Análise Multivariada II Lista II

Breno Cauã Rodrigues da Silva

Questão 1. Análise A Posteriori

Pode-se estimar os vetores τ_k para os tratamentos A, B, C e D de forma que

$$\hat{\tau}_{A} = (\overline{X}_{A} - \overline{X})^{\mathsf{T}} = \begin{pmatrix} -274.95 & -0.59 \end{pmatrix}^{\mathsf{T}}$$

$$\hat{\tau}_{B} = (\overline{X}_{B} - \overline{X})^{\mathsf{T}} = \begin{pmatrix} -202.75 & 0.37 \end{pmatrix}^{\mathsf{T}}$$

$$\hat{\tau}_{C} = (\overline{X}_{C} - \overline{X})^{\mathsf{T}} = \begin{pmatrix} 179.45 & 0.03 \end{pmatrix}^{\mathsf{T}}$$

$$\hat{\tau}_{D} = (\overline{X}_{D} - \overline{X})^{\mathsf{T}} = \begin{pmatrix} 298.25 & 0.20 \end{pmatrix}^{\mathsf{T}}$$

Usando a Soma de Quadrados do Resíduo de Within (W) expressa por

$$\mathbf{W} = \sum_{k=1}^{g} \sum_{i=1}^{n_k} (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k) (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k)^{\mathsf{T}} = n_1 \mathbf{S}_1 + n_2 \mathbf{S}_2 + \dots + n_g \mathbf{S}_g$$

$$\mathbf{W} \approx \begin{bmatrix} 29058.55 & 10.26 \\ 10.26 & 0.32 \end{bmatrix},$$

com n-g=20-4=16 graus de liberdade. Onde $n=n_1+n_2+\ldots+n_g$ é o tamanho total da amostra e g=4 o número de tratamentos em comparação. Temos que a diferença entre a produtividade de dois tratamentos quaisquer pode ser obtida por

$$\widehat{m{ au}}_{k_1} - \widehat{m{ au}}_{j_1},$$

com $\widehat{Var}\left[\widehat{\boldsymbol{\tau}}_{k_1} - \widehat{\boldsymbol{\tau}}_{j_1}\right] = \left(\frac{1}{n_k} + \frac{1}{n_j}\right) \frac{\mathbf{W}_{11}}{n-g}$. De posse da estatística $\widehat{\boldsymbol{\tau}}_{k_1} - \widehat{\boldsymbol{\tau}}_{j_1}$ e de sua variância, podemos montar o intervalo de $100(1-\alpha)\%$ de confiança, expresso por

$$(\widehat{\boldsymbol{\tau}}_{k_1} - \widehat{\boldsymbol{\tau}}_{j_1}) \pm t_{n-g} ;_{\alpha/pg(p-1)} \sqrt{\widehat{Var} [\widehat{\boldsymbol{\tau}}_{k_1} - \widehat{\boldsymbol{\tau}}_{j_1}]}.$$

Comparação entre a *Produtividade* A e B

Temos que

$$\hat{\boldsymbol{\tau}}_{A_1} - \hat{\boldsymbol{\tau}}_{B_1} = -274.95 - (-202.75) = -72.20,$$

e $\widehat{Var}\left[\widehat{\tau}_{A_1} - \widehat{\tau}_{B_1}\right] = \left(\frac{1}{5} + \frac{1}{5}\right) \frac{29058.55}{20-4} = 726.46$, logo, $\sqrt{726.46} \approx 26.95$. Fixando um $\alpha = 0.05$, temos que o quantil de acordo com a correção de Bonferroni t_{20-4} ; $0.05/2 \cdot 4 \cdot (4-1) = t_{16}$; $0.002 \approx 3.34$. Então, o intervalo de confiança fica

$$-72.20 \pm 3.34 \times 26.95 \approx [-162, 21; 17.81].$$

Como o intervalo contém o 0, diz-se que não há diferença entre a Produtividade do Tratamento A e do Tratamento B, ao nível de significância de 5%.

Comparação entre a *Produtividade* A e C

Temos que

$$\hat{\tau}_{A_1} - \hat{\tau}_{C_1} = -274.95 - 179.45 = -454.4,$$

e $\widehat{Var}\left[\widehat{\tau}_{A_1} - \widehat{\tau}_{C_1}\right] = \left(\frac{1}{5} + \frac{1}{5}\right) \frac{29058.55}{20-4} = 726.46$, logo, $\sqrt{726.46} \approx 26.95$. Fixando um $\alpha = 0.05$, temos que o quantil de acordo com a correção de Bonferroni t_{20-4} ; $0.05/2 \cdot 4 \cdot (4-1) = t_{16}$; $0.002 \approx 3.34$. Então, o intervalo de confiança fica

$$-454.4 \pm 3.34 \times 26.95 \approx [-364.39 ; -544.41].$$

Como o intervalo não contém o 0, diz-se que há diferença entre a Produtividade do Tratamento A e do Tratamento C, ao nível de significância de 5%.

Comparação entre a *Produtividade* A e D

Temos que

$$\hat{\tau}_{A_1} - \hat{\tau}_{D_1} = -274.95 - 289.25 = -564.2,$$

e $\widehat{Var}\left[\widehat{\tau}_{A_1} - \widehat{\tau}_{D_1}\right] = \left(\frac{1}{5} + \frac{1}{5}\right) \frac{29058.55}{20-4} = 726.46$, logo, $\sqrt{726.46} \approx 26.95$. Fixando um $\alpha = 0.05$, temos que o quantil de acordo com a correção de Bonferroni t_{20-4} ; $_{0.05/2\cdot 4\cdot (4-1)} = t_{16}$; $_{0.002} \approx 3.34$. Então, o intervalo de confiança fica

$$-564.2 \pm 3.34 \times 26.95 \approx [-654.21 ; -474.19].$$

Como o intervalo não contém o 0, diz-se que há diferença entre a Produtividade do Tratamento A e do Tratamento D, ao nível de significância de 5%.

Comparação entre a *Produtividade* B e C

Temos que

$$\hat{\tau}_{B_1} - \hat{\tau}_{C_1} = -202.25 - 179.45 = -381.7,$$

e $\widehat{Var}\left[\widehat{\tau}_{B_1} - \widehat{\tau}_{C_1}\right] = \left(\frac{1}{5} + \frac{1}{5}\right) \frac{29058.55}{20 - 4} = 726.46$, logo, $\sqrt{726.46} \approx 26.95$. Fixando um $\alpha = 0.05$, temos que o quantil de acordo com a correção de Bonferroni t_{20-4} ; $0.05/2 \cdot 4 \cdot (4-1) = t_{16}$; $0.002 \approx 3.34$. Então, o intervalo de confiança fica

$$-381.7 \pm 3.34 \times 26.95 \approx [-471,71; -291,69].$$

Como o intervalo não contém o 0, diz-se que há diferença entre a Produtividade do Tratamento A e do Tratamento D, ao nível de significância de 5%.

Comparação entre a *Produtividade* B e D

Temos que

$$\hat{\tau}_{B_1} - \hat{\tau}_{D_1} = -202.25 - 298.75 = -501,$$

e $\widehat{Var}\left[\widehat{\tau}_{B_1} - \widehat{\tau}_{D_1}\right] = \left(\frac{1}{5} + \frac{1}{5}\right) \frac{29058.55}{20-4} = 726.46$, logo, $\sqrt{726.46} \approx 26.95$. Fixando um $\alpha = 0.05$, temos que o quantil de acordo com a correção de Bonferroni t_{20-4} ; $_{0.05/2\cdot 4\cdot (4-1)} = t_{16}$; $_{0.002} \approx 3.34$. Então, o intervalo de confiança fica

$$-501 \pm 3.34 \times 26.95 \approx [-591.01 ; -410.99].$$

Como o intervalo não contém o 0, diz-se que há diferença entre a Produtividade do Tratamento A e do Tratamento D, ao nível de significância de 5%.

Comparação entre a *Produtividade* C e D

Temos que

$$\hat{\tau}_{C_1} - \hat{\tau}_{D_1} = 179.45 - 298.25 = -118.8,$$

e $\widehat{Var}\left[\widehat{\tau}_{C_1} - \widehat{\tau}_{D_1}\right] = \left(\frac{1}{5} + \frac{1}{5}\right) \frac{29058.55}{20-4} = 726.46$, logo, $\sqrt{726.46} \approx 26.95$. Fixando um $\alpha = 0.05$, temos que o quantil de acordo com a correção de Bonferroni t_{20-4} ; $0.05/2 \cdot 4 \cdot (4-1) = t_{16}$; $0.002 \approx 3.34$. Então, o intervalo de confiança fica

$$-118.8 \pm 3.34 \times 26.95 \approx [-208.81 ; -28.79].$$

Como o intervalo não contém o 0, diz-se que há diferença entre a Produtividade do Tratamento A e do Tratamento D, ao nível de significância de 5%.

Questão 2. MANOVA

(a) Converta o banco de dados para o formato longo

Os dados foram devidamente convertidos do formato wide para o formato long. O código utilizado para tal tarefa será anexado ao final deste documento. O conjunto de dados convertidos está disponível no link DADOS_L2Q2_LONG.csv.

(b) Faça uma análise exploratória dos dados

Como análise preliminar, foram construidas a Table 1, Table 2, Table 3, Figure 1 e a @fig. Com o objetivo de identificar padrões que corroborem com os resultados inferenciais.

Table 1: Medidas de Resumo do Conjunto de Dados para o Método 1.

	Média	S	Mediana	Mín	Máx	1^{o} Quartil	3º Quartil
AROMA	5,4	0,58	5,5	4	6,1	5,2	5,7
SABOR	5,7	$0,\!44$	5,9	5	6,2	5,3	6,0
TEXTURA	5,4	0,66	5,6	4	6,3	5,0	6,0
UMIDADE	6,0	0,70	6,0	5	7,0	$5,\!6$	6,5

Table 2: Medidas de Resumo do Conjunto de Dados para o Método 2.

	Média	S	Mediana	Mín	Máx	1º Quartil	3º Quartil
AROMA	5,3	0,76	5,2	3,9	6,2	5,0	5,9
SABOR	5,2	$0,\!57$	5,2	4,0	6,1	4,9	$5,\!5$
TEXTURA	5,3	$0,\!59$	5,3	4,2	6,1	5,0	5,7
UMIDADE	5,9	$0,\!52$	6,0	4,8	6,5	5,8	6,2

Table 3: Medidas de Resumo do Conjunto de Dados para o Método 3.

Média	5	Mediana	Mín	Máx	1º Quartil	3° Quartil
AROMA 5,0 SABOR 4,8	$0,54 \\ 0,46$	4,8 5,0	4,2 $4,0$	6,0	4,6 4,5	5,3

Table 3: Medidas de Resumo do Conjunto de Dados para o Método 3.

	Média	S	Mediana	Mín	Máx	1º Quartil	3º Quartil
TEXTURA	5,9	0,51	5,8	5,0	6,8	5,7	6,2
UMIDADE	6,2	$0,\!46$	$6,\!4$	5,5	7,0	5,8	$6,\!5$

As Table 1, Table 2 e Table 3 apresentam as medidas descritivas para os métodos 1, 2 e 3, respectivamente. A seguir, destacam-se algumas observações importantes:

- O Método 1 apresentou as maiores médias em praticamente todas as variáveis sensoriais, com destaque para Sabor (5,7) e Umidade (6,0), sugerindo que esse método foi o mais bem avaliado pelos juízes.
- O **Método 2** obteve médias intermediárias em todas as variáveis, com valores próximos aos do Método 1, porém ligeiramente menores.
- O Método 3 apresentou as menores médias para Aroma (5,0) e Sabor (4,8), indicando avaliações sensoriais inferiores nesses atributos.
- Em relação à variabilidade, os desvios padrão foram relativamente baixos em todos os métodos, indicando baixa dispersão entre as observações. O maior desvio padrão ocorreu para Aroma no Método 2 (0,76).
- As distribuições mostraram-se em geral simétricas ou levemente assimétricas à esquerda, e com curtose negativa na maioria dos casos, indicando distribuições levemente achatadas (platicúrticas).

Figure 1: Boxplot das Variávei do Conjunto de Dados Segmentadas pelo Método Aplicado.

A Figure 1 apresenta os boxplots das quatro variáveis segmentadas por método.

- Para Aroma e Sabor, observa-se que o Método 1 possui as maiores medianas e menos dispersão, enquanto o Método 3 apresenta as menores medianas.
- Na variável Textura, os três métodos apresentaram valores similares, com destaque para o Método
 3, que apresentou uma leve vantagem em relação à mediana.

• Na variável **Umidade**, as medianas foram próximas entre os métodos, com **Método 3** apresentando uma mediana ligeiramente superior.

De modo geral, os boxplots indicam vantagem do Método 1 nas variáveis Aroma e Sabor, enquanto Textura e Umidade parecem menos discriminativas entre os métodos.

Figure 2: Pairplot do Conjunto de Dados Segmentadas pelo Método Aplicado.

A Figure 2 apresenta o pairplot das variáveis sensoriais, com gráficos de dispersão e os respectivos coeficientes de correlação de Pearson.

- De forma geral, observou-se associação positiva entre as variáveis, especialmente entre:
 - Aroma e Sabor (r = 0.730)
 - Textura e Sabor (r = 0.668)
 - Umidade e Textura (r = 0.418)
- Ao segmentar por método, notam-se correlações moderadas e significativas nos três grupos, com destaque para:
 - Método 1: Aroma e Sabor (r = 0.595), Textura e Umidade (r = 0.742)
 - **Método 2:** Aroma e Sabor (r = 0.820)
 - **Método 3:** Aroma e Sabor (r = 0.779), Textura e Sabor (r = 0.651)

Esses resultados indicam que os julgadores avaliaram os atributos de forma coerente, ou seja, peixes bem avaliados em um aspecto tendem a receber boas avaliações nos demais.

(c) Faça a verificação de pressupostos

As suposições da Manova estão relacionadas à normalidade dos erros e igualdade das matrizes de covariância nas populações.

Table 4: Teste de Mardia para Normalidade Multivariada.

Teste	Estatística de Teste	P-Valor	Normalidade
Mardia Skewness	11,0661582905076	0,944488761492132	YES
Mardia Kurtosis	-1,591217415925	$0,\!111560654735673$	YES
MVN	NA	NA	YES

Table 5: Teste de Henze-Zirkler para Normalidade Multivariada.

Teste	Estatística de Teste	P-Valor	Normalidade
Henze-Zirkler	0,9	0,07	YES

Table 6: Teste de Royston para Normalidade Multivariada.

Teste	Estatística de Teste	P-Valor	Normalidade
Royston	8,3	0,08	YES

De acordo com os dados das Table 4, Table 5 e Table 6 os dados seguem uma distribuição normal multivariada. Agora, basta verificar se a Matriz de Covariância dos grupos são iguais (homogeneidade).

Table 7: Teste M de Box para Homogeneidade das Matrizes de Covariâncias.

Estatística de Teste	Graus de Liberdade	P-Valor
13	20	0,86

Como o p-valor>0,05, não se pode rejeitar a hipótese nula de homogeneidade das matrizes de convariâncias.

(d) Faça uma análise de variância multivariada usando todos os quatro testes da MANOVA a um fator para comparar os três métodos relativamente às variáveis estudadas

```
# Testando a Hipótese Nula
summary(manova.model, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
Method 2 0,22 8,49 8 60 1,2e-07 ***
Residuals 33
---
Signif. codes: 0 '***' 0,001 '**' 0,05 '.' 0,1 ' ' 1

summary(manova.model, test = "Pillai")
```

```
Df Pillai approx F num Df den Df Pr(>F)
                         5,9
Method
           2 0,864
                                  8
                                        62 1,3e-05 ***
Residuals 33
Signif. codes: 0 '*** 0,001 '** 0,01 '* 0,05 '.' 0,1 ' ' 1
summary(manova.model, test = "Hotelling-Lawley")
          Df Hotelling-Lawley approx F num Df den Df Pr(>F)
Method
                         3,16
                                  11,5
                                            8
                                                  58 1,4e-09 ***
           2
Residuals 33
Signif. codes: 0 '*** 0,001 '** 0,01 '* 0,05 '.' 0,1 ' ' 1
summary(manova.model, test = "Roy")
          Df Roy approx F num Df den Df Pr(>F)
           2 3,04
                      23,5
                                4
                                      31 5,1e-09 ***
Method
Residuals 33
Signif. codes: 0 '***' 0,001 '**' 0,05 '.' 0,1 ' ' 1
   Todos os testes foram altamente significativos (***), sugerindoque existem diferenças significativas
entre os métodos para pelo menos uma das variáveis.
     e) Faça análise a posteriori se os testes multivariados rejeitarem a hipótese nula.
     Faça a conclusão da análise.
# AROMA
TukeyHSD(x = aov(AROMA ~ Method, data = df.WIDE), "Method", conf.level = 0.95)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = AROMA ~ Method, data = df.WIDE)
$Method
       diff
              lwr upr p adj
M2-M1 -0,12 -0,76 0,51 0,88
M3-M1 -0,41 -1,05 0,23 0,27
M3-M2 -0,28 -0,92 0,36 0,53
# SABOR
TukeyHSD(x = aov(SABOR ~ Method, data = df.WIDE), "Method", conf.level = 0.95)
  Tukey multiple comparisons of means
    95% family-wise confidence level
```

```
Fit: aov(formula = SABOR ~ Method, data = df.WIDE)
$Method
       diff
              lwr
                     upr p adj
M2-M1 -0,48 -0,97 0,021 0,06
M3-M1 -0,88 -1,37 -0,379 0,00
M3-M2 - 0,40 - 0,90 0,096 0,13
# TEXTURA
TukeyHSD(x = aov(TEXTURA ~ Method, data = df.WIDE), "Method", conf.level = 0.95)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = TEXTURA ~ Method, data = df.WIDE)
$Method
       diff
               lwr upr p adj
M2-M1 -0,13 -0,7275 0,46 0,85
M3-M1 0,47 -0,1275 1,06 0,15
M3-M2 0,60 0,0059 1,19 0,05
# UMIDADE
TukeyHSD(x = aov(UMIDADE ~ Method, data = df.WIDE), "Method", conf.level = 0.95)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = UMIDADE ~ Method, data = df.WIDE)
$Method
       diff
             lwr upr p adj
M2-M1 -0,11 -0,68 0,46 0,89
M3-M1 0,25 -0,32 0,82 0,53
M3-M2 0,36 -0,21 0,93 0,28
```

Após a análise a posteriori, verificou-se que os métodos aplicados só apresentaram diferênças no "SABOR" e "TEXTURA".

1 Códigos Utilizados

Para ter acesso aos códigos utilizados, acesse o link CODE UTILIZADO.