MAT137 Lecture 21

Huan Vo

University of Toronto

January 8, 2018

Warm up: partitions

Which ones are partitions of [0,2]?

- (a) [0,2]
- (b) (0,2)
- (c) $\{0,2\}$
- (d) $\{1,2\}$
- (e) $\{0, 1.5, 1.6, 1.7, 1.8, 1.9, 2\}$

Partitions of different intervals

Let a < b < c.

- (a) Let P be a partition of [a,b]. Let Q be a partition of [b,c]. How do we construct a partition of [a,c] from them?
- (b) Let R be a partition of [a,c]. How do we construct partitions of [a,b] and [b,c] from it?

Warm-up: lower and upper sums

```
Let f(x) = x^2.
Consider the partition P = \{0, 1, 2, 4\} of [0, 4].
Calculate U_P(f) and L_P(f).
```

Lower and upper sums

Let f be a decreasing, bounded function on [a, b]. Let $P = \{x_0, x_1, \dots, x_N\}$ be a partition of [a, b]

Which one (or ones) is a valid equation for $L_P(f)$? For $U_P(f)$?

(a)
$$\sum_{i=0}^{N} \Delta x_i f(x_i)$$

(c)
$$\sum_{i=0}^{N-1} \Delta x_i f(x_i)$$

(a)
$$\sum_{i=0}^{N} \Delta x_i f(x_i)$$
 (c) $\sum_{i=0}^{N-1} \Delta x_i f(x_i)$ (e) $\sum_{i=1}^{N} \Delta x_i f(x_{i-1})$

(b)
$$\sum_{i=1}^{N} \Delta x_i f(x_i)$$

(d)
$$\sum_{i=1}^{N} \Delta x_i f(x_{i+1})$$

(b)
$$\sum_{i=1}^{N} \Delta x_i f(x_i)$$
 (d) $\sum_{i=1}^{N} \Delta x_i f(x_{i+1})$ (f) $\sum_{i=0}^{N-1} \Delta x_{i+1} f(x_i)$

Joining partitions

Assume

$$L_P(f) = 2, \quad U_P(f) = 6$$

 $L_Q(f) = 3, \quad U_Q(f) = 8$

- $extbf{Q} ext{ Is } Q \subseteq P?$
- **③** What can you say about $L_{P \cup Q}(f)$ and $U_{P \cup Q}(f)$?

Definition of integral

Definition

Let f be a bounded function on [a,b]. We define the **lower integral of** f from a to b to be

$$\underline{I_a^b}(f) := \sup\{\text{lower sums of } f\}$$

and the **upper integral of** f **from** a **to** b to be

$$\overline{I_a^b}(f) := \inf\{ \text{upper sums of } f \}.$$

We say that f is **integrable on** [a,b] if $\underline{I_a^b}(f)=\overline{I_a^b}(f)$ and we denote the common value by

$$\int_{a}^{b} f(x)dx := \underline{I_{\underline{a}}^{b}}(f) = \overline{I_{\underline{a}}^{b}}(f).$$

An alternative definition

Exercise

The lower integral is the supremum of all the lower sums.

Try to write a definition of the lower integral that's similar to the alternative definition below.

Recall the equivalent definition of supremum we found last class:

Definition

If S is an upper bound of a set A, then S is the supremum of A when

 $\forall \epsilon > 0, \exists x \in A \text{ such that } S - \epsilon < x \leq S.$

Example: a continuous function

Consider the function f(x) = 2 on [0, 4].

- Given $P = \{0, 1, e, \pi, 4\}$, compute $L_P(f)$ and $U_P(f)$.
- ② Compute all the upper sums and all the lower sums.
- lacktriangledown Compute $\overline{I_0^4}(f)$
- \bullet Is f integrable on [0,4]?

Next Class: Thursday January 11

Watch videos 7.5 to 7.12 in Playlist 7.