1. Kto jest autorem słów "Wszystko jest liczbą", a kto "Liczby naturalne stworzył dobry Bóg, a reszta jest dziełem człowieka"?

Odpowiedź

"Wszystko jest liczbą" \sim hasło Pitagorejczycy (Pitagoras z Savos) VI w. p.n.e.

"Liczby naturalne stworzył dobry Bóg, a reszta jest dziełem człowieka" \sim Leopold Kroneker

2. Czy zero jest liczbą naturalną? Podać argument za tym, by zaliczyć je do liczb naturalnych oraz za tym, by liczby naturalne zaczynać od jedynki.

Odpowiedź

Obie sytuacje są poprawne. Za $0 \in \mathbb{N}$:

- konstrukcja zbioru liczb naturalnych na bazie zbiorów
- istnienie elementu neutralnego względem dodawania
- TODO Szukam argumenty

Przeciw $0 \in \mathbb{N}$:

- \bullet wzór na średnią, n=0 nie może być w mianowniku
- aksjomatyka Peano zaczyna się od 1
- Liczby rzymskie nie mają zapisu zera
- Brak problemu z dzieleniem przez liczby naturalne
- Coraz częściej jest używany zwrot "dodatnie liczby całkowite"
- 3. Podać definicję grupy.

Odpowiedź

$$(G,*):*:G\times G\longrightarrow G$$

- 1) $\forall_{a,b,c \in G} (a * b) * c = a * (b * c) \text{ (łączność)}$
- 2) $\exists_{e \in G} \forall_{a \in G} e * a = a * e = a$ (istnieje element neutralny)
- 3) $\forall_{a \in G} \exists_{b \in G} a * b = b * a = e$ (istnieje element przeciwny)
- 4. Wytłumaczyć rolę klas równoważności w relacji równoważności.

Odpowiedź

Klasy równoważności w relacji równoważności odgrywają kluczową rolę, ponieważ każda relacja równoważności dzieli zbiór na rozłączne klasy, gdzie elementy w danej klasie są równoważne

5. Podać formalną definicję liczb całkowitych (na bazie liczb naturalnych).

Odpowiedź

$$\mathbb{Z} = \frac{\mathbb{N} \times \mathbb{N}}{\sim} \qquad (m,n) \sim (a,b) \Leftrightarrow m+b=n+a \\ (2,5) \sim (1,4), \text{ bo } 2+4=5+1 \text{ lub } 2-5=1-4=-3$$

6. Podać uzasadnienie tego, że przyjmujemy, iż $(-a) \cdot (-b) = ab$, nie zaś $(-a) \cdot (-b) = -ab$ dla $a, b \in \mathbb{N}$.

1

$$(-2)(-5) = -10$$

 $(-2)(10 - 5) = -2 \cdot 10 + (-2)(-5)$
 $-2 \cdot 5 = -10 \text{ oraz} = -20 + (-10) = -30$

7. Podać definicję pierścienia, pierścienia z jedynką.

Odpowiedź

Pierścień

$$(R,+,\cdot,0), \quad R\neq\emptyset$$

- a) $\forall_{a,b,c \in R} \ a + (b+c) = (a+b) + c \ (\text{lączność dodawania})$
- b) $\forall_{a \in R} \ a + 0 = a$ (element neutralny względem +)
- c) $\forall_{a \in R} \exists_{b \in R} \ a + b = 0$ (istnienie elementu przeciwnego b = -a względem dodawania)
- d) $\forall_{a,b\in R} \ a+b=b+a$ (grupa abelowa dodawania)
- e) $\forall_{a,b,c \in R} a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (łączność mnożenia)
- f) $\forall_{a,b,c \in R} \ a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ (prawo rozdzielności)
- g) $\forall_{a,b,c \in R} (b+c) \cdot a = (b \cdot a) + (c \cdot a)$ (prawo rozdzielności)

Pierścień z jedynka

$$\exists_{1 \in R} \forall_{a \in \mathbb{R}} a \cdot 1 = 1 \cdot a = a$$

8. Podać definicję dzielników zera.

Odpowiedź

Element a pewnego pierścienia, dla którego istnieje taki element b, że ab = 0 oraz $b \neq 0$.

9. Podać formalną definicję liczb wymiernych (na bazie liczb całkowitych). Jakiej struktury jest to szczególny przypadek?

Odpowiedź

$$\frac{\mathbb{Z} \times (\hat{\mathbb{Z}} \setminus \emptyset)}{\sum_{n=0}^{\infty} (m,n)} \sim (a,b) \Leftrightarrow m \cdot b = n \cdot a$$

$$\frac{m}{n} = \frac{a}{b} \text{ np. } (3,7) = (-6,-14) = \frac{3}{7}$$

10. Podać "szkolną" definicję liczby wymiernej.

Odpowiedź

p-wymierna \Leftrightarrow gdy można ją przedstawić w postaci ułamka o liczniku i mianowniku całkowitym.

11. Kto to był Nicolas Bourbaki?

Odpowiedź

To była grupa młodych matematyków, których celem było napisanie kompletu aktualnych podręczników do matematyki.

2

12. Zdefiniować "złoty podział". Obliczyć liczbę otrzymaną w wyniku złotego podziału.

Złoty podział jest to podział pewnego odcinka w następujący sposób

$$\frac{a}{b} = \frac{a+b}{a}$$

, dla a=1 $\frac{1}{b}=\frac{b+a}{1}$ b(b+1)=1 b*2+b-1=0 $\Delta=1+4=5$ $b_1=\frac{-1-\sqrt{5}}{2}$ $b_2\frac{-1+\sqrt{5}}{2}$ dotyczył on w szczególności pentagramu

$$\frac{\mathrm{du\dot{z}y}}{\mathrm{\acute{s}redni}} = \frac{\mathrm{\acute{s}redni}}{\mathrm{maly}}$$

13. Udowodnić, że $\sqrt{2}$ nie jest liczbą wymierną.

Odpowiedź

Niech $\sqrt{2}$ będzie liczbą wymierną, można ją zatem zapisać w postaci

$$\sqrt{2} = \frac{a}{b} \Leftrightarrow 2 = \frac{a^2}{b^2} \Leftrightarrow 2b^2 = a^2$$

Rozważmy przypadki

 $1^{\circ}~a$ ibnie
parzyste - dostajemy natychmiast sprzeczność

 $2^{\circ}~a$ nie
parzyste i b parzyste - również otrzymujemy sprzeczność

 3° a parzyste i b nieparzyste - zatem możemy zapisać a=2k otrzymujemy

$$2b^2 = 4k^2$$

$$b^2 = 2k^2$$

Ponieważ prawa strona równania jest parzysta, to b musi być parzyste - sprzeczność Sytuacja, że a i b są parzyste nie może zajść z konstrukcji liczb wymiernych.

14. Podać definicję ciała.

Odpowiedź

Ciało \mathbb{K} to struktura ($\mathbb{K},+,\cdot,0,1$) z działaniami odpowiednio + i · (dodawanie i mnożenie) o własnościach

- 1) $\forall_{a,b,c\in\mathbb{K}}a + (b+c) = (a+b) + c$ (łączność dodawania)
- 2) $\forall_{a,b\in\mathbb{K}}a+b=b+a$ (przemienniość dodawania)
- 3) $\forall_{a \in \mathbb{K}} a + 0 = a$ (istnienie zera)
- 4) $\forall_{a \in \mathbb{K}} \exists_{b \in \mathbb{K}} : a + b = 0$ (itnienie elementu przeciwnego)
- 5) $\forall_{a,b,c \in \mathbb{K}} a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (łączność mnożenia)
- 6) $\forall_{a,b \in \mathbb{K}} a \cdot b = b \cdot a$ (przemienność mnożenia)
- 7) $\forall_{a \in \mathbb{K}} a \cdot 1 = a$ (element neutralny mnożenia)
- 8) $\forall_{a\in\mathbb{K}\backslash\{0\}}\exists_{b\in\mathbb{K}}:a\cdot b=1$ (element odwrotny względem mnożenia)
- 9) $\forall_{a,b,c\in\mathbb{K}}a\cdot(b+c)=(a\cdot b)+(a\cdot c)$ (rozdzielność mnożenia względem dodawania)

15. Opisać "algebraiczne" przyczyny, dla których ciało $\mathbb Q$ wymaga "rozszerzenia".

Możliwość rozwiązania równań typu

$$x^2 - 2 = 0$$

16. Opisać przyczyny związane z analizą matematyczną, dla których ciało $\mathbb Q$ wymaga "rozszerzenia".

Odpowiedź

Z tw o przyjmowaniu wartości pośrednich

$$f: [a,b] \to \mathbb{R} \text{ ciagla, } f(a) < f(b) \forall_{y \in [f(a),f(b)]} \exists_{\xi \in [a,b]} : f(\xi) = y$$

badamy funkcję $f:[0,3]\cap\mathbb{Q}\to\mathbb{Q}$

$$f(x) = \begin{cases} 0 & x^2 < 2\\ 1 & x^2 > 2 \end{cases}$$

17. Opisać przyczyny dotyczące struktury, dla których ciało Q wymaga "rozszerzenia".

Odpowiedź

 $\{x: x^2 < 2\}$ - brak kresu górnego (w \mathbb{Q})

18. Podać definicję częściowego porządku i porządku.

Odpowiedź

Relacje \prec nazywamy częściowym porządkiem na X, gdy spełnia

- i) $\forall_{x \in X} x \prec x \text{ (zwrotność)}$
- ii) $\forall_{x,y,z\in X} \ x \prec y \land y \prec z \Rightarrow x \prec z \ (przechodniość)$
- iii) $\forall_{x,y \in X} \ x \prec y \land y \prec x \Rightarrow x = y \ (\text{antysymetryczność})$

Porządek jest liniowy, gdy dodatkowo jest spójny. $(\forall_{a,b\in X} a \prec b \lor b \prec a)$

19. Podać definicję zbioru ograniczonego z góry i kresu górnego.

Odpowiedź

A- ograniczony z góry $\Leftrightarrow \exists_c : \forall_{x \in A} x \leq c$ p- kres górny $A \stackrel{\text{def}}{\Leftrightarrow} p = \min\{b : \forall_{x \in A} : x \leq b\}$

20. Podać definicję porządku ciągłego.

Odpowiedź

Liniowy porządek jest ciągły $\Leftrightarrow \forall_{A\neq\emptyset} \ A$ ograniczony z góry, wsród ograniczeń istnieje ograniczenie najmniejsze

4

21. Podać interpretację geometryczną zbioru liczb rzeczywistych.

Odpowiedź

Linia \longrightarrow o taka

22. Opisać (podać schemat) konstrukcji Cantora zbioru liczb rzeczywistych.

$$\mathbb{Q}$$
 (x_n) - ciąg Cauchego $\Leftrightarrow \forall_{\epsilon>0} \exists_k \forall_{n,m \geq k} |x_n - x_m| < \epsilon$ $\frac{X}{\sim} : (a_n) \sim (b_n) \Leftrightarrow \forall_{\epsilon>0} \exists_N \forall_{n \geq N} |a_n - b_n| < \epsilon$ $[(a_n)]$ - granica (liczba rzeczywista)

23. Jak się definiuje sumę liczb rzeczywistych, iloczyn liczb rzeczywistych oraz własność "a < b" dla liczb rzeczywistych według konstrukcji Cantora?

Odpowiedź

Jak wyżej mamy, że
$$[(a_n)]$$
 - granica (liczba rzeczywista)
Porządek $(a_n) < (b_n) \Leftrightarrow \exists_{\epsilon > 0} \exists_{k_0} \forall_{k > k_0} a_k + \epsilon < b_k$
 $(a_n) \in \mathbb{Q} \Leftrightarrow (a_n)$ zbieżny (w \mathbb{R})
 $(a_n) + (b_n) = (a_n + b_n)$ - klasy

24. Podać definicję przekroju Dedekinda, klasy górnej, klasy dolnej.

Odpowiedź

 (E, \leq) - zbiór uporządkowany liniowo

Przkrój Dedekinda zbioru
$$E=(A,B)$$
 $A,B\neq\emptyset,$ $A\cap B=\emptyset$ $\forall_{a\in A,b\in B}a< b,A\cup B=E$ A - klasa dolna, B - klasa górna

25. Określić, co to znaczy, że przekrój Dedekinda daje lukę.

Odpowiedź

Przekrój Dedekinda daje lukę \Leftrightarrow w klasie dolnej nie ma elementu największego i w klasie górnej nie ma elementu najmniejszego.

26. Opisać (podać schemat) konstrukcji Dedekinda zbioru liczb rzeczywistych.

Odpowiedź

 $\mathbb R$ - zbiór wszystkich przekrojów Dedekinda $\mathbb Q$ z utorzsamieniem " \sim ".

27. Jak się definiuje sumę liczb rzeczywistych, iloczyn liczb rzeczywistych oraz własność "a < b" dla liczb rzeczywistych według konstrukcji Dedekinda?

Odpowiedź

$$(A,B) \sim (A',B') \Leftrightarrow$$
 element największy $A=$ emelent najwięszy B'
 $(A,B)(C,D)$
 $\alpha \qquad \gamma$
 $\alpha < \gamma \Leftrightarrow A \subset C, \ A \neq C$
 $(A,B)+(C,D)=(A+C,B+D)$

28. Co można powiedzieć o sumie i iloczynie dwóch liczb wymiernych, dwóch liczb niewymiernych, liczby wymiernej i liczby niewymiernej?

5

- $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$ (ciało)
- $a \in \mathbb{Q}, b \notin \mathbb{Q} \Rightarrow a+b \notin \mathbb{Q}$, bo gdyby $a+b \in \mathbb{Q} \Rightarrow a+b-a=b \in \mathbb{Q}$ sprzeczność
- $a,b\notin\mathbb{Q}$, to a+b może być i wymierne i niewymierne $\sqrt{2}+\sqrt{2}\notin\mathbb{Q}$ oraz $\sqrt{2}+1-\sqrt{2}\in\mathbb{Q}$
- $a \in \mathbb{Q}, b \notin \mathbb{Q} \Rightarrow a \cdot b \notin \mathbb{Q}$, bo gdyby $a \cdot b \in \mathbb{Q}$, to $b = \frac{1}{a} \cdot ab \in \mathbb{Q}$ sprzeczność
- $a,b\notin\mathbb{Q}$, to $a\cdot b$ może być wymierne lub niewymierne $\sqrt{2}\cdot\sqrt{2}\in\mathbb{Q}$ oraz $\sqrt{2}\sqrt{3}\notin\mathbb{Q}$
- 29. Podać i udowodnić zasadę Archimedesa.

Odpowiedź

Zasada Archimedesa (tw o małych piechurach)

$$\forall_{p>0}\forall_{\alpha>0}\exists_{n\in\mathbb{N}}:n\cdot\alpha>p$$

D: p > 0, $\alpha > 0$ Hp. $\forall_{n \in \mathbb{N}} n \leq p$

 $A = \{n\alpha : n \in \mathbb{N}\}$ - ograniczony z góry K - kres górny zbioru $A \forall_n \alpha n \leq K$

$$\exists_{n_0} : K - \alpha < n_0 \alpha$$

$$(n_0 + 1)\alpha = n_0\alpha + \alpha$$

$$K < n_0 \alpha + \alpha$$

sprzeczność

30. Podać definicję zbioru uporządkowanego w sposób gęsty.

Odpowiedź

Zbiór jest uporządkowany w sposób gęsty $\Leftrightarrow \forall_{a,b \in X} \, _{a < b} \exists_{c \in X} : a < c < b$

31. Udowodnić, że zbiór liczb wymiernych jest uporządkowany gęsto.

Odpowiedź

Q uporządkowany gęsto, ponieważ

$$a, b \in \mathbb{Q}$$
: $a < b$ $c := \frac{a+b}{2}$ $a < c < b$

32. Udowodnić, że między dowolne dwie liczby rzeczywiste można wstawić liczbę wymierna.

$$\forall_{a,b \in \mathbb{R}, a < b} \exists_{p \in \mathbb{Q}} : a < p < b$$

D:
$$\frac{1}{b-a} > 0 \exists_{n \in \mathbb{N}} : n > \frac{1}{b-a} \Rightarrow \frac{1}{n} < b-a$$

$$k := \max\{k \in \mathbb{Z} : k \le na\} \Rightarrow a < \frac{k+1}{n} \ (?) \frac{k+1}{n} < b$$

$$n > \frac{1}{b-a}$$

$$n \cdot (b-a) > 1$$

$$nb > 1 + na \ge k+1 \Rightarrow \frac{k+1}{n} < b$$

33. Udowodnić, że między dowolne dwie liczby wymierne można wstawić liczbę niewymierną.

Odpowiedź

$$\forall_{a,b \in \mathbb{Q}, a < b} \exists_{p \in \mathbb{R} \setminus \mathbb{Q}} a < p < b$$

$$\sqrt{2} \notin \mathbb{Q}, \frac{\sqrt{2}}{b-a} \notin \mathbb{Q}$$

$$\exists_{n \in \mathbb{N}} : n > \frac{\sqrt{2}}{b-a} \Rightarrow b - a > \frac{\sqrt{2}}{n} \Rightarrow b > a + \frac{\sqrt{2}}{n}$$

$$a < a + \frac{\sqrt{2}}{n} < b$$

34. Udowodnić, że między dowolne dwie liczby rzeczywiste można wstawić liczbę niewymierną.

Odpowiedź

$$\forall_{a,b \in \mathbb{R}, \ a < b} \ \exists_{\ p \in \mathbb{R} \setminus \mathbb{Q}} \ a < p < b$$

 $D: x, y \in \mathbb{R}$

$$\exists \ _{a \in \mathbb{Q}} : x < a < y \qquad \exists \ _{b \in \mathbb{Q}} : a < b < y \qquad \exists \ _{p \in \mathbb{R} \backslash \mathbb{Q}} \ x < a < p < b < y$$

35. Zdefiniować zbiór liczb zespolonych.

Odpowiedź

Liczby zespolone są rozszerzeniem zbioru liczb rzeczywistych.

i – jednostka urojona, $i^2 = -1$.

$$z=(a,b)=a+bi,$$
 przy czym jeśli $b=0,$ to $z\in\mathbb{R}.$

36. Podać postać trygonometryczną liczby zespolonej; zdefiniować moduł liczby zespolonej.

$$z = a + ib$$

$$z = r(\cos \varphi + i \sin \varphi)$$

$$|z| = \sqrt{a^2 + b^2}$$

37. Uzasadnić, dlaczego niewłaściwym jest zapis liczby i jako $\sqrt{-1}$.

Odpowiedź

 $\sqrt{-1}$ jest to zbiór elementowy $\{i, -i\}$, a nie jedna liczba.

38. Podać "dowód" błędnego faktu, że 1=-1 z wykorzystaniem zapisu " $\sqrt{-1}$ " i pokazać błąd w tym dowodzie.

Odpowiedź

$$\sqrt{-1} = \sqrt{-1}$$

$$\sqrt{\frac{-1}{1}} = \sqrt{\frac{1}{-1}}$$

$$\frac{\sqrt{-1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{-1}}$$

$$\sqrt{-1} \cdot \sqrt{-1} = \sqrt{1} \cdot \sqrt{1}$$

$$-1 = 1$$

39. Określić (ogólnie) historię znajdywania wzorów ogólnych na rozwiązywanie równań n-tego stopnia (co zrobili: Tartaglia, Cardano, Ferrari, Abel, Galois).

Odpowiedź

Tartaglia – w XVI wieku odkrył metodę rozwiązywania równań sześciennych w szczególnym przypadku (tzw. równania zredukowanego). Przekazał swój sposób Girolamo Cardano pod warunkiem zachowania go w tajemnicy.

Cardano – opublikował w 1545 r. w <u>Ars Magna</u> ogólny wzór na pierwiastki równań sześciennych, wykorzystując metodę Tartaglii i własne uogólnienia. Jego praca zapoczątkowała rozwój algebry symbolicznej.

Ferrari – uczeń Cardana, rozwiązał ogólnie równania czwartego stopnia (równania bikwadratowe) – jego metoda opiera się na sprowadzeniu równania czwartego stopnia do dwóch równań kwadratowych.

Abel – w 1824 roku udowodnił, że nie istnieje ogólny wzór (wyrażony przez pierwiastki) dla równań algebraicznych stopnia piątego i wyższego. To był przełom w rozumieniu granic klasycznej algebry.

Galois – rozwinął teorię grup i stworzył podstawy teorii Galois, która pozwala precyzyjnie określić, kiedy dane równanie algebraiczne da się rozwiązać przez pierwiastki. Pokazał, że rozwiązanie zależy od struktury grupy permutacji pierwiastków równania.

8

40. Sformułować zasadnicze twierdzenie algebry.

Dowolny wielomian n-tego stopnia ma dokładnie n pierwiastków zespolonych wraz z krotnościami.

41. Zdefiniować kwaterniony.

Odpowiedź

$$\mathbb{R}^4 \begin{bmatrix} a+ib+jc+kd \\ i^2=j^2=k^2=ijk=-1 \end{bmatrix} \Rightarrow ij=k, ik=j, jk=i, ijk=-1, ijkk=-k, -ij=-k, ij=k$$

42. Zdefiniować liczby naturalne na bazie zbiorów.

Odpowiedź

- \emptyset 0 elementów
- $\{\emptyset\}$ 1 element
- $\{\emptyset, \{\emptyset\}\}\$ 2 elementy
- $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$ 3 elementy
- $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}\$ 4 elementy
- itd.

43. Zdefiniować liczby naturalne wg aksjomatów Peano.

$Odpowied {\bf\acute{z}}$

 $\mathbb{N},$ operacja następnika $a \to N(a)$

- $1) \ 1 \in \mathbb{N} \qquad (0 \in \mathbb{N})$
- $2) \ \forall_{a \in \mathbb{N}} N(a) \neq 1$
- 3) $\forall_{a\in\mathbb{N}}a$ ma dokładnie jeden następnik
- 4) $N(a) = N(b) \Leftrightarrow a = b$

5)
$$\begin{bmatrix} A \subset \mathbb{N} \\ 1 \in A \\ n \in A \Rightarrow n+1 \in A \end{bmatrix} \Rightarrow A = \mathbb{N}$$

44. Zdefiniować liczby naturalne wg aksjomatów Wilkosza.

Odpowiedź

- 1) $\exists_n : n \in \mathbb{N} \ (\neq \emptyset)$
- 2) $\forall_{k \in \mathbb{N}} \exists_{n \in \mathbb{N}} : k < n \text{ (nie ograniczony z góry)}$
- 3) $\forall_{k,n \in \mathbb{N}} k < m \Rightarrow (m < k)$ (antysymetria)
- 4) $(A \subset \mathbb{N}, \exists_{k \in A}) (\neq \emptyset) \Rightarrow \exists_{i \in A} \forall_{n \in A} i \leq n \text{ (zasada minimum)}$

9

- 5) $(A \subset \mathbb{N}, \exists_{k \in A}) (\neq \emptyset)$ oraz $(\exists_{i \in \mathbb{N}} \forall_{m \in A} m \leq i) \Rightarrow \exists_{k \in A} \forall_{l \in A} l \leq j$ (ograczinony z góry ma element największy)
- 45. Sformułować zasadę indukcji matematycznej z użyciem zapisu " T_n " (własność prawdziwa dla liczby naturalnej n).

 $A \subset \mathbb{N}$

$$\begin{bmatrix} 1) & n_0 \in A \\ 2) & \forall_{n \ge n_0} n \in A \Rightarrow n + a \in A \end{bmatrix} \Rightarrow A \supset \mathbb{N}_{n_0}$$

 \mathcal{T}_n - własność dotycząca liczby naturalnej njest prawdziwe

$$\begin{bmatrix} 1) & T_n \\ 2) & \forall_{n \geq n_0} T_n \Rightarrow T_{n+1} \end{bmatrix} \Rightarrow \forall_{n \geq n+0} T_n$$

46. Sformułować zasadę indukcji matematycznej zapisaną za pomocą należenia liczb naturalnych do pewnego zbioru.

Odpowiedź

TODO

47. Sformułować zasadę indukcji matematycznej z założeniem w drugim kroku dotyczącym "wszystkich poprzedzających liczb".

Odpowiedź

TODO

48. Sformułować zasadę indukcji matematycznej "z przeskokiem o dwie liczby".

Odpowiedź

TODO

49. Sformułować zasadę indukcji matematycznej w wersji indukcji wstecznej.

- 1) T_0
- 2) $\exists_{n_k}, n_k \to \infty (k \to \infty), n_0 = 0, (n_k)$ silnie rosnący $T_{n_k} \Rightarrow T_{n_{k+1}}$
- 3) $\forall_n \geq 1t_n \Rightarrow T_{n-1}$
- $\Rightarrow \forall_{n \in \mathbb{N}} T_n$
- 50. Udowodnić równoważność zasady indukcji matematycznej z zasadą minimum.

Zasada minimum ⇔ Zasada indukcji matematycznej

$$\begin{bmatrix} 0 \in A \\ \forall_{n \geq 0} n \in A \Rightarrow n+1 \in A \end{bmatrix} \stackrel{?}{\Rightarrow} A = \mathbb{N}$$

Hp.
$$A \neq \mathbb{N}$$

$$B := \mathbb{N} \setminus A, B \neq \emptyset$$

$$0 \in A \Rightarrow 0 \notin B$$

Niech
$$k_0 := minB, k_0 > 0$$

$$k_0 - 1 \in \mathbb{N}, k_0 - 1 \in B, k_0 - 1 \in A$$

$$k_0 - 1 + 1 = k_0 \in A$$
 sprzeczność

 $A \subset \mathbb{N}$, w A nie ma elementu najmniejszego $\stackrel{?}{\Rightarrow} A = \emptyset$

 $0 \notin A$, bo byłby najmniejszy

$$B := \{ m \in \mathbb{N} : \forall_{k \le m} k \notin A \}$$

$$I \ 0 \in B$$

II (indukcja)
$$n \in B \Rightarrow 0, \dots, n \notin A$$

 $n+1 \notin A$ (bo gdyby $n+1 \in A$ to $n+1$ byłby najmniejszy)
 $n+1 \in B$

$$\overset{\text{indukcja}}{\Rightarrow} B = \mathbb{N}, \forall_{k \in \mathbb{N}} k \not\in A \Rightarrow A = \emptyset$$

51. Udowodnić indukcyjnie, że zbiór n-elementowy ma 2n podzbiorów. Zwrócić szczególna uwagę na sformułowanie drugiego kroku indukcyjnego i odpowiednie podejście do jego dowodu.

Odpowiedź

TODO

52. Udowodnić nierówność między średnią arytmetyczną a geometryczną za pomocą indukcji wstecznej.

$$a_1, \ldots, a_n \ge 0 \Rightarrow \frac{a_1 + \cdots + a_n}{n} \ge \sqrt[n]{a_1 \cdot \cdots \cdot a_n}$$

I)
$$n = 1$$

$$L = a_1 P = a_1 \text{ ok}$$

II)
$$\forall_{n>1} T_m \Rightarrow T_{2n}$$

$$7 \cdot r_1$$
 $r > 0 \rightarrow \sqrt{r_1 \cdot \dots \cdot r_n} < \frac{x_1 + \dots + x_n}{r_n}$

$$Z:x_1, \dots, x_n > 0 \Rightarrow \sqrt[n]{x_1 \cdot \dots \cdot x_n} \le \frac{x_1 + \dots + x_n}{n}$$

$$T:y_1, \dots, y_{2n} > 0 \Rightarrow \sqrt[2n]{y_1 \cdot \dots \cdot y_{2n}} \le \frac{y_1 + \dots + y_{2n}}{2n}$$

$$D:y_1,\ldots,y_{2n}>0$$

$$b_k := \frac{y_{2k-1} + y_{2k}}{2} \cdot c_k := \sqrt{y_{2k-1} \cdot y_{2k}} \Rightarrow c_k \le b_k \text{ (bo } a, b > 0 \Rightarrow \sqrt{ab} \le \frac{a+b}{2}\text{)}$$

53. Udowodnić, że suma kątów w trójkącie wynosi 180°.

Kąty α i δ oraz β i ϵ są odpowiednio sobie równe na podstawie katów naprzemianległych wewnętrznie.

Suma kątów $\delta + \gamma + \epsilon$ jest kątem półpełnym, czyli ma 180°.

54. Udowodnić, że suma kątów w n-kącie wypukłym wynosi $(n-2)\cdot 180^{\circ}$.

Dowolny wielokąt wypukły o n wierzchołkach można podzielić na n-2 trójkątów (w których kąty na siebie nie zachodzą), co daje nam w sumie $(n-2) \cdot 180^{\circ}$.

55. Udowodnić, że suma kątów w n-kącie wynosi $(n-2)\cdot 180^\circ$, wykorzystując twierdzenie o istnieniu przekątnej zawartej w wielokącie.

Odpowiedź

I ok

II W dolownym wielokącie istnieje przekątna zwarta w tym wielokącie.

$$T_3...,T_n \Rightarrow T_{n+1}$$

Przekątna dzieli n+1-kąt na k-kąt i l-kąt $(k,l \le n,k+l=n+3).$

Suma kątów w k-kącie wynosi $(k-2)\cdot 180^\circ$, podobnie w l-kącie wynosi $(l-2)\cdot 180^\circ$.

W
$$(n-1)$$
-kącie $(k-2)\cdot 180^\circ + (l-2)\cdot 180^\circ = (k+l-4)\cdot 180^\circ = (n+3-4)\cdot 180^\circ = (n-1)\cdot 180^\circ = ((n+1)-2)\cdot 180^\circ$.

Indukcja kończy dowód.

56. Udowodnić, że suma kątów w n-kącie wynosi $(n-2)\cdot 180^\circ$, wykorzystując twierdzenie o uchach (Two Ears Theorem).

${\bf Odpowied}\acute{\bf z}$

I ok

II W każdym wielokącie istnieją co najmniej 2 "ucha".

Bierzemy (n+1)-kt. Ma in ucho \Rightarrow odcinamy je. Powstaje n-kąt. $(n-2)\cdot 180^\circ+180^\circ=(n-1)\cdot 180^\circ=((n+1)-2)\cdot 180^\circ$ Indukacja kończy dowód.

57. Pokazać, na czym polega błąd w indukcyjnym "dowodzie", że suma kątów w n-kącie wynosi $(n-2)\cdot 180^\circ$, jeśli dowód przeprowadza się według schematu dodania trójkąta do n-kąta.

Odpowiedź

TODO - Mam coś zapisane, ale brakuje mi dlaczego jest fałszywy - pewnie chodzi o "zepsucie" wypukłości wielokąta

58. Podać błędny indukcyjny "dowód" tego, że wszystkie dziewczęta mają ten sam kolor oczu (lub wszystkie koty są tego samego koloru, itp.) i pokazać błąd w dowodzie.

Odpowiedź

59. Uzasadnić, że "tricku" w "dowodzie" poprzedniej własności nie można stosować w "dowodzie" tego, że wszystkie koty są czarne. Pokazać błąd w "dowodzie" własności, że wszystkie koty są czarne.

Odpowiedź

60. Podać błędny indukcyjny "dowód" tego, że wszystkie liczby naturalne są równe i pokazać błąd w dowodzie.

Odpowiedź

61. Sformułować twierdzenie Pitagorasa.

W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątej.

$$a^2 + b^2 = c^2$$

62. Sformułować i wykazać twierdzenie o odcinkach stycznych.

Odpowiedź

Niesłusznie zwane "najmocniejszym twierdzeniem algebry".

Dany jest okrąg oraz punkt P leżacy poza okręgiem. Z punktu P poprowadzono dwie półproste styczne do okręgu odpowiednio w punktach A i B. Wowczas:

$$|PA| = |PB|$$

63. Sformułować twierdzenie Talesa (z wszystkimi możliwymi proporcjami).

Odpowiedź

Dane są dwie proste nierównoległe oraz dwie proste równoległe przecinające te proste (zobacz rysunek).

Wówczas zachodzi:

$$\frac{a}{c} = \frac{b}{d} = \frac{a+b}{c+d} \qquad \frac{a}{a+b} = \frac{c}{c+d} = \frac{e}{f}$$

64. Udowodnić twierdzenie Talesa metodą z "Elementów" Euklidesa.

Odpowiedź

65. Wykazać, że jeśli w trójkącie dwa boki są równe, to i dwa kąty są równe.

66.	Wykazać, że jeśli w trójkącie dwa boki są równe, to i dwa kąty są równe bez wykorzystywania Aksjomatu V Euklidesa (czyli bez twierdzenia Pitagorasa).
	Odpowiedź
67.	Wykazać, że jeśli w trójkącie dwa kąty są równe, to i dwa boki są równe.
	${ m Odpowied}{ m \acute{z}}$
68.	Wykazać, że jeśli w trójkącie dwa kąty są równe, to i dwa boki są równe bez wykorzystywania Aksjomatu V Euklidesa (czyli bez korzystania z tego, że suma kątów w trójkącie wynosi 180°).
	${ m Odpowied}{z}$
69.	Udowodnić, że symetralne boków trójkąta przecinają się w jednym punkcie.
	Odpowiedź
70.	Udowodnić, że wysokości w trójkącie (precyzyjnie: proste zawierające wysokości w trójkącie) przecinają się w jednym punkcie.
	Odpowiedź
71.	Udowodnić, że dwusieczne kątów trójkąta przecinają się w jednym punkcie.
	Odpowiedź
72.	Udowodnić, że środkowe w trójkącie przecinają się w jednym punkcie, dzielącym każdą ze środkowych w stosunku $1:2.$
	Odpowiedź
73.	Zdefiniować funkcję, dziedzinę funkcji, przeciwdziedzinę funkcji.
	${ m Odpowied}{ m \acute{z}}$
74.	Zdefiniować obraz i przeciwobraz (przy danej funkcji).
	Odpowiedź

75. Wyjaśnić różnicę między symbolami "——" i "——".

76. Zdefiniować injekcję, surjekcję i bijekcję.

Odpowiedź

77. Podać różne metody określania funkcji.

Odpowiedź

78. Wykazać, że funkcja dana wzorem: $f(k,n) = \frac{(n+k)(n+k+1)}{2+k}$ jest bijekcją z \mathbb{N}^2 na \mathbb{N} .

Odpowiedź

79. Zdefiniować funkcję parzystą i funkcję nieparzystą.

Odpowiedź

80. Wykazać, że jeśli dziedzina funkcji rzeczywistej jest zbiorem symetrycznym względem 0, to funkcja ta jest sumą funkcji parzystej i funkcji nieparzystej.

Odpowiedź

81. Zdefiniować funkcję rosnącą, funkcję malejącą, funkcję silnie rosnącą, funkcję silnie malejącą.

Odpowiedź

$$f - \operatorname{rosnaca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$$

$$f - \operatorname{malejaca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$$

$$f - \operatorname{silnie} \operatorname{rosnaca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

$$f - \operatorname{silnie} \operatorname{malejaca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

82. Podać i udowodnić twierdzenie o złożeniu funkcji rosnących, o złożeniu funkcji malejących, o złożeniu funkcji rosnącej z funkcją malejącą, o złożeniu funkcji malejącej z funkcją rosnącą.

Odpowiedź

Niech f, g - rosnące, wówczas $g \circ f$ jest funkcją rosnącą.

D:
$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \Rightarrow g(f(x_1)) \le g(f(x_2))$$

Niech f - rosnąca, g - malejąca, wówczas $g \circ f$ jest funkcją malejącą.

D:
$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \Rightarrow g(f(x_1)) \ge g(f(x_2))$$

Niech f, g - malejące, wówczas $g \circ f$ jest funkcją rosnącą.

D:
$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) \Rightarrow g(f(x_1)) \le g(f(x_2))$$

83. Wykazać, że jeśli złożenie dwóch funkcji jest bijekcją, to funkcja wewnętrzna jest injekcją, a funkcja zewnętrzna surjekcją.

Odpowiedź

84. Zdefiniować funkcję okresową w przypadku, gdy dziedzina tej funkcji jest podzbiorem R.

Odpowiedź

Niech $f: D \to \mathbb{R}$, wtedy

$$f$$
 – okresowa $\Leftrightarrow \exists_{T>0} : \forall_{x \in D} : x + T \in D, \underline{x - T} \in D \Rightarrow f(x) = f(x + T) = f(x - T)$

Ta część jest niepotrzebna, bo f(x-T+T)=f(x)

85. Zdefiniować funkcję okresową w przypadku, gdy dziedzina tej funkcji jest równa R.

Odpowiedź

Niech $f: \mathbb{R} \to \mathbb{R}$, wtedy

$$f$$
 - okresowa $\Leftrightarrow \exists_{T>0} : \forall_{x \in \mathbb{R}} f(x) = f(x+T)$

86. Zdefiniować funkcję Dirichleta i podać jej okresy.

Odpowiedź

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 \text{ gdy } x \in \mathbb{Q} \\ 0 \text{ gdy } x \notin \mathbb{Q} \end{cases}$$

Okresem tej funkcji jest każde $p \in \mathbb{Q} : p > 0$.

87. Podać przykład funkcji niestałej, której okresami są 1 oraz $\sqrt{2}$.

Odpowiedź

$$g(x) = \begin{cases} 1 \text{ gdy } x = a + b\sqrt{2} : a, b \in \mathbb{Z} \\ 0 \text{ dla pozostałych } x \end{cases}$$

D: Niech x ma postać $a + b\sqrt{2}$, wówczas:

$$x + 1 = (a + 1) + b\sqrt{2}$$

$$x + \sqrt{2} = a + (b+1)\sqrt{2}$$

Niech x nie ma postaci $a+b\sqrt{2}$ Hp. $x+1=c+d\sqrt{2}\Rightarrow x=(c-1)+d\sqrt{2}$ sprzeczność Hp. $x+\sqrt{2}=c+d\sqrt{2}\Rightarrow x=c+(b-1)\sqrt{2}$ sprzeczność

88. Zdefiniować funkcje sinus, cosinus, tangens, cotangens dla kata ostrego.

Odpowiedź

$$\begin{split} \sin\alpha &= \frac{\text{długość przyprostokątnej przeciwległej do danego kąta } \alpha}{\text{długość przeciwprostokątnej tego trójkąta}} \\ \cos\alpha &= \frac{\text{długość przyprostokątnej przyległej do danego kąta } \alpha}{\text{długość przeciwprostokątnej tego trójkąta}} \\ \text{tg}\alpha &= \frac{\text{długość przyprostokątnej przeciwległej do danego kąta } \alpha}{\text{długość przyprostokątnej przyległej do danego kąta } \alpha} \\ \text{ctg}\alpha &= \frac{\text{długość przyprostokątnej przyległej do danego kąta } \alpha}{\text{długość przyprostokątnej przyległej do danego kąta } \alpha} \end{split}$$

89. Uzasadnić, że powyższe definicje funkcji trygonometrycznych są postawione poprawnie.

Odpowiedź

90. Zdefiniować funkcje sinus, cosinus, tangens, cotangens dla dowolnego kata.

Odpowiedź

91. Uzasadnić, że powyższe definicje funkcji trygonometrycznych są postawione poprawnie.

Odpowiedź

92. Uzasadnić, że definicje funkcji trygonometrycznych dla dowolnego kąta są uogólnieniem analogicznych definicji dla kata ostrego.

Odpowiedź

93. Zdefiniować funkcje sinus, cosinus, tangens, cotangens dla argumentu zespolonego.

Odpowiedź

94. Podać twierdzenie sinusów.

W dowolnym trójkącie zachodzi:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

95. Podać twierdzenie cosinusów.

Odpowiedź

W dowolnym trójkącie zachodzi:

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

96. Wyrazić liczby e^{iz} oraz e^{-iz} za pomocą $\sin z$ oraz $\cos z$, udowodnić te wzory, znając w szczególności wzór na e^z za pomocą szeregu.

Odpowiedź

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$e^{iz} = \sum_{n=1}^{\infty} i^n \frac{z^n}{n!} = \sum_{k=0}^{\infty} i^{2k} \frac{z^{2k}}{(2k)!} + \sum_{k=0}^{\infty} i^{2k+1} \frac{z^{2k+1}}{(2k+1)!} =$$

$$\sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \cos z + i \sin z$$

$$e^{-iz} = \sum_{n=1}^{\infty} (-i)^n \frac{z^n}{n!} = \sum_{k=0}^{\infty} (-1)^{2k} (i)^{2k} \frac{z^{2k}}{(2k)!} + \sum_{k=0}^{\infty} (-1)^{2k+1} (i)^{2k+1} \frac{z^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} - i \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \cos z - i \sin z$$

97. Udowodnić wzór: $\sin^2z + \cos^2z = 1$ dla dowolnego kąta.

Odpowiedź

W dowolnym trójkącie prostokątnym zachodzi

$$\sin^2 \alpha + \cos^2 \alpha = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1$$

98. Udowodnić wzór: $\sin^2 z + \cos^2 z = 1$ dla argumentu zespolonego.

$$\sin^2 z + \cos^2 z = (\cos z + i\sin z)(\cos z - i\sin z) = e^{iz}e^{-iz} = e^0 = 1$$

99. Podać wzory na sinus, cosinus i tangens sumy oraz różnicy kątów.

Odpowiedź

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha tg\beta}$$

100. Podać wzory na sumę i różnicę sinusów kąta, sumę i różnicę cosinusów kąta.

Odpowiedź

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

101. Podać mechanizm tworzenia wzorów redukcyjnych i stosować go w praktyce.

Odpowiedź

102. Zdefiniować funkcje cyklometryczne: arc sin, arc cos, arc tg.

Odpowiedź

103. Udowodnić, że sin 1° jest liczbą niewymierną.

D: Hp.
$$\sin 1^{\circ} \in \mathbb{Q}$$

 $\sin^2 1^{\circ} \in \mathbb{Q}$
 $\cos^2 1^{\circ} = 1 - \sin^2 1^{\circ} \in \mathbb{Q}$
 $\cos 2^{\circ} = \cos^2 1^{\circ} - \sin^2 1^{\circ} \in \mathbb{Q}$
 $\sin^2 2^{\circ} = 1 - \cos^2 2^{\circ} \in \mathbb{Q}$
 $\cos 4^{\circ} = \cos^2 2^{\circ} - \sin^2 2^{\circ} \in \mathbb{Q}$
 $\sin^2 4^{\circ} = 1 - \cos^2 4^{\circ} \in \mathbb{Q}$
 $\cos 8^{\circ} = \cos^2 4^{\circ} - \sin^2 4^{\circ} \in \mathbb{Q}$

$$\sin^2 8^\circ = 1 - \cos^2 8^\circ \in \mathbb{Q}$$

$$\cos 16^\circ = \cos^2 8^\circ - \sin^2 8^\circ \in \mathbb{Q}$$

$$\sin^2 16^\circ = 1 - \cos^2 16^\circ \in \mathbb{Q}$$

$$\cos 32^\circ = \cos^2 16^\circ - \sin^2 16^\circ \in \mathbb{Q}$$

$$\sin 32^\circ = 2\sin 16^\circ \cos 16^\circ = 4\sin 8^\circ \cos 8^\circ \cos 16^\circ = 8\sin 4^\circ \cos 4^\circ \cos 8^\circ \cos 16^\circ =$$

$$= 16\sin 2^\circ \cos^\circ \cos 4^\circ \cos 8^\circ \cos 16^\circ$$

$$\mathbb{Q} \not\supseteq \frac{\sqrt{3}}{2} = \cos 30^\circ = \cos(32^\circ - 2^\circ) = \cos 32^\circ \cos 2^\circ + \sin 32^\circ \sin 2^\circ =$$

$$= \cos 32^\circ \cos 2^\circ + 16\cos 2^\circ \cos 4^\circ \cos 8^\circ \cos 16^\circ \sin^2 2^\circ \in \mathbb{Q} \text{ sprzeczność}$$

$$\in \mathbb{Q} \quad \in \mathbb{Q}$$

104. Podać dwie równoważne definicje liczby pierwszej i wykazać ich równoważność.

Odpowiedź

Niech $p \in \mathbb{N}_+$.

Def. 1 Liczba $p \in \mathbb{P}$ jeśli ma dokładnie dwa dzielniki \Uparrow

Def. 2 Liczba $p \in \mathbb{P}$ jeśli jest podzielna tylko przez 1 i samą siebie.

D: "
$$\Rightarrow$$
"
$$p|p,\ 1|p,\ p\neq 1 \text{ ok}$$
" \Leftarrow " $1|p,\ p|p,\ p\neq 1 \Rightarrow$ ma dokładnie dwa dzielniki ok

105. Podać powód, dla którego jedynka nie jest uznawana za liczbę pierwszą.

Odpowiedź

Rozkład na czynniki pierwsze powinien być jednoznaczny, gdyby $1 \in \mathbb{P}$, to np.

$$21 = 3^{1} \cdot 7^{1} = 1^{0} \cdot 2^{0} \cdot 3^{1} \cdot 5^{1} \cdot 7^{0} \cdot \dots = 1^{6} \cdot 2^{0} \cdot 3^{1} \cdot 5^{1} \cdot 7^{0} \cdot \dots$$

106. Udowodnić, że jeśli p dzieli a oraz p dzieli b, to p dzieli a-b

Odpowiedź

$$p|a i p|b \Rightarrow p|(a-b)$$

D:
$$\exists_k : a = k \cdot i \exists_m : b = m \cdot \Rightarrow a - b = p(k - m) \Rightarrow p|p(k - m) \Rightarrow p|a - b$$

107. Udowodnić, że liczb pierwszych jest nieskończenie wiele metodą Euklidesa.

Odpowiedź

Hp. Liczb pierwszych jest skończenie wiele $\mathbb{P} = \{p_1, p_2, \dots, p_n\}$.

Weźmy liczbę $p:=p_1\cdot_2\cdot\ldots p_n+1$. Wtedy $\forall_{p_i}p_i\not|p\Rightarrow p$ jest liczbą pierwszą. Sprzeczność.

108. Udowodnić, że liczb pierwszych jest nieskończenie wiele metodą Kummera.

Odpowiedź

Hp. $p_1 < p_2 < \cdots < p_n$ wszystkie liczby pierwsze.

 $p:=p_1\cdot p_2\cdot \cdots\cdot p_n>2$. Zalóżmy, że p-1 to iloczyn liczb pierwszych. Wówczas $\exists_j:p_j|p_j$

i
$$p_j|p-1$$
 $p_j|p-(p-1) \Rightarrow p_j|1$ sprzeczność

109. Udowodnić, że liczb pierwszych jest nieskończenie wiele metoda Stieltjesa.

Odpowiedź

Hp. Liczb pierwszych jest skończenie wiele $\mathbb{P} = \{p_1, p_2, \dots, p_n\}$.

$$p := p_1 \cdot p_2 \cdot \dots \cdot p_n$$

$$p = k \cdot m : k, m > 1$$

 $\forall_i p_i$ dzieli dokładnie jedną z liczb k lub m

Rozważmy k+m>1. Gdyby $\exists_{p_i}: p_i|k+m$, to

$$p_i|k \wedge p_i|k + m \Rightarrow p_i|k + m - k \Rightarrow p_i|m \text{ sprzeczność}$$

$$p_i|m \wedge p_i|k + m \Rightarrow p_i|k + m - m \Rightarrow p_i|k \text{ sprzeczność}$$

Zatem $\forall_i \ p_i \ /\!\!/k + m$, czyli k+m to liczba pierwsza. Sprzeczność z hipotezą.

110. Udowodnić, że liczb pierwszych jest nieskończenie wiele metodą Eulera.

Odpowiedź

1)
$$p \in \mathbb{P} \Rightarrow \frac{1}{p}$$
 $\sum_{k=0}^{\infty}$

2) p,q - różne liczby pierwsze $(\sum_{k=0}^{\infty} \frac{1}{p^k})(\sum_{k=0}^{\infty} \frac{1}{q^k}) = \frac{1}{1-\frac{1}{p}} \cdot \frac{1}{1-\frac{1}{q}} = \sum_{p} \frac{1}{p^{\alpha}q^{\beta}} : \alpha,\beta \geq 0 \text{ każda para } (\alpha,\beta) \text{ występuje dokładnie raz.}$

Hp. p_1, \ldots, p_n różne liczby pierwsze

$$A = \left(\sum_{k=0}^{\infty} \frac{1}{p_1^k}\right) \cdot \left(\sum_{k=0}^{\infty} \frac{1}{p_2^k}\right) \cdot \dots \cdot \left(\sum_{k=0}^{\infty} \frac{1}{p_n^k}\right) = \frac{1}{1 - \frac{1}{p_1}} \cdot \frac{1}{1 - \frac{1}{p_2}} \cdot \dots \cdot \frac{1}{1 - \frac{1}{p_n}} \in (0, \infty)$$

Ale
$$A = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

$$n=p_1^{\alpha_1}\cdot \cdot \cdot \cdot \cdot p_n^{\alpha_1}$$
 sprzeczność

111. Udowodnić, że dla każdej liczby naturalnej n
 większej od 2 w przedziale [n,n!) znajduje się liczba pierwsza.

Odpowiedź

Tw.
$$\forall_{n\geq 2}\exists_{p\in\mathbb{P}}: p\in[n,n!)$$

D: Rozważmy liczbę n! - 1

 $1^{\circ} n! - 1$ - liczba pierwsza \Rightarrow ok

2° n! - 1 - liczba złożona $\Rightarrow \exists_{p \in \mathbb{P}} : p|(n! - 1)$

Jeśli $p \le n$ to $p|n! \Rightarrow p|n! - (n! - 1) \Rightarrow p|1$ sprzeczność

Zatem p > n

112. Podać zasadę tworzenia sita Eratostenesa.

θ	1	2	3	4	5	6	7	8	9	
10	11	12	13	14	15	16	17	18	19	
20	21	22	23	24	25	26	27	28	29	
\downarrow										
θ	1	2	3	4	5	6	7	8	9	
10	11	12	13	14	15	16	17	18	19	
20	21	22	23	24	25	26	27	28	29	
II.										
\downarrow										
θ	1	2	3	4	5	6	7	8	9	
10	11	12	13	14	15	16	17	18	19	
20	21	22	23	24	25	26	27	28	29	
\downarrow										
0	1	2	3	4	5	6	7	8	9	
10	11	12	13	14	15	16	17	18	19	

113. Sformułować twierdzenie Greena-Tao.

Odpowiedź

 \forall_n istnieje ciąg arytmetyczny złożony z n liczb pierwszych.

114. Wykazać, że nie istnieje nieskończony ciąg arytmetyczny, którego wyrazami są jedynie liczby pierwsze.

24

26

29

Odpowiedź

D: Niech p - pierwszy wyraz tego ciągu (liczba pierwsza)

Hp. $\exists_r : r$ - różnica tego ciągu i wszystkie jego wyrazy to liczby pierwsze.

23

$$p, p+r, p+2r, \dots, p+pr=p(1+r) \Rightarrow p|p(1+r)$$
 Sprzeczność

115. Wykazać, że dla dowolnej liczby naturalnej n istnieje n-wyrazowy ciąg arytmetyczny, którego wyrazami są liczby niepierwsze.

Odpowiedź

D:
$$(n+1)! + 2, (n+1)! + 3, \dots, (n+1)!(n+1)$$

116. Podać zasadę konstrukcji spirali Ulama.

117. Sformułować hipotezę Riemanna.

Odpowiedź

Prosze... Tylko bez dowodu...

118. Zdefiniować wielomian (zmiennej rzeczywistej lub zespolonej). Jak nazywają się współczynniki przy najwyższej i najniższej potędze?

Odpowiedź

Wielomianem n-tego stopnia nazywamy funkcję

$$W(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z^1 + a_0,$$

gdzie $\{a_i\}_{i=1}^n$ to liczby ze zbioru $\mathbb C$

119. Wykazać, że wielomian zmiennej rzeczywistej o współczynnikach rzeczywistych stopnia nieparzystego ma zawsze co najmniej jeden pierwiastek rzeczywisty.

Odpowiedź

120. Na wielomiany którego stopnia możemy zawsze rozłożyć wielomian zmiennej rzeczywistej o współczynnikach rzeczywistych?

Odpowiedź

121. Sformułować zasadnicze twierdzenie algebry.

Odpowiedź

Wielomian n-tego stopnia ma zawsze n pierwiastków zespolonych.

122. Podać i udowodnić wzory Viete'a dla trójmianu kwadratowego.

123. Pokazać mechanizm tworzenia wzorów Viete'a dla wielomianu dowolnego stopnia.

Odpowiedź

124. Określić prawdziwość wzorów Viete'a dla trójmianu kwadratowego o współczynnikach rzeczywistych, dla którego wyróżnik Δ jest ujemny.

Odpowiedź

125. Podać i udowodnić twierdzenie o podzielności przez p i q odpowiednich współczynników wielomianu o współczynnikach całkowitych, którego liczba wymierna $\frac{p}{q}$ jest pierwiastkiem ($\frac{p}{q}$ jest zapisane w postaci ułamka nieskracalnego).

Odpowiedź

126. Co można powiedzieć o wymiernych pierwiastkach wielomianu $a_n x + \cdots + a_1 x + a_0$, którego współczynniki są liczbami całkowitymi? Udowodnić to twierdzenie.

Odpowiedź

127. Określić, co (jaki "obiekt") może być nazywany rozwiązaniem równania czy nierówności.

Odpowiedź

128. Rozwiązywać podstawowe równania i nierówności.

Odpowiedź

129. Podać podstawowy początek rozwiązywania nierówności typu $\frac{P(x)}{Q(x)} < 0$.

Odpowiedź

130. Rozwiązywać nierówności pierwiastkowe.

Odpowiedź

131. Omówić metodę analizy starożytnych stosowaną w równaniach logarytmicznych.

	Odpowiedź
132.	Podać schemat rozwiązywania nierówności z wartością bezwzględną.
	Odpowiedź
133.	Rozwiązywać równania (nierówności), w których niewiadoma występuje w postaci "związanej" (np. w formie a^x).
	Odpowiedź
134.	Uwalniać ułamki od niewymierności w mianowniku.
	Odpowiedź
135.	Wyjaśnić potrzebę uwalniania ułamków od niewymierności w mianowniku.
	Odpowiedź
136.	Podać definicję procentu.
	Odpowiedź
137.	Wyjaśnić różnicę między procentem a punktem procentowym.
	Odpowiedź
138.	Na czym polega błąd definiowania "ignotum per ignotum"?
	$\operatorname{Odpowied} olimits{f z}$
139.	Wytłumaczyć schematy definiowania "od ogółu do szczegółu" i z podziałem na klasy równoważn (z przykładami).
	Odpowiedź
140.	Podać definicję trapezu i wyjaśnić, dlaczego inne definiowanie nie jest właściwe.
	Odpowiedź
141.	Podać definicję trapezu równoramiennego.

142. Podać przykłady pokazujące, że czasem pewne obiekty można definiować na różne (istotnie) sposoby, ale nie ma to większego znaczenia, ale czasem ma ogromne znacze- nie.

Odpowiedź

143. Podać "szkolną" definicję prawdopodobieństwa i wyjaśnić, na jakie aspekty należy przy obliczeniach zwracać szczególną uwagę.

Odpowiedź

144. Podać i wyjaśnić paradoks Bertranda.

Odpowiedź

145. Podać definicję Cauchy'ego i definicję Heinego ciągłości funkcji $f:D\to\mathbb{R},$ przy czym $D\subset R.$

Odpowiedź

146. Czy funkcja tangens jest ciągła? Odpowiedź uzasadnić.

Odpowiedź

147. Udowodnić równoważność definicji Cauchy'ego i definicję Heinego ciągłości funkcji.

Odpowiedź

148. Sformułować twierdzenie o własności Darboux oraz twierdzenie Weierstrassa dla funkcji ciągłej $f:[a,b]\to\mathbb{R}$.

Odpowiedź

149. Podać definicję pochodnej funkcji określonej na podzbiorze D zbioru \mathbb{R} o wartościach rzeczywistych w punkcie $x_0 \in D$. Jakie założenie należy uczynić o zbiorze D, by można było mówić o pochodnej funkcji?

Odpowiedź

150. Podać interpretację geometryczną pochodnej.

151. Podać warunek konieczny istnienia ekstremum lokalnego funkcji różniczkowalnej.

Odpowiedź

152. Podać warunek wystarczający istnienia maksimum/minimum lokalnego funkcji róż niczkowalnej (ze zmianą znaku pochodnej) oraz dla funkcji dwukrotnie różniczkowalnej (z drugą pochodną).

Odpowiedź

153. Sformułować twierdzenie Rolle'a i twierdzenie Lagrange'a.

Odpowiedź

154. Sformulować regulę de l'Hospitala.

Odpowiedź

155. Wytłumaczyć, dlaczego przy korzystaniu z reguły de l'Hospitala nie należy używać skrótu "litera H napisana nad znakiem równości".

Odpowiedź

156. Wytłumaczyć, dlaczego przy korzystaniu z reguły de l'Hospitala nie należy używać zapisu " $\lim_{x\to p} \frac{f(x)}{g(x)} = \lim_{x\to p} \frac{f'(x)}{g'(x)}$ ".

Odpowiedź

157. Omówić ryzyko stosowania reguły de l'Hospitala związane z niesprawdzeniem założeń.

Odpowiedź

158. Dlaczego nie można z wykorzystaniem reguły de l'Hospitala liczyć granicy $\lim_{x\to 0} \frac{\sin x}{x}$?

Odpowiedź

159. Podać fałszywy "dowód" (na podstawie reguły de l'Hospitala) tego, że jeśli funkcja jest różniczkowalna, to jest klasy C^1 i pokazać błąd w tym dowodzie.

160. Wytłumaczyć, dlaczego nie należy robić rzeczy podanych na załączonej "Czarnej liście".