

Reinforcement Learning

Introduction, Markov Decision Process, and Q-Learning

N. Rich Nguyen, PhD **SYS 6016**

Classes of Learning Problems

Supervised Learning:

Data: (x, y)

x is data, y is label

Goal: Learn function to map $x \rightarrow y$

Example:

This thing is an apple.

Unsupervised Learning:

Data: x

x is data, no labels!

Goal: Learn underlying structure

Example:

This thing is like the other thing.

Reinforcement Learning:

Data: state-action pairs

Goal: Maximize future rewards over many steps

Example:

Eat this thing because it will keep you alive.

The Machine Learning Stack!

What can be learned?

Environment Sensors Sensor Data **Feature Extraction** Representation | Machine Learning Knowledge | Reasoning **Planning** Action Effector

Sensors

GPS

Lidar

Camera (Visible, Infrared)

Radar

Stereo Camera

Microphone

Networking (Wired, Wireless)

IMU

Representations

Knowledge / Reasoning

Activity Recognition: Swims like a duck

DATA SCIENCE

Actions

Reinforcement Learning

Reinforcement Learning (RL)

Problems involving an **agent** interacting with an **environment**, which provides numeric reward signals:

At each step, the agent:

- Executes an action
- Observes a new state
- Receives some reward

Goal: Learn to take actions from a policy in order to maximize some reward

Example: Cart-Pole Balancing Problem

- Goal: Balance the pole of top of a moving cart
- State: Pole angle, angular speed, cart position, horizontal velocity
- Actions: Horizontal force to the cart
- Reward: +1 at each time step if the pole is upright

Example: Grasping Objects

DATA SCIENCE

- Goal: Pick an object with different shape
- State: Raw pixels from camera
- Actions: Move arm, grasp, and lift
- Reward: positive when a pickup is successful

Example: Doom

- Goal: eliminate all opponents
- State: raw game pixel of the game
- Actions: Shoot, Dodge, Run,
 Walk, Left, Right, No action, ect.
- Reward: positive when eliminating an opponent, negative when the agent is eliminated

Example: MIT DeepTraffic

- Goal: train an RL agent that can successfully navigate through traffic
- State: as a grid, where each cell will be the speed of the vehicle inside it
- Actions: Accelerate, Break, Left, Right, No action
- Reward: positive when high speed is maintained.

RL in Humans

Humans appear to learn to walk through "very few examples" of trial and error.

"How we learn how to walk" is an open question...some possible answers:

- Hardware: 230M years of bipedal movement data
- Imitation Learning: Observation of other humans walking
- Algorithms: probably better than backprop and SGD

DATA SCIENCE

- a. Robotic Explorer
- b. Ms. Pac-man
- c. Go player
- d. Thermostat
- e. Automated Trader

Markov Decision Process

actions

action)

next state

Markov Decision Process is the mathematical formulation for RL problem

Markov property: current state completely characterizes the state of the world.

Markov Decision Process

At time step t=0, environment samples initial state $s_0 \sim \mathbb{P}(s_0)$, then repeat:

- Agent selects action a_t
- ullet A **reward** is sampled from the environment $r_t \sim \mathcal{R}(.\,|s_t,a_t)$
- ullet Next **state** is sampled from the environment $s_{t+1} \sim \mathbb{P}(.\,|s_t,a_t)$
- Agent receives the reward r_t and next state s_{t+1}

Objective: find a strategy that maximizes **future reward**

Future Reward:
$$R_t = r_t + r_{t+1} + r_{t+2} + \ldots + r_n$$

Discounted Future Reward:
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^{n-t} r_n$$
 $0 < \gamma < 1$

A good strategy for **an agent** would be to always choose **an action** that **maximizes** the **discounted future reward**

Why?

- Uncertainty due the environment, partial observability
- Real life example: Either live it up today, or save \$ for tomorrow?

$$\mathbf{Q}(s_t, a_t) = \mathbb{E}ig[\mathbf{R}_t | s_t, a_tig]$$

A policy π is a function from S to A that specifies what action to take in each state

The agent needs a policy $\pi(s)$ to infer the **best action** to take at a **state s**.

The policy should choose an action that **maximizes the expected future reward** (Q-value):

$$\pi(s) = rg \max_a \mathbf{Q}(s,a)$$

Goal: reach one of the terminal states (stars) using the least number of actions.

actions = {

1. right →

2. left →

3. up ↑

4. down ↑

}

Set a negative "reward" for each transition (e.g. r = -1)

Goal: reach one of the terminal states (stars) using the least number of actions.

Random Policy

Optimal Policy

3 Types of Reinforcement Learning

RL agents may be directly or indirectly trying to do one of the following:

- 1. **Model Learning**: model the environment then use and update it often (difficult because of the stochastic nature of the environment)
- Value Learning (Q-Learning): learn the state or state-action value, act by choosing best action, and explore if necessary
- 3. **Policy Learning (Policy Gradients)**: learn the stochastic policy function that maps state to action, act by sampling that policy

Value Learning / Q-learning

DATA SCIENCE

Q-Learning for Solving the Optimal Policy

Use a state-action value function $Q_{\pi}(s,a)$ as the expected return when starting in s, performing a, and following π

Q-Learning: Use any policy to estimate **Q** that maximizes future reward:

- Q directly approximates Q* (Bellman's equation)
- Independent of the policy, only requirement is keep updating (s_t, a_t) pair

Q-Learning: Value Iteration

$$\mathbf{Q}_{t+1}(s_t, a_t) = \mathbf{Q}_t(s_t, a_t) + \alpha \big(\mathbf{R}_{t+1} + \gamma \max_{a} \mathbf{Q}_t(s_{t+1}, a) - \mathbf{Q}_t(s_t, a_t) \big)$$

$$= (1 - \alpha) \mathbf{Q}_t(s_t, a_t) + \alpha \big(\mathbf{R}_{t+1} + \gamma \max_{a} \mathbf{Q}_t(s_{t+1}, a) \big)$$
new Q-value learning rate reward discount factor upon selecting the best action

	A1	A2	А3	A4
S1	+1	+2	-1	0
S2	+2	0	+1	-2
S3	-1	+1	0	-2
S4	-2	0	+1	+1

initialize $Q[num_states, num_actions]$ arbitrarily observe initial state srepeat

select and carry out an action aobserve reward r and new state s' $Q[s,a] = Q[s,a] + \alpha(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])$ s = s'until terminated

Example: Moving in a grid world

Objective: reach one of the terminal states (stars) using the least number of actions.

Find $\mathbf{Q}(s,a)$ $a = rg \max_a \mathbf{Q}(s,a)$

actions = {

- right →
- left ←
- 3. up
- 4. down

states

*		
		*
	<u> </u>	

Optimal Policy

Deterministic/greedy policy won't explore all actions:

- Don't know anything about the environment at the beginning
- Need to try all actions to find the optimal one

ε-greedy policy

- With probability (1-ε) of performing the greedy action, otherwise random action
- Slowly move toward greedy policy: ε→0

Restaurant Selection

- Exploitation: Go to your favourite restaurant
- **Exploration**: Try a new restaurant online

Banner Ads

- Exploitation: Show the most successful ads
- **Exploration**: Show a different ads

Oil Drilling

- **Exploitation**: Drill at the best known location
- Exploration: Drill at a new location

Game Playing

Exploitation: Play the move you believe is best
 Exploration: Play an experimental move

Summary

- Reinforcement Learning (RL) is one of the most exciting fields of ML
- In Markov Decision Process, a good strategy for an agent would be to always choose an action that maximizes the discounted future reward
- Q-Learning is to learn the state-action value, act by choosing best action, and explore if necessary

Next: Deep Q-Networks, Policy Gradients, and Actor Critic Algorithms

Acknowledgement

Slides contain some materials and figures reproduced from Lex Fridman (MIT) and Serena Yeung (Stanford) for educational purposes only.

