Reg	Name:	
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018	
	Course Code: CS202	
	Course Name: COMPUTER ORGANIZATION AND ARCHITECTURE (CS, IT) Duration: 3 Ho	urs
Max	x. Marks: 100	J V
	PART A Answer all questions. Each carries 3 marks.	1
1	Write the three-address, two-address and one-address representations of the	3
	operation below with relevant assumptions:	
	$C \leftarrow [A] + [B]$	
2	What is the use of linkage register in subroutine invocation?	3
3	Why is non-restoring division faster than restoring division?	3
4	Design and draw a 3X2 array multiplier.	3 .
	PART B Answer any two questions. Each carries 9 marks.	
5	Illustrate various addressing modes with proper examples. Which is the default	9
	addressing mode selected by assemblers and compilers and why?	
6	Give the flow chart for Booth's Algorithm. Illustrate using an example.	9
7 ((a) Assuming that stack grows towards lower address range write assembly code for	r 4.5
	the following (Without using PUSH and POP):	
	(i) Pushing elements stored at ITEM1, ITEM2 onto stack	
	(ii) Popping an element onto address ITEM	
	(iii) Copying value of top of stack to address TOP	
7 (b) Compare and contrast single bus and multiple bus organisation of CPU.	4.5
1	PART C Answer all questions. Each carries 3 marks.	
3	Compare the two main modes of DMA transfer.	3
*	Explain any two interrupt priority schemes.	3
0	What is MFC signal? How is it related to Memory Access Time?	3
1	Which design feature of SRAM cells helps in value retention without refresh?	

В		S2045 Pages: 2	
		PART D Answer any two questions. Each carries 9 marks.	
12)
13		With the help of a diagram examine the internal organisation of bit cells in a	9
		memory chip.	4.5
14	(a) (b)	Explain the architecture of USB with help of a diagram.	4.5
		PART E	
		Answer any four questions. Each carries 10 marks.	
15		Give a simple design for generating status bits for a 8-bit ALU.	10
16		Draw a labelled block diagram of a processor unit with seven registers R1 to R7,a	10
		status register, ALU with 3-selection variables and C _{in} , and shifter with 3 selection variables.	l la
17		With the help of a flowchart for sign-magnitude addition/subtraction, explain the	10
		steps involved in developing a hardwired control unit.	
18		Using a block diagram analyse the design of a microprogram control for a processor unit.	
19		What is a control word? With the help of proper illustrations and assumptions show how a designer would compose a control word for the processor unit.	; 10
20		With the help of a diagram establish the functioning of microprogram sequence	r 10

S2045

Pages: 2

in a microprogram controlled processor.

20

Par t	Qn.No	CS202 COMPUTER ORGANISATION AND ARCHITECTURE	Marks
A	Answer ALL Q		
	1	Write the three-address, two-address and one-address representations of the operation below with relevant assumptions: $C \leftarrow [A] + [B]$	3
	7	Ans. Three-address	
		ADD A,B,C	
		Two-Address	
		ADD A, B	
F		MOVE B,C	
		One-Address (Assuming Accumulator Register Is Implied Operand)	
		LOAD A	
		ADD B	
		STORE C	
	2	What is the use of linkage register in subroutine invocation?	
		Ans. To save return address before transferring control and to restore PC	3
	3	Why is non-restoring division faster than restoring division?	3

	Ans.If D is divisor, instead of doing D-D/2(2 steps) it does only +D/2(single step) Explanation—3 marks	
4	Design and draw a 3x2 array multiplier Ans.	3
	multiplicand multiplicand multiplicand multiplicand and and and and and and fructure of Each Cell	
	Bit of Incoming Partial Product (arry out FFD) (anying partial Product Conduct Conduc	

20 = offset

1020

Operand

	Relative mode — The effective address is determined by the Index mode using the program counter in place of the general-purpose register R ₁ . X(PC) can be used to address a memory location that is X bytes away from the location presently pointed to by the program counter. Explanation with figure—2 marks
	Program counter relative addressing is used as default in compilers and assemblers as absolute address values to be stored by them are minimalexplanation—2 marks
6	ExampleUsing Booth's Algorithm to multiply 3 by 4.
	Example Osing Booth Strigotham 1
	For each step 1.5 marks. (4*1.5) A 0 0 1 1 3
	X x0100 4
	Y 1 -1 0 0 recoded multiplier
	Shift Only 0000
	Shift Only 00000
	4.11 4 1.1.1 0.1
	Add-A +11 01
	11 0100 Shift 11 10100
	11 0100
	11 0100 Shift 11 10100 Add A +00 11
	11 0100 Shift 11 10100 Add A +00 11
	11 0100 Shift 11 10100 Add A +00 11
	11 0100 Shift 11 10100 Add A +00 11
	11 0100 Shift 11 10100 Add A +00 11

	Explanation with diagram—3marks	
10	What is MFC signal? How is it related to Memory Access 3 Time?	
	Ans. MFC—Memory Function Complete—1 mark Time between READ/WRITE signal and MFC is memory access time—2 marks	
11	Which design feature of SRAM cells helps in value retention without refresh?	3
	Ans. Invertor elements connected back to back—explanation—3 marks	
12	mustrate with an example occi-	9
	selection. Ans.	
	Targets examine ID	
	DB2	
	DBS	
	DB6 BSY	
	<u>SEL</u>	
	Free Arbitration Selection	
	Explanation of a sample use case DB6 wants to communicate with DB5 with timing diagram9 marks	
3	With the help of a diagram examine the internal organisation of bit cells in a memory chip.	9
	Ans.	
8 14		1
	에 가장 점심에도 맛있었습니다. [1] 사람들이 가장 하는데 나는데	

Flowchart—2.5 marks Explanation—2.5 marks

Steps involved in design of any one approach of hardwired Control logic—5 marks

18

Using a block diagram analyse the design of a microprogram control for a processor unit.

Ans. Explanation of components—5 marks Block-diagram—5 marks

10

20

With the help of a diagram establish the requirement of microprogram sequencer in a microprogram controlled processor.

10

Ans. Microprogram sequencer—used to generate address of microinstruction to be taken from control memory

Explanation of block diagram—5 marks

Block diagram—5 marks

