

Description

The VSM6N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 6A$ $R_{DS(ON)} < 140m\Omega @ V_{GS} = 10V$ (Typ:110m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation
- Pb free terminal plating
- RoHS compliant
- Halogen free

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM6N10-S23	VSM6N10	SOT-223	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

5 \ 7.	,		
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous	I _D	6	А
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	4.2	А
Drain Current-Pulsed (Note 1)	I _{DM}	24	А
Maximum Power Dissipation	P _D	3	W
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 150	°C

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	R _{0JA}	71	°C/W
Thermal Resistance, Junction-to-Case (Note 2)(Drain)	R _{eJC}	41.7	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V		

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.2	1.8	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =5A	-	110	140	mΩ
Forward Transconductance	g FS	$V_{DS}=5V,I_{D}=5A$	-	8	-	S
Dynamic Characteristics (Note4)			•	•		•
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	690	-	PF
Output Capacitance	Coss		-	120	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	90	-	PF
Switching Characteristics (Note 4)			•	•		•
Turn-on Delay Time	t _{d(on)}	V_{DD} =50V, R_L =15 Ω V_{GS} =10V, R_G =2.5 Ω	-	11	-	nS
Turn-on Rise Time	t _r		-	7.4	-	nS
Turn-Off Delay Time	t _{d(off)}		-	35	-	nS
Turn-Off Fall Time	t _f		-	9.1	-	nS
Total Gate Charge	Qg	V _{DS} =50V,I _D =5A, V _{GS} =10V	-	15.5		nC
Gate-Source Charge	Q _{gs}		-	3.2	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	4.7	-	nC
Drain-Source Diode Characteristics			,	•		
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =6A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	6	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to product

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (curves)

Figure 1. Source-Drain Diode Forward Voltage

Figure 3. Output characteristics

Figure 5. Static drain-source on resistance

Figure 2. Safe operating area

Figure 4. Transfer characteristics

Figure 6. R_{DS(ON)} vs Junction Temperature

Figure 7. BV_{DSS} vs Junction Temperature

Figure 8. V_{GS(th)} vs Junction Temperature

Figure9. Gate charge waveforms

Figure 10. Capacitance

Figure 11. Normalized Maximum Transient Thermal Impedance

Figure 12. I_D vs Junction Temperature