ESTIMATE THE CROP YIELD USING DATA ANALYTICS

A PROJECT REPORT

SUBMITTED BY

ANANTHI K

BRAGADESSWARI S

UDAYA GEETHA A

VIJAYALAKSHMI P

In partial fullfillment for the award of the degree of

Bachelor of Engineering[BS1] (B.E.) in

COMPUTER SCIENCE AND ENGINEERING

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to our **Faculty Mentor** and **Industry Mentor** for their support and guidance in completing our project on Estimate the Crop Yield

We would like to extend our gratitude to the **IBM** for **Nalaiya Thiran** project for providing us with all the facility that was required.

It was a great learning experience. We would like to take this opportunity to express our gratitude.

DATE: TEAM MEMBERS:

19/11/2022 ANANTHI K

BRAGADEESWARI S

UDAYA GEETHA A

VIJAYALAKSHMI P

PROJECT REPORT FORMAT

1. INTRODUCTION

- a. Project Overview
- b. Purpose

2. LITERATURE SURVEY

- a. Existing Problem
- b. References
- c. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- a. Empathy Map Canvas
- b. Ideation & Brainstorming

- c. Proposed Solution
- d. Problem Solution Fit

4. REQUIREMENT ANALYSIS

- a. Functional Requirement
- b. Non-Functional Requirements

5. PROJECT DESIGN

- a. Data Flow Diagrams
- b. Solution & Technical Architecture
- c. User Stories

6. PROJECT PLANNING & SCHEDULING

- a. Sprint Planning & Estimation $\,$
- b. Sprint Delivery Schedule
- c. Reports from JIRA

7. CODING & SOLUTIONING

- a. Feature 1
- b. Feature 2

c. Database Schema(if Applicable)

8. TESTING

- a. Test Cases
- b. User Acceptance Testing
- 9. **RESULTS**
 - 9.1 Performance Metrices
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. **APPENDIX**

Source Code GitHub & Project Demo

1.INTRODUCTION

1.1 Project Overview

In the world, data can be available from web logs, sensor network, Internet texts and Documents, internet search indexing, mobile devices, social networking. Everyday 2.5 quintillion bytes of data are created according to the estimation done by IBM and it is very large amount so the 90% of data in the world has been created in last 2 years .

Data Science is the extraction of knowledge from data. Hal Varian, Google's Chief Economist, NYT, 2009 define Data Science is "The ability to take data, to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it - that's going to be a hugely important skill". Jeffrey Staton, Syracuse University School of Information Studies define data science is "Data Science refers to an emerging area of work concerned with the collection, preparation, analysis, visualization, management and preservation of large

collection

of information".

Data analytics is the process of transforming raw data into usable information, often presented in the form of a published analytical article, in order to add value to the statistical output. Big data analytics is the process of examining big data to discover hidden patterns, unknown correlations and other useful information that can be used to make better decisions. With big data analytics, data scientists and others can analyze huge volumes of data. Analyzing big data allows analysts, researchers, and business users to make better and faster decisions using data that was previously inaccessible or unusable. Using advanced analytics techniques such as text analytics, machine learning, predictive analytics, data mining, statistics, and natural language processing, businesses can analyze previously untapped data sources independent or together with their existing enterprise data to gain new insights resulting in significantly better and faster decisions.

. There are mainly three types of data analytics their specification is discussed below.

A. Predictive Analytics

Predictive analytics use data to identify historical patterns to predict the future.

Predictive analytics provide estimates about the likelihood of a future outcome.

For example, some companies are using predictive analytics for sales lead scoring.

Some companies have gone one step further use predictive analytics for the entire sales process, analyzing lead source, number of communications, types of communications, social media, documents, CRM data, etc. Properly tuned predictive

analytics can be used to support sales, marketing, or for other types of complex forecasts.

B. Descriptive Analytics

Descriptive analytics or statistics does exactly what the name implies them "Describe", or summarize raw data and make it something that is interpretable by humans. Descriptive statistics are useful to show things like, total stock in inventory,

average dollars spent per customer and Year over year change in sales. Common examples of descriptive analytics are reports that provide historical insights regarding the company's production, financials, operations, sales, finance, inventory and customers.

C. Prescriptive Analytics

Prescriptive analytics allows users to "prescribe" a number of different possible actions to and guide them towards a solution. Prescriptive analytics automatically synthesizes big data, mathematical sciences, business rules, and machine learning to

make predictions and then suggests decision options to take advantage of the predictions. For example, in the health care industry, you can better manage the patient population by using prescriptive analytics to measure the number of patients

who are clinically obese, then add filters for factors like diabetes and LDL cholesterol levels to determine where to focus treatment. The same prescriptive model can be applied to almost any industry target group or problem.

1.2 Purpose

- The purpose of this project is to know about the fundamental concepts of IBM Cognos on cloud, the working with IBM Cognos, to work with various graph and charts and to create meaningful dashboard.
 - It can be used to estimate crop prediction in long and short term.
 - Canvas maps are available.

2.LITERATURE SURVEY

a. EXISTING PROBLEM

- With the changing of climate, agriculture faces increasing problems with extreme weather events leading to considerable yield losses of crops. Most often, crop plants are sensitive to stresses. since they were mostly selected for high yield, and not for stress tolerance.
- In most areas where crop production is dependent on rainfall there is always risk of **crop failure or yield loss due to moisture stress**. In the semi-arid tropic areas, moisture is always inadequate for crop growth because of low precipitation and erratic distribution and poor soil moisture storage capacity of soils.

b. References

https://www.noble.org/news/publications/ag-news-and

views/2001/september/soil-and-water-

relationships/

https://www.jagranjosh.com/general-knowledge/list-of-major-crops-of-india-

temperature-

rainfall-soil-1473918924-1

 $\underline{https://mail.google.com/mail/u/0/?tab=rm\&ogbl\#inbox/KtbxLthVdScFrqFwSlJwm}$

ilwtMJQTcW

mgq?

projector=1&messagePartId=0.1

 $\underline{https://mail.google.com/mail/u/0/?tab=rm\&ogbl\#inbox/QgrcJHsbjCZLbpXskSwG}$

kvRhRHVGT

sGPvPL

https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/KtbxLwgswrWrQzWGcQ HRxtBcTlFjsc

DQkL

https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/QgrcJHrhstxRbjhJHJDSd

MNfnwnvWlZ

WCFq

 $\frac{https://mail.google.com/mail/u/0/?tab=rm\&ogbl\#inbox/KtbxLxGkKJkBgvprKljM}{gRBVdhcHrw}$

qTsB

https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/KtbxLvGzbQQwnqswfJLmlmFHXMCk

ZHmXGB

https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/KtbxLthlvfCQjzgCHDCM kPXNRcswNJ

2.3 Problem Statement Definition

Farmers can improve their drought resilience by making different crop choices, enrolling in crop insurance. To prevent from flood they have to maintain Water distribution, Field water management, Ground water use, Agronomic practices, Multi-functional use, Internal governance

Now a days, India is to allow farmers to sell produce directly to bulk buyers such

as trading companies, food processors and large retailers Farmers can directly sell their produce to cash and carry retailers.

3 IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

PROJECT DESIGN PHASE-1 PROPOSED SOLUTION TEMPLATE

DATE	19 September 2022
TEAM ID	PNT2022TMID40341
PROJECT NAME	Estimate The Crop Yield Using Data Analytics
MAXIMUM MARKS	2 marks

PROPOSED SOLUTION TEMPLATE:

Project team shall fill the following information in proposed solution template.

S.NO.	PARAMETER	DESCRIPTION
1.	problem statement (problem to be	Farmers affected by flood
l	solved)	and drought
l		*Poisoning due to pesticides
		Not many platform to sell directly to consumers
2.	Idea / Solution description	PREVENT FROM DROUGHT
l		Farmers can improve their drought
		resilience by making different crop choices,
		errolling in crop insurance.
l		◆PREVENT FROM FLOOD
		Water distribution
		Field water management
l		3. Ground water use
l		Agronomic practice
		Multi-functional use
		6. Internal governance
		◆PREVENT FROM PESTICIDES
		1.Crop rotation
		2.Intercropping
		3.Maintaining crop diversity
l		4.Using pests to fight pests
		5.Organic Pesticides
		*DIRECT TO CONSUMER SALES STRATEGIES
		Now a days,India is to allow farmers to sell

		produce directly to bulk buyers such
l	1	as trading companies, food processors and large
l	1	retailers Person.
3.	Novelty / uniqueness	With data analytics, farmers are now empowered with insights that can help them predict the market conditions, consumer behavior towards the finished goods, factor-in inflation, and other variables that will help them plan the entire process even before sowing the seeds.
4	Social impact / customer satisfaction	Farm direct marketing involves selling a product from the farm directly to customers. Often, the farmer receives a price similar to what the grocery store charges. This method of marketing is more entrepreneurial or business- like than wholesale marketing.
5.	Business Model(revenue model)	Crop yield prediction is an essential task for the decision-makers at national and regional levels (e.g., the EU level) for rapid decision-making. An accurate crop yield prediction model can help famers to decide on what to grow and when to grow. There are different approaches to crop yield prediction.
6.	Scalability of the sollution	The scalability of the application of the Crop.zone process is generally always given, since the modular design of the high-voltage units, nozzle systems. We propose that perennial grains offer a lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality.

3.4 Problem Solution

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03 October 2022
Team ID	PNT2022TMID40341
Project Name	Estimation of crop yield and data analytics.
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-1	User Requirement	Knowledge of seeds ,crops ,mechanism ,soil ,climate & agriculture science. Right use of resources like soil and water. Time management .Market demand drive production.	
FR-2	User Business rules	Three laws - the farmers produce trade and commerce(promotion and facilition)act , the farmers agreement of price assurance and farm services act and the estential commodities act	
FR-3	User Factors	Crop prediction is highly sensitive to climate, it is affected by long-term trend in average rainfall and temperature, interannual climate variability, shocks during specific phonological stages and extreme weather events.	
FR-4	User Importance	Crop yield estimates constitude a particular important productivity metric, both an aggregate level as well as in plot-level productivity analysis and impact evaluations of new technologies and policy interventions.	
FR-5	User Objectives	formulation and implementation of policies and programmes aimed at achieving rapid agricultural growth through optimum utilitation of land, water, soil and plant resources of the state.	
FR-6	User Improvement	It becomes necessary to increase the crop variety to produce disease-resistance offsprings of the crops. It also helps in providing better and superior varieties based on the quality and quantity of the yield.	

4.2 Non-Functional Requirement

Non-functional Requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description	
NFR-1	Usability	To empower farmers and to increase the productivity there is need to provide the best dissemination tool for their farming activities.	
NFR-2	Security	The developed ICT agriculture tools focus on very important agricultural services such as crop	

		detection ,crop predictor will help farmers to make decision in future.	
NFR-3	Reliability	This will remove multilingual issues and bridge the gap between farmers and technology. Effective tool that all farmers can use for management of all kind of crops	
NFR-4	Performance	Multiple technologies and services that will improve the usability in agricultural activities.	
NFR-S	Availability	Both website and mobile application interface and developed in local language and the content is available in localized language	
NFR-6	Scalability	i)Increased productivity from warm temperature ii)Decreased moisture stress iii)Possibility of growing new crops iv)Productivity of soil and water	

5. Project Design

5.1 Data Flow Diagrams

User Stories

Use the below template to list all the user stories for the product.

5.2 Solution & Technical Architecture

Example - Solution Architecture Diagram:

DATE	01-10-2022
TEAM ID	PNT2022TMID40341
PROJECT NAME	ESTIMATE THE CROP YIELD USING DATA ANALYSTS
MAXIMUM MARKS	4 MARKS

TECHNOLOGY	* Robots
TECHNOLOGY	Temperature and moisture sensors
	Aerial images
	GPS technology
BUSINESS PROBLEM	 Cope with climate change, soil
	erosion and biodiversity loss.
	 Satisfy consumers' changing tastes and
	expectations. Meet rising demand for
	more food of higher quality.
DATA COLLECTION	 Data collection allows for farmers to
	approach conservation at a landscape-
	scale, versus at the farm or even the
	county level.
	. The more information growers have, the
	better the opportunities to work together
	with others at a watershed-scale to make
	informed decisions about conservation
	priorities
CUSTOMER FEEDBACK	 Farming is Good for Your Health.
	. Being a Farmer is Challenging and
	Stimulating Work.
	 It Provides a Source of Income in Rural
	Areas.
	Farm Work Helps Develop Younger
	Generations.
	 Farming Can Help the Environment
	Thrive.
l	I

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chat bot etc.	IBM Cognos
2.	Application Logic-1	Logic for a process in the application	Java
3.	Application Logic-2	Logic for a process in the application	Cognos Assistant
4.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.

5.	Cloud Database	Database Service on Cloud	CONGOSCS
6.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
7.	External API-1	Purpose of External API used in the application	IBM Cognos Analytics REST API
8.	External API-2	Purpose of External API used in the application	-
9.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud	IBM Cloud – IBM Cognos Analytics

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	IBM Cognos Framework Manager
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	Security architecture present with the help of SHA
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro- services)	Business Intelligent architecture
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Present on cloud and is present on demand
S.No	Characteristics	Description	Technology
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Highly available and fast processing

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard	USN-6	I can access the dashboard of mine.		medium	Sprint-2
Customer (Web user)	Activity	USN-7	I can register for the application through any web browser.	I can get an notification from the browser	low	Sprint-1
	Access resources	USN-8	I can use my credentials For accessing my resources.	Other than me, there is less chance to access my resources.	High	Sprint-1
	Satellite visioning	USN-9	As, a user I can vision the geographic area.		medium	Sprint-2
Customer tools	Tools	USN-10	I can perform analysis by tools(cognos and with ML)	I have an ease of accessing tools.	high	Sprint-1
						+

6.PROJECT PLANNING AND SCHEDULING

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	UDAYA GEETHA.A
Sprint-1	Registration	USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	UDAYA GEETHA.A
Sprint-2	Registration	USN-3	As a user, I can register for the application through Facebook	2	Low	VIJAYALAKSHMI.P
Sprint-1	Data extract	USN-4	As a user, I can register for the application through Gmail	2	Medium	VIJAYALAKSHMI.P
Sprint-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	ANANTHI.K
Sprint-2	Dashboard	USN-6	I can access the dashboard of mine.	1	Low	BRAGADEESWARI.S
Sprint-1	Activity	USN-7	I can register for the application through any web browser.	1	Low	ANANTHI.K
Sprint-3	Access resources	USN-8	I can use my credentials For accessing my resources.	1	High	BRAGADEESWARI.S

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

7. CODING & SOLUTIONING

8. TESTING

8.1 Test Cases

8. TESTING

8.1 Test Cases

8.2 User Acceptance Testing

8.2 User Acceptance Testing

9. RESULTS

a. Performance Metrics

- Crop Performance analytics quantify the yield potential and environmental impact of food production at field, farm and catchment scales.
- Crop Performance works with growers, food companies and retailers to improve productivity, conserve resources, and monitor the environmental impact of food production.

The food and agriculture industry benefits with more accurate supply forecasts, an enhanced visibility to source commodities, assess risk and monitor the impact of climate change on agriculture:

- Crop Performance analytics forecast crop yields with accuracy in advance of harvest.
- The data is used to inform in-season yield, water & nutrient status of crops at the field scale.
- Customers of growers in the supply chain benefit from an integrated view of supply to inform sourcing, harvest planning and logistics.

10. ADVANTAGES & DISADVANTAGES

Advantages:

1. Increases Soil Fertility

Prolonged planting of the same crop type leads to the depletion of specific nutrients in the soil. Each crop type has a different nutrient interaction with the soil, and each of them releases and absorbs different types of nutrients.

2. Increases Crop Yield

Crop rotation increases the harvest obtained from a single seasonal harvest. Because of the incorporation of different crop types, one gets not only a variety of crops after each season but also a general bounty harvest. Some scientific evidence proves a 10 to 25% increase in crop yield in crop rotation rather than monoculture.

2. Improper Implementation Can Cause Much More Harm Than Good

Improper implementation of this technique causes much more harm than good. If one lacks the technical know-how of crop rotation, there is no need experiment because there can be nutrient buildup that will take a longer time to correct.

3. Increases Soil Nutrients

As earlier stated, crop rotation allows the land to regenerate and rejuvenate its own nutrients without having to apply more nutrients through the use of fertilizers. Leaving the land bare for a season enables the land to restore the soil nutrients lost through absorption by plants harvested in the previous season.

4. Reduces Soil Erosion

Soil erosion is the carrying away of the most important topsoil layer by wind or water. When the soil is constantly covered by plants, the topsoil layer is not carried away by water during heavy rainfall.

5. Limits the Concentration of Pests and Diseases

Similar plants tend to have the same pathogens; therefore, crop rotation interrupts the pest life cycle and their habitat.

Disadvantages:

1. It Involves Risk

In crop rotation, investing in a season involves the input of a lot of money to buy different seedlings of the different types of crops to be planted.

2. Improper Implementation Can Cause Much More Harm Than Good

Improper implementation of this technique causes much more harm than good. If one lacks the technical know-how of crop rotation, there is no need to experiment because there can be nutrient buildup that will take a longer time to correct.

3. Obligatory Crop Diversification

For crop rotation to work, one has to plant different crops every time. Nonetheless, it does not allow a farmer to specialize in a single type of crop. The farmer is not able to produce a single crop on a large scale over a long period of time because of the damage it will do to the soil.

4. Requires More Knowledge and Skills

Crop rotation means a variety of crops; therefore, it requires a deeper set of skills and knowledge regarding each type of crop harvested. It also requires different types of machinery, and operating them also requires knowledge. This means farmers will have to invest more time and resources in learning and mastering this agricultural practice.

5. The Difference in Growing conditions

Certain locations and their climates are more favorable for monoculture, meaning a certain kind of crop. Other crops, other than that specific type of crop, cannot grow well in that specific type of temperature and soil condition

11. Conclusion

Based on these articles on the main crop yield changes in China due to climate change, this paper evaluates the level of consensus on the reliability of the results in space and time. The high-consensus conclusions are as follows:

The crop yield change in China will be negative from the 2020s. Take 2012 as the baseline, the yield will decrease by 5% in the 2030s, and the decrease will be greater than 25% in the 2070s. The decline in the second half of this century will

be greater than that in the first half.

Different crops respond differently to climate change. Maize yield will decrease more than 10% in the 2050s and approximately 19% in the 2070s. Rice yield will decrease faster in the second half, with its yield change decreasing from 5% to 25% after the 2060s. The fluctuations in wheat yield in upcoming decades will be less volatile, and the yield decrease will be approximately 10% in the 2090s.

CO2 factorshave a positive impact on yield changes. The crop yield will decrease by 6.6% in the 2040s, but it will be increased by 15% with CO2. In the 2090s, the yield decrease will be 22.8%, but it will be 17.8% with CO2. In addition, the central tendency of maize and rice yield change will be -3.4% and -2.7% per 10 years, but they will change to +1.4% and -0.6% per 10 years, respectively, underthe impact of CO2.

12. FUTURE SCOPE

Crop yield prediction systems provide for better planning and decision-making to increase production. The proposed system involves a prediction module based on data mining classification algorithm namely Random Forest used to forecast the yield of major crops based on historical data.

Predicting encourages children to actively think ahead and ask questions. It also allows students to understand the story better, make connections to what they are reading, and interact with the text. Making predictions is also a valuable strategy to improve reading comprehension.

13 APPENDIX

SOURCE CODE

```
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8"/>
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>Estimate The Crop Yield Using Data Analytics - IBM</title>
  <script src="https://cdn.tailwindcss.com"></script>
 </head>
 <body class="h-screen overflow-hidden scroll-smooth bg-gray-100">
  <header
   class="fixed top-0 p-5 bg-white border-b w-full shadow-md flex gap-10 justify-between
items-center"
   <h1 class="font-bold text-lg">Estimate The Crop Yield Using Data Analytics</h1>
   <nav class="flex gap-6 items-center">
    <a
     href="#dashboard"
     data-href="dashboard"
```

```
class="link hover:underline bg-blue-600 text-white p-2 leading-none"
   >Dashboard</a
  <a
   href="#report"
   data-href="report"
   class="link hover:underline p-2 leading-none"
   >Report</a
  >
  <a
   href="#story"
   data-href="story"
   class="link hover:underline p-2 leading-none"
   >Story</a
 </nav>
</header>
<section id="dashboard" class="h-screen p-5 pt-24">
 <iframe
  src="C:\Users\Admin\Pictures\Screenshots\Screenshot (87).png"
  width="100%"
  height="100%"
  frameborder="0"
  gesture="media"
  allow="encrypted-media"
  allowfullscreen=""
```

```
class="border"
 ></iframe>
</section>
<section id="report" class="h-screen p-5 pt-24">
 <iframe
  src="file:///C:/Users/Admin/Downloads/Screenshot%20(111).pdf"
  width="100%"
  height="100%"
  frameborder="0"
  gesture="media"
  allow="encrypted-media"
  allowfullscreen=""
  class="border"
 ></iframe>
</section>
<section id="story" class="h-screen p-5 pt-24">
 <iframe
  src="file:///C:/Users/Admin/Downloads/Screenshot%20(101).pdf"
  width="100%"
  height="100%"
  frameborder="0"
  gesture="media"
  allow="encrypted-media"
  allowfullscreen=""
 class="border"
 ></iframe>
```

```
</section>
 </body>
 <script>
  const links = document.querySelectorAll("a.link");
  links.forEach((el) =>
   el.addEventListener("click", (e) => {
    e.preventDefault();
    document
      .getElementById(el.getAttribute("data-href"))
      .scrollIntoView({ behavior: "smooth" });
     const currActive = document.querySelector("a.link.active");
    currActive?.classList.remove("active");
    currActive?.classList.remove("bg-blue-600");
    currActive?.classList.remove("text-white");
    el.classList.add("active");
    el.classList.add("bg-blue-600");
    el.classList.add("text-white");
   })
  );
 </script>
</html>
```

GITHUB & PROJECT DEMO LINK

IBM-Project-44807-1660726896

https://youtu.be/e_kGVS7gaAc