<u>מיקוד הוכחות אינפי 1</u>

– (מעודכן לתאריך 19.05.2019) –

טענה 2.13 (אי-שוויון ברנולי)	
• • • •	
2.14 טענה	
2.15 טענה	
2.23 טענה	
טענה 2.24 (מבחן דלאמבר)	
טענה 2.30 (אפיון)	
2.31 משפט	
טענת עזר 2.35	
2.36 טענת עזר	
טענה 2.39 (הלמה של קנטור)	
(בולצאנו ויירשטראס) 2.42	
משפט 3.6 (גבול של הרכבת פונקציות)	
(ערך הביניים) 4.6 משפט	
(ערך הביניים של קושי) 4.7 משפט	
(ויירשטראס) 4.8 משפט	
טענה 4.11	
משפט 5.7 (פרמה)	
נושפט 3.7 (פו נווו)	
משפט 5.8 (רול) משפט 5.8 (רול)	
` ,	
` ,	
` ,	
` ,	
` ,	
` ,	
` ,	
` ,	
` ,	
` ,	
` ,	

$(1+b)^n \ge 1+nb$: מענה 2.13 (אי שוויון ברנולי): לכל n טבעי ולכל $b \ge -1$ ממשי מתקיים:

n באינדוקציה על

עבור n=1 הטענה ברורה.

.
$$(1+b)^{n+1} \ge 1 + (n+1)b :$$
 נניח נכונות עבור n. צ"ל

$$\Box$$
 . בנדרש. $(1+b)^n (1+b) \ge (1+nb)(1+b) = 1+nb+b+nb^2 \ge 1+nb+b$

 $\lim_{n \to \infty} a^n = 0$ אז -1 < a < 1 טענה **2.14:** אם

$$a = \frac{1}{a} - 1$$
 מבר הובחה: נניח ש- 0 $a = \frac{1}{1+b}$ -ש בך ש $a > 0$ כך ש- 0 $a < 1$ הובחה:

לפי אי שוויון ברנולי
$$\lim_{n \to \infty} \frac{1}{bn} = \frac{1}{b} \cdot \lim_{n \to \infty} \frac{1}{n} = 0$$
 . $0 < a^n = \frac{1}{(1+b)^n} \le \frac{1}{1+nb} \le \frac{1}{nb}$ ומסנדוויץ' ינבע

$$\lim_{n\to\infty}a^n=0$$

.ברור a=0 ברור

$$egin{align*} &\lim_{n o\infty}a^n=0 \ |\lim_{n o\infty}\left|a^n
ight|=0 \ -$$
אם $\lim_{n o\infty}\left|a
ight|^n=0 \ , \lim_{n o\infty}\left|a
ight|^n=0$ אם $\lim_{n o\infty}a^n=0 \ |a|$

. $\lim_{n\to\infty} \sqrt[n]{a} = 1$ טענה 2.15: לכל 0 < a ממשי, מתקיים

הוכחה: נפריד לשלושה מקרים.

עובדה זו ,
$$\lim_{n \to \infty} a_n = 0$$
 - נסמן . $a_n \ge 0$ - עובדה לבך לבך שים לב לכך . $a_n = \sqrt[n]{a} - 1$ עובדה זו . $a > 1$

.
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
 -מובילה לכך ש

.
$$a = \left(1 + a_n\right)^n \ge 1 + na_n > na_n$$
 , אי לכל לכל לכל נקבל: לכל לכל מאי שוויון ברנולי נקבל:

. כנדרש. ,
$$\lim_{n\to\infty}a_n=0$$
 'פנדרש. לכן לפי משפט הסנדוויץ $0\leq a_n<\frac{a}{n}$

. עבור a=1 הטענה ברורה

$$\square$$
 . $\lim_{n\to\infty} \sqrt[\eta]{a} = 1$ ולכן $\lim_{n\to\infty} \sqrt[\eta]{\frac{1}{a}} = \lim_{n\to\infty} \frac{1}{\sqrt[\eta]{a}} = 1$ ואם $0 < a < 1$ ואם 0

. ו- $\left(b_{_{n}}
ight)$ שתי סדרות חיוביות $\left(a_{_{n}}
ight)$ שתי סדרות חיוביות

. אם ורק אם הסדרה
$$\left(\frac{a_n}{b_n}\right)$$
 חסומה. אם ורק אם הסדרה $a_n = O(b_n)$.

$$a_n = O(b_n)$$
 אז $a_n = o(b_n)$ ב. אם

. אמ"ם חסומה
$$\left(a_{n}\right)$$
 אמ"ם הסדרה $\left(a_{n}\right)$ אמ"ם הסדרה $\left(a_{n}\right)$

.
$$\lim_{n\to\infty}a_n+b_n=\lim_{n\to\infty}b_n$$
 ד. אם $a_n=o(b_n)$ יש גבול במובן הרחב, אז $a_n=o(b_n)$ ד. אם

הוכחה:

. בנדרש.
$$0 \le \frac{a_n}{b_n} \le c$$
 ש- , מכאן ש- , $a_n \le c \cdot b_n$ ברך ש- , $c > 0$ בנדרש. , $a_n = O(b_n)$. א.

. ננדרש. ,
$$a_n \leq M \cdot b_n$$
 לכל $0 \leq \frac{a_n}{b_n} \leq M$ -בער , $M > 0$ לכל \Rightarrow

$$.a_n=O\!\!\left(b_n^{}
ight)$$
 , אוני איי הסדרה הסדרה לבן הסדרה , $\lim_{n o\infty}rac{a_n^{}}{b_n^{}}=0$, לבן הסדרה לבן הסדרה

. אמ"ם הסדרה
$$\left(\frac{a_n}{1}\right)$$
 חסומה אמ"ם הסדרה $a_n=O(1)$, ג.

$$\lim_{n\to\infty} a_n + b_n = \lim_{n\to\infty} b_n \cdot \left(\frac{a_n}{b_n} + 1\right) = \lim_{n\to\infty} b_n \cdot 1 = \lim_{n\to\infty} b_n \quad . \mathsf{T}$$

מבחן המנה לגבולות

,n טענה 2.24 (מבחן דלאמבר): תהי $\left(a_n
ight)$ חיובית ויהי 0 < q < 1 מספר ממשי. אם מתקיים לכל

.
$$\lim_{n \to \infty} a_n = 0$$
 אז , $\frac{a_{n+1}}{a_n} \le q$

, אגף ימין .
$$0 \le a_n \le \frac{a_1}{q} \cdot q^n$$
 לפיכך, $0 \le \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdot \frac{a_4}{a_3} \cdot \cdots \frac{a_n}{a_{n-1}} = \frac{a_n}{a_1} \le q^{n-1}$ הובחה:

מתכנס ל-0 ומסנדוויץ' נובעת הטענה.

טענה 2.30 (אפיון): תהי A קבוצה לא ריקה של מספרים ממשיים, חסומה מלעיל, ויהי y חסם מלעיל של

 $x>y-\varepsilon$ אמ"ם לכל $\varepsilon>0$ קיים $x\in A$ המקיים $y=\sup A$ אז $y=\sup A$

הוכחה: (\Leftarrow) נפריד לשני מקרים:

. $y>y-\varepsilon$ בתור מקסימום y, המקיים , $y\in A$ בתור מקסימום y, בתור מקסימום , $y\in A$

היברים בקטע זה $(y-\varepsilon,y)$ אין אף איבר של $\varepsilon>0$ כך שבקיט בקטע זה : $y\notin A$ הם חסמים מלעיל של A אשר קטנים מ- y , בסתירה לנתון.

- נניח בשלילה שקיים
$$z$$
 חסם מלעיל של x , כך ש z . לפי ההנחה קיים z , כך ש (\Rightarrow) . $z < y$ מניח בשלילה בסתירה לכך ש z חסם מלעיל של $z < x < y$

טענה דומה עבור חסם תחתון.

משפט 2.31: כל סדרה מונוטונית וחסומה, מתכנסת. אם $\binom{a_n}{a_n}$ עולה וחסומה, אז

$$\lim_{n \to \infty} a_n = \sup \left\{ a_n \mid n \in N \right\}$$

$$\lim_{n \to \infty} a_n = \inf \left\{ a_n \mid n \in N \right\}$$
 וואם $\left(a_n \right)$ יורדת וחסומה, אז

הובחה: נוכיח ש- $\{a_n\mid n\in N\}$ השני של המשפט , $\lim_{n\to\infty}a_n=\sup\{a_n\mid n\in N\}$ הובחה: נוכיח ש- $\{a_n\mid n\in N\}$ החסומה קיים , $a=\sup\{a_n\mid n\in N\}$ היהי האחר שהסדרה (a_n) חסומה קיים , $a=\sup\{a_n\mid n\in N\}$ א יורדת, לבל $\{a_n\mid n>N\}$ החסם העליון, קיים , $a=\max\{a_n\mid n\in N\}$ א יורדת, לבל $\{a_n\mid n>N\}$ החסם העליון, קיים , $a=\max\{a_n\mid n\in N\}$ החסם העליון, קיים , $a=\max\{a_n\mid n\in N\}$

.
$$\lim_{n \to \infty} a_n = a = \sup\{a_n \mid n \in N\}$$
 - מכאן ש $a - \varepsilon < a_N \le a \le a$

. <mark>טענת עזר 2.35:</mark> הסדרה a_n חסומה

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ הוכחה: לפי הבינום של ניוטון בצורתו

$$\begin{split} a_n &= \left(1 + \frac{1}{n}\right)^n = \binom{n}{0} \cdot 1^n \cdot \frac{1}{n^0} + \binom{n}{1} \cdot 1^{n-1} \cdot \frac{1}{n^1} + \binom{n}{2} \cdot 1^{n-2} \cdot \frac{1}{n^2} + \dots + \binom{n}{n} \cdot 1^0 \cdot \frac{1}{n^n} \\ &= 1 + 1 + \frac{n!}{2!(n-2)!} \cdot \frac{1}{n^2} + \frac{n!}{3!(n-3)!} \cdot \frac{1}{n^3} + \dots + \frac{n!}{n!(n-n)!} \cdot \frac{1}{n^n} \\ &= 1 + 1 + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \dots + \frac{n!}{n!} \cdot \frac{1}{n^n} \le 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \\ &\leq 1 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 1 + \frac{1 \cdot \left(\frac{1}{2^n} - 1\right)}{\frac{1}{2} - 1} = 1 + 2 \cdot \left(1 - \frac{1}{2^n}\right) \le 3 \end{split}$$

 $2 \le a_n$ -כמוכן ברור ש

 $2^{n-1} \le n!$ נעשה שימוש בהוכחה בעובדה שעבור כל n טבעי הערה: נעשה שימוש בהוכחה בעובדה

למה (אי שוויון הממוצעים): עבור סדרה סופית $a_1,...,a_n$ הממוצע אווה מהמוצעים): עבור סדרה סופית

.
$$\sqrt[n]{a_1 \cdot a_2 \cdots a_n} \le \frac{a_1 + \cdots + a_n}{n}$$
, האלגברי. כלומר,

. מונוטונית לא יורדת $a_{_n}$ מונוטונית לא יורדת

הוכחה:

$$\int_{1}^{n+1} \sqrt{1 \cdot \left(1 + \frac{1}{n}\right)^n} \leq \frac{1 + n \left(1 + \frac{1}{n}\right)}{n+1} = \frac{n+2}{n+1} = \left(1 + \frac{1}{n+1}\right)$$
 לפי אי שוויון הממוצעים

$$\left(1+\frac{1}{n}\right)^n \le \left(1+\frac{1}{n+1}\right)^{n+1}$$
 לפיכך,

הלמה של קנטור

טענה 2.39 (הלמה של קנטור): תהי $\left(I_n\right)$ סדרה של קטעים סגורים, $I_n=\left[a_n,b_n\right]$, המקיימת את התנאים הבאים:

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$
 א.

. $\lim_{n \to \infty} b_n - a_n = 0$ ב. סדרת אורכי הקטעים שואפת ל- 0 , כלומר

 $\displaystyle igcap_{n=1}^{\infty} I_n = \{x\}$ אז קיימת נקודה אחת ויחידה, x , המשותפת לכל הקטעים. כלומר

.
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x$$
 ומתקיים:

הובחה, $a=\lim_{n\to\infty}a_n$ ביים לכן לכן על ידי וחסומה מלעיל א יורדת וחסומה לא יורדת וחסומה מלעיל על ידי הובחה.

a=b=x ולכן a=b=a נסמן ב- a=b את הערך המשותף כלומר $b-a=\lim_{n o\infty}b_n-a_n=0$. $b=\lim_{n o\infty}b_n$

נותר להראות שני דברים:

 $a_n \le x \le b_n$ שייך לכל הקטעים: עובדה זו נובעת מכך ש- $a_n \le x \le b_n$ א.

, היא הנקודה היחידה אשר שייכת לכל הקטעים: נניח ש- y היא נקודה נוספת השייכת לכל הקטעים, ב. x

'ץ ומכלל הסנדוויץ - אשר מתכנסת ל- על y ניתן להסתכל על y ניתן להסתכל על $a_n \leq y \leq b_n$ אז

a = b = y = x נובע

משפט 2.42 (בולצאנו ויירשטראס): לכל סדרה חסומה יש תת סדרה מתכנסת.

 $I_1=\left[-M,M
ight]$ סדרה חסומה ויהי $a_n\leq M$ בך ש- M>0, כך ש- M>0, לבל a_n יהי $a_n\in I_1$ הובחה: תהי $a_{n_1}\in I_1$ סדרה חסומה ויהי נקרא I_2 לאחד החצאים שמכיל אינסוף מאברי הסדרה, נבחר $a_{n_1}\in I_1$ ונחצה קטע זה לחצי. נקרא $I_2=\left[x_k,y_k\right]$ - אז סדרת הקטעים מקיימת את תנאי הלמה $a_{n_2}\in I_2$ נמשיך כך עד אינסוף. אם נסמן ב- $a_{n_2}=\left[x_k,y_k\right]$ אזי לפי כלל הסנדוויץ' נובע: $a_{n_2}=\left[x_k,y_k\right]$ ומאחר ש- $a_{n_2}=\left[x_k,y_k\right]$ אזי לפי כלל הסנדוויץ' נובע: $a_{n_2}=\left[x_k,y_k\right]$ מתכנתם

. בלומר תת הסדרה $\left(a_{_{n}}
ight)$ של הסדרה . $\lim_{k o\infty}x_{_{k}}=\lim_{k o\infty}y_{_{k}}=\lim_{k o\infty}a_{_{n_{_{k}}}}$

משפט 3.6 (גבול של הרכבת פונקציות): תהיינה f(x) ו- g(t) פונקציות המקיימות:

.
$$\lim_{x \to x_0} f(x) = L$$
 א. קיים הגבול

$$\lim_{t \to t_0} g(t) = x_0$$
 ב. מתקיים

 $g(t) \neq x_0$ ג. יש סביבה נקובה של t_0 בה מתקיים,

.
$$\lim_{t \to t_0} f(g(t)) = L$$
 אז מתקיים

-ש בונניח [a,b] תהי [a,b] תהי פונקציה המוגדרת ברציפות הסגור (ערך הביניים): f תהי f עבורה f(c)=0 , אזי קיימת נקודה f

הובחה: בה"ב $a_1=a$, $b_1=b$, $I_1=[a_1,b_1]$ נסמן f(a)<0 , f(b)>0 . נחצה קטע זה לשני f(a)<0 . בה"ב $a_1=a$, $a_1=a$, $a_2=a$, $a_1=a$, $a_2=a$. נחצה קטע בעל סימן חצאים. אם ערך הפונקציה במרכז הקטע הוא אפס, סיימנו. אחרת ערך הפונקציה במרכז הקטע בעל סימן שונה מאחד הקצוות. לחצי הקטע בו קצותיו שונים בסימן נקרא $a_2=a_2,b_2$, $a_2=a$. $a_2=a$. בך הסתיים בשלב כלשהו נקבל סדרת קטעים המקיימת את תנאי הלמה של קנטור ולכן קיים $a_1=a$. כעת מאחר ש- $a_1=a$. ביפה ב- $a_1=a$ ולכן רציפה ב- $a_1=a$ ומכיוון שלכל $a_1=a$. בעת מאחר ש- $a_1=a$. ביפה ב- $a_1=a$ ומכיוון שלכל $a_1=a$. $a_1=a$

אם ([a,b] משפט ערך הביניים של קושי): תהי f פונקציה המוגדרת ברציפות בקטע הסגור [a,b]. אם f(c)=d הוא ערך כלשהו בין f(a) ל- f(a) ל- f(a) אז קיימת נקודה d

הובחה: אם f(a)=f(b) , אזי נגדיר , f(a)=f(b) הטענה ברורה. אחרת, בה"ב נניח שg(a)<0, אזי נגדיר g(a)<0, g(b)>0 ומתקיים g(a)=f(c)=f(c), ולכן g(a)=f(c)=f(c) עבורה g(c)=f(c)=f(c), בלומר g(c)=f(c)=f(c)

משפט 4.8 ויירשטראס: תהי f פונקציה המוגדרת ברציפות בקטע הסגור [a,b], אזי f חסומה שם. [a,b] אזי לכל [a,b] אינה חסומה ב- [a,b], בה"כ נניח שהיא אינה חסומה מלעיל, אזי לכל [a,b] הוכחה: נניח בשלילה ש- [a,b] אינה חסומה ב- [a,b], מאחר שהסדרה [a,b] חסומה, קיימת לה (לפי בולצאנו בעי קיים [a,b] מתבנסת ל- [a,b] מתבנסת ל- [a,b] מתבנסת ל- [a,b] מתבנסת ל- [a,b] היא שר, בגלל סנדוויץ', שייך לקטע [a,b]. בעת מאחר ש- רציפה בקטע, [a,b] אור מדרה של סדרה השואפת לאינסוף.

פונקציה מונוטונית ופונקציות הפוכות

טענה 4.11: אם f היא פונקציה מונוטונית המוגדרת בקטע הפתוח (a,b), אז קיימים, במובן הרחב, $\lim_{x \to b^-} f(x)$ ו- $\lim_{x \to b^-} f(x)$. אם f חסומה, אז הגבולות קיימים במובן הסופי $\lim_{x \to a^+} f(x)$ ו- $\lim_{x \to a^+} f(x)$

הובחה: נניח ש- f מונוטונית לא יורדת.

- נטען ש $m=\inf A$ - ו $M=\sup A$ אזי קיימים , $A=\{f(x)|x\in (a,b)\}$ נניח ש

. נראה את הראשון, השני באותו אופן.
$$\lim_{x \to a^+} f(x) = m$$
 - ו - $\lim_{x \to b^-} f(x) = M$

 $M-arepsilon < fig(x_0ig) \le M$ - בך ש $x_0\in (a,b)$ ביים האיפיון של החסם העליון קיים , אזי לפי משפט האיפיון של החסם העליון קיים

-ש מה שמוביח מה $M-\varepsilon < fig(x_0ig) \le fig(xig) \le M$, $x_0 < x < b$ אי יורדת, לבל לבל לא יורדת, לכל

$$\delta = b - x_0$$
 באשר , $\lim_{x \to b^-} f(x) = M$

- נניח ש- M>0 יהי ו $\lim_{x\to a^+}f(x)=-\infty$ - ו $\lim_{x\to b^-}f(x)=\infty$ בלשהו, מאחר ש- f

, $x_0 < x < b$ אינה חסומה, קיים f לא יורדת, לכל $M < fig(x_0)$ -ש , $x_0 \in (a,b)$ אינה חסומה, קיים f

נוכיח באופן
$$\lim_{x \to a^+} f(x) = -\infty$$
 -ש העובדה ש- $\lim_{x \to b^-} f(x) = \infty$ מה שמוכיח ש- $M < f(x_0) \le f(x)$

דומה.

המשפטים היסודיים של החשבון הדיפרנציאלי

משפט 5.7 (פרמה): תהיf פונקציה המוגדרת בקטע (a,b) ותהי(a,b) ותהיf. אם f גזירה ב- x_0 ואם f את ערכה הגדול ביותר, או הקטן ביותר, בקטע, אז f

מסקנה: תהי f פונקציה המוגדרת ברציפות בקטע סגור [a,b], אזי נקודות הקיצון המוחלטות של הקטע, המובטחות לפי משפט ויירשטראס, יכולות להתקבל רק ב-

- $x_0 = 0$ בה הפונקציה גזירה ומתקיים בה $x_0 \in (a,b)$ א.
 - . ב. נקודה $x_0 \in (a,b)$ בה הפונקציה אינה גזירה.
 - x = a,b ג. נקודות הקצה של הקטע, כלומר
- . בשלב זה לתרגל את התרגילים של פרק 8 (לגבי קטעים סגורים).

(ומקיימת את הדברים הבאים: [a,b] משפט 5.8 (רול): תהיf פונקציה המוגדרת בקטע סגור

- [a,b] א. f רציפה בקטע הסגור
- (a,b) ב. f גזירה בקטע הפתוח
 - f(a) = f(b) .

 $(x_0) = 0$ שבה $a < x_0 < b$, x_0 אזי קיימת אזי קיימת