Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №4 по курсу «Численные методы»

Студент: А.А. Литвина

Преподаватель: И.Э. Иванов

Группа: М8О-306Б Дата:

Оценка: Подпись:

Вариант №13

1 Численные методы решения задачи Коши

1 Постановка задачи

Реализовать методы Эйлера, Рунге-Кутты и Адамса 4-го порядка в виде программ, задавая в качестве входных данных шаг сетки h. С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

Дано: $y'' - 2 \operatorname{tg}(x) y' - 3y = 0.$ y(0) = 1 y'(0) = 3 $x \in [0; 1]$ h = 0.1

2 Описание

Сведем ОДУ второго порядка к системе уравнений первого порядка:

$$\begin{cases} y' = z \\ z' = f(x, y, z) \end{cases}$$

Для нашей задачи:

$$\begin{cases} y' = z \\ z' = 2\operatorname{tg}(x)z + 3y \\ y(0) = 1 \\ z(0) = 3 \end{cases}$$

Применим к данной системе следующие методы.

2.1 Метод Эйлера

Для одиночного ОДУ формула имеет вид:

$$\Delta y_k = hf(x_k, y_k),$$

$$y_{k+1} = y_k + \Delta y_k.$$

Для системы уравнений:

$$\Delta y_k = h z_k,$$

$$\Delta z_k = h f(x_k, y_k, z_k),$$

$$y_{k+1} = y_k + \Delta y_k,$$

$$z_{k+1} = z_k + \Delta z_k.$$

Оценим погрешность путем сравнения с точным решением: $\varepsilon_k = |y_k - y_t(x_k)|$, где $y_t(x_k)$ - точное решение.

Оценим погрешность методом Рунге-Ромберга. Посчитаем $y_k^{h/2}$ - y_k при шаге h/2. Вычислим

$$R^h = \frac{y_k^h - y_k^{h/2}}{(\frac{1}{2})^p - 1}.$$

B данном случае p=1.

2.2 Метод Рунге-Кутты 4-го порядка

Для одиночного ОДУ:

$$y_{k+1} = y_k + \Delta y_k$$

$$\Delta y_k = \frac{1}{6} (K_1^k + 2K_2^k + 2K_3^k + K_4^k)$$

$$K_1^k = hf(x_k, y_k)$$

$$K_2^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_1^k)$$

$$K_3^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_2^k)$$

$$K_4^k = hf(x_k + h, y_k + K_3^k)$$

Для нашей системы:

$$K_{1y} = hz$$

$$K_{1z} = hf(x, y, z)$$

$$K_{2y} = h\left(z + \frac{1}{2}K_{1z}\right)$$

$$K_{2z} = hf(x + \frac{1}{2}h, y + \frac{1}{2}K_{1y}, z + \frac{1}{2}K_{1z})$$

$$K_{3y} = h(z + \frac{1}{2}K_{2z})$$

$$K_{3z} = hf(x + \frac{1}{2}h, y + \frac{1}{2}K_{2y}, z + \frac{1}{2}K_{2z})$$

$$K_{4y} = h(z + K_{3z})$$

$$K_{4z} = hf(x + h, y + K_{3y}, z + K_{3z})$$

2.3 Метод Адамса 4-го порядка

Метод Адамса, как и все многошаговые методы, не является самостартующим, то есть для его использования необходимо иметь решения в первых четырех узлах. В узле x_0 решение известно из начальных условий, остальные три решения получим с помощью метода Рунге-Кутты того же порядка.

Формула для одиночного ОДУ:

$$y_{k+1} = y_k + \frac{h}{24}(55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3}),$$

где f_k - значение подынтегральной функции в узле x_k .

Для нашей системы:

$$\Delta y = \frac{h}{24} (55z_i - 59z_{i-1} + 37z_{i-2} - 9z_{i-3})$$

$$\Delta z = \frac{h}{24} (55f(x_i, y_i, z_i) - 59f(x_{i-1}, y_{i-1}, z_{i-1}) + 37f(x_{i-2}, y_{i-2}, z_{i-2}) - 9f(x_{i-3}, y_{i-3}, z_{i-3}))$$

$$y_{i+1} = y_i + \Delta y$$

$$z_{i+1} = z_i + \Delta z$$

3 Исходный код

```
1 | #include <iostream>
   #include <cmath>
 3
   #include <vector>
 4
 5
   using namespace std;
 6
 7
   double sol(double x) {
 8
     return \exp(-pow(2,0.5)*x)*((2+3*pow(2,0.5))*exp(2*x*pow(2,0.5)) +2-3*pow(2,0.5))/(4*x)
         cos(x));
 9
10
11
   double f_z(double x, double y, double z) {
12
    return 2*tan(x)*z+3*y;
13 || }
14
15 | void eiler(double x, double y, double z, double b, double h) {
16
     double h2=h/2;
17
     double x2=x;
18
     double y2=y;
19
     double z2=z;
20
     double R, del_y, del_z, del_y2, del_z2, eps;
21
     int n=(b-x)/h;
22
      cout << "EILER\n";</pre>
23
      cout << "x\ty\ty_t\teps\tR\n";</pre>
24
      cout << "-----
25
     for (int i=0; i<n; i++) {
26
       del_y=h*z;
27
       del_z=h*f_z(x,y,z);
28
       y+=del_y;
29
       z+=del_z;
30
       x+=h;
31
32
       del_y2=h2*z2;
33
       del_z2=h2*f_z(x2,y2,z2);
34
       y2+=del_y2;
35
       z2+=del_z2;
36
       x2+=h2;
37
38
       del_y2=h2*z2;
39
       del_z2=h2*f_z(x2,y2,z2);
40
       y2+=del_y2;
41
       z2+=del_z2;
42
       x2+=h2;
43
44
       eps=abs(y-sol(x));
       R=(y-y2)/(0.5-1);
45
       cout << x << " | " << y << " | " << sol(x) << " | " << eps << " | " << R << "\n\n";
46
```

```
47 ||
   }
48
49
50
   |void runge_cutta(double x, double y, double z, double b, double h) {
51
     double K1_y, K2_y, K3_y, K4_y, K1_z, K2_z, K3_z, K4_z, del_y, del_z;
52
     double K1_y2, K2_y2, K3_y2, K4_y2, K1_z2, K2_z2, K3_z2, K4_z2, del_y2, del_z2;
53
     double eps, R;
     int n=(b-x)/h;
54
     double h2=h/2;
55
56
     double x2=x;
57
     double y2=y;
58
     double z2=z;
59
     cout << "RUNGE_CUTTA\n";</pre>
60
     cout << "x\ty\ty_t\teps\tR\n";</pre>
61
     cout << "----\n";
62
     for (int i=0; i<n; i++) {
63
       K1_y=h*z;
64
       K1_z=h*f_z(x,y,z);
65
       K2_y=h*(z+0.5*K1_z);
66
       K2_z=h*f_z(x+0.5*h, y+0.5*K1_y, z+0.5*K1_z);
67
       K3_y=h*(z+0.5*K2_z);
68
       K3_z=h*f_z(x+0.5*h, y+0.5*K2_y, z+0.5*K2_z);
69
       K4_y=h*(z+K3_z);
70
       K4_z=h*f_z(x+h, y+K3_y, z+K3_z);
71
       del_y=(K1_y+2*K2_y+2*K3_y+K4_y)/6;
72
73
       del_z=(K1_z+2*K2_z+2*K3_z+K4_z)/6;
74
       y+=del_y;
75
       z+=del_z;
76
       x+=h:
77
78
       K1_y2=h2*z2;
79
       K1_z2=h2*f_z(x2,y2,z2);
80
       K2_y2=h2*(z2+0.5*K1_z2);
81
       K2_z2=h2*f_z(x2+0.5*h2, y2+0.5*K1_y2, z2+0.5*K1_z2);
82
       K3_y2=h2*(z2+0.5*K2_z2);
83
       K3_{z2}=h2*f_z(x2+0.5*h2, y2+0.5*K2_y2, z2+0.5*K2_z2);
84
       K4_y2=h2*(z2+K3_z2);
85
       K4_z2=h2*f_z(x2+h2, y2+K3_y2, z2+K3_z2);
86
87
       del_y2=(K1_y2+2*K2_y2+2*K3_y2+K4_y2)/6;
88
       del_z2=(K1_z2+2*K2_z2+2*K3_z2+K4_z2)/6;
89
       y2 + = del_y2;
90
       z2+=del_z2;
       x2+=h2;
91
92
93
       K1_y2=h2*z2;
94
       K1_z2=h2*f_z(x2,y2,z2);
95
       K2_y2=h2*(z2+0.5*K1_z2);
```

```
96
         K2_z2=h2*f_z(x2+0.5*h2, y2+0.5*K1_y2, z2+0.5*K1_z2);
 97
          K3_y2=h2*(z2+0.5*K2_z2);
 98
          K3_{z2}=h2*f_z(x2+0.5*h2, y2+0.5*K2_y2, z2+0.5*K2_z2);
 99
          K4_y2=h2*(z2+K3_z2);
100
         K4_z2=h2*f_z(x2+h2, y2+K3_y2, z2+K3_z2);
101
102
          del_y2=(K1_y2+2*K2_y2+2*K3_y2+K4_y2)/6;
103
          del_z2=(K1_z2+2*K2_z2+2*K3_z2+K4_z2)/6;
104
         y2+=del_y2;
105
         z2+=del_z2;
106
         x2+=h2;
107
108
          eps=abs(y-sol(x));
109
          int p=4;
110
         R=(y-y2)/(pow(0.5,p)-1);
         \texttt{cout} << \texttt{x} << \texttt{"} \mid \texttt{"} << \texttt{y} << \texttt{"} \mid \texttt{"} << \texttt{sol}(\texttt{x}) << \texttt{"} \mid \texttt{"} << \texttt{eps} << \texttt{"} \mid \texttt{"} << \texttt{R} << \texttt{"} \backslash \texttt{n} \backslash \texttt{n} ";
111
112
113
     }
114
115
     void adams(double x, double y, double z, double b, double h) {
       double K1_y, K2_y, K3_y, K4_y, K1_z, K2_z, K3_z, K4_z, del_y, del_z;
116
117
       double K1_y2, K2_y2, K3_y2, K4_y2, K1_z2, K2_z2, K3_z2, K4_z2, del_y2, del_z2;
118
       int n=(b-x)/h;
119
       vector <double> X (n,0);
120
       vector <double> Y (n,0);
121
       vector <double> Z (n,0);
122
       vector <double> X2 (n,0);
123
       vector <double> Y2 (n,0);
124
       vector <double> Z2 (n,0);
125
       X[0]=x;
126
       Y[0]=y;
127
       Z[0]=z;
128
       double eps, R;
129
       double h2=h/2;
130
       double x2=x;
131
       double y2=y;
132
       double z2=z;
133
       X2[0]=x;
134
       Y2[0]=y;
135
       Z2[0]=z;
136
       cout << "ADAMS\n";</pre>
137
       cout << "x\ty\ty_t\teps\tR\n";</pre>
       cout << "-----
138
       for (int i=1; i<4; i++) {
139
140
         K1_y=h*z;
141
         K1_z=h*f_z(x,y,z);
142
         K2_y=h*(z+0.5*K1_z);
143
         K2_z=h*f_z(x+0.5*h, y+0.5*K1_y, z+0.5*K1_z);
144
         K3_y=h*(z+0.5*K2_z);
```

```
145
        K3_z=h*f_z(x+0.5*h, y+0.5*K2_y, z+0.5*K2_z);
146
        K4_y=h*(z+K3_z);
147
        K4_z=h*f_z(x+h, y+K3_y, z+K3_z);
148
149
        del_y=(K1_y+2*K2_y+2*K3_y+K4_y)/6;
150
        del_z=(K1_z+2*K2_z+2*K3_z+K4_z)/6;
151
        y+=del_y;
152
        z + = del_z;
153
        x+=h;
154
155
        K1_y2=h2*z2;
        K1_z2=h2*f_z(x2,y2,z2);
156
157
        K2_y2=h2*(z2+0.5*K1_z2);
158
        K2_z2=h2*f_z(x2+0.5*h2, y2+0.5*K1_y2, z2+0.5*K1_z2);
159
        K3_y2=h2*(z2+0.5*K2_z2);
160
        K3_z2=h2*f_z(x2+0.5*h2, y2+0.5*K2_y2, z2+0.5*K2_z2);
161
        K4_y2=h2*(z2+K3_z2);
162
        K4_z2=h2*f_z(x2+h2, y2+K3_y2, z2+K3_z2);
163
164
        del_y2=(K1_y2+2*K2_y2+2*K3_y2+K4_y2)/6;
165
        del_z2=(K1_z2+2*K2_z2+2*K3_z2+K4_z2)/6;
166
        y2+=del_y2;
167
        z2+=del_z2;
168
        x2+=h2;
169
170
        K1_y2=h2*z2;
171
        K1_z2=h2*f_z(x2,y2,z2);
172
        K2_y2=h2*(z2+0.5*K1_z2);
173
        K2_z2=h2*f_z(x2+0.5*h2, y2+0.5*K1_y2, z2+0.5*K1_z2);
174
        K3_y2=h2*(z2+0.5*K2_z2);
175
        K3_{z2}=h2*f_z(x2+0.5*h2, y2+0.5*K2_y2, z2+0.5*K2_z2);
176
        K4_y2=h2*(z2+K3_z2);
177
        K4_z2=h2*f_z(x2+h2, y2+K3_y2, z2+K3_z2);
178
179
        del_y2=(K1_y2+2*K2_y2+2*K3_y2+K4_y2)/6;
180
        del_z2=(K1_z2+2*K2_z2+2*K3_z2+K4_z2)/6;
181
        y2+=del_y2;
182
        z2+=del_z2;
183
        x2+=h2;
184
185
        X[i]=x;
186
        Y[i]=y;
187
        Z[i]=z;
188
189
        X2[i]=x2;
190
        Y2[i]=y2;
191
        Z2[i]=z2;
192
193
        int p=4;
```

```
194
                              eps=abs(y-sol(x));
195
                              R=(y-y2)/(pow(0.5,p)-1);
196
                              cout << x << " | " << y << " | " << sol(x) << " | " << eps << " | " << R << "\n\n";
197
                       }
198
199
                       for (int i=3; i<n; i++) {
200
                              del_y=h*(55*Z[i]-59*Z[i-1]+37*Z[i-2]-9*Z[i-3])/24;
201
                              del_z=h*(55*f_z(X[i],Y[i],Z[i])-59*f_z(X[i-1],Y[i-1],Z[i-1])+37*f_z(X[i-2],Y[i-2],Z
                                            [i-2])-9*f_z(X[i-3],Y[i-3],Z[i-3]))/24;
202
                              X[i+1]=X[i]+h;
203
                              Y[i+1]=Y[i]+del_y;
204
                              Z[i+1]=Z[i]+del_z;
205
206
                              del_y2=h2*(55*Z2[i]-59*Z2[i-1]+37*Z2[i-2]-9*Z2[i-3])/24;
207
                              del_z2=h2*(55*f_z(X2[i],Y2[i],Z2[i])-59*f_z(X2[i-1],Y2[i-1],Z2[i-1])+37*f_z(X2[i
                                            -2],Y2[i-2],Z2[i-2])-9*f_z(X2[i-3],Y2[i-3],Z2[i-3]))/24;
208
                              X2[i] += h2;
209
                              Y2[i]+=del_y2;
210
                              Z2[i]+=del_z2;
211
212
                              del_y2=h2*(55*Z2[i]-59*Z2[i-1]+37*Z2[i-2]-9*Z2[i-3])/24;
213
                              del_z2=h2*(55*f_z(X2[i],Y2[i],Z2[i])-59*f_z(X2[i-1],Y2[i-1],Z2[i-1])+37*f_z(X2[i
                                            -2],Y2[i-2],Z2[i-2])-9*f_z(X2[i-3],Y2[i-3],Z2[i-3]))/24;
214
                              X2[i+1]=X2[i]+h2;
215
                              Y2[i+1]=Y2[i]+del_y2;
216
                              Z2[i+1]=Z2[i]+del_z2;
217
218
                              int p=4;
219
                              eps=abs(Y[i+1]-sol(X[i+1]));
220
                              R=(Y[i+1]-Y2[i+1])/(pow(0.5,p)-1);
                              \texttt{cout} \, << \, \texttt{X[i+1]} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{Y[i+1]} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{sol}(\texttt{X[i+1]}) \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{eps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, \mid \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, < \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{ps} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, << \, \texttt{"} \, | \, \texttt{"} \, << \, \texttt{
221
                                            << R << "\n\n";
222
223
               }
224
225
               int main() {
226
                       double x=0;
227
                       double y=1;
228
                       double z=3;
229
                       double b=1;
230
                       double h=0.1;
                       eiler(x,y,z,b,h);
231
232
                       runge_cutta(x,y,z,b,h);
233
                       adams(x,y,z,b,h);
234 || }
```

4 Консоль

4.1 Метод Эйлера

EILER

X	у	y_t	eps	R
0.1	1.3 1.3	3176 0.01	76002 0.	015
0.2	1.63 1	.68182 0.	0518239	0.0456146
0.3	2.00562	2.11298	0.107353	0.0955461
0.4	2.44537	2.63755	0.192177	0.171323
0.5	2.9725	3.29172	0.31922	0.283497
0.6	3.61756	4.12685	0.509292	0.448827
0.7	4.42227	5.21879	0.796519	0.694196
0.8	5.44562	6.68435	1.23873	1.06387
0.9	6.77403	8.71255	1.93852	1.63352
1 8	53936 3	11.6288 3	.08947 2	2.53932

4.2 Метод Рунге-Кутты

RUNGE_CUTTA

X	У	y_t	eps	R
0.1 1	.31759	1.3176 5.43	3266e-06 5.	42026e-06
0.2 1	.68181	1.68182 1.5	26719e-05 1	.26346e-05
0.3 2	.11295	2.11298 2.3	33839e-05 2	.33009e-05
0.4 2	.63751	2.63755 4.0	03183e-05 4	.01524e-05

0.5 | 3.29165 | 3.29172 | 6.83921e-05 | 6.80728e-05 0.6 | 4.12673 | 4.12685 | 0.000116975 | 0.000116362 0.7 | 5.21859 | 5.21879 | 0.000205108 | 0.000203905 0.8 | 6.68398 | 6.68435 | 0.000374505 | 0.000372037 0.9 | 8.71182 | 8.71255 | 0.000725483 | 0.000720038 1 | 11.6273 | 11.6288 | 0.00153016 | 0.00151677

4.3 Метод Адамса

ADAMS

2 Численные методы решения краевой задачи для ОДУ

1 Постановка задачи

Реализовать метод стрельбы и конечно-разностный метод решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

Дано:
$$(e^x + 1)y'' - 2y' - e^x y = 0$$

$$y'(0) = \frac{3}{4}$$

$$y'(1) = \frac{e^2(e+2)}{(e+1)^2}$$

2 Описание

2.1 Метод стрельбы

Сведем ОДУ второго порядка к системе уравнений первого порядка:

$$\begin{cases} y' = z \\ z' = f(x, y, z) \end{cases}$$

Для нашей задачи:

$$\begin{cases} y' = z \\ z' = \frac{2z + e^x y}{e^x + 1} \\ z(0) = \frac{3}{4} \\ z(1) = \frac{e^2(e+2)}{(e+1)^2} \end{cases}$$

Обозначим неизвестное $y(0)=\eta$. Примем $\eta_0=1$ и $\eta_1=0.8$. Решим задачу Коши методом Рунге-Кутты в правом конце отрезка для η_0 и η_1 : $y(b,\eta_0,z_0)$ и $y(b,\eta_1,z_0)$, где b - правый конец отрезка, $z_0=z(0)$. Найдем следующую η по формуле:

$$\eta_{j+2} = \eta_{j+1} - \frac{\eta_{j+1} - \eta_j}{\Phi(\eta_{j+1}) - \Phi(\eta_j)} \Phi(\eta_{j+1}),$$

где
$$\Phi(\eta) = y(b, \eta, z_0) - z_1, z_1 = z(1).$$

Будем продолжать поиск η до выполнения условия: $|\Phi(\eta_k)| \le \varepsilon, \, \varepsilon = 0.0001.$

Еще раз решим задачу Коши методом Рунге-Кутты с найденым параметром η_k . Полученная табличная функция будет приближенным решением краевой задачи.

2.2 Конечно-разностный метод

Представим уравнение в виде: y'' + p(x)y' + q(x)y = f(x).

Для нашей задачи:
$$p(x)=-\frac{2}{e^x+1},\ q(x)=-\frac{e^x}{e^x+1},\ f(x)=0,\ \mathrm{h}$$
 возьмем равным $0.1.$

Запишем СЛАУ с трехдиагональной матрицей:

$$A(x_k)y_{k-1} + B(x_k)y_k + C(x_k)y_{k+1} = h^2 f(x_k), \qquad k = 2, ..., N-1,$$

где
$$A(x) = 1 - \frac{p(x)h}{2}$$
, $B(x) = -2 + h^2q(x)$, $C(x) = 1 + \frac{p(x)h}{2}$.

На левой и правой границах аппроксимируем производную односторонней разностью 1-го порядка:

$$y_0' = \frac{y_1 - y_0}{h} \Rightarrow -y_0 + y_1 = y_0' h$$
$$y_N' = \frac{y_N - y_{N-1}}{h} \Rightarrow -y_{N-1} + y_N = y_N' h$$

Получим систему уравнений:

$$\begin{cases} -y_1 + y_2 = 0.075 \\ 1.04502y_1 - 2.0055y_2 + 0.957444y_3 = 0 \\ 1.04256y_2 - 2.00574y_3 + 0.957444y_4 = 0 \\ 1.04013y_3 - 2.00599y_4 + 0.959869y_5 = 0 \\ 1.03775y_4 - 2.00622y_5 + 0.962246y_6 = 0 \\ 1.03543y_5 - 2.00646y_6 + 0.964566y_7 = 0 \\ 1.03318y_6 - 2.00668y_7 + 0.966819y_8 = 0 \\ 1.031y_7 - 2.0069y_8 + 0.968997y_9 = 0 \\ -y_9 + y_{10} = 0.252167 \end{cases}$$

Далее применяем к полученной системе метод прогонки.

3 Исходный код

```
#include <iostream>
   #include <cmath>
 3
   #include <vector>
 4
   using namespace std;
 6
 7
   const double eps=0.0001;
 8
   double f_z(double x, double y, double z) {
 9
10
    return (2*z+exp(x)*y)/(exp(x)+1);
11
12
13
   double sol(double x) {
14
    return \exp(x)-1+1/(\exp(x)+1);
15
16
17
   double runge_cutta(double x, double y, double z, double b, double h) {
18
     double K1_y, K2_y, K3_y, K4_y, K1_z, K2_z, K3_z, K4_z, del_y, del_z;
19
     int n=(b-x)/h;
20
     for (int i=0; i<n; i++) {
21
       K1_y=h*z;
22
       K1_z=h*f_z(x,y,z);
23
       K2_y=h*(z+0.5*K1_z);
24
       K2_z=h*f_z(x+0.5*h, y+0.5*K1_y, z+0.5*K1_z);
25
       K3_y=h*(z+0.5*K2_z);
26
       K3_z=h*f_z(x+0.5*h, y+0.5*K2_y, z+0.5*K2_z);
27
       K4_y=h*(z+K3_z);
28
       K4_z=h*f_z(x+h, y+K3_y, z+K3_z);
29
30
       del_y=(K1_y+2*K2_y+2*K3_y+K4_y)/6;
31
       del_z=(K1_z+2*K2_z+2*K3_z+K4_z)/6;
32
       y+=del_y;
33
       z + = del_z;
34
       x+=h;
35
36
     return z;
37
   }
38
39
    double runge_cutta2(double x, double y, double z, double b, double h) {
40
     double K1_y, K2_y, K3_y, K4_y, K1_z, K2_z, K3_z, K4_z, del_y, del_z;
41
     int n=(b-x)/h;
42
     for (int i=0; i<n; i++) {
43
       K1_y=h*z;
44
       K1_z=h*f_z(x,y,z);
45
       K2_y=h*(z+0.5*K1_z);
46
       K2_z=h*f_z(x+0.5*h, y+0.5*K1_y, z+0.5*K1_z);
47
       K3_y=h*(z+0.5*K2_z);
```

```
48
       K3_z=h*f_z(x+0.5*h, y+0.5*K2_y, z+0.5*K2_z);
49
       K4_y=h*(z+K3_z);
50
       K4_z=h*f_z(x+h, y+K3_y, z+K3_z);
51
52
       del_y=(K1_y+2*K2_y+2*K3_y+K4_y)/6;
53
       del_z=(K1_z+2*K2_z+2*K3_z+K4_z)/6;
54
       y+=del_y;
55
       z + = del_z;
56
       x+=h;
57
58
       K1_y=h*z;
59
       K1_z=h*f_z(x,y,z);
60
       K2_y=h*(z+0.5*K1_z);
61
       K2_z=h*f_z(x+0.5*h, y+0.5*K1_y, z+0.5*K1_z);
       K3_y=h*(z+0.5*K2_z);
62
63
       K3_z=h*f_z(x+0.5*h, y+0.5*K2_y, z+0.5*K2_z);
64
       K4_y=h*(z+K3_z);
65
       K4_z=h*f_z(x+h, y+K3_y, z+K3_z);
66
67
       del_y=(K1_y+2*K2_y+2*K3_y+K4_y)/6;
68
       del_z=(K1_z+2*K2_z+2*K3_z+K4_z)/6;
69
       y+=del_y;
70
       z + = del_z;
71
       x+=h;
72
      }
73
     return z;
74
   }
75
   double Fi(double eta, double x, double z0, double z1, double b, double h) {
76
77
     return runge_cutta(x,eta,z0,b,h)-z1;
   }
78
79
80
   double Fi2(double eta, double x, double z0, double z1, double b, double h) {
81
     return runge_cutta2(x,eta,z0,b,h)-z1;
82
83
   double new_eta(double eta0, double eta1, double x, double z0, double z1, double b,
84
        double h) {
85
     return eta1-Fi(eta1,x,z0,z1,b,h)*(eta1-eta0)/(Fi(eta1,x,z0,z1,b,h)-Fi(eta0,x,z0,z1,b
          ,h));
86
   }
87
88
   double new_eta2(double eta0, double eta1, double x, double z0, double z1, double b,
89
     return eta1-Fi2(eta1,x,z0,z1,b,h)*(eta1-eta0)/(Fi2(eta1,x,z0,z1,b,h)-Fi2(eta0,x,z0,
         z1,b,h));
   }
90
91
92 | void shooting_method(double x,double z0,double z1,double b, double h) {
```

```
93 |
      double K1_y, K2_y, K3_y, K4_y, K1_z, K2_z, K3_z, K4_z, del_y, del_z;
94
      double K1_y2, K2_y2, K3_y2, K4_y2, K1_z2, K2_z2, K3_z2, K4_z2, del_y2, del_z2;
 95
      double eta0=1;
96
      double eta1=0.8;
 97
      double n_eta;
 98
      double n_Fi;
99
      double e,R;
100
101
      double h2=h/2;
102
      double eta0_2=eta0;
      double eta1_2=eta1;
103
104
      double n_eta2;
105
      double n_Fi2;
106
      int n=(b-x)/h;
107
108
      n_{Fi}=Fi(eta1,x,z0,z1,b,h);
109
      while (abs(n_Fi)>eps) {
110
        n_eta=new_eta(eta0, eta1, x, z0, z1, b, h);
111
        eta0=eta1;
112
        eta1=n_eta;
113
        n_{Fi}=Fi(eta1,x,z0,z1,b,h);
114
115
116
      n_{Fi2}=Fi2(eta1_2,x,z0,z1,b,h2);
117
      while (abs(n_Fi2)>eps) {
118
        n_eta2=new_eta2(eta0_2, eta1_2, x, z0, z1, b, h2);
        eta0_2=eta1_2;
119
120
        eta1_2=n_eta2;
        n_{Fi2=Fi2(eta1_2,x,z0,z1,b,h2)};
121
122
123
124
      double z=z0;
125
      double y=eta1;
126
127
      double x2=x;
128
      double z2=z0;
129
      double y2=eta1_2;
130
131
      cout << "SHOOTING METHOD\n";</pre>
132
      cout << "x\ty\teps\tR\n";</pre>
                                     ----\n";
133
      cout << "-----
134
135
      for (int i=0; i<n; i++) {
136
        K1_y=h*z;
137
        K1_z=h*f_z(x,y,z);
138
        K2_y=h*(z+0.5*K1_z);
139
        K2_z=h*f_z(x+0.5*h, y+0.5*K1_y, z+0.5*K1_z);
140
        K3_y=h*(z+0.5*K2_z);
141
        K3_z=h*f_z(x+0.5*h, y+0.5*K2_y, z+0.5*K2_z);
```

```
142
        K4_y=h*(z+K3_z);
143
        K4_z=h*f_z(x+h, y+K3_y, z+K3_z);
144
145
        del_y=(K1_y+2*K2_y+2*K3_y+K4_y)/6;
146
        del_z=(K1_z+2*K2_z+2*K3_z+K4_z)/6;
147
        y+=del_y;
148
        z+=del_z;
149
        x+=h;
150
151
        K1_y2=h2*z2;
152
        K1_z2=h2*f_z(x2,y2,z2);
153
        K2_y2=h2*(z2+0.5*K1_z2);
154
        K2_z2=h2*f_z(x2+0.5*h2, y2+0.5*K1_y2, z2+0.5*K1_z2);
155
        K3_y2=h2*(z2+0.5*K2_z2);
156
        K3_z2=h2*f_z(x2+0.5*h2, y2+0.5*K2_y2, z2+0.5*K2_z2);
157
        K4_y2=h2*(z2+K3_z2);
158
        K4_z2=h2*f_z(x2+h2, y2+K3_y2, z2+K3_z2);
159
160
        del_y2=(K1_y2+2*K2_y2+2*K3_y2+K4_y2)/6;
        del_z2=(K1_z2+2*K2_z2+2*K3_z2+K4_z2)/6;
161
162
        y2 + = del_y2;
163
        z2+=del_z2;
164
        x2+=h2;
165
166
        K1_y2=h2*z2;
167
        K1_z2=h2*f_z(x2,y2,z2);
168
        K2_y2=h2*(z2+0.5*K1_z2);
169
        K2_z2=h2*f_z(x2+0.5*h2, y2+0.5*K1_y2, z2+0.5*K1_z2);
170
        K3_y2=h2*(z2+0.5*K2_z2);
171
        K3_{z2}=h2*f_z(x2+0.5*h2, y2+0.5*K2_y2, z2+0.5*K2_z2);
172
        K4_y2=h2*(z2+K3_z2);
173
        K4_z2=h2*f_z(x2+h2, y2+K3_y2, z2+K3_z2);
174
175
        del_y2=(K1_y2+2*K2_y2+2*K3_y2+K4_y2)/6;
176
        del_z2=(K1_z2+2*K2_z2+2*K3_z2+K4_z2)/6;
177
        y2 + = del_y2;
178
        z2+=del_z2;
179
        x2+=h2;
180
181
        int p=4;
182
        e=abs(y-sol(x));
183
        R=(y-y2)/(pow(0.5,p)-1);
        cout << x << " | " << y << " | " << e << " | " << R << "\n\n";
184
185
    }
186
187
188
    double p(double x) {
189
      return -2/(\exp(x)+1);
190 || }
```

```
191
192
    double q(double x) {
193
     return -\exp(x)/(\exp(x)+1);
194
195
196
    double f(double x) {
197
     return 0;
198
    }
199
200
    double A(double x, double h) {
201
      return 1-p(x)*h/2;
202
    }
203
204
    double B(double x,double h) {
205
     return -2+pow(h,2)*q(x);
206
    }
207
208
    double C(double x, double h) {
209
     return 1+p(x)*h/2;
210 || }
211
212
    void run_method(vector <vector<double>> A, vector <double> b, double x_i,
213
      double h, vector <vector<double>> A2, vector <double> b2) {
214
      int N=b.size();
215
      int i;
216
      double y,e,R;
217
      vector <double> x (N);
218
      vector <double> al (N);
219
      vector <double> bet (N);
220
221
      double h2=h/2;
222
      double y2;
223
      int N2=b2.size();
224
      vector <double> x2 (N2);
225
      vector <double> al2 (N2);
226
      vector <double> bet2 (N2);
227
228
      y=A[0][0];
229
      al[0]=-A[0][1]/y;
230
      bet[0]=b[0]/y;
231
      for (i=1; i<N-1; i++) {
232
        y=A[i][i]+A[i][i-1]*al[i-1];
233
        al[i]=-A[i][i+1]/y;
234
        bet[i]=(b[i]-A[i][i-1]*bet[i-1])/y;
235
236
237
      y=A[i][i]+A[i][i-1]*al[i-1];
      bet[i]=(b[i]-A[i][i-1]*bet[i-1])/y;
238
239
```

```
240 ||
      x[N-1]=bet[N-1];
241
      for (i=N-2; i>=0; i--) {
242
        x[i]=al[i]*x[i+1]+bet[i];
243
244
245
      y2=A2[0][0];
246
      a12[0] = -A2[0][1]/y2;
247
      bet2[0]=b2[0]/y2;
248
      for (i=1; i<N2-1; i++) {
249
        v2=A2[i][i]+A2[i][i-1]*al2[i-1];
250
        a12[i] = -A2[i][i+1]/y2;
251
        bet2[i]=(b2[i]-A2[i][i-1]*bet2[i-1])/y2;
252
      }
253
254
      y2=A2[i][i]+A2[i][i-1]*a12[i-1];
255
      bet2[i]=(b2[i]-A2[i][i-1]*bet2[i-1])/y2;
256
257
      x2[N2-1]=bet2[N2-1];
      for (i=N2-2; i>=0; i--) {
258
259
        x2[i]=al2[i]*x2[i+1]+bet2[i];
260
261
262
      cout << "FINITE_DIF_METHOD\n";</pre>
263
      cout << "x\ty\teps\tR\n";</pre>
264
      cout << "----
                                       ----\n";
265
      for (i=0; i<N; i++) {
266
        x_i+=h;
267
        int p=4;
268
        e=abs(sol(x_i)-x[i]);
269
        R=(x[i]-x2[2*i])/(pow(0.5,p)-1);
        cout << x_i << " | " << x[i] << " | " << e << " | " << R << endl << endl;
270
271
272
    }
273
274
    void finite_dif_method(double x,double z0,double z1,double b,double h) {
275
      int N=(b-x)/h;
276
      vector <double> s (N,0);
277
      vector <vector <double>> matrix (N,vector <double> (N,0));
278
      double x_i=x+h;
279
280
      double h2=h/2;
281
      int N2=(b-x)/h2;
282
      double x_i2=x+h2;
283
      vector <double> s2 (N2,0);
284
      vector <vector <double>> matrix2 (N2,vector <double> (N2,0));
285
286
      matrix[0][0]=-1;
287
      matrix[0][1]=1;
288
      s[0]=h*z0;
```

```
289
290
       for (int i=1; i<N-1; i++) {
291
        x_i+=h;
292
        matrix[i][i-1]=A(x_i,h);
293
        matrix[i][i]=B(x_i,h);
294
        matrix[i][i+1]=C(x_i,h);
295
        s[i]=pow(h,2)*f(x_i);
296
297
       x_i+=h;
298
299
      matrix[N-1][N-2]=-1;
300
      matrix[N-1][N-1]=1;
301
       s[N-1]=h*z1;
302
303
      matrix2[0][0]=-1;
304
      matrix2[0][1]=1;
305
       s2[0]=h2*z0;
306
307
      for (int i=1; i<N2-1; i++) {
308
        x_{i2}+=h2;
309
        matrix2[i][i-1]=A(x_i2,h2);
310
        matrix2[i][i]=B(x_i2,h2);
311
        matrix2[i][i+1]=C(x_i2,h2);
312
        s2[i] = pow(h2,2)*f(x_i2);
313
314
      x_{i2}+=h2;
315
316
      matrix2[N2-1][N2-2]=-1;
317
      matrix2[N2-1][N2-1]=1;
318
       s2[N2-1]=h2*z1;
319
320
      run_method(matrix,s,x,h,matrix2,s2);
321
322
323
    int main() {
324
      double x=0;
325
       double z0=0.75;
326
       double z1=exp(2)*(exp(1)+2)/pow((exp(1)+1),2);
327
      double b=1;
328
       double h=0.1;
329
       shooting_method(x, z0, z1, b, h);
330
      finite_dif_method(x,z0,z1,b,h);
331 || }
```

4 Консоль

4.1 Метод стрельбы

SHOOTING METHOD

x y eps R

0.1 | 0.580198 | 6.3068e-06 | -1.46167

0.2 | 0.671575 | 6.13546e-06 | -1.47393

0.3 | 0.775422 | 5.95803e-06 | -1.49581

0.4 | 0.893143 | 5.77337e-06 | -1.5286

0.5 | 1.02627 | 5.57991e-06 | -1.57365

0.6 | 1.17647 | 5.37558e-06 | -1.63241

0.7 | 1.34557 | 5.15777e-06 | -1.7064

0.8 | 1.53557 | 4.92325e-06 | -1.79726

0.9 | 1.74866 | 4.66807e-06 | -1.90671

1 | 1.98723 | 4.38753e-06 | -2.03663

4.2 Конечно-разностный метод

FINITE_DIF_METHOD

x y eps R

0.1 | 1.27056 | 0.690363 | -0.449043

0.2 | 1.34556 | 0.673986 | -0.445825

0.3 | 1.43537 | 0.659957 | -0.444775

0.4 | 1.54179 | 0.64865 | -0.446182

- 0.5 | 1.66672 | 0.640454 | -0.450347
- 0.6 | 1.81223 | 0.635767 | -0.457584
- 0.7 | 1.98056 | 0.635 | -0.468222
- 0.8 | 2.17414 | 0.638576 | -0.482607
- 0.9 | 2.39559 | 0.646935 | -0.501103
- 1 | 2.64776 | 0.660532 | -0.524099

Выводы

В этой лабораторной работе я познакомилась с численными методами решения задачи Коши: методом Эйлера, Рунге-Кутты 4-го порядка и Адамса 4-го порядка. А также с численными методами решения краевой задачи для ОДУ: методом стрельбы и конечно-разностный методом. Для каждого метода я оценила погрешность решения методом Рунге-Ромберга и путем сравнения с точным решением.