2-Group Belyi Maps

Why p = 2?

Conjecture (Gross 1998)

For every prime p, there exists a nonsolvable Galois number field ramified only at p.

 $p \ge 11$: existence (Serre), explicit (Edixhoven, Mascot)

p = 7: existence (Dieulefait)

p = 5: existence (Dembélé, Greenberg, Voight), explicit (Roberts)

p = 3: existence (Dembélé, Greenberg, Voight)

p = 2: existence (Dembélé)

The hope is that an explicit nonsolvable field ramified only at 2 can be obtained from a 2-group Belyi curve.

Belyi's Theorem

Theorem (G.V. Belyi 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\phi: X \to \mathbb P^1$ unramified (unbranched) above $\mathbb P^1 \setminus \{0,1,\infty\}$.

Such a map is called a **Belyi map**. We will denote the **monodromy group** of a Belyi map ϕ by Mon (ϕ) .

Permutation Triples

A transitive permutation triple of degree d is a triple

$$\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$$

such that

- $ightharpoonup \sigma$ generates a transitive subgroup of S_d

The set of degree d Belyi maps up to isomorphism is in bijection with the set of degree d transitive permutation triples up to **simultaneous conjugation** and the group $\langle \sigma \rangle$ is the monodromy group of ϕ .

Passports

A passport \mathcal{P} consists of the data (g, G, λ) where $g \geq 0$ is an integer, $G \leq S_d$ is a transitive subgroup, and $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

The passport of a Belyi map $\phi: X \to \mathbb{P}^1$ is $(g(X), \mathsf{Mon}(\phi), (\lambda_0, \lambda_1, \lambda_\infty))$ with g(X) the genus of X, $\mathsf{Mon}(\phi)$ the monodromy group of ϕ , and the partitions specified by ramification.

The passport of a permutation triple σ is $(g(\sigma), \langle \sigma \rangle, \lambda(\sigma))$ where

$$g(\sigma) = 1 - d + (e(\sigma_0) - e(\sigma_1) - e(\sigma_\infty))/2$$

with

$$e(\tau) = d - \# \text{cycles of } \tau$$
,

and $\lambda(\sigma)$ is specified by cycle structures.

2-Group Belyi maps and Beckmann's Theorem

A **Galois Belyi map** is a degree d Belyi map ϕ with $\#\operatorname{Mon}(\phi) = d$.

A 2-group Belyi map is a Galois Belyi map ϕ with Mon (ϕ) a 2-group.

Theorem (Beckmann 1989)

Let $\phi: X \to \mathbb{P}^1$ be a Belyi map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and ϕ is defined over M with good reduction at all primes $\mathfrak p$ of M above p.

The upshot of Beckmann's theorem is that every 2-group Belyi curve has a model with good reduction away from p=2.

2-Group Belyi maps

Computing 2-group permutation triples

Let $\phi: X \to \mathbb{P}^1$ be a Belyi map of degree $d=2^\ell$ corresponding to $\sigma \in \mathcal{S}^3_d$. We want to find $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1$ corresponding to $\widetilde{\sigma} \in \mathcal{S}^3_{2d}$ such that

Such a $\widetilde{\sigma}$ sits in the following exact sequence of groups:

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} \langle \widetilde{\sigma} \rangle \xrightarrow{\pi} \langle \sigma \rangle \longrightarrow 1$$

Without loss of generality we can restrict our attention to *central* extensions.

Computing 2-group permutation triples

Let σ correspond to a 2-group Belyi map ϕ .

► Compute all equivalence classes of (central) extensions

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} E \xrightarrow{\pi} \langle \sigma \rangle \longrightarrow 1$$

The main tool used here is Derek Holt's algorithm to compute the second cohomology group of a finite group.

For each extension, we get 8 possible $\tilde{\sigma}$. We then check the necessary conditions for $\tilde{\sigma}$ to correspond to a Belyi map to obtain all possible lifts of σ .

Passport counts

Theorem

The following table lists the number of passports of 2-group Belyi maps of degree d for d up to 256.

d	2	4	8	16	32	64	128	256
# passports	3	7	16	41	96	267	834	2893

Computing 2-group Belyi maps

Let $\phi: X \to \mathbb{P}^1$ be a Belyi map of degree $d = 2^{\ell}$ corresponding to $\sigma \in S^3_d$. Given a permutation triple $\widetilde{\sigma}$ with

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} \langle \widetilde{\sigma} \rangle \xrightarrow{\pi} \langle \sigma \rangle \longrightarrow 1 ,$$

let us now consider the problem of finding the Belyi map corresponding to $\widetilde{\sigma}$. Let $X \subseteq \mathbb{A}^n_K$ with defining equations $\{g_i\}_{i=1}^s \subset K[x_1,\ldots,x_n]$. Our goal is to find $f \in K(X)^\times$ such that

with ψ (and hence $\widetilde{\phi}$) satisfying the ramification conditions imposed by $\widetilde{\sigma}$.

Computing 2-group Belyi maps

The procedure to find $f \in K(X)$ is as follows:

- 1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ . These are determined by $\tilde{\sigma}$.
- 2. Build a degree 0 divisor $D = \sum_{P} n_{P} P$ with $n_{Q_{i}}$ odd for every i.
- 3. Try to find f in the (computable) Riemann-Roch space L(D).

There are (at least) two remarks to make about this process:

- ► Extending the base field *K* may be necessary to determine *D*.
- Class group obstruction.

Degree 4 example

$$\widetilde{\sigma} = ((1432), (13)(24), (1432)), \quad \sigma = ((12), (1)(2), (12))$$

$$(0,0) \quad (1,1) \quad (1,-1) \quad \infty \quad X_2 : x_2^2 = x_1$$

Degree 4 example

$$\widetilde{\sigma} = ((1432), (13)(24), (1432)), \quad \sigma = ((12), (1)(2), (12))$$

A refined conjecture (by day)

A **refined passport** \mathcal{P} consists of the data (g, G, C) where $g \geq 0$ is an integer, $G \leq S_d$ is a transitive subgroup, and $C = (C_0, C_1, C_\infty)$ is a triple of conjugacy classes of G.

For a refined passport ${\mathcal P}$ consider the set

$$\Sigma_{\mathcal{P}} = \{ (\sigma_0, \sigma_1, \sigma_\infty) \in C_0 \times C_1 \times C_\infty : \sigma_\infty \sigma_1 \sigma_0 = 1, \text{ and } \langle \sigma \rangle = G \} / \sim$$

where $(\sigma_0, \sigma_1, \sigma_\infty) \sim (\sigma_0', \sigma_1', \sigma_\infty')$ if and only if there exists $\alpha \in \operatorname{Aut}(G)$ with $\alpha(\sigma_s) = \sigma_s'$ for $s \in \{0, 1, \infty\}$.

Conjecture

Let $\mathcal{P}=(g,G,C)$ be a refined passport with $G=\mathsf{Mon}(\phi)$ for some 2-group Belyi map ϕ . Then $\#\Sigma_{\mathcal{P}}=0$ or 1.

Corollary

Every 2-group Belyi map is defined over a cyclotomic field $\mathbb{Q}(\zeta_{2^m})$ for some m.

Searching for a nonsolvable field (by night)

1769

Let X be a 2-group Belyi curve defined over a field K with Jacobian A. The hope is that K(A[2]) will be nonsolvable.

How to compute K(A[2]) given X?

- ► Sage (Bruin, Sijsling)
- Sage/Magma (Costa, Mascot, Sijsling, Voight)
- Magma (Neurohr)
- Pari/gp (Mascot)

Which curve?

- ► Coarse factorizations of A (Paulhus)
- ► Compute Aut(X) exploiting 2-group structure
- ► Consider Belyi maps that are not Galois?

Thanks for listening!