

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(1) – BIOINORGANIC

7. Iron – protoporphyrin is a :
- Heme group
 - Non-heme group
 - Normal metallo porphyrin like any other
 - None
8. The oxidation state of Fe in iron-protoporphyrin-IX is:
- + 3
 - + 2
 - + 4
 - None
9. Active site of hemoglobin is:
- Fe^{2+}
 - Fe^{3+}
 - Fe^{4+}
 - None
10. Role of hemoglobin is to:
- Store O_2
 - Transport O_2 in vertebrates and other animals (from lungs or gills to muscle tissues)
 - Electron transfer
 - O_2 storage in some invertebrates arthropods.

ANSWER KEY

1.b	6.d	11.d
2.a	7.a	12.b
3.c	8.b	13.a
4.b	9.a	14.d
5.c	10.b	15.b

HINTS & SOLUTIONS

1.Sol. Number of double bonds in porphin molecule are 11.

Porphin Molecule

So, correct option is (b)

2.Sol.

Porphin molecule is (planar)

It is following huckel rule $\rightarrow 4n + 2$

Hence, Aromatic

So, correct option is (a)

3.Sol. These are macrocyclic compounds in which a metal is coordinated to four N-atoms in a square plane of porphyrin ring.

So, correct option is (c)

4.Sol. Porphyrin ring \rightarrow Macrocylic ligand

Metalloporphyrin \rightarrow Macrocylic complex

Macrocylic ligand has a planar conjugated system of π -bonds around its perimeter, therefore it is more rigid Macrocylic ligand than crown ethers.

Hence, the ligand is more selective for certain metal atoms as compare to crown ethers.

So, correct option is (b)

In metalloporphyrin complexes the inner hydrogen atoms are replaced by dipositive metal ions.

The porphyrin rings are rigid because of the delocalization of the π -electrons

Size of the cavity in the centre of porphyrin ring is ideal for accommodation of metal ions of 1st transition series.

If the metal ion is too small such as Ni^{2+} the ring rearrange itself to give closer approach to metal ion.

If the metal ion is too large, it can not fit into the cavity and occupies position above the ring.

So, correct option is (c)

4-pyrrole rings

2 vinyl (7 and 12)

4 methyl (3, 8, 13 and 17)

20 carbon atoms

20-carboxyethyl (2 and 18)

So, correct option is (d)

7.Sol. Iron-proto-porphyrin is a derivative of porphyrin.

Iron as a metal with porphyrin is a heme group (prosthetic group)

Prosthetic means – a non-protein group forming part of or combined with protein

So, correct option is (a)

Fe is in +2 oxidation state

So, correct option is (b)

9.Sol. Whatever reaction takes place, will be occurred at Fe^{2+}

So, correct option is (a)

10.Sol. Hemoglobin picks O_2 from lungs or gills and releases in muscle tissues.

So, correct option is (b)

11.Sol. Coordination number 5

So, correct option is (d)

12.Sol. Bridge contains methine

So, correct option is (b)

13.Sol. Double bond will give electron in antibonding orbital of π .

Hence colour generates

So, correct option is (a)

14.Sol. So, correct option is (d)

15 Sol. so correct option is (b)

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(2) – BIOINORGANIC

1. How many α and β globin proteins are present in Hemoglobin.
(a) 2α and 2β (b) 4α and 2β (c) 2α and 4β (d) 4α and 4β
2. In deoxy hemoglobin Fe^{2+} is :
(a) In plane (b) Out of plane (c) Low spin (d) None
3. Myoglobin function is to:
(a) Transfer e^- (b) Stores O_2 in muscle tissues
(c) Binds H^+ and HCO_3^- (d) Transfer oxygen to lungs
4. O_2 binds Hb in which state
(a) Triplet (b) Singlet and Triplet both
(c) Singlet (d) None
- 5.. The Cooperative binding of O_2 in hemoglobin is due to
(a) a decrease in size of iron followed by changes in the protein conformation.
(b) an increase in size of iron followed by changes in the protein conformation.
(c) A decrease in size of iron that is not accompanied by the protein conformational changes.
(d) An increase in size of iron that is not accompanied by the protein conformational changes.
- 6.. In deoxyhemoglobin Fe is in _____ spin. While in oxyhemoglobin Fe is in _____ spin.
(a) High and low respectively (b) Low and high respectively
(c) High and high respectively (d) Low and low respectively
7. Under physiological condition, oxygen is binding to hemoglobin and myoglobin, the binding curve and its pH dependence, respectively are
(a) Sigmoidal and pH dependent; hyperbolic and pH independent.
(b) Sigmoidal and pH independent; hyperbolic and pH dependent.
(c) Hyperbolic and pH independent; sigmoidal and pH dependent.
(d) Hyperbolic and pH dependent; sigmoidal and pH independent.

ANSWER KEY

- | | | |
|------|-------|-------|
| 1. a | 6. a | 11. a |
| 2. b | 7. a | 12. c |
| 3. b | 8. a | 13. a |
| 4. c | 9. a | 14. a |
| 5. a | 10. a | 15. a |

HINTS & SOLUTIONS

1.Sol. In hemoglobin two types of globin proteins.

→ α and β are 2α and 2β

i.e. Hb is a tetramer of 2 different subunits.

So, correct option is (a)

protein

2.Sol.

$$\text{Fe} = 3d^6 4s^2$$

$$\text{Fe}^{2+} = 3d^6 \text{ (high spin)}$$

$$= t_{2g}^4 e_g^2$$

This electron is pointing towards the lone pair of nitrogen

Due to presence of this electron in the $d_{x^2-y^2}$ repulsion will occur with N-lone pair of porphyrin ring and Fe(II) size become too big and will become difficult to get fit in porphyrin ring.

As the structure is rigid, hence Fe(II) goes out of plane towards proximal protein.

So, correct option is (b)

3.Sol. Stores O_2 in muscle tissues and releases when required during activity for decomposition of glucose.

So, correct option is (b)

4.Sol. O_2 has π bond in singlet ($O = O$)

If O_2 is in singlet than it act as strong field. And Fe has to come in low spin which is possible only with singlet and here after binding O_2 with Fe angle formed in 125° that is it is bent and oxygen is sp^2 hybridized.

($\cdot O - O \cdot$) triplet

- O has $7 e^-$
- sp^3 hybridized
- has covalent bond
- O_2 is not strong field
- Free to move
- will not be present in bent form

$$\text{Triplet} = s = \frac{1}{2} + \frac{1}{2} = 1; s = 2s + 1 \Rightarrow 3$$

$$\text{Singlet} = s = \frac{1}{2} \Rightarrow s = 2s + 1 \Rightarrow 1$$

So, correct option is (c)

5.Sol. When O_2 tries to bind with Fe it becomes low spin from high spin and will become planar.

- Here no repulsion between e^\ominus in $d_{x^2-y^2}$ and nitrogen l.p. of porphyrin ring.
 - Hence Fe will remain in plane.
- So, correct option is (a)

Correct option is (a)

- for 'Hb':

$$f = \frac{kpO_2^n}{1 + kpO_2^n} \rightarrow (\text{S type}) \text{ or sigmoidal curve}$$

$n = \text{hill constant for Hb}$

$$f = \frac{kpO_2}{1 + kpO_2} \rightarrow \text{hyperbolic} \rightarrow \text{for Mb}$$

Correct option is (a)

9.Sol. In the absence of globin protein

Correct option is (a)

10.Sol. Globin protein surround the heme group in such a way that it prevents its oxidation and prevents formation of Hematin.

So, correct option is (a)

11.Sol. High and low partial pressure of O_2

So, correct option is (a)

P-stands for porphyrin ring

Affinity of Co toward Fe^{II} is more than O₂ but O₂ forms H-bond with distal protein hence its affinity increases.

So, correct option is (c)

13.Sol. pH dependent is correct option

The phenomenon by which the addition of one O₂ molecule to hemoglobin molecule increase the rate addition of other O₂ is called co-operativity effect.

So, correct option is (a)

14.Sol. $Hb + 4O_2 \rightleftharpoons HB(O_2)_4$

$$k = \frac{[Hb(O_2)]}{[Hb][pO_2^n]}$$

or

$$k = \frac{f}{(1-f)pO_2^n}$$

or
$$f = \frac{kpO_2^n}{1+kpO_2^n}$$
 → Equation for sigmoidal curve (s-type)

n = Hill constant – under physiological conditions

$$(pH = 7.4), n = 2.8$$

So, correct option is (a)

15.Sol Because during the conversion hemoglobin becomes distorted and because of this deformed shape of hemoglobin, red blood cells becomes sickle shaped and cause Sickle Cell Anemia (SCA).

So, correct option is (a)

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(3) – BIOINORGANIC

1. What conversions in hemoglobin takes place that causes sickle cell anemia?
 - (a) Conversion of hemoglobin into oxyhemoglobin
 - (b) Through oxygen transport in hemoglobin
 - (c) Conversion of hydrophilic glutamic acid into hydrophobic valine.
 - (d) None
2. Glutamic acid is replaced by what that causes sickle cell anemia?
 - (a) Arginine
 - (b) Asparagine
 - (c) Cysteine
 - (d) Valine
3. Which is hydrophilic or hydrophobic in hemoglobin.
 - (a) Valine is hydrophilic
 - (b) Glutamic acid is hydrophilic
 - (c) Glutamic acid is hydrophobic
 - (d) Both Glutamic and Valine acid are hydrophobic
4. What is the oxidation number of iron in methemoglobin:
 - (a) Fe^{+2}
 - (b) Fe^{+3}
 - (c) Fe^{+4}
 - (d) Fe°
5. Methemoglobin:
 - (a) Help in oxygen transfer
 - (b) prevents oxygen transfer
 - (c) contain Fe^{+2} in the heme group
 - (d) None
6. What is the use of methemoglobin reductase?
 - (a) To convert methemoglobin in our required oxyhemoglobin
 - (b) It is used to produce methemoglobin
 - (c) It converts of Fe^{+2} to Fe^{+3}
 - (d) It is a source of H^+

ANSWER KEY

1.c	6.a	11.b
2.d	7.c	12.a
3.b	8.a	13.a
4.b	9.b	14.b
5.b	10.a	15.c

HINTS & SOLUTIONS

- 1.Sol. This is due to the mutant form of hemoglobin, where hydrophilic glutamic acid in one β -chain of globin protein is replaced by hydrophobic valine which reduces the solubility of hemoglobin and prevents oxygen transport. During this conversion hemoglobin polymerizes and becomes distorted and red blood cells becomes sickle shaped, causes sickle cell anemia.
So, correct option is (c)
- 2.Sol. Glutamic acid in one of globin proteins is replaced by hydrophobic valine which reduces the solubility of hemoglobin and prevents oxygen transport
So, correct option is (d)

- 4.Sol. Methemoglobin is a metalloprotein in which the iron in the heme group is in the Fe^{3+} state, not in the Fe^{2+} of normal hemoglobin
So, correct option is (b)
- 5.Sol. So, correct option is (b)
The size of Fe^{3+} ion is so small that it can fit into porphyrin ring of hemoglobin without binding oxygen and therefore, it prevents transfer of dioxygen.
- 6.Sol. It is a NADH – dependent enzyme that converts methemoglobin back to hemoglobin.

So, correct option is (c)

- 7.Sol. Higher level of methemoglobin causes a disease called as methemoglobinemia which is a disorder.
So, correct option is (c)

- 8.Sol. The binding of dioxygen to methemoglobin results in increased affinity of dioxygen to other three heme subunits that still contain Fe^{2+} ions within the same hemoglobin molecule.

So, correct option is (a)

- 9.Sol. During the formation of oxyhemoglobin from hemoglobin and dioxygen, one electron is partially transferred from Fe^{2+} of heme to the bound oxygen forming a ferric superoxide complex anion.

So, correct option is (b)

- 10.Sol. The cooperative effect is pH dependent. The affinity of hemoglobin for dioxygen decreases with decrease in pH. This is called bohr effect.

\therefore answer is dependent.

Correct option is (a)

- 11.Sol. The CO_2 released in muscle tissues is the end product of breakdown of glucose. CO_2 being acidic, decreases the pH in muscle tissues and lowers the pH.

The greater the muscular activity the more will be release of CO_2 .

\therefore In the muscles tissues, there is low PO_2 , low pH and high pCO_2 .

- 12.Sol. Fe^{+2} is the active site in deoxyhemerythrin.

- 13.Sol. The function of Hemerythrin is O_2 transport in Marine invertibrates.

One molecule contains 8 subunits.

- 14.Sol. Hemerythrin has 2 iron centres

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(4) – BIOINORGANIC

10. In oxyhemocyanin:
- There are 2Cu(II) and 2 oxygens binded with only one Cu(II)
 - There are 2Cu(II) and 2 oxygens binded in bridge form with both Cu(II)
 - There is only 1 Cu(II) and 2 oxygens binded with the Cu(II)
 - There are two Cu(I) and 2 oxygens binded in bridged form with both
11. In plastocyanin how many histidine groups are present in oxidised form:
- 2
 - 3
 - 4
 - 1
12. In reduced form of plastocyanin how many histidine groups are present?
- 2
 - 3
 - 4
 - 1
13. The active site in plastocyanin in reduced form is
- Cu(II)
 - Cu(I)
 - Zn(II)
 - Zn(I)
14. The active site in plastocyanin in oxidized form is:
- Cu(II)
 - Cu(I)
 - Zn(II)
 - Zn(I)
15. In stellocyanin the groups attached to Cu(I) in oxidized and reduced form are:
- 1O of (serine), 2N of (His), 1S of (Cys)
 - 1O of (serine), 2N of (His), 1S of (Cys), 1S(Meth)
 - 1S of (Meth), 1S of (Cys), 2N of (His)
 - 1O of (Gly), 2N of (His), 1S of (Meth)

ANSWER KEY

1.a	6.a	11.a
2.a	7.d	12.a
3.b	8.a	13.b
4.a	9.a	14.a
5.c	10.b	15.a

HINTS & SOLUTIONS

2.Sol. In deoxyhemerythrin both have +2 O.S.

6.Sol. Weak and strong respectively.

7.Sol. $\nu_{\text{O}-\text{O}}$ stretching frequency for Hemocyanin is 750 cm^{-1} .

Correct option is (d)

8.Sol. $\text{Cu(I)} \rightarrow 3\text{d}^{10} 4\text{s}^0$ in deoxyhemocyanin is colourless and diamagnetic.

→ Here no d-d transition

→ No LMCT takes place

9.Sol. The peroxide (O_2^{2-}) ion bridges to two Cu^{2+} ion in the $\mu-\eta^2 : \eta^2$ mode.

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(5) – BIOINORGANIC

1. Oxidized form of stellocyanin is:
(a) Paramagnetic, Distorted tetrahedral (b) Diamagnetic, Tetrahedral
(c) Diamagnetic, Bipyramidal (d) Paramagnetic, Tetrahedral
2. In Azurin the colour in oxidized form is
(a) Colourless (b) Red colour (c) Blue colour (d) None
3. How many photosystems are present in chloroplasts:
(a) 2 (b) 1 (c) 4 (d) 5
4. Ps-II and Ps-I absorbs light radiation of:
(a) 680 nm and 700 nm respectively (b) 700 nm and 680 nm respectively
(c) 900 nm and 680 nm respectively (d) 680 nm and 900 nm respectively
5. In metalloenzyme the protein part is called as an _____ and a metal ion or complex metal ion is called a _____ group.
(a) apoenzyme, prosthetic (b) prosthetic, apoenzyme
(c) coenzyme, prosthetic (d) prosthetic, coenzyme
6. Both the _____ group and _____ respectively are sometimes called co-factors.
(a) Prosthetic group, coenzyme (b) conenzyme, prosthetic
(c) apoenzyme, coenzyme (d) coenzyme apoenzyme
7. Active site in Zinc Enzyme carbonic anhydrase.
(a) OH₂ (b) Zn²⁺ (c) Zn⁺ (d) OH
8. Function of carbonic anhydrase is :
(a) Catalyse the conversion of CO₂ to H⁺ and HCO₃[⊖]
(b) Transport of CO₂ to lungs.

- (c) Catalyse the hydrolysis terminal peptide linkage of proteins.
(d) Catalyses the conversion of ethanol to acetaldehyde.

9. Water molecule bond to Zn^{2+} in carbonic anhydrase.
(a) basic (b) Amphoteric (c) acidic (d) Neutral

10. Function of Carboxypeptidase-A is
(a) Catalyse the conversion of CO_2 to H^+ and HCO_3^\ominus
(b) Transport of CO_2 to lungs
(c) Catalyse the hydrolysis terminal peptide linkage of proteins
(d) Catalyses the conversion of ethanol to acetaldehyde

11. How many amino acids are present in a protein chain of carboxy peptidase A ?
(a) 307 amino acids (b) 207 (c) 107 (d) 17

12. Chlorophylls (green colour) absorbs light radiation, they are called
(a) synthetic pigments (b) organic pigments (c) antenna pigments (d) Inorganic pigments

13. The part of chlorophyll that absorbs sunlight is
(a) photoreceptor (b) Porphyrin head (c) Stroma (d) Lumen

14. Cluster of chlorophylls are known as :-
(a) Photosystem (PS) (b) Lumen (c) Stroma
(d) Photoreceptor

15. Photosystem II is called
(a) PS-II₇₀₀ (b) PS-II₆₈₀ (c) PS-II₅₄₀ (d) PS-II₉₀₀

ANSWER KEY

1.a	6.a	11. a
2.c	7.d	12.c
3.a	8. a	13. a
4.a	9. c	14. a
5.a	10. c	15. b

HINTS & SOLUTIONS

- 1.Sol. The oxidised form of stellocyanin is paramagnetic and distorted or flattered tetrahedral. Due to John Tellor distortion.
- 2.Sol. Oxidized form of Azurin is blue in colour due to e^- transfer from S(cys) to Cu^{2+} .

- 3.Sol. Two photosystems are present in chloroplasts.
(Ps – I), (Ps – II)

- 4.Sol. Ps-I absorbs light radiation of 700 nm

\therefore Ps-I is called Ps_{700}

Ps-II absorbs light radiation of 680 nm

\therefore Ps-II is called Ps_{680}

- 5.Sol. Heme is prosthetic group in hemoglobin.

- 6.Sol. Prosthetic group and coenzyme are also known as co-factors.

- 7.Sol. OH is the active site of carbonic anhydrase.

Zn^{2+} makes OH_2 a good acid.

Option (d) is correct.

- 8.Sol. The function of carbonic anhydrase is to catalyse the conversion of CO_2 to H^+ and HCO_3^\ominus during the transport of CO_2 to lungs by hemoglobin.

Option (a) is correct.

→ Zn²⁺ has high polarizing power and low pKa, of OH₂

→ Water molecule bound to Zn²⁺ is Acidic

→ Aqua complex of metal cations are acidic

→ except that of alkali metal cations as they are neutral.

Option (c) is correct.

10.Sol. Function of carboxy-peptidase A is to catalyse the hydrolysis terminal peptide linkage of proteins.

Option (c) is correct.

11.Sol. The enzyme consists of a single protein chain of 307 amino acids and one Zn²⁺ ion.

Option (a) is correct.

12.Sol. Since Chlorophylls (green color) absorbs light radiation, they are called antenna pigments.

13. Sol. Option (a) is correct.

Photoreceptor of chlorophylls absorbs sunlight.

14.Sol. Cluster of chlorophylls is known as photosystems.

Option (a) is correct.

15.Sol. Photosystem-II absorbs light radiation of 680 nm,

∴ PS-II is called PS₆₈₀

Option (b) is correct.

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(6) – BIOINORGANIC

1. Photosystem-I releases e^\ominus as :-
 - (a) PS-I \rightarrow Ferridoxin NADP \rightarrow Ferrodoxin reductase
 - (b) PS-I \rightarrow Ferridoxin \rightarrow Ferrodoxin NADP reductase
 - (c) Ferridoxin \rightarrow Ferridoxin \rightarrow PS-I NADP reductase
 - (d) Ferridoxin NADP \rightarrow Ferridoxin \rightarrow PS-I reductase
2. Porphyrin ring with one reduced double bond in chlorophylls is called
 - (a) chlorin ring
 - (b) porphin ring
 - (c) Imidazole ring
 - (d) pyrrole ring
3. Active site of chlorophyll
 - (a) Mg^+
 - (b) Mg^{2+}
 - (c) Cu^+
 - (d) Cu^{2+}
4. Colour of chlorophyll
 - (a) Green due to $\pi - \sigma^*$ charge transfer
 - (b) Green due to $\pi - \pi^*$ charge transfer
 - (c) Yellow due to $\pi - \pi^*$ charge transfer
 - (d) Red due to $\pi - \pi_-^*$ charge transfer
5. Cytochromes are:
 - (a) Heme iron proteins
 - (b) Non-heme proteins
 - (c) Copper carrying proteins
 - (d) Zinc carrying enzymes
6. In the following structure cytochrome a (cyt a) will be when R_1 and R_2 are:

- (a) $R_1 \Rightarrow CH = CH_2$
 $R_2 \Rightarrow C_{18}H_{30} OH$
- (b) $R_1 = R_2 = CH = CH_2$
- (c) $R_1 = R_2 = CH(CH_3)S - \text{Protein}$
- (d) $R_1 = R_2 = C_{18}H_{30} OH$
7. Structure of cytochrome c (cyt c) is when R_1 and R_2 is:

- (a) $R_1 \Rightarrow CH = CH_2$
 $R_2 \Rightarrow C_{18}H_{30} OH$
- (b) $R_1 = R_2 \Rightarrow CH = CH_2$
- (c) $R_1 = R_2 \Rightarrow CH(CH_3) S - \text{protein}$
- (d) $R_1 = R_2 = C_{18}H_{30} OH$

- 8 The order of electron flow is:

 - (a) cyt b → cyt c → cyt a → O₂
 - (b) cyt a → cyt b → cyt c → O₂
 - (c) cyt c → cyt a → cyt b → O₂
 - (d) cyt b → cyt c → cyt a → O₂

9. Size of Bisphoglycerate is around

 - (a) ~ 5.0 Å
 - (b) ~ 20 Å
 - (c) ~ 9 Å
 - (d) ~ 15 Å

10 Iron sulphur protein has active site

 - (a) Fe^{II}, Fe^{III} both
 - (b) Fe^{II}
 - (c) Fe^{III}
 - (d) Fe^{IV}

11 Function of Iron-sulphur proteins

 - (a) electron capture
 - (b) electron storage
 - (c) electron transfer
 - (d) oxygen transfer

12 In Rubredoxin:

 - (a) All sulphurs are non-labile
 - (b) All sulphurs are labile
 - (c) only 2 sulphurs are labile
 - (d) only 2 sulphurs are non-labile

13. In the structure of 2Fe – 2S which sulphurs are labile

14. In oxidised form of Fe_2S_2 ferridoxin the oxidation state of Fe is:
 (a) Fe^{II} both (b) Fe^{II} and Fe^{III} (c) Fe^{III} both (d) Fe^{IV} both

15. In $3\text{Fe} - 4\text{S}$ Ferridoxin there are
 (a) 3 labile sulphur (b) 4 labile sulphur
 (c) 2 non-labile sulphur (d) No labile sulphur present

ANSWERS KEY

- | | | |
|------|------|------|
| 1. b | 6. a | 11.c |
| 2. a | 7. c | 12.a |
| 3. b | 8. a | 13.b |
| 4. b | 9. c | 14.c |
| 5. a | 10.a | 15.b |

HINTS & SOLUTIONS

1.sol: e^\ominus transfers from PSI \rightarrow Ferridoxin \rightarrow Ferridoxin NADP Reductase

2Sol. Porphyrin ring with one reduced double bond in chlorophyll is called chlorin ring.
Electrons are absorbed by this chlorin ring.
Option (a) is correct.

3Sol. Mg^{2+} is the active site of chlorophyll.

X = CH_3

Y = $COCH_3$

Z = Single bond

Option (b) is correct.

4Sol. Option (b) is correct.
due to intraligand $\pi - \pi^*$ charge transfer colour of chlorophyll is green

5.Sol. Cytochromes are heme iron proteins

Correct option is (a)

6.Sol. Cyt a or Heme a structure is

When $R_1 \Rightarrow CH = CH_2$ and $R_2 = C_{18}H_{30}OH$

- 7.Sol. When $R_1 = R_2 \Rightarrow CH(CH_3)S$ – protein
than it is cyt c or Heme C.

- 8Sol. The correct order of electron transfer is cyt b \rightarrow cyt c \rightarrow cyt a $\rightarrow O_2$.

As the reduction potentials for cytochromes increase in the order : cyt b (0.03 r), cyt c (0.26 v), cyt a (10.4 v)

- 9Sol. Option (c) is correct.

Size of biophosphoglycerate in $\sim 9 \text{ \AA}$.

- 10Sol. Fe^{II} and Fe^{III} both are active sites in Iron-sulphur proteins

In reduced form it exists as \rightarrow Fe^{II}

In oxidised form it exists as \rightarrow Fe^{III}

- 11Sol. Iron-sulphur protein function is to transfer the electron.

Correct option is (a)

- 13Sol. Labile sulphur is also known as inorganic sulphur (S^{2-}), S_3 and S_4 are labile.

15Sol. In 3Fe – 4S ferridoxin. There are 4 labile sulphur (S^{2-}) and three non-labile sulphur

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(7) – BIOINORGANIC

- (a) Haemoglobin (b) Chlorophyll (c) Cytochromes (d) Hemerythrin
- 9 Which of the following iron-protein is not present in animals:
 (a) Haemoglobin (b) Cytochromes (c) Rubredoxin (d) Myoglobin
- 10 Coordination of Fe atom in deoxyhaemoglobin:
 (a) Octahedral (b) Square planar (c) Square pyramidal (d) Tetrahedral
- 11 Deoxy and oxy-haemoglobin respectively called as:
 (a) Relaxed and Tensed state (b) Relaxed and Relaxed state
 (c) Tensed and Tensed state (d) Tensed and Relaxed state
- 12 Oxidation state of iron in hematin and hematin also k/a:
 (a) Fe(II) and μ -oxo dimer (b) Fe(II) and μ -peroxodimer
 (c) Fe(III) and μ -oxo dimer (d) Fe(III) and μ -peroxodimer
13. Oxygen binds in myoglobin in:
 (a) Peroxide form and O_2^- (b) Superoxide form and O_2^-
 (c) Superoxid form and O_2^{2-} (d) Peroxide form and O_2^{2-}
14. Colour of blood without haemoglobin:
 (a) Red colour (b) Blue colour
 (c) Colourless or different colour (d) Other characteristic colour
15. Curve of Hb and Mb for partial pressure of O_2 Vs percentage saturation with O_2 respectively:
 (a) Sigmoidal and Hyperbolic (b) Hyperbolic and Sigmoidal
 (c) Sigmoidal for both (d) Straight line for both

ANSWERS KEY

- | | | |
|-----|------|------|
| 1.a | 6.b | 11.d |
| 2.c | 7.b | 12.c |
| 3.a | 8.d | 13.b |
| 4.c | 9.c | 14.c |
| 5.a | 10.c | 15.a |

HINTS & SOLUTIONS

1Sol. The oxidised form of $3\text{Fe} - 4\text{S}$

Ferridoxin has all three Fe in + 3 O.S

2Sol.

Four \rightarrow Iron
 Oxidized form $\rightarrow 2\text{Fe}^{\text{III}} \cdot 2\text{Fe}^{\text{II}}$
 Correct option is (c)

3Sol.

Four \rightarrow Iron
 Four \rightarrow Labile sulphur
 Four \rightarrow Non-labile sulphur

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

DPP-(8) – BIOINORGANIC

1. Oxidised and Reduced form of 2F3 – 25 ferridoxin are:
- (a) diamagnetic, diamagnetic respectively (b) Pramagnetic, diamagnetic respectively
(c) diamagnetic, paramagnetic respectively (d) Pramagnetic, paramagnetic respectively
2. Superoxide dismutase contains the metal ions:
- (a) Zn (II) and Ni (II) (b) Cul (II) and Zn (II) (c) Ni (II) and Co (III) (d) Cu (II) and Fe (III)
3. Geometry present along Cu^{II} and Zn^{II} in Cu – Zn Superoxide dismutase:
- (a) square Pyramidal, Tetrahedral respectively (b) Tetrahedral and Square Pyramidal respectively
(c) Trigonal Bipyramidal and Tetrahedral. (d) Trigonal Bipyramidal and octahedral.
4. Cu – Zn_{SOD} and Mn_{SOD} and Fe_{SOD} is present respectively in:
- (a) Humans, Bacteria (b) Fishes, Humans (c) Bacteria, Fishes (d) Both in Humans
5. In Bacterial Ruberdoxin, the number of from Atoms, sulphur Bridges and cysteine ligands are:
- | Fe atom | Sulphur Bridge | Cysteine |
|---------|----------------|----------|
| (a) 4 | 4 | 4 |
| (b) 2 | 2 | 4 |
| (c) 2 | 2 | 2 |
| (d) 1 | 0 | 4 |
6. Zinc metal makes the H₂O a good
- (a) Acid (b) Base (c) Complex (d) Active site by loss of H⁺
7. With respect to enzyme the mechanism of carbonic anhydrase enzyme is:
- (a) Electrophillic addition (b) Nucleophilic addition
(c) Substitution (d) Elimination addition
8. Function of carboxy-peptidase enzyme is to do
- (a) hydrolysis of peptide bond through N-terminal
(b) hydrolysis of peptide bond through C-terminal
(c) catalyse the hydration of CO₂ and dehydration of carbonic acid (H₂CO₃)
(d) catalyse the conversion of alcohol to aldehyde.

ANSWERS KEY

- | | | |
|------|-------|-------|
| 1. c | 6. b | 11. c |
| 2. b | 7. b | 12.c |
| 3. a | 8. b | 13.c |
| 4. a | 9. a | 14.b |
| 5. d | 10. a | 15.a |

HINTS & SOLUTIONS

1.Sol. option (c) is correct.

2 Sol. option (b) is correct.

3Sol. option (a) is correct.

square pyramidal and Tetrahedral geometry of Cu^{III} and Zn^{II} respectively.

4Sol. option (a) is correct.

5Sol. option (d) is correct.

6Sol. Due to Zn(II) acidic strength of OH_2 increases

7.Sol. With respect to enzyme the mechanism of carbonic anhydrase enzyme is:

Nucleophilic addition

Correct option is (b)

Correct options are (a)

$\text{R}_2 > \text{R}_1 \rightarrow$ Steric hindrance

\therefore Break or cleavage from R_2 C-terminal.

Correct option is (b)

9Sol. LADH is the enzyme where transfer of hydride and loss of proton takes place

Correct option is (a)

10Sol. Conjugation order is porphyrin > chlorin > corrin

∴ Coenzyme B₁₂ has → chlorin ring heme has → porphyrin ring

Correct option is (a)

11Sol. It is a redox protein and an electron carrier.

Cytochrome-C-oxidase

has

2Fe

2 Cu proteins

1 Fe and 1 Cu_A → involved in transfer of 1Fe and Cu_B → Reduces O₂.

Correct option is (c).

12 sol. not solution

13 Sol. → The apoferritin contains 24 protein chains each with 175 amino acids

→ These 24 protein chains form a hollow sphere with 100 Å diameter

→ This hollow sphere contains eight hydrophilic and six hydrophobic channels.

→ The iron core enters into the apoferritin through 6 hydrophobic channels.

14Sol. The pump moves sodium and potassium ions in opposite directions, Each against its concentration gradient.

3Na⁺ out and 2K⁺ inside the cell

Option (b) is correct.

15Sol. Cis platin is painless anticancer drug.

Option (a) is correct.

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET|IIT-GATE|IIT-JAM |Other Msc. Entrance

ASSIGNMENT BIOINORGATIC

MCQ (BIOINORGANIC)

1. Which enzyme converts CO_2 enters in erythrocytes to H_2CO_3 :
(a) Catalase (b) Peroxidase (c) Carbonic anhydrase (d) Carboxypeptidase
1.Answer. (c)
2. CO binding with Fe(II) centre is:
(a) 200 times stronger than O_2 binding (b) 200 times weaker than O_2 binding
(c) 100 times stronger than O_2 binding (d) 50 times weaker than O_2 binding
2.Answer. (a)
3. Function of Haemoglobin and Myoglobin respectively:
(a) Both transport oxygen (b) Both store oxygen
(c) O_2 storage and O_2 transport (d) O_2 transport and O_2 storage
3.Answer. (d)
4. Myoglobin is:
(a) tetramer (b) trimer (c) dimer (d) monomer
4.Answer. (d)
5. Met-myoglobin and Met-haemoglobin are:
(a) oxidised forms and do not have O_2 binding capacity.
(b) reduced forms and do not have O_2 binding capacity.
(c) oxidised form and have O_2 binding capacity.
(d) reduced form and have O_2 binding capacity
5.Answer. (a)
6. O_2 partial pressure for Mb in cellular tissue
(a) low (b) high (c) moderate
(d) can change depending on the outer environment.
6.Answer. (a)
7. Which of the following statement(s) is/are true?
(a) In haemoglobin the coiled protein acts like a spring.
(b) Hb and mb both contain Fe in +2 state.
(c) met-myoglobin is oxidised form of myoglobin
(d) All the above

7.Ans. (d)

8. Upon oxygenation of myoglobin:

- (a) Iron atom goes in the plane of the four porphyrin nitrogens.
- (b) Coordination number of iron goes to 5.
- (c) The Fe(II) is not present in plane of porphyrin ring.
- (d) Molecule become paramagnetic.

8Ans. (a)

9. In oxyhaemoglobin and oxymyoglobin:

- (a) Fe is in +2 oxidation state in both
- (b) Fe is in +3 oxidation state in both
- (c) Fe is in +3 and +2 oxidation state respectively
- (d) Fe is in +2 and +3 oxidation state respectively.

9.Ans. (b)

10 Myoglobin contains

- (a) two heme group
- (b) mb is a tetramer having 4 heme group
- (c) one heme group
- (d) three heme group

10.Ans. (c)

11 O₂ binding in Hb is:

- (a) pH dependent
- (b) pH independent
- (c) O₂ binds at neutral pH
- (d) None of these

11Ans. (a)

12 Hemocyanin:

- (A) has heme group
- (B) found in Mollusca and Arthropoda
- (C) found in mammals
- (D) R/a blue blood

Correct option are:

- (a) (A, B)
- (b) (B, C)
- (c) (B, D)
- (d) (C, D)

12.Ans. (c)

13 Examples of blue-copper protein:

- (A) Stellacyanin
- (B) Plastocyanin
- (C) Azurin
- (D) Rubredoxin
- (a) (A, D)
- (b) (A, B, D)
- (c) (A, B, C)
- (d) All of these

13.Ans. (c)

14 Manganese complex contains how many manganese and in which oxidation state in oxidised form?

- (a) 4; 3Mn(III) and 1Mn(IV)
- (b) 4; 3Mn(IV) and 1Mn(III)
- (c) 2; 1Mn(III) and 1Mn(IV)
- (d) 2; 1Mn(III) and 1Mn(II)

14Ans. (a)

15 What is the prosthetic group in haemoglobin?

- (a) Monomer myoglobin
- (b) Heme group

- (c) both (a) and (b) (d) None of these
15Ans. (b)

16 Ca

(a) 3 Histidine and 1 HCO₃⁻

- (a) 3 Histidine and 1 H_2O mol
 - (b) 2 Histidine, 1 Glutamine and 1 H_2O mol
 - (c) 1 Histidine, 1 Glutamine, 1 H_2O molecule and 1 aspartate
 - (d) 4 Histidine molecule

16.Ans. (a)

17 (a) Zn atom is thought to be considerably more acidic in carbonic anhydrase than in carboxypeptidase A.
(b) In atom in thought to be considerably more basic in carbonic anhydrase than in carboxypeptidase A.
(c) Both are correct.
(d) None are correct

17.Ans. (a)

18 Metal atoms present in Xanthine oxidase:

- (a) 1 Zn atom (b) 2 Zn atoms (c) 1 Zn and 1 Mo atom (d) 2 Mo atoms

18. Ans. (d)

19 Electron flow in Xanthin represented as:

- (a) Xanthine → Mo → $2\text{Fe}_2\text{S}_2$ → FAD → O_2
 (b) Xanthine → $2\text{Fe}_2\text{S}_2$ → Mo → FAD → O_2
 (c) Xanthine → FAD → Mo → $2\text{Fe}_2\text{S}_2$ → O_2
 (d) Xanthine → Mo → FAD → $2\text{Fe}_2\text{S}_2$ → O_2

19Ans. (a)

20. In metallothioneins:

- (a) 1/3rd of amino acids are cysteine residues
 - (b) None of the cysteines are linked by S-S bridges
 - (c) There are few or no histidines
 - (d) All of these

20Ans. (d)

21. Certain phosphine complexes of molybdenum and tungsten containing dinitrogen readily yield ammonia in:

- (a) acidic medium (b) basic medium (c) neutral medium (d) any medium

21 Ans. (a)

22. Strictly anaerobic, facultative aerobes and strict aerobes bacteria are respectively:

- (a) Azotobacter vinelandii; klebsiella pneumonia and rhizobium
 - (b) Clostridium pasteurianum, klebsiella pneumonia and azotobacter vinelandii
 - (c) Klebsiella pneumonia, clostridium pasteurianum and azotobacter vinerlandii
 - (d) Clostridium pasteurianum, azotobacter vinelandii and klebsiella pneumonia

22Ans. (b)

23. Transferrins of higher animals have:

- (a) Larger stability constants towards iron(III)
- (b) Antibacterial agents
- (c) Both correct (a) and (b)
- (d) Both incorrect (a) and (b)

23.Ans. (c)

24. The core of ferritin has:

- | | |
|----------------------------|------------------------------|
| (A) 8 hydrophilic channels | (B) six hydrophobic channels |
| (C) 8 hydrophobic channels | (D) six hydrophilic channels |
| (a) A, B | (b) C, D |
| (c) A, C | (d) B, D |

24Ans. (a)

25. The major component of bone tissue in the vertebrate skeleton is; $\text{Ca}_5(\text{PO}_4)_3\text{X}$ where X is

- (a) OH
- (b) NH_3
- (c) Cl
- (d) Br

25Ans. (a)

26. Which of antibiotics do not have chelating properties?

- (a) Streptomycin
- (b) Usnic acid
- (c) Aspergillic acid
- (d) None

26Ans. (d)

27. Valinomycin:

- (a) Known as ionophore antibiotics
- (b) Resemble the crown ether and cryptates
- (c) Are useless in humans because they are toxic to mammalian cells
- (d) All of these

27Ans. (d)

28. Conversion of nitrogen (N_2) to NH_3 is called.

- | | |
|-----------------------|--------------------|
| (a) Nitrogen fixation | (b) Nitrification |
| (c) denitrification | (d) Ammonification |

28Ans. a

28Sol. Nitrogen fixation

Correct option is (a)

29. Two methods for nitrogen fixation are:

- | | |
|--|--------------------------------------|
| (a) Haber process and biological process | (b) Nitrification and Ammonification |
| (c) Anammox and nitrification | (d) Haber process and nitrification |

29Ans. a

29Sol. Haber process and Biological process.

30. The bond dissociation energy of N_2 is

- (a) 945 KJ/mol
- (b) 1100 KJ/mol
- (c) 450 KJ/mol
- (d) 1500 KJ/mol

30 (a)

30Sol. The bond dissociation energy of $\text{N} \equiv \text{N}$ is 949 KJ/mol.

Option (a) is correct.

31 Haber process is :

31. (a)

31Sol. Haber process is in vitro process (outside the biological systems).

Option (a) is correct.

32 Function of transferrin is

- (a) Iron storage in bone marrow
 - (b) Iron transport from stomach to bone marrow and delivers to Ferritin
 - (c) Iron storage in liver
 - (d) electron transfer

32. (b)

32. Sol. Option (b) is correct.

33 Life of Hemoglobin is

- (a) 4 weeks (b) 8 weeks (c) 16 weeks (d) 20 weeks

33. (c)

33Sol. Life of Hemoglobin is (16 weeks)

Option (c) is correct.

34. Excess uric acid causes

- (a) Wilson's disease (b) Arthritis (c) Gout (d) Cancer

34 (c)

34Sol. Excess of uric acid causes Gout.

Option (c) is correct.

35 Active site in Urease is :

- (a) Ni^{2+} (b) Cu^{2+} (c) Fe^{2+} (d) Zn^{2+}

35. (a)

35Sol. Active site in urease is Ni^{2+} .

Option (a) is correct.

36 Function of urease is to

36. (b)

36Sol.

Carbamic acid is further hydrolysed to give carbonic acid (H_2CO_3)

Option (b) is correct.

37. How many Ni^{2+} sites are present in urease :

- | | |
|-------|--|
| (a) 2 | (b) 1 |
| (c) 3 | (d) One Ni^{2+} one Ni^+ |

37. (b)

37Sol.

Option (b) is correct.

38. The coordination no. of Ni^{2+} in urease is :

- | | | | |
|------------|------------|-------------|-------------|
| (a) 5 both | (b) 6 both | (c) 6 and 5 | (d) 4 and 5 |
|------------|------------|-------------|-------------|

38. (c)

38Sol. Coordination no. of one Ni^{2+} is 5 and other has 6.

Option (c) is correct.

39. Wilson's disease is caused due to :

- (a) Overload/excess of platin
- (b) Overload/excess of copper
- (c) Excess of ceruloplasmin
- (d) None

39. (b)

- 39Sol. Option (b) is correct.

40. Spontaneous flow of solute particle from _____ concentration to _____ concentration is called diffusion.

- (a) low, high
- (b) high, high
- (c) low, low
- (d) high, low

40. (d)

- 40Sol. Option (d) is correct.

41. The energy in sodium potassium pump is obtained from

- (a) flow of solute
- (b) Movement of ions
- (c) hydrolysis of ATP
- (d) None

41. (c)

- 41Sol. Option (c) is correct.

42. Treatment of arthritis through :

- (a) Gold drugs
- (b) copper drugs
- (c) Platin
- (d) Chelate therapy

42. (a)

- 42.Sol. Option (a) is correct.

43. The chemical shift value (δ) of $\boxed{N - H}$ in porphin molecule is :

- (a) 8.0 ppm
- (b) 4.1 ppm
- (c) -2 to -3 ppm
- (d) 6.0 ppm

43. (c)

- 43Sol. → Highly shielded proton are the protons of $\boxed{N - H}$ in porphin molecule.

→ Hence their chemical shift value (δ) is -2 to -3 ppm.

Option (c) is correct.

44. The protons of N – H in porphin are :

44. (c)

44. Sol. The 2NH protons of porphin molecule are highly shielded.

Option (c) is correct.

- 45 The chemical shift value of meso protons in porphyrin is

- (a) 8.0 ppm (b) -2 to -3 ppm (c) 6.0 ppm (d) 4.1 ppm

45. (d)

- 45Sol. Meso protons are deshielded protons. Hence 4.1 ppm is the chemical shift value.

Option (d) is correct.

- 46 The β -H (β -protons) of porphyrin ring has the chemical shift value of

- (a) 8.0 ppm (b) -2 to -3 ppm (c) 6.0 ppm (d) 4.1 ppm

46. (a)

- 46Sol. 8.0 ppm is the value of chemical shift of β -protons in porphyrin ring as they are highly deshielded protons.

Option (a) is correct.

- 47 Types of transitions possible in porphyrin ring :

- (a) $\sigma - \sigma^*$ transition, $n - \pi^*$ transition (b) $\pi - \pi^*$ transition, $n - \pi^*$ transition
(c) $\sigma - \sigma^*$ transition, $\pi - \pi^*$ transition (d) $n - \sigma^*$ transition, $\pi - \pi^*$ transition

47. (b)

- 47Sol. $\pi - \pi^*$ transition and $n - \pi^*$ transition.

∴ Lone pairs are present, therefore $n \rightarrow \pi^*$ and

π – bonds present.

$\therefore \pi - \pi^*$ transitions.

Option (b) is correct.

- 48 Porphyrin Ring is deeply coloured due to :

48. (a)

48.Sol. Porphin ring is deeply coloured due to intraligand $\pi - \pi^*$ transition.

Option (a) is correct.

49. Porphyrin ring is :

- (a) Non-rigid (b) Rigid (c) Non-planar (d) Octahedral

49. (b)

49Sol. Porphyrin Ring is planar due to delocalisation.

Option (b) is correct.

50. Stability of Metalloporphyrin complex.

- (a) $\text{Ni}^{2+} > \text{Cu}^{+2} > \text{Zn}^{+2} > > \text{Fe}^{+2} > \text{Co}^{+2}$ (b) $\text{Ni}^{2+} > \text{Zn}^{+2} > \text{Co}^{+2} > \text{Fe}^{+2} > \text{Cu}^{+2}$
(c) $\text{Ni}^{+2} > \text{Cu}^{+2} > \text{Co}^{+2} > \text{Fe}^{+2} > \text{Zn}^{+2}$ (d) $\text{Ni}^{2+} > \text{Fe}^{+2} > \text{Zn}^{+2} > \text{Cu}^{+2} > \text{Co}^{+2}$

50. (c)

50Sol. Due to size the stability of metalloporphyrin complex is :

Option (c) is correct.

51. How many (5) and (6) membered rings are present in Metalloporphyrin respectively :

- (a) 4, 5 (b) 5, 4 (c) 4, 4 (d) 4, 6

51. (c)

51Sol.

Option (c) is correct.

52. No. of signal in metalloporphyrin ring in ^1H NMR :

- (a) 2 (b) 3 (c) 8 (d) 10

52. (a)

52.Sol. $\begin{array}{l} 8 \beta \text{ protons } \rightarrow 1 \text{ signal} \\ 4 \text{ meso protons } \rightarrow 1 \text{ signal} \end{array} \left. \right] \text{Total 2 signals.}$

Option (a) is correct.

53. Myoglobin is present in :

- (a) Tissue (b) Liver (c) Bones (d) Lungs

53. (a)

53.Sol. Mb is present in tissue.

Option (a) is correct.

54. Cn, Co, No has more binding affinity towards Fe^{2+} in Mb. Why only O_2 binds ?

- (a) due to electronegativity factor
- (b) due to bent binding which provides hydrogen bonding with distal protein
- (c) due to linear binding of O_2
- (d) due to sp^2 hybridised oxygen.

54. (b)

54Sol. Oxygen binds in bent form which provides H-bonds with distal protein while (N, No, Co) binds linearly avoiding H-bonding.

Option (b) is correct.

55 Deoxy myoglobin is :

- (a) Paramagnetic
- (b) Diamagnetic
- (c) ESR inactive
- (d) Low spin metal binding

55. (a)

55Sol. Deoxy myoglobin has Fe^{+2} in high spin which makes it paramagnetic and ESR active.

Option (a) is correct.

56 The ν_{0-0} frequency in oxymyoglobin is :

- (a) $\sim 1100 \text{ cm}^{-1}$
- (b) $\sim 1560 \text{ cm}^{-1}$
- (c) $\sim 800 \text{ cm}^{-1}$
- (d) $\sim 1800 \text{ cm}^{-1}$

56. (a)

56Sol. Oxygen binds as super oxide (O_2^\ominus) and its ν_{0-0} frequency is $\rightarrow \sim 1100 \text{ cm}^{-1}$.

Option (a) is correct.

57 The salt bridges in hemoglobin are formed due to:

- (a) H-bonding
- (b) Ionic bonding
- (c) Covalent bonding
- (d) Dipole integrations

57. (a)

57Sol. Option (a) is correct.

The bonding takes place due to electrostatic interaction between NH_3^+ and coo^- in globin chain.

58 Oxygen in linear form will not allow

- (a) Low spin complex
- (b) H-bonding with distal protein
- (c) Globin chain interactions
- (d) Fe in high spin.

58. (b)

58Sol. Option (b) is correct.

If oxygen binds linearly then H-bonding with distal protein is not possible.

59 Increasing order of rate according to cooperativity effect is:

(a) $K_1 > K_2 > K_3 > K_4$

(b) $K_4 > K_2 > K_3 > K_1$

(c) $K_1 > K_3 > K_4 > K_2$

(d) $K_4 > K_3 > K_2 > K_1$

59. (d)

59.Sol. Option (d) is correct.

The increasing rate of O_2 binding according to cooperativity effect is $K_4 > K_3 > K_2 > K_1$.

60 Enzyme which catalyse $\text{PrFe(III)}-\text{pt}_2\text{O}$ to $\text{PrFe(II)}-\text{O=O}$ is

(a) Met Hb Reductase

(b) Carboxy Anhydrase

(c) Carboxy Peptidase

(d) Metalloenzyme

60. (a)

60Sol. Option (a) is correct.

Met Hb Reductase Catalyse $\text{BFe(III)}-\text{H}_2\text{O}$ to $\text{PrFe(II)}-\text{O=O}$.

61 According to Bohr effect if concentration of H^+ increases:

(a) pH will also increase

(b) pH will decrease

(c) pH remains unaffected

(d) first increases then decreases.

61. (a)

61.Sol. Option (a) is correct.

pH will decrease with increase in H^+ concentration.

$$\therefore \text{pH} = -\log[\text{H}^+]$$

$$\therefore \text{pH} \propto \frac{1}{[\text{H}^+]}$$

62. According to Bohr effect with increase in concentration of CO_2 binding capacity of O_2 in Hb

(a) decreases as pH decreases

(b) increases as pH decreases

(c) decreases as pH increases

(d) increases as H^+ increases.

62. (a)

62.Sol. Option (a) is correct.

Binding capacity of $\text{O}_2 \propto \text{pH}$ in Hb.

63. Binding capacity of O_2 in Myoglobin

63 Sol. On

Binding capacity of G

Binding capacity of O_2 in MS is independent of pH.

- 64 BPG (Biphosphoglycerate) has tendency to make
(a) deoxyhemoglobin (b) oxyhemoglobin (c) Hemerythrin (d) Hematin
64 (a)

04. (a)

64Sol. Option (a) is correct.

Biophosphoglycerate removes oxygen to fit itself in the cavity. Hence makes deoxyhemoglobin.

- 65 In lungs oxyhemoglobin formation is supported due to
(a) low pressure (b) Hb releases H^+
(c) H^+ bind HCO_3^- and release CO_2 (d) High pressure.

65. (d)

65. Sol. Option (d) is correct.

In lungs the pressure is high, hence O₂ binding increases. Hence oxyhemoglobin forms.

- 66 Bisphosphoglycerate BPG effect the O₂ binding in lungs:

(a) increases O₂-binding in BPG increases (b) decreases O₂ binding if BPG decreases
(c) no effect on O₂ binding (d) increases O₂ binding if BPG decreases.

66. (c)

66Sol. Option (c) is correct.

As in lungs the pressure is high. Hence, O_2 binding increases and results in increase in oxyhemoglobin production.

Increasing BPG increases deoxyhemoglobin.

Both cancels each other and hence no effect of BPG on O₂ binding capacity in lungs.

67. (a)

67Sol. Option (a) is correct.

In tissues the pressure is not high. Hence bisphosphoglycerate will stabilise deoxy form more.

68Sel. On

pH as binding capacity

pH & binding capacity of O_2 in Hb.

- 69 Mb stores O₂ in:
(a) Muscle tissues (b) Venus blood (c) Cells (d) Arterial blood

69. (a)

69.Sol. Option (a) is correct.

Mb stores O₂ in muscle tissues and releases when required (during activity for decomposition of glucose).

Assignment-9
Bioinorganic

- 70 The active sites of Blue copper proteins are:
(a) Cu⁺ (b) Cu⁺² (c) Cu^o (d) only (b) and (c)

70. (b)

70.Sol. option (a) and (b) are correct.

Active site of copper in reduced form is Cu⁺ and in oxidised form is Cu⁺²

- 71 The active site of Type-3 copper proteins is:
(a) Cu^I (b) Cu^{II} (c) Fe^I, Cu^I (d) Fe^{II}, Cu^{II}

71. (b)

71.Sol. The active site of Type-3 (Hemocyanin) copper protein is: Cu^I

- 72 Oxyhemerythrin has violet colour due to
(a) MLCT (b) $\pi - \pi^*$ transitions (c) LMCT (d) d-d transitions

72. (c)

72.Sol. option (c) is correct.

Oxyhemerythrin has violet colour due to LMCT.

- 73 In deoxyhemerythrin the colour is?
(a) Colourless (b) Blue (c) Violet (d) Red

73. (a)

73.Sol. option (a) is correct.

The colour of deoxyhemerythrin is colour less.

- 74 No. of N (this) present in Hemocyanin
(a) 7 (b) 8 (c) 4 (d) 6

74. (d)

74.Sol. option (d) is correct.

75 The transfer of charge in Hemocyanin takes place as

- (a) Cu^{2+} to O_2^{2+} (b) O_2^{2-} to Cu^{2+} (c) N (this) to Cu^{2+} (d) Cu^{2+} to this

75 (b)

75Sol. option (b) is correct.

This Ligand to metal charge transfer takes place in orghemocyanin due to which blue colour axeses.

The transfer takes place from O_2^{2-} to Cu^{2+} .

76 Stellacyanin is an:

- (a) e^\ominus transfer protein (b) O_2 transfer protein (c) Metal transfer protein (d) O_2 stronge protein

76 (a)

76Sol. option (a) is correct.

Stellacyanin in an e^\ominus transfer protein.

77 The e^\ominus transfer in Stellacyanin takes place from:

- | | |
|--------------------------------------|----------------------------------|
| (a) O of series to Cu^{2+} | (b) N of the to Cu^{2+} |
| (c) S of Cystein to Cu^{2+} | (d) Both (a) and (b) |

77. (c)

77.Sol. option (c) is correct.

The e^\ominus transfer in stellacyanin takes place from S of cystein to Cu^{2+} .

78 In Cu-Zn Superoxide Dismutase

- | | |
|------------------------------------|--|
| (a) Cu^{2+} is replacable | (b) Zn^{2+} Zn^{2+} replacable |
| (c) None can be replaced | (d) Both are replacable. |

78. (b)

78.Sol. option (b) is correct.

only Zn^{2+} is replacable in Cu-Zn SOD by cobalt or cadmium.

Cu^{2+} can't be replaced, it is essential.

79 Fe exist in which geometry in Fe-S Protein.

-
- (a) Octahedral (b) Square Pyramidal (c) Tetrahedral (d) Trigonal Bipyrmidal
- 79 (c)

79Sol. option (c) is correct.

Fe exists in Tetrahedral geometry in Iron-sulphur proteins.

80 Labile sulphurs are:

- (a) Acidic and present in M–S–M from (M = metal)
- (b) Non-acidic and present in S-cystein form
- (c) Organic sulphurs containing proteins
- (d) Both (a) and (c)

80. (a)

80Sol. option (a) is correct.

Labile sulphurs are Acidic present in the form M–S–M where (M = metal)

81. Function of peroxidase enzyme is to

- (a) Convert primary alcohol to aldehyde
- (b) Convert secondary alcohol to ketone
- (c) Catalyse the oxidation of any compound in presence of H_2O_2
- (d) Dissociation of O_2

81. (c)

It catalyse the oxidation of any compound in presence of H_2O_2 .

Correct option is (c)

82 Electron transfer in cytochromes is:

- | | |
|-----------------------------------|-----------------------------------|
| (a) Cyt b → Cyt a → Cyt c → O_2 | (b) Cyt b → Cyt c → Cyt a → O_2 |
| (c) Cyt a → Cyt c → Cyt b → O_2 | (d) Cyt c → Cyt b → Cyt a → O_2 |

82.Ans. (b)

82.Sol. e^\ominus transfer order takes place as

83. Which protein will oxidize Fe^{2+} to Fe^{3+} so that it can bind to transferrin?

- (a) Ceruloplasmin (b) Cytoplasm (c) Chlorophyll (d) Cytochromes

83.Ans. (a)

83.Sol. → Ceruloplasmin (Multicopper protein), oxidize Fe^{2+} to Fe^{3+}

→ The Fe^{3+} binds to transferrin and transferrin transport Fe^{3+} bone marrow through blood stream.

84. Fe^{2+} oxidized to Fe^{3+} in bone marrow by:

-
- (a) ferroxidase (b) ceruloplasmin (c) cytochromes (d) chlorophylls

84.Ans. Option (a) is correct.

84Sol. Ferroxidase oxidizes Fe^{2+} to Fe^{3+} in bone marrow and then Fe^{3+} binds ferritin.

85. Fe is stored in animals by

- (a) Ferritin (b) Transferrin (c) Hemosiderin (d) Siderophore

85.Ans. Option (c) is correct.

86. Fe is stored in bacteria by

- (a) Ferritin (b) Transferrin (c) Hemosiderin (d) Siderophore

86.Ans. Option (d) is correct.

87. Fe is stored in humans by:

- (a) Perritin (b) Transferrin (c) Hemosiderin (d) Siderophore

87.Ans. Option (a) is correct.

88. Full form of ATP is:

- (a) Adenosine Triphosphate (b) Adenosine Tetraphosphate
(c) Arginine Triphosphate (d) Arginine Tetraphosphate

88.Ans. Option (a) is correct.

89. Photosystems aer:

- (a) Chloroplasts (b) Antenna molecules
(c) Cluster of chlorophylls in pigment protein complexes from
(d) cytochrome

89Ans. Option (c) is correct.

89Sol. Chlorophylls (antenna molecules) are clustered together in pigment protein complexes called photosystems.

90.. Chlorophyll contains which metal ion:

- (a) Ca^{2+} (b) Mg^{2+} (c) Co^{III} (d) Cu^{2+}

90.Ans. Option (b) is correct.

91. Bacteriochlorophyll is when
- (a) $X \Rightarrow CH_3$ (b) $X \Rightarrow CHO$ (c) $X \Rightarrow CH_3$ (d) $X \Rightarrow CHO$
 $Y \Rightarrow CH_2 = CH_2$ $Y \Rightarrow CH_2 = CH_2$ $Y \Rightarrow COCH_3$ $Y \Rightarrow COCH_3$
 $Z \Rightarrow$ double bond $Z \Rightarrow$ double bond $Z \Rightarrow$ single bond $Z \Rightarrow$ double bond
91. (c)

Option (c) is correct.

92. In chlorophylls the ring present is:
- (a) Porphyrin ring (b) Corrin ring
(c) Pyrrole (d) Chlorine

92.Ans. Option (d) is correct.

93. Total no. of double bonds present in chlorophyll ring.

- (a) 11 (b) 9 (c) 12 (d) 10

93. Ans. (d)

93. Sol. One bond reduced from porphyrin hence called chlorine ring.

\therefore Total \rightarrow 10 ring.

94. In bacterial synthesis the product obtained are:

- (a) carbohydrates, sulphur, water (b) carbohydrates, oxygen, water
(c) carbohydrates, nitrogen, water (d) carbohydrates, carbon dioxide, water

94 Ans. (c)

$$94 \text{Sol. } \text{CO}_2 + 2\text{H}_2\text{S} + \text{hv} \rightarrow \text{CH}_2\text{O} + 2\text{S} + \text{H}_2\text{O}$$

95 The flow of e^\ominus in photosynthesis is:

- (a) $\text{Pcy} \rightarrow \text{Php} \rightarrow \text{Rieske center} \rightarrow \text{Q} \rightarrow \text{Cyt b} \rightarrow \text{Cyt bf}$
 - (b) $\text{Rieske center} \rightarrow \text{Pcy} \rightarrow \text{Php} \rightarrow \text{Cyt b} \rightarrow \text{Cyt bf}$
 - (c) $\text{Pcy} \rightarrow \text{Cyt b} \rightarrow \text{Q} \rightarrow \text{Rieske center} \rightarrow \text{Cyt bf} \rightarrow \text{Pcy}$
 - (d) $\text{Pcy} \rightarrow \text{Php} \rightarrow \text{Cyt b} \rightarrow \text{Q} \rightarrow \text{Cyt bf} \rightarrow \text{Rieske center}$

95. Ans. (c)

Flow of e^Θ is

95.Sol. From $P_{680} \rightarrow \text{Phy} \rightarrow \text{Cyt b} \rightarrow \text{Q} \rightarrow \text{Rieske centre} \rightarrow \text{Pcy} \rightarrow \text{Cyt bf}$

Since one is R, R and the other is S, S.

96. Ps_{680}^+ and Ps_{700}^+ are reduced by

- (a) cytochromes (b) Tyrosine (c) NAD^+ (d) Ferredoxin

96. Ans. (b)

96.Sol. Tyrosine reduces Ps_{680}^+ and Ps_{700}^+ to Ps_{680} and Ps_{700}

97 The catalyst involved in haber process in nitrogen fixation are:

- (a) Fe/Mo (b) Zn (c) Co/Fe (d) Cu

97Ans. (a)

97Sol. The catalyst involved are Fe/Mo catalyst.

Correct option is (a)

98 The two intermediates during conversion of N_2 to NH_3 are highly disfavoured:

- (a) Kinetically due to higher energies than either of the reactants or products.
(b) Thermodynamically due to higher energies than reactant or product
(c) Kinetically due to lower energy
(d) Thermodynamically due to lower energy.

98Ans. (b)

98Sol. The two intermediates before $N \equiv N$ bond breaking completely, $HN = NH$ (diazene) and H_2N-NH_2 (hydralazine) are disfavoured thermodynamically because they have higher energies than either of the reactants or products.

Correct option is (b)

99. The presence of which metal is mercury component of most nitrogen.

- (a) Fe (b) Cu (c) Mo (d) Zn

99.Answer. (c)

99Sol. Mo

Correct option is (c)

100. The Fe protein (called the P-cluster) has _____ Fe_4S_4 units in Mo–Fe protein.

100Sol. 2 Fe_4S_4 units.

Structure of the active site of the Mo–Fe protein nitrogenase.

101 Number of protons and electrons involved in the enzyme nitrogenase reaction are

- (a) $4H^+$ and $4e^\ominus$ (b) $8H^+$ and $8e^\ominus$ (c) $6H^+$ and $8e^\ominus$ (d) $8H^+$ and $6e^\ominus$

101Ans. (b)

101Sol. $N_2 + 16 mg.ATP + 8H^+ + 8e^\ominus \longrightarrow 2NH_3 + 16 mg ADP + 16\pi + H_2$

where π is in organic phosphorus

Correct option is (b)

- 102 The energy for the movement of solute particles through cell membrane from low concentration to high concentration obtain energy from:

 - (a) Hydrolysis of ATP
 - (b) Na^+ and K^+ movement
 - (c) Water soluble substances
 - (d) ADP hydrolysis

102Ans. (a)

102Sol. The energy is obtained from the hydrolysis in ATP. This is called as active membrane transport.

Correct option is (a)

- 103 How many K^+ goes and Na^+ inside in sodium potassium pump:
(a) $2K^+, 3Na^+$ (b) $1K^+, 1 Na^+$ (c) $3K^+, 2Na^+$ (d) $3Na^+, 3K^+$

103. (c)

$$103\text{Sol.} \quad 3\text{Na}^+ (\text{in}) + 2\text{K}^+ (\text{out}) + \text{ATP} + \text{H}_2\text{O} \longrightarrow 3\text{Na}^+ (\text{out}) + 2\text{K}^+ (\text{in}) + \text{ADP} + \pi$$

104 (c)

104Sol. Cis platin replaced by other platin complexes like carboplatin and oxaliplatin

105Ans. (c)

106Ans. (c)

Which is the correct option regarding above reaction?

- (a) $K_4 > K_3 > K_1$ K/a cooperatively effect
 (b) $K_4 > K_2 > K_3 > K_1$ K/a Bohr's effect

- (c) $K_4 > K_1 > K_2 > K_3$ K/a catalytic effect
 (d) $K_4 > K_3 > K_2 > K_1$ K/a trigger mechanism.

107 Ans.(d)

108 Ans.(c)

- 109 Magnesium and Manganese containing metallo-enzymes are respectively:

- (a) Phosphohydrolases and Arginase.
 - (b) Arginase and oxaloacetate decarboxylase.
 - (c) Galactose oxidase and phosphohydrolases.
 - (d) Phosphotransferases and oxaloacetate decarboxylase.

(i) (a), (b), (c) (ii) (a), (c), (d) (iii) (a), (d)

109 Ans.(iii)

- 110 In carbonic anhydrase Zn metal is coordinates with:

 - (a) Two imidazole of histidine, 1 glutamic acid and H_2O molecule.
 - (b) Three imidazole of histidine and the molecule.
 - (c) Two imidazole of histidine, 1 cysteine and H_2O molecule.
 - (d) Two cysteine, 1 histidine and H_2O molecule.

110Ans(b)

- 111 In carboxypeptidase enzyme, Zn metal is coordinated with:

 - (a) Two histidine, 1 glutamic acid and H_2O molecule.
 - (b) 3 histidine, and H_2O molecule.
 - (c) 2 cysteine, 1 histidine and H_2O molecule.
 - (d) Two histidine, 1 cysteine and H_2O molecule.

112Ans.(a)

- 113 In liver alcohol dehydrogenase enzyme. The metal is coordinated with:

 - (a) 1 histidine, 1 cysteine, 2 glutamic acid and H_2O molecule.
 - (b) 3 histidine and H_2O molecule.
 - (c) 1 histidine, 2 cysteine and H_2O molecule.
 - (d) 2 histidine, 1 glutamic acid and H_2O molecule.

113Ans.(c)

- 114 (a) Zn^{+2} cannot be replaced by any metal ion.
(b) Zn^{+2} can be replaced by CO^{+2} ion.
(c) Zn^{+2} does not give d-d electron absorption spectral bands in the visible region.
(d) CO^{+2} show absorption bands from which valuable information about metal ion environment in the enzyme can be obtained.

Which one is correct?

- (i) (a), (c), (d) (ii) (b), (c), (d) (iii) (a), (c) (iv) (b), (d)

114Ans.(iii)

MSQ (BIOINORGANIC)

1. Out of the following trace elements is/are:

- (a) Mo, W (b) W, Na (c) B, Si (d) Se, K

1Sol. Option (a) and (c) are correct.

In option (b) and (d) Na and K are macronutrients.

2. Number of π -bonds in porphine molecule:

- (a) 11 bonds in total and $22e^\ominus$ present
(b) 11 bonds in total but only $18e^\ominus$'s participating in conjugation.
(c) a bonds in total but $22e^\ominus$'s participating in conjugation.
(d) a bonds in total and $18e^\ominus$'s participating in conjugation.

2Sol. Option (a) and (b) are correct.

Total 11 bonds and $22e^\ominus$'s are present in porphine molecule but only $18e^\ominus$'s participate in conjugation.

3. Type of transition possible in porphyrin ring.

- (a) $\pi - \sigma^*$ (b) $\sigma - \pi^*$ (c) $\pi - \pi^*$ (d) $n - \pi^*$

3Sol. Option (c) and (d) is correct.

As porphyrin ring has lone-pair as well as π -bonds hence $\pi - \pi^*$ and $n - \pi^*$ transitions are possible.

4. Which of these represents heme group?

- (a) Iron-protoporphyrin ring (b) dianion-porphyrin ring + Fe^{2+3}
(c) Prosthetic group. (d) Corrin ring + $Fe^{+2/+3}$

4Sol. Option (a), (b) and (c) are correct.

5. Statements that is true about myoglobin is:

- (a) Present in tissue with Fe^{+2} as active site
(b) Present in bone marrow with Fe^{+2} as active site.
(c) Heme group present.
(d) α -helix structure where globin chain have 153 amino acids.

5Sol. Option (a) and (c) and (d) are correct.

Structure of myoglobin is

→ It is present in tissues where its function is to store O₂.

→ It has α -helix structure and one molecule contains one heme group and one globin protein.

- Globin chain contains 153 amino acids.
6. Correct statement is:
- O₂ binds in myoglobin alternate to N(His) group.
 - O₂ binds in myoglobin alternate to Cys group.
 - O₂ binds in singlet and bent form.
 - O₂ binds in triplet and bent form.
- 6Sol. Option (a) and (c) is correct.

$$S = \frac{1}{2} - \frac{1}{2} = 0$$

2s + 1 ⇒ 1 singlet state

- Here O₂ has π-bond in singlet forms.
- If O₂ is singlet than it act as strong fields.
- When it binds with Fe, Pe will become low spin and bind in bent form of bind distal protein.
7. Cooperativity effect in hemoglobin.
- increases the affinity of O₂ binding.
 - decrease the affinity of O₂ binding
 - Breaks the salt bridges by binding O₂.
 - Fe will be in high spin after O₂ binding and salt bridges break.

7 Sol. Option (a) and (c) are correct

Hemoglobin contains 4 myoglobin units that are connected through salt bridges with each other.

As O₂ binds with one unit of hemoglobin the bridge breaks and the affinity of O₂ binding on the next unit increases.

8. The oxyhemoglobin:

- (a) Fe(II) is in low spin
 (c) Fe(II) and diamagnetic
 (b) Fe(III) is in low spin
 (d) Fe(III) and paramagnetic
8. Sol. Option (b) and (c) are correct.
 O₂ binds Fe comes in low spin and oxidation state becomes (+3) and O₂ becomes O₂⁻. The electron of Fe(III) and O₂ gets paired and shows anti ferromagnetic coupling and becomes diamagnetic.
9. Statement that is incorrect is/are
 (a) Binding capacity of myoglobin is depend on pH.
 (b) Binding capacity of hemoglobin is dependent on pH.
 (c) Hemoglobin has sigmoidal curve.
 (d) Myoglobin has sigmoidal curve.
- 9.Sol. (a) and (b) are correct option
 → Binding capacity of myoglobin is independent of pH.
 → Myoglobin has typerbolic curve.
10. Bisphosphoglycerate has
 (a) no effect on O₂ binding in tissues.
 (b) no effect on O₂ binding in lungs.
 (c) Removes O₂ fit itself in cavity of hemoglobin.
 (d) Size is 5 Å.
- 10.Sol. → Size of BPG is 9 Å.
 → And size of cavity is 5 Å.
 Hence BPG removes O₂ bind itself in the cavity by increasing its size.
 → It lungs pressure is high hence O₂ binding is preferred.
11. There are:
 (a) 2 Fe centres in hemerythrin
 (b) 1 Fe centre in hemerythrin
 (c) O₂ is hydrogen bonded
 (d) Coordination number of Fe is 6 in deoxy and oxy form.
11. Sol. Option (a) and (d) is correct.

12. Both Fe in hemerythrin

 - (a) shows anti-ferromagnetic coupling
 - (c) has high spin
 - (d) do not slow antiferromagnetic
 - (d) hs low spin

12.Sol. Option (a) and (d) are correct.

- 13 Hemerythrin is:

 - (a) Non-heme protein
 - (b) a octameric form
 - (c) Present in marine invertebrates
 - (d) dioxygen binding pigment

13 Ans.(a, b, c, d)

14. Correct statement regarding hemocyanin
(a) involved in Fe transport (b) Has heme group
(c) Copper containing protein (d) 6 imidazole ring containing protein attached.

14. Sol. Option (c) and (d) are correct.

15. Following is a type of copper protein
(a) Hemocyanin (b) ceruloplasmin (c) plastocyanin (d) Hemerythrin

15.Sol. (a), (b) and (c) are correct.

- (b) ceruloplasmin is made up of

Three type 1

One type 2

Two type 3

Copper proteins

16. Sol. Zn^{2+} provides stability to Cu^{2+} . This can also be done by cobalt and cadmium.

Option (a) and (b) is correct.

17. Labile sulphurs are also known as:

(a) Inorganic sulphurs (b) Bridge sulphur (c) organic sulphur (d) None

17.Sol. Option (a) and (b) is correct.

18. In carbonic anhydrase:

 - (a) Active site is Zn^{2+}
 - (b) Active site is OH
 - (c) CO_2 is electrophile
 - (d) Zn^{2+} increases the acidic strength of H_2O .

18.Sol. Option (b), (c) and (d) are correct.

19.Sol. Option (b) ,(c) is correct.

Use in hydrolysis of peptide bond at C-terminal.

- 20 (a) Cytochrome P-450 is a membrane bound enzyme.
 (b) Cytochrome P-450 found in animals, bacteria and plants.
 (c) It contain high spin Fe(III) in heme group.
 (d) It catalyses hydroxylation of drugs, steroids, etc.

20. Ans.(a), (b), (d)

21. Peroxidase enzyme:

- (a) Has heme group
 (b) Has Octahedral complex
 (c) high spin
 (d) low spin

21. Sol. Option (a), (b), (c) are correct.

22. Oxygen cleaved in cytochrome p450 is

- (a) used in formation of epoxide
 (b) used in formation of alcohol
 (c) used in formation of carboxylic acid
 (d) used in formation of H₂O

22. Sol. Option (a), (b), (c) and (d) is correct.

23. Cytochrome P-450

- (a) absorbs light at 450 nm (b) involves 2e[⊖] and 4 protons
 (d) involves 2e[⊖] and 2 protons (d) cleave O₂ or dissociate O₂

23. Sol. Option (a), (b), (c) and (d) are correct.

24. Transferrin can:

- (a) only bind Fe in +3 oxidation state (b) Transport Fe from stomach to bone marrow
 (c) Stores Fe in bone marrow (d) None

24. Sol. Option (a), (b) and (c) are correct.

25. Apoferritin contains:

33. Sol. (b) and (c) are correct.

Larger size of Hg(II) hence when replaces Zn(II) works inefficiently and activity of enzyme is lost all together.

34. Hemoglobin gives sigmoidal curve of pH

34. Ans. a, b

So, correct option is (a, b)

35. One molecule of myoglobin contains.

- (a) One heme group and one globin protein
 - (b) One globin protein containing 153 amino acids
 - (c) 2 heme groups and 2 globin proteins
 - (d) 4 heme groups and 3 globin proteins

35. Ans. a, b

35. Sol. One molecule of myoglobin contains one heme group and one globin protein and each globin protein contains 153 amino acids.

So, correct option is (a and b)

36. In deoxyhemoglobin

- (a) State is tensed state due to salt bridges
 - (b) It is difficult to bind O_2 to Hb in T-state
 - (c) When O_2 binds, the state in bridges break
 - (d) In deoxyhemoglobin the state is relaxed state.

36.Ans. a, b, c

Deoxyhemoglobin is in T-state (tensed state due to salt bridges)

It is difficult to bind O₂ in this state

When O₂ binds to Hemoglobin, the state in bridges break and the molecule is said to be in relaxed state (R-state)

So, correct option is (a, b and c)

37. The color of:

(a) Deoxyhemoglobin is violet-blue

(b) Oxyhemoglobin is red

(c) The colour of both Hb and Hb (O₂)₄ is due to intraligand $\pi - \pi^*$ transitions.

(d) deoxyhemoglobin is red

37.Ans. a, b, c

37. Sol. Option a, b, c are correct.

38. Most of the CO₂ is transported in the form of

(a) HCO₃⁻ ions

(b) HCO₃⁻ and CO₂ enters the leukocyte

(c) HCO₃⁻ and CO₂ enters the erythrocytes

(d) HCO₃⁻ and CO₂ enters the red blood cells.

38.Ans. c, d

38.Sol. Most of the CO₂ is transported in the form of soluble HCO₃⁻ ions. CO₂ enters the erythrocytes (RBC) where the enzyme carbonic anhydrase converts it to H₂CO₃ which dissociates into the HCO₃⁻ and H⁺ ions.

39. Correct statement regarding dioxygen binding is/are:

(a) Myoglobin has stronger affinity for dioxygen binding than hemoglobin

(b) The binding of dioxygen is more pronounced in the presence of large amount of carbondioxide.

(c) Hemoglobin has stronger affinity for O₂ binding than myoglobin

(d) The binding of O₂ is more pronounced in less amount of CO₂.

39.Ans. a, b

39.Sol.

Dioxygen binding curves for (1) myoglobin and for hemoglobin at various partial pressures of carbondioxide: (2)

20 mm Hg; (3) 40 mm Hg; (4) 80 mm Hg. Note that myoglobin has a stronger affinity for dioxygen than hemoglobin and that this effect is more pronounced in the presence of large amounts of carbon dioxide.

40. Which of the following is true:

- (a) Fe(II) is in high spin and diamagnetic in Hemerythrin
- (b) Fe(III) is in low spin and is diamagnetic in oxyhemerythrin
- (c) Fe(II) is ESR inactive in deoxyhemerythrin
- (d) Fe(III) is ESR inactive in Hemerythrin

40 Ans.(a, b, c, d)

40 Sol. Fe(II) is in high spin $\rightarrow t_{2g}^4 e_g^2$

\therefore Antiferromagnetic coupling

Hence becomes diamagnetic and ESR inactive

Similarly for Fe(III) Low spin

41. Function of Hemocyanin is

- (a) O₂ transport in some invertibrates mollusca
- (b) O₂ transport in some arthropoda
- (c) O₂ storage in marine invertibrates
- (d) e⁻ transport in plants and animals

41Ans. (a, b)

41Sol. The function of Hemocyanine is O₂ transport in some invertibrates mollusca

(eg.: snails, squid)

and arthropoda (eg.: crabs, cobsten, shrimis)

42. In oxyhemocyanin copper is:

- (a) Cu(II), diamagnetic, colourless, EPR inactive
- (b) Cu(I), diamagnetic, coloursless EPR inactive
- (c) Cu(II), diamagnetic, blue colour, EPR inactive
- (d) Cu(II), diamagnetic, blue colour, colour due to O₂²⁻ to Cu²⁺ (LMCT), EPR inactive

42Ans. (c, d)

42.Sol. In oxyhemocyanin.

Cu(II) is diamagnetic due to antiferro magnetic coupling

- Blue colour is due to bridged $\text{O}_2^{2-} - \text{Cu}^{2+}$ LMCT
 - It is EPR inactive

43. Mn(IV) cluster is

43 Sol. Option (a), (b), (c), (d) are correct.

44. Carbonic anhydrase is

- (a) Tetrahedral (b) Colourless (c) diamagnetic (d) None

→ Tetrahedral structure

→ Colourless → No d–d transition, No LMCT

\rightarrow diamagnetic \rightarrow $\boxed{3d^{10} 4s^0}$ $\rightarrow Zn^{+2}$

Option (a), (b) and (c) are correct.

45 Out of the following options macronutrients is/are :

45. Sol. Elements which are required in large amount are called macronutrients.

Option (a), (b), (d) are correct.

46 Out of the following which elements are trace elements

46 Sol. Elements which are required in small amount are called trace elements.

Option (c) and (d) are correct.

47 Out of the following which are ultra trace elements :

47Sol. The elements which are required in very small amounts are called ultra trace elements.

Option (a), b) and (c) are correct.

48. The metal ion in carboxy peptidase-A is coordinated to :

- (a) 2-Nitrogen atoms of two histidine residues
 - (b) A glutamate residue
 - (c) A water molecule
 - (d) None

Option (a), (b), (c) are correct.

49Ans. a, b, c

Sol. Cytochrome P₄₅₀ are a group of cytochromes found in plants, animals and bacteria.

50 Cytochrome P₄₅₀ has:

50 Ans.a, b, c, d

50. Sol. The active site in cytochrome P-450 in heme similar to hemoglobin and myoglobin except that:

1. Fe is present in Fe(III) state and it is low spin octahedral
 2. One s-atom of cysteine is coordinated to Fe(III) instead of histidine in the proximal position.
 3. Sixth coordination site is occupied by H_2O .

51. Ferridoxins classified as:

51. Ans. a, b, c

51 Sol. Ferridoxins is classified as three major catagories: Fe_2S_2 or 2Fe – 2s, Fe_3S_4 or 3Fe – 4s and 4Fe – 4s or Fe_4S_4 Ferredoxins.

52. Porphyring ring:

- (a) have 3 signals in ^1H NMR.
- (b) $\nu_{\text{N-H}}$ varies between $3200 - 3300 \text{ cm}^{-1}$.
- (c) is deeply coloured due to ligand metal charge transition
- (d) In UV spectroscopy shows two bands (soret and Q-band)

52Ans. (a, b, d)

53. In Met-Haemoglobin

- (a) Both Fe(II) and Fe(III) present
- (b) Iron only present in Fe(III) state
- (c) Present in a trace amount (~3%) in human blood.
- (d) Higher level of methemoglobin causes a disease called as methemoglobinemion, it is a disorder

53.Ans. (b, c, d)

54. (a) The ligands such as CO, CN^- , NO, PF_3 are strong π -acceptor than O_2 .
(b) Such ligands can bind to Fe(II) centre more strongly than O_2 .
(c) It prevents the transport of O_2 and causes death eventually due to Asphyxia.
(d) CO binding is 200 times more stronger than O_2 binding

54.Ans. (a, b, c, d)

55 Bacteria/s that produces Nitrogenase enzyme is :-

- | | |
|------------------------|--------------------------|
| (a) Rhizobium | (b) Vibrio cholerae |
| (c) Treponema pannidum | (d) Azobacter vinelandii |

55Sol. Rhizobium and Azotobacter vinelandii are 2 bacterias that produce enzyme called nitrogenase engyme.

Option (a) and (d) are correct options.

56 Out of the following enzymes nitrogenase enzyme is :-

- | | |
|------------------------------|----------------------------|
| (a) Vanadium Nitrogenase (b) | Iron Nitrogenase |
| (c) Copper Nitrogenase | (d) Molybdenum Nitrogenase |

56Sol. Option (a), (b) and (d) are correct.

57 Component of Ferritin is/are :

- | | |
|-------------------------------|-----------------|
| (a) Protein coat (apoferitin) | (b) Transferrin |
| (c) Iron core | (d) Ferridoxin |

57Sol. Two components of Ferritin are (1) Protein coat (apoferriton) (2) Iron core.

Option (a) and (c) is correct.

58 If globin chain is not present than heme group will convert into

- | | | | |
|---------------------|------------------------|-------------|--|
| (a) μ -oxodimer | (b) μ -peroxodimer | (c) hematin | (d) $\text{BrFe}(\text{II})-\ddot{\text{O}}-\ddot{\text{O}}$ |
|---------------------|------------------------|-------------|--|

58Sol. Option (a) and (c) is correct.

μ -oxodimer or hematin (another name) is formed no-globin protein is present.

66Ans. (a)

67. Which of the following is A heme ions proteins?
(a) Rubredoxin (b) Transferrin (c) Hemerythrin(d) Cytochrome C

67 Ans. (d)

68Ans. (a)1

69. Consider the following statement of metallothionein:

 - (a) They contain about 30% cysteine residues
 - (b) They prefer to bind soft metal ions such as Cl(11)
 - (c) They are involved in electron transfer reactions
 - (d) They are low molecular weight proteins

69Ans. (a, b, and d)

70Ans. a, b, c

71. Deoxyhaemoglobin is:

 - (a) five coordinated complex
 - (b) high spin complex
 - (c) Fe^{+2} state and four of coordination position are occupied by porphyrin ring N-atom
 - (d) Red in colour

71Ans. (a, b, c)

72Sol. option (a) and (b) is correct.

Zn^{2+} provides stability to Cu^{2+} and can be replaced by Co and Cd.

NAT

1. _____ nitrogen act as acid in porphin molecule, _____ dianionion porphyrin ring, _____ dication porphyrin molecule, respectively?

Ans. 2, 0, 4 respectively

Sol. Porphyrin ring is a derivative of porphyrin molecule.

2. Each hemoglobin molecule is made up of _____ sub units and α – globin protein consists of _____ and β -globin protein consists of _____ amino acids.

Sol. Four, 141, 146 is the correct answer.

Each hemoglobin molecule is made up of four subunits, each of which consists of a globin protein in the form of folded helix or spiral.

The globin proteins are of 2 types: two are α and two are β . An α globin protein consists of 141 and β -consists of 146 amino acids.

- 3 Raman stretching frequency ν_{O-O} in oxyhemoglobin is _____.

Ans. 1300 cm^{-1}

Sol. Correct answer is 1300 cm^{-1} .

- 4 In methemoglobin the oxidation state of iron is _____.

Sol. +3

5. In human blood _____ methemoglobin is produced normally

Ans. 2-3%

In human blood a trace amount of (about 3%) of methemoglobin is normally produced spontaneously.

6. The Raman stretching frequency of oxyhemerythrin is _____.

Ans. 845 cm^{-1}

Sol. Raman stretching (ν) $\nu_{\text{O-O}}$ in oxyhemerythrin is 845 cm^{-1}

7. The distance between Cu–Cu in deoxyhemocyanin is _____ and in oxyhemocyanin is _____

Ans. 460 pm and 360 pm

Sol. 460 pm in deoxyhemocyanin and 360 pm in oxyhemocyanin.

8. _____ types of photosystems are present in chloroplasts in photosynthesis of plants?

Ans. 2

Sol. There are 2 types of photosystems in chloroplasts :

PS – I and PS – II

9. In Photosynthesis _____ no. of electrons are afforded for the transport ($\text{H}_2\text{O} \rightarrow \rightarrow \text{NADP}^+$)

Ans. 4

Sol. Total $4e^-$ are afforded for the transport ($\text{H}_2\text{O} \rightarrow \rightarrow \text{NADP}^+$) or we can say four quanta of electrons are afforded.

10. In cytochrome P₄₅₀ metal is in oxidation state:

Ans. +3

Sol. In cytochrome P₄₅₀ the active site is Fe⁺³.

11. If _____ S(cys) are replaced by _____ N(His) in Fe₂S₂ ferridoxins than it is known as rieske centre.

Ans. 2, 2 respectively

12. Total number of double bonds present in porphyrin ring ____ and value of n according to Huckel theory ____ experimentally

Ans. (11 db, 4)

13. In equation $f = \frac{K_p(nO_2)}{1 + K_p(nO_2)}$; value of n (Hill constant) for haemoglobin is _____

Ans. (2.8)

14. Number of options correct in case of peroxidase enzyme is _____.

(3) High spin complex (Fe) (4) Decompose H_2O_2

Sol. Option (1), (2), (3) are correct

Correct answer is (3)

- ## 15 The catalyse metallo enzyme:

(a) is tetramer of aldehyde oxidase enzyme (b) dissociates O₂

(c) is tetramer of myeloperoxidase enzyme (d) converts 1° alcohol to aldehyde

Sol. Catalyse metallo enzyme is a tetramer of peroxidase enzyme

Correct option is (c).

- 16 The function of catalyse metallo enzyme is to:

(b) dissociates O₂

(c) is tetramer of myeloperoxidase enzyme (d) converts 1° alcohol to aldehyde

- (a) Decompose H_2O

(a) Decompose H_2O_2
 (b) Catalyse the oxidation of

(b) Catalyse the oxidation of any compound in presence of H_2O_2
(c) Dissociate O_2

(c) Dissociate O_2
 (d) Isomerisation

(d) Isomerisation of dicarboxylic acid

Sol. $\text{H}_2\text{O}_2 + \text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}_2\text{O}$

Correct option is (a)

- 17 The function of cytochrome P₄₅₀ is:

(a) Decompose H_2O_2

(b) Catalyse the oxidation of any compound in presence of H_2O_2

(c) Isomerisation of dicarboxylic acid

(d) Dissociate O_2

Sol.

- Either this oxygen is involved in bonding with C–H
→ or gets inserted in C=C bond
- This oxygen is used in water formation

Correct option is (d)

Enzyme responsible for this reaction is:

- (a) Peroxidase enzyme
(c) Catalyse metallo enzyme
(b) Cyt P₄₅₀
(d) LADH enzyme

Sol.

Correct option is (b)

19. In cytochrome P₄₅₀ how many protons and electrons are involved:

- (a) 2 proton, 2 electron (b) 1 proton, 2 electron
(c) 2 electron, zero proton (d) 4 electron, 4 protons

Sol. In cytochrome-P₄₅₀ 2 protons and 2 electrons are involved.

Correct option is (a)

20. Hb binds _____ and then enters _____ enters into venus blood.

- (a) H₂CO₃, H⁺ (b) Co₂, H⁺ (c) H⁺, HCO₃[−] (d) O₂, H⁺

Sol. Option (c) is correct.

Hb binds H⁺ and HCO₃[−] enters the venus blood. When carbonic anhydrase catalysis the conversion of CO₂ into HCO₃[−] and H⁺.

Hb picks oxygen from lungs or gills and move to muscle tissues through arterial blood.

21. In cytochrome C-oxidase Fe involved in electron transfer are _____ and Cu involved in reduction of O₂ are _____

Correct option is (c)

25. Structure of co-enzyme B₁₂ is when L is:

- (a) $L = OH^-$ (b) $L = CN^-$ (c) $L = \text{adenosyl}$ (d) $L = CH_3$

Sol. Correct option is (c)

26 Function of vitamin B_{12} is

- (a) Isomerisation of dicarboxylic acid (b) O_2 cleavage
 (c) decompose H_2O_2 (d) 1,3 carbon shifting

Sol. Function of vitamin B_{12} is to isomerise dicarboxylic acid

eg.: Glutamic acid \rightarrow β -methyl aspartic acid

Correct option is (a)

27 Iron in deoxymyoglobin is in _____ oxidation state.

Ans. (+2)

28 Number of Labile sulphur present in Rubredoxin are:

Sol. Ruberdoxin \rightarrow $(FeSo)$ has zero Labile sulphurs.

29 $2Fe - 25$ has how many labile sulphurs:

Sol. (b)

30. Tyrosine is:

- (a) involved in the formation of skin pigment melanin
 (b) oxidation of Co^{II} to Co^{III}
 (c) has 2Cu centered oxygenase enzyme
 (d) convert vicinal diol to aldehyde

- Sol. Correct option is (a)
31. Tyrosine:
- (a) Reduces P_{680}^+ and P_{700}^+ to P_{680} and P_{700} respectively
 - (b) Oxidises Co^{II} to Co^{III}
 - (c) Covert vicinal diol to aldehyde
 - (d) Oxidises Mg to Mg^{2+}
- 32 Total macronutrients out of hydrogen, carbon, nitrogen, sodium, magnesium, potassium, molybdenum, Tungsten are _____.
 Sol. Molybdenum and Tungsten are trace elements
 Hence total macronutrients are 6.
- 33 Number of pyrole units in prophin molecule are ____?
 Sol. Total four pyrole units are combined with a methine bridge in prophine molecule.
-

Porphin Molecule
- 34 Total number of bonds involved in conjugation making the porphine molecule aromatic are _____.
 Sol. Total 9 bonds are involved in conjugation.
- 35 No. of signals in porphine molecule
 Sol.
- 2 N – H given 1 signal
 8 β – H given 1 signal
 4 meso giving 1 signal.
 Hence, total 13 signals present.
- 36 Chemical shift value of N – H is ____, Meso is ____ and β -hydrogen is ____ in porphine molecule.
 Sol. -2 to -3 PPm for $\rightarrow \delta_{N-H}$
 4.1 PPm for $\rightarrow \delta_{meso}$
 8.00 PPm for $\rightarrow \delta_{\beta-H}$
- 37 Number of transitions possible in porphine molecule in UV spectra _____.
 Sol. Total 2-types of transitions are possible.

$n - \pi^*$ and $\pi - \pi^*$ transitions.

38 _____ six membered and _____ five membered rings are present in metalloporphyrin ring.

Sol.

Total \rightarrow 4 six membered and 4 \rightarrow five-membered

39 Oxidation state of Fe in deoxymyoglobin is _____ and oxymyoglobin is _____.

Sol. In deoxymyoglobin the oxidation state is +2 and in oxymyoglobin the oxidation state is +2.

40 _____ are the amino acids in globin chain of myoglobin.

Sol. Total 153 amino acids

50. Coordination number of Fe in oxymyoglobin is _____.

Sol. 6 is the coordination number.

51. _____ types of globin proteins are present in Hemoglobin.

Ans. 2 types of globin proteins \rightarrow α and β

52. One α globin protein has _____ amino acids.

Ans. 141 amino acids.

53. _____ amino acids are present in one β globin protein in hemoglobin.

Sol. 146

54. Oxidation state iron in oxyhemoglobin is _____.

Ans. +3

55. Number of iron are _____ and oxidation state of iron is _____ in hematin.

Sol. 2 iron and +3 oxidation state.

56. _____ per cent of methemoglobin is always present in human body.

Sol. 3%

57. Size of BPG is around _____ Å.

Sol. Size of Bisphosphoglycerate is around 9 Å.

58. One molecule of hemerythrin has _____ subunits.

Ans. One molecule of hemerythrin has 8 subunits.

59. Each subunit in hemerythrin has _____ amino acids and _____ iron centres.

Sol. 113 amino acids and 2 iron centres.

60. The distance between two copper units in oxyhemocyanin is _____ Pm.

Sol. 360 Pm

61. _____ types of copper proteins are present in type 4 or multicopper proteins in which _____ are type 1, _____ are type 2 and _____ are 3 type 3 copper proteins.

Sol. 3 types of copper proteins.

3 are type 1

1 is type 2

2 are type 3.

62. Oxidation state of copper in oxidized form of stellacyanin is ____.

63. Number of labile sulphur is ____ and non-labile sulphur is ____ in rubredoxin.

Sol. Rubredoxin \rightarrow FeSo

Here S represents labile sulphur which is zero.

and non-labile sulphurs are four.

64. ____ number of S(Cys) are replaced by N(His) in Fe_2S_2 to make rieske centre.

Sol. 2 S(Cys) are replace by N (His).

65 ____ are number of Irons and ____ are the number of copper in cytochrome-C-oxidase.

Sol. 2 Fe and 2 copper.

66. Oxidation state of cobalt in vitamin B_{12} is ____.

Sol. Cobalt exists in +3 oxidation state in vitamin B_{12} .

67. Both Nickel has oxidation state ____ in Urease.

Sol. +2 oxidation state.

68. Life of hemoglobin is ____ weeks.

Sol. 16 weeks

69. Siderophore protein used in transport of Fe metal in bacteria when Fe is in ____ oxidation state.

Ans. +3

70. Apoferritin contain ____ protein chains and ____ amino acids and has hollow sphere with ____ \AA .

Sol. 24 protein chains and 175 amino acids and 100 \AA diameter.

71. The hollow sphere is apoferritin contains ____ hydrophilic and ____ hydrophobic channels.

Sol. 8 hydrophilic and 6 hydrophobic channels.

72. Transferrin binds iron in ____ oxidation state.

Sol. +3 oxidation state.

73. Ferritin binds iron in ____ oxidation state.

Sol. +3

74. Photosystem I absorbs light of ____ nm and photosystem II absorbs light at ____ nm.

A

(a)

(b)

(a)

(b)

