Hoja de problemas 9

08/11/2022

Curvas algebraicas

1. Calcular las multiplicidades de intersección mult(R,C), donde R es la rama parametrizada por (p,q), con $p,q\in k[[T]]$, y C=V(f), en los casos siguentes:

(a)
$$k \in \mathbb{Z}_{>1}$$
, y

$$f(X,Y) = X^3 + Y^2$$
, $p(T) = T^2$, $q(T) = T^3 + T^k$.

(b) $a, b, c, d \in \mathbb{Z}_{\geq 1}$, y

$$f(X,Y) = X^a + Y^b, \quad p(T) = T^d, \quad q(T) = T^c.$$

(c)

$$f(X,Y) = Y^4 - 2X^3Y^2 + X^5Y^2 + X^6, \quad p(T) = T^2, \quad q(T) = T^3.$$

- 2. Suponemos que $a,b\in\mathbb{Z}_{\geq 2}$ con a>b y $\gcd(a,b)=1$. Demonstrar que la curva $C=V(X^a-Y^b)$ tiene una única rama en (0,0).
- 3. Sea $C \subset \mathbb{A}^2$ una curva algebraica, con ecuación minimal $f \in k[x,y]$, y suponemos que $0 \in C$. Dado el polígono de Newton $\Gamma = \Gamma(f)$, calcular la multiplicidad mult(0,0)(C) de C en (0,0).
- 4. Un anillo local es un anillo que tiene un único ideal maximal. Demonstrar que los anillos k[[T]] y $k\{\{T\}\}$ son locales. ¿Cuáles son sus ideas maximales?