

1. LÓGICA

PROPOSICIONES

Ejercicio 1.

- a) Es una proposición verdadera.
- b) No es una proposición.
- c) No es una proposición.
- d) Es una proposición falsa.
- e) Es una proposición falsa.
- f) Es una proposición verdadera.
- g) No es una proposición.
- h) No es una proposición.
- i) Es una proposición falsa.
- j) Es una proposición falsa.
- k) Es una proposición verdadera.
- I) No es una proposición.
- m) Es una proposición pero no se puede determinar su valor de verdad.
- n) Es una proposición verdadera.
- o) Es una proposición falsa.
- p) Es una proposición falsa.
- q) Es una proposición verdadera.
- r) Es una proposición falsa.
- s) No es una proposición.
- t) No es una proposición.
- u) Es una proposición pero no se puede determinar su valor de verdad.

Ejercicio 2.

- a) En la UNLu, algunos estudiantes son mayores de edad.
- b) Todas las mujeres tienen el cabello largo.
- c) Algún intendente de Luján fue peronista.
- d) Alguna vez volé a la luna.
- e) En Jáuregui no hay ninguna ardilla.
- f) Algunas ardillas de Jáuregui no son lindas.

Ejercicio 3. Todos los triángulos isósceles tienen dos lados congruentes.

Ejercicio 4. Todos los triángulos escalenos tienen sus tres lados distintos.

PROPOSICIONES COMPUESTAS Y TABLAS DE VERDAD

Ejercicio 5.

A continuación se enumeran los ítems cuyas proposiciones son equivalentes.

- \checkmark $(a) \equiv (c) \equiv (d) \equiv (j)$
- \checkmark $(b) \equiv (g)$
- \checkmark $(e) \equiv (h)$
- \checkmark (i) \equiv (f)

Ejercicio 6. A cargo del estudiante.

Ejercicio 7. (Se propone la resolución de algunos ítems a modo de ejemplo, el resto de los ejercicios quedan a cargo del estudiante)

Ítem a)

p	q	r	$p \wedge q$	$(p \land q) \lor r$
V	V	V	V	V
V	V	F	V	V
V	F	V	F	V
V	F	F	F	F
F	V	V	F	V
F	V	F	F	F
F	F	V	F	V
F	F	F	F	F

Ítem c)

p	q	r	$p \Longrightarrow q$	$(p \Longrightarrow q) \Longleftrightarrow r$
V	V	V	V	V
V	V	F	V	F
V	F	V	F	F
V	F	F	F	V
F	V	V	V	V
F	V	F	V	F
F	F	V	V	V
F	F	F	V	F

Ítem g)

p	q	$\neg p$	$q \lor \neg p$	$p \Longrightarrow (q \lor \neg p)$
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

Ítem h)

p	q	r	q∧r	$(q \wedge r) \vee q$	$p \wedge ((q \wedge r) \vee q)$
V	V	V	V	V	V
V	V	F	F	V	V
V	F	V	F	F	F
V	F	F	F	F	F
F	V	V	V	V	F
F	V	F	F	V	F
F	F	V	F	F	F
F	F	F	F	F	F

Ítem k)

p	q	r	$\neg q$	$r \wedge p$	$\neg q \Longrightarrow (r \land p)$	$p \Leftrightarrow (\neg q \Rightarrow (r \land p))$
V	V	V	F	V	V	V
V	V	F	F	F	V	V
V	F	٧	V	V	V	V
V	F	F	٧	F	F	F
F	V	>	F	F	٧	F
F	٧	F	F	F	>	F
F	F	V	٧	F	F	V
F	F	F	V	F	F	V

Ítem I)

p	q	r	$p \Longrightarrow q$	$\neg(p \Longrightarrow q)$	$p \Leftrightarrow r$	$\neg(p \Longrightarrow q) \lor (p \Longleftrightarrow r)$
V	V	V	V	F	V	V
V	V	F	V	F	F	F
V	F	V	F	V	V	V
V	F	F	F	V	F	V
F	V	V	V	F	F	F
F	V	F	V	F	V	V
F	F	V	V	F	F	F
F	F	F	V	F	V	V

Ítem m)

q	$\neg q$	$q \land \neg q$
V	F	F
F	V	F

Ejercicio 8.

Ítem a)

i)
$$p \Rightarrow r$$

ii)
$$\neg q \Longrightarrow p$$

Ítem b)

$$\begin{array}{c}
p \Longrightarrow r \\
\neg q \Longrightarrow p \\
\hline
 \neg r \\
\hline
 \vdots q
\end{array}$$

Ejercicio 9. Se resuelve de manera similar al ejercicio anterior.

Ejercicio 10. A cargo del estudiante.

RAZONAMIENTOS LÓGICOS

Ejercicio 11. (Se propone la resolución de algunos ítems a modo de ejemplo, el resto queda a cargo del estudiante)

Ítem i)

 Si tomamos la primera de las premisas (p ∧ q) y aplicamos la regla de "simplificación" que aparece en la tabla de reglas de inferencia, obtenemos:

$$\frac{p \wedge q}{\therefore p}$$

 Ahora tomemos la segunda de las premisas (p ⇒ (r ∧ q)), más el resultado que obtuvimos recién, y usando "Modus Ponens" llegamos a que:

$$\frac{p \Rightarrow (r \land q)}{p}$$

• Aplicamos nuevamente "simplificación" al resultado anterior y obtenemos:

$$\frac{r \wedge q}{\therefore r}$$

• Nuevamente "Modus Ponens" con el resultado anterior y la tercer premisa:

$$r \Rightarrow (s \lor t)$$
$$r$$
$$\therefore s \lor t$$

Ítem j)

Enumeramos las premisas

Silogismo Diyuntivo

$$p \Rightarrow (q \Rightarrow r)$$
 (1)
 $p \lor s$ (2)
 $t \Rightarrow q$ (3)
 $\neg s$ (4)
 $\therefore \neg r \Rightarrow \neg t$ (5)

$$\begin{array}{ccc}
p \lor s & (2) \\
\neg s & (4) \\
\hline
\therefore p & (6)
\end{array}$$

Modus Ponens

$$p \Rightarrow (q \Rightarrow r)$$
 (1)
 p (6)
 $\therefore q \Rightarrow r$ (7)

$$t \Rightarrow q$$
 (3)
 $q \Rightarrow r$ (7)
 $\therefore t \Rightarrow r$ (8)

Equivalencia Contrarecíproco

(8)
$$(t \Rightarrow r) \equiv (\neg r \Rightarrow \neg t)$$
 (5)

Ítem k)

Enumeramos las premisas

$$\begin{array}{ccc}
p \lor q & (1) \\
\neg p \lor r & (2) \\
\neg r & (3) \\
\therefore q & (4)
\end{array}$$

Silogismo Diyuntivo

$$\begin{array}{ccc}
\neg p \lor r & (2) \\
\neg r & (3) \\
\therefore \neg p & (5)
\end{array}$$

Silogismo Diyuntivo

$$\begin{array}{ccc}
p \lor q & (1) \\
\neg p & (5) \\
\therefore q & (4)
\end{array}$$

Ítem I)

Enumeramos las premisas

$$\begin{array}{ccc}
p \Rightarrow r & (1) \\
\neg r & (3)
\end{array}$$

Modus Tollens

$$p \Rightarrow r \qquad (1)$$

$$\neg q \Rightarrow p \qquad (2)$$

$$\neg r \qquad (3)$$

$$\therefore q \qquad (4)$$

Modus Tollens

$$\begin{array}{ccc}
\neg q \Rightarrow p & (1) \\
\neg p & (5) \\
\hline
\vdots \neg (\neg q) & (6)
\end{array}$$

Equivalencia Doble negación

$$(6) \qquad \neg(\neg q) \equiv q$$

(4)

Ítem m)

En la tabla de "Equivalencias Lógicas" vemos que A ⇒ B ≡ ¬A ∨ B. Si aplicamos esta regla a la primer premisa, obtenemos:

$$(p \vee q) \Rightarrow r \equiv \neg (p \vee q) \vee r$$

 Otra equivalencia lógica (conocida como una de la leyes de De Morgan) que se encuentra en la tabla, dice que

$$\neg (A \lor B) \equiv \neg A \land \neg B$$
. Entonces:

$$\neg (p \lor q) \lor r \equiv (\neg p \land \neg q) \lor r$$

 Usamos ahora, sobre el resultado anterior, otra equivalencia lógica (una de las leyes distributivas) que dice que

$$(A \land B) \lor C \equiv (A \lor C) \land (A \lor C)$$

$$(\neg p \land \neg q) \lor r \equiv (\neg p \lor r) \land (\neg q \lor r)$$

• Ahora usamos "simplificación" a la fórmula $(\neg p \lor r) \land (\neg q \lor r)$:

$$\frac{(\neg p \lor r) \land (\neg q \lor r)}{\therefore \neg q \lor r}$$

- Aplicamos nuevamente la primer equivalencia lógica que usamos en la resolución de este ejercicio:
- $\neg q \vee r \equiv q \Rightarrow r$

 Aplicamos la regla de inferencia "silogismo hipotético" entre el último resultado y la segunda premisa y obtenemos:

 $q \Rightarrow r$ $r \Rightarrow s$ $\therefore q \Rightarrow s$

 Por último, usamos la equivalencia lógica llamada "contrarecíproco" a la fórmula
 q ⇒ s y llegamos al resultado que buscábamos:

 $\neg s \Rightarrow \neg q$

Ítem n)

 Una de las equivalencias lógicas llamada regla de "Adición" dice que de A se deduce A ∨ B. Es decir, si una premisa es válida, entonces seguro es válida esa premisa más cualquier otra. Lo que nos va servir en este caso (por algo que veremos enseguida) es agregarle a ¬q la premisa ¬p. Concretamente:

$$\frac{\neg q}{\therefore \neg q \vee \neg p}$$

Otra de las leyes de De Morgan, dice que
 ¬A ∨ ¬B ≡ ¬(A ∧ B). Entonces:

$$\neg q \vee \neg p \equiv \neg (q \wedge p)$$

• Usando la "propiedad conmutativa" que figura en la tabla de equivalencias lógicas $(A \wedge B \equiv B \wedge A)$ tenemos, a partir de $\neg (q \wedge p)$, que vale:

$$\neg (p \land q)$$

 Ahora, usando "silogismo disyuntivo" con la premisa (p∧q)∨r y el resultado anterior, llegamos a lo que buscábamos:

$$\frac{(p \land q) \lor r}{\frac{\neg (p \land q)}{\cdot r}}$$

 Por último, aplicando la regla "silogismo disyuntivo" entre lo que obtuvimos en el paso anterior y la cuarta premisa, llegamos al resultado que buscábamos:

$$\frac{s \vee t}{\frac{\neg s}{\cdot t}}$$

Ejercicio 12.

Ítem a)

p	q	r	$\neg q$	$p \land \neg q$	$q \Longrightarrow r$	$p \Longrightarrow (q \Longrightarrow r)$	$\neg r$	$[(p \land \neg q) \land p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow \neg r$
V	F	٧	V	V	V	V	F	F

Ítem b)

p	q	r	$p \wedge q$	$(p \land q) \Longrightarrow r$	$[(p \land q) \Longrightarrow r] \Longrightarrow p$
F	٧	٧	F	٧	F

Ítem c)

p	q	r	$\neg p$	$r \vee \neg p$	$\neg p \Longrightarrow q$	$[(r \lor \neg p) \land (\neg p \Longrightarrow q)] \Longrightarrow p$
F	٧	٧	٧	V	V	F

Ejercicio 13.

Ítem a)

$$p \vee [p \wedge (p \vee q)]$$

Por ley distributiva podemos escribir: $p \vee [(p \wedge p) \vee (p \wedge q)]$

Por leyes de idempotencia $p \wedge p \equiv p$, luego nos queda:

$$p \vee [p \vee (p \wedge q)]$$

Por ley asocitiva: $(p\vee p)\vee (p\wedge q)$

Por leyes de idempotencia: $p \vee (p \wedge q)$

Por leyes de absorción, queda finalmente p.

Ítem b)

$$q \wedge [(p \wedge (\neg r \vee q \vee \neg q)) \vee (\neg q \wedge (r \vee t \vee \neg t))]$$

Las expresiones $q \lor \neg q$ y $t \lor \neg t$ son tautologías por lo que siempre serán verdaderas, decimos entonces que equivalen a 1.

Nos queda:

$$q \wedge [(p \wedge (\neg r \vee 1)) \vee (\neg q \wedge (r \vee 1))]$$

Las expresiones: $\neg r \lor 1$ y $r \lor 1$ también son tautologías por lo que equivalen a 1.

$$q \wedge [(p \wedge 1) \vee (\neg q \wedge 1)]$$

Nos quedan las equivalencias: $p \wedge 1 \equiv p \vee \neg q \wedge 1 \equiv \neg q$

Luego queda, $q \wedge [p \vee \neg q]$

Por propiedad distributiva: $(q \land p) \lor (q \land \neg q)$

Como $q \land \neg q \equiv 0$ por ser una contradicción y resultar siempre falsa, nos queda:

$$(q \wedge p) \vee 0$$

Luego por leyes de idempotencia y absorción resulta la simplificación: $q \wedge p$.

Ítem c) Simplificando se obtiene $p \wedge t$. La resolución queda a cargo del estudiante.

CUANTIFICADORES

Ejercicio 14.

- a) Falso porque $Si \ x = 0 \Rightarrow x^2 = 0$. Negación: $\exists x \in \mathbb{R}: x^2 \le 0$
- b) Verdadero. Negación: $\forall x \in \mathbb{R}, x^2 \leq 0$
- c) Falso porque $Si \ x = 2 \Rightarrow x^2 = 4 > 0$. Negación: $\exists x \in \mathbb{R}: x^2 > 0$

d) Verdadero. Negación: $\forall x \in \mathbb{R}, x^2 > 0$

Ejercicio 15.

a) Falso. Negación: $\exists x \in A : x \notin B$

b) Verdadero. Negación: $\exists x \in B : x \notin A$

c) Verdadero. Negación: $\forall x \in A, x \notin B$

d) Verdadero. Negación: $\forall x \in B, x \notin A$

e) Verdadero. Negación: $\forall x \in A, x \notin A$

APLICACIONES A CIRCUITOS Y A COMPUTACIÓN

Ejercicio 16. A cargo del estudiante.

Ejercicio 17.

- a) y = 8; x = 1
- b) No se puede ejecutar la proposición (b). Se pasa al apartado (c).
- c) x = 16
- d) No se puede ejecutar la proposición (d). Se pasa al apartado (e).
- e) y = 10
- f) No se puede ejecutar la proposición (f).

Ejercicio 18. A cargo del estudiante.

Ejercicio 19. A cargo del estudiante.