Measure Theory and Integration

Luc Veldhuis

4 September 2017

New theory for integration

Non-integratable function

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

 $\int_0^1 f(x)dx$ is not integratable using the Riemann integral.

Why do we need a new way?

- More functions
- Abstraction! X some general space, $f:X\to\mathbb{R}$, calculate $\int_X f(x)dx$

Hopefully this new theory will extent the Riemann integral.

Idea

Look at the inverse of an interval in X. $f^{-1}((a, b])$. with $a, b \in X$.

Measure

Example

 \mathbb{R} , $A, B \subseteq \mathbb{R}$. Let m(A) be the 'measure of A' Properties we want:

- m([a,b]) = b a

Suppose A_1,A_2,A_3,\ldots are such that $A_i\cap A_j=\emptyset \ \forall i,j\in\mathbb{N}$ Does it follow that $m(\bigcup_{i=1}^\infty A_i)=\sum_{i=1}^\infty m(A_i)$? Assume it does. These properties are inconsistent. There exists a set in \mathbb{R} for which not all properties hold.

Measure

Proof 1-5 are inconsistent

 $x \sim y$ if $x - y \in \mathbb{Q}$ (reflexive, symmetric, transitive)

 $\left[0,1\right]$ partitions into disjoint equivalence classes.

Let E be a set which contains exactly 1 point from each equivalence class.

$$\mathbb{Q} \cap [0,1] = \{q_1, q_2, \dots\}$$
 (countable set)
 $E_n = E + q_n, n = 1, 2, \dots$

Claim

$$E_n \cap E_m = \emptyset$$
 for $n \neq m$

Measure

Proof

Let
$$z \in E_n \cap E_m$$

 $z = a_{\alpha} + q_n \ a_{\alpha} \in E$
 $z = a_{\beta} + q_m \ a_{\beta} \in E$
 $a_{\alpha} - a_{\beta} \in \mathbb{Q}$

So they are the same equivalence class.

Claim

$$[0,1] \subseteq \bigcup_{n=1}^{\infty} E_n \subseteq [-1,2]$$

Proof 1-5 are inconsistent (continued)

$$1 \leq m(\bigcup_{n=1}^{\infty} E_n) \leq 3$$

$$1 \leq \sum_{n=1}^{\infty} m(E_n) \leq 3$$

$$m(E_n) = \gamma \ \forall n$$

$$\sum_{n=1}^{\infty} m(E_n) = 0 \text{ or } \infty$$

σ -algebrae

X a set, A a σ -algebra, $\mathcal A$ on X a collection of subsets of X which satisfies

- $X \in \mathcal{A}$
- $\bullet \ A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
- $A_i \in \mathcal{A}, i = 1, 2, 3, \dots \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Properties

- $\bullet \emptyset \in \mathcal{A}$
- $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- $A \cap B = (A^c \cup B^c)^c$

Examples

- $\mathcal{A} = \{\emptyset, X\}$
- Power set of X
- $B \subset X$, $\{\emptyset, B, B^c, X\}$
- $\{A \subset X : A countable \text{ or } A^c countable\}$

Claim

Let A_{α} , $\alpha \in I$ be a collection of σ -algebrae.

Then $\bigcap_{\alpha} \mathcal{A}_{\alpha}$ is again a σ -algebra

Proof

- $X \in \mathcal{A}$
- $A \in \mathcal{A} \Rightarrow A \in \mathcal{A}_{\alpha} \ \forall \alpha$ So $A^c \in \mathcal{A}_{\alpha} \ \forall \alpha \Rightarrow A^c \in \bigcap_{\alpha}$
- Do yourself

Example

Let G be a collection of sets. $\sigma(G) = \bigcap A$, A a σ algebra, $A \geq G$. This is called the ' σ -algebra generated by G'.

Topological spaces

Consider \mathbb{R}^n , let O^n be the collection of open sets, C^n the collection of closed sets, K^n compact sets (bounded and closed).

Definition

 $B(\mathbb{R}^n)=B^n$ is the **Borel** σ -algebra, and is defined as $B^n=\sigma(O^n)$

Theorem

$$\sigma(O^n) = \sigma(C^n) = \sigma(K^n)$$

Proof

$$\sigma(C^n) \subset \sigma(O^n)$$
 and $\sigma(O^n) \subset \sigma(C^n)$ $\sigma(K^n) \subseteq \sigma(C^n)$ $C \in C^n$ with $C = \bigcup_{k=1}^{\infty} (C \cup B_k)$, B_k is a closed ball around 0 with radius k . And $C \in \sigma(K^n)$ So $\sigma(C^n) \subset \sigma(K^n)$

Definition

 $J^n = \{[a_1,b_1) \times [a_2,b_2) \times [a_3,b_3) \times \dots \}$ a n-dimentional rectangle. $J^{n,o} = \{(a_1,b_1) \times (a_2,b_2) \times (a_3,b_3) \times \dots \}$ n-dimentional open rectangle. J^n_{rat} same as J^n with rational endpoints. $J^{n,o}_{rat}$ same as $J^{n,o}$ but with rational endpoints.

Theorem

$$B^{n} = \sigma(O^{n}) = \sigma(J^{n,o}) = \sigma(J^{n}) = \sigma(J^{n,o}_{rat}) = \sigma(J^{n}_{rat})$$

Proof sketch

$$O^n \supseteq J^{n,o} \supseteq J^{n,o}_{rat}$$

So $\sigma(O^n) \supseteq \sigma(J^{n,o}) \supseteq \sigma(J^{n,o}_{rat})$

Remains to show that $\sigma(O^n) \subseteq \sigma(J_{rat}^{n,o})$.

Every open set can be written as the countable union of open rectangles, so this equality holds.

Proof sketch (continued)

We also can write $(a, b) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b]$ And $[a, b) = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b)$