Dependência Funcional e Primeira, Segunda e Terceira Formas Normais

Banco de Dados

Profa. Dra. Cristina Dutra de Aguiar Ciferri

Dependência Funcional

- → Um atributo B de um esquema de relação R é <u>funcionalmente dependente</u> de um outro atributo A de R se um valor para A <u>determina um único valor para B em</u> qualquer momento.
- ◆ Se B é <u>funcionalmente dependente</u> de A, então A determina funcionalmente B.
- ◆ Notação: A 🕱 B

Dependência Funcional

relaçãoR (atributoA, atributoB, atributoC) atributo A [w] atributo B

Exercício

→ Dada a seguinte relação
 cliente (nro_cliente, nome, endereço)

As seguintes dependências são corretas?

- ↑ nro_cliente nome
- → nro_cliente (W) endereço
- → nome (W) endereço
- → endereço (W) nome

Exercício

→ Dada a seguinte relação (e suas instâncias)
 linha_pedido (nro_pedido, nro_peça
 qtidade_comprada, preço_cotado)

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101	P01	3 4	30,00
101	P02		70,00
102	P01	8 3	80,00
102	P02		20,00

Exercício

- → As seguintes dependências são verdadeiras?
 - nro_pedido [w] qtidade_comprada
 - nro_peça ☒ qtidade_comprada
 - nro_pedido (**) preço_quotado
 - nro_peça [w] preço_quotado

 - {nro_pedido, nro_peça} M preço_cotado

Observações

- → Uma dependência funcional é uma propriedade do esquema da relação R, não de um estado particular válido da relação r de R
- → Se X →Y em R, isso não implica necessariamente que Y → X em R

Notação Diagramática para DF

Dependência Funcional e Normalização

→ Vantagens:

- garante relações sem redundância desnecessária
- oferece fácil recuperação das informações
- **→** Tipos de formas normais:
 - Primeira Forma Normal (1FN)
 - Segunda Forma Normal (2FN)
 - Terceira Forma Normal (3FN)

Dependência Funcional e Normalização

- → Processo de normalização:
 - inicia com um esquema de relação ou coleção de esquemas de relação
 - produz uma nova coleção de esquemas de relação
 - equivalente à coleção original (representa a mesma informação)
 - livre de problemas
- → Significado: os novos esquemas de relação estarão, pelo menos, na 3FN

Normalização por Decomposição

- **→** Propriedades
 - junção sem perda ou junção não aditiva
 - garante que o problema de tuplas ilegítimas não ocorra nos esquemas de relação criados após a decomposição
 - preservação da dependência
 - garante que cada dependência funcional será representada em algum esquema de relação individual resultante da decomposição

Chave Primária

- ◆ Um atributo A (ou coleção de atributos) é a chave primária para um esquema de relação R se
 - todos os atributos em R são funcionalmente dependentes de A
 - não existe um subconjunto próprio de A que determina funcionalmente os atributos em R

→ Exercício

– Considere as relações cliente e linha_pedido do exercício anterior. Qual a chave primária de cada relação? Por quê?

Primeira Forma Normal (1FN)

- → Uma relação R está na 1FN se:
 - todo valor em R for atômico
 - De ou seja, R não contém grupos de repetição
- → Considerações:
 - geralmente considerada parte da definição formal de uma relação
 - não permite atributos multivalorados, compostos ou suas combinações

Primeira Forma Normal (1FN)

→ Exemplo

- cliente (nro_cli, nome, {end_entrega})

nro_cli	nome	end_entrega
124	João dos Santos	Rua 10, 1024 Rua 24, 1356
311	José Ferreira Neves	Rua 46, 1344 Rua 98, 4456

cliente nem mesmo pode ser qualificado como uma relação ...

Métodos para Corrigir o Problema

→ Método 1

- gerar uma nova relação contendo o grupo de repetição e a chave primária da relação original
- determinar a chave primária da nova relação, a qual será a concatenação do atributo chave primária da relação original com o atributo chave para o grupo de repetição
- ➤ abordagem mais genérica e que não causa redundância

Métodos para Corrigir o Problema

- → Método 2
 - remover o grupo de repetição
 - expandir a chave primária
 - > abordagem que causa redundância

- → Método 3
 - substituir o grupo de repetição pelo número máximo de valores estabelecido para o grupo
 - ➤ abordagem menos genérica e que pode introduzir muitos valores *null*

Primeira Forma Normal (1FN)

- **→** Problema
 - cliente (nro cli, nome, {end entrega})

Corrigindo o problema ...

- → Solução 1
 - cliente_nome (nro_cli, nome)
 - cliente_entrega (nro_cli, end_entrega)
- → Solução 2
 - cliente (nro cli, nome, end entrega)
- → Solução 3
 - cliente (nro cli, nome, entrega1, entrega2)

Primeira Forma Normal (1FN)

★ Exemplo mais genérico

- → Representação
 - { } indica que o atributo projeto é multivalorado
 - {projeto ()} indica os atributos componentes do atributo multivalorado projeto

- → Uma relação R está na 2FN se:
 - está na 1FN
 - não existe <u>atributo não chave</u> que é dependente de somente uma parte da chave primária
 - > dependência funcional total
- → Dependência funcional total X Y
 - se a remoção de qualquer atributo A de X implicar que a dependência não mais será assegurada

→ Exemplo:

pedido (<u>nro-pedido</u>, data, <u>nro-peça</u>, descrição,
 qtdade_comprada, preço_cotado)

```
nro-pedido [**] data
nro-peça [**] descrição
{nro-pedido, nro-peça} [**] {qtdade_comprada,
preço_cotado}
```

- → Método para corrigir o problema:
 - para cada sub-conjunto do conjunto de atributos que constitui a chave primária, começar uma relação com esse sub-conjunto como sua chave primária
 - incluir os atributos da relação original na relação correspondente à chave primária apropriada, isto é, colocar cada atributo junto com a coleção mínima da qual ele depende, atribuindo um nome a cada relação

◆ Problema: pedido (nro-pedido, data, nro-peça, descrição, qtdade_comprada, preço_cotado)

Corrigindo o problema ...

→ Solução:

```
pedido (<u>nro-pedido</u>, data)

peça (<u>nro_peça</u>, descrição)

pedido_peça (<u>nro_pedido</u>, <u>nro_peça</u>,

qtdade_comprada, preço_cotado)
```

- → Uma relação R está na 3FN se:
 - está na 2FN
 - não existem <u>atributos não chave</u> que sejam dependentes de outros <u>atributos não chave</u>
 (determinante não chave)
 - >dependência transitiva
- → Dependência transitiva X [W] Y em R
 - se X W Z e Z W Y e Z não for nem a chave candidata nem um subconjunto de qualquer chave de R

- **★** Exemplo:
 - cliente (<u>nro-cliente</u>, nome-cliente, end-cliente,
 nro-vendedor, nome-vendedor)

nro-cliente M nome-cliente, end-cliente,
nro_vendedor
nro-vendedor M nome vendedor

- → Método para corrigir o problema:
 - para cada determinante que não é uma chave candidata, remover da relação os atributos que dependem desse determinante
 - criar uma nova relação contendo todos os atributos da relação original que dependem desse determinante
 - tornar o determinante a chave primária da nova relação

 → Problema: cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor, nome-vendedor)

Corrigindo o problema ...

→ Solução:

cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor)

vendedor (<u>nro-vendedor</u>, nome-vendedor)

Definições Genéricas

- → Segunda forma normal
 - um esquema de relação R está na 2FN se cada atributo não primário de R não for parcialmente dependente de nenhuma chave de R ... além da chave primária, candidatas
- → Terceira forma normal
 - um esquema de relação R está na 3FN
 se para cada dependência funcional X X A,
 X é uma superchave de R ou A é um atributo
 primário de R

Forma Normal de Boyce-Codd

→ BCNF

um esquema de relação R está na BCNF
se para cada dependência funcional X X A,
X é uma superchave de R

→ BCNF e 3FN

- relação está na BCNF (W) relação está na 3FN
- relação está na 3FN W relação está na BCNF

→ Prática

 maioria dos esquemas de relação que está na 3FN também está na BCNF

Forma Normal de Boyce-Codd

- → Dependências Funcionais
 - {aluno, curso} instrutor
 - instrutor curso
 - essa dependência, que representa que cada instrutor ministra um curso, é uma restrição particular da aplicação
 - R (aluno, curso, instrutor)

Forma Normal de Boyce-Codd

→ Solução 1

- aluno_instrutor (aluno, instrutor)
- aluno_curso (aluno, curso)

→ Solução 2

- instrutor_curso (<u>instrutor</u>, curso)
- aluno_curso (aluno, curso)

→ Solução 3

- instrutor_curso (instrutor, curso)
- aluno instrutor (<u>aluno</u>, <u>instrutor</u>)

melhor solução: não gera tuplas ilegítimas