2DFrame - Python

Phạm Hoàng Anh

Bộ môn Cơ học kết cấu Hà nội, 08 - 2024

Tính năng

Phân tích tĩnh hệ thanh phẳng bằng PTHH

- Phần tử dàn phẳng (kéo/nén)
- Phần tử thanh phẳng (kéo/nén + uốn)
- Tải tập trung tại nút, phân bố đều trên phần tử
- Chuyển vị cưỡng bức gối tựa
- Gối đàn hồi

Tiện ích

Biểu diễn đồ họa

- Sơ đồ hình học
- Sơ đồ rời rạc hóa
- Sơ đồ biến dạng
- Phản lực liên kết
- Biểu đồ nội lực

Tiện ích

Biểu diễn bảng kết quả

- Phản lực liên kết
- Chuyển vị nút
- Nội lực trong phần tử

Hoạt động

Hoạt động trên môi trường Python

- Câu lệnh trực tiếp
- Script (chương trình): kiến nghị sử dụng phương thức này

Cài đặt

- Python và trình soạn thảo: *kiến nghị dùng Anaconda* và Spider

https://www.anaconda.com/

- CALFEM – Python:

pip install calfem-python

- Module_2DFrame.py

Nạp các thư viện

Khởi tạo mô hình tính toán

Nhập các bảng số liệu

Thực hiện phân tích kết cấu

Biểu diễn kết quả

Nạp các thư viện

Khởi tạo mô hình tính toán

```
model = st.SystemModel('2Dframe')

Loại kết cấu:
'2Dframe'
'2Dtruss'
```

Nhập các bảng số liệu

Số liệu về nút:

Nhập các bảng số liệu

Số liệu về tiết diện:

```
      model ['Mat'] = [
      Tiết diện 1

      [E1, A1, I1],
      Tiết diện 2

      ...,
      [Em, Am, Im]

      ]
      Tiết diện m

Mô đun đàn hồi
Diện tích quán tính
```


Thực hiện phân tích kết cấu

```
Khung phẳng:
model = st.Solve2Dframe(model)

Dàn phẳng:
model = st.Solve2Dtruss(model)
```


Lệnh vẽ Sơ đồ hình học:

```
show_geometry(model,
    etype='E',
    ID=None,
    show_node=False,
    show_ele=False)
```

```
st.show_geometry(model,etype='S-',show_ele=True)
st.draw_dim([0,0,0], [L,0,0], offset=-0.5)
st.draw_dim([L,0,0], [L,H,0], offset=-0.5)
```


Lệnh vẽ Sơ đồ rời rạc:

st.show_FEM(model)

st.show_reaction(model)

st.show_moment(model)

Lệnh vẽ Sơ đồ biến dạng:

st.show_displacement(model)

Biểu diễn kết quả dạng bảng

```
Phản lực liên kết:
disp react(model)
                                    Danh sách
                                       nút
Chuyển vị nút:
disp ndisp(model,nlist=None)
Nội lực trong phần tử:
disp eforce(model,elist=None)
Ma trận độ cứng và véc tơ lực nút của phần tử:
disp ematrix(model,elist=None,coord='Global')
                   Danh sách
                                          'Global'
                    phần tử
                                           'Local'
```

Trích xuất dữ liệu

Chuyển vị nút:

```
model['disp']
array([[ 0.00000000e+00, 0.0000000e+00, -5.56096613e-05],
      [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
      [ 1.42331477e-04, 1.64751030e-07, -3.11121549e-05],
      [ 1.41656675e-04, -3.93322459e-07, -3.11750473e-05]])
                            dy
            dx
                                            fi
                                    Nút 3
model['disp'][2]
array([ 1.42331477e-04, 1.64751030e-07, -3.11121549e-05])
model['disp'][2,0]
0.00014233147745030067
```

Trích xuất dữ liệu

```
Nội lực:
                                Phần tử 2
model['force'][1]
array([[ -68.83143033,
                        88.56783039, -154.67427869],
        -68.83143033,
                        88.56783039, -128.10392957],
        -68.83143033,
                        88.56783039, -101.53358046],
        -68.83143033,
                       88.56783039, -74.96323134],
       [ -68.83143033,
                        88.56783039, -48.39288222],
      [ -68.83143033,
                       88.56783039, -21.82253311],
      [ -68.83143033,
                        88.56783039, 4.74781601],
      [ -68.83143033,
                        88.56783039, 31.31816512],
      [ -68.83143033,
                       88.56783039, 57.88851424],
        -68.83143033,
                        88.56783039,
                                      84.45886336],
        -68.83143033,
                        88.56783039,
                                     111.02921247]])
                                           M
```

Trích xuất dữ liệu

Phản lực liên kết:

```
model['res']
```

```
array([[-1.14321696e+01, -2.88314303e+01, 7.10542736e-15], [-8.85678304e+01, 6.88314303e+01, 1.54674279e+02]])

Rx Ry M
```

Áp dụng

2DFrame chỗ trợ hiệu quả trong giảng dạy các môn học:

- Cơ học kết cấu 1
- Cơ học kết cấu 2
- Phần tử hữu hạn
- > Làm đề bài, đáp án: linh hoạt, dễ tùy biến
- > Vẽ hình minh họa: sơ đồ kết cấu, biểu đồ nội lực, ...

https://github.com/HoangAnh-Pham/2DFrame