

Dynamic Array in C ★

X

You have successfully solved Dynamic Array in C

nare

Tweet

You are now 230 points away from the gold level for your c badge.

Try the next challenge

Problem

Submissions

Leaderboard

Editorial

RATE THIS CHALLENGE

Snow Howler is the librarian at the central library of the city of HuskyLand. He must handle requests which come in the following forms:

1 x y : Insert a book with $m{y}$ pages at the end of the $m{x}^{m{th}}$ shelf.

2 x y : Print the number of pages in the $m{y^{th}}$ book on the $m{x^{th}}$ shelf.

3 x : Print the number of books on the $oldsymbol{x^{th}}$ shelf.

Snow Howler has got an assistant, Oshie, provided by the Department of Education. Although inexperienced, Oshie can handle all of the queries of types 2 and 3.

Help Snow Howler deal with all the queries of type 1.

Oshie has used two arrays:

```
int* total_number_of_books;
/*
 * This stores the total number of books on each shelf.
 */
int** total_number_of_pages;
/*
 * This stores the total number of pages in each book of each shelf.
 * The rows represent the shelves and the columns represent the books.
 */
```

Input Format

The first line contains an integer *total_number_of_shelves*, the number of shelves in the library.

The second line contains an integer *total_number_of_queries*, the number of requests.

Each of the following total_number_of_queries lines contains a request in one of the three specified formats.

Constraints

- $1 \le total_number_of_shelves \le 10^5$
- $1 \le total_number_of_queries \le 10^5$
- For each query of the second type, it is guaranteed that a book is present on the $m{x^{th}}$ shelf at $m{y^{th}}$ index.
- $0 \le x < total_number_of_shelves$

- Both the shelves and the books are numbered starting from 0.
- Maximum number of books per shelf < 1100.

Output Format

Write the logic for the requests of type 1. The logic for requests of types 2 and 3 are provided.

Sample Input 0

```
5
5
1 0 15
1 0 20
1 2 78
2 2 0
3 0
```

Sample Output 0

78 2

Explanation 0

There are $\bf 5$ shelves and $\bf 5$ requests, or queries.

- 1 Place a 15 page book at the end of shelf 0.
- 2 Place a **20** page book at the end of shelf **0**.
- 3 Place a 78 page book at the end of shelf 2.
- 4 The number of pages in the $\mathbf{0}^{th}$ book on the $\mathbf{2}^{nd}$ shelf is 78.
- 5 The number of books on the $\mathbf{0}^{th}$ shelf is 2.

```
Change Theme Language: C
                                                                               (O)
 1
    #include <stdio.h>
 2
    #include <stdlib.h>
 3
 4
    * This stores the total number of books in each shelf.
 5
 6
     */
7
    int* total_number_of_books;
8
     /*
9
10
     * This stores the total number of pages in each book of each shelf.
     * The rows represent the shelves and the columns represent the books.
11
12
     */
13
    int** total_number_of_pages;
14
15
    int main()
16
         int total_number_of_shelves;
17
         scanf("%d", &total_number_of_shelves);
18
19
20
         int total_number_of_queries;
21
         scanf("%d", &total_number_of_queries);
```


Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature

