Homework 7

Page 156, Chinese textbook Question 7.1

Considering a buck chopper circuit shown in the Fig. 5-8, with E = 200V, $R = 10\Omega$, L is large enough and $E_m = 50V$. Use the pulse width modulation method, when $T = 40\mu s$ and $t_{on} = 20\mu s$, calculate the average output voltage U_o and the average output current I_o .

Question 7.2

Considering a boost chopper circuit shown in the Fig. 5-9, with E = 50V, L and C are large enough and $R = 25\Omega$. Use the pulse width modulation method, when $T = 50\mu s$ and $t_{on} = 20\mu s$, calculate the average output voltage U_0 and the average output current I_0 .

Answer 7.1

The load current can be considered continuous for L is large enough. Therefore, the average output voltage and current of a buck circuit should be:

$$U_o=DE=rac{t_{on}}{T}E=100\,(V)$$
 $I_o=rac{U_o-E_M}{R}=5\,(A)$

Answer 7.2

The load current can be considered continuous for L and C is large enough. Therefore, the average output voltage and current of a buck circuit should be:

$$U_o = rac{1}{1-D}E = rac{T}{T-t_{on}}E = 83.33(V)$$
 $I_o = rac{U_o}{R} = 3.33(A)$