Axiomatic Characterisation of Diversity Measures on Tripartite Graphs

Robin Lamarche-Perrin^{1,2}, Lionel Tabourier², Fabien Tarissan^{2,3}, Raphaël Fournier-S'niehotta⁴, and Rémy Cazabet²

- ¹ Institut des systèmes complexes de Paris Île-de-France
 - ² Laboratoire d'informatique de Paris 6
 - ³ Institut des sciences sociales du politique
 - ⁴ Conservatoire national des arts et métiers

Second meeting of the ANR AlgoDiv Project 28th of June, 2017, in Paris

Diversity measures 101

Starting point: Wikipedia article on "Diversity index" https://en.wikipedia.org/wiki/Diversity_index

- A set of items $\mathcal{I} = \{i_1, \dots, i_n\}$
- A set of type $\mathcal{T} = \{t_1, \ldots, t_m\}$
- A membership function $\tau: \mathcal{I} \to \mathcal{T}$ defining the proportional abundance of types:

$$orall t \in \mathcal{T}, \quad p_{ au}(t) = rac{|i \in \mathcal{I} : au(i) = t|}{|\mathcal{I}|}$$

$$p_{\tau}(t_1) = \frac{3}{5}, \ p_{\tau}(t_2) = 0, \ p_{\tau}(t_3) = \frac{2}{5}$$

A diversity index is an application $D: (\mathcal{I} \to \mathcal{T}) \to \mathbb{R}$ that associate a diversity value $D(\tau)$ to any membership function τ .

Disclaimer: Preliminary definitions needed!

The proper definition of any diversity measure hence requires to first solve three definition-related problems:

- Identification problem: Given a set of items $\mathcal{I}...$
- Categorisation problem: Given a set of types \mathcal{T} ...
- **Enumeration problem:** How do we build the ratios $p_{\tau}(t)$?

In the following, we will assume these problems to be solved, and will focus on proper diversity measures that can be built on it.

Diversity measures 101

Starting point: Wikipedia article on "Diversity index" https://en.wikipedia.org/wiki/Diversity_index

Richness:

$$|t \in \mathcal{T}: p_{\tau}(t) > 0| = 2$$

Berger-Parker index:

$$\max_{t \in \mathcal{T}} p_{\tau}(t) = \frac{3}{5}$$

$$\sum_{t \in \mathcal{T}} p_{\tau}(t)^2 = 0.52$$

$$-\sum_{t\in\mathcal{T}}p_{\tau}(t)\log_2p_{\tau}(t)\approx 0.971$$

Axiomatisation (1/2)

Coming from measures of diversity, of concentration, of inequality, of uncertainty...

- Homogeneity: $D(\tau) = D(p_{\tau}(t_1), \dots, p_{\tau}(t_m))$
- Continuity: $D(p_{\tau}(t_1), \ldots, p_{\tau}(t_m))$ is a continuous function of $p_{\tau}(t_i)$
- Symmetry: $\forall \sigma \in \text{Sym}\{1,\ldots,m\}, \quad D(p_1,\ldots,p_m) = D(p_{\sigma(1)},\ldots,p_{\sigma(m)})$
- Expansibility: $D(p_1, \ldots, p_m) = D(p_1, \ldots, p_m, 0)$
- Merging: $D(\ldots, p_i, \ldots, p_j, \ldots) \geq D(\ldots, p_i + p_j, \ldots)$
- Monotonicity: $\forall m_1 < m_2, \quad D\left(\frac{1}{m_1}, \dots, \frac{1}{m_1}\right) \leq D\left(\frac{1}{m_2}, \dots, \frac{1}{m_2}\right)$
- Minimum: $D(p_1, ..., p_m) \ge D(0, ..., 0, 1, 0, ..., 0)$
- Maximum: $D(p_1,\ldots,p_m) \leq D\left(\frac{1}{m},\ldots,\frac{1}{m}\right)$
- Normalisation: $D\left(\frac{1}{m},\ldots,\frac{1}{m}\right)=m$

Axiomatisation (2/2)

Assuming homogeneity and symmetry:

- transfer principle ⇒ maximum and Lorenz criterion
- maximum and merging ⇒ monotonicity
- expansibility and transfer principle ⇒ monotonicity
- normalisation and transfer principle ⇒ minimum and maximum

Encaoua and Jacquemin. 1980. "Degree of Monopoly, Indices of Concentration and Threat of Entry". In *International Economic Review*, vol. 21, n°1, p. 87-105.

Chakravarty and Eichhorn. 1991. "An Axiomatic Characterization of a Generalized Index of Concentration". In *Journal of Productivity Analysis*, vol. 2, p. 103-112.

Homogeneity Axiom

Homogeneity: Diversity measures should be neutral with respect to items, and hence should only depend on their distribution among types.

$$D(\tau) = D(p_{\tau}(t_1), \ldots, p_{\tau}(t_m))$$

E.g., swapping the types of two items should not change the system's diversity:

$$p_{\tau_1}(t_1) = \frac{3}{5}, \ p_{\tau_1}(t_2) = 0, \ p_{\tau_1}(t_3) = \frac{2}{5}$$

$$ho_{ au_2}(t_1)=rac{3}{5},\;
ho_{ au_2}(t_2)=0,\;
ho_{ au_2}(t_3)=rac{2}{5}$$

Same diversity!

Symmetry Axiom

Symmetry: Diversity measures should be neutral with respect to types, and hence should not depend on the ordering of types.

$$\forall \sigma \in \mathsf{Sym}\{1,\ldots,m\}, \quad D(p_1,\ldots,p_m) = D(p_{\sigma(1)},\ldots,p_{\sigma(m)})$$

E.g., swapping two types should not change the system's diversity:

$$p_{\tau_1}(t_1) = \frac{3}{5}, \ p_{\tau_1}(t_2) = 0, \ p_{\tau_1}(t_3) = \frac{2}{5}$$

$$ho_{ au_2}(t_1)=0,\;
ho_{ au_2}(t_2)=rac{3}{5},\;
ho_{ au_2}(t_3)=rac{2}{5}$$

Same diversity!

Expansibility Axiom

Expansibility: Adding an empty type should not change the system's diversity.

$$D(p_1,\ldots,p_m)=D(p_1,\ldots,p_m,0)$$

$$p_{\tau_1}(t_1) = \frac{3}{5}, \ p_{\tau_1}(t_2) = 0, \ p_{\tau_1}(t_3) = \frac{2}{5}$$

$$p_{\tau_2}(t_1) = \frac{3}{5}, \ p_{\tau_2}(t_2) = 0, \ p_{\tau_2}(t_3) = \frac{2}{5}, \ p_{\tau_2}(t_4) = 0$$

→ Same diversity!

Transfer Principle Axiom

Transfer principle: Increasing a rare type while decreasing a frequent type should increase the system's diversity.

$$\forall p_i > p_j, \quad \forall \epsilon \leq \frac{p_i + p_j}{2}, \quad D(\ldots, p_i - \epsilon, \ldots, p_j + \epsilon, \ldots) \geq D(\ldots, p_i, \ldots, p_j, \ldots)$$

$$p_{\tau_1}(t_1) = \frac{3}{5}, \ p_{\tau_1}(t_2) = 0, \ p_{\tau_1}(t_3) = \frac{2}{5}$$

$$p_{\tau_2}(t_1) = \frac{2}{5}, \ p_{\tau_2}(t_2) = \frac{1}{5}, \ p_{\tau_2}(t_3) = \frac{2}{5}$$

--> Diversity increase

Normalisation Axiom

Normalisation: The diversity of a system containing equally-populated types should be given by the number of types.

$$D\left(\frac{1}{m},\ldots,\frac{1}{m}\right)=m$$

A quite general class of measures

Assuming **homogeneity** and **symmetry**, which measures simultaneously satisfy the three following axioms: **expansibility**, **normalization**, and **transfert principle**?

Class of self-weighted quasilinear means:

$$D_{\phi}(au) = \phi^{-1} \left(\sum_{t \in \mathcal{T}}
ho_{ au}(t) \ \phi(
ho_{ au}(t))
ight)$$

with $\phi:[0,1]\to\mathbb{R}$ continuous and strictly monotonic

Replication Principle Axiom

Replication principle: Replicating the system k times should multiply its diversity by k.

$$D\left(\underbrace{\frac{p_1}{k},\ldots,\frac{p_m}{k}}_{1^{st}},\ldots,\underbrace{\frac{p_1}{k},\ldots,\frac{p_m}{k}}_{k^{th}}\right)=k\ D(p_1,\ldots,p_m)$$

$$p_{\tau_1}(t_1) = \frac{3}{5}, \ p_{\tau_1}(t_2) = 0, \ p_{\tau_1}(t_3) = \frac{2}{5}$$

$$p_{\tau_2}(t_1) = \frac{3}{10}, \ p_{\tau_2}(t_2) = 0, \ p_{\tau_2}(t_3) = \frac{2}{10},$$

 $p_{\tau_2}(t_4) = \frac{3}{10}, \ p_{\tau_2}(t_5) = 0, \ p_{\tau_2}(t_6) = \frac{2}{10},$

 \longrightarrow **Diversity** $\times 2$

More constrained class of measures

By adding the **replication principle**, then $\phi(x) = a x^{\alpha-1} + b$ with $\alpha > 0$

True diversity:

$$D_{lpha}(au) = \left(\sum_{t \in \mathcal{T}} p_{ au}(t)^{lpha}
ight)^{rac{1}{1-lpha}} \quad ext{with order parameter } lpha \geq 0$$

$$\alpha = 0 \implies D_0(\tau) = |t \in \mathcal{T} : p_{\tau}(t) > 0|$$
 Richness

$$lpha
ightarrow 1 \quad \Rightarrow \quad D_1(au) = \left(\prod_{t \in \mathcal{T}} p_{ au}(t)^{p_{ au}(t)}
ight)^{-1}$$

Exponential of **Shannon entropy**

$$lpha = 2 \quad \Rightarrow \quad D_2(\tau) = \left(\sum_{t \in \mathcal{T}} p_{\tau}(t)^2\right)^{-1}$$

Inverse of $\boldsymbol{\mathsf{Herfindahl}}$ index

$$lpha o \infty \;\; \Rightarrow \;\; D_{\infty}(au) = \left(\max_{t \in \mathcal{T}} p_{ au}(t)\right)^{-1}$$

Inverse of Berger-Parker index

Why Shannon entropy is special (1/2)

All true diversity measures verify the weak additivity axiom.

Weak additivity: If two typologies are *independent*, the diversity of their product is equal to the product of their diversity.

$$p_{(\tau_1,\tau_2)}(t_1,t_2) = p_{\tau_1}(t_1) p_{\tau_2}(t_2) \quad \Rightarrow \quad D(\tau_1,\tau_2) = D(\tau_1) D(\tau_2)$$

Why Shannon entropy is special (2/2)

Only Shannon entropy ($\alpha = 1$) verifies the **strong additivity** axiom.

Strong additivity: The diversity of the product of *any* two typologies is given by the diversity of the first, multiplied by the conditional diversity of the second (chain rule).

$$D(\tau_1,\tau_2)=D(\tau_1)\;D(\tau_2|\tau_1)$$

Summary of diversity measures

Individual Diversity vs. System Diversity (1/2)

Same diversity (of items and of users)

Individual Diversity vs. System Diversity (2/2)

System diversity $D_1(U \triangleright I) \approx 3.13$

Mean individual diversity $D_1(U \triangleright I \mid U) \approx 1.57$

$$D_1(U \triangleright I \mid U) = \prod_{u \in IJ} D_1(U \triangleright I \mid U = u)^{\frac{1}{|\mathcal{U}|}}$$

Individual diversity of user u_1 $D_1(U \triangleright I \mid U = u_1) = 3$

Individual diversity of user u_2 $D_1(U \triangleright I \mid U = u_2) = 1$

Individual Diversity vs. System Diversity

Weak individual diversity
Weak system diversity

Strong individual diversity
Weak system diversity

Weak individual diversity Strong system diversity

Strong individual diversity Strong system diversity

Diversity within communities

Same system diversity Same individual diversity

Diversity within communities

Same system diversity Same individual diversity

Different "retroactive" individual diversity!

The End Thank you for your attention