından veya nihai hedefinden bağımsız olarak, verileri işlemenin ve analiz etmenin ortasında geçici veri kümeleri oluşturmanıza ve sorgulamanıza olanak tanır.

R da bulunan 2 veri seti kullanıldı.

- data(Orange)
- data(chickwts)

LIMIT ile istenilen gözlem sayısı döndürülür.

> sqldf('SELECT * FROM Orange LIMIT 15')

	Tree	age	circumference
1	1	118	30
2	1	484	58
3	1	664	87
4	1	1004	115
5	1	1231	120
6	1	1372	142
7	1	1582	145
8	2	118	33
9	2	484	69
10	2	664	111
11	2	1004	156
12	2	1231	172
13	2	1372	203
14	2	1582	203
15	3	118	30

WHERE ile şart ifadeleri belirtilir.

> sqldf('SELECT age,circumference FROM Orange WHERE Tree <3')

	age	circumference
1	118	30
2	484	58
3	664	87
4	1004	115
5	1231	120
6	1372	142
7	1582	145
8	118	33
9	484	69
10	664	111
11	1004	156
12	1231	172
13	1372	203
14	1582	203

ORDER BY ile "ASC(ARTAN)" "DESC(AZALAN)" göre sıralama yapar.

> sqldf("SELECT * FROM Orange ORDER BY age ASC, circumference DESC LIMIT 15")

```
Tree age circumference
      2 118
                        33
      4 118
                        32
      1 118
                        30
      3 118
                        30
      5 118
                        30
      2 484
                        69
      4 484
                        62
      1 484
                        58
      3 484
                        51
      5 484
                        49
11
      4 664
                       112
12
      2 664
                       111
13
      1 664
                        87
      5 664
                        81
      3 664
                        75
```

COUNT ile satır(rows) sayısı döndürülür.

```
> sqldf("SELECT COUNT() FROM Orange")
```

> sqldf("SELECT COUNT(tree) FROM Orange")

```
COUNT()
```


Eğer Tree değişkenin de bir "NA" değeri olsaydı COUNT(Tree) bu satırları döndürmeyecektir.

AND ve OR ile işlem sırası belirtilir.

> sqldf('SELECT * FROM Orange WHERE (Tree < 3 AND circumference < 200) OR age >

Inco ago cincumfonenco

1500')

	ıree	age	circumterence
1	1	118	30
2	1	484	58
3	1	664	87
4	1	1004	115
5	1	1231	120
6	1	1372	142
7	1	1582	145
8	2	118	33
9	2	484	69
10	2	664	111
11	2	1004	156
12	2	1231	172
13	2	1582	203
14	3	1582	140
15	4	1582	214
16	5	1582	177

IN ile istenilen veya istenilmeyen satırlar direk yazılır.

> sqldf('SELECT * FROM Orange WHERE Tree IN (1,4)')

Tnaa		cincumfononco
iree	age	circumference
1	118	30
1	484	58
1	664	87
1	1004	115
1	1231	120
1	1372	142
1	1582	145
4	118	32
4	484	62
4	664	112
4	1004	167
4	1231	179
4	1372	209
4	1582	214
	1 1 1 1 1 4 4 4 4 4	1 118 1 484 1 664 1 1004 1 1231 1 1372 1 1582 4 118 4 484 4 664 4 1004 4 1231 4 1372

> sqldf('SELECT * FROM Orange WHERE Tree NOT IN (2,5)')

	Tree	age	circumference
1	1	118	30
2	1	484	58
3	1	664	87
4	1	1004	115
5	1	1231	120
6	1	1372	142
7	1	1582	145
8	3	118	30
9	3	484	51
10	3	664	75
11	3	1004	108
12	3	1231	115
13	3	1372	139
14	3	1582	140
15	4	118	32
16	4	484	62
17	4	664	112
18	4	1004	167
19	4	1231	179
20	4	1372	209
21	4	1582	214

LIKE ile herhangi kelimeyle biten ya da başlayan satırlar seçilir veya NOT LIKE ile çıkarılır.

"bean" ile biten satırları görüntüler.

> sqldf('SELECT * FROM chickwts WHERE feed LIKE "%bean" LIMIT 5')

```
weight feed
1 179 horsebean
2 160 horsebean
3 136 horsebean
4 227 horsebean
5 217 horsebean
```

"bean" bulunmayan satırları görüntüler.

> sqldf('SELECT * FROM chickwts WHERE feed NOT LIKE "%bean" LIMIT 10')

```
weight feed
1 309 linseed
2 229 linseed
3 181 linseed
4 141 linseed
5 260 linseed
6 203 linseed
7 148 linseed
8 169 linseed
9 213 linseed
10 257 linseed
```

- "case" ile başlayan satırları görüntüler.
- > sqldf('SELECT * FROM chickwts WHERE feed LIKE "%case%" LIMIT 10')

```
weight feed
1 368 casein
2 390 casein
3 379 casein
4 260 casein
5 404 casein
6 318 casein
7 352 casein
8 359 casein
9 216 casein
10 222 casein
```

Ortalama, toplam, medyan ve min-max değeri değerleri için sırasıyla;

AVG, SUM MEDIAN, MIN ve MAX kullanılır.

> sqldf("SELECT feed, MIN(weight) AS min_weight FROM chickwts GROUP BY feed")

```
feed min_weight
1 casein 216
2 horsebean 108
3 linseed 141
4 meatmeal 153
5 soybean 158
6 sunflower 226
```

[&]quot;AS" ile sütuna yeni isim verilir.

> sqldf("SELECT feed, AVG(weight) AS avg_weight FROM chickwts GROUP BY feed")

```
feed avg_weight
1 casein 323.5833
2 horsebean 160.2000
3 linseed 218.7500
4 meatmeal 276.9091
5 soybean 246.4286
6 sunflower 328.9167
```

İç içe(Nested) Sorgular iç içe seçimlerin kullanıldığı durumlardır. Değişkenlerin fazla olduğu durumlarda kolaylıkla seçim yapılır.

> sqldf("SELECT * FROM Orange where age = (select max(age) from Orange)")

R ortamında DPLYR Paketi İle Sorgulama

Dplyr paketi, dbplyr ile birlikte, yaygın olarak kullanılan açık kaynak veri tabanları SQLite, MySQL ve PostgreSQL ve ayrıca Google'ın bigquery'sine bağlanmayı destekler ve diğer veri tabanı türlerine de genişletilebilir.

- Install.package("dplyr")
- Install.package("dbplyr")
- library(dplyr)
- library(dbplyr)

- Dplyr kullanarak veri tabanlarıyla arabirim oluşturmak, SELECT SQL ifadeleri oluşturarak veri kümelerini almaya ve analiz etmeye odaklanır ancak veri tabanın kendisini değiştirmez.
- ➤ Dplyr'i UPDATE veya DELETE girişlerine işlev sunmaz. Bu işlevlere ihtiyacınız olursa, ek R paketleri kullanmak gerekir.
- R syntax kullanılır, SQL bilgisi gerekmez.
- ➤ Yapmak istenilen her şeyi bir araya toplayıp ardından bir adımda veri tabanına gönderir.

```
İlk olarak portal_mammals.sqlite dosyasında bulunuan SQLite veri tabanına bağlanıyoruz.
dir.create("data_raw", showWarnings = FALSE)
download.file(url = "https://ndownloader.figshare.com/files/2292171",
                destfile = "data_raw/portal_mammals.sqlite", mode = "wb")
> mammals <- DBI::dbConnect(RSQLite::SQLite(), "data_raw/portal_mammals.sqlite")
Veri tabanındaki 3 farklı tabloyu görelim.
                                           plots
> src_dbi(mammals),
> tbls: plots, species, surveys
                            mammmals
                                             species
                                          surveys
```

Bir veri tabanı içindeki tabloları çağırmak için dplyr'den **tbl ()** fonksiyonu kullanılır.

```
Veri tabanını dplyr ile SQL syntax kullanarak survey tablosunu çağıralım. > tbl(mammals, sql("SELECT year, species_id, plot_id FROM surveys"))
```

```
Veri tabanını dplyr syntax ile survey tablosunu çağıralım.
> surveys <- tbl(mammals, "surveys")

surveys %>%

select(year, species_id, plot_id)
```

Collect() fonksiyonu tüm satırları toplar.

> data_subset <- surveys %>%
 select(species_id, sex, weight) %>%
 collect()

•	species_id +	sex [‡]	weight $^{\scriptsize \scriptsize ar{\scriptsize \scriptsize }}$
1	NL	М	NA
2	NL	М	NA
3	DM	F	NA
4	DM	М	NA
5	DM	М	NA
6	PF	М	NA
7	PE	F	NA
8	DM	М	NA

wing 1 to 9 of 35,549 entries, 3 total columns

Filter() koşul belirlenir. Select(-) sütun çıkarma yapılır.

```
> data_subset1<- surveys %>%
  filter(weight < 5) %>%
  select(species_id, weight)
```

> data_subset1 %>%
select(-weight)

```
species_id
<chr>
1 PF
2 PF
3 PF
4 PF
5 PF
6 RM
7 RM
8 RM
9 RM
10 RM
# ... with more rows
```

```
species id weight
7 RM
... with more rows
```

Inner join() ve left join() fonksiyonları ile tablolar birleştirilir.

plots ve surveys tabloları ortak sütun olan "plot_id" ile birleştirelim.

- > plots <- tbl(mammals, "plots")
- > plots %>%
 filter(plot_id == 1) %>%
 inner_join(surveys) %>%
 collect()

Joining, by = "plot_id"

*	plot_id [‡]	plot_type	record_id [‡]	month [‡]	day [‡]	year [‡]	species_id ‡	sex [‡]	hindfoot_length	weight ‡
1	1	Spectab exclosure	6	7	16	1977	PF	М	14	NA
2	1	Spectab exclosure	8	7	16	1977	DM	М	37	NA
3	1	Spectab exclosure	9	7	16	1977	DM	F	34	NA
4	1	Spectab exclosure	78	8	19	1977	PF	М	16	9
5	1	Spectab exclosure	80	8	19	1977	DS	М	48	NA
6	1	Spectab exclosure	218	9	13	1977	PF	М	13	4
7	1	Spectab exclosure	222	9	13	1977	DS	М	52	NA
8	1	Spectab exclosure	239	9	13	1977	DS	М	48	NA

Left join kullanarak tabloları birleştirelim.

```
<int> <chr>>
                                                                      <int>
> left join(plots, surveys ) %>%
                                                           2 BA
  filter(plot_type== "Control") %>%
                                                          2 CM
                                                           2 CQ
  group_by(plot_id, species_id) %>%
                                                                       578
                                                           2 DO
                                                                       313
                                                           2 DS
                                                                       137
  tally %>%
                                                   10
                                                           2 DX
                                                    ... with 190 more rows
  collect()
```

plot_id species_id

Burada tally () sınıfa uygun gözlem sayısını verir.

```
species_id plot_id
   <chr> <int> <int> <int>
1 NA
 2 NA
 3 NA
                          10
4 NA
                           6
 5 NA
                    12
 6 NA
                    14
7 NA
                    17
 8 NA
                    22
                          12
 9 AB
                          14
                           3
10 AB
# ... with 190 more rows
```

Aynı çıktıyı SQL syntax ile yazalım.

```
> query <- paste("
SELECT a.plot_id, b.species_id,count(*) as count
FROM plots a
JOIN surveys b
ON a.plot_id = b.plot_id
AND a.plot_type = 'Control'
GROUP BY a.plot_id, b.species_id",
        sep = "")
tbl(mammals, sql(query))
```

```
plot_id species_id
     <int> <chr>
                       <int>
         2 NA
         2 AB
                          14
         2 AH
         2 BA
         2 CM
         2 CQ
         2 DM
                         578
         2 DO
                         313
         2 DS
                         137
10
         2 DX
# ... with 190 more rows
```

3 tablo birleştirme

```
plot_type
                                                                           n_genera
Bunun için species tablosu da çağıralım.
                                                          1 Control
> species <- tbl(mammals, "species")
                                                          2 Long-term Krat Exclosure
                                                          3 Rodent Exclosure
                                                            Short-term Krat Exclosure 24
> unique_genera <- left_join(surveys, plots) %>%
                                                          5 Spectab exclosure
   left join(species) %>%
                                              Joining, by = "plot id"
   group by(plot type) %>%
                                              Joining, by = "species id"
   summarize(
                                              > View(unique genera)
    n genera = n distinct(genus)
    ) %>%
    collect()
```

Bir sütunda bulunan benzersiz sınıfların sayısını bulmak için **n_distinct ()** kullanılır.

➤ RSQLite, SQLDF ve DPLYR paketleri, harici verilere erişmek veya önceden yüklenmiş verileri temizlemek, filtrelemek ve değiştirmek gibi SQL becerilerinizi geliştirmenize izin verir. SQLServer serbest bırakıldığında, içerilen R sürümünü kullanmanın entegrasyon kolaylığı bu sinerjiyi artıracaktır. R'nin diğer veri kaynaklarına erişim esnekliği, yalnızca SQL kullanarak geleneksel olarak mümkün olanın çok ötesinde, veri merkezli ürünler ve hizmetler oluşturmak için yeni fırsatlar sağlayacaktır.

KAYNAKÇA

- <u>SQLDF</u>
- <u>Db.RStudio</u>
- Dplyr
- Chinook.db

TEŞEKKÜRLER (°°)