#### 1 Felder

#### 1.1 Elektrisches Feld

Folgende Formeln gelten für 2 Dimensionen. Dazu müssen die Ladungsträger zylinderförmig sein.

$$\begin{array}{lll} \varepsilon \left[ \frac{As}{Vm} \right] & \text{dielektrische permittivität} & \varepsilon = \varepsilon_0 \cdot \varepsilon_r, & \varepsilon_0 = 8.8542 \\ Q, q \left[ \frac{C}{m} \right] & \text{Linienladungsdichte} & \vec{F}_e = \frac{Q \cdot q}{2\pi \varepsilon r} \cdot \vec{r}_0 \\ \vec{r}_0 & \text{Einheitsvektor} & \vec{E} = \frac{\vec{F}_e}{q} = \frac{Q}{2\pi \varepsilon r} \cdot \vec{r}_0 \\ \vec{F}_e \left[ \frac{N}{m} \right] & \text{Elektrische Kraft} & U_{AB} = \int_A^B \vec{E} \cdot d\vec{l} = \varphi_A - \varphi_B \end{array}$$

# 

einfacher Magnetkreis

#### Im Luftspalt: B Konstant!

 $\oint_{\gamma} \vec{H} d\vec{l} = H_{Fe} \cdot l_{Fe} + 2\delta H_{\delta} = NI$ 

Länge aller Luftspalte  $\delta$ 

$$H_{\delta} = \frac{N \cdot I}{\delta}$$
, wenn  $H_{\delta} \gg H_{Fe}$ 

$$F_R = \mu_0 \cdot \frac{N^2 I^2 A_{Fe}}{4\delta^2}$$

$$W_m = \frac{1}{2} H_\delta B_\delta \cdot 2A_{Fe} \delta = \frac{\mu_0 A_{Fe} I^2 N^2}{4\delta}$$

in der Sättigung:

$$H_{\delta} = \frac{N \cdot I}{\frac{\mu_0}{\mu_{Fe}} l_{Fe} + 2\delta}$$

# 1.2 Magnetisches Feld

Für die Richtungen der Vektoren eines Kreuzproduktes kann folgende Regel angewendet werden:  $\vec{a}$ : Daumen,  $\vec{b}$ : Zeigefinger,  $\vec{a} \times \vec{b}$ : Mittelfinger

|                                        | , 0 0                      |
|----------------------------------------|----------------------------|
| $\mu\left[\frac{N}{A^2}\right]$        | magnetische permeabilität  |
| I, i[A]                                | Ströme der Leiter          |
| $\vec{F}_m \left[ \frac{N}{m} \right]$ | magnetische Kraft          |
| $\vec{H}\left[rac{A}{m} ight]$        | magnetisches Feld          |
| $\vec{B}$ [T]                          | magnetische Flussdichte    |
| $\Phi[Wb]$                             | magnetischer Fluss         |
| $\Psi[Wb]$                             | verketteter mag. Fluss     |
| $\Theta[A]$                            | magnetische Durchflutung   |
| $V_m[A]$                               | Magnetische Spannung       |
| $R_m \left[ \frac{A}{Wb} \right]$      | Magnetischer Wiederstand   |
| $\gamma$                               | geschlossener Weg um Leite |
| l, r                                   | Länge / Radius einer Spule |
| $W_m[J]$                               | Magnetische Energie        |
|                                        |                            |

$$\vec{F}_{m} = \frac{\mu}{2\pi} \cdot \frac{Ii}{r} \cdot \vec{r}_{0} = \mu \cdot i \cdot \vec{l}_{0} \times \vec{H}$$

$$\vec{H} = \frac{I}{2\pi} \cdot \frac{\vec{L}_{0} \times \vec{r}_{0}}{r}$$

$$\vec{B} = \mu \cdot \vec{H}$$

$$\Phi = \iint_{A} \vec{B} \cdot d\vec{A}, \quad \Psi = N \cdot \Phi$$

$$U_{ind} = -\frac{d\Psi}{dt} = -N \cdot \frac{d\Phi}{dt}$$

$$\Theta = \sum_{k=1}^{n} I_{k} = \oint_{\gamma} \vec{H} \cdot d\vec{l} = N \cdot I$$

$$V_{m} = \int_{A}^{B} \vec{H} \cdot d\vec{l}$$

$$R_{m} = \frac{\vec{V}_{m}}{\Phi} = \frac{l}{\mu \cdot A} \text{(wenn Homogen)}$$

$$H = \frac{N \cdot I}{l}, \quad \text{wenn } l \gg r$$

$$W_{m} = \frac{1}{2} \iiint_{V} B \cdot H \cdot dV = \frac{1}{2} \cdot H \cdot B \cdot V$$

 $\mu = \mu_0 \cdot \mu_r \quad \mu_0 = 4\pi \cdot 10^{-7}$ 



Dauermagnet

Koerzitivfeldstärke  $H_C$ 

Remanenz  $B_R$ 

$$B_m = \mu_m \cdot H_m + B_R, \quad \mu_m = \mu_0$$

#### Magnetkreis mit Dauermagnet

Magnet:  $l_m$ ,  $\mu_m$ , im Eisenjoch

$$H_{\delta} = \frac{N \cdot I + \frac{B_r}{\mu_m} l_m}{\frac{\mu_0}{\mu_{Fe}} l_{Fe} + \frac{\mu_0}{\mu_m} l_m + 2\delta}$$

#### 2 Gleichstrommaschine





- ①: Polkern, ②: Polschuh
- ③: Ständerjoch
- (4): Erregerwicklung (EW)
- (5): Ankerwicklung (AW)
- 6: Bürste, 7: Anker

$$M[Nm] \quad \text{Drehmoment} \qquad U_e = R_e \cdot I_e + L_e \cdot \frac{dI_e}{dt}$$

$$P[W] \quad \text{Leistung} \qquad U_a = R_a \cdot I_a + L_a \cdot \frac{dI_a}{dt} + E$$

$$X_a \quad \text{Anker-grösse}$$

$$X_e \quad \text{Erreger-Grösse}$$

$$\vec{B}_a \quad \text{Ankerrückwirkung}$$

$$n\left[\frac{1}{min}\right] \quad \text{Drehzahl}$$

$$U_e = R_e \cdot I_e + L_e \cdot \frac{dI_e}{dt}$$

$$E = \omega \cdot \Psi \quad \Psi = L_e \cdot I_e$$

$$F_{el} = \underbrace{R_e \cdot I_e^2}_{\text{Erregerverluste}} + \underbrace{R_a \cdot I_a^2}_{\text{Ankerverluste}} + \omega \cdot \Psi \cdot I_a$$

$$F_{mech} = \omega \cdot M, \quad M = \Psi \cdot I_a$$

$$M = \underbrace{U_a \cdot \Psi - \omega \cdot \Psi^2}_{R_a} \quad I_a = \underbrace{U_a - \omega \Psi}_{R_a}$$

#### 2.1 Kompensation der Ankerrückwirkung

- Die Kompensationswicklung (KW) wird im Polschuh des Stators eingesetzt. Somit wirkt ein Feld  $\vec{B}_{kw}$  gegen die Ankerrückwirkung  $\vec{B}_a$ . Die Nuten werden durch den Polschuh geführt.
- Die Compoundwicklung (KP) gleicht die durch die Nuten der KW verursachte Hauptfeldschwächung aus. Diese wird in Serie zu der EW montiert.
- Durch die KP wird das Feld  $\vec{B}_e$  verstärkt. Somit stimmt das Gleichgewicht von  $\vec{B}_g$  nicht mehr. Deshalb wird die **Wendepolwicklung (WW)** eingesetzt. Sie wird im Ständerjoch montiert, so dass  $\vec{B}_{ww}$  gegen  $\vec{B}_a$  zeigt.

#### 2.2 Beschaltung

#### 2.2.1 Nebenschluss

Hier werden Erreger- und Ankerwicklung parallel an die gleiche Spannungsquelle geschaltet. Somit gilt:  $U_e = U_a = U$ .  $M_A$ : Anlaufmoment,  $n_0$ : Leerlaufdrehzahl,  $I_{aA}$ : Anlaufstrom,  $R_v$ : Anlaufwiederstand

$$\begin{split} M &= I_a \cdot \Psi = \frac{U \cdot \Psi - \frac{2\pi}{60} n \cdot \Psi^2}{R_a} \qquad I_a = \frac{U - \frac{2\pi}{60} n \cdot \Psi}{R_a} \\ n &= 0 \Rightarrow M_A = \frac{U \cdot \Psi}{R_a} \qquad I_{aA} = \frac{U}{R_a + R_v} \qquad M = 0 \Rightarrow n_0 = \frac{U}{\frac{2\pi}{60} \Psi} \end{split}$$



$$\frac{M}{M_A} = 1 - \frac{n}{n_0}$$

 $M_B$ : Betriebsmoment

 $n_b$ : Betriebsdrehzahl

#### 2.2.2 Reihenschluss

Hier werden Erreger- und Ankerwicklungen in Serie an die gemeinsame Spannungsquelle geschaltet. Nun Gilt:  $I_e = I_a = I$ .  $M_A$ : Anlaufmoment,  $n_b$ : Bezugsdrehzahl

$$U = U_a + U_e = (R_a + R_e)I + \frac{2\pi}{60}n \cdot \Psi, \qquad \Psi = L_e \cdot I$$

$$M = I \cdot \Psi = L_e \left(\frac{U}{R_a + R_e + \frac{2\pi}{60}nL_e}\right)^2$$

$$n = 0 \Rightarrow M_A = \frac{L_e \cdot U^2}{(R_a + R_e)^2} \qquad n_b = \frac{R_a + R_e}{\frac{2\pi}{60}L_e}$$



$$\frac{M}{M_A} = \frac{1}{\left(1 + \frac{n}{n_b}\right)^2}$$

 $M_B$ : Betriebsmoment

 $n_b$ : Betriebsdrehzahl

# Drehfelderzeugung



- Polpaarzahl p
- Polzahl
- Nutenzahl
- Strangzahl
- Nuten pro Phasenband

$$N = 2p \cdot q \cdot m$$
$$n = \frac{60 \cdot f}{m}$$

# Synchronmaschine





 $X_d$ : Synchronreaktanz

 $X_{\sigma 1}$ : Streureaktanz

 $X_h$ : Hauptreaktanz

 $U_p$ : Polradspannung

 $U_1$ : Netzspannung

Die Polradspannung  $U_p$  ist eine fiktive Hilfsgrösse. In der Ankerwicklung (Erreger) wird ein Gleichstrom  $I_e$  angelegt, welcher das Feld erzeugt. Im Leerlauf der Maschine entspricht  $U_p$  der von dem Erregerstrom induzierten Spannung der

Statorwicklung.

$$U_p = U_p(\underline{I_e})$$
  $U_p = jX_h \cdot I'_e$ , wobei  $I'_e$ : Erregerstrom auf Statorseite

So entsteht die Grundgleichung einer Synchronmaschine:

$$\underline{U_1} = \underline{U_d} + \underline{U_p} \qquad \underline{U_d} = jX_d \cdot \underline{I_1} \qquad X_d = X_{\sigma 1} + X_h = \frac{U_1}{\sqrt{3} \cdot I_k}$$

$$\underline{U_1} = \underline{U_d} + U_p = jX_d \cdot \underline{I_1} + U_p(I_e)$$

Leerlauf-Kennlinie

Kurzschluss-Kennlinie





# Zeigerdiagramme

Bei den Zeigerdiagrammen einer Synchronmaschine wird als Referenz der Vektor  $\underline{U_1}$ gewählt. Danach wird  $\underline{I_1}$ gesetzt.  $I'_{\underline{e}}$ entsteht, indem  $I_e$  mit der Richtung (Umdrehung) der Welle multipliziert wird.

#### Zeigerdiagramm im Motorbetrieb: P > 0, $\delta > 0$

Untererregt:  $U_p < U_1$  (induktiv  $\varphi > 0$ )

Übererregt:  $U_p > U_1$  (kapazitiv:  $\varphi < 0$ )





#### 4.1.2 Zeigerdiagramm im Generatorbetrieb: $\delta > 0$

Übererregt:  $U_p > U_1$  (kapatiziv:  $\varphi < 0$ )



Untererregt:  $U_P < U_1$  (induktiv:  $\varphi > 0$ )



# 5 Asynchronmaschine



- $n_1$  Synchrone Drehzahl (Drehfeld)
- n Drehzahl des Läufers
- $n_2$  Relative Drehzanl
- s Schlupf
- $I_2$  Induzierter Strom

$$n_{2} = n_{1} - n$$

$$s = \frac{n_{2}}{n_{1}} = \frac{n_{1} - n}{n_{1}} = \frac{f_{2}}{f_{1}}$$

$$I_{2} = \frac{U_{i20}}{\sqrt{\left(\frac{R_{2}}{s}\right)^{2} + X_{2\sigma}^{2}}}$$

#### 4.2 Leistung

Der Faktor 3 kommt nur dazu, wenn die Leistung von allen 3 Strängen gefragt ist. (Leistung ist nicht abhängig von Stern- oder Dreieckschaltung.)

$$P = 3 \cdot U_1 \cdot I_1 \cdot \cos \varphi$$

$$P(\delta) = 3 \cdot \frac{U_p U_1}{X_d} \cdot \sin \delta = \begin{cases} P_{mech} - P_V = \omega \cdot M - P_V & \text{wenn Generator} \\ P_{mech} + P_V = \omega \cdot M + P_V & \text{wenn Motor} \end{cases}$$



#### Stillstand

#### Synchroner Lauf

$$s = 1$$
  $f_2 = f_1$   $s = 0$   $f_2 = 0$ 

$$I_2 = I_{2max} = \frac{U_{i20}}{\sqrt{R_2^2 + X_{2\sigma}^2}}$$
  $I_2 = I_{2min} = 0$ 

# 5.1 Leistung

 $P_1$ : primäre Netzleistung,  $P_{Cu}$ : Ohmsche Verluste,  $P_{Fe}$ : Blechkernverluste,  $P_{D1}$ : Drehfeldleistung,  $P_m$ : mechanische Leistung,  $P_R$ : Reibungsverluste und Lüftung,  $P'_m$ : mechanische Nutzleistung

$$P'_{m} = P_{m} - P_{R} = P_{D1} - P_{Cu2} - P_{R} = P_{1} - P_{Cu1} - P_{Fe} - P_{Cu2} - P_{R}$$

$$P_{D1} = 2\pi \cdot n_{1} \cdot M \qquad P_{m} = 2\pi \cdot n \cdot M$$

$$M = \frac{1}{2\pi \cdot n_{1}} \frac{P_{Cu2}}{s} = \frac{q_{2} \cdot U_{i20}^{2} \cdot R_{2}}{2\pi n_{1} s \cdot \left(\left(\frac{R_{2}}{s}\right)^{2} + X_{2\sigma}^{2}\right)}$$



 $M_k$ : Kippmoment,  $M_A$ : Anlaufmoment,  $s_k$ : Kippschlupf

# Modell der Asynchronmaschine



 $\underline{I_1} = \underline{I_{Fe}} + \underline{I_{\mu}} + \underline{I_2'}$ 

 $\underline{I_0} = \underline{I_{Fe}} + I_{\mu}$ 

 $U_1 = R_1 \cdot I_1 + jX_{\sigma 1}I_1 + U_h$ 

NWindungszahl

 $k_w$ Wicklungsfaktor

Eisen-Verlustwiederstand  $R_{Fe}$ 

 $X_h$ Hauptreaktanz

innere Spannung  $U_h$ 

 $I_{\mu}$ Magnetisierungsstrom

Übersetzungsverhältnis u

Leerlaufstrom  $I_0$ 

Zeigerdiagramm



#### Leerlauf

Hier wird die Asynchronmaschine an der Welle nicht belastet.

$$R_1 \ll R_{Fe}, \quad X_{\sigma 1} \ll X_h$$

$$R_{Fe} = \frac{U_0}{I_{Fe}} = \frac{U_0}{I_0 \cdot \cos \varphi_0}$$

$$X_h = \frac{U_0}{I_\mu} = \frac{U_0}{I_0 \cdot \sin \varphi_0}$$



#### 5.5 Kurzschluss

Hier wird die Welle der Asynchronmaschine blokiert (s = 1).



$$R_1 + R_2' = \frac{U_R}{I_K} = \frac{U_K \cdot \cos \varphi_K}{I_K} \qquad X_{\sigma 1} + X_{\sigma 2}' = \frac{U_X}{I_K} = \frac{U_K \cdot \sin \varphi_k}{I_K}$$

## 6 Schrittmotor



- (1): Statorzahn- und Wicklung 1
- ②: Statorzahn- und Wicklung 2
- $\ensuremath{\mathfrak{J}}$ : Statorzahn- und Wicklung 3
- 4: Statorzahn- und Wicklung 4
- ⑤: Rotorzahn 1
- (6): Rotorzahn 2

Diese Grafik ist nicht realistisch. Normalerweise sind viel mehr Statorzähne vorhanden. Der Rotor kann aus Eisen, sowie aus einem Permamentmagnet bestehen. Wenn er ein Permamentmagnet ist, so kann dieser auch abstossend wirken. So kann die Richtung gewechselt werden.

 $\alpha_S = \frac{2\pi}{Z_S} \qquad \alpha_R = \frac{2\pi}{Z_R}$ 

 $N_p = \frac{2\pi}{\alpha_0} \qquad f_s = N_p \cdot \frac{n}{60}$ 

 $L_d = 2N \cdot \frac{\Phi}{I_1} = 2N^2 \cdot \mu_0 \cdot \frac{A_Z}{\delta_d}$ 

 $L_q = 2N \cdot \frac{\Phi}{I_1} = 2N^2 \cdot \mu_0 \cdot \frac{A_Z}{\delta_a}$ 

 $\alpha_0 = \alpha_R - \alpha_S$   $m = \frac{Z_S}{Z_S - Z_R}$ 

- $Z_s$  Stator-Zahnzahl
- $Z_R$  Rotor-Zahnzahl
- $\alpha_S$  Stator-Winkel
- $\alpha_R$  Rotor-Winkel
- $\alpha_0$  Vollschritt-Winkel
- m Strangzahl
- $N_p$  Schrittzahl
- $f_s$  Steuerfrequenz
- $L_d$  Ind. in d-Achse
- $L_q$  Ind. in q-Achse
- $A_Z$  Fläche eines Zahns

# 6.1 Drehmoment und Leistung

 $W_m$  mechanische Energie

 $L_d$  Induktivität in d-Achse

 $L_q$  Induktivität in q-Achse

 $\delta_d$  Kleinster Luftspalt

 $\delta_q$  grösster Luftspalt

 $m_M$  Motormoment

 $J_g$  gesamtes Trägheitsmoment

 $M_M$  Drehmoment des Motors

| $M = \frac{dW_m}{d\varphi} = \frac{1}{2}I^2 \cdot \frac{d}{d\varphi}$ | $\frac{dL(\varphi)}{d\varphi}$ |
|-----------------------------------------------------------------------|--------------------------------|
| $L_d = 2 \cdot N^2 \cdot \mu_0 \cdot \frac{A_z}{\delta_d}$            |                                |
| $L_q = 2 \cdot N^2 \cdot \mu_0 \cdot \frac{A_z}{\delta_q}$            |                                |





$$p_{\delta}(t) = \frac{1}{2} \cdot \frac{dL}{d\gamma_r} (\gamma_r) \cdot \omega_r \cdot i^2(t)$$

$$m_M(t) = \frac{p_\delta}{\omega_r}(t) = \frac{1}{2} \cdot \frac{dL}{d\gamma_R}(\gamma_r) \cdot i^2(t)$$

$$M_L(f_s, \omega_1) = M_M - J_g \alpha_0 f_s^2 + J_g \omega_1 f_s$$

# 7 Vergleich der Maschinen

|                         | GSM | RSM | SYM | ASM |
|-------------------------|-----|-----|-----|-----|
| Komplexität des Aufbaus | 4   | 2   | 3   | 1   |
| Kosten                  | 4   | 3   | 2   | 1   |
| Wirkungsgrad            | 4   | 2   | 1   | 3   |
| Anpassungsfähigkeit     | 1   | 2   | 3   | 4   |

#### 7.1 Anlaufstrom

• GSM: Begrenzung durch Vorwiederstand:  $I_a = \frac{U}{R_a}$ 

• RSM: Begrenzung durch Speisung

• **SYM**:  $I_a = K \cdot I_n$ ,  $0.5 \le K \le 30$ 

• **ASM**:  $I_a = K \cdot I_n$ ,  $0.5 \le K \le 30$ 

#### 7.2 Anlaufmoment

• **GSM**:  $M \sim I$ , Begrenzt durch  $R_a$ ,  $I_{max}$ 

• RSM:  $M \sim U$ 

• **SYM**:  $M \sim \left(\frac{U}{f}\right)^2$ , Begrenzt durch  $X_{\sigma}$ 

• **ASM**:  $M \sim \left(\frac{U}{f}\right)^2$ , Begrenzt durch  $X_{\sigma}$ 

#### 7.3 Drehzahlregelung

• **GSM**: Über Spannung und Erregerstrom

• RSM: Über die Frequenz der digitalen Logik

• SYM: Über die Poolparzahl und die Frequenz

• ASM: Über die Poolparzahl und die Frequenz

## 7.4 Anwendungsbereiche

- GSM: Regelbare Antriebe mit grossem Stellbereich und guter Dynamik
- RSM: Verstellantriebe kleiner Leistung ohne Regelung
- SYM: Antriebe mit konstanter Drehzahl und gutem Leistungsfaktor
- **ASM**: Einfache Antriebe und regelbare Antriebe mit beschränkter Dynamik