# Algoritmos genéticos



# Representación



### Ruleta



Probabilidad para el cromosoma m:

$$p_m = \frac{F(c_m)}{\sum_i F(c_i)}$$

Probabilidad acumulada para el cromosoma m:

$$q_m = \sum_{i=1}^m p_i$$

Se genera un r aleatorio entre  $0 \ y \ 1$ 

Se selecciona  $c_m$  que cumpla con :

$$q_{m-1} < r < = q_m$$

Torneos/Competencias



Ventanas

```
010100110111 F 0.97
111010010101 F 0.93
011001100011 F 0.89
101010101101 \(^F \) 0.85
000100101110 \xrightarrow{F} 0.77
110110100101 - 0.65
```

Ventanas



### Operadores: Cruza

Probabilidad relativamente alta ~ 0.8-0.9





### Operadores: mutación

Probabilidad relativamente baja ~ 0.1 (a nivel de individuo)



### Criterios de finalización

- Cantidad máxima de generaciones
- Fitness deseado
- Sin mejoras en el fitness por n generaciones

### Decodificación

Consideremos la cadena binaria  $z = a_1, a_2, a_3, ...a_k$ :

Queremos representar un valor real en  $[\alpha, \beta]$ :

$$d = \sum_{i=1}^{k} 2^{k-i} a_i$$

$$x = \alpha + d\frac{\beta - \alpha}{2^k - 1}$$

#### Feature selection techniques

#### Leandro Vignolo

ldvignolo@sinc.unl.edu.ar



Tópicos Selectos en Aprendizaje Maquinal Doctorado en Ingeniería, Mención en Inteligencia Computacional, Señales y Sistemas, FICH-UNL

October 5, 2023

#### Introduction

#### Feature Selection

Problem of selecting some subset of input variables upon which the learning algorithm should focus.

#### Main objetives of Feature Selection

- Avoid overfitting and improve model performance
- Counteract the curse of dimensionality
- Provide faster and more cost-effective models
- Discriminate between the relevant and irrelevant parts of experience
- ..



October 5, 2023

#### Dimensionality Reduction vs Feature Selection







Feature interaction

#### Can a feature that is useless by itself be useful with others?

- It is tempting to remove the least promising variables (variable ranking methods) before using more complex methods
- Still one may wonder whether some potentially valuable variables could be lost by that filtering process



् sınc(i)

October 5, 2023

Feature interaction

#### Can a feature that is useless by itself be useful with others?

- It is tempting to remove the least promising variables (variable ranking methods) before using more complex methods
- Still one may wonder whether some potentially valuable variables could be lost by that filtering process



् sınc(i)

October 5, 2023

Redundant features

#### Can presumably redundant variables help each other?

- Several feature selection methods are prone to select non-redundant subsets
- One my wonder wheter considering redundant variables can result in preformance improvement



् sınc(*i*)

Redundant features

#### Can presumably redundant variables help each other?

- Several feature selection methods are prone to select non-redundant subsets
- One my wonder wheter considering redundant variables can result in preformance improvement



् sınc(*i*)

#### Feature selection

Multivariate

#### Sub-optimal search

- ullet Supose m features from which we need to select a subset of l.
- ullet All the possible subsets of l out of m features should be considered to guarantee optimality.
- This number of subsets is given by  $\frac{m!}{l!(m-l)!}$

$$m = 20, \quad l = 5 \Rightarrow 15504$$

$$m = 100, l = 50 \Rightarrow 1.01e + 29$$

• Notice that here we are considering fixed l.

#### Genetic algorithms for feature selection



#### Genetic algorithms for feature selection





Binary chromosomes: every individual represents a different selection of features/group of features.

#### Algorithm: Genetic Algorithm

Initialize the population

**Evaluate population** 

repeat

Parent selection

Mate selected parents with probability  $\ensuremath{p_c}$ 

Mutate offspring with probability  $p_{m}$ 

Apply population replacement strategy

Evaluate population

until stopping criteria is met

#### Algorithm: Evaluate population

for each individual in the population do

Determine feature subset based on chromosome

Arrange data samples with feature subset

Train the classifier on the training set

Trat the classifier on the cialifing set

rest the classifier off the validation set

Compute performance to assign fitness

#### Algorithm: Genetic Algorithm

Initialize the population

**Evaluate population** 

repeat

Parent selection

Mate selected parents with probability  $p_c$ 

Mutate offspring with probability  $p_m$ 

Apply population replacement strategy

**Evaluate population** 

until stopping criteria is met

#### Algorithm: Evaluate population

for each individual in the population do

Determine feature subset based on chromosome

Arrange data samples with feature subset

Train the classifier on the training set

Test the classifier on the validation set

Compute performance to assign fitness

4 D > 4 D > 4 D > 4 D > 9 O

#### Genetic algorithms for feature selection

#### **Objective Functions**

- The objective function evaluates the feature subset.
- The classifier is trainined and tested using the selected features.
- Other measures, as dimensionality, can be included included as well.

$$Fitness = Accuracy \\$$

$$Fitness = \alpha Accuracy - \beta \frac{\# \text{ selected features}}{\# total features}$$





#### Dataset Leukemia

#### Leukemia

- Datos de expresión génica obtenidos a partir de micro-arreglos de ADN para la clasificación de dos tipos de cáncer.
- El objetivo es discriminar dos clases: ALL (Leucemia Linfocítica Aguda) y AML (Leucemia Mielógena Aguda).
- Cada muestra consiste en 7129 variables o características

|       | Train | Test | UAR  |
|-------|-------|------|------|
| ALL   | 27    | 20   |      |
| AML   | 11    | 14   |      |
| Total | 38    | 34   | 0.82 |