MA 510 / CS 522 HW #5 Due in class Thursday 10/6

1. Consider the problem of finding a quadratic polynomial p(x) for which

$$p(x_o) = y_o, \quad p'(x_1) = y_1', \quad p(x_2) = y_2$$

with $x_o \neq x_2$ and $\{y_o, y_1', y_2\}$ the given data points. Assuming that the nodes x_o, x_1, x_2 are real, what conditions must be satisfied for such a p(x) to exist and be unique? Note: This is an example of Hermite-Birkhoff interpolation.

2. Assume that $f \in C^2[a, b]$ and S(x) is the unique cubic spline interpolant for f(x) that passes through the points $\{x_k, f(x_k)\}_{k=1}^n$, letting $x_1 = a$ and $x_n = b$. Assuming that the endpoints satisfy the clamped boundary conditions S'(a) = f'(a) and S'(b) = f'(b).

Prove that the following is true:

$$\int_a^b (\mathcal{S}''(x))^2 dx \le \int_a^b (f''(x))^2 dx$$

3. Derive the boundary conditions for the clamped case in terms of M_i . That is, determine the form of the first and last row of the matrix \tilde{A} and determine the first and law row of the right hand side vector \vec{R} .