Міністерство освіти і науки України Національний технічний університет України «Київський політехнічнийінститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних

циклічних алгоритмів»

Варіант 3

Виконав студент	Баран Софія Володимирівна (шифр, прізвище, ім'я, по батькові)		
Перевірив	(прізвище, ім'я, по батькові)		

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

Мета — дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант-3

1. Завдання:

3. Дано натуральне число n. Серед чисел 1, ..., n знайти такі, запис яких співпадає з останніми цифрами запису їх квадрату. Наприклад, $6 (6^2 = 36)$, $25 (25^2 = 625)$ і т.д.

2. Постановка задачі:

Для перевірки запису кожного числа на проміжку від 1 до п скористаємося вкладеними циклами, на першому будемо брати число з проміжку, а на другому цифри з нього і перевіряти відповідність. Перший цикл буде арифметичним, а другий ітераційним з постумовою.

3. Математична модель:

Змінна	Тип	Ім'я	Призначення
Перша змінна	Цілочисельний	n	Початкове дане
Друга змінна	Цілочисельний	num	Початкове дане
Третя змінна	Цілочисельний	num_sqare	Проміжні дані
Четверта змінна	Цілочисельний	power	Проміжні дані
П'ята змінна	Цілочисельний	step	Проміжні дані
	Цілочисельний	res	Результат

Формули, що використовуються:

- num sqare = **pow**(n, 2)
- step = (num square % pow(10, power+1)) * pow(10, power)
- res += step

4. Псевдокод:

Крок 1: Визначимо основні дії

Крок 2: Деталізуємо умову з використанням циклів та умовних операторів.

```
Крок 1
Початок
Введення п;
Перебір чисел з проміжку;
Перевірка кожного числа;
Виведення res;
Кінець
Крок 2
Початок
Введення п
якщо (n > 0)
     виконувати (num: num = 1; num < n; num++)
          num_square:= pow(num, 2)
          power:=0
          step:=0
          res = 0
          Перевірка кожного числа;
     все виконувати
інакше
     вивести "Invalid input"
```

все якщо Кінець

```
Крок 3
Початок
Введення п
якщо (n > 0)
     виконувати (num: num = 1; num < n; num++)
           num_square:= pow(num, 2)
           power := 0
           step:=0
           res:=0
           повторити
                step = (num_square % pow(10, power+1)) * pow(10, power)
                res += step
                power +=1
                якщо (num == res)
                      вивести res
                все якщо
           поки (step > 0)
     все виконувати
інакше
     вивести "Invalid input"
все якщо
Кінець
```

5. Блок схеми

6. Випробування алгоритму

Блок	Перевірка 1
	Введення n, n = 6
1	$num = 1$; $num_square = 1$; $res = 1$; виведення res
2	$num = 2; num_square = 4; res = 4;$
3	$num = 3; num_square = 9; res = 9;$
4	$num = 4; num_square = 16; res = 6;$
5	num = 5; num_square = 25; res = 5; виведення res
6	$num = 6$; $num_square = 36$; $res = 6$; виведення res

7. Висновок:

На лабораторній роботі я набула навички роботи з операторами повторення дій та набув практичних навичок їх використання під час складання циклічних алгоритмів. У результаті лабораторної роботи було розроблено математичну модель, що відповідає постановці задачі; псевдокод та блок-схеми, які пояснюють логіку алгоритму. Використовуючи вкладені цикли, а саме: арифметичний цикл for, та ітераційний do while було виконано завдання та знайдено цифри, запис яких співпадає з записом їх квадрату на проміжку 1...6, а саме 1, 5, 6.