- 22. The method of Claim 2 wherein the nucleic acid is double-stranded and hybridization with the oligonucleotides on the nanoparticles results in the production of a triple-stranded complex.
- 23. A method of detecting nucleic acid having at least two portions comprising: providing a substrate having a first type of nanoparticles attached thereto, the nanoparticles having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to a first portion of the sequence of a nucleic acid to be detected;

contacting said nucleic acid with the nanoparticles attached to the substrate under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles with said nucleic acid;

providing a second type of nanoparticles having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to one or more other portions of the sequence of said nucleic acid;

contacting said nucleic acid bound to the substrate with the second type of nanoparticles under conditions effective to allow hybridization of the oligonucleotides on the second type of nanoparticles with said nucleic acid; and

observing a detectable change.

- 24. The method of Claim 23 wherein the substrate has a plurality of types of nanoparticles attached to it in an array to allow for the detection of multiple portions of a single nucleic acid, the detection of multiple different nucleic acids, or both.
- 25. A method of detecting nucleic acid having at least two portions comprising: providing a substrate having a first type of nanoparticles attached thereto, the nanoparticles having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to a first portion of the sequence of a nucleic acid to be detected;

contacting said nucleic acid with the nanoparticles attached to the substrate under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles with said nucleic acid;

providing a second type of nanoparticles having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to one or more other portions of the sequence of said nucleic acid;

contacting said nucleic acid bound to the substrate with the second type of nanoparticles under conditions effective to allow hybridization of the oligonucleotides on the second type of nanoparticles with said nucleic acid;

providing a binding oligonucleotide having a selected sequence having at least two portions, the first portion being complementary to at least a portion of the sequence of the oligonucleotides on the second type of nanoparticles;

contacting the binding oligonucleotide with the second type of nanoparticles bound to the substrate under conditions effective to allow hybridization of the binding oligonucleotide to the oligonucleotides on the nanoparticles;

providing a third type of nanoparticles having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to the sequence of a second portion of the binding oligonucleotide;

contacting the third type of nanoparticles with the binding oligonucleotide bound to the substrate under conditions effective to allow hybridization of the binding oligonucleotide to the oligonucleotides on the nanoparticles; and

observing a detectable change.

- 26. The method of Claim 25 wherein the substrate has a plurality of types of nanoparticles attached to it in an array to allow for the detection of multiple portions of a single nucleic acid, the detection of multiple different nucleic acids, or both.
 - 27. A method of detecting nucleic acid having at least two portions comprising:

contacting a nucleic acid to be detected with a substrate having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to a first portion of the sequence of said nucleic acid, the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the substrate with said nucleic acid;

contacting said nucleic acid bound to the substrate with a first type of nanoparticles having one or more types of oligonucleotides attached thereto, at least one of the types of oligonucleotides having a sequence complementary to a second portion of the sequence of said nucleic acid, the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles with said nucleic acid;

contacting the first type of nanoparticles bound to the substrate with a second type of nanoparticles having oligonucleotides attached thereto, the oligonucleotides on the second type of nanoparticles having a sequence complementary to at least a portion of the sequence of one of the types of oligonucleotides on the first type of nanoparticles, the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the first and second types of nanoparticles; and

observing a detectable change.

- 28. The method of Claim 27 wherein the first type of nanoparticles has only one type of oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to the second portion of the sequence of said nucleic acid and to at least a portion of the sequence of the oligonucleotides on the second type of nanoparticles.
- 29. The method of Claim 28 further comprising contacting the second type of nanoparticles bound to the substrate with the first type of nanoparticles, the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the first and second types of nanoparticles.