신입생 Deep Learning 기초 교육

BERT & GPT

Multimodal Language Cognition Lab, Kyungpook National University

2023.02.16

Background

2017(June)

Transformer

2018(June)

2018(Oct)

GPT

- Generative Model
- Transformer Decoder

- Transformer Encoder
- Feature vector 생성

Background

	BERT	GPT-1	
Attention range	Self-Attention Consider all tokens	Masked Self-Attention Consider previous tokens	
Generation	X	Ο	
Fine-tuning	required	auxiliary	

Bidirectional Encoder Representations from Transformer

Pre-training

- Unlabeled date
 bookscorpus: 800M words
 english wikipedia: 2,500M words
- Embedding
- MLM (Masked language model)
- NSP (Next Sentence Prediction)

Fine-tuning

- Labeled date
- Embedding
- fine-tuning with just one additional output layer

BERT: Embedding

- Token embeddings: WordPiece embeddings with a 30,000 token vocabulary
- Segment embeddings: Add a different number to each sentence
- Position embeddings: Indicates the order of the sentences

BERT: Encoder

Pre-training

BERT: MLM(Masked Language Model)

- Pre-training, Fine-tuning mismatch
- Mask ratio
 - 80% of the time: my dog is hairy \rightarrow my dog is **[MASK]**
 - 10% of the time: my dog is hairy \rightarrow my dog is **apple**
 - 10% of the time: my dog is **hairy**

Masking Rates			Dev Set Results			
MASK	SAME	RND	MNLI Fine-tune		NER Feature-based	
80%	10%	10%	84.2	95.4	94.9	
100%	0%	0%	84.3	94.9	94.0	
80%	0%	20%	84.1	95.2	94.6	
80%	20%	0%	84.4	95.2	94.7	
0%	20%	80%	83.7	94.8	94.6	
0%	0%	100%	83.6	94.9	94.6	

BERT: MLM(Masked Language Model)

- Pre-training, Fine-tuning mismatch
- Mask ratio
 - 80% of the time: my dog is hairy \rightarrow my dog is **[MASK]**
 - 10% of the time: my dog is hairy \rightarrow my dog is **apple**
 - 10% of the time: my dog is **hairy**

Masking Rates			Dev Set Results			
MASK	SAME	RND	MNLI Fine-tune		NER ne Feature-based	
80%	10%	10%	84.2	95.4	94.9	
100%	0%	0%	84.3	94.9	94.0	
80%	0%	20%	84.1	95.2	94.6	
80%	20%	0%	84.4	95.2	94.7	
0%	20%	80%	83.7	94.8	94.6	
0%	0%	100%	83.6	94.9	94.6	

BERT: MLM(Masked Language Model)

BERT: NSP(Next Sentence Prediction)

Pre-training

- Many important downstream tasks such as Question Answering
 (QA) and Natural Language Inference (NLI) are based on
 understanding the relationship between two sentences.
- 50%: IsNext 50%: NotNext

BERT: NSP(Next Sentence Prediction)

Finetuning

We can fine-tune by just adding output layer

GPT-1

N×

Positions

GPT-1: Unsupervised pre-training

- Unsupervised corpus of tokens $U = \{u_1, \dots, u_n\}$
- $L_1(U) = \sum_i \log P(u_i | u_{i-k}, ..., u_{i-1}; \theta)$
- $h_0 = UW_e + W_p$
- $h_l = transformer_block(h_{l-1}) \ \forall i \in [1, n]$
- $P(u) = softmax(h_n W_e^T)$

GPT-1: Supervised fine-tuning

- Input tokens $x^1, ..., x^m$ and label y
- the final transformer block's activation h_l^m , which is then fed into an added linear output layer with parameters W_y to predict y:

$$P(y|x^{1},...,x^{m}) = softmax(h_{l}^{m}W_{y})$$

$$L_2(C) = \sum_{(x,y)} \log P(y|x^1,...,x^m)$$

GPT-1, 2, 3

- GPT-1: Improving Language Understanding by Generative Pre-Training generative pre-training, auxiliary fine-tuning
- GPT-2: Language Models are Unsupervised Multitask Learners bigger model, zero-shot learning
- GPT-3: Language Models are Few-Shot Learners
 biggest model, few-shot learning

GPT-1, 2, 3

	GPT-1	GPT-2	GPT-3
Parameters	117 Million	1.5 Billion	175 Billion
Decoder Layers	12	48	96
Context Token Size	512	1024	2048
Hidden Layer	768	1600	12288
Batch Size	64	512	3.2M

GPT-3: Downstream Task

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
Translate English to French: task description
cheese => task description
```

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer 

cheese => 

prompt
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Code

Start token? End token?

BERT

<CLS> context <SEP> question <SEP>

SQuAD2.0

context: Through combining the definition of electric current as the time rate of change of electric charge, a rule of vector multiplication called Lorentz's Law describes the force on a charge moving in a magnetic field. The connection between electricity and magnetism allows for the description of a unified electromagnetic force that acts on a charge. This force can be written as a sum of the electrostatic force (due to the electric field) and the magnetic force (due to the magnetic field). Fully stated, this is the law:

- 1. 정답이 없는 경우
- 2. context 길이와 answer 길이가 안 맞는 경우
- 3. 길이가 max len 보다 긴 경우

ChatGPT

https://openai.com/blog/chatgpt/

