Soluções - Guidorizzi - Volume 1

Leonardo

February 14, 2017

Chapter 1

Números Reais

1.1 Os Números Racionais

1.2 Os Números Reais

Utilizamos nos exercícios a seguir o algoritmo de Briot-Ruffini.

- 1. (d) $x + 3 \le 6x 2 \Rightarrow -5x \le -5 \Rightarrow x \ge 1$.
 - (e) $1 3x > 0 \Rightarrow -3x > -1 \Rightarrow 3x < 1 \Rightarrow x < \frac{1}{3}$.
 - (f) $2x + 1 \ge 3x \Rightarrow -x \ge -1 \Rightarrow x \le 1$.
- 2. (i) (2x-1)(3-2x)

$$2x - 1 < 0 \Rightarrow x < \frac{1}{2}$$

$$2x - 1 > 0 \Rightarrow x > \frac{1}{2}$$

$$2x - 1 = 0 \Rightarrow x = \frac{1}{2}$$

$$3 - 2x < 0 \Rightarrow x > \frac{3}{2}$$

$$3 - 2x > 0 \Rightarrow x < \frac{3}{2}$$

$$3 - 2x = 0 \Rightarrow x = \frac{3}{2}$$

$$(2x - 1)(3 - 2x) > 0 \text{ para } \frac{1}{2} < x < \frac{3}{2}$$

$$(2x - 1)(3 - 2x) < 0 \text{ para } x < \frac{1}{2} \text{ ou } x > \frac{3}{2}$$

$$(2x - 1)(3 - 2x) > 0 \text{ para } \frac{1}{2} < x < \frac{3}{2}$$

$$(2x - 1)(3 - 2x) < 0 \text{ para } x = \frac{1}{2} \text{ ou } x = \frac{3}{2}$$

(j)
$$x(x-3)$$

 $x-3<0\Rightarrow x<3$
 $x-3>0\Rightarrow x>3$
 $x-3=0\Rightarrow x=3$

$$x(x-3) < 0$$
 para $0 < x < 3$
 $x(x-3) > 0$ para $x < 0$ ou $x > 3$
 $x(x-3)$ para $x = 0$ ou $x = 3$.

(1)
$$x(x-1)(2x+3)$$
$$x-1<0 \Rightarrow x<1$$
$$x-1>0 \Rightarrow x>1$$
$$x-1=0 \Rightarrow x=1$$
$$2x+3<0 \Rightarrow x<-\frac{3}{2}$$
$$2x+3>0 \Rightarrow x>-\frac{3}{2}$$
$$2x+3=0 \Rightarrow x=-\frac{3}{2}$$

$$x(x-1)(2x+3) > 0$$
 para $-\frac{3}{2} < x < 0$ ou para $x > 1$ $x(x-1)(2x+3) < 0$ para $x < -\frac{3}{2}$ ou para $0 < x < 1$ $x(x-1)(2x+3) = 0$ para $x = 0$ ou $x = -\frac{3}{2}$ ou $x = 1$.

1.2. OS NÚMEROS REAIS

(m)
$$(x-1)(1+x)(2-3x)$$

 $x-1 < 0 \Rightarrow x < 1$
 $x-1 > 0 \Rightarrow x > 1$
 $x-1 = 0 \Rightarrow x = 1$
 $1+x < 0 \Rightarrow x < -1$
 $1+x > 0 \Rightarrow x > -1$
 $1+x = 0 \Rightarrow x = -1$
 $2-3x < 0 \Rightarrow x > \frac{2}{3}$
 $2-3x > 0 \Rightarrow x < \frac{2}{3}$
 $2-3x = 0 \Rightarrow x = \frac{2}{3}$
 $(x-1)(1+x)(2-3x) > 0$ para $x < -1$ ou $\frac{2}{3} < x < 1$
 $(x-1)(1+x)(2-3x) < 0$ para $-1 < x < \frac{2}{3}$ ou $x > 1$
 $(x-1)(1+x)(2-3x) = 0$ para $x = 1$ ou $x = -1$ ou $x = \frac{2}{3}$.

(n)
$$x(x^2+3)$$

 $x^2+3<0 \Rightarrow x^2<-3$, não é possível.
 $x^2+3>0$ para qualquer x
Logo temos:
 $x(x^2+3)>0$ para $x>0$

$$x(x^2 + 3) < 0$$
 para $x < 0$
 $x(x^2 + 3) = 0$ para $x = 0$

3. (h)
$$\frac{2x-1}{x-3} > 5 \Rightarrow \frac{2x-1}{x-3} > \frac{5(x-3)}{x-3} \Rightarrow$$
$$\frac{2x-1-5(x-3)}{x-3} > 0 \Rightarrow \frac{2x-1-5x+15}{x-3} > 0 \Rightarrow$$
$$\frac{-3x+14}{x-3} > 0 \Rightarrow \frac{3x+14}{x-3} < 0$$
$$3x+14 > 0 \Rightarrow x > \frac{14}{3}$$

$$3x + 14 < 0 \Rightarrow x < \frac{14}{3}$$
$$x - 3 > 0 \Rightarrow x > 3$$
$$x - 3 < 0 \Rightarrow x < 3$$

Devemos ter o denominador e numerador com sinais opostos, assim temos a solução:

$$S = \{ x \in \mathbb{R} \mid 3 < x < \frac{14}{3} \}.$$

(i)
$$\frac{x}{2x-3} \le 3 \Rightarrow \frac{x}{2x-3} \le \frac{3(2x-3)}{2x-3} \Rightarrow$$
$$\frac{x-3(2x-3)}{2x-3} \le 0 \Rightarrow \frac{x-6x+9}{2x-3} \le 0 \Rightarrow$$
$$\frac{-5x+4}{2x-3} \le 0 \Rightarrow \frac{5x-9}{2x-3} \ge 0$$
$$5x-9 \ge 0 \Rightarrow x \ge \frac{9}{5}$$
$$5x-9 < 0 \Rightarrow x < \frac{9}{5}$$
$$2x-3 \ge 0 \Rightarrow x \le \frac{3}{2}$$
$$2x-3 < 0 \Rightarrow x < \frac{3}{2}$$

 $\frac{5x-9}{2x-3} \geq 0$ quando os sinais do denominador e numerador são iguais:

$$S = \{x \in \mathbb{R} \mid x < \frac{3}{2} \text{ ou } x \ge \frac{9}{5}\}.$$

$$(j) \frac{x-1}{2-x} < 1 \Rightarrow \frac{x-1}{2-x} < \frac{2-x}{2-x} \Rightarrow$$

$$\frac{x-1-2+x}{2-x} < 0 \Rightarrow \frac{2x-3}{2-x} < 0$$

$$2x-3 > 0 \Rightarrow x > \frac{3}{2}$$

$$2x-3 < 0 \Rightarrow x < \frac{3}{2}$$

$$2 - x > 0 \Rightarrow x < 2$$

$$2-x < 0 \Rightarrow x > 2$$

 $\frac{2x-3}{2-x}<0$ quando os sinais do denominador e numerador são diferentes:

$$S = \{x \in \mathbb{R} \mid x < \frac{3}{2} \text{ ou } x > 2\}.$$

(1)
$$x(2x-1)(x+1) > 0$$

 $2x-1 > 0 \Rightarrow x > \frac{1}{2}$
 $2x-1 < 0 \Rightarrow x < \frac{1}{2}$
 $x+1 > 0 \Rightarrow x > -1$
 $x+1 < 0 \Rightarrow x < -1$

Os valores para que tenhamos x(2x-1)(x+1) > 0:

$$S = \{ x \in \mathbb{R} \mid -1 < x < 0 \text{ ou } x > \frac{1}{2} \}.$$

(m)
$$(2x-1)(x-3) > 0$$

 $2x-1 > 0 \Rightarrow x > \frac{1}{2}$
 $2x-1 < 0 \Rightarrow x < \frac{1}{2}$
 $x-3 > 0 \Rightarrow x > 3$
 $x-3 < 0 \Rightarrow x < 3$

Devemos ter os sinais dos fatores iguais em (2x-1)(x-3) > 0:

$$S=\{x\in\mathbb{R}\ |\ x<\frac{1}{2}\text{ ou }x>3\}.$$

$$\begin{array}{l} \text{(n)} \ \ (2x-3)(x^2+1)<0\\ \\ x^2+1>0 \ \text{para qualquer} \ x.\\ \\ \text{Devemos ter} \ 2x-3<0\Rightarrow x<\frac{3}{2}:\\ \\ S=\{x\in\mathbb{R}\mid x<\frac{3}{2}\}. \end{array}$$

(o)
$$\frac{x-3}{x^2+1} < 0$$

$$x^2+1 > 0 \text{ para qualquer } x.$$

Devemos ter $x - 3 < 0 \Rightarrow x < 3$:

$$S = \{x \in \mathbb{R} \mid x < 3\}.$$

4.
$$x^3 + 0x^2 + 0x - a^3 \div \Box x - a$$
:

5. (c)
$$(x-a)(x^3 + ax^2 + a^2x + a^3) =$$

 $x^4 + ax^3 + a^2x^2 + a^2x^3 - ax^3 - a^2x^2 - a^3x - a^4 =$
 $x^4 - a^4$

(d)
$$(x-a)(x^4+ax^3+a^2x^2+a^3x+a^4)=$$

 $x^5+ax^4+a^2x^3+a^3x^2+a^4x-ax^4-a^2x^3-a^3x^2-a^4x-a^5=$
 x^5-a^5

(e)
$$(x-a)(x^{n-1}+ax^{n-2}+a^2x^{n-3}+...+a^{n-2}x+a^{n-1})=$$

 $x^n+ax^{n-1}+a^2x^{n-2}+...+a^{n-2}x^2+a^{n-1}x$
 $-ax^{n-1}-a^2x^{n-2}-a^3x^{n-3}-...-a^{n-1}x-a^n=$
 x^n-a^n

6. (h)
$$\frac{\frac{1}{x} - \frac{1}{p}}{x - p} = \frac{\frac{p - x}{xp}}{x - p} = \frac{p - x}{(x - p)xp} = -\frac{1}{xp}.$$

(i)
$$\frac{\frac{1}{x^2} - \frac{1}{p^2}}{x - p} = \frac{\frac{p^2 - x^2}{x^2 p^2}}{x - p} = \frac{p^2 - x^2}{x^2 p^2 (x - p)} = \frac{(p - x)(p + x)}{-x^2 p^2 (p - x)} = -\frac{x + p}{x^2 p^2}$$

(k)
$$\frac{x^4 - p^4}{x - p} = \frac{(x - p)(x^3 + px^2 + p^2x + p^3)}{(x - p)} = x^3 + px^2 + p^2x + p^3$$

(1)
$$\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2hx + h^2 - x^2}{h} = \frac{2hx + h^2}{h} = \frac{h(2x+h)}{h} = 2x + h$$

(m)
$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x-x-h}{x(x+h)}}{h} = \frac{\frac{-h}{x(x+h)}}{h} = \frac{-h}{x(x+h)h} = -\frac{1}{x(x+h)h}$$

(n)
$$\frac{(x+h)^3 - x^3}{h} = \frac{x^3 + 3hx^2 + 3h^2x + h^3 - x^3}{h} = \frac{3hx^2 + 3h^2x + h^3}{h} = 3x^2 + 3xh + h^2$$

(o)
$$\frac{(x+h)^2 - (x-h)^2}{h} = \frac{(x^2 + 2hx + h^2) - (x^2 - 2hx + h^2)}{h} = \frac{4hx}{h} = 4x$$

7. (f)
$$\frac{x^2-4}{x^2+4} > 0 \Rightarrow \frac{(x+2)(x-2)}{x^2+4} > 0$$

O denominador será sempre positivo, devemos analisar o sinal do numerador (x+2)(x-2):

$$x+2>0 \Rightarrow x>-2$$

$$x+2 < 0 \Rightarrow x < -2$$

$$x-2>0 \Rightarrow x>2$$

$$x-2 < 0 \Rightarrow x < 2$$

O numerador deve ser positivo, portanto os fatores do produto devem ter o mesmo sinal, temos isso quando x < -2 ou x > 2.

(g)
$$(2x-1)(x^2-4) \le 0 \Rightarrow (2x-1)(x+2)(x-2) \le 0$$

O produto deve ter seus fatores todos negativos ou ao menos um deles com valor 0 ou, finalmente, dois positivos e um negativo. Temos então os sinais de cada expressão:

$$2x - 1 \le 0 \Rightarrow x \le \frac{1}{2}$$
$$2x - 1 > 0 \Rightarrow x > \frac{1}{2}$$

$$x + 2 \le 0 \Rightarrow x \le -2$$

$$x+2>0 \Rightarrow x>-2$$

$$x - 2 \le 0 \Rightarrow x \le 2$$

$$x - 2 > 0 \Rightarrow x > 2$$

Para termos $(2x-1)(x^2-4)=0$, basta termos $x=\frac{1}{2}$ ou x=-2 ou

$$x = 2$$
.

Para termos $(2x-1)(x^2-4) < 0$, com os três fatores acima mencionados negativos, devemos ter x < -2.

Finalmente para termos $(2x-1)(x^2-4)<0$, com dois fatores positivos e um negativo. Analisando a seguir todas as possibilidades: $x<\frac{1}{2}$ e x>-2 e x>2 não é possível.

$$x > \frac{1}{2}$$
 e $x < -2$ e $x > 2$ não é possível.

$$x > \frac{1}{2}$$
 e $x > -2$ e $x < 2$ nos dá $\frac{1}{2} < x < 2$.

Logo as soluções são $x \le -2$ ou $\frac{1}{2} \le x \le 2$.

(h)
$$3x^2 \ge 48 \Rightarrow x^2 \ge 16 \Rightarrow (x-4)(x+4) \ge 0$$

Estudando o sinal do produto, devemos ter as duas expressões com mesmo sinal ou alguma delas com valor zero:

$$x - 4 > 0 \Rightarrow x > 4$$

$$x - 5 < 0 \Rightarrow x < 4$$

$$x+5>0 \Rightarrow x>-4$$

$$x + 5 < 0 \Rightarrow x < -4$$

Devemos ter:

$$x > 4$$
 e $x > -4$, que nos dá $x > 4$.

ou

$$x < 4$$
 e $x < -4$ que nos dá $x < -4$.

A solução portanto é ou $x \leq -4$ ou $x \geq 4$

(i) $x^2 < r^2 \Rightarrow (x-r)(x+r) < 0$ Estudando o sinal do produto, devemos ter as duas expressões com sinais opostos:

$$x - r > 0 \Rightarrow x > r$$

$$x - r < 0 \Rightarrow x < r$$

$$x + r > 0 \Rightarrow x > -r$$

$$x + r < 0 \Rightarrow x < -r$$

Devemos ter:

x > r e x < -r, que é impossível.

011

 $x < r \in x > -r$ que nos dá -r < x < r.

(j) $x^2 \ge r^2 \Rightarrow (x-r)(x+r) \ge 0$ Estudando o sinal do produto, devemos ter as duas expressões com mesmo sinal ou alguma delas com valor zero:

$$x - r > 0 \Rightarrow x > r$$

$$x - r < 0 \Rightarrow x < r$$

$$x + r > 0 \Rightarrow x > -r$$

$$x + r < 0 \Rightarrow x < -r$$

Devemos ter:

x > r e x > -r, que nos dá x > r.

011

x < r e x < -r que nos dá x < -r.

A solução portanto é ou $x \leq -r$ ou $x \geq r$

8. (a)
$$a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\left(b^2 - 4ac \right)}{4a^2} \right] = a \left[x^2 + \frac{2xb}{2a} + \frac{b^2}{4a^2} - \frac{b^2 + 4ac}{4a^2} \right] =$$

$$= \left[ax^2 + bx + c \right]$$
(b) $a \left[\left(\frac{-b \pm \sqrt{\Delta}}{2a} + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] = a \left[\left(\pm \frac{\sqrt{\Delta}}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] =$

$$= a \left[\frac{\Delta}{4a^2} - \frac{\Delta}{4a^2} \right] = a.0 = \boxed{0}$$
(c) $x_1 + x_2 = \frac{-b + \sqrt{\Delta}}{2a} + \frac{\left(-b - \sqrt{\Delta} \right)}{2a} = \frac{-b + \sqrt{\Delta} - b - \sqrt{\Delta}}{2a} =$

$$= \frac{-2b}{2a} = \left[\frac{-b}{a}\right]$$

$$x_1 x_2 = \frac{-b + \sqrt{\Delta} (-b - \sqrt{\Delta})}{a} = \frac{b^2 - \Delta}{a} = \frac{b^2 - b^2 + 4ac}{a} = \left[\frac{c}{a}\right]$$

$$x_1.x_2 = \frac{-b + \sqrt{\Delta}}{2a}.\frac{(-b - \sqrt{\Delta})}{2a} = \frac{b^2 - \Delta}{4a^2} = \frac{b^2 - b^2 + 4ac}{4a^2} = \boxed{\frac{c}{a}}$$

9.
$$a(x-x_1)(x-x_2) = a(x^2 - xx_2 - xx_1 + x_1x_2) =$$

$$= a[x^{2} - x(x_{2} + x_{1}) + x_{1}x_{2}] = a\left[x^{2} - x\left(\frac{-b}{a}\right) + \frac{c}{a}\right] =$$

$$= a[x^{2} + bx + c]$$

10. (f)
$$2x^2 - 3x + 1 = 2(x^2 - \frac{3}{2}x + \frac{1}{2}) = 2(x - 1)(x - \frac{1}{2}) = (x - 1)(2x - 1)$$

(g) $x^2 - 25$

$$x_1 + x_2 = 0 \Rightarrow x_1 = -x_2$$

 $x_1 x_2 = -25 \Rightarrow (-x_1)x_1 = -25 \Rightarrow x_1^2 = 25 \Rightarrow x_1 = 5 \text{ e } x_2 = -5$
 $(x-5)(x+5)$

(h)
$$3x^2 + x - 2 = 3(x^2 + \frac{1}{3}x - \frac{2}{3}) = 3(x+1)(x-\frac{2}{3}) = (x+1)(3x-2)$$

(i)
$$4x^2 - 9 \ x_1 + x_2 = 0 \Rightarrow x_1 = -x_2$$

 $x_1x_2 = -\frac{9}{4} \Rightarrow (-x_1)x_1 = -\frac{9}{4} \Rightarrow x_1^2 = \frac{9}{4} \Rightarrow x_1 = \frac{3}{2} e \ x_2 = -\frac{3}{2}$
 $4(x + \frac{3}{2})(x - \frac{3}{2}) = \boxed{(2x - 3)(2x + 3)}$

(j)
$$2x^2 - 5x$$

 $x_1x_2 = 0 \Rightarrow x_1 = 0$
 $x_1 + x_2 = \frac{5}{2} \Rightarrow x_2 = \frac{5}{2}$
 $2x(x - \frac{5}{2}) = \boxed{x(2x - 5)}$

11. (f)
$$x_1 + x_2 = -\frac{1}{3} e x_1 x_2 = -\frac{2}{3}$$

 $x_1 = \frac{2}{3} e x_2 = -1$
 $3x^2 + x - 2 > 0 \Rightarrow 3(x+1)(x-\frac{2}{3}) > 0 \Rightarrow (x+1)(x-\frac{2}{3}) > 0$

Temos os seguintes sinais para cada fator do produto:

$$\begin{aligned} x+1 &> 0 \text{ quando } x > -1 \\ x+1 &> 0 \text{ quando } x < -1 \\ x-\frac{2}{3} &> 0 \text{ quando } x > \frac{2}{3} \\ x-\frac{2}{3} &< 0 \text{ quando } x < \frac{2}{3} \end{aligned}$$

Para termos $(x+1)(x-\frac{2}{3})>0$, os fatores devem possuir o mesmo

sinal

$$x > \frac{2}{3}$$
 ou $x < -1$

(g)
$$x_1 + x_2 = 4$$
 e $x_1 x_2 = 4$

$$x_1 = x_2 = 2$$

$$x^{2} - 4x + 4 > 0 \Rightarrow (x - 2)(x - 2) > 0 \Rightarrow (x - 2)^{2} > 0$$

A equação é sempre positiva, exceto em x=2.

A solução é $x \neq 2$.

(h)
$$x_1 + x_2 = \frac{1}{3} e x_1 x_2 = 0$$

$$x_1 = \frac{1}{3}$$

$$3x^2 - x \le 0 \Rightarrow 3x(x - \frac{1}{3}) \le 0 \Rightarrow x(x - \frac{1}{3}) \le 0$$

Temos os seguintes sinais para cada fator do produto:

$$x - \frac{1}{3} > 0 \Rightarrow x > \frac{1}{3}$$

$$x - \frac{1}{3} \le 0 \Rightarrow x \le \frac{1}{3}$$

$$x > 0$$
 ou $x \le 0$

Para termos $x(x-\frac{1}{3}) \le 0$, os fatores devem possuir sinais opostos ou x=0 ou $x=\frac{1}{3}$:

$$0 \le x \le \frac{1}{3}$$

(i)
$$x_1 + x_2 = 1$$
 e $x_1 x_2 = \frac{1}{4}$

$$x_1 = x_2 = \frac{1}{2}$$

$$4x^2 - 4x + 1 < 0 \Rightarrow 4(x - \frac{1}{2})(x - \frac{1}{2}) < 0 \Rightarrow (x - \frac{1}{2})^2 < 0$$

A desigualdade não é possível para nenhum x.

(j)
$$x_1 + x_2 = 1$$
 e $x_1 x_2 = \frac{1}{4}$

$$x_1 = x_2 = \frac{1}{2}$$

$$4x^2 - 4x + 1 \le 0 \Rightarrow 4(x - \frac{1}{2})(x - \frac{1}{2}) \le 0 \Rightarrow (x - \frac{1}{2})^2 \le 0$$

14

A inequação somente é possível para $x = \frac{1}{2}$.

12. (a) Por 8. a) temos:

$$ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$$

Observando o produto, do lado direito temos a>0 e a expressão entre colchetes é positiva sempre, pois temos um termo elevado ao quadrado e no outro, $\frac{\Delta}{4a^2}$, temos $\Delta<0$, porém precedido por um sinal negativo, e dividido por $4a^2$ que é positivo, conclui-se então que esse fator também é positivo e por consequência $ax^2 + bx + c > 0$.

(b) O raciocínio é similar ao item anterior, exceto que agora temos a<0 e portanto o produto $a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$ é negativo, o que nos dá $ax^2+bx+c<0$.

13. (f)
$$(2x+1)(x^2+x+1) \le 0$$

Estudando o sinal do produto, devemos ter as duas expressões com sinais opostos ou algum fator ser 0::

$$2x + 1 > 0 \Rightarrow x > -\frac{1}{2}$$
$$2x + 1 < 0 \Rightarrow x \le -\frac{1}{2}$$

De acordo com o exercício 12 acima, $x^2+x+1>0$, pois $\Delta=1-4.1.1=-3<0.$

Logo
$$(2x+1)(x^2+x+1) \le 0$$
 quando $x \le -\frac{1}{2}$.

(g)
$$x(x^2+1) \ge 0$$

Estudando o sinal do produto, devemos ter as duas expressões com sinais iguais ou algum fator ser 0:

$$x^2+1$$
tem $a=1>0$ e $\Delta=0-4.1.1=-4<0,$ que pelo exercício 12 nos dá $x^2+1>0.$

Logo devemos ter $x \geq 0$.

(h)
$$(1-x)(x^2+2x+2) < 0$$

Estudando o sinal do produto, devemos ter as duas expressões com sinais opostos:

 x^2+2x+2 tem a=1>0e $\Delta=4-4.1.2=-4<0,$ que pelo exercício 12 nos dá $x^2+2x+2>0.$

Logo devemos ter $1 - x < 0 \Rightarrow x > 1$.

(i)
$$\frac{2x-3}{x^2+1} > 0$$

Estudando o sinal da divisão, devemos ter as duas expressões com sinais iguais: x^2+1 tem a=1>0 e $\Delta=0-4.1.1=-4<0$, que pelo exercício 12 nos dá $x^2+1>0$.

Portanto devemos ter $2x - 3 > 0 \Rightarrow x > \frac{3}{2}$.

$$(j) \ \frac{x}{x^2 + x + 1} \ge 0$$

Estudando o sinal da divisão, devemos ter as duas expressões com sinais iguais ou x=0:

 x^2+x+1 tem a=1>0e $\Delta=1-4.1.1=-3<0,$ que pelo exercício 12 nos dá $x^2+x+1>0.$

Portanto devemos ter $x \ge 0$

14. Primeiramente observa-se o fato de x^2+1 ser sempre positivo, portanto ao multiplicarmos ambos os lados da expressão $\frac{5x+3}{x^2+1} \geq 5$ por x^2+1 a direção da desigualdade não se altera:

$$\frac{5x+3}{x^2+1} \ge 5 \Rightarrow \frac{5x+3}{x^2+1}.(x^2+1) \ge 5(x^2+1) \Rightarrow 5x+3 \ge 5(x^2+1).$$

Por outro lado dividimos $5x + 3 \ge 5(x^2 + 1)$ por $x^2 + 1$ e temos:

$$\frac{5x+3}{x^2+1} \ge 5\frac{(x^2+1)}{(x^2+1)} \Rightarrow \frac{5x+3}{x^2+1} \ge 5.$$

17. (d)
$$2x^3 - x^2 - 1 = 0$$

1 e -1 são os divisores de $a_3=-1$, testando os dois valores na equação temos 1 como raiz inteira da equação.

(e)
$$x^3 + x^2 + x - 14 = 0$$

Os divisores inteiros de $a_4 - 14$ são ± 1 , ± 2 , ± 7 e ± 14 .

Testando as 8 possibilidades temos:

$$1^3 + 1^2 + 1 - 14 = -11$$

 $-1^3 + (-1)^2 - 1 - 14 = -15$

$$2^{3} + 2^{2} + 2 - 14 = 0$$
, logo 2 é raiz.
 $-2^{3} + (-2)^{2} - 2 - 14 = -12$
 $7^{3} + 7^{2} + 7 - 14 = 385$
 $-7^{3} + (-7)^{2} - 7 - 14 = -315$
 $14^{3} + 14^{2} + 14 - 14 = 2940$
 $-14^{3} + (-14)^{2} - 14 - 14 = -2576$

A única raiz inteira encontrada é 2.

(f)
$$x^3 + 3x^2 - 4x - 12 = 0$$

Os divisores inteiros de $a_4 - 12$ são ± 1 , ± 2 , ± 3 , ± 4 , ± 6 e ± 12 .

Testando as 12 possibilidades temos:

$$1^{3} + 3(1)^{2} - 4(1) - 12 = -12$$

$$-1^{3} + 3(-1)^{2} - 4(-1) - 12 = -6$$

$$2^{3} + 3(2)^{2} - 4(2) - 12 = 0, \log 2 \text{ \'e raiz}$$

$$-2^{3} + 3(-2)^{2} - 4(-2) - 12 = 0, \log -2 \text{ \'e raiz}$$

$$3^{3} + 3(3)^{2} - 4(3) - 12 = 30$$

$$-3^{3} + 3(-3)^{2} - 4(-3) - 12 = 0, \log -3 \text{ \'e raiz}$$

$$4^{3} + 3(4)^{2} - 4(4) - 12 = 84$$

$$-4^{3} + 3(-4)^{2} - 4(-4) - 12 = -12$$

$$6^{3} + 3(6)^{2} - 4(6) - 12 = 288$$

$$-6^{3} + 3(-6)^{2} - 4(-6) - 12 = -96$$

$$12^{3} + 3(12)^{2} - 4(12) - 12 = 2100$$

$$-12^{3} + 3(-12)^{2} - 4(-12) - 12 = -1260$$

As raízes inteiras são 2, -2 e -3.

19. (a)
$$x^3 + 2x^2 - x - 2$$

$$\begin{array}{c|ccccc}
 & 1 & 1 & 2 & -1 & -2 \\
\hline
 & 1 & 3 & 2 & 0
\end{array}$$

$$(x^2 + 3x + 2)(x - 1)$$

$$\begin{array}{c|cccc}
-2 & 1 & 3 & 2 \\
\hline
 & 1 & 1 & 0 \\
\end{array}$$

$$(x-1)(x+1)(x+2).$$

 $(x+1)(x-1)^2(x-2)$.

(c)
$$x^3 + 2x^2 - 3x$$

 $(x^2 + 2x - 3)x$

$$\begin{array}{c|cccc}
 & 1 & 2 & -3 \\
\hline
& 1 & 3 & 0
\end{array}$$
 $(x+3)(x-1)x$.

$$(x^2 + x - 6)(x + 2)$$

$$\begin{array}{c|cccc}
2 & 1 & 1 & -6 \\
\hline
& 1 & 3 & 0 \\
(x+3)(x-2)(x+2).
\end{array}$$

(e)
$$x^3 + 6x^2 + 11x + 6$$

$$(x^2 + 5x + 6)(x + 1)$$

$$(x+2)(x+1)(x+3)$$
.

(f)
$$x^3 - 1$$

$$(x^2 + x + 1)(x - 1)$$

20. (a)
$$x^3 - 1 > 0$$

$$x^3 > 1 \Rightarrow x > 1$$

(b)
$$x^3 + 6x^2 + 11x + 6 < 0$$

$$(x+1)(x^2+5x+6) < 0$$

$$(x+1)(x+2)(x+3) < 0$$

Basta estudarmos o sinal da última inequação, onde deveremos ter um número ímpar de elementos do produto negativos:

Com
$$x < -3$$
, $x < -2$ e $x < -1$ temos $x < -3$.

Nos casos com apenas um elemento negativo:

• (x+1) < 0 nos dá x < -1 e devemos ter x > -2, x > -3, o que nos dá x > -2.

(x+2)<0nos dáx<-2e devemos ter x>-1, x>-3,o que nao é possível.

• (x+3) < 0 nos dá x < -3 e devemos ter x > -1, x > -2, mas não existe tal combinação.

Finalmente temos a outra solução da inequação:

$$-2 < x < -1$$
.

É possível, e até mais prático, estudar os sinais acima graficamente.

(c)
$$x^3 + 3x - 4x - 12 \ge 0 \Rightarrow x(x-1)(x+3) < 0$$

Estudamos a seguir o sinal da inequação x(x-1)(x+3) < 0, devemos ter um número ímpoar de elementos do produto negativos:

Com
$$x < 0, x - 1 < 0 \Rightarrow x < 1 \text{ e } x + 3 < 0 \Rightarrow x < -3, \text{ temos } x < -3.$$

Nos casos com apenas um elemento negativo:

- Com x < 0 devemos ter x 1 > 0 e x + 3 > 0, portanto respectivamente x > 1 e x > -3, mas não existe tal combinação.
- x-1 < 0 nos dá x < 1 e devemos ter x > 0 e x > -3, o que resulta em 0 < x < 1
- x + 3 < 0 nos dá x < -3 e devemos ter x > 0 e x > 1, mas não é possível tal combinação.

As solução é x < -3 ou 0 < x < 1.

(d)
$$x^3 + 2x^2 - 3x < 0$$

21. Falsa. Para explicar basta darmos um contra-exemplo:

Se x = -1 e y = 0, temos x < y, mas não $x^2 < y^2$, pois daí teríamos 1 < 0, o que contradiz nossa proposição.

22.
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Se x e y têm o mesmo sinal, temos $(x^2 + xy + y^2) > 0$.

Portanto devemos estudar o que ocorre quando x-y<0, com a condição de x e y terem o mesmo sinal.

Se
$$x > 0$$
 e $y > 0$ temos $x - y < 0 \Rightarrow x < y$.

No caso de x < 0 e y < 0 temos, de forma similar, $x - y < 0 \Rightarrow x < y$.

Já quando ocorrem sinais opostos para x e y, temos apenas da avaliar o caso em que x < 0 e y > 0.

Temos então:

 $x^3<0\Rightarrow x^2>0\Rightarrow x<0$ (a ordem da desigualdade vai sendo trocada em cada produto pelo inverso) e

 $y^3 > 0 \Rightarrow y^2 > 0 \Rightarrow y > 0$ (a ordem permanece intacta em cada produto pelo inverso).

Finalmente pela lei da transitividade temos x < 0 e $0 < y \Rightarrow x < y$.

Por outro lado:

$$x < y \Rightarrow x - y < 0$$

$$x > 0 \text{ e } y > 0 \Rightarrow x^2 + xy + y^2 > 0 \text{ e}$$

$$x < 0 \text{ e } y < 0 \Rightarrow x^2 + xy + y^2 > 0$$

Multiplicando-se os dois lados da inequação x-y<0 por x^2+xy+y^2 conserva a ordem da desigualdade:

$$(x-y)(x^2 + xy + y^2) < 0 \Rightarrow x^3 - y^3 < 0 \Rightarrow x^3 < y^3.$$

Caso tenhamos x e y com sinais diferentes, pegamos apenas o caso em que

x < 0 e y > 0, pois o contrário não existe para x < y.

Temos então:

 $x<0 \Rightarrow x^2>0 \Rightarrow x^3<0$ (a ordem da desigualdade vai sendo trocada em cada produto) e

 $y > 0 \Rightarrow y^2 > 0 \Rightarrow y^3 > 0$ (a ordem permanece intacta em cada produto).

Finalmente pela lei da transitividade temos $x^3 < 0$ e $0 < y^3 \Rightarrow x^3 < y^3$.

23. (a)
$$x.0 = x(0)$$
, (A1)
$$x(0) = x(z + (-z))$$
, (A4)
$$x(z + (-z)) = xz - xz$$
, (D)
$$xz - xz = xz + (-xz)$$
, (A1) Finalmente temos: $xz + (-xz) = 0$, (A4).

(b) Para o primeiro caso:

$$x + (-x) = 0$$
, (A4)
 $y(x + (-x)) = y.0$, combinando (O2) com (OM)
 $yx + y(-x) = 0$, (D) e (a) acima
 $xy + (-x)y = 0$, (M2)
 $xy + (-x)y + (-xy) = -xy$, combinando (O2) com (OA)
 $(-x)y + xy + (-xy) = -xy$, (A2)
 $(-x)y = -xy$, (A3)

No segundo caso:

$$y + (-y) = 0$$
, (A4)
 $x(y + (-y)) = x.0$, combinando (O2) com (OM)
 $xy + x(-y) = 0$, (D) e (a) acima
 $xy + x(-y) + (-xy) = -xy$, combinando (O2) com (OA)
 $x(-y) + xy + (-xy) = -xy$, (A2)
 $x(-y) = -xy$, (A3)

No terceiro:

$$(-x) + x = 0$$
, (A4) e (A2)
 $(-y)((-x) + x) = (-y).0$, combinando (O2) com (OM)
 $(-y)(-x) + (-y)x = 0$, (D) e (a) acima
 $(-x)(-y) + x(-y)$, (M2)
 $(-x)(-y) + x(-y) + xy = xy$, combinando (O2) com (OA)
 $(-x)(-y) = xy$, (A4)

(c)
$$x \le 0$$
 ou $0 \le x$, (O4)

Se x < 0:

$$x - (-x) \le 0 + (-x)$$
, (OA)

$$0 \le -x$$
, (A4)

$$(-x)0 \le (-x)(-x)$$
, (OM)

Considerando o item (a) acima, temos:

$$0 \le x^2$$
.

Se $x \ge 0$:

$$xx \ge x.0$$
, (OM)

Considerando o item (a) acima, temos:

$$x^2 \ge 0$$
.

(d)
$$0 \le 1$$
 e $0 \le 1$ nos dá $0.1 \le 1.1 = 1^2$, (OM)

Por (M3)
$$1.1 = 1 \text{ com } 1 \neq 0$$

Logo temos $1^2 > 0$.

1.3 Módulo de um Número Real

1. (a)
$$|-5|+|-2|=-(-5)-(-2)=5+2=7$$
.

(b)
$$|-5+8| = |3| = 3$$
.

(c)
$$|-a| = -(-a) = a$$
.

2. (a)
$$|x| = 2$$

$$x = 2 \text{ ou } x = -2.$$

1.3. MÓDULO DE UM NÚMERO REAL

(b)
$$|x+1| = 3 \ x+1 > 0 \Rightarrow x+1 = 3 \Rightarrow x = 2$$

 $x+1 \le 0 \Rightarrow -(x+1) = 3 \Rightarrow x+1 = -3 \Rightarrow x = -4.$

(c)
$$|2x - 1| = 1$$

 $2x - 1 > 0 \Rightarrow 2x - 1 = 1 \Rightarrow 2x = 2 \Rightarrow x = 1$
 $2x - 1 < 0 \Rightarrow -(2x - 1) = 1 \Rightarrow 2x - 1 = -1 \Rightarrow 2x = 0 \Rightarrow x = 0.$

3. (a)
$$|x| \le 1$$

 $x > 0 \Rightarrow x \le 1$
 $x \le 0 \Rightarrow -x \le 1 \Rightarrow x \ge -1$
 $-1 \le x \le 1$

(b)
$$|2x - 1| < 3$$

 $2x - 1 > 0 \Rightarrow 2x - 1 < 3 \Rightarrow 2x < 4 \Rightarrow x < 2$
 $2x - 1 < 0 \Rightarrow -(2x - 1) < 3 \Rightarrow 2x - 1 > -3 \Rightarrow 2x > -2 \Rightarrow x > -1$
 $-1 < x < 2$

(c) |2x-1| < -2, não admite solução pois o módulo de um número real é sempre positivo ou igual à 0.

(d)
$$|2x - 1| < \frac{1}{3}$$

 $-\frac{1}{3} < 2x - 1 < \frac{1}{3} \Rightarrow -\frac{1}{3} + 1 < 3x < \frac{1}{3} + 1 \Rightarrow$
 $\frac{2}{3} < 3x < \frac{4}{3} \Rightarrow \frac{2}{9} < x < \frac{4}{9}.$

(e)
$$|2x^2 - 1| < 1$$

 $|2x^2 - 1| > 0 \Rightarrow 2x^2 - 1 < 1 \Rightarrow 2x^2 < 2 \Rightarrow x^2 < 1 \Rightarrow x < 1$ ou $x > -1$ com $x \neq 0$. $|2x^2 - 1| \leq 0 \Rightarrow 2x^2 - 1 > -1 \Rightarrow 2x^2 > 0 \Rightarrow x^2 > 0 \Rightarrow x \neq 0$
 $-1 < x < 1, x \neq 0$.

(f)
$$|x-3| < 4$$

 $-4 < x - 3 < 4 \Rightarrow -1 < x < 7.$

(g)
$$|x| > 3$$

 $x > 0 \Rightarrow x > 3$

$$x \le 0 \Rightarrow -x > 3 \Rightarrow x < -3$$

 $x < -3$ ou $x > 3$.

4. Dado r > 0, provar:

$$|x| > r \Leftrightarrow x < -r \text{ ou } x > r$$

$$x > 0 \Rightarrow x > r$$

$$x \le 0 \Rightarrow -x > r \Rightarrow x < -r$$

Logo
$$|x| > r \Rightarrow x < -r$$
 ou $x > r$.

Por outro lado:

$$x > r \text{ com } r > 0 \Rightarrow x^2 > r^2 \Rightarrow \sqrt{x^2} > \sqrt{r^2} \Rightarrow |x| > r.$$

No caso de x < -r com r > 0 temos:

$$x < -r \operatorname{com} x < 0 \Rightarrow -x > r \Rightarrow (-x)^2 > r^2 \Rightarrow \sqrt{(-x)^2} > \sqrt{r^2} \Rightarrow |x| > r.$$

5. (a)
$$|x+1| + |x|$$

Devemos averiguar as quatro combinações de sinais para as duas expressões nos módulos:

Para x + 1 > 0 e x > 0, temos x > -1 e x > 0, ou seja, x > 0:

$$x + 1 + x = 2x + 1$$

Para x + 1 > 0 e $x \le 0$, temos x > -1 e $x \le 0$, ou seja, $-1 < x \le 0$:

$$x + 1 - x = 1$$

Para $x + 1 \le 0$ e x > 0, temos x < -1 e x > 0, que não é possível.

Para $x + 1 \le 0$ e $x \le 0$, temos $x \le -1$ e $x \le 0$, ou seja, $x \le -1$:

$$-(x+1) - x = -2x - 1$$

Logo a solução é:

$$|x+1| + |x| = \begin{cases} -2x - 1, & \text{se } x \le -1 \\ 1, & \text{se } -1 < x \le 0 \\ 2x + 1, & \text{se } x > 0 \end{cases}$$

(b)
$$|x-2|-|x+1|$$

Para
$$x-2>0$$
e $x+1>0,$ temos $x>2$ e $x>-1,$ ou seja, $x>2$:
$$x-2-x-1=-3$$

Para x-2>0 e $x+1\leq 0$, não é possível haver x>2 e x<-1.

Para
$$x-2 \le 0$$
 e $x+1 > 0$, temos $x \le 2$ e $x > -1$, ou seja, $-1 < x \le 2$: $-(x-2) - (x+1) = -x + 2 - x - 1 = -2x + 1$

Para
$$x-2 \leq 0$$
e $x+1 \leq 0,$ temos $x \leq 2$ e $x \leq -1,$ ou seja, $x \leq -1:$

$$-(x-2) - [-(x+1)] = -x + 2 + x + 1 = 3$$

Logo a solução é:

$$|x-2| - |x+1| = \begin{cases} 3, & \text{se } x \le -1 \\ -2x+1, & \text{se } -1 < x \le 2 \\ -3, & \text{se } x > 2 \end{cases}$$