

Metrology and Sensing

Lecture 6-3: Wavefront sensors

2020-12-08

Herbert Gross

Winter term 2020 www.iap.uni-jena.de

Miscellaneous methods

- Knife and slit scan
- General filter approach
- Ronchi method

Knife Edge Method

- Moving a knife edge perpendicular through the beam cross section
- Relationship between power transmission and intensity:
 Abel transform for circular symmetry

$$P(x) = 2 \int_{x}^{\infty} \int_{\xi}^{\infty} \frac{I(r) r dr}{\sqrt{r^2 - \xi^2}} d\xi$$

Example: geometrical spot with spherical aberration

Indirect Wavefront Sensing

Foucault knife edge method

Knife Edge Test

Caustic in case of spherical aberration

Zonal Aberration

Eyepiece with strong zonal pupil aberration

 Illumination for decentered pupil : dark zones due to vignetting
 Kidney beam effect

Idea:

Wave under test E(x,y) is passing a complex filter F(x,y)

$$F(x, y) = T(x, y) \cdot e^{i\psi(x, y)}$$

Filter Techniques

 The transmitted field E'(x,y) is given in the far field as Fourier transform by

$$E'(x,y) = \int_{y_q = -\infty}^{\infty} \int_{x_q = -\infty}^{\infty} F(x_q, y_q) \cdot E(x_q, y_q) \cdot e^{i2\pi \frac{x_q x + y_q y}{\lambda \cdot r}} dx_q dy_q$$

- The filter can modify the field by:
 - 1. the amplitude by T(x,y)
 - 2. the phase by $\Psi(x,y)$ with different geometries
- A corresponding reconstruction algorithm allows to recover the desired information of the field E(x,y)

Institute of Applied Physics Friedrich-Schiller-Universität Jena

General Filter Techniques

- Generalized concept: filtering the wave
- Realizations:
 - 1. Foucualt knife edge
 - 2. slit
 - 3. Toepler schlieren method
 - 4. Ronchi test
 - 5. wire test
 - 6. Lyot test ($\lambda/4$ wire)

¤	Filter-function¤	Filter-transmittance¤	Filtered-pupil-irradiance
(a)·Foucaultknife· edgetest¤	$T(x, y) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$		
(b)·ToeplerSchlieren- test¤	$T(x, y) = \begin{cases} 0 & x > \frac{b}{2} \\ 1 & x \le \frac{b}{2} \end{cases}$		
(c·)·Ronchitest¤	$T(x,y) = rect(2\pi b) \P$		
(d)·Wire·test¤	$T(x, y) = \begin{cases} 0 & x \le \frac{b}{2} \\ 1 & x > \frac{b}{2} \end{cases}$		

Institute of Applied Physics Friedrich-Schiller-Universität Jena

General Filter Techniques

- Knife edge filter for defocussing
- Changing intensity distribution as a function of the filter position

Theories semies onversitational				
Position-of-knife-edge¤	Irradiance·in·knife·edge·plane	Image·in·sensor·plane·(knife· edge·image)¤		
–10000·nm·defocus¤)	eage integera		
–5000·nm·defocus¤)	a a		
–2000·nm·defocus¤	,			
0·nm·defocus¤	п			
+2000·nm·defocus¤	ū			
+5000·nm·defocus¤	ÿ,			
+10000-nm-defocus¤				

Slit-Scan-Method

- Method very similar to moving knife edge
- Integration of slit length must be inverted:
 - inverse Radon transform
 - corresponds to tomographic methods

Ronchi Method

- Setup:
 - simple rectangular linear grating
 - corresponds to classical fringe projection

Problem: superposition of perturbing higher orders

Ronchi Method

- Measurement of surfaces by fringe deformation
- Grating creates reference: fringe of 1st order after Ronchi grating
- Evaluation of the lateral aberrations of the wavefront by

$$\frac{\partial W}{\partial x_p} = -\frac{\Delta x}{R} , \frac{\partial W}{\partial y_p} = -\frac{\Delta y}{R}$$

Explanation geometrical or wave-optical

Ronchi Test Filters

Institute of
Applied Physics
Friedrich-Schiller-Universität Jena

- Filter function is a linear grating
- Different realizations:
 - 1. amplitude or phase
 - 2. rectangular or sinusoidal variation
- Example images of a Ronchi test for the following wavefront

Ronchi test (rectangular amplitude grid)	$T(x,y) = \frac{1 + sign(\cos(2\pi bx))}{2}$ $\psi(x,y) = 0$	
Ronchi test (sinusoidal amplitude grid)	$T(x, y) = \frac{1 + \cos(2\pi bx)}{2}$ $\psi(x, y) = 0$	
Ronchi test (rectangular λ/2 phase grid)	$T(x,y) = 0$ $\psi(x,y) = i\pi \frac{1 + sign(\cos(2\pi bx))}{2}$	
Ronchi test (sinusoidal λ/2 phase grid)	$T(x, y) = 0$ $\psi(x, y) = i\pi \frac{1 + \cos(2\pi bx)}{2}$	

Ref: B. Dörband

Ronchi Method

- Ronchi pattern of low order aberrations
- Complex evaluation of patterns

