MIKROKONTROLER AT89C51RC2

tajmer 0 i tajmer 1

Tajmeri

AT89C51RC2 ima tri tajmera koji mogu da se kontrolišu, podešavaju i čitaju posebno.

Tajmeri 0 i 1 su dio osnovne arhitekture 8051 i mogu se koristiti za tri različite funkcije:

- Brojanje vremena i/ili računanje razmaka između dva događaja
- Brojanje događaja
- Generisanje baud rate-a za serijski port (tajmer 1)

Kod tajmera 0 i 1, tajmer uvijek broji na gore, mikrokontroler inkrementira njegovu vrijednost, bez obzira da li se koristi za brojanje vremena, događaja ili generisanje baud rate-a.

Radom tajmera 0 i 1 se upravlja pomoću sljedećih SFR:

Ime SFR	Opis	Adresa SFR
TH0	Viši bajt timera 0	8Ch
TL0	Niži bajt timera 0	8Ah
TH1	Viši bajt timera 1	8Dh
TL1	Niži bajt timera 1	8Bh
TCON	Upravljanje timerima 0 i 1	88h
TMOD	Određivanje moda rada timera 0 i 1	89h

TMOD

TMOD SFR se koristi da bi se kontrolisao mod rada tajmera 0 i 1. Svaki bit ovog SFR daje mikrokontroleru specifičnu informaciju o tome kako da upravlja radom tajmera. Viša 4 bita (biti 4 do 7) odnose se na Timer 1, a niža 4 bita (biti 0 do 3) obavljaju istu funkciju, ali za Timer 0

TMOD (89h) SFR:

Bit	Ime	Objašnjenje funkcije	
7	GATE1	Kada je ovaj bit na 1 timer će da radi samo kada je signal na INT1# (P3.3) na visokom naponskom nivou. Kada je ovaj bit na 0, timer će da radi bez obzira na stanje INT1#.	
6	C/T1#	Kada je ovaj bit na 1, timer će da broji događaje na pinu T1 (P3.5). Kada je ovaj bit na 0, timer će da se inkrementira u svakom mašinskom ciklusu.	1
5	T1M1	Bit za izbor moda rada timera (sljedeći slajd)	1
4	T1M0	Bit za izbor moda rada timera (sljedeći slajd)	1
3	GATE0	Kada je ovaj bit na 1 timer će da radi samo kada je signal na INT0# (P3.2) na visokom naponskom nivou. Kada je ovaj bit na 0, timer će da radi bez obzira na stanje INT0#.	0
2	C/T0#	Kada je ovaj bit na 1, timer će da broji događaje na pinu T0 (P3.4). Kada je ovaj bit na 0, timer će da se inkrementira u svakom mašinskom ciklusu.	0
1	T0M1	Bit za izbor moda rada timera (sljedeći slajd)	0
0	ТОМО	Bit za izbor moda rada timera (sljedeći slajd)	0

Izbor moda rada i upravljanje timerima 0 i 1

Izbor moda rada timera:

TxM1	TxM0	Timer Mode	Opis moda
0	0	0	13-bit Timer.
0	1	1	16-bit Timer
1	0	2	8-bit auto-reload
1	1	3	Split timer mode

TCON SFR – registar preko koga se upravlja radom timera 0 i 1, a takodje i dobijaju informacije o njihovom radu.

Biti SFR registra TCON (88h) koji se odnose na rad tajmera 0 i 1:

Bit	Ime	Bit adresa	Objašnjenje funkcije	Timer
7	TF1	8Fh	Timer 1 Overflow . Ovaj bit se postavlja na 1 kada timer 1 pređe najvišu vrijednost koja u njega može da bude upisana.	1
6	TR1	8Eh	Timer 1 Run . Kada je ovaj bit setovan, timer 1 je uključen. Kada je ovaj bit na 0, timer 1 je isključen.	1
5	TF0	8Dh	Timer 0 Overflow . Ovaj bit se postavlja na 1 kada timer 0 pređe najvišu vrijednost koja u njega može da bude upisana.	0
4	TR0	8Ch	Timer 0 Run . Kada je ovaj bit setovan, timer 0 je uključen. Kada je ovaj bit na 0, timer 0 je isključen	0

Ulaz za brojanje je povezan na tajmer kada je TR1 = 1 i (GATE = 0 ili INT1# = 1). (Postavljanje bita GATE = 1 omogućava da se tajmer kontroliše pomoću externog ulaza INT1# da bi se omogućilo mjerenje dužine trajanja impulsa).

TR1 je kontrolni bit u SFR registru TCON. GATE se nalazi u TMOD registru.

U ovom modu, registar timera je konfigurisan kao 16 bitni registar. Ovaj 16-bitni registar sastoji se od 8 bita TH1 i 8 bita TL1.

Kada je dozvoljeno brojanje, vrijednost u registru se inkrementira. Kada broj u registru pređe sa svih 1 na sve 0, setuje se tajmerov interrupt flag TF1. Ukoliko je omogućen prekid tajmera 1 i postoji globalna dozvola prekida, to će dovesti do generisanja prekida tajmera 1 i pozivanja procedure za njegovu obradu.

Mod 0 je isti kao mod 1, s tim što se ne koristi svih 8 bita registra TL1, nego samo viših 5 bita, tako da imamo 13-bitni registar tajmera.

Princip rada tajmera 1 u modu 2

Mod 2 konfiguriše tajmerski registar kao 8-bitni sa automatskim ponovnim upisivanjem (Reload) kao na slici. Overflow (prelazak sa svih 1 na sve 0) vrijednosti u registru TL1 ne samo što setuje flag TF1, nego i automatski upisuje u TL1 vrijednost iz TH1 koja se definiše softverski. Ovo upisivanje vrijednosti u TL1 ne utiče na vrijednost upisanu u TH1.

Modovi rada 0-2 su isti za tajmere 0 i 1.

Princip rada tajmera 0 i 1 u modu 3

Tajmer 1 u modu 3 ne inkrementira registar, efekat je isti kao kada je postavljeno TR1=0. Tajmer 0 u modu 3 posmatra TL0 i TH0 kao dva posebna brojača. TL0 se konfiguriše pomoću flagova za tajmer 0 i može da radi kao tajmer ili kao brojač. TH0 registar se može koristiti samo za funkciju tajmera, a za rad koristi TR1 i TF1 flag tajmera 1.

Kada je tajmer 0 u modu 3, tajmer 1 može da se koristi u bilo kom od modova rada 0-2, ali ne generiše prekid, tako da može da se koristi samo u aplikacijama koje ne zahtjevaju prekid (npr. baud rate generator).

Zadatak

Napisati program koji broji vrijeme proteklo od uključivanja kontrolera i smješta ga u četiri promjenljive koje definišu broj sati, broj minuta u tekućem satu, broj sekundi u tekućem minutu i broj stotinki u tekućoj sekundi. Oscilator koji se koristi za clock mikrokontrolera ima frekvenciju 24MHz. Koristiti tajmer 0 u modu 2.

Rješenje:

24MHz/12=2MHz,

trajanje mašinskog ciklusa je 1/2MHz=0.5 μs

Ako stavimo reload vrijednost od 56, tajmer će da odbroji od 56 do 256, odnosno 200 mašinskih ciklusa i onda generisati prekid.

Znači da će prekid biti generisan svakih $200*0.5 \mu s = 100 \mu s$.

Da bi dozvolili prekid treba da postavimo globalnu dozvolu prekida EA na 1 i dozvolu prekida tajmera 0 ET0 na 1.

Da bi tajmer mogao da broji treba postaviti TR0 bit na 1, kao i GATE bit na 0 da brojanje tajmera ne bi zavisilo od ulaza INT0.

Da bi tajmer vršio brojanje mašinskih ciklusa, a ne externih događaja potrebno je postaviti bit C/T0 na logičku 0.

Programski kod rješenja 1/2

```
#include<REG51RC2.h>
                                     F<sub>CLK PERIPH</sub>
unsigned char data brojStotinki=0;
                                                                                   (8 Bits)
unsigned char data brojSekundi=0;
unsigned char data brojMinuta=0;
unsigned int data brojSati=0;
unsigned char data brojPrekida=0;
                                                                                   TH1
(8 Bits)
void InicijalizacijaKontrolera(void)
EA=0;//UKIDANJE GLOBALNE DOZVOLA PREKIDA
TL0=56;//VRIJEDNOST ZA PRVO BROJANJE TAJMERA
TH0=56;//RELOAD VRIJEDNOST
TMOD=0x02;/GATE0=0(bit 3), C/T0=0 (bit 2) mod 2(biti 0-1)
TR0=1;//DOZVOLA RADA TAJMERA 0
ET0=1;//DOZVOLA PREKIDA TAJMERA 0
EA=1;//GLOBALNA DOZVOLA PREKIDA
```

43	3	GATE0	Kada je ovaj bit na 1 timer će da radi samo kada je signal na INT0# (P3.2) na visokom naponskom nivou. Kada je ovaj bit na 0, timer će da radi bez obzira na stanje INT0#.	0
2	2	C/T0#	Kada je ovaj bit na 1, timer će da broji događaje na pinu T0 (P3.4). Kada je ovaj bit na 0, timer će da se inkrementira u svakom mašinskom ciklusu.	0
•	1	T0M1	Bit za izbor moda rada timera (sljedeći slajd)	0
()	ТОМО	Bit za izbor moda rada timera (sljedeći slajd)	0

Programski kod rješenja 2/2

```
//PROCEDURA ZA OBRADU PREKIDA TAJMERA 0,
//PREKID SE GENERISE SVAKIH 100us
//ZA IZVODJENJE OPERACIJA KORISTI SE REGISTAR BANKA 0
void Tajmer0 (void) interrupt 1 using 0 {
if (++brojPrekida == 100) { // odbrojao 100*100us=10ms
              brojPrekida=0;//resetuje se brojac prekida
              if(++brojStotinki == 100) {//odbrojao sekundu
                           brojStotinki=0;//postavlja se na 0 odbrojanih stotinki tekuce sekunde
                            if(++brojSekundi == 60) {// odbrojao minut
                                         brojSekundi=0;//postavlja se na 0 odbrojanih sekundi tekuce minute
                                         if(++brojMinuta == 60){//odbrojao sat
                                                       brojMinuta=0;//postavlja se na 0 odbrojanih minuta tekuceg sata
                                                       brojSati++;//inkrementira se broj sati
void main(void)
InicijalizacijaKontrolera();
while(1){
```

