

University of Passau Faculty of Computer Science and Mathematics

Chair of Computer Networks & Communications

Prof. Dr.-Ing. Hermann de Meer

Bachelor Thesis

Improving Quality of Service for Electric Vehicle Charging in the Low Voltage Grid using Slotted ALOHA Protocol

Michael J. Ehrlinger

xx/03/2020Date:

Supervisors: Prof. Dr.-Ing. Hermann de Meer

??

Dominik Danner, M. Sc.

Inhaltsverzeichnis

In	nhaltsverzeichnis					
1	Einleitung	4				
2	Grundlagen 1 Aloha-Protokoll	10				
3	Verwendete Methodiken .1 Verfügbare Daten .2 Spannungsregler nach VDE 4100 .3 Verbesserte Spannungsregler 3.3.1 Wartezeit über Teilnehmerzahl 3.3.2 Wartezeit über Teilnehmer und Fahrzeugparameter					
4	Evaluation 1 Programmaufbau 2 Datenherkunft 3 VDE alleine 4 SA-Part alleine 5 SA-waitingTime alleine 6 SA-Part-trafo alleine 7 SA-waitingTime-trafo alleine 8 SA-part mit SA-waitingTime 9 SA-part-trafo mit SA-waitingTime-trafo 10 VDE mit (SA-part, SA-waitingTime) 11 (SA-part, SA-waitingTime) mit (SA-part-trafo, SA-waitingTime-trafo)	23 23 23 23 23 23 23 23				
5	Related Work 1.1 Konzepte mit Quality of Service Ansatz					
6	Zusammenfassung	27				
Lit	raturverzeichnis	28				

1 Einleitung

Die Zahl der Elektrofahrzeuge in Deutschland nimmt immer weiter zu. Während es 2018 noch 98280 Fahrzeuge (Plug-In Hybride und Elektrofahrzeuge) waren es bereits 2019 66997 Plug-In Fahrzeuge und 83175 Elektrofahrzeuge, also 51892 mehr Fahrzeuge [Ahl19b]. Sowohl Plug-In Hybride als auch Elektrofahrzeuge können über ein Ladegerät mit elektrischem Strom versorgt werden. Laut einer Statistik über die bevorzugten Ladeorte für Elektrofahrzeuge ist das Zuhause des Fahrzeughalters der beliebteste Ort zum Aufladen des Fahrzeuges [Ahl19a]. Haushalte in Deutschland sind prinzipiell mit dem Niederspannungsnetz verbunden.

Das deutsche Niederspannungsnetz arbeitet gemäß DIN EN 50160 mit Wechselstrom bei 230 Volt Normspannung und einer Frequenz von 50 Hz. Wenn nun aber eine große Last auf ein Niederspannungsnetz wirkt, sinkt die Spannung im Netz ab. Sinkt die Spannung zu weit ab, wird die Leistung der betroffenen Geräte zurückgefahren, dies kann bedeuten, dass Geräte nur noch wenig bis keine Leistung mehr liefern können. Im Falle der bereits erwähnten Ladegeräte würde dieses Zurückfahren der Leistung bedeuten, dass die Länge des Ladevorgangs vergrößert wird, wodurch das Fahrzeug erst später wieder zur vollen Verfügung steht. Nun stellen aber gerade die zunehmenden Ladevorgänge der wachsenden Zahl von Elektrofahrzeugen in Deutschland die betroffenen Niederspannungsnetze vor eine große Herausforderung. Die Herausforderung liegt in der Leistung, die jeder einzelne Ladevorgang benötigt. Die Summe dieser Vorgänge, welche auf das Niederspannungsnetz wirken, können nämlich ein Absinken der Spannung zur Folge haben. Dieses Absinken der Spannung tritt vor allem dann auf, wenn ohnehin schon viele Verbraucher Leistung beziehen. Bei einem hohen Leistungsbezug ohne dem laden vom Elektrofahrzeugen, sorgt der zusätzliche bedarf dafür zu einem noch weiterem Absinken der Spannung. Diese Absinken führt zu einer schlechteren Erfahrung bei der Verwendung des Niederspannungsnetzes, nicht nur beim laden von Elektrofahrzeugen, sondern auch bei der herkömmlichen Verwendung. Um dem Absinken bei steigender Last entgegen zu wirken, sehen sich Netzbetreiber, wie etwa E.ON, gezwungen in ihre Netze zu investieren, um den zukünftigen Belastungen besser standzuhalten.

Der Netzbetreiber E.ON hat in einer Pressemitteilung [eon19] bekanntgegeben in den nächsten 25 Jahren, also bis zum Jahre 2045, rund 2,5 Milliarden Euro in seine Netze investieren zu wollen. Im Netzgebiet von E.ON gibt es laut ihrer Aussage aktuell etwa 6,5 Millionen konventionelle Pkw, im Jahre 2045 will E.ON in der Lage sein all diese Pkw mit den dann ausgebauten Netzen mit elektrischer Energie zu versorgen. Verteilt man die 2,5 Milliarden Euro auf die 6,5 Millionen Fahrzeuge, ergeben sich pro Fahrzeug etwa 400 Euro. Der Netzbetreiber schätzt allerdings, dass

sich diese Zahl noch senken lässt, etwa durch den Einsatz intelligenter Steuerungen. Ein Ansatz zu einer solchen intelligenten Steuerung wird in dieser Arbeit formuliert. Es wird untersucht, ob die Adaption des Aloha Protokolls auf das Niederspannungsnetz dazu beitragen kann, das Laden von Elektroautos und die damit einhergehende Last auf Stromnetz besser zu verteilen. Ein besonderes Augenmerk liegt auf der Verteilung der Leistung zwischen den einzelnen Teilnehmern um eine möglichst faire Verteilung der jeweils zur Verfügung stehenden Last zu erreichen. Um dies beurteilen zu können werden verschieden Ansätze zuerst vorgestellt und dann miteinander verglichen. Es werden verschieden Ansätze, welche mit dem Prinzip des Aloha Protokolls arbeiten vorgestellt. Ein weiterer dargestellter Ansatz fungiert als Kontrollgruppe, da dabei eine herkömmliche Anschlussregel, gemäß einer VDE-Norm verwendet wird.

2 Grundlagen

Eine Erläuterung und Erklärung der technischen Grundlagen, der beiden zentralen, verwenden Konzepten, das Aloha Protokoll und das Stromnetz sowie auf die Grundlagen von Elektrofahrzeugen.

2.1 Aloha-Protokoll

Das Aloha Protokoll wurde an der Universität von Hawaii entwickelt. Ursprünglich wurde es dort für Übertragungen zwischen Funkstationen entwickelt, allerdings lässt sich das Protokoll überall dort verwenden, wo unkoordinierte Benutzer mit einem geteilten Medium arbeiten [Mis11]. Das Aloha Netzwerkprotokoll definiert wie alle Protokolle Regeln und Formate, welche den Ablauf der Kommunikation bestimmen. In der heutigen Form des Internets bzw der Kommunikation über ein Netzwerk, arbeiten mehrere verschiedene Protokolle, welche sich jeweils mit verschiedenen Schritten befassen, zusammen. Diese Zusammenarbeit lässt sich für die Netzwerkkommunikation über das ISO/OSI Schichtenmodell erläutern. Der Weg der Daten von der vom Nutzer verwendeten Anwendung bis zur eigentlichen Aktivität auf einer Leitung eines Netzwerkes wird in sieben Schritte eingeteilt. Die Reihenfolge dieser Schritte beim Senden von Daten ist genau gegensätzlich zu der Reihenfolge beim Empfangen von Daten. Jede Schicht hat dabei ihre spezielle Aufgabe, was sie von den anderen Schichten abgrenzt. Beim Senden von Daten durchläuft man die Schichten in Folgender Reihenfolge, Anwendungsschicht, Dartstellungsschicht, Sitzungsschicht, Transportschicht, Vermittlungsschicht, Sicherungsschicht und Ubertragungsschicht. Das Aloha Protokoll arbeitet auf der Sicherungsschicht, auf dieser Ebene soll ein Protokoll in der Lage sein eine fehlerfreie Übertragung zu ermöglichen und den Zugriff auf das Übertragungsmedium zu regeln. Die Daten, welche mithilfe des Aloha Protokolls versendet werden sollen, werden in Frames eingeteilt. In einem solchen Frame werden die Daten in zwei Bereiche unterteilt. Der erste Teil der Daten wird vom Aloha Protokoll selbst benötigt, für die Weiterleitung der Daten, dies ist auch der Teil eines Frames, welcher vom Aloha Protokoll generiert bzw. verarbeitet wird. Der zweite Teil der Daten enthält den eigentlichen Inhalt des Frames, welcher versendet oder empfangen werden soll. Der zweite Teil enthält Daten welche vom Aloha Protokoll nicht verarbeitet, sondern nur weitergegeben werden sollen. Das Medium bzw. das Netzwerk über welches das Aloha Protokoll Frames empfangen oder versenden soll muss immer mit allen Teilnehmern geteilt werden. Jeder Teilnehmer ist über das passive Übertragungsmedium mit allen anderen Teilnehmern verbunden.

Das passive Übertragungsmedium kann allerdings nur von einem Teilnehmer gleichzeitig genutzt werden, also kann nur ein Frame gleichzeitig übertragen werden. Die Tatsache, dass immer nur ein Paket gleichzeitig übertragen werden kann, ist für das Aloha Protokoll ein nicht vernachlässigbarer Nachteil. Die Teilnehmer agieren bei der Verwendung des Protokolls unabhängig voneinander und prüfen vor Beginn einer Datenübertragung nicht die aktuelle Aktivität auf dem Übertragungsmedium. Diese fehlende Übertrüfung auf Aktivität auf dem Übertragungsmedium bedeutet, dass das Aloha Protokoll nicht carrier sensitiv ist. Das unabhängige Agieren voneinander hat zur Folge, dass eine Datenübertragung zu jedem beliebigen Zeitpunkt beginnen kann. Die Kombination von der beliebigen Wahl eines Startzeitpunktes für eine Übertragung und der fehlenden Überprüfung von bereits vorherrschender Aktivität und der Tatsache, das nur ein einzelner Frame gleichzeitig übertragen werden kann, führt dazu, dass nur in etwa 18.4% der Zeit für erfolgreiche Übertragungen genutzt werden kann [Mis11]. In der restlichen Zeit treten Kollisionen auf, gesendete Daten werden nicht erfolgreich übertragen [Mis11]. Im Zusammenhang mit dem Aloha Protokoll bezeichnet eine Kollision einen fehlgeschlagenen Versuch einen Frame zu übertragen. Eine Kollision tritt also immer dann auf, wenn mehrere Teilnehmer gleichzeitig versuchen einen Frame zu übertragen. Diese Frames können nicht mehr voneinander unterschieden werden und sind deshalb für die anderen Teilnehmer nicht verständlich. Nach dem Auftreten einer Kollision wird ein zuvor kollidierter Frame allerdings nicht sofort wieder gesendet. Vor einem erneuten Versuch den Frame zu übertragen wartet der Teilnehmer eine gewisse Zeit, welche zufällig bestimmt wird. Durch diese Wartezeit versucht der Teilnehmer die Ubertragungen der anderen Teilnehmer abzuwarten und so zu einem Zeitpunkt ohne Aktivität auf dem Übertragungsmedium den Frame erfolgreich übertragen.

Abbildung 2.1: Datenübertragung mit Kolisionen unter Verwendung des Aloha Protokolls

In der Abbildung 2.1 sind insgesamt neun Kästchen, sieben in grau und 2 in weiß,

aufgeteilt auf die horizontalen Kanäle A bis D entlang einer unbeschrifteten Zeitachse verteilt. In den Kanälen A bis D ist jeweils die Aktivität eines einzelnen Teilnehmers enthalten. Jedes der abgebildeten Kästchen steht für eine Frame. An den auf verschiedenen Höhen der Zeitachse gelegenen Anfängen der Frames ist die Beliebigkeit des Starts einer Übertragung erkennbar. Die grau dargestellten Kästchen stehen für Frames, welche mit anderen Frames kollidiert sind. Jedes in grau dargestellte Kästchen überschneidet sich mit einem anderem in grau dargestellten Kästchen. Jedes weiße Kästchen überschneit sich mit keinem anderem Paket, ist folglich nicht kollidiert und wurde erfolgreich übertragen.

Eine Weiterentwicklung des Aloha Protokolls nimmt an einigen Stellen Verbesserungen vor. Diese Weiterentwicklung nennt sich Slotted Aloha [Mis11]. Die Zeit wird in feste Abschnitte eingeteilt, wobei ein Zeitabschnitt der Übertragungsdauer eines Frames entspricht. Der Beginn eines solchen Abschnittes sind auch die Zeitpunkte an denen mit der Übertragung begonnen werden kann. Durch die Festlegung von solchen Zeitpunkten wird eine Kollision schneller entdeckt und es werden weniger Daten übertragen, welche kollidieren. Wird zu beginn der Übertragung keine Kollision festgestellt, wird dies auch nicht am Ende festgestellt. Durch diese Verbesserung wurde der Anteil der Zeit, in der erfolgreich Daten übertragen werden auf etwa 36.8% erhöht werden, ist also etwa doppelt so hoch wie beim herkömmlichen Aloha. [Mis11].

In der Abbildung 2.1 sind insgesamt acht Kästchen, sechs in grau und zwei in

Abbildung 2.2: Datenübertragung mit Kolisionen unter Verwendung des Slotted Aloha Protokolls

weiß, aufgeteilt auf die horizontalen Kanäle A bis D entlang einer Zeitachse verteilt. Die Zeitachse ist in Abschnitte eingeteilt, welche durch vertikale gestrichelte Linien markiert sind. Die Abschnitte sind t Zeiteinheiten lang. Die Menge der Zeiteinheiten pro Abschnitt entspricht der menge an Zeiteinheiten, welche nötig sind um eine Frame komplett zu übertragen. In den Kanälen A bis D ist jeweils die Aktivität eines einzelnen Teilnehmers enthalten. Jedes der abgebildeten Kästchen

steht für eine Frame. Bei allen grau dargestellten Kästchen befindet sich mindestens ein weiteres Kästchen im selben Zeitabschnitt, diese Frames sind also miteinander kollidiert. Die beiden in weiß dargestellten Kästchen stehen für Frames, welche erfolgreich übertragen wurden. In den beiden Zeitabschnitten in denen sich die beiden weißen Kästchen befinden ist auch kein anderes Kästchen dargestellt, somit wurde auch nicht versucht mehr als ein Kästchen gleichzeitig zu übertragen.

2.2 Elektrischer Strom

Elektrischer Strom, Elektrizität oder umgangssprachlich auch Strom, all diese Begriffe bezeichnen die Bewegung geladener Teilchen entlang eines Leiters. Die geladen, sich bewegenden Teilchen sind gemäß geltenden physikalischen Gesetzen der Elektronenstromrichtung, in einem geschlossenen Stromkreis negativ geladen, es handelt sich also um Elektronen. Für eine erfolgreiche Übertragung von elektrischem Strom müssen genug dieser geladen Teilchen, mit der jeweils gleichen Ladung, vorhanden sein. Die Übertragung der geladenen Teilchen erfolgt über ein Medium welche genug dieser Ladungsträger verfügbar hat, ein solches Medium wird auch als Leiter bezeichnet.

Der elektrische Strom wird von vier Faktoren definiert, der Spannung U, der Stromstärke I, dem Widerstand R und der Leistung P. Die Spannung U, wird in der Einheit Volt (V) angegeben. Die Spannung gibt an welche Kraft auf die beweglichen Ladungsträger wirkt, je größer die Spannung, desto stärker bewegenden sich die Ladungsträger [Sch20a]. Die Stromstärke wird in Ampere (A) angegeben und gibt an, wie viele Ladungsträger in einer Zeiteinheit durch einen Leiter fließen [Sch20b]. Je höher die Stromstärke, desto mehr Ladungsträger fließen durch den Leiter. Der Widerstand angegeben in R, gibt an wie sehr die geladen Teilchen bei ihrem Fluss durch den Leiter gestört werden [Sch20c]. Die Leistung P wird angegeben in Watt (W) und gibt an wie viel Energie/ Leistung übertragen wurde. Diese vier Faktoren sind untereinander so mit einander verbunden, dass mit der Formel

$$U = R \cdot I \tag{2.1}$$

, sowie ihren mathematischen Transformationen, die Spannung, die Stromstärke und der Widerstand in Verhältnis gesetzt werden können. Die elektrische Leistung P wird berechnet durch

$$P = U \cdot I \tag{2.2}$$

, durch einsetzen von Formel 2.1 in Formel 2.2 kann P mit jeder Kombination von Spannung, Stromstärke und Widerstand bestimmt werden.

Die Spannung kann im Leiter auf verschiedene Arten vorliegen, in Form von Gleichspannung, Wechselspannung oder Mischspannung, wobei dies eine Kombination der ersten beiden darstellt. Gleichspannung fließt mit immer gleicher Stärke und immer gleicher Richtung durch den Leiter. Im Falle der Wechselspannung wechselt sowohl

die Stärke, als auch die Flussrichtung in periodischen Abständen. Der Verlauf der Spannung während eines Wechselvorgangs kann verschiedene Formen annehmen, abgebildet auf Kurven kann ein rechteckiger, ein gezahnter, ein dreieckiger oder ein sinusförmiger Verlauf entstehen. Der im Stromnetz verwendet Wechsel entspricht einem sinusförmigen Verlauf. Der Widerstand hängt mit am stärksten vom verwendeten Leiter ab, je besser der Leiter geeignet ist, desto geringer ist der Widerstand. Der Widerstand eines Leiters ist auch von der Länge des Leiters abhängig, je Länger ein Leiter ist, desto größer ist sein Widerstand. Bei der elektrischen Leistung muss zwischen der Wirkleistung 2.2 und der Blindleistung unterschieden werden [Mar20]. Wirk- und Blindleistung bilden zusammen die Scheinleistung. Die Wirkleistung, angegeben in Watt (W), bezeichnet den Teil der elektrischen Leistung, welcher effektiv genutzt werden kann. Die Blindleistung, angegeben mit der Einheit VAr, bezeichnet den Teil welcher zwar ins Netz eingespeist werden muss aber nicht von seinen Nutzern verbraucht werden kann. Die Scheinleistung, angegeben in VA, bezeichnet nun also die Summe von Wirk- und Blindleistung also alle Leistung, welche ins Netz verfügbar ist. Der Wert der Scheinleistung kann aus den Werten für Wirk- und Blindleistung mithilfe der Formel

$$S = \sqrt{P^2 + Q^2} \tag{2.3}$$

berechnet werden.

[Sch20a] [Sch20b]

2.3 Aufbau des Stromnetz

Bei dem deutschen Stromnetz handelt es sich um ein Wechselspannungsnetz mit einer Normfrequenz von 50 Hz. Das Stromnetz lässt sich in zwei Ebenen einteilen, das Übertragungsnetz und das Verteilnetz. Das Übertragungsnetz ist ausgelegt auf die Übertragung von elektrischer Leistung über weite Strecken. Das Übertragungsnetz ist auch als Hochspannungsnetz bekannt. Dies rührt daher, dass die Spannung im Übertragungsnetz höher ist als im Verteilnetz. Die Spannung ist höher, da die Transportverluste bei höheren Wechselspannungen geringer ausfallen als bei niedrigeren. Je mehr Verluste bereits beim Transport auftreten, muss mehr Leistung bereitgestellt werden um dieselbe Leistung zum Abnehmer zu transportieren. Diese Abnehmer sind zu großenteilen mit dem Verteilnetz verbunden. Im Verteilnetz herrscht aber eine andere Spannung als im Verteilnetz. Diese verschiedenen Spannungen können mithilfe eines Transformators ineinander umgewandelt werden. Einzelne Verbraucher sind auch direkt ans Übertragungsnetz angeschlossen, aufgrund ihres hohen Leistungsbedarfs. Diese Großverbraucher verfügen über eigene Transformatoren.

Erläuterungen zum Bild.

Das Verteilnetz wird auch als Niederspannungsnetz bezeichnet, da es die niedrigsten Spannungen aller Stromnetze im deutschen Stromnetz aufweist. Ein Niederspan-

Abbildung 2.3: Aufbau des Stromnetzes

nungsnetz verfügt im Normalfall über nur einen Transformator, welcher die elektrische Leistung für alle Abnehmer bereitstellt. Ein Niederspannungsnetz in Deutschland kann als kann als Strahlen-, Ring- oder Maschennetz betrieben werden. Ringund Maschennetze bieten eine höhere Versorgungsicherheit, allerdings sind Strahlennetze kostengünstiger zu realisieren. Daher wird ab nun bei einem Niederspannungsnetz von einer Strahlennetz ausgegangen. Bei einem Strahlennetz sind ein oder mehr Leiter mit dem Transformator verbunden. An jedem Dieser Leiter sind ein oder mehrere Abnehmer verbunden. Zwischen den vom Transformator abgehenden Leitern bestehen keinerlei Verbindungen. Dadurch ist die Fluss Richtung des elektrischen Stroms vom Transformator zum Verbraucher immer gleich. Ein Strahlennetz bietet den Vorteil einer einfachen Planung. Im Falle einer Störung an einem oder mehreren Leitern, sind alle mit diesen Leitern verbunden Abnehmern betroffen. Die Höhe, der im Niederspannungsnetz übertragenen, Spannung beträgt gemäß Norm (DIN EN 50160) 230V. Diese 230 V kommen allerdings nicht nur einmal bei jedem Teilnehmer an, sondern dreimal auf den sogenannten stromführenden Phasen [DP20]. Zurückgeleitet wird die Spannung dann über eine neutrale Phase. Diese Phasen sind Teil des Leiters, welcher den Teilnehmer mit dem Transformator verbindet. Durch die Aufteilung auf drei stromführende Phasen kann mehr Leistung übertragen werden, da so mehr als eine Phase genutzt werden kann und die jeweils bezogene Mengen an Leistung aufsummiert werden. Durch Verschiebung der

sinusförmigen Schwingungen des Wechselstroms ([DP20]) zueinander sind nur zwei der drei stromführenden Phasen gleichzeitig nutzbar. Bei Nutzung von mehr als einer Phase erhöht sich auch die verfügbare Spannung aufgrund der Verschiebung von 230 V auf 400 V statt auf 460V, dadurch sind bei gleicher Stromstärke höhere Lasten möglich.

2.4 Grundlagen zu Elektrofahrzeugen

Ein Fahrzeug kann dann als Elektrofahrzeug bezeichnet werden, wenn es in der Lage ist elektrische Energie für seine unmittelbare Fortbewegung zu nutzen. Dieses Nutzen kann auf mehrere Arten erreicht werden. Als erste zu nennen ist das batterieelektrische Fahrzeug oder Battery Electric Vehicle (BEV), bei dieser Art der Bauweise dient ein Akku als Energiespeicher für einen oder mehr Elektromotoren [Hel17]. Die Energie wird in einem Akku gespeichert. Dieser Akku wird entweder durch Rekuperation, also durch Rückumwandlung von Fortbewegungsenergie in elektrische Energie, oder durch einen Ladevorgang an einem Ladegerät geladen. Eine andere Art eines Batterie-elektrischen Fahrzeuges wäre, ein batterie-elektrisches Fahrzeug mit Range-Extender [Hel17]. Bei diesen kann der Akku auch mithilfe eines, im Fahrzeug verbauten, Verbrennungsmotors geladen werden. Dieser Verbrennungsmotor treibt einen Generator an, wodurch elektrischer Strom erzeugt wird, welcher dann in der Batterie gespeichert werden kann. Der Verbrennungsmotor ist aber nicht in der Lage das Fahrzeug direkt anzutreiben, wie bei der klassischen Verwendung des Verbrenners in einem Fahrzeug. Der Verbrennungsmotor ist des Weiteren nicht in der Lage die volle Leistung der verbauten Elektromotoren zu bedienen. Bei leerem Akku ist die Leistung des Fahrzeuges limitiert durch die Leistung des Verbrenners.

Neben dem Konzept des batterie-elektrischen Antriebes gibt auch Hybride Ansätze, wo die Leistung eines Verbrenners und einem oder mehrere Elektromotoren kombiniert wird. Diese Ansätze lassen in drei Gruppen unterteilen. Bei der ersten Gruppe [Hel17], generiert ein Verbrenner, mit einem Generator, oder eine Brennstoffzelle, die elektrische Energie, welche der Elektromotor für den Antrieb benötigt. Der verbaute Akku dient nur zum speichern für kurze Zeit und kann nicht von außen geladen werden. In der zweiten Gruppe [Hel17], dienen die oder der verbaute Elektromotor nur zur Unterstützung des Verbrenners, nicht allerdings zum alleinigen Antrieb des Fahrzeugs. Die verbaute Batterie hat hier ebenfalls keine hohe Kapazität und kann nicht von außen geladen werden. Die dritte Gruppe beinhalten nun Systeme, welche als Hybrid Electric Vehicle (HEV) oder Plug-In Hybrid Electric Vehicle (PHEV) bekannt sind [Hel17]. In beiden Fahrzeugtypen ist ein Verbrennungsmotor und einer oder mehrere Elektromotoren verbaut. Anders als bisher sind hier aber beide Motorarten jeweils alleine in der Lage das Fahrzeug zu betreiben. Fahrzeuge dieser Kategorie können wie ein herkömmlicher Verbrenner oder wie ein BEV verwendet werden. Das Merkmal was ein PHEV von einem PEV unterscheidet ist, dass bei einem PHEV die verbaute Batterie von außen über ein Ladegerät geladen werden kann. Die Ladung über einen, vom Verbrennungsmotor angetriebenen, Generator oder über Rekuperation ist hingegen sowohl beim HEV als auch beim PHEV möglich.

Innerhalb dieser Arbeit werden jene Arten von Elektrofahrzeugen betrachtet, deren Batterie mithilfe eines Ladegerätes geladen werden kann. Zu dieser Art zählen die Battery Electric Vehicles (BEV), BEV mit Range-Extender und Plug-In-Hybrid Electric Vehicles. Alle anderen vorgestellten Elektrofahrzeuge können die verbaute Batterie nicht über ein externes Ladegerät laden. Bei den verfügbaren Ladegeräten gibt es verschiedene Techniken. Die erste Unterscheidung liegt beim Gleichstromund Wechselstromladen. Ein Akku, wie er in einem Elektrofahrzeug verbaut ist, speichert die Energie in Form von Gleichstrom, nicht in Form von Wechselstrom. Entfällt die Umwandlung von Wechsel- auf Gleichstrom durch einen im Fahrzeug verbauten Gleichrichter, kann die maximal mögliche Ladeleistung gesteigert werden. Diese Steigerung der Ladeleistung ist möglich durch die Verwendung eines leistungsfähigeren Gleichrichters. Ladegeräte mit Wechselspannungstechnik gibt es auch für den privaten Bereich. Beim Wechselspannungsladen wird die Wechselspannung erst in einem internen Ladegerät zur, für die Batterie passenden, Gleichspannung. Dieses interne Ladegerät gibt meist auch die maximale Ladeleistung des Fahrzeuges vor. Die Leistung des externen Ladegerätes variiert ja nach Technik und Anschluss ans Stromnetz.

Beim Laden mit Wechselstrom gibt es verschieden Leistungsstufen, von 3,7 bis hin zu 22kW [Lan20]. Diese Leistungsstufen entstehen durch verschiedene Anschlüsse der Ladegeräte ans Stromnetz. Bei einem Anschluss von nur einer Phase sind Bei einer Absicherung mit 16 Ampere maximal 3,7kW möglich bei einer Absicherung mit 32 Ampere maximal 7,4kW [Lan20]. Bei einem Anschluss über alle drei Phasen sind bei einer Absicherung von 16 Ampere bis zu 11kW möglich bei einer Absicherung von 32 Ampere sogar bis zu 22kW [Lan20]. Beim Anschluss eines Ladegerätes ans Stromnetz ist zu beachten, dass jedes dieser Ladegeräte beim Betreiber des Stromnetzes angemeldet werden muss. Ladegeräte mit einer Leistung über 12kVA müssen zudem vom Netzbetreiber genehmigt werden, bevor man sie ans Netz anschließen kann [BDE20].

Stecker	Spannungsart	Phasen	Ampere	mögliche Leistung (in kW)
Haushaltssteckdose	AC	1	16	3,7
CEE Steckdose	AC	1	16	3,7
	AC	3	16	11
	AC	3	32	22
Typ 1 Stecker	AC	1	32	7,4
Typ 2 Stecker	AC	3	32	22
CHAdeMO Stecker	DC			100
CCS Stecker	DC			200
Tesla Supercharger	DC			120

Tabelle 2.1: Steckertypen zum Laden von Elektrofahrzeugen

3 Verwendete Methodiken

Nach der Einführung zu den verschieden Themenbereichen, nur zu den eigentlichen Methodiken, welche entweder schon vorhanden sind, oder im Zuge dieser Arbeit erarbeitet wurden.

3.1 Verfügbare Daten

Nun wird die Herkunft der für die nächsten Kapitel elementaren Daten erläutert. Ein Elektrofahrzeug verfügt über folgende Daten, die Ankunftszeit an der Ladestation für den aktuellen Ladezyklus, die Abfahrtszeit, wenn diese erreicht ist endet der aktuelle Ladezyklus. Ebenso gibt jedes Fahrzeug für sich an, ob es gerade verfügbar ist, sprich mit einer Ladestation verbunden ist, welchen Ladezustand der im Fahrzeug verbaute Akku aktuell hat, sowie die aktuell mögliche Ladeleistung. Die Ladegräte wissen jeweils welche Leistung sie gerade an das mit ihnen verbunden Elektrofahrzeug abgeben, sofern den ein Elektrofahrzeug mit ihnen verbunden ist. Einige Daten sind auch aus dem Stromnetz an sich bekannt, so ist die Leistungsabgabe des Transformators ans Stromnetz bekannt, sowie für jeden betrachten Hausanschluss, das dort aktuell vorherrschende Spannungslevel.

3.2 Spannungsregler nach VDE 4100

Die erste Methodik dient als Grundlinie für den Vergleich der später folgenden Methodiken. Diese Methodik stellt die aktuell im Stromnetz vorliegende Situation dar. Sie verwendet die technische Anschlussregel Niederspannung (VDE-AR-N 4100), diese stellt neue Anforderungen an die Ladegeräte von Elektrofahrzeugen. Sie wurde ebenfalls entwickelt, um eine größere Anzahl von Ladegeräten am Netz nutzbar zu machen (VDE-quelle). Bei der verwendeten Form der Anschlussregel, handelt es sich um einen Spannungsregulator, welcher anhand der Spannung angibt, wie viel der aktuell möglichen Leistung abgerufen wird. Bei einem gemessenen Wert der Spannung von mehr als 93% der Normspannung, kann die Leistung wie gefordert abgerufen werden. Ab einer Spannung von weniger als 88% der Normspannung kann keine Leistung mehr angerufen werden. In dem Bereich von 93% bis 88% der Normspannung wird die abrufbare Leistung linear reduziert, von voller hin zu keiner abrufbaren Leistung.

Abbildung 3.1: Spannungs zu Leistungsverhältnis nach VDE-AR-N 4100(grün)

Der Graph in Abbildung 3.1 zeigt die mögliche Ladeleistung bei dem prozentualen Anteil der Normspannung. Auf der Y-Achse ist die mögliche Ladeleistung angetragen, wobei die eins für die höchstmögliche Leistung steht und null dafür, dass für keine Leistung abrufbar ist. An der X-Achse werden die aktuell anliegenden Prozent der Normspannung angetragen. An dem Graphen ist ersichtlich, dass bei mehr als 93% der Normspannung die ganze Ladeleistung zur Verfügung steht. Es ist weiterhin erkennbar, wie sich die mögliche Ladeleistung im Bereich von 93% bis 88% der Normspannung verhält. Ebenso, wie das keine Ladeleistung bei einem Wert von weniger als 88% der Normspannung mehr möglich ist.

Die Ladeleistung wird berechnet durch die Formel

$$Ladeleistung = Aktuelle Spannung \cdot maximal$$

$$nutzbare Stromstärke des Fahrzeuges$$
(3.1)

Bei der Formel 3.1 wird von einer Spannung von über 93% der Normspannung ausgegangen, da die berechnete Ladeleistung nicht verändert wird. Im Bereich von 93% bis 88% der Normspannung ist eine solche Änderung aber nötig. Der Faktor F, mit dem der verbliebene Anteil der möglichen Ladeleistung bestimmt wird, wird mit der Formel

$$F = 20 \cdot \frac{aktuelleSpannung}{Normspannung} - 17.6 \tag{3.2}$$

Berechnet. Der Wertebereich der Formel ist bei null bzw. Eins abgeschlossen. Bei zu niedrigen Spannungswerten, weniger als 88% der Normspannung, wird der Faktor ohne Berechnung der Formel mit null angegeben. Ergebnisse größer als eins werden auf eins reduziert, da alle Werte größer als eins in einer höheren Ladeleistung als überhaupt möglich resultieren würden. Wird nun der Faktor in Formel 3.1 berücksichtigt, ergibt sich folgende Formel für die mögliche Ladeleistung

$$Ladeleistung = Aktuelle Spannung \cdot maximal$$

$$nutzbare Stromstärkedes Fahrzeuges \cdot Faktor$$
(3.3)

Bevor die berechnete mögliche Ladeleistung allerdings tatsächlich bezogen wird, wird der Wert mithilfe eines First-Order Lag Filters gefiltert. Bei einem First-Order Lag Filter wird eine Änderung zwischen dem aktuellen und einem neu berechneten Wert nicht komplett vollzogen, sondern nur teilweise. Ein solcher Filter dient der Dämpfung großer Änderungen und soll kleiner Änderungen fast unverändert lassen. In der hier verwendeten Form werden nur 63,2% der eigentlichen Änderung vorgenommen. So steigen Werte nur um 63,2% der eigentlichen Steigerung, ebenso fallen Werte nur um 63,2% der Änderung.

Abbildung 3.2: Spannungs zu Leistungsverhältnis nach VDE-AR-N 4100(grün)

Aus der Abbildung 3.2 wird ersichtlich, wie ein First-Order lag Filter auf ein starkes Wachstum eines Wertes reagiert. Die fett markiert, durchgezogene Linie zeigt den Verlauf ohne Filter. Die fett markierte, gestrichelte Linie zeigt den Verlauf mit Filter. T_F zeigt die Dauer des verwendeten Zeitintervalls. Die zwei dünnen, schwarzen Linien markieren an ihrem Schnittpunkt den Wert nach der ersten Anwendung des

Filters. Dieser Wert liegt bei 63,2% der eigentlichen Änderung. Bei fortlaufender Zeit nähert sich die fett markierte, gestrichelte Line der fett markierten, durchgezogen Linie immer weiter an.

3.3 Verbesserte Spannungsregler

Bei den nächsten vorgestellten Methoden wurden Bestandteile des Slotted Aloha Protokolls (Kapitel 2.1) verwendet. Das Slotted Aloha Protokoll arbeitet auf einem geteilten Medium, welches von allen Teilnehmern verwendet wird. Dieses geteilte Medium ist in diesem Fall das in Kapitel 2.3 vorgestellte Niederspannungsnetz mit den dazugehörigen elektrischen Leitern. Ein Frame des Aloha Protokolls entspricht der Leistung die für die einzelnen Teilnehmer über das Stromnetz verteilt wird. Eine Kollision tritt immer dann auf, wenn die Spannung bei einem einzelnen Teilnehmer zu niedrig wird oder die Last am Transformator des Netzes zu hoch wird. Ob und wie nun auf die verschiedenen Arten der Kollisionen reagiert wird, hängt von der verwendeten Methodik ab.

3.3.1 Wartezeit über Teilnehmerzahl

Der in Kapitel 3.2 vorgestellte Spannungsregler wird um die Behandlung von lokalen Spannungskollisionen, welche bei jedem Teilnehmer individuell passieren können, erweitert. Eine Spannungskollision tritt immer dann auf, wenn der Wert der lokal gemessen Spannung auf unter 88% der Normspannung fällt. Fällt die Spannung auf einen solch niedrigen Wert kann gemäß dem Spannungsregler keine Leistung mehr aus dem Netz bezogen werden, bis die Spannung wieder auf einen Wert von über 88% der Normspannung steigt. Ist eine Spannungskollision aufgetreten, wird, geregelt durch den Spannungsregler, keine Leistung mehr aus dem Netz bezogen und eine Wartezeit bestimmt. Diese Wartezeit gibt an, wie lange der Teilnehmer nicht mehr versucht Leistung aus dem Netz zu beziehen. Diese Wartezeit wird auch eingehalten, wenn die gemessen Spannungswerte eigentlich wieder einen Leistungsbezug möglich machen würden. Der Wert der Wartezeit werden per Zufall aus einem Intervall heraus bestimmt, unter Verwendung eines Mersenne-Twister(python-random). Das Intervall ist nach unten sowie oben begrenzt. Die untere Grenze ist die Null, was keiner Wartezeit entspricht. Die obere Grenze wird primär durch die aktuelle Anzahl an Teilnehmer bestimmt. Jedes Fahrzeug, welches aktuell mit dem Stromnetz verbunden ist und dessen Ladezustand unter 100% liegt, gilt in diesem Fall als Teilnehmer. Diese Abgrenzung wurde getroffen, da auch nur diese Teilnehmer, welche in diese Gruppe fallen, auch Leistung aus dem Netz beziehen können. Die Anzahl der Teilnehmer kann nicht von einem Teilnehmer selbst bestimmt werden. Eine zentrale Stelle ermittelt, welche der möglichen Teilnehmer, mit einem Ladegerät verbunden sind und einen Ladezustand von unter 100% aufweisen. Diese zentral bestimmte Anzahl wird dann an alle diese Teilnehmer verteilt. Ein Sonderfall tritt ein, wenn die Menge der Teilnehmer zahlenmäßig höher ist als die Anzahl der Zeiteinheiten zwischen dem aktuellen Zeitpunkt und dem Zeitpunkt an dem das Fahrzeug die Ladestation wieder verlässt. Wenn dieser Fall eintritt, wird das Intervall, aus welchem die Zufallszahl heraus bestimmt wird, nicht von der Anzahl der Teilnehmer nach oben hin begrenzt. Die obere Grenze des Intervalls entspricht dann der Anzahl von Zeiteinheiten zwischen dem aktuellen Zeitpunkt und dem Zeitpunkt an dem das Fahrzeug die Ladestation wieder verlässt. Es besteht die Möglichkeit, dass wenn die Wartezeit abgelaufen ist wieder oder immer noch eine Spannungskollision vorliegt. Tritt dies ein, wird wieder eine Wartezeit bestimmt, es gibt keine Möglichkeit für eine Sonderbehandlung bzw eine minimale Ladezeit nach einer Wartezeit. Diese hier vorgestellte Methodik wurde nur um Funktionalität für Spannungskollisionen erweitert. Wenn eine zu hohe Last vom Transformator abgerufen wird, werden bei dieser Methodik allerdings keine Maßnahmen ergriffen.

Abbildung 3.3: Graph

3.3.2 Wartezeit über Teilnehmer und Fahrzeugparameter

Der in Kapitel .. vorgestellte Spannungsregler wird um die Behandlung von lokalen Spannungskollisionen, welche bei jedem Teilnehmer individuell passieren können, erweitert. Eine Spannungskollision tritt immer dann auf, wenn der Wert der lokal gemessen Spannung auf unter 88% der Normspannung fällt. Fällt die Spannung auf einen solch niedrigen Wert kann gemäß dem Spannungsregler keine Leistung mehr aus dem Netz bezogen werden, bis die Spannung wieder auf einen Wert von über 88% der Normspannung steigt. Ist eine Spannungskollision aufgetreten, wird, geregelt durch den Spannungsregler, keine Leistung mehr aus dem Netz bezogen und eine Wartezeit bestimmt. Diese Wartezeit gibt an, wie lange der Teilnehmer nicht mehr versucht Leistung aus dem Netz zu beziehen. Diese Wartezeit wird auch eingehalten, wenn die gemessenen Spannungswerte eigentlich wieder einen Leistungsbezug möglich machen würden. Der Wert der Wartezeit werden per Zufall aus einem Intervall heraus bestimmt, unter Verwendung eines Mersenne-Twister(python-random). Das Intervall ist nach unten sowie oben begrenzt. Die untere Grenze ist die Null, was keiner Wartezeit entspricht. Die obere Grenze wird durch Ausführung einer Formel bestimmt, welche von drei Parametern abhängt. Der erste Parameter gibt an wie viele Zeiteinheiten, zwischen dem aktuellen Zeitpunkt und dem Zeitpunkt, an dem das Fahrzeug die Ladestation wieder verlässt, liegen. Dieser Parameter wird im Folgenden mit ,verbleibender Zeit' bezeichnet. Der zweite Parameter gibt an, wie viel Zeit noch benötigt wird, um den Akku des Fahrzeuges auf einen Ladestand von 100% zu bringen. Für diese Berechnung wird allerdings die Normspannung verwendet und nicht die aktuell gemessene Spannung. Dieser Parameter wird im Folgenden mit "verbleibender Ladezeit" bezeichnet. Die beiden Parameter, verbleibende Zeit und verbleibende Ladezeit, werden lokal von jedem Teilnehmer für sich selbst bestimmt, sie benötigen dafür keinen weiteren Input. Der dritte Parameter ist die aktuelle Anzahl an Teilnehmenden. Jedes Fahrzeug, welches aktuell mit dem Stromnetz verbunden ist und dessen Ladezustand unter 100% liegt, gilt in diesem Fall als Teilnehmer. Diese Abgrenzung wurde getroffen, da auch nur diese Teilnehmer, welche in diese Gruppe fallen, auch Leistung aus dem Netz beziehen können. Die Anzahl der Teilnehmer kann nicht von einem Teilnehmer selbst bestimmt werden. Eine zentrale Stelle ermittelt, welche der möglichen Teilnehmer, mit einem Ladegerät verbunden sind und einen Ladezustand von unter 100% aufweisen. Diese zentral bestimmte Anzahl wird dann an alle diese Teilnehmer verteilt. Diese drei Parameter, die verbleibende Zeit, die verbleibende Ladezeit und die Anzahl der Teilnehmer werden in folgende Formel eingesetzt:

$$obere\ Grenze = \frac{verbleibende\ Zeit - verbleibende\ Ladezeit}{Anzahl\ der\ Teilnehmer} \tag{3.4}$$

Das Ergebnis dieser Formel beschränkt nun das Intervall, aus dem die Wartezeit bestimmt wird, nach oben. Ein Sonderfall tritt auf, wenn das Ergebnis dieser Formel kleiner ist als eins. Dies kann passieren, wenn etwa die verbleibende Zeit geringer ist als die verbleibende Ladezeit. Tritt dieser Fall ein wird erneut eine obere Grenze für das Intervall bestimmt. Die Formel, die in diesem Fall verwendet wird, hat nur einen Parameter. Dieser Parameter ist die zuvor berechnete obere Grenze des Intervalls, genannt 'alte Grenze'. Zur Bestimmung des neuen Wertes wird folgende Formel verwendet

obere
$$Grenze = 10 \cdot (1 - e^{alte\ Grenze - 1}) + 1$$
 (3.5)

Das Ergebnis dieser Formel grenzt nun das Intervall, aus dem die Wartezeit bestimmt wird, nach oben ab. Das Verhalten während einer Wartezeit, welche mithilfe dieser Formel 3.5 abgegrenzt wurde, kann sich von dem Verhalten einer Wartezeit welche durch Formel 3.4 abgegrenzt wird unterscheiden. Wenn eine solche Wartezeit das erste Mal bestimmt wird, unterscheidet sich das Verhalten in drei Punkten. Der Erste wäre, dass die Verbindung zum Netz nicht getrennt wird, es wird also weiterhin Leistung aus dem Netz bezogen. Der zweite Unterschied liegt in der Bestimmung der möglichen Ladeleistung, statt mit der Formel 3.3 wird, entgegen dem eigentlich verwendetem Spannungsregler, die Formel 3.1 verwendet. Der dritte Unterschied ist das veränderte Verhalten beim Auftreten von Kollisionen, diese werden nicht beachtet und es wird nicht auf sie reagiert. Eine solche Art der Wartezeit kann allerdings nicht mehrmals direkt hintereinander wahrgenommen werden. Tritt nach Beendigung dieser Wartezeit sofort wieder eine Kollision auf, muss eine normale Wartezeit abgewartet werden, auch wenn das Intervall mithilfe der Formel 3.5 begrenzt wurde. Nach dieser Wartezeit ist eine solche Sonderbehandlung allerdings wieder möglich.

Diese hier vorgestellte Methodik wurde nur um Funktionalität für Spannungskollisionen erweitert. Wenn eine zu hohe Last vom Transformator abgerufen wird, werden bei dieser Methodik allerdings keine Maßnahmen ergriffen.

Abbildung 3.4: Graph

Abbildung 3.5: Diagram

4 Evaluation

Hier werden die Ergebnisse gezeigt und beschrieben. Vergesst nicht eine ordentliche Beschriftung zu erstellen!

- Verschaltung EV-Controller-Bus
- Datenvergabe in Schaltung
- Ergebnisvorstellung VDE4100 mit tau
 - minimal Spannung
 - durchschnittliche Spannung
 - Fairness Auswertung mit Skript
 - Da alle fertig werden aktuell, ergibt diese Metrik wenig Sinn
- Ergebnisvorstellung Aloha mit Teilnehmer
- Ergebnisvorstellung Aloha spezial

- 4.1 Programmaufbau
- 4.2 Datenherkunft
- 4.3 VDE alleine
- 4.4 SA-Part alleine
- 4.5 SA-waitingTime alleine
- 4.6 SA-Part-trafo alleine
- 4.7 SA-waitingTime-trafo alleine
- 4.8 SA-part mit SA-waitingTime
- 4.9 SA-part-trafo mit SA-waitingTime-trafo
- 4.10 VDE mit (SA-part, SA-waitingTime)
- 4.11 (SA-part, SA-waitingTime) mit (SA-part-trafo, SA-waitingTime-trafo)

5 Related Work

5.1 Konzepte mit Quality of Service Ansatz

Anders als die bisher vorgestellten Konzepte, welche zwar ein ähnliches oder das selbe Ziel haben, wie diese Arbeit, deren eingeschlagenWeg sich allerdings grundlegenden unterscheidet, gibt es auch Ansätze, welche sich Ideen und Konzepten der Netzwerktechnik bedienen und diese auf das Stromnetz anwenden.

In Ihrer Arbeit [AdM19] legen Ammar Alyousef und Hermann de Meer ein Konzept dar, für einen Kontrollmechanismus, welcher dezentral an den Anschlüssen der jeweiligen Ladegeräte ansetzt. Der Kontrollmechanismus überprüft die Einhaltung der Grenzwerte für die Last am Transformator sowie der Spannung an den einzelnen Anschlüssen. Die Zustände der gemessen Werte werden anhand eines Ampelschemas eingeteilt, wobei grün keinen Anlass zu Veränderungen Anzeigt, gelb eine leichte Anderung und rot eine drastische Anderung, um die Werte innerhalb der jeweils zulässigen Bereiche zuhalten. Sollten die Werte nun einen Anlass vermitteln, welcher eine Änderung notwendig macht, verwendet man hier das Prinzip des TCP-Slow Starts, welches aus der Netzwerktechnik stammt. Der Aufbau des verwendeten Netzes sowie die bereits anliegenden Lasten, ohne die Ladegeräte, wurden aus der Realität übernommen. Es werden insgesamt vier verschiedene Szenarien getestet, kein Ladegerät am Netz, alle Ladegeräte unter Vollast am Netz, sowie zwei verschiedene Smart Charging Ansätze, einmal der in der Arbeit selbst vorgestellte und ein Ansatz, der einen endlichen Automaten verwendet und aus vorhandener Literatur herausgenommen wurde, als Vergleichsinstanz. Das Ergebnis zeigt, das sich die Verwendung der beiden Smart Charging Ansätze, vor allem in der Qualität der zur Verfügung stehenden Elektrizität auszahlt, aber auch bei der Menge der transportierten Energie. Jedoch stellt sich dar das der Smart Charging Ansatz, welcher den TCP-Slow Start verwendet, fairer ist bei der Verteilung zwischen den Ladestationen. Die Anordnung der Ladestationen unterscheidet sich allerdings dahingehend von der Verteilung in dieser Arbeit, da hier davon ausgegangen wird, das sich die Ladestationen stärker im Netz verteilen, da mehr von Ihnen angeschlossen wurden. Auch in der hier vorgestellten Arbeit unterscheiden sich die verwenden Parameter von denen in dieser Arbeit verwendeten. In der hier vorgestellten Arbeit orientriert man sich lediglich an den Auslastungsdaten des Stromnetzes, während in dieser Arbeit auch Daten des jeweiligen Elektrofahrzeugs berücksichtigt werden, wie Ladezustand des Akkus, sowie der nächste Abfahrtszeitpunkt.

5.2 Konzepte zur Verbesserung der Netzauslastung

Die Bemühungen das bestehende Stromnetz auf die Zukunft vorzubereiten und dafür mehr Inteligenz in das Netz zu integrieren sind nicht nur auf die in dieser Arbeit beschränkt.

S. Sangob und S. Sirisumrannukul (author?) [SS19] haben in Ihrer Arbeit ebenfalls das Ziel das Spannungslevel auch bei mehreren Ladevorgängen stabil zu halten, und so das Netz bestmöglich zu nutzen. Dieses Ziel versuchen sie über eine Partikelschwarmoptimierung zu erreichen, welche auf allen drei Phasen eins 120V Netzes agiert. Das Ergebnis dieser Optimierung ist eine etwa 15\% höhere Leistungsabgabe des Transformator, welche durch eine Erhöhung des Spannungsniveaus bei gleichbleibender Stromstärke erreicht wurde. Die von Ihnen angestrebte Optimierung greift am Transformator des Niederspannungsnetzes, sowie den mit dem Transformator verbunden Kondensatoren an, also an anderer Stelle, als die in dieser Arbeit thematisierte Lösung, welche am Hausanschluss bzw. erst am Ladegerät selbst ansetzt. Dieser Unterschied beeinflusst auch, an welchem Punkt des Netzes die Spannungswerte gemessen werden, welche von Ihnen nur am Transformator erfasst werden, während die Werte in dieser Arbeit an allen Anschlusspunkten berücksichtigt werden, was die Übertragungsverluste und die Netztopologie mehr berücksichtigt. Ebenso unterscheiden sich die Zielen zwischen der hier genannten Arbeit und dieser Arbeit, während in der hier genannten Arbeit das Ziel war die Qualität der übertragen Spannung zu erhöhen, ist das Ziel dieser Arbeit die Quality of Service des Ladevorgangs von Elektrofahrzeugen, abhängig von Ladezustand des verbauten Akkus und der für den Ladevorgang verfügbaren Zeit, zu erhöhen.

Einen andern Ansatz verfolgen M. Nour et al. in Ihrer Arbeit [NSAF19]. In Ihrer Arbeit stellen Sie einen Ansatz vor, indem Stromanbieter einen Zweipreistarif anbieten, ein höherer Preis für Zeiten mit höherer Last und ein zweiter, niedrigerer preis, bei geringerer Last, bestimmt wird diese Auslastung am Transformator des Stromnetzes. Dieses Tarifsystem macht das laden außerhalb von Lastzeiten wirtschaftlich attraktiver, was dazu führen soll, das Halter von Elektrofahrzeugen diese Zeiten zum Laden nutzen und eben nicht die Zeiten, wo auch ohne Ladevorgänge schon eine hohe Last auf dem Netz liegt. Diese Zeitsteuerung wird in einen Fuzzy-Controller integriert, welcher neben dem Preis auch den Ladezustand des Fahrzeugs berücksichtigt und so die mögliche Ladeleistung des Fahrzeuges bestimmt. Jedoch steht anders als in dieser Arbeit nicht der Quality of Service Aspekt, einer möglichst zeitnahen, dem nächsten Abfahrtszeitpunkt entsprechende Ladung im Vordergrund, sonder eher der wirtschaftliche Aspekt, mit der Verwendung von möglichst günstig zur Verfügung stehender Elektrizität. Durch die unterschiedliche Ziele der Arbeiten werden auch unterschiedliche Daten herangezogen, in der hier vorgestellten Arbeit wird nur der Ladezustand des verbauten Akkus betrachtet, während in dieser Arbeit auch die Zeit welche das Fahrzeug am Ladegerät verbracht hat bzw. noch verbringen wird. Des weiteren kontrolliert die hier vorgestellte Arbeit die Auslastung des Netzes nur passiv, da die Preise nur fallen, wenn die Auslastung

5 Related Work

niedrig ist und so die Belastung durch die Ladevorgänge verkraftbar ist.

6 Zusammenfassung

Am Schluss werden noch einmal alle wesentlichen Ergebnisse zusammengefasst. Hier können auch gemachte Erfahrungen beschrieben werden. Am Ende der Zusammenfassung folgt ein Ausblick, der die zukünftige Entwicklung der behandelten Thematik aus der Sicht des Autors darstellt.

In the end, all relevant results are summarized. All experiences can described. At the end, future work is described. i.e. the future research questions and the development of the problem.

Literaturverzeichnis

- [AdM19] Ammar Alyousef and Hermann de Meer. Design of a tcp-like smart charging controller for power quality in electrical distribution systems. In *Proceedings of the Tenth ACM International Conference on Future Energy Systems*, e-Energy '19, page 128–138, New York, NY, USA, 2019. Association for Computing Machinery.
- [Ahl19a] Andreas Ahlswede. Ladeorte der Nutzer von Elektroautos in Deutschland 2019, Sep 2019.
- [Ahl19b] Andreas Ahlswede. Pkw-bestand in Deutschland nach Kraftstoffarten bis 2019, Aug 2019.
- [BDE20] Bundesverband der Energie-und Wasserwirtschaft e.V BDEW, editor. Technische Anschlussbedingungen TAB 2019. BDEW, Bundesverband der Energie- und Wasserwirtschaft e.V, März 2020.
 - [DP20] Rüdiger Dr. Paschotta. Drehstrom, Feb 2020.
 - [eon19] Netze von E.ON werden für 100 Prozent E-Mobility vorbereitet, May 2019.
 - [Hel17] Michael Held. Arten von Elektrofahrzeugen, Nov 2017.
 - [Lan20] Thomas Langenbucher. Das ABC des Elektroauto-Ladens: Fakten & Wissenswertes, Feb 2020.
- [Mar20] Noß Mario. Leistung im Wechselstromkreis, Feb 2020.
- [Mis11] A. A. Mishra. Enhanced slotted aloha. In 2011 3rd International Conference on Electronics Computer Technology, volume 5, pages 278–282, April 2011.
- [NSAF19] M. Nour, S. M. Said, A. Ali, and C. Farkas. Smart charging of electric vehicles according to electricity price. In 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), pages 432–437, Feb 2019.
 - [Sch20a] Patrick Schnabel. Elektrische Spannung U, Jan 2020.
 - [Sch20b] Patrick Schnabel. Elektrischer Strom / Elektrische Stromstärke I, Jan 2020.

- [Sch20c] Patrick Schnabel. Elektrischer Widerstand R, Jan 2020.
 - [SS19] S. Sangob and S. Sirisumrannukul. Volt/Var Control with Electric Vehicle Loads in Distribution Network by Particle Swarm Optimization. In 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), pages 304–309, March 2019.