Low Rank Approximation and Gaussian Conditioning

Gaussian Conditioning

The strategy we employ here is transforming the problem into a form where independence simplifies the conditioning. So let

$$\begin{bmatrix} Y \\ X \end{bmatrix} \sim \mathcal{N} \left[\begin{bmatrix} \mu_Y \\ \mu_X \end{bmatrix}, \begin{bmatrix} \Sigma_{YY} & \Sigma_{YX} \\ \Sigma_{XY} & \Sigma_{XX} \end{bmatrix} \right)$$

with Σ_{XX} invertible. Define

$$W = Y - \Sigma_{YX} \Sigma_{XX}^{-1} X.$$

Since

$$Cov(W, X) = \Sigma_{YX} - \Sigma_{YX} \Sigma_{XY}^{-1} \Sigma_{XX} = 0,$$

W and X are independent. Hence, we can write

$$Y = \Sigma_{YX} \Sigma_{XX}^{-1} X + W.$$

Conditioning on X = x yields

$$Y \mid X = x \sim \mathcal{N} \Big(\mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (x - \mu_X), \ \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{YX}^T \Big).$$

Gaussian Process Regression

Assume a joint model

$$(X, Y) \sim N\left(0, \begin{bmatrix} K & K \\ K & K + \Sigma \end{bmatrix}\right)$$

where K is a covariance kernel. Use Gaussian conditioning to take

$$X \mid Y = y \sim \mathcal{N}\left(K(K+\Sigma)^{-1}y, K - K(K+\Sigma)^{-1}K\right)$$

We can augment the covariance matrix to also predict on new points with uncertainty.

Two commmon kernels.

1. Gaussian kernel:

$$K(x, y) := \exp(-\|x - y\|^2/l^2)$$

where l is a hyperparameter, usually called the length scale.

2. Polynomial kernel. For $p \in \mathbb{N}$,

$$K(x, y) = (1 + x^{\mathsf{T}} y)^p$$

which is equivalent to performing degree p polynomial interpolation.

Nyström Approximation

► Given a PSD matrix $A ∈ \mathbb{R}^{N \times N}$ and an arbitrary $N \times k$ "test" matrix Ω (with k < N) the Nyström approximation is defined as

$$A\langle \Omega \rangle = A\Omega \left(\Omega^T A \Omega \right)^{-1} \Omega^T A$$

Theorem

The Nyström is the best positive semi-definite under-approximation of $A(A - A\langle\Omega\rangle) \succeq 0$: It minimizes the trace norm $\operatorname{trace}(A - \hat{A})$ over all PSD matrices \hat{A} with positive residual $A - \hat{A}$ and spanned by the columns of $A\Omega$.

Important case: If $\Omega = \begin{bmatrix} -I_k - \\ -0 - \end{bmatrix}$ then $A\Omega$ is simply the first k columns of A, known as column subset selection matrix.

Gaussian Process Regression, Visualized

- We may obtain prior functions by sampling the values of the function $f \sim \mathcal{N}(\mu, \Sigma)$ at a finite number of the x coordinates.
- With noisy ground truth observations, we condition on these measurements to obtain a **posterior distribution** representing our updated beliefs.

Cholesky Factorization and Randomly Pivoted Cholesky

The Cholesky Factorization is a decomposition of a symmetric positive definite matrix $A \in \mathbb{R}^{N \times N}$, into $A = LL^*$ where $L \in \mathbb{R}^{N \times N}$ is a lower triangular matrix. We construct L column by column, accounting for each column of A from left to right. Rather than working with the columns of A in order, we can choose specific pivot columns and use the Cholesky algorithm to construct a low-rank approximation to A. This algorithm updates a running Nyström approximation one column at a time. RPCholesky is a smart way of choosing which column to add next to reduce the error of the approximation.

Algorithm RPCholesky

end for

Input: Psd matrix $A \in \mathbb{C}^{N \times N}$; approximation rank k**Output:** Pivot set $S = \{s_1, \dots, s_k\}$; matrix $F \in C^{N \times k}$ defining Nyström approximation $\hat{A} = FF^*$ Initialize $F \leftarrow 0_{N \times k}$ and $\mathbf{d} \leftarrow \operatorname{diag} A$ **for** i = 1 to k **do** Sample pivot $s_i \sim \mathbf{d}/\sum_{i=1}^N \mathbf{d}(j)$ ▶ Pick pivot $\mathbf{g} \leftarrow A(:, s_i)$ ▶ Evaluate column *s* of input matrix $\mathbf{g} \leftarrow \mathbf{g} - F(:, 1:i-1)F(s_i, 1:i-1)^*$ $F(:,i) \leftarrow \mathbf{g}/\sqrt{\mathbf{g}(s_i)}$ ▶ Update approximation $\mathbf{d} \leftarrow \mathbf{d} - |F(:,i)|^2$ ▶ Update diagonal of residual matrix ▶ Ensure diagonal remains nonnegative $\mathbf{d} \leftarrow \max\{\mathbf{d}, \mathbf{0}\}$

Convergence of RPCholesky

