Exercise 10.1. Let $K, E, F \subseteq L$ be fields, E: K, F: K be finite extensions. Prove

- (a) if E: K is separable, then EF: F is separable;
- (b) if E: K and F: K are both separable, then EF: K and $E \cap F: K$ are both separable;
- (c) if E: K is Galois, then EF: F is Galois;
- (d) if E:K and F:K are both Galois, then EF:K and $E\cap F:K$ are both Galois.
- (a) Solution. Suppose E: F is separable.
- (b) Solution. Suppose E: K and F: K are both separable.
- (c) Solution. Suppose E: K is Galois.
- (d) Solution. Suppose E:K and F:K are both Galois.

Exercise 10.2. (a) Find the splitting field L of the polynomial $f(t) = t^4 - 4t^2 + 5$.

- (b) Prove that $[L:\mathbb{Q}]$ is either 4 or 8.
- (c) Find 10 intermediate fields of the extension $L:\mathbb{Q}$ and their degrees.
- (d) (for enthusiasts) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(f)$.
- (a) Solution. Notice if we set $t^4-4t^2+5=0$, then we can subtract 1 to see $t^4-4t^2+4=(t^2-2)^2=-1$. Hence $t^2-2=\pm i$ and $t\in \{\pm\sqrt{2\pm i}\}$. We note that if $w=\sqrt{a+bi}$ then $w^2=a+bi$ and $\overline{w}^2=\overline{w}^2=a-bi$, whence $\overline{w}=\sqrt{a-bi}$. That is, the square roots of complex conjugates are themselves complex conjugates. So it is enough to construct L by adjoining $\sqrt{2+i}$ to $\mathbb Q$ and thus $L=\mathbb Q(\sqrt{2+i})$.
- (b) Solution. Set $x = \sqrt{2+i}$. Then

$$x^{2} = 2 + i$$

$$x^{2} - 2 = i$$

$$x^{4} - 4x + 4 = -1$$

$$x^{4} - 4x + 5 = 0$$

Hence the minimum polynomial for $\sqrt{2+i}$ is $\mu_{\sqrt{2+i}}^{\mathbb{Q}}(x) = x^4 - 4x + 5 = f(x)$. The degree of a field extension is the degree of the minimum polynomial of the generator, so $[L:\mathbb{Q}] = 4$.

(c) Solution. \Box

(d) Solution.

Exercise 10.3. Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(t^6+3)$. Hint: Use the calculations (and the notation, if you like) from Lecture 18.

Solution. \Box