The single degree of freedom system shown at right has a nonlinear restoring force r(u) and it subjected to an applied force f(t). The equations of motion (and initial conditions) are

$$m\ddot{u}(t) + r(u(t)) = f(t)$$

$$u(0) = u_o$$

$$\dot{u}(0) = v_0$$

Un-damped System

Consider the nonlinear response function to be elasto-plasticity with stiffness k and limiting force σ_o (symmetric in tension and compression).

 $-\sigma_{_{o}}$

Consider also the specific loading function

$$f(t) = F_1 + F_2 \sin \Omega t$$

where F_1 and F_2 , and Ω are constants that describe the forcing function (i.e., a constant part and a sinusoidally varying part.

Newmark's method satisfies the equation of motion at the discrete time points and approximates the velocity and displacement with approximations to integrals. Hence, the discrete equations are

$$ma_{n+1} + r(u_{n+1}) = 0$$

$$v_{n+1} = c_n + h(1-\gamma) a_{n+1}$$

$$u_{n+1} = b_n + h^2 (\frac{1}{2} - \beta) a_{n+1}$$

$$c_n = v_n + h \gamma a_n$$

$$b_n = u_n + hv_n + h^2 \beta a_n$$

Implement Newmark's method, including a Newton loop to solve the nonlinear equations of motion for elasto-plastic model. Explore the response of the system and the influence of nonlinearity relative to the linear elastic response.