Page 1 sur 3 CH-01

Noms : NOM5 ????	Evaluation: Note: 5 /10
	Convenable
	Attention à ne pas oublier de répondre à certaines questions

Le but de ce TP:

S'assurer avant de faire un montage que l'association d'une pile et d'un conducteur ohmique peut être réalisée sans risque de détérioration pour le matériel grâce aux caractéristiques des dipôles.

Doc 1 : La caractéristique d'un dipôle correspond au graphe U=f(I) pour lequel U représente la tension aux bornes du dipôle et I l'intensité du courant qui le traverse.

Sa **loi de fonctionnement** est la **relation mathématique** reliant les grandeurs U et I.

I. Caractéristique du conducteur Ohmique

Dans cette partie le constructeur indique pour le conducteur ohmique de résistance R fourni : $R = 330 \ \Omega^{\pm} 5\%$ et sa puissance maximale admissible est égale à : 0,5 W

a. Réaliser le montage ci-dessous sans allumer le générateur. Le faire vérifier par le professeur

a. Faire une dizaine de mesures, sans dépasser U = 5,0 V et saisir les valeurs directement sur le tableur

Excel: « caractéritques-pt-fonctionnement-eleve.xlsx »

Insérer une copie du graphique «Caractéristique resistance» U = f(I) ci-dessous

222

Le graphique obtenu est-il en accord avec la loi d'Ohm ? Justifier ???

Que représentent les éléments de graphique « barres d'erreur » ? L'INCERTITUDE

Page 2 sur 3 CH-01

b. A partir de l'équation de la courbe de tendance qui s'affiche sur le graphique U= f(I) compléter sa loi de fonctionnement : U = 328.6 × I

En déduire la valeur de la résistance Rexp R= U /I=329 Unité?

c. Celle-ci est-elle en accord avec la **valeur théorique R** fournie par le constructeur ? Justifier oui car elle divise intensité en en ampère et la tension en vol pour donner la résistance

C'est sa valeur et non l'unité qui est en question

II. ETUDE D'UNE SOURCE DE TENSION

Afin de tracer la caractéristique de la pile on a réalisé le montage ci-contre. Le potentiomètre joue le rôle de résistance réglable permettant de modifier **l'intensité I du courant**. Une résistance de protection, R_p = 220 Ω est insérée de façon à limiter l'intensité du courant.

Les mesures ont été consignées dans le tableur Excel : « caractéritques-pt-fonctionnement-eleve.xlsx »

- a. A partir de l'équation de la courbe de tendance du graphique « caractéristique pile » compléter la loi de fonctionnement de la pile : $U = -2,78^{\times} I + 2,98$
- b. En comparant la relation théorique entre U et I pour une source de tension, à savoir U=U₀ − r·I et la loi de fonctionnement en déduire le modèle de Thévenin de la pile étudiée et compléter les éléments du schéma de droite ci-dessous.

3. DETERMINATION DU POINT DE FONCTIONNEMENT

Doc 2 : Lorsque l'on branche un conducteur ohmique aux bornes d'une source de tension réelle, un courant d'intensité I_F s'établit et la pile délivre une tension U_F . Les coordonnées $(I_F; U_F)$ définissent le point de fonctionnement de ce montage.

Non

Page 3 sur 3 CH-01

b. Calculer la puissance électrique P que recevra la résistance R alimentée par la pile étudiée.

P=U*I=9*3=27 W faux mais cohérent

c. Cette valeur respecte-elle la valeur nominale la puissance indiquée par le constructeur (voir I)?

OUI pas avec vos valeurs!

Pourquoi ? car ça convient avec ce que le doc2 prévois et dis