ĐỀ SỐ 6 - THPT ĐOÀN KẾT HAI BÀ TRƯNG

A-TRẮC NGHIỆM

Câu 1: Tính $\lim_{x\to\sqrt{3}} \frac{x+3}{2x+\sqrt{3}}$.

B.
$$\frac{1+\sqrt{3}}{3}$$

D.
$$\frac{4\sqrt{3}}{3}$$

Câu 2: Tìm tất cả các giá trị của m để hàm số $f(x) = \begin{cases} x^2 - 2x & khi \ x = 3 \\ 3m^2 & khi \ x \neq 3 \end{cases}$ liên tục tại điểm x = 3.

A.
$$m = 3$$

B.
$$m = 1$$

C.
$$m = 1$$
 và $m = -1$

D.
$$m = \sqrt{3}$$

Câu 3: Cho
$$[(3x-7)\sqrt{2x+1}]' = \frac{mx+n}{\sqrt{2x+1}}$$
. Tính $A = m+n$.

Câu 4: Cho lăng trụ *ABC.A'B'C'* có đáy *ABC* là tam giác đều tâm *O* cạnh *a*. Hình chiếu của *C'* trên mp (ABC) trùng với tâm của đáy. Biết $OC' = a\sqrt{2}$. Góc tạo bởi cạnh bên và mặt đáy của lăng tru bằng:

D. arctan
$$\sqrt{6}$$

Câu 5: Trong các dãy số cho bởi số hạng tổng quát dưới đây, dãy số nào không phải là cấp số cộng?

A.
$$u_n = 2^n + 5$$

B.
$$u_n = \frac{-2n+1}{5}$$

$$\mathbf{C.} u_n = (3n+1)^2 - 9n^2$$
 $\mathbf{D.} u_n = 4n-5$

$$\mathbf{D.}\,u_n=4n-5$$

Câu 6: Cho a là hằng số. Giới hạn nào sau đây có giá trị bằng $\frac{a}{2}$?

A.
$$\lim \left(\frac{a}{2} n^3 + 4n^2 - 5an - 1 \right)$$

$$\mathbf{B.}\lim\Big(\sqrt{n^2+an+2}-n\Big)$$

C.
$$\lim \frac{3+a.5^n}{4^{n+1}+2.5^{n+1}}$$

D.
$$\lim \frac{an^2 - 4n + 2a}{2(n^3 - 3n + 4)}$$

Câu 7: Biết $\lim_{x\to +\infty} \left(\sqrt{2x^2 - 3x + 4} - \sqrt{2}x \right) = \frac{a}{b\sqrt{2}}$ (với $\frac{a}{b}$ tối giản). Hỏi giá trị a.b bằng bao nhiêu?

$$A. -26$$

$$\mathbf{C}.-72$$

$$D_{-10}$$

Câu 8: Tiếp tuyến của đồ thị hàm số $y = -x^2 + 4x + 7$ tại điểm A(-1;2) có hệ số góc bằng:

$$C. -2$$

Câu 9: Cho a,b là các hằng số, $b \ne 0$. Tính $\lim \frac{2an^3 - 4n^2 + 2an + 1}{bn^3 - 5bn + 3b - 1}$.

$$\mathbf{A} \cdot \frac{2a}{b}$$

Câu 10: Giới hạn nào sau đây bằng $\frac{4}{7}$?

A.
$$\lim_{x\to 1} \frac{4x-3}{7x+1}$$

B.
$$\lim_{x \to +\infty} \frac{4x-3}{7x^2+1}$$

C.
$$\lim_{x \to -\infty} \frac{4x^5 + 2x + 1}{7x^2 - 5x + 3}$$

B.
$$\lim_{x \to +\infty} \frac{4x-3}{7x^2+1}$$
 C. $\lim_{x \to -\infty} \frac{4x^5+2x+1}{7x^2-5x+3}$ **D.** $\lim_{x \to -\infty} \frac{8x^2-3x+1}{14x^2+5x-3}$

Câu 11: Hàm số nào sau đây liên tục tại điểm x = 2:

A.
$$y = |x - 2|$$

B.
$$y = \frac{1}{x^2 - 4}$$

A.
$$y = |x-2|$$
 B. $y = \frac{1}{x^2 - 4}$ **C.** $y = \frac{1}{x-2}$ **D.** $y = \frac{x}{|x-2|}$

$$\mathbf{D.} \ \ y = \frac{x}{|x-2|}$$

Câu 12: Biết rằng d là tiếp tuyến của đồ thị hàm số $y = \frac{1}{x^2 + 2x - 5}$ song song với trục hoành. Hoành độ tiếp

điểm của tiếp tuyến d bằng:

Câu 13: Tính $\lim_{x\to 0} \frac{\sqrt{x+1} - \sqrt[3]{x+1}}{x}$?

A.
$$\frac{8}{47}$$

B.
$$\frac{7}{41}$$

c.
$$\frac{1}{6}$$

D.
$$\frac{80}{481}$$

Câu 14: Cho hình chóp S.ABCD có ABCD là hình chữ nhật có AB > BC. Cạnh bên SA vuông góc với đáy; AH là đường cao của tam giác SAB. Chọn khẳng định sai trong các khẳng định dưới đây:

B.
$$BC \perp (SAB)$$

c.
$$BD \perp (SAC)$$

D.
$$AH \perp (SBC)$$

Câu 15: Nếu đồ thị hàm số $y = x^3 - 3x$ có tiếp tuyến vuông góc với đường thẳng $y = \frac{1}{2}x + \sqrt{2017}$ thì số tiếp

tuyến đó là:

Câu 16: Tính $\lim \frac{1+3^2+3^4+...+3^{2n}}{1+5+5^2+...+5^n}$?

C.
$$\frac{3}{5}$$

Câu 17: Trong không gian cho 3 đường thẳng a,b,c thỏa mãn $\begin{cases} a\perp b \\ a\perp c \end{cases}$. Chọn khẳng định đúng:

A.
$$b//c$$

B.
$$b \perp c$$

$$\mathbf{C.} \begin{bmatrix} b \equiv c \\ b//c \end{bmatrix}$$

Câu 18: Khẳng định nào sau đây đúng với phương trình $2x^3 - 3x^2 + 2 = 0$:

A.Phương trình có ít nhất một nghiệm thuộc khoảng (-1;0).

B.Phương trình có ít nhất một nghiệm thuộc khoảng (1;2).

C.Phương trình có 3 nghiệm thực phân biệt.

D.Phương trình có ít nhất một nghiệm thuộc khoảng (-2;-1).

Câu 19: Cho m là hằng số. Tính $\lim_{x\to 1} \frac{\sqrt{x+3}-2}{x^2+mx-x-m}$?

A.
$$\frac{1}{m}$$

C.
$$\frac{1}{4}$$

D.
$$\frac{1}{4(m+1)}$$

Câu 20: Cho hàm số $f(x) = \frac{x^2 - 1}{x^2 + 1}$. Tập nghiệm của phương trình f'(x) = 0 là:

A. Ø

В. Б

C. $R \setminus \{0\}$

D. {0}

Câu 21: Người ta viết xen vào giữa hai số 3 và 61 thêm mười lăm số nữa để được một cấp số cộng. Hỏi tổng tất cả các số hạng của cấp số cộng này bằng bao nhiêu?

A.543

B.542

C.544

D.545

Câu 22: Chọn khẳng định đúng trong các khẳng định sau:

A.Nếu hàm số f(x) liên tục trên [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trên (a;b)

B. Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a;b) thì hàm số f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0

C. Nếu f(x) liên tục trên [a;b] và f(a).f(b)<0 thì phương trình f(x)=0 có đúng một nghiệm trong khoảng (a;b)

D. Nếu hàm số f(x) liên tục trên [a;b] và f(a).f(b)<0 thì phương trình f(x)=0 có một nghiệm trên [a;b]

Câu 23: Tính tổng $S = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots$

Câu 24: Đạo hàm của hàm số $y = \sqrt{4x^2 + 1}$ bằng

A. $\frac{8x}{\sqrt{4x^2+1}}$ B. $\frac{4}{\sqrt{4x^2+1}}$ C. $\frac{4x}{\sqrt{4x^2+1}}$

D. $\frac{1}{2\sqrt{4x^2+1}}$

Câu 25: Đạo hàm của hàm số $y = \frac{3-4x}{2x-5}$ là:

A. $y' = \frac{7}{(2x-5)^2}$ **B.** $y' = \frac{-14}{(2x-5)^2}$ **C.** $y' = \frac{-7}{(2x-5)^2}$ **D.** $y' = \frac{14}{(2x-5)^2}$

Câu 26: Phương trình chuyển động của một chất điểm được biểu thị bởi công thức $s(t) = 3t - 5t^2$, trong đó s tính bằng mét(m),t tính bằng giây(s). Gia tốc của chất điểm tại thời điểm t = 6s bằng:

 $\mathbf{A.6}m/s^2$

B. $10m/s^2$

D. $-6m/s^2$

Câu 27: Cho $(\cos 2x - \tan 3x)' = a \cdot \sin 2x + \frac{b}{\cos^2 3x}$. Tính S = a - b

D.5

Câu 28: Cho hàm số $f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 1}, & x > 1 \\ 2x + 1, & x \le 1 \end{cases}$. Chọn khẳng định đúng:

A.Hàm số f(x) liên tục tại điểm x=1

B.Hàm số f(x) gián đoạn tại điểm x = 1 vì $\lim_{x \to 1} f(x) \neq f(1)$

C. Hàm số f(x) gián đoạn tại điểm x = 1 vì không tồn tại $\lim_{x \to 1} f(x)$

D. Hàm số f(x)không xác định tại điểm x=1

Online: tuyensinh247.com

B-TỰ LUẬN

- **Câu 1:** Cho phương trình $ax^2 + bx + c = 0$, $(a \ne 0)$ thỏa mãn 3a + 4b + 6c = 0. Chứng minh rằng phương trình luôn có nghiệm trong khoảng $\left(0; \frac{7}{8}\right)$
- **Câu 2:** Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có $AB = a\sqrt{2}$, BC = a, $SA = a\sqrt{6}$; SA vuông góc với mp(ABCD)
 - a) Tính góc giữa đường thẳng SC và mp(ABCD)
 - b) Tính khoảng cách từ A đến mp(SBD)