Name: Phan Bá Đại Phúc Student Code: B1910688

NAÏVE BAYES

1) Given dataset:

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

- How Naïve Bayes predicts the class for 4 examples as follows:

Outlook	Temp	Humidity	Windy	Play
Overcast	Cool	High	False	?
Rainy	Cool	High	False	?
Sunny	Hot	Normal	False	?
???	Hot	Normal	False	?

Training dataset weather [Outlook, temp, humidity, windy] \rightarrow Play

Outlook			-	Temp			Humidity			Windy			ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Overcast	4	0	Cool	3	1	High	3	4	TRUE	3	3	9	5
Rainy	3	2	Hot	2	2	Normal	6	1	FALSE	6	2		
Sunny	2	3	Mild	4	2								
Overcast	4/9	0	Cool	1/3	1/5	High	1/3	4/5	TRUE	1/3	3/5	9/14	5/14
Rainy	3/9	2/5	Hot	2/9	2/5	Normal	2/3	1/5	FALSE	2/3	2/5		
Sunny	2/9	3/5	Mild	4/9	2/5								

Outlook	Temp	Humidity	Windy	Play
Overcast	Cool	High	FALSE	
Rainy	Cool	High	FALSE	
Sunny	Hot	Normal	FALSE	
???	Hot	Normal	FALSE	

For [Outlook, Temp, Humidity, Windy] = [Overcast, Cool, High, False]

We calculate the likelihood of two class "Yes" and "No":

For "Yes" =
$$\frac{4}{9} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{9}{14} = \frac{4}{189} \approx 0.0212$$

For "No" = $\frac{0+1}{5+3} \times \frac{1}{5} \times \frac{4}{5} \times \frac{2}{5} \times \frac{5}{14} = \frac{1}{350} \approx 0.0029$

Because Likelihood of Yes > Likelihood of No (0.0212 > 0.0029), the answer of class "Play" is "Yes".

For [Outlook, Temp, Humidity, Windy] = [Rainy, Cool, High, False]

We calculate the likelihood of two class "Yes" and "No":

For "Yes" =
$$\frac{3}{9} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{9}{14} = \frac{1}{63} \approx 0.0159$$

For "No" = $\frac{2}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{2}{5} \times \frac{5}{14} = \frac{8}{875} \approx 0.0091$

Because Likelihood of Yes > Likelihood of No (**0.0159** > **0.0091**), the answer of class "Play" is "Yes".

For [Outlook, Temp, Humidity, Windy] = [Sunny, Hot, Normal, False]

We calculate the likelihood of two class "Yes" and "No":

For "Yes" =
$$\frac{2}{9} \times \frac{2}{9} \times \frac{2}{3} \times \frac{2}{3} \times \frac{9}{14} = \frac{8}{567} \approx 0.014$$

For "No" = $\frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} \times \frac{2}{5} \times \frac{5}{14} = \frac{6}{975} \approx 0.007$

Because Likelihood of Yes > Likelihood of No (**0.014 > 0.007**), the answer of class "Play" is "Yes".

For [Outlook, Temp, Humidity, Windy] = [Null, Hot, Normal, False]

We calculate the likelihood of two class "Yes" and "No":

For "Yes" =
$$\frac{2}{9} \times \frac{2}{3} \times \frac{2}{3} \times \frac{9}{14} = \frac{4}{63} \approx 0.0635$$

For "No" = $\frac{2}{5} \times \frac{1}{5} \times \frac{2}{5} \times \frac{5}{14} = \frac{2}{175} \approx 0.0114$

Because Likelihood of Yes > Likelihood of No (0.0635 > 0.0114), the answer of class "Play" is "Yes".

So the answer is:

Outlook	Temp	Humidity	Windy	Play
Overcast	Cool	High	FALSE	Yes
Rainy	Cool	High	FALSE	Yes
Sunny	Hot	Normal	FALSE	Yes
???	Hot	Normal	FALSE	Yes

2)

Ou	tlook		Te	mp		Hur	midity			W	indy		Pla	ay
	yes	no		yes	no		yes	no			yes	no	yes	no
sunny	2	3		83	85		86	85		FALSE	6	2	9	5
overcast	4	0		70	80		96	90		TRUE	3	3		
rainy	3	2		68	65		80	70						
				64	72		65	95						
				69	71		70	91						
				75			80							
				75			70							
				72			90							
				81			75							
sunny	2/9	0.6	mean	73	74.6	mean	79.1	86.2	mean	FALSE	2/3	0.4	0.643	0.357
overcast	4/9	0	std. dev.	6.2	7.9	std. dev.	10.2	9.7	std. dev.	TRUE	1/3	0.6		
rainy	1/3	0.4												

Naïve Bayes predicts the 4 examples:

outlook	Temp	Humidity	Windy	Play
Overcast	66	80	FALSE	
Rainy	73	90	FALSE	

Sunny	80	85	FALSE	
?	90	85	?	

For [Outlook, Temp, Humidity, Windy] = [Overcast, 66, 80, False]

First, we have to calculate f(tempurature=66|yes), f(humidity=80|yes), f(tempurature=66|no) and f(humidity=80|no)

f(tempurature=66|yes) =
$$\frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2*6.2^2}}$$
 = 0.0340

f(humidity=80|yes) =
$$\frac{1}{\sqrt{2\pi}10.2}e^{-\frac{(80-79.1)^2}{2*10.2^2}} = 0.0390$$

f(tempurature=66|no) =
$$\frac{1}{\sqrt{2\pi}7.9}e^{-\frac{(66-74.6)^2}{2*7.9^2}} = 0.0279$$

f(humidity=80|no) =
$$\frac{1}{\sqrt{2\pi}9.7}e^{-\frac{(80-86.2)^2}{2*9.7^2}} = 0.0335$$

Next, we calculate the likelihood of two class "Yes" and "No":

For "Yes" =
$$\frac{4}{9}$$
 x 0.0340 x 0.0390 x $\frac{2}{3}$ x $\frac{9}{14}$ = 0.000252

For "No" =
$$\frac{0+1}{5+3}$$
 x 0.0279 x 0.0335 x 0.4 x $\frac{5}{14}$ = 0.0000167

Because Likelihood of Yes > Likelihood of No (0.000252 > 0.0000167), the answer of class "Play" is "Yes".

For [Outlook, Temp, Humidity, Windy] = [Rainy, 73, 90, False]

First, we have to calculate f(tempurature=73|yes), f(humidity=90|yes), f(tempurature=73|no) and f(humidity=90|no)

f(tempurature=73|yes) =
$$\frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(73-73)^2}{2*6.2^2}} = 0.0644$$

f(humidity=90|yes) =
$$\frac{1}{\sqrt{2\pi}10.2}e^{-\frac{(90-79.1)^2}{2*10.2^2}} = 0.0221$$

f(tempurature=73|no) =
$$\frac{1}{\sqrt{2\pi}7.9}e^{-\frac{(73-74.6)^2}{2*7.9^2}} = 0.0495$$

f(humidity=90|no) =
$$\frac{1}{\sqrt{2\pi}9.7}e^{-\frac{(90-86.2)^2}{2*9.7^2}} = 0.0381$$

Next, we calculate the likelihood of two class "Yes" and "No":

For "Yes" =
$$\frac{1}{3}$$
 x 0.0644 x 0.0221 x $\frac{2}{3}$ x $\frac{9}{14}$ = 0.000210

For "No" = 0.4 x 0.0495 x 0.0381 x 0.4 x
$$\frac{5}{14}$$
 = 0.000108

Because Likelihood of Yes > Likelihood of No (**0.000210** > **0.000108**), the answer of class "Play" is "Yes".

For [Outlook, Temp, Humidity, Windy] = [Sunny, 80, 85, False]

First, we have to calculate f(tempurature=80|yes), f(humidity=85|yes), f(tempurature=80|no) and f(humidity=85|no)

f(tempurature=80|yes) =
$$\frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(80-73)^2}{2*6.2^2}} = 0.0340$$

f(humidity=85|yes) =
$$\frac{1}{\sqrt{2\pi}10.2}e^{-\frac{(85-79.1)^2}{2*10.2^2}} = 0.0331$$

f(tempurature=80|no) =
$$\frac{1}{\sqrt{2\pi}7.9}e^{-\frac{(80-74.6)^2}{2*7.9^2}} = 0.0400$$

f(humidity=85|no) =
$$\frac{1}{\sqrt{2\pi}9.7}e^{-\frac{(85-86.2)^2}{2*9.7^2}} = 0.0408$$

Next, we calculate the likelihood of two class "Yes" and "No":

For "Yes" =
$$\frac{2}{9}$$
 x 0.0340 x 0.0331 x $\frac{9}{14}$ x $\frac{2}{3}$ = 0.000107

For "No" =
$$0.6 \times 0.0400 \times 0.0408 \times \frac{5}{1.4} \times 0.4 = 0.000140$$

Because Likelihood of Yes > Likelihood of No (0.000107 < 0.000140), the answer of class "Play" is "No".

For [Outlook, Temp, Humidity, Windy] = [Null, 90, 85, False]

First, we have to calculate f(tempurature=90|yes), f(humidity=85|yes), f(tempurature=90|no) and f(humidity=85|no)

f(tempurature=90|yes) =
$$\frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(90-73)^2}{2*6.2^2}} = 0.00150$$

f(humidity=85|yes) =
$$\frac{1}{\sqrt{2\pi}10.2}e^{-\frac{(85-79.1)^2}{2*10.2^2}} = 0.0331$$

f(tempurature=90|no) =
$$\frac{1}{\sqrt{2\pi}7.9}e^{-\frac{(90-74.6)^2}{2*7.9^2}} = 0.0076$$

f(humidity=85|no) =
$$\frac{1}{\sqrt{2\pi}9.7}e^{-\frac{(85-86.2)^2}{2*9.7^2}} = 0.0408$$

Next, we calculate the likelihood of two class "Yes" and "No":

For "Yes" = 0.00150 x 0.0331 x
$$\frac{9}{14}$$
 x $\frac{2}{3}$ = 0.0000213

For "No" = 0.0076 x 0.0408 x
$$\frac{5}{14}$$
 x 0.4 = 0.0000443

Because Likelihood of Yes > Likelihood of No (**0.0000213** < **0.0000443**), the answer of class "Play" is "No".

So, the answer is:

outlook	Temp	Humidity	Windy	Play
Overcast	66	80	FALSE	Yes
Rainy	73	90	FALSE	Yes
Sunny	80	85	FALSE	No
?	90	85	?	No

- **3)** Implement the program using GassianNB in scikit-learn library. The program requires 2 parameters:
 - Trainset
 - Testset

The program reports the classification results (accuracy, confusion matrix) for 5 datasets:

```
Iris (.trn: trainset, .tst: tests)
Optics (.trn: trainset, .tst: tests)
Letter (.trn: trainset, .tst: tests)
Leukemia (.trn: trainset, .tst: tests)
Fp (.trn: trainset, .tst: tests)
```

Code used for **import libraries** and **read files**:

```
z users z pnano z Oneprive z pesktop z iviacnineLearning z 😽 ivialvebayes.py z 🕠 ivalvebay
     import numpy as np
     import csv
     from csv import reader
     from sklearn.model_selection import train_test_split
     from sklearn import metrics
     from sklearn.naive bayes import GaussianNB
     from sklearn.metrics import accuracy_score
     #Funciton for read file
     def load csv(filename):
10
         dataset = list()
11
         with open(filename, 'r') as file:
12
              csv reader = csv.reader(file)
13
             for row in csv reader:
14
                  if not row:
15
                      continue
                  dataset.append(row)
17
         return dataset
18
```

Code for implementing Naïve Bayes:

```
def NaiveBayes(filename1, filename2):
    print("Implement ", filename1, ": ")
    trainset = load_csv(filename1)
    testset = load_csv(filename2)
    temp1 = [i[0:-1] for i in trainset]
    yTrain = np.array(list(map(int, [i[-1] for i in trainset])))
    temp2 = [i[0:-1] for i in testset]
    yTest = np.array(list(map(int, [i[-1] for i in testset])))
    xTrain = np.array([list(map(float, i)) for i in temp1])
    xTest = np.array([list(map(float, i)) for i in temp2])
    #Code for implement naive Bayes
    model = GaussianNB()
    model.fit(xTrain,yTrain)
    y_predicted = model.predict(xTest)
    score = accuracy_score(yTest, y_predicted)*100
    #Code for printing the result
    print("Accuracy: ", score, "%")
    print("Confusion Matrix: \n" , metrics.confusion_matrix(yTest,y_predicted))
    print("Classification Report: \n" , metrics.classification_report(yTest,y_predicted))
```

Calling the **NaiveBayes** functions:

```
NaiveBayes('iris.trn', 'iris.tst')
NaiveBayes('let.trn', 'let.tst')
NaiveBayes('opt.trn', 'opt.tst')
NaiveBayes('fp.trn', 'fp.tst')
NaiveBayes('ALLAML.trn', 'ALLAML.tst')
```

Result:

Iris:

```
Implement iris.trn :
Accuracy: 92.0 %
Confusion Matrix:
[[17 0 0]
[ 0 15 0]
[ 0 4 14]]
Classification Report:
             precision recall f1-score support
                         1.00
                                  1.00
         0
                1.00
                                             17
         1
                0.79
                         1.00
                                  0.88
                                            15
         2
                1.00
                         0.78
                                  0.88
                                             18
  accuracy
                                  0.92
                                             50
  macro avg
                                  0.92
                0.93
                         0.93
                                             50
weighted avg
               0.94
                         0.92
                                  0.92
                                             50
```

Letter:

```
Implement let.trn :
Accuracy: 63.15631563156315 %
Confusion Matrix:
 [[235 0
             0 1
                               0
                                   3
                                        0
                                            0
                                                 2
                                                     0
                                                         6
                                                              2
                                                                  0
                                                                           5
                      0
                           0
                                                                       0
                                                                               2
   10
        0
             1
                 0
                     1
                                  0]
 [ 0 163
             0
                11
                     0
                          1
                              0
                                  2 31
                                           2
                                               1
                                                    0
                                                        3
                                                             0
                                                                 1
                                                                     0
                                                                          1
                                                                             21
    0
             0
                 0
                     2
                          1
                              0
                                  0]
        0
        0 162
                          0
                                  0
                                       0
                                           0
                                              22
                                                    0
                                                        5
                                                             0
                                                                 5
                                                                     0
                                                                          6
   0
                 0
                     4
                             16
                                                                              1
    2
        1
             2
                 0
                     0
                          0
                              0
                                  0]
 [ 1
       20
            0 192
                     0
                          1
                              0
                                  1 15
                                          11
                                               4
                                                    0
                                                             1
                                                                16
                                                                     0
                                                                          0
                                                                              6
    5
        0
             0
                 0
                     0
                          1
                              0
                                  0]
   0
        3
            5
                 2
                    90
                          0
                             45
                                  0 16
                                           0
                                              13
                                                    0
                                                        0
                                                             0
                                                                 0
                                                                     0
                                                                         17
                                                                              1
   11
        4
            1
                 0
                     0
                         45
                              1
                                  8]
 [ 0
       11
            0
                11
                     0 206
                              6
                                  2
                                       1
                                           0
                                               0
                                                    0
                                                        0
                                                             3
                                                                 0
                                                                     9
                                                                          3
                                                                              2
    2
            0
                 0
                     3
                          0
                              3
                                  0]
    3
                          2 143
                                  1
                                       4
                                           0
                                                    0
                                                             0
                                                                     0
           41
                 2
                     0
                                                        4
                                                                 4
                                                                         17
    9
        0
             0
                 0
                    12
                          0
                              0
                                  0]
                                 72
                                           0
                                                    0
                                                        5
                                                             2
 [ 1
       11
             0
                17
                     0
                          5
                                       1
                                              11
                                                                41
                                                                     0
                                                                          0
                                                                             18
                              4
             5
                 0
                         26
    1
        0
                                  0]
                                  0 196 15
 [ 0
        9
            0
                15
                     4
                         8
                              0
                                               0
                                                    1
                                                        0
                                                             0
                                                                 0
                                                                     3
                                                                          3
                                                                              0
   11
        1
            0
                 0
                     0
                          1
                              0
                                  2]
 [ 0
        5
             0
                10
                     0
                          4
                              0
                                  0 13 185
                                                0
                                                    0
                                                        0
                                                             0
                                                                 2
                                                                     2
                                                                          1
                                                                              2
   13
        0
             0
                 0
                     0
                          2
                              0
                                  0]
 [ 1
        8
             1
                 8
                    23
                          0
                                  2
                                       2
                                           0 117
                                                    0
                                                        5
                                                             3
                                                                 0
                                                                     0
                                                                          1
                                                                             28
    0
        3
             4
                 0
                     0
                         29
                              1
                                  0]
```

[0	5	0	0	4	0	8	0	0	14	16	207	0	0	0	0	9	2
	2	0	0	0	0	3	0	0]										
[7	5	0	0	0	0	0	2	0	0	5	0	212	0	1	0	1	1
	0	0	1	0	10	0	0	0]										
	2	3	0	8	0	0	0	24	1	0	2	0	8	172	15	1	0	7
	0	0	5	10	14	0	0	0]										
[3	3	1	8	0	0	12	4	12	0	7	0	9	4	155	1	5	9
	0	0	0	0	4	0	0	0]										
[0	3	0	13	0	21	6	2	0	0	0	0	0	2	1	197	2	0
	1	0	0	1	13	0	4	0]										
[6	5	0	3	0	0	5	0	4	0	1	2	3	0	62	0	155	8
	22	0	0	0	2	1	1	0]										
[1	27	0	20	0	0	0	8	4	7	8	0	6	1	7	0	3	177
_	0	0	0	0	1	1	0	0]									_	_
[16	34	1		5	5	4	2	21	1	2	2	0	0	0	1	7	6
	77	8	1		0	39	1	23]							_		_	
[0	0	0	1	2	14	7	1	0	0	8	0	1	0	0	0	1	2
-	5	176	0	7	0	7	11	1]	_	•	1.4	1	10	_	10	•	4	0
[0	0	5	2 1	0	0	4	8	0	0	14	1	18	5	12	0	1	0
г	0	0 6	199 0	0	3 0	1 3	0 2	0] 1	0	0	0	0	3	1	0	6	0	1
[1	0	0		18	9	4	0]	Ø	Ø	v	Ø	2	- 1	Ø	0	Ø	
[0	9	0	0	10	0	0	0] 1	0	0	0	0	9	4	4	1	0	0
L	0	0	0		189	0	0	ø]	U	U	U	U	,	7	7	-	U	v
					105			-										
[0	16	0		4	0	0	0	19	2	10	2	0	0	56	0	1	1
	8	7	8		0		2	9]										
[0	0	0		0	18	0	0	0	0	0	0	4	1	1	2	8	0
_	10	51	3		8	0	82	0]										
[3	0	0		7	3	0	0	26	6	4	5	0	0	0	0	1	5
	36	6	0	0	0	6	1	148]										

Classif	ication	Report:			
		precision	recall	f1-score	support
	0	0.84	0.86	0.85	274
	1	0.46	0.68	0.55	240
	2	0.75	0.72	0.73	226
	3	0.56	0.69	0.62	277
	4	0.63	0.34	0.44	262
	5	0.71	0.77	0.74	269
	6	0.53	0.54	0.54	263
	7	0.53	0.31	0.39	230
	8	0.54	0.73	0.62	269
	9	0.76	0.77	0.77	239
	10	0.46	0.48	0.47	243
	11	0.94	0.77	0.84	270
	12	0.70	0.87	0.77	245
	13	0.86	0.63	0.73	272
	14	0.40	0.65	0.50	237
	15	0.88	0.74	0.81	266
	16	0.62	0.55	0.59	280
	17	0.58	0.65	0.61	271
	18	0.34	0.29	0.31	264
	19	0.67	0.72	0.69	244
	20	0.87	0.73	0.79	274
<u> </u>	21	0.65	0.81	0.72	238
	22	0.66	0.78	0.72	241
	23	0.40	0.43	0.41	261
	24	0.69	0.33	0.44	252
	25	0.77	0.57	0.66	259
		0177	0.57	- 0.00	233
accı	ıracy			0.63	6666
	o avg	0.65	0.63	0.63	6666
weighted	davg	0.65	0.63	0.63	6666

Opt:

```
Implement opt.trn :
Accuracy: 78.63105175292154 %
Confusion Matrix:
[[177
                    0
                            0
        0
            0 0
                        0
                                0 1
                                        0]
   0 129 14
                                  23
               0
                   0
                       0
                               0
                                       9]
       7 141
                                  24
   0
               1
                   0
                       1
                           1
                               1
                                       1]
   1
       1
           2 135
                   0
                       2
                           0
                               8
                                  33
                                       1]
[ 10
      31
           0
                       2
                          12
                              26
                                       0]
               0
                  93
                               5
                                       2]
   2
       1
           4
               5
                   0 131
                           1
                                  31
   2
       1
           0
               0
                   0
                       0 175
                               0
                                   3
                                       0]
   0
       0
           1
               0
                   0
                       0
                           0 176
                                   1
                                       1]
       6
           0
               0
                   0
                       1
                           0
                               1 165
                                       1]
   0
                               6
    5
       4
           1
              21
                   0
                       0
                           0
                                  52
                                      91]]
```

		<u> </u>	-	JE JE]]	
Classifi	.cation	Report:			
		precision	recall	f1-score	support
	0	0.90	0.99	0.94	178
	1	0.72	0.71	0.71	182
	2	0.87	0.80	0.83	177
	3	0.83	0.74	0.78	183
	4	1.00	0.51	0.68	181
	5	0.96	0.72	0.82	182
	6	0.89	0.97	0.93	181
	7	0.79	0.98	0.88	179
	8	0.49	0.95	0.64	174
	9	0.86	0.51	0.64	180
accu	ıracy			0.79	1797
macro	avg	0.83	0.79	0.79	1797
weighted	lavg	0.83	0.79	0.79	1797

Fp:

```
Implement fp.trn :
           75.0 %
Accuracy:
Confusion Matrix:
 [[29 0 0 0 0 0 0
                           0 0 0 0
                                           0
                                                  0]
 [ 0 4
                                                 0]
         0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
 [ 0
      4
         8
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                 0]
                                                0]
 [ 0
         0
             7
                0
                   0
                      0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
      0
 [ 0
      0
         0
             0
                9
                   0
                      0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                0]
                                                0]
                0 13
 [ 0
      1
         0
             0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                             0 0]
 [ 0
      3
         0
             0
                0
                   0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                                0]
 [ 0
      0
                0
                   0
                      0 11
                             0
                                0
                                    0
                                       0
                                          0
         0
             0
                                              0
                                                0]
                0
                   0
                       0
                          0
                                    0
                                       0
 [ 0
      0
         0
             0
                                0
                                          0
                                              0
 [ 0
             2
                   0
                          0
                                2
                                    0
                                             0 0]
      0
         0
                0
                       0
                             0
                                       0
                                          0
                                                0]
                                    3
 [ 0
      7
         0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                       0
                                          0
                                              0
                                                0]
 [ 0
      2
         0
             0
                0
                   0
                      0
                          0
                             0
                                0
                                    0
                                          0
                                              0
                                                0]
             2
 [ 0
      1
         0
                   0
                       1
                          0
                             0
                                0
                                    0
                                       0
                                          6
                0
                                              0
      2
                       1
 [ 0
         0
             3
                1
                   0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              3
                                                 0]
             2
                       2
 [ 0
      6
         0
                0
                   0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                 4]]
```

Classification Report:					
		precision	recall	f1-score	support
	1	1.00	1.00	1.00	29
	2	0.13	1.00	0.24	4
	3	1.00	0.67	0.80	12
	4	0.44	1.00	0.61	7
	5	0.90	1.00	0.95	9
	6	1.00	0.93	0.96	14
	7	0.64	0.70	0.67	10
	8	1.00	1.00	1.00	11
	9	1.00	1.00	1.00	7
	10	1.00	0.50	0.67	4
	11	1.00	0.30	0.46	10
	12	1.00	0.78	0.88	9
	13	1.00	0.60	0.75	10
	14	1.00	0.30	0.46	10
	15	1.00	0.29	0.44	14
accuracy				0.75	160
mac	ro avg	0.87	0.74	0.73	160
weight	ed avg	0.93	0.75	0.77	160

Leukemia

```
Implement ALLAML.trn :
Accuracy: 91.17647058823529 %
Confusion Matrix:
 [[13 1]
[ 2 18]]
Classification Report:
              precision
                           recall f1-score
                                             support
          -1
                  0.87
                            0.93
                                      0.90
                                                 14
          1
                  0.95
                            0.90
                                      0.92
                                                  20
   accuracy
                                      0.91
                                                  34
  macro avg
                                      0.91
                  0.91
                            0.91
                                                  34
weighted avg
                  0.91
                            0.91
                                      0.91
                                                  34
```