Aufgabe 1 (4 Punkte).

i) Sei W eine Brownsche Bewegung. Dann ist W ein Martingal.

W ist adaptiert und stetig, also insbesondere càdlàg. Weiterhin gilt $0 = E[|X_t|] < \infty$. Sei schließlich $0 \le s \le t$. Alle $F \in \mathscr{F}_s$ sind unabhängig von den Zuwächsen $X_t - X_s$. Somit gilt $E[\mathbbm{1}_F(X_t - X_s)] = P(F)E[X_t - X_s] = 0$, denn $E[X_t] = E[X_s] = 0$. Somit ist W ein Martingal.

ii) Sei N ein Poisson-Prozess mit Intensität $\Lambda(t)=\mathbb{E}[N_t]$. Dann ist der kompensierte Poisson-Prozess $N_t-\Lambda(t)_t$ ein Martingal.

Ein Poisson-Prozess ist càdlàg. Da für den kompensierten Poisson-Prozess wie für eine Brownsche Bewegung für alle $t \geq 0$ gilt $E[N_t - \Lambda(t)] = E[N_t] - E[N_t] = 0$, ist die Argumentation sonst analog zu der von Teilaufgabe i.

Aufgabe 2 (4 Punkte). Zeigen Sie, dass für alle quadratintegrierbaren Martingale M, dh. $E[M_t^2] < \infty$ für alle $t \in \mathbb{R}_+$, und $s \leq t$ folgende Aussagen gelten:

i)
$$E[(M_t - M_s)^2 \mid \mathscr{F}_s] = E[M_t^2 - M_s^2 \mid \mathscr{F}_s].$$

Durch Ausquadrieren erhalten wir

$$E[(M_t - M_s)^2] \mid \mathscr{F}_s] = E[M_t^2 - 2M_tM_s + M_s^2 \mid \mathscr{F}_s].$$

Da M ein Martingal ist, ist es adaptiert. Damit ist M_s ist \mathscr{F}_s messbar und wir können es aus der bedingten Erwartung rausziehen. Zudem gilt dafür $E[M_s \mid \mathscr{F}_s] = M_s$, sodass

$$= E[M_t^2 \mid \mathscr{F}_s] - 2M_s E[M_t \mid \mathscr{F}_s] + M_s^2.$$

Mit der Martingaleigenschaft folgt

$$= E[M_t^2 \mid \mathscr{F}_s] - 2M_s^2 + M_s^2$$
.

Zusammenfassen der letzten beiden Terme liefert

$$=E[M_t^2 \mid \mathscr{F}_s] - M_s^2$$
.

wieder aufgrund der \mathscr{F}_s -Messbarkeit von M_s erhalten wir

$$= E[M_t^2 - M_s^2 \mid \mathscr{F}_s].$$

ii)
$$E[(M_t - M_s)^2] = E[M_t^2] - E[M_s^2].$$

Mit der definierenden Eigenschaft (ii) vom bedingten Erwartungswert ausgewertet auf Ω können wir schreiben

$$E[(M_t - M_s)^2] = E[E[(M_t - M_s)^2 \mid \mathscr{F}_s]]$$

Einsetzten von Teilaufgabe (i) liefert

$$= E\left[E[M_t^2 - M_s^2 \mid \mathscr{F}_s]\right]$$

und wieder die Eigenschaft (ii) auf Ω schließlich

$$= E[M_t^2 - M_s^2].$$

Aufgabe 3 (4 Punkte). Zeigen Sie folgende Aussagen:

i) Jedes nicht-negative lokale Martingal ist ein Supermartingal.

Sei X ein nicht-negatives lokales Martingal, (T_n) die dazugehörige lokalisierende Folge. Da (T_n) fast sicher gegen unendlich konvergiert, konvergiert für jedes $t \geq 0$ die Folge $(X_t^{T_n})_{n \in \mathbb{N}}$ fast sicher gegen X_t . Somit gilt

$$E[X_t|\mathscr{F}_s] = E[\liminf_{n \to \infty} X_t^{T_n} \mid \mathscr{F}_s].$$

Es gilt $X_t \geq 0$ für alle $t \geq 0$. Somit können wir das Lemma von Fatou für den bedingten Erwartungswert anwenden und erhalten

$$\leq \liminf_{n \to \infty} E[X_t^{T_n} \mid \mathscr{F}_s] \,.$$

DaXein lokales Martingal ist, ist $(X_t^{T_n})_{t\geq 0}$ ein Martingal. Somit kriegen wir

$$= \liminf_{n \to \infty} X_s^{T_n} = X_s \,,$$

wieder weil (T_n) fast sicher gegen unendlich konvergiert. Durch eine analoge Argumentation für $E[|X_t|]$ erhalten wir zudem die Integrabilität von X_t , sodass X ein Supermartingal ist.

ii) Sei X ein Martingal (Submartingal) und $\varphi \colon \mathbb{R} \to \mathbb{R}$ konvex (konvex und nicht fallend), so dass $E[|\varphi(X_t)|] < \infty$ für alle $t \in \mathbb{R}_+$. Dann ist $\varphi(X)$ ein Submartingal.

Sei X ein Martingal und φ konvex. Dann können wir die Jensenschen Ungleichung anwenden und erhalten

$$E[\varphi(X_t) \mid \mathscr{F}_s] \ge \varphi(E[X_t \mid \mathscr{F}_s]).$$

Da X ein Martingal ist, folgt

$$=\varphi(X_s)$$
.

Sei X nun ein Submartingal, so folgt $E[X_t \mid \mathscr{F}_s] \geq X_s$. Ist φ nicht-fallend, so erhalten wir $\varphi(E[X_t \mid \mathscr{F}_s]) \geq \varphi(X_s)$. Die Behauptung folgt wie im Fall, wo X ein Martingal ist, mit der Jensenschen Ungleichung.

Aufgabe 4 (4 Punkte). Geben Sie für einen wiederholten Münzwurf (mit fairer Münze) einen Wahrscheinlichkeitsraum an und zeigen Sie, dass der Prozess $(M_n)_{n\in\mathbb{N}}$, der die Summe der Auszahlung $X=(X_n)_{n\in\mathbb{N}}$ von 1 bzw. -1 beschreibt, ein Martingal bzgl. seiner Filtration ist. Das Spiel endet, wenn die Auszahlung von $a\in\mathbb{N}$ erreicht ist. Ist das gestoppte Spiel immer noch ein Martingal? Was lässt sich über die Konvergenz (fast sicher und L^1) des gestoppten Spiels aussagen?

Hinweis: Sie dürfen für die Konvergenz ohne Beweis annehmen, dass $\limsup_{n\to\infty} M_n = \infty$ fast sicher. Diese Aussage finden Sie zum Beispiel in [1, Aufgabe 2.3.1].

Lösung: Bei jedem einzelnen Münzwurf sind die verschiedenen Auskommen $\Omega_1 = \{K, Z\}$ für Kopf oder Zahl. Der Grundraum von X ist dann $\Omega = \Omega_1^{\mathbb{N}}$, sodass für alle $\omega \in \Omega$ gilt $\omega_n \in \Omega_1$. Die Filtration ist $\mathbb{F} = (\mathcal{F}_n)$ mit $\mathcal{F}_n = \mathcal{P}(\Omega_1)^{\otimes n}$. Auf $\mathcal{P}(\Omega_1)$ ist ein Wahrscheinlichkeitsmaß P_1 gegeben durch $P_1(\emptyset) = 0$, $P_1(K) = P_1(Z) = \frac{1}{2}$ und $P_1(\Omega_1) = 1$. Das die Würfe unabhängig sind, können wir definieren $P_n(\omega) = \prod_{k=1}^n P_1(\omega_k)$ setzen. Da Ω polnisch ist, gibt es einen projektiven Limes P zu (P_n) auf Ω , was (Ω, \mathcal{F}, P) zu einem Wahrscheinlichkeitsraum macht. Sei $A \in \mathbb{Z}$, dann ist $M_n^{-1}(A) \in \mathcal{F}_n$, da \mathcal{F}_n aus den Potenzmengen von Ω_1 besteht. Somit ist M_n adaptiert. Es sollte noch geprüft werden, dass \mathbb{F} tatsächlich die natürliche Filtration von (M_n) ist. Wir sollen noch prüfen, ob (M_n) ein Martingal ist. Sei hierfür m < n. Dann gilt mit der Definition von (M_n)

$$E[M_n \mid \mathcal{F}_m] = E\left[\sum_{k=1}^n X_k \mid \mathcal{F}_m\right].$$

Wegen der Linearität der bedingten Erwartung gilt

$$= E[M_m \mid \mathcal{F}_m] + E\left[\sum_{k=m+1}^n X_k \mid \mathcal{F}_m\right].$$

Da M_m \mathcal{F}_m -messbar und für k>m X_k unabhängig von \mathcal{F}_m ist, gilt

$$= M_m + \sum_{k=m+1}^{n} E[X_k] = M_m \,,$$

Denn $E[X_k]=1\cdot \frac{1}{2}-1\cdot \frac{1}{2}=0$. Somit ist (M_n) ein Martingal. Sei $T:=\inf\{n\in\mathbb{N}\mid M_n\geq a\}$. Nach Satz 16 ist T tatsächlich eine Stoppzeit. Nach dem optional stopping theorem ist auch der gestoppte Prozess M^T ein Martingal. Mit dem Satz aus dem Hinweis gilt $M^T\to a$ fast sicher. Somit konvergiert M_n in L^1 wenn, dann gegen a, es würde also gelten $E[|M_n-a|]\to 0$ und auch $E[M_n]\to a\neq 0=E[M_1]=E[M_n^T]$, da M_n^T ein Martingal ist. Somit konvergiert M^T nicht in L^1 .

Aufgabe 5 (Bonus 4 Punkte). Es sei $f: \mathbb{R}^+ \to \mathbb{R}$ eine linksstetige Funktion. Wir definieren die Folge $(f_n)_{n\in\mathbb{N}}$ von rechtsstetigen Funktionen $f_n: \mathbb{R}^+ \to \mathbb{R}$ durch

$$f_n := \sum_{k \in \mathbb{N}} f\left(\frac{k-1}{2^n}\right) \mathbb{1}_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right)},$$

und die Folge $(g_n)_{n\in\mathbb{N}}$ von linksstetigen Funktionen $f_n\colon\mathbb{R}^+\to\mathbb{R}$ durch

$$g_n := f(0) \mathbb{1}_{\{0\}} + \sum_{k \in \mathbb{N}} f\left(\frac{k-1}{2^n}\right) \mathbb{1}_{\left(\frac{k-1}{2^n}, \frac{k}{2^n}\right]}.$$

Dann gilt $f_n \to f$ und $g_n \to f$ punktweise. Was folgern Sie aus dieser Aufgabe? Kann man eine analoge Aussage für rechtsstetige Funktionen formulieren?

Lösung: Sei $f \colon \mathbb{R}^+ \to \mathbb{R}$ eine linksstetige Funktion, $t \geq 0$, (t_m) eine Folge, die von oben gegen t konvergiert. Da f_n rechtsstetig sind, gilt $f_n(t) = \lim_{s_m \downarrow t} f_n(t_m) = f\left(\frac{k_n-1}{2^n}\right)$, wobei man das letzte Gleichheitszeichen noch genauer erklären sollte, mit $k_n = \max\left\{k \in \mathbb{N} : \frac{k-1}{2^n} \leq t\right\}$. Da f linksstetig ist und $\frac{k_n-1}{2^n} \uparrow t$ folgt $\lim f_n(t) = f(t)$. Sei (s_m) eine Folge, die von unten gegen t konvergiert, dann gilt $g_n(t) = \lim_{s_m \uparrow t} g_n(s_m) = g(\frac{\ell_n-1}{2^n})$ mit $\ell_n = \min\{k \in \mathbb{N} : \frac{k}{2^n} \geq t\}$. Da auch $\frac{\ell_n-1}{2^n} \uparrow t$, folgt $\lim g_n(t) = g(t)$. Da Grenzwerte messbarer Funktionen wieder messbar sind, gilt $\mathcal{P} \subseteq \mathcal{O}$. Ist f allerdings eine rechtsstetige Funktion, so konvergieren f_n und g_n im Allgemeinen nicht punktweise gegen f, da $\frac{k_n-1}{2^n}$ und $\frac{\ell_n-1}{2^n}$ nicht von oben gegen t konvergieren. Hier müsste noch überlegt werden, ob es nicht eine andere Möglichkeit der Approximation gibt, sodass rechtsstetige Funktionen doch durch linksstetige approximiert werden können.