

Explanation techniques for neural networks

An overview with practical examples

DTU Compute

Department of Applied Mathematics and Computer Science

Different approaches

- We assume
 - Complicated non-linear task
 - Can **not** be solved by an intuitively explainable model
- Complete understanding is not possible
- Three basic approaches shown
 - Backpropagation approach
 - Local approximation
 - Network representation

Based on backpropagation

- Derivative of output in regards to input
- Optimized in most libraries
- Simple implementation
- Many variants
 - SmoothGrad [11]
 - CAM [2]
 - GradCAM [13]
 - LRP [12]

— ..

Image from https://en.wikipedia.org/wiki/Artificial_neural_network

Saliency

• Basic variant [1]

$$\frac{\partial y_c}{\partial x_{i,j}} = \left(\frac{\partial y_c}{\partial l_{-1}}\right) \dots \left(\frac{\partial l_1}{\partial x_{i,j}}\right)$$

Variant: Guided Backprop [9]

$$\frac{\partial' y_c}{\partial' x_{i,j}} = \text{ReLU}\left(\frac{\partial y_c}{\partial l_{-1}}\right) \dots \text{ReLU}\left(\frac{\partial l_1}{\partial x_{i,j}}\right)$$

- Easy to implement
- Very noisy

Category: Siberian_husky

Category: Labrador_retriever

Category: spotted salamander

Sensitivity heatmaps obtained with kerasvis library from pretrained VGG16

Gradient-weighted Class Activation Mapping

(Grad-CAM)

- Combining CAM[2] and gradients
- Requires CNN structure
- Coarse localization due to upfiltering
- CAM [2]:

$$M_c(x,y) = \sum_k w_k^c f_k(x,y)$$

• Grad-CAM [13]:

$$\alpha_k^c = \frac{1}{Z} \sum_i \sum_j \frac{\partial y^c}{\partial A_{ij}^k}$$

$$M_{GradC}^c(x, y) = ReLU\left(\sum_k a_k^c f_k(x, y)\right)$$

Image

GradCAM heatmaps obtained with kerasvis library from pretrained VGG16

Overview

	Fidelity	Understandability		Low construction overhead	Efficiency
Backprop	+	-	O	+	+
Local					
High-level					

Desiderate taken from [14]

Local approximation with interpretable model – LIME

- Intuition:
 - Sample around x
 - Weigh samples according to distance
 - Train linear classifier
 - Obtain explanation
- Low-dimensional representation necessary
 - For images: segment into super-pixels
 - For text: bag of words

From https://github.com/marcotcr/lime

Local approximation with interpretable model – LIME

- Intuition:
 - Sample around x
 - Weigh samples according to distance
 - Train linear classifier
 - Obtain explanation
- Low-dimensional representation necessary
 - For images: segment into super-pixels
 - For text: bag of words

Category: Labrador_retriever Image

Images obtained with LIME library from pretrained VGG16

Overview

	Fidelity	Understandability		Low construction overhead	Efficiency
Backprop	+	_	0	+	+
Local	0	+	O	+	_
High-level					

Desiderate taken from [14]

Higher-level

- Network level explanations
- Requires domain knowledge
- Interesting for risk and fairness analysis
- Two approaches presented
 - Analyzing specific network parts
 - Analyzing specific aspects

Probing the network

- "Understanding Neural Networks
 Through Deep Visualization" [5]
 - Idea: iteratively optimize activation of neurons with backpropagation
 - Regularize to encourage realistism
 - For output or intermediate layers
- Alternatives
 - Bau, David, et al. "Network Dissection: Quantifying Interpretability of Deep Visual Representations." Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017.
 - Alain, Guillaume, and Yoshua Bengio. "Understanding intermediate layers using linear classifier probes." (2016).

Category: hen

Obtained with kerasvis from pretrained VGG16

Testing with Concept Activation Vectors CAV

- Recently proposed by Kim et al [8]
- Requires high domain knowledge
- Idea:
 - assemble dataset {P,N}
 - Train linear classifier on representation of given layer
 - Obtain weights
- Useful for
 - Evaluating given input
 - Identifying a known bias in dataset and model

Model Women concept: most similar necktie images

Model Women concept: least similar necktie images

Kim, Been, et a

"TCAV: Relative concept importance testing with Linear Concept Activation Vectors." (2018)

Overview

	Fidelity	Understandability		Low construction overhead	Efficiency
Backprop	+	-	0	+	+
Local	0	+	O	+	_
High-level	+	+	-	_	0

Desiderate taken from [14]

How much disagreement is there?

- Expectation: explanations are correlated across similar networks
- Compute agreement between heatmaps
 - Between methods
 - Between networks
- LIME is highly changeable compared to other methods

Agreement between explanation methods for VGG16

How much disagreement is there?

- Expectation: explanations are correlated across similar networks
- Compute agreement between heatmaps
 - Between methods
 - Between networks
- LIME is highly changeable compared to other methods

Agreement between explanation methods between VGG16 and VGG19

Take-away

- We have to make a trade-off when obtaining explanations from NNs
- Different approaches have different pros and contras
- Task in question needs to be considered

	Fidelity	Understandability		Low construction overhead	Efficiency
Backprop	+	_	0	+	+
Local	O	+	O	+	_
High-level	+	+	_	_	0

References

- 1. Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. "Deep inside convolutional networks: Visualising image classification models and saliency maps." *arXiv preprint arXiv:1312.6034* (2013).
- 2. Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
- 3. Zhang, Quanshi, Ying Nian Wu, and Song-Chun Zhu. "Interpretable Convolutional Neural Networks."
- 4. Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Why should i trust you?: Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2016.
- 5. Yosinski, Jason, et al. "Understanding neural networks through deep visualization." In ICML Workshop on Deep Learning.
- 6. Bau, David, et al. "Network dissection: Quantifying interpretability of deep visual representations." arXiv preprint arXiv:1704.05796 (2017).
- 7. Alain, Guillaume, and Yoshua Bengio. "Understanding intermediate layers using linear classifier probes." arXiv preprint arXiv:1610.01644 (2016).
- 8. Kim, Been, et al. "TCAV: Relative concept importance testing with Linear Concept Activation Vectors." (2018).
- 9. Springenberg, Jost Tobias, et al. "Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).
- 10. 1Zhang Q, Wu YN, Zhu S-C. Interpretable Convolutional Neural Networks. https://arxiv.org/pdf/1710.00935.pdf. Accessed February 20, 2018.
- 11. Smilkov, Daniel, et al. "Smoothgrad: removing noise by adding noise." arXiv preprint arXiv:1706.03825 (2017).
- 12. Bach, Sebastian, et al. "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation." PloS one 10.7 (2015): e0130140.
- 13. Selvaraju, Ramprasaath R., et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization." ICCV. 2017.
- 14. Swartout, William R., and Johanna D. Moore. "Explanation in second generation expert systems." Second generation expert systems. Springer, Berlin, Heidelberg, 1993. 543-585.