

14 edycja konferencji SQLDay

9-11 maja 2022, WROCŁAW + ONLINE

partner złoty ——

partner srebrny -

partner brązowy -

Adrian Chodkowski

10 mitów oraz błędów związanych z Power BI

O mnie

- Adrian Chodkowski
- Data Solutions Technical Lead
- Elitmind
- Specjalizacja: Platforma danych Microsoft
- Data Community
- seequality.net
- adrian.chodkowski@outlook.com

- 1. "Na workspace jest najnowsza wersja raportu"
- 2. "Power Query sam sobie poradzi z ładowaniem danych"
- 3. "Moje dane są bezpieczne przecież je pobieram, a nie wysyłam"
- 4. "Raport zawiera wszystkie wymiary i fakty dzięki czemu nie będzie trzeba go aktualizować"
- "Płaska struktura jest ok, szkoda czasu na strukturę gwiazdy"
- 6. "Front-end nie ma wpywu na wydajność"
- 7. "Direct Query jest wolne i należy go unikać"
- 8. "Zrób to na kolumnach kalkulowanych"
- 9. "Power BI nie nadaje się do dużych zestawów danych"
- 10. "Wystarczy, że nauczę się składni DAX i wszystko działa"

#1 "Na workspace jest najnowsza wersja raportu"

- Lokalny komputer 🚫
- Współdzielony folder
- Workspace
- OneDrive
- Repozytorium GIT

- Pełna historyzacja plików ,
- Brak możliwości porównywania wewnętrznych struktur plików,
- Możliwość implementacji branchy oraz kontrolowanego deploymentu (Azure DevOps),
- W pewnych okolicznościach warto rozważyć projekt Visual Studio daje to pełną kontrolę wersji!

https://www.atlassian.com/git/tutorials/comparing-workflows

```
168
                                                                                                     "expression": [
     "expression": [
                                                                                 169
           Source = #\"SQL/ ;AdventureWorksDW2017\",",
                                                                                                           Source = #\"SQL/ ;AdventureWorksDW2017\",",
            dbo FactInternetSales = Source{[Schema=\"dbo\",Item=\"FactInter
                                                                                                           dbo_FactInternetSales = Source{[Schema=\"dbo\",Item=
                                                                                 172
            dbo_FactInternetSales"
                                                                                 173
                                                                                                           dbo FactInternetSales"
                                                                                 174
                                                                                 175
                                                                                 176
                                                                                 177
"measures": [
                                                                                 178
                                                                                               "measures": [
                                                                                 179
   "name": "SumOfSalesAmount",
                                                                                 180
                                                                                                  "name": "SumOfSalesAmount",
   "expression": " SUMX('FactInternetSales',[OrderQuantity]*[UnitPrice])",
                                                                                 181
                                                                                                  "expression": [
   "formatString": "#,0.00"
                                                                                 182
                                                                                                    " SUM('FactInternetSales'[SalesAmount])",
                                                                                 183
                                                                                 184
```


Repozytorium

- Pełna historyzacja plików ,
- Brak możliwości porównywania wewnętrznych struktur plików,
- Możliwość implementacji branchy oraz kontrolowanego deploymentu (Azure DevOps),

Jeśli to możliwe przechowujemy pbit a nie pbix!

https://ideas.powerbi.com/ideas/idea/?ideaid=9daf5a6b-19e1-4b79-9e7c-78d877d54542

2968

Vote 🖒

Built in Git support in PowerBI Desktop Matt Smith on 2/28/2019 5:19:38 PM STATUS DETAILS

PLANNED

Administrator on 3/18/2022 4:12:08 AM

March 2022 update: We are working on this item but no timeline can be shared yet. We appreciate your patience

#2 "Power Query sam sobie poradzi z ładowaniem danych"

- Mechanizm transformujący zapytania M na zapytanie źródła
- Jeśli coś nie może zostać przerzucone to jest wykonywane lokalnie przez
 Power BI
- Zapytanie może zostać przerzucone w całości lub częściowo
- Zależy od:
 - Typu źródła
 - Zastosowanej logiki transformacji
 - Privacy Level
- Pamiętaj, że możesz użyć funkcji Value.NativeQuery aby napisać
 zapytanie do źródła i nie przeszkodzić mechanizmowi Query Folding

- Mechanizm transformujący zapytania M na zapytanie źródła
- Jeśli coś nie może zostać przerzucone to jest wykonywane lokalnie przez Power BI
- Zapytanie może zostać przerzucone w całości lub częściowo
- Zależy od:
 - Typu źródła
 - Zastosowanej logiki transformacji
 - Privacy Level
- Pamiętaj, że możesz użyć funkcji Value.NativeQuery aby napisać
 zapytanie do źródła i nie przeszkodzić mechanizmowi Query Folding

Transformacja która nie może być przerzucona powoduje, że wszystkie następujące po niej transformacje też nie zostaną przerzucone!

Query Folding

#3 "Moje dane są bezpieczne – przecież je pobieram, a nie wysyłam"

• Interakcja pomiędzy źródłami jest określona poziomami izolacji. Dane nie mogą przepływać ze źródła bardziej do mniej restrykcyjnego. Jeśli korzystamy z jednego źródła można zignorować poziomy izolacji lub ustawić je jako Organizational.

Query Folding: SELECT * FROM Employee WHERE CustomerSurname IN ('Kowalski' ,'Nowak' ,'Małecki')

Privacy Levels

• Interakcja pomiędzy źródłami jest określona poziomami izolacji. Dane nie mogą przepływać ze źródła bardziej do mniej restrykcyjnego. Jeśli korzystamy z jednego źródła można zignorować poziomy izolacji lub ustawić je jako Organizational.

#4

"Raport zawiera wszystkie wymiary i fakty dzięki czemu nie będzie trzeba go aktualizować"

- Jeśli jakiś obiekt nie jest nam potrzebny na raporcie nie ładujmy go,
- Jeśli obiekt jest nam potrzebny tylko w ramach ETL to nie ładujmy go do modelu końcowego,
- Model tabelaryczny w dużej mierze opiera się na kompresji dlatego:
 - Im mniej tym lepiej,
 - Im lepiej kompresowalne typy danych tym lepiej
- Kilka ogólnych praktyk:
 - Osobne kolumny data, czas > pojedyncza kolumna data czas
 - Liczby całkowite są lepsze niż GUIDy czy HASHe (nie dotyczy Direct Query)
 - Rozważ użycie mniejszego typu (np. z mniejszą liczbą miejsc po przecinku)
 - Twórz wymiary zdegenerowane tylko jeśli mają poziom granulacji faktu (lub zbliżony)

https://www.sqlbi.com/tools/vertipaq-analyzer/

- VertiPaq (xVelocity) jest silnikiem przechowującym dane kolumnowo
- Taki sposób przechowywania daje możliwość lepszej kompresji oraz agregacji
- Dodatkowo odczyt pojedynczej kolumny nie wymaga odczytu pozostałych kolumn w przeciwieństwie do przechowywania wierszowego

Przechowywanie wierszowe

Column 1	Column 2	Column 3	Column 4	Column 5

Przechowywanie kolumnowe

Column 1	Column 2	Column 3	Column 4	Column 5

- Metoda działająca wyłącznie dla wartości całkowitoliczbowych nie będących częścią relacji których zakres nie jest zbyt szeroki,
- Znajduje najmniejszą wartość w zakresie i na jej podstawie oblicza różnice dla pozostałych wartości,
- Poszczególne wartości są przechowywane używając mniejszej ilości pamięci.

Value	Value
1562	62
1500	0
1578	78
1544	44
1587	87
1501	1
1509	9

DC

- Rzeczywiste wartości są przechowywane w słowniku
- Przypisywany jest im identyfikator używając funkcji hashującej
- W określonej kolumnie zamieniane są określone wartości na ich identyfikator
- Używany dla każdego typu danych na rozmiar ma wpływ liczebność (cardinality), a nie sama wartość

Value	
Apple	
Banana	
Apple	
Apple	
Orange	
Apple	
Banana	

ID	Value
1	Apple
2	Banana
3	Orange

Run-Length Encoding

- Algorytm pozwalający zapisać zakresy od kiedy do kiedy dana wartość występuje
- Bardzo wrażliwy na kardynalność oraz ułożenie danych
- VertiPaq używa heurystyk żeby znaleźć idealne sortowanie można na nie wpłynąć dostarczając dane w odpowiedniej kolejności dzięki czemu slinik zdecyduje w swojej ocenie.
- Czas na odnalezienie odpowiedniego sortowania jest skończony i nie da się go ustawić w Power BI w SSAS jest on dostępny pod nazwą

 ProcessingTimeboxSecPerMRow ustawienie go na 0 spowoduje uzyskanie najlepszego porządku sortowania.

Value
Apple
Apple
Apple
Apple
Banana
Banana
Blueberry

Value	Count
Apple	4
Banana	2
Blueberry	1

#5 "Płaska struktura jest ok, szkoda czasu na strukturę gwiazdy"

Star schema vs płaska tabela

- Możliwość bardziej granularnego odświeżania
- Zoptymalizowany rozmiar modelu
- Operacje wykonywane przez Formula Engine zazwyczaj są szybsze (w stosunku do płaskiej tabeli)
- Operacje opierające się o wymiary i funkcje
 DISTINCT, VALUES itp. są zoptymalizowane
- Pełny zestaw funkcji języka DAX

Data

- Dłuższe odświeżanie
- Ogromny rozmiar modelu
- Operacje wykonywane przez Storage Engine są często szybsze (w stosunku do Star Schema)
- Operacje opierające się o wymiary i funkcje DISTINCT, VALUES etc potrafią być
 ekstremalnie wolne
- Bez wymiaru czasu ograniczony Time Intelligence

Rozszerzanie struktury z tabelą płaską

- Dwie struktury płaskie powodują konieczność tworzenia sztucznych kluczy
- Często wymaga to również relacji wiele do wielu

Datald	KlientId	ProduktId	Klucz
20210101	1	1	20210101-1
20210102	1	1	20210102-1
20210102	2	4	20210102-1

Many to many(!)

			Nowe objectly
Klucz	DataId	KlientId	Lokalizacjald
20210101-1	20210101	1	1
20210101-1	20210101	1	1
20210102-2	20210102	2	2
20210102-1	20210102	1	1
20210103-2	20210103	2	2
20210103-2	20210103	2	2

Nowe objekty

Rozszerzanie struktury modelem gwiazdy

- Model gwiazdy jest łatwo rozszerzalny
- Nowa tabela faktów podłączona jest do istniejących wymiarów z którymi ma relację oraz dodawane są nowe jeśli jest taka potrzeba
- Takie podejście nie modyfikuje zachowania istniejących miar i nie ma negatywnego wpływu na wydajność

					ļ.		
Row Labels ▼	Cardinality	Table Size	Columns Total Size	Data Size	Dictionary Size	Columns Hierarchies Size	Bid. Filters MMR Encoding_
■ DimCurrency	105	41,952	41,952	288	39,464	2,200	Many
■ DimCustomer	18,484	3,249,686	3,249,686	365,608	2,297,166	586,912	Many
∄ DimDate	3,652	188,920	188,920	38,080	117,800	33,040	Many
⊕ FactInternetSalesFlat	3,140,696	150,077,065	150,077,065	145,508,040	3,673,801	895,224	Many
⊕ FactInternetSalesStarSchema	3,140,696	31,557,855	31,519,055	29,393,240	1,697,543	428,272	HASH (AII)
Grand Total	6,303,633	185,115,478	185,076,678	175,305,256	7,825,774	1,945,648	Many

Row Labels	Relationships Size	RI Violations # Table Size %	6 Database Size % S
⊕ DimCurrency			0.02%
⊕ DimCustomer			1.76%
⊕ DimDate			0.10%
⊕ FactInternetSalesFlat			81.07%
■ FactInternetSalesStarSchema	38,800		17.05%
Grand Total	38,800		100.00%

#6 "Front-end nie ma wpływu na wydajność"

???

Rzeczy na które należy zwracać uwagę

- Zadbaj o dobrą percepcję raportu w tym:
 - dobierz wizualizację do potrzeb,
 - Opisz wizualizacje tak żeby dane były zrozumiałe,
 - Unikaj dużej liczby slicerów,
 - Unikaj dużej liczby kolorów,
 - Przemyśl nawigację między stronami i zakładkami,
- Każda wizualizacja wysyła jedno lub wiele zapytań,
- Domyślnie każde kliknięcie powoduje ponowne wysłanie zapytania pod wszystkimi wizualizacjami,
- Domyślnie rzecz biorąc wszystkie wizualizacje filtrują siebie nawzajem warto wyłączyć to zachowanie w Edit Interactions
- Synchronizację pomiędzy slicerami można osiągnąć dzięki Cross-Filter Direction = Both ale również dzięki Visual Level Filter na slicerze!

#7 "Direct Query jest wolne i należy go unikać"

V

Optymalizacja Direct Query

- Twoje rozwiązanie jest tak szybkie jak twoje źródło,
- Optymalizacja relacji w Direct Query opiera się o:
 - Indeksację źródła (Foreign Key)
 - Brak użycia kolumn kalkulowanych jako klucza relacji,
 - Jeśli to możliwe użycia Assume referential integrity,
 - Nie używaniu Many-to-Many relationship,
 - Ograniczeniu użycia Cross filter direction = both,
- Pamiętaj o Maximum connections per data source oraz o tym, że workspace ma limit jeśli chodzi o maksymalną liczbę połączeń które są nieudokumentowane (jedyna możliwość informacji na ten temat to Microsoft Support),
- Warto rozważyć użycie ustawień Query Reduction
- Materializuj jeśli to tylko możliwe!

#8 "Zrób to na kolumnach kalkulowanych"

Kolumny kalkulowane

- Materializowane podczas ładowania i/lub odświeżania tabeli
- Kolumny obliczane zazwyczaj nie zapewniają szybszego wykonania zapytań,
- Bardzo często mają niższy stopień kompresji od standardowych kolumn (nie uwzględniane przez VertiPaq w momencie wyszukiwania odpowiedniego sortowania)
- Odświeżenie dowolnego elementu tabeli powoduje konieczność odświeżenia wszystkich kolumn obliczanych w tej tabeli oraz wszystkich tych, które się do niej odwołują,
- Obiekty kalkulowane obliczane są sekwencyjnie przy użyciu pojedynczego wątku – brak skalowalności!

Date	Year	Month	Day	
2022- 01-01	2022	1	1	
2022- 01-02	2022	1	2	
2022- 01-03	2022	1	3	Sekwencja! 1 wątek!
2022- 01-04	2022	1	4	
2022- 01-05	2022	1	5	

- Kolumna kalkulowana zawsze jest obliczana w całości bez względu na partycjonowanie!
- Przy ogromnych modelach może to stanowić wąskie gardło!

#9 "Power Bl nie nadaje się do dużych zestawów danych"

DC

Large models

- Workspace premium pozwala skorzystać z Large dataset storage format pozwalający zwiększyć dostępny rozmiar na powyżej 10GB. Dane przechowywane są wtedy na Azure Premium Storage.
- Jeśli dataset jest większy niż połowa dostępnych zasobów na workspace rozważ Incremental Processing poprzez XMLA Endpoint,
- Power BI zawiera cały szereg mechanizmów, które wspierają przetwarzanie dużych zbiorów danych:
 - Direct Query
 - Composite models
 - Hybrid tables
 - Aggregations
- Power Query nie powinno być wykorzystywane do budowania ciężkich przepływów i
 transformacji Power BI integruje się z innymi narzędziami do przetwarzania w skali jak
 Azure Synapse czy Databricks, które są w stanie te dane przygotować na potrzeby
 datasetu.

#10 "Wystarczy, że nauczę się składni DAX i wszystko działa"

DAX – dobre praktyki

- Język DAX zawiera wiele dobrych praktyk, które są proste w implementacji, a mają duży wpływ na wydajność np..:
- Używanie zmiennych zamiast powtarzania tego samego kodu

Więcej na: seequality.net

HASONEVALUE oraz VALUES

- Unikanie obsługi błędów (IFERROR oraz ISERROR) na poziomie miary
- Używanie COUNTROWS zamiast COUNT tam gdzie to możliwe (uwaga na wartości BLANK)
- TREATAS > CONTAINS, FILTER, INTERSETCT...

- https://pl.seequality.net/
- https://sqlbi.com
- https://zebrabi.com/power-bi-dashboard-design/
- https://blog.enterprisedna.co/dax-query-structure-in-power-bi-two-engines-dax-studio/
- https://sqlserverbi.blog/2021/07/19/a-developers-guide-to-creating-bad-power-bi-projectspart-1/
- https://maqsoftware.com/insights/power-bi-best-practices

14 edycja konferencji SQLDay

9-11 maja 2022, WROCŁAW + ONLINE

partner złoty ——

partner srebrny -

partner brązowy -

