Lesson 3

Data Structures and Algorithms DSA

In this lesson we will talk about: data structures, analysing and designing algorithms, algorithm efficiency, searching and sorting algorithms

Data Structures

What is a data structure?

In computer science, a **data structure** is a data organization and storage format that is usually chosen for efficient access to data.^{[1][2][3]} More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data,^[4] i.e., it is an algebraic structure about data.

Data Structures

- ► How to **organize** data
- ► For **efficient** access

Its a collection of data values, and the relationships among these values

Sets

The basic, fundamental data structure: $\{1,2,4,51,9\}$

- ► mathematical set
- unchanging
- contains a fixed number of elements

Sets

As mathematical sets are unchanging, sets which are manipulated by algorithms are dynamic. Can change in size, grow or shrink, basically change over the time.

- ► static 5 elements {1,2,4,51,9}
- dynamic can add or remove elements

But what is a set?

Sets

- ► The empty set {}
- ▶ Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$
- ▶ Natural numbers except 0: $\mathbb{N}^* = \{1, 2, 3, ...\}$
- ► Integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- ▶ Positive integers: $\mathbb{Z}_+ = \{0, 1, 2, 3, \ldots\}$

Basic Operations on Sets

- **▶** insert
- ▶ delete
- ▶ test if the element belongs to a set or not

A dynamic set which supports all these basic operations is a dictionary

Lesson 3

Natural Numbers (Counting Numbers) (N)	Numbers you use for counting: 1, 2, 3	It's "natural" to count on your fingers: 1, 2, 3,
Whole Numbers	The natural numbers, plus 0: 0, 1, 2, 3	The word "whole" has an "o" in it, so include 0.
Integers (Z)	Whole numbers, their opposites (negatives), plus 0:2, -1, 0, 1, 2	Integers can be separated into negative, 0, and positive numbers.
Rationals (Q)	Integers and all fractions, positive and negative, formed from integers. These include repeating fractions, such as $\frac{1}{3}$, or .33333 or $\frac{3}{3}$.	The word "rational" is a derivation of "ratio", and rational numbers are numbers that can be written as a ratio of two integers. "Q" stands for quotient.
Irrationals	Numbers that cannot be expressed as a fraction, such as π , $\sqrt{2}$, e . (We'll learn about these later).	If something is "irrational", it's not easy to explain or understand.
Real Numbers (R)	Rational numbers and Irrational Numbers. The real number system can be represented on a number line: $-\infty5 0 .5 1 \sqrt{2} 2 \infty$	If a number exists on a number line that you can see, it must be "real". Note that the "smallest" real number is negative (–) infinity ($-\infty$), and the largest real number is infinity (∞). We can never really get to these "numbers" ($-\infty$ and ∞), but we can indicate them as the "end" of the real numbers.
Complex Numbers	Real numbers, plus imaginary numbers (concept only, such as $\sqrt{-2}$).	"Imaginary" numbers are difficult to imagine, since they are so "complex".

Data structures

- ► Arrays
- ► Matrices
- ► Stacks
- Queues
- ► Linked lists
- ► Trees

Arrays

Arrays

In computer science, an **array** is a data structure consisting of a collection of *elements* (values or variables), of same memory size, each identified by at least one *array index* or *key*. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula.^{[1][2][3]} The simplest type of data structure is a linear array, also called a one-dimensional array.

Typical "1 Dimensional" array

Element indexes are typically defined in the format[x] [x] being the number of elements
For example: this array could be defined as array[4]

Example 1: Traversing the array A

Example 2: Find the max value in the array A

```
1: procedure MAXARRAY(A)

    Returns the max value in A

      L \leftarrow length(A)
      MAX \leftarrow A[0]
3:
       for i=1 to L-1 do
4:
          if A[i] > MAX then
5:
              MAX = A[i]

    The MAX is A[i]

6:
          end if
7:
       end for
8:
       return MAX
9:
10: end procedure
```

Example 3: Search element X in array A

```
1: procedure SEARCHARRAY(A)
                                X \leftarrow MyElement
     for i=0 to i-1 do
3.
        if X = A[i] then
4:
           return i
                                    > The index for my match
5:
        end if
6:
     end for
7:
     return -1
                                        \triangleright otherwise return -1
8:
9: end procedure
```