考试时长: 120 分钟

题	号	1	2	3	4	5	6	7	8
分	值	15 分	25 分	10 分	16 分	10 分	6 分	16 分	12 分

本试卷共 (8) 大题, 满分 (110) 分. 请将所有答案写在答题本上.

This exam includes 8 questions and the score is 110 in total. Write all your answers on the examination book.

1. (15 points, 3 points each) Multiple Choice. Only one choice is correct.

(共 15 分,每小题 3 分)选择题,只有一个选项是正确的.

- (1) Let A be an $m \times n$ real matrix and b be a column vector in \mathbb{R}^m . Which of the following statements is correct? ()
 - (A) If Ax = b has infinite many solutions, then Ax = 0 has a nonzero solution.
 - (B) If the system Ax = 0 has only zero solution, then Ax = b has one and only one solution.
 - (C) If the rank of A is n, then the system Ax = b must have a solution.
 - (D) If A is a square matrix (i.e., m=n), then the system Ax=b is consistent if and only if A is invertible.
 - 设 A 为 $m \times n$ 实矩阵, $b \in \mathbb{R}^m$ 中的列向量. 下列陈述中哪个是正确的? ()
 - (A) 如果 Ax = b 有无穷多个解,则 Ax = 0 有非零解.
 - (B) 如果方程组 Ax = 0 只有零解, 则 Ax = b 有且仅有一个解.
 - (C) 如果 A 的秩为 n, 则方程组 Ax = b 必有解.
- 可以AAI荔秧, b结得好
- (D) 如果 A 是方阵 (即 m=n), 则方程组 Ax=b 是相容的当且仅当 A 可逆.
- (2) Suppose A is an $m \times n$ matrix, B is an $n \times m$ matrix, and I is the $m \times m$ identity matrix.

 \mathcal{A} the column vectors of A are linearly independent, and the row vectors of B are linearly independent.

- (B) the column vectors of A are linearly independent, and the column vectors of B are linearly independent.
- (C) the row vectors of A are linearly independent, and the column vectors of B are linearly independent.
- (D) the row vectors of A are linearly independent, and the row vectors of B are linearly independent.
- 设 A 为 $m \times n$ 型矩阵, B 为 $n \times m$ 型矩阵, I 为 m 阶单位矩阵. 若 AB = I, 则 (
- (A) A 的列向量组线性无关, B 的行向量组线性无关.

Jul vow rouk

⇒ AZi= Pi, Vi

A[Zi, Zi, ..., Zi]= Im.

⇒ Ax=b fill ∀be R^m

第1页/共6页

- (B) A 的列向量组线性无关, B 的列向量组线性无关.
- (C) A 的行向量组线性无关, B 的列向量组线性无关.
- (D) A 的行向量组线性无关, B 的行向量组线性无关.
- (3) Let A be a 3×3 matrix, and let B be the matrix formed by adding the second column of A to its first column. Suppose that after exchanging the second and third rows of B, the

resulting matrix is the 3×3 identity matrix. Let $P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$

- Then A = (
- (A) P_1P_2 .
- (B) $P_1^{-1}P_2$.
- (C) P_2P_1 .
- (D) $P_2P_1^{-1}$.

设 A 为 3 阶方阵, 将 A 的第二列加到第一列得矩阵 B. 假设交换 B 的第二行与第三行

可以得到 3 阶单位矩阵. 记
$$P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$
则 $A = ($

- (A) P_1P_2 .
 (B) $P_1^{-1}P_2$.
 (C) P_2P_1 .
 (D) $P_2P_1^{-1}$.

 (A) Let $A = \begin{bmatrix} -1 & 2 & 3 \\ -3 & 6 & 8 \\ 2 & -4 & t \end{bmatrix}$, where $t \in \mathbb{R}$. Suppose rank(A) = 2. Then (B) t = 6.
 (C) $t \neq 0$.
 (D) t can be any real number.

设
$$A = \begin{bmatrix} -1 & 2 & 3 \\ -3 & 6 & 8 \\ 2 & -4 & t \end{bmatrix}$$
, 其中 $t \in \mathbb{R}$. 假设 $\operatorname{rank}(A) = 2$. 则 ()

- (A) t = -6.
- (B) t = 6.
- (C) $t \neq 0$.
- (D) t 可以是任意实数.
- (5) Which of the following statements is incorrect?
 - (A) For any matrix A, rank $(A) = \dim C(A)$.

- (B) If v_1, \dots, v_m are pairwise orthogonal nonzero vectors, then the vectors v_1, \dots, v_m are linear independent.
- (C) If A is an upper triangular $n \times n$ matrix such that $A^2 = 0$, then A = 0.
- (D) Let A, B be $n \times n$ matrices such that AB is invertible. Then both A and B are invertible.

下列哪个论断是错误的?(/

- (A) 对于任意矩阵 A, rank(A) = dim <math>C(A). \ /
- (B) 如果 v_1, \dots, v_m 是一组两两正交的非零向量, 则向量组 v_1, \dots, v_m 线性无关.
- (C) 如果 A 是 $n \times n$ 上三角矩阵且 $A^2 = 0$, 则 $A \neq 0$.

- 2. (25 points, 5 points each) Fill in the blanks. (共 25 分, 每小题 5 分) 填空题.
 - (1) Let A, B be invertible $n \times n$ matrices. Then the inverse of the block matrix $\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ is
 - (2) Suppose A is a 3×4 matrix and dim N(A) = 2. Then dim $N(A^T) = 2$ 设 A 为 3×4 矩阵且 $\dim N(A) = 2$. 则 $\dim N(A^T) =$
 - 设 $A = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$. 则 $A^{-1} =$ ______
 - (4) Let u, v be vectors in \mathbb{R}^n such that ||u|| = 3, ||v|| = 4 and $u^T v = -3$.

Then ||2u + 3v|| =______

(5) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$.

Then the least squares solution to Ax = b is $\hat{x} = a$

设
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}.$$

3. (10 points) Find the LU factorization of the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$.

求矩阵
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
 的 LU 分解.

4. (16 points) Let
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$
.

Please give a basis for each of the four fundamental subspaces C(A), N(A), $C(A^T)$ and $N(A^T)$, respectively.

(16 分) 设
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$
.

请对四个基本子空间 C(A), N(A), $C(A^T)$ 和 $N(A^T)$ 分别给出各自的一组基.

5. (10 points) Let $E = \{u_1, u_2, u_3\}$ and $F = \{v_1, v_2\}$, where

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \text{ and } v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

Define the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} 2x_2\\ -x_1 \end{array}\right].$$

Find the matrix A representing T with respect to the ordered bases E and F.

(10 分) 设 $E = \{u_1, u_2, u_3\}, F = \{v_1, v_2\},$ 其中

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \ u_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \ u_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \quad \text{and} \quad v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

定义线性变换 $T: \mathbb{R}^3 \to \mathbb{R}^2$ 如下

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} 2x_2 \\ -x_1 \end{array}\right].$$

求 T 在 E 和 F 这两组有序基下的矩阵表示 A.

6. (6 points) Let A, B be $n \times n$ matrices. Suppose A and B are both symmetric. Is AB necessarily symmetric? If yes, please give a proof. Otherwise please give a counterexample.

 $(6\ eta)$ 设 A, B 均为 $n\times n$ 矩阵. 假设 A 和 B 都是对称矩阵. AB 是否一定是对称矩阵? 若 是, 请给出证明. 否则请给出一个反例.

- 7. (16 points) The following two questions are independent:
 - (a) Let A be the 2×2 matrix such that the linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$, $v \mapsto Av$ rotates every vector in \mathbb{R}^2 through 60° counter-clockwise (about the origin). Find A and A^{2020} .
 - Find A and A^{2020} .

 (b) Three planes Π_1 , Π_2 , Π_3 in the space \mathbb{R}^3 are given by the equations $\Pi_1: x+y+z=0,$ $\Pi_2: 2x-y+4z=0,$ $\Pi_3: -x+2y-z=0.$

Determine a matrix representative (in the standard basis of \mathbb{R}^3) of a linear transformation taking the xy plane to Π_1 , the yz plane to Π_2 and the zx plane to Π_3 .

- (16 分) 以下两个小题是相互独立的:
- (a) 设 A 是 2×2 矩阵使得线性变换 $\mathbb{R}^2 \to \mathbb{R}^2$, $v \mapsto Av$ 把 \mathbb{R}^2 中每个向量 (绕原点) 逆时针 转动 60° .

求 A 和 A²⁰²⁰.

(b) 在空间 \mathbb{R}^3 中由以下方程给出三个平面 $\Pi_1,\,\Pi_2,\,\Pi_3$:

三个平面
$$\Pi_1, \Pi_2, \Pi_3$$
:
$$\Pi_1 : x + y + z = 0,$$

$$\Pi_2 : 2x - y + 4z = 0,$$

$$\Pi_3 : -x + 2y - z = 0.$$

$$(e_i)$$

$$0$$

$$0$$

求一个矩阵, 使它 (在 \mathbb{R}^3 的标准基下) 表示的线性变换将 xy 平面映射成 Π_1 , 将 yz 平面映射成 Π_2 并将 zx 平面映射成 Π_3 .

- 8. (12 points) Let A be a 3×3 matrix such that $\operatorname{rank}(A) = 2$ and $A^3 = 0$.
 - (a) Prove that $rank(A^2) = 1$.
 - (b) Let $\alpha_1 \in \mathbb{R}^3$ be a nonzero vector such that $A\alpha_1 = 0$. Prove that there exist vectors α_2 , α_3 such that $A\alpha_2 = \alpha_1$, $A^2\alpha_3 = \alpha_1$.
 - (c) For any vectors α_2, α_3 described as above, show that $\alpha_1, \alpha_2, \alpha_3$ are linearly independent.

(In this problem, you are allowed to assume the statements of some questions to answer subsequent questions.)

(12 分) 设 $A \neq 3 \times 3$ 矩阵, 它满足 rank(A) = 2 及 $A^3 = 0$.

(a) 证明 $\operatorname{rank}(A^2)=1$. (b) 设 $\alpha_1\in\mathbb{R}^3$ 是满足 $A\alpha_1=0$ 的非零向量. 证明: 存在向量 α_2 , α_3 使得 $A\alpha_2=\alpha_1$, $A^2\alpha_3=\alpha_2$ 'XIENCA) = C(A)

(c) 证明: 对于任意满足上述条件的向量 α_2,α_3 , 向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

 $C_{1}(X_{1}+C_{2}(A_{2}+C_{3}(X_{3}=0)) + C_{3}(X_{3}=0)$ $C_{1}(X_{1}+C_{2}(A_{2}+C_{3}(X_{3})=0)) + C_{3}=0$ $C_{1}(X_{1}+C_{2}(A_{2}+C_{3}(X_{3})=0)) + C_{3}=0$ $C_{1}(X_{1}+C_{2}(A_{2})=0) + C_{3}=0$

第6页/共6页