Math 221

Class Exercises: Feb. 9

Let V be the subspace of \mathbb{R}^3 spanned by v_1 and v_2 and W be the subspace of \mathbb{R}^3 spanned by w_1 and w_2 .

$$v_1 = \begin{bmatrix} 5\\2\\-1 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$ $w_1 = \begin{bmatrix} 4\\1\\1 \end{bmatrix}$ $w_2 = \begin{bmatrix} 3\\1\\3 \end{bmatrix}$

- 1. Is it true that $V + W = \mathbb{R}^3$? Explain.
- 2. Is it true that $V \oplus W = \mathbb{R}^3$? Explain.

Find one vector in \mathbb{R}^4 that is in $\mathcal{C}(B)$ and one vector in \mathbb{R}^4 that is *not in* $\mathcal{C}(B)$.

$$B = \left[\begin{array}{cccc} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 1 & 0 & 1 & -1 \end{array} \right]$$

Let V be a vector space and suppose that the set of vectors $\{u,v,w\}$ in V is linearly independent. Is the set $\{u+v,v-w,u+v+w\}$ also linearly independent? Explain.