AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1

- 1 1. (Currently amended) A method for operating a key distribution center 2 (KDC) that provides keys to facilitate secure communications between clients and servers across a computer network, wherein the KDC operates without having to 3 4 store long-term server secrets, comprising: 5 receiving a communication from a server that is authenticated at the KDC; 6 wherein the communication includes a temporary secret key to be used in 7 communications with the server for a limited time period, and wherein the 8 temporary secret key is shared between the server and the KDC; and 9 storing the temporary secret key in a database at the KDC, so that the 10 temporary secret key can be subsequently used to facilitate one or more 11 communications between a client and the server, wherein the temporary secret key 12 is encrypted with a public key belonging to the KDC, so that the temporary secret 13 key can only be decrypted using a private key belonging to the KDC; 14 wherein the temporary secret key is a short-term secret which becomes invalid after a short time period, and a new temporary secret key is subsequently 15 16 generated to replace the invalid temporary secret key, which reduces the 17 vulnerability of the KDC.
 - 2. (Original) The method of claim 1, wherein upon subsequently receiving a request from the client at the KDC to communicate with the server, the method

3	further comprises facilitating communications between the client and the server
4	by:
5	producing a session key to be used in communications between the client
6	and server;
7	creating a ticket to the server by encrypting an identifier for the client and
8	the session key with the temporary secret key for the server; and
9	assembling a message that includes the identifier for the server, the session
10	key and the ticket to the server; and
11	sending the message to the client in a secure manner; and
12	allowing the client to forward the ticket to the server in order to initiate
13	communications between the client and the server.
1	3. (Original) The method of claim 2, wherein upon receiving the ticket
2	from the client at the server, the method further comprises:
3	decrypting the ticket at the server using the temporary secret key to restore
4	the session key and the identifier for the client; and
5	using the session key at the server to protect subsequent communications
6	between the server and the client.
1	4. (Original) The method of claim 2, wherein assembling the message
2	involves including an expiration time for the session key in the message.
1	5. (Original) The method of claim 2, wherein allowing the client to
2	forward the ticket to the server includes allowing the client to forward an
3	identifier for the temporary secret key to the server, so that the server can know
4	which temporary secret key to use in decrypting the ticket.

1	6. (Original) The method of claim 2, wherein sending the message to the
2	client in the secure manner involves encrypting the message with a second session
3	key that was previously communicated to the client by the KDC.
1	7. (Original) The method of claim 2, further comprising alternatively
2	creating the ticket to the server by encrypting the identifier for the client and the
3	session key with one of:
4	a public key for the server; and
5	a secret key for the server previously agreed upon between the server and
6	the KDC and stored at the KDC.
1	8. (Original) The method of claim 1, wherein receiving the communication
2	from the server involves authenticating the server.
1	9. (Original) The method of claim 8, wherein authenticating the server
2	involves using authentication information pertaining to the server, the
3	authentication information including a certificate chain from a trust anchor to the
4	server, and including a server public key that is associated with a server private
5	key to form a public key-private key pair associated with the server.
1	10. (Original) The method of claim 8, wherein authenticating the server
2	involves authenticating the server without having prior configuration information
3	pertaining to the server at the KDC.
1	11. (Original) The method of claim 8, wherein authenticating the server

1 12 (Canceled).

2

includes using a server public key that is stored locally in the KDC.

1	13. (Original) The method of claim 1, wherein the communication is
2	signed with a server private key so that the KDC can use a corresponding server
3	public key to verify that the communication was sent by the server.
1	14. (Original) The method of claim 1, wherein the communication is
2	received in response to a request being sent by the KDC to the server indicating
3	that the temporary secret key is needed from the server.
1	15. (Original) The method of claim 1, further comprising communicating
2	information to the server that enables the server to authenticate the KDC.
1	16. (Original) The method of claim 1, wherein the KDC operates in
2	accordance with the Kerberos standard.
1	17. (Original) The method of claim 1, wherein the communication
2	received from the server additionally includes an identifier for the server.
1	18. (Original) The method of claim 1, further comprising propagating the
2	temporary secret key to multiple KDCs.
i	19. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for operating a key distribution center (KDC) that provides keys to
1	facilitate secure communications between clients and servers across a computer
5	network, wherein the KDC operates without having to store long-term server
5	secrets, the method comprising:

receiving a communication from a server that is authenticated at the KDC;

8	wherein the communication includes a temporary secret key to be used in
9	communications with the server for a limited time period, and wherein the
10	temporary secret key is shared between the server and the KDC; and
11	storing the temporary secret key in a database at the KDC, so that the
12	temporary secret key can be subsequently used to facilitate one or more
13	communications between a client and the server, wherein the temporary secret key
14	is encrypted with a public key belonging to the KDC, so that the temporary secret
15	key can only be decrypted using a private key belonging to the KDC;
16	wherein the temporary secret key is a short-term secret which becomes
17	invalid after a short time period, and a new temporary secret key is subsequently
18	generated to replace the invalid temporary secret key, which reduces the
19	vulnerability of the KDC.
1	20. (Original) The computer-readable storage medium of claim 19,
2	wherein upon subsequently receiving a request from the client at the KDC to
3	communicate with the server, the method further comprises facilitating
4	communications between the client and the server by:
5	producing a session key to be used in communications between the client
6	and server;
7	creating a ticket to the server by encrypting an identifier for the client and
8	the session key with the temporary secret key for the server; and
9	assembling a message that includes the identifier for the server, the session
10	key and the ticket to the server; and
11	
	sending the message to the client in a secure manner; and

communications between the client and the server.

l	21. (Original) The computer-readable storage medium of claim 20,
2	wherein upon receiving the ticket from the client at the server, the method further
3	comprises:
4	decrypting the ticket at the server using the temporary secret key to restore
5	the session key and the identifier for the client; and
6	using the session key at the server to protect subsequent communications
7	between the server and the client.
1	22. (Original) The computer-readable storage medium of claim 20,
2	wherein assembling the message involves including an expiration time for the
3	session key in the message.
1	23. (Original) The computer-readable storage medium of claim 20,
2	wherein allowing the client to forward the ticket to the server includes allowing
3	the client to forward an identifier for the temporary secret key to the server, so that
4	the server can know which temporary secret key to use in decrypting the ticket.
1	24. (Original) The computer-readable storage medium of claim 20,
2	wherein sending the message to the client in the secure manner involves
3	encrypting the message with a second session key that was previously
4	communicated to the client by the KDC.
1	25. (Original) The computer-readable storage medium of claim 20,
2	wherein the method further comprises alternatively creating the ticket to the server
3	by encrypting the identifier for the client and the session key with one of:
4	a public key for the server; and
5	a secret key for the server previously agreed upon between the server and
6	the KDC and stored at the KDC

1	26. (Original) The computer-readable storage medium of claim 19,
2	wherein receiving the communication from the server involves authenticating the
3	server.
1	27. (Original) The computer-readable storage medium of claim 26,
2	wherein authenticating the server involves using authentication information
3	pertaining to the server, the authentication information including a certificate
4	chain from a trust anchor to the server, and including a server public key that is
5	associated with a server private key to form a public key-private key pair
6	associated with the server.
1	28. (Original) The computer-readable storage medium of claim 26,
2	wherein authenticating the server involves authenticating the server without
3	having prior configuration information pertaining to the server at the KDC.
1	29. (Original) The computer-readable storage medium of claim 26,
2	wherein authenticating the server includes using a server public key that is stored
3	locally in the KDC.
1	30 (Canceled).
1	31. (Original) The computer-readable storage medium of claim 19,
2	wherein the communication is signed with a server private key so that the KDC
3	can use a corresponding server public key to verify that the communication was
4	sent by the server.
1	32. (Original) The computer-readable storage medium of claim 19,

wherein the communication is received in response to a request being sent by the

3	KDC to the server indicating that the temporary secret key is needed from the
4	server.
1	33. (Original) The computer-readable storage medium of claim 19,
2	wherein the method further comprises communicating information to the server
3	that enables the server to authenticate the KDC.
1	34. (Original) The computer-readable storage medium of claim 19,
2	wherein the KDC operates in accordance with the Kerberos standard.
1	35. (Original) The computer-readable storage medium of claim 19,
2	wherein the communication received from the server additionally includes an
3	identifier for the server.
1	36. (Original) The computer-readable storage medium of claim 19,
2	wherein the method further comprises propagating the temporary secret key to
3	multiple KDCs.
1	37. (Currently amended) An apparatus that provides keys to facilitate
2	secure communications between clients and servers across a computer network,
3	wherein the apparatus operates without having to store long-term server secrets,
4	comprising:
5	a key distribution center (KDC);

a receiving mechanism within the KDC that is configured to receive a

6

7

8

9

11	a storage mechanism within the KDC that is configured to store the
12	temporary secret key in a database at the KDC, so that the temporary secret key
13	can be subsequently used to facilitate one or more communications between a
14	client and the server, wherein the temporary secret key is encrypted with a public
15	key belonging to the KDC, so that the temporary secret key can only be decrypted
16	using a private key belonging to the KDC;
17	wherein the temporary secret key is a short-term secret which becomes
18	invalid after a short time period, and a new temporary secret key is subsequently
19	generated to replace the invalid temporary secret key, which reduces the
20	vulnerability of the KDC.
1	38. (Original) The apparatus of claim 37, further comprising a
2	communication facilitation mechanism within the KDC, wherein upon receiving a
3	request from the client to communicate with the server, the communication
4	facilitation mechanism is configured to:
5	produce a session key to be used in communications between the client
6	and server;
7	create a ticket to the server by encrypting an identifier for the client and
8	the session key with the temporary secret key for the server;
9	assemble a message that includes the identifier for the server, the session
10	key and the ticket to the server;
11	send the message to the client in a secure manner; and to
12	allow the client to forward the ticket to the server in order to initiate
13	communications between the client and the server.
1	39. (Original) The apparatus of claim 38, further comprising a mechanism

within the server that is configured to:

3	decrypt the ticket received from the client using the temporary secret key
4	to restore the session key and the identifier for the client; and to
5	use the session key to protect subsequent communications between the
6	server and the client.
1	40. (Original) The apparatus of claim 38, wherein the communication
2	facilitation mechanism is configured to include an expiration time for the session
3	key in the message.
1	41. (Original) The apparatus of claim 38, wherein the client is configured
2	to additionally forward an identifier for the temporary secret key to the server, so
3	that the server can know which temporary secret key to use in decrypting the
4	ticket.
1	42. (Original) The apparatus of claim 38, wherein in sending the message
2	to the client in the secure manner, the communication facilitation mechanism is
3	configured to encrypt the message with a second session key that was previously
4	communicated to the client by the KDC.
1	43. (Original) The apparatus of claim 38, wherein the communication
2	facilitation mechanism is configured to alternatively create the ticket to the server
3	by encrypting the identifier for the client and the session key with one of:
1	a public key for the server; and
5	a secret key for the server previously agreed upon between the server and
5	the KDC and stored at the KDC.

1	44. (Original) The computer-readable storage medium of claim 37, further
2	comprising an authentication mechanism that is configured to authenticate the
3	server.
1	45. (Original) The apparatus of claim 44, wherein in authenticating the
2	server, the authentication mechanism is configured to use authentication
3	information pertaining to the server, the authentication information including a
4	certificate chain from a trust anchor to the server, and including a server public
5	key that is associated with a server private key to form a public key-private key
6	pair associated with the server.
1	46. (Original) The apparatus of claim 44, wherein in authenticating the
2	server the authentication mechanism is configured to operate without having prior
3	configuration information pertaining to the server at the KDC.
1	47. (Original) The apparatus of claim 44, wherein in authenticating the
2	server, the authentication mechanism is configured to use a server public key that
3	is stored locally in the KDC.
1	48 (Canceled).
1	49. (Original) The apparatus of claim 37, wherein the communication is
2	signed with a server private key so that the KDC can use a corresponding server
3	public key to verify that the communication was sent by the server.
,	paono no, to torny that the communication was sent by the server.
1	50. (Original) The apparatus of claim 37, further comprising a requesting
2	mechanism within the KDC that is configured to send a request to the server

3

indicating that the temporary secret key is needed from the server.

- 1 51. (Original) The apparatus of claim 37, further comprising a sending
- 2 mechanism that is configured to send information to the server that enables the
- 3 server to authenticate the KDC.
- 1 52. (Original) The apparatus of claim 37, wherein the KDC is configured
- 2 to operate in accordance with the Kerberos standard.
- 1 53. (Original) The apparatus of claim 37, wherein the communication
- 2 received from the server additionally includes an identifier for the server.
- 1 54. (Original) The apparatus of claim 37, wherein the storage mechanism
- 2 is additionally configured to communicate the temporary secret key to multiple
- 3 KDCs.