Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 3.7.1 Скин-Эффект в полом цилиндре.

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Исследование проникновения переменного магнитного поля в медный полый цилиндр.

В работе используются:

Генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

Теоретические сведения:

Рассмотрим квазистационарное поле внутри проводящей среды в плоском случае.

Рис. 1: Скин эффект в плоской геометрии.

Пусть вектор E направлен всюду вдоль оси y и зависит только от координаты x, т. е. $E_x=E_z\equiv 0,\,E_y=E_y(x,t).$ В квазистационарном приближении

$$\nabla \times H = \sigma E \tag{1}$$

Берем ротор обеих частей

$$\nabla \times (\nabla \times H) = \nabla(\nabla \cdot H) - \nabla^2 H = \sigma \nabla \times E \tag{2}$$

Используя уравнение Максвелла для ротора E и для дивергенции H получаем

$$\nabla^2 H = \sigma \mu \mu_0 \frac{\partial H}{\partial t} + \nabla (\nabla \cdot H) = \sigma \mu \mu_0 \frac{\partial H}{\partial t}$$
(3)

Берем ротор еще раз

$$\nabla \times (\nabla^2 H) = \nabla^2 (\nabla \times H) = \sigma \mu \mu_0 \frac{\partial (\nabla \times H)}{\partial t}$$
(4)

Осталось подставить первое уравнение, и воспользоваться уравнением Максвелла

$$\nabla^2 E = \sigma \mu \mu_0 \frac{\partial E}{\partial t} \tag{5}$$

Подставляем электрическое поле $E_y = E_y(x,t)$

$$\frac{\partial^2 E_y}{\partial x^2} = \sigma \mu \mu_0 \frac{\partial E_y}{\partial t} \tag{6}$$

Если $E_y(0,t)=E_0e^{i\omega t}$ то решением будет функция вида

$$E_y(x,t) = E_0 e^{-x/\delta} e^{i(\omega t - x/\delta)}$$
(7)

где

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}} \tag{8}$$

Скин-эффект в тонком полом цилиндре

Рис. 2: Электрическое и магнитное в тонкостенном цилиндре.

Из симметрии и непрерывности соответствующих компонент векторов E и H можем сказать что

$$H_z = H(r)e^{i\omega t}, E_{\varphi} = E(r)e^{i\omega t}$$
 (9)

и при этом функции H(r) и E(r) непрерывны.

Внутри цилиндра токов нет, следовательно $H(r) = H_1 = {
m const}$ внутри цилиндра. По теореме об электромагнитной индукции

$$E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1 \tag{10}$$

откуда мы получаем граничное условие

$$E_1 = E(a) = -\frac{1}{2}\mu_0 a \cdot i\omega H_1 \tag{11}$$

В приближении $h \ll a$ можем пренебречь кривизной стенки и считать ее бесконечной полосой. Тогда, надо решить уравнение с граничными условиями. Решая уравнение получим связь полей H_1 (поле внутри цилиндра которое мы будем измерять) и H_2 , которое колеблется с частотой ω

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2}\alpha a \operatorname{sh}(\alpha h)} \quad \alpha = \sqrt{i\omega\sigma\mu_0} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}$$
(12)

из этой формулы получим сколько по фазе отстает поле H_1 от H_0 . При $\delta \ll h$ (высокочастотная область)

$$\psi \approx \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}} \tag{13}$$

При $\delta \gg h$ (низкочастотная область)

$$\tan \psi \approx \frac{ah}{\delta^2} = \pi a h \sigma \mu \mu_0 \nu \tag{14}$$

Экспериментальная установка:

Рис. 3: Экспериментальная установка.

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. 3. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3. Необходимые параметры соленоида, экрана и измерительной катушки указаны на установке. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое пропорционально току, а на вход второго канала — напряжение с измерительной катушки

ЭДС индукции в измерительной катушке равна

$$\boldsymbol{U} = -SN\frac{dB_1(t)}{dt} = -i\omega\mu_0 SNH_1 e^{i\omega t},$$

где SN - произведение площади витка на число витков измерительной катушки. Показания вольтметра, измеряющего это напряжение:

$$U = \frac{SN\omega}{\sqrt{2}}\mu_0 |H_1|.$$

$$\frac{|H_1|}{|H_0|} = \text{const } \cdot \frac{U}{\nu I}$$

Таким образом, отношение амплитуд магнитных полей снаружи и зне экрана (коэффициент ослабления) может быть измерено по отношению $U/\nu I$ при разных частотах. Неизвестная константа может быть определена по измерениям при малых частотах $\nu \to 0$ $|H_1|/|H_0| \to 1$.

Результаты измерений и обработка данных:

1. В области низких частот — от $0,01\nu_h$ до $0,1\nu_h(\nu_h\approx 2200~\Gamma \text{ц})$ — получим зависимость отношения $\xi=U/\nu I$ от частоты ν . Полученные данные занесем в таблицу 1.

ν, Γц	20	29	38	47	56	65	74	83	92	101	110	119
V, B	0,131	0,194	0,249	0,301	0,349	0,393	0,433	0,469	0,502	0,531	0,557	0,580
I, мА	467	464	460	456	450	444	438	432	426	420	414	409

Таблица 1: Данные для зависимости $\xi = U/\nu I$ при ν от $0,01\nu_h$ до $0,05\nu_h$

2. По результатам пункта 1 построим график зависимости $1/\xi^2=k\nu^2$, по графику определим величину ξ_0 и проводимость меди σ

Рис. 4: График зависимости $1/\xi^2 = k\nu^2$.

$$\sigma^2 = \frac{(\xi_0/\xi)^2 - 1}{(ah\mu_0\pi\nu)^2}$$

$$\sigma_{min}=1,5\pm0,1$$
 См/м $\sigma_{max}=5,1\pm0,1$ См/м

3. Исследуем зависимость величины ξ и фазового сдвига ψ от частоты ν при низких частотах в диапазоне от $0,05\nu_h$ до $0,5\nu_h$. Полученные данные занесем в таблицу 2.

ν, Гц	100	112	124	136	148	160	172	184	196	220
V, B	0,526	0,561	0,590	0,616	0,637	0,656	0,672	0,686	0,697	0,716
I, мА	419	411	404	397	391	386	381	376	372	364
ψ , °	68	56	54	53,5	47,7	46,5	45	41,5	36	32,7
ν, Гц	305	390	475	560	645	730	815	900	985	1070
ν, Γιι <i>V</i> , Β	305 0,752	390 0,763	475 0,764	560 0,759	645 0,752	730 0,742	815 0,730	900 0,717	985 0,703	1070 0,688
<u> </u>										

Таблица 2: Данные для V, I, ψ

4. Построим график зависимости фазового сдвига от частоты $\operatorname{tg} \psi = f(\nu)$. Определим участок, где есть линейная зависимость и по наклону прямой определим коэффициент проводимости.

Рис. 5: График зависимости $tg(\psi) = f(\nu)$.

$$\sigma = \frac{k}{ah\pi\mu_0} = (5, 8 \pm 0, 3) \cdot 10^7 \text{Cm/m}$$

5. Повторим измерения пункта 3 при высоких частотах в диапазоне от $0,5\nu_h$ до $15\nu_h$. Полученные данные занесем в таблицу 3.

ν , к Γ ц	1,1	3,3	5,5	7,7	9,9	12,1	14,3	16,5	18,7	20,9
V, B	0,683	0,368	0,224	0,151	0,108	0,081	0,062	0,049	0,040	0,034
I, мА	279	153	99	71	55	43	35	28	23	19
ψ , °	0	24,2	36	51,2	72,3	90,0	101,3	115,7	135,0	140,9
ν , к Γ ц	23	25	28	30	32					
v , к Γ ц V , В	23 0,029	25 0,025	28 0,021	30 0,017	32 0,013					

Таблица 3: Данные для зависимости $\xi = U/\nu I$ и ψ при ν от $0,05\nu_h$ до $0,5\nu_h$

6. Построим график частотной зависимости фазового сдвига $\psi - \pi/4 = f(\sqrt{\nu})$ для данных из пунктов 3 и 5. Проведем прямую, проходящую через начало координат, которая будет касаться линейного участка графика. По наклону прямой определим проводимость материала экрана.

Рис. 6: График зависимости $\psi - \pi/4 = f(\sqrt{\nu})$.

$$\sigma = \frac{k^2}{\pi \mu_0 h^2} = (5, 4 \pm 0, 2) \cdot 10^7 \text{Cm/m}$$

7. Исследуем зависимость индуктивности катушки L от частоты ν . Полученные данные занесем в таблицу 4.

ν, Гц	50	150	250	400	500	600	750	800	1000	1500
L , м Γ н	10,38	7,55	5,68	4,27	3,86	3,62	3,40	3,35	3,22	3,09
т. Г.	1000	F000	7500	10000	15000	10000	20000			
ν, Гц	4000	5000	7500	10000	15000	16200	20000			

Таблица 4: Данные для зависимости $L(\nu)$ при ν от $0,02\nu_h$ до $10\nu_h$

8. Построим график зависимости индуктивности катушки от частоты $L(\nu)$. Определим максимальное и минимальное значение индуктивности.

Рис. 7: График зависимости $L(\nu)$.

9. Построим график зависимости $(L_{max}-L_{min})/(L-L_{min})(\nu^2)$, по наклону определим проводимость материала экрана

Рис. 8: График зависимости $(L_{max} - L_{min})/(L - L_{min})(\nu^2)$.

$$\sigma = \frac{\sqrt{k}}{\pi a \mu_0 h} = (5, 0 \pm 0, 3) \cdot 10^7 \text{Cm/m}$$

10. По полученному коэффициенту ξ_0 определим коэффициенты ослабления поля $|H_1|/|H_0|$. Изобразим на графике зависимость $|H_1|/|H_0|$ от ν в логарифмическом масштабе. Также построим теоретическую кривую.

Рис. 9: График зависимости $|H_1|/|H_0|(ln(\nu))$.

Обсуждение результатов и выводы:

σ , ·10 ⁷ Cm/m	ε , %
1,5 - 5,1	2
5,8	5
5,4	4
5,0	6

Таблица 5: Сводная таблица всех полученных результатов

В ходе данной работы мы исследовали проникновение переменного магнитного поля в медный полый цилиндр. Получили значение проводимости меди различными способами. Теоретическое значение проводимости меди: $\sigma = 5-6\cdot 10^7~{\rm Cm/m}$. Полученные нами значения совпадают в пределах погрешности с теоретическим. Также мы определили коэффициенты ослабления поля и измерили индуктивность катушки цилиндра, все полученные данные отобразили на графиках.