Fundamental Algorithms Lecture #6

Cluj-Napoca November, 06, 2019

Agenda

Trees

- Basic operations
 - walk, search, insert, delete- review
 - min, max, pred, succ
- Special types
 - Balanced trees
 - PBT (seminar #3)
 - AVL
 - Red-Black (next lecture)
 - Augmented Trees
 - Order-statistic trees
 - Tree/lists

BST – walk, search, insert

Walk

- pre/in/post-orders O(n) if O(1) outside recursive calls
- else apply master theorem

Search

- **O(n)** for BT
- O(h) for BST, h ∈ [Ign, n]
- O(lgn) for balanced BST

Insert

- Search for it and reach a leaf/1-child node (parent for the new node)
- Insert as **leaf** always, as child of the given leaf/1-child 11/6/2004e

BST - delete

- Remove the node
- Cases:
 - Leaf remove it
 - 1-successor node link parent with the only child
 - 2-successors nodes!
 - Chain the tree (fast, unbalances the tree)
 - Replace the node with an appropriate one (content of predecessor/successor), and remove (the location of) that one (same time, better balance)

BST - delete - eval

- Find node to delete O(h)
- Find successor/predecessor O(h)
- BUT:
 - if finding node to delete takes O(h) => the node is a leaf => case 1 => no succ needed
 - if node to delete not a leaf, succ searched from that place down => find node+find succ=O(h)
- Delete takes only O(h)

Find-min/max O(h)

 Root's leftmost/rightmost leaf in the tree rooted at x; //x=root; find tree min(x) while left[x]<>nil do x < -left[x]return x Q: what if left[x]=nil? //x=root; find tree max(x) while right[x]<>nil x<-right[x]

return x

Find-pred/succ

- pred = max in the left subtree =>
 find_tree_max(left[x])
- succ=min in the right subtree
 find_tree_min(right[x])
- Any other situation possible?
 - What if the node has no left/right subtree?
 Possible?
 - It has no pred/succ?
 - Not necessarily: counterexample!

Find-pred/succ- counterexample

- 6 has no right child.
- It means it has no successor?
 - False! 7 is its successor!
- 5 has no left/right child.
- It means it has no predecessor/succ?
 - False! 4 is its predecessor/6 its pred!
- How can we find pred/succ for such nodes?
- (identify the property such nodes posses)
 - succ=lowest level ancestor whose left child is an ancestor as well pred=lowest level ancestor whose right child is an ancestor as well Determine (for succ) a triangle:
 - node-upwards while on a right child link
 - the first time the node is a left child= it is the succ node

Find-succ-code

find_tree_successor(x)

//returns x's successor

```
if right[x] <> nil //regular case; the succ belongs to the same subtree
    then return find_tree_min(right[x])
```

y < -p[x]

//y keeps a pointer 1 level above x

while y<>nil and x=right[y]

// as long as we haven't reached the root and not changed the direction

// along the upwards path, go upwards 1 level

$$\frac{do}{y < -p[y]}$$

return y

Note: 2's successor is 4 (in find_tree_min)

6's successor is 7 (take **while twice** and change direction)

5's successor is 6 (0 while, exit while without going upwards at all)

11/6/2019

Find-succ O(h)

- Cases:
 - find_tree_min(right[x]), worst case: x=root, succ lowest leaf => O(h)
 - x has no right child; worst case: x=leaf on the lowest level, direction changes at the root level=> succ root of the tree => O(h)
- find_tree_successor O(h)
- Find the predecessor is symmetric (change right with left and min with max) -

Homework

BST-eval

- Theorem: All operations in a BST (except traversal) take O(h)
- Adv: faster than on lists!
- Limitation: h? Worst case h=n (why?).
 Therefore, no improvement at all!
- Enhancement?
 - Balanced trees!

Balanced trees

- Augmented BST to keep the height under control
- No matter the balance type, the height is proportional to Ign (c·Ign, with c≥1, but c a SMALL CONSTANT)
- The best possible balanced trees PBT (perfect balanced trees) – seminar #3
- many other possibilities (for balance)

Balanced trees - PBT

- Perfect Balanced Trees
- Balance refers to nb of nodes, not to heights
- $b=n_R-n_L \in \{-1, 0, 1\}$
- h=lgn
- Insert O(n): as in regular BST O(h)=O(lgn) requires n rotations O(n)
- Delete O(n): as from a regular BST O(h)=O(lgn) requires n rotations O(n)
- Best h property; difficult (costly) to maintain

Balanced trees - AVL

- On height (AVL=Adelson-Velskii, Landis)
- $b=h_R-h_L \in \{-1, 0, 1\}$
- PBTs are AVLs
- Most unbalanced out of AVL=Fibonacci trees (i.e. nb of left/right nodes specified by fib. numb.)

$$F_n = F_{n-1} + F_{n-2} + 1$$
 (b=-1 in every node)

- Insert O(h): as in regular BST O(h)=O(lgn)
 Blackboard justification requires at most 1 rotation O(1)
- Delete O(h+lgn): as from a regular BST O(h) =O(lgn) requires at most lgn rotation O(lgn)
- h ≤ 1.45lgn=> Good height property;
- easy to maintain for insertion; deletion might make
 many changes in the structure

AVL – rotations

- Preserve the search property
- Ensure the balance property
- Self-balancing:
 - Single rotation (blackboard)
 - Double rotation (blackboard)
 - Both take O(1)!
- After an insertion, at MOST 1 rotation may occur. Discussion.
- No other situation may occur. Why? Justification.
- After a rotation, the NEXT insertion along the same branch would NOT require a self-balancing (rotation)
- The same rotations are used for Red-Black trees!

BST-balanced trees relationship

Augmented DS

- Augmented = additional property and/or behavior to help (i.e. speed up) various tasks preserving ALL existing properties and behavior with (at least) the SAME performance
- Balanced BST are augmented trees (objective, keep the height under control)
- Current objective = better (=faster) select operations on BST
- Order Statistic (OS) Tree
- Augmentation= store at the node level as additional information the dimension of the tree (i.e. the number of nodes in the tree rooted by the given node)
- dim[x]=dim[left[x]]+dim[right[x]]+1
- How is calculated? (if the information is not already stored?) postorder.

Augmented DS – contd.

- How to maintain this information for the basic tasks (search, insert, delete, traversal, update)?
- What operations are improved?
- Other tasks: Selection and Ranking
 - Selection (ith selection) = find the node which is the ith one in inorder traversal
 - Selection
 - in arrays ordered? Not ordered?
 - in lists ordered.
 - in trees
 - Can we do better for BST?

Selection

- Returns the ith smallest key in the tree
 - rank given (i)
 - key returned (pointer to the ith smallest key in the tree)
- Input: rank (i.e. index in inorder),
- Output: node at the given rank
- Augmentation: dimension =
- =nb of nodes rooted by the node.
- dim[x]= dim[left[x]]+dim[right[x]]+1
- dim[nil]=0

OS Select O(h)

Initial call with root(T) and Returns pointer to the ith key

Resembles Hoare's selection on unordered arrays (partition is missing

Resembles Hoare's selection on unordered arrays (partition is missing, as we have a BST; so, just the recursive call)

OS_Select(x, i)

```
r < -dim[left[x]] + 1//number of nodes on the left + root
   i=r
                           //found it
  then
          return x
                           //ith smallest is on the left
          if i<r
  else
                then
           return tree select (left[x],i)
                           //ith smallest is on the right
                else
           return tree select(right[x],i-r)
 11/6/2019
```


Ranking

- Reverse problem:
 - key given
 - rank returned
- Input:
 - given an existing key from the tree (that is, a pointer to the node containing that key)
- Output:
 - Return its rank in the tree (i.e. its position in the inorder walk)
 - Rank = nb of keys smaller than the checked key in the tree. Approach: count them all (all before = all to left)

Ranking – contd.

Case #1 node is a right child of its parent (Ex: rank Key2)

rank(Key2) = dim(RL) + 1 + dim(L) + 1

While going upwards in the tree, evaluate what type of child the current node is:

-if a right child (case #1)

Count the nb of nodes in any subtree to the left of the branch starting from the current node (x) up to the root (T)

Ranking – contd.

Case #2 node is a left child of its parent (Ex: rank Key1)

rank(Key1) = dim(LL) + 1

While going upwards in the tree, evaluate what type of the child the current node is:

-if a left child (case #2)

Count the nb of nodes in any subtree to the left of the branch starting from the current node (x) up to the root (T)

OS Rank O(h)

```
OS Rank (T, x)
r<-dim[left[x]]+1
\Lambda < -X
while y<>root[T]
do
 if y=right[p[y]]
 then
                     //case #1
    r < -r + dim[left[p[y]]] + 1
 y<-p[y] //case #2
return r
```


Augmented trees (by dimension)

- Evaluation (performance for select and rank)
- Worst case O(h)
- For balanced trees h= lgn =>O(lgn)
- OS trees are Red-Black Trees (RBT check lecture #7)
- What happens (what changes in the OStree, besides the regular info/tasks specific to RBT) when updates occur
 - Insert? Discussion/Analysis
- Delete? Discussion/Analysis

Augmented trees (type 2)

- Requirements:
 - Regular operations are performed as (same performance also) in BST (walk (O(n)), search, ins, del (O(h)))
 - Several other operations are enhanced (i.e. performed faster)
 - Succ
 - Pred
 - Min
 - Max
 - All required to be performed in O(1)!!!
 - BUT NONE of the before-defined operations should degrade their performance

Augmented trees – contd.

- Info in a node:
 - Usual info:
 - key
 - left pointer
 - right pointer
 - parent pointer
 - Supplementary info (see picture on the blackboard):
 - succ pointer
 - pred pointer (together ensure walking through the list)
 - pp ensures min/max oper. (in regular BST, succ/pred calculated either based on min/max or pp which is determined at the execution time)

Augmented trees – contd.

- The structure acts BOTH as a BST and DLL!!
 (check the blackboard for an example)
- Regular operations are:
 - done like in any other BST
 - in addition, need to make some updates
- They (the additional updates) refer to:
 - making the appropriate links within the DLL (set/update the pred and succ pointers)
 - link the double pointer (set/update the pp pointer)

Augmented trees - Insert

 Regular insert operation in a BST (x inserted) + if x=right[p[x]] //node inserted = right child then //case #1pp[x] < -succ[p[x]]dl list ins after(p[x],x) else //case #2; node inserted = left child pp[x]<-pred[p[x]] dl list ins after(pp[x],x)

Augmented trees - Delete

```
(z = node requested to be removed; it's content is replaced by y's content
y=node actually removed = at most 1 child node;
x = its only child/if any, might be nil;
z=y if z has at most one child)
• Apply regular delete operation in a BST + code below
if right[y]=nil
```


Augmented trees – Min

 min (based on succ and pp as opposed to regular BST where succ is calculated based on min or determined pp)

```
if x=left[p[x]]
  then
  return succ[pp[x]]]
//on the leftmost branch, HAS TO BE pp[x]=nil!!!
  else
  return succ[p[x]]
```


Augmented trees – Max

 max (based on *pred* and pp as opposed to regular BST where *pred* is calculated based on *max* or determined *pp*)

```
if x=left[p[x]]
then
    return pred[p[x]]
else
    return pred[pp[x]]

//on the rightmost branch, HAS TO BE pp[x]=nil and pred[nil[T]] = last node in inorder = last node in the list
```


Augmented trees – contd.

- Particular (initial) cases discussion on the blackboard!
- First insert (in the empty tree)

```
Tree ins(T,x)
if x = root[T]
             //the node just inserted is the root = tree is empty
      p[x] < -nil[T]
      pp[x] < -nil[T]
      dl list ins after(pp[x],x)
            //the regular case described earlier (needs another if-then-else;
             //here only left case)
      pp[x]<-pred[p[x]]
      dl list ins after(pp[x],x)
```

Homework: updates for delete!