Math 131B: Homework 8

Owen Jones

6/2/2023

Problem 1. Exercise 4.5.2

(Lemma) If $n \geq 3$ then $(n+k)! > 2^k n!$ for all $k \in \mathbb{N}$ We will show this claim to be true by induction on k.

For the base case of k = 1 we have

$$(n+1)! = (n+1)n! > 3 \cdot n! > 2^{1}n!$$

, so the claim holds for k = 1. We assume the claim to be true for some arbitrary k. Thus, it remains to show the claim holds for k + 1. Using the induction hypothesis, we obtain

$$(n+k+1)! = (n+k+1)(n+k)! > (n+k+1)2^k n! > 3 \cdot 2^k n! > 2^{k+1} n!$$

, so the claim holds for k+1. Hence, by induction, the claim holds for all $k\in\mathbb{N}$ QED

We will show by induction on n that the claim $0 < \sum_{k=1}^{\infty} \frac{1}{(n+k)!} < \frac{1}{n!}$ for all $n \geq 3$

For the base case of n=3 we have

$$0 < \sum_{k=1}^{\infty} \frac{1}{(3+k)!}$$

because each $\frac{1}{(3+k)!}$ is positive, and

$$\sum_{k=1}^{\infty} \frac{1}{(3+k)!} < \sum_{k=1}^{\infty} \frac{1}{2^k 3!} = \frac{\frac{1}{2 \cdot 3!}}{1 - \frac{1}{2}} = \frac{1}{3!}$$

by the sum of an infinite geometric series and the lemma proved above, so the claim holds for n = 3. We assume the claim to be true for some arbitrary n. Thus, it remains to show the claim holds for n + 1.

$$0 < \sum_{k=1}^{\infty} \frac{1}{(n+1+k)!}$$

because each $\frac{1}{(n+1+k)!}$ is positive, and

$$\sum_{k=1}^{\infty} \frac{1}{(n+1+k)!} < \sum_{k=1}^{\infty} \frac{1}{2^k (n+1)!} = \frac{\frac{1}{2 \cdot (n+1)!}}{1 - \frac{1}{2}} = \frac{1}{(n+1)!}$$

by the sum of an infinite geometric series and the lemma proved above, so the claim holds for n+1. Hence, by induction, the claim holds for all $n \geq 3$. QED

Next we show n!e is not an integer for any $n \ge 3$ by contradiction. Assume for the sake of contradiction n!e is an integer for some $n \ge 3$. By the definition of e, $n!e = n! \sum_{k=0}^{\infty} \frac{1}{k!} = \sum_{k=0}^{n} \frac{n!}{k!} + n! \sum_{k=1}^{\infty} \frac{1}{(n+k)!}$. $0 < n! \sum_{k=1}^{\infty} \frac{1}{(n+k)!} < \frac{n!}{n!} = 1$ by Exercise 4.5.2, so it clearly is not an integer. $\sum_{k=0}^{n} \frac{n!}{k!} = \sum_{k=0}^{n} \prod_{i=k+1}^{n} i$ which is clearly an integer because each term is a product of integers which will also be an integer, and a finite sum of integers must be an integer. Thus, we have a contradiction because $\sum_{k=0}^{n} \frac{n!}{k!} < n!e < \sum_{k=0}^{n} \frac{n!}{k!} + 1$,

so n!e is between two consecutive integers for any $n \ge 3$. Hence, n!e is not an integer for any $n \ge 3$. Because n!e is not an integer for every $n \ge 3$, it follows that ne is not an integer for every $n \ge 3$. If there was an n s.t ne was an integer, ne(n-1)! would also be an integer which contradicts n!e is not an integer for any $n \ge 3$. Since a = ne is not an integer for all n, it follows e cannot be expressed as a ratio of integers $\frac{a}{n}$, so e must be irrational.

Problem 2. Exercise 4.5.4

We will show $f: \mathbb{R} \to \mathbb{R}$ is infinetly differentiable using cases.

- Case 1. (x < 0) f is clearly differentiable for x < 0 because the derivative of the zero function is the zero function, so by a simple induction $f^{(k)}(x) = 0$ for every integer k > 0 and x < 0.
- Case 2. (x > 0) We show that f is of the form $f^{(k)}(x) = P_{2k}(\frac{1}{x})e^{-\frac{1}{x}}$ for every integer $k \ge 0$ and x > 0 by induction on k. For the base case of k = 1, we obtain $f^{(1)}(x) = \frac{1}{x^2}e^{-\frac{1}{x}}$ by the chain rule, so the claim holds for k = 1. Assume for some arbitrary k the claim holds, so it remains to show the claim holds for k + 1. By the induction hypothesis, $f^{(k)}(x) = P_{2k}(\frac{1}{x})e^{-\frac{1}{x}}$ for some k, so we differentiate both sides to obtain $f^{(k+1)}(x)$. By the product rule and chain rule

$$f^{(k+1)}(x) = (P_{2k-1}(\frac{1}{x})(-\frac{1}{x^2}))e^{-\frac{1}{x}} + P_{2k}(\frac{1}{x})(\frac{1}{x^2}e^{-\frac{1}{x}})$$
$$= (P_{2k+1}(\frac{1}{x}) + P_{2k+2}(\frac{1}{x}))e^{-\frac{1}{x}}$$
$$= P_{2(k+1)}(\frac{1}{x})e^{-\frac{1}{x}}$$

, so the claim holds for k+1. Hence, by induction the claim holds for all k.

Case 3. (x = 0) We will show f is differentiable at x = 0 and $f^{(k)}(0) = 0$ by using the limit definition of the derivative and induction on k. For the base case of k = 1, we obtain

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \frac{0}{0}$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = 0 \text{ because } f(x) = 0 \text{ for all } x < 0$$

Thus, it suffices to show $\lim_{x\to 0^+} \frac{e^{-\frac{1}{x}}}{x} = 0$

By the continuity of
$$y = \frac{1}{x}$$
 on $\mathbb{R}^+ \lim_{x \to 0^+} \frac{e^{-\frac{1}{x}}}{x} = \lim_{y \to \infty} \frac{e^{-y}}{\frac{1}{y}} = \lim_{y \to \infty} \frac{y}{e^y} = \lim_{y \to \infty} \frac{0}{e^y} = 0$ by L'H twice

, so the claim holds for k=1. We assume the claim to be true for some arbitrary k. Thus, it

remains to show the claim holds for k+1.

$$\lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x} = \frac{0}{0}$$

$$\lim_{x \to 0^{-}} \frac{f^{(k)}(x) - f^{(k)}(0)}{x} = 0 \text{ because } f^{(k)}(x) = 0 \text{ for all } x < 0$$
 Thus, it suffices to show
$$\lim_{x \to 0^{+}} \frac{P_{2k}(\frac{1}{x})e^{-\frac{1}{x}}}{x} = 0$$
 By the continuity of $y = \frac{1}{x}$ on $\mathbb{R}^{+} \lim_{x \to 0^{+}} \frac{P_{2k}(\frac{1}{x})e^{-\frac{1}{x}}}{x} = \lim_{y \to \infty} \frac{P_{2k}(y)e^{-y}}{\frac{1}{y}}$
$$= \lim_{y \to \infty} \frac{P_{2k+1}(y)}{e^{y}} = \lim_{y \to \infty} \frac{0}{e^{y}} = 0 \text{ by L'H } 2(\mathbf{k}+1) \text{ times.}$$

Thus, the claim holds for k + 1, so by induction, the claim holds for all k. If f is real analytic at x = 0, it must have a Taylor series centered at 0 that converges to the function f. However, as we know, $f^{(k)}(0) = 0$ for all k, so its Taylor series centered at 0 is the zero function, which is not the original function f. Hence, f is not real analytic at x = 0

Problem 3. Exercise 4.5.5

- (a) Because $\exp(x)$ and $\log(x)$ are inverses, $\exp(\log(x)) = x$. Implicititely differentiating both sides, we obtain $(\exp(\log(x)))' = \exp(\log(x)) \cdot \log'(x) = x \cdot \log'(x) = 1$. Dividing both sides by x, we obtain our final solution $\log'(x) = \frac{1}{x}$.
- (b) Let $x, y \in (0, \infty)$. Because $\exp(x)$ and $\log(x)$ are inverses, $\log(xy) = \log(\exp^{\log(x)} \cdot \exp^{\log(y)})$. Using Theorem 4.5.2(d), $\log(\exp^{\log(x)} \cdot \exp^{\log(y)}) = \log(\exp^{\log(x) + \log(y)})$, and because $\exp(x)$ and $\log(x)$ are inverses, $\log(\exp^{\log(x) + \log(y)}) = \log(x) + \log(y)$ which is our desried result.
- (c) By Theorem 4.5.2(e), $1 = \exp(0)$, so $\log(1) = \log(\exp(0)) = 0$ because exp and log are inverses. $\frac{1}{x} = \frac{1}{\exp(\log(x))}$. By Theorem 4.5.2(e) we obtain $\frac{1}{\exp(\log(x))} = \exp(-\log(x))$. Thus, $\log(\frac{1}{x}) = \log(\exp(-\log(x))) = -\log(x)$.
- (d) Because $\exp(x)$ and $\log(x)$ are inverses, $\log(x^y) = \log((\exp(\log(x))^y))$. By properties of exponents, $\log((\exp(\log(x))^y)) = \log(\exp(y \cdot \log(x)))$, and $\log(\exp(y \cdot \log(x))) = y \cdot \log(x)$ because $\exp(x)$ and $\log(x)$ are inverses.
- (e) $\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$ for $t \in (-1,1)$. For any $x \in (-1,1)$ the series $\sum_{n=0}^{\infty} t^n$ coverges uniformly to $\frac{1}{1-t}$ on [-|x|,|x|]. Thus, we can switch the order of integration and summation. It follows $\log(1-x) = \log(1-x) \log(1-0) = -\int_0^x \frac{1}{1-t} = -\sum_{n=0}^{\infty} \int_0^x t^n = -\sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1} = -\sum_{n=1}^{\infty} \frac{x^n}{n}$. Substituting x for 1-x, if $1-x \in (-1,1)$, then $\log(1-(1-x)) = \log(x) = -\sum_{n=1}^{\infty} \frac{(1-x)^n}{n} = -\sum_{n=1}^{\infty} \frac{(-1)^n(x-1)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^n}{n}$, so $\log(x)$ is analytic at x = 1 with x = 1

Problem 4. Exercise 4.5.8

Let
$$a \in (0, \infty)$$
. $\frac{1}{x} = \frac{\frac{1}{a}}{1 - \frac{a - x}{a}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}} (x - a)^n$ for $x \in (0, 2a)$ by the sum of a geometric series. For any $r < a$ the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}} (x - a)^n$ converges uniformly to $\frac{1}{x}$ on $[a - r, a + r]$, so $\log(x) = \log(a) + \int_a^x \frac{1}{t} = \log(a) + \sum_{n=0}^{\infty} \int_a^x \frac{(-1)^n}{a^{n+1}} (t - a)^n = \log(a) + \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}(n+1)} (x - a)^{n+1}$ for

$$x \in [a-r,a+r]$$
. Thus $\log(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ where $c_n = \begin{cases} \log(a) & \text{if } n=0\\ \frac{(-1)^{n+1}}{a^n n} & \text{if } n \neq 0 \end{cases}$ for $x \in (0,2a)$. Hence $\log(x)$ is real analytic for all $a \in (0,\infty)$.

Problem 5. Additional Problem

We will show that any analytic function where f(x)=0 for all x<0 is the zero function for all $x\in\mathbb{R}$ by contradiction. Assume for the sake of contradiction $f(x)\neq 0$ for some $x\in\mathbb{R}$. Because f is analytic, it is continuous and infinitely differentiable. Let $a=\inf\{x\in\mathbb{R}:f(x)\neq 0\}$, so f(x)=0 for all x< a. We will show by induction on k that $f^{(k)}(a)=0$ for all $k\in\mathbb{N}$. Let $(x_n)_{n=1}^\infty$ be a sequence of real numbers less than a s.t. $\lim_{n\to\infty}x_n=a$. For the base case k=0, we know by the continuity of f that $\lim_{n\to\infty}x_n=a$ implies $\lim_{n\to\infty}f(x_n)=f(a)$. Since each $f(x_n)=0$, f(a)=0, so the base case holds. Let k be arbitrary and assume $f^{(k)}(a)=0$. It remains to show $f^{(k+1)}(a)=0$. For the case k+1, f is infinitely differentiable, so $f^{(k+1)}$ exists. The derivative of the zero function is the zero function, so $f^{(k+1)}(x)=0$ for x< a. The continuity of $f^{(k+1)}$ tells us that $\lim_{n\to\infty}x_n=a$ implies $\lim_{n\to\infty}f^{(k+1)}(x_n)=f(a)$. Since each $f^{(k+1)}(x_n)=0$, $f^{(k+1)}(a)=0$, so the k+1th case holds. Hence, by induction, $f^{(k)}(a)=0$ for all $k\geq 0$. By the uniqueness of a power series and Taylor's formula, if f is analytic at $f^{(k)}(a)=0$ for all $f^{(k)}(a)=0$ for each of its derivatives, its Taylor series converges to the zero function. However, we obtain a contradiction because for any $f^{(k)}(a)=0$ there exists $f^{(k)}(a)=0$. This follows from the definition of $f^{(k)}(a)=0$ which contradicts our definition for $f^{(k)}(a)=0$, there exists $f^{(k)}(a)=0$ for some $f^{(k)}(a)=0$ for some $f^{(k)}(a)=0$ which contradicts our definition for $f^{(k)}(a)=0$ for some $f^{(k)}(a)$

Let g and h be analytic real valued functions where g(x) = h(x) for all x < 0. Let f' be the difference of g and h. It follows f'(x) = 0 for all x < 0. By the previous parts of the problem, we showed that if f' is analytic and f'(x) = 0 for all x < 0, then f'(x) = 0 for all $x \in \mathbb{R}$. Thus, $g(x) - h(x) = 0 \Rightarrow g(x) = h(x)$ for all $x \in (x)$.