RECURSION_

Agenda:

- -> Recursion (Basics)
- -> problems (fact, fibo, power, sum)

Why recursion?

→ Decision Trees

→ Dynamic programming

→ Merge sort / Owick sort

→ Graphs

→ Backtracking

Disclaimer .

- i) It might take some time to digest this topic.
 ii) A let of dry runs are requised.

* A function is calling inside itself.

Observations:

- i) Smaller dolls (sub problem)
 ii) Similar dolls (same problem)
 iii) Tinniest doll (end case stop) base condition / stop cond")

Recursion:

- i) Solving problem using smeller instance of same problem.
- $f(n) \rightarrow f(n-1) \rightarrow f(n-2)$ base condition

Problem: Find sum of first N-natural numbers

- > Iteration > Recursion
- =) Sum (5) =) 1+2+3+4+5Sum(4) +5

* Steps of recursion:

- i) Assumption: Decide what you want from function.
- ii) Main logic: Solving assumption using smeller instance.

$$Sum(5) = 5 + Sum(4) = 10$$

 $Sum(4) = 4 + Sum(3) = 6$
 $Sum(3) = 3 + Sum(2) = 2 + Sum(1) = 3$
 $Sum(1) = 1$
 $Sum(1) = 1$
 $Sum(1) = 1$

iii) Base condition: Once this base condition is hit we need not go further into recursive cells.

* DTC:

* Sum of first N- natural numbers: $\frac{1}{2}$ add $\frac{1}{2}$ $\frac{1}{2}$ Recursive bee; add (5) add(5) add(4) add(3) add(2) add(2) add(2) add(1) add(1)(1) add (5) = n + add (n-1) × Recurence relation # def add (5):
Base condition

* Factorial

$$fact(0) = 1$$

$fact(1) = 1$

$fact(3) = 3 \times 2 \times 1 = 6$

$fact(5) = 5 \times 4 \times 3 \times 2 \times 1 = 120$

$fact(r) = 5 \times fact(4)$

$fact(n) = n \times fact(n-1)$

Grecurrence relation

$fact(3) = 5 \times fact(4)$

$fact(4) = 4 \times fact(3)$

$fact(3) = 3 \times fact(2)$

$fact(1) = 2 \times fact(1)$

$fact(1) = 1$

Base condition

Recursive Tree

fact(s)

fact(4)

fact(2)

fact(2)

Base andth

HW: Draw memory stack

def factorial (n):

Base condition

if n == 1 or n == 0:

return 1

return nx factorial (n-1)

* fibonacci Series:

$$N = 0$$
 1 2 3 4 5 6 7 fb $(N) = 0$ 1 1 2 3 5 8 13

* formule:

$$fibo(n) = fibo(n-1) + fibo(n-2)$$

if
$$n == 0$$
 or $n == 1$:

return n

Recursive Tree:

1 fibo (3)

1 fibo (2)

A fibo (1)

A fibo (1)

A fibo (2)

A fibo (2)

A fibo (1)

A fibo (2)

A fibo (2)

A fibo (3)

A fibo (1)

A fibo (2)

A fibo (2)

A fibo (3)

.....

$$power(2,3) = 2 * power(2,2)$$
 $power(2,2) = 2 * power(2,1)$
 $power(2,1) = 2 * power(2,0)$
 $power(2,0) = 1$

So Base Condition

power
$$(q,n) = a \times power(a,n-1)$$

power
$$(2,3)$$
 = 2×2^2 power $(2,2)$
power $(2,2)$ = 2×2^2 power $(2,1)$
power $(2,1)$ = 2×2^2 power $(2,0)$
 $(3,1)$

$$A$$
 power $(2,1)$ = 2
power $(2,2)$ = 2 × 2 = 4
power $(2,3)$ = 2 × 4 = 8