Luiss

Libera Università Internazionale degli Studi Sociali Guido Carli

Algorithms A.Y. 2022/2023

Software Project v2 – A Cryptocurrency Explorer and Market Analyzer

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it

28 February 2023

Group Project Work

The project requires to:

- read a cryptocurrency dataset
- implement efficient algorithmic solutions to different problems

We release three different parts:

- 1. February 7 (Today) due to February 28 (not mandatory)
- 2. February 28 due to March 28 (not mandatory)
- 3. March 28 due May 14 (mandatory)

Software Project: Input Data

How to store financial data in a simple way?

You are given as input a .txt file containing a list of stocks and additional details. Each line has:

crypto_name, day, price, volume

The values represent the price and volume for the crypto_name (e.g., ALGO) in that day.

Crypto	Day	Price	Volume
Gala	458	45	5559100
1inch	507	288	1938100
Etherium	464	75	3553000
Bitcoin	723	65	18966800
Gala	397	97	1314100
Algorand	588	1290	0
Algorand	581	1290	0
Etherium	727	504	0
Tether	643	1398	0

Software Project: Input Data

You are given four datasets: dataset_small.txt, dataset_medium.txt, dataset_large.txt, dataset_full.txt:

Filename	Size	Rows	Cryptos	Average monitoring days per crypto
dataset_small.txt	901KB	~24k	98	247
dataset_medium.txt	~1.8MB	~48k	98	492
dataset_large.txt	~2.6MB	~69k	98	707
dataset_full.txt	~4.60MB	~120K	98	1232

In the first release we suggest to use only the "dataset_small.txt".

Group Project Work: Task 2

In the second project release we require to design and implement:

- 1) A Python function that sorts the crypto data, ordering the cryptos first in alphabetical order and according to the day of monitoring.
- 2) A python function to fetch the maximum value, which takes in input a crypto C and a month m and returns the maximum price value and the day in which this maximum was reached.
- 3) **A python function that searches information**, taking in input a value and a crypto **C**, it returns the day in which **C** reached its price closest to the input value.

Example:

- 1) Sort the data according to the alphabetical order.
- 2) Sort each crypto of the data structured obtained from 1) according to the monitoring day

Crypto	Day	Price	Volume
Gala	371	200	0
Algo	369	275	13038300
Algo	370	273	0
Algo	371	273	0
Gala	369	197	18526600
Gala	370	200	0
Gala	365	191	27862000
Algo	365	289	8110400
Algo	366	286	5478900
Algo	367	292	7929900
Algo	368	268	23720700
Gala	366	194	22765700
Gala	367	195	23271800
Gala	368	196	19114300

Answer to 1):

Crypto ↓	Day	Price	Volume
Algo	369	275	13038300
Algo	365	289	8110400
Algo	370	273	0
Algo	371	273	0
Algo	368	268	23720700
Algo	367	292	7929900
Algo	366	286	5478900
Gala	371	200	0
Gala	365	191	27862000
Gala	369	197	18526600
Gala	370	200	0
Gala	366	194	22765700
Gala	367	195	23271800
Gala	368	196	19114300

Answer to 2):

Crypto	Day ∲	Price	Volume
Algo	365	289	8110400
Algo	366	286	5478900
Algo	367	292	7929900
Algo	368	268	23720700
Algo	369	275	13038300
Algo	370	273	0
Algo	371	273	0
Gala	365	191	27862000
Gala	366	194	22765700
Gala	367	195	23271800
Gala	368	196	19114300
Gala	369	197	18526600
Gala	370	200	0
Gala	371	200	0

Example:

- **1)** Given month m = 13 and crypto C = "Algo", get the sub-table that corresponds to the crypto in input in the desired month.
- 2) Get the maximum price and the day in which it is reached.

Crypto	Day	Price	Volume
Algo	365	289	8110400
Algo	366	286	5478900
Algo	367	292	7929900
Algo	368	268	23720700
Algo	369	275	13038300
Algo	370	273	0
Algo	371	273	0
Gala	365	191	27862000
Gala	366	194	22765700
Gala	367	195	23271800
Gala	368	196	19114300
Gala	369	197	18526600
Gala	370	200	0
Gala	371	200	0

Answer to 1):

Crypto	Day	Price	Volume
Algo	365	289	8110400
Algo	366	286	5478900
Algo	367	292	7929900
Algo	368	268	23720700
Algo	369	275	13038300
Algo	370	273	0
Algo	371	273	0

N.B.: Assume that each month has 30 days

Answer to 2):

Crypto	Day	Price	Volume
Algo	367	292	7929900

Example:

1) Search for the price value of Gala closest to 199.

Crypto	Day	Price	Volume
Algo	365	289	8110400
Algo	366	286	5478900
Algo	367	292	7929900
Algo	368	268	23720700
Algo	369	275	13038300
Algo	370	273	0
Algo	371	273	0
Gala	365	191	27862000
Gala	366	194	22765700
Gala	367	195	23271800
Gala	368	196	19114300
Gala	369	197	18526600
Gala	370	200	0
Gala	371	200	0

Answer to 1):

Get the entries with the minimum distance

Crypto	Day	Price	Volume	Distance of Price with 199
Gala	365	191	27862000	8
Gala	366	194	22765700	5
Gala	367	195	23271800	4
Gala	368	196	19114300	3
Gala	369	197	18526600	2
Gala	370	200	0	1
Gala	371	200	0	1

Answer to 1):

Crypto	Day	Price		Distance of Price with 199
Gala	370	200	0	1
Gala	371	200	0	1

Break ties and return the first day in which the price closest to 199 was reached

Answer to 1):

Crypto	Day	Price		Distance of Price with 199
Gala	371	200	0	1

Group Project Work : Implementation

We are providing you a skeleton of the code. You should modify the code we provide, adding the missing parts.

In particular, you have to implement "group0.py". You can use this file to also add your helper functions.

Group Project Work : Implementation

The python file "group0.py":

The function **sort_data** is called on the data structure that you return with **read_file**

```
def sort_data(data) -> List[Tuple[str, float]]:
    """
    This function sorts the cryptocurrencies first in alphabetical order, and,
    then, for each of them, it performs a sort according to the day of monitoring.

It is forbidden to use any kind of libraries such as Pandas, or functions like
    list.sort()!

Parameters:
    :data: A data structure containing all the information about the cryptos

@return: A sorted list of tuples containing (crypto name, price)
    """

# TODO: Implement here your solution
    return None
```


Group Project Work : Implementation

The python file "group0.py":

The function **get_max_value** receives as input the crypto name (e.g., "Gala") and the month, it outputs the maximum price of the crypto in that particular month and the day in which it was reached.

```
get max value(data, crypto: str, month: int) -> Tuple[int, float]:
This function must return the maximum price for a given crypto in
a specific month.
Parameters:
:data: A data structure containing the information about the cryptos.
:crypto: The crypto for which to search the maximum value.
:month: The month in which to search for the maximum value.
Assumption: each month contains 30 days. Notice that the month can be
a natural number in [1,inf). Example the 13th month represents the first
month of the second year of monitoring; the 14th month represents the
second month of the second year of monitoring, and so on.
@return: A tuple containing the day in which the crypto reached the maximum price,
         along with the maximum value for that crypto
# TODO: Implement here your solution
return (None, None)
```


Group Project Work: Implementation

The python file "group0.py":

The function **search** performs the modified searching algorithm described before! It takes in input the sorted data structure from **sort_data**

```
search(data, value: float, crypto: str) -> Tuple[int, float]:
This function searches for a specific price in a given data series and
returns a tuple with the day and the price for a given cryptocurrency.
If the searched value is not present in the data, the function returns the
closest price. It compares two values of the data series, one at position i
and the other at position j, and returns the price closest to the searched value.
N.B.: If you have more than one possible day whose corresponding price is closest
to the value in input, return the minimum day.
Parameters:
:data: A data structure that contains the value of price and volume of all cryptos.
:value: The price value to be searched in the data.
:crypto: The crypto name to search the value for.
@return: A tuple containing the day on which the cryptocurrency reached the closest price
         and the closest price.
# TODO: Implement here your solution
return (None, None)
```


Group Project Work

Report:

• For the first two parts, you can write a simple presentation about your implementation (about 2 slides). NOT MANDATORY, but HIGHLY SUGGESTED!

The final release is MANDATORY TO PASS the Project, and you must provide a
presentation with at most 8 slides.

Describe your algorithmic idea, main implementation details, and experiments. You should try to analyze the asymptotic cost of your implementation.

Group Project Work

Score:

- The project contributes up to 8 points (added to the theory score).
- If you miss the May deadline, the maximum grade is lowered: you can achieve max 6 points (if you deliver the project by the second exam session), max 5 points (third session), max 4 points (fourth and last session)
- For top projects, we might consider assigning an extra 1-point bonus.

You should work in groups of 3 students.

Thank you!

