WHAT IS CLAIMED:

1. A method of reducing intraocular pressure comprising administering to a subject a pharmaceutical composition comprising an effective amount of a compound of Formula I, its diasteromers, enantiomers, tautomers, or pharmaceutically acceptable salts thereof:

$$G_{6}$$
 G_{6}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{7}
 G_{7}
 G_{8}
 G_{8}
 G_{9}
 G_{1}
 G_{1}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{7}
 G_{7}
 G_{8}
 G_{1}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{7}
 G_{8}
 G_{8}
 G_{8}
 G_{9}
 G_{1}
 G_{1}
 G_{1}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{5}
 G_{1}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{1}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{5}
 G_{5}
 G_{7}
 G_{1}
 G_{1}
 G_{1}
 G_{2}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{5}
 G_{5}
 G_{5}
 G_{5}
 G_{7}
 G_{7

wherein:

10 $X_1 = O$, NR, S, CF₂, CF₃ or CN with the proviso that when $X_1 = CF_3$ or CN, then R₄ is absent; or

 X_1 represents a bond from the pyrimidine ring to R_4 ;

 $X_2 = H$, F, Cl, Br, I, CN, OR₈, SR₈, NR₉R₁₃, CF₃, alkyl, cycloalkyl, arylalkyl, arylalkynyl, C(O)R₁₆, C(O)OR₁₇, C(O)NR₁₆R₁₈ or heterocycle of 5 to 7 members;

- 15 $X_3 = H$, CN, OR₁₉, SR₁₉, NR₂₃R₂₈, CF₃, alkyl, cycloalkyl, C(O)R₃₂, C(O)OR₃₃, C(O)NR₃₄R₃₅, arylalkyl, aryl, arylalkynyl, or a heterocycle of 5 to 7 members; R = H, OR₁, alkyl, cycloalkyl, arylalkyl, aryl, C(O)R₂, C(O)OR₃ or C(O)NR₁R₂; R_1 , R_7 , R_{10} , R_{22} , R_{24} , R_{27} , R_{31} , R_{33} and R_{35} are each independently H, alkyl, cycloalkyl, arylalkyl or aryl;
- 20 $R_2 = H$, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members; or R_1 and R_2 taken together can form a heterocyclic ring of 5 to 7 members;

```
R_3, R_6, R_8, R_{12}, R_{15}, R_{17}, R_{21}, R_{26} and R_{30} are independently alkyl, cycloalkyl, arylalkyl or aryl;
```

 R_4 = H, alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, $C(O)R_5$, $C(O)OR_6$ or $C(O)NR_5R_7$;

R₅, R₁₁, R₁₄, R₁₆, R₁₈, R₂₀, R₂₅, R₂₉, R₃₂ and R₃₄ are independently H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

 $R_9 = H$, OR_{10} , alkyl, cycloalkyl, arylalkyl, aryl, $C(O)R_{11}$, $C(O)OR_{12}$ or $C(O)NR_{10}R_{11}$;

 $R_{13} = H$, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)R_{14}$ or $C(O)OR_{15}$;

 R_{19} = alkyl, cycloalkyl, arylalkyl, or aryl, $C(O)R_{20}$, $C(O)OR_{21}$ or $C(O)NR_{20}R_{22}$;

10 R_{23} = H, OR₂₄, alkyl, cycloalkyl, arylalkyl, aryl, C(O)R₂₅, C(O)OR₂₆ or C(O)NR₂₅R₂₇; where R₂₆ and R₂₉ taken together can form a heterocyclic ring of 6 or 7 members; or R₂ and R₄, R₂ and R₅, R₁₀ and R₁₁, R₉ and R₁₃, R₁₀ and R₁₃, R₉ and R₁₄, R₁₁ and R₁₄, R₉ and R₁₅, R₁₁ and R₁₅, R₁₆ and R₁₈, R₂₀ and R₂₂, R₂₅ and R₂₇, R₂₃ and R₂₈, R₂₄ and R₂₈, R₂₅ and R₂₈, R₂₅ and R₂₉, R₂₉ and R₃₁ or R₃₄ and R₃₅ are optionally taken together to form a

15 heterocyclic ring of 5 to 7 members;

 $E = O \text{ or } CH_2;$

E₁ and E₂ independently are H or F; or

E₁ and E₂, when taken together, form a carbon-carbon bond;

 $Y_1 = O$ or F, with the proviso that when $Y_1 = F$, then M_1 is absent; or

 Y_1 represents a bond from the point of ring attachment to M_1 ;

 $Y_2 = O$ or F, with the proviso that when $Y_2 = F$, then M_2 is absent; or

 Y_2 represents a bond from the point of ring attachment to M_2 ;

 M_1 and M_2 are independently H, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)M_3$, $C(O)OM_4$, or $C(O)NM_3M_5$;

 $M_3 = H$, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

 M_4 = alkyl, cycloalkyl, arylalkyl or aryl;

 $M_5 = H$, alkyl, cycloalkyl, arylalkyl, or aryl; or

M₃ and M₅ taken together form a heterocyclic ring of 5 to 7 members;

when $Y_1 = Y_2 = O$, M_1 and M_2 optionally are bonds from the oxygen atoms of Y_1 and Y_2 ,

respectively, to a carbon atom of an acetal-, ketal- or orthoester group E₃;

wherein E_3 is $Q(A_1)(A_2)$;

wherein Q is a carbon atom;

 $A_1 = H$, CF_3 , alkyl, cycloalkyl, arylalkyl or aryl;

A₂ = H, OA₃, CF₃, alkyl, cycloalkyl, arylalkyl, aryl or heterocycle of 5 to 7 members;

 A_3 = alkyl, cycloalkyl, arylalkyl or aryl; or

where A_1 and A_2 , when taken together, form a carbocyclic ring of 5 or 6 members, with or without unsaturation, and with or without substitution; or

 $M_1Q(A_1)(A_2)M_2$ is taken together to form a carbonyl bonded to Y_1 and Y_2 , such that a cyclic carbonate is formed;

Z = O, NZ_3 , CH_2 , CHF, CF_2 , CCl_2 , or CHCl;

 Z_1 and Z_2 are independently O or S;

 $Z_3 = H$, alkyl, cycloalkyl, arylalkyl, aryl or a heterocyclic ring of 5 to 7 members;

10 $G_1 = O, S, CH_2 \text{ or } CH(OJ_1);$

 $G_2 = CH$, $C(CH_2OJ_3)$, CCH_3 , CCF_3 , or $C(CO_2J_4)$;

 $G_3 = CH_2$, CHF, CF₂, CH(OJ₅) or CH(NJ₆J₇);

 $G_4 = CH_2$, CHF, CF₂, CH(OJ₉), or CH(NJ₁₁J₁₃);

 $G_5 = CH_2$, CHF, CF₂, CH(OJ₁₅), or CH(NJ₁₆J₁₇);

- 15 $G_6 = CH_2$, $CH(CH_3)$, $CH(CHF_2)$, $CH(CF_3)$, $CH(OJ_{19})$, $CH(CH_2OJ_{19})$, $CH(CH_2(NJ_{21}J_{23}))$, or $CH(CO_2J_{22})$, with the provision that when $G_1 = O$ or S, then G_6 does not equal CH(OH); and the number of hydrogen atoms bonded to the G_1 - G_6 ring atoms is limited to a maximum of 8; also with the provision that the number of nitrogen atoms bonded to the G_1 - G_6 ring atoms in Formula I is limited to a maximum of 2;
- 20 $J_1 = H$, alkyl, cycloalkyl, arylalkyl, aryl, or C(O) J_2 ;

 J_2 , J_6 , J_8 , J_{10} , J_{11} , J_{14} , J_{16} , J_{18} , J_{20} , J_{22} , and J_{24} are independently H, alkyl, cycloalkyl, arylarlyl or heterocyclic ring of 5 to 7 members;

 $J_3 = alkyl$, cycloalkyl, arylalkyl, aryl or $C(O)J_2$;

 J_4 = alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

25 $J_5 = H$, alkyl, cycloalkyl, arylalkyl, aryl, or $C(O)J_6$;

 $CH(CH_3)(C(O)NJ_{11}J_{12});$

 $J_7 = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_8$;

 $J_9 = H$, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)J_{10}$, $CH(CH_3)(CO_2J_{11})$, or

 $J_{12} = H$, alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, an amino acid

radical of 2 to 12 carbon atoms with or without hetero atoms, or a peptide radical comprising 2 to 10 amino acid units;

 $J_{13} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{14}$;

 $J_{15} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{16}$;

 $J_{17} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{18}$;

 $J_{19} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{20}$;

 $J_{21} = H$, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)J_{22}$ or heterocyclic ring of 5 to 7 members;

 $J_{23} = H$, alkyl, cycloalkyl, arylalkyl, aryl or C(O) J_{24} ; or

- J₆ and J₇, J₁₁ and J₁₂, J₁₁ and J₁₃, J₁₆ and J₁₇ or J₂₁ and J₂₃ are optionally taken together to form a heterocyclic ring of 5 to 7 members; or
 - where J_{22} and J_{24} , when taken together, form a heterocyclic ring of 5 to 7 members or a bicyclic imide comprising 4 to 12 carbons, with or without unsaturation and/or with or without substitution; or
- when $G_1 = CH(OJ_1)$ and $G_2 = C(CH_2OJ_3)$, J_1 and J_3 optionally are bonds from the oxygen atoms of G_1 and G_2 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_7 ; wherein

$$G_7 = Q_1(T_1)(T_2)$$
; or

when G_2 = $C(CH_2OJ_3)$ and G_3 = $CH(OJ_5)$, J_3 and J_5 optionally are bonds from the oxygen

atoms of G₂ and G₃, respectively, to a carbon atom of an acetal-, ketal- or orthoester group G₈; wherein

$$G_8 = Q_1(T_1)(T_2)$$
; or

when $G_3 = CH(OJ_5)$ and $G_4 = C(CHOJ_9)$, J_5 and J_9 optionally are bonds from the oxygen atoms of G_3 and G_4 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group

20 G₉; wherein

$$G_9 = Q_1(T_1)(T_2)$$
; or

when $G_4 = C(CHOJ_9)$ and $G_5 = CH(OJ_{15})$, J_9 and J_{15} optionally are bonds from the oxygen atoms of G_4 and G_5 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_{10} ; wherein

25 $G_{10} = Q_1(T_1)(T_2)$; or

when $G_5 = C(CHOJ_{15})$ and $G_6 = CHCH_2(OJ_{19})$, J_{15} and J_{19} optionally are bonds from the oxygen atoms of G_5 and G_6 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_{11} ;

wherein $G_{11} = Q_1(T_1)(T_2)$; or

when $G_1 = CH(OJ_1)$ and $G_6 = CH(CH_2OJ_{19})$ or $CH(OJ_{19})$, J_1 and J_{19} are optionally bonds from the oxygen atoms of G_1 and G_6 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_{12} ;

wherein $G_{12} = Q_1(T_1)(T_2)$;

wherein Q₁ is a carbon atom; and

 $T_1 = H$, CF_3 , alkyl, cycloalkyl, arylalkyl or aryl;

 $T_2 = H$, OT_3 , CF_3 , alkyl, cycloalkyl, arylalkyl, aryl or heterocycle of 5 to 7 members;

 T_3 = alkyl, cycloalkyl, arylalkyl or aryl; or

- 5 T₁ and T₂, when taken together, form a carbocyclic ring of 5 or 6 members, with or without unsaturation and with or without substitution; or
 - $Q_1(T_1)(T_2)$ is taken together to form a carbonyl, such that a cyclic carbonate is formed.
 - 2. The method according to Claim 1, wherein:
- 10 $X_1 = O, NR, S; or$

 X_1 represents a bond from the pyrimidine ring to R_4 ;

X₂ = H, F, Cl, Br, I, CF₃, alkyl, cycloalkyl, arylalkyl, aryl, arylalkenyl, arylalkynyl,

C(O)OR₁₇, C(O)NR₁₆R₁₈ or heterocycle of 5 to 7 members;

$$X_3 = H, CN, C(O)OR_{33},;$$

15 R = H, alkyl, cycloalkyl, arylalkyl, aryl;

$$Y_1 = O$$
; or

 Y_1 represents a bond from the point of ring attachment to M_1 ;

$$Y_2 = O$$
; or

 Y_2 represents a bond from the point of ring attachment to M_2 ;

20 M_3 = alkyl, cycloalkyl, arylalkyl, or aryl;

 M_4 = alkyl, cycloalkyl, arylalkyl or aryl;

 $A_1 = H$, alkyl, cycloalkyl, arylalkyl or aryl;

 $A_2 = H$, alkyl, cycloalkyl, arylalkyl, aryl or heterocycle of 5 to 7 members; or

where A₁ and A₂, when taken together, form a carbocyclic ring of 5 or 6 members, with or

25 without unsaturation, and with or without substitution; or

 $M_1Q(A_1)(A_2)M_2$ is taken together to form a carbonyl bonded to Y_1 and Y_2 , such that a cyclic carbonate is formed;

$$Z = O$$
, CH_2 , CF_2 , or CCl_2 ;

$$G_2 = CH$$
, $C(CH_2OJ_3)$, or $C(CO_2J_4)$;

30 $J_3 = alkyl \text{ or } C(O)J_2;$

$$J_4 = alkyl;$$

 $J_5 = H$, alkyl or $C(O)J_6$;

 $J_7 = H$, or alkyl;

```
The state of the s
```

```
J_9 = H, alkyl or C(O)J_{10};
       J_{13} = H, alkyl, or C(O)J_{14};
       J_{15} = H, alkyl, or C(O)J_{16};
       J_{17} = H, alkyl, or C(O)J_{18};
      J_{21} = H, alkyl, C(O)J_{22} or heterocyclic ring of 5 to 7 members;
       T_1 = H, alkyl, or arylalkyl;
       T_2 = H, alkyl, arylalkyl, or heterocycle of 5 to 7 members; or
       T<sub>1</sub> and T<sub>2</sub>, when taken together, form a carbocyclic ring of 5 or 6 members, with or
       without unsaturation and with or without substitution; or
10
       Q_1(T_1)(T_2) is taken together to form a carbonyl, such that a cyclic
       carbonate is formed.
       3.
               The method according to Claim 2, wherein:
       X_1 = O, NR, S;
15
      X<sub>2</sub> = H, F, Cl, Br, I, CF<sub>3</sub>, alkyl, arylalkyl, aryl, arylalkenyl, arylalkynyl, or heterocycle of 5 to
       7 members;
       X_3 = H;
       R = H, alkyl, cycloalkyl, arylalkyl, aryl;
       R_4 = H, alkyl, cycloalkyl, arylalkyl, aryl, or C(O)R_5;
20
      R<sub>5</sub> is H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;
       E_1 and E_2 are H;
       Y_1 = 0;
       Y_2 = 0;
       M<sub>1</sub> and M<sub>2</sub> are independently H, alkyl, cycloalkyl, arylalkyl, aryl, C(O)M<sub>3</sub>,;
25
       M_3 = alkyl, cycloalkyl, arylalkyl, or aryl;
       A_1 = H, alkyl, cycloalkyl, arylalkyl or aryl;
       A_2 = H, alkyl, cycloalkyl, arylalkyl, or aryl;
       Z = O, CH_2, CF_2, or CCl_2;
       G_1 = O \text{ or } S;
30
       G_2 = CH;
       G_3 = CH_2, CH(OJ_5) or CH(NJ_6J_7);
       G_4 = CH_2, CH(OJ_9), or CH(NJ_{11}J_{13});
       G_5 = CH_2, CH(OJ_{15}), or CH(NJ_{16}J_{17});
```

 $G_6 = CH_2$, $CH(CH_3)$, $CH(OJ_{19})$, $CH(CH_2OJ_{19})$, $CH(CH_2(NJ_{21}J_{23}))$, or $CH(CO_2J_{21})$, with the provision that when $G_1 = O$ or S, then G_6 does not equal CH(OH); and the number of hydrogen atoms bonded to the G_1 - G_6 ring atoms is limited to a maximum of 8; also with the provision that the number of nitrogen atoms bonded to the G_1 - G_6 ring atoms in

5 Formula I is limited to a maximum of 2;

```
J_6, J_{11}, and J_{16} are independently H, alkyl, arylalkyl, or aryl;
```

 $J_5 = H$, alkyl or $C(O)J_6$;

 $J_7 = H$, or alkyl;

 $J_9 = H$, alkyl or $C(O)J_{10}$;

10 $J_{13} = H$, alkyl, or $C(O)J_{14}$;

 $J_{15} = H$, alkyl, or $C(O)J_{16}$;

 $J_{17} = H$, alkyl, or $C(O)J_{18}$;

 $J_{19} = H$, alkyl, or $C(O)J_{20}$;

 $J_{21} = H$, alkyl, or $C(O)J_{22}$; and

15 $J_{23} = H$, alkyl, or C(O) J_{24} .

- 4. The method according to Claim 1, wherein said method further comprises the step of measuring the intraocular pressure of said subject before administering the composition.
- 5. The method according to Claim 1, further comprising the step of measuring the intraocular pressure of said subject after administering the composition.
 - 6. The method according to Claim 1, wherein administering said pharmaceutical composition to said subject is to treat ocular hypertension.
 - 7. The method according to Claim 6, wherein administering said pharmaceutical composition to said subject is to treat glaucoma.
- The method according Claim 1, wherein said pharmaceutical composition is co administered to said subject with other therapeutic agent or adjuvant therapy commonly used to reduce intraocular pressure.

- 9. The method according to Claim 1, wherein said pharmaceutical composition is administered topically to said subject.
- The method according to Claim 1, wherein said pharmaceutical composition isadministered via subconjunctival, subscleral, or intravitreal injection to said subject.
 - 11. A compound according to Formula IA:

Formula IA

$$G_{6}$$
 G_{6}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{5}
 G_{4}
 G_{5}
 G_{7}
 G_{7

wherein:

 R_4 = alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, $C(O)R_5$, $C(O)OR_6$ or $C(O)NR_5R_7$;

15 X_1 , X_2 , X_3 , R, R_1-R_3 , R_5-R_{35} , E, E_1 , E_2 , Y_1 , Y_2 , M_1-M_5 , A_1-A_3 , Z, Z_1-Z_3 , G_1-G_6 , J_1-J_{24} , G_1-G_{12} , G_1-G_{12} , G_1-G_{13} are the same as those described in Formula I in Claim 1.

12. A compound of Formula IB:

Formula IB

$$G_{3}$$
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{5}
 G_{4}
 G_{5}
 G_{6}
 G_{7}
 G_{7

5 wherein:

 $X_2, X_3, R, R_1-R_3, R_5-R_{35}, E, E_1, E_2, Y_1, Y_2, M_1-M_5, A_1-A_3, Z, Z_1-Z_3, G_1-G_6, J_1-J_{24}, G_1-G_{12}, T_1-T_3$ are the same as those described in Formula I in Claim 1; provided that when $E=Y_1=Y_2=Z=Z_1=Z_2=G_1=O, E_1=E_2=H,$ $G_2=CH, G_3=CH(OJ_5), G_4=CH(OJ_9), G_5=CH(OJ_{15})$ and $G_6=CH(CH_2OJ_{19})$, then at least one of X_2 , X_3 , M_1 , M_2 , J_5 , J_9 , J_{15} , or J_{19} is not equal to H.

13. A compound of Formula IC:

Formula IC:

$$G_{3}$$
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{5}
 G_{4}
 G_{5}
 G_{7}
 G_{7

wherein

5

10

 X_2 , X_3 , R, R_1-R_3 , R_5-R_{35} , E, E_1 , E_2 , Y_1 , Y_2 , M_1-M_5 , A_1-A_3 , Z, Z_1-Z_3 , G_1-G_6 , J_1-J_{24} , G_1-G_{12} , G_1-G_1 , G_1-G_2 , G_1-G_3 are the same as those described in Formula I in Claim 1; provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = O$, $G_1 = O$ or CH(OH), $E_1 = E_2 = H$, $G_2 = G_1-G_2$, G_1-G_3 , G_1-G_4 , G_1-G_5 , G_1-G

CH, $G_3 = CH(OJ_5)$, $G_4 = CH(OJ_9)$, $G_5 = CH(OJ_{15})$ and $G_6 = CH(CH_2OJ_{19})$, then at least one of X_2 , X_3 , M_1 , M_2 , J_5 , J_9 , J_{15} , or J_{19} is not equal to H;

further provided that when $X_2 = H$ or CH_2OH , $E = Y_1 = Z = Z_1 = Z_2 = G_1 = O$, $Y_2 = bond$ to M_2 from ring, $E_1 = E_2 = M_2 = H$, $G_2 = CH$, $G_3 = CH(OJ_5)$ and $G_4 = CH(OJ_9)$, $G_5 = CH(OJ_{15})$, $G_6 = CH(CH_2OJ_{19})$, then at least one of X_3 , M_1 , J_5 , J_9 , J_{15} , or J_{19} is not equal to H;

further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH(OJ_5)$, $G_4 = CH_2$, $G_5 = CH(OJ_{15})$, $G_6 = CH(CH_3)$, then at least one of X_2 , X_3 , M_1 , M_2 , J_5 , or J_{15} is not equal to H;

further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH_2$ or $CH(NH_2)$, $G_4 = CH(OJ_9)$, $G_5 = CH(OJ_{15})$, $G_6 = CH(CH_3)$, then at least one of X_2 , X_3 ,

 M_1 , M_2 , J_9 , or J_{15} is not equal to H;

5

further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH(NH_2)$, $G_4 = CH(OJ_9)$, $G_5 = CH(OJ_{15})$, $G_6 = CH(CH_2(NH_2))$, then at least one of X_2 , X_3 , M_1 , M_2 , J_9 , or J_{15} is not equal to H;

further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH$

CH(OH), $G_4 = CH_2$, $G_6 = CH(CH_3)$, then G_5 is not equal to CHF; further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = X_2 = X_3 = M_1 = M_2$ = H, $G_2 = CH$, $G_3 = CH(OH)$, $G_4 = CH(OH)$, $G_5 = CH(OH)$, then G_6 is not CH(CH₃) or CH(CHF₂);

further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH/CM$, $G_4 = CH/CM$, $G_5 = CH/CM$, $G_6 = CH/CM$, $G_7 = CH/C$

10 CH(OH), G_5 = CH(OH), G_6 = CH(CH₂OH) then G_4 is not CHF.

14. A compound of Formula ID:

Formula ID

$$G_{6}$$
 G_{6}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{3}
 G_{4}
 G_{5}
 G_{6}
 G_{7}
 G_{7

wherein:

 $X_3 = \text{CN, OR}_{19}, \text{SR}_{19}, \text{NR}_{23} \text{R}_{28}, \text{CF}_3, \text{ alkyl, cycloalkyl, C(O)R}_{32}, \text{C(O)OR}_{33}, \text{C(O)NR}_{34} \text{R}_{35},$ 20 arylalkyl, aryl, arylalkynyl, or a heterocycle of 5 to 7 members;

there was a series and the first of the series and the series are series are series are series are series and the series are series are

10

 X_2 , X_3 , E, E_1 , E_2 , Y_1 , Y_2 , M_1 , M_2 , Z, Z_1 , Z_2 , and G_1 – G_6 are the same as those described in Formula I in Claim 1.

15. A compound of Formula IE:

5

Formula IE

$$G_{5} \xrightarrow{G_{6}} CHOJ_{1} \xrightarrow{Z_{2}} Z_{1} \xrightarrow{Q_{1}} X_{3}$$

$$G_{4} \xrightarrow{G_{3}} G_{2} \xrightarrow{OH} Z \xrightarrow{OH} Z \xrightarrow{OH} Z \xrightarrow{P} QH$$

wherein:

 X_2 , X_3 , E_1 , E_2 , Y_1 , Y_2 , M_1 , M_2 , Z, Z_1 , Z_2 , G_2 – G_6 and J_1 are the same as those described in Formula I in Claim 1.

16. A compound of Formula IF:

Formula IF

$$G_{6}$$
 G_{6}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{2}
 G_{4}
 G_{3}
 G_{4}
 G_{5}
 G_{6}
 G_{7}
 G_{7

5 wherein:

 X_2 , X_3 , E_1 , E_2 , Y_2 , M_2 , Z, Z_1 , Z_2 , G_2 – G_6 are the same as those described in Formula I; Provided that when X_2 = CH₃, X_3 = E_1 = E_2 = M_2 = H, E = Y_2 = Z = Z_1 = Z_2 = G_1 = O, G_2 = CH, G_3 = G_4 = G_5 = CH(OH), then G_6 is not CH(CH₃) or CH(CH₃) or CH(CH₂OH).

10

Formula IG

$$G_5$$
 G_6
 G_7
 G_8
 G_9
 G_9

wherein:

5

 X_2 is aryl, arylalkyl, arylalkenyl, arylalkynyl, C_2 - C_8 alkyl, C_2 - C_8 alkenyl, alkynyl, cycloalkyl, or C_3 - C_8 branched alkyl, and none of the alkyl groups in X_2 are substituted with an amine or an amide on the chain, or contain a nitrogen hetero atom;

 X_3 , E_1 , E_2 , M_1 , M_2 , Y_1 , Y_2 , Z, Z_1 , Z_2 , G_1 - G_6 are the same as those described in Formula I in Claim 1.

17. A compound of Formula IH:

10 <u>Formula IH</u>

OJ₂₁
OH
$$X_2$$
 G_5
 G_4
 G_3
 G_2
 OH
 Z_2
 Z_1
 G_4
 G_3
 G_4
 G_5
 G_4
 G_5
 G_7
 G_8
 G_9
 G

wherein:

15 X_2 , X_3 , E, E_1 , E_2 , M_1 , M_2 , Y_1 , Y_2 , Z, Z_1 , Z_2 , G_2 - G_5 and J_{21} are the same as those described in Formula I in Claim 1;

provided that when $X_2 = X_3 = E_1 = E_2 = M_1 = M_2 = H$, $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = O$, $G_2 = CH$, $G_3 = G_4 = G_5 = CH(OH)$, then J_{21} is not H or CH₃.

$$G_{5}$$
 G_{6}
 G_{6}
 G_{7}
 G_{7

wherein:

 X_2 , X_3 , E, E_1 , E_2 , A_1 , A_2 , Z, Z_1 , Z_2 and G_2 - G_6 are the same as those described in Formula I in Claim 1;

provided that when $X_2 = X_3 = E_1 = E_2 = H$, and $E = Z_1 = Z_2 = G_1 = O$, and $A_1 = A_2 = CH_3$,

10 then Z is not equal to CH₂ or CF₂;

further provided that when $X_2 = X_3 = E_1 = E_2 = H$, and $E = Z = Z_1 = Z_2 = G_1 = O$, and A_1 and A_2 are taken together to form an unsaturated 6-membered ring, then G_6 is not CH(CH₂OH).