Thoughts

Personal sentiment tracking & analysis

Software requirements

Yudhishthir Singh Tarif Haque Vlad Caciuc

Software Requirements Overview

- Problem definition & solution
- Scope of system & application architecture
- Overview of sentiment analysis requirements
- Features
- UML Diagrams
 - Use Case Diagram
 - Activity Diagram
 - High Level Class Diagram
- Project risks & challenges

Problem definition

- How can a user track his or her affective/emotional state?
- How can an application achieve this task without directly asking the user about their emotional state?

Our solution

The primary function of our application is to use sentiment analysis to classify and analyze user thoughts for positivity/negativity and affective/emotional state.

Scope of system

- The application will collect user thoughts throughout time
 - Mini "tweet-like" blurbs
 - Blog posts
 - Expressions of emotion like "I don't feel well" or "Life is good"
- These thoughts will be analyzed and classified
- The application will present data visualizations of the resulting analyses to the user.

Analyses of thoughts

 Polarity (positivity/negativity) of thoughts, expressed as percentage, over time

- Discrete emotion classification based on theory that all humans are thought to have an innate set of basic emotions that are universal and crossculturally recognizable.
 - Paul Ekman and colleagues (1972)
 concluded the six basic emotions are anger,
 disgust, fear, happiness, sadness, and
 surprise.

Creating a custom sentiment analysis model

- 1. Collect & label training data
 - "sad", "Feeling kind of low...."
 - "excited", "OMG! Just had a fabulous day!"
 - "bored", "Eating eggplant. Why bother?"
- 2. Upload training data to cloud
- 3. Train the model using Google Prediction API
- 4. Use trained model to classify unseen thoughts!

Application Architecture

- Client-server model
- RESTful API
- Mobile client sends requests to server for analysis/classification

Features

Essential

- Login & registration screens
- Mechanism to add new thoughts / selecting thought(s) for analysis
- Mechanism to select different sentiment analysis models
- (1) Polarity visualization & (2) Discrete emotion classification visualization

Possible

- "Mood map" visualization / other novel visualizations of thoughts
- Login into application and pull profile information from Google+

• If time available

— Develop more emotional classification models!

Use case diagram

- Three actors
 - User
 - Analysis Visualizer
 - Analysis Mediator
- Analysis Mediator sends thoughts to sentiment analyzer when user chooses an analysis
 - responsible for all communications with the server
- Analysis Visualizer draws graphs based on the results of analysis

Activity diagram

- Login/register
- Show user feed of thoughts
 - Add new thoughts
 - Select thoughts for analysis
- Choose an analysis (e.g. polarity, discrete emotion classification)
- Visualize results of analysis

High level class diagram

Project Risks & Challenges

- People express opinions and emotions in complex ways
 - Collecting representative training data
- Primary hurdle: implementing sentiment analysis systems for different emotional classification models
 - Creating text classifiers based on present research in emotion classification may prove challenging
- Networking Android app with offsite sentiment analysis systems
- Google+ Integration

Questions