Langages et automates

DUT informatique

IUT d'Arles

2017 — 2018

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

Sommaire

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

La société Pair/Impair est spécialisé dans les mots binaires

- La société Pair/Impair est spécialisé dans les mots binaires
- Lorsqu'on lui soumet un mot, par exemple,

000100101110101011110101011111001

elle détermine si le nombre de bits égaux à 1 est pair.

- La société Pair/Impair est spécialisé dans les mots binaires
- Lorsqu'on lui soumet un mot, par exemple,

00010010111010101111010101111001

elle détermine si le nombre de bits égaux à 1 est pair.

elle employait jusqu'à présent une personne qui comptait le nombre de bits égaux à 1 et qui regardait si ce nombre était pair

▶ Cette personne est malheureusement partie à la retraite

- Cette personne est malheureusement partie à la retraite
- Rigueur budgétaire aidant, elle est remplacée par quelqu'un de si peu qualifié qu'il ne sait même pas compter!

- ► Cette personne est malheureusement partie à la retraite
- Rigueur budgétaire aidant, elle est remplacée par quelqu'un de si peu qualifié qu'il ne sait même pas compter!

Que faire?

Le nouveau ne sait pas compter mais . . .

▶ il sait distinguer un 0 d'un 1;

- ▶ il sait distinguer un 0 d'un 1;
- et il n'est pas manchot!

- ▶ il sait distinguer un 0 d'un 1;
- et il n'est pas manchot!
- « Voici ce que tu va faire :

- ▶ il sait distinguer un 0 d'un 1;
- et il n'est pas manchot!
- « Voici ce que tu va faire :
 - Au départ, tu lèves ton pouce et tu passes en revue tous les bits

Le nouveau ne sait pas compter mais . . .

- ▶ il sait distinguer un 0 d'un 1;
- et il n'est pas manchot!

« Voici ce que tu va faire :

- Au départ, tu lèves ton pouce et tu passes en revue tous les bits
- ▶ À chaque fois que tu rencontres un 0, tu ne fais rien

Le nouveau ne sait pas compter mais . . .

- ▶ il sait distinguer un 0 d'un 1;
- et il n'est pas manchot!

« Voici ce que tu va faire :

- Au départ, tu lèves ton pouce et tu passes en revue tous les bits
- ► A chaque fois que tu rencontres un 0, tu ne fais rien
- À chaque fois que tu rencontres un 1, tu change la position de ton pouce »

Quand tu as fini,

Quand tu as fini,

➤ Si ton pouce est tourné vers le haut alors, le nombre de bits égaux à 1 est pair

Quand tu as fini,

- ➤ Si ton pouce est tourné vers le haut alors, le nombre de bits égaux à 1 est pair
- ► Sinon il est impair

Quand tu as fini,

- ➤ Si ton pouce est tourné vers le haut alors, le nombre de bits égaux à 1 est pair
- ► Sinon il est impair

Quand tu as fini,

- ➤ Si ton pouce est tourné vers le haut alors, le nombre de bits égaux à 1 est pair
- Sinon il est impair

Le nouveau fit les gestes représentés et trouva que le nombre de bits égaux à 1 dans 0110 est pair . . .

Ce matin, j'ai reçu un courrier publicitaire avec une carte

Ce matin, j'ai reçu un courrier publicitaire avec une carte

et un code confidentiel \mathcal{YYXY} .

Séjour offert d'une semaine dans toute les villes du parcours correspondant au code confidentiel au départ de Strasbourg . . .

Séjour offert d'une semaine dans toute les villes du parcours correspondant au code confidentiel au départ de Strasbourg . . .

... à condition d'être à Paris la dernière semaine

Les deux diagrammes précédents représentent des *automates finis*

- Les deux diagrammes précédents représentent des *automates finis*
- On peut les voir comme une machine dans laquelle on introduit une chaîne de caractères

- Les deux diagrammes précédents représentent des *automates finis*
- On peut les voir comme une machine dans laquelle on introduit une chaîne de caractères
 - ▶ 0110 pour le premier
 - $\triangleright yyxy$ pour le second

- Les deux diagrammes précédents représentent des *automates finis*
- On peut les voir comme une machine dans laquelle on introduit une chaîne de caractères
 - ▶ 0110 pour le premier
 - $\triangleright \mathcal{YYXY}$ pour le second
- Une fois le dernier caractère introduit, l'automate donne une réponse sous la forme de oui ou non

- Les deux diagrammes précédents représentent des *automates finis*
- On peut les voir comme une machine dans laquelle on introduit une chaîne de caractères
 - ▶ 0110 pour le premier
 - $\triangleright yyxy$ pour le second
- Une fois le dernier caractère introduit, l'automate donne une réponse sous la forme de oui ou non
 - oui, 0110 possède un nombre pair de 1
 - non, vous n'avez pas gagné

► On introduit le 1^{er} caractère

- On introduit le 1^{er} caractère
- l'introduction de chaque nouveau caractère induit un mouvement

- On introduit le 1^{er} caractère
- l'introduction de chaque nouveau caractère induit un mouvement
- quand le dernier caractère a été introduit, on regarde sur quelle position on s'est arrêté

- On introduit le 1^{er} caractère
- l'introduction de chaque nouveau caractère induit un mouvement
- quand le dernier caractère a été introduit, on regarde sur quelle position on s'est arrêté
- pour certaines positions déterminées à l'avance la réponse de l'automate est oui

- On introduit le 1^{er} caractère
- l'introduction de chaque nouveau caractère induit un mouvement
- quand le dernier caractère a été introduit, on regarde sur quelle position on s'est arrêté
- pour certaines positions déterminées à l'avance la réponse de l'automate est oui
- pour toutes les autres, la réponse est non

Si la réponse est oui :

Automates finis

Si la réponse est oui :

 on dit que la chaîne de caractère est acceptée ou reconnue par l'automate (sinon elle est refusée)

Automates finis

Si la réponse est oui :

- on dit que la chaîne de caractère est acceptée ou reconnue par l'automate (sinon elle est refusée)
- L'ensemble des chaînes acceptées est le *langage accepté* par l'automate ou plus simplement le *langage de l'automate*

Automates finis

Si la réponse est oui :

- on dit que la chaîne de caractère est acceptée ou reconnue par l'automate (sinon elle est refusée)
- L'ensemble des chaînes acceptées est le *langage accepté* par l'automate ou plus simplement le *langage de l'automate*

Il reste à formaliser tout ça d'un point de vue mathématique

Sommaire

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

Définir un automate fini \mathcal{A} c'est se donner :

▶ Un ensemble fini non vide Σ : l'alphabet de l'automate

- ▶ Un ensemble fini non vide Σ : l'alphabet de l'automate
- \blacktriangleright Un ensemble fini non vide \mathcal{E} : les états de l'automate

- ▶ Un ensemble fini non vide Σ : l'alphabet de l'automate
- ightharpoonup Un ensemble fini non vide \mathcal{E} : les états de l'automate
- ▶ Un état particulier $I \in \mathcal{E}$: l'état initial de l'automate

- ▶ Un ensemble fini non vide Σ : l'alphabet de l'automate
- \blacktriangleright Un ensemble fini non vide \mathcal{E} : les états de l'automate
- ▶ Un état particulier $I \in \mathcal{E}$: l'état initial de l'automate
- ▶ Une partie $A \subset \mathcal{E}$ constituée des *états acceptants*

- ▶ Un ensemble fini non vide Σ : l'alphabet de l'automate
- \blacktriangleright Un ensemble fini non vide $\mathcal E$: les *états* de l'automate
- ▶ Un état particulier $I \in \mathcal{E}$: l'état initial de l'automate
- Une partie A ⊂ E constituée des états acceptants Les autres sont les états refusant

- ▶ Un ensemble fini non vide Σ : l'alphabet de l'automate
- \blacktriangleright Un ensemble fini non vide \mathcal{E} : les états de l'automate
- ▶ Un état particulier $I \in \mathcal{E}$: l'état initial de l'automate
- Une partie A ⊂ E constituée des états acceptants Les autres sont les états refusant
- ▶ Une application $\delta: \mathcal{E} \times \Sigma \to \mathcal{E}:$ la fonction de transition de l'automate

 $\mathsf{Alphabet}:\,\{0;1\}$

 $Alphabet: \{0;1\}$

Ensemble des états : $\mathcal{E} = \{$ \square , \square

Alphabet : $\{0;1\}$

Ensemble des états : $\mathcal{E} = \{$ \blacksquare , \blacksquare ,

État initial : $I = \square$

Alphabet : $\{0;1\}$

Ensemble des états : $\mathcal{E} = \{ \ \square \ , \ \square \}$

État initial : I = 1

Ensemble des états acceptants : $A = \{ \ | \ \triangle \}$

Alphabet : {0; 1}

Ensemble des états : $\mathcal{E} = \{$ \square , \square

État initial : I = 1

Ensemble des états acceptants : $A = \{ \ | \ \triangle \}$

Fonction de transition

 $\mathsf{Alphabet}: \{\mathcal{X}; \mathcal{Y}\}$

 $\mathsf{Alphabet}:\,\{\mathcal{X};\mathcal{Y}\}$

Ensemble des états :

$$\mathcal{E} = \{L, N, P, S, T\}$$

 $\mathsf{Alphabet}: \{\mathcal{X}; \mathcal{Y}\}$

Ensemble des états :

$$\mathcal{E} = \{L, N, P, S, T\}$$

État initial : I = S

 $\mathsf{Alphabet}: \{\mathcal{X}; \mathcal{Y}\}$

Ensemble des états :

$$\mathcal{E} = \{L, N, P, S, T\}$$

État initial : I = S

Ensemble des états acceptants :

$$A = \{P\}$$

 $\mathsf{Alphabet}: \{\mathcal{X}; \mathcal{Y}\}$

Ensemble des états :

$$\mathcal{E} = \{L, N, P, S, T\}$$

État initial : I = S

Ensemble des états acceptants :

$$A = \{P\}$$

Si l'automate n'est pas trop compliqué, on peut construire le diagramme de l'automate :

Si l'automate n'est pas trop compliqué, on peut construire le $diagramme\ de\ l'automate$:

C'est un graphe orienté dont :

Si l'automate n'est pas trop compliqué, on peut construire le diagramme de l'automate :

C'est un graphe orienté dont :

les sommets sont les états

Si l'automate n'est pas trop compliqué, on peut construire le diagramme de l'automate :

C'est un graphe orienté dont :

- les sommets sont les états
- les arêtes représentent les transitions

Si l'automate n'est pas trop compliqué, on peut construire le diagramme de l'automate :

C'est un graphe orienté dont :

- les sommets sont les états
- les arêtes représentent les transitions

Par convention:

les états acceptants sont représentés par un cercle double ou sont colorés

Si l'automate n'est pas trop compliqué, on peut construire le diagramme de l'automate :

C'est un graphe orienté dont :

- les sommets sont les états
- les arêtes représentent les transitions

Par convention:

- les états acceptants sont représentés par un cercle double ou sont colorés
- lacktriangle l'état initial est repéré par une grosse flèche \Rightarrow

Automates finis déterministes complets

Définition

- 1. Un automate est déterministe si :
 - ▶ il a un unique état initial;
 - pour chaque état, il y a au plus une une transition par label

Automates finis déterministes complets

Définition

- 1. Un automate est déterministe si :
 - ▶ il a un unique état initial;
 - pour chaque état, il y a au plus une une transition par label
- 2. Un automate est *complet* si, pour chaque état, il y a au moins une transition par label.

Automates finis déterministes complets

Définition

- 1. Un automate est déterministe si :
 - ▶ il a un unique état initial;
 - pour chaque état, il y a au plus une une transition par label
- 2. Un automate est *complet* si, pour chaque état, il y a au moins une transition par label.

Dans toute la suite, tous les automates étudiés seront considérés déterministes et complets

Applications

Reconnaître des mots est une tâche très importante en informatique qu'on retrouve dans des domaines aussi divers que :

Applications

Reconnaître des mots est une tâche très importante en informatique qu'on retrouve dans des domaines aussi divers que :

 les compilateurs qui transforment un code de haut niveau, compréhensible par un humain, en un code machine directement utilisable par l'ordinateur;

Applications

Reconnaître des mots est une tâche très importante en informatique qu'on retrouve dans des domaines aussi divers que :

- les compilateurs qui transforment un code de haut niveau, compréhensible par un humain, en un code machine directement utilisable par l'ordinateur;
- les éditeurs de texte et les traitements de texte;

Applications

Reconnaître des mots est une tâche très importante en informatique qu'on retrouve dans des domaines aussi divers que :

- les compilateurs qui transforment un code de haut niveau, compréhensible par un humain, en un code machine directement utilisable par l'ordinateur;
- les éditeurs de texte et les traitements de texte;
- les bases de données, les moteurs de recherche;

Applications

Reconnaître des mots est une tâche très importante en informatique qu'on retrouve dans des domaines aussi divers que :

- les compilateurs qui transforment un code de haut niveau, compréhensible par un humain, en un code machine directement utilisable par l'ordinateur;
- les éditeurs de texte et les traitements de texte;
- les bases de données, les moteurs de recherche;
- les motifs de pixels sur un écran, . . .

Sommaire

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

Définition

Dans toute la suite :

Σ désigne un ensemble non vide appelé alphabet

Définition

Dans toute la suite :

- Σ désigne un ensemble non vide appelé alphabet
- \blacktriangleright les éléments de Σ sont les caractères

Définition

Dans toute la suite :

- Σ désigne un ensemble non vide appelé alphabet
- les éléments de Σ sont les caractères
- une suite de longueur n d'éléments de Σ s'appelle une chaîne de caractères

Définition

Dans toute la suite :

- Σ désigne un ensemble non vide appelé alphabet
- les éléments de Σ sont les *caractères*
- une suite de longueur n d'éléments de Σ s'appelle une chaîne de caractères

Remarque

1. On appelle souvent les caractères des *lettres* même s'il ne s'agit pas vraiment de lettre comme dans $\Sigma = \mathbb{B} = \{0;1\}$

Définition

Dans toute la suite :

- Σ désigne un ensemble non vide appelé alphabet
- les éléments de Σ sont les caractères
- une suite de longueur n d'éléments de Σ s'appelle une chaîne de caractères

Remarque

- 1. On appelle souvent les caractères des *lettres* même s'il ne s'agit pas vraiment de lettre comme dans $\Sigma = \mathbb{B} = \{0, 1\}$
- 2. On dit souvent mot à la place de chaîne de caractères

Mot sans lettre

Définition (mot sans lettre)

On note ε un mot particulier qui a un nom mais ne possède pas de caractère.

Ce mot est le mot sans lettre

Mot sans lettre

Définition (mot sans lettre)

On note ε un mot particulier qui a un nom mais ne possède pas de caractère.

Ce mot est le mot sans lettre

Le mot sans lettre a pour longueur 0

Mot sans lettre

Définition (mot sans lettre)

On note ε un mot particulier qui a un nom mais ne possède pas de caractère.

Ce mot est le mot sans lettre

- Le mot sans lettre a pour longueur 0
- C'est la seule chaine de caractère qui a une longueur nulle

Définition Soit Σ un alphabet. On note :

Définition

Soit Σ un alphabet. On note :

1. Σ^n l'ensemble de tous les mots de longueur n;

Définition

Soit Σ un alphabet. On note :

- 1. Σ^n l'ensemble de tous les mots de longueur n;
- 2. Σ^* l'ensemble de tous les mots y compris le mot sans lettre

Définition

Soit Σ un alphabet. On note :

- 1. Σ^n l'ensemble de tous les mots de longueur n;
- 2. Σ^* l'ensemble de tous les mots y compris le mot sans lettre

Exemple

Définition

Soit Σ un alphabet. On note :

- 1. Σ^n l'ensemble de tous les mots de longueur n;
- 2. Σ^* l'ensemble de tous les mots y compris le mot sans lettre

Exemple

$$ightharpoonup \Sigma^0 = \{\epsilon\};$$

Définition

Soit Σ un alphabet. On note :

- 1. Σ^n l'ensemble de tous les mots de longueur n;
- 2. Σ^* l'ensemble de tous les mots y compris le mot sans lettre

Exemple

- $ightharpoonup \Sigma^0 = \{\varepsilon\};$
- $ightharpoonup \Sigma^1 = \{\uparrow\};$

Définition

Soit Σ un alphabet. On note :

- 1. Σ^n l'ensemble de tous les mots de longueur n;
- 2. Σ^* l'ensemble de tous les mots y compris le mot sans lettre

Exemple

- $ightharpoonup \Sigma^0 = \{\varepsilon\};$
- $ightharpoonup \Sigma^1 = \{\uparrow\};$
- $ightharpoonup \Sigma^2 = \{\uparrow\uparrow\};$

Définition

Soit Σ un alphabet. On note :

- 1. Σ^n l'ensemble de tous les mots de longueur n;
- 2. Σ^* l'ensemble de tous les mots y compris le mot sans lettre

Exemple

- $ightharpoonup \Sigma^0 = \{\varepsilon\};$
- $\blacktriangleright \ \Sigma^1 = \{\uparrow\}\,;$
- $ightharpoonup \Sigma^2 = \{\uparrow\uparrow\};$
- $ightharpoonup \Sigma^3 = \{\uparrow \uparrow \uparrow \uparrow \}$, etc.

Définition

Soit Σ un alphabet. On note :

- 1. Σ^n l'ensemble de tous les mots de longueur n;
- 2. Σ^* l'ensemble de tous les mots y compris le mot sans lettre

Exemple

- $ightharpoonup \Sigma^0 = \{\varepsilon\};$
- $ightharpoonup \Sigma^1 = \{\uparrow\};$
- $ightharpoonup \Sigma^2 = \{\uparrow\uparrow\};$
- $ightharpoonup \Sigma^3 = \{\uparrow \uparrow \uparrow \uparrow \}, \text{ etc.}$

Exemple

Si $\Sigma=\mathbb{B}=\{0;1\}$ alors :

Si
$$\Sigma=\mathbb{B}=\{0;1\}$$
 alors :

$$\blacktriangleright \ \Sigma^0 = \{\epsilon\};$$

Si
$$\Sigma=\mathbb{B}=\{0;1\}$$
 alors :

- $ightharpoonup \Sigma^0 = \{\varepsilon\};$
- $ightharpoonup \Sigma^1 = \{0; 1\};$

Si
$$\Sigma = \mathbb{B} = \{0, 1\}$$
 alors :

- $ightharpoonup \Sigma^0 = \{\varepsilon\};$
- $\Sigma^1 = \{0; 1\};$
- $\Sigma^2 = \{00; 01; 10; 11\};$

Si
$$\Sigma = \mathbb{B} = \{0, 1\}$$
 alors :

- $ightharpoonup \Sigma^0 = \{\varepsilon\};$
- $\Sigma^1 = \{0; 1\};$
- $\Sigma^2 = \{00; 01; 10; 11\};$
- $\qquad \qquad \Sigma^3 = \{000; 001; 010; 011; 100; 101; 110; 111\}, \text{ etc.}$

Exemple

Si
$$\Sigma=\mathbb{B}=\{0;1\}$$
 alors :

$$\triangleright \ \Sigma^0 = \{\varepsilon\};$$

$$\Sigma^1 = \{0; 1\};$$

$$\Sigma^2 = \{00; 01; 10; 11\};$$

 $ightharpoonup \Sigma^3 = \{000; 001; 010; 011; 100; 101; 110; 111\}, etc.$

$$\Sigma^* = \{\epsilon; \underbrace{0;1}_{\Sigma^1}; \underbrace{00;01;10;11}_{\Sigma^2}; \underbrace{000;001;010;011;100;101;110;111}_{\Sigma^3}; \ldots \}$$

Définition

Un langage est un sous-ensemble de Σ^* .

Définition

Un *langage* est un sous-ensemble de Σ^* .

Définition

On dit que la langage M est plus grand que le langage L si :

 $L \subset M$

Définition

Un *langage* est un sous-ensemble de Σ^* .

Définition

On dit que la langage M est plus grand que le langage L si :

$$L \subset M$$

Remarque

1. Un langage est simplement un ensemble de mot;

Définition

Un *langage* est un sous-ensemble de Σ^* .

Définition

On dit que la langage M est plus grand que le langage L si :

$$L \subset M$$

Remarque

- 1. Un langage est simplement un ensemble de mot;
- 2. L'ensemble vide Ø est le plus petit langage construit avec les éléments de Σ; c'est le *langage vide*;

Définition

Un *langage* est un sous-ensemble de Σ^* .

Définition

On dit que la langage M est plus grand que le langage L si :

$$L \subset M$$

Remarque

- 1. Un langage est simplement un ensemble de mot;
- L'ensemble vide Ø est le plus petit langage construit avec les éléments de Σ; c'est le langage vide;
- 3. Σ^* est le plus grand langage.

Exemple

Voici quelques langages lorsque $\Sigma = \{a;b\}$:

Exemple

Voici quelques langages lorsque $\Sigma = \{a; b\}$:

1. Le langage $\{\epsilon\}$ réduit au mot sans lettre;

Exemple

Voici quelques langages lorsque $\Sigma = \{a; b\}$:

1. Le langage $\{\epsilon\}$ réduit au mot sans lettre ; À ne pas confondre avec la langage vide!

Exemple

Voici quelques langages lorsque $\Sigma = \{a; b\}$:

- 1. Le langage $\{\epsilon\}$ réduit au mot sans lettre ; À ne pas confondre avec la langage vide !
- 2. le langage des mots qui contiennent au moins deux fois le caractère *a*;

Exemple

Voici quelques langages lorsque $\Sigma = \{a; b\}$:

- 1. Le langage $\{\epsilon\}$ réduit au mot sans lettre; À ne pas confondre avec la langage vide!
- 2. le langage des mots qui contiennent au moins deux fois le caractère *a*;
- 3. le langage des mots qui autant de a que de b.

Sommaire

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

Dans ce qui suit, les langages sont tous construits à partir du même alphabet Σ .

Dans ce qui suit, les langages sont tous construits à partir du même alphabet Σ .

Puisque les langages sont des parties de Σ^* , on peut utiliser les opérations ensemblistes :

réunion \cup ; intersection \cap ; complémentaire c

Dans ce qui suit, les langages sont tous construits à partir du même alphabet Σ .

Puisque les langages sont des parties de Σ^* , on peut utiliser les opérations ensemblistes :

réunion \cup ; intersection \cap ; complémentaire c

Parmi ces trois opérations, la réunion est celle qui joue le plus grand rôle;

Pour éviter d'utiliser le symbole \cup , on note

$$L_1 + L_2$$

la réunion des deux langages L_1 et L_2 .

Pour éviter d'utiliser le symbole \cup , on note

$$L_1 + L_2$$

la réunion des deux langages L_1 et L_2 .

On appelle la somme de L_1 et L_2 le nouveau langage obtenu.

1.
$$L_1 + L_2 = L_2 + L_1$$

1.
$$L_1 + L_2 = L_2 + L_1$$

2.
$$(L_1 + L_2) + L_3 = L_1 + (L_2 + L_3) = L_1 + L_2 + L_3$$

1.
$$L_1 + L_2 = L_2 + L_1$$

2.
$$(L_1 + L_2) + L_3 = L_1 + (L_2 + L_3) = L_1 + L_2 + L_3$$

3.
$$L + L = L$$

1.
$$L_1 + L_2 = L_2 + L_1$$

2.
$$(L_1 + L_2) + L_3 = L_1 + (L_2 + L_3) = L_1 + L_2 + L_3$$

3.
$$L + L = L$$

4.
$$L + \emptyset = \emptyset + L = L$$

1.
$$L_1 + L_2 = L_2 + L_1$$

2.
$$(L_1 + L_2) + L_3 = L_1 + (L_2 + L_3) = L_1 + L_2 + L_3$$

3.
$$L + L = L$$

4.
$$L + \emptyset = \emptyset + L = L$$

5.
$$L + \Sigma^* = \Sigma^* = \Sigma^*$$

1.
$$L_1 + L_2 = L_2 + L_1$$

2.
$$(L_1 + L_2) + L_3 = L_1 + (L_2 + L_3) = L_1 + L_2 + L_3$$

3.
$$L + L = L$$

4.
$$L + \emptyset = \emptyset + L = L$$

5.
$$L + \Sigma^* = \Sigma^* = \Sigma^*$$

6.
$$L_1 + L_2 = L_2 \iff L_1 \subset L_2$$

Remarque

1. L'ensemble vide \emptyset joue le rôle du 0 pour l'addition des langages ;

Remarque

- 1. L'ensemble vide \emptyset joue le rôle du 0 pour l'addition des langages ;
- 2. L'équation ensembliste

$$L + X = M$$

peut avoir plusieurs solutions

Remarque

- 1. L'ensemble vide \emptyset joue le rôle du 0 pour l'addition des langages ;
- 2. L'équation ensembliste

$$L + X = M$$

peut avoir plusieurs solutions ce qui empêche d'avoir une soustraction!

Soit σ et τ deux mots d'un langage L.

Le produit de concaténation de σ et τ est le mot obtenu en écrivant les caractères de τ à la suite des ceux de σ .

Soit σ et τ deux mots d'un langage L.

Le produit de concaténation de σ et τ est le mot obtenu en écrivant les caractères de τ à la suite des ceux de σ .

On le note $\sigma \cdot \tau$ ou plus simplement $\sigma \tau$.

Soit σ et τ deux mots d'un langage L.

Le produit de concaténation de σ et τ est le mot obtenu en écrivant les caractères de τ à la suite des ceux de σ .

On le note $\sigma \cdot \tau$ ou plus simplement $\sigma \tau$.

Exemple

Soit $\Sigma = \{a; b; c\}$. Avec $\sigma = aabc$ et $\tau = aca$, on obtient le mot :

 $\sigma \tau = aabcaca$

Définition

Soit σ un mot de longueur n>0 et τ un mot de longueur m>0. Leur concaténation $\nu=\sigma\tau$ est le mot de longueur m+n défini par :

$$v(k) = \sigma(k)$$
 si $1 \le k \le n$
 $v(k) = \tau(k-n)$ si $n < k \le m$

où $\nu(k)$ désigne le $k^{\rm e}$ caractère du mot ν .

Définition

Soit σ un mot de longueur n>0 et τ un mot de longueur m>0. Leur concaténation $\nu=\sigma\tau$ est le mot de longueur m+n défini par :

$$v(k) = \sigma(k)$$
 si $1 \le k \le n$
 $v(k) = \tau(k-n)$ si $n < k \le m$

où v(k) désigne le $k^{\rm e}$ caractère du mot v.

Exemple

Avec $\sigma = aabc$ et $\tau = aca$, on obtient le mot :

$$\sigma \tau = aabcaca$$

qui est bien de longueur 7.

Propriété

1. Pour tout mot σ , on a $\sigma \cdot \varepsilon = \varepsilon \cdot \sigma = \sigma$

Propriété

1. Pour tout mot σ , on a $\sigma \cdot \varepsilon = \varepsilon \cdot \sigma = \sigma$ le mot ε joue le même rôle que 1 pour la multiplication des nombres

Propriété

- 1. Pour tout mot σ , on a $\sigma \cdot \varepsilon = \varepsilon \cdot \sigma = \sigma$ le mot ε joue le même rôle que 1 pour la multiplication des nombres
- 2. La concaténation est associative :

$$\sigma(\tau\nu)=(\sigma\tau)\nu$$

Propriété

- 1. Pour tout mot σ , on a $\sigma \cdot \varepsilon = \varepsilon \cdot \sigma = \sigma$ le mot ε joue le même rôle que 1 pour la multiplication des nombres
- 2. La concaténation est associative :

$$\sigma(\tau\nu)=(\sigma\tau)\nu$$

3. Par contre, la concaténation n'est pas commutative. En général :

$$\sigma\tau\neq\tau\sigma$$

Propriété (Notations)

On pose:

 $ightharpoonup \sigma^0 = \epsilon$

Propriété (Notations)

On pose:

- $ightharpoonup \sigma^0 = \epsilon$
- $ightharpoonup \sigma^1 = \sigma$

Propriété (Notations)

On pose:

- $ightharpoonup \sigma^0 = \varepsilon$
- $ightharpoonup \sigma^1 = \sigma$
- $ightharpoonup \sigma^2 = \sigma \cdot \sigma$

Propriété (Notations)

On pose:

- $ightharpoonup \sigma^0 = \varepsilon$
- $ightharpoonup \sigma^1 = \sigma$
- $ightharpoonup \sigma^2 = \sigma \cdot \sigma$
- $ightharpoonup \sigma^3 = \sigma \cdot \sigma^2$, etc.

Propriété (Notations)

On pose:

- $\sigma^0 = \varepsilon$
- $ightharpoonup \sigma^1 = \sigma$
- $\sigma^2 = \sigma \cdot \sigma$
- $ightharpoonup \sigma^3 = \sigma \cdot \sigma^2$, etc.

On obtient la formule pour tout n entier naturel :

$$\sigma^m \cdot \sigma^n = \sigma^{n+m}$$

Propriété (Notations)

On pose :

- $ightharpoonup \sigma^0 = \varepsilon$
- $ightharpoonup \sigma^1 = \sigma$
- $\sigma^2 = \sigma \cdot \sigma$
- $\sigma^3 = \sigma \cdot \sigma^2$, etc.

On obtient la formule pour tout n entier naturel :

$$\sigma^m \cdot \sigma^n = \sigma^{n+m}$$

Exemple

le mot aaabbabbb peut tout aussi bien s'écrire $a^3b^2ab^3$.

Généralisons l'opération de concaténation aux langages :

Définition

Si L_1 et L_2 sont deux langages, la *concaténation* de L_1 et L_2 est le langage :

$$L_1 \cdot L_2 = \{ \sigma_1 \sigma_2 \mid \sigma_1 \in L_1 \text{ et } \sigma_2 \in L_2 \}$$

Généralisons l'opération de concaténation aux langages :

Définition

Si L_1 et L_2 sont deux langages, la *concaténation* de L_1 et L_2 est le langage :

$$L_1 \cdot L_2 = \{ \sigma_1 \sigma_2 \mid \sigma_1 \in L_1 \text{ et } \sigma_2 \in L_2 \}$$

Exemple

Si
$$L_1 = \{\varepsilon, b\}$$
 et $L_2 = \{a, ba\}$ alors :

$$L_1 \cdot L_2 = \{a, ba, b^2 a\}$$
 et $L_2 \cdot L_1 = \{a, ab, ba, bab\}$

Généralisons l'opération de concaténation aux langages :

Définition

Si L_1 et L_2 sont deux langages, la concaténation de L_1 et L_2 est le langage :

$$L_1 \cdot L_2 = \{ \sigma_1 \sigma_2 \mid \sigma_1 \in L_1 \text{ et } \sigma_2 \in L_2 \}$$

Exemple

Si $L_1 = \{\varepsilon, b\}$ et $L_2 = \{a, ba\}$ alors :

$$L_1 \cdot L_2 = \{a, ba, b^2a\}$$
 et $L_2 \cdot L_1 = \{a, ab, ba, bab\}$

On a donc $L_1 \cdot L_2 \neq L_2 \cdot L_1$

Exemple

Le langage $\Sigma^* a \Sigma^*$ est constitué des mots $\sigma = \sigma_1 a \sigma_2$ avec σ_1 et σ_2 quelconques.

Exemple

Le langage $\Sigma^* a \Sigma^*$ est constitué des mots $\sigma = \sigma_1 a \sigma_2$ avec σ_1 et σ_2 quelconques.

Le langage $\Sigma^* a \Sigma^*$ est ainsi le langage des mots qui contiennent le caractère a

Propriété

1. Le produit de concaténation est doublement distributif par rapport à l'addition des langages :

$$M(L_1 + L_2) = ML_1 + ML_2$$
 et $(L_1 + L_2)M = L_1M + L_2M$

Propriété

1. Le produit de concaténation est doublement distributif par rapport à l'addition des langages :

$$M(L_1 + L_2) = ML_1 + ML_2 \quad \text{et} \quad (L_1 + L_2)M = L_1M + L_2M$$

2. Rôle de \emptyset et ε :

$$L\emptyset = \emptyset L = \emptyset$$
 et $L\varepsilon = \varepsilon L = L$

Comme pour les caractères, on peut définir la puissance d'un langage :

Définition

1.
$$L^0 = \varepsilon$$
 et $L^{n+1} = L \cdot L^n$

Comme pour les caractères, on peut définir la puissance d'un langage :

Définition

- 1. $L^0 = \varepsilon$ et $L^{n+1} = L \cdot L^n$
- 2. On appelle étoile de L le langage :

$$L^* = L^0 + L^1 + L^2 + \dots + L^n + \dots$$

Comme pour les caractères, on peut définir la puissance d'un langage :

Définition

- 1. $L^0 = \varepsilon$ et $L^{n+1} = L \cdot L^n$
- 2. On appelle étoile de L le langage :

$$L^* = L^0 + L^1 + L^2 + \dots + L^n + \dots$$

3. On introduit aussi :

$$L^+ = L^1 + L^2 + \dots + L^n + \dots$$

Comme pour les caractères, on peut définir la puissance d'un langage :

Définition

- 1. $L^0 = \varepsilon$ et $L^{n+1} = L \cdot L^n$
- 2. On appelle étoile de L le langage :

$$L^* = L^0 + L^1 + L^2 + \dots + L^n + \dots$$

3. On introduit aussi :

$$L^+ = L^1 + L^2 + \cdots + L^n + \cdots$$

Si $\varepsilon \in L$ il n'y a pas de différence entre L^+ et L^* .

Sinon,
$$L^* = \varepsilon + L^+$$
.

Propriété

$$L^{+} = L^{*}L = LL^{*}$$

$$L^{*} = \varepsilon + L^{+}$$

$$L^{*} = \varepsilon + LL^{*} + \varepsilon + L^{*}L$$

Sommaire

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

Problématique

Soit Σ l'alphabet d'un automate fini. Les différents états sont notés 1, 2, ..., n L est le langage de cet automate

Problématique

Soit Σ l'alphabet d'un automate fini. Les différents états sont notés 1, 2, ..., n L est le langage de cet automate

Problématique : Comment caractériser L?

Si le graphe est simple, l'observation de l'automate peut suffire :

Si le graphe est simple, l'observation de l'automate peut suffire :

Le langage engendré par l'automate est abb*ba*

Si le graphe est simple, l'observation de l'automate peut suffire :

Le langage engendré par l'automate est abb* ba*

Remarque (Notations)

Attention aux abus de langage!

Ici, on parle de langage, a^* et b^* représente l'étoile du langage engendré par les alphabets $\{a\}$ et $\{b\}$.

Si le graphe est simple, l'observation de l'automate peut suffire :

Le langage engendré par l'automate est abb* ba*

Remarque (Notations)

Attention aux abus de langage!

Ici, on parle de langage, a^* et b^* représente l'étoile du langage engendré par les alphabets $\{a\}$ et $\{b\}$.

Il s'agit des mots commençant par ab, suivi d'un nombre quelconque de b puis d'un b puis d'un nombre quelconque de a

Langage d'un automate

Dans le cas d'un automate plus complexe, la recherche du langage d'un automate est un problème difficile

Nous étudierons une méthode :

Langage d'un automate

Dans le cas d'un automate plus complexe, la recherche du langage d'un automate est un problème difficile

Nous étudierons une méthode :

▶ la méthode du départ ;

Langage d'un automate

Dans le cas d'un automate plus complexe, la recherche du langage d'un automate est un problème difficile

Nous étudierons une méthode :

- la méthode du départ;
- l existe aussi la méthode de l'arrivée

Pour chaque état k, on note D_k le langage qui serait accepté par l'automate si k était l'état initial

Pour chaque état k, on note D_k le langage qui serait accepté par l'automate si k était l'état initial

Les langages D_1, D_2, \ldots, D_n sont liés entre eux par des équations

Pour chaque état k, on note D_k le langage qui serait accepté par l'automate si k était l'état initial

Les langages D_1, D_2, \ldots, D_n sont liés entre eux par des équations

Regardons un Ex

$$D_1 = \varepsilon + aD_2 + bD_3$$

$$D_1 = \varepsilon + aD_2 + bD_3$$

$$D_2 = aD_2 + bD_3$$

$$D_1 = \varepsilon + aD_2 + bD_3$$

$$D_2 = aD_2 + bD_3$$

$$D_3 = \varepsilon + aD_2 + bD_3$$

C'est l'inverse de la méthode précédente :

On note A_k l'ensemble des mots qui font arriver à l'état k en partant de l'état initial

Les A_k sont liés par des équations (une par état)

$$ightharpoonup A_1 = \varepsilon$$

$$ightharpoonup A_1 = \varepsilon$$

$$ightharpoonup A_2 = A_1 a + A_2 a + A_3 a$$

$$ightharpoonup A_1 = \varepsilon$$

$$ightharpoonup A_2 = A_1 a + A_2 a + A_3 a$$

$$ightharpoonup A_3 = A_1b + A_2b + A_3b$$

La résolution des ces systèmes repose sur le lemme d'Arden :

La résolution des ces systèmes repose sur le lemme d'Arden :

Théorème (Lemme D'Arden)

Soit U et V deux langages et les équations

$$X = UX + V$$
 (1) et $X = XU + V$ (2)

d'inconnue X

La résolution des ces systèmes repose sur le lemme d'Arden :

Théorème (Lemme D'Arden)

Soit U et V deux langages et les équations

$$X = UX + V$$
 (1) et $X = XU + V$ (2)

d'inconnue X

1. le plus petit langage solution de (1) est $X = U^*V$

La résolution des ces systèmes repose sur le lemme d'Arden :

Théorème (Lemme D'Arden)

Soit U et V deux langages et les équations

$$X = UX + V$$
 (1) et $X = XU + V$ (2)

d'inconnue X

- 1. le plus petit langage solution de (1) est $X = U^*V$
- 2. le plus petit langage solution de (2) est $X = VU^*$

La résolution des ces systèmes repose sur le lemme d'Arden :

Théorème (Lemme D'Arden)

Soit U et V deux langages et les équations

$$X = UX + V$$
 (1) et $X = XU + V$ (2)

d'inconnue X

- 1. le plus petit langage solution de (1) est $X = U^*V$
- 2. le plus petit langage solution de (2) est $X = VU^*$
- 3. De plus, si $\varepsilon \notin U$, alors ces solutions sont uniques

Résolvons le système pour la méthode du départ :

$$\begin{cases} D_1 = \varepsilon + aD_2 + bD_3 \\ D_2 = aD_2 + bD_3 \\ D_3 = \varepsilon + aD_2 + bD_3 \end{cases}$$

Résolvons le système pour la méthode du départ :

$$\begin{cases} D_1 = \varepsilon + aD_2 + bD_3 \\ D_2 = aD_2 + bD_3 \\ D_3 = \varepsilon + aD_2 + bD_3 \end{cases}$$

Le 3e équation peut s'écrire $D_3 = bD_3 + (aD_2 + \varepsilon)$

Résolvons le système pour la méthode du départ :

$$\begin{cases} D_1 = \varepsilon + aD_2 + bD_3 \\ D_2 = aD_2 + bD_3 \\ D_3 = \varepsilon + aD_2 + bD_3 \end{cases}$$

Le 3e équation peut s'écrire $D_3=bD_3+(aD_2+\epsilon)$ Si on considère que D_3 est l'unique inconnue de cette équation, le lemme d'Arden donne :

$$D_3 = b^*(aD_2 + \varepsilon) = b^*aD_2 + b^*$$

En reportant dans les deux premières équations, on obtient :

$$D_1 = aD_2 + bb^* aD_2 + bb^* = (\varepsilon bb^*) aD_2 + b^+ = b^* aD_2 + b^+$$

$$D_2 = \varepsilon + aD_2 + bb^* aD_2 + bb^* = (\varepsilon + bb^*) aD_2 + b^+ + \varepsilon = b^* aD_2 + b^*$$

En reportant dans les deux premières équations, on obtient :

$$D_1 = aD_2 + bb^* aD_2 + bb^* = (\varepsilon bb^*) aD_2 + b^+ = b^* aD_2 + b^+$$

$$D_2 = \varepsilon + aD_2 + bb^* aD_2 + bb^* = (\varepsilon + bb^*) aD_2 + b^+ + \varepsilon = b^* aD_2 + b^*$$

On recommence avec la deuxième équation et on obtient :

$$D_2 = (b^*a)^*b^+$$

Finalement,

$$L = D_1 = (b^*a)(b^*a)^*b^* + b^* = (b^*a)^*b^+ + \varepsilon$$

Finalement,

$$L = D_1 = (b^*a)(b^*a)^*b^* + b^* = (b^*a)^*b^+ + \varepsilon$$

Remarque

1. Avec la méthode de l'arrivée, on trouve

$$L = (a^*b)^*$$

Finalement,

$$L = D_1 = (b^*a)(b^*a)^*b^* + b^* = (b^*a)^*b^+ + \varepsilon$$

Remarque

1. Avec la méthode de l'arrivée, on trouve

$$L = (a^*b)^*$$

2. un même langage peut être décrit par deux formules différentes qui ne se ressemblent pas

Sommaire

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

Les méthodes pour déterminer le langage d'un automate fini aboutissent à une formule combinant les lettres de l'alphabet Σ en utilisant :

Les méthodes pour déterminer le langage d'un automate fini aboutissent à une formule combinant les lettres de l'alphabet Σ en utilisant :

l'addition;

Les méthodes pour déterminer le langage d'un automate fini aboutissent à une formule combinant les lettres de l'alphabet Σ en utilisant :

- l'addition;
- la concaténation;

Les méthodes pour déterminer le langage d'un automate fini aboutissent à une formule combinant les lettres de l'alphabet Σ en utilisant :

- l'addition;
- la concaténation;
- ► l'étoile

Les méthodes pour déterminer le langage d'un automate fini aboutissent à une formule combinant les lettres de l'alphabet Σ en utilisant :

- ► l'addition ;
- la concaténation;
- ► l'étoile

Une telle formule s'appelle une expression régulière.

Les méthodes pour déterminer le langage d'un automate fini aboutissent à une formule combinant les lettres de l'alphabet Σ en utilisant :

- l'addition;
- la concaténation;
- ► l'étoile

Une telle formule s'appelle une expression régulière.

Plus précisément, une expression régulière est un mot construit avec l'alphabet

$$\Theta = \{+, *, (,), \varepsilon, \emptyset\} \cup \Sigma$$

Règles de bases

Règles de bases

R1 : ε et \emptyset sont des expressions régulières

Règles de bases

R1 : ε et \emptyset sont des expressions régulières

R2 : si a est une lettre, a est une expression régulière

Règles de bases

R1 : ε et \emptyset sont des expressions régulières

R2 : si a est une lettre, a est une expression régulière

Règle de combinaison

R3 : Si $\mathcal E$ est une expression régulière, alors $(\mathcal E)$ est une expression régulière

Règles de bases

R1 : ε et \emptyset sont des expressions régulières

R2 : si a est une lettre, a est une expression régulière

Règle de combinaison

R3 : Si $\mathcal E$ est une expression régulière, alors $(\mathcal E)$ est une expression régulière

R4 : Si $\mathcal E$ est une expression régulière, alors $\mathcal E^*$ est une expression régulière

Règles de bases

- R1 : ε et \emptyset sont des expressions régulières
- R2 : si a est une lettre, a est une expression régulière

Règle de combinaison

- R3 : Si $\mathcal E$ est une expression régulière, alors $(\mathcal E)$ est une expression régulière
- R4 : Si $\mathcal E$ est une expression régulière, alors $\mathcal E^*$ est une expression régulière
 - R5 Si $\mathcal E$ et $\mathcal F$ sont des expressions régulières, alors $(\mathcal E)+(\mathcal F)$ est une expression régulière

Règles de bases

- R1 : ε et \emptyset sont des expressions régulières
- R2 : si a est une lettre, a est une expression régulière

Règle de combinaison

- R3 : Si $\mathcal E$ est une expression régulière, alors $(\mathcal E)$ est une expression régulière
- R4 : Si $\mathcal E$ est une expression régulière, alors $\mathcal E^*$ est une expression régulière
 - R5 Si \mathcal{E} et \mathcal{F} sont des expressions régulières, alors $(\mathcal{E}) + (\mathcal{F})$ est une expression régulière
- R6 : Si $\mathcal E$ et $\mathcal F$ sont des expressions régulières, alors $(\mathcal E)(\mathcal F)$ est une expression régulière

Langage régulier

Définition

Un langage qui peut-être décrit au moyen d'une expression régulière est un langage régulier

Langage régulier

Définition

Un langage qui peut-être décrit au moyen d'une expression régulière est un langage régulier

Théorème

Tout langage accepté par un automate fini est régulier

Langage Régulier

2 questions:

Q1 : Tous les langages sont-ils réguliers?

Q2 : Tous les langages réguliers sont-ils acceptés par un automate ?

Langage Régulier

2 questions:

- Q1 : Tous les langages sont-ils réguliers?
 - Non, les langages sont classés en 4 catégories (type0, type1, ...)
- Q2 : Tous les langages réguliers sont-ils acceptés par un automate ?

Langage Régulier

2 questions:

- Q1 : Tous les langages sont-ils réguliers?
 - Non, les langages sont classés en 4 catégories (type0, type1, ...)
- Q2 : Tous les langages réguliers sont-ils acceptés par un automate ?
 - Oui, tout langage régulier est celui d'un automate fini

Sommaire

Exemples

Automates finis

Langages

Opérations sur les langages

Langage d'un automate fini

Langages réguliers

Création d'automates

> On sait déjà déterminer l'expression rationnelle d'un automate fini ;

- On sait déjà déterminer l'expression rationnelle d'un automate fini;
- Réciproquement, à partir de l'expression rationnelle d'un langage régulier, comment construire un automate fini (déterministe complet) qui accepte ce langage?

- On sait déjà déterminer l'expression rationnelle d'un automate fini;
- Réciproquement, à partir de l'expression rationnelle d'un langage régulier, comment construire un automate fini (déterministe complet) qui accepte ce langage?
- ➤ Comment arriver à l'automate le plus simple possible?

- On sait déjà déterminer l'expression rationnelle d'un automate fini;
- Réciproquement, à partir de l'expression rationnelle d'un langage régulier, comment construire un automate fini (déterministe complet) qui accepte ce langage?
- ➤ Comment arriver à l'automate le plus simple possible?

On utilise les résiduels du langage

Définition

Soient Σ un alphabet, L un langage sur Σ et $\sigma \in \Sigma^*$. On appelle résiduel de L par rapport à σ le langage formé de tous les mots τ tels que :

$$\sigma \cdot \tau \in L$$

On le note $\sigma^{-1}L$.

Définition

Soient Σ un alphabet, L un langage sur Σ et $\sigma \in \Sigma^*$. On appelle résiduel de L par rapport à σ le langage formé de tous les mots τ tels que :

$$\sigma \cdot \tau \in L$$

On le note $\sigma^{-1}L$.

Remarque

D'un point de vue concret, $\sigma^{-1}L$ est le langage obtenu en prenant les mots de L commençant par σ et en effaçant ce σ au début des mots.

Exemple

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

Exemple

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

1. Si b est une lettre de σ ,

Exemple

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si b est une lettre de σ ,
 - ightharpoonup il n'y a pas de mot de L commençant par σ ;

Exemple

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si b est une lettre de σ ,
 - ightharpoonup il n'y a pas de mot de L commençant par σ ;
 - $ightharpoonup \sigma^{-1}L = \emptyset$

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si b est une lettre de σ ,
 - ightharpoonup il n'y a pas de mot de L commençant par σ ;
 - $ightharpoonup \sigma^{-1}L = \emptyset$
- 2. Si b n'est pas une lettre de σ ,

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si b est une lettre de σ ,
 - ightharpoonup il n'y a pas de mot de L commençant par σ ;
 - $ightharpoonup \sigma^{-1}L = \emptyset$
- 2. Si b n'est pas une lettre de σ ,
 - $ightharpoonup \sigma = a^n$

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si b est une lettre de σ ,
 - ightharpoonup il n'y a pas de mot de L commençant par σ ;
 - $ightharpoonup \sigma^{-1}L = \emptyset$
- 2. Si b n'est pas une lettre de σ ,
 - $ightharpoonup \sigma = a^n$
 - les mots de L commençant par σ s'écrivent a^{n+m} où $m\geqslant 0$

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si *b* est une lettre de σ ,
 - ightharpoonup il n'y a pas de mot de L commençant par σ ;
 - $ightharpoonup \sigma^{-1}L = \emptyset$
- 2. Si b n'est pas une lettre de σ ,
 - $ightharpoonup \sigma = a^n$
 - les mots de L commençant par σ s'écrivent a^{n+m} où $m \geqslant 0$
 - en enlevant a^n on obtient a^m avec $m \ge 0$

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si *b* est une lettre de σ ,
 - il n'y a pas de mot de L commençant par σ;
 - $ightharpoonup \sigma^{-1}L = \emptyset$
- 2. Si b n'est pas une lettre de σ ,
 - $ightharpoonup \sigma = a^n$
 - les mots de L commençant par σ s'écrivent a^{n+m} où $m \geqslant 0$
 - en enlevant a^n on obtient a^m avec $m \ge 0$
 - ightharpoonup et $\sigma^{-1}L = L$

Exemple

$$\Sigma = \{a, b\}$$
 et $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$
Soit $s \in \Sigma^*$.

- 1. Si *b* est une lettre de σ ,
 - ightharpoonup il n'y a pas de mot de L commençant par σ ;
 - $ightharpoonup \sigma^{-1}L = \emptyset$
- 2. Si b n'est pas une lettre de σ ,
 - $ightharpoonup \sigma = a^n$
 - les mots de L commençant par σ s'écrivent a^{n+m} où $m \geqslant 0$
 - en enlevant a^n on obtient a^m avec $m \ge 0$
 - ightharpoonup et $\sigma^{-1}L = L$

L admet 2 résiduels qui sont L et \emptyset

Méthode pratique de construction

1. les états sont les différents résiduels de L;

- 1. les états sont les différents résiduels de L;
- 2. l'état initial est L;

- 1. les états sont les différents résiduels de L;
- 2. l'état initial est L :
- 3. les états acceptants sont les résiduels qui contiennent ε ;

- 1. les états sont les différents résiduels de L;
- 2. l'état initial est L;
- 3. les états acceptants sont les résiduels qui contiennent ε ;
- 4. la flèche a partant du résiduel R arrive au résiduel $a^{-1}R$.

$$\Sigma = \{a, b\} \text{ et } L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$$

Exemple

$$\Sigma = \{a, b\} \text{ et } L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$$

ightharpoonup L admet deux résiduels L et \emptyset ;

$$\Sigma = \{a, b\} \text{ et } L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$$

- ▶ L admet deux résiduels L et \emptyset ;
- ► l'automate minimal de L admet deux états;

$$\Sigma = \{a, b\} \text{ et } L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$$

- ► L admet deux résiduels L et ∅;
- ▶ l'automate minimal de *L* admet deux états;
- ▶ L est l'état initial et l'unique état acceptant;

$$\Sigma = \{a, b\} \text{ et } L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$$

- ▶ L admet deux résiduels L et \emptyset ;
- ▶ l'automate minimal de L admet deux états;
- ► *L* est l'état initial et l'unique état acceptant;
- ightharpoonup $a^{-1}L=L$, $b^{-1}L=\emptyset$, $a^{-1}\emptyset=\emptyset$ et $b^{-1}\emptyset=\emptyset$

$$\Sigma = \{a, b\} \text{ et } L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$$

- ► L admet deux résiduels L et ∅;
- ▶ l'automate minimal de *L* admet deux états;
- ► L est l'état initial et l'unique état acceptant;
- ightharpoonup $a^{-1}L = L$, $b^{-1}L = \emptyset$, $a^{-1}\emptyset = \emptyset$ et $b^{-1}\emptyset = \emptyset$

Théorème

1. L'automate $\mathcal M$ construit par cette méthode admet L pour langage;

Théorème

- 1. L'automate $\mathcal M$ construit par cette méthode admet L pour langage;
- 2. Si R est un résiduel de L, alors le langage de départ de l'état R est R;

Théorème

- L'automate M construit par cette méthode admet L pour langage;
- 2. Si R est un résiduel de L, alors le langage de départ de l'état R est R;
- 3. Parmi tous les automates qui admettent L pour langage, c'est ${\cal M}$ qui possède le moins d'états.

Théorème

- L'automate M construit par cette méthode admet L pour langage;
- 2. Si R est un résiduel de L, alors le langage de départ de l'état R est R;
- 3. Parmi tous les automates qui admettent L pour langage, c'est ${\cal M}$ qui possède le moins d'états.

L'automate ${\mathcal M}$ s'appelle l'automate minimal de L

Théorème

- L'automate M construit par cette méthode admet L pour langage;
- 2. Si R est un résiduel de L, alors le langage de départ de l'état R est R;
- 3. Parmi tous les automates qui admettent L pour langage, c'est $\mathcal M$ qui possède le moins d'états.

L'automate ${\mathcal M}$ s'appelle l'automate minimal de L

Remarque

On utilise aussi cette méthode pour simplifier les automates

Automates finis déterministes complets

Pour l'instant nous avons rencontré des automates finis ayant :

un unique seul état initial;

Automates finis déterministes complets

Pour l'instant nous avons rencontré des automates finis ayant :

- un unique seul état initial;
- pour chaque état, exactement une transition par label

Automates finis déterministes complets

Pour l'instant nous avons rencontré des automates finis ayant :

- un unique seul état initial;
- pour chaque état, exactement une transition par label

Ce sont les automates finis déterministes complets (AFD)

Dans la pratique, il peut-être utile de concevoir des automates *moins rigide*

Dans la pratique, il peut-être utile de concevoir des automates *moins rigide*

Dans la pratique, il peut-être utile de concevoir des automates *moins rigide*

> ni déterministe, ni complet

Dans la pratique, il peut-être utile de concevoir des automates *moins rigide*

- > ni déterministe, ni complet
- > automate non déterministe (AFN)

Transitions spontannées

On peut aussi utiliser les transitions spontanées :

Théorème

1. les langages des AFN sont réguliers;

Théorème

- 1. les langages des AFN sont réguliers;
- 2. les langages acceptés par les AFN et les AFD sont les mêmes;

Théorème

- 1. les langages des AFN sont réguliers;
- 2. les langages acceptés par les AFN et les AFD sont les mêmes ;

Remarque (Détermination d'un AFN)

On peut ainsi, à partir d'un AFN, trouver un AFD qui reconnait le même langage

Theorème de Kleene

Théorème (Kleene)

les langages acceptés par les automates finis sont tous les langages réguliers