Data Mining and Machine Learning

Assignment Project Exam Help

HMM Trahttps://eduassistpro.github.io/

Add WeChat edu_assist_pro

Peter Jančovič

Objectives

- Reminder: Maximum Likelihood (ML) parameter estimation
 - ML for Assignment Project Exam Help

https://eduassistpro.github.io/

- ML for HM
 - Viterbi-style training

 Add WeChat edu_assist_pro
 - Baum-Welch algorithm

Fitting a Gaussian PDF to Data

- Suppose $y = y_1, ..., y_n, ..., y_T$ is a sequence of T data values
- Given a Gasissiame PD Project LE mean Heland variance σ, define:

https://eduassistpro.github.io/ $p(y | \mu, \sigma) = \prod_{t=0}^{t} p(y_t | \mu, \sigma)$ Add WeChat edu_assist_pro

- How do we choose μ and σ ?
- <u>Define</u> the best fitting Gaussian to be the one such that $p(y|\mu,\sigma)$ is maximised <u>Maximum Likelihood</u> (ML) estimation of μ,σ

ML estimation of μ , σ

- Intuitively:
 - The maximum likelihood estimate of μ should be the average saignment. Project Exame Help)
 - The maxim https://eduassistpro.github.io/be the variance of https://eduassistpro.github.io/
- This turns out the beat edu_assist_maximised by setting:

$$\mu = \frac{1}{T} \sum_{t=1}^{T} y_t, \quad \sigma = \frac{1}{T} \sum_{t=1}^{T} y_t$$

ML training for GMMs

- Now consider
 - A Gaussian Mixture Model with M components has
 - -M Assignment Project Exam Help
 - M varia https://eduassistpro.github.io/
 - $-M \text{ mixtu} \qquad \begin{matrix} W_I, \\ \text{Add WeChat edu_assist_pro} \\ -\text{ A training sequence } y_I, ..., y \end{matrix}$
- How do we find the maximum likelihood estimate of $\mu_1, ..., \mu_M, \sigma_1, ..., \sigma_M, w_1, ..., w_M$?

GMM Parameter Estimation

- If we knew which component each sample y, came from, then parameter estimation would be easy
 - Set μ_m Associate agree is a second of the state of the second of t belong to th
 - Set σ_m to b https://eduassistpro.githuhile/belong to the *m*th component.

 - Set *w*_m to be the proportion thich belong to
 - the *m*th component
- But we don't know which component each sample belongs to

Solution – the E-M Algorithm (1)

Guess initial values

$$\mu_1^{(0)},...,\mu_M^{(0)},\sigma_1^{(0)},...,\sigma_M^{(0)},w_1^{(0)},...,w_M^{(0)}$$
Assignment Project Exam Help

1. For each m

$$p_m$$
 (ttps://eduassistpro.github.io/

2. Use these probabilities at the sample y_t belongs to the m^{th} component

$$\lambda_{m,t} = P(m \mid y_t)$$

Solution – the E-M Algorithm (2)

3. Calculate the new GMM parameters

Assignment Project Exampled p, 'belongs to' the $\mu_m^{(1)} = \frac{t-1}{T}$ mth component https://eduassistpro.github.io/

$$\sigma_{m}^{(1)} = \frac{\sum_{t=1}^{T} \lambda_{m,t} (y_{t} - \mu_{m}^{(1)})^{2}}{\sum_{t=1}^{T} \lambda_{m,t}}$$

REPEAT steps 1-3

UNIVERSITY OF BIRMINGHAM

Calculation of $\lambda_{m,t}$

• In other words, $\lambda_{m,t}$ is the probability of the m^{th} component given the data point y_t

From Bayes theorem Project Exam Help

https://eduassistpro.gfthub.io/mponent

mth weight

Add WeChat edu_assist_pro

$$\lambda_{m,t} = P(m \mid y_t) = \frac{p(y_t \mid m)P(m)}{p(y_t)}$$

Sum over all components

UNIVERSITYOF BIRMINGHAM

ML training for HMMs

- Now consider
 - An N state HMM M, each of whose states is associated with a dasignament Project Exam Help
 - A training shttps://eduassistpro.github.io/
- For simplicit -dimensional
 Add WeChat edu_assist_pro

ML training for HMMs

- If we knew that:
 - $-y_1,...,y_{e(1)}$ correspond to state 1
 - $-y_{e(1)+1},...,y_{e(2)}$ correspond to state 2 — . Assignment Project Exam Help
 - $-y_{e(n-1)+1},...,y$ https://eduassistpro.github.io/
 - : Add WeChat edu_assist_pro
- Then we could set the mean of state n to the average value of $y_{e(n-1)+1}, ..., y_{e(n)}$

ML Training for HMMs

Unfortunately we <u>don't</u> know that $y_{e(n-1)+1}, ..., y_{e(n)}$ correspond to state n...

Solution

- 1. Define an initial HMM $-M_0$
- 2. Use the Viterbi algorithm to compute the optimal Assignment Project Exam Help state sequence between M and y,..., y_T

Solution (continued)

Use optimal state sequence to segment y

• Reestimate parameters to get a new model M_1

Solution (continued)

- Now repeat whole process using M_1 instead of M_0 , to get a new model M_2
- Then repeat again using M to get a new model M_3
- https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$p(y | M_0) \le p(y | M_1) \le p(y | M_2) \le \ldots \le p(y | M_n) \ldots$$

Local optimization

Baum-Welch optimization

- The algorithm just described is often called <u>Viterbi</u> training or <u>Viterbi reestimation</u>
- It is often used to train large sets of HMMs
- An alternati https://eduassistpro.githulwielch
 reestimation _ it is a soft y edu_assist_pro estimation
- Reestimation of mean value associated with state *i*:

Baum-Welch Reestimation

$$P(x_t = i/Y) = \gamma_t(i)$$

'Forward' Probabilities

$$\alpha_t(i) = \text{Prob}(y_1, ..., y_t \text{ and } x_t = i \mid M) = \sum_j \alpha_{t-1}(j) \alpha_{ji} b_i(y_t)$$

'Backward' Probabilities

$$\beta_t(i) = \text{Prob}(y_{t+1}, ..., y_T \mid x_t = i, M) = \sum_j a_{ij} \beta_{t+1}(j) b_j(y_{t+1})$$

 y_1 y_2 y_3 y_4 y_5 y_t y_{t+1} y_T

Assignment Project Exam Help

'Forward-Backward' Algorithm

$$\gamma_{t}(i) = P(x_{t} = i \mid Y) = \frac{P(Y, x_{t} = i)}{P(Y)} = \frac{P(Y, x_{t} = i)}{\sum_{i=1}^{N} P(Y, x_{t} = i)} = \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i)\beta_{t}(i)}$$

y₁ y₂ y₃ y₄ y₅ y_t y_{t+1} y_T Assignment Broject Exam Help

Notes on HMM parameter estimation

- The Baum-Welch/Viterbi algorithm is only guaranteed to find a **locally** optimal HMM set hence choice of M_0 can be important
- Baum-Wears in a particular and a particular
- https://eduassistpro.github.io/el as the HMM set

 phoneme level HMMe Canab edu_assistg place labelled

 orthographically at the phrase level
- For large applications B-W reestimation can be very computationally expensive

Summary

- Maximum Likelihood (ML) estimation
- Assignment Project Exam Help
 Viterbi HMM
 - https://eduassistpro.github.io/
- Baum-Welch Myllywacamae edu_assistnpro
 - Forward and backward probab

