Lecture 1.4: The Molecular Clock

Diversification of mammals

Emergence of HIV/AIDS in the Americas

The Molecular Clock

The molecular clock

The molecular clock

The molecular clock

- Zuckerkandl & Pauling (1962)
- Margoliash (1963)
- Doolittle & Blomback (1964)
- Zuckerkandl & Pauling (1965)

Assumed constant rate among species to estimate timing of globin gene duplications

Proportional relationship between genetic distance and time since divergence

Examined correlation between time and genetic divergence in mammalian fibrinopeptides

Introduced the term 'molecular evolutionary clock'

Sources of error

Sources of error

model of rate variation

Departures from the clock

- Rates vary among lineages
 - Differences in mutation rates
 - Differences in strength and direction of selection
 - Differences in population size

Testing for clocklike evolution

Relative-rates test (Fitch, 1976)

Why keep the molecular clock?

 The behaviour of most real sequences does not satisfy the assumption of a strict molecular clock

Bromham & Penny (2003):

The molecular clock is an irreplaceable source of information in evolutionary biology and it would be foolish to abandon it altogether

Relaxed Molecular Clocks

Molecular-clock models

• Strict or 'global' molecular clock

Local molecular clock

Relaxed molecular clock

Local molecular clock

Host-specific clock

From: Worobey et al. 2014 Nature

Relaxed clocks

- We know that life-history characteristics:
 - Have effects on rates of molecular evolution
 - Are usually heritable to some degree
- Treat molecular rate as a heritable trait
- Relaxed clocks generally assume that closely related species share similar rates

Likelihood-based relaxed clocks

Allow a different rate in each branch

Calibrating the Molecular Clock

Calibrating the molecular clock

Calibrating the molecular clock

Calibrating the molecular clock

Calibrating information

- Information about the rate
 - Substitution rate obtained from an independent study
- Information about time

Point calibrations

- Traditional approach
- Artificial precision: ignores the uncertainty arising from preservational biases, isotopic dating errors, etc.

Hard calibration bounds

Minimum or maximum age constraints

- Discards potentially useful information
- Inadequate information for estimating divergence times

Calibration: Sampling times

Validating estimates: Root-to-tip regression

- High R²
- Positive rate
- P-value (controversial)

Validating estimates: Root-to-tip regression

- High R²
- Positive rate
- P-value (controversial)

The rate estimate is phylogenetically non-independent

The date-randomisation test

From: Duchene et al. 2015 Mol Biol Evo

The date-randomisation test

From: Duchene et al. 2015 Mol Biol Evo

Medium

The date-randomisation test

From: Duchene et al. 2015 Mol Biol Evo

Weak

Some useful references

- Ho, Simon YW, and Sebastián Duchêne. "Molecular-clock methods for estimating evolutionary rates and timescales." Molecular Ecology 23.24 (2014): 5947-5965.
- Rieux, Adrien, and François Balloux. "Inferences from tipcalibrated phylogenies: a review and a practical guide." *Molecular* ecology 25.9 (2016): 1911-1924.
- Duchêne, Sebastián, et al. "The performance of the daterandomisation test in phylogenetic analyses of time-structured virus data." Molecular biology and evolution (2015).

Go to Practical 1d: Assessing temporal structure in TempEst