IPv6-foredrag

Pent brukt 18-åring

Trond Endrestøl

Fagskolen Innlandet, IT-avdelingen

10. desember 2013

FAGSKOLEN Y

Foredragets filer I

- Filene til foredraget er tilgjengelig gjennom:
 - Subversion: svn co svn://svn.ximalas.info/ipv6-foredrag
 - Web: svnweb.ximalas.info/ipv6-foredrag
 - Begge metodene er tilgjengelig med både IPv4 og IPv6
- ipv6-foredrag.foredrag.pdf vises på lerretet
- ipv6-foredrag.handout.pdf er mye bedre for publikum å se på
- ipv6-foredrag.handout.2on1.pdf og ipv6-foredrag.handout.4on1.pdf er begge velegnet til utskrift
- *.169.pdf-filene er i 16:9-format
- *.1610.pdf-filene er i 16:10-format

T. Endrestøl (FSI/IT) IPv6-foredrag

ag 10. desember 2013

Foredragets filer II

- Foredraget er mekket ved hjelp av GNU Emacs, AUCT_EX, pdfT_EX fra MiKT_EX, <u>La California Mikitassa beamer, Subversion, TortoiseSVN og Adobe Reader</u>
- Hovedfila bærer denne identifikasjonen:
- \$Ximalas: trunk/ipv6-foredrag.tex 84 2013-12-10 14:55:00Z trond \$
- Driverfila for denne PDF-fila bærer denne identifikasjonen:
- \$Ximalas: trunk/ipv6-foredrag.handout.4on1.1610.tex 78 2013-12-04
 09:53:24Z trond \$
- Copyright © 2013 Trond Endrestøl
- Dette verket er lisensiert med: Creative Commons, Navngivelse-DelPåSammeVilkår 3.0 Norge (CC BY-SA 3.0)

Oversikt av hele foredraget

Del 1: Kort om IPv6

- Mya er IPv6?
- 2 Hvorfor trenger vi IPv6?
- 3 Antall adresser
- 4 Andre nyttige ting ved IPv6
- 5 Hvorfor brukes ikke IPv6?
- 6 IPv6 ved Fagskolen Innlandet

Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 3 /

T. Endrestøl (FSI/IT)

oredrag

.0. desember 2013

Oversikt av hele foredraget

Del 2: IPv6-header

IPv6-header

Oversikt av hele foredraget

Del 3: IPv6 over Ethernet

8 IPv6 over Ethernet

IPv6 over andre lag-2-typer

FAGSKOLEN X

 FAGSKOLEN In N L A N D E T

Oversikt av hele foredraget

Del 4: Grunnleggende om adresser

- 10 Grunnleggende om adresser
- Adressedemo
- MAC-48-adresser
- Modda IEEE EUI-64-format
- 14 Manuell grensesnittidentifikator
- 15 Tilfeldig grensesnittidentifikator
- Spesialadresser
- Duplicate Address Detection DAD

Oversikt av hele foredraget

Del 5: Adressetyper

- 18 Adressetyper
- 19 Link-local-adresser
- 20 Site-local-adresser
- 21 Offentlige unicast-adresser
- 22 Unike, lokale, aggregerbare adresser
- 23 Anycast-adresser
- 24 Multicast-adresser

Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 7 / 3

T Endrestøl (ESI/IT)

10 december 2013

Oversikt av hele foredraget Del 6: DNS

25 AAAA og PTR

26 A6

IPv6-foredrag 10. desember 2013 9 / 160 T. Endrestøl (FSI/IT)

Oversikt av hele foredraget Del 7: ICMPv6

- 27 ICMPv6
- Multicast Listener Discovery
- 29 Neighbor Discovery
- 30 Router Renumbering
- **31** Node Information
- 1 Inverse Neighbor Discovery
- 3 Version 2 Multicast Listener Report
- Mobile IPv6
- 35 SEcure Neighbor Discovery (SEND)
- 66 Experimental Mobility Type
- Multicast Router Discovery
- 38 FMIPv6
- 89 RPL Control Message
- 40 ILNPv6 Locator Update Message
- **41** Duplicate Address

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 10 / 160

Oversikt av hele foredraget

Del 8: Neighbor Discovery

- **42** Router Solicitation
- Router Advertisement
- 44 Neighbor Solicitation
- 45 Neighbor Advertisement
- 46 Redirect

Oversikt av hele foredraget Del 9: DHCPv6

- 47 DHCPv6
- 48 Meldinger
- 49 DHCP Unique Identifier

Oversikt av hele foredraget

Del 10: Avansert multicast

- 50 Multicastflaggene
- 61 Når T er satt til 1
- 52 Når PT er satt til 11
- 63 Når RPT er satt til 111

FAGSKOLEN X

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 13 / 160

Oversikt av hele foredraget Del 12: Noen RFC-er om IPv6

66 Noen RFC-er om IPv6

Oversikt av hele foredraget

Del 11: Konfigurasjon av IPv6

- 64 Cisco IOS
 - IPv6-routing

T. Endrestøl (FSI/IT)

- ACL-er
- DHCPv6
- **65** OS-konfig

IPv6-foredrag 10. desember 2013 14 / 160

Del I

Kort om IPv6

FAGSKOLEN X

Oversikt over del 1: Kort om IPv6

- 1 Hva er IPv6?
- 2 Hvorfor trenger vi IPv6?
- Antall adresser
- 4 Andre nyttige ting ved IPv6
- 6 Hvorfor brukes ikke IPv6?
- 6 IPv6 ved Fagskolen Innlandet

T. Endrestøl (FSI/IT) IPv6-foredrag

10. desember 2013 17 / 160

Kort om IPv6

Hva er IPv6?

- En lag-3-protokoll ment å erstatte IPv4
- Har eksistert siden desember 1995, først spesifisert i RFC 1883
- Enkel grunnheader med fast lengde
- Flere utvidelsesheadere, riktig rekkefølge er viktig
- 128-bit adresser
- Ny version av ICMP: ICMPv6
- ARP og RARP for IPv6 er en del av ICMPv6
 - Ikke nødvendig med ekstra lim for adressene i lagene 2 og 3
- Ny versjon av DHCP: DHCPv6
- Automatisk adressekonfigurasjon uten bruk av DHCPv6

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 18 / 160

Kort om IPv6

Hvorfor trenger vi IPv6?

- Mobilmarkedet viser en enorm vekst: smarttelefoner, nettbrett m.m.
- Verden går tom for offentlige IPv4-adresser
- «IPokalypsen» er her!
- IANA gikk tom 3. februar 2011
 - APNIC gikk tom 19. april 2011
 - RIPE gikk tom 14. september 2012
- Dersom disse RIR-ene oppfører seg pent:
 - LACNIC kan holde på til juni 2014
 - ARIN kan holde på til februar 2015
 - AFRINIC kan holde på til juni 2022(!)
- Network Address Translation, Carrier-Grade NAT og Shared Address Space
 - Er bare støttebandasje med kort utløpstid
 - Glem det!
 - Ende-til-ende-konnektivitet oppnås best uten noen former for adresseoversettelse

FAGSKOLEN Y

Kort om IPv6

Antall adresser

- Totalt antall IPv6-adresser:
- $2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$
- Bare 1/8 kan brukes til offentlige unicast-adresser:
- $2^{125} = 42.535.295.865.117.307.932.921.825.928.971.026.432$
- Fortsatt mange adresser enn det fullstendige IPv4-adresserommet:
- $^{\circ}$ 232 =

4.294.967.296

- Mindre enn 3.702.258.688 IPv4-adresser kan bli brukt som offentlige IPv4-unicast-adresser
- Se Tronds utregning fra juli 2012:

http://ximalas.info/2012/07/20/how-many-ipv4-addresses-are-there/

Kort om IPv6

Andre nyttige ting ved IPv6

- Hierarkisk adressestruktur
- Enklere planlegging av subnett sammenlignet med IPv4
 - De fleste IPv6-subnett bruker et 64-bit prefiks
 - Autokonfigurasjon krever et 64-bit prefiks
 - Fast prefikslengde på 64 bit er ikke et absolutt krav
 - DHCPv6 eller manuell konfigurasjon brukes når prefikslengda er ulik 64 bit
- Kortere rutingtabeller
 - Uninett annonserer disse IPv4-subnettene med BGP:

• 78.91.0.0/16,	128.39.0.0/16,	129.177.0.0/16,
129.240.0.0/15,	129.242.0.0/16,	144.164.0.0/16,
151.157.0.0/16,	152.94.0.0/16,	156.116.0.0/16,
157.249.0.0/16,	158.36.0.0/14,	161.4.0.0/16,
193.156.0.0/15,	192.111.33.0/24,	192.133.32.0/24,
	192.146.238.0/23	

- Til gjengjeld trenger Uninett bare å annonsere dette IPv6-prefikset:
- 2001:700::/32

Kort om IPv6

Andre nyttige ting ved IPv6

- Sjekksum er overlatt til høyere og lavere lag
- Fragmentering skal gjøres hos avsender, ikke underveis
 - Avsender må sjekke veien lengre fremme og måle smaleste krøttersti
 - Path Maximum Transmission Unit Discovery (Path MTU, PMTUD)
- IPsec ble spesifisert som en del av IPv6
 - Finnes også for IPv4
 - Må konfigureres før den begynner å virke
 - Tilbyr:
 - Kryptert overføring (ESP), og/eller
 - Bekreftelse av avsenders identitet og beskyttelse mot gjentakelse («replay») (AH)
 - Ble omgjort fra krav til anbefaling for IPv6 av RFC 6434

restøl (FSI/IT) | IPv6-foredrag | 10. desember 2013 | 22 / 160

Kort om IPv6

Hvorfor brukes ikke IPv6?

- Markedskreftene bestemmer
- «Vente-og-se»-holdning
- Stikker hodet ned i sanda
- Store selskaper:
 - Kjøper opp små selskaper og hamstrer IPv4-blokker
 - Kjøper IPv4-blokker på ettermarkedet/konkursbo:
 - Microsoft \rightarrow \$7,5 mill. \rightarrow Nortel \rightarrow 666.624 IPv4-adresser
- Telebransjen satser fortsatt hardt på IPv4:

• (Edge) NAT i CPE	(RFC 1631)
Carrier-Grade NAT i stamnett	(RFC 6264)
 Shared Address Space etter behov i stamnett 	(RFC 6598)

• Før eller siden blir CGN for kostbar og komplisert å vedlikeholde

• 3G og 4G/LTE klarer kanskje å øke IPv6-presset (RFC 6459)

• IPv6 er det eneste tilgjengelige og realistiske alternativet til IPv4

Kort om IPv6

IPv6 ved Fagskolen Innlandet

- 1994: Tildelt 128.39.174.0/24 av Uninett
- 1. juni 2005: Ny IT-ansvarlig, yours truly
- Høsten 2005: Fikk reservert IPv4-serien 128.39.172.0/23
- Påska 2006: Fikk reservert IPv6-serien 2001:700:1100::/48
- Før og etter pinsehelga 2006: Fiberlinjer fra serverrommet og til sentrale punkter i hver etasje i hovedbygningen
- Sommeren 2006: Nytt Cisco-gear som Catalyst 3560G og 2960 (Cisco IOS 12.2(25)SEB4)
 - 128.39.46.8/30 ble linknettet mellom HiG/Uninett og FSI
 - 128.39.46.9 brukes ved HiG
 - 128.39.46.10 brukes ved FSI
 - 128.39.174.0/24 ble delt opp i subnett og satt opp som servernett og ansattnett, m.m.
 - 128.39.172.0/24 ble delt opp i subnett og satt opp som nett for datalab
 - 128.39.173.0/24 ble satt opp som klienter på trådløst studentnett

Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 23 / 160 T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 24 /

Kort om IPv6

IPv6 ved Fagskolen Innlandet

• 6. september 2006: IPv6-linknettet 2001:700:0:11D::/64 ble aktivert mellom HiG/Uninett og FSI

2001:700:0:11D::1 brukes hos HiG
 2001:700:0:11D::2 brukes hos ESI

• Samme dag ble IPv6 innført for FSI-VLAN-ene 20, 30, 70 og 80:

FSI-VLAN 20: 2001:700:1100:1::/64 (ytre servernett)
 FSI-VLAN 30: 2001:700:1100:2::/64 (indre servernett)
 FSI-VLAN 70: 2001:700:1100:3::/64 (IT-kontornett)
 FSI-VLAN 80: 2001:700:1100:4::/64 (IT-lekenett)

- Sommeren 2007: Genererte og frivillig registrerte ULA-serien FD5C:14CF:C300::/48
 - Brukes i interne FSI-VLAN som tidligere bare brukte RFC 1918-adresser
 - Fikk første HP-skriver med IPv6-støtte og ville bruke IPv6
 - Noen år senere: IPv6-adresser på kantswitchene med Cisco IOS 12.2(40)SE

FAGSKOLEN

Kort om IPv6

IPv6 ved Fagskolen Innlandet

- Alle FSI-VLAN har både IPv4- og IPv6-adresser (dual-stack)
- FSI-VLAN med offentlige IPv4-adresser bruker offentlige IPv6-adresser fra 2001:700:1100::/48-serien
- FSI-VLAN med private IPv4-adresser (RFC 1918) bruker private IPv6-adresser fra FD5C: 14CF: C300::/48-serien
- Private adresser brukes for alt utstyr som ikke har behov for internettforbindelse:
 - Switcher
 - Med unntak for kjerneswitchen som er L3-router for nettverket ved FSI
 - Basestasjoner og WLAN-kontroller
 - Før omlegginga
 - UPS-er
 - Skrivere
 - VPN-klienter

Kort om IPv6

IPv6 ved Fagskolen Innlandet

- Høsten 2010: Enda en IPv4-serie ble innført: 128.39.194.0/24
 - 128.39.172.0/23 brukes nå til klienter på trådløst studentnett
 - 128.39.194.0/24 brukes nå til datalab etter samme mønster som for den gamle 128.39.172.0/24
- Oppland FK (OFK) har ingen planer om å innføre IPv6
- Hordaland FK har satt en IPv6-adresse på webserveren deres, 2a02:20a0:0:3::81:130
- I dag er de fleste brukere ved FSI kasta over til OFK-nettene
- Dette skjedde etter ombygginga i 2011–2012
- Andreklasse data er velsigna med å kunne velge mellom FSI- og OFK-nettene
- Andreklasse data velger som regel det f\u00f8rstnevnte, vanligvis FSI-VLAN 48, 128.39.194.192/27 og 2001:700:1100:8008::/64
- Førsteklasse data ønsker det samme tilbudet; så vi får se ...

FAGSKOLEN IN N L A N D E T

Del II

IPv6-header

Oversikt over del 2: IPv6-header I

IPv6-header

IPv6-header

Hentet fra http://www.tekkom.dk/mediawiki/images/5/5e/CCNP-108.png

IPv6-header

- IPv6-headeren er dobbelt så stor som IPv4-headeren (20 oktetter)
- IPv6-headeren har færre felter enn IPv4-headeren
- De utelatte feltene er i stor grad flyttet over til egne utvidelsesheadere

IPv6-header

- Versjonsfeltet (4 bit) settes til 0110
- Traffic Class (8 bit) er det samme som Type of Service i IPv4
- Flow Label (20 bit) er et nytt felt og foreløpig eksperimentell

- Payload Length (16 bit) er det samme som Total Length i IPv4
- Next Header (8 bit) er det samme som Protocol i IPv4
- Hop Limit (8 bit) er det samme som Time To Live i IPv4
- Avsender og mottaker er 128-bit IPv6-adresser
- IPv4-feltene Internet Header Length (IHL), Identification, Flags, Fragment Offset, Header Checksum, Options og Padding, er enten fjernet for godt eller flyttet til egne utvidelsesheadere

T. Endrestøl (FSI/IT) | IPv6-foredrag | 10. desember 2013 | 31 / 160 | T. Endrestøl (FSI/IT) | IPv6-foredrag | 10. desember 2013 | 32 / 3

FAGSKOLEN IN N L A N D E T

IPv6-header

- Utvidelsesheaderne finnes i stort antall:
 - Hop-by-hop options
 - ② Destination options
 - 8 Routing
 - Fragment
 - Authentication Header
 - 6 Encapsulating Security Payload
 - Mobility
- Se RFC 2460, RFC 4302, RFC 4303 og RFC 6275

Del III

IPv6 over Ethernet

Oversikt over del 3: IPv6 over Ethernet I

- 8 IPv6 over Ethernet
- IPv6 over andre lag-2-typer

IPv6 over Ethernet

- RFC 2464 definerer frameformatet for IPv6-datagrammer over Ethernet
- IPv6-datagrammer fraktes i standard Ethernetformat, RFC 894
- Først angis mottakerens MAC-48-adresse
- Deretter angis avsenders MAC-48-adresse
- Frametypen settes til 86DD (heksadesimalt)
- Deretter følger IPv6-header og resten av datagrammet
- Standard MTU for IPv6 over Ethernet er 1500 oktetter
- Minste tillatte MTU for IPv6 er 1280 oktetter
- Er største tilgjengelige MTU mindre enn 1280 oktetter, så må lagene under IPv6 sørge for fragmentering og sammensetting av IPv6-datagrammene (RFC 2460)

IPv6 over Ethernet

Programmet Wireshark fremstilte f ølgende lag-2-informasjon om en utsendt IPv6-pakke:

```
Ethernet II, Src: AsustekC_f2:72:40 (00:26:18:f2:72:40), Dst: Cisco_77:14:57 (00:17:e0:77:14:57)
   Destination: Cisco_77:14:57 (00:17:e0:77:14:57)
       Address: Cisco_77:14:57 (00:17:e0:77:14:57)
      ......0. .... = LG bit: Globally unique address (factory default)
       .... ... 0 .... = IG bit: Individual address (unicast)
   Source: AsustekC_f2:72:40 (00:26:18:f2:72:40)
       Address: AsustekC_f2:72:40 (00:26:18:f2:72:40)
       .....0. .... = LG bit: Globally unique address (factory default)
       .... ... 0 .... = IG bit: Individual address (unicast)
   Type: IPv6 (0x86dd)
```

- Presentert som heksadesimale oktetter/byter:
- 00 17 E0 77 14 57 00 26 18 F2 72 40 86 DD
 - 00 17 E0 77 14 57 er MAC-48-adressa til mottakeren, routeren
 - 00 26 18 F2 72 40 er MAC-48-adressa til avsenderen, klienten
 - 86 DD angir at et IPv6-datagram følger i lag 3

IPv6-foredrag 10. desember 2013 37 / 160

Del IV

Grunnleggende om adresser

IPv6 over andre lag-2-typer

- FDDI: RFC 2467
- Token Ring: RFC 2470
- Non-Broadcast Multiple Access (NBMA) networks: RFC 2491
- ATM: RFC 2492
- ARCnet: RFC 2497
- Frame Relay: RFC 2590
- IEEE 1394 (FireWire): RFC 3146
- Low-Power Wireless Personal Area Networks (6LoWPAN): RFC 4919
- Point-to-point protocol (PPP): RFC 5072
- Brevduer: RFC 6214, basert på RFC 1149

IPv6-foredrag

Oversikt over del 4: Grunnleggende om adresser I

- Grunnleggende om adresser
- Adressedemo
- MAC-48-adresser
- Modda IEEE EUI-64-format
- Manuell grensesnittidentifikator
- 15 Tilfeldig grensesnittidentifikator
- Spesialadresser
- Duplicate Address Detection DAD

- 128 bit
- Heksadesimal notasjon
- 16 og 16 bit grupperes og adskilles med kolon
- Ledende nuller kan sløyfes
- To eller flere sammenhengende 16-bitblokker med nuller kan slås sammen til :: (dobbelkolon), bare én gang pr. adresse
- Prefikslengde angis ved å sette på en skråstrek og oppgi riktig antall av signifikante bit fra venstre mot høyre i adressa
 - Dette er helt likt CIDR-notasjon for IPv4 (RFC 4632)

FAGSKOLEN INNLANDET

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 41 / 160

Grunnleggende om adresser

Adressedemo

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

• Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 42 / 160

Grunnleggende om adresser

Adressedemo: Hierarkisk struktur

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

• Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

Grunnleggende om adresser

Adressedemo: La oss forenkle adressene

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

• Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

Adressedemo: Ledende nuller

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

• FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

• Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

T. Endrestøl (FSI/IT) IPv6-foredrag

10. desember 2013 45 / 160

Grunnleggende om adresser

Adressedemo: Fjernet ledende nuller

Uninett:

2001:700:0:0:0:0:0:0

FSI:

2001:700:1100:0:0:0:0:0

IT-avdelingen@FSI:

2001:700:1100:3:0:0:0:0

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

IPv6-foredrag 10. desember 2013 46 / 160

Grunnleggende om adresser

Adressedemo: La oss forenkle litt til

Uninett:

2001:700:0:0:0:0:0:0

FSI:

2001:700:1100:0:0:0:0:0

IT-avdelingen@FSI:

2001:700:1100:3:0:0:0:0

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

Grunnleggende om adresser

T. Endrestøl (FSI/IT)

Adressedemo: To eller flere sammenhengende 16-bitblokker med bare 0

Uninett:

2001:700:0:0:0:0:0:0

FSI:

2001:700:1100:0:0:0:0:0

IT-avdelingen@FSI:

2001:700:1100:3:0:0:0:0

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

FAGSKOLEN IN N LANDET

Adressedemo: Erstattet med dobbelkolon

Uninett:

2001:700::

• FSI:

2001:700:1100::

IT-avdelingen@FSI:

2001:700:1100:3::

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

FAGSKOLEN X

T. Endrestøl (FSI/IT) IPv6-foredrag

10. desember 2013 49 / 160

Grunnleggende om adresser

Adressedemo: Kompakt form

Uninett:

2001:700::

FSI:

2001:700:1100::

IT-avdelingen@FSI:

2001:700:1100:3::

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 50 / 160

FAGSKOLEN IN N LAND ET

Grunnleggende om adresser

Adressedemo: Vis prefikslengde

Uninett:

2001:700::/32

FSI:

2001:700:1100::/48

IT-avdelingen@FSI:

2001:700:1100:3::/64

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E/128

Grunnleggende om adresser

Adressedemo: Kompakte adresser med prefikslengde

Uninett:

2001:700::/32

FSI:

2001:700:1100::/48

IT-avdelingen@FSI:

2001:700:1100:3::/64

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E/128

MAC-48-adresser

• MAC-48-adresser har følgende oppbygging, gitt av IEEE 802-2001:

• CC:cc:cc:nn:nn:nn

(heksadesimalt)

- Den første halvparten er produsentnummer: CC:cc:cc
- Den andre halvparten er løpenummer: nn:nn:nn
- Den første oktetten i produsentnummeret, CC, har en spesiell oppbygging:

(binært)

• Når u-bitet er satt til 0 (null), så gjelder formatet som er oppgitt her, altså CC:cc:cc:nn:nn:nn

(heksadesimalt)

- Når u-bitet er satt til 1, så er alle C- og c-sifrene løpenummer, mens u- og g-bitene beholder sine spesielle betydninger
- Når g-bitet er 0 så angir adressa en individuell node, og når g-bitet er 1 så er adressa en multicastgruppe

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 53 / 160

IPv6-foredrag

Grunnleggende om adresser Modda IEEE EUI-64-format

- Unicast-adresser består av 2 ting:
 - Prefiks
 - Grensesnittidentifikator
- Bestemt av RFC 4941
- Grensesnittidentifikatorer er alltid på 64 bit
 - Dette gjelder ikke for adresser som starter på 000 (binært)
- Grensesnittidentifikatorer kan lages automatisk fra MAC-48-adresser
- Grensesnittidentifikatorer kan også angis manuelt eller velges tilfeldig
- Angis grensesnittidentifikatoren manuelt, så angis som regel en fullstendig IPv6-adresse
- Grensesnittidentifikatorer følger IEEE EUI-64-formatet med to unntak:
 - 1 Universal/local-bitet brukes med *invertert* betydning/verdi
 - Gruppebitet mister sin vanlige betydning i forbindelse med grensesnittidentifikatorer
 - ② Oktettene på midten skal være FF:FE ved automatisk konvertering fra MAC-48 til EUI-64

FAGSKOLEN

Grunnleggende om adresser

MAC-48-adresser

- Gitt denne MAC-48-adressa: 00:21:70:73:68:6F.
- CC-oktetten har verdien 00

(heksadesimalt)

På binær form er dette 00000000

(CCCCCCug)

- Vi ser at både u- og g-bitene er satt til 0
- Dette er en MAC-48-adresse som:
 - følger det vanlige mønsteret med produsent- og løpenummer
 - angir en individuell node
 - er produsert av «Dell Inc» ifølge OUI-lista hos IEEE (søk i fila etter 00-21-70)

Grunnleggende om adresser

Modda IEEE EUI-64-format

- Grensesnittidentifikatorer lages fra MAC-48-adresser etter oppskriften i RFC 4291:
 - Gitt denne MAC-48-adressa: 00:21:70:73:68:6E
 - Invertér universal/local-bitet: 02:21:70:73:68:6E
 - Før: 00 (heksadesimalt) → 00000000 (binært)
 - Etter: 00000010 (binært) → 02 (heksadesimalt)
 - Sett inn FF:FE på midten: 02:21:70:FF:FE:73:68:6E
 - Ta bort overflødig kolon og nuller: 221:70FF:FE73:686E
 - Høyreskift hele stasen: ::221:70FF:FE73:686E
 - Nå er grensesnittidentifikatoren klar til å bli kombinert med ønsket prefiks
 - Prefiks annonsert av router: 2001:700:1100:3::/64
 - Fullstendig adresse: 2001:700:1100:3:221:70FF:FE73:686E

Modda IEEE EUI-64-format

- OBS! Arbeidsuhell!
- Det skulle egentlig ha vært FF:FF i stedet for FF:FE
 - MAC-48 → EUI-64 skal bruke FF:FF
 - EUI-48 → EUI-64 skal bruke FF:FE
- Fordi IPv6 bruker universal/local-bitet med invertert betydning/verdi, så er arbeidsuhellet akseptert
- Se RFC 4291
- IEEE 802.15 WPAN, IEEE 1394 FireWire, og ZigBee bruker EUI-64-adresser i lag 2

FAGSKOLEN IN N L A N D E T

T. Endrestøl (FSI/IT) IPv6-foredrag

10. desember 2013 57 / 160

Grunnleggende om adresser Manuell grensesnittidentifikator

- Lav verdi for grensesnittidentifikatorer gjør at universal/local-bitet blir satt til null:
 - ::53 ::0:0:0:53
 - ::000000<mark>0</mark>000000000:00 ... 00:000000001010011

(binært)

- Veldig praktisk for lokalgitte adresser, ikke sant?
- Uten invertering av universal/local-bitet, måtte vi bruke manuelle grensesnittidentifikatorer på denne måten:
 - ::0200:0:0:53

(heksadesimalt)

(heksadesimalt)

(heksadesimalt)

• ::0000001000000000:00 ... 00:000000001010011

(binært)

- Tungvint og upraktisk, ikke sant?
- Se her:
 - 2001:db8:1234:1:0200:0:0:53 vs
 - 2001:db8:1234:1::53
 - Ja til den siste, nei til den forrige

Grunnleggende om adresser

Manuell grensesnittidentifikator

- Manuell grensesnittidentifikator innebærer at universal/local-bitet som regel er satt til 0
- De øvrige 63 bitene kan være hva som helst, bare verdien ikke skaper adressekollisjon i samme VI AN
- Normalt bruker man manuelle grensesnittidentifikatorer med lave verdier
- For eksempel ::53

(DNS-tjener, kanskje)

Med et vilkårlig prefiks: 2001:db8:1234:1::53

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 58 / 160

Grunnleggende om adresser

Manuell grensesnittidentifikator

- Det er ingenting i veien for å «kode» IPv4-adressa inn i IPv6-adressa:
- 2001:700:1100:3:128:39:174:67

(excelsior.fig.ol.no)

- Man må bare passe på verdien til universal/local-bitet
- \bullet 128 = 0 1 2 8 = 0000 0001 0010 1000

(heks, heks, bin)

FAGSKOLEN IN N L A N D E T

- u-bitet er 0, altså en lokalgitt adresse
- Dette gikk bra!

Manuell grensesnittidentifikator

- Verdiene
 - 0000 = 0
 - 0001 = 1.
 - 0100 = 4.
 - 0101 = 5
 - 1000 = 8,
 - 1001 = 9, • 1100 = C og
 - 1101 = D.
- gir alle 0 i u-bitet

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 61 / 160

Grunnleggende om adresser

Tilfeldig grensesnittidentifikator

- Konstant grensesnittidentifikator truer personvernet
- Eksempel med Tronds D531-læppis:

• 2001:700:1100:3:221:70FF:FE73:686E (IT-avdelingen@FSI) • 2001:700:1D00:8:221:70FF:FE73:686E (public-nettet@HiG)

- RFC 4941 beskriver bruk av tilfeldig grensesnittidentifikator
- Med tilfeldig grensesnittidentifikator:

• 2001:700:1100:3:B9D9:B729:6CDD:4E5 (IT-avdelingen@FSI) 2001:700:1D00:8:B9D9:B729:6CDD:4E5 (public-nettet@HiG)

Disse byttes ut typisk hver dag:

• 2001:700:1100:3:F503:1E6F:5F2F:F5F2 (IT-avdelingen@FSI) • 2001:700:1D00:8:F503:1E6F:5F2F:F5F2 (public-nettet@HiG)

• Man må bare passe på u/l-bitet og passe seg for adressekollisjon

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 62 / 160

Grunnleggende om adresser

Tilfeldig grensesnittidentifikator

- RFC 4941 angir en metode for generering av tilfeldig grensesnittidentifikator:
 - Sett sammen historisk verdi fra forrige runde (eller et tilfeldig 64-bit heltall) med den konstante grensesnittidentifikatoren til et 128-bit heltall
 - 2 Beregn MD5-hash av resultatet fra trinn 1
 - 3 Bruk de 64 mest signifikante bitene og sett det sjuende mest signifikante bitet til null (dette indikerer en lokalgitt grensesnittidentifikator)
 - Sammenlign den nye tilfeldige grensesnittidentifikatoren med lista over reserverte identifikatorer; oppdages en uakseptabel identifikator, gå til trinn 1 og bruk de 64 minst signifikante bitene fra trinn 2 som historisk verdi
 - 5 Ta i bruk den nye tilfeldige grensesnittidentifikatoren
 - Lagre de 64 minst signifikante bitene fra trinn 2 som historisk verdi for bruk den neste gangen denne algoritmen brukes

Grunnleggende om adresser

Spesialadresser

- Nulladressa: 0:0:0:0:0:0:0:0/0 eller ::/0
 - Brukes av klienter som ennå ikke vet sin egen adresse (DHCPv6)
 - Brukes av tjenester som godtar forespørsler fra alle grensesnitt (sjekk ut bind(2)-systemkallet i «Juniks»)
 - Tilsvarer 0.0.0.0/0 eller 0/0 i IPv4
- Loopbackadressa: 0:0:0:0:0:0:0:1/128 eller ::1/128
 - Velkjent adresse for å snakke med tjenester i samme node
 - Tilsvarer 127.0.0.1/32 i IPv4
- Dokumentasjonsprefiks: 2001:db8::/32
 - Brukes for generell beskrivelse av IPv6-oppsett i lærebøker og annen generell dokumentasjon (RFC 3849)
 - Forbudt å bruke på det offentlige internettet
 - Bør blokkeres i inngående og utgående ACL-er for internettgrensesnittet til routere

Spesialadresser

- IPv4-mapped IPv6 addresses: ::FFFF: w. x. y. z
 - Hvor w.x.y.z er den opprinnelige IPv4-adressa skrevet på vanlige måte for IPv4-adresser
 - Eksempel: ::FFFF:128.39.174.1
 - Brukes i systemer som har både IPv4- og IPv6-adresser, men hvor den enkelte tjeneste bare bruker IPv6-socketer og har slått av IPV6_V60NLY med setsockopt(2) for lyttesocketen
 - Forbudt av sikkerhetshensyn i enkelte OS-er som OpenBSD, se OpenBSDs ip6(4)
 - Tjenestene må da åpne separate lyttesocketer for IPv4 og IPv6

Grunnleggende om adresser

Duplicate Address Detection — DAD

- ... trodde vi ...
- «Danger, Will Robinson!»
- Det er et stort potensiale for Denial of Service DoS

(RFC 3756)

- En «slabbedask» kan velge å svare på DAD og nekte oss å bruke enhver adresse
- Svaret kommer i form av en «ICMPv6 Neighbor Advertisement»-melding som forteller oss at en annen node bruker den samme adressa

 (RFC 4862)
- Resultat: «slabbedasken» kan bruke nettverket uforstyrra
- Dersom det er 2 eller flere «slabbedasker» i samme nettverk, hva da?
- Problemet kan løses med «SEcure Neighbor Discovery» (SEND), RFC 3971

Grunnleggende om adresser

Duplicate Address Detection — DAD

- Når en unicast-adresse er generert skal man alltid sjekke at ingen andre bruker den samme adressa (RFC 4862)
- Dette gjøres ved å sende en «ICMPv6 Neighbor Solicitation-melding» til den genererte adressas «Solicited-node multicast address»
- ICMPv6-meldinga inneholder den genererte adressa i feltet for «Target Address» (RFC 4861)
- En «Solicited-node multicast address» er på formen FF02::1:FFaa:bbcc, hvor aabbcc er de 24 minst signifikante bitene fra den opprinnelige adressa (RFC 4291)
- Sett at den genererte adressa er 2001:700:1100:3:221:70FF:FE73:686E
- «Solicited-node multicast address» vil da være FF02::1:FF73:686E
- Vanligvis kommer det ikke noe svar på slike ICMPv6-meldinger . . .

Del V

Adressetyper

Oversikt over del 5: Adressetyper

- 18 Adressetyper
- Link-local-adresser
- 20 Site-local-adresser
- Offentlige unicast-adresser
- 22 Unike, lokale, aggregerbare adresser
- 23 Anycast-adresser
- Multicast-adresser

Adressetyper

- Det finnes flere adressetyper med forskjellige bruksområder:
 - Unicast-adresser:
 - Link-local-adresser
 - Site-local-adresser
 - Offentlige unicast-adresser
 - Unike, lokale, aggregerbare adresser
 - Anycast-adresser
 - Multicast-adresser
- Merk at broadcast er avskaffa og er i stor grad erstatta med link-local-multicast

Adressetyper

Link-local-adresser

- Definert: RFC 4291
- Bruksområde:
 - Lokal kommunikasjon internt i VLAN-et
 - Sentral for autokonfigurasjon
 - Blir ikke videresendt av routere til andre VLAN eller til internett
 - Kan brukes i ad-hoc-nett
- Prefiks: FE80::/10
- De neste 54 bitene skal settes til null
- De siste 64 bitene er grensesnittidentifikator i modda EUI-64-format
- Eksempel: FE80::221:70FF:FE73:686E

Adressetyper

Site-local-adresser

- Definert: RFC 3513
- Bruksområde: private adresser på lik linje med RFC 1918
- Prefiks: FEC0::/10
- De neste 54 bitene brukes til subnet-ID
- De siste 64 bitene er grensesnittidentifikator i modda EUI-64-format
- Eksempel: FECO::DEAD:BEEF:1337
- Ikke bruk site-local-adresser (RFC 3879)
- Site-local-adresser er erstatta med ULA (RFC 4193)

Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 71 /

Endrestøl (FSI/IT)

drag 10 desember 2013

Adressetyper

Offentlige unicast-adresser

• Definert: RFC 4291 og RFC 3587

• Bruksområde: ende-til-ende-kommunikasjon på det offentlige internett

Prefiks: 2000::/3

• De neste bitene allokeres hierarkisk, minimum i 4-bitblokker, men gjerne i 8- eller 16-bitblokker

• De siste 64 bitene er grensesnittidentifikator i modda EUI-64-format

• Det er vanlig at kundene blir tildelt /48- eller /56-bits prefiks av ISP-ene:

• /48-bits prefiks gir 128 - 64 - 48 = 16 subnetbit $\rightarrow 2^{16} = 65536$ subnett

• /56-bits prefiks gir 128 - 64 - 56 = 8 subnetbit $\rightarrow 2^8 = 256$ subnett

• Eksempel: 2001:700:1100:1::1/128

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 73 / 160

Adressetyper

Unike, lokale, aggregerbare adresser

• Definert: RFC 4193

• Bruksområde: ende-til-ende-kommunikasjon internt i nettverket

• Veldig praktisk å ha faste, interne adresser uavhengig av offentlig prefiks tildelt av ISP

Prefiks: FC00::/7

• Det åttende mest signifikante bitet skal settes til 1 inntil videre

• Det reelle prefikset er dermed FD00::/8

• Prefikset FC00::/8 er reservert inntil videre

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 74 / 160

Adressetyper

Unike, lokale, aggregerbare adresser

• Reelt prefiks: FD00::/8

• De neste 40 bitene genereres tilfeldig, gjerne som beskrevet i RFC 4193

• De neste 16 bitene brukes til subnett-ID

• De siste 64 bitene er grensesnittidentifikator i modda EUI-64-format

• Eksempel: FD5C:14CF:C300:31::1/128

Adressetyper

Unike, lokale, aggregerbare adresser

- SixXS tilbyr bl.a.:
 - Generaring av ULA-prefiks: http://www.sixxs.net/tools/grh/ula/
 - Registrering av ULA-prefiks: http://www.sixxs.net/tools/grh/ula/list/
- George Michaelson, seniorforsker ved APNIC, har oppdaget ULA-adresser i fri dressur ute på internett:
 - Tydeligvis klarer ikke folk å lese RFC-ene og holde seg til de fastsatte reglene
 - http://www.sixxs.net/archive/docs/IEPG2013_ULA_in_the_wild.pdf

Adressetyper

Unike, lokale, aggregerbare adresser

- Her er algoritmen fra RFC 4193 for å generere de 40 tilfeldige bitene:
 - Uttrykk nåværende øyeblikk som et 64-bit heltall i NTP-format (RFC 5905)
 - 2 Bruk en EUI-64-identifikator fra systemet som kjører denne algoritmen
 - Mangler du en EUI-64-identifikator, så kan du lage en fra en 48-bit MAC-adresse som angitt i RFC 4291
 - Kan du ikke lage en EUI-64-identifikator, så bruk en annen unik verdi som serienummeret til systemet
 - 3 Sett sammen de to 64-bit heltallene til et 128-bit heltall
 - 4 Beregn en SHA-1-hash som beskrevet i RFC 3174. Resultatet er et heltall på 160 bit
 - Sruk de 40 minst signifikante bitene som global identifikator
- Har man tilgang på tilfeldige tall av god kvalitet, så kan man bruke de i stedet for metoden over

Adressetyper

Anycast-adresser

- Definert: RFC 4291
- Bruksområde: felles adresse for distribuerte tjenester, routerne bestemmer hvilken server som er nærmest og sender trafikken dit
- Prefiks: ingen, allokeres fra dine egne unicast-adresser og markeres som en anycast-adresse hos routerne og serverne
- Alle IPv6-adresser hvor alle bit i grensesnittidentifikatoren satt til null, er reservert som «Subnet-Router anycast address»
- Denne anycast-adressa brukes når man vil kontakte én av potensielt flere routere i subnettet der du er
- Eksempel: 2001:700:1100:1::/128 anycast
- Se også RFC 2526

Adressetyper

Multicast-adresser

Definert: RFC 4291

• Bruksområde: én-til-mange-kommunikasjon

Prefiks: FF::/8

• Flagg f og rekkevidde r er innebygget i adressa: FFfr::/16

• Eksempel: FF0E::101/128 (global multicast-adresse for NTP)

Adressetyper

Multicast-adresser

• Flaggene heter ORPT

(null, err, pe, te)

- Flagget T angir med 0 at adressa er velkjent (definert av IANA), og med 1 at adressa er midlertidig (lokalt definert)
- Flagget P angir med 1 at adressa inneholder et unicast-prefiks og skal følge reglene i RFC 3306
- \bullet Flagget R angir med 1 at adressa også inneholder et møtepunkt («rendezvous point») og skal følge reglene i RFC 3956
- Flaggene P og R gjør det enkelt å lage egne multicast-adresser for internt bruk i organisasjonen
- Bruk av flaggene R, P og T gjennomgås i detalj i del 10

Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 79 /

T. Endrestøl (FSI/IT)

IPv6-foredra

0. desember 2013

Adressetyper

Multicast-adresser

- Følgende rekkevidder er definert i RFC 4921:
- 0: reservert
- 1: interface-local
- 2: link-local
- 3: reservert
- 4: admin-local
- 5: site-local
- 6: ikke definert
- 7: ikke definert

- 8: organization-local
- 9: ikke definert
- A: ikke definert, brukt av Uninett til å begrense trafikken innenfor «Uninettet»
- B: ikke definert
- C: ikke definert
- D: ikke definert
- E: global
- F: reservert

Adressetyper

Multicast-adresser

- Kobling av multicast-adresser til lag-2-adresser:
 - Eksempel:
 - IPv6: FF02::1 = FF02::0000:0001
 - MAC-48: 33:33:00:00:00:01
 - De 32 minst signifikante bitene kopieres fra IPv6-adressa og til MAC-48-adressa
 - Dette gir en viss overlapp for de multicast-adresser som tilfeldigvis slutter på de samme 32 bitene
 - Det går ganske bra i praksis
 - Se RFC 2464 og RFC 6085

Adressetyper

Multicast-adresser

- Noen kjente IPv6-multicastadresser:
 - FF02::1 All nodes on the local network segment
 - FF02::2 All routers on the local network segment
 - FF02::5 OSPFv3 All SPF routers
 - FF02::6 OSPFv3 All DR routers
 - FF02::8 IS-IS for IPv6 routers
 - FF02::9 RIP routers
 - FF02::A EIGRP routers
 - FF02::D PIM routers
 - FF02::16 MLDv2 reports
 - FF02::1:2 All DHCP servers and relay agents on the local network segment
 - FF02::1:3 All LLMNR hosts on the local network segment
 - FF05::1:3 All DHCP servers on the local network site
 - FF0x:: C Simple Service Discovery Protocol
 - FF0x::FB Multicast DNS
 - FF0x::101 Network Time Protocol
 - FF0x::108 Network Information Service
 - FF0x::114 Used for experiments

Del VI

DNS

Oversikt over del 6: DNS I

25 AAAA og PTR

26 A6

FAGSKOLEN IN N LANDET

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 85 / 160

• Navn-til-IPv6-adresser bruker AAAA-poster

```
Eksempel:
  $ORIGIN fig.ol.no.
  svabu IN AAAA 2001:700:1100:1::4
```

- IPv6-adresser-til-navn bruker PTR-poster plassert i ip6.arpa.
 - Eksempel: **\$ORIGIN** 1.0.0.0.0.0.1.1.0.0.7.0.1.0.0.2.ip6.arpa. 4.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR svabu.fig.ol.no.
- Se RFC 3596

DNS AAAA og PTR

IPv6-foredrag 10. desember 2013 86 / 160

DNS

- A6-poster var foreslått som erstatning for AAAA-poster av RFC 2874, men er endret til eksperimentell av RFC 3363
- RFC 3364 diskuterer fordeler og ulemper med AAAA og A6
- En A6-post består av 2–3 ting:
 - Prefikslengde fra og med 0 til og med 128
 - 2 Utdrag av IPv6-adressa
 - 3 Navn som henviser til resten av adressa
- Settes prefikslengda til:
 - 0, så er det ikke lov å oppgi noen henvisning, fordi dette navnet er det øverste eller det eneste nivået i en kjede
 - 128, så er det ikke lov å oppgi noen IPv6-adresse, fordi man henviser til et helt annet navn, tydeligvis et overflødig alternativ til CNAME
- Avsnittene 3.1.1 og 3.1.3 i RFC 2874 er ikke enige med seg selv når prefikslengda settes til 128

DNS

A6

- Et tenkt eksempel med A6:
- \$ORIGIN ip6.uninett.no. uninett IN A6 0 2001:700:: IN A6 32 0:0:1100:: uninett fig \$ORIGIN fig.ol.no. ext-servere.ip6 IN A6 48 0:0:0:1:: fig.ip6.uninett.no. svabu IN A6 64 ::4 ext-servere.ip6
- Vi vil vite IPv6-adressa for svabu.fig.ol.no. og vi vil bruke A6-poster for å finne svaret

DNS

- Et tenkt eksempel med A6:
- \$ORIGIN fig.ol.no.

svabu IN A6 64 ::4 ext-servere.ip6

- Forklaring:
 - svabu.fig.ol.no. mangler de 64 mest signifikante bitene og henviser til ext-servere.ip6.fig.ol.no.

IPv6-foredrag 10. desember 2013 89 / 160

• \$ORIGIN fig.ol.no.

• Et tenkt eksempel med A6:

```
svabu
                IN A6 64
                               ::4 ext-servere.ip6
ext-servere.ip6 IN A6 48 0:0:0:1:: fig.ip6.uninett.no.
```

• Forklaring:

DNS A6

> • ext-servere.ip6.fig.ol.no. mangler de 48 mest signifikante bitene og henviser til fig.ip6.uninett.no.

IPv6-foredrag 10. desember 2013 90 / 160

DNS

• Et tenkt eksempel med A6:

• \$ORIGIN fig.ol.no.

```
IN A6 64
                               ::4 ext-servere.ip6
svabu
ext-servere.ip6 IN A6 48 0:0:0:1:: fig.ip6.uninett.no.
```

\$ORIGIN ip6.uninett.no.

fig IN A6 32 0:0:1100:: uninett

- Forklaring:
 - fig.ip6.uninett.no. mangler de 32 mest signifikante bitene og henviser til uninett.ip6.uninett.no.

DNS

• Et tenkt eksempel med A6:

• \$ORIGIN fig.ol.no.

```
svabu
               IN A6 64
                               ::4 ext-servere.ip6
ext-servere.ip6 IN A6 48 0:0:0:1:: fig.ip6.uninett.no.
```

```
$ORIGIN ip6.uninett.no.
```

```
IN A6 32 0:0:1100:: uninett
uninett IN A6 0 2001:700::
```

- Forklaring:
 - Kjeden slutter med uninett.ip6.uninett.no. og her angis de 32 mest signifikante bitene

A6

• Et tenkt eksempel med A6:

```
• $ORIGIN fig.ol.no.
```

```
svabu
                IN A6 64
                               ::4 ext-servere.ip6
ext-servere.ip6 IN A6 48 0:0:0:1:: fig.ip6.uninett.no.
```

\$ORIGIN ip6.uninett.no.

IN A6 32 0:0:1100:: uninett

uninett IN A6 0 2001:700::

• Vi får bygd opp følgende adressekjede:

• ::4 svabu.fig.ol.no. • 0:0:0:1:: ext-servere.ip6.fig.ol.no. • 0:0:1100:: fig.ip6.uninett.no. • 2001:700:: uninett.ip6.uninett.no.

• Bitvis-OR gir den fullstendige adressa 2001:700:1100:1::4

T. Endrestøl (FSI/IT) 10. desember 2013 93 / 160 Del VII

ICMPv6

Oversikt over del 7: ICMPv6 I

- 27 ICMPv6
- 28 Multicast Listener Discovery
- 29 Neighbor Discovery
- **30** Router Renumbering
- Mode Information
- 1 Inverse Neighbor Discovery
- 3 Version 2 Multicast Listener Report
- Mobile IPv6
- 35 SEcure Neighbor Discovery (SEND)
- 36 Experimental Mobility Type
- Multicast Router Discovery
- 38 FMIPv6
- 39 RPL Control Message
- 40 ILNPv6 Locator Update Message
- 41 Duplicate Address

ICMPv6

- Feilrapportering- og feilsøkingstjeneste for IPv6
- Definert: RFC 4443 og RFC 4844
- ICMPv6-meldinger inneholder to tall som forteller noe om budskapets mening og innhold:
 - Type: hovednummer
 - Code: undernummer, settes til 0 når det ikke er definert noen undernummer
- I tillegg er det felter for sjekksum og andre opplysninger som er unike for hver type (og underkode) av meldingene
- Den generelle formen for ICMPv6-meldinger vises under

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
| Type | Code | Checksum
Message Body
```


- Fra RFC 4443
- Feilmeldinger:
 - 1: Destination Unreachable
 - 2: Packet Too Big
 - 3: Time Exceeded
 - 4: Parameter Problem
 - 100: Private eksperimenter
 - 101: Private eksperimenter
 - 127: Reservert for utvidelse av feilmeldingene
- Informative meldinger:

• 128: Echo request

(ping) (pong)

• 129: Echo reply

- 200: Private eksperimenter
- 201: Private eksperimenter
- 255: Reservert for utvidelse av informative meldinger

FAGSKOLEN IN N LANDET

T. Endrestøl (FSI/IT)

• Definert: RFC 4861

• 137: Redirect

Angir fem nye ICMPv6-meldinger:

• 134: Router Advertisement

• 135: Neighbor Solicitation

• 136: Neighbor Advertisement

Sentral ved autokonfigurering av adresser

• Neighbor Discovery gjennomgås i detalj i del 8

• 133: Router Solicitation

ICMPv6

Neighbor Discovery

IPv6-foredrag

10. desember 2013 97 / 160

ICMPv6

Multicast Listener Discovery

- Definert: RFC 2710
- Angir tre nye ICMPv6-meldinger:
 - 130: Multicast Listener Query
 - 131: Multicast Listener Report
 - 132: Multicast Listener Done
- Brukes for å fortelle routere hvilke multicastadresser man vil motta trafikk for

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 98 / 160

Router Renumbering

ICMPv6

- Definert: RFC 2894
- Angir én ny ICMPv6-melding:
 - 138: Router Renumbering
- RFC 2894 angir følgende underkoder:
 - 0: Router Renumbering Command
 - 1: Router Renumbering Result
 - 255: Sequence Number Reset

• Brukes for å bekrefte at nodene er oppegående og bestemme lag-2-adressene til mottakere

Node Information

- Definert: RFC 4620
- Angir to nye ICMPv6-meldinger:
 - 139: Node Information Query
 - 140: Node Information Reply
- RFC 4620 angir følgende underkoder for type 139:
 - 0: Datafeltet inneholder en IPv6-adresse
 - 1: Datafeltet inneholder et navn
 - 2: Datafeltet inneholder en IPv4-adresse
- RFC 4620 angir følgende underkoder for type 140:
 - 0: Vellykket svar
 - 1: Svaret vil ikke bli avslørt
 - 2: Underkoden i forespørselen er ukjent

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 101 / 160

ICMPv6

Inverse Neighbor Discovery

- Definert: RFC 3122
- Angir to nye ICMPv6-meldinger:
 - 141: Inverse Neighbor Discovery Solicitation
 - 142: Inverse Neighbor Discovery Advertisement
- Gjør det mulig for én node å lære IPv6-adressen(e) til en annen node i samme VLAN, når man bare vet lag-2-adressa til den andre noden

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 102 / 160

ICMPv6

Version 2 Multicast Listener Report

- Definert: RFC 3810
- Angir én ny ICMPv6-melding:
 - 143: Version 2 Multicast Listener Report
- Utvider MLDv1 (RFC 2710) med slik at bare bestemte avsendere er interessante (Source-Specific Multicast, RFC 3569)

ICMPv6

Mobile IPv6

- Definert: RFC 6275
- Angir fire nye ICMPv6-meldinger:
 - 144: Home Agent Address Discovery Request
 - 145: Home Agent Address Discovery Reply
 - 146: Mobile Prefix Solicitation
 - 147: Mobile Prefix Advertisement
- Brukes for å tilrettelegge for digitale nomader

SEcure Neighbor Discovery (SEND)

- Definert: RFC 3971
- Angir to nye ICMPv6-meldinger:
 - 148: Certification Path Solicitation
 - 149: Certification Path Advertisement
- Med SEND unngås DoS-problemene til Neighbor Discovery
- Routerne deler ut kryptografisk genererte adresser RFC 3972
- Dette krever sertifikatstruktur (RPKI, RFC 6494) i routere og i klienter
- Ikke implementert i Cisco IOS 12.2(55)SE for Catalyst 3560G
- Ikke spesielt aktuelt for FSI, for annet enn ansattnett, på grunn av den administrative byrden

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 105 / 160

ICMPv6

Multicast Router Discovery

- Definert: RFC 4286
- Angir tre nye ICMPv6-meldinger:
 - 151: Multicast Router Advertisement
 - 152: Multicast Router Solicitation
 - 153: Multicast Router Termination
- Catalyst 3560G har ikke støtte for annet enn IPv4-multicast
- Ved FSI har vi ikke fått testet IPv6-multicast

ICMPv6

Experimental Mobility Type

- Definert: RFC 4065
- Angir én ny ICMPv6-melding:
 - 150: Experimental Mobility Type
- «The Seamoby Candidate Access Router Discovery (CARD) protocol [RFC 4066] and the Context Transfer Protocol (CXTP) [RFC 4067] are experimental protocols designed to accelerate IP handover between wireless access routers»

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 106 / 160

ICMPv6

FMIPv6

- Definert: RFC 5568
- Angir én ny ICMPv6-melding:
 - 154: FMIPv6, Fast handovers, Mobile IPv6

RPL Control Message

• Definert: RFC 6550

• Angir én ny ICMPv6-melding:

• 155: RPL Control Message

• IPv6 Routing Protocol for Low-Power and Lossy Networks

ICMPv6

Duplicate Address

- Definert: RFC 6775
- Angir to nye ICMPv6-meldinger:
 - 157: Duplicate Address Request
 - 158: Duplicate Address Confirmation
- Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)

ICMPv6

ILNPv6 Locator Update Message

• Definert: RFC 6743

Angir én ny ICMPv6-melding:

• 156: ILNPv6 Locator Update Message

- Identifier-Locator Network Protocol
- En eksperimentell måte å håndtere digitale nomader

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 110 / 160

Del VIII

Neighbor Discovery

Oversikt over del 8: Neighbor Discovery I

- Router Solicitation
- Router Advertisement
- 44 Neighbor Solicitation
- 45 Neighbor Advertisement
- 46 Redirect

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 113 / 160

Neighbor Discovery

- Definert: RFC 4861
- Angir fem nye ICMPv6-meldinger:
 - 133: Router Solicitation
 - 134: Router Advertisement
 - 135: Neighbor Solicitation
 - 136: Neighbor Advertisement
 - 137: Redirect
- Sentral ved autokonfigurering av adresser
- Brukes for å bekrefte at nodene er oppegående og bestemme lag-2-adressene til mottakere

IPv6-foredrag

10. desember 2013 114 / 160

Neighbor Discovery

Router Solititation

```
Internet Control Message Protocol v6
   Type: Router Solicitation (133)
   Code: 0
   Checksum: 0xc065 [correct]
   Reserved: 00000000
   ICMPv6 Option (Source link-layer address: 00:21:70:73:68:6e)
       Type: Source link-layer address (1)
       Length: 1 (8 bytes)
       Link-layer address: Dell_73:68:6e (00:21:70:73:68:6e)
```

- Avsenders IPv6-adresse er enten ::/0 eller en av utgående grensesnitts IPv6-adresser
- Mottakers IPv6-adresse er vanligvis FF02::2
- «Hop Limit» i IPv6-headeren skal settes til 255
- Det er god sedvane å angi sin egen lag-2-adresse i ICMPv6-meldinga

Neighbor Discovery

Router Advertisement

MTU: 1500

```
Internet Control Message Protocol v6
    Type: Router Advertisement (134)
   Code: 0
   Checksum: Oxfa8c [correct]
   Cur hop limit: 64
    Flags: 0x48
       0... = Managed address configuration: Not set
       .1.. .... = Other configuration: Set
       ..O. .... = Home Agent: Not set
       ...0 1... = Prf (Default Router Preference): High (1)
       .... .O.. = Proxy: Not set
       .... ..0. = Reserved: 0
    Router lifetime (s): 1800
    Reachable time (ms): 0
    Retrans timer (ms): 0
    ICMPv6 Option (Source link-layer address: 00:17:e0:77:14:57)
       Type: Source link-layer address (1)
       Length: 1 (8 bytes)
       Link-layer address: Cisco_77:14:57 (00:17:e0:77:14:57)
    ICMPv6 Option (MTU: 1500)
       Type: MTU (5)
       Length: 1 (8 bytes)
       Reserved
```

- Avsenders IPv6-adresse må være routerens link-local-adresse for utgående grensesnitt
- Mottakers IPv6-adresse er enten adressa til den noden som sendte «Router Solicitation» eller til FF02::1 for generell annonsering
- «Hop Limit» i IPv6-headeren skal settes til 255

Neighbor Discovery

Router Advertisement

```
Internet Control Message Protocol v6
    Type: Router Advertisement (134)
    Code: 0
    Checksum: Oxfa8c [correct]
    Cur hop limit: 64
    Flags: 0x48
        0... = Managed address configuration: Not set
        .1.. .... = Other configuration: Set
        ..O. .... = Home Agent: Not set
        ...0 1... = Prf (Default Router Preference): High (1)
        .... .O.. = Proxy: Not set
        .... ..0. = Reserved: 0
    Router lifetime (s): 1800
    Reachable time (ms): 0
    Retrans timer (ms): 0
    ICMPv6 Option (Source link-layer address: 00:17:e0:77:14:57)
        Type: Source link-layer address (1)
        Length: 1 (8 bytes)
        Link-layer address: Cisco_77:14:57 (00:17:e0:77:14:57)
    ICMPv6 Option (MTU: 1500)
       Type: MTU (5)
        Length: 1 (8 bytes)
        Reserved
        MTU: 1500
```

- Routeren er snill og oppgir:
 - Autokonfigurasjon av adresser skal utføres
 - Andre opplysninger er tilgjengelig med DHCPv6
 - Dette er ingen «Home Agent»
 - Routerens preferansenivå er «High»
 - Annonseringens levetid er 1800 s = 30 min
 - Routerens lag-2-adresse
 - Linkens MTU-verdi

FAGSKOLEN

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 117 / 160

Neighbor Discovery

Router Advertisement

```
ICMPv6 Option (Prefix information: 2001:700:1100:3::/64)
    Type: Prefix information (3)
    Length: 4 (32 bytes)
   Prefix Length: 64
   Flag: 0xc0
       1... = On-link flag(L): Set
       .1.. .... = Autonomous address-configuration flag(A): Set
       .. 0. .... = Router address flag(R): Not set
        ...0 0000 = Reserved: 0
    Valid Lifetime: 2592000
    Preferred Lifetime: 604800
   Prefix: it.ip6.fig.ol.no (2001:700:1100:3::)
```

- Routeren opppgir f
 ølgende om 2001:700:1100:3::/64
 - Prefikset er direkte tilgjengelig
 - Autokonfigurasjon er tillatt
 - Genererte adresser er gyldige i 30 dager, med foretrukket levetid på 7 dager

IPv6-foredrag

10. desember 2013 118 / 160

Neighbor Discovery

Neighbor Solititation

```
Internet Control Message Protocol v6
   Type: Neighbor Solicitation (135)
   Code: 0
   Checksum: 0x4571 [correct]
   Reserved: 00000000
   Target Address: monitor2.fig.ol.no (2001:700:1100:3:20b:dbff:fe52:67e2)
   ICMPv6 Option (Source link-layer address: 00:26:18:f2:72:40)
       Type: Source link-layer address (1)
       Length: 1 (8 bytes)
       Link-layer address: AsustekC f2:72:40 (00:26:18:f2:72:40)
```

- I dette tilfellet ville
 - ① 2001:700:1100:3:226:18FF:FEF2:7240 sjekke om
 - 2 2001:700:1100:3:20B:DBFF:FE52:67E2 fortsatt var i live
- Forespørselen ble sendt til «Solicited-node multicast-adressa» FF02::1:FF52:67E2

Neighbor Discovery

Neighbor Advertisement

```
Internet Control Message Protocol v6
  Type: Neighbor Advertisement (136)
   Code: 0
   Checksum: 0x157e [correct]
  Flags: 0x60000000
     0... = Router: Not set
     .1.. .... = Solicited: Set
     ..1. .... = Override: Set
     Target Address: monitor2.fig.ol.no (2001:700:1100:3:20b:dbff:fe52:67e2)
   ICMPv6 Option (Target link-layer address: 00:0b:db:52:67:e2)
      Type: Target link-layer address (2)
     Length: 1 (8 bytes)
     Link-layer address: DellEsgP_52:67:e2 (00:0b:db:52:67:e2)
```

- 2001:700:1100:3:20B:DBFF:FE52:67E2 sendte svar tilbake til 2001:700:1100:3:226:18FF:FEF2:7240 med klar beskjed at
 - Den er ikke en router
 - Dette er et svar på en forespørsel og ikke en tilfeldig annonsering
 - Gamle opplysninger om 2001:700:1100:3:20B:DBFF:FE52:67E2 skal slettes
 - Lag-2-adressa er stadig 00:0B:DB:52:67:E2

Neighbor Discovery

Redirect

Oversikt over del 9: DHCPv6 I

47 DHCPv6

48 Meldinger

49 DHCP Unique Identifier

• Jeg har hittil ikke sett en eneste ICMPv6 redirect-melding

Del IX

DHCPv6

DHCPv6

- DHCPv6 er definert i RFC 3315 med oppdateringer fra RFC 3319, RFC 3633, RFC 3646, RFC 3736, RFC 4361, RFC 5007, RFC 5494, RFC 6221, RFC 6422, RFC 6603, RFC 6644 og RFC 7083
- Kommunikasjonen foregår først med multicast og UDP, og kan senere bytte til unicast og UDP
- Klientene bruker port 546 og serverne/relay-agentene bruker port 547
- Klientene bruker sin egen link-local-adresse som avsender og multicast-adressa FF02::1:2 som mottaker
- Relay-agentene videresender til multicast-adressa FF05::1:3, med mindre de kjenner og vil bruke unicast-adressa til serveren
- Serverne svarer med sin link-local-adresser som avsender og klientens link-local-adresse som mottaker

DHCPv6

Meldinger

- Solicit
 - Fra klient til server/relay
 - Brukes for å oppdage servere
- Advertise
 - Fra server/relay til klient
 - Brukes for å varsle klienten om tjenestetilbudet
- Request
 - Fra klient til spesifikk server
 - Bruker for å etterspørre om adresser og andre opplysninger fra en bestemt server
- Confirm
 - Fra server/relay til klient
 - Brukes for å bestemme om tidligere oppgitt adresse fortsatt er gyldig

T. Endrestøl (FSI/IT) IPv6-foredrag

10. desember 2013 125 / 160

DHCPv6

Meldinger

- Renew
 - Fra klient til server/relay
 - Brukes for å fornye leieavtalen og oppdatere andre opplysninger
- Rebind
 - Fra klient til server/relay
 - Brukes til annonsering i etterkant av en renew-melding, dersom det ikke kom noe svar på fornyelsen

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 126 / 160

DHCPv6

Meldinger

- Reply
 - Fra server til klient
 - Serveren sender tildelt adresse og andre opplysninger i en reply-melding som svar på solicit-, request-, renew- og rebind-meldinger
 - Serveren sender konfigurasjonsparametre i en reply-melding som svar på en information-request-melding
 - Serveren sender en reply-melding som svar på en confirm-melding for å bekrefte eller avkrefte at adressa tilordnet klienten er gyldig eller ikke
 - Serveren sender en reply-melding for å kvittere for mottatt release- eller decline-meldinger
- Release
 - Fra klient til server/relay
 - Brukes for å frigjøre en utleid adresse

DHCPv6

Meldinger

- Decline
 - Fra klient til server/relay
 - Brukes for å fortelle at en eller flere utdelte adresser allerede er tatt i bruk i nabolaget til klienten
- Reconfigure
 - Fra server til klient
 - Brukes for å gjøre klienten oppmerksom på nye opplysninger og at klienten må gjennomføre renew/reply- eller information-request/reply-transaksjoner for å få de nye opplysningene
- Information-request
 - Fra klient til server/relay
 - Brukes for å be om konfigurasjonsparametre uten å bli tildelt en adresse

DHCPv6

Meldinger

- Relay-forward
 - Fra relay til relay/server
 - Brukes av relay for å videresende forespørsler fra klienter eller andre relay til en ny relay eller server
- Relay-reply
 - Fra server/relay til relay
 - Brukes av server for å videresende svar tilbake til klienter gjennom relay(kjeden)

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 129 / 160

DHCPv6

DHCP Unique Identifier, DUID

- Klientene identifiseres med DHCP Unique Identifier, DUID, som har variabel lengde og
- Klientene kan ha flere nettverksgrensesnitt
- Hvert grensesnitt har i tillegg sin Identity Association Identifier, IAID, lengde 32 bit
- Klientene oppgir aktuell DUID og IAID i forespørslene
- DHCPv6-serverne har sine egne DUID og IAID, og oppgir disse i svarene

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 130 / 160

DHCPv6

DHCP Unique Identifier, DUID

- DUID finnes i tre varianter:
 - Type 1: Linklagsadresse med tidspunkt for generering, DUID-LLT
 - Type 2: Unik identifikator basert på Enterprise-nummer utdelt av IANA, DUID-EN
 - Type 3: Linklagsadresse, DUID-LL

DHCPv6

DHCP Unique Identifier, DUID

- Type 1 kan se slik ut:
 - 00 01 00 01 13 10 43 9B 00 26 18 F2 72 40
 - 00 01 angir at dette er DUID type 1.
 - 00 01 angir at det kommer en MAC-48-adresse til slutt
 - 13 10 43 9B angir klokkeslettet målt i sekunder siden 1. januar 2000 UTC
 - I dette tilfellet: 0x1310439B s, 319832987 s, 10.1351038909 år etter 1. januar 2000 UTC, altså 18. februar 2010. kl. 18:29:47 UTC
 - 00 26 18 F2 72 40 er MAC-48-adressa for systemet som dette eksempelet er hentet fra
- Type 3 kan se slik ut:
- 00 03 00 01 00 26 18 F2 72 40
 - 00 03 angir at dette er DUID type 3.
 - 00 01 angir at det kommer en MAC-48-adresse til slutt
 - 00 26 18 F2 72 40 er MAC-48-adressa for systemet som dette eksempelet er hentet fra

DHCPv6

DHCP Unique Identifier, DUID

- Type 1 er vanlig i Windows, og lagres i Dhcpv6DUID i HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\TCPIP6\Parameters
- Type 3 er enklere og mer forutsigbart, og det beste valget for statisk tildeling av IPv6-adresse med tanke på reinstallasjon av OS
- Jeg har ikke funnet noen annen måte å tvinge en bestemt DUID-type i Windows, enn å sette Dhcpv6DUID manuelt eller gjennom skript, og naturlig nok restarte Windows etterpå
- Dibbler og Unix-systemer er tradisjonelt langt snillere, og lar oss angi i konfigurasjonen de gangene vi ønsker DUID-LL istedet for DUID-LLT

Del X

Avansert multicast

Oversikt over del 10: Avansert multicast I

- 60 Multicastflaggene
- 61 Når T er satt til 1
- 62 Når PT er satt til 11
- Mår RPT er satt til 111

Avansert multicast

Multicastflaggene

• Flaggene heter ORPT

(null, err, pe, te)

- Flagget T angir med 0 at adressa er velkjent (definert av IANA), og med 1 at adressa er midlertidig (lokalt definert)
- Flagget P angir med 1 at adressa inneholder et unicast-prefiks og skal følge reglene i RFC 3306
- \bullet Flagget R angir med 1 at adressa også inneholder et møtepunkt («rendezvous point») og skal følge reglene i RFC 3956
- \bullet Flaggene P og R gjør det enkelt å lage egne multicast-adresser for internt bruk i organisasjonen

Avansert multicast

Når T er satt til 1

8	- 1	4	ı	4	- 1	112 bits	
+	-+-		-+-		-+	+	-
1111111	11 0	001	l s	coj	pΙ	group ID	
+	-+-		+-		-+	+	-

- Adresseformatet er gitt av RFC 4291
- De 12 mest signifikante bitene må beholdes som vist
- Rekkevidden settes til ønsket, lovlig verdi
- De 112 øvrige bitene kan settes fritt
- Eksempel:
 - FF12::DEAD:BEEF:CAFE:0:FACE:BOOC:1
 - En link-local, midlertidig multicast-adresse

FAGSKOLEN

Avansert multicast

Når PT er satt til 11

- Adresseformatet er gitt av RFC 3306
- De 12 mest signifikante bitene må beholdes som vist
- Rekkevidden settes til ønsket, lovlig verdi, og rekkevidden skal ikke overskride utbredelsen av det angitte nettverksprefikset
- Feltet «plen» settes til prefikslengden til nettverksprefikset
- Nettverksprefikset er ditt eget unicast-prefiks
- «Group ID» settes i tråd med retningslinjene til RFC 3307

Avansert multicast Når PT er satt til 11

- Eksempel:
 - FF3E:0030:2001:700:1100:0:8000:1337
 - Den første adressa er begrenset til internett (global, 48-bit)
 - FF38:0030:2001:700:1100:0:8000:1337
 - Den andre adressa er begrenset til FSI (organizational-local, 48-bit)
 - FF32:0040:2001:700:1100:3:8000:1337
 - Den tredje adressa er begrenset til IT-avdelingen ved FSI (link-local, 64-bit)

Avansert multicast

Når RPT er satt til 111

- Adresseformatet er gitt av RFC 3956
- De 12 mest signifikante bitene må beholdes som vist
- Rekkevidden settes til ønsket, lovlig verdi, og rekkevidden skal ikke overskride utbredelsen av det angitte nettverksprefikset
- Feltet «RIID» settes til møtepunktets grensesnittidentifikator
 - RIID kan ikke være 0, for dette skaper konflikt med «Subnet-Router Anycast Address» fra RFC 3513
- Feltet «plen» settes til prefikslengden til nettverksprefikset
- Nettverksprefikset er ditt eget unicast-prefiks
- «Group ID» settes i tråd med retningslinjene til RFC 3307

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 139 / 160

tøl (FSI/IT) IPv6-

lesember 2013 140 /

Avansert multicast

Når RPT er satt til 111

Eksempler:

64 Cisco IOS

65 OS-konfig

ACL-erDHCPv6

IPv6-routing

• FF78:0130:2001:700:1100:0:8000:1337

Oversikt over del 11: Konfigurasjon av IPv6 I

- Denne adressa er begrenset til organization-local
- Nettverksprefikset er 2001:700:1100::/48
- Møtetpunktets adresse er 2001:700:1100::1
- Møtetpunktets adresse må konfigureres på et loopbackgrensesnitt i Fagskolens ytterste IPv6-multicast-router

FAGSKOLEN Y

 Del XI

Konfigurasjon av IPv6

Konfigurasjon av IPv6

Cisco IOS: IPv6-routing

configure terminal

sdm prefer dual-ipv4-and-ipv6 default

(Rekonfigurere TCAM)

- end
- 0 reload
- onfigure terminal
- o interface interface-id
- o no switchport

(Aktuelt for routergrensesnitt)

- ipv6 address ipv6-address
- ipv6 nd ra suppress

(Aktuelt for routergrensesnitt)

- exit
- ip routing

(Nødvendig for IP-routing i det hele tatt)

- pipv6 unicast-routing
- no ipv6 source-route
- end

FAGSKOLEN CON NEW TOWN TO A NOTE TO THE PROPERTY OF THE PROPER

Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 143 / 1

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013

Konfigurasion av IPv6

Cisco IOS: IPv6-routing

- 1 interface GigabitEthernet0/49
- 2 description Linknett mellom FiG og Uninett/HiG
- one of the state of the s
- 4 ip address 128.39.46.10 255.255.255.252
- ip access-group InetIPv4Inn in
- ip access-group InetIPv4Ut out
- ip pim sparse-mode
- ip igmp version 3
- 9 ipv6 address 2001:700:0:11D::2/64
- ipv6 nd ra suppress
- ipv6 traffic-filter InetIPv6Inn in
- ipv6 traffic-filter InetIPv6Ut out

T. Endrestøl (FSI/IT)

10. desember 2013 145 / 160

Konfigurasjon av IPv6

Cisco IOS: IPv6-routing

- interface Vlan48
- 2 description Datarom 129
- 3 ip address 128.39.194.193 255.255.255.224
- 4 ip access-group Vlan48IPv4UtTil out
- **5** ip helper-address 128.39.174.42
- o ip pim sparse-dense-mode
- ip igmp version 3
- 3 ipv6 address 2001:700:1100:8008::1/64
- ipv6 nd other-config-flag
- u ipv6 nd router-preference High
- ipv6 dhcp server offisiell
- ipv6 traffic-filter Vlan48IPv6UtTil out

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 146 / 160

Konfigurasjon av IPv6 I

Cisco IOS: ACL-er

- configure terminal
- 2 ipv6 access-list access-list-name
- 3 deny | permit protocol {source-ipv6-prefix/prefix-length | any | host source-ipv6-address \} [operator port-number] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address \ [operator port-number] [dest-option] [dest-option-type value] [dscp value] [flow-label value] [fragments] [hbh] [log] [log-input] [mobility] [mobility-type value] [reflect access-list-name] [routing] [routing-type value] [sequence value] [time-range name] [undetermined-transport]

Konfigurasjon av IPv6 II

Cisco IOS: ACL-er

- deny | permit tcp {source-ipv6-prefix/prefix-length | any | host source-ipu6-address \} [operator port-number] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address \ [operator port-number] [ack] [dest-option] [dest-option-type value] [dscp value] [established] [fin] [flow-label value] [hbh] [log] [log-input] [mobility] [mobility-type value] [psh] [reflect access-list-name] [routing] [routing-type value] [rst] [sequence value] [syn] [time-range name] [urg]
- 6 deny | permit udp { source-ipv6-prefix/prefix-length | any | host source-ipv6-address \} [operator port-number] {destination-ipu6-prefix/prefix-length | any | host destination-ipv6-address \ [operator port-number] [dest-option] [dest-option-type value] [dscp value] [flow-label value] [hbh] [log] [log-input] [mobility] [mobility-type value] [reflect access-list-name] [routing] [routing-type value] [sequence value] [time-range name]

Konfigurasjon av IPv6 III

Cisco IOS: ACL-er

- 6 deny | permit icmp { source-ipv6-prefix/prefix-length | any | host source-ipv6-address \ \{destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address \[\left\{ icmp-type \[icmp-code \] \right\} \| icmp-message \] [dest-option] [dest-option-type value] [dscp value] [flow-label value] [log] [log-input] [mobility] [mobility-type value] [reflect access-list-name] [routing] [routing-type value] [sequence value] [time-range name]
- evaluate reflexive-access-list-name [sequence value]
- 8 remark comment
- exit Husk: $operator \in \{ gt \mid lt \mid neq \mid eq \mid range \}$ reflect er bare gyldig for permit-regler

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 149 / 160

Konfigurasjon av IPv6 IV Cisco IOS: ACL-er

- interface interface-id
- ipv6 traffic-filter access-list-name {in | out}
- end

IPv6-foredrag

Konfigurasjon av IPv6 V

Cisco IOS: ACL-er

- Alle IPv6-ACL-er har følgende 5 regler innebygget (eng. implicit) på slutten:
 - 1 permit icmp any any nd-na
 - 2 permit icmp any any nd-ns
 - 3 permit icmp any any router-advertisement
 - permit icmp any any router-solicitation
 - 6 deny ipv6 any any
- Disse reglene tillater Neighbor Discovery, og blokkerer all annen IPv6-trafikk
- Dine egne regler kommer alltid før de 5 reglene over, og kanskje må du kopiere de innebygde reglene og gjøre dine egne justeringer, for eksempel slå på logging av blokkert trafikk

Konfigurasjon av IPv6 VI

Cisco IOS: ACL-er

- Ønsker du logging av blokkert trafikk, men vil samtidig ikke blokkere Neighbor Discovery, så må du gjøre slik:
 - 1 remark Øvrige regler kommer før denne linja
 - 2 permit icmp any any nd-na
 - emit icmp any any nd-ns
 - permit icmp any any router-advertisement
 - permit icmp any any router-solicitation
 - 6 deny ipv6 any any log
 - 🕡 remark Her kommer de skjulte, implisitte reglene
 - 1 permit icmp any any nd-na
 - permit icmp any any nd-ns
 - opermit icmp any any router-advertisement
 - 1 permit icmp any any router-solicitation
 - 2 deny ipv6 any any

Konfigurasjon av IPv6

- Cisco IOS: DHCPv6
 - ipv6 dhcp pool offisiell
 - dns-server 2001:700:1100:1::3
 - dns-server 2001:700:1100:1::2
 - domain-name fig.ol.no
 - sntp address 2001:700:1100:1::2
 - sntp address 2001:700:1100:1::3
 - sntp address 2001:700:1100:1::4
 - information refresh 0 2
 - interface Vlan48
 - ipv6 dhcp server offisiell

IPv6-foredrag

10. desember 2013 153 / 160

Konfigurasjon av IPv6 Cisco IOS: DHCPv6

- ipv6 dhcp pool ULA
 - dns-server 2001:700:1100:1::3
 - dns-server 2001:700:1100:1::2
 - domain-name fig.netlocal
 - sntp address 2001:700:1100:1::2
 - sntp address 2001:700:1100:1::3
 - sntp address 2001:700:1100:1::4
 - information refresh 0 2
- interface Vlan31
 - ipv6 dhcp server ULA

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 154 / 160

Konfigurasjon av IPv6

OS-konfig

- De fleste moderne operativsystemer har IPv6-støtte
- Windows 2000 har en eksperimentell IPv6-protokoll, men mangler DNS-oppslag for AAAA
- IPv6 må installeres manuelt i Windows XP og Server 2003
 - DNS-oppslag sendes alltid over IPv4
- IPv6 er påskrudd i Windows Vista, Server 2008 og nyere versjoner
- Linux og *BSD har hatt IPv6-støtte i lang tid
- Autokonfig med tilfeldig grensesnittidentifikator er det mest vanlige for skrivebordssystemer
- Manuell konfigurasjon er mest vanlig for serversystemer

Konfigurasjon av IPv6

OS-konfig

- Windows:
 - netsh interface ipv6 set address "navn-på-qrensesnitt" IPv6-adresse
 - netsh interface ipv6 set address "Lokal tilkobling" 2001:700:1100:8008::1337
 - Konfigurasjon gjennom grafisk grensesnitt i «Kontrollpanelet» er også mulig
- *BSD:
 - ifconfig navn-på-qrensesnitt inet6 IPv6-adresse prefixlen prefikslenqde
 - ifconfig em0 inet6 2001:700:1100:8008::1337 prefixlen 64
 - Vanligvis lagres slike innstillingene permanent, for eksempel i /etc/rc.conf

Del XII

Noen RFC-er om IPv6

Oversikt over del 12: Noen RFC-er om IPv6 I

56 Noen RFC-er om IPv6

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 157 / 160

FAGSKOLEN IN NEAN DET

FAGSKOLEN Y

T. Endrestøl (FSI/IT)

IPv6-foredrag

10. desember 2013 158 / 160

Noen RFC-er om IPv6

- IPv6-spesifikasjon: RFC 2460, RFC 5095, RFC 5722, RFC 5871, RFC 6437, RFC 6564, RFC 6935 og RFC 6946
- ICMPv6: RFC 4443 og RFC 4884
- Neighbor Discovery: RFC 4861, RFC 5942 og RFC 6980
- Krav til IPv6-noder: RFC 6434
- Path MTU: RFC 1981
- DHCPv6: RFC 3315, RFC 3319, RFC 3633, RFC 3646, RFC 3736, RFC 4361, RFC 5494, RFC 6221, RFC 6422, RFC 6644 og RFC 7083
- Overføring av IPv6-pakker over Ethernet: RFC 2464 og RFC 6085
- Adressearkitektur: RFC 4291, RFC 5952 og RFC 6052
- Unicastadresser: RFC 3587
- ULA: RFC 4193

Noen RFC-er om IPv6

- Autokonfigurering av adresser: RFC 4862
- Tilfeldig grensesnittidentifikator: RFC 4941
- Prefiks-baserte multicastadresser: RFC 3306, RFC 3956 og RFC 4489
- IPsec: RFC 4301, RFC 4302, RFC 4303, RFC 4304, RFC 4307, RFC 4308, RFC 4309, RFC 4312, RFC 4835 og RFC 5996
- For programmerere av nettverksprogrammer: RFC 3493, RFC 3542 og RFC 4038
- Grunnleggende krav til IPv6-routere hos sluttbrukere (CER): RFC 7084

T. Endrestøl (FSI/IT) IPv6-foredrag 10. desember 2013 1

sl (FSI/IT) IPv6-fe

0. desember 2013 16