

IBM Applied Data Science Capstone

Final Assignment

PREDICTING CAR SEVERITY ACCIDENT

Business Understanding

 According to NHTSA, total number of fatalities in car accident crashes increased from 26 to 36,560 starting from year 1899 to 2018

 Objective: to develop a model that could predict the severity of car accidents given by the factors affecting the collision in Seattle city

Data Understanding

- All types of collisions:
 - displayed at the intersection or mid-block of a segment
- Timeframe:
 - From January 2004 to May 2020.
- Data source:
 - Seattle Police Department (SPD) and Traffic Records group
- Original dataset:
 - 194,673 rows and 38 columns (22 attributes are object data type 16 attributes are integer or float)

Statistical Analysis

- Highly correlated attributes need to be excluded
 - "OBJECT ID", "INCKEY" and "COLDETKEY",
 SDOTCOLNUM are unique key: no impact in analysis
 - SEVERITYCODE.1" is a duplicate of "SEVERITYCODE"

	SEVERITYCODE	X	Y	OBJECTID	INCKEY	COLDETKEY	INTKEY	SEVERITYCODE.1	PERSONCOUNT	PEDCOUNT	PEDCYLCOUNT	VEHCOUNT	SDOT_COLCODE	SDOTCC
SEVERITYCODE	1	0.01	0.018	0.02	0.022	0.022	0.0066	1	0.13	0.25	0.21	-0.055	0.19	
x	0.01	- 1	-0.16	0.01	0.01	0.01	0.12	0.01	0.013	0.011	-0.0018	-0.012	0.011	
Y	0.018	-0.16	- 1	-0.024	-0.027	-0.027	-0.11	0.018	-0.014	0.01	0.026	0.017	-0.02	
OBJECTID	0.02	0.01	-0.024	1	0.95	0.95	0.047	0.02	-0.062	0.025	0.034	-0.094	-0.037	
INCKEY	0.022	0.01	-0.027	0.95	1	1	0.049	0.022	-0.062	0.025	0.031	-0.11	-0.028	
COLDETKEY	0.022	0.01	-0.027	0.95	1	1	0.048	0.022	-0.061	0.025	0.031	-0.11	-0.027	
INTKEY	0.0066	0.12	-0.11	0.047	0.049	0.048	1	0.0066	0.0019	-0.0048	0.00053	-0.013	0.0071	
SEVERITYCODE.1	1	0.01	0.018	0.02	0.022	0.022	0.0066	1	0.13	0.25	0.21	-0.055	0.19	
PERSONCOUNT	0.13	0.013	-0.014	-0.062	-0.062	-0.061	0.0019	0.13	1	-0.023	-0.039	0.38	-0.13	
PEDCOUNT	0.25	0.011	0.01	0.025	0.025	0.025	-0.0048	0.25	-0.023	1	-0.017	-0.26	0.26	
PEDCYLCOUNT	0.21	-0.0018	0.026	0.034	0.031	0.031	0.00053	0.21	-0.039	-0.017	1	-0.25	0.38	
VEHCOUNT	-0.055	-0.012	0.017	-0.094	-0.11	-0.11	-0.013	-0.055	0.38	-0.26	-0.25	- 1	-0.37	
SDOT_COLCODE	0.19	0.011	-0.02	-0.037	-0.028	-0.027	0.0071	0.19	-0.13	0.26	0.38	-0.37	1	
SDOTCOLNUM	0.0042	-0.001	-0.007	0.97	0.99	0.99	0.033	0.0042	0.012	0.021	0.035	-0.024	-0.041	
SEGLANEKEY	0.1	-0.0016	0.0046	0.028	0.02	0.02	-0.011	0.1	-0.021	0.0018	0.45	-0.12	0.21	
CROSSWALKKEY	0.18	0.014	0.0095	0.056	0.048	0.048	0.018	0.18	-0.032	0.57	0.11	-0.2	0.19	
4														•

Data Preparation: Balancing data set

Class label: SEVERITYCODE

Values: Property damage (1) and Injury (2)

Before balancing data

After balancing data

Data Preparation: Handling missing values

- ROADCOND": condition of road at the time collision
 - less than 0.1% missing values
 - Missing rows are excluded from analysis
- "LIGHTCOND": light condition at the time collision
 - 0.1% missing values
 - Missing rows are excluded from analysis
- "SPEEDING": missing values provide no meaning to analysis
 - Attribute is excluded from analysis

Data Preparation: Encoding

- New attributes are encoded and added to dataset
 - "weekend"
 - "dayofweek"
- "UNDERINFL": whether or not a driver involved was under influence of drugs or alcohol
 - Encoded to "Y" and "N"
- "INATTENTIONIND": whether or not collision was due to inattention
 - Missing values are encoded to "N"

Modeling

Decision Tree

Maximum depth	3	4	5	6
Accuracy	68.4%	69.92%	70.2%	70.3%

Portion of decision tree

Modeling

- K-Nearest Neighbor (KNN)
 - Highest accuracy: 68.4%
 - Best value of K: 11
 - Distance metric: Minkowski
- Logistic Regression
 - Algorithm: 'Liblinear': due to the size of dataset
 - Highest accuracy: 65.5%

KNN: Identifying values for K and respective accuracies

Result Evaluation

Confusion Metrics

- e.g. among 10485 cases, the actual severity situation was property damage in test dataset
 - Classifier correctly predicted them as property damage
 - While the actual label of 6063 of cases were property damage, the classifier predicted as injury.
 - This is considered as the error of the model for property damage cases.

Class label	Precision	Recall	F1-score
Property damage	0.73	0.63	0.68
Injury	0.69	0.77	0.73

Result Evaluation

- Jaccard index
- F1-score
- Log loss

Algorithm	Jaccard Index	F1 score	Log loss
Decision tree	70.5%	70.2%	NA
K-Nearest Neighbour	68.4%	68.1%	NA
Logistic Regression	61.2%	61.2%	65.5%

Result Discussion

- Decision tree has performed better among all algorithms
 - highest accuracy of 70%
- Logistic regression model perform well when the training data is less, and there are large number of features
 - in this study the number of features have to be reduced due to the lack of expert knowledge
- KNN has presented slightly lower accuracy from decision tree
 - confirm that these algorithms have approximately performed the same considering same data

Conclusion

- Result shows that type of collision and location that collision occurred are the most effective factor for predicting both types of car accidents.
- Weather condition, road condition and attention of driver are the most influencing factors for accidents with injuries.
- Light condition, weather condition, and being under influence of drug or alcohol are predicted to be the most influencing factors for property damage accidents.

Conclusion (Cont.)

- Developed model can works as an assistant to help drivers in providing the required information about
 - road traffic
 - possibilities in getting into a car accident
 - identifying the severity of an accident
- Developed model gives option to drivers to either changing their travel time or the route.
- Results:
 - Reduced number of motor vehicle crashes
 - Reduced injury and fatality rate.

References

- [1] National Highway Traffic Safety Administration (NHTSA). (2020). Traffic Safetey Facts Annual Report. https://cdan.nhtsa.gov/tsftables/Fatalities%20and%20Fatality%20Rates.pdf
- [2] The CRISP-DM process model (1999), http://www.crispdm.org/
- [3] Everitt, Brian S.; Landau, Sabine; Leese, Morven; and Stahl, Daniel (2011) "Miscellaneous Clustering Methods", in Cluster Analysis, 5th Edition, John Wiley & Sons, Ltd., Chichester, UK
- [4] Scikit-learn. (n.d.). -learn 0.22.2 documentation. scikit-learn: machine learning in Python scikit-learn 0.16.1 documentation. Retrieved October 5, 2020, from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression