

50mA Low Power LDO

Features

- Low power consumption
- Low voltage drop
- Low temperature coefficient
- High input voltage (up to 15V)
- Output voltage accuracy: tolerance $\pm 2\%$
- TO92, SOT89 and SOT23 package

Applications

- Battery-powered equipment
- Communication equipment
- Audio/Video equipment

General Description

The H71XX-1 series is a set of three-terminal low power high voltage regulators implemented in CMOS technology. They allow input voltages as high as 18V. They are available with several fixed output voltages ranging from 2.1V to 5.0V. CMOS

technology ensures low voltage drop and low quiescent current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.

Selection Table

Part No.	Output Voltage	Package	Marking
H7121-1	2.1V		
H7123-1	2.3V		
H7125-1	2.5V		
H7127-1	2.7V	TO92	71XXA-1(for TO92)
H7130-1	3.0V	SOT89	71XX-1(for SOT89)
H7133-1	3.3V	SOT23	HTXX(for SOT23)
H7136-1	3.6V		
H7144-1	4.4V		
H7150-1	5.0V		

Note:"XX" stands for output voltages. Other voltages can be specially customized.

Order Information

H7112-134

Designator	Symbol	Description
1 2	Integer	Output Voltage(2.1V~5.0V)
	Т	Package:TO-92
3	Р	Package:SOT89
	N	Package:SOT23
	R	RoHS / Pb Free
(4)	G	Halogen Free

Block Diagram

Pin Assignment

Absolute Maximum Ratings

Supply Voltage0.3V to 18V	Storage Temperature50 $^{\circ}\!$
Operating Temperature40°C to 85°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
	Thermal Resistance (Junction to	TO92	200	°C/W
θ JA	Ambient) (Assume no ambient	SOT89	200	°C/W
	airflow, no heat sink)	SOT23	500	°C/W
		TO92	0.50	W
P_D	Power Dissipation	SOT89	0.50	W
		SOT23	0.20	W

Note: P_D is measured at Ta= 25°C

Electrical Characteristics

H7121-1, +2.1V Output Type

Symbol	Parameter	Test Co	onditions	Min.	Tun	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIII I.	Тур.	IVIAX.	Offic
V _{OUT}	Output Voltage	4.1V	I _{OUT} =10mA	2.058	2.100	2.142	V
Іоит	Output Current	4.1V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	4.1V	1mA≤I _{OUT} ≤20mA	-	60	100	mV
V_{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA	-	100	-	mV
I _{SS}	Current	4.1V	No load	-	2.5	3	μА
	Consumption						
$\frac{\Delta V_{\scriptscriptstyle OUT}}{\Delta V_{\scriptscriptstyle IN} \times V_{\scriptscriptstyle OUT}}$	Line Regulation	-	$3.1V \leq V_{IN} \leq 16V$ $I_{OUT}=1 \text{ mA}$	-	0.2	-	%/V
V_{IN}	Input Voltage	-	-	-		15	V
$rac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	4.1V	I _{OUT} =10mA 0℃ <ta<70℃< td=""><td></td><td>± 0.37</td><td>-</td><td>mV/℃</td></ta<70℃<>		± 0.37	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

H7123-1, +2.3V Output Type

Symbol	Parameter	Test Con	Test Conditions		Тур.	Max.	Unit
Symbol	raiametei	VIN	Conditions	Min.	τyp.	IVIAX.	OTIL
V_{OUT}	Output Voltage	4.3V	I _{OUT} =10mA	2.254	2.300	2.346	V
I _{OUT}	Output Current	4.3V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	4.3V	1mA≤l _{OUT} ≤20mA	-	60	100	mV
V _{DIF}	Voltage	-	I _{OUT} =1mA	-	100	-	mV
	Drop(Note)						
I _{SS}	Current Consumption	4.3V	No load	-	2.5	3	μА
$\frac{\Delta V_{\scriptscriptstyle OUT}}{\Delta V_{\scriptscriptstyle IN} \times V_{\scriptscriptstyle OUT}}$	Line Regulation	-	$3.3V \leq V_{IN} \leq 16V$ $I_{OUT} = 1 \text{ mA}$	-	0.2	-	%/V
V _{IN}	Input Voltage	-	-	-	-	15	V
$rac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	4.3V	I _{OUT} =10mA 0℃ <ta<70℃< td=""><td>-</td><td>± 0.39</td><td>-</td><td>mV/℃</td></ta<70℃<>	-	± 0.39	-	mV/℃

H7125-1, +2.5V Output Type

O. wash a l	Danamatan	Test Con	ditions	N dian	Т	Mari	Unit
Symbol	Parameter	V _{IN}	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	4.5V	I _{OUT} =10mA	2.45	2.500	2.55	V
lout	Output Current	4.5V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	4.5V	1mA≤l _{OUT} ≤20mA	-	60	100	mV
V_{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA	-	100	-	mV
I _{SS}	Current	4.5V	No load	-	2.5	3	μА
	Consumption						
$\Delta V_{\scriptscriptstyle OUT}$			3.5V≤V _{IN} ≤16V				
$\Delta V_{\scriptscriptstyle IN} imes V_{\scriptscriptstyle OUT}$	Line Regulation	-	I _{OUT} =1mA	-	0.2	-	%/V
V_{IN}	Input Voltage	-	-	-	-	15	V
$\Delta V_{\scriptscriptstyle OUT}$	Temperature	4.5\/	I _{OUT} =10mA		±		\//°C
ΔTa	Coefficient	4.5V	0℃ <ta<70℃< td=""><td></td><td>0.41</td><td>-</td><td>mV/℃</td></ta<70℃<>		0.41	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

H7127-1, +2.7V Output Type

Symbol	Parameter	Test Con	ditions	Min.	Тур.	Max.	Unit
Cymbol	T diameter	V _{IN}	Conditions		. , p.	Wich	01
V _{OUT}	Output Voltage	4.7V	I _{OUT} =10mA	2.646	2.700	2.754	V
I _{OUT}	Output Current	4.7V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	4.7V	1mA≤I _{OUT} ≤20mA	-	60	100	mV
V _{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA, Δ	-	100	-	mV
			V _{OUT} =2%				
I _{SS}	Current	4.7V	No load	-	2.5	3	μА
	Consumption						
$\Delta V_{\scriptscriptstyle OUT}$			3.7V≪V _{IN} ≪16V				
$\Delta V_{\scriptscriptstyle IN} \times V_{\scriptscriptstyle OUT}$	Line Regulation	-	I _{OUT} =1mA	-	0.2	-	%/V
V_{IN}	Input Voltage	-	-	-	-	15	V
$\frac{\Delta V_{\scriptscriptstyle OUT}}{\Delta Ta}$	Temperature Coefficient	4.7V	I _{ouτ} =10mA 0°C <ta<70°c< td=""><td>-</td><td>± 0.43</td><td>-</td><td>mV/℃</td></ta<70°c<>	-	± 0.43	-	mV/℃

H7130-1, +3.0V Output Type

Cumbal	Parameter	Test Con	ditions	Min	Turn	Mov	Lloit
Symbol	Parameter	V_{IN}	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	5V	I _{OUT} =10mA	2.94	3.00	3.06	V
I _{OUT}	Output Current	5V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	5V	$1\text{mA} \leqslant I_{\text{OUT}} \leqslant 20\text{mA}$	-	20	100	mV
V_{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA	-	30	-	mV
I _{SS}	Current Consumption	5V	No load	-	2.5	3	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	-	$4V \leqslant V_{IN} \leqslant 16V$ $I_{OUT} = 1 \text{ mA}$	-	0.02	-	% / √
V_{IN}	Input Voltage	-	-	1		15	V
$rac{\Delta V_{\scriptscriptstyle OUT}}{\Delta Ta}$	Temperature Coefficient	5V	I _{OUT} =10mA 0℃ <ta<70℃< td=""><td></td><td>± 0.45</td><td>-</td><td>mV/℃</td></ta<70℃<>		± 0.45	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

H7133-1, +3.3V Output Type

Symbol	Parameter	Test Con	Test Conditions		Тур.	Max.	Unit
Symbol	i arameter	V _{IN}	Conditions	Min.	τyp.	iviax.	Offic
V _{OUT}	Output Voltage	5.3V	I _{OUT} =10mA	3.234	3.300	3.366	V
l _{out}	Output Current	5.3V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	5.3V	1mA≤I _{OUT} ≤20mA	-	40	100	mV
V_{DIF}	Voltage Drop(Note)	ı	I _{OUT} =1mA	-	30	ı	mV
I _{SS}	Current Consumption	5.3V	No load	-	2.5	3	μА
$\frac{\Delta V_{\scriptscriptstyle OUT}}{\Delta V_{\scriptscriptstyle IN} \times V_{\scriptscriptstyle OUT}}$	Line Regulation	-	$4.5V \leq V_{IN} \leq 16V$ $I_{OUT} = 1 \text{ mA}$	-	0.06	-	%/V
V_{IN}	Input Voltage	-	-	-	-	15	٧
$rac{\Delta V_{\scriptscriptstyle OUT}}{\Delta Ta}$	Temperature Coefficient	5.3V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>-</td><td>±0.5</td><td>-</td><td>mV/℃</td></ta<70°c<>	-	±0.5	-	mV/℃

H7136-1, +3.6V Output Type

Cymhal	Doromotor	Т	est Conditions	Min.	Turn	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIII I.	Тур.	IVIAX.	Offic
V_{OUT}	Output Voltage	5.6V	I _{OUT} =10mA	3.528	3.600	3.672	V
l _{out}	Output Current	5.6V	-	30	50	-	mA
ΔV_{OUT}	Load Regulation	5.6V	1mA≤I _{OUT} ≤20mA	-	30	100	mV
V_{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA	-	25	-	mV
I _{SS}	Current Consumption	5.6V	No load	-	2.5	3.0	μА
$\frac{\Delta V_{\scriptscriptstyle OUT}}{\Delta V_{\scriptscriptstyle IN} \times V_{\scriptscriptstyle OUT}}$	Line Regulation	-	$4.6V \leq V_{IN} \leq 16V$ $I_{OUT} = 1 \text{ mA}$	-	0.02	-	%/V
V_{IN}	Input Voltage	-	-	-	-	15	V
$\frac{\Delta V_{out}}{\Delta Ta}$	Temperature Coefficient	5.6V	I _{OUT} =10mA 0℃ <ta<70℃< td=""><td></td><td>±0.6</td><td>-</td><td>mV/℃</td></ta<70℃<>		±0.6	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

H7144-1, +4.4V Output Type

Symbol	Parameter	T	est Conditions	Min.	Тур.	Max.	Unit
Cymbol	raramotor	VIN	Conditions		1 9 %	Wax.	OTIL
V_{OUT}	Output Voltage	6.4V	I _{OUT} =10mA	4.312	4.400	4.488	V
I _{OUT}	Output Current	6.4V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	6.4V	1mA≤I _{OUT} ≤20mA	-	20	100	mV
V _{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA	-	20	-	mV
I _{SS}	Current Consumption	6.4V	No load	-	2.5	3.0	μА
$\frac{\Delta V_{\scriptscriptstyle OUT}}{\Delta V_{\scriptscriptstyle IN} \times V_{\scriptscriptstyle OUT}}$	Line Regulation	-	5.4V≤V _{IN} ≤16V I _{OUT} =1mA	-	0.02	-	%/V
V _{IN}	Input Voltage	-	-	-	-	15	V
$rac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	6.4V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>-</td><td>±0.7</td><td>-</td><td>mV/℃</td></ta<70°c<>	-	±0.7	-	mV/℃

50mA Low Power LDO

H7150-1, +5.0V Output Type

Symbol	Parameter	Test Conditions		Min	T	Mov	Lloit
		V _{IN}	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	7V	I _{OUT} =10mA	4.9	5.00	5.1	V
l _{out}	Output Current	7V	-	30	50	-	mA
Δ V _{OUT}	Load Regulation	7V	1mA≤I _{OUT} ≤20mA	-	25	100	mV
V _{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA	-	20	-	mV
I _{SS}	Current Consumption	7V	No load	-	2.5	3.0	μА
$\frac{\Delta V_{\scriptscriptstyle OUT}}{\Delta V_{\scriptscriptstyle IN} \times V_{\scriptscriptstyle OUT}}$	Line Regulation	-	6V≤V _{IN} ≤16V I _{OUT} =1mA	-	0.04	-	%/V
V _{IN}	Input Voltage	-	-		1	15	V
$rac{\Delta V_{\scriptscriptstyle OUT}}{\Delta Ta}$	Temperature Coefficient	7V	I _{OUT} =10mA 0℃ <ta<70℃< td=""><td></td><td>± 0.75</td><td>-</td><td>mV/℃</td></ta<70℃<>		± 0.75	-	mV/℃

Typical Performance Characteristics

(1) Output Voltage vs Input voltage

(2) Output Voltage vs. Output Current

(3) Input Transient Response

(4) Output Voltage vs. Ambient Temperature

Application Circuits

Basic Circuits

High Output Current Positive Voltage Regulator

Short-Circuit Protection by Tr1

Circuit for Increasing Output Voltage

Circuit for Increasing Output Voltage

Constant Current Regulator

$$I_{OUT} = \frac{V_{XX}}{R_A} + I_{SS}$$

Dual Supply

Package Information 3-pin TO92 Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	3.300	3.700	0.130	0.146	
A1	1.100	1.400	0.043	0.055	
b	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.300	4.700	0.169	0.185	
D1	3.430		0.135		
E	4.300	4.700	0.169	0.185	
е	1.270 TYP.		0.050 TYP.		
e1	2.440	2.640	0.096	0.104	
L	14.100	14.500	0.555	0.571	
Ф		1.600		0.063	
h	0.000	0.380	0.000	0.015	

3-pin SOT89 Outline Dimensions

Cumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	REF.	0.061 REF.		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		0.118 TYP.		
L	0.900	1.200	0.035	0.047	

3-pin SOT23 Outline Dimensions

Cumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	