OPTIMIZACIÓN

Primer Cuatrimestre 2025

Práctica N° 1: Condiciones de optimalidad

Ejercicio 1 Sea $g: \mathbb{R} \to \mathbb{R}$ una función estrictamente creciente y $f: \mathbb{R}^n \to \mathbb{R}$. Probar que minimizar $f(\mathbf{x})$ es equivalente a minimizar $g(f(\mathbf{x}))$.

Ejercicio 2 Muestre que para $f(x) = x^3$, el punto x = 0 satisface las condiciones necesarias de optimalidad pero no es un mínimo.

Ejercicio 3 Muestre que para $f(x) = x^4 - x^2$, los únicos puntos que satisfacen las condiciones necesarias de optimalidad son $0, \frac{1}{\sqrt{2}}$ y $\frac{-1}{\sqrt{2}}$ pero ninguno de ellos es un mínimo global.

Ejercicio 4 Muestre que la función $f(x,y) = x^2 - y^3$ verifica $\nabla f(0,0) = 0$ y $Hf(0,0) \ge 0$ pero que sin embargo el punto (0,0) no es un mínimo local.

Ejercicio 5 Demuestre que si x^* es un mínimo local estricto y no-singular de una función C^2 entonces es un mínimo aislado, es decir, existe un entorno U de x^* tal que x^* es el único punto estacionario en U.

Ejercicio 6 Considerar la función

$$f(x) = x^4 \cos\left(\frac{1}{x}\right) + 2x^4, \quad f(0) = 0,$$

Mostrar que $f \in C^2$, y que tiene un mínimo local estricto en $x^* = 0$. Mostrar que también existen mínimos locales estrictos en puntos x_j , de modo que $x_j \to 0$ cuando $j \to \infty$. ¿Por qué esto no contradice el resultado del ejercicio anterior?

Ejercicio 7 Calcular los puntos críticos de las siguientes funciones y determinar si son extremos y de qué tipo. Graficar las funciones y sus curvas de nivel. Puede resultar útil también realizar un heatmap (ver documentación).

- (a) **Rosenbrock:** $f(x,y) = 100(y-x^2)^2 + (x-1)^2$
- (b) **Booth:** $f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$
- (c) **McCormick:** $sen(x+y) + (x-y)^2 \frac{3}{2}x + \frac{5}{2}y + 1$

Ejercicio 8 (Equilibrio y minimización de potenciales) Considerar un problema como el de la figura, en la que se tiene una superficie con n agujeros realizados en los puntos \mathbf{z}^i y n masas m_i ($i=1,\ldots,n$), que cuelgan de piolines pasados por esos agujeros. Todos los piolines confluyen en un nudo sobre la superficie. Llamamos \mathbf{x} a la posición del nudo. Buscamos la posición \mathbf{x}^* que corresponde al equilibrio del sistema, asumiendo que no hay rozamiento.

- (a) Escribir la fuerza $F(\mathbf{x})$ que actúa sobre el punto \mathbf{x} . Sug.: Aplicar la segunda ley de Newton $(fuerza = masa\ por\ aceleración)$ a cada cuerda.
- (b) Hallar un potencial $f(\mathbf{x})$, tal que $F(\mathbf{x}) = -\nabla f(\mathbf{x})$. Mostrar que hallar el punto de equilibrio equivale a minimizar el potencial.
- (c) Observar que minimizar el funcional equivale a hallar un punto \mathbf{x}^* que minimice la suma ponderada de las distancias a los \mathbf{z}^i .
- (d) Dar una fórmula para \mathbf{x}^* en términos de los \mathbf{z}^i .

Figure 1: Ejercicio ??. Masas que cuelgan atadas a un mismo piolín.

Ejercicio 9 (Problema de Fermat, Torricelli, Viviani) Dado un triángulo se busca el punto x^* tal que la suma de las distancias a los vértices sea mínima. Probar que x^* es: o bien un vértice, o bien un punto tal que los segmentos que lo unen a los vértices determinan tres ángulos de 120° . Comparar con el ejercicio anterior.

Ejercicio 10 Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función diferenciable. Suponga que un punto x^* es un mínimo local de f a lo largo de cada recta que pasa por x^* ; es decir, la función

$$g(\alpha) = f(x^* + \alpha d)$$

se minimiza en $\alpha = 0$ para todo $d \in \mathbb{R}^n$.

- (a) Demuestre que $\nabla f(x^*) = 0$.
- (b) Muestre mediante un ejemplo que x^* no necesariamente es un mínimo local de f.

 Sugerencia: considere la función de dos variables

$$f(y,z) = (z - py^2)(z - qy^2)$$

donde $0 , y observe que <math>f(y, my^2) < 0$ para todo $y \neq 0$, mientras que f(0, 0) = 0.

Ejercicio 11 (Estabilidad) Un mínimo local sin restricciones x^* de una función f se dice *local-mente estable* si existe $\delta > 0$ tal que cualquier sucesión $\{x^k\}$ con

$$f(x^k) \to f(x^*), \quad ||x^k - x^*|| < \delta, \quad \forall k \ge 0$$

converge a x^* .

- (a) Muestre que x^* es localmente estable si y solo si x^* es un mínimo local estricto, es decir, si existe un entorno U de x^* tal que para todo $x \in U$, con $x \neq x^*$, se tiene $f(x^*) < f(x)$.
- (b) Sea q una función continua. Muestre que si x^* es localmente estable, existe $\delta > 0$ tal que para todo $\epsilon > 0$ suficientemente pequeño, la función $f(x) + \epsilon g(x)$ tiene un mínimo local sin restricciones x_{ϵ} tal que $||x^* - x_{\epsilon}|| \leq \delta$. Además, $x_{\epsilon} \to x^*$ cuando $\epsilon \to 0$.

Ejercicio 12 (Sensibilidad) Sean $f: \mathbb{R}^n \to \mathbb{R}$ y $g: \mathbb{R}^n \to \mathbb{R}$ funciones dos veces continuamente diferenciables, y sea x^* un mínimo local no singular de f (es decir, $\nabla^2 f(x^*)$ es invertible). Muestre que existen $\hat{\epsilon} > 0$ y $\delta > 0$ tales que para todo $\epsilon \in [0, \hat{\epsilon}]$, la función

$$f(x) + \epsilon g(x)$$

tiene un único mínimo local $x \in B_{\delta}(x^*)$, y se cumple que

$$x_{\epsilon} = x^* - \epsilon (\nabla^2 f(x^*))^{-1} \nabla g(x^*) + o(\epsilon).$$

Sugerencia: use el teorema de la función implícita.

Funciones Convexas, cuadrados mínimos, y descomposiciones de matrices:

Ejercicio 13 Probar que si $f: \mathbb{R}^n \to \mathbb{R}$ es estrictamente convexa y tiene mínimo, entonces el mínimo es único. Dar un ejemplo de función estrictamente convexa sin mínimo.

Ejercicio 14 $f: \mathbb{R}^n \to \mathbb{R}$ estrictamente convexa con un único mínimo \mathbf{x}^* . Probar que $f(\mathbf{x}) \to \infty$ cuando $\|\mathbf{x}\| \to \infty$.

Ejercicio 15 Sea $\emptyset \neq \Omega \subset \mathbb{R}^n$ convexo, $f:\Omega \to \mathbb{R}$ de clase C^2 . Probar que f es convexa si v sólo si su matriz hessiana es semidefinida positiva en Ω .

Ejercicio 16 Probar que la función F(x,y) = xy, que es lineal en cada variable, no es convexa como función de \mathbb{R}^2

Ejercicio 17 Dado un vector v, definimos $||v||_0$, o la "norma 0" de un vector, como la cantidad de entradas no-nulas que posee.

- (a) Muestre que $||v||_0$ no es una función convexa de v.
- (b) Muestre que la norma $||v||_1$ sí es una función es convexa.

Ejercicio 18 En muchas aplicaciones se busca minimizar el rango de una matriz.

- (a) Muestre que la función rq(A) no es una función convexa de A.
- (b) Muestre que la llamada norma nuclear $||A||_* = \sum \sigma_i(A)$, donde $\sigma_i(A)$ es el *i*-esimo vector singular de la matriz A, sí es una función convexa de A.

Ejercicio 19 (Ridge Regression) Consideremos el problema definido por la función objetivo

$$f(\beta) = ||X\beta - y||^2 + \lambda ||\beta||^2,$$

donde $X \in \mathbb{R}^{n \times p}$ es la matriz de diseño, $y \in \mathbb{R}^n$ es el vector de observaciones, $\beta \in \mathbb{R}^p$ es el vector de parámetros, y $\lambda > 0$ es el parámetro de regularización.

(a) Halle las condiciones de primer orden y verifique que son equivalentes a las ecuaciones normales modificadas:

$$(X^TX + \lambda I)\beta = X^Ty.$$

(b) Muestre que el problema es convexo y que por lo tanto la solución obtenida en el punto anterior es el único mínimo de la función objetivo.

Ejercicio 20 (Norma de Frobenius) Dadas matrices $M \in \mathbb{R}^{m \times q}$ y $B \in \mathbb{R}^{m \times p}$, se desea resolver el problema de cuadrados mínimos para la norma de Frobenius:

$$\min_{X \in \mathbb{R}^{p \times q}} f(X) = \|M - BX\|_F^2,$$

Muestre que el mínimo global está dado por la soluución de la siguiente ecuación matricial:

$$B^T B X = B^T M.$$

Sugerencia: recuerde que la norma de Frobenius viene dada por:

$$||A||_F^2 = \sum_{i,j} a_{ij}^2 = \text{trace}(A^T A).$$

Ejercicio 21 (Problema Netflix) Se tiene una matriz de calificaciones $R \in \mathbb{R}^{n \times m}$, donde cada entrada R_{ij} representa la calificación que el usuario i ha otorgado a la película j. En la práctica, la matriz R es muy rala, ya que no todos los usuarios califican todas las películas; se conoce únicamente el conjunto de índices $\Omega \subset \{1, \ldots, n\} \times \{1, \ldots, m\}$ para los cuales se dispone de una calificación. El objetivo es aproximar R mediante una factorización en dos matrices de baja dimensión, $U \in \mathbb{R}^{n \times k}$ y $V \in \mathbb{R}^{m \times k}$, de forma que

$$R_{ij} \approx U_i^T V_i \quad \text{para } (i,j) \in \Omega,$$

donde U_i y V_j son las filas de U y V, respectivamente. El problema de optimización es:

$$\min_{U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}} F(U, V) = \sum_{(i,j) \in \Omega} \left(R_{ij} - U_i^T V_j \right)^2.$$

- (a) Demuestre que la función objetivo F(U,V) no es convexa en (U,V) conjuntamente. Sin embargo, muestre que, al fijar V (o U), la función se reduce a un problema de mínimos cuadrados en U (o V) que es convexo.
- (b) Derive las ecuaciones normales correspondientes para actualizar U fijado V, y viceversa, a partir de las condiciones de optimalidad.
- (c) ¿Cómo hay que modificar las condiciones normales si se añaden términos de regularización con la norma $\|\cdot\|_2$?
- (*) Implemente el método de cuadrados mínimos alternados (ALS) con regularización y aplíquelo al dataset de Netflix.