ARM Cortex-M3 Mimarisi, Stm32f1xx Serisi ve Canbus yapısı

ARMiş lemci, Advanced RISC Machines (ARM) firması tarafından geliş tirilen RISC (azaltılmış komut seti bilgisayarı) mimarisine dayanan bir CPU ailesindendir. Bugta ER

ARM, 32 bit ve 64 bit RISC çok çekirdekli iş lemciler yapar . RISC iş lemcileri , daha az sayıda bilgisayar talimatı erçekleş tirecek şekilde tasarlanmış tır, böylece saniyede milyonlarca komut gerçekleş tirerek daha yüksek hızda

çalış abilirler (MIPS). Gereksiz talimatları söküp ve yolları optimize ederek, RISC iş lemcileri, CISC (karmaş ık komut seti hesaplama) cihazlarının güç talebinin bir kısmında üstün performans sunar.

ARM işlemci özellikleri şunları içerir:

Yük/ depo mimarisi.

Ortogonal bir komut seti.

Çoğunlukla tek çevrim yürütme. Buğra ER Geliş miş güç tasarrufu tasarımı.

Ölçeklenebilir yüksek performans için 64 ve 32-bit yürütme durumları.

Donanım sanallaş tırma desteği.

Mimari zaman içinde gelişti ve mimarinin yedi sürümü olan ARMv7, üç mimari "profili" tanımladı:

Cortex-A serisinde 32 bit çekirdek ve bazı APMolmayarı çekirdekler tarafından uygulanan Aprofili, "Uygulama" profili

Cortex-R serisindeki çekirdekler tarafından uygulanan "gerçek zamanlı" profil olan Rprofili

Cortex-M serisindeki çoğ u çekirdek tarafından uygulanan "Mikrodenetleyici" profili olan Mprofili

ARM7TDMIserisi Von Neumanmimarisines a hip ken Cortex-M3 Harvard mimarisin de.

ARM Cortex-M isteğe bağlı bileşenler

ARM Çekirdeği	Cortex M0 ^[2]	Cortex M0 + ^[3]	Cortex M1 ^[4]	Cortex M3 ^[5]	Cortex M4 ^[6]	Cortex M7 ^[7]	Cortex M23 ^[8]	Cortex M33 ^[12]	Cortex M35P
SysTick 24-bit Zamanlayıcı	İsteğe bağlı	İsteğe bağlı	İsteğe bağlı	Evet	Evet	Evet	Opsiyonel	Evet	Evet
Systick 24-bit Zamaniayici	(0,1)	(0,1)	(0,1)	(1)	(1)	(1)	(0,1,2)	(1,2)	(1,2)
Tek döngülü G / Ç bağlantı noktası	Hayır	ste e bağlı	Hayır	Hayır	Hayır	Hayır	İsteğe bağlı	Hayır	Hayır
Bit-Bant belleği	Hayır ^[13]	Hə ir 113	H ayict	İsteğe (bağlı	<u>İ</u> steğe bağlı	İsteğe bağlı	Hayır	Hayır	Hayır
Bellek Koruma	Haver	Opsiyonel	Начиг	Opsiyonel	Opsiyonel	İsteğe bağlı	İsteğe bağlı	Ísteğe bağlı	Opsiyonel
Birimi (MPU)	Пауш	Hayır (0,8)	(8,0)	(0,8)	(0,8,16)	(0,4,8,12,16)	(0,4,8,12,16)	*	
Güvenlik İlişkilendirme							Oneivonal	Opsiyonel	Opsiyonel
Birimi (SAU) ve	Hayır	Hayır	Hayır	Hayır	Hayır	Hayır	Opsiyonel (0,4,8)	(0,4,8)	*
Yığın Sınırları							(0,4,0)	(0,4,0)	
Talimat TCM	Hayır	Hayır	Ísteğe bağlı	Hayır	Hayır	Ísteğe bağlı	Hayır	Hayır	Hayır
Veri TCM	Hayır	Hayır	İsteğe bağlı	Hayır	Hayır	İsteğe bağlı	Hayır	Hayır	Hayır
Talimat Önbelleği	Hayır ^[14]	Hayır ^[14]	Hayır ^[14]	Hayır ^[14]	Hayır ^[14]	İsteğe bağlı	Hayır	Hayır	İsteğe bağlı
Veri Önbelleği	Hayır ^[14]	Hayır ^[14]	Hayır ^[14]	Hayır ^[14]	Hayır ^[14]	Ísteğe bağlı	Hayır	Hayır	Hayır
Vektör Tablosu Ofset	Haver	İsteğe bağlı	İsteğe bağlı	İsteğe bağlı	İsteğe bağlı	İsteğe bağlı	Opsiyonel	Evet	Evet
Kaydı (VTOR)	Hayır	(0,1)	(0,1)	(0,1)	(0,1)	(0,1)	(0,1,2)	(1,2)	(1,2)

Cortex-M3 çekirdeğinin temel özellikleri şunlardır:

ARMv7(Acorn Risc Machine) mimarisi 32-bit RISC iş lemci mimarisi 3 aş amalı pipeline ile branch specularisi 12 ER 32 bit donanım tamsayı bölmesi (2–12 döngü) ER

1 ila 240 kesinti artı NMI.

12 döngü kesinti gecikmesi.

Entegre uyku modları. Düş ük güç tüketimi

Cortex-M3 Thumb-2 komut setini destekliyor. Sadeleş tirilmiş komut seti.

Aşağıdaki mikro denetleyiciler Cortex-M3 çekirdeğini temel alır:

STSTM32 F1, F2, L1, W Holtek HT32F Infineon TLE9860, TLE987x Microchip (Atmel) SAM 3A, 3N, 3S, 3U, 3X **Toshiba TX03**

ARM Teknolojisi:

Thumb

Thumb2

TrustZone

Jazelle

SIMB

DSPKomutları

CMSIS

NVIC

Thumb

Thumb komut seti ARM komut setinden farklı olarak 16 hit ile çalış ır. Hafizidi daha az yer kapıa məşi ve periormanı artışı sağ ladığı için tercih edilir.

Thumb2

Komut çeş itliğ i, performans ve ARM komut setiyle aynı anda kullanılabilirliğ i açısından thumb komut setinin geliş tirilmesiyle oluş muş bir sistemdir

CMSIS

Cortex mikrodenetleyici yazılım ara yüzü standardıdır. Cortex çekirdeğ ine sahip işlemciler üzerinde, üreticiden ve çipden bağımsız olarak basit bir şekilde gerçek zamanlı işletim sistemi kullanabilmeuye olanak sağlar

NVI

Kesme(interrupt) modülüdür. İşlemci üzerindeki bütün portlara harici kesme verebilme olanağı sağ lamaktadır.

TemelKavramlar

Register(Kaydedici)
Instruction(Komut)
Decoder(Çözücü)
Accumulator(Toplayıcı)
Memory(Hafiza)

İşlemciye Ait Birimler

Komut Kaydedici (Instruction Register)
Komut Çözücü (Instruction Decoder)
ALU (Arithmetic Logic Unit)

Data bus

Memory(Hafıza) Kodunokunduğuhafızaalanıdır

ProgramCounter(ProgramSayıcı)
Hafızaüzerindehangisatırdanokumayapacağını
belirleyen kısımdır

Instruction(Komut)
Memory üzerinden okunan makina kodunu yorumlar

ALU Mantıksalişlemleriyapanbirimdir

Accumulator ALUsonucla_{riaccumulatorekaydedilir}

> WriteBack Geriya_{zma}operasyonudur

Pipeline

Birden fazla komutun aynı anda işlenmesi Birden ER pipelinedeni Birden fazla komutun aynı anda işlenmesi Birden ER

ARM Tabanlı Sistemlerde 3 aşamalı(fetch, decode execute)pipelinekullanılır

RISC(ReducedInstructionSetComputer):

Daha az komutla çalışan, tek bir saat döngüsün de çalışacak çok hızlı komtları işleyebilecek, basit bir devre tasarımıyla gelmiştir. ARM tabanlı sistemlerde RISC kullanılır.

CISC(ComplexInstructionSetComputer);

İşlemci kendi üzerinde bulunan minyatür bir yazılımı kullanarak komut setlerini çalıştırır. Bu sayede komut setleride RISC

Buğta

Ende kendi üzerinde bulunan minyatür bir yazılımı kullanarak komut setlerini çalıştırır. Bu sayede komut setleri değişik uzunluklarda olabilir ve bütün adresleme podellerini kullanabilirler. Bunun dezavantajı .alışmak cin dahaa karmaşık devre tasarımına ihtiyac duyulmasıdır.

CISC

- İnterpreter kullanılır.
- Geriye uyumluluk vardır
- Ucuzdur
- Komut seti karmaşıktır
- Eklemeler daha az maliyet ile yapılır

RISC

- Interpreter kullanılmaz.
- Geriye uyumluluk yok

- Komut seti basit
- Değişiklik maliyetli olur

Yorumlayıcı(Interpreter)
Compiler(Derleyici)

Aynıişlemörnek

CISC: MULT (1,1), (1,2)

RISC: LOAD A, (1,1)

LOAD B, (1,2)

PROD A, B

STORE (1,1), A

Cortex M 3 Çekirdeği ve Kaydedicileri

Registers

- R0 R12
- R13, stack pointer (SP)
- R14, link register (LR)
- R15, program counter (PC)

8051mimarisineaşinaolanlarınçokiyibildiği"biterişimözeliği(bitband)"Cortex-M3'tedebulunuyor.Böylelikleyoğunşekildebit üzerindeişlemyapılan,IOkontrolağırlıklıuygulamalardayüksekperformanseldeedilebiliyor.

8051mikrodenetleyicisindekulandığımızpinleri1yapmakiçin "SETBP1.1"as emblykodunukulanıyorduk,bukodbirbit bandingişlemidiryanibirbyteıniçindekitekbitemüdahale yapabiliyoruz.Buözeliğ eliteratürdebitbandingdeniliyor.

Soldagördüğ ümüzgibiCortexIM3mikrodenetleyicisindebitbandingiçin ayrılanbölümlerikiyeayrılır.Bunlar;

BitBandRegion BitBand Alias'dır.

ARMCortexM3çekirdekliStm32f103c8t6serisimiktroişlemci

STM32F103C8T6 in LQFP48 package

ARM®32-bit Cortex®-M3 CPU

72 MHz max CPU frequency

VDDfrom 2.0 Vto 3.6 V

64 KB Flash

20 KB SRAM

GPIO (32) with external interrupt capability

12-bit ADC(2) with 10channels

RTC

Timers (4)

I2C (2)

USART (3)

SPI (2)

USB 2.0 full-speed

CAN

DMA (Direct Memory Access)

7 Kanal DMA Denetleyicisi

DMA (Direct Memory Access) CPU'dan bağ **ST**Imsız olarak veriye eriş memizi **S**Böylece iş lemcinin yükünü hafifletmiş oluruz.

System architecture

In low-, medium-, high- and XL-density devices, the main system consists of:

- Four masters:
 - Cortex®-M3 core DCode bus (D-bus) and System bus (S-bus)
 - GP-DMA1 & 2 (general-purpose DMA)
- Four slaves
 - Internal SRAM
 - Internal Flash memory
 - FSMC
 - AHB to APBx (APB1 or APB2), which connect all the APB peripherals

Aynı zamanda birden çok işlemi çş yürütme görevinde de kullanılır. Buzabanı zamanlayıcı, ADC, SPI, I2C zevrebirimlerini desteklemektedir.

In connectivity line devices the main system consists of:

- Five masters:
 - Cortex[®]-M3 core DCode bus (D-bus) and System bus (S-bus)
 - GP-DMA1 & 2 (general-purpose DMA)
 - Ethernet DMA
- Three slaves:
 - Internal SRAM
 - Internal Flash memory
 - AHB to APB bridges (AHB to APBx), which connect all the APB peripherals

Adreslemeler

K	1101	ra	\dashv
Bus	5 R	egister ma	ıp J

Boundary address	Peripheral	Bus	Register map
0xA000 0000 - 0xA000 0FFF	FSMC		Section 21.6.9 on page 564
0x5000 0000 - 0x5003 FFFF	USB OTG FS		Section 28.16.6 on page 913
0x4003 0000 - 0x4FFF FFFF	Reserved		-
0x4002 8000 - 0x4002 9FFF	Ethernet		Section 29.8.5 on page 1069
0x4002 3400 - 0x4002 7FFF	Reserved		-
0x4002 3000 - 0x4002 33FF	CRC		Section 4.4.4 on page 65
0x4002 2000 - 0x4002 23FF	Flash memory interface	AHB	-
0x4002 1400 - 0x4002 1FFF	Reserved	AIID	-
0x4002 1000 - 0x4002 13FF	Reset and clock control RCC		Section 7.3.11 on page 121
0x4002 0800 - 0x4002 0FFF	Reserved		-
0x4002 0400 - 0x4002 07FF	DMA2		Section 13.4.7 on page 289
0x4002 0000 - 0x4002 03FF	DMA1		Secutif 13.4.7 on page 209
0x4001 8400 - 0x4001 FFFF	Reserved		-
0x4001 8000 - 0x4001 83FF	SDIO		Section 22.9.16 on page 621

Boundary address	Peripheral	Bus	Register map
0x4000 7800 - 0x4000 FFFF	Reserved		-
0x4000 7400 - 0x4000 77FF	DAC		Section 12.5.14 on page 273
0x4000 7000 - 0x4000 73FF	Power control PWR		Section 5.4.3 on page 80
0x4000 6C00 - 0x4000 6FFF	Backup registers (BKP)		Section 6.4.5 on page 85
0x4000 6400 - 0x4000 67FF	bxCAN1		Darties 04 0 5 as asset 605
0x4000 6800 - 0x4000 6BFF	bxCAN2		Section 24.9.5 on page 695
0x4000 6000 ⁽¹⁾ - 0x4000 63FF	Shared USB/CAN SRAM 512 bytes		-
0x4000 5C00 - 0x4000 5FFF	USB device FS registers		Section 23.5.4 on page 651
0x4000 5800 - 0x4000 5BFF	I2C2		Section 26.6.10 on page 784
0x4000 5400 - 0x4000 57FF	I2C1		Section 20.0. To on page 704
0x4000 5000 - 0x4000 53FF	UART5		
0x4000 4C00 - 0x4000 4FFF	UART4		Section 27.6.8 on page 827
0x4000 4800 - 0x4000 4BFF	USART3		Section 27.0.6 on page 627
0x4000 4400 - 0x4000 47FF	USART2		
0x4000 4000 - 0x4000 43FF	Reserved		-
0x4000 3C00 - 0x4000 3FFF	SPI3/I2S	APB1	Section 25.5 on page 742
0x4000 3800 - 0x4000 3BFF	SPI2/I2S		Section 25.5 on page 742
0x4000 3400 - 0x4000 37FF	Reserved		-
0x4000 3000 - 0x4000 33FF	Independent watchdog (IWDG)		Section 19.4.5 on page 499
0x4000 2C00 - 0x4000 2FFF	Window watchdog (WWDG)		Section 20.6.4 on page 506
0x4000 2800 - 0x4000 2BFF	RTC		Section 18.4.7 on page 493
0x4000 2400 - 0x4000 27FF	Reserved		-
0x4000 2000 - 0x4000 23FF	TIM14 timer		Section 16.5.11 on page 468
0x4000 1C00 - 0x4000 1FFF	TIM13 timer		Section 10.5.11 on page 400
0x4000 1800 - 0x4000 1BFF	TIM12 timer		Section 16.4.13 on page 458
0x4000 1400 - 0x4000 17FF	TIM7 timer		Section 17.4.9 on page 481
0x4000 1000 - 0x4000 13FF	TIM6 timer		Section 17.4.9 on page 401
0x4000 0C00 - 0x4000 0FFF	TIM5 timer		
0x4000 0800 - 0x4000 0BFF	TIM4 timer		Postion 45 4 40 on page 422
0x4000 0400 - 0x4000 07FF	TIM3 timer		Section 15.4.19 on page 423
0x4000 0000 - 0x4000 03FF	TIM2 timer		

Block	Name	Base addresses	Size (bytes)
	Page 0	0x0800 0000 - 0x0800 03FF	1 Kbyte
	Page 1	0x0800 0400 - 0x0800 07FF	1 Kbyte
	Page 2	0x0800 0800 - 0x0800 0BFF	1 Kbyte
	Page 3	0x0800 0C00 - 0x0800 0FFF	1 Khyte
Main memory	Page 4	0x 80* 10 00 0x 08 0 3FT	1 H ayt e
	-	Dusic	
	-		
	Page 127	0x0801 FC00 - 0x0801 FFFF	1 Kbyte
Information block	System memory	0x1FFF F000 - 0x1FFF F7FF	2 Kbytes
inioiniation block	Option Bytes	0x1FFF F800 - 0x1FFF F80F	16
	FLASH_ACR	0x4002 2000 - 0x4002 2003	4
	FLASH_KEYR	0x4002 2004 - 0x4002 2007	4
	FLASH_OPTKEYR	0x4002 2008 - 0x4002 200B	4
Flash memory	FLASH_SR	0x4002 200C - 0x4002 200F	4
interface	FLASH_CR	0x4002 2010 - 0x4002 2013	4
registers	FLASH_AR	0x4002 2014 - 0x4002 2017	4
	Reserved	0x4002 2018 - 0x4002 201B	4
	FLASH_OBR	0x4002 201C - 0x4002 201F	4
	FLASH_WRPR	0x4002 2020 - 0x4002 2023	4

- 64/128KB Flash Hafiza

Enerji kesilmeleri yada yeniden baş latmalarda veri yazma/okuma için kullanılmak üzere kod alanı hariç 127 sayfa hafıza bulunur.

Sayfalara yazı yazmak için flash ın kilidi açılırr, sayfa temizlenir, veri yazılır ve tekrar kapatılır. Bu sayfalar pic iş lemcilerdeki EPROM a benzetilebilinir.

1.8-3.6V Çalış ma Gerilimi

32-bit mikrodenetleyiciler ile beraber 5 voltluk besleme gerilimi yerine 3.3 volt kullanımı artmış tır.

Sleep, Stop and Standby modları ile çok küçük gerilimlerde çevre birim iş lemlerini sürdürebilir

Reset

Her mikrodenetleyicide olduğ u gibi bu iş lemcide de çeş itli güç ve reset özellikleri bulunmaktadır. POR yani power-oll-riset gibi temel özelliğ in yanında çeş itli biririler gibi temel özelliğ in yanında çeş itli biririler.

SysTick Control & Status Register

Bits	Name	Function
[31:17]	×	Reserved
16]	COUNTFLAG	Returns 1 of timer counted to 0 sance last time this was read.
15:3]		Reserved
[2]	CLKSOURCE	Indicates the clock source:
		0 - external clock
		1 - processor clock.
[1]	TICKINT	Enables SysTick exception sequest:
		0 = counting down to zero does not assert the SysTick exception sequest
		1 - counting down to zero asserts the SysTick exception request.
		Software can use COUNTFLAG to determine if SysTick has ever counted to zero.
[0]	ENABLE	Enables the counter:
		0 - counter desabled
		1 = counter enabled.

SysTick Control & Status Register

SysTick zaman gecikmeleri ve periyodik kesmeler oluş turabileceğ imiz basit bir sayaçtır. Bu timer birimi tüm Cortex-M mikroiş lemcilerinde bulunur. SysTick temel olarak clock frekansı hattı üzerine çalış an bir sayaçtır.

- -4-16MHz Kristal Osilatör
- Dahili 8MHz RC Osilatör
- Dahili 40KHz RC Osilatör

Bu osilatör uyku modunda ve güç tasarrufunda oldukça iş imize yarayacaktır. Mikrodenetle viç ne kadarılığı çalış ırsa o kadar güç tüketir. O yüzden güç tasarrufunu sağlamak için daha yavaş hıza çekmemiz gereklidir. Bunu günümüzde dizüstü bilgisayarlar bile yapmaktadır. Burada ise bunu 40KHz osilatör ile yapmaktayız.

- RTC için 32KHz kalibre edilmiş osilatör

72 MHz azami frekans

8-bit mikrodenetleyicilerin genel olarak azami 20MHz'de çalış tığını düş ünürsek bu 8 bite göre oldukça performazılı kir şi lemcimiz var demektir. Aynı zamanda ARM mimarisinde olması ve M3 çekirdeğ ine sahip olması da bu performansı etkilemektedir. 1.25 DMIPS/MHz Dhrystone 2.1 performans ölçüm programında (benchmark) çıkansonuçtur.

MODE[1:0]	Meaning
00	Reserved
01	Maximum output speed 10 MHz
10	Maximum output speed 2 MHz
11	Maximum output speed 50 MHz

80'e varan hızlı I/OPortu

Giriş , Çıkış ve Alternatif fonksiyonmodları.
Push Pull/Open-drain seçimi
I/O Hız seçim modları

Configuration mode	CNF1	CNF0	MODE1	MODE0	PxODR register		
General purpose	Push-pull	0	0	01 10 11 see <i>Table 21</i>		0 or 1	
output	Open-drain	3	1			0 or 1	
Alternate Function	Push-pull	4	0			Don't care	
output	Open-drain		1			Don't care	
	Analog	0	0			Don't care	
Input	Input floating		1			Don't care	
input	Input pull-down	4	0			0	
	Input pull-up	-	5			1	

NVIC Kesme yapısı Adresleri

Position	Priority	Type of priority	Acronym	Description	Address	ığra	-
-	-	-	-	Reserved	0: 000_0 20	uzia	
-	-3	fixed	Reset	Reset	0x0000_0004		•
_	4	fixed	NMI	Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector.	0x0000_0008		
-	7	fixed	HardFault	All class of fault	0x0000_000C		
-	0	settable	MemManage	Memory management	0x0000_0010		
-	1	settable	BusFault	Pre-fetch fault, memory access fault	0x0000_0014		
-	2	settable	UsageFault	Undefined instruction or illegal state	0x0000_0018		
-	-	-		Reserved	0x0000_001C - 0x0000_002B		
-	3	settable	SVCall	System service call via SWI instruction	0x0000_002C		
-	4	settable	Debug Monitor	Debug Monitor	0x0000_0030		
-	-	-	-	Reserved	0x0000_0034		
-	5	settable	PendSV	Pendable request for system service	0x0000_0038		
_	6	settable	SysTick	System tick timer	0x0000_003C		
0	7	settable	WWDG	Window Watchdog interrupt	0x0000_0040		
1	8	settable	PVD	PVD through EXTI Line detection interrupt	0x0000_0044		
2	9	settable	TAMPER	Tamper interrupt	0x0000_0048		
3	10	settable	RTC	RTC global interrupt	0x0000_004C		
4	11	settable	FLASH	Flash global interrupt	0x0000_0050		
5	12	settable	RCC	RCC global interrupt	0x0000_0054		
	13	settable	EXTI0	EXTI Line0 interrupt	0x0000_0058		
7	14	settable	EXTI1	EXTI Line1 interrupt	0x0000_005C		
8	15	settable	EXTI2	EXTI Line2 interrupt	0x0000_0060		
9	16	settable	EXTI3	EXTI Line3 interrupt	0x0000_0064		
10	17	settable	EXTI4	EXTI Line4 interrupt	0x0000_0068		

Position	Priority	Type of priority	Acronym	Description	Address
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000_00E0
-	***	settable	RTCAlarm	RTC alarm through EXTI line interrupt	0x0000_00E4
42		settable	OTG_FS_WKUP	USB On-The-Go FS Wakeup through EXTI line interrupt	0x0000_00E8
•	•		-	Reserved	0x0000_00EC - 0x0000_0104
50	57	settable	TIM5	TIM5 global interrupt	0x0000_0108
51	58	settable	SPI3	SPI3 global interrupt	0x0000_010C
52	59	settable	UART4	UART4 global interrupt	0x0000_0110
53	60	settable	UART5	UART5 global interrupt	0x0000_0114
54	61	settable	TIM6	TIM6 global interrupt	0x0000_0118
55	62	settable	TIM7	TIM7 global interrupt	0x0000_011C
56	63	settable	DMA2_Channel1	DMA2 Channel1 global interrupt	0x0000_0120
57	64	settable	DMA2_Channel2	DMA2 Channel2 global interrupt	0x0000_0124
58	65	settable	DMA2_Channel3	DMA2 Channel3 global interrupt	0x0000_0128
65	8	settable	DMA2_Channel4	DMA2 Channel4 global interrupt	0x0000_012C
60	67	settable	DMA2_Channel5	DMA2 Channel5 global interrupt	0x0000_0130
61	68	settable	ETH	Ethernet global interrupt	0x0000_0134
62	69	settable	ETH_WKUP	Ethernet Wakeup through EXTI line interrupt	0x0000_0138
63	70	settable	CAN2_TX	CAN2 TX interrupts	0x0000_013C
64	71	settable	CAN2_RX0	CAN2 RX0 interrupts	0x0000_0140
65	72	settable	CAN2_RX1	CAN2 RX1 interrupt	0x0000_0144
66	73	settable	CAN2_SCE	CAN2 SCE interrupt	0x0000_0148
67	74	settable	OTG_FS	USB On The Go FS global interrupt	0x0000_014C

NVIC Kesme yapısıAdresleri

Bütün giriş ve çıkış lar Cortex Myapılarında aynı olacak şekilde 16 dış kesme vektörüne haritalandırılabilir ve hepsi 5V toleranslıdır.

emable bits ADC Interrupt to NVIC End of injected convenient Analog watchdog High Threshold (12 bits) injected data registers. $ADOx_INO \rightarrow \Gamma$ ADCx_IN1-- -ADCCLK GP10 Injected Analog to digital Ports Charge et al. Regular ADCx_IN15-emp. sensor_ VREEINT -From ADC prescaler TIMI_TRGO TIM2_TRGO ---TIM2_CHI — TIM3_CH4 — TIM4_TRGO EXTI_15 TIMB_CH4[2] JEXTSEL[2:0] bits T EXTRUG TIMI_TRGO -- \ JEXTRIG T ADCs-ETRGINU_REMAP bit TIMI_CH4 — TIM4_CH3 — TIM8_CH2 — TIM8_CH4 — TIM5_TRGO (injected group) EXTSEL[2:0] bits TIMS_CH4 TM1_CH2 TM1_CH3 Start trigger EXTSEL[2:0] bits TIM2_CH2_____ TIM3_TRGO___ TIM3_CH1 TIM2_CH3 TIM1_CH3 EXTRIG T TIMB_CHI ____ EXTL11 📥 (regular group) TIMS_CHS TIMB_TRIGO^[2] ADCx_ETRGREG_REMAP bit Triggers for ADC3⁽¹⁾ alf148002d

2 x 12-bit, 1 us ADC (16 kanala kadar)

12 bit olması sayesinde AVR'ye göre 4 kat daha hassas ölçüm yapılabilinir. Ölçüm aralığı 0 ve 3.6V arasında olduğı i in pic ve AVR iş lemcilerinden geçiş lerde dikkat edilmelidir.

	Table 65. ADC pins				
Name	Signal type	Remarks			
V _{REF+}	Input, analog reference positive	The higher/positive reference voltage for the ADC, 2.4 V SV _{RFF+} SV _{DDA}			
V _{DDA} ⁽¹⁾	Input, analog supply	Analog power supply equal to V _{DD} and 2.4 V ≤V _{DDA} ≤3.6 V			
V _{REF} .	Input, analog reference negative	The lower/negative reference voltage for the ADC, V _{REF-} = V _{SSA}			
V _{55A} (1)	Input, analog supply ground	Ground for analog power supply equal to V ₅₅			
ADCx_IN[15:0]	Analog signals	Up to 21 analog channels ⁽²⁾			

2 x 12-bit, 1 us ADC (16 kanala kadar)

Ayrıca örnek tutma, çift ölçüm ve sıcaklık algılayıcısı da mevcut. Sıcaklık algılayıcısı mikrodenetleyicinin içinde olduğ undan iş lemcinin sıcaklığ

ını ölçmekte kullabiliniğe ta ER

7 Adet Zamanlayıcı

Birbirinden farklı amaçlarda kullanılabilinen 7 adet 16 bit timer. 8 bite göre daha yüksek hassasiyet. Aynı anda aktif olabilen 6 kanal PWMbulunmaktadır. BugraER

Input capture mode
PWM input mode
Forced output mode
Output compare mode
PWM mode
Complementary outputs and dead-time insertion
Using the break function
Clearing the OCxREF signal on an external event
6-step PWM generation
One-pulse mode
Encoder interface mode

Zamanlayıcı **RTC**

Burada 3 adet 16-bit zamanlayıcı yanında 16-bit motor kontrol PWM zamanlayıcısı da bulunmaktadır. 2 adet watchdog zamanlayıcısı ve SysTick zamanlayıcısı 24-bit sayacıyla bulunmaktadır. Üst seri denetleyicilerde bu inniz o'çüde bölerekte elde etmemiz mümkündür. zamanlayıcı sayıları çok daha fazla olsa da üç genel maksatlı zamanlayıcı 8-bit mikrodenetleyicilere göre iş imizi oldukça kolaylaş tırmaktadır.

Gerçek zamanlı saat anlamına gelip belirli bir frekansta çalış ıp, gerçek zaman bilgisini bize geri iletmektedir. Genellikle 32.768Hz'de çalısır. Belirli frekansları istediğ

9 Adete Kadar · Iletiş im Arayüzü

Denetleyicinin desteklediğ i protokoller ş

unlardır, 2x12CBuğra ER

2 x SPI CAN Bus

USB 2.0

USART Yapısı

Table 27, I2C

I2C pinout	Configuration	GPIO configuration
I2Cx_SCL	I2C clock	Alternate function open drain
I2Cx_SDA	I2C Data I/O	Alternate function open drain

Table 28, bxCAN

BxCAN pinout	SP configuration
CAN_TX (Transmit data line)	Alternate function push puli
CAN_RX (Receive data line)	Input floating / Input pull-up

Table 29, USB(1)

USB pinout	GPIO configuration	
USB_DM / USB_DP	As soon as the USB is enabled, these pins are automatically connected to the USB internal transceiver.	

This table applies to low-, medium-, high and XL-density devices only.

Arayüz configurasyonu

CAN fonksiyonları

CAN alternate function remapping

The CAN signals can be mapped on Port A, Port B or Port D as shown in *Table 34*. For port D, remapping is not possible in devices delivered in 36-, 48- and 64-pin packages.

Table 34. CAN1 alternate function remapping

Alternate function ⁽¹⁾	CAN_REMAP[1:0] = "00"	CAN_REMAP[1:0] = "10" (2)	CAN_REMAP[1:0] = "11"(3)
CAN1_RX or CAN_RX	PA11	PB8	PD0
CAN1_TX or CAN_RX	PA12	PB9	PD1

CAN1_RX and CAN1_TX in connectivity line devices; CAN_RX and CAN_TX in other devices with a single CAN interface.

CAN2 alternate function remapping

CAN2 is available in connectivity line devices. The external signal can be remapped as shown in *Table 35*.

Table 35. CAN2 alternate function remapping

Alternate function	CAN2_REMAP = "0"	CAN2_REMAP = "1"
CAN2_RX	PB12	PB5
CAN2_TX	PB13	PB6

^{2.} Remap not available on 36-pin package

This remapping is available only on 100-pin and 144-pin packages, when PD0 and PD1 are not remapped on OSC-IN and OSC-OUT.

Cortex Çekirdeklerinde USB 2. Bayüz

Uygulama alanı yüksek hızlı ağ lardan düş ük maliyetli çoklu kablolamalı sistemlere kadar geniştir.

CANBUS otomobil elektroniğ i, akıllı motor kontrolü, robot kontrolü, akıllı sensörler, asansörler, makine kontrol birimleri, kaymayı engelleyici sistemler, trafik sinyalizasyon

sistemleri, akılı binalar ve laboratuvar otomasyonu gibi uygulama alan ezunda n alkimun. 1Mbit/sn lik bir haber veri iletiş imi sağlar.

·lletiş im hızı 40m de 1Mbit/sn iken 1km uzaklıklarda 40Kbit/sn ye düş mektedir.

CAN diğ er protokollerden farklı olarak adress temelli değ il mesaj temelli çalış maktadır.Her mesaja özgü

bir ID numarası vardır. Mesajlar çerçeveler ile iletilirler

CAN donanımı oluş an hatalara göre hata durumları arasında geçiş yapmaktadır.

•ki adet hata sayıcısı vardır.

• Bunlar göndericide oluş turulan hataları ve alınan hataları sayarlar.

•Herhangi bir sayıcı 127 ve büyük bir değ ere ulaşırda donanım pasif hata moduna girer.

Bir medda gelen hata şerçevelerini cevaplamaya devam eder fakat hata oluş turduğ unda dominant bitler yerine resesif bitler gönderir

MASKE MODU

 Maske modunda, tanımlayıcı kayıtları, tanımlayıcının hangi bitlerinin "eş leş mesi gerektiğ i" veya

"umurumda değ il" olarak ele alındığ ınıbelirten maske kayıtları ile Uilg kilendirilir.

- •Tanımlayıcı listesi modunda, maske kayıtları tanımlayıcı kayıtları olarak kullanılır.
- •Böylece bir tanımlayıcı ve maske tanımlamak yerine, tek tanımlayıcı sayısını iki katına çıkaran iki tanımlayıcı belirtilir.
- •Gelen tanıtıcının tüm bitleri, filtre kayıt defterinde belirtilen bitlerle eş leş melidir.

Çoğ u diğ er seri protokolün aksine, CAN protokolünde bit hızı direk olarak baud rate önbölücüsünü kurarak

ayarlanmaz.

•CAN donanımlarında baud rate önbölücüsü vardır fakat kuanta denilen küçük bir zaman dilimini üretmekiçin

kullanılır.

- Bir bitlik süre 3 kısma bölünmüş tür.
 Birinci kısım senkronizasyon kısmıdır ve sabit olarak bir kuzınta uzunluğ undadır.
- •Takip eden kısımlar ise Tseg1 ve Tseg2 olarak isimlendirilir ve kullanıcı tarafından uzunlukları kuanta

cinsinden ayarlanabilir.

- •Bir bitlik periyot minimum 8 maksimum 25 kuanta uzunluğ unda olmalıdır.
- •Gönderilen bitin alıcıda alındığı nokta örnekleme noktası diye isimlendirilir ve Tseg1 sonundadır.

CAN mesajlarının alımı için FIFO olarak düzenlenmiş üç posta kutusu sağlanmıştır. CPU yükünden tasarruf etmek, yazılımı basitleş tirmek ve veri tutarlılığını garanti etmek için FIFO tamamen donanım tarafından

•Uygulama, FIFO'da dej ol raji nesajla a FIFO ç kiş posta kutusu aracılığ ıyla erişilir. Alınan bir mesaj, CAN protokolüne göre doğ ru bir şekilde alındığ ında geçerli sayılır (EOF

Kaynaklar

https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m3.html

https://www.st.com/en/microcontrollers-microprocessors/stm32f103.html

https://www.mcu-turkey.com/stm32f3-pwm-kullanimi/

http://www.lojikprob.com/embedded/stm32/stm32f103c8t6-stm32f1-mikrodenetleyici-incelemesi/

https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf