Formal Logic

- Logic is a language for reasoning.
- An argument is a sequence of statements aimed at demonstrating the truth of an assertion.
 - The assertion at the end of the sequence is called the conclusion, and the preceding statements are called premises.
- We are interested in whether a **statement** is true or false, and in determining truth/falsehood of statements from other statements.
- **Statement** (or **proposition**): a sentence that is true or false, but not both.
- Much of Mathematics is about *proving* a statement is true, or *demonstrating* a statement is false.

Logical Connectives

- Connectives are key words/symbols that connect two or more simple statements to form new, longer ones
- We use p, q, r, ... to denote simple statements (**statement variables**) i.e. p: I need to work hard in MATH221.
- There are 5 Connectives:

Name	Example	Definition
Negation	~ p	NOT p
Disjunction	$p \lor q$	p OR q
Conjunction	<i>p</i> ∧ <i>q</i>	p AND q
Conditional	$p \Rightarrow q (p \Rightarrow q)$	p IMPLIES q
Biconditional	p <=> q (p <-> q)	p IF AND ONLY IF q

- Compound statement: an expression of simple statements and connectives.
 - o Each simple statement has a truth value T for true and F for false.
- The truth value of a compound statement is determined by logic, using the simple statement values and the connectives.
- We do this by constructing truth tables.

Negation

- If p is a statement variable, then "NOT p", denoted by p, has the opposite value.
 - If p is true, ~p is false.
 - If p is false. ~p is true.

Definition

If p is a statement variable, the **negation** of p is "not p" or "it is not the case that p" and is denoted p. It has the opposite truth value from p: if p is true, p is false; if p is false, p is true.

• The truth values for **negation** are summarised in a table.

p	~p
Т	F
F	Т

NOTE:

- The truth table above tells us that for any statement p, exactly one of p and p is true.
- This gives us 2 options for proving p is true:
 - Show it directly
 - Show indirectly by proving ~p is false (proof by contradiction)

Priority

- In expressions that include the symbol ~ as well as ∧ or ∨, the **order of operations** specifies that ~ is performed first.
- $p \lor q$ means $(p) \lor q$, which is different from $(p \lor q)$
- In logical expressions, as in ordinary algebraic expressions, the order of operations can be overridden through the uses of parentheses.

Conjunction

- If p and q are statement variables, the conjunction is "p AND q", denoted by $p \wedge q$.
 - If p AND q are both true, then $p \wedge q$ is true.
 - Otherwise, $p \wedge q$ is false.

Definition

If p and q are statement variables, the **conjunction** of p and q is "p and q," denoted by $p \wedge q$. It is true when, and only when, both p and q are true. If either p or q is false, or if both are false, $p \wedge q$ is false.

• The truth table for conjunction is:

p	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

- If p and q are statement variables, the disjunction is "p OR q", denoted by $p \vee q$.
 - If p and q are both false, $p \lor q$ is false.
 - Otherwise, $p \lor q$ is true.

Definition

If p and q are statement variables, the **disjunction** of p and q is "p or q," denoted by $p \lor q$. It is true when either p is true, or q is true, or both p and q are true; it is false only when both p and q are false.

• The truth table for disjunction is:

р	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

NOTE:

• The word "OR" can be used in an exclusive sense, i.e. p OR q but not both.

Exclusive OR

- The **exclusive or** statement is sometimes denoted by \otimes
- It can also be represented by AND/OR/NOT symbols. i.e. $p \otimes q = p$ OR q, but NOT BOTH"
- Note that when *or* is used in its exclusive sense, the statement "p or q" means "p or q but not both" or "p or q and not both p and q," which can be denoted as: $(p \lor q) \land (p \land q)$.
- The truth table for exclusive or is:

р	q	p∨q	p∧q	~(p ∧ q)	$(p \lor q) \land {}^{\sim}(p \land q)$
Т	Т	Т	Т	F	F
Т	F	Т	F	Т	Т
F	Т	Т	F	Т	Т
F	F	F	F	Т	F

Conditionals

- When you make a logical inference or deduction, you reason from a hypothesis to a conclusion.
- The statement has the form "if something is true, then something else is true."
- If p and q are statement variables, the **conditional** of q by p is "If p, then q" or "p IMPLIES q", denoted by p => q.
 - If p is true and q is false, then $p \Rightarrow q$ is false.
 - Otherwise, $p \Rightarrow q$ is true
 - p is the hypothesis (antecedent)
 - q is the conclusion (consequent)
- Conditionals take priority over conjunctions and disjunctions.

Definition

IF p and q are statement variables, the **conditional** of q by p is "if p, then q" or "p implies q," denoted by $p \Rightarrow q$. If p is true and q is false, then $p \Rightarrow q$ is false. Otherwise, $p \Rightarrow q$ is true.

• The truth table for conditionals is:

р	q	p => q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

NOTE:

- Why is $p \Rightarrow q$ true when p is false.
- If a statement cannot be said to be false, then it is true.
- If p is false, then we cannot say that $p \Rightarrow q$ is false, it is true.
- Consider the claim, "if it rains, then I will go home."
 - Only if it rains can we make a judgement on its truth.
 - If it doesn't rain, then regardless of whether or not I go home, we cannot claim that the statement is false. So, it is true.

Exercise:

Write using connectives: "If $x^2 = 4$, then x = 2 or x = -2."

$$\rho: > c^2 = 4$$

$$q: > c = 2$$

$$r: > c = -2$$

$$\rho = > (q \lor r)$$

Biconditionals

- A **biconditional** statement has the form "p if and only if q" or "p IFF q."
- It's true only if both variables have the same value.
- It is denoted by p <=> q, and is read
 - p IFF q
 - p is EQUIVALENT to q
 - p IMPLIES AND IS IMPLIED by q
 - p is NECESSARY AND SUFFICIENT for q
- The truth table for biconditionals is:

р	q	p <=> q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Exercise:

a)
$$p: x^3 = -8$$
, $q: x = -2$, $p <=> q$.

P	9	P=>4	2=>p	$(p \Rightarrow q) \wedge (q \Rightarrow p)$
1	T	T	T	T
+	F	F	T	F
F	T	T	F	F
•	F	T	T	一

b) Write using connectives: "Michael is a bachelor if and only if he is male and never married."

EXERCISE:

Complete the table

p	q	p => q	q => p	p <=> q	$(p \Rightarrow q) \land (q \Rightarrow p)$
Т	Т	T	T	T	T
Т	F	F	T	F	F
F	Т	T	F	F	F
F	F	T	T	1	T

- Notice that the last two columns are the same.
- This means that $p \ll q$ and $(p \ll q) \wedge (q \ll p)$ are **logically equivalent**.
- NOTE:
 - Notice that $p \le q$ means $(p \ge q) \land (q \ge p)$

Main Connectives

- When building compound statements, use parentheses to avoid ambiguity.
- The main connective is the one that binds the whole statement together.
- We must know the ranking of all connectives in a statement.
- E.g.

(p v ~q) => (p x q)

Main Connective

 $\sim [(p \land q) \lor (\sim p \land q)]$

Tautology and Fallacy

- A tautology is a compound statement that is always true, for all values of the basic statements
 - E.g. $p \vee {}^{\sim}p$
- A **fallacy** is a compound statement that is always false, for all values of the basic statements
 - E.g. *p* ∧~*p*
- Any statement that is neither a tautology nor a fallacy is called **contingent** or **intermediate**.
- Note that the negative of a tautology is a fallacy, and vice versa.

Definition

A **tautology** is a statement form that is always true regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a tautology is a **tautological statement**.

A **contradiction** (**fallacy**) is a statement that is always false regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a contradiction is a **contradictory statement**.

Exercise:

Show that for any statement p, $p \vee {}^{\sim}p$ is a tautology and $p \wedge {}^{\sim}p$ is a fallacy.

P	$\sim \rho$	PV~P	$p \wedge \sim \rho$
T	F	T	F
F	T		F

Exercise:

Determine whether $\sim [(\sim p \land q) \land p]$ is a tautology, fallacy, or contingent statement.

"Quick" Method of Identifying Tautologies

- With truth tables, 2ⁿ rows are required.
 - This gets big and impractical quickly (i.e. 4 statements requires 16 rows, 5 statements requires 32 rows, ...)
- There is a quicker method we can use:
- NOTE:
 - Truth tables are reliable; it's not easy to make mistakes. The quick method can be more difficult in that respect.
- It relies on the fact that if a false can occur under the main connective, then the statement is not a tautology.
- If a false is not possible, it is a tautology.
- They method is:
 - Assume the main connective yields a false, then work backwards to see if a valid combination of values
 exists
 - Firstly, place an F under the main connective.

$$(p \land q) \Rightarrow (r \land s)$$

• Remember the conditional table: for this to happen, $p \wedge q$ must be true and $r \wedge s$ must be false.

• Since these are perfectly valid values for p, q, r, s, we have that $(p \land q) \Rightarrow (r \land s)$ is not a tautology.

a) Is $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$ a tautology?

b) Make the truth table for this statement, and verify that the last column is all T.

р	q	r	p => q	q => r	p => r	$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$
Т	Т	Т	1	T	1	1
Т	Т	F	T	 	F	FT
Т	F	Т	F	T	T	FT
Т	F	F	F	T	F	
F	Т	Т	1	T	T	T
F	Т	F	T	F	T	T
F	F	Т	T	1	T	T
F	F	F	T	T	T	T

Logical Equivalence

- Two statements are called **logically equivalent** if, and only if, they have identical truth tables.
- The logical equivalence of p and q is denoted by $p \equiv q$.
- p and q are logically equivalent IFF $p \le q$ is a tautology.

Exercise:

Is
$$p \equiv {}^{\sim} ({}^{\sim}p)$$
?

p	~p	~(~p)
Т	F	Т
F	Т	F

These are identical. So, yes they are equivalent

Substitution of Equivalence

- We can make substitutions in statements, using equivalence expressions.
- There are 2 rules:

Rule of Substitution

• If in a tautology all occurrences of a variable are replaced by the same statement, the result is another tautology:

Example:

 $p \vee {}^{\sim}p$ is a tautology, so $q \vee {}^{\sim}q$ is as well, and $[(p \vee q) \Rightarrow r] \vee {}^{\sim}[(p \vee q) \Rightarrow r]$ is as well.

Rule of Substitution of Equivalence

• If in a tautology we replace any part of a statement by a statement equivalent to that part, the result is another tautology.

Example:

 $p \equiv {}^{\sim}({}^{\sim}p)$, so the tautology $p \vee {}^{\sim}p$ can be written ${}^{\sim}({}^{\sim}p) \vee {}^{\sim}p$.

 $p \Rightarrow q$ is logically equivalent to $p \lor q$. $q \Rightarrow (p \Rightarrow q)$ is a tautology. Prove that $s \Rightarrow (r \lor s)$ is a tautology.

$$q \Rightarrow (p \Rightarrow e)$$
- Substitute q far s
 $s \Rightarrow (p \Rightarrow s)$
- Substitute r far p
 $s \Rightarrow (r \Rightarrow s)$

- Since p=>q is loop cally equivalent to $\sim p \sim q$, we can substitute r=>s for $\sim r \sim s$

$$S = \gamma (\sim r \vee s)$$

Truth Tables Cheat Sheet

Conjunction

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

p	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditionals

p	q	p => q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Biconditionals

p	q	p <=> q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical Equivalence Laws

Commutative Laws

1.
$$p \lor q \equiv q \lor p$$

2.
$$p \land q \equiv q \land p$$

3.
$$p <=> q \equiv q <=> p$$

Associative Laws

1.
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

2.
$$(p \land q) \land r \equiv p \land (q \land r)$$

3.
$$(p <=> q) <=> r \equiv p <=> (q <=> r)$$

Distributive Laws

1.
$$p \lor (q \land r) \equiv (p \lor q) \land (q \lor r)$$

2.
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

3.
$$p \Rightarrow (q \lor r) \equiv (p \Rightarrow q) \lor (p \Rightarrow r)$$

4.
$$p => (q \land r) \equiv (p => q) \land (p => r)$$

Double Negative Law

1.
$$\sim (\sim p) \equiv p$$

De Morgan's Laws

1.
$$\sim (p \vee q) \equiv \sim p \wedge \sim q$$

2.
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

Implication Laws

1.
$$p <=> q \equiv (p => q) \land (q => p)$$

2.
$$p \Rightarrow q \equiv p \lor q$$

3.
$$p \Rightarrow q \equiv q \Rightarrow p$$

4.
$$\sim (p \Rightarrow q) \equiv p \land \sim q$$

Definition

The negation of an *and* statement is logically equivalent to the *or* statement in which each component is negated.

The negation of an *or* statement is logically equivalent to the *and* statement in which each component is negated.

Exercise:

To understand De Morgan's Laws, write negatives of these:

a) John is 6 feet tall and he weighs at least 200 pounds

p: John is 6 feet tall q: John weighs at least 200 pounds

y: John weight at least 200 process

 $\sim (p \land q) \equiv \sim p \lor \sim q$

John is not 6 feet tall or he weights less than 200 pounds

b) The bus was late or Tom's watch was slow

p: the low was late

q: Tom's watch was Slow

 $\sim (p \vee q) \equiv \sim p \wedge \sim q$

The bus was not late and Ton's watch was not slow

Prove De Morgan's Laws using truth tables.

$$\sim (p \wedge q) \equiv \sim p \vee \sim q$$

р	q	~ (p ∧ q)	~p ∨ ~ q
Т	Т	F	F
Т	F	T	T
F	Т	1	T
F	F	T	T

$$\sim (p \vee q) \equiv \sim p \wedge \sim q$$

р	q	~ (p ∨ q)	~p ^ ~ q
Т	Т	F	F
Т	F	F	F
F	Т	F	F
F	F	T	7

Inequalities and De Morgan's Laws

Textbook Exercise:

Use De Morgan's laws to write the negation of $-1 < x \le 4$.

$$-1 < x \leq U = (-1 < x) \land (x \leq y)$$

By De Morgan's laws, the negation is:

$$(-1 \not\in x) \lor (x \not\in u)$$

This is equivalent to:

$$(-1 \ge x) \vee (x > 4)$$

- De Morgan's laws are frequently used in writing computer programs.
 - For instance, supposed you the program to delete all files modified outside a certain range of dates, say from date1 through date2 inclusive.
 - You would use the fact that:

 \sim (date1 \leq file_modification_date \leq date2)

is equivalent to:

(file modification date < date1) or (date2 < file modification date)

Exercise:

Is $(p \land {}^{\sim}q) \land ({}^{\sim}p \lor q)$ a tautology or a fallacy?

P: T; ~9: T 9: F, ~P: F

Since this combination is passible, it is not a tautalogy.

Exercise:

Is $(p \iff q) \iff (p \iff q)$ a tautology or a fallacy?

T

P.T; g:T ~ p.F;

Since & cannot be a true, the main connective amond he possible.

This is a fallacy.

T F F Wat a Handalogy

EFF-5TFV

Wat a Handalogy

Prove the equivalence $(p \Rightarrow q) \Rightarrow r \equiv [(\sim p \Rightarrow r) \land (q \Rightarrow r)]$

p	q	r	(p => q)	(~p => r)	(q => r)	(p => q) => r	$[(\sim p \Rightarrow r) \land (q \Rightarrow r)]$
Т	Т	Т	T	T	T	7	T
Т	Т	F	T	T	F	F	F
Т	F	Т	F	T	T	T	T
Т	F	F	F	T	T	T	T
F	Т	Т	T	T	T	T	T
F	Т	F	T	F	F	F	F
F	F	Т	1	T	T	T	T
F	F	F		F	T	F	F

These are the same

$$(P \Rightarrow q) \Rightarrow r \equiv [(\sim p \Rightarrow r) \land (q \Rightarrow r)]$$
Let $\propto \text{ be the tankulagy } S \Rightarrow t \equiv \sim s \lor t$

$$(p \Rightarrow q) \Rightarrow r \equiv (\sim p \lor q) \lor r \quad (Substitute S \Rightarrow t \text{ for } (p \Rightarrow t))$$

$$\equiv (\sim p \land \sim q) \lor r \quad (Ne \text{ Margan's}) \Rightarrow \text{flip } \lor \text{ to } \land \text{ by adding }$$

$$\equiv (\sim p \land \sim q) \lor r \quad (Nouble \text{ negation})$$

$$\equiv (\sim p \land \sim q) \lor r \quad (Nouble \text{ negation})$$

$$\equiv (\sim p \Rightarrow r) \land (\sim q \lor r) \quad (Nistrib. 1)$$

$$\equiv (\sim p \Rightarrow r) \land (\sim q \Rightarrow r) \quad (\sim q \Rightarrow r) \quad (\sim q \Rightarrow r) \quad (\sim q \Rightarrow r)$$