Final Project Submission

· Student name: Okumu Phelix Oyoo

Student pace: part time

· Scheduled project review date/time: April 2023

· Instructor name: Diana Mongina (TM)

· Blog post URL:

Exploration of Different Types of Films and Their Performance at the Box Office Project

Project Introduction

This is a data exploration project that in overview, looks at various aspects of Box Office films/movies over time, with the aim of getting insights and understanding what would inform successes or failures of movies for a Microsoft's new movie studio. It aims to look at various trends and relationships between different aspects of movies such as existing studios, performance, ratings, budget and review as measures of success or failure

Data Understanding

In this section of the project, we will work with data from 5 different sources from Bof Office. The Selected Datasets to are csv and tsv flies, which will be read using pandas read_csv methods.

The data used are contained in 5 files available from below 4 websites but now grouped under a single folder called zippedData:

- 1. <u>Box Office Mojo (https://www.boxofficemojo.com/)</u> Website containing records of movie titles with respective studio with gross earnings
- 2. <u>Rotten Tomatoes (https://www.rottentomatoes.com/)</u> Website containing records on Movie info and reviews alongside different ratings alongside respective movie IDs
- 3. <u>TheMovieDB (https://www.themoviedb.org/)</u> Website containing records on movie titles with rating voting information among other records
- 4. <u>The Numbers (https://www.the-numbers.com/)</u> Website containing records on movie titles with respective domestic and gross earnings per movie with Movie ID and release dates

Business Understanding

In order to help Head of Microsoft's Movie Studio understand movie production market, to aid in knowing what movies to produce and things to consider when running a movie studio, this project aims to answer below questions:

- 1. What are the most popular Movies in the Box Office?
- 2. What are the most likely strong Competitors Microsoft is likely to face with in the Movie Studio Business?
- 3. What are the top 10 most profitable movie studios as per the data files given based on;

- a) most profitable movie
- b) average profit for the studios across all movies produced

Requirements

1. Load the Data with Pandas

Creating individual dataframes from all the datasets selected to be used using pandas library alias as pd

2. Perform Data Cleaning Required to Answer First Question

Performing Data Cleaning in all the files selected individually before merging them into a single dataframe then start answering chosen business Questions

In order to answer the questions, the cleaning would focus on:

- · Identify and handle missing values
- · Identify and handle text data requiring cleaning

3. Perform Data Aggregation and Cleaning Required to answer questions chosen

Merging at least 3 dataframes into a single dataframe to see the relationship between different categorical and numerical columns drawn from at least 3 datasets to get a clear overview of the Box Office Movie Industry records

In [1]:

```
#Importing different libraries as aliases for purposes of data analysis and exploration
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import re
%matplotlib inline
```

1. Box Office Mojo

Below cells load bom.movie_gross.csv.gz as bom_df and preview data in the file for better understanding

In [2]:

```
bom_df = pd.read_csv('zippedData/bom.movie_gross.csv.gz')
bom_df.head()
```

Out[2]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010

Getting general information about bom df dataframe

In [3]:

#to get general info column data types, missing values and general shape of the bom_df da
bom_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	title	3387 non-null	object
1	studio	3382 non-null	object
2	domestic_gross	3359 non-null	float64
3	foreign_gross	2037 non-null	object
4	year	3387 non-null	int64
dtyp	es: float64(1),	int64(1), object	(3)

memory usage: 132.4+ KB

BOM Data Cleaning

Below subsequent cells cover data cleaning of the bom_df dataset to make it ready for use in the data analysis (EDA)

Looking at the title column, for consistency puporses it makes sense to have the texts uniformly captured with no special characters and same pattern (either capitalized or lower/upper case)

Below cell is a re-usable function that can be called to clean up the title texts

In [4]:

```
# Define regular expression pattern to match special characters
pattern = r'[^a-zA-Z0-9\s]'

# Define function to clean text

def clean_text(text):
    text = re.sub(pattern, '', text) # remove special characters
    text = re.sub(r'\s+', ' ', text) # remove extra spaces
    text = text.title() # convert to Lowercase
    text = text.strip() # remove Leading and trailing spaces
    return text
```

In [5]:

```
# Calling above clean_text function to the bom_df title column
bom_df['title'] = bom_df['title'].apply(clean_text)
bom_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):
    Column
#
                    Non-Null Count Dtype
    -----
                     -----
---
 0
    title
                    3387 non-null
                                    object
 1
    studio
                    3382 non-null
                                    object
 2
    domestic_gross 3359 non-null
                                    float64
 3
    foreign_gross
                    2037 non-null
                                    object
 4
                    3387 non-null
                                    int64
    year
dtypes: float64(1), int64(1), object(3)
memory usage: 132.4+ KB
```

From above info, the foreign_gross is an object instead of a floating point. In addition, below cell investigates the number of NaN to determine whether to drop the column.

In [6]:

39.85828166519043

```
bom_df['studio'].info()
<class 'pandas.core.series.Series'>
RangeIndex: 3387 entries, 0 to 3386
Series name: studio
Non-Null Count Dtype
-----
               ----
3382 non-null
               object
dtypes: object(1)
memory usage: 26.6+ KB
In [7]:
# Checking percentage of NaN in the foreign_gross column
bom df percount = (bom df['foreign gross'].isna().sum()/len(bom df['foreign gross']))*100
bom_df_percount
Out[7]:
```

With 39.86% of NaN, we drop above column. The studio column are also not significant for subsequent data analysis hence are dropped too

In [8]:

```
droppedcol bom df = bom df.drop(['foreign gross','year','domestic gross'], axis=1)
droppedcol bom df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 2 columns):
    Column Non-Null Count Dtype
            -----
 0
    title
            3387 non-null
                            object
 1
    studio 3382 non-null
                            object
dtypes: object(2)
memory usage: 53.0+ KB
```

Below investigates NaN in the domestic gross cell and drops those rows with NaNs

In [9]:

```
# Dropping NaN rows in the domestic_gross column and creating an new cleaned_bom_df to st
#cleaned_bom_df = droppedcol_bom_df.dropna(subset=['domestic_gross'])
#cleaned_bom_df
```

In [10]:

```
# dropping duplicates based on the title column
cleaned_bom_df = droppedcol_bom_df.drop_duplicates(subset='title')
```

In [11]:

```
cleaned_bom_df.value_counts()
```

Out[11]:

```
title
                       studio
10 Cloverfield Lane
                       Par.
                                   1
Son Of Sardaar
                       Eros
                                   1
Slow West
                       A24
                                   1
Smallfoot
                       WB
                                   1
Smashed
                       SPC
                                   1
Horses Of God
                                   1
Hostiles
                       ENTMP
                                   1
Hot Pursuit
                       WB (NL)
Hot Tub Time Machine MGM
                                   1
Zootopia
                                   1
Length: 3381, dtype: int64
```

In [12]:

```
filtered_bom = cleaned_bom_df['title'][cleaned_bom_df.apply(lambda x: x.astype(str).str.d
print(filtered_bom)
280
                                           Last Train Home
524
                                      Take Me Home Tonight
                                    Jeff Who Lives At Home
930
                                              Take Me Home
1108
                                                 Homefront
1244
1703
                                              The Homesman
                          A Girl Walks Home Alone At Night
1762
1890
                                                 Home 2015
                                               Daddys Home
1903
                                          Coming Home 2015
1980
2097
                                                  99 Homes
               Miss Peregrines Home For Peculiar Children
2353
2640
                                        Spirits Homecoming
                                      Spiderman Homecoming
2763
2807
                                             Daddys Home 2
                                                Home Again
2882
        How Victor The Garlic Took Alexey The Stud To ...
3375
Name: title, dtype: object
```

2. Rotten Tomatoes

Below cells load data on Rotten Tomatoes from rt.movie_info.tsv.gz and rt.reviews.tsv.gz for purposes of doing a sneak preview of rotten tomatoes movies info and reviews. We will read both as csv with tab as the delimeter.

In [13]:

```
#Loading rotten tomatoes to a data frame and storing in rt_movie
rt_movie_info = pd.read_csv('zippedData/rt.movie_info.tsv.gz', sep='\t')
rt_movie_info.head()
```

Out[13]:

	id	synopsis	rating	genre	director	writer	theater_date
0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971
1	3	New York City, not- too-distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012
2	5	Illeana Douglas delivers a superb performance 	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996
3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994
4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN
4							>

In [14]:

#Loading rotten tomatoes to a data frame and storing in rt_reviews
rt_reviews_info = pd.read_csv('zippedData/rt.reviews.tsv.gz', sep='\t', encoding='unicode
rt_reviews_info.head()

Out[14]:

	id	review	rating	fresh	critic	top_critic	publisher	date
0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	November 10, 2018
1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	May 23, 2018
2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	January 4, 2018
3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	November 16, 2017
4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	October 12, 2017

In [15]:

```
rt_movie_info.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1560 entries, 0 to 1559
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	id	1560 non-null	int64
1	synopsis	1498 non-null	object
2	rating	1557 non-null	object
3	genre	1552 non-null	object
4	director	1361 non-null	object
5	writer	1111 non-null	object
6	theater_date	1201 non-null	object
7	dvd_date	1201 non-null	object
8	currency	340 non-null	object
9	box_office	340 non-null	object
10	runtime	1530 non-null	object
11	studio	494 non-null	object
4+	oc. in+(1/1)	objec+/11)	

dtypes: int64(1), object(11)
memory usage: 146.4+ KB

Rotten Tomattoes Movies Info Data Cleaning

Below cells show various Data cleaning for purposes of subsequent EDA

In [16]:

```
rt_movie_info = rt_movie_info.drop_duplicates(subset='id')
```

In [17]:

rt_movie_info.head()

Out[17]:

	id synopsis rating		genre	director	writer	theater_date	
0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971
1	3	New York City, not- too-distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012
2	5	Illeana Douglas delivers a superb performance 	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996
3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994
4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN
4							•

In [18]:

rt_movie_info.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1560 entries, 0 to 1559
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	id	1560 non-null	int64
1	synopsis	1498 non-null	object
2	rating	1557 non-null	object
3	genre	1552 non-null	object
4	director	1361 non-null	object
5	writer	1111 non-null	object
6	theater_date	1201 non-null	object
7	dvd_date	1201 non-null	object
8	currency	340 non-null	object
9	box_office	340 non-null	object
10	runtime	1530 non-null	object
11	studio	494 non-null	object

dtypes: int64(1), object(11)
memory usage: 158.4+ KB

In [19]:

looking at number of NaN in the studio column to see if it is useful to keep the column
rt_movie_info['studio'].isna().sum()

Out[19]:

1066

Dropping various columns because of lack of enough data entry and some not being useful for subsequent EDA. This includes the rating column as it does not cover review rating

In [20]:

Dropping currency, box_office and studio because the NaN is more than 50%. Also droppin
rt_movie_droppedcol = rt_movie_info.drop(['currency','studio','box_office','rating','runt
rt_movie_droppedcol.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1560 entries, 0 to 1559
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	id	1560 non-null	int64
1	genre	1552 non-null	object
2	director	1361 non-null	object
3	writer	1111 non-null	object
4	theater_date	1201 non-null	object
5	dvd_date	1201 non-null	object

dtypes: int64(1), object(5)
memory usage: 85.3+ KB

In [21]:

rt_movie_droppedcol

\sim	4	∟ Г	· ¬	11	٦	
υ	u١	LΙ		ш	. 1	

	id	genre	director	writer	theater_date	dvd_date			
0	1	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971	Sep 25, 2001			
1	3	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	Jan 1, 2013			
2	5	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996	Apr 18, 2000			
3	6	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994	Aug 27, 1997			
4	7	Drama Romance	Rodney Bennett	Giles Cooper	NaN	NaN			
					•••				

Given that 3 of the datasets have date columns, below function is created to be used to convert the date columns into pandas datetime format so that dates are properly intepreted

In [22]:

```
def clean_date(df, date_col):
    """Converts a date column from object to datetime format"""

# Convert column to datetime format
    df[date_col] = pd.to_datetime(df[date_col], errors='coerce')

# Return cleaned DataFrame
    return df
```

In [23]:

```
# calling the clean_date function to change theater_date and dvd_date columns to datetime
rt_movie_droppedcol = clean_date(rt_movie_droppedcol,'theater_date')
rt_movie_droppedcol = clean_date(rt_movie_droppedcol,'dvd_date')
```

In [24]:

```
rt_movie_droppedcol.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1560 entries, 0 to 1559
Data columns (total 6 columns):
                 Non-Null Count Dtype
    Column
#
    _____
                  -----
 0
    id
                  1560 non-null
                                 int64
 1
    genre
                 1552 non-null
                                 object
 2
    director
                 1361 non-null
                                 object
 3
    writer
                  1111 non-null
                                 object
 4
    theater_date 1201 non-null
                                 datetime64[ns]
    dvd date
                  1201 non-null
                                 datetime64[ns]
dtypes: datetime64[ns](2), int64(1), object(3)
memory usage: 85.3+ KB
```

Rotten Tomatoes Reviews Data Cleaning

This cleans the 3rd dataset on Rotten Tomatoes reviews

In [25]:

rt_reviews_info.head()

Out[25]:

	id	review	rating	fresh	critic	top_critic	publisher	date
0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	November 10, 2018
1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	May 23, 2018
2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	January 4, 2018
3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	November 16, 2017
4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	October 12, 2017

In [26]:

rt_reviews_info.iloc[0]['review']

Out[26]:

"A distinctly gallows take on contemporary financial mores, as one absurdly rich man's limo ride across town for a haircut functions as a state-of-the-nation discourse."

In [27]:

```
# doing .info() to get general info about rt_reviews_info
rt_reviews_info()
rt_reviews_info
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 54432 entries, 0 to 54431 Data columns (total 8 columns): Column # Non-Null Count Dtype -----54432 non-null int64 0 id review 1 48869 non-null object 2 rating 40915 non-null object 3 54432 non-null object fresh 51710 non-null object 4 critic 5 top_critic 54432 non-null int64 publisher 54123 non-null object 7 54432 non-null object date dtypes: int64(2), object(6)

memory usage: 3.3+ MB

Out[27]:

<u>In [28</u>	id	review	rating	fresh	critic	top_critic	publisher	date	
rt_r @ v	/iews³	A distinctly the allows take t info = clean infotemporary fina					Patrick Nabarro	November 10, 2018	
Out[28	3 id	lt's an allegory in search of a meaning ধিমুiev	NaN v rating	rotten g fresh	Annalee Newi ⊵rit i	o ic top_critic	io9.com publish	May 23, er date 8	
0 2	3	n A distinctly gallewyseaka or প্রথাঙ্গাঞ্জিব financilaa dealin It's an allegory	/ n 3/: / NaN		PJ Nabarı Sean Axmaker	0) Patrick Nabar Stream on Demand	January u , 2018	
1 3	3	୯୦ ୨୧ ନୟୁନିକ୍ର aାଭନ୍ୟୁନ୍ଧା୩ଣ୍ଡଣ୍ଡ introduced in ⁿ last yea life lived in a	t NaN	N rotten fresh	Annale Dar Ne Wi Kasman	() io9.cc MUBI	2018- Mov ernee r 16, 2017	
2 4	3 3	a peନ୍ୟିକ୍ତିକ୍ରା: tw∰କ୍ତନ୍ଦାa neoreali9ନ୍ନ‼in	n Naf I NaN	N fresh fresh	Sea A nxann ake	- () Cinema S eop ea		
 3	 3	Continuing along a line in trieduea d ir	Nal	 N fresh	 Dani Kasma) MU	BI 2017- 11-16	
54427	2000	charml a\$tlyis a trifle is the	NaN	fresh	Laura Sinagra	1	Village Voice	September 24, 2002	
4	3	deadନ୍ଧିକ୍ୟୁଞ୍ଜେ twist or neorealism NaN	n Nal		Na Michael			pe 2017- September	
54428 	2000	NaN 	1/5 	rotten 	Szymanski	0 	Zap2it.com	21, 2005 	
54429 54427	2000 2000	The real charm of this trifle is	s Nal	rotten N fresh	Emanuel Leγγ _{aur} Sinagr Christopher	0 E	EmanuelLevy.Com	July 17, აგ2005	
54430	2000	the deadpan c		rouen	Null	ل ام	Filmcritic.com	7, 2003	
54428 54431	2000 2000	NaN NaN	1 1/3 3/5	5 rotten fresh	Na izyorlaasıns Lacroix) Zap2it.co Showbizz.net	2005- Nov@9n25er 12, 2002	
54429		NaN	1 2/	5 rotten	Emanu	() EmanuelLevy.Co	2005-	
		8 columns			Christophe	er .		2003-	
54430	2000	NaN	1 2.5/	5 rotten	Nu) Filmcritic.co	om 09-07	
54431	2000	NaN	J 3/	5 fresh	Nicola Lacro) Showbizz.r	2002- net 11-12	

54432 rows × 8 columns

In [29]:

```
# dropping a few unwanted columns
rt_reviews_info = rt_reviews_info.drop(['review','rating','critic','publisher','date'], a
```

```
In [30]:
```

```
rt_reviews_info['fresh'].describe()

Out[30]:

count    54432
unique    2
top    fresh
freq    33035
Name: fresh, dtype: object

In [31]:

rt_reviews_info = rt_reviews_info.drop_duplicates(subset='id')
rt_reviews_info
```

Out[31]:

	id	fresh	top_critic
0	3	fresh	0
163	5	fresh	1
186	6	rotten	0
243	8	fresh	0
318	10	fresh	0
54175	1996	fresh	0
54318	1997	rotten	0
54346	1998	fresh	0
54348	1999	fresh	0
54394	2000	rotten	0

1135 rows × 3 columns

3. The Movie DB

In below cells, we explore TheMovieDB in details to understand more about it for purposes of EDA. We start by reading the csv file into a pandas Dataframe called tmdb movies df.

We then get more info on this dataset with in order to identify the primary key to use for purposes of later merging it with other dataset dataframes

In [32]:

```
#Loading The MovieDB datafile to a data frame and storing in tmdb_movies_df and doing a v
tmdb_movies_df = pd.read_csv('zippedData/tmdb.movies.csv.gz')
tmdb_movies_df.head()
```

Out[32]:

	Unnamed: 0	genre_ids	id	original_language	original_title	popularity	release_date	
0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	I ar Di Ha I
1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	H D
2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iror
3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	
4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Ince
4								•

In [33]:

```
# doing .info() to get general info about tmdb_movies_df
tmdb_movies_df.info()
```

```
RangeIndex: 26517 entries, 0 to 26516
Data columns (total 10 columns):
#
    Column
                       Non-Null Count Dtype
     ----
    Unnamed: 0
                       26517 non-null int64
0
1
    genre ids
                       26517 non-null object
2
                       26517 non-null int64
    id
 3
    original_language 26517 non-null object
4
    original title
                       26517 non-null object
5
                       26517 non-null float64
    popularity
6
    release date
                       26517 non-null object
7
    title
                       26517 non-null object
8
    vote average
                       26517 non-null float64
    vote count
                       26517 non-null
9
                                       int64
dtypes: float64(2), int64(3), object(5)
memory usage: 2.0+ MB
```

<class 'pandas.core.frame.DataFrame'>

The Movie DB Data Cleaning

Below cells cover cleaning of this tmdb_movies_df by dropping unnecessary columns and rows, handling missing values, formating texts and row entries into the right data types

In [34]:

```
# Dropping a few columns deemed unnecessary for data exploration phase
tmdb_coldropped_df = tmdb_movies_df.drop(['genre_ids','id','Unnamed: 0','original_languag
tmdb_coldropped_df
```

Out[34]:

	popularity	release_date	title	vote_average
0	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7
1	28.734	2010-03-26	How to Train Your Dragon	7.7
2	28.515	2010-05-07	Iron Man 2	6.8
3	28.005	1995-11-22	Toy Story	7.9
4	27.920	2010-07-16	Inception	8.3
26512	0.600	2018-10-13	Laboratory Conditions	0.0
26513	0.600	2018-05-01	_EXHIBIT_84xxx_	0.0
26514	0.600	2018-10-01	The Last One	0.0
26515	0.600	2018-06-22	Trailer Made	0.0
26516	0.600	2018-10-05	The Church	0.0

26517 rows × 4 columns

In []:

In [35]:

```
# calling the clean_text function previously defined to clean and format texts in the tit
tmdb_coldropped_df['title'] = tmdb_coldropped_df['title'].apply(clean_text)

# calling the clean_date function prevoiusly defined to clean and format the release_date
tmdb_coldropped_df = clean_date(tmdb_coldropped_df, 'release_date')

tmdb_coldropped_df
```

Out[35]:

	popularity	release_date	title	vote_average
0	33.533	2010-11-19	Harry Potter And The Deathly Hallows Part 1	7.7
1	28.734	2010-03-26	How To Train Your Dragon	7.7
2	28.515	2010-05-07	Iron Man 2	6.8
3	28.005	1995-11-22	Toy Story	7.9
4	27.920	2010-07-16	Inception	8.3
26512	0.600	2018-10-13	Laboratory Conditions	0.0
26513	0.600	2018-05-01	Exhibit84Xxx	0.0
26514	0.600	2018-10-01	The Last One	0.0
26515	0.600	2018-06-22	Trailer Made	0.0
26516	0.600	2018-10-05	The Church	0.0

26517 rows × 4 columns

In [36]:

```
tmdb_coldropped_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26517 entries, 0 to 26516
Data columns (total 4 columns):
```

#	Column	Non-Null Count	Dtype
0	popularity	26517 non-null	float64
1	release_date	26517 non-null	<pre>datetime64[ns]</pre>
2	title	26517 non-null	object
3	vote_average	26517 non-null	float64

dtypes: datetime64[ns](1), float64(2), object(1)

memory usage: 828.8+ KB

In [37]:

```
# checking if the multiple entries of specific movies are duplicates and not unique entri
filtered_tmdb = tmdb_coldropped_df['title'][tmdb_coldropped_df.apply(lambda x: x.astype(s
print(filtered_tmdb)
4
327
               Stomp The Yard 2 Homecoming
                             Home Makeover
412
661
                           Last Train Home
863
                               The Way Home
1089
                               Daddys Home
                        Foster Home Seance
25668
25937
              Lego House Home Of The Brick
                          Atomic Homefront
26047
26208
         Darci Lynne My Hometown Christmas
                                  Home Free
26423
Name: title, Length: 127, dtype: object
```

In [38]:

```
# dropping duplicate rows based on title column and doing value count to see frequency of
cleaned_tmdb_df = tmdb_coldropped_df.drop_duplicates(subset='title')
cleaned_tmdb_df['title'].value_counts()
```

Out[38]:

```
Harry Potter And The Deathly Hallows Part 1
Love Taxes
                                                 1
Followers
                                                 1
The Taking Of Ezra Bodine
                                                 1
Andrew Dice Clay Presents The Blue Show
Wish You Were Here
                                                 1
We Steal Secrets The Story Of Wikileaks
                                                 1
Bastards
                                                 1
Petes Christmas
                                                 1
The Church
                                                 1
Name: title, Length: 24631, dtype: int64
```

The Movie DB

Next is to read data from TheMovieDB CSV file into a pandas dataframe and conduct various data preview and data cleaning before EDA

In [39]:

```
#Loading The Number datafile to a data frame and storing in tn_movie_budgets_df and doing
tn_movie_budgets_df = pd.read_csv('zippedData/tn.movie_budgets.csv.gz')
tn_movie_budgets_df.head()
```

Out[39]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

In [40]:

```
# doing .info() to get general info about tn_movie_budgets_df
tn_movie_budgets_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	object
2	movie	5782 non-null	object
3	production_budget	5782 non-null	object
4	domestic_gross	5782 non-null	object
5	worldwide_gross	5782 non-null	object

dtypes: int64(1), object(5)
memory usage: 271.2+ KB

The Numbers Data Cleaning

Below cells cover cleaning of this tn_movies_budgets_df by dropping unnecessary columns and rows, handling missing values, formating texts and row entries into the right data types

In [41]:

```
# making the id column be the index column
tn_movie_budgets_df = tn_movie_budgets_df.set_index('id')
```

In [42]:

```
calling the clean_text function previously defined to clean and format texts in the production_budget, domestic_budget and worldwide_gross columns and then convert them to floating points""

tn_movie_budgets_df['production_budget'] = tn_movie_budgets_df['production_budget'].apply tn_movie_budgets_df['domestic_gross'] = tn_movie_budgets_df['domestic_gross'].apply(clear tn_movie_budgets_df['worldwide_gross'] = tn_movie_budgets_df['worldwide_gross'].apply(clear tn_movie_budgets_df['movie'] = tn_movie_budgets_df['movie'].apply(clean_text)

# dropping the release date column since it this df will be merged later with another df tn_movie_budgets_df = tn_movie_budgets_df.drop(['release_date'], axis=1)

tn_movie_budgets_df
```

movie production budget domestic gross worldwide gross

Out[42]:

	•		_5	
id				
1	Avatar	425000000.0	760507625.0	2.776345e+09

1	Avatar	425000000.0	760507625.0	2.776345e+09
2	Pirates Of The Caribbean On Stranger Tides	410600000.0	241063875.0	1.045664e+09
3	Dark Phoenix	350000000.0	42762350.0	1.497624e+08
4	Avengers Age Of Ultron	330600000.0	459005868.0	1.403014e+09
5	Star Wars Ep Viii The Last Jedi	317000000.0	620181382.0	1.316722e+09
78	Red 11	7000.0	0.0	0.000000e+00
79	Following	6000.0	48482.0	2.404950e+05
80	Return To The Land Of Wonders	5000.0	1338.0	1.338000e+03
81	A Plague So Pleasant	1400.0	0.0	0.000000e+00
82	My Date With Drew	1100.0	181041.0	1.810410e+05

5782 rows × 4 columns

In [43]:

checking general information about the tn_movie_budget_df to check data type, and exist
tn_movie_budgets_df.info()

```
Int64Index: 5782 entries, 1 to 82
Data columns (total 4 columns):
#
    Column
                       Non-Null Count
                                       Dtype
    -----
                        _____
    movie
                                       object
0
                       5782 non-null
1
    production_budget 5782 non-null
                                       float64
2
    domestic gross
                                       float64
                       5782 non-null
    worldwide gross
                       5782 non-null
                                       float64
```

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(3), object(1)
memory usage: 225.9+ KB

In [44]:

remaming the movie column to title to match other dataframes for purposes of better fut
tn_movie_budgets_df = tn_movie_budgets_df.rename(columns={'movie': 'title'})

In [45]:

tn_movie_budgets_df

Out[45]:

	title	production_budget	domestic_gross	worldwide_gross
id				
1	Avatar	425000000.0	760507625.0	2.776345e+09
2	Pirates Of The Caribbean On Stranger Tides	410600000.0	241063875.0	1.045664e+09
3	Dark Phoenix	350000000.0	42762350.0	1.497624e+08
4	Avengers Age Of Ultron	330600000.0	459005868.0	1.403014e+09
5	Star Wars Ep Viii The Last Jedi	317000000.0	620181382.0	1.316722e+09
78	Red 11	7000.0	0.0	0.000000e+00
79	Following	6000.0	48482.0	2.404950e+05
80	Return To The Land Of Wonders	5000.0	1338.0	1.338000e+03
81	A Plague So Pleasant	1400.0	0.0	0.000000e+00
82	My Date With Drew	1100.0	181041.0	1.810410e+05

5782 rows × 4 columns

From above value_counts() Method it is evident that there are duplicate entries on same movies. Below cell confirms if those duplicates are genuine duplicates and not different movies

```
In [46]:
```

Pokemon 2000

My Date With Drew

```
# checking if the multiple entries of specific movies are duplicates and not unique entri
filtered_tn = tn_movie_budgets_df['title'][tn_movie_budgets_df.apply(lambda x: x.astype(s
print(filtered_tn)
4
id
99
                             Spiderman Homecoming
44
                                              Home
30
      Miss Peregrines Home For Peculiar Children
37
                                Home On The Range
5
                                    Daddys Home 2
41
                                  A Dogs Way Home
88
                                      Daddys Home
                               Sweet Home Alabama
55
85
                     Welcome Home Roscoe Jenkins
32
                     Star Trek Iv The Voyage Home
29
                                        Homefront
                   Home Alone 2 Lost In New York
89
                            Home For The Holidays
6
                             Take Me Home Tonight
48
70
                                     The Homesman
92
                                       Home Alone
57
                                       Home Again
97
                                       Home Fries
56
                                             Home
4
                         A Prairie Home Companion
65
                           Jeff Who Lives At Home
                   A Home At The End Of The World
2
72
                                      Coming Home
32
                       Son Of Rambow A Home Movie
66
                                         Home Run
60
                                              Home
16
                                      Home Movies
Name: title, dtype: object
In [47]:
# Removing Duplicate entries based on movie column
cleaned_tnmovie_budgets_df = tn_movie_budgets_df.drop_duplicates(subset='title')
cleaned_tnmovie_budgets_df['title'].value_counts()
Out[47]:
Avatar
                       1
Ultramarines
                       1
                       1
Glitter
Bright Star
                       1
Club Dread
                       1
The Age Of Adaline
                       1
Glory Road
                       1
                       1
John Wick
```

1

Name: title, Length: 5698, dtype: int64

In [48]:

#doing a .describe to get statistical measures of the columns with numerical values
cleaned_tnmovie_budgets_df.describe()

Out[48]:

	production_budget	domestic_gross	worldwide_gross
count	5.698000e+03	5.698000e+03	5.698000e+03
mean	3.181423e+07	4.186763e+07	9.174801e+07
std	4.197735e+07	6.833134e+07	1.754208e+08
min	1.100000e+03	0.000000e+00	0.000000e+00
25%	5.000000e+06	1.418872e+06	4.112890e+06
50%	1.700000e+07	1.719656e+07	2.792412e+07
75%	4.000000e+07	5.234866e+07	9.808585e+07
max	4.250000e+08	9.366622e+08	2.776345e+09

Merging of Different Data Frames

Below cells merging of above cleaned the dataframes in order to bring up needed columns for EDA

Merging the Rotten Tomatoes Movie Info and Reviews DataFrames

In [49]:

```
# merging two dfs from rotten tomatoes files
rt_merged_df = pd.merge(rt_reviews_info, rt_movie_droppedcol, on='id')
rt_merged_df
```

Out[49]:

	id	fresh	top_critic	genre	director	writer	thea
0	3	fresh	0	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	2(
1	5	fresh	1	Drama Musical and Performing Arts	Allison Anders	Allison Anders	19
2	6	rotten	0	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	19
3	8	fresh	0	Drama Kids and Family	Jay Russell	Gail Gilchriest	20
4	10	fresh	0	Comedy	Jake Kasdan	Mike White	2(
1130	1996	fresh	0	Action and Adventure Horror Mystery and Suspense	NaN	NaN	20
1131	1997	rotten	0	Comedy Science Fiction and Fantasy	Steve Barron	Terry Turner Tom Davis Dan Aykroyd Bonnie Turner	15
1132	1998	fresh	0	Classics Comedy Drama Musical and Performing Arts	Gordon Douglas	NaN	19
1133	1999	fresh	0	Comedy Drama Kids and Family Sports and Fitness	David Mickey Evans	David Mickey Evans Robert Gunter	1§
1134	2000	rotten	0	Action and Adventure Art House and Internation	NaN	Luc Besson	2(

1135 rows × 8 columns

```
In [50]:
```

```
# doing .info method on the rotten tomatoes data merge
rt_merged_df.info()
```

```
Int64Index: 1135 entries, 0 to 1134
Data columns (total 8 columns):
                 Non-Null Count Dtype
#
    Column
    -----
                 -----
_ _ _
                               ----
0
    id
                1135 non-null
                                int64
                1135 non-null
1
    fresh
                                object
2
   top_critic 1135 non-null
                                int64
                                object
3
    genre
               1133 non-null
4
    director
                1014 non-null
                                object
5
                 891 non-null
    writer
                                object
    theater_date 996 non-null
                                datetime64[ns]
    dvd_date
              996 non-null
                                datetime64[ns]
dtypes: datetime64[ns](2), int64(2), object(4)
memory usage: 79.8+ KB
```

<class 'pandas.core.frame.DataFrame'>

Exploratory Data Analysis (EDA)

After looking at all the above cleaned Data from different datasets, below EDA will focus on 3 datasets;

- 1. The Box Office Mojo
- 2. The Movie DB
- 3. The Numbers

The two datasets on Rotten Tomatoes (rotten tomatoes movie info and rotten tomatoes reviews), were ignoted because of lack of specific primary key column that could be used to relate them with the above chosen 3. Otherwise, above 3 have 'title' column as the primary key column to use to call on the .merge method

In [51]:

doing a merge between Box Office Mojo and The Numbers using 'title' column to consolida
bomtn_budget_mergeddf = pd.merge(cleaned_bom_df, cleaned_tnmovie_budgets_df, on='title')
bomtn_budget_mergeddf

	title	studio	production_budget	domestic_gross	worldwide_gross
0	Toy Story 3	BV	200000000.0	415004880.0	1.068880e+09
1	Inception	WB	160000000.0	292576195.0	8.355246e+08
2	Shrek Forever After	P/DW	165000000.0	238736787.0	7.562447e+08
3	The Twilight Saga Eclipse	Sum.	68000000.0	300531751.0	7.061028e+08
4	Iron Man 2	Par.	170000000.0	312433331.0	6.211564e+08
1320	Ben Is Back	RAtt.	13000000.0	3703182.0	9.633111e+06
1321	Bilal A New Breed Of Hero	VE	30000000.0	490973.0	6.485990e+05
1322	Mandy	RLJ	6000000.0	1214525.0	1.427656e+06
1323	Lean On Pete	A24	8000000.0	1163056.0	2.455027e+06

Because above bomtn_budget_mergeddf, which is a merge between Box Office Mojo and The Numbers datasets to summarize budgets have a title column, and cleaned_tmdb_df from The MoviesDB, which has the ratings also have title column, It makes sense to merge this with the previously merged bomtn_budget_mergeddf to generate a dataframe with now 3 merged datasets

In [52]:

. . . .

Merging the 3 datasets from Box Office Mojo, The Numbers and The Movie DB to add the 'studio', 'popularity' and 'vote_average' columns

bom_tn_tmdb_mergeddf = pd.merge(bomtn_budget_mergeddf, cleaned_tmdb_df, on='title')
bom_tn_tmdb_mergeddf

Out[52]:

	title	studio	production_budget	domestic_gross	worldwide_gross	popularity	rele
0	Toy Story 3	BV	200000000.0	415004880.0	1.068880e+09	24.445	20
1	Inception	WB	160000000.0	292576195.0	8.355246e+08	27.920	20
2	Shrek Forever After	P/DW	165000000.0	238736787.0	7.562447e+08	15.041	20
3	The Twilight Saga Eclipse	Sum.	68000000.0	300531751.0	7.061028e+08	20.340	20
4	Iron Man 2	Par.	170000000.0	312433331.0	6.211564e+08	28.515	20
1266	Ben Is Back	RAtt.	13000000.0	3703182.0	9.633111e+06	17.273	20
1267	Bilal A New Breed Of Hero	VE	30000000.0	490973.0	6.485990e+05	2.707	20
1268	Mandy	RLJ	6000000.0	1214525.0	1.427656e+06	0.600	20
1269	Lean On Pete	A24	8000000.0	1163056.0	2.455027e+06	9.307	20
1270	Borg Vs Mcenroe	Neon	7500000.0	231346.0	3.257922e+06	9.955	20
1271 r	rows × 8 c	olumns					
4							•

In [53]:

```
#getting general info about the merged dataset
bom_tn_tmdb_mergeddf.info()
```

```
Int64Index: 1271 entries, 0 to 1270
Data columns (total 8 columns):
                        Non-Null Count
 #
     Column
                                        Dtype
     _____
                        -----
- - -
                                        ----
0
    title
                        1271 non-null
                                        object
 1
    studio
                        1270 non-null
                                        object
 2
    production_budget 1271 non-null
                                        float64
                                        float64
 3
    domestic gross
                        1271 non-null
 4
    worldwide_gross
                        1271 non-null
                                        float64
 5
     popularity
                        1271 non-null
                                        float64
                                        datetime64[ns]
 6
    release_date
                        1271 non-null
 7
    vote_average
                        1271 non-null
                                        float64
dtypes: datetime64[ns](1), float64(5), object(2)
memory usage: 89.4+ KB
```

<class 'pandas.core.frame.DataFrame'>

In order to get an understanding of which movies make profits and by how much, we need to add a revenue column, which is the difference between worldwide gross and the production_budget. This assumes that worldwide_gross is the gross income from the sale of the movies (a summation of domestic and foreign gross income)

In [54]:

```
# Adding a 'revenue column' in the merged of as 'worldwide_gross' minus 'production_budge
bom_tn_tmdb_mergeddf["revenue"] = bom_tn_tmdb_mergeddf["worldwide_gross"] - bom_tn_tmdb_m
```

In [55]:

```
bom_tn_tmdb_mergeddf.head()
```

Out[55]:

	title	studio	production_budget	domestic_gross	worldwide_gross	popularity	release
0	Toy Story 3	BV	200000000.0	415004880.0	1.068880e+09	24.445	2010-
1	Inception	WB	160000000.0	292576195.0	8.355246e+08	27.920	2010-
2	Shrek Forever After	P/DW	165000000.0	238736787.0	7.562447e+08	15.041	2010-
3	The Twilight Saga Eclipse	Sum.	68000000.0	300531751.0	7.061028e+08	20.340	2010-
4	Iron Man 2	Par.	170000000.0	312433331.0	6.211564e+08	28.515	2010-
4							>

Answering Bussiness Understanding Questions Based on EDA

1. The Most Popular Movies in the Box Office

Below cells tend to inquire on the most popular movies based on the merged dataset to answer the 1st Question in the Business Understanding

In [56]:

```
# group by the 'title' column and get most popular movies
most_popular_movie = bom_tn_tmdb_mergeddf.groupby('title').mean()

# sort the resulting DataFrame in descending order of the maximum values
most_popular_movie_sorted = most_popular_movie.sort_values('popularity', ascending=False)
most_popular_movie_sorted.head(10)
```

Out[56]:

	production_budget	domestic_gross	worldwide_gross	popularity	vote_average
title					
Avengers Infinity War	300000000.0	678815482.0	2.048134e+09	80.773	8.3
John Wick	30000000.0	43037835.0	7.623500e+07	78.123	7.2
The Hobbit The Battle Of The Five Armies	250000000.0	255119788.0	9.455776e+08	53.783	7.3
Guardians Of The Galaxy	170000000.0	333172112.0	7.708675e+08	49.606	7.9
Blade Runner 2049	185000000.0	92054159.0	2.593574e+08	48.571	7.4
Fantastic Beasts The Crimes Of Grindelwald	200000000.0	159555901.0	6.522201e+08	48.508	6.9
Ralph Breaks The Internet	175000000.0	201091711.0	5.242837e+08	48.057	7.2
Spiderman Homecoming	175000000.0	334201140.0	8.801664e+08	46.775	7.4
Antman And The Wasp	130000000.0	216648740.0	6.231447e+08	44.729	7.0
Avengers Age Of Ultron	330600000.0	459005868.0	1.403014e+09	44.383	7.3
1					+

The most Popular Movies in the Box Office are:

- 1. Avengers Infinity War
- 2. John Wick
- 3. The Hobbit The Battle Of The Five Armies
- 4. Guardians Of The Galaxy

- 5. Blade Runner 2049
- 6. Fantastic Beasts The Crimes Of Grindelwald
- 7. Ralph Breaks The Internet
- 8. Spiderman Homecoming
- 9. Antman And The Wasp
- 10. Avengers Age Of Ultron

2. Microsoft's likely strong competitors

What are the most likely strong Competitors Microsoft is likely to face with in the Movie Studio Business?

Below cells tend to answer business understanding question 2 above

In [57]:

```
# group by the 'studio' column and get the average ratings of all movies per studio
most_popular_studio = bom_tn_tmdb_mergeddf.groupby('studio').mean()

# sort the resulting DataFrame in descending order of the maximum values
most_popular_studio_sorted = most_popular_studio.sort_values('popularity', ascending=Fals
most_popular_studio_sorted

production_budget dollessic_gross worldwide_gross popularity vote_average

revenue
```

studio						
BV	1.333740e+08	1.807976e+08	4.633946e+08	19.520883	6.690909	3.300206e+08
MGM	4.300000e+07	8.299287e+07	1.397796e+08	18.528500	6.350000	9.677964e+07
LGP	2.000000e+06	3.633600e+04	6.328516e+06	17.867000	5.000000	4.328516e+06
Amazon	2.000000e+07	2.483472e+06	7.034615e+06	16.925000	7.000000	-1.296538e+07
LG/S	5.492333e+07	5.441562e+07	1.440496e+08	15.948800	6.156667	8.912624e+07
ELS	7.000000e+06	1.632000e+06	1.933829e+06	1.400000	6.000000	-5.066171e+06
DR	4.000000e+05	4.445200e+04	4.445200e+04	0.600000	6.000000	-3.555480e+05
ввс	6.000000e+05	0.000000e+00	7.943000e+03	0.600000	5.000000	-5.920570e+05
FCW	1.200000e+07	1.748400e+04	6.553186e+06	0.600000	3.000000	-5.446814e+06
RLJ	6.000000e+06	1.214525e+06	1.427656e+06	0.600000	3.500000	-4.572344e+06

In [58]:

```
# ploting a bar graph of most popular Movie studios based on movie popularity average per
most_popular_studio_sorted['popularity'].head(10).plot(kind='bar')

# Add a title and axis labels
plt.title('Movie Studios Popularity')
plt.xlabel('Top 10 Movie Studios')
plt.ylabel('popularity')

# Display the graph
plt.show()
```


Based on above analysis, Microsoft's most likely top ten strong competitors are as below. This is based on popularity of top movies produced

- 1. BV
- 2. MGM
- 3. LGP
- 4. Amazon
- 5. LG/S
- 6. WB
- 7. Fox
- 8. STX
- 9. Sony
- 10. Amapurna

3. The top 10 most profitable movie studios

Below Cells tend to answer the 3rd question on

What are the top 10 most profitable movie studios as per the data files given based on;

- a) most profitable movie
- b) average profit for the studios across all movies produced

3(a) 10 most profitable movie studios based on most Profititable Movie

In [59]:

```
# group by the 'studio' column and get the maximum value for each group
max_values = bom_tn_tmdb_mergeddf.groupby('studio').max()

# sort the resulting DataFrame in descending order of the maximum values
max_values_sorted = max_values.sort_values('revenue', ascending=False)
max_values_sorted
```

Out[59]:

	title	production_budget	domestic_gross	worldwide_gross	popularity	release_date	vo
studio							
BV	Zootopia	410600000.0	700059566.0	2.048134e+09	80.773	2018-12-19	
Uni.	Your Highness	250000000.0	652270625.0	1.648855e+09	40.095	2018-12-21	
WB	Yogi Bear	300000000.0	448139099.0	1.146895e+09	48.571	2018-12-21	
P/DW	Transformers Dark Of The Moon	195000000.0	352390543.0	1.123791e+09	28.734	2012-11-21	
Sony	Zookeeper	300000000.0	404508916.0	1.110527e+09	46.775	2018-10-12	
ATO	Casino Jack	12500000.0	2039869.0	2.272186e+06	9.432	2010-12-17	
							•

In [60]:

```
# ploting a bar graph of most profitable production studio (top 10) based on maximum reve
max_values_sorted['revenue'].head(10).plot(kind='bar')

# Add a title and axis labels
plt.title('Movie Studios vs Revenue by Most Profitable Movie')
plt.xlabel('Top 10 Movie Studios')
plt.ylabel('Revenue in USD')

# Display the graph
plt.show()
```


To Answer 3(a) question on top ten most profitable studios based on the most profitable movie. It is evident that BV (Buena Vista which is a brand name that has historically been used for divisions and subsidiaries of The Walt Disney Company) is the most profitable studio based on the most profitable movie 'Zootopia'. Below is the full top 10 list

- 1. BV
- 2. Uni
- 3. WB
- 4. P/DW
- 5. Sony
- 6. Par
- 7. Fox
- 8. WB (NL)
- 9. LGF

40 10/0

3(b) 10 most profitable movie studios based on Average Profit for all Movies Produced

In [61]:

```
# group by the 'studio' column and get the mean value for each group
mean_values = bom_tn_tmdb_mergeddf.groupby('studio').mean()

# sort the resulting DataFrame in descending order of the mean values
mean_values_sorted = mean_values.sort_values('revenue', ascending=False)
mean_values_sorted
```

Out[61]:

	production_budget	domestic_gross	worldwide_gross	popularity	vote_average	
studio						
P/DW	1.334000e+08	1.682915e+08	5.078028e+08	14.669800	6.520000	3
BV	1.333740e+08	1.807976e+08	4.633946e+08	19.520883	6.690909	3
GrtIndia	3.000000e+07	1.898579e+07	2.635029e+08	10.406000	7.000000	2
Uni.	5.672339e+07	8.960870e+07	2.294550e+08	14.748927	6.158065	1
Fox	7.000603e+07	8.442595e+07	2.399093e+08	15.754319	6.338793	1
Amazon	2.000000e+07	2.483472e+06	7.034615e+06	16.925000	7.000000	-1
OMNI/FSR	2.000000e+07	1.186538e+06	6.093725e+06	7.508000	4.400000	-1
CE	3.666667e+07	8.955202e+06	1.919718e+07	10.218000	6.000000	-1
KE	1.800000e+07	0.000000e+00	9.495300e+04	8.627000	5.800000	-1
ALP	2.600000e+07	4.247200e+04	2.923959e+06	12.003000	6.100000	-2

94 rows × 6 columns

In [62]:

```
# ploting a bar graph of most profitable production studios (top 10) based on average rev
mean_values_sorted['revenue'].head(10).plot(kind='bar')

# Add a title and axis labels
plt.title('Movie Studios vs Average Revenue per studio')
plt.xlabel('Top 10 Movie Studios')
plt.ylabel('Revenue in USD')

# Display the graph
plt.show()
```


To Answer 3(b) question on top ten most profitable studios based on average revenues. It is evident below are the most profitable movie studio based on average revenues generated on movies produced from top;

- 1. P/DW
- 2. BV
- 3. GrtIndia
- 4. Uni
- 5. Fox
- 6. Sony
- 7. WB(NL)
- 8. WB
- 9. UTV
- 10. Strand

Conclusion & Recommendations

Based on above analysis, below are the recommendations for Head of Microsoft Studio:

1. Considering the Top 10 most popular movies based on maximum revenue generation, it is evident that most popular movies do not necessarily translate to top revenue generating. However, popularity scores are critical in knowing market penetration (studio's existence awareness)

- 2. With this analysis, Head of Microsoft Movie Studio now knows the top 10 most profitable movie studios, which can be considered as major competitors. It is therefore, recommended that Microsoft focus on above mentioned 10 for purposes of competitor analysis (business models, marketing models, and SWOT analysis)
- 3. In future analysis of Studios performance, focus should be on the average revenue based on movies' financial performances. This is evidently highlighted in the two analyses where ratings based on most revenue generating movies gives a different top 10 studios compared to that from the overall average revenues generated from all the movies from a single studio
- 4. As far as future analyses are concerned, data collected from Rotten Tomatoes, which better cover ratings and reviews, should include a the movie titles column so as to be efectively have definte way of relating them with other datasets with movie titles. This is one of the surest ways of merging ratings to their respective movies in other datasets. The Rotten Tomatoes, despite having better reviews data, had to be dropped because they both lacked the primary key column that matches the other 3 data sets

In []:			