Hoja de Apuntes - Modelación Numérica (2025 - 2C)

Unidad 1: Errores

Tipos de Errores

 $oldsymbol{\cdot}$ Error absoluto: $e_a = |x - x_{real}|$

• Error relativo: $e_r = rac{e_a}{|x_{real}|}$

• Error porcentual: $e_p = e_r imes 100$

Propagación de errores

Caso	Error inherente	Error redondeo	Error discretización	Error final
I	Nulo	Nulo	Nulo	Nulo
II	No nulo	Nulo	Nulo	Depende del problema numérico
III	Nulo	No nulo	Nulo	Depende del algoritmo
IV	Nulo	Nulo	No nulo	Error de discretización

Cifras significativas

- Son los números que expresan la precisión de una medición.
- Ejemplo: 0,020 → 2 cifras significativas.

Unidad 2: Ecuaciones no lineales

Método de Bisección

Objetivo: Encontrar una raíz de f(x)=0 en [a, b].

Condición: f(a) imes f(b) < 0

Fórmula:

$$x_r = \frac{a+b}{2}$$

Procedimiento: 1. Calcular x_r 2. Evaluar $f(x_r)$ 3. Si $f(a)f(x_r)<0\Rightarrow b=x_r$, si no $a=x_r$ 4. Repetir hasta que |b-a|< tol

1

Orden de convergencia: lineal.

Método de Regula-Falsi (Falsa Posición)

Fórmula:

$$x_r = b - f(b) \frac{(a-b)}{f(a) - f(b)}$$

Igual proceso que bisección pero reemplaza el punto medio por esta fórmula. Converge más rápido, pero sigue siendo lineal.

Método del Punto Fijo

Reescritura: x = g(x)

Iteración: $x_{k+1} = g(x_k)$

Condición de convergencia: |g'(x)| < 1 cerca de la raíz.

Orden de convergencia: lineal.

Método de Newton-Raphson

Fórmula:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Condiciones: - f y f' deben ser continuas. - f'(x) / 0.

Orden de convergencia: cuadrática.

Variables: - x_k : aproximación actual - $f(x_k)$: valor de la función - $f'(x_k)$: derivada de la función

Método de la Secante

Fórmula:

$$x_{k+1} = x_k - f(x_k) rac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

No requiere derivada. Orden de convergencia: ≈ 1.618 (superlineal).

Newton-Raphson para raíces múltiples

Fórmula:

$$x_{k+1} = x_k - rac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f''(x_k)}$$

Orden de convergencia: cuadrática si la raíz es simple, lineal si es múltiple.

Orden de convergencia

$$\lim_{k o\infty}rac{|x_{k+1}-r|}{|x_k-r|^p}=C$$

Donde: - p: orden de convergencia (1 = lineal, 2 = cuadrática) - C: constante de convergencia

Unidad 3: Ajuste de Curvas

() Ajuste por cuadrados mínimos (lineal)

Queremos ajustar una recta: y=a+bx

Fórmulas:

$$b = rac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2} \ a = ar{y} - bar{x}$$

Error cuadrático medio (ECM):

$$ECM = rac{1}{n} \sum (y_i - (a+bx_i))^2$$

(Ajuste cuadrático y cúbico

- Cuadrático: $y=a+bt+ct^2$
- ullet Cúbico: $y=a+bt+ct^2+dt^3$

Coeficientes se obtienen con matrices normales ($A^TAx = A^Ty$) o \bigcap np.polyfit(x, y, grado).

3

Ajuste exponencial

$$y=e^{a-bt}$$

Tomando logaritmos:

$$\ln(y) = a - bt$$

Aplicar regresión lineal entre t y $\ln(y)$.

Interpolación polinómica

Usa los puntos exactos para que el polinomio pase por ellos.

Polinomio de Lagrange:

$$P(x) = \sum_{i=0}^n y_i L_i(x), \quad L_i(x) = \prod_{j
eq } rac{x-x_j}{\sum_{i=1}^n x_i}$$

Polinomio de Newton:

Usa diferencias divididas.

$$P(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + \dots$$

Error de interpolación:

$$E(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x-x_i)$$

Nodos de Chebyshev:

Distribuyen los puntos para minimizar el error de oscilación (fenómeno de Runge).

$$x_i=\cos\left(rac{2i+1}{2n+2}\pi
ight), \quad i=0,1,...,n$$

Polinomio de Hermite:

Interpola usando valores y derivadas conocidas.

Unidad 5: Diferenciación e Integración Numérica

(i) Diferenciación numérica

Aproximaciones:

$$f'(x)pprox rac{f(x+h)-f(x)}{h}$$
 (diferencia hacia adelante)
$$f'(x)pprox rac{f(x)-f(x-h)}{h}$$
 (diferencia hacia atrás)
$$f'(x)pprox rac{f(x+h)-f(x-h)}{2h}$$
 (centrada)

Error de truncamiento: O(h) o $O(h^2)$ según el método.

Integración numérica

Regla del trapecio:

$$I = rac{h}{2}[f(x_0) + 2\sum_{i=1}^{n-1}f(x_i) + f(x_n)]$$

Error: $E_t = -rac{(b-a)h^2}{12}f''(\xi)$

Regla de Simpson 1/3:

$$I = rac{h}{3}[f(x_0) + 4f(x_1) + 2f(x_2) + \ldots + 4f(x_{n-1}) + f(x_n)]$$

Error: $E_t = -rac{(b-a)h^4}{180} f^{(4)}(\xi)$

Regla de Simpson 3/8:

$$I = rac{3h}{8}[f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + ... + f(x_n)]$$

Richardson (mejora de estimación):

$$R = T(h_2) + rac{T(h_2) - T(h_1)}{(h_1/h_2)^p - 1}$$

Donde p es el orden del método.

Consejos generales: - Verificar siempre continuidad de f(x) y derivadas antes de aplicar Newton. - Normalizar variables antes de ajustar. - Revisar tolerancia y error relativo en iteraciones. - Usar Chebyshev cuando se interpola con muchos puntos.

Fin de la hoja de apuntes #