Module: Data Mining Année: 2022-2023

Nature de document: Cours

Niveau: L3STID N.BERMAD

Chapitre: 4

Titre: Apprentissage non supervisé

II. Clustering (la classification non supervisée / segmentation):

II.1 Introduction

Pour résoudre certains problèmes complexes, il peut s'avérer utile de commencer par segmenter la population (la diviser en groupes) en espérant que le problème soit alors plus simple à résoudre sur les groupes ainsi constitués. La segmentation est une tâche d'apprentissage "non supervisée" car on ne dispose d'aucune autre information préalable que la description des exemples.

II.2 Formulation de problème de segmentation

L'objectif de la segmentation est le suivant : on dispose de données non étiquetées. On souhaite les regrouper par données ressemblantes.

soit un ensemble X de N données décrites chacune par leurs P attributs.

39

- ✓ Similarité **inter-classe** faible (faible couplage externe).
- La qualité d'un clustering dépend de :
 - ✓ La mesure de similarité utilisée
 - ✓ L'implémentation de La mesure de similarité.

II.4. Les application de Clustering

- Marketing: segmentation du marché en découvrant des groupes de clients à partir de base de données d'achats.
- **Environnement:** identification des zones terrestres similaires (en terme d'utilisation) dans une base de données d'observation de la terre.

41

La segmentation consiste à créer une partition ou une décomposition de cet ensemble en groupes telle que :

critère1. les données appartenant au même groupe se ressemblent

critère 2. les données appartenant à deux groupes différents soient peu ressemblantes.

Le problème consiste alors à identifier les nuages denses de points qui sont naturellement présents dans les données.

II.3. Qualité d'un Clustering

- Une bonne méthode de clustering produira des clusters d'excellente qualité avec:
 - ✓ Similarité **intra-classe** importante (forte cohésion interne)

40

- **Assurance:** identification de groupes d'assurés distincts associés à un nombre important de déclarations.
- **Médecine:** la localisation des tumeurs dans le cerveau
 - ✓ Nuage des points du cerveau fournis par le neurologue
 - ✓ Identification des points définissant une tumeur
- WWW: la classification de documents

II.5 .Mesure de la similarité

• La similarité entre deux objet i, j est exprimée en terme d'une fonction de distance entre ces deux objets:

$$sim(i,j) = d(i,j)$$

42

Module: Data Mining Année: 2022-2023

Nature de document: Cours

Niveau: L3STID N.BERMAD

Chapitre: 4

Titre: Apprentissage non supervisé

• La définition de la similarité entre objets dépend de :

✓ Le type de données considérées

✓ Le type de similarité recherchée

II.5.1.Choix de la distance

• Propriétés d'une distance:

1.
$$d(x, y) \ge 0$$

2.
$$d(x, y) = 0$$
 si $x = y$

3.
$$d(x, y) = d(y, x)$$

4.
$$d(x,z) \le d(x,y) + d(y,z)$$

• Définir une distance sur chacun de type de données:

II.5.1.1.Distance – Données numériques

Soient
$$X = (x1, x2, \dots xn)$$
 et $Y = (y1, y2, \dots, yn)$ deux objets

43

• Distance euclidienne :

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (xi - yi)^2}$$

• Distance de Manhattan:

$$d(x,y) = \sum_{i=1}^{n} |xi - yi|$$

• Distance Minkoswski:

$$\int_{1}^{q} \sum_{i=1}^{n} |xi - yi|^{q}$$

44

II.5.1.2.Distance –Données binaires

		Object j		
		1	0	sum
	1	α	b	A+b
Object i	0	С	d	C+d
	sum	a+c	b+d	р

Table de contingence (dissimilarité)

• Coefficient de correspondance simple (similarité invariante, si la variable binaire est symétrique):

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

45

• Coefficient de Jaccard(similarité non invariante, si la variable binaire est asymétrique):

$$d(i,j) = \frac{b+c}{a+b+c}$$

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: Cours

Niveau: L3STID N.BERMAD

Chapitre: 4

Titre: Apprentissage non supervisé

Exemple: dissimilarité entre variables binaires

• Table de patients

Nom	Sexe	Fièvre	Toux	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	p	N	N	N	N

- Huit attributs, avec
 - ✓ Sexe un attribut symétrique, et
 - ✓ Les attributs restants sont asymétriques(test HIV,...)
- Les valeurs Y et P sont initialisées à 1, et la valeur N à 0
- Calculer la distance entre patients, basée sur le coefficient de Jaccard.

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

47

II.5.1.3.Distance –données énumératives

- Généralisation des variables binaires, avec plus de deux états , e.g., rouge, jaune , bleu, vert
- Méthode : correspondance simple
 ✓ M: le nombre de correspondance,
 P:le nombre totale de variables.

$$d(i,j) = \frac{P - M}{D}$$

II.5.1.4.Distance -données mixes

Exemple: (âge, propriétaire résidence principale, montant des mensualités en cours.

• x=(30,1,1000), y=(40,0,2200), z=(45,1,4000)

•
$$d(x,y) = \sqrt{\left(\left(\frac{10}{15}\right)^2 + 1^2 + \left(\frac{1200}{3000}\right)^2\right)} = 1.27$$

•
$$d(x,z) = \sqrt{\left(\left(\frac{15}{15}\right)^2 + 0^2 + \left(\frac{3000}{3000}\right)^2\right)} = 1.41$$

•
$$d(y,z) = \sqrt{\left(\left(\frac{05}{15}\right)^2 + 0^2 + \left(\frac{1800}{3000}\right)^2\right)} = 1.21$$

- Plus proche voisin de x=y
- Sommation: d(x,y)=d1(x1,y1)+...+dn(xn,yn)
 - II.6.Méthodes & algorithmes de clustering

Un algorithme de regroupement vise à produire des d'éléments (classes) à partir d'un ensemble d'éléments en regroupant

Module: Data Mining Année: 2022-2023

Nature de document: Cours

Niveau: L3STID N.BERMAD

Chapitre: 4

Titre: Apprentissage non supervisé

48 49

les éléments qui possèdent des caractéristiques communes. Il existe différent techniques de clustering en fonction de la nature de la structure résultante:

- Algorithmes de partitionnements (K-moyennes)
- Algorithmes hiérarchiques
- algorithmes par voisinage dense

II.6.1. Algorithmes de partitionnement

Partitionner une base de données D de N objets à un ensemble de k clusters

50

• Problème:

✓ Sachant *K*, chercher un partitionnement de *K clusters* qui optimise le critère de segmentation choisis

II.6.1. 1.Algorithme de K moyennes(K-Means)

- Entrée: un échantillon de m enregistrements $X_1,...X_m$, le nombre de groupes à constituer, $K \in N$
 - 1.Choisir K centre initiaux c_1 , c_k
 - **2.**Répartir chacun des m enregistrements dans le groupe i dans le centre ci est le plus proche

51

- 3. Si aucun élément ne change de groupe alors arrêt et sortir les groupes
- **4.** Calculer les nouveaux centre mobiles : pour tous i , ci est la moyenne des éléments du groupe i
- 5. Aller en 2

Exemple

- Huit points A, \dots, H de l'espace euclidien 2D, k=2 (deux groupes)
- Tirer aléatoirement 2 centre: B et D choisis.

Points	Centre D(2,4),B(2,2)	Centre D(2,4),I(27/7,17/7)	Centre J(5/3,10/3),K(24/5,11/5)
A(1,3)	В	D	J
B(2,2)	В	I	J
C(2,3)	В	D	J
D(2,4)	D	D	J
E(4,2)	В	I	K
F(5,2)	В	I	K
G(6,2)	В	I	K
H(7,3)	В	I	K

Module: Data Mining Année: 2022-2023

Nature de document: Cours

Niveau: L3STID N.BERMAD

Chapitre: 4

Titre: Apprentissage non supervisé

52

• Avantages & inconvénients de K-moyennes

- Relativement extensible
- Relativement efficace
- → Applicable seulement dans le cas où la moyenne des objets est définie
- ⊖ Besoin de spécifier K

• Les variantes de K-moyennes

- ✓ Sélection des centres initiaux
- ✓ Calcul des centres (k-medoids)
- ✓ GMM: variantes de K-moyennes basées sur les probabilités
- √ K-modes: données catégorielles
- ✓ K-prototype: données mixtes(numériques et catégoriques)

53