Processamento e análise de grandes imagens PolSAR

Danilo Fernandes

Maio, 2019

Principais características das imagens PolSAR (*Polarimetric Synthetic Aperture Radar*):

- Uso de ondas eletromagnéticas no espectro das microondas;
- Descrevem a estrutura geométrica e propriedades dielétricas dos objetos imageados na relação entre a polarização das ondas incidentes e refletidas.

Vantagens em relação a sistemas de imageamento ótico:

- Independência de iluminação solar;
- Independência de fatores climáticos.

Equações de Maxwell:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \tag{1}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 (3) $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$ (4)

Equação de onda:

$$\nabla^2 \mathbf{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad (5) \qquad \nabla^2 \mathbf{B} - \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0 \qquad (6)$$

Solução para as equações 5:

$$\mathbf{E} = \begin{bmatrix} E_x \cos(\omega t - kz + \delta_x) \\ E_y \cos(\omega t - kz + \delta_y) \end{bmatrix} = \Re \left\{ \begin{bmatrix} E_x e^{j(\omega t - kz + \delta_x)} \\ E_y e^{j(\omega t - kz + \delta_y)} \end{bmatrix} \right\}$$
$$= \Re \left\{ \begin{bmatrix} E_x e^{j\delta_x} \\ E_y e^{j\delta_y} \end{bmatrix} e^{j(\omega t - kz)} \right\}$$

onde $e^{j\alpha}=\cos\alpha+j\sin\alpha$ e $E=\begin{bmatrix}E_xe^{j\delta_x}\\E_ye^{j\delta_y}\end{bmatrix}$ é chamado Vetor de Jones [LP09].

Figure: Da esquerda para a direita temos: $E_y=E_x$ e $\delta_x=\delta_y$; $E_y=E_x$ e $\delta_x=\delta_y+\pi/2$; $E_y\neq E_x$ e $\delta_x=\delta_y+\pi/2$

Temos que um pixel de uma imagem PolSAR $Single\ Look$ consiste na matriz de retroespalhamento S tal que [LP09]:

$$E_S = SE_I \tag{7}$$

$$S = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix}$$
 (8)

onde E_S e E_I correspondem às ondas refletida e incidente, respectivamente.

Um pixel de uma imagem PolSAR Multilook consiste na matriz de covariância C tal que [LP09]:

$$T = \frac{1}{L} \sum_{i=1}^{L} k_i^H k_i$$
 (9)

para $k = [S_{HH} S_{HV} S_{VV}].$

(b) Multilook

Figure: Visualização de imagens PolSAR através dos dados de intensidade

Distância Geodésica

Dada a matriz de covariância T, a sua correspondente matriz de Kennaugh K é dada por [RBF18]:

$$K = \begin{bmatrix} \frac{T_{11} + T_{22} + T_{33}}{2} & \Re(T_{12}) & \Re(T_{13}) & \Im(T_{23}) \\ \Re(T_{12}) & \frac{T_{11} + T_{22} - T_{33}}{2} & \Re(T_{23}) & \Im(T_{13}) \\ \Re(T_{13}) & \Re(T_{23}) & \frac{T_{11} - T_{22} + T_{33}}{2} & -\Im(T_{12}) \\ \Im(T_{23}) & \Im(T_{13}) & -\Im(T_{12}) & \frac{-T_{11} + T_{22} + T_{33}}{2} \end{bmatrix}$$
(10)

Distância Geodésica

Dada as matrizes de Kennaugh K_1 e K_2 , é possível medir a distância entre as mesmas — usando a Distância Geodésica — da seguinte forma [RBF18]:

$$GD(K_1, K_2) = \frac{2}{\pi} \cos^{-1} \left(\frac{Tr(K_1^T K_2)}{\sqrt{Tr(K_1^T K_1)} \sqrt{Tr(K_2^T K_2)}} \right).$$
 (11)

onde $GD(K_1, K_2) \in [0, 1]$.

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar -1/4-wave

Processamento e análise de grandes imagens

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar +1/4-wave

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar *cylinder*

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar *dihedral*

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar *dipole*

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar narrow dihedral

17/28

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar *left helix*

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar *right helix*

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar random volume

Processamento e análise de grandes imagens

20/28

Figure: Simaridade entre os dados PolSAR de regiões de vegetação e solo exposta em relação ao retroespalhador elementar *trihedral*

Processamento e análise de grandes imagens

Distribuição Beta

A função de densidade de probabilidade da distribuição beta é dada por:

$$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)(\max-\min)^{\alpha+\beta-1}}(x-\min)^{\alpha-1}(\max-x)^{\beta-1},$$

 $\text{com }x\in [min,max]\text{, }\alpha,\beta>0.$

	min	max	$\widehat{\alpha}$	\widehat{eta}	$\widehat{\mu}$	
	-1/4-wave					
Forest	0.000	1.000	7.830	22.758	0.255	
Bare soil	0.055	0.400	1.127	4.872	0.119	
	+1/4-wave					
Forest	0.000	1.000	8.681	23.277	0.271	
Bare soil	0.090	0.450	1.200	4.800	0.162	
	Cylinder					
Forest	0.000	1.000	7.500	12.165	0.381	
Bare soil	0.140	0.600	1.243	4.756	0.235	

	min	max	$\widehat{\alpha}$	\widehat{eta}	$\widehat{\mu}$	
	Dihedral					
Forest	0.000	1.000	5.380	36.870	0.127	
Bare soil	0.009	0.070	1.327	4.672	0.022	
	Dipole					
Forest	0.000	1.000	8.358	22.658	0.269	
Bare soil	0.075	0.350	1.625	4.374	0.149	
	Narrow dihedral					
Forest	0.000	1.000	5.890	33.198	0.150	
Bare soil	0.016	0.150	1.119	4.880	0.041	

	min	max	$\widehat{\alpha}$	\widehat{eta}	$\widehat{\mu}$		
		Left helix					
Forest	0.000	1.000	27.408	96.013	0.222		
Bare soil	0.000	1.000	8.380	24.286	0.256		
	Right helix						
Forest	0.000	1.000	28.522	71.238	0.285		
Bare soil	0.000	1.000	8.316	20.574	0.287		
	Random volume						
Forest	0.000	1.000	20.074	11.910	0.627		
Bare soil	0.360	0.800	1.218	4.781	0.449		

	min	max	$\widehat{\alpha}$	\widehat{eta}	$\widehat{\mu}$	
	Trihedral					
Forest Bare soil		1.000 0.650	_		-	

p-valores obtidos através do teste de aderência Kolmogorov-Smirnov

	-1/4-wave	+1/4- wave	Cylinder	Dihedral	Dipole
Forest	0.979	0.808	0.763	0.733	0.975
Bare soil	0.361	0.893	0.264	0.443	0.475
	Left helix	Narrow dihedral	Random volume	Right helix	Trihedral
Forest	0.959	0.787	0.589	0.344	0.582
Bare soil	0.099	0.206	0.480	0.072	0.127

Referências

J.-S. Lee and E. Pottier, *Polarimetric radar imaging: From basics to applications*, Optical Science and Engineering, CRC Press, 2009.

D. Ratha, A. Bhattacharya, and A. C. Frery, *Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance*, IEEE Geoscience and Remote Sensing Letters (2018), 151–155.