

				igital or		.,	gilloni	
Hex	Inputs	Α	В	С	D	E	F	G
2	0010	0	0	1	0	0	1	0
3	0011	0	0	0	0	1	1	0
4	0100	1	0	0	1	1	0	0
5	0101	0	1	0	0	1	0	0
6	0110	0	1	0	0	0	0	0
7	0111	0	0	1	1	1	1	1
8	1000	0	0	0	0	0	0	0
9	1001	0	0	0	0	1	0	0
Α	1010	0	0	0	1	0	0	0
b	1011	1	1	0	0	0	0	0
С	1100	0	1	1	0	0	0	1
d	1101	1	0	0	0	0	1	0
E	1110	0	1	1	0	0	0	0
F	1111	0	1	1	1	0	0	0

2. Seven-segment display decode:

Listing of VHDL architecture from source file:

```
architecture Behavioral of hex_7seg is
begin
```

```
p_7seg_decoder : process(hex_i)
begin
   case hex i is
       when "0000" =>
           seg_o <= "0000001"; -- 0
       when "0001" =>
           seg_o <= "1001111"; -- 1
       when "0010" =>
           seg_o <= "0010010"; -- 2
       when "0011" =>
           seg_o <= "0000110"; -- 3
       when "0100" =>
           seg_o <= "1001100"; -- 4
       when "0101" =>
          seg o <= "0100100"; -- 5
       when "0110" =>
           seg_o <= "0100000"; -- 6
       when "0111" =>
           seg_o <= "0011111"; -- 7
       when "1000" =>
          seg_o <= "0000000"; -- 8
       when "1001" =>
           seg_o <= "0000100"; -- 9
       when "1010" =>
           seg_o <= "0001000"; -- A
       when "1011" =>
          seg_o <= "1100000"; -- B
       when "1100" =>
           seg_o <= "0110001"; -- C
       when "1101" =>
           seg_o <= "1000010"; -- D
       when "1110" =>
           seg_o <= "0110000"; -- E
       when others =>
           seg o <= "0111000"; -- F
   end case;
```

Listing of VHDL stimulus process from testbench file:

```
port map(
             hex i
                      => s_hex,
             seg_o
                       => s_seg
             );
             p_stimulus : process
             begin
                  report "Stimulus process started" severity note;
                  s_hex <= "0000"; wait for 100ns;</pre>
                  s_hex <= "0001"; wait for 100ns;</pre>
                  s_hex <= "0010"; wait for 100ns;</pre>
                  s_hex <= "0011"; wait for 100ns;</pre>
                  s_hex <= "0100"; wait for 100ns;</pre>
                  s_hex <= "0101"; wait for 100ns;</pre>
                  s_hex <= "0110"; wait for 100ns;</pre>
                  s hex <= "0111"; wait for 100ns;</pre>
                  s_hex <= "1000"; wait for 100ns;</pre>
                  s_hex <= "1001"; wait for 100ns;</pre>
                  s_hex <= "1010"; wait for 100ns;</pre>
                  s_hex <= "1011"; wait for 100ns;</pre>
                  s_hex <= "1100"; wait for 100ns;</pre>
                  s_hex <= "1101"; wait for 100ns;</pre>
                  s_hex <= "1110"; wait for 100ns;</pre>
                  s_hex <= "1111"; wait for 100ns;</pre>
                  report "Stimulus process finished" severity note;
                  wait;
    end process p_stimulus;
end Behavioral;
```

Screenshot with simulated time waveforms:

Listing of VHDL code from source file:

```
hex2seg : entity work.hex_7seg
        port map
            hex_i
                             => SW,
            seg_o(6)
                             => CA,
            seg_o(5)
                             => CB,
            seg_o(4)
                             => CC,
            seg_o(3)
                             => CD,
            seg_o(2)
                             => CE,
            seg_o(1)
                             => CF,
            seg_o(∅)
                             => CG
        );
```

3. LED indicators:

Truth Table:

Hex	Inputs	LED4	LED5	LED6	LED7
0	0000	1	0	0	0
1	0001	0	0	1	1
2	0010	0	0	0	1
3	0011	0	0	1	0
4	0100	0	0	0	1
5	0101	0	0	1	0
6	0110	0	0	0	0
7	0111	0	0	1	0
8	1000	0	0	0	1
9	1001	0	0	1	0
А	1010	0	1	0	0
b	1011	0	1	1	0
С	1100	0	1	0	0
d	1101	0	1	1	0
E	1110	0	1	0	0
F	1111	0	1	1	0

Listing of VHDL code for LEDs:

```
-- Display input value
    LED(3 downto 0) <= :

LED(4) <= '1' when (SW = "0000") else '0';

LED(5) <= '1' when (SW > "1001") else '0';
```

```
LED(6) \leftarrow SW(0);

LED(7) \leftarrow '1' when (SW = "0001" or SW = "0010" or SW = "0100" or SW = "1000") e
```

Screenshot with simulated time waveforms:

