An introduction to DYNARE

Michel Juillard (Banque de France and CEPREMAP)

ESRI-CEPREMAP workshop, January 29, 2016

The views expressed herein are ours and do not necessarily represent the views of Banque de France.

Outline

- Introduction
- 2 A New Keynesian simple model
- Writing a model in Dynare
- Solving and simulating
- Estimating a DSGE model with Dynare

DSGE models

- Microfoundations: agents optimize an objective function;
- Agents are forward looking: intertemporal optimization;
- Rational expectation hypothesis;
- General equilibrium: markets interact;
- Stochastic shocks push economy away from equilibrium;
- Endogenous dynamics bring the model back to equilibrium;
- We use numerical methods to approximate the solution of such models.

DYNARE

- computes the solution of deterministic models (arbitrary accuracy),
- computes first and second order approximation to solution of stochastic models,
- estimates (maximum likelihood or Bayesian approach)
 parameters of DSGE models, for linear and non-linear models.
- check for identification of estimated parameters
- computes optimal policy
- o performs global sensitivity analysis of a model,
- estimates BVAR and Markov-Switching Bayesian VAR models.

A simple Neo-Keynesian model

- A simple model from [? ?]. Similar to [?] or [?].
- Main differences with RBC models:
 - 1 imperfect competition
 - nominal rigidities
- Consequence: monetary policy matters

Households

The representative household maximizes

$$\mathbb{E}_0 \sum_{s=0}^{\infty} \beta^s \left\{ \frac{\left(C_{t+s}/A_{t+s}\right)^{1-\tau} - 1}{1-\tau} + \chi_M \ln \left(\frac{M_{t+s}}{P_{t+s}}\right) - \chi_H H_{t+s} \right\},$$

with:

 C_t : consumption index, in period t

At: evel of technology

 $\frac{M_t}{P_t}$: real money balances,

Ht: hours worked,

 $\frac{1}{\tau}$: elasticity of intertemporal substitution,

 χ_M : scale factor

 χ_H : scale factor.

Household's budget constraint

$$P_t C_t + B_t + M_t - M_{t-} + T_t = P_t W_t H_t + R_{t-} B_{t-} + P_t D_t,$$

with

 P_t : price index for final goods,

 W_t : real wage,

Bt: nominal government bond,

 T_t : lump-sum taxes,

 D_t : dividends received from monopolistic firms.

In addition, the usual transversality condition applies, excluding Ponzi schemes.

Final good sector firms

The representative firm producing the final good assembles a continuum of intermediate goods indexed by $j \in [0,1]$ in a perfectly competitive manner:

$$Y_t = \int_0^\infty Y_t(j)^{-\nu} dj^{\frac{1}{1-\nu}},$$

with:

 Y_t : final good production index,

 $Y_t(j)$: good j production,

 $\frac{1}{\nu}$: demand elasticity.

Final good price index

Under optimal behaviour, the price of the final good is

$$P_t = {}^{\infty} P_t(j)^{\frac{\nu-1}{\nu}} dj \quad {}^{\frac{\nu}{\nu-1}},$$

with

 P_t : price index of final good,

 $P_t(j)$: price index of good j.

Intermediate goods firms (I)

 Intermediate good j is produced by a monopolist with technology

$$Y_{(j)} = A_t N_t(j),$$

where

 $N_t(j)$: labor input of firm j.

 Firms face a uadratic adjustment cost when they change their price:

$$AC(j) = \frac{\phi}{2} \quad \frac{P_t(j)}{P_{t-}(j)} - \pi$$

with

 π : steady state inflation rate

 ϕ : adjustment cost parameter

Intermediate goods firms (II)

Intermediate goods firms maximize the present value of future profits:

$$\mathbb{E}_{t} \sum_{s=}^{\infty} \beta^{s} Q_{t+s} \frac{P_{t+s}(j)}{P_{t+s}} Y_{t+s}(j) - W_{t+s} N_{t+s}(j) - AC_{t+s}(j) ,$$

with

 Q_{t+s} : marginal value of a unit of consumption good in period t+s

Monetary policy

The central bank stabilizes inflation and its policy is represented by an interest rate feedback rule:

$$R_t = R_{t-}^{\rho_R} \left(r \pi^{\star} \left(\frac{\pi_t}{\pi^{\star}} \right)^{\psi_1} \quad \frac{Y_t}{Y_t^{\star}} \quad \right)^{-\rho_R} e^{\epsilon_{R,t}},$$

with

r: steady state real interest rate,

 π_t : gross inflation rate (P_t/P_{t-})

 π^* : target inflation rate,

 Y_t^* : potential output,

 $\epsilon_{R,t}$ monetary policy shock.

Fiscal policy

The government consumes a fraction ζ_t of output:

$$G_t = \zeta_t Y_t$$

with

 G_t : government expenditures.

The government levies a lump-sum tax T_t in order to balance the budget. The government budget constraint is

$$P_t G_t + R_{t-} B_{t-} = T_t + B_t + M_t - M_{t-}$$
.

Market clearing

The following equilibrium relationships prevail:

$$Y_t = C_t + G_t + AC_t$$

$$H_t = N_t$$

Exogenous processes (I)

There are three shocks in the model:

- $oldsymbol{0}$ aggregate productivity A_t
- share of government expenditures in total output zetat
- ullet monetary policy shock, $\epsilon_{R,t}$

 $\epsilon_{R,t}$ is serially uncorrelated.

Exogneous preocesses (II)

 A_t evolves according to

$$\ln A_t = \ln \gamma + \ln A_{t-} + \ln z_t,$$

and

$$\ln z_t = \rho_z \ln z_{t-} + \epsilon_{z,t},$$

with

 γ : long run rate of growth of technology.

Exogneous preocesses (II)

Define

$$g_t = \frac{1}{1 - \zeta_t}$$

and

$$\ln g_t = (1 - \rho_g) \ln g + \rho_g \ln g_{t-} + \epsilon_{g,t},$$

with

g: steady state share of government expenditures.

Potential output

Potential output is defined as the output that would prevail in absence of nominal rigidities:

$$Y_t^{\star} = (1-\nu)^{\frac{1}{\tau}} A_t g_t.$$

Dynamic recursive equilibrium (non-stationary)

$$\begin{split} 1 &= \beta \mathbb{E}_t & \frac{C_{t+}}{A_{t+}} \frac{A_t}{C_t} & \frac{-\tau}{A_{t+}} \frac{A_t}{\pi_t} &, \\ 1 &= \frac{1}{\nu} \left[1 - \left[\frac{C_t}{A_t} \right]^{\tau} \right] + \phi \left(\pi_t - \pi \right) \left[\left(1 - \frac{1}{2\nu} \right)^{\tau} \pi_t + \frac{\pi}{2\nu} \right] \\ & - \phi \beta \mathbb{E}_t & \frac{C_{t+}}{A_{t+}} \frac{A_t}{C_t} & \frac{\tau}{A_{t+}} \frac{Y_{t+}}{A_t} \frac{Y_t}{A_t} \left(\pi_{t+} - \pi \right) \pi_{t+} &, \\ Y_t^{\star} &= (1 - \nu)^{\frac{1}{\tau}} A_t g_t, & \psi_1 & \frac{Y_t}{Y_t^{\star}} & e^{\epsilon_{R,t}}, \\ R_t &= R_{t-}^{\rho_R} & r \pi^{\star} & \frac{\pi_t}{\pi^{\star}} & \frac{\psi_1}{Y_t^{\star}} & e^{\epsilon_{R,t}}, \\ \ln z_t &= \rho_z \ln z_{t-} & + \epsilon_{z,t}, \\ \ln g_t &= (1 - \rho_g) \ln g + \rho_g \ln g_{t-} & + \epsilon_{g,t}, \end{split}$$

Detrending the model

define detrended variables

$$c_t = \frac{C_t}{A_t}$$
$$y_t = \frac{Y_t}{A_t}$$

steady state:

$$c = (1 - \nu)^{\frac{1}{\tau}}$$
 $y = g(1 - \nu)^{\frac{1}{\tau}}$
 $r = \frac{\gamma}{\beta}R = r\pi^*$

• define $\hat{x}_t = \ln(\hat{x}_t/x)$ as the percentage deviation of variable x_t .

The detrended model

$$\begin{split} 1 &= \mathbb{E}_t \left\{ e^{-\tau \hat{c}_{t+1} + \tau \hat{c}_t + \hat{R}_t - \hat{z}_{t+1} - \hat{\pi}_{t+1}} \right\}, \\ \frac{1 - \nu}{\nu \phi \pi^2} &= e^{\tau \hat{c}_t} - 1 &= e^{\hat{\pi}_t} - 1 & 1 - \frac{1}{2\nu} e^{\hat{\pi}_t} + \frac{1}{2\nu} \\ &\qquad - \beta \mathbb{E}_t \left\{ \left(e^{\hat{\pi}_{t+1}} - 1 e^{-\tau \hat{c}_{t+1} + \tau \hat{c}_t + \hat{y}_{t+1} \hat{y}_t + \hat{\pi}_{t+1}} \right\} \\ e^{\hat{c}_t - \hat{y}_t} &= e^{-g_t} - \frac{\phi \pi^2 g}{2} e^{\hat{\pi}_t} - 1 \\ &\qquad \hat{R}_t = \rho_R \hat{R}_{t-} + (1 - \rho_R) \left(\psi \hat{\pi}_t + \psi_2 \left(\hat{y}_t - \hat{g}_t \right) \right) + \epsilon_{R,t} \\ \hat{z}_t &= \rho_z \hat{z}_{t-} + \epsilon_{z,t}, \\ \hat{g}_t &= \rho_g \hat{g}_{t-} + \epsilon_{g,t}, \end{split}$$

Measurement equations

$$egin{aligned} \textit{YGR}_t &= \gamma^{(Q)} + 100 \left(\hat{y}_t - \hat{y}_{t-} + z_t
ight) \ \textit{INFL}_t &= \pi^{(A)} + 400 \hat{\pi}_t \ \textit{INT}_t &= \pi^{(A)} + r^{(A)} + 4 \gamma^{(Q)} + 400 \hat{R}_t \end{aligned}$$

with

 $\gamma^{(Q)}$: rate of growth of output in percentage $\pi^{(A)}$: annual inflation rate in percentage $r^{(A)}$: annualized interest rate in percentage

Note that

$$\gamma = 1 + rac{\gamma^{(Q)}}{100}$$
 $\beta = rac{1}{1 + r^{(A)}/400}$
 $\pi = 1 + rac{\pi^{(A)}}{400}$

Dynare model file (I)

Dynare model file (II)

```
tau = 2;
nu = 0.1;
kappa = 0.3;
beta = 0.99;
gbar = 1/0.85;
rho_R = 0.5;
rho_g = 0.8;
rho_z = 0.66;
pi_A = 4.0;
r A = 0.8;
gamma_Q = 0.4;
psi_1 = 1.5;
psi_2 = 0.5;
```

Dynare model file (III)

```
model;
# pibar = 1 + pi_A/400;
# phi = tau*(1 - nu)/(nu*pibar^2*kappa);
# gamma = 1 + gamma_Q/100;
# beta = 1/(1+r_A/400);
```

Dynare model file (IV)

```
\exp(-\tan x \cdot c(+1) + \tan x \cdot c + R - z(+1) - pi(+1)) = 1;
((1-nu)/(nu*phi*pibar^2))*(exp(tau*c) - 1) =
  (\exp(pi) - 1)*((1 - 1/(2*nu))*\exp(pi) + 1/(2*nu))
  - beta*(\exp(pi(+1)) - 1)*\exp(-tau*c(+1) + tau*c
  + y(+1) - y + pi(+1);
exp(c - v) = exp(-g)
             - (phi*pibar^2*gbar/2)*(exp(pi) - 1)^2;
R = rho_R*R(-1) + (1-rho_R)*(psi_1*pi + psi_2*(y - g))
    + e R:
g = rho_g*g(-1) + e_g;
z = \text{rho } z*z(-1) + e z;
YGR = gamma_Q + 100*(y - y(-1) + z);
INFL = pi_A + 400*pi;
INT = pi_A + r_A + 4*gamma_Q + 400*R;
end:
```

Dynare model file (V)

```
steady_state_model;
c = 0;
R = 0;
z = 0;
pi = 0;
y = 0;
g = 0;
YGR = gamma_Q;
INFL = pi_A;
INT = pi_A + r_A + 4*gamma_Q;
end;
steady;
```

Dynare model file (VI)

```
shocks;
var e_R; stderr 0.003;
var e_g; stderr 0.004;
var e_z; stderr 0.004;
end;
stoch_simul(order=1);
```

Dynare output (I)

STEADY-STATE RESULTS:

```
c 0
R 0
z 0
pi 0
y 0
g 0
dgdp 0.4
pi_obs 4
R_obs 6.4
```

Dynare output (II)

MODEL SUMMARY

```
Number of variables: 9
Number of stochastic shocks: 3
Number of state variables: 4
Number of jumpers: 4
Number of static variables: 3
```

MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS

Variables	e_R	e_g	e_z
e_R	0.000009	0.000000	0.000000
e_g	0.000000	0.000016	0.000000
e_z	0.000000	0.000000	0.000016

Dynare output (III)

POLICY AND TRANSITION FUNCTIONS

	С	R
Constant	0	0
R(-1)	-0.282604	0.333974
g(-1)	0	0
z(-1)	0.294811	0.209595
y(-1)	0	0
e_R	-0.565209	0.667947
e_g	0	0
e_z	0.446684	0.317568

Approximated decision rule

$$\hat{c}_t = -0.283 \hat{R}_{t-} + 0.295 \hat{z}_{t-} - 0.565 \epsilon_{R,t} + 0.447 \epsilon_{z,t}$$

Dynare output (IV)

THEORETICAL MOMENTS

VARIABLE	MEAN	STD. DEV.	VARIANCE
С	0.0000	0.0027	0.0000
R	0.0000	0.0031	0.0000
z	0.0000	0.0053	0.0000
pi	0.0000	0.0015	0.0000
У	0.0000	0.0072	0.0001
g	0.0000	0.0067	0.0000
dgdp	0.4000	0.7869	0.6192
pi_obs	4.0000	0.6120	0.3746
R_obs	6.4000	1.2366	1.5291

Dynare output (V)

VARIANCE DECOMPOSITION (in percent)

```
e_R
             e_g e_z
        43.91 0.00 56.09
С
R
        47.29 0.00 52.71
         0.00 0.00 100.00
z
        27.99 0.00 72.01
рi
         6.25 85.78 7.98
У
        0.00 100.00 0.00
g
dgdp
       6.96 28.71 64.33
pi_obs 27.99 0.00 72.01
R obs
        47.29 0.00 52.71
```

Dynare output (VI)

MATRIX OF CORRELATIONS

Variables	С	R	z	рi
С	1.0000	0.0208	0.7270	0.9844
R	0.0208	1.0000	0.7016	0.1961
z	0.7270	0.7016	1.0000	0.8363
pi	0.9844	0.1961	0.8363	1.0000
У	0.3772	0.0078	0.2742	0.3713
g	0.0000	0.0000	0.0000	0.0000
dgdp	0.6942	0.3890	0.7619	0.7493
pi_obs	0.9844	0.1961	0.8363	1.0000
R_obs	0.0208	1.0000	0.7016	0.1961

Dynare output (VII)

COEFFICIENTS OF AUTOCORRELATION

Order	1	2	3	4	5
С	0.4137	0.1907	0.0984	0.0558	0.0337
R	0.5872	0.3633	0.2316	0.1502	0.0982
Z	0.6600	0.4356	0.2875	0.1897	0.1252
pi	0.4769	0.2536	0.1470	0.0902	0.0572
У	0.7450	0.5761	0.4532	0.3593	0.2859
g	0.8000	0.6400	0.5120	0.4096	0.3277
dgdp	0.1808	0.1482	0.1055	0.0707	0.0459
pi_obs	0.4769	0.2536	0.1470	0.0902	0.0572
R_obs	0.5872	0.3633	0.2316	0.1502	0.0982

Impulse response function to monetary policy shock

ESTIMATION

Calibration versus estimation

Calibration:

- Models represents only some aspects of reality.
- Finding calibration that reproduces these aspects.
- Shortcoming: non indication of calibration uncertainty

Bayesian estimation:

- Combining previous information (previous studies, microeconomic studies) with data.
- The posterior distribution displays uncertainty surrounding parameter estimates.
- Bayesian approach throw a bridge between calibration and classical methods.

Ba esian paradigm (motivations)

- Experience shows that it is quite difficult to estimate a DSGE model by maximum likelihood.
 - Data are not informative enough... The likelihood is flat in some directions (identification issue). This suggests that (when possible) we should use other sources of information.
 - ② DSGE models are misspecified. When a DSGE is estimated by ML or with a "non informative" Bayesian approach (uniform priors) the estimated parameters are often found to be incredible. Using prior informations we can shrink the estimates towards sensible values.
- A related motivation is the relative lack of precision of ML.
 Prior information reduces the uncertainty.
- Final y the Bayesian approach allows easier comparison of (non nested) models.

Ba esian estimation main steps

- priors specification as probability distributions,
- computation of posterior distribution, on the basis of prior distribution and likelihood,
 - computing posterior mode,
 - simulating posterior distribution,
- computing data marginal density useful for models comparison,
- computing posterior predictive density
- o computing posterior distribution of IRFs, forecasts, etc . . .

Estimation of DSGE models

- only some variables are observed,
- statistical model: unobserved components model,
- likelihood must be evaluated through a state space representation of the model and the Kalman filter,
- there must be at least as many shocks as observed variables,
- otherwise, the model suffers from stochastic singularity.

Choosing priors

Domain of definition:

- mean prior: expected value,
- a small standard deviation means a tight prior,
- in Dynare, priors are orthogonal,
- implicit prior: unicity of stable equilibrium.

Dynare Estimation (I)

Dynare Estimation (II)

```
model;
# pibar = 1 + pi_A/400;
# phi = tau*(1 - nu)/(nu*pibar^2*kappa);
# gamma = 1 + gamma_Q/100;
# beta = 1/(1+r_A/400);
```

Dynare Estimation (III)

```
\exp(-\tan x \cdot c(+1) + \tan x \cdot c + R - z(+1) - pi(+1)) = 1;
((1-nu)/(nu*phi*pibar^2))*(exp(tau*c) - 1) =
  (\exp(pi) - 1)*((1 - 1/(2*nu))*\exp(pi) + 1/(2*nu))
  - beta*(\exp(pi(+1)) - 1)*\exp(-tau*c(+1) + tau*c
  + y(+1) - y + pi(+1);
exp(c - v) = exp(-g) - (phi*pibar^2*gbar/2)
                                 *(exp(pi) - 1)^2;
R = rho_R*R(-1) + (1-rho_R)*(psi_1*pi + psi_2*(y - g))
    + e R/100:
g = rho_g*g(-1) + e_g/100;
z = rho z*z(-1) + e z/100;
YGR = gamma_Q + 100*(y - y(-1) + z);
INFL = pi_A + 400*pi;
INT = pi_A + r_A + 4*gamma_Q + 400*R;
end:
```

Dynare Estimation (IV)

```
steady_state_model;
c = 0;
R = 0;
z = 0;
pi = 0;
y = 0;
g = 0;
YGR = gamma_Q;
INFL = pi_A;
INT = pi_A + r_A + 4*gamma_Q;
end;
```

Dynare Estimation (V)

```
estimated_params;
tau, gamma_pdf, 2.0, 0.5;
kappa, gamma_pdf, 0.2, 0.1;
psi_1, gamma_pdf, 1.5, 0.25;
psi_2, gamma_pdf, 0.5, 0.25;
rho_R, beta_pdf, 0.5, 0.2;
rho g, beta pdf, 0.8, 0.1;
rho_z, beta_pdf, 0.666, 0.15;
r_A, gamma_pdf, 0.5, 0.5;
pi_A, gamma_pdf, 4.0, 2.0;
gamma_Q, normal_pdf, 0.4, 0.2;
stderr e_R, inv_gamma_pdf, 0.4, inf;
stderr e_g, inv_gamma_pdf, 1.0, inf;
stderr e_z, inv_gamma_pdf, 0.5, inf;
end:
```

Priors plot (I)

Priors plot (II)

Dynare Estimation (VI)

Dynare Output (I)

```
Initial value of the log posterior
                 (or likelihood): -812.3343
f at the beginning of new iteration, 812.3343
Predicted improvement: 463.840722155
lambda =
                1; f = 30459.8501185
lambda = 0.33333; f = 1092.5770840
lambda = 0.11111; f = 752.7353413
Norm of dx 0.30458
Improvement on iteration 1 = 59.598924800
. . .
Improvement on iteration 42 = 0.000000003
improvement < crit termination</pre>
```

Final value of minus the log posterior (or likelihood):590.429395 Michel Juillard

Dynare Output (II)

RESULTS FROM POSTERIOR ESTIMATION parameters

pri	or mean	mode	s.d	. prior	pstdev
tau	2.000	2.0854	0.3799	gamm	0.5000
kappa	0.200	0.1697	0.0253	gamm	0.1000
psi_1	1.500	1.4385	0.2320	gamm	0.2500
psi_2	0.500	0.3303	0.1226	gamm	0.2500
rho_R	0.500	0.5613	0.0422	beta	0.2000
rho_g	0.800	0.9529	0.0169	beta	0.1000
rho_z	0.666	0.5736	0.0290	beta	0.1500
r_A	0.500	0.6574	0.2722	gamm	0.5000
pi_A	4.000	3.9657	0.0338	gamm	2.0000
gamma_Q	0.400	0.374	4 0.076	32 norm	n 0.2000

Dynare Output (III)

```
standard deviation of shocks
    prior mean mode s.d. prior pstdev

e_R 0.400 0.1757 0.0093 invg Inf
e_g 1.000 0.7684 0.0342 invg Inf
e_z 0.500 0.5492 0.0451 invg Inf
```

Log data density [Laplace approximation] is -621.416125.

Simulating the posterior distribution

- The posterior distribution doesn't have an analytical representation.
- It is possible to simulate a sample of parameter values, representative of the posterior distribution.
- Metropolis is a MCMC algorithm with acceptance/rejection of proposed parameter values randomly drawn.
- The average acceptance must be monitored. A target of about 25% is considered optimal.
- The average acceptance ratio can be tuned with the mh_jscale parameter of the estimation command.

Dynare command

Smoothed variables and smoothed shocks

- Only some variables are observed (here YGR INFL INT).
- The Kalman smoother finds best values for other variables and for shocks.
- In absence of measurement errors, the smoothed value of the observed variables is equal to the observation.

Dynare output (I)

```
Estimation::mcmc: Current acceptance ratio per chain:
Chain 1: 21.08%
```

ESTIMATION RESULTS

Log data density is -621.301701.

Dynare output (II)

parameters							
	prior mean	post. mean	90% HPD	interval			
tau	2.000	2.2520	1.5927	2.9147			
kappa	0.200	0.1815	0.1363	0.2274			
psi_1	1.500	1.4870	1.0970	1.8468			
psi_2	0.500	0.3673	0.1619	0.5713			
rho_R	0.500	0.5651	0.4986	0.6323			
rho_g	0.800	0.9559	0.9295	0.9824			
rho_z	0.666	0.5773	0.5297	0.6250			
r_A	0.500	0.6813	0.2418	1.1119			
pi_A	4.000	3.9629	3.9110	4.0173			
gamma_Q	0.400	0.3676	0.2473	0.4929			

Dynare output (III)

standar	d deviation	of shocks		
	prior mean	post. mean	90% HPD	interval
e_R	0.400	0.1782	0.1630	0.1940
e_g	1.000	0.7777	0.7208	0.8352
e_z	0.500	0.5530	0.4755	0.6275

Prior-Posterior-Mode (I)

Prior-Posterior-Mode (II)

Smoothed observed variables

Smoothed variables

Smoothed shocks

Posterior distribution of IRFs

Posterior distribution of forecast mean

Posterior distribution of forecast point

Historical shocks decomposition

- Because the reduced form of the model is a state space, it is possible to decompose the dynamics of each endogenous variables as the sum of initial conditions and the cumulative effects of the shocks
- In real applications, this decomposition can be compared to a narrative of events.

Historical shock decomposition of inflation

Points to watch for

Numerical optimization for finding the mode not always works:

```
POSTERIOR KERNEL OPTIMIZATION PROBLEM!

(minus) the hessian matrix at the "mode" is not positive definite!

> posterior variance of the estimated parameters are not positive.

You should try to change the initial values of the parameters using the estimated_parame_init block, or use another optimization routine. Warning: The results below are most likely wrong!
```

- Check for parameter standard deviation of 0
- If needed use option mode_check

Mode check

Mode check

log-post log-lik kernel

Points to watch for

Numerical optimization for finding the mode not always works:

```
POSTERIOR KERNEL OPTIMIZATION PROBLEM!

(minus) the hessian matrix at the "mode" is not positive definite!

=> posterior variance of the estimated parameters are not positive.

You should try to change the initial values of the parameters using the estimated_params_init block, or use another optimization routine.

Warning: The results below are most likely wrong!
```

- Check for parameter standard deviation of 0
- If needed use option mode_check
- Assess convergence of Metropolis sampling: Brooks and Gelman (1998) convergence tests

Multivariate convergence tests

Univariate convergence tests

More advice

- Data must be consistent with the variables of the model (stationarity units)
- Check that a model simulated under the prior produces moments roughly comparable with the empirical moments of the data
- Start with a small model and add mechanisms one by one.
 This makes it easier to find mistakes. You can use better initial values for the parameters.