Trabalho - Curva Id-Vds

Prof. Tiago Oliveira Weber

2017

1 Objetivos

1.1 Objetivo Geral

- Compreender o funcionamento da curva corrente de dreno por tensão entre dreno e fonte de um transistor do tipo MOS.
- Comparar resultados obtidos por cálculo manual e obtidos com simulador elétrico;

1.2 Objetivos Parciais

- Fazer simulações para obter a curva Id-V_{DS} do transistor;
- Fazer cálculos manuais para obter a corrente no dreno do transistor para um dado valor de tensão entre dreno e fonte;
- Comparar resultados obtidos por cálculo manual e obtidos com simulador elétrico;
- Estudar os efeitos de variações dos parâmetros na corrente de dreno;

2 Descrição

2.0.1 Parte 1

A primeira etapa envolve a simulação de um transistor do tipo NMOS no software LTSPICE utilizando o modelo N_1u (modelo de canal longo) disponível em www.cmosedu.com (arquivo $cmosedu_models.txt$)

Para esta simulação, será adicionada uma fonte de tensão entre a porta e a fonte (chamada $V_{\rm GS}$) e uma fonte de tensão entre a dreno e a fonte (chamada $V_{\rm DS}$).

A análise a ser feita é do tipo "DC Sweep". Considere que ambas fontes sejam variadas de 0 até 5V. V_{DS} variará com um passo de 0.01, enquanto V_{GS} variará com um passo de 0.5. O transistor terá comprimento L (length) igual a 1,5 μm e largura W (width) igual a 3 μm .

Mostre os gráficos da curva Id por V_{DS} para os diferentes valores de V_{GS} simulados. Identifique nos gráficos as regiões de operação do transistor MOS e comente os resultados com base na teoria estudada.

2.0.2 Parte 2

Através de cálculos manuais, descubra a região de operação e a corrente de um transistor NMOS do mesmo modelo utilizado para as simulações anteriores (N_1u) com comprimento L (length) igual a 1,5 μm , largura W (width) igual a 3 μm e com $V_{DS}=2$ V e um $V_{GS}=1$ V.

Para obter os valores dos parâmetros para os cálculos, observe o arquivo de texto com a descrição do modelos ($cmosedu_models.txt$) na seção ". $MODEL\ N_1U\ NMOS\ LEVEL=3$ ".

Compare os resultados obtidos manualmente com os resultados obtidos por simulação e discuta-os.

• Observação: no modelo, KP (parâmetro de transcondutância) está descrito em $\mu A/V^2$ e VTO (tensão de limiar com zero-bias) está descrito em Volts. Para mais informações, pesquisar a respeito de parâmetros de modelo SPICE.

2.0.3 Parte 3

Repita as partes 1 e 2 utilizando utilizando um valor modificado da largura do canal (W) do transistor. O valor W (em micrometros) será igual aos dois últimos dígitos de sua matrícula divididos por 10, desde que este valor seja maior que $3.5 \ \mu m$. Caso seja menor, utilize $3.5 \ \mu m$.

2.0.4 Parte 4

Baseado nas curvas Id por V_{DS} obtidas na simulação da Parte 3 do trabalho, calcule a resistência incremental entre Dreno e Fonte do transistor para todos os casos de V_{GS} simulados em que ele é maior que a tensão de limiar. Para tal, considere pontos em que o transistor esteja na região de saturação. Considere esta resistência de saída incremental como sendo $\frac{\Delta V_{DS}}{\Delta I_{DS}}$. Discuta os resultados considerando o estudo de resistência do canal realizado em aula.

2.0.5 Parte 5

A partir dos resultados obtidos na parte 3 do trabalho, avalie o efeito na corrente de dreno ao variar os parâmetros descritos na tabela a seguir. Considere que os campos da tabela que tem "P3", devem ser preenchidos com os mesmos valores utilizados na parte 3 do trabalho quando utilizando $V_{DS} = 2$ V e um $V_{GS} = 1$ V. Os valores que dizem uma porcentagem são relativos aos valores da parte 3 do trabalho. Discuta os resultados avaliando o impacto da alteração de cada parâmetro na corrente.

W	L	V_{DS}	V_{GS}	I_{D} calculado	$I_{\rm D}$ simulado
P3	P3	P3	P3		
10% maior	P3	P3	P3		
10% menor	P3	P3	P3		
Р3	10% maior	P3	P3		
P3	10% menor	P3	P3		
Р3	P3	10% maior	P3		
Р3	P3	10% menor	P3		
Р3	P3	P3	10% maior		
Р3	P3	P3	10% menor		