

Discussion Detox

Multilingual Machine Learning algorithms to identify toxic comments on the internet

Author: Drenizë Rama

Hasskommentare im Netz identifizieren

Discussion Detox

App

by Drenizë Rama

TABLE OF CONTENTS

Introduction	01
Data	02
Methods	03
Results	04
Recommendations	05
Future Work	06

"INTERNET RULE #1: Never read the comments."

- WIRED

Example comment #1:

"What a motherfucking piece of crap those fuckheads for blocking us!"

Example comment #2

"Hey, faggot.
You fucking retard. You better
quit undoing my vandalism,
bitchboy."

Example comment #3:

"but ew

He was a fαg which is against nature and is the most disgusting thing. Youre not a woman are you? Sexism is wrong. Being wrong is for women."

01 introduction

An **online newspaper** or a **social media web host** wants to keep the discussions under each article clean and respectful.

However, going through every comment manually is tiresome and very expensive.

01 introduction

goal

- build a natural language algorithm that classifies social media comments into toxic and non-toxic categories
- at a low cost
- In different languages

The overall amount of toxic comments is quite low

- Data was provided by Google and Jigsaw
- **Publication** dates of the comments range from **2015 to 2017**
- 223,549 comments in train set

Disclaimer: The dataset for this project contains text that may be considered profane, vulgar, or offensive.

The more hate - the shorter the comments

frequently used words

In toxic comments

In comments containing identity attack

Who's getting the most hate?

03 methods

Additional power and complexity

03 methods

How Natural Language Processing works

results

04 results

Which one is the most efficient model?

recommendations

06 future work

- time-series analysis of toxicity
- compare sentiments of trending topics among different languages
- Create web tool that recommends users to adjust their language before posting a comment

Future work

text vectorization throughout different languages

future work

Thank you

Drenizë Rama

Data Scientist

https://drenize.github.io/

https://www.linkedin.com/in/d

reniz%C3%AB-rama-6121a4157/

CREDITS: This presentation template was created by <u>Slidesqo</u>, including icons by <u>Flaticon</u>, infographics & images by <u>Freepik</u> and illustrations by <u>Stories</u>

Appendix

Wie funktioniert

- NLP grafiken
- BERT
- LASER
- zwischenergebnisse

04 results

Baseline Model: Logistic Regression

[[49808 853] [1991 3236]]

	precision	recall	f1-score	support
0 1	0.96 0.79	0.98	0.97	50661 5227
accuracy	0.88	0.80	0.95 0.83	55888 55888
weighted avg	0.95	0.95	0.05	55888