

REDES INALÁMBRICAS DE SENSORES

MÁSTER EN INGENIERÍA ELECTRÓNICA, ROBÓTICA Y AUTOMÁTICA

PRÁCTICA 3. REDES EN CONTIKI

Eduardo Hidalgo Fort

ehidalgo@us.es

José María Hinojo Montero

jhinojo@us.es

ÍNDICE

- 1. Introducción: IP4 vs IPv6
- 2. Protocolos incluidos
- 3. Redes en CONTIKI
- 4. Capas o niveles del modelo OSI
- 5. Ejercicios

I. Introducción: IPv4vs IPv6

INTRODUCCIÓN

- CONTIKI incorpora una pila de comunicaciones basada en IPv6, pero adaptada para redes de bajo consumo y con posibilidad de pérdidas de paquetes.
- Comparativa entre las versiones 4 y 6 de IP (Internet Protocol)

12 campos → 20 Bytes

8 campos → 40 Bytes

II. Protocolos Soportados

- La pila de CONTIKI tiene soporte para los protocolos:
 - TCP: Transfer Control Protocol
 - UDP: User Datagram Protocol
 - o **DNS:** Domain Name System
 - RPL: Routing Protocol for Low-Power and Lossy Networks
 - CoAP: Constrained Application Protocol
 - LWM2M: LightWeight Machine-to-Machine
 - o Websockets: canales de comunicación un protocolo de transporte

REDES EN CONTIKI (I)

• Los códigos para la gestión de redes se encuentran en

~/contiki-ng/os/net

- Los parámetros de configuración se encuentran en el archivo de cabecera netstack.h
 - ∘ Modos de enrutamiento:

```
ROUTING_CONF_RPL_LITE
ROUTING_CONF_RPL_CLASSIC
ROUTING_CONF_NULLROUTING
```

∘ Capa de red:

```
NETSTACK_CONF_WITH_IPV6
NETSTACK_CONF_WITH_NULLNET
```


REDES EN CONTIKI (II)

Capa de acceso al medio (MAC):

MAC_CONF_WITH_NULLMAC
MAC_CONF_WITH_CSMA
MAC_CONF_WITH_TSCH
MAC_CONF_WITH_BLE

∘ Construcción de las tramas (framer_802154):

NETSTACK FRAMER

Transceptor radio (medio físico):

NETSTACK CONF RADIO

RADIO

• El archivo con los parámetros configurables, se encuentra en:

~/contiki-ng/os/contiki-default-conf.h

Llamadas a librería desde:

~/contiki-ng/os/dev/radio.h

RADIO PARAM POWER MODE

RADIO_PARAM_CHANNEL

RADIO PARAM PAN ID

RADIO PARAM 16BIT ADDR

RADIO PARAM RX MODE

RADIO PARAM TX MODE

RADIO_PARAM_TXPOWER

RADIO PARAM CCA THRESHOLD

RADIO PARAM RSSI

RADIO PARAM LAST RSSI

RADIO PARAM LAST LINK QUALITY

RADIO PARAM 64BIT ADDR

RADIO PARAM LAST PACKET_TIMESTAMP

RADIO PARAM SHR SEARCH

ACCESO AL MEDIO (MAC)

• La configuración y los códigos fuente de C están en el directorio

~/contiki-ng/os/net/mac

- Por ejemplo, en mac. h se definen los posibles estados de una transmisión radio: OK, colisión, no ACK, retrasada, error.
- En cada subdirectorio se encuentra la implementación de otros módulos de esta capa:
 - BLE: Bluetooth Low Energy
 - CSMA: protocolo de acceso al

medio (Carrier-Sense MultipleAccess)

• FRAMER: composición de las

tramas IEEE 802.15.4.

TCSH: Time Slotted Channel

Hopping,

incluyendo 6TiSCH "minimal config"

IEEE 802.15.4 Overview Packet Structure

ENRUTAMIENTO

• CONTIKI-ng define dos modos de enrutamiento RPL, en el directorio

~/contiki-ng/os/net/routing

- RPL Clásico
 - La implementación original para Contiki (2009)
 - Se han ido añadido nuevas funcionalidades con el tiempo (múltiples instancias, modos de guardado y no-guardado, multicast...)
 - o Esto lleva a una implementación más compleja y más consumo de ROM

http://www.diva-portal.org/smash/get/diva2:1042739/FULLTEXT01.pdf

- RPL Lite
 - Se utiliza por defecto en Contiki-ng (2017)
 - Funcionalidad básica y estable (se pierden algunas opciones → menos interoperabilidad)
 - o Mejor rendimiento y menor *huella* en la memoria de programa (ROM)

IV. CAPAS O NIVELES DEL MODELO OSI

REDES EN CONTIKI: PROTOCOLO IPV6

- Todos los módulos relacionados con el direccionamiento IPv6 están en
- ~/contiki-ng/os/net/ipv6
- Contiki-ng utiliza la implementación uIP (micro-IP), que permite utilizar TCP/IP para microcontroladores de 8 y 16 bit.
- Desarrollado inicialmente por *Adam Dunkels*
- La idea es reducir de forma considerable el tamaño necesario para guardar el fichero compilado en los nodos.
- En el archivo *uip.h* se definen varios parámetros de esta pila.

IV. CAPAS O NIVELES DEL

MODELO OSI

REDES EN CONTIKI: NIVEL APLICACIÓN

- Para completar la torre de protocolos, queda el nivel de aplicación
- ~/contiki-ng/os/net/app-layer
- En Contiki-ng tenemos algunos módulos listos para utilizar:
 - SNMP: Simple Network Management Protocol. Intercambio de información de administración entre dispositivos de una red).
 - COAP: Constrained Application Protocol. Permite proporcionar servicios de aplicación utilizando muy pocos recursos. Ejemplo: aplicación REST en Contiki de bajo consumo

http://dunkels.com/adam/kovatsch11low-power.pdf

- o HTTPD-WS: un servidor de páginas web (basado en HTTP) muy simplificado.
- o HTTP-Socket: conexión (canal) para transferencia de datos utilizando HTTP sobre TCP.
- MQTT: MQ Telemetry Transport. Sistema de suscripción/publicación de mensajes ("data broker"), ideado para redes de bajo ancho de banda, con posibilidad de fallos o para dispositivos con procesador y/o memoria de baja capacidad.

IV. CAPAS O NIVELES DEL MODELO OSI

REDES EN CONTIKI: RESUMEN

V. EJERCICIOS

EJERCICIO 1 (4 PUNTOS)

- Se pide desplegar la red del ejercicio 3 de la práctica 2 en 1 nodo Servidor y 1 nodo Cliente **REALES**.
- Identificar en el código el PANID y el canal utilizado.
- Adjuntar tantas capturas/imágenes como sea necesario para demostrar la implementación y despliegue del ejercicio.

EJERCICIO 2 (2 PUNTOS)

- Se pide modificar el PANID y canal utilizado y desplegar nuevamente la red, en este caso en COOJA, con 3 nodos clientes y 1 servidor. Utilizar PANID distinto al del resto de compañeros.
- Explicar cómo se realiza dicha modificación, indicando los valores utilizados.
- Adjuntar tantas capturas como sea necesario para demostrar la implementación y despliegue del ejercicio.
- Archivos .c y aquellos archivos que hayan sido necesario modificar.

V. EJERCICIOS

EJERCICIO 3 (4 PUNTOS)

- Se pide desplegar en COOJA las redes diseñadas en los ejercicios 1 y 2 de esta práctica. Cada una de las redes contará con 3 nodos clientes y 1 servidor.
 - La red del ejercicio 1 se implementará haciendo uso de nodos Sky (servidor) y Z1 (clientes).
- Adjuntar tantas capturas como sea necesario para demostrar la implementación y despliegue del ejercicio.
- Archivos .c, Makefile (todos, si se utiliza más de uno) y aquellos archivos que hayan sido necesario modificar.
- Se recomienda realizar la compilación de cada una de las redes desde la ventana de comandos, guardando los archivos .z1 y .sky en carpetas distintas