Lecture 6 - mRNAseq

This week

- Today: mRNAseq
- Tuesday: resequencing (Jeff Barrick)
- Wed: ChIP-seq (Mark Robinson)
- Thursday: building & using pipelines
- Friday: post-mortem

This week

- Tues, Th bonfire
- Th G&T party?
- Friday: ice cream at MSU dairy store

Every day: CTB dominates Adina at frisbee

Today

 Morning: mRNAseq mapping, counting, and normalization

Afternoon: significance estimation (?)

Afternoon: working with files & dirs in UNIX

Evening: GO analysis

Lecture 6 - mRNAseq

Sequencing the transcriptome

Nagalakshmi et al., Science, 2009

Sequencing the transcriptome

Nagalakshmi et al., Science, 2009

Sequencing the transcriptome

mRNAseq quantitation

mRNAseq vs microarrays

No genome needed for mRNAseq

 Microarrays typically (always?) require internal comparison; mRNAseq does not.

 mRNAseq seems to be more reproducible & sensitive.

mRNAseq and microarrays

- Annotation still critical (and lacking)
- Good for hypothesis generation
- Not so good for hypothesis validation
- Statistical analysis still needed.
- Multiple samples still basically required.

Counting

Distribution of counts heavily weighted towards 0 or I

Good r^2 for tech replicates

High sensitivity

Mortazavi et al. (Nat Met, 2008) estimate that a 2kb mRNA transcript can be robustly detected (~30 reads/gene) at ~.3 transcripts/cell with 50m reads.

Reasonably robust to # of reads

Mortazavi et al., Nature Methods 2008

Normalization

- In order to compare between mRNAseq samples, you must normalize.
- Think qPCR, "standard" genes.
- This controls for:
 - Different mRNA amounts
 - Different RT efficiency
 - Different sequencing depth/error rates/etc.
- No good way to control for differential RT or sequencing efficiency.
- So, can only compare changes in transcript levels between treatments/time points.

Normalization techniques

- Normalize to a consistently expressed gene (e.g. "housekeeping")
 - Finding housekeeping genes is challenging!
- Normalize to maximum expressed gene, or sum, or average.
- Quantile normalization normalizes for shape of distribution.
- Will show you the method in tutorial.

Simultaneous annotation + abundance calc

Challenging:

- Want to characterize exons & join isoforms
- ...across multiple time points.
- Computationally difficult
- Requires paired-end sequencing

Cufflinks: pipeline for mRNAseq analysis

Cufflinks cont.

In mouse muscle cell line,

- 13.6k known splice isoforms
- 12.7k novel
- Differential regulation of isoforms from 1600 genes.

 Trappell et al., Nat. Biotech 2010

Primary mRNAseq issues for "emerging model organisms"

- Do you have a good genome + gene prediction set?
- What kind of transcriptome prior knowledge do you have?
 - If none, you must assemble rnatigs.
 - How do you evaluate assembly?
- Are you "close" to a good reference organism (vertebrates, worm, Drosophila, Arabidopsis, yeast, E. coli, ...?)

mRNAseq example: lamprey

Concluding thoughts

- mRNAseq provides great power and resolution for annotation & quantitation.
- mRNAseq for emerging model organisms is challenging for reasons of
 - No good assembly (rna or genome)
 - No good annotation
- As usual, paired-end sequencing is important.
- Unlike de novo genomic sequencing, matepair sequencing is not so important for mRNAseq.