Assignment #4

題目範圍: section 4.5~4.9

1. Show that the following polynomials form a basis for P_3 .

$$1+ x$$
, $1- x$, $1- x^2$, $1- x^3$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix} \Rightarrow A \text{ is invertible , so form a basis for } P_3$$

Or show $a(1+x)+b(1-x)+c(1-x^2)+d(1-x^3)=0$ only a=b=c=d=0

2. In each part, let T_A : $R^3 \rightarrow R^3$ be multiplication by A, and let u = (1, -2, -1). Find the coordinate vector of $T_A(u)$ relative to the basis $S = \{(1, 1, 0), (0, 1, 1), (1, 1, 1)\}$ for R^3 .

a.
$$(5 \text{ points}) A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ -6 \\ 6 \end{bmatrix}$$

b.
$$(5 \text{ points}) A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$

- 1. Au=b
- 2. $x=S^{-1}b$
- 3. In each part, find a basis for the given subspace of R^3 , and state its dimension.
 - a. (2.5 points) The plane 3x 2y + 5z = 0.
 - b. (2.5 points) The plane x y = 0.
 - c. (2.5 points) The line x = 2t, y = -t, z = 4t.
 - d. (2.5 points) All vectors of the form (a, b, c), where b = a + c.
 - a.&b.find [3,-2,5]=0 [1,-1,0]=0nullspace to solve 只要 basis 构成与参考答

案相同 subspace 即可

a.(2/3,1,0) (-5/3,0,1) dimension:2

b.(1,1,0) (0,0,1) dimension:2

c.(2,-1,4) dimension:1

d.参数解
$$\mathbf{x} = \begin{bmatrix} x1\\ x2\\ x3 \end{bmatrix} = \begin{bmatrix} a\\ a+c\\ c \end{bmatrix} = a \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
 dimension:2

4. In each part, let T_A be multiplication by A and find the dimension of the subspace R^4 consisting of all vectors \mathbf{x} for which $T_A(\mathbf{x}) = \mathbf{0}$.

a.
$$(5 \text{ points}) A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ -1 & 4 & 0 & 0 \end{bmatrix}$$
 kernel of A is 2

b. (5 points)
$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
 kernel of A is 1

5. Consider the bases
$$B = \{\mathbf{u_1}, \mathbf{u_2}\}$$
 and $B' = \{\mathbf{u'_1}, \mathbf{u'_2}\}$ for R^2 , where

$$\mathbf{u_1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}, \mathbf{u'_1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \mathbf{u'_2} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

a.(2.5 points) Find the transition matrix from B ' to B.
$$\begin{bmatrix} 13/10 & -1/2 \\ -2/5 & 0 \end{bmatrix}$$

b.(2.5 points) Find the transition matrix from *B* to *B'*.
$$\begin{bmatrix} 0 & -5/2 \\ -2 & -13/2 \end{bmatrix}$$

c.(2.5 points) Compute the coordinate vector
$$[\mathbf{w}]_B$$
, where $\mathbf{w} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ and use

(11) to compute
$$[\mathbf{w}]_{B'}$$
. $[\mathbf{w}]_{B} = \begin{bmatrix} \frac{-17}{10} \\ \frac{8}{5} \end{bmatrix}$ $[\mathbf{w}]_{B'} = P_{\mathbf{B} \rightarrow \mathbf{B}'} [\mathbf{w}]_{B} = \begin{bmatrix} -4 \\ -7 \end{bmatrix}$

d.(2.5 points) Check your work by computing $[\mathbf{w}]_{B'}$ directly. $(\mathbf{B'})^{-1}\mathbf{w} = \begin{bmatrix} -4\\ -7 \end{bmatrix}$

Note: use(11) please to check the reference at the bottom of this assignment.

6. If B_1 , B_2 , and B_3 are bases for R^2 , and if

$$P_{B_1 \rightarrow B_2} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
 and $P_{B_2 \rightarrow B_3} = \begin{bmatrix} 7 & 2 \\ 4 & -1 \end{bmatrix}$,

then
$$P_{B3-B1} = \begin{bmatrix} \frac{-2}{15} & \frac{11}{15} \\ \frac{7}{15} & \frac{-31}{15} \end{bmatrix}$$
 $P_{B3-B1} = (P_{B2-B3} P_{B1-B2})^{-1}$

7. Suppose that $x_1 = -1$, $x_2 = 2$, $x_3 = 4$, $x_4 = -3$ is a solution of a nonhomogeneous linear system $A\mathbf{x} = \mathbf{b}$ and that the solution set of the homogeneous system $A\mathbf{x} = \mathbf{o}$ is given by the formulas

$$x_1 = -3r + 4s$$
, $x_2 = r - s$, $x_3 = r$, $x_4 = s$

a.(5 points) Find a vector form of the general solution of Ax = 0. b.(5 points) Find a vector form of the general solution of Ax = b

a.
$$A = r \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 4 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
 b. $x = \begin{bmatrix} -1 \\ 2 \\ 4 \\ -3 \end{bmatrix} + r \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 4 \\ -1 \\ 0 \\ 1 \end{bmatrix}$

8. Consider the linear systems

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 4 \\ 1 & -7 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

and

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 4 \\ 1 & -7 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ -1 \end{bmatrix}$$

- a. (2.5 points) Find a general solution of the homogeneous system. s(-11/5,2/5,1)
- b. (2.5 points) Confirm that $x_1 = 1$, $x_2 = 1$, $x_3 = 1$ is a solution of the nonhomogeneous system.

yes

c. (2.5 points) Use the results in parts (a) and (b) to find a general solution of the nonhomogeneous system.

$$(1,1,1)$$
+ s $(-11/5,2/5,1)$

d. (2.5 points) Check your result in part (c) by solving the nonhomogeneous system directly

By rref

$$x = \begin{bmatrix} \frac{16}{5} \\ \frac{3}{5} \\ 0 \end{bmatrix} + s \begin{bmatrix} -\frac{11}{5} \\ \frac{2}{5} \\ 1 \end{bmatrix}, \text{ when } s=1, x=(1,1,1)$$

9. Let $T: \mathbb{R}^5 \to \mathbb{R}^3$ be the linear transformation defined by the formula

$$T(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2, x_2 + x_3 + x_4, x_4 + x_5)$$

- a. (5 points) Find the rank of the standard matrix for T. 3
- b. (5 points) Find the nullity of the standard matrix for T. 5

10.a. (2.5 points) If A is a 3 × 5 matrix, then the rank of A is at most 3. Why?

- b. (2.5 points)If A is a 3×5 matrix, then the nullity of A is at most ____5. Why?
- c. (2.5 points)If A is a 3 × 5 matrix, then the rank of A^T is at most _____. Why?

評分標準:

每題10分,每小題配分已標注,答錯即0分。

每題都需寫心得,不單獨算分,但缺一題心得-2 point,最多-20.

繳交期限:11/8 (週二)00:00 遲交分數*0.8

Reference:

Transforming Coordinates

Suppose now that B and B' are bases for a finite-dimensional vector space V. Since multiplication by $P_{B\to B'}$ maps coordinate vectors relative to the basis B into coordinate vectors relative to a basis B', and $P_{B'\to B}$ maps coordinate vectors relative to B' into coordinate vectors relative to B, it follows that for every vector \mathbf{v} in V we have

$$[\mathbf{v}]_{B'} = P_{B \to B'}[\mathbf{v}]_B \tag{11}$$

$$[\mathbf{v}]_B = P_{B' \to B}[\mathbf{v}]_{B'} \tag{12}$$