

파이썬 신호처리 기술을 통한 태평소의 서에 대한 연구

태평소는 서(리드)부분에 따라 태평소의 음정, 최적의 소리를 내기 위해서 주어야 하는 힘 등이 크게 달라진다. 이에 본 연구에서는 태평소의 서를 만드는 빨대의 두께, 길이, 모서리를 자르는 여부 등의 변인들에 변화를 주며 이에 따른 태평소의 소리를 분석하고, 최적의 소리를 내려면 변인들을 어떻게 설정해야 하는지 분석하였다.

출 품 자: 김유신 (민족사관고등학교)

한준희 (민족사관고등학교) 박서우 (민족사관고등학교)

지도교사: 양동혁 (민족사관고등학교)

연구내용

가. 제작 동기

태평소는 현재 전문 연주자들도 전통적인 서 대신 빨대를 사용함

빨대 서는 두께, 길이, 자름 여부 등에 의해서 소리의 차이가 극명함

소리가 잘나는 빨대 서의 제작을 위한 팁 등은 존재하지만 정형화된 방법이 없고, 제작할 때마다 다름

태평소 빨대 서의 개발 난이도 감소를 위해 두께, 길이, 자름여부에 대한 태평소의 소리를 정량적으로 평가하여 최적의 빨대 서 제작 방법 개발

나. 제작 목적

태평소를 불 때 중요한 요소 중 하나인 압력에 대해 분석하기 위해 서의 변인을 두께, 길이, 자름 여부 세가지로 정하고, 변인에 따른 태평소의 소리를 실험을 통해 정량적으로 평가하였다.

가. 압력 쳄버

압력 쳄버는 페트병을 사용해서 제작했으며, 서와 동구를 연결한 상태에서 호스로 바람을 불어넣으면 소리가 난다. 압력 쳄버 내부에는 아두이노 기압 센서를 공기가 새지 않도록 밀봉하여 넣었으며, 핸드폰 카메라를 이용해 서의 떨림을 측정 할 수 있도록 했다.

나. 아두이노 및 파이썬 데이터 평가

페트병 내부에 있는 아두이노 센서를 아두이노를 통해 컴퓨터에 연결하여 실시간으로 압력을 기록하였다. 호스로 바람을 불지 않았을 시 기본 압력은 측정 장소에서 평균적으로 94925Pa 이고, 사람 입으로 바람을 불어넣었을 시 최대 약 114000Pa 까지 증가하는 것을 확인하였다. 또한 파이썬으로 녹음된 음원을 시간-진폭 그래프로 나타내었으며, 서의 변인에 따른 최소압력 변화량 그래프도 그렸다.

1. 태평소 소리 및 압력 측정 장치 제작

2. **태평소의 서 제작**● 빨대를 길이별로 나열한 모습 (순서대로 15~20mm)

● 빨대를 두께별로 나열한 모습 (순서대로 사포에 0, 10. 20. 30. 40. 50번 간 빨대)

- **3. 데이터 측정** 1. 호스를 입으로 불면서 서를 통해 나는 소리를 녹음함과 동시에 압력 로그 프로그램을 실행
- 2. 녹음한 음원 파일을 시간-진폭 그래프로 나타낸 후 진폭이 더 이상 변하지 않고 일정하게 유지되는 "최소 압력"지점의 시간 기록

- 3. 최소 압력에 도달할 때의 압력을 로그 파일에서 추출
- 4. 기록된 데이터로 서의 변인에 대한 최소 압력의 값을 그래프로 표현

1. 개선방안

- 1. 압력 챔버 내부에 압력이 일정하게 증가하지 못함
- -> 다량의 에어 컴프레서 사용
- 2. 아두이노 데이터와 녹음본 데이터의 불일치
- -> 매크로 사용을 통해서 시간일치
- 3. 서 제작 과정에서의 오류
- -> 버니어 캘리퍼스등 더욱 정교한 장치들을 사용하여 실시

2. 효과 및 전망

진동수나 대관에서의 공명 등 아직 측정하지도 다루지도 못한 것이 많다. 이것을 기반으로 태평소에 관한 연구를 더 진행할 수 있을 것이다.

1. 길이

왼쪽 위 그래프에서 태평소의 길이가 길어질수록 3번의 실험결과 모두 최소압력 추세선이 감소한다는 사실을 발견하였다.

2. 두께

오른쪽 위 그래프에서 사포로 서를 간 횟수가 늘어날수록 최소압력도 감소한다는 사실을 발견하였다.

3. 모서리 자름 여부

인쪽 아래 그래프에서 볼 수 있듯이 모서리를 자르지 않은 서도 길이가 늘어날수록 최소압력이 감소한다는 사실을 알 수 있었으며, 모서리를 자른 서와 자르지 않은 서를 비교한 오른쪽 아래 그래프를 보았을 때 자르지 않은 서의 최소압력이 동일 길이에서 한번의 오차를 제외하고 전부 자른 서의 최소압력보다 크다는 사실을 발견하였다.