ID# Name:

Problem # 1 (10 Points)

The switch in the circuit is opened at time t = 0 after long being closed. Find $i_L(t)$ at $t = 2\mu sec$ and $t = 9\mu sec$.

Fall 2017

 $L_{I}(+70) = I_{F} + (I_{L} - I_{F})e$

For switch is closed for long time, ve(t)=0, 520(t)=0

in lov apears across R2 = 1 KSZ $I_{L}(t=0) = \frac{10V}{110} = 10 mA$

After switch is opened, circuit will find new steady-State condition, with: L(+) = - 4V = -2 mA

i. $L_{L}(t) = -2 + (10+2)e$, $r = \frac{L}{R} = \frac{10mH}{2KSL} = 5 \text{ MSec}$

L_(t) = -2+12e mA for t>0

at $t = 2 \mu sec$, $l_{L}(t = 2 \mu see) = -2 + 12e^{-5} = 6.04$ at $t = 9 \mu sec$, $l_{L}(t = 9 \mu see) = -2 + 12e^{-5} = -0.016$

Problem #2 (10 Points)

In this circuit, switch has been closed for a long time and then is opened at t = 0, find $i_C(t = 0^+)$, $v_C(t = 0^+)$, $v_C(t = \infty)$, $v_C'(t = 0^+)$, $i_L(t = 0^+)$, $i_L(t = \infty)$, $i_L'(t = 0^+)$.

$$I = 0$$

$$I =$$