Classical Adjoint (Adjugate) Matrix: Problem Set

March 29, 2025

1 Introduction: Defining the Classical Adjoint

1.1 Formal Definition and Notation

Problem 1.1. Understanding Minors and Cofactors Let $A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 1 \\ 0 & 1 & -2 \end{pmatrix}$.

Question 1.1.1. Calculate the minor M_{23} and the cofactor C_{23} of A[cite: 4, 5, 6].

Hint 1.1.1.1. Recall that the minor M_{ij} is the determinant of the submatrix formed by removing the *i*-th row and *j*-th column of A[cite: 5]. Which row and column should you remove for M_{23} ?

Hint 1.1.1.2. After removing the 2nd row and 3rd column, what 2×2 matrix remains? Calculate its determinant. This is M_{23} [cite: 5].

Hint 1.1.1.3. The cofactor C_{ij} is defined as $C_{ij} = (-1)^{i+j} M_{ij}$ [cite: 6]. Use the value of M_{23} you found and the appropriate sign based on i = 2, j = 3 to find C_{23} [cite: 6, 11].

Question 1.1.2. Explain why the entry in the *i*-th row and *j*-th column of adj(A) is C_{ji} , not C_{ij} [cite: 8, 9, 10].

Hint 1.1.2.1. Start with the definition of the cofactor matrix C, whose (i, j)-th entry is C_{ij} [cite: 7].

Hint 1.1.2.2. How is the adjugate matrix adj(A) formally defined in terms of the cofactor matrix C? [cite: 8]

Hint 1.1.2.3. What operation transforms a matrix M such that its (i, j)-th entry becomes the (j, i)-th entry of the original matrix? How does this apply to the relationship between C and adj(A)? [cite: 8, 9]

Hint 1.1.2.4. Consider the fundamental identity $A \cdot \operatorname{adj}(A) = \det(A)I[\text{cite: 29}]$. Think about the dot product of the *i*-th row of A with the *j*-th column of $\operatorname{adj}(A)$. What elements from the definition of $\operatorname{adj}(A)$ does this involve? [cite: 30, 31, 32] Does using C_{ji} in the (i, j) position of $\operatorname{adj}(A)$ lead to the correct identity?

2 Basic Computation of the Adjoint

2.1 Adjoint of a 2x2 Matrix

Problem 2.1. Computing 2x2 Adjoints

Question 2.1.1. Let $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Compute $\operatorname{adj}(A)$ [cite: 12, 15, 16]. What does the result represent geometrically?

Hint 2.1.1.1. Recall the shortcut for finding the adjugate of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ [cite: 16]. What happens to the diagonal elements? What happens to the off-diagonal elements?

Hint 2.1.1.2. Apply the shortcut to the given matrix A with $a = \cos \theta$, $b = -\sin \theta$, $c = \sin \theta$, $d = \cos \theta$ [cite: 15, 16].

Hint 2.1.1.3. Compare the resulting matrix $\operatorname{adj}(A)$ with the original matrix A and its transpose A^T . What transformation does A represent? What transformation does $\operatorname{adj}(A)$ represent? (Think about rotations).

Hint 2.1.1.4. Consider the determinant of A. How does adj(A) relate to A^{-1} when A represents a rotation? [cite: 38, 130]

Question 2.1.2. Verify the formula $adj(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ for $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by explicitly calculating the cofactor matrix C and transposing it[cite: 13, 14, 15].

Hint 2.1.2.1. Calculate the four minors $M_{11}, M_{12}, M_{21}, M_{22}$ [cite: 13]. Remember M_{ij} is the determinant of the 1×1 matrix obtained by removing row i and column j. The determinant of (x) is just x.

Hint 2.1.2.2. Calculate the four cofactors C_{11} , C_{12} , C_{21} , C_{22} using $C_{ij} = (-1)^{i+j} M_{ij}$ and form the cofactor matrix C[cite: 6, 14]. Pay attention to the signs!

Hint 2.1.2.3. Find the transpose of the cofactor matrix C. Does it match the shortcut formula for adj(A)? [cite: 8, 15]

2.2 Adjoint of a 3x3 Matrix

Problem 2.2. Computing a 3x3 Adjoint

Question 2.2.1. Calculate
$$adj(A)$$
 for $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ [cite: 20, 21, 22, 23, 24].

Hint 2.2.1.1. First, find the 3×3 matrix of minors. For each element A_{ij} , calculate M_{ij} by finding the determinant of the 2×2 submatrix obtained by removing row i and column j[cite: 20, 21]. For example, $M_{11} = \det \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. Calculate all nine minors[cite: 22].

Hint 2.2.1.2. Next, find the cofactor matrix C. Apply the checkerboard pattern of signs +-+,-+-+ to the matrix of minors, or equivalently, compute $C_{ij} = (-1)^{i+j} M_{ij}$ for each entry[cite: 22, 23].

Hint 2.2.1.3. Finally, the adjugate matrix adj(A) is the transpose of the cofactor matrix C[cite: 24]. Swap the rows and columns of C.

Hint 2.2.1.4. Double-check your calculation by computing $A \cdot \operatorname{adj}(A)$. Does it equal $\det(A)I_3$? [cite: 29] First compute $\det(A)$.

Problem 2.3. Adjoint of a Singular Matrix

Question 2.3.1. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ [cite: 25]. Calculate adj(A). What do you notice about the columns (or rows) of adj(A)? Relate this to the determinant and rank of A.

Hint 2.3.1.1. Follow the three steps: Calculate the matrix of minors, apply signs to get the cofactor matrix, and transpose to get the adjugate[cite: 20, 22, 24].

Hint 2.3.1.2. Notice that calculating the minors might yield some zeros or simple relationships. For instance, $M_{11} = 5 \times 9 - 6 \times 8 = 45 - 48 = -3$. $M_{12} = 4 \times 9 - 6 \times 7 = 36 - 42 = -6$. $M_{13} = 4 \times 8 - 5 \times 7 = 32 - 35 = -3$. Continue for all nine minors.

Hint 2.3.1.3. After finding adj(A), observe its columns. Are they related? Are they scalar multiples of each other? [cite: 85]

Hint 2.3.1.4. Calculate $\det(A)$. You can use cofactor expansion or notice that the columns (or rows) are linearly dependent (e.g., Col2 - Col1 = Col3 - Col2). What does $\det(A) = 0$ imply about $A \cdot \operatorname{adj}(A)$? [cite: 29, 39]

Hint 2.3.1.5. What is the rank of A? (It's not 3 since det(A) = 0. Is it 2 or 1?)[cite: 81]. How does the rank of A relate to the rank of adj(A)? Does your calculated adj(A) have the expected rank? [cite: 80, 81, 82]

3 Fundamental Properties and Theorems

3.1 The Fundamental Identity

Problem 3.1. Applying the Core Identity

Question 3.1.1. Let A be a 3×3 matrix with det(A) = 5. Without calculating A or adj(A) explicitly, find the matrix product $A \cdot adj(A)$.

Hint 3.1.1.1. Recall the fundamental identity relating A, adj(A), and det(A)[cite: 29].

Hint 3.1.1.2. The identity is $A \cdot \operatorname{adj}(A) = \det(A)I_n[\text{cite: 29}]$. What is n in this case? What is I_n ?

Hint 3.1.1.3. Substitute the given value of det(A) and the appropriate identity matrix I_n into the formula.

Question 3.1.2. Suppose A is an $n \times n$ matrix such that $A \cdot \operatorname{adj}(A) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$. What is $\det(A)$? Is A invertible? [cite: 29, 38]

Hint 3.1.2.1. Compare the given matrix product with the general form $A \cdot \operatorname{adj}(A) = \det(A)I_n[\text{cite: 29}]$. What must $\det(A)$ be? What is n?

Hint 3.1.2.2. A matrix is invertible if and only if its determinant is non-zero[cite: 38]. Based on the value you found for det(A), can you conclude whether A is invertible?

3.2 Invertibility and the Adjoint

Problem 3.2. Adjoint and Inverse

Question 3.2.1. Given $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Find A^{-1} using the formula involving the adjugate/cite: 38/.

Hint 3.2.1.1. The formula is $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$, provided $\det(A) \neq 0$ [cite: 38]. First, calculate $\det(A)$. Is it non-zero?

Hint 3.2.1.2. Next, calculate adj(A) using the shortcut for 2×2 matrices[cite: 16].

Hint 3.2.1.3. Substitute det(A) and adj(A) into the inverse formula.

Question 3.2.2. Let A be an invertible $n \times n$ matrix. Express $\operatorname{adj}(A)$ in terms of A^{-1} and $\operatorname{det}(A)/\operatorname{cite}$: 38, 41]. Use this to argue why $\operatorname{adj}(A)$ must also be invertible.

Hint 3.2.2.1. Start with the formula for the inverse: $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ [cite: 38].

Hint 3.2.2.2. Rearrange the formula algebraically to solve for adj(A). Remember det(A) is just a non-zero scalar since A is invertible.

Hint 3.2.2.3. You should arrive at $adj(A) = det(A)A^{-1}$ [cite: 41]. Since A is invertible, A^{-1} exists. Is the product of a non-zero scalar and an invertible matrix also invertible? Why?

Hint 3.2.2.4. Alternatively, consider the determinant of $\operatorname{adj}(A)$. We know $\operatorname{det}(\operatorname{adj}(A)) = (\det A)^{n-1}[\operatorname{cite}: 57]$. If A is invertible, what does this tell you about $\operatorname{det}(\operatorname{adj}(A))$ (assuming n > 1)? [cite: 40]

Question 3.2.3. If A is a singular 3×3 matrix, can $\operatorname{adj}(A)$ be invertible? Justify your answer using the relationship between the rank of A and the rank of $\operatorname{adj}(A)$ [cite: 39, 40, 42, 80, 81, 82]. Consider the special case n = 1 separately[cite: 44].

Hint 3.2.3.1. What does it mean for A to be singular? [cite: 39] What are the possible ranks for a singular 3×3 matrix A?

Hint 3.2.3.2. Recall the rules relating $\operatorname{rank}(A)$ and $\operatorname{rank}(\operatorname{adj}(A))$ for an $n \times n$ matrix[cite: 80]: If $\operatorname{rank}(A) = n$, then $\operatorname{rank}(\operatorname{adj}(A)) = n$. If $\operatorname{rank}(A) = n - 1$, then $\operatorname{rank}(\operatorname{adj}(A)) = 1$. If $\operatorname{rank}(A) \le n - 2$, then $\operatorname{rank}(\operatorname{adj}(A)) = 0$.

Hint 3.2.3.3. Apply these rules for n = 3 and the possible ranks of the singular matrix A. What are the possible ranks for adj(A)?

Hint 3.2.3.4. For a matrix to be invertible, what must its rank be? Can adj(A) have this rank if A is singular and n = 3? [cite: 40]

Hint 3.2.3.5. What happens in the n = 1 case? If A = (0), what is adj(A)? Is it invertible? [cite: 44, 141]

4 Matrix Identities Involving the Adjoint

- **Problem 4.1.** Exploring Adjoint Identities
- Question 4.1.1. Prove that $adj(A^T) = (adj(A))^T$ for any $n \times n$ matrix A/cite: 45/.
- **Hint 4.1.1.1.** Let $B = A^T$. We want to show $\operatorname{adj}(B) = (\operatorname{adj}(A))^T$. Let's look at the (i, j)-th entry of each side. The (i, j)-th entry of $(\operatorname{adj}(A))^T$ is the (j, i)-th entry of $\operatorname{adj}(A)$. What is this entry by definition? [cite: 9]
- **Hint 4.1.1.2.** The (j, i)-th entry of $\operatorname{adj}(A)$ is $C_{ij}(A) = (-1)^{i+j} M_{ij}(A)$, where the cofactor and minor are calculated from A[cite: 9].
- **Hint 4.1.1.3.** Now consider the (i, j)-th entry of $\operatorname{adj}(B) = \operatorname{adj}(A^T)$. By definition, this is $C_{ji}(B) = (-1)^{j+i} M_{ji}(B)$, where the cofactor and minor are calculated from $B = A^T$ [cite: 9].
- **Hint 4.1.1.4.** How does the minor $M_{ji}(B)$ relate to a minor of A? Recall that $B = A^T$. $M_{ji}(B)$ is the determinant of the matrix obtained by removing row j and column i from A^T [cite: 46]. How does this submatrix relate to the submatrix used to calculate $M_{ij}(A)$ (obtained by removing row i and column j from A)? [cite: 46]
- **Hint 4.1.1.5.** Remember that $det(M) = det(M^T)$ [cite: 46]. Use this to show that $M_{ii}(B) = M_{ij}(A)$.
- **Hint 4.1.1.6.** Substitute $M_{ji}(B) = M_{ij}(A)$ into the expression for the (i, j)-th entry of adj(B) and compare it to the expression for the (i, j)-th entry of $(adj(A))^T$. Are they equal? [cite: 47]
- **Question 4.1.2.** Let A and B be 3×3 matrices with det(A) = 2 and det(B) = -3. Calculate det(adj(AB)).
- **Hint 4.1.2.1.** We need $\det(\operatorname{adj}(M))$ where M = AB. Recall the identity relating the determinant of the adjugate to the determinant of the original matrix: $\det(\operatorname{adj}(M)) = (\det M)^{n-1}$ [cite: 57]. What is n here?
- **Hint 4.1.2.2.** First, find det(M) = det(AB). How does the determinant of a product relate to the determinants of the factors? [cite: 51]
- **Hint 4.1.2.3.** Calculate det(AB) using the given determinants of A and B.
- **Hint 4.1.2.4.** Now substitute this value for $\det(M)$ and n=3 into the formula $\det(\operatorname{adj}(M))=(\det M)^{n-1}$.
- **Hint 4.1.2.5.** Alternatively, use $\operatorname{adj}(AB) = \operatorname{adj}(B) \operatorname{adj}(A)$ [cite: 49]. Then $\operatorname{det}(\operatorname{adj}(AB)) = \operatorname{det}(\operatorname{adj}(B) \operatorname{adj}(A))$. How does the determinant behave with products?
- **Hint 4.1.2.6.** $\det(\operatorname{adj}(B)\operatorname{adj}(A)) = \det(\operatorname{adj}(B))\det(\operatorname{adj}(A))$. Now use $\det(\operatorname{adj}(X)) = (\det X)^{n-1}$ for X = A and $X = B[\operatorname{cite}: 57]$. Does this give the same result?
- **Question 4.1.3.** Let A be a 4×4 matrix and c = 2. If adj(A) = M, what is adj(cA) in terms of M and c? [cite: 54]
- **Hint 4.1.3.1.** Recall the identity for the adjugate of a scalar multiple: $adj(cA) = c^{n-1} adj(A)$ [cite: 54].

- **Hint 4.1.3.2.** Identify the values of c and n in this problem.
- **Hint 4.1.3.3.** Substitute these values and the fact that adj(A) = M into the identity.
- Question 4.1.4. If A is a 3×3 matrix with det(A) = 4, find det(adj(adj(A))).
- **Hint 4.1.4.1.** Let $B = \operatorname{adj}(A)$. We want to find $\operatorname{det}(\operatorname{adj}(B))$. Use the identity $\operatorname{det}(\operatorname{adj}(B)) = (\operatorname{det} B)^{n-1}[\operatorname{cite}: 57]$. What is n?
- **Hint 4.1.4.2.** We need $\det(B) = \det(\operatorname{adj}(A))$. Use the same identity again: $\det(\operatorname{adj}(A)) = (\det A)^{n-1}$ [cite: 57]. Calculate this value using the given $\det(A)$ and n.
- **Hint 4.1.4.3.** Substitute the value of det(B) you just found back into the expression from the first hint: $det(adj(B)) = (det B)^{n-1}$.
- **Hint 4.1.4.4.** Alternatively, use the identity $\operatorname{adj}(\operatorname{adj}(A)) = (\det A)^{n-2}A$ for $n \geq 2$ [cite: 67].
- **Hint 4.1.4.5.** Take the determinant of both sides of $\operatorname{adj}(\operatorname{adj}(A)) = (\det A)^{n-2}A$. Remember that $\det(kA) = k^n \det(A)$ for a scalar k. Let $k = (\det A)^{n-2}$.
- **Hint 4.1.4.6.** So, $\det(\operatorname{adj}(\operatorname{adj}(A))) = \det((\det A)^{n-2}A) = ((\det A)^{n-2})^n \det(A)$. Simplify this expression using n = 3 and $\det(A) = 4$. Does it match the previous result?
- Question 4.1.5. Let A be an invertible $n \times n$ matrix. Show that $(\operatorname{adj}(A))^{-1} = \operatorname{adj}(A^{-1})$.
- **Hint 4.1.5.1.** We want to show that $\operatorname{adj}(A) \cdot \operatorname{adj}(A^{-1}) = I$. Recall the identity $\operatorname{adj}(XY) = \operatorname{adj}(Y) \operatorname{adj}(X)$ [cite: 49]. Apply this with X = A and $Y = A^{-1}$.
- **Hint 4.1.5.2.** What is $XY = AA^{-1}$? What is $adj(AA^{-1})$? [cite: 141]
- **Hint 4.1.5.3.** So we have $\operatorname{adj}(A^{-1})\operatorname{adj}(A) = \operatorname{adj}(I) = I[\text{cite: } 49, 141].$ Does this directly show $(\operatorname{adj}(A))^{-1} = \operatorname{adj}(A^{-1})$? Yes, by the definition of an inverse.
- **Hint 4.1.5.4.** Alternatively, start with $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ [cite: 38]. And $\operatorname{adj}(A^{-1}) = \det(A^{-1})(A^{-1})^{-1}$ [cite: 41].
- **Hint 4.1.5.5.** We know $\det(A^{-1}) = 1/\det(A)$ and $(A^{-1})^{-1} = A$. Substitute these into the second equation: $\operatorname{adj}(A^{-1}) = \frac{1}{\det(A)}A$.
- **Hint 4.1.5.6.** Now, let's find $(\operatorname{adj}(A))^{-1}$. We know $\operatorname{adj}(A) = \det(A)A^{-1}[\operatorname{cite}: 41]$. So $(\operatorname{adj}(A))^{-1} = (\det(A)A^{-1})^{-1}$. How does the inverse distribute over a scalar multiple and the matrix?
- **Hint 4.1.5.7.** $(\det(A)A^{-1})^{-1} = (\det A)^{-1}(A^{-1})^{-1} = \frac{1}{\det A}A$. Compare this with the expression for $\operatorname{adj}(A^{-1})$. Are they equal?
- **Hint 4.1.5.8.** Another way: Use the identity $\operatorname{adj}(A^k) = (\operatorname{adj}(A))^k$ [cite: 76] with k = -1. Does this identity hold for negative integers if A is invertible? Assume it does for a moment.

5 Relationship with Rank

Problem 5.1. Rank Relationships

Question 5.1.1. Let A be a 5×5 matrix. Determine $\operatorname{rank}(\operatorname{adj}(A))$ in each of the following cases: (a) $\operatorname{rank}(A) = 5$ (b) $\operatorname{rank}(A) = 4$ (c) $\operatorname{rank}(A) = 3$ (d) $\operatorname{rank}(A) = 0$ [cite: 80, 81, 82]

Hint 5.1.1.1. Recall the rules governing the relationship between rank(A) and rank(adj(A)) for an $n \times n$ matrix[cite: 80]. What is n here?

Hint 5.1.1.2. Case (a): If rank(A) = n, what is rank(adj(A))? [cite: 80]

Hint 5.1.1.3. Case (b): If rank(A) = n - 1, what is rank(adj(A))? [cite: 81]

Hint 5.1.1.4. Case (c): If $rank(A) \le n - 2$, what is rank(adj(A))? Does rank(A) = 3 satisfy this condition for n = 5? [cite: 82]

Hint 5.1.1.5. Case (d): If A is the zero matrix (rank 0), what is adj(A) (assuming n > 1)? What is its rank? [cite: 82, 140] Does this fit the general rule for $rank(A) \le n - 2$?

Question 5.1.2. Let A be a 3×3 matrix with $\operatorname{rank}(A) = 2$. Let \mathbf{v} be a non-zero vector such that $A\mathbf{v} = \mathbf{0}$. Explain why every column of $\operatorname{adj}(A)$ must be a scalar multiple of $\mathbf{v}/\operatorname{cite}$: 83, 84, 85, 86].

Hint 5.1.2.1. If rank(A) = 2 for a 3 × 3 matrix, what is det(A)? [cite: 81, 83]

Hint 5.1.2.2. What does the fundamental identity $A \cdot \operatorname{adj}(A) = \det(A)I$ become in this case? [cite: 39, 83]

Hint 5.1.2.3. Let \mathbf{c}_j be the *j*-th column of $\mathrm{adj}(A)$. Consider the product $A \cdot \mathrm{adj}(A)$. The *j*-th column of this product is $A\mathbf{c}_j$. What does the result from the previous hint tell you about $A\mathbf{c}_j$? [cite: 84]

Hint 5.1.2.4. If $A\mathbf{c}_j = \mathbf{0}$, what space does the vector \mathbf{c}_j belong to? [cite: 84]

Hint 5.1.2.5. What is the dimension of the nullspace (kernel) of A if A is 3×3 and rank(A) = 2? (Rank-Nullity Theorem)[cite: 85].

Hint 5.1.2.6. We are given that $A\mathbf{v} = \mathbf{0}$ with $\mathbf{v} \neq \mathbf{0}$. What does this mean about \mathbf{v} in relation to the nullspace? Since the nullspace has dimension 1, how must any other vector in the nullspace (like the columns \mathbf{c}_i) relate to \mathbf{v} ? [cite: 85, 86]

Hint 5.1.2.7. Also, what is the rank of adj(A) when rank(A) = n - 1 = 2?[cite: 81]. How does the rank relate to the columns spanning only a 1D space (the nullspace)? [cite: 86]

6 Applications

Problem 6.1. Inverse and System Solving

Question 6.1.1. Find the inverse of $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ using the adjugate method[cite: 87, 88]. (You may have computed adj(A) in Problem 2.2.1).

Hint 6.1.1.1. First, compute det(A). A cofactor expansion along the second row might be efficient here.

Hint 6.1.1.2. Retrieve or re-compute adj(A) using the standard procedure (minors, cofactors, transpose)[cite: 20, 24].

Hint 6.1.1.3. Apply the formula $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ [cite: 38, 87].

Hint 6.1.1.4. Verify your result by computing AA^{-1} . Should it equal I_3 ?

Question 6.1.2. Consider the system $A\mathbf{x} = \mathbf{b}$ where A is an $n \times n$ singular matrix $(\det(A) = 0)$. Show that if a solution \mathbf{x} exists, it must satisfy $\operatorname{adj}(A)\mathbf{b} = \mathbf{0}$ [cite: 97, 98, 99, 100]. Is the converse true (if $\operatorname{adj}(A)\mathbf{b} = \mathbf{0}$, does a solution necessarily exist)?

Hint 6.1.2.1. Start with the assumption that a solution \mathbf{x} exists, so $A\mathbf{x} = \mathbf{b}$ holds[cite: 97].

Hint 6.1.2.2. Multiply both sides of the equation $A\mathbf{x} = \mathbf{b}$ on the left by $\mathrm{adj}(A)$ [cite: 98].

Hint 6.1.2.3. Use the fundamental identity $\operatorname{adj}(A)A = \det(A)I_n[\text{cite: 29}]$. What does this become since A is singular? [cite: 39, 99]

Hint 6.1.2.4. Substitute the result from the previous hint into the equation from Hint 2. What condition must $adj(A)\mathbf{b}$ satisfy? [cite: 100]

Hint 6.1.2.5. For the converse: $\operatorname{adj}(A)\mathbf{b} = \mathbf{0}$ is a necessary condition for consistency[cite: 100]. Does it guarantee a solution exists? Think about the relationship between \mathbf{b} and the column space of A. The condition $\operatorname{adj}(A)\mathbf{b} = \mathbf{0}$ implies that \mathbf{b} is orthogonal to the rows of $\operatorname{adj}(A)$. How do the rows of $\operatorname{adj}(A)$ relate to the nullspace of A^T ? What is the relationship between the nullspace of A^T and the column space of A (Fundamental Theorem of Linear Algebra)? [cite: 102]

Hint 6.1.2.6. Consider $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Calculate $\operatorname{adj}(A)$ and $\operatorname{adj}(A)\mathbf{b}$.

Does a solution to $A\mathbf{x} = \mathbf{b}$ exist? (The column space of A is spanned by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$).

7 Properties Under Transformations and Specific Matrix Types

Problem 7.1. Adjoints of Special Matrices

Question 7.1.1. Let A be a 3×3 orthogonal matrix with det(A) = -1. Find a simple expression for adj(A) in terms of A or $A^{T}[cite: 130, 131]$.

Hint 7.1.1.1. What does it mean for A to be orthogonal? What is the relationship between A^{-1} and A^{T} ? [cite: 130]

Hint 7.1.1.2. Recall the formula relating the adjugate and the inverse for an invertible matrix: $adj(A) = det(A)A^{-1}[cite: 128].$

- **Hint 7.1.1.3.** Substitute the relationship between A^{-1} and A^{T} (from Hint 1) and the given value of det(A) into the formula from Hint 2[cite: 131].
- **Question 7.1.2.** Prove that if A is symmetric $(A^T = A)$, then adj(A) is also symmetric[cite: 132].
- **Hint 7.1.2.1.** We want to show that $(\operatorname{adj}(A))^T = \operatorname{adj}(A)$.
- **Hint 7.1.2.2.** Recall the identity relating the adjugate of a transpose and the transpose of the adjugate: $(adj(A))^T = adj(A^T)$ [cite: 45, 132].
- **Hint 7.1.2.3.** Since A is symmetric, what is A^T equal to? Substitute this into the right side of the identity from Hint 2. Does this prove the claim? [cite: 132]
- Question 7.1.3. Let A be an $n \times n$ skew-symmetric matrix $(A^T = -A)$. Determine whether $\operatorname{adj}(A)$ is symmetric or skew-symmetric, considering whether n is odd or even[cite: 133, 134, 135, 136, 137].
- **Hint 7.1.3.1.** We need to examine $(\operatorname{adj}(A))^T$. Start with the identity $(\operatorname{adj}(A))^T = \operatorname{adj}(A^T)[\operatorname{cite:} 45, 133].$
- **Hint 7.1.3.2.** Since A is skew-symmetric, substitute $A^T = -A$ into the identity: $(\operatorname{adj}(A))^T = \operatorname{adj}(-A)[\operatorname{cite}: 133].$
- **Hint 7.1.3.3.** Recall the identity for the adjugate of a scalar multiple: $\operatorname{adj}(cA) = c^{n-1}\operatorname{adj}(A)$ [cite: 54]. Apply this with c = -1: $\operatorname{adj}(-A) = (-1)^{n-1}\operatorname{adj}(A)$ [cite: 133].
- **Hint 7.1.3.4.** Combine the results: $(adj(A))^T = (-1)^{n-1} adj(A)$ [cite: 133].
- **Hint 7.1.3.5.** Case 1: n is odd. What is n-1? What is $(-1)^{n-1}$? What does the equation from Hint 4 become? Does this mean adj(A) is symmetric or skew-symmetric? [cite: 135, 137]
- **Hint 7.1.3.6.** Case 2: n is even. What is n-1? What is $(-1)^{n-1}$? What does the equation from Hint 4 become? Does this mean adj(A) is symmetric or skew-symmetric? [cite: 136, 137]
- **Question 7.1.4.** Let $D = \text{diag}(d_1, d_2, \ldots, d_n)$. Describe the matrix adj(D) [cite: 138, 139, 140]. What is adj(D) if one of the d_i is zero? What if at least two d_i 's are zero (assume n > 1)?
- **Hint 7.1.4.1.** Consider the (i, j)-th entry of $\operatorname{adj}(D)$, which is $C_{ji}(D) = (-1)^{j+i} M_{ji}(D)$ [cite: 9].
- **Hint 7.1.4.2.** What is the minor $M_{ji}(D)$ if $j \neq i$? The submatrix used to calculate $M_{ji}(D)$ is obtained by removing row j and column i from the diagonal matrix D. Does this submatrix still have zeros everywhere off the main diagonal? Does it have a zero on its main diagonal? What is its determinant? [cite: 138, 305]
- **Hint 7.1.4.3.** This implies that $C_{ji}(D) = 0$ if $j \neq i$. So, adj(D) must be a diagonal matrix[cite: 138].
- **Hint 7.1.4.4.** Now consider the diagonal entries (i, i) of adj(D). These are $C_{ii}(D) = (-1)^{i+i}M_{ii}(D) = M_{ii}(D)$. What is the minor $M_{ii}(D)$? It's the determinant of the diagonal matrix formed by removing row i and column i from D[cite: 139].

- **Hint 7.1.4.5.** The matrix for $M_{ii}(D)$ is $\operatorname{diag}(d_1, \ldots, d_{i-1}, d_{i+1}, \ldots, d_n)$. What is its determinant? [cite: 139] This is the *i*-th diagonal entry of $\operatorname{adj}(D)$ [cite: 140].
- **Hint 7.1.4.6.** If exactly one $d_k = 0$. Consider the k-th diagonal entry of adj(D). It's the product $\prod_{j \neq k} d_j$. Is this zero or non-zero? Now consider any other diagonal entry $i \neq k$. Its value is $\prod_{j \neq i} d_j$. Does this product include d_k ? What is its value? What does adj(D) look like?
- Hint 7.1.4.7. If at least two entries, say $d_k = 0$ and $d_l = 0$ $(k \neq l)$, consider any diagonal entry $\prod_{j\neq i} d_j$ of $\mathrm{adj}(D)$. Can this product ever be non-zero? (Think about whether d_k or d_l must be included in the product). What is $\mathrm{adj}(D)$ in this case? [cite: 82]

8 Conceptual, Geometric, and Advanced Topics

Problem 8.1. Properties and Interpretations

Question 8.1.1. Explain why the mapping $F : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ defined by $F(A) = \operatorname{adj}(A)$ is a continuous function/cite: 142, 143, 144, 145/.

Hint 8.1.1.1. What are the entries of the matrix adj(A)? They are cofactors $C_{ji}(A)$ [cite: 9].

Hint 8.1.1.2. How is a cofactor $C_{ji}(A)$ defined? It involves a minor $M_{ji}(A)$ and a sign[cite: 6].

Hint 8.1.1.3. How is a minor $M_{ji}(A)$ defined? It's the determinant of a submatrix of A[cite: 5].

Hint 8.1.1.4. Is the determinant function a polynomial function of the entries of a matrix? [cite: 144]

Hint 8.1.1.5. Therefore, are the minors polynomials in the entries of A? Are the cofactors? Are the entries of adj(A)? [cite: 144]

Hint 8.1.1.6. Are polynomial functions continuous? If each entry of F(A) is a continuous function of the entries of A, what does that imply about the continuity of the matrix function F(A)? [cite: 145]

Question 8.1.2. Let $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3)$ be a 3×3 matrix with columns $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^3$. Verify the formula stating that the *rows* of $\operatorname{adj}(A)$ are given by $(\mathbf{a}_2 \times \mathbf{a}_3)^T$, $(\mathbf{a}_3 \times \mathbf{a}_1)^T$, and $(\mathbf{a}_1 \times \mathbf{a}_2)^T$ [cite: 174, 175]. (Note: The source document discussion is slightly confusing, this formulation aligns with $A \operatorname{adj}(A) = \det(A)I$).

Hint 8.1.2.1. Let $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$. The first row of adj(A) consists of the cofactors C_{11}, C_{21}, C_{31} [cite: 9, 167].

Hint 8.1.2.2. Calculate the cofactor $C_{11} = (-1)^{1+1} M_{11}$. Write out the 2×2 determinant for M_{11} .

Hint 8.1.2.3. Now calculate the cross product $\mathbf{a}_2 \times \mathbf{a}_3$. Write out the components of this vector using the determinant formula for the cross product or component-wise definition.

- **Hint 8.1.2.4.** Compare the first component of $\mathbf{a}_2 \times \mathbf{a}_3$ with the cofactor C_{11} . Are they equal?
- **Hint 8.1.2.5.** Now calculate the cofactor $C_{21} = (-1)^{2+1}M_{21}$. Write out the 2×2 determinant for M_{21} . Compare it with the second component of $\mathbf{a}_2 \times \mathbf{a}_3$. Are they equal? (Pay attention to the sign from $(-1)^{2+1}$).
- **Hint 8.1.2.6.** Calculate $C_{31} = (-1)^{3+1} M_{31}$. Compare it with the third component of $\mathbf{a}_2 \times \mathbf{a}_3$. Are they equal?
- **Hint 8.1.2.7.** Since the components of $(\mathbf{a}_2 \times \mathbf{a}_3)^T$ match the first row of $\operatorname{adj}(A)$ (C_{11}, C_{21}, C_{31}) , the first part of the formula is verified. Repeat the process for the second and third rows of $\operatorname{adj}(A)$ using $\mathbf{a}_3 \times \mathbf{a}_1$ and $\mathbf{a}_1 \times \mathbf{a}_2$ respectively.
- **Question 8.1.3.** Let λ be an eigenvalue of an invertible $n \times n$ matrix A. Show that $\det(A)/\lambda$ is an eigenvalue of $\operatorname{adj}(A)/\operatorname{cite}$: 111, 112, 113]. What happens if A is singular?
- **Hint 8.1.3.1.** Case 1: A is invertible. Start with the relationship $adj(A) = det(A)A^{-1}$ [cite: 111].
- **Hint 8.1.3.2.** If λ is an eigenvalue of A, what are the eigenvalues of A^{-1} ? [cite: 112]
- **Hint 8.1.3.3.** If M = cN, how do the eigenvalues of M relate to the eigenvalues of N? Use this with $M = \operatorname{adj}(A)$, $N = A^{-1}$, and $c = \det(A)$ to find the eigenvalues of $\operatorname{adj}(A)$ in terms of λ and $\det(A)$ [cite: 113].
- **Hint 8.1.3.4.** Case 2: A is singular $(\det(A) = 0)$. Assume $\operatorname{rank}(A) = n 1$ (the most interesting singular case)[cite: 114]. What is the rank of $\operatorname{adj}(A)$? [cite: 81, 114]
- **Hint 8.1.3.5.** A matrix of rank 1 has at most one non-zero eigenvalue[cite: 115]. What are most of the eigenvalues of adj(A) in this case? [cite: 116]
- **Hint 8.1.3.6.** Let $A\mathbf{v} = \lambda \mathbf{v}$ with $\lambda \neq 0$. Consider $A \operatorname{adj}(A) = 0$. Multiply by \mathbf{v} on the right. Alternatively use $\operatorname{adj}(A)A = 0$. Multiply by \mathbf{v} on the right: $\operatorname{adj}(A)A\mathbf{v} = \mathbf{0}$. Substitute $A\mathbf{v} = \lambda \mathbf{v}$ [cite: 117, 118].
- **Hint 8.1.3.7.** You should get $\lambda \operatorname{adj}(A)\mathbf{v} = \mathbf{0}[\text{cite: } 118]$. Since $\lambda \neq 0$, what does this say about $\operatorname{adj}(A)\mathbf{v}$? What eigenvalue of $\operatorname{adj}(A)$ does the eigenvector \mathbf{v} (corresponding to $\lambda \neq 0$ of A) correspond to? [cite: 119, 120]
- Hint 8.1.3.8. What about the eigenvalue $\lambda = 0$ of A? Let A**w** = **0** where **w** is in the nullspace of A. Since rank(adj(A)) = 1 and its columns are in the nullspace of A, the image of adj(A) is spanned by **w**[cite: 124, 125]. Thus adj(A)**w** must be a multiple of **w**. adj(A)**w** = μ **w**. This μ is the potentially non-zero eigenvalue of adj(A)[cite: 126]. Can we determine μ ? It's given as tr(adj(A))[cite: 126].
- **Hint 8.1.3.9.** What if $rank(A) \le n 2$? What is adj(A)? What are its eigenvalues? [cite: 127]

9 Challenge / Contest-Style Problems

Problem 9.1. From Properties to Solutions

Question 9.1.1. If A is a real $n \times n$ matrix such that $adj(A) = A^T$, what are the possible values for det(A)?

Hint 9.1.1.1. Start by taking the determinant of both sides of the equation $adj(A) = A^T$.

Hint 9.1.1.2. Use the identities $\det(\operatorname{adj}(A)) = (\det A)^{n-1}$ [cite: 57] and $\det(A^T) = \det(A)$.

Hint 9.1.1.3. You should arrive at an equation involving only det(A) and n. Let d = det(A). The equation is $d^{n-1} = d$.

Hint 9.1.1.4. Solve the equation $d^{n-1} - d = 0$ or $d(d^{n-2} - 1) = 0$ for d. What are the possible real solutions for d? Consider the cases n = 1, n = 2, and n > 2.

Hint 9.1.1.5. If n = 1, A = (a), adj(A) = (1), $A^{T} = (a)$. So a = 1. det(A) = 1. Does $d(d^{1-2} - 1) = 0$ make sense? Let's use $d^{n-1} = d$. If n = 1, $d^{0} = d$, so 1 = d.

Hint 9.1.1.6. If n=2, $d(d^0-1)=0$, so d(1-1)=0, which is 0=0. This doesn't restrict d. Let's re-evaluate. For n=2, $d^2=d$. This identity gives no information for n=2. Let's try $A \operatorname{adj}(A) = \det(A)I$. Substitute $\operatorname{adj}(A) = A^T$. So $AA^T = \det(A)I$. Take determinants: $\det(A) \det(A^T) = (\det A)^n$. $(\det A)^2 = (\det A)^n$. $d^2 = d^n$. $d^2(1-d^{n-2})=0$. This implies d=0 or $d^{n-2}=1$. If n=2, $d^0=1$, which is 1=1. Still no restriction. If $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $A^T=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$, $\operatorname{adj}(A)=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. So we need

d = a, -b = c, -c = b, a = d. This means a = d and c = -b. Matrix is $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. $\det(A) = a^2 + b^2$. Can this be any non-negative real number? Yes. So for n = 2, $\det(A)$ can be any value ≥ 0 .

Hint 9.1.1.7. If n > 2, d = 0 or $d^{n-2} = 1$. Since A is real, $d^{n-2} = 1$ implies d = 1 or (if n is even) d = -1.

Hint 9.1.1.8. Summarize the possible values for det(A) based on n.

Question 9.1.2. Prove the result cited in the document: If $A^2 = A$ (and A is $n \times n$) and $\operatorname{rank}(A) = n - 1$, then $\operatorname{adj}(A) = I - A/\operatorname{cite}$: 262].

Hint 9.1.2.1. Since $A^2 = A$ and $A \neq I$ (because rank(A) = n - 1 < n), A must be singular. Why? [cite: 240] So $\det(A) = 0$.

Hint 9.1.2.2. What is the rank of adj(A) if rank(A) = n - 1? [cite: 81, 243]

Hint 9.1.2.3. What is the rank of I - A? Recall that A and I - A are complementary projections. Use the property rank(P) + rank(I - P) = n for a projection P. [cite: 244]

Hint 9.1.2.4. So, both adj(A) and I - A have rank 1. We need to show they are equal, not just proportional.

Hint 9.1.2.5. Consider the product $A \operatorname{adj}(A)$. What is it equal to, since $\det(A) = 0$? [cite: 39]

Hint 9.1.2.6. Now consider the product A(I - A). Expand it using $A^2 = A$. Is it equal to $A \operatorname{adj}(A)$? [cite: 246] This shows columns of $\operatorname{adj}(A)$ and I - A are in the nullspace of A

Hint 9.1.2.7. Since $\operatorname{rank}(A) = n - 1$, the nullspace of A is 1-dimensional[cite: 85]. Both $\operatorname{adj}(A)$ and I - A are rank 1 matrices whose columns span this nullspace. This means $\operatorname{adj}(A) = k(I - A)$ for some scalar k[cite: 249].

Hint 9.1.2.8. How can we find k? Take the trace of both sides: tr(adj(A)) = k tr(I - A)[cite: 250].

Hint 9.1.2.9. What are the eigenvalues of an idempotent matrix A with rank n-1?[cite: 184, 251]. How many eigenvalues are 1 and how many are 0?

Hint 9.1.2.10. Use the eigenvalues to calculate tr(A). Then calculate tr(I - A) = tr(I) - tr(A)[cite: 251, 252].

Hint 9.1.2.11. Recall from Problem 8.1.3 (or re-derive using characteristic polynomial coefficients) that the non-zero eigenvalue of $\operatorname{adj}(A)$ (when $\operatorname{rank}(A) = n - 1$) is $\operatorname{tr}(\operatorname{adj}(A))$ [cite: 126]. Also, the coefficient c_1 of λ in the characteristic polynomial $p(\lambda) = \operatorname{det}(\lambda I - A)$ is related to $\operatorname{tr}(\operatorname{adj}(A))$ [cite: 257].

Hint 9.1.2.12. The characteristic polynomial for A is $p(\lambda) = \lambda^1(\lambda - 1)^{n-1}$ [cite: 255]. Find the coefficient of λ^1 in this polynomial by expanding $(\lambda - 1)^{n-1}$ using the binomial theorem or by differentiation [cite: 259].

Hint 9.1.2.13. Relate this coefficient c_1 to $\operatorname{tr}(\operatorname{adj}(A))$ using $c_1 = (-1)^{n-1} \operatorname{tr}(\operatorname{adj}(A))$ [cite: 257, 260]. Show that $\operatorname{tr}(\operatorname{adj}(A)) = 1$.

Hint 9.1.2.14. Substitute $\operatorname{tr}(\operatorname{adj}(A)) = 1$ and $\operatorname{tr}(I - A) = 1$ into the equation from Hint 8: $\operatorname{tr}(\operatorname{adj}(A)) = k \operatorname{tr}(I - A)$. What must k be? [cite: 261]

Hint 9.1.2.15. Since k = 1, we have adj(A) = I - A[cite: 262].

Question 9.1.3. Find all 2×2 real matrices A such that adj(A) = A[cite: 207].

Hint 9.1.3.1. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then $\operatorname{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ [cite: 15]. Set $A = \operatorname{adj}(A)$. What equations must a, b, c, d satisfy?

Hint 9.1.3.2. The equations are a = d, b = -b, c = -c, d = a. What do b = -b and c = -c imply about b and c?

Hint 9.1.3.3. So, b = 0 and c = 0. The matrix must be diagonal, $A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$. The

condition a = d still holds. So $A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = aI_2$.

Hint 9.1.3.4. Now, let's check the general analysis. If $\operatorname{adj}(A) = A$, then $\det(A)$ must satisfy $d(d^{n-2}-1) = 0$. For n = 2, this is $d(d^0-1) = 0 \implies d(1-1) = 0 \implies 0 = 0$. This gave no restriction on $\det(A)$. However, we also have $A \operatorname{adj}(A) = \det(A)I$. If $\operatorname{adj}(A) = A$, then $A^2 = \det(A)I$.

Hint 9.1.3.5. Apply $A^2 = \det(A)I$ to our candidate solution $A = aI_2$. $(aI_2)^2 = a^2I_2$. $\det(aI_2)I_2 = a^2I_2$. So $a^2I_2 = a^2I_2$. This holds for any scalar a.

Hint 9.1.3.6. Therefore, any matrix of the form $A = aI_2 = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ is a solution for n = 2.

10 Edge Cases

Problem 10.1. Handling Extremes

Question 10.1.1. Let A = (a) be a 1×1 matrix. Verify explicitly that $\operatorname{adj}(A) = (1)$ and that $A \operatorname{adj}(A) = \det(A)I_1/\operatorname{cite}$: 300, 301, 302]. Why is $\operatorname{adj}((0)) = (1)$ not zero?

Hint 10.1.1.1. For A = (a), the cofactor matrix C has entry $C_{11} = (-1)^{1+1} M_{11}$ [cite: 300].

Hint 10.1.1.2. The minor M_{11} is the determinant of the matrix obtained by removing row 1 and column 1. This is the 0×0 matrix. By convention, what is its determinant? [cite: 300]

Hint 10.1.1.3. Calculate C_{11} using the determinant from Hint 2. This gives the cofactor matrix $C = (C_{11})$.

Hint 10.1.1.4. The adjugate is the transpose of the cofactor matrix: $adj(A) = C^T[cite: 8, 301]$. What is the transpose of a 1×1 matrix?

Hint 10.1.1.5. Now compute the product A adj(A) = (a)(1)[cite: 302].

Hint 10.1.1.6. Compute the right side $det(A)I_1$. What is det((a))? What is I_1 ? [cite: 302] Compare both sides.

Hint 10.1.1.7. The fact that adj((0)) = (1) follows directly from the definition involving the 0×0 determinant being 1[cite: 301, 304]. It seems counterintuitive but is required for consistency, especially for the identity A adj(A) = det(A)I.

Question 10.1.2. Verify that $\operatorname{adj}(I_n) = I_n$ for any $n \geq 1/\operatorname{cite}$: 141, 307/.

Hint 10.1.2.1. We need the (i, j)-th entry of $\operatorname{adj}(I_n)$, which is $C_{ji}(I_n) = (-1)^{j+i} M_{ji}(I_n)$ [cite: 9].

Hint 10.1.2.2. Consider the minor $M_{ji}(I_n)$. This is the determinant of I_n with row j and column i removed.

Hint 10.1.2.3. Case 1: j = i. The minor $M_{ii}(I_n)$ is the determinant of I_n with row i and column i removed. What matrix is this? What is its determinant? [cite: 305]

Hint 10.1.2.4. Case 2: $j \neq i$. The minor $M_{ji}(I_n)$ is the determinant of I_n with row j and column i removed. Can you show this resulting matrix must have a row or column of all zeros? (Consider the j-th row if j > i, or the i-th column if i > j). What is the determinant of a matrix with a zero row or column? [cite: 305]

Hint 10.1.2.5. So, $M_{ji}(I_n) = 1$ if j = i and 0 if $j \neq i$.

Hint 10.1.2.6. Now find the cofactor $C_{ji}(I_n) = (-1)^{j+i} M_{ji}(I_n)$. Does the sign matter when $M_{ji} = 0$? What is $C_{ii}(I_n)$?

Hint 10.1.2.7. This shows that the entry (i, j) of $\operatorname{adj}(I_n)$, which is $C_{ji}(I_n)$, is 1 if i = j and 0 if $i \neq j$. What matrix has these entries? [cite: 307]