

REDES NEURONALES

- Neurona: base del funcionamiento del cerebro.
- Sistema de procesamiento cerebral de la información:
 - Complejo, No lineal y Paralelo.

Fisiología de una neurona elemental

Elementos de que consta: sinapsis, axón, dentritas y soma o cuerpo

NEURONA ARTIFICIAL

- Neurona artificial: unidad de procesamiento de la información, es un dispositivo simple de cálculo que ante un vector de entradas proporciona una única salida.
- Elementos:
 - Conjunto de entradas, xj
 - Pesos sinápticos, wi
 - Función de activación: $w_1 : x_1 + w_2 : x_2 + ... + w_n : x_n = a$
 - Función de transferencia:

$$y = F(w_1 : x_1 + w_2 : x_2 + ... + w_n : x_n)$$

 Bias o polarización: entrada constate de magnitud 1, y peso b que se introduce en el sumador

NEURONA ARTIFICIAL

- Principales funciones de transferencia:
 - Lineal: *y=ka*
 - Escalón: y = 0 si a < 0; y = 1 si a > = 0
 - Sigmoide
 - Gaussiana.

RNA de una capa

- Una neurona aislada dispone de poca potencia de cálculo.
- Los nodos se conectan mediante la sinapsis
- Las neuronas se agrupan formando una estructura llamada capa.
- Los pesos pasan a ser matrices W (n x m)
- La salida de la red es un vector: $Y = (y_1, y_2, ..., y_n)^T$
- $Y=F(W\cdot X+b)$

RNA Multicapa

- Redes multicapa: capas en cascada.
- Tipos de capas:
 - Entrada
 - Salida
 - Oculta
- No hay realimentación => *red feedforward*
 - Salida depende de entradas y pesos.
- Si hay realimentación => *red recurrente*
 - Efecto memoria
 - Salida depende también de la historia pasada.
- Una RNA es un aproximador general de funciones no lineales.

Entrenamiento I

- Entrenamiento: proceso de aprendizaje de la red.
- Objetivo: tener un comportamiento deseado.
- Método:
 - Uso de un algoritmo para el ajuste de los parámetros libres de la red: los pesos y las bias.
 - Convergencia: salidas de la red = salidas deseadas.
- Tipos de entrenamiento:
 - Supervisado.
 - Pares de entrenamiento: entrada salida deseada.
 - Error por cada par que se utiliza para ajustar parámetros
 - No-supervisado.
 - Solamente conjunto de entradas.
 - Salidas: la agrupación o clasificación por clases
 - Reforzado.

Perceptrones

- McCulloch y Pitts, en 1943, publicaron el primer estudio sobre RNA.
- El elemento central: perceptrón.

Solo permite discriminar entre dos clases linealmente separables: XOR.

Solución: más capas o funciones de transferencia no lineales.

Aprendizaje del Perceptrón.

- Algoritmo supervisado:
 - Aplicar patrón de entrada y calcular salida de la red
 - Si salida correcta, volver a 1
 - Si salida incorrecta
 - I 0 → sumar a cada peso su entrada
 - 1 → restar a cada peso su entrada
 - Volver a 1
- Proceso iterativo, si el problema es linealmente separable este algoritmo converge en un tiempo finito.
- Nos da los pesos y las bias de la red que resuelve el problema.

Regla delta

- Generalización del algoritmo del perceptrón para sistemas con entradas y salidas continuas.
- Se define: $\delta = \mathbf{T} \mathbf{A} = e_k(n)$ (salidas deseadas salidas de la red).
- Minimiza una función de coste basada en ese vector de error:

$$J = E\left[\frac{1}{2}\sum_{k}e_{k}^{2}(n)\right]$$

- $\Delta_{i} = \delta l_{r} \times_{i}$
- $W_i(n+1) = W_i(n) + \Delta_i$
- Razón de aprendizaje I_r
- Si las neuronas son lineales=> un único mínimo

Redes Neuronales Lineales.

- Función de transferencia lineal.
- Algoritmo de entrenamiento de Widrow-Hoff o Delta, tiene en cuenta la magnitud del error.
- Entrenamiento:
 - Suma de los cuadrados de los errores sea mínima.
 - Superficie de error con mínimo único.
 - Algoritmo tipo gradiente.

Aproximan funciones lineales.

Backpropagation

- Clave en el resurgimiento de las redes neuronales.
- Primera descripción del algoritmo fue dada por Werbos en 1974
- Generalización del algoritmo de Widrow-Hoff para redes multicapa con funciones de transferencia no-lineales y diferenciables.
- 1989 Hornik, Stinchcombe y White
 - Una red neuronal con una capa de sigmoides es capaz de aproximar cualquier función con un número finito de discontinuidades
- Propiedad de la generalización.
- La función de transferencia es no-lineal, la superficie de error tiene varios mínimos locales.

Red Perceptron Multicapa (MLP)

- Función acotada, monótona creciente y diferenciable.
- Red de tipo feedforward.
- Suficiente con dos capas.

Capa de entrada

Algoritmo backpropagation I

Descripción:

- Tras inicializar los pesos de forma aleatoria y con valores pequeños, seleccionamos el primer par de entrenamiento.
- Calculamos la salida de la red
- Calculamos la diferencia entre la salida real de la red y la salida deseada, con lo que obtenemos el vector de error
- Ajustamos los pesos de la red de forma que se minimice el error
- Repetimos los tres pasos anteriores para cada par de entrenamiento hasta que el error para todos los conjuntos de entrenamiento sea aceptable.
- Descenso por la superficie del error
- Cálculo de derivadas del error respecto de los pesos y de las bias.

Atrás

Algoritmo backpropagation II

Detalles:

- SSE: $E = \sum E_p = \sum (y_{pk} o_{pk})^2$
- $\Delta W_{ij} = -\eta \partial E / \partial W_{ij}$

Pasos:

- Inicialización:
 - Construcción de la red.
 - Inicialización aleatoria de pesos y umbrales (-0.5, 0.5)
 - Criterio de terminación (número máximo de iteraciones,...).
 - Contador de iteraciones n=0.
- Fase hacia delante:
 - Calcular la salida de la red para cada patrón de entrada.
 - Calcular el error total cometido (SSE)
 - Si la condición de terminación se satisface, parar
- Fase hacia atrás:

Algoritmo backpropagation III

- Fase hacia atrás:
 - Incrementar el contador n=n+1.
 - Paca cada neurona de salida calcualr: $\delta_k = (o_k y_k)f'(net_k)$ donde $net_j = \Sigma_i w_{ij} x_i + b_j$
 - Para cada unidad oculta, calcular $\delta_j = f'(net_j) \Sigma_k \delta_k w_{jk}$
 - Actualizar pesos: $\Delta w_{ij}(n+1) = \eta \delta_j o_i + \alpha \Delta w_{ij}(n)$
 - Volver a la fase hacia delante.
- Inconvenientes del algoritmo backpropagation:
 - Tiempo de entrenamiento no acotado.
 - Dependiente de las condiciones iniciales:
 - Parálisis de la red.
 - Mínimos locales.

Algoritmo Backpropagation IV

- Underfitting.
- Memorización o Sobreaprendizaje.
- Caracterización de la red. ¿Cuantas capas, cuantas neuronas en cada capa,...?

Redes Neuronales no supervisadas I

- Autoorganizativas: durante el proceso de aprendizaje la red debe descubrir por si misma regularidades o categorías => la red debe autoorganizarse en función de las señales procedentes del entorno.
- Mapa de Rasgos Autoorganizados, SOM (Kohonen, 80)
- Características:
 - Red competitiva
 - Arquitectura unidireccional de dos capas:
 - Capa de entrada: m neuronas una por cada vector de entrada.
 - Capa segunda se realiza el procesamiento, formando el mapa de rasgos. Tiene nx X ny neuronas operando en paralelo.
 - Todas las neuronas de entrada están conectadas a las neuronas de la segunda capa, a través de los pesos wij

Redes Neuronales No-Supervisadas II

- Cada neurona (i,j) calcula la similitud entre el vector de entradas y su vector de pesos
- Vence la neurona cuyo vector de pesos es más similar al vector de entrada.

$$d(w_g, x) = min_{ij}d(w_{ij}, x)$$

- Cada neurona sirva para detectar alguna característica del vector de entrada.
- Función de vecindad: relación entre neuronas próximas en el mapa.

RNA no supervisadas III

Aprendizaje:

- Inicialización de los pesos wij
- Presentación de las entradas x(t)
- Cada neurona calcula, la similitud entre su vector de pesos wij y el vector de entrada x, usando la distancia Euclídea

$$d^{2}(w_{ij}, x) = \sum_{k=1}^{n} (w_{ijk} - x_{k})^{2}$$

- Determinación de la neurona ganadora: $Ganadora = min_j d_j^2$
- Actualización de los pesos de la neurona ganadora y sus vecinas

$$w_{ijk}(t+1) = w_{ijk}(t)\alpha(t)h(|i-g|,t)(x_k(t) - w_{ijk}(t))$$

- Las demás neuronas no actualizan su peso
- Si se ha alcanzado el número de iteraciones parar, si no volver al paso 2.

VENTAJAS

Ventajas de las RNA:

- Aprendizaje adaptativo: lo necesario es aplicar un buen algoritmo y disponer de patrones (pares) de entrenamiento.
- Auto-organización => conduce a la generalización
- Tolerancia a fallos: las redes pueden aprender patrones que contienen ruido, distorsión o que están incompletos.
- Operación en tiempo real: procesan gran cantidad de datos en poco tiempo.
- Facilidad de inserción en tecnología ya existente.