

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electromagnetic 4: Induction Part B

Instructor: Dikun Yang Feb – May, 2019

EM Surveys

EM Surveys

- Type of source: magnetic dipole, electric dipole, plane wave (natural source)
- Frequency or time domain
- Source waveform: harmonics, square wave, pulse wave
- Operating frequencies or time channels
- Data: complex or real

EM-41

$$s = 10 \text{ m, } f = 6.4 \text{ kHz}$$

EM-41

EM-41

- Variable depth of exploration down to 60 m
- HCP or VCP coil configuration
- Groundwater exploration in fractured and faulted bedrock

GEM3

- Concentric Tx-Rx
- Frequency 60 Hz to 24 kHz
- Identify an object based on its spectral fingerprints

Airborne EM

Skin depth: High frequency for shallow; low frequency for deep

Airborne EM – Groundwater Flow

Time-domain (Transient) EM

- Wider frequency bandwidth
- Deeper penetration
- Time channel: early for shallow, late for deep

Airborne Time-domain EM (TEM)

- Magnetic dipole Tx and Rx
- High efficiency
- Sensitive to conductors (water, minerals)
- Adjustable source moment
- Waveforms

ATEM - SkyTEM

ATEM - Bookpurnong

Surface TEM

- Concentric Tx-Rx
- Time decay curve at each station
- 1D layered inversion at each station
- Stitch 1D models to form a 2D section

Natural Source EM

- Plane wave: horizontal E, H fields
- Frequency: 1 kHz 10⁻⁴ Hz
- Depth of penetration: $10^1 10^5$ m

Magnetotellurics (MT)

$$\begin{bmatrix} E_{x} \\ E_{y} \end{bmatrix} = \begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix} \begin{bmatrix} H_{x} \\ H_{y} \end{bmatrix}$$

Impedance tensor element Z_{ij} is complex and a function of sounding frequency and the earth's conductivity at different depths.

MT - Geothermal

Marine CSEM

- Electric dipole source
- Towed or ocean-bottom E-field receivers (electric dipoles too)
- Widely used in hydrocarbon exploration (resistors in a conductive background)

Marine CSEM

Summary

- More EM surveys
 - Multi-frequency systems: EM-34, GEM3
 - Airborne EM: RESOLVE
 - Time domain EM: SkyTEM, concentric Tx-Rx
 - Natural source EM (MT)
 - Marine CSEM
- Applications
 - Groundwater/geothermal
 - Geologic mapping
 - Geotechnical, UXO
 - Petroleum