Jaime Fabián Nieto Castellanos Facultad de Ciencias. UNAM

February 7, 2021

M_{π} predictions

Different predictions, obtained through Hosotani's equations, of the pion mass for different volume sizes (L=10,12, 16) are shown.

Figure 1: M_{π} vs. $(m^2g)^{1/3}$

When L > 1,000, the result of M_{π} using Hosotani's equations gets closer to the semi-classical prediction, rather than the prediction by Smilga. Some values are in the following table:

\overline{m}	M_{π} (Smilga)	M_{π} (Semi-classical)	M_{π} (Hosotani)
0.01	0.07398	0.07970	0.07965
0.05	0.21631	0.23303	0.23290
0.1	0.34336	0.36992	0.36959
0.2	0.54506	0.58721	0.58695
0.3	0.71422	0.76946	0.76901
0.4	0.86522	0.93214	0.93148

Table 1: Different values of M_{π} when L > 1,000

Some other plots of the pion mass as a function of L and $T = \frac{1}{L}$ for m = 0.05, 0.1 are shown.

Figure 2: M_{π} as a function of L on the left hand side and M_{π} as a function of T on the right hand side

Low statistics results

The following results were obtained through several simulations on different lattices: 64×10 , 64×12 and 64×16 with the parameters:

N_{space}	64
Ntherm	1000
Nmeasure	1000
Trajectory Steps	10
Nsteps	10
β	4

Table 2: All the simulations were performed with this parameters.

Variance stands for the var option in the masscoll program and Chi squared for the χ^2 option. $g = \frac{1}{\sqrt{\beta}} = \frac{1}{\sqrt{2}}$.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26273 \pm 0.00168$

(b) Pion mass as a function of κ .

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ was fitted, the coefficients are $a = 0.05092 \pm 0.00616$, $b = 7.12154 \pm 0.20359$, $m_{\pi} = 0.22565 \pm 0.01365$ for variance and $a = 0.05092 \pm 0.00616$, b =7.12154 \pm 0.20359, m_{π} =0.22565 \pm 0.01365 for chi squared

(d) Smilga prediction. Only $m_{pcac} > 0$ is considered.

(e) m_{π} vs. m_{pcac} .

Figure 3: Number of configurations vs. topological charge on a 64×10 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26273 \pm 0.00168$

(b) Pion mass as a function of κ .

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ was fitted, the coefficients are $a = 0.05092 \pm 0.00616$, $b = 7.12154 \pm 0.20359$, $m_{\pi} = 0.22565 \pm 0.01365$ for variance and $a = 0.05092 \pm 0.00616$, b =7.12154 \pm 0.20359, m_{π} =0.22565 \pm 0.01365 for chi squared

(d) Smilga prediction. Only $m_{pcac} > 0$ is considered.

(e) m_{π} vs. m_{pcac} .

(g) Autocorrelation of the topological charge

Figure 4: Number of configurations vs. topological charge on a 64×12 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26273 \pm 0.00168$

(b) Pion mass as a function of κ .

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ was fitted, the coefficients are $a = 0.05092 \pm 0.00616$, $b = 7.12154 \pm 0.20359$, $m_{\pi} = 0.22565 \pm 0.01365$ for variance and $a = 0.05092 \pm 0.00616$, b =7.12154 \pm 0.20359, m_{π} =0.22565 \pm 0.01365 for chi squared

(d) Smilga prediction. Only $m_{pcac} > 0$ is considered.

(e) m_{π} vs. m_{pcac} .

Figure 5: Number of configurations vs. topological charge on a 64×16 lattice.

Figure 6: Kappa critical as a function of the time extension.