Exercise 3.50. Give an example of an infinite group in which every proper sub-group is finite.

Example. Consider the infinite group $(\mathbb{Z},+)$. Then any sub-group S of \mathbb{Z} such that $S \subsetneq \mathbb{Z}$ is necessarily finite.

Exercise 3.53. Let H be a sub-group of G and

$$C(H) = \{ g \in G : gh = hg \text{ for all } h \in H \}.$$

Prove that C(H) is a sub-group of G. This subgroups is called the **centralizer** of H in G.

Proof. By theorem from class, for $C(H) \subseteq G$ to be a sub-group of G, it is sufficient to show

- 1. For all $a, b \in C(H)$, $a \circ b \in C(H)$.
- 2. There exists $e \in C(H)$ such that $a \circ e = a = e \circ a$ for all $a \in C(H)$.
- 3. For all $a \in C(H)$ there exists $a^{-1} \in C(H)$ such that $a \circ a^{-1} = e = a^{-1} \circ a$.
- 1. Let $a, b \in C(H)$. Then $a, b \in G$ as C(H) is a subset of G. Furthermore, $h \in G$ as $h \in H$ and H is a sub-group of G. Consider the expression

$$h \circ (a \circ b) = (h \circ a) \circ b$$
 by associativity of elements of G
= $(a \circ h) \circ b$ by assumption that $a \in C(H)$
= $a \circ (h \circ b)$ by associativity of elements of G
= $a \circ (b \circ h)$ by assumption that $b \in C(H)$
= $(a \circ b) \circ h$ by associativity of elements of G

So $h \circ (a \circ b) = (a \circ b) \circ h$ for all $h \in H$. So $(a \circ b) \in C(H)$ by definition of C(H). So C(H) is closed under \circ .

- 2. e is an elements of G by assumption that G is a group. H is a sub-group of G means that the same e is identity in H. By definition, the identity e in H commutes with any group element in H. That is, $e \circ h = h \circ e = h$ for all $h \in H$. So $e \circ h = h \circ e \implies e \in C(H)$ by definition of C(H).
- 3. Let $a \in C(H)$. Then $a \in G$ as $C(H) \subseteq G$. Then $a^{-1} \in G$ by assumption that G is a group. Then

$$\begin{array}{l} a\circ h=h\circ a \implies (a\circ h)\circ a^{-1}=(h\circ a)\circ a^{-1}\\ \implies a^{-1}\circ \left[(a\circ h)\circ a^{-1}\right]=a^{-1}\circ \left[(h\circ a)\circ a^{-1}\right]\\ \implies \left(a^{-1}\circ a\right)\circ \left(h\circ a^{-1}\right)=\left(a^{-1}\circ h\right)\circ \left(a\circ a^{-1}\right) \quad \text{by multiple applications of associativity in } G\\ \implies e\circ \left(h\circ a^{-1}\right)=\left(a^{-1}\circ h\right)\circ e \quad \text{by definition of } a^{-1}\in G\\ \implies h\circ a^{-1}=a^{-1}\circ h \quad \text{by definition of } e \end{array}$$

So $a^{-1} \in C(H)$ by definition. So $a \in C(H)$ implies that $a^{-1} \in C(H)$.

So this shows that C(H) is a sub-group of G.

Exercise 3.54. Let H be a sub-group of G. If $g \in G$, show that $gHg^{-1} := \{g^{-1}hg : h \in H\}$ is also a sub-group of G.

Proof. By theorem from class, for $gHg^{-1}\subseteq G$ to be a sub-group of G, it is sufficient to show

- 1. For all $a, b \in gHg^{-1}$, $a \circ b \in gHg^{-1}$.
- 2. There exists $e \in gHg^{-1}$ such that $a \circ e = a = e \circ a$ for all $a \in gHg^{-1}$.
- 3. For all $a \in gHg^{-1}$ there exists $a^{-1} \in gHg^{-1}$ such that $a \circ a^{-1} = e = a^{-1} \circ a$.

Notice that gHg^{-1} is necessarily a subset of G as every element in H is contained in G (by assumption that H is a sub-group of G). So $g, h, g^{-1} \in G$. Furthermore, every element in gHg^{-1} is of the form $g^{-1}hg$, and G is closed by assumption that G is a group. So $gHg^{-1} \subseteq G$.

Let $a, b \in gHg^{-1}$. Then $a = g^{-1}h_ag$ and $b = g^{-1}h_bg$ for some $h_a, h_b \in H$.

1. Consider

$$ab = (g^{-1}h_ag) (g^{-1}h_bg)$$

$$= (g^{-1}h_a) (gg^{-1}) (h_bg) \text{ by associativity of elements of } G$$

$$= (g^{-1}h_a) (e) (h_bg) \text{ by definition of } g^{-1}$$

$$= (g^{-1}h_a) (h_bg), \text{ by definition of } e$$

$$= g^{-1} (h_ah_b) g \text{ by associativity of elements of } G$$

and $(h_a h_b) \in H$ as H was assumed to be a sub-group, so H is closed. So $ab = g^{-1} (h_a h_b) g$ is of the form $g^{-1}hg$ for some $h \in H$. So gHg^{-1} is closed.

2. By assumption that H is a sub-group of $G, e \in H$. So $(g^{-1}eg) \in gHg^{-1}$ and

$$g^{-1}eg = g^{-1}g$$
 by definition of e
= e , by definition of g^{-1} .

So $(g^{-1}eg) \in gHg^{-1}$ and $g^{-1}eg = e$. so $e \in gHg^{-1}$.

3. By Proposition 3.4, if $a=g^{-1}h_ag$ then $a^{-1}=g^{-1}h_a^{-1}g$. So $a^{-1}\in gHg^{-1}$ if $h_a^{-1}\in H$, and h_a^{-1} is necessarily an element of H by assumption that H is a sub-group of G. So $a\in gHg^{-1}\implies a^{-1}\in gHg^{-1}$.

So this shows that gHg^{-1} is a sub-group of G.

Exercise 4.1. Prove or disprove each of the following statements.

- (a) U(8) is cyclic
- (b) All of the generators of \mathbb{Z}_{60} are prime.
- (c) \mathbb{Q} is cyclic.
- (d) If every proper sub-group of a group G is cyclic, then G is a cyclic group.
- (e) A group with a finite number of sub-groups is finite.

Proof. (a) U(8) is not cyclic as $U(8) = \{1, 3, 5, 7\}$ and $1^2 \equiv 3^2 \equiv 5^2 \equiv 7^2 \equiv 1 \pmod{8}$. So there does not exist $g \in U(8)$ such that $\langle g \rangle = U(8)$.

- (b) 1 is a generator of \mathbb{Z}_{60} as $\langle 1 \rangle := \{ n \cdot 1 : n \in \mathbb{Z} \} = \mathbb{Z}_{60}$, so not all generators of \mathbb{Z}_{60} are prime.
- (c) Consider $\frac{1}{2} \in \mathbb{Q}$. Then there does not exist an $x \in \mathbb{Q}$ such that $x^n = \frac{1}{2}$ for some $n \in \mathbb{N}$. So \mathbb{Q} is not cyclic.
- (d) As demonstrated in Example 5, every proper sub-group of the symmetries of an equilateral triangle S_3 is cyclic, however S_3 itself is not cyclic. So (d) is false.

(e)

Exercise 4.2. Find the order of each of the following elements.

(a) $5 \in \mathbb{Z}_1 2$

(c) $\sqrt{3} \in \mathbb{R}^*$

(e) $72 \in \mathbb{Z}_{240}$

(b) $\sqrt{3} \in \mathbb{R}$

(d) $-i \in \mathbb{C}^*$

(f) $312 \in \mathbb{Z}_{471}$

 $\textit{Proof.} \ \ (a) \ \ 5(5) - 12(2) = 1 \implies 5 \cdot 5 \equiv 1 \ \ (\text{mod } 12) \implies |5| = 5$

- (b) $\sqrt{3}^n = 1$ for $n \in \mathbb{N}$ is a contradiction. So $|\sqrt{3}| = \infty$.
- (c) $\sqrt{3}^n = 1$ for $n \in \mathbb{N}$ is a contradiction. So $|\sqrt{3}| = \infty$.
- (d) $(-i)^4 = (-1)^4 (i)^4 = 1$. So |-i| = 4.
- (e) $\gcd(72,240) = 24$ so $|72| = \infty$ as there does not exist $n \in \mathbb{N}$ such that $72 \cdot n \equiv 1 \pmod{240}$.
- (f) $\gcd(312, 471) = 3$ so $|312| = \infty$.

Exercise 4.4. Find the subgroups of $GL_2(\mathbb{R})$ generated by each of the following matrices.

(a) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

(c) $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$

(e) $\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}$

(b) $\begin{pmatrix} 0 & \frac{1}{3} \\ 3 & 0 \end{pmatrix}$

(d) $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$

 $(f) \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

 $\textit{Proof.} \ \ (a) \ \ \text{Notice} \ A^2 = \left[\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right], \ A^3 = A^{-1} = -A, \ A^4 = -A^2, \ \text{and} \ A^5 = A^1 = A. \ \ \text{So} \ \left\langle \left[\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right] \right\rangle = \left\{ \pm \left[\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right], \pm \left[\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right] \right\}$

- (b) Notice $A^{-1} = A$. So $\left\langle \begin{bmatrix} 0 & \frac{1}{3} \\ 3 & 0 \end{bmatrix} \right\rangle = \left\{ \begin{bmatrix} 0 & \frac{1}{3} \\ 3 & 0 \end{bmatrix}, I_2 \right\}$
- (c) Notice

• $A^2 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$

• $A^4 = A^3 A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} = -A$ • $A^6 = A^4 A^2 = -A^3 = I_2$

• $A^3 = A^2 A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

• $A^5 = A^4 A = -A^2$

• $A^7 = A^4 A^3 = -A^4 = A$

So $\langle \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \rangle = \{ \pm id, \pm A, \pm A^2 \}.$

(d) Notice $A^{-1}=\left[\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right]$ and $A^n=\left[\begin{smallmatrix}1&-n\\0&1\end{smallmatrix}\right]$ for $n\in\mathbb{N}.$ So $\left\langle\left[\begin{smallmatrix}1&-1\\0&1\end{smallmatrix}\right]\right\rangle=\{\left[\begin{smallmatrix}1&n\\0&1\end{smallmatrix}\right]:n\in\mathbb{N}\}.$

Exercise 4.6. Find the order of every element in the symmetry group of the square, D_4 .

Proof. Copy-paste from my last homework, the symmetries of a square are

0	id	ho	ρ^2	ρ^3	$\mu_{x=0}$	$\mu_{y=0}$	$\mu_{y=x}$	$\mu_{y=-x}$
id	id	ρ	$ ho^2$	$ ho^3$	$\mu_{x=0}$	$\mu_{y=0}$	$\mu_{y=x}$	$\mu_{y=-x}$
ho	ρ	$ ho^2$	$ ho^3$	id	$\mu_{y=x}$	$\mu_{y=-x}$	$\mu_{y=0}$	$\mu_{x=0}$
$ ho^2$	$ ho^2$	$ ho^3$	id	ρ	$\mu_{y=0}$	$\mu_{x=0}$	$\mu_{y=-x}$	$\mu_{y=x}$
$ ho^3$	$ ho^3$	id	ho	$ ho^2$	$\mu_{y=-x}$	$\mu_{y=x}$	$\mu_{x=0}$	$\mu_{y=0}$
$\mu_{x=0}$	$\mu_{x=0}$	$\mu_{y=-x}$	$\mu_{y=0}$	$\mu_{y=x}$	id	$ ho^2$	$ ho^3$	ho
$\mu_{y=0}$	$\mu_{y=0}$	$\mu_{y=x}$	$\mu_{y=0}$	$\mu_{y=-x}$	$ ho^2$	id	ho	$ ho^3$
$\mu_{y=x}$	$\mu_{y=x}$	$\mu_{x=0}$	$\mu_{y=-x}$	$\mu_{y=0}$	ho	$ ho^3$	id	$ ho^2$
$\mu_{y=-x}$	$\mu_{y=-x}$	$\mu_{y=0}$	$\mu_{y=x}$	$\mu_{x=0}$	$ ho^3$	ρ	$ ho^2$	id

So |id|=1, $|\rho|=4$, and $|\mu_{x=0}|=|\mu_{y=0}|=|\mu_{y=x}|=|\mu_{y=-x}|=2$.

Exercise 4.12. Find a cyclic group with exactly one generator. Can you find cyclic groups with exactly two generators? Four generators? How about n generators?

Proof. By Corollary 4.7, the only generator of \mathbb{Z}_{60} is 1 as 1 is the only number < 60 and co-prime to 60.

 Z_6 has two generators, 1 and 5 as 1 and 5 are the only numbers < 6 that are co-prime to 6.

 Z_8 has two generators, 1, 3, 5 and 7 as those are the numbers co-prime to 8.