Speech Command Recognition for NAO Robot

Project Supervisor: Prof. G. C. Nandi

(Chairman, Robotics and Machine Intelligence Laboratow)

IEC2016012 - Nikhil Mundra

IEC2016026 - Agam Dwivedi

IEC2016027 - Bhanu Bhandari

IEC2016072 - Ruchin Agrawal

Problem statement

- To create Neural Network based architecture which allows understanding of simple speech commands, which trigger actions on the NAO Robot
- We have explored CNNs and RNNs in order to achieve high real-time accuracy, on both Hindi and English datasets

LSTM Architecture

CNN Architecture

Dataset

English

- Tensorflow Speech Commands dataset
- 10 important action words
- 18 auxiliary words
- 1700 varied utterances per word
- A number of accents, male/female voices, amplitudes, background noises

Hindi

- Self created dataset
- 10 utterances of 26 words with 10 speakers.
- Many kinds of augmentations
- 2600 iterations
- 6 male and 4 female voices

Results

CNN with English Dataset Accuracy: 90.19%	CNN with Hindi Dataset Accuracy: 79.94%
LSTM with English Dataset Accuracy: 79.99%	LSTM with Hindi Dataset Accuracy: Unsatisfactory

Analysis

- Disadvantages of using Dropout
- Batch normalization vs Dropout
- Predicted results vs Real-time accuracy
- LSTM vs CNN
- Accuracy with different optimizers, activation functions, number of dense layers, kernel size