Activity dependent development of maps in the visual system

Activity type

- Sensory
 - o species
 - mammals
 - non-mammalian vertebrates
 - invertebrates
 - ignore this Sensory literature for now—too much literature for a 2000 word review limit?
 - just do very brief overview in intro with statement that here we focus on intrinsic activity patterns in visual system and refer to other recent reviews?
 - o When?
 - Before eye opening and experienced visual patterns
 - Melanopsin
 - After eye opening
 - Hubel and Wiesel
- Spontaneous
 - o What?
 - species
 - mammals
 - can occur before vision– long gestational timecourse
 - non-mammalian vertebrates
 - does not occur before vision
 – short gestation
 - patterns described in vitro
 - early development before eye opening
 - retinal waves
 - TODO: shatz, Wong, Feller work
 - TODO: J. Zhou work
 - TODO: Subplate references, former shatz postdoc at Univ Maryland
 - patterns described in vivo
 - early development before eye opening
 - rat
- early network oscillations (ENOs)
 - TODO: Konnerth fiber optic calcium imaging
- 'spindle bursts'
 - spindle shaped field potential oscillations in visual cortex [1]
- mouse
 - retinal waves
 - primary source of patterned activity throughout neonatal visual system [2]
 - (Siegel, Lohmann Curr Biol 2012) [3]

- possibly recorded retinal waves?
- more likely 'spindle bursts'
- which might be same as the independent spontaneous V2 activity we saw [2]
- around eye opening
 - ferret
 - TODO: Weliky literature in LGN and cortex
 - rat
- 'spindle' bursts
 - TODO: Colonnese, Khazipov work
- after eye opening
 - much literature in adult
 - monkey, cat, ferret, rodent, etc
 - patterned activity
 - TODO: Recent Konnerth peri-eye opening calcium imaging paper with direction sel
 - intrinsic signal imaging
 - Stryker work
 - A. Grinvald work
 - multicell recordings
 - any mutlichannel recordings in newborn monkey (hubel wiesel just did single electrodes?)
 - fast traveling waves
 - adult

- o Where?
 - retina
 - Retinal waves propagate among RGCs [2]
 - LGN
 - Mouse
 - Spontaneous bursting among dLGN neurons sensitive to retinal input [4]
 - Inferred by matched retinal driven patterns in V1 and SC [2]
 - Ferret
 - TODO: Weliky literature in LGN
 - superior colliculus
 - Retinal waves drive collicular neurons [2]
 - visual cortex
 - Retinal waves propagate to cortical neurons [2]
 - Retinal input modulates synchronous calcium signals in cortical neurons [3]
 - Retinal input can drive spiking multiple unit activity in cortical neurons [1]
 - TODO: Colonnese, Khazipov work
 - TODO: Weliky literature in cortex
- o When?
 - Before eye opening and experienced visual patterns
 - Before birth for some species
 - Monkey, human, cat

- After birth for some species
 - rodent, ferret, cat
- After eye opening
 - experiential pattern replay/dreams
 - analogs to hippocampal place cell replays (Wilson work) for learning and memory?
 - Y. Dan visual pattern replay paper
- o Why?
 - activity dependent circuit establishment and refinement
 lessons from other systems
 - short blurb on other systems
 - chick neuromuscular junction (lichtmann sanes)
 - spontaneous motor circuit activity V. Hamburger & (Petterssen Nature paper)
 - activity dependent visual map development
 - anatomical structural
 - axon sprouting
 - xenopus, zebrafish literature?
 - LGN and SC
 - rodent
 - mouse
 - TODO: beta2 nAchR ko mouse
 - TODO: N. Spitzer reference on activity-dep Ca2+ growth
 - axon refinement
 - xenopus, zebrafish literature?
 - LGN and SC
 - rodent
 - mouse
 - beta2 nAchR ko and transgenic mice show that nAChR mediated spontaneous activity in the retina is essential for retinotopic map refinement, eye specific segregation [5]
 - RGC refinement and deficits in beta2 nAchR ko occurs at the level of single RGCs [6]
 - cortex
 - cortico-collicular axon arborizations [7].
 - Nice Dil reconstructions of cortico-collicular axons in rat
 - dendrite growth?
 - cortico-collicular recepient cells in SC,
 - Recent constantine-paton paper [7].
 - Cortico-collicular axons needed for 'caliber 3' dendritic filopodia density.
 - Eye opening regulates spine density in 'caliber 3' dendrites
 - Golgi or Dil analysis in ferret, cat, monkey, or rodent cortex?
 - Ruthazer and Olavarria paper
 - Golgi or Dil analysis in LGN or SC?
 - dendritic refinement
 - spine dynamics?
 - TODO: xenopus literature?, H. Cline

- cell migration
 - rodent
 - cortex
 - interneurons
 - TODO: recent Fishell paper
 - TODO: recent ZJ Huang papers
 - TODO: Ben-Ari, JB Manent activity dependent interneuron migration in vitro model
 - higher mammals
 - cortex
 - TODO: Chalupa monkey retinal wave evidence and ferret in vitro
 - unknown but gestational times for both excitatory and inhibitory cell migration overlaps significantly with likely period for retinal waves
- functional physiological
 - synapse maturation
 - retinocollicular synapse
 - Increased AMPA/NMDA ratios and AMPA quantal amplitudes during first postnatal week [8]
 - burst activation in vitro capable of inducing LTP [8]
 - delayed maturation and greater LTP at beta2-/- nAchR ko synapses [8]
 - retinotopy
 - Altered retinotopic map in beta2 nAchR ko mice in SC (first order connections) [9]
 - using tungsten microelectrode extracellular recordings
 - physiological receptive fields elongated along nasal-temporal axis
 - Altered retinotopic map in beta2 nAChR-/- mice in SC (first order connections)
 [10]
 - using instrinsic signal imaging
 - retinotopic map preferentially disrupted (elongated) along anteriorposterior (nasal-temporal) axis of SC
 - Altered retinotopic map in beta2 nAchR -/- mice in V1 (second order connections)
 [11]
 - Intrinsic signal imaging of mouse V1 for visual space map
 - Extracellular microelectrode recordings for single cell receptive fields
 - Preferential disruption (elongation, scatter, response amplitude) along the visual space azimuth (nasal-temporal axis)
 - They speculate that waves regulate ephrinA gradients to explain the nasaltemporal disruption since travelling waves had not been found to have a preferred direction at the time
 - Cortico-collicular alignment of retinotopy (quaternary order connections) [12]
 - Transgenic mice, tracer injections, intrinsic signal functional mapping
 - Used ephA3ki/ki (knock in) mice crossed with beta2 nAchR -/- mice for the crucial experiment in Figure 6.
 - These mice have duplicated retinocollicular map, but only a single, nonmatched corticocollicular projection when no cholinergic waves are present.

- eye specific segregation
- ocular dominance columns
 - development of ODCs in ferret [13]
 - epibatidine injections and tracer injections
 - ocular dominance bias index with extracellular microelectrode recordings
 - spontaneous cholinergic activity in retina required for cortical ODC formation
 - TODO: Crair, Stryker
- orientation selectivity
 - TODO: Crair, Stryker
 - TODO: Recent Fitzpatrick work
 - TODO: ongoing J. Cang unpublished work? (look at abstr from SFN, our CSHL conf last year)
- direction selectivity
 - TODO: Recent Konnerth peri-eye opening calcium imaging paper
 - TODO: Recent Fitzpatrick work (the reprogramming of selectivity)
- How?
 - Permissive
 - Spatiotemporal pattern does not matter
 - Perhaps just absolute levels of activity needed?
 - homeostasis, celluar growth and survival?
 - Informative
 - Spatiotemporal pattern does matter
 - Temporal activity pattern
 - Time scale
 - eye-specific segregation
 - before eye opening
 - Synchronous activation of RGCs in both eyes with ChR2 disrupts eye-specific segregation in SC and LGN [14]
 - Relevant window for spike timing differences of RGCs in both eyes within 100s of milliseconds [14]
 - chR2 stimulation of RGCs, anatomical segregation analysis in SC
 - Mechanism
 - Coincident pre-post synaptic activity Hebbian plasticity
 - Dependent on NMDA-R?
 - maybe yes?
 - TODO:
 - HP Xu recent work?
 - maybe not?
 - LTD independent of NMDA-R activation in mouse [#Ziburkus:2009]
 - in vitro explant with extracellar field potentials and high freq stim to mimic retinal waves

- bidirectional maturation
 - finds LTD early between birth and eye opening
 - finds LTP after eye opening through critical period
 - cites [#Butts:2007] for bidirectional synaptic strength changes in single LGN cells
- L-type calcium channel plateau potentials at developing LGN neurons [#Lo:2002]
- retinogeniculate PSC bursting is independent of NMDAR activation (NMDAR1 ko mice, ex vivo, extracellular)[4]
- HP Xu recent work?
- Independent of NMDA-R?
 - endocannabinoid induced LTD?
 - but this type of activation still requires NMDA activation? [15]
 - this type of coincidence detection reviewed elsewhere [15]
 - mGluR-VSCC-IP3R-eCB coincidence detector [16]
 - this form of LTD independent of postsynaptic NMDA receptors
 - detects firing coincidence at 125 ms time scale (versus 25 ms time scale for NMDA dependent LTP)
 - described at L4 to L2/3 synapses in somatosensory cortex
 - bistable switch in spike statistics for postsynaptic neurons?
 - critical level of coincident presynaptic activity needed to cause spike?
 - during early development?
 - biophysical membrane and cable properties different in immature neurons
 - more voltage gated calcium conductance
 - less sodium channels
 - lower fidelity spike transmission initially?
- Non-coincident alternate, lagged timing based plasticity rule?
- Spatial activity pattern
 - Unknown
 - experiment needed: to control spatio-temporal activity patterns

before start of vision

- Analagous to the classic Sensory activation experiments
 - owl prism experiments Knudsen
 - cat goggle experiments
- Instructive role of spatial activation hinted at by Hong-Ping's paper? [5]
- Necessitates the temporal activity mechanisms with an additional spatial dimension
- Spatial patterns setup in periphery (RGCs) and communicated across levels of visual organization [2]

Figure: Schematic of visual cortex primary and secondary areas, pathway illustration, and summary of retinal influence? (incl Olavarria work?)

- 1. Hanganu, I. L., Ben-Ari, Y., and Khazipov, R. (2006). Retinal waves trigger spindle bursts in the neonatal rat visual cortex, J Neurosci, 26(25), 6728–36
- Ackman, J. B., Burbridge, T. J., and Crair, M. C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system, Nature, 490(7419), 219–25
- 3. Siegel, F., Heimel, J. A., Peters, J., and Lohmann, C. (2012). Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo, Curr Biol, 22(3), 253–8
- 4. Mooney, R., Penn, A. A., Gallego, R., and Shatz, C. J. (1996). Thalamic relay of spontaneous retinal activity prior to vision, Neuron, 17(5), 863–874
- Xu, H.-p., Furman, M., Mineur, Y. S., Chen, H., King, S. L., Zenisek, D., Zhou, Z. J., Butts, D. A., Tian, N., Picciotto, M. R., and Crair, M. C. (2011). An instructive role for patterned spontaneous retinal activity in mouse visual map development, Neuron, 70(6), 1115–27
- 6. Dhande, O. S., Hua, E. W., Guh, E., Yeh, J., Bhatt, S., Zhang, Y., Ruthazer, E. S., Feller, M. B., and Crair, M. C. (2011). Development of Single Retinofugal Axon Arbors in Normal and beta2 Knock-Out Mice, J Neurosci, 31(9), 3384–99
- 7. Phillips, M. A., Colonnese, M. T., Goldberg, J., Lewis, L. D., Brown, E. N., and Constantine-Paton, M. (2011). A synaptic strategy for consolidation of convergent visuotopic maps, Neuron, 71(4), 710–24
- 8. Shah, R. D. and Crair, M. C. (2008). Retinocollicular synapse maturation and plasticity are regulated by correlated retinal waves, J Neurosci, 28(1), 292–303
- 9. Chandrasekaran, A. R., Plas, D. T., Gonzalez, E., and Crair, M. C. (2005). Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse, J Neurosci, 25(29), 6929–38
- Mrsic-Flogel, T. D., Hofer, S. B., Creutzfeldt, C., Cloez-Tayarani, I., Changeux, J.-P., Bonhoeffer, T., and Hubener, M. (2005). Altered map of visual space in the superior colliculus of mice lacking early retinal waves, J Neurosci, 25(29), 6921–6928
- 11. Cang, J., Rentería, R. C., Kaneko, M., Liu, X., Copenhagen, D. R., and Stryker, M. P. (2005). Development of precise maps in visual cortex requires patterned spontaneous activity in the retina, Neuron, 48(5), 797–809
- 12. Triplett, J. W., Owens, M. T., Yamada, J., Lemke, G., Cang, J., Stryker, M. P., and Feldheim, D. A. (2009). Retinal input instructs alignment of visual topographic maps, Cell, 139(1), 175–85
- 13. Huberman, A. D., Speer, C. M., and Chapman, B. (2006). Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1, Neuron, 52(2), 247–254
- 14. Zhang, J., Ackman, J. B., Xu, H.-P., and Crair, M. C. (2011). Visual map development depends on the temporal pattern of binocular activity in mice, Nat Neurosci, 15(2), 298–307
- 15. Duguid, I. and Sjöström, P. J. (2006). Novel presynaptic mechanisms for coincidence detection in synaptic plasticity, Curr Opin Neurobiol, 16(3), 312–22

| 16. | Bender, V. A., Bender, K. J., Brasier, D. J., and Feldman, D. E. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex, J Neurosci, 26(16), 4166–77 |
|-----|---|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |