GRAU: Enginyeria Matemàtica i Física

Assignatura: FISICA DEL ESTAT SÒLID I SUPERFICIES

(CRISTAL·LOGRAFIA, SIMETRIA)

Taules cristal·lografiques

Prof. Dra. M. AGUILÓ

Universitat Rovira i Virgili.

Tarragona, setembre 2023

Els sistemes cristal·lins i les xarxes. Xarxes i grups espacials. (2D)

Table 1.1. Two-dimensional crystal systems, lattices and space groups

Crystal system	Point groups compatible with crystal system	Lattices in system	Space groups compatible with lattice
Oblique $a \neq b, \gamma \neq 90^{\circ}$	1,2	p (primitive)	p1, p2
Rectangular $a \neq b, \gamma = 90^{\circ}$	1m, 2mm	p (primitive) c (centred)	pm, p2mm, pg, p2mg p2gg cm, c2mm
Square $a = b, \gamma = 90^{\circ}$	4, 4mm	p (primitive)	p4, p4mm, p4gm
Hexagonal $a = b$, $\gamma = 120^{\circ}$	3,3m,6, 6mm	p (primitive)	p3, p31m, p3m1 p6, p6mm

Les 5 cel·les bidimensionals i els elements de simetria de les mateixes

Figure 1.6. The five two-dimensional lattices, and the symmetry of the distribution of lattice points in each. In each case a single unit cell is shown on the left, and the symmetry elements within the cell are shown in the figure on the right.

Els 7 sistemes cristal·lins i les 14 xarxes de BRAVAIS (3-D).

Table 1.2. The 7 crystal systems and 14 Bravais lattices in 3 dimensions

Crystal system	Unit cell dimensions	Essential symmetry	Bravais lattices
Triclinic	$a \neq b \neq c;$ $\alpha \neq \beta \neq \gamma$	None	P
Monoclinic	$a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}$ $\neq \beta$	A diad (2-fold) axis	P, C
Orthorhombic	$a \neq b \neq c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$	Three mutually perpen- dicular diad axes	P, C, I, F
Tetragonal	$a = b \neq c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$	A tetrad (4-fold) axis	P, I
Cubic	$a = b = c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$	Four triad (3-fold) axes	P, I, F
Trigonal*	a = b = c $120^{\circ} > \alpha$ $= \beta = \gamma \neq$ 90°	A triad axis	R (rhombo- hedral)
Hexagonal	$a = b \neq c$ $\alpha = \beta$ $= 90^{\circ},$ $\gamma = 120^{\circ}$	A hexad (6-fold) axis	P

^{*} Crystals in the trigonal system may be described by an hexagonal unit cell, even though they do not have a hexad rotation axis.

Les 14 xarxes de BRAVAIS, 1848.

Figure 1.11. The 14 Bravais lattices. All crystalline solids can be described by unit cells which belong to one of these 14 types.

TABLE 2.3.1 Crystallographic Axial and Angular Relationships, and Characteristic Symmetry of the Crystal Systematics of the Crystal Systemati

Point groups(1) System		Axial and angular relationships(2)	Axial ratios and angles to be specified for each substance	Characteristic symmetry	
1, 1	Triclinic	$a \neq b \neq c$ $a \neq \beta \neq \gamma \neq 90^{\circ}$	a:b:c α,β,γ	1-fold (identity or inversion) symmetry only.	
2, m, 2/m	Monoclinic ⁽³⁾	1st setting $a \neq b \neq c$ $a = \beta = 90^{\circ} \neq \gamma$ 2nd setting $a \neq b \neq c$ $a = \gamma = 90^{\circ} \neq \beta$	a:b:c γ a:b:c β	2-fold axis (rotation or inversion) in one direction only, this being taken as the z-axis in the first setting and as the y-axis in the second setting.	
222, mm2, mmm	Orthorhombic	$ \begin{array}{c} a \neq b \neq c \\ \alpha = \beta = \gamma = 90^{\circ} \end{array} $	a:b:c	2-fold axes (rotation or inversion) in three mutually perpendicular directions.	
4, 4, 4/m, 422, 4mm, 42m, 4/mmm	Tetragonal	$ \begin{array}{c} a=b\neq c \\ a=\beta=\gamma=90^{\circ} \end{array} $	c: a	4-fold axis (rotation or inversion) along the z-axis.	
23, m3, 432, 43m, m3m	Cubic	$a=b=c$ $\alpha=\beta=\gamma=90^{\circ}$	None	Four 3-fold axes each inclined at 54° 44′ to the crystallographic axes.	
3, 3; 32, 3 <i>m</i> , 3 <i>m</i>	Trigonal (may be taken as subdivision of hexagonal)	(Rhombohedral axes) $a=b=c$ $a=\beta=\gamma<120^{\circ}\neq90^{\circ}$	a	3-fold axis (rotation or inversion) along [111] using rhombohedral axes, or	
		(Hexagonal axes)(4) $a=b\neq c$ $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	c: a	along the z-direction using hexagonal axes.	
, 6, 6/m, 22, 6mm, m2, 6/mmm	Hexagonal	$a=b\neq c$ (4) $a=\beta=90^{\circ}$ $y=120^{\circ}$	c: a	6-fold axis (rotation or inversion) along the z-axis.	

For explanation of point-group symbols see section 3.1.
 The sign ≠ implies non-equality by reason of symmetry; accidental equality may, of course, occur.
 See Preface to Volume I for explanation of alternative settings.
 In drawing the hexagonal axes, it is customary to take three axes, x-, y- and u-, at 120° to each other, and normal to the z-axis.

TABLE 3-1 CRYSTALLOGRAPHIC POINT GROUPS

Crystal system	Schoenflies symbol	Hermann- Mauguin symbol	Order of group	Laue
Trictinic	C1	1	1	ĭ
	Ci	T	2	
Monoclinic	C_2	2	2	2/m
	C	m	2	
	C_{2h}	2/m	4	
Orthorhombic	D_2	222	4	mmm
	C_{2e}	mm2	4	
	D_{2h}	mmm	8	
Tetragonal	C_4	4	4	4/m
	S_4	4	4	
	C_{4k}	4/m	8	
	D_4	422	8	4/mmn
	Car	4mm	8	
	D_{24}	42m	8	
	D_{4h}	4/mmm	16	
Trigonal	C3	3	3	3
	C31	3	6	
	D_3	32	6	3m
	C30	3 <i>m</i>	6	
	D_{3d}	3m	12	
Hexagonal	C6	6	6	6/m
	C_{3h}	8	6	
	C_{6h}	6/m	12	
	D_6	622	12	6/numn
	C_{6v}	6mm	12	
	D_{3h}	6m2	. 12	
	D_{6h}	6/mmm	24	
Cubic	T	23	12	m3
	T_h	m3	24	
	0	432	24	m3m
	T_d	43m	24	
	Oh	m3m	48	

3.3. The 32 Three-dimensional Point Groups

The crystallographic point groups are those groups of symmetry operations which can operate on infinite three-dimensional lattices so as to leave one point unmoved. They are derived by combining the elements of symmetry listed in section 3.1. They may be grouped into systems according to the set of co-ordinate axes to which they are most conveniently referred or, which is the same thing, according to the group of Bravais lattices on which they can operate. This grouping is shown in Table 3.3.1 together with the point-group order adopted in the present volume, which is different from that used in the 1935 Tables. The symbol X here stands for the order of the rotation symmetry (a single symmetry operation being rotation through $2\pi/X$ about the axis), and the arrangement across the page is 1, 2, 4, 3, 6, X3 (cubic). The close relation between trigonal and hexagonal symmetry makes this more convenient than the direct numerical order would be. The notation is as follows:

Rotation axis XInversion axis XRotation axis with mirror plane normal to it $X/m \left(\frac{X}{m}\right)$

Rotation axis with diad axis (axes) normal to it X2

Rotation axis with mirror plane (planes) parallel to it Xm

Inversion axis with diad axis (axes) normal to it $\overline{X}2$

Inversion axis with mirror plane (planes) parallel to it Xm

Rotation axis with a mirror plane normal to it and mirror planes parallel to it X/mm $\left(\frac{X}{mm}\right)$

TABLE 3.3.1. Symbols of the 32 Three-dimensional Point Groups

			the 32 Three-d	r - -		
General ymbol	Triclinic	Monoclinic (1st setting)	Tetragonal	Trigonal	Hexagonal	Cubic
X	1	2	4	3	6	23
X (of even order)		Ž (≡ <i>m</i>)	4		6	
X plus centre (includes X of odd order)	Ī	2/m	4/m	3	6/m	2/m 3 (m3)
	Monoclinic (2nd setting)	Orthorhombic				
X2	2 (≡12)	222	422 {42}	32	622 {62}	432 {43}
Χm	m (≡1m)	mm2 {mm}	4mm	3 <i>m</i>	6mm	<u> </u>
\overline{X} 2 and \overline{X} m (of even order)	<u>-</u>	_	4 2 <i>m</i>		<i>ъ</i>	43 <i>m</i>
X2 plus centre Xm plus centre (includes Xm of odd order)	2/m	2/m 2/m 2/m (mmm)	4/m 2/m 2/m (4/mmm)	3 2/m (3m)	6/m 2/m 2/m (6/mmm)	4/m 3 2/n (m3m)

Although it is convenient to use the concept of centro-symmetry in deriving the above arrangement of the symbols, the centre is not used in systematic symbolism, being replaced by its equivalent inversion axis I.

The symbols given in parentheses, e.g. (mmm), are the short forms of the symbols where these differ from the full symbols. The symbols given in braces, e.g. (42), are the short symbols used in earlier space-group nomenclature. They are still used where direction is unspecified, as in the point symmetry corresponding to the various sets of equivalent positions (section 4.3). The order of the point groups in the following tables (sections 4.3, 4.7 in particular) is that obtained by reading down each sections.

column in Table 3.3.1, taking the columns in turn from left to right, the two monoclinic settings being taken together.

TABLE 3.9.1. Names and Symbols of the 32 Crystal Classes

	groups	- O-L-andina		7
	onal symbol	Schoenflies symbol		Syste
Short	Full			System used in this
1	1	C_1 $C_l(S_2)$		Triclinic
2	. 2	C.		ļ
m	m	$C_s(C_{1h})$		
2/in	2 m	Cah		Monoclin
222	222	$D_1(V)$		
mm2	mm2	Czu		1 .
mmm	$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	$D_{2h}(V_h)$		Orthorhor
4	4	C.		
4	4	S ₄		
4/m	$\frac{4}{m}$	Can		•
422	422	D ₄		
4mm	4mm	C _{4v}		Tetragonal
42m	42 <i>m</i>	$D_{2d}(V_d)$		
4/mmm	4 2 <u>2</u> m m m	D _{4h}		
3	3	C,		
3 32	3 32	$C_{\mathfrak{s}i}(S_{\mathfrak{s}})$ $D_{\mathfrak{s}}$		
3 <i>m</i>	3 <i>m</i> .	C _{3v}		Trigonal
3m	3 <u>2</u>	Dad		
6	6	C.	-	
6	6	Can	7	
6/ <i>m</i>	$\frac{6}{m}$	Cen		
622	622	D_{\bullet}		•
6mm	6 <i>mm</i>	C 80		Hexagonal
6m2	გ <u>ო</u> 2	Dsh		
6/ <i>mmm</i>	$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	D _{sh}		1 -
23	23	T	<u> </u>	
m3	$\frac{2}{m}$ 3	T _h		
432	<i>m</i> 432	0		,
43m m3m	$\frac{43m}{4}3\frac{2}{m}$	T _d O _h		Cubic

3.3. THE 32 THREE-DIMENSIONAL POINT GROUPS

		Triclinic	Monoclinic (1st setting)	Tetragonal
	X			
	X (even)		m(-2)	
	X (even) plus centre and X (odd)	Monoclinic (2nd setting)	2/m	4/m
	X2	Worldchille (2Nd setting)	Orthorhombic 2222	422
	X m		mm2	4mm
j (e	or (m ven)			42 <i>m</i>
ai X	(2) or m lus natre and m dd)	2/m		4/mmm

Fig. 3.3.1. Stereograms of poles of general equivalent directions, and symmetry

3.3. THE 32 THREE-DIMENSIONAL POINT GROUPS

Trigonal	Hexagonal	Cubic	
		23	X
_	6	_	X (even)
3	6/m	m3	(even) plus centre and X (odd)
32	622	432	<i>X</i> 2
3m	6mm	_	Хm
_	6m2	43m	X2 (even) or X m (even)
3m	6/mmm	m3m	Y2 or Xm plus icenire and Xm (odd)

elements of each of the 32 point groups (z-axis normal to the paper in all drawings)

3.3. THE 32 THREE-DIMENSIONAL POINT GROUPS

TABLE 3.3.2 Order of Positions in the Symbols of the Three-dimensional Point Groups as applied to Lattices

Company and	Positi	on in point-group	symbol	G.	Poles of directions for primary position
System and point groups	Primary	Secondary	Tertiary	Stereographic representation	 secondary ditto tertiary ditto
Triclinic 1, Ī	Only one symbols the crystal.	ool which denotes	all directions in	+z +y Triclinic	
Monoclinic 2, m, 2/m	The symbol gives axis (1) (rotation lst setting: z-ax 2nd setting: y-a	ves the nature of and/or inversion) is unique ⁽²⁾ xis unique	the unique diad	+z +x Mono 1st setting	clinic 2nd setting
Orthorhombic 222, mm2, mmm	Diad (rotation and/or inversion) along x-axis	Diad (rotation and/or inversion) along y-axis	Diad (reation and/or inversion) along z-axis	Orthorhombic	
Tetragonal 4, 4, 4/m; 422, 4mm, 42m, 4/mmm	Tetrad (rotation and/or inversion) along z-axis	Diads (rotation and/or inversion) along x- and y-axes	Diads (rotation and/or inversion) along [110] and [110] axes	+z +x Tetragonal	
Trigonal and hexagonal ⁽³⁾ 3, 3; 32, 3m, 3m; 6, 6, 6/m; 622, 6mm, 6m2, 6/mmm	Triad or hexad (rotation and/ or inversion) along z-axis	Diads (rotation and/or inversion) along x-, y- and u-axes	Diads (rotation and/or inversion) normal to x-, y-, u-axes in the plane (0001)	Trigonal and hexa	+y gonal
Cubic 23, m3; 432, 43m, m3m	Diads or tetrads (rotation and/ or inversion) along (100) axes	Triads (rotation and/. or inversion) along (111) axes	Diads (rotation and/ or inversion) along (110) axes	+x Cubic	

⁽¹⁾ The monoclinic symmetries are a diad rotation axis and/or a mirror plane normal to that axis. The latter is equivalent to a diad inversion axis along the normal to the plane.

(2) See Preface to Volume I. The 2nd setting is usual for crystallographic work.

(3) Both on hexagonal axes. If referred to rhombohedral axes, the unique axis is [111] and the diads (rotation and/or inversion) are along the three (110) and the three (112) directions, respectively.

14 XARXES DE BRAVAIS XARXES TRIDIMENSIONALS

ježali MANGENINA, ililiinii ililii	T/	ABLE 4.1.6. Sym	bols of Symmetry Pla	ines
Samuel Committee of the		Graphi	cal symbol	
Symbol	Symmetry plane	Normal to plane of projection	Parallel to plane of projection	Nature of glide translation
F712	Reflection plane (mirror)	girdə Aşalışı düğü dininin derili der		None (Nore. If the plane is at $z=\frac{1}{2}$ this is shown by printing $\frac{1}{2}$ beside the symbol.)
a, b		shifted octave stock washe values about about octave		a/2 along [100] or $b/2$ along [010]; or along $\langle 100 \rangle$.
c	Axial glide plane		None	c/2 along z-axis; or $(a+b+c)/2$ along [111] on rhombohedral axes.
n	Diagonal glide plane (net)	when I show the shows to show the shows the shows	7	(a+b)/2 or $(b+c)/2$ or $(c+a)/2$; or $(a+b+c)/2$ (tetragonal and cubic).
d	"Diamond" glide plane	There is there is ease is either in the same in the sa		$(a\pm b)/4$ or $(b\pm c)/4$ or $(c\pm a)/4$; or $(a\pm b\pm c)/4$ (tetragonal and cubic). See note below.

Note. In the "diamond" glide plane the glide translation is half of the resultant of the two possible axial glide translations. The arrows in the first diagram show the direction of the horizontal component of the translation when the z-component is positive. In the second diagram the arrow shows the actual direction of the glide translation; there is always another diamond-glide reflection plane parallel to the first with a height difference of \(\frac{1}{4}\) and with the arrow pointing along the other diagonal of the cell face.

			TABLE				
	_		ymbols of Sy				1
Symbol	Symmetry axis	Graphical symbol	Nature of right- handed screw translatio n the axis	Symbol	Symmetry axis	Graphical symbol	Nature of right- handed screw translation the axis
1	Rotation monad	None	None	4	Rotation tetrad	•	None
I	Inversion monad	٥	None	41	Screw tetrads	*	c/4
2	Rotation diad	(normal to paper)	None	42		∳ ∲	2c/4
		(parallel to paper)		4 ₃		*	3 <i>c</i> /4
21	Screw diad	(parametric paper)	c/2	4	Inversion tetrad	•	None
21	Serew urau	(normal to paper) (parallel to paper)	C/Z	6	Rotation hexad	•	None
		Normal to paper		61	Screw hexads	*	c/6
3	Rotation		None	62		▶	2 <i>c</i> /6
	triad	_		63		•	3c/6
31	Screw triads		c/3	6 ₄ 6 ₅		5	4 <i>c</i> /6 5 <i>c</i> /6
32		_	2c/3				
3	Inversion triad	A	None	6	Inversion hexad	•	None

EXTINCIONES SISTEMATICAS

Class of reflection	Condition for nonextinction (n = an Integer)	Interpretation of extinction	Symbol of symmetry clament
hkl	h+k+l=2n	Body-centered lattice	1
٠	h+k = 2n	C-centered lattice	C
	h+l = 2n	B-centered lattice	B
	$\begin{array}{ccc} k+l & = 2n \\ l & +k & = 2-l \end{array}$	A-centered lattice	A
	$ \begin{cases} h+k &= 2n \\ h+l &= 2n \\ k+l &= 2n \end{cases} $	Face-centered lattice	.
٠.	o h, k, l, all even or all odd	• .	,
	-h+k+l=3n	Rhombohrdral lattice indexed on	R
	h+k+l=3n	heragonal reference system Hexagonal lattice indexed on rhombohedral reference system	H
ÖKI	k = 2n	(100) glide plane, component $\frac{b}{2}$	b(P,B,C)
•	l-2n	$\frac{\mathbf{c}}{2}$	c(P,C,I)
	k+l=2n	$\frac{b}{2} + \frac{c}{2}$	n(P)
•	k+l=4n	$\frac{b}{4} + \frac{c}{4}$	d(F) .
YOI	$h = 2n^{\alpha}$	(010) glide plane, component $\frac{a}{2}$	a(P,A,I)
	l=2n	<u>c</u> 2	c(P,A,C)
	h+1=2n	$\frac{a}{2} + \frac{c}{2}$	n(P)
	h+l=4n	$\frac{a}{4} + \frac{c}{4}$	d(F), (B)
hko	h = 2n	(001) glide plane, component $\frac{a}{2}$	a(P,B,I)
,	k = 2n	$\frac{\mathbf{b}}{2}$	b(P,A,B)
•	h+k=2n	$\frac{a}{2} + \frac{b}{2}$	n(l')
	h + k = 4n	$\frac{a}{1} + \frac{b}{4}$	a(f)

lass of affection	Condition for nonextinction (n = an integer)	· Interpretation of extinction	Symbol of symmetry element
NA)	l = 2n	(110) glide plane, component $\frac{c}{2}$	$c(P_iC_iF)$
la v Gar	h = 2n	$\frac{a}{2} + \frac{b}{2}$	b(C)
	h+l=2n	$\frac{a}{4} + \frac{b}{4} + \frac{c}{4}$	n(C)
	2h+l-4n	$\frac{a}{2} + \frac{b}{4} + \frac{c}{4}$	<u>(4(1)</u>)
A 00	h = 2n	[100] screw axis, component $\frac{a}{2}$.21, 48
	h - 4n	$\frac{a}{4}$	41, 44
0 <i>k</i> 0	k - 2n	[010] screw axis, component $\frac{b}{2}$	21. 42
	k - 4n	<u>b</u>	41, 43
300	l=2n	(001) screw axis, component $\frac{c}{2}$	21, 42, 61
<u></u>	l = 3n	<u>s</u>	3:, 34 6:, 64
	l = 4n	ē	41, 3,
	1 = 6n	$\frac{c}{6}$	G1, G4 /
140	h - 2n	[110] screw axis, component $\frac{e}{2} + \frac{5}{2}$.)

f From M. J. Buerger, X-ray crystaliography (John Wiley & Sons, Inc., New York, 1912).