ARBORI BINARI ECHILIBRAȚI

Organizatorice

Treapuri (prezentare? se oferă cineva?) (pentru săptămâna viitoare)

Amestecăm bine de tot și inserăm elementele în arborele binar de căutare. Ce înălțime va avea?

Lema 13.3. Notăm cu T arborele care rezultă prin inserarea a n chei distincte $k_1, k_2, ..., k$ (în ordine) într-un arbore binar de căutare inițial vid. Cheia k_i este un strămoş al cheii k în T, pentru 1 ≤ i < j ≤ n, dacă şi numai dacă:

- k_i = min{ k□ : 1 ≤ l ≤ i şi k□ > k□ } // k_i este cel mai mic număr mai mare decât k□ din primele i, practic în procesul de inserare a lui j vom ajunge în k_i şi vom merge în stânga
- SAU $k_i = max\{ k \square : 1 \le i \le i \le i k \square < k \square \}$
 - □ 13 e fiu al lui 7 (până la momentul inserării lui 13, 7 era cel mai mare număr mai mic)
 - Ulterior, proprietatea e valabilă și pentru 9 și 14.
 - Ce trebuia să se întâmple ca 18 să fie fiu al lui 7?

Demonstrație:

' \Rightarrow ': Presupunem că k_i este un strămoș al lui $k\square$. Notăm cu T_i arborele care rezultă după ce au fost
inserate în ordine cheile k_1, k_2, \ldots, k_i . Drumul de la rădăcină la nodul k_i în T_i este același cu drumul de la
rădăcină la nodul k_i în T. De aici, rezultă că, dacă s-ar insera în arborele T_i nodul $k\square$, acesta $(k\square)$ ar deveni
fie fiu stâng, fie fiu drept al nodului k _i . Prin urmare (vezi exercițiul 13.2-6), k _i este fie cea mai mică valoare
dintre $k_1, k_2,, k_i$ care este mai mare decât $k\square$, fie cea mai mare valoare dintre cheile $k_1, k_2,, k_i$ care este
mai mică decât k□.

' \Leftarrow ': Presupunem că k_i este cea mai mică valoare dintre $k_1, k_2, ..., k_i$ care este mai mare decât $k \square$. (Cazul când k_i este cea mai mare cheie dintre $k_1, k_2, ..., k_i$ care este mai mică decât $k \square$ se tratează simetric). Compararea cheii $k \square$ cu oricare dintre cheile de pe drumul de la rădăcină la k_i în arborele T produce aceleași rezultate ca și compararea cheii k_i cu cheile respective. Prin urmare, pentru inserarea lui $k \square$, se va parcurge drumul de la rădăcină la k_i , apoi $k \square$ se va insera ca descendent al lui k_i .

Corolarul 13.4. Fie T arborele care rezultă prin inserarea a n chei distincte $k_1, k_2, ..., k_{\square}$ (în ordine) într-un arbore binar de căutare inițial vid. Pentru o cheie k_{\square} dată, cu $1 \le j \le n$, definim mulțimile:

```
○ G \square = \{ k_i : 1 \le i \le j \text{ si } k \square > k_i > k \square \text{ pentru toţi indicii } l \le i \text{ cu } k \square > k \square \}
```

○
$$L\square = \{ k_i : 1 \le i \le j \ \text{si} \ k\square \le k_i \le k\square \text{ pentru toţi indicii} \ 1 \le i \ cu \ k\square \le k\square \}$$

Atunci cheile de pe drumul de la rădăcină la $k\square$ sunt chiar cheile din $G\square \cup L\square$, iar adâncimea oricărei chei $k\square$ din T este $d(k\square, T) = |G\square| + |L\square|$.

Cu negru sunt nodurile care sunt, la inserarea lor, cel mai mic element mai mare decât $19 (G \rightarrow \text{greater})$. Similar, cele cu alb sunt elemente care, la inserarea lor, erau cele mai mari elemente mai mici decât $19 (L \rightarrow \text{lower})$.

Practic, pentru a calcula înălțimea unui arbore, trebuie să calculăm $\max_{1 \le j \le n} (|G\square| + |L\square|)$.

Simplificăm și discutăm cum calculăm de câte ori se modifică, în medie, minimul, dacă inserăm **n** elemente pe rând.

Exercițiu: Care este probabilitatea ca k_i să fie minimul primelor i numere?

Practic, pentru a calcula înălțimea unui arbore, trebuie să calculăm $\max_{1 \le j \le n} (|G\square| + |L\square|)$.

Simplificăm și discutăm cum calculăm de câte ori se modifică, în medie, minimul, dacă inserăm **n** elemente pe rând.

Răspuns: Probabilitatea ca k_i să fie minimul primelor i numere este 1/i.

$$\sum_{i=1}^n rac{1}{i} = H_n$$

Prin urmare, numărul mediu de modificări este

unde $H \square = \ln(n) + O(1)$ este al n-lea număr armonic.

→ Avem **log(n)** modificări.

Lema 13.5. Fie $k_1, k_2, ..., k \square$ o permutare oarecare a unei mulțimi de n numere distincte și fie |S| variabilă aleatoare reprezentând cardinalul mulțimii.

$$S = \{ k_i : 1 \le i \le n \text{ si } k \square > k_i \text{ pentru orice } l \le i \}$$
 (13.1)

Atunci Pr $\{ |S| \ge (\beta + 1)H \square \} \le 1/(n^2)$, unde $H \square$ este al n-lea număr armonic, iar $\beta \approx 4,32$ verifică ecuația $(\ln \beta - 1)\beta = 2$.

Prin urmare, e foarte probabil să avem maxim O(log(n)) modificări ale minimului.

Teorema 13.6. Înălțimea medie a unui arbore binar de căutare construit aleator cu n chei distincte este O(lg n).

Teorema 13.6. Înălțimea medie a unui arbore binar de căutare construit aleator cu n chei distincte este O(lg n).

Demonstrație: Fie $k_1, k_2, ..., k □$ o permutare oarecare a celor n chei și fie T arborele binar de căutare care rezultă prin inserarea cheilor în ordinea specificată, pornind de la un arbore inițial vid. Vom discuta prima dată probabilitatea ca adâncimea d(k □, T) a unei chei date k □ să fie cel puțin t, pentru o valoare t arbitrară. Conform caracterizării adâncimii d(k □, T) din *corolarul 13.4*, dacă adâncimea lui k □ este cel puțin t, atunci cardinalul uneia dintre cele două mulțimi G □ și L □ trebuie să fie cel puțin t/2.

Prin urmare, $Pr\{d(k\Box, T) \ge t\} \le Pr\{|G\Box| \ge t/2\} + Pr\{|L\Box| \ge t/2\}.$

Să examinăm la început $Pr\{ |G \square| \ge t/2 \}$. Avem

$$\begin{split} &\Pr\{\,|G\,\square\,|\geqslant t/2\,\,\}\,=\Pr\{\,|\{k_i:1\leqslant i\leqslant j\ \text{$\rm i}\ k\,\square\,>k_i>k\,\square\,,\ \forall\, l\leqslant i\}|\geqslant t/2\,\,\}\\ &\leqslant \Pr\{\,|\{k_i:i\leqslant n\ \text{$\rm i}\ k\,\square\,>k_i,\ \forall\, l\leqslant i\}|\geqslant t/2\,\,\}\\ &=\Pr\{\,|S|\geqslant t/2\,\,\}\,, \end{split}$$

unde S este definit în relația (13.1.) S = { $k_i : 1 \le i \le n$ și $k \square > k_i$, $\forall l < i$ }.

În sprijinul acestei afirmații, să observăm că probabilitatea nu va descrește dacă vom extinde intervalul de variație al lui i de la i < j la i \leq n, deoarece, prin extindere, se vor adăuga elemente noi la mulțime. Analog, probabilitatea nu va descrește dacă se renunță la condiția $k_i > k \square$, deoarece, prin aceasta, se înlocuiește o permutare a (de regulă) mai puțin de **n** elemente (și anume acele chei k_i care sunt mai mari decât $k \square$) cu o altă permutare oarecare de n elemente. Folosind o argumentare similară, putem demonstra că

$$\Pr\{|L\Box| \mid \ge t/2\} \le \Pr\{|S| \ge t/2\}.$$

Folosind o argumentare similară, putem demonstra că

$$Pr\{|L\square| \ge t/2\} \le Pr\{|S| \ge t/2\}$$

și apoi, folosind inegalitatea (13.2), obținem:

$$Pr\{d(k\Box, T) \ge t\} \le 2*Pr\{|S| \ge t/2\}.$$

Dacă alegem $t = 2(\beta + 1)H\Box$, unde $H\Box$ este al n-lea număr armonic, iar $\beta \approx 4.32$ verifică ecuația ($\ln \beta - 1$) $\beta = 2$, putem aplica **lema 13.5** pentru a concluziona că

$$\Pr\{d(k\Box, T) \ge 2(\beta + 1)H\Box\} \le 2*\Pr\{|S| \ge (\beta + 1)H\Box\} \le 2/n^2.$$

Deoarece discutăm despre un arbore binar de căutare construit aleator și cu cel mult n noduri, probabilitatea ca adâncimea oricăruia dintre noduri să fie cel puțin $2(\beta + 1)H\Box$ este, folosind inegalitatea lui Boole*, de cel mult $n*(2/n^2) = 2/n$. Prin urmare, în cel puţin 1 – 2/n din cazuri, înălţimea arborelui binar de căutare construit aleator este mai mică decât 2(β + 1)H□ și în cel mult 2/n din cazuri înălțimea este cel mult n. În concluzie, înălțimea medie este cel mult

$$(2(\beta + 1)H \square)(1 - 2/n) + n(2/n) = O(\lg n).$$

*Inegalitatea lui Boole:

Fie A₁, A₂, ..., A
$$\square$$
 în K cu $\bigcap_{i=1}^{n-1} A_i \neq 0$. Atunci: $\Pr(\bigcap_{i=1}^{n-1} A_i) \geq (\sum_{i=1}^{n} Pr(A_i)) - n - 1$

Red Black Trees

Reguli:

- Fiecare nod e fie roșu, fie negru
- Rădăcina e mereu neagră
- Nu putem avea două noduri adiacente roșii
- Orice drum de la un nod la un descendent NULL are același număr de noduri negre

Red Black Trees

- Red Black Trees (nu veți avea la examen)
 - MIT Video
 - MIT Lecture Notes

Red Black Trees

Red Black Trees AVL

AVL

- Construcția AVL-urilor:
 - pentru fiecare nod, diferența dintre înălțimile fiilor drept și stâng trebuie să fie
 maxim 1

AVL

Factorul de echilibru al unui nod:

$$\square$$
 BF(X) = h(subarbore_drept(X)) - h(subarbore_stang(X))

AVL - Reechilibrare

- o Rotații:
- 1) Rotație stânga-stânga
 - când un nod este inserat în stânga subarborelui stâng
 - se realizează o rotație la dreapta
- 2) Rotație dreapta-dreapta
 - când un nod este inserat în dreapta subarborelui drept
 - se realizează o rotație la stânga
- 3) Rotație dreapta-stânga
 - când un nod este inserat la dreapta subarborelui stâng
 - se realizează două rotații
- 4) Rotație stânga-dreapta
 - când un nod este inserat la stânga subarborelui drept
 - se realizează două rotații

Mai multe informații: https://www.guru99.com/avl-tree.html

AVL

AVL (veți avea la examen)

- Video (MIT).
- Lecture Notes

```
???
```

```
sol = 0;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

???

```
sol = 0;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

x = 32

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97

???

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97

Căutare binară

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

Complexitate?

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	11	20	24	28	30	32	44	49	62	68	82	84	93	97

Căutare binară

```
sol = 0; x = 32;
for (t = 1 << 30; t > 0; t>>=1) {
   if (sol + t < v.size() && v[sol + t] <= x)
      sol += t;
}</pre>
```

Complexitate **O(log n)** - recomand cu căldură :)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			20												

SKIP LISTS

- Sunt structuri de date echilibrate
- Alte structuri de date eficiente (log n sau mai bun):
 - Tabele de dispersie (hash tables) nu sunt sortate
 - □ Heap-uri nu putem căuta în ei
 - Arbori binari echilibrați (AVL, Red Black Trees)

- Ajută la o căutare rapidă
- Elementele sunt sortate!

- Sunt implementate ca liste înlănţuite
- Ideea de implementare:
 - este extinsă pe mai multe nivele (mai multe liste înlănţuite)
 - la fiecare nivel adăugat, **sărim peste o serie de elemente** față de nivelul anterior
 - nivelele au legături între ele

- Sa prespunuem ca avem doar 2 liste
 - Cum putem alege ce elemente ar trebui transferate în nivelul următor?

Skip Lists 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Costul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - □ Când este minim acest cost?

Skip Lists 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Costul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - ☐ Când este minim acest cost?
 - Când $|L_2| = n / |L_2| \Rightarrow |L_2| = \mathbf{sqrt}(n)$

Skip Lists 2 liste

- Cum putem alege ce elemente ar trebui transferate în nivelul următor?
 - Cea mai bună metodă: elemente egal depărtate
 - Costul căutării = $|L_2| + (|L_1| / |L_2|) = |L_2| + (n / |L_2|)$
 - ☐ Când este minim acest cost?
 - Când $|L_2| = n / |L_2| \Rightarrow |L_2| = \mathbf{sqrt}(n)$
 - Deci, costul minim pentru căutare este sqrt(n) + n / sqrt(n) = 2*sqrt(n)
 - □ Complexitate: O(sqrt(n)) -> seamana un pic cu **Batog**

Ce se întâmplă când avem mai mult de 2 liste înlănţuite?

- Ce se întâmplă când avem mai mult de 2 liste înlănțuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - □ 3 liste: ?

- Ce se întâmplă când avem mai mult de 2 liste înlănţuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \Box k liste: $k * \sqrt[k]{n}$

- Ce se întâmplă când avem mai mult de 2 liste înlănţuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \Box k liste: $k * \sqrt[k]{n}$
 - logn liste: $logn * \sqrt[logn]{n}$

- Ce se întâmplă când avem mai mult de 2 liste înlănţuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \Box k liste: $k * \sqrt[k]{n}$
 - logn liste: $logn * \sqrt[logn]{n} = ?$ Cu cât este egal $\sqrt[logn]{n} ?$

- Ce se întâmplă când avem mai mult de 2 liste înlănţuite?
 - Costul căutării se modifică
 - \square 2 liste: $2 * \sqrt{n}$
 - \Box 3 liste: $3 * \sqrt[3]{n}$
 - \Box k liste: $k * \sqrt[k]{n}$
 - logn liste: $logn * \sqrt[logn]{n} = 2 * logn$ \Rightarrow Complexitate: **O(logn)**!

Skip Lists - Căutare

- 1) Începem căutarea cu primul nivel (cel mai de sus)
- 2) Avansăm în dreapta, până când, dacă am mai avansa, am merge prea departe (adică elementul următor este prea mare)
- 3) Ne mutăm în următoarea listă (mergem în jos)
- 4) Reluăm algoritmul de la pasul 2)

Skip Lists - Căutare

- 1) Începem căutarea cu primul nivel (cel mai de sus)
- 2) Avansăm în dreapta, până când, dacă am mai avansa, am merge prea departe (adică elementul următor este prea mare)
- 3) Ne mutăm în următoarea listă (mergem în jos)
- 4) Reluăm algoritmul de la pasul 2)

Exemplu: search(22)

Complexitate: O(logn)

Skip Lists - Inserare

- Vrem să inserăm elementul x
- Observație: Lista de jos trebuie să conțină toate elementele!
- x trebuie să fie inserat cu siguranță în nivelul cel mai de jos
 - căutăm locul lui x în lista de jos \rightarrow search(x)
 - adăugăm x în locul găsit în lista cea mai de jos
- Cum alegem în cate liste să fie adăugat?

Skip Lists - Inserare

- Vrem să inserăm elementul x
- x trebuie să fie inserat cu siguranță în nivelul cel mai de jos
- Cum alegem în ce altă listă să fie adăugat?
 - Alegem metoda probabilistică:
 - aruncăm o monedă
 - dacă pică Stema o adăugăm în lista următoare și aruncăm din nou moneda
 - □ dacă pică Banul ne oprim
 - probabilitatea să fie inserat și la nivelul următor: ½
- În medie:
 - ½ elemente nepromovate
 - □ ¼ elemente promovate 1 nivel
 - □ 1/8 elemente promovate 2 nivele
 - etc.
- Complexitate: O(logn)

Skip Lists - Ştergere

- Stergem elementul x din toate listele care îl conțin
- Complexitate: O(logn)

- Articol
- Video MIT
- Notes Notes

Bibliografie

http://ticki.github.io/blog/skip-lists-done-right/

https://www.guru99.com/avl-tree.html

https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/

MIT lecture notes on skip lists

<u>Esoteric Data Structures: Skip Lists and Bloom Filters - Stanford University</u>