## **Chapter 12 Static Equilibrium and Elasticity**

**P12.1** Take torques about *P*.

$$\sum \tau_{p} = -n_{0} \left[ \frac{\ell}{2} + d \right] + m_{1} g \left[ \frac{\ell}{2} + d \right] + m_{b} g d - m_{2} g x = 0$$

We want to find x for which  $n_0 = 0$ .

$$X = \frac{(m_1 g + m_b g) d + m_1 g^{\frac{\ell}{2}}}{m_2 g} = \boxed{\frac{(m_1 + m_b) d + m_1 \frac{\ell}{2}}{m_2}}$$



FIG. P12.1

**P12.2** Use distances, angles, and forces as shown. The conditions of equilibrium are:

$$\sum F_{y} = 0 \Rightarrow \boxed{F_{y} + R_{y} - F_{g} = 0}$$

$$\sum F_{x} = 0 \Rightarrow \boxed{F_{x} - R_{x} = 0}$$

$$\sum \tau = 0 \Rightarrow \boxed{F_{y}\ell \cos \theta - F_{g}\left(\frac{\ell}{2}\right) \cos \theta - F_{x}\ell \sin \theta = 0}$$



FIG. P12.2

P12.4 The hole we can count as negative mass

$$X_{\text{CG}} = \frac{m_1 x_1 - m_2 x_2}{m_1 - m_2}$$

Call  $\sigma$  the mass of each unit of pizza area.

$$\mathbf{X}_{CG} = \frac{\sigma\pi R^2 0 - \sigma\pi \left(\frac{R}{2}\right)^2 \left(-\frac{R}{2}\right)}{\sigma\pi R^2 - \sigma\pi \left(\frac{R}{2}\right)^2}$$

$$X_{CG} = \frac{R/8}{3/4} = \boxed{\frac{R}{6}}$$

P12.6 Let  $\sigma$  represent the mass-per-face area. A vertical strip at position x, with width dx and

height 
$$\frac{(x-3.00)^2}{9}$$
 has mass

$$dm = \frac{\sigma (x - 3.00)^2 dx}{9}$$

The total mass is

$$M = \int dm = \int_{x=0}^{3.00} \frac{\sigma (x-3)^2 dx}{9}$$

$$M = \left(\frac{\sigma}{9}\right) \int_{0}^{3.00} (x^2 - 6x + 9) dx$$

$$M = \left(\frac{\sigma}{9}\right) \left[\frac{x^3}{3} - \frac{6x^2}{2} + 9x\right]_{0}^{3.00} = \sigma$$



FIG. P12.6

The *x*-coordinate of the center of gravity is

$$x_{\text{CG}} = \frac{\int x dm}{M} = \frac{1}{9\sigma} \int_{0}^{3.00} \sigma x (x - 3)^{2} dx = \frac{\sigma}{9\sigma} \int_{0}^{3.00} (x^{3} - 6x^{2} + 9x) dx$$
$$= \frac{1}{9} \left[ \frac{x^{4}}{4} - \frac{6x^{3}}{3} + \frac{9x^{2}}{2} \right]_{0}^{3.00} = \frac{6.75 \text{ m}}{9.00} = \boxed{0.750 \text{ m}}$$

**P12.16** Relative to the hinge end of the bridge, the cable is attached horizontally out a distance  $x = (5.00 \text{ m})\cos 20.0^\circ = 4.70 \text{ m}$  and vertically down a distance  $y = (5.00 \text{ m})\sin 20.0^\circ = 1.71 \text{ m}$ . The cable then makes the following angle with the horizontal:

$$\theta = \tan^{-1} \left[ \frac{(12.0 + 1.71) \text{ m}}{4.70 \text{ m}} \right] = 71.1^{\circ}$$

(a) Take torques about the hinge end of the bridge:

$$R_x(0) + R_y(0) - 19.6 \text{ kN } (4.00 \text{ m})\cos 20.0^{\circ}$$
  
 $-T\cos 71.1^{\circ} (1.71 \text{ m}) + T\sin 71.1^{\circ} (4.70 \text{ m})$   
 $-9.80 \text{ kN } (7.00 \text{ m})\cos 20.0^{\circ} = 0$ 

which yields 
$$T = 35.5 \text{ kN}$$

(b) 
$$\sum F_x = 0 \Rightarrow R_x - T \cos 71.1^\circ = 0$$
or 
$$R_x = (35.5 \text{ kN}) \cos 71.1^\circ = \boxed{11.5 \text{ kN (right)}}$$

(c)  $\sum F_y = 0 \Rightarrow R_y - 19.6 \text{ kN} + T \sin 71.1^\circ - 9.80 \text{ kN} = 0$ Thus,

$$R_y = 29.4 \text{ kN} - (35.5 \text{ kN}) \sin 71.1^\circ = -4.19 \text{ kN}$$
  
=  $4.19 \text{ kN down}$ 

P12.18 Call the required force F, with components  $F_x = F\cos 15.0^\circ$  and  $F_y = -F\sin 15.0^\circ$ , transmitted to the center of the wheel by the handles.

Just as the wheel leaves the ground, the ground exerts no force on it.

$$\sum F_x = 0$$
:  $F\cos 15.0^{\circ} - n_x$  (1)

$$\sum F_y = 0$$
:  $-F\sin 15.0^\circ - 400 \text{ N} + n_y = 0$  (2)



4.00 m 5.00 m

7.00 m

19.6 kN

FIG. P12.16

9.80 kN

FIG. P12.18

forces

Take torques about its contact point with the brick. The needed distances are seen to be:

distances

$$b = R - 8.00 \text{ cm} = (20.0 - 8.00) \text{ cm} = 12.0 \text{ cm}$$
  
 $a = \sqrt{R^2 - b^2} = 16.0 \text{ cm}$ 

(a) 
$$\sum \tau = 0: -F_x b + F_y a + (400 \text{ N}) a = 0, \text{ or}$$
$$F[-(12.0 \text{ cm})\cos 15.0^\circ + (16.0 \text{ cm})\sin 15.0^\circ] + (400 \text{ N})(16.0 \text{ cm}) = 0$$

$$F = \frac{6400 \text{ N} \cdot \text{cm}}{7.45 \text{ cm}} = 859 \text{ N}$$

(b) Then, using Equations (1) and (2),

$$n_x = (859 \text{ N})\cos 15.0^\circ = 830 \text{ N} \text{ and}$$
  
 $n_y = 400 \text{ N} + (859 \text{ N})\sin 15.0^\circ = 622 \text{ N}$   
 $n = \sqrt{n_x^2 + n_y^2} = \boxed{1.04 \text{ kN}}$ 

$$\theta = \tan^{-1} \left( \frac{n_y}{n_x} \right) = \tan^{-1} (0.749) = \boxed{36.9^\circ \text{ to the left and upward}}$$

**P12.19** When  $x = x_{min}$ , the rod is on the verge of slipping, so

$$f = (f_s)_{\text{max}} = \mu_s n = 0.50n$$

From 
$$\sum F_x = 0$$
,  $n - T \cos 37^\circ = 0$ , or  $n = 0.799T$ .

Thus,

$$f = 0.50(0.799T) = 0.399T$$

From 
$$\sum F_y = 0$$
,  $f + T \sin 37^\circ - 2F_g = 0$ , or

$$0.399T - 0.602T - 2F_g = 0$$
, giving  $T = 2.00F_g$ 



**P12.21** To find *U*, measure distances and forces from point A. Then, balancing torques,

$$(0.750)U = 29.4(2.25)$$
  $U = 88.2 \text{ N}$ 

To find *D*, measure distances and forces from point B. Then, balancing torques,

$$(0.750) D = (1.50)(29.4)$$
  $D = 58.8 N$ 

Also, notice that  $U = D + F_g$ , so  $\sum F_y = 0$ .



FIG. P12.19

Using  $\sum F_x = \sum F_y = \sum \tau = 0$ , choosing the origin at the left P12.39 end of the beam, we have (neglecting the weight of the beam)

$$\sum F_x = R_x - T\cos\theta = 0$$
$$\sum F_y = R_y + T\sin\theta - F_g = 0$$

and 
$$\sum \tau = -F_g(L+d) + T\sin\theta(2L+d) = 0$$
.

Solving these equations, we find:

(a) 
$$T = \overline{\frac{F_g(L+d)}{\sin\theta(2L+d)}}$$

(b) 
$$R_x = \frac{F_g(L+d)\cot\theta}{2L+d}$$
  $R_y = \frac{F_gL}{2L+d}$ 

$$R_{y} = \boxed{\frac{F_{g}L}{2L+d}}$$





FIG. P12.39

\*P12.50 Considering the torques about the point at the bottom of the bracket yields:

$$W(0.050 \text{ 0 m}) - F(0.060 \text{ 0 m}) = 0 \text{ so } F = 0.833W$$

- (a) With W = 80.0 N, F = 0.833(80 N) = 66.7 N
- (b) Differentiate with respect to time:  $dF/dt = 0.833 \, dW/dt$ The force exerted by the screw is increasing at the rate dF/dt = 0.833(0.15 N/s) = $0.125 \, \text{N/s}$

From geometry, observe that P12.51

$$\cos \theta = \frac{1}{4}$$
 and  $\theta = 75.5^{\circ}$ 

For the left half of the ladder, we have

$$\sum F_{x} = T - R_{x} = 0 \tag{1}$$

$$\sum F_{y} = R_{y} + n_{A} - 686 \text{ N} = 0 \tag{2}$$

$$\sum \tau_{\text{top}} = 686 \text{ N} (1.00\cos 75.5^{\circ}) + T(2.00\sin 75.5^{\circ})$$
$$-n_{A} (4.00\cos 75.5^{\circ}) = 0 \tag{3}$$



For the right half of the ladder we have

$$\sum F_x = R_x - T = 0$$

$$\sum F_y = n_B - R_y = 0$$
(4)

$$\sum r_{y} = n_{B} - R_{y} = 0$$

$$\sum \tau_{\text{top}} = n_{B} (4.00\cos 75.5^{\circ}) - T(2.00\sin 75.5^{\circ}) = 0$$
(5)

Solving equations 1 through 5 simultaneously yields:



FIG. P12.51

(a) 
$$T = 133 \text{ N}$$

(b) 
$$n_A = 429 \text{ N}$$
 and  $n_B = 257 \text{ N}$ 

(c) 
$$R_x = 133 \text{ N}$$
 and  $R_y = 257 \text{ N}$ 

The force exerted by the left half of the ladder on the right half is to the right and downward.

**P12.60** When the car is on the point of rolling over, the normal force on its inside wheels is zero.

$$\sum F_{y} = ma_{y}: n - mg = 0$$

$$\sum F_{x} = ma_{x}: f = \frac{mv^{2}}{R}$$

Take torque about the center of mass:  $fh - n\frac{d}{2} = 0$ .

Then by substitution 
$$\frac{mv_{\text{max}}^2}{R}h - \frac{mgd}{2} = 0$$
  $v_{\text{max}} = \sqrt{\frac{gdR}{2h}}$ 



A wider wheelbase (larger *d*) and a lower center of mass (smaller *h*) will reduce the risk of rollover.