

Introduction to Ramsey Theory

Alex Weinstock-Collins & Ethan Mark

REU Week 1 Report June 7, 2013

- General Ramsey Theory
- 2 Definitions
- Problems of Interest

- General Ramsey Theory
- 2 Definitions
- Problems of Interes

Ramsey Theorem (infinite)

Ramsey Theorem (infinite version, Ramsey 1928): An infinite complete graph with edges colored red and blue contains an infinite complete monochromatic subgraph.

Proof Idea. Choose a vertex a_0 , there are an infinite number of edges of one color incident to that vertex, call this set N_0 . Choose a vertex $a_1 \in N_0$, there are an infinite number of edges of one color incident to a_1 . Repeat infinitely to form a chain.

 a_0 — a_1 — a_2 — a_3 — \cdots

The subgraphs consisting of a_0, a_3, \cdots and a_1, a_2, \cdots are both monochromatic and at least one is infinite.

The theorem can be extended to any finite number of colors.

Ramsey Theorem (finite)

Ramsey Theorem (finite version, Ramsey 1928): For any pair of positive integers m and n, there exists an integer k such that any complete graph on k vertices with edges colored red and blue must contain either a monochromatic red complete subgraph on m vertices or a monochromatic blue complete subgraph on n vertices.

Proof Idea. Let R(m, n) = k, the particular k value required for the pair m and n. Clearly R(m, 1) = R(1, n) = 1. Bound R(m, n) inductively from above by

$$R(m, n) \leq R(m-1, n) + R(m, n-1).$$

Ramsey Theorem (finite)

Case I: $|\mathbb{R}| \ge R(m-1,n)$. \mathbb{R} contains a red K_{m-1} or a blue K_n , thus G contains a red K_m or a blue K_n .

Case II: $| \mathbb{L} | \ge R(m, n-1)$. \mathbb{L} contains a red K_m or a blue K_{n-1} , thus G contains a red K_m or a blue K_n . Therefore $R(m, n) \le R(m-1, n) + R(m, n-1)$.

- General Ramsey Theory
- 2 Definitions
- Problems of Interes

Ramsey Numbers

Ramsey Theory deals with finding order amongst greater chaos.

Example: if we want to find a constellation of 10 stars forming a convex polygon where no three stars are collinear, how many stars do there need to be, to guarantee its occurrence? (The Happy Ending problem). Ramsey numbers are a similar idea.

Ramsey Numbers

Ramsey Number: The Ramsey number $R(n_1,, n_c) = r$ is the least number such that if the edges of a complete graph of order r are colored with c different colors, then for some i between 1 and c, it must contain a complete subgraph of order n_i whose edges are all color i.

Motivating problem: What is the minimum number of people you must invite to a party to guarantee you will alway have 3 people who all know each other or 3 people who all do not know each other?

In other words: What is R(3,3)?

Example: R(3,3)

Since K_5 can be 2-colored without monochromatic triangles, R(3,3) > 5. Since K_6 cannot be colored without monochromatic triangles, $R(3,3) \le 6$. Thus R(3,3) = 6.

Bipartite Ramsey Numbers

Two Color Bipartite Ramsey Number: With 2 colors, red and blue, the bipartite Ramsey number b(m, n) is the least positive integer b such that if the edges of K(b, b) are colored with red and blue, then there always exists a blue K(m, m) or a red K(n, n).

Bipartite Ramsey Numbers

Bipartite Ramsey Number: The bipartite Ramsey number $b(n_1,...,n_k)$ is the least positive integer b such that any coloring of the edges of $K_{b,b}$, with k colors will result in a monochromatic copy of K_{n_i,n_i} , in the i-th color, for some i, $1 \le i \le k$.

If $n_i = m$ for all i, then we denote this number by $b_k(m)$.

Zarankiewicz Numbers

Zarankiewicz Numbers: The Zarankiewicz number z(m, n; s, t) is the maximum number of edges in a subgraph of $K_{m,n}$ that does not contain $K_{s,t}$ as a subgraph.

Special Case: If m = n and s = t, then we write z(m, s) to denote the number of edges in a subgraph of $K_{m,m}$ that does not contain $K_{s,s}$ as a subgraph.

Relation to Bipartite Ramsey Numbers: For two colors, finding upper bounds for Zarankiewicz numbers help provide upper bounds on bipartite Ramsey numbers.

$$z(b, m) + z(b, n) < b^2 \implies b(m, n) \le b$$

This relation can be extended to allow for more than two colors.

Zarankiewicz Numbers

Proof:

Let
$$z(b, m) = z_1$$
, and $z(b, n) = z_2$

 $K_{b,b}$ has z_1 red edges that does not contain a $K_{m,m}$

 $K_{b,b}$ has z_2 blue edges that does not contain a $K_{n,n}$

We also know $K_{b,b}$ has b^2 edges

If
$$z_1 + z_2 < b^2 \implies b(m, n) \le b$$

Since if b(m, n) = b + 1, $K_{b,b}$ will contain a red $K_{m,m}$ or a blue $K_{n,n}$

- General Ramsey Theory
- 2 Definitions
- Problems of Interest

It is known that $16 \le b(2,5) \le 19$. (Goddard et al. 2004)

Recall that b(2,5) is the smallest number of vertices in each partition of a complete bipartite graph such that if the edges are colored red or blue we are guaranteed a red $K_{2,2}$ or a blue $K_{5,5}$.

We could improve the lower bound by finding edge colorings of $K_{16,16}$ which do not contain either of the forbidden subgraphs. Or we could improve the upper bound by showing that all possible colorings of $K_{18,18}$ contain one of the forbidden subgraphs. These graphs are not so large as to be computationally intractable.

Recall that $b_5(2) = b(2, 2, 2, 2, 2)$, the number of vertices in each partite set of a complete bipartite graph such that any 5-coloring of the edges results in a monochromatic 4-cycle.

Problem of Interest: Determining values for $b_k(2)$ seems to be a difficult problem. The only known exact values are $b_2(2) = 5$, $b_3(2) = 11$, and $b_4(2) = 19$.

Some Theorems: (Dybizbański, Dzido, Radziszowski, 2013)

Theorem 1: $b_k(2) \ge k^2 + 1$

Theorem 2: $b_k(2) \le k^2 + k - 2$

Theorem 3: $26 \le b_5(2) \le 28$

Possible conjecture for project: $b_5(2) = 28$

Readings

- W. Goddard, M. A. Henning and O. R. Oellermann, "Bipartite Ramsey Numbers and Zarankiewicz Numbers", Elsevier Science (2004).
- J. Dybizbański, T. Dzido and S. Radziszowski, "On Some Zarankiewicz Numbers and Bipartite Ramsey Numbers for Quadrilateral". Forthcoming (2013).
- R. K. Guy, "A Many-Facetted Problem of Zarankiewicz", The Many Facets of Graph Theory (1969).

Questions

Questions?