

SmartSensTM SIRALL Sens SC8238 数据手册

Preliminary V0.7 2020.4.21

应用

- 安防监控系统
- 网络摄像机
- 可移动设备相机
- 视频电话会议设备

特性

- 高光敏度
- 高动态范围
 - 行交叠宽动态
- 高信噪比
- 850nm/940nm 近红外增强
- 低功耗
- 16 x 模拟增益,32 x 数字增益
- 高速 DPC
- 外部控制帧率及多 sensor 同步
- 水平/垂直窗口调整
- 水平/垂直窗口翻转
- 2 x 2 binning 模式
- I²C 接口寄存器编程

关键指标(典型值)

- 分辨率: 800万
- 像素阵列: 3872H x 2180V
- 像素尺寸: 1.5 µm x 1.5 µm
- 镜头光学尺寸: 1/2.7"
- 最大图像传输速率:
 - 3840H x 2160V@30fps 10-bit
- 输出接口:
 - 12/10/8 bit 4Lane MIPI
 - 12/10/8 bit 4Lane LVDS
- 输出格式: RAW RGB
- CRA: 15°
- 灵敏度: 1160 mV/lux·s
- 动态范围:
 - 宽动态模式: >100 dB
 - 线性模式: 70 dB
- 信噪比: 36 dB
- 工作温度范围: -30°C ~+85°C
- 最佳工作温度范围: -20°C~+60°C
- 电源电压:
 - Analog= 2.8V±0.1V
 - Digital = 1.5V/1.2V±0.1V
 - I/O = 1.8V±0.1V
- 封装: 41-pin CSP, 48-PLCC
- 封装尺寸:
 - CSP: 6.816mm x 4.648mm
 - PLCC: 10.16 mm x 10.16 mm

目录

图	片索引		5
表	格索引		6
1.	系统	充描述	7
	1.1.	芯片概述	7
	1.2.	系统框架	.,7
	1.3.	引脚描述	9
	1.3.1		
	1.3.2	2. PLCC	11
	1.4.		
	1.4.1	= ***	
	1.4.2	2. 睡眠模式	13
	1.4.3		
	1.5.	配置接口	14
	1.6.	Sensor ID	16
	1.7.	数据接口	16
	1.7.1		16
	1.7.2	2. LVDS	20
	1.8.		22
2.		8介绍	
	2.1.	SLAVE MODE	23
		宽动态	
	2.3.	AEC/AGC	27
	2.3.1	1. AEC/AGC 的控制策略	27
	2.3.2	2. AEC 控制寄存器说明	28
	2.3.3	3. AGC 控制寄存器说明	29
	2.4.	GROUP HOLD	37
	2.5.	DPC	37
	2.6.	视频输出模式	38
	2.6.1	1. 读取顺序	38
	2.6.2	2. 输出窗口	39
	2.7.	帧率计算	40
	2.8.	测试模式	40
3.	电气	〔特性	41
4.	光学	丝特性	43
5.	封装	を信息	44
	5.1.	CSP	44
	5.2.	PLCC	46
6.	订购	內信息	47

7. 版本变更记录.......48

Smart Sens Confridential

图片索引

图	1-1 SC8238 结构图7_T	oc33633700
图	1-2 典型应用示意图	8
图	1-3 SC8238 封装引脚图(CSP)	10
图	1-4 SC8238 封装引脚图(PLCC)	12
图	1-5 上电时序图	13
冬	1-6 I ² C 接口时序	15
图	│ 1-7 MIP 接口示意图	16
冬	│ 1-8 MIPI 底层数据包示意图	17
冬	1 = 5 · · · · · · · · · · · · · · · · · ·	
冬	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18
图	, , , , , , , , , , , , , , , , , , ,	
图	1-12 LVDS 1 个 data lane 数据结构示意图(以 10bit 为例)	20
冬	, = =0 · == 1= 1/2 / 1/2	22
图	, = = 0.000 mode //1	
图	2-2 Slave Mode 曝光实现图	24
图	2-3 行交叠 HDR 使用 virtual channel 数据读出时序	25
图	2-4 行交叠 HDR 不使用 virtual channel 数据模式 a 读出时序	25
图	, = 0 11 % E :: 0: 1	
图	2-6 像素阵列图一 2-7 像素阵列图二	38
图		
图	, = 0 00 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39
图		
图	3-1 外部时钟(EXTCLK)波形图	42
图	4-1 QE Curve	43
图	5-1 SC8238 封装示意图(CSP)	44
图	5-2 SC8238 封装示意图(PLCC)	46

表格索引

表	1-1 SC8238 PIN 脚描述(CSP)	9
表	1-2 SC8238 引脚描述(PLCC)	.11
表	1-3 睡眠模式控制寄存器	.13
表	1-4 软复位控制寄存器	.14
表	1-5 I ² C 设备地址控制	.14
表	1-6 I ² C 接口时序详细参数	.15
表	1-7 SENSOR ID 寄存器	16
表	1-8 MIPI 数据类型	.19
表	1-9 MIPI 调整寄存器	.19
	1-10 LVDS 数据同步信息编码示意表	
	1-11 LVDS 调整相关寄存器	
表	2-1 Slave mode 控制寄存器	.24
	2-2 HDR 控制寄存器	
表	2-3 曝光的手动控制寄存器	.28
表	2-4 Normal 模式/HDR 模式下增益寄存器控制	.29
表	2-5 模拟 gain 值控制寄存器 2-6 数字 gain 值控制寄存器	.30
表	2-6 数字 gain 值控制寄存器	.34
耒	2-7 Group hold 控制客存器	37
表	2-8 DPC 控制寄存器	.37
表	2-9 镜像和倒置模式控制寄存器	.39
表	2-10 输出窗口寄存器	.39
表	2-11 帧率相关寄存器	.40
表	2-12 测试模式控制寄存器	.40
表	3-1 绝对最大额定值(以上所有电压都是 to pad 电压)	.41
表	3-2 直流电气特性(以上所有电压都是 to pad 电压)	.41
表	3-3 交流特性(TA=25°C,AVDD=2.8V,DOVDD=1.8V)	.42
表	5-1 封装尺寸表	.45
表	6-1 订购信息表	.47

1. 系统描述

1.1. 芯片概述

SC8238 是监控相机领域先进的数字 CMOS 图像传感器,最高支持 3840H x 2160V @ 30fps 的传输速率。SC8238 输出 raw 格式图像,有效像素窗口为 3872H x 2180V,支持复杂的片上操作——例如窗口化、水平镜像、垂直倒置等。

SC8238 可以通过标准的 I2C 接口进行配置。

SC8238 可以通过 EFSYNC 引脚实现外部控制帧率及多 sensor 同步。

1.2. 系统框架

图 1-1 展示了 SC8238 图像传感器的功能模块。图 1-2 展示了一个典型的应用示例。

图 1-1 SC8238 结构图

SC8238 支持 MIPI、LVDS 接口,以 MIPI 接口为例:

图 1-2 典型应用示意图

1.3. 引脚描述

1.3.1. CSP

表 1-1 列出了 SC8238 图像传感器的引脚信息(CSP)及相关描述。

表 1-1 SC8238 PIN 脚描述(CSP)

序号	编号	信号名	引脚类型	azoo FIN Man Mc(COF) 描述
1	A1	AVDD	电源	2.8V 模拟电源
2	A2	DVDD	电源	数字电源
3	А3	SCL	输入	I ² C 时钟线
4	A4	PWDNB	输入	Power Down 信号输入(内置上拉电阻,低电位有效)
5	A5	SID	输入	I ² C Device ID (内置下拉电阻,默认为低电平,对应 Device ID 是 7'h30)
6	A6	VREFN	输出	内部参考电压(外接电容至 AGND)
7	A7	AVDD	电源	2.8V 模拟电源
8	B1	AGND	地线	模拟地
9	B2	RESERVED	-	NC
10	В3	SDA	输入/输出	I ² C 数据线(open drain)
11	B5	DVDD	电源	数字电源
12	В6	EFSYNC	输入	外部同步触发
13	В7	AGND	地线	模拟地
14	C1	DVDD	电源	数字电源
15	C2	EXTCLK	输入	时钟输入
16	C3	DOGND	地线	I/O地
17	C4	XSHUTDN	输入	复位信号输入(内置上拉电阻,低电位有效)
18	C5	MD2P	输出	MIPI 数据 2 正极信号
19	C6	NC	_	_
20	C7	AVDD	电源	2.8V 模拟电源
21	D1 X	NC	_	_
22	D2	DOGND	地线	I/O 地
23	D3	MD3P	输出	MIPI 数据 3 正极信号
24	D4	DOVDD	电源	1.8V I/O 电源
25	D5	MD2N	输出	MIPI 数据 2 负极信号
26	D6	DVDD	电源	数字电源
27	D7	TXVDD	输出	内部参考电压(外接电容至 AGND)
28	E1	NC	_	_
29	E2	DOVDD	电源	1.8V I/O 电源
30	E3	MD1N	输出	MIPI 数据 1 负极信号
31	E4	MCN	输出	MIPI 时钟负极信号
32	E5	MD0P	输出	MIPI 数据 0 正极信号

SC8238

序号	编号	信号名	引脚类型	描述
33	E6	DOGND	地线	I/O 地
34	E7	VREFH	输出	内部参考电压(外接电容至 AGND)
35	F1	NC	_	_
36	F2	MD3N	输出	MIPI 数据 3 负极信号
37	F3	MD1P	输出	MIPI 数据 1 正极信号
38	F4	MCP	输出	MIPI 时钟正极信号
39	F5	MD0N	输出	MIPI 数据 0 负极信号
40	F6	DOGND	地线	I/O地
41	F7	VREFN2	输出	内部参考电压(外接电容至 AGND)

Top View

(A1) AVDD	(A2) DVDD	(A3) SCL	(A4) PWDNB	(A5) SID	(A6) VREFN	(A7) AVDD
(B1) AGND (C1) DVDD	(B2) RESERVED (C2) EXTCLK	SDA (C3) DOGND	(C4)	DVDD (C5)	(B6) EFSYNC (C6)	(B7) AGND (C7) AVDD
(D1)	(D2)	(D3)	(D4)	(D5) MD2N	NC (D6)	(D7)
(E1)	(E2)	(E3) MD1N	(E4) MCN	(E5)	(E6)	(E7) VREFH
(F1) NC	(F2) MD3N	(F3) MD1P	(F4) MCP	(F5)	(F6)	(F7) VREFN2

图 1-3 SC8238 封装引脚图(CSP)

1.3.2. PLCC

表 1-2 列出了 SC8238 图像传感器的引脚信息(PLCC)及相关描述。

表 1-2 SC8238 引脚描述(PLCC)

序号	信号名	引脚类型	
1	SDA	输入/输出	I ² C 数据线(open drain)
2	SCL	输入	I ² C 时钟线
3	DOVDD	电源	1.8V I/O 电源
4	DVDD	输入	1.2V/1.5V 数字电源
5	GND	地线	I/O 地/模拟地
6	EXTCLK	输入	时钟输入
7	FSYNC	输入/输出	输入时作为外部帧同步信号 输出时作为帧同步输出信号
8	NC	-	-
9	GND	地线	I/O 地/模拟地
10	AVDD	电源	2.8V 模拟电源
11	GND	地线	I/O 地/模拟地
12	DVDD	电源	1.2V/1.5V 数字电源
13	GND	地线	I/O 地/模拟地
14	GND	地线	I/O 地/模拟地
15	NC	-	-
16	NC	-	
17	MD3N	输出	MIPI 数据 3 负极信号
18	MD3P	输出	MIPI 数据 3 正极信号
19	MD1N	输出	MIPI 数据 1 负极信号
20	MD1P	输出	MIPI 数据 1 正极信号
21	GND	地线	I/O 地/模拟地
22	MCP	输出	MIPI 时钟正极信号
23	MCN	输出	MIPI 时钟负极信号
24	DOVDD	电源	1.8V I/O 电源
25	GND	地线	I/O 地/模拟地
26	MD0N	输出	MIPI 数据 0 负极信号
27	MD0P	输出	MIPI 数据 0 正极信号
28	MD2N	输出	MIPI 数据 2 负极信号
29	MD2P	输出	MIPI 数据 2 正极信号
30	GND	地线	I/O 地/模拟地
31	DVDD	电源	1.2V/1.5V 数字电源
32	GND	地线	I/O 地/模拟地
33	AVDD	电源	2.8V 模拟电源
34	GND	地线	I/O 地/模拟地
35	VREFN2	输出	内部参考电压(外接电容至 GND)

SC8238

序号	信号名	引脚类型	描述
36	TXVDD	输出	内部参考电压(外接电容至 GND)
37	VREFH	输出	内部参考电压(外接电容至 GND)
38	NC	-	-
39	EFSYNC	输入	外部帧同步信号
40	GND	地线	I/O 地/模拟地
41	AVDD	电源	2.8V 模拟电源
42	VRFEFN	输出	内部参考电压(外接电容至 GND)
43	DVDD	电源	1.2V/1.5V 数字电源
44	GND	地线	I/O 地/模拟地
45	SID	输入	I ² C Device ID(内置下拉电阻,默认为低电平,对应 Device ID
45	טוט	111八	是 7'h30)
46	NC	-	-
47	XSHUTDN	输入	复位信号输入(内置上拉电阻,低电位有效)
48	PWDNB	输入	Power Down 信号输入(内置上拉电阻,低电位有效)

Top View

图 1-4 SC8238 封装引脚图(PLCC)

1.4. 芯片初始化

1.4.1. 上电时序

在上电过程中, 具体上电时序要求如下图所示。

图 1-5 上电时序图

注: T1≥0ms, T2≥0ms, T3≥0ms, T4≥0ms, T5≥4ms。

1.4.2. 睡眠模式

睡眠模式下,SC8238 停止输出图像数据流,工作在低功耗状态,保持当前寄存器值。 SC8238 提供两种方式进入睡眠模式:

- 1) 将 PWDNB 拉低,此时不支持 I²C 读写;
- 2) 将寄存器 16'h0100[0]写入 0,此时支持 I2C 读写。

表 1-3 睡眠模式控制寄存器

功能	寄存器地址	默认值	描述
软睡眠模式使能	16'h0100	8'h0	Bit[0]: manual sleep mode ctrl 1~sleep mode disable
			0~ sleep mode enable

1.4.3. 复位模式

复位模式下,SC8238 停止输出图像数据流,处于软睡眠模式,重置所有寄存器,SC8238 提供两种方式进入复位模式:

- 1) 将 XSHUTDN 拉低,此时不支持 I²C 读写;
- 2) 将寄存器 16'h0103[0]写入 1, 此复位模式持续 150ns。

表 1-4 软复位控制寄存器

功能	寄存器地址	默认值	描述	
软复位使能	16'h0103	8'h0	Bit[0]: soft reset	

1.5. 配置接口

SC8238 提供标准的 I²C 总线配置接口对寄存器进行读写, I²C 设备地址由 PAD SID 的电平值决定,如表 1-5 所示。PAD SID 内部有下拉电阻。Slave Address 即设备地址(从机地址),Sub Address 与寄存器相关。

表 1-5 I2C 设备地址控制

7-bit I ² C 设备地址	SID
7'h30	低电平
7'h32	高电平

消息类型: 16-bit 地址、8-bit 数据和 7-bit 设备地址

I²C 时序

图 1-6 I²C 接口时序

表 1-6 I2C 接口时序详细参数

Symbol	Parameter	Standar	d-mode	Fast-r	node	Unit
			Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	hold time (repeated) START condition	4.0	-	0.6	-	μS
t_{LOW}	LOW period of the SCL clock	4.7	-	1.3	-	μS
t _{HIGH}	HIGH period of the SCL clock	4.0	-	0.6	-	μS
t _{SU;STA}	set-up time for a repeated START condition	4.7	-	0.6	-	μs
t _{HD;DAT}	data hold time	0	-	0	-	μS
t _{SU;DAT}	data set-up time	250	-	100	-	ns
tr	rise time of both SDA and SCL signals	-	1000	20	300	ns
t _f	fall time of both SDA and SCL signals	-	300	20	300	ns
t _{su;sто}	set-up time for STOP condition	4.0	-	0.6	-	μS
t _{BUF}	bus free time between a STOP and START condition	4.7	-	1.3	-	μS
$t_{VD;DAT}$	data valid time	-	3.45	-	0.9	μS
t _{VD;ACK}	data valid acknowledge time	-	3.45	-	0.9	μS
t _{SP}	pulse width of spikes that must be suppressed by the input filter	-	-	0	50	-

注:判断上升沿起始或下降沿终止的电平阈值为30%;判断上升沿终止或下降沿起始的阈值为70%。

1.6. Sensor ID

表 1-7 SENSOR ID 寄存器

功能	寄存器地址	默认值	描述
SENSOR ID 高位	16'h3107	8'h82	SENSOR ID[15:8]
SENSOR ID 低位	16'h3108	8'h35	SENSOR ID[7:0]

1.7. 数据接口

SC8238 提供两种数据接口: MIPI 和 LVDS。

1.7.1. MIPI

SC8238 提供串行视频端口(MIPI)。SC8238 MIPI 接口支持 8/10/12bit, 1/2/4lane 串行输出,每个 lane 传输速率推荐不大于 1.0Gbps。图 1-7 是 MIPI 数据接口示意图。

图 1-7 MIP 接口示意图

图 1-8 是 MIPI 底层数据包的简略示意图,其中分别展示了一个短数据包和长数据包的传输过程。

图 1-8 MIPI 底层数据包示意图

图 1-9 展示了 MIPI 长、短数据包结构示意图。其中数据标识 DI(Data Identifier)用来 区分不同的数据包类型。图 1-10 展示了 MIPI 工作在 1lane、2lane 和 4lane 模式下的数据包传输示意图。图 1-11 中,DI 包括两部分,分别是虚拟通道(VC)和数据类型(DT)。默认情况下,Sensor 给出的 MIPI 数据 VC 值都是 0,而 DT 值如表 1-8 所示。

图 1-9 MIPI 长/短数据包结构示意图

MIPI 1-Lane Mode

MIPI 2-Lane Mode

MIPI 4-Lane Mode

图 1-10 MIPI 1/2/4 Lane 模式数据包传输示意图

图 1-11 MIPI 数据包 DI 结构

表 1-8 MIPI 数据类型

DT	描述
6'h00	帧起始短包
6'h01	帧结束短包
6'h02	行起始短包
6'h03	行结束短包
6'h2a	8-bit 模式下数据长包
6'h2b	10-bit 模式下数据长包
6'h2c	12-bit 模式下数据长包

表 1-9 MIPI 调整寄存器

功能	寄存器地址		描述
少能	可什品地址	默认值	
			Bit[7:5]: MIPI lane num-1
MIPI lane 数量	16'h3018	8'h72	3'h0∼ 1 lane mode
			3'h1∼ 2 lane mode
			3'h3~ 4 lane mode
			Bit[3:0]: MIPI bit mode
MIPI 输出数据模式	16'h3031	8'h0c	4'h8∼ raw8 mode
10000000000000000000000000000000000000	10110001	01100	4'hc∼ raw12 mode
			others~ raw10 mode
			Bit[6:5]: phy bit mode
PHY 数据模式	16'h3037	8'h40	2'h0~ 8bit mode
F 日 I	16113037	01140	2'h1~ 10bit mode
		¢ >	2'h2~ 12bit mode
MIDL -I - I - YUE	401-0005	01-04	Bit[7]: pclk sel
MIPI clock 设置	16'h303f	8'h01	1'b0~ sel pll_pclk
			Bit[0]: MIPI read
MIPI 数据使能	16'h4603	8'h00	1'b1∼ disable
	() Y		1'b0∼ enable
MIPI 驱动	16'h3651	8'h7d	Bit[3:0]:MIPI 驱动能力调整,默认 1101
MIDI O 77 H	1011 0050	011 00	Bit[3]: lane0 相位反向,默认 0
MIPI Lane 0 延时	16'h3652	8'h00	Bit[2:0]: lane0 延时,40ps/step,默认 3'b000
4 7714	1011 0050	011 00	Bit[7]: lane1 相位反向,默认 0
MIPI Lane 1 延时	16'h3652	8'h00	Bit[6:4]: lane1 延时,40ps/step,默认 3'b000
MIDI O 75 H-L	1011 0050	011 00	Bit[3]: lane2 相位反向,默认 0
MIPI Lane 2 延时	16'h3653	8'h00	Bit[2:0]: lane2 延时,40ps/step,默认 3'b000
MIDIT one O 75 H	40%-2050	01500	Bit[7]: lane3 相位反向,默认 0
MIPI Lane 3 延时	16'h3653	8'h00	Bit[6:4]: lane3 延时,40ps/step,默认 3'b000
MIDI Clock ZERH	46'b0054	0,400	Bit[3]: 时钟反向,默认 0
MIPI Clock 延时	16'h3654	8'h00	Bit[2:0]: 时钟延时,40ps/step,默认 3'b000

1.7.2. LVDS

SC8238 提供串行视频端口(LVDS),其数据接口与 MIPI 数据接口复用,通过寄存器 控制选择输出 LVDS 格式数据。支持 1/2/4 个 Data lane 来传输图像 8/10/12 bit 数据,默认先传输数据(8/10/12 bit)的 HSB 位。

SC8238 LVDS 传输顺序为: 上电复位后 → first active line → second active line → ... → last active line → only one dummy line → next frame first active line →...。 LVDS 输出时在行开始插入 line sav 同步编码,行结束处插入 line eav 同步编码,使用 dummy line 做帧结束标识。 LVDS 同步编码数据结构如图 1-12 所示。

图 1-12 LVDS 1 个 data lane 数据结构示意图(以 10bit 为例)

注:

- 1) 图中的 10'h010, 10'h080 分别是 Dummy0 data, Dummy1 data, 可由寄存器控制;
- 2) 1lane、2lane 及 4lane 模式的数据结构与图 1-10 一样。

SC8238 LVDS 同步编码信息为 8-bit 数据,放在数据高 8-bit 传输,同步编码信息如表 1-10 所示。

编码值	描述
8'hab	Dummy line SAV
8'hb6	Dummy line EAV
8'h80	Active Line SAV
8'h9d 🖒	Active Line EAV

表 1-10 LVDS 数据同步信息编码示意表

注:以 10-bit 为例,Active Line SAV 为 10'h200。

表 1-11 LVDS 调整相关寄存器

功能	寄存器地址	默认值	描述
LVDS/MIPI 功能切换	16'h4b01	8'h01	Bit[3]: MIPI_lvds_mode 1'h1 ~ LVDS
LVDS/MIPI 功能切换	10 (1400)	01101	1'h0 ~ MIPI
			Bit[7:5]: lane_num
		8'h72	3'h0 ~ 1 lane mode
LVDS lane 数量	16'h3018		3'h1 ∼ 2 lane mode
			3'h3 ∼ 4 lane mode
			Bit[6:5]: bitsel_man
LVDS 输出数据模式	16'h3031	8'h0c	2'h0 ~ raw 8 mode
上100 相山致流失八	10 11303 1	01100	2'h1 ~ raw 10 mode
			2'h2 ~ raw 12 mode
			Bit[6:5]: phy bit mode
PHY 数据模式	16'h3037	8'h40	2'h0~ 8bit mode
3,,,,,,,,,,			2'h1~ 10bit mode
		A	2'h2~ 12bit mode
			Bit[7]: pclk sel
LVDS CLOCK 设置	16'h303f	8'h01	1'b0~ sel MIPI_pclk
		X	1'b1~ sel dvp_pclk
1.7001.71.	4011 41 00	OU C	Bit[3]:r_bit_flip_i,
LVDS bit 设置	16'h4b00	8'hfa	1'h1 ~ HSB first
DUMANO LA	(40) 4 00[0 0] 40 4 000	4011.000	1'h0 ~ LSB first
DUMMY0 data	{16'h4b02[3:0],16'h4b03}	12'h080	Dummy0 data
DUMMY1 data	{16'h4b04[3:0],16'h4b05}	12'h010	Dummy1 data
LVDS 驱动	16'h3651	8'h7d	Bit[3:0]:LVDS 驱动能力调整, 默认 4'hd
	Ġ		Bit[3]: lane0 相位反向,默认 1'h0
LVDS Lane 0 延时	16'h3652	8'h00	Bit[2:0]: lane0 延时,40ps/step,默认
<u> </u>	0 '		3'h0
			Bit[7]: lane1 相位反向,默认 1'h0
LVDS Lane 1 延时	16'h3652	8'h00	Bit[6:4]: lane1 延时,40ps/step,默认
			3'h0
LVDC Long 2 75HH	46%,2652	0'500	Bit[3]: lane2 相位反向,默认 1'h0
LVDS Lane 2 延时	16'h3653	8'h00	Bit[2:0]: lane2 延时,40ps/step,默认 3'h0
			Bit[7]: lane3 相位反向,默认 1'h0
LVDC Long 2 74 H-	46'b0050	0,400	Bit[6:4]: lane3 延时,40ps/step,默认
LVDS Lane 3 延时	16'h3653	8'h00	3'h0
LVDC Claste 7fth	40150054	۵٬۲۵۵	Bit[3]: 时钟反向,默认 1'h0
LVDS Clock 延时	16'h3654	8'h00	Bit[2:0]: 时钟延时,40ps/step,默认
			3'h0

1.8. 锁相环

SC8238的PLL模块允许的输入时钟频率范围为6~40MHz,其中VCO输出频率(F_{VCO})的范围为400MHz-1200MHz。PLL结构示意图在图 1-13 展示。

SmarkSens

2. 功能介绍

2.1. SLAVE MODE

Slave Mode 是主控芯片通过 EFSYNC 信号触发帧读出,以达到多个 sensor 同步成像的工作模式。

当 SC8238 工作在 Slave Mode 时,主控芯片通过 EFSYNC 引脚控制图像数据输出,并以此决定图像帧率,具体时序如图 2-1:

Slave Mode 工作流程

- 1) 当 SC8238 工作在 Slave Mode 时, 芯片自动进入 Active State 状态, 等待 EFSYNC 触发;
- 2) 当 EFSYNC 触发后,芯片进入 RB Rows, RB Rows 是有效数据读出之前的等待时间,由寄存器控制,以行为单位;
- 3) Active Rows 时读出芯片图像数据,由寄存器控制,以行为单位;
- 4) Blank Rows 时读出芯片图像数据之后的消隐时间,由寄存器控制,以行为单位;
- 5) Extra Delays = 4PCLK;
- 6) Active State 时芯片等待下一次 EFSYNC 触发。

注: 只有当 SC8238 处于 Active State 时, EFSYNC 触发才有效。

SC8238 Slave mode 下的曝光实现如图 2-2:

图 2-2 Slave Mode 曝光实现图

注:

- 1) Row Reset 开始曝光操作,Row Readout 开始前结束曝光操作,曝光包括 Active State 时间;
- 2) F_Length 表示帧长, F_Length= RB Rows + Active Rows + Blank Rows;
- 3) 当芯片工作在 slave 模式下,曝光时间需要小于 F_L ength,为了留一定余量,我们建议曝光时间最大为 2^*F_L ength-'d10 个半行
- 4) Active State 时,芯片停止输出及停止 Row reset 操作,如图 2-2 所示,会导致一帧图像 Row 1~Row e 行与 Row (e+1)~Row n 行的曝光时间不同,Row 1~Row e 行的曝光时间比 Row (e+1)~Row n 行的曝光时间大,多出的时间为 Active State time,为避免这种曝光差异,要求外部精确控制 EFSYNC,使 Active State 控制在 20 个 PCLK 以内,保证一帧内的每行曝光时间基本一致;
- 5) 当 RB Rows 大于曝光时间时,注释 4)中帧内曝光时间不一致的情况便不会出现,一帧内的每行曝光时间一致,此时 EFSYNC 引脚可实现同步曝光。

表 Z-1 Glave mode 正時刊 in						
功能	寄存器地址	默认值	描述			
X O			Bit[1]:Slave mode 使能控制			
Slave mode enable	16'h3222	8'h00	1~slave mode			
			0~master mode			
RB rows	{16'h3230,16'h3231}	16'h0004	Rows Before Read 控制寄存器			
Active Rows	NA	NA	该数据由 AE 提供			
Blank Rows	{16'h322e,16'h322f}	16'h0002	Blank Rows			

表 2-1 Slave mode 控制寄存器

2.2. 宽动态

宽动态(HDR)是指通过把两帧相同场景、不同曝光时间的图片合成一帧,从而提高图像的动态范围。SC8238 支持行交叠 HDR。

SC8238行交叠HDR是指两种不同长短曝光时间的图像在帧内逐行交替输出。SC8238行交叠HDR的优势是同一像素的长短曝光时间间隔短,这样进行HDR合成时,可以一定程度上避免拖尾现象。

SC8238 可以通过 MIPI 接口的 virtual channel 来区分长短曝光数据,默认长曝光的 virtual channel 为 2'b00,默认短曝光的 virtual channel 为 2'b01。

SC8238 行交叠 HDR 使用 virtual channel 数据读出时序图如图 2-3 所示。

图 2-3 行交叠 HDR 使用 virtual channel 数据读出时序

SC8238 也可不通过 Virtual channel 区分长短曝光数据,通过长短曝光数据读出行偏差来区分。这其中,又分为两种模式,模式 a 与模式 b。模式 a 时,长短曝光数据只输出有效行。模式 b 时,长短曝光数据插入无效(dummy)行数据。

SC8238 行交叠 HDR 不使用 virtual channel 时数据模式 a 的读出时序图如图 2-4 所示。

图 2-4 行交叠 HDR 不使用 virtual channel 数据模式 a 读出时序

注:

- 1) Frame_long 与 Frame_short 输出偏差为 max short exposure;
- 2) max long exposure=帧长({16'h320e,16'h320f})-max short exposure。

SC8238 行交叠 HDR 不使用 virtual channel 时数据模式 b 的读出时序图如图 2-5 所 示。

图 2-5 行交叠 HDR 不使用 virtual channel 时数据模式 b 的读出时序

表 2-2 HDR 控制寄存器

功能	寄存器地址	默认值	描述
			Bit[6]: HDR mode 使能控制
HDR mode enable	16'h3220	8'h10	1~HDR mode enable
		^	0~HDR mode disable
MAX short exposure	{16'h3e23,16'h3e24}	16'h013e	Max short exposure
		X	Bit[4]: vc_s_en
			1~short frame vc enable
	>	\bigotimes_{λ}	0~ short frame vc disable
)	Bit[3:2] :vc_I
VC(Virtual Channel)	16'h4816	8'h41	In HDR mode, vc_I is long frame vc
			In non-HDR mode, vc_I is normal vc
	()		Bit[1:0]:vc_s
	À		In HDR mode, vc_s is short frame vc
A	S		In non-HDR mode, vc_s is reserved
÷ (2)	>		
In HDR no virtual	16'h4503,	8'h20	16'h4503[6]: sync href always enable
channel mode select	16'h3928,	8'he1	16'h3928[1]: blc keep black href
Granite mode select	16'h5002	8'h00	16'h5002[0]: isp dumy mode

2.3. AEC/AGC

AEC/AGC 都是基于亮度进行调节的, AEC 调节曝光时间, AGC 调节增益值, 最终使 图像亮度落在设定亮度阈值范围内。

2.3.1. AEC/AGC 的控制策略

SC8238 本身没有 AEC 功能,需要通过后端平台实现 AEC/AGC。在整个 AEC/AGC 过程中,不是独立的调整 sensor 的曝光时间或者增益,调整策略为:曝光时间优先,曝光 时间已经最长无法继续调整时,调整增益。

以图像过暗的情况为例,调控的先后顺序为:①不开启任何增益,直到曝光时间达到上 限;②曝光时间达到上限后,再开始调用自动增益控制。需要明确指出的是,增益开启,将 直接导致平均噪声呈倍数放大; 而曝光时间加大, 则有助于提升信噪比。

反之, 当图像过亮时, 则优先关闭增益, 当所有增益关闭, 图像仍旧过亮, 则降低曝光 在调试的 时间。

曝光时间与增益是一个交互的调节体系,在调试的时候,应该综合考虑。

2.3.2. AEC 控制寄存器说明

AEC 的控制寄存器如表 2-3 所示。

表 2-3 曝光的手动控制寄存器

功能	寄存器地址	说明	调节步长	最小值	最大值
长曝光时间	{16'h3e00[3:0] 16'h3e01[7:0], 16'h3e02[7:4]}	Normal 模式手 动曝光时间 /HDR 模式下的 手动长曝光时 间,寄存器值以 半行为单位	Normal 模式:2 HDR 模式:4	Normal 模式: 3 HDR 模式: 5	Normal 模式: 2*{16'h320e,16'h320f}-10 HDR 模式: 2*({16'h320e,16'h320f} - {16'h3e23,16'h3e24} - 9)
短 曝 光 时 间	{16'h3e04[7:0], 16'h3e05[7:4]}	HDR 模式下手动 短曝光时间,寄 存器值以半行为 单位	4	5	2*({16'h3e23,16'h3e24}- 8)

AEC 控制说明如下:

Smartsens

- 1) 半行曝光时间等于行长乘以 T_{PCLK} 除于 2(其中的 TPCLK 为 PCLK 的一个周期), 行长=寄存器{16'h320c,16'h320d}值*2;
- 2) 曝光时间及增益若在第 N 帧写入, 第 N+2 帧生效;
- 3) 曝光时间及增益的写入点: Normal 模式下建议在帧开始之后写入; HDR 模式下建议长曝光数据的曝光时间及增益在长曝光数据帧开始之后写入, 短曝光数据的 曝光时间及增益在短曝光数据帧开始之后写入。

2.3.3. AGC 控制寄存器说明

AGC 的控制寄存器如表 2-4 所示。

表 2-4 Normal 模式/HDR 模式下增益寄存器控制

模式	ANA GAIN register	ANA FINE GAIN register	DIG GAIN register	DIG FINE GAIN register
Normal 模式/ HDR 模式下的 长曝光数据	16'h3e08	16'h3e09	16'h3e06	16'h3e07
HDR 模式下的短曝光数据	16'h3e12	16'h3e13	16'h3e10	16'h3e11

SC8238 提供 2 种 AGC 控制方法:

- 1) 当寄存器 16'h3e03 的 Bit[3:0]设置为 4'h3 时: gain 值 = {ANA GAIN register,ANA FINE GAIN register}/8'h40
- 2) 当寄存器 16'h3e03 的 Bit[3:0]设置为 4'hb 时:

模拟 gain 值如表 2-5 所示,数字 gain 值如表 2-6 所示。一般情况下,优先调节模拟 gain 值,模拟 gain 调节到上限时,如果要继续增大图像亮度,可以调节数字 gain 值。

SC8238 的 DIG FINE GAIN 的精度为 1/128,表 2-6 以 1/64 的精度为例,列出了 DIG FINE GAIN 的控制方法。

表 2-5 模拟 gain 值控制寄存器

ANA	ANA FINE	GAIN	dB	ANA	ANA FINE	GAIN	dB
GAIN	GAIN	value	value	GAIN	GAIN	value	value
8'h03	8'h40	1.000	0.00	8'h03	8'h66	1.594	4.05
8'h03	8'h41	1.016	0.13	8'h03	8'h67	1.609	4.13
8'h03	8'h42	1.031	0.27	8'h03	8'h68	1.625	4.22
8'h03	8'h43	1.047	0.40	8'h03	8'h69	1.641	4.30
8'h03	8'h44	1.063	0.53	8'h03	8'h6a	1.656	4.38
8'h03	8'h45	1.078	0.65	8'h03	8'h6b	1.672	4.46
8'h03	8'h46	1.094	0.78	8'h03	8'h6c	1.688	4.54
8'h03	8'h47	1.109	0.90	8'h03	8'h6d	1.703	4.62
8'h03	8'h48	1.125	1.02	8'h03	8'h6e	1.719	4.70
8'h03	8'h49	1.141	1.14	8'h03	8'h6f	1.734	4.78
8'h03	8'h4a	1.156	1.26	8'h03	8'h70	1.750	4.86
8'h03	8'h4b	1.172	1.38	8'h03	8'h71	1.766	4.94
8'h03	8'h4c	1.188	1.49	8'h03	8'h72	1.781	5.01
8'h03	8'h4d	1.203	1.61	8'h03	8'h73	1.797	5.09
8'h03	8'h4e	1.219	1.72	8'h03	8'h74	1.813	5.17
8'h03	8'h4f	1.234	1.83	8'h03	8'h75	1.828	5.24
8'h03	8'h50	1.250	1.94	8'h03	8'h76	1.844	5.31
8'h03	8'h51	1.266	2.05	8'h03	8'h77	1.859	5.39
8'h03	8'h52	1.281	2.15	8'h03	8'h78	1.875	5.46
8'h03	8'h53	1.297	2.26	8'h03	8'h79	1.891	5.53
8'h03	8'h54	1.313	2.36	8'h03	8'h7a	1.906	5.60
8'h03	8'h55	1.328	2.46	8'h03	8'h7b	1.922	5.67
8'h03	8'h56	1.344	2.57	8'h03	8'h7c	1.938	5.74
8'h03	8'h57	1.359	2.67	8'h03	8'h7d	1.953	5.81
8'h03	8'h58	1.375	2.77	8'h03	8'h7e	1.969	5.88
8'h03	8'h59	1.391	2.86	8'h03	8'h7f	1.984	5.95
8'h03	8'h5a	1.406	2.96	8'h07	8'h40	2.000	6.02
8'h03	8'h5b	1.422	3.06	8'h07	8'h41	2.031	6.16
8'h03	8'h5c	1.438	3.15	8'h07	8'h42	2.063	6.29
8'h03	8'h5d	1.453	3.25	8'h07	8'h43	2.094	6.42
8'h03	8'h5e	1.469	3.34	8'h07	8'h44	2.125	6.55
8'h03	8'h5f	1.484	3.43	8'h07	8'h45	2.156	6.67
8'h03	8'h60	1.500	3.52	8'h07	8'h46	2.188	6.80
8'h03	8'h61	1.516	3.61	8'h07	8'h47	2.219	6.92
8'h03	8'h62	1.531	3.70	8'h07	8'h48	2.250	7.04
8'h03	8'h63	1.547	3.79	8'h07	8'h49	2.281	7.16
8'h03	8'h64	1.563	3.88	8'h07	8'h4a	2.313	7.28
8'h03	8'h65	1.578	3.96	8'h07	8'h4b	2.344	7.40

SC	8238	

ANA	ANA FINE	GAIN	dB	ANA	ANA FINE	GAIN	dB
GAIN	GAIN	value	value	GAIN	GAIN	value	value
8'h07	8'h4c	2.375	7.51	8'h07	8'h73	3.594	11.11
8'h07	8'h4d	2.406	7.63	8'h07	8'h74	3.625	11.19
8'h07	8'h4e	2.438	7.74	8'h07	8'h75	3.656	11.26
8'h07	8'h4f	2.469	7.85	8'h07	8'h76	3.688	11.33
8'h07	8'h50	2.500	7.96	8'h07	8'h77	3.719	11.41
8'h07	8'h51	2.531	8.07	8'h07	8'h78	3.750	11.48
8'h07	8'h52	2.563	8.17	8'h07	8'h79	3.781	11.55
8'h07	8'h53	2.594	8.28	8'h07	8'h7a	3.813	11.62
8'h07	8'h54	2.625	8.38	8'h07	8'h7b	3.844	11.70
8'h07	8'h55	2.656	8.49	8'h07	8'h7c	3.875	11.77
8'h07	8'h56	2.688	8.59	8'h07	8'h7d	3.906	11.84
8'h07	8'h57	2.719	8.69	8'h07	8'h7e	3.938	11.90
8'h07	8'h58	2.750	8.79	8'h07	8'h7f	3.969	11.97
8'h07	8'h59	2.781	8.88	8'h0f	8'h40	4.000	12.04
8'h07	8'h5a	2.813	8.98	8'h0f	8'h41	4.063	12.18
8'h07	8'h5b	2.844	9.08	8'h0f	8'h42	4.125	12.31
8'h07	8'h5c	2.875	9.17	8'h0f	8'h43	4.188	12.44
8'h07	8'h5d	2.906	9.27	8'h0f	8'h44	4.250	12.57
8'h07	8'h5e	2.938	9.36	8'h0f	8'h45	4.313	12.69
8'h07	8'h5f	2.969	9.45	8'h0f	8'h46	4.375	12.82
8'h07	8'h60	3.000	9.54	8'h0f	8'h47	4.438	12.94
8'h07	8'h61	3.031	9.63	8'h0f	8'h48	4.500	13.06
8'h07	8'h62	3.063	9.72	8'h0f	8'h49	4.563	13.18
8'h07	8'h63	3.094	9.81	8'h0f	8'h4a	4.625	13.30
8'h07	8'h64	3.125	9.90	8'h0f	8'h4b	4.688	13.42
8'h07	8'h65	3.156	9.98	8'h0f	8'h4c	4.750	13.53
8'h07	8'h66	3.188	10.07	8'h0f	8'h4d	4.813	13.65
8'h07	8'h67	3.219	10.15	8'h0f	8'h4e	4.875	13.76
8'h07	8'h68	3.250	10.24	8'h0f	8'h4f	4.938	13.87
8'h07	8'h69	3.281	10.32	8'h0f	8'h50	5.000	13.98
8'h07	8'h6a	3.313	10.40	8'h0f	8'h51	5.063	14.09
8'h07	8'h6b	3.344	10.48	8'h0f	8'h52	5.125	14.19
8'h07	8'h6c	3.375	10.57	8'h0f	8'h53	5.188	14.30
8'h07	8'h6d	3.406	10.65	8'h0f	8'h54	5.250	14.40
8'h07	8'h6e	3.438	10.72	8'h0f	8'h55	5.313	14.51
8'h07	8'h6f	3.469	10.80	8'h0f	8'h56	5.375	14.61
8'h07	8'h70	3.500	10.88	8'h0f	8'h57	5.438	14.71
8'h07	8'h71	3.531	10.96	8'h0f	8'h58	5.500	14.81
8'h07	8'h72	3.563	11.04	8'h0f	8'h59	5.563	14.91

ANA	ANA FINE	GAIN	dB	ANA	ANA FINE	GAIN	dB
GAIN	GAIN	value	value	GAIN	GAIN	value	value
8'h0f	8'h5a	5.625	15.00	8'h1f	8'h41	8.125	18.20
8'h0f	8'h5b	5.688	15.10	8'h1f	8'h42	8.250	18.33
8'h0f	8'h5c	5.750	15.19	8'h1f	8'h43	8.375	18.46
8'h0f	8'h5d	5.813	15.29	8'h1f	8'h44	8.500	18.59
8'h0f	8'h5e	5.875	15.38	8'h1f	8'h45	8.625	18.72
8'h0f	8'h5f	5.938	15.47	8'h1f	8'h46	8.750	18.84
8'h0f	8'h60	6.000	15.56	8'h1f	8'h47	8.875	18.96
8'h0f	8'h61	6.063	15.65	8'h1f	8'h48	9.000	19.08
8'h0f	8'h62	6.125	15.74	8'h1f	8'h49	9.125	19.20
8'h0f	8'h63	6.188	15.83	8'h1f	8'h4a	9.250	19.32
8'h0f	8'h64	6.250	15.92	8'h1f	8'h4b	9.375	19.44
8'h0f	8'h65	6.313	16.00	8'h1f	8'h4c	9.500	19.55
8'h0f	8'h66	6.375	16.09	8'h1f	8'h4d	9.625	19.67
8'h0f	8'h67	6.438	16.17	8'h1f	8'h4e	9.750	19.78
8'h0f	8'h68	6.500	16.26	8'h1f	8'h4f	9.875	19.89
8'h0f	8'h69	6.563	16.34	8'h1f	8'h50	10.000	20.00
8'h0f	8'h6a	6.625	16.42	8'h1f	8'h51	10.125	20.11
8'h0f	8'h6b	6.688	16.51	8'h1f	8'h52	10.250	20.21
8'h0f	8'h6c	6.750	16.59	8'h1f	8'h53	10.375	20.32
8'h0f	8'h6d	6.813	16.67	8'h1f	8'h54	10.500	20.42
8'h0f	8'h6e	6.875	16.75	8'h1f	8'h55	10.625	20.53
8'h0f	8'h6f	6.938	16.82	8'h1f	8'h56	10.750	20.63
8'h0f	8'h70	7.000	16.90	8'h1f	8'h57	10.875	20.73
8'h0f	8'h71	7.063	16.98	8'h1f	8'h58	11.000	20.83
8'h0f	8'h72	7.125	17.06	8'h1f	8'h59	11.125	20.93
8'h0f	8'h73	7.188	17.13	8'h1f	8'h5a	11.250	21.02
8'h0f	8'h74	7.250	17.21	8'h1f	8'h5b	11.375	21.12
8'h0f	8'h75	7.313	17.28	8'h1f	8'h5c	11.500	21.21
8'h0f	8'h76	7.375	17.36	8'h1f	8'h5d	11.625	21.31
8'h0f	8'h77	7.438	17.43	8'h1f	8'h5e	11.750	21.40
8'h0f	8'h78	7.500	17.50	8'h1f	8'h5f	11.875	21.49
8'h0f	8'h79	7.563	17.57	8'h1f	8'h60	12.000	21.58
8'h0f	8'h7a	7.625	17.64	8'h1f	8'h61	12.125	21.67
8'h0f	8'h7b	7.688	17.72	8'h1f	8'h62	12.250	21.76
8'h0f	8'h7c	7.750	17.79	8'h1f	8'h63	12.375	21.85
8'h0f	8'h7d	7.813	17.86	8'h1f	8'h64	12.500	21.94
8'h0f	8'h7e	7.875	17.93	8'h1f	8'h65	12.625	22.02
8'h0f	8'h7f	7.938	17.99	8'h1f	8'h66	12.750	22.11
8'h1f	8'h40	8.000	18.06	8'h1f	8'h67	12.875	22.19

32

SC8238

	ANA FINE	GAIN	dB	ANA	ANA FINE	GAIN	dB
GAIN	GAIN	value	value	GAIN	GAIN	value	value
8'h1f	8'h68	13.000	22.28	8'h1f	8'h74	14.500	23.23
8'h1f	8'h69	13.125	22.36	8'h1f	8'h75	14.625	23.30
8'h1f	8'h6a	13.250	22.44	8'h1f	8'h76	14.750	23.38
8'h1f	8'h6b	13.375	22.53	8'h1f	8'h77	14.875	23.45
8'h1f	8'h6c	13.500	22.61	8'h1f	8'h78	15.000	23.52
8'h1f	8'h6d	13.625	22.69	8'h1f	8'h79	15.125	23.59
8'h1f	8'h6e	13.750	22.77	8'h1f	8'h7a	15.250	23.67
8'h1f	8'h6f	13.875	22.84	8'h1f	8'h7b	15.375	23.74
8'h1f	8'h70	14.000	22.92	8'h1f	8'h7c	15.500	23.81
8'h1f	8'h71	14.125	23.00	8'h1f	8'h7d	15.625	23.88
8'h1f	8'h72	14.250	23.08	8'h1f	8'h7e	15.750	23.95
8'h1f	8'h73	14.375	23.15	8'h1f	8'h7f	15.875	24.01
				X			
	SSET	S	ijdes				

表 2-6 数字 gain 值控制寄存器

DIG	DIG FINE	GAIN	dB		DIG FINE	GAIN	dB
GAIN	GAIN	value	value	DIG GAIN	GAIN	value	value
8'h00	8'h80	1.000	0.00	8'h01	8'h94	2.313	7.28
8'h00	8'h84	1.031	0.27	8'h01	8'h98	2.375	7.51
8'h00	8'h88	1.063	0.53	8'h01	8'h9c	2.438	7.74
8'h00	8'h8c	1.094	0.78	8'h01	8'ha0	2.500	7.96
8'h00	8'h90	1.125	1.02	8'h01	8'ha4	2.563	8.17
8'h00	8'h94	1.156	1.26	8'h01	8'ha8	2.625	8.38
8'h00	8'h98	1.188	1.49	8'h01	8'hac	2.688	8.59
8'h00	8'h9c	1.219	1.72	8'h01	8'hb0	2.750	8.79
8'h00	8'ha0	1.250	1.94	8'h01	8'hb4	2.813	8.98
8'h00	8'ha4	1.281	2.15	8'h01	8'hb8	2.875	9.17
8'h00	8'ha8	1.313	2.36	8'h01	8'hbc	2.938	9.36
8'h00	8'hac	1.344	2.57	8'h01	8'hc0	3.000	9.54
8'h00	8'hb0	1.375	2.77	8'h01	8'hc4	3.063	9.72
8'h00	8'hb4	1.406	2.96	8'h01	8'hc8	3.125	9.90
8'h00	8'hb8	1.438	3.15	8'h01	8'hcc	3.188	10.07
8'h00	8'hbc	1.469	3.34	8'h01	8'hd0	3.250	10.24
8'h00	8'hc0	1.500	3.52	8'h01	8'hd4	3.313	10.40
8'h00	8'hc4	1.531	3.70	8'h01	8'hd8	3.375	10.57
8'h00	8'hc8	1.563	3.88	8'h01	8'hdc	3.438	10.72
8'h00	8'hcc	1.594	4.05	8'h01	8'he0	3.500	10.88
8'h00	8'hd0	1.625	4.22	8'h01	8'he4	3.563	11.04
8'h00	8'hd4	1.656	4.38	8'h01	8'he8	3.625	11.19
8'h00	8'hd8	1.688	4.54	8'h01	8'hec	3.688	11.33
8'h00	8'hdc	1.719	4.70	8'h01	8'hf0	3.750	11.48
8'h00	8'he0	1.750	4.86	8'h01	8'hf4	3.813	11.62
8'h00	8'he4	1.781	5.01	8'h01	8'hf8	3.875	11.77
8'h00	8'he8	1.813	5.17	8'h01	8'hfc	3.938	11.90
8'h00	8'hec	1.844	5.31	8'h03	8'h80	4.000	12.04
8'h00	8'hf0	1.875	5.46	8'h03	8'h84	4.125	12.31
8'h00	8'hf4	1.906	5.60	8'h03	8'h88	4.250	12.57
8'h00	8'hf8	1.938	5.74	8'h03	8'h8c	4.375	12.82
8'h00	8'hfc	1.969	5.88	8'h03	8'h90	4.500	13.06
8'h01	8'h80	2.000	6.02	8'h03	8'h94	4.625	13.30
8'h01	8'h84	2.063	6.29	8'h03	8'h98	4.750	13.53
8'h01	8'h88	2.125	6.55	8'h03	8'h9c	4.875	13.76
8'h01	8'h8c	2.188	6.80	8'h03	8'ha0	5.000	13.98
8'h01	8'h90	2.250	7.04	8'h03	8'ha4	5.125	14.19

DIG	DIG FINE	GAIN	dB		DIG FINE	GAIN	dB
GAIN	GAIN	value	value	DIG GAIN	GAIN	value	value
8'h03	8'ha8	5.250	14.40	8'h07	8'hc0	12.000	21.58
8'h03	8'hac	5.375	14.61	8'h07	8'hc4	12.250	21.76
8'h03	8'hb0	5.500	14.81	8'h07	8'hc8	12.500	21.94
8'h03	8'hb4	5.625	15.00	8'h07	8'hcc	12.750	22.11
8'h03	8'hb8	5.750	15.19	8'h07	8'hd0	13.000	22.28
8'h03	8'hbc	5.875	15.38	8'h07	8'hd4	13.250	22.44
8'h03	8'hc0	6.000	15.56	8'h07	8'hd8	13.500	22.61
8'h03	8'hc4	6.125	15.74	8'h07	8'hdc	13.750	22.77
8'h03	8'hc8	6.250	15.92	8'h07	8'he0	14.000	22.92
8'h03	8'hcc	6.375	16.09	8'h07	8'he4	14.250	23.08
8'h03	8'hd0	6.500	16.26	8'h07	8'he8	14.500	23.23
8'h03	8'hd4	6.625	16.42	8'h07	8'hec	14.750	23.38
8'h03	8'hd8	6.750	16.59	8'h07	8'hf0	15.000	23.52
8'h03	8'hdc	6.875	16.75	8'h07	8'hf4	15.250	23.67
8'h03	8'he0	7.000	16.90	8'h07	8'hf8	15.500	23.81
8'h03	8'he4	7.125	17.06	8'h07	8'hfc	15.750	23.95
8'h03	8'he8	7.250	17.21	8'h0f	8'h80	16.000	24.08
8'h03	8'hec	7.375	17.36	8'h0f	8'h84	16.500	24.35
8'h03	8'hf0	7.500	17.50	8'h0f	8'h88	17.000	24.61
8'h03	8'hf4	7.625	17.64	8'h0f	8'h8c	17.500	24.86
8'h03	8'hf8	7.750	17.79	8'h0f	8'h90	18.000	25.11
8'h03	8'hfc	7.875	17.93	8'h0f	8'h94	18.500	25.34
8'h07	8'h80	8.000	18.06	8'h0f	8'h98	19.000	25.58
8'h07	8'h84	8.250	18.33	8'h0f	8'h9c	19.500	25.80
8'h07	8'h88	8.500	18.59	8'h0f	8'ha0	20.000	26.02
8'h07	8'h8c	8.750	18.84	8'h0f	8'ha4	20.500	26.24
8'h07	8'h90	9.000	19.08	8'h0f	8'ha8	21.000	26.44
8'h07	8'h94	9.250	19.32	8'h0f	8'hac	21.500	26.65
8'h07	8'h98	9.500	19.55	8'h0f	8'hb0	22.000	26.85
8'h07	8'h9c	9.750	19.78	8'h0f	8'hb4	22.500	27.04
8'h07	8'ha0	10.000	20.00	8'h0f	8'hb8	23.000	27.23
8'h07	8'ha4	10.250	20.21	8'h0f	8'hbc	23.500	27.42
8'h07	8'ha8	10.500	20.42	8'h0f	8'hc0	24.000	27.60
8'h07	8'hac	10.750	20.63	8'h0f	8'hc4	24.500	27.78
8'h07	8'hb0	11.000	20.83	8'h0f	8'hc8	25.000	27.96
8'h07	8'hb4	11.250	21.02	8'h0f	8'hcc	25.500	28.13
8'h07	8'hb8	11.500	21.21	8'h0f	8'hd0	26.000	28.30
8'h07	8'hbc	11.750	21.40	8'h0f	8'hd4	26.500	28.46

SC8238

DIG GAIN	DIG FINE GAIN	GAIN value	dB value	DIG GAIN	DIG FINE GAIN	GAIN value	dB value
8'h0f	8'hd8	27.000	28.63	8'h0f	8'hec	29.500	29.40
8'h0f	8'hdc	27.500	28.79	8'h0f	8'hf0	30.000	29.54
8'h0f	8'he0	28.000	28.94	8'h0f	8'hf4	30.500	29.69
8'h0f	8'he4	28.500	29.10	8'h0f	8'hf8	31.000	29.83
8'h0f	8'he8	29.000	29.25	8'h0f	8'hfc	31.500	29.97

Smartsens

2.4. GROUP HOLD

SC8238 具有 Group hold 功能, Group hold 指的是把寄存器打包在一帧特定时刻生效的功能。SC8238 最多支持 10 个寄存器打包;支持帧延迟写入功能,延迟帧数由寄存器控制。

使用方法:寄存器 16'h3812 写 8'h00,需要打包生效的寄存器写入 group,打包结束后寄存器 16'h3812 写 8'h30;打包生效的时刻为 16'h3812 写 8'h30 之后第 N 个帧内生效时刻,N=0表示当前帧,N=1表示下一帧......,延迟帧数由寄存器 16'h3802 控制。

表 2-7 Group hold 控制寄存器

功能	寄存器地址	默认值	描述
帧延迟控制	16'h3802	8'h00	Bit[3:0]:帧延迟控制,生效时间帧延迟控
			制,写0表示当前帧,写N表示N帧延迟

2.5. DPC

SC8238 支持 DPC 功能。SC8238 坏点判断的原理是当前 pixel 值比周围相同颜色的 pixel 值都大(或者小),并且差值都大于设定阈值。SC8238 根据坏点判断的原理把坏点分为亮坏点(white pixel)和暗坏点(black pixel),具体控制寄存器如表 2-8。

表 2-8 DPC 控制寄存器

功能	寄存器地址	默认值	描述
	8	Y	Normal mode / HDR mode long
Normal 模式/HDR 模式长	1		exposure, white pixel cancellation
曝光亮坏点消除功能开关	16'5000[2]	1'b1	enable
**\0\0\0\1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1~enable
Ċ			0~disable
			Normal mode / HDR mode long
Normal 模式/HDR 模式长			exposure, black pixel cancellation
曝光暗坏点消除功能开关	16'5000[1]	1'b1	enable
· 秦九咱外总有陈为化月大			1~enable
			0~disable
9			HDR mode short exposure white pixel
HDR 模式短曝光亮坏点	46'5000[0]	1'b1	cancellation enable
消除功能开关	16'5002[2]	101	1~enable
			0~disable
			HDR mode short exposure black pixel
HDR 模式短曝光暗坏点	46'5000[4]	1'b1	cancellation enable
消除功能开关	16'5002[1]	וטו	1~enable
			0~disable

2.6. 视频输出模式

2.6.1. 读取顺序

图 2-6 提供了芯片工作的时候,第一个读取的 pixel 位置,以及整个 array 的结构示意图。此图是在 A1 pin 脚置于左上方的时候得到(top view)。

图 2-6 像素阵列图

图 2-7 给出了 first pixel 的数据颜色格式。

图 2-7 像素阵列图二

SC8238 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序,如图 2-8 所示。

 F
 日
 L

 原始图像
 6
 6

 6
 6
 6

 6
 6
 6

 6
 6
 6

 6
 6
 6

 6
 6
 6

 6
 6
 6

 6
 6
 6

 6
 6
 6

 7
 6
 6

 8
 6
 6

 8
 6
 6

 8
 6
 6

 8
 6
 6

 9
 6
 6

 8
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

 9
 6
 6

图 2-8 镜像和倒置实例

表 2-9 镜像和倒置模式控制寄存器

功能	寄存器地址	默认值	描述
			Bit[2:1]: mirror ctrl
镜像模式	16'h3221	8'h00	2'b00~mirror off
			2'b11~mirror on
			Bit[6:5]: flip ctrl
倒置模式	16'h3221	8'h00	2'b00~filp off
			2'b11~flip on

2.6.2. 输出窗口

表 2-10 输出窗口寄存器

	1 2 10 mm	P-4	
功能	寄存器地址	默认值	描述
窗口宽度	{16'h3208, 16'h3209}	16'h0a80	输出窗口宽度
窗口高度	{16'h320a, 16'h320b}	16'h05e8	输出窗口高度
列起始	{16'h3210, 16'h3211}	16'h0008	输出窗口列起始位置
行起始	{16'h3212, 16'h3213}	16'h0008	输出窗口行起始位置
Smart	Ext		

2.7. 帧率计算

SC8238 特殊帧率由 FAE 提供,在此给出一种简单的计算一行时间的方法:

一行时间=1/(帧率*帧长)。

表 2-11 帧率相关寄存器

功能	寄存器地址	默认值	描述
帧长	{16'h320e,16'h320f}	16'h08ca	帧长={16'h320e,16'h320f}

2.8. 测试模式

为方便测试, SC8238 提供一种灰度递增测试模式, 如图 2-9 所示。

图 2-9 测试模式

表 2-12 测试模式控制寄存器

功能	寄存器地址	寄存器值	描述
			Bit[3]: incremental pattern enable
100	16'h4501	8'hbc	0~ normal image
灰度渐变模式			1~ incremental pattern
灰浸彻文侠 八			Bit[6]:BLC auto enable
	16'h3902	8'h05	0~ BLC auto enable
			1~ BLC manual enable

3. 电气特性

表 3-1 绝对最大额定值(以上所有电压都是 to pad 电压)

项目	符号	绝对最大额定值	单位
模拟电源电压	V_{AVDD}	-0.3~3.4	V
I/O 电源电压	V _{DOVDD}	-0.3~2.2	V
数字电源电压	$V_{ extsf{D}V extsf{D}D}$	-0.3~1.8	V
数字电源电压	$V_{ extsf{DVDD}}$	-0.3~1.4	V
I/O 输入电压	VI	-0.3~V _{DOVDD} +0.3	V
I/O 输出电压	Vo	-0.3~V _{DOVDD} +0.3	V
工作温度	T _{OPR}	-30~+85	°C
最佳工作温度	T _{SPEC}	-20~+60	°C
贮存温度	T _{STG}	-40~+85	°C

贮仔温度		I STG	-40~-	+85	°C
	表 3-2	2 直流电气特性(以上)	f有电压都是 to pad	电压)	
项目	符号	最小值	典型值	最大值	单位
电源	·				
模拟电源电压	V _{AVDD}	2.7	2.8	2.9	V
I/O 供电电压	V _{DOVDD}	1.7	1.8	1.9	V
数字电源	V_{DVDD}	1.4	1.5	1.6	V
数字电源	V_{DVDD}	1.14	1.2	1.26	V
电流(工作电流*1	线性模式 30	fps MIPI 4-lane out	put)		
模拟电源电流	lavdd	- 20	Y	_	mA
I/O 电源电流	IDOVDD	• 0		_	mA
数字电源电流	I _{DVDD}	X- >		_	mA
电流(工作电流*2	线性模式 20	fps MIPI 4-lane out	put)		
模拟电源电流	lavdd	0'-		_	mA
I/O 电源电流	IDOVDD	_		_	mA
数字电源电流	IDVDD	_		_	mA
数字输入					
输入低电平 〇	VIL	_	_	0.3 x DOVDD	V
输入高电平	VIH	0.7 x DOVDD	_	_	V
输入电容	Cin	_	_	10	pF
数字输出(25pF)	标准负载)				
输出高电平	Vон	0.9 x DOVDD	_	_	V
输出低电平	Vol	_	_	0.1 x DOVDD	V
串行接口输入(S	CL 和 SDA)				
输入低电平	VIL	-0.5	0	0.3 x DOVDD	V
输入高电平	ViH	0.7 x DOVDD	DOVDD	DOVDD+0.5	V

注:

- 1) *1 工作电流: (典型值) 工作电压 2.8V/1.8V/1.5V, T_j=25°C; 亮度条件:芯片亮度达到最大亮度 1/3 时。
- 2) *2 工作电流: (典型值) 工作电压 2.8V/1.8V/1.5V, T_j=25°C; 亮度条件:芯片亮度达到最大亮度 1/3 时。

表 3-3 交流特性 (TA=25°C, AVDD=2.8V, DOVDD=1.8V)

项目	符号	最小值	典型值	最大值	单位
交流参数					
直流微分线性误差	DLE	_	<1	_	LSB
直流积分线性误差	ILE	_	<2	_	LSB
晶振和时钟输入					
输入时钟频率	FEXTCLK	6	_	40	MHz
输入时钟上升/下降时间	_	_	_	5	ns

图 3-1 外部时钟(EXTCLK)波形图

4. 光学特性

5. 封装信息

5.1. CSP

SC8238 提供 41-pin CSP 的封装, 封装尺寸如下图所示。

图 5-1 SC8238 封装示意图(CSP)

注: 芯片的封装中心与光学中心不是重合的,BGA 中心与光学中心也不重合。以封装中心为原点,BGA 中心为(43.416,-27.626),光学中心为(43.416,-238.626),单位为 μm。

表 5-1 封装尺寸表

Parameters	Symbol	Nominal	Min	Max	Nominal	Min	Max
	Oysoi	- realistan	Millimeters		110111111	Inches	max
Package Body Dimension X	А	6.8160	6.7910	6.8410	0.26835	0.26736	0.26933
Package Body Dimension Y	В	4.6479	4.6229	4.6729	0.18299	0.18200	0.18397
Package Height	С	0.710	0.650	0.770	0.02795	0.02559	0.03031
Ball Height	C1	0.150	0.120	0.180	0.00591	0.00472	0.00709
Package Body Thickness	C2	0.560	0.525	0.595	0.02205	0.02067	0.02343
Thickness from top glass surface to wafer	C3	0.345	0.325	0.365	0.01358	0.01280	0.01437
Glass Thickness	C4	0.300	0.270	0.330	0.01181	0.01063	0.01299
Ball Diameter	D	0.300	0.270	0.330	0.01181	0.01063	0.01299
Total Ball Count	N	41(4NC)	-	-	/ -	-	-
Pins Pitch X axis	J1	0.730	-	- <	1/2	-	-
Pins Pitch Y axis	J2	0.650	-	- ~	-	-	-
Edge to Pin Center Distance along X1	S1	1.174584	1.144584	1.204584	0.0462	0.0451	0.0474
Edge to Pin Center Distance along Y1	S2	0.726576	0.696576	0.756576	0.0286	0.0274	0.0298
Edge to Pin Center Distance along X1	S3	1.261416	1.231416	1.291416	0.0497	0.0485	0.0508
Edge to Pin Center Distance along Y1	S4	0.671324	0.641324	0.701324	0.0264	0.0252	0.0276
Edge to Pin Center Distance along Y1	ON	gen					
SMarksen							

5.2. PLCC

SC8238 提供 48-pin PLCC 的封装, 封装尺寸如下图所示。

图 5-2 SC8238 封装示意图(PLCC)

注: 芯片的 Package Center 与 Array Center (Optical Center)重合。其误差在 0.05mm 以内。

6. 订购信息

表 6-1 订购信息表

产品编号	封装形式	描述
SC8238-CS3NN00	41-pin CSP	RAW /RGB, MIPI/LVDS output
SC8238-CP3NN00	48-pin PLCC	RAW /RGB, MIPI/LVDS output

7. 版本变更记录

误,图 2-6pixel size 错误修改,	Owner and date
误,图 2-6pixel size 错误修改,	Ming. Xu/2018.11.28
•	Ming. Xu/2018.12.17
模式下的调节步长由 1 改为 2 内信息	Vicky Song/2019.1.25
华尺寸由 1/3"更改为 1/2.7"	Vicky Song/2019.2.22
2-3 AEC 的控制寄存器表最大值一列 译器表格	Vicky Song/2019.5.5
CC 封装 时序、更新绝对电压值,上电时序图 出频率范围改为 400MHz-1200MHz 变为-40~+85	Vicky Song/2020.2.26
- 购料.是	Vicky Song/2020.4.21
Colli	
	onfidentia

联系我们:

总部:

地址: 上海市徐汇区宜山路 1009 号 11 楼

电话: 021-64853570

传真: 021-64853570-8009

邮箱: sales@smartsenstech.com

网址: http://www.smartsenstech.com

美国分公司:

地址: 4340 Stevens Creek Blvd. Suite 280, San Jose, CA 95129,

电话: +1 (408) 981-6626

深圳分公司:

地址:深圳市龙岗区坂田街道五和大道南星河 WORLD B 座 2908

电话: 0755-23739713

思特威技术支持邮箱:

support@smartsenstech.com

THE LOCAL PARTY OF THE PARTY OF