

# **Chapter 11: Graph Algorithms**

**Dr. Sirasit Lochanachit** 







## **Outline**

#### Graphs

- Definition, elements and types
- Graph Representation

#### **Graph Algorithms**

- Traversal
  - Depth-first
  - Breadth-first
- Shortest Path



#### What is a Graph?



- A graph is a set of objects, called vertices or nodes, where the actual data is stored and a collection of connections between them, called edges or arcs<sup>[1]</sup>.
- A graph can be used to represent relationships between pairs of objects.



### **Graphs**



06036120 Data Structures and Algorithms Principles



### The Basic Elements of Graph





## The Basic Elements of Graph





#### The Basic Elements of Graph



 Formally, a graph G is a set V of vertices and a collection E of pairs of vertices, called edges<sup>[1]</sup>.



#### **Graph Types**



- An edge (u, v) is directed from u to v if the pair (u, v) is ordered.
- An edge (u, v) is undirected if the pair (u, v) is not ordered.



### **Graph Terminology**



$$V = \{D, I, J\}$$

$$E = \{(D, I), (D, J)\}$$

- **Endpoints**: Two nodes (u, v) that are joined by an edge.
  - These two nodes are adjacent.
- **Origin**: First endpoint (*u*) on a directed edge.
- Destination: Second endpoint (v) on a directed edge.





- V = {A, B, C, D, E, F}
- E = {(A, C), (A, D), (A, B), (D, F), (B, E), (B, F)}



Adjacency Matrix





| $\bullet$ $V = \{A,$ | , B, | C, | D, | Ε, | F) |
|----------------------|------|----|----|----|----|
|----------------------|------|----|----|----|----|

|   | A | В | С | D | Ε | F |
|---|---|---|---|---|---|---|
| Α | 0 | 0 | 0 | 1 | 0 | 0 |
| В | 1 | 0 | 0 | 0 | 0 | 0 |
| С | 1 | 0 | 0 | 0 | 0 | 0 |
| D | 0 | 0 | 0 | 0 | 0 | 1 |
| Ε | 0 | 1 | 0 | 0 | 1 | 0 |
| F | 0 | 1 | 0 | 1 | 0 | 0 |

Adjacency Matrix





- V = {A, B, C, D, E, F}
- E = {(C, A), (A, D), (B, A), (D, F), (F, D), (E, B), (F, B), (E, E)}



Adjacency List

06036120 Data Structures and Algorithms Principles



#### **Node Representation**

| Node | Name    | Phone |
|------|---------|-------|
| А    | Able    |       |
| В    | Baker   |       |
| С    | Charlie |       |
| D    | Denver  |       |
| E    | Ethan   |       |
| F    | Fred    |       |



#### **Edge Representation**

|   | A | В | С | D | Ε | F |
|---|---|---|---|---|---|---|
| Α | 0 | 0 | 0 | 1 | 0 | 0 |
| В | 1 | 0 | 0 | 0 | 0 | 0 |
| C | 1 | 0 | 0 | 0 | 0 | 0 |
| D | 0 | 0 | 0 | 0 | 0 | 1 |
| Ε | 0 | 1 | 0 | 0 | 1 | 0 |
| F | 0 | 1 | 0 | 1 | 0 | 0 |

Adjacency Matrix



#### **Graph Terminology**



- A **path** is a sequence of nodes and edges that starts at a node and ends at a node such that each node is adjacent to the next one<sup>[2]</sup>.
- Formally, a path is a sequence of nodes  $V_1$ ,  $V_2$ ,  $V_3$ , ...,  $V_n$  where  $(V_1, V_2)$ ,  $(V_2, V_3)$ , ...,  $(V_{n-1}, V_n) \in E$ .



- A **loop** is a special case of path where two endpoints are the same.
  - An edge that starts and ends with the same node.



#### **Graph Properties**

- A cycle is a path that starts and ends at the same node, having at least one edge.
- A simple path is a path that does not contain the same edge more than once.
- A simple cycle is a simple path that starts and ends at the same node.







A, D, I



Simple?

Cyclic?







A, B, A









A, B, C, D, E, D, B, A



Simple?

Cyclic?



A, B, I, D, B, A



#### **Graph Notations**



- A graph is connected if, for any two nodes, there is a path between them.
- The in-degree of a node v is the number of the incoming edges of v.
- The **out-degree** of a node *v* is the number of the outgoing edges of *v*.



### **Graph Algorithms**

- Traversals
  - Depth-first traversal
  - Breadth-first traversal
- Minimum Spanning Tree
  - Prim-Jarnik Algorithm
  - Kruskal's Algorithm
- Shortest Path
  - Dijkstra Algorithm
- Etc.



### **Graph Traversals**

- A traversal is a systematic procedure for exploring a graph by examining all of its nodes and edges.
- Graph traversal algorithms are key to answering many fundamental questions about graphs involving the notion of **reachability**, that is, in determining how to travel from one node to another while following paths of a graph<sup>[1]</sup>.
- Two efficient graph traversal algorithms: depth-first traversal and breadth-first traversal.



#### **Graph Traversals**

**Depth-first traversal** 

**Breadth-first traversal** 



### **Depth-First Traversal with Stack**



06036120 Data Structures and Algorithms Principles



### **Depth-First Traversal with Stack**

0



Output: 0



### **Breadth-First Traversal with Queue**



Output:



### **Breadth-First Traversal with Queue**

0



Output:



# Depth-First and Breadth-First Exercise Depth-First and Breadth-First Exercise

Rule: Access node in ascending order (A-Z)





### **Graph Traversals**

- On undirected and directed graph with n nodes and m edges.
  - $\circ$  A DFS traversal can be performed in O(n + m) time.
  - $\circ$  A BFS traversal can be conducted in O(n + m) time



#### **Shortest Path Problem**









#### **Shortest Path Problem**

The network of routers can be represented as a graph with weighted edges.





#### **Shortest Path Problem**

- The breadth first strategy can be used to find a **shortest path** from some starting node to every other node in a connected graph.
  - This approach is suitable in cases where each edge is equal to others.
  - However, for other situations, this approach is not efficient.
- It is natural, therefore, to consider graphs whose edges are <u>not</u> weighted equally.



#### **Weighted Graphs**

- A weight graph is a graph that has a numeric label w(e) associated with each edge e, called the weight of edge e.
- For e = (u, v), w(u, v) = w(e).
- Such weights might represent:
  - Costs
  - Lengths
  - Capacities
  - o etc.



# Defining Shortest Paths in a Weighted Graph

- Let *G* be a weighted graph.
- The **length** (or **weight**) of a **path** is the sum of the weights of the edges of P.

$$P = ((v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k))$$

- Length of P, denoted w(P) is defined as  $w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$ .
- The distance from a node u to a node v in G, denoted d(u, v) is the length of a minimum-length path (also called **shortest path**) from u to v.



#### **Shortest Paths Algorithms**

- Shortest path in a graph with all equal weights can be solved with breadth-first traversal algorithm.
- Distance cannot be arbitrarily low negative numbers.
  - For instance, the weight of edges represent the cost to travel between cities. If someone pay you to go between the cities, the cost would be negative.
  - Edge weights in G should be nonnegative (that is, w(e) >= 0) for each edge.



- An iterative algorithm that provides the shortest path from one starting node to all other nodes in the graph<sup>[2]</sup>.
- Apply greedy method to solve the problem by repeatedly selecting the best choice from among those available in each iteration.
  - Useful for optimising cost function over a collection of objects.
- "Weight" breadth-first search starting at the source node s.
- Used in link-state routing protocols in computer network.



#### Dijkstra's Algorithm Variables

- dist[v] keeps the <u>shortest/minimum length</u> from the source node s
  for each node v in the graph.
  - Initially,
    - dist[s] = 0
    - dist[v] = Inf for each v != s
  - In practice, dist[v] can be set to a very large number than any real distance in the problem.



#### Dijkstra's Algorithm Variables

- Q is a set of all the unvisited nodes, called the unvisited set.
- prev[v] is used to keep track of the previous node that provides the shortest path from s.



```
function Dijkstra(Graph, source):
        create vertex set Q
        for each vertex v in Graph:
            dist[v] ← INFINITY
            prev[v] ← UNDEFINED
            add v to 0
        dist[source] + 0
10
11
        while Q is not empty:
13
            u ← vertex in Q with min dist[u]
14
            remove u from Q
15
16
            for each neighbor v of u: // only v
17
that are still in O
18
                alt \leftarrow dist[u] + length(u, v)
                if alt < dist[v]:
19
20
                    dist[v] + alt
                    prev[v] \leftarrow u
21
22
        return dist[], prev[]
23
```

tures and Algorithms Principles









B

| Q = | {'A', | 'Β', | 'C'.       | 'D'. | 'E'}       |
|-----|-------|------|------------|------|------------|
| ~   | (,,,) | _ ,  | <b>–</b> , | _ ,  | <b>—</b> , |

dist = {'A': 0, 'B':  $\infty$ , 'C':  $\infty$ , 'D':  $\infty$ , 'E':  $\infty$ }

prev = {'A': None, 'B': None, 'C': None, 'D': None, 'E': None}

| Node | Cumulative<br>weight #1 | Cumulative<br>weight #2 | Cumulative<br>weight #3 | Cumulative<br>weight #4 | Route |
|------|-------------------------|-------------------------|-------------------------|-------------------------|-------|
| А    |                         |                         |                         |                         |       |
| В    |                         |                         |                         |                         |       |
| С    |                         |                         |                         |                         |       |
| D    |                         |                         |                         |                         |       |
| Е    |                         |                         |                         |                         |       |



### Dijkstra's Algorithm Exercise



Find the shortest path for each node from node A

Find the distance from A to F



- Dijkstra's algorithm works only when the weights are all positive.
  - If there is a negative weight on one of the edges in the graph, the algorithm would never exit.
- Another problem is a complete representation of the graph must be presented for the algorithm to run.
  - Every router has a complete map of all the routers: Not practical.
- Other algorithms allow each router to discover the graph as they go.
  - For instance, distance vector routing algorithm (Computer Networks).
  - Each node computes best path without full view of graph, exchanging link information as they go.