25 - Pemampatan Citra

(Bagian 2)

IF4073 Interpretasi dan Pengolahan Citra

Oleh: Rinaldi Munir

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung 2021

Fractal Image Compression

- Algoritma pemampatan citra dengan cara kerja yang unik.
- Prinsip: mencari bagian di dalam citra yang memiliki kemiripan dengan bagian lainya namun ukurannya lebih besar (self similarity).
- Cari matriks yang mentransformasikan bagian yang lebih besar tersebut dengan bagian yang lebih kecil.
- Simpan hanya elemen-elemen dari sekumpulan matriks transformasi tersebut (yang disebut matriks transformasi affine).
- Pada proses penirmampatan, matriks ransformasi affine di-iterasi sejumlah kali terhadap sembarang citra awal.

Fraktal

Definisi

Fraktal: objek yang memiliki kemiripan dirinya-sendiri (*self-similarity*) namun dalam skala yang berbeda.

Fraktal: objek yang memiliki matra berupa pecahan (*fractional*). Kata terakhir inilah yang menurunkan kata **fraktal**

Segitiga Sierpinski, daun pakis Barsnsley, dan pohon fractal

Fraktal di alam

Iterated Function System (IFS)

Penemu: Michael Barnsley (1988)

Apapun gambar awalnya, MRCM selalu menghasilkan segitiga Sierpienski .

• MRCM dapat dinyatakan dalam bentuk transformasi affine:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = w \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix} = Ax + t$$

- Untuk sembarang citra awal A, dihasilkan salinan affine, $w_1(A)$, $w_2(A)$, ..., $w_n(A)$.
- Gabungan dari seluruh salinan tersebut adalah W(A), yang merupakan keluaran dari mesin,

$$W(A) = w_1(A) + w_2(A) + ... + w_n(A)$$

• Tansformasi affine yang menghasilkan citra segitiga Sierpinski:

$$w_1 = \begin{bmatrix} 0.5 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \end{bmatrix} \quad w_2 = \begin{bmatrix} 0.5 & 0.0 & 0.5 \\ 0.0 & 0.5 & 0.0 \end{bmatrix} \quad w_3 = \begin{bmatrix} 0.5 & 0.0 & 0.25 \\ 0.0 & 0.5 & 0.5 \end{bmatrix}$$

Tansformasi affine yang menghasilkan citra daun pakis:

$$w_1 = \begin{bmatrix} 0.85 & 0.04 & 0.0 \\ -0.04 & 0.85 & 1.6 \end{bmatrix} \qquad w_2 = \begin{bmatrix} 0.20 & -0.26 & 0.0 \\ 0.23 & 0.22 & 1.6 \end{bmatrix}$$

$$w_2 = \begin{bmatrix} 0.20 & -0.26 & 0.0 \\ 0.23 & 0.22 & 1.6 \end{bmatrix}$$

$$w_3 = \begin{bmatrix} -0.15 & 0.28 & 0.0 \\ 0.26 & 0.52 & 0.44 \end{bmatrix} \qquad w_4 = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.16 & 0.0 \end{bmatrix}$$

$$w_4 = \begin{vmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.16 & 0.0 \end{vmatrix}$$

- Menyimpan citra sebagai kumpulan pixel membutuhkan memori yang besar, namun bila yang disimpan adalah transformasi affine-nya, maka memori yang dibutuhkan jauh lebih sedikit.
- Cara ini melahirkan gagasan pengkodean citra dengan nisbah pemampatan yang tinggi.
- Pakis Barnsley misalnya, dibangkitkan dengan empat buah transformasi affine, masing-masingnya terdiri atas enam buah bilangan riil (4 byte), sehingga dibutuhkan 4 x 6 x 4 byte = 96 byte untuk menyimpan keempat transformasi itu.
- Bandingkan bila citra pakis Barnsley disimpanxdengan representasi pixel hitam putih (1 pixel = 1 byte) berukuran 550 x 480 membutuhkan memori sebesar 264.000 byte. Maka, nisbah pemampatan citra pakis adalah 264.000 : 96 = 2750 : 1, suatu nisbah yang sangat tinggi.

Partitioned Iterated Function System (PIFS)

Penemu: Arnaud D. Jacquin (1992), mahasiswa bimbingan Michael Barnsley

Dasar pemikiran:

- Citra alami (*natural image*) umumnya hampir tidak pernah *self-similar* secara keseluruhan.
- Karena itu, citra alami pada umumnya tidak mempunyai transformasi affine terhadap dirinya sendiri.
- Tetapi, untunglah citra alami seringkali memiliki self-similarity lokal, yaitu memiliki bagian citra yang mirip dengan bagian lainnya.
- Setiap transformasi itu dari bagian citra ke bagian citra lain yang mirip dapat direpresentasikan dengan transformasi *IFS* lokal atau *Partitioned Iterated Function System* (PIFS)

Kemiripan lokal pada citra Lena

Algoritma:

- 1. Bagi citra atas sejumlah blok yang berukuran sama dan tidak saling beririsan, yang disebut blok jelajah (*range*).
- 2. Untuk setiap blok jelajah, cari bagian citra yang berukuran lebih besar dari blok jelajah –yang disebut blok ranah (*domain*)- dan paling mirip (cocok) dengan blok jelajah tersebut.
- 3. Turunkan transformasi *affine* (*IFS* lokal) w_i yang memetakan blok ranah ke blok jelajah.
- 4. Hasil dari semua pemasangan ini adalah *Partitioned Iterated Function System* (*PIFS*).

Pemetaan dari blok ranah ke blok jelajah

• Kemiripan antara dua buah (blok) citra diukur dengan metrik jarak. Metrik jarak yang digunakan misalnya rms (root mean square):

$$d_{rms} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (z'_{ij} - z_{ij})^{2}}$$

z dan z' adalah nilai pixel dari dua buah blok, dan n = jumlah pixel di dalam citra

- Ukuran blok ranah diambil dua kali blok jelajah.
- Contoh: Untuk blok jelajah 8×8 *pixel* dan blok ranah berukuran 16×16 *pixel*, citra 256×256 dibagi menjadi 1024 buah blok jelajah yang tidak saling beririsan dan $(256-16+1)^2=58.081$ buah blok ranah berbeda (yang beririsan).
- Himpunan blok ranah yang digunakan dalam proses pencarian kemiripan dimasukkan ke dalam *pul ranah* (*domain pool*).
- Pul ranah yang besar menghasilkan kualitas pemampatan yang lebih baik, tetapi membutuhkan waktu pencocokan yang lebih lama.

 Transformasi affine di dalam PIFS memiliki komponen z selain komponen koordinat (x,y):

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = w_i \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a_i & b_i & 0 \\ c_i & d_i & 0 \\ 0 & 0 & s_i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} e_i \\ f_i \\ o_i \end{bmatrix}$$

- s_i menyatakan faktor kontras pixel (nilanya antara 0 dan 1)
- o_i menyatakan ofset kecerahan (brightness) pixel
- $z' = s_i z + o_i$
- Dengan asumsi ukuran blok ranah = dua kali ukuran blok jelaja (2:1), maka transformasi affine menjadi lebih sederhana, yaitu:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = w_i \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & s_i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} e_i \\ f_i \\ o_i \end{bmatrix}$$

- Parameter e_i dan f_i mudah dihitung karena keduanya menyatakan pergeseran sudut kiri blok ranah ke sudut kiri blok jelajah yang bersesuaian.
- Sedangkan s_i dan o_i dihitung dengan menggunakan rumus regresi berikut:

$$s = \frac{\left[n\sum_{i=1}^{n} d_{i} r_{i} - \sum_{i=1}^{n} d_{i} \sum_{i=1}^{n} r_{i}\right]}{\left[n\sum_{i=1}^{n} d_{i}^{2} - \left(\sum_{i=1}^{n} d_{i}\right)^{2}\right]} \qquad o = \frac{1}{n} \left[\sum_{i=1}^{n} r_{i} - s\sum_{i=1}^{n} d_{i}\right]$$

 Dengan nilai s dan o yang telah diperoleh, maka kuadrat galat antara blok jelajah dan blok ranah adalah

$$E = \frac{1}{n} \left[\sum_{i=1}^{n} r_i^2 + s \left(s \sum_{i=1}^{n} d_i^2 - 2 \sum_{i=1}^{n} d_i r_i + 2o \sum_{i=1}^{n} d_i \right) + o \left(no - 2 \sum_{i=1}^{n} r_i \right) \right]$$

• Lalu hitung *rms* sebagai berikut:

$$d_{rms} = \sqrt{E} / n$$

- Transformasi affine w_i diuji terhadap blok ranah D_i menghasilkan blok uji $T_i = w_i(D_i)$.
- Jarak antara T dan R_i dihitung dengan persamaan d_{rms} .
- Transformasi affine yang terbaik ialah w yang meminimumkan d_{rms} .

Blok jelajah 5 dibandingkan dengan blok ranah 3 di dalam pul ranah. Transformasi w ditentukan, lalu blok ranah 3 ditransformasikan dengan w menghasilkan T. Jarak antara T dengan blok jelajah 5 diukur.

- Runtunan pencarian dilanjutkan untuk blok jelajah berikutnya sampai seluruh blok jelajah sudah dipasangkan dengan blok ranah.
- Hasil dari proses pemampatan adalah sejumlah IFS lokal yang disebut PIFS.
- Seluruh parameter *PIFS* di-pak dan disimpan di dalam berkas eksternal. Parameter *PIFS* yang perlu disimpan hanya e_i , f_i , s_i , o_i .
- Algoritma pencocokan blok yang dijelaskan di atas adalah algoritma brute force, karena untuk setiap blok jelajah pencocokan dilakukan dengan seluruh blok ranah di dalam pul untuk memperoleh pencocokan terbaik.

Rekonstruksi Citra (penirmpatan)

- Rekonstruksi (dekompresi) citra dilakukan dengan melelarkan *PIFS* dari citra awal sembarang.
- Karena setiap *PIFS* lokal kontraktif, baik kontraktif dalam matra intensitas maupun kontraktif dalam matra spasial maka lelarannya akan konvergen ke citra titiktetap *PIFS*.
- Kontraktif intensitas penting untuk menjamin konvergensi ke citra semula, sedangkan kontaktif spasial berguna untuk membuat rincian pada citra untuk setiap skala.
- Konvergensi ke citra titik-tetap berlangsung cepat. Konvergensi umumnya dapat diperoleh dalam 8 sampai 10 kali lelaran

Citra awal

Citra lelaran ke-2

Citra lelaran ke-1

Citra lelaran ke-6

• Beberapa hasil pemampatan fraktal:

Citra asli (256 × 256 pixel) Lena.bmp (66 KB)

Citra hasil pemampatan fraktal Lena.fra (7 KB)

Citra asli (256 × 256 pixel) Collie.bmp (66 KB)

Citra hasil pemampatan fraktal Collie.fra (9 KB)

Citra asli (512 × 512 pixel) Kapal.bmp (258 KB)

Citra hasil pemampatan fraktal Kapal.fra (9 KB)

Citra asli (316 × 404 pixel) Potret.bmp (126 KB)

Citra hasil pemampatan fraktal Potret.fra (17 KB)

Tabel 1. Perbandingan ukuran berkas citra sebelum dan sesudah dimampatkan

No.	Citra BMP (byte)	Ukuran (byte)	Citra FRA (byte)	Ukuran	Nisbah (%)
1	Kapal.bmp	263.222	KAPAL512.FRA	8.956	96,6
2	Lena.bmp	66.614	LENA256.FRA	8.137	87,6
3	Collie.bmp	66.614	COLLI256.FRA	9.150	86,3
4	Potret.bmp	128.782	POTRET.FRA	17.437	86,5

Tabel 2. Perbandingan ukuran citra berformat BMP, JPG, GIF, dan fraktal(FRA)

Nama Citra	Format BMP (byte)	Format JPG (byte)	Format GIF (byte)	Format FRA (byte)
Kapal.bmp	263.222	24.367	242.452	8.956
Lena.bmp	66.614	7.126	70.292	8.137
Collie.bmp	66.614	7.021	69.965	9.150
Potret.bmp	128.782	16.377	136.377	17.437