SOCIAL MEDIA SENTIMENT ANALYSIS

Prepared by: Hagar Abdelsalam

AGENDA

Objective

Dataset Overview

Steps and Methodology

Key Insights

Tools & Libraries Used

Key Visuals & Recommendation

Conclusion

OBJECTIVE

The objective of this project was to analyze social media (Twitter) data to understand public sentiment towards general topics. The task involved applying **Natural Language Processing** (**NLP**) techniques to preprocess tweets, extract sentiment scores, build a classification model, and visualize sentiment trends over time.

DATASET OVERVIEW

Source: Sentiment140 Twitter Dataset

Size: 1.6 million labeled tweets

Sentiment Labels:

 $\bullet 0 \rightarrow \text{Negative}$

•4 \rightarrow Positive

Fields Used:

•sentiment: Original sentiment score (0 or 4)

•text: Raw tweet content

1. Data Loading & Preprocessing

- Loaded the dataset using pandas with latin-1 encoding.
- Renamed columns and retained only sentiment and text fields.
- Mapped numerical sentiment scores to labels: 0 → Negative, 4 → Positive.

2. Text Cleaning (NLP Preprocessing)

- •Removed URLs, mentions, hashtags, and special characters.
- Converted all text to lowercase.
- Removed stopwords using NLTK's English stopword list.
- •Applied stemming using the Porter Stemmer.
- Created a new column clean_text with the cleaned tweets.

- 3. Visualization: Sentiment Distribution
- Plotted sentiment distribution using Seaborn.
- Insight: Dataset is balanced with nearly equal Positive and Negative tweets.

4. Word Cloud

- Generated separate word clouds for Positive and Negative tweets using WordCloud.
- Insight:
 - •Positive tweets commonly used words like *love*, *good*, *great*.
 - •Negative tweets frequently included words like hate, bad, sad.

5. Sentiment Trend Over Time

- Simulated tweet timestamps using pandas.date_range.
- Aggregated tweet counts per day and plotted trends.
- Applied 7-day rolling average to smooth the lines.

Insight:

- 1- Positive and Negative tweet frequencies show general consistency over time.
- 2- Sudden spikes or dips might indicate events or reactions, depending on the actual dataset.

6. Sentiment Classification Model

- •Used a basic Multinomial Naive Bayes classifier.
- Converted text to numerical vectors using CountVectorizer.
- •Split the data (80% training, 20% testing).
- Evaluated model performance using classification_report.
- •Model Results:
 - •Accuracy: ~77%
 - Precision & Recall: Fairly balanced between Positive and Negative classes
- •Insight: Even simple models like Naive Bayes can achieve strong results with well-preprocessed data.

KEY INSIGHTS

1- Sentiment Balance: Dataset has roughly equal Positive and Negative tweets useful for unbiased training.

2- Keyword Patterns:

- Positive sentiment is associated with emotionally strong, uplifting words.
- Negative sentiment leans towards frustration and complaints.
- 3- Trends Over Time: Patterns suggest relatively stable sentiment flow, though further topic-based filtering could reveal trends during real-world events (e.g., holidays, crises).
- **4- Model Performance:** A basic NLP pipeline and simple classifier can achieve ~77% accuracy, demonstrating the power of classical ML when applied effectively.

TOOLS & LIBRARIES USED

- Pandas Data manipulation
- Matplotlib / Seaborn Visualization
- **NLTK** Text preprocessing (stopwords, stemming)
- Scikit-learn Vectorization and modeling
- WordCloud Word cloud generation

KEY VISUALS

Recommendation:

1-investigating the reasons behind the negative sentiments to address potential issues (e.g., product flaws, service complaints).

2-leverage the positive sentiments to highlight strengths in marketing or customer engagement strategies.

KEY VISUALS

Recommendation:

- 1- To boost positive sentiment, amplify what users love humor, community, and timely engagement (e.g., events or campaigns around "today" or "tonight").
- 2- For negative sentiment, address pain points like work-related stress or unmet expectations by offering solutions, support, or empathetic communication.

KEY VISUALS

Recommendation:

- 1- Investigate the causes of sentiment spikes (e.g., March, May, November) by correlating with events, product releases, or external factors during those periods.
- 2- Address negative spikes with targeted improvements, and amplify positive spikes through marketing.
- 3-Since sentiment is balanced and event-driven, focus on real-time monitoring and rapid response to emerging trends or issues to maintain or shift the sentiment in your favor.

CONCLUSION

This project demonstrated a complete NLP pipeline for analyzing Twitter sentiment:

- From data cleaning and visualization to modeling and insights extraction.
- The workflow can easily be adapted to monitor sentiment about specific events, products, or brands making it valuable for businesses, marketing teams, or social researchers.

THANK YOU

Hagar Abdelsalam

My Github: https://github.com/hagarabdelsalam

My Email: hagarabdelsalam64@gmail.com