Corrigés des exercices

Exercice 1

 φ est clairement antilinéaire à gauche et linéaire à droite car la trace est linéaire. φ est hermitienne. En effet, soit $(A,B) \in E^2$. Alors

$$\varphi(A, B) = \operatorname{tr}({}^{t}\overline{A}B)$$

$$= \operatorname{tr}({}^{t}({}^{t}\overline{A}B))$$

$$= \operatorname{tr}({}^{t}B\overline{A})$$

$$= \operatorname{tr}(\overline{{}^{t}}\overline{B}A)$$

$$= \overline{\varphi(B, A)}$$

 φ est positive. En effet soit $A=(a_{ij})\in E$. Montrons que $\varphi(A,A)=\operatorname{tr}({}^t\overline{A}A)\geqslant 0$.

On a
$${}^{t}\overline{A}A = (b_{ij})$$
 où $b_{ij} = \sum_{k=1}^{n} \overline{a_{ki}} a_{kj}$ donc $\operatorname{tr}({}^{t}\overline{A}A) = \sum_{i=1}^{n} b_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} \overline{a_{ki}} a_{ki}$

d'où
$$\varphi(A, A) = \sum_{i=1}^{n} \sum_{k=1}^{n} |a_{ki}|^2 \ge 0$$

 φ est définie car étant donnée A dans $E,\,\varphi(A,A)=0\Longrightarrow \forall (i,k)\in [\![1,n]\!]^2,\ |a_{ki}|^2=0$

$$\Longrightarrow A = 0$$

Exercice 2

1. Pour tout $x \in \mathbb{R}$,

$$f(x) = c_0 + \sum_{n=1}^{+\infty} (c_n e^{inx} + c_{-n} e^{-inx})$$
 (*)

En intégrant cette égalité entre 0 et 2π , on a

$$\int_0^{2\pi} f(x) dx = 2\pi c_0 + \int_0^{2\pi} \left(\sum_{n=1}^{+\infty} \left(c_n e^{inx} + c_{-n} e^{-inx} \right) \right) dx$$

Or comme $\sum_{n\geqslant 1} (c_n e^{inx} + c_{-n} e^{-inx})$ converge uniformément sur \mathbb{R} , on a

$$\int_0^{2\pi} f(x) dx = 2\pi c_0 + \sum_{n=1}^{+\infty} \left(c_n \int_0^{2\pi} e^{inx} dx + c_{-n} \int_0^{2\pi} e^{-inx} dx \right)$$

Mais
$$\int_0^{2\pi} e^{inx} dx = 0$$
 et $\int_0^{2\pi} e^{-inx} dx = 0$ donc $\int_0^{2\pi} f(x) dx = 2\pi c_0$ soit encore
$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$$

2. Soit $k \in \mathbb{N}^*$. En multipliant l'équation (*) par e^{-ikx} , on a

$$f(x)e^{-ikx} = c_0e^{-ikx} + \sum_{n=1}^{+\infty} (c_ne^{inx} + c_{-n}e^{-inx})e^{-ikx}$$

Donc, via à nouveau l'hypothèse de convergence uniforme, on a

$$\int_0^{2\pi} f(x)e^{-ikx} dx = \int_0^{2\pi} c_0 e^{-ikx} dx + \sum_{n=1}^{+\infty} \left(c_n \int_0^{2\pi} e^{i(n-k)x} dx + c_{-n} \int_0^{2\pi} e^{-i(n+k)x} dx \right)$$

Or
$$\int_0^{2\pi} c_0 e^{-ikx} dx = 0$$
 et $\int_0^{2\pi} e^{-i(n+k)x} dx = 0$ (car $k \in \mathbb{N}$).

De plus

$$\int_0^{2\pi} e^{i(n-k)x} dx = \begin{cases} 0 & \text{si } n \neq k \\ 2\pi & \text{sinon} \end{cases}$$

Finalement, on a $\int_0^{2\pi} f(x)e^{-ikx}dx = 2\pi c_k$ soit encore

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} \mathrm{d}x$$

Exercice 3

Soit $(n,m) \in \mathbb{Z}^2$. Montrons que $\langle e_n, e_m \rangle = \delta_{nm}$ où les nombres δ_{nm} valent 1 si n=m et 0 sinon.

On a

$$\langle e_n, e_m \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{e_n(x)} e_m(x) dx = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} e^{imx} dx = \frac{1}{2\pi} \int_0^{2\pi} e^{i(m-n)x} dx$$

Si $m \neq n$ alors

$$\langle e_n, e_m \rangle = \frac{1}{2\pi i (m-n)} \left[e^{i(m-n)x} \right]_0^{2\pi} = \frac{1}{2\pi i (m-n)} \left(e^{2i(m-n)\pi} - 1 \right)$$

 $Donc < e_n, e_m > = 0.$

Si
$$m = n$$
 alors $\langle e_n, e_m \rangle = \frac{1}{2\pi} \int_0^{2\pi} dx = 1$.

Ainsi $\langle e_n, e_m \rangle = \delta_{nm}$ donc la famille $(e_n)_{n \in \mathbb{Z}}$ est orthonormée dans $(\mathcal{D}, \langle, \rangle)$.

Exercice 4

Soit $n \in \mathbb{Z}^*$. Via une intégration par parties, on a

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx = \frac{1}{2\pi} \left(-\frac{1}{in} \left[f(x) e^{-inx} \right]_0^{2\pi} + \frac{1}{in} \int_0^{2\pi} f'(x) e^{-inx} dx \right)$$
$$= \frac{1}{in} c_n(f')$$