

3rd Semester (Suppl.) DEC EC-2009 CSE, IT, CSSE, CSCE

SUPPLEMENTARY EXAMINATION-2018

3rd Semester B.Tech & B.Tech Dual Degree

DIGITAL ELECTRONIC CIRCUITS EC-2009

(For 2014 & 2013 Admitted Batches)

Time: 3 Hours

Full Marks: 60

Answer any SIX questions including question No.1 which is compulsory.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable and all parts of a question should be answered at one place only.

- 1. (a) What is the difference between active LOW and active $[1 \times 10]$ HIGH terminals?
 - (b) Perform following arithmetic:
 - (i) BCD addition (397+158)
 - (ii) (-10) (-6) using 2's complement method
 - (c) Show that, $U \overline{V} + U W + V \overline{W} = U + V \overline{W}$ where U, V and W are Boolean variables.
 - (d) With the help of a 2:1 MUX, implement a XOR gate.
 - (e) Differentiate synchronous and asynchronous input terminals of flip-flop, explain with the help of **J-K** flip-flop.
 - (f) A 8-bit DAC has a step size of 50 mV. Determine the full-scale output voltage and the percentage of resolution.
 - (g) Implement **XNOR** gate using minimum numbers of **XOR** gates only.
 - (h) How many OR gates are there in a 32 x 8 ROM and how many inputs does each OR gate of a 32 x 8 ROM have ?.
 - (i) "Excess-3 codes are self-complementing & Sequential but not cyclic", justify.
 - (j) Find out the characteristic equation of a T flip flop.

2	2. (a)	Design a T- Flip-Flop using a D Flip-Flop and a multiplexer having one select line.	[4] 6	6.	(a)	'A decoder with an enable input can be used as a
	(b)	Design a 4:2 Priority Encoder such that the order of priority of the decimal inputs is given as $D_2 > D_0 > D_1 >$	[4]		(b)	
	(c)	D ₃ , where all D _i 's are inputs to the priority encoder. What is the difference between SRAM and DRAM?	[2]		(-1)	0,2,3,5,6,7,0,2,3 using J-K FFs.(Consider unused states as don't cares.)
3.	(a)	Obtain the minimized expression for the following 4-variable Boolean expression using K-map method and implement the minimized expression using minimum	[4]		(c)	A certain memory has a capacity of 64K x 16. (i) How many data input and data output lines does it have? (ii) How many address lines does it have?
		numbers of NAND gates only. $F(P,Q,R,S) = \sum_{i=1}^{n} (0,2,5,10,11,15) + \sum_{i=1}^{n} d(1,3,7)$		7.	(a)	With the help of a neat diagram, explain the working of a TTL NAND gate with Open-Collector Output and also
	(b)	Draw the logic diagram of Full-Subtractor using minimum number of 2-input NAND gates.	[4]		(b)	The state of the s
	(c)	Draw the logic diagram of a 2-input CMOS NOR gate and explain its working in brief.	[2]		(c)	diagram and discuss the disadvantage of this converter. Design a MOD-4 Ring counter and explain its operation.
4.	(a)	Design a synchronous sequential circuit which produces an output $Z = 1$, whenever the following input sequence '1101' occurs. (Assume overlapping is allowed and use Mealy Model)	[6]	8.	M	Implement the following logic function using a Multiplexer having three select lines. $ \mathbf{F}(\mathbf{P},\mathbf{Q},\mathbf{R},\mathbf{S}) = \mathbf{P} \ \overline{\mathbf{Q}} + \mathbf{R} \overline{\mathbf{S}} + \mathbf{P} \overline{\mathbf{R}}. $
		With the help of a neat diagram, explain the working of a TTL NAND gate with Open-Collector Output and also mention the disadvantages of this configuration.	[4]		(b)	Design and explain 4-bit bidirectional shift register using D FFs.
					(c)	What is the difference between PROM and PLA ?
5.	(a)	Design a Mod-6 Asynchronous Up-counter using JK Flip-Flops.	[4]			****
	(b)	Design a 2-bit magnitude comparator using two 1-bit magnitude comparator modules and additional basic gates.	[4]			
	(c)	Design a Half adder using 2:4 active HIGH output decoder and basic gates.	[2]		_	2820651

- Reads

(2)

[4]

[4]

[2]

[4]

[4]

[2]

[4]

[4]

[2]