Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on eptember 28, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 11. Binomial Option Pricing: Selected Topics

Chapter 11. Binomial Option Pricing: Selected Topics

§ 11.1 Understanding Early Exercise

§ 11.2 Understanding risk-neutral pricing

§ 11.3 The Binomial tree and lognormality

§ 11.4 Problems

Chapter 11. Binomial Option Pricing: Selected Topics

§ 11.1 Understanding Early Exercise

§ 11.2 Understanding risk-neutral pricing

§ 11.3 The Binomial tree and lognormality

§ 11.4 Problems

By exercising, the option holder

- + Receives the stock and thus receives dividends
- Pays the strike price prior to expiration (this has an interest cost)
- Loses the insurance implicit in the call against the possibility that the stock price will be less than the strike price at expiration

By exercising, the option holder

- + Receives the stock and thus receives dividends
- Pays the strike price prior to expiration (this has an interest cost)
- Loses the insurance implicit in the call against the possibility that the stock price will be less than the strike price at expiration

By exercising, the option holder

- + Receives the stock and thus receives dividends
- Pays the strike price prior to expiration (this has an interest cost)
- Loses the insurance implicit in the call against the possibility that the stock price will be less than the strike price at expiration

By exercising, the option holder

- + Receives the stock and thus receives dividends
- Pays the strike price prior to expiration (this has an interest cost)
- Loses the insurance implicit in the call against the possibility that the stock price will be less than the strike price at expiration

Solution.

- + Receives the stock and thus receives dividend
 - $S \times \delta = 200 \times 0.05 = \10.00
- Pays the strike price prior to expiration (this has an interest cost) $K \times r = 100 \times 0.05 \5.00
- Loses the insurance: \$0 because a

Hence, we need to early exercise! □

Solution.

+ Receives the stock and thus receives dividends:

$$S \times \delta = 200 \times 0.05 = $10.00.$$

Pays the strike price prior to expiration (this has an interest cost)

$$K \times r = 100 \times 0.05 = \$5.00$$

- Loses the insurance: \$0 because $\delta = 0$

Hence, we need to early exercise!

Solution.

+ Receives the stock and thus receives dividends:

$$S \times \delta = 200 \times 0.05 = $10.00$$
.

- Pays the strike price prior to expiration (this has an interest cost)

$$K \times r = 100 \times 0.05 = $5.00.$$

- Loses the insurance: \$0 because $\delta=0$

Hence, we need to early exercise!

Solution.

+ Receives the stock and thus receives dividends:

$$S \times \delta = 200 \times 0.05 = $10.00$$
.

Pays the strike price prior to expiration (this has an interest cost)

$$K \times r = 100 \times 0.05 = $5.00.$$

- Loses the insurance: \$0 because $\delta = 0$.

Hence, we need to early exercise

Solution.

+ Receives the stock and thus receives dividends:

$$S \times \delta = 200 \times 0.05 = $10.00$$
.

- Pays the strike price prior to expiration (this has an interest cost)

$$K \times r = 100 \times 0.05 = $5.00.$$

- Loses the insurance: \$0 because $\delta = 0$.

Hence, we need to early exercise!

$$rK > \delta S$$

 \prod

It is optimal to exercise
$$\iff$$
 $S > \frac{rK}{\delta}$

E.g. If $r = \delta$, any in-the-money option should be exercised immediately.

If $r = 3\delta$, we exercise when the stock price is 3 times of the strike price

When volatility is positive, the implicit insurance has value that varies with time to expiration.

R

$$rK > \delta S$$

⇓

It is optimal to exercise
$$\iff$$
 $S > \frac{rK}{\delta}$

E.g. If $r = \delta$, any in-the-money option should be exercised immediately. If $r = 3\delta$, we exercise when the stock price is 3 times of the strike price.

When volatility is positive, the implicit insurance has value that varies with time to expiration.

ñ

$$rK > \delta S$$

⇓

It is optimal to exercise
$$\iff$$
 $S > \frac{rK}{\delta}$

E.g. If $r = \delta$, any in-the-money option should be exercised immediately. If $r = 3\delta$, we exercise when the stock price is 3 times of the strike price.

When volatility is positive, the implicit insurance has value that varies with time to expiration.

ñ

$$rK > \delta S$$

⇓

It is optimal to exercise
$$\iff$$
 $S > \frac{rK}{\delta}$

E.g. If $r = \delta$, any in-the-money option should be exercised immediately.

If $r = 3\delta$, we exercise when the stock price is 3 times of the strike price.

When volatility is positive, the implicit insurance has value that varies with time to expiration.

FIGURE 11.1

Early-exercise boundaries for volatilities of 10%, 30%, and 50% for a 5-year American call option. In all cases, K = \$100, r = 5%, and $\delta = 5\%$.

Value of insurance diminishes in time.

► When σ = 0, the boundary should be S = K = \$100.
► The value of insurance diminishes in time.

FIGURE 11.1

Early-exercise boundaries for volatilities of 10%, 30%, and 50% for a 5-year American call option. In all cases, K = \$100, r = 5%, and $\delta = 5\%$.

► Curve computed using 500 binomial steps.

- ▶ When $\sigma = 0$ the boundary should be S = K = \$100
- The value of insurance diminishes in time

FIGURE 11.1

Early-exercise boundaries for volatilities of 10%, 30%, and 50% for a 5-year American call option. In all cases, K = \$100, r = 5%, and $\delta = 5\%$.

- ► Curve computed using 500 binomial steps.
- ▶ When $\sigma = 0$, the boundary should be S = K = \$100.
- The value of insurance diminishes in time

FIGURE 11.1

Early-exercise boundaries for volatilities of 10%, 30%, and 50% for a 5-year American call option. In all cases, K = \$100, r = 5%, and $\delta = 5\%$.

- ► Curve computed using 500 binomial steps.
- ▶ When $\sigma = 0$, the boundary should be S = K = \$100.
- ► The value of insurance diminishes in time.

FIGURE 11.2

Early-exercise boundaries for volatilities of 10%, 30%, and 50% for a 5-year American put option. In all cases, K = \$100, r = 5%, and $\delta = 5\%$.

