Compacting Points-To Sets through Object Clustering

Mohamad Barbar 1,2 Yulei Sui 1

¹University of Technology Sydney, Australia

²CSIRO's Data61, Australia

OOPSLA'21

Determine what each pointer points to.

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

Bug detection

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

Various sensitivities

Flow

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

- ► Flow
- Context

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

- ► Flow
- Context
- Field

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

- ► Flow
- Context
- Field
- **.**..

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

Various sensitivities

- ► Flow
- Context
- Field
- **...**

(generally)

 $\textbf{Precision} \Rightarrow \textbf{higher cost}$

Determine what each pointer points to.

$$pt(p) = \{o_1, o_2, o_3, ...\}$$

Bit-vector representations have been successfully and widely used in mainstream points-to analysis frameworks.

Why?

- Bug detection
- Optimisation
- Instrumentation

Various sensitivities

- ► Flow
- Context
- Field
- **...**

(generally)

 $\textbf{Precision} \Rightarrow \textbf{higher cost}$

1. Perform fast auxiliary analysis (e.g. flow-insensitive Andersen's analysis).

- 1. Perform fast auxiliary analysis (e.g. flow-insensitive Andersen's analysis).
- 2. Build over-approximate memory SSA form.

- 1. Perform fast auxiliary analysis (e.g. flow-insensitive Andersen's analysis).
- 2. Build over-approximate memory SSA form.
- 3. Build def-use graph.

- 1. Perform fast auxiliary analysis (e.g. flow-insensitive Andersen's analysis).
- 2. Build over-approximate memory SSA form.
- 3. Build def-use graph.
- 4. Perform flow-sensitive analysis on def-use graph, not control-flow graph.

Program	Program Points	Top-Level Variables	Memory Objects	Average PTS	Largest PTS	SFS Unions
dhcpcd	57 168	63 196	3701	223.55	265	90 785 902
gawk	279 931	141 136	4784	434.81	811	2 275 388 148
bash	254 314	149 070	4339	244.57	324	531 039 266
mutt	360 535	178 147	7169	379.47	1238	1 347 064 278
lynx	579 285	237 252	7917	198.02	1129	4 829 162 478
xpdf	440 418	388 859	19 101	87.78	1590	12 423 325 697
ruby	795 643	670 649	20 235	2.68	1726	13 502 095 022
keepassxc	572 001	604 363	37 671	171.70	365	879 430 055

Program	Program Points	Top-Level Variables	Memory Objects	Average PTS	Largest PTS	SFS Unions
dhcpcd	57 168	63 196	3701	223.55	265	90 785 902
gawk	279 931	141 136	4784	434.81	811	2 275 388 148
bash	254 314	149 070	4339	244.57	324	531 039 266
mutt	360 535	178 147	7169	379.47	1238	1 347 064 278
lynx	579 285	237 252	7917	198.02	1129	4 829 162 478
xpdf	440 418	388 859	19 101	87.78	1590	12 423 325 697
ruby	795 643	670 649	20 235	2.68	1726	13 502 095 022
keepassxc	572 001	604 363	37 671	171.70	365	879 430 055

Program	Program Points	Top-Level Variables	Memory Objects	Average PTS	Largest PTS	SFS Unions
dhcpcd	57 168	63 196	3701	223.55	265	90 785 902
gawk	279 931	141 136	4784	434.81	811	2 275 388 148
bash	254 314	149 070	4339	244.57	324	531 039 266
mutt	360 535	178 147	7169	379.47	1238	1 347 064 278
lynx	579 285	237 252	7917	198.02	1129	4 829 162 478
xpdf	440 418	388 859	19 101	87.78	1590	12 423 325 697
ruby	795 643	670 649	20 235	2.68	1726	13 502 095 022
keepassxc	572 001	604 363	37 671	171.70	365	879 430 055

Program	Program Points	Top-Level Variables	Memory Objects	Average PTS	Largest PTS	SFS Unions
dhcpcd	57 168	63 196	3701	223.55	265	90 785 902
gawk	279 931	141 136	4784	434.81	811	2 275 388 148
bash	254 314	149 070	4339	244.57	324	531 039 266
mutt	360 535	178 147	7169	379.47	1238	1 347 064 278
lynx	579 285	237 252	7917	198.02	1129	4 829 162 478
xpdf	440 418	388 859	19 101	87.78	1590	12 423 325 697
ruby	795 643	670 649	20 235	2.68	1726	13 502 095 022
keepassxc	572 001	604 363	37 671	171.70	365	879 430 055

Program	Program Points	Top-Level Variables	Memory Objects	Average PTS	Largest PTS	SFS Unions
dhcpcd	57 168	63 196	3701	223.55	265	90 785 902
gawk	279 931	141 136	4784	434.81	811	2 275 388 148
bash	254 314	149 070	4339	244.57	324	531 039 266
mutt	360 535	178 147	7169	379.47	1238	1 347 064 278
lynx	579 285	237 252	7917	198.02	1129	4 829 162 478
xpdf	440 418	388 859	19 101	87.78	1590	12 423 325 697
ruby	795 643	670 649	20 235	2.68	1726	13 502 095 022
keepassxc	572 001	604 363	37 671	171.70	365	879 430 055

Program	Program Points	Top-Level Variables	Memory Objects	Average PTS	Largest PTS	SFS Unions
dhcpcd	57 168	63 196	3701	223.55	265	90 785 902
gawk	279 931	141 136	4784	434.81	811	2 275 388 148
bash	254 314	149 070	4339	244.57	324	531 039 266
mutt	360 535	178 147	7169	379.47	1238	1 347 064 278
lynx	579 285	237 252	7917	198.02	1129	4 829 162 478
xpdf	440 418	388 859	19 101	87.78	1590	12 423 325 697
ruby	795 643	670 649	20 235	2.68	1726	13 502 095 022
keepassxc	572 001	604 363	37 671	171.70	365	879 430 055

String of bits implemented as an array of **words** to represent integral sets.

String of bits implemented as an array of **words** to represent integral sets.

▶ Bit set? Index of the bit is a member of the set.

String of bits implemented as an array of words to represent integral sets.

- ▶ Bit set? Index of the bit is a member of the set.
- ▶ Bit unset? Index of the bit is not a member of the set.

String of bits implemented as an array of words to represent integral sets.

- ▶ Bit set? Index of the bit is a member of the set.
- ▶ Bit unset? Index of the bit is not a member of the set.

```
\{0, 3, 8,9, \}
[\langle 1001 \rangle, \langle 0000 \rangle, \langle 1100 \rangle]
(\langle \times \times \times \times \rangle \text{ is a 4-bit word.})
```

```
\frac{\left[\begin{array}{ccccc} w_1, & w_2, & \dots, & w_n \\ | & \left[ & w'_1, & w'_2, & \dots, & w'_n \end{array}\right]}{\left[\begin{array}{cccc} w_1 | w'_1, & w_2 | w'_2, & \dots, & w_n | w'_n \end{array}\right]}.
```

$$\frac{\begin{bmatrix} w_1, & w_2, & \dots, & w_n \end{bmatrix}}{\begin{bmatrix} w'_1, & w'_2, & \dots, & w'_n \end{bmatrix}}$$

Amenable to vectorisation.

$$\frac{\begin{bmatrix} w_1, & w_2, & \dots, & w_n \\ & [& w'_1, & w'_2, & \dots, & w'_n \end{bmatrix}}{\begin{bmatrix} w_1|w'_1, & w_2|w'_2, & \dots, & w_n|w'_n \end{bmatrix}}.$$

- Amenable to vectorisation.
- Good spatial locality.

$$\frac{\begin{bmatrix} w_1, & w_2, & \dots, & w_n \\ & [& w'_1, & w'_2, & \dots, & w'_n \end{bmatrix}}{\begin{bmatrix} w_1|w'_1, & w_2|w'_2, & \dots, & w_n|w'_n \end{bmatrix}}.$$

- Amenable to vectorisation.
- Good spatial locality.
- Compact; very little metadata.

Bit-Vectors: Trailing and Leading Zeroes

Trailing and leading zeroes waste time and space.

Bit-Vectors: Trailing and Leading Zeroes

Trailing and leading zeroes waste time and space.

▶ Many implementations strip trailing zeroes by maintaining the array length.

Trailing and leading zeroes waste time and space.

- Many implementations strip trailing zeroes by maintaining the array length.
- ▶ We further strip leading zeroes by maintaining an offset.

Trailing and leading zeroes waste time and space.

- ▶ Many implementations strip trailing zeroes by maintaining the array length.
- We further strip leading zeroes by maintaining an offset.

Consider the set {9995, 9996, 9997, 9998, 9999}.

Trailing and leading zeroes waste time and space.

- Many implementations strip trailing zeroes by maintaining the array length.
- We further strip leading zeroes by maintaining an offset.

Consider the set {9995, 9996, 9997, 9998, 9999}.

Before stripping leading zeroes:

Trailing and leading zeroes waste time and space.

- ▶ Many implementations strip trailing zeroes by maintaining the array length.
- We further strip leading zeroes by maintaining an offset.

Consider the set {9995, 9996, 9997, 9998, 9999}.

Before stripping leading zeroes:

$$\left[\underbrace{\langle 0000\rangle,\ldots,\langle 0000\rangle}_{\text{2498 words}},\langle 0001_{9995}\rangle,\langle 1_{9996}1_{9997}1_{9998}1_{9999}\rangle\right]$$

Trailing and leading zeroes waste time and space.

- Many implementations strip trailing zeroes by maintaining the array length.
- ▶ We further strip leading zeroes by maintaining an offset.

Consider the set {9995, 9996, 9997, 9998, 9999}.

Before stripping leading zeroes:

$$[\underbrace{\langle 0000\rangle,\ldots,\langle 0000\rangle}_{2498 \text{ words}},\langle 0001_{9995}\rangle,\langle 1_{9996}1_{9997}1_{9998}1_{9999}\rangle]$$

After stripping leading zeroes:

$$\big\{\,9992\,\big[\,\big<000\,\mathbf{1}_{9995}\big>,\big<\,\mathbf{1}_{9996}\,\mathbf{1}_{9997}\,\mathbf{1}_{9998}\,\mathbf{1}_{9999}\big>\,\big]\,\big\}$$

Trailing and leading zeroes waste time and space.

- Many implementations strip trailing zeroes by maintaining the array length.
- ▶ We further strip leading zeroes by maintaining an offset.

Consider the set {9995, 9996, 9997, 9998, 9999}.

Before stripping leading zeroes:

$$\big[\underbrace{\langle 0000\rangle,\ldots,\langle 0000\rangle}_{2498 \text{ words}},\langle 0001_{9995}\rangle,\langle 1_{9996}1_{9997}1_{9998}1_{9999}\rangle\big]$$

After stripping leading zeroes:

$$\big\{ \begin{array}{c} 9992 \ \big[\, \big\langle 0001_{9995} \big\rangle, \big\langle 1_{9996} \, 1_{9997} \, 1_{9998} \, 1_{9999} \big\rangle \, \big] \, \big\} \\ \end{array}$$

Trailing and leading zeroes waste time and space.

- Many implementations strip trailing zeroes by maintaining the array length.
- ▶ We further strip leading zeroes by maintaining an offset.

Consider the set {9995, 9996, 9997, 9998, 9999}.

Before stripping leading zeroes:

$$\big[\underbrace{\langle 0000\rangle,\ldots,\langle 0000\rangle}_{\text{2498 words}},\langle 0001_{9995}\rangle,\langle 1_{9996}1_{9997}1_{9998}1_{9999}\rangle\big]$$

After stripping leading zeroes:

$$\{\,9992\, \left[\begin{array}{c} \langle 0001_{9995} \rangle, \langle 1_{9996}1_{9997}1_{9998}1_{9999} \rangle \,\right]\,\}$$

Mapping of memory objects to integral identifiers required.

Mapping of memory objects to integral identifiers required.

Consider $pt(p) = \{o_4, o_5, o_{12}, o_{14}\}.$

Map o_n **to** n: $o_4 \mapsto 4$ $o_5 \mapsto 5$ $o_{12} \mapsto 12$ $o_{14} \mapsto 14$

Mapping of memory objects to integral identifiers required.

Consider
$$pt(p) = \{o_4, o_5, o_{12}, o_{14}\}.$$
Map o_n **to** n : $o_4 \mapsto 4$ $o_5 \mapsto 5$ $o_{12} \mapsto 12$ $o_{14} \mapsto 14$

$$pt(p) = \{ 4 \left[\langle 1_4 1_5 00 \rangle, \langle 0000 \rangle, \langle 1_{12} 0 1_{14} 0 \rangle \right] \}$$

Three words required.

Mapping of memory objects to integral identifiers required.

Consider
$$pt(p) = \{o_4, o_5, o_{12}, o_{14}\}.$$

Map
$$o_n$$
 to n : $o_4 \mapsto 4$ $o_5 \mapsto 5$ $o_{12} \mapsto 12$ $o_{14} \mapsto 14$

$$pt(p) = \{ 4 [\langle 1_4 1_5 00 \rangle, \langle 0000 \rangle, \langle 1_{12} 0 1_{14} 0 \rangle] \}$$

Three words required.

How about...
$$o_4 \mapsto 4$$
 $o_5 \mapsto 5$ $o_{12} \mapsto 6$ $o_{14} \mapsto 7$

Mapping of memory objects to integral identifiers required.

Consider $pt(p) = \{o_4, o_5, o_{12}, o_{14}\}.$

Map
$$o_n$$
 to n : $o_4 \mapsto 4$ $o_5 \mapsto 5$ $o_{12} \mapsto 12$ $o_{14} \mapsto 14$

$$pt(p) = \{ 4 [\langle 1_4 1_5 00 \rangle, \langle 0000 \rangle, \langle 1_{12} 0 1_{14} 0 \rangle] \}$$

Three words required.

How about...
$$o_4\mapsto 4$$
 $o_5\mapsto 5$ $o_{12}\mapsto 6$ $o_{14}\mapsto 7$
$$pt(p)=\{\ 4\ [\ \langle\ 1_4\ 1_5\ 1_6\ 1_7\rangle\]\ \}$$

One word required.

Given a points-to set P with n objects, word size of W, the minimum number of words required to represent P as a bit-vector is

$$\left\lceil \frac{n}{\mathcal{W}} \right\rceil$$

Given a points-to set P with n objects, word size of W, the minimum number of words required to represent P as a bit-vector is

$$\left\lceil \frac{n}{\mathcal{W}} \right\rceil$$

Example

$$pt(p) = \{o_1, o_2, o_3, o_4, o_5\}$$
 requires at minimum $\left\lceil \frac{n}{W} \right\rceil = \left\lceil \frac{5}{4} \right\rceil = 2$ words to represent.

Given a points-to set P with n objects, word size of W, the minimum number of words required to represent P as a bit-vector is

$$\left\lceil \frac{n}{\mathcal{W}} \right\rceil$$

Example

$$pt(p) = \{o_1, o_2, o_3, o_4, o_5\}$$
 requires at minimum $\left\lceil \frac{n}{W} \right\rceil = \left\lceil \frac{5}{4} \right\rceil = 2$ words to represent.

Observation: Objects in same points-to sets should be mapped to numerically close identifiers.

Given a points-to set P with n objects, word size of W, the minimum number of words required to represent P as a bit-vector is

$$\left\lceil \frac{n}{\mathcal{W}} \right\rceil$$

Example

$$pt(p) = \{o_1, o_2, o_3, o_4, o_5\}$$
 requires at minimum $\left\lceil \frac{n}{W} \right\rceil = \left\lceil \frac{5}{4} \right\rceil = 2$ words to represent.

Observation: Objects in same points-to sets should be mapped to numerically close identifiers.

Auxiliary analysis soundly over-approximates main analysis...

Good mapping for auxiliary analysis $\xrightarrow{probably}$ Good mapping for main analysis.

Optimisation problem – integer programming can give us an optimal solution.

Optimisation problem – integer programming can give us an optimal solution.

For each points-to set $P = \{o_{x_1}, o_{x_2}, \dots, o_{x_n}\}$ produced by the auxiliary analysis, we have the following known variables:

Optimisation problem – integer programming can give us an optimal solution.

For each points-to set $P = \{o_{x_1}, o_{x_2}, \dots, o_{x_n}\}$ produced by the auxiliary analysis, we have the following known variables:

1. *n* is the number of objects in *P*.

Optimisation problem – integer programming can give us an optimal solution.

For each points-to set $P = \{o_{x_1}, o_{x_2}, \dots, o_{x_n}\}$ produced by the auxiliary analysis, we have the following known variables:

- 1. *n* is the number of objects in *P*.
- 2. $w = \lceil \frac{n}{W} \rceil$ is the minimum number of words required for a bit-vector representation of P.

Optimisation problem – integer programming can give us an optimal solution.

For each points-to set $P = \{o_{x_1}, o_{x_2}, \dots, o_{x_n}\}$ produced by the auxiliary analysis, we have the following known variables:

- 1. *n* is the number of objects in *P*.
- 2. $w = \lceil \frac{n}{W} \rceil$ is the minimum number of words required for a bit-vector representation of P.

And the following unknown variables:

Optimisation problem – integer programming can give us an optimal solution.

For each points-to set $P = \{o_{x_1}, o_{x_2}, \dots, o_{x_n}\}$ produced by the auxiliary analysis, we have the following known variables:

- 1. *n* is the number of objects in *P*.
- 2. $w = \lceil \frac{n}{W} \rceil$ is the minimum number of words required for a bit-vector representation of P.

And the following unknown variables:

1. m_{x_i} , where $1 \le i \le n$, is the identifier object o_{x_i} will be assigned to in our new mapping $(o_{x_i} \mapsto m_{x_i})$.

Optimisation problem – integer programming can give us an optimal solution.

For each points-to set $P = \{o_{x_1}, o_{x_2}, \dots, o_{x_n}\}$ produced by the auxiliary analysis, we have the following known variables:

- 1. *n* is the number of objects in *P*.
- 2. $w = \lceil \frac{n}{W} \rceil$ is the minimum number of words required for a bit-vector representation of P.

And the following unknown variables:

- 1. m_{x_i} , where $1 \le i \le n$, is the identifier object o_{x_i} will be assigned to in our new mapping $(o_{x_i} \mapsto m_{x_i})$.
- 2. f is some offset multiplier for where the identifiers, m_{x_i} , start.

For each points-to set *P*:

$$m_{x_i} \geq f_P \cdot \mathcal{W}$$

(C1)

For each points-to set *P*:

$$m_{x_i} \geq f_P \cdot W$$

 $m_{x_i} < f_P \cdot W + w_P \cdot W$

(C1)

For each points-to set *P*:

$$m_{x_i} \ge f_P \cdot \mathcal{W}$$
 $m_{x_i} < f_P \cdot \mathcal{W} + w_P \cdot \mathcal{W}$
 $f_P \ge 0$ (C1)

For each points-to set *P*:

$$m_{x_i} \ge f_P \cdot \mathcal{W}$$
 $m_{x_i} < f_P \cdot \mathcal{W} + w_P \cdot \mathcal{W}$
 $f_P \ge 0$ (C1)

Whilst also ensuring the mapping is 1-to-1; for each $i, j, i \neq j$:

$$\left|m_i - m_j\right| > 0 \tag{C2}$$

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}$$

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}$$

 $ightharpoonup o_1$ should be close to o_2 , o_3 , and o_4

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Consider $P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}$

- $ightharpoonup o_1$ should be close to o_2 , o_3 , and o_4
- $ightharpoonup o_2$ should be close to o_1 and o_5 .

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Consider
$$P_1 = \{ o_1, o_2 \}, P_2 = \{ o_1, o_3, o_4 \}, P_3 = \{ o_2, o_5 \}$$

- $ightharpoonup o_1$ should be close to o_2 , o_3 , and o_4
- $ightharpoonup o_2$ should be close to o_1 and o_5 .

With W = 4, w = 1 for all 3 sets, but:

The sets overlap.

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}$$

- $ightharpoonup o_1$ should be close to o_2 , o_3 , and o_4
- $ightharpoonup o_2$ should be close to o_1 and o_5 .

With W = 4, w = 1 for all 3 sets, but:

The sets overlap.

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}$$

- $ightharpoonup o_1$ should be close to o_2 , o_3 , and o_4
- $ightharpoonup o_2$ should be close to o_1 and o_5 .

With W = 4, w = 1 for all 3 sets, but:

- The sets overlap.
- ► There are 5 objects in total.

Definition

Pigeonhole principle. Given n items to be spread amongst m containers, n > m, at least one container must contain more than one item.

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}$$

- $ightharpoonup o_1$ should be close to o_2 , o_3 , and o_4
- $ightharpoonup o_2$ should be close to o_1 and o_5 .

With
$$W = 4$$
, $w = 1$ for all 3 sets, but:

- The sets overlap.
- ► There are 5 objects in total.

Pigeonhole principle prevents a perfect solution

For each points-to set *P*:

$$m_{x_i} \ge f_P \cdot W$$
 $m_{x_i} < f_P \cdot W + w_P \cdot W$
 $f_P \ge 0$ (C1)

Whilst also ensuring the mapping is 1-to-1; for each i, j, $i \neq j$:

$$\left|m_i - m_j\right| > 0 \tag{C2}$$

For each points-to set *P*:

$$m_{x_i} \ge f_P \cdot \mathcal{W}$$
 $m_{x_i} < f_P \cdot \mathcal{W} + w_P \cdot \mathcal{W} + t_P \cdot \mathcal{W}$
 $f_P \ge 0$ (C1)

Whilst also ensuring the mapping is 1-to-1; for each $i, j, i \neq j$:

$$\left|m_i - m_j\right| > 0 \tag{C2}$$

Optimise for minimum tolerances: $t_{P_1} + \cdots + t_{P_n}$.

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}, W = 4$$

Consider
$$P_1 = \{o_1, o_2\}$$
, $P_2 = \{o_1, o_3, o_4\}$, $P_3 = \{o_2, o_5\}$, $W = 4$

Consider
$$P_1 = \{o_1, o_2\}$$
, $P_2 = \{o_1, o_3, o_4\}$, $P_3 = \{o_2, o_5\}$, $\mathcal{W} = 4$

$$m_1 \geq 4 \cdot f_{P_1}$$

Consider
$$P_1 = \{o_1, o_2\}$$
, $P_2 = \{o_1, o_3, o_4\}$, $P_3 = \{o_2, o_5\}$, $W = 4$

$$m_1 \geq 4 \cdot f_{P_1}$$

$$m_1 < 4 \cdot f_{P_1} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_1}$$

Consider
$$P_1 = \{o_1, o_2\}$$
, $P_2 = \{o_1, o_3, o_4\}$, $P_3 = \{o_2, o_5\}$, $W = 4$

$$m_1 \ge 4 \cdot f_{P_1}$$

$$m_1 < 4 \cdot f_{P_1} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_1}$$

$$m_2 \ge 4 \cdot f_{P_1}$$

Consider
$$P_1 = \{o_1, o_2\}$$
, $P_2 = \{o_1, o_3, o_4\}$, $P_3 = \{o_2, o_5\}$, $W = 4$

$$m_{1} \geq 4 \cdot f_{P_{1}} m_{1} < 4 \cdot f_{P_{1}} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_{1}} m_{2} \geq 4 \cdot f_{P_{1}} m_{2} < 4 \cdot f_{P_{1}} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_{1}}$$

Consider $P_1 = \{o_1, o_2\}$, $P_2 = \{o_1, o_3, o_4\}$, $P_3 = \{o_2, o_5\}$, W = 4

$$m_{1} \geq 4 \cdot f_{P_{1}} m_{1} < 4 \cdot f_{P_{1}} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_{1}} m_{2} \geq 4 \cdot f_{P_{1}} m_{2} < 4 \cdot f_{P_{1}} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_{1}} f_{P_{1}} \geq 0$$

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}, W = 4$$

$$\begin{array}{lll} m_1 \geq 4 \cdot f_{P_1} & m_1 \geq 4 \cdot f_{P_2} \\ m_1 < 4 \cdot f_{P_1} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_1} & m_1 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} \\ m_2 \geq 4 \cdot f_{P_1} & m_3 \geq 4 \cdot f_{P_2} \\ m_2 < 4 \cdot f_{P_1} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_1} & m_3 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} \\ f_{P_1} \geq 0 & m_5 \geq 4 \cdot f_{P_2} \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} \\ f_{P_2} \geq 0 & \end{array}$$

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}, W = 4$$

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}, \mathcal{W} = 4$$

$$\begin{array}{llll} m_1 \geq 4 \cdot f_{P_1} & m_1 \geq 4 \cdot f_{P_2} & m_2 \geq 4 \cdot f_{P_3} \\ m_1 < 4 \cdot f_{P_1} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_1} & m_1 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & m_2 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} \\ m_2 \geq 4 \cdot f_{P_1} & m_3 \geq 4 \cdot f_{P_2} & m_5 \geq 4 \cdot f_{P_3} \\ m_2 < 4 \cdot f_{P_1} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_1} & m_3 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} \\ f_{P_1} \geq 0 & m_5 \geq 4 \cdot f_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_2} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_2} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} \geq 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} = 0 \\ & m_5 < 4 \cdot f_{P_3} + 4 \cdot \left\lceil \frac{2}{4} \right\rceil + 4 \cdot t_{P_3} & f_{P_3} = 0 \\ & m_$$

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}, W = 4$$

Optimise for minimum $t_{P_1} + t_{P_2} + t_{P_3}$.

Consider
$$P_1 = \{o_1, o_2\}, P_2 = \{o_1, o_3, o_4\}, P_3 = \{o_2, o_5\}, W = 4$$

Optimise for minimum $t_{P_1} + t_{P_2} + t_{P_3}$.

Optimal... but costly! Let's try something more approximate...

Distance function: Euclidean distance $-\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

Distance function: Euclidean distance $-\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. **Linkage criterion:** single linkage – distance between two clusters is the smallest distance between any member of one cluster to any member of the other.

Distance function: Euclidean distance $-\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. **Linkage criterion:** single linkage – distance between two clusters is the smallest distance between

any member of one cluster to any member of the other.

Distance function: Euclidean distance $-\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. **Linkage criterion:** single linkage – distance between two clusters is the smallest distance between

any member of one cluster to any member of the other.

Distance function: Euclidean distance $-\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. **Linkage criterion:** single linkage – distance between two clusters is the smallest distance between

any member of one cluster to any member of the other.

Distance function: Euclidean distance $-\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

Linkage criterion: single linkage – distance between two clusters is the smallest distance between any member of one cluster to any member of the other.

Distance function: Euclidean distance $-\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

Linkage criterion: single linkage – distance between two clusters is the smallest distance between any member of one cluster to any member of the other.

Definition
Object Distance.

Definition

Definition

Object Distance. The distance between two objects is the minimum number of words required to represent any points-to set in which both objects appear in as a bit-vector.

1. Build a distance matrix: $dmat[o_1][o_2]$ holds the distance between o_1 and o_2 .

Definition

- 1. Build a distance matrix: $dmat[o_1][o_2]$ holds the distance between o_1 and o_2 .
- 2. Choose a linkage criterion and perform hierarchical clustering.
 - Produces dendrogram.

Definition

- 1. Build a distance matrix: $dmat[o_1][o_2]$ holds the distance between o_1 and o_2 .
- 2. Choose a linkage criterion and perform hierarchical clustering.
 - Produces dendrogram.
- 3. Initialise a counter c to 0.

Definition

- 1. Build a distance matrix: $dmat[o_1][o_2]$ holds the distance between o_1 and o_2 .
- 2. Choose a linkage criterion and perform hierarchical clustering.
 - Produces dendrogram.
- 3. Initialise a counter c to 0.
- 4. Perform depth-first search on dendrogram.

Definition

- 1. Build a distance matrix: $dmat[o_1][o_2]$ holds the distance between o_1 and o_2 .
- 2. Choose a linkage criterion and perform hierarchical clustering.
 - Produces dendrogram.
- 3. Initialise a counter c to 0.
- 4. Perform depth-first search on dendrogram.
 - At each leaf containing object o.

Definition

- 1. Build a distance matrix: $dmat[o_1][o_2]$ holds the distance between o_1 and o_2 .
- 2. Choose a linkage criterion and perform hierarchical clustering.
 - Produces dendrogram.
- 3. Initialise a counter c to 0.
- 4. Perform depth-first search on dendrogram.
 - At each leaf containing object o.
 - 1. Map *o* to *c*.

Definition

- 1. Build a distance matrix: $dmat[o_1][o_2]$ holds the distance between o_1 and o_2 .
- 2. Choose a linkage criterion and perform hierarchical clustering.
 - Produces dendrogram.
- 3. Initialise a counter c to 0.
- 4. Perform depth-first search on dendrogram.
 - ► At each leaf containing object *o*.
 - 1. Map *o* to *c*.
 - 2. Increment *c*.

If two objects do not appear in a points-to set together, their mappings do not affect each other.

▶ Their distance is ∞ .

If two objects do not appear in a points-to set together, their mappings do not affect each other.

▶ Their distance is ∞ .

We can cluster regions of objects which depend on each other separately.

If two objects do not appear in a points-to set together, their mappings do not affect each other.

▶ Their distance is ∞ .

We can cluster regions of objects which depend on each other separately.

Save time: cluster concurrently (not really necessary).

If two objects do not appear in a points-to set together, their mappings do not affect each other.

▶ Their distance is ∞ .

We can cluster regions of objects which depend on each other separately.

- Save time: cluster concurrently (not really necessary).
- ► Save space: distance matrix is quadratic in size.

Optimisation: Region-Based Clustering

If two objects do not appear in a points-to set together, their mappings do not affect each other.

▶ Their distance is ∞ .

We can cluster *regions* of objects which depend on each other separately.

- Save time: cluster concurrently (not really necessary).
- Save space: distance matrix is quadratic in size.

Regions with fewer than ${\mathcal W}$ objects can have their objects mapped arbitrarily.

The first identifier in a region should always start at a word-aligned boundary.

The first identifier in a region should always start at a word-aligned boundary.

Example

Consider two regions R_1 and R_2

$$R_1: o_a \mapsto 0 \quad o_b \mapsto 1 \quad o_c \mapsto 2$$

$$R_2: o_d \mapsto 3 \quad o_e \mapsto 4 \quad o_f \mapsto 5$$

The first identifier in a region should always start at a word-aligned boundary.

Example

Consider two regions R_1 and R_2

$$R_1: o_a \mapsto 0 \quad o_b \mapsto 1 \quad o_c \mapsto 2$$

 $R_2: o_d \mapsto 3 \quad o_e \mapsto 4 \quad o_f \mapsto 5$

Any points-to set in R_1 (subsets of $\{o_a,o_b,o_c\}$) will take the form $\{0\ [\langle \times \times \times 0 \rangle\]\},$

The first identifier in a region should always start at a word-aligned boundary.

Example

Consider two regions R_1 and R_2

$$R_1: o_a \mapsto 0 \quad o_b \mapsto 1 \quad o_c \mapsto 2$$

 $R_2: o_d \mapsto 3 \quad o_e \mapsto 4 \quad o_f \mapsto 5$

Any points-to set in R_1 (subsets of $\{o_a, o_b, o_c\}$) will take the form

$$\{0[\langle \times \times \times 0 \rangle]\},\$$

Any points-to set in R_2 (subsets of $\{o_d, o_e, o_f\}$) will take one of three forms

The first identifier in a region should always start at a word-aligned boundary.

Example

Consider two regions R_1 and R_2

$$R_1: o_a \mapsto 0 \quad o_b \mapsto 1 \quad o_c \mapsto 2$$

 $R_2: o_d \mapsto 3 \quad o_e \mapsto 4 \quad o_f \mapsto 5$

Any points-to set in R_1 (subsets of $\{o_a, o_b, o_c\}$) will take the form

$$\{0[\langle \times \times \times 0 \rangle]\},\$$

Any points-to set in R_2 (subsets of $\{o_d, o_e, o_f\}$) will take one of three forms

The first identifier in a region should always start at a word-aligned boundary.

Example

Instead, consider the mapping

$$R_1: o_a \mapsto 0 \quad o_b \mapsto 1 \quad o_c \mapsto 2$$

$$R_2: o_d \mapsto 4 \quad o_e \mapsto 5 \quad o_f \mapsto 6$$

The first identifier in a region should always start at a word-aligned boundary.

Example

Instead, consider the mapping

$$R_1: o_a \mapsto \boxed{0} \quad o_b \mapsto 1 \quad o_c \mapsto 2$$

$$R_2: o_d \mapsto 4$$
 $o_e \mapsto 5$ $o_f \mapsto 6$

The first identifier in a region should always start at a word-aligned boundary.

Example

Instead, consider the mapping

$$R_1: o_a \mapsto 0 \quad o_b \mapsto 1 \quad o_c \mapsto 2$$

 $R_2: o_d \mapsto 4 \quad o_e \mapsto 5 \quad o_f \mapsto 6$

As before, any points-to set with objects in R_1 will take the form

$$\{\,0\,[\,\langle\times\!\times\!\times 0\,\rangle\,]\,\}$$

The first identifier in a region should always start at a word-aligned boundary.

Example

Instead, consider the mapping

$$R_1: o_a \mapsto 0$$
 $o_b \mapsto 1$ $o_c \mapsto 2$
 $R_2: o_d \mapsto 4$ $o_e \mapsto 5$ $o_f \mapsto 6$

As before, any points-to set with objects in R_1 will take the form

$$\{0 [\langle \times \times \times 0 \rangle] \}$$

But now, any points-to set with objects in R_2 will take the form

$$\{ 4 [\langle \times \times \times 0 \rangle] \}$$

- ▶ Implemented in LLVM-based points-to analysis framework SVF.
 - ► SFS algorithm unchanged.
 - Flow-insensitive Andersen's analysis as auxiliary analysis.

- Implemented in LLVM-based points-to analysis framework SVF.
 - SFS algorithm unchanged.
 - Flow-insensitive Andersen's analysis as auxiliary analysis.
- ► fastcluster¹ with hclust-cpp ² C++ bindings for clustering.

¹Daniel Müllner, fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python, Journal of Statistical Software 53 (2013), no. 9, 1–18, URL http://www.jstatsoft.org/v53/i09/

- Implemented in LLVM-based points-to analysis framework SVF.
 - SFS algorithm unchanged.
 - Flow-insensitive Andersen's analysis as auxiliary analysis.
- ► fastcluster¹ with hclust-cpp ² C++ bindings for clustering.
- ► Clustered with 3 linkage criteria single, complete, and average and chose the best for the auxiliary analysis.

¹Daniel Müllner, fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python, Journal of Statistical Software 53 (2013), no. 9, 1–18, URL http://www.jstatsoft.org/v53/i09/

²https://github.com/cdalitz/hclust-cpp

- Implemented in LLVM-based points-to analysis framework SVF.
 - SFS algorithm unchanged.
 - Flow-insensitive Andersen's analysis as auxiliary analysis.
- ► fastcluster¹ with hclust-cpp ² C++ bindings for clustering.
- Clustered with 3 linkage criteria single, complete, and average and chose the best for the auxiliary analysis.
- Word size of 64.

¹Daniel Müllner, fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python, Journal of Statistical Software 53 (2013), no. 9, 1–18, URL http://www.jstatsoft.org/v53/i09/

²https://github.com/cdalitz/hclust-cpp

Benchmark	Theoretical	Original	Single	Complete	Average	Reduction
dhcpcd	3 317 195	23 911 465	4 961 417	6 605 816	5 784 023	4.82 ×
gawk	58 007 460	429 739 789	82 783 110	140 588 641	148 836 214	5.19 ×
bash	26 586 881	295 168 808	31731607	36 861 568	47 120 912	9.30 ×
mutt	51 298 142	548 971 273	87 213 543	260 457 927	259 746 461	6.29 ×
lynx	133 664 618	1 015 676 964	237 113 529	289 849 510	302 122 259	4.28 ×
xpdf	731 879 787	4 197 513 654	1 558 434 196	1 558 496 134	1 526 729 185	$2.75 \times$
ruby	320 059 196	6 600 730 356	1 405 659 097	2 5 1 4 8 3 6 1 3 7	2 186 425 117	4.70 ×
keepassxc	13 770 856	1 399 786 369	107 456 539	134 257 502	120 881 288	13.03×
Geo. Mean	Geo. Mean					

(**Theoretical** is $\lceil \frac{n}{W} \rceil$.)

Benchmark	Theoretical	Original	Single	Complete	Average	Reduction
dhcpcd	3 317 195	23 911 465	4 961 417	6 605 816	5 784 023	4.82 ×
gawk	58 007 460	429 739 789	82 783 110	140 588 641	148 836 214	5.19 ×
bash	26 586 881	295 168 808	31 731 607	36 861 568	47 120 912	9.30 ×
mutt	51 298 142	548 971 273	87 213 543	260 457 927	259 746 461	6.29 ×
lynx	133 664 618	1 015 676 964	237 113 529	289 849 510	302 122 259	4.28 ×
xpdf	731 879 787	4 197 513 654	1 558 434 196	1 558 496 134	1 526 729 185	2.75 ×
ruby	320 059 196	6 600 730 356	1 405 659 097	2 5 1 4 8 3 6 1 3 7	2 186 425 117	4.70 ×
keepassxc	13 770 856	1 399 786 369	107 456 539	134 257 502	120 881 288	13.03 ×
Geo. Mean						5.66 ×

(Theoretical is $\lceil \frac{n}{W} \rceil$.)

Benchmark	Theoretical	Original	Single	Complete	Average	Reduction
dhcpcd	3 317 195	23 911 465	4 961 417	6 605 816	5 784 023	4.82 ×
gawk	58 007 460	429 739 789	82 783 110	140 588 641	148 836 214	5.19 ×
bash	26 586 881	295 168 808	31 731 607	36 861 568	47 120 912	9.30 ×
mutt	51 298 142	548 971 273	87 213 543	260 457 927	259 746 461	6.29 ×
lynx	133 664 618	1 015 676 964	237 113 529	289 849 510	302 122 259	4.28 ×
xpdf	731 879 787	4 197 513 654	1 558 434 196	1 558 496 134	1 526 729 185	$2.75 \times$
ruby	320 059 196	6 600 730 356	1 405 659 097	2 5 1 4 8 3 6 1 3 7	2 186 425 117	4.70 ×
keepassxc	13 770 856	1 399 786 369	107 456 539	134 257 502	120 881 288	13.03×
Geo. Mean						5.66×

(**Theoretical** is $\lceil \frac{n}{W} \rceil$.)

Speedup: $1.32 \times$

Benchmark	Theoretical	Original	Single	Complete	Average	Reduction
dhcpcd	3 317 195	23 911 465	4 961 417	6 605 816	5 784 023	4.82 ×
gawk	58 007 460	429 739 789	82 783 110	140 588 641	148 836 214	5.19 ×
bash	26 586 881	295 168 808	31 731 607	36 861 568	47 120 912	9.30 ×
mutt	51 298 142	548 971 273	87 213 543	260 457 927	259 746 461	6.29 ×
lynx	133 664 618	1 015 676 964	237 113 529	289 849 510	302 122 259	4.28 ×
xpdf	731 879 787	4 197 513 654	1 558 434 196	1 558 496 134	1 526 729 185	$2.75 \times$
ruby	320 059 196	6 600 730 356	1 405 659 097	2 5 1 4 8 3 6 1 3 7	2 186 425 117	4.70 ×
keepassxc	13 770 856	1 399 786 369	107 456 539	134 257 502	120 881 288	13.03×
Geo. Mean	Geo. Mean					

(**Theoretical** is $\lceil \frac{n}{W} \rceil$.)

Speedup: 1.32×

Memory reduction: \geq 2.35×

Thank you

Implementation available at https://github.com/SVF-tools/SVF/wiki/Object-Clustering