Universität Bonn

Physikalisches Institut

Measurement of a single top quark production in association with a Z boson in ATLAS

Kanhaiya Gupta

The total cross-section of a single top quark production in association with a Z boson is measured in proton-proton collision data at a center-of-mass energy of 13 TeV recorded by the ATLAS experiment at LHC. The full Run II dataset (2015-2018) which corresponds to an integrated luminosity of 139 fb⁻¹ is analysed. In this production mechanism, the top quark is produced via the t-channel and the Z boson is either radiated off from one of the participating quarks or produced via W boson fusion, leading to a signature of a single top quark, a Z boson and an additional quark. Events are selected based on the presence of three leptons (electrons or muons), two or three jets (one identified as coming from a b-quark), and substantial missing transverse energy. The three leptons come from leptonic Z boson decay and semi-leptonic top quark decay. Major backgrounds come from diboson, $t\bar{t}V$, Z+jets and $t\bar{t}$. The non-prompt leptons background processes which are difficult to simulate are studied by implementing different isolation criteria. A python based (tensorflow) neural network algorithm is trained in order to separate the signal and background distributions. A simultaneous binned maximum-likelihood fit of the signal regions and control regions is performed and from the fit cross-section is extracted. The extracted cross-section of tllq is $\sigma(pp \to tZq \to Wbl^+l^-q) = 132 \pm$ $12 \text{ (stat)} \pm 17 \text{ (syst)}$ fb with the SM prediction of 102 fb under the assumption of a top-quark mass of $m_t = 172.5 \text{ GeV}.$

Physikalisches Institut der Universität Bonn Nussallee 12 D-53115 Bonn

BONN-IR-2022-01 January 2022

Contents

1	Intro	duction	n	1						
2	The	heoretical concepts								
	2.1		andard model of particle physics	3						
	2.2		es at hadron colliders							
	2.3		uark physics							
3	The	LHC an	nd the ATLAS experiment	5						
	3.1	Large 1	hadron collider	5						
	3.2	A toro	oidal LHC apparatus (ATLAS)	5						
		3.2.1	Inner detector	5						
		3.2.2	Calorimetry	5						
		3.2.3	Muon system	5						
		3.2.4	Trigger system	5						
	3.3	Physic	es objets reconstruction in ATLAS							
		3.3.1	Electrons	5						
		3.3.2	Muons							
		3.3.3	Jets							
		3.3.4	Missing transverse energy							
4	Data	and Mo	Ionte Carlo simulated events	7						
Ċ	4.1		sample	7						
	4.2		e Carlo simulation							
		4.2.1	Signal sample							
		4.2.2	Background sample							
		4.2.3	Re-weighting of Monte Carlo simulated events.							
5	Ever	nts sele	ection	9						
٠	5.1		vent reconstruction	_						
	5.2		I region							
	3.2	5.2.1	Lepton isolation working point							
		5.2.2	Optimization of cuts							
		5.2.3	Signal regions (SRs) plots and yields							
	5.3		ol regions (CRs)							
	3.3	5.3.1	Diboson CRs plots and yields							
			tt7 CRs plots and yield							

	5.3.3 $t\bar{t}$ CRs plots and yields
6	Analysis
	6.1 Cross-section measurement analysis strategy
	6.2 Signal and background separation
	6.3 Multivariate analysis technique: Artificial neural network (NN)
	6.3.1 Input variables
	6.3.2 Data and MC comparison
	6.3.3 NN training in the SRs and $t\bar{t}Z$ CRs
	6.4 Signal extraction - Profile likelihood fit
	6.4.1 Fitted regions
	6.4.2 Binning optimization
	6.5 Systematics uncertainties
	6.5.1 Sources of systematics uncertainties
	6.5.2 Symmetrizing, smoothing and pruning
7	Results
	7.1 Expected fit results
	7.2 Observed fit results
	7.3 Discussion of the results
8	Conclusion
	oliography