

A Simple and Efficient Implementation of Strong Call by Need by an Abstract Machine

Małgorzata Biernacka, Witold Charatonik, Tomasz Drab

University of Wrocław

27th ACM SIGPLAN International Conference on Functional Programming (ICFP) 2022

call by name

call by value

call by name

call by value

don't evaluate unneeded arguments

call by name

don't evaluate unneeded arguments

call by value

evaluate arguments at most once

call by name

don't evaluate unneeded arguments

call by value

evaluate arguments at most once

call by need

$$2 = \lambda f. \lambda x. f(f x)$$

```
2 = \lambda f. \lambda x. f (f x)
\times = \lambda n. \lambda m. \lambda f. m (n f)
```

```
2 = \lambda f. \lambda x. f (f x)
\times = \lambda n. \lambda m. \lambda f. m (n f)
```

× 2 2

```
2 = \lambda f. \lambda x. f (f x)
\times = \lambda n. \lambda m. \lambda f. m (n f)
\text{weak}
\times 22 \rightarrow \rightarrow
```

```
2 = \lambda f. \lambda x. f (f x)
\times = \lambda n. \lambda m. \lambda f. m (n f)
weak
```

 \times 2 2 $\rightarrow \rightarrow \lambda f$. 2 (2 f)

```
2 = \lambda f. \ \lambda x. \ f (f \ x)\times = \lambda n. \ \lambda m. \ \lambda f. \ m (n \ f)
```

weak
$$\times$$
 2 2 \rightarrow \rightarrow λf . 2 (2 f) \rightarrow

```
2 = \lambda f. \ \lambda x. \ f (f \ x)
\times = \lambda n. \ \lambda m. \ \lambda f. \ m (n \ f)
\times 2 \ 2 \ \rightarrow \rightarrow \lambda f. \ 2 \ (2 \ f) \ \not\rightarrow
\times 2 \ 2 \ \rightarrow \rightarrow \lambda f. \ 2 \ (2 \ f)
\times 2 \ 2 \ \rightarrow \rightarrow \lambda f. \ 2 \ (2 \ f)
```

```
2 = \lambda f. \ \lambda x. \ f (f \ x)
\times = \lambda n. \ \lambda m. \ \lambda f. \ m \ (n \ f)
\times 2 \ 2 \ \xrightarrow{\text{weak}} \ \lambda f. \ 2 \ (2 \ f) \ \xrightarrow{\text{weak}}
\times 2 \ 2 \ \xrightarrow{\text{strong}} \ \lambda f. \ 2 \ (2 \ f) \ \xrightarrow{\text{strong}} \ \lambda f. \ \lambda x. \ f \ (f \ (f \ (f \ x)))
```

```
2 = \lambda f. \lambda x. f (f x)
\times = \lambda n. \lambda m. \lambda f. m (n f)
```

weak
$$\times$$
 2 2 \rightarrow \rightarrow λf . 2 (2 f) \rightarrow

$$\times$$
 2 2 $\xrightarrow{\text{strong}}$ λf . 2 (2 f) $\xrightarrow{\text{strong}}$ λf . λx . f (f (f (f x))) = 4

$$2 = \lambda f. \ \lambda x. \ f (f \ x)$$
$$\times = \lambda n. \ \lambda m. \ \lambda f. \ m (n \ f)$$

weak
$$\times$$
 2 2 \rightarrow \rightarrow λf . 2 (2 f) \rightarrow

$$\times$$
 2 2 $\xrightarrow{\text{strong}}$ λf . 2 (2 f) $\xrightarrow{\text{strong}}$ λf . λx . f (f (f (f x))) = 4

strong reduction applied in type checking in proof assistants

In what sense efficient?

Time complexity as a function of the two parameters:

- size of the initial term
- number of β-reductions

[Accattoli, Barenbaum, Mazza, ICFP 2014]

In what sense efficient?

Time complexity as a function of the two parameters:

- size of the initial term
- number of β-reductions

[Accattoli, Barenbaum, Mazza, ICFP 2014]

Implementation is efficient if it is linear in both parameters.

cf. [Accattoli, Guerrieri, FSEN 2017]

[Ager, Biernacki, Danvy, Midtgaard, 2003] implement full normalization in call by need

- [Ager, Biernacki, Danvy, Midtgaard, 2003] implement full normalization in call by need
- ► [Biernacka, Charatonik, FSCD 2019] implement [Balabonski, Barenbaum, Bonelli, Kesner, ICFP 2017]

- [Ager, Biernacki, Danvy, Midtgaard, 2003] implement full normalization in call by need
- [Biernacka, Charatonik, FSCD 2019]
 implement
 [Balabonski, Barenbaum, Bonelli, Kesner, ICFP 2017]

both machines suffer from exponential overhead

derivation of the efficient machine

derivation of the efficient machine (quasi-efficient)

- derivation of the efficient machine (quasi-efficient)
- correctness and complexity

- derivation of the efficient machine (quasi-efficient)
- correctness and complexity
- remark on empirical method

- derivation of the efficient machine (quasi-efficient)
- correctness and complexity
- remark on empirical method
- remark on implicit sharing

Definitional Interpreter

[John C. Reynolds, 1972]

[John C. Reynolds, 1972] [Ager, Danvy, Biernacki, Midtgaard, PPDP 2003]

[John C. Reynolds, 1972] [Ager, Danvy, Biernacki, Midtgaard, PPDP 2003] [Buszka, Biernacki, PPDP 2021]

Derivation

[Crégut, 1990]

KN

abstract machine

[Crégut, 1990] [García-Pérez, Nogueira, JFP 2019]

abstract machine

implements

order

reduction strategy

[Munk, 2008] [Crégut, 1990] [García-Pérez, Nogueira, JFP 2019] normal <functional deconstruction implements order code> abstract machine reduction strategy introduction of memoizations and other changes <functional code>

RKNL

 $\langle t, \lambda x. \square :: s, \sigma \rangle_{\wedge} \rightarrow \langle \lambda x. t, s, \sigma \rangle_{\wedge}$

$$\langle (t_{1} t_{2}, e), s, \sigma \rangle_{\nabla} \rightarrow \langle (t_{1}, e), \Box (t_{2}, e) :: s, \sigma \rangle_{\nabla}$$

$$\langle (\lambda x.t, e), s, \sigma \rangle_{\nabla} \rightarrow \langle \ell := (\lambda x.t, e), s, \sigma * [\ell \mapsto \bot_{\mathbf{X}}] \rangle_{\Delta}$$

$$\langle (x, e), s, \sigma \rangle_{\nabla} \rightarrow \langle (t, e_{2}), \ell := \Box :: s, \sigma \rangle_{\nabla} \text{ where } \ell = e(x), \ \sigma(\ell) = (t, e_{2})_{\mathbf{X}}$$

$$\langle (x, e), s, \sigma \rangle_{\nabla} \rightarrow \langle v, s, \sigma \rangle_{\Delta} \qquad \text{where } \sigma(e(x)) = v_{\checkmark} \lor (v = x \notin e)$$

$$\langle v, \ell := \Box :: s, \sigma \rangle_{\Delta} \rightarrow \langle v, s, \sigma[\ell := v_{\checkmark}] \rangle_{\Delta}$$

$$\langle \ell := (\lambda x.t, e), \Box (t_{2}, e_{2}) :: s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), s, \sigma * [\ell_{2} \mapsto (t_{2}, e_{2})_{\mathbf{X}}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \iota := \iota := \iota := \iota : s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle \ell_{1}, \ell_{2}, \ell_{2}, \ell_{2}, \ell_{2}, \ell_{2}, \ell_{2} \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle \ell_{1}, \ell_{2}, \ell_{2},$$

(11)

0: $\langle ((\lambda x.c x x) (A \Omega), []) \rangle_{\nabla} |[]$

 $\stackrel{(1)}{\longrightarrow}$

 $0: \qquad \left\langle ((\lambda x.c \, x \, x) \, (A \, \Omega), []) \right\rangle_{\nabla} |[]$ $1: \qquad \left\langle (\lambda x.c \, x \, x, []) \right\rangle_{\nabla} \, (A \, \Omega, []) |[]$

0:	$\langle ((\lambda x.c x x) (A \Omega), []) \rangle_{\nabla} []$	$\stackrel{(1)}{\longrightarrow}$
1:	$\langle (\lambda x.c x x, []) \rangle_{\nabla} (A \Omega, []) []$	$\stackrel{(2)}{\longrightarrow}$
2:	$\langle \mathbf{G} := (\lambda x.c x x, []) \rangle_{\Delta} (A \Omega, []) [\mathbf{G} \mapsto \bot_{\mathbf{X}}]$	$\stackrel{(6)}{\longrightarrow}$

0:	$\langle ((\lambda x.c x x) (A \Omega), []) \rangle_{\nabla} [[]$	$\stackrel{(1)}{\longrightarrow}$
1:	$\langle (\lambda x.c x x, []) \rangle_{\nabla} (A \Omega, []) []$	$\stackrel{(2)}{\longrightarrow}$
2:	$\left\langle \mathbf{G} := (\lambda x.c \ x \ x, []) \right\rangle_{\Delta} (A \ \Omega, []) [\mathbf{G} \mapsto \bot_{\times}]$	$\stackrel{(6)}{\longrightarrow}$
3:	$\langle (c x x, [x \mapsto x]) \rangle_{\nabla} [x \mapsto (A \Omega, [])_{\kappa}]$	$\stackrel{(1)}{\longrightarrow}$

0:	$\langle ((\lambda x.c x x) (A \Omega), []) \rangle_{\nabla} [[]$	$\stackrel{(1)}{\rightarrow}$
1:	$\langle (\lambda x.c x x, []) \rangle_{\nabla} (A \Omega, []) []$	$\stackrel{(2)}{\longrightarrow}$
2:	$\left\langle \mathbf{G} := (\lambda x.c x x, []) \right\rangle_{\Delta} (A \Omega, []) [\mathbf{G} \mapsto \bot_{\mathbf{X}}]$	$\stackrel{(6)}{\longrightarrow}$
3:	$\langle (c x x, [x \mapsto \bowtie]) \rangle_{\triangledown} [\bowtie \mapsto (A \Omega, [])_{\varkappa}]$	$\stackrel{(1)}{\rightarrow}$
4:	$\langle (c x, [x \mapsto z]) \rangle_{\nabla} x^{z} [z \mapsto (A \Omega, [])_{x}]$	$\stackrel{(1)}{\rightarrow}$

0:	$\langle ((\lambda x.c \ x \ x) \ (A \ \Omega), []) \rangle_{\nabla} []$	$\stackrel{(1)}{\longrightarrow}$
1:	$\langle (\lambda x.c x x, []) \rangle_{\nabla} (A \Omega, []) []$	$\stackrel{(2)}{\longrightarrow}$
2:	$\left\langle 0 := (\lambda x.c x x, []) \right\rangle_{\Delta} (A \Omega, []) [0 \mapsto \bot_{\mathbf{x}}]$	$\stackrel{(6)}{\longrightarrow}$
3:	$\langle (c \times x, [x \mapsto z]) \rangle_{\nabla} [z \mapsto (A \Omega, [])_{x}]$	$\stackrel{(1)}{\longrightarrow}$
4:	$\langle (c x, [x \mapsto z]) \rangle_{\nabla} x^z [z \mapsto (A \Omega, [])_{x}]$	$\stackrel{(1)}{\longrightarrow}$
5:	$\langle (c, [x \mapsto x]) \rangle_{\nabla} x^{x} x^{x} [x \mapsto (A \Omega, [])_{x}]$	$\stackrel{(4)}{\longrightarrow}$

0:	$\langle ((\lambda x.c x x) (A \Omega), []) \rangle_{\nabla} []$	$\stackrel{(1)}{\longrightarrow}$
1:	$\langle (\lambda x.c x x, []) \rangle_{\nabla} (A \Omega, []) []$	$\stackrel{(2)}{\longrightarrow}$
2:	$\langle \mathbb{Q} := (\lambda x.c x x, []) \rangle_{\wedge} (A \Omega, []) [\mathbb{Q} \mapsto \bot_{\times}]$	$\stackrel{(6)}{\longrightarrow}$
3:	$\langle (c \times x, [x \mapsto x]) \rangle_{\nabla} [x \mapsto (A \Omega, [])_{x}]$	$\stackrel{(1)}{\longrightarrow}$
4:	$\langle (c x, [x \mapsto x]) \rangle_{\nabla} x^{x} [x \mapsto (A \Omega, [])_{x}]$	$\stackrel{(1)}{\longrightarrow}$
5:	$\langle (c, [x \mapsto x]) \rangle_{\nabla} x^{x} x^{x} [x \mapsto (A \Omega, [])_{x}]$	$\stackrel{(4)}{\longrightarrow}$
6:	$\langle c \rangle$ $x^{\times} x^{\times} [\times \mapsto (A \Omega, [])_{\times}]$	$\stackrel{(9)}{\longrightarrow}$

(1)

0:	$\langle ((\lambda x.c x x) (A \Omega), []) \rangle_{\nabla} []$	$\stackrel{(1)}{\longrightarrow}$
1:	$\langle (\lambda x.c x x, []) \rangle_{\nabla} (A \Omega, []) []$	$\stackrel{(2)}{\longrightarrow}$
2:	$\left\langle \mathbf{G} := (\lambda x.c \ x \ x, []) \right\rangle_{\Delta} (A \ \Omega, []) [\mathbf{G} \mapsto \bot_{\mathbf{X}}]$	$\stackrel{(6)}{\longrightarrow}$
3:	$\langle (c x x, [x \mapsto \mathbb{Z}]) \rangle_{\nabla} [\mathbb{Z} \mapsto (A \Omega, [])_{\times}]$	$\stackrel{(1)}{\longrightarrow}$
4:	$\langle (c x, [x \mapsto x]) \rangle_{\nabla} x^{x} [x \mapsto (A \Omega, [])_{x}]$	$\stackrel{(1)}{\longrightarrow}$
5:	$\langle (c, [x \mapsto z]) \rangle_{\nabla} x^z x^z [z \mapsto (A \Omega, [])_{\kappa}]$	$\stackrel{(4)}{\longrightarrow}$
6:	$\langle c \rangle_{\triangle} x^{\varkappa} x^{\varkappa} [\varkappa \mapsto (A \Omega, [])_{\varkappa}]$	$\stackrel{(9)}{\longrightarrow}$
7:	$c\langle x^{\times}\rangle_{-} x^{\times} [x\mapsto (A\Omega,[])_{\times}]$	$\stackrel{(3)}{\longrightarrow}$

Elaborate Example Execution

0:
$$\langle ((\lambda x.c \, x \, x) \, (A \, \Omega), []) \rangle_{\nabla} | []$$

1: $\langle (\lambda x.c \, x \, x, []) \rangle_{\nabla} \, (A \, \Omega, []) | []$

2: $\langle 0 := (\lambda x.c \, x \, x, []) \rangle_{\Delta} \, (A \, \Omega, []) | [0 \mapsto \bot_{X}]$

3: $\langle (c \, x \, x, [x \mapsto X]) \rangle_{\Delta} | [x \mapsto (A \, \Omega, [])_{X}]$

 $c\left(\mathbf{x} := \left\langle (A\Omega, []) \right\rangle_{\nabla}\right) \mathbf{x}^{\mathbf{x}} | \left[\mathbf{x} \mapsto (A\Omega, [])_{\mathbf{x}}\right]$

$$\frac{\langle (c \times x, [x \mapsto x]) \rangle_{\nabla} | [x \mapsto (A \Omega, [])_{x}] }{\langle (c \times [x \mapsto x]) \rangle_{\nabla} | [x \mapsto (A \Omega, [])_{x}] }$$

4:
$$\langle (c x, [x \mapsto x]) \rangle_{\nabla} x^{x} | [x \mapsto (A \Omega, [])_{x}]$$
5:
$$\langle (c [x \mapsto x]) \rangle_{\nabla} x^{x} | [x \mapsto (A \Omega, [])_{x}]$$

5:
$$\langle (c, [x \mapsto x]) \rangle_{\nabla} x^{x} x^{x} | [x \mapsto (A \Omega, [])_{x}]$$
6:
$$\langle c \rangle_{\Delta} x^{x} x^{x} | [x \mapsto (A \Omega, [])_{x}]$$

6:
$$\langle c \rangle_{\Delta} x^{\varkappa} x^{\varkappa} | [\varkappa \mapsto (A \Omega, [])_{\varkappa}]$$
7:
$$c \langle x^{\varkappa} \rangle_{\nabla} x^{\varkappa} | [\varkappa \mapsto (A \Omega, [])_{\varkappa}]$$

8:

$$\frac{\langle (\lambda x.c \, x \, x, []) \rangle_{\nabla} (A \, \Omega, []) | [] }{\langle \mathbf{G} := (\lambda x.c \, x \, x, []) \rangle_{\Delta} (A \, \Omega, []) | [\mathbf{G} \mapsto \bot_{\mathbf{X}}] }$$

$$\frac{\langle (c \, x \, x, [x \mapsto \mathbf{Z}]) \rangle_{\nabla} | [\mathbf{Z} \mapsto (A \, \Omega, [])_{\mathbf{X}}] }{\langle (c \, x \, x, [x \mapsto \mathbf{Z}]) \rangle_{\nabla} | [\mathbf{Z} \mapsto (A \, \Omega, [])_{\mathbf{X}}] }$$

 $\stackrel{(1)}{\longrightarrow}$

 $\stackrel{\text{(2)}}{\longrightarrow}$

 $\stackrel{(6)}{\longrightarrow}$

 $\stackrel{(1)}{\longrightarrow}$

 $\stackrel{\text{(1)}}{\longrightarrow}$

 $\stackrel{(4)}{\longrightarrow}$

 $\stackrel{(9)}{\longrightarrow}$

 $\stackrel{(3)}{\longrightarrow}$

 $\stackrel{\text{(1)}}{\longrightarrow}$

Correctness and Complexity

Correctness and Complexity

RKNL

abstract machine

KL

abstract machine for weak call by need

conservatively extends

RKNL

abstract machine

normal order

full-reducing strategy (strong call by name)

KL

abstract machine for weak call by need

RKNL

abstract machine

normal order

full-reducing strategy (strong call by name)

abstract machine for weak call by need

RKNL

abstract machine for **strong** call by **need**

normal order

full-reducing strategy (strong call by name)

RKNL

abstract machine for **strong** call by **need**

KL

abstract machine for weak call by need

Applicative Stacks $\ni \alpha ::= \ell := \square :: \alpha \mid \square c :: \alpha \mid \lceil \square \rceil :: \nu$ *Non-applicative Stacks* $\ni v ::= \ell' := \square :: v \mid [] \mid \lambda x. \square :: v \mid a \square :: \alpha$ Confs $\ni k := \langle c, \alpha, \sigma, \sigma' \rangle_{\nabla} \mid \langle v, \alpha, \sigma, \sigma' \rangle_{\wedge} \mid \langle n, v, \sigma, \sigma' \rangle_{\wedge'}$ Transitions: $t \mapsto \langle (t, [\]), [\ \Box \] :: [\], [\] \rangle_{\nabla}$ $\langle (t_1, t_2, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \rightarrow \langle (t_1, e), \Box (t_2, e) :: \alpha, \sigma, \sigma' \rangle_{\nabla}$ (1) $\langle (\lambda x.t, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \rightarrow \langle \ell' := (\lambda x.t, e), \alpha, \sigma, \sigma' * [\ell' \mapsto \bot_{\mathbf{x}}] \rangle_{\wedge}$ (2) $\langle (x,e), \alpha, \sigma, \sigma' \rangle_{\nabla} \rightarrow \langle (t,e_2), \ell := \square :: \alpha, \sigma, \sigma' \rangle_{\nabla}$ (3) where $\ell = e(x)$, $\sigma(\ell) = (t, e_2)_{\mathbf{x}}$ $\langle (x,e), \alpha, \sigma, \sigma' \rangle_{\nabla} \to \langle v, \alpha, \sigma, \sigma' \rangle_{\wedge}$ where $\sigma(e(x)) = v_{\checkmark} \lor (v = x \notin e)$ (4) $\langle v, \ell := \square :: \alpha, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle v, \alpha, \sigma[\ell := v, \ell], \sigma' \rangle_{\wedge}$ (5) $\langle n, \ell' := \square :: \nu, \sigma, \sigma' \rangle_{\wedge'} \rightarrow \langle n, \nu, \sigma, \sigma' [\ell' := n_{\ell'}] \rangle_{\wedge'}$ (5') $\langle \ell' := (\lambda x.t, e), \Box(t_2, e_2) :: \alpha, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle (t, e[x := \ell_2]), \alpha, \sigma * [\ell_2 \mapsto (t_2, e_2)_{\mathbf{X}}], \sigma' \rangle_{\nabla}$ (6) $\langle \ell' := (\lambda x.t, e), \qquad [\Box] :: \nu, \sigma, \sigma' \rangle_{\triangle} \rightarrow \langle (t, e[x := \ell_2]), [\Box] :: \lambda \check{x}. \Box :: \ell' := \Box :: \nu,$ $\sigma * [\ell_2 \mapsto \check{x}_{\star}], \sigma' \rangle_{\nabla}$ where $\sigma'(\ell') = \bot_{\mathbf{X}}$ (7)

 $\langle \ell' := (\lambda x.t, e), \qquad \lceil \Box \rceil :: \nu, \sigma, \sigma' \rangle_{\triangle} \rightarrow \langle n, \nu, \sigma, \sigma' \rangle_{\triangle'}$ where $\sigma'(\ell') = n_{\checkmark}$ (8) $\langle a, \Box (t_2, e_2) :: \alpha, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle (t_2, e_2), [\Box] :: a \Box :: \alpha, \sigma, \sigma' \rangle_{\nabla}$ (9)

$$\langle a, \qquad \lceil \Box \rceil :: \nu, \sigma, \sigma' \rangle_{\triangle} \to \langle \lceil a \rceil, \nu, \sigma, \sigma' \rangle_{\triangle'}$$
 (9a)

Applicative Stacks
$$\ni$$
 $\alpha := \ell := \square :: \alpha \mid \square c :: \alpha \mid \lceil \square \rceil :: v$

Non-applicative Stacks \ni $v := \ell' := \square :: v \mid \lceil \rceil \mid \lambda x . \square :: v \mid \alpha \square :: \alpha$

$$Confs \ni \quad k := \langle c, \alpha, \sigma, \sigma' \rangle_{\nabla} \mid \langle v, \alpha, \sigma, \sigma' \rangle_{\Delta} \mid \langle n, v, \sigma, \sigma' \rangle_{\Delta'}$$

Transitions:
$$t \mapsto \langle (t, \lceil \rceil), \lceil \square \rceil :: \lceil \rceil, \lceil \rceil \rangle_{\nabla}$$

$$\langle (t_1 t_2, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \to \langle (t_1, e), \square (t_2, e) :: \alpha, \sigma, \sigma' \rangle_{\nabla}$$

$$\langle (\lambda x.t, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \to \langle \ell' := (\lambda x.t, e), \alpha, \sigma, \sigma' * \{\ell' \mapsto \bot_{\mathbf{X}} \} \rangle_{\Delta}$$

$$\langle (x, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \to \langle (t, e_2), \ell := \square :: \alpha, \sigma, \sigma' \rangle_{\nabla}$$

$$\langle (x, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \to \langle v, \alpha, \sigma, \sigma' \rangle_{\Delta} \quad \text{where } \sigma(e(x)) = v_{\checkmark} \lor (v = x \notin e)$$

$$\langle (v, \ell := \square :: \alpha, \sigma, \sigma' \rangle_{\Delta} \to \langle v, \alpha, \sigma [\ell := v_{\checkmark}], \sigma' \rangle_{\Delta}$$

$$\langle (v, \ell := \square :: v, \sigma, \sigma' \rangle_{\Delta'} \to \langle v, \alpha, \sigma [\ell' := n_{\checkmark}] \rangle_{\Delta'}$$

$$\langle \ell' := (\lambda x.t, e), \square (t_2, e_2) :: \alpha, \sigma, \sigma' \rangle_{\Delta} \to \langle (t, e[x := \ell_2]), \lceil \square \rceil :: \lambda \check{x}. \square :: \ell' := \square :: v,$$

$$\sigma * [\ell_2 \mapsto \check{x}_{\checkmark}], \sigma' \rangle_{\nabla} \quad \text{where } \sigma'(\ell') = \bot_{\mathbf{X}}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

$$\langle \ell' := (\lambda x.t, e), \qquad \lceil \square \rceil :: v, \sigma, \sigma' \rangle_{\Delta} \to \langle n, v, \sigma, \sigma' \rangle_{\Delta'} \quad \text{where } \sigma'(\ell') = n_{\checkmark}$$

 $\langle a, \qquad \lceil \Box \rceil :: \nu, \sigma, \sigma' \rangle_{\Delta} \to \langle \lceil a \rceil, \nu, \sigma, \sigma' \rangle_{\Delta'}$ (9a)

(9)

 $\langle a, \Box (t_2, e_2) :: \alpha, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle (t_2, e_2), [\Box] :: a \Box :: \alpha, \sigma, \sigma' \rangle_{\nabla}$

 $\langle a, \qquad \lceil \Box \rceil :: \nu, \sigma, \sigma' \rangle_{\Delta} \to \langle \lceil a \rceil, \nu, \sigma, \sigma' \rangle_{\Delta'} \tag{9a}$

```
Applicative Stacks \ni \alpha := \ell := \square :: \alpha \mid \square c :: \alpha \mid \lceil \square \rceil :: \nu
                   Non-applicative Stacks \ni v ::= \ell' := \square :: v \mid [] \mid \lambda x. \square :: v \mid a \square :: \alpha
                                                               Confs \ni k := \langle c, \alpha, \sigma, \sigma' \rangle_{\nabla} \mid \langle v, \alpha, \sigma, \sigma' \rangle_{\wedge} \mid \langle n, v, \sigma, \sigma' \rangle_{\wedge'}
                                                    Transitions:
                                                                                      t \mapsto \langle (t, [\ ]), [\ \Box \ ] :: [\ ], [\ ] \rangle_{\nabla}
                                        \langle (t_1, t_2, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \rightarrow \langle (t_1, e), \Box (t_2, e) :: \alpha, \sigma, \sigma' \rangle_{\nabla}
                                                                                                                                                                                                                                          (1)
                                        \langle (\lambda x.t, e), \alpha, \sigma, \sigma' \rangle_{\nabla} \rightarrow \langle \ell' := (\lambda x.t, e), \alpha, \sigma, \sigma' * [\ell' \mapsto \bot_{\mathbf{X}}] \rangle_{\wedge}
                                                                                                                                                                                                                                          (2)
                                               \langle (x,e), \alpha, \sigma, \sigma' \rangle_{\nabla} \rightarrow \langle (t,e_2), \ell := \square :: \alpha, \sigma, \sigma' \rangle_{\nabla}
                                                                                                                                                                                                                                          (3)
                                                                                                                                              where \ell = e(x), \sigma(\ell) = (t, e_2)_{\mathbf{x}}
                                               \langle (x,e), \alpha, \sigma, \sigma' \rangle_{\triangledown} \to \langle v, \alpha, \sigma, \sigma' \rangle_{\wedge} where \sigma(e(x)) = v \vee (v = x \notin e)
                                                                                                                                                                                                                                         (4)
                                    \langle v, \ell := \square :: \alpha, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle v, \alpha, \sigma[\ell := v, \ell], \sigma' \rangle_{\wedge}
                                                                                                                                                                                                                                          (5)
                                  \langle n, \ell' := \square :: \nu, \sigma, \sigma' \rangle_{\wedge'} \rightarrow \langle n, \nu, \sigma, \sigma' [\ell' := n_{\ell'}] \rangle_{\wedge'}
                                                                                                                                                                                                                                        (5')
\langle \ell' := (\lambda x.t, e), \Box(t_2, e_2) :: \alpha, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle (t, e[x := \ell_2]), \alpha, \sigma * [\ell_2 \mapsto (t_2, e_2)_{\mathbf{X}}], \sigma' \rangle_{\nabla}
                                                                                                                                                                                                                                          (6)
\langle \ell' := (\lambda x.t, e), \qquad [\Box] :: \nu, \sigma, \sigma' \rangle_{\triangle} \rightarrow \langle (t, e[x := \ell_2]), [\Box] :: \lambda \check{x}. \Box :: \ell' := \Box :: \nu,
                                                                                                                 \sigma * [\ell_2 \mapsto \check{x}_{\star}], \sigma' \rangle_{\nabla} where \sigma'(\ell') = \bot_{\mathbf{X}}
                                                                                                                                                                                                                                          (7)
\langle \ell' := (\lambda x.t, e), \qquad [\Box] :: \nu, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle n, \nu, \sigma, \sigma' \rangle_{\wedge'}
                                                                                                                                                           where \sigma'(\ell') = n_{\checkmark}
                                                                                                                                                                                                                                          (8)
```

 $[\Box] :: \nu, \sigma, \sigma' \rangle_{\triangle} \rightarrow \langle [a], \nu, \sigma, \sigma' \rangle_{\triangle'}$ (9*a*)

(9)

 $\langle a, \Box (t_2, e_2) :: \alpha, \sigma, \sigma' \rangle_{\wedge} \rightarrow \langle (t_2, e_2), [\Box] :: a \Box :: \alpha, \sigma, \sigma' \rangle_{\nabla}$

Potential Function

Table 6. The potential function for RKNL

 $\Phi_{\rm s}([\]) := 0$

 $\Phi_{t}(t_1 t_2) := 3 + \Phi_{t}(t_1) + \Phi_{t}(t_2)$

$$\begin{split} \Phi_{\mathsf{t}}(\lambda x.t) &:= 4 + \Phi_{\mathsf{t}}(t) & \Phi_{\mathsf{s}}(\square\left(t,e\right) :: s) := 2 + \Phi_{\mathsf{s}}(s) + \Phi_{\mathsf{t}}(t) \\ \Phi_{\mathsf{t}}(x) &:= 2 & \Phi_{\mathsf{s}}(t \square :: s) := 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{v}}(t) &:= 0 & \Phi_{\mathsf{s}}(\lambda x.\square :: s) := 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{v}}(\ell := (\lambda x.t,e)) &:= 1 & \Phi_{\mathsf{s}}(\ell := \square :: s) := 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi_{\mathsf{s}}(s) \\ \Phi_{\mathsf{s}}(\ell := \square :: s) &:= 1 + \Phi$$

Potential Function

Table 6. The potential function for RKNL

 $\Phi_{\rm s}([\]) := 0$

 $\Phi_{t}(t_{1} t_{2}) := 3 + \Phi_{t}(t_{1}) + \Phi_{t}(t_{2})$

$$\begin{split} \Phi_{\mathsf{t}}(\lambda x.t) &:= 4 + \Phi_{\mathsf{t}}(t) \\ \Phi_{\mathsf{t}}(x) &:= 2 \\ \Phi_{\mathsf{v}}(t) &:= 0 \\ \Phi_{\mathsf{v}}(\ell) &:= (\lambda x.t, e)) &:= 1 \\ \Phi_{\mathsf{g}}(t \, \square :: s) &:= 1 \\ \Phi_{\mathsf{g}}(\lambda x. \square :: s) &:= 1 \\ \Phi_{\mathsf{g}}($$

RKNL

 $\langle t, \lambda x. \square :: s, \sigma \rangle_{\wedge} \rightarrow \langle \lambda x. t, s, \sigma \rangle_{\wedge}$

$$\langle (t_{1} t_{2}, e), s, \sigma \rangle_{\nabla} \rightarrow \langle (t_{1}, e), \Box (t_{2}, e) :: s, \sigma \rangle_{\nabla}$$

$$\langle (\lambda x.t, e), s, \sigma \rangle_{\nabla} \rightarrow \langle \ell := (\lambda x.t, e), s, \sigma * [\ell \mapsto \bot_{\mathbf{X}}] \rangle_{\Delta}$$

$$\langle (x, e), s, \sigma \rangle_{\nabla} \rightarrow \langle (t, e_{2}), \ell := \Box :: s, \sigma \rangle_{\nabla} \text{ where } \ell = e(x), \ \sigma(\ell) = (t, e_{2})_{\mathbf{X}}$$

$$\langle (x, e), s, \sigma \rangle_{\nabla} \rightarrow \langle v, s, \sigma \rangle_{\Delta} \qquad \text{where } \sigma(e(x)) = v_{\checkmark} \lor (v = x \notin e)$$

$$\langle v, \ell := \Box :: s, \sigma \rangle_{\Delta} \rightarrow \langle v, s, \sigma[\ell := v_{\checkmark}] \rangle_{\Delta}$$

$$\langle \ell := (\lambda x.t, e), \Box (t_{2}, e_{2}) :: s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), s, \sigma * [\ell_{2} \mapsto (t_{2}, e_{2})_{\mathbf{X}}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \lambda \check{x}.\Box :: \ell := \Box :: s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle (t, e[x := \ell_{2}]), \iota := \iota := \iota := \iota : s, \sigma * [\ell_{2} \mapsto \check{x}_{\checkmark}] \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle \ell_{1}, \ell_{2}, \ell_{2}, \ell_{2}, \ell_{2}, \ell_{2}, \ell_{2} \rangle_{\nabla}$$

$$\langle \ell := (\lambda x.t, e), \qquad s, \sigma \rangle_{\Delta} \rightarrow \langle \ell_{1}, \ell_{2}, \ell_{2},$$

(11)

Potential Decrease

$$3 + \Phi_{t}(t_{1}) + \Phi_{t}(t_{2}) + \Phi_{s}(s) + \Phi_{\sigma}(k) > \Phi_{t}(t_{1}) + 2 + \Phi_{s}(s) + \Phi_{t}(t_{2}) + \Phi_{\sigma}(k)$$
(1)
$$4 + \Phi_{t}(t) + \Phi_{s}(s) + \Phi_{\sigma}(k) > 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) + (2 + \Phi_{t}(t))$$
(2)
$$2 + \Phi_{s}(s) + (\Phi_{\sigma}(k') + \Phi_{t}(t)) > \Phi_{t}(t) + (1 + \Phi_{s}(s)) + \Phi_{\sigma}(k')$$
(3)
$$2 + \Phi_{s}(s) + \Phi_{\sigma}(k) > \Phi_{v}(v) + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(4)
$$\Phi_{v}(v) + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > \Phi_{v}(v) + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(5)
$$1 + \Phi_{s}(s) + (\Phi_{\sigma}(k') + 2 + \Phi_{t}(t)) > \Phi_{t}(t) + 1 + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k')$$
(7)
$$1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > 0 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(8)
$$0 + 2 + \Phi_{s}(s) + \Phi_{t}(t_{2}) + \Phi_{\sigma}(k) > \Phi_{t}(t_{2}) + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(9)
$$0 + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > 0 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(10)
$$0 + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > 0 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(11)

Potential Decrease and Increase

$$3 + \Phi_{t}(t_{1}) + \Phi_{t}(t_{2}) + \Phi_{s}(s) + \Phi_{\sigma}(k) > \Phi_{t}(t_{1}) + 2 + \Phi_{s}(s) + \Phi_{t}(t_{2}) + \Phi_{\sigma}(k)$$
(1)
$$4 + \Phi_{t}(t) + \Phi_{s}(s) + \Phi_{\sigma}(k) > 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) + (2 + \Phi_{t}(t))$$
(2)
$$2 + \Phi_{s}(s) + (\Phi_{\sigma}(k') + \Phi_{t}(t)) > \Phi_{t}(t) + (1 + \Phi_{s}(s)) + \Phi_{\sigma}(k')$$
(3)
$$2 + \Phi_{s}(s) + \Phi_{\sigma}(k) > \Phi_{v}(v) + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(4)
$$\Phi_{v}(v) + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > \Phi_{v}(v) + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(5)
$$1 + 2 + \Phi_{s}(s) + \Phi_{t}(t_{2}) + \Phi_{\sigma}(k) + \Phi_{t}(t_{0}) > \Phi_{t}(t) + 1 + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) + \Phi_{t}(t_{2})$$
(6)
$$1 + \Phi_{s}(s) + (\Phi_{\sigma}(k') + 2 + \Phi_{t}(t)) > \Phi_{t}(t) + 1 + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k')$$
(7)
$$1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > 0 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(8)
$$0 + 2 + \Phi_{s}(s) + \Phi_{t}(t_{2}) + \Phi_{\sigma}(k) > \Phi_{t}(t_{2}) + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(9)
$$0 + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > 0 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(10)
$$0 + 1 + \Phi_{s}(s) + \Phi_{\sigma}(k) > 0 + \Phi_{s}(s) + \Phi_{\sigma}(k)$$
(11)

Efficient Implementation

THEOREM 5.13.

Let ρ be a sequence of consecutive machine transitions starting from term t_0 to configuration k',

 $|\rho|$ be the number of steps in ρ ,

and $|\rho|_{\beta}$ be the number of normal-order β -reductions from t_0 to $\underline{k'}_k$.

Then
$$|\rho| \leq (|\rho|_{\beta} + 1) \cdot \Phi_t(t_0)$$
.

Empirical Method

Table 3. Empirical execution lengths for $1 \le n \le 9$

term family	$\stackrel{no}{\longrightarrow}$	KN	RKNL
$c_n c_2 I$	$3\cdot 2^n-1$	$15\cdot 2^n-6$	$10 \cdot 2^n + 5n + 5$
$pred c_n$	6 <i>n</i> + 8	26n + 25	30n + 41
$\lambda x.c_n \omega x$	$2^{n} + 1$	$12 \cdot 2^n - 3$	9n + 15
$c_n dub I$	$2^{n} + 1$	$23\cdot 2^n-14$	18n + 15
$c_n dub (\lambda x.I x)$	$2\cdot 2^n + 1$	$26\cdot 2^n-14$	18n + 20

named in [Accattoli, Dal Lago, CSL-LICS 2014]

named in [Accattoli, Dal Lago, CSL-LICS 2014]

named in [Accattoli, Dal Lago, CSL-LICS 2014]

named in [Accattoli, Dal Lago, CSL-LICS 2014]

Summary

Bonus

Table 2. Elaborate example execution in refocusing notation

$$0: \qquad \langle ((\lambda x.c x x)(A\Omega), []) \rangle_{\nabla} | [] \qquad \qquad \stackrel{(1)}{\rightarrow} \\ 1: \qquad \langle (\lambda x.c x x, []) \rangle_{\nabla} (A\Omega, []) | [] \qquad \qquad \stackrel{(2)}{\rightarrow} \\ 2: \qquad \langle \Box := (\lambda x.c x x, []) \rangle_{\Delta} (A\Omega, []) | [\Box \mapsto \bot_{X}] \qquad \qquad \stackrel{(6)}{\rightarrow} \\ 3: \qquad \qquad \langle ((c x x, [x \mapsto x])) \rangle_{\nabla} | [x \mapsto (A\Omega, [])_{X}] \qquad \qquad \stackrel{(1)}{\rightarrow} \\ 4: \qquad \qquad \langle (c x, [x \mapsto x]) \rangle_{\nabla} x^{x} | [x \mapsto (A\Omega, [])_{X}] \qquad \qquad \stackrel{(1)}{\rightarrow} \\ 5: \qquad \qquad \langle (c, [x \mapsto x]) \rangle_{\nabla} x^{x} x^{x} | [x \mapsto (A\Omega, [])_{X}] \qquad \qquad \stackrel{(4)}{\rightarrow} \\ 6: \qquad \qquad \langle c \rangle_{\Delta} x^{x} x^{x} | [x \mapsto (A\Omega, [])_{X}] \qquad \qquad \stackrel{(9)}{\rightarrow} \\ 7: \qquad \qquad c \langle x^{x} \rangle_{\nabla} x^{x} | [x \mapsto (A\Omega, [])_{X}] \qquad \qquad \stackrel{(3)}{\rightarrow} \\ 8: \qquad c \langle x := \langle (A\Omega, []) \rangle_{\nabla} \rangle x^{x} | [x \mapsto (A\Omega, [])_{X}] \qquad \qquad \stackrel{(1)}{\rightarrow} \\ \end{cases}$$

 \rightarrow

 $\langle c(\lambda z_0.z_0) \lambda z_0.z_0 \rangle_{\wedge} |[]$

 $c\left(\mathbb{d} := \lambda z_0. \otimes := \left\langle z_0 \right\rangle_{\wedge} \right) x^{\varkappa} | \sigma_1 * [\mathbb{d} \mapsto \bot_{\varkappa}, \otimes \mapsto (z, e_{yz})_{\varkappa}]$

19:

27: