Software Design Specification Document

STORC DASHBOARD PROJECT

Table of Contents

1. INTRODUCTION	4
1.1 Purpose	4
1.2 Scope	5
1.3 Definitions, Acronyms, and Abbreviations	5
1.3.1 Definitions	5
1.3.2 Acronyms	5
1.3.3 Abbreviations	6
1.4 References	6
1.5 Overview of Contents of Document	6
2. ARCHITECTURAL DESIGN	6
2.1 Hardware Architecture	6
2.2 Software Design Architecture	8
2.2.1 Presentation Layer	9
2.2.2 "Business" Logic Layer	9
2.2.3 Date Management Layer	9
3. INTERFACE DESIGN	9
3.1 Feature 1: Homepage Management Interface	12
3.2 Feature 2: Project Selection Interface	12
3.3 Feature 3: Date Input Interface	13
3.4 Feature 4: Review and Submit Data Interface	13
3.5 Feature 5: Add/Remove/Edit Users Interface	13
3.6 Feature 6: View/Select Pending Data	14
3.7 Feature 7: Select/Edit Project of Station Interface	14
4. DATABASE SCHEMA	15
4.1 ERD diagram	15
4.2 Creating the database	16
5. COMPONENT DESIGN SPECIFICATIONS	20
5.1 Sequence Diagrams (Introduction)	21
5.1.1 Component 1: Add User Sequence Diagram	21
5.1.2 Component 2: Change User Permissions Sequence Diagram	21
5.1.3 Component 3: Data Input Sequence Diagram	22

5.1.4 Component 4: Edit Data Sequence Diagram	
5.1.5 Component 5: Remove Data Sequence Diagram	23
5.1.6 Component 6: Login Sequence Diagram	23
5.1.7 Component 7: Report Data Sequence Diagram	23
5.1.8 Component 8: Remove User Sequence Diagram	24
5.1.9 Component 9: Create New Project Sequence Diagram	24
5.1.10 Component 10: Add Widget Sequence Diagram	25
5.1.11 Component 11: Remove Widget Sequence Diagram	25
5.1.12 Edit Widget	26
5.2 Webpage and Function Design Specifications	26
5.2.1 Dashboard.apx	26
5.2.2 Dashboard.cs	26
5.2.3 ManageWid.aspx	26
5.2.4 ManageWid.cs	26
5.2.5 ManageUsers.aspx	27
5.2.6 ManageUsers.cs	27
5.2.7 InputData.aspx	27
5.2.8 InputData.cs	27
5.2.9 ManageData.aspx	27
5.2.10 ManageData.cs	28
5.2.11 Login.html	28
6. PERFORMANCE ANALYSIS	28
7. RESOURCE ESTIMATES	28
8. SOFTWARE REQUIREMENTS TRACEABLITY MATRIX	28
3.1 Homepage Management Interface	28
3.3 Data Input Interface,	28
3.2 Project Selection Interface	28
9. APPROVALS	29
APPENDIX A: Database tables and attributes	30
Access List Table	30
Biodiesel Station Table	30
Biodiesel DataPoint Table	31

Domain Table	33
Energy Consumption DataPoint Table	33
Fishtank_Stations Table	34
Fishtank DataPoint Table	34
Growbed Stations Table	35
Growbed DataPoint Table	35
Projects Table	36
Solar Stations table	37
Solar DataPoint Table	38
Wormbin Stations Table	39
Wormbin DataPoint Table	40
Users Table	41
APPENDIX B: Alphabetic listing of each attribute and its characteristics	42
APPENDIX C: Coding Standards	45

1. INTRODUCTION

This is the Software Design Specification document for the STORC Dashboard Project sponsored by Dr. Michael Christensen.

This project is being undertaken by the CD Jam software development team. The team is comprised of undergraduate students majoring in Computer Science at California State University, Sacramento. The team members are enrolled in a two-semester senior project course required of all undergraduate majors. Successful delivery of the desired software product will fulfill the senior project requirement for the student team members.

PROJECT SPONSOR:

Name: Michael Christensen

Title: Assistant Vice President for Risk Management Services & Director of STORC *Organization Name:* Sustainability Technology Optimization Research Center (STORC)

Contact Information:

Phone: (916) 278-5252 *Email:* storc@csus.edu

CD JAM DEVELOPMENT TEAM:

Name: Cole Culler Contact Information:

Phone: (530) 575-7683

Email: cbroski.culler@gmail.com

Name: David Grapentine Contact Information:

Phone: (707) 471-8749

Email: davidjoaograpentine@gmail.com

Name: Ashley Gregory Contact Information:

Phone: (209) 304-1884

Email: aa5gregory@gmail.com

Name: John Jones Contact Information:

Phone: (916) 475-8460

Email: felixequal@gmail.com

Name: Michael Smith Contact Information:

Phone: (916) 842-8339

Email: infinitlyill@gmail.com

1.1 Purpose

The purpose of the Software Design Specification is to describe the components, graphic user interface, and data within in the STORC Dashboard Project. This document includes diagrams, charts, and models exhibiting the interactions between STORC users, STORC/IRT Servers, and web pages. This document will also reiterate some of the aspects seen in the SRS and past documents.

1.2 Scope

The SDS will cover the components, graphic user interface, and data implemented in the STORC Dashboard Project. Other documents like the STS and SRS will explain other relationship this system has with itself and the users. Any and all schedule changes need to be made by the team as a whole. This process is explained in more depth in the Software Project Management Plan.

1.3 Definitions, Acronyms, and Abbreviations

1.3.1 Definitions

Administrator: A super user that oversees other users and the projects within STORC.

Aquaponics: A cycle between hydroponically grown plants and aquatic animals, in which the waste produced from animals supplies nutrients for plants which in turn purifies the water.

Biodiesel: A substitute for diesel created by a biological chemical reaction.

Dashboard: A collection of data laid out in an easy to read format represented in a graphical format.

Photovoltaic Cell: A device that delivers an electric current as a result of a chemical reaction from the rays of the sun.

Principal Investigator: A user that in charge one or more STORC projects and oversees one or more STORC Technicians. Principal Investigators are most often faculty or staff members at CSUS.

Public: Any user that is not directly involved with STORC or STORC activities.

Technician: A user who works on a project overseen by a PI. This user generally monitors and collects data directly from one or more project stations. These are usually student volunteers.

Vermiculture: The cultivation of worms used for composting materials.

Webmaster: This user is in charge of maintaining and updating the default web page and widgets for the STORC Dashboard Project.

1.3.2 Acronyms

CSc – Computer Science

CSUS – California State University, Sacramento

ECS – College of Engineering and Computer Science

ERD – Entity Relationship Diagram

GUI – Graphical User Interface

HTML – Hyper Text Markup Language

IRT – Information Resources and Technology

IT – Information Technology

MySQL - My Structured Query Language

PI – Principal Investigator

PMP – Software Project Management Plan

SDS – Software Design Specification

SRS – Software Requirements

STR – System Test Report

STORC – Sustainability Technology Optimization Research Center

STS - Software Test Specification

UM – User Manual

UML – Unified Modeling Language

WCM – Web Content Management

1.3.3 Abbreviations

Admin – Administrator

CSc 190: Computer Science Senior Project - Part 1

CSc 191: Computer Science Senior Project - Part 2

Tech – Technician

1.4 References

Buckley, Bob. *CSc* 190-01 Senior Project: Part 1. CSUS, Dec. 2014. Web. 22 February 2015. http://athena.ecs.csus.edu/~buckley/CSc190/CSc190.html *STORC*. CSUS STORC. n.p. Web. 22 February 2015.

http://www.csus.edu/storc/about.html

1.5 Overview of Contents of Document

There are seven different sections comprising the SDS: Architectural Design, Interface Design, Database Schema, Component Design Specifications, Performance Analysis, Resource Estimates, and the Software Requirement Traceability Matrix. Section 2: Architectural Design shows the relationship between each widget and the data being displayed based on the user's selections. Section 3: Interface Design gives an overview of the look and feel of the STORC Dashboard Project showed with prototypes of widgets and web pages. The Section 4: Database Schema shows the layout of the database and how to create new instances of projects, stations, and other related data. Section 5: Component Design Specifications explains the relationship between an action performed by the user and the files associated with these actions. Section 6: Performance Analysis introduces any issues the STORC Dashboard project may encounter with respects to performance. Section 7: Resource Estimates section discusses the cost of resources needed to setup, run and maintain the software. Section 8: Software Requirements Traceability Matrix shows and relates each function in the STORC Dashboard Projects to subsections in the SRS.

2. ARCHITECTURAL DESIGN

2.1 Hardware Architecture

The STORC Dashboard utilizes a n-tiered architecture to structure the hardware aspect of the project. The starting point is users device; which may be any electronic device that can access the internet. This device uses the internet in order to navigate to the STORC website where users can access the STORC Dashboard Project web interface (Number 1 in Figure 1). Authorized users will be able to access the STORC Dashboard Project web interface by requesting login information from IRT Servers (Number 2 in Figure 1). Here the IRT Servers will authenticate the login information of the user. If correct the IRT Server will grant

them access to get information stored STORC Database(Number 5 in Figure 1). Once granted (Number 6 in Figure 1), the STORC Server will then populate the users homepage (Number 7 in Figure 1). Once the homepage has loaded completely the user will be able to use the features of the STORC Dashboard Project (Number 8 in Figure 1).

Figure 1: Hardware Architecture – System

The STORC Dashboard Project will incorporate sensors that report vital information about projects being conducted at STORC. This data will be stored in the STORC Database (Number 1 in Figure 2). The STORC Server will sync with an IRT Server (Number 2 in Figure 2) and transfer the data to the STORC Database, which is located on the IRT Server (Number 3 in Figure 2).

Figure 2: Hardware Architecture - Sensor

2.2 Software Design Architecture

The STORC Dashboard project is based of a simple MVC model (See Figure 3).

Figure 3: Software Design Architecture

2.2.1 Presentation Layer

In order to present the data STORC collects to the public, we will be using various forms of widgets that will be displayed on a public website. STORC employees such as PI's and Tech's will have access to a customizable website where they can change the data displayed by the widgets to meet their needs. There will be many types of widgets that will be used to display the data including, pie charts, histograms, bar graphs, and spreadsheets. Each STORC Employee will be able to customize their own webpage, in which they can layout the series of widgets to suit each of their individual needs. To manage the data collected, users have access to change the information stored in the database in case a mistake was made or a sensor become faulty. In order to do this the user will use a GUI customized to only change the data for the projects are working on.

2.2.2 "Business" Logic Layer

Our team is using the ASP.NET framework which utilizes C# and Javascript to implement the business rules set forth by our sponsor. Since the software is web-form based the Business Layer bridges the web-form and the MSSql database. This layer is written in C# in order to utilize the power of the language and to create customizable widgets which can be modified in real time.

2.2.3 Date Management Layer

We will be taking advantage of the fact that the ASP.NET framework has built in database management controls, compatible with a variety of database management systems. Our DBMS will be Microsoft SQL Server. The ASP.NET Server Controls within the ASP.NET framework will be able to create, remove, update, and delete data with in the database, when users enter or edit the information that has been collected on-site at STORC. Users will manipulate this data via the data entry view mentioned previously in the presentation layer. The Microsoft SQL server database will be maintained on campus by the Information Resource and Technology department.

3. INTERFACE DESIGN

Figure 4: Interface Design

Feature	Description	Webpages
Homepage	1.Customize Widget - Right clicking on one of the	Dashboard.html,
Management	widgets, the user will be presented with menus and	Dashboard.cs,
Interface	dropdowns that can change the widget's data source(s),	Dashboard.js,
	widget's chart type, colors, and other relevant settings.	Dashbard.aspx
	2. Delete Widget - Clicking the X-icon in the top right	
	corner of the widget, the widget can be deleted. There	ManageWid.html,
	will most likely be a prompt to verify the user's decision	ManageWid.cs,
	before this widget deletion.	ManageWid.js,
	3. Add New Widget - By clicking the Add New Widget	ManageWid.aspx
	button, the user will be prompted for widget data sources,	
	chart type, color, and other relevant settings. After	EditWid.html,
	configuring the new widget's settings, a new widget will	EditWid.cs,
	be added to the dashboard which the user can position	EditWid.js,
	and resize as they see fit.	EditWid.aspx
	4. Move/Resize Widget - Moving and resizing a widget	
	could be as simple as selecting the upper right corner of	DeleteWid.html,
	the widget and dragging and panning to resize and situate	DeleteWid.cs,
	the widget on the dashboard. It is likely that automatic	DeleteWid.js,
	snap functionality will be included to make this	DeleteWid.aspx
	supporting feature more user-friendly.	
	5.Create New Project Tab	ManageData.html,
		ManageData.cs,
		ManageData.js,
		ManageData.aspx
		ManageUsers.html,

		Managel Igars as
		ManageUsers.cs,
		ManageUsers.js,
D	1.01 . D	ManageUsers.aspx
Project	1. Select Project and Station - Users will select individual	ManageData.html,
Selection	projects and stations that require manual input of data.	ManageData.cs,
Interface	Once selected they can proceed to the input form.	ManageData.js,
		ManageData.aspx
		ManageUsers.html,
		ManageUsers.cs,
		ManageUsers.js,
		ManageUsers.aspx
Data Input	1. The user will be presented with a single row to fill out.	InputData.html,
Interface	This row will automatically show the column categories	InputData.cs,
	to make it easier to correlate a user's written data with	InputData.js,
	the data to be entered. Once a row has been filled, a new	InputData.aspx
	row could automatically be generated to improve data	
	entry flow.	
Review and	Once the user has finished filling out the input form, they	InputData.html,
Submit Data	will be able to review all data they have inputted and	InputData.cs,
Interface	then submit the data to the Principal Investigator for	InputData.js,
	approval.	InputData.aspx
Add/Remove/	1. Select between Add User, Delete User, Edit	ManageUsers.html,
Edit Users	Permissions - A list of all current users could be filtered	ManageUsers.cs,
Interface	and added to an edit list. All users on the edit list would	ManageUsers.js,
	then be affected by any changes the admin or PI selects.	ManageUsers.aspx
	2. Add or Remove Permissions or Access - A series of	
	dropdown boxes and buttons could add or remove access	
	to each user on the edit list. These changes would be	
	shown in the list on the right for clarity.	
	3. Undo Changes	
View/Select	1. View and Select Pending Data - By clicking on a	InputData.html,
Pending Data	particular user submission, the data for that submission	InputData.cs,
	could be viewed beneath in a separate window. Once	InputData.js,
	this data has been checked for errors and committed, a	InputData.aspx
	check mark could indicate that this particular	
	technician's submission has been completed. The Admin	
	or PI could then move on to the next item.	
	2. Edit, Reject, or Commit	
Select/Edit	1. Select Project and Station to Edit - An Admin or PI	ManageData.html,
Project or	could directly correct erroneous data in the database by	ManageData.cs,
Station	selecting a particular data set from a project and station.	ManageData.js,
Interface	This would populate the data below in a simple to read	ManageData.aspx
	table.	
	2. Edit Data - Admins or PIs could edit any field by using	
	a simple click and edit interface, much like Excel. Once	
	, , , , , , , , , , , , , , , , , , , ,	l .

the data is correct, the Admin or PI could commit this data back into the database.

3.1 Feature 1: Homepage Management Interface

Figure 5: Homepage Management Interface

3.2 Feature 2: Project Selection Interface

Figure 6: Project Selection Interface

Users will select individual projects and stations that require manual input of data. Once selected they can proceed to the input this data in a form which can be accessed from the user's webpage.

3.3 Feature 3: Date Input Interface

Figure 7: Data Input Interface

3.4 Feature 4: Review and Submit Data Interface

Figure 8: Review and Submit Data Interface

3.5 Feature 5: Add/Remove/Edit Users Interface

Figure 9: Add/Remove/Edit Users Interface

3.6 Feature 6: View/Select Pending Data

Figure 10: View/Select Pending Data

3.7 Feature 7: Select/Edit Project of Station Interface

Figure 11: Select/Edit Project or Station Interface

4. DATABASE SCHEMA

4.1 ERD diagram

Figure 12: ERD Diagram

Figure 13: Project: Fish Tank - Data Point

Figure 14: User - Project

4.2 Creating the database

```
CREATE TABLE Domains (
      DomainID INT PRIMARY KEY NOT NULL,
      DomainID INT NOT NULL,
      Domain Name VARCHAR (50) NULL,
      Domain Description VARCHAR (max) NULL
)
CREATE TABLE Projects (
      ProjectID INT PRIMARY KEY NOT NULL,
      DomainID INT NOT NULL FOREIGN KEY REFERENCES Domains(DomainID),
      Project Name VARCHAR (50) NULL,
      Project description VARCHAR (max) NULL,
      Principal Investigator VARCHAR (50) NULL,
      DATE Created DATE NULL,
      number of users INT NULL
)
CREATE TABLE Access List (
      ProjectID INT NOT NULL FOREIGN KEY REFERENCES Projects(ProjectID),
      UserID INT NOT NULL FOREIGN KEY REFERENCES Users(UserID),
      Permissions VARCHAR (50) NULL,
      CONSTRAINT pk PersonID PRIMARY KEY (ProjectID, UserID)
)
```

```
CREATE TABLE Biodiesel Stations (
      biodieselID INT PRIMARY KEY NOT NULL,
      ProjectID INT NOT NULL FOREIGN KEY REFERENCES Project(ProjectID),
      Location VARCHAR (50) NULL,
      Last Maintenance Date VARCHAR (max) NULL
CREATE TABLE Fishtank Stations (
      FishtankID INT PRIMARY KEY NOT NULL,
     ProjectID INT NOT NULL FOREIGN KEY REFERENCES Project(ProjectID),
     Location VARCHAR (50) NULL,
      Name VARCHAR(50) NULL
      Size FLOAT NULL,
     Type of Fish VARCHAR(5) NULL,
     Last Maintenance Date VARCHAR (max) NULL
)
CREATE TABLE Power Meter Stations (
      MeterID INT PRIMARY KEY NOT NULL,
     ProjectID INT NOT NULL FOREIGN KEY REFERENCES Project(ProjectID),
      Source VARCHAR(50),
     Last Maintenance Date VARCHAR (max) NULL
)
CREATE TABLE Growbed Stations (
     GrowbedID INT PRIMARY KEY NOT NULL,
      ProjectID INT NOT NULL FOREIGN KEY REFERENCES Project(ProjectID),
     Location VARCHAR (50) NULL,
     Name VARCHAR(50) NULL
      SoilType VARCHAR(50) NULL,
     Types of Greens
                      VARCHAR(5) NULL,
     Last Maintenance Date VARCHAR (max) NULL
)
CREATE TABLE Wormbin Stations (
      WormbinID INT PRIMARY KEY NOT NULL,
      ProjectID INT NOT NULL FOREIGN KEY REFERENCES Project(ProjectID),
     Location VARCHAR (50) NULL,
     Name VARCHAR(50) NULL
     Initial Number of Worms INT NULL,
     Volume Empty
                    FLOAT NULL,
     Last Maintenance Date VARCHAR (max) NULL
)
```

```
CREATE TABLE Solar Stations (
      SolarID INT PRIMARY KEY NOT NULL,
      ProjectID INT NOT NULL FOREIGN KEY REFERENCES Project(ProjectID),
      Location VARCHAR (50) NULL,
      Panel Type VARCHAR(50) NULL,
      Energy Cells INT NULL,
      Number of Panels INT NULL,
      Last Maintenance Date VARCHAR (max) NULL
)
CREATE TABLE Users(
      UserID INT PRIMARY KEY NOT NULL,
      First Name VARCHAR(50) NULL,
      Last Name VARCHAR(50) NULL,
      Phone Number INT NULL
      User Type VARCHAR(50) NULL,
      Profile Settings BLOB NULL
)
CREATE TABLE Biodiesel DataPoint (
      dataID INT PRIMARY KEY NOT NULL,
      stationID INT NOT NULL FOREIGN KEY REFERENCES
      Biodiesel Stations(BiodieselID),
      Methanol Used FLOAT NULL,
      Potassium Hydroxide Used FLOAT NULL,
      Batch Finish date DATE NULL,
      Batch Number INT NULL,
      Batch Run INT NULL,
      Conversion Efficiency INT NULL,
      Cost Kitchen Oil FLOAT NULL,
      Cost Waste Disposal FLOAT NULL,
      Energy in FLOAT NULL,
      Final Quality INT NULL,
      Man Hours INT NULL,
      Market Price FLOAT NULL,
      Processing Time TIME NULL
      )
CREATE TABLE Energy Consumption DataPoint (
      dataID INT PRIMARY KEY NOT NULL,
      stationID INT NOT NULL FOREIGN KEY REFERENCES
      Power Meter Stations(MeterID),
      Cost per KWHr FLOAT NULL,
      Date DATE NULL,
      Kwhr FLOAT NULL,
      Time TIME NULL
```

```
)
CREATE TABLE Fishtank DataPoint (
      dataID INT PRIMARY KEY NOT NULL,
      stationID INT NOT NULL FOREIGN KEY REFERENCES
     Fishtank Stations(FishtankID),
     Number of Fish INT NULL,
      Ammonia Concentration FLOAT NULL,
     O2 Concentration FLOAT NULL,
     Temp FLOAT NULL,
     Time TIME NULL,
     Date DATE NULL
)
CREATE TABLE Growbed DataPoint (
      dataID INT PRIMARY KEY NOT NULL,
     stationID INT NOT NULL FOREIGN KEY REFERENCES
     Growbed Stations(GrowbedID),
     Humidity FLOAT NULL,
      Temp FLOAT NULL,
     Number of Greens INT NULL,
     Production Rate FLOAT NULL,
     Time TIME NULL,
     Date DATE NULL
)
CREATE TABLE Solar_DataPoint (
     dataID INT PRIMARY KEY NOT NULL,
      stationID INT NOT NULL FOREIGN KEY REFERENCES Solar Stations(SolarID),
     KWHr FLOAT NULL,
     Light Meter Reading FLOAT NULL,
     Temp FLOAT NULL,
     Time TIME NULL,
     Date DATE NULL
)
CREATE TABLE Wormbin DataPoint (
      dataID INT PRIMARY KEY NOT NULL,
      stationID INT NOT NULL FOREIGN KEY REFERENCES
      Wormbin Stations(WormbinID),
      Bed Moisture Concentration FLOAT NULL,
      Volume Produced FLOAT NULL,
     Temp FLOAT NULL,
     Time TIME NULL,
     Date DATE NULL
)
```

5. COMPONENT DESIGN SPECIFICATIONS

	Use Case Com	ponents	Database
Feature	Webpage	Use Case	Table/Relations
Manage Data	ManageData.html	UC1. Manage Data	
	ManageData.cs		
	ManageData.js		
	ManageData.aspx		
Manage Users	ManageUsers.html	UC2. Manage Users	
	ManageUsers.cs		
	ManageUsers.js		
	ManageUsers.aspx		
Input Data	InputData.html	UC3. Input Data	
	InputData.cs		
	InputData.js		
	InputData.aspx		
Customize	ManageWid.html	UC4. Customize	
Dashboard	ManageWid.cs	Dashboard	
	ManageWid.js		
	ManageWid.aspx		
	AddWid.html		
	AddWid.cs		
	AddWid.js		
	AddWid.aspx		
	EditWid.html		
	EditWid.cs		
	EditWid.js		
	EditWid.aspx		
	DeleteWid.html		
	DeleteWid.cs		
	DeleteWid.js		
	DeleteWid.aspx	77.05 7	
Login	Login.html	UC5. Login	
	Login.js		

CD Jam will be using the coding standards stated in *APPENDIX C: Coding Standards* in order to code the STORC Dashboard Project. Many of these standards have been compiled from individual group knowledge obtained while working for internships, knowledge from classes at CSUS, and rules the Sponsor as well as CD Jam deem important for code maintainability.

5.1 Sequence Diagrams (Introduction)

5.1.1 Component 1: Add User Sequence Diagram

Figure 15: Add User

5.1.2 Component 2: Change User Permissions Sequence Diagram

Figure 16: Change User Permissions

5.1.3 Component 3: Data Input Sequence Diagram

Figure 17: Data Input

5.1.4 Component 4: Edit Data Sequence Diagram

Figure 18:Edit Data

5.1.5 Component 5: Remove Data Sequence Diagram

Figure 19: Remove Data

5.1.6 Component 6: Login Sequence Diagram

Figure 20: Login

5.1.7 Component 7: Report Data Sequence Diagram

Figure 21: Report Data

5.1.8 Component 8: Remove User Sequence Diagram

Figure 22: Remove User

5.1.9 Component 9: Create New Project Sequence Diagram

Figure 23: Create New Project

5.1.10 Component 10: Add Widget Sequence Diagram

Figure 24: Add Widget

5.1.11 Component 11: Remove Widget Sequence Diagram

Figure 25: Remove Widget

5.1.12 Edit Widget

Figure 26: Edit Widget

5.2 Webpage and Function Design Specifications

5.2.1 Dashboard.apx

Preconditions: User navigates to the STORC webpage

Interface: STORC Dashboard website default homepage Processing Specifications: Load all default widgets on homepage

Screen Print: Prints all widgets and homepage to the screen

Database Requirements: None

Postconditions: User leaves the webpage

5.2.2 Dashboard.cs

Preconditions: User navigates to the STORC webpage Interface: STORC Dashboard website default homepage

Processing Specifications: Handles backend of homepage management

Screen Print: None

Database Requirements: Query database for data required by the widgets

Postconditions: None

5.2.3 ManageWid.aspx

Preconditions: User navigates to the STORC web page and user must be

logged in

Interface: Widget Management Interface

Processing Specifications: Request all user's widgets

Screen Print: Show all widgets for the user

Database Requirements: Handled by ManageWid.cs

Postconditions: User leaves webpage

5.2.4 ManageWid.cs

Preconditions: User must access the application Interface: The component doesn't provide interface

Processing specifications: Handles backend widget management

Screen print: None

Database requirements: The user must have a widget

Postconditions: Widget is updated

5.2.5 ManageUsers.aspx

Preconditions: User must access application and be authorized to manage

users

Interface: Manage User Interface Processing Specifications: None

Screen Print: Display all users that are manageable

Database Requirements: Managed by ManageUsers.aspx

Postconditions: Dashboard Homepage is displayed

5.2.6 ManageUsers.cs

Preconditions: User accessed application and is authorized to manage

users

Interface: The component doesn't provide an interface

Processing Specifications: The component handles backend user

management

Screen Print: None

Database Requirements: Access to User tables Postconditions: ManageUsers.aspx is updated

5.2.7 InputData.aspx

Preconditions: User must access application and be authorized to input

project data

Interface: Data Input Webform

Processing Specifications: Request data to be stored in Input Data Queue

Screen Print: Show confirmation page

Database Requirements: None

Postconditions: Refresh Dashboard Homepage

5.2.8 InputData.cs

Preconditions: User accesses application and is authorized to input project

data

Interface: This component doesn't provide an interface Processing Specifications: Add data to the Input Queue

Screen Print: None

Database Requirements: Access to Input Queue

Postconditions: Refresh InputData.aspx

5.2.9 ManageData.aspx

Preconditions: User accesses application and is authorized to manage

project data

Interface: Data Management Interface

Processing Specifications: None

Screen Print: Displays a revised data table

Database Requirements: Handled by ManageData.cs Postconditions: User returns to Dashboard Home

5.2.10 ManageData.cs

Preconditions: User accesses application and is authorized to manage project data

Interface: This component doesn't provide an interface

Processing Specifications: Queries project tables for data management

Screen Print: None

Database Requirements: Access to specified project tables

Postconditions: Updates ManageData.aspx

5.2.11 Login.html

Preconditions: Users not logged in, connected to a network

Interface: Login Screen

Processing Specifications: Queries Saclink Database Screen Print: Confirmation Page and/or Error Message Database Requirements: Saclink Database must be running

Postconditions: None

6. PERFORMANCE ANALYSIS

The most relevant performance constraints affecting our project relates to speed. Each widget will receive data from the server and create graphs based on the user's preferences. Performing these computations and creating graphs takes time and resources. In order to reduce the amount of time and increase throughput, CD Jam will make efforts to reduce the traffic on the STORC servers. This is done by using a server to perform heavy operations such as widget graphic generation, data validation, and look-and-feel configuration. The client side portion of the STORC Dashboard project will focus on the look and feel of the web pages and widgets, thus avoiding unnecessary server CPU and RAM load.

Due to budget constraints STORC will no longer use sensors to monitor projects. Without sensors, all data must be entered manually by students or staff members. This makes it impossible to show real-time data.

7. RESOURCE ESTIMATES

IRT will host the STORC Dashboard Project. The web content and database should require no more 500GB of storage space. If more space in needed later, incoming Senior Project classes can expand the size of the database. In the future STORC may add in sensors and data collection will become more of an automatic process.

8. SOFTWARE REQUIREMENTS TRACEABLITY MATRIX

	Associations (Sections)					
Feature	SDS	SRS				
Manage Data	3.1 Homepage Management Interface	2.3.4 UC-3 Manage Data				
	3.4 Review and Submit Data Interface					
Manage Users	3.5 Add/Remove/Edit Users Interface	2.3.3 UC-2 Manage Users				
Input Data	3.3 Data Input Interface,	2.3.2 UC-3 Input Data				
	3.6 View/Select Pending Data					
Customize	3.2 Project Selection Interface	2.3.1 UC-4 Customize				
Dashboard	3.7 Select/Edit Project or Station Interface	Dashboard				
Login	Not Shown Configured by IRT	Not Shown Configured by IRT				

9. APPROVALS

By signing you agree that all conditions and commitments to the project are accurate to the best of your knowledge. I certify that the information in this Software Project Management Plan is correct and the senior project group *CD Jam* can continue on with the design of the project. I also certify that I will follow and provide all needing requirements stated in this document and that I am willing to follow through with all conditions.

CD Jam Team member	s:	
X	X	
Cole Culler	David Grapen Project Lead	tine
X	X	
Ashley Gregory	John Jones	
<u>></u>	(<u></u>
Mi	chael Smith	
Faculty Advisor:		
X		
Ying Jin Faculty Advisor		

APPENDIX A: Database tables and attributes

Access List Table

Element	Description	How it is Set	How it is Used	Value Type	List of Discrete Values	Range
Permissions	Limits access of users	User input	Sets user permissions in the application	Integer	Must be 9 digits long	0-9
Project ID	A project's unique ID	Automatically by database	identifies specific projects	Integer	Must be 9 digits long	0-9
User ID	A user's unique ID	Acquired from CSUS ID	identifies specific users	Integer	Must be 9 digits long	0-9

Biodiesel Station Table

Element	Description	How it is Set	How it is Used	Value Type	List of Discrete Values	Range
Date Online	Date a station came online	Manually entered by database manager	Monitors a station's uptime	Date	N/A	N/A
Last Maintenance Date	The last data the station was maintained	Manually entered by the user	Monitors maintenance schedule	Date	N/A	N/A
Location	Location of the Biodiesel Station	Manually entered by database manager	Stores the location of the project	varchar(30)	N/A	A-Z, a-z
Project ID	A project's unique identification	Created by database	Used to identify specific projects	Integer	N/A	N/A
Station ID	A station's unique identification	Created by database	Used to identify specific stations	Integer	N/A	N/A

Biodiesel DataPoint Table

Element	Description	How it is	How it is Used	Value	List of Discrete	Danga
Element	Description	Set	How it is Used	Type	Values	Range
Amount of Methanol Used	Contains the amount of methanol used	Manually by user	Used as a factor to determine the sustainability of a project	Float	N/A	N/A
Amount of Potassium Hydroxide Used	Contains the amount of Potassium Hydroxide used	Manually by user	Used as a factor to determine the sustainability of a project	Float	N/A	N/A
Batch Finish Date	Lists the date when a batch of biodiesel finished production	Manually by user	Used to show date biodiesel batch finished production	Date	N/A	N/A
Batch Number	Used to identify the batch number of biodiesel produced	Manually by user	Keeps track of the biodiesel produced by a biodiesel station	Integer	N/A	N/A
Batch Run	Used to identify the batch run of biodiesel produced	Manually by user	Keeps track of the biodiesel produced by a biodiesel station	Integer	N/A	N/A
Conversion Efficiency	Shows the energy used to produced the biodiesel per gallon of fuel	Manually by user	Used to show how efficient it is to make biodiesel	Integer	Must be a single digit	1-10
Cost of Kitchen Waste Oil	Cost to purchase kitchen waste oil	Manually by user	Used as a factor in sustainability calculations	Float	N/A	N/A
Cost of Waste Disposal	Cost to dispose of all waste produced in the biodiesel making process	Manually by user	Used as a factor in sustainability calculations	Float	N/A	N/A
Datapoint ID	ID of the data point	Createf by database	Used to identify specific projects	Integer	N/A	N/A
Energy Required to produce Biodiesel	The overall amount of energy needed to produce biodiesel	Manually by user	Used as a factor in sustainability calculations	Float	N/A	N/A

Final Quality	Grade of the quality of diesel produced	Manually by user	Used as a factor in optimization calculations	Integer	Must be a single digit	1-10
Man-hours	Man hours spent on a project	Manually by user	Used as a factor in sustainability calculations	Integer	N/A	N/A
Market Cost of Biodiesel	The market cost per gallon of biodiesel	Manually by user	Used as a factor in sustainability calculations	Float	N/A	N/A
Station ID	A station unique identification	Created by database	Used to identify specific stations	Integer	N/A	N/A
Total Processed Time	Total time needed to produced a batch of biodiesel	Entered in by a user manually	Total amount of time spend producing a batch of biodiesel	Time	N/A	N/A
Volume Biodiesel Produced	The amount of biodiesel produced, measured in gallons	Entered in by a user manually	The measurement in gallons of the amount of biodiesel produced	Float	N/A	N/A
Volume Kitchen Waste Oil Collected	The amount of kitchen oil waste used in production of biodiesel	Entered in by a user manually	The measurement in gallons of the amount of kitchen oil used in the production batch of biodiesel	Float	N/A	N/A
Volume Kitchen Waste Oil Produced	The waste of the kitchen oil left after the production of biodiesel	Entered in by a user manually	The measurement in gallons of the amount of kitchen oil waste produced in the production batch of biodiesel	Float	N/A	N/A
Volume Waste Produced	The total amount of waste produced in the biodiesel making process	Entered in by a user manually	The amount of waste produced in the overall production of a batch of biodiesel	Float	N/A	N/A

Domain Table

Element	Description	How it is Set	How it is Used	Value Type	List of Discrete Values	Range
Domain Description	A domain is a group of projects.	Manually by PI	Short description explaining the domain	String	N/A	N/A.
Domain ID	A unique ID for	Automatically by database	Uniquely identifies the domain.	Int	N/A	N/A
Domain Name	This will be the actual name for each domain.	Manually by PI	This will be used to identify each domain.	Varchar	N/A	N/A

Energy Consumption DataPoint Table

Element	Description	How it is Set	How it is Used	Value Type	List of Discrete Values	Range
Domain Description	A domain is a group of projects.	Manually by PI	Short description explaining the domain	String	N/A	N/A.
Domain ID	A unique ID for	Automatically by database	Uniquely identifies the domain.	Int	N/A	N/A
Domain Name	This will be the actual name for each domain.	Manually by PI	This will be used to identify each domain.	Varchar	N/A	N/A

Fishtank_Stations Table

Element	Description	How it is Set	Value Type	List of Discrete Values	Range
Initial Number of Fish	Number of fish in the tank when project is set up	User Input	Int	N/A	N/A
Location	tion The location of the tank within the STORC site		Varchar	N/A	N/A
Name	Name of the tank	User Input	Varchar	N/A	N/A
Project ID	Number that identifies the project	Database default	int	N/A	N/A
Size	The size of the tank in gallons	User input	Float	N/A	N/A
Tank ID	Number that identifies the tank	Database default	int	N/A	N/A
Type of Fish	The types of fish in the tank	User Input	Varchar	N/A	N/A

Fishtank DataPoint Table

Element	Description	How it is Set	Value Type	List of Discrete Values	Range
Datapoint ID	Number that identifies the data point	Database default	Int	N/A	N/A
Date	The date the data point was captured.	User Input	Date	N/A	1000-01-01 to 9999-12- 31
Number of Fish	The number of fish currently in the tank	User Input	Int	N/A	N/A
Tank Ammonia Concentration	Concentration of Ammonia that is in the tank	Sensor Input	Float	N/A	N/A
Tank ID	Number that identifies the tank ID	Database Default	Int	N/A	N/A
Tank O ₂ Concentration	Amount of O ₂ concentration in the tank	Sensor Input	Float	N/A	N/A
Tank Temperature	The tank temperature	Sensor Input	Float	N/A	N/A
Time	The time the data point was captured	User Input	Time	N/A	-838:59:59 - 838:59:59

Growbed Stations Table

Element	Description	How is it set	How is it used	Value Type	Discrete Values	Range
Bed ID	Number to distinguish grow beds	user input	Used to distinguish multiple grow beds	int	N/A	N/A
Date Online	Date when grow bed project begins	user input	Used to specify range for analytics	Date	N/A	1000-01-01 to 999-12-31
Location	The STORC location of grow bed project	user input	Maintenance and alerts	Varchar	N/A	N/A
Project ID	Number to distinguish projects	automatically	Used to distinguish between multiple projects	Int	N/A	N/A
Soil Type	The type of soil used in grow bed	user input	Used in grow bed calculations	Varchar	N/A	N/A
Types of Greens	Type of greens produced in grow bed	user input	Used in grow bed calculations	Varchar	N/A	N/A

Growbed DataPoint Table

Element	Description	How is it set	How is it used	Value Type	Discrete values	Range
Bed ID	Number to distinguish grow beds	user input	Used to distinguish multiple grow beds	Int	N/A	N/A
Datapoint ID	Number to distinguish data entries	automatically	Used to distinguish multiple data entries	Int	N/A	N/A
Date	Date that the data point is recorded	automatically	used to specify date range for analytics	Date	N/A	1000-01-01 to 999-12-31

Greenhouse Humidity	Measurement of Humidity at grow bed location	user input	Used as a factor in growth rate calculations	Float	N/A	N/A
Greenhouse Temperature	Measurement of Temperature at grow bed location	user input	Used as a factor in growth rate calculations	Float	N/A	N/A
Number of Greens	Number of greens units produced	user input	Used as a factor in growth rate calculations	Int	N/A	N/A
Production Rate	The rate at which greens are produced	user input	referenced for grow bed analytics	Int	N/A	N/A
Time	Time data point is recorded	automatically	Used to specify time grow bed data point is recorded	Time	N/A	-838:59:59 To 838:59:59

Projects Table

Element	Description	How it is Set	How it is Used	Value Type	List of Discrete Values	Range
Project ID	Unique ID for the Project.	Automatically by database	Uniquely identifies project	Int	N/A	N/A
Domain ID	Unique ID for the domain	Automatically by database	Uniquely identifies domain	Int	N/A	N/A
Project Name	Name of project	Manually by PI	This is used to quickly find a particular project from the table.	Varchar	N/A	N/A
Project Description	Short description of project	Manually by PI	Short description of project	Varchar	N/A	N/A
Principal Investigator	Each project will have a PI. This information must go in the project table.	The webmaster will enter the PI information.	identifies project PI	Varchar	N/A	N/A
Date Created	This will describe when a particular project is created.	This will be manually entered by a database manager	Keeps track of particular project was created	Int	N/A	N/A

Number of Users	This will describe how many users are assigned to a certain project.	This will automatically be generated each time a user is added.	Keeps track of number of users per project	Int	N/A	N/A	
--------------------	--	---	--	-----	-----	-----	--

Solar Stations table

Element	Description	How it is Set	How it is Used	Value Type	List of Discrete Values	Range
Date Online	This information displays the date that each solar panel goes online	This data will be entered manually by PI or webmaster	This data will help users know when a certain solar panel went online	Int	N/A	N/A
Energy Cells	This data will keep track of all of the energy cells involved with thermal heat transfer	This data will be entered manually by either the PI or database manager.	This data is used solely to keep track of the energy cells used for each project	Int	N/A	N/A
Location	Location data pertains to the location of each solar unit	Manually entered by PI	Used to keep track of station locations	Varchar	N/A	N/A
Number of Panels	This data portrays the amount of panels at STORC	PI's will enter this data manually	This data is used to show people at STORC the number of solar panels in use	Int	N/A	N/A
Panel Type	This will show users what type of solar panels being used for a particular project	PI's or database manager will manually create this data	This data is used to inform the user of the type of panel being used	Varchar	N/A	N/A
Project ID	This data is used to identify a particular project	Automatically by database	This data is used to organize and identify the various projects related to solar heat transfer	Int	N/A	N/A
Station ID	Unique ID for Solar Thermal Station	Automatically by database	Uniquely identifies station	Int	N/A	N/A

Solar DataPoint Table

Element	Description	How is it set	How is it used	Value Type	Discrete values	Range
Ambient Temperature	The local ambient atmospheric temperature	User input	put To be able to do calculations that my require the outside temperature		N/A	N/A
Datapoint ID	Number to distinguish solar power data entries	Automatically	Used to distinguish multiple solar power data entries	Int	N/A	N/A
Date	Date that the data point is recorded	Automatically	Used to specify date range for analytics	Date	N/A	1000-01- 01 to 999-12-31
Kilowatts per Hour	Amount of energy consumed by STORC	User input	Used to track STORC sustainability. Contrasted against STORC energy produced	Float	N/A	N/A
Light Meter Reading	Measurement of amount of light hitting solar panel	User input	Used whenever widget references the value	Float	N/A	N/A
Station ID	Number to distinguish different stations	Automatically	Used to distinguish multiple stations	Int	N/A	N/A
Time	Time data point is recorded	Automatically	Used to specify time solar power data point is recorded	Time	N/A	-838:59:59 To 838:59:59

Wormbin Stations Table

WOIII	Wormbin Stations Table							
Element	Description	How it is Set	How it is Used	Value Type	List of Discrete Values	Range		
Bin ID	This is used to identify the different worm bins on site.	Automatically by database	Bin ID is used to identify each individual bin at STORC.	Int	N/A	N/A		
Initial Number of Worms	This number represents the initial number of worms for a particular bin.	This will be manually entered by the database manager	This is used solely to keep track of the original number of worms in a bin.	Int	N/A	N/A		
Location	This will describe where each bin is located at STORC.	This information will be entered manually by the database manager	This will be used periodically to notify users where each bin is	Varchar	N/A	N/A		
Name	This will identify a name for each individual worm bin	This information is setup manually by the database manager	The bin name is used to identify each individual bin at STORC	Varchar	N/A	N/A		
Project ID	This data is used to identify each worm bin project	Automatically by database	This set of data is used to identify each project associated with the worm bins	Int	N/A	N/A		

Size	This data specifies the size of each worm bin	This is manually entered by either the webmaster or database	This data is used to inform users how many gallons large each worm		N/A	N/A
		manager	bin is			
Volume Empty	This data shows the volume of the bin	This is manually entered when creating the project	This data is used to show the initial volume of the worm bin when they are empty	Float	N/A	N/A

Wormbin DataPoint Table

Element	Description	How is it set	How is it used	Value Type	Discrete Values	Range
Bed Moisture Concentration	Measurement of worm bin moisture	User input	Used in vermicomposting calculations	Float	N/A	N/A
Bed Temperature	Measurement of worm bin temperature	User input	Used in vermicomposting calculations	Float	N/A	N/A
Bin ID	Number to distinguish worm bins	Automatically by database	Used to distinguish multiple worm bins	Int	N/A	N/A
Datapoint ID	Number to distinguish data entries	Automatically	Distinguishes multiple data entries	Int	N/A	N/A
Date	Date that the data point is recorded	Automatically	used to specify date range for analytics	Date	N/A	1000-01-01 to 999-12-31
Time	Time data point is recorded	Automatically	Used to specify time grow bed data point is recorded	Time	N/A	-838:59:59 To 838:59:59
Volume Produced	The volume of vermicomposting produced	user input	Used in vermicomposting calculations	Float	N/A	N/A

Users Table

Element	Description	How is it set	How is it used	Value Type	Discrete Values	Range
First Name	The first name of a student.	Manually by PI	This data is used to identify a certain user.	Varchar	N/A	N/A
Last Name	The last name of a student.	Manually by PI	This data is used to identify a certain user.	Varchar	N/A	N/A
Phone Number	The phone number entered is associated with the individual student.	Manually by PI	This data will also be used to identify and contact users.	Varchar	N/A	N/A .
Profile Settings	This entails the organization and types of widgets in the dashboard.	Any user with access to the dashboard will be able to save their settings.	This will be used to save the way the dashboard looks for the user.	BLOB	N/A	N/A
User ID	Sacramento State Identification number will be attached to each student.	Manually by PI	This is another form of identification for the user.	Int	N/A	N/A
User Type	This will describe the type of access the user will have in the dashboard.	Manually by PI or Admin	This is used to identify the type of access the user has in the dashboard.	Varchar	N/A	N/A

APPENDIX B: Alphabetic listing of each attribute and its characteristics

Table Name	Descriptions	How it is Set	How it is Used	Expected Growth of Records	Record Size in Bytes
Access List	Links a user to a STORC Project and sets their permissions	Set manually by an administrator	The permissions coupled with the User ID and Project ID limits each user to their list of projects	The records a will grow and shrink each semester. There will be at most 60 people	12 bytes
Biodiesel Data Point	The daily activities that STORC employees undergo are recorded here	Manually by STORC employees	This data is closely monitored by STORC users in order to measure the level of sustainability	The record of data points will constantly be growing as the number of projects increase	82 bytes
Biodiesel Station	Links users to a specific biodiesel station and project	Either the PI or webmaster will manually enter this data	This data is used to help STORC employees keep track of the different biodiesel stations	The record of data will grow as biodiesel projects are added and decrease as projects finish their course	54 bytes
Domain	Consists of all project types/domains	Entered manually by webmaster	Links specific projects to appropriate project domain	Expected rate of growth should be low	8034 bytes
Energy Consumption Data	This data describes how much energy STORC is pulling from the grid of Sacramento	This data will be automatically entered. After the servers record the information, the back end program will	Energy consumption data is used to give STORC employees an idea of their level of sustainability	Kilowatts per hour and cost per kilowatt per hour will fluctuate depending on STORC's activity.	38 bytes

		calculate energy consumption			
Energy Consumption Data Point	The daily activities at STORC that relate to energy consumption are manually recorded	Any STORC user with correct access will be able to manually enter relevant data	This data is very important for monitoring the level of sustainability at STORC	The number of records for energy consumption will constantly grow	30 bytes
Fish Tank Data Point	All daily activities related to Fish tank stations will have data that needs to be entered in constantly	STORC employees will be manually entering in this data as part of their daily duties	The data points collected will be used to monitor the overall efficiency and functionality of these stations	This number of records will grow quickly, but overtime will be compressed to make room for new data	38 bytes
Fish Tank	Links users to specific Fish Tank ID's	The PI or webmaster will manually enter this data	This is used to help STORC employees keep track of the different Fish tanks and the data that correlates with each one	This number of records will grow quickly, but overtime will be compressed to make room for new data	80 bytes
Grow Bed	This table will contain all data related to the grow bed stations	Some of this data, like soil temperature will be recorded automatically. Other data will have to be recorded manually.	This data will be used to monitor the development and health of the grow beds.	Depending on the number of grow beds active, the amount of data may either increase or decrease. Gradually the data should get larger but it is bound to fluctuate.	54 bytes
Grow Bed Data Point	All daily grow bed data is manually entered here	Date entered daily by STORC technician	The data points collected will be used to monitor the overall efficiency and	Depending on the number of grow beds active, the amount of data may either	38 bytes

			functionality of	increase or	
			these stations	decrease.	
				Gradually the	
				data should get	
				larger but it is	
				bound to	
				fluctuate.	
				The number of	
	This table will		TD1 ' ' 1.4	records for	
	store all of the	PI's or	This is used to	projects will	
	ongoing	webmasters will	help all	fluctuate.	
.	projects, as well	be entering this	STORC users	Sometimes the	00541
Project	as previous	information	keep track of	number of	8054 bytes
	projects that are	manually for	all current and	projects will	
	no longer	each project.	past projects at	increase, other	
	active.	r · · · · ·	STORC.	times it will	
				decrease.	
				This number of	
	All daily	STORC		records will	
	activities	employees will	This data is	grow quickly,	
Solar Power	related to solar	be manually	used to	but overtime	
Data Point	power are	entering in this	calculate solar	will be	34 bytes
Data I Offic	recorded in this	data as part of	power analitics	compressed to	
	table	their daily duties	power anamucs	make room for	
	table	then daily duties		new data	
		Most of this		new data	
	This table will	data, will be	This data is	Depending on	
	contain all data	recorded	used to	the weather and	
Solar	related thermal		quantify the	amount of solar	
Thermal Heat	heat transfer	automatically.	functionality of	panels	96 bytes
Transferor	from	Some of the data	the solar	functioning, the	
	photovoltaic	will have to	thermal heat	data will	
	cells.	recorded	transfer.	fluctuate.	
		manually.	701 ' 1' / '11 1	TI 1	
	TILL OTTOR	All users will be	This list will be	The records a	
	The STORC	manually	used	will grow and	266
Users	Employees that	entered and	authenticate	shrink each	266
	will use the	granted	and grant	semester. There	megabytes
	system	permissions by	access to the	will be at most	
		the administrator	system	60 people	
	This table	STORC	This data will	This data will	
	contains all of	employees will	be used to	be input on a	
Worm Bin	the data related	be manually	monitor the	regular basis	
Data Point	to amount of	entering in this	amount of	since worms	34 bytes
Data I Office	compost	data as part of	worm by	convert garbage	
	produced by	their daily duties	product	into dirt	
	worms	dien dany danes	product	mio uni	

			produced over time		
Worm Compost Bin	This table is in charge of holding all data related to worm composting.	storc employees assigned to these stations will have to record some data manually. Other pieces of data will get recorded automatically.	This data will be used to observe functionality and productivity of the worm bins.	This data will be input on a regular basis since worms convert garbage into dirt	80 bytes

APPENDIX C: Coding Standards

Dr. Christensen expressed his interest in another senior project group continuing work on the STORC Dashboard Project after we have concluded our portion of the project. For this reason the coding standard must be very strict. The coding standards are as follows:

- 1. Each code file will have a header that has the following:
 - a. Main Programmer
 - b. Other Programmers
 - c. File Name
 - d. Project Name
 - e. References to other files
 - f. Date Created
 - g. Programming Language
 - h. Methods in this file
 - i. Description of what this file does
- 2. Each code file will have a document associated with it (like a Java Doc)
- 3. All files must have comments that are useful and understandable
 - a. Each method must include a comment which summarizes the methods parameters, what this method does, the method's return type, and any other important details that need to be noted
 - b. Comments will be scattered throughout the code explaining key functionality and the purpose of the segment of code
 - i. Comments will be provided above each loop explaining the purpose of the loop
- 4. Code must be compatible with different SQL servers if requirements change over time
 - a. SQL server names will not be hard coded anywhere within the program
- 5. In order to reduce confusion and increase maintainability variables and constants will be widely used
 - a. If a piece of the code lends itself to be hardcoded we will construct detailed comments and explain why we made that choice
- 6. All local variables will be made private. This is done for security reasons.

- 7. All variables must be global in the class unless it is a variable that is only used once in a method ie loops
- 8. All variables, methods, and class names must be specific to the actions of the descriptor and have a reasonable length (not above 32 characters)
- 9. No spaghetti code
- 10. Each piece of the code should not break or modify the action of another piece of code. If this happens the problem needs to be rectified. The person/s responsible for breaking the code are equally responsible for fixing the errors or bugs introduced