1706.10295 - Noisy Networks for Exploration

Noisy Networks for Exploration

Meire Fortunato* Mohammad Gheshlaghi Azar* Bilal Piot *
Jacob Menick Ian Osband Alex Graves Vlad Mnih
Remi Munos Demis Hassabis Olivier Pietquin Charles Blundell
Shane Legg

DeepMind
{meirefortunato,mazar,piot,
jmenick,iosband,gravesa,vmnih,
munos,dhcontact,pietquin,cblundell,
legg}@google.com

- Yunqiu Xu
- DeepMind's NoisyNet
 - Add parameytric noise to weights → introduce stochasticity to policy → efficient exploration
 - Has been integrated into Rainbow
- Further readings, can be seen in my notes
 - o 1703.09327 DART- Noise Injection for Robust Imitation Learning
 - Add noise to off-policy imitation learning
 - o 1706.01905 Parameter Space Noise for Exploration
 - Very similar work by OpenAI
 - 1710.02298 Rainbow: Combining Improvements in Deep Reinforcement Learning
 - A combination of different DQN including NoisyNet

1. Introduction

- Challenges: how to explore (introduce new behabiors) efficiently
 - \circ Dithering pertubations such as ϵ -greedy or entropy regularization

- Random pertubations of agent's policy, e.g. trade-off exploration and exploitation with epsilon
- In every timestep, the noise is decorrelated
- Unefficient
- Current methods' limitation:
 - Small state-action spaces
 - Linear function approximations
 - Not easy to be applied with more complicated system
- o A more structured method : add intrinsic motivation term to reward
 - Explicitly rewards novel discoveries
 - Limitation:
 - Separate the mechanism of generalisation from exploration
 - Need to balance the importance between additional term and reward manually
 - Not data efficient
- Our work: NoisyNet
 - Learn perturbations of weights to drive exploration
 - Key insight: a single change on weight can introduce effective changes in policy over multiple timesteps (correlated noise)
 - High level: introduce a randomised network for exploration
 - o Requires only one extra parameter per weight
 - Can apply to PG methods such as A3C
- Similar work by OpenAI: 1706.01905 Parameter Space Noise for Exploration
 - Add constant Gaussian noise to parameters
 - Our difference:
 - Adapt the noise injection with time
 - Not restricted to Gaussian noise distributions
 - Can be adapted to any DRL such as DQN and A3C

2. NoisyNets for RL

• What is NoisyNets:

- NN whose weights and biases are pertubed by a parametric function of noise
- These parameters are adapted with GD
- Noisy layer $y = f_{ heta}(x)$
 - \circ Take $oldsymbol{x}$ as input, then output noised data $oldsymbol{y}$
 - \circ Here x, y means weights or biases of general NN
 - \circ Noisy parameters $heta = \mu + \sum \odot \epsilon$
 - $\zeta = (\mu, \Sigma)$: set of learnable parameter vectors
 - \bullet : zero-mean noise with fixed statistics (e.g. Gaussian distribution)
- So for a general NN layer y = wx + b, the noise version can be:

$$y = (\mu^w + \sigma^w \odot \epsilon^w)x + \mu^b + \sigma^b \odot \epsilon^b$$

where $oldsymbol{w}, oldsymbol{b}$ are processed by noisy layer

- Combine NoisyNets with DRL
 - NoisyNet agent: sample a new set of parameters after each step of optimisation
 - Between optimisation steps, this agent acts according to a fixed set of parameters
 - 每回合选择不同的参数集合, 但回合中保持参数不变
- NoisyNet-DQN:
 - \circ No ϵ -greedy, the policy optimises value function greedily
 - FC layers of value function are parameterised as a noise network → processed per replay step
 - Factorised Gaussian noise
 - Action-value function $Q(x, a, \sigma; \zeta)$
 - Noisy-DQN loss:

$$\bar{L}(\zeta) = \mathbb{E}\left[\mathbb{E}_{(x,a,r,y)\sim D}[r + \gamma \max_{b\in A} Q(y,b,\varepsilon';\zeta^{-}) - Q(x,a,\varepsilon;\zeta)]^{2}\right].$$
 (11)

- NoisyNet-A3C: similar to DQN
 - o Entropy bonus of the policy loss is removed
 - FC layers of value function are parameterised as a noise network → processed per replay step

- o Independent Gaussian noise
- As A3C uses n-step returns, optimisatin occurs every n steps, after each optimisation, the parameters of policy network are resampled

$$\hat{Q}_i = \sum_{j=i}^k \gamma^{j-i} r_{t+j} + \gamma^{k-i} V(x_{t+k}; \zeta, \varepsilon_i).$$
(12)

3. Experiment

- Task: 57 Atari games
- ullet Comparison: DRL with originam exploration methods ($oldsymbol{\epsilon}$ -greedy and entropy bonus)
- Evaluation:
 - o Absolute performance: human normalised score

$$100 imes rac{Score_{Agent} - Score_{Random}}{Score_{Human} - Score_{Random}}$$

 Relative performance of NoisyNet agents to the respective baseline agent without noisy networks

$$100 imes rac{Score_{NoisyNet} - Score_{Baseline}}{max(Score_{Human}, Score_{Baseline}) - Score_{Random}}$$

(a) Improvement in percentage of NoisyNet-DQN over DQN [21]

Figure 1: Comparison of NoisyNet agent versus the baseline according to Eq. (14). The maximum score is truncated at 250%.

	Baseline		NoisyNet	
	Mean	Median	Mean	Median
DQN	213	47	1210	89
A3C	418	93	1112	121
Dueling	2102	126	1908	154

Table 1: Comparison between the baseline DQN [21], A3C [20] and Dueling [36] and their NoisyNet version in terms of median and mean human-normalised scores defined in Eq. (13).

Figure 2: Training curves for selected Atari games comparing A3C and NoisyNet-A3C. Please refer to Fig. 3 in the Appendix for additional games.

4. Summary

- NoisyNet is a general method for exploration, which is easy to understand and implement
- Can be applied to DQN (off-policy) and A3C (on-policy)
- Surpass ϵ -greedy and entropy bonus
- ullet Have been integrated with other methods o Rainbow
- Further reading: make comparison with OpenAI's similar work