24.903 Language & Structure III: Semantics and Pragmatics Spring 2003, 2-151, MW 1-2.30 April 28, 2003

1 Object Quantifiers

- (1) a. $[_{DP}$ Every linguist] $[_{VP}$ offended Paul].
 - b. Paul [$_{VP}$ offended [$_{DP}$ every linguist]].
- Type Mismatch
- What is the second argument of every in (1b) and how is it derived?
- Ambiguity
 - (2) Some philosopher offended every linguist.
 - a. Reading 1: There is a philosopher who offended every linguist.
 - b. Reading 2: Every linguist was offended by some philosopher or the other.

2 Type Raising

(3) Ordinary Quantifiers, type (et)t

a.
$$[somebody_i] = \lambda f \in D_{et}[\exists x \in D.f(x) = 1]$$

b. $[everybody_i] = \lambda f \in D_{et}[\forall x \in D.f(x) = 1]$

(4) Type Raised Quantifiers, type (eet)et

a.
$$\llbracket \mathbf{somebody}_2 \rrbracket = \lambda f \in D_{eet}[\lambda x \in D.\exists y \in D.f(y)(x) = 1]$$

b. $\llbracket \mathbf{everybody}_2 \rrbracket = \lambda f \in D_{eet}[\lambda x \in D. \forall y \in D.f(y)(x) = 1]$

- Systematic Type-Ambiguity Type Raising Rules
- Further Type-Raising
 - (5) Ann introduced everybody to Maria.
- Separating the Restrictor from the Quantifier the denotations of every, some, a etc.

2

3 Repairing Type Mismatch by Movement

Before Movement

After Movement of the Quantifier Phrase (i.e. Quantifier Raising):

But this structure is not interpretable as it stands.

A modification that is interpretable:

(6) Predicate Abstraction Rule (PA):

Let α be a branching node with daughters β and γ , where β dominates only a numerical index i. Then, for any variable assignment function a, $[\![\alpha]\!]^a = \lambda x \in D.[\![\gamma]\!]^{a^{x/i}}$.

4 Arguments for Quantifier Raising

4.1 Ambiguities: Inverse Scope

Sentences with more than one Quantifier Phrase are often ambiguous:

- (7) a. Somebody offended everybody.
 - b. Alan gave a present to every student.
 - c. No student read two books by Tarski.
 - d. Exactly two students read every book by Church.

Sometimes one of the readings entails the other - in such cases, we can talk about a weak reading and a strong reading

4.1.1 The Inadequacy of Type Raising

- The type-raising approach does not generate multiple readings.
- The QR approach generates multiple readings.

4.1.2 'Inverse Linking'

(8) One apple in every basket is rotten.

4.1.3 The Role of Syntax

- (9) a. Patsy gave a student every book.
 - b. Some teacher thinks [that every student likes him].
 - c. Some Englishman wrote the poem [that every student memorized].
 - $\rightarrow perceived \ as \ unambiguous$

Scrambling Languages (Japanese, Korean, Hindi etc.)

- (10) Hindi
 - a. Subject Object Verb

Mona-ne Ravi-ko da:taa Mona-Subj Ravi-Obj scolded

b. Object - Subject - Verb

Ravi-ko Mona-ne dã:ṭaa Ravi-Obj Mona-Subj scolded

Mona scolded Ravi.

- (11) Hindi
 - a. Subject Object Verb

[kisi laṛkii]-ne [har laṛke]-ko dã:ṭaa some girl-Subj every boy-Obj scolded

'Some girl scolded every boy.' (only: $\exists > \forall$)

b. Object - Subject - Verb

[har laṛke]-ko [kisi laṛkii]-ne ḍã:ṭaa every boy-Obj some boy-Subj scolded

'Some girl scolded every boy.' (both: $\exists > \forall,\,\forall > \exists)$

Mona scolded Ravi.

4.2 Antecedent Contained Deletion

Handling VP-Ellipsis

- (12) a. I [$_{VP_1}$ read War and Peace] [before you did [$_{VP_2}$ $_$] VP_2 = 'read War and Peace' (\approx VP_1)
 - b. I [$_{VP}$, went to Tanglewood] even though I wasn't supposed to [$_{VP}$,]. VP_2 = 'go to Tanglewood' ($\approx VP_1$)
 - c. John will [$_{VP_{*}}$ leave tomorrow] and Mary **might** [$_{VP_{*}}$ ___] $VP_{2} = \text{`leave tomorrow'} \ (\approx VP_{1})$

Ellipsis Resolution = copying/checking for identity

Antecedent-Contained Deletion

- (13) I $[V_{P_1}$ read $[V_{P_2}] = [V_{P_2}] = [V_{P$
- Copying leads to infinite regress.
- Checking for identity leads to non-isomorphy.
- \rightarrow QR gives us the right structures.

4.3 Quantifiers that Bind Pronouns

Interpreting Bound Reflexives:

- (14) a. Mary blamed herself.
 - b. Mary blamed Mary.

$$(14a) = (14b)$$

However:

- (15) a. Every student blamed herself.
 - b. Every student blamed every student.

$$(15a) \neq (15b)$$

- (16) a. No student blamed herself.
 - b. No student blamed no student.

$$(16a) \neq (16b)$$

Bound Pronouns:

- (17) a. No man noticed the orc next to him.
 - b. Every woman bought a book that she liked.
- QR + indexation allows us to derive the right meanings.
- To bind a pronoun, a QP must QR.
- Our current system (Predicate Abstraction, indices on Pronouns/ Reflexives) yields the right results.

4.4 Conditions on Binding

- (18) α binds β iff:
 - a. C-command:

 α c-commands β .

b. Co-indexation:

 α is co-indexed with β .

c. Locality:

There is no γ which satisfies (a) and (b) that is closer to β .

(19) Strong Crossover:

A pronoun cannot be co-indexed with a trace that it c-commands.

(20) a. *He_i likes [every student]_i.

 $(\neq$ Every student likes himself.)

b. *the student [who_i [he_i likes t_i]]

 $(\neq \text{the student [who}_i \ [t_i \ likes \ himself_i]]})$

(21) Weak Crossover:

A QP cannot bind a pronoun that it does not c-command in surface syntax.

(22) Her, mother loves [every student],.

 $(\neq [Every student]_i$ is loved by her_i mother.)

(23) Condition B:

A pronoun cannot be bound by a c-commanding phrase that is in the same minimal finite clause.

- $\begin{array}{ll} \mbox{(24)} & \mbox{ a. } & \mbox{*John}_i/[Every \mbox{ student}]_i \mbox{ likes } \mbox{him}_i. \\ & \mbox{$(\neq$ John}_i/[Every \mbox{ student}]_i \mbox{ likes } \mbox{himself}_i) \end{array}$
 - b. John, / [Every student], thinks that Mary likes him,
 - c. *the student [who_i [t_i likes her_i]] (\neq the student [who_i [t_i likes herself_i]])
 - d. the student [who_i [t_i thinks [that Mary likes her_i]]]