# 几乎无变量的微积分

78 分快速上手

#### 纳纳米

版本 6,2022 年 4 月 11 日

# 目录

| 前言  |          | iii |
|-----|----------|-----|
| 第一章 | 集与函数     | 1   |
| 1.1 | 集        | 1   |
| 1.2 | 关系与函数    | 4   |
| 1.3 | 函数的演算    | 8   |
| 第二章 | 连续函数     | 17  |
| 2.1 | 连续的定义    | 17  |
| 2.2 | 连续函数     | 21  |
| 2.3 | 连续函数的积分  | 25  |
| 第三章 | 导数       | 29  |
| 3.1 | 背景       | 29  |
| 3.2 | 无变量的导数计算 | 36  |
| 第四章 | 不定积分     | 41  |
| 4.1 | 原函数与不定积分 | 41  |
| 4.2 | 函数集的演算   | 44  |
| 4.3 | 不定积分的演算  | 52  |
| 第五章 | 积分       | 67  |
| 5.1 | 不定积分与积分  | 67  |
| 5.2 | 计算积分     | 73  |

| ii   | 目录 |
|------|----|
|      |    |
| 参考文献 | 79 |

## 前言

#### **定义** 算学 = mathematics.

本书的标题是《几乎无变量的微积分》. 您按字面意思理解此标题就好; 本书讨论的微积分并不是没有变量, 而是减少了变量的使用. 本书的"微积分"跟"分析学"不一样. 我姑且这么描述: 分析学更偏向理论与理论间的联系 (如极限、连续、导数、积分等概念的联系), 而微积分更偏向具体的计算 (您当然可以认为"微积分"就是分析学; 这样的话, 本书的标题就应该是《几乎无变量地计算导数、不定积分、积分》). 本书是一本算普读物 (算学普及读物). 本书并不是从零教您微积分 (假如我要写这样的书, 那我可能要更多时间与更多力气大改现有的微积分符号); 相反, 本书假定您会 (最基本的) 微积分. 这样, 我就可以专心展现无变量的微积分演算是什么样的. 您在看本书时, 可以拿我展现的计算过程跟微积分教材 (或高等算学教材, 也可以是算学分析教材) 作对比. 这样, 您可以看到这种 (几乎) 无变量的微积分在某些地方确实是有优势的.

本书的副标题是《78 分快速上手》. 其实, 您不必太在意这个副标题里的 "78 分"; 这只是一个 "旧客" (胡话: joke). 假如忽略本书的标题页、目录、前言、参考文献, 那么本书就只有 78 页. 我假定您至多用 1 分 (即 60 秒) 看 1 页. 这么看来, 您至多用 78 分就可以了解最基本的微积分. 不过, 认真地, 若我至多用 1 分看 1 页**算学书**, 我可能学不到什么东西.

我不是这本小书欲讨论的对象的创始人. 一位美籍奥地利裔算学家 Karl Menger 在 1949 年发表了名为 Are variables necessary in calculus? 的文章. 一位捷克的数据科学家、语言学家、地理学家与音乐人 Jakub Marian 在 2014 年又提到了这个话题. 我在 2022 年 3 月也独立地搞出了一些东西. 不过, 我菜, 只搞出了"几乎无变量的一元微积分". 当我想写这本小书时, 我才

开始查阅文献. 不出意外, 我查到了一些资料 (不过并不是很多, 因为跟我的个人计算机焊接的互联网上的资源有限). 我仔细地阅读了这些资料, 并对自己的记号作出了一些改进. 我在参考文献里列出了无变量的微积分的文献, 您可以去看一看 (毕竟我不能很好地用文字表达我的想法).

相信大家都学过函数. 在初中算学里, 我们用变量定义函数. 下面是湘教版八年级下册的算学课本的定义.

**定义** 在讨论的问题中, 称取值会发生变化的量为**变量**, 称取值固定不变的量为**常量** (或**常数**).

定义 一般地, 如果变量 y 随着变量 x 而变化, 并且对于 x 取的每一个值, y 都有唯一的一个值与它对应, 那么称 y 是 x 的函数, 记作 y = f(x). 这里的 f(x) 是胡话 a function of x (土话: x 的函数) 的简记. 这时叫 x 作自变量, 叫 y 作因变量. 对于自变量 x 取的每一个值 a, 称因变量 y 的对应值为函数值, 并记其作 f(a).

这个定义, 虽不是很严谨, 但很形象. 至少, 刚接触"函数"的人会对函数有比较形象的认识. 早期的算学家就是用"这种函数"讨论微积分的. 不过, 随着算学的发展, 算学家需要对算学对象有严格的阐述. 函数也不例外. 1914年, 德国算学家 Felix Hausdorff 在他的 *Grundzüge der Mengenlehre* 里用"有序对"定义函数 (在本书, 我也会这么定义函数). 这种定义当然避开了非算学话"变量""对应". 不过, 更严谨地看, "有序对"是什么? 能不能用更基础的东西定义它? 1921年, 波兰算学家 Kazimierz Kuratowski 在他的文章 *Sur la notion de l'ordre dans la Théorie des Ensembles* 里定义 (a, b) 为 {{a}, {a, b}}. 于是, 可以**证明**,

$$(a,b) = (c,d) \iff a = c \perp b = d.$$

这样, Hausdorff 的定义就更完美了.

尽管函数有现代的定义, 函数也有现代的、不带变量的记号 f (而不是 f(x)), 可我们在进行微积分计算时, 还是用带变量的记号进行计算. 具体地, 我们计算导数时, 用的记号是

$$f'(x)$$
 或  $\frac{\mathrm{d}}{\mathrm{d}x}f(x)$ ;

前言

我们计算不定积分时,用的记号是

$$\int f(x) \, \mathrm{d}x;$$

我们计算积分时,用的记号是

$$\int_{a}^{b} f(x) \, \mathrm{d}x.$$

请允许我暂时跑题. 我并没有说这些记号不好. 相反, 这些记号十分经典, 经得起时间与算学家的考验. 我自己初学微积分 (与算学分析) 时, 就是用这套经典记号的. 比如, 可形象地写求导数的链规则为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x},$$

这里 u = f(x), y = g(u) = g(f(x)). 视导数为"变率", 那这就是在说, y 关于 x 的变率等于 y 关于 u 的变率与 u 关于 x 的变率的积. 很形象吧? 假设 A, B, C 三人在直线跑道上匀速前进. A 的速率是 B 的速率的  $\frac{11}{10}$  (也就是说, A 比 B 快  $\frac{1}{10}$ ), 而 B 的速率是 C 的速率的  $\frac{9}{10}$  (也就是说, B 比 C 慢  $\frac{1}{10}$ ), 那么 A 的速率是 C 的速率的  $\frac{99}{100}$ ; 这就是二个比的积.

回到正题. 我们已经看到, 我们通用的微积分记号带着朴素的函数思想. 此现象让我好奇. 我就想: "有没有不要变量的微积分?"或者说, 有没有几乎不要变量的微积分?"我认真思考了几日. 至少, 我已经习惯用 D 表示求导, 所以导数似乎不是什么问题. 比方说, D exp = exp, D cos =  $-\sin$ , D sin = cos. 不过, 当我想表达 D ln 时, 我意识到了一个重要的问题: "已知 D ln x = 1/x. 左边的  $\ln x$  就是  $\ln$ , 可右边的 1/x 应该是什么?" 想起胡话里, reciprocal 是倒数的意思. 我就定义

rec: 
$$\mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\},$$
  
 $x \mapsto \frac{1}{x}.$ 

这样, 我就可以写 D ln = rec. 不过, 我还是没法好好地表示 D arcsin 跟 D arctan. 我这时才意识到, 因为在微积分里, 有名的 (是 named, 而不是 well-known 或 famous) 函数不够多, 所以我想表达普普通通的导数都要自己起名

vi

字. 不至于碰到一个函数就起名字吧? 所以, 我定义了所谓的"什么也不干"的函数

fdn:  $\mathbb{R} \to \mathbb{R}$ ,  $x \mapsto x$ 

(fdn 乃 the function that does nothing 之略). 这样, 再利用函数的运算, 我总算能无变量地写出基本的求导公式了.

我随后又作出了无变量不定积分与无变量积分的理论.不过,我写不下去了(没作出几乎无变量的多元函数微积分的理论),因为我的水平不够高.我想,也差不多了,就打开视觉工作室代码,用乳胶写书.上一次写代数书时过于随意,没好好写前言;这一次,我就想认真地写前言.自然地,我想查一查前人是否有相关研究.不出意外地,查到了几篇资料.我认真地看了看,并修正了自己用的一些记号与理论.可以说,这是站在巨人的肩膀上的"读书报告":这本书"浪费了"巨人的肩膀,并没有新鲜的算学.不过,我想,最起码,我还是能视这本书为算普读物的.

上一次, 我写代数书的时候, 我的乳胶水平还比较低, 代码一团糟. 甚至, 最近, 我欲重编译它, 结果出现了错误 (我也不想管它了, 暂时就让它烂着吧). 这一次, 我写微积分读物, 内容简单一些, 代码也更规范一些了. 上一本书的一些"优良传统"也来到了这本书上: 开源代码 (the Unlicense), 并给自己的书套用 CC0 许可协议, 让这本书进入公有领域. 当然, 如果您仅仅是读我的书, 对您而言, 这些"优良传统"是不重要的.

您可以去以下的二个网址的任意一个获取本书的最新版:

https://gitee.com/septsea/calculus-with-almost-no-variables https://github.com/septsea/calculus-with-almost-no-variables

最后,我向一位取不来名字的网友表示感谢.

纳纳米 2022 年 4 月 11 日

## 第一章 集与函数

我先简单地介绍一下基础概念吧.

### 1.1 集

- **定义 1.1 集**是具有某种特定性质的对象汇集而成的一个整体. 称其对象为元.
- **注 1.2** 事实上, 集与元是所谓的"原始概念". 我们至多**描述**集或元是什么; 我们无法**定义**集或元.
  - 定义 1.3 无元的集是空集.
- **注 1.4** 或许您在别的地方能看到形如 Ø 的文字. 这是算学家为空集造的符号. 不过, 本书用不到这个记号.
- **注 1.5** 一般用小写字母表示元, 大写字母表示集. 这是大多数算学家的习惯.
  - **定义 1.6** 一般地, 若集 A 由元 a, b, c, ... 作成, 我们写

$$A = \{a, b, c, \cdots\}.$$

还有一种记号. 设集 A 是由具有某种性质 p 的对象汇集而成, 则记

$$A = \{x \mid x \ \text{具有性质 } p\}.$$

定义 1.7 若 a 是集 A 的元, 则写  $a \in A$  或  $A \ni a$ , 说 a 属于 A 或 A 包含 a. 若 a 不是集 A 的元, 则写  $a \notin A$  或  $A \not\ni a$ , 说 a 不属于 A 或 A 不包含 a.

注 1.8 "属于"也是原始概念.

**定义 1.9** 若任取  $a \in A$ , 都有  $a \in B$ , 则写  $A \subset B$  或  $B \supset A$ , 说  $A \not\in B$  的子集或  $B \not\in A$  的超集. 假如有一个  $b \in B$  不是 A 的元, 可以用 "真" 形容 之.

**注 1.10** 或许, 您在别的地方能看到形如  $\subseteq$ ,  $\subseteq$  或  $\subseteq$  的记号. 本书用不到这些记号; 本书就用  $A \subset B$  表示  $A \in B$  的子集. 事实上, 我们很少需要真子集的概念; 假如我们必须要说  $A \notin B$  的真子集, 我们再加上  $A \neq B$  即可.

**例 1.11** 设  $B = \{0, 1, 2\}, C = \{0\}.$  不难看出,  $0 \in C, 1 \notin C, C \subset B$ .

注 1.12 空集是任意集的子集. 空集是任意不空的集的真子集.

**定义 1.13** 若集 A 与 B 包含的元完全一样,则 A 与 B 是同一集. 我们说 A 等于 B, 写 A = B. 显然

 $A = B \iff A \subset B \coprod B \subset A$ .

**定义 1.14** 集 *A* 与 *B* 的交是集

 $A \cap B = \{x \mid x \in A \perp x \in B\}.$ 

也就是说,  $A \cap B$  恰由  $A \subseteq B$  的公共元作成.

集  $A \subseteq B$  的并是集

$$A \cup B = \{x \mid x \in A \ \overrightarrow{y} \ x \in B\}.$$

也就是说.  $A \cup B$  恰包含  $A \subseteq B$  的全部元.

类似地,可定义多个集的交与并.

**例 1.15** 设 E 是全体偶数作成的集; 设 O 是全体奇数作成的集. 不难看出,  $E \cap O$  为空集, 而  $E \cup O$  恰为全体整数作成的集.

**定义 1.16** 设 A, B 是集. 定义

$$A \setminus B = \{x \mid x \in A, x \notin B\}.$$

1.1 集 3

**注 1.17** 值得注意的是, 我们没说  $B \subset A$ .

**定义 1.18** 设 A, B 是集. 定义

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

这里, (a,b) 是**有序对**. 我们规定, 二个有序对 (a,b) 与 (c,d) 相等相当于 a=c 且 b=d.

类似地.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \cdots, a_n \in A_n\}.$$

 $(a_1, a_2, \dots, a_n)$  与  $(b_1, b_2, \dots, b_n)$  相等, 相当于  $a_1 = b_1, a_2 = b_2, \dots, a_n = b_n$ .

注 1.19 一般地,  $A \times B \neq B \times A$ .

注 1.20 设 A, B 分别有 m, n 个元. 则  $A \times B$  有 mn 个元.

**定义 1.21** 一般地,  $\mathbb{N}$  指全体非负整数作成的集;  $\mathbb{Z}$  指全体整数作成的集;  $\mathbb{Q}$  指全体有理数作成的集;  $\mathbb{R}$  指全体实数作成的集;  $\mathbb{C}$  指全体复数作成的集. 显然

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

**定义 1.22** 在微积分里,  $\mathbb{R}$  的九类子集十分重要. 具体地, 任取实数 a, b, 其中 a < b. 那么我们记:

- (1)  $[a,b] = \{x \mid a \le x \le b\};$
- (2)  $[a,b) = \{x \mid a \le x < b\};$
- (3)  $(a,b) = \{x \mid a < x < b\};$
- $(4) (a,b] = \{x \mid a < x \le b\};$
- (5)  $(-\infty, b] = \{x \mid x \le b\};$
- (6)  $(-\infty, b) = \{x \mid x < b\};$
- $(7) \ (-\infty, +\infty) = \mathbb{R};$
- (8)  $(a, +\infty) = \{x \mid a < x\};$
- (9)  $[a, +\infty) = \{x \mid a \le x\}.$

统称这九类子集为**区间**. a 是区间 [a,b], [a,b), (a,b), (a,b),  $(a,+\infty)$ ,  $[a,+\infty)$  的**左端点**; b 是区间 [a,b], [a,b), (a,b), (a,b),  $(-\infty,b]$ ,  $(-\infty,b)$  的**右端点**; 左端点与右端点都是**端点**.

有时, 我们认为  $\{a\}$  是**退化为一点的区间** [a,a]; 我们认为空集是**空区间** [a,a), (a,a), [a,a), [b,a), (b,a), (b,a) 或 [b,a]. 退化为一点的区间与空区间都是**退化区间**.

**注 1.23** 设 a, b, c 是实数. 说 b 介于 a 跟 c 之间, 就是说  $a \le b \le c$  或  $c \le b \le a$  (简单地, 就是  $(b-a)(b-c) \le 0$ ). 这里, 我们临时地模糊区间与退化区间的差异, 统称其为 "区间". 那么, 显而易见地, 任给一个区间 I, 任取 I 的二个相异实数 a, b, 则每个介于 a 跟 b 之间的实数必为 I 的元. 反过来, 若  $\mathbb{R}$  的子集 I 适合 "任取 I 的二个相异实数, 每个介于 a 跟 b 之间的实数必为 I 的元", 则 I 是区间. 此事的论证依赖实数的完备性, 故我就不继续展开它了. 若您对此事感兴趣, 可参考算学家张筑生的《数学分析新讲》.

### 1.2 关系与函数

定义 1.24 设 A, B 是集.  $A \times B$  的子集称为 A 到 B 的关系.

**定义 1.25** 设 A, B 是集. 若 A 到 B 的关系 f 适合下述性质, 则说 f 是 A 到 B 的函数 (或映射):

- 任取  $a \in A$ , 必有  $b \in B$  使  $(a,b) \in f$ ;
- 若 (a,b) 与 (a,c) 均为 f 的元, 则 b=c.

设  $(a,b) \in f$ . 我们记此事为 b = f[a], 并说  $b \neq a$  在函数 f 下的**像**,  $a \neq b$  在函数 f 下的一个**逆像**.

我们通常也可如此表示函数 f:

$$f: A \to B,$$
  
 $a \mapsto b = f[a].$ 

" $f: A \rightarrow B$ " 是 "f 是 A 到 B 的函数" 的简写.

**注 1.26** 一般地, 我们写 a 在函数 f 下的像为 f(a), 而不是 f[a]. 不过, 出于某些原因 (之后就会看到), 此处用方括号.

1.2 关系与函数 5

**例 1.27** 设  $A = \{0,1,2\}$ ,  $B = \{0,1\}$ . 显然,  $A \times B$  有 6 个元. 不难看出,  $A \times B$  有 64 个子集, 故 A 到 B 的关系共有 64 个. 不过, A 到 B 的函数只有 8 个.

**定义 1.28** 在本书, 我们为"什么也不干"的函数起一个名字. 具体地说, 设  $A \subset B$ . 我们定义

$$\iota_{A,B}$$
:  $A \to B$ , 
$$a \mapsto a = \iota_{A,B}[a],$$

其中 1 是希腊字母 iota.

我们简单地写  $\iota_{A,A}$  为  $\iota_A$ . 有时, 若既不必指出 A, 也不必指出 B, 我们直接写  $\iota$ . 换句话说:  $\iota$  (或者带下标的  $\iota_A$ ,  $\iota_{A,B}$ ) 啥也不干, 即  $\iota$ [x] = x, 其中 x 可以是任意文字.

一般也称 1 为恒等函数.

定义 1.29 设  $f \in A$  到 B 的函数. 称 A 为 f 的定义域; 称 B 为 f 的陪域.

**定义 1.30** 设  $C \subset A$ . 设  $f: A \to B$ . 我们记

$$f[C] = \{ f[c] \mid c \in C \}.$$

特别地, 称 f[A] 为 f 的**值域**. 显然 f 的值域是 f 的陪域的子集.

**注 1.31** 设  $f: A \rightarrow B$ . 若  $D \subset C \subset A$ , 则  $f[D] \subset f[C]$ .

**定义 1.32** 设 f, g 都是 A 到 B 的函数. 若任取  $a \in A$ , 都有 f[a] = g[a], 则说 f = g.

可写 f = g 的否定为  $f \neq g$ . 具体地说, 若存在  $a \in A$  使  $f[a] \neq g[a]$ , 则 说  $f \neq g$ .

定义 1.33 设 R 是 A 到 B 的关系. B 到 A 的关系

$$S = \{(b, a) \mid (a, b) \in R\}$$

称为 R 的反关系.

**定义 1.34** 设  $f \in A$  到 B 的函数. 若 f 的反关系  $g \in B$  到 A 的函数,则称  $g \in f$  的**反函数**. 我们写 f 的反函数为  $f^{[-1]}$ .

**注 1.35** 不难验证, 若 g 是 f 的反函数, 则 f 也一定是 g 的反函数. 这是因为 R 的反关系的反关系是 R.

**定义 1.36** 设 f 是 A 到 B 的函数, g 是 C 到 D 的函数, 且  $f[A] \subset C$ . 任取 A 的元 a. 按照函数的定义, 存在唯一的  $b \in f[A]$  使  $(a,b) \in f$ . 既然  $b \in f[A] \subset C$ , 再根据函数的定义, 存在唯一的  $d \in g[C] \subset D$  使  $(b,d) \in g$ . 这样的 d 可用 g[f[a]] 表示. 作 A 到 D 的关系

$$g \circ f = \{(a, g[f[a]]) \mid a \in A\}.$$

不难验证, 这是 A 到 D 的函数. 我们称函数  $g \circ f$  为 f 与 g 的**复合**.

**注 1.37** 设  $f: A \to B$ ,  $g: C \to D$ , 且  $f[A] \subset C$ . 设  $E \subset A$ . 那么  $f[E] \subset f[A] \subset C$ , 故 g[f[E]] 是有意义的. 我们说,  $g[f[E]] = (g \circ f)[E]$ .

取  $d \in g[f[E]]$ . 按定义, 存在  $t \in f[E]$  使 g[t] = d. 对这个 t 而言, 又存在  $e \in E$  使 f[e] = t.  $(g \circ f)[e]$ , 按定义, 等于 g[f[e]], 也就是 g[t], 也就是 d. 所以  $d \in (g \circ f)[E]$ . 这说明  $g[f[E]] \subset (g \circ f)[E]$ .

取  $d' \in (g \circ f)[E]$ . 按定义, 存在  $e' \in E$  使  $(g \circ f)[e'] = d'$ . 所以  $t' = f[e'] \in f[E]$ . 那么 g[t'] = d'. 所以  $d' \in g[f[E]]$ . 这说明  $g[f[E]] \supset (g \circ f)[E]$ .

既然 g[f[E]] 跟  $(g \circ f)[E]$  相互包含, 二者必相等.

或许上面的论证比较枯燥; 或许此事比较显然. 不过, 严谨的算学就是像上面这样, 用定义说话, 而不是想当然. 毕竟, 尽管我们定义了  $a \in A$  时  $(g \circ f)[a]$  就是 g[f[a]], 可我们并没有**定义**  $(g \circ f)[E]$  是 g[f[E]]. 大算学家 John von Neumann 说过: "Young man, in mathematics you don't understand things. You just get used to them." 所以, 习惯就好了.

**注 1.38** 设  $f: A \to B$ . 那么  $f \circ \iota_A = f$ , 且  $\iota_B \circ f = f$ .

**注 1.39** 一般地,  $g \circ f \neq f \circ g$ . 一方面,  $g \circ f$  有定义时,  $f \circ g$  可能无定义; 另一方面, 即使  $g \circ f$  与  $f \circ g$  都有定义, 二者也不一定相等.

1.2 关系与函数 7

**定理 1.40** 函数的复合是**结合的**. 具体地说, 设  $f: A \to B, g: C \to D$ ,  $h: E \to F$ , 且  $f[A] \subset C, g[C] \subset E$ . 那么

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

所以, 我们可简单地记上式的任意一侧为  $h \circ g \circ f$ .

证  $q = g \circ f$  是 A 到 D 的函数, 且  $p = h \circ g$  是 C 到 E 的函数. 因  $q[A] = g[f[A]] \subset g[C] \subset E$ , 故  $h \circ q = h \circ (g \circ f)$  是 A 到 F 的函数; 因  $f[A] \subset C$ , 故  $p \circ f = (h \circ g) \circ f$  也是 A 到 F 的函数. 任取  $a \in A$ . 则

$$(h \circ (g \circ f))[a] = h[(g \circ f)[a]] = h[g[f[a]]],$$
  
 $((h \circ g) \circ f)[a] = (h \circ g)[f[a]] = h[g[f[a]]].$  证毕.

定义 1.41 设 f 是 A 到 B 的函数.

- 若任取 A 的相异二元 a = a', 都有  $f[a] \neq f[a']$ , 则称 f = f[a].
- 若对任意  $b \in B$ , 都存在  $a \in A$  使 f[a] = b, 则称 f 是**满函数**.

**例 1.42** 设  $A \subset B$ . A 到 B 的函数  $\iota_{A,B}$  总是单函数. 不过, 若  $A \neq B$ , 则  $\iota_{A,B}$  不是满函数.

**注 1.43** 设  $B \subset C$ . 设  $f \in A$  到 B 的函数,  $g \in A$  到 C 的函数, 且对任意  $a \in A$ , f[a] = g[a]. 那么, f 是单函数的一个必要与充分条件是: g 是单函数. 若 f 不是满函数, 则 g 也不是.

若 f 是满函数,则 g 也是满函数的一个必要与充分条件是: B = C.

**定理 1.44** 设  $f \in A$  到 B 的函数. 设 B 到 A 的函数 g 适合如下性质:

- 对任意  $a \in A$ , g[f[a]] = a; 也就是说,  $g \circ f = \iota_A$ .
- 对任意  $b \in B$ , f[g[b]] = b; 也就是说,  $f \circ g = \iota_B$ .

则:

- 至多有一个这样的 g:
- g 是 f 的反函数.

证 至多只有一个这样的 g 是显然的. 具体地, 若 g':  $B \rightarrow A$  适合  $g' \circ f = \iota_A$ , 且  $f \circ g' = \iota_B$ , 则

$$g=g\circ \iota_B=g\circ (f\circ g')=(g\circ f)\circ g'=\iota_A\circ g'=g'.$$

下证 g 是 f 的反函数. 事实上, 若 h 是 f 的反函数, 则不难验证 h 适合上述二条性质. 所以 g = h. 证毕.

**定理 1.45** 设  $f: A \to B \ni g: B \to C$  的反函数分别是  $f^{[-1]}: B \to A \ni g^{[-1]}: C \to B$ . 则  $g \circ f: A \to C$  有反函数, 且

$$(g \circ f)^{[-1]} = f^{[-1]} \circ g^{[-1]}.$$

证 记  $q = f^{[-1]} \circ g^{[-1]}$ :  $C \to A$ ; 记  $p = g \circ f$ . 不难用结合律验证  $q \circ p = \iota_A$ , 且  $p \circ q = \iota_B$ . 这里以  $q \circ p$  为例:

$$q \circ p = q \circ (g \circ f)$$
  
 $= (q \circ g) \circ f$   
 $= ((f^{[-1]} \circ g^{[-1]}) \circ g) \circ f$   
 $= (f^{[-1]} \circ (g^{[-1]} \circ g)) \circ f$   
 $= (f^{[-1]} \circ \iota_B) \circ f$   
 $= f^{[-1]} \circ f$   
 $= \iota_A$ . 证毕.

**注 1.46** 不难看出, 函数 f 有反函数的一个必要与充分条件是: f 是单函数, 且 f 是满函数.

我们称既是单函数,也是满函数的函数为双函数.

**定义 1.47** 设  $f \in A$  到 B 的函数. 设  $C \subset A$ . 作 C 到 B 的关系

$$f_C = \{(c, f[c]) \mid c \in C\}.$$

易知,  $f_C$  是 C 到 B 的函数. 我们说,  $f_C$  是 f 在 C 上的**限制**.

#### 1.3 函数的演算

注 本节的语言或许比较混乱.

本节讨论 ℝ 的子集到 ℝ 的子集的函数及其演算.

1.3 函数的演算

您应该还能想起,本书的标题是"几乎无变量的微积分".所以,为了实现此目标,我们首先得无变量地表达常见的函数(初等函数).

9

在此之前, 我们引入一个简单的术语.

**定义 1.48** 设  $f: A \to B, B \subset \mathbb{R}$  且  $0 \in B$ . 若存在  $a \in A$  使 f[a] = 0, 就说 a 是 f 的一个根.

现在我们介绍一些"基本初等函数".

定义 1.49 本书经常使用如下函数.

(1) 恒等函数:

$$1: \quad \mathbb{R} \to \mathbb{R},$$
$$x \mapsto x;$$

(2) 常函数:

$$c: \mathbb{R} \to \{c\},$$

$$x \mapsto c,$$

其中 c 是某个事先指定的实数:

(3) 指数函数:

exp: 
$$\mathbb{R} \to (0, +\infty),$$
  
 $x \mapsto \sum_{k=0}^{\infty} \frac{x^k}{k!};$ 

(4) 正弦函数:

sin: 
$$\mathbb{R} \to [-1, 1],$$
  
 $x \mapsto \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!};$ 

(5) 馀弦函数:

cos: 
$$\mathbb{R} \to [-1, 1],$$
  
 $x \mapsto \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!};$ 

(6) 正切函数:

tan: 
$$\{x \mid \cos[x] \neq 0\} \to \mathbb{R},$$
  
 $x \mapsto \frac{\sin[x]}{\cos[x]};$ 

(7) 对数函数:

ln: 
$$(0, +\infty) \to \mathbb{R}$$
,  
 $x \mapsto \exp^{[-1]}[x]$ ;

(8) 反正弦函数:

arcsin: 
$$[-1,1] \rightarrow \left[ -\frac{2\pi}{4}, \frac{2\pi}{4} \right],$$
  
 $x \mapsto s^{[-1]}[x],$ 

其中 s 指 sin 在  $I = [-2\pi/4, 2\pi/4]$  上的限制 sin $_I$ :  $I \rightarrow [-1, 1], 2\pi$  是 cos 的最小正根的四倍;

(9) 反正切函数:

arctan: 
$$\mathbb{R} \to \left(-\frac{2\pi}{4}, \frac{2\pi}{4}\right),$$
  $x \mapsto t^{[-1]}[x],$ 

其中 t 指 tan 在  $J = (-2\pi/4, 2\pi/4)$  上的限制 tan  $J: J \to \mathbb{R}$ ;

(10) 绝对值函数:

abs: 
$$\mathbb{R} \to [0, +\infty),$$
  
 $x \mapsto \begin{cases} x, & x \ge 0; \\ -x, & x < 0. \end{cases}$ 

(11) 根号函数:

sqrt: 
$$[0, +\infty) \to [0, +\infty),$$
  
 $x \mapsto \sqrt{x}.$ 

注 1.50 在本书, 2π 是一个整体记号.

1.3 函数的演算 11

利用这些函数与复合, 我们可以作出一些稍复杂的函数.

**例 1.51** 设  $A = [1, +\infty)$ . 设

$$f: A \to \mathbb{R},$$

$$x \mapsto \exp\left[\sqrt{\ln[x]}\right].$$

我们可以用无变量的记号表达 f 的定义. 具体地,

$$f = \exp \circ \operatorname{sqrt} \circ \ln_A$$
.

这里,  $ln_A$  自然是 ln 在 A 上的限制.

不过,复合并不够用.

**例 1.52** 设  $A = [1, +\infty)$ . 设

g: 
$$A \to \mathbb{R}$$
,  
 $x \mapsto \exp\left[\sqrt{\ln[x]}\right] + \sin[x] + x^3$ .

怎么用无变量的记号表达 g 的定义呢?似乎并不太好办.我们可分别写  $\exp\left[\sqrt{\ln[x]}\right]$  跟  $\sin[x]$  为  $\exp\left[\sqrt{\ln[x]}\right]$  即是,我们要怎么写  $x^3$ ?就算写出来,又该如何拼接这三项呢?

**定义 1.53** 设 A, B, C 是  $\mathbb{R}$  的子集. 设 f:  $A \to B$ , g:  $A \to C$ . 设 \* 是文字 +, -, · 的任意一个. 定义

$$f * g: A \to D,$$
  
 $x \mapsto f[x] * g[x],$ 

其中陪域  $D \subset \mathbb{R}$  可视具体情况待定. 一般地, 若 \* 是乘号 ·, 则可被省略. 可 写  $0_A - f$  为 -f; 这里  $0_A$  当然是常函数 0 在 A 上的限制.

若对任意  $x \in A$ , 都有  $f[x] \neq 0$ , 则还可定义

$$\frac{g}{f}: \quad A \to E,$$

$$x \mapsto \frac{g[x]}{f[x]},$$

其中陪域  $E \subset \mathbb{R}$  可视具体情况待定.

若对任意  $x \in A$ ,  $f[x]^{g[x]}$  有意义, 则还可定义

$$f^g: A \to F,$$
  
 $x \mapsto f[x]^{g[x]},$ 

其中陪域  $F \subset \mathbb{R}$  可视具体情况待定.

**例 1.54** 设 
$$A = [1, +\infty)$$
. 设

g: 
$$A \to \mathbb{R}$$
,  
 $x \mapsto \exp\left[\sqrt{\ln[x]}\right] + \sin[x] + x^3$ .

现在我们可以写  $x^3$  为  $(\iota_A)^{3_A}$ . 所以

$$g = (\exp \circ \operatorname{sqrt} \circ \ln_A + \sin_A) + (\iota_A)^{3_A};$$

这里, 我们取陪域为 ℝ.

现在,我们可以无变量地表达很多函数了.可您应该也注意到了一个问题:无变量地表达函数并不是很方便.为了体现定义域,我们动用了限制.上例的g还不是很复杂,但我们还是用了4次限制.取B=(0,1).令

h: 
$$B \to \mathbb{R}$$
,  
 $x \mapsto \ln\left[\frac{x - \sin[x]}{1 - x}\right] + \sqrt{2\pi - \exp[x]}$ ,

那我们就要写

$$h = \ln \circ \frac{\iota_B - \sin_B}{1_B - \iota_B} + \operatorname{sqrt} \circ ((2\pi)_B - \exp_B).$$

不过, 幸运地, 这个问题并不是什么大问题.

原则上,一个函数的三要素是定义域、陪域与"对应法则". 不过,您无妨回想一下您学过的算学. 当我们看到形如"函数  $f(x) = \sqrt{1+x} + \ln(1-x)$ " 这样的文字时,我们其实视这个 f 的定义域为全体使 f(x) 有意义的一切实数作成的集 (也就是 [-1,1)); 当我们看到形如"函数 g(x) = 1-x ( $x \in \mathbb{R}$ 

1.3 函数的演算 13

[-1,0]"的文字时, 我们认为 g 的定义域为已经提到的集 [-1,0]. f 跟 g 的 陪域呢? 没说, 就选一个包含值域的集即可 (比如说, "万能的"  $\mathbb{R}$ ).

这种写法虽失去一些严谨, 但并不特别影响使用 (当然, 讨论满函数与 反函数时, 就要谨慎了). 所以, 我们作出如下的约定:

- 除非特别声明, 我们不严格区分函数及其限制.
- ●除非特别声明,我们认为函数的陪域可以按实际需要而确定.一般地, 我们取 ℝ.

这样, 我们可以简单地且无变量地表达函数. 比如说, 我们可直接写上面的 *h* 为

$$h = \ln \circ \frac{1 - \sin}{1 - 1} + \operatorname{sqrt} \circ (2\pi - \exp).$$

**定义 1.55** 我们称定义域为 A 的函数为 (定义在) A 上的函数.

借此机会,我们再定义一个常用的说法.

**定义 1.56** 若  $B \subset A$ ,  $f \in A$  上的函数, 我们说  $f \in B$  上有定义.

采取上述约定后, 我们有下面的等式:

$$f + g = g + f,$$
  $fg = gf,$   
 $(f + g) + h = f + (g + h),$   $(fg)h = f(gh),$   
 $f(g + h) = fg + fh,$   $(f + g)h = fh + gh.$ 

这里 f, g, h 都是 A 上的函数.

设函数  $\ell$  的值域是 A 的子集. 记  $f/g = \frac{f}{g}$ ,  $f \land g = f^g$ . 设 \* 是五文字 +, -, ·, /, ^ 的任意一个. 则

$$(f * g) \circ \ell = (f \circ \ell) * (g \circ \ell).$$

上面的等式的验证并不难; 用函数的相等的定义验证即可. 比方说,

$$((f * g) \circ \ell)[x] = (f * g)[\ell[x]] = f[\ell[x]] * g[\ell[x]]$$
$$= (f \circ \ell)[x] * (g \circ \ell)[x] = ((f \circ \ell) * (g \circ \ell))[x].$$

您可以按完全类似的套路论证关于 + 与 · 的等式.

我们用一些简单的例结束本节; 顺便, 这些例也结束本章. 最后一个例在之后的微积分演算中有用, 故我建议您好好看看它.

**例 1.57** 我们知道, 对任意实数 x, 都有  $(\cos[x])^2 + (\sin[x])^2 = 1$ . 那么, 无变量地, 我们可写此式为

$$\cos^2 + \sin^2 = 1.$$

例 1.58 我们可写"二倍角公式"为

$$\sin \circ 2\iota = 2 \cos \sin,$$

$$\cos \circ 2\iota = \cos^2 - \sin^2$$

$$= 2 \cos^2 - 1 = 1 - 2 \sin^2$$

$$= (\cos + \sin)(\cos - \sin),$$

$$\tan \circ 2\iota = \frac{\sin}{\cos} \circ 2\iota$$

$$= \frac{2 \cos \sin}{\cos^2 - \sin^2}$$

$$= \frac{2 \tan}{1 - \tan^2}$$

$$= \frac{2\iota}{1 - \iota^2} \circ \tan.$$

**例 1.59** 值得注意的是, f(g+h) 并不是  $f \circ (g+h)$ :

$$2\cos(\cos + \sin) = 2\cos^2 + 2\cos\sin$$

$$= (\cos + \sin - 1) \circ 2\iota$$

$$= (\cos + \sin) \circ 2\iota - 1$$

$$= \sqrt{2}\cos\circ\left(\iota - \frac{2\pi}{8}\right) \circ 2\iota - 1$$

$$= \sqrt{2}\cos\circ\left(2\iota - \frac{2\pi}{8}\right) - 1.$$

**例 1.60** 值得注意的是, 本书的  $\sin^{-1}$  不是  $\arcsin$ ,  $\tan^{-1}$  也不是  $\arctan$ . 那它们是什么呢? 请看:

$$\sin^{-1} - \tan^{-1} = \frac{1}{\sin} - \frac{1}{\tan}$$
$$= \frac{1}{\sin} - \frac{\cos}{\sin}$$
$$= \frac{1 - \cos}{\sin}$$

1.3 函数的演算

$$= \frac{2\sin^2}{2\cos\sin^2} \circ \frac{1}{2}$$
$$= \tan \circ \frac{1}{2}.$$

15

**例 1.61** 我们看一些关于 arcsin 跟 arctan 的等式. 在本例, 我们约定, sin, tan 分别表示  $\sin_{[-2\pi/4,2\pi/4]}$  与  $\tan_{(-2\pi/4,2\pi/4)}$ . 这样,

$$\begin{aligned} & sin \circ arcsin = \iota_{[-1,1]}, \\ & tan \circ arctan = \iota_{\mathbb{R}}. \end{aligned}$$

由此, 我们可以作出如下的计算:

$$\begin{aligned} \cos \circ \arcsin &= \cos \circ (\iota_{[-2\pi/4,2\pi/4]} \circ \arcsin) \\ &= (\cos \circ \iota_{[-2\pi/4,2\pi/4]}) \circ \arcsin \\ &= (\operatorname{sqrt} \circ (1 - \iota^2) \circ \sin) \circ \arcsin \\ &= (\operatorname{sqrt} \circ (1 - \iota^2)) \circ (\sin \circ \arcsin) \\ &= \operatorname{sqrt} \circ (1 - \iota^2). \end{aligned}$$

这里的  $\iota$  自然是  $\iota_{[-1,1]}$ . 类似地,

$$\begin{aligned} \cos \circ \arctan &= \cos \circ (\iota_{(-2\pi/4,2\pi/4)} \circ \arctan) \\ &= (\cos \circ \iota_{(-2\pi/4,2\pi/4)}) \circ \arctan \\ &= \left(\operatorname{sqrt} \circ \frac{\cos^2}{\cos^2 + \sin^2}\right) \circ \arctan \\ &= \left(\operatorname{sqrt} \circ \frac{1}{1 + \iota^2} \circ \tan\right) \circ \arctan \\ &= \left(\operatorname{sqrt} \circ \frac{1}{1 + \iota^2}\right) \circ (\tan \circ \arctan) \\ &= \frac{1}{\operatorname{sqrt} \circ (1 + \iota^2)}. \end{aligned}$$

有了上面的公式, 我们可轻松地写出

$$\sin \circ \arctan = (\cos \tan) \circ \arctan = \frac{\iota}{\operatorname{sqrt} \circ (1 + \iota^2)},$$
  
$$\tan \circ \arcsin = \frac{\sin}{\cos} \circ \arcsin = \frac{\iota}{\operatorname{sqrt} \circ (1 - \iota^2)}.$$

**注 1.62** 或许, 您现在对无变量的函数演算不感到陌生. 不过, 就算我们模糊了函数及其限制的区别, 有些东西写起来还是稍繁的. 所以, 我们再引入一个记号: g[f]表示  $g \circ f$ . 比如说, 我们可紧凑地写上例的结果为

$$\begin{aligned} &\cos[\arcsin] = sqrt[1 - \iota^2], \\ &\cos[\arctan] = \frac{1}{sqrt[1 + \iota^2]}, \\ &\sin[\arctan] = \frac{\iota}{sqrt[1 + \iota^2]}, \\ &\tan[\arcsin] = \frac{\iota}{sqrt[1 - \iota^2]}. \end{aligned}$$

虽然我已经用 f[a] 表示 a 在 f 下的像了, 我自然地也用 f[C] 表示 C 的每个元在 f 下的像作成的集, 但我的早期工作并没有用 g[f] 表示  $g \circ f$ . 这是 Marian 提到的记号, 我觉得不错, 就拿来用了.

# 第二章 连续函数

本章简单地提及连续函数及其简单的性质; 这也是研究导数的基础. 若无特别说明, 本章的函数的定义域与陪域都是 ℝ 的子集.

### 2.1 连续的定义

定义 2.1 设  $x \in \mathbb{R}$ . 设  $\delta$  为正数. 则  $N[x;\delta] = (x - \delta, x + \delta)$  是 x 的一个邻域. 称  $N[x;\delta] \setminus \{x\} = (x - \delta, x) \cup (x, x + \delta)$  是 x 的一个去心邻域.

不难看出,  $N[x; \delta]$  就是  $\{t \mid |t-x| < \delta\}$ , 而  $N[x; \delta] \setminus \{x\}$  就是  $\{t \mid 0 < |t-x| < \delta\}$ .

下面的不等式十分有用.

#### **定理 2.2** 对任意实数 x, y, 有

$$|x+y| \leqslant |x| + |y|.$$

所以,对任意实数 a, b, c,

$$|a-c| = |(a-b) + (b-c)| \le |a-b| + |b-c|.$$

证 注意到,一个实数的绝对值不低于自身; 再注意到, 比较二个非负数的大小, 相当于比较它们的平方的大小. 所以

$$(|x| + |y|)^2 - |x + y|^2 = 2(|xy| - xy) \ge 0.$$
 证毕.

**定义 2.3** 设 f 是 A 上的函数. 设  $x \in A$ . 若任给正数  $\varepsilon$ , 存在正数  $\delta$  使  $f[A \cap N[x;\delta]] \subset N[f[x];\varepsilon]$ , 则说  $f \ni x$  **连续**.

不难看出, f 于 x 连续的一个必要与充分条件是: 任给正数  $\epsilon$ , 存在正数  $\delta$  使  $|t-x| < \delta$  且  $t \in A$  时, 必有  $|f[t] - f[x]| < \epsilon$ .

**定理 2.4** 设 f, g 是 A 上的函数. 设  $x \in A$ . 设 f, g 都于 x 连续. 设 \* 是 三文字 +, -, · 的任意一个. 则 f \* g 也于 x 连续.

证 以 \* 为 + 或 – 时为例. 任取  $\epsilon$  > 0. 这样, 因为 f 于 x 连续, 故存在 正数  $\delta_1$  使

$$|t-x| < \delta_1 \perp t \in A \implies |f[t] - f[x]| < \frac{\varepsilon}{2}.$$

因为 g 于 x 连续, 故存在正数  $\delta_2$  使

$$|t-x| < \delta_2 \perp t \in A \implies |g[t] - g[x]| < \frac{\varepsilon}{2}.$$

取  $\delta$  为  $\delta_1$ ,  $\delta_2$  的较小者. 这样,  $|t-x| < \delta$  且  $t \in A$  时,

$$\begin{split} |(f*g)[t] - (f*g)[x]| &= |(f[t]*g[t]) - (f[x]*g[x])| \\ &= |(f[t] - f[x])*(g[t] - g[x])| \\ &\leqslant |f[t] - f[x]| + |g[t] - g[x]| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

\*为.时就稍繁一些.不过,不要恐慌.注意到

$$(fg)[t] - (fg)[x]$$

$$= f[t]g[t] - f[x]g[x]$$

$$= (f[t] - f[x] + f[x])g[t] + f[x](g[t] - g[x] + g[t])$$

$$= (f[t] - f[x])g[t] + f[x](g[t] - g[x]).$$

所以, 我们想办法, 使 (f[t] - f[x])g[t] 跟 f[x](g[t] - g[x]) 的绝对值都不超过  $\frac{\epsilon}{2}$  就好. 首先, 存在正数  $\delta_3$  使

$$|t-x| < \delta_3 \perp t \in A \implies |g[t] - g[x]| < \frac{\epsilon}{2(1+|f[x]|)}.$$

其次, 存在正数  $\delta_{4}$  使

$$|t-x|<\delta_4 \perp \!\!\! \perp t \in A \implies |g[t]-g[x]|<1.$$

2.1 连续的定义 19

由此可知,  $|t - x| < \delta_4$ 且  $t \in A$  时,

$$|g[t]| = |g[x] + (g[t] - g[x])| < |g[x]| + 1.$$

最后,存在正数  $\delta_5$  使

$$|t-x| < \delta_5 \perp t \in A \implies |f[t] - f[x]| < \frac{\varepsilon}{2(1+|g[x]|)}.$$

取  $\delta$  为  $\delta_3$ ,  $\delta_4$ ,  $\delta_5$  的最小者. 这样,  $|t-x|<\delta$  且  $t\in A$  时,

$$\begin{split} &|(fg)[t] - (fg)[x]| \\ &= |(f[t] - f[x])g[t] + f[x](g[t] - g[x])| \\ &\leqslant |f[t] - f[x]| \cdot |g[t]| + |f[x]| \cdot |g[t] - g[x]| \\ &< \frac{\varepsilon}{2(1 + |g[x]|)} \cdot (|g[x]| + 1) + |f[x]| \cdot \frac{\varepsilon}{2(1 + |f[x]|)} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$
 证毕.

**定理 2.5** 设  $f \in A$  上的函数. 设  $x \in A$ . 设  $f \in X$  连续. 若  $f[x] \neq 0$ , 则  $f^{-1} \in X$  连续.

证 任取  $\epsilon > 0$ . 注意到

$$f^{-1}[t] - f^{-1}[x] = -\frac{f[t] - f[x]}{f[t]f[x]}.$$

所以, 我们想办法证明 |f[t]f[x]| 比某个正数大. 这不难. 毕竟, 既然  $f[x] \neq 0$ , 那么 |f[x]| 当然是正数. 所以, 存在正数  $\delta_1$  使

$$|t-x| < \delta_1 \perp t \in A \implies |f[t] - f[x]| < \frac{|f[x]|}{2}.$$

从而

$$|f[x]| = |f[t] - (f[t] - f[x])| \le |f[t]| + |f[t] - f[x]| < |f[t]| + \frac{|f[x]|}{2},$$

也就是

$$|f[t]| > |f[x]| - \frac{|f[x]|}{2} = \frac{|f[x]|}{2}.$$

所以,  $|t - x| < \delta_1$  且  $t \in A$  时,

$$|f[t]f[x]| > \frac{1}{2}|f[x]|^2.$$

接下来想办法使  $|f[t] - f[x]| < \frac{2}{|f[x]|^2} \varepsilon$  即可. 我十分信任您; 您一定可以写出此事的论证的, 对吧? 证毕.

**注 2.6** 一般地, 设 f 是 A 上的函数,  $x \in A$ , 且 f 于 x 连续. 若  $f[x] \neq 0$ , 则存在 x 的邻域  $N[x;\delta]$  使  $t \in A \cap N[x;\delta]$  时必有

$$\frac{1}{2} < \frac{f[t]}{f[x]} < \frac{3}{2}.$$

取  $\varepsilon = |f[x]|/2$ ; 然后,

$$\left| \frac{f[t]}{f[x]} - 1 \right| = \frac{|f[t] - f[x]|}{|f[x]|} < \frac{1}{2}.$$

我邀请您补全细节; 注意到 |a-b| < c 相当于 a-c < b < a+c.

**定理 2.7** 设 f, g 是 A 上的函数. 设  $x \in A$ . 设 f, g 都于 x 连续. 设  $f[x] \neq 0$ . 则 g/f 也于 x 连续.

证 注意到 
$$g/f = g \cdot f^{-1}$$
. 证毕.

**定理 2.8** 设  $f: A \to B$ ,  $g: B \to C$ . 若  $f \to x$  连续, 且  $g \to f[x]$  连续, 则  $g \circ f: A \to C \to x$  连续.

证 任取正数  $\epsilon$ . 那么, 存在正数  $\delta'$  使

$$|v - f[x]| < \delta' \perp v \in B \implies |g[v] - g[f[x]]| < \varepsilon.$$

也存在正数  $\delta$  使

$$|t-x|<\delta \perp t \in A \implies |f[t]-f[x]|<\delta'.$$

显然  $f[t] \in B$ . 所以,  $|t-x| < \delta$ 且  $t \in A$  时,

$$|(g \circ f)[t] - (g \circ f)[x]| = |g[f[t]] - g[f[x]]| < \varepsilon.$$
 证毕.

2.2 连续函数 21

### 2.2 连续函数

我们已经知道函数于一点连续的意思. 不过, 什么是连续函数呢?

**定义 2.9** 设 f 是 A 上的函数. 若 f 于 A 的每一点都连续, 则 f 是 (A 上的) **连续函数**.

**注 2.10** 显然, 若  $B \subset A$ , 那么 f 在 B 上的限制  $f_B$  也是连续函数.

利用上节的结论, 我们有下面的二个结论; 我相信您可以迅速地论证它们, 所以我就不证了.

**定理 2.11** 设 f, g 都是 A 上的连续函数. 则:

- (1) f \* g 是连续函数, 这里 \* 是三文字 +, -, · 的任意一个.
- (2) 若 f 不取零值 (也就是说, f 无根), 则 g/f 是连续函数.

**定理 2.12** 设  $f: A \to B, g: B \to C$  都是连续函数. 则  $g \circ f: A \to C$  也是连续函数.

**例 2.13** 常函数  $c: \mathbb{R} \to \{c\}$  是连续函数.

任取一点 x. 注意到, 对任意非空集  $T \subset \mathbb{R}$ ,  $c[T] = \{c\}$ . 所以, 任取正数  $\epsilon$ , 对 x 的**任意**邻域  $N[x;\delta]$ , 都有  $c[N[x;\delta]] = \{c\} \subset N[c;\epsilon] = N[c[x];\epsilon]$ .

**例 2.14**  $\iota: \mathbb{R} \to \mathbb{R}$  是连续函数.

任取一点 x. 注意到, 对任意集  $T \subset \mathbb{R}$ ,  $\iota[T] = T$ . 所以, 任取正数  $\varepsilon$ , 取 x 的  $\varepsilon$  邻域  $N[x;\varepsilon]$ , 即得  $\iota[N[x;\varepsilon]] = N[x;\varepsilon] = N[\iota[x];\varepsilon] \subset N[\iota[x];\varepsilon]$ .

所以, 我们又有下面的结论; 还是老样子, 请您迅速地给出一个论证.

定理 2.15 每一个形如

$$\frac{b_0 + b_1 \iota + \dots + b_n \iota^n}{a_0 + a_1 \iota + \dots + a_m \iota^m}$$

(其中 m, n 为非负整数, 且  $a_0$ ,  $a_1$ , …,  $a_m$  是不全为零的实数,  $b_0$ ,  $b_1$ , …,  $b_n$  是实数) 的函数都是其定义域上的连续函数.

为后面的需要, 我们考虑严单调函数与连续函数的关系.

**定义 2.16** 设 f 是 A 上的函数. 若任取 A 的相异二元 x, y, 都有  $(x - y)(f[x] - f[y]) <math>\geq 0$ , 则说 f 增 (也说 f 是增函数); 若任取 A 的相异二元 x, y, 都有 (x - y)(f[x] - f[y]) > 0, 则说 f 严增 (也说 f 是严增函数).

若 -f 增, 则 f 减 (也说 f 是减函数); 若 -f 严增, 则 f 严减 (也说 f 是严减函数).

若 f 增或 f 减, 则 f 单调 (也说 f 是单调函数); 若 f 严增或 f 严减,则 f 严单调 (也说 f 是严单调函数).

简单地, 说 f 增 (严增), 就是说对任意适合  $x \in A$ ,  $y \in A$  且 x < y 的 x, y, 必有  $f[x] \leq f[y]$  (f[x] < f[y]); 说 f 减 (严减), 就是说对任意适合  $x \in A$ ,  $y \in A$  且 x < y 的 x, y, 必有  $f[x] \geq f[y]$  (f[x] > f[y]).

**例 2.17** 设 a 为非零实数, b 为实数. 则 a1 + b 是  $\mathbb{R}$  上的严单调函数. 任取二个相异实数 x, y, 则

$$(x - y)((a\iota + b)[x] - (a\iota + b)[y])$$
  
=  $(x - y)((ax + b) - (ay + b))$   
=  $a(x - y)^2$ .

由此可知, a > 0 时  $a\iota + b$  严增, 而 a < 0 时  $a\iota + b$  严减. 可以验证,  $(a\iota)^{[-1]} = \frac{1}{a}\iota$ , 且  $(\iota + b)^{[-1]} = \iota - b$ . 所以

$$(a\iota + b)^{[-1]} = ((\iota + b) \circ (a\iota))^{[-1]}$$

$$= (a\iota)^{[-1]} \circ (\iota + b)^{[-1]}$$

$$= \frac{1}{a}\iota \circ (\iota - b)$$

$$= \frac{1}{a}\iota - \frac{b}{a}.$$

不难看出,  $(a\iota + b)^{[-1]}$  跟  $a\iota + b$  同严增 (或严减).

**定理 2.18** 设  $f \in A$  上的严单调函数. 则  $f \in A$  是单函数.

证 任取 A 的相异二元 x, y. 则

$$f[x] - f[y] = \frac{(x - y)(f[x] - f[y])}{x - y} \neq 0.$$
   
 证毕.

2.2 连续函数 23

我们知道, 若  $f: A \to B$  是单函数, 且 f[A] = B, 则 f 有反函数  $f^{[-1]}$ :  $B \to A$ . 特别地, 适当选取陪域后, 每个严单调函数都有反函数.

**定理 2.19** 设  $f: A \to B$  是满的严增 (严减) 函数. 则  $f^{[-1]}: B \to A$  也是满的严增 (严减) 函数.

证 依假定, f 是双函数, 故有反函数  $f^{[-1]}$ , 且  $f^{[-1]}$  当然是既满亦单的. 无妨设 f 严增; f 严减时, 您可类似地论证  $f^{[-1]}$  亦严减.

下设 f 严增. 任取 B 的相异二元 x', y'. 令  $x = f^{[-1]}[x']$ ,  $y = f^{[-1]}[y']$ . 易见  $x \neq y$ , 且 x' = f[x], y' = f[y]. 因 f 严增, 故

$$(f[x] - f[y])(x - y) = (x - y)(f[x] - f[y]) > 0.$$

从而

$$(x'-y')(f^{[-1]}[x']-f^{[-1]}[y'])$$

$$=(f[x]-f[y])(x-y)>0.$$
 证毕.

下面的结论十分重要.

**定理 2.20** 设 I 为区间. 设  $f: I \to J$  是满的严单调函数. 则 f 是连续函数的一个必要与充分条件是: J 是区间.

证 无妨设 f 严增.

先看必要性. 设 f 连续. 用反证法. 若 J = f[I] 不是区间,则存在 J 的相异二元 x', y' 使 x' < y' 且  $J \cap (x',y')$  为空集. 设 f[x] = x'; 设 f[y] = y'. 显然 x < y. 任取 I 的大于 x 的元 u. 因为 f 严增, 故 f[u] > f[x] = x'; 因为  $f[u] \notin (x',y')$ , 故  $f[u] \geqslant y'$ . 所以,  $f[u] - f[x] \geqslant y' - x'$ . 因为 f 于 x 连续, 故存在正数  $\delta$  使  $|t-x| < \delta$  且  $t \in I$  时,

$$|f[t] - f[x]| < y' - x'.$$

因为 I 是区间, 且 x,  $y \in I$ , 故  $[x,y] \subset I$ ; 特别地, 这说明, 存在适合条件  $0 < v - x < \delta$  目,  $v \in I$  的数 v. 故

$$y' - x' > |f[v] - f[x]| = f[v] - f[x] \ge y' - x'$$
.

这是矛盾.

再看充分性. 设 J 是区间. 任取  $x \in I$ . 我们证明  $f \ni x$  连续.

先设 x 是 I 的左端点. 那么, 对每个 w > x,  $w \in I$ , 都有 f[w] > f[x]. 于是, f[x] 也是 J 的左端点. 任取正数  $\varepsilon$ , 必存在正数  $e < \varepsilon$  使  $f[x] + e \in J$ . 令  $q = f^{[-1]}[f[x] + e]$ , 则必有 x < q. 从而, 当  $x \le t < q$  时,  $f[x] \le f[t] < f[x] + e$ . 这么看来, 存在正数  $\delta = q - x$ , 当  $t \in N[x; \delta] \cap I = [x, q)$  时, 必有

$$|f[t] - f[x]| = f[t] - f[x] < e < \varepsilon.$$

类似地, 当 x 是 I 的右端点时, 您也可用完全类似的套路论证 f 于 x 连续.

现设 x 既不是 I 的左端点, 也不是 I 的右端点. 这样, 存在正数 d 使  $x-d, x+d \in I$ . 所以  $f[x-d], f[x+d] \in J$ , 且 f[x-d] < f[x] < f[x+d]. 故 f[x] 也不是 J 的端点. 所以, 任取正数  $\epsilon$ , 必存在正数  $e < \epsilon$  使 f[x] - e,  $f[x] + e \in J$ . 令  $p = f^{[-1]}[f[x] - e]$ ,  $q = f^{[-1]}[f[x] + e]$ . 那么 p < x < q. 取  $\delta$  为 x - p 与 q - x 的较小者. 则  $|t - x| < \delta$  且  $t \in I$  时,

$$p \le x - \delta < t < x + \delta \le q$$
,

从而

$$f[x] - e = f[p] \le f[x - \delta] < f[t] < f[x + \delta] \le f[q] = f[x] + e$$

即

$$|f[t] - f[x]| \le e < \varepsilon.$$
 证毕.

由此, 我们可以得到如下关于反函数的定理.

**定理 2.21** 设 I 为区间. 设  $f: I \to J$  是满的严单调函数. 设 f 是连续函数. 则  $f^{[-1]}: J \to I$  也是连续函数.

证 设  $f: I \to J$  是满的严单调函数. 因为 I 是区间, 且 f 是连续函数, 故 J = f[I] 也是区间. 因为  $f^{[-1]}$  也是满的严单调函数, 且  $I = f^{[-1]}[J]$  是区间, 故  $f^{[-1]}$  是连续函数. 证毕.

最后, 我不加论证地给出一些常见的连续函数. 您可以在任意一本分析 教材里找到论证.

- exp:  $\mathbb{R} \to (0, +\infty)$  是满的严增函数, 也是连续函数. 这样, 其反函数 ln:  $(0, +\infty) \to \mathbb{R}$  也是满的严增函数 (当然也连续).
- sin:  $\mathbb{R} \to [-1,1]$  是满的连续函数. 记 sin 在  $[-\frac{2\pi}{4},\frac{2\pi}{4}]$  上的限制为 s. 则 s 是满的严增函数. 故其反函数 arcsin:  $[-1,1] \to [-\frac{2\pi}{4},\frac{2\pi}{4}]$  也是满的严增函数 (当然也连续).
- tan:  $\{x \mid \cos[x] \neq 0\} \rightarrow \mathbb{R}$  是满的连续函数. 记 tan 在  $(-\frac{2\pi}{4}, \frac{2\pi}{4})$  上的限制为 t. 则 t 是满的严增函数. 故其反函数 arctan:  $\mathbb{R} \rightarrow (-\frac{2\pi}{4}, \frac{2\pi}{4})$  也是满的严增函数 (当然也连续).
- 设 n 是正偶数. 则  $\iota^n$ :  $[0, +\infty) \to [0, +\infty)$  是满的严增函数, 也是连续函数. 这样, 其反函数  $\iota^{1/n}$ :  $[0, +\infty) \to [0, +\infty)$  也是满的严增函数 (当然也连续). 一般写  $\iota^{1/n}[x]$  为  $\sqrt[n]{x}$  或  $x^{1/n}$ ; 一般写  $\sqrt[n]{x}$  为  $\sqrt[n]{x}$  可  $\sqrt[n]{x}$  为  $\sqrt[n]{x}$  可  $\sqrt[n]{x}$  为  $\sqrt[n]{x}$  可  $\sqrt[n]{x}$  为  $\sqrt[n]{x}$  为  $\sqrt[n]{x}$  可  $\sqrt[n]{x}$  为  $\sqrt[n]{x}$  可  $\sqrt[n]{x}$
- 设 n 是正奇数. 则  $\iota^n$ :  $\mathbb{R} \to \mathbb{R}$  是满的严增函数, 也是连续函数. 这样, 其反函数  $\iota^{1/n}$ :  $\mathbb{R} \to \mathbb{R}$  也是满的严增函数 (当然也连续). 一般写  $\iota^{1/n}[x]$  为  $\sqrt[n]{x}$  或  $x^{1/n}$ ; 一般写  $\sqrt[n]{x}$  为 x; 一般写  $\iota^{1/n}[x]$  为  $\iota^{1/n}[x]$  为  $\iota^{1/n}[x]$
- abs: ℝ → [0,+∞) 是连续函数.

### 2.3 连续函数的积分

我简单地介绍一下连续函数的积分.

传统地,一本算学分析(或高等算学)教材会先讲导数(微分学),再讲如何反求导(不定积分),然后才是积分(定积分).不过,为论证连续函数一定有"反导",就需要(连续函数的)积分的知识.所以,逻辑地,我选择先说连续函数的积分论.这里,我就不加证明地列举本书用到的关于积分的结论.如果您对这些结论的论证感兴趣,您可以参考算学家梅加强的《数学分析》.

**定理 2.22** 设 f 是区间 I 上的连续函数. 设  $a, b \in I$ , 且 a < b. 作数列

A: 
$$\mathbb{N} \to \mathbb{R}$$
,  
 $n \mapsto \begin{cases} 0, & n = 0; \\ \sum_{i=0}^{n-1} \frac{b-a}{n} f\left[a + \frac{i}{n}(b-a)\right], & n \geqslant 1. \end{cases}$ 

则存在唯一的实数  $\alpha$ , 使对任意正数  $\epsilon$ , 存在非负整数 N, 当 n>N 时, 有  $|A[n]-\alpha|<\epsilon$ .

我们称  $\alpha$  为 f 在 [a,b] 上的**积分**, 并记  $\alpha$  为

$$\int_a^b f$$
.

**注 2.23** 传统地, 我们记上面的  $\alpha$  为

$$\int_a^b f(x) \, \mathrm{d}x.$$

我并没有说老记号不好; 只不过, 我会展现一种不需要"变量 x"的积分法 (如何无变量地计算积分), 故我在此使用新记号. 本注的目的是告诉您传统 的记号跟本书的记号的区别.

**例 2.24** 设 k 为常函数. 则不难看出,

$$\int_{a}^{b} k = (b - a)k.$$

现在, 我们看积分的一些基本性质. 不过, 我们先作一个约定.

**定义 2.25** 设 f 是区间 I 上的连续函数. 设  $a, b \in I$ , 且 a < b. 规定

$$\int_{a}^{a} f = 0, \qquad \int_{b}^{a} f = -\int_{a}^{b} f.$$

**定理 2.26** 设 f, g 是区间 I 上的连续函数. 设  $a, b \in I$ . 设  $k \in \mathbb{R}$ . 则

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g,$$
$$\int_{a}^{b} kf = k \int_{a}^{b} f.$$

**定义 2.27** 设\*是文字>, <,  $\geq$ ,  $\leq$  的任意一个. 设 A 是  $\mathbb{R}$  的子集. 设 f, g 都是 A 上的函数. 若对任意  $t \in A$ , 都有 f[t] \* g[t], 则我们写 f \* g.

**注 2.28** 注意, 我们没说 \* 可以是文字  $\neq$ ; 这是因为我们已经规定,  $f \neq g$  是 f = g 的**否定**.

27

**定理 2.29** 设 f, g 是区间 I 上的连续函数. 设 a,  $b \in I$ , 且 a < b. 设  $f \leq g$ . 则

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g.$$

**定义 2.30** 我们可简单地写 abs o f 为 |f|; 类似地, 我们也可简单地写 sqrt o f 为  $\sqrt{f}$ .

**例 2.31** 设 f 是区间 I 上的连续函数. 设  $a, b \in I$ , 且 a < b. 不难验证  $-|f| \le f \le |f|$ . 故

$$\int_{a}^{b} (-|f|) \leqslant \int_{a}^{b} f \leqslant \int_{a}^{b} |f|,$$

也就是

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|.$$

不难看出, 对任意  $a, b \in I$ ,

$$\left| \int_{a}^{b} f \right| \leq \left| \int_{a}^{b} |f| \right|.$$

**定理 2.32** 设 f 是区间 I 上的连续函数. 设  $a, b, c \in I$ . 则

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$$

下面的结论很重要; 之后会用到.

**定理 2.33** 设 f 是区间 I 上的连续函数. 设  $x \in I$ . 作函数

$$F: \quad I \to \mathbb{R},$$

$$t \mapsto \begin{cases} f[x], & t = x; \\ \frac{1}{t - x} \int_{x}^{t} f, & t \neq x. \end{cases}$$

则 F 于 x 连续.

证 任取正数  $\epsilon$ . 我们的目标是, 找到正数  $\delta$ , 使  $|t-x| < \delta$  且  $t \in I$  时,  $|F[t] - F[x]| < \epsilon$ . 这相当于: 找到正数  $\delta$ , 使  $0 < |t-x| < \delta$  且  $t \in I$  时,

$$\left|\frac{1}{t-x}\int_{x}^{t}f-f[x]\right|<\varepsilon.$$

这不难. 首先, 注意到

$$f[x](t-x) = \int_{x}^{t} f[x],$$

故

$$\frac{1}{t-x} \int_{x}^{t} f - f[x] = \frac{1}{t-x} \int_{x}^{t} (f - f[x]).$$

取低于  $\epsilon$  的正数 e. 因为 f 于 x 连续, 故存在正数 d, 使 |t-x| < d 且  $t \in I$  时,

$$|f[t] - f[x]| < e.$$

所以

$$\left| \int_{x}^{t} (f - f[x]) \right| \le \left| \int_{x}^{t} |f - f[x]| \right| \le \left| \int_{x}^{t} e \right| = |t - x|e.$$

也就是说, 0 < |t - x| < d 且  $t \in I$  时,

$$\left| \frac{1}{t-x} \int_{x}^{t} f - f[x] \right| = \frac{1}{|t-x|} \left| \int_{x}^{t} (f - f[x]) \right|$$

$$\leq \frac{1}{|t-x|} \cdot |t-x|e$$

$$= e < \varepsilon.$$

证毕.

# 第三章 导数

本章简单地提及导数及其运算. 若无特别说明,本章的函数的定义域都是区间.

### 3.1 背景

**定义 3.1** 设 I 为区间. 设 f 为 I 上的函数. 设  $x \in I$ . 若存在 x 的邻域 N, 与  $N \cap I$  上的函数 F, 使

$$f = f[x] + (\iota - x)F,$$

且  $F \to x$  连续, 则说  $f \to x$  **可导**, 并称 F[x] 为  $f \to x$  的**导数**.

注 3.2 传统地, 我们用极限

$$\lim_{t \to x} \frac{f[t] - f[x]}{t - x}$$

是否存在定义 f 是否于 x 可导; 极限存在时, 它的值就是 f 于 x 的导数. 可以证明, 这二个定义是等价的; 不过, 既然我花了不少篇幅讨论连续函数, 我将呈现一种不一样的微分学 (求导学). 我采取的定义来自希腊算学家 Constantin Carathéodory. 假如您对此事感兴趣, 您可以阅读美国算学家 Stephen Kuhn 的名为 *The Derivative á la Carathéodory* 的文章 (不过, 我想说, 标题的  $\hat{a}$   $\hat{b}$   $\hat{b$ 

我们看导数的一些基本性质. 在定义里, 若 f 于 x 可导, 则 f 于 x 的导数似乎不止一个. 不过, 我们即将说明, 导数是唯一的.

**定理 3.3** 设 I 为区间. 设 f 为 I 上的函数. 设  $x \in I$ . 设存在 x 的邻域  $N_1$ , 与  $N_1 \cap I$  上的函数  $F_1$ , 使

$$f = f[x] + (\iota - x)F_1,$$

且  $F_1$  于 x 连续. 设存在 x 的邻域  $N_2$ , 与  $N_2 \cap I$  上的函数  $F_2$ , 使

$$f = f[x] + (\iota - x)F_2,$$

且  $F_2$  于 x 连续. 则  $F_1[x] = F_2[x]$ . 也就是说, f 于 x 的导数, 若存在, 则唯一.

证 用反证法. 设  $F_1[x] \neq F_2[x]$ , 则  $\varepsilon = |F_1[x] - F_2[x]|$  是正数. 我们要由此推出矛盾.

因为  $N_1 \cap I$  是区间, 且  $F_1$  于 x 连续, 故存在正数  $\delta_1$ , 使  $0 < |t-x| < \delta_1$  且  $t \in I$  时, 必有  $|F_1[t] - F_1[x]| < \varepsilon/2$ , 即

$$\left| \frac{f[t] - f[x]}{t - x} - F_1[x] \right| < \frac{\varepsilon}{2}.$$

因为  $N_2 \cap I$  是区间, 且  $F_2$  于 x 连续, 故存在正数  $\delta_2$ , 使  $0 < |t - x| < \delta_2$  且  $t \in I$  时, 必有  $|F_2[t] - F_2[x]| < \varepsilon/2$ , 即

$$\left| \frac{f[t] - f[x]}{t - x} - F_2[x] \right| < \frac{\varepsilon}{2}.$$

取  $\delta$  为  $\delta_1$  与  $\delta_2$  中的较小者. 则  $0 < |t - x| < \delta$  且  $t \in I$  时,

$$\begin{split} \varepsilon &= |F_1[x] - F_2[x]| \\ &= \left| \left( \frac{f[t] - f[x]}{t - x} - F_2[x] \right) - \left( \frac{f[t] - f[x]}{t - x} - F_1[x] \right) \right| \\ &\leq \left| \frac{f[t] - f[x]}{t - x} - F_2[x] \right| + \left| \frac{f[t] - f[x]}{t - x} - F_1[x] \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

这是矛盾. 证毕.

**例 3.4** 设 a, b 为实数. 则 a + b 于其定义域的任意一点都可导. 具体地,

$$a\iota + b = (a\iota + b)[x] + (\iota - x)a,$$

而 a 是连续函数. 并且, a + b 于任意一点的导数都是 a.

3.1 背景 31

**定理 3.5** 设 I 为区间. 设 f 为 I 上的函数. 设  $x \in I$ . 设 f 于 x 可导. 则 f 于 x 连续.

证 因为 f 于 x 可导, 故存在 x 的邻域 N, 与  $N \cap I$  上的函数 F, 使

$$f = f[x] + (\iota - x)F,$$

且F于x连续.

因为 $\iota - x$  于 x 连续, 故  $(\iota - x)F$  于 x 连续; 因为 f[x] 于 x 连续, 故 f 于 x 连续.

**定理 3.6** 设 I 为区间. 设 f, g 为 I 上的函数. 设  $x \in I$ . 设 f, g 都于 x 可导. 则:

• f + g + x 可导,且

(f + g + x) = (f + x) + (g + x) + (g + x)

● 设 k 为常数. 则 kf 于 x 可导, 且

fg 于 x 可导,且

• 若  $f[x] \neq 0$ , 则 g/f 于 x 可导, 且

证 因为 f 于 x 可导, 故存在 x 的邻域  $N_1$ , 与  $N_1 \cap I$  上的函数 F, 使

$$f = f[x] + (\iota - x)F,$$

且 F 于 x 连续. 类似地, 因为 g 于 x 可导, 故存在 x 的邻域  $N_2$ , 与  $N_2 \cap I$  上的函数 G, 使

$$g = g[x] + (\iota - x)G,$$

且 G 于 x 连续. 取  $N = N_1 \cap N_2$ , 则 N 也是 x 的邻域. 这里, 为方便, 无妨滥用记号, 视 F, G 分别是 F, G 在  $N \cap I$  上的限制. 此外, 注意到, f, g 于 x 的导数分别为 F[x], G[x].

因为

$$f + g = (f[x] + (\iota - x)F) + (g[x] + (\iota - x)G)$$
$$= (f[x] + g[x]) + (\iota - x)(F + G)$$
$$= (f + g)[x] + (\iota - x)(F + G),$$

且 F + G 于 x 连续, 故 f + g 于 x 可导, 且导数为 (F + G)[x] = F[x] + G[x]. 因为

$$kf = k(f[x] + (\iota - x)F)$$
$$= kf[x] + k(\iota - x)F$$
$$= (kf)[x] + (\iota - x)(kF),$$

且 kF 于 x 连续, 故 kf 于 x 可导, 且导数为  $(kF)[x] = k \cdot F[x]$ . 因为

$$fg = (f[x] + (\iota - x)F)(g[x] + (\iota - x)G)$$

$$= f[x]g[x] + f[x](\iota - x)G + (\iota - x)Fg[x] + (\iota - x)F(\iota - x)G$$

$$= (fg)[x] + (F \cdot g[x] + f[x] \cdot G + FG(\iota - x))(\iota - x),$$

且  $h = F \cdot g[x] + f[x] \cdot G + FG(\mathfrak{1} - x)$  于 x 连续, 故 fg 于 x 可导, 且导数为 h[x] = F[x]g[x] + f[x]G[x].

最后一个等式需要一点儿技巧. 首先, 既然  $f[x] \neq 0$ , 且 f 于 x 连续, 故 存在 x 的邻域 M, 使  $t \in M \cap I$  时,

$$|f[t] - f[x]| < \frac{|f[x]|}{2},$$

从而

$$|f[x]| = |f[t] - (f[t] - f[x])| \le |f[t]| + |f[t] - f[x]| < |f[t]| + \frac{|f[x]|}{2},$$

3.1 背景 33

也就是

$$|f[t]| > |f[x]| - \frac{|f[x]|}{2} = \frac{|f[x]|}{2}.$$

所以, 在 M 上, f 不取零值. 从而, 在  $(M \cap N) \cap I$  上,

$$f^{-1} = f^{-1}[x] + \left(\frac{1}{f} - \frac{1}{f[x]}\right)$$

$$= f^{-1}[x] - \frac{f - f[x]}{f[x]f}$$

$$= f^{-1}[x] - \frac{(\iota - x)F}{f[x]f}$$

$$= f^{-1}[x] + (\iota - x) \cdot \left(-\frac{F}{f[x]f}\right).$$

因为 -F/(f[x]f) 于 x 连续, 故  $f^{-1}$  于 x 可导, 且导数为  $-F[x]/(f^2[x])$ . 注意到  $g/f = g \cdot f^{-1}$ , 故 g/f 于 x 可导, 且

**例 3.7** 我们知道,  $a\iota + b$ :  $\mathbb{R} \to \mathbb{R}$  于  $\mathbb{R}$  的任意一点 x 都可导, 且导数为 a. 特别地, 常函数于 x 的导数为 0, 而  $\iota$  于 x 的导数为 1. 利用算学归纳法, 可算出, 当 n 为正整数时,  $\iota$  ":  $\mathbb{R} \to \mathbb{R}$  于  $\mathbb{R}$  的任意一点 x 都可导, 且导数为  $nx^{n-1}$ . 由此, 多项式函数于  $\mathbb{R}$  的任意一点 x 都可导. 进而, 有理函数于有定义的点可导. 顺便一提, 即使 n 为负整数,  $\iota$  "于非零的 x 的导数仍为  $nx^{n-1}$ .

**定理 3.8** (链规则) 设 I, J 为区间. 设 f:  $I \to J$ , g:  $J \to K$ . 设  $x \in I$ . 设  $f \to x$  可导, 且  $g \to f[x]$  可导. 则  $g \circ f \to x$  可导, 且

证 因为 g 于 f[x] 可导, 故存在 f[x] 的邻域 M, 与  $M \cap J$  上的函数 G, 使

$$g = g[f[x]] + (\iota - f[x])G,$$

且 G 于 f[x] 连续; 同时, G[f[x]] 即为 g 于 f[x] 的导数. 因为 f 于 x 可导, 故存在 x 的邻域  $N_1$ , 与  $N_1$   $\cap$  I 上的函数 F, 使

$$f = f[x] + (\iota - x)F,$$

且 F 于 x 连续; 同时, F[x] 即为 f 于 x 的导数.

因为 f 亦于 x 连续, 故对 f[x] 的邻域 M 来说, 必存在 x 的邻域  $N_2$ , 使  $f[N_2 \cap I] \subset M$ ; 又因为 f 的陪域为 J, 故  $f[N_2 \cap I] \subset J$ . 所以,  $f[N_2 \cap I] \subset M \cap J$ . 取  $N = N_1 \cap N_2$ , 则 N 也是 x 的邻域, 且  $f[N \cap I] \subset M \cap J$ . 为方便, 无妨滥用记号, 视 F, f 分别是 F, f 在  $N \cap I$  上的限制. (事实上, 本段文字只是保证复合  $G \circ f$  有意义罢了.)

现在考察  $g \circ f$ :

$$g \circ f = g[f[x]] + (f - f[x])(G \circ f)$$
$$= (g \circ f)[x] + (\iota - x)F(G \circ f)$$
$$= (g \circ f)[x] + (\iota - x) \cdot (G \circ f)F.$$

因为 G 于 f[x] 连续, 而 f 于 x 连续, 故  $G \circ f$  于 x 连续; 又因 F 于 x 连续, 故  $(G \circ f)F$  于 x 连续. 所以  $g \circ f$  于 x 可导, 且导数为  $G[f[x]] \cdot F[x]$ . 证毕.

**定理 3.9** 设 I, J 为区间. 设 f:  $I \to J$  严单调, 且有反函数  $f^{[-1]}$ :  $J \to I$ . 设  $y \in J$ . 设  $f \to f^{[-1]}[y]$  可导. 则  $f^{[-1]} \to y$  可导的一个必要与充分条件是:  $f \to f^{[-1]}[y]$  的导数非零.

若 f 于  $f^{[-1]}[y]$  的导数不等于零,则

$$(f^{[-1]} \pm y \text{ 的导数}) = \frac{1}{(f \pm f^{[-1]}[y] \text{ 的导数})}.$$

证 先看必要性. 既然  $f^{[-1]}$ 于 y 可导, 且 f于  $f^{[-1]}[y]$  可导, 那么  $\iota_J = f \circ f^{[-1]}$ 于 y 可导. 由链规则, 有

$$1 = (f + f^{[-1]}[y]) + (f^{[-1]} + y) + (f^{[-1]} + y)$$

3.1 背景 35

从而 f 于  $f^{[-1]}[v]$  的导数非零.

再看充分性. 因为 f 于  $f^{[-1]}[y]$  可导, 故存在  $f^{[-1]}[y]$  的邻域  $N_1$ ,与  $N_1 \cap I$  上的函数 F,使

$$f = f[f^{[-1]}[y]] + (\iota - f^{[-1]}[y])F,$$

且 F 于  $f^{[-1]}[y]$  连续. 依假定, f 于  $f^{[-1]}[y]$  的导数  $F[f^{[-1]}[y]] \neq 0$ . 所以, 存在  $f^{[-1]}[y]$  的邻域  $N_2$ , 使在  $N_2 \cap (N_1 \cap I)$  上, F 不取零值. 取  $N = N_2 \cap N_1$ , 则 N 也是  $f^{[-1]}[y]$  的邻域, 且在  $N \cap I$  上, 不但 F 不取零值, 且

$$f = y + (i - f^{[-1]}[y])F.$$

因为 f 严单调, 且 I, J 都是区间, 故 f,  $f^{[-1]}$  都是连续函数. 特别地,  $f^{[-1]}$  于 y 连续. 故对  $f^{[-1]}[y]$  的邻域 N, 存在 y 的邻域 M, 使  $f^{[-1]}[M \cap J] \subset N$ . 因为  $f^{[-1]}$  的值域为 I, 故  $f^{[-1]}[M \cap J] \subset I$ . 也就是说,  $f^{[-1]}[M \cap J] \subset N \cap I$ . (事实上, 这只是为保证复合  $F \circ f^{[-1]}$  有意义.) 那么, 在  $M \cap J$  上, 有

$$f \circ f^{[-1]} = y + (f^{[-1]} - f^{[-1]}[y])(F \circ f^{[-1]}),$$

即

$$f^{[-1]} = f^{[-1]}[y] + (\iota - y) \cdot \frac{1}{F \circ f^{[-1]}}.$$

因为  $f^{[-1]}$  于 y 连续, 而 F 于  $f^{[-1]}[y]$  连续, 故  $F \circ f^{[-1]}$  于 y 连续; 因为 (在  $M \cap J$  上) F 不取零值, 故  $1/(F \circ f^{[-1]})$  亦于 y 连续. 所以,  $f^{[-1]}$  于 y 可导, 且 导数为  $1/F[f^{[-1]}[y]]$ . 证毕.

最后, 我给出一个十分有用的事实; 不过, 由于没有足够多的工具, 我就不论证了.

**定理 3.10** 指数函数、馀弦函数、正弦函数于其定义域的每一点都可导. 具体地说:

- exp:  $\mathbb{R} \to (0, +\infty)$  于  $\mathbb{R}$  的任意一点 x 都可导, 且导数为  $\exp[x]$ .
- cos:  $\mathbb{R} \to [-1,1]$  于  $\mathbb{R}$  的任意一点 x 都可导, 且导数为  $-\sin[x]$ ,
- $\sin : \mathbb{R} \to [-1,1] \to \mathbb{R}$  的任意一点 x 都可导, 且导数为  $\cos[x]$ .

## 3.2 无变量的导数计算

这是本章的重点; 这也是本书的一个重点. 不过, 不重要地, "无变量的导数计算"的"导数"跟前面的"导数"不是一个词, 但仍有联系.

**定义 3.11** 设 f 是区间 I 上的函数. 若 f 于 I 的每一点都可导,则定义函数

$$D[f]: I \to K,$$
 $x \mapsto (f \oplus x)$  的导数),

其中陪域 K 可视情况而定 (除非特别说明, 我们不在意陪域). 我们称 D[f] 为 f 的导函数 (亦可简称其为 f 的导数).

抽象地, D[f] 的 D 本身就是一个函数; 不过, 这是一个变函数为函数的函数 (有点儿绕). 有时, 在不引起误会的时候, 我们也可写 D[f] 为 Df; 毕竟, 至少在本书里, D 也只跟函数 "作用".

当然, 我又忘记了一件事: 若 f 于 I 的每一点都可导, 我们就说 f 是 I 上的**可导函数**.

曾经, 我们写 "f 于 x 的导数是  $\ell$ "; 现在, 我们总算能简便地表此事以  $D[f][x] = \ell$  或  $Df[x] = \ell$ . 乘热打铁, 我们用简单的话转述前节的结论.

**定理 3.12** 设 f, g 都是区间 I 上的可导函数.

• f + g 也是 I 上的可导函数, 且

$$D[f + g] = Df + Dg$$
.

•  $0 \times 10^{\circ}$  0 ·  $0 \times 10^{\circ}$  0 · 0

$$D[kf] = kDf$$
.

• fg 也是 I 上的可导函数, 且

$$D[fg] = Df \cdot g + f \cdot Dg.$$

•  $\emptyset$  f 不取零值. 则 g/f 也是 I 上的可导函数, 且

$$D\frac{g}{f} = \frac{Dg \cdot f - g \cdot Df}{f^2}.$$

37

**定理 3.13** 设 I, J 为区间. 设  $f: I \to J, g: J \to K$  都是可导函数. 则  $g \circ f$  也是可导函数, 且

$$D[g \circ f] = (Dg \circ f) \cdot Df$$
.

注 3.14 有时, 我们也写  $g \circ f$  为 g[f]; 相应地, 也可写链规则为

$$D[g[f]] = Dg[f] \cdot Df$$
.

我们约定 Dg[f] 表示 (Dg)[f]; 这跟  $Dg \circ f$  表示  $(Dg) \circ f$  是一致的. 不过, 由于 Dg[f] 比  $Dg \circ f$  紧凑, 我们省去了一对圆括号.

**定理 3.15** 设 I, J 为区间. 设 f:  $I \to J$  严单调, 且有反函数  $f^{[-1]}$ :  $J \to I$ . 设 f 是可导函数, 且 Df 不取零值. 则  $f^{[-1]}$  也是可导函数, 且

$$Df^{[-1]} = \frac{1}{Df \circ f^{[-1]}}.$$

定理 3.16 导数表 I:

- Dc = 0, 此处 c 为常函数.
- D $\iota^n = n \iota^{n-1} (n 为整数).$
- $D \exp = \exp$ .
- $D\cos = -\sin$ .
- $D \sin = \cos$ .

用这四个定理, 我们可以**清楚地、有条理地**计算常见的函数的导(函)数. 我举一些例: 您可以拿本书的计算过程跟传统的导数计算过程比较.

**例 3.17** 因为 tan = sin/cos, 故

$$D \tan = D \frac{\sin}{\cos}$$

$$= \frac{D \sin \cdot \cos - \sin \cdot D \cos}{\cos^{2}}$$

$$= \frac{\cos^{2} + \sin^{2}}{\cos^{2}}$$

$$= \cos^{-2} = 1 + \tan^{2}.$$

**例 3.18** 因为 exp:  $\mathbb{R} \to (0, +\infty)$  严增,  $\mathbb{R}$ ,  $(0, +\infty)$  都是区间, 且 D exp = exp > 0, 故 ln:  $(0, +\infty) \to \mathbb{R}$  也是可导函数, 且

$$D \ln = \frac{1}{D \exp \circ \ln} = \frac{1}{\exp \circ \ln} = \frac{1}{\iota}.$$

因为 sin:  $(-2\pi/4, 2\pi/4) \rightarrow (-1, 1)$  严增,  $(-2\pi/4, 2\pi/4)$ , (-1, 1) 都是区间, 且 D sin = cos > 0, 故 arcsin:  $(-1, 1) \rightarrow (-2\pi/4, 2\pi/4)$  也是可导函数, 且

$$D\arcsin = \frac{1}{D\sin \circ \arcsin} = \frac{1}{\cos \circ \arcsin} = \frac{1}{\operatorname{sqrt} \circ (1 - \iota^2)}.$$

因为 tan:  $(-2\pi/4, 2\pi/4) \to \mathbb{R}$  严增,  $(-2\pi/4, 2\pi/4)$ ,  $\mathbb{R}$  都是区间, 且 D tan =  $1 + \tan^2 > 0$ , 故 arctan:  $\mathbb{R} \to (-2\pi/4, 2\pi/4)$  也是可导函数, 且

$$D \arctan = \frac{1}{D \tan \circ \arctan} = \frac{1}{(1 + \tan^2) \circ \arctan} = \frac{1}{1 + \iota^2}.$$

设 n 为正整数. 因为  $\iota^n$ :  $(0, +\infty) \to (0, +\infty)$  严增,  $(0, +\infty)$  是区间, 且  $D\iota^n = n \cdot \iota^{n-1} > 0$ , 故  $\iota^{1/n}$ :  $(0, +\infty) \to (0, +\infty)$  也是可导函数, 且

$$D \iota^{1/n} = \frac{1}{D \iota^n \circ \iota^{1/n}} = \frac{1}{(n \cdot \iota^{n-1}) \circ \iota^{1/n}} = \frac{1}{n} \iota^{1/n-1}.$$

设m为整数.则 $\iota^{m/n} = (\iota^{1/n})^m = \iota^m \circ \iota^{1/n}$ .故

$$\mathrm{D}\,\mathfrak{t}^{m/n}=(\mathrm{D}\,\mathfrak{t}^m\circ\mathfrak{t}^{1/n})\cdot\mathrm{D}\,\mathfrak{t}^{1/n}=((m\cdot\mathfrak{t}^{m-1})\circ\mathfrak{t}^{1/n})\cdot\frac{1}{n}\mathfrak{t}^{1/n-1}=\frac{m}{n}\mathfrak{t}^{m/n-1}.$$

也就是说,对任意有理数 r,  $D\iota^r = r\iota^{r-1}$ .

### 例 3.19 定义符号函数:

sign: 
$$\mathbb{R} \to \{1, 0, -1\},$$

$$t \mapsto \begin{cases} 1, & t > 0; \\ 0, & t = 0; \\ -1, & t < 0. \end{cases}$$

设 I 是某个不含 0 的区间. 故 sign (在 I 上的限制) 是常函数, 且导数为 0. 不难看出,  $abs = sign \cdot \iota$ . 所以,

$$D abs = D sign \cdot \iota + sign \cdot D \iota = sign = \frac{abs}{\iota}.$$

由此, 我们可计算 ln o abs 的导数:

$$D[\ln \circ abs] = (D \ln \circ abs) \cdot D abs = \left(\frac{1}{\iota} \circ abs\right) \cdot \frac{abs}{\iota} = \frac{1}{\iota}.$$

我们添加上面的计算结果到导数表 I, 就得到了一张较为完善的导数表 II. 以后, 我们的导数计算十分依赖此表与导数表 I 前的三个定理.

#### 定理 3.20 导数表 II:

- Dc = 0, 此处 c 为常函数.
- $D\iota^r = r\iota^{r-1} (r 为有理数).$
- $D \exp = \exp$ .
- $D\cos = -\sin$ .
- $D \sin = \cos$ .
- Dtan =  $\cos^{-2} = 1 + \tan^2$ .
- $D \ln = D[\ln \circ abs] = \iota^{-1}$ .
- Darcsin =  $\operatorname{sqrt}^{-1} \circ (1 \iota^2)$ .
- Darctan =  $1/(1 + \iota^2)$ .
- D abs =  $abs/\iota = sign$ .
- D sqrt =  $\iota^{-1}$  (2 sqrt).

**例 3.21** 设 f, g 是区间 I 上的可导函数, 且 f > 0. 求  $D[f^g]$ . 事实上,  $f^g$  就是  $e^{g(\ln \circ f)}$ , 也就是  $\exp \circ (g(\ln \circ f)) = \exp \circ (g \ln [f])$ . 所以

$$\begin{aligned} \mathbf{D}[f^g] &= \mathbf{D}[\exp \circ (g \ln[f])] \\ &= (\mathbf{D} \exp \circ (g \ln[f])) \cdot \mathbf{D}[g \ln[f]] \\ &= (\exp \circ (g \ln[f])) \cdot (\mathbf{D}g \cdot \ln[f] + g \cdot \mathbf{D}[\ln[f]]) \\ &= f^g \cdot \mathbf{D}g \cdot \ln[f] + f^g \cdot g \cdot (\mathbf{D} \ln \circ f) \cdot \mathbf{D}f \\ &= f^g \ln[f] \mathbf{D}g + g f^{g-1} \mathbf{D}f. \end{aligned}$$

### 例 3.22 设

$$f: [0, +\infty) \to \mathbb{R},$$
  
$$x \to \ln \left[ x^2 e^x + \sqrt{1 + x^3} \right].$$

40 第三章 导数

求 Df.

本问题定义 f 时, 使用了带变量的记号. 为了方便地计算 f 的导数, 我们不妨先无变量地表达 f:

$$g = \iota^2 \cdot \exp + \operatorname{sqrt} \circ (1 + \iota^3),$$
  
 $f = \ln \circ g.$ 

从而

$$Df = D[\ln \circ g]$$
=  $(D \ln \circ g) \cdot Dg$   
=  $g^{-1} \cdot D[\iota^{2} \cdot \exp] + g^{-1} \cdot D[\operatorname{sqrt} \circ (1 + \iota^{3})]$   
=  $g^{-1} \cdot (D \iota^{2} \cdot \exp + \iota^{2} \cdot D \exp)$   
 $+ g^{-1} \cdot ((D \operatorname{sqrt} \circ (1 + \iota^{3})) \cdot D[1 + \iota^{3}])$   
=  $g^{-1} \cdot (2\iota + \iota^{2}) \cdot \exp + g^{-1} \cdot \frac{1}{2\sqrt{1 + \iota^{3}}} \cdot 3\iota^{2}$   
=  $\frac{\iota(2 + \iota) \exp + \frac{3\iota^{2}}{2\sqrt{1 + \iota^{3}}}}{\iota^{2} \exp + \sqrt{1 + \iota^{3}}}$ .

# 第四章 不定积分

上一章, 我们接触了导数; 这一章, 我们来考虑导数的"反操作".

具体地, 设 I 为区间, 且 f 是 I 上的函数. 上一章的要点是: 已知 f, 求 Df; 这一章的要点是: 已知 I 上的函数 g 适合 Df = g, 求 f.

# 4.1 原函数与不定积分

设 I 为区间. 不难看出, I 上的常函数的导数是 0 (在 I 上的限制). 不过, 重要地, 此事反过来也对:

**定理 4.1** 设 I 为区间. 设 f 为 I 上的可导函数. 若 Df = 0, 则 f 为常函数.

此事的论证可见于一般的分析教材, 所以我就不证了 (或许, 当我变强的时候, 我就能**在我的书里**给出**我自己的论证**了).

此事的一个重要的转述如下:

**定理 4.2** 设 I 为区间. 设  $f_1$ ,  $f_2$  为 I 上的可导函数. 若  $\mathrm{D} f_1 = \mathrm{D} f_2$ , 则存在常函数 c, 使  $f_2 = f_1 + c$ .

证 考虑  $h = f_2 - f_1$ . 那么 Dh = 0. 从而 h 是常函数. 证毕.

由此, 我们作如下定义.

**定义 4.3** 设 I 为区间. 设 f 为 I 上的函数. 若存在 I 上的可导函数 F 使 DF = f, 则说 F 是 f 的一个**原函数**.

**定义 4.4** 设 I 为区间. 设 f 为 I 上的函数. 设 f 有一个原函数. 那么, 称 f 的**全体**原函数作成的**集**为 f 的**不定积分**, 即

$$\int f = \{g \mid g \neq f \text{ 的原函数}\}.$$

**定理 4.5** 设 I 为区间. 设 f 为 I 上的函数. 设 F 是 f 的原函数. 则

$$\int f = \{F + c \mid c \neq I \perp \text{的常函数}\}.$$

证 设  $G \neq f$  的一个原函数. 则 G = F + c, 其中 c 为某个常函数. 故

$$\int f \subset \{F + c \mid c \neq I \perp \text{的常函数}\}.$$

另一方面, 若 c' 是常函数, 显然有 D[F + c'] = DF = f. 所以

$$\int f \supset \{F + c \mid c \neq I \text{ 上的常函数}\}.$$
 证毕.

**例 4.6** 因为 D exp = exp, 故

$$\int \exp = \{ \exp + c \mid c \neq \mathbb{R} \perp \text{bhram} \}.$$

**例 4.7** 因为 D[-cos] = sin, 故

$$\int \sin = \{-\cos + c \mid c \neq \mathbb{R} \perp \text{bhring}\}.$$

**例 4.8** 因为 D sin = cos, 故

$$\int \cos = \{\sin + c \mid c \in \mathbb{R} \text{ 上的常函数}\}.$$

至此,我们已经知道什么是不定积分.不过,我们也可以看到,当前的表达不定积分的方式比较复杂.所以,我们很需要一种简写法;我们将在下一节讨论此事.

我们知道, 若区间 *I* 上的函数有原函数, 那自然地有不定积分. 什么样的函数有原函数呢? 下面的结论给出了此问题的**部分**解答; 不过, 就算只是"部分", 对本书而言, 也足够了.

43

**定理 4.9** 设 I 为区间. 设 f 是 I 上的连续函数. 则存在 I 上的可导函数 F, 使 DF = f.

证 固定  $a \in I$ . 作函数

$$F: \quad I \to \mathbb{R},$$
$$t \mapsto \int_{a}^{t} f.$$

任取  $x \in I$ . 从而对任意  $t \in I$ ,

$$F[t] = \int_{a}^{x} f + \int_{x}^{t} f = F[x] + (t - x)Q[t],$$

其中

Q: 
$$I \to \mathbb{R}$$
,  
 $t \mapsto \begin{cases} f[x], & t = x; \\ \frac{1}{t - x} \int_{x}^{t} f, & t \neq x. \end{cases}$ 

取 x 的一个邻域 N. 所以, 在  $N \cap I$  上, 有

$$F = F[x] + (\iota - x)Q,$$

且Q于x连续(定理 2.33), 故F于x可导, 且F于x的导数为

$$Q[x] = f[x].$$
 证毕.

由此可得微积分的一个重要定理. 不过, 这不是本章的重点讨论对象.

**定理 4.10** (Newton-Leibniz) 设 I 为区间. 设 f 是 I 上的连续函数. 设 F 是 f 的原函数. 则对任意  $a, b \in I$ ,

$$\int_{a}^{b} f = F[b] - F[a].$$

证 固定  $c \in I$ . 作函数

$$G: I \to \mathbb{R},$$

$$t \mapsto \int_{a}^{t} f.$$

那么 G 是 f 的原函数, 且

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f = -\int_{c}^{a} f + \int_{c}^{b} f = G[b] - G[a].$$

既然 F 也是 f 的原函数, 那必定存在常函数  $\ell$ , 使  $G = F + \ell$ . 所以

$$\int_{a}^{b} f = G[b] - G[a]$$

$$= (F + \ell)[b] - (F + \ell)[a]$$

$$= (F[b] + \ell[b]) - (F[a] + \ell[a])$$

$$= (F[b] + \ell) - (F[a] + \ell)$$

$$= F[b] - F[a].$$
证毕.

## 4.2 函数集的演算

上节, 我们正式地定义了区间 I 上的函数 f 的不定积分是 f 的全体原函数作成的集. 随后, 我们知道, 若 DF = f, 则

$$\int f = \{F + c \mid c \neq I \perp \text{的常函数}\}.$$

不过, 此表达似乎不是很简洁. 很少有人愿意每次写不定积分都要写上形如 "c 是 I 上的常函数"这样的话. 并且, 这种表达方式也不利于我们表达不定积分跟不定积分的关系.

**例 4.11** 设 f, g 都是区间 I 上的函数, 且不定积分存在. 我们看 f+g 是否有不定积分. 为回答这个问题, 无妨设 F, G 分别是 f, g 的原函数. 那么 D[F+G]=f+g. 从而, f+g 确实有不定积分

$$A = \int (f + g) = \{F + G + c \mid c \neq I \perp \text{bhram}\}.$$

记

$$B = \left\{ u + v \mid u \in \int f, \, \exists v \in \int g \right\}.$$

45

我们证明: A = B.

任取  $F+G+c \in A$ . 那么  $F \in \int f$ , 且  $G+c \in \int g$ . 所以  $F+G+c \in B$ . 这说明,  $A \subset B$ .

任取  $u + v \in B$ , 其中  $u \in \int f$ , 且  $v \in \int g$ . 那么存在常函数  $d_1$ ,  $d_2$  使  $u = F + d_1$ ,  $v = G + d_2$ . 所以  $u + v = F + G + (d_1 + d_2)$ . 二个常函数的和仍为常函数, 故  $u + v \in A$ . 这说明,  $A \supset B$ .

我们该怎样描述  $\int (f+g)$ ,  $\int f = \int g$  的关系? 您可能在其他的分析教材里见过形如

$$\int (f+g) = \int f + \int g$$

的文字. 不过, 上式右端的 "+" 是什么意思? 或者, 具体地, 焊接二个集的 + 是什么意思呢?

上例告诉我们, 我们很需要为函数集定义新的运算; 更确切地, 我们很需要搬函数的运算到函数集上.

**定义 4.12** 设 A 为集. 若任取 A 的元 f, f 是一个函数, 就称 A 为函数 **集**.

设 P, Q 为二个集. 若函数集 A 的每个元都是 P 上的函数, 就说 A 是 P 上的函数集. 若函数集 A 的每个元都是 P 到 Q 的函数 (定义域为 P, 陪域为 Q), 则说 A 是 P 到 Q 的函数集. 此时, 我们也说, 函数集 A 的定义域为 P, 陪域为 Q.

**定义 4.13** 设 A 是 P 到 Q 的函数集, B 是 R 到 S 的函数集, 且任取 A 的元 a, a 的值域是 R 的子集. 于是, 任取 B 的元 b,  $b \circ a$ :  $P \to S$  有意义. 定义

$$B \circ A = \{b \circ a \mid b \in B, a \in A\}.$$

不难看出,  $B \circ A$  就是 P 到 S 的函数集.

函数集的复合也有结合律.

**定理 4.14** 设  $A \neq P \supseteq Q$  的函数集,  $B \neq R \supseteq S$  的函数集,  $C \neq T \supseteq U$  的函数集. 设任取 A 的元 A 的值域是 B 的子集: 设任取 B 的元 A 的

值域是S的子集.则

$$C \circ (B \circ A) = (C \circ B) \circ A$$
.

所以, 我们可简单地记上式的任意一侧为 $C \circ B \circ A$ .

此事的论证不难; 不过, 我希望您能适应这种论证方式; 这样, 您就完全可类似地论证其他的关于函数集的运算律.

证 取  $f \in C \circ (B \circ A)$ . 于是, 存在  $a \in A$ ,  $b \in B$ ,  $c \in C$  使  $f = c \circ (b \circ a)$ . 因为函数的复合适合结合律, 故

$$f = c \circ (b \circ a) = (c \circ b) \circ a \in (C \circ B) \circ A.$$

再取  $g \in (C \circ B) \circ A$ . 于是, 存在  $a' \in A$ ,  $b' \in B$ ,  $c' \in C$  使  $g = (c' \circ b') \circ a'$ . 因为函数的复合适合结合律, 故

就像为函数集引入复合那样, 对  $\mathbb{R}$  的子集到  $\mathbb{R}$  的子集的函数集, 我们还可引入 +, -,  $\cdot$ ,  $\cdot$ ,  $^{\wedge}$  等运算.

**定义 4.15** 设 P, Q, S 是  $\mathbb{R}$  的子集. 设 A 是 P 到 Q 的函数集, B 是 P 到 S 的函数集. 设 \* 为三文字 +, -, · 的任意一个. 定义

$$A * B = \{a * b \mid a \in A, b \in B\},\$$

其中 A \* B 的陪域可按需要决定. 一般地, 我们可写  $\{0\} - B$  为 -B, 写  $A \cdot B$  为 AB.

若任取函数集 A 的元 a, 任取  $p \in P$ , 都有  $a[p] \neq 0$ , 则定义

$$\frac{B}{A} = \left\{ \left. \frac{b}{a} \right| b \in B, a \in A \right\},$$

其中陪域可按需要决定.

若对任意  $a \in A, b \in B, p \in P, a[p]^{b[p]}$  有意义, 则还可定义

$$A^B = \{a^b \mid a \in A, b \in B\},\$$

其中陪域可按需要决定.

47

现在, 我邀请您证明函数集的如下性质. 我就不证明了; 因为我想, 我已经告诉您怎么论证了.

**定理 4.16** 设  $P \in \mathbb{R}$  的子集. 设 A, B, C 都是 P 到 (某个)  $\mathbb{R}$  的子集的函数集. 则

$$A + B = B + A,$$
  $AB = BA,$   
 $(A + B) + C = A + (B + C),$   $(AB)C = A(BC),$   
 $A(B + C) = AB + AC,$   $(A + B)C = AC + BC.$ 

**定理 4.17** 设  $P \in \mathbb{R}$  的子集. 任取函数集 L 的元  $\ell$ ,  $\ell$  的值域都是 P 的子集. 设 A, B 是 P 上的函数集. 设 \* 是五文字 +, -, ·, /, ^ 的任意一个. 则

$$(A * B) \circ L = (A \circ L) * (B \circ L).$$

尽管函数集跟函数有类似的运算律, 不过, 这并不是说, 函数的每一个运算律都可被搬到函数集上.

**例 4.18** 设  $P \subset \mathbb{R}$ . 设  $0 \neq P$  上的恒取零值的函数. 那么, 不难看出, 对任意  $p \in P$ :

- p + 0 = p;
- $frac{a}{d}$   $frac{a}{d}$

由此, 我们不难推出: 若 p, q,  $r \in P$ , 且 q + p = r + p, 则 q = r; 在等式二侧同时加 -p, 利用结合律, 再利用 0 的性质即知. 我们姑且称这个性质为函数的加法的消去律.

函数集的加法也有消去律吗? 一般来说, 没有. 取  $A = \{1\}$ ; 取 B, C 为

$$\{0, 1, -1, 2, -2, 3, -3, 4, -4, \cdots\},\$$

这里的  $0, 1, -1, \dots$  都是 P 上的常函数. 那么, 不难验证, A + C = B + C = C. 可是,  $A \neq B$ .

现在我们考虑一类特殊的函数集; 这也是不定积分的演算重点考察的对象.

我们先为一种特殊的函数集引入方便的记号.

设  $P \subset \mathbb{R}$ . 考虑 P 上的函数. 任取实数 c, 我们总可以作一个 P 上的常函数

$$c: P \to \{c\},$$

$$t \mapsto c.$$

反过来, 任取 P上的一个 (实的) 常函数 f, 我们也总能找到一个实数 c, 使任取  $t \in P$ , 都有 f[t] = c. 并且, 不同的实数 (常函数) 对应着不同的常函数 (实数). 我们记全体实数作成的集为  $\mathbb{R}$ ; 所以, 我们也无妨记全体 P 上的 (实的) 常函数作成的集为  $\mathbb{R}_P$ . 我们曾说, 除非有必要, 我们不严格区分函数及其限制; 也就是说, 在语境明确的时候, 我们也可写  $\mathbb{R}_P$  为  $\mathbb{R}$ .

下面的几条性质十分重要.

**定理 4.19** 设  $\mathbb{R}_P$  为 P 上的全体常函数作成的集. 则  $\mathbb{R}_P + \mathbb{R}_P = \mathbb{R}_P$ .

证 任取  $f \in \mathbb{R}_P + \mathbb{R}_P$ . 那么, 存在  $f_1, f_2 \in \mathbb{R}_P$ , 使  $f = f_1 + f_2$ . 因为二个常函数的和还是常函数, 故  $f \in \mathbb{R}_P$ . 反过来, 任取  $g \in \mathbb{R}_P$ . 因为 g = g + 0, 且  $0 \in \mathbb{R}_P$ , 故  $g \in \mathbb{R}_P + \mathbb{R}_P$ . 证毕.

**定理 4.20** 设  $\mathbb{R}_P$  为 P 上的全体常函数作成的集.

- $\stackrel{\star}{\pi} d \in \mathbb{R}_P$ ,  $\underset{\star}{\mathbb{M}} \{d\} + \mathbb{R}_P = \mathbb{R}_P$ .
- $\ddot{a} k \in \mathbb{R}_{P}$ ,  $\Delta k \neq 0$ ,  $\Delta k \in \mathbb{R}_{P} = \mathbb{R}_{P}$ .

证 我在此处论证关于加的等式. 任取  $f \in \{d\} + \mathbb{R}_P$ . 那么, 存在  $e \in \mathbb{R}_P$  使 f = d + e. 因为二个常函数的和还是常函数, 故  $f \in \mathbb{R}_P$ . 反过来, 任取  $g \in \mathbb{R}_P$ . 因为 g = d + (g - d), 且  $g - d \in \mathbb{R}_P$ , 故  $g \in \{d\} + \mathbb{R}_P$ .

论证关于乘的等式的方法是类似的. 不过, 要注意一些细节.  $k \neq 0$  的意思是 k 跟 0 作为**函数**不相等; 所以, 是**存在**  $p \in P$ , 使  $k[p] \neq 0[p]$ . 不过, 因为 k 跟 0 都是**常函数**, 故  $k \neq 0$  (实数的不相等). 所以 k 有倒数  $k^{-1}$ , 且  $k^{-1}$  也是常函数. 证毕.

**定理 4.21** 设  $\mathbb{R}_P$  为 P 上的全体常函数作成的集. 设函数集 A 的每一个函数的值域都是 P 的子集. 则  $\mathbb{R}_P \circ A = \mathbb{R}_P$ .

证 注意到对任意  $a \in A, k \in \mathbb{R}_P$ , 必有  $k \circ a = k$ .

证毕.

设 I 是区间. 设 f 是 I 上的函数. 设 F 是 f 的一个原函数. 那么, 我们就可以简单地写

$$\int f = \{F\} + \mathbb{R}.$$

您可能会觉得写 {F} 较繁. 所以, 我们再简化一下记号.

#### 例 4.22 我假定您学过高中算学里的立体几何.

在高中, 您一开始就学了集与集的关系、运算. 自然地, 我们视平面为点集 (每一个元都是点的集), 也视直线为点集. 那么, 点 P 在直线  $\ell$  上, 就是  $P \in \ell$ ; 点 P 不在直线  $\ell$  上, 就是  $P \notin \ell$ . 类似地, 点 P 在平面  $\Pi$  内, 就是  $P \in \Pi$ ; 点 P 不在平面  $\Pi$  内, 就是  $P \notin \Pi$ .

现在, 我们任取一个平面  $\Pi$  与一条直线  $\ell$ . 您也知道, 下面的三事, 有且只有一件能发生:

- $\ell$  上的每一个点都是  $\Pi$  的点. 我们可简单地记此事为  $\ell \subset \Pi$ .
- $\ell$  上的每一个点都不是  $\Pi$  的点. 我们说,  $\ell \cap \Pi$  是空集.
- 存在唯一的一点 P, 使  $P \in \ell$ , 且  $P \in \Pi$ . 高中算学会这么写:  $\ell \cap \Pi = P$ .

Well. 正如您所见, 按道理, 我们应当写  $\ell \cap \Pi = \{P\}$ ; 毕竟, 我们说, 平面跟直线都是**点集**. 可是, 我们省略了  $\{\}$ . 也就是说, 我们简单地写刚好有一个元的集  $\{a\}$  为 a. 不重要地, 高中算学一开始讲集时, 用  $A \subseteq B$  表达 " $A \notin B$  的子集", 用  $A \subseteq B$  表达 " $A \notin B$  的真子集"; where are you,  $\subset$ ?

当然了,也不是每个高中算学老师都是"盲人". 假如您对此事感兴趣,您可以参考阮龙培的《关于立体几何应用集合论符号的几点看法》与吴长庆的《立体几何使用"集合语言"的准确性》. 我承认,这些文章都比我老.

借此机会, 我说一说我的观点吧. 我的有限的语言知识告诉我, 土话跟胡话都有不少多义词. 这里, "多义" 并不是指有"很大的区别"的解释, 而是说这些含义"相似", 但又不完全一样 (我加了引号, 因为我不知道怎么用行话表达我的想法). 就拿"曲线"(胡话: curve) 为例吧. 在中学, 我们一般视曲线为点集. 所以, 我们说, (平面的) 曲线有隐方程 F[x,y]=0, 也有参数方程  $x=f[t],y=g[t],t\in A$  (A 就是所谓的"参数区间"). 这么看来, 曲线就是全体适合隐方程 (或参数方程) 的 (x,y) 作成的集. 在算学分析 (或高等算学)

里,您可能也学过怎么用积分算曲线的长.这个时候,曲线的方程可能更重要;这是因为,曲线的"几何性质"似乎对曲线的长的公式的推导没有帮助.我们计算曲线的长时,一般都要求"曲线的参数方程"的导数连续——这其实涉及到方程的分析性质了.(假如您对此事感兴趣,您可以参考美国算学家Walter Rudin 的教材 *Principles of Mathematical Analysis, 3rd ed.*)

目前, 算学家都是人; 不过, 人类, 似乎生来就想着偷懒. 所以说, 算学家也不例外. 算学家一方面追求严谨; 另一方面, 假如记号不是很简洁, 算学家自己写起来都费劲. 所以, 算学家会说: "在本书(或本文、本节、本章), 为方便, 我们约定文字(表达式、符号)×××表示……"不过, 我觉得, 可以先给出"稍繁琐的写法", 再给"简单的写法"; 这或许能让学生体会到简单的写法为什么方便. 可惜, 我看了好几本新的高中算学书, 都是一开始用 ⊆ 表子集, 而在立体几何里"借用" ⊂ 表直线的每一点都在平面内; 没有一本(高中算学)教材说"为方便, 我们用 ⊂ 表子集, 并省去刚好有一个元的集 {a} 外的花括号".

好了, 我就说这么多吧. 严格地, 这算是"私货"了; 可是, 这是一本告诉他人我 (与一些算学家) 的想法的微积分读物. 假如我不带"私货", 那我要带什么呢? 或许, 我不如不写这本书.

现在, 请允许我正式地作出这样的约定: 在不引起混淆时, 我们可写恰含一个元的集  $\{a\}$  为 a. 所以, 像  $a \in a$ ,  $a \in \{a\}$  的表达都是可被接受的.

设 I 是区间. 设 f 是 I 上的函数. 设 F 是 f 的一个原函数. 那么, 我们就可以简单地写

$$\int f = F + \mathbb{R}.$$

代 f 以 DF, 就有

$$\int DF = F + \mathbb{R}.$$

不严格地, 若忽视常函数, 那么不定积分"抵消了"导数. 反过来呢?

**定义 4.23** 设 I 是区间. 设 A 是 I 上的函数集, 且 A 的每个元都是可导函数. 我们说, A 是 I 上的**可导函数集**. 定义

$$D[A] = \{ Da \mid a \in A \}.$$

4.2 函数集的演算

51

有时, 我们也可简单地写 D[A] 为 DA.

**例 4.24** 不难看出,  $D\mathbb{R} = \{0\} = 0$ .

设 I 是区间. 设 f 是 I 上的函数. 设 F 是 f 的一个原函数. 那么

$$D\left[\int f\right] = D[\{F + c \mid c \in \mathbb{R}\}]$$
$$= \{D[F + c] \mid c \in \mathbb{R}\}$$
$$= \{f \mid c \in \mathbb{R}\}$$
$$= \{f\} = f.$$

所以,不严格地,我们也可以说,导数"抵消了"不定积分.

**定义 4.25** 设  $P \subset \mathbb{R}$ . 设  $A \to P$  上的函数集. 若存在  $a \in A$  使  $P = \{a\} + \mathbb{R} = a + \mathbb{R}$ , 就说  $A \notin P$  上的**至多相差常函数的函数集**.

注 4.26 或许这样的函数集有更好的名字; 不过, 我姑且这么叫吧.

**定理 4.27** 设  $P \subset \mathbb{R}$ . 设  $f \in P$  上的函数.

• 若 g 是 P 上的函数,则

$$(f + \mathbb{R}) + (g + \mathbb{R}) = (f + g) + \mathbb{R}.$$

• 若 g 是 P 上的函数,则

$$f + (g + \mathbb{R}) = (f + g) + \mathbb{R}.$$

特别地, 取 g 为常函数 c, 则

$$f + \mathbb{R} = f + (c + \mathbb{R}) = (f + c) + \mathbb{R}.$$

• 若  $k \in \mathbb{R}$ , 且  $k \neq 0$ , 则

$$k(f + \mathbb{R}) = kf + \mathbb{R}.$$

• 若函数 h 的值域是 P 的子集, 则

$$(f + \mathbb{R}) \circ h = f \circ h + \mathbb{R}.$$

证 利用函数集的运算律与 ℝ 的性质,有

$$(f + \mathbb{R}) + (g + \mathbb{R}) = (\{f\} + \mathbb{R}) + (\{g\} + \mathbb{R})$$

$$= ((\{f\} + \mathbb{R}) + \{g\}) + \mathbb{R}$$

$$= (\{f\} + (\mathbb{R} + \{g\})) + \mathbb{R}$$

$$= (\{f\} + (\{g\} + \mathbb{R})) + \mathbb{R}$$

$$= ((\{f\} + \{g\}) + \mathbb{R}) + \mathbb{R}$$

$$= (\{f + g\} + \mathbb{R}) + \mathbb{R}$$

$$= \{f + g\} + (\mathbb{R} + \mathbb{R})$$

$$= (f + g) + \mathbb{R}.$$

类似地,

$$f + (g + \mathbb{R}) = \{f\} + (\{g\} + \mathbb{R})$$
$$= (\{f\} + \{g\}) + \mathbb{R}$$
$$= (f + g) + \mathbb{R}.$$

若  $k \neq 0$ , 则  $\{k\} \cdot \mathbb{R} = \mathbb{R}$ . 从而

$$k(f + \mathbb{R}) = \{k\}(\{f\} + \mathbb{R})$$
$$= \{k\}\{f\} + \{k\}\mathbb{R}$$
$$= kf + \mathbb{R}.$$

最后一个也不难:

$$(f + \mathbb{R}) \circ h = (\{f\} + \mathbb{R}) \circ \{h\}$$
$$= \{f\} \circ \{h\} + \mathbb{R} \circ \{h\}$$
$$= (f \circ h) + \mathbb{R}.$$
 证毕.

## 4.3 不定积分的演算

现在, 我们研究怎么算不定积分.

53

**定理 4.28** 设 I 是区间. 设 F 是 I 上的可导函数. 则

$$\int \mathrm{D}F = F + \mathbb{R}.$$

证 我已经证过它了.

证毕.

这或许是最基本的计算法了. 一般来说,"简单的"函数的不定积分都可以这么求出来.

**例 4.29** 设 I 是某个不含 0 的区间. 求  $[\tau^{-1}]$ .

我们知道,  $D[\ln \circ abs] = \iota^{-1}$ . 所以

$$\int \iota^{-1} = \ln \circ abs + \mathbb{R}.$$

**定理 4.30** 设 I 是区间. 设 f, g 是 I 上的函数. 设 f, g 都有不定积分.

• f + g 也有不定积分,且

$$\int (f+g) = \int f + \int g.$$

• 设  $k \in \mathbb{R}$ , 且  $k \neq 0$ . 则 kf 也有不定积分, 且

$$\int kf = k \int f.$$

证 设 F, G 分别是 f, g 的原函数. 那么

$$\int f = F + \mathbb{R}, \quad \int g = G + \mathbb{R}.$$

因为 D[F+G]=f+g, 故

$$\int (f+g) = (F+G) + \mathbb{R}$$
$$= (F+\mathbb{R}) + (G+\mathbb{R})$$
$$= \int f + \int g.$$

类似地, 因为 D[kF] = kf, 且  $k \neq 0$ , 故

注 4.31 注意到  $\int 0 = \mathbb{R}$ . 所以, 对任意  $k \in \mathbb{R}$ ,

$$\int kf = k \int f + \mathbb{R}.$$

**例 4.32** 设  $A \in P \subset \mathbb{R}$  上的函数集. 那么, 不难验证, -A = (-1)A. 所以, 特别地, 有

$$\int (f - g) = \int (f + (-1)g)$$

$$= \int f + \int (-1)g$$

$$= \int f + (-1) \int g$$

$$= \int f - \int g.$$

例 4.33

$$\int \cos = \int D \sin = \sin + \mathbb{R},$$

$$\int \sin = \int (-1)D \cos = (-1) \int D \cos = -\cos + \mathbb{R},$$

$$\int \exp = \int D \exp = \exp + \mathbb{R},$$

$$\int \iota^{n} = \int \frac{1}{n+1} D \iota^{n+1} = \frac{\iota^{n+1}}{n+1} + \mathbb{R} \quad (n \neq -1).$$

例 4.34

$$\int (3\cos - 4\sin + 5\exp) = \int (3\cos - 4\sin) + \int 5\exp$$

$$= \int 3\cos - \int 4\sin + \int 5\exp$$

$$= 3\int \cos - 4\int \sin + 5\int \exp$$

$$= 3(\sin + \mathbb{R}) - 4(-\cos + \mathbb{R}) + 5(\exp + \mathbb{R})$$

$$= (3\sin + \mathbb{R}) + (4\cos + \mathbb{R}) + (5\exp + \mathbb{R})$$

$$= ((3\sin + 4\cos) + \mathbb{R}) + (5\exp + \mathbb{R})$$

$$= 3\sin + 4\cos + 5\exp + \mathbb{R}.$$

例 4.35

$$\int \frac{1}{\cos^2} = \int (1 + \tan^2) = \int D \tan = \tan + \mathbb{R},$$

$$\int \frac{1}{1 + \iota^2} = \int D \arctan = \arctan + \mathbb{R},$$

$$\int \frac{1}{\sqrt{1 - \iota^2}} = \int D \arcsin = \arcsin + \mathbb{R}.$$

例 4.36

$$\int \tan^2 = \int (1 + \tan^2) - 1$$
$$= \int (1 + \tan^2) - \int 1$$
$$= (\tan + \mathbb{R}) - (\iota + \mathbb{R})$$
$$= \tan - \iota + \mathbb{R}.$$

例 4.37

$$\int \frac{\iota^4}{1+\iota^2} = \int \frac{\iota^4 - 1 + 1}{1+\iota^2}$$

$$= \int \left(\iota^2 - 1 + \frac{1}{1+\iota^2}\right)$$

$$= \int \iota^2 - \int 1 + \int \frac{1}{1+\iota^2}$$

$$= \left(\frac{\iota^3}{3} + \mathbb{R}\right) - (\iota + \mathbb{R}) + (\arctan + \mathbb{R})$$

$$= \frac{\iota^3}{3} - \iota + \arctan + \mathbb{R}.$$

**定理 4.38** 设 I, J 为区间. 设 g 是 J 上的函数, 且有不定积分. 设 f:  $I \to J$  是可导函数. 则  $(g \circ f)$  Df 也有不定积分, 且

$$\int (g \circ f) \, \mathrm{D} f = \left( \int g \right) \circ f.$$

证 设G是g的原函数.则

$$D[G \circ f] = (DG \circ f) Df = (g \circ f) Df.$$

56

从而

$$\int (g \circ f) \, \mathrm{D}f = G \circ f + \mathbb{R}$$
$$= (G + \mathbb{R}) \circ f$$
$$= \left( \int g \right) \circ f.$$
 证毕.

**注 4.39** 作为对比, 我们看看怎么用传统的记号表示此事. 设 I, J 为区间. 设 g 是 J 上的函数, 且有不定积分

$$\int g(x) \, \mathrm{d}x = G(x) + C.$$

设  $f: I \to J$  是可导函数. 则  $(g \circ f) f'$  也有不定积分

$$\int g(f(t))f'(t) dt = G(f(t)) + C.$$

一般称这种计算不定积分的方法为 "第一**换元** (积分) 法"; 不过, 我认为, 可以称其为 "第一**复合** (积分) 法", 因为 (表面上) 我代 "换元" 以 "复合". 事实上, 传统的记号跟我在本书用的新记号表达的仍为同一件事. 所谓 "第一换元法" 的本质还是复合与链规则, 只不过, 传统的记号似乎不太允许 "x = f(x)" 的写法, 故换一个文字是有必要的.

**例 4.40** 设 g 有不定积分. 设  $a, b \in \mathbb{R}$ , 且  $a \neq 0$ . 则

$$\int g \circ (a\iota + b) = \int \frac{1}{a} (g \circ (a\iota + b)) D[a\iota + b]$$

$$= \int \left(\frac{g}{a} \circ (a\iota + b)\right) D[a\iota + b]$$

$$= \left(\int \frac{g}{a}\right) \circ (a\iota + b)$$

$$= \left(\frac{1}{a} \int g\right) \circ (a\iota + b).$$

**例 4.41** 设  $a, b, c \in \mathbb{R}$ , 且  $a \neq 0$ . 则

$$\int \frac{c}{a\imath + b} = \left(\frac{1}{a} \int \frac{c}{\imath}\right) \circ (a\imath + b)$$

$$= \left(\frac{c}{a} \int \frac{1}{\imath} + \mathbb{R}\right) \circ (a\imath + b)$$

$$= \left(\frac{c}{a} \ln \circ abs + \mathbb{R}\right) \circ (a\imath + b)$$

$$= \frac{c}{a} \ln \circ abs \circ (a\imath + b) + \mathbb{R}.$$

类似地, 若  $n \neq -1$ , 则

$$\int c(a\iota + b)^n = \left(\frac{1}{a} \int c\iota^n\right) \circ (a\iota + b)$$

$$= \left(\frac{c}{a} \int \iota^n + \mathbb{R}\right) \circ (a\iota + b)$$

$$= \left(\frac{c}{a} \cdot \frac{\iota^{n+1}}{n+1} + \mathbb{R}\right) \circ (a\iota + b)$$

$$= \frac{c(a\iota + b)^{n+1}}{a(n+1)} + \mathbb{R}.$$

注 4.42 以后,若

$$k \int g = kG + \mathbb{R},$$

我们可直接写

$$\left(k\int g\right)\circ f=kG\circ f+\mathbb{R}.$$

例 4.43 利用三角公式,有

$$\int \cos \sin = \int \frac{1}{2} \sin \circ 2\iota$$

$$= \left(\frac{1}{2} \int \frac{1}{2} \sin \right) \circ 2\iota$$

$$= \left(\frac{1}{4} \int \sin \right) \circ 2\iota$$

$$= -\frac{1}{4} \cos \circ 2\iota + \mathbb{R}.$$

当然, 我们也可以这么解:

$$\int \cos \sin = \int \sin D \sin$$
$$= \left( \int \iota \right) \circ \sin$$
$$= \frac{1}{2} \sin^2 + \mathbb{R}.$$

**例 4.44** 设  $a \in \mathbb{R}$ , 且 a > 0. 则

$$\int \frac{1}{\sqrt{a^2 - \iota^2}} = \int \frac{1/a}{\sqrt{1 - (\iota/a)^2}}$$
$$= \left(\frac{1}{1/a} \int \frac{1/a}{\sqrt{1 - \iota^2}}\right) \circ \frac{\iota}{a}$$
$$= \arcsin \circ \frac{\iota}{a} + \mathbb{R}.$$

类似地,

$$\int \frac{1}{a^2 + \iota^2} = \int \frac{1/a^2}{1 + (\iota/a)^2}$$
$$= \left(\frac{1}{1/a} \int \frac{1/a^2}{1 + \iota^2}\right) \circ \frac{\iota}{a}$$
$$= \frac{1}{a} \arctan \circ \frac{\iota}{a} + \mathbb{R}.$$

例 4.45

$$\int \tan = \int \frac{\sin}{\cos}$$

$$= \int \frac{-D\cos}{\cos}$$

$$= \left(\int \frac{-1}{\iota}\right) \circ \cos$$

$$= -\ln \circ \operatorname{abs} \circ \cos + \mathbb{R}.$$

例 4.46

$$\int \frac{\cos}{\sin} = \int \frac{D \sin}{\sin}$$
$$= \ln \circ abs \circ \sin + \mathbb{R}.$$

**例 4.47** 设  $a \in \mathbb{R}$ , 且  $a \neq 0$ . 则

$$\int \frac{1}{\iota^2 - a^2} = \int \frac{1}{(\iota - a)(\iota + a)}$$

$$= \int \frac{(\iota + a) - (\iota - a)}{2a(\iota - a)(\iota + a)}$$

$$= \int \left(\frac{1}{2a(\iota - a)} - \frac{1}{2a(\iota + a)}\right)$$

$$= \int \frac{1}{2a(\iota - a)} - \int \frac{1}{2a(\iota + a)}$$

$$= \left(\int \frac{1}{2a\iota}\right) \circ (\iota - a) - \left(\int \frac{1}{2a\iota}\right) \circ (\iota + a)$$

$$= \frac{1}{2a} \ln \circ \text{abs} \circ (\iota - a) - \frac{1}{2a} \ln \circ \text{abs} \circ (\iota + a) + \mathbb{R}$$

$$= \frac{1}{2a} \ln \left[\frac{\text{abs} \circ (\iota - a)}{\text{abs} \circ (\iota + a)}\right] + \mathbb{R}$$

$$= \frac{1}{2a} \ln \circ \text{abs} \circ \frac{\iota - a}{\iota + a} + \mathbb{R}.$$

### 例 4.48

$$\int \frac{1}{\cos} = \int \frac{\cos}{\cos^2}$$

$$= \int \frac{D \sin}{1 - \sin^2}$$

$$= \left(\int \frac{1}{1 - \iota^2}\right) \circ \sin$$

$$= -\frac{1}{2 \cdot 1} \ln \circ abs \circ \frac{\iota - 1}{\iota + 1} \circ \sin + \mathbb{R}$$

$$= -\frac{1}{2} \ln \circ \frac{1 - \sin}{1 + \sin} + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \frac{1 + \sin}{1 - \sin} + \mathbb{R}.$$

### 例 4.49

$$\int \frac{1}{\sin} = \int \frac{1}{\cos \circ (2\pi/4 - \iota)}$$
$$= \left(\frac{1}{-1} \int \frac{1}{\cos}\right) \circ \left(\frac{2\pi}{4} - \iota\right)$$

$$= \frac{1}{2} \ln \circ \frac{1 - \sin}{1 + \sin} \circ \left(\frac{2\pi}{4} - \iota\right) + \mathbb{R}$$
$$= \frac{1}{2} \ln \circ \frac{1 - \cos}{1 + \cos} + \mathbb{R}.$$

**定理 4.50** 设 I, J 为区间. 设 g 是 J 上的函数. 设 f:  $I \rightarrow J$  是严单调的可导函数, 且 Df 不取零值. 若  $(g \circ f)$  Df 有不定积分, 则 g 也有不定积分, 且

$$\int g = \left( \int (g \circ f) \, \mathrm{D} f \right) \circ f^{[-1]}.$$

证 因为  $f: I \to J$  是严单调的可导函数, 且 Df 不取零值, 故  $f^{[-1]}$  也是严单调的可导函数. 设 G 是  $(g \circ f)Df$  的一个原函数. 则

$$\begin{split} \mathbf{D}[G \circ f^{[-1]}] &= (\mathbf{D}G \circ f^{[-1]}) \, \mathbf{D}f^{[-1]} \\ &= ((g \circ f) \circ f^{[-1]}) \cdot (\mathbf{D}f \circ f^{[-1]}) \cdot \frac{1}{\mathbf{D}f \circ f^{[-1]}} \\ &= (g \circ (f \circ f^{[-1]})) \cdot 1 \\ &= g \circ \iota = g. \end{split}$$

从而

$$\int g = G \circ f^{[-1]} + \mathbb{R}$$

$$= (G + \mathbb{R}) \circ f^{[-1]}$$

$$= \left( \int (g \circ f) Df \right) \circ f^{[-1]}.$$
证毕.

上述结论有一个变体;请您仔细比较二者的细微区别.

定理 4.51 设 I, J 为区间. 设 J 上的函数 g 有不定积分. 设 f:  $I \to J$  可导. 设 e:  $J \to I$  适合  $f \circ e = \iota$ . 则

$$\int g = \left( \int (g \circ f) \, \mathrm{D} f \right) \circ e.$$

证 因为 J 上的函数 g 有不定积分, 且  $f: I \rightarrow J$  是 I 上的可导函数, 故  $(g \circ f)$  D f 有不定积分, 且

$$\left(\int g\right) \circ f = \int (g \circ f) \, \mathrm{D} f.$$

61

从而

$$\int g = \left( \int g \right) \circ \{ i \}$$

$$= \left( \int g \right) \circ \{ f \circ e \}$$

$$= \left( \int g \right) \circ (\{ f \} \circ \{ e \})$$

$$= \left( \left( \int g \right) \circ f \right) \circ \{ e \}$$

$$= \left( \int (g \circ f) Df \right) \circ e.$$
证毕.

**例 4.52** 设  $a \in \mathbb{R}$ , 且 a > 0. 求

$$\int \frac{1}{\sqrt{a^2 + \iota^2}}.$$

记  $g = \sqrt{a^2 + \iota^2}$ :  $\mathbb{R} \to [a, +\infty)$ . 不难看出, 求解  $\int g^{-1}$  的最大障碍就是 sqrt (它一定存在, 因为  $g^{-1}$  是连续函数). 所以, 我们想一个办法消去根号. 什么东西跟 g 的复合可以不带 sqrt 呢? 联想到三角恒等式  $1 + \tan^2 = \cos^{-2}$ , 故我们可考虑令  $f = a \tan: (-2\pi/4, 2\pi/4) \to \mathbb{R}$ . 则

$$(g^{-1} \circ f) Df = \frac{a(1 + \tan^2)}{\sqrt{a^2 + a^2 \tan^2}}$$
$$= \sqrt{1 + \tan^2}$$
$$= \frac{1}{\cos}.$$

接下来就是要找一个  $e: \mathbb{R} \to (-2\pi/4, 2\pi/4)$ , 使  $f \circ e = \iota$ . 事实上, 这样的 e 并不难找, 因为

$$f^{[-1]} = (a \mathfrak{1} \circ \tan)^{[-1]}$$
$$= \tan^{[-1]} \circ (a \mathfrak{1})^{[-1]}$$
$$= \arctan \circ \frac{\mathfrak{1}}{a},$$

故我们取 e 为 f 的反函数, 即有  $f \circ e = 1$ . 故

$$\int \frac{1}{\sqrt{a^2 + \iota^2}} = \left(\int \frac{1}{\cos}\right) \circ \left(\arctan \circ \frac{1}{a}\right)$$

$$= \frac{1}{2} \ln \circ \frac{1 + \sin}{1 - \sin} \circ \left(\arctan \circ \frac{1}{a}\right) + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \frac{1 + \iota}{1 - \iota} \circ (\sin \circ \arctan) \circ \frac{1}{a} + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \left(\frac{1 + \iota}{1 - \iota} \circ \frac{\iota}{\sqrt{1 + \iota^2}}\right) \circ \frac{1}{a} + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \frac{\sqrt{1 + \iota^2} + \iota}{\sqrt{1 + \iota^2} - \iota} \circ \frac{1}{a} + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \frac{(\sqrt{1 + \iota^2} + \iota)^2}{(\sqrt{1 + \iota^2} - \iota)(\sqrt{1 + \iota^2} + \iota)} \circ \frac{1}{a} + \mathbb{R}$$

$$= \left(\frac{1}{2} \ln \circ \iota^2\right) \circ \left(\iota + \sqrt{1 + \iota^2}\right) \circ \frac{1}{a} + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \left(\iota + \sqrt{1 + \iota^2}\right) \circ \frac{1}{a} + \mathbb{R}$$

$$= \ln \circ \left(\iota + \sqrt{1 + \iota^2}\right) \circ \frac{1}{a} + \mathbb{R}$$

$$= \ln \circ \left(\iota + \sqrt{a^2 + \iota^2}\right) + \mathbb{R}$$

$$= \ln \circ \left(\iota + \sqrt{a^2 + \iota^2}\right) - \ln[a] + \mathbb{R}$$

$$= \ln \circ \left(\iota + \sqrt{a^2 + \iota^2}\right) + \mathbb{R}.$$

**例 4.53** 设  $a \in \mathbb{R}$ , 且 a > 0. 求

$$\int \frac{1}{\sqrt{\iota^2 - a^2}}.$$

我们先设  $g = \operatorname{sqrt}^{-1} \circ (\iota^2 - a^2)$ :  $(a, +\infty) \to (0, +\infty)$ . 假如我们算出 g 的不定积分是  $G + \mathbb{R}$ , 那么我们可以由此立得  $h = \operatorname{sqrt}^{-1} \circ (\iota^2 - a^2)$ :  $(-\infty, a) \to (0, +\infty)$  的不定积分. 这是因为

$$h = g \circ (-\iota),$$

故

$$\int h = \left(\frac{1}{-1} \int g\right) \circ (-1)$$
$$= -G \circ (-1) + \mathbb{R}.$$

对于 g, 我们考虑  $f = a/\iota$ :  $(a, +\infty) \rightarrow (0, 1)$ . 不难看出,  $f \circ f = \iota$ , 故

$$\int \frac{1}{\sqrt{\iota^2 - a^2}} = \left( \int \frac{\mathrm{D}f}{\sqrt{f^2 - a^2}} \right) \circ f$$
$$= \left( \int \frac{-1}{\iota \sqrt{1 - \iota^2}} \right) \circ \frac{a}{\iota}.$$

现在,我们想办法计算

$$\int \frac{-1}{\iota \sqrt{1-\iota^2}}.$$

因为 sin:  $(0, 2\pi/4) \rightarrow (0, 1)$  可导, 且 sin  $\circ$  arcsin =  $\iota$ , 故

$$\int \frac{-1}{\iota\sqrt{1-\iota^2}} = \left(\int \frac{-D\sin}{\sin\cos}\right) \circ \arcsin$$

$$= \left(\int \frac{-1}{\sin}\right) \circ \arcsin$$

$$= \frac{1}{2} \ln \circ \frac{1+\iota}{1-\iota} \circ (\cos \circ \arcsin) + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \frac{1+\iota}{1-\iota} \circ \sqrt{1-\iota^2} + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \frac{1+\sqrt{1-\iota^2}}{1-\sqrt{1-\iota^2}} + \mathbb{R}$$

$$= \frac{1}{2} \ln \circ \frac{(1+\sqrt{1-\iota^2})^2}{(1+\sqrt{1-\iota^2})(1-\sqrt{1-\iota^2})} + \mathbb{R}$$

$$= \left(\frac{1}{2} \ln \circ \iota^2\right) \circ \frac{1+\sqrt{1-\iota^2}}{\iota} + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \frac{1+\sqrt{1-\iota^2}}{\iota} + \mathbb{R}.$$

所以

$$\int \frac{1}{\sqrt{\iota^2 - a^2}} = \left( \int \frac{-1}{\iota \sqrt{1 - \iota^2}} \right) \circ \frac{a}{\iota}$$

$$= \ln \circ \operatorname{abs} \left( \frac{1 + \sqrt{1 - \iota^2}}{\iota} \circ \frac{a}{\iota} \right) + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \frac{\iota + \sqrt{\iota^2 - a^2}}{a} + \mathbb{R}.$$

这算出了  $g = \operatorname{sqrt}^{-1} \circ (\iota^2 - a^2)$ :  $(a, +\infty) \to (0, +\infty)$  的不定积分. 由此可知  $h = \operatorname{sqrt}^{-1} \circ (\iota^2 - a^2)$ :  $(-\infty, -a) \to (0, +\infty)$  的不定积分是

$$\int \frac{1}{\sqrt{\iota^2 - a^2}} = -\ln \circ \operatorname{abs} \circ \frac{\iota + \sqrt{\iota^2 - a^2}}{a} \circ (-\iota) + \mathbb{R}$$

$$= -\ln \circ \operatorname{abs} \circ \frac{-\iota + \sqrt{(-\iota)^2 - a^2}}{a} + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \frac{a}{-\iota + \sqrt{\iota^2 - a^2}} + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \frac{a(\iota + \sqrt{\iota^2 - a^2})}{(-\iota + \sqrt{\iota^2 - a^2})(\iota + \sqrt{\iota^2 - a^2})} + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \frac{\iota + \sqrt{\iota^2 - a^2}}{-a} + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \frac{\iota + \sqrt{\iota^2 - a^2}}{a} + \mathbb{R}.$$

综上, 若区间 J 不包含 [-a,a], 则

$$\int \frac{1}{\sqrt{\iota^2 - a^2}} = \ln \circ \operatorname{abs} \circ \frac{\iota + \sqrt{\iota^2 - a^2}}{a} + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \left(\iota + \sqrt{\iota^2 - a^2}\right) - \ln[|a|] + \mathbb{R}$$

$$= \ln \circ \operatorname{abs} \circ \left(\iota + \sqrt{\iota^2 - a^2}\right) + \mathbb{R}.$$

注 **4.54** 设  $a \in \mathbb{R}$ , 且 a > 0. 则

$$\int \frac{1}{\iota^2 \pm a^2} = \ln \circ \text{abs} \circ \left(\iota + \sqrt{\iota^2 \pm a^2}\right) + \mathbb{R}.$$

我再介绍一个解不定积分的法则.

**定理 4.55** 设 I 为区间, f, g 都是 I 上的可导函数. 若 gDf 有不定积分,则 fDg 也有不定积分,且

$$\int f \mathrm{D}g = fg - \int g \mathrm{D}f.$$

证 设H是gDf的一个原函数.则

$$D[fg - H] = Df \cdot g + f \cdot Dg - DH$$
$$= gDf + fDg - gDf$$
$$= fDg.$$

从而

$$\int f Dg = (fg - H) + \mathbb{R}$$

$$= fg - (H + \mathbb{R})$$

$$= fg - \int g Df.$$
证毕.

**例 4.56** 设整数  $m \neq 0$ . 则

$$\int \iota^{m-1} \ln = \int \ln D \frac{\iota^m}{m}$$

$$= \ln \frac{\iota^m}{m} - \int \frac{\iota^m}{m} D \ln$$

$$= \frac{\iota^m \ln}{m} - \int \frac{\iota^{m-1}}{m}$$

$$= \frac{\iota^m}{m^2} (m \ln - 1) + \mathbb{R}.$$

注 4.57

$$\int \frac{\ln n}{n} = \int \ln D \ln n$$

$$= \left( \int \iota \right) \circ \ln n$$

$$= \frac{1}{2} \ln^2 + \mathbb{R}.$$

**例 4.58** 设 I, J 为区间. 设 f:  $I \to J$  是严单调的可导函数, 且 Df 不取零值. 所以,  $f^{[-1]}$  也是严单调的可导函数. 从而

$$\int f^{[-1]} = \int f^{[-1]} D \iota$$

$$= f^{[-1]} \iota - \int \iota D f^{[-1]}$$

$$= \iota f^{[-1]} - \int (f \circ f^{[-1]}) D f^{[-1]}$$

$$= \iota f^{[-1]} - \left(\int f\right) \circ f^{[-1]}.$$

例 4.59 我们可轻松地求解 arcsin 的不定积分:

$$\int \arcsin = \iota \arcsin - \left( \int \sin \right) \circ \arcsin$$

$$= \iota \arcsin + \cos \circ \arcsin + \mathbb{R}$$

$$= \iota \arcsin + \operatorname{sqrt} \circ (1 - \iota^2) + \mathbb{R}.$$

类似地,

$$\int \arctan = \iota \arctan - \left( \int \tan \right) \circ \arctan$$

$$= \iota \arctan - \ln \circ \operatorname{abs} \circ \operatorname{cos} \circ \arctan + \mathbb{R}$$

$$= \iota \arctan + \ln \circ \operatorname{abs} \circ \operatorname{sqrt}^{-1} \circ (1 + \iota^2) + \mathbb{R}$$

$$= \iota \arctan + \ln \circ \operatorname{sqrt}^{-1} \circ (1 + \iota^2) + \mathbb{R}$$

$$= \iota \arctan - \ln \circ \operatorname{sqrt} \circ (1 + \iota^2) + \mathbb{R}$$

$$= \iota \arctan - \frac{1}{2} \ln \circ (1 + \iota^2) + \mathbb{R}.$$

原则上,我还可以再举一些例;不过,我感觉,学而不思则罔,思而不学则 殆. 再者,我假定您学过微积分,所以您可以自行找高等算学(或算学分析) 教材上的问题练习. 当然,请试用我在本书讲的"无变量不定积分法".

## 第五章 积分

本章讨论如何**计算**积分; 这里的"积分"是"定积分", 虽然我觉得"定"有些多余.

我暂且用一会儿传统的记号,告诉您我在本章会写什么东西吧.

具体地, 设 f 是区间 I 上的连续函数, 且  $a, b \in I$ . 积分论告诉我们, f 在 [a, b] 上的积分 (或者, f 在 [b, a] 上的积分的相反数)

$$\alpha = \int_{a}^{b} f(x) \, \mathrm{d}x$$

存在. 所以, 我们可以专心地思考怎么算出结果 (而不必担心结果是否存在); 本章就告诉您一些计算积分的方法.

当然, 我还是会使用

$$\int_{a}^{b} f$$

表示 α; 毕竟, 这是本书的一个大主题.

### 5.1 不定积分与积分

我们在上一章"乘热打铁地"证明了当时没用到的定理:

**定理 4.10** (Newton-Leibniz) 设 I 为区间. 设 f 是 I 上的连续函数. 设 F 是 f 的原函数. 则对任意  $a, b \in I$ ,

$$\int_{a}^{b} f = F[b] - F[a].$$

原则上,我们可以用这个定理计算很多积分了.

例 5.1 因为 cos 的一个原函数是 sin, 故

$$\int_0^{2\pi/4} \cos = \sin[2\pi/4] - \sin[0] = 1.$$

例 5.2 因为 exp 的一个原函数是 exp, 故

$$\int_0^1 \exp = \exp[1] - \exp[0] = e - 1.$$

**例 5.3** 因为  $1/(1+\iota^2)$  的一个原函数是  $\arctan$ , 故

$$\int_{-1}^{1} \frac{1}{1+t^2} = \arctan[1] - \arctan[-1] = \frac{2\pi}{4}.$$

不过,我们不妨先探索不定积分跟积分的联系.在建立一定的联系后, 我们可以更有条理地算积分.

定理 4.10 是 Newton-Leibniz 公式的一个经典说法; 它描述了**原函数**与**积分**的关系. 自然地, 就有这样的问题: 有没有**直接**描述**不定积分**跟**积分**的关系的说法呢?

姑且从传统的记号说起. 或许, 您还能想起来, 用传统的记号, 可写上述 三个积分的计算为

$$\int_0^{2\pi/4} \cos x \, dx = \sin x \Big|_0^{2\pi/4} = 1,$$

$$\int_0^1 \exp x \, dx = \exp x \Big|_0^1 = e - 1,$$

$$\int_{-1}^1 \frac{dx}{1 + x^2} = \arctan x \Big|_{-1}^1 = \frac{2\pi}{4}.$$

这里,  $\exp x \Big|_0^1$  就是  $\exp 1 - \exp 0$  (或者, 按本书的记号,  $\exp[1] - \exp[0]$ ) 的省略. 所以, 我们也可定义一个类似的记号.

**定义 5.4** 设  $f \in P \subset \mathbb{R}$  上的函数. 设  $a, b \in P$ . 定义

$$\left[f\right]_{a}^{b} = f[b] - f[a].$$

姑且称其为 "bracket 运算" (土话: 方括号运算).

69

传统的记号在函数 f(x) (这里, 为对照, 使用经典的函数记号) 的右侧画单条长竖线; 为清晰起见, 我用一对方括号包围函数 f. 毕竟, 形如

$$1+f(x)\bigg|_a^b$$

的文字是有歧义的: 这是 1 + (f(b) - f(a)) 还是 (1 + f(b)) - (1 + f(a)) 呢?

**定理 5.5** 设 f, g 都是  $P \subset \mathbb{R}$  上的函数. 设 a,  $b \in P$ . Bracket 运算适合如下性质:

• 二个函数的和的 bracket 等于二个函数的 bracket 的和, 即

$$\left[f+g\right]_a^b = \left[f\right]_a^b + \left[g\right]_a^b.$$

• 设k为P上的常函数.则

$$\left[k\right]_{a}^{b} = 0.$$

• 设k为P上的常函数.则

$$\left[kf\right]_{a}^{b} = k \cdot \left[f\right]_{a}^{b}.$$

• 设  $Q \subset \mathbb{R}$  上的函数 h 的值域是 P 的子集. 设  $c, d \in Q$ . 则

$$\left[f \circ h\right]_{c}^{d} = \left[f\right]_{h[c]}^{h[d]}.$$

证 按定义论证这四条即可.

 $[f+g]_a^b$ , 按定义, 就是 (f+g)[b]-(f+g)[a]. 不过, 我们知道, (f+g)[b]=f[b]+g[b]; 类似地, (f+g)[a]=f[a]+g[a]. 所以, 二者的差就是

$$(f[b] + g[b]) - (f[a] + g[a]) = (f[b] - f[a]) + (g[b] - g[a]) = [f]_a^b + [g]_a^b.$$

 $[k]_a^b$ , 按定义, 就是 k[b] - k[a]. 可是, k[b] = k[a] = k, 故  $[k]_a^b = 0$ .

 $[kf]_a^b$ , 按定义, 就是(kf)[b]-(kf)[a]. 不过,  $(kf)[b]=k[b]\cdot f[b]=k\cdot f[b]$ ; 类似地,  $(kf)[a]=k\cdot f[a]$ . 所以

$$k \cdot f[b] - k \cdot f[a] = k \cdot (f[b] - f[a]) = k \cdot [f]_a^b.$$

最后一个或许是最容易的:

$$\begin{split} \left[f \circ h\right]_c^d &= (f \circ h)[d] - (f \circ h)[c] \\ &= f[h[d]] - f[h[c]] \\ &= \left[f\right]_{h[c]}^{h[d]}. \end{split}$$
 证毕.

利用 bracket 运算, 我们可"换汤不换药"地改写 Newton-Leibniz 公式:

**定理 5.6** (Newton-Leibniz) 设 I 为区间. 设 f 是 I 上的连续函数. 设 F 是 f 的原函数. 则对任意  $a,b\in I$ ,

$$\int_{a}^{b} f = \left[ F \right]_{a}^{b}.$$

的确,这个改写只是用"新鲜的" bracket 运算包装了函数在二点的差. 不过,这还只是一小步;我马上就要迈一大步了.

我刚定义了函数的 bracket 运算; 那么函数集有没有 bracket 运算呢?

这问题, 其实是废话: 有就是有, 没有就是没有. 的确, 我刚才只是定义了函数的 bracket 运算, 而没有定义函数集的 bracket 运算. 不过这是大问题吗? 我现在就定义它.

**定义 5.7** 设  $A \in P \subset \mathbb{R}$  上的函数集. 设  $a, b \in P$ . 定义

$$[A]_a^b = \left\{ [f]_a^b \middle| f \in A \right\}$$
$$= \left\{ f[b] - f[a] \middle| f \in A \right\}.$$

不难看出, bracket 运算变函数集为数集 (实数集的子集). 所以, 为研究函数集的 bracket 运算的性质, 我们要定义数集的运算.

**定义 5.8** 设 P,Q 为  $\mathbb{R}$  的子集. 设 \* 是三文字 +, -, · 的任意一个. 定义

$$P * Q = \{p * q \mid p \in P, q \in Q\}.$$

老样子, 可写  $P \cdot Q$  为 PQ, 写  $\{0\} - P$  为 -P.

5.1 不定积分与积分

71

若 P 的每一个元都不是零,还可定义

$$\frac{Q}{P} = \left\{ \frac{q}{p} \middle| q \in Q, p \in P \right\}.$$

若对任意  $p \in P$ ,  $q \in Q$ ,  $a^b$  有意义, 则还可定义

$$P^Q = \{ p^q \mid p \in P, q \in Q \}.$$

不意外地, 我们有如下性质.

**定理 5.9** 设 P, Q, S 都是  $\mathbb{R}$  的子集. 则

$$P + Q = Q + P,$$
  $PQ = QP,$   $(P + Q) + S = P + (Q + S),$   $(PQ)S = P(QS),$   $P(Q + S) = PQ + PS,$   $(P + Q)S = PS + QS.$ 

证 我不证了; 这跟函数集的相关性质太相似了. 还是老套路: 证明左边是右边的子集, 且右边是左边的子集. 您肯定得用到 ℝ 的运算律. 证毕.

由此, 我们就有如下的函数集的 bracket 运算律:

**定理 5.10** 设 A, B 都是  $P \subset \mathbb{R}$  上的函数集. 设  $a, b \in P$ .

• 二个函数集的和的 bracket 等于二个函数集的 bracket 的和, 即

$$[A+B]_a^b = [A]_a^b + [B]_a^b.$$

• 设函数集 C 的每一个元都是 P 上的常函数. 则

$$\left[C\right]_{a}^{b} = \{0\}.$$

• 设k为P上的常函数.则

$$\left[ \{k\}A \right]_a^b = \{k\} \cdot \left[ A \right]_a^b.$$

• 设  $Q \subset \mathbb{R}$  上的函数 h 的值域是 P 的子集. 设  $c, d \in Q$ . 则

$$\left[A \circ \{h\}\right]_c^d = \left[A\right]_{h[c]}^{h[d]}.$$

证 还是老套路: 相互包含. 由于我已经建立了函数的 bracket 运算律, 所以您的论证应该不会太长. 证毕.

在上一章, 我曾说, 在不引起混淆时, 可写恰含一个元的集  $\{a\}$  为 a. 现在我又要采用这个约定了.

**定理 5.11** 设  $P \subset \mathbb{R}$ . 设  $f \neq P$  上的函数. 设  $\mathbb{R}_P \neq P$  上的所有 (实的) 常函数作成的集 (当然, 也可简单地写其为  $\mathbb{R}$ ). 设  $a, b \in P$ . 则

$$\left[f + \mathbb{R}\right]_a^b = \left[f\right]_a^b.$$

证 直接验证; 不过, 您还是要注意一些细节的.

$$[f + \mathbb{R}]_a^b = [\{f\} + \mathbb{R}]_a^b$$

$$= [\{f\}]_a^b + [\mathbb{R}]_a^b$$

$$= [\{f\}]_a^b + \{0\}$$

$$= [\{f\}]_a^b$$

$$= [f]_a^b.$$

证毕.

下面的命题更直接地焊接了不定积分与积分.

**定理 5.12** (Newton-Leibniz) 设 I 为区间. 设 f 是 I 上的连续函数. 则对任意  $a,b \in I$ ,

$$\int_{a}^{b} f = \left[ \int f \right]_{a}^{b}.$$

注 5.13 严谨地 (但不重要地), 我们应当写

$$\left\{ \int_{a}^{b} f \right\} = \left[ \int f \right]_{a}^{b}.$$

证 因为 f 是 I 上的连续函数, 故 f 有一个原函数 F, 且  $\int f = F + \mathbb{R}$ . 从而

5.2 计算积分

### 5.2 计算积分

73

在上一节, 我们得到了新的 Newton-Leibniz 公式:

**定理 5.12** (Newton-Leibniz) 设 I 为区间. 设 f 是 I 上的连续函数. 则对任意  $a,b\in I$ ,

$$\int_{a}^{b} f = \left[ \int f \right]_{a}^{b}.$$

这将是本节的重点; 毕竟, 在大多数场合, **具体**计算积分时, 还是要用它. 我们先从积分论**借**三个公式. 它们比 Newton-Leibniz 公式更基础; 或者说, 在论证 Newton-Leibniz 公式时, 我们已经用到它们了.

**定理 2.26** 设 f, g 是区间 I 上的连续函数. 设  $a, b \in I$ . 设  $k \in \mathbb{R}$ . 则

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g,$$
$$\int_{a}^{b} kf = k \int_{a}^{b} f.$$

**定理 2.32** 设 f 是区间 I 上的连续函数. 设  $a, b, c \in I$ . 则

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$$

我们曾建立了不定积分的运算律;现在,我们试建立积分的更多的运算律.

先定义一个术语.

**定义 5.14** 设 I 为区间. 设 f 是 I 上的可导函数. 若 Df 还是 I 上的连续函数, 则说 f **连导**.

**定理 5.15** 设 I, J 为区间. 设 g 是 J 上的**连续函数**. 设 f:  $I \to J$  连导. 设 a,  $b \in I$ . 则

$$\int_{a}^{b} (g \circ f) \, \mathrm{D}f = \int_{f[a]}^{f[b]} g.$$

第五章 积分

请您注意上述定理的**被强调的词**; 为保证积分有意义 (请注意, 在本书, 我们只讨论**连续函数**的积分论), 我要求函数的性质好一些; 不过, 这并不是很影响实际应用.

74

证 因为 f 连导, 故 f 跟 Df 都是连续函数. 因为 g 是连续函数, 故  $h = (g \circ f)$  Df 也是连续函数. 所以, 可用 Newton-Leibniz 公式计算 h 的积分. 于是

$$\int_{a}^{b} (g \circ f) \, \mathrm{D}f = \left[ \int (g \circ f) \, \mathrm{D}f \right]_{a}^{b}$$

$$= \left[ \left( \int g \right) \circ f \right]_{a}^{b}$$

$$= \left[ \int g \right]_{f[a]}^{f[b]}$$

$$= \int_{f[a]}^{f[b]} g.$$
证毕.

我们无妨再看一遍命题的论证. 首先, 我们明确  $(g \circ f) Df$  是连续函数, 故可用 Newton-Leibniz 公式计算积分; 然后, 我们用不定积分的运算律转化为 g 的积分 (因为 g 是连续函数).

其实,在实际的计算中,我们并不需要每一次都变不定积分的 bracket 运算为积分. 一般地,我们用 Newton-Leibniz 公式算积分. 为书写方便,我们一般用长竖线(当然,在本书,用 bracket 运算)代替函数在二点的值的差. 因为本书定义了函数集的 bracket 运算,故我们可直接变积分为函数集的 bracket.在方括号内,就是我们已经熟知的不定积分. 所以,不定积分与 bracket 运算就能解决大多数积分问题. (当然, Newton-Leibniz 公式也不是万能的.)

#### **例 5.16** 我拿简单的 sin cos 举例吧.

$$\int_0^{2\pi/4} \sin \cos = \int_0^{2\pi/4} \sin D \sin = \int_{\sin[0]}^{\sin[2\pi/4]} \iota$$
$$= \left[ \int \iota \right]_{\sin[0]}^{\sin[2\pi/4]} = \left[ \frac{\iota^2}{2} \right]_0^1 = \frac{1}{2}.$$

5.2 计算积分 75

若充分利用 bracket 运算的性质, 我们可以这么写:

$$\int_0^{2\pi/4} \sin \cos = \left[ \int \sin \cos \right]_0^{2\pi/4}$$

$$= \left[ \int \sin D \sin \right]_0^{2\pi/4} = \left[ \left( \int \iota \right) \circ \sin \right]_0^{2\pi/4}$$

$$= \left[ \int \iota \right]_{\sin[0]}^{\sin[2\pi/4]}$$

$$= \left[ \frac{\iota^2}{2} + \mathbb{R} \right]_0^1 = \left[ \frac{\iota^2}{2} \right]_0^1 = \frac{1}{2}.$$

当然, 因为 ℝ 的 bracket 为 0, 故计算积分时不必写出来.

定理 5.17 设 I, J 为区间. 设 J 上的函数 g 连续. 设 f:  $I \to J$  连导. 设 e:  $J \to I$  适合  $f \circ e = \iota$ . 任取 c,  $d \in J$ . 则

$$\int_{c}^{d} g = \int_{e[c]}^{e[d]} (g \circ f) \, \mathrm{D} f.$$

证 注意到  $g = (g \circ f) Df$  都是连续函数. 所以

$$\int_{c}^{d} g = \left[ \int g \right]_{c}^{d}$$

$$= \left[ \left( \int (g \circ f) Df \right) \circ e \right]_{c}^{d}$$

$$= \left[ \int (g \circ f) Df \right]_{e[c]}^{e[d]}$$

$$= \int_{e[c]}^{e[d]} (g \circ f) Df.$$
证毕.

**例 5.18** 计算

$$\int_{-1}^{1} \operatorname{sqrt} \circ (1 - \iota^{2}).$$

设 J = [-1, 1]. 设  $g = \operatorname{sqrt} \circ (1 - \iota^2)$  为 J 上的函数. 为计算此积分, 我们无妨考虑找一个合适的**区间** I, 与一个 I 到 J 的连导函数 f, 使  $(g \circ f)$  D f

简单一些; 当然, 还要找一个 J 到 I 的函数 e, 使  $f \circ e = \iota$ . 我们无妨取  $I = [-2\pi/4, 2\pi/4]$ ,  $f = \sin$ . 那么,  $Df = \cos$ , 且  $g \circ f = \cos$ . 并且, 不难看出, 取  $e = \arcsin$ , 即得  $f \circ e = \iota$ . 故

$$\int_{-1}^{1} \operatorname{sqrt} \circ (1 - \iota^{2}) = \left[ \int \operatorname{sqrt} \circ (1 - \iota^{2}) \right]_{-1}^{1}$$

$$= \left[ \left( \int (\operatorname{sqrt} \circ (1 - \iota^{2}) \circ \sin) \operatorname{D} \sin \right) \circ \operatorname{arcsin} \right]_{-1}^{1}$$

$$= \left[ \int \cos^{2} \int_{\operatorname{arcsin}[-1]}^{\operatorname{arcsin}[-1]}$$

$$= \left[ \int \frac{1 + \cos}{2} \circ 2\iota \right]_{-2\pi/4}^{2\pi/4}$$

$$= \left[ \left( \int \frac{1}{2} \cdot \frac{1 + \cos}{2} \right) \circ 2\iota \right]_{-2\pi/4}^{2\pi/4}$$

$$= \left[ \int \frac{1 + \cos}{4} \right]_{2\iota[-2\pi/4]}^{2\iota[2\pi/4]}$$

$$= \left[ \frac{\iota + \sin}{4} \right]_{-2\pi/2}^{2\pi/2}$$

$$= \frac{2\pi/2 + 0}{4} - \frac{-2\pi/2 + 0}{4}$$

$$= \frac{2\pi}{4}.$$

**定理 5.19** 设 I 为**区间**, f, g 都是 I 上的**连导**函数. 设 a,  $b \in I$ . 则

$$\int_{a}^{b} f Dg = \left[ f g \right]_{a}^{b} - \int_{a}^{b} g Df.$$

证 fDg = gDf 都是连续函数. 从而

$$\int_{a}^{b} f Dg = \left[ \int f Dg \right]_{a}^{b} = \left[ fg - \int g Df \right]_{a}^{b}$$
$$= \left[ fg \right]_{a}^{b} - \left[ \int g Df \right]_{a}^{b} = \left[ fg \right]_{a}^{b} - \int_{a}^{b} f Dg.$$
 证毕.

例 5.20 计算

$$\int_0^{2\pi/2} \sin \exp.$$

5.2 计算积分 77

注意到 Dexp = exp. 所以

$$\int_0^{2\pi/2} \sin \exp = \int_0^{2\pi/2} \sin D \exp$$

$$= \left[\sin \exp\right]_0^{2\pi/2} - \int_0^{2\pi/2} \exp D \sin$$

$$= 0 - \int_0^{2\pi/2} \cos \exp$$

$$= -\int_0^{2\pi/2} \cos D \exp$$

$$= -\left[\cos \exp\right]_0^{2\pi/2} + \int_0^{2\pi/2} \exp D \cos$$

$$= (1 + \exp[2\pi/2]) - \int_0^{2\pi/2} \sin \exp.$$

由此可知

$$\int_0^{2\pi/2} \sin \exp = \frac{1 + \exp[2\pi/2]}{2}.$$

最后,我再讲一个小技巧吧.

**定理 5.21** 设 I 为区间. 设 f 是 I 上的连续函数. 设  $a, b \in I$ . 则

$$\int_{a}^{b} f = \int_{a}^{b} f \circ (a + b - 1) = \frac{1}{2} \int_{a}^{b} (f + f \circ (a + b - 1)).$$

**证** 我们证明前一个等号成立即可;至于后一个等号,利用"二个相等的数的平均数跟其相等"即可.

$$\int_{a}^{b} f \circ (a+b-1) = \int_{a}^{b} -f \circ (a+b-1) \cdot (-1)$$

$$= \int_{a}^{b} (-f \circ (a+b-1)) D(a+b-1)$$

$$= \int_{(a+b-1)[a]}^{(a+b-1)[a]} -f$$

$$= -\int_{b}^{a} f = \int_{a}^{b} f.$$

If \(\frac{\text{if } \text{if } \text

例 5.22 计算

$$\int_0^{2\pi/2} \frac{\iota \sin}{2 - \sin^2}.$$

设

$$f = \frac{\iota \sin}{2 - \sin^2}.$$

按照以往的经验, 您可能会试着先找 f 的不定积分. 注意, f 甚至可以是  $\mathbb{R}$  上的连续函数, 所以 f 的不定积分**一定存在**. 只不过, 您是否能顺利地写出来, 就是另一个问题. 我承认, 我自己也写不出初等函数 F, 使 DF = f.

既然找原函数不太行,那就试着用小技巧. 注意到

$$\sin = \sin \circ \left(\frac{2\pi}{2} - \iota\right),\,$$

故

$$f \circ \left(0 + \frac{2\pi}{2} - \iota\right) = \frac{(2\pi/2 - \iota)\sin}{2 - \sin^2}.$$

从而

$$g = f + f \circ \left(0 + \frac{2\pi}{2} - \iota\right)$$
$$= \frac{2\pi}{2} \cdot \frac{\sin}{2 - \sin^2} = \frac{2\pi}{2} \cdot \frac{\sin}{1 + (-\cos)^2}.$$

所以

$$\int_{0}^{2\pi/2} f = \frac{1}{2} \cdot \int_{0}^{2\pi/2} g$$

$$= \frac{1}{2} \cdot \frac{2\pi}{2} \int_{0}^{2\pi/2} \frac{D[-\cos]}{1 + (-\cos)^{2}}$$

$$= \frac{2\pi}{4} \cdot \int_{-\cos[0]}^{-\cos[2\pi/2]} \frac{1}{1 + \iota^{2}}$$

$$= \frac{2\pi}{4} \cdot \int_{-1}^{1} D \arctan$$

$$= \frac{2\pi}{4} \cdot \frac{2\pi}{4} = \frac{(2\pi)^{2}}{16}.$$

# 参考文献

- [1] MENGER K. Are variables necessary in calculus?[J]. The American Mathematical Monthly, 1949, 56(9): 609-620.
- [2] RUDIN W. Principles of mathematical analysis[M]. 3rd ed. New York: McGraw-Hill, 1976: 136-137, 141-142.
- [3] 阮龙培. 关于立体几何应用集合论符号的几点看法[J]. 数学通报, 1986, 1: 31.
- [4] 张筑生. 数学分析新讲: 第 1 卷[M]. 北京: 高等教育出版社, 1990: 130.
- [5] KUHN S. The derivative á la Carathéodory[J]. The American Mathematical Monthly, 1991, 98(1): 40-44.
- [6] 吴长庆. 立体几何使用"集合语言"的准确性[J]. 唐山师范学院学报, 1997, 5: 76.
- [7] MARIAN J. How to define functions without using variables[EB/OL]. (2013-10-11)[2022-03-25]. https://jakubmarian.com/how-to-define-functions-without-using-variables/.
- [8] MARIAN J. Differentiation (derivatives) without variables[EB/OL]. (2013-10-14)[2022-03-25]. https://jakubmarian.com/differentiation-derivatives-without-variables/.
- [9] MARIAN J. Indefinite integration without variables[EB/OL]. (2014-01-12) [2022-03-25]. https://jakubmarian.com/indefinite-integration-computing-integrals-without-variables/.

80 参考文献

[10] MARIAN J. Second substitution method for integration without variables [EB/OL]. (2014-02-01)[2022-03-25]. https://jakubmarian.com/second-substitution-method-for-integration-without-variables/.

- [11] MARIAN J. Quantification without variables[EB/OL]. (2014-02-15)[2022-03-25]. https://jakubmarian.com/quantification-without-variables/.
- [12] MARIAN J. Definite integration without variables[EB/OL]. (2014-04-23) [2022-03-25]. https://jakubmarian.com/definite-integration-without-variables/.
- [13] MARIAN J. Calculus of finite differences without variables[EB/OL]. (2014-05-08)[2022-03-25]. https://jakubmarian.com/calculus-of-finite-differences-without-variables/.
- [14] 梅加强. 数学分析[M]. 2版. 北京: 高等教育出版社, 2020: 66-77.