INFORMATIKA

ш

ш

Visszatekintés

- Számítógépek, információk, számábrázolás, kódolás
- Felépítés, kliens-szerver szerep, fájlrendszerek
- Alapvető parancsok, folyamatok előtérben, háttérben
- I/O átirányítás, szűrők, reguláris kifejezések
- Változó, parancs behelyettesítés, aritmetikai, logikai kifejezések
- Script vezérlési szerkezetek
- Sed,AWK

Mi jön ma?

- Unix-Linux management alapok!
- Hálózati elemek
- ARPANET projekt
 - Szolgáltatások
- Terminál, FTP, HTTP szolgáltatások
 - Későbbi félév során nagy óraszámban a "Számítógépes hálózatok" tárgyban részletesen tanulnak a hálózati lehetőségekről!

Unix-Linux boot

- Boot sector BIOS-MBR- UEFI
 - LILO, Op. Rendszer választás
- Kernel betöltése
- Init processz indítása (/sbin/init-initctl, systemd-systemctl)
 - /etc/inittab konfigurációs állomány
 - Alapértelmezett futásszint beállítás- Systemd- Systemctl esetén service-ek
 - Futásszintek 0- rendszeráll, 1- single user mód,
 2,3,4,5- normál szintek, 6- reboot, 2- default (multi user)
 - A 2-5 szinteket minden rendszer sajátosan definiálja
 - Mi a teendő az egyes futásszinteknél
 - /etc/init.d/rc szint
 - PL: GETTY indítás-terminál service

Unix-Linux management alapok

- Központi management programok
 - SMIT, YAST,YAST2
- Kézi módosítás
 - /etc könyvtár
 - /etc/hosts, /etc/passwd, /etc/shadow, /etc/services
 - /etc/resolf.conf, /etc/sendmail.conf
 - /etc/inetd.conf Internet server konfiguráció
 - /etc/sendmail.cf
 - /etc/httpd.conf- vagy /etc/apache2

Felhasználó management

- Központi adminisztrációs eszköz
 - Létezik minden Unix rendszeren
 - Kényelmes, könnyű használat
 - Hátrány: nagy létszámnál nehézkes, lassú
 - Megoldás: script használat
- Kézi módszer
 - /etc/passwd, /etc/shadow kézi módosítása
 - · Létezik adduser, useradd vagy hasonló nevű parancs.
- Példa: useradd.awk (operációs rendszerek)

Önálló gép vs. hálózat

- Ma már elképzelhetetlen a csak egy önálló számítógép!
 - A NETWORK maga a számítógép!
- A kapcsolati elemek az operációs rendszer alapszolgáltatásai között vannak!
- Többféle hálózati kapcsolódási lehetőségek lehetnek!
 - Soros port
 - Ethernet kártya-RJ45
 - WIFI (kártya)
 - Mobil adatkapcsolat (4G,LTE,...)
 - Bluetooth
 - ...

Network - ARPANET

- A hálózat ősprojektje: ARPANET Advanced Research Projects Agency Network, 1960-as évek projektje
 - Mára az utód projekt: NFSNET
- Csomagkapcsolt hálózat- csomagban van a küldő, a cél címe, a csomag sorszáma, adatok.
- Hálózati kapcsolatok, rendszerek decentralizálása fontos!

ARPANET elemek

- Network Control Protocol NCP a kezdeti ARPANET kommunikációs szabvány
- A ma is használt TCP/IP 1983-ban váltotta az NCP-t!
- ARPANET szolgáltatások
 - File transfer (FTP RFC354, 1971,73)
 - Terminál szolgáltatás (telnet RFC 137, 1971, RFC854)
 - Erőforrások megosztása (NFS)
 - Üzenetek továbbítása (Mail- RFC524,561 1971,73)
 - Hang továbbítás (NVP) nem sikeres, ma helyette: VOIP!

Hálózati alapok – OSI modell

- Open Systems Interconnection ISO/IEC 7498-1.
- 7 réteg minden réteg a saját feladatát végzi
 - 1. fizikai réteg ethernet, bluetooth, rs232, stb.
 - 2. adatkapcsolati réteg PPP,DHCP, L2TP,MAC, stb.
 - 3. hálózati réteg IPv4,IPv6,AppleTalk,IPSec, stb.
 - 4. szállítási réteg TCP,UDP
 - 5. munkamenet réteg (session, együttműködés, viszonylati) SSL, RPC stb.
 - 6. megjelenítési réteg HTML, CSS
 - 7. alkalmazási réteg HTTP,SSH,Telnet stb.

TCP/IP

- A TCP/IP csomagot gyakran "Internet protokoll" csomagként is hívják! – RFC1122,1123,
- TCP- Transmission Control Protocol, IP- Internet Protocol
- A TCP/IP feladatai 4 rétegre oszthatók
 - Alkalmazás réteg
 - Szállítási réteg
 - Internet réteg
 - Hálózati réteg

• TCP/IP leírás: RFC1180- https://tools.ietf.org/html/rfc1180

Hálózati kapcsolat példa

- 2 host(gép), 2 útválasztón keresztüléri el egymást!
- Az alkalmazások adatcsatornákba írnak, olvasnak!
- Minden más kommunikációs részlet az alkalmazásból nem látszik!

Hálózati topológiák

- Csillag topológia Ma gyakorlatilag a lokális hálózatok ezt használják! (UTP)
- Fa topológia- a csillagok hierarhikus összekapcsolása
- Gyűrű topológia Jellemzően gerinc topológiaként használt.
- Sín (busz) topológia Korábban használt (BNC).
- Lánc topológia hasonló a sínhez, de az elem kiesése megszakítja a rendszert!

Hálózati eszközök - SWITCH

- A topológiák végpontjain elhelyezkedő eszközök a számítógépek!
- A csillag topológia központi eleme a kapcsoló, a "switch"!
 - Az azonos lokális hálózatba kötött gépek kapcsolatát biztosítja, OSI 2. adatkapcsolási rétegben van, MAC címek alapján csak a kívánt portra továbbítja a csomagot, ehhez táblázatot használ.
 - Régebben a fizikai rétegben működő Repeater-ek, HUB-ok is használtak voltak!
- Más hálózati kapcsolók is léteznek, Frame Relay, X25 utód, nagy távolságú hálózati kapcsoló, vagy Fibre Chanel ami a SAN rendszerek kapcsolója!

Hálózati eszközök - BRIDGE

- Szintén a 2. réteg eszköze, akár a switch.
- Feladata 2 LAN összekapcsolása!
- Korábban a bridge és switch különböző eszközt jelentett!
- Ma gyakorlatilag a BRIDGE mint eszköz nem kapható!
 - A switch-ek is tudják gyakran ezt a funkciót!
 - Ha az egyszerűbb switch mégse, akkor a router igen!

Hálózati eszközök - ROUTER

- Különböző lokális hálózatok, globális hálózatokat a "router" kapcsol össze!
- A router az OSI modell 3. rétegben helyezkedik el!
 - Döntései alapja: IPv4 (OSI 3. rétegben ismert)
 - A router minden portján egy-egy LAN található, feladata az, hogy egy beérkező csomagról eldöntse, hogy melyik kapcsolódó hálózatba továbbítsa azt, illetve útvonal információk felépítése(routing tábla)!
 - Router protokollok: RIP, OSPF, EIGRP(<u>Enhanced Interior Gateway Routing Protocol</u>, CISCO)

IP beállítások

- Minden hálózati elem egyedi IP címmel rendelkezik!
- IPv4 protokoll 4 bájtos(32 bit) IP cím,RFC791
 - 2 részre osztható- Hálózati cím+számítógép(host) azonosító.
 - A osztály: 0.0.0.0-127.255.255.255, 8(1+7)/24 bit
 - B osztály: 128.0.0.0-191.255.255.255, 16(2+14)/16 bit
 - C osztály: 192.0.0.0-223.255.255.255, 24(3+21)/8 bit
 - D osztály: 224.0.0.0-239.255.255.255, 4/28 (groupid), multicast
 - E osztály: 240.255.255.255-247.255.255.255 foglalt, későbbi használatra.

ш

Számítógép IP címe, neve-DNS

Ahány hálózati kártya, annyi IP cím él.

• Ha nincs a hálózaton tiltva, a ping ellenőrzi a kapcsolat meglétét!

- DNS- Domain Name Service
 - Név IP cím társítás
 - szamrend.inf.elte.hu 157.181.161.38
 - B osztályú cím elte.hu domain
 - TTL-Time To Live, amíg ez >0 a csomag él!

```
Microsoft Windows [Version 10.0.10240]
(c) 2015 Microsoft Corporation. All rights reserved.

C:\Users\illes>ping szamalap.inf.elte.hu

Pinging szamalap.inf.elte.hu [157.181.161.47] with 32 bytes of data:
Reply from 157.181.161.47: bytes=32 time=5ms TTL=53

Ping statistics for 157.181.161.47:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 5ms, Maximum = 8ms, Average = 5ms
```

IP cím beállítása

- IP 157.181.161.38 látható, hogy B osztályú cím!
 - Ettől lehet, hogy még C osztályú alhálózat van!
- Mask: 255.255.255.0 megadja a LAN (alhálózat)méretét (256)
- Broadcast: 157.181.161.255 tipikusan a LAN utolsó címe
- Subnet IP: 157.181.161.0 a LAN első címe, subnet address
- Gateway IP: a kivezető út IP címe (router)
 - /sbin/route -n

IPv4 címek

- Méret: 4 bájt max. 2^32 gép
 - Ez nem sok, sőt ma már kevés!
- Mit lehet tenni?
- Kiút: nem "routolható", lokális címtartományok (RFC1918)
 - A osztály: 10.x.x.x (8/24)
 - B osztály: 172.16.0.0-172.16.255.255 (20/12)
 - C osztály: 192.168.x.x (16/16, 256 darab C osztályú cím)

ш

IPv6

- Születésének fő oka: IPv4 előrelátható szűkössége!
- IPv6 128 bites címeket használ!
 - 8 darab 16 bites szám hexa alakja:
 - 2015:0a0d:0102:1961:0324:fe01:03ab:0405
 - Első 64 bit: subnet prefix
 - Második 64 bit: interfész azonosító
 - Első standard: RFC2640 (1998 dec.)
- IPv4 IPv6 megfeleltetés
 - 80 bit 0, majd 16 bit 1, utána jön a 32 bit IPv4.

DHCP

- Dynamic Host Configuration Protocol
- IP cím megadása lehet statikus
 - Manuális konfiguráció!
- Dinamikus beállítások megadása(ip, mask, gw)
 - Szerveren: Címtartomány (IP pool) megadás
 - Korlátozások használhatók, pl csak regisztrált (mac cím) gépek kapjanak beállításokat!
 - Statikus IP címek

Szerver elérés

- IP konfiguráció
 - Parancssori lehetőség
 - ifconfig, vagy újabban ip parancs (eth0, lo(opback))
 - Adminisztrációs felület
 - SUSE- yast, IBM-smit, stb.
- Terminál elérés
 - Ssh
 - FTP
 - FTP over SSL
- Webes elérés

FTP(s) vs HTTP(s)

- Mi a különbség a kettő között?
 - File transfer Hypertext transfer
- A HTTP jóval későbbi szabvány, de ma gyakorlatilag csak ez használt!
- Miért?
 - HTTP segítséggel is letölthetők, feltölthetők állományok!
 - A böngészőben tudunk le és feltölteni!
- FTP gyorsabb, de telnet-hez hasonlóan külön jogosultság kell!
 - Bináris- szöveges fájl transzfer!

Web publikáció, hitelesítés

- public_html könyvtár
 - Módosítható, a httpd.conf állományban
 - Rendszergazda (root) jogosítvány
 - Ha egy könyvtárban van index.html (def. dokumentum), akkor azt adja vissza.
 - Ha nincs index.html, akkor mintegy ftp tartalomjegyzék!
- Publikus minden, mindenkinek!

Hitelesítés, jelszó védelem

- Adott könyvtárra érvényes, ha .htaccess fájl létezik a könyvtárban (speciális forma)
- htpasswd, basic, kódolás nincs, apache2 esetén htpasswd2 a név
 - szamrend.inf.elte.hu gépen: /usr/bin könyvtárban
 - Használat: htpasswd2 [-c] filenév usernév
 - -c filenév új állomány lesz
 - Megkérdezi a jelszót, majd a névvel együtt a file-ba rakja kódolva a jelszót
 - Csak első alkalommal kell a –c kapcsoló!

Z

Hitelesítés, védelem II.

- htdigest, MD5 kódolás (apache2 esetén htdigest2)
 - Használat: htdigest2 [-c] filenév azonosító usernév
 - Bőngészőfüggő lehet (IE?, FireFox ...)
- A "digest" hitelesítéshez a mod auth digest modult installálni kell
- A Basic hitelesítés minden szerveren általában engedélyezett!
 - Ha mégsem, akkor az Apache konfigurációs állományban a felhasználó könyvtárakra be kell jelölni az "AllowOverride AuthConfig" lehetőséget!

Apache irodalom

- Apache Web szerver konfigráció
 - /etc/httpd.conf
 - Vagy újabban: /etc/apache2/ és itt sok kis conf.
- http://httpd.apache.org/docs/1.3/howto/htaccess.html
- Google
- Könyvesbolt

.htaccess tartalom adatok

- AuthType Basic
- AuthName "Gyumolcsfa gyujtemeny"
- AuthUserFile /usr/people/XY/public_html/letolt/alma
- Require user alma
- Order deny, allow # sorrend: tiltás, engedélyezés
- Deny from all
- Allow from elte.hu
- allow from 81.82.83.94
- Satisfy any # valamelyik kritériumnak igaznak kell lenni ahhoz, hogy hozzáférésünk legyen a tartalomhoz

Példa

- A legegyszerűbb .htaccess tartalom.
- Ekkor a böngésző kér felhasználói adatokat!

```
ali@os:~/public_html/titkos> cat .htaccess
AuthType Basic
AuthName "Adja meg adatait!"
AuthUserFile
/home/ali/public_html/titkos.pw
Require user alma
```

ali@os:~/public_html/titkos>

Apache config- Virtuális host

- Jelentése: más néven hivatkozunk egy címre
- Httpd.conf
 - Általában /etc könyvtárban
 - Webprogramozáson /etc/apache2 könyvtárban
 - (Suse linux) Nem egy fájl, hanem szét van szedve funkcionalitás szerint.
 - SSI, CGI jogok
 - Könyvtárra, .shtml kiterjesztés
 - Mod_userdir.conf
 - Virtuális könyvtár
 - Vhosts.d könyvtárban, adott nevű .conf állományok

INFORMATIKA

ш

ш