Math 111 Chapter 3.5: Implicit Differentiation

(PROBLEM)

How can we find the line tangent to the circle $x^2 + y^2 = 25$ at the point (3, -4)?

1. Idea 1

2. Idea 2

3. Idea 3

(EXAMPLES)

1. Find
$$\frac{dy}{dx}$$
 if $\sqrt{x} + \sqrt{5y} = 1$

2. Find
$$\frac{dy}{dx}$$
 at the point $(1,0)$ if $xe^y = x - y$.

3. Find
$$\frac{dy}{dx}$$
 if $\cos(xy) = 1 + \sin y$

4. Find the equation of the line tangent to the curve $x^3 + y^3 = 6xy$ at the point (3,3). Sketch the curve and the tangent line.

(APPLICATION: CHEMISTRY)

In simple scenarios in thermodynamics, the pressure and volume of a gas might be related with the ideal gas law PV = nRT, where T is temperature, n is the quantity of gas in moles, and R is a constant. Find the rate of change of volume with respect to pressure.

In a more complex setting, the pressure and volume of a gas might be related through van der Waal's equation $(P + \frac{n^2 a}{V^2})(V - nb) = nRT$. Here a and b are additional constants. Find the rate of change of volume with respect to pressure.

(APPLICATION: INVERSE FUNCTIONS) If $y=f^{-1}(x)$, then x=f(y). We can find $\frac{dy}{dx}$ with implicit differentiation.

(EXAMPLES)

1. Find
$$\frac{dy}{dx}$$
 if $y = \arcsin(x)$

2. Find
$$\frac{dy}{dx}$$
 if $y = \arctan(x)$.

(APPLICATION: ORTHOGONAL CURVES)

Using calculus, we can explain why circles $(x^2 + y^2 = r^2)$ are orthogonal to lines through their centers (ax + by = 0)

Another example of **orthogonal curves** are $y = cx^2$ and $x^2 + 2y^2 = k$.

(EXERCISES)

1. Find
$$y''$$
 if $x^2 + xy + y^2 = 3$.

2. In each case, find $\frac{dy}{dx}$ by implicit differentiation

(a)
$$2x^2 + y^2x^2 - y = 9$$

(b)
$$xy = x^2 - \sec y$$

(c)
$$x - y = e^{x/y}$$

3. At what points does the curve described by $y^2 = x^3 + 3x^2$ have horizontal tangent line?

4. Find the derivatives.

(a)
$$y = (\arcsin x)^4$$

(b)
$$y = \arctan(1 + e^{5x})^2$$

(c)
$$y = \frac{\arccos t}{t^2}$$