HOWEST TOEGEPASTE INFORMATICA, 2022-2023, © BRIAN BAERT

howest.be

1

Hoofdstuk 6 - Classificeren

2

SUPERVISED VS UNSUPERVISED LEARNING

Hoofdstuk 6 - Classificeren **CLASSIFICEREN** Learning Large algorithm 100K 70K No Small 120K Induction 95K Yes Large Learn Yes Large 220K Small 85K Yes Model No Medium 75K Model **Training Set Apply** Model Yes 80K Deduction 13 Yes 110K Large 14 95K Test Set

CLASSIFICATIETAKEN

• Voorbeelden

- voorspellen van een tumorcel of die goedaardig of kwaadaardig is
- classificeren van kredietkaarttransacties als frauduleus of legitiem
- categoriseren van twitterberichten op emotie

- ...

Technieken

- beslissingsbomen
- regel-gebaseerde methodes
- neurale netwerken
- Naïef Bayes en Bayesiaanse netwerken
- Support Vector Machines

5

Hoofdstuk 6 - Classificeren **BESLISSINGSBOOM** Zoeken van "Decision boundaries" • Bevat drie soorten nodes: - root node - internal node Root node - leaf of terminals $x_1 > w_{10}$ \Box C_2 Yes $x_2 > w_{20}$ \bigcirc Yes 0 C_2 C_I Leaf

7

11

BESLISSINGSBOOM ALGORITMES • Algoritme van Hunt • CART • ID3, C4.5, C4.8 • CHAID • MARS • SLIQ • SPRINT

ALGORITME VAN HUNT

- Stel D_t de verzameling van training records die een node t bereiken en $y=\{y_1,y_2,\dots,y_c\}$ de class labels
- · Algemene procedure
 - 1) Als D_t records bevat die behoren tot eenzelfde klasse y_t , dan is t een bladnode (leaf node) met als label y_t .
 - 2) Als D_t records bevat die behoren tot meer dan één klasse, gebruik dan een attribuuttestvoorwaarde om de data te splitsen in meerdere, kleinere deelverzamelingen. We herhalen deze procedure recursief.

13

Hoofdstuk 6 - Classificeren

BESLISSINGSBOOM - VOORBEELD

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

15

BOOMINDUCTIE

'Greedy' strategie

Splits de records op basis van een attribuuttest die een bepaald criterium optimaliseert.

- Probleem 1: Hoe splitsen we de records?
 - → Specificeren van attribuuttestvoorwaarde
 - → Bepalen van beste splitsing
- Probleem 2: Hoe bepalen wanneer we stoppen met splitsen?
 - → Als de node-onzuiverheid kleiner is dan een vooropgestelde treshold (grenswaarde)

15

Hoofdstuk 6 - Classificeren

16

BEPALEN VAN ATTRIBUUTTESTVOORWAARDE

- Afhankelijk van attribuuttype
 - Nominaal → Multiway of Binary split
 - Ordinaal → Multiway of Binary split
 - Continu → vergelijkende test
- Binary split (of binaire split)

{Family, CarType Luxury} {Sport

(CarType) {Sports}

· Multiway split (meervoudige splitsing)

OF

Delen van waarden in twee deelverzamelingen, nodig om een optimale partitionering te vinden.

Zoveel partities als verschillende waarden

17

BEPALEN VAN ATTRIBUUTTESTVOORWAARDE

- Continue attributen verschillende manieren van afhandeling
 - → Discretiseren
 - Statisch (discretiseren bij de start)
 - Dynamisch (bereik kan gevonden worden door b.v. percentielen, gelijke intervallen)
 - \rightarrow Binaire beslissing (A < v of $A \ge v$)
 - Bepaal alle mogelijke splitsingen en zoek de beste
 - Computerintensief

17

Hoofdstuk 6 - Classificeren

18

BEPALEN VAN ATTRIBUUTTESTVOORWAARDE

• Continue attributen

(i) Binary split

(ii) Multi-way split

 $v_i \le A < v_{i+1}$, voor i = 1, ..., k

19

HOE BEPALEN WE DE BESTE SPLITSING?

Voor splitsing: 10 records van klasse CO,

10 record van klasse C1

Welke voorwaarde is de beste?

19

Hoofdstuk 6 - Classificeren 20 HOE BEPALEN WE DE BESTE SPLITSING? Greedy benadering ?Greedy benadering?: Nodes met een homogene klassenverdeling zijn vereist 1) Bij elke node, kies de "beste feature" om te splitsen. • Waarom kiezen voor een bepaalde feature? 2) Splits → Nood aan een maat voor "node onzuiverheid" (impurity) 3) Herhaal C0: 5 C0: 9 C1: 5 C1: 1 Niet-homogeen, Homogeen, Hoge onzuiverheidsgraad Lage onzuiverheidsgraad

21

MATEN VOOR NODE ONZUIVERHEID

Entropie

 $\mathsf{Entropie}(t) = -\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$

Gini

'c' = aantal klassen

p(i|t) = de fractie van records die behoren

tot de klasse 'i' in een node 't'

Gini(t) =
$$1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

Classificatiefout

$$\mathsf{classificatiefout}(t) = 1 - \max_i [p(i|t)]$$

21

Hoofdstuk 6 - Classificeren

22

ENTROPIE MAAT VOOR ONZUIVERHEID

- De entropie is de verwachte hoeveelheid informatie
- Doorgaans symbolisch genoteerd met H(t)
- Voorbeeld: Entropie bij een binair classificatieprobleem

23

INFORMATIEWINST VIA ENTROPIE

Voorbeeld

- Veronderstel een dataset, 12 records, met 4 features (attributen),
 {A, B, C, D, F, G} en 1 output (uitvoer) {yes | no}
- De beslissingsboom ziet er als volgt uit

23

Hoofdstuk 6 - Classificeren

24

INFORMATIEWINST VIA ENTROPIE

Voorbeeld

- · Entropie ligt tussen 0 en 1
 - ❖ 0 = zuiver
 - ❖ 1 = meest onzuiver

• Berekening voor de volledige dataset (S)

$$H(S) = -\frac{7}{12} \cdot \log_2\left(\frac{7}{12}\right) - \frac{5}{12} \cdot \log_2\left(\frac{5}{12}\right)$$

= 0,97 bits

25

INFORMATIEWINST VIA ENTROPIE

Voorbeeld

- Veronderstel een dataset, 12 records, met 6 features (attributen), {A, B, C, D, F, G} en 1 output (uitvoer) {yes | no}
- · De beslissingsboom ziet er als volgt uit

25

Hoofdstuk 6 - Classificeren

26

INFORMATIEWINST VIA ENTROPIE

Voorbeeld

Veronderstel een dataset, 12 records, met 6 features (attributen),
 {A, B, C, D, F, G} en 1 output (uitvoer) {yes | no}

{ B } (2 yes, 4 no)

$$H(B) = -\frac{2}{2+4} \cdot \log_2\left(\frac{2}{2+4}\right) - \frac{4}{4+2} \cdot \log_2\left(\frac{4}{4+2}\right)$$
$$= -\frac{2}{6} \cdot \log_2\left(\frac{2}{6}\right) - \frac{4}{6} \cdot \log_2\left(\frac{4}{6}\right)$$
$$= 0.92 \text{ bits}$$

27

INFORMATIEWINST VIA ENTROPIE

Voorbeeld

- Veronderstel een dataset, 12 records, met 6 features (attributen), {A, B, C, D, F, G} en 1 output (uitvoer) {yes | no}
- · De beslissingsboom ziet er als volgt uit

27

Hoofdstuk 6 - Classificeren

28

INFORMATIEWINST VIA ENTROPIE

Voorbeeld

Veronderstel een dataset, 12 records, met 6 features (attributen),
 {A, B, C, D, F, G} en 1 output (uitvoer) {yes | no}

$$H(C) = -\frac{5}{5+1} \cdot \log_2 \left(\frac{5}{5+1}\right) - \frac{1}{5+1} \cdot \log_2 \left(\frac{1}{5+1}\right)$$
$$= -\frac{5}{6} \cdot \log_2 \left(\frac{5}{6}\right) - \frac{1}{6} \cdot \log_2 \left(\frac{1}{6}\right)$$
$$= 0.65 \text{ bits}$$

20

INFORMATIEWINST VIA ENTROPIE

Voorbeeld

 Veronderstel een dataset, 12 records, met 4 features (attributen), {A, B, C, D, F, G} en 1 output (uitvoer) {yes | no}

$$\Delta(S,A) = 0.97 - \frac{|S_B|}{|S|} \cdot (0.92) - \frac{|S_C|}{|S|} \cdot (0.65)$$
$$= 0.97 - \frac{6}{12} \cdot (0.92) - \frac{6}{12} \cdot (0.65) = \mathbf{0.185}$$

d ALGEMEEN :

Wij kiezen te splitsen op het attribuut (feature) met de hoogste informatiewinst (gain, Δ).

29

Hoofdstuk 6 - Classificeren

30

GINI MAAT VOOR ONZUIVERHEID

• Gini-index voor een gegeven node t

Gini(t) =
$$1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

p(i|t) is de relatieve frequentie van klasse i bij node t

- Maximum (1-1/n_c) als records gelijk verdeeld zijn over alle klassen, minst bruikbare informatie
- Minimum (0,0) als alle records tot één klasse behoren, grootste informatiewinst.

C1	0
C2	6
Gini=0.000	

Gini=	0.278
C2	5
C1	1

C1	2
C2	4
Gini=	0.444

Gini is een maat voor de kans op een verkeerde classificatie van een nieuw record.

31

GINI MAAT VOOR ONZUIVERHEID - VOORBEELD

Gini
$$(t) = 1 - \sum_{i=0}^{c-1} [P(i|t)]^2$$

C1	0	P(C1) = 0/6 = 0 $P(C2) = 6/6 = 1$
C2	6	Gini = $1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1	P(C1) = 1/6 $P(C2) = 5/6$
C2	5	Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

C1 P(C1) =
$$2/6$$
 P(C2) = $4/6$ C2 Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

31

Hoofdstuk 6 - Classificeren

32

SPLITSEN VAN BINAIRE ATTRIBUTEN - GINI COËFFICIËNT

Voorbeeld

Figure 4.14. Splitting binary attributes.

OEFENINGENREEKS • 6.2.7 1-3 4 (thuis)