UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA

PLAN GLOBAL TALLER DE SISTEMAS OPERATIVOS

I. DATOS DE IDENTIFICACIÓN

■ Nombre de la materia: Taller de Sistemas Operativos

■ Código: 2010017■ Grupo: 1 y 2

■ Carga horaria: 4 teóricas y 2 practicas

■ Materias con las que se relaciona: Redes de Computadoras, Arquitectura de Computadoras II, Aplicación de Sistemas Operativos

■ Docente: MSc. Ing. Jorge Walter Orellana

Araoz

■ Teléfono: 4285437 - 71475551

■ Correo Electrónico: j_orellana@yahoo.com

II. JUSTIFICACIÓN

La materia permite desarrollar capacidades para comprender en base a conceptos teóricos y prácticos los fundamentos de los sistemas operativos.

La materia logra que el alumno sea capaz de identificar y comprender los aspectos fundamentales de la administración de recursos computacionales por parte de los sistemas operativos, como así también su estructura y facilidades que brindan.

Además propende a la asimilación por parte del alumno de esquemas mentales de análisis de potenciales situaciones conflictivas que los sistemas operativos deben resolver por sí o según especificaciones externas, teniendo como objetivo principal la optimización en la asignación de recursos del sistema computacional.

III. OBJETIVOS

- Suministrar sólidos conocimientos referidos a los sistemas operativos como administradores de recursos de las computadoras, en especial la administración de recursos compartidos tales como el procesador, la memoria y los dispositivos de entrada / salida, analizando los principales algoritmos de cada caso en un ambiente de múltiples requerimientos, incluyendo también la posibilidad de requerimientos remotos.
- Comprender los problemas derivados del diseño de aplicaciones sobre sistemas operativos, en los que varias instancias de procesos se ejecutan concurrentemente, compitiendo a veces por el uso de los recursos del sistema.
- Ejemplificar con sistemas operativos reales y actuales como son Unix, Linux y Windows

IV. SELECCIÓN Y ORGANIZACIÓN DE CONTENIDOS

UNIDAD 1: INTRODUCCIÓN A SISTEMAS OPERATIVOS

Objetivos de la Unidad

- Obtener una visión general de los componentes de un Sistema Operativo.
- Realizar un repaso de la historia de los diferentes tipos de estructuras de sistemas operativos viendo su evolución hasta llegar a los actuales.
- Exponer los diferentes servicios que provee un Sistema Operativo.
- Ver la necesidad de que el hardware tiene que proporcionar una serie de mecanismos básicos de control para que el Sistema Operativo pueda tener un verdadero control sobre la máquina.

Contenido

- 1.1 Sistema Operativo
- 1.2 Evolución histórica
- 1.3 Componentes del sistema
- 1.4 Estructura de los sistemas operativos
 - 1.4.1. Estructura Simple
 - 1.4.2. Sistemas Estructurados

UNIDAD 2: GESTION DE PROCESOS

Objetivos de la Unidad

- Definir el Concepto de Proceso y el de Process Control Block.
- Identificar los diferentes estados en los que puede estar un proceso.
- Presentar los diferentes niveles de gestión del procesador y las labores de cada uno, así como los algoritmos más utilizados.
- Ver la planificación de la CPU y los diferentes algoritmos de planificación para obtener un mayor rendimiento de la máquina.

Contenido

- 2.1 Procesos
- 2.2 Procesos livianos
- 2.3 Planificación de procesos
- 2.5 Algoritmos de planificación
- 2.6. Planificación en Windows y Linux

UNIDAD 3: CONCURRENCIA Y SINCRONIZACION DE PROCESOS

Objetivos de la Unidad

- Ver la problemática que se plantea al tener varios procesos no disjuntos ejecutándose concurrentemente, y las dependencias temporales que pueden producirse.
- Mostrar la utilización de los mecanismos de comunicación y sincronización y cooperación entre procesos.

Contenido

- 3.1 Condiciones de competencia
- 3.2 El problema de la sección critica
 - 3.2.1. Inhabilitación de interrupciones
 - 3.2.2. Variables de bloqueo

- 3.2.3 Alternancia estricta
- 3.2.4. Solución de Peterson
- 3.2.5. Solución con ayuda del hardware
- 3.2.6. Semáforos
- 3.2.7. Monitores
- 3.2.8. Paso de mensajes
- 3.3 Problemas clásicos de sincronización

UNIDAD 4: BLOQUEOS IRREVERSIBLES

Objetivo de la Unidad

- Aprender a diferenciar bloqueos y a modelarlos como grafos
- Aprender diferentes métodos para su tratamiento

Contenido

- 4.1 Bloqueos
- 4.2 Condiciones para producir bloqueos
- 4.3. Modelación de bloqueos
- 4.4. Métodos para manejar bloqueos
 - 4.4.1. Prevención de bloqueos
 - 4.4.2. Evitación de bloqueos
 - 4.4.3. Detección de bloqueos
 - 4.4.4. Recuperación de bloqueos

UNIDAD 5: ADMINISTRACION DE MEMORIA

Objetivo de la Unidad

- Explicar la problemática que se plantea cuando varios procesos deben de competir por la memoria y exponer las diferentes formas de permitirlo con garantías hardware de no-interferencia.
- La importancia que tiene el momento de traducción de direcciones lógicas a físicas presentando sus pros y contras.
- Incidir especialmente en los sistemas de paginación y segmentación por ser de los más comunes.
- Presentar el concepto de Memoria Virtual su funcionamiento, así como las ventajas y problemas que plantea.

Contenido

- 5.1 Jerarquía de almacenamiento
- 5.2 Administración de memoria
- 5.3 Paginación
- 5.4 Segmentación
- 5.5 Paginación Segmentación
- 5.6 Memoria Virtual
 - 5.6.1 Estrategias de búsqueda
 - 5.6.2 Algoritmos de colocación de memoria
 - 5.6.3 Algoritmos de sustitución de páginas

UNIDAD 6: SISTEMA DE ARCHIVOS

Objetivo de la Unidad

- Presentación de los diferentes servicios de gestión de ficheros que ofrece el Sistema Operativo.
- Familiarizarse con las estructuras de los sistemas de ficheros así como los métodos de ubicación en el disco y los métodos de acceso permitidos en cada caso.

Contenido

- 6.1. Archivos
- 6.2 Directorios
- 6.3 Implementación del sistema de archivos
- 6.4 Seguridad del sistema de archivos
- 6.5 Sistemas de archivos tipo Windows
- 6.6 Sistemas de archivos tipo Unix

UNIDAD 7: SISTEMA DE ENTRADA Y SALIDA

Objetivo de la Unidad

- Presentar la estructura del subsistema de E/S y los conceptos de operación de E/S, manejador de dispositivo y manejador de interrupciones.
- Comentar las ventajas de buffering y Spooling respecto a la E/S directa.
- Diferenciar la parte de gestión realizada por el SO y la realizada por los device drivers, así como los mecanismos de cooperación entre ambos.

Contenido

- 7.1 Principios de hardware de E/S
- 7.2 Principios de Software de E/S
- 7.3 Discos Duros
- 7.4 Discos de estado solido
- 7.5. Unidades de CD/DVD7Blue Ray
- 7.6. Seguridad de Sistemas Operativos

V. METODOLOGIAS

- Exposición Magistral
- Laboratorio de prácticas en Linux
- Taller de simulación de planificación de procesos
- Taller de programación en concurrencia de procesos en C
- Taller de simulación de administración de memoria, paginación de memoria, segmentación de memoria y sustitución de paginas
- Taller de simulación del sistema de archivos
- Participación en clase, practicas de ampliación de información

VI. CRONOGRAMA O DURACIÓN EN PERIODOS ACADÉMICOS POR UNIDAD

UNIDAD	Duración (horas Académicas)	Duración en Semana
Introducción a Sistemas Operativos	6	1
Gestión de Procesos	18	3
Concurrencia y Sincronización de procesos	24	4
Bloqueos Irreversibles	12	2
Administración de memoria	24	4
Sistema de Archivos	18	3
Sistema de Entrada y Salida	18	3

VII. CRITERIOS DE EVALUACIÓN

- 2 exámenes escritos
- 2 mini proyectos grupales
- Practicas grupales
- Practicas individuales
- Examen Final (si las anteriores evaluaciones no permiten la aprobación directa)

VIII. BIBLIOGRAFÍA

Texto base:

 Orellana, Jorge. Texto de la materia y Problemas Resueltos de Taller de Sistemas operativos. 2007-2019

http://www.cs.umss.edu.bo/rep materia doc.jsp?doc mat=127

Bibliografía complementaria:

- Tanenbaum, Andrew. Sistemas Operativos Modernos. 4ta Ed. Prentice Hall Hispanoamericana, S.A., México, 2015
- Stallings, William. Sistemas Operativos. Séptima Edición. Prentice Hall, 2006.
- Carretero, Félix García; de Miguel, Pedro y Pérez, Fernando. Sistemas Operativos: una visión aplicada 2da Ed.: Mc. Graw.Hill. 2007.
- Aranda, Joaquin; Canto, Ma Antonia; De La Cruz, Jesus; Dormido, Sebastian y Manoso, Carolina. Sistemas Operativos: Teoría y problemas. Ed. Sanz y Torres S.L. 2002