

Report on the Radio Testing

For

Raspberry Pi (Trading) Ltd

on

Raspberry Pi 3

Report no. TRA-029073-45-02B

18th February 2016

Report Number: TRA-029073-45-02B

Issue: B

REPORT ON THE RADIO TESTING OF A
Raspberry Pi (Trading) Ltd
Raspberry Pi 3
WITH RESPECT TO SPECIFICATION
FCC 47CFR 15.247 & IC RSS-247

TEST DATE: 29/01/2016

A Longley

Written by: A Longley Radio Test Engineer

J Charters

Approved by: Department Manager - Radio

Date: 18th February 2016

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

Issue Number	Issue Date	Revision History		
Α	18th February 2016	Original		

RF916 2.0 Page 3 of 113

Summary TEST REPORT NUMBER: TRA-029073-45-02B WORKS ORDER NUMBER TRA-029073-01 PURPOSE OF TEST: USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J. Canada: Testing of radio apparatus for TAC (technical acceptance certificate) per subsections 4(2) of the Radio communication Act and 21(1) of the Radio communication Regulations. TEST SPECIFICATION(S): 47CFR15.247 & RSS-247 **EQUIPMENT UNDER TEST (EUT):** Raspberry Pi 3 FCC IDENTIFIER: 2ABCB-RPI32 IC IDENTIFIER: 20953-RPI32 **EUT SERIAL NUMBER:** Prototype MANUFACTURE R/AGENT: Raspberry Pi (Trading) Ltd ADDRESS: 30 Station Road Cambridge Cambridgeshire CB1 2JH United Kingdom **CLIENT CONTACT:** Gordon Hollingworth **2** 01223 322633 ORDER NUMBER: PO-0175 TEST DATE: 29/01/2016

RF916 2.0 Page 4 of 113

A Longley Element

TESTED BY:

2.1 Test Summary

	Requireme	ent Clause	Applicable	Result / Note	
Test Method and Description	RSS	47CFR15	to this equipment		
Radiated spurious emissions (restricted bands of operation and cabinet radiation)	Gen, 8.10	15.205	\boxtimes	Pass	
AC power line conducted emissions	Gen, 8.8	15.207	\boxtimes	Pass	
Carrier frequency separation	247, 5.1 (2)	15.247(a)(1)	\boxtimes	Pass	
Number of hopping channels	247, 5.1 (3), (4) and (5)	15.247(a)(1) (i), (ii) and (iii)	\boxtimes	Pass	
Average time of occupancy	247, 5.1 (3), (4) and (5)	15.247(a)(1) (i), (ii) and (iii)	\boxtimes	Pass	
Maximum peak conducted output power	247, 5.4 (1), (2) and (3)	15.247 (a)(1), (b)(1) and (b)(2)	\boxtimes	Pass	
20dB emission bandwidth	247, 5.1 (3) and (4)	15.247(a)(1) (i) and (ii)	\boxtimes	Pass	
Out-of-band emissions	247, 5.5	15.247(d)	\boxtimes	Pass	
Radiated spurious emissions (receive mode)	-	15.109	\boxtimes	Pass	

Note s:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF916 2.0 Page 5 of 113

3 Contents

1	Revision Record	3	'n
2	Summary	4	ļ
	2.1 Test Summary		
3	Contents		
4	Introduction		
5	Test Specifications		
5			
	5.1 Nomative References	9	,
_	5.2 Deviations from Test Standards		
6	Glossary of Terms	10)
7	= 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
	7.1 EUT Identification		
	7.2 System Equipment	11	l
	7.3 EUT Mode of Operation	11	ı
	7.3.1 Transmission	11	ı
	7.3.2 Reception		
	7.4 EUT Radio Parameters		
	7.4.1 General		
	7.4.2 Antennas		
	7.4.2 Arternas 7.4.3 Product specific declarations 7.4.3	12	<u>-</u>
_	7.5 EUT Description		
8	Modifications		
9	EUT Test Setup		
	9.1 Block Diagram		
	9.2 General Set-up Photograph		
10			
	10.1 Nomal Conditions		
	10.2 Varying Test Conditions	17	7
11	1 Radiated emissions	18	3
	11.1 Definitions	18	3
	11.2 Test Parameters	18	3
	11.3 Test Limit		
	11.4 Test Method		
	11.5 Test Set-up Photograph		
	11.6 Test Equipment	21	,
	11.7 Test Results		
12			
1 4	12.1 Definition		
	12.2 Test Parameters		
	12.3 Test Method		
	12.4 Test Set-up Photograph		
	12.5 Test Equipment		
	12.6 Test Results		
13	3 Carrier frequency separation	50)
	13.1 Definition	50)
	13.2 Test Parameters	50)
	13.3 Test Limit	50)
	13.4 Test Method	51	ı
	13.5 Test Equipment		
	13.6 Test Results		
14			
	14.1 Definition		
	14.2 Test Parameters		
	14.3 Test Limit		
	14.4 Test Method		
	14.5 Test Equipment		
	14.6 Test Results		
15	· · ·		
	15.1 Definition		
	15.2 Test Parameters	56	ì
	15.3 Test Limit	56	ì
	15.4 Test Method	57	7
	15.5 Test Equipment	57	7
	15.6 Test Results		

16	Maximum peak conducted output power	59
16.1	Definition	59
16.2	Test Parameters	59
16.3	Test Limit	59
16.4	Test Method	60
16.5	Test Equipment	60
16.6	Test Results	60
17	Occupied Bandwidth	61
17.1	Definition	61
17.2	Test Parameters	61
17.3	Test Limit	61
17.4	Test Method	62
17.5	Test Equipment	62
17.6	Test Results	
18	Out-of-band and conducted spurious emissions	67
18.1	Definition	
18.2	Test Parameters	67
18.3	Test Limits	67
18.4	Test Method	68
18.5	Test Equipment	68
18.6	Test Results	
19	Radiated emissions – unintentional radiation / receiver emissions	99
19.1	Definitions	
19.2	Test Parameters	99
19.3	Test Limit	
19.4	Test Method	
19.5	Test Set-up Photograph	100
19.6	Test Equipment	
19.7		
20	Measurement Uncertainty	
21	RF Exposure	113

4 Introduction

This report TRA-029073-45-02B presents the results of the Radio testing on a Raspberry Pi (Trading) Ltd, Raspberry Pi 3 to specification 47CFR15 Radio Frequency Devices and RSS-247 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

The testing was carried out for Raspberry Pi (Trading) Ltd by Element, at the address(es) detailed below.

 \bowtie Element Hull П Element North West Unit E Linit 1 Pendle Place South Orbital Trading Park Skemersdale Hedon Road West Lancashire Hull HU9 1NJ WN8 9PN UK IJK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element North West 3930B Element Hull 3483A-1

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF916 2.0 Page 8 of 113

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- Industry Canada RSS-210, Issue 8, December 2010 Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment.
- Industry Canada RSS-247, Issue 1, May 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- Industry Canada RSS-Gen, Issue 4, November 2014 General Requirements for Compliance of Radio Apparatus.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF916 2.0 Page 9 of 113

6 **Glossary of Terms**

§ AC denotes a section reference from the standard, not this document

Alternating Current

ANSI American National Standards Institute

BW bandwidth Celsius С

CFR Code of Federal Regulations

CW Continuous Wave

dΒ decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum Equivalent Isotropically Radiated Power **EIRP**

ERP Effective Radiated Power **EUT Equipment Under Test**

FCC Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

metre m max maximum

MIMO Multiple Input and Multiple Output

min minim um

MRA Mutual Recognition Agreement

N/A Not Applicable **PCB** Printed Circuit Board **PDF** Portable Document Format

Point-to-multipoint Pt-mpt Pt-pt Point-to-point RF Radio Frequency RH Relative Humidity Root Mean Square **RMS**

Rx receiver second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

ν volt W watt Ω ohm

RF916 2.0 Page 10 of 113

7 Equipment Under Test

7.1 EUT Identification

Name: Raspberry Pi 3
Serial Number: Prototype
Model Number: Model B
Software Revision: V4.1

• Build Level / Revision Number: V1.2

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Not Applicable – No support/monitoring equipment required.

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for Tx tests was as follows:

Testing was performed with the EUT continuously transmitting in GFSK and 8PSK modes, at the "DH5" data rate. Test levels were set using the "compliance_app.sh" script, the test scripts used during the assessment are on file at Element.

7.3.2 Reception

The mode of operation for Rx tests was as follows:

Testing was performed with the EUT in receive mode according to the "compliance app.sh" script.

RF916 2.0 Page 11 of 113

7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	2400 to 2483.5 MHz (channelized)		
Modulation type(s):	GFSK / 8PSK		
Occupied channel bandwidth(s):	1 MHz		
Channel spacing:	1 MHz		
ITU emission designator(s):	1MF1D / 1 MG1D		
Declared output power(s):	8 dBm		
Warning against use of alternative antennas in user manual (yes/no):	N/A (PCB mounted chip antenna)		
Nominal Supply Voltage:	5Vdc (via USB power supply)		
Location of notice for license exempt use:	Label / user manual / both.		
Method of prevention of use on non-US / non- Canadian frequencies:	N/A (2.4 GHz operation only)		

7.4.2 Antennas

Туре:	AEL - A2450M000000S007		
Frequency range:	2400 to 2500 MHz		
Impedance:	50 Ω		
SWR:	2.0 max.		
Gain:	1.5 dBi max.		
Polarisation:	Linear		
Beam width:	Omni-directional		
Connector type:	None		
Length:	5.2±0.2 mm		
Weight:	N/A		
Environmental limits:	-40 to +85 °C / 55-75% RH		
Mounting:	PCB mounted chip ceramic		

RF916 2.0 Page 12 of 113

7.4.3 Product specific declarations

Multiple antenna configuration(s), e.g. MIMO:	Single Antenna
Fixed pt-pt operations (yes/no):	No
Installation manual advice on pt-pt operational restrictions (yes/no):	N/A
Fixed pt-mpt operations (yes/no):	No
Simultaneous tx (yes/no):	

7.5 EUT Description

The EUT is a small, single board, computer with WiFi, Bluetooth and Bluetooth LE connectivity.

RF916 2.0 Page 13 of 113

8 Modifications

No modifications were performed during this assessment.

RF916 2.0 Page 14 of 113

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

RF916 2.0 Page 15 of 113

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

RF916 2.0 Page 16 of 113

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was approx. 5 V dc from the adaptor / 110 V ac, 60 Hz, from the mains.

10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

Category	Nominal	Variation	
Mains	110 Vac +/-2 %	85 % and 115 %	
Battery	New battery	N/A	

RF916 2.0 Page 17 of 113

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Hull
Test Chamber: Lab 16 / Lab 10

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 1 MHz

Deviations From Standard: None

Measurement BW:

30 MHz to 1 GHz: 120 kHz
Above 1 GHz: 1 MHz
Up to 1 GHz: quasi-peak

Measurement Detector:

Above 1 GHz: quasi-peak

Above 1 GHz: RMS a verage and Peak

Environmental Conditions (Normal Environment)

Temperature: 19 °C +15 °C to +35 °C (as declared) Humidity: 55 % RH 20 % RH to 75 % RH (as declared) Supply: 110 V ac ± 10 % (as declared)

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)	
30 to 88	100	
88 to 216	150	
216 to 960	200	
Above 960	500	

RF916 2.0 Page 18 of 113

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

$$FS = PR + CL + AF - PA + DC - CF$$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

Figure i Test Setup

RF916 2.0 Page 19 of 113

11.5 Test Set-up Photograph

RF916 2.0 Page 20 of 113

11.6 Test Equipment

Equipment		Equipment	Element	Due For	Calibration
Туре	Manufacturer	Description	No	Calibration	Interval (m)
ATS	Rainford	Ferrite Lined Chamber	REF886	21/07/2016	12
FSU46	R&S	Spectrum Analyser	REF910	28/05/2016	12
310	Sonoma	Pre-Amp (9kHz – 1GHz)	REF927	01/07/2016	12
8449B	Agilent	Pre-Amp (1 – 26.5GHz)	REF913	05/02/2016	12
3109	EMCO	Biconical Antenna	RFG095	09/05/2016	24
3146	EMCO	Log Periodic Antenna	RFG191	09/05/2016	24
3115	EMCO	Horn Antenna	RFG129	05/02/2016	24
	Q-Par	Horn Antenna	RFG629	30/09/2017	24
SN 4478	BSC	2.4 GHz Bandstop Filter	REF2158	Cal before use	N/A

RF916 2.0 Page 21 of 113

11.7 Test Results

Bluetooth DH5 GFSK Channel 0: 30 MHz to 1 GHz

Bluetooth DH5 GFSK Channel 0: 1 GHz to 5 GHz

RF916 2.0 Page 22 of 113

Bluetooth DH5 GFSK Channel 0: 5 GHz to 12.75 GHz

Bluetooth DH5 GFSK Channel 0: 12.75 GHz to 18 GHz

RF916 2.0 Page 23 of 113

Bluetooth DH5 GFSK Channel 0: 18 GHz to 25 GHz

RF916 2.0 Page 24 of 113

Bluetooth DH5 GFSK Channel 38: 30 MHz to 1 GHz

Bluetooth DH5 GFSK Channel 38: 1 GHz to 5 GHz

RF916 2.0 Page 25 of 113

Bluetooth DH5 GFSK Channel 38: 5 GHz to 12.75 GHz

Bluetooth DH5 GFSK Channel 38: 12.75 GHz to 18 GHz

RF916 2.0 Page 26 of 113

Bluetooth DH5 GFSK Channel 38: 18 GHz to 25 GHz

RF916 2.0 Page 27 of 113

Bluetooth DH5 GFSK Channel 78: 30 MHz to 1 GHz

Bluetooth DH5 GFSK Channel 78: 1 GHz to 5 GHz

RF916 2.0 Page 28 of 113

Bluetooth DH5 GFSK Channel 78: 5 GHz to 12.75 GHz

Bluetooth DH5 GFSK Channel 78: 12.75 GHz to 18 GHz

RF916 2.0 Page 29 of 113

Bluetooth DH5 GFSK Channel 78: 18 GHz to 25 GHz

RF916 2.0 Page 30 of 113

Bluetooth DH5 8PSK Channel 0: 30 MHz to 1 GHz

Bluetooth DH5 8PSK Channel 0: 1 GHz to 5 GHz

RF916 2.0 Page 31 of 113

Bluetooth DH5 8PSK Channel 0: 5 GHz to 12.75 GHz

Bluetooth DH5 8PSK Channel 0: 12.75 GHz to 18 GHz

RF916 2.0 Page 32 of 113

Bluetooth DH5 8PSK Channel 0 : 18 GHz to 25 GHz

RF916 2.0 Page 33 of 113

Bluetooth DH5 8PSK Channel 38: 30 MHz to 1 GHz

Bluetooth DH5 8PSK Channel 38: 1 GHz to 5 GHz

RF916 2.0 Page 34 of 113

Bluetooth DH5 8PSK Channel 38: 5 GHz to 12.75 GHz

Bluetooth DH5 8PSK Channel 38: 12.75 GHz to 18 GHz

RF916 2.0 Page 35 of 113

Bluetooth DH5 8PSK Channel 38: 18 GHz to 25 GHz

RF916 2.0 Page 36 of 113

Bluetooth DH5 8PSK Channel 78: 30 MHz to 1 GHz

Bluetooth DH5 8PSK Channel 78: 1 GHz to 5 GHz

RF916 2.0 Page 37 of 113

Bluetooth DH5 8PSK Channel 78: 5 GHz to 12.75 GHz

Bluetooth DH5 8PSK Channel 78: 12.75 GHz to 18 GHz

RF916 2.0 Page 38 of 113

Bluetooth DH5 8PSK Channel 78: 18 GHz to 25 GHz

RF916 2.0 Page 39 of 113

Frequency	QuasiPeak	Meas.	Bandw idth	Height	Polarization	Azimuth	Corr.	Margin	Lim it
(MHz)	(dBµV/m)	Time	(kHz)	(cm)		(deg)	(dB)	(dB)	(dBµV/
		(ms)							m)
40.561093	22.8	15000.0	120.000	101.0	٧	266.0	-17.5	17.2	40.0
71.442560	32.5	15000.0	120.000	398.0	Н	343.0	-24.0	7.5	40.0
72.379200	33.2	15000.0	120.000	410.0	Н	146.0	-23.8	6.8	40.0
84.426120	29.8	15000.0	120.000	101.0	٧	253.0	-22.0	10.2	40.0
87.749973	22.5	15000.0	120.000	214.0	V	280.0	-21.6	17.5	40.0
92.270187	26.0	15000.0	120.000	245.0	Н	319.0	-21.1	17.6	43.5
93.741133	23.8	15000.0	120.000	235.0	Н	-1.0	-20.8	19.7	43.5
118.952560	32.4	15000.0	120.000	103.0	V	104.0	-18.5	11.1	43.5
124.698080	36.3	15000.0	120.000	103.0	V	102.0	-18.3	7.2	43.5
144.685000	28.1	15000.0	120.000	103.0	٧	49.0	-18.6	15.4	43.5
148.513493	33.6	15000.0	120.000	100.0	٧	18.0	-18.8	9.9	43.5
213.509947	17.5	15000.0	120.000	103.0	٧	114.0	-21.1	26.0	43.5
217.890613	18.9	15000.0	120.000	100.0	Н	150.0	-20.7	27.1	46.0
276.748933	29.0	15000.0	120.000	144.0	Н	132.0	-17.1	17.0	46.0
289.216933	27.3	15000.0	120.000	207.0	٧	17.0	-16.9	18.7	46.0
445.490707	35.2	15000.0	120.000	100.0	Н	341.0	-13.0	10.8	46.0
479.998293	33.4	15000.0	120.000	100.0	Н	238.0	-12.1	12.6	46.0
567.570173	21.2	15000.0	120.000	189.0	Н	97.0	-9.6	24.8	46.0
593.995853	32.0	15000.0	120.000	100.0	Н	177.0	-10.0	14.0	46.0
713.304347	18.5	15000.0	120.000	100.0	Н	174.0	-8.2	27.5	46.0
742.503987	37.4	15000.0	120.000	184.0	V	171.0	-6.9	8.6	46.0
781.738347	20.1	15000.0	120.000	140.0	Н	107.0	-7.0	25.9	46.0
875.012227	38.1	15000.0	120.000	101.0	V	205.0	-5.8	7.9	46.0
891.004267	35.6	15000.0	120.000	296.0	Н	217.0	-5.7	10.4	46.0
925.311067	23.2	15000.0	120.000	103.0	V	136.0	-4.1	22.8	46.0
944.987507	27.3	15000.0	120.000	140.0	V	146.0	-3.3	18.7	46.0
960.008640	32.7	15000.0	120.000	193.0	Н	151.0	-3.3	21.3	54.0
992.528747	27.2	15000.0	120.000	101.0	٧	143.0	-3.1	26.8	54.0

	High Power; Channel: 2402 MHz									
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (μV/m)	Li mit (μ V/m)
Pk	1309.214	50.1	4	25.6	34.07	0	0	44.7	171.79	5000
Av	1309.214	34.832	4	25.6	34.07	0	0	29.4	29.51	500
Pk	1484.935	53.4	4.3	25.9	33.78	0	0	48.9	278.61	5000
Av	1484.935	45.032	4.3	25.9	33.78	0	0	40.5	105.93	500
Pk	2400.000	45.8	7.3	28.4	33.75	0	0	46.9	221.31	14289
Av	2400.000	32.3	7.3	28.4	33.75	0	0	33.4	46.77	14289
Pk	2358.429	45.7	7.1	28.3	33.74	0	0	46.5	211.35	5000
Av	2358.429	34.8	7.1	28.3	33.74	0	0	35.6	60.26	500
Pk	2327.628	52.4	6.9	28.2	33.74	0	0	52.9	441.57	5000
Av	2327.628	36.4	6.9	28.2	33.74	0	0	36.9	69.98	500
Pk	4804.302	45.8	8.7	32.9	34.04	0	0	52.7	431.52	5000
Av	4804.302	36.132	8.7	32.9	34.04	0	0	43.0	141.25	500

RF916 2.0 Page 40 of 113

Bluetooth DH5 GFSK Channel 0 : Lower Band Edge

Bluetooth DH5 8PSK Channel 0 : Lower Band Edge

RF916 2.0 Page 41 of 113

Bluetooth Hopping mode : Lower Band Edge

RF916 2.0 Page 42 of 113

	High Power; Channel: 2440MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (μV/m)	Li mit (μ V/m)	
Pk	1309.214	49.69	4	25.6	34.07	0	0	44.3	164.06	74.0	
Av	1309.214	35.332	4	25.6	34.07	0	0	29.9	31.26	54.0	
Pk	1484.935	54.65	4.3	25.9	33.78	0	0	50.1	319.89	74.0	
Av	1484.935	46.732	4.3	25.9	33.78	0	0	42.2	128.82	54.0	
Pk	4879.583	45.88	8.6	33.2	34.06	0	0	53	446.68	74.0	
Av	4879.583	37.732	8.6	33.2	34.06	0	0	44.8	173.78	54.0	

				High Pow	er; Channel:	2480MHz				
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (µV/m)	Li mit (μ V/m)
Pk	1309.214	50.51	4	25.6	34.07	0	0	45.1	179.89	5000
Av	1309.214	35.012	4	25.6	34.07	0	0	29.6	30.20	500
Pk	1485.015	54.7	4.3	25.9	33.77	0	0	50.2	323.59	5000
Av	1485.015	46.472	4.3	25.9	33.77	0	0	41.9	124.45	500
Pk	1633.461	52	5	26.2	33.72	0	0	48.5	266.07	5000
Av	1633.461	48.832	5	26.2	33.72	0	0	45.4	186.21	500
Pk	2483.500	56.3	7.5	28.5	33.78	0	0	57.7	767.36	5000
Av	2483.500	50.7	7.5	28.5	33.78	0	0	52.1	402.72	500
Pk	2487.059	47.7	7.6	28.5	33.78	0	0	49.2	288.40	5000
Av	2487.059	35.5	7.6	28.5	33.78	0	0	37	70.79	500
Pk	4959.615	46.6	8.9	33.5	34.09	0	0	54.3	518.80	5000
Av	4959.615	37.632	8.9	33.5	34.09	0	0	45.4	186.21	500

RF916 2.0 Page 43 of 113

Bluetooth DH5 GFSK Channel 78: Upper Band Edge

Bluetooth DH5 8PSK Channel 78: Upper Band Edge

RF916 2.0 Page 44 of 113

Bluetooth Hopping mode : Upper Band Edge

RF916 2.0 Page 45 of 113

12 AC power-line conducted emissions

12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

12.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 7

Test Standard and Clause: ANSI C63.10-2013, Clause 6.2

EUT Channels / Frequencies Measured: Mid
EUT Channel Bandwidths: 1 MHz
EUT Modulation: GFSK
Deviations From Standard: None
Measurement BW: 9 kHz

Measurement Detectors: Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac ±10 % (as declared)

Test Limit

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 – AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dBµV)					
(101112)	Quasi-Peak	Average				
0.15 to 0.5	66 to 56	56 to 46				
0.5 to 5	56	46				
5 to 30	60	50				

^{*}The level decreases linearly with the logarithm of the frequency.

RF916 2.0 Page 46 of 113

^{**}A linear average detector is required.

12.3 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup

RF916 2.0 Page 47 of 113

12.4 Test Set-up Photograph

12.5 Test Equipment

Equipment		Equipment	Element	Due For	Calibration
Туре	Manufacturer	Description	No	Calibration	Interval (m)
ESH3-Z5	R & S	LISN	RFG189	08/09/2016	12
ESH3-Z2	R&S	Pulse Limiter	RFG674	02/04/2016	12
ESCI7	R&S	Test Receiver	RFG715	06/10/2016	12

RF916 2.0 Page 48 of 113

12.6 Test Results

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Lim it (dBµV)
0.180600	36.1	15000.0	9.000	GND	L1	10.2	28.3	64.5
0.307550	37.7	15000.0	9.000	GND	L1	10.2	22.4	60.0
1.014800	33.2	15000.0	9.000	GND	N	10.1	22.8	56.0
3.021125	34.5	15000.0	9.000	GND	L1	10.1	21.5	56.0
4.194825	32.7	15000.0	9.000	GND	L1	10.2	23.3	56.0
7.788000	37.4	15000.0	9.000	GND	L1	10.5	22.6	60.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Lim it (dBµV)
0.180600	21.4	15000.0	9.000	GND	L1	10.2	33.0	54.5
0.307550	33.1	15000.0	9.000	GND	L1	10.2	16.9	50.0
1.014800	25.9	15000.0	9.000	GND	N	10.1	20.1	46.0
3.021125	18.5	15000.0	9.000	GND	L1	10.1	27.5	46.0
4.194825	21.9	15000.0	9.000	GND	L1	10.2	24.1	46.0
7.788000	24.9	15000.0	9.000	GND	L1	10.5	25.1	50.0

RF916 2.0 Page 49 of 113

13 Carrier frequency separation

13.1 Definition

The carrier frequency separation is the frequency separation between two adjacent hopping frequencies.

13.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 4

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.2

EUT Channels / Frequencies Measured: All; 2402 to 2480 MHz

EUT 20dB Bandwidth: 950 kHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110 V ac ±10 % (as declared)

13.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400 to 2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

RF916 2.0 Page 50 of 113

Report Number: TRA-029073-45-02B

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iii Test Setup

13.5 Test Equipment

Type of Equipment	Maker/Supplier	Model Number	Element Number	Calibration Due Date	Calibration Interval (m)
Spectrum Analyser	Agilent	N9030A	REF2167	13/10/2016	12

13.6 Test Results

	Channel #: 38 & 39; Modulation: GFSK; Power setting: Full								
Data Rate	Data Rate $F1_c$ $F2_c$ Separation, $F2_c - F1_c$ $F1_c$ $F1_c$ $F1_c$ $F2_c - F1_c$ $F1_c$								
DH5	Not recorded	Not recorded	1000.10	PASS					

RF916 2.0 Page 51 of 113

RF916 2.0 Page 52 of 113

14 Number of hopping frequencies

14.1 Definition

The total number of hopping frequencies (the centre frequencies defined within the hopping sequence of a FHSS equipment) which are randomly sequenced in order to spread the transmission.

14.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 4

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.3

EUT Channels / Frequencies Measured: All; 2402 – 2480 MHz

EUT 20dB Bandwidth: 950 kHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared) Humidity: 32 % RH 20 % RH to 75 % RH (as declared) Supply: 110 V ac ± 10 % (as declared)

14.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth
 of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping
 channels;
 - If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz shall use at least 15 hopping channels;
- Frequency hopping systems operating in the band 5725 to 5850 MHz shall use at least 75 hopping channels.

RF916 2.0 Page 53 of 113

Report Number: TRA-029073-45-02B

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iv Test Setup

14.5 Test Equipment

Type of Equipment	Maker/Supplier	Model Number	Element Number	Calibration Due Date	Calibration Interval (m)
Spectrum Analyser	Agilent	N9030A	REF2167	13/10/2016	12

14.6 Test Results

	Modulation: GFSK; Power setting: Full.								
Data Rate	Lowest channel, F _{CL} (MHz)	Highest channel, F _{CH} (MHz)	Number of channels observed	Result					
DH5	2402	2480	79	PASS					

RF916 2.0 Page 54 of 113

RF916 2.0 Page 55 of 113

15 Average channel occupancy

15.1 Definition

The channel occupancy is the total of the transmitter 'on' times, during an observation period, on a particular hopping frequency.

15.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 4

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.4

EUT Channels / Frequencies Measured: Mid

EUT 20dB bandwidth: 950 kHz

EUT Number of hopping channels: 79

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110 V ac ±10 % (as declared)

15.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth
 of the hopping channel is less than 250 kHz, the average time of occupancy on any
 channel shall not be greater than 0.4 seconds within a 20 second period;
 If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the average
 time of occupancy on any channel shall not be greater than 0.4 seconds within a 10
 second period;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz: The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed;
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

RF916 2.0 Page 56 of 113

Report Number: TRA-029073-45-02B

15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. A number of hops were observed to confirm consistency of the dwell time / observe the worst case. All modulation schemes, data rates and power settings were used to observe the worst-case configuration.

Figure v Test Setup

15.5 Test Equipment

Type of Equipment	Maker/Supplier	Model Number	Element Number	Calibration Due Date	Calibration Interval (m)
Spectrum Analyser	Agilent	N9030A	REF2167	13/10/2016	12

15.6 Test Results

Modulation: GFSK ; Power setting: Full.							
Data Rate	Individual occupancy time (ms)	Observation period (s)	Number of hops observed	Average time of occupancy (s)	Result		
DH5	0.1443	31.6	1620	0.233766	PASS		

RF916 2.0 Page 57 of 113

RF916 2.0 Page 58 of 113

16 Maximum peak conducted output power

16.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

16.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 4

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.5

EUT Channels / Frequencies Measured: Low / Mid / High – hopping disabled.

EUT Channel Bandwidths: 1 MHz

Deviations From Standard: None

Measurement BW: Wideband

Spectrum Analyzer Video BW: N/A
Measurement Detector: Peak

Voltage Extreme Environment Test Mains Power = 85 % and 115 % of Nominal (FCC

Range: only requirement);

Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 19 °C +15 °C to +35 °C (as declared)

Humidity: 55 % RH 20 % RH to 75 % RH (as declared)

16.3 Test Limit

- For frequency hopping systems operating in the band 902 to 928 MHz, the maximum peak conducted output power shall not exceed 1 W, and the e.i.r.p. shall not exceed 4 W, if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W, if the hopset uses less than 50 hopping channels.
- For frequency hopping systems operating in the band 2400 to 2483.5 MHz and employing at least

75 hopping channels, the

- power shall not exceed 1 W;
- for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W. The e.i.r.p. shall not exceed 4 W.
- For frequency hopping systems operating in the band 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W.
- Point-to-point systems in the bands 2400-2483.5 MHz and 5725 to 5850 MHz are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers.

RF916 2.0 Page 59 of 113

Report Number: TRA-029073-45-02B

16.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vi Test Setup

16.5 Test Equipment

Equipment		Equipment	Element	Due For	Calibration
Туре	Manufacturer	Description	No	Calibration	Interval (m)
RPR3006W	DARE	Power Meter	REF2083	17/11/2016	12

16.6 Test Results

Modulation: GFSK; Data rate: DH5; Power setting: Full								
Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Maximum peak conducted output power (W)	Antenna gain (dBi)	E.I.R.P. (W)	Result		
2402	3.5	0	0.0022	1.5	0.0032	PASS		
2440	3.8	0	0.0024	1.5	0.0034	PASS		
2480	4.2	0	0.0026	1.5	0.0037	PASS		

Modulation: 8PSK; Data rate: DH5; Power setting: Full							
Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Maximum peak conducted output power (W)	Antenna gain (dBi)	E.I.R.P. (W)	Result	
2402	3.5	0	0.0022	1.5	0.0032	PASS	
2440	3.7	0	0.0023	1.5	0.0033	PASS	
2480	4.0	0	0.0025	1.5	0.0035	PASS	

RF916 2.0 Page 60 of 113

17 Occupied Bandwidth

17.1 Definition

The emission bandwidth (-20 dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 20 dB below the maximum in-band spectral density of the modulated signal.

17.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 4

Test Standard and Clause: ANSI C63.10-2013, Clause 6.9

EUT Channels / Frequencies Measured: Low / Mid / High – hopping stopped.

EUT Channel Bandwidths: 1 MHz

EUT Test Modulations: DH5 (GFSK and 8PSK)

Deviations From Standard: None
Measurement BW: 30 kHz

(requirement: 1 % to 5 % OBW)

Spectrum Analyzer Video BW: 300 kHz

(requirement at least 3x RBW)

Measurement Span: 2 MHz

(requirement 2 to 5 times OBW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac 110 V ac ±10 % (as declared)

17.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: The maximum allowed -20 dB bandwidth of the hopping channel is 500 kHz.
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The maximum
 -20 dB bandwidth of the hopping channel shall be 1 MHz

RF916 2.0 Page 61 of 113

17.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vii Test Setup

17.5 Test Equipment

Type of Equipment	Maker/Supplier	Model Number	Element Number	Calibration Due Date	Calibration Interval (m)
Spectrum Analyser	Agilent	N9030A	REF2167	13/10/2015	12

RF916 2.0 Page 62 of 113

17.6 Test Results

Modulation: GFSK; Data rate: DH5; Power setting: Full							
Channel Frequency (MHz)	99% Bandwidth (kHz)	20dB Bandwidth (kHz)	Result				
2402	909.78	949.4	PASS				
2440	910.36	949.3	PASS				
2480	911.83	950.0	PASS				

RF916 2.0 Page 63 of 113

RF916 2.0 Page 64 of 113

Modulation: 8PSK; Data rate: DH5; Power setting: Full							
Channel Frequency (MHz)	99% Bandwidth (kHz)	20dB Bandwidth (kHz)	Result				
2402	910.99	950.3	PASS				
2440	909.93	948.3	PASS				
2480	911.02	949.0	PASS				

RF916 2.0 Page 65 of 113

RF916 2.0 Page 66 of 113

18 Out-of-band and conducted spurious emissions

18.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

18.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 4

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.8

EUT Channels / Frequencies Measured: 2402/2440/2480 MHz

EUT Channel Bandwidths:

Deviations From Standard:

None

Measurement BW:

Spectrum Analyzer Video BW:

1 MHz

None

300 kHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 9 kHz to 25 GHz

Environmental Conditions (Normal Environment)

Temperature: 25 °C +15 °C to +35 °C (as declared) Humidity: 30 % RH 20 % RH to 75 % RH (as declared) Supply: 110 V ac 110 V ac ± 10 % (as declared)

18.3 Test Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.

RF916 2.0 Page 67 of 113

18.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure viii Test Setup

18.5 Test Equipment

Equipment		Equipment	Element	Due For	Calibration
Туре	Manufacturer	Description	No	Calibration	Interval (m)
FSU26	R&S	Spectrum Analyser	U405	11/05/2016	12

18.6 Test Results

Modulation: GFSK; Data rate: 1Mbps; Power setting: -1							
ChannelEmissionAnalyzerEmissionLimitMarginFrequencyFrequencyLevelLevel(dBm)(dBm) (MHz)(MHz)(dBm)(dBm)							
All emissions were a minimum of 20 dB below the test limit							

RF916 2.0 Page 68 of 113

RF916 2.0 Page 69 of 113

RF916 2.0 Page 70 of 113

RF916 2.0 Page 71 of 113

RF916 2.0 Page 72 of 113

RF916 2.0 Page 73 of 113

CH38

RF916 2.0 Page 74 of 113

RF916 2.0 Page 75 of 113

RF916 2.0 Page 76 of 113

RF916 2.0 Page 77 of 113

RF916 2.0 Page 78 of 113

CH76

RF916 2.0 Page 79 of 113

RF916 2.0 Page 80 of 113

RF916 2.0 Page 81 of 113

RF916 2.0 Page 82 of 113

RF916 2.0 Page 83 of 113

Report Number: TRA-029073-45-02B

Modulation: 8DPSK; Data rate: 3Mbps; Power setting: -1							
ChannelEmissionAnalyzerEmissionLimitMarginFrequencyFrequencyLevelLevel(dBm)(dBm)(MHz)(MHz)(dBm)(dBm)(dBm)							
All emissions were a minimum of 20 dB below the test limit							

RF916 2.0 Page 84 of 113

RF916 2.0 Page 85 of 113

RF916 2.0 Page 86 of 113

RF916 2.0 Page 87 of 113

RF916 2.0 Page 88 of 113

RF916 2.0 Page 89 of 113

CH38

RF916 2.0 Page 90 of 113

RF916 2.0 Page 91 of 113

RF916 2.0 Page 92 of 113

RF916 2.0 Page 93 of 113

RF916 2.0 Page 94 of 113

CH76

RF916 2.0 Page 95 of 113

RF916 2.0 Page 96 of 113

RF916 2.0 Page 97 of 113

RF916 2.0 Page 98 of 113

19 Radiated emissions – unintentional radiation / receiver emissions

19.1 Definitions

Receiver spurious emissions

The radio frequency signals generated within the receiver, which may cause interference to other equipment. This includes the period during which the equipment is scanning or switching channels.

Unintentional radiator

A device that generates RF energy which is not intended to be radiated for reception by a radio receiver.

19.2 Test Parameters

Measurement Detector:

Test Location: Element Hull
Test Chamber: Lab 16 / Lab10

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 1 MHz

Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz
Above 1 GHz: 1 MHz

Up to 1 GHz: quasi-peak
Above 1 GHz: Peak

Environmental Conditions (Normal Environment)

Temperature: 19 °C +15 °C to +35 °C (as declared)

Humidity: 55 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 V ac ±10 % (as declared)

19.3 Test Limit

Note:

Only radio communication receivers operating in stand-alone mode within the band 30 to 960 MHz, as well as scanner receivers, are subject to requirements, as described above. All other receivers are exempted from any certification, testing, labelling and reporting requirements.

However, all receivers in all frequency bands shall comply with the limits set forth in FCC 47CFR15B / IC RSS-Gen even in cases where testing, reporting and/or certification are not required.

Receiver Radiated Limits

Frequency (MHz)	Field Strength (μV/m at 3 m)				
30 to 88	100				
88 to 216	150				
216 to 960	200				
Above 960	500				

RF916 2.0 Page 99 of 113

19.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver. The EUT was rotated in three orthogonal planes and the measurement antenna height scanned (below 1 GHz, from 1 to 4 m; above 1 GHz as necessary) in order to maximise emissions.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration at each frequency.

Pre-scan plots are shown with a peak detector and 100 kHz RBW.

Figure viii Test Setup

19.5 Test Set-up Photograph

RF916 2.0 Page 100 of 113

19.6 Test Equipment

Equipment		Equipment	Element	Due For	Calibration
Туре	Manufacturer	Description	No	Calibration	Interval (m)
ATS	Rainford	Ferrite Lined Chamber	REF886	21/07/2016	12
FSU46	R&S	Spectrum Analyser	REF910	28/05/2016	12
310	Sonoma	Pre-Amp (9kHz – 1GHz)	REF927	01/07/2016	12
8449B	Agilent	Pre-Amp (1 – 26.5GHz)	REF913	05/02/2016	12
3109	EMCO	Biconical Antenna	RFG095	09/05/2016	24
3146	EMCO	Log Periodic Antenna	RFG191	09/05/2016	24
3115	EMCO	Horn Antenna	RFG129	05/02/2016	24
	Q-Par	Horn Antenna	RFG629	30/09/2017	24

RF916 2.0 Page 101 of 113

19.7 Test Results

Bluetooth Channel 0: 30 MHz to 1 GHz

Bluetooth Channel 0: 1 GHz to 5 GHz

RF916 2.0 Page 102 of 113

Bluetooth Channel 0:5 GHz to 12.75 GHz

Bluetooth Channel 0: 12.75 GHz to 18 GHz

RF916 2.0 Page 103 of 113

Bluetooth Channel 0: 18 GHz to 25 GHz

RF916 2.0 Page 104 of 113

Bluetooth Channel 38: 30 MHz to 1 GHz

Bluetooth Channel 38: 1 GHz to 5 GHz

RF916 2.0 Page 105 of 113

Bluetooth Channel 38: 5 GHz to 12.75 GHz

Bluetooth Channel 38: 12.75 GHz to 18 GHz

RF916 2.0 Page 106 of 113

Bluetooth Channel 38: 18 GHz to 25 GHz

RF916 2.0 Page 107 of 113

Bluetooth Channel 78: 30 MHz to 1 GHz

Bluetooth Channel 78: 1 GHz to 5 GHz

RF916 2.0 Page 108 of 113

Bluetooth Channel 78: 5 GHz to 12.75 GHz

Bluetooth Channel 78: 12.75 GHz to 18 GHz

RF916 2.0 Page 109 of 113

Bluetooth Channel 78: 18 GHz to 25 GHz

RF916 2.0 Page 110 of 113

Frequency	QuasiPeak	Meas.	Bandw idth	Height	Polarization	Azimuth	Corr.	Margin	Lim it
(MHz)	(dBµV/m)	Time	(kHz)	(cm)		(deg)	(dB)	(dB)	(dBµV/m)
		(ms)							
40.575707	21.3	15000.0	120.000	109.0	V	208.0	-17.5	18.7	40.0
71.760480	18.8	15000.0	120.000	389.0	Н	346.0	-23.9	21.2	40.0
72.366827	28.1	15000.0	120.000	404.0	Н	348.0	-23.8	11.9	40.0
76.900573	17.5	15000.0	120.000	152.0	V	283.0	-23.3	22.5	40.0
84.421147	30.3	15000.0	120.000	129.0	V	271.0	-22.0	9.7	40.0
87.459933	26.0	15000.0	120.000	147.0	V	238.0	-21.6	14.0	40.0
90.756907	27.0	15000.0	120.000	397.0	Н	159.0	-21.2	16.5	43.5
117.138453	25.4	15000.0	120.000	107.0	V	135.0	-18.5	18.1	43.5
124.961733	34.8	15000.0	120.000	100.0	V	254.0	-18.3	8.7	43.5
142.563667	25.6	15000.0	120.000	100.0	٧	44.0	-18.4	17.9	43.5
148.506707	34.9	15000.0	120.000	100.0	٧	21.0	-18.8	8.6	43.5
212.861973	16.1	15000.0	120.000	100.0	٧	141.0	-21.1	27.4	43.5
284.367920	26.4	15000.0	120.000	197.0	٧	9.0	-17.2	19.6	46.0
290.570093	28.1	15000.0	120.000	183.0	٧	27.0	-16.9	17.9	46.0
362.527560	25.7	15000.0	120.000	100.0	Н	81.0	-15.3	20.3	46.0
445.490533	35.5	15000.0	120.000	100.0	Н	124.0	-13.0	10.5	46.0
480.001893	33.3	15000.0	120.000	100.0	H	239.0	-12.1	12.7	46.0
568.987480	25.2	15000.0	120.000	210.0	Н	68.0	-9.7	20.8	46.0
593.993693	31.8	15000.0	120.000	190.0	Н	176.0	-10.0	14.2	46.0
625.003280	28.5	15000.0	120.000	109.0	V	177.0	-9.4	17.5	46.0
639.263213	24.7	15000.0	120.000	201.0	Н	69.0	-9.3	21.3	46.0
709.076120	19.3	15000.0	120.000	109.0	Н	185.0	-8.4	26.7	46.0
742.516227	40.3	15000.0	120.000	108.0	Н	101.0	-6.9	5.7	46.0
875.000707	37.9	15000.0	120.000	100.0	V	206.0	-5.8	8.1	46.0
890.999293	36.6	15000.0	120.000	100.0	Н	224.0	-5.7	9.4	46.0
960.018000	34.8	15000.0	120.000	109.0	Н	151.0	-3.3	19.2	54.0

High Power; Channel: 2042 MHz									
Detector	Freq. (MHz)	Measured Emission (dBµV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Field Strength (dBµV/m)	Extrap'n Factor (dB)	Field Strength (µV/m)	Li mit (μ V/m)
Pk	1276.327	48.67	4.1	25.6	34.12	43.3	0	146.22	5000
Av	1276.327	32.2	4.1	25.6	34.12	26.8	0	21.88	500
Pk	1485.063	53.9	4.3	25.9	33.77	49.4	0	295.12	5000
Av	1485.063	43.55	4.3	25.9	33.77	39.0	0	89.13	500
Pk	1782.051	49.72	5.1	27.2	33.69	47.4	0	234.42	5000
Av	1782.051	45.12	5.1	27.2	33.69	42.8	0	138.04	500
Pk	2256.410	49.8	6.6	28.0	33.72	49.8	0	309.03	5000
Av	2256.410	44	6.6	28.0	33.72	44.0	0	158.49	500

RF916 2.0 Page 111 of 113

20 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

```
Uncertainty in test result (30 MHz to 1 GHz) = 4.6 dB
Uncertainty in test result (1 GHz to 18 GHz) = 4.7 dB
```

[2] AC power line conducted emissions

Uncertainty in test result = 3.4 dB

[3] Occupied bandwidth

Uncertainty in test result = 15.5 %

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 1.08 dB

[5] Conducted / radiated RF power out-of-band

```
Uncertainty in test result – up to 8.1 GHz = 3.31 dB
Uncertainty in test result – 8.1 GHz to 15.3 GHz = 4.43 dB
Uncertainty in test result (30 MHz to 1 GHz) = 4.6 dB
Uncertainty in test result (1 GHz to 18 GHz) = 4.7 dB
```

[6] Frequency separation

Uncertainty in test result (Spectrum Analyser) = 3.6 kHz

[7] Accumulated channel occupancy time

Uncertainty in test result = 7.98 %

RF916 2.0 Page 112 of 113

21 RF Exposure

As per KDB 447498

47 CFR §§1.1307 and 2.1091

2.1091 Radio frequency radiation exposure evaluation: Portable devices.

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimetres is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than 0.6mW/cm² power density limit, as required under FCC rules

Prediction of MPE limit at a given distance

Equation from KDB 447498 D01

$$S = \frac{1.64ERP}{4\pi R^2} \text{ re-arranged } R = \sqrt{\frac{1.64ERP}{S4\pi}}$$

where:

S = power density
R = distance to the centre of radiation of the antenna
ERP = EUT Maximum power

Result:

Prediction Frequency (MHz)	Maximum ERP (mW)	Power density limit (S) (mW/cm ²)	Distance (R) cm required to be less than 0.6mW/cm ² (cm)		
2480	3.72	0.6	0.9		

RF916 2.0 Page 113 of 113