

Continuity

Limit(គីឆិព)

ขีดจำกัดของฟังก์ชัน f(x) เมื่อ $oldsymbol{x}$ เข้าใกล้ค่า $oldsymbol{c}$ (แต่ไม่จำเป็นต้องเท่ากับ $oldsymbol{c}$ จริงๆ)

เขียนเป็นสัญลักษณ์ได้แบบนี้ $\displaystyle \lim_{x o c} f(x) = L$

วิธีหาLimit

แทนค่าโดยตรง ถ้าแทนค่าแล้วไม่มีปัญหาค่าหาค่าได้ตรง ๆ **แยกตัวประกอบ** ใช้เมื่อมีรูป $\frac{0}{0}$ แล้วแยกตัวประกอบเพื่อลดทอนเศษส่วน คู**ณด้วยตัวร่วมสังยุค** ใช้กับฟังก์ชันที่มีรากที่สอง $\frac{1}{0}$ หรือ $\frac{0}{\infty}$ โดยใช้อนุพันธ์

ประเภทLimit

One Sided Limit ลิมิตด้านเดียว

ลืมิตด้านซ้าย $\lim_{x \to a^-} f(x)$ คือ ค่าที่ f(x) เข้าใกล้เมื่อ ${m x}$ เข้าใกล้ ${m a}$ จากด้านซ้าย ${f a}$ มิตด้านขวา $\lim_{x \to a^+} f(x)$ คือ ค่าที่ f(x) เข้าใกล้เมื่อ ${m x}$ เข้าใกล้ ${m a}$ จากด้านขวา ถ้า $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$ แสดงว่า $\lim_{x \to a} f(x)$ มีอยู่จริง

Infinite limit ลิมิตอนันต์

 $\lim_{x \to a} f(x) = \infty$ หมายถึง เมื่อ x เข้าใกล้ a แล้ว f(x) <mark>มีค่าเพิ่มขึ้นหรือลดลงเรื่อย ๆ แบบไม่มีขีดจำกัด</mark>

limit at infinite ลิบิตที่อนันต์

 $\lim_{x o\infty}f(x)$ หมายถึง ค่าที่ f(x) เข้าใกล้เมื่อ $oldsymbol{x}$ เข้าใกล้ ∞

$M = \left(\frac{X_1 + X_2}{2}\right)$

J, + J₂

Contivity(ความต่อเนื่องของฟังก์ชัน)

ฟังก์ชัน f(x) จะต่อเนื่องที่ $\,x=a\,$ ก็ต่อเมื่อเงื่อนไขทั้งสามข้อต่อไปนี้เป็นจริง

- $oldsymbol{1} f(a)$ มีค่าอยู่
- 2 $\lim_{x o a} f(x)$ มีอยู่จริง
- $\lim_{x o a}f(x)=f(a)$

ถ้าฟังก์ชันไม่เป็นไปตามเงื่อนไขข้อใดข้อหนึ่ง จะเรียกว่าฟังก์ชันไม่ต่อเนื่อง (Discontinuous)

ประเภทของความไม่ต่อเนื่อง

กฏการหาลิมิตเบื้องต้น

1 กฎผลรวมและผลต่าง (Sum and Difference Rule)

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

2 กฎคูณ (Product Rule)

$$\lim_{x\to a} [f(x)\cdot g(x)] = \lim_{x\to a} f(x)\cdot \lim_{x\to a} g(x)$$

3 กฎหาร (Quotient Rule)

$$\lim_{x o a}rac{f(x)}{g(x)}=rac{\lim_{x o a}f(x)}{\lim_{x o a}g(x)}$$
 Tâlđướa $\lim_{x o a}g(x)
eq 0$

4 กฎคูณค่าสเกลาร์ (Constant Multiple Rule)

$$\lim_{x o c} [c \cdot f(x)] = c \cdot \lim_{x o c} f(x)$$
 (Quehavri $oldsymbol{C}$

5 กฎเลขชี้กำลัง (Power Rule)

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

เป็นเลขจำนวนจริง (หรือจำนวนเต็ม) ที่กำหนด n

กฏการหาลิมิตเบื้องต้น

1 ฟังก์ชันมีค่าอยู่ที่ x=a

หมายความว่า f(a) ต้องมีความหมายและนิยามได้ (ไม่เป็นนิยามที่เป็น ∞ หรือไม่ได้กำหนด)

2 ลิมิตของฟังก์ชันเมื่อ $oldsymbol{x}$ เข้าใกล้ $oldsymbol{a}$ มีอยู่

$$\lim_{x o a}f(x)$$

มีค่าแน่นอน (ทั้งลิมิตซ้ายและลิมิตขวาต้องมีค่าและเท่ากัน)

3 ค่าลิมิตเท่ากับค่าฟังก์ชันที่จุดนั้น

$$\lim f(x) = f(a)$$

ข้อข้างต้นเป็นจริง ฟังก์ชันจะต่อเนื่องที่จุด x=a

Conic Section

Straight Line (taunsv)

1.1 สมการเส้นตรงในระนาบ

สมการทั่วไป (General Form)

$$Ax + By + C = 0$$

โดยที่ A B C เป็นค่าคงที่ และ A กับ B ไม่สามารถเป็นศูนย์พร้อมกัน

สมการรูปตัดมุม (Slope-Intercept Form)

$$y = mx + b$$

โดยที่ m คือความชัน (slope) ของเส้นตรง b คือจุดตัดแกน y (y-intercept)

สมการจุด-ความชั้น (Point-Slope Form)

$$y - y_1 = m(x - x_1)$$

ใช้เมื่อต้องการสมการผ่านจุด (x_0,y_0) และมีความชัน m

1.2 ความชั้นและลักษณะของเส้นตรง

ความชัน (Slope)

คำนวณจากการเปลี่ยนแปลงของ y เมื่อ x เปลี่ยนไป

$$m=rac{\Delta y}{\Delta x}=rac{y_2-y_1}{x_2-x_1}$$

เส้นขนาน (Parallel Lines)

มีความชันเท่ากัน

$$m_1 = m_2$$

เส้นตั้งฉาก (Perpendicular Lines)

ความชันคูณกันแล้วได้ -1

$$m_1 \cdot m_2 = -1$$

1.3 ระยะห่างระหว่างจุดและเส้นตรง

ระยะห่างจากจุด (x_0,y_0) ถึงเส้นตรง Ax+By+C=0

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Conic Sections (รูปคอนิก)

Conic sections คือรูปทรงที่เกิดจากการตัดระนาบกับกระบอกสองเหลี่ยม ได้แก่ วงกลม, วงรี, พาราโบลา และไฮเปอร์โบลา

2.1สมการเส้นตรงในระนาบ

สมการมาตรฐาน

$$(x-h)^2 + (y-k)^2 = r^2$$

โดยที่ (h,k) คือจุดศูนย์กลาง และ r คือรัศมีของวงกลม

2.3 พาราโบลา (Parabola)

สมการมาตรฐาน (เปิดไปทางขวาหรือซ้าย)

$$(y-k)^2=4p(x-h)$$
 or $(y-k)^2=-4p(x-h)$

$$(y-k)^2 = -4p(x-h)$$

สมการมาตรฐาน (เปิดไปทางขึ้นหรือลง)

$$(x-h)^2 = 4p(y-k)$$

โดยที่ (h,k)คือจุดยอด (vertex) และ p คือระยะจากจุดยอดถึงโฟกัส

คุณสมบัติ

มีเส้นตรงแนวแกนสมมาตร (axis of symmetry) และมีโฟกัส (focus) กับไดเร็กทริกซ์ (directrix)

X1+ X2,

2.2 วงรี (Ellipse)

สมการมาตรฐาน (แนวแกนหลักอยู่ตามแกน x)

$$rac{(x-h)^2}{a^2} + rac{(y-k)^2}{b^2} = 1, \quad a > b > 0$$

คุณสมบัติ

มีจดโฟกัส 2 จด ซึ่งอย่บนแกนที่มีความยาว 2a

2.4 ไฮเปอร์โบลา (Hyperbola)

สมการมาตรฐาน (แนวแกนหลักอยู่ตามแกน x)

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

สมการมาตรฐาน (แนวแกนหลักอยู่ตามแกน y)

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

โดยที่ (h,k) คือจุดศูนย์กลาง, a คือระยะจากจุดศูนย์กลางถึงจุดยอด บนแกนหลัก และ b เกี่ยวข้องกับระยะของ asymptotes (เส้นคาง)

มีสองกิ่ง (branches) และมี asymptotes ที่เส้นตรงผ่านจุดศูนย์กลางซึ่งเป็น แนวทางที่กิ่งของไฮเปอร์โบลาเข้าใกล้เมื่อ x หรือ y มีค่าเข้าใกล้อินฟินิตี้