ЗАДАЧИ УСЛОВНОЙ ОПТИМИЗАЦИИ

Обобщенное правило множителей Лагранжа

Пусть заданы скалярная функция f(x) и вектор-функции $g(x) = (g_1(x), ..., g_m(x)), h(x) = (h_1(x), ..., h_k(x)),$ определенные на \mathbf{R}^n . Рассмотрим задачу условной минимизации при смешанных ограничениях

$$f(x) \to \min, x \in X = \{x : g(x) \le 0, h(x) = 0\}.$$
 (1)

Будем предполагать, что в задаче (1), k < n. В случае $k \ge n$ система уравнений $h_j(x) = 0$, $j = \overline{1,k}$, либо несовместна $(X = \emptyset)$, либо имеет единственное решение, либо некоторые из уравнений – следствие остальных (линейно зависимые уравнения отбрасываются, т. е. k становится меньше n).

Определение 1. Ограничение $g_i(x) \le 0$ называется **активным** на плане x^* , если $g_i(x^*) = 0$, и **пассивным**, если $g_i(x^*) < 0$.

Множество индексов ограничений, активных на плане x, обозначим через $I_{\rm a}(x)=\{i=\overline{1,m}:\ g_i(x)=0\}$. Тогда множеством индексов ограничений, пассивных на x, будет множество $I_{\rm II}(x)=\{1,\,2,\,...,\,m\}\setminus I_{\rm a}(x)$.

Справедливо следующее утверждение.

Классический метод исследования задач на условный минимум – *метод множителей Лагранжа*.

По элементам задачи (1) составим обобщенную функцию Лагранжа

$$F(x, \overline{\lambda}, \mu) = \lambda_0 f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{k} \mu_j h_j(x) = \lambda_0 f(x) + \lambda' g(x) + \mu' h(x),$$

где $\overline{\lambda}=(\lambda_0,\ \lambda),\ \lambda=(\lambda_1,...,\lambda_m),\ \mu=(\mu_1,...,\mu_k).$ Числа $\lambda_0,\ \lambda_i,\ i=\overline{1,m},$ $\mu_j,\ j=\overline{1,k},$ называют **множителями Лагранжа**, а вектор $(\overline{\lambda},\mu)$ – **обобщенным вектором Лагранжа**.

Теорема 1 (обобщенное правило множителей Лагранжа). Для каждого локально оптимального плана x^0 задачи (1), f, g_i , $h_j \in C^{(1)}(X)$, $i = \overline{1,m}$, $j = \overline{1,k}$, существует обобщенный вектор Лагранжа $(\lambda_0^0, \lambda^0, \mu^0) \in \mathbf{R}^{m+k+1}$, $\lambda_0^{0^2} + \left\|\lambda^0\right\|^2 + \left\|\mu^0\right\|^2 > 0$, такой, что выполняются соотношения:

условие неотрицательности $\lambda_0^0 \ge 0$, $\lambda^0 \ge 0$;

условие стационарности $\frac{\partial F(x^0, \overline{\lambda}^0, \mu^0)}{\partial x} = 0.$

условие дополняющей нежесткости $\lambda^{0}'g(x^{0})=0;$

Замечание 1. Достаточными условиями, гарантирующими существование множителей Лагранжа с $\lambda_0^0 = 1$, являются любое из следующих:

- 1) выпуклость функций $g_i(x)$, i = 1, m, отсутствие ограничений-равенств и существование точки $x^* \in X$ такой, что $g(x^*) < 0$ (условие Слейтера);
- 2) линейность функций g(x), h(x);
- 3) векторы-градиенты $\partial g_i(x^0)/\partial x$, $i \in I_a(x^0)$, $\partial h_j(x^0)/\partial x$, $j = \overline{1,k}$, линейно независимы.

Перечисленные условия называются условиями регулярности множества планов.

Общая схема решения задачи (1).

Составляем обобщенную функцию Лагранжа.

Записываем необходимые условия оптимальности (теорема 1), к этим условиям добавляются ограничения-равенства задачи (1). Полученная система алгебраических уравнений и неравенств дает планы (условно стационарные планы) задачи (1), которые "подозрительны" на оптимальность. Целесообразно проанализировать случаи, когда $\lambda_0 = 0$ и $\lambda_0 = 1$ (или λ_0 — любое положительное число). Если выполнено одно из трех условий регулярности, то случай $\lambda_0 = 0$ не рассматривается.

Среди найденных условно стационарных планов находим локально оптимальные планы и, если нужно, проводим анализ на глобально оптимальный план.

Классическое правило множителей Лагранжа

При исследовании задач на условный минимум используется классическая функция Лагранжа

$$F(x,\lambda,\mu) = f(x) + \lambda' g(x) + \mu' h(x), \qquad (2)$$

которая получается из обобщенной функции Лагранжа при $\lambda_0 = 1$. Как было сказано выше, это возможно лишь при выполнении одного из трех условий регулярности.

Числа λ_i , $i = \overline{1,m}$, μ_j , $j = \overline{1,k}$, как и ранее, называют *множителями Лагранжа*, а вектор (λ, μ) , $\lambda = (\lambda_1, ..., \lambda_m)$, $\mu = (\mu_1, ..., \mu_k)$, – *вектором Лагранжа*.

Определение 2. **План** $x^* \in X$ называется **регулярным**, если векторыградиенты $\partial g_i(x^*)/\partial x$, $i \in I_a(x^*)$, $\partial h_j(x^*)/\partial x$, $j = \overline{1,k}$, линейно независимы.

Теорема 2 (классическое правило множителей Лагранжа). Пусть x^0 – регулярный локально оптимальный план задачи (1). Тогда существует единственный вектор Лагранжа (λ^0 , μ^0), такой, что выполняются соотношения:

1) условие неотрицательности: $\lambda^0 \ge 0$;

2) условие дополняющей нежесткости: $\lambda^{0} g(x^{0}) = 0$;

3) условие стационарности:
$$\frac{\partial F(x^0, \lambda^0, \mu^0)}{\partial x} = 0$$
.

Определение 3. **П**лан $x^* \in X$, для которого справедливы условия теоремы 9.3, называется *условно стационарным*.

Таким образом, как следует из теоремы 2, локально оптимальные планы задачи (1) находятся среди условно стационарных планов.

Рассмотренную выше схему решения задачи (1) можно использовать в классическом случае, положив $\lambda_0 = 1$.

Согласно этой схеме решения, находим множество условно стационарных планов, среди которых могут быть неоптимальные. Отсеять неоптимальные планы позволяют условия оптимальности второго порядка.

Определение 4. Пусть x^* — условно стационарный план. Тогда, если $\lambda_i^* > 0$ ($\lambda_i^* = 0$), $i \in I_a(x^*)$, то ограничение $g_i(x) \leq 0$, активное на плане x^* , называется **жестким** (мягким). Обозначим через $I_a^+(x^*) = \{i \in I_a(x^*): \lambda_i^* > 0\}$, $I_a^0(x^*) = \{i \in I_a(x^*): \lambda_i^* = 0\}$ множества индексов жестких и мягких ограничений на плане x^* соответственно.

В дальнейшем предполагаем, что функции f(x), g(x), h(x) дважды непрерывно дифференцируемы, т. е. $f, g, h \in \mathbb{C}^{(2)}$.

Справедливы следующие утверждения.

Теорема 3 (необходимые условия оптимальности 2-го порядка). Пусть x^0 – регулярный локально оптимальный план задачи (9.1), для которого справедливы утверждения теоремы 9.3. Тогда для любого вектора $l \in \mathbf{R}^n$, удовлетворяющего системе

$$\frac{\partial g_{i}'(x^{0})}{\partial x}l \leq 0, \quad i \in I_{a}^{0}(x^{0}), \quad \frac{\partial g_{i}'(x^{0})}{\partial x}l = 0, \quad i \in I_{a}^{+}(x^{0}),$$

$$\frac{\partial h_{j}'(x^{0})}{\partial x}l = 0, \quad j = \overline{1,k},$$
(3)

выполняется неравенство

$$l'\frac{\partial^2 F(x^0, \lambda^0, \mu^0)}{\partial x^2}l \ge 0.$$

Теорема 4 (достаточное условие оптимальности). *Пусть условно стационарный план x^* удовлетворяет условию*

$$l'\frac{\partial^2 F(x^*, \lambda^*, \mu^*)}{\partial x^2}l > 0$$

для всех $l \in \mathbb{R}^n$, $l \neq 0$, удовлетворяющих системе (3), в которой x^0 заменен на x^* . Тогда x^* – локально оптимальный план задачи (1).

Замечание. Если решается задача на максимум, то в теоремах 1, 2 условие неотрицательности заменяется на условие неположительности, а в теоремах 3, 4 знак квадратичной формы меняется на противоположный.

Пример. Решить задачу нелинейного программирования

$$\frac{3}{2}x_1^2 + x_2^3 \to \min, \ x_1 + x_2 = 2, \ x_1 \le 5, \ x_2 \le 1.$$
 (4)

Имеем $f(x) = \frac{3}{2}x_1^2 + x_2^3$, $h(x) = x_1 + x_2 - 2$, $g_1(x) = x_1 - 5$, $g_2(x) = x_2 - 1$ и задача (4) принимает вид

$$f(x) \to \min,$$

$$g_1(x) \le 0, \quad g_2(x) \le 0,$$

$$h(x) = 0.$$
(5)

Задача (5) имеет решение (множество планов X компактно (рис. 9.3), а функция f(x) непрерывна). Заметим, что множество планов задачи регулярно, поскольку ограничения линейны.

В задаче (5) ограничения $g_1(x) \le 0$, $g_2(x) \le 0$ одновременно активными быть не могут, ибо, в противном случае, не будет удовлетворяться ограничениеравенство (при $x_1 = 5$, $x_2 = 1$ будем иметь $5 + 1 - 2 \ne 0$?!). Таким образом, активными могут быть ограничения: или $g_1(x) = 0$, h(x) = 0; или $g_2(x) = 0$, h(x) = 0; или h(x) = 0.

Составим функцию Лагранжа

$$F(x,\lambda,\mu) = \frac{3}{2}x_1^2 + x_2^3 + \lambda_1(x_1 - 5) + \lambda_2(x_1 - 1) + \mu(x_1 + x_2 - 2).$$

Классическое правило множителей приводит к соотношениям

$$\frac{\partial F(x,\lambda,\mu)}{\partial x_1} = 3x_1 + \lambda_1 + \mu = 0; \quad \frac{\partial F(x,\lambda,\mu)}{\partial x_2} = 3x_2^2 + \lambda_2 + \mu = 0;$$
$$\lambda_1 g_1(x) = \lambda_1 (x_1 - 5) = 0; \tag{6}$$

$$\lambda_2 g_2(x) = \lambda_2 (x_2 - 1) = 0, \ h(x) = x_1 + x_2 - 2 = 0; \ \lambda_1 \ge 0, \ \lambda_2 \ge 0.$$

Возможны ситуации (ограничение-равенство всегда активно):

- 1) активно ограничение $g_1(x) \le 0$, тогда $\lambda_2 = 0$;
- 2) активно ограничение $g_2(x) \le 0$, тогда $\lambda_1 = 0$;
- 3) оба ограничения-неравенства пассивны, тогда $\lambda_1 = \lambda_2 = 0$.

Решая систему (6) в этих ситуациях, найдем условно стационарные планы:

1)
$$x_1^* = 5$$
, $x_2^* = -3$, $\lambda_1^* = 12$, $\lambda_2^* = 0$, $\mu^* = -27$;

2)
$$x_1^* = 1$$
, $x_2^* = 1$, $\lambda_1^* = 0$, $\lambda_2^* = 0$, $\mu^* = -3$;

3)
$$x_1^* = 4$$
, $x_2^* = -2$, $\lambda_1^* = 0$, $\lambda_2^* = 0$, $\mu^* = -12$.

Квадратичная форма, соответствующая задаче, имеет вид

$$l'\frac{\partial^2 F(x,\lambda,\mu)}{\partial x^2}l = 3l_1^2 + 6x_2l_2^2.$$
 (7)

Составим соотношения (3) для каждого условно стационарного плана. Для первого плана (второе ограничение пассивно) имеем

$$\frac{\partial g_1'(x^*)}{\partial x}l = (1; \quad 0) \begin{pmatrix} l_1 \\ l_2 \end{pmatrix} = l_1 = 0; \quad \frac{\partial h'(x^*)}{\partial x}l = l_1 + l_2 = 0.$$

Отсюда следует $l_1=l_2=0$. Для второго плана (пассивно первое ограничение) получаем $\frac{\partial g_2'(x^*)}{\partial x}l=l_2\leq 0$, $\frac{\partial h'(x^*)}{\partial x}l=l_1+l_2=0$. Отсюда $l_1\geq 0$, $l_2\leq 0$. Для третьего плана (пассивны первое и второе ограничения) будем иметь $\frac{\partial h'(x^*)}{\partial x}l=l_1+l_2=0$, откуда получим $l_1=-l_2$.

Квадратичная форма (7) на первом плане равна нулю, на втором плане — определенно положительна (l_1 (или l_2) не равно нулю), на третьем плане — определенно отрицательна. Согласно теореме 4 третий план не может быть решением задачи (4). Из первых двух планов второй удовлетворяет теореме 4, на нем выполняется достаточное условие оптимальности. Таким образом, план $x_1^* = 1$, $x_2^* = 1$ глобально оптимальный, $f(1; 1) = \min_{x \in X} f(x) = 3/2 + 1 = 5/2$.

Заметим, что третий план является точкой локального максимума.