

Agentes Reativos

Capítulo 2:

Costa, E. e Simões, A. (2015). Inteligência Artificial – Fundamentos e Aplicações, 3.ª edição, FCA.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 1

Generalidades

 Aos sistemas computacionais que possuem capacidades como

Autonomia

Flexibilidade

Aprendizagem

dá-se o nome genérico de AGENTE

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 2

- Como definir/classificar um agente?
- Agentes do nosso dia-a-dia:
 - agentes de interface
 - agentes de procura (web)
 - agentes de filtragem (correio eletrónico)
 - agentes assistentes (agenda)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 3

Taxonomia de Agentes

 Um agente autónomo é um sistema situado num ambiente capaz de percecionar esse ambiente e atuar sobre ele, ao longo do tempo, tendo em vista a satisfação dos propósitos da sua agenda, de modo a afetar o que será percecionado no futuro.

[Franklin e Graesser, 1977]

Taxonomia de Agentes

Autonomia

O agente pode tomar decisões sem a intervenção direta ou indireta de outros agentes (humanos ou não).

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 5

Taxonomia de Agentes

 O agente existe mergulhado no ambiente Está em permanente interação com ele, podendo modificá-lo.

Taxonomia de Agentes

 O agente tem a sua agenda
 A sua ação é guiada com vista à concretização dessa agenda.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 7

Taxonomia de Agentes

- Assim, são agentes:
 - termóstato para controlar a temperatura numa sala
 - uma bactéria
 - O ser humano (agente bem mais complexo).

Propriedades dos Agentes

- Podemos acrescentar algumas propriedades a esta classificação de agentes
- Reatividade

Responde em tempo útil a mudanças no ambiente.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 9

Propriedades dos Agentes

Orientado por objetivos

Tem iniciativa.

Não se limita a atuar apenas como resposta ao ambiente.

Propriedades dos Agentes

Comunicação

Comunica com outros agentes (eventualmente de outro tipo).

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 11

Propriedades dos Agentes

Aprendizagem

Muda o seu comportamento de acordo com a sua experiência prévia.

Propriedades dos Agentes

Mobilidade

Capaz de se transportar a ele próprio de máquina para máquina.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 13

Propriedades dos Agentes

Carácter

Tem um estado emocional e a sua própria personalidade.

Tipos de Agentes Autónomos

- Assim, é possível definir uma hierarquia de agentes
- · Agentes:
 - Biológicos (agentes naturais)
 - Robóticos (agentes artificiais)
 - Computacionais (agentes que apenas existem como programas de computador)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 15

Tipos de Agentes Autónomos

- Agentes computacionais:
 - Agentes de Software (em princípio, são eternos)
 - Agentes de Vida Artificial (agentes que morrem)

Normalmente, é a pensar nos agentes de software que usamos a palavra agente

- Como projetar um agente autónomo ?
- Como formalizar a noção de agente e a sua arquitetura ?

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 17

Arquiteturas Abstratas de Agentes

- O Agente vive mergulhado num Ambiente
- O Ambiente é caracterizado por um conjunto de estados

$$E = \{e_1, e_2, ...\}$$

Conjunto de estados que caracterizam o ambiente

 O agente interage com o ambiente, captando o seu estado e realizando um conjunto de ações sobre o ambiente que podem levar à mudança do seu estado

$$A = \{a_1, a_2, ...\}$$

Conjunto de ações que o agente pode realizar

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 19

Arquiteturas Abstratas de Agentes

 O agente pode ser visto como uma entidade que faz o mapeamento de estados do ambiente em ações

Agente:
$$E^* \rightarrow A$$

 Dada uma sequência de estados do ambiente (E*) o agente reage com uma determinada ação (A)

 É normal decompor o agente em duas partes

Uma transforma os estados do ambiente em perceções;

A outra transforma uma sequência de perceções (P*) numa ação:

Perceção: $E \rightarrow P$

Ação: P* → A

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 21

Arquiteturas Abstratas de Agentes

 A função Agente não é mais do que a composição das funções Perceção e Ação

Representação de um agente reativo

Ou seja, se o agente percecionar o estado
 e, muda para um novo estado e'

```
e' = Agente(e) = Ação (Perceção(e))
```

 Se o agente n\u00e3o tiver a capacidade de guardar os estados passados do ambiente:

```
Agente: E \rightarrow A
```

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 23

Arquiteturas Abstratas de Agentes

 Descrição simplificada de um agente reativo através de um programa simples:

função agente_reactivo (estado) : acção

- percepção ← percepção(estado);
- acção ← acção(percepção)

fim_de_função

Ambientes, Modelos e Representações

- Ambiente é um micromundo (visão parcial e limitada do mundo)
- É um espaço a <u>n</u> dimensões, povoado por diferentes tipos de <u>habitantes</u>
- · Pode ser:
 - limitado (ou fechado)
 - aberto (ou infinito)
 - toroidal (os extremos opostos do mundo estão ligados)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 25

Ambientes, Modelos e Representações

- Os habitantes têm uma localização nesse ambiente dada pelas suas coordenadas no espaço
- Os habitantes podem ser de 2 tipos:
 - agentes (biológicos ou não)
 - objetos (podem ser fixos, movimentáveis, manipulados pelos agentes, ...)

Ambientes, Modelos e Representações

 Quanto à perceção, o conceito de vizinhança do agente é crucial

Vizinhança: zonas do ambiente (conjunto de coordenadas) que o agente consegue percecionar num dado momento

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 27

Ambientes, Modelos e Representações

- O agente pode apenas conseguir determinar se as posições da sua vizinhança estão ocupadas ou não e ter como ações primitivas o ato de se mover numa dada direção que esteja livre
- Um agente mais complexo pode ser capaz de determinar o tipo de habitantes presentes na sua vizinhança e realizar ações como comer

Ambientes, Modelos e Representações

 Exemplo: mundo simples a 2 dimensões, fechado, onde habitam 1 agente e alguns obstáculos

Agente num mundo bidimensional

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 29

Ambientes, Modelos e Representações

- O agente tem apenas uma visão local do mundo, conseguindo percecionar apenas as 4 células assinaladas, determinando se estão ocupadas ou não
- No caso de estarem livres, pode movimentar-se para elas

Ambientes, Modelos e Representações

• Exemplo de perceções de um agente

 O estado do ambiente, e, pode ser descrito pelos 4 valores capturados pelos sensores (s₁,s₂,s₃,s₄)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 31

Ambientes, Modelos e Representações

· Ou seja, pelo vetor

$$e = \langle s_1, s_2, s_3, s_4 \rangle = \langle 0, 1, 0, 0 \rangle$$

0 - posição livre

1 – posição ocupada

Ambientes, Modelos e Representações

 O agente pode transformar esses dados numa perceção (p) usando uma representação (notação) simples

i – posição da vizinhança

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 33

Ambientes, Modelos e Representações

· Assim, temos

$$p = \langle livre, ocupado, livre, livre \rangle =$$

= $\langle \neg O_1, O_2, \neg O_3, \neg O_4 \rangle$

 É necessário representar de algum modo o mundo real

Agentes Puramente Reativos

- Retomemos o ambiente e o agente do exemplo anterior
- · Que tarefa?

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 35

Agentes Puramente Reativos

- Que tarefa pretendemos que cumpra ?
 - deambular pelo ambiente, evitando obstáculos ?
 - procurar algo de valor para o agente ?
- Problema de projeto:
 - Como se transformam os dados dos sensores em perceções para o agente e como dão estas origem às ações ?
 - Como representar e implementar a função ação ?

Agentes Puramente Reativos

- Temos 3 abordagens principais:
 - Sistemas de Produções
 - Unidades Lineares de Limiar
 - Arquitetura de subordinação

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 37

Sistemas de Produções (SP)

- É constituído por:
 - Um conjunto de produções ou regras do tipo

Se <condição> então <ação>

Sistemas de Produções (SP)

- É constituído por (cont.):
 - Um interpretador de regras ou mecanismo de controlo.

Tem de lidar com questões como:

- que regras podem ser ativadas?
- que regra é escolhida? (mecanismo de resolução de conflitos)
- disparar a regra (por execução das ações indicadas)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 39

Sistemas de Produções (SP)

• É constituído por (cont.):

Um mecanismo simples será

- As produções são colocadas numa lista ordenada e a primeira produção cujas condições sejam verdadeiras é disparada, sendo executada a respetiva ação
- Por norma, a última regra tem a sua condição sempre verdadeira (para que exista sempre uma regra disparada)

Sistemas de Produções (SP)

- É constituído por (cont.):
 - Memória de trabalho ou ambiente
 - Significa o que é verdadeiro no mundo (do ponto de vista do agente)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 41

SP: Exemplo 1 (4 sensores)

 O comportamento pretendido é o de deambular pelo ambiente evitando os obstáculos

IPG-ESTG EI 2020-21 Inteligência Artificial AGENTES REACTIVOS 42

Conjunto de ações:

{norte, este, sul, oeste}

que significam movimentar-se 1 posição na direção indicada

 Existe 1 conflito: o agente pode deslocar-se para qualquer uma das direções

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 43

SP: Exemplo 1 (4 sensores)

• Mecanismo de resolução de conflitos:

Deve estabelecer que o agente prefere deslocar-se primeiro para Norte, depois para Este, depois para Sul e só no fim para Oeste

Descrição da função ação

```
Função Acção (Percepção): acção

1. Se percepção = ¬01 Então devolve(norte)

1.1. Senão_Se percepção = ¬02 Então devolve(este)

1.2. Senão_Se percepção = ¬03 Então devolve(sul)

1.3. Senão_Se percepção = ¬04 Então devolve(oeste)

Fim_de_Se

Fim_de_Função
```

Descrição da função Acção

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 45

SP: Exemplo 1 (4 sensores)

Sistemas de produções simples

Deambular1

1.
$$\neg O_1 \rightarrow N$$

2.
$$\neg O_2 \rightarrow E$$

3.
$$\neg O_3 \rightarrow S$$

4.
$$\neg O_4 \rightarrow O$$

• Sistemas de produções simples

Deambular2

- 1. $\neg O_1 \rightarrow N$
- 2. $\neg O_2 \rightarrow E$
- 3. $\neg O_3 \rightarrow S$
- 4. $\neg O_4 \rightarrow O$
- 5. $T \rightarrow NIL$ (não fazer nada)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 47

SP: Exemplo 1 (4 sensores)

Sistemas de produções simples

Deambular3:

1.
$$\neg O_1$$
, $\neg P_1 \rightarrow N$, P_{aq}

2.
$$\neg O_2$$
, $\neg P_2 \rightarrow E$, P_{ag}

3.
$$\neg O_3$$
, $\neg P_3 \rightarrow S$, P_{aq}

4.
$$\neg O_4$$
, $\neg P_4 \rightarrow O$, P_{aa}

5.
$$T \rightarrow NIL$$
 (não fazer nada)

(P_i – indicador de passagem pela posição i)

 Estes casos mostram algumas dificuldades do projeto quando o agente tem capacidades limitadas

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 49

SP: Exemplo 1 (4 sensores)

- Vejamos um caso mais realista, em que o agente tem um objetivo que pretende realizar: localizar e apanhar um objeto importante (ouro, por exemplo)
- Esse objetivo é prioritário, passando a ser a 1.ª produção da lista

Sistema de produções simples

Procura Ouro:

1. Ouro \rightarrow NIL

2.
$$\neg O_1$$
, $\neg P_1 \rightarrow N$, P_{aq}

3.
$$\neg O_2$$
, $\neg P_2 \rightarrow E$, P_{aq}

4.
$$\neg O_3$$
, $\neg P_3 \rightarrow S$, P_{aq}

5.
$$\neg O_4$$
, $\neg P_4 \rightarrow O$, P_{aq}

6. $T \rightarrow NIL$ (não fazer nada)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 51

SP: Exemplo 1 (4 sensores)

- Nota final: Com os 4 sensores o agente pode captar 16 estados diferentes, a que correspondem outras tantas perceções
- No entanto, de acordo com o projeto, 8 desses estados originam como resposta a ação Norte, 4 a ação Este, 2 a ação Sul, 1 a ação Oeste e 1 a ação NIL

Classes de comportamento do agente

 Isto permite compreender o comportamento do agente que induz rotações pela direita

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 53

SP: Exemplo 2 (8 sensores)

- Suponhamos que neste segundo exemplo o agente tem 8 sensores: s₁ a s₈
- Suponhamos ainda que o agente também só pode movimentar-se para as células vizinhas que se encontram na mesma linha ou na mesma coluna
- Tarefa do agente: uma vez encontrada a parede limitadora do mundo ou a parede de um obstáculo, o agente deve passar a seguir essa parede.

Característica x: indica se pelo menos 1 das 2 posições que cobre está ocupada

Agente com oito sensores

• $x_1=1$ significa que $s_2=1$ ou $s_3=1$

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 55

SP: Exemplo 2 (8 sensores)

Sistema de produções simples

Segue_paredes:

1.
$$X_4$$
, $\neg X_1 \rightarrow N$

2.
$$X_1$$
, $\neg X_2 \rightarrow E$

3.
$$X_2$$
, $\neg X_3 \rightarrow S$

3.
$$x_2$$
, $\neg x_3 \rightarrow S$
4. x_3 , $\neg x_4 \rightarrow O$

5.
$$T \rightarrow N$$

- TLU Threshold Linear Unit
- Uma TLU é uma versão computacional do neurónio biológico

Neurónio artificial segundo McCulloch e Pitts

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 57

Unidades Lineares de Limiar (TLU)

- Existe um conjunto de entradas que têm pesos associados
- É calculada a soma pesada das entradas que, se ultrapassar um valor limiar de referência, faz com que o neurónio dispare, produzindo um sinal à sua saída
- De um modo geral, quando uma TLU dispara a sua saída assume o valor 1. Caso contrário, assume o valor 0 (estes valores dependem da função de ativação utilizada)

IPG-ESTG EI 2020-21 Inteligência Artificial

AGENTES REACTIVOS 58

- Existem vários tipos de redes de neurónios artificiais (Redes Neuronais Artificiais). Uma classificação possível envolve 3 aspetos:
 - o modo como os neurónios se ligam entre si (topologia)
 - como ficam ativos ou inativos (função de ativação)
 - a forma como modificam alguns dos seus elementos (dinâmica da rede)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 59

Unidades Lineares de Limiar (TLU)

- As TLU podem ser usadas para implementar uma produção
- Consideremos o exemplo do agente segue_paredes e a regra:

$$X_{4}$$
, $\neg X_{1} \rightarrow norte$

- x_4 será verdadeiro se pelo menos um dos sensores s_8 ou s_1 for 1
- $\neg x_1$ será verdadeiro se os dois sensores s_2 e s_3 forem 0

 Assim, a seguinte TLU apenas terá o valor 1 caso x₄ e ¬x₁ sejam simultaneamente verdadeiros

IPG-ESTG El 2020-21 Inteligência Artificial

TLU para a regra 1

стіvоs **61**

Unidades Lineares de Limiar (TLU)

- Mas como implementar um mecanismo de controlo e de resolução de eventuais conflitos entre regras ?
- No exemplo anterior, pretende-se que o mecanismo implemente o ordenamento das regras e que faça com que a primeira a ser ativada possa ser disparada.
- Uma possível solução baseia-se em unidades TISA

 Unidade TISA (Testar, Inibir, Silenciar, Atuar – Test, Inhibit, Squelch, Act)

Estrutura de uma unidade TISA

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 63

Unidades Lineares de Limiar (TLU)

- Uma unidade TISA é constituída por duas TLU de 2 entradas
- A TLU A implementa um OU Lógico das suas entradas

A saída <u>Silenciar</u> só será 0 se as suas 2 entradas forem simultaneamente 0

- No caso da TLU B: se a entrada Testar estiver a 1 então a saída Atuar também será 1, desde que a entrada Inibir não esteja também a 1
- Ou seja, desde que Inibir ou Testar estejam ativos a saída Silenciar fica ativa, enquanto a entrada Inibir controla a passagem do sinal da entrada Testar para a saída Atuar.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 65

Unidades Lineares de Limiar (TLU)

- Para implementar o sistema de produções do exemplo anterior,
 - ligar a saída de uma TLU que implementa uma produção à entrada Testar de uma unidade TISA
 - ligar a saída Silenciar à entrada Inibir da produção que a segue na sequência (e a sua entrada Inibir à saída Silenciar da produção que a antecede na sequência)

 Para o exemplo do agente segue_paredes (apenas as 2 primeiras regras)

Nota: a entrada Inibir da primeira regra está sempre a 0

Arquitetura de Subordinação

 Esta abordagem (abordagem ao problema de ligar a entrada de um agente à respetiva saída), pensada para a robótica móvel, contrapõe à arquitetura vertical da IA tradicional uma arquitetura horizontal.

Arquitetura de Subordinação

Exemplo da representação por camadas na IA clássica

 A ligação entre as sensações e as ações é feita por camadas, constituíndo cada uma uma unidade funcional.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 69

Arquitetura de Subordinação

Exemplo da arquitectura de subordinação

 Esta arquitetura está organizada em torno de comportamentos voltados para a concretização de tarefas, ligando diretamente as entradas do agente às suas saídas.

Arquitetura de Subordinação

- O projeto de um agente começa pela especificação dos comportamentos pretendidos e a sua diferenciação em níveis de competência.
- Estes níveis de competência podem ser básicos, como "evitar objetos", ou mais complexos, como "apanhar objetos"
- Cada nível é implementado como uma camada de controlo.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 71

Arquitetura de Subordinação

- As diferentes camadas podem comunicar através de sinais de supressão (s) dos sinais de entrada ou de inibição (i) dos sinais de saída.
- Exemplo: Se o objetivo pretendido for o agente apanhar um objeto, a camada que implementa este comportamento terá de inibir a camada que implementa o comportamento de evitar obstáculos.

Arquitetura de Subordinação

Arquitectura de subordinação: implementação

As camadas superiores subordinam as camadas inferiores.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 73

Agentes Reativos com Memória

 Neste ponto veremos como limitações nas capacidades sensoriais dos agentes reativos podem, em parte, ser ultrapassadas pela inclusão de um mecanismo de memória.

Arquitetura Abstrata

- Os agentes podem basear a sua decisão na sua história.
- Uma maneira de tratar esta característica é incluir na arquitetura do agente a capacidade de manter uma descrição do estado do ambiente, presente e passado.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 75

Arquitetura Abstrata

- Seja I o conjunto dos estados (internos) do agente.
- Teremos

perceção: E → P

estado: $IxP \rightarrow I$

ação: I → A

Arquitetura Abstrata

Agente reativo com memória

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 77

Arquitetura Abstrata

O comportamento do agente baseado no estado interno pode agora ser descrito do seguinte modo:

- ✓ Admitamos que o agente se encontra num dado estado interno i:
- ✓ O agente observa o estado do ambiente, e, e produz a perceção perceção(e);
- ✓ O estado interno é atualizado pela função estado(i,perceção(e));
- ✓ A ação selecionada será ação(estado(i,perceção(e)));
- ✓ A seguir, um novo ciclo recomeça.

IPG-ESTG EI 2020-21 Inteligência Artificial AGENTES REACTIVOS 78

Arquitetura Abstrata

 Esta arquitetura abstrata pode ser traduzida por um programa simples:

```
    função agente_reactivo_estado_interno (estado_ambiente) : acção
    1. percepção ← percepção(estado_ambiente);
    2. estado_interno ← estado(estado_interno, percepção);
    3. acção ← acção(estado_interno)
    fim_de_função
```

Descrição simplificada de um agente reactivo com memória

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 79

Arquitetura Abstrata

- O estado interno funciona como memória da história das interações entre o agente e o ambiente.
- O agente funciona como uma máquina de estados que vai alterando o seu estado em função do seu estado atual e da informação que recebe do ambiente.

IPG-ESTG EI 2020-21 Inteligência Artificial

AGENTES REACTIVOS 80

- Exemplo de implementação de um agente com estado interno: FormArt
- FormArt é uma formiga artificial que vive num mundo 2D aberto
- A tarefa da formiga é seguir um trilho contínuo de feromona
- Cada "pedaço" do trilho ocupa uma célula, tal como a formiga

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 81

Implementação: FormArt

 A formiga pode estar direcionada para cima, para baixo, para a esquerda ou para a direita

Exemplo da formiga Formart

- A formiga pode estar em 2 estados: ativa
 (On) ou inativa (Off)
- A formiga pode efetuar uma de 5 ações:
 - A avançar uma posição no sentido para que se encontra virada
 - E rodar 90º para a esquerda
 - D − rodar 90º para a direita
 - On passar a ativa
 - Off passar a inativa

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 83

Implementação: FormArt

- As suas capacidades de perceção limitam-se a detetar a presença de feromona na célula à sua frente:
 - F presença de feromona
 - ¬F ausência de feromona
- Também pode determinar se está ativa ou inativa.

 O mecanismo de controlo da formiga artificial pode ser especificado por intermédio de um sistema de produções:

Segue_trilho:

- 1. Off, $F \rightarrow A$, Off
- 2. Off, $\neg F \rightarrow E$, On
- 3. On, $F \rightarrow A$, Off
- 4. On, $\neg F \rightarrow D$, On

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 85

Implementação: FormArt

 O estado interno (On/Off) permite ter informação sobre o passado, isto é, sobre o facto de a formiga andar (On) ou não (Off) a mudar de direção.

O seu comportamento é o seguinte:

- Enquanto deteta feromona na sua frente a formiga avança (regra 1)
- Quando deixa de sentir, muda de estado e roda à esquerda (regra 2)
- Se mudou de direção e foi bem sucedida, volta ao estado anterior e avança (regra 3)
- Caso tenha sido mal sucedida, volta atrás (ou seja, à direita) e mantém o estado de procura (regra 4)
 Como o trilho é contínuo, é forçoso que na sua 2.ª tentativa encontre feromona, aplicando-se a regra 3.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 87

Implementação: FormArt

- Sendo colocada inicialmente sobre o trilho e com feromona à sua frente, a FormArt nunca sai do trilho
- Também é fácil verificar que nunca volta para trás
- O estado interno funciona como memória e impede que a formiga entre em ciclo

Limitações Sensoriais e Estado Interno

 Em que medida a existência de um estado interno permite ultrapassar limitações sensoriais dos agentes ?

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 89

Limitações Sensoriais e Estado Interno

- Considerando o agente segue_paredes e admitindo que o agente
 - Apenas tem acesso direto às posições 2, 4, 6 e 8 (só tem 4 sensores);
 - Consegue memorizar o valor dos sensores s₂, s₄, s₆ e s₈ no instante anterior (t-1), informação esta que pode ser utilizada para determinar o valor dos outros sensores (sensores em falta) s₁, s₃, s₅ e s₇ no instante actual (t).

Limitações Sensoriais e Estado Interno

Ou seja,

$$x_1(t)=1$$
 sse $x_2(t-1)=1$ e ação= $este$;
 $x_3(t)=1$ sse $x_4(t-1)=1$ e ação= sul ;
 $x_5(t)=1$ sse $x_6(t-1)=1$ e ação= $oeste$;
 $x_7(t)=1$ sse $x_8(t-1)=1$ e ação= $norte$;

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES REACTIVOS 91

Limitações Sensoriais e Estado Interno

• Sistema de produções completo

 $\rightarrow N$

Segue_paredes2:

1.
$$x_{8}, \neg x_{2} \rightarrow N$$

2. $x_{2}, \neg x_{4} \rightarrow E$
3. $x_{4}, \neg x_{6} \rightarrow S$
4. $x_{6}, \neg x_{8} \rightarrow O$
5. $x_{1} \rightarrow N$
6. $x_{3} \rightarrow E$
7. $x_{5} \rightarrow S$
8. $x_{7} \rightarrow O$