Date: 05/01/2014 Anoop Hallur <ahallur>

NEURAL SIGNAL PROCESSING Problem Set 8

Q.1.a

>> Plot the square-rooted eigenvalue spectrum

>> How many dominant eigenvalues would there be From the above figure, we have to make a guess by eyeballing the figure for an elbow.

It seems that there are three dominant eigenvalues.

>> What percentage of the overall variance is captured by the top 3 principal components

percentage_in_top_PrinComp =

0.4479

If we consider top 3, then about 44.79% of total variance is captured in it.

However if we cons top 4 components, then 49.31% of total variance is captured in it. \rightarrow 0.4931 Similarly top 5 \rightarrow 52.56%, so we need not compute it henceforth.

Also, if we consider only top 2, → It captures only 33.16% of total variance.

Hence it looks like the optimal number of principal components is $\underline{3}$, capturing $\underline{44.79\%}$ of the total variance.

Q.1.b

>> Project the data into the three-dimensional PC space.

Q.1.c

>> Show the values in UM by calling 'imagesc(UM)'

This figure gives us the idea of how much each neuron contributes to the $1^{\rm st}$, $2^{\rm nd}$ and $3^{\rm rd}$ Principal Components.

From the above figure we can infer that

- ~> Contribution of neighboring neurons to a particular component is gradual, we can see peaks of blue and slowly decreasing intensity on either sides.
- ~> For 1st and 3rd Principal components, the contribution is highest by particular neurons(peaks at one place) and is very minimal throughout the other neurons
- ~> For 2nd Principal component, the contribution is gradual,i.e the all neurons contribute in an approximately equal manner as can be seen by the absence of distinguishable peaks.

MATLAB Code For Problem 1

```
% Load all data
load ps8 data.mat
% Number of principal components to be considerd(by eyeballing)
NUM PRINCOMP = 3;
% Extracting out the constants used frequently
NUM TRIALS = size(Xplan, 1);
DIMENSION = size(Xplan, 2);
% Computing mean and covariance
mean spike counts = mean(Xplan, 1);
cov spike counts = cov(Xplan);
% Eigen Decomposition
[U, Lambda] = eig(cov spike counts);
% Plotting the graph for problem 1.a
eigen values = diag(Lambda);
eigen values increasing = fliplr(eigen values')';
plot(fliplr(sqrt(eigen values increasing)));
hold on
plot(fliplr(sqrt(eigen values increasing)), '*');
xlabel('Component Number');
vlabel('sgrt - eigen value');
title('Square Rooted Eigen Value Spectrum');
percentage in top PrinComp = sum(eigen values increasing ...
  (1:NUM PRINCOMP))./ sum(eigen values increasing);
% This is 44.79% for top 3 components
% Question 1b
figure
PC1 = U(:,end);
PC2 = U(:,end-1);
PC3 = U(:,end-2);
mean repeated = repmat(mean spike counts, NUM TRIALS, 1);
% Top 3 Principal Components
Z1 = PC1' * (Xplan - mean repeated)';
Z2 = PC2' * (Xplan - mean repeated)';
Z3 = PC3' * (Xplan - mean repeated)';
plot3(Z1(91*0+1:91*1), Z2(91*0+1:91*1), Z3(91*0+1:91*1), '.b');hold on;
plot3(Z1(91*1+1:91*2), Z2(91*1+1:91*2), Z3(91*1+1:91*2), '.r');hold on;
plot3(Z1(91*2+1:91*3), Z2(91*2+1:91*3), Z3(91*2+1:91*3), '.q');hold on;
plot3(Z1(91*3+1:91*4), Z2(91*3+1:91*4), Z3(91*3+1:91*4), '.c');hold on;
plot3(Z1(91*4+1:91*5), Z2(91*4+1:91*5), Z3(91*4+1:91*5), '.k');hold on;
plot3(Z1(91*5+1:91*6), Z2(91*5+1:91*6), Z3(91*5+1:91*6), '.m');hold on;
plot3(Z1(91*6+1:91*7), Z2(91*6+1:91*7), Z3(91*6+1:91*7), '.y'); hold on;
plot3(Z1(91*7+1:91*8), Z2(91*7+1:91*8), Z3(91*7+1:91*8), '.
  'Color',[1,0.4,0.6]);hold on;
legend('Reaching angle 1', 'Reaching angle 2', 'Reaching angle 3', ...
'Reaching angle 4', 'Reaching angle 5', 'Reaching angle 6',...
```

Q.2.a

>> Create one plot containing all of the following for PCA

MATLAB Code for Problem 2.a

```
clear;
load ps8_data.mat

LINE_LENGTH = 15;

X = Xsim';

NUMBER_OF_POINTS = size(X, 2);

HIGH_DIMENSION = size(X, 1);

LOW_DIMENSION = 1;

% Q.1.a.1
plot (X(1,:), X(2,:), 'k.', 'markersize',15);
hold on;
```

```
mu = mean(X,2);
S = cov(X');
[U, Lambda] = eig(S);
% The dominant component
U1 = U(:,end);
% Q.1.a.3
point_1_for_plot = mu - LINE LENGTH * U1;
point 2 for plot = mu + LINE LENGTH * U1;
line([point 1 for plot(1), point 2 for plot(1)],...
  [point 1 for plot(2), point 2 for plot(2)], 'Color', 'k');
hold on;
% Q.1.a.2
plot (mu(1), mu(2), 'g.', 'markersize',25);
hold on;
mu rep = repmat(mu, [1, NUMBER OF POINTS]);
Z = U1'*(X-mu rep);
X cap = (U1 * \overline{Z}) + mu rep;
% O.1.a.4 and 5
plot (X cap(1,:), X cap(2,:), 'r.', 'markersize',15);
for i=1:NUMBER OF POINTS
  line([X cap(1, i), X(1, i)], [X cap(2, i), X(2, i)], 'Color', 'r');
  hold on
end
axis equal;
xlabel('X1 in high-D');
ylabel('X2 in high-D');
title('Q.2.d. Illustrating PCA')
legend('Data Points(in high D)', 'Mean(in high D)', 'PC Space', ...
  'Low D projections', 'High-D to Low-D connection'...
  ,'Location','NorthWest');
save q2.mat
```

Q.2.b

>> Implement the EM algorithm for PPCA in Matlab, and run the algorithm on the data in Xsim

MATLAB Code For Problem 2.b

```
load q2.mat
LINE LENGTH = 15;
sigma sgr = 0.5;
mu bkp = mu;
W = [1;1];
n iter = 20;
L = zeros(1, n iter);
for k = 1:n iter
  C = W*W' + sigma sgr*eye(HIGH DIMENSION);
  % E step
  mu rep = repmat(mu, [1, NUMBER OF POINTS]);
  z \times mu = W'*inv(C)*(X-mu rep);
  z \times sigma = eye(LOW DIMENSION) - W'*inv(C)*W;
  % M Step
  E zzt = z x sigma + z x mu*z x mu';
  term1 = (X-mu rep) * z x mu';
  term2 = inv(sum(repmat(E zzt, [1, NUMBER OF POINTS])));
  W = term1 * term2;
  term3 = (X-mu rep)*(X-mu rep)';
  term4 = W*(z \times mu*(X-mu rep)');
  sigma sgr = trace(term3 - term4)/
     (NUMBER OF POINTS * HIGH DIMENSION);
  % Calculating log likelihood
  for i = 1:NUMBER OF POINTS
     L(k) = L(k) + logmvnpdf(X(:,i), mu, C);
  end
end
plot(L);
xlabel('Iteration Number');
ylabel('Log Likelihood');
title('Q.2.b. Log likelihood v/s iteration number');
figure;
% Question 2d
plot (X(1,:), X(2,:), 'k.', 'markersize',30);
hold on;
plot (mu(1), mu(2), 'g.', 'markersize',45);
hold on;
point 1 for plot = mu - LINE LENGTH * W;
point 2 for plot = mu + LINE LENGTH * W;
line([point_1_for_plot(1), point_2_for_plot(1)],...
[point 1 for plot(2), point 2 for plot(2)], 'Color', 'k');
```

```
hold on;

X_cap = W*z_x_mu + mu_rep;
plot (X_cap(1,:), X_cap(2,:), 'r.', 'markersize',15);
hold on;
for i=1:NUMBER_OF_POINTS
    line([X_cap(1, i), X(1, i)], [X_cap(2, i), X(2, i)], 'Color', 'r');
    hold on
end
xlabel('X1 in high-D');
ylabel('X2 in high-D');
title('Q.2.d. Illustrating PPCA')
legend('Data Points(in high D)', 'Mean(in high D)', 'PC Space', ...
    'Low D projections', 'High-D to Low-D connection'...
    ,'Location','NorthWest');
axis equal
```

>> Plot the log data likelihood

Q.2.c

>> What is the PPCA covariance (W*W' + $(\sigma^*2)I$) The observed co-variance after convergence was observed to be

C =

18.9364 0.4165
 0.4165 18.6346

The sample co-variance, of the given data was found to be

s =

25.6359 10.7883 10.7883 17.8197

Though not exactly similar, they are related to each other.

Q.2.d

>> Create one plot containing all of the following for PPCA

Q.2.e

>> Implement EM algorithm for FA

MATLAB Code for problem 2.e

```
load q2.mat
LINE LENGTH = 15;
psi = rand(HIGH DIMENSION);
mu bkp = mu;
W = [1;1];
n iter = 20;
L = zeros(1, n iter);
for k = 1:n iter
  C = W*W' + sigma_sqr*eye(HIGH_DIMENSION);
  % E step
  mu rep = repmat(mu, [1, NUMBER OF POINTS]);
  z \times mu = W'*inv(C)*(X-mu rep);
  z \times sigma = eye(LOW DIMENSION) - W'*inv(C)*W;
  % M Step
  E zzt = z x sigma + z x mu*z x mu';
  term1 = (X-mu rep) * z x mu';
  term2 = inv(sum(repmat(E zzt, [1, NUMBER OF POINTS])));
  W = term1 * term2;
  term3 = (X-mu rep)*(X-mu rep)';
  term4 = W*(z \times mu*(X-mu rep)');
  psi = diag(diag(term3 - term4))/NUMBER OF POINTS;
  % Calculating log likelihood
  for i = 1:NUMBER OF POINTS
     L(k) = L(k) - logmvnpdf(X(:,i), mu, C);
  end
end
plot(L);
xlabel('Iteration Number');
ylabel('Log Likelihood');
title('Q.2.e. Log likelihood v/s iteration number');
figure;
% Question 2d
plot (X(1,:), X(2,:), 'k.', 'markersize',30);
hold on;
plot (mu(1), mu(2), 'g.', 'markersize',30);
hold on;
point_1_for_plot = mu - LINE LENGTH * W;
point 2 for plot = mu + LINE LENGTH * W;
line([point 1 for plot(1), point 2 for plot(1)],...
  [point 1 for plot(2), point 2 for plot(2)], 'Color', 'k');
hold on;
X cap = W*z x mu + mu rep;
plot (X cap(1,:), X cap(2,:), 'r.', 'markersize',15);
hold on;
for i=1:NUMBER OF POINTS
```

```
line([X_cap(1, i), X(1, i)], [X_cap(2, i), X(2, i)], 'Color', 'r');
hold on
end
xlabel('X1 in high-D');
ylabel('X2 in high-D');
title('Q.2.g. Illustrating Factor Analysis')
legend('Data Points(in high D)', 'Mean(in high D)', 'PC Space', ...
    'Low D projections', 'High-D to Low-D connection'...
    ,'Location','NorthWest');
axis equal
```


Q.2.f

 \Rightarrow What is the FA covariance (WWT + Ψ)?

FA Covariance

C =

18.9364 0.4165 0.4165 18.6346

The sample co-variance, of the given data was found to be

25.6359 10.7883 10.7883 17.8197

Q.2.g

>> Create one plot containing all of the following for FA

