Questions de cours.

- 1. Énoncé et démonstration du théorème de Rolle.
- 2. Énoncé et démonstration du théorème des accroissements finis.
- 3. Énoncé et démonstration du théorème de la limite de la dérivée.
- 4. Énoncé et démonstration de la formule de Leibniz.
- 5. On pose $f: x \mapsto e^{-\frac{1}{x}}$. Montrer que $f \in \mathcal{C}^n(\mathbf{R}_+^*)$ et que pour tout n il existe $P_n \in \mathbf{R}_n[X]$ tel que $f^{(n)} = \frac{P_n}{X^{2n}}f$

Exercices.

Exercice 1. Calculer les dérivées n-ièmes des fonctions suivantes :

- 1. cos et sin. On proposera une formule qui ne dépend pas de la classe de n modulo 4.
- 2. $x \mapsto x^p$ pour $p \in \mathbf{Z}$
- 3. $x \mapsto (x^2 x 1)e^x$
- 4. $x \mapsto \cos(x)e^x$
- 5. $x \mapsto \frac{1}{x-\lambda}$

Exercice 2. Théorème de Darboux.

Soit $f:]a, b[\to \mathbf{R}$ une fonction dérivable. Soient $x, y \in]a, b[$. On suppose que f'(x) < 0 et f'(y) > 0. Montrer que f' s'annule. Proposez une généralisation de ce résultat.

Exercice 3. Vrai ou faux?

Pour chacune de ses affirmations, fournissez un contre-exemple ou une preuve.

- 1. Une fonction dérivable sur \mathbf{R}^{\star} de dérivée nulle sur \mathbf{R}^{\star} est constante.
- 2. Si f est convexe sur [a, b] alors elle est continue sur [a, b].
- 3. Si f et g sont convexes, alors $g \circ f$ est convexe.
- 4. Si $f:[0,\infty[\to \mathbf{R}$ est convexe décroissante, alors elle est minorée.
- 5. Une fonction dérivable en 0 est continue sur un voisinage de 0.

Exercice 4. Soit $f: I \to \mathbf{R}$ une fonction dérivable. Montrer que f est lipschitzienne si et seulement si f' est bornée.

Exercice 5. Soit f dérivable en $a \in \mathbb{R}$. Étudiez

$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$$

Exercice 6. On pose $f = \ln \circ \ln$, défini sur $]1, \infty[$.

- 1. Justifier que f est bien défini et montrer que f est concave.
- 2. En déduire que

$$\forall x, y \in]1, \infty[: \ln\left(\frac{x+y}{2}\right) \ge \sqrt{\ln(x)\ln(y)}$$

Exercice 7. Soit $f: \mathbf{R}_+ \mapsto \mathbf{R}$ une fonction bornée et dérivable. On suppose que f admet une limite ℓ en $+\infty$. Déterminer la valeur de ℓ .

Exercice 8. Soit $f:[0,1]\to \mathbf{R}$ dérivable. On pose

$$\forall x \in [0,1] : \varphi(x) = \begin{cases} f(2x) & \text{si } x \in [0,1/2] \\ f(2x-1) & \text{sinon} \end{cases}$$

A quelle(s) condition(s) φ est-elle continue? Dérivable?

Exercice 9. On pose $f: t \mapsto e^{-\frac{t^2}{2}}$.

- 1. Montrer que f est \mathcal{C}^{∞} sur \mathbf{R} et qu'il existe une suite de polynômes $(P_n) \in \mathbf{R}[X]^{\mathbf{N}}$ telle que :
 - (a) $f^{(n)}(x) = P_n(x)f(x)$
 - (b) $P_{n+1} = P'_n XP_n$

Calculer les premiers termes de cette suite.

- 2. Déterminer le coefficient dominant de P_n , son degré et ses limites en $\pm \infty$.
- 3. On suppose P_n scindé à racines simples. On note $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ ses racines. Déterminer le signe de $P'_n(\alpha_i)$ pour tout i.

Exercice 10. Théorème du point fixe de Banach-Picard. Soit $f:[a,b]\mapsto [a,b]$ une fonction \mathcal{C}^1 vérifiant |f'|<1.

- 1. Montrer que f admet un unique point fixe. On le notera α .
- 2. Étudiez la convergence de la suite définie par :

$$\begin{cases} u_0 \in [a, b] \\ \forall n \in \mathbf{N} : u_{n+1} = f(u_n) \end{cases}$$

Exercice 11. Théorème de Rolle généralisé.

Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction dérivable et ℓ un réel. On suppose que

$$\lim_{-\infty} f = \lim_{+\infty} f = \ell$$

Montrer que f' s'annule. Proposer et démontrer une généralisation analogue pour le théorème des accroissements finis.