Machine Learning for Healthcare HST.956, 6.S897

Risk Stratification Part I

David Sontag

What is risk stratification?

- Separate a patient population into high-risk and low-risk of having an outcome
 - Predicting something in the future
 - Goal is different from diagnosis, with distinct performance metrics
- Coupled with interventions that target high-risk patients
- Goal is typically to reduce cost and improve patient outcomes

Examples of risk stratification

Preterm infant's risk of severe morbidity?

(Saria et al., Science Translational Medicine 2010)

Old vs. New

 Traditionally, risk stratification was based on simple scores using human-entered data

APGAR SCORING SYSTEM

	0 Points	1 Poi	int	2 Points	Points totaled
Activity (muscle tone)	Absent	Arms and flexe	d legs d	Active movement	1
Pulse	Absent	Below 10	0 bpm	Over 100 bpm	
Grimace (reflex irritability)	Flaccid	Some flex Extrem		Active motion (sneeze, cough, pull away)	
Appearance (skin color)	Blue, pale	Body p Extremition	ink, es blue	Completely pink	
Respiration	Absent	Slow, irregular		Vigorous cry	
			Se	everely depressed	d 0-3
			Moderately depressed 4-6 Excellent condition 7-10		

Old vs. New

- Traditionally, risk stratification was based on simple scores using human-entered data
- Now, based on machine learning on high-dimensional data
 - Fits more easily into workflow
 - Higher accuracy
 - Quicker to derive (can special case)
- But, new dangers introduced with ML approach – to be discussed

Example commercial product

Optum Whitepaper, "Predictive analytics: Poised to drive population health"

Example commercial product

High-risk diabetes patients missing tests	#of A1c tests	#of LDL tests	Last A1c	Date of last A1c	Last LDL	Date of last LDL
Patient 1	2	0	9.2	5/3/13	N/A	N/A
Patient 2	2	0	8	1/30/13	N/A	N/A
Patient 3	0	0	N/A	N/A	N/A	N/A
Patient 4	0	2	N/A	N/A	133	8/9/13
Patient 5	0	0	N/A	N/A	N/A	N/A
Patient 6	0	1	N/A	N/A	115	7/16/13
Patient 7	1	0	10.8	9/18/13	N/A	N/A
Patient 8	0	0	N/A	N/A	N/A	N/A
Patient 9	0	0	N/A	N/A	N/A	N/A
Patient 10	0	0	N/A	N/A	N/A	N/A

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms

Type 2 Diabetes: A Major public health challenge

\$245 billion: Total costs of diagnosed diabetes in the United States in 2012 \$831 billion: Total fiscal year federal budget for healthcare in the United

States in 2014

Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale prevention program

- 1. Detect/reach truly at risk population
- 2. Improve the interventions
- 3. Lower the cost of intervention

^{*} Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." The New England journal of medicine 346.6 (2002): 393.

Traditional Risk Prediction Models

- Successful Examples
 - ARIC
 - KORA
 - FRAMINGHAM
 - AUSDRISC
 - FINDRISC
 - San Antonio Model
- Easy to ask/measure in the office, or for patients to do online
- Simple model: can calculate scores by hand

Challenges of Traditional Risk Prediction Models

- A screening step needs to be done for every member in the population
 - Either in the physician's office or as surveys
 - Costly and time-consuming
 - Infeasible for regular screening for millions of individuals
- Models not easy to adapt to multiple surrogates, when a variable is missing
 - Discovery of surrogates not straightforward

Population-Level Risk Stratification

- Key idea: Use readily available administrative, utilization, and clinical data
- Machine learning will find surrogates for risk factors that would otherwise be missing
- Perform risk stratification at the population level – millions of patients

Health stakeholders

Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

A Data-Driven approach on Longitudinal Data

- Looking at individuals who got diabetes today, (compared to those who didn't)
 - Can we infer which variables in their record could have predicted their health outcome?

Administrative & Clinical Data

Medications: Eligibility Record: -NDC code (drug name) -Member ID -Days of supply -Age/gender -Quantity -ID of subscriber -Service Provider ID -Company code -Date of fill **Patient:** time **Medical Claims: Lab Tests:** -ICD9 diagnosis codes -LOINC code (urine or -CPT code (procedure) blood test name) -Specialty -Results (actual values) -Location of service -Lab ID -Date of Service -Range high/low-Date

Top diagnosis codes

Disease	count	Disease	count
4011 Benign hypertension	447017	53081 Esophageal reflux	12106
2724 Hyperlipidemia NEC/NOS	382030	42731 Atrial fibrillation	11379
4019 Hypertension NOS	372477	7295 Pain in limb	11244
25000 DMII wo cmp nt st		41401 Crnry athrscl natve vssl	10447
uncntr	339522	2859 Anemia NOS	10335
2720 Pure hypercholesterolem	232671	78650 Chest pain NOS	9199
2722 Mixed hyperlipidemia	180015	5990 Urin tract infection NOS	8798
V7231 Routine gyn examination	178709	V5869 Long-term use meds NEC	8554
2449 Hypothyroidism NOS	169829	496 Chr airway obstruct NEC	7858
78079 Malaise and fatigue NEC	149797	4779 Allergic rhinitis NOS	7796
V0481 Vaccin for influenza	147858	41400 Cor ath unsp vsl ntv/gft	7551
7242 Lumbago	137345		
V7612 Screen mammogram			
NEC	129445		
V700 Routing medical exam Out of 135K patie	127848 ents w	ho had laboratory	data

	Dise
	71947
count	3004
121064	2689
113798	NOS
112449	V7281
104478	exam
	7243
103351	78791
91999	V221
87982	
85544	preg
	36501
78585	risk
77963	37921
75519	degen
	4241
	61610
	70240

Disease	count
71947 Joint pain-ankle	28648
3004 Dysthymic disorder	28530
2689 Vitamin D deficiency NOS	28455
V7281 Preop cardiovsclr exam	27897
7243 Sciatica	27604
78791 Diarrhea	27424
V221 Supervis oth normal preg	27320
36501 Opn angl brderln lo risk	26033
37921 Vitreous degeneration	25592
4241 Aortic valve disorder	25425
61610 Vaginitis NOS	24736
70219 Other sborheic keratosis	24453
3804 Impacted cerumen	24046

Top lab test results

Lab test	
2160-0 Creatinine	1284737
3094-0 Urea nitrogen	1282344
2823-3 Potassium	1280812
2345-7 Glucose	1299897
1742-6 Alanine	
aminotransferase	1187809
1920-8 Aspartate	
aminotransferase	1187965
2885-2 Protein	1277338
1751-7 Albumin	1274166
2093-3 Cholesterol	1268269
2571-8 Triglyceride	1257751
13457-7 Cholesterol.in	
LDL	1241208
17861-6 Calcium	1165370
2951-2 Sodium	1167675

Lab test	
2085-9 Cholesterol.in	
HDL	1155666
718-7 Hemoglobin	1152726
4544-3 Hematocrit	1147893
9830-1	
Cholesterol.total/Cholest	
erol.in HDL	1037730
33914-3 Glomerular	
filtration rate/1.73 sq	
M.predicted	561309
785-6 Erythrocyte mean	
corpuscular hemoglobin	1070832
6690-2 Leukocytes	1062980
789-8 Erythrocytes	1062445
787-2 Erythrocyte mean	
corpuscular volume	1063665

Lab test	
770-8 Neutrophils/100	
leukocytes	952089
731-0 Lymphocytes	943918
704-7 Basophils	863448
711-2 Eosinophils	935710
5905-5 Monocytes/100	
leukocytes	943764
706-2 Basophils/100	
leukocytes	863435
751-8 Neutrophils	943232
742-7 Monocytes	942978
713-8 Eosinophils/100	
leukocytes	933929
3016-3 Thyrotropin	891807
4548-4 Hemoglobin	
A1c/Hemoglobin.total	527062

Count of people who have the test result (ever)

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms

Framing for supervised machine learning

Framing for supervised machine learning

Problem: Data is censored!

- Patients change health insurers frequently, but data doesn't follow them
- Left censored: may not have enough data to derive features
- Right censored: may not know label

Reduction to binary classification

Exclude patients that are left- and right-censored.

This is an example of alignment by absolute time

Alternative framings

- Align by relative time, e.g.
 - 2 hours into patient stay in ER
 - Every time patient sees PCP
 - When individual turns 40 yrs old
- Align by data availability

NOTE:

 If multiple data points per patient, make sure each patient in *only* train, validate, or test

Methods

- L1 Regularized Logistic Regression
 - Simultaneously optimizes predictive performance and
 - Performs feature selection, choosing the subset of the features that are most predictive
- This prevents overfitting to the training data

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

$$\min_{w} \sum_{i} \ell(x_i, y_i; w) + \lambda ||w||_1 \qquad ||\vec{w}||_1 = \sum_{d} |w_d|$$

instead of

$$\min_{w} \sum_{i} \ell(x_i, y_i; w) + \lambda ||w||_2^2 \qquad ||\vec{w}||_2^2 = \sum_{d} w_d^2$$

• Why?

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

Intuition #2 – w.w.g.d.d (What would gradient descent do?)

$$\frac{d}{dw_i}\lambda||w||_2^2 = \pm \lambda w_i 2$$

$$\frac{d}{dw_i}\lambda|w| = \pm\lambda$$

The push towards 0 gets weaker as wi gets smaller Always
pushes
elements of
wi towards 0

Features used in models

Features used in models

Total features per patient: 42,000

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Evaluating risk stratification algorithms

769 variables have non-zero weight

Top History of Disease	Odds Ratio
Impaired Fasting Glucose (Code 790.21)	4.17 (3.87 4.49)
Abnormal Glucose NEC (790.29)	4.07 (3.76 4.41)
Hypertension (401)	3.28 (3.17 3.39)
Obstructive Sleep Apnea (327.23)	2.98 (2.78 3.20)
Obesity (278)	2.88 (2.75 3.02)
Abnormal Blood Chemistry (790.6)	2.49 (2.36 2.62)
Hyperlipidemia (272.4)	2.45 (2.37 2.53)
Shortness Of Breath (786.05)	2.09 (1.99 2.19)
Esophageal Reflux (530.81)	1.85 (1.78 1.93)

• 769 variables have non-zero weight

Top History of Disea			
Impaired Fasting Glucose (Code	Pituitary dwarfism (253.3),		
Abnormal Glucose NEC (790.29)	Hepatomegaly(789.1), Chronic Hepatitis C (070.54), Hepatitis (573.3), Calcaneal		
Hypertension (401)	Spur(726.73), Thyrotoxicosis without		
Obstructive Sleep Apnea (327.23	mention of goiter(242.90), Sinoatrial Node		
Obesity (278)	dysfunction(427.81), Acute frontal sinusitis		
Abnormal Blood Chemistry (790.6	(461.1), Hypertrophic and atrophic		
Hyperlipidemia (272.4)	conditions of skin(701.9), Irregular		
Shortness Of Breath (786.05)	menstruation(626.4),		
Esophageal Reflux (530.81)	1.85 (1.78 1.93)		

• 769 variables have non-zero weight

Top Lab Factors	Odds Ratio
Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)	5.75 (5.42 6.10)
Glucose (High- Past 6 months)	4.05 (3.89 4.21)
Cholesterol.In VLDL (Increasing - Past 2 years)	3.88 (3.53 4.27)
Potassium (Low - Entire History)	2.58 (2.24 2.98)
Cholesterol.Total/Cholesterol.In HDL (High - Entire History)	2.29 (2.19 2.40)
Erythrocyte mean corpuscular hemoglobin concentration -(Low - Entire History)	2.25 (1.92 2.64)
Eosinophils (High - Entire History)	2.11 (1.82 2.44)
Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)	2.07 (1.92 2.24)
Alanine aminotransferase (High Entire History)	2.04 (1.89 2.19)

• 769 variables have non-zero weight

Top Lab Factors	Additional Lab Test Risk Fa	actors Include:	
Hemoglobin A1c /Hemoglobin.Total (High	Albumin/Globulin (Increasing -Entire		
Glucose (High- Past 6 months)	history), Urea nitrogen/Creatinine -(high -		
Cholesterol.In VLDL (Increasing - Past 2	Entire History), Specific gravity (Increasing,		
Potassium (Low - Entire History)	Past 2 years), Bilirubin (hig	h -Past 2	
Cholesterol.Total/Cholesterol.In HDL (Hig	years),		
Erythrocyte mean corpuscular hemoglobin concentration -(Low - Entire 2.25 History) (1.92 2.64)			
Eosinophils (High - Entire History)		2.11 (1.82 2.44)	
Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)		2.07 (1.92 2.24)	
Alanine aminotransferase (High Entire History)		2.04 (1.89 2.19)	

Positive predictive value (PPV)

