Algèbre

Martin Mugnier

DD ENSAE-HEC, 2019

 $Chapitre\ 5:\ Endomorphismes\ symétriques\ et\ Projections\ orthogonales$

1 Endomorphismes et Matrices symétriques

2 Matrice définie positive

3 Projections orthogonales

Endomorphismes symétriques et diagonalisation

Définition

On dit qu'un endomorphisme est symétrique ou autoadjoint pour <.,.> ssi

$$\forall x, y \in E, \quad < u(x), y > = < x, u(y) > .$$

Proposition

u est symétrique ssi sa matrice représentative dans une base orthonormée pour <.,.> est symétrique.

Endomorphismes symétriques et diagonalisation

Proposition

Si u est symétrique alors son polynôme caractéristique est scindé sur \mathbb{R} .

Théorème ("Théorème spectral")

Si u est symétrique pour <.,.> alors u est diagonalisable en base orthonormale, i.e.

$$E = \bigoplus_{\lambda \in Sp(u)} Ker(u - \lambda Id)$$

Endomorphismes symétriques, réduction

Soit u symétrique pour <.,.>, pour trouver une base de vecteurs propres :

- On détermine les p valeurs propres distinctes, racines du polynôme caractéristique de u, et leur multiplicité
- Pour tout i = 1, ..., p, on détermine une base \mathcal{B}_i de $E(\lambda_i)$
- Pour tout $i=1,\ldots,p$, on orthogonalise \mathcal{B}_i pour <.,.> en $\mathcal{B}_i'=\left(\epsilon_k^i\right)_{k\in I'}$ puis normalise la base

$$\forall k \in I, \quad u_k^i = \frac{\epsilon_k^i}{\|\epsilon_k^i\|}$$

et on obtient $\widetilde{\mathcal{B}}_i$ une base orthonormale pour $<,>_{|E(\lambda_i)\times E(\lambda_i)}$.

• On pose finalement $\widetilde{\mathcal{B}}_E = \bigcup_{i=1}^p \widetilde{\mathcal{B}}_i$ qui est une base orthogonale de E pour <,> car $E=\oplus_{i=1}^p E(\lambda_i)$ et si u symétrique pour <,> et si λ_i et λ_j sont deux valeurs propres distinctes de u alors $E(\lambda_i) \perp E(\lambda_j)$.

Martin Mugnier Algèbre

Matrice définie positive

Soit A une matrice symétrique, matrice représentative de u_A . On définit la forme bilinéaire symétrique

$$\varphi_A: E \times E \to \mathbb{R}$$

$$(x,y) \mapsto \langle u_A(x), y \rangle$$

 ϕ_A est la forme quadratique associée à φ_A .

Définition

A est semi définie positive ssi ϕ_A est semi définie positive.

A est définie positive ssi ϕ_A est définie positive.

Matrice définie positive

Théorème (Caractérisation des matrices définies positives)

• Soient $\lambda_1, \ldots, \lambda_n$ les n valeurs propres (non nécessairement distinctes) de A alors

$$\max(\lambda_1,\ldots,\lambda_n) = \max_{\mathbf{x}\in E, \mathbf{x}\neq \mathbf{0}_E} \frac{\phi_A(\mathbf{x})}{\left\|\mathbf{x}\right\|^2} = \max_{X\in\mathcal{M}_{n,1}(\mathbb{R}), X\neq \mathbf{0}} \frac{X^\top AX}{X^\top X}$$

- A est semi définie positive ssi toutes ses valeurs propres sont positives ou nulles
- A est définie positive ssi toutes ses valeurs propres sont strictement positives

Projecteur orthogonal

Soit (E,<,>) espace préhilbertien réel, F un sev de E tel que $F\oplus F^\perp=E$.

Définition

Le projecteur sur F parallèlement à F^{\perp} , noté p_F est appelé projecteur orthogonal sur F ou projection orthogonale sur F.

En tant que projecteur linéaire, p_F vérifie

Proposition

- $\forall a \in E$, $p_F(a) \in F$ et $a p_F(a) \in F^{\perp}$
- $\bullet \ p_{F^{\perp}} = Id_E p_F$
- $p_F \circ p_F = p_F$ et $p_{F^{\perp}} \circ p_{F^{\perp}} = p_{F^{\perp}}$
- $p_F \circ p_{F^{\perp}} = 0_{\mathcal{L}(E)}$ et $p_{F^{\perp}} \circ p_F = 0_{\mathcal{L}(E)}$
- $Sp(p_F) = \{0,1\}$ avec $E(0) = F^{\perp}$ et E(1) = F
- si E euclidien, alors p_F est diagonalisable et $Trace(p_F) = dim(F)$

《ロト《母》《意》《意》 意》 今へ© Martin Mugnier Algèbre

Rappel projecteur linéaire

Figure pour projecteur orthogonal deux slides après!

Définition

Soit $a \in E$, la distance de a à F est définie par

$$d(a,F) = \inf_{x \in F} \|x - a\|$$

Proposition

Pour tout $x \in F$ on a

$$||x - a|| = d(a, F) \Leftrightarrow a - x \in F^{\perp}$$

et il existe au plus un élément de F qui vérifie cette assertion.

Théorème

Soit $a \in E$, il existe une unique solution x^* au problème

$$\inf_{x \in F} \|x - a\|$$

et $x^* = p_F(a)$.

non seulement $\boldsymbol{x_2} \perp \boldsymbol{x_1}$

mais $x_2 \perp F$

On considère (E, <, >) un espace euclidien.

Proposition

 $Si\;\{f_1,\ldots,f_p\}$ est une base de F orthogonale pour $<,>_{|F imes F}$ alors

$$\forall a \in E, \quad p_F(a) = \sum_{i=1}^p \frac{\langle a, f_i \rangle}{\|f_i\|^2} f_i$$

Proposition (Projection orthogonale sur une droite vectorielle)

Si $y \in E \setminus \{0_E\}$ alors

$$\forall a \in E, \quad p_{Vect(\{y\})}(a) = \frac{\langle a, y \rangle}{\|y\|^2} y$$

On considère (E, <, >) un espace euclidien.

Proposition (Théorème des trois perpendiculaires)

Si F, G sev de E, et G sev de F alors

$$p_G \circ p_F = p_G$$

Proposition

Soient F_1, \ldots, F_p , p sev de E deux à deux orthogonaux et $F = \bigoplus_{i=1}^p F_i$ alors

$$p_F = p_{F_1} + \cdots + p_{F_p}$$

Proposition (Théorème de Frish-Waugh)

Si G est un s.e.v de F alors

$$p_F = p_G + p_{F \cap G^{\perp}}$$

Martin Mugnier Algèbre

Représentation matricielle de la projection orthogonale

On considère (E,<,>) un espace euclidien de dimension n, $\mathcal{B}_E=\{e_1,\ldots,e_n\}$ une base **orthonormée** de E et $\mathcal{B}_F=\{f_1,\ldots,f_p\}$ une base de F telle que

$$\forall j=1,\ldots,p, \quad f_j=\sum_{k=1}^n a_{k,j}e_k.$$

La <,> matrice de Gram de $\{f_1,\ldots,f_p\}$ est donnée par $\Omega_p=(< f_i,f_j>)_{i,j}$ et les colonnes de $A=(a_{k,j})_{k,j}\in\mathcal{M}_{n,p}(\mathbb{R})$ sont les vecteurs de coordonnées des (f_j) dans \mathcal{B}_E .

Théorème

 $A^{\top}A$ est inversible et

$$M = Mat(p_F, \mathcal{B}_E, \mathcal{B}_E) = A(A^{\top}A)^{-1}A^{\top}$$

Cas général de \mathcal{B}_{E}

On considère (E,<,>) un espace euclidien de dimension n, $\mathcal{B}_E=\{e_1,\ldots,e_n\}$ une base de E et $\mathcal{B}_F=\{f_1,\ldots,f_p\}$ une base de F telle que

$$\forall j=1,\ldots,p, \quad f_j=\sum_{k=1}^n a_{k,j}e_k.$$

La <, > matrice de Gram de $\{f_1, \ldots, f_p\}$ est donnée par $\Omega_p = (< f_i, f_j >)_{i,j}$ et $\Omega = \mathit{Mat}(<, >, \mathcal{B}_E)$.

Théorème

 $\Omega_p = A^{\top} \Omega A$ est inversible et

$$M = Mat(p_F, \mathcal{B}_E, \mathcal{B}_E) = A(A^{\top}\Omega A)^{-1}A^{\top}\Omega$$

où
$$A=(a_{k,j})_{k,j}\in\mathcal{M}_{n,p}(\mathbb{R}).$$

Propriétés

Proposition

Soient $M = Mat(p_F, \mathcal{B}_E, \mathcal{B}_E)$ et $N = Mat(p_F^{\perp}, \mathcal{B}_E, \mathcal{B}_E)$ alors

- $N = I_n M$
- $M^2 = M$ et $N^2 = N$
- MN = 0 et NM = 0
- M est diagonalisable et la trace de M est égale à la dimension de F
- si \mathcal{B}_E est une base de E orthonormée pour <,> alors
 - M et N sont symétriques
 - M est diagonalisable dans le groupe orthogonal i.e.

$$\exists P \in GL_n(\mathbb{R}), \quad P^{\top} = P^{-1}, \quad P^{\top}MP = \begin{pmatrix} I_p & 0 \\ 0 & 0 \end{pmatrix}$$

Martin Mugnier