

Computer Architecture

Tassadaq Hussain

Riphah International University Islamabad Pakistan

Microsoft Barcelona Supercomputing Center Universitat Politécnica de Catalunya Barcelona, Spain

A Generic System

Hardware Architecture

- Processors
- Buses
- Memories
- Peripherals

Basic parameters of processor

Clock Cycle
Instruction Set
Pipeline
Registers

Embedded Processor Architectures

ISA: Instruction Set Architecture

- > ARM: Low Power Low Cost
- > x86: High Performance
- ▲ High-Performance x86 and ARM
- ✓ Industry-Leading & Most Efficient GPUs^{1,2}
- ✓ Scalable Designs
- ▲ Memory Innovation
- Open Approach

Processor Market

*Includes ARM-based and x86 processors.

Source: IC Insights

Leading MPU Suppliers (\$M)

2012 Rank	Company	2011	2012	Percent Change	Percent Marketshare	Main Product Lines
1	Intel	37,435	36,892	-1%	65.3%	x86 PC, server MPUs
2	Qualcomm	4,152	5,322	28%	9.4%	ARM mobile app processors
3	Samsung (+Apple)*	2,614	4,664	78%	8.2%	ARM mobile app processors
4	AMD	4,552	3,605	-21%	6.4%	x86 PC, server MPUs
5	Freescale	1,210	1,070	-12%	1.9%	ARM and embedded MPUs
6	Nvidia	591	764	29%	1.4%	ARM mobile app processors
7	TI	510	565	11%	1.0%	ARM mobile app processors
8	ST-Ericsson**	660	540	-18%	1.0%	ARM mobile app processors
9	Broadcom	295	345	17%	0.6%	ARM mobile app processors
10	MediaTek	280	325	16%	0.6%	ARM mobile app processors

*Includes Apple's custom processors made by Samsung's foundry business.

Source: IC Insights

^{**}Cellphone IC joint venture to be dissovled by STMicroelectronics and Ericsson by 3Q13.

28nm: Optimal Balance of Cost and Power for 2015 Devices

Under embargo until 6:00sm GMT, February 11th 2014

Not to be published without the consent of ARM

ARM Cortex Series

Cortex-A

Highest performance

Optimized for rich operating systems

. . .

Cortex-R

Fast response

Optimized for high-performance, hard real-time applications

Cortex-M

Smallest/lowest power

Optimized for discrete processing and microcontroller

SecurCore

Tamper resistant

Optimized for security applications

Cortex - A

Highest performance

Optimised for rich operating systems

Cortex - R

Fast response

Optimised for high performance, hard real-time applications

Cortex - M

Smallest/lowest power

Optimised for discrete processing and microcontrollers

ARM Cortex-A Series

High performance

Cortex-A73 - 64/32-bit ARMv8-A 2017 Premium Mobile, Consumer

Cortex-A72 - 64/32-bit ARMv8-A 2016 Premium Mobile, Infrastructure & Auto

Cortex-A57 - 64/32-bit ARMv8-A Proven high-performance

Cortex-A17 - ARMv7-A
High-performance with lower power and
smaller area relative to Cortex-A15

Cortex-A15 - ARMv7-A High-performance with infrastructure feature set

High efficiency

Cortex-A53 - 64/32-bit ARMv8-A Balanced performance and efficiency

Cortex-A9 - ARMv7-A Well-established mid-range processor used in many markets

Cortex-A8 - ARMv7-A First ARMv7-A processor

Ultra-high efficiency

Cortex-A35 - 64/32-bit ARMv8-A Highest efficiency

Cortex-A32 - 32-bit ARMv8-A Smallest and lowest power ARMv8-A

Cortex-A7 - ARMv7-A Most efficient ARMv7-A CPU, higher performance than Cortex-A5

Cortex-A5 - ARMv7-A
Smallest and lowest power ARMv7-A
CPU, optimized for single-core

Functional units of a computer

Input unit accepts information:

- ·Human operators,
- ·Electromechanical devices
- Other computers

Arithmetic and logic unit(ALU):
•Performs the desired
operations on the input
information as determined
by instructions in the memory

Memory

Stores

information:

- Instructions,
- ·Data

Arithmetic & Logic

Control

Processor

Control unit coordinates various actions

- Input,
- Output
- ·Processing

Output unit sends results of processing:

- ·To a monitor display,
- To a printer

Basic introduction of Microprocessor

Processor: Performance Improvement

Speed and Performance

- Fetch
- Decode
- Execute
- Fetch

Processor Architectures

- Single Instruction Single Data (SISD)
- Single Instruction Multiple Data (SIMD)
- Multiple Instruction Single Data (MISD)
- Multiple Instruction Multiple Data (MIMD)

ata	Single Instruction Multiple Data (SIMD)	Multiple Instruction Multiple Data (MIMD)
בֿ	Single Instruction Single Data (SISD)	Multiple Instruction Single Data (MISD)

Performance Improvement

Uni-core, Multi-core CPUs, Clusters, and Grid Computing

Grid Computing

Memories

System on Chip Computer Architecture

A system on a chip or system on chip (SoC) is an integrated circuit (IC) that integrates all components of a computer or other electronic system into a single chip. It may contain digital, analog, mixed-signal, and often radio-frequency functions—all on a single chip substrate.

The hardware system architecture of an embedded SoC (simplified)

Basic System on Chip Architecture

General architecture of today's embedded core-based system-on-a-chip

ARM Cortex M4-based System

- ☐ ARM Cortex-M4 processor
- ☐ *Harvard* architecture
 - Different busses for instructions and data

LC3 to ARM - Data Movement

```
LEA R0, Label
                           ;R0 <- PC + Offset to Label
   ADR R0, Label or LDR R0, = Label
LD R1,Label ; R1 <- M[PC + Offset]
   LDR R0,=Label
                           ; Two steps: (i) Get address into R0
   LDRH R1,[R0]
                               ; (ii) Get content of address [R0] into R1
LDR R1,R0,n
             ; R1 <- M[R0+n]
   LDRH R1,[R0,#n]
LDI R1,Label ; R1 <- M[M[PC + Offset]]
    ; Three steps!!
ST R1,Label
                           ; R1 -> M[PC + Offset]
   LDR R0,=Label
                           ; Two steps: (i)Get address into R0
   STRH R1,[R0]
                               ; (ii) Put R1 contents into address in R0
STR R1,R0,n
                           ; R1 -> M[R0+n]
   STRH R1,[R0,#n]
STI R1,Label
                           ; R1 -> M[M[PC + Offset]]
    ; Three steps!!
```

LC3 to ARM – Arithmetic/Logic

```
ADD R1, R2, R3
                          ; R1 <- R2 + R3
  ADD R1,R2,R3
                           ; 32-bit only
                      ; R1 <- R2 + 5
ADD R1,R2,#5
  ADD R1,R2,#5
                           ; 32-bit only, Immediate is 12-bit
                       ; R1 <- R2 & R3
AND R1,R2,R3
  AND R1, R2, R3
                       ; 32-bit only
                          ; R1 <- Bit 0 of R2
AND R1,R2,#1
  AND R1, R2, #1
                       ; 32-bit only
NOT R1,R2
                       ; R1 -> \sim(R2)
   EOR R1,R2,#-1
                       ; -1 is 0xFFFFFFF,
                           ; so bit XOR with 1 gives complement
```

LC3 to ARM – Control

BR Target ; PC <- Address of Target
B Target

BRnzp Target ; PC <- Address of Target

B Target

BRn Target ; PC <- Address of Target if N=1

BMI Target ; Branch on Minus

BRz Target ; PC <- Address of Target if Z=1

BEQ Target

BRp Target ; PC <- Address of Target if P=1

No Equivalent

BRnp Target ; PC <- Address of Target if Z=0

BNE Target

BRzp Target ; PC <- Address of Target if N=0

BPL Target ; Branch on positive or zero (Plus)

BRnz Target ; PC <- Address of Target if P=0

No Equivalent

LC3 to ARM – Subs, TRAP, Interrupt

```
JSR Sub
               ; PC <- Address of Sub, Return address in R7
   BL Sub
               ; PC<-Address of Sub, Ret. Addr in R14 (Link Reg)
JSRR R4
               ; PC <- R4, Return address in R7
   BLX R4
               ; PC <-R4, Return address in R14 (Link Reg)
RET
               ; PC <- R7 (Implicit JMP to address in R7)
   BX LR
               ; PC <- R14 (Link Reg)
JMP R2
               : PC <- R2
   BX R2
               ; PC <- R14 (Link Reg)
TRAP x25
               ; PC <- M[x0025], Return address in R7
   SVC #0x25 ; Similar in concept but not implementation
               ; Pop PC and PSR from Supervisor Stack...
RTI
               ; PC <- R14 (Link Reg) [same as RET]
   BX LR
```

Single Board Computer

A single-board computer (SBC) is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O) and other features required of a functional computer.

Types of SBC

High Performance
Low Power and Low Cost

Parallela

18-core credit card sized computer

- #1 in energy efficiency @ 5W
- 16-core Epiphany RISC SOC
- Zynq SOC (FPGA + ARM A9)
- Gigabit Ethernet
- 1GB SDRAM
- Micro-SD storage
- Up to 48 GPIO pins
- HDMI, USB (optional)
- Open source design files
- Runs Linux

Jetson GPU

GPU: NVIDIA Kepler "GK20a" GPU with 192 SM3.2 CUDA cores (upto 326 GFLOPS)

CPU: NVIDIA "4-Plus-1" 2.32GHz ARM quad-core Cortex-A15 CPU with Cortex-A15 battery-saving shadow-core.

ODROID

- * Samsung Exynos5422 Cortex™-A15 2Ghz and Cortex™-A7 Octa core CPUs
- * Mali-T628 MP6(OpenGL ES 3.1/2.0/1.1 and OpenCL 1.2 Full profile)
- * 2Gbyte LPDDR3 RAM PoP stacked
- * eMMC5.0 HS400 Flash Storage
- * 2 x USB 3.0 Host, 1 x USB 2.0 Host
- * Gigabit Ethernet port
- * HDMI 1.4a for display
- * Size: 83 x 58 x 22 mm approx.(including cooling fa
- * Linux Kernel 4.9 LTS

RaspberyPi

Model Name	Release Date	CPU	RAM	Graphics	USB Ports	Power Requirements
Raspberry Pi 1 Model A	February 2012	700 MHz single-core	256 MB	Broadcom VideoCore IV	1	1.5 W
Raspberry Pi 1 Model B	February 2012	700 MHz single-core	256 MB	Broadcom VideoCore IV	2	3.5 W
Raspberry Pi 1 Model A+	February 2013	700 MHz single-core	256 MB	Broadcom VideoCore IV	1	1.0 W
Raspberry Pi 1 Model A+ Revision 2	N/A	700 MHz single-core	512 MB	Broadcom VideoCore IV		1.0 W
Raspberry Pi 1 Model B revision 2	August 2012	700 MHz single-core	512 MB	Broadcom VideoCore IV		3.5 W
Raspberry Pi 1 Model B+	February 2013	700 MHz single-core	512 MB	Broadcom VideoCore IV	4	3.0 W
Raspberry Pi 2 Model B	February 2015	900 MHz quad-core	1 GB	Broadcom VideoCore IV	4	4.0 W
Raspberry Pi Zero	November 2015	1,000 MHz single-core	512 MB	Broadcom VideoCore IV	1 OTG	$0.8\mathrm{W}$
Raspberry Pi 3 Model B	February 2016	1,200 MHz quad-core	1 GB	Broadcom VideoCore IV with higher clock speeds	4	4.0 W

RaspberryPi Hardware

SoC: Broadcom BCM2837

CPU: 4× ARM Cortex-A53, 1.2GHz

GPU: Broadcom VideoCore IV

RAM: 1GB LPDDR2 (900 MHz)

Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

Storage: microSD

GPIO: 40-pin header, populated

 Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial Interface (CSI), Display Serial Interface (DSI)

RaspberryPi Hardware

SoC: Broadcom BCM2837

CPU: 4× ARM Cortex-A53, 1.2GHz

GPU: Broadcom VideoCoro IV/

RAM: 1GB LPDDR2 (90)

Networking: 10/100 Ethe

Bluetooth: Bluetooth 4.1

Storage: microSD

GPIO: 40-pin header, pc

 Ports: HDMI, 3.5mm and Serial Interface (CSI), D

Architecture: RasPi

Using RPi

Because it has an ARM cortex-a processor, it can run the full range of ARM GNU/Linux distributions, including Snappy Ubuntu Core, as well as Microsoft Windows 10.

ARM Cortex-A53 Architecture

GPIOs: General Purpose Input Outputs

	Raspberry	PIZ GI	PIO Header	
Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)		Ground	20
21	GPIO09 (SPI_MISO)		(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground		(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	000	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Raspi Usage and Applications

