

PROTOKOLL PHYSIKALISCHE CHEMIE

p-V-T-Verhalten eines Reinstoffs

Gruppe 3.2 (BCUC4)

Teilnehmer:

Roman-Luca Zank

Protokollführer: Roman-Luca Zank

Datum der Versuchsdurchführung: 11.0.2020

Abgabedatum: XXX.2020

Status: Erstabgabe

Inhaltsverzeichnis

1	Einleitung und Versuchsziel	2	
2	Versuchsdurchführung	3	
3	Ergebnisse	4	
4	Fehlerbetrachtung	7	
5	Diskussion der Ergebnisse	9	
6	Zusammenfassung und Fazit	10	
Lit	iteraturverzeichnis 1		
Ar	nhang 1		

1 Einleitung und Versuchsziel

Im Praktikumsversuch "p-V-T-Verhalten eines Reinstoffs" wird das Verhalten des reinen Probegases Schwefelhexafluorid SF₆ unter isothermen Bedingungen untersucht. Das Gas wird über eine Volumenverkleinerung und eine Druckmessung in Messwerten charakterisiert. Diese ermöglichen Berechnungen der Stoffmenge in der Gasphase, sowie dessen molaren Volumina. Zudem werden aus den ermittelten Daten für Schwefelhexafluorid Isothermen eines Zustandsdiagramms dargestellt.

Stoffmenge aus der idealen Gasgleichung:

$$p \cdot V = n \cdot R \cdot T$$

$$n = \frac{p \cdot V}{R \cdot T} \tag{1}$$

Molares Volumen:

$$V_m = \frac{\overline{n}}{V} \tag{2}$$

Van-der-Waals-Konstanten für Binnendruckparameter a und Ko-Volumen b:

$$a = n(p = 0) \tag{3}$$

$$b = f'(p, n) \tag{4}$$

Van-der-Waals-Gleichung (intensiv):

$$\left(p + \frac{a}{V_m^2}\right) \cdot (V_m - b) = R \cdot T \tag{5}$$

Druckkorrektur durch die Hg-Säule:

$$p = p_0 - h \cdot g \cdot \rho_{\text{Hg}} \tag{6}$$

2 Versuchsdurchführung

Am Arbeitsplatz zur Untersuchung des p-V-T-Verhaltens von Schwefelhexafluorid ist ein druckfester Messzylinder über einer Auffangwanne aufgestellt. Im Messzylinder selbst befindet sich der gasförmige, zu untersuchende Stoff. Am unteren Ende des Zylinders ist eine Quecksilbersäule zuerkennen, welche mittels Handrad reguliert werden kann um das Volumen im Messzylinder einzustellen. An der Apparatur ist zu dem ein Thermostat anschlossen, welches die isothermen Betriebsbedingungen durch umströmen des Messzylinders mit Wasser, sicherstellen soll. Zur Überprüfung der konstanten Temperatur ist zusätzlich ein Flüssigkeitsthermometer angebracht worden. Zur Messung des Drucks ist unterhalb der Quecksilbersäule ein Manometer befestigt.

Für die eigentliche Versuchsdurchführung wird nun für verschiedene, über das Thermostat eingestellte und über das Thermometer überprüfte Temperaturen, der Druck im Messzylinder über verschiedene Volumina handschriftlich aufgenommen. Dabei war es zu beachten, dass bei der Durchführung ein Druck von über 50 bar zu vermeiden ist. Neben den aufgenommen Drücken werden ebenfalls die jeweiligen Volumina, sowie die Höhe der Quecksilbersäule zur Korrigierung des gemessenen Drucks durch das Manometer notiert. Die Verringerung des Volumens erfolgte während des Versuches hauptsächlich in 0,2 ml-Schritten und zum Ende hin jedoch in 0,1 ml-Schritten. Die Messreihen 1 bis 4 wurden für die Temperaturen 303,15 K, 313,15 K, 323,15 K und 328,15 K durchgeführt.

Im Versuch ließ sich beobachten, dass mit Verringerung des Volumens der Druck im Messzylinder steigt. Jedoch steigt der Druck nicht einfach linear an, sonder verhält sich in verschiedenen Phasen der Volumenverringerung und je nach Temperatur unterschiedlich. Rein optisch sind für die Temperaturen der Messreihen 1 und 2 Phasenwechsel in vom gasförmigen in den flüssigen Aggregatzustand wahrzunehmen, welche ein Teil der Erklärung der aufgenommenen Druckdaten sein können. Weitere Ausführungen dazu sind unter dem folgendem Abschnitt 3 aufgeführt.

eigene Notizen?

3 Ergebnisse

Tabellen der Messreihen 1 bis 4

Tab. 1: Messwerte der Messreihe 1 für $T=303,\!15\,\mathrm{K}$

Nr.	p_0 [kPa]	p [kPa]	h [m]	$V[\mathbf{mL}]$	n [kmol]	$V_m \left[\frac{\mathbf{L}}{\mathbf{kmol}} \right]$
1	1726	1715,59	0,078	4,0	2,7227E-06	0,87
2	1795	1783,39	0,087	3,8	2,6888E-06	0,82
3	1876	1863,06	0,097	3,6	2,6611E-06	0,78
4	1944	1929,46	0,109	3,4	2,6028E-06	0,74
5	2036	2020,12	0,119	3,2	2,5648E-06	0,69
6	2126	2108,79	0,129	3	2,5101E-06	$0,\!65$
7	2213	2194,59	0,138	2,8	2,4381E-06	0,61
8	2316	2296,12	0,149	2,6	2,3686E-06	$0,\!56$
9	2427	2406,05	0,157	2,4	2,2911E-06	0,52
10	2536	2513,32	0,170	2,2	2,1938E-06	0,48
11	2643	2619,25	0,178	2	2,0785E-06	0,43
12	2702	$2676,\!65$	0,190	1,8	1,9116E-06	0,39
13	2707	2680,72	0,197	1,6	1,7018E-06	$0,\!35$
14	2710	2681,98	0,210	1,4	1,4898E-06	0,30
15	2713	$2683,\!65$	0,220	1,2	1,2777E-06	0,26
16	2717	2686,18	0,231	1	1,0658E-06	0,22
17	2730	2698,11	0,239	0,8	8,5641E-07	$0,\!17$
18	2738	$2705,\!31$	0,245	0,7	7,5136E-07	$0,\!15$
19	2755	2721,78	0,249	0,6	6,4794E-07	0,13
20	2770	2735,98	$0,\!255$	0,5	5,4277E-07	0,11
21	3517	3482,71	$0,\!257$	0,4	5,5273E-07	0,09
22	4885	$4850,\!05$	0,262	0,35	6,7351E-07	0,08

Tab. 2: Messwerte der Messreihe 2 für $T=313,15\,\mathrm{K}$

Nr.	p_0 [kPa]	p [kPa]	h [m]	$V[\mathbf{mL}]$	n [kmol]	$V_m \left[\frac{\mathbf{L}}{\mathbf{kmol}} \right]$
1	1820	1809,72697	0,077	4,0	0,00287214	0,87
2	1896	1884,39281	0,087	3,8	0,00284111	0,83
3	1979	1965,79182	0,099	3,6	0,00280784	0,78
4	2064	2049,59107	0,108	3,4	0,00276489	0,74
5	2163	$2147,\!25691$	0,118	3,2	0,00272625	0,70
6	2260	2242,78934	0,129	3	0,00266958	0,65
7	2364	2345,32176	0,14	2,8	0,00260551	0,61
8	2480	2460,12102	0,149	2,6	0,00253783	0,57
9	2607	2585,78686	0,159	2,4	0,00246227	0,52
10	2740	2717,58611	0,168	2,2	0,00237213	0,48
11	2884	2859,98512	0,18	2	0,00226948	0,44
12	3027	3001,65096	0,19	1,8	0,00214371	0,39
13	3173	3146,58363	0,198	1,6	0,00199752	0,35
14	3313	$3285,\!11606$	0,209	1,4	0,00182478	0,30
15	3388	3358,7819	0,219	1,2	0,00159917	0,26
16	3396	3365,04749	0,232	1	0,00133513	0,22
17	3400	3368,11358	0,239	0,8	0,00106908	0,17
18	3408	3375,71333	0,242	0,7	0,00093755	0,15
19	3419	$3385,\!51258$	$0,\!251$	0,6	0,00080595	0,13
20	3451	3416,97892	0,255	0,5	0,00067787	0,11
21	4725	4690,31184	0,26	0,41	0,00076299	0,09
22	4945	4910,17842	0,261	0,4	0,00077927	0,09

Tab. 3: Messwerte der Messreihe 3 für $T=323,15 \,\mathrm{K}$ Jr. | p_0 [kPa] | p [kPa] | h [m] | V [mL] | n [kmol] | V [____]

Nr.	p_0 [kPa]	p [kPa]	h [m]	$V\left[\mathbf{mL}\right]$	n [kmol]	$V_m \left[\frac{\mathbf{L}}{\mathbf{kmol}} \right]$
1	1911	1900,72697	0,077	4,0	3,0166E-06	0,87
2	1995	1983,25939	0,088	3,8	2,9902E-06	0,83
3	2084	2070,79182	0,099	3,6	2,9578E-06	0,78
4	2177	2162,32424	0,11	3,4	2,917E-06	0,74
5	2281	$2265,\!25691$	0,118	3,2	2,8761E-06	0,70
6	2390	2372,78934	0,129	3	2,8243E-06	0,65
7	2507	2488,45518	0,139	2,8	2,7645E-06	0,61
8	2639	2619,25443	0,148	2,6	2,702E-06	0,57
9	2780	2758,65344	0,16	2,4	2,6269E-06	0,52
10	2934	2911,71953	0,167	2,2	2,5416E-06	0,48
11	3099	$3075,\!25195$	0,178	2	2,4403E-06	0,44
12	3286	3260,78438	0,189	1,8	2,3288E-06	0,39
13	3478	3451,18338	0,201	1,6	2,1909E-06	0,35
14	3667	3638,71581	0,212	1,4	2,0212E-06	0,30
15	3864	$3834,\!38165$	0,222	1,2	1,8256E-06	0,26
16	4028	3997,31432	0,23	1	1,586E-06	0,22
17	4150	4118,11358	0,239	0,8	1,3071E-06	0,17
18	4302	$4268,\!646$	$0,\!25$	0,6	1,0162E-06	0,13
19	4807	$4772,\!8455$	$0,\!256$	0,5	9,4685E-07	0,11

Tab. 4: Messwerte der Messreihe 4 für T=328,15 KNr. $\begin{vmatrix} p_0 & \mathbf{kPa} \end{vmatrix} = p & \mathbf{kPa} \end{vmatrix} = h & \mathbf{m} & \mathbf{kPa} \end{vmatrix} = h & \mathbf{m} & \mathbf{kPa} \end{vmatrix} = h & \mathbf{kPa} \end{vmatrix}$

Nr.	p_0 [kPa]	p [kPa]	h [m]	$V\left[\mathbf{mL}\right]$	n [kmol]	$V_m \left[\frac{\mathbf{L}}{\mathbf{kmol}} \right]$
1	1961	1950,72697	0,077	4,0	3,0959E-06	0,87
2	2043	2031,39281	0,087	3,8	3,0627E-06	0,83
3	2136	2122,92523	0,098	3,6	3,0323E-06	0,78
4	2232	$2217,\!59107$	0,108	3,4	2,9915E-06	0,74
5	2343	2327,1235	0,119	3,2	2,9546E-06	0,70
6	2457	2439,65592	0,13	3	2,9039E-06	0,65
7	2580	$2561,\!58859$	$0,\!138$	2,8	2,8458E-06	0,61
8	2716	2696,25443	0,148	2,6	2,7814E-06	0,57
9	2870	2848,78686	$0,\!159$	2,4	2,7127E-06	0,52
10	3034	3011,31928	0,17	2,2	2,6285E-06	0,48
11	3206	3181,98512	0,18	2	2,525E-06	0,44
12	3406	3380,78438	0,189	1,8	2,4145E-06	0,39
13	3621	$3594,\!45022$	0,199	1,6	2,2818E-06	0,35
14	3848	3819,84922	0,211	1,4	2,1218E-06	0,30
15	4079	4049,64848	$0,\!22$	1,2	1,9281E-06	0,26
16	4302	$4271,\!44774$	0,229	1	1,6948E-06	0,22
17	4401	$4369,\!51382$	0,236	0,9	1,5603E-06	0,20
18	4509	$4476,\!4465$	0,244	0,8	1,4209E-06	0,17
19	4627	4593,91283	0,248	0,7	1,2759E-06	0,15
20	4834	4800,51258	$0,\!251$	0,6	1,1428E-06	0,13058928

Abb. 1: Isothermen der Messreihen 1 bis 4 von SF₆

Abb. 2: Berechnete Stoffmengen in Abhängigkeit vom Druck der überkritischen Messreihen 3 und 4 von ${\rm SF}_6$

Regressionsgeraden aufstellen, Beschreibungen der Diagramme, Berechnungen der

4 Fehlerbetrachtung

Beispielfehlerrechnung für den ersten Messwert des rauen Rohres:

1ab. 5. Abweichungen und Messwerte für die Femerrechnung				
Messgröße	Messwert	Abweichung		
	(1, raues Rohr)			
Volumenstrom	$958 \frac{\mathrm{L}}{\mathrm{h}}$	$\pm 2,5\% + MW \approx 6,65 \cdot 10^{-6} \frac{\text{m}^3}{\text{s}}$		
Temperatur	26,5 °C	$\pm 0.5\mathrm{K}$		
Druckmessungen	$0.06\mathrm{bar}$	$2 \cdot \pm 2 \mathrm{mmWS} \approx 4079 \mathrm{Pa}$		
Durchmesser	$13,6\mathrm{mm}$	± 0		
Länge	2.5 m	± 0		

Tab. 5: Abweichungen und Messwerte für die Fehlerrechnung

$$\Delta p_{v} = \frac{1}{2} \cdot \frac{l}{d} \cdot \rho(T) \cdot v^{2}$$

$$\lambda = \frac{2 \cdot \Delta p_{v} \cdot d}{l \cdot \rho(T) \cdot v^{2}}$$

$$= \frac{2 \cdot \Delta p_{v} \cdot d}{l \cdot \rho(T) \cdot \left(\frac{\dot{V}}{A}\right)^{2}}$$
(7)

Im Weiteren ist die eigentliche Fehlerrechnung für den ersten Messwert, der Messreihe des rauen Rohres, von λ über das totale Differential der Gleichung 7 aufgeführt. Wichtig ist dabei zu erwähnen, dass alle Variablen in SI-Einheiten einzusetzen sind bis auf die Temperatur, welche in [°C] eingesetzt wird.

Bildung der Differentiale:

$$\frac{\partial \lambda}{\partial \Delta p_v} = \frac{2 \cdot d \cdot A^2}{l \cdot \rho(T) \cdot \dot{V}^2} = \frac{d^5 \cdot \pi^2}{8 \cdot l \cdot \rho(T) \cdot \dot{V}^2}$$

$$= \frac{1250 \cdot d^5 \cdot \pi^2 \cdot [\mathbf{K} \cdot \mathbf{m}^3]}{l \cdot (-2683 \cdot T + 10038000 \cdot [\mathbf{K}]) \cdot \dot{V}^2 \cdot [\mathbf{kg}]} \tag{8}$$

$$\frac{\partial \lambda}{\partial \dot{V}} = -\frac{4 \cdot \Delta p_v \cdot d \cdot A^2}{l \cdot \rho(T) \cdot \dot{V}^3} = -\frac{\Delta p_v \cdot d^5 \cdot \pi^2}{4 \cdot l \cdot \rho(T) \cdot \dot{V}^3}$$

$$= -\frac{2500 \cdot \Delta p_v \cdot d^5 \cdot \pi^2 \cdot [\text{K} \cdot \text{m}^3]}{l \cdot (-2683 \cdot T + 10038000 \cdot [\text{K}]) \cdot \dot{V}^3 \cdot [\text{kg}]}$$

$$\frac{\partial \lambda}{\partial T} = \frac{3353750 \cdot \Delta p_v \cdot d^5 \cdot \pi^2 \cdot [\text{K} \cdot \text{m}^3]}{l \cdot (-2683 \cdot T + 10038000 \cdot [\text{K}]) \cdot \dot{V}^2 \cdot [\text{kg}]}$$
(9)

Tab. 6: Ergebnisse der einzelnen Differentiale für den Messwert 1 des rauen Rohres

Differenzial	$rac{\partial \lambda}{\partial \Delta p_v}$	$rac{\partial \lambda}{\partial \dot{V}}$	$rac{\partial \lambda}{\partial T}$
	$3,25 \cdot 10^{-6} \frac{\text{m} \cdot \text{s}^2}{\text{kg}}$	$-146,69 \frac{\rm s}{{ m m}^3}$	$5,25 \cdot 10^{-6} \frac{1}{\mathrm{K}}$

Berechnung des absoluten Fehlers:

$$\Delta\lambda = \left| \frac{\partial\lambda}{\partial\Delta p_v} \right| \cdot \Delta p + \left| \frac{\partial\lambda}{\partial\dot{V}} \right| \cdot \Delta\dot{V} + \left| \frac{\partial\lambda}{\partial T} \right| \cdot \Delta T$$

$$= \left| 3.25 \cdot 10^{-6} \frac{\text{m} \cdot \text{s}^2}{\text{kg}} \right| \cdot 4079 \,\text{Pa} + \left| -146.69 \,\frac{\text{s}}{\text{m}^3} \right| 6.65 \cdot 10^{-6} \,\frac{\text{m}^3}{\text{s}}$$

$$+ \left| 5.25 \cdot 10^{-6} \,\frac{1}{\text{K}} \right| \cdot 0.5 \,\text{K}$$

$$= 0.0142 \tag{10}$$

Berechnung des relativen Fehlers:

$$\frac{\Delta\lambda}{\lambda} = \frac{0,0142}{0,0182}$$

$$\approx \underline{78\%} \tag{11}$$

Tab. 7: Absolute und relative Fehler von λ

Messpunkt	Rohrleitungswiderstand	Absoluter Fehler [-]	Relativer Fehler [%]		
raues Rohr	raues Rohr				
1	0,018	0,0142	78		
2	0,020	0,0070	34		
3	0,019	0,0041	21		
4	0,021	0,0037	18		
5	0,020	0,0031	16		
glattes Rohr					
1	0,026	0,0035	22		
2	0,026	0,0029	19		
(3)	(0,020)	(0,0020)	(17)		
4	0,025	0,0025	17		
5	0,025	0,0022	15		
glattes, dickes	glattes, dickes Rohr				
1	0,031	0,211	68		
2	0,029	0,0156	54		
3	0,033	0,0126	38		
4	0,031	0,0108	35		
5	0,031	0,0089	29		

5 Diskussion der Ergebnisse

Abb. 3: Kennline von Ventilen [2, S.35, Bild 3]

6 Zusammenfassung und Fazit

Abb. 4: Kennline von Ventilen [2, S.35, Bild 3]

Literatur

- [1] Spang, Bernhard: Water 97_v13.xla: Excel Add-In for Properties of Water and Steam. Version: 2002. http://alexmichinel.com/index.php?p=1_9, Abruf: 09.01.2020
- [2] IGNATOWITZ, Dr.-Ing. E.: *Chemietechnik*. 11. Aufl., 1. Dr. Haan-Gruiten: Verl. Europa-Lehrmittel, Nourney, Vollmer, 2013. ISBN 9783808570579

Anhang

Tab. 8: Dichte des Wassers zu unterschiedlichen Temperaturen mittels $\left[1\right]$

Temperatur	Dichte mittels =densW(T,p)
25,4°C	$996,98 \frac{\text{kg}}{\text{m}^3}$
$25,5^{\circ}\mathrm{C}$	$996,96 \frac{\text{kg}}{\text{m}^3}$
$25,6^{\circ}\mathrm{C}$	$996,93 \frac{\text{kg}}{\text{m}^3}$
$25,7^{\circ}\mathrm{C}$	$996,91 \frac{\text{kg}}{\text{m}^3}$
$25,\!8^{\circ}\mathrm{C}$	$996,88 \frac{\text{kg}}{\text{m}^3}$
$25,9^{\circ}\mathrm{C}$	$996,85 \frac{\text{kg}}{\text{m}^3}$
$26,0^{\circ}\mathrm{C}$	$996,83 \frac{\text{kg}}{\text{m}^3}$
$26,1^{\circ}\mathrm{C}$	$996,80 \frac{\text{kg}}{\text{m}^3}$
$26,2^{\circ}\mathrm{C}$	$996,77 \frac{\text{kg}}{\text{m}^3}$
$26,3^{\circ}\mathrm{C}$	$996,75 \frac{\text{kg}}{\text{m}^3}$
$26,4^{\circ}\mathrm{C}$	$996,72 \frac{\text{kg}}{\text{m}^3}$
$26,5^{\circ}\mathrm{C}$	$996,69 \frac{\text{kg}}{\text{m}^3}$
$26,6^{\circ}\mathrm{C}$	$996,67 \frac{\text{kg}}{\text{m}^3}$
$26,7^{\circ}\mathrm{C}$	$996,64 \frac{\text{kg}}{\text{m}^3}$
$26.8^{\circ}\mathrm{C}$	$996,61 \frac{\text{kg}}{\text{m}^3}$
$26,9^{\circ}\mathrm{C}$	$996,58 \frac{\text{kg}}{\text{m}^3}$
$27,0^{\circ}\mathrm{C}$	$996,56 \frac{\text{kg}}{\text{m}^3}$
$27,1^{\circ}\mathrm{C}$	$996,53 \frac{\text{kg}}{\text{m}^3}$
$27,2^{\circ}\mathrm{C}$	$996,50 \frac{\text{kg}}{\text{m}^3}$
$27.3^{\circ}\mathrm{C}$	$996,48 \frac{\text{kg}}{\text{m}^3}$
$27,4^{\circ}\mathrm{C}$	$996,45 \frac{\text{kg}}{\text{m}^3}$
27,5 °C	$996,42 \frac{\text{kg}}{\text{m}^3}$