Proving Theorems and Certifying Programs with Coq

Stephan Boyer @stepchowfun

Ask questions! Don't be shy!

Logic

What's a proof?

- Informally: an argument for the truth of a proposition
- Formally: a chain of applications of inference rules starting from axioms

Inference rules

Example: modus ponens

If $A \rightarrow B$ and A then B.

"→" means "implies"

Inference rules

Example: modus ponens

If Stephan is at LambdaConf

→ Stephan is in Boulder

and Stephan is at LambdaConf

then Stephan is in Boulder.

Programming

Inference rules

Example: function application

```
If f : A \rightarrow B and x : A then f(x) : B.
```

"→" is the type
constructor for functions

Modus ponens ≈ function application

```
Modus ponens (logic)
```

If $A \rightarrow B$ and A then B.

Application (programming)

If $f : A \rightarrow B$ and x : A then f(x) : B.

Modus ponens ≅ function application

```
Modus ponens (logic)
```

```
If f : A \rightarrow B and x : A then f(x) : B.
```

```
f, x, and f(x) are proofs
```

Application (programming)

```
If f : A \rightarrow B and x : A then f(x) : B.
```

f, x, and f(x) are programs

Conjunctions ≅ **products**

```
Conjunction (logic)
```

```
If p : A \land B then p_1 : A.
If p : A \land B then p_2 : B.
```

```
\mathbf{p}, \mathbf{p}_1, and \mathbf{p}_2 are proofs
```

Product (programming)

```
If p : (A, B) then p_1 : A.
If p : (A, B) then p_2 : B.
```

p, p₁, and p₂ are programs

Curry—Howard correspondence

```
<u>Logic</u> <u>Programming</u>
```

```
propositions ≅ types
proofs ≅ programs
```

Coq

Coq

"Rooster" in French

- A small pure functional programming language (Gallina)
- A scripting language for proof automation (Ltac)
- Proof scripts don't need to be trusted!

* { 298 unfold supremum. 299 split; intros. 300 - unfold supremum in H; destruct H. 301 unfold P in H2; destruct H2. 302 destruct x0. 303 + cbn in H2; rewrite H2; apply bottomLeast. 304 + assert (Q x2). 305 * { 306 unfold 0. 307 exists (approx f x0). 308 split. 309 - unfold P. 310 exists x0; auto. 311 - cbn in H2: auto.

* apply H; auto.

apply H3.

apply H2.

intros.

- unfold supremum in H; destruct H.

P := fun x2 : T => exists n : nat, x2 = approx f n : T -> Prop H: supremum (fun x2 : T \Rightarrow exists x3 : T, P x3 /\ x2 = f x3) (f x)

312 313

314

315

316

317

0/0

Follow along: https://github.com/stepchowfun/coq-intro