Title

D. Zack Garza

Monday 27th July, 2020

Contents

1	Inequalities and Equalities													1	
	1.1 Less Explicitly Used Inequalities									 				4	

1 Inequalities and Equalities

Proposition (Reverse Triangle Inequality)

$$|||x|| - ||y||| \le ||x - y||.$$

Proposition (Chebyshev's Inequality)

$$\mu(\lbrace x : |f(x)| > \alpha \rbrace) \le \left(\frac{\|f\|_p}{\alpha}\right)^p.$$

Proposition (Holder's Inequality When Surjective)

$$\frac{1}{n} + \frac{1}{a} = 1 \implies ||fg||_1 \le ||f||_p ||g||_q.$$

Application: For finite measure spaces,

$$1 \le p < q \le \infty \implies L^q \subset L^p \pmod{\ell^p \subset \ell^q}$$
.

Proof (Holder's Inequality) Fix p, q, let $r = \frac{q}{p}$ and $s = \frac{r}{r-1}$ so $r^{-1} + s^{-1} = 1$. Then let $h = |f|^p$:

$$\|f\|_p^p = \|h \cdot 1\|_1 \le \|1\|_s \|h\|_r = \mu(X)^{\frac{1}{s}} \|f\|_q^{\frac{q}{r}} \implies \|f\|_p \le \mu(X)^{\frac{1}{p} - \frac{1}{q}} \|f\|_q.$$

Note: doesn't work for ℓ_p spaces, but just note that $\sum |x_n| < \infty \implies x_n < 1$ for large enough n, and thus $p < q \implies |x_n|^q \le |x_n|^q$.

Proof (Holder's Inequality) It suffices to show this when $\|f\|_p = \|g\|_q = 1$, since

$$||fg||_1 \le ||f||_p ||f||_q \Longleftrightarrow \int \frac{|f|}{||f||_p} \frac{|g|}{||g||_q} \le 1.$$

Using $AB \leq \frac{1}{p}A^p + \frac{1}{q}B^q$, we have

$$\int |f||g| \le \int \frac{|f|^p}{p} \frac{|g|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Proposition (Cauchy-Schwarz Inequality)

$$|\langle f, g \rangle| = ||fg||_1 \le ||f||_2 ||g||_2$$
 with equality $\iff f = \lambda g$.

Note: Relates inner product to norm, and only happens to relate norms in L^1 .

Proof?

Proposition (Minkowski's Inequality:)

$$1 \le p < \infty \implies ||f + g||_p \le ||f||_p + ||g||_p.$$

Note: does not handle $p = \infty$ case. Use to prove L^p is a normed space.

Proof

• We first note

$$|f+g|^p = |f+g||f+g|^{p-1} \le (|f|+|g|)|f+g|^{p-1}.$$

• Note that if p, q are conjugate exponents then

$$\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$$
$$q = \frac{p}{p-1}.$$

• Then taking integrals yields

$$\begin{split} \|f+g\|_p^p &= \int |f+g|^p \\ &\leq \int (|f|+|g|) |f+g|^{p-1} \\ &= \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1} \\ &= \left\|f(f+g)^{p-1}\right\|_1 + \left\|g(f+g)^{p-1}\right\|_1 \\ &\leq \|f\|_p \left\|(f+g)^{p-1}\right\|_q + \|g\|_p \left\|(f+g)^{p-1}\right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^{p-1}\right) \right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\int |f+g|^p}{\left(\int |f+g|^p\right)^{\frac{1}{p}}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\|f+g\|_p^p}{\|f+g\|_p}. \end{split}$$

• Cancelling common terms yields

$$1 \le \left(\|f\|_p + \|g\|_p \right) \frac{1}{\|f + g\|_p}$$

$$\implies \|f + g\|_p \le \|f\|_p + \|g\|_p.$$

Proposition (Young's Inequality*)

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1 \implies ||f * g||_r \le ||f||_p ||g||_q$$

Application: Some useful specific cases:

$$\begin{split} & \|f * g\|_1 \le \|f\|_1 \|g\|_1 \\ & \|f * g\|_p \le \|f\|_1 \|g\|_p, \\ & \|f * g\|_\infty \le \|f\|_2 \|g\|_2 \\ & \|f * g\|_\infty \le \|f\|_p \|g\|_q. \end{split}$$

Proposition (Bezel's Inequality:)

For $x \in H$ a Hilbert space and $\{e_k\}$ an orthonormal sequence

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

Note: this does not need to be a basis.

Proposition (Parseval's Identity:) Equality in Bessel's inequality, attained when $\{e_k\}$ is a *basis*, i.e. it is complete, i.e. the span of its closure is all of H.

1.1 Less Explicitly Used Inequalities

Proposition (AM-GM Inequality)

$$\sqrt{ab} \le \frac{a+b}{2}.$$

Proposition (Jensen's Inequality)

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

Proposition (???):

$$AB \le \frac{A^p}{p} + \frac{B^q}{q}.$$

Proposition (? Inequality)

$$(a+b)^p \le 2^p (a^p + b^p).$$

Proposition (Bernoulli's Inequality)

$$(1+x)^n \ge 1 + nx$$
 $x \ge -1$, or $n \in 2\mathbb{Z}$ and $\forall x$.