Khôlles de Mathématiques - Semaine 28

George Ober, Hugo Vangilluwen 30 juin 2024

1 Condition nécessaire de convergence de $\sum_{n \geqslant n_0} u_n$

Démonstration. Soit $u \in \mathbb{K}^{[n_0,+\infty[]}$. Si la série $\sum_{n\geqslant n_0} u_n$ converge, alors la suite u converge vers 0. Supposons que la série converge. Notons $(S_n)_{n\geqslant n_0}$ la suite des sommes partielles.

$$\forall n \in [n_0 + 1, +\infty], u_n = S_n - S_{n-1}$$

Puisque S converge, on en déduit que u converge vers 0.

2 Condition nécessaire et suffisante de convergence de $\sum_{n\geqslant 0}q^n$ pour $q\in\mathbb{C}$ et calcul de la somme et du reste lorsqu'ils existent.

$$\forall q \in \mathbb{C}, \ \sum_{n>0} q^n \text{ cv.} \iff |q| < 1$$
 (1)

Dans ce cas $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$ et $R_n = \frac{q^{n+1}}{1-q}$.

Démonstration. \star Si |q| < 1

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

De plus,
$$|q^{n+1}|=|q|^{n+1}=\left\{\begin{array}{l} 0\text{ si }q=0\\ e^{(n+1)\ln|q|}\text{ si }q\neq0 \end{array}\right.$$

$$\left\{ \begin{array}{ll} 0 & \\ e^{(n+1)\ln|q|} & \xrightarrow[n\to\infty]{} \left\{ \begin{array}{ll} 0 \\ 0 \end{array} \right. \right.$$

Ainsi, $\sum_{n\geqslant 0}q^n$ converge et $\sum_{n=0}^{+\infty}q^n=\frac{1}{1-q}$

$$S_n = \frac{1 - q^{n+1}}{1 - q} \implies R_n = S_n - \sum_{n=0}^{+\infty} q^n = \frac{q^{n+1}}{1 - q}$$

 \star Si |q|=1

$$\forall n \in \mathbb{N}, |q|^n = 1^n = 1 \xrightarrow[n \to \infty]{} 1$$

Ainsi, $|q|^n$ ne converge pas vers 0 donc $(q^n)_{n\geqslant 0}$ ne converge pas vers 0, donc la série est grossièrement divergente.

★ Si |q| > 1 $|q|^n = \exp(n \ln |q|) \xrightarrow[n \to +\infty]{} +\infty$ Donc $(q^n)_{n \geqslant 0}$ ne converge pas vers 0. Donc la série est grossièrement divergente.

3 Caractérisation de la convergence des séries de Riemann

Soit $\alpha \in \mathbb{R}$.

La série
$$\sum_{n\geqslant 1} \frac{1}{n^{\alpha}}$$
 converge $\iff \alpha > 1$ (2)

Démonstration. \Diamond Supposons $\alpha < 0$ alors, $\frac{1}{n^{\alpha}} = n^{|\alpha|} \xrightarrow[n \to +\infty]{} +\infty$ donc la série est grossièrement divergente.

- \Diamond Supposons $\alpha=0$ alors $\frac{1}{n^{\alpha}}=1$ $\xrightarrow[n\to\infty]{} 1$ donc la série est grossièrement divergente.
- $\Diamond \;$ Supposons $\alpha>0$ Cherchons un équivalent de

$$\frac{1}{(n+1)^{\beta}} - \frac{1}{n^{\beta}}$$

en fonction de $\beta \in \mathbb{R}^*$

$$\frac{1}{(n+1)^{\beta}} - \frac{1}{n^{\beta}} = \frac{1}{n^{\beta}} \left(\frac{1}{\left(1 + \frac{1}{n}\right)^{\beta}} - 1 \right)$$
$$= \frac{1}{n^{\beta}} \left[\left(1 + \frac{1}{n}\right)^{-\beta} - 1 \right]$$
$$\approx \frac{1}{n^{\beta}} \times \left(-\frac{\beta}{n}\right)$$
$$\approx -\frac{\beta}{n^{\beta+1}}$$

* Pour $\alpha \in]0, +\infty[\setminus \{1\}$ Appliquons le calcul ci-dessus pour $\beta \leftarrow \alpha - 1$ (autorisé car $\alpha \neq 1 \implies \alpha - 1 \neq 0$)

$$\frac{1}{(n+1)^{\alpha-1}} - \frac{1}{n^{\alpha-1}} \sim -\frac{\alpha-1}{n^{\alpha}}$$

De plus, $\left(-\frac{\alpha-1}{n^{\alpha}}\right)_{n\geqslant 1}$ est de signe constant donc, d'après le critère d'équivalence, $\sum_{n\geqslant 1}\frac{-(\alpha-1)}{n^{\alpha}}$ est de même nature que la série télescopique $\sum_{n\geqslant 1}\left(\frac{1}{(n+1)^{\alpha-1}}-\frac{1}{n^{\alpha-1}}\right)$. Or, la série télescopique est de même nature que $\left(\frac{1}{n^{\alpha-1}}\right)_{n\geqslant 1}$.

Donc par transitivité, puisque $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ est de même nature que $\sum_{n\geqslant 1}\frac{-(\alpha-1)}{n^{\alpha}}$, la série de Riemann est de même nature que $\left(\frac{1}{n^{\alpha-1}}\right)_{n\geqslant 1}$ Or, $\left(\frac{1}{n^{\alpha-1}}\right)_{n\geqslant 1}$ converge pour $\alpha>1$ et diverge pour $\alpha\in]0,1[$.

* Si $\alpha = 1$ Appliquons la comparaison série intégrale pour $f \leftarrow (x \mapsto \frac{1}{x}) \begin{cases} \in \mathcal{C}^0([1, +\infty[, \mathbb{R}) \text{ décroissante sur } [1, +\infty[$

$$\forall n \in \mathbb{N}^*, \int_1^{n+1} \frac{\mathrm{d}u}{u} \leqslant \sum_{k=1}^n \frac{1}{k}$$

Ainsi,

$$\forall n \in \mathbb{N}^*, \underbrace{\ln(n+1)}_{n \to +\infty} \leqslant \sum_{k=1}^n \frac{1}{k}$$

Donc la série diverge.

4 Comparaison série-intégrale

Soit $n_0 \in \mathbb{N}$. Soit $f: [n_0, +\infty[\to \mathbb{R}$ une fonction continue et décroissante. Nous avons l'encadrement suivant :

$$\int_{n_0}^{n+1} f(t) dt \leqslant \sum_{k=n_0}^{n} f(k) \leqslant f(n_0) + \int_{n_0}^{n} f(t) dt$$
 (3)

Démonstration. Soit $k \in [n_0, +\infty]$ fixé quelconque.

$$\forall t \in [k, k+1], \ f(k+1) \leqslant f(t) \leqslant f(k)$$

$$\int_{k}^{k+1} f(k+1) \, \mathrm{d}t \leqslant \int_{k}^{k+1} f(t) \, \mathrm{d}t \leqslant \int_{k}^{k+1} f(k) \, \mathrm{d}t$$

$$f(k+1) \leqslant \int_{k}^{k+1} f(t) \, \mathrm{d}t \leqslant f(k)$$

Ainsi

$$\sum_{k=n_0}^{n} \int_{k}^{k+1} f(t) dt \leqslant \sum_{k=n_0}^{n} f(t)$$
$$\int_{n_0}^{n+1} f(t) dt \leqslant \sum_{k=n_0}^{n} f(k)$$

De même,

$$\forall k \in [n_0 + 1, +\infty[, f(k)]) \le \int_{k-1}^k f(t) dt$$

$$\sum_{k=n_0+1}^n f(k) \le \sum_{k=n_0+1}^n \int_{k-1}^k f(t) dt$$

$$\sum_{k=n_0}^n f(k) \le f(n_0) + \int_{n_0}^n f(t) dt$$

D'où l'encadrement.

5 Pour f continue sur $[n_0, +\infty[$, décroissante et minorée, $\sum_{n \geq n_0} \left(f(n) - \int_n^{n+1} f(u) \, \mathrm{d}u \right)$ converge. Application au DA en o(1) de la somme partielle de la série harmonique

Soit $n_0 \in \mathbb{N}$ et $f: [n_0, +\infty[\to \mathbb{R}$ une fonction continue, décroissante et minorée par $m \in \mathbb{R}$. Alors la série de terme général

$$\left(f(n) - \int_{n}^{n+1} f(u) \, \mathrm{d}u\right)_{n \geqslant n_0}$$

est à termes positifs ou nuls et converge.

 $D\acute{e}monstration$. Montrons que la suite $(S_n)_{n\geqslant n_0}$ est majorée, et que la suite est à termes $\geqslant 0$ La décroissance de f donne l'encadrement suivant

$$\forall n \in \llbracket n_0, +\infty \llbracket, f(n) - \int_n^{n+1} f(t) \, \mathrm{d}t \geqslant 0$$

La comparaison série intégrale s'applique donc à f qui est décroissante et continue et donne

$$\forall n \in [n_0, +\infty][f(n+1)] \leqslant \int_n^{n+1} f(t) \, \mathrm{d}t \leqslant f(n) \implies -f(n+1) \geqslant -\int_n^{n+1} f(t) \, \mathrm{d}t$$

$$\implies f(n) - f(n+1) \geqslant f(n) - \int_n^{n+1} f(t) \, \mathrm{d}t \geqslant 0$$

En sommant sur $k \in [n_0, n]$

$$\sum_{k=n_0}^{n} (f(k) - f(k+1)) \geqslant \sum_{k=n_0}^{n} \left(f(k) - \int_{k}^{k+1} f(t) \, \mathrm{d}t \right) = S_n$$

En reconnaissant un phénomène télescopique

$$S_n \leqslant f(n_0) - f(n+1) \leqslant f(n_0) - n$$

Donc $(S_n)_{n \geqslant n_0}$ est majorée, et croissante, elle converge donc.

Application au DA en o(1) de la somme partielle de la série harmonique. Appliquons ce qui précède pour $f = x \mapsto 1/x$ et $n_0 = 1$. f est bien continue, décroissante et minorée (par 0). sur $[1; +\infty[$. Donc $\sum_{n>1} \left(\frac{1}{n} - \int_{n}^{n+1} \frac{\mathrm{d}u}{u}\right)$ converge.

Notons
$$\gamma$$
 sa somme. Ainsi $\sum_{k=1}^{n} \left(\frac{1}{k} - \int_{k}^{k+1} \frac{\mathrm{d}u}{u} \right) \underset{n \to +\infty}{=} \gamma + o(1)$.

Remarquons que, pour tout $n \in \mathbb{N}$, $\sum_{k=1}^{n} \left(\frac{1}{k} - \int_{k}^{k+1} \frac{\mathrm{d}u}{u} \right) = H_n - \sum_{k=1}^{n} \left(\ln(k+1) - \ln(k) \right) =$

$$H_n - \ln(n+1) + \ln 1 = H_n - \ln(n+1).$$

Donc $H_n = \ln(n+1) + \gamma + o(1) = \ln n + \ln(1 + 1/n) + \gamma + o(1).$

$$H_n \underset{n \to +\infty}{=} \ln n + \gamma + o(1)$$

La constante γ est appelé la constante d'Euler-Mascheroni et vaut environ 0, 5772156649.

6 Théorème des séries alternées

Soit $(a_n)_{n \geqslant n_0} \in \mathbb{R}^{[n_0, +\infty[]}$ une suite réelle. Si

$$\begin{cases} \forall n \in [n_0, +\infty[, a_n \ge 0] \\ (a_n)_{n \ge n_0} \text{ est décroissante} \\ \lim_{n \to \infty} a_n = 0 \end{cases}$$

alors $\sum_{n \geqslant n_0} (-1)^n a_n$

Démonstration. \Diamond Traitons le cas $n_0 \equiv 0[2]$ il existe $p_0 \in \mathbb{N} : n_0 = 2p_0$

* Les suites $(S_{2p})_{p\geqslant p_0}$ et $(S_{2p+1})_{p\geqslant p_0}$ sont adjacentes :

$$\forall p \in \llbracket p_0, +\infty \llbracket, S_{2(p+1)} - S_{2p} = S_{2p+2} - S_{2p}$$

$$= \sum_{k=2p_0}^{2p+2} (-1)^k a_k + \sum_{k=2p_0}^{2p} (-1)^k a_k$$

$$= -a_{2p+1} + a_{2p+2} \leqslant 0 \text{ car } a \downarrow$$

$$S_{2(p+1)+1} - S_{2p+1} = S_{2p+3} - S_{2p+1} = (-1)^{2p+2} a_{2p+2} + (-1)^{2p+3} a_{2p+3} = a_{2p+2} - a_{2p+3} \geqslant 0 \text{ car } a \downarrow 0$$

Donc (S_{2p}) est décroissante et (S_{2p+1}) est croissante. De plus

$$S_{2p+1} - S_{2p} = (-1)^{2p+2} a_{2p+1} = \underbrace{-a_{2p+1}}_{0 \to 0} \leqslant 0 \text{ car a positive}$$

Ainsi $(S_{2p})_{p\geqslant p_0}$ et $(S_{2p+1})_{p\geqslant p_0}$ sont adjacentes.

* Donc d'après le théorème des suites adjacentes, (S_{2p}) et (S_{2p+1}) convergent vers une même limite ℓ , si bien que (S_n) converge vers ℓ .

- \star De plus, les suites $(S_{2p})_{p\geqslant p_0}$ et $(S_{2p+1})_{p\geqslant p_0}$ étant adjacentes, pour $n\geqslant n_0$ posons $R_n=\ell-S_n$
 - Si $n \equiv 0[2]$, $\exists p \in [p_0, +\infty[: n = 2p \text{ donc}, \text{ puisque } (S_{2p}) \text{ est décroissante et } (S_{2p+1}) \text{ est croissante, on a}$

$$S_{2p+1} \leqslant \ell \leqslant S_{2p} \implies S_{2p+1} - S_{2p} \leqslant \ell - S_{2p} \leqslant 0 \implies |R_{2p}| = |\ell - S_{2p}| \leqslant a_{2p+1}$$

— Si $n \equiv 1[2] \; \exists p \in [p_0, +\infty[: n = 2p + 1]]$

$$S_{2p+1} \leqslant \ell \leqslant S_{2p+2} \implies 0 \leqslant \ell - S_{2p+1} \leqslant S_{2p+2} - S_{2p+1} = (-1)^{2p+2} a_{2p+2} = a_{2p+2}$$

donc
$$|R_{2p+1}| = |\ell - S_{2p+1}| \le a_{2p+2}$$

Bonus, par croissance de (S_{2p+1}) qui converge vers ℓ , $S_{2p+1} \leq \ell$ donc $a_{2p_0} - a_{2p_0+1} \leq \ell$ Donc $\ell \geq 0$ qui est bien le signe du premier terme de la série $(-1)^{n_0}a_{n_0}$ car $n_0 \equiv 0[2]$.

 \Diamond Le cas $n_0 \equiv 1[2]$ se traite de la même manière

7 L'absolue convergence implique la convergence

Soit $u \in \mathbb{K}^{[n_0,+\infty[}$ Si la série $\sum_{n\geqslant n_0} u_n$ est absolument convergente, alors la série $\sum_{n\geqslant n_0} u_n$ est convergente.

Démonstration. \Diamond Supposons que u est le terme général réel d'une série absolument convergente. Posons, pour tout $n \in \llbracket n_0, +\infty \rrbracket$, $u_n^+ = \max(u_n, 0)$ et $u_n^- = -\min(u_n, 0)$ Avec ces notations, $u_n^+ - u_n^- = u_n$ et $u_n^+ + u_n^- = |u_n|$.

$$\forall n \in [n_0, +\infty[, u_n^+ \geqslant 0 \text{ et } u_n^- \geqslant 0]$$

$$\begin{cases}
\forall n \geqslant n_0, 0 \leqslant u_n^+ \leqslant |u_n| = u_n^+ + u_n^- \\
\sum_{n \geqslant n_0} u_n \text{ est ACV} \Longrightarrow \sum_{n \geqslant n_0} |u_n| \text{ CV} \\
\forall n \geqslant n_0, u_n^+ \geqslant 0 \text{ et } |u_n| \geqslant 0
\end{cases}$$

$$\Rightarrow \sum_{n \geqslant n_0} u_n^+ \text{ converge}$$

On montre de même que $\sum_{n\geqslant n_0}u_n^-$ converge, donc, par structure vectorielle de l'ensemble des termes généraux de suites convergentes, $\sum_{n\geqslant n_0}(u_n^+-u_n^-)=\sum_{n\geqslant n_0}u_n$ converge

♦ Cas d'une série complexe,

Posons, $\forall n \ge n_0, x_n = \text{Re}(u_n) \text{ et } y_n = \text{Im}(u_n) \text{ Alors,}$

$$\forall n \geqslant n_0, |x_n| \leqslant |\operatorname{Re}(u_n)| \leqslant |u_n|$$

$$\forall n \geqslant n_0, |x_n| \geqslant 0 \text{ et } |u_n| \geqslant 0$$

$$\sum_{n \geqslant n_0} u_n \text{ ACV} \implies \sum_{n \geqslant n_0} |u_n| \text{ CV}$$

$$\Rightarrow \sum_{n \geqslant n_0} |x_n| = \sum_{n \geqslant n_0} |x_n| =$$

Donc d'après le cas réel, $\sum_{n\geqslant n_0} x_n$ converge On montre de même que $\sum_{n\geqslant n_0} y_n$ converge Donc, par structure vectorielle, $\sum_{n\geqslant n_0} (x_n+iy_n)$ converge. Donc u_n est le terme général d'une série convergente.

8 Décomposition d'une permutation en produit de cycles à supports disjoints puis en produit de transposition et calcul de son ordre

Démonstration. Prenons pour illustrer la décomposition

$$\sigma = \begin{pmatrix} 1 & \mapsto & 6 \\ 2 & \mapsto & 4 \\ 3 & \mapsto & 3 \\ 4 & \mapsto & 2 \\ 5 & \mapsto & 1 \\ 6 & \mapsto & 5 \end{pmatrix} \in \mathcal{S}_6$$

Il faut réaliser un "graphe des images". Chaque sommet est un nombre de [1;6] et pointe vers son image.

Nous pouvons voir que $\sigma = (1,6,5) \circ (2,4)$. De plus, $(1,6,5) = (1,6) \circ (6,5) \circ (5,1)$. Donc $\sigma = (1,6) \circ (6,5) \circ (5,1) \circ (2,4)$.

L'ordre d'une permutation est définit par $p(\sigma) = \min\{n \in \mathbb{N}^* \mid \sigma^n = Id\}$. $p(\sigma)$ est aussi le PPCM des ordres des permutations de sa décomposition en produit de cycles à supports disjoints. Ici, $p(\sigma) = 2 \vee 3 = 6$.