CS 6375 - MACHINE LEARNING

Project Status Report

April 09th

Shiva Podugu (sxp170130)

Manohar Katam (mxk164930)

Sravani Lingam (sxl170330)

Venkata Kartheek Madhavarapu (vxm153830)

Our Project is on **predicting the occurrences of "total_cases"** of Dengue based on "**DengAl: Predicting Disease Spread**" dataset which is in active driven data competitions. Here we have a set of weather information (precipitation, temperature, vegetation) from the two cities: San Juan (sj) and Iquitos (iq) with total cases of dengue by year and week of the year. We aim at making a complete analysis of the DengAl dataset to find the total number of Dengue affected cases in the given two cities with respect to set of climate variables as mentioned above.

The Dataset - DengAI: Predicting Disease Spread

The DengAI dataset is taken from an active DrivenData Competition and the link of which is given below:

https://www.drivendata.org/competitions/44/dengai-predicting-disease-spread/

This dataset has two cities: San Juan (sj) and Iquitos (iq). Since we assume that the spread of dengue may follow different patterns between the two different cities, we will divide the dataset, train separate models for each city, and then join our predictions finally.

Number of attributes = 24

Number of instances = 1456

The attributes are the following:

- city we will divide all city = San Juan (sj) data into one dataset and
 all city = Iquitos (iq) data into other dataset
- 2. year

- 3. week_of_year
- 4. week_start_date
- 5. station_max_temp_c Maximum temperature
- 6. station_min_temp_c Minimum temperature
- 7. station_avg_temp_c Average temperature
- 8. station_precip_mm Total precipitation
- station_diur_temp_rng_c Diurnal temperature
 - 10. precipitation_amt_mm Total precipitation
- 11. reanalysis_sat_precip_amt_mm Total precipitation
- 12. reanalysis_dew_point_temp_k Mean dew point temperature
 - 13. reanalysis_air_temp_k Mean air temperature
- 14. reanalysis_relative_humidity_percent Mean relative humidity
- 15. reanalysis_specific_humidity_g_per_kg Mean specific humidity
- 16. reanalysis_precip_amt_kg_per_m2 Total precipitation
- ${\bf 17.\ reanalysis_max_air_temp_k-Maximum\ air}$ ${\bf temperature}$
- ${\bf 18.\ reanalysis_min_air_temp_k-Minimum\ air}$ ${\bf temperature}$
 - 19. reanalysis_avg_temp_k Average air temperature
 - 20. ndvi se Pixel southeast of city centroid
 - 21. ndvi sw Pixel southwest of city centroid
 - 22. ndvi_ne Pixel northeast of city centroid
 - 23. ndvi_nw Pixel northwest of city centroid
 - 24. reanalysis_tdtr_k Diurnal temperature range

Here is the snapshot of the data:

dengue_features_train <- read_csv ("~/Downloads/dengue_features_train.csv ")
head(dengue_features_train)</pre>

station_precip_mm	station_min_temp_c	station_max_temp_c	station_diur_temp_rng_c	station_avg_temp_c	reanalysis_tdtr_k
16.0	20.0	29.4	6.900000	25.44286	2.628571
8.6	22.2	31.7	6.371429	26.71429	2.371429
41.4	22.8	32.2	6.485714	26.71429	2.300000
4.0	23.3	33.3	6.771429	27.47143	2.428571
5.8	23.9	35.0	9.371429	28.94286	3.014286
39.1	23.9	34.4	6.942857	28.11429	2.100000

dengue_labels_train <- read_csv("~/Downloads/dengue_labels_train.csv")
head(dengue_labels_train)</pre>

We are dividing dengue_features_train and dengue_labels_train into two datasets based on the city value by using the following commands:

```
sj_dengue_train_labels<-subset(dengue_labels_train,city=="sj")
iq_dengue_train_labels<-subset(dengue_labels_train,city=="iq")
sj_dengue_train_features<-subset(dengue_train_features,city=="sj")
iq_dengue_train_features<-subset(dengue_train_features,city=="iq")</pre>
```

<u>Techniques we planned to use</u>

We planned to apply the following techniques on the data to complete the required analysis –

- k-Nearest Neighbors (kNN)
- Random Forests
- Bagging
- Gradient Boosting

Experimental Methodology

We employ the following procedure in our project -

- 1. Pre-processing of the dataset
 - This step involves dealing with the NA values,
 - Scaling the required attributes,
 - Removing the uncorrelated attributes.
- 2. On the dataset
 - We perform each of the aforementioned techniques,
 - Also, vary the parameters and find the best set of parameters for the technique.
- 3. We evaluate the techniques using the following metrics
 - Accuracy
 - Precision
 - Recall

- F-measure
- 4. We plot the results that aid in comparing the performance of the classifiers.

Programming Language

We plan to use **R** programming for the project.

Preliminary Results

We now present the results of the work we've done so far.

- → Removing "week_start_date" attribute since it is not a feature for our model and removing it will not make any difference in the result.
- → We plotted the CORRPLOT which aids in identifying the correlation of the attribute with the class attribute (total_cases).

The plot is as follows for each of the cities Iquitos (iq) and San Juan (sj) :-

Fig 1. Correlation heat plot and bar plot of city San Juan (sj)

Fig.2 Correlation heat plot and bar plot of city Iquitos

Observations

- 1. We see that many of the temperature data are strongly correlated.
- 2. We noted that total_cases has weak correlations with the other attributes and vegetation_index attributes also has weak correlations with other attributes.
- 3. We also see that correlation strengths differ for each city and reanalysis_specific_humidity_g_per_kg and reanalysis_dew_point_temp_k are the most strongly correlated with total_cases. As we know that mosquitos thrive wet climates, we can infer why they are strongly correlated.
- 4. As minimum temperatures, maximum temperatures, and average temperatures rise, the total_cases of dengue fever tend to rise as well.
- 5. We also note that the precipitation measurements bear little to no correlation to total_cases, despite strong correlations to the humidity measurements.

Based on the correlation observations above, these are the attributes which have the strong correlations with the total cases in each city:

- reanalysis_specific_humidity_g_per_kg
- reanalysis_dew_point_temp_k
- station_avg_temp_c
- station_min_temp_c

R_CODE:

```
#Read the dataset

dengue_labels_train <- read_csv("~/Downloads/dengue_labels_train.csv")

dengue_features_train <- read_csv("~/Downloads/dengue_features_train.csv")

View(dengue_labels_train)

View(dengue_features_train)

#Loading data by City

sj_dengue_train_labels<-subset(dengue_labels_train,city=="sj")

iq_dengue_train_labels<-subset(dengue_labels_train,city=="iq")
```

```
sj_dengue_train_features<-subset(dengue_features_train,city=="sj")
iq_dengue_train_features<-subset(dengue_features_train,city=="iq")</pre>
#Merging features and labels
merged\_sj\_train\_features\_instances <-
merge(sj_dengue_train_features,sj_dengue_train_labels,by=c('city','year','weekofyear'))
merged_iq_train_features_instances <-
merge(iq_dengue_train_features,iq_dengue_train_labels,by=c('city','year','weekofyear'))
#Pre-processing
When the data set is loaded in R, the null values are replaced by NA.
We have used "gam" package in which NAs are replaced by the mean of the non-missing entries.
library(gam)
merged_sj_train_features_instances <- na.gam.replace(merged_sj_train_features_instances)
merged_iq_train_features_instances <- na.gam.replace(merged_iq_train_features_instances)
View(merged_sj_train_features_instances)
View(merged_iq_train_features_instances)
# Removing 'week_start_date' column
As it doesn't impact the result significantly.
We have used "dplyr" package is used to remove unnecessary columns.
merged_sj_train_features_instances <- dplyr::select(merged_sj_train_features_instances, -week_start_date)
merged_iq_train_features_instances <- dplyr::select(merged_iq_train_features_instances, -week_start_date)</pre>
View(merged_sj_train_features_instances)
View(merged_iq_train_features_instances)
#Finding the correlation plot
library(corrplot)
sj_corrplot<-cor(merged_sj_train_features_instances[,4:24])
```

corrplot(sj_corrplot,type = 'full', tl.col = 'brown', method="shade")

iq_corrplot<-cor(merged_iq_train_features_instances[,4:24])
corrplot(iq_corrplot,type = 'full', tl.col = 'brown', method="shade")</pre>