Functional Specifications

The device must meet the following specifications. Modification to the specification must be provided in detail by the student, and must be approved by a demonstrator or coordinator.

Input	
1.0	The device will have one analogue input.
1.0.1	The input will be through a BNC connector
1.0.2	The input will have a $\frac{1M\Omega}{2}$ ± 10% input impedance from DC to 10kHz .
1.0.3	The input must have impedance between 10 kHz and 30 MHz of greater than 100
	ohms.
1.0.4	The input will have an input capacitance of less than or equal to 60pF
1.0.5	The BNC input can accept a maximum input of ± 5.6 V after which the input voltage is clamped.
1.0.6	The signal path from the BNC input to the ADC shall be DC coupled.
1.0.7	An anti-aliasing filter appropriate to the 40MSPS maximum sample rate must be
	implemented with a minimum of a first-order 20dB per decade response and ±2dB
	maximum ripple in the pass band.
1.0.8	All passive components must be selected from the values supplied in the passive
	components list to achieve the closest possible match to desired filter response.
	e - Basic
2.0	The device will have one USB connector.
2.0.1	The USB device will be recognised as a Serial to USB adapter.
2.0.2	The device will connect using a virtual COM port.
2.0.3	The device will communicate at the default 38,400 baud.
2.0.4	The device will transmit digitised analogue signals to the PC.
2.0.5	The device will receive configuration information from the PC.
2.0.6	The device will be galvanically isolated from the PC.
2.0.7	The device will have 3 1.8mm input power pads, +5v, 0v and -5v.
2.0.8	The +5v and USB 5v rail will not be connected.
2.0.9	The device will be powered by the USB port. (Your device must draw less than
	150mA per rail when running a maximum sampling rate)
2.0.10	A tactile pushbutton switch will be included to force triggering to begin
Interface	e – Advanced
3.0	The device will be powered by the USB port or by a battery source (Your device
	must draw less than 150mA per rail when running a maximum sampling rate)
3.0.1	The device will have buttons and knobs to also (not instead of the PC) control its configuration.
3.0.2	The device will have an LCD screen to also display the signal traces
	do in hard an 200 do do i do dopia, the dighar hadde

3.0.3 The PCB will be fully enclosed (e.g. with laser cut acrylic or a 3D printed injection mould prototype) with considerations made for EMI/EMC compliance.

Triggering

- 4.0 The device will wait until the PC tells it to sample.
- 4.0.1 When the input rises across a trigger threshold, and the device has been instructed to sample, the device will store 65536 8 bit samples in RAM.
- 4.0.2 The value of the trigger threshold will be set by the PC.
- 4.0.3 Once the samples are stored in RAM the device will be instructed to send the data to the PC.
- 4.0.4 Once the device has transferred the data from RAM it waits to be instructed to sample again.

Triggering - Advanced

4.0.5 The trigger of 5.0 can be controlled by the PC to be on either rising or falling edge.

Sampling

- 5.0 Input 1.0 will be sampled and stored into RAM
- 5.0.1 Sampling will have 8 bit resolution
- 5.0.2 65536 samples will be stored in RAM
- 5.0.3 The sampling rate will be controlled by the PC.
- 5.0.4 The device will support the following sampling rates: 25ns (40MHz), 50ns (20MHz), 100ns (10MHz).

Presentation

- The PCB layout will be constrained to a total shape of dimensions 110mm wide and 100mm high. This area must be inclusive of all components and panelised PCBs.
- 6.0.1 All components and their overlays are to lay within the board size.
- 6.0.2 Track width will be a minimum of 10 mil.
- 6.0.3 Clearance between tracks will be a minimum of 10mil.
- 6.0.4 Vias and Through Holes will conform to manufacturer's specifications
- 6.0.5 There will be four 3mm mounting screws 4mm from each edge at each corner and these will be represented on the schematics as Non-BOM components. These holes are for pick and place machinery and are standard for large scale manufacture.
- 6.0.6 Your student number will be placed on the top right of your PCB and a schematic symbol will represent the student number decal as a Non-BOM component.
- 6.0.7 Your name as it appears on the class list will be placed on the top left of your PCB
- 6.0.8 The device will have LEDs to display its status as follows.
- 6.0.8.1 A LED for +5 power good
- 6.0.8.2 A LED for -5 power good
- 6.0.8.3 LEDs for USB RX and TX
- 6.0.8.4 LEDs should be labelled indicating their purpose
- 6.0.9 There will be only 2 designator orientations throughout your PCB design

6.0.10	All via's should be tented on both Top and Bottom layers
6.0.11	USB differential lines must be laid out as a differential pair
6.0.12	All input and output connections must be clearly labelled
6.0.13	The top and bottom layers shall have a ground plain polygon pour
6.0.14	Tracks, components, and polygon pours, with the exception of the USB connector,
	will be kept a bare minimum of 50 mil from the boards edge.
6.0.15	The correct layer stack configuration for a 2-layer PCB must be set for a total PCB
	thickness of 1.6mm including the solder mask.
6.0.16	The submitted PCB must pass all design rules relating to the specification as listed
	above.

6.0.17 2 PCB fiducials positioned close to one corner of the CPLD and microcontroller, and represented on the schematics as non-BOM components. Fiducials are used by pick and place machinery with computer vision to align components with good precision and accuracy

Advanced PCB Features

7.0	The device will fit into an enclosure of your choosing (purchased by student)
7.0.1	The device will have LEDs which indicate the state of the system including,
7.0.1.1	A LED for Triggered state, lit while the DSO is acquiring ADC data
7.0.1.2	A LED for PC data streaming state, lit while the DSO is transferring
7.0.2	A rotary encoder to adjust trigger threshold or clock rate (purchased by student)

Software Interface Specifications

- 1.0 The device will operate at a default baud rate of 38400 bps.
- 1.1 When the device receives a 'v' it will respond with the string "DSO version *" where * is the firmware's version number.

Configuration

- 2.0 Configuration information will be sent to the device at start up and can be updated during runtime.
- 2.1 't' sets the trigger threshold values. The unsigned byte followed directly after 't' is the value of the trigger between 0 and 255.
- 2.2* 'i' sets the trigger source. The char after the 'i' will indicate the following:
 - 'r': rising edge on channel 1 (default)
 - 'f': falling edge on channel 1
- 2.3* 'o' sets the offset of the samples. The unsigned char proceeding directly after the 'o' is the offset * 256. (a value of 0 all samples are after the trigger, value of 4 is 1024

- samples before and 64512 after, and 128 is 32768 samples before, 32768 samples after.)
- 2.4 'r' sets the sampling rate of the device. The unsigned byte followed directly after 'r' indicates the rate of sampling as follows:
 - 1: 25ns
 - 2: 50ns
 - 3: 100ns
- 'm' sets the number of samples to transfer back to the PC. The unsigned byte following directly after 'm' indicates how many samples to skip (a value of 1 will transfer every value (default) a value of 2 will transfer every second value, a value of 3 will transfer every third value etc.)
- 2.6* 'z' sets an offset of data to transfer. The unsigned byte following directly after 'z' indicates an offset *256 before the start of transferring samples.
- 2.7* 'Z' sets the length of data to transfer. The unsigned byte following directly after 'Z' indicates length * 256 samples to transfer.
- 2.8 'c' is a request to write back the configuration information. The device will return a string containing configuration information in conforming to the following format:

"t# T# s# o# r# a# A# m# z# Z# b#"

where # is the currently stored value for the corresponding setting (b is the baud rate).

Transferring Samples

- 3.1 'C' will instruct the device to start sampling at the next trigger event. The device will transmit 'C' when capture is complete.
- 3.2 'f' will instruct the device to start sampling immediately, overriding the trigger circuit.

 The device will transmit 'C' when capture is complete.
- 3.3 's' will instruct the device to send the samples collected on channel 1. The device will send a stream of 65,536 unsigned bytes to the PC.
- 3.3.1 If the device is transmitting data, 'n' will stop the current transfer. The device can then optionally be reconfigured and 'C' can be sent again to wait for the next trigger.
- 3.2 If 'm' in 2.5 and/or 'z' in 2.6 and/or 'Z' in 2.7 is set then the number of bytes will be reduced.

CPLD Design Summary

