Linear Regression Assignment

In a watershed monitoring project, automated samplers are often used to collect water samples. However, these automated samplers may fail from time to time due to various instrumentation issues, such as power failure and damaged instruments. When the automated sampler failed to collect water samples, it leaves a data gap from a certain period of time.

Base flow nutrient concentration data are often linearly interpolated (or sometimes extrapolated) using nutrient data of the last and next sample collected. This approach cannot be applied to event flow nutrient and sediment (hereinafter refer as nutrient) data, especially phosphorus (P) and sediment (TSS), because of the large variations in nutrient concentration that can be caused by flow.

The objectived of this task are to:

- 1) develop a suitable model using existing dissolved reactive P (DRP), total P (TP), and TSS
- 2) predict the missing DRP, TP, TSS data using the model developed in (1)

```
In [99]: import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from scipy import stats
```

```
In [21]: # import data from excel
data = pd.read_excel('JY_linear_reg_data.xlsx', sheet_name = 'Data')
data.head()
```

Out[21]:

	Sample date	Site	Flow (cms)	DRP (mg P/L)	TP (mg P/L)	TSS (mg/L)	VSS (mg/L)
0	2015-05-19	S11	0.028210	0.018	0.0015	22.333667	19.264296
1	2015-06-16	S11	0.189993	0.027	0.1770	1006.666667	892.000000
2	2015-06-30	S11	1.296460	0.203	1.2590	1338.666667	1194.666667
3	2015-08-18	S11	0.131722	0.050	1.3280	2026.000000	1812.000000
4	2015-08-25	S11	0.120204	0.010	3.1180	1722.000000	1560.000000

```
In [22]: # drop 'VSS' column, rename the columns into shorter names

data = data.drop(columns=['VSS (mg/L)'])
   data = data.rename(columns={'Sample date': 'Date', 'Flow (cms)':'Flow', 'DRP (mg P/L)':'DR
   P', 'TP (mg P/L)':'TP', 'TSS (mg/L)':'TSS'})
   data.head()
```

Out[22]:

	Date	Site	Flow	DRP	TP	TSS
0	2015-05-19	S11	0.028210	0.018	0.0015	22.333667
1	2015-06-16	S11	0.189993	0.027	0.1770	1006.666667
2	2015-06-30	S11	1.296460	0.203	1.2590	1338.666667
3	2015-08-18	S11	0.131722	0.050	1.3280	2026.000000
4	2015-08-25	S11	0.120204	0.010	3.1180	1722.000000

```
In [117]:
          data 11 = data[data['Site'] == 'S11']
          data 12 = data[data['Site'] == 'S12']
          print(data 11.tail())
          print(data_12.tail())
                   Date Site
                                  Flow
                                          DRP
                                                  ΤP
                                                              TSS
          24 2018-09-11 S11 0.120500
                                        0.052
                                               0.338
                                                      363,333333
          25 2018-09-11 S11
                              0.115396
                                        0.014
                                               0.498
                                                      162.000000
          26 2018-09-26 S11
                                               0.293
                             0.085015
                                        0.010
                                                      474.500000
          27 2018-10-11 S11 0.113744
                                        0.047
                                                      148.000000
                                                0.190
                             0.156634
          28 2018-10-11 S11
                                          NaN
                                                 NaN
                                                              NaN
                   Date Site
                                  Flow
                                          DRP
                                                  ΤP
                                                             TSS
          60 2018-08-31 S12
                             0.028923
                                          NaN
                                                 NaN
                                                             NaN
          61 2018-09-06
                        S12 0.024730
                                          NaN
                                                 NaN
                                                             NaN
          62 2018-09-26 S12 0.022594
                                          NaN
                                                 NaN
                                                            NaN
          63 2018-10-11 S12 0.024522 0.001 0.042 11.666667
          64 2018-10-11 S12 0.044039
                                        0.003 0.040 20.333333
 In [43]: # check the number of null values
          print('S11')
          print(data 11.isnull().sum())
          print('S12')
          print(data 12.isnull().sum())
          S11
          Date
          Site
                  0
          Flow
                  0
          DRP
                  3
          ΤP
                  3
          TSS
                  3
          dtype: int64
          S12
          Date
                  0
          Site
                  0
          Flow
                  0
          DRP
                  4
          ΤP
                  4
          TSS
                  4
          dtype: int64
 In [47]:
          # create separate dataframe that only contain null values
          data 11 null = data_11[data_11.isnull().any(axis=1)]
          data_12_null = data_12[data_12.isnull().any(axis=1)]
          print('S11')
          print(data 11 null)
          print('S12')
          print(data 12 null)
          S11
                   Date Site
                                  Flow
                                        DRP
                                            TP
                                                 TSS
          21 2018-06-22 S11
                              0.103414
                                        NaN NaN
                                                 NaN
          22 2018-06-27
                         S11
                              0.189099
                                        NaN NaN
                                                 NaN
          28 2018-10-11 S11 0.156634
                                        NaN NaN
                                                 NaN
          S12
                   Date Site
                                  Flow
                                        DRP
                                             TP
                                                 TSS
          59 2018-08-21 S12
                              0.128687
                                        NaN NaN
                                                 NaN
          60 2018-08-31 S12 0.028923
                                        NaN NaN
                                                 NaN
          61 2018-09-06
                         S12
                              0.024730
                                        NaN NaN
                                                 NaN
          62 2018-09-26
                         S12 0.022594
                                        NaN NaN
                                                 NaN
```

```
In [195]: # drop the null values
          data_11 = data_11.dropna()
          data_12 = data_12.dropna()
          print('S11')
          print(data_11.isnull().sum())
          print('S12')
          print(data_12.isnull().sum())
          S11
          Date
                   0
                   0
          Site
                   0
          Flow
          DRP
                   0
          TP
                   0
          TSS
                   0
          dtype: int64
          S12
                   0
          Date
          Site
          Flow
                   0
          DRP
                   0
          ΤP
                   0
          TSS
          dtype: int64
```

```
# visualize the relationship between flow and responses
In [50]:
              sns.pairplot(data_11, x_vars=['DRP', 'TP', 'TSS'], y_vars=['Flow'], height=6, aspect=0.7)
sns.pairplot(data_12, x_vars=['DRP', 'TP', 'TSS'], y_vars=['Flow'], height=6, aspect=0.7)
Out[50]: <seaborn.axisgrid.PairGrid at 0x175d4795240>
                 1.2
                 1.0
                 0.8
                 0.6
                 0.4
                 0.2
                 0.0
                                       0.10
DRP
                                                0.15
                                                        0.20
                                                                                                2.5
                                                                                                      3.0
                                                                   0.0
                                                                                          2.0
                                                                                                                      2000
                                                                                                                            4000
                                                                                                                                   6000
                                                                                                                                         8000
                                                                                                                                               10000
                 0.4
                 0.3
              .
0.2
                 0.1
                 0.0
                                                                                               1.5
                                                                                                         2.0
                            0.05
                                 0.10
                                       0.15
                                            0.20
                                                 0.25 0.30
```

Objective 1

Develop a suitable model using existing dissolved reactive P (DRP), total P (TP), and TSS

```
In [80]: list_of_comparisons = ['DRP ~ Flow', 'TP ~ Flow', 'TSS ~ Flow']

for x in list_of_comparisons:
    print(x)
    result = smf.ols(formula=x, data=data_11).fit()
    print(result.summary())
```

DRP ~ Flow

OLS Regression Results

=========	======		=======	==========	=======	=======
Dep. Variable:		DRP	R-squ	ared.		0.719
Model:		OLS	-	R-squared:		0.708
Method:			•	tistic:		61.48
		Least Squares				
Date:		Fri, 04 Oct 2019		(F-statistic):		4.50e-08
Time:		11:01:56	Log-L	ikelihood:		61.156
No. Observation	ns:	26	AIC:			-118.3
Df Residuals:		24	BIC:			-115.8
Df Model:		1				
Covariance Typ	e:	nonrobust				
=========			======	==========	=======	
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0068	0.006	1.199	0.242	 -0.005	0.018
Flow	0.1487	0.019	7.841	0.000	0.110	0.188
	======	42.00			=======	2 226
Omnibus:		13.007		n-Watson:		2.306
Prob(Omnibus):		0.001	Jarqu	e-Bera (JB):		11.946
Skew:		1.467	Prob(JB):		0.00255
Kurtosis:		4.554	Cond.	No.		4.15
=========	======	===========	======	=========		=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

TP ~ Flow

OLS Regression Results

=========	======		======	=========	=======	
Dep. Variable:		TP	R-sc	uared:		0.036
Model:		OLS	Adj.	R-squared:		-0.005
Method:		Least Squares	F-st	atistic:		0.8870
Date:		Fri, 04 Oct 2019	Prob	(F-statistic)	:	0.356
Time:		11:01:56	Log-	Likelihood:		-26.991
No. Observatio	ns:	26	AIC:			57.98
Df Residuals:		24	BIC:			60.50
Df Model:		1				
Covariance Typ	e:	nonrobust				
=========	======		======			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.4394	0.167	2.626	0.015	0.094	0.785
Flow	0.5301		0.942	0.356	-0.632	1.692
Omnibus:	======	======================================	====== Durh	========= in-Watson:	=======	 1.758
Prob(Omnibus):		0.000		ue-Bera (JB):		59.814
Skew:		2.346		(JB):		1.03e-13
Kurtosis:		8.762		I. No.		4.15
=========	======	:========	======	=========	=======	=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

TSS ~ Flow

OLS Regression Results

=======================================	===============		
Dep. Variable:	TSS	R-squared:	0.003
Model:	0LS	Adj. R-squared:	-0.038
Method:	Least Squares	F-statistic:	0.08284
Date:	Fri, 04 Oct 2019	Prob (F-statistic):	0.776
Time:	11:01:56	Log-Likelihood:	-236.65
No. Observations:	26	AIC:	477.3
Df Residuals:	24	BIC:	479.8

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept Flow	813.7883 514.7888	531.769 1788.619	1.530 0.288	0.139 0.776	-283.730 -3176.739	1911.306 4206.316
=========	=======	=========	=======		========	========
Omnibus:		55.81	6 Durbi	in-Watson:		1.639
Prob(Omnibus	s):	0.00	0 Jarqı	ue-Bera (JB):	362.575
Skew:		4.08	5 Prob((JB):		1.85e-79
Kurtosis:		19.36	9 Cond.	. No.		4.15
========			=======		========	========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie ${\tt d}.$

```
In [52]: list_of_comparisons = ['DRP ~ Flow', 'TP ~ Flow', 'TSS ~ Flow']

for x in list_of_comparisons:
    print(x)
    result = smf.ols(formula=x, data=data_12).fit()
    print(result.summary())
```

DRP ~ Flow

OLS Regression Results

=========		==========	=======================================	=======
Dep. Variable:	:	DRP	R-squared:	0.413
Model:		0LS	•	0.393
Method:		Least Squares	F-statistic:	21.10
Date:		Fri, 04 Oct 2019	<pre>Prob (F-statistic):</pre>	7.32e-05
Time:		10:13:48	Log-Likelihood:	47.461
No. Observatio	ons:	32	AIC:	-90.92
Df Residuals:		30	BIC:	-87.99
Df Model:		1		
Covariance Typ	oe:	nonrobust		
=========				=======
	coef	std err	t P> t [0.025	0.975]
Intercept	0.0116	0.013	0.918	0.037
•	0.4836		4.593 0.000 0.269	0.699
=========		==========		=======
Omnibus:		47.570	Durbin-Watson:	1.320
Prob(Omnibus):	:	0.000	Jarque-Bera (JB):	236.046
Skew:		3.113	Prob(JB):	5.54e-52
Kurtosis:		14.759	Cond. No.	10.6
=========				=======

Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

TP ~ Flow

OLS Regression Results

=========	======	=========	=====	=====	========	=======	=======
Dep. Variable:	:		TP R	R-squa	red:		0.558
Model:		0	LS A	Adj. R	-squared:		0.543
Method:		Least Squar	es F	-stat	istic:		37.81
Date:		Fri, 04 Oct 20	19 P	rob (F-statistic):		9.20e-07
Time:		10:13:4	48 L	og-Li	kelihood:		0.093905
No. Observatio	ons:		32 A	AIC:			3.812
Df Residuals:			30 B	BIC:			6.744
Df Model:			1				
Covariance Typ	oe:	nonrobu	st				
=========		=========			========	======	
	coef	std err		t	P> t	[0.025	0.975]
Intercept	0.0357	0.055	0.6	544	0.524	-0.078	0.149
Flow	2.8447		6.1		0.000	1.900	3.790
						=======	
Omnibus:		13.7	85 D	Durbin	-Watson:		2.480
Prob(Omnibus):	•	0.0	01 J	Jarque	-Bera (JB):		15.234
Skew:		1.2	11 P	rob(J	B):		0.000492
Kurtosis:		5.3	59 C	Cond.	No.		10.6
=========		=========				=======	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

TSS ~ Flow

OLS Regression Results

=============	=======================================		
Dep. Variable:	TSS	R-squared:	0.556
Model:	OLS	Adj. R-squared:	0.541
Method:	Least Squares	F-statistic:	37.55
Date:	Fri, 04 Oct 2019	<pre>Prob (F-statistic):</pre>	9.76e-07
Time:	10:13:48	Log-Likelihood:	-230.79
No. Observations:	32	AIC:	465.6
Df Residuals:	30	BIC:	468.5

Df Model: 1
Covariance Type: nonrobust

========	========	========	:=======	-========		========
	coef	std err	t	P> t	[0.025	0.975]
Intercept Flow	-143.3081 3854.9033	75.413 629.085	-1.900 6.128	0.067 0.000	-297.323 2570.141	10.706 5139.665
========	=======	=======				
Omnibus:		20	.257 Durl	oin-Watson:		2.516
Prob(Omnibu	ıs):	0	.000 Jar	que-Bera (J	3):	68.576
Skew:		0	.986 Prol	o(JB):		1.29e-15
Kurtosis:		9	.895 Cond	d. No.		10.6
========	=======	=======	=======			========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

Discussion for objective 1

The quality of the OLS models was evaluated based on p-value and R2:

- 1) S11-DRP will work well
- 2) S11-TP will not work well
- 3) S11-TSS will not work well based on R2, p-value, and high Y-intercept value
- 4) S12- DRP will work well
- 5) S12 TP will work well
- 6) S12 TSS appear that it will work well based on R2 and p-value, but the Y-intercept is largely negative

Objective 2

Predict the missing DRP, TP, TSS data using the model developed in (1)

```
In [176]: # predict values and export the values into a dataframe for S11
list_of_comparisons = ['DRP ~ Flow', 'TP ~ Flow', 'TSS ~ Flow']
predictions_11 = pd.DataFrame(columns=list(list_of_comparisons))

for x in list_of_comparisons:
    result = smf.ols(formula=x, data=data_11).fit()
    prednull_11 = result.predict(data_11_null['Flow'])
    predictions_11.loc[:, x] = prednull_11
predictions_11
```

Out[176]:

	DRP ~ Flow	IP ~ Flow	155 ~ Flow
21	0.022142	0.494259	867.024807
22	0.034885	0.539682	911.134534
28	0.030057	0.522472	894.421904

Out[199]:

	DRP	TP	TSS	Flow	Date	Site
21	0.022142	0.494259	867.024807	0.103414	2018-06-22	S11
22	0.034885	0.539682	911.134534	0.189099	2018-06-27	S11
28	0.030057	0.522472	894.421904	0.156634	2018-10-11	S11

```
In [219]: analytes = ['DRP', 'TP', 'TSS']
            for x in analytes:
                 plt.scatter(data_11['Flow'], data_11[x], label='actual')
                 plt.scatter(predictions_11['Flow'], predictions_11[x], label='predicted')
                 plt.xlabel('Flow')
                 plt.ylabel(x)
                 plt.show()
                          actual
                0.20
                          predicted
                0.15
             윰 0.10
                0.05
                0.00
                            0.2
                                    0.4
                                           0.6
                                                  0.8
                                                         1.0
                                                                1.2
                     0.0
                                            Flow
                                                              actual
                3.0
                                                              predicted
                2.5
                2.0
             ₽ 1.5
               1.0
                0.5
                0.0
                                  0.4
                                          0.6
                                                 0.8
                                                        1.0
                                                               1.2
                    0.0
                           0.2
                                           Flow
                                                                 actual
                                                                 predicted
               10000
                8000
                6000
                4000
                2000
                   0
                                     0.4
                                                    0.8
                                                           1.0
                                                                  1.2
                      0.0
                                            0.6
                                              Flow
In [220]: data_11.shape
```

localhost:8892/nbconvert/html/Pictures/516x/module3/JY_Linear regression assignment.ipynb?download=false

Out[220]: (26, 6)

```
In [221]: | merged_11 = pd.concat([data_11, predictions_11], sort=True)
          merged 11 = merged 11.sort values(by=['Date'])
          merged 11.shape
Out[221]: (29, 6)
In [223]: # predict values and export the values into a dataframe for S12
          list of comparisons = ['DRP ~ Flow', 'TP ~ Flow', 'TSS ~ Flow']
          predictions 12 = pd.DataFrame(columns=list(list of comparisons))
          for x in list_of_comparisons:
              result = smf.ols(formula=x, data=data 12).fit()
              prednull 12 = result.predict(data 12 null['Flow'])
              predictions_12.loc[:, x] = prednull_12
          # add the values back into this new dataframe - getting the dataframe ready to merge with
           the main dataframe
          predictions_12 ['Flow'] = data_12_null ['Flow']
          predictions_12 ['Date'] = data_12_null ['Date']
          predictions 12 ['Site'] = 'S12'
          predictions_12 = predictions_12.rename(columns={'DRP ~ Flow': 'DRP', 'TP ~ Flow': 'TP', 'T
          SS ~ Flow': 'TSS'})
          predictions 12.shape
Out[223]: (4, 6)
```

```
JY_Linear regression assignment
In [222]: analytes = ['DRP', 'TP', 'TSS']
            for x in analytes:
                 plt.scatter(data_12['Flow'], data_12[x], label='actual')
                 plt.scatter(predictions_12['Flow'], predictions_12[x], label='predicted')
                 plt.xlabel('Flow')
                 plt.ylabel(x)
                 plt.show()
                                                               actual
               0.30
                                                               predicted
               0.25
               0.20
             윰 0.15
               0.10
               0.05
               0.00
                                          0.2
                     0.0
                                0.1
                                                     0.3
                                                               0.4
                                            Flow
               2.00
                          actual
                          predicted
               1.75
               1.50
               1.25
             ₽ 1.00
               0.75
               0.50
               0.25
               0.00
                     0.0
                                0.1
                                          0.2
                                                     0.3
                                                               0.4
                                            Flow
                          actual
                          predicted
               2500
```

0.2

Flow

0.3

0.4

2000

1500

1000

500

0

0.0

0.1

```
In [225]:
          merged 12 = pd.concat([data 12, predictions 12], sort=True)
           merged 12 = merged 12.sort values(by=['Date'])
           merged 12.shape
Out[225]: (36, 6)
In [229]: # merge all the data back together
           final merged = pd.concat([merged 11, merged 12])
           print(final merged.shape)
           print(final merged.isnull().sum())
           (65, 6)
           DRP
          Date
                  0
          Flow
                  0
          Site
                  0
          ΤP
          TSS
                  0
          dtype: int64
```

Discussion for objective 2

From the figures above where predicted and actual values were plotted:

- 1) S11-DRP worked well
- 2) S11-TP worked okay (within somewhat expected range, but the model had weak R2 and p-value)
- 3) S11-TSS worked okay (within somewhat expected range)
- 4) S12- DRP worked well
- 5) S12 TP worked well
- 6) S12 TSS did not work at all (some of the predicted TSS concentrations were negative)

In summary, this OLS model worked well for DRP and TP, but not TSS. Another suitable model is needed to predict TSS concentration. A potential approach is to multiple-linear-regression to incorporate several parameters such as precipitation data (antecedent condition) and time of the year (seasonality - land cover density).

```
In [ ]:
```