Time Series

Sudipta Das

Assistant Professor,

Department of Computer Science,
Ramakrishna Mission Vivekananda Educational & Research Institute

Outline I

- Forecasting Stationary Time Series
 - Recursive Forecasting

- ACF and PACF of Stationary Time Series
 - ACF of Stationary Time Series
 - PACF of Stationary Time Series

Forecasting Stationary Time Series I

- We consider the problem of predicting the values X_{n+h} , h > 0, of a stationary time series with known mean μ and known autocovariance function $\gamma(\cdot)$ in terms of the values $\{X_n, \ldots, X_1\}$, up to time n.
 - Forecasting as AR model
- Our goal is to find the linear combination of $1, X_n, X_{n-1}, \ldots, X_1,$ $(\hat{X}_{n+h} = a_0 + a_1 X_n + \cdots + a_n X_1 = X_{n+h}^n)$ that forecasts X_{n+h} with minimum mean squared error, i.e.

$$E(X_{n+h}-a_0-a_1X_n-\cdots-a_nX_1)^2$$

is minimized.

Forecasting Stationary Time Series II

- Minimization yields
 - Normal Equations

$$E\left[X_{n+h} - a_0 - \sum_{i=1}^n a_i X_{n+1-i}\right] = 0$$

and

$$E\left[\left(X_{n+h}-a_0-\sum_{i=1}^n a_i X_{n+1-i}\right) X_{n+1-j}\right]=0, \text{ for } j=1,\ldots,n$$

Forecasting Stationary Time Series III

Solutions

$$a_0 = \mu(1 - \sum_{i=1}^n a_i)$$

and

$$\mathbf{a_n} = [a_1, \dots, a_n]'$$

as the solution of the equation

$$\Gamma_n \mathbf{a_n} = \gamma_{\mathbf{n}}(h),$$

where

- $\gamma_{\mathbf{n}}(h) = [\gamma(h), \gamma(h+1), \dots, \gamma(h+n-1)]'$ and
- $\bullet \ \Gamma_n = [\gamma(i-j)]_{i,j=1}^n$

Forecasting Stationary Time Series IV

Best Linear Unbiased Estimator

$$X_{n+h}^n = \mu + \mathbf{a_n}' \left(\mathbf{X_n} - \mu \mathbf{1_n} \right),$$
 where $\mathbf{X_n} = [X_n, X_{n-1}, \dots, X_1]'$ and $\mathbf{1_n} = [\underbrace{1, \dots, 1}]'$

• Expected value of the prediction error (i.e., first normal equation)

$$E[X_{n+h}-X_{n+h}^n]=0$$

Mean square prediction error

$$E(X_{n+h} - X_{n+h}^n)^2 = E[(X_{n+h} - \mu) - \mathbf{a_n}'(\mathbf{X_n} - \mu \mathbf{1_n})]^2$$

$$= \gamma(0) - 2\mathbf{a_n}'\gamma_n(h) + \mathbf{a_n}'\Gamma_n(h)\mathbf{a_n}$$

$$= \gamma(0) - \mathbf{a_n}'\gamma_n(h)$$

$$= \gamma(0) - \gamma_n'(h)\Gamma_n^{-1}\gamma_n(h)$$

Forecasting Stationary Time Series V

Example: One-step prediction of an AR(1) series

$$X_t = \phi X_{t-1} + Z_t, t = 0, \pm 1, \dots$$

where $|\phi| < 1$ and $Z_t \sim WN(0, \sigma^2)$.

Solution:

$$a_0 = 0$$

and

$$X_{n+1}^n = \mathbf{a_n}' \mathbf{X_n},$$

where $\mathbf{X_n} = [X_n, X_{n-1}, \dots, X_1]'$ and $\mathbf{a_n} = [\phi, 0, \dots, 0]'$ is the solution of

$$\begin{bmatrix}
1 & \phi & \phi^2 & \dots & \phi^{n-1} \\
\phi & 1 & \phi & \dots & \phi^{n-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\phi^{n-1} & \phi^{n-2} & \phi^{n-3} & \dots & 1
\end{bmatrix}
\mathbf{a_n} = \begin{bmatrix}
\phi \\
\phi^2 \\
\vdots \\
\phi^n
\end{bmatrix}$$

Forecasting Stationary Time Series VI

• Therefore the best linear predictor of X_{n+1} in terms of $\{X_1, \ldots, X_n\}$ is

$$X_{n+1}^n = \mathbf{a_n}' \mathbf{X_n} = \phi X_n$$

The mean square error is

$$E(X_{n+1} - X_{n+1}^n)^2 = \gamma(0) - \mathbf{a_n}' \gamma_n(1)$$

$$= \gamma(0) [1 - \phi \rho(1)]$$

$$= \sigma^2$$

Forecasting Stationary Time Series VII

- Remark: For stationary time series $\{Y_t\}$ with non-zero mean μ , the best linear predictor of Y_{n+h} can be determined by the following steps
 - Subtract μ from the series Y_t to get the zero-mean series X_t $[X_t = Y_t \mu_t]$
 - Finding the best linear predictor of X_{n+h} in terms of X_n, \ldots, X_1 and
 - Then adding μ to it.
- We, therefore, restrict attention to zero-mean stationary time series.

Recursive Forecasting I

h—step forecasting

$$X_{n+h}^n = \mathbf{a_n}' \mathbf{X_n}$$

- Potential problem: Determination of $\mathbf{a_n}$ from the set of linear equation $\Gamma_n \mathbf{a_n} = \gamma_n(h)$, may be difficult and time-consuming.
- Remedy: Go for recursive algorithm
 - We start with finding one-step predictor Xⁿ_{n+1} based on n observations
 - then find the two-step predictor X_{n+2}^{n+1} , based on n+1 previous observations (n observed and 1 predicted observation among them)
 - and continue till the h-step predictor X_{n+h}^{n+h-1} ,

Recursive Forecasting II

One step Predicting equation

$$X_{n+1}^n = \phi_n' \mathbf{X_n} = \phi_{n1} X_n + \dots + \phi_{nn} X_1,$$

where $\phi_{\mathbf{n}} = [\phi_{n1}, \dots, \phi_{nn}]' = \Gamma_n^{-1} \gamma_{\mathbf{n}}$ and $\gamma_{\mathbf{n}} = [\gamma(1), \gamma(2), \dots, \gamma(n)]'$ with the corresponding MSE

$$v_n := E(X_{n+1} - X_{n+1}^n)^2 = \gamma(0) - \phi_n' \gamma_n$$

- Again Determination of ϕ_n involves matrix inversion.
- Therefore, we go for recursive solution for one step prediction

Durbin-Levinson algorithm I

- One step Recursive Forecast (Durbin-Levinson algorithm)
 - Set a one step predicting equation based on single (current) observation

$$X_{n+1}^{n,n} = \phi_{11}X_n$$

• Compute ϕ_{11} and v_0 as follows

$$\phi_{11} = \frac{\gamma(1)}{\gamma(0)}$$

and

$$v_0=\gamma(0).$$

Durbin-Levinson algorithm II

 Recursively, set one step predicting equations based on (current) n observation

$$X_{n+1}^n = X_{n+1}^{1,n} = \phi_{n1}X_n + \cdots + \phi_{nn}X_1,$$

and

• Compute the coefficients $\phi_{n1}, \dots, \phi_{nn}$ recursively from the following equations

$$\phi_{nn} = \left[\gamma(n) - \sum_{j=1}^{n-1} \phi_{n-1,j} \gamma(n-j)\right] v_{n-1}^{-1},$$

$$\begin{bmatrix} \phi_{n1} \\ \vdots \\ \phi_{n,n-1} \end{bmatrix} = \begin{bmatrix} \phi_{n-1,1} \\ \vdots \\ \phi_{n-1,n-1} \end{bmatrix} - \phi_{nn} \begin{bmatrix} \phi_{n-1,n-1} \\ \vdots \\ \phi_{n-1,1} \end{bmatrix}$$

and

$$v_n = v_{n-1}[1-\phi_{nn}^2]$$

Durbin-Levinson algorithm III

Alternative compact form

$$\phi_{nn} = \left[\gamma(n) - \phi_{\mathbf{n-1}}^{(\mathbf{r})} \gamma_{\mathbf{n-1}} \right] v_{n-1}^{-1}, \tag{1}$$

$$\begin{bmatrix} \phi_{n1} \\ \vdots \\ \phi_{n,n-1} \end{bmatrix} = \phi_{\mathbf{n}-\mathbf{1}} - \phi_{nn}\phi_{\mathbf{n}-\mathbf{1}}^{(\mathbf{r})}, \tag{2}$$

$$v_n = v_{n-1}[1 - \phi_{nn}^2] \tag{3}$$

where
$$\phi_{\mathbf{k}}^{(\mathbf{r})} = [\phi_{k,k}, \phi_{k,k-1}, \dots, \phi_{k1}]'$$

Durbin-Levinson algorithm IV

- Proof
 - $\Gamma_1 \phi_1 = \gamma_1$ follows from $\gamma(0)\phi_1 = \gamma(1)$
 - Let $\Gamma_n \phi_n = \gamma_n$ be true for n = k, then

$$\Gamma_{k+1}\phi_{k+1} = \begin{bmatrix}
\Gamma_{k} & \gamma_{k}^{(r)} \\
\gamma_{k}^{(r)'} & \gamma(0)
\end{bmatrix} \begin{bmatrix}
\phi_{k} - \phi_{k+1,k+1}\phi_{k}^{(r)} \\
\phi_{k+1,k+1}
\end{bmatrix} \\
= \begin{bmatrix}
\Gamma_{k}\phi_{k} - \phi_{k+1,k+1}\Gamma_{k}\phi_{k}^{(r)} + \phi_{k+1,k+1}\gamma_{k}^{(r)} \\
\gamma_{k}^{(r)'}\phi_{k} - \phi_{k+1,k+1}\gamma_{k}^{(r)'}\phi_{k}^{(r)} + \gamma(0)\phi_{k+1,k+1}
\end{bmatrix} \\
= \begin{bmatrix}
\gamma_{k} - \phi_{k+1,k+1}\gamma_{k}^{(r)} + \phi_{k+1,k+1}\gamma_{k}^{(r)} \\
\gamma_{k}^{(r)'}\phi_{k} + \phi_{k+1,k+1}\left(\gamma(0) - \gamma_{k}^{(r)'}\phi_{k}^{(r)}\right)
\end{bmatrix} \\
= \begin{bmatrix}
\gamma_{k} \\
\gamma_{k}^{(r)'}\phi_{k} + \phi_{k+1,k+1}V_{k}
\end{bmatrix} \\
= \begin{bmatrix}
\gamma_{k} \\
\gamma(k+1)
\end{bmatrix}, [by (1)] \\
= \gamma_{k+1}$$

Therefore, true for all n.

Durbin-Levinson algorithm V

• The mean squared errors: Let $v_n = v_{n-1}[1 - \phi_{nn}^2]$ be true for n = k, then

$$\begin{split} v_{k+1} : &= \gamma(0) - \phi_{\mathbf{k}+1}' \gamma_{\mathbf{k}+1} \\ &= \gamma(0) - [\phi_{k+1,1}, \dots, \phi_{k+1,k}] \gamma_{\mathbf{k}} - \phi_{k+1,k+1} \gamma(k+1) \\ &= \gamma(0) - \left(\phi_{\mathbf{k}}' - \phi_{k+1,k+1} \phi_{\mathbf{k}}^{(\mathbf{r})'}\right) \gamma_{\mathbf{k}} - \phi_{k+1,k+1} \gamma(k+1), [\text{by (2)}] \\ &= v_k - \phi_{k+1,k+1} \left(\gamma(k+1) - \phi_{\mathbf{k}}^{(\mathbf{r})'} \gamma_{\mathbf{k}}\right), [\text{by assumption}] \\ &= v_k - \phi_{k+1,k+1} \left(\phi_{k+1,k+1} v_k\right), [\text{by (1)}] \\ &= v_k \left(1 - \phi_{k+1,k+1}^2\right) \end{split}$$

Therefore, true for all *n*.

Innovations algorithm I

- Here, we consider the problem of predicting the values X_{n+h} , h > 0, of a stationary time series with known mean and autocovariance function in terms of the values of successive differences in prediction $\{X_n X_n^{n-1}\}$, up to time n.
 - Forecasting as MA model

Innovations algorithm II

- One step Recursive Forecast (The Innovations Algorithm)
 - Set the predicting equation of time series at time n + 1 depending on the previous n observations as follows

$$X_{n+1}^n = \sum_{j=1}^n \theta_{nj} \left(X_{n+1-j} - X_{n+1-j}^{n-j} \right) \text{ for } n = 1, 2, \dots,$$
 (4)

with
$$X_1^0 = 0$$

Innovations algorithm III

• Compute the coefficients $\theta_{n1}, \dots \theta_{nn}$ recursively from the following equations

$$v_0 = \gamma(0),$$

$$\theta_{n,n-k} = v_k^{-1} \left(\gamma(n-k) - \sum_{j=0}^{k-1} \theta_{k,k-j} \theta_{n,n-j} v_j \right), \text{ for } 0 \le k < n$$
 and

$$v_n = \gamma(0) - \sum_{j=0}^{n-1} \theta_{n,n-j}^2 v_j$$

- Remarks:
 - The one step prediction error, $U_n = X_n X_n^{n-1}$ is named as innovation at time n
 - Innovations U_1, U_2, \ldots, U_n are uncorrelated.

Innovations algorithm IV

Proof

- Innovations $X_1 X_1^0, X_2 X_2^1, \dots, X_n X_n^{n-1}$ are orthogonal by definition.
- Taking the inner product on both sides of (4) with $X_{k+1} X_{k+1}^k$, $0 \le k < n$ we have

$$< X_{n+1}^n, X_{k+1} - X_{k+1}^k > = \theta_{n,n-k} \nu_k$$

• Since $\left(X_{n+1}-X_{n+1}^n\right)\perp \left(X_{k+1}-X_{k+1}^k\right)$, for $k=0,\ldots,n-1$, thus

$$\langle X_{n+1}, X_{k+1} - X_{k+1}^k \rangle = \langle X_{n+1}^n, X_{k+1} - X_{k+1}^k \rangle$$

= $\theta_{n,n-k}\nu_k$. (5)

Innovations algorithm V

Hence,

$$\theta_{n,n-k} = \nu_k^{-1} < X_{n+1}, X_{k+1} - X_{k+1}^k >$$

$$= \nu_k^{-1} \left(\gamma(n-k) - \sum_{j=1}^k \theta_{k,j} < X_{n+1}, X_{k+1-j} - X_{k+1-j}^{k-j} > \right),$$
by replacing n by k in (4)
$$= \nu_k^{-1} \left(\gamma(n-k) - \sum_{j=0}^{k-1} \theta_{k,j+1} < X_{n+1}, X_{k-j} - X_{k-j}^{k-j-1} > \right),$$

$$= \nu_k^{-1} \left(\gamma(n-k) - \sum_{j=0}^{k-1} \theta_{k,k-j} < X_{n+1}, X_{j+1} - X_{j+1}^i > \right),$$
by replacing $(k-j)$ by $(j+1)$

$$= \nu_k^{-1} \left(\gamma(n-k) - \sum_{j=0}^{k-1} \theta_{k,k-j} \theta_{n,n-j} \nu_j \right), \text{ by (5)}.$$

Innovations algorithm VI

• The mean squared errors:

$$\begin{split} v_n : &= ||X_{n+1} - X_{n+1}^n||^2 \\ &= ||X_{n+1}||^2 - ||X_{n+1}^n||^2 \\ &= \gamma(0) - \sum_{j=1}^n \theta_{nj}^2 \nu_{n-j}, \text{[by (4)]} \\ &= \gamma(0) - \sum_{j=0}^{n-1} \theta_{n,j+1}^2 \nu_{n-j-1} \\ &= \gamma(0) - \sum_{j=0}^{n-1} \theta_{n,n-j}^2 \nu_j, \text{ by replacing } (n-j-1) \text{ by } j. \end{split}$$

Innovations algorithm VII

- *h*− step Recursive Forecast
 - The predicting equation of time series at time n + h depending on the n observations is as follows

$$X_{n+h}^{n} = \sum_{j=h}^{n+h-1} \theta_{n+h-1,j} \left(X_{n+h-j} - X_{n+h-j}^{n+h-1-j} \right)$$

for $n = 1, 2, ..., \text{ with } X_1^0 = 0$

Corresponding mean squared error

$$E(X_{n+h}-X_{n+h}^n)^2=\gamma(0)-\sum_{j=h}^{n+h-1}\theta_{n+h-1,j}^2v_{n+h-1-j}$$

Innovations algorithm for Forecasting ARMA I

- Innovations algorithm can also help to forecast an ARMA(p, q) process.
- It works in two phases, here
 - First:
 - Transform an causal ARMA process X_t , where

$$\phi(\mathcal{B}) X_t = \theta(\mathcal{B}) Z_t, \ Z_t \sim \mathit{WN}(0, \sigma^2)$$

to a MA process as

$$W_{t} = \begin{cases} \sigma^{-1} X_{t}, & t = 1, \dots, m \\ \sigma^{-1} \phi(B) X_{t} = \sigma^{-1} [X_{t} - \phi_{1} X_{t-1} - \dots - \phi_{p} X_{t-p}] & t > m \end{cases}$$

$$= \sigma^{-1} [Z_{t} + \theta_{1} Z_{t-1} + \dots + \theta_{q} Z_{t-q}] \qquad t > m$$
(6)

where $m = \max(p, q)$

Innovations algorithm for Forecasting ARMA II

• Then apply the innovations algorithm to the process $\{W_t\}$ to obtain

$$W_{n+1}^{n} = \begin{cases} \sum_{j=1}^{n} \theta_{nj} (W_{n+1-j} - W_{n+1-j}^{n-j}), & n = 1, \dots, m-1 \\ \sum_{j=1}^{q} \theta_{nj} (W_{n+1-j} - W_{n+1-j}^{n-j}), & n \geq m \end{cases}$$
(7)

where the coefficients θ_{nj} and the mean squared errors $r_n = E(W_{n+1} - W_{n+1}^n)^2$ are found recursively from the innovations algorithm with γ_W defined as follows (Use 6)

$$\gamma_{\textit{W}}(i-j) = \textit{E}[\textit{W}_{i} \textit{W}_{j}] = \left\{ \begin{array}{ccc} \sigma^{-2} \gamma_{\textit{X}}(i-j), & 1 \leq i,j \leq m \\ \sum\limits_{q} \theta_{r} \theta_{r+|i-j|}, & m < \min(i,j) \\ \sigma^{-2} \left[\gamma_{\textit{X}}(i-j) - \sum\limits_{r=1}^{p} \phi_{r} \gamma_{\textit{X}}(r-|i-j|) \right], & \min(i,j) \leq m < \max(i,j) \leq 2m \\ 0, & \text{otherwise}. \end{array} \right.$$

Innovations algorithm for Forecasting ARMA III

Second:

- Note that, by definition each X_n , $n \ge 1$, to be written as a linear combination of W_i , $1 \le j \le n$, and vice-versa.
- Therefore, the best linear predictor of any random variable Y in terms of $\{1, X_1, \ldots, X_n\}$ is as same as the best linear predictor of Y in terms of $\{1, W_1, \ldots, W_n\}$.
- Thus, (by 6)

$$W_t^{t-1} = \begin{cases} \sigma^{-1} X_t^{t-1}, & t = 1, \dots, m \\ \sigma^{-1} \left[X_t^{t-1} - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} \right],, & t > m \end{cases}$$
(8)

Also,

$$\sigma^{-1}\left(X_t - X_t^{t-1}\right) = \left(W_t - W_t^{t-1}\right), \text{ for } t \ge 1$$

Innovations algorithm for Forecasting ARMA IV

• Therefore, X_{n+1} can be predicted by (Using 7 in 8)

$$X_{n+1}^{n} = \begin{cases} \sum_{j=1}^{n} \theta_{nj} \left(X_{n+1-j} - X_{n+1-j}^{n-j} \right), & 1 \leq n < m \\ \phi_{1} X_{n} + \dots + \phi_{p} X_{n+1-p} + \sum_{j=1}^{q} \theta_{nj} \left(X_{n+1-j} - X_{n+1-j}^{n-j} \right), & n \geq m \end{cases}$$

with MSE:
$$E\left(X_t-X_t^{t-1}\right)^2=\sigma^2 E\left(W_t-W_t^{t-1}\right)^2=\sigma^2 r_n$$

- Note that:
 - φ_is are known
 - while θ_{ni} s and r_n s are calculated by Innovation algorithm!
 - The one-step predictors $X_2^1, X_3^2, \dots, X_{n+1}^n$ are calculated recursively.

ACF of Stationary Time Series I

• The autocorrelation function (ACF) of a stationary process, X_n , denoted as $\rho(h)$, for h = 0, 1, 2, ..., is defined as follows

$$\rho(h) = cor(X_{n+h}, X_n)$$

$$= \frac{E(X_{n+h}X_n)}{\sqrt{E[X_{n+h}^2]E[X_n^2]}}$$

- Remarks
 - The autocorrelation matrix R_n is positive definite for all n, where

$$R_n = \begin{bmatrix} 1 & \rho(1) & \cdots & \rho(n-1) \\ \rho(1) & 1 & \cdots & \rho(n-2) \\ \vdots & \vdots & \vdots & \vdots \\ \rho(n-1) & \rho(n-2) & \cdots & 1 \end{bmatrix}$$

ACF of MA(q) process I

q-order moving average or MA(q) process:

$$X_t = Z_t + \theta_1 Z_{t-1} + \ldots + \theta_q Z_{t-q}, t = 0, \pm 1, \ldots,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ and $\theta_1, \dots, \theta_q$ are real valued constants

ACF

$$\rho(h) = \begin{cases} \frac{1}{(1+\theta_1^2+\cdots+\theta_q^2)} \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|}, & \text{if } |h| \leq q, \\ 0, & \text{if } |h| > q. \end{cases}$$

- where θ_0 is defined to be 1
- ACF of MA(q) process is **ZERO** for lags greater than q.
 - Cut-off to zero after lag q

ACF of AR(1) process I

• 1st order autoregressive or AR(1) process:

$$X_t = \phi X_{t-1} + Z_t, \ t = 0, \pm 1, \ldots,$$

where $\{Z_t\} \sim \mathit{WN}(0,\sigma^2)$ and $|\phi| < 1$

• The ACF of an AR(1) process

$$\rho(h) = \phi^{|h|}$$

Tails off to zero

ACF of ARMA(1) process I

1st order ARMA or ARMA(1,1) process:

$$X_t = \phi X_{t-1} + Z_t + \theta Z_{t-1}, t = 0, \pm 1, \dots,$$

where $\{Z_t\} \sim WN(0, \sigma^2), |\phi| < 1, Z_t$ is uncorrelated with X_s for each s < t and $\phi + \theta \neq 0$

The ACF of an ARMA(1,1) process

$$\rho(h) = \begin{cases} 1, & \text{if } h = 0, \\ \frac{(\theta + \phi)(1 - \phi^2) + (\theta + \phi)^2 \phi}{(1 - \phi^2) + (\theta + \phi)^2}, & \text{if } h = \pm 1 \\ \phi^{|h| - 1} \rho(1), & \text{if } |h| \ge 2. \end{cases}$$

Tails off to zero

PACF of Stationary Time Series I

• The partial autocorrelation function (PACF) of a stationary process, X_n , denoted as $\alpha(h)$, for h = 0, 1, 2, ... is defined as follows

$$\alpha(\mathbf{0}) = \mathbf{1}, \alpha(\mathbf{1}) = \rho(\mathbf{1})$$

and

$$\alpha(h) = cor(X_{n+h} - X_{n+h}^{n+1,n+h-1}, X_n - X_n^{n+1,n+h-1}), h \ge 2$$

PACF of Stationary Time Series II

Remarks

- The PACF, $\alpha(h)$, is the correlation between X_{n+h} and X_n with the linear dependence of $\{X_{n+1}, \dots, X_{n+h-1}\}$ on each, removed.
- Both $(X_{n+h} X_{n+h}^{n+1,n+h-1})$ and $(X_n X_n^{n+1,n+h-1})$ are uncorrelated with $\{X_{n+1}, \dots, X_{n+h-1}\}$.
- If the process X_n is Gaussian, then

$$\alpha(h) = cor(X_{n+h}, X_n | X_{n+1}, \dots, X_{n+h-1}).$$

• That is, $\alpha(h)$ is the correlation coefficient between X_{n+h} and X_n in the bivariate distribution of (X_{n+h}, X_n) conditional on $\{X_{n+1}, \dots, X_{n+h-1}\}$.

PACF of Stationary Time Series III

- Theorem: $\alpha(h) = \phi_{hh}$
 - Recall, ϕ_{hh} is the last element of the vector ϕ_h and $\Gamma_h\phi_h=\gamma_h$
- Proof:-
 - Forward MSE:

$$E\left[\left(X_{n+h}-\sum_{i=1}^{h-1}a_iX_{n+h-i}\right)^2\right]$$

Normal Equations

$$E\left[\left(X_{n+h} - \sum_{i=1}^{h-1} a_i X_{n+h-i}\right) X_{n+h-j}\right] = 0, \text{ for } j = 1, \dots, h-1$$

Solution:

$$\gamma_{\mathsf{h}-\mathsf{1}} = \mathsf{\Gamma}_{\mathsf{h}-\mathsf{1}} \mathsf{a}_{\mathsf{h}-\mathsf{1}}$$

PACF of Stationary Time Series IV

Backward MSE:

$$E\left[\left(X_n - \sum_{i=1}^{h-1} b_i X_{n+i}\right)^2\right]$$

Normal Equations

$$E\left[\left(X_{n}-\sum_{i=1}^{h-1}b_{i}X_{n+i}\right)X_{n+j}\right]=0, \text{ for } j=1,\ldots,h-1$$

Solution

$$\gamma_{h-1} = \Gamma_{h-1} b_{h-1}$$

Therefore,

$$\mathbf{a_{h-1}} = \mathbf{b_{h-1}} = \phi_{h-1}$$

PACF of Stationary Time Series V

As a result,

$$\alpha(h) = cor(X_{n+h} - X_{n+h}^{n+h-1,n+1}, X_n - X_n^{n+1,n+h-1})$$

$$= \frac{E\left[\left(X_{n+h} - \phi'_{h-1}X_{n+h-1,n+1}\right)\left(X_n - \phi'_{h-1}X_{n+1,n+h-1}\right)\right]}{\sqrt{E\left[\left(X_{n+h} - \phi'_{h-1}X_{n+h-1,n+1}\right)^2\right]E\left[\left(X_n - \phi'_{h-1}X_{n+1,n+h-1}\right)^2\right]}}$$

$$= \frac{E\left[\left(X_{n+h} - \phi'_{h-1}X_{n+h-1,n+1}\right)\left(X_n - \phi'_{h-1}X_{n+h-1,n+1}\right)\right]}{\sqrt{E\left[\left(X_{n+h} - \phi'_{h-1}X_{n+h-1,n+1}\right)^2\right]E\left[\left(X_n - \phi'_{h-1}X_{n+h-1,n+1}\right)^2\right]}}$$

$$= \frac{\gamma(h) - \phi'_{h-1}\gamma_{h-1}^{(r)} - \phi'_{h-1}\gamma_{h-1} + \phi'_{h-1}\Gamma_{h-1}\phi_{h-1}}{\sqrt{\left[\gamma(0) - \phi'_{h-1}\Gamma_{h-1}\phi_{h-1}\right]\left[\gamma(0) - \phi'_{h-1}\Gamma_{h-1}\phi_{h-1}\right]}}$$

$$= \frac{\gamma(h) - \phi'_{h-1}\gamma_{h-1}^{(r)} - \phi'_{h-1}\gamma_{h-1}^{(r)} + \phi'_{h-1}\gamma_{h-1}^{(r)}}{\gamma(0) - \phi'_{h-1}\Gamma_{h-1}\phi_{h-1}}$$

$$= \frac{\gamma(h) - \phi'_{h-1}\gamma_{h-1}^{(r)}}{V_{h-1}} = \phi_{hh}$$

PACF of AR(p) process I

• p-order autoregressive or AR(p) process:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + Z_t, t = 0, \pm 1, \ldots,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$, Z_t is uncorrelated with X_s for each s < t and all roots of the polynomial $(1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p)$ lie outside the unit circle.

PACF of AR(p) process II

- PACF of causal AR(p)
 - For $h \ge p$ the best linear predictor of X_{h+1} in terms of $1, X_1, \dots, X_h$ is

$$X_{h+1} = \phi_1 X_h + \phi_2 X_{h-1} + \cdots + \phi_p X_{h+1-p}.$$

Since the coefficient ϕ_{hh} of X_1 is ϕ_p if h = p and 0 if h > p, we conclude that the

$$\alpha(h) = \phi_p \text{ for } h = p$$

and

$$\alpha(h) = 0$$
 for $h > p$

- PACF of a causal AR(p) process is **ZERO** for lags greater than p.
 - Cut-off to zero after lag p

PACF of MA(1) process I

1st order moving average or MA(1) process:

$$X_t = Z_t + \theta Z_{t-1}, \ t = 0, \pm 1, \ldots,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ and θ is a real constant.

• The PACF of an MA(1) process

$$\alpha(h) = \phi_{hh} = -(-\theta)^h/(1+\theta^2+\cdots+\theta^{2h}).$$

Tails off to zero

ACF & PACF of Stationary Time Series I

 Behavior of the ACF and PACF for Causal and Invertible ARMA Models

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off after lag q	Tails off
PACF	Cuts off after lag p	Tails off	Tails off