

Exercise 1: (Wiener index and boiling points)

Given the following graph G representing the chemical compound 2,3-dimethylpentan:

- 1. Determine the edge-weight matrix of the graph of the carbon backbone.
- 2. Determine the distance matrix.
- 3. Determine the Wiener-Index.
- 4. Determine the number of shortest paths of length 3.
- 5. Determine the value p_0 and w_0 of the formula for predicting the boiling point for this compound.
- 6. Determine the estimated boiling points and compare it to the real boiling point.
- 7. What is the asymptotic worst case performance for finding the distance matrix based on repeated squaring?
- 8. Do you know a method that has a better asymptotic worst case performance?

Exercise 2: (From random polygon to an ellipse)

Given the matrices

$$M_3 = \frac{1}{2} \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right)$$

and

$$M_4 = \frac{1}{2} \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{array} \right)$$

- 1. How do theses matrices relate to the lecture "From Random Polygon to Ellipse"?
- 2. Which of both matrices is invertible?
- 3. Compute the determinant of M_3 and M_4 .

- 4. Are the columns of M_3 independent? Are the columns of M_4 independent?
- 5. If A is a triangular matrix, i.e. $a_{ij} = 0$, whenever i > j or, alternatively, whenever i < j, then its determinant equals the product of the diagonal entries.
 - Use this fact is order to prove for all values of $k \geq 3$ if the matrix M_k is invertible or is not invertible.
- 6. Draw an equilateral triangle with points (x_1^k, y_1^k) , (x_2^k, y_2^k) , and (x_3^k, y_3^k) . Assume the triangle is a result of $M_3 \cdot x^{k-1}$ and $M_3 \cdot y^{k-1}$ as presented in the lecture. Ignoring normalization, find x^{k-1} and y^{k-1} . Can you find several solutions for x^{k-1} and y^{k-1} ?
- 7. Draw a square with points (x_1^k, y_1^k) , (x_2^k, y_2^k) , (x_3^k, y_3^k) , and (x_4^k, y_4^k) . Assume the square is a result of $M_4 \cdot x^{k-1}$ and $M_4 \cdot y^{k-1}$ as presented in the lecture. Ignoring normalization, find x^{k-1} and y^{k-1} . Can you find several solutions for x^{k-1} and y^{k-1} ? What is the conclusion wrt. the (non-)existence of an inverse of M_4 ?

Exercise 3: (From random polygons to an ellipse)

Given vector $v = (v_1, \dots, v_5) = (0, 3, -1, 11, -3)$.

- 1. Determine $w = v \overline{v}$, where \overline{v} is a vector where each entry is the mean of all values v_i .
- 2. Determine $\frac{w}{||w||_2}$, where $||\cdot||_2$ refers to the 2-norm.
- 3. What is the length of vector $\frac{w}{||w||_2}$?

Exercise 4: (From random polygons to an ellipse, numerical issues)

Study the three following examples of python code. Essentially in all three examples a function f is applied c times, and then f^{-1} is applied c times.

- 1. Which result is expected mathematically?
- 2. Without running the code: which of the three examples might suffer from numerical issues "most"?
- 3. Without running the code: for which values of c do you expect to see numerical issues?
- 4. Why is this related to the lecture "From Random Polygon to Ellipse"?

```
\#Example 1
for c in range (2000):
     a=1.0
     for i in range(c):
         a=a/2
     for i in range (c):
         a=a*2
     \mathbf{print}(c, a)
#Example 2
for c in range (2000):
     a=1.0
     for i in range(c):
         a=a/2+1.0
     for i in range(c):
         a = (a - 1.0) * 2
     \mathbf{print}\,(\,c\,,a\,)
\#Example 3
for c in range (2000):
     a=1.0
     for i in range (c):
         a=a/2+10000.0
     for i in range(c):
         a = (a - 10000.0) * 2
     \mathbf{print}(c, a)
```