Internet Security

• Q: What are the goals of attackers?

- From machines
 - * Infiltration: take over machines/resources
 - ► *Defacement*: replace legitimate content
 - * Denial of service
- From users
 - * Get data
 - Credit card, password, ...
 - * Get traffic
 - ► Attention = money
 - ► The real currency of our age is user's attention

• Q: How do attackers achieve the goal?

- Many, many different ways
 - * *Phishing*: spoof web site to look like the real one
 - * *Pharming (DNS cache poisoning)*: wrong DNS resolution, for example
 - * Packet sniffing
 - * Man-in-the-middle attack
 - * Password brute-force attack
 - * Buffer overflow
 - * Client-state manipulation: cookie poisoning
 - * Cross-domain vulnerability
 - ► Cross-site request forgery (XSRF)
 - ► Cross-site script inclusion (XSSI)
 - ► *Cross-site scripting (XSS)*
 - * SQL injection
- Note: some of these vulnerabilities can be controlled by "good" programming practice. More discussion later

• Q: When we communicate over Internet, what type of guarantee do we want?

- Confidentiality
- Message/data integrity
- Authentication

- Authorization
- Q: How can we keep confidentiality of the messages?
 - Steganography: "embed" true message within harmless-looking message
 - * Kathy is laughing loudly
 - * Change the lowest bit of image pixels
 - * "Security by obscurity"
 - Encryption: "scramble" message with a key, so that it wouldn't make sense to others unless they have the key
 - * e.g., bitwise XOR with k

 11110000 (message) XOR 10111001 (key) -> 01001001 (ciphertext)

 01001001 (ciphertext) XOR 10111001 (key) -> 11110000 (message)

Symmetric Key Cryptography

• [Encryption as generalization of XOR example]

In general, an encryption algorithm requires:

- -c = F(m, k): encryption function (m XOR k)
 - * m: message = *plaintext*. want to keep secret
 - * c: ciphertext. transmitted over insecure channel
- m = F'(c, k): decryption function. inverse of F (c XOR k)
 - * From above, m = F'(F(m, k), k)
 - * e.g., ((m XOR 10111001) XOR 10111001) = m
- F(m, k), F'(m, k) are called "cipher"
- Q: What other property should F(m, k) have?
 - Ideally, one should never be able to guess m from c alone
 - * Ciphertext should not reveal any information about plaintext
 - Perfect secrecy (= Shannon secrecy)
 - * For all plaintext x and ciphertext y, $Pr(x \mid y) = Pr(x)$

- * OTP (one time pad) encryption is proven to be perfectly secret, but due to practical limitation, cannot be used directly
- * Many encryption algorithms try to "mimic" OTP, e.g., RC4
- Commonly used ciphers
 - DES (data encryption standard)
 - * 64 bit block cipher
 - * Vulnerable to brute-force attack due to short key
 - ► Triple DES
 - AES (advanced encryption standard)
 - * 128 bit block cipher
 - * 128, 192, 256 bit keys
 - * Adopted by NIST (national institute of standard and technology) as a replacement of DES in 2000
 - IDEA, A5 (used by GSM), ...
- [AES encryption animation]

Remark:

- 1. Addition and multiplication used for MixColumn step are slightly different from standard definition.
- 2. MixColumn step "mixes" values from multiple bytes. Other steps do not mix values from multiple bytes.
- Key agreement problem
 - Q: How can we agree on a key "secretly" over the Internet?
 - * Out-of-band communication?
 - Q: After A and B agreeing on secret key, how can we prevent B from impersonating A to C?
 - * Q: n parties. How many keys?
 - Q: Want to keep communication confidential between every party. How many keys do we need for n parties?