PROBLEM STATEMENT:

TO CHECH HOW BEST FIT IS IT?

importing required libraries

```
In [64]: Import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

data collection

Out[65]:

696
185
374
977
624
013
119
057
958
360
3 3 3 3 3

4116 rows × 19 columns

In [66]: M df1=pd.read_csv(r"C:\Users\MY HOME\Downloads\district wise rainfall normal.csv")
df1

Out[66]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan Fel
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	315.2	250.9	2805.2	165.2
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	275.8	128.3	3015.7	69.
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	198.6	100.0	2913.3	48.0
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	34.1	29.8	3043.8	123.0
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	29.5	31.7	4034.7	112.8
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	308.4	343.2	172.9	48.1	3302.5	35.
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	263.1	234.9	84.6	18.4	3621.6	3.0
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	266.2	359.4	213.5	51.3	2958.4	65.0
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	230.7	213.1	93.6	25.8	3253.1	13.
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	163.1	157.1	117.7	58.8	1600.0	35.
641 rc	ows × 19 columns															
4																

data cleaning

In [67]: ► df.head()

Out[67]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep) [
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	98
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	71
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	69
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	57
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	63
4																			

```
In [68]: ► df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
```

Data	COTAIIII3 (COC	ar is corumns).	
#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4112 non-null	float64
3	FEB	4113 non-null	float64
4	MAR	4110 non-null	float64
5	APR	4112 non-null	float64
6	MAY	4113 non-null	float64
7	JUN	4111 non-null	float64
8	JUL	4109 non-null	float64
9	AUG	4112 non-null	float64
10	SEP	4110 non-null	float64
11	OCT	4109 non-null	float64
12	NOV	4105 non-null	float64
13	DEC	4106 non-null	float64
14	ANNUAL	4090 non-null	float64
15	Jan-Feb	4110 non-null	float64
16	Mar-May	4107 non-null	float64
17	Jun-Sep	4106 non-null	float64
18	Oct-Dec	4103 non-null	float64
dtype	es: float64(1	7), int64(1), obj	ject(1)
memor	∽y usage: 611	.1+ KB	

finding missing values

Out[70]:

<u></u>	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jui Se
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860

4116 rows × 19 columns


```
In [71]: ► df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

Data	COTAIIII3 (COC	ar is corumns).	
#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4116 non-null	float64
3	FEB	4116 non-null	float64
4	MAR	4116 non-null	float64
5	APR	4116 non-null	float64
6	MAY	4116 non-null	float64
7	JUN	4116 non-null	float64
8	JUL	4116 non-null	float64
9	AUG	4116 non-null	float64
10	SEP	4116 non-null	float64
11	OCT	4116 non-null	float64
12	NOV	4116 non-null	float64
13	DEC	4116 non-null	float64
14	ANNUAL	4116 non-null	float64
15	Jan-Feb	4116 non-null	float64
16	Mar-May	4116 non-null	float64
17	Jun-Sep	4116 non-null	float64
18	Oct-Dec	4116 non-null	float64
dtype	es: float64(1	7), int64(1), ob	ject(1)
memor	ry usage: 611	.1+ KB	

In [72]: ► df1.head()

Out[72]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	315.2	250.9	2805.2	165.2	540.7	1
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	275.8	128.3	3015.7	69.7	483.5	1
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	198.6	100.0	2913.3	48.6	405.6	1
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	34.1	29.8	3043.8	123.0	841.3	1
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	29.5	31.7	4034.7	112.8	645.4	3

In [73]: ► df1.describe()

Out[73]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.00
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697	291.152262	194.609048	90.446334	34.11
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643	152.647325	99.830540	74.990685	59.37
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000	14.100000	8.600000	3.100000	1.20
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000	194.600000	128.800000	34.300000	6.60
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000	284.800000	181.300000	62.600000	12.90
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000	358.100000	234.100000	130.200000	32.30
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000	1522.100000	826.300000	517.700000	475.10

In [74]:

```
df1.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 641 entries, 0 to 640
  Data columns (total 19 columns):
       Column
                       Non-Null Count Dtype
       STATE UT NAME
                       641 non-null
                                       object
   0
   1
       DISTRICT
                       641 non-null
                                       object
   2
                       641 non-null
                                       float64
       JAN
                                       float64
       FEB
                       641 non-null
                                       float64
   4
       MAR
                       641 non-null
                                       float64
   5
                       641 non-null
       APR
       MAY
                       641 non-null
                                       float64
                                       float64
       JUN
                       641 non-null
                       641 non-null
                                       float64
   8
       JUL
   9
       AUG
                       641 non-null
                                       float64
   10
       SEP
                       641 non-null
                                       float64
                                       float64
   11
       OCT
                       641 non-null
       NOV
                       641 non-null
                                       float64
   12
                                       float64
       DEC
                       641 non-null
   13
       ANNUAL
                                       float64
                       641 non-null
       Jan-Feb
                       641 non-null
                                       float64
   16 Mar-May
                       641 non-null
                                       float64
                                       float64
   17 Jun-Sep
                       641 non-null
   18 Oct-Dec
                                       float64
                       641 non-null
  dtypes: float64(17), object(2)
  memory usage: 95.3+ KB
```

data visualization


```
In [76]: 

#taking selected columns from dataset
df=df[['Jun-Sep','ANNUAL']]
df
```

Out[76]:		Jun-Sep	ANNUAL
	0	1696.3	3373.2
	1	2185.9	3520.7
	2	1874.0	2957.4
	3	1977.6	3079.6
	4	1624.9	2566.7
	4111	1013.0	1533.7
	4112	1119.5	1405.5
	4113	1057.0	1426.3
	4114	958.5	1395.0
	4115	860.9	1642.9

4116 rows × 2 columns

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_10092\2395007685.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

Out[78]:

	Jun-Sep	ANNUAL
0	1696.3	3373.2
1	2185.9	3520.7
2	1874.0	2957.4
3	1977.6	3079.6
4	1624.9	2566.7
4111	1013.0	1533.7
4112	1119.5	1405.5
4113	1057.0	1426.3
4114	958.5	1395.0
4115	860.9	1642.9

4116 rows × 2 columns

0.8923510009567511

RIDGE REGRESSION

LinearRegression 0.8869000079295701 0.8923510009454426

LASSO REGRESSION¶

```
In [ ]: ▶ ----->To check for better model.
```

Lasso Model:

The train score for ls model is 0.8869000076876236 The test score for ls model is 0.8923508560910814

ELASTICNET

```
In [87]:
          y pred elastic=a.predict(x train)
            mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
            print(mean squared error)
            1556420.3818782303
 In [ ]:
         # logistic Regression

  | ridgeReg = Ridge(alpha=10)
In [31]:
            ridgeReg.fit(x train,y train)
            #train and test scorefor ridge regression
            train score ridge = ridgeReg.score(x train, y train)
            test score ridge = ridgeReg.score(x test, y test)
            print("\nRidge Model:\n")
            print("The train score for ridge model is {}".format(train score ridge))
```

Ridge Model:

The train score for ridge model is 0.8890123548189879 The test score for ridge model is 0.8858366709919248

print("The test score for ridge model is {}".format(test score ridge))

CONCLUSION:

----> compared to all models we did based on accuracies we conclude that the Linear Regression is the best model for this dataset with the accuracy of 88%.

DISTRICT WISE DATASET

data collection

 df1=pd.read csv(r"C:\Users\MY HOME\Downloads\district wise rainfall normal.csv") In [50]: df1 Out[50]: Jan STATE_UT_NAME DISTRICT JAN FEB MAR APR JUN JUL AUG OCT NOV DEC ANNUAL MAY Fel ANDAMAN And 0 **NICOBAR** 358.5 295.5 285.0 271.9 2805.2 NICOBAR 107.3 57.9 65.2 117.0 354.8 326.0 315.2 250.9 165.2 **ISLANDS** ANDAMAN And 1 NICOBAR SOUTH ANDAMAN 43.7 26.0 18.6 90.5 374.4 457.2 421.3 423.1 455.6 301.2 275.8 128.3 3015.7 69.7 **ISLANDS** ANDAMAN And 2 **NICOBAR** N & M ANDAMAN 32.7 15.9 8.6 53.4 343.6 503.3 465.4 460.9 454.8 276.1 198.6 100.0 2913.3 48.6 **ISLANDS ARUNACHAL** 3 42.2 80.8 176.4 358.5 306.4 447.0 660.1 427.8 313.6 167.1 29.8 3043.8 123.0 LOHIT 34.1 **PRADESH ARUNACHAL** 4 **EAST SIANG** 33.3 79.5 105.9 216.5 323.0 738.3 990.9 711.2 568.0 206.9 29.5 31.7 4034.7 112.8 **PRADESH** ••• **KERALA** 636 IDUKKI 13.4 22.1 43.6 150.4 232.6 651.6 788.9 527.3 308.4 343.2 172.9 48.1 3302.5 35. **KERALA** 637 **KASARGOD** 2.3 1.0 217.6 999.6 1108.5 636.3 263.1 234.9 84.6 18.4 3621.6 3.0 638 KERALA PATHANAMTHITTA 19.8 45.2 73.9 184.9 294.7 556.9 539.9 352.7 266.2 359.4 213.5 51.3 2958.4 65.0 639 **KERALA** 230.7 93.6 3253.1 **WAYANAD** 8.3 17.5 83.3 174.6 698.1 1110.4 592.9 213.1 25.8 13.1 **LAKSHADWEEP** 1600.0 35. 640 LAKSHADWEEP 20.8 14.7 11.8 48.9 171.7 330.2 287.7 217.5 163.1 157.1 117.7 58.8 641 rows × 19 columns

data cleaning

In [51]: ► df1.head()

Out[51]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	315.2	250.9	2805.2	165.2	540.7	1
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	275.8	128.3	3015.7	69.7	483.5	1
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	198.6	100.0	2913.3	48.6	405.6	1
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	34.1	29.8	3043.8	123.0	841.3	1
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	29.5	31.7	4034.7	112.8	645.4	3
4																		

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):
```

D G C G	COTAMIIS (COCAT		
#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64
d+vn/	oc. floa+64/17)	object(2)	

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

In	[53]:	M	df1.de	scribe()										
	Out[53]:		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
			count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.00
			mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697	291.152262	194.609048	90.446334	34.11
			std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643	152.647325	99.830540	74.990685	59.37
			min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000	14.100000	8.600000	3.100000	1.20
			25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000	194.600000	128.800000	34.300000	6.60
			50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000	284.800000	181.300000	62.600000	12.90
			75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000	358.100000	234.100000	130.200000	32.30
			max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000	1522.100000	826.300000	517.700000	475.10
			4											•

data visulization

In [54]: In sns.lmplot(x="Jun-Sep",y="ANNUAL",order=2,data=df1,ci=None)
plt.show()


```
In [55]: #taking selected columns from dataset
df1=df1[['Jun-Sep','ANNUAL']]
df1
```

Out[55]:		Jun-Sep	ANNUAL
	0	1207.2	2805.2
	1	1757.2	3015.7
	2	1884.4	2913.3
	3	1848.5	3043.8
	4	3008.4	4034.7
	636	2276.2	3302.5
	637	3007.5	3621.6
	638	1715.7	2958.4
	639	2632.1	3253.1
	640	998.5	1600.0

641 rows × 2 columns

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_10092\178470992.py:4: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df1.dropna(inplace=True)

Out[58]:

	Jun-Sep	ANNUAL
0	1207.2	2805.2
1	1757.2	3015.7
2	1884.4	2913.3
3	1848.5	3043.8
4	3008.4	4034.7
636	2276.2	3302.5
637	3007.5	3621.6
638	1715.7	2958.4
639	2632.1	3253.1
640	998.5	1600.0

641 rows × 2 columns

```
In [59]:  x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.8931410883644894

6/15/23, 7:12 PM

ridge regression

```
In [61]:  
    from sklearn.linear_model import Ridge, RidgeCV, Lasso

In [62]:  
    ridge=Ridge(alpha=2)
    ridge.fit(x_train,y_train)
        train_score_ridge=ridge.score(x_train,y_train)
        test_score_ridge=ridge.score(x_test,y_test)
        print("\nRidgeRegression\n",(train_score_ridge))
        print(test_score_ridge)
```

RidgeRegression 0.8698998531040942 0.8931410883440815

Lasso Regression

```
In [63]: #Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(x_train,y_train)
    train_score_ls =lasso.score(x_train,y_train)
    test_score_ls =lasso.score(x_test,y_test)
    print("The train score for ls model is {}".format(train_score_ls))
    print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.8698998527066611 The test score for ls model is 0.8931410486981328

CONCLUSION:

---->

Based on all models accuracies we conclude that the Linear REgression is the best model for this Dataset with the accuracy of 89%.