Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety: notation

This document is written to reorganize the notations in Tomasz Przezdziecki's master thesis: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%2oThesis_Tomasz%2oPrzezdziecki.pdf

We changed some notation for the convenience of writing.

Task

- 1. dimension vector
- 2. Weyl gp
- 3. alg group & Lie algebra
- 4. typical variety
- 5. (equivariant) stratifications
- 6 tangent space, Euler class
- 7. basis of Hecke alg

We may use two examples for the convenience of presentation. Readers can easily distinguish them by the dim vectors.

1 dimension vector

$$|d| = 5$$

$$d = (3,2)$$

$$\underline{d} = \begin{pmatrix} \frac{3}{2}, \frac{2}{3} \\ \frac{2}{3}, \frac{1}{3} \\ \frac{$$

2. Weyl group

$$0 \longrightarrow W_{d} \longrightarrow W_{|d|} \longrightarrow W_{|d|} W_{d} \longrightarrow 0 \qquad w = XX$$

$$u = XX$$

$$u = XX$$

$$w = XX$$

Another example:
$$d = (1,2)$$
 $a \longrightarrow b$ $\langle v_1 \rangle \longrightarrow \langle v_2, v_3 \rangle$

3. alg group & Lie algebra

Ex. Show that

We can generalize the unipotent part.

Their Lie algebras are collected here.

$$h_{oo} = h_{odnox to}$$

$$Rep_{d}(Q) := \prod_{e \in Q_{1}} Hom \left(V_{s(e)}, V_{t(e)} \right) = \begin{pmatrix} * & * & * \\ * & * & * \end{pmatrix} \subseteq \underset{e \in Q_{1}}{\text{glid}}$$

$$V_{\text{No}} = \int f \in \text{Rep}_{d}(Q) \mid f \cdot F_{\text{No}, i} \subseteq F_{\text{No}, i} : f = \mu_{d} \pi_{d}^{-1}(F_{\text{No}})$$

$$= \underset{N_{4}}{N_{5}} \underset{N_{4}}{N_{1}} \underset{N_{5}}{N_{5}} \underset{N_{$$

Later we may twist the group actions.

$$E.g. \quad \underline{Y}_{\varpi,\varpi'} := Y_{\varpi,\varpi\varpi'} \quad Y_{\varpi,\varpi''} = \underline{Y}_{\varpi,\varpi''} = \underline{Y}_{\varpi''} = \underline{Y}_{\varpi,\varpi''} = \underline{Y}_{\varpi''} = \underline$$

4 typical variety

Id corres to

$$F_{\infty} := \infty(F_{Id}) = F_{\{V_{\infty(1)}, V_{\infty(2)}, \dots, V_{\infty(1d)}\}}$$
$$= F_{\{V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}\}}$$

The action on Flag is not the same as in http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomas sz%20Przezdziecki.pdf

Fidi + II Fd

Two = Fd with different base pt. Base pt makes difference!

$$F_{Id1} \times F_{Id1}$$
 $F_{Id,Id}$ $F_{u,u'}$ $F_{u,u'}$

$$F_{\varpi,\varpi'}:=(F_{\varpi},F_{\varpi'})$$

$$\widetilde{Rep_{\underline{d}}}(Q) \subset \operatorname{Rep_{\underline{d}}}(Q) \times F_{\underline{d}}$$

$$\overline{\mu_{\underline{d}}} \qquad \overline{\pi_{\underline{d}}}$$

$$\operatorname{Rep_{\underline{d}}}(Q) \qquad F_{\underline{d}}$$

 $\mu_{\underline{d}}^{-1}(M) \cong Flag_{\underline{d}}(M) \subseteq \mathcal{F}_{\underline{d}}$ is the Springer fiber.

$$Z_{\underline{a},\underline{a}'} \stackrel{C}{\underset{M_{\underline{a},\underline{a}'}}{\underbrace{C \ Repa(Q) \times F_{\underline{a}} \times F_{\underline{a}'}}}} \xrightarrow{\pi_{\underline{a},\underline{a}'}}$$
 $Repa(Q) \qquad F_{\underline{a}} \times F_{\underline{a}'}$

$$Z_d \subseteq \underset{M_{d,d}}{\text{Repd}(Q)} \times F_d \times F_d$$

$$\xrightarrow{\pi_{d,d}} \qquad \qquad \pi_{d,d}$$

$$\text{Repd}(Q) \qquad \qquad F_d \times F_d$$

$$\widetilde{Repd}(Q) \subseteq Repd(Q) \times \mathcal{F}_{\underline{d}}$$

 $\widehat{Repd}(Q) := \coprod_{\underline{d}} \widehat{Repd}(Q)$

$$\widetilde{\mathsf{Rep}}_{\omega}(\mathcal{Q}) \cong \mathsf{G}_{d} \times {}^{\mathsf{B}_{\omega}} \mathsf{r}_{\omega}$$

$$Z_{\underline{\alpha},\underline{d}'} = \widehat{\operatorname{Repd}}(Q) \times_{\operatorname{Repd}(Q)} \widehat{\operatorname{Repd}}(Q)$$

$$Z_{\underline{\alpha}} = \bigcup_{\underline{\alpha},\underline{\alpha}'} Z_{\underline{\alpha},\underline{d}'}$$

$$= \widehat{\operatorname{Repd}}(Q) \times_{\operatorname{Repd}(Q)} \widehat{\operatorname{Repd}}(Q)$$

5. (equivariant) stratifications. In the following tables,

 $uw' = \widetilde{w}'\widetilde{u}$.

 $F_{\infty} \in \widetilde{Rep}_{d}(Q)$ means (p_{0}, F_{∞}) ; $(F_{\infty}, F_{\infty'}) \in \mathbb{Z}_{d}$ means $(p_{0}, F_{\infty}, F_{\infty'})$. $V \subseteq G \times G$ acts on $V \in \mathcal{F}$ in a twisted way

e.g. $(q_1,q_2) F_{\omega}, \omega' = F_{q_1\omega}, q_1\omega q_2\omega'$

st variety base point	patification type tabilizer	B-orbit	B×B-orbit	B×G -orbit	G×B-orbit	· Remark
\mathcal{B}	$\mathcal{B} \times \mathcal{B}$	$\Omega_{\mathfrak{g}}$	Ωlg,g′	$\operatorname{pr}_{i}^{-1}(\Omega_{g})$	$\Omega_{\mathfrak{g}'}$	
Fg	(Fg, Fgg,)		(BngBg") ×(BngBg"-1)		aβq-1 × (βΛ aβaj-1)	
Fidi	Fidi × Fidi		V) 600,00'	pr;'(V₅)	1) L.	
F,	(Fo, Foo)	BIGI A BE	(By AB X (By AB)	(IB _{Id1} ∩IB∞) × IB∞'	B _∞ × (B _{bdl} 1 B ₆₀)	
Fu	$F_u \times F_u$	Ωw	$\Omega_{\alpha,\alpha}^{\omega,\omega}$	$p_{\alpha',\alpha'}(\Omega_{\alpha}^{\alpha})$	$\Omega^{u,u'}$	
Fwu	(Fwu,Fww'a)	BunBw	$(B_{d} \land B_{\omega}) \times (B_{d} \land B_{\omega})$	$(B_{\alpha} \cap B_{\omega}) \times B_{\omega'}$	Bu × (Bu \Bu)	
Fa	$F_d \times F_d$	Ω_{ω}^{v}	$\Omega_{\omega,\widehat{\omega}'}^{\alpha,\widehat{\alpha}_{\alpha'}}$	pr: Ω u (Ω w)	$\mathcal{O}_{\alpha'}^{\omega'} = \Omega_{\alpha'}^{\omega'}$	
Fto	(Fu, Fus)	BunBw	(Bd V Bm) × (Bd VBm)	$(B^{\gamma} \cup B^{m}) \times B^{m}_{\sigma'}$	Bw × (Bd∩Bcr)	compatability
Fwa	(Fun Fair au)					1 1
	The	following n	nay not be sir	igle orbit, but o	derived from the al	pove definition.
Fa	$F_d \times F_d$. O	O)00,10°	pr. (O 00)	Ol _æ ,	preimage of
F∞	(F, F, F, 000)	Ωω	Dw.w'	L. pr. (Du)	□ (O) (u,	Fd×Fd -> FId1×FID1
Rep.(ω)	$\mathbf{S}^{\mathbf{q}'\mathbf{q}'}$	$\widetilde{\Omega}_{\mathbf{u}}^{\mathbf{u}}$	Ωw,w'	$\operatorname{pr}_{\iota,u'}^{-1}(\widetilde{\Omega}_{\omega}^{u})$	Ωω,α,	preimage of
	(Fwu Fww)			•	~	Zdd -> Fd x Fd'
Repu(Q)	\mathcal{Z}_{d}				<i>Õ</i> <u></u> ,	preimage of
[- 20	(F _w , F _w ,)		_		Mu, ūu'	Za -> FaxFa
Repula)	Z_d	O _{ss}	(i) (i) (ii) (ii) (ii) (ii) (ii) (ii) (pr. ((O),	Õ _∞ .	preimage of
F	(Fo, For)	ñ.	Ω ω, ω'	L. pr., u. ($\widetilde{\Omega}_{w}^{u}$)	<u> </u>	$Z_d \rightarrow F_d \times F_d$

 $Z_{av} = O_{av} \subseteq O_{av} \subseteq O_{av}$ $Z_{uu'} = Z_{av} \cap Z_{uu'}$ $Z_{uu'} = Z_{uu'} \cap Z_{uu'}$ $Z_{uu'} = Z_{uu$

The following tables may help you to understand the notations.

Bin Bin Ford	16(v_t	\vartheta_s	\rangle_{ts}	Vst	3 V _{sts}
V _{Id}	1) _{Id.Id}	1) _{IJ.t}	VII.s	U _{Id.ts}	U _{Iol,st}	VI _{Id,sts}
, V _t	V _{t.t}	19 _{t,Id}	کار _{ط با} ده	V _t ,s	V _{t,sts}	7 t, st
U _s	1) _{s,s}	Vs,st	Us, Id	Us,sts	V _{s,t}	3 Vs.ts
U _{ts}	U _{ts,st}	3 V) _{ts,s}	U _{ts,sts}	Uts.Id	V _{ts,ts}	3 Vits,t
V _{st}	4 1) _{st,ts}	V) _{st,sts}	3 J _{5t,t}	U _{st.st}	Vst. Id	7) _{st,s}
3 Vsts	Usts.sts	V sts, ts	VI _{sts,st}	Usts,t	Usus,s	Vsts.Id

Shape Bd. Fee.		Fid		Fs		\mathcal{F}_{st}	
			_ O+	Os	$-\mathcal{O}_{ts}$	Ost	Osts
<i>a</i>	\mathcal{O}_{Id}	$\mathcal{O}_{\mathrm{Id}}$ $\Omega^{\mathrm{Id},\mathrm{Id}}_{\mathrm{Id},\mathrm{Id}}$	Uj ^{I9'f} —	Id,s [Id,Id]	Ully't —	Id, st \(\Omega_{\text{Id}.\text{Id}}\)	$U^{\mathrm{Id.t}}_{\mathrm{Id}}$
Fid	\mathcal{O}_{t}	Ω ^{14,1} 4	Id.Id 12 t.Id	Ω ^{1ds}	Dit.Id	Ω ^{Id,st}	D't.Id
T _s	Q	S, Id 11d.Id	$\Omega^{\mathrm{s.Id}}_{\mathrm{Id.t}}$	Urigity s.s	$\Omega^{\mathrm{IMt}}_{\mathrm{c}}$	S.st Sl _{Id.Id}	$\Omega^{\rm s,st}_{\rm Id,t}$
Ps 1	O _{ts}	Ω 4.4 ∞ 5.1d	S, Id Lt.Id	Ω _{ε,τ}	DI t.Id	Ω _{t,t}	s.st Mt.Id
F _{st}	\mathcal{O}_{ts}	St, Id	$\Omega^{\rm st.Id}_{ m Id.t}$	$\Omega_{Id.Id}^{\text{st.s}}$	$U^{\mathrm{I}^{\eta,\mathrm{t}}}$	St.st P _{Id.Id}	$\Omega^{\rm lot}$
	\mathcal{O}_{sts}	W st.id	St.Id 12t.Id	Ω _{t,t}	Det.Id	Ū ^{4,4}	st.st At.Id

The following tables may help you to understand the notations. w = ts, w' = s

dim Bin Bin (For Ford)	1 Faw 0	id V _t	\vartheta_{\sigma}	1 9 _{ts}	V _{st}	3 V _{sts}	pr."(1)
0	Id OI	JId, t	VI _{Id.s}	U _{Id.ts}	U _{Id,st}	VI _{Id,sts}	V)s
1	% W _t	t Vt.Id	J _{t,ts}	V _{t.s}	U _{t,sts}	**************************************	
' 1	s Us	s 3/s,st	VI _{s, Id}	Us,sts	$\mathcal{V}_{s,t}$	V _{s,ts}	
1	ts 4	3 1) ts,s	VI _{ts,sts}	Uts.Id	Vts,ts	VI _{ts,t}	
1) 4 1) _{s+}	t,ts 50/st,sts	3) st, t	U _{st.st}	Vst. Id	<i>V_{st,s}</i>	
3	rsts Usts	usts Vists, ts	VI _{sts,st}	Usts,t	V _{sys,s}	V _{sts.Id}	

Shape Bd. For		9	- Id	\mathcal{F}_{s}		9	-st
Bat For 100		\mathcal{O}_{Id}	_ O _t	Os	$-\mathcal{O}_{ts}$	Ost	Osts
FId	\mathcal{O}_{Id}	Id, Id Id, Id	∪] ^{I9'f} —	Id,s	Ul''' I''''s	Id, st \(\Omega_{\text{Id},\text{Id}}\)	Ulast —
	\mathcal{O}_{t}	Ω ^{Id,Id}	Id.Id Dt.Id	Ωl4.t	Did.s	Ω ^{Id,st}	DI t.Id
T _s	·Q	S, Id	$\Omega_{\mathrm{Id,t}}^{\mathrm{s.Id}}$	Uz'rq	$U^{\mathrm{l'l't}}_{\mathrm{l'l't}}$	s.st SL _{Id.Id}	Ul ^{s.st}
rs .	\mathcal{O}_{ts}	M t.t	Dit.Id	$\mathcal{U}_{s,z}^{t,t}$	A t.Id	Ω _{t,t}	s,st Mt.Id
\mathcal{F}_{st}	\mathcal{O}_{ts}	$\Omega^{\mathrm{st,Id}}_{\mathrm{Id,Id}}$	$U_{\mathrm{st.I}\gamma}^{\mathrm{I}^{\mathrm{q},\mathrm{t}}}$	St.s \$\int_{\text{Id.Id}}\$	$U^{\mathrm{I}^{\gamma,\mathrm{t}}}_{cf,\mathrm{z}}$	O ^{st.st}	Uldt DIdt
	\mathcal{O}_{sts}	Ω) t∙t	St.Id 12t.Id	Ω t,t	Ω ^{st,s} Ω _{t,Id}	Ω t,t	St.st Mt.Id

 $Pr_{1}^{-1}(\mathcal{O}_{ts}) \qquad Pr_{1,Icl}^{-1}(\Omega_{t}^{s})$ $\mathcal{O}_{t} \qquad \Omega_{t,Id}^{s,Id} = \mathcal{O}_{ts,s}$

b. tangent space, Euler class.