1. (worth 9 points) Let function f be defined by the polynomial below:

$$f(x) = 9x^4 + 3x^3 + 6x^2 + 4x - 5$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
-f(x) •	$ 9x^4 - 3x^3 + 6x^2 - 4x - 5 $	
f(−x) •	$ -9x^4 - 3x^3 - 6x^2 - 4x + 5 $	
-f(-x) •	$ -9x^4 + 3x^3 - 6x^2 + 4x + 5 $	

2. (worth 20 points) In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\overline{x}	f(x)	g(x)	h(x)
1	7	g(x) 5	4
2	9	7	1
3	4	2	8
4	5	9	7
5	1	6	5
6	2	3	6
7	3	8	9
8	6	1	2
9	8	4	3

3. (worth 3 points) Evaluate h(9).

4. (worth 3 points) Evaluate $f^{-1}(6)$.

5. (worth 3 points) Assuming g is an **odd** function, evaluate g(-2).

6. (worth 3 points) Assuming f is an **even** function, evaluate f(-7).

7. (worth 15 points) A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain. Let polynomial p be defined with the following equation:

$$p(x) = -x^2 - 1$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. (worth 10 points) I have drawn half of a function. Draw the other half to make it even or odd.

9. (worth 10 points) Let function f be defined with the equation below.

$$f(x) = 3x + 8$$

a. Evaluate f(2).

b. Evaluate $f^{-1}(38)$.

10. (worth 6 points) The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

b. Evaluate $b^{-1}(5)$.

- 11. (worth 18 points) Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	5			
-1	3			
0	0			
1	3			
2	-5			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?