1

1.

AMENDMENTS TO THE CLAIMS

(Original) A gas injection apparatus, comprising:

This listing of claims replaces all prior versions, and listings, of claims in the application:

2	a tubular member defining an axial bore therethrough, the axial bore adapted to deliver a		
3	gas into a wellbore proximate a perforation interval via an orifice; and		
4	a gas lift valve attached to the tubular member, the gas lift valve adapted to regulate		
5	communication between the axial bore of the tubular member and the wellbore via the orifice.		
1	2. (Currently Amended) The gas injection apparatus of claim 1, <u>further comprising</u>		
2	a sealing mechanism to seal the wellbore above the perforation interval,		
3	wherein the tubular member is adapted to engage [[a]] the sealing mechanism, the sealing		
4	4 mechanism adapted to seal the wellbore above the perforation interval.		
1	3. (Currently Amended) The gas injection apparatus of claim [[1]] 2, wherein the		
2	sealing mechanism is a dual-port packer.		
1	4. (Original) The gas injection apparatus of claim 1, wherein the tubular member is		
2	adapted to inject a gas proximate the perforation interval of a gas-bearing well.		
1	5. (Original) The gas injection apparatus of claim 1, wherein the tubular member is		
2	adapted to inject a gas proximate the perforation interval of an oil-bearing well.		
1	6. (Original) The gas injection apparatus of claim 1, further comprising a retrieving		
2	element attached to the tubular member.		

1	7. (Currently Amended) A gas lift system for use in producing a well having a				
2	perforation interval, the system comprising:				
3	a sealing mechanism adapted to seal the well at a location above the perforation interval,				
4	the sealing mechanism having two ports therein;				
5	a tubular string adapted to produce the well fluid from the perforation interval via one				
6	port in the sealing mechanism; and				
7	an injection tool adapted to deliver inject gas into the well proximate the perforation				
8	interval via the other port in the sealing mechanism, the injection tool having one or more plural				
9	gas lift valves for injecting a delivering the injected gas into the well [[below]] at a location				
10	[[above]] <u>below</u> the sealing mechanism.				
1	8. (Original) The gas lift system of claim 7, wherein the tubular string comprises				
2	one or more gas lift valves for injecting a gas into the well at a location above the sealing				
3	mechanism.				
1	9. (Original) The gas lift system of claim 7, wherein the sealing mechanism is a				
· 2	dual-port packer.				
1	10. (Original) The gas lift system of claim 7, wherein the well is a gas-bearing well.				
1	11. (Original) The gas lift system of claim 7, wherein the well is an oil-bearing well.				
1	12. (Original) A method for producing a well having a perforation interval proximate				
2	a formation, comprising:				
3	3 injecting gas into the well proximate the perforation interval.				

1

13.

2	having a perforation interval proximate a gas-bearing formation, wherein hydrostatic pressure of			
3	the accumulated liquid exceeds pressure of produced gas, the method comprising:			
4	sealing the formation in the well at a location above the perforation interval;			
5	providing a tubing string for establishing communication between surface and a point			
6	below the sealing location;			
7	providing a gas injection tool having a gas lift valve for establishing communication			
. 8	between a point above the sealing location and the perforation interval below the sealing			
9	location;			
10	delivering gas into the well proximate the perforation interval via the gas injection tool to			
11	decrease the hydrostatic pressure of the accumulated liquid to a level			
12	sufficient to permit gas to be produced from the formation; and			
13	removing the accumulated liquid and gas from the well via the tubing string.			
1	14. (Currently Amended) A gas lift system for use in producing a well having			
2	perforations proximate a gas-bearing formation, the system comprising:			
· 3	a dual-port packer adapted to seal the well at a location above the perforations, the			
4	sealing mechanism having two ports therein;			
5	a tubing string adapted to deliver gas from the perforations proximate the formation via			
6	one port in the packer to a surface location, wherein the tubing string has a valve that is actuated			
7	in response to gas pressure in a well annulus outside the tubing string exceeding a predetermined			
8	<u>level</u> ; and			
9	an injection tool adapted to deliver inject gas from a surface location into the well			
10	proximate the perforations via the other port in the packer, the injection tool having a gas lift			
11	valve for injecting delivering the injected gas into the well [[below]] at a location [[above]]			
12	below the sealing mechanism.			
1	15. (New) The gas injection apparatus of claim 1, wherein the gas lift valve is			
2	arranged on a side of the tubular member to enable injected gas to pass in a radial direction of the			
3	tubular member into the wellbore through the orifice.			

(Currently Amended) A method for unloading an accumulated liquid from a well

l	16.	(New) The gas injection apparatus of claim 1, further comprising at least another	
2	gas lift valve	attached to the tubular member to regulate communication between the axial bore	
3	of the tubular member and the wellbore through another orifice of the tubular member,		
4	where	in the gas lift valves are actuated in response to different gas pressures.	
1	17.	(New) The gas injection apparatus of claim 16, wherein a first of the gas lift	
2		actuated in response to the delivered gas reaching a first pressure, and wherein a	
3	second of the gas lift valves is subsequently actuated in response to the delivered gas reaching a		
4	second, different pressure.		
•	,		
1	18.	(New) The gas injection apparatus of claim 17, wherein the first gas lift valve is	
2	closed once the delivered gas reaches the second pressure.		
	٠.		
1	19.	(New) The gas lift system of claim 7, wherein the plural gas lift valves are	
2	actuatable at different pressures.		
•			
1	20.	(New) The gas lift system of claim 19, wherein the plural gas lift valves are	
2	configured to sequentially actuate in response to the injected gas reaching different pressures.		
1	21.	(New) The method of claim 12, wherein injecting the gas comprises injecting the	
2		njecting tool having plural gas lift valves that actuate at different gas pressures.	
۷	gus using an n	ijeeting toor naving plurar gas int varves that actuate at different gas pressures.	
1	22.	(New) The method of claim 21, further comprising:	
2	actuati	ng a first one of the gas lift valves when the injected gas reaches a first pressure;	
3	and		
4	actuati	ng a second one of the gas lift valves when the injected gas reaches a second,	
5	greater pressure.		

Appln. Serial No. 10/711,820 Amendment Dated December 8, 2006 Reply to Office Action Mailed September 13, 2006

1 23. (New) The method of claim 22, further comprising closing the first gas lift valve

when the injected gas reaches the second pressure.