杭州电子科技大学信息工程学院学生考试卷(A)卷

课程名称	高等数学 A2	考试日期	201	9年6月	日	成 绩	
考生姓名		任课教师姓	名				
学号(8位)		班级			专业	<u> </u>	
考试形式: 闭卷			•				

一、填空题(每小题3分,共30分)

- 1. 空间两点(1,1,1)、(1,2,3)间的距离为
- 2. 求二元函数的极限, $\lim_{(x,y)\to(2,1)} \frac{x+y}{xy} = \underline{\hspace{1cm}}$.
- 3. 设 $z = x \sin y$,求二阶混合偏导数 $\frac{\partial^2 z}{\partial x \partial y} =$ _______.
- $\int_{0}^{\infty} \frac{1}{2^n} =$ _______.
- 7. 设封闭曲线 $L: x^2 + y^2 = 1$,则在L上对弧长的曲线积分 $\oint ds =$ ______.
- 8. 设函数 f(x,y) 具有连续偏导数, 试写出其全微分公式 df(x,y) =
- 9. 设空间闭区域 Ω 是由分片光滑的闭曲面 Σ 围成,函数 P(x,y,z) , Q(x,y,z) , R(x,y,z) 在上具有一阶连续偏 导数,则有高斯公式:

- 二、单项选择题(每题3分,共18分)

题号	1	2	3	4	5	6
答案						

1. 空间解析几何中,下列哪一个方程表示一张平面(

(A)
$$x+y=0$$
 (B) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (C) $x^2 + y^2 + z^2 = 1$ (D) $z = x^2 + y^2$

- **2.** 计算三重积分的值, $\iiint dv = ($) (其中 $\Omega: x^2 + y^2 + z^2 \le 1$).
- (A) π (B) 2π (C) $\frac{2\pi}{3}$ (D) $\frac{4\pi}{3}$

3. 以下哪个级数是傅里叶级数().

(A)
$$a + aq + aq^2 + ... + aq^{n-1} + ...$$
 (B) $1 + x + \frac{x^2}{2!} + ... + \frac{x^{n-1}}{(n-1)!} + ...$

(C)
$$x - \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$
 (D) 以上都不是

4. 设 f(x,y) 在点 (x_0,y_0) 的某邻域内具有二阶连续偏导数,且点 (x_0,y_0) 为 f(x,y) 的驻点,记

$$A = f_{xx}(x_0, y_0), \quad B = f_{xy}(x_0, y_0), \quad C = f_{yy}(x_0, y_0)$$

下面判断正确的是().

- (A) 当 $AC B^2 > 0$,且 A > 0 时,则 $f(x_0, y_0)$ 是极大值
- (B) 当 $AC B^2 > 0$,且 A < 0 时,则 $f(x_0, y_0)$ 是极大值
- (C) 当 $AC B^2 < 0$,且 A > 0 时,则 $f(x_0, y_0)$ 是极大值
- (D) 当 $AC B^2 < 0$,且 A < 0 时,则 $f(x_0, y_0)$ 是极大值
- 5. 下列级数中收敛的级数是().

 - (A) $\sum_{n=1}^{\infty} \frac{1}{n+100}$ (B) $\sum_{n=1}^{\infty} \sin \frac{n\pi}{n^2+1}$
- (C) $\sum_{n=1}^{\infty} \frac{1}{2^n 200}$ (D) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{3n+1}$
- **6.** 方程 y "-6y '+9y = 0 的通解为(). (其中 C_1, C_2 为任意常数)

- (A) $y = C_1 e^{3x} + C_2$ (B) $y = C_1 e^{3x} + C_2 x e^{3x}$
- (C) $y = C_1 e^{3x} + C_2 x$
- (D) 无解

三、解答题(写出必要的过程,共计52分)

1. 设z = f(x, y) 是由方程 $\ln z - e^x + y^2 z = 0$ 所确定的隐函数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ (本题 6 分).

5. f(u,v) 具有一阶连续连续偏导数,求 z = f(x,xy) 的一阶偏导数. (本题 8 分)

6. 利用格林公式计算曲线积分 $\oint_L -y dx + (x + \sin y) dy$, 其中 $L: x^2 + y^2 = 2$ 圆周的逆时针方向. (本题 6 分)

2. 求旋转抛物面 $z = x^2 + y^2 - 1$ 在点(2,1,4)处的切平面方程. (本题 6 分)

7. 求微分方程 y' + y = 1 满足初始条件 $y|_{x=0} = 0$ 的特解. (本题 6 分)

3. 把二重积分 $\iint_{\mathbb{R}} f(x,y) d\sigma$ 化为极坐标下的二次积分,其中 $D: x^2 + y^2 \le 1$. (本题 8 分)

8. 求第一类曲面积分 $\iint_{\Sigma} (x^2 + y^2 + z^2) dS$,其中 Σ 为圆锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq 2$). (本题 6 分)

4. 求幂级数 $\sum_{n=1}^{+\infty} \frac{x^n}{n}$ 的收敛域及和函数. (本题 6 分)

杭州电子科技大学信息工程学院学生考试卷(A)卷参考答案

课程名称	高等数学 A2	考试日期	2019年6月18日		成 绩		
考生姓名		任课教师姓	:师姓名				
学号(8/9 位)		班级			专业		

考试形式: 闭卷

考试说明:

一、填空题(每小题3分,共30分)

$$.\frac{\sqrt{5}}{}$$
 2.

$$\frac{3}{2}$$

$$\cos y$$

$$1.\sqrt{5}$$
 $2.\frac{3}{2}$ $3.\cos y$ 4.2 $5.\underline{1}$ $6.\frac{1}{2}x^2 + c_1x + c_2$

$$8. \underline{f_x} \mathrm{d}x + \underline{f_y} \mathrm{d}y$$

$$8. \underbrace{f_x dx + f_y dy} \qquad \qquad 9. \iiint (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dv \qquad \qquad 10.$$
条件收敛

二、单项选择题(每题3分,共18分)

题号	1	2	3	4	5	6
答案	A	D	D	В	С	В

三、解答题(写出必要的过程, 共计52分)

1. $\Re F = \ln z - e^x + y^2 z$

$$F_x = -e^x$$
, $F_y = 2yz$, $F_z = \frac{1}{z} + y^2$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{ze^x}{1 + zy^2}, \quad \frac{\partial z}{\partial x} = -\frac{F_y}{F_z} = -\frac{2yz^2}{1 + zy^2}$$

2. $\Re: z = x^2 + y^2 - 1$

$$z_x = 2x$$
, $z_y = 2y$: $\overrightarrow{n}|_{(2,1,4)} = (4,2,-1)$

所求切平面方程:
$$4(x-2)+2(y-1)-(z-4)=0 \Rightarrow 4x+2y-z-6=0$$

3.#:
$$\iint_{D} f(x,y) d\sigma = \int_{0}^{2\pi} d\theta \int_{0}^{1} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$$

4.解: 设
$$s(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n}$$
, 则收敛域为 $-1 \le x < 1$

$$s'(x) = \sum_{n=1}^{+\infty} \left(\frac{x^n}{n}\right)' = \sum_{n=1}^{+\infty} x^{n-1} = \frac{1}{1-x} \qquad (-1 < x < 1)$$

$$\therefore s(x) = \int_0^x \frac{1}{1 - x} dx = -\ln(1 - x) \qquad (-1 \le x < 1)$$

6.解: 由格林公式
$$\oint_{L} -y dx + (x + \sin y) dy = \iint_{D} 2 dx dy = 4\pi$$

7.
$$\Re: y' + y = 1 \Rightarrow \frac{\mathrm{d}y}{1 - y} = \mathrm{d}x \Rightarrow -\ln(1 - y) = x + C$$

∴通解为:
$$y = 1 + ce^{-x}$$
 代入初始条件 $y|_{x=0} = 0$, 得 $c = -1$

:. 所求特解为:
$$y = 1 - e^{-x}$$

8.解:
$$\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$$

$$dS = \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dxdy = \sqrt{2}dxdy$$

$$D_{xy}: \begin{cases} x^2 + y^2 \le 4\\ z = 0 \end{cases}$$

$$\iint_{\Sigma} (x^2 + y^2 + z^2) dS = \iint_{D_{max}} 2\sqrt{2}(x^2 + y^2) dxdy$$

$$=2\sqrt{2}\int_0^{2\pi}\mathrm{d}\theta\int_0^2\rho^3\mathrm{d}\rho$$

$$=\sqrt{2}\pi\rho^4\Big|_0^2=16\sqrt{2}\pi$$