(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 May 2001 (31.05.2001)

PCT

(10) International Publication Number WO 01/38489 A2

(51) International Patent Classification7:

C12N

- (21) International Application Number: PCT/US00/32227
- (22) International Filing Date:

22 November 2000 (22.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/448,215 23 November 1999 (23.11.1999)

- (71) Applicant: CORNELL RESEARCH FOUNDATION, INC. [US/US]; Suite 105, 20 Thornwood Drive, Ithaca, NY 14850 (US).
- (72) Inventors: YODER, Olen, C.; 44 Hungerford Road, Ithaca, NY 14850 (US). TURGEON, Barbara, C.; 608 Mitchell Street, Ithaca, NY 14850 (US). LU, Shun-Wen; 604 Winston Court, Apt. #4, Ithaca, NY 14850 (US).
- (74) Agents: GOLDMAN, Michael, L. et al.; Nixon Peabody LLP, Clinton Square, P.O. Box 31051, Rochester, NY 14603 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

8

(54) Title: PEPTIDE SYNTHETASE GENE CPS1

(57) Abstract: The present invention relates to genes cloned from the plant pathogens Cochliobolus heterostrophus, Alternaria solani, Fusarium graminearium, and Pyrenophora teres, that encode a CPS1 peptide synthetase required for fungal pathogenesis. The nucleic acid molecules in a vector, a host cell, or a plant is also disclosed. The invention further provides a protein or polypeptide encoded by the CPS1 genes. Other aspects of the invention relate to a method of imparting disease resistance to a plant by overexpressing a protein of the present invention in a plant and a method for identifying inhibitors of a CPS1 protein in a sample.

WO 01/38489 PCT/US00/32227

PEPTIDE SYNTHETASE GENE CPS1 CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part application of U.S. Application Serial No. 09/448,215, filed November 23, 1999.

5 STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The present invention was made with support from the United States Government under Grant No. 96-35303-3198 from the USDA/NRI. The United States Government may have certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates to nucleic acid molecules encoding peptide synthetase homologs of Cochliobolus heterostrophus, Pyrenophora teres, Fusarium graminearium, and Alternaria solani and uses thereof.

BACKGROUND OF THE INVENTION

There are approximately 30 species included in the genus Cochliobolus, nearly all of which are pathogens of wild grasses or cereals (Yoder 15 et al, "Cochliobolus spp. And Their Host-Specific Toxins, in Carroll, eds., The Mycota Vol. 5: Plant Relationships, Part A, Berlin:Springer-Verlag, pp. 145-166 (1997)). Cochliobolus heterostrophus represents the most widely distributed species in the genus and can be found in many tropical and subtropical areas in the world. As a natural pathogen of corn, C. heterostrophus causes a disease 20 frequently called leaf spot of maize in the old literature (Drechsler, "Leafspot of Maize Caused by Ophiobolus Heterostrophus n. sp., The Ascigerous Stage of a Helminthosporium Exhibiting Bipolar Germination," J. Agr. Res., 31:701-726 (1925); Drechsler, "Phytopathological and Taxonomic Aspects of Ophiobolus, Pyrenophora, Helminthosporium, and a New Genus, Cochliobolus," Phytopathol., 25 24:953-983 (1934); Yu, "Studies on Helminthosporium Leaf Spot of Maize," 3:273-318 (1933); Orillo, "Leafspot of Maize Caused by Helminthosporium maydis," 36:327-395 (1952). In the United States, C. heterostrophus is usually found in the warmer southern states, thus, the disease is commonly known as Southern Corn Leaf Blight (Hooker, "Cytoplasmic Susceptibility in Plant 30

Disease," Ann. Rev. Phytopathol., 12:167-179 (1974)). For many years, Southern Corn Leaf Blight was only known as an endemic disease and was not considered to be major economic importance in the United States. But in 1970, it suddenly broke into a severe epidemic that destroyed 15% of the U.S. corn crop and caused losses estimated at more than \$1 billion. This serious damage made Southern Corn Leaf Blight one of the most widely known crop diseases in the U.S.

Prior to the outbreak of the disease, only one race of C. heterostrophus (race O) was known in the field. In late 1969 when the disease became an epidemic, a new race of the fungus was identified from infected corn leaves collected in severely diseased areas. It was soon designated as race T 10 because of its high virulence on T-cytoplasm corn and the ability to produce a phytotoxin called T-toxin, which specifically affects T-corn. In contrast, race O does not produce T-toxin and is mildly virulent on both T-cytoplasm and Ncytoplasm (normal cytoplasm) corn (Hooker et al., "Physiological Races of Helminthosporium maydis and Disease Resistance," Plant Dis. Reptr., 54:1109-15 1110 (1970); Scheifele, "Cytoplasmically Inherited Susceptibility to Diseases as Related to Cytoplasmically Controlled Pollen Sterility in Maize," 25:110-138 (1970); Smith et al., "Physiologic Races of Helminthosporium maydis," 54:819-822 (1970); Yoder et al., "Segregation of Pathogenicity Types and Host-Specific Toxin Production in Progenies of Crosses Between Races T and O of 20 Helminthosporium maydis (Cochliobolus heterostrophus)," Phytopathology, 65:273-276 (1975); Yoder, "Evaluation of the Role of Helminthosporium maydis, Race T Toxin in Southern Corn Leaf Blight, in Tomiyama, eds., Biochemistry and Cytology of Plant Parasite Interaction, New York, New York: Elsevier, pp. 16-24 (1976); Yoder, "Toxins in Pathogenesis," Ann. Rev. Phytopathol., 18:103-129 25 (1980)). T-cytoplasm stands for Texas male sterile cytoplasm, a unique cytoplasm with a trait for maternally inherited male sterility, characterized by the failure to produce pollen (Levings, "The Texas Cytoplasm of Maize: Cytoplasmic Male Sterility and Disease Susceptibility," Science, 250:942-947 (1990)). Tcytoplasm corn was widely used for hybrid seed production and breeding to avoid 30 hand or mechanical emasculation in the 1950s and the 1960s. It was the coexistence of large acreages of intensively planted T-cytoplasm corn and the

sudden appearance of race T of C. heterostrophus that resulted in the epidemic of the disease in 1970. This discovery first opened the door to understanding pathogenesis by C. heterostrophus.

Early genetic analysis suggested that both T-toxin production and high virulence on T-cytoplasm corn are controlled by a single genetic locus 5 defined as Tox1 (Leach et al., "Dominance at the Tox1 Locus Controlling T-Toxin Production by Cochliobolus heterostrophus," Physiol. Plant Pathol., 21:327-333 (1982)). This was demonstrated by crosses between race T and race O in which only parental phenotypes segregated in a 1:1 ratio (Tox+:Tox-); all T-toxin producing progeny are highly virulent on T-cytoplasm corn while all T-toxin 10 nonproducing progeny are weakly virulent (Yoder et al., "Segregation of Pathogenicity Types and Host-Specific Toxin Production in Progenies of Crosses Between Races T and O of Helminthosporium maydis (Cochliobolus heterostrophus), Phytopathology, 65:273-275 (1975); Leach et al., "Dominance at the Tox1 Locus Controlling T-Toxin Production by Cochliobolus heterostrophus," 15 Physiol. Plant Pathol., 21:327-333 (1982)). Further investigation by comparison of electrophoretic karyotypes and chromosome-specific DNA hybridizations indicated that Tox1 is tightly linked to a reciprocal translocation breakpoint and is associated with as much as a megabase of DNA (mostly highly repeated and A+Trich) that is missing in race O (Bronson, "Ascospore Abortion in Crosses of 20 Cochliobolus heterostrophus Heterozygous for the Virulence Locus Tox1," Genome, 30:12-18 (1988); Tzeng et al., "A Restriction Fragment Length Polymorphism Map and Electrophoretic Karyotype of the Fungal Maize Pathogen Cochliobolus heterostrophus," Genetics, 130(1):81-96 (1992); Chang et al., "A Reciprocal Translocation and Possible Insertion(s) Tightly Associated with Host-25 Specific Virulence in Cochliobolus heterostrophus," Genome, 39(3):549-557 (1996)). Surprisingly, recent analyses of several Tox- mutants revealed that Tox1 is not a single locus but rather two loci, each on a different translocated chromosome (Yoder et al., "Molecular Determinants of the Plant/Fungus Interaction," in Kohmoto, eds., Host-Specific Toxin: Biosynthesis, Receptor and 30 Molecular Biology, Tottori, Japan: Faculty of Agriculture, Tottori Univ., pp. 23-32 (1994); Turgeon et al., "Function and Chromosomal Location of the Cochliobolus

10

heterostrophus Tox1 Locus," Can. J. Bot., 73 (suppl. 1 Sect. E-H):S1071-S1076 (1995)). These two Tox1 loci have been designated Tox1A and Tox1B (Yoder et al., "Cochliobolus spp. and Their Host-Specific Toxins," in Carroll, eds., The Mycota Vol. 5: Plant Relationships, Part A, Berlin:Springer-Verlag, pp. 145-166 (1997)). Two genes PKS1 and DEC1 have been cloned from the two loci respectively; both are required for biosynthesis of T-toxin and are found only in race T isolates of C. heterostrophus (Yang, "The Molecular Genetics of T-Toxin Biosynthesis by Cochliobolus heterostrophus," Ph.D. Thesis, Cornell University (1995); Yang et al., "A Polyketide Synthase is Required for Fungal Virulence and Production of the Polyketide T-Toxin," Plant Cell, 8(11):2139-2150 (1996); Rose et al., "A Decarboxylase Required for Poloyketide Toxin Production and High Virulence by Cochliobolus heterostrophus," 8th Int. Symp. Mol. Plant-Microbe Int., Knoxville, p. J-49 (1996)).

Genetic analysis also suggested that T-toxin is required by C. heterostrophus for its high virulence on T-cytoplasm corn. This hypothesis was 15 first tested by the generation of induced T-toxin deficient mutants using different mutagenesis procedures. All mutants with a tight Tox- phenotype cause disease symptoms that are indistinguishable from those caused by race O when tested on both T and N-cytoplasm corn, suggesting that T-toxin is indeed a virulence factor (Yang et al., 1992; Lu et al., "Tagged Mutations at the Tox1 Locus of 20 Cochliobolus heterostrophus Using Restriction Enzyme-Mediated Integration," Proc. Natl. Acad. Sci. USA, 91:12649-12653 (1994); Rose et al., "A Decarboxylase Required for Polyketide Toxin Production and High Virulence by Cochliobolus heterostrophus," 8th Int. Symp. Mol. Plant-Microbe Int., Knoxville, p. J-49 (1996)). This conclusion was firmly supported by the site-specific 25 disruption of the PKS1 or DEC1 in the wild type race T genome; disruptants lost the ability to produce T-toxin and caused race O type symptoms on both T-corn and N-corn (Yang et al., "A Polyketide Synthase is Required for Fungal Virulence and Production of the Polyketide T-Toxin," Plant Cell, 8(11):2139-2150 (1996); Rose et al., "A Decarboxylase Required for Polyketide Toxin Production and 30 High Virulence by Cochliobolus heterostrophus," 8th Int. Symp. Mol. Plant-Microbe Int., Knoxville, p. J-49 (1996)). These experiments have given a very

clear resolution for the role of T-toxin in pathogenesis. They also implied that pathogenesis by *C. heterostrophus* must involve additional pathogenicity factors because race O which does not produce T-toxin and race T-derived *Tox*⁻ mutants are effective pathogens on corn.

A number of fungal molecules have been identified as general 5 pathogenicity or virulence factors in several plant pathogenic fungi (Yoder et al., "Molecular-Genetic Evaluation of Fungal Molecules for Roles in Pathogenesis in Plants," J. Genet., 75(3):425-440 (1996)). These include potential penetration factors such as melanin (Guillen et al., "Linkage Among Melanin Biosynthetic Mutations in Cochliobolus heterostrophus," Fungal Genet. Newsl., 41:41-42 10 (1994)), cutinase (Oeser et al., "Pathogenesis by Cochliobolus heterostrophus Transformants Expressing a Gene Encoding Cutinase from Nectria haematococca," Mol. Plant-Microbe Int., 7:282-288 (1994)) and polygalacturonase and xylanase (Lyngholm et al., "Mutants of Cochliobolus heterostrophus Deficient in Extracellular Enzymes," Fungal Genet. Newsl., 42:46-15 47 (1995)) or possible mechanisms involved in colonization such as phytotoxin detoxification (Schäfer et al., "One Enzyme Makes a Fungal Pathogen, But Not a Saprophyte, Virulent on a New Host Plant," Science, 246:247-249 (1989)) or components of signal transduction pathways (Horwitz et al., "A G Protein Alpha Subunit Gene From the Corn Pathogen Cochliobolus heterostrophus is Involved 20 in Two Complex Developmental Pathways: Mating and Appressorium Formation (unpublished) (1997)). Although C. heterostrophus is known to produce a nonhost specific toxin called ophiobolin (or cochliobolin), a C25 sesterterpenoid compound, which is toxic to many organisms, including plants, bacteria, fungi and nematodes, there is no evidence that ophiobolins are involved in pathogenesis by 25 C. heterostrophus or other phytopathogenic fungi. No other pathogenesis-related toxins have been isolated from C. heterostrophus so far, but studies on closely related Cochliobolus species and other phytopathogenic fungi suggest that pathogenesis by this group of fungi also involves peptide toxins.

Four peptide phytotoxins (victorin, HC-toxin, AM-toxin, and enniatins) have been characterized as pathogenicity or virulence factors. They are

30

10

15

20

25

all small cyclic peptides (4-6 residues), containing unusual amino acids or hydroxy acids, and they can be either host specific or non-host specific in terms of plant toxicity. A number of peptide phytotoxins are believed to be synthesized nonribosomally. Early in the 1960s, several biochemists working on the bacterial peptide antibiotics gramicidin and tyrocidine found that these polypeptides can be synthesized in RNAase-treated particle-free extracts of Bacillus brevis that are known to produce the same antibiotics; adding protein-synthesis inhibitors to the extracts does not affect this process. This indicated the existence of a peptide biosynthetic system in which ribosomes and mRNAs are not needed. Further studies revealed that in this system, peptides are synthesized on a protein-template and this template itself is a multifunctional enzyme or a complex of several such enzymes, collectively called peptide synthetases, catalyzing the biosynthetic process (Laland et al., "The Protein Thiotemplate Mechanism of Synthesis for the Peptide Antibiotics Produced by Bacillus Brevis," Essays in Biochemistry, 7:31-57 (1973); Lipmann, "Bacterial Production of Antibiotic Polypeptides by Thiol-Linked Synthesis on Protein Templates," Adv. Microbiol. Physiol., 21:277-266 (1980)).

Peptide synthetases can catalyze biosynthesis of a variety of peptides. In terms of bioactivity, they can be antibiotics, enzyme inhibitors, plant or animal toxins and immunosuppressants (Stachelhaus et al., "Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA.," Journal of Biological Chemistry, 270(11):6163-6169 (1995)). In terms of chemical structure, they can be either linear (i.e. ACV, the penicillin precursor and gramicidin) or cyclic (most are). The latter can be further classified into three subgroups: 1) The "standard" cyclic peptides (i.e. gramicidin S, tyrocidine, HCtoxin and cyclosporin); 2) cyclic lactones (i.e. destruxin); 3) cyclic depsipeptides (i.e. beauvericin and enniatin). There have been over 300 different carboxy compounds that can be activated by peptide synthetases.

Although the first peptide synthetase, Gramicidin S synthetase, was
purified and used for the cell-free synthesis of the peptide early in the 1960s
(Tomino et al., "Cell-Free Synthesis of Gramicidin S," <u>Biochem.</u>, 6:2552-2560
(1967)), the first bacterial peptide synthetase gene, tycA, which encodes the

10

15

20

25

30

tyrocidine synthetase 1 in B. brevis was not cloned until almost twenty years later (Marahiel et al., "Cloning of the Tyrocidine Synthetase 1 Gene from Bacillusbrevis and Its Expression in Escherichia-coli, Mol. Gen. Genet., 201(2):1986 (1985)). Since then, more than twenty peptide synthetase genes have been reported for both bacteria and filamentous fungi, but only fourteen have complete nucleotide sequences published. All are larger than 3.3 kb and range between 3.3-19.5 kb for bacterial genes and 9.4-45.8 kb for fungal ones. Interestingly, all fungal peptide synthetase genes reported lack introns, even the cyclosporin A synthetase gene simA, which has a 45.8 kb of open reading frame (the largest genomic ORF so far recorded). Although biosynthesis of bacterial peptides differs from that of fungal ones in terms of the number of multifunctional enzymes involved, the genes encoding these enzymes are similar to each other in both function and structure. Comparison of nucleotide sequences reveals one or more highly conserved regions at certain positions in each peptide synthetase gene. These regions formerly called "amino acid activating domains" (Stachelhaus et al., "Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA," Journal of Biological Chemistry, 270(11):6163-6169 (1995)), now called "amino acid activating modules" (Marahiel, "Protein Templates for the Biosynthesis of Peptide Antibiotics," Chem. Biol., 4(8):561-567 (1997)) consist of a set of domains (formerly called "modules") believed to have specific functions such as recognization, activation and thioesterification of individual constituent amino or hydroxy acids, and in some cases methylation and racemation for modification of certain residues before incorporation into the peptide chain (Stachelhaus et al., "Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA," Journal of Biological Chemistry, 270(11):6163-6169 (1995)). The most convincing evidence supporting this assignment is that in most cases, the number of conserved functional units in each gene or gene cluster is equal to the number of amino acids in the respective peptide. This one-for-one match is very clear between three of four fungal peptides and their biosynthetic genes. The total number of modules in three of four bacterial gene clusters also matches the number of amino acids in the respective peptides.

10

15

20

25

30

Sequence alignment of amino acid-activating modules reveals strictly conserved sequence motifs that contain active residues for module functions. These motifs are called "core sequences" (Marahiel, "Multidomain Enzymes Involved in Peptide Synthesis," FEBS Lett., 307(1):40-43 (1992)). A minimal amino acid-activating module must contain six core sequences, whose functions (except for core 1) have been proposed based on mutational analysis of several peptide synthetases. Core sequences 1-5 are grouped into an amino acid adenylation domain and core 6 is a thioester formation domain (Figure 1A). All bacterial peptide synthetase genes contain "type I modules" - the minimal amino acid activating modules which were previously called "type I domains" (Stachelhaus et al., "Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA," Journal of Biological Chemistry, 270(11):6163-6169 (1995)). Two fungal genes, acvA and HTS1 also have this modular structure. In addition to the type I module, two fungal genes, esyn1 and simA, contain type II modules, in which an insertion (about 400 amino acids) is found between cores 5 and 6 of a normal type I module. This region contains a motif (VLE/DXGXGXG (SEQ. ID. No. 1)), highly conserved in Sadenosyl-methionine (SAM)-dependent methyltransferases, hence, it is referred to as a N-methylation domain (Figure 1A). Additional evidence for methyltransferase activity of this module is that the number and position of type II modules in esyn1 and simA exactly match that of N-methylated amino acids in ennatin and cyclosporin sequences (Figure 1B).

Although the modular structure described above is highly conserved among most peptide synthetase genes, some variations have been found in the latest cloned peptide synthetase gene safB, which is the first gene in the saframycin Mx1 synthetase gene cluster (Pospiech et al., "A New Myxococcus xanthus Gene Cluster for the Biosynthesis of the Antibiotic Saframycin Mx1 Encoding a Peptide Synthetase," Microbiology, 141(8):1793-1803 (1995)). safB contains two type I amino acid activating modules. One module has all six highly conserved core sequences, but another, believed to activate alanine (the first amino acid in the linear tetrapeptide precursor of saframycin Mx1), lacks core 5 and has a weakly conserved core 1 (Pospiech et al., "Two Multifunctional Peptide

Synthetases and an O-methyltransferase Are Involved in the Biosynthesis of the DNA-Binding Antibiotic and Antitumour Agent Saframycin Mx1 from *Myxococcus xanthus*," Microbiology, 142(4):741-746 (1996)) (Figure 1A). This suggests that some of the motifs in the amino acid adenylation domain are dispensable or not critical for domain function. It also raises the possibility that other variations might be found in yet unknown peptide synthetase genes.

Although C. heterostrophus has been a model eukaryotic plant pathogen since the 1970s, most molecular genetic analyses conducted in this. system have focused on production of the polyketide T-toxin by race T isolates of the fungus. Solid evidence now indicates that T-toxin is a host-specific virulence 10 factor in Southern Corn Leaf Blight (Yoder et al., "Molecular-Genetic Evaluation of Fungal Molecules for Roles in Pathogenesis in Plants," J. Genet., 75(3):425-440 (1996); Yoder et al., Cochliobolus spp. and Their Host-Specific Toxins, Carroll eds., The Mycota Vol. 5: Plant Relationships, Part A, Berlin: Springer-Verlag, pp. 145-166 (1997)). It is clear, however, that C. heterostrophus needs 15 additional factors, presumably general factors for pathogenesis to corn plants, since race O, which does not produce T-toxin, can be an effective corn pathogen. Attempts to identify additional general factors required by C. heterostrophus for pathogenesis have been unsuccessful. Cloning and characterizing additional C. heterostrophus genes that control biosynthesis of novel fungal molecules involved 20 in critical pathogenic processes may be important because it offers potential targets for the design of products that might interfere with the corn plant infection process. The present invention is directed to achieving these objectives.

SUMMARY OF THE INVENTION

25 The present invention relates to an isolated nucleic acid molecule encoding CPS1 peptide synthetase homologs. The DNA molecule comprises a nucleotide sequence which hybridizes to a DNA molecule having a sequence as set forth in at least one of SEQ. ID. No. 2, SEQ ID No. 41, SEQ ID No. 43, or SEQ ID No. 45.

Another aspect of the present invention relates to a method for identifying inhibitors of a CPS1 protein or polypeptide which involves providing

15

20

25

30

the CPS1 protein or polypeptide, contacting the protein with potential inhibitor compounds, determining peptide synthetase activity, and selecting compounds which decrease the peptide synthetase activity.

Still another aspect of the present invention relates to a method of imparting disease resistance to a plant by overexpressing a CPS1 protein or polypeptide in the plant cell.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides the structure of amino-acid activating modules identified in peptide synthetase genes (adapted from Stachelhaus and Marahiel, 1995; Pospiech 1995; Marahiel, 1997). Figure 1A shows the domain arrangements in two types of modules. Structural variations in the first module (safB1) of the gene *safB* are also indicated below type I. Figure 1B shows the correlation between module types and the nature of residues in two fungal peptides. Open box: type I module; filled box: type II module. Each peptide sequence is given below.

Figure 2 depicts the recovery of DNA flanking the REMI vector insertion site (arrows) in mutant R.C4.2696. Circled numbers indicate restriction enzyme sites used for recovery of each plasmid. p214B7 contains 4.2 kb flanking DNA (3.4 left; 0.7 right); p214M1 contains 0.1 kb left flank that overlaps with p214B7 and 1.1 kb right flank that overlaps with p214S1, which contains 3.2 kb flanking DNA on the left only.

Figures 3A-B illustrate the extension of the tagged sequence by targeted integration and plasmid rescue. Figure 3A shows a general scheme illustrating chromosome walking strategy (only one direction is indicated). "X" indicates a restriction enzyme site used for recovery of vector (indicated by "T") with flanking genomic DNA ("L" for left flank; "R" for right flank; R' for a fragment from "R" that is subcloned into a subsequent transformation vector). Each integration site is indicated by a vertical arrowhead pointed at the selectable marker on the vector. Overlapped flanking DNA is represented by bars drawn in the same pattern. Figure 3B shows two strategies used for construction of a

10

15

20

- 11 -

targeted integration vector. Left: A genomic DNA fragment (indicated by the letter "a") is subcloned into a vector directly and the subsequent integration occurs by a single crossover ("a" is duplicated). Right: "a" is subcloned into a vector via multiple steps (see Figure 6 for an example) that allows linearization with restriction enzyme "Y" and the subsequent integration occurs by a double crossover resulting in a simple insertion.

Figure 4 shows how the targeted integration vector p214SNP was constructed. The sites for restriction enzyme digestion are indicated by arrows. p214SNP was originally designed for a double crossover integration after digested with BstXI and BclI, but it was found later that the E. coli strain (DH5 α) used for amplification of the plasmid is Dam+ which blocks the BclI site (TGA TCA to TG^mTCA). As an alternative, the plasmid was linearized with BstXI only and used for transformation.

Figure 5 depicts the recovery of genomic DNA flanking the targeted integration vector p214SNP in transformant #118. The vector integrated into the target site by a single crossover that resulted in duplicated HindIII-SacI fragments (indicated by letter b and b'). The second genomic DNA fragment carried by the vector is also duplicated in the genome (NarI-HindIII, indicated by letter a and a'). Genomic DNA was digested with BgIII (which does not cut the vector) or BcII (which cuts once in fragment a' on the vector) as indicated by numbers in a circle. The two recovered plasmids carry sequences that extend the right flank only by 170 and 800 bp respectively beyond the genomic DNA on p214S1.

Figure 6 shows how the targeted integration vector p118BSP was constructed. The sites for restriction enzyme digestion on the vectors are 25 indicated by arrows. p118B14 contains two duplicated NarI-HindIII-SacI fragments (numbered region, a + b = a' + b') but only one is present in p118BSP. p118BSP was linearized with BgIII and transformed into a wild type C. heterostrophus strain.

10

15

20

25

30

Figure 7 depicts the recovery of genomic DNA flanking the targeted integration vector p118BSP in transformant #9. The vector integrated into the target site by a double crossover. Genomic DNA was digested with *PstI* and relegated. The recovered plasmid p9P2 includes the entire pUC18 sequence on p118BSP and 4.6 kb of genomic DNA that contains all of ORF1 (*CPSI*), including the stop codon (TAG) and 3.0 kb of genomic region 3' of the stop codon.

Figure 8 shows how the targeted integration vector p118BCS was constructed. The sites for restriction enzyme digestion are indicated by arrows.

Figure 9 depicts the recovery of genomic DNA flanking the targeted integration vector p118BSP in transformant #12. The vector integrated into the target site by a single crossover that resulted in a duplicated *SspI-SspI* fragment in the transformant genome (indicated by the letter "a"). Genomic DNA was digested with *Hin*dIII (arrows) and ligated. The recovered plasmid p12H6 contains the entire p118BSP sequence and a 2.1 kb genomic DNA (*SacI-Hin*dIII) on the left region that overlaps with the sequence carried on p9P2 (see Figure 7).

Figures 10A-B are photographs which show that the REMI mutant R.C4.2696 grows like wild type in culture (Figure 10A) and produces normal appressoria (Figure 10B). In Figure 10A, plates containing complete medium (CM) were inoculated with a conidia-bearing mycelium plug and incubated at 22°C under warm white light (F40/350BL) (Sylvania Inc., Danvers, MA). The photograph in Figure 10A was taken 6 days after inoculation. Left to right: Mutant R.C4.2696; wild type. In Figure 10B, conidia of mutant (left) or wild type (right) were placed in a drop of water and incubated at 32°C for 6 hrs. No significant difference in percentage of appressorium-forming conidia (arrows) was detected.

Figures 11A-B are photographs which show that the REMI mutant R.C4.2696 produces wild type levels of T-toxin (Figure 11B) but has reduced virulence on T-cytoplasm corn (Figure 11A). In Figure 11A, two week old T-cytoplasm corn plants were inoculated with conidial suspensions of (left to right)

10

15

20

25

30

mutant R.C42696, wild type race T, and a Tox+ mutant progeny from a cross between R.C4.2696 and a race O tester, and symptoms (represented by three diseased leaves for each strain) were recorded 5 days after inoculation. Leaves infected by wild type race T collapsed (arrow) but those infected by mutants remained alive. In Figure 11B, a plate containing T-toxin-sensitive E. coli cells was inoculated with agar blocks bearing mycelia of three strains (in the same order as in Figure 11A) and incubated at 32°C overnight (the inoculum at bottom is race O control). No significant differences in T-toxin production (indicated by halos) among the three strains were detected.

Figure 12 is a photograph which displays that the REMI mutant R.C4.2696 produces lesions much smaller than wild type on N-cytoplasm corn. Two week old N-cytoplasm corn plants were inoculated with conidial suspensions at the same concentration and symptoms were recorded 7 days after inoculation. The mutant (right) produces the same number of lesions as wild type (left) but the size of lesions was dramatically reduced compared to wild type (arrows).

Figures 13A-B show that the REMI mutant R.C4.2696 has a 60% reduction of virulence compared to wild type. In Figure 13A, lengths of 100 typical lesions from corn leaves inoculated with wild type race O and a mutant progeny R45 (*Tox*-, *hygB*^R) carrying the R.C4.2696 mutation were measured 7 days after inoculation and values plotted. Figure 13B shows the statistical analysis that 86% of the mutant lesions are less than 4 mm in length (average size 3.5 mm), 60% reduced compared to that of wild type (8.5 mm).

Figures 14A-B illustrate the genetic analysis showing that a tagged, single site mutation is responsible for the mutant phenotype. Figure 14A is a photograph of a plant assay where N-cytoplasm corn was inoculated with parents and progeny indicated in Figure 14B (a complete tetrad from the second cross is shown here; random spore assay for the two crosses gave the same results). Figure 14B is a table which shows progeny segregation data. In both crosses, progeny segregated 1:1 for parental type only and all hygromycin B resistant progeny showed the same small lesion phenotype (represented by progeny 1-4 in Figure 14A) as the mutant parent (parent 1 in Figure 14A); all hygromycin B

10

15

20

25

30

sensitive progeny show the large lesion phenotype (represented by progeny 5-6 in Figure 14A) of the wild type parent (parent 2 in Figure 14A).

Figure 15 is a restriction map of the cloned sequences surrounding the tagged site. A 11.3 kb genomic region (thick line) was cloned and completely sequenced. The original REMI insertion point in the mutant R.C4.2696 is indicated by a vertical arrow. The asterisks indicate two targeted integration sites in the wild type genome. Two open reading frames (in opposite directions), ORF1 (CPS1, 5.4 kb) and ORF2 (TES1, 1.1 kb) are indicated by open boxes below the map (the positions of putative introns are indicated by vertical bars). Locations of seven overlapping plasmid clones used for sequencing are indicated by thin lines on the top of the map (filled triangles represent the vector sequence in each clone). Sequencing strategy is indicated by arrows above each clone line.

Figure 16 graphically depicts the G+C content of the cloned sequences surrounding the tagged site. The 11.3 kb of genomic DNA sequence (Figure 15) was examined as 200 bp fragments and G+C content of each fragment was calculated and plotted. Regions A and C have normal G+C content; regions B and D show high G+C content. The overall percentage of G+C in each region is indicated by underlined numbers. The positions of ORF1 (*CPSI*) and ORF2 (*TESI*) are indicated by arrows and the percentage of G+C of each ORF is given below (in parentheses).

Figure 17 displays the nucleotide sequence of *CPS1*. 5,725 base pairs from the 11.3 kb sequenced region (Figure 15) are shown. The deduced amino acid sequence of CPS1 protein is given below the DNA sequence. The position of start codon ATG (bold and underlined) is designated +1 and the open reading frame stops at position 5381 (TAG, in bold and underlined). Five putative "CAAT" boxes (bold and indicated by asterisks) are found at the positions -36, -58, -67, -172 and -309. Three putative introns (in lowercase with 5' and 3' splice sequences in bold; branch sites are underlined) are located at positions 2070-2114, 3542-3592 and 4197-4249. Conserved core sequences are shaded. The GXSXG motif is boxed. A putative polyadenylation signal is located at position 5604 (bold and overlined).

10

15

20

25

30

Figure 18 displays the nucleotide sequence of *TES1*. 1,901 base pairs 5' of *CPS1* are shown. The deduced amino acid sequence of the TES1 protein is given below the DNA sequence. The CT motif (bold and indicated by asterisks) is found at position -46. A "AT"-rich region (bold and italicized) is found at position -12. The position of ATG start codon (bold and underlined) is designated +1 and the open reading frame (transcribed in the opposite direction from *CPS1*) stops at position 1153 (TGA, in bold and underlined). One putative intron (in lowercase, border sequences are bold; branch sites are underlined) is located at position 518-566. A putative polyadenylation signal is located at position 1345 (bold and overlined). The putative active site (VHS) is shaded.

Figures 19A-C are schematic representations which show the characterization of modular structure of CPS1. Peptide synthetase and thioesterase are indicated by open boxes; shaded boxes inside indicate functional domains and modules; vertical bars in the shaded boxes indicate highly conserved core sequences. Figure 19A illustrates the general structure of bacterial and fungal peptide synthetases (adapted from Marahiel 1997, which is herein incorporated by reference). A peptide synthetase gene cluster is shown on the top. There can be one or more amino acid activating module (cyclosporine synthetase has 11) in each protein; some peptide synthetases have thioesterase domains (TE), which can be either integrated into modules or encoded by a separate gene. Each synthetase can have type I, type II or both modules. A type I (minimal) module is enlarged to show organization of core sequences and domains. Some peptide synthetases also have condensation or epimerization domains. Figure 19B illustrates the organization of saframycin Mx1 synthetase containing 4 amino acid activating modules (Pospiech et. al., "Two Multifunctional Peptide Synthetases and an O-methyltransferase are Involved in the Biosynthesis of the DNA-Binding Antibiotic and Antitumour Agent Saframycin Mx1 from Myxococcus xanthus," Microbiology, 142(4):741-746 (1996)). SafB1 from the first module is enlarged. Core sequences 1 and 5 in safB1 are weakly conserved (indicated by dashed vertical bars). The remaining domains are typical of type I as shown in Figure 19A. SafC is a putative O-methyltransferase. Figure 19C illustrates the organization of CPS1. Sequence analysis revealed two amino acid activating

10

15

20

25

30

modules (CPS1A and CPS1B), both of which have high similarity to safB1 except that core 2 is weakly conserved. A thioesterase domain is found at the C-terminal region of CPS1B. Three vertical arrows indicate the positions of targeted gene disruptions in the wild type genome that yielded the mutant phenotype. TES1 is a thioesterase encoded by a separate gene (TES1).

Figures 20A-F are comparative alignments of core amino acid sequences in CPS1A and CPS1B with those of other peptide synthetases. Figures 20A-E are comparative amino acid sequence alignments of amino-acid-activating domains (cores 1-5); Figure 20F is a comparative amino acid sequence alignment of the thioester formation domain (core 6). In each subfigure, the first column shows the names of peptide synthetases; the second indicates the position of the first residue aligned in the original amino acid sequence of each protein; the last column on the right indicates the number of amino acids between two cores (Figures 20A-E, in parentheses) or the distance between two adjacent amino-acidactivating modules (Figure 20F, in parentheses). There is an extra column on the right in Figure 20F, showing the total number (underlined) of residues in each amino-acid-activating module in which the aligned core sequence is located. The consensus of each core sequence is on the top, which includes identical or similar residues found in all peptide synthetases or with only a few exceptions (active site is also indicated by asterisks). SafB1: the first module in saframycin Mx1 synthetase B of Myxococcus xanthus (Genbank accession U24657); GrsA: gramicidin S synthetase A of Bacillus brevis (SWISS PROT accession P14687); HTS1A and HTS1B: the first two modules in HC-toxin synthetase of Cochliobolus carbonum (Q01886); EsynA and EsynB: two modules in enniatin synthetase of Fusarium scirpi (EMBL accession Z18755); ACVA and ACVB: the first two modules in ACV synthetase of Aspergillus nidulans (SWISS PROT P19787); CsynA and CsynB: the first two modules in cyclosporine synthetase of Tolypocladium nivenm (EMBL Z28383).

Figure 21 is a comparative alignment of amino acid sequences of active sites of thioesterase domains (TE) in CPS1 with those of other peptide synthetases. ACV: ACV synthetase (Swiss-PROT accession P19787); GrsB: gramicidin S synthetase B (P14688); GrsT: the thioesterase encoded by grsT

10

15

20

25

30

(P14686) in gramicidin S synthetase gene cluster; SrfA: surfactin synthetase A-3 (Q08787); TycC: tyrocidine synthetase C (Genbank accession AF004853); TycF: the thioesterase encoded by tycF (AF004853) in the tyrocidine synthetase gene cluster. The highly conserved residues (GXSXG) are indicated by asterisks. The number on the left of each amino acid sequence indicates the original position of the first residue; the number on the right (in parentheses) indicates the distance between the last residue shown to the end of each protein.

Figure 22 is a comparative alignment of the amino acid sequence of the *TES1* protein (CH-TES1) with that of other type II thioesterases. HS-TEII: *Homo sapiens* thioesterase II (EMBL accession X86032); EC-TESB: *E. coli* acylcoA thioesterase II (Genbank accession M63308); MT-TESB: *Mycobactrium tuberculosis* homolog to *E. coli*. acyl-coA thioesterase II (EMBL Z95387). The identical residues in all four proteins are in bold. The putative active site VHS motif is indicated by asterisks. The numbers on the right column indicate the original position of the last residue of the line in each protein sequence. The entire protein sequence of each TES was aligned using the Jotun Hein Method. Amino acids corresponding to the positions 142-171, 236-265 and 356-367 in CH-TES1 have no significant similarity among the four proteins.

Figures 23A-B are photographs displaying a plant assay (Figure 23A) and a gel blot (Figure 23B). Targeted gene disruption suggests that *CPS1* is involved in fungal pathogenesis. In Figure 23A, N-cytoplasm corn was inoculated with (left to right): The REMI mutant R.C4.2696; wild type race T; wild type race O and five disruptants obtained using the linearized p214B7 as vector. All disruptants give the small lesions similar to the original mutant. In Figure 23B, total genomic DNA was digested with *BgI*II and probed with both 5' and 3' end flanking DNA fragments carried on p214B7 separately (strain order is the same as above). A single band (4.2 kb) is present in both wild type race T and race O but replaced by a 9.3 kb band (increased by the size of the vector, 5.1 kb) in all strains that showed the mutant phenotype in Figure 23A.

Figure 24 displays a gel blot analysis showing targeted integration of the chromosome walking vector p214SNP into the wild type genome. Lane 1:

10

15

20

25

30

wild type race O. Lanes 2-8: seven transformants obtained by transforming wild type race O (strain C5) with p214SNP. Genomic DNAs were digested with *BgI*II and probed with 3.2 kb flanking genomic DNA fragment cloned on p214S1 which gives three bands in wild type (4.2, 2.1 and 0.5 kb, indicated by arrows on the left). The targeted site is in the 2.1 kb fragment which is missing in all disruptants (indicated by an arrow on the right). Other two bands are intact as predicted. All disruptants showed the same mutant phenotype in the plant assay as shown in Figure 23. Five disruptants (lanes 2, 3, 5, 7 and 8) resulted from a single crossover integration. Integration in two other disruptants (lanes 4 and 6) has not been determined. One of the disruptants (#118, lane 2) was used to recover the plasmid p118B14 and p118BC4.

Figure 25 displays a gel blot analysis showing targeted integration of the chromosome walking vector p118BSP into the wild type genome. Lane 1: wild type race O; Lane 2: wild type race T; Lanes 3, 4 and 5: three transformants obtained by transforming wild type race O (strain C5) with p118BSP. Genomic DNAs were digested with *Pst* I (which cuts pUCATPH) and probed with the 3.2 kb flanking genomic DNA fragment cloned on p214S1 which gives two bands in wild type (6.6 and 2.5 kb, indicated by arrows on the left). The targeted site is in the 6.6 kb region which is missing in all three disruptants (indicated by arrows on the right). The 2.5 kb band is intact as predicted. The third band (part of vector plus 4.6 kb genomic DNA) does not hybridize to the probe. All disruptants showed the same mutant phenotype in the plant assay as shown in Figure 23. Two disruptants (lanes 3 and 4) resulted from a double crossover integration. Integration in the third disruptant (lane 5) has not been determined. One of the disruptants (#9, lane 3) was used to recover the plasmid p9P2.

Figure 26 displays a gel blot showing the detection of *CPSI* homologs in *C. victoriae* and *C. carbonum*. Genomic DNAs were digested with *BgI*II and probed with the 3.4 kb *CPSI* fragment cloned on p214B7 (Figure 2) which includes most of the 4.2 kb *BgI*II fragment of *CPSI* (Figure 15). Lanes 1 and 2: *C. heterostrophus* race T (C4) and race O (C5), both of which hybridized to the 4.2 kb fragment. Lanes 3: *C. victoriae* (Hvw). Lanes 4, 5 and 6: *C. carbonum* race 1 (26R13), race 2 (YugY) and race 3 (BZ1209). Note that both *C. victoriae*

and C. carbonum (three races) hybridized to a 5.0 kb fragment and the hybridization signals of all three species showed about the same intensity.

Figure 27 is a high-performance liquid chromatography (HPLC) profile of culture extracts from wild type *C. victoriae* (HvW, top left) and three transformants (Tx7, Tx2 and Tx9). The major peak for victorin C is indicated by arrowheads. No significant differences in victorin production were detected between the wild type and transformants. Three other transformants (Tx4, Tx5 and Tx8) gave the same results.

Figure 28A-B are photographs which display a plant assay (Figure 28A) and a gel blot (Figure 28B), showing targeted disruption of the CPSI 10 homolog in C. victoriae. Figure 28A shows C. victoriae transformants (Tx) with reduced or wild type pathogenicity to susceptible oats. Oat seeds were inoculated with conidial suspensions of (left to right) wild type, Tx7, Tx2 and Tx9 (the last pot on the right is the uninoculated control). Two transformants (Tx7 and Tx2) showed dramatically reduced pathogenicity as indicated by the substantial growth 15 of the oat plants. These two transformants resulted from a homologous integration (lanes 2 and 3 in Figure 28B). Tx9, which killed all oat plants as wild type, resulted from a ectopic integration (lane 4 in Figure 28B). All three transformants produced wild type level of victorin as determined by HPLC analysis (Figure 27). Figure 28B shows disruption of CPSI homolog in the wild 20 type genome. Genomic DNAs were digested with BgIII and probed with the 3.2 kb CPS1 fragment (KpnI-SacI) cloned on p214S1 (Figure 2) which hybridized to two fragments (4.2 and 2.2 kb, see Figure 15) in C. heterostrophus (lane 1), but to three fragments (5.0, 1.8 and 0.2 kb) in the C. victoriae (lane 2). In Tx7 (lane 3) and Tx2 (lane 4), one or two of the wild type fragments was replaced by a larger 25 fragment (8.0 kb for Tx7 and 9.4 kb for Tx2) containing the transforming vector. The actual size increase by the vector integration can not be predicted because the presence of polymorphic bands in C. victoriae genome and the presence of duplicated CPSI fragments on the transforming vector (Figure 5). In Tx9 (lane 5), which caused wild type symptoms shown in Figure 28A, all three wild type 30 bands (indicated by arrows) are intact, confirming an ectopic integration.

10

15

20

25

30

Figure 29 shows the REMI vector pUCATPH. This vector was constructed by insertion of a 2.4 kb SalI fragment containing the selectable marker cassette (the largest arrow) from pDH25 (Cullen et al., 1987) into the SalI site of polylinker site of pUC18 (between lacI and lacZ). Only six-base-pair restriction enzyme sites are shown on the map. Italicized sites are unique; three of them, HindIII, KpnI, and SacI (bold) have been used for REMI transformation. Noncutting enzymes are listed below the map (enzymes that recognize six-base-pair sites are underlined). amp, Ampicillin resistance gene; hygB, hygromycin B resistance gene; PtrpC, A. nidulans trpC promoter; TtrpC, A. nidulans trpC terminator; ori, Escherichia coli origin of replication.

Figures 30A-30C are photographs of DNA gel blots showing DNA-DNA hybridization of ChCPS1 to other fungal genera and species. In Figure 30A, the gel was loaded with Cochliobolus species (lanes 1-17) as follows: C. heterostrophs race T, race O; C. carbonum race 1, race 2; C. victoriae isolates F13, HvW; C. bicolor, C. dactyloctenii, C. chloridis, C. homomorphus, C. intermedius, C. melinidis, C. melinidis, C. peregianensis, C. perotidis, C. ravenelii and C. sativus. Figure 30B is a photograph of a DNA gel blot from a gel loaded with other Ascomycete genera (lanes 1-14) as follows: C. carbonum race1 (control), Setosphaeria rostrata, Stemphyllium spp., Pyrenophora tritici repentis, Bipolaris sacchari, Alternaria spp., A. solani, Nectria haematococca, Fusarium oxysporum, Glomerella spp. Magnaporthe grisea, F. moniliforme, F. moniliforme (repeat) and A. solani (repeat). Figure 30C is is a photograph of a DNA gel blot from a gel comparing Candida albicans to C. heterostrophus and closely related species (lanes 1-7): C. heterostrophs race T, Bipolaris sacchari, Setosphaeria rostrata, Stemphyllium spp., Pyrenophora tritici repentis, Alternaria spp. and Candida albicans(arrowhead). Genomic DNAs were digested with HindIII (A, lanes 1-17; B, lanes 1-11; C, lanes 1-7), XhoI (B, lanes 12 and 14) or BglII (B, lane 13) and probed with the 3.2 kb fragment of CPSI from p214S1 (Fig. 2) at high stringency. Weak signals in lanes 3 and 17 (panel A) are due to insufficient DNA loading (confirmed by a repeat experiment).

Figure 31A is a structural comparison of the four, CPS1 homologs to ChCPS1. ORFs are indicated by the open boxes; shaded boxes inside indicate

10

15

20

25

30

functional domains; vertical bars indicate conserved motif sequences found in nonribosomal peptide synthetases (NRPS) as defined by Stachelhaus and Marahiel (Stachelhaus and Marahiel, 1995; Marahiel, 1997) (dashed bars indicate weak conservation). The black bulbs indicate the position of putative introns. Cores 1-5: adenylation; core 6: thioaltion; TE: thioesterase. The distance between core sequences is not drawn in exact scale. The name of proteins is on the left of the ORF boxes and the number of amino acids on the right. The unidentified regions of AsCPS1 and PtCPS1 are indicated by dash-lined boxes. The similarity to ChCPSI(in the overlapping region only, see text for details) is given in the parentheses under the protein names in the order: nucleotide identity/ amino acid identity/ amino acid similarity. The positions of the ChCPS1 amino acid 1040 is indicated by the open arrow; the positions 511 and 1269 (to the first and the last amino acids of AsCPS1 and PtCPS1) are indicated by filled triangles. Figure 31B is an amino acid alignment of the four CPS1 homologs to ChCPS1. 530 amino acids aligned to the amino acids 511-1040 of ChCPS1(shown in A) are shown. The identical residues are in uppercase and the similar residues in lowercase. Consensus of sequences similar to the typical NRPS signature motifs is underlined. The putative cyclization domain motif "DXXXXD/ EXXS/ A" is underlined.

Figure 32 is the nucleotide sequence of FgCPS1. 6,003 base pairs cloned using the plasmid rescue procedure are shown. The amino acid sequence of FgCPS1 protein is given below the DNA sequence. The position of the start codon ATG (bold and underlined) is designated +1 and the open reading frame stops at position 5123 (TGA, bold and underlined). A "CT" motif (italicized and underlined) and two putative "CAAT" boxes (bold with asterisks) are found at positions -30, -204 and -302. A putative intron (in lowercase with 5' and 3' splice sequences in bold; branch sites underlined) is located at positions 4245-4290. Conserved core sequences are shaded and the putative cyclization domain motif "DXXXXEXXA" (position 2323-2346) is underlined. A putative polyadenylation signal "AATAA" at position 5188 is bold and overlined.

Figure 33 shows the nucleotide sequence of AsCPS1. 2,369 base pairs amplified by PCR are shown. The amino acid sequence of AsCPS1 protein is

10

15

20

25

30

given below the DNA sequence. The sequence is not complete. Two putative introns (in lowercase with 5' and 3' splice sequences in bold; branch sites underlined) are located at positions 540-584 and 2012-2059. Conserved core sequences are shaded and the putative cyclization domain motif "DXXXXDXXS" (positions 694-720) is underlined. The PCR primer binding sites at the 5' and 3' end are underlined.

Figure 34 shows the nucleotide sequence of *PtCPS1*. 2,320 base pairs amplified by PCR are shown. The amino acid sequence of PtCPS1 protein is given below the DNA sequence. The sequence is not complete. A putative intron (in lowercase with 5' and 3' splice sequences in bold; branch sites underlined) is located at positions 540-583. Conserved core sequences are shaded and the putative cyclization domain motif "DXXXXDXXS" (positions 693-719) is underlined. The PCR primer binding sites at the 5' and 3' end are underlined.

Figure 35A is a photograph of a DNA gel blot showing that the 2.2 kb wild type band (arrowhead) is disrupted in homologous transformants TxFgC8-4, -10, -11 and -5 but is intact in the ectopic transformant TxFgC8-H1, - H2 and -B1 [generated using *HindIII* (H) or *BgIII*(B)-digested pFgC8-hygB]. Genomic DNAs were digested with *ClaI* and probed with pFgC8 which carries a 1.0 kb *FgCPSI* fragment. Figure 35B is a photograph of plants from a virulence assay showing *F. graminearum* transformants (Tx) with reduced or wild type virulence to wheat. Wheat heads were inoculated with conidial suspensions (10⁴/ml) of (left to right) wild type, TxFgC8-4, -10, -H1, and -11 or with water only. Photograph was taken 7 days after inoculation. Note that most spikelets of wheat heads inoculated with homologous transformants looked "healthy" in contrast to those inoculated with ectopic transformants that were completely "bleached" (indistinguishable from wild type).

DETAILED DESCRIPTION OF THE INVENTION

The present invention generally relates to an isolated DNA molecule from a plant pathogen encoding a CPS1 peptide synthetase. In one embodiment, the DNA molecule has a nucleotide sequence which hybridizes to a DNA molecule having a sequence corresponding to SEQ. ID. No. 2 as follows:

	TGCCTGCGCC	TGTGCTTGTG	CCTGTGGAAT	GTCGCGGCCC	GCTGCTGCAT	AGCCTATCTG	60
	TACATACAAC	ACCATCCCAT	CCCGCTTCAC	CTGCCTTGCC	TCCCTCCTCG	TGCCACACAT	120
	CCGCCGCCCA	CAACACCATG	GCTGCGACCA	ACCCCGAGCT	GCAGGCCAAA	CTGCAGGAGC	180
	TGGACCACGA	GCTCGAGGAG	GGCGATATTA	CACAAAAAGG	GTCCGTACTG	CTGCACCACC	240
5	ACCGCCATCC	GCCTCTCTGC	GTGCGCTAAT	CAGTCGCATA	GCTATGAAAA	ACGTCGCACC	300
	GTGCTGCTGT	CGCAGTATCT	AGGGCCTGAC	TTTGCTGCCC	AGTTGCAGGC	CGACCTGAAC	360
	CAGCAGAACC	CACCCCAACC	ATCCAGTGAG	GGCTCTCGCT	CCCGCACCGC	ATCCTTTGCT	420
	ATTCCGTCCG	GTCCGAGTCC	ATCACNGCGA	CCACAACCCC	CACATATCCA	GCTCCCCCGC	480
	CCCGACTCAT	ACCATGACGC	TTCCGCACAG	GGCCAATTGG	GCGCACCCAT	GCCATATGCG	540
10	AACGCCTCCG	CCGCTGCCTC	GGGGGGCTCG	CAGTACATGG	CATACCCGCC	CAGCCAAGTC	600
	GGCCGTTTTC	AAGAGAAGCA	GCTGGGCCTG	CGTACAAATT	CGCTCCAGCG	CAATTCCTCA	660
	CAGCTGTCGC	AAGGAAGCGA	GACGTTCATT	CCACGGCCTC	AAACGCCTGA	ATACAACCAC	720
	TCGCGCGAGC	CCACCATGAT	GGGCAACTAC	GCCTTCAATC	CAGACAATCA	GCAAAGTTAT	780
	GATGGCCAAT	TTGGCTCTCC	GGGAGAGGCC	AGTCGAAGGA	GCACCATGCT	CGAGGTAAAC	840
15	CAGGGTTATT	TTTCCGACTT	CACAGGCCAG	CAGATGCAAG	ACAATCGCGA	CTCGTATGGG	900
	GGACCCAACC	GCTACTCGTC	GGGAGATGCC	TTTTCTCCTA	CCGCCGCGAT	TCCACCTCCC	960
	ATGATGAACC	CCAACGATCT	CCCCTTGGGC	GCTGCTGAAA	CCATGATGCC	GCTAGAGCCC	1020
	CGCGATCTGC	CTTTTGACGT	TTACGACCCT	CACAACCCCA	ATGTCAAAAT	GTCAAAGTTT	1080
	GACAACATTG	GCGCTGTCTT	GCGTCACCGA	AGTCGCACAC	AGCCAAGGAC	GACTGCCTTC	1140
20	TGGGTCCTTG	ACGCAAAAGG	CAAAGAGACG	GCGTCCATCA	CCTGGGAAAA	GGTGGCTAGT	1200
	CGCGCGGAAA	AGGTGGCCAA	AGTGATTCGG	GACAAGAGCA	ACCTCTATCG	AGGCGACCGT	1260
	GTGGCATTAG	TGTACAGGGA	TACAGAAATC	ATTGATTTTG	TCGTGGCGTT	GATGGGCTGC	1320
	TTCATTGCGG	GCGTTGTAGC	GGTACCCATC	AATAGCGTCG	ACGACTACCA	GAAACTCATT	1380
	CTTCTCCTAA	CGACAACTCA	AGCTCATCTC	GCATTGACCA	CAGACAACAA	TCTCAAGGCC	1440
25	TTTCATCGTG	ACATTAGTCA	GAACCGTCTG	AAATGGCCGA	GTGGGGTAGA	GTGGTGGAAG	1500
	ACGAACGAGT	TTGGCAGCCA	CCACCCCAAG	AAACATGACG	ATACTCCAGC	TTTGCAAGTA	1560
	CCAGAGGTTG	CCTATATTGA	GTTCTCGCGT	GCACCTACTG	GTGACCTTCG	CGGTGTGGTG	1620
	СТТАСТСАСС	GGACTATTAT	GCACCAAATG	GCCTGCATCA	GTGCCATGAT	TAGCACGATA	1680

10

15

20

25

CCCACCAACG CTCAGAGCCA AGACACGTTC AGCACTAGCC TACGGGATGC AGAGGGAAAG	1740
TTCGTTGCTC CAGCACCGTC CAGAAACCCC ACAGAAGTGA TCCTCACGTA CCTCGACCCG	1800
CGCGAAAGCG CTGGTCTCAT TCTCAGTGTC TTGTTTGCAG TTTATGGAGG CCACACCACC	1860
GTATGGCTCG AGACAGCGAC CATGGAAACC CCGGGTCTAT ATGCACATCT CATCACCAAA	1920
TACAAGTCCA ACATACTGCT AGCGGATTAC CCAGGCCTCA AGCGCGCTGC ATACAACTAC	1980
CAACAGGATC CAATGGCTAC AAGAAACTTC AAGAAAAACA CAGAACCCAA CTTCGCCTCC	2040
GTGAAGATCT GTCTGATTGA CACGCTTACC GTCGACTGTG AATTTCACGA AATTCTCGGA	2100
GATCGATATT TCAGGCCACT GCGAAACCCT AGAGCGCGAG AACTGATCGC GCCAATGCTC	2160
TGCTTGCCAG AACATGGTGG AATGATAATA TCTGTACGCG ACTGGCTAGG TGGAGAGGAG	2220
CGCATGGGCT GCCCGCTAAG CATAGCAGTA GAAGAGTCAG ATAATGATGA AGATGATACA	2280
GAGGATAAGT ATGCAGCGGC AAATGGCTAC TCCAGTCTTA TTGGTGGTGG CACTACAAAG	2340
AACAAAAAGG AGAAGAAGAA GAAAGGCCCG ACAGAGCTTA CAGAAATCTT GCTGGACAAG	2400
GAAGCTCTGA AGATGAACGA AGTCATTGTT CTGGCCATTG GAGAAGAAGC AAGCAAGCGG	2460
GCAAACGAGC CCGGCACCAT GCGAGTCGGT GCCTTTGGAT ACCCCATACC GGATGCGACA	2520
CTAGCTATTG TAGACCCTGA GACAAGTCTT CTATGTTCAC CATACTCGAT AGGCGAGATC	2580
TGGGTAGATT CGCCTTCACT CTCTGGTGGC TTCTGGCAGC TGCAGAAGCA TACAGAGACC	2640
ATTTTCCATG CTCGACCATA CCGTTTCGTT GANGGTAGCC CTACGCCACA GTTGCTTGAA	2700
CTCGAGTTTC TGCGTACTGG ACTCCTCGGC TTTGTTGTAG ANGGAAAAAT ATTTGTCCTT	
GGACTGTACG AAGATCGCAT CAGACAGCGT GTTGAATGGG TAGAAAATGG TCAGCTTGAA	
GCCGAGCATC GATACTTTTT TGTGCAGCAC CTGGTCACAA GCATTATGAA GGCCGTGCCA	
AAAATTTACG ACTGGTAAGT GAGCTGCCAA CAGAGCAAGG ACTGTCTAAC GTGTCATAGC	
TCGTCGTTTG ATTCTTATGT AAATGGTGAA TACCTGCCAA TCATTCTCAT CGAGACGCAG	
GCCGCATCGA CTGCGCCCAC AAACCCAGGT GGACCACCAC AACAATTGGA TATACCATTT	
TTGGATTCAC TATCTGAGAG GTGCATGGAG GTCCTTTACC AAGAGCATCA TTTACGGGTA	
TACTGCGTGA TGATTACAGC ACCTAATACA CTTCCACGAG TCATCAAGAA CGGACGGCGA	
GAAATTGGCA ATATGCTGTG TANGAGANAG TTTGACAATG GCTCTCTGCC CTGTGTNCAG	
GTNAAGTTTG GCATTGAGCG ATCAGTGCAG AACATTGCGC TCGGTGACGA TCCCGCTGG	
GGCATGTGGT CATTTGAGGC ATCAATGGCA CGTCAGCAAT TCTTGATGCT CCAAGACAA	

	CAATACTCTG	GTGTCGATCA	TCGCGAAGTC	GTCATTGACG	ACAGGACATC	GACTCCACTC	3420
	AATCAGTTCT	CGAATATCCA	CGACCTGATG	CAATGGCGTG	TATCTCGGCA	GGCCGAGGAA	3480
	CTTGCTTACT	GCACTGTCGA	CGGTCGAGGA	AAAGAGGGCA	AAGGCGTCAA	TTGGAAGAAG	3540
	TTTGATCAAA	AGGTTGCGGG	CGTAGCAATG	TACCTCAAGA	ACAAGGTCAA	GGTCCAGGCC	3600
5	GGCGATCATC	TCCTTCTGAT	GTACACGCAT	TCAGAAGAAT	TTGTTTATGC	TGTTCATGCA	3660
	TGTTTTGTGC	TTGGAGCTGT	TTGCATACCA	ATGGCGCCAA	TTGATCAGAA	CCGGTTGAAT	3720
	GAGGATGCGC	CGGCCTTGCT	GCATATCCTT	GCAGATTTCA	AGGTCAAAGC	CATTCTTGTC	3780
	AACGCTGACG	TTGACCATCT	GATGAAGATC	AAGCAAGTAT	CGCAGCACAT	CAAACAATCG	3840
	GCCGCTATCC	TCAAGATCAG	TGTGCCAAAC	ACATACAGCA	CAACAAAGCC	GCCAAAGCAA	3900
10	TCCAGTGGCT	GCCGCGACCT	CAAGCTTACA	ATTCGACCGG	CATGGATTCA	GGCGGGTTTC	3960
	CCAGTGCTAG	TCTGGACATA	CTGGACGCCC	GATCAACGTC	GTATCGCAGT	TCAGCTGGGC	4020
	CATAGCCAAA	TCATGGCACT	GTGCAAGGTC	CAAAAAGAAA	CATGCCAAAT	GACAAGTACA	4080
	CGACCAGTCC	TTGGTTGTGT	CCGGAGCACG	ATAGGACTTG	GTTTCCTTCA	CACTTGTCTC	4140
	ATGGGAATCT	TCCTTGCCGC	ACCCACATAC	CTGGTGTCAC	CTGTTGACTT	TGCACAAAAC	4200
15	CCTAATATTC	TGTTCCAAAC	GCTTTCGĊGG	TACAAGATCA	AGGATGCATA	TGCAACGAGT	4260
	CAAATGTTGG	ACCACGCCAT	CGCACGCGGA	GCTGGTAAGA	GTATGGCTCT	GCACGAGCTG	4320
	AAGAATCTCA	TGATTGCGAC	TGATGGAAGA	CCACGCGTTG	ATGTTTGTAA	GTGAACATTT	4380
	GTATGAGAGG	ACTTTCATGA	TTGCTAACTC	AATGCAGACC	AAAGAGTGCG	TGTGCACTTT	4440
	GCGCCAGCCA	ACTTAGACCC	AACCGCAATC	AACACTGTCT	ACTCACATGT	ATTGAACCCA	4500
20	ATGGTAGCAT	CACGATCATA	CATGTGTATT	GAGCCAGTCG	AGCTCCATCT	CGATGTGCAT	4560
	GCTCTGCGAC	GCGGCCTCGT	CATGCCCGTT	GACCCTGACA	CAGAGCCCAA	CGCTTTGCTC	4620
	GTCCAAGACT	CGGGCATGGT	GCCAGTGAGC	ACGCAAATAT	CCATTGTCAA	CCCAGAGACC	4680
	AACCAACTGT	GCTTGAACGG	CGAGTACGGC	GAGATCTGGG	TGCAGTCCGA	GGCGAATGCT	474
	TATAGCTTCT	ACATGTCGAA	AGAGCGCTTG	GATGCAGAAC	GCTTCAATGG	GAGGACGATT	480
25	GACGGAGACC	CAAATGTGCG	ATATGTTCGT	ACAGGCGATT	TAGGATTTTT	GCACAGCGTG	486
	ACACGGCCCA	TTGGACCCAA	CGGTGCACCT	GTTGATATGC	AGGTGCTTTT	CGTGCTTGGA	492
	AGCATAGGTG	ACACTTTTGA	AGTCAACGGA	CTGAACCATT	TCTCTATGGA	CATTGAGCAG	498
	ጥርጥርጥጥር እ » ር	<u> ದಞಞದಘದಶಿಲ್ಲದ</u>	ርል ልጥልጥጥርጥር	ССТССАСССТ	GGTACGTTTC	TTCGATTCGC	504

- 26 -

	TGTTATTTAG	тааатастта	CTAACACTCT	ACAGTGCTGT	TTTCCAGGCA	GGTGGGCTTG	5100
	TTGTTGTCGT	TGTGGAAATC	TTCCGACGCA	ACTTCCTCGC	AAGCATGGTG	CCTGTGATTG	5160
	TCAATGCAAT	TTTGAACGAG	CATCAGCTGG	TCATTGACAT	TGTCTCGTTT	GTGCAAAAGG	5220
	GCGACTTCCA	CCGGTCTCGT	CTGGGCGAGA	AGCAACGCGG	AAAGATTCTT	GCAGGATGGG	5280
5	TCACACGGAA	GATGCGCACA	ATAGCCCAGT	ACAGTATACG	GGATCCTAAT	GGACAGGATT	5340
	CCCAGATGAT	CACGGAAGAG	CCTGGTCCAC	GGGCTAGATG	ACTGGAAGTA	TGCTTGGGCG	5400
	AATGGGCGGC	CCAGCCAGTA	TCAAGGCCGG	GTCGACAAGA	GCACCGAGTC	TAATGGGCAT	5460
	GACAGCGACT	ATGAATAATC	TATCCCTTAC	ACAGCAGCAA	CAGCAGCAAT	ACCAACAGCC	5520
	GGGTATGTAT	GCTCAACAGC	AAGGCATGCA	CCCCCAGCAA	CAACACCAAT	TTAGCATGTC	5580
10	CAACACGCCA	CCACAAGGTC	CACCCCAAGG	CGTAGAACTA	CATGATCCTA	GCGACCGCAC	5640
	ACCAACAGAC	AACCGGCACT	CTTTCCTTGC	CGACCCGCGT	ATGCAGAACC	AGGGCCAAAT	5700
	GAACGAGACG	GGCGCCTACG	AACCCATGAA	CTATCAAAAC	GCGTATCATC	CGCATCAACA	5760
	ACAATACGAA	TCTGAAGACG	GGGGGAGCAG	ACTCAGCGGC	CCCGTGCCAG	ACGTGCTGCG	5820
	GCCGGGTCCT	TCATCCGGGT	CCATAGAGCA	GCACGACCAA	GCTAACAACG	ACAACAATAT	5880
15	GTGGAATAAT	CGCGAGTACT	ATGGTAACAG	CCCATCGTAT	GCAGGCGGAT	ACACGCAAGA	5940
	TGGCAATATC	CACGAGCAGC	AACAACACGA	TGAGTACACG	AGTAATGCGT	CATATGGCGG	6000
	AAATCAAGGA	GCAGGCGGAG	GCAGCGGCGG	CGGTGGCGGT	CTCCGAGTTG	CAAATCGTGA	6060
	CAGCTCCGAC	AGCGAGGGTG	CAGATGACGA	CGCTTGGAGA	CGTGATGCCC	TTGCTCAGAT	6120
	CAATTTTGCG	GGCGGCGCTG	CTGCTGCCTC	CGCTGGAGCA	CCTGCTGCTG	GTGCTTCTTC	6180
20	TTCGCAGCCG	GGCCATGCGC	AGTAGACGGG	ATATGCGTGA	GTTTTTTTT	AAATTTCGTA	6240
	CATAGAGACC	GTTGTATACG	CAGGTTTCAA	ATTAGAAGAG	CGAATATGCA	TATCAGCTGT	6300
	TGTTCAATGT	TCTAGTTTGG	GAAGGTTAAC	CCCCCCCC	TCCCCTTCCA	AGACTTTTCA	6360
	CTTGTTTGTG	TGTGATTTA	ATCTGGAGAT	TTCAAATCTA	CATCTCGCTA	TACATAGGTG	6420
	TTGTTTGATA	ACGTAGGGG	CAGAAGGGTA	TCTCGTGATA	TTAGACTGGG	AGTTGCATGA	6480
25	ATCAAGGTGI	TGAGCAAAA	AAGAGAGAG	GGTGAAGGGC	GGGGGGGATA	GGTGGTGTGC	6540
	ACGTGGCTG						654

In a preferred embodiment, the plant pathogen is Cochliobolus heterostrophus. In another preferred embodiment, the plant pathogen is

Cochliobolus carbonum, C. victoriae, C. sativus, C. specifer, C. homomorphus, C. dactyloctenii, Setosphaeria turcica, S. rostrata, or Bioplaris sacchari.

The peptide synthetase of SEQ. ID. No. 2 has a deduced amino acid sequence corresponding to SEQ. ID. No. 3 as follows:

5	Met	Leu	Glu	Val	Asn	Gln	Gly	Tyr	Phe	Ser	Asp	Phe	Thr	Gly	Gln	15
	Gln	Met	Gln	Asp	Asn	Arg	Asp	Ser	Tyr	Gly	Gly	Pro	Asn	Arg	Tyr	30
	Ser	Ser	Gly	Asp	Ala	Phe	Ser	Pro	Thr	Ala	Ala	Ile	Pro	Pro	Pro	45
	Met	Met	Asn	Pro	Asn	Asp	Leu	Pro	Leu	Gly	Ala	Ala	Glu	Thr	Met	60
	Met	Pro	Leu	Glu	Pro	Arg	Asp	Leu	Pro	Phe	Asp	Val	Tyr	Asp	Pro	75
10	His	Asn	Pro	Asn	Val	Lys	Met	Ser	Lys	Phe	Asp	Asn	Ile	Gly	Ala	90
	Val	Leu	Arg	His	Arg	Ser	Arg	Thr	Gln	Pro	Arg	Thr	Thr	Ala	Phe	105
	Trp	Val	Leu	Asp	Ala	Lys	Gly	Lys	Glu	Thr	Ala	Ser	Ile	Thr	Trp	120
	Glu	Lys	Val	Ala	Ser	Arg	Ala	Glu	Lys	Val	Ala	Lys	Val	Ile	Arg	135
	Asp	Lys	Ser	Asn	Leu	Tyr	Arg	Gly	Asp	Arg	Val	Ala	Leu	Val	Tyr	150
15	Arg	Asp	Thr	Glu	Ile	Ile	Asp	Phe	Val	Val	Ala	Leu	Met	Gly	Cys	165
							Ala									180
							Leu									195
							Asn									210
							Trp									225
20							His									240
							Glu									255
							Arg									270
															Ile	285
	Pro	Thr	Asn	Ala	Gln	Ser	Gln	Asp	Thr	Phe	Ser	Thr	Ser	Leu	Arg	300
25	Asp	Ala	Glu	Gly	Lys	Phe	. Val	Ala	Pro	Ala	Pro	Ser	Arg	Asn	Pro	315
	Thr	Glu	Val	. Ile	Leu	Thr	Туг	Leu	qe.A	Pro	Arg	Glu	Ser	Ala	Gly	330
	Leu	Ile	Leu	. Ser	Val	Leu	Phe	Ala	Val	Tyr	Gly	Gly	His	Thr	Thr	345
	Val	Trp	Lev	ı Glu	Thr	Ala	Thr	Met	Glu	Thr	Pro	Gly	Leu	Tyr	Ala	360
	нiс	. T.e.u	1 Tle	Thr	Lvs	Tvr	Lvs	Ser	Asn	Ile	Leu	Leu	Ala	Asp	Tyr	375

	Pro	Gly	Leu	Lys	Arg	Ala	Ala	Tyr	Asn	Tyr	Gln	Gln	Asp	Pro	Met	390
	Ala	Thr	Arg	Asn	Phe	Lys	Lys	Asn	Thr	Glu	Pro	Asn	Phe	Ala	Ser	405
	Val	Lys	Ile	Cys	Leu	Ile	Asp	Thr	Leu	Thr	Val	Asp	Cys	Glu	Phe	420
	His	Glu	Ile	Leu	Gly	Asp	Arg	Tyr	Phe	Arg	Pro	Leu	Arg	Asn	Pro	435
5	Arg	Ala	Arg	Glu	Leu	Ile	Ala	Pro	Met	Leu	Cys	Leu	Pro	Glu	His	450
	Gly	Gly	Met	Ile	Ile	Ser	Val	Arg	Asp	Trp	Leu	Gly	Gly	Glu	Glu	465
	Arg	Met	Gly	Cys	Pro	Leu	Ser	Ile	Ala	Val	Glu	Glu	Ser	Asp	Asn	480
	Asp	Glu	Asp	Asp	Thr	Glu	Asp	Lys	Tyr	Ala	Ala	Ala	Asn	Gly	Tyr	495
	Ser	Ser	Leu	Ile	Gly	Gly	Gly	Thr	Thr	Lys	Asn	Lys	Lys	Glu	Lys	510
10	Lys	Lys	Lys	Gly	Pro	Thr	Glu	Leu	Thr	Glu	Ile	Leu	Leu	Asp	Lys	525
	Glu	Ala	Leu	Lys	Met	Asn	Glu	Val	Ile	Val	Leu	Ala	Ile	Gly	Glu	540
	Glu	Ala	Ser	Lys	Arg	Ala	Asn	Glu	Pro	Gly	Thr	Met	Arg	Val	Gly	555
	Ala	Phe	Gly	Tyr	Pro	Ile	Pro	Asp	Ala	Thr	Leu	Ala	Ile	Val	Asp	570
	Pro	Glu	Thr	Ser	Leu	Leu	Cys	Ser	Pro	Tyr	Ser	Ile	Gly	Glu	Ile	585
15	Trp	Val	Asp	Ser	Pro	Ser	Leu	Ser	Gly	Gly	Phe	Trp	Gln	Leu	Gln	600
	Lys	His	Thr	Glu	Thr	Ile	Phe	His	Ala	Arg	Pro	Tyr	Arg	Phe	Val	615
	Xaa	Gly	Ser	Pro	Thr	Pro	Gln	Leu	Leu	Glu	Leu	Glu	Phe	Leu	Arg	630
	Thr	Gly	Leu	Leu	Gly	Phe	Val	Val	Glu	Gly	Lys	Ile	Phe	Val	Leu	645
	Gly	Leu	Tyr	Glu	Asp	Arg	Ile	Arg	Gln	Arg	Val	Glu	Trp	Val	Glu	660
20	Asn	Gly	Gln	Leu	Glu	Ala	Glu	His	Arg	Tyr	Phe	Phe	Val	Gln	His	675
	Leu	Val	Thr	Ser	Ile	Met	Lys	Ala	Val	Pro	Lys	Ile	Tyr	Asp	Cys	690
	Ser	Ser	Phe	Asp	Ser	Tyr	Val	Asn	Gly	Glu	Tyr	Leu	Pro	Ile	Ile	705
	Leu	Ile	Glu	Thr	Gln	Ala	Ala	Ser	Thr	Ala	Pro	Thr	Asn	Pro	Gly	720
	Gly	Pro	Pro	Gln	Gln	Leu	Asp	Ile	Pro	Phe	Leu	Asp	Ser	Leu	Ser	735
25	Glu	Arg	Cys	Met	Glu	Val	Leu	Tyr	Gln	Glu	His	His	Leu	Arg	Val	750
	Tyr	Cys	Val	Met	Ile	Thr	Ala	Pro	Asn	Thr	Leu	Pro	Arg	Val	Ile	765
	Lys	Asn	Gly	Arg	Arg	Glu	Ile	Gly	Asn	Met	Leu	Cys	Arg	Arg	Glu	780
	Phe	Asp	Asn	Gly	Ser	Leu	Pro	Cys	Val	His	Val	Lys	Phe	Gly	Ile	795
	Glu	Arg	Ser	Val	Gln	Asn	Ile	Ala	Leu	Gly	Asp	Asp	Pro	Ala	Gly	810
30	Gly	Met	Trp	Ser	Phe	Glu	Ala	Ser	Met	Ala	Arg	Gln	Gln	Phe	Leu	825

	Met	Leu	Gln	Asp	Lys	Gln	Tyr	Ser	Gly	Val	Asp	His	Arg	Glu	Val	840
	Val	Ile	Asp	Asp	Arg	Thr	Ser	Thr	Pro	Leu	Asn	Gln	Phe	Ser	Asn	855
	Ile	His	Asp	Leu	Met	Gln	Trp	Arg	Val	Ser	Arg	Gln	Ala	Glu	Glu	870
	Leu	Ala	Tyr	Cys	Thr	Val	Asp	Gly	Arg	Gly	Lys	Glu	Gly	Lys	Gly	885
5	Val	Asn	Trp	Lys	Lys	Phe	Asp	Gln	Lys	Val	Ala	Gly	Val	Ala	Met	900
	Tyr	Leu	Lys	Asn	Lys	Val	Lys	Val	Gln	Ala	Gly	Asp	His	Leu	Leu	915
	Leu	Met	Tyr	Thr	His	Ser	Glu	Glu	Phe	Val	Tyr	Ala	Val	His	Ala	930
	Cys	Phe	Val	Leu	Gly	Ala	Val	Cys	Ile	Pro	Met	Ala	Pro	Ile	Asp	945
	Gln	Asn	Arg	Leu	Asn	Glu	Asp	Ala	Pro	Ala	Leu	Leu	His	Ile	Leu	960
10	Ala	Asp	Phe	Lys	Val	Lys	Ala	Ile	Leu	Val	Asn	Ala	Asp	Val	Asp	975
	His	Leu	Met	Lys	Ile	Lys	Gln	Val	Ser	Gln	His	Ile	Lys	Gln	Ser	990
	Ala	Ala	Ile	Leu	Lys	Ile	Ser	Val	Pro	Asn	Thr	Tyr	Ser	Thr	Thr	1005
	Lys	Pro	Pro	Lys	Gln	Ser	Ser	Gly	Cys	Arg	Asp	Leu	Lys	Leu	Thr	1020
	Ile	Arg	Pro	Ala	Trp	Ile	Gln	Ala	Gly	Phe	Pro	Val	Leu	Val	Trp	1035
15	Thr	Tyr	Trp	Thr	Pro	Asp	Gln	Arg	Arg	Ile	Ala	Val	Gln	Leu	Gly	1050
	His	Ser	Gln	Ile	Met	Ala	Leu	Cys	Lys	Val	Gln	Lys	Glu	Thr	Cys	1065
	Gln	Met	Thr	Ser	Thr	Arg	Pro	Val	Leu	Gly	Cys	Val	Arg	Ser	Thr	1080
	Ile	Gly	Leu	Gly	Phe	Leu	His	Thr	Cys	Leu	Met	Gly	Ile	Phe	Leu	1099
	Ala	Ala	Pro	Thr	Tyr	Leu	Val	Ser	Pro	Val	Asp	Phe	Ala	Gln	Asn	1110
20	Pro	Asn	lle	Leu	Phe	Gln	Thr	Leu	Ser	Arg	Tyr	Lys	Ile	Lys	Asp	1129
	Ala	Tyr	Ala	Thr	Ser	Gln	Met	Leu	Asp	His	Ala	Ile	Ala	Arg	Gly	1140
	Ala	Gly	, Lys	Ser	Met	Ala	Leu	His	Glu	Leu	Lys	Asn	Leu	Met	Ile	115
	Ala	Thr	. Asp	Gly	Arg	Pro	Arg	Val	Asp	Val	Tyr	Gln	Arg	Val	Arg	117
	Val	His	Phe	a Ala	Pro	Ala	Asn	Leu	Asp	Pro	Thr	Ala	Ile	Asn	Thr	118
25	Val	туг	s Ser	His	val	Leu	Asn	Pro	Met	Val	Ala	Ser	Arg	Ser	Tyr	120
	Met	Cys	: Ile	e Glu	Pro	Val	Glu	ı Lev	His	Leu	a Asp	Val	His	Ala	Leu	121
	Arg	Arg	g Gly	/ Leu	ı Val	Met	Pro	val	Asp	Pro	Asp	Thr	Glu	Pro	Asn	123
	Ala	Let	ı Leı	ı Val	Glr	Asp	Ser	: Gly	/ Met	. Val	Pro	Val	Ser	Thr	Gln	124
	Ile	Sei	r Ile	e Val	. Asr	n Pro	Glu	ı Thr	Asn	Glr	ı Lev	. Cys	Lev	Asr	Gly	126
30	Glu	і Туі	c Gly	y Glu	ı Ile	rrp	Va]	Glr	ı Ser	Gli	ı Ala	. Asn	Ala	туг	Ser	127

	Phe	Tyr	Met	Ser	Lys	Glu	Arg	Leu	Asp	Ala	Glu	Arg	Phe	Asn	GIY	1290
	Arg	Thr	Ile	Asp	Gly	Asp	Pro	Asn	Val	Arg	Tyr	Val	Arg	Thr	Gly	1305
	Asp	Leu	Gly	Phe	Leu	His	Ser	Val	Thr	Arg	Pro	Ile	Gly	Pro	Asn	1320
	Gly	Ala	Pro	Val	Asp	Met	Gln	Val	Leu	Phe	Val	Leu	Gly	Ser	Ile	1335
5	Gly	Asp	Thr	Phe	Glu	Val	Asn	Gly	Leu	Asn	His	Phe	Ser	Met	Asp	1350
	Ile	Glu	Gln	Ser	Val	Glu	Arg	Cys	His	Arg	Asn	Ile	Val	Pro	Gly	1365
	Gly	Cys	Ala	Val	Phe	Gln	Ala	Gly	Gly	Leu	Val	Val	Val	Val	Val	1380
	Glu	Ile	Phe	Arg	Arg	Asn	Phe	Leu	Ala	Ser	Met	Val	Pro	Val	Ile	1395
	Val	Asn	Ala	Ile	Leu	Asn	Glu	His	Gln	Leu	Val	Ile	Asp	Ile	Val	1410
10	Ser	Phe	Val	Gln	Lys	Gly	Asp	Phe	His	Arg	Ser	Arg	Leu	Gly	Glu	1425
	Lys	Gln	Arg	Gly	Lys	Ile	Leu	Ala	Gly	Trp	Val	Thr	Arg	Lys	Met	1440
	Arg	Thr	Ile	Ala	Gln	Tyr	Ser	Ile	Arg	Asp	Pro	Asn	Gly	Gln	Asp	1455
	Ser	Gln	Met	Ile	Thr	Glu	Glu	Pro	Gly	Pro	Arg	Ala	Ser	Met	Thr	1470
	Gly	Ser	Met	Leu	Gly	Arg	Met	Gly	Gly	Pro	Ala	Ser	Ile	Lys	Ala	1485
15	Gly	Ser	Thr	Arg	Ala	Pro	Ser	Leu	Met	Gly	Met	Thr	Ala	Thr	Met	1500
	Asn	Asn	Leu	Ser	Leu	Thr	Gln	Gln	Gln	Gln	Gln	Gln	Tyr	Gln	Gln	1515
	Pro	Gly	Met	Tyr	Ala	Gln	Gln	Gln	Gly	Met	His	Pro	Gln	Gln	Gln	1530
	His	Gln	Phe	Ser	Met	Ser	Asn	Thr	Pro	Pro	Gln	Gly	Pro	Pro	Gln	1545
	Gly	Val	Glu	Leu	His	Asp	Pro	Ser	Asp	Arg	Thr	Pro	Thr	Asp	Asn	1560
20	Arg	His	Ser	Phe	Leu	Ala	Asp	Pro	Arg	Met	Gln	Asn	Gln	Gly	Gln	1575
	Met	Asn	Glu	Thr	Gly	Ala	туr	Glu	Pro	Met	Asn	Tyr	Gln	Asn	Ala	1590
	Tyr	His	Pro	His	Gln	Gln	Gln	Tyr	Glu	Ser	Glu	Asp	Gly	Gly	Ser	1605
	Arg	Leu	Ser	Gly	Pro	Val	Pro	Asp	Val	Leu	Arg	Pro	Gly	Pro	Ser	1620
	Ser	Gly	Ser	Ile	Glu	Gln	His	Asp	Gln	Ala	Asn	Asn	Asp	Asn	Asn	1639
25	Met	Trp	Asn	Asn	Arg	Glu	Tyr	Tyr	Gly	Asn	Ser	Pro	Ser	Tyr	Ala	1650
	Gly	Gly	Tyr	Thr	Gln	Asp	Gly	Asn	Ile	His	Glu	Gln	Gln	Gln	His	1669
	Asp	Glu	Tyr	Thr	Ser	Asn	Ala	Ser	Tyr	Gly	Gly	Asn	Gln	Gly	Ala	1680
	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Gly	Leu	Arg	Val	Ala	Asn	Arg	169
	Asp	Ser	Ser	Asp	Ser	Glu	Gly	Ala	Asp	Asp	Asp	Ala	Trp	Arg	Arg	171
30	Asp	Ala	Leu	Ala	Gln	Ile	Asn	Phe	Ala	Gly	Gly	Ala	Ala	Ala	Ala	172

Ser Ala Gly Ala Pro Ala Ala Gly Ala Ser Ser Gln Pro Gly

1740

His Ala Gln

In another embodiment of the invention, there is provided an isolated nucleic acid molecule encoding a CPS1 peptide synthetase homolog and which hybridizes to a nucleic acid molecule having a sequence corresponding to SEQ ID No. 41 as follows:

	AAGAAGAAAG	GGCCGACCGA	GTTGACCGAA	ATATTGCTAG	ATAAGGAAGC	ACTGAAGCTG	60
10	AACGAAGTTG	TTGTTTTGGC	CATTGGAGAG	GAAGTGAGCA	AGCGTGTCAA	CGAACCCGGC	120
10	ACTATGAGAG	TCGGTGCTTT	TGGCTACCCG	ATACCAGATG	CGACGCTGGC	CGTCGTCGAT	180
	CCGGAAACTA	ATCTTTTGTG	TTCACCCTAT	TCCATAGGAG	AGATCTGGGT	AGACTCGCCA	240
15	TCATTGTCCG	GAGGGTTTTG	GCAGCTGCAG	AAGCACACTG	AGACTATTTT	CCACGCTCGG	300
	CCATATCGTT	TCGTAGAGGG	CAGCCCAACC	CCGCAACTAC	TCGAACTGGA	GTTTCTACGC	360
20	ACTGGACTGC	TCGGATGCGT	GGTAGAAGGC	AAAATCTTCG	TATTAGGCCT	GTACGAGGAC	420
20	CGGATTAGGC	AGCGCGTTGA	ATGGGTAGAG	CACGGTCAGC	TAGAAGCCGA	ACATAGGTAT	480
	TTCTTCGTGC	AGCATCTTGT	CACCAGCATT	ATGAAAGCTG	TTCCAAAGAT	TTACGACTGG	540
25	TAAGTGCTAT	CGAATCTCTG	GGTAATCAAC	CTAACATTGC	GCAGCTCGTC	TTTCGATTCC	600
	TATGTCAACG	GCGAATACTT	ACCAATCATC	CTTATCGAGA	CACAGGCCGC	ATCAACTGCT	660
20	CCCACAAATC	CAGGCGGGCC	ACCACAACAA	CTTGACATTC	CTTTCCTAGA	CTCTCTTTCT	720
30	GAGCGATGTA	TGGAGGTACT	GTATCAAGAA	CACCACCTTC	GGGTGTATTG	TGTGATGATC	780
	ACTGCACCGA	ACACACTCCC	GCGAGTCATC	AAGAACGGTC	GACGAGAAAT	TGGAAACATG	840
35	CTTTGCCGGA	GAGAATTTGA	CAATGGCTCG	CTACCCTGCG	TTCACGTCAA	GTTTGGCGTC	900
	GAGAGGTCGG	TCCAGAATAT	TGCGCTAGGT	GATGACCCTG	CTGGCGGCAT	GTGGTCTTAC	960
	GAGGCGTCGA	TGGCACGCCA	GCAGTTCCTG	ATGCTTCAAG	ATAAGCAGTA	CTCTGGAGTA	1020
40	GATCACAGAG	AAGTCGTTAT	TGACGACAGA	ACGTCGACGC	CGCTCAACCA	GTTCTCCAAC	1080
	ATTCATGACC	TTATGCAATG	GCGCGTACAA	CGACAAGCTG	AAGAGCTCGC	CTACTGCACG	1140
45	GTAGATGGTC	GAGGTAAAGA	GGGCAAAGGC	GTCAACTGGA	AGAAGTTCGA	CCAGAAGGTC	1200
	GCAGGTGTCG	CCATGTACCT	GAAGAACAAG	GTCAAGGGTC	AGACTGGTGA	CCACCTGCTC	1260
	TTGATGTAC	CCCACTCGGA	AGACTTTGTC	TATGCCGTAC	ACGCGTGTTT	CGTCCTTGGA	1320
50	GCTGTGTGT	TACCCATGG	ACCAATCGAC	CAGAACAGGC	TAAATGAAGA	CGCGCCCGCA	1380
	CTACTACATA	TCATTGCTG	CTTCAAGGT	AAGGCTATCC	TCGTCAATG	TGGCGTAGAC	1440
55	CACCTGATG	A AGGTCAAGCA	AGTATCGCAC	CACATCAAAC	AGTCAGCAGT	CATTCTCAAG	1500
	ATCAACGTAC	C CGAATACCT	A TAACACCACA	AAACCACCTA	AGCAGTCTAG	TGGTTGCCGC	1560

45

50

	GATCTTAAGC	TCACAATACG	ACCTGCTTGG	ATACAATCTG	GTTTCCCTGT	TCTAGTATGG	1620
	ACATACTGGA	CACCTGACCA	GAGACGCATA	GCTGTGCAAT	TAGGTCATAG	CCAAATCATG	1680
5	GCGCTATGCA	AAGTTCAGAA	AGAAACGTGC	CAGATGACGA	GCACACGGCC	CGTCCTTGGA	1740
	TGTGTTCGTA	GCACGATCGG	TCTTGGCTTC	ATACACACCT	GTGTTATGGG	TATCTTCCTC	1800
10	GCAGCGCCAA	CTTACCTTGT	GTCACCTGTC	GATTTTGCGC	AAAACCCGAA	CATCCTCTTC	1860
10	CAGACCATGT	CGAGATACAA	GATCAAGGAC	GCGTATGCGA	CCAGCCAAAT	GCTGGACCAC	1920
	GCTATTGCAC	GAGGTGCTGG	CAAGAACATG	GCTCTGCACG	AGCTCAAGAA	CCTCATGATC	1980
15	GCGACTGACG	GTCGGCCGCG	CGTAGACGTC	TGTAAGTGTT	GCGATCCTGT	ATAAGCATCT	2040
	GAAATCTAAT	TCTTGATAGA	CCAGCGTGTG	CGAGTACACT	TCTCGCCAGC	AAGTTTGGAC	2100
20	CGAACGCCAA	TCAATACTGT	TTACTCACAC	GTACTGAATC	CTATGGTCGC	ATCGCGGTCA	2160
20	TACATGTGCA	TCGAACCCAT	AGAACTACAT	CTCGATGTCG	GTGCCCTTCG	AAGAGGTCTC	2220
	ATCATGCCTG	TCGACCCAGA	CACGGAACCT	GGTGCTCTCT	TAGTCCAGGA	CTCGGGTATG	2280
25	GTACCAGTTA	GTACACAAAT	TTCAATCGTG	AATCCAGAGA	CAAACCAGCT	TTGCCTAGTC	2340
	GGCGAGTATG	GCGAAATCTG	GGTCCAACC				2370

Preferably, the CPS1 nucleic acid molecule which hybridizes to a

nucleic acid molecule having a sequence as set forth in SEQ ID No. 41 is from the
plant pathogen Altenaria solani. In another preferred embodiment, the CPS1 gene
is from a plant pathogen such as Alternaia alternatherae, A. alternata, A.
amaranthi, A. araliae, A. brassicae, A. brassicicola, A. camelliae, A. cassiae, A.
cheiranthi, A. cinerariae, A. gossypii, A. helianthi, A. helianthinficiens, A. mali,
or A. raphani.

The peptide synthetase product of SEQ ID NO:41 has a deduced amino acid sequence as follows (SEQ ID NO:42):

KKKGPTELTE	ILLDKEALKL	NEVVVLAIGE	EVSKRVNEPG	TMRVGAFGYP	IPDATLAVVD	60
PETNLLCSPY	SIGEIWVDSP	SLSGGFWQLQ	KHTETIFHAR	PYRFVEGSPT	PQLLELEFLR	120
TGLLGCVVEG	KIFVLGLYED	RIRQRVEWVE	HGQLEAEHRY	FFVQHLVTSI	MKAVPKIYDC	180
SSFDSYVNGE	YLPIILIETQ	AASTAPTNPG	GPPQQLDIPF	LDSLSERCME	VLYQEHHLRV	240
YCVMITAPNT	LPRVIKNGRR	EIGNMLCRRE	FDNGSLPCVH	VKFGVERSVQ	NIALGDDPAG	300
GMWSYEASMA	RQQFLMLQDK	QYSGVDHREV	VIDDRTSTPL	NQFSNIHDLM	QWRVQRQAEE	360
LAYCTVDGRG	KEGKGVNWKK	FDQKVAGVAM	YLKNKVKGQT	GDHLLLMYTH	SEDFVYAVHA	420
CFVLGAVCIP	MAPIDQNRLN	EDAPALLHII	ADFKVKAILV	NAGVDHLMKV	KQVSQHIKQS	480

10

60

AVILKINVPN	TYNTTKPPKQ	SSGCRDLKLT	IRPAWIQSGF	PVLVWTYWTP	DQRRIAVQLG	540
					LVSPVDFAQN	600
					PRVDVYQRVR	660
					MPVDPDTEPG	720
ALLVQDSGMV						760

In another embodiment of the invention, there is provided an isolated nucleic acid molecule encoding a CPS1 peptide synthetase homolog and which hybridizes to a nucleic acid molecule having a sequence corresponding to SEQ ID No. 43 as follows:

CTCGAGGTTA GTAAAAGATC CCCGTTTGTT CCACAAATCT CCATCTCCCT CTCAATGCCT 60 15 TTCTTGGCGC CTCAACCCGC TATTTTGAAG ACAGTTTGTT GTTGTCGCAT GCGACCAAAA 120 ATCATCCTCT CAAGTTTTCA TCGCTGACCT GTTTCTTGGC GTAGGAAGGA GATATCACAC 180 20 AGAAAGGGTA AGCTGCTTTG CGTCCAGAGT ACTTACAATT GCTTCTCAAT TACTTACGCG 240 CCGGCAGCTA CCAAAAGCGA CGAACTCAAC TTTTCTCCCA ATTCCTCGGT GCACCTCCAC 300 CTCAGATTGC TGCTCTCGCC GAGCCTCAGT CTGGCCTACG CATACACTCG CCCGATGACT 360 25 CCGACCACCC TTCAGGCGAT GGCCATCGCG CTACCGCCTA TGCCGCTCTC GGTAGCAGCA 420 GCGGTCCAAT CCCAGATTCA CCAGACTCAC CTATGTACCG ACCGCACTCT GGTTATGCTC 480 30 CTTCAGAATC ACCAAGACCT TCTCCAGCAC AACCTCCACC TTCCCTGCTG CGCCCGGGGG 540 GTTCTCTCGC TGGAGGATCG ACCACTGCTC ACCGCGACTC CCTCTTCTTC TCCCCCTCCC 600 ATCTCGAACC TGAAACCCGG ACAGGTACTA TGATGTCGGG CGACTATGCA TTCAGACCCG 660 35 AGCAGCAAGG CACATATGGC GAATCCCAGC ATCAACAGCA CCAGTTCCAG CAACAGCAAC 720 AGCCACAGCA GCAACAGCAG TACGATGGGC AGCAGTATGA TGGACGAACT ACAACGCTTC 780 40 TCGATTCGCA AGGATACTTT TCGGATTTTG CGGGACAGCA GCACTATGAT CAGACTCAAA 840 CCGTTGAGTA TGTGGGACCT CAGCAGCGGT ATTCTTCCAG CGATGCATTC TCTCCAACCG 900 CCGCAATGGC ACCTCCAATG CTTACAACCA ACGACCTCCC ACCGCCGGAA GCGCTTGAGT 960 45 ACCAGCTGCC CCTTGACCCT CGCGAGGTAC CATTCGCTAT TCAAGATCCC CATGATGATT 1020 CTACGCCAAT GTCAAAGTTC GATAACATCG CAGCTGTACT CAGACATAGA GGCCGAACGA 1080 50 TTGCTAAGAA GCCGGCATAC TGGGTGTTGG ATAGTAAGGG CAAGGAGATT GCATCGATTA 1140 CGTGGGATAA GCTGGCATCT AGAGCCGAAA AGGTTGCGCA AGTCATCCGC GACAAAAGCT 1200 CTCTGTACCG GGGTGATCGG GTTGCTCTCA TCTACCGCGA TTCAGAGGTT ATTGATTTCG 1260 55 CCATTGCCTT GCTGGGATGC TTCATTGCTG GAGTTGTTGC CGTTCCCATC AATGATCTGC 1320 AGGACTACCA ACGCTTGAAC CACATTCTTA CTACAACGCA GGCCCATCTA GCGCTGACCA 1380

	CCGATAACAA	CCTCAAAGCC	TTTCAACGAG	ACATTACTAC	ACAAAAGTTG	ACAIGGCCAA	1440
5	AGGGTGTCGA	ATGGTGGAAG	ACAAACGAGT	TTGGCAGTTA	TCACCCCAAG	AAGAAGGAGG	1500
	ATGTCCCGGC	TTTGGTTGTT	CCCGATCTGG	CATATATCGA	GTTTTCGCGG	GCCCCAACTG	1560
	GAGACTTGAG	AGGTGTTGTT	CTGAGCCACC	GAACCATTAT	GCACCAAATG	GCTTGTCTTA	1620
10	GTGCGATTAT	TTCTACTATC	CCGGGTAATG	GACCTGGCGA	CACTTTCAAC	CCGTCTCTTC	1680
	GCGACAAGAA	TGGTCGACTT	ATTGGTGGCG	GCGCAAGCAG	CGAAATTTTG	GTGTCGTACC	1740
	TCGATCCCCG	TCAGGGCATT	GGCATGATTC	TGAGCGTGCT	ACTGACCGTC	TACGGCGGCC	1800
15	ACACCACTGT	TTGGTTCGAC	AACAAAGCTG	TTGATGTTCC	TGGACTGTAC	GCCCACCTCC	1860
	TTACCAAGTA	CAAATCGACC	ATCATGATTG	CCGACTACCC	AGGATTGAAG	CGAGCCGCCT	1920
20	ACAACTACCA	GCAAGAGCCA	ATGGTGACCC	GAAATTTTAA	GAAGGGAATG	GAGCCAAACT	1980
	TTCAAATGAT	CAAGCTTTGC	TTGATTGACA	CCTTGACTGT	AGACAGCGGG	TCCCACGAAG	2040
	TTTTGGCTGA	CCGATGGCTA	CGACCGTTGA	GAAACCCTCG	TGCCCGTGAG	GTTGTCGCAC	2100
25	CTATGCTTTG	TCTACCTGAA	CACGGAGGCA	TGGTGATTAG	TGTGCGTGAC	TGGCTAGGAG	2160
	GAGAAGAGCG	CATGGGATGC	CCATTAAAGC	TTGAACTTGG	GGAGGATACA	GAGTCTGACG	2220
20	AAGAGAAAGA	GGAAACAGAG	AAGCCAGCAG	TTTCCAATGG	CTTTGGTAGT	CTCTTGTCAG	2280
30	GTGGTGGCAC	AGCAACAACC	GAAGAGAGGG	CAAAGAATGA	GCTTGGCGAA	GTCCTTTTGG	2340
	ATCGTGAGGC	TCTAAAGACC	AACGAAGTTG	TGGTGGTGGC	CATAGGTAAC	GATGCCCGTA	2400
35	AAAGGGTGAC	GGATGACCCA	GGCTTGGTAC	GGGTCGGTTC	TTTTGGATAC	CCCATACCCG	2460
	ATGCCACACT	CTCCGTCGTC	GATCCAGAAA	CGGGTTTACT	GGCGTCACCA	CATTCCGTGG	2520
40	GTGAAATCTG	GGTCGACTCC	CCTTCTCTTT	CAGGTGGTTT	CTGGGCGCAG	CCAAAGAATA	2580
70	CTGAGCTGAT	TTTCCATGCT	CGTCCTTACA	AGTTTGACCC	AGGTGATCCT	ACACCGCAGC	2640
	CCGTCGAGCC	CGAATTCCTG	CGAACAGGCT	TGCTGGGCAC	CGTCATCGAG	GGTAAAATCT	2700
45	TTGTTCTGGG	CCTTTACGAA	GACCGAATTC	GACAAAAGGT	TGAGTGGGTT	GAGCATGGAC	2760
	ACGAACTAGC	AGAGTACCGC	TACTTCTTTG	TTCAGCACAT	CGTTGTGAGC	ATTGTCAAGA	2820
50	ACGTTCCAAA	GATATACGAT	TGTTCAGCCT	TTGACGTCTT	TGTCAATGAC	GAACACCTGC	2880
30	CAGTCGTGGT	GCTGGAGTCA	GCAGCTGCGT	CAACGGCACC	ATTGACATCT	GGAGGACCTC	2940
	CTCGACAACC	GGATACAGCT	CTGCTAGAGT	CATTGGCTGA	GCGCTGCATG	GAGGTTCTCA	3000
55	TGTCAGAGCA	TCATCTGAGA	CTGTACTGCG	TTATGATCAC	AGCACCCGAC	ACTTTGCCTC	3060
	GAGTTGTTAA	GAACGGACGA	CGCGAAATTG	GTAACATGCT	TTGCCGTCGG	GAGTTTGATC	3120
60	TCGGCAACCT	TCCATGTGTG	CACGTCAAGT	TTGGCGTGGA	GCATGCAGTA	CTTAACCTCC	3180
	CTATTGGTGT	AGACCCTATA	GGTGGTATCT	GGTCACCGTT	GGCGTCCGAT	TCTCGTGCCG	3240
	AATTCTTATT	GCCAGCTGAC	AAGCAATACT	CTGGTGTCGA	CAGGCGCGAA	GTCGTTATCG	3300
65	ATGACCGTAC	TTCAACGCCC	CTAAACAATT	TCTCTTGCAT	TTCGGATCTT	ATCCAATGGC	3360

	GCGTGGCCCG	TCAACCAGAA	GAGCTAGCGT	ACTGCACAAT	CGATGGCAAA	AGCCGAGAAG	3420
5	GTAAGGGTGT	AACATGGAAG	AAATTCGACA	CCAAGGTCGC	TTCCGTTGCC	ATGTACCTGA	3480
	AGAACAAGGT	CAAGGTGAGG	CCGGGAGACC	ACATCATCCT	CATGTACACA	CATTCAGAGG	3540
	AGTTTGTCTT	TGCCATCCAT	GCCTGCATTT	CCTTGGGCGC	AATTGTCATT	CCCATCGCAC	3600
10	CCCTCGACCA	GAACCGATTG	AACGAAGATG	TCCCAGCTTT	CCTGCATATT	GTATCTGATT	3660
	ACAACGTCAA	GGCTGTGCTG	GTCAACGCTG	AGGTCGATCA	TCTAATCAAG	GTAAAGCCTG	3720
	TGGCTAGCCA	TATCAAACAG	TCAGCCCAGG	TTCTCAAGAT	CACGAGCCCT	GCCATCTACA	3780
15	ACACAACTAA	GCCGCCAAAG	CAAAGTAGTG	GATTGAGGGA	TTTGAGATTC	ACCATTGACC	3840
	CTGCCTGGAT	TCGGCCTGGC	TACCCCGTCA	TTGTTTGGAC	TTATTGGACC	CCCGATCAAC	3900
20	GACGAATTTC	AGTTCAGCTT	GGACATGACA	CCATTATGGG	CATGTGCAAG	GTTCAAAAGG	3960
	AAACTTGCCA	AATGACAAGT	TCAAGACCTG	TGCTTGGATG	TGTACGAAGC	ACGACTGGCC	4020
	TAGGCTTTAT	TCATACGGCT	CTGATGGGAA	TTTATATCGG	AACACCAACC	TACCTCCTAT	4080
25	CACCTGTCGA	GTTTGCAGCC	AACCCCATGT	CTCTATTCGT	CACCTTGTCG	AGATACAAGA	4140
	TTAAGGATAC	TTATGCGACA	CCACAGATGC	TTGATCATGC	CATGAACTCC	ATGCAGGCCA	4200
30	AGGGCTTTAC	ACTTCATGAA	CTTAAGAACA	TGATGATCAC	TGCCGAGAGC	CGACCAAGAG	4260
	TTGATGTTTT	CCAAAAGGTC	AGACTTCACT	TTGCTGGGGC	TGGGCTCGAT	AGAACTGCTA	4320
	TTAACACGGT	CTATTCGCAT	GTCCTCAACC	CCATGGTAGC	GTCGCGATCT	TATATGTGCA	4380
35	TCGAGCCTAT	TGAGCTTTGG	TTGGACACGC	AAGCGCTTCG	ACGTGGTCTG	GTTATTCCTG	4440
	TGGACCCTGA	ATCAGATCCT	CTGGCCCTAC	TGGTACAGGA	CAGCGGTATG	GTTCCAGTTT	4500
40	CAACCCAAAT	AGCCATCATC	AACCCTGAAA	GCAGAATACA	CTGCCTCGAT	GGTGAGTATG	4560
	GTGAAATTTG	GGTCGACTCT	GAAGCCTGCG	TCAAGTCATT	CTATGGCTCC	AAAGACGCTT	4620
	TTGACGCTGA	GCGCTTTGAT	GGCCGAGCTC	TTGACGGCGA	TCCCAACATT	CAGTATATCC	4680
45	GTACCGGAGA	CTTGGGTTTC	CTTCATAATG	TTAGTCGACC	TATTGGCCCT	AATGGTGCCC	4740
	AGGTGGACAT	GCAAGTGTTG	TTTGTTCTCG	GCAACATTGG	CGAGACTTTT	GAGATCAACG	4800
50	GATTGAGCCA	TTTCCCAATG	GATATTGAGA	ACTCGGTGGA	AAAATGCCAC	AGAAACATTG	4860
	TGGCGAATGG	CTGGTAAGTA	TAAAATCTCT	ATTTGAAGCG	AATATGCTAA	CAAAGTCAGT	4920
	GCGGTGTTCC	AAGCTGGTGG	CTTGGTGGTT	GTTCTGGTTG	AAGTCAACCG	CAAGCCATAC	4980
55	CTGGCATCGA	TTGTTCCCGT	CATTGTCAAC	GCTATCCTCA	ATGAACACCA	AATCATTGTA	5040
	GATATCGTCG	CATTCGTCAA	CAAGGGAGAC	TTCCCACGGT	CTCGTCTAGG	AGAGAAGCAG	5100
60	CGTGGCAAGA	TTCTTGGTGG	CTGGGTTAGT	AGAAAGCTGA	GGACTCTTGC	CCAGTTCTCG	5160
	ATTCGCGATA	TGGACGCCGA	ATCCACAGCT	GGTGATATGA	TGGATCCTTC	TAGAGCATCA	5220
	ATGGTCAGCG	TACGAAGCGG	AGGCGGTGCT	GCTCCCGGAT	CTTCTAGTTT	GAGGAATGTC	5280
65	GAACCTGCGC	CTCAAATCTT	GGAGGAGGAA	CATGACCAGA	TGACTCCTCG	TCACGAATAC	5340

30

	GAAGCAGCCC	CTACCATGAT	TTCTGAACTT	CCCGACGGCC	AAGAGACACC	GACAGGGTTT	5400
	CAGCACTCGC	AATACGAACA	CCCACCACAA	TCAGCCGGTT	CTCAAGCACC	AGCCCAGCTG	5460
5	AACCTTTCTC	ACCAGCCCGA	TCAAGGATTC	GATATGGACT	TTTCACGATA	TAGTTCAGCA	5520
	GAGCCCGATC	ACGGCCCTGT	CCACAGACGT	CCAGTCCCAG	GCCAAGCCCA	ACAACCCGAG	5580
	CCTATGCAAG	GGTACGGTCA	AGCGCCGCCC	CAGATCCGGC	TACCAGGTGT	TGATGGACGA	5640
10	GAGGAGGGAG	GGTTCTGGTC	ACAGCAGGAA	AAGAACGAGA	AGAGTGAAGA	AGACTGGACA	5700
	ACTGATGCCA	TGATGCATAT	GAATCTGGCA	GGTGATATGA	AACCGCCACG	ATGATAATAC	5760
15	ACAACATAAG	AGCGAAGTGA	CGAAGCGGAG	TCGGAGTTGG	GAAGCATTTA	GAAACGAATA	5820
	ACAAACAATT	GGACTTGTCG	GTCTGATGGC	CTATTTACTT	CATTCATAGA	TGAGGATTGG	5880
	ATAGTGAATA	TGTGATTGGA	TAAAGCCTGG	GTTTGTGAGT	TTGTGAATGC	AGTGGGTGCT	5940
20	TGCTATAAGC	TGTTTTATTG	AGGTCTTTGG	AGGAGTGTCT	AACAAAGATG	CAAAGTTACT	6000
	AGT						6003

Preferably, the CPS1 nucleic acid molecule which hybridizes to a nucleic acid molecule having a sequence as set forth in SEQ ID No. 43 is from the plant pathogen Fusarium graminearium. In another preferred embodiment, the CPS1 gene is from a plant pathogen such as Fusarium avenaceum, F. carpineum, F. chlamydosporum, F. coccophilum, F. culmorum, F. episphaeria, F. equiseti, F. flocciferum, F. moniliforme, F. oxysporum, F. redolens, F. sambucinum, F. solani, F. subglutinans, F. trichothecioides, F. udum, or F. ventricosum.

The peptide synthetase product of SEQ ID NO:43 has a deduced amino acid sequence as follows (SEQ ID No. 44):

MMSGDYAFRP EQQGTYGESQ HQQHQFQQQQ QPQQQQQYDG QQYDGRTTTL LDSQGYFSDF 60 35 AGQQHYDQTQ TVEYVGPQQR YSSSDAFSPT AAMAPPMLTT NDLPPPEALE YQLPLDPREV 120 PFAIQDPHDD STPMSKFDNI AAVLRHRGRT IAKKPAYWVL DSKGKEIASI TWDKLASRAE 180 KVAQVIRDKS SLYRGDRVAL IYRDSEVIDF AIALLGCFIA GVVAVPINDL QDYQRLNHIL 240 40 TTTQAHLALT TDNNLKAFQR DITTQKLTWP KGVEWWKTNE FGSYHPKKKE DVPALVVPDL 300 AYIEFSRAPT GDLRGVVLSH RTIMHQMACL SAIISTIPGN GPGDTFNPSL RDKNGRLIGG 360 45 GASSEILVSY LDPRQGIGMI LSVLLTVYGG HTTVWFDNKA VDVPGLYAHL LTKYKSTIMI 420 ADYPGLKRAA YNYQQEPMVT RNFKKGMEPN FQMIKLCLID TLTVDSGSHE VLADRWLRPL 480 RNPRAREVVA PMLCLPEHGG MVISVRDWLG GEERMGCPLK LELGEDTESD EEKEETEKPA 540 50 VSNGFGSLLS GGGTATTEER AKNELGEVLL DREALKTNEV VVVAIGNDAR KRVTDDPGLV 600 RVGSFGYPIP DATLSVVDPE TGLLASPHSV GEIWVDSPSL SGGFWAQPKN TELIFHARPY 660 WO 01/38489 PCT/US00/32227

- 37 -

	KFDPGDPTPQ	PVEPEFLRTG	LLGTVIEGKI	FVLGLYEDRI	RQKVEWVEHG	HELAEYRYFF	720
5	VQHIVVSIVK	NVPKIYDCSA	FDVFVNDEHL	PVVVLESAAA	STAPLTSGGP	PROPDTALLE	780
J	SLAERCMEVL	MSEHHLRLYC	VMITAPDTLP	RVVKNGRREI	GNMLCRREFD	LGNLPCVHVK	840
	FGVEHAVLNL	PIGVDPIGGI	WSPLASDSRA	EFLLPADKQY	SGVDRREVVI	DDRTSTPLNN	900
10	FSCISDLIQW	RVARQPEELA	YCTIDGKSRE	GKGVTWKKFD	TKVASVAMYL	KNKVKVRPGD	960
	HIILMYTHSE	EFVFAIHACI	SLGAIVIPIA	PLDQNRLNED	VPAFLHIVSD	YNVKAVLVNA	1020
15	EVDHLIKVKP	VASHIKQSAQ	VLKITSPAIY	NTTKPPKQSS	GLRDLRFTID	PAWIRPGYPV	1080
13	IVWTYWTPDQ	RRISVQLGHD	TIMGMCKVQK	ETCQMTSSRP	VLGCVRSTTG	LGFIHTALMG	1140
	IYIGTPTYLL	SPVEFAANPM	SLFVTLSRYK	IKDTYATPQM	LDHAMNSMQA	KGFTLHELKN	1200
20	MMITAESRPR	VDVFQKVRLH	FAGAGLDRTA	INTVYSHVLN	PMVASRSYMC	IEPIELWLDT	1260
	QALRRGLVIP	VDPESDPLAL	LVQDSGMVPV	STQIAIINPE	SRIHCLDGEY	GEIWVDSEAC	1320
25	VKSFYGSKDA	FDAERFDGRA	LDGDPNIQYI	RTGDLGFLHN	VSRPIGPNGA	QVDMQVLFVL	1380
23	GNIGETFEIN	GLSHFPMDIE	NSVEKCHRNI	VANGCAVFQA	GGLVVVLVEV	NRKPYLASIV	1440
	PVIVNAILNE	HQIIVDIVAF	VNKGDFPRSR	LGEKQRGKIL	GGWVSRKLRT	LAQFSIRDMD	1500
30	AESTAGDMMD	PSRASMVSVR	SGGGAAPGSS	SLRNVEPAPQ	ILEEEHDQMT	PRHEYEAAPT	1560
	MISELPDGQE	TPTGFQHSQY	EHPPQSAGSQ	APAQLNLSHQ	PDQGFDMDFS	RYSSAEPDHG	1620
35	PVHRRPVPGQ	AQQPEPMQGY	GQAPPQIRLP	GVDGREEGGF	WSQQEKNEKS	EEDWTTDAMM	1680
رر	HMNI.AGDMKP	PR					1692

In another embodiment of the invention, there is provided an isolated nucleic acid molecule encoding a CPS1 peptide synthetase homolog and which hybridizes to a nucleic acid molecule having a sequence corresponding to SEQ ID No. 45 as follows:

40

45

50

55

60

AAAAAGAAGG GGCCTACGGA GTTGACCGAG ATATTGCTAG ATAAGGAAGC GCTCAAGATG 60 AACGATGTTG TGGTCCTTGC AATAGGAGAA GAGGCCAGTA AACGTGCGAA TGAGCCTGGC 120 ACAATGCGAG TTGGCGCTTT TGGATACCCA ATACCAGATG CGACGCTAGC CGTCGTAGAT 180 CCAGAGACGA ATCTCTTGTG TTCACCCTAC TCGATAGGAG AGATTTGGGT AGACTCACCT 240 TCATTGTCTG GTGGTTTCTG GCAATTGCAG AAGCACACTG AAACTATATT TCACGCCCGC 300 CCATACCGCT TTGTGGAGGG CAGTCCTACC CCGCAGTTGC TTGAGCTTGA GTTTCTCCGG 360 ACAGGCTTAC TCGGATTCGT CGTAGAGGGC AAGGTCTTTA TCCTTGGTCT CTATGAAGAT 420 CGCATCAGGC AGCGCGTTGA ATGGGTAGAA CATGGTCAGC TGGAAGCTGA ACACAGATAC 480 TTCTTCGTGC AGCACCTCGT CACCAGTATC ATGAAGGCTG TTCCCAAGAT CTACGACTGG 540 600 TAAGTCTTCT CATGTTTTAG ATGAGCGTTC TAACACTATG CAGCTCATCT TTCGACTCGT

	ACGTCAATGG	CGAATACCTG	CCTATCATCC	TCATCGAGAC	ACAGGCTGCA	TCGACAGCCC	660
سر	CTACGAACCC	TGGTGGACCG	CCACAGCAAC	TCGACATCCC	CTTCCTAGAC	TCACTGTCTG	720
5	AGCGATGCAT	GGAAGTGTTG	TATCAAGAAC	ACCATCTGCG	AGTATACTGC	GTCATGATCA	780
	CAGCGCCAAA	CACATTACCA	CGAGTTGTTA	AGAATGGTCG	ACGAGAAATT	GGCAACATGC	840
10	TCTGTCGAAG	AGAATTTGAT	AATGGCTCAT	TACCTTGTGT	CCACGTCAAG	TTTGGTGTTG	900
	AGAGGTCAGT	TCTCAACATC	GCGTTGGGTG	ATGACCCCTC	CGGAGGCATG	TGGTCATATG	960
	AAGCCTCGAT	GGCGCGTCAG	CAGTTCTTGA	TGCTCCAAGA	CAAGCAGTAT	TCTGGAGTAG	1020
15	ATCACCGCGA	AGTCGTCATG	GATGACAGAA	CATCGACACC	TCTCAACCAA	TTCTCCAACA	1080
	TTCACGACCT	CATGCAATGG	CGCGTATCAC	GGCAGGCTGA	AGAGCTCGCA	TATTGCACAG	1140
20	TCGACGGTCG	AGGCAAAGAA	GGCAAGGGCG	TCAACTGGAA	GAAGTTCGAC	CAGAAAGTTG	1200
	CGGGTGTCGC	AATGTACCTG	AAGAACAAGG	TCAAAGTGCA	AACCGGCGAT	CATCTGCTTC	1260
26	TGATGTATAC	GCACTCGGAA	GACTTTGTAT	ATGCGGTACA	TGCATGCTTT	GTGCTTGGCG	1320
25	CTGTATGCAT	ACCAATGGCA	CCAATCGACC	AGAACCGATT	GAATGAGGAT	GCACCTGCAT	1380
	TGCTGCACAT	CCTTGCAGAC	TTCAAGGTCA	AGGCCATCCT	CGTCAATGCC	GATGTGGATC	1440
30	ATCTCATGAA	GGTCAAGCAA	GTATCGCAGC	ACATCAAACA	ATCAGCAGCC	ATCTTCAAGA	1500
	TCAACGTGCC	GCACACTTAC	AACACAACCA	AGCCACCTAA	GCAGTCGAGT	GGTTGTCGGG	1560
35	ATCTCAAGCT	CACAATACGG	CCTGCCTGGG	TACAGCCTGG	TTTCCCAGTT	CTTGTATGGA	1620
33	CATACTGGAC	TCCAGATCAA	CGCCGTATAG	CCGTACAACT	AGGTCATAGC	CAAATCATGG	1680
	CACTAGGCAA	GGTCCAGAAG	GAGACTTGTC	AAATGACAAG	TACAAGGCCA	GTCCTAGGAT	1740
40	GTGTACGGAG	TACCATCGGA	CTTGGCTTCA	TTCATACCTG	CATCATGGGC	ATCTTCCTTG	1800
	CCGCACCCAC	TTACCTCGTG	TCGCCTGTCG	ACTTTGCACA	AAATCCAAAC	ATACTCTTCC	1860
45	AGACGTTATC	AAGATACAAG	ATCAAGAATG	CGTACGCAAC	CAGTCAAATG	TTGGATCACG	1920
43	CTATTGCCCG	TGGGGCTGGA	AAGAACATGG	CCCTGCACGA	ACTCAAGAAT	CTCATGATTG	1980
	CGACTGATGG	TAGGCCGCGT	GTTGATGTTT	ACCAGAGAGT	GCGCGTACAC	TTTTCACCAG	2040
50	CAAGCTTGGA	CCGGACAGCG	ATTAACACAG	TCTACTCTCA	CGTGCTCAAC	CCAATGGTAG	2100
	CATCGCGATC	ATACATGTGC	ATCGAGCCAA	TAGAACTGCA	TCTCGACGTC	AACGCTCTTC	2160
55	GAAGAGGTCT	GATCATGCCC	GTCGACCCAG	ATACCGAGCC	TGGCGCTCTA	ATGGTCCAGG	2220
,	ACTCTGGTAT	GGTGCCAGTC	TCCACACAAA	TAGCAATTGT	GAACCCAGAG	ACAAACCAGC	2280
	TTTGCTTGGT	TGGCGAATAT	GGCGAAATCT	GGGTTCAATC	•		2320

Preferably, the CPS1 nucleic acid molecule which hybridizes to a nucleic acid molecule having a sequence as set forth in SEQ ID No. 45 is from the plant pathogen *Pyrenophora teres*. In another preferred embodiment, the CPS1

gene is from a plant pathogen such as Pyrenophora avenae, P. bromi, P. leuceienes, P. phaeocomes, P. schroeteri, P. trichostoma, or P. tritici-repentis.

The peptide synthetase product of SEQ ID No:45 has a deduced amino acid sequence as follows (SEQ ID No. 46):

KKKGPTELTE ILLDKEALKM NDVVVLAIGE EASKRANEPG TMRVGAFGYP IPDATLAVVD 60 5 PETNLLCSPY SIGEIWVDSP SLSGGFWQLQ KHTETIFHAR PYRFVEGSPT PQLLELEFLR 120 TGLLGFVVEG KVFILGLYED RIRQRVEWVE HGQLEAEHRY FFVQHLVTSI MKAVPKIYDC 180 10 SSFDSYVNGE YLPIILIETQ AASTAPTNPG GPPQQLDIPF LDSLSERCME VLYQEHHLRV 240 YCVMITAPNT LPRVVKNGRR EIGNMLCRRE FDNGSLPCVH VKFGVERSVL NIALGDDPSG 300 GMWSYEASMA RQQFLMLQDK QYSGVDHREV VMDDRTSTPL NQFSNIHDLM QWRVSRQAEE 15 360 LAYCTVDGRG KEGKGVNWKK FDQKVAGVAM YLKNKVKVQT GDHLLLMYTH SEDFVYAVHA 420 CFVLGAVCIP MAPIDQNRLN EDAPALLHIL ADFKVKAILV NADVDHLMKV KQVSQHIKQS 480 20 AAIFKINVPH TYNTTKPPKQ SSGCRDLKLT IRPAWVQPGF PVLVWTYWTP DQRRIAVQLG 540 600 HSQIMALGKV QKETCQMTST RPVLGCVRST IGLGFIHTCI MGIFLAAPTY LVSPVDFAQN PNILFQTLSR YKIKNAYATS QMLDHAIARG AGKNMALHEL KNLMIATDGR PRVDVYQRVR 660 25 720 VHFSPASLDR TAINTVYSHV LNPMVASRSY MCIEPIELHL DVNALRRGLI MPVDPDTEPG ALMVQDSGMV PVSTQIAIVN PETNQLCLVG EYGEIWVQ 758

30

35

40

As used herein, the term "nucleic acid" refers to deoxyribonucleic acid (DNA) or ribonucleic acid and polymers thereof in either a single or double stranded form. As used herein, "nucleic acid" also encompasses nucleic acids containing known analogs of naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also encompasses conservatively modified variants thereof such as degenerate codon substitutions and complementary sequences. As used herein, the term "nucleotide sequence" refers to a polymer of DNA or RNA which may be single or double stranded and may contain synthetic, non-natural, or altered nucleotide bases capable of incorporation into DNA or RNA polymers. The terms "nucleic acid", "nucleic acid molecule", "nucleic acid fragment", or nucleic acid sequence or segment", may also be used interchangeably with the terms "gene", "cDNA", "DNA" and "RNA".

Other DNA molecules of the present invention include DNA molecules that have a nucleic acid sequence which is more than 70% identical to

10

20

25

30

the nucleotide sequence of SEQ. ID. Nos. 2, 41, 43, or 45. Nucleotide sequence similarity may be determined by the BLAST program with the default parameters (Altschul et al., "Basic Local Alignment Search Tool," <u>J. Mol. Biol.</u>, 215:403-410 (1990), which is hereby incorporated by reference).

Preferred sequences include those DNA molecules which will hybridize to a nucleic acid molecule having the sequence of SEQ. ID No. 2, 41, 43, 45 or their compliments. Generally, stringent conditions are selected to be about 50°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. The T_m is dependent upon the solution conditions and the base composition of the probe, and may be calculated using the following equation:

$$T_{m} = 79.8^{\circ}C + (18.5 \times Log[Na+]) + (58.4^{\circ}C \times \%[G+C])$$

$$= (820 / \#bp \text{ in duplex})$$

$$= (0.5 \times \% \text{ formamide})$$

More preferred stringent conditions are when the temperature is 20°C below T_m, and the most preferred stringent conditions are when the temperature is 10°C below T_m. Nonspecific binding may also be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein-containing solutions, addition of heterologous RNA, DNA, and SDS to the hybridization buffer, and treatment with RNase.

Wash conditions are typically performed at or below stringency. Generally, suitable stringent conditions for nucleic acid hybridization assays or gene amplification detection procedures are assas set forth above. More or less stringent conditions may also be selected.

For the purposes of defining the level of stringency, reference can conveniently be made to Sambrook, J., E.F. Fritsch, et al. 1989 "Molecular Cloning: a Laboratory Manual, 2nd Edition, Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, at 11.45. An example of low stringency conditions is

WO 01/38489 PCT/US00/32227

-41-

4-6X SSC/0.1-0.5% w/v SDS at 37°-45° C for 2-3 hours. Depending on the source and concentration of the nucleic acid involved in the hybridization, alternative conditions of stringency may be employed such as medium stringent conditions. Examples of medium stringent conditions include 1-4X SSC/0.25% w/v SDS at ≥ 45° C for 2-3 hours. An example of high stringency conditions includes 0.1-1X SSC/0.1% w/v SDS at 60 C for 1-3 hours. The skilled artisan is aware of various parameters which may be altered during hybridization and washing and which will either maintain or change the stringency conditions. For example, another stringent hibridization condition is hybridization at 4X SSC at 65° C, followed by a washing in 0.1X SSC at 65° C for about one hour. Alternatively, an exemplary stringent hybridization condition is in 50% formamide, 4XSSC, at 42° C. Still another example of stringent conditions include hybridization at 62° C in 6X SSC, .05X BLOTTO, and washing at 2X SSC, 0.1% SDS at 62° C.

10

30

Other proteins or polypeptides of the present invention include 15 polypeptides that have an amino acid sequence having at least 75 % similarity to the amino acid sequence of at least one of SEQ. ID. No. 3, SEQ ID No. 42, SEQ ID No. 44, or SEQ ID No. 46. In a preferred embodiement of the invention, the protein or polypeptide will have at least 90% similarity with at least one of SEQ. ID No. 3, SEQ ID No. 42, SEQ ID No. 44, or SEQ ID No. 46. Protein sequence 20 similarity may be determined by the BLAST program with the default parameters (Altschul et al., "Basic Local Alignment Search Tool," J. Mol. Biol., 215:403-410 (1990), which is hereby incorporated by reference). The CPS1 protein of SEQ. ID. No. 3 has a molecular weight of about 190-200 kDa, preferably 193.2 kDa. The CPS1 protein contains two structurally similar modules, both of which are 25 similar to SafB1, the first module of saframycin synthetase B (overall 25% identity; 50% similarity) and have apparent amino-acid-activating and thiolation domains with core sequences conserved in known peptide synthetases.

The DNA molecule encoding a CPS1 protein or polypeptide of the present invention can be incorporated in cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e., not normally

WO 01/38489 PCT/US00/32227

present). The heterologous DNA molecule is inserted into the expression system or vector in proper sense orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted protein-coding-sequences. U.S. Patent No. 4,237,224 to Cohen and Boyer, which is hereby incorporated by reference, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eukaryotic cells grown in culture. Recombinant genes may also be introduced into viruses, such as vaccinia virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

5

10

15

20

25

30

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC184, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK +/or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif, which is hereby incorporated by reference), pQE, pIH821, pGEX, pET series (see Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology, vol. 185 (1990), which is hereby incorporated by reference), and any derivatives thereof. Suitable vectors are continually being developed and identified. Recombinant molecules can be introduced into cells via transformation, transduction, conjugation, mobilization, or electroporation using methods well known in the art. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, New York (1982), which is hereby incorporated by reference.

A variety of host-vector systems may be utilized to express the protein-encoding sequence(s). Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian

10

15

20

25

30

PCT/US00/32227

cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria or transformed via particle bombardment (i.e. biolistics). The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA ("mRNA") translation). Transcription of DNA is dependent upon the presence of a promoter which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eukaryotic promoters differ from those of procaryotic promoters. Furthermore, eukaryotic promoters and accompanying genetic signals may not be recognized in or may not function in a procaryotic system, and, further, procaryotic promoters are not recognized and do not function in eukaryotic cells. Similarly, translation of mRNA in procaryotes depends upon the presence of the proper procaryotic signals which differ from those of eukaryotes. Efficient translation of mRNA in procaryotes requires a ribosome binding site called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, Methods in Enzymology, 68:473 (1979), which is hereby incorporated by reference.

Promoters vary in their "strength" (i.e., their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promoters in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promoters may be used. For instance, when cloning in *E. coli*, its bacteriophages, or plasmids, promoters such as the T7 phage promoter, *trp* promoter, *rec*A promoter, ribosomal RNA promoter, the P_R and

10

30

P_L promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene. Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promoter unless specifically induced. In certain operons, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the lac operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as trp, pro, etc., are under different controls.

Specific initiation signals are also required for efficient gene transcription and translation in procaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA 15 expression vector, which contains a promoter, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in E. coli requires a Shine-Dalgarno ("SD") sequence about 7-9 bases 5' to the initiation codon ("ATG") to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may 20 be employed. Such combinations include but are not limited to the SD-ATG combination from the cro gene or the N gene of coliphage lambda, or from the E. coli tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of 25 synthetic nucleotides may be used.

The present invention also relates to anti-sense nucleic acid for essential cell proteins, such as replication proteins, which serve to render the host cells incapable of further cell growth and division. Anti-sense regulation has been described by Rosenberg et al., "Production of Phenocopies by Kruppel Antisense RNA Injection Into Drosophila Embryos," Nature, 313:703-706 (1985); Preiss et al., "Molecular Genetics of Kruppel, A Gene Required for Segmentation of the Drosophila Embryo," Nature, 313:27-32 (1985); Melton, "Injected Anti-sense

From:

Elijah Cocks

To:

cohn@psfc.mit.edu 5/29/02 3:37PM

Date: Subject:

Enlarged Volume and Decoupled Air Flow Control

Dan,

I received your voicemail message about changing the MIT case numbers for Enlarged Volume and Decoupled Air Flow Control. These cases were originally input into our system as being Continuation in Parts (CIPs) of MIT 8530 Low Power Compact Plasma Fuel Converter (hence the designations CIP2 and CIP3). It has become clear that we are no longer claiming priority to this original application with these two applications; however, we should relabel internally with whatever actual MIT Case No. you believe these cases should actually be tagged under. Do you happen to know which MIT Case No. that is?

Also, and perhaps more importantly with respect to filing the Enlarged Volume Plasmatron application, the two DOE grant numbers currently listed in the application were the ones for the MIT 8530 matter. Do you know if there are, in fact, different DOE grant numbers for whatever MIT Case No. the Enlarged Volume Plasmatron should actually be under? Do you happen to know what these DOE Grant numbers might be?

Regards, Lij

Elijah Cocks Patent Attorney Choate, Hall & Stewart Exchange Place 53 State Street Boston, MA 02109

(617) 248-4792 - Direct Dial (617) 248-5000 - Main (617) 248-4000 - Fax

E-mail: ecocks@choate.com

CC:

Pasternack, Sam

15

20

25

RNAs Specifically Block Messenger RNA Translation In vivo," Proc. Natl. Acad. Sci. USA, 82:144-148 (1985); Izant et al., "Constitutive and Conditional Suppression of Exogenous and Endogenous Genes by Anti-sense RNA," Science, 229:345-352 (1985); Kim et al., "Stable Reduction of Thymidine Kinase Activity in Cells Expressing High Levels of Anti-sense RNA," Cell, 42:129-138 (1985); Pestka et al., "Anti-mRNA: Specific Inhibition of Translation of Single mRNA Molecules," Proc. Natl. Acad. Sci. USA, 81:7525-7528 (1984); Coleman et al., "The Use of RNAs Complementary to Specific mRNAs to Regulate the Expression of Individual Bacterial Genes," Cell, 37:429-436 (1984); and McGarry et al., "Inhibition of Heat Shock Protein Synthesis by Heat-Inducible Antisense RNA," Proc. Natl. Acad. Sci. USA, 83:399-403 (1986), which are hereby incorporated by reference.

Once the isolated DNA molecules encoding the CPS1 protein or polypeptide, as described above, has been cloned into an expression system, they are ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like. In the present invention, the host cells may be from plants such as corn, oat, grass, weed, bamboo, and sugarcane.

One aspect of the present invention involves using an inhibitor of the CPS1 protein to interfere with the plant infection process in order to impart disease resistance to plants. In one mechanism, the peptide synthetase CPS1 could be inhibited by an appropriate drug, thereby causing the plants to be resistant to fungal attack. Alternatively, the CPS1 nonribosomal product could be degraded by an enzyme for which it is a suitable substrate, and, when the gene encoding this enzyme is genetically engineered into plants, the plants will become resistant to fungal attack.

In this aspect of the present invention, large numbers of

compounds can be screened for their activity as inhibitors of CPS1 protein by a
high-throughput screening assay as described in U.S. Patent No. 5,876,946 to

Burbaum et al., which is hereby incorporated by reference. Generally, a library of compounds is assayed for inhibition of an enzyme catalyzed reaction and the amounts of fluorescence bound to individual suspendable solid supports measured to determine the degree of inhibition. For example, the amount of fluorescence bound to a microbead in the presence of inhibitory compounds is greater than for non-inhibitory compounds. The amounts of fluorescence bound to individual beads are determined by confocal microscopy. Using this type of assay, inhibition can be determined of a peptide synthetase such as CPS1. For CPS1, the substrate can be amino acids (or hydroxy acids), linked at one end to the microbead and at the other end to a fluorescent label. The enzyme inhibitors can be utilized to impart fungal resistance to a variety of plants including oats, grasses, weeds, sugarcane, and corn in particular.

10

15

20

25

30

Thus, the present invention provides a method for identifying inhibitors of a CPS1 protein, wherein said CPS1 protein is a peptide synthetase of a plant pathogen. The method comprises: providing a CPS1 protein or polypeptide, contacting the protein or polypeptide with potential inhibitor compounds, determining peptide synthetase activity, and selecting compounds which decrease the peptide synthetase activity. The method is especially useful in identifying inhibitors of a CPS1 protein from plant pathogens of the genera *Cochliobolus, Alternaia, Fusarium*, and *Pyrenophora* such as those described hereinabove. Preferably, the method may be used to identify inhibitors of a CPS1 protein from *Alternaria solani*, *Fusarium graminearium*, and *Pyrenophora teres*.

Another aspect of the present invention involves using one or more of the above DNA molecules encoding a CPS1 protein or polypeptide or a gene encoding an enzyme that degrades the CPS1 N.R.P. product to transform plants in order to impart fungal resistance to the plants. This concept of pathogen-derived resistance, according to U.S. Patent No. 5,840,481 to Johnston and Sanford, which is hereby incorporated by reference, is that host resistance to a particular parasite can effectively be engineered by introducing a gene, gene fragment, or modified gene or gene fragment of the pathogen into the host. This approach is based on the fact that in any parasite-host interaction, there are certain parasite-encoded cellular functions (activities) that are essential to the parasite but not to the host

10

15

20

25

30

and that when one of the essential functions of the parasite such as survival or reproduction is disrupted, the parasitic process will be stopped. "Disruption" refers to any change that diminishes the survival, reproduction, or infectivity of the parasite. Such essential functions, which are under the control of the parasite's genes, can be disrupted by the presence of a corresponding gene product in the host which is (1) dysfunctional, (2) in excess, or (3) appears in the wrong context or at the wrong developmental stage in the parasite's life cycle. If such faulty signals are designed specifically for parasitic cell functions, they will have little effect on the host. Therefore, the procedure for making plants, for example, resistant to infection by one or more fungus involves isolating DNA coding for a gene such as CPS1 of a fungus, operably linking the DNA within an expression vector, transforming the plant cell or plant tissue with the expression vector, and growing the transformed plant cells or plant tissue in the presence of the fungus such as e.g., Cochliobolus heterostrophus, Alternaria solani, Fusarium graminearium, or Pyrenophora teres, where the CPS1 DNA is expressed as a gene product and the CPS protein disrupts the essential activity of the fungi.

Thus, the present invention provides a method of imparting disease resistance to a plant by over-expressing a CPS1 polypeptide in the plant, wherein the polypeptide has protein synthetase activity. In praticing this aspect of the invention, the plant may be any plant in which it is desired to impart disease resistance. Thus, the plant may be an agrigultural crop or ornamental plant. The plant may be herbacious or woody. The plant may be a monocot or dicot. Examples of plants which may be used in practicing the present invention, include but are not limited to, corn, oats, grasses, weeds, sugarcane. barley, wheat, rice, tomato, potato, citrus, malus, rye, cotton, brassica, cabbage, and carrot. Many other plants may also be used in the practice of the present invention. As a guideline, plants which serve as hosts for *Cochliobolus sp., Fusarium sp., Alternaria sp.*, and *Pyrenophera sp.*, may be used. Reference to host plants may be conveniently made to *Fungi on Plants and Plant Products in the United States*, David, F. Farr et al. editors, American Phytopathological Society Press, St. Paul, Minnesota, 1989.

10

15

20

25

30

In another preferred embodiment, the CPS1 peptide is from the genera Cochliobolus, Alternaria, Fusarium, or Pyrenophora. In an even more preferred embodiment, the CPS1 gene is from Cochliobolus heterostrophus, Alternaria solani, Fusarium graminearium or Pyrenophora teres.

Promoters and other regulatory regions which function in plants are well known and include e.g., constitutive promoters, inducible promoters, temporally regulated and tissue specific promoters. Examples of constitutive promters include e.g., actin, CAMV 35S, MAS, ubiquitin, rice cyclophilin, maize H3 histone, and actin 2. Examples of tissue specific promoters include e.g., leaf specific promoters such as the RuBisCo ssu, Cab (chlorophyll a/b/binding) protein, and the AldP gene promoter from rice (Kagaya et al., 1995 *Molecular and General. Genetics 248*:668-674. Examples of root specific promoters include e.g., beta tubulin (Oppenheimer et al. *Gene 63*:87, 1988), and SbPRP1 (Suzuki et al., *Plant Mol. Biol. 21*:109-119, 1993. Thus, using well known methods and widely available regulatory sequences, the skilled artisan is direct expression of a subject CPS nucleic acid molecule in a plant.

To provide regulated expression of a CPS gene of the present invention, plants are transformed with a vector which replicates in a plant cell and which have a promoter which directs expression of the CPS gene product in the plant. Methods of plant transformation are well known in the art. A vector comprising a subject nucleic acid molecule coding for a CPS gene or fragment thereof may be introduced into a plant by leaf disk transforamtion-regeneration procedure as described by Horsh et al. (1985) Science 227:1229-1231. Other methods of transformation such as protoplast culture (Horsh et al. 1984 Science, 223:496; DeBlock et al. (1984) Embo J. 2:2143; Barton et al. (1983) Cell, 32:1033) may also be used and are within the scope of this invention.

In transforming dicot plant species, plants may be transformed Agrobacterium-derived vectors such as those described in Klett et al. (1987)

Annu. Rev. Plant Physiol., 38:467. Other well known methods are available to insert the subject CPS genes into plant cells. Such alternative methods include biolistic approaches (Klein et al. 1987, Nature:327:70), electroporation,

10

15

microinjection (Potrykus and Spangenberg eds., Gene Transfer to Plants, Springer Verlag, Berlin, 1995), chemically-induced DNA uptake, the use of viruses or pollen as vectors, liposome mediated transformation, transformation using wounded or enzyme-degraded immature embryos, or wounded or enzyme degraged embryonic callus.

For transformation of monocot plant species, a number of well known methods may be used such as biolistic methods (Tang, K. W. et al. 2000, "Acta Biotechnologica. 20(2): 175-183; de-Villiers, S. M. et al., 2000, South African Journal of Plant and Soil. 17(1): 50-53) protoplast transformation, electroporation of partially permeabilized cells, and introduction of DNA using glass fibers, etc. Agrobacterium may also be used (Raineri, D. M., et al., 1990 Bio/Technology Vol. 8:33-38).

As used herein, "transformation" refers to the transfer of an exogenous nucleic acid molecule into a host cell. The nucleic acid molecule may be stably or transiently introduced into the host cell and may be maintained nonintegrated for example, as a plasmid, or alternatively, may be integrated into the host genome. The resulting transformed plant cell(s) may then be used to regenerate a transformed plant via standard methods.

The invention is further illustrated by the following examples which are not intended in any way to limit the scope of the invention. 20

EXAMPLES

Materials and Methods for Examples 2-7 EXAMPLE 1 --

Strains, Media, Crosses and Transformation. C4 (Tox1+; MAT-2) and C5 (Tox1-; MAT-1) are member of near-isogenic C. heterostrophus strains (Leach et al., 1982, which is hereby incorporated by reference). R.C4.2696 25 (Tox+; MAT-2; hygBR) is a C4-derived mutant generated using the REMI mutagenesis procedure (Lu et al., "Tagged Mutations at the Tox1 Locus of Cochliobolus heterostrophus Using Restriction Enzyme-Mediated Integration," Proc. Natl. Acad. Sci. USA, 91:12649-12653 (1994), which is hereby incorporated by reference). Strains 1301R33 (Tox-; MAT-2; hygBR), 1301R45 (Tox-; MAT-1; 30

25

30

 $hygB^R$), 1301R26 (Tox^+ ; MAT-2; $hygB^R$) are progeny of the cross C5 X R.C4.2696. Culture media, including CM (complete medium), CMX (complete medium with xylose instead of glucose), CMNS (CM with salts omitted), and MM (minimal medium) have been described, as have mating procedures (Leach et al., 1982; Turgeon et al., "Transformation of the Fungal Maize Pathogen 5 Cochliobolus heterostrophus Using the Aspergillus nidulans amdS Gene," Mol. Gen. Genet., 201:450-453 (1985), which are hereby incorporated by reference). All strains were grown at 24°C under the warm white light or black light (F40/350BL) (Sylvania Inc., Danvers, MA). Ascospore germination was done at 32°C in the dark for 3 days. REMI transformants were purified by transferring the 10 transformants from the original REMI plates to fresh CMNS medium containing hygromycin B (Calbiochem^R) at 80 ug/ml. For conidiation, stable transformants were transferred to CMX containing the same drug but at a higher concentration (120 ug/ml) to compensate for reduced drug activity due to the inhibition by the salts in the medium. Single conidia were picked up under a dissecting microscope 15 and grown on CMNS hygromycin B plates; stable colonies were then transferred to individual CMX/ hygromycin B plates. All purified transformants were stored at -70°C in CM liquid medium containing 25% of glycerol in 96-well microtiter dishes.

Bioassays. Fungal strains were grown on CMX plates (100 X 15mm) for 7-10 days at 24°C under the light for maximum conidiation. To verifiy normal T-toxin production by a race T isolate, 1.0 ml of T-toxin-sensitive E. coli (DH5a) cells were evenly spreaded on LB medium containing ampicillin (100 ug/ml) and the plates were allowed to air dry for 30 min in a laminar hood. Agar plugs bearing fungal mycelia were inoculated (upside down) onto the E. coli cell lawn and the plates were incubated at 32°C. Wild type race T and race O were used as controls for each assay plate. T-toxin-producing strains of the fungus will inhibit growth of the E. coli cells and produce halos. Tox- mutants can be distinguished from wild type by failure to produce a halo (tight) or by production of halos smaller (leaky) or larger than wild type (overproducing). All Tox- mutants were transferred to Fries medium (Pringle et al., "The Isolation of the Toxin of Helminthosporium victoriae," Phytopathology, 47:369-371 (1957),

which is hereby incorporated by reference), which optimizes toxin production, and retested. T-cytoplasm corn plants (inbred W64A) are used to verify the Toxmutants identified from the E. coli assay using the procedure described below. Mutants defective in T-toxin production fail to produce typical race T symptoms on T-corn. Pathogenicity phenotype on N-cytoplasm corn and virulence of Tox+ strains to T-cytoplasm corn were determined by a plant assay where about 3,000 transformants generated using the REMI mutagenesis procedure (Lu et al., "Tagged Mutations at the Tox1 Locus of Cochliobolus heterostrophus Using Restriction Enzyme-Mediated Integration," Proc. Natl. Acad. Sci. USA, 91:12649-12653 (1994), which is hereby incorporated by reference) were 10 screened for mutants defective in ability to cause disease on corn plants. Two week old N-cytoplasm corn plants (inbred W64A) grown in the green house (5-6 plants in one 4" X 6" pot) were inoculated with 5 ml conidial suspensions (105 conidia/ml) using a pressurized Preval Spray Gun Power Unit thin layer chromatography sprayer (Alltech Associates, Deerfield, IL), incubated in the mist 15 chamber for 24 hours (23°C) and then taken to the growth chamber (23°C, 80% humidity, 14 hours of light). The mutant phenotypes were determined by occurrence of apparent variations in disease symptom development, mainly by lesion size comparison. Mutants producing lesions smaller than wild type were retested and lengths of typical lesions from each mutant were compared with wild 20 type 7 days after inoculation and measurements were taken for statistical evaluation.

preparation, restriction enzyme digestions, gel electrophoresis and gel blot
analysis were done using standard protocols (Sambrook, et al., Molecular
Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, New York:Cold
Spring Harbor Laboratory Press (1989), which is hereby incorporated by
reference). DNA was sequenced at the Cornell DNA Sequencing Facility using
TaqCycle automated sequencing with DyeDeoxy terminators (Applied
Biosystems, Foster City, CA). pUCATPH was used for subcloning (Table 1).
Primers used for sequencing (Table 2) were designed using Primer Select
(DNASTAR Inc., LaserGene system) and synthesized by the Cornell

Oligonucleotide Synthesis Facility. Sequencing of each plasmid clone was initiated with vector-specific primers or primers designed to previously determined sequences. Sequences obtained were analyzed using the same system and nucleotide or protein database searches were performed with the BLAST program (Altschul et al., "Basic Local Alignment Search Tool," J. Mol. Biol., 215:403-419 (1990), which is hereby incorporated by reference).

Table 1. Transformation vectors and clones used

Plasmid	Length (kb) ^a	Characteristics	Reference	
pUCATPH	5.1	See Figure 29.	E: 0	
pucatph N	4.6	Cloning vector, same as pUCATPH but lacking a 420 bp NarI fragment containing the HindIII site	Figure 8	
p214B7	<u>9.2</u>	A clone containing pUCATPH recovered from the tagged site in mutant R.C4.2696 by religation of <i>Bgl</i> II-digested genomic DNA	Figure 2	
p214M1	<u>6.3</u>	As above but with MscI-digested genomic DNA	Figure 2	
p214S1	<u>9.3</u>	As above but with SacI-digested genomic DNA	Figure 2	
p214S1N	<u>3.3</u>	NarI fragment derived from 214S1 containing a 0.8 kb NarI-SacI fragment of genomic DNA ligated to pUC18	Figure 4	
p214SNP	<u>8.4</u>	Vector for targeted integration constructed by ligating <i>Hin</i> dIII-digested pUCATPH into the <i>Hin</i> dIII site of p214S1N	Figure 4	
p118BSP	<u>7.3</u>	Vector for targeted integration constructed by ligation of a 2.2 kb SacI fragment of p118B14 into the SacI site of pUCATPH	Figure 6	
p118BCS	<u>5.4</u>	Vector for targeted integration constructed by ligation of a 0.8 kb SspI fragment of p118BC4 into the SspI site of pUCATPHN	Figure 9	
p118B14	10.4	A clone recovered from the p214SNP integration site in transformant #118 by ligation of a Bg/II-digested genomic DNA fragment containing the entire vector	Figure 5	
p118BC4	<u>6.7</u>	A clone recovered from same site as above but by ligation of a <i>BcII</i> -digested genomic DNA fragment containing part of vector (214SNP) sequence	Figure 5	
p9P2	<u>7.3</u>	A clone recovered from the p118BSP integration site in transformant #9 by ligation of a <i>Pst</i> I-digested genomic DNA fragment containing pUC18	Figure 7	
p12H6	<u>8.0</u>	A clone recovered from the p118BCS integration site in transformant #12 by ligation of a <i>HindIII</i> -digested genomic DNA fragment containing the entire vector.	Figure 9	

<sup>a. An underlined kb number indicates that the plasmid carries genomic DNA
5 sequences (see related figures for details).</sup>

WO 01/38489

Table 2. Primers used for sequencing recovered genomic DNA flanking the REMI insertion site at the R.C4 2696 mutation.

Name ^a	Position ^b	Sequence ^c	Plasmid ^d	Origin ^e
MI3RMT		GCGGATAACAATTTCACACAGGA	A	pUC18
MININ		SEQ. ID. No. 4		
I. RPIb	775	AGGCCCAGCTGCTTCTCTTG	Α	214B7Trp0
		SEQ. ID. No. 5		
2. RP2	604	ACTCGGACCGGACGGAATAACAA	Α	214B7RP1
		SEQ. ID. No. 6		214B7RP2
3. RP3	119	CGGAAGGAGTGCGAACAA	Α	214B/RP2
		SEQ. ID. No. 7	A	214B7RP3
4. RP4	-232	GCTGCTTGCATCTGGTCTTG	Α	214D/IQ 3
		SEQ. ID. No. 8	Α	214B7RP4
5. RP5	-812	AGACCCAGCTGTTGCCCATTG	Α	214D/IQ 4
		SEQ. ID. No. 9	Α	214B7RP4
6. RP5b	-1215	CGGAGACGCAAAGCCTGAGA	A	2.12.12.
	1202	SEQ. ID. No. 10 TGCCAGCTGCGTCCAAGAAG	Α	214B7RP5
7. RP6	-1392	SEO. ID. No. 11	••	
0 DD7	-1839	GCTAGCATGGCCCTCACAC	Α	214B7RP6
8. RP7	-1039	SEQ. ID. No. 12		
TenC		TGTGTTGACCTCCACTAGCTC	Α	PUCATPI
TrpC		SEQ. ID. No. 13		
9. FP1	1885	CTACGGGATGCAGAGGGAAAGT	Α	214B7Trp
<i>7.</i> 111	.005	SEO, ID, No. 14		
10. FP1b	1828	GCCATGATTAGCACGATACCC	В	214B7Trp
		SEQ. ID. No. 15		
11. FP2	2028	CGCGCTGCATACAACTACCAA	В	214M1FP
		SEQ. ID. No. 16	0	214M1FP
12. FP3	2490	TGGTGGCACTACAAAGAACA	С	214141117
		SEQ. ID. No. 17	С	214S1FP3
13. FP4	2949	CAGCGTGTTGAATGGGTAGAA	C	21431113
		SEQ. ID. No. 18 CTGGGTAGATTCGCCTTCAC	С	214S1FP4
14. FP4B	2745		·	21.5
	2.42.1	SEQ. ID. No. 19 GAGCGATCAGTGCAGAACATT	С	214S1FP4
15. FP5	3421	SEQ. ID. No. 20	Ū	
16 FD6	2049	CGCTGACGTTTGACCATCTGA	С	214S1FP5
16. FP6	3948	SEQ. ID. No. 21		
17. FP7	4411	GCATATGCAACGAGTCAAA	C, D	214S1FP6
17. FF7	4411	SEQ. ID. No. 22		
18. FP8	5035	ACGGTGCACCTGTTGATA	D	118B14FI
10.110	3033	SEQ. ID. No. 23		
19. FP9	5457	ATGCGCACAATAGCCCAGTA		118BC4F
.,,,,,	•	SEQ. ID. No. 24		
20. RP48	2865	TTCAAGCAACTGTGGCGTAGG	D	214S1FP6
		SEQ. ID. No. 25	_	ODOEDO.
21. FP10	5790	GATCCTAGCGACCGCACACCAAC	F	9P2FP9
		SEQ. ID. No. 26	-	0000010
22. FP11	6327	CCTGCTGCTGGTGCTTCT	F	9P2FP10
		SEQ. ID. No. 27		

20

25

23. FP11b	6211	GAGTTGCAAATCGTGACAGC	F	9P2FP10
24. FP12	6457	SEQ. ID. No. 28 TATCAGCTGTTGTTCAATGTTCTA	F	9P2FP11
25. FP13	6854	SEQ. ID. No. 29 TGTTATCCCATTGCCATTG	F	9P2FP12
26. FP14	7400	SEQ. ID. No. 30 AAGGACGGAGATTGGTGGAG	F	9P2FP13
27. FP15	7771	SEQ. ID. No. 31 GGAGATGGCGGTGACGA	F	9P2FP14
28. FP16	8145	SEQ. ID. No. 32 GCATGGCTTGTGGAGGAC	F	9P2FP15
29. FP17	8492	SEQ. ID. No. 33 AGATTGTGGCTAGTATGGAGGTAA	F	9P2FP16
M13F40		SEQ. ID. No. 34 GTTTTCCCAGTCACGAC SEO. ID. No. 35	G	pUC18
30. RPI	8953	TACTACTAGCATACCAGCATACCT SEQ. ID. No. 36	G	9P5M13F4
31. RP2	8559	TCAACCTCGGAATACCAAGTC SEQ. ID. No. 37	G	9P5RP1

^{a. "RP" indicates reverse primer; "FP" indicates forward primer. Primers designed to genomic DNA sequences are numbered in order. For stock tube and the notebook, Primers 1-17 have a leading number "214"; 18-20 with "118"; 21-29 with "9P2" and 30-31 with "9P5". M13RMT(a M13R mutant version; there is a mutation in the polylinker of pUC18) and M13F-40 are provided by Cornell DNA Sequenceing Facility. TrpC primer site is in the pUCATPH TrpC promoter region 38 bp from Sall site with sequencing direction from Sall to KpnI.}

- b. The position of the first base of each primer corresponds to the assembled sequence (CPS1 + TES1, total 11.3 kb found in Lu's folder in the computer Yoder lab1)
 - c. Each primer sequence is given in the 5' to 3' direction
 - d. Plasmids used as templates for each sequencing reaction. A = p214B7; B = p214M1; C = p214S1; D = p118B14; E = p118BC4; F = p9P2. G = p9P5 (=9P2)
 - e. Original sequences that were used for primer design can be found in the CPS1 sequence notebook or in Shunwen Lu's folder (CPS1 sequence) in the computer Yoder lab1 under the same names as listed.

Recovery of tagged DNA from the REMI insertion site and

targeted gene disruption. Genomic DNA of mutant R.C4.2696 was digested with Bg/II, MscI (no sites in pUCATPH) or SacI (which cuts the vector once) and purified by phenol extraction and ethanol precipitation, then dissolved in TE (pH 8.0). Ligation was performed in 50 ul reaction mixture, containing 1 x T4 DNA ligase buffer with 10 mM ATP, 60 units T4 DNA ligase (New England Biolabs, Beverly, MA) and 3 ug of Bg/II-digested genomic DNA, at 14°C overnight. 10 ul of ligation mixture was used to transform 200 ul of competent DH5a cells,

10

15

20

25

30

prepared using the calcium chloride treatment (Sambrook, et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press (1989), which is hereby incorporated by reference), to ampicillin resistance. Ampicillin resistant clones were analyzed by digestion of plasmid DNA with several diagnostic restriction enzymes and clones containing the REMI vector plus flanking genomic DNA were sequenced using the vector-specific primers (M13R or TrpC). Three plasmids, p214B7, p214M1 and p214S1 (Figure 2) were recovered and used for sequencing. For targeted gene disruption in wild type, p214B7 was amplified and plasmid DNA purified by equilibrium centrifugation in CsCl-ethidium bromide gradients (Sambrook, et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press (1989), which is hereby incorporated by reference). 30 ug of plasmid DNA (linearized with BglII for double crossover integration as illustrated in Figure 3) were used to transform wild type and the transformants were purified by isolation of single conidia, assayed for pathogenicity and characterized by gel blot analysis.

Sequence extension by targeted integration and plasmid rescue.

Two overlapping cosmid clones were isolated by probing a genomic DNA library of C4 constructed on a cosmid vector, but both extended into the left region only of p214B7. To extend to the right, a chromosome walking strategy was employed (Figure 3). Three targeted gene disruption experiments (each followed by plasmid rescue) were done successively. In the first experiment, a vector was constructed as follows (see Figure 4 for details): p214S1 was digested with NarI and religated to create p214S1N, which was then digested with HindIII and ligated into the HindIII site of pUCATPH to create p214SNP for transformation of race O (C5). One transformant (Tx118) resulting from homologous integration (confirmed by gel blot analysis) was used for plasmid rescue as described above. Two new plasmids p118B14 and p118BC4 were recovered, both of which carry sequence at the 3' end but only 172 and 680 bp more than p214S1, respectively (Figure 5). To continue the walk, p118B14 was digested with SacI and ligated into the SacI site of pUCATPH to create p118BSP (Figure 6). This vector was transformed into wild type and one plasmid, p9P2 was recovered (from transformant Tx9), which extends 4.4 kb into the region 3' of p118BC4 and contains the 3' end of CPS1

(Figure 7). A third experiment was done in an attempt to recover a 15 kb XhoI fragment at the 3' end of that tagged gene. p118BCS (Figure 8) was constructed by subcloning a 0.8 kb SspI fragment into the same site of pUCATPHN. Plasmid rescue using XhoI digested-genomic DNA of a transformant (TX12) failed to recover the 15 kb XhoI fragment, but p12H6 was recovered using HindIII-digested genomic DNA of the same transformant; the genomic DNA matched that already cloned on p9P2 (Figure 9).

Characterization of the REMI mutant. EXAMPLE 2 --

5

10

20

25

30

- 1) In all culture conditions used in the lab, mutant R.C4.2696 grows just like wild type with no variations in growth rate, color and morphological features (Figure 10A). It produces normal conidia that germinate and form infection structures like wild type when induced on artificial surfaces (Figure 10B) and shows normal mating ability when crossed to wild type testers.
- No pleiotropic phenotypes associated with the mutation have been detected so far. 15
 - 2) The mutant differs from wild type in the ability to cause disease on corn plants. When tested on T-cytoplasm corn, the mutant produces race T type symptoms but the disease develops more slowly than with wild type although it produces wild type levels of T-toxin as detected in a microbial assay (Figure 11), suggesting that the reduced virulence is not related to a deficiency in the ability to produce T-toxin. This is clearer on N-cytoplasm corn where the mutant produces lesions significantly smaller than those produced by wild type (Figure 12). When the mutant was crossed to a wild type race O tester, the small lesion phenotype and ability to produce T-toxin segregated independently, indicating that mutant phenotype is not associated with the reduced fitness trait tightly linked with the Tox1 locus (Klittich et al., "Reduced Fitness Associated With Tox1 of Cochliobolus heterostrophus," Phytopathology, 76:1294-1298 (1986), which is hereby incorporated by reference). The statistical evaluation of lesion size in the race O genetic background indicates that the mutation causes 60% reduction in the fungal virulence to corn plants (Figure 13).
 - 3) The mutant phenotype is caused by a tagged, single site mutation. In crosses between the mutant and wild type testers, progeny segregated 1:1 for parental types only and all hygromycin B-resistant progeny

15

20

25

30

produced lesions similar to the mutant parent; all hygromycin B-sensitive progeny produced wild type lesions (Figure 14), indicating that a tagged mutation is responsible for the reduced pathogenicity of the mutant.

5 EXAMPLE 3 -- Cloning and sequencing of DNA flanking the REMI vector insertion site.

A total of 11.3 kb of genomic DNA surrounding the insertion site was cloned and completely sequenced (Figure 15). The sequence was derived from seven plasmid clones. The first three (p214B7, p214M1 and p214S1) were recovered from the tagged site in mutant R.C4.2696 and cover about 60 % (6.6 kb) of the entire region. The rest (p118B14, p118BC4, p9P2 and p12H6) were recovered from transformants generated using the chromosome walking strategy. DNA to the left of the insertion site (3.4 kb) was cloned on p214B7; DNA on the right (7.9 kb) was cloned on different overlapping plasmids. p9P2 carries the largest amount (4.6 kb) including genomic DNA on p12H6 (Figure 15).

EXAMPLE 4 -- Identification of CPS1 and TES1 at the sequenced region.

Analysis of the combined sequences revealed two open reading frames (ORFs). ORF1(5.4 kb) starts 576 bp upstream of the REMI vector insertion site and ends with an in-frame stop codon (TAG) 3029 bp from the end of the sequenced region in the right flank (Figure 15). No "TATA" box-like element is found in the expected position, but five putative "CAAT" boxes are located upstream of the start codon (ATG), three of them are in the range found in most filamentous fungal promoters (60-200 bp) (Gurr et al., 1987, which is hereby incorporated by reference). Sequence around ATG of ORF1 (CACCATGCT (SEQ. ID. No. 38)) is similar to the fungal consensus (CACCATGGC (SEQ. ID. No. 39)). Although there are several ATGs found upstream, they are less likely to be used as a start codon because the surrounding sequences lack similarity to the consensus. Three putative introns are identified by their conserved 5' and 3' border sequences and potential branch sites (Table 3). Splicing these introns eliminated stop codons which would otherwise interrupt the 5.4 kb open reading frame. Three introns have similar size (45-53 bp respectively) which is in the range of intron size determined from most fungal genes. A putative

polyadenylation signal (ATAA) is found 223 bp downstream of the translation termination site. The G+C content of ORF1 is 51.5%, which is similar to most Cochliobolus genes (Turgeon et al., "Cloning and Analysis of the Mating Type Genes from Cochliobolus heterostrophus," Mol. Gen. Gene., 238(1-2):270-284 (1993); VanWert et al., "Structure of the Cochliobolus-heterostrophus Glyceraldehyde-3-Phosphate Dehydrogenase Gene," Curr. Genet., 22(1):29-35 (1992); Yang et al., "A Polyketide Synthase is Required for Fungal Virulence and Production of the Polyketide T-Toxin," Plant Cell, 8(11):2139-2150 (1996); Rose et al., "A Decarboxylase Required for Polyketide Toxin Production and High Virulence by Cochliobolus heterostrophus," 8th Int. Symp. Mol. Plant-Microbe 10 Int., Knoxville, p. J-49 (1996), which are hereby incorporated by reference). Interestingly, ORF1 is flanked by two regions of G+C rich DNA. The first (1.4 kb, 60.7% G+C) is found between ORF1 and ORF2; the second (1.2 kb, 60.3% G+C) is found 1.8 kb downstream of the stop codon of ORF1 (Figure 16). Database searches using the translated protein sequence of ORF1 revealed high 15 similarity to SafB, one of the multifunctional enzymes catalyzing the biosynthesis of the cyclic peptide antibiotic saframycin Mx1 produced by the bacterium Myxococcus xanthus (Pospiech et al., "Two Multifunctional Peptide Synthetases and an O-methyltransferase are Involved in the Biosynthesis of the DNA-Binding Antibiotic and Antitumour Agent Saframycin Mx1 from Myxococcus xanthus," 20 Microbiology, 142(4):741-746 (1996), which is hereby incorporated by reference). The entire nucleotide sequence of ORF1 (designated CPS1) is given in Figure 17.

Table 3. Characteristics of putative introns in CPS1 and TES1

25

Gene	Intron	Size(bp)	Location	5'Border	3'Border	Branch Site
CPSI	1	45	3060-3105	GTAAGT	TAG	GTCTAAC
· · · ·	II	51	4532-4582	GTAAGT	CAG	TGCTAAC
	III	53	5187-5239	GTACGT	CAG	TACTAAC
TES1	I	49	528-566	GTAAGT	TAG	CCTTAAG
Consensus				GTA ^A /CGT	T _{/CAG}	YNCTAAC

* Y = Pyrimidine (T or C); N = purine or pyrimidine.

ORF2 starts about 1.6 kb upstream of the start codon of CPS1 and is transcribed in the opposite direction (Figure 15). No "TATA" box-like element 5 and CAAT box are found; instead, an AT-rich sequence "AAAACTAT" (SEQ. ID. No. 40) is located 11 bp upstream of the start codon ATG and a CT motif is found in the -30 region, which is characteristic of a number of fungal genes that lack a CAAT box in their promoter region (Gurr et al., "The Structure and Organization of Nuclear Genes of Filamentous Fungi," in Kinghorn, ed., Gene 10 Structure in Eukaryotic Microbes, Vol. 22, published by the Society for General Microbiology, Oxford, England: IRL Press, pp. 93-140 (1987), which is hereby incorporated by reference). The sequence around ATG matches perfectly fungal gene consensus. A putative intron (50 bp) is found in the middle of ORF2 with conserved 5' and 3' border sequences and a potential branch site (Table 3). A 15 putative polyadenylation signal (AAATA) is found 189 bp downstream of the translation stop codon TGA. The G+C content of ORF2 is 55.5%, which is slightly higher than the normal range because the 5' end of ORF2 is located in the region of G+C rich DNA upstream of ORF1 (Figure 16). Database search revealed that ORF2 encodes a protein with high similarity to Homo sapiens 20 thioesterase II (hTE, Liu et al., "Binding of HIV-1 Nef to a Novel Thioesterase Enzyme Correlates with Nef-Mediated CD4 Down-Regulation," J. Biol. Chem., 272(21:13779-13785 (1997), which is hereby incorporated by reference) and E. coli thioesterase II encoded by the tesB gene (Naggert et al., "Cloning, Sequencing and Characterization of Escherichia-coli Thioesterase II," J. Biol. 25 Chem., 266(17)11044-11050 (1991), which is hereby incorporated by reference). The nucleotide sequence of ORF2 (designated TES1) is given in Figure 18.

EXAMPLE 5 -- Modular structure of CPS1.

30

Predicted CPS1 protein (1743 amino acids, M_r 193235) contains two structurally similar modules, both of which are similar to SafB1, the first module of saframycin synthetase B (overall 25% identity; 50% similarity) and

10

15

20

25

30

have apparent amino-acid-activating and thiolation domains but lack methyltransferase activity, thus appearing to be typical type I modules (Figure 19). The number of amino acids in each module is different: the first module (CPS1A) consists of 574 amino acids (from the first residue of core 1 to the last residue of core 6), which is larger than most type I modules; the second module (CPS1B) has 530 amino acids, which is average. The distance between the two modules is 193 amino acids, much shorter than most peptide synthetases (500-600 aa), but this distance is not highly conserved, i.e., an opposite variation is found in HC-toxin synthetase and cyclosporine synthetase, both of which have about 1,000 aa between the first and second amino-acid-activating module (Figure 20F).

Amino acid alignment of the two modules of CPS1 to SafB1 indicated that these modules are highly similar to each other in both overall amino acid composition and conserved motif sequences as defined by Stachelhaus and Marahiel (Stachelhaus et al., "Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA," J. Biol. Chem., 270(11):6163-6169 (1995); Marahiel, "Protein Templates for the Biosynthesis of Peptide Antibiotics," Chem. Biol., 4(8):561-567 (1997), which are hereby incorporated by reference). When aligned to other bacterial or fungal peptide synthetases, CPS1 only showed local similarity to cyclosporine synthetase (Weber et al., "The Peptide Synthetase Catalyzing Cyclosporine Production in Tolypocladium niveum is Encoded by a Giant 45.8-Kilobase Open Reading Frame," Current Genetics, 26(2):120-125 (1994), which is hereby incorporated by reference) and tyrocidine synthetase A (Mootz et al., "The Tyrocidine Biosynthesis Operon of Acillus brevis: Complete Nucleotide Sequence and Biochemical Characterization of Functional Internal Adenylation Domains," J. Bacteriol., 179(21):6843-6850 (1997), which is hereby incorporated by reference), but when the amino acids in motif regions were aligned, a overall conservation was observed. Both CPS1A and CPS1B have all five core sequences in the amino-acid-activating domain (Figure 20A-E). Cores 3 and 4 are well conserved except for the replacement of an aspartic acid residue of core 4 by a leucine in CPS1A. Cores 1, 2 and 5 show weak conservation, but similar variations are also seen in SafB1. A thiolation domain is found in both modules, which contains a highly conserved motif (core 6, Figure 20F). The serine residue in this motif has

10

15

20

25

30

been shown to be the active site for 4'-phosphopantetheine attachment (Schlumbohm et al, "An Active Serine is Involved in Covalent Substrate Amino Acid Binding at Each Reaction Center of Gramicidin S Synthetase," J. Biol. Chem., 266(34):23135-23141 (1991); Stein et al., "Detection of 4'-

Phosphopantetheine at the Thioester Binding Site for L-Valine of GramicidinS Synthetase 2," <u>FEBS Lett.</u>, 340(1-2):39-44 (1994), which are hereby incorporated by reference). The distances between the six core sequences in the two modules are also largely conserved. Two exceptions are found in the first module, which has 312 aa between cores 2 and 3, larger than normal (150-200); 61 between cores 5 and 6, only half of that of most peptide synthetases. SafB1 also shows distance variations at these two interval regions (Figure 20B and E). In addition to amino-acid-activating and thiolation domains, CPS1 also has an integrated thioesterase domain (TE) in the carboxy-terminal end of CPS1B (Figure 19). A signature sequence GXSXG, which is highly conserved in animal fatty acid thioesterase type II enzymes and several peptide synthetases, is found in this domain (Figure 21).

EXAMPLE 6 -- Sequence homology analysis of TES1 protein.

The predicted TES1 protein consists of 367 amino acids (*M_r* 41013). Amino acid alignment of TES1 to hTE, TESB and *Mycobacterium* tuberculosis TESB homolog (Philipp et al., "An Integrated Map of the Genome of the Tubercle bacillus, *Mycobacterium tuberculosis* H37Rv, and Comparison with *Mycobacterium leprae*," Proc. Natl. Acad. Sci. USA, 93(7):3132-3137 (1996), which is hereby incorporated by reference) showed that these proteins have an overall 40% identity and 60% similarity. A highly conserved VHS motif (putative active site) is found in the *C*-terminal region of TES1 at a conserved position (Figure 22). All these thioesterases have no sequence similarity with the previously identified animal type I or type II thioesterases known to be involved in the chain termination of fatty acid synthesis (Naggert et al., "Cloning, Sequencing and Characterization of *Escherichia-coli* Thioesterase II," J. Biol. Chem., 266(17):11044-11050 (1991), which is hereby incorporated by reference). Interestingly, TES1 has more homology to hTE than to two bacterial genes, suggesting that both proteins belong to a new family of eucaryotic thioesterases.

15

EXAMPLE 7 -- Targeted disruption of CPS1.

Disruption of either CPS1A or CPS1B restored the original mutant phenotype. Ten transformants from each of four individual disruption experiments using different constructs, including the plasmid recovered from the REMI insertion site in the mutant (p214B7) and three vectors for chromosome walking (p214SNP, p118BSP and p118BCS) were purified and assayed on N-cytoplasm corn. All transformants showed the same small lesion phenotype as that of the original REMI mutant. Gel blot analysis confirmed that all transformants showing the mutant phenotype resulted from homologous integration of the transforming vector that disrupted the wild type *CPS1* (Figures 24-26). No transformants showing the wild type phenotype were obtained, presumably because of the large genomic DNA fragments (over 800 bp in all disruption experiments) on the transforming vector that resulted from high efficiency of homologous recombination and the low chance to recover transformants with ectopic integration.

EXAMPLE 8 -- Methods and Materials for Examples 9-10

Strains, growth conditions and transformation. Strains of Cochliobolus species and relatives used for genomic DNA hybridization are listed 20 in Table 4. The strain HvW, a victorin-producing isolate of C. victoriae was recovered from storage and grown on CMX medium (Turgeon et al., "Transformation of the Fungal Maize Pathogen Cochliobolus heterostrophus Using the Aspergillus nidulans amdS Gene," Mol. Gen. Genet., 201:450-453 (1985), which is hereby incorporated by reference) for conidiation or on oat meal 25 agar medium (Churchill et al., "Victorin-Deficient REMI Mutants of Cochliobolus victoriae Demonstrate a Requirement for Victorin in Pathogenesis," Fungal Genet. Newsl., 42A:41 (1995), which is hereby incorporated by reference) for victorin detection at 24°C under warm white lights (Sylvania Inc., Danvers, MA). Transformation was done using the C. heterostrophus procedure (Turgeon et al., 30 "Cloning and Analysis of the Mating Type Genes from Cochliobolus heterostrophus," Mol. Gen. Gene., 238(1-2):270-284 (1993), which is hereby incorporated by reference).

15

20

Table 4. Detection of CPSI homologs in Cochliobolus spp and relatives

Strain	Host ^b	EcoRI digest ^c	Hybridization HindIII digest ^d	<i>BgI</i> II digest ^e
C. heterostrophus race T (C4)	Corn (Turf-13)	+	5.2 3.2	4.2
race O (C5)		+	5.2 3.2	4.2
C. carbonum	Corn ¹			
race 1 (26R13)	(hm1hm1)	+	6.6	5.0
race 2 (YugY)		N	6.6	5.0
race 3 (BZ1703)*		N	6.6	5.0
C. victoriae (HvW)	Oats (Vb)	+	N	5.0
C. sativus (A20)	Grasses ²	+	3.0	N
C. specifer (D5-7)	Grasses ²	+	N	N
C. homomorphus (ATCC 13409)	Unknown	N	5.8	N
C. dactyloctenii (7938-9)	Unknown	N	5.9	N
S. turcica (NK2)	Sorghum and maize ³	+	N	N
S. rostrata (32197)	Weeds and bamboo ⁴	+	2.8	N
B. sacchari	Sugarcane ⁵			
(764-1)		+	5.4 2.5	N
(1249-10)		N	5.4 2.5	N

a. C. = Cochliobolus. S. = Setosphaeria. B. = Bioplaris. The name of isolates (or lab strains) of each species are given in parentheses and those known to produce host-specific toxins are underlined. * Provided by Tsukiboshi Takao (Japan) and the isolate could be either BZ1209 or BZ1703.

b. Genotype susceptible to the host-specific toxin-producing isolate is given in parentheses. References for hosts of those species not mentioned in the previous chapters are as follows: 1: Welz et al., "Phenotypic Variation and Parasitic Fitness of Races of Cochliobolus-carbonum on Corn in North Carolina," Phytopathology, 83(6)593-601 (1993); Leonard et al., "Genetic Diversity in Field Populations of Cochliobolus-carbonum on Corn in North Carolina USA," Phytopathology, 80(11):1154-1159 (1990) (for races 2 and 3 only). 2: Domsch et al., "Compendium of Soil Fungi, Vol. 1," New York, New York: Academic Press, pp. 216-222 (1980). 3: David et al., "Fungi on Plants and Plant Products," St. Paul, Minnesota: APS Press, p. 635 (1989); Thakur et al., "Characterization of a New Race of Exserohilum-turcicum Virulent on Corn With Resistance Gene HTN," Plant Dis., 73(2):151-155 (1989). 4: Rao et al., "New Fungal Diseases on Some Weeds," Indian Bot. Rep., 6(1):38 (1987); Bhat et al., "Unrecorded

- Pathogen on Bamboo Causing Blight in India," <u>Curr. SCI. (BANGALORE)</u>, 58(20):1148-1149 (1989). 5: Yoder, "Toxins in Pathogenesis," <u>Ann. Rev.</u> Phytopathol., 18:103-129 (1980).
- c. Genomic DNAs (from a previously prepared gel blot filter, Rose et al., "A
 Decarboxylase Required for Polyketide Toxin Production and High Virulence by
 Cochliobolus heterostrophus," 8th Int. Symp. Mol. Plant-Microbe Int., Knoxville,
 p. J-49 (1996) were probed with the 3.4 kb CPSI fragment cloned on p214B7
 (Figure 2). "+" indicates a strong hybridization signal. All species hybridized to a large fragment (~23 kb).
- d. Genomic DNAs selected from a lab collection were probed with the CPS1 3.2 kb fragment cloned on p214S1 (Figure 2). The size of fragments that hybridized to the probe is given in kb. The intensities of hybridization signals were similar to each other. N = not done.
- e. Genomic DNAs were probed with the same *CPSI* fragment as in c. Gel blot is shown in Figure 26.

DNA manipulations and targeted disruption of the CPS1

homolog in C. victoriae. Genomic DNAs for probing were prepared according to Yoder ("Cochliobolus heterostrophus, Cause of Southern Corn Leaf Blight," in Sidhu, ed., Genetics of Plant Pathogenic Fungi, Vol. 6, San Diego, 20 California: Academic Press, pp. 93-112 (1988), which is hereby incorporated by reference), or selected from a lab DNA collection (stored at 4°C). A gel blot filter bearing known genomic DNAs was also probed. Plasmid DNA preparation, restriction enzyme digestions, gel electrophoresis, gel blot analysis were done using standard protocols (Sambrook, et al., Molecular Cloning: A Laboratory 25 Manual, 2nd Ed., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press (1989), which is hereby incorporated by reference). For probing, CPS1 fragments of C. heterostrophus cloned on p214B7 (3.4 kb left flank) and p214S1 (3.2 kb right flank) (Figure 2) were prepared by restriction enzyme digestion of the plasmid DNAs followed by purification using the QIAquick Gel Extraction 30 Kit (QIAGEN Inc., Chatsworth, CA). The plasmid p118B14, which carries the 2.2 kb Bgl II fragment of CPS1 interrupted by the hygB cassette (see Figure 5) was linearized with BgIII and introduced into HvW genome. Transformants were purified by isolation of single conidia and genomic DNAs were digested with BgIII and probed with the CPS1 3.2 kb fragment. 35

Bioassays. Pathogenicity was determined by an oat plant assay. Fungal strains were grown on individual oat meal agar medium plates (60 X 15 mm) containing hygromycin B (60 ug/ml) for 10 days at 24°C under lights.

20

25

30

Conidia were scraped from the plates and suspended in 6 ml of sterilized distilled water. One ml of conidial suspension of each strain was mixed with 60 seeds of susceptible or resistant oats. Inoculated seeds were planted in 4" X 6" pots and seedlings were allowed to grow for two weeks. Seed germination rate and symptom development were recorded at different stages (4, 6, 8 and 24 days after inoculation). Detection of victorin production using HPLC analysis was done by Alice Churchill in Dr. Vladimir Macko's lab at Boyce Thompson Institute for Plant Research.

10 EXAMPLE 9 -- Detection of CPS1 homologs.

Genomic DNAs of 12 isolates (or lab strains) of 9 fungal species hybridized to CPSI (Table 4). All 6 Cochliobolus species, including 4 known plant pathogens (C. carbonum, C. victoriae, C. sativus and C. spicifer) and 2 species with unknown hosts (C. homomorphus and C. dactyloctenii) gave hybridization signals of the same intensity as that of C. heterostrophus CPSI fragments (Figure 26, only C. carbonum and C. victoriae are shown). Two phytopathogenic Setosphaeria species and Bioplaris sacchari, a sugarcane pathogen gave a similar hybridization intensity.

CPSI homologs appear to be polymorphic among different species, i.e., all species gave one or two unique bands when BglII or HindIII digested genomic DNAs were probed (except for C. victoriae, which showed the same hybridization pattern as C. carbonum) (Table 4 and Figure 26). Interestingly, EcoRI digested genomic DNAs of the same species did not show polymorphisms; all species hybridized to a large fragment (~23 kb, Table 4), indicating the absence of an EcoRI site in all CPSI homologs as in the C. heterostrophus gene. In C. heterostrophus, a > 12 kb of genomic region which includes CPSI (5.4 kb), TESI (1.1 kb) and sequence downstream of the 3' end of CPSI has no EcoRI sites. In contrast to species-dependent polymorphisms, CPSI homologs appear to be highly conserved among different isolates of the same species. Both C. heterostrophus race T and race O hybridized to the same 4.2 kb BglII fragment (or 5.2 and 3.2 kb HindIII fragments); all three C. carbonum races hybridized to the same 5.0 kb BglII fragment (or 6.6 kb HindIII fragment) (Table 4, Figure 26) and

10

15

20

B. sacchari isolates 764-1 and 1249-10 hybridized to the same HindIII fragments (5.4 and 2.5 kb) (Table 4).

EXAMPLE 10 -- Targeted disruption of CPS1 homolog in C. victoriae.

Twenty transformants were obtained from transformation of the victorin-producing isolate HvW with BgIII-linearized plasmid p118B14 (Figure 5). Six transformants were purified and assayed for both victorin production and pathogenicity to susceptible oat plants. All transformants produced wild type levels of victorin as determined by HPLC analysis (Figure 27), but four of them (Tx7, Tx2, Tx5 and Tx8) showed dramatically reduced virulence in the plant assay. The seed germination rate on the eighth day after inoculation is only 13-25% for wild type and two transformants (Tx9 and Tx4), but 45-63% for the other four transformants. On day 24 after inoculation, all plants emerged from the seeds inoculated with wild type, Tx9 or Tx4 were killed but most (29-63%) from the seeds inoculated with Tx2, Tx7, Tx5 or Tx8 still survived (Table 5, Figure 28A). Gel blot analysis confirmed that transformants showing the reduced virulence phenotype resulted from homologous integration of the transforming vector that disrupted the wild type CPSI homolog in C. victoriae genome; transformants showing the wild type phenotype resulted from ectopic integration events that left the native gene intact (Figure 28B). All transformants remained nonpathogenic to resistant oats, indicating that disruption of the CPSI homolog does not affect host specificity of the fungus.

Table 5. Disease development of oat plants inoculated with *C. victoriae* transformants (Tx).

	No. germinated ^b		Germination	No. survivors ^d		
Strain ^a	4	6	8	Rate (%) ^c	24	%
Control-1	28	41	45	75	75	100
Control-2	40	50	50	83	50	100
Control-3	1	7	12	20	0	0
Tx2	8	26	27	45	16	59
Tx4	5	15	15	25	0	0

20

25

30

Tx5	2	24	28	47	8	29
Tx7	14	36	38	63	24	63
Tx8	7	29	29	47	13	47
Tx9	. 0	3	8	13	0	0

- a. Control-1 = uninoculated susceptible oat seeds. Control-2 and Control-3 = resistant and susceptible oat seeds inoculated with wild type *C. victoriae* (isolate HvW), respectively. Six transformants were tested on both resistant and susceptible seeds, but only data for the later are shown (all transformants gave the same results as Control-2 when tested on resistant seeds). Repeat experiments gave similar results (data not shown).
- b. Sixty oat seeds were used for each strain. Emerged oat plants were counted 4, 6 and 8 days after inoculation.
- 10 c. Calculation based on the data collected on the day 8.
 - d. Recorded on day 24 after inoculation. The percentage of survivors is based on the number of plants recorded on days 8 and 24.

EXAMPLE 11 -- Isolation of CPS1 genes from other plant pathogens

As dislosed in the previous examples, the *Cochliobolus* heterostrophus gene *CPS1* encodes a peptide synthetase that appears to be a general factor for fungal virulence to their hosts. Thus, *CPS1* has been found to be highly conserved among at least 9 fungal species belonging to 3 genera including the genus *Cochliobolus* and closely related genera *Bioplaris* and *Setosphaeria*; it has been demonstrated to be required for pathogenesis of three different plant pathogens i.e., *C.* heterostrophus race O, race T to corn and *C. victoriae* to oats (Lu, 1998, "Molecular-genetic analysis of general and specific pathogenesis factors in *Cochliobolus heterostrophus*," Ph.D thesis, Cornell University).

To further explore the role of *CPS1* in fungal pathogenesis and its conservation in other fungi, genomic DNAs of additional species in *Cochliobolus* and other closely or distantly related genera were probed with *ChCPS1* by DNA-DNA hybridization (Lu, S.-W., B. G. Turgeon and O. C. Yoder. 1999. "A gene cluster from the corn pathogen *Cochliobolus heterostrophus* required for nonribosomal peptide biosynthesis and general virulence of fungi." Fungal Genetics Conference, March 1999, Pacific Grove, California). Genomic DNAs of 40 filed isolates (or lab strains) representing 34 fungal species belonging to 16 genera hybridized when probed with *ChCPS1* (Figs. 30A-30C).

10

15

20

25

30

Fungal genomic DNAs were prepared according to a previously described procedure (Yoder, 1988. "Cochliobolus heterostrophus, cause of Southern Corn Leaf Blight". Genetics of Plant Pathogenic Fungi. G. S. Sidhu. San Diego, Academic Press. 6: 93-112). Plasmid DNA preparations, restriction enzyme digestions and preparation of DNA gel blots were performed following standard protocols (Sambrook, J., E. F. Fritsch, et al. 1989 "Molecular Cloning: A Laboratory Manual, 2nd Edition". Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press). A 3.2 kb ChCPS1 fragment (corresponding to ChCPS1 amino acids 173-1208) was obtained by restriction enzyme digestion of a plasmid clone p214S1 (Lu, 1998, Ph.D thesis), (see Figure 2), followed by purification using the QIAquick Gel Extraction Kit (QIAGEN Inc., Chatsworth, CA). The purified ChCPSI fragment was labeled with α-[32P]dCTP (Turgeon, B. G., H. Bohlmann, et al, 1993. "Cloning and analysis of the mating type genes from Cochliobolus heterostrophus." Mol. Gen. Genet. 238: 270-284.). DNA-DNA hybridization was carried out at 62° C in 6 X SSC, 0.05 X BLOTTO (Sambrook et al., 1989). Filters were washed in 2 X SSC, 0.1% SDS at 62° C for 60 minutes.

All 16 Cochliobolus species, including the known plant pathogens C. carbonum, C. victoriae, C. miyabeanus, C. sativus and C. spicifer, and five genera closely related to Cochliobolus, i.e., Pyrenophora, Setosphaeria, Bipolaris, Stemphyllium and Alternaria showed hybridization intensities comparable to that of C. heterostrophus itself (Fig. 30A).

DNAs of species from nine distantly related genera, including several of economic importance (e. g., Magnaporthe grisea, Fusarium graminearum, Gaeumannomyces graminis) or of medical importance (e. g., Candida albicans) hybridized weakly to CPS1 (FigS. 30B, 30C) whereas no signal was detected in DNA of the basidiomycete Ustilago maydis.

Three CPS1 homolog genes were cloned and characterized. Three of them were cloned from phytopathogenic fungi, including the wheat head scab fungus Fusarium graminearum (FgCPS1, 6003 bp, SEQ. No. 43), the potato early blight fungus Alternaria solani, (AsCPS1, 2369bp, SEQ. No. 41) and the barley net blotch fungus Pyrenophora teres (PtCPS1, 2306 bp, SEQ. No. 45). FgCPS1 was cloned as a full length gene using both PCR amplification and the plasmid rescue procedure that was preceded by targeted

25

30

gene disruption in the genome. AcCPS1 and PtCPS1 homologs were partially cloned by direct PCR amplification.

The Polymerase Chain Reaction (PCR) was carried out using degenerate primers designed to conserved regions of C. heterostrophus CPS1 (ChCPS1). Two sets of degenerate primers were designed to amino acids at or 5 close to conserved core sequences of C. heterostrophus CPSI (ChCPSI). The first pair of primers: 5'TGYTTYATHGCNGGN GTNGTNGCNGTNCC3' (CHFP6, corresponding to positions 493-521 of ChCPSI) and 5'YTGYTGNGGNGGNCCNCCNGGRTT3' (CHRP4, 2197-2220 of ChCPS1), was used to amplify CPS1 from Fusarium graminearum. The 10 second pair of primers: 5'-AARAARAARGGNCCNACNGAG-3' (FP4CB, corresponding to positions 1531-1550 of ChCPSI) and 5'SRYTGNA CCCADATYTCNCC3' (RP2DB, corresponding to positions 3883-3902 of ChCPS1), was used to amplify CPS1 from A. solani and Pyrenophora teres. PCR was carried out in a Perkin Elmer Cetus 9600-thermocycler with fungal 15 (Fusarium graminearium, Alternaria solani, and Pyreophora teres) genomic DNA as a template.

Reaction mixtures contained about 500 ng of genomic DNA in 100 ul of reaction buffer [1 x Ex Taq buffer, 0.2 mM dNTPs, 0.2 uM of each primer and 0.05 U/ml Takara Ex Taq (Pan Vera Corporation)]. An initial denaturing step of 95 °C for 3 min. was followed by 30 cycles of 94 °C for 1 min, 47 °C (for G. zeae) or 55 °C (for A. solni and Pyrenophora teres) for 3 min, and 72 °C for 3 min. Reactions were cooled to 4 °C after a final extension of 72 °C for 10 min. PCR products were examined (10 ul of each reaction) by agarose-gel (0.75%) electrophoresis.

DNA from isolated clones of the three different fungi was sequenced at the Cornell DNA Sequencing Facility using TaqCycle automated sequencing with DyeDeoxy terminators (Applied Biosystems, Foster City, CA). Primers used for sequencing were designed using Primer Select (DNASTAR) and synthesized by the Cornell Oligonucleotide Synthesis Facility. Sequencing of each plasmid clone was initiated with vector-specific primers or primers designed to previously determined sequences. Sequences were analyzed using MapDraw and MegAlign (DNASTAR) and nucleotide or

10

15

20

25

protein database searches were performed with the BLAST program (Altschul et al., 1990, 1997).

The FgCPSI open reading frame (5125 bp, SEQ. No. 43) has 50% nucleotide identity to ChCPSI (SEQ ID No.2) in about 4.4 kb of overlap (Fig. 2). No "TATA" box-like element was found in the 5' untranslated region, but other promoter sequences including two putative "CAAT" boxes and a "CT" motif were located upstream of the start codon (ATG) in FgCPSI (Fig. 32). Only one putative intron was found 1508 bp upstream the stop codon (TGA) in contrast to three in ChCPSI (Figs. 31A, 31B and 32). A putative polyadenylation signal "AATAA" was located 62 bp downstream of the stop codon (Fig. 32). The predicted FgCPS1 protein (1692 amino acids, $M_{\rm f}$ 187983 Da, SEQ ID No. 44) has 68% identity, 73% similarity to ChCPS1 (SEQ ID No. 3) in a about 1,500 amino acid overlap (Figs. 31A and 31B) that contains two structurally similar modules highly similar to those of ChCPS1. FgCPS1 has no significant similarity to ChCPS1 at the C-terminus, which is relatively shorter and lacks the thioeterase domain as seen in ChCPS1 (Figs. 31A and 31B). The annotated FgCPSI sequence is given in Figure 32.

AsCPS1 (2369 bp, SEQ. No. 41) has 76% nucleotide identity to ChCPS1 (SEQ ID No.2) in the entire cloned region which contains two conserved introns (Figs. 31A and B). The translated AsCPS1 protein (partial) includes 758 amino acids corresponding to amino acids 511-1269 in ChCPS1 and has up to 93% identity, 95% similarity to ChCPS1 (Fig. 2). The annotated AsCPS1 sequence is given in Figure 33.

PtCPS1 (2306 bp, SEQ. No. 45) has 78% nucleotide identity to ChCPS1 (SEQ IDNo.2) in the entire cloned region which contains only one intron (Fig. 2). The translated PtCPS1 protein (partial) includes 758 amino acids corresponding to amino acids 511-1269 in ChCPS1 and has 93% identity, 96% similarity to ChCPS1 (Fig. 2). The annotated PtCPS1 sequence is given in Figure 34.

30

EXAMPLE 12 -- Targeted disruption of CPS1 homolog in F. graminearum. A 2.2 kb Xbal fragment from pUCATPH (Lu, et al, 1994)

containing the bacterial hygmycin resistance gene (hygB) driven by the

10

15

20

25

Aspergillus nidulans trpC promoter was inserted into the Xbal site of a PCR clone pFgC8, which carries the 1.0 kb internal fragment of FgCPS1, to create pFgC8hygB. This construct was transformed (in a circular form or linearized with HindIII or BglII) into an isolate (GZ3639) of wild type F. graminearum. Twenty transformants were obtained by transformation of a wild type isolate (GZ3696) with circular plasmid pFgC8-hygB. DNA gel blot analysis of eight such transformants confirmed that the CPSI homolog in F. graminearum was disrupted by a single cross over recombination (Fig. 35A). Two transformants were obtained when the BgIII-digested pFgC8-hygB was used and only one recovered when the plasmid was digested with HindIII. Gel blot analysis indicated that all three transformants obtained using linearized plasmid integrated into the genome at a ectopic location that left the wild type FgCPS1 gene intact (Fig. 35A). For virulence assays, F. graminearum strains were grown on PDA (or PDA plus hygromycin B for transformants) plates (100 X 15 mm) for 7-15 days at 24 C under black lights (Sylvania Inc., Danvers, MA) for maximum conidiation. A susceptible spring wheat cultivar, Norm Hard Red (kindly provided by G. Bergstrom, Cornell university) was used. Two months old wheat plants grown in the greenhouse at anthesis (10 plants in one 4" X 6" pot) were sprayed with 10 ml conidial suspensions (105 or 104 conidia/ml) using a pressurized Preval Spray Gun Power Unit thin layer chromatography sprayer (Alltech Associates, Deerfield, IL) or "injected" into the spikelets (5-10 ul/ per spikelet) using a Benchmate pipettor (NICHIRYO, Japan). The inoculated plants were incubated in a mist chamber for 48 hours (23° C) and then transferred to a growth chamber (23° C, 14 hours of light). Mutant phenotypes were identified by the comparison of the number of infected or "bleached" spikelets on each head of wheat plants. Symptoms were recorded 7-10 days after inoculation. All cps 1- disruptants had reduced virulence on wheat plants in the assays while ectopic transformants caused disease symptoms indistinguishable from those of wild type (Fig. 35B).

Although the invention has been described in detail for the

purposes of illustration, it is understood that such detail is solely for that purpose,
and variations can be made therein by those skilled in the art without departing

WO 01/38489

- 73 -

PCT/US00/32227

from the spirit and scope of the invention which is defined by the following claims.

15

30

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid molecule from a plant pathogen encoding a CPS1 synthetase, wherein the nucleic acid molecule comprises a nucleotide sequence which hybridizes under stringent conditions to a nucleic acid molecule having a sequence as set forth in SEQ ID No. 41 or a complement thereof; or wherein the nucleic acid molecule comprises a nucleotide sequence as set forth in SEQ ID No. 41.
- 10 2. The isolated nucleic acid molecule according to claim 1 wherein the plant pathogen is selected from the group consisting of Alternaria solani, Alternaria Alternaia alternatherae, A. alternata, A. amaranthi, A. araliae, A. brassicae, A. brassicicola, A. camelliae, A. cassiae, A. cheiranthi, A. cinerariae, A. gossypii, A. helianthi, A. helianthinficiens, A. mali, and A. raphani.
 - 3. The isolated nucleic acid molecule according to claim 2 wherein the plant pathogen is *Alternaria solani*.
- 4. An isolated nucleic acid molecule coding for a polypeptide having the amino acid sequence as, set forth in SEQ ID No. 42.
 - 5. An isolated nucleic acid molecule comprising the nucleotide sequence as set forth in SEQ ID No. 41.
- 25 6. An isolated polypeptide encoded by the nucleic acid molecule of claim 1.
 - 7. The polypeptide according to claim 6, wherein the polypeptide has an amino acid sequence which has at least 75 % similarity to the amino acid sequence of SEQ. ID. No. 42 as determined by a BLAST program with the default parameters.

15

30

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid molecule from a plant pathogen encoding a CPS1 synthetase, wherein the nucleic acid molecule comprises a nucleotide sequence which hybridizes under stringent conditions to a nucleic acid molecule having a sequence as set forth in SEQ ID No. 41 or a complement thereof; or wherein the nucleic acid molecule comprises a nucleotide sequence as set forth in SEQ ID No. 41.
- 10 2. The isolated nucleic acid molecule according to claim 1 wherein the plant pathogen is selected from the group consisting of Alternaria solani, Alternaria Alternaia alternatherae, A. alternata, A. amaranthi, A. araliae, A. brassicae, A. brassicicola, A. camelliae, A. cassiae, A. cheiranthi, A. cinerariae, A. gossypii, A. helianthi, A. helianthinficiens, A. mali, and A. raphani.

3. The isolated nucleic acid molecule according to claim 2 wherein the plant pathogen is *Alternaria solani*.

- 4. An isolated nucleic acid molecule coding for a polypeptide having the amino acid sequence as set forth in SEQ ID No. 42.
 - 5. An isolated nucleic acid molecule comprising the nucleotide sequence as set forth in SEQ ID No. 41.
- 25 6. An isolated polypeptide encoded by the nucleic acid molecule of claim 1.
 - 7. The polypeptide according to claim 6, wherein the polypeptide has an amino acid sequence which has at least 75 % similarity to the amino acid sequence of SEQ. ID. No. 42 as determined by a BLAST program with the default parameters.

- 8. The polypeptide according to claim 7 wherein the polypeptide comprises an amino acid sequence as set forth in SEQ ID No. 42.
- 9. An isolated nucleic acid molecule from a plant pathogen encoding 5 a CPS1 synthetase, wherein the nucleic acid molecule comprises a nucleotide sequence which hybridizes under stringent conditions to a nucleic acid molecule having a sequence as set forth in SEQ ID No. 43 or a complement thereof; or wherein the nucleic acid molecule comprises a nucleotide sequence as set forth in SEQ ID No. 43.

15

- 10. The isolated nucleic acid molecule according to claim 1 wherein the plant pathogen is selected from the group consisting of Fusariumi graminearium, Fusarium avenaceum, F. carpineum, F. chlamydosporum, F. coccophilum, F. culmorum, F. episphaeria, F. equiseti, F. flocciferum, F. moniliforme, F. oxysporum, F. redolens, F. sambucinum, F. solani, F. subglutinans, F. trichothecioides, F. udum, or F. ventricosum.
 - 11. The isolated nucleic acid molecule according to claim 10 wherein the plant pathogen is *Fusarium graminearium*.

- 12. An isolated nucleic acid molecule coding for a polypeptide having the amino acid sequence as set forth in SEQ ID No. 44.
- 13. An isolated nucleic acid molecule comprising the nucleotide sequence as set forth in SEQ ID No. 43.
 - 14. An isolated polypeptide encoded by the nucleic acid of claim 9.
- 15. The polypeptide according to claim 14, wherein the polypeptide

 30 has an amino acid sequence which has at least 75 % similarity to the amino acid sequence of SEQ. ID. No. 44 as determined by a BLAST program with the default parameters.

- 76 -

- 16. The polypeptide of claim 15 wherein the polypeptide comprises the amino acid sequence as set forth in SEQ ID No. 44.
- 17. An isolated nucleic acid molecule from a plant pathogen encoding a CPS1 synthetase, wherein the nucleic acid molecule comprises a nucleotide sequence which hybridizes under stringent conditions to a nucleic acid molecule having a sequence as set forth in SEQ ID No. 45 or a complement thereof; or wherein the nucleic acid molecule comprises a nucleotide sequence as set forth in SEQ ID No. 45.

10

18. The isolated nucleic acid molecule according to claim 1 wherein the plant pathogen is selected from the group consisting of *Pyrenophora teres*, *Pyrenophora avenae*, *P. bromi*, *P. leuceienes*, *P. phaeocomes*, *P. schroeteri*, *P. trichostoma*, or *P. tritici-repentis*.

15

- 19. The isolated nucleic acid molecule according to claim 18 wherein the plant pathogen is *Pyrenophera teres*.
- 20. An isolated nucleic acid molecule coding for a polypeptide having the amino acid sequence as set forth in SEQ ID No. 46.
 - 21. An isolated nucleic acid molecule comprising the nucleotide sequence as set forth in SEQ ID No. 45.
- 25 22. An isolated polypeptide encoded by the nucleic acid of claim 17.
 - 23. The polypeptide according to claim 22, wherein the polypeptide has an amino acid sequence which has at least 75 % similarity to the amino acid sequence of SEQ. ID. No. 46 as determined by a BLAST program with the default parameters.
 - 24. The polypeptide of claim 23 wherein the polypeptide comprises the amino acid sequence as set forth in SEQ ID No. 46.

PCT/US00/32227

WO 01/38489 PC

25. A vector comprising the nucleic acid molecule of any one of claims 1-5, 9-13, or 17-21.

- 77 -

- 26. A vector according to claim 25, wherein the nucleic acid molecule is operably linked to a promoter.
 - 27. A vector according to claim 26, wherein the nucleic acid molecule is in a sense orientation.
- 10 28. A vector according to claim 26, wherein the nucleic acid molecule is in an antisense orientation.
 - 29. The vector according to claim 26, wherein the vector is capable of maintaining and expressing the nucleic acid molecule in bacterial cells.
 - 30. The vector according to claim 26, wherein the vector is capable of maintaining and expressing the nucleic acid molecule in plant cells.

15

20

25

- 31. A host cell transformed with the vector according to claim 25.
- 32. A host cell according to claim 31, wherein the host is a plant.
- 33. A host cell according to claim 31, wherein the host is selected from the group consisting of corn, oats, grasses, weeds, bamboo, and sugarcane.
 - 34. A host cell according to claim 31, wherein the host is corn.
- 35. A plant transformed with the nucleic acid molecule according of any one of claims 1-5, 9-13, or 17-21.
- 36. An isolated DNA molecule according to claim 1, wherein the nucleic acid molecule has a nucleotide sequence which is 70% identical to the

15

20

nucleotide sequence of SEQ. ID. No. 41 as determined by a BLAST program with default parameters.

- 37. An isolated DNA molecule according to claim 1, wherein the
 5 nucleic acid molecule is 80% identical to the nucleotide sequence of SEQ. ID.
 No. 41 as determined by a BLAST program with default parameters.
 - 38. An isolated DNA molecule according to claim 1, wherein the nucleic acid molecule is 90% identical to the nucleotide sequence of SEQ. ID. No. 41 as determined by a BLAST program with default parameters.
 - 39. An isolated DNA molecule according to claim 1, wherein the nucleic acid molecule has a nucleotide sequence which is 70% identical to the nucleotide sequence of SEQ. ID. No. 43 as determined by a BLAST program with default parameters.
 - 40. An isolated DNA molecule according to claim 1, wherein the nucleic acid molecule is 80% identical to the nucleotide sequence of SEQ. ID. No. 43 as determined by a BLAST program with default parameters.
 - 41. An isolated DNA molecule according to claim 21, wherein the nucleic acid molecule is 90% identical to the nucleotide sequence of SEQ. ID. No. 43 as determined by a BLAST program with default parameters.
- 42. An isolated DNA molecule according to claim 1, wherein the nucleic acid molecule has a nucleotide sequence which is 70% identical to the nucleotide sequence of SEQ. ID. No. 45 as determined by a BLAST program with default parameters.
- 30 43. An isolated DNA molecule according to claim 1, wherein the nucleic acid molecule is 80% identical to the nucleotide sequence of SEQ. ID. No. 45 as determined by a BLAST program with default parameters.

PCT/US00/32227

WO 01/38489

- 79 -

44.	An isolated DNA molecule according to claim 21, wherein the
nucleic acid	molecule is 90% identical to the nucleotide sequence of SEQ. ID
No. 45 as de	termined by a BLAST program with default parameters.

A method for identifying inhibitors of a CPS1 protein, wherein 45. 5 said CPS1 protein is a peptide synthetase of a plant pathogen, said method comprising:

> providing a CPS1 protein or polypeptide; contacting the protein or polypeptide with potential inhibitor

10 compounds;

activity.

determining peptide synthetase activity; and selecting compounds which decrease the peptide synthetase

- The method of Claim 45 wherein the CPS1 protein is from 15 46. Alternaria solani.
 - The method of Claim 45 wherein the CPS1 protein is from 47. Fusarium graminearium.

20

- The method of Claim 45 wherein the CPS1 protein is from 48. Pyrenophora teres.
- A method of imparting disease resistance to a plant, said method 49. comprising over-expressing a CPS1 polypeptide in the plant, wherein the 25 polypeptide has protein synthetase activity.
 - A method according to claim 49, wherein the plant is selected from 50. a group consisting of corn, oats, grasses, weeds, sugarcane. barley, wheat, rice, tomato, potato, citrus, malus, rye, cotton, brassica, cabbage, and carrot.
 - The method of claim 49 wherein the CPS1 polypeptide is from 51. Alternaria solani.

- 52. The method of Claim 49 wherein the CPS1 polypeptide is from Fusarium graminearium.
- 53. The method of Claim 45 wherein the CPS1 polyeptide is from 5 Pyrenophora teres.

1/51

AMINO-ACID ACTIVATING MODULES

TYPE I REPORT ABOUT 600 aa CORE SEQUENCE 1 2 3 4 5 6

TYPE II SEE SEQUENCE 1 2 3 4 5 6

DOMAINS

AMINO ACYLADENYLATE FORMATION: CORES 1-5 (CORES 2, 3, AND 4: ATP BINDING; CORE 4: ATPase; CORE 1: UNKNOWN FUNCTION)

THIOESTER FORMATION (4' PHOSPHOPANTETHEIN BINDING), CORE SEQUENCE 6 ONLY.

AMINO ACID N-METHYLATION (>400 aa)

FIG. 1A

CYCLOSPORIN A

DAIA—MeLeu—MeVal—MeVal—MeBmt—Abu—Sar—MeLeu—Val—MeLeu—Ala

MeBmt = (4R)-4-[(Ε)-2-BUTENYL]-L-THREONINE
Abu = α-AMINO BUTYRIC ACID; Sar = SARCOSINE

FIG. 1B

2/51

FIG. 2

FIG. 4

FIG. 5

FIG. 6

FIG. 7

8/51

FIG. 8

FIG. 9

FIG. 10A

FIG. 10B

11/51

FIG. 11A

FIG. 11B

SUBSTITUTE SHEET (RULE 26)

FIG. 12

FIG. 13A

STRAIN			LES	SION SIZE (n	<u>1m)</u>	
	F. 1-4	REQUE 5-8	NCY 9-12	MEAN	SD	
wt	0	52	48	8.5	1.0	A*
R45	86	14	0	3.5	0.9	В

^{*} SIGNIFICANT DIFFERENCE AT P < 0.01.

FIG. 13B

SUBSTITUTE SHEET (RULE 26)

FIG. 14A

		PARENTAL TYPE		NONPARENTAL TYPE	
CROSS	PROGENY	path hygBR	PATH hygBS	path hygBR	PATH hygBS
R.C4.2696 X C5	RANDOM SPORES	24	22	0	0
1301-R33* X C5	tetrad1	4	4	0	0
100.1100 11.00	tetrad2	4	4	0	0
	tetrad3	4	4	0	0
	RANDOM SPORES	21	22	0	0

^{*13012-}R33 (path, hygbR, Tox, MAT-2) IS A PROGENY FROM THE FIRST CROSS, CARRYING THE R.C42696 MUTATION

FIG. 14B

FIG. 14A

		PARENTAL TYPE		NONPARENTAL TYP	
CROSS	PROGENY	path hygBR	PATH hygBS	path hygBR	PATH hygBS
R.C4.2696 X C5	RANDOM SPORES	24	22	0	0
1301-R33* X C5	tetrad1	4	4	0	0
1001 1100 11 00	tetrad2	4	4	0	0
	tetrad3	4	4	0	0
	RANDOM SPORES	21	22	0	0

^{*13012-}R33 (path, hygbR, tox, MAT-2) IS A PROGENY FROM THE FIRST CROSS, CARRYING THE R.C42696 MUTATION

FIG. 14B

FIG. 16

TGCCTGCGCCTGTGCTTGTGCCTGTGGAATGTCGCGGCCCGCTGCTGCAT	- 776
AGCCTATCTGTACATACAACACCATCCCATCCCGCTTCACCTGCCTTGCC	-726
TCCCTCCTCGTGCCACACATCCGCCGCCCACAACACCATGGCTGCGACCA	-676
ACCCCGAGCTGCAGGCCAAACTGCAGGAGCTGGACCACGAGCTCGAGGAG	-626
GGCGATATTACACAAAAAGGGTCCGTACTGCTGCACCACCACCGCCATCC	-576
GCCTCTCTGCGTGCGCTAATCAGTCGCATAGCTATGAAAAACGTCGCACC	-526
GTGCTGCTGTCGCAGTATCTAGGGCCTGACTTTGCTGCCCAGTTGCAGGC	-476
CGACCTGAACCAGCAGAACCCACCCAACCATCCAGTGAGGGCTCTCGCT	-426
CCCGCACCGCATCCTTTGCTATTCCGTCCGGTCCGAGTCCATCACGGCGA	-376
CCACAACCCCCACATATCCAGCTCCCCCGCCCCGACTCATACCATGACGC	-326
TTCCGCACAGGGCCAATTGGGCGCACCCATGCCATATGCGAACGCCTCCG	-276
CCGCTGCCTCGGGGGGCTCGCAGTACATGGCATACCCGCCCAGCCAAGTC	-226
GGCCGTTTTCAAGAGAAGCAGCTGGGCCTGCGTACAAATTCGCTCCAGCG	-176
CAATTCCTCACAGCTGTCGCAAGGAAGCGAGACGTTCATTCCACGGCCTC	-126
AAACGCCTGAATACAACCACTCGCGCGAGCCCACCATGATGGGCAACTAC	-76
GCCTTCAATCCAGACAATCAGCAAAGTTATGATGGCCAATTTGGCTCTCC	-26
GGGAGAGGCCAGTCGAAGGAGCACC <u>ATG</u> CTCGAGGTAAACCAGGGTTATT M L E V N Q G Y	25
TTTCCGACTTCACAGGCCAGCAGATGCAAGACAATCGCGACTCGTATGGG	75
GGACCCAACCGCTACTCGTCGGGAGATGCCTTTTCTCCTACCGCCGCGAT G P N R Y S S G D A F S P T A A I	125
TCCACCTCCCATGATGAACCCCAACGATCTCCCCTTGGGCGCTGCTGAAA PPPMMNPNDLPLGAAE	175
CCATGATGCCGCTAGAGCCCCGCGATCTGCCTTTTGACGTTTACGACCCT	225

FIG. 17A

SUBSTITUTE SHEET (RULE 26)

18/51

275	CACAACCCCAATGTCAAAATGTCAAAGTTTGACAACATTGGCGCTGTCTT H N P N V K M S K F D N I G A V L
325	GCGTCACCGAAGTCGCACACCACAGCCAAGGACGACTGCCTTCTGGGTCCTTG R H R S R T Q P R T T A F W V L
375	ACGCAAAAGGCAAAGAGACGGCGTCCATCACCTGGGAAAAGGTGGCTAGT D A K G K E T A S I T W E K V A S
425	CGCGCGGAAAAGGTGGCCAAAGTGATTCGGGACAAGAGCAACCTCTATCG R A E K V A K V I R D K S N L Y R
475	AGGCGACCGTGTGGCATTAGTGTACAGGGATACAGAAATCATTGATTTTG G D R V A L V Y R D T E I I D F
525	TCGTGGCGTTGATGGGCTGCTTCATTGCGGGCGTTGTAGCGGTACCCATC V V A L M G COMPANY V A COMPANY POLICY CORE 1
575	AATAGCGTCGACGACTACCAGAAACTCATTCTTCTCCTAACGACAACTCA
625	AGCTCATCTCGCATTGACCACAGACAACCAATCTCAAGGCCTTTCATCGTG A H L A L T T D N N L K A F H R
675	ACATTAGTCAGAACCGTCTGAAATGGCCGAGTGGGTAGAGTGGTGGAAG D I S Q N R L K W P S G V E W W K
725	ACGAACGAGTTTGGCAGCCACCCCAAGAAACATGACGATACTCCAGC T N E F G S H H P K K H D D T P A
775	TTTGCAAGTACCAGAGGTTGCCTATATTGAGTTCTCGCGTGCACCTACTG L Q V P E V A Y I E E S R A P CORP 2
825	GTGACCTTCGCGGTGTGGTGCTTAGTCACCGGACTATTATGCACCAAATG
875	GCCTGCATCAGTGCCATGATTAGCACGATACCCACCAACGCTCAGAGCCA A C I S A M I S T I P T N A Q S Q
925	AGACACGTTCAGCACTAGCCTACGGGATGCAGAGGGAAAGTTCGTTGCTC D T F S T S L R D A E G K F V A
975	CAGCACCGTCCAGAAACCCCACAGAAGTGATCCTCACGTACCTCGACCCG P A P S R N P T E V I L T Y L D P
1025	CGCGAAAGCGCTGGTCTCATTCTCAGTGTCTTGTTTGCAGTTTATGGAGG

FIG. 17B

H T T V W L E T A T M E T P G L	1075
ATGCACATCTCATCACCAAATACAAGTCCAACATACTGCTAGCGGATTAC Y A H L I T K Y K S N I L L A D Y	1125
CCAGGCCTCAAGCGCGCTGCATACAACTACCAACAGGATCCAATGGCTAC	1175
P G L K R A A Y N Y Q Q D P M A T	
AAGAAACTTCAAGAAAACACAGAACCCAACTTCGCCTCCGTGAAGATCT R N F K K N T E P N F A S V K I	1225
GTCTGATTGACACGCTTACCGTCGACTGTGAATTTCACGAAATTCTCGGACLIDTLTVDCEFHEILG	1275
GATCGATATTTCAGGCCACTGCGAAACCCTAGAGCGCGAGAACTGATCGC D R Y F R P L R N P R A R E L I A	1325
GCCAATGCTCTGCTTGCCAGAACATGGTGGAATGATAATATCTGTACGCG P M L C L P E H G G M I I S V R	1375
ACTGGCTAGGTGGAGAGGAGCGCATGGGCTGCCCGCTAAGCATAGCAGTA D W L G G E E R M G C P L S I A V	1425
GAAGAGTCAGATAATGATGAAGATGATACAGAGGATAAGTATGCAGCGGC E E S D N D E D D T E D K Y A A A	1475
AAATGGCTACTCCAGTCTTATTGGTGGTGGCACTACAAAGAACAAAAAGG N G Y S S L I G G G T T K N K K	1525
AGAAGAAGAAGGCCCGACAGAGCTTACAGAAATCTTGCTGGACAAG E K K K K G P T E L T E I L L D K	1575
GAAGCTCTGAAGATGAACGAAGTCATTGTTCTGGCCATTGGAGAAGAAGC E A L K M N E V I V L A I G E E A	1625
AAGCAAGCGGGCAAACGAGCCCGGCACCATGCGAGTCGGTGCCTTTGGAT S K R A N E P G T M R V G A F G	1675
ACCCCATACCGGATGCGACACTAGCTATTGTAGACCCTGAGACAAGTCTT Y P I P D A T L A I V D P E T S L	1725
CTATGTTCACCATACTCGATAGGCGAGATCTGGGTAGATTCGCCTTCACT L C S P Y S I C Core 3	1775
CTCTGGTGGCTTCTGGCAGCTGCAGAAGCATACAGAGACCATTTTCCATG	1825

FIG. 17C

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32227

WO 01/38489

20/51

A R P Y R F V G G S P T P Q L L E	1875
CTCGAGTTTCTGCGTACTGGACTCCTCGGCTTTGTTGTAGAGGGAAAAAT L E F L R V V E G K I Core 4	1925
ATTTGTCCTTGGACTGTACGAAGATCGCATCAGACAGCGTGTTGAATGGG F V	1975
TAGAAAATGGTCAGCTTGAAGCCGAGCATCGATACTTTTTTTGTGCAGCAC	2025
CTGGTCACAAGCATTATGAAGGCCGTGCCAAAAATTTACGACTGgtaagt	2075
gagctgccaacagagcaaggactgtctaacgtgtcatagCTCGTCGTTTG S S F	2125
ATTCTTATGTAAATGGTGAATACCTGCCAATCATTCTCATCGAGACGCAG D S Y V N G E Y L P I L I E T Q	2175
GCCGCATCGACTGCGCCCACAAACCCAGGTGGACCACCACAACAATTGGA A A S T A P T N P G G P P Q Q L D	2225
TATACCATTTTTGGATTCACTATCTGAGAGGTGCATGGAGGTCCTTTACC I P F L S S S S S S S S S S S S S S S S S S	2275
AAGAGCATCATTTACGGGTATACTGCGTGATGATTACAGCACCTAATACA Q E H H L R V Y C V M I T A P N T	2325
CTTCCACGAGTCATCAAGAACGGACGGCGAGAAATTGGCAATATGCTGTG L P R V I K N G R R E I G N M L C	2375
TAGGAGAGATTTGACAATGGCTCTCTGCCCTGTGTNCACGTNAAGTTTG R R E F D N G S L P C V H V K F	2425
GCATTGAGCGATCAGTGCAGAACATTGCGCTCGGTGACGATCCCGCTGGC G I E R S V Q N I A L G D D P A G	2475
GGCATGTGGTCATTTGAGGCATCAATGGCACGTCAGCAATTCTTGATGCT G M W S F E A S M A R Q Q F L M L	2525
CCAAGACAAGCAATACTCTGGTGTCGATCATCGCGAAGTCGTCATTGACG Q D K Q Y S G V D H R E V V I D	2575
ACAGGACATCGACTCCACTCAATCAGTTCTCGAATATCCACGACCTGATG	2625

FIG. 17D

21/51

CAATGGCGTGTATCTCGGCAGGCCGAGGAACTTGCTTACTGCACTGTCGA Q w r v s r q a e e l a y c t v d	2675
CGGTCGAGGAAAGAGGGCAAAGGCGTCAATTGGAAGAAGTTTGATCAAA G R G K E G K G V N W K K F D Q	2725
AGGTTGCGGGCGTAGCAATGTACCTCAAGAACAAGGTCAAGGTCCAGGCC K V A G V A M Y L K N K V K V Q A	2775
GGCGATCATCTCCTTCTGATGTACACGCATTCAGAAGAATTTGTTTATGC G D H L L L M Y T H S E E F V Y A	2825
TGTTCATGCATGTTTTGTGCTTGGAGCTGTTTGCATACCAATGGCGCCAA V H A COMPANY COMP	2875
TTGATCAGAACCGGTTGAATGAGGATGCGCCGGCCTTGCTGCATATCCTT ON R L N E D A P A L L H I L	2925
GCAGATTTCAAGGTCAAAGCCATTCTTGTCAACGCTGACGTTGACCATCT A D F K V K A I L V N A D V D H L	2975
GATGAAGATCAAGCAAGTATCGCAGCACATCAAACAATCGGCCGCTATCC M K I K Q V S Q H I K Q S A A I	3025
TCAAGATCAGTGTGCCAAACACATACAGCACAAAGCCGCCAAAGCAA L K I S V P N T Y S T T K P P K Q	3075
TCCAGTGGCTGCCGCGACCTCAAGCTTACAATTCGACCGGCATGGATTCA S S G C R D L K L T I R P A W I Q	3125
GGCGGGTTTCCCAGTGCTAGTCTGGACATACTGGACGCCCGATCAACGTC A G F P V L V W T P D Q R Core 2	3175
GTATCGCAGTTCAGCTGGGCCATAGCCAAATCATGGCACTGTGCAAGGTC	3225
CAAAAAGAAACATGCCAAATGACAAGTACACGACCAGTCCTTGGTTGTGT O K E T C Q M T S T R P V L G C V	3275
CCGGAGCACGATAGGACTTGGTTTCCTTCACACTTGTCTCATGGGAATCT R S T I G L G F L H T C L M G I	3325
TCCTTGCCGCACCCACATACCTGGTGTCACCTGTTGACTTTGCACAAAAC F L A A P T Y L V S P V D F A Q N	3375
CCTAATATTCTGTTCCAAACGCTTTCGCGGTACAAGATCAAGGATGCATA	3425

FIG. 17E

22/51

TGCAACGAGTCAAATGTTGGACCACGCCATCGCACGCGGAGCTGGTAAGA A T S Q M L D H A I A R G A G K	3475
GTATGGCTCTGCACGAGCTGAAGAATCTCATGATTGCGACTGATGGAAGA S M A L H E L K N L M I A T D G R	3525
CCACGCGTTGATGTTTgtaagtgaacatttgtatgagaggactttcatga PRVDV	3575
t <u>tgctaac</u> tcaatgcagACCAAAGAGTGCGTGTGCACTTTGCGCCAGCCA Y Q R V R V H F A P A	3625
ACTTAGACCCAACCGCAATCAACACTGTCTACTCACATGTATTGAACCCA N L D P T A I N T V Y S H V L N P	3675
ATGGTAGCATCACATACATGTGTATTGAGCCAGTCGAGCTCCATCT M V A S R S Y M C I E P V E L H L	3725
CGATGTGCATGCTCTGCGACGCCGGCCTCGTCATGCCCGTTGACCCTGACA D V H A L R R G L V M P V D P D	3775
CAGAGCCCAACGCTTTGCTCCTCCAAGACTCGGGCATGGTGCCAGTGAGC T E P N A L L V Q D S G M V P V S	3825
ACGCAAATATCCATTGTCAACCCAGAGACCAACCAACTGTGCTTGAACGG T Q I S I V N P E T N Q L C L N G	3875
CGAGTACGGCGAGATCTGGGTGCAGTCCGAGGCGAATGCTTATAGCTTCT E Y COMP TO SEE A N A Y SEE CORE 3	3925
ACATGTCGAAAGAGCGCTTGGATGCAGAACGCTTCAATGGGAGGACGATT Y M S K E R L D A E R F N G R T I	3975
GACGGAGACCCAAATGTGCGATATGTTCGTACAGGCGATTTAGGATTTTT D G D P N V R Y V R G D D C G G L C Core 4	4025
GCACAGCGTGACACGGCCCATTGGACCCAACGGTGCACCTGTTGATATGC H S V T R P I G P N G A P V D M	4075
AGGTGCTTTTCGTGCTTGGAAGCATAGGTGACACTTTTGAAGTCAACGGA Q V L F V L G S I G D T F E V N G	4125
CTGAACCATTTCTCTATGGACATTGAGCAGTCTGTTGAACGTTGTCACCG	4175

FIG. 17F

GAATATTGTCCCTGGAGGCTGgtacgtttcttcgattcgctgttatttag N I V P G G C	4225
taaatact <u>tactaac</u> actctacagTGCTGTTTTCCAGGCAGGTGGGCTTG A V F Q A G G L	4275
TTGTTGTCGTTGTGGAAATCTTCCGACGCAACTTCCTCGCAAGCATGGTG V V V V E I F R R N F L A S M V	4325
CCTGTGATTGTCAATGCAATTTTGAACGAGCATCAGCTGGTCATTGACAT PVIVNAILNEHQLVIDI	4375
TGTCTCGTTTGTGCAAAAGGGCGACTTCCACCGGTCTCGTCTGGGCGAGA V S F V Q K G D F H R S R L G E	4425
AGCAACGCGGAAGATTCTTGCAGGATGGGTCACACGGAAGATGCGCACA K Q R G K I L A G W V T R K M R T	4475
ATAGCCCAGTACAGTATACGGGATCCTAATGGACAGGATTCCCAGATGAT I A Q Y S I R D P N G 0 D S Q M I Core 6	4525
CACGGAAGAGCCTGGTCCACGGGCTAGCATGACTGGAAGTATGCTTGGGC T E E P G P R A S M T G S M L G	4575
GAATGGGCGGCCAGCCAGTATCAAGGCCGGGTCGACAAGAGCACCGAGT R M G G P A S I K A G S T R A P S	4625
CTAATGGGCATGACAGCGACTATGAATAATCTATCCCTTACACAGCAGCA L M G M T A T M N N L S L T Q Q Q	4675
ACAGCAGCAATACCAACAGCCGGGTATGTATGCTCAACAGCAAGGCATGC Q Q Q Y Q Q P G M Y A Q Q Q G M	4725
ACCCCCAGCAACACCCAATTTAGCATGTCCAACACGCCACCACAAGGT H P Q Q Q H Q F S M S N T P P Q G	4775
CCACCCAAGGCGTAGAACTACATGATCCTAGCGACCGCACACCAACAGA PPQGVELHDPSDRTPTD	4825
CAACCGGCACTCTTTCCTTGCCGACCCGCGTATGCAGAACCAGGGCCAAA N R H S F L A D P R M Q N Q G Q	4875
TGAACGAGACGGGCGCCTACGAACCCATGAACTATCAAAACGCGTATCAT M N E T G A Y E P M N Y Q N A Y H	4925
CCGCATCAACAACAATACGAATCTGAAGACGGGGGGGGGG	4975

FIG. 17G

CCCCGTGCCAGACGTGCTGCGGCCGGGTCCTTCATCCGGGTCCATAGAGC P V P D V L R P G P S S G S I E	5025
AGCACGACCAAGCTAACAACGACAACAATATGTGGAATAATCGCGAGTAC Q H D Q A N N D N N M W N N R E Y	5075
TATGGTAACAGCCCATCGTATGCAGGCGGATACACGCAAGATGGCAATAT Y G N S P S Y A G G Y T Q D G N I	5125
CCACGAGCAGCAACACGATGAGTACACGAGTAATGCGTCATATGGCG H E Q Q Q H D E Y T S N A S Y G	5175
GAAATCAAGGAGCAGGCGGAGGCAGCGGCGGCGGTGGCGGTCTCCGAGTT G N Q G A G G S G G G G L R V	5225
GCAAATCGTGACAGCTCCGACAGCGAGGGTGCAGATGACGACGCTTGGAG A N R D S S D S E G A D D D A W R	5275
ACGTGATGCCCTTGCTCAGATCAATTTTGCGGGCGCGCGC	5325
CCGCTGGAGCACCTGCTGCTGCTGCTTCTTCTTCGCAGCCGGGCCATGCG S A G A P A A G A S S S Q P G H A	5375
CAG <u>TAG</u> ACGGGATATGCGTGAGTTTTTTTTTAAATTTCGTACATAGAGAC Q END	5425
CGTTGTATACGCAGGTTTCAAATTAGAAGAGCGAATATGCATATCAGCTG	5475
TTGTTCAATGTTCTAGTTTGGGAAGGTTAACCCCCCCCCC	5525
AAGACTTTTCACTTGTTTGTGTGTGATTTAAATCTGGAGATTTCAAATCT	5575
ACATCTCGCTATACATAGGTGTTGTTTGATAACGTAGGGGGCAGAAGGGT	5625
ATCTCGTGATATTAGACTGGGAGTTGCATGAATCAAGGTGTTGAGCAAAA	5675
AAAGAGAGAGCGGTGAAGGGCGGGGGGGATAGGTGGTGTGCACGTGGCTG	5725

FIG. 17H

SUBSTITUTE SHEET (RULE 26)

25/51

AAGCCAGGTACGCATCTGCGCAGGGCCCGGCAAGCCCAGTATGACGTTTT	-286
TACCCCAGAGCCAGCCTGCTCCTCGGCTTGGCGCCCCCGGCTTAGTCAG	-236
CCCCCATCAGTCAGCGGCCAGTCACGTGTTCGGCGCGACAAGCTCCCACA	-186
TGGCCGATGATCATTGTGCCTCGGCTCATGCGCGTCTGCGCTGCTTTGAC	-136
GTGCCCGGAAATGACGACGCCCAAAGTCTCACACAGCCGCTCGCT	-86
CTGCTTGCATCTGGTCTTGCTACACTGGCCTCCTTTTCGCAGAACACAGA	-36
ACGATCCACCAACAGG <i>AAAACTAT</i> CAGCCACCACC <u>ATG</u> GCCACCCTCATC M A T L I	15
CGCCCCCGCCGCCGACCACTCCCAGTCGGCCATTGAGAACGTCCTTGA	65
ACTGACGCAGCTGGCCGACATTGATCCCAACATCTTCACAAACACTCGTC L T Q L A D I D P N I F T N T R	115
CCCTATGGCATCCCCCGGTGCGCGCGCGCATCTTTGGCGGTGCTGCCATT PLWHPPGARGIFGGAAI	165
GCCCAGACACTCAGCGCCCCAGAAGACGGTTGACCCCGACTTCACTGT A Q T L S A A Q K T V D P D F T	215
GCATTCGATGCACTGCTACTTCATCCTTGCAGGCAACTCCGAGATCCCCG	265
TCATATACCATGTAGAAAGGGTGCGCTCGGGAAAGTCGTTCGCAACCAGG	315
ACGGTGCAGGCCCGGCAAAGGGGCAACGTCATCTTCACTACGACCATGAG T V Q A R Q R G N V I F T T T M S	365
TTTTGTTCGCCAGAACAGTGGAGCGCCCCAAAAGGTCGAGCACATCTACC F V R Q N S G G A Q K V E H I Y	415
CGATGCCAGACGTCCCGGCGCCCAAGGAAGGTAGCGACGACTTGAAGACG P M P D V P A P K E G S D D L K T	465
CCCAACGATGGCCAGAGTCCCTTCCAGACCCAGCTGTTGCCCATTGAAAA PNDGQSPFQTQLLPIEN	515
CGatagatagcttcgcataccatccttaggcctgccctagctcatatcta	565

FIG. 18A

26/51

GCAGACGACTCCGACAAGCCCCACACCAAGAAATGCCGACAATGGATAAA A D D S D K P H T K K C R Q W I K	615
GGCTCGCGGTAAAATCTCCCCCGCTGGCGGTCACGAAGCCCATCTCTCCG A R G K I S P A G G H E A H L S	665
CCATCGCATACATGTCCGATAGCTACTTCATCGGCACCGTCGCGCGTGCG	715
CACAAGCTTCTGCGCTACTCGAACCAGCGCAAGAGCAGGGCCAGGTCGAG H K L L R Y S N Q R K S R A R S S	765
CATCGACGAGGACGTACTTAAGAAGCTGCTCGAGATGGATG	815
TACAGCGCCAAAGCTTTGTCAACGAATCAGACAAGCAGCGCATACGTGAA L Q R Q S F V N E S D K Q R I R E	865
TTGAGGAAAGCAGAAGACCTGGCAAAGCCTGAGAT L R K A E D L A K S G D A K P E I	915
TGGCATGATGGTTAGTCTGGACCACCATCTACTTTCACAATCCTCGCA G M M V S L D H T I Y F H N P R	965
GTTTCCGCGCAGATGAATGGATCTTCACCGAGATGGAGACCCCTTGGGCT S F R A D E W I F T E M E T P W A	1015
GGTGATGGTCGCGGCCTCGTTTCCCAGAGAATGTATACCAAGGATGGCAC G D G R G L V S Q R M Y T K D G T	1065
GCTCATTGCCAGCTGCGTCCAAGAGGTAAGCAGCTTGCTT	1115
TAGTAGACTGTGCTTACATGAATAGGGCGTCATACGAT <u>TGA</u> AGCAGAACG I V D C A Y M N R A S Y D END	1165
AAAGTAAGCTATAGCCATGACCGTGTGTAGATTGCTCGTATGTCCGTGTA	1215
CTTTGATTCGATTGACTTTTATGCCGCCGCCTTTCACTTGACCTTGTCGG	1265
AGTAGACTCCGCTGTTTCTATTGTTTTAGTAGCTTTAGATTTGGAGGTCT	1315
GGAACACACGTACCTCACGTATACACTTTTAAATACAAGGTTCCTCGTTA	1365
CAAATAGCAACTCGCACTTGTGTAGTACACGACTTGGCACAGCAAGTGCA	1415
TGCAGATGATGCGCACTGCATGCAGCCCTAGAAGCCTGCACCTGTGCTGT	1465
TCGTCCTTCCCACGTTACAGGCCAGGGTCCAATTAGCGCAATGCCGGTCT	1515
COCCTACCATCCCCTCACACTTCCATTCTCCAACCTACCGTCGCCAC	1565

FIG. 18B

FIG. 20A

AMINO-ACID-ACTIVATING DOMAIN: CORE 2

FIG. 20B

(312) (226) (213) (166) (166) (165) (169) (172) (172) (172) G Œ I Ж Б > ۵ ග \cdot \circ \circ \vdash \vdash 0000000000 G 8 8 8 8 8 8 8 8 S 253 1019 187 190 397 2000 633 451 1538 640 Consensus CPS1B CPS1B SafB1 GrsA HTS1A HTS1B EsynA EsynB ACVA ACVB CSynB

* AN INSERTION (2 RESIDUES BETWEEN R AND A) IS NOT SHOWN.

FIG. 20C

AMINO-ACID-ACTIVATING DOMAIN: CORE4

Œ

Œ

Consensus

(13) (9) (11) (10) (10) (10) 628 454 410 609 22223 860 1939 684 1772 866 CPS1A CPS1B SafB1 GrsA HTS1A HTS1B EsynA ACVA ACVA ACVB CSynA CSynA

561) (96) 116) 149) 162) 163) 139) 549) 153) 123) 120) 61) шшшшшш ш > шшшшш 00 ш <u>ක</u> ΣO G ш шшш Œ 000 9999 Q Œ ¥ > Ø Q Q AMINO-ACID-ACTIVATING DOMAIN: CORES ~~~~~<u>~~~~</u> Œ G <u>ත</u> ත 9 9999 9 2248 878 958 792 884 427 627 702 Consensus GrsA GrsA HTS1B HTS1A EsynA EsynB ACVA ACVA CsymB

*AN INSERTION (TWO AMINO ACID) BETWEEN E AND N IN CPS1A IS NOT SHOWN. THE POORLY CONSERVED CORES 5 IN CPS1B AND SAfB1 ARE INDICATED BY ARROWS

FIG. 20E

THIOLATION DOMAIN: CORE 6

20F
FIG.

	(193) (590) (906) (595)
	574 530 552 471 529 497 500 489 510
FF. GGDSL, A	N G C C C C C C C C C C C C C C C C C C
	_
	726 1448 645 567 812 2422 1040 2530 848 1931 1053
Consensus	CPS1A CPS1B SafB1 GrsA HTS1B HTS1B EsynA EsynA ACVB ACVB CsynA CsynB

* ACTIVE SITE FOR 4'-PHOSPHOPANTETHEINE BINDING. **TYPE II MODULES CONTAINING A METHYLTRANSFERASE DOMAIN (ABOUT 400 AMINO ACIDS) Between Cores 5 and 6. all others are type I modules without this insertion.

FIG. 22A

FIG. 22B

37/51

310 320 330 330	IRELRKAEDLAKSGDAKPEIGMMVSLD 295	WFHR PFRADEWLLYEXESPSAGGGR	PRSFRADEWIFTEMETPWAGDG - PFRADHWMLYECESPWAGGS - PFRADHWLYEVESTSASSA - PFRADEWLLYSVESTSASGG	GLVRGEXYTODGVLVASCVOBGVXRXXXXX	SORMYTKDGTLIASCVQEVSLLMSAI 355 HGRVWSQDGVLAVTCAQEGVIRVKPQV 314 RGEFYTQDGVLVASTVQEGVMRNHN 286	
	ス I I I 団 I I I ப I I I I	FHR-	F H H N F M H M N F M N F M N M N M N M N M N M N M N	GLVRGEXYT	GLVSORMYT GLVHGRVWS GFVRGEFYT	WELL LAND TO BE
Majority	CH-TES1 HS-TEII EC-TESB MT-TESB	Majority	CH-TESI HS-TEII EC-TESB MT-TESB	Majority .	CH-TESI HS-TEII EC-TESB	ACTI-IM

FIG. 22C

FIG. 23A

FIG. 23B

FIG. 24

PCT/US00/32227

FIG. 25

FIG. 26

0.500 TX7

0.400 0.300 0.300 0.200 0.200 0.100 0.000 0

FIG. 27A

FIG. 27B

FIG. 27C

FIG. 27D

43/51

FIG. 28A

FIG. 28B

SUBSTITUTE SHEET (RULE 26)

FIG. 29

FIG. 30A

FIG. 30B

FIG. 30C SUBSTITUTE SHEET (RULE 26)

46/51

FIG. 31A

SUBSTITUTE SHEET (RULE 26)

FIG. 32

FIG. 33

```
ANAMENTATION OF THE PROPERTY O
    K K K G P T E L T E I L L D K E A L K M N D V V L A I G E E A S K R A N E P G T M R V G A P
TEXAPOCEMBED CRITECIO DE CONTROL CANCOLAR CONTROL CONTROL CONTROL CONTROL CANCOLAR CONTROL CON
      GYPIPDATLAVVDPETNLLCSPYSIGEIWVDSPELSGGFWQLQKHT
ANTINITIE ACCOUNT DE CONTROLLE ACCOUNT DE CONTROLLE
 ETIFHARPYRFVEGSPTPQLLELEFLRTGLLGFVVEGKVFILGLYED SCO
 CONTRACONOCCIPITANTICOTRANCITACIO CONCIONACIO CONCIONACIO CONCIONI CONCIONI
 RIRQRVEWVEHGQLEAEHRYFFVQHLVTSIMKAVPKIYDC
  atpaggittctascactatgragencaterricaerocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicorocroamicor
                                                                                                 S S F D S Y V N G E Y L P I I L I E T Q A A S T A P T N P G G P P Q Q L D I P
 FLDSLSERCMEVLYQEHHLRVYCVNITAPNTLPRVVKNGRREIGNN
                                 Coxe 6
  TOTOTIC PACKAGE THE PRODUCTION OF THE PRODUCTION OF THE PRODUCT OF
   L C R R E P D N G S L P C V H V K F G V E R S V L N I A L G D D P S G G N W S Y E A S X A R Q
  CONTENCED CONCENTRATION CONTENTS OF THE PROPERTY OF THE PROPER
      Q F L M L Q D K Q Y S G V D M R E V V M D D R T S T P L M Q F S N I H D L M Q W R V S R Q A E
   E L A Y C T V D G R G K E G K G V N W K K F D Q K V A G V A M Y L K N K V K V Q T G D H L L
  L M Y T H S E D F V Y A V H A C F V L G A V C I P M A P I D Q M R L N E D A P A L L H I L A D
                                                                                                                                                                                                                     Once 1
 F X V K A I L V N A D V D H L M X V K Q V S Q H I K Q S A A I F K I N V P H T Y N T T X P P K
  GAGIGAGIGGTIGICUCANCICAACCICACATAGGGCAGGTACACCIGGTTIGOAGTICTIGIAGGACATACTGCACTCACATCAAGGGACTACGGCAAATCATGG 1680
         Q S S G C R D L K L T I R P A W V Q P G F P V L V W T Y M T P D Q R R I A V Q L G H S Q I H
                                                                                                                                                                                                                                                                                                             Orm 2
  A L G K V Q K E T C Q M T S T R P V L G C V R S T I G L G P I H T C I M G I P L A A P T Y L V
   TODOCTOTOCACAMATICAMACTICTOCACAUTEROMONINAMENTAMANTOCITACIONACATICAMATICTOCACACATRICOCTICAMACATACACATRICOCTICACA
      S P V D P A Q N P N I L P Q T L S R Y K I K N A Y A T S Q N L D H A I A R G A G K N M A L H E
   LKNLHIATOGRPRVDVYQRVRVHFSPASLDRTAINTVYSHVLNPMV
   A S R S Y M C I B P I E L H L D V H A L R R G L I M P V D P D T E P G A L M V Q D S G M V P V
   TO CONCLAMO CONTROL CONCLAMO CONTROL TROUT CONTROL CON
```

FIG. 34

Ove 1

FIG. 35A

FIG. 35B

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 May 2001 (31.05.2001)

PCT

(10) International Publication Number WO 01/38489 A3

(51) International Patent Classification⁷: C12N 5/14, 15/29, 15/52, 15/82

A01H 5/00,

(21) International Application Number: PCT/US00/32227

(22) International Filing Date:

22 November 2000 (22.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/448,215

23 November 1999 (23.11.1999) US

(71) Applicant: CORNELL RESEARCH FOUNDATION, INC. [US/US]; Suite 105, 20 Thornwood Drive, Ithaca, NY 14850 (US).

(72) Inventors: YODER, Olen, C.; 44 Hungerford Road. Ithaca, NY 14850 (US). TURGEON, Barbara, C.; 608 Mitchell Street, Ithaca, NY 14850 (US). LU, Shun-Wen: 604 Winston Court, Apt. #4, Ithaca, NY 14850 (US).

(74) Agents: GOLDMAN, Michael, L. et al.; Nixon Peabody LLP, Clinton Square, P.O. Box 31051, Rochester, NY 14603 (US). (81) Designated States (national): AE, AG, AL. AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 31 January 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PEPTIDE SYNTHETASE GENE CPS1

(57) Abstract: The present invention relates to genes cloned from the plant pathogens Cochliobolus heterostrophus, Alternaria solani, Fusarium graminearium, and Pyrenophora teres, that encode a CPS1 peptide synthetase required for fungal pathogenesis. The nucleic acid molecules in a vector, a host cell, or a plant is also disclosed. The invention further provides a protein or polypeptide encoded by the CPS1 genes. Other aspects of the invention relate to a method of imparting disease resistance to a plant by overexpressing a protein of the present invention in a plant and a method for identifying inhibitors of a CPS1 protein in a sample.

International application No. PCT/US00/32227

TOTAL TION OF CUREOT MATTER		ł
A. CLASSIFICATION OF SUBJECT MATTER IPC(7) :A01H 5/00; C12N 5/14, 15/29, 15/52, 15/82		
and or Di Co- Franc Sheet	national classification and IPC	
According to International Patent Classification (IPC) or to both	Hational Classification and 1.	
B. FIBLDS SEARCHED Minimum documentation searched (classification system followed	by classification symbols)	
U.S. : 435/320.1, 412, 418, 468; 536/23.2, 23.6; 800/279, 3	06, 314, 315, 316, 317.2, 317.4, 320, 39	20.1, 520.2, 520.5
Documentation searched other than minimum documentation to	the extent that such documents are i	ncluded in the fields
pearched		
Electronic data base consulted during the international search (n	ame of data base and, where practicable	e, search terms used)
STN, AGRICOLA, CAPLUS, BIOSIS, EMBASE, USPAT search terms: peptide synthase, peptide synthetase, DNA, cDNA		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
A NIKOLSKAYA et al. Identification of Genes from Filamentous Fungi Producis or Analogs. Gene. 1995. Vol. 165, pa	ng Host-Selective Phytotoxins	49-53
Further documents are listed in the continuation of Box	C. See patent family annex.	
Special categories of cited documents:	"T" later document published after the ind	emational filing date or priority
"A" document defining the general state of the art which is not considered to be of particular relevance	the principle or theory underlying th	e invention
"E" earlier document published on or after the international filing date	"X" document of particular relevance; if considered novel or cannot be consid-	e olaimed invention cannot be prod to involve an inventive step
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	when the document is taken alone -ye document of particular relevance; ti considered to involve an inventive ste	he claimed invention cannot be when the document is combined
"O" document referring to an oral disclosure, use, exhibition or other means	with one or more other such door obvious to a person skilled in the art	ments, such combination being
"P" document published prior to the international filing date but later than the priority date claimed	"t" document member of the same paten	
Date of the actual completion of the international search	Date of mailing of the international s	2001
25 MAY 2001	Authorized officer Jula Luns for	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT	Authorized officer AMY NELSON	Mellingfor
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (705) 508-0196	
		<u>, , , , , , , , , , , , , , , , , , , </u>

International application No. PCT/US00/32227

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2Xa) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 1-5,25-44 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
applicant did not submit a computer readable form of the sequence listing, and hence SED ID NO:41 could not be searched.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. As all required additional search fees were timely paid by the applicant, this international search report covers a searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report
restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-5,25-44,49-53
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

International application No. PCT/US00/59997

A. CLASSIFICATION OF SUBJECT MATTER:

US CL:

435/320.1, 412, 419, 468; 656/23.2, 23.6; 800/279, 506, 514, 515, 516, 517.2, 517.4, 320, 320.1, 320.2, 320.3

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

Group I, claim(s)1-5.95-44,49-55, drawn to DNA of SEQ ID NO:41, vector, transformed host cell, transgenic plant, and plant transformation method. Claims 25-44 and 49-55 will be examined to the extent they read on SEQ ID NO:41.

Group II, claim(s) 6-8, drawn to protein of SEQ ID NO:42. Group III, claim(s) 9-13, 25-44,49-53, drawn to DNA of SEQ ID NO:45, vector, transformed host cell, transgenic plant, and plant transformation method. Claims 25-44 and 49-53 will be examined to the extent they read on SEQ ID NO:45.

Group IV, claim(s) 14-16, drawn to protein of SEQ ID NO:44. Group V, claim(s) 17-21,25-44,49-55, drawn to DNA of SEQ ID NO:46, vector, transformed host cell, transgenic plant, and plant transformation method. Claims 25-44 and 49-63 will be examined to the extent they read on SEQ ID NO:45.

Group VI, claim(s) 22-24, drawn to protein of SEQ ID NO:46. Group VII, claim(s) 46-48, drawn to inhibitor selection method.

The inventions listed as Groups I, II, III, IV, V, VI and VII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the

The phrase "CPS1" and "stringent conditions" are not well defined in the disclosure, and hence the claims of Group I encompass essentially any DNA from a plant pathogen encoding a cyclic peptide synthetase. Nikolskaya (Gene 165: 207-211, 1995) teaches various CPS genes isolated from plant pathogens (see entire article). Hence, there is no special technical feature under PCT Rule 13.2 which links the DNA of Group I with the protein of Group II.

The DNAs of Group III and V, and the proteins of Group IV and VI differ in composition and structure from the DNA of Group I and the protein of Group II, respectively, and hence are not so linked by a special technical feature. Separate searches and considerations would be required for examination of each of the nucleic acid sequences or

Also, the inhibitor selection method of Group VII is distinct from the plant transformation method of Group I amino acid sequences. in starting materials, method steps, and end products.

Therefore, the inventions of Groups I, II, III, IV, V, VI and VII do not relate to a single inventive concept under PCT Rule 15.1.

				•
				, kg.
			4 	, , , , , , , , , , , , , , , , , , ,
				20% 34
				沒養養
. *				· · · · · · · · · · · · · · · · · · ·
				· ·
				4
				ર્વ
	& · ·	A Marine		

International application No. PCT/US00/52227

A. CLASSIFICATION OF SUBJECT MATTER: US CL.:

435/390.1, 412, 419, 468; 536/93.2, 93.6; 800/979, 306, 314, 315, 316, 317.2, 317.4, 390, 390.1, 390.9, 390.3

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

Group I, claim(s)1-5,25-44,49-55, drawn to DNA of SEQ ID NO:41, vector, transformed host cell, transgenic plant, and plant transformation method. Claims 25-44 and 49-55 will be examined to the extent they read on SEQ ID NO:41. Group II, claim(s) 6-8, drawn to protein of SEQ ID NO:42.

Group III, claim(s) 9-13, 25-44,49-53, drawn to DNA of SEQ ID NO:43, vector, transformed host cell, transgenic plant, and plant transformation method. Claims 25-44 and 49-53 will be examined to the extent they read on SEQ ID NO:43. Group IV, claim(s) 14-16, drawn to protein of SEQ ID NO:44.

Group V, claim(s) 17-21,25-44,49-53, drawn to DNA of SEQ ID NO:45, vector, transformed host cell, transgenic plant, and plant transformation method. Claims 25-44 and 49-53 will be examined to the extent they read on SEQ ID NO:45. Group VI, claim(s) 22-24, drawn to protein of SEQ ID NO:46.

Group VII, claim(s) 45-48, drawn to inhibitor selection method.

The inventions listed as Groups I, II, III, IV, V, VI and VII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The phrase "CPS1" and "stringent conditions" are not well defined in the disclosure, and hence the claims of Group I encompass essentially any DNA from a plant pathogen encoding a cyclic peptide synthetase. Nikolskaya (Gene 165: 207-211, 1995) teaches various CPS genes isolated from plant pathogens (see entire article). Hence, there is no special technical feature under PCT Rule 15.2 which links the DNA of Group I with the protein of Group II.

The DNAs of Group III and V, and the proteins of Group IV and VI differ in composition and structure from the DNA of Group I and the protein of Group II, respectively, and hence are not so linked by a special technical feature. Separate searches and considerations would be required for examination of each of the nucleic acid sequences or amino acid sequences.

amino acid sequences.

Also, the inhibitor selection method of Group VII is distinct from the plant transformation method of Group I in starting materials, method steps, and end products.

Therefore, the inventions of Groups I, II, III, IV, V, VI and VII do not relate to a single inventive concept under PCT Rule 15.1.