A major risk in classification: overfitting

Assume we have a small data set

We fit a model that separates red and blue

When more data becomes available, we see that the model is poor

A simpler model might have worked better

A predictor always works best on the data set on which it was trained!

Solution: divide data into training and test sets

Solution: divide data into training and test sets

Solution: divide data into training and test sets

Evaluate model on test data

Frequently used approach: *k*-fold cross-validation

- Divide data into k equal parts
- Use k-1 parts as training set, 1 as test set
- Repeat k times, so each part has been used once as test set

Also: Leave-one-out cross-validation

- Fit model on *n*–1 data points
- Evaluate on remaining data point
- Repeat n times, so each point has been left out once

And: Repeated random sub-sampling validation

- Randomly split data into training and test data sets
- Train model on training set, evaluate on test set
- Repeat multiple times, average over result