RÉACTIONS DE COMPLEXATION

Exercices

1 Titrage des ions calcium par l'EDTA

1.1 Principe du titrage

On titre un volume V_1 de solution d'ions calcium Ca^{2+} , de concentration c_1 , par une solution d'ion éthylènediaminetétracétate Y^{4-} à une concentration c_2 . La constante globale de formation du complexe $[\operatorname{Ca} Y]^{2-}$ est $\beta = 10^{10.8}$. On néglige tout phénomène acido-basique.

- 1. On verse un volume V de Y^{4-} . Quelle est la réaction de titrage?
- 2. À l'équivalence, la quantité de matière de Y^{4-} versée est égale à la quantité de matière de Ca^{2+} présente dans le bécher. Exprimer c_1 en fonction de c_2 , V_1 et V_2 , volume de Y^{4-} versé pour atteindre l'équivalence (il est appelé volume équivalent).
- 3. Exprimer la constante d'équilibre de la réaction de titrage.
- 4. On définit $pY = -log([Y^{4-}])$, en déduire l'expression de pY.
- 5. On considère un volume $V < V_2$ de solution titrante versée. Exprimer les concentrations $[Ca^{2+}]$ et $[[CaY]^{2-}]$ en fonction de c_1 , V_1 , c_2 , V_2 et V. En déduire l'expression de pY.
- 6. On considère un volume $V > V_2$ de solution titrante versée. Exprimer la concentration $[Y^{4-}]$ et $[[CaY]^{2-}]$ en fonction de V_1 , c_2 , V_2 et V. En déduire l'expression de P.
- 7. À l'équivalence $(V = V_2)$, quelle est la concentration en Y^{4-} en solution? En déduire pY à l'équivalence.

1.2 Existence d'une zone de pH optimale pour le titrage

Tenons compte à présent des propriétés acido-basiques de l'ion éthylène diaminetétracétate et du cation calcium. On donne les couples acido-basiques et le ur pK_A :

- $\mathrm{H_4}Y/\mathrm{H_3}Y^-:\mathrm{p}K_{A1}=2,0$
- H_3Y /H_2Y^{2-} : $pK_{A2} = 2,7$
- H_2Y^{2-}/HY^{3-} : $pK_{A3} = 6, 2$
- $HY^{3-}/Y^{4-}: pK_{A4} = 10, 2$
- De plus, l'ion calcium peut former avec l'ion hydroxyde HO⁻ un complexe [CaOH]⁺, avec une constante de formation $\beta' = 10^{1,3}$.
- 1. Donner le p K_{A5} du couple acido-basique $\operatorname{Ca}^{2+}/[\operatorname{CaOH}]^+$
- 2. Dessiner un diagramme de prédominance en fonction du pH pour les ions Ca^{2+} et Y^{4-} .
- 3. Donner l'équation de titrage à pH = 10. Calculer sa constante d'équilibre. Est-ce une réaction totale? Peut-on réaliser le titrage?
- 4. Donner l'équation de titrage à pH = 1. Calculer sa constante d'équilibre. Est-ce une réaction totale? Peut-on réaliser le titrage?
- 5. Exprimer les concentrations totales en métal c_{Ca}^{tot} et en ligand c_Y^{tot} en fonction des concentrations des différentes espèces. On négligera l'espèce $[\text{CaOH}]^+$ qui n'apparaît que très minoritairement dans le domaine de pH étudié et qui ne gène en rien le titrage $(\beta >> \beta')$.
- 6. Écrire les quatre constantes d'acidité relative au tétracide H_4Y . On posera $h = [H_3O^+]$.
- 7. Exprimer chacune des concentrations des espèces EDTA (Y) en fonction de h, $[Y^{4-}]$ et des constantes d'acidité.
- 8. À l'équivalence, établir une expression liant $[Ca^{2+}]$ et $[Y^{4-}]$.
- 9. On définit α comme le coefficient de complexation de l'ion calcium. Ainsi : $[Ca^{2+}] = c_{Ca}^{tot}(1-\alpha)$; et $[[CaY]^{2-}] = \alpha c_{Ca}^{tot}$. Montrer que :

$$\Omega = \frac{(1-\alpha)^2}{\alpha} = \frac{f(h)}{\beta c_{\text{Ca}}^{tot}}$$

où f(h) est une fonction ne dépendant que de h.

- 10. Que traduit une augmentation de Ω pour le complexe calcique?
- 11. Exprimer $p\Omega = -log(\Omega)$.
- 12. En ne considérant que la forme majoritaire présente en solution, déterminer les expressions de f(h) et en déduire l'expression de $p\Omega$ en fonction du pH dans les différents domaines de pH à considérer. On considérera $c_{Ca}^{tot} = 0.1 \, \text{mol} \cdot \text{L}^{-1}$.
- 13. Dans quel domaine de pH doit on travailler pour réaliser le titrage des ions calcium? On considérera qu'il faut que $\alpha = 0,999$ pour garantir une bonne complexation, et donc un titrage efficace.

2 Propriétés complexantes des ions cuivre (II)

Les constantes de formation globale de complexation sont définies comme les constantes des équilibres suivants :

$${\rm Cu}^{2+} + n{\rm NH}_3 {=} [{\rm Cu}({\rm NH}_3)_n]^{2+}$$

Complexe	$[\mathrm{Cu}(\mathrm{NH_3})]^{2+}$	$[\mathrm{Cu}(\mathrm{NH_3})_2]^{2+}$	$[\mathrm{Cu}(\mathrm{NH_3})_3]^{2+}$	$\overline{[\mathrm{Cu}(\mathrm{NH}_3)_4]^{2^+}}$
$\beta(n)$	$1,58.10^4$	$3,98.10^7$	$3,98.10^{10}$	$3,98.10^{12}$

- 1. Écrire les expressions des $\beta(n)$.
- 2. Écrire les expressions des constantes successives de dissociation K_{dj} (avec j compris entre 1 et 4), constantes des équilibres :

$$[{\rm Cu}({\rm NH}_3)_j]^{2+} \!=\! [{\rm Cu}({\rm NH}_3)_{j-1}]^{2+} + {\rm NH}_3$$

- 3. En déduire une relation entre les constantes successives de dissociation K_{dj} et les constantes de formations globales $\beta(n)$.
- 4. En déduire les valeurs numériques de p K_{dj} .
- 5. En déduire le diagramme de prédominance en fonction de pNH3.
- 6. On considère un bécher contenant $20.0\,\mathrm{mL}$ d'une solution d'ammoniaque (solution aqueuse de NH₃) de concentration $1.00\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ et de $30\,\mathrm{mL}$ d'une solution de sulfate de cuivre(II) CuSO_4 de concentration $1.00\times10^{-2}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$. Justifier que le complexe $[\mathrm{Cu}(\mathrm{NH}_3)_4]^{2+}$ est le complexe majoritaire. Écrire la réaction globale de formation.
- 7. Quelles sont les concentrations de NH_3 , $[Cu(NH_3)_4]^{2+}$ et Cu^{2+} à l'équilibre?