Can you please pass the data? IoT communication in Micropython

Sev Leonard
PyCascades 2018
@gizm0_0.tenforward.social

• Portland, OR

- Portland, OR
- Trans guy, trans masc slack

- Portland, OR
- Trans guy, trans masc slack
- Oregon Health & Science University

- Portland, OR
- Trans guy, trans masc slack
- Oregon Health & Science University
- He/Him

- Portland, OR
- Trans guy, trans masc slack
- Oregon Health & Science University
- He/Him
- Internet of Cats (PyDX 2016), IoT with Micropython and Friends (PyCon 2017)

Wow look at the time! My elderly mom from Florida will be here soon. I wonder what the temperature is at the house.

Hey Nest, whats the temp?

Its 60 degrees

Yikes! Can you turn it up to 78 please?

You betchya

Photo: Willamette Valley Vineyards http://www.wvv.com

Vine Sensor

%

ESP8266

DHT11

LED

ESP8266

vineyard_network

ESP8266

vineyard_network

vine1

vine2

ESP8266

vineyard_network

vine1

vine2

ESP8266

vineyard_network

Setup WiFi

- 1 import network
- 2 ap_if = network.WLAN(network.AP_IF)
- 3 ap_if.config(essid='vineyard_network')
- 4 ap_if.active(True)

Setup WiFi

- 1 import network
- 2 ap_if = network.WLAN(network.AP_IF)
- 3 ap_if.config(essid='vineyard_network')
- 4 ap_if.active(True)

ESP8266

Connect vine sensors

- 1 import network
- 2 sta_if = network.WLAN(network.STA_IF)
- 3 sta_if.active(True)
- 4 sta_if.connect('vineyard_network',password)

Connect vine sensors

- 1 import network
- 2 sta_if = network.WLAN(network.STA_IF)
- 3 sta_if.active(True)
- 4 sta_if.connect('vineyard_network',password)

Measuring humidity

```
import dht
   import time
   my_dht = dht.DHT11(machine.Pin(2))
4
   def measure_humidity(poll_time_s):
5
6
       while True:
           my_dht.measure()
           humidity = my_dht.humidity()
           print("humidity: ", humidity)
           time.sleep(poll_time_s)
```

ESP8266

vineyard_network

ESP8266

vineyard_network

vine1

ESP8266

vineyard_network

vine1

vineyard_network **ESP8266**

ESP8266

vineyard_network

vine1

Message Queuing Telemetry Transport!

Message Queuing Telemetry Transport!

Message Queuing Telemetry Transport!

Message Queuing Telemetry Transport!

Message Queuing Telemetry Transport!

vineyard/

- vineyard/
 - vineyard/humidity

- vineyard/
 - vineyard/humidity
 - vineyard/humidity/vine1

- vineyard/
 - vineyard/humidity
 - vineyard/humidity/vine1
 - vineyard/temp/#

- vineyard/
 - vineyard/humidity
 - vineyard/humidity/vine1
 - vineyard/temp/#
 - vineyard/+/vine1

MQTT Pub in Micropython

- 1 from umqtt.simple import MQTTClient
- 2 p = MQTTClient(client_id, broker_ip)
- 3 p.connect()
- 4 p.publish(vineyard/temp/vine1, 15)

MQTT Sub in Micropython

```
1 s = MQTTClient( client_id, broker_ip )
```

- 2 s.connect()
- 3 def cb(topic, message):
- 4 print(topic + ": " + message)

MQTT Sub in Micropython

- 1 s.set_callback(cb)
- 2 s.subscribe("vineyard/temp/#")
- 3 while 1:
- 4 s.wait_msg()

```
from umqtt.simple import MQTTClient
    import dht
    import time
    my_dht = dht.DHT11(machine.Pin(2))
 5
    def measure_mqtt(poll_time_s, broker_ip, client_id, topic):
        p = MQTTClient(client_id, broker_ip)
        p.connect()
 8
 9
10
        while True:
11
            my_dht.measure()
            humidity = my_dht.humidity()
12
13
            humid_topic = topic + '/humidity/' + client_id
            p.publish(humid_topic, str(humidity))
14
            time.sleep(poll_time_s)
15
```

Demo!

```
from mqtt_measure import *
measure_mqtt(4, "192.168.4.2", "vine1", "vineyard")

from mqtt_measure import *
measure_mqtt(4, "192.168.4.2", "vine2", "vineyard")
```

Create WLAN access point

- Create WLAN access point
- Connect sensors to WLAN

- Create WLAN access point
- Connect sensors to WLAN
- Measure humidity and temperature

- Create WLAN access point
- Connect sensors to WLAN
- Measure humidity and temperature
- MQTT for message relay

Thanks!

- References in backup
- gizm0_0@tenforward.social
- github.com/gizm00/pycascades_2018
- sev@thedatascout.com

Backup

Demo setup

- connect laptop to vineyard_network
- ipconfig | grep inet
- pico /usr/local/Cellar/mosquitto/1.4.11_2/etc/ mosquitto/mosquitto.conf
- brew services restart mosquitto
- mosquitto_sub -h 192.168.4.2 -t vineyard/#
- nav webrepl to 192.168.4.3 and 4.4 to get to vine sensors
- from mqtt_measure import *
- measure_mqtt(4, "192.168.4.2", "vine1", "vineyard")
- from mqtt_measure import *
- measure_mqtt(4, "192.168.4.2", "vine2", "vineyard")

MQTT Spy Setup

- Goto Connections -> Manage Connections
- Update Server URI if needed
- Click "Close and reopen existing connections"
- Under subscriptions & received messages click New tab
- Add vineyard/temp/#
- Add vineyard/humidity/#
- To show graphs:
 - Right click received messages and go to Charts
 - Show all browsed topics

References

- https://en.wikipedia.org/wiki/MQTT
- https://mosquitto.org
- https://micropython.org
- https://www.hivemq.com/blog/how-to-get-started-with-mqtt

Agenda

Agenda

• IoT IRL

- IoT IRL
- ESP8266

- IoT IRL
- ESP8266
- Micropython

- IoT IRL
- ESP8266
- Micropython
- MQTT

- IoT IRL
- ESP8266
- Micropython
- MQTT
- Sending MQTT messages

- IoT IRL
- ESP8266
- Micropython
- MQTT
- Sending MQTT messages
- Demo!

Agtech startup Prospera, which uses Al and computer vision to guide farmers, harvests \$15M

Agtech startup Prospera, which uses Al and computer vision to guide farmers, harvests \$15M

Ceres Imaging raises \$5 million to pinpoint crop stress for farmers

Agtech startup Prospera, which uses AI and computer vision to guide farmers, harvests \$15M

Ceres Imaging raises \$5 million to pinpoint crop stress for farmers

Vinsight gives grape and almond growers a high-tech crystal ball

WebREPL

Micropython

- A. Like regular Python, but small and hard to read
- B. A version of Python optimized for use on microcontrollers Funded via Kickstarter
- C. All of the above
- D. Some of the above

E. Some of the above!

micropython.org

(WeMos D1)

ESP8266 (WeMos D1)

Access Point

ESP8266 (WeMos D1)

Access Point

Station

ESP8266 (WeMos D1)

Access Point

ESP8266 (WeMos D1)

Access Point

Access Point

Vineyard Sensors

- ESP 8266 Microcontroller
 - WiFi enabled
 - 3.3V
- Digital Humdity and Temperature Sensor DHT 11
- 5 USD

Vineyard Sensors

- ESP 8266 Microcontroller
 - WiFi enabled
 - 3.3V

- Digital Humdity and Temperature Sensor DHT 11
- 5 USD