Měření

Richard Růžička

Měření napětí

Přístroj k měření napětí = VOLTMETR

Voltmetr se připojuje paralelně k větvi (prvku), na níž chceme změřit napětí.

Analogový nebo číslicový?

Boeing 737 NG PFD

Vnitřní odpor voltmetru

... by měl být co <u>největší</u>, aby ovlivnil měřený obvod co nejméně.

Voltmetr je z pohledu obvodu další větev, zapojená mezi dva uzly, větev voltmetru tedy odebere z obvodu část proudu.

Je-li např. $R_1 = R_2 = 100$ kΩ a U = 10V, pak na každém z odporů je 5V.

Stejná situace, jen měříme napětí na R1 voltmetrem. Má-li voltmetr vnitřní odpor $1M\Omega$, pak paralelní kombinace R_1 a vnitřního odporu voltmetru je $90,9k\Omega$.

Napětí na R1 (a voltmetru) pak bude jen 4,76V!

Změna rozsahu voltmetru

Provádí se pomocí <u>předřadníků</u> (změna vst. svorek, přepínač).

Změna rozsahu voltmetru pomocí svorek

Změna rozsahu voltmetru přepínačem

Předřadník = odpor v sérii s voltmetrem, spolu s kterým tvoří dělič napětí. Napětí na voltmetr a na předřadník se rozdělí v poměru vnitřního odporu voltmetru a odporu předřadníku.

Příklad:

rozsahy číslicového 3 ½ místného voltmetru

Číslicové voltmetry mají obvody CMOS, mají tedy velmi vysoký vstupní odpor. Proto je lépe použít dělič napětí než pouhý předřadník.

Měření střídavých napětí

Je třeba si především uvědomit, co znamená naměřený údaj.

Je to amplituda?

Je to střední hodnota (Average)?

Je to efektivní hodnota (RMS)?

Typicky magnetoelektrické přístroje s usměrňovačem měří střední hodnotu, ale stupnice bývá cejchována v efektivních hodnotách. Pro jiné než sinusové průběhy to nebude fungovat!

"True RMS"

Multimeter type	Response to sine wave	Response to square wave	Response to single phase diode rectifier	Response to 3 Ø diode rectifier
	\sim	TUL.	~~~	~~
Average responding	Correct	10 % high	40 % low	5 % to 30 % low
True-rms	Correct	Correct	Correct	Correct

Vrms=
$$\sqrt{\frac{V_0^2 + V_1^2 + V_2^2 + V_3^2 + V_4^2 + V_5^2 + \dots + V_n^2}{n}}$$

Čtení údaje z ručičkového přístroje

Měření proudu

Přístroj k měření proudu = AMPÉRMETR

Ampérmetr se připojuje do série k prvkům, tvořícím větev, v níž chceme změřit proud.

Vnitřní odpor ampérmetru

... by měl být co <u>nejmenší</u>, aby ovlivnil měřený obvod co nejméně.

Ampérmetr je z pohledu obvodu další prvek ve větvi, který klade odpor procházejícímu proudu.

Je-li např. $R = 100\Omega$ a U = 10V, pak proud obvodem je 0,1A.

Stejná situace, odpor ampérmetru je 5Ω . Celkový odpor je tedy 105Ω .

Proud obvodem (ten, který ukáže ampérmetr) je pak 0,095A.

Změna rozsahu ampérmetru

Provádí se zejména pomocí bočníků (změna vst. svorek, přepínač).

Bočník = odpor paralelně s ampérmetrem, přes který jde část měřeného proudu. Proud do ampérmetru a do bočníku se rozdělí v obráceném poměru vnitř. odporu ampérmetru a odporu bočníku.

Povšimněte si, že ampérmetr může být vlastně voltmetr malých napětí – měří vlastně úbytek napětí na bočníku.

Příklad: rozsahy číslicového 3 ½ místného ampérmetru

Kolik je ampérů v zásuvce?

... klasická hloupost!

Čím je dán proud tímto obvodem s ampérmetrem o vnitřním odporu např. 1Ω?

Klešťový ampérmetr

Volba rozsahu

... u voltmetrů i ampérmetrů.

Pokud neznáme přibližnou velikost měřené veličiny, je vhodné začít u největšího rozsahu a postupně rozsah snižovat, dokud

- ručička není ve druhé polovině (ideálně v poslední třetině) stupnice nebo
- číslo na displeji nevyužívá všechna místa na displeji.

Pozor na překročení rozsahu, může dojít k poškození přístroje.

Některé moderní měřicí přístroje mají automatickou volbu rozsahu.

Měření odporů

"Ohmova" metoda – využití Ohmova zákona.

$$R = \frac{U}{I}$$

Zapojení vhodné pro měření velkých odporů.

Voltmetr měří součet napětí U_A a U_X!

Pro velké odpory je $U_A \ll U_X$, takže U_A lze zanedbat.

Zapojení vhodné pro měření malých odporů.

Ampérmetr měří součet proudů I_V a I_X!

Pro malé odpory je $I_V \ll I_X$, takže I_V lze zanedbat.

Měření odporů – přímá metoda

Stupnice přístroje se ocejchuje přímo v Ω

Číslicový multimetr

Osciloskop

Přístroj pro zobrazení napětí

v závislosti na čase

v závislosti na jiném napětí

K čemu osciloskop?

Typicky k analýze časového průběhu napětí (či jiné veličiny, kterou lze převést na napětí)

Na svislé (napěťové) ose můžeme odečítat:

• velikost napětí, špiček (maxima, minima), rozdílů napětí, stejnosměrné složky, ...

Na vodorovné (časové) ose můžeme odečítat:

- periodu, frekvenci, dobu náběhu/poklesu, šířku pulsu,
- fázový posuv (mezi dvěma průběhy napětí) u vícekanálových osciloskopů.

V tzv. režimu x-y pak třeba charakteristiky elektronických prvků.

Základní princip

Na obrazovce se kreslí čára. Pohyb zleva doprava je zpravidla plynulý (odpovídá plynutí času), vychýlení nahoru či dolů je ovlivněno okamžitou hodnotou napětí.

I když <u>moderní digitální osciloskop</u> je vlastně počítač, <u>simuluje chování starého analogového osciloskopu,</u> čemuž také odpovídá panel a ovládací prvky. Proto je dobré princip znát, jinak nebudete vědět, co nastavujete.

Synchronizace zobrazení

... aby každé zobrazení signálu začínalo ve stejný okamžik.

► Určuje se úroveň napětí na vstupu, při jejímž dosažení se začne zobrazovat průběh.

To je tzv. úroveň spouštění, angl. <u>Trigger Level</u>.

Důsledek: neperiodické signály nelze s běžícím osciloskopem zobrazovat.

Panel osciloskopu

Kanál B

Panel osciloskopu

Co ještě umí digitální osciloskop?

Sonda osciloskopu

Pozor na přenos sondy:

 typicky 1:1, ale může být třeba 1:10 či více (někdy lze volit přepínačem).

Kalibrace sondy:

Zemnicí krokodýlek:

- měříme napětí, potřebujeme druhý bod!
- bývá spojen s kostrou, což může být zdrojem problémů:
 - napětí na různých kanálech měříme vždy proti jedné zemi, jinak zkrat přes kostru,
 - je-li zem měřeného obvodu na jiném potenciálu než kostra osciloskopu (typicky uzemněná přes zásuvku a spojená s nulovým vodičem sítě!), opět hrozí zkrat.