Support Vector Machines vs Logistic Regression

Yingming Li yingming@zju.edu.cn

Data Science & Engineering Research Center, ZJU

15th April 2018

Adapted from Prof. Kevin Swersky's slides.

Logistic regression

Logistic regression

Assign probability to each outcome

$$P(y=1|x) = \sigma(w^T x + b)$$

Train to maximize likelihood

$$l(w) = -\sum_{n=1}^{N} \sigma(w^{T} x_n + b)^{y_n} (1 - \sigma(w^{T} x_n + b))^{(1-y_n)}$$

Linear decision boundary (with y being 0 or 1)

$$y = I[w^T x + b \ge 0]$$

Support vector machines

Support vector machines

• Enforce a margin of separation (here, $y \in \{0, 1\}$)

$$(2y_n - 1)w^T x_n \ge 1, \ \forall n = 1 \dots N$$

Train to find the maximum margin

$$\min \quad \frac{1}{2}||w||^2$$

s.t.
$$(2y_n - 1)(w^T x_n + b) \ge 1, \ \forall n = 1 \dots N$$

Linear decision boundary

$$\hat{y} = I[w^T x + b \ge 0]$$

Recap

- Logistic regression focuses on maximizing the probability of the data. The farther the data lies from the separating hyperplane (on the correct side), the happier LR is.
- An SVM tries to find the separating hyperplane that maximizes the distance of the closest points to the margin (the support vectors). If a point is not a support vector, it doesn't really matter.

- Remember, in this example $y \in \{0, 1\}$
- Another take on the LR decision function uses the probabilities instead:

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) \geq P(y=0|x) \\ 0 & \text{otherwise} \end{cases}$$

$$P(y=1|x) \propto \exp(w^T x + b)$$

$$P(y=0|x) \propto 1$$

- What if we don't care about getting the right probability, we just want to make the right decision?
- We can express this as a constraint on the likelihood ratio,

$$\frac{P(y=1|x)}{P(y=0|x)} \ge C$$

• For some arbitrary constant c > 1.

Taking the log of both sides,

$$\log(P(y=1|x)) - \log(P(y=0|x)) \ge \log(c)$$

and plugging in the definition of P,

$$w^T x + b - 0 \ge \log(c)$$

$$\Rightarrow (w^T x + b) \ge \log(c)$$

• c is arbitrary, so we pick it to satisfy $\log(c) = 1$

$$w^T x + b > 1$$

- This gives a feasibility problem (specifically the perceptron problem) which may not have a unique solution.
- Instead, put a quadratic penalty on the weights to make the solution unique:

$$\min \frac{1}{2}||w||^2$$

s.t.
$$(2y_n - 1)(w^T x_n + b) \ge 1, \forall n = 1 ... N$$

- This gives us an SVM!
- We derived an SVM by asking LR to make the right decisions.

The likelihood ratio

The key to this derivation is the likelihood ratio,

$$r = \frac{P(y = N|x)}{P(y = 0|x)}$$
$$= \frac{\exp(w^T x + b)}{1}$$
$$= \exp(w^T x + b)$$

- We can think of a classifier as assigning some cost to r.
- Different costs = different classifiers.

LR cost

Pick

$$cost(r) = log(1 + \frac{1}{r})$$
$$= log(1 + exp(-(w^Tx + b)))$$

• This is the LR objective (for a positive example)!

SVM with slack variables

If the data is not linearly separable, we can change the program to:

$$\min \frac{1}{2} ||w||^2 + \sum_{n=1}^{N} \xi_n$$
s.t. $(2y_n - 1)(w^T x_n + b) \ge 1 - \xi_n, \forall n = 1 \dots N$

$$\xi_n \ge 0, \ \forall n = 1 \dots N$$

Now if a point n is misclassified, we incur a cost of ξ_n , it's distance to the margin.

SVM with slack variables cost

Pick cost

$$cost(r) = max(0, 1 - log(r))$$

= $max(0, 1 - (w^{T}x + b))$

LR cost vs SVM cost

Plotted in terms of r,

LR cost vs SVM cost

Plotted in terms of $w^T x + b$,

Exploiting this connection

- We can now use this connection to derive extensions to each method.
- These might seem obvious (maybe not) and that's usually a good thing.
- The important point though is that they are principled, rather than just hacks. We can trust that they aren't doing anything crazy.

Kernel trick for LR

 Recall that in it's dual form, we can represent an SVM decision boundary as:

$$w^{T}\phi(x) + b = \sum_{n=1}^{\infty} \alpha_n K(x, x_n) = 0$$

where $\phi(x)$ is an ∞ -dimensional basis expansion of x.

Plugging this into the LR cost:

$$\log(1 + \exp(-\sum_{n=1}^{N} \alpha_n K(x, x_n)))$$

Multi-class SVMs

Recall for multi-class LR we have:

$$P(y = i|x) = \frac{\exp(w_i^T x + b_i)}{\sum_k \exp(w_k^T x + b_k)}$$

Multi-class SVMs

Suppose instead we just want the decision rule to satisfy:

$$\frac{P(y = \dot{b}|x)}{P(y = k|x)} \ge c \quad \forall k \ne i$$

Taking logs as before, this gives:

$$w_i^T x - w_k^T x \ge 1 \quad \forall k \ne i$$

Multi-class SVMs

This produces the following quadratic program:

$$\min \frac{1}{2} ||w||^2$$
s.t. $(w_{y_n}^T x_n + b_{y_n}) - (w_k^T x_n + b_k) \ge 1, \forall n = 1 \dots N, \forall k \ne y_n$

Take-home message

- Logistic regression and support vector machines are closely linked.
- Both can be viewed as taking a probabilistic model and minimizing some cost associated with misclassification based on the likelihood ratio.
- This lets us analyze these classifiers in a decision theoretic framework.
- It also allows us to extend them in principled ways.

Which one to use?

- As always, depends on your problem.
- LR gives calibrated probabilities that can be interpreted as confidence in a decision.
- LR gives us an unconstrained, smooth objective.
- LR can be (straightforwardly) used within Bayesian models.
- SVMs don't penalize examples for which the correct decision is made with sufficient confidence. This may be good for generalization.
- SVMs have a nice dual form, giving sparse solutions when using the kernel trick (better scalability).

Thank you!