

Team Name:Kalam Crew Name of College: IIT Ropar

Team Members Details:

- Ashish Yerra
- 2. Jatin Kumar
- 3. Rahul
- 4. Kshitij

Detailed solution and Approach (250-300 words)

Detecting the Spin-Down Rate of the Crab Pulsar

The Crab Pulsar is a highly magnetized, rotating neutron star that emits beams of electromagnetic radiation. The spin-down rate refers to how the pulsar's rotation slows over time. Detecting this rate involves analyzing the timing of the pulses received from the pulsar. Here's a detailed explanation of the process:

1. Data Acquisition:

• **FITS Files:** We use the Flexible Image Transport System (FITS) files that contain observations of the Crab Pulsar. These files store the arrival times of the pulses detected by the telescope.

2. Data Inspection:

• **Structure Examination:** The FITS file is opened, and its structure is examined to understand the data layout. We focus on the table that contains the pulse arrival times.

3. Extracting Pulse Arrival Times:

Loading Time Data: We extract the 'TIME' column from the FITS file, which records the precise moments when each pulse is
detected.

4. Calculating Spin Periods:

- **Sorting and Differences:** The arrival times are sorted chronologically. The spin period (time between successive pulses) is calculated by finding the difference between consecutive arrival times.
- Spin Period Analysis: This provides a series of spin periods, indicating how long it takes for the pulsar to complete each rotation.

5. Visualizing Spin Periods:

- **Plotting:** The spin periods are plotted against the pulse number and time to visualize the pulsar's rotational behavior.
- **Evolution Tracking:** This helps track how the spin period evolves over time, showing whether the pulsar is slowing down.

6. Determining the Spin-Down Rate:

- **Linear Fitting:** A linear model is fitted to the spin periods versus time data. The slope of this line indicates the rate at which the spin period is increasing, i.e., the spin-down rate.
- **Spin-Down Rate Calculation:** The slope (spin-down rate) is extracted from the linear fit. This value is converted into more intuitive units like seconds per year or hours per year.

7. Interpretation:

• **Physical Insight:** The spin-down rate is crucial for understanding the pulsar's energy loss mechanisms. As the pulsar emits radiation, it loses rotational energy, causing it to slow down.

Tools and Technology Used (50 words)

The dataset we downloaded from Astrosat data archive portal of Indian Space Science Data Center (ISSDC)

[https://astrobrowse.issdc.gov.in/astro_archive/archive/Home.jsp]

the AstroSat specific analysis software mentioned on the website at the AstroSat Science Support Cell

[http://astrosat-ssc.iucaa.in/]

Google Colab (Python) for writing code

[https://colab.research.google.com/]

HIGHLIGHTING FEATURES OF OUR SOLUTION:

FITS File Utilization: The solution effectively uses high-quality FITS files, ensuring accurate and reliable data for analyzing the Crab Pulsar's spin characteristics.

Preprocessing and Sorting: The arrival times of pulses are meticulously sorted and processed to ensure that the calculations of spin periods are precise and reliable.

Differential Analysis: By calculating the differences between successive pulse arrival times, the solution provides a detailed understanding of the pulsar's rotational dynamics.

Curve Fitting with SciPy: Utilizing advanced curve fitting techniques, the solution accurately determines the spin-down rate, providing insights into the pulsar's energy loss mechanisms.

Detailed Plotting: Comprehensive visual representations of spin periods and their evolution over time make the data easy to interpret and validate.

Solution Brief (Overall):

By analyzing the pulse arrival times from FITS files and calculating the differences between successive pulses, we determine the Crab Pulsar's spin periods. Fitting a linear model to these periods reveals the spin-down rate, offering valuable insights into the pulsar's rotational dynamics and energy loss processes. This method provides a precise measure of how quickly the Crab Pulsar is losing its rotational speed over time.

Innovation partner

