Modeling the effects of DC stimulation on presynaptic vesicle release

Greg Kronberg
CUNY- City College, Neural Engineering
May 11, 2016

Transcranial Direct Current Stimulation

Used to treat: depression, stroke rehab, alzheimer's, epilepsy, addiction, many more

Rahman et al. 2013 Journal of Physiology

In vitro model of tDCS

Adaptation during DCS

Adaptation during DCS

Results are consistent with presynaptic effects

Rahman et al. in preparation

Modeling presynaptic release

- A group of nsyn synapses
- Given stimuli at time t, terminal i has probability pap_i of firing
- All terminals have poisson docking/undocking (mean rates α/β) at finite number of release sites ns with initial release probability p0

$$\sum_{i=1}^{nsyn} \overline{N^{i}} = \sum_{i=1}^{nsyn} \frac{p_{ap}^{i} p_{0} n s_{*} (1 - e^{-gDt})}{1 - (1 - p_{ap} p_{0}) e^{-gDt}}$$

$$p = a + b$$

$$ns_{*} = \frac{ans}{a + b}$$

Modeling presynaptic release with DCS

- DCS is known to modulate membrane potential at axon terminals
- Here it is modeled as having either of two effects
 - Recruitment
 - Modulate pap
 - Release
 - Modulate p0

$$\sum_{i=1}^{nsyn} \overline{N^{i}} = \sum_{i=1}^{nsyn} \frac{p_{ap}^{i} p_{0} n s_{*} (1 - e^{-gDt})}{1 - (1 - p_{ap} p_{0}) e^{-gDt}}$$

Modeling presynaptic release with DCS

Modeling presynaptic release with DCS

- Modulation of p0 better reproduces edge detect when DCS is turned off
- Results depend on initial distribution of p0 and pap

