tentamen, EE1M21 deel
1, 9.00h-11.00h, 10-12-2014

Naam:								1		
Studienum	mer:							٦		
Naam doce	ent:		<u> </u>							
	L									
									$pudig\ rekenapparaat\ to egest$	aan
Kort ant			_						(volstaat) , opg7 : 3p, opg8: 1p, opg9: 3p	
									$\frac{(x^2-3y^2)}{(x^2-3y^2)}$.	
- 101		Γ			- , 0 ,	V	(-		- 9)	
(a)	f(1, 1)) =								
			net :	 xy-v	vlak	het	dom	eir	n van f en geef het bereik.	
	Het b							Г		
	De scl	hets '	v.h.	do	meir	n:(geei	f coörd	inat	en snijpunten met assen)	
								—	,	
				Γ		<u> </u>				_
(c)	Berek	en f_2	r(1,	1)						
					ng er	n een	sch	ets	van de niveaukromme hore	nde bij de functiewaarde
	$\sqrt{5}$.	1	.1 .							
	De ve	rgenj	JKIN	g :						
	ъ.		/						\ \	
	De sc	hets:(geef	coördi	inaten	snijpur	nten m	et as	ssen)	

(f) Geef de linearisering L(x, y) van f in punt (1, 1).

2. Gegeven de grafiek van een functie f voor $-2 \le x \le 2$ en $-2 \le y \le 2$.

Vul in onderstaande tabel in: < 0, > 0, of = 0.

$f_x(0,0)$	$f_x(1,1)$	$f_{xx}(0,0)$	$f_{xy}(0,1)$	$D_{\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle} f(1,1) \dots$

3. Gegeven z=f(x,y) waarbij x=g(u,v) en y=h(u,v). Alle gegeven functies zijn "netjes".

Druk de gevraagde partiële afgeleiden uit in de partiële afgeleiden van f,g, en h.

(a)
$$z_u(u,v) =$$

$$z_{uv}(u,v) =$$
(b)

4. Gegeven op \mathbb{R}^3 de functie $f(x, y, z) = x^2 + y^3 + z^4$ en punt P(1, 1, 1). Laat **u** een eenheidsrichtingsvector zijn. Geef in de volgende tabel een geschikte **u**.

$D_{\mathbf{u}}f(P)$ is maximaal als $\mathbf{u} = \langle \dots, \dots \rangle$
$D_{\mathbf{u}}f(P)$ is minimaal als $\mathbf{u} = \langle \dots, \dots \rangle$
$D_{\mathbf{u}}f(P) = 0 \text{ als } \mathbf{u} = \langle \dots, \dots \rangle$

5. Laat G het gebied zijn dat wordt ingesloten door de driehoek met de hoekpunten A(0,0), B(4,0) en C(4,8). Hierop is gegeven de functie f(x,y) = y. Vul de volgende tabel aan:

$\int \int_{G} y dA =$	$ \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} y dx \right] dy $
$\int \int_G y dA =$	$\int_{\cdots}^{\cdots} \left[\int_{\cdots}^{\cdots} y dy \right] dx$
Bereken de integraal	

6. Op het gebied R beschreven door $x^2 + y^2 \le 1$, is gegeven de functie $f(x,y) = (x^2 + y^2)\sqrt{x^2 + y^2}$.

 r,θ zijn de bijbehorende poolcoördinaten. Vul de volgende tabel aan:

$\int \int_{R} f(x,y)dA =$	$ \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} \dots dr \right] d\theta $
Bereken de integraal	

7. G is het gebied binnen het prisma dat begrensd wordt door de vlakken x=0, x=1, z=0, z-y=0 en y=1. Laat I de integraal $\int \int_G f(x,y,z) dV$ zijn. Vul juiste grenzen in:

$$I = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x, y, z) dx \right] dy \right] dz.$$

$$I = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x, y, z) dz \right] dy \right] dx.$$

$$I = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x, y, z) dy \right] dx \right] dz.$$

8. Bij de transformatie x = 2u + v en y = u + 4v van de integraal $\int \int_G f(x,y) dA$ wordt dA gegeven door dA = |h(u,v)| du dv.

Dan is de Jacobiaan h(u, v) gelijk aan

9. Laat G het gebied zijn dat begrensd is door het vlak z=0 en de bol $x^2+y^2+z^2=9$ I is de integraal $\int \int \int_G (x^2+y^2+z^2) dV$. Verder zijn (ρ,θ,ϕ) en (r,θ,z) respectievelijk de bolcoördinaten en cilindercoördinaten in "Stewart-notatie". Vul volgende tabel aan:

$\int \int \int_G (x^2 + y^2 + z^2) dV =$	J [J	[∫	$d\rho d\theta d\theta$
$\int \int \int_G (x^2 + y^2 + z^2) dV =$	J [J	[$\dots dz dr d\theta$

Open-antwoord-vragen:(Alleen antwoord met uitwerking volstaat)

normering: opg1: 4p, opg2: 7p

1. Gegeven het gebied G binnen de cirkel $x^2+y^2=a^2$ met $x\geq 0$ en $y\geq 0$. I.h.a. wordt het massamiddelpunt van een gebied R in \mathbb{R}^2 gegeven door $\langle \overline{x}, \overline{y} \rangle$, met

$$\overline{x} = \frac{\int \int_{R} x \rho(x, y) dA}{\int \int_{R} \rho(x, y) dA}$$

$$\overline{y} = \frac{\int \int_{R} y \rho(x, y) dA}{\int \int_{R} \rho(x, y) dA}$$

waarbij $\rho(x,y)$ de dichtheid is. Deze wordt nu gelijk gekozen aan ρ_0 (constant dus).

(a) Maak een schets van G.

(b) Bereken $\langle \overline{x}, \overline{y} \rangle$.

2. Gegeven 2 cilinders $y^2 + z^2 = 1$ en $x^2 + z^2 = 1$. Het volume van het gebied G ingesloten door de 2 cilinders wordt gegeven door de integraal (integrand is 1):

$$\int \int \int_G dV.$$

(a) Schets een "bovenaanzicht" van G:

(b) Beschrijf en teken de "doorsneden" van G met het vlakken van het type $z=z_0$ met z_0 een getal uit [-1,1].

(c) Bereken

$$\int \int \int_G dV :$$

(gebruik hierbij het resultaat uit de vorige vraag!)

(d) Geef het volume van het ingesloten gebied tussen de cilinders $y^2+z^2=R^2$ en $x^2+z^2=R^2$:

