MATH 217 Theorems

Julian Pagcaliwagan

September 7, 2023

Lemma 1. Let \mathbb{O}_1 be an ordered field. Then for every $x \in \mathbb{O}_1$ we have that $x^2 = x \cdot x > 0$.

Corollary 1. The field $\mathbb C$ of complex numbers is NOT orderable. (hint for proof:)

Lemma 2. Let \mathbb{O}_1 be an ordered field, and consider the following subset of it:

$$\mathcal{P}_{\mathbb{O}_1} = \{ x \in \mathbb{O}_1 : 0 < x \}$$

then, $\forall y, z \in \mathcal{P}_{\mathbb{O}_1}$ we have that $y + z \in \mathcal{P}_{\mathbb{O}_1}$ and $y \cdot z \in \mathcal{P}_{\mathbb{O}_1}$

Theorem 1. Let $\mathbb{F} = (\mathbb{F}_1, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ be a field, and suppose that there is a subset \mathcal{P}_1 of \mathbb{F} for which properties (O1'), (O2'), and (O3') hold true. Then \mathbb{F} is orderable. More specifically, the order relation ' \leq ' that is given by the strict order relation ' \leq ' which is defined by:

$$x < y \text{ if } y - x \in \mathcal{P}_1$$

is a total order on $\mathbb F$ which is compatible with the addition and multiplication on $\mathbb F.$

Proposition 1. let \mathbb{O}_1 be an ordered field. Then, for any prime $p \in \mathbb{N}$ we have that no subfield of \mathbb{O}_1 is isomorphic to \mathbb{Z}_p . More generally, we have that NO subfield of \mathbb{O}_1 is finite.