

SÍLABO INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

. DATOS GENERALES CURSO DE VERANO 2020

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Código de la asignatura : 09114205051

1.3 Ciclo : V1.4 Créditos : 051.5 Horas semanales totales : 11

1.6.1 Horas lectivas (Teoría, Práctica. Laboratorio) : 7 (T=3, P=2, L=2)

1.6.2. Horas no lectivas : 4

1.6 Condición de la asignatura : Obligatoria

1.7 Requisito(s) : 09007404050 Física II

09041204040 Ecuaciones Diferenciales

1.8 Docentes : Ing. Emilio Asunción Marcelo Barreto

II. SUMILLA

El curso forma parte de la formación especializada; tiene carácter teórico-práctico. Le permite al estudiante adquirir conocimientos de circuitos eléctricos de corriente continua, circuitos eléctricos de corriente alterna, fundamentos de los circuitos ferromagnéticos, transformadores monofásicos y trifásicos de potencia, motores trifásicos de inducción, fundamentos de electrónica, control electromagnético de motores eléctricos de inducción y sus diferentes aplicaciones en las instalaciones eléctricas industriales.

El curso se desarrolla mediante las siguientes unidades de aprendizaje:

- I. Leyes de Ohm, Joule y Kirchhoff. Fuentes de tensión y de corriente ideal y reales. Fuentes independientes y dependientes. Balance de potencia. Métodos de corrientes de mallas y de potenciales de nodos. Teoremas de Thevenin y Norton y superposición en circuitos eléctricos de corriente continua
- II. Circuitos eléctricos de corriente alterna monofásica y trifásica.
- III. Conceptos fundamentales del electromagnetismo, materiales ferromagnéticos y circuitos magnéticos. Transformadores monofásicos y transformadores trifásicos.
- IV. Máquinas eléctricas rotativas de corriente alterna. Motor trifásico de inducción.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

Interpreta y reconoce los conceptos fundamentales de los circuitos y máquinas eléctricas.

Aplica estos conceptos en el desarrollo de problemas y ejercicios.

Explica estos conceptos con dicción y coherencia.

3.2 Componentes

Capacidades

Explica los conceptos fundamentales de los circuitos y máquinas eléctricas.

Practica ejemplos y problemas.

Expone y explica los conceptos fundamentales en un trabajo de Investigación.

Contenidos actitudinales

Participa en los ejercicios y problemas desarrollados.

Persevera en su propósito de mejorar su rendimiento.

Valora en su carrera la importancia de los temas relacionados con los circuitos y máquinas eléctricas.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : LEYES DE OHM, JOULE, KIRCHOFF. TEOREMAS DE THEVENIN, NORTON Y SUPERPOSICIÓN EN CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA

CAPACIDAD:

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS	
				L	T.I.
1	Primera sesión: Elementos Activos y pasivos de un circuito eléctrico de cc. Fuentes de voltaje y de corriente ideales y reales. Fuentes independientes y dependientes. Fuentes Dependientes. Leyes de Kirchhoff. Balance de potencias. Problemas. Segunda sesión: Propiedades de las fuentes ideales. Problemas. Formación de grupos de Laboratorio	 Reconocer los elementos pasivos y activos de un circuito. Aplicar e interpretar las leyes de ohm, Joule y de Kirchhoff. Balance de potencias Reconocer las Fuentes ideales y reales. Fuentes independientes y dependientes 	Lectivas (L): Introducción al tema - 1h Desarrollo del tema - 2h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4
2	Primera sesión: Conceptos de circuito abierto, cortocircuito y red muerta. Teoremas de Thevenin y Norton. Segunda sesión: Topología de redes. Ecuación básica de la topología. Método general de corrientes de Mallas. Problemas. Laboratorio 1	. Analizar y aplicar los métodos de corrientes de mallas. Analizar y aplicar los teoremas de thevenin y Norton.	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4
3	Primera sesión: Método general de potenciales de Nodos. Problemas. Segunda sesión: Teorema de la Superposición. Problemas. Laboratorio 1	Analizar y aplicar los métodos de potenciales de nodos y de superposición	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4
4	Primera sesión: Fuentes Dependientes. Problemas. Segunda sesión: Elementos electrónicos: Diodo rectificador. Laboratorio 1	 Reconocer las Fuentes dependientes Analizar los diodos electrónicos. 	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4

	UNIDAD II: CIRCUITOS ELÉCTRICOS DE CORRIENTE ALTERNA MONOFÁSICA Y TRIFÁSICA						
CAPACIDAD:							
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS T.I.		
5	Primera sesión: Generación de la corriente alterna monofásica. Características fundamentales de las ondas senoidales: período, frecuencia, valor eficaz, valor máximo. Problemas. Segunda sesión: Primera Práctica calificada. Laboratorio 2	 Analizar e interpretar la generación de corriente alterna monofásica y trifásica. Analizar e interpretar las características fundamentales de las ondas alternas periódicas senoidales. 	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4		
6	Primera sesión: Ondas en el dominio del tiempo y en el dominio de la frecuencia. Concepto de Fasor. Circuitos de corriente alterna monofásica fasorial. Problemas. Segunda sesión: Potencia y corrección del factor de potencia en circuitos monofásicos. Problemas. Laboratorio 2	Analizar los elementos pasivos: resistores, bobinas y condensadores.	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4		
7	Primera sesión: Generación de ondas trifásicas. Secuencias de generación. Sistemas de potencia trifásica balanceada o equilibrada. Problemas. Segunda sesión: Repaso de problemas de circuitos trifásicos. Laboratorio 2	Analizar los circuitos de potencia monofásica y trifásica en el régimen fasorial	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4		
8	Primera sesión: Repaso. Segunda sesión: Examen Parcial Laboratorio 3		Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio - 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4		

UNIDAD III: CONCEPTOS FUNDAMENTALES DEL ELECTROMAGNETISMO. MATERIALES FERROMAGNÉTICOS. CIRCUITOS MAGNÉTICOS. TRANSFORMADORES MONOFÁSICOS Y TRIFÁSICOS.

CAPACIDAD:

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HOI L	RAS T.I.
9	Primera sesión: Conceptos fundamentales de la magnetostática. Segunda sesión: Circuito magnético. Modelo circuital del reactor. Laboratorio 3	 Revisar los conceptos fundamentales del electromagnetismo. Reconocer las propiedades de los materiales ferromagnéticos y su importancia en la construcción de las máquinas eléctricas. Repasar conceptos vinculados con los circuitos magnéticos 	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I):	7	4
10	Primera sesión: El transformador monofásico real de potencia. Circuito equivalente exacto del transformador monofásico real de potencia. Segunda sesión: Ensayos del transformador. Regulación y eficiencia del transformador monofásico de potencia. Problemas. Laboratorio 3	 Identificar las partes constructivas de los transformadores de potencia. Conocer el principio de funcionamiento de los transformadores de potencia monofásicos Resolver problemas de operación de transformadores de potencia 	Resolución tareas - 4h Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	- 7	4
11	Primera sesión: Transformadores trifásicos de potencia. Segunda sesión: Resolución de problemas de transformadores de potencia. Laboratorio 4	Conocer el principio de funcionamiento de los transformadores de potencia trifásicos. Resolver problemas de operación de transformadores de potencia	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio - 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4
12	Primera sesión: Repaso Segunda sesión: Segunda práctica calificada Laboratorio 4		Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4

	UNIDAD IV: MÁQUINAS ELËCTRICAS ROTATIVAS DE CORRIENTE ALTERNA. MOTOR TRIFÁSICO DE INDUCCIÓN						
CAPACIDAD:							
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS T.I.		
13	Primera sesión: El motor asíncrono o de inducción. Aspectos constructivos del motor 3Φ de inducción. Campo magnético giratorio. Deslizamiento del motor 3Φ de inducción. Segunda sesión: Circuito equivalente exacto del motor 3Φ de inducción. Circuito equivalente aproximado. Ensayos del motor en vacío y de rotor bloqueado. Determinación de parámetros. Balance de potencias. Eficiencia. Laboratorio 5	 Identificar las partes constructivas de los motores eléctricos. Conocer el principio de funcionamiento del motor trifásico de inducción. 	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 4h	7	4		
14	Primera sesión: Resolución de problemas de motores eléctricos de inducción trifásicos. Segunda sesión: Trabajo de Investigación. Laboratorio 5	Resolver problemas de operación de motores eléctricos trifásicos de inducción en régimen permanente	Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 2h Trabajo Aplicativo - 2h	_ 7	4		
15	Primera sesión: Trabajo de Investigación Segunda sesión: Repaso para el Examen Final Laboratorio 5		Lectivas (L): Desarrollo del tema - 3h Ejercicios en aula - 2h Ejercicios en Laboratorio – 2h Trabajo Independiente (T.I): Resolución tareas - 2h Trabajo Aplicativo - 2h	7	4		
16	Examen Final			•			
17	Entrega de promedios finales y acta del curso.						

V. ESTRATEGIAS METODOLÓGICAS

Método Expositivo – Estimulativo. Disertación docente, estimulando al estudiante a participar.
 Método de Asesoramiento. Se asesorarán a equipos de alumnos en clases de tutoría para comprobar situaciones de la parte teórica y discutir resultados

VI. RECURSOS DIDÁCTICOS

- **Equipos:** Una computadora personal para el profesor, ecran, proyector de multimedia y equipos de laboratorio para experimentos.
- Materiales: separatas, presentación de diapositivas en Power Point, materiales de laboratorio para experimentos.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF = (2*PE+EP+EF)/4

PE = ((P1+P2)/2 + W1 + PL)/3

PL = (Lb1+Lb2+Lb3+Lb4+Lb5-MN) / 4

Donde:

PF = Promedio final EP = Examen parcial EF = Examen final

PE = Promedio de evaluaciones. W1 = Trabajo de investigación PL = Promedio de laboratorio (LC)

P1:P2 = Practicas calificadas

Lb1;Lb2;Lb3;Lb4;Lb5= Notas de laboratorios MN = Menor Nota de Laboratorio

VIII. FUENTES DE CONSULTA

7.1 Bibliográficas

- Fraile Mora, Jesús (2016). Circuitos Eléctricos.
- Ileana Moreno; Curbelo Cancio Juan (2017). Análisis de circuitos eléctricos alimentados con corriente alterna utilizando Matlab.
- Charles Alexander; Matheww Sadiku (2016). Fundamentos de circuitos eléctricos. Quinta Edición.
- Fraile Mora, Jesús (2015). Máquinas Eléctricas. Quinta Edición.
- Chapman Stephen J. (2016). Máquinas Eléctricas. Quinta Edición.
- Fitzgerald, A. (2016). Máquinas Eléctricas.6 Edición.
- Vargas Federico; Machuca Saldarriaga (2016). Máquinas Eléctricas Rotativas.

7.2 Electrónicas

Ninguna

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

	R clave R relacionado Recadaro vacio ne aprica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	