Theorem: All planear graphs are (vertex) 4-colorable.

Weaker Theorem: All planar graphs are? (vertex) 5-colorable.

Definition

- · G is a plane graph iff G is a (simple) graph, embedded in R2.

 G=(V,E, P:G-R2) => edges can't cross!
- A function $Q: A \rightarrow B$ is an embedding iff $Q: A \rightarrow B$ is an
- is a bijection.

 Givie) a planar graph iff

 Fa continuous map m: G -> RZ s.t.

 (V,E,m) is a plane graph.

2 hole torus / sphere u/ 2 handes

(0) # (v)

· Let G=(V,E) be a graph. The genus of G is the genus of the simplest surface that the graph can embed into.

- · NOTE: 3 an embedding of 6 into 52 iff Jan embedding into TR2
- * $K_{3,3}$ and K_5 are two graphs that cannot embed into \mathbb{R}^2 (or into \mathbb{S}^2). But, they both embed into the tons! Can you draw that?

K3,3:

K = Komplete

(2)

· [Lemma] If G is not planar, then]

a copy of K3,3 or K5 in it!

("a copy" allows os to ignore deq. 2 vertices)

• Euler Characteristic of a plane graph is 2.

G=(V,E,Q) is a plane graph.

Let n=|V|, m=|E|, &= # of (path)-connected components of R2\P(G)

= # of faces created by this embeddingy

[n-m+k=2]

Euler's formula/equation

O: What is n-m+k when you draw on a tons? (note: faces have to be "nice")

Note: many times, Euler characteristic is denoted by X. $X(5^2) = 2$

Q, reformulated: What is X (TT2) 7.

[Lemma] Every planar graph has a vertex of degree at most 5. rewritten: Harapas GE the set of all planar graphs, JVEV s.t. deg (v) 55. Proof by contradiction. Assume this is false. Proof: such that (3) a planer graph G=(V, E) $\forall v \in V$, deg(v) > 5. $\Rightarrow deg(v) \geq (6, since deg mut)$ $\Rightarrow deg(v) \geq (6, since deg mut)$ $\Rightarrow deg(v) \geq (6, since deg mut)$ Then, the most edges we can have is encountered when every tace is a D. (otherwise, add) an edge to the face to get more edges) face to get more edges) $|E| \ge \frac{1}{2} (|b||V|)$ $|E| \ge 3n$ $m \ge 3n$

Recalling the Euler equation, let m: 6-7R2 be some plane embedding of 6. Then, V-m+k=2, where k= # faces. Again, each face is a \$ 50, each face sees 3 faces. So, 3k = 2m => m = 3 = 2 and k = 3 m Thus n-m+(B=2=> == 2+m-4n) 2+m-n = = = m => 6+3m-3n < 2m => 6+m-3n < 0 =) $m \leq 3n - 6$ contradicts m≥3n. And so, the lemma holds.

3