

Fonte de alimentação estabilizada

Em geral podem dividir-se as fontes de tensão nos seguintes blocos funcionais: transformação de tensão, rectificação, filtragem, e regulação. No entanto em vários tipos de fontes alguns destes elementos estão ausentes.

Transformação de tensão

Este elemento tem por objectivo obter um valor de tensão mais próximo do valor DC pretendido. Em geral este passo é realizado por um transformador, que apresenta ainda a vantagem de isolar electricamente a fonte da rede. Existem no entanto fontes em que a transformação de tensão é realizada já em tensão contínua (fontes de switching), ou em que é utilizado um multiplicador de tensão (fontes de alta tensão).

Rectificação

Tem por objectivo transformar uma corrente alternada numa corrente unidireccional.

Esta função é normalmente realizada por díodos ou por Thyristors, também conhecidos por SCR (Silicon Controled Rectifier).

Circuitos de rectificação

Esta rectificação pode ser de meia-onda quando apenas é aproveitada metade da onda, ou de onda completa quando se aproveitam as duas alternâncias da onda.

Rectificação de meia-onda. Circuito e tensão aplicada na carga.

Na rectificação de meia onda o díodo deixa passar as alternâncias positivas, cortando as negativas. A tensão máxima de saída é menor que a amplitude de entrada dada a queda de tensão no díodo.

Rectificação de onda completa. Circuito e tensão aplicada na carga.

Na rectificação de onda completa, funcionam dois díodos alternados em cada crista da onda. 1 e 3 para as alternâncias positivas, 2 e 4 para as alternâncias negativas. Como a corrente atravessa sempre dois díodos vamos ter uma tensão máxima de saída inferior à da rectificação de meia onda.

Nos casos em que o secundário do transformador tem ponto médio podemos fazer a rectificação de onda completa aproveitando alternadamente as duas metades do secundário. A tensão máxima de saída é metade da amplitude no secundário do transformador menos a queda de tensão no díodo.

Rectificação de onda completa bifásica.

Podemos também obter rectificação de onda completa bipolar utilizando o circuito da figura, em que geramos com apenas 4 díodos duas rectificações de onda completa simétricas.

Rectificação de onda completa bipolar e bifásica.

O conjunto de quatro díodos utilizado na rectificação de onda completa, é vendido sob o nome de ponte rectificadora, e é, em geral, mais barato que quatro díodos equivalentes.

Filtragem

Tem por objectivo eliminar as flutuações de tensão originadas pela variação sinusoidal da entrada.

Em geral a filtragem é realizada por um condensador que acumula carga eléctrica nos picos de tensão de entrada, fornecendo esta carga no intervalo de tempo em que a tensão de entrada é baixa.

Rectificação de meia onda com filtragem por condensador.

A diferença de tensão entre os valores máximo e mínimo da tensão na carga é chamada tensão de "ripple" ou mais simplesmente "ripple".

No caso de rectificação de meia onda, a tensão média na carga é dada pela expressão:

$$V_{DC} \approx V_{pico} - \frac{Corrente}{Cf}$$
 (f = frequência da tensão de rede)

No caso de rectificação de onda completa devemos substituir f por 2f.

A tensão de "ripple" é dada por I/Cf para rectificação de meia onda, e I/2Cf para onda completa.

Nos casos em que é necessário uma menor tensão de "ripple" utiliza-se uma filtragem um pouco mais elaborada tal como a indicada na figura.

Regulação

Tem por objectivo manter a tensão de saída constante quando a carga da fonte de tensão varia, ou quando a tensão da rede varia.

O circuito mais simples de regulação é o indicado na figura, em que é utilizado um díodo de Zener.

No desenho deste circuito é necessário ter em conta as seguintes considerações:

O valor da resistência de balastro deve ter o seguinte valor:

$$R \leq \frac{V_{Entrada\ m\'{n}imo} - V_{Zener}}{I_{Sa\'{1}da\ m\'{a}ximo}}$$

A resistência deve poder dissipar uma potência dada por:

$$P_R = (V_{Entrada \ máximo} - V_{Zener}) \bullet I_{Saída \ máximo}$$

O diodo Zener deve dissipar uma potência dada por:

$$P_Z = V_{Zener} \bullet I_{Saída \, máximo}$$

As considerações de dimensionamento anteriores são directamente aplicáveis a fontes negativas por simples inversão do díodo Zener.

Regulação por seguidor de emissor

Quando a corrente de carga toma valores elevados, o circuito anterior implica a utilização de uma resistência de potência e um díodo Zener de potência. Além disso a variação da tensão de Zener com a corrente, e também com a potência dissipada no díodo, faz com que a regulação seja pobre. Para obviar a estes inconvenientes utiliza-se o circuito indicado na figura seguinte, no qual a corrente que atravessa o Zener passa a ser independente da corrente de saída, sendo utilizado um único elemento de potência (transistor). A regulação fica melhorada já que a queda de tensão base-emissor do transistor não é tão dependente da corrente.

A limitação de escolha de componentes é agora unicamente imposta ao transistor. Este deverá aguentar a corrente máxima de saída, suportar uma tensão VCE superior à diferença entre as tensões de entrada e saída, e poder dissipar uma potência dada por:

$$P_{Transistor} = (V_{Entrada \ máxima} - V_{Saída}) \bullet I_{Saída \ máximo}$$

Este circuito pode ser melhorado se incluirmos um amplificador de erro numa malha de "feedback" (figura seguinte). Este circuito além de uma melhor regulação, permite aínda a variação da tensão de saída.

Limitação de corrente

De um ponto de vista prático é necessário proteger as fontes de tensão contra um curtocircuito à saída. Para tal utiliza-se um limitador de corrente que vai impedir que a corrente de

saída ultrapasse um valor previamente estabelecido. Um exemplo prático deste circuito está indicado na figura.

Quando a queda de tensão na resistência, que está entre a base e o emissor do transistor inferior, ultrapassar 0.7 V, este transistor entra em condução diminuindo a tensão de saída até V_{CE} ser menor que 0.7 V.

Reguladores integrados

Os componentes de estabilização de uma fonte de tensão podem ser facilmente combinados num único IC, oferecendo as vantagens de óptima estabilização, tamanho diminuto e facilidade de utilização. Muitos desses integrados são desenhados para uma tensão de saída fixa, tal como ±5V, ±12V ou ±15V.

Existem reguladores de tensão fixa (por exemplo as séries 78xx para tensões positivas, e 79xx para tensões negativas), e reguladores de tensão variável (como o µA723). No entanto, podemos obter uma tensão variável a partir de um regulador fixo.

Fonte de tensão variável de 7 a 27 volt utilizando o regulador μ A 723. (1) Sensor de corrente. (2) Entrada inversora. (3) Entrada não-inversora. (4) Tensão de referência. (5) - V_{CC} . (6) Tensão de saída. (7) Tensão de entrada. (8) + V_{CC} . (9) Comparador. (10) Limitador de corrente.

Fonte de tensão variável de 5 a 10 volt utilizando um regulador fixo.

No entanto estes circuitos estão limitados na corrente máxima que podem debitar. Para obviar a esta situação é normal incluir um transistor de potência na montagem de seguidor de emissor, tal como indicado na figura.

Utilização de um transistor externo para aumentar a corrente máxima de saída.

Execução do trabalho

Monte o circuito da figura utilizando um condensador (C) de 100 μ F.

Ligue uma das entradas de um osciloscópio à resistência de carga e determine a tensão de "ripple" para vários valores de R. O que observa é o comportamento esperado? Substitua o condensador por um de maior capacidade (1000 μ F) e compare com os resultados obtidos anteriormente. Utilizando cálculos rápidos verifique se os valores medidos para a tensão de "ripple" são comparáveis aos valores teóricos.

Como poderia melhorar os resultados utilizando um tipo de rectificação diferente? Qual a redução da tensão de "ripple" que esperaria?

Introduza no circuito um regulador de tensão e quantifique as melhorias introduzidas pelo regulador de tensão (para correntes acima de 100 mA mantenha a carga ligada apenas o tempo necessário para fazer as leituras devido ao aquecimento do regulador. Em alternativa poderá colocar o regulador num dissipador!)

Monte o circuito da figura seguinte:

Ligue à saída do circuito uma das entradas de um osciloscópio, para monitorar a tensão de saída e o "ripple", e coloque em série uma resistência de carga e um amperímetro, para monitorar a corrente. Varie a resistência de carga e registe os valores da tensão de saída, do seu "ripple" e da corrente. Mude o condensador para 1000 μ F e repita o ponto anterior e comente os resultados.

A resistência R (4,7 k Ω) está sempre presente para assegurar que existe sempre uma corrente a fluir do regulador, mesmo quando a resistência de carga é mudada.

Bibliografia:

- P. Horowitz, W. Hill, "The Art of Electronics", 2ª Edição, Cambridge Press, 1989

 Um livro acessível de referência, aborda todos os ramos da electrónica, desde resistências a microprocessadores. Apresenta exercicios, ideias de circuitos e uma extensa bibliografia comentada.
- Manuel Marques, "Electrónica", Notas da disciplina de Electrónica, Laboratório de Física FCUP, 1996.
- "ELECTOR ELECTRÓNICA" e "SELECÇÕES DE RÁDIO"
 Duas boas revistas mensais sobre electrónica, com imensos circuitos práticos e simples