Avoiding fractional powers over the natural numbers

Lara Pudwell¹ Eric Rowland²

¹Valparaiso University, USA

²University of Liège, Belgium

Journées Montoises, Nancy

2014 September 24

Squares and overlaps

A square is a nonempty word of the form ww.

An overlap is a word of the form wwc, where c is the first letter of w.

Squares are unavoidable on a binary alphabet:

010?

But Thue showed overlaps are avoidable:

$$\varphi^{\omega}(0) = 01101001100101101001011001101001 \cdots$$

is overlap-free, where $\varphi(0) = 01$ and $\varphi(1) = 10$.

Lexicographically least words

What is the lex. least infinite word avoiding a pattern?

On a binary alphabet, the lex. least overlap-free word is

$$001001 \varphi^{\omega}(1) = 0010011001011001101001 \cdots$$

Open problem (Allouche–Shallit, *Automatic Sequences* §1.10)

Characterize the lex. least square-free word over $\{0, 1, 2\}$.

 $01020120210120102012021020102101201020120210\cdots$

Infinite alphabet

Guay-Paquet-Shallit (2009):

The lex. least square-free word on $\mathbb{Z}_{\geq 0}$ is

$$\mathbf{w}_2 = \varphi^{\omega}(0) = 01020103010201040102010301020105\cdots,$$

where φ is the 2-uniform morphism $\varphi(n) = 0(n+1)$.

The lex. least 5-power-free word on $\mathbb{Z}_{\geq 0}$ is

$$\mathbf{w}_5 = \varphi^{\omega}(0) = 000010000100001000020000100001\cdots,$$

where
$$\varphi(n) = 0000(n+1)$$
.

The lex. least overlap-free word on $\mathbb{Z}_{\geq 0}$ is also generated by a (non-uniform) morphism.

Fractional powers

Definition

A word w is an $\frac{a}{b}$ -power if

$$w = v^e x$$

where $e \ge 0$ is an integer, x is a prefix of v, and $\frac{|w|}{|v|} = \frac{a}{b}$.

If |x| = |y| = |z|, then $xyzxyzx = (xyz)^{7/3}$ is a $\frac{7}{3}$ -power. 011101 = $(0111)^{3/2}$ is a $\frac{3}{2}$ -power.

Notation

For $\frac{a}{b} > 1$, let $\mathbf{w}_{a/b}$ be the lex. least $\frac{a}{b}$ -power-free word on $\mathbb{Z}_{\geq 0}$.

Avoiding 3/2-powers

 $\mathbf{w}_{3/2} = 001102100112001103100113001102100114001103\cdots$

```
\mathbf{w}_{3/2} = 001102
100112
001103
100113
001102
100114
001103
100112
\vdots
```

Theorem (Rowland–Shallit 2012)

 $\mathbf{w}_{3/2}$ is a 6-regular sequence and generated by a 6-uniform morphism.

Why 6?

The interval $\frac{a}{b} \geq 2$

Let gcd(a, b) = 1 from here on.

Theorem

If $\frac{a}{b} \geq 2$, then $\mathbf{w}_{a/b} = \mathbf{w}_a$.

Proof (one direction).

The *a*-power $v^a = (v^b)^{a/b}$ is also an $\frac{a}{b}$ -power.

So $\mathbf{w}_{a/b}$ is a-power-free. Thus $\mathbf{w}_a \leq \tilde{\mathbf{w}}_{a/b}$ lexicographically.

Therefore it suffices to consider $1 < \frac{a}{b} < 2$.

w_{5/3} wrapped into 100 columns

 $\mathbf{w}_{5/3} = 000010100001010000101000010100001020000101 \cdots$

w_{5/3} wrapped into 7 columns

$$\mathbf{w}_{5/3} = 000010100001010000101000010100001020000101 \cdots$$

Theorem

 $\mathbf{w}_{5/3} = \varphi^{\omega}(0)$, where $\varphi(n) = 000010(n+1)$ is a 7-uniform morphism.

w_{7/4} wrapped into 100 columns

 $\boldsymbol{w}_{7/4} = 000000100100000010010000011000001 \cdots$

w_{7/4} wrapped into 50847 columns

Theorem

 $\mathbf{w}_{7/4} = \varphi^{\omega}(0)$ for some 50847-uniform morphism $\varphi(n) = u(n+2)$.

w_{8/5} wrapped into 733 columns

 $\mathbf{w}_{8/5} = 0000000100100000100100000011001000000100\cdots$

Theorem

$\mathbf{w}_{8/5}=arphi^\omega(\mathbf{0})$ for the 733-uniform morphism

w_{6/5} wrapped into 1001 columns

 $\mathbf{w}_{6/5} = 0000011111102020201011101000202120210110010\cdots$

There is a transient region.

Introduce a new letter 0', and let $\tau(0') = 0$ and $\tau(n) = n$ for $n \in \mathbb{Z}_{\geq 0}$.

There exist words u,v of lengths |u|=1001-1 and |v|=29949 such that $\mathbf{w}_{6/5}=\tau(\varphi^\omega(0'))$, where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n+2) & \text{if } n \geq 0. \end{cases}$$

w_{5/4} wrapped into 144 columns

 $\mathbf{w}_{5/4} = 000011110202101001011212000013110102101302\cdots$

We don't know the structure of $\mathbf{w}_{5/4}$.

Catalogue

For many words $\mathbf{w}_{a/b}$, there is a related k-uniform morphism.

$$\frac{a}{b} = \frac{3}{2} \rightarrow k = 6$$

$$\frac{a}{b} = \frac{5}{3} \rightarrow k = 7$$

$$\frac{a}{b} = \frac{7}{4} \rightarrow k = 50847$$

$$\frac{a}{b} = \frac{8}{5} \rightarrow k = 733$$

$$\frac{a}{b} = \frac{6}{5} \rightarrow k = 1001$$

$$\frac{a}{b} = \frac{5}{4} \rightarrow k = ?$$

Question

Is there always a *k*-uniform morphism? How is *k* related to $\frac{a}{b}$?

A family related to w_{5/3}

The interval $\frac{5}{3} \leq \frac{a}{b} < 2$

Theorem

Let $\frac{5}{3} \le \frac{a}{b} < 2$ and b odd. Let φ be the (2a - b)-uniform morphism

$$\varphi(n) = 0^{a-1} \cdot 1 \cdot 0^{a-b-1} \cdot (n+1)$$

for all $n \in \mathbb{Z}_{\geq 0}$. Then $\mathbf{w}_{a/b} = \varphi^{\omega}(0)$.

- Show that φ preserves $\frac{a}{b}$ -power-freeness. That is, if w is $\frac{a}{b}$ -power-free then $\varphi(w)$ is $\frac{a}{b}$ -power-free.
- ② Show that φ preserves lex-leastness. That is, if decrementing any letter in w introduces an $\frac{a}{b}$ -power, then decrementing any letter in $\varphi(w)$ introduces an $\frac{a}{b}$ -power.

Since 0 is $\frac{a}{b}$ -power-free and lex. least, it follows that $\mathbf{w}_{a/b} = \varphi^{\omega}(0)$.

Proving $\frac{a}{b}$ -power-freeness

Definition

A k-uniform morphism φ locates words of length ℓ if there exists j such that, for all words $w, x \in \Sigma^*$ with $|x| = \ell$, every occurrence of the factor x in $\varphi(w)$ begins at a position congruent to j modulo k.

For example, $\varphi(n) = 000010(n+1)$ locates words of length 4.

Suppose φ locates words of length |x|.

If $\varphi(w)$ contains an $\frac{a}{b}$ -power $(xy)^{a/b} = xyx$, then the two x's occur at positions that differ by $k \cdot m$.

By shifting, we conclude that w contains an $\frac{a}{b}$ -power.

So if w is $\frac{a}{b}$ -power-free, then $\varphi(w)$ does not contain long $\frac{a}{b}$ -powers.

Other intervals

We have 30 symbolic $\frac{a}{b}$ -power-free morphisms, found experimentally.

Theorem

Let
$$\frac{3}{2} < \frac{a}{b} < \frac{5}{3}$$
 and $gcd(b,5) = 1$. The $(5a-4b)$ -uniform morphism

$$\varphi(n) = 0^{a-1} 1 0^{a-b-1} 1 0^{2a-2b-1} 1 0^{a-b-1} (n+1)$$

locates words of length 5a - 5b and is $\frac{a}{b}$ -power-free.

Theorem

Let $\frac{6}{5} < \frac{a}{b} < \frac{5}{4}$ and $\frac{a}{b} \notin \{\frac{11}{9}, \frac{17}{14}\}$. The a-uniform morphism

$$\varphi(n) = 0^{6a-7b-1} \, 1 \, 0^{-3a+4b-1} \, 1 \, 0^{-8a+10b-1} \, 1 \, 0^{6a-7b-1} \, (n+1)$$

locates words of length a and is $\frac{a}{b}$ -power-free.

A family with a transient

The interval $\frac{9}{7} < \frac{a}{b} < \frac{4}{3}$

Theorem

Let $\frac{9}{7} < \frac{a}{b} < \frac{4}{3}$ and gcd(b, 6) = 1. Let

$$\varphi(0') = 0'0^{a-2} \, 1 \, 0^{a-b-1} \, 1 \, 0^{a-b-1} \, 1 \varphi(0)$$

and

$$\begin{split} \varphi(n) &= 0^{a-b-1} \cdot 10^{2a-2b-1} \cdot 10^{-a+2b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{4a-5b-1} \cdot 1\\ &0^{-a+2b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{-2a+3b-1} \cdot 10^{5a-6b-1} \cdot 1\\ &0^{-2a+3b-1} \cdot 10^{4a-5b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{3a-3b-1} \cdot 10^{-2a+3b-1} \cdot 1\\ &0^{a-b-1} \cdot 10^{-3a+4b-1} \cdot 10^{5a-6b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 1\\ &0^{3a-3b-1} \cdot 10^{-2a+3b-1} \cdot 10^{4a-5b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{2a-2b-1} \cdot 2\\ &0^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{3a-3b-1} \cdot 10^{-2a+3b-1} \cdot 10^{a-b-1} \cdot 10^{a-b-1} \cdot (n+2), \end{split}$$

for $n \in \mathbb{Z}_{\geq 0}$. Then $\mathbf{w}_{a/b} = \tau(\varphi^{\omega}(0'))$.

Sporadic rationals

The same proof technique applies to symbolic and explicit rationals...

The 50847-uniform morphism for $\mathbf{w}_{7/4}$ locates words of length 12940. The 733-uniform morphism for $\mathbf{w}_{8/5}$ locates words of length 301. The 45430-uniform morphism for $\mathbf{w}_{13/9}$ locates words of length 11400. The 55657-uniform morphism for $\mathbf{w}_{17/10}$ locates words of length 37104. etc.

Is there some way to make sense of them?

Credits

Thanks for your attention!

Co-funded by the University of Liège and the European Union