MA3505 Multivariate Statistics Project 1

April 27, 2016

- 1 Introduction and exploratory data analysis for the variables.
- 2 Analysis to answer each research question
- 2.1 Question 1
- 2.2 Question 2

Using the above code I created the nessarcery multivariate regression model. I was able to use this model to get the following table of coefficients:

	chol	thaldur	thaltime	met	thalach
(T++)					
(Intercept)	2.182e+02	2.964e+00	1.941e+00	4.167e+00	1.216 e + 02
proto	5.933e-01	7.621e-02	7.395e-02	1.284e-02	1.241e - 01
restecg	-1.965e+01	1.506e-01	4.325e-01	1.305e-01	-2.202e-01
dig	6.033e+00	$3.130\mathrm{e}{+00}$	2.889e+00	1.519e+00	$-8.249\mathrm{e}{+00}$
prop	$1.800\mathrm{e}{+01}$	3.734e-01	6.787e - 01	4.875e-02	$-6.759\mathrm{e}{+00}$
nitr	-1.390e+01	-3.582e-01	-3.903e-01	3.416e-02	-5.949e+00
pro	-6.872e+01	1.142e+00	9.582e-01	4.637e-01	1.990e-02
diuretic	-4.914e+01	1.516e+00	6.732e-01	3.744e - 01	1.610e+01
	thalrest	$_{ m tpeakbps}$	$_{ m tpeakbpd}$	${ m trestbpd}$	oldpeak
(Intercept)	$7.475\mathrm{e}{+01}$	1.607e+02	$9.326\mathrm{e}{+01}$	8.488e+01	1.937e+00
proto	4.602e-02	$2.114\mathrm{e}\!-\!01$	3.306e-02	1.262e-02	-3.094e-03
restecg	1.481e+00	3.762e+00	-1.245e+00	1.159e+00	-2.081e-01
dig	2.175e+00	-7.984e+00	-1.854e+01	-4.949e+00	4.202e-01
prop	-2.692e-01	5.788e - 02	-1.988e+00	5.123e-01	-1.674e-02
nitr	-8.676e+00	-9.099e+00	-3.690e+00	$-3.270\mathrm{e}{+00}$	2.621e-01
pro	2.958e+00	4.851e+00	7.011e+00	2.962e-01	-8.122e-01
diuretic	-8.346e-01	6.602e+00	2.153e+00	1.116e+00	-2.439e-02
	rldv5	rldv5e			
(Intercept)	1.487e + 01	1.497e + 01			
proto	-6.571e - 04	-6.529e-03			
restecg	1.703e-01	2.203e-01			
dig	-2.153e+00	-2.219e+00			
prop	1.272e+00	1.175e+00			
nitr	6.343e - 01	-6.043e-01			
pro	-1.583e+00	7.800e-01			
diuretic	-1.303e-01	3.239e+00			

However this is not very useful, so I used the **summary()** function to enable me to achieve a more detailed view of my analysis. Below I have tried my best to explain the detailed view for each response variable.

```
Response chol:
Call:
lm(formula = chol ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
                     Median
     Min
                1Q
                                   3Q
                                            Max
-221.153
           -37.934
                      -0.852
                               55.190
                                        310.650
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 218.1866
                          16.6717
                                    13.087
                                            < 2e-16 ***
                                            0.00207 **
               0.5933
                           0.1884
                                     3.149
proto
restecg
             -19.6467
                          15.5463
                                    -1.264
                                            0.20877
                          42.3211
               6.0327
                                     0.143
                                            0.88689
dig
              17.9968
                          25.2562
                                     0.713
                                            0.47750
prop
nitr
             -13.8953
                          24.8506
                                    -0.559
                                            0.57710
pro
             -68.7201
                          27.9126
                                    -2.462
                                            0.01524 *
diuretic
             -49.1356
                          33.0596
                                    -1.486
                                            0.13983
                                                                                       1
Signif. codes:
                              0.001
                                              0.01
                                                             0.05
                                                                           0.1
                 0
Residual standard error: 85.12 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.2402,
                                  Adjusted R-squared:
F-statistic: 5.418 on 7 and 120 DF,
                                       p-value: 2.026e-05
```

From the table above we can see that the predictor that had the most affect in the value of the **chol** reponse was **proto**. As *chol* refers to the amount of cholestoral in a person's system and *proto* refers to the type of exercise that they do, it is not a major surprise that this is the most importent as in theory the higher the intensity of the your exercise program the lower your chloestrol will be. The secound most importent variable is **pro**; this is an indicator variable that tells us if someone uses *calcium channel blocker used during exercise* (it is used in cholesteryl ester hydrolysis which helps reduce cholestrol) during their exercise routine.

```
Response thaldur :
Call:
lm(formula = thaldur ~\tilde{\ } proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
            1Q Median
   Min
                            3Q
                                   Max
-4.312 \quad -1.681 \quad -0.310
                         1.422
                                 6.440
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               2.964440
                           0.443361
                                        6.686 \quad 7.65 \,\mathrm{e}{-10} \ ***
                                               < 2e-16 ***
proto
               0.076214
                           0.005011
                                       15.209
restecg
               0.150581
                           0.413433
                                        0.364
                                                 0.7163
                                                 0.0063 **
               3.129630
                           1.125473
                                        2.781
dig
               0.373380
                           0.671654
                                        0.556
                                                 0.5793
prop
nitr
              -0.358181
                           0.660868
                                       -0.542
                                                 0.5888
pro
               1.141536
                           0.742300
                                        1.538
                                                 0.1267
diuretic
               1.516199
                           0.879177
                                        1.725
                                                 0.0872
                                                                                            1
Signif. codes:
                                0.001
                                                 0.01
                                                                0.05
                                                                              0.1
                  0
                        ***
Residual standard error: 2.264 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                        0.6909,
                                    Adjusted R-squared:
F-statistic: 38.31 on 7 and 120 DF,
                                         p-value: < 2.2e-16
```

The predictor variable in this instance is **thaldur** which represents the length of time a person spends on an exercise test, it is therefore no surprise that **proto** is the most importent predictor as the harder the exercise test the less time you will be able to do it for. The second most significant predictor **dig** refers to whether or not the person is taking a drug called *digitails* during exercise. Studies have shown that theuse if this drug during exercise increases blood flow which could allow someone to exercise for longer (experts are not sure if it is a performance enhancing drug as trial results vary).

```
lm(formula = thaltime ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
   Min
            1Q Median
                           3Q
                                  Max
-4.469 \quad -1.639 \quad -0.139
                        1.053
                                7.352
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                      4.322 \ 3.21e-05 ***
              1.941466
                          0.449229
proto
              0.073951
                          0.005077
                                     14.565
                                              < 2e-16 ***
                                      1.032
                                               0.3039
restecg
              0.432490
                          0.418906
                                      2.533
dig
              2.888715
                          1.140370
                                               0.0126 *
                          0.680544
                                      0.997
                                               0.3206
prop
              0.678710
nitr
             -0.390289
                          0.669615
                                      -0.583
                                               0.5611
              0.958162
                          0.752125
                                      1.274
                                               0.2051
pro
              0.673187
                          0.890814
diuretic
                                      0.756
                                               0.4513
Signif. codes:
                               0.001
                                               0.01
                                                              0.05
                                                                            0.1
                                                                                         1
Residual standard error: 2.294 on 120 degrees of freedom
  (771 observations deleted due to missingness)
                       0.6704,
                                   Adjusted R-squared:
Multiple R-squared:
F-statistic: 34.86 on 7 and 120 DF,
                                        p-value: < 2.2e-16
```

Response thaltime:

thaltime refers to the time at which a person's ST depression was measured. It is therefore no supprise that **proto** has the highest effect as different exercises will take different amount of times to complete meaning that if *thaltime* is always measured at the end of the exercise test people who do different tests will have different times but those who take the same test should have very similar times. **dig** is the next significant variable which sort of makes sense as you most likley have to wait for the drug to leave your system before your ST depression can be measured.

```
Response met :
Call:
lm(formula = met ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
              1Q Median
    Min
                               3Q
                                       Max
-3.7325 \quad -1.0919 \quad -0.1298
                           0.8792
                                    5.8206
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.166578
                         0.336945
                                    12.366
                                              <2e-16 ***
proto
             0.012843
                         0.003808
                                     3.372
                                              0.0010 **
restecg
             0.130481
                         0.314201
                                     0.415
                                              0.6787
dig
             1.518904
                         0.855338
                                     1.776
                                              0.0783 .
prop
             0.048745
                         0.510444
                                     0.095
                                              0.9241
nitr
             0.034160
                         0.502247
                                     0.068
                                              0.9459
pro
             0.463725
                         0.564133
                                     0.822
                                              0.4127
diuretic
             0.374352
                         0.668158
                                     0.560
                                              0.5763
                                                             0.05
                                                                           0.1
                                                                                        1
Signif. codes:
                              0.001
                                               0.01
                 0
                       ***
Residual standard error: 1.72 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                       0.1108,
                                   Adjusted R-squared:
F-statistic: 2.136 on 7 and 120 DF,
                                        p-value: 0.04484
```

The predictor **met** refers to the *metabolic equivalent of resting oxygen consumption while sitting* and therefore it is not much of a surprise that the response **proto** is the most significant. It is also not that surprising that it is as significant as before, as the trial that produced these results most likely used people of varing athaletic abilities for each test inorder to make the results more accurate.

```
Response thalach:
lm(formula = thalach ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
    Min
                  Median
                               3Q
                                       Max
              1Q
-42.497 -10.060
                  -0.925
                           13.735
                                    53.075
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 121.6141
                                            < 2e-16 ***
                           3.6895
                                    32.962
               0.1241
                           0.0417
                                     2.977
                                            0.00352 **
proto
restecg
              -0.2202
                           3.4405
                                    -0.064
                                            0.94908
              -8.2489
                           9.3659
                                    -0.881
                                             0.38022
dig
prop
              -6.7587
                           5.5893
                                    -1.209
                                             0.22896
nitr
              -5.9491
                           5.4996
                                    -1.082
                                             0.28154
               0.0199
                           6.1772
                                     0.003
                                             0.99743
pro
                                     2.200
              16.0994
                           7.3163
                                             0.02969
diuretic
Signif. codes:
                              0.001
                                               0.01
                                                             0.05
                                                                           0.1
                                                                                        1
Residual standard error: 18.84 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                       0.1867,
                                   Adjusted R-squared:
F-statistic: 3.934 on 7 and 120 DF,
                                        p-value: 0.0006723
```

The predictor **thalach** refers to the maximum heart rate that a person achives during their exercise test and as such it is no surprise that the response variable that is the most signicant when calculating it is **proto**. This is because the more intense the exercise test is the more oxygen your body is going to need thus you will have a higher heart rate. Again it is not surprissing that *proto* is only a 2* rather than a 3* significance level as your maximum heart rate will depend on how athletic you are, the more atheletic the lower your max heart rate will be. **diuretic** is the other significant response variable and it refers to whether or not the subject uses diuretic used used during exercise. Diuretic is considered to be a performance enhancing drug so it is therefore no surprise that it only has a 1* signicance level due to the fact that the analysis up to now has shown that there is a high probability that atheletes are involved in this trial and would be band by WADA if they were caught using it.

```
Response thalrest:
lm(formula = thalrest ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
                  Median
                               3Q
    Min
              1Q
                                      Max
-28.204
                  -1.909
         -8.542
                            8.172
                                   55.796
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.75201
                                             <2e-16 ***
                          2.60040
                                    28.746
                                              0.120
proto
              0.04602
                          0.02939
                                     1.566
                                    0.611
                                              0.542
restecg
              1.48140
                          2.42487
                          6.60112
                                              0.742
dig
              2.17533
                                    0.330
                                    -0.068
                                              0.946
prop
             -0.26923
                          3.93939
nitr
             -8.67576
                          3.87612
                                    -2.238
                                              0.027 *
              2.95844
                          4.35374
                                    0.680
                                              0.498
pro
             -0.83465
                                              0.872
diuretic
                          5.15655
                                    -0.162
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
                                                                                       1
Residual standard error: 13.28 on 120 degrees of freedom
  (771 observations deleted due to missingness)
                      0.09876,
                                  Adjusted R-squared:
Multiple R-squared:
F-statistic: 1.879 on 7 and 120 DF,
                                       p-value: 0.07885
```

The **thalrest** variable refers to the subjects resting heart rate and the only variable that has any significant effect on the outcome of this result is **nitr** which tells us whether or not the subject uses nitrates used during their exercise. I am not quite sure what the use of nitrates has to do with the resting heart rates but I do know that they are added to 'unhealthy foods' such as *bacon*, *sandich meats and salami* which could indercate that they are not very atheletic but a high resting heart does not mean that someone is less athletic.

In this trial the subjects the measuring of their peak blood pressure was split into two different variables: **tpeakbps** and **tpeakbpd**, google wasn't able to explain why this is the case.

```
Response tpeakbps:
lm(formula = tpeakbps ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
   Min
           1Q Median
                           3Q
                                 Max
-46.56 -15.18
               -2.97
                        13.36
                               58.73
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 160.70295
                           4.33227
                                    37.094
                                            < 2e-16 ***
proto
                                      4.317 \ \ 3.27e - 05 \ ***
               0.21138
                           0.04897
                           4.03984
                                               0.354
restecg
               3.76224
                                      0.931
              -7.98425
                          10.99749
                                     -0.726
                                               0.469
dig
prop
               0.05788
                           6.56303
                                     0.009
                                               0.993
nitr
              -9.09857
                           6.45763
                                     -1.409
                                               0.161
pro
                                      0.669
               4.85054
                           7.25334
                                               0.505
               6.60213
                           8.59083
                                      0.769
diuretic
                                               0.444
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
                                                                                       1
Residual standard error: 22.12 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.1992,
                                  Adjusted R-squared:
F-statistic: 4.266 on 7 and 120 DF,
                                       p-value: 0.0003059
```

For the variable that had the most significant affect on **tpeakbps** was (as normal it seems in this trial) **proto**. This is most likely because of the fact that exercise can lower your blood pressure and therefore the subjects that are able to take the more intensive exercise tests were likely to have a lower peak blood pressure.

```
Response tpeakbpd :
lm(formula = tpeakbpd \sim proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
    Min
                  Median
                               3Q
                                      Max
              1Q
-60.687
                  -0.023
                                   36.329
          -7.517
                            8.638
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                           2.68207
                                             < 2e-16 ***
              93.26322
                                     34.773
                                             0.27768
proto
               0.03306
                           0.03031
                                      1.091
                                     -0.498
              -1.24519
                           2.50103
                                             0.61948
restecg
                                     -2.723
dig
             -18.54131
                           6.80844
                                             0.00743 **
              -1.98759
                           4.06311
prop
                                     -0.489
                                             0.62561
nitr
              -3.69032
                           3.99786
                                     -0.923
                                             0.35782
               7.01102
                           4.49047
                                      1.561
                                             0.12108
pro
               2.15344
                           5.31850
                                      0.405
                                             0.68627
diuretic
Signif. codes:
                              0.001
                                              0.01
                                                             0.05
                                                                           0.1
                                                                                        1
Residual standard error: 13.69 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                       0.1321,
                                  Adjusted R-squared:
F-statistic:
               2.61 on 7 and 120 DF,
                                       p-value: 0.01525
```

The response variable that was most significant when working out the predictor **tpeakbpd** was **dig**. This makes sense as studies have shown that the use of the drug digitalis during exercise lowers a person's blood pressure.

```
Response trestbpd:
Call:
lm(formula = trestbpd ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
              1Q Median
    Min
                               3Q
                                      Max
-35.510
                  -1.298
                            5.543
                                   24.175
         -6.141
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 84.87854
                          1.88379
                                   45.057
                                             <2e-16 ***
              0.01262
                          0.02129
                                    0.593
                                              0.554
proto
restecg
              1.15852
                          1.75663
                                    0.660
                                              0.511
                          4.78200
                                              0.303
             -4.94866
                                   -1.035
dig
              0.51233
                          2.85378
                                    0.180
                                              0.858
prop
                          2.80795
                                              0.246
nitr
             -3.27042
                                   -1.165
pro
              0.29623
                          3.15394
                                    0.094
                                              0.925
diuretic
              1.11644
                          3.73552
                                    0.299
                                              0.766
                                                                                       1
Signif. codes:
                 0
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
Residual standard error: 9.618 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.0366,
                                  Adjusted R-squared:
F-statistic: 0.6514 on 7 and 120 DF,
                                        p-value: 0.7126
```

The predictor variable **trestbpd** refers to the subjects resting blood pressure. As this must be taken before any exercise is started it makes sense that none of the responses are significant in determining what this value shall be due to them being manly related to the exercise test the subject takes.

```
Response oldpeak :
lm(formula = oldpeak ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
    Min
              1Q
                 Median
                                3Q
                                       Max
-1.9343 \quad -0.6280 \quad -0.0506
                           0.3642
                                    3.5801
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              1.937386
                          0.169250
                                     11.447
                                              <\ 2\,{\rm e}\!-\!16\ ***
proto
             -0.003094
                          0.001913
                                      -1.617
                                              0.10841
restecg
             -0.208133
                          0.157825
                                      -1.319
                                              0.18976
dig
              0.420187
                          0.429642
                                      0.978
                                              0.33004
                          0.256399
prop
             -0.016737
                                      -0.065
                                              0.94806
nitr
              0.262057
                          0.252282
                                      1.039
                                              0.30101
             -0.812187
                          0.283368
                                      -2.866
                                              0.00491
pro
             -0.024390
                          0.335620
                                      -0.073
                                              0.94219
diuretic
Signif. codes:
                               0.001
                                               0.01
                                                              0.05
                                                                            0.1
Residual standard error: 0.8642 on 120 degrees of freedom
  (771 observations deleted due to missingness)
                       0.1081,
                                   Adjusted R-squared:
Multiple R-squared:
F-statistic: 2.077 on 7 and 120 DF,
                                        p-value: 0.0511
```

The predictor variable **oldpeak** refers to *ST depression induced by exercise relative to rest* (which I understand from google to be a fancy way of saying that the subject gets a small heart attack during exercise). It makes sense then that the most significant variable in deciding what the value of which if it is high can cause heart attacks. *oldpeak* is going to be is **pro** as helps to lower cholestrol

The next two predictors, **rldv5** and **rldv5e**, refer to height at rest and height at peak exercise. I don't know what height they are referring to (I am assuming it is not just how tall they are as that would be dull to measure at rest and during peak exercise as it would not change) and luckly none of the response variables are significant in working out what the values of the variables will be.

Response rldv5 :

```
lm(formula = rldv5 ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
     Min
                1Q
                     Median
                                   3Q
                                           Max
-10.7927
          -3.3161
                    -0.7927
                               3.0914
                                       16.1580
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.8748145
                         1.0543301
                                     14.108
                                               <2e-16 ***
             -0.0006571
                         0.0119165
                                     -0.055
                                                0.956
proto
restecg
              0.1703404
                         0.9831619
                                      0.173
                                                0.863
dig
             -2.1530704
                         2.6764216
                                     -0.804
                                                0.423
prop
              1.2718279
                          1.5972216
                                      0.796
                                                0.427
              0.6342939
                                      0.404
                                                0.687
nitr
                          1.5715709
             -1.5831511
                          1.7652196
                                     -0.897
                                                0.372
pro
             -0.1302669
                         2.0907202
diuretic
                                     -0.062
                                                0.950
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
Residual standard error: 5.383 on 120 degrees of freedom
  (771 observations deleted due to missingness)
                      0.016,
                                  Adjusted R-squared: -0.0414
Multiple R-squared:
F-statistic: 0.2787 on 7 and 120 DF,
                                        p-value: 0.9612
Response rldv5e :
lm(formula = rldv5e ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
                     Median
     Min
                1Q
                                   3Q
                                            Max
-11.1533
          -3.5409
                    -0.4798
                               2.7664
                                       14.0371
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.969428
                                    14.284
                                              <2e-16 ***
                          1.048021
             -0.006529
                          0.011845
                                    -0.551
                                               0.583
proto
restecg
              0.220336
                         0.977279
                                     0.225
                                               0.822
dig
             -2.219224
                          2.660406
                                    -0.834
                                               0.406
             1.174742
                          1.587664
                                     0.740
                                               0.461
prop
             -0.604272
                          1.562167
                                     -0.387
                                               0.700
nitr
pro
              0.779970
                          1.754657
                                     0.445
                                               0.657
              3.238914
                          2.078210
diuretic
                                     1.559
                                               0.122
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
Residual standard error: 5.351 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.03959,
                                  Adjusted R-squared: -0.01643
F-statistic: 0.7067 on 7 and 120 DF,
                                        p-value: 0.6663
```

2.3 Question 3

2.3.1 Cleveland

From running variance inflation factor we get the following

age	sex	ср	trestbps	htn	chol	cigs	years	
2.070591	2.379469	1.683710	2.935706	1.734144	1.326342	2.346224	2.315459	
fbs	famhist	restecg	$_{ m ekgmo}$	ekgday	ekgyr	dig	prop	
1.281244	1.291443	1.338021	14.903816	3.357399	78.992867	1.296383	1.679766	
nitr	pro	diuretic	thaldur	thaltime	met	thalach	thalrest	
1.546570	1.415979	1.480903	9.549788	1.422540	10.328475	2.868773	1.713892	
tpeakbps	$_{ m tpeakbpd}$	${ m trestbpd}$	exang	xhypo	oldpeak	slope	${\tt rldv5e}$	
2.829387	2.173463	2.785971	1.734917	1.870852	2.831028	2.291928	1.557587	
ca	thal	cmo	cday	cyr	$_{ m lmt}$	ladprox	laddist	
1.841289	2.051953	15.389866	3.413846	80.511913	1.401270	1.496650	1.526869	
cxmain	om1	rcaprox	rcadist					
1.543251	1.789705	1.764053	1.835745					

Here we see the variables, ekgmo, ekgyr, cmo and cyr are collinear with other variables in the model.

Scree plot - Cleveland

Figure 1: Scree plot for PCA of Cleveland

From the scree plot in Figure 1 we see that we keep 6 components.

We have the loadings of each components as follows.

Loadings	:									
	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
age	0.192		-0.196			0.167		-0.122	0.163	0.372
sex		-0.195	0.306	0.193					-0.303	
$^{\mathrm{cp}}$	0.208							0.384		-0.116
trestbps	0.133	-0.144	-0.297	0.222	0.107	0.119		-0.149		
htn			0.222		-0.189	0.390		0.117		
chol			-0.184					0.184	0.213	0.222
cigs		-0.200	0.181	0.231	-0.292		-0.128		-0.214	
years		-0.189	0.145	0.223	-0.330	0.138			-0.156	
fbs			-0.128	0.143		-0.214	0.132			0.129
famhist					0.123	0.140		0.133	0.162	-0.136
restecg		-0.103	-0.132				-0.128	0.238		
ekgmo		-0.244		-0.433	-0.109		0.220	-0.161	-0.144	

ekgday					0.384	0.326	0.255	0.298	-0.109		
ekgyr		0.414		0.193			0.268			-0.212	
dig		0.105				0.195		-0.150	-0.230		
prop	0.102				0.162	-0.263		0.105		0.173	
nitr	0.142	0.107		-0.128			-0.141		-0.180	0.131	
pro		0.236				-0.115		0.154	-0.222		
diuretic					0.128	-0.417			-0.136	0.199	
thaldur	-0.301	-0.109	0.237	0.125	0.184	-0.149					
thaltime			0.154		0.153			-0.191	0.359	-0.189	
met	-0.295	-0.137	0.228	0.135	0.181	-0.167					
thalach	-0.298	-0.172					0.130	0.101	0.106	-0.141	
thalrest			-0.229		-0.254		0.221	0.145	0.194	-0.113	
tpeakbps		-0.211	-0.236	0.297				-0.211			
tpeakbpd		-0.167	-0.330	0.142			-0.128	0.161	-0.148	-0.159	
trestbpd		-0.222	-0.314	0.112	0.130		-0.106		-0.167	-0.194	
exang	0.224			-0.100					-0.207	-0.157	
xhypo	0.104	0.153		-0.229		-0.102			-0.113		
oldpeak	0.280				0.185			-0.219	0.150	-0.159	
slope	0.232				0.230		-0.120	-0.217		-0.263	
rldv5e				0.126	0.127	0.166		-0.295			
ca	0.213			0.113	-0.124		0.283		0.211	0.251	
thal	0.231	-0.163	0.167	0.102					-0.143		
cmo		-0.243		-0.433	-0.116		0.209	-0.162	-0.122		
cday					0.391	0.294	0.280	0.243	-0.135		
cyr		0.415		0.195			0.261			-0.218	
lmt	0.130	-0.106					0.132			-0.126	
ladprox	0.183		0.147				-0.234	0.150	0.132		
laddist	0.206		0.107			-0.114					
cxmain	0.189		0.150	0.104					0.111	0.201	
om1	0.249					-0.108	0.202				
rcaprox	0.191					-0.237	0.162	0.151	0.181	-0.291	
rcadist	0.196		0.103					-0.130		0.250	
	0.20		000				0.20	0.20		0.20	

2.3.2 Hungary

Scree plot - Hungary

Figure 2: Scree plot for PCA of Hungary

From the scree plot in Figure 2 we see that we keep 6 components.

We have the loadings of each components as follows.

Loadings	:									
O .		Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
age	0.162		0.184		-0.253		-0.105	-0.185	-0.114	0.137
sex		-0.144	-0.164	-0.236					0.232	
sex painloc	0.143		-0.261	-0.112	0.116					0.214
painexer	0.212		-0.335			-0.146				
relrest	0.228		-0.332					-0.159		-0.108
ср	0.229		-0.357			-0.163		-0.115		
trestbps	0.213		0.179	-0.290	0.113			-0.214		0.198
htn		-0.160	0.101			0.247		0.125	0.230	0.214
htn chol				-0.139	-0.207	-0.105		0.186	-0.529	
fbs		-0.170		-0.127	-0.193	-0.105 0.168		0.265	-0.304	-0.195
restecg									-0.135	0.304
ekgmo			-0.177							
okaday			-0.108		-0.254	0.479	-0.110		0.255	
ekgyr prop	0.126	-0.312	0.189			-0.181	0.237		0.101	-0.326
prop	0.132	-0.253		0.301	0.117		0.112			0.194
nitr		-0.286		0.402						0.163
				0.355					-0.105	0.119
diuretic			0.129	-0.101	0.149		0.275	0.123	0.377	0.281
proto	-0.312	-0.277	-0.136	-0.121						
thaldur	-0.305	-0.277	-0.135	-0.130						
thaltime	-0.303	-0.270	-0.138	-0.128			-0.111			0.113
met		-0.227					-0.192			
thalach	-0.259			-0.135	0.126		0.376	0.177	-0.142	
thalrest				-0.126			0.539	0.233	-0.141	0.269
tpeakbps		-0.225		-0.292		0.170		-0.264		
tpeakbpd		-0.191	0.271	-0.231		0.134		-0.199		
trestbpd	0.157		0.155	-0.301	0.137			-0.207	-0.150	0.256
exang	0.237		-0.216	-0.140						-0.175
oldpeak		0.113			0.217	0.146			0.259	-0.200
slope	0.156		-0.245			0.280		0.287		
rldv5	-0.147	0.126			0.439	0.283		-0.130	-0.232	-0.109
rldv5e	-0.128			0.116	0.444	0.289		-0.179	-0.172	-0.129
cmo	-0.175		-0.194		-0.284	0.103	0.297	-0.395		
cday		-0.123			-0.229	0.387	0.133	0.142		-0.211
cyr	0.130	-0.316	0.179			-0.181	0.222			-0.331

2.3.3 Longbeach

Scree plot - Longbeach

Figure 3: Scree plot for PCA of Longbeach

From the scree plot in Figure 3 we see that we keep 11 components.

We have the loadings of each components as follows.

${\bf Loadings}$										
					Comp. 5			-	Comp.9	Comp.10
age	-0.204		0.197			-0.182		-0.205		
sex			-0.106	-0.215						0.146
painloc									-0.105	
painexer	-0.192	-0.223			0.288		-0.162			
	-0.181				0.114					
$^{\mathrm{cp}}$	-0.181	-0.276			0.216	0.288	-0.128	0.184		
trestbps	-0.196		0.310	-0.133		-0.202				
htn			0.313	-0.134	-0.219					0.106
chol			0.118	0.166	0.175	-0.156	-0.232			-0.194
smoke	0.160		-0.191	-0.334						-0.186
cigs			-0.250	-0.320						0.240
years			-0.133	-0.344					0.103	
fbs		0.111	0.196			-0.168	-0.154			0.315
famhist				-0.124	-0.235			0.159		-0.316
restecg	0.125		0.132					-0.128	0.257	0.229
ekgmo		-0.189	-0.134				0.178		-0.289	
ekgday			-0.149				0.357		0.264	0.166
ekgyr	-0.357	0.130	-0.161	-0.127			-0.195			
dig						-0.241		0.111	0.227	-0.183
prop			0.137	-0.106		0.115	0.179	-0.179	0.135	-0.116
nitr					-0.215			-0.255	-0.139	
pro					-0.253				-0.112	
diuretic		-0.140	0.162	-0.221			0.106		0.187	-0.109
proto					-0.102			-0.171		
thaldur		0.402					0.102		-0.190	-0.113
met		0.353			0.126		0.131		-0.172	
thalach				-0.129			0.279	0.172		
thalrest					0.349		0.169		0.119	
tpeakbps		0.264	0.229	-0.167			0.154			0.158
tpeakbpd	0.139	0.20			0.124	0.141				
. r	000		5.225		J	· ·	000	·		

tmoathmd			0.200	-0.181		0.1	E 1		0.135		
trestbpd exang	0.105	-0.260	0.200	-0.181		$-0.1 \\ -0.1$		0.135	0.133	-0.110	0.174
xhypo	-0.103 -0.128	-0.200			0.15			7.130		-0.110 -0.148	-0.174
oldpeak	-0.120 -0.250					$\begin{array}{cccc} 3 & -0.1 \\ 4 & -0.2 \end{array}$		0.116		-0.140	-0.274
rldv5	-0.238			0.274	-0.11			0.280		0.249	-0.274 -0.137
rldv5e	-0.238 -0.238			0.274 0.262	-0.11 -0.19			0.250		0.249 0.224	-0.157 -0.153
cmo	-0.238	-0.244	0.191	0.202 0.117	-0.19	-0.1		0.230		-0.224 -0.291	-0.155
cday		-0.244	-0.131	0.117	0.13			0.210	-0.310	-0.291	0.299
	-0.352	0.156	0.160	-0.134	0.13	5 0.1		0.185	-0.310		0.299
cyr lmt	-0.332 -0.104	0.130	-0.100	-0.134				0.185 0.149	0.166		
ladprox	-0.104	-0.103		-0.127	0.22	9 - 0.2		0.149	0.100		0.140
laddist		-0.103		-0.127	0.22	9 - 0.2		0.102		0.999	0.140
1	0.105				0.10		25 (J.1UZ	0.204	-0.233	0 174
diag	-0.105	0.106			-0.10		199		0.384	0.110	0.174
cxmain		-0.126	0 110	0.100	0 1 4	-0.2		0 114	0.020	-0.118	0.116
ramus		0.103		-0.139	0.14	U	_	0.114	-0.232	0.947	-0.116
om1		-0.105	0.100	-0.144	0.10	0 0 1	9.9		-0.310	-0.347	-0.161
om2		0.120	0.249	-0.217	0.10						-0.142
rcaprox	0.100	-0.139		-0.118	0.10	-0.3		2 1 0 1	-0.113	0 177	0.170
rcadist	-0.196		. a	10 0	-0.19			0.131	O 1.7	-0.177	0.172
	Comp. 11	Comp.12				omp.15			Comp.17	Comp. 18	
age	-0.163	0.004	-0.13		110		0.1		0.000	0.185	-0.230
sex		-0.264			125	0.00=			-0.206	-0.150	-0.363
painloc				0.2	210	0.397	0. (2.4.0		-0.138	-0.199
painexer	0.145						-0.2	246	0.000	0 114	
relrest	-0.147						0 -	1.00	0.229	0.114	
ср	0.440		0.40		404		-0.1	138			
trestbps	0.112		-0.12			0.400	0.4	0.0			
htn	-0.123		0.24		196	0.100	0.1	.02			
chol	0.40=	0.180	-0.23	33					0.113	-0.105	-0.178
smoke	-0.107		0.44			0.404			0.203	0.440	0.400
cigs			-0.16			0.131				-0.118	0.198
years			-0.26						0.156	0.211	
fbs	-0.182	0.233				0.176				0.135	0.250
famhist		0.269		0.1	199	0.119			-0.113		0.209
restecg	-0.169						-0.2	216	-0.139		-0.238
ekgmo	-0.384	0.110	-0.18			-0.258					
ekgday	0.168	0.147		0.1	172	0.161					
ekgyr		0.133					0.1		-0.111		
dig			0.12				-0.2		-0.247		-0.129
prop		0.242	-0.26			-0.141	-0.2	265		-0.185	-0.188
nitr						-0.116				-0.135	
pro		0.168	0.12			-0.186	-0.1		-0.190		
diuretic	-0.194		0.17	0 - 0.	138	0.170	0.3		0.248	0.107	-0.126
proto									-0.156		
thaldur	-0.152					0.114	-0.1		0.111	-0.183	-0.152
met	-0.139					0.171	-0.2		0.215	-0.143	-0.166
thalach				0.1	135		0.1			0.290	0.111
thalrest		0.183				-0.220	0.1	.51	-0.344		-0.102
tpeakbps	-0.110	-0.145				-0.242				0.162	-0.112
tpeakbpd	0.102	-0.105				-0.169	0.3		-0.157		
trestbpd	0.371	0.130	-0.14			-0.110			-0.134	-0.124	0.114
exang	0.206	-0.116	-0.21			0.156	-0.1				
xhypo		0.349		-0.		0.253	0.1	.55		0.123	
oldpeak		-0.159	0.10	1		0.100				0.143	0.175
rldv5		-0.105									0.119
rldv5e					_	-0.108			0.104		
cmo	-0.337		-0.14	12					-0.116		
cday	0.209	0.127				0.122			0.258	-0.119	
cyr		0.146						64			
lmt		-0.226	-0.45	-0.5	245		0.1	26			

ladprox laddist	0.331	-0.137 -0.207	0.224	-0.191	0.182	-0.167	$0.117 \\ -0.168$	-0.310 0.349	$0.236 \\ -0.174$	
diag	0.00-	-0.262		00-	00-	0.20,	0.200	-0.327	0.139	
cxmain	0.104	0.130		0.137	-0.356	-0.184	0.350	0.191	-0.105	
ramus	-0.196	-0.260		0.165	0.104	-0.133	-0.169	0.115	0.279	
om1			0.313	-0.280		0.122		-0.129		
om2						-0.257	-0.104		0.209	
rcaprox				0.184	0.156			-0.297		
rcadist		0.124	0.214				-0.106			

2.3.4 Switzerland

Scree plot - Switzerland

Figure 4: Scree plot for PCA of Switzerland

From the scree plot in Figure 4 we see that we keep 5 components.

We have the loadings of each components as follows.

Loadings	:									
	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
age			0.366		0.115		-0.106	0.158	0.220	-0.138
sex		-0.107			-0.238			-0.326	0.118	
painloc	-0.209	-0.265	-0.145	-0.197						0.160
painexer	-0.245	-0.238	-0.183	-0.211			0.160			
relrest	-0.215	-0.193	-0.187	-0.264			0.147	0.144		
$^{\mathrm{cp}}$	-0.214	-0.292	-0.203	-0.250						
trestbps	-0.154	0.126	0.369	-0.192		0.114		0.169	0.116	
restecg		0.110	0.170		-0.182			0.101	0.202	-0.451
ekgmo	-0.337	0.199			-0.120	-0.168				
ekgday		-0.143	-0.219		-0.172	0.420	-0.178	0.222		
ekgyr	0.316	-0.219	0.142	-0.179	0.137		0.171			
dig				0.140		0.167	0.281	0.187		0.342
prop	0.111	-0.227		0.129		-0.201	-0.174		0.204	0.143
nitr	0.137	-0.214				-0.307		0.181	0.332	
pro		-0.111	0.106		-0.198	-0.331	-0.201	0.325		0.104
diuretic	-0.105	-0.119	0.133	0.113	-0.114	-0.201	-0.162	0.173	-0.162	
thaldur	0.231			-0.107	-0.355	-0.161	0.192	-0.166		0.214
thalach	0.184	0.172	-0.191	-0.187	-0.242		0.247	0.232	-0.236	
thalrest		0.269	-0.156				0.222	0.411	-0.151	-0.160

tpeakbps		0.215	0.117	-0.372	-0.176			0.197			
tpeakbpd	-0.116	0.125	0.148	-0.352		0.100			0.189		
trestbpd	-0.206	0.106	0.199	-0.179		0.214	-0.123		0.163	0.152	
exang	-0.188					0.153	-0.315		-0.251	-0.117	
xhypo			0.114	0.170	0.226	0.229	0.290	0.269		0.182	
oldpeak		-0.110		-0.298			0.151		-0.205	-0.187	
cmo	-0.345	0.185			-0.128	-0.128		-0.109			
cday						0.381	-0.231	0.228			
cyr	0.275	-0.194	0.136	-0.154	0.202		0.144	-0.138			
lmt		-0.103	-0.142	0.123		-0.116				-0.333	
ladprox	-0.150	-0.113		0.186	0.132			0.122		-0.195	
laddist		-0.150	0.117		-0.348					0.198	
diag		-0.187	0.196		-0.179				-0.323		
cxmain	-0.102	-0.128			-0.190	0.219		-0.208		-0.366	
ramus	-0.139	-0.107	0.237	0.129			0.108		-0.311		
om1		-0.186	0.154	0.153	-0.247		0.315		0.124	-0.149	
om2		-0.161	0.212						-0.338		
rcaprox	-0.189		0.119		0.159		0.133		0.116	0.156	
rcadist	-0.106			0.137	-0.255		0.277		0.220		

2.4 Question 4

- 2.4.1 Cleveland
- 2.4.2 Hungary
- 2.4.3 Longbeach
- 2.4.4 Switzerland

3 Summary