Regresi Linier

Outline

- Regression vs Classification
- Linear regression another discriminative learning method
 - As optimization

 Gradient descent
 - As matrix inversion (Ordinary Least Squares)
- Overfitting and bias-variance

Bias-variance decomposition for classification

What is regression?

Where we are

Regression examples

Stock market

Weather prediction

Predict the temperature at any given location

Prediction of menu prices

Chaheau Gimpel ... and Smith EMNLP 2012

15
13
12
05
04
-6
58
99

(d) MENUDESC:		
_ = "of chicken"		
slices _	-0.102	
bits _	-0.032	
cubes _	-0.030	
pieces _	-0.024	
strips	-0.001	
chunks	0.015	
morsels _	0.025	
pcs _	0.040	
cuts _	0.042	

(c) MENUDESC:		
descriptors		
old time favorite	-0.112	
fashioned	-0.034	
artisanal	0.064	
raised	0.066	
heirloom	0.083	
wild	0.084	
hormone	0.085	
farmed	0.099	
hand picked	0.101	
wild caught	0.116	
farmhouse	0.133	

A decision tree: classification Dependent variable: PLAY

A regression tree

Dependent variable: PLAY **OUTLOOK?** overcast rain sunny WINDY? **HUMIDITY?** FALSE > 70 TRUE <= 70 Play ~= 5 Play ~= 0 Play ~= 32 Play ~= 37

Play = 30m, 45min Play = 0m, 0m, 15m Play = 0m, 0m

Play = 20m, 30m, 45m,

Theme for the week: learning as optimization

Types of learners

- Two types of learners:
 - 1. Generative: make assumptions about how to generate data (given the class)
 - e.g., naïve Bayes
 - 2. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression

Today: another discriminative learner, but for regression tasks

Least Mean Squares

Regression for LMS as optimization

Toy problem #2

Linear regression

- Given an input x we would like to compute an output y
- For example:
 - Predict height from age
 - Predict Google's price from Yahoo's price
 - Predict distance from wall from sensors

Linear regression

- Given an input x we would like to compute an output y
- In linear regression we assume that y and x are related with the following equation:

What we are trying to predict $y = wx+\epsilon$

where w is a parameter and ε represents measurement or other noise

Linear regression

- Our goal is to estimate w from a training data of $\langle x_i, y_i \rangle$ pairs
- Optimization goal: minimize squared error (least squares):

$$\arg\min_{w} \mathop{\mathring{a}}_{i} (y_{i} - wx_{i})^{2}$$

see HW

- Why least squares?
- minimizes squared distance between measurements and predicted line
 - has a nice probabilistic interpretation
 - the math is pretty

Solving linear regression

- To optimize:
- We just take the derivative w.r.t. to w

$$\frac{\P}{\P w} \mathop{\mathring{a}}_{i} (y_i - wx_i)^2 = 2 \mathop{\mathring{a}}_{i} - x_i (y_i - wx_i)$$

Compare to logistic regression...

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p)x^j$$

prediction

prediction

Solving linear regression

- To optimize closed form:
- We just take the derivative w.r.t. to w and set to 0:

$$\frac{\P}{\P w} \overset{\circ}{\underset{i}{\text{a}}} (y_i - wx_i)^2 = 2 \overset{\circ}{\underset{i}{\text{a}}} - x_i (y_i - wx_i) \, \triangleright$$

$$2 \overset{\circ}{\underset{i}{\text{a}}} x_i (y_i - wx_i) = 0 \quad \triangleright 2 \overset{\circ}{\underset{i}{\text{a}}} x_i y_i - 2 \overset{\circ}{\underset{i}{\text{a}}} wx_i x_i = 0$$

$$\overset{\circ}{\underset{i}{\text{a}}} x_i y_i = \overset{\circ}{\underset{i}{\text{a}}} wx_i^2 \quad \triangleright$$

$$\overset{\circ}{\underset{i}{\text{covar}(X Y)/\text{var}(X)}}$$

$$w = \frac{\overset{\circ}{a} x_i y_i}{\overset{i}{\underset{i}{a}} x_i^2}$$

covar(X,Y)/var(X)
if mean(X)=mean(Y)=0

Regression example

• Generated: w=2

• Recovered: w=2.03

• Noise: std=1

Regression example

• Generated: w=2

• Recovered: w=2.05

• Noise: std=2

Regression example

• Generated: w=2

• Recovered: w=2.08

• Noise: std=4

Bias term

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply change the model to

$$y = w_0 + w_1 x + \varepsilon$$

• Can use least squares to determine w_0 , w_1

$$w_0 = \frac{\stackrel{\circ}{a} y_i - w_1 x_i}{n}$$

$$w_1 = \frac{\mathop{\aa}_{i} x_i (y_i - w_0)}{\mathop{\aa}_{i} x_i^2}$$

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

$$y = w_0 + w_1 x_1 + ... + w_k x_k + \varepsilon$$

Not all functions can be approximated by a line/hyperplane...

$$y=10+3x_1^2-2x_2^2+\varepsilon$$

In some cases we would like to use polynomial or other terms based on the input data, are these still linear regression problems?

Yes. As long as the *coefficients* are linear the equation is still a linear regression problem!

Non-Linear basis function

- So far we only used the observed values $x_1, x_2, ...$
- However, linear regression can be applied in the same way to functions of these values
 - Eg: to add a term w x_1x_2 add a new variable $z=x_1x_2$ so each example becomes: x_1, x_2, z
- As long as these functions can be directly computed from the observed values the parameters are still linear in the data and the problem remains a multi-variate linear regression problem

$$y = w_0 + w_1 x_1^2 + \ldots + w_k x_k^2 + \varepsilon$$

Non-Linear basis function

• How can we use this to add an intercept term?

Add a new "variable" z=1 and weight w_0

Non-linear basis functions

- What type of functions can we use?
- A few common examples:
 - Polynomial: $\phi_i(x) = x^j$ for j=0 ... n

- Gaussian:
$$f_j(x) = \frac{(x - m_j)}{2S_j^2}$$
- Sigmoid:
$$f_j(x) = \frac{1}{1 + \exp(-s_j x)}$$

Any function of the input values can be used. The solution for the parameters of the regression remains the same.

$$f_j(x) = \log(x+1)$$

- Logs:

General linear regression problem

 Using our new notations for the basis function linear regression can be written as

$$y = \mathop{\rm al}\limits_{j=0}^n w_j f_j(x)$$

- Where $\phi_j(\mathbf{x})$ can be either x_j for multivariate regression or one of the non-linear basis functions we defined
- ... and $\phi_0(\mathbf{x})=1$ for the intercept term

Contoh Soal

 Perhatikan data Biaya iklan yang digunakan (X) dan hubungannya dengan Tingkat penjualan (Y) diberikan dalam dataset berikut :

No	X	Υ
1	41	1250
2	54	1380
3	63	1425
4	54	1425
5	48	1450
6	46	1300
7	62	1400
8	61	1510
9	64	1575
10	71	1650

Tentukan persamaan Regresinya!

Penyelesaian :

Mengestimasi least squares/kuadrat terkecil dari koefisien Regresi :

$$n = 10 \qquad \sum x = 564 \qquad \sum x^2 = 32604$$

$$\sum y = 14365 \qquad \sum xy = 818755$$

$$b_1 = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2} = \frac{10(818755) - (564)(14365)}{10(32604) - (564)^2} = 10.8$$

$$b_0 = \frac{\left(\sum y - b_1 \sum x\right)}{10(32604) - (564)^2} = 1436.5 - 10.8(56.4) = 828$$

$$\hat{y} = b_0 + b_1 x$$

Hasil Estimasi Persamaan Regresinya adalah :

$$\hat{y} = 828 + 10.8x$$

Ini berarti bahwa jika biaya iklan meningkat sebesar \$ 1, maka kita akan mendapati tingkat penjualan naik \$ 10.8

Latihan

• Tabel menyajikan data dengan variabel X adalah umur mobil dan variabel Y adalah harga.

Age (yrs)	Price (\$100s) y
5	85
4	103
6	70
5 5	82
5	89
5	98
6	66
6	95
2	169
7	70
7	48