CSCI 4100 Assignment 3

Boliang Yang 661541863

1. Exercise 1.13 in LFD

(a) When $h(x) = f(x) \neq y$ or $h(x) \neq f(x) = y$, then h makes error.

Then we have $P[error] = P[h(x) = f(x) \neq y] + P[h(x) \neq f(x) = y] = (1 - \mu)(1 - \lambda) + \mu\lambda = 1 - \mu - \lambda + 2\mu\lambda$

(b) $P[error] = 1 - \mu - \lambda + 2\mu\lambda = 1 - \lambda + \mu(2\lambda - 1)$, and we want it to be independent of μ , then we have $(2\lambda - 1) = 0$, which gives us $\lambda = \frac{1}{2}$, and $P[error] = 1 - \frac{1}{2} = \frac{1}{2}$.

2. Exercise 2.1 in LFD

(a) Positive rays:

k=2 is the break point since for k=2 dichotomy cannot shatter all possibilities of points. For example, +1 on the left and -1 on the right.

From formula, $m_H(N) = N + 1$, then $m_H(2) = 2 + 1 = 3 < 2^2 = 4$.

(b) Positive intervals:

k=3 is the break point since for k=3 dichotomy cannot shatter all possibilities of points. For example, [+1, -1, +1].

From formula, $m_H(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$, then $m_H(3) = \frac{1}{2} \times 3^2 + \frac{1}{2} \times 3 + 1 = 7 < 2^3 = 8$.

(c) Convex sets:

Break point for convex sets does not exist since dichotomy will always shatter all possibilities of points.

From formula, $m_H(N) = 2^N$, then $m_H(N) = 2^N$ for all N.

3. Exercise 2.2 in LFD

(a) (i) Positive rays:

The break point is k=2, the polynomial degree is 1. Since $m_H(N)=1+N=\binom{N}{0}+\binom{N}{1}=\sum_{i=0}^1\binom{N}{i}\leq \sum_{i=0}^{2-1}\binom{N}{i}$, then $m_H(N)\leq \sum_{i=0}^{k-1}\binom{N}{i}$ holds where k=2.

(ii) Positive intervals:

The break point is k=3, the polynomial degree is 2. Since $m_H(N)=1+\frac{1}{2}N+\frac{1}{2}N^2=1+N+\frac{1}{2}N(N-1)=\binom{N}{0}+\binom{N}{1}+\binom{N}{1}+\binom{N}{2}=\sum_{i=0}^2\binom{N}{i}\leq \sum_{i=0}^{3-1}\binom{N}{i}$, then $m_H(N)\leq \sum_{i=0}^{k-1}\binom{N}{i} \text{ holds where } k=3.$

(iii) Convex sets:

Since convex sets don't have a break point, the Theorem 2.4 cannot be applied here.

(b) From class we know there are only two types of hypothesis sets: either be of the form 2^N or polynomial. Since $m_H(N) = N + 2^{\lfloor N/2 \rfloor}$ is neither of those types, then there does not exist such hypothesis set.

Prove by contradiction: k=3 is a break point since $m_H(3)=3+2^{\lfloor 3/2\rfloor}=3+2=5<2^3=8$. By Theorem 2.4, $m_H(N)\leq \sum_{i=0}^{k-1}\binom{N}{i}=\binom{N}{0}+\binom{N}{1}+\binom{N}{2}=1+N+\frac{1}{2}N(N-1)$. But when N=14, $m_H(14)=14+2^{\lfloor 14/2\rfloor}=142>1+14+\frac{1}{2}\times 14\times 13=106$, which contradicts the Theorem 2.4.

4. Exercise 2.3 in LFD

If k is the smallest break point for H, then $d_{vc}=k-1$.

- (i) Positive rays: since the break point is $\ k=2$, then $\ d_{vc}=2-1=1.$
- (ii) Positive intervals: since the break point is k=3, then $d_{vc}=3-1=2$.
- (iii) Convex sets: since $m_H(N)=2^N$ for all N, then $d_{vc}=\infty$.

5. Exercise 2.6 in LFD

(a) Error bar for E_{in} :

$$\begin{split} E_{out}(g) &\leq E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|H|}{\delta}} \ \text{ where } \ N=400, |H|=1000, \delta=0.05, \text{ then} \\ E_{out}(g) &\leq E_{in}(g) + 0.11509 \end{split}$$
 Error bar for E_{test} :

We have one hypothesis then we can use Hoeffding' inequality for a single fixed hypothesis. $P[|v-\mu| \ge \epsilon] = 0.05 \le 2e^{-2\epsilon^2 N}$ where N=200. Then we have $\epsilon \le 0.09603$.

Thus, the error bar for E_{in} is higher.

(b) If we have a larger test set, then we will have less data for training set. There is a trade-off between samples for E_{in} and E_{test} . In this case, we will not have enough samples for training, and we will have a good E_{in} but worse and wild E_{test} and E_{out} .

6. Problem 1.11 in LFD

For CIA:

$$E_{in} = \frac{1000P[h(x) = +1 \text{ and } f(x) = -1] + P[h(x) = -1 \text{ and } f(x) = +1]}{1001}$$

For supermarket:

$$E_{in} = \frac{10P[h(x) = -1 \text{ and } f(x) = +1] + P[h(x) = +1 \text{ and } f(x) = -1]}{11}$$

7. Problem 1.12 in LFD

(a)
$$E_{in}(h) = \sum_{n=1}^{N} (h - y_n)^2 = \sum_{n=1}^{N} (h^2 - 2hy_n + y_n^2) = Nh^2 - 2h\sum_{n=1}^{N} y_n + \sum_{n=1}^{N} y_n^2$$

If we want to minimizes the E_{in} , we need $\frac{dE_{in}(h)}{dh} = 0$. Then $\frac{dE_{in}(h)}{dh} = 2Nh - 2\sum_{n=1}^{N} y_n = 0$, which gives us $h = \frac{1}{N}\sum_{n=1}^{N} y_n = h_{mean}$.

(b) $E_{in}(h) = \sum_{n=1}^{N} |h - y_n|$, again, we need $\frac{dE_{in}(h)}{dh} = 0$ in order to minimize the E_{in} .

Then
$$\frac{dE_{in}(h)}{dh} = \sum_{n=1}^{N} \frac{d|h-y_n|}{dh} = \sum_{n=1}^{N} \frac{d|h-y_n|}{d(h-y_n)} \times \frac{d(h-y_n)}{dh} = \sum_{n=1}^{N} \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} + \frac{d(h-y_n)}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} + \frac{d(h-y_n)}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} + \frac{d(h-y_n)}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} + \frac{d(h-y_n)}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} + \frac{d(h-y_n)}{d(h-y_n)} = \frac{d|h-y_n|}{d(h-y_n)} = \frac{d|h-y|}{d(h-y_n)} = \frac{d$$

 $\frac{d|h-y_2|}{d(h-y_2)} + ... + \frac{d|h-y_N|}{d(h-y_N)}$. Each of the fractions is either +1 or -1 since $d(h-y_n)$ can be

positive or negative. And since $\frac{dE_{in}(h)}{dh} = \frac{d|h-y_1|}{d(h-y_1)} + \frac{d|h-y_2|}{d(h-y_2)} + \cdots + \frac{d|h-y_N|}{d(h-y_N)} = 0$, then half of the data points are at least h, here h

should be the median h_{med} .

(c) Since $h_{mean}=\frac{1}{N}\sum_{n=1}^{N}y_n$ is the average of sum of y_n , then when y_N is perturbed to $y_N+\epsilon$ where $\epsilon\to\infty$, h_{mean} will grow more and more and $h_{mean}\to\infty$.

But since h_{med} is the median of all the data points, when y_N is perturbed to $y_N+\epsilon$ where $\epsilon\to\infty$, h_{med} will shift at most by one. If original y_N is below h_{med} , then h_{med} will increase by one point; if original y_N is above h_{med} , then h_{med} will not change.