

AlloX: Compute Allocation in Hybrid Clusters

Tan N. Le

Xiao Sun

Mosharaf Chowdhury

Zhenhua Liu

Resource Allocation in Clusters

Resource Allocation Design Space

Interchangeability in Resources

Same applications run on different resource types

Modern Frameworks support Interchangeability

https://github.com/PaddlePaddle/Paddle https://github.com/cnnlabs

Heterogeneity in hybrid CPU/GPU Clusters

Traditional nodes

Expensive GPUs

Speed-up rates are distinct

Intel E5 2.4Ghz CPU vs. Nvidia K80 GPU

Overload if most users prefer GPUs

Expensive GPUs are overloaded while CPUs are under-utilized

Let's explore some solutions

Join the Shortest Queue (JSQ)

JSQ does not consider processing times

Shortest Job First (SJF)

SJF does not consider speed-up rates

AlloX – Minimize Avg. Completion Time

Convert the scheduling & placement

solved in polynomial time

AlloX – Maintains Fairness for interchangeable resources

User A may not be happy if we keep putting him on CPU.

Idea: Prioritize users with low fairness scores *F* who run jobs on the unfavorable resources

User 1 F-1 User 2 F-2

Performance of AlloX

DRF: Dominant Resource Fairness + FIFO Resource configurations are fixed

ES: Equal Share + SJF Keep filling the available resources

SRPT: Shortest Remaining Processing Time Impractical switching between CPU&GPU

AlloX reduces up to 95% avg. completion time

TensorFlow CNN benchmarks

AlloX: Compute Allocation in Hybrid Clusters

Tan N. Le

Xiao Sun

Mosharaf Chowdhury

Zhenhua Liu

