Herramientas de Teledetección Cuantitativa Clase 1

Francisco Nemiña

Esquema de presentación

Introducción Organización del curso

Conceptos básicos Radiancia Reflectancia

Firma espectral Medición Modelado

Práctica

Objetivos del curso

- ▶ Poder analizar en detalle una firma espectral.
- ► Familiarizarse con el concepto de reflectancia bidireccional.
- Conocer las distintas fuentes de distorsión radiométrica.
- Comprender el concepto de dimensionalidad y como reducir la misma.
- Poder realizar clasificaciones supervisadas y no supervisadas comprendiendo los fundamentos matemáticos detrás de las mismas.
- Poder realizar validaciones de clasificaciones.
- Realizar estudios de series temporales.

Organización del curso

Plataforma de Educación a Distancia

https://sopi.conae.gov.ar/aulavirtual

Contraseña: sopiII2015

Aprobación

- 1. 75 % de asistencia.
- 2. 7 cuestionarios teórico-prácticos sobre las clases
- 3. 1 trabajo final integrador

Modalidad de trabajo

Teórico-práctico con la inclusión de lecturas complementarias.

Organización del curso

Cronograma

- ▶ 8/4 Conceptos básicos y firmas espectrales.
- ▶ 15/4 Correcciones radiométricas.
- 22/4 Dimensionalidad
- 29/4 Índices.
- ▶ 6/5 Clasificaciones no supervisadas.
- ▶ 13/5 Clasificaciones supervisadas.
- 20/5 Validación de datos satelitales.
- ▶ 27/5 Clase de consulta
- ▶ 3/6 Clase de consulta
- ▶ 10/5 Entrega del trabajo final.

Métodos cuantitativos

Definición:

Hablamos de *métodos cuantitativos en teledetección óptica* cuando queremos cuantificar los datos disponibles en una imagen para poder extraer información de las mismas utilizando las longitudes de onda de $0.4 \mu m$ a $14 \mu m$.

Métodos cuantitativos

- 1. Tipos de modelos
 - 1.1 estadísticos
 - 1.2 biofísicos
- 2. Tipos de variables
 - 2.1 continuas
 - 2.2 categóricas

Esquema de presentación

Introducción
Organización del curso

Conceptos básicos Radiancia Reflectancia

Firma espectral Medición Modelado

Práctica

Definición:

$$dE = L_{\lambda}(\theta, \phi) \cos(\theta) d\Omega dA dt d\lambda$$

Potencia radiante por unidades de área y ángulo sólido.

Importante:

- $ightharpoonup [L_{\lambda}] = \frac{W}{m^2 srnm}$
- Es una de las dos magnitudes más relevantes.

Ángulo sólido Ω y los ángulos asociados θ y $\phi.^1$

Definición

Definimos la irradiancia como

$$E = \int L(\theta, \phi) \cos(\theta) d\Omega$$

para el caso de que la luz se emita sólo en uno de los hemisferios

$$E = \int_0^{2\pi} \int_0^{\pi/2} L(\theta, \phi) \cos(\theta) \sin(\theta) d\theta d\phi$$

Espectro electromagnético.²

Irradiancia medida sobre la superficie terrestre.³

³Berkeley Lab Heat Island Group.

Curva de irradiancia

Cálculo de la irradiancia de un cuerpo negro

$$L(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

Curva de irradiancia para un cuerpo negro.4

Cálculo de la irradiancia solar

Cálculo de la irradiancia solar

$$S_0 = \int_0^\infty E_0(\lambda) d\lambda$$

su valor aproximado es

$$S_0 = 1369W/m^2$$

es la cantidad de luz que llega del sol.

Valores tipos de L

Valores tipos de E para Landsat

En
$$[L_{\lambda}] = \frac{W}{m^2 \mu m}$$

Banda	ETM+	TM
1	1970	1954
2	1843	1826
3	1555	1558
4	1047	1047
5	227.1	217.2
7	80.53	80.29

Irradiancia incidente y reflejada por una cobertura.⁵

Definición:

Definimos la BRDF (espectral bidirectional reflectance distribution function) como:

$$f(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{dL(\theta_i, \phi_i, \theta_r, \phi_r)}{dE(\theta_i, \phi_i)}$$

Definición:

Defininimos la reflectancia direccional como:

$$R(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{\pi L(\theta_i, \phi_i, \theta_r, \phi_r)}{\cos(\theta_i) E_0} = \pi f(\theta_i, \phi_i, \theta_r, \phi_r)$$

Distintos casos de reflectancia direccional.⁶

Aproximación lambertiana

Hablamos de la aproximación lambertiana cuando la reflectancia no depende del ángulo reflejado

$$\rho = \frac{\pi L}{\mu_i E_0}$$

donde tomamos $\mu = cos(\theta)$

Esquema de presentación

Introducción
Organización del curso

Conceptos básicos Radiancia Reflectancia

Firma espectral Medición Modelado

Práctica

Definición:

La distribución de la reflectancia es función de la longitud de onda nos habla de la características intrínsecas de la cobertura. Es su firma espectral ρ_{λ} .

Respuesta espectral

Podemos pensar a la respuesta de un sensor como una integral

$$\rho_j = \frac{\int s_j(\lambda) \rho d\lambda}{\int s_j(\lambda) d\lambda}$$

donde si pensamos a la respuesta como una distribución podemos definir λ_c y $\Delta\lambda$ el centro de la adquisición y ancho de banda efectivo.

Importante

Desde el punto de vista espectral, las resoluciones espectral y radiométrica, nos permiten distinguir distintas cosas de la firma espectral.

Espectral separa.

Resolución radiométrica.

Respuesta espacial de un sensor en ambas direcciones.⁷

⁷Shunlin Liang. *Quantitative remote sensing of land surfaces.* Vol. 30. John Wiley & Sons, 2005.

Respuesta espacial

- La resolución espacial sale de esta función.
- Es importante por que nos permite comprender la formación de un píxel.

Formación de un píxel

El valor de reflectancia para un píxel vale

$$\rho_{pix} = \sum_{i} w_{i} \rho_{i}$$

donde w_i corresponde a la distinta cobertura de cada píxel.

Firmas espectrales de vegetación y suelo desnudo.8

Mezcla de firmas espectrales para un gradiente de coberturas.9

⁹Roger Nelson Clark y col. *USGS digital spectral library splib06a*. 2007.

La vegetación tiene 3 zonas del espectro principales que modelar

- Visible
- Infrarrojo cercano
- ► Infrarrojo de onda media

Variaciones de la firma espectral con el contenido de clorofila. 10

Variaciones de la firma espectral con el contenido de agua. 11

 $^{^{11}{\}rm Shunlin}$ Liang. Quantitative remote sensing of land surfaces. Vol. 30. John Wiley & Sons, 2005.

Variaciones de la firma espectral con el área foliar. 12

Firma espectral de la vegetación en diferentes estados. 13

Firma espectral de agua con distinto contenido de arcilla disuelta. 14

¹⁴Roger Nelson Clark y col. USGS digital spectral library splib06a. 2007.

Firma espectral del suelo con distintos contenidos de humedad. 15

 $^{^{15}}$ Shunlin Liang. Quantitative remote sensing of land surfaces. Vol. 30. John Wiley & Sons, 2005.

Esquema de presentación

Introducción
Organización del curso

Conceptos básicos Radiancia Reflectancia

Firma espectral Medición Modelado

Práctica

Práctica

Actividades prácticas de la primera clase

- 1. Abrir imágenes Landsat 8 y familiarizarse con el SoPI.
- 2. Digitalizar coberturas uniformes dentro de la imagen.
- 3. Extraer la firma espectral de las coberturas digitalizadas.
- 4. Reescalar las firmas obtenidas y compararlas para dos imágenes distintas.

