Capítulo 5 – Desenvolvimento de algoritmos

Introdução

Uma solução de problema que comporte o uso de um computador deve ser bem caracterizada. Existe um tipo diferente para cada uma das etapas de seu desenvolvimento completo.

Fase	Domínio	Requisitos
Conceitual	Entidades abstratas	Habilidade em
/	Associações lógicas	decompor o modelo em ações
Modelo	Valores abstratos	componentes
	Objetos (dados)	Adequação à
Algorítmica	Operações abstratas	linguagem Compreensão da linguagem e
	Valores construídos	métodos computacionais
Implementação	Estruturas de dados	
/	Operações primitivas	Precisão de mapeamento
Programa	Valores básicos	тарсатстю
Física	Armazenamento	
/	Operações reais	Eficiência de código
Processo	Valores binários	5595

Existem vários métodos que podem ser aplicados durante a fase de desenvolvimento de algoritmos. Muitos desses métodos são conhecidos como *métodos de análise estruturada*, ou seja, aqueles cujas metodologias permitem, a partir de uma definição formal de um problema, chegar a algoritmo pronto capaz de resolvê-lo.

O mais importante para o desenvolvimento é conhecer o problema e os elementos que compõem o seu universo de relações, onde, possivelmente, um caminho para a solução pode ser encontrado.

A maior dificuldade na etapa de elaboração da solução por meio de algoritmos é vencer a distância conceitual entre o quê deve ser feito (a ação) e como expressá-la (a descrição). Um algoritmo não se limita ao texto (aspecto estático), mas exprime ações (aspecto dinâmico), coordenadas por um fluxo de controle.

Ao desenvolver um algoritmo deve-se preocupar :

- com a estrutura de dados, ou seja, a representação das entidades com as quais se irá trabalhar;
- com a estrutura lógica, ou seja, a seqüência e necessidade dos processos que alterarão as entidades;
- com a **decomposição lógica**, ou seja, a organização da estrutura lógica em *módulos funcionais* (descrições mais gerais);
- com a complexidade lógica dos módulos, ou seja, a descrição de cada processo por meio de ações mais simples, até que se consiga a sua expressão por meio da notação adotada.

Um algoritmo deve reunir as seguintes qualidades :

- ser claro, legível e confiável;
- ser auto-explicativo (bem documentado);
- permitir a sua verificação e modificação.

Para tentar atender estes requisitos sugere-se :

- · evitar o crescimento da complexidade;
- colocação de comentários :
- para descrição da função do algoritmo;
- para mostrar como utilizá-lo;
- para explicar o significado e uso de variáveis;
- para descrever estruturas de dados;
- para especificar métodos e referências utilizadas;
- para indicar autor, data e identificação;
- utilização de espaços em branco e parênteses;
- colocação de um comando por linha;
- agrupamento de comandos em blocos.

Qualquer metodologia empregada deverá permitir flexibilidade bastante para que o desenvolvimento possa ser feito de modo a diminuir a complexidade e aumentar as facilidades para se atingir o texto final.

Apresentaremos a seguir, como exemplo, uma destas metodologias.

Desenvolvimento de soluções por algoritmos

- Etapas de desenvolvimento

Compreensão do problema

É preciso compreender, de forma bem abrangente, antes de buscar uma solução.

Qual é a incógnita? Quais são os dados? Qual é a condição?

É possível satisfazer a condição ? A condição é suficiente para determinar a incógnita ? Ou é insuficiente ? Ou redundante ? Ou contraditória ?

Traçar figuras, quando possível. Adotar uma notação adequada, se necessário. Separar as diversas partes da condição, se complexa.

Estudo do problema

É necessário encontrar a conexão entre os dados e o resultado.

Já viu o problema antes ? Ou apresentado de forma diferente ? Conhece um problema correlato ? Ou que lhe poderia ser útil ?

É possível que seja obrigado a considerar problemas auxiliares se não puder encontrar uma conexão imediata.

Conhece outro problema que determine o mesmo resultado, ou semelhante ?

Se existe tal problema já resolvido é possível usá-lo ? É possível utilizar o seu método ? Ou adaptá-lo ? Se for introduzido algum elemento auxiliar, pode-se usá-lo ?

É possível reformular o problema?

Elaboração da solução

É necessário expressar a solução de maneira clara e completa.

Voltar às definições.

É possível imaginar um problema correlato mais acessível ? É possível imaginar um problema mais genérico ? É possível imaginar um problema mais específico ? É possível resolver parte do problema ?

Há algum problema análogo?

Todos os dados são necessários ?
Toda a condição é necessária ?
Todas as noções essenciais implicadas foram consideradas ?
Se usar parte da condição pode-se determinar o resultado ?
Se variar a incógnita, ou dados, ou todos eles, melhora a compreensão do problema ?
É possível variar a condição ?
É possível tirar mais alguma coisa de útil dos dados ?
É possível imaginar outros dados úteis ?

Implementação da solução

É necessário executar a solução passo a passo.

É possível verificar se o passo está correto? É possível demonstrar que ele está correto?

Avaliação da solução

É necessário examinar a solução obtida.

É possível verificar o resultado ?

É possível verificar o argumento?

É possível chegar ao resultado por um caminho diferente?

É possível utilizar o resultado, ou o método, em outro problema?

Desenvolvimento de algoritmos por diagramas básicos :

? ? *
Sequência * Repetição

Regras de montagem :

- cada diagrama deve representar uma única ação fundamental;
- os diagramas podem se estruturar em níveis, executando-se uma ação por vez, em ordem, da esquerda para a direita;
- cada diagrama deve ser refinado até representar a ação fundamental por meio de ações primitivas.

Exemplo de montagem de um algoritmo típico :

O diagrama acima deve ser entendido como a representação de um algoritmo que faz a leitura de dados, executa algum cálculo sobre eles e mostra os resultados.

Para esboço de um algoritmo podem ser empregados diagramas semelhantes às estruturas de controle.

Estrutura	Diagrama			
	comando 1			
Seqüência simples				
			comando N	
Alternativa simples	teste?	V	bloco	
Alternativa	teste ?	V	bloco 1	
dupla	leste !	F	bloco 2	
-		1		
		1	bloco 1	
Alternativa		2	bloco 2	
múltipla	valor		blocos	
		F	bloco N	
Repetição	teste?			
com teste no início		bloco		
			-	
Repetição com teste			bloco	
no fim	teste?			

Cada diagrama pode ser combinada com os demais formando blocos maiores, ou mais complexos, dependendo da necessidade do algoritmo.

Exemplos.

Exemplo 1.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado;
- calcular e mostrar o valor do resistor equivalente em série.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1
R2	real		resistor 2
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados Resultado R1 = 10 [ohms] R2 = 5 [ohms] R3 = 15 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 1	
Ação	Bloco
! definir dados	1
! ler dados do teclado	
! calcular equivalente em série	
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 1	
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
! calcular equivalente em série	
! mostrar resultado	

Terceira versão, refinar o segundo bloco.

Exemplo 1	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! calcular equivalente em série	3
! mostrar resultado	4

Quarta versão, refinar o segundo bloco.

Exemplo 1	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! calcular equivalente em série	3
R3 ← R1 + R2;	
! mostrar resultado	4

Quinta versão, refinar o quarto bloco.

Exemplo 1	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! calcular equivalente em série	3
R3 ← R1 + R2;	
! mostrar resultado	4
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 1
    // Dados dois resistores, calcular o resistor equivalente em série.
    // 1. definir dados
      R1 = 0.0; // primeiro resistor
      R2 = 0.0; // segundo resistor
      R3 = 0.0; // resistor equivalente
    // 2. ler dados do teclado
                           // limpar a area de trabalho
      R1 = input ( "\nR1 " ); // ler primeiro valor
      R2 = input ( "\nR2 " ); // ler segundo valor
    // 3. calcular equivalente em série
      R3 = R1 + R2;
    // 4. mostrar resultado
      printf ( "\nR3=R1+R2= %f [ohms]", R3 );
    // pausa para terminar
      printf ( "\nPressionar qualquer tecla para terminar.\n" );
    // fim do programa
Programa em C++:
    // Exemplo 1
    // Dados dois resistores, calcular o resistor equivalente em serie.
    // bibliotecas necessarias
    #include <iostream>
    using namespace std;
    int main (void)
    // 1. definir dados
      float R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
    // 2. ler dados do teclado
      // 3. calcular equivalente em serie
      R3 = R1 + R2;
    // 4. mostrar resultado
      cout << "\nR3=R1+R2=" << R3 << " [ohms]";
    // pausa para terminar
      cout << "\nPressionar qualquer tecla para terminar.";
      getchar ();
      return EXIT_SUCCESS;
    } // fim do programa
```

```
Programa em C#:
* Exemplo 1
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_1
  public static void Main ()
  // 1. definir dados
    double R1, // primeiro resistor
            R2, // segundo resistor
            R3; // resistor equivalente
  // 2. ler dados do teclado
    Console.Write ( "\nR1=" ); R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
   Console.Write ( "\nR2=" );
R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
  // 3. calcular equivalente em serie
    R3 = R1 + R2;
  // 4. mostrar resultado
    Console.WriteLine ( \nR3=R1+R2="+R3+"[ohms]");
  // pausa para terminar
    Console.Write ( "\nPressionar ENTER para terminar." );
    Console.ReadLine ();
  } // end Main ()
```

} // fim Exemplo_1 class

Programa em Java:

```
* Exemplo 1
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
import IO.*;
                                   // IO.jar deve ser acessível
// ----- definicao de classe
class Exemplo 1
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                                 // primeiro resistor
           R2,
                                 // segundo resistor
           R3;
                                 // resistor equivalente
 // 2. ler dados do teclado
   R1 = IO.readint ( "\nR1=" ); // ler primeiro valor 
 <math>R2 = IO.readint ( "\nR2=" ); // ler primeiro valor 
 // 3. calcular equivalente em serie
    R3 = R1 + R2;
 // 4. mostrar resultado
    IO.println ( ^{n}R3=R1+R2= + R3 + ^{(n)} [ohms] );
 // pausa para terminar
    IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ()
} // fim Exemplo 1 class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler o valor de um raio de círculo
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro.
- 2. Fazer um algoritmo para:
 - ler três valores reais (lados de um triângulo);
 - calcular e mostrar cada lado e o ângulo oposto a ele.
- 3. Repetir o exercício anterior para calcular e mostrar :
 - o perímetro e
 - a área do triângulo.
- 4. Fazer um algoritmo para:
 - calcular e mostrar a força elétrica entre duas cargas;
 - ler o valor das cargas (em Coulombs)
 - ler o raio (em metros)
 - supor :

$$k = 9 \times 10^9 \qquad e \qquad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

5. Refazer o exercício anterior para um valor de raio lido em centímetros.

Exemplo 2.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado;
- calcular e mostrar o valor de resistor equivalente em série, se os dados forem válidos.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 0 [ohms] R2 = 5 [ohms]	(sem resultado)
R1 = 10 [ohms] R2 = 0 [ohms]	(sem resultado)
R1 = 0 [ohms] R2 = 0 [ohms]	(sem resultado)

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 2	
Ação	
! definir dados	
! ler dados do teclado	
! testar validade dos dados	
! calcular equivalente em série	
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 2	
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
! testar validade dos dados	3
! calcular equivalente em série	3.1
! mostrar resultado	3.2

Terceira versão, refinar o segundo bloco.

	Exemplo 2	v.3
	Ação	Bloco
! definir da	dos	1
real R1, !	primeiro resistor	
R2, !	segundo resistor	
R3; !	resistor equivalente	
! ler dados	do teclado	2
tela ← "\r	nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\r	R2 = "; R2 ← teclado, ! ler segundo valor	
! testar val	idade dos dados	3
	! calcular equivalente em série	3.1
R1>0	R3 ← R1 + R2;	
\ & \\	! mostrar resultado	3.2
R2>0?	tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Quarta versão, refinando novamente o terceiro bloco.

Exemplo 2	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! testar validade dos dados	3
se (R1>0 & R2 > 0)	
! calcular equivalente em série	3.1
R3 ← R1 + R2;	
! mostrar resultado	3.2
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
fim se ! fim se dados válidos	

Programa em SCILAB:

```
// Exemplo 2
     // Dados dois resistores, calcular o resistor equivalente em serie.
     // 1. definir dados
       R1 = 0.0; // primeiro resistor
       R2 = 0.0; // segundo resistor
       R3 = 0.0; // resistor equivalente
     // 2. ler dados do teclado
                                 // limpar area de comandos
       R1 = input ( "\nR1 " ); // ler primeiro valor
       R2 = input ( "\nR2 " ); // ler segundo valor
     // 3. testar a validade dos dados
       if (R1 > 0 \& R2 > 0)
       // 3.1. calcular equivalente em serie
          R3 = R1 + R2;
       // 3.2. mostrar resultado
         printf ( "\nR3=R1+R2= %f [ohms]", R3 );
       end // se dados validos
     // pausa para terminar
       printf ( "\nPressionar qualquer tecla para terminar.\n" );
       halt;
     // fim do programa
Programa em C++:
     // Exemplo 2
     // Dados dois resistores,
     // calcular o resistor equivalente em serie.
     // bibliotecas necessarias
     #include <iostream>
     using namespace std;
     int main (void)
     // 1. definir dados
       float R1, // primeiro resistor
             R2, // segundo resistor
             R3; // resistor equivalente
     // 2. ler dados do teclado
        \begin{array}{ll} \mbox{cout} << \mbox{"}\mbox{nR1="}; & \mbox{cin} >> \mbox{R1;} \mbox{//} \mbox{ler primeiro valor} \\ \mbox{cout} << \mbox{"}\mbox{nR2="}; & \mbox{cin} >> \mbox{R2,} \mbox{//} \mbox{ler segundo valor} \\ \end{array} 
     // 3. testar a validade dos dados
       if (R1>0 && R2 > 0)
                                         // se dados validos
       { // 3.1. calcular equivalente em serie
          R3 = R1 + R2;
          // 3.2. mostrar resultado
          cout << "\nR3=R1+R2=" << R3 << " [ohms]";
       } // fim se dados validos
     // pausa para terminar
       cout << "Pressionar qualquer tecla para terminar.";
       getchar ();
       return EXIT_SUCCESS;
     } // fim do programa
```

```
* Exemplo 2
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_2
  public static void Main ()
  // 1. definir dados
    double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
  // 2. ler dados do teclado
    Console.Write ( "\nR1=" ); R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
   Console.Write ( "\nR2=" );
R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
  // 3. testar a validade dos dados
                                  // se dados validos
    if (R1 > 0 \&\& R2 > 0)
    { // 3.1. calcular equivalente em serie
       R3 = R1 + R2;
     // 3.2. mostrar resultado
       Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
    } // fim se dados validos
  // pausa para terminar
    Console.Write ( "\nPressionar ENTER para terminar." );
    Console.ReadLine ();
  } // end Main ()
} // fim Exemplo_2 class
```

Programa em Java:

```
* Exemplo 2
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
import IO.*;
                                  // IO.jar deve ser acessível
// ----- definicao de classe
class Exemplo_2
  public static void main (String [] args)
  // 1. definir dados
   double R1,
                                // primeiro resistor
           R2,
                                // segundo resistor
           R3;
                                // resistor equivalente
  // 2. ler dados do teclado
   R1 = IO.readint ( "\nR1=" ); // ler primeiro valor R2 = IO.readint ( "\nR2=" ); // ler primeiro valor
  // 3. testar a validade dos dados
   if (R1 > 0 \& R2 > 0)
                               // se dados validos
   { // 3.1. calcular equivalente em serie
       R3 = R1 + R2;
     // 3.2. mostrar resultado
       IO.println ( \nR3=R1+R2=" + R3 + " [ohms]" );
   } // fim se dados validos
  // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
  } // end main ()
} // fim Exemplo_2 class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um valor de um raio de círculo válido (maior que zero) e
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro do círculo.
- 2. Fazer um algoritmo para:
 - ler três valores reais (lados de um triângulo), todos maiores que zero, e
 - calcular e mostrar cada lado e o ângulo oposto a ele.
- 3. Fazer um algoritmo para:
 - ler um valor válido da diagonal de um retângulo e,
 - sabendo que um dos lados é a metade do outro,
 - calcular e mostrar o tamanho de cada lado e a área do retângulo.
- 4. Fazer um algoritmo para:
 - ler um valor válido de um ângulo em graus,
 - convertê-lo para radianos, e
 - calcular e mostrar a área do setor circular de raio unitário.
- 5. Fazer um algoritmo para:
 - ler o valor das cargas (em Coulombs),
 - ler um valor válido para o raio (em metros),
 - calcular e mostrar a força elétrica entre duas cargas;
 - supor :

$$k = 9 \times 10^9 \qquad e \qquad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

Exemplo 3.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado;
- calcular e mostrar o valor de resistor equivalente em série, se os dados forem válidos;
- caso não sejam fornecidos dados válidos, indicar ocorrência de erro.

Análise de dados:

- Dados do problema:

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 0 [ohms] R2 = 5 [ohms]	(sem resultado)
R1 = 10 [ohms] R2 = 0 [ohms]	(sem resultado)
R1 = 0 [ohms] R2 = 0 [ohms]	(sem resultado)

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 3	v.1
Ação	Bloco
! definir dados	1
! ler dados do teclado	2
! testar validade dos dados	3
! calcular equivalente em série	3.1
! mostrar resultado	3.2

Segunda versão, refinar o primeiro bloco.

Exemplo 3	v.2
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
! testar validade dos dados	3
! inválidos, indicar erro	3.1
! válidos	3.2
! calcular equivalente em série	3.2.1
! mostrar resultado	3.2.2

Terceira versão, refinar o segundo bloco.

Exemplo 3	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! testar validade dos dados	3
! inválidos, indicar erro	3.1
! válidos	3.2
! calcular equivalente em série	3.2.1
! mostrar resultado	3.2.2
_	

Quarta versão, refinar o terceiro bloco.

	Exemplo 3	v.4
	Ação	Bloco
! definir dad	dos	1
real R1, !	primeiro resistor	
R2, !	segundo resistor	
R3; !	resistor equivalente	
! ler dados	do teclado	2
tela ← "\n	R1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\n	R2 = "; R2 ← teclado, ! ler segundo valor	
! testar valid	dade dos dados	3
	! inválidos	3.1
V	tela ← "\nERRO: Dados inválidos";	
R1≤0		
	! calcular equivalente em série	3.2.1
R2≤0?	R3 ← R1 + R2;	
F	! mostrar resultado	3.2.2
	tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Quinta versão, refinando novamente o terceiro bloco.

Exemplo 3	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! testar validade dos dados	3
se (R1 ≤ 0 R2 ≤ 0)	
! inválidos	
tela ← "\nERRO: Dados inválidos";	
senão ! válidos	
! calcular equivalente em série	
R3 ← R1 + R2;	
! mostrar resultado	
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
fim se ! dados válidos	

Programa em SCILAB:

```
// Exemplo 3
// Dados dois resistores, calcular o resistor equivalente em serie.
// 1. definir dados
  R1 = 0.0; // primeiro resistor
  R2 = 0.0; // segundo resistor
  R3 = 0.0; // resistor equivalente
// 2. ler dados do teclado
  clc;
                       // limpar a area de trabalho
  R1 = input ( "\nR1 " ); // ler primeiro valor
  R2 = input ( "\nR2 " ); // ler segundo valor
// 3. testar a validade dos dados
  if ( R1 \le 0 \mid R2 \le 0 )
  // 3.1. invalidos
     printf ( "\nERRO: Dados invalidos" );
  else // validos
  // 3.2.1. calcular equivalente em serie
     R3 = R1 + R2;
  // 3.2.2. mostrar resultado
    printf ( "\nR3=R1+R2= %f [ohms]", R3 );
  end // se dados validos
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
  halt;
// fim do programa
```

Programa em C++:

```
// Exemplo 3
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  float R1, // primeiro resistor
        R2, // segundo resistor
        R3; // resistor equivalente
// 2. ler dados do teclado
   \begin{array}{lll} cout << "\nR1="; & cin >> R1; // \ ler \ primeiro \ valor \\ cout &<< "\nR2="; & cin >> R2, // \ ler \ segundo \ valor \\ \end{array} 
// 3. testar a validade dos dados
  if (R1<=0 || R2<= 0)
  {
   // 3.1. invalidos
     cout << "\nERRO: Dados invalidos";
  else // validos
  {
   // 3.2.1. calcular equivalente em serie
     R3 = R1 + R2;
   // 3.2.2. mostrar resultado
     cout << "\nR3=R1+R2=" << R3 << " [ohms]";
  } // fim se dados validos
// pausa para terminar
  cout << "\nPressionar qualquer tecla para terminar.";</pre>
  getchar ();
  return EXIT_SUCCESS;
} // fim do programa
```

```
* Exemplo 3
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_3
  public static void Main ()
  // 1. definir dados
    double R1, // primeiro resistor
            R2, // segundo resistor
            R3; // resistor equivalente
  // 2. ler dados do teclado
    Console.Write ( "\nR1=" ); R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
   Console.Write ( "\nR2=" );
R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
  // 3. testar a validade dos dados
    if (R1<=0 || R2<= 0)
    {
     // 3.1. invalidos
       Console.WriteLine ( "\nERRO: Dados invalidos" );
    else // validos
    {
     // 3.2.1. calcular equivalente em serie
       R3 = R1 + R2;
    // 3.2.2. mostrar resultado
      Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
    } // fim se dados validos
  // pausa para terminar
    Console.Write ( "\nPressionar ENTER para terminar." );
    Console.ReadLine ();
  } // end Main ( )
} // fim Exemplo_3 class
```

Programa em Java:

```
* Exemplo 3
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
import IO.*;
                                   // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_3
  public static void main (String [] args)
 // 1. definir dados
   double R1,
                                // primeiro resistor
           R2,
                                // segundo resistor
           R3;
                                // resistor equivalente
  // 2. ler dados do teclado
   R1 = IO.readint ( "\nR1=" ); // ler primeiro valor R2 = IO.readint ( "\nR2=" ); // ler primeiro valor
  // 3. testar a validade dos dados
   if (R1 <= 0 || R2 <= 0)
                             // se dados validos
   { // 3.1. invalidos
       IO.println ( "\nERRO: Dados invalidos" );
   }
   else
   { // 3.2.1. calcular equivalente em serie
       R3 = R1 + R2;
     // 3.2. mostrar resultado
       IO.println ( \nR3=R1+R2=" + R3 + " [ohms]" );
   } // fim se dados validos
  // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
  } // end main ( )
} // fim Exemplo_3 class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um valor de um raio de círculo válido (maior que zero) e
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro do círculo;
 - se o valor for inválido, informar o erro.

2. Fazer um algoritmo para:

- ler três valores reais (lados de um triângulo), todos maiores que zero, e
- calcular e mostrar cada lado e o ângulo oposto a ele;
- se o valor for inválido, informar o erro.

3. Fazer um algoritmo para:

- ler um valor válido da diagonal de um retângulo e,
- sabendo que um dos lados é a metade do outro,
- calcular e mostrar o tamanho de cada lado e a área do retângulo;
- se o valor for inválido, usar o valor absoluto da diagonal.

4. Fazer um algoritmo para:

- ler um valor válido de um ângulo em graus,
- convertê-lo para radianos, e
- calcular e mostrar a área do setor circular de raio unitário;
- se o valor for negativo, converter para o primeiro quadrante.

5. Fazer um algoritmo para:

- ler o valor das cargas (em Coulombs),
- ler um valor válido para o raio (em metros),
- calcular e mostrar a força elétrica entre duas cargas;
- se o valor do raio for negativo, usar o valor absoluto,
- se o valor do raio for nulo, informar o erro;
- supor :

$$k = 9 \times 10^9 \qquad e \qquad \qquad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

Exemplo 4.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado e garantir que sejam válidos;
- calcular e mostrar o valor de resistor equivalente em série.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 0 [ohms] R2 = 5 [ohms]	(sem resultado)
R1 = 10 [ohms] R2 = 0 [ohms]	(sem resultado)
R1 = 0 [ohms] R2 = 0 [ohms]	(sem resultado)

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 4	v.1
Ação	Bloco
! definir dados	1
! ler dados válidos do teclado	2
! calcular equivalente em série	3
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 4			
Ação			
! definir dados			
real R1, ! primeiro resistor			
R2, ! segundo resistor			
R3; ! resistor equivalente			
! ler dados do teclado	2		
! calcular equivalente em série			
! mostrar resultado			

Terceira versão, refinar o segundo bloco.

Exemplo 4			
Ação			
! definir dados			
real R1, ! primeiro resistor			
R2, ! segundo resistor			
R3; ! resistor equivalente			
! ler dados válidos do teclado			
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	2.1		
R1 ≤ 0 ?			
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	2.2		
R2 ≤ 0 ?			
! calcular equivalente em série			
! mostrar resultado			

Quarta versão, refinar o terceiro bloco.

Exemplo 4			
Ação			
! definir dados			
real R1, ! primeiro resistor			
R2, ! segundo resistor			
R3; ! resistor equivalente			
! ler dados válidos do teclado	2		
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	2.1		
R1 ≤ 0 ?			
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	2.2		
R2 ≤ 0 ?			
! calcular equivalente em série			
R3 ← R1 + R2;			
! mostrar resultado			

Quinta versão, refinar o quarto bloco.

Exemplo 4		
Ação		
! definir dados		
real R1, ! primeiro resistor		
R2, ! segundo resistor		
R3; ! resistor equivalente		
! ler dados válidos do teclado	2	
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	2.1	
R1 ≤ 0 ?		
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	2.2	
R2 ≤ 0?		
! calcular equivalente em série		
R3 ← R1 + R2;		
! mostrar resultado		
tela ← ("\nR3=R1+R2=", R3, " [ohms]");		

Sexta versão, refinar novamente o segundo bloco.

Exemplo 4		
Ação		
! definir dados		
real R1, ! primeiro resistor		
R2, ! segundo resistor		
R3; ! resistor equivalente		
! ler dados válidos do teclado	2	
repetir até (R1>0)	2.1	
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor		
fim repetir ! enquanto (R1 ≤ 0)		
repetir até (R2>0)	2.2	
tela ← "\nR2 = "; R2 ← teclado; ! ler primeiro valor		
fim repetir! enquanto (R2 ≤ 0)		
! calcular equivalente em série	3	
R3 ← R1 + R2;		
! mostrar resultado	4	
tela ← ("\nR3=R1+R2=", R3, " [ohms]");		

Programa em SCILAB:

```
// Exemplo 4
// Dados dois resistores, calcular o resistor equivalente em serie.
// 1. definir dados
  R1 = 0.0; // primeiro resistor
  R2 = 0.0; // segundo resistor
  R3 = 0.0; // resistor equivalente
// 2. ler dados do teclado
// 2.1. ler primeiro valor
                         // limpar a area de trabalho
  R1 = input ( "\nR1 " ) ; // ler primeiro valor
  while (R1 \le 0)
    R1 = input ( "\nR1 " ); // ler primeiro valor
  end // ( R1 \le 0 )
// 2.2. ler segundo valor
  R2 = input ( "\nR2 " ); // ler segundo valor
  while (R2 \le 0)
    R2 = input ( "\nR2 " ); // ler segundo valor
  end // (R2 <= 0)
// 3. calcular equivalente em serie
  R3 = R1 + R2;
// 4. mostrar resultado
  printf ( "\nR3=R1+R2= %f [ohms]", R3 );
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
  halt;
// fim do programa
```

Programa em C++:

```
// Exemplo 4
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
// 2. ler dados do teclado
// 2.1. ler primeiro valor
 do
 {
   cout << "\nR1="; cin >> R1; // ler primeiro valor
  while (R1<=0);
// 2.2. ler segundo valor
 do
 {
   cout << "\nR2="; cin >> R2, // ler segundo valor
 }
  while ( R2<=0 );
// 3. calcular equivalente em serie
  R3 = R1 + R2;
// 4. mostrar resultado
 cout << "\nR3=R1+R2=" << R3 << " [ohms]";
// pausa para terminar
 cout << "Pressionar qualquer tecla para terminar.";</pre>
 getchar ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 4
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_4
 public static void Main ()
 // 1. definir dados
   double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
 // 2. ler dados do teclado
 // 2.1. ler primeiro valor
   do
     Console.Write ( "\nR1=" ); R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
   while (R1 \le 0);
 // 2.2. ler segundo valor
   do
      Console.Write ( "\nR2=" );
     R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
   while (R2 \le 0);
 // 3. calcular equivalente em serie
   R3 = R1 + R2;
 // 4. mostrar resultado
   Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
```

} // end Main ()

} // fim Exemplo_4 class

Programa em Java:

```
* Exemplo 4
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
import IO.*;
                                 // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_4
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                               // primeiro resistor
          R2,
                               // segundo resistor
          R3;
                               // resistor equivalente
 // 2. ler dados do teclado
 // 2.1. ler primeiro valor
   do
   {
     R1 = IO.readint ( "\nR1=" ); // ler primeiro valor
   while (R1 <= 0);
 // 2.2. ler segundo valor
   do
     R2 = IO.readint ( "\nR2=" ); // ler primeiro valor
   while (R2 \le 0);
 // 3. calcular equivalente em serie
   R3 = R1 + R2;
 // 4. mostrar resultado
   IO.println ( \nR3=R1+R2=" + R3 + " [ohms]" );
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ( )
} // fim Exemplo_4 class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um valor de um raio de círculo, garantido que seja válido (maior que zero) e
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro do círculo.

2. Fazer um algoritmo para:

- ler três valores reais (lados de um triângulo), todos maiores que zero,
- verificar se formam mesmo um triângulo (todo lado deve ser menor que a soma dos outros).
- calcular e mostrar cada lado e o ângulo oposto a ele.

3. Fazer um algoritmo para:

- ler um valor de diagonal de um retângulo, garantindo que esteja no intervalo [1,100] e
- sabendo que um dos lados é a metade do outro,
- calcular e mostrar o tamanho de cada lado e a área do retângulo.

4. Fazer um algoritmo para:

- ler um valor válido de um ângulo em graus, e se não for,
- convertê-lo para o equivalente em radianos no primeiro quadrante, e
- calcular e mostrar a área do setor circular de raio unitário.

5. Fazer um algoritmo para:

- ler o valor das cargas (em Coulombs),
- ler um valor válido (maior que zero) para o raio (em metros),
- calcular e mostrar a força elétrica entre duas cargas;
- supor :

$$\label{eq:force_force} \textbf{k} = 9 \text{ x } 10^9 \qquad \text{e} \qquad \quad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

Exemplo 5.

Fazer um algoritmo para:

- repetir as ações abaixo 5 vezes:
- ler os valores de dois resistores do teclado e
- garantir que sejam válidos;
- calcular e mostrar o valor de resistor equivalente em série.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 10 [ohms] R2 = 2 [ohms]	R3 = 12 [ohms]
R1 = 10 [ohms] R2 = 1 [ohms]	R3 = 11 [ohms]
R1 = 5 [ohms] R2 = 2 [ohms]	R3 = 7 [ohms]
R1 = 2 [ohms] R2 = 1 [ohms]	R3 = 3 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 5	v.1
Ação	Bloco
! definir dados	1
! repetir 5 vezes	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Segunda versão, refinar o primeiro bloco.

Exemplo 5	v.2
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir 5 vezes	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Terceira versão, refinar o segundo bloco.

Exemplo 5	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro X; ! contador do número de vezes	
! repetir 5 vezes	2
X = 1:5:1 ! (de 1 até 5 de 1 em 1)	
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Quarta versão, refinar o segundo bloco.

Exemplo 5	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro X; ! contador do número de vezes	
! repetir 5 vezes	2
X = 1:5:1 ! (de 1 até 5 de 1 em 1)	
! ler dados válidos do teclado	2.1
tela ← "\nR1 = ";	
R1 ← teclado; ! ler primeiro valor	
R1 ≤ 0 ?	
tela ← "\nR2 = ";	
R2 ← teclado; ! ler segundo valor	
R2 ≤ 0 ?	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Quinta versão, refinar novamente o segundo bloco.

Exemplo 5	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro X; ! contador do número de vezes	
! repetir 5 vezes	
X = 1:5:1 ! (de 1 até 5 de 1 em 1)	
! ler dados válidos do teclado	2.1
repetir até (R1 > 0)	
tela ← "\nR1 = ";	
R1 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R1 ≤ 0)	
repetir até (R2 > 0)	
tela ← "\nR2 = ";	
R2 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R2 ≤ 0)	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 5	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro X; ! contador do número de vezes	
! repetir 5 vezes	
repetir para (X = 1:5:1) ! (de 1 até 5 de 1 em 1)	
! ler dados válidos do teclado	2.1
repetir até (R1 > 0)	
tela ← "\nR1 = ";	
R1 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R1 ≤ 0)	
repetir até (R2 > 0)	
tela ← "\nR2 = ";	
R2 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R2 ≤ 0)	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
fim repetir! para X = 1:5:1	

Programa em SCILAB:

```
// Exemplo 5a
// Dados dois resistores,
// calcular o resistor equivalente em série.
// 1. definir dados
 R1 = 0.0; // primeiro resistor
 R2 = 0.0; // segundo resistor
 R3 = 0.0; // resistor equivalente
  X = 0; // contador do número de vezes
// 2. repetir 5 vezes (primeira forma)
           // limpar a area de trabalho
  clc:
 for X = 1:1:5 // repetir 5 vezes
 // 2.1.1 ler primeiro valor
   R1 = input ( "\nR1 " ); // ler primeiro valor
   while (R1 \le 0)
     R1 = input ( "\nR1 " ); // ler primeiro valor
   end // ( R1 \le 0 )
 // 2.2. ler segundo valor
   R2 = input ( "\nR2" ); // ler segundo valor
   while (R2 \le 0)
     R2 = input ( "\nR2 " ); // ler segundo valor
   end // ( R2 \le 0 )
 // 3. calcular equivalente em serie
   R3 = R1 + R2;
 // 4. mostrar resultado
   printf ( "\nR3=R1+R2= %f [ohms]", R3 );
  end // repetir para X = 1:5:1
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
  halt;
// fim do programa
```

Programa em SCILAB:

```
// Exemplo 5b
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// 1. definir dados
 R1 = 0.0; // primeiro resistor
 R2 = 0.0; // segundo resistor
 R3 = 0.0; // resistor equivalente
  X = 0; // contador do numero de vezes
// 2. repetir 5 vezes (segunda forma)
  clc:
           // limpar a area de trabalho
  X = 1; // valor inicial
  while (X \le 5)
 // 2.1.1 ler primeiro valor
    R1 = input ( "\nR1 " ); // ler primeiro valor
    while (R1 \le 0)
     R1 = input ( "\nR1 " ); // ler primeiro valor
    end // (R1 <= 0)
 // 2.2. ler segundo valor
    R2 = input ( "\nR2 " ); // ler segundo valor
    while (R2 \le 0)
     R2 = input ( "\nR2 " ); // ler segundo valor
    end // ( R2 \le 0 )
 // 3. calcular equivalente em serie
    R3 = R1 + R2;
 // 4. mostrar resultado
    printf ( "\nR3=R1+R2= %f [ohms]", R3 );
    X = X + 1; // proximo valor
  end // repetir para X = 1:5:1
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
 halt:
// fim do programa
```

Programa em C++:

```
// Exemplo 5a
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
 int X; // contador do numero de vezes
// 2. repetir 5 vezes (primeira forma)
 for (X = 1; X <= 5; X = X+1)
   // 2.1.1 ler primeiro valor
   do
    cout << "\nR1=";
    cin >> R1; // ler primeiro valor
   while (R1 \le 0);
   // 2.1.2. ler segundo valor
   do
    cout << "\nR2=";
    cin >> R2, // ler segundo valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   cout << "\nR3=R1+R2=" << R3 << " [ohms]";
 \} // \text{ fim repetir para } X = 1:5:1
// pausa para terminar
  cout << "Pressionar qualquer tecla para terminar.";</pre>
  getchar ();
 return EXIT_SUCCESS;
} // fim do programa
```

Programa em C++:

```
// Exemplo 5b
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
 int X; // contador do numero de vezes
// 2. repetir 5 vezes (segunda forma)
 X = 1; // valor inicial
  while (X \le 5)
 {
   // 2.1.1 ler primeiro valor
   do
    cout << "\nR1=";
    cin >> R1; // ler primeiro valor
   while (R1 \le 0);
   // 2.1.2. ler segundo valor
   do
    cout << "\nR2=";
    cin >> R2, // ler segundo valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   cout << "\nR3=R1+R2=" << R3 << " [ohms]";
   X = X + 1; // próximo valor
  \} // \text{ fim repetir para } X = 1:5:1
// pausa para terminar
  cout << "Pressionar qualquer tecla para terminar.";</pre>
  getchar ();
  return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 5a
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_5a
  public static void Main ()
  // 1. definir dados
   double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
  // 2. ler dados do teclado
  // 1. definir dados
   double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
           X; // contador do numero de vezes
  // 2. repetir 5 vezes (primeira forma)
   for (X = 1; X \le 5; X = X+1)
   // 2.1.1. ler primeiro valor
     do
     {
       Console.Write ( "\nR1=" );
       R1 = int.Parse (Console.ReadLine ()); // ler primeiro valor
     while (R1 \le 0);
   // 2.1.2. ler segundo valor
     do
       Console.Write ( "\nR2=" );
       R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
     Console.WriteLine ( \nR3=R1+R2="+R3+"[ohms]");
   \} // fim repetir para X = 1:5:1
  // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
  } // end Main ()
} // fim Exemplo_5a class
```

Outra versão do programa em C#:

```
* Exemplo 5b
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_5b
  public static void Main ()
  // 1. definir dados
   double R1,
                                          // primeiro resistor
                                         // segundo resistor
           R2,
                                         // resistor equivalente
           R3;
   int
           X;
                                         // contador do numero de vezes
  // 2. repetir 5 vezes (primeira forma)
   X = 1;
   while (X \le 5)
   // 2.1.1. ler primeiro valor
     do
       Console.Write ( "\nR1=" );
       R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
     while (R1 <= 0);
   // 2.1.2. ler segundo valor
     do
       Console.Write ( "\nR2=" );
       R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
      Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
     X = X + 1;
                             // proximo valor
   \} // fim repetir para X = 1:5:1
  // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
  } // end Main ()
} // fim Exemplo_5b class
```

Programa em Java:

```
* Exemplo 5a
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
import IO.*;
                                // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_5a
 public static void main (String [] args)
 // 1. definir dados
                                // primeiro resistor
   double R1,
          R2,
                                // segundo resistor
          R3;
                                // resistor equivalente
                                // contador do numero de vezes
          X;
 // 2. repetir 5 vezes (primeira forma)
   for (X = 1; X \le 5; X = X+1)
   // 2.1.1. ler primeiro valor
     do
       R1 = IO.readint ( "\nR1=" ); // ler primeiro valor
     while (R1 <= 0);
   // 2.1.2. ler segundo valor
     do
       R2 = IO.readint ( "\nR2=" ); // ler primeiro valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
     IO.println ( \nR3=R1+R2=" + R3 + " [ohms]" );
   \} // fim repetir para X = 1:5:1
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ( )
} // fim Exemplo_5a class
```

Outra versão do programa em Java:

```
* Exemplo 5b
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
import IO.*;
                               // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_5b
 public static void main (String [] args)
 // 1. definir dados
   double R1, // primeiro resistor
          R2, // segundo resistor
          R3; // resistor equivalente
          X; // contador do numero de vezes
 // 2. repetir 5 vezes (primeira forma)
   X = 1;
   while (X \le 5)
   // 2.1.1. ler primeiro valor
     do
     {
      R1 = IO.readint ( "\nR1=" ); // ler primeiro valor
     while (R1 \le 0);
   // 2.1.2. ler segundo valor
     do
      R2 = IO.readint ( "\nR2=" ); // ler primeiro valor
     while ( R2 <= 0 );
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
     IO.println ( \nR3=R1+R2=" + R3 + " [ohms]" );
     X = X + 1;
                                // proximo valor
   \} // fim repetir para X = 1:5:1
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ()
} // fim Exemplo_5b class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um número inteiro (N) do teclado;
 - calcular e mostrar a soma dos (N) primeiros números naturais.
- 2. Fazer um algoritmo para:
 - calcular e mostrar a soma dos pares entre100 e 500.
- 3. Fazer um algoritmo para:
 - ler dois números inteiros (M e N, M < N) do teclado;
 - calcular e mostrar a soma dos números entre (M) e (N).
- 4. Fazer um algoritmo para:
 - ler dois números inteiros (M e N, M < N) do teclado;
 - calcular e mostrar a soma dos quadrados dos números entre eles.
- 5. Fazer um algoritmo para:
 - ler um número inteiro (N) do teclado;
 - ler N outros valores reais (P) do teclado, um por vez;
 - calcular e mostrar o produto destes valores.

Exemplo 6.

Fazer um algoritmo para:

- repetir para um número indeterminado de vezes:
- ler os valores de dois resistores do teclado e garantir que sejam válidos;
- calcular e mostrar o valor de resistor equivalente em série.

Análise de dados:

- Dados do problema:

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 10 [ohms] R2 = 2 [ohms]	R3 = 12 [ohms]
R1 = 10 [ohms] R2 = 1 [ohms]	R3 = 11 [ohms]
R1 = 5 [ohms] R2 = 2 [ohms]	R3 = 7 [ohms]
R1 = 2 [ohms] R2 = 1 [ohms]	R3 = 3 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 6	v.1
Ação	Bloco
! definir dados	1
! repetir até parar	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Segunda versão, refinar o primeiro bloco.

Exemplo 6	v.2
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir até parar	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Terceira versão, refinar o segundo bloco.

Exemplo 6	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir até parar	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3
enquanto houver dados	

Quarta versão, refinar o segundo bloco.

Exemplo 6	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir até parar	2
! ler dados válidos do teclado	2.1
tela ← "\nR1 = ";	
R1 ← teclado; ! ler primeiro valor	
R1 ≤ 0 ?	
tela ← "\nR2 = ";	
R2 ← teclado; ! ler segundo valor	
R2 ≤ 0 ?	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
enquanto houver dados	

Quinta versão, refinar novamente o segundo bloco.

Exemplo 6	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro Resposta; ! controle da repetição	
! repetir até parar	
! ler dados válidos do teclado	2.1
repetir até (R1 > 0)	
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
fim repetir ! enquanto (R1 ≤ 0)	
repetir até (R2 > 0)	
tela ← "\nR2 = "; R2 ← teclado; ! ler segundo valor	
fim repetir ! enquanto (R2 ≤ 0)	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
! verificar se há mais dados	2.4
tela ← "\nMais dados (Sim=1,Não=0) ? ";	
Resposta ← teclado;	
Resposta = 1?	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 6	v.6
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro Resposta; ! controle da repetição	
! repetir até parar	
repetir até Resposta ≠ 1	2.1
! ler dados válidos do teclado	
repetir até (R1 > 0)	
tela ← "\nR1="; R1 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R1 ≤ 0)	
repetir até (R2 > 0)	
tela ← "\nR2="; R2 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R2 ≤ 0)	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
! verificar se há mais dados	2.4
tela ← "\nMais dados (Sim=1,Não=0) ? ";	
Resposta ← teclado;	
fim repetir! enquanto Resposta = 1	

Programa em SCILAB:

```
// Exemplo 6
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// 1. definir dados
 R1 = 0.0;
                // primeiro resistor
 R2 = 0.0;
                // segundo resistor
  R3 = 0.0:
                // resistor equivalente
  Resposta = 0; // contador do numero de vezes
// 2. repetir até parar
                // limpar a area de trabalho
  clc:
  Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
  while (Resposta == 1)
 // 2.1.1 ler primeiro valor
   R1 = input ( "\nR1 " ); // ler primeiro valor
   while (R1 \le 0)
     R1 = input ( "\nR1 " ); // ler primeiro valor
    end // ( R1 \le 0 )
 // 2.1.2. ler segundo valor
   R2 = input ( "\nR2 " ); // ler segundo valor
   while (R2 \le 0)
     R2 = input ( "\nR2 " ); // ler segundo valor
   end // ( R2 \le 0 )
  // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
 // 2.3. mostrar resultado
    printf ( "\nR3=R1+R2= %f [ohms]", R3 );
 // 2.4. verificar se ha' mais dados
   Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
  end // enquanto houver dados
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
  halt:
// fim do programa
```

Programa em C++:

```
// Exemplo 6
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
 int Resposta; // controle da repeticao
// 2. repetir ate' parar
 do
  {
   // 2.1.1 ler primeiro valor
   do
    cout << "\nR1=";
    cin >> R1; // ler primeiro valor
   while (R1 \le 0);
   // 2.1.2. ler segundo valor
   do
    cout << "\nR2=";
    cin >> R2, // ler segundo valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   cout << "\nR3=R1+R2=" << R3 << " [ohms]";
   // 2.4. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Nao=0)?";
   cin >> Resposta;
  while (Resposta == 1); // enquanto houver dados
// pausa para terminar
  cout << "\nPressionar qualquer tecla para terminar.";</pre>
  getchar ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 6
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_6
  public static void Main ()
  // 1. definir dados
   double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
          Resposta; // controle da repeticao
  // 2. repetir ate' parar
   do
   {
// 2.1.1. ler primeiro valor
     do
       Console.Write ( "\nR1=" );
       R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
     while (R1 \le 0);
   // 2.1.2. ler segundo valor
     do
       Console.Write ( "\nR2=" );
       R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
      Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
   // 2.4. verificar se ha' mais dados
      Console.Write ( "\nMais dados (Sim=1,Nao=0) ? " );
      Resposta = int.Parse ( Console.ReadLine ( ) );
   while (Resposta == 1); // enquanto houver dados
  // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
  } // end Main ()
} // fim Exemplo_6 class
```

Programa em Java:

```
* Exemplo 6
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
import IO.*;
                                // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_6
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                               // primeiro resistor
          R2,
                               // segundo resistor
          R3;
                               // resistor equivalente
          Resposta;
                               // controle da repeticao
 // 2. repetir ate" parar
   do
   // 2.1.1. ler primeiro valor
     do
      R1 = IO.readint ( "\nR1=" ); // ler primeiro valor
     while (R1 <= 0);
   // 2.1.2. ler segundo valor
     do
      R2 = IO.readint ( "\nR2=" ); // ler primeiro valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
     IO.println ( \nR3=R1+R2=" + R3 + " [ohms]" );
   // 2.4. verificar se ha' mais dados
     Resposta = IO.readint ( "\nMais dados (Sim=1,Nao=0) ? " );
   while (Resposta == 1);
                               // enquanto houver dados
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ( )
} // fim Exemplo_6 class
```

Exercícios

1. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- calcular e mostrar o número de dados lidos e quantos valores são maiores que 18 anos.

2. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- sabendo-se que o último dado conterá o valor zero e não entrará nos cálculos,
- calcular e mostrar o número de dados lidos e quantos valores são maiores que 18 anos.

3. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar quantas notas estão acima de 60 pontos e quantas estão abaixo;
- o último dado, e que não será processado, conterá a nota = 999.

4. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros positivos,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a porcentagem de valores pares e ímpares.

5. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a porcentagem de valores negativos, nulos e positivos.

Exemplo 7.

Fazer um algoritmo para:

- ler 10 valores de resistores testados em laboratório;
- calcular e mostrar o valor médio desta amostra.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
SOMA	real	0.0	somatório de valores
MÉDIA	real		valor médio

- Fórmulas que relacionam os dados :

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
10.00 [ohms] 10.04 [ohms] 10.01 [ohms] 10.05 [ohms] 10.00 [ohms] 09.96 [ohms] 10.00 [ohms] 09.95 [ohms] 09.99 [ohms]	
10.00 [ohms]	Valor médio = 10.00 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 7	v.1
Ação	Bloco
! definir dados	1
! repetir 10 vezes	2
! ler dado válido do teclado	2.1
! acumular valores	2.2
! calcular o valor médio	3
! mostrar resultado	4

Segunda versão, refinar o primeiro bloco.

Exemplo 7	v.2
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA; ! valor médio	
! repetir 10 vezes	2
! ler dado válido do teclado	2.1
! acumular valores	2.2
! calcular o valor médio	
! mostrar resultado	4

Terceira versão, refinar o segundo bloco.

Exemplo 7	v.3
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA; ! valor médio	
inteiro X; ! contador do numero de vezes	
! repetir 10 vezes	2
X ← 1:10:1	
! ler dados válidos do teclado	2.1
! acumular valores	2.2
! calcular valor médio	3
! mostrar resultado	4

Quarta versão, refinar o segundo bloco.

Exemplo 7	v.4	
Ação		
! definir dados	1	
real R, ! resistor		
SOMA ← 0.0, ! somatório de valores		
MEDIA; ! valor médio		
inteiro X; ! contador do numero de vezes		
! repetir 10 vezes		
X ← 1:10:1		
! ler dados válidos do teclado		
tela ← "\nR = ";		
R ← teclado; ! ler valor		
R ≤ 0 ?		
! acumular valores		
SOMA ← SOMA + R;		
! calcular valor médio		
! mostrar resultado		

Quinta versão, refinar o terceiro e quarto blocos.

Exemplo 7	v.5	
Ação	Bloco	
! definir dados	1	
real R, ! resistor		
SOMA ← 0.0, ! somatório de valores		
MEDIA; ! valor médio		
inteiro X; ! contador do numero de vezes		
! repetir 10 vezes	2	
X ← 1:10:1		
! ler dados válidos do teclado		
tela ← "\nR = ";		
R ← teclado; ! ler valor		
R ≤ 0 ?		
! acumular valores		
SOMA ← SOMA + R;		
! calcular valor médio		
MEDIA ← SOMA / 10;		
! mostrar resultado		
tela ← ("\nValor médio =", MEDIA, " [ohms]");		

Sexta versão, refinar novamente o segundo bloco.

Exemplo 7	v.5	
Ação	Bloco	
! definir dados	1	
real R, ! resistor		
SOMA ← 0.0, ! somatório de valores		
MEDIA; ! valor médio		
inteiro X; ! contador do numero de vezes		
! repetir 10 vezes	2	
repetir para (X ← 1:10:1)		
! ler dados válidos do teclado		
repetir até (R > 0)		
tela \leftarrow "\nR=";		
R ← teclado; ! ler valor		
fim repetir! enquanto (R<=0)		
! acumular valores		
SOMA ← SOMA + R;		
fim repetir ! para (X ← 1:10:1)		
! calcular valor médio		
MEDIA ← SOMA / 10;		
! mostrar resultado		
tela ← ("\nValor médio =", MEDIA, " [ohms]");		

Programa em SCILAB:

```
// Exemplo 7
// Dados valores de resistores, calcular o valor medio.
// 1. definir dados
        = 0.0; // resistor
 SOMA = 0.0, // somatorio de valores
 MEDIA = 0.0; // valor medio
         = 0; // contador do número de vezes
 Χ
// 2. repetir 10 vezes
                // limpar a area de trabalho
 for X = 1:1:10
 // 2.1. ler um valor
   R = input ( "\nR " ); // ler primeiro valor
   while (R \le 0)
     R = input ( "\nR " ); // ler outro valor
   end // ( R <= 0 )
 // 2.2. acumular valores
   SOMA = SOMA + R;
  end // repetir para ( X = 1 : 10 : 1 )
// 3. calcular valor medio
 MEDIA = SOMA / 10;
// 4. mostrar resultado
 printf ( "\nValor medio = %f [ohms]", MEDIA );
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
 halt;
// fim do programa
```

Programa em C++:

```
// Exemplo 7
// Dados valores de resistores, calcular o valor medio.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R.
                    // resistor
      SOMA = 0.0, // somatorio de valores
      MEDIA;
                     // valor medio
 int X;
                     // contador do numero de vezes
// 2. repetir 10 vezes
 for (X=1; X=10; X=X+1)
   // 2.1. ler um valor
   do
    cout << "\nR=";
    cin >> R; // ler valor
   while (R \le 0);
   // 2.2. acumular valores
   SOMA = SOMA + R;
 } // fim repetir
// 3. calcular valor medio
 MEDIA = SOMA / 10;
// 4. mostrar resultado
 cout << "\nValor medio =" << MEDIA << " [ohms]";</pre>
// pausa para terminar
 cout << "Pressionar qualquer tecla para terminar.";</pre>
 getchar ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 7
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_7
 public static void Main ()
 // 1. definir dados
   double R.
                        // resistor
           SOMA = 0.0, // segundo resistor
           MEDIA= 0.0; // resistor equivalente
                        // contador do numero de vezes
 // 2. repetir 10 vezes
   for (X = 1; X \le 10; X = X+1)
   // 2.1. ler dado valido do teclado
     do
       Console.Write ( "\nR=" );
       R = int.Parse ( Console.ReadLine ( ) ); // ler valor
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R;
   } // fim repetir
 // 3. calcular o valor medio
   MEDIA = SOMA / 10;
 // 4. mostrar resultado
   Console.WriteLine ( "\nValor medio=" + MEDIA + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ( )
```

} // fim Exemplo_7 class

Programa em Java:

```
* Exemplo 7
 * Dados valores de resistores, calcular o valor medio.
// ----- classes necessarias
import IO.*;
                              // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_7
 public static void main (String [] args)
 // 1. definir dados
                              // resistor
   double R,
          SOMA = 0.0,
                              // segundo resistor
          MEDIA = 0.0;
                              // resistor equivalente
                              // contador do numero de vezes
          Х;
 // 2. repetir 10 vezes
   for (X = 1; X \le 10; X = X+1)
   // 2.1. ler dado valido do teclado
     do
      R = IO.readint ( "\nR=" ); // ler valor
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R;
   } // fim repetir
 // 3. calcular o valor medio
   MEDIA = SOMA / 10;
 // 4. mostrar resultado
   IO.println ( "\nValor medio=" + MEDIA + " [ohms]" );
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ( )
} // fim Exemplo_7 class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler valores de idade de 10 indivíduos;
 - calcular e mostrar a idade média deste grupo de indivíduos.
- 2. Fazer um algoritmo para:
 - ler valores de idade de 10 indivíduo;
 - calcular e mostrar a idade média dos maiores que 18 anos.
- 3. Fazer um algoritmo para:
 - ler o número de valores em um conjunto de dados (N) contendo, cada um, uma nota;
 - ler o valor de cada nota:
 - determinar e mostrar a média dos valores maiores que 60 pontos.
- 4. Fazer um algoritmo para:
 - ler o número de valores em um conjunto de dados (N);
 - ler (N) valores inteiros positivos,
 - calcular e mostrar a soma dos valores pares e a soma dos valores ímpares.
- 5. Fazer um algoritmo para:
 - ler o número de valores em um conjunto de dados (N);
 - ler (N) valores inteiros positivos,
 - calcular e mostrar a diferença entre o valor médio negativo e o valor médio positivo.

Exemplo 8.

Fazer um algoritmo para:

- ler um número indeterminado de valores de resistores testados em laboratório;
- calcular e mostrar o valor médio desta amostra.

Análise de dados:

- Dados do problema:

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
SOMA	real	0.0	somatório de valores
N	inteiro	0	número de elementos >
			0
MÉDIA	real	0.0	valor médio

- Fórmulas que relacionam os dados :

MÉDIA = SOMA / N; ! se N diferente de zero

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
10.00 [ohms] 10.04 [ohms] 10.01 [ohms] 10.05 [ohms] 10.00 [ohms] 09.96 [ohms] 10.00 [ohms] 09.95 [ohms] 09.99 [ohms] 10.00 [ohms]	Valor médio = 10.00 [ohms]
• •	

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 8	
Ação	Bloco
! definir dados	1
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! acumular valores	2.2
! calcular o valor médio, se houver dados	3
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 8	
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA ← 0.0; ! valor médio	
inteiro N=0; ! numero de elementos	
! repetir enquanto houver dados	
! ler dado válido do teclado	
! acumular valores	2.2
! calcular o valor médio, se houver dados	
! mostrar resultado	

Terceira versão, refinar o segundo bloco.

Exemplo 8	
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA ← 0.0; ! valor médio	
inteiro N=0; ! numero de elementos	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
tela ← "\nR=";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! acumular valores	2.2
SOMA ← SOMA + R;	
N ← N + 1; ! mais um dado valido	
até parar	
! calcular valor médio	3
! mostrar resultado	

Quarta versão, refinar o terceiro e quarto blocos.

Exemplo 8		v.4	
		Ação	Bloco
! defini	r dad	os	1
real	R,	! resistor	
	SO	MA ← 0.0, ! somatório de valores	
	ME	DIA ← 0.0; ! valor médio	
inteir		0; İ numero de elementos	
! repeti	r enq	quanto houver dados	2
! ler	dado	o válido do teclado	2.1
l t	ela ←	- "\nR=";	
R ← teclado; ! ler valor			
	2 < 0		
l — ·	· – •	ar valores	2.2
SOMA ← SOMA + R;		2.2	
		•	
		+ 1; ! mais um dado valido	
	para		
! caicui		alor médio	3
	V	! não houve dados	3.1
N=0?		tela ← "\nNão houve dados";	
	F	! houve dados	3.2
		MEDIA ← SOMA / N;	
! mostrar resultado		4	
tela ← ("\nValor médio = ", MEDIA, " [ohms]");			
	,	· · · · · · · · · · · · · · · · · · ·	

Quinta versão, refinar novamente o segundo bloco.

Exemplo 8	v.4
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA ← 0.0; ! valor médio	
inteiro $N \leftarrow 0$, ! numero de elementos	
Resposta; ! controle da repetição	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
tela ← "\nR=";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! acumular valores	
SOMA ← SOMA + R;	
$N \leftarrow N + 1$; ! mais um dado valido	
! verificar se há mais dados	2.3
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
Resposta = 1	
! calcular valor médio	3
V ! não houve dados	
N=0? tela ← "\nNão houve dados";	
F ! houve dados	
MEDIA ← SOMA / N;	
! mostrar resultado	4
tela ← ("\nValor médio = ", MEDIA, " [ohms]");	

Sexta versão, refinar novamente o segundo e terceiro blocos.

Exemplo 8	v.4
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA=0.0; ! valor médio	
inteiro N \leftarrow 0, ! numero de elementos	
Resposta; ! controle da repetição	
! repetir enquanto houver dados	2
repetir até (Resposta ≠ 1)	1
! 2.1 ler dado válido do teclado	
repetir até (R > 0)	
tela ← "\nR=";	
R ← teclado; ! ler valor	
fim repetir ! enquanto (R ≤ 0)	
! 2.2 acumular valores	
SOMA ← SOMA + R;	
N ← N + 1;	
! 2.3 verificar se há mais dados	
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
fim repetir! enquanto (Resposta = 1);	
! calcular valor médio	3
se (N = 0)	
! não houve dados	
tela ← "\nNão houve dados";	
senão	
! houve dados, calcular a média	
MEDIA ← SOMA / N;	
fim se ! houve dados	
! mostrar resultado	4
tela ← ("\nValor médio = ", MEDIA, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 8
// Dados valores de resistores, calcular o valor medio.
// 1. definir dados
 R
          = 0.0; // resistor
  SOMA = 0.0, // somatório de valores
 MEDIA = 0.0; // valor médio
           = 0; // número de elementos
  Resposta = 0; // controle da repeticao
// 2. repetir ate' parar
                 // limpar a area de trabalho
  clc:
  Resposta = input ( "\nMais dados (Sim=1,Não=0) ? " );
  while (Resposta == 1)
 // 2.1.1 ler dado valido do teclado
   R = input ( "\nR " ); // ler valor
   while (R \le 0)
     R = input ( "\nR " ); // ler valor
   end // ( R<=0 )
 // 2.2. acumular valores
   SOMA = SOMA + R;
   N = N + 1; // mais um dado valido
 // 2.3. verificar se ha' mais dados
   Resposta = input ( "\nMais dados (Sim=1,Não=0) ? " );
  end // enquanto houver dados
// 3. calcular o valor medio
  if (N == 0)
 // nao houve dados
   printf ( "\nNao houve dados" );
  else
 // houve dado, calcular a media
   MEDIA = SOMA / N;
 end // fim se houve dados
// 4. mostrar resultado
  printf ( "\nValor medio= %f [ohms]", MEDIA );
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
  halt;
// fim do programa
```

Programa em C++:

```
// Exemplo 8
// Dados valores de resistores, calcular o valor medio.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R.
                   // resistor
      SOMA = 0.0, // somatorio de valores
      MEDIA= 0.0; // valor medio
     N = 0;
                    // numero de elementos
      Resposta; // controle da repeticao
// 2. repetir ate' parar
 do
 // 2.1 ler dado valido do teclado
   do
   {
     cout << "\nR=";
    cin >> R; // ler valor
   while (R \le 0);
 // 2.2 acumular valores
   SOMA = SOMA + R;
   N = N + 1;
 // 2.3 verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
  while (Resposta == 1);
// 3. calcular o valor medio
 if (N == 0)
 // nao houve dados
   cout << "\nNao houve dados";
 else
  // houve dados, calcular a media
   MEDIA = SOMA / N;
 } // fim se houve dados
// 4. mostrar resultado
  cout << "\nValor medio=" << MEDIA << " [ohms]";
// pausa para terminar
  cout << "\nPressionar qualquer tecla para terminar.";</pre>
  getchar ();
  return EXIT SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 8
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_8
 public static void Main ()
 // 1. definir dados
   double R.
                        // resistor
          SOMA = 0.0, // segundo resistor
          MEDIA= 0.0; // resistor equivalente
   int
           N = 0,
                        // numero de elementos
           Resposta;
                        // controle da repeticao
 // 2. repetir ate' parar
   do
   // 2.1. ler dado valido do teclado
     do
       Console.Write ( "\nR=" );
       R = int.Parse ( Console.ReadLine ( ) ); // ler valor
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R;
     N = N + 1;
   // 2.3. verificar se ha' mais dados
     Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
   while (Resposta == 1);
 // 3. calcular o valor medio
   if (N == 0)
   // nao houve dados
     Console.WriteLine ( "\nNao houve dados" );
   }
   else
   // houve dados, calcular a media
     MEDIA = SOMA / N;
   } // fim se houve dados
 // 4. mostrar resultado
   Console.WriteLine ( "\nValor medio=" + MEDIA + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ()
} // fim Exemplo_8 class
```

Programa em Java:

```
* Exemplo 8
 * Dados valores de resistores, calcular o valor medio.
// ----- classes necessarias
import IO.*;
                                 // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo 8
 public static void main (String [] args)
 // 1. definir dados
   double R,
                              // resistor
          SOMA = 0.0,
                              // segundo resistor
          MEDIA = 0.0;
                              // resistor equivalente
                              // numero de elementos
   int
          N = 0,
          Resposta;
                              // controle da repeticao
 // 2. repetir ate' parar
   do
   // 2.1. ler dado valido do teclado
     do
     {
      R = IO.readint ( "\nR " ); // ler valor
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R;
     N = N + 1;
   // 2.3. verificar se ha' mais dados
     Resposta = IO.readint ( "\nMais dados (Sim=1,Nao=0) ? " );
   while (Resposta == 1);
 // 3. calcular o valor medio
   if (N == 0)
   // nao houve dados
     IO.println ( "\nNao houve dados" );
   else
   // houve dados, calcular a media
     MEDIA = SOMA / N;
   } // fim se houve dados
 // 4. mostrar resultado
   IO.println ( "\nValor medio=" + MEDIA + " [ohms]" );
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ()
} // fim Exemplo_8 class
```

Exercícios

1. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- o último dado, não entrará nos cálculos, e conterá o valor da idade igual a zero;
- calcular e mostrar a idade média deste grupo de indivíduos.

2. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- sabendo-se que o último dado conterá o valor zero e não entrará nos cálculos,
- calcular e mostrar a idade média dos maiores que 18 anos.

3. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar a média dos valores maiores que 60 pontos;
- o último dado, e que não será processado, conterá a nota = 999.

4. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros positivos,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a soma dos valores pares e a soma dos valores ímpares.

5. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a diferença entre o valor médio negativo e o valor médio positivo.

Exemplo 9.

Fazer um algoritmo para:

- ler um número indeterminado de valores de resistores testados em laboratório;
- calcular o maior valor desta amostra.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
MAIOR	real	0.0	maior valor

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
10.00 [ohms] 10.04 [ohms] 10.01 [ohms] 10.05 [ohms] 10.00 [ohms] 09.96 [ohms] 10.00 [ohms] 09.95 [ohms] 09.99 [ohms]	
10.00 [ohms]	Maior valor = 10.05 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 9	v.1
Ação	Bloco
! definir dados	1
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 9	v.2
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR ← 0.0; ! maior valor	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! mostrar resultado	

Terceira versão, refinar o segundo bloco.

	Exemplo 9	v.3
	Ação	Bloco
! definir dados		1
real R,	! resistor	
$MAIOR \leftarrow 0$	0; ! maior valor	
! repetir enquanto	houver dados	2
! ler dado válid	o do teclado	2.1
tela ← "\nR=";		
R ← teclado; ! ler valor		
R ≤ 0 ?		
! testar se é o r	naior	2.2
R>MAIOR ?	V MAIOR ← R; ! guardar o novo	
enquanto houver dados		
! mostrar resultado		3

Quarta versão, refinar novamente o segundo bloco.

Exemplo 9		
Ação		
! definir dados	1	
real R, ! resistor		
MAIOR ← 0.0; ! maior valor		
inteiro Resposta; ! controle da repetição		
! repetir enquanto houver dados	2	
! ler dado válido do teclado	2.1	
tela ← "\nR=";		
R ← teclado; ! ler valor		
R ≤ 0 ?		
! testar se é o maior	2.2	
R>MAIOR ? V MAIOR ← R; ! guardar o novo		
! verificar se há mais dados	2.3	
tela ← "\nMais dados (Sim=1,Não=0) ?";		
Resposta ← teclado;		
Resposta = 1?		
! mostrar resultado	3	

Quinta versão, refinar o terceiro bloco.

Exemplo 9	v.5
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR ← 0.0; ! maior valor	
inteiro Resposta; ! controle da repetição	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
tela ← "\nR=";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! testar se é o maior	2.2
R>MAIOR ? V MAIOR ← R; ! guardar o novo	
! verificar se há mais dados	2.3
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
Resposta = 1?	
! mostrar resultado	
tela ← ("\nMaior valor = ", Maior, " [ohms]");	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 9	v.6
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR ← 0.0; ! maior valor	
inteiro Resposta; ! controle da repetição	
! repetir enquanto houver dados	2
repetir até (Resposta ≠ 1)	
! 2.1 ler dado válido do teclado	
repetir até (R > 0)	
tela \leftarrow "\nR=";	
R ← teclado; ! ler valor	
fim repetir! enquanto ($R \le 0$)	
! 2.2 testar se é o maior	
se (R>MAIOR)	
MAIOR = R; ! guardar o novo	
fim se! maior	
! 2.3 verificar se há mais dados	
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
fim repetir ! enquanto (Resposta = 1)	
! mostrar resultado	3
tela ← ("\nMaior valor = ", Maior, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 9
    // Dados valores de resistores, calcular o maior valor.
    // 1. definir dados
               = 0.0; // resistor
       R
       MAIOR = 0.0, // maior valor
       Resposta = 0; // controle da repeticao
    // 2. repetir enquanto houver dados
                       // limpar a area de trabalho
      Resposta = input ( "\nMais dados (Sim=1,Não=0) ? " );
      while (Resposta == 1)
      // 2.1 ler dado valido do teclado
        R = input ( "\nR" ); // ler valor
        while (R \le 0)
          R = input ( "\nR " ); // ler valor
        end // ( R <= 0 )
      // 2.2. testar se e' o maior
        if (R > MAIOR)
          MAIOR = R;
        end // fim do teste se maior
      // 2.3. verificar se ha' mais dados
        Resposta = input ( "\nMais dados (Sim=1,Não=0) ? " );
      end // enquanto houver dados
    // 3. mostrar resultado
      printf ( "\nMaior valor = %f [ohms]", MAIOR );
    // pausa para terminar
      printf ("\nPressionar qualquer tecla para terminar.\n");
      halt;
// fim do programa
```

Programa em C++:

```
// Exemplo 9
// Dados valores de resistores, calcular o maior valor.
// bibliotecas necessárias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R.
                     // resistor
       MAIOR = 0.0, // maior valor
      Resposta;
                     // controle da repeticao
// 2. repetir enquanto houver dados
 do
 // 2.1. ler dado valido do teclado
   do
   // 2.1 ler um valor do teclado
     cout << "\nR=";
     cin >> R; // ler valor
   while (R \le 0);
 // 2.2. testar se é o maior
   if (R > MAIOR)
   {
     MAIOR = R; // guardar o novo
   } // fim do teste do maior
 // 2.3. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
 }
 while (Resposta == 1);
// 3. mostrar resultado
 cout << "\nMaior valor = " << MAIOR << " [ohms]";</pre>
// pausa para terminar
  cout << "Pressionar qualquer tecla para terminar.";
  getchar ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 9
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_9
 public static void Main ()
 // 1. definir dados
   double R,
                          // resistor
           MAIOR = 0.0, // maior valor
           MEDIA = 0.0; // resistor equivalente
           Resposta;
                          // controle da repeticao
 // 2. repetir enquanto houver dados
   do
   // 2.1. ler dado valido do teclado
     do
       Console.Write ( "\nR=" );
       R = int.Parse ( Console.ReadLine ( ) ); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
      MAIOR = R; // guardar o novo maior
     } // fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
   }
   while (Resposta == 1);
 // 3. mostrar resultado
   Console.WriteLine ( "\nMaior valor = " + MAIOR + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ( )
```

} // fim Exemplo_9 class

Programa em Java:

```
* Exemplo 9
 * Dados valores de resistores, calcular o maior valor.
// ----- classes necessarias
import IO.*;
                                // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_9
 public static void main (String [] args)
 // 1. definir dados
                              // resistor
   double R,
          MAIOR = 0.0,
                              // maior valor
          MEDIA = 0.0;
                              // resistor equivalente
          Resposta;
                              // controle da repeticao
 // 2. repetir enquanto houver dados
   // 2.1. ler dado valido do teclado
     do
      R = IO.readint ( "\nR=" ); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
      MAIOR = R; // guardar o novo maior
     } // fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Resposta = IO.readint ( "\nMais dados (Sim=1,Nao=0) ? " );
   while (Resposta == 1);
 // 3. mostrar resultado
   IO.println ( "\nMaior valor = " + MAIOR + " [ohms]" );
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ( )
} // fim Exemplo_9 class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
 - o último dado, não entrará nos cálculos, e conterá o valor da idade igual a zero;
 - calcular e mostrar a maior idade neste grupo de indivíduos.

2. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- o último dado, não entrará nos cálculos, e conterá o valor da idade igual a zero;
- calcular e mostrar a menor idade neste grupo de indivíduos.

3. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar quantas notas são iguais a 60 pontos;
- o último dado, e que não será processado, contém nota = 999.

4. Fazer um algoritmo para:

- ler um número indeterminado de dados;
- cada dado possui um valor, o último dado, e que não será processado, contém o valor 9999;
- calcular e mostrar os dois maiores valores lidos.

5. Modificar o algoritmo anterior de forma a :

- ler um número indeterminado de dados;
- cada dado possui um valor, mas só serão válidos os valores maiores que zero,
- o último dado, e que não será processado, contém o valor 9999;
- calcular e mostrar os dois maiores valores lidos.

Exemplo 10.

- Fazer um algoritmo para:
 ler um número indeterminado de valores de resistores testados em laboratório;
- calcular o maior e o menor valor desta amostra.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
MAIOR	real	primeiro lido	maior valor
MENOR	real	primeiro lido	menor valor

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
10.00 [ohms] 10.04 [ohms] 10.01 [ohms] 10.05 [ohms] 10.00 [ohms] 09.96 [ohms] 10.00 [ohms] 09.95 [ohms] 09.99 [ohms] 10.00 [ohms]	Maior valor = 10.05 [ohms]
	Menor valor= 09.95 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 10	v.1
Ação	Bloco
! definir dados	1
! ler primeiro valor	1.1
! usar o dado lido como valor inicial	1.2
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! testar se é o menor	2.3
! mostrar resultado	3

Segunda versão, refinar o primeiro bloco.

Exemplo 10	v.2
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR, ! maior valor	
MENOR; ! menor valor	
! ler o primeiro valor	1.1
tela ← "\nQual o primeiro valor ?";	
R ← teclado; ! supor válido	
! usar dado lido como valor inicial	1.2
$MAIOR \leftarrow R;$	
MENOR \leftarrow R;	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! testar se é o menor	2.3
! mostrar resultado	

Terceira versão, refinar o segundo bloco.

Exemplo 10	v.3					
Ação						
! definir dados	1					
real R, ! resistor						
MAIOR, ! maior valor						
MENOR; ! menor valor						
! 1.1 ler o primeiro valor						
tela ← "\nQual o primeiro valor ?";						
R ← teclado; ! supor válido						
! 1.2 usar dado lido como valor inicial						
$MAIOR \leftarrow R;$						
$MENOR \leftarrow R;$						
! repetir enquanto houver dados	2					
! ler dado válido do teclado	2.1					
! testar se é o maior	2.2					
! testar se é o menor	2.3					
até parar						
! mostrar resultado						

Quarta versão, refinar novamente o segundo bloco.

Exemplo 10						v.4
Ação						Bloco
	r dados					1
	₹, !					
	MAIOR, !					
	//ENOR; !					
	! 1.1 ler o primeiro valor					
tela ← "\nQual o primeiro valor ?";						
	R ← teclado; ! supor válido					
! 1.2 us	sar dado li	do	como valor inicial			
MAIO	$R \leftarrow R;$					
MEN	$OR \leftarrow R;$					
			ouver dados			2
! lei	rdado váli	do	do teclado			2.1
	tela ← "\nl	R="	•			
R ← teclado; ! ler valor						
	R ≤ 0 ?					
! testar se é o maior					2.2	
		. ,				
		V	$MAIOR \leftarrow R;$			
R>	MAIOR?	F	! testar se é o me	eno	r	2.3
		•	1 100101 00 0 0 1111		•	
			R < MENOR ?	٧	MENOR←R;	
					•	
! verificar se há mais dados						2.4
tela ← "\nMais dados (Sim=1,Não=0) ?";						
Resposta ← teclado;						
Resposta = 1 ?						
! mostr	ar resulta	do				3

Quinta versão, refinar o terceiro bloco.

	Exemplo 10					v.5
	Ação					Bloco
! de	finir dados					1
rea	real R, ! resistor					
	MAIOR, !					
	MENOR; !					
	1 ler o primeir					
	tela ← "\nQual o primeiro valor ?";					
	← teclado; !					
		do	como valor inicial			
MA	AIOR \leftarrow R;					
	$ENOR \leftarrow R;$					
	petir enquanto					2
!	ler dado váli					2.1
	tela ← "\nf		•			
	R ← teclado; ! ler valor					
	R ≤ 0 ?					
!	! testar se é o maior					2.2
		٧	$MAIOR \leftarrow R;$			
	R>MAIOR? F! testar se é o menor		2.3			
			R < MENOR ?	V	MENOR←R;	-
!	! verificar se há mais dados					2.4
	tela ← "\nMais dados (Sim=1,Não=0) ?";					
	Resposta ← teclado;					
Resposta = 1 ?						
! mostrar resultado				3		
tela \leftarrow ("\nMaior valor = ", MAIOR , " [ohms]");						
tel	a ← ("\nMen	or ۱	alor = ", MENOR,	, " [ohms]");	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 10	v.6
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR, ! maior valor	
MENOR; ! menor valor	
! 1.1 ler o primeiro valor	
tela ← "\nQual o primeiro valor ?";	
R ← teclado; ! supor válido	
! 1.2 usar dado lido como valor inicial	
MAIOR \leftarrow R;	
MENOR ← R;	
! repetir enquanto houver dados	2
repetir até (Resposta != 1)	
! 2.1 ler dado válido do teclado	
repetir até (R > 0)	
tela ← "\nR=";	
R ← teclado; ! ler valor	
fim repetir ! enquanto (R ≤ 0)	
! 2.2 testar se é o maior	
se (R>MAIOR)	
MAIOR ← R; ! guardar o novo maior	
senão	
! 2.3 testar se é o menor	
se (R < MENOR)	
MENOR ← R; ! guardar o novo menor	
fim se! menor	
fim se ! maior	
! 2.4 verificar se há mais dados	
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
fim repetir ! enquanto (Resposta = 1)	
! mostrar resultado	3
tela ← ("\nMaior valor = ", MAIOR , " [ohms]");	
tela ← ("\nMenor valor = ", MENOR, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 10
// Dados valores de resistores, calcular o maior valor.
// 1. definir dados
  R
           = 0.0; // resistor
  MAIOR = 0.0; // maior valor
  MENOR = 0.0 // menor valor
  Resposta = 0; // controle da repeticao
// 1.1 ler primeiro valor valido
                  // limpar a area de trabalho
  R = input ( "\nQual o primeiro valor ? " ); // ler valor
  while (R \le 0)
   R = input ( "\nR " ); // ler valor
  end // ( R <= 0 )
// 1.2 usar dado lido como valor inicial
  MAIOR = R;
  MENOR = R;
// 2. repetir enquanto houver dados
  Resposta = input ( "\nMais dados (Sim=1,Não=0) ? " );
  while (Resposta == 1)
  // 2.1 ler dado valido do teclado
   R = input ( "\nR" ); // ler valor
   while (R <= 0)
     R = input ( "\nR " ); // ler valor
   end // ( R \le 0 )
  // 2.2 testar se é o maior
   if (R > MAIOR)
     MAIOR = R;
                          // guardar o novo maior
   else
   // 2.3 testar se e' o menor
     if (R < MENOR)
                         // guardar o novo menor
        MENOR=R:
      end // fim do teste do menor
   end // fim do teste se maior
 // 2.4 verificar se ha' mais dados
   Resposta = input ( "\nMais dados (Sim=1,Não=0) ? " );
  end // enquanto houver dados
// 3. mostrar resultado
 printf ( "\nMaior valor = %f [ohms]", MAIOR );
printf ( "\nMenor valor = % [ohms]", MENOR );
// pausa para terminar
  printf ( "\nPressionar qualquer tecla para terminar.\n" );
  halt;
// fim do programa
```

Programa em C++:

```
// Exemplo 10a
// Dados valores de resistores, calcular o maior e o menor valor.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 float R.
                 // resistor
      MAIOR.
                // maior valor
      MENOR; // menor valor
 int Resposta; // controle da repeticao
// 1.1 ler o primeiro valor
  cout << "\nQual o primeiro valor ?";
               // supor válido
  cin >> R;
// 1.2 usar dado lido como valor inicial
  MAIOR = R;
  MENOR = R;
// 2. repetir
  Resposta = 1;
  while (Resposta == 1)
 // 2.1. ler dado valido do teclado
   do
   {
     cout << "\nR=";
     cin >> R; // ler valor
   while (R \le 0);
  // 2.2. testar se é o maior
   if (R>MAIOR)
     MAIOR = R;
                     // guardar o novo maior
   }
   else
   // 2.3. testar se e' o menor
     if (R < MENOR)
      MENOR = R; // guardar o novo menor
     } // fim do teste do menor
   } // fim do teste do maior
  // 2.4. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
// 3. mostrar resultados
  cout << "\nMaior valor = " << MAIOR << " [ohms]";
  cout << "\nMenor valor = " << MENOR << " [ohms]";
// pausa para terminar
  cout << "Pressionar qualquer tecla para terminar.";</pre>
  getchar ();
 return EXIT_SUCCESS;
} // fim do programa
```

Programa em C++:

```
// Exemplo 10b
// Dados valores de resistores, calcular o maior e o menor valor.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  float R.
                // resistor
      MAIOR. // major valor
      MENOR; // menor valor
  int Resposta; // controle da repeticao
// 1.1 ler primeiro valor valido
 do
  {
   cout << "\nQual o primeiro valor ?";
   cin >> R; // ler apenas valor válido
  while (R \le 0);
// 1.2 usar dado lido como valor inicial
  MAIOR = R;
                  MENOR = R;
// 2. repetir
  do
  // 2.1. ler dado valido do teclado
   do
   {
     cout << "\nR=";
     cin >> R; // ler valor
   while (R \le 0);
  // 2.2. testar se e' o maior
   if (R>MAIOR)
   \{ MAIOR = R; \}
                         // guardar o novo maior
   else
   // 2.3. testar se e' o menor
     if (R < MENOR)
     { MENOR = R; } // guardar o novo menor
   } // fim do teste do maior
  // 2.4. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
  while (Resposta == 1);
// 3. mostrar resultado
  cout << "\nMaior valor = " << MAIOR << " [ohms]";
  cout << "\nMenor valor = " << MENOR << " [ohms]";
// pausa para terminar
  cout << "Pressionar qualquer tecla para terminar.";</pre>
  getchar ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 10a
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_10a
 public static void Main ()
 // 1. definir dados
   double R.
                        // resistor
           MAIOR,
                        // maior valor
           MENOR;
                        // resistor equivalente
           Resposta;
                        // controle da repeticao
 // 1.1. ler o primeiro valor
   Console.Write ( "\n o primeiro valor ? " );
R = int.Parse ( Console.ReadLine ( ); // ler primeiro valor
 // 1.2. usar dado lido como valor inicial
   MAIOR = R; MENOR = R;
 // 2. repetir
    Resposta = 1;
   while (Resposta == 1)
   // 2.1. ler dado valido do teclado
     do
     {
       Console.Write ( "\nR=" );
       R = int.Parse (Console.ReadLine ()); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
     { MAIOR = R; } // guardar o novo maior
     else
     // 2.3. testar se e' o menor
       if (R < MENOR)
       { MENOR = R; } // guardar o novo menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
 // 3. mostrar resultado
   Console.WriteLine ( "\nMaior valor = " + MAIOR + " [ohms]" );
   Console.WriteLine ( "\nMenor valor = " + MENOR + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ():
 } // end Main ( )
} // fim Exemplo_10a class
```

Outra versão do programa em C#:

```
* Exemplo 10b
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_10b
 public static void Main ()
 // 1. definir dados
   double R.
                         // resistor
           MAIOR,
                        // maior valor
           MENOR:
                        // resistor equivalente
           Resposta;
                        // controle da repeticao
 // 1.1. ler o primeiro valor
   Console.Write ( "\n o primeiro valor ? " );
R = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
 // 1.2. usar dado lido como valor inicial
   MAIOR = R; MENOR = R;
 // 2. repetir
   do
   // 2.1. ler dado valido do teclado
     do
       Console.Write ( "\nR=" );
       R = int.Parse (Console.ReadLine()); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
       MAIOR = R; // guardar o novo maior
     }
     else
     // 2.3. testar se e' o menor
       if (R < MENOR)
         MENOR = R; // guardar o novo menor
       } // fim do teste do menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
   while (Resposta == 1);
 // 3. mostrar resultado
   Console.WriteLine ( "\nMaior valor = " + MAIOR + " [ohms]" );
   Console.WriteLine ( "\nMenor valor = " + MENOR + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ()
} // fim Exemplo_10b class
```

Programa em Java:

```
* Exemplo 10a
 * Dados valores de resistores, calcular o maior e o menor valor.
// ----- classes necessarias
import IO.*;
                                // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo_10a
 public static void main (String [] args)
 // 1. definir dados
                              // resistor
   double R,
          MAIOR,
                              // maior valor
          MENOR;
                              // resistor equivalente
                              // controle da repeticao
          Resposta;
 // 1.1. ler o primeiro valor
   R = IO.readint ( "\nQual o primeiro valor ? " );
 // 1.2. usar dado lido como valor inicial
   MAIOR = R;
   MENOR = R;
 // 2. repetir
   Resposta = 1;
   while (Resposta == 1)
   // 2.1. ler dado valido do teclado
     do
      R = IO.readint ( "\nR=" ); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
                             // guardar o novo maior
      MAIOR = R;
     else
     // 2.3. testar se e' o menor
       if (R < MENOR)
                              // guardar o novo menor
        MENOR = R;
       } // fim do teste do menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Resposta = IO.readint ( "\nMais dados (Sim=1,Nao=0) ? " );
 // 3. mostrar resultado
   IO.println ( "\nMaior valor = " + MAIOR + " [ohms]" );
   IO.println ( "\nMenor valor = " + MENOR + " [ohms]" );
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ()
} // fim Exemplo_10a class
```

Outra versão do programa em Java:

```
* Exemplo 10b
 * Dados valores de resistores, calcular o maior e o menor valor.
// ----- classes necessarias
import IO.*;
                                // IO.jar deve ser acessivel
// ----- definicao de classe
class Exemplo 10b
 public static void main (String [] args)
 // 1. definir dados
                               // resistor
   double R,
          MAIOR,
                              // maior valor
          MENOR;
                              // resistor equivalente
                              // controle da repeticao
          Resposta;
 // 1.1. ler primeiro valor valido
   { R = IO.readint ( "\nQual o primeiro valor ? " ); }
   while (R \le 0);
 // 1.2. usar dado lido como valor inicial
   MAIOR = R;
                   MENOR = R;
 // 2. repetir
   do
   // 2.1. ler dado valido do teclado
     do
      R = IO.readint ( "\nR=" ); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
                             // guardar o novo maior
      MAIOR = R;
     }
     else
     // 2.3. testar se e' o menor
       if (R < MENOR)
        MENOR = R; // guardar o novo menor
       } // fim do teste do menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Resposta = IO.readint ( "\nMais dados (Sim=1,Nao=0) ? " );
   while (Resposta == 1);
 // 3. mostrar resultado
   IO.println ( "\nMaior valor = " + MAIOR + " [ohms]" );
   IO.println ( "\nMenor valor = " + MENOR + " [ohms]" );
 // pausa para terminar
   IO.pause ( "\nPressionar ENTER para terminar." );
 } // end main ()
} // fim Exemplo_10b class
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um conjunto de dados contendo, cada um, uma nota;
 - determinar e mostrar a maior e a menor nota da turma;
 - o último dado, e que não será processado, contém nota = 999.

2. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar as duas maiores e as duas menores notas da turma;
- o último dado, e que não será processado, contém nota = 999.

3. Fazer um algoritmo para:

- ler um número indeterminado de dados;
- cada dado possui um valor, o último dado, e que não será processado, contém o valor 9999.
- calcular e mostrar os dois maiores valores lidos, e que sejam diferentes.

4. Modificar o algoritmo anterior de forma a :

- ler um valor (N) do teclado;
- calcular e mostrar os dois maiores e o menor valor entre (N) outros valores lidos do teclado.

5. Fazer um algoritmo para:

- ler um conjunto de 50 dados contendo, cada um, a altura e um código para masculino (1), e outro para feminino (2);
- calcular e mostrar :
 - a maior e a menor altura da turma;
 - a média de altura das mulheres;
 - a média de altura da turma.

Exercícios propostos

- Há três candidatos a uma vaga no senado. Feita a eleição a contagem de votos deverá ser feita através do computador. Fazer um algoritmo para :
 - ler um conjunto de dados contendo, cada um, o voto de um eleitor. O último dado deve conter um valor negativo. Os dados estão organizados segundo o seguinte critério :

1, 2, 3 - número dos três candidatos, respectivamente;

0 - voto em branco;

4 - voto nulo;

- calcular e mostrar :
- o número do candidato vencedor e o quantos votos obteve:
- o número de votos em branco e o número de votos nulos;
- o número de eleitores que compareceram às urnas.
- 2. Pode-se calcular a raiz quadrada de um número positivo através do método de aproximação sucessivas de Newton, descrito a seguir :
 - seja "a" o número do qual deseja-se obter a raiz quadrada;
 - a primeira aproximação para a raiz quadrada será dada por :

$$x_1 = a / 2$$

- a próxima ou sucessiva aproximação é dada por :

$$x_{n+1} = \frac{(x_n^2 + a)}{2x_n}$$

- fazer um algoritmo para:
- ler o valor de "a" do teclado;
- calcular e mostrar a 25a. aproximação.
- 3. A conversão de graus Farenheit para Centígrados é obtida por :

$$C = 5 (F - 32) / 9$$

- fazer um algoritmo para calcular e mostrar uma tabela de graus Centígrados em função de graus Farenheit, que variem de 50 a 150 de 1 em 1.
- 4. Fazer um algoritmo para gerar e mostrar a seguinte seqüência :

5. Fazer um algoritmo para calcular e mostrar o valor "s" :

$$s = 1 + 3/2 + 5/3 + 7/4 + ... + 99/50$$

6. Fazer um algoritmo para calcular e mostrar o enésimo termo da série abaixo, onde o valor de (n) é lido do teclado.

7. Sendo s = 1² + 2² + 3² +...+ n², e "k", um número inteiro maior que 1, fazer um algoritmo para calcular e mostrar o maior valor de "n" que torne a relação s < k verdadeira. O valor de "k" será lido do teclado.

8. O valor aproximado de π (PI) pode ser calculado usando a série :

$$s = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 \dots$$
 e $\pi = \sqrt[3]{s \cdot 32}$

Fazer um algoritmo para calcular e mostrar o valor de π usando os 51 primeiros termos da série.

- 9. Supondo que a população de um país "a" seja de 90.000.000 de habitantes, com uma taxa anual de crescimento de 3//; e que a população de um país "b" seja, aproximadamente, de 200.000.000 de habitantes, com uma taxa anual de crescimento de 1,5//. Fazer um algoritmo para calcular e mostrar o número de anos necessários para que a população do país "a" ultrapasse ou se igual a população do país "b", mantidas essas taxas de crescimento.
- 10. O número 3025 possui a seguinte característica :

$$30 + 25 = 55$$

 $55^2 = 3025$

- fazer um algoritmo para calcular e mostrar todos os números de 4 algarismos que apresentam esta propriedade.
- 11. O número 1221 possui a propriedade de que lido de "trás-para-frente" é igual lido de "frente-para-trás". Estes números são chamados de "palíndromos". Calcular e mostrar todos os números palíndromos de 5 algarismos.
- 12. Calcular e mostrar todos os números palíndromos menores que 30.000 e que sejam quadrados perfeitos.
- 13. Fazer um algoritmo para:
 - ler 1000 dados contendo, cada, o valor de uma nota fiscal;
 - calcular e mostrar :
 - o número de notas fiscais, cujo valor é menor ou igual a R\$1000,00;
 - o número de notas fiscais, cujo valor é maior que R\$1000,00 e menor ou igual R\$2000,00;
 - o número das notas fiscais, cujo valor é maior que R\$2000,00;
 - o total arrecadado durante o mês.
- 14. Fazer um algoritmo para:
 - ler um conjunto de dados contendo, cada um, uma quantidade expressa em milímetros.
 - o último dado, que não entrará nos cálculos, conterá essa quantidade igual a zero;
 - calcular e mostrar, para cada dado lido, a quantidade correspondente expressa em metros, decímetros, centímetros e milímetros.

Exemplo: 82453 milímetros

82 metros, 4 decímetros, 5 centímetros e 3 milímetros

15. Fazer um para calcular e mostrar os 100 primeiros termos da série de Fibonacci, esta série é gerada da seguinte forma: o primeiro e segundos termos valem 1 e os seguintes são calculados somando-se os dois termos anteriores a ele.

$$f = 1, 1, 2, 3, 5, 8, ...$$

 Fazer um algoritmo para calcular e mostrar os números primos compreendidos entre 500 e 600.