

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P _g =	30.00 psf	
oped Roof Snow Load, P _s =	14.43 psf	(ASCE 7-05, Eq. 7-2)
l _s =	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 11.34 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.200 (Property)	
Cf+ BOTTOM	=	1.200 2.000 (Pressure)	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	эрриг ангау нашина сангаса.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used to calculate C $_{s}$.
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>45.46</u>	<u>5424.08</u>	k
Compressive Load =	<u>3113.65</u>	4473.98	k
Lateral Load =	<u>441.55</u>	3841.39	k
Moment (Weak Axis) =	<u>0.85</u>	0.28	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 138889.2 in-lbs Resisting Force Required = 2104.38 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3507.30 lbs to resist overturning. Minimum Width = Weight Provided = 5383.13 lbs Sliding 922.93 lbs Force = Use a 132in long x 27in wide x 18in tall Friction = 0.4 Weight Required = 2307.33 lbs ballast foundation to resist sliding. Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 922.93 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width			
	<u>27 in</u>	<u>28 in</u>	29 in	<u>30 in</u>
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) =$	5383 lbs	5583 lbs	5782 lbs	<u>5981 lbs</u>

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1231 lbs	1231 lbs	1231 lbs	1231 lbs	985 lbs	985 lbs	985 lbs	985 lbs	1512 lbs	1512 lbs	1512 lbs	1512 lbs	71 lbs	71 lbs	71 lbs	71 lbs
FB	1113 lbs	1113 lbs	1113 lbs	1113 lbs	1955 lbs	1955 lbs	1955 lbs	1955 lbs	2166 lbs	2166 lbs	2166 lbs	2166 lbs	-2602 lbs	-2602 lbs	-2602 lbs	-2602 lbs
F_V	205 lbs	205 lbs	205 lbs	205 lbs	1703 lbs	1703 lbs	1703 lbs	1703 lbs	1408 lbs	1408 lbs	1408 lbs	1408 lbs	-1846 lbs	-1846 lbs	-1846 lbs	-1846 lbs
P _{total}	7727 lbs	7926 lbs	8125 lbs	8325 lbs	8324 lbs	8523 lbs	8722 lbs	8922 lbs	9060 lbs	9260 lbs	9459 lbs	9658 lbs	699 lbs	819 lbs	938 lbs	1058 lbs
M	3652 lbs-ft	3652 lbs-ft	3652 lbs-ft	3652 lbs-ft	2730 lbs-ft	2730 lbs-ft	2730 lbs-ft	2730 lbs-ft	4342 lbs-ft	4342 lbs-ft	4342 lbs-ft	4342 lbs-ft	3691 lbs-ft	3691 lbs-ft	3691 lbs-ft	3691 lbs-ft
е	0.47 ft	0.46 ft	0.45 ft	0.44 ft	0.33 ft	0.32 ft	0.31 ft	0.31 ft	0.48 ft	0.47 ft	0.46 ft	0.45 ft	5.28 ft	4.51 ft	3.93 ft	3.49 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	231.7 psf	231.2 psf	230.7 psf	230.3 psf	276.1 psf	274.0 psf	272.1 psf	270.3 psf	270.4 psf	268.5 psf	266.7 psf	265.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	392.7 psf	386.4 psf	380.6 psf	375.2 psf	396.5 psf	390.1 psf	384.1 psf	378.6 psf	461.8 psf	453.0 psf	444.9 psf	437.3 psf	941.8 psf	235.9 psf	165.2 psf	140.3 psf

Maximum Bearing Pressure = 942 psf Allowable Bearing Pressure = 1500 psf Use a 132 in long x 27 in wide x 18 in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1565.0 \text{ ft-lbs}$

Resisting Force Required = 1391.10 lbs S.F. = 1.67

Weight Required = 2318.50 lbs Minimum Width = 27 in in Weight Provided = 5383.13 lbs A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		27 in			27 in			27 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	340 lbs	708 lbs	229 lbs	787 lbs	2003 lbs	702 lbs	138 lbs	207 lbs	28 lbs	
F _V	240 lbs	235 lbs	247 lbs	175 lbs	174 lbs	193 lbs	242 lbs	237 lbs	244 lbs	
P _{total}	7004 lbs	7372 lbs	6894 lbs	7131 lbs	8347 lbs	7046 lbs	2087 lbs	2156 lbs	1977 lbs	
М	923 lbs-ft	912 lbs-ft	944 lbs-ft	684 lbs-ft	688 lbs-ft	740 lbs-ft	925 lbs-ft	910 lbs-ft	931 lbs-ft	
е	0.13 ft	0.12 ft	0.14 ft	0.10 ft	0.08 ft	0.11 ft	0.44 ft	0.42 ft	0.47 ft	
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	
f _{min}	183.5 psf	199.6 psf	176.8 psf	214.4 psf	263.1 psf	204.9 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	382.5 psf	396.1 psf	380.2 psf	361.8 psf	411.4 psf	364.4 psf	185.6 psf	185.9 psf	183.2 psf	

Maximum Bearing Pressure = 411 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.395 k 12.808 k 7.421 k <u>32%</u>	Rear Strut Maximum Axial Load = 3.570 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 48%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.424 k 12.808 k 7.421 k <u>33%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
0	A-a	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 53.78 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 1.076 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.854 \text{ in} \\ \hline 0.854 \leq 1.076, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 138 \text{ in}$$
 $J = 0.432$
 381.773
 $R_C = \frac{\theta_y}{2} F_{CY}$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 138$$

$$J = 0.432$$

$$242.785$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 28.3$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

 $\phi F_L =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L St = 25.1 \text{ ksi}$$

 $\phi F_L =$

$$lx = 897074 \text{ mm}^4$$

2.155 in⁴

43.2 ksi

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max}Wk = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 88.9 in $L_b =$ J= 1.08

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 29.4 \text{ ksi} \end{split}$$

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$

3.4.16

Weak Axis: 3.4.14

$$L_b = 88.9$$
 $J = 1.08$

$$J = 1.08$$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

29.2

 $\phi F_1 =$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

S1 = 12.2

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 = 46.7
 $\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16.1 Used
Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 16.2 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 31.6 \text{ ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

 $P_{max} =$

Rev. 11.05.2015

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$L_{b} = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{\frac{\theta_{y}}{\theta_{b}}Fcy}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$C_c^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$\int Bc - \frac{\theta_y}{2} Fcy$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$
 k_*Rn

$$S2 = \frac{k_1 B p}{1.6 D p}$$

S2 =
$$46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$0.672 \text{ in}^4$$

y = 27.5 mm

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$φF_L$$
= 1.3 $φyFcy$
 $φF_L$ = 43.2 ksi

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{\text{max}} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$J_{b} = 78.03$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\theta_b}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S2 = C_t$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 28.2 \text{ ksi} \\ \\ k = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \\ y = & 27.5 \text{ mm} \\ \\ Sx = & 0.621 \text{ in}^3 \\ \\ M_{max} St = & 1.460 \text{ k-ft} \\ \end{array}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}$$

$$\begin{aligned} & \text{ly} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & \text{M}_{\text{max}} \text{Wk} = & 1.460 \text{ k-ft} \end{aligned}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83271 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Y	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-37.962	-37.962	0	0
2	M14	٧	-37.962	-37.962	0	0
3	M15	V	-63.27	-63.27	0	0
4	M16	V	-63.27	-63.27	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	85.415	85.415	0	0
2	M14	V	66.434	66.434	0	0
3	M15	V	37.962	37.962	0	0
4	M16	У	37.962	37.962	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Ζ	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Ζ	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	744.893	2	1039.849	2	.802	1	.003	1	0	1	0	1
2		min	-926.545	3	-1267.936	3	-30.29	5	21	4	0	1	0	1
3	N7	max	.043	9	993.32	1	987	12	002	12	0	1	0	1
4		min	144	2	-34.968	5	-339.656	4	651	4	0	1	0	1
5	N15	max	.204	3	2395.114	1	0	1	0	1	0	1	0	1
6		min	-1.558	2	108.376	15	-321.682	4	627	4	0	1	0	1
7	N16	max	2785.592	2	3441.52	2	0	12	0	2	0	1	0	1
8		min	-2954.918	3	-4172.372	3	-30.053	5	212	4	0	1	0	1
9	N23	max	.048	14	993.32	1_	15.802	1	.03	1	0	1	0	1
10		min	144	2	70.764	12	-327.748	5	631	4	0	1	0	1
11	N24	max	744.893	2	1039.849	2	056	12	0	12	0	1	0	1
12		min	-926.545	3	-1267.936	3	-31.065	5	212	4	0	1	0	1
13	Totals:	max	4273.532	2	9142.89	1	0	1						
14		min	-4807.744	3	-6261.849	3	-1073.033	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M13	1	max	147.095	1	358.879	2	-11.877	12	.002	3	.352	1	0	4
2			min	9.271	12	-570.411	3	-205.668	1	011	2	.022	12	0	3
3		2	max	147.095	1	251.616	2	-9.258	12	.002	3	.161	4	.621	3
4			min	9.271	12	-401.393	3	-158.326	1	011	2	.009	12	39	2
5		3	max	147.095	1	144.353	2	-6.64	12	.002	3	.081	5	1.026	3
6			min	9.271	12	-232.376	3	-110.983	1	011	2	052	1	643	2
7		4	max	147.095	1	37.144	1	-4.022	12	.002	3	.039	5	1.215	3
8			min	9.271	12	-63.359	3	-63.64	1	011	2	164	1	759	2
9		5	max	147.095	1	105.658	3	-1.404	12	.002	3	.002	5	1.188	3
10			min	9.271	12	-70.173	2	-31.267	4	011	2	215	1	738	2
11		6	max	147.095	1	274.676	3	31.045	1	.002	3	012	12	.945	3
12			min	4.226	15	-177.437	2	-22.584	5	011	2	205	1	58	2
13		7	max	147.095	1	443.693	3	78.388	1	.002	3	009	12	.486	3
14			min	-6.343	5	-284.7	2	-18.533	5	011	2	135	1	285	1
15		8	max	147.095	1	612.71	3	125.731	1	.002	3	0	10	.148	2
16			min	-19.46	5	-391.963	2	-14.482	5	011	2	079	4	189	3
17		9	max	147.095	1	781.728	3	173.074	1	.002	3	.186	1	.717	2
18			min	-32.577	5	-499.226	2	-10.431	5	011	2	092	5	-1.08	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	147.095	1	606.489	2	-11.688	12	.003	14	.437	1	1.424	2
20			min	9.271	12	-950.745	3	-220.416	1	011	2	.021	12	-2.187	3
21		11	max	147.095	1	499.226	2	-9.07	12	.011	2	.186	1	.717	2
22			min	9.271	12	-781.728	3	-173.074	1	002	3	.008	12	-1.08	3
23		12	max	147.095	1	391.963	2	-6.451	12	.011	2	.075	5	.148	2
24			min	9.271	12	-612.71	3	-125.731	1	002	3	005	1	189	3
25		13	max	147.095	1	284.7	2	-3.833	12	.011	2	.032	5	.486	3
26			min	9.271	12	-443.693	3	-78.388	1	002	3	135	1	285	1
27		14	max	147.095	1	177.437	2	-1.215	12	.011	2	004	15	.945	3
28			min	9.271	12	-274.676	3	-36.039	4	002	3	205	1	58	2
29		15	max	147.095	1	70.173	2	16.297	1	.011	2	012	12	1.188	3
30			min	3.178	15	-105.658	3	-23.794	5	002	3	215	1	738	2
31		16	max	147.095	1	63.359	3	63.64	1	.011	2	008	12	1.215	3
32			min	-7.972	5	-37.144	1	-19.743	5	002	3	164	1	759	2
33		17	max	147.095	1	232.376	3	110.983	1	.011	2	001	12	1.026	3
34			min	-21.089	5	-144.353	2	-15.692	5	002	3	104	4	643	2
35		18	max	147.095	1	401.393	3	158.326	1	.011	2	.12	1	.621	3
36		1.0	min	-34.205	5	-251.616	2	-11.641	5	002	3	107	5	39	2
37		19	max	147.095	1	570.411	3	205.668	1	.011	2	.352	1	0	1
38		'	min	-47.322	5	-358.879	2	-7.59	5	002	3	119	5	0	3
39	M14	1	max	70.023	4	375.416	2	-12.177	12	.002	3	.396	1	0	4
40	IVIT	<u> </u>	min	3.764	12	-448.988	3	-211.347	1	008	2	.025	12	0	3
41		2	max	62.695	1	268.152	2	-9.559	12	.006	3	.222	4	.491	3
42			min	3.764	12	-318.777	3	-164.005	1	008	2	.011	12	411	2
43		3	max	62.695	1	160.889	2	-6.94	12	.006	3	.117	5	.815	3
44		3	min	3.764	12	-188.565	3	-116.662	1	008	2	023	1	685	2
45		4		62.695			2	-4.322	12	.006	3	.06	5	.972	3
		4	max		1	53.626					2		1		
46		-	min	3.764	12	-58.353	3	-69.319	1	008		142		822	2
47		5	max	62.695	1	71.858	3	-1.704	12	.006	3	.008	5	.964	3
48			min	1.118	15	-54.311	1	-45.045	4	008	2	2	1	822	2
49		6	max	62.695	1	202.07	3	25.366	1	.006	3	011	12	.789	3
50		-	min	-11.361	5	-160.9	2	-34.703	5	008	2	198	1	685	2
51		7	max	62.695	1	332.282	3	72.709	1	.006	3	008	12	.447	3
52			min	-24.478	5	-268.164	2	-30.652	5	008	2	136	1	411	2
53		8	max	62.695	1	462.493	3	120.052	1	.006	3	0	10	.01	1
54			min	-37.594	5	-375.427	2	-26.601	5	008	2	123	4	06	3
55		9	max	62.695	1	592.705	3	167.395	1	.006	3	.171	1	.555	1
56			min	-50.711	5	-482.69	2	-22.55	5	008	2	149	5	735	3
57		10	max	89.896	4	589.953	2	-11.388	12	.006	3	.415	1	1.236	1
58			min	3.764	12	-722.917	3	-214.737	1_	008	2	.02	12	-1.575	3
59		11	max	76.779	4	482.69	2	-8.769	12	.008	2	.224	4	.555	1
60			min	3.764	12	-592.705	3	-167.395		006	3	.007	12	735	3
61		12	max	63.662	4	375.427	2	-6.151	12	.008	2	.115	5	.01	1
62			min	3.764	12	-462.493	3	-120.052	1	006	3	012	1	06	3
63		13			1	268.164	2	-3.533	12	.008	2	.057	5	.447	3
64			min	3.764	12	-332.282	3	-72.709	1	006	3	136	1	411	2
65		14	max		1	160.9	2	915	12	.008	2	.005	5	.789	3
66			min	3.764	12	-202.07	3	-45.986	4	006	3	198	1	685	2
67		15	max	62.695	1	54.311	1	21.976	1	.008	2	011	12	.964	3
68			min	3.764	12	-71.858	3	-34.942	5	006	3	2	1	822	2
69		16	max	62.695	1	58.353	3	69.319	1	.008	2	007	12	.972	3
70			min	-4.736	5	-53.626	2	-30.891	5	006	3	142	1	822	2
71		17	max	62.695	1	188.565	3	116.662	1	.008	2	0	3	.815	3
72			min	-17.853	5	-160.889	2	-26.84	5	006	3	129	4	685	2
73		18		62.695	1	318.777	3	164.005	1	.008	2	.156	1	.491	3
74			min	-30.97	5	-268.152	2	-22.79	5	006	3	153	5	411	2
75		19	max		1	448.988	3	211.347	1	.008	2	.396	1	0	1
													_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-44.086	5	-375.416	2	-18.739	5	006	3	179	5	0	3
77	M15	1	max	95.945	5	550.05	2	-12.136	12	.009	2	.402	4	0	2
78			min	-66.228	1	-252.605	3	-211.311	1	006	3	.024	12	0	3
79		2	max	82.828	5	391.046	2	-9.518	12	.009	2	.262	4	.277	3
80			min	-66.228	1	-180.603	3	-163.968	1	006	3	.011	12	601	2
81		3	max	69.712	5	232.042	2	-6.9	12	.009	2	.146	5	.462	3
82			min	-66.228	1	-108.601	3	-116.626	1	006	3	023	1	999	2
83		4	max	56.595	5	73.038	2	-4.282	12	.009	2	.077	5	.554	3
84			min	-66.228	1	-36.599	3	-69.744	4	006	3	142	1	-1.194	2
85		5	max	43.478	5	35.404	3	-1.663	12	.009	2	.014	5	.555	3
86			min	-66.228	1	-85.966	2	-53.771	4	006	3	201	1	-1.186	2
87		6	max	30.362	5	107.406	3	25.403	1	.009	2	011	12	.464	3
88			min	-66.228	1	-244.97	2	-43.379	5	006	3	198	1	975	2
89		7	max	17.245	5	179.408	3	72.745	1	.009	2	008	12	.281	3
90			min	-66.228	1	-403.974	2	-39.328	5	006	3	136	1	56	2
91		8	max	4.128	5	251.41	3	120.088	1	.009	2	0	10	.058	2
92			min	-66.228	1	-562.978	2	-35.277	5	006	3	15	4	0	15
93		9	max	-4.251	12	323.413	3	167.431	1	.009	2	.171	1	.879	2
94			min	-66.228	1	-721.982	2	-31.226	5	006	3	187	5	362	3
95		10	max	-4.251	12	880.986	2	-11.428	12	.009	2	.415	1	1.903	2
96			min	-66.228	1	-395.415	3	-214.774	1	006	3	.02	12	821	3
97		11	max	-1.754	15	721.982	2	-8.81	12	.006	3	.262	4	.879	2
98			min	-66.228	1	-323.413	3	-167.431	1	009	2	.007	12	362	3
99		12	max	-4.251	12	562.978	2	-6.192	12	.006	3	.142	5	.058	2
100			min	-66.228	1	-251.41	3	-120.088	1	009	2	012	1	0	15
101		13	max	-4.251	12	403.974	2	-3.573	12	.006	3	.074	5	.281	3
102		'	min	-66.228	1	-179.408	3	-72.745	1	009	2	136	1	56	2
103		14	max	-4.251	12	244.97	2	955	12	.006	3	.01	5	.464	3
104			min	-66.228	1	-107.406	3	-54.746	4	009	2	198	1	975	2
105		15	max	-4.251	12	85.966	2	21.94	1	.006	3	011	12	.555	3
106			min	-72.976	4	-35.404	3	-43.625	5	009	2	201	1	-1.186	2
107		16	max	-4.251	12	36.599	3	69.283	1	.006	3	007	12	.554	3
108			min	-86.093	4	-73.038	2	-39.574	5	009	2	142	1	-1.194	2
109		17	max	-4.251	12	108.601	3	116.626	1	.006	3	0	3	.462	3
110			min	-99.209	4	-232.042	2	-35.523	5	009	2	158	4	999	2
111		18	max	-4.251	12	180.603	3	163.968	1	.006	3	.156	1	.277	3
112		'		-112.326	4	-391.046	2	-31.472	5	009	2	192	5	601	2
113		19	max	-4.251	12	252.605	3	211.311	1	.006	3	.396	1	0	2
114		'		-125.443	4	-550.05	2	-27.421	5	009	2	23	5	0	5
115	M16	1	max	93.41	5	534.069	2	-11.749	12	.008	1	.354	1	0	2
116	WITO			-158.562				-205.898		009	3	.022	12	0	3
117		2		80.294	5	375.065	2	-9.13	12	.008	1	.205	4	.261	3
118				-158.562	1	-168.391	3	-158.556		009	3	.008	12	581	2
119		3		67.177	5	216.061	2	-6.512	12	.008	1	.113	5	.43	3
120		Ť		-158.562	1	-96.389	3	-111.213	1	009	3	051	1	958	2
121		4		54.061	5	57.057	2	-3.894	12	.008	1	.059	5	.507	3
122				-158.562	1	-24.386	3	-63.87	1	009	3	163	1	-1.133	2
123		5		40.944	5	47.616	3	-1.275	12	.008	1	.01	5	.493	3
124		-		-158.562	1	-101.947	2	-40.938	4	009	3	214	1	-1.104	2
125		6	max	27.827	5	119.618	3	30.815	1	.008	1	012	12	.386	3
126				-158.562	1	-260.951	2	-32.095	5	009	3	205	1	872	2
127		7	max		5	191.62	3	78.158	1	.008	1	008	12	.187	3
128				-158.562	1	-419.955	2	-28.044	5	009	3	136	1	437	2
129		8	max	1.594	5	263.623	3	125.501	1	.008	1	0	10	.201	2
130		0		-158.562	1	-578.959	2	-23.993	5	009	3	108	4	104	3
131		9	max		15	335.625	3	172.844	1	.008	1	.185	1	1.042	2
132		3		-1.466 -158.562	1		2	-19.942	5	009	3	133	5		3
132			1111111	-100.002		-737.963		-13.342	J	009	J	133	່ວ	487	່ ວ_

Model Name

Schletter, Inc. HCV

. Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					LC
133		10	max	-9.714	12	896.967	2	-11.816	12	.008	1	.436	1_	2.087	2
134			min	-158.562	1_	-407.627	3	-220.186	1	009	3	.022	12	962	3
135		11	max	-9.714	12	737.963	2	-9.198	12	.009	3	.213	4	1.042	2
136			min	-158.562	1	-335.625	3	-172.844	1	008	1	.009	12	487	3
137		12	max	-9.714	12	578.959	2	-6.579	12	.009	3	.104	4	.201	2
138			min	-158.562	1	-263.623	3	-125.501	1	008	1	006	1	104	3
139		13	max	-9.714	12	419.955	2	-3.961	12	.009	3	.049	5	.187	3
140			min	-158.562	1	-191.62	3	-78.158	1	008	1	136	1	437	2
141		14	max	-9.714	12	260.951	2	-1.343	12	.009	3	0	15	.386	3
142			min	-158.562	1	-119.618	3	-45.603	4	008	1	205	1	872	2
143		15	max	-9.714	12	101.947	2	16.527	1	.009	3	012	12	.493	3
144			min	-158.562	1	-47.616	3	-33.283	5	008	1	214	1	-1.104	2
145		16	max	-9.714	12	24.386	3	63.87	1	.009	3	008	12	.507	3
146			min	-158.562	1	-57.057	2	-29.232	5	008	1	163	1	-1.133	2
147		17	max	-9.714	12	96.389	3	111.213	1	.009	3	002	12	.43	3
148			min	-158.562	1	-216.061	2	-25.181	5	008	1	136	4	958	2
149		18	max	-9.714	12	168.391	3	158.556	1	.009	3	.121	1	.261	3
150			min	-158.562	1	-375.065	2	-21.13	5	008	1	151	5	581	2
151		19	max	-9.714	12	240.393	3	205.898	1	.009	3	.354	1	0	2
152		'	min	-161.847	4	-534.069	2	-17.079	5	008	1	176	5	0	3
153	M2	1	max	867.812	2	2.038	4	.498	1	0	12	0	3	0	1
154	1712		min	-1084.334	3	.489	15	-30.89	4	0	4	0	1	0	1
155		2	max	868.332	2	1.92	4	.498	1	0	12	0	1	0	15
156			min	-1083.943	3	.461	15	-31.348	4	0	4	011	4	0	4
157		3	max	868.853	2	1.801	4	.498	1	0	12	0	1	0	15
158			min	-1083.553	3	.433	15	-31.806	4	0	4	022	4	001	4
159		4	max	869.374	2	1.682	4	.498	1	0	12	0	1	0	15
160		-	min	-1083.162	3	.405	15	-32.265	4	0	4	034	4	002	4
161		5		869.894	2	1.563	4	.498	1	0	12	034 0	1	0	15
162		3	max min	-1082.772	3	.377	15	-32.723	4	0	4	045	4	003	4
163		6		870.415	2	1.444	4	.498	1	0	12	045 0	1	003 0	15
164		0	max	-1082.381	3	.349	15	-33.181	4	0	4	057	4	003	4
165		7		870.936	2	1.325	4	.498	1	0	12	.001	1	0	15
166			max	-1081.991	3	.321	15	-33.64	4	0	4	069	4	004	
		0	min		2				1				1	004 0	4
167		8	max	871.456		1.206	4 1E	.498		0	12	.001	_	_	15
168		9	min	-1081.6	3	.293	15	-34.098	1		12	081	4	004	4
169		9	max	871.977 -1081.209	3	1.088	<u>4</u> 15	.498 -34.556	4	0	4	.001	4	001	15
170		10	min	872.498		.265			1		12	093	1	004	4
171		10	max	-1080.819	2	.969	4	.498		0		.002	<u> </u>	001	15
172		4.4	min		3	.231	12	-35.015	4	0	4	106	4	005	4
173		11		873.018	2	.85	4	.498	1	0	12	.002	1	001	15
174		40	min	-1080.428	3	.185	12	-35.473	4	0	4	118	4	005	4
175		12		873.539	2	.731	4	.498	1	0	12	.002	1	001	15
176		40		-1080.038	3	.139	12	-35.931	4	0	4	<u>131</u>	4	005	4
177		13	max	874.06	2	.62	2	.498	1	0	12	.002	1	001	15
178		4.4	min	-1079.647	3	.092	12	-36.39	4	0	4	144	4	006	4
179		14		874.581	2	.527	2	.498	1	0	12	.002	1	001	15
180				-1079.257	3	.046	12	-36.848	4	0	4	<u>157</u>	4	006	4
181		15		875.101	2	.434	2	.498	1	0	12	.002	1	001	15
182		4.0	min	-1078.866	3	014	3	-37.306	4	0	4	<u>17</u>	4	006	4
183		16		875.622	2	.342	2	.498	1	0	12	.003	1	001	15
184			min	-1078.476	3	084	3	-37.765	4	0	4	<u>184</u>	4	006	4
185		17		876.143	2	.249	2	.498	1	0	12	.003	1	002	15
186				-1078.085	3	153	3	-38.223	4	0	4	197	4	006	4
187		18	max		2	.156	2	.498	1	0	12	.003	1	002	15
188			min	-1077.695	3	223	3	-38.682	4	0	4	211	4	006	4
189		19	max	877.184	2	.064	2	.498	1	0	12	.003	1	001	12

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
190			min	-1077.304	3	292	3	-39.14	4	0	4	225	4	006	4
191	M3	1	max		2	7.679	4	7.901	4	0	12	0	1	.006	4
192			min	-766.005	3	1.814	15	.025	12	0	4	041	4	.001	12
193		2	max	616.794	2	6.918	4	8.435	4	0	12	00	1	.003	2
194			min	-766.133	3	1.635	15	.025	12	0	4	038	4	0	12
195		3	max	616.623	2	6.157	4	8.97	4	0	12	0	1	.001	2
196			min	-766.261	3	1.456	15	.025	12	0	4	034	4	001	3
197		4	max		2	5.396	4	9.505	4	0	12	.001	1	0	15
198			min	-766.389	3	1.277	15	.025	12	0	4	03	4	002	3
199		5	max	616.283	2	4.635	4	10.04	4	0	12	.001	1	0	15
200			min	-766.516	3	1.098	15	.025	12	0	4	026	4	004	6
201		6	max		2	3.874	4	10.574	4	0	12	.001	1	001	15
202			min	-766.644	3	.919	15	.025	12	0	4	022	5	006	6
203		7	max	615.942	2	3.113	4	11.109	4	0	12	.002	1	002	15
204			min	-766.772	3	.74	15	.025	12	0	4	017	5	007	6
205		8	max	615.772	2	2.352	4	11.644	4	0	12	.002	1	002	15
206			min	-766.9	3	.561	15	.025	12	0	4	013	5	008	6
207		9	max	615.601	2	1.591	4	12.178	4	0	12	.002	1	002	15
208			min	-767.027	3	.383	15	.025	12	0	4	008	5	009	6
209		10	max	615.431	2	.83	4	12.713	4	0	12	.002	1	002	15
210			min	-767.155	3	.198	12	.025	12	0	4	003	5	01	6
211		11	max	615.261	2	.176	2	13.248	4	0	12	.003	4	002	15
212			min	-767.283	3	159	3	.025	12	0	4	0	12	01	6
213		12	max	615.09	2	154	15	13.782	4	0	12	.009	4	002	15
214			min	-767.411	3	692	6	.025	12	0	4	0	12	01	6
215		13	max	614.92	2	333	15	14.317	4	0	12	.015	4	002	15
216			min	-767.538	3	-1.453	6	.025	12	0	4	0	12	009	6
217		14	max		2	512	15	14.852	4	0	12	.021	4	002	15
218			min	-767.666	3	-2.214	6	.025	12	0	4	0	12	009	6
219		15	max	614.579	2	691	15	15.386	4	0	12	.027	4	002	15
220			min	-767.794	3	-2.975	6	.025	12	0	4	0	12	007	6
221		16	max	614.409	2	87	15	15.921	4	0	12	.033	4	001	15
222			min	-767.922	3	-3.736	6	.025	12	0	4	0	12	006	6
223		17	max	614.238	2	-1.049	15	16.456	4	0	12	.04	4	001	15
224			min	-768.049	3	-4.497	6	.025	12	0	4	0	12	004	6
225		18	max	614.068	2	-1.227	15	16.99	4	0	12	.047	4	0	15
226			min	-768.177	3	-5.258	6	.025	12	0	4	0	12	002	6
227		19	max	613.898	2	-1.406	15	17.525	4	0	12	.054	4	0	1
228			min	-768.305	3	-6.019	6	.025	12	0	4	0	12	0	1
229	M4	1	max	990.254	1	0	1	989	12	0	1	.051	4	0	1
230			min	-36.398	5	0	1	-338.749	4	0	1	0	12	0	1
231		2	max		1	0	1	989	12	0	1	.013	4	0	1
232			min	-36.319	5	0	1	-338.896		0	1	0	12	0	1
233		3	max		1	0	1	989	12	0	1	0	12	0	1
234			min	-36.239	5	0	1	-339.044		0	1	026	4	0	1
235		4		990.765	1	0	1	989	12	0	1	0	12	0	1
236			min	-36.16	5	0	1	-339.192		0	1	065	4	0	1
237		5	max		1	0	1	989	12	0	1	0	12	0	1
238			min	-36.08	5	0	1	-339.339		0	1	104	4	0	1
239		6	max		1	0	1	989	12	0	1	0	12	0	1
240		Ĭ	min	-36.001	5	0	1	-339.487	4	0	1	143	4	0	1
241		7		991.276	1	0	1	989	12	0	1	0	12	0	1
242			min		5	0	1	-339.635		0	1	182	4	0	1
243		8	max		1	0	1	989	12	0	1	0	12	0	1
244			min	-35.842	5	0	1	-339.782		0	1	221	4	0	1
245		9		991.617	1	0	1	989	12	0	1	0	12	0	1
246		Ť	min		5	0	1	-339.93	4	0	1	26	4	0	1
270			1111111	00.700				000.00		•		.20			

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	991.787	1	0	1	989	12	0	1	0	12	0	1
248			min	-35.683	5	0	1	-340.077	4	0	1	299	4	0	1
249		11	max	991.958	1	0	1	989	12	0	1	0	12	0	1
250			min	-35.604	5	0	1	-340.225	4	0	1	338	4	0	1
251		12	max	992.128	1	0	1	989	12	0	1	001	12	0	1
252			min	-35.524	5	0	1	-340.373	4	0	1	377	4	0	1
253		13	max	992.298	1	0	1	989	12	0	1	001	12	0	1
254			min	-35.445	5	0	1	-340.52	4	0	1	417	4	0	1
255		14	max	992.469	1	0	1	989	12	0	1	001	12	0	1
256			min	-35.365	5	0	1	-340.668	4	0	1	456	4	0	1
257		15	max	992.639	1	0	1	989	12	0	1	001	12	0	1
258			min	-35.286	5	0	1	-340.816	4	0	1	495	4	0	1
259		16	max	992.809	1	0	1	989	12	0	1	001	12	0	1
260			min	-35.206	5	0	1	-340.963	4	0	1	534	4	0	1
261		17	max	992.98	1	0	1	989	12	0	1	002	12	0	1
262			min	-35.127	5	0	1	-341.111	4	0	1	573	4	0	1
263		18	max	993.15	1	0	1	989	12	0	1	002	12	0	1
264			min	-35.047	5	0	1	-341.258	4	0	1	612	4	0	1
265		19	max		1	0	1	989	12	0	1	002	12	0	1
266			min	-34.968	5	0	1	-341.406	4	0	1	651	4	0	1
267	M6	1		2810.319	2	2.151	2	0	1	0	1	0	4	0	1
268			min	-3570.279	3	.34	12	-31.237	4	0	4	0	1	0	1
269		2	max	2810.839	2	2.058	2	0	1	0	1	0	1	0	12
270			min	-3569.889	3	.294	12	-31.696	4	0	4	011	4	0	2
271		3	max		2	1.966	2	0	1	0	1	0	1	0	12
272			min	-3569.498	3	.248	12	-32.154	4	0	4	023	4	001	2
273		4		2811.881	2	1.873	2	0	1	0	1	0	1	0	12
274			min	-3569.108	3	.201	12	-32.612	4	0	4	034	4	002	2
275		5		2812.401	2	1.78	2	0	1	0	1	0	1	0	12
276			min	-3568.717	3	.155	12	-33.071	4	0	4	046	4	003	2
277		6		2812.922	2	1.688	2	0	1	0	1	0	1	0	12
278			min	-3568.327	3	.109	12	-33.529	4	0	4	058	4	003	2
279		7	+	2813.443	2	1.595	2	0	1	0	1	0	1	0	12
280			min	-3567.936	3	.048	3	-33.987	4	0	4	07	4	004	2
281		8		2813.964	2	1.503	2	0	1	0	1	0	1	0	12
282			min	-3567.546	3	021	3	-34.446	4	0	4	082	4	005	2
283		9		2814.484	2	1.41	2	0	1	0	1	0	1	0	12
284			min	-3567.155	3	09	3	-34.904	4	0	4	094	4	005	2
285		10		2815.005	2	1.317	2	0	1	0	1	0	1	0	12
286		10	min	-3566.765	3	16	3	-35.362	4	0	4	107	4	006	2
287		11		2815.526		1.225	2	0	1	0	1	0	1	0	12
288			min		3	229	3	-35.821	4	0	4	12	4	006	2
289		12		2816.046		1.132	2	0	1	0	1	0	1	0	3
290		12	min		3	299	3	-36.279	4	0	4	132	4	006	2
291		13		2816.567	2	1.039	2	0	1	0	1	0	1	0	3
292		13	min		3	368	3	-36.737	4	0	4	145	4	007	2
293		1/		2817.088	2	.947	2	0	1	0	1	0	1	0	3
294		14	min		3	438	3	-37.196	4	0	4	159	4	007	2
295		15		2817.608			2		1		1		1		3
		15		-3564.812	2	.854		27.654		0		172		0	
296		16	min		3	507	3	-37.654	1	0	1	172	4	007	2
297		16		2818.129	2	.762	2	0	_	0		105	1	0	3
298		47	min	-3564.422	3	577	3	-38.113	4	0	4	185	4	008	2
299		17		2818.65	2	.669	2	0	1	0	1	0	1	0	3
300		40	min		3	646	3	-38.571	4	0	4	199	4	008	2
301		18	max		2	.576	2	0	1	0	1	0	1	0	3
302		40	min	-3563.641	3	716	3	-39.029	4	0	4	213	4	008	2
303		19	max	2819.691	2	.484	2	0	1	0	1	0	1	.001	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

304	Member	Sec	min	Axial[lb]	LC 3	y Shear[lb]	LC 3	z Shear[lb] -39.488	LC 4	Torque[k-ft]	LC 4	y-y Mome	LC 4	z-z Mome	LC 2
305	M7	1	_	2386.944	2	7.695	6	7.437	4	0	1	0	1	.008	2
306	IVI /			-2421.286	3	1.807	15	0	1	0	4	041	4	001	3
		2	min					-	4						2
307			_	2386.773	2	6.934	6	7.972		0	1	0	1	.006	
308			min	-2421.413	3_	1.628	15	0	1_	0	4	038	4	003	3
309		3		2386.603	2	6.173	6	8.507	4	0	1	0	1	.004	2
310		.	min	-2421.541	3	1.449	15	0	1	0	4	035	4	004	3
311		4		2386.433	2	5.412	6	9.042	4	0	1	0	1	.001	2
312			min	-2421.669	3	1.27	15	0	1	0	4	031	4	005	3
313		5		2386.262	2_	4.651	6	9.576	4	0	1_	0	1	0	2
314			min	-2421.797	3_	1.091	15	0	1	0	4	027	4	006	3
315		6	max	2386.092	2	3.89	6	10.111	4	0	1	0	1	001	15
316			min	-2421.924	3	.912	15	0	1	0	4	023	4	007	3
317		7	max	2385.922	2	3.129	6	10.646	4	0	1	0	1	002	15
318			min	-2422.052	3	.733	15	0	1	0	4	019	4	007	3
319		8	max	2385.751	2	2.368	6	11.18	4	0	1	0	1	002	15
320			min	-2422.18	3	.527	12	0	1	0	4	014	4	008	4
321		9	max	2385.581	2	1.722	2	11.715	4	0	1	0	1	002	15
322			min	-2422.308	3	.231	12	0	1	0	4	009	4	009	4
323		10		2385.411	2	1.129	2	12.25	4	0	1	0	1	002	15
324		10	min	-2422.435	3	137	3	0	1	0	4	005	4	01	4
325		11	max		2	.536	2	12.784	4	0	1	0	4	002	15
326			min	-2422.563	3	582	3	0	1	0	4	0	1	01	4
327		12	max	2385.07	2	057	2	13.319	4	0	1	.006	4	002	15
328		12	min	-2422.691	3	-1.027	3	0	1	0	4	0	1	01	4
329		13	max	2384.9	2	34	15	13.854	4	0	1	.012	4	002	15
330		13		-2422.819	3	-1.471	3	0	1	0	4	0	1	002	4
		14	min	2384.729			15	14.388	-		1		<u> </u>		15
331		14			2	519		_	4	0	_	.018	4	002	
332		4.5	min	-2422.946	3	-2.198	4	0	1	0	4	0	1	009	4
333		15		2384.559	2	698	15	14.923	4	0	1	.024	4	002	15
334		10	min	-2423.074	3	-2.959	4	0		0	4	0	1	007	4
335		16		2384.389	2	877	15	15.458	4	0	1	.03	4	001	15
336			min	-2423.202	3	-3.72	4	0	1	0	4	0	1	006	4
337		17	_	2384.218	2	-1.055	15	15.993	4	0	1	.037	4	001	15
338		10	min	-2423.33	3_	-4.481	4	0	1	0	4	0	1	004	4
339		18		2384.048	2	-1.234	15	16.527	4	0	1	.043	4	0	15
340			min	-2423.457	3_	-5.242	4	0	1	0	4	0	1	002	4
341		19	max	2383.878	_2_	-1.413	15	17.062	4	0	1_	.05	4	0	1
342			min	-2423.585	3	-6.003	4	0	1	0	4	0	1	0	1
343	<u>M8</u>	1_	max	2392.048	_1_	0	1_	0	1	0	1_	.048	4	0	1
344			min	107.451		0	1	-324.952		0	1	0	1	0	1
345		2		2392.218	_1_	0	1	0	1	0	1_	.01	4	0	1
346				107.503	15	0	1	-325.1	4	0	1	0	1	0	1
347		3		2392.388	_1_	0	1	0	1	0	1	0	1	0	1
348				107.554		0	1	-325.248	4	0	1	027	4	0	1
349		4	max	2392.559	1	0	1	0	1	0	1	0	1	0	1
350			min	107.605	15	0	1	-325.395	4	0	1	064	4	0	1
351		5	max	2392.729	1	0	1	0	1	0	1	0	1	0	1
352			min	107.657	15	0	1	-325.543	4	0	1	102	4	0	1
353		6	max	2392.899	1	0	1	0	1	0	1	0	1	0	1
354			min		15	0	1	-325.69	4	0	1	139	4	0	1
355		7		2393.07	1	0	1	0	1	0	1	0	1	0	1
356			min		15	0	1	-325.838		0	1	176	4	0	1
357		8		2393.24	1	0	1	0	1	0	1	0	1	0	1
358			min			0	1	-325.986	_	0	1	214	4	0	1
359		9	max		1	0	1	0	1	0	1	0	1	0	1
360			min		15	0	1	-326.133		0	1	251	4	0	1
000			1111111	107.002	10	J		020.100	т.	<u> </u>		.201	т.	<u> </u>	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

361	Member	Sec 10	may	Axial[lb] 2393.581	LC 1	y Shear[lb]	LC 1	z Shear[lb]	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 1
362		10		107.914	15	0	1	-326.281	4	0	1	289	4	0	1
363		11		2393.751	1	0	1	0	1	0	1	0	1	0	1
364		- 1 1		107.965	15	0	1	-326.429	4	0	1	326	4	0	1
365		12		2393.921	1	0	1	0	1	0	1	0	1	0	1
366		12		108.016	15	0	1	-326.576	4	0	1	364	4	0	1
367		13		2394.092	1	0	1	0	1	0	1	0	1	0	1
368		10		108.068	15	0	1	-326.724	4	0	1	401	4	0	1
369		14		2394.262	1	0	1	0	1	0	1	0	1	0	1
370		17		108.119	15	0	1	-326.872	4	0	1	439	4	0	1
371		15		2394.432	1	0	1	0	1	0	1	0	1	0	1
372		-10		108.171	15	0	1	-327.019	4	0	1	476	4	0	1
373		16		2394.603	1	0	1	0	1	0	1	0	1	0	1
374				108.222	15	0	1	-327.167	4	0	1	514	4	0	1
375		17		2394.773	1	0	1	0	1	0	1	0	1	0	1
376				108.273	15	0	1	-327.314	4	0	1	551	4	0	1
377		18		2394.943	1	0	1	0	1	0	1	0	1	0	1
378				108.325	15	0	1	-327.462	4	0	1	589	4	0	1
379		19		2395.114	1	0	1	0	1	0	1	0	1	0	1
380				108.376	15	0	1	-327.61	4	0	1	627	4	0	1
381	M10	1	max	867.812	2	1.995	6	028	12	0	1	0	4	0	1
382				-1084.334	3	.46	15	-31.226	4	0	5	0	3	0	1
383		2	max	868.332	2	1.876	6	028	12	0	1	0	10	0	15
384			min	-1083.943	3	.432	15	-31.684	4	0	5	011	4	0	6
385		3	max	868.853	2	1.757	6	028	12	0	1	0	12	0	15
386			min	-1083.553	3	.404	15	-32.143	4	0	5	023	4	001	6
387		4	max	869.374	2	1.638	6	028	12	0	1	0	12	0	15
388			min	-1083.162	3	.376	15	-32.601	4	0	5	034	4	002	6
389		5	max	869.894	2	1.52	6	028	12	0	1	0	12	0	15
390			min	-1082.772	3	.348	15	-33.059	4	0	5	046	4	003	6
391		6	max	870.415	2	1.401	6	028	12	0	1	0	12	0	15
392				-1082.381	3	.32	15	-33.518	4	0	5	058	4	003	6
393		7	max	870.936	2	1.282	6	028	12	0	1	0	12	0	15
394			min	-1081.991	3	.292	15	-33.976	4	0	5	07	4	004	6
395		8	max	871.456	2	1.163	6	028	12	0	_1_	0	12	0	15
396			min	-1081.6	3	.264	15	-34.435	4	0	5	082	4	004	6
397		9	max	871.977	2	1.044	6	028	12	0	_1_	0	12	0	15
398				-1081.209	3	.236	15	-34.893	4_	0	5	094	4	004	6
399		10	max	872.498	2	.925	6	028	12	0	1_	0	12	001	15
400		4.4	min	-1080.819	3	.208	15	-35.351	4	0	5	107	4	005	6
401		11		873.018	2	.806	6	028	12	0	1_	0	12	001	15
402		40		-1080.428	3	.18	15	-35.81	4_	0	5	119	4	005	6
403		12		873.539	2	.712	2	028	12	0	1_	0	12	001	15
404		40	min	-1080.038	3	.139	12	-36.268	4_	0	5	132	4	005	6
405		13	max	874.06 -1079.647	2	.62	2	028	12	0	1	0	12	001	15
406		11	min		3	.092	<u>12</u>	-36.726 028	4	0	<u>5</u> 1	145 0	4	005	6
407 408		14		874.581 -1079.257	2	.527	12	-37.185	12		5	159	12	001	15
408		15		875.101	<u>3</u> 2	.046 .434	2	028	<u>4</u> 12	0	<u> </u>	0	12	006 001	6
410		10		-1078.866	3	014	3	-37.643	4	0	5	172	4	006	15
411		16	max		2	.342	2	028	12	0	<u> </u>	0	12	006 001	15
412		10		-1078.476	3	084	3	-38.101	4	0	5	185	4	006	6
413		17		876.143	2	.249	2	028	12	0	1	0	12	001	15
414		17	min	-1078.085	3	153	3	-38.56	4	0	5	199	4	006	6
415		18		876.663	2	.156	2	028	12	0	1	0	12	000 001	15
416		10	min	-1077.695	3	223	3	-39.018	4	0	5	213	4	006	6
417		19		877.184	2	.064	2	028	12	0	1	0	12	001	15
T11		_ 10	παλ	577.10 4				.020	14	<u> </u>	_		14		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-1077.304	3	292	3	-39.476	4	0	5	227	4	006	6
419	M11	1	max	616.964	2	7.642	6	7.619	4	0	1	0	12	.006	6
420			min	-766.005	3	1.788	15	416	1	0	4	041	4	.001	15
421		2	max	616.794	2	6.881	6	8.154	4	0	1	0	12	.003	2
422			min	-766.133	3	1.61	15	416	1	0	4	038	4	0	12
423		3	max	616.623	2	6.12	6	8.689	4	0	1	0	12	.001	2
424			min	-766.261	3	1.431	15	416	1	0	4	035	4	001	3
425		4	max	616.453	2	5.359	6	9.224	4	0	1	0	12	0	15
426			min	-766.389	3	1.252	15	416	1	0	4	031	4	002	3
427		5	max	616.283	2	4.598	6	9.758	4	0	1	0	12	001	15
428			min	-766.516	3	1.073	15	416	1	0	4	027	4	004	4
429		6	max	616.112	2	3.837	6	10.293	4	0	1	0	12	001	15
430			min	-766.644	3	.894	15	416	1	0	4	023	4	006	4
431		7	max	615.942	2	3.076	6	10.828	4	0	1	0	12	002	15
432			min	-766.772	3	.715	15	416	1	0	4	018	4	007	4
433		8	max	615.772	2	2.315	6	11.362	4	0	1	0	12	002	15
434			min	-766.9	3	.536	15	416	1	0	4	014	4	009	4
435		9	max	615.601	2	1.554	6	11.897	4	0	1	0	12	002	15
436			min	-767.027	3	.357	15	416	1	0	4	009	4	009	4
437		10	max	615.431	2	.793	6	12.432	4	0	1	0	12	002	15
438			min	-767.155	3	.179	15	416	1	0	4	004	4	01	4
439		11	max		2	.176	2	12.966	4	0	1	.002	5	002	15
440			min	-767.283	3	159	3	416	1	0	4	002	1	01	4
441		12	max	615.09	2	179	15	13.501	4	0	1	.007	5	002	15
442			min	-767.411	3	73	4	416	1	0	4	002	1	01	4
443		13	max	614.92	2	358	15	14.036	4	0	1	.013	5	002	15
444			min	-767.538	3	-1.491	4	416	1	0	4	003	1	009	4
445		14	max	614.749	2	537	15	14.57	4	0	1	.019	5	002	15
446			min	-767.666	3	-2.252	4	416	1	0	4	003	1	009	4
447		15	max	614.579	2	716	15	15.105	4	0	1	.025	5	002	15
448		10	min	-767.794	3	-3.012	4	416	1	Ö	4	003	1	008	4
449		16	max		2	895	15	15.64	4	0	1	.032	5	001	15
450			min	-767.922	3	-3.773	4	416	1	0	4	003	1	006	4
451		17	max	614.238	2	-1.074	15	16.175	4	0	1	.038	5	001	15
452			min	-768.049	3	-4.534	4	416	1	0	4	003	1	004	4
453		18	max	614.068	2	-1.253	15	16.709	4	0	1	.045	5	0	15
454		1.0	min	-768.177	3	-5.295	4	-,416	1	0	4	004	1	002	4
455		19	max	613.898	2	-1.431	15	17.244	4	0	1	.052	5	0	1
456		1.0	min	-768.305	3	-6.056	4	416	1	0	4	004	1	0	1
457	M12	1	max		1	0	1	16.231	1	0	1	.049	5	0	1
458			min	69.23	12	0	1	-327.735	4	Ö	1	003	1	0	1
459		2	max		1	0	1	16.231	1	0	1	.012	5	0	1
460			min		12	0	1	-327.882		0	1	002	1	0	1
461		3	max		1	0	1	16.231	1	0	1	0	1	0	1
462		Ť	min	69.401	12	0	1	-328.03	4	0	1	026	4	0	1
463		4	max		1	0	1	16.231	1	0	1	.002	<u> </u>	0	1
464			min	69.486	12	0	1	-328.178		0	1	064	4	0	1
465		5	max		1	0	1	16.231	1	0	1	.004	1	0	1
466			min	69.571	12	0	1	-328.325	4	0	1	102	4	0	1
467		6	max		1	0	1	16.231	1	0	1	.006	1	0	1
468			min	69.656	12	0	1	-328.473	4	0	1	139	4	0	1
469		7	max		1	0	1	16.231	1	0	1	.008	1	0	1
470			min		12	0	1	-328.621	4	0	1	177	4	0	1
471		8	max		1	0	1	16.231	1	0	1	.01	1	0	1
472			min	69.827	12	0	1	-328.768		0	1	215	4	0	1
473		9	max		1	0	1	16.231	1	0	1	.011	1	0	1
474		3	min	69.912	12	0	1	-328.916		0	1	252	4	0	1
4/4			1111111	03.312	12	U		-320.910	4	U		252	4	U	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
475		10	max	991.787	1	0	1	16.231	1	0	1	.013	1	0	1
476			min	69.997	12	0	1	-329.063	4	0	1	29	4	0	1
477		11	max	991.958	1	0	1	16.231	1	0	1	.015	1	0	1
478			min	70.082	12	0	1	-329.211	4	0	1	328	4	0	1
479		12	max	992.128	1	0	1	16.231	1	0	1	.017	1	0	1
480			min	70.167	12	0	1	-329.359	4	0	1	366	4	0	1
481		13	max	992.298	1	0	1	16.231	1	0	1	.019	1	0	1
482			min	70.252	12	0	1	-329.506	4	0	1	404	4	0	1
483		14	max	992.469	1	0	1	16.231	1	0	1	.021	1	0	1
484			min	70.338	12	0	1	-329.654	4	0	1	442	4	0	1
485		15	max	992.639	1	0	1	16.231	1	0	1	.023	1	0	1
486			min	70.423	12	0	1	-329.802	4	0	1	479	4	0	1
487		16	max	992.809	1	0	1	16.231	1	0	1	.024	1	0	1
488			min	70.508	12	0	1	-329.949	4	0	1	517	4	0	1
489		17	max	992.98	1	0	1	16.231	1	0	1	.026	1	0	1
490			min	70.593	12	0	1	-330.097	4	0	1	555	4	0	1
491		18	max	993.15	1	0	1	16.231	1	0	1	.028	1	0	1
492			min	70.678	12	0	1	-330.244	4	0	1	593	4	0	1
493		19	max	993.32	1	0	1	16.231	1	0	1	.03	1	0	1
494			min	70.764	12	0	1	-330.392	4	0	1	631	4	0	1
495	M1	1	max	205.676	1	570.375	3	47.289	5	0	1	.352	1	.002	3
496			min	-7.59	5	-358.244	2	-146.882	1	0	3	119	5	011	2
497		2	max	206.497	1	569.495	3	48.53	5	0	1	.275	1	.178	2
498			min	-7.207	5	-359.418	2	-146.882	1	0	3	094	5	299	3
499		3	max	476.584	3	424.247	2	19.757	5	0	3	.197	1	.359	2
500			min	-272.698	2	-416.828	3	-146.672	1	0	2	069	5	588	3
501		4	max	477.2	3	423.073	2	20.999	5	0	3	.12	1	.146	1
502			min	-271.877	2	-417.708	3	-146.672	1	0	2	058	5	367	3
503		5	max	477.816	3	421.9	2	22.24	5	0	3	.043	1	003	15
504			min	-271.055	2	-418.588	3	-146.672	1	0	2	046	5	147	3
505		6	max	478.433	3	420.727	2	23.482	5	0	3	002	12	.074	3
506			min	-270.233	2	-419.468	3	-146.672	1	0	2	043	4	31	2
507		7	max	479.049	3	419.553	2	24.723	5	0	3	007	12	.296	3
508			min	-269.412	2	-420.348	3	-146.672	1	0	2	112	1	532	2
509		8	max	479.665	3	418.38	2	25.965	5	0	3	005	15	.518	3
510			min	-268.59	2	-421.228	3	-146.672	1	0	2	19	1	753	2
511		9	max		3	44.12	2	71.158	5	0	9	.109	1	.604	3
512			min	-175.548	2	.355	15		1	0	3	16	5	863	2
513		10	max		3	42.946	2	72.399	5	0	9	0	12	.589	3
514			min	-174.727	2	.001	15	-209.412	1	0	3	123	4	886	2
515		11		499.825		41.773		73.641	5	0	9	007	12	.574	3
516				-173.905		-1.436	4	-209.412	1	0	3	112	1	908	2
517		12		518.69	3	281.995	3	182.556	5	0	2	.187	1	.5	3
518				-99.524	10	-508.913	2	-143.285		0	3	251	5	806	2
519		13		519.306	3	281.115	3	183.797	5	0	2	.111	1	.352	3
520			min	-98.839	10	-510.086	2	-143.285	1	0	3	155	5	537	2
521		14		519.922	3	280.235	3	185.038	5	0	2	.036	1	.203	3
522					10	-511.259		-143.285		0	3	057	5	268	2
523		15		520.538	3	279.355	3	186.28	5	0	2	.041	5	.056	3
524			min	-97.47	10	-512.433	2	-143.285	1	0	3	04	1	019	9
525		16		521.154	3	278.475	3	187.521	5	0	2	.139	5	.273	2
526		<u>.</u>	min	-96.785	10	-513.606	2	-143.285	1	0	3	115	1	091	3
527		17		521.771	3	277.594	3	188.763	5	0	2	.239	5	.545	2
528			min	-96.1	10	-514.78	2	-143.285		0	3	191	1	238	3
529		18		16.695	5	535.778	2	-9.715	12	0	3	.24	5	.274	2
530		10	min	-206.714	1	-239.592	3	-163.33	4	0	2	27	1	118	3
531		10	max		5	534.604	2	-9.715	12	0	3	.176	5	.009	3
UUI		ו ט	шах	17.019	J	334.004		-9.710	14	U	_ J	.170	J	.008	<u>J</u>

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

533 M5		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
536	532			min	-205.892	1	-240.472	3	-162.088	4	0	2	354	1	008	1
1.536 2 max 441.64 1 1900.44 3 117.821 5 0 1 0 4 -224 4 -1006 3 537 3 max 1538.928 3 1311.249 2 22.856 4 0 4 0 1 1.269 2 2 2 3 3 0 1 0 1 -152 4 -1969 3 539 4 max 1538.928 3 1311.249 2 22.856 4 0 4 0 1 -152 4 -1969 3 539 4 max 1539.544 3 1310.075 2 94.097 4 0 4 0 1 -152 4 -1969 3 539 4 max 1539.544 3 1310.075 2 94.097 4 0 4 0 1 -112 4 -1.25 3 541 5 max 1540.16 3 1308.902 2 95.339 4 0 4 0 1 0 9 9 1 1 1 1 1 1 1 1	533	<u>M5</u>	1	max	440.818	1	1901.32	3	116.58	5	0	1	0	1	.022	2
536	534			min	23.377	12	-1208.998	2	0	1	0	4	285	4	003	3
538	535		2	max	441.64	1	1900.44	3	117.821	5	0	1	0	1	.66	2
539	536			min	23.788	12	-1210.172	2	0	1	0	4	224	4	-1.006	3
539	537		3	max	1538.928	3	1311.249	2	92.856	4	0	4	0	1	1.269	2
541	538			min	-986.985	2	-1362.303	3	0	1	0	1	162	4	-1.969	3
541	539		4	max	1539.544	3	1310.075	2	94.097	4	0	4	0	1	.596	1
642 min -988,342 2 - 1364,064 3 0 1 0 1 -0,62 4 -531 3 544 min -984,52 2 -1364,944 3 0 1 0 1 -012 4 -804 2 546 min -984,52 2 -1364,944 3 0 1 0 1 -012 4 -804 2 546 min -982,872 2 -1368,822 3 0 1 0 1 -1494 2 547 8 max 1542,009 3 1305,382 2 99,063 4 0 4 092 4 1,631 3 548 min -992,877 2 -357 0 1 0 1 2,143 2 1 0 1 0 1 2,143 2 1 0 1 1,143 2 2 3 3 1 0 1 1,183 3	540			min	-986.163	2	-1363.183	3	0	1	0	1	112	4	-1.25	3
644	541		5	max	1540.16	3	1308.902	2	95.339	4	0	4	0	1	0	9
544	542			min	-985.342	2	-1364.064	3	0	1	0	1	062	4	531	3
546 7 max 1541 393 3 1306.555 2 97.822 4 0 4 .04 4 .94 3 3 546 min 988.3693 2 -1365.824 3 0 1 0 1 -1.494 2 547 8 max 1546.2009 3 1305.382 2 99.063 4 0 4 .092 4 1.631 3 548 min -792.77 2 -1366.704 3 0 1 0 1 0 1 -2.183 2 550 min -792.77 2 357 15 0 1 0 1 -2.24 4 -2.488 2 5551 10 mx 1577.312 3 14.5803 2 240.353 4 0 1 0 1 -2.44 4 2.565 2 5551 10 mx 1577.928 3 144.629 2 241.595 4 0 1 0.1 1 1.124	543		6	max	1540.776	3	1307.729	2	96.58	4	0	4	0	1	.189	3
SAGE	544			min	-984.52	2	-1364.944	3	0	1	0	1	012	4	804	2
548	545		7	max	1541.393	3	1306.555	2	97.822	4	0	4	.04	4	.91	3
548	546			min	-983.699	2	-1365.824	3	0	1	0	1	0	1	-1.494	2
549	547		8	max	1542.009	3	1305.382	2	99.063	4	0	4	.092	4	1.631	3
550	548			min	-982.877	2	-1366.704	3	0	1	0	1	0	1	-2.183	2
551	549		9	max	1576.696	3	146.976	2	239.112	4	0	1	0	1	1.873	3
552	550			min	-792.77	2	.357	15	0	1	0	1	24	4	-2.488	2
553	551		10	max	1577.312	3	145.803	2	240.353	4	0	1	0	1	1.82	3
555	552			min	-791.949	2	.003	15	0	1	0	1	114	4	-2.565	2
555	553		11	max	1577.928	3	144.629	2	241.595	4	0	1	.013	4	1.768	3
556	554			min	-791.127	2	-1.218	6	0	1	0	1	0	1	-2.642	2
557	555		12	max	1612.742	3	916.085	3	274.989	4	0	1	0	1	1.555	3
557	556			min	-601.032	2	-1604.276	2	0	1	0	4	38	4	-2.367	2
559			13	max	1613.358	3	915.205	3	276.23	4	0	1	0	1	1.072	3
559	558			min	-600.21	2	-1605.45	2	0	1	0	4	235	4	-1.52	2
560 min -599.389 2 -1606.623 2 0 1 0 4 089 4 673 2 561 15 max 1614.59 3 913.445 3 278.713 4 0 1 .058 4 .175 2 562 min -598.567 2 -1607.797 2 0 1 0 4 0 1 .005 6 563 16 max 1615.207 3 912.565 3 279.955 4 0 1 .206 4 1.024 2 564 min -597.745 2 -1608.97 2 0 1 0 4 0 1 .334 4 1.034 4 1.033 91.166 0 1 0 4 0 1 .344 1.1873 2 666 min -441.206 1 -814.909 3 -23.416 5 0 <td></td> <td></td> <td>14</td> <td>max</td> <td>1613.974</td> <td>3</td> <td>914.325</td> <td>3</td> <td>277.472</td> <td>4</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>.589</td> <td>3</td>			14	max	1613.974	3	914.325	3	277.472	4	0	1	0	1	.589	3
561 15 max 1614.59 3 913.445 3 278.713 4 0 1 .058 4 .175 2 562 min -598.567 2 -1607.797 2 0 1 0 4 0 1 005 6 563 16 max 1615.207 3 912.565 3 279.955 4 0 1 .206 4 1.024 2 564 min -597.745 2 -1608.97 2 0 1 0 4 0 1 .354 4 1.873 2 566 min -596.924 2 -1610.143 2 0 1 0 4 0 1 -856 3 567 18 max -24.012 198.339 2 0 1 0 4 .404 4 .965 2 567 18 max 23.11 <td< td=""><td>560</td><td></td><td></td><td>min</td><td>-599.389</td><td>2</td><td></td><td>2</td><td>0</td><td>1</td><td>0</td><td>4</td><td>089</td><td>4</td><td></td><td>2</td></td<>	560			min	-599.389	2		2	0	1	0	4	089	4		2
563 16 max 1615.207 3 912.565 3 279.955 4 0 1 .206 4 1.024 2 564 min -597.745 2 -1608.97 2 0 1 0 4 0 1 -375 3 565 17 max 1615.823 3 911.685 3 281.196 4 0 1 .354 4 1.873 2 566 min -596.924 2 -1610.143 2 0 1 0 4 0 1 -856 3 567 18 max -24.042 12 1798.339 2 0 1 0 4 .404 4 .965 2 568 min -441.206 1 -814.909 3 -23.416 5 0 1 0 1 -0 1 -0 1 -0 1 -0 1 -0<	561		15	max	1614.59	3	913.445	3	278.713	4	0	1	.058	4	.175	2
564 min -597.745 2 -1608.97 2 0 1 0 4 0 1 -375 3 565 17 max 1615.823 3 911.685 3 281.196 4 0 1 .354 4 1.873 2 566 min -596.924 2 -1610.143 2 0 1 0 4 0 1 856 3 567 18 max -24.042 12 1798.339 2 0 1 0 4 .404 4 .965 2 568 min -441.206 1 -814.909 3 -23.416 5 0 1 0 1 .44 .965 2 569 19 max -23.631 12 1797.166 2 0 1 0 4 .393 4 .016 1 570 min -440.385 1	562			min	-598.567	2	-1607.797	2	0	1	0	4	0	1	005	6
17 max 1615.823 3 911.685 3 281.196 4 0 1 .354 4 1.873 2 2 566 min .596.924 2 .1610.143 2 0 1 0 4 0 1 .856 3 3 567 18 max .24.042 12 1798.339 2 0 1 0 4 .404 4 .965 2 .568 min .441.206 1 .814.909 3 .23.416 5 0 1 0 1 .447 3 3 569 19 max .23.631 12 1797.166 2 0 1 0 4 .393 4 .016 1 .570 min .440.385 1 .815.789 3 .22.174 5 0 1 0 1 .017 3 .571 M9 1 max 205.676 1 .570.375 3 146.882 1 0 3 .022 12 .002 3 .572 min 11.876 12 .358.244 2 9.27 12 0 4 .352 1 .011 2 .573 2 max 206.497 1 .569.495 3 146.882 1 0 3 .017 12 .178 2 .574 min 12.287 12 .359.418 2 9.27 12 0 4 .275 1 .299 3 .575 3 max 476.584 3 424.247 2 146.672 1 0 2 .012 12 .359 2 .576 min .272.698 2 .416.828 3 .9.243 12 0 3 .197 1 .588 3 .577 4 max 477.2 3 423.073 2 146.672 1 0 2 .008 12 .146 1 .578 min .271.877 2 .417.708 3 9.243 12 0 3 .12 1 .367 3 .581 6 max 477.816 3 420.727 2 146.672 1 0 2 .003 12 .003 15 .581 min .271.055 2 .418.588 3 .9.243 12 0 3 .065 4 .147 3 .581 6 max 478.433 3 420.727 2 146.672 1 0 2 .005 1 .074 3 .581 6 max 478.433 3 420.727 2 146.672 1 0 2 .005 1 .074 3 .581 6 max 478.433 3 420.727 2 146.672 1 0 2 .005 1 .074 3 .581 6 max 478.433 3 420.727 2 146.672 1 0 2 .035 1 .074 3 .581 min .270.033 2 .419.468 3 .9.243 12 0 3 .002 5 .532 2 .583 7 max 479.049 3 419.553 2 146.672 1 0 2 .112 1 .296 3 .586 min .269.412 2 .420.348 3 .9.243 12 0 3 .002 5 .532 2 .585 8 max 479.645 3	563		16	max	1615.207	3	912.565	3	279.955	4	0	1	.206	4	1.024	2
566 min -596.924 2 -1610.143 2 0 1 0 4 0 1 856 3 567 18 max -24.042 12 1798.339 2 0 1 0 4 .404 4 .965 2 568 min -441.206 1 -814.909 3 -23.416 5 0 1 0 1 -447 3 569 19 max -23.631 12 1797.166 2 0 1 0 4 .393 4 .016 1 570 min -440.385 1 -815.789 3 -22.174 5 0 1 0 1 017 3 571 M9 1 max 205.676 1 570.375 3 146.882 1 0 3 022 12 .002 3 572 min 12.287 12	564			min	-597.745	2	-1608.97	2	0	1	0	4	0	1	375	3
567 18 max -24.042 12 1798.339 2 0 1 0 4 .404 4 .965 2 568 min -441.206 1 -814.909 3 -23.416 5 0 1 0 4 .393 4 .016 1 569 19 max -23.631 12 1797.166 2 0 1 0 4 .393 4 .016 1 570 min -440.385 1 -815.789 3 -22.174 5 0 1 0 1 -017 3 571 M9 1 max 205.676 1 570.375 3 146.882 1 0 3022 12 .002 3 572 min 11.876 12 -358.244 2 9.27 12 0 4352 1011 2 573 2 max 206.497 1 569.495 3 146.882 1 0 3017 12 .178 2 574 min 12.287 12 -359.418 2 9.27 12 0 4275 1299 3 575 3 max 476.584 3 424.247 2 146.672 1 0 2012 12 .359 2 57	565		17	max	1615.823	3	911.685	3	281.196	4	0	1	.354	4	1.873	2
568 min -441.206 1 -814.909 3 -23.416 5 0 1 0 1 447 3 569 19 max -23.631 12 1797.166 2 0 1 0 4 .393 4 .016 1 570 min -440.385 1 -815.789 3 -22.174 5 0 1 0 1 -017 3 571 M9 1 max 205.676 1 570.375 3 146.882 1 0 3 022 12 .002 3 572 min 11.876 12 -358.244 2 9.27 12 0 4 -352 1 -011 2 573 2 max 206.497 1 569.495 3 146.882 1 0 3 017 12 .178 2 575 3 max 476.584 3<	566			min	-596.924	2	-1610.143	2	0	1	0	4	0	1	856	3
569 19 max -23.631 12 1797.166 2 0 1 0 4 .393 4 .016 1 570 min -440.385 1 -815.789 3 -22.174 5 0 1 0 1 017 3 571 M9 1 max 205.676 1 570.375 3 146.882 1 0 3 022 12 .002 3 572 min 11.876 12 -358.244 2 9.27 12 0 4 352 1 011 2 573 2 max 206.497 1 569.495 3 146.882 1 0 3 017 12 .178 574 min 12.287 12 -359.418 2 9.27 12 0 4 275 1 299 3 575 3 max 476.584 <t< td=""><td>567</td><td></td><td>18</td><td>max</td><td>-24.042</td><td>12</td><td>1798.339</td><td>2</td><td>0</td><td>1</td><td>0</td><td>4</td><td>.404</td><td>4</td><td>.965</td><td>2</td></t<>	567		18	max	-24.042	12	1798.339	2	0	1	0	4	.404	4	.965	2
570 min -440.385 1 -815.789 3 -22.174 5 0 1 0 1 017 3 571 M9 1 max 205.676 1 570.375 3 146.882 1 0 3 022 12 .002 3 572 min 11.876 12 -358.244 2 9.27 12 0 4 352 1 011 2 573 2 max 206.497 1 569.495 3 146.882 1 0 3 017 12 .178 2 574 min 12.287 12 -359.418 2 9.27 12 0 4 275 1 299 3 575 3 max 476.584 3 424.247 2 146.672 1 0 2 012 12 .359 2 576 min -271.698 2	568			min	-441.206	1	-814.909	3	-23.416	5	0	1	0	1	447	3
571 M9 1 max 205.676 1 570.375 3 146.882 1 0 3 022 12 .002 3 572 min 11.876 12 -358.244 2 9.27 12 0 4 352 1 011 2 573 2 max 206.497 1 569.495 3 146.882 1 0 3 017 12 .178 2 574 min 12.287 12 -359.418 2 9.27 12 0 4 275 1 299 3 575 3 max 476.584 3 424.247 2 146.672 1 0 2 012 12 .359 2 576 min -272.698 2 -416.828 3 9.243 12 0 3 197 1 588 3 577 4 max	569		19	max		12	1797.166	2	0	1	0	4	.393	4	.016	1
572 min 11.876 12 -358.244 2 9.27 12 0 4 352 1 011 2 573 2 max 206.497 1 569.495 3 146.882 1 0 3 017 12 .178 2 574 min 12.287 12 -359.418 2 9.27 12 0 4 275 1 299 3 575 3 max 476.584 3 424.247 2 146.672 1 0 2 012 12 .359 2 576 min -272.698 2 -416.828 3 9.243 12 0 3 197 1 588 3 577 4 max 477.2 3 423.073 2 146.672 1 0 2 008 12 .146 1 578 min -271.877 2	570			min	-440.385	1	-815.789	3	-22.174	5	0	1	0	1	017	3
573 2 max 206.497 1 569.495 3 146.882 1 0 3 017 12 .178 2 574 min 12.287 12 -359.418 2 9.27 12 0 4 275 1 299 3 575 3 max 476.584 3 424.247 2 146.672 1 0 2 012 12 .359 2 576 min -272.698 2 -416.828 3 9.243 12 0 3 197 1 588 3 577 4 max 477.2 3 423.073 2 146.672 1 0 2 008 12 .146 1 578 min -271.877 2 -417.708 3 9.243 12 0 3 12 1 367 3 579 5 max 477.816		M9	1				570.375								.002	
574 min 12.287 12 -359.418 2 9.27 12 0 4 275 1 299 3 575 3 max 476.584 3 424.247 2 146.672 1 0 2 012 12 .359 2 576 min -272.698 2 -416.828 3 9.243 12 0 3 197 1 588 3 577 4 max 477.2 3 423.073 2 146.672 1 0 2 008 12 .146 1 578 min -271.877 2 -417.708 3 9.243 12 0 3 12 1 367 3 579 5 max 477.816 3 421.9 2 146.672 1 0 2 003 15 580 min -271.055 2 -418.588 3	572			min	11.876	12	-358.244	2	9.27	12	0	4	352	1	011	2
575 3 max 476.584 3 424.247 2 146.672 1 0 2 012 12 .359 2 576 min -272.698 2 -416.828 3 9.243 12 0 3 197 1 588 3 577 4 max 477.2 3 423.073 2 146.672 1 0 2 008 12 .146 1 578 min -271.877 2 -417.708 3 9.243 12 0 3 12 1 367 3 579 5 max 477.816 3 421.9 2 146.672 1 0 2 003 15 580 min -271.055 2 -418.588 3 9.243 12 0 3 065 4 147 3 581 6 max 478.433 3 420.727	573		2	max	206.497	1			146.882	1	0	3	017	12	.178	2
576 min -272.698 2 -416.828 3 9.243 12 0 3 197 1 588 3 577 4 max 477.2 3 423.073 2 146.672 1 0 2 008 12 .146 1 578 min -271.877 2 -417.708 3 9.243 12 0 3 12 1 367 3 579 5 max 477.816 3 421.9 2 146.672 1 0 2 003 12 003 15 580 min -271.055 2 -418.588 3 9.243 12 0 3 065 4 147 3 581 6 max 478.433 3 420.727 2 146.672 1 0 2 .035 1 .074 3 582 min -270.233 2						12		2		12	0	4		1		_
577 4 max 477.2 3 423.073 2 146.672 1 0 2 008 12 .146 1 578 min -271.877 2 -417.708 3 9.243 12 0 3 12 1 367 3 579 5 max 477.816 3 421.9 2 146.672 1 0 2 003 12 003 15 580 min -271.055 2 -418.588 3 9.243 12 0 3 065 4 147 3 581 6 max 478.433 3 420.727 2 146.672 1 0 2 .035 1 .074 3 582 min -270.233 2 -419.468 3 9.243 12 0 3 028 5 31 2 583 7 max 479.049			3	max		3		2		1	0	2		12		
578 min -271.877 2 -417.708 3 9.243 12 0 3 12 1 367 3 579 5 max 477.816 3 421.9 2 146.672 1 0 2 003 12 003 15 580 min -271.055 2 -418.588 3 9.243 12 0 3 065 4 147 3 581 6 max 478.433 3 420.727 2 146.672 1 0 2 .035 1 .074 3 582 min -270.233 2 -419.468 3 9.243 12 0 3 028 5 31 2 583 7 max 479.049 3 419.553 2 146.672 1 0 2 .112 1 .296 3 584 min -269.412 2				min		2										3
579 5 max 477.816 3 421.9 2 146.672 1 0 2 003 12 003 15 580 min -271.055 2 -418.588 3 9.243 12 0 3 065 4 147 3 581 6 max 478.433 3 420.727 2 146.672 1 0 2 .035 1 .074 3 582 min -270.233 2 -419.468 3 9.243 12 0 3 028 5 31 2 583 7 max 479.049 3 419.553 2 146.672 1 0 2 .112 1 .296 3 584 min -269.412 2 -420.348 3 9.243 12 0 3 002 5 532 2 585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1			4	max		3	423.073	2	146.672		0			12	.146	-
580 min -271.055 2 -418.588 3 9.243 12 0 3 065 4 147 3 581 6 max 478.433 3 420.727 2 146.672 1 0 2 .035 1 .074 3 582 min -270.233 2 -419.468 3 9.243 12 0 3 028 5 31 2 583 7 max 479.049 3 419.553 2 146.672 1 0 2 .112 1 .296 3 584 min -269.412 2 -420.348 3 9.243 12 0 3 002 5 532 2 585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1 .518 3 586 min -268.59 2	578			min	-271.877	2	-417.708	3	9.243	12	0	3	12	1	367	3
581 6 max 478.433 3 420.727 2 146.672 1 0 2 .035 1 .074 3 582 min -270.233 2 -419.468 3 9.243 12 0 3 028 5 31 2 583 7 max 479.049 3 419.553 2 146.672 1 0 2 .112 1 .296 3 584 min -269.412 2 -420.348 3 9.243 12 0 3 002 5 532 2 585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1 .518 3 586 min -268.59 2 -421.228 3 9.243 12 0 3 .012 12 753 2 587 9 max 498.593 3 44.12 2 209.412 1 0 3 007 12 .604 3	579		5	max	477.816	3	421.9	2	146.672	1	0	2	003	12	003	15
582 min -270.233 2 -419.468 3 9.243 12 0 3 028 5 31 2 583 7 max 479.049 3 419.553 2 146.672 1 0 2 .112 1 .296 3 584 min -269.412 2 -420.348 3 9.243 12 0 3 002 5 532 2 585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1 .518 3 586 min -268.59 2 -421.228 3 9.243 12 0 3 .012 12 753 2 587 9 max 498.593 3 44.12 2 209.412 1 0 3 007 12 .604 3	580			min	-271.055	2	-418.588	3	9.243	12	0	3	065	4	147	3
582 min -270.233 2 -419.468 3 9.243 12 0 3 028 5 31 2 583 7 max 479.049 3 419.553 2 146.672 1 0 2 .112 1 .296 3 584 min -269.412 2 -420.348 3 9.243 12 0 3 002 5 532 2 585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1 .518 3 586 min -268.59 2 -421.228 3 9.243 12 0 3 .012 12 753 2 587 9 max 498.593 3 44.12 2 209.412 1 0 3 007 12 .604 3	581		6		478.433	3	420.727	2			0			1		
584 min -269.412 2 -420.348 3 9.243 12 0 3 002 5 532 2 585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1 .518 3 586 min -268.59 2 -421.228 3 9.243 12 0 3 .012 12 753 2 587 9 max 498.593 3 44.12 2 209.412 1 0 3 007 12 .604 3	582				-270.233	2		3	9.243	12	0	3	028	5	31	2
584 min -269.412 2 -420.348 3 9.243 12 0 3 002 5 532 2 585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1 .518 3 586 min -268.59 2 -421.228 3 9.243 12 0 3 .012 12 753 2 587 9 max 498.593 3 44.12 2 209.412 1 0 3 007 12 .604 3	583		7	max	479.049	3	419.553	2	146.672	1	0	2	.112	1	.296	3
585 8 max 479.665 3 418.38 2 146.672 1 0 2 .19 1 .518 3 586 min -268.59 2 -421.228 3 9.243 12 0 3 .012 12 753 2 587 9 max 498.593 3 44.12 2 209.412 1 0 3 007 12 .604 3				min	-269.412	2			9.243	12	0	3	002	5		
586 min -268.59 2 -421.228 3 9.243 12 0 3 .012 12 753 2 587 9 max 498.593 3 44.12 2 209.412 1 0 3 007 12 .604 3			8						146.672		0	2		1		
587 9 max 498.593 3 44.12 2 209.412 1 0 3007 12 .604 3										12		3		12		
			9			3		2			0	3				
	588			min	-175.548	2	.363	15	12.999	12	0	9	208	4	863	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	499.209	3	42.946	2	209.412	1	0	3	.001	1	.589	3
590			min	-174.727	2	.009	15	12.999	12	0	9	122	4	886	2
591		11	max	499.825	3	41.773	2	209.412	1	0	3	.112	1	.574	3
592			min	-173.905	2	-1.386	6	12.999	12	0	9	064	5	908	2
593		12	max	518.69	3	281.995	3	246.391	4	0	3	011	12	.5	3
594			min	-99.524	10	-508.913	2	8.755	12	0	2	334	4	806	2
595		13	max	519.306	3	281.115	3	247.633	4	0	3	007	12	.352	3
596			min	-98.839	10	-510.086	2	8.755	12	0	2	204	4	537	2
597		14	max	519.922	3	280.235	3	248.874	4	0	3	002	12	.203	3
598			min	-98.154	10	-511.259	2	8.755	12	0	2	073	4	268	2
599		15	max	520.538	3	279.355	3	250.116	4	0	3	.059	4	.056	3
600			min	-97.47	10	-512.433	2	8.755	12	0	2	.002	12	019	9
601		16	max	521.154	3	278.475	3	251.357	4	0	3	.191	4	.273	2
602			min	-96.785	10	-513.606	2	8.755	12	0	2	.007	12	091	3
603		17	max	521.771	3	277.594	3	252.599	4	0	3	.324	4	.545	2
604			min	-96.1	10	-514.78	2	8.755	12	0	2	.012	12	238	3
605		18	max	-12.16	12	535.778	2	158.768	1	0	2	.358	4	.274	2
606			min	-206.714	1	-239.592	3	-94.984	5	0	3	.016	12	118	3
607		19	max	-11.749	12	534.604	2	158.768	1	0	2	.354	1	.009	3
608			min	-205.892	1	-240.472	3	-93.742	5	0	3	.022	12	008	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.002	1	.087	2	.008	3	7.369e-3	2	NC	1	NC	1
2			min	887	4	012	3	004	2	-1.415e-3	3	NC	1	NC	1
3		2	max	.001	1	.398	3	.068	1	8.616e-3	2	NC	5	NC	3
4			min	887	4	161	1	037	5	-1.584e-3	3	673.811	3	4134.473	1
5		3	max	.001	1	.729	3	.168	1	9.864e-3	2	NC	5	NC	3
6			min	887	4	352	1	042	5	-1.753e-3	3	372.414	3	1662.346	1
7		4	max	.001	1	.93	3	.255	1	1.111e-2	2	NC	15	NC	3
8			min	887	4	462	1	026	5	-1.922e-3	3	292.98	3	1090.775	1
9		5	max	0	1	.976	3	.3	1	1.236e-2	2	NC	15	NC	5
10			min	887	4	475	1	0	15	-2.091e-3	3	279.374	3	923.963	1
11		6	max	0	1	.87	3	.291	1	1.361e-2	2	NC	5	NC	5
12			min	887	4	395	1	.018	15	-2.26e-3	3	312.835	3	952.441	1
13		7	max	0	1	.645	3	.23	1	1.485e-2	2	NC	5	NC	12
14			min	887	4	241	1	.026	12	-2.429e-3	3	420.4	3	1206.879	1
15		8	max	0	1	.358	3	.135	1	1.61e-2	2	NC	5	NC	3
16			min	887	4	052	1	.011	10	-2.598e-3	3	745.581	3	2065.298	1
17		9	max	0	1	.14	2	.052	4	1.735e-2	2	NC	4	NC	2
18			min	887	4	.004	15	004	10	-2.767e-3	3	2493.5	3	5343.956	4
19		10	max	0	1	.217	2	.026	3	1.86e-2	2	NC	3	NC	1
20			min	887	4	018	3	017	2	-2.936e-3	3	2127.458	2	NC	1
21		11	max	0	12	.14	2	.04	1	1.735e-2	2	NC	4	NC	2
22			min	887	4	.004	15	03	5	-2.767e-3	3	2493.5	3	7154.807	1
23		12	max	0	12	.358	3	.135	1	1.61e-2	2	NC	5	NC	3
24			min	887	4	052	1	028	5	-2.598e-3	3	745.581	3	2065.298	1
25		13	max	0	12	.645	3	.23	1	1.485e-2	2	NC	5	NC	5
26			min	887	4	241	1	007	5	-2.429e-3	3	420.4	3	1206.879	1
27	·	14	max	0	12	.87	3	.291	1	1.361e-2	2	NC	5	NC	5
28			min	887	4	395	1	.015	15	-2.26e-3	3	312.835	3	952.441	1
29		15	max	0	12	.976	3	.3	1	1.236e-2	2	NC	15	NC	12
30			min	887	4	475	1	.027	12	-2.091e-3	3	279.374	3	923.963	1
31		16	max	0	12	.93	3	.255	1	1.111e-2	2	NC	15	NC	3
32			min	888	4	462	1	.022	12	-1.922e-3	3	292.98	3	1090.775	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
33		17	max	888	12	.729 352	3	.168 .016	12	9.864e-3 -1.753e-3	3	NC 372.414	<u>5</u> 3	NC 1662.346	3
35		18	min max	0	12	.398	3	.068	1	8.616e-3	2	NC	<u>5</u>	NC	3
36		10	min	888	4	161	1	.007	10	-1.584e-3	3	673.811	3	4077.433	
37		19	max	0	12	.087	2	.007	3	7.369e-3	2	NC	<u> </u>	NC	1
38		19	min	888	4	012	3	004	2	-1.415e-3	3	NC NC	1	NC NC	1
39	M14	1	max	0	1	.184	3	.007	3	4.363e-3	2	NC	1	NC	1
40	IVI 14		min	642	4	29	2	003	2	-3.159e-3	3	NC	1	NC	1
41		2	max	042 0	1	.563	3	.048	1	5.28e-3	2	NC	5	NC	2
42		-	min	642	4	64	2	053	5	-3.89e-3	3	727.633		5043.158	
43		3	max	042 0	1	04 .88	3	.137	1	6.197e-3	2	NC	15	NC	3
44		- 3	min	642	4	938	2	061	5	-4.621e-3	3	396.057	3	2037.176	
45		4	max	0	1	1.094	3	.221	1	7.114e-3	2	9742.62	15	NC	3
46		4	min	642	4	-1.148	2	038	5	-5.351e-3	3	303.072	3	1257.622	1
		5		042 0	1	1.184	3	.269	1			8750.487	<u> </u>	NC	5
47 48		1 5	max min	642	4	-1.1 04	2	.269	15	8.031e-3 -6.082e-3	3	275.921	3	1030.72	1
49		6		042 0	1	1.15	3	.267	1	8.948e-3	2	8862.043	15	NC	12
50		10	max	642	4	-1.15 -1.254	2	.025	12		3	285.47	3	1040.592	
		7	min		1		3		1			9938.556		NC	
51		-	max	0		1.016		.214		9.864e-3	2		15	1299.408	10
52		0	min	642	1	<u>-1.167</u>	2	.024		-7.543e-3	3	314.806 NC			3
53		8	max	0 642		.826	2	.127	1	1.078e-2 -8.273e-3	2	373.983	<u>15</u>	NC 2197.471	
54		0	min		1	<u>-1.028</u>		.011	10		3	NC	<u>2</u> 5	NC	2
55		9	max	0		.646	3	.073	4	1.17e-2	2				
56		10	min	642	4	891	2	004	10	-9.004e-3	3	459.418	2	3878.101	4
57		10	max	0	1	.563	3	.023	3	1.261e-2	2	NC F14.00	<u>5</u> 2	NC NC	1
58		4.4	min	642	4	826	2	016	2	-9.734e-3	3	514.89		NC NC	
59		11	max	0	12	.646	3	.039	1	1.17e-2	2	NC	5	NC F200 200	2
60		40	min	642	4	891	2	052	5	-9.004e-3	3	459.418	2	5309.268	
61		12	max	0	12	.826	3	.127	1	1.078e-2	2	NC 272.002	<u>15</u>	NC	3
62		12	min	642	4	<u>-1.028</u>	2	057	5	-8.273e-3	3	373.983		2197.471	1
63		13	max	0	12	1.016	3	.214	1	9.864e-3	2	9938.257	<u>15</u>	NC	4
64		4.4	min	642	4	<u>-1.167</u>	2	033	5	-7.543e-3	3	314.806	2	1299.408	
65		14	max	0	12	1.15	3	.267	1	8.948e-3	2	8861.69	<u>15</u>	NC	5
66		4.5	min	642	4	-1.254	2	.004	15	-6.812e-3	3	285.47	3	1040.592	
67		15	max	0	12	1.184	3	.269	1	8.031e-3	2	8750.055	<u>15</u>	NC	12
68		10	min	642	4	-1.254	2	.024	12	-6.082e-3	3	275.921	3	1030.72	1
69		16	max	0	12	1.094	3	.221	1	7.114e-3	2	9742.042	<u>15</u>	NC 1257.622	3
70		47	min	642	4	<u>-1.148</u>	2	.019	12	-5.351e-3	3	303.072	3		
71		17	max	0	12	.88	3	.137	1	6.197e-3	2	NC 200 0F7	<u>15</u>	NC	3
72 73		10	min	642	12	<u>938</u>	3	.013	12	-4.621e-3		396.057	<u>3</u> 5	2037.176	2
		10	max			.563	2	.076	4	5.28e-3	2	NC		NC	
74		10	min	642	4	<u>64</u>		.004	10	-3.89e-3	3	727.633	3	3647.156	
75 76		19	max	642	12	.184	3	.007	3	4.363e-3	2	NC NC	1_1	NC NC	1
76	M15	1	min max	643	12	29	3	003 .007	3	-3.159e-3 2.788e-3	3	NC NC	<u>1</u> 1	NC NC	1
77 78	IVI 15			512	4	.186 289	2	003	2	-4.584e-3	2	NC NC	1	NC NC	1
		2	min		12		3					NC NC		NC NC	2
79		2	max	0 512		.425	2	.049 067	1	3.439e-3 -5.551e-3	3		5		
80		2	min		12	764			5		2	580.946	<u>2</u>	4011.49	5
81		3	max	<u>0</u>		.629	2	.137	1	4.091e-3	3	NC	<u>15</u>	NC 2032.089	3
82 83		4	min	<u>512</u>	12	<u>-1.164</u> .774	3	079 .222	5	-6.519e-3 4.743e-3	2	315.621	15		3
		4	max	0 512	4	-1.436	2	053	1 5		3	9756.355 240.719	<u>15</u> 2	NC 1255.237	
84 85		E	min	512 0	12	.848	3	053 .27	1	-7.487e-3	2		15	NC	5
86		5	max	512	4	-1.555	2	006	5	5.394e-3	<u>3</u> 2	8764.844	2	1028.991	1
87		6		_	12	.851	3	.267	1	-8.454e-3	3	217.988 8879.75		NC	
88		6	max min	512	4	-1.524	2	.024	12	6.046e-3 -9.422e-3	2	223.623	<u>15</u> 2	1038.831	12
89		7		512 0	12	<u>-1.524</u> .796	3	.024	1	6.697e-3	3	9963.974	15	NC	12
LOS		/	max	U	12	.190	_ <u>ა</u>	.214		0.0376-3	J	3303.374	ıυ	INC	_14_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
90			min	512	4	-1.368	2	.023	12	-1.039e-2	2	255.973	2	1296.792	1
91		8	max	0	12	.704	3	.132	4	7.349e-3	3	NC	<u>15</u>	NC	3
92			min	512	4	-1.141	2	.011	10	-1.136e-2	2	323.979	2	2120.388	4
93		9	max	0	12	.613	3	.086	4	8.001e-3	3	NC	5	NC	2
94			min	512	4	925	2	003	10	-1.232e-2	2	434.469	2	3281.602	4
95		10	max	0	1	.57	3	.021	3	8.652e-3	3	NC	5	NC	1
96			min	512	4	824	2	015	2	-1.329e-2	2	516.215	2	NC	1
97		11	max	0	1	.613	3	.039	1	8.001e-3	3	NC	5	NC	2
98			min	512	4	925	2	065	5	-1.232e-2	2	434.469	2	4256.603	
99		12	max	0	1	.704	3	.128	1	7.349e-3	3	NC	15	NC	3
100			min	512	4	-1.141	2	073	5	-1.136e-2	2	323.979	2	2190.521	1
101		13	max	0	1	.796	3	.214	1	6.697e-3	3	9963.739	15	NC	4
102			min	512	4	-1.368	2	045	5	-1.039e-2	2	255.973	2	1296.792	
103		14	max	0	1	.851	3	.267	1	6.046e-3	3	8879.478	15	NC	5
104			min	512	4	-1.524	2	.001	15	-9.422e-3	2	223.623	2	1038.831	1
105		15	max	0	1	.848	3	.27	1	5.394e-3	3	8764.515	15	NC	12
106			min	512	4	-1.555	2	.023	12	-8.454e-3	2	217.988	2	1028.991	1
107		16	max	0	1	.774	3	.222	1	4.743e-3	3	9755.917	15	NC	3
108			min	512	4	-1.436	2	.019	12	-7.487e-3	2	240.719	2	1255.237	1
109		17	max	0	1	.629	3	.14	4	4.091e-3	3	NC	15	NC	3
110			min	512	4	-1.164	2	.013	12	-6.519e-3	2	315.621	2	1975.039	4
111		18	max	0	1	.425	3	.09	4	3.439e-3	3	NC	5	NC	2
112			min	511	4	764	2	.004	10	-5.551e-3	2	580.946	2	3067.869	4
113		19	max	0	1	.186	3	.007	3	2.788e-3	3	NC	1	NC	1
114			min	511	4	289	2	003	2	-4.584e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.077	2	.006	3	4.761e-3	3	NC	1	NC	1
116			min	152	4	058	3	003	2	-6.016e-3	2	NC	1	NC	1
117		2	max	0	12	.099	3	.068	1	5.721e-3	3	NC	5	NC	3
118			min	152	4	291	2	053	5	-6.938e-3	2	749.346	2	4164.768	1
119		3	max	0	12	.223	3	.167	1	6.681e-3	3	NC	5	NC	3
120			min	152	4	587	2	063	5	-7.859e-3	2	415.924	2	1668.652	1
121		4	max	0	12	.293	3	.254	1	7.641e-3	3	NC	15	NC	3
122			min	152	4	76	2	044	5	-8.781e-3	2	329.807	2	1092.944	1
123		5	max	0	12	.297	3	.3	1	8.602e-3	3	NC	15	NC	5
124			min	152	4	788	2	009	5	-9.703e-3	2	318.883	2	924.538	1
125		6	max	0	12	.239	3	.291	1	9.562e-3	3	NC	5	NC	12
126			min	152	4	676	2	.019	15		2	366.383	2	951.638	1
127		7	max	0	12	.132	3	.231	1	1.052e-2	3	NC	5	NC	12
128			min	152	4	453	2	.022	12	-1.155e-2	2	520.506	2	1203.131	1
129		8	max	0	12	.004	12	.136	1	1.148e-2	3	NC	5	NC	3
130			min	152	4	176	2	.013	10	-1.247e-2		1092.137	2	2047.801	
131		9	max	0	12	.092	1	.065	4	1.244e-2	3	NC	1	NC	2
132			min	152	4	114	3	002	10	-1.339e-2	2	4942.994	3	4354.604	
133		10	max	0	1	.186	2	.018	3	1.34e-2	3	NC	4	NC	1
134			min	152	4	166	3	014	2	-1.431e-2	2	2510.016	1	NC	1
135		11	max	0	1	.092	1	.041	1	1.244e-2	3	NC	1	NC	2
136			min	152	4	114	3	043	5	-1.339e-2	2	4942.994	3	6353.454	
137		12	max	0	1	.004	12	.136	1	1.148e-2	3	NC	5	NC	3
138		1 -	min	152	4	176	2	044	5	-1.247e-2	2	1092.137	2	2047.801	1
139		13	max	0	1	.132	3	.231	1	1.052e-2	3	NC	5	NC	5
140		10	min	152	4	453	2	017	5	-1.155e-2	2	520.506	2	1203.131	1
141		14	max	0	1	.239	3	.291	1	9.562e-3	3	NC	5	NC	5
142		17	min	152	4	676	2	.014	15	-1.062e-2	2	366.383	2	951.638	1
143		15	max	0	1	.297	3	.3	1	8.602e-3	3	NC	15	NC	12
144		13	min	152	4	788	2	.024	12	-9.703e-3	2	318.883	2	924.538	1
145		16	max	.001	1	.293	3	.254	1	7.641e-3	3	NC	15	924.336 NC	3
146		10	min	152	4	76	2	.02		-8.781e-3	2	329.807	2	1092.944	
140			1111111	102	4	70		.02	12	-0.7016-3		J23.0U1		1032.344	

Model Name

Schletter, Inc. HCV

:

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

147	Member	Sec 17	max	x [in] .001	LC 1	y [in] .223	LC 3	z [in] .167	LC 1	x Rotate [r 6.681e-3	LC 3	(n) L/y Ratio	LC 5	(n) L/z Ratio	LC 3
148		11/	min	152	4	587	2	.014	12	-7.859e-3	2	415.924	2	1668.652	
149		18	max	.002	1	.099	3	.084	4	5.721e-3	3	NC	5	NC	3
150		10	min	151	4	291	2	.007	10	-6.938e-3	2	749.346	2	3290.423	
151		19	max	.002	1	.077	2	.006	3	4.761e-3	3	NC	1	NC	1
152		13	min	151	4	058	3	003	2	-6.016e-3	2	NC	1	NC	1
153	M2	1	max	.006	2	.007	2	.011	1	1.74e-3	5	NC	1	NC	2
154	IVIZ	<u> </u>	min	008	3	013	3	826	4	-3.391e-4	1	NC	1	93.248	4
155		2	max	.006	2	.006	2	.01	1	1.857e-3	5	NC	1	NC	2
156			min	008	3	012	3	759	4	-3.208e-4	1	NC	1	101.402	4
157		3	max	.006	2	.005	2	.009	1	1.974e-3	5	NC	1	NC	2
158			min	007	3	012	3	693	4	-3.024e-4	1	NC	1	111.061	4
159		4	max	.005	2	.004	2	.009	1	2.091e-3	5	NC	1	NC	2
160		-	min	007	3	012	3	628	4	-2.841e-4	1	NC	1	122.612	4
161		5	max	.005	2	.003	2	.008	1	2.208e-3	5	NC	1	NC	1
162		1	min	006	3	011	3	564	4	-2.657e-4	1	NC	1	136.578	4
163		6	max	.005	2	.002	2	.007	1	2.325e-3	5	NC	1	NC	1
164		0	min	006	3	011	3	501	4	-2.473e-4	1	NC	1	153.682	4
165		7	max	.004	2	<u>011</u> 0	2	.006	1	2.442e-3	5	NC	1	NC	1
166				00 4	3	011	3	44	4	-2.29e-4	1	NC NC	1	174.943	4
167		8	min	005 .004	2	<u>011</u> 0	2	.005	1	2.559e-3	5	NC NC	1	NC	1
168		0	max	00 4	3	01	3	382	4		1	NC NC	1	201.84	4
		9	min		2	<u>01</u> 0				-2.106e-4		NC NC	1	NC	1
169		9	max	.004			15	.004	1	2.676e-3	5_4		1		
170		40	min	004	3	01		325	4	-1.923e-4	1_	NC NC		236.582	4
171		10	max	.003	2	001	15	.004	1	2.793e-3	5_4	NC NC	1	NC 202 F02	1
172		4.4	min	004	3	009	3	272	4	-1.739e-4	1_	NC NC	1_	282.593	4
173		11	max	.003	2	001	15	.003	1	2.91e-3	4_	NC	1	NC 0.45, 400	1
174		40	min	004	3	008	3	223	4	-1.556e-4	1_	NC NC	1_	345.422	4
175		12	max	.003	2	001	15	.002	1	3.034e-3	4_	NC	1_	NC 104.550	1
176		40	min	003	3	007	3	<u>177</u>	4	-1.372e-4	1_	NC NC	1_	434.552	4
177		13	max	.002	2	001	15	.002	1	3.158e-3	4_	NC	1	NC FOZ COZ	1
178		4.4	min	003	3	007	3	<u>136</u>	4	-1.189e-4	1_	NC	1_	567.327	4
179		14	max	.002	2	001	15	.001	1	3.282e-3	4_	NC NC	1	NC 770,000	1
180		4.5	min	002	3	006	3	099	4	-1.005e-4	1_	NC	1_	778.368	4
181		15	max	.001	2	0	15	0	1	3.406e-3	4_	NC NC	1_	NC	1
182		40	min	002	3	005	3	067	4	-8.216e-5	1_	NC NC	1_	1145.495	
183		16	max	.001	2	0	15	0	1	3.529e-3	4_	NC	1	NC 1070 011	1
184		l	min	001	3	004	6	041	4	-6.38e-5	1_	NC	1_	1876.314	
185		17	max	0	2	0	15	0	1	3.653e-3	4_	NC	1_	NC	1
186		4.0	min	0	3	003	6	021	4	-4.545e-5	1_	NC	1_	3699.547	4
187		18	max		2	0	15	0	1	3.777e-3		NC	1	NC NC	1
188		40	min	0	3	<u>001</u>	6	007	4	-2.71e-5	1_	NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	3.901e-3	4_	NC	1	NC NC	1
190		.	min	0	1	0	1	0	1	-8.743e-6	1_	NC	1_	NC	1
191	<u>M3</u>	1_	max	0	1	0	1	0	1	1.24e-6	_1_	NC	1_	NC NC	1
192			min	0	1	0	1	0	1	-1.008e-3	4_	NC	1_	NC	1
193		2	max	0	3	0	15	.018	4	3.046e-5	_1_	NC	1	NC NC	1
194		_	min	0	2	002	6	0	1	-2.415e-4	5_	NC	<u>1</u>	9610.42	14
195		3	max	0	3	0	15	.035	4	5.343e-4	4_	NC	1_	NC	1
196			min	0	2	004	6	0	1	3.608e-6	12	NC	1_	5029.687	
197		4	max	.001	3	001	15	.05	4	1.306e-3	4_	NC	1	NC	1
198			min	0	2	006	6	0	3	5.362e-6	12	NC	1_	3505.767	
199		5	max	.001	3	002	15	.064	4	2.077e-3	4	NC	1	NC	1
200			min	001	2	008	6	0	12	7.117e-6	12	NC	1_	2744.765	14
201		6	max	.002	3	002	15	.077	4	2.848e-3	4_	NC	1	NC	1
202			min	001	2	01	6	0	12	8.871e-6	12	9349.812	6	2287.631	14
203		7	max	.002	3	002	15	.088	4	3.619e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

205	204	Member	Sec	min	x [in] 002	LC 2	y [in] 011	LC 6	z [in]	LC 12	x Rotate [r 1.063e-5	LC 12	(n) L/y Ratio 8079.141	LC 6	(n) L/z Ratio	LC 14
206			Q													
207																
208			9													
10 max .003 3003 15 .12 4 5.933e-3 4 NC 5 NC 1										12		12				14
11			10	max	.003	3	003	15	.12	4		4		5		1
212				min						12	1.589e-5	12		6		14
1213			11	max	.004		003	15	.13			4		5		•
214				min										_		14
215			12													•
216			10													
14 max			13													
218			4.4													
229			14													<u> </u>
220			15											_		
10			13													
Decomposition Process of the color Proc			16													
17 max			10													
224			17											_		
18 max .006 3																_
226			18					15	.218			4		1		
228							004			12		12		1		
229 M4			19				0	5	.237	4		4	NC	1	NC	2
230				min	005	2	002	1	0	12	3.168e-5	12		1		
231		M4	1	max	.002	1	.005			12		4		1_	NC	3
232				min					237			12		1_		
233			2						_							
234														_		
235			3			_										
236			1											•		
237			4													
238			5													
239			5													
240 min 0 5 005 3 144 4 1.062e-5 12 NC 1 172.402 4 241 7 max .002 1 .003 2 0 12 2.438e-4 4 NC 1 NC 3 242 min 0 5 005 3 126 4 1.062e-5 12 NC 1 196.496 4 243 8 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 1 227.134 4 244 min 0 5 004 3 093 4 1.062e-5 12 NC 1 227.134 4 244 min 0 5 004 3 093 4 1.062e-5 12 NC 1 266.936 4 247 10 max .001 <td< td=""><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			6													
241 7 max .002 1 .003 2 0 12 2.438e-4 4 NC 1 NC 3 242 min 0 5 005 3 126 4 1.062e-5 12 NC 1 196.496 4 243 8 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 244 min 0 5 004 3 109 4 1.062e-5 12 NC 1 227.134 4 245 9 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 246 min 0 5 003 3 093 4 1.062e-5 12 NC 1 266.936 4 247 10 max .001 1 .002																
242 min 0 5 005 3 126 4 1.062e-5 12 NC 1 196.496 4 243 8 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 244 min 0 5 004 3 109 4 1.062e-5 12 NC 1 227.134 4 245 9 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 246 min 0 5 004 3 093 4 1.062e-5 12 NC 1 266.936 4 247 10 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 249 11 max .001 1 .002			7													
243 8 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 244 min 0 5 004 3 109 4 1.062e-5 12 NC 1 227.134 4 245 9 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 246 min 0 5 004 3 093 4 1.062e-5 12 NC 1 266.936 4 247 10 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 248 min 0 5 003 3 078 4 1.062e-5 12 NC 1 319.991 4 249 11 max .001 1 .002														1		
245 9 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 246 min 0 5 004 3 093 4 1.062e-5 12 NC 1 266.936 4 247 10 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 248 min 0 5 003 3 078 4 1.062e-5 12 NC 1 319.991 4 249 11 max .001 1 .002 2 0 12 2.438e-4 4 NC 1 NC 2 250 min 0 5 003 3 063 4 1.062e-5 12 NC 1 392.992 4 251 12 max 0 1 .002 2 0 12 2			8		.001			2	0	12	2.438e-4	4	NC	1		2
246 min 0 5 004 3 093 4 1.062e-5 12 NC 1 266.936 4 247 10 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 248 min 0 5 003 3 078 4 1.062e-5 12 NC 1 319.991 4 249 11 max .001 1 .002 2 0 12 2.438e-4 4 NC 1 NC 2 250 min 0 5 003 3 063 4 1.062e-5 12 NC 1 392.992 4 251 12 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 253 13 max 0 1 .002	244			min	0	5	004	3	109	4	1.062e-5	12	NC	1	227.134	4
247 10 max .001 1 .003 2 0 12 2.438e-4 4 NC 1 NC 2 248 min 0 5 003 3 078 4 1.062e-5 12 NC 1 319.991 4 249 11 max .001 1 .002 2 0 12 2.438e-4 4 NC 1 NC 2 250 min 0 5 003 3 063 4 1.062e-5 12 NC 1 392.992 4 251 12 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 252 min 0 5 003 3 05 4 1.062e-5 12 NC 1 497.51 4 253 13 max 0 1 .002			9	max	.001					12		4		1_		2
248 min 0 5 003 3 078 4 1.062e-5 12 NC 1 319.991 4 249 11 max .001 1 .002 2 0 12 2.438e-4 4 NC 1 NC 2 250 min 0 5 003 3 063 4 1.062e-5 12 NC 1 392.992 4 251 12 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 252 min 0 5 003 3 05 4 1.062e-5 12 NC 1 497.51 4 253 13 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 254 min 0 5 002 3 <t< td=""><td></td><td></td><td></td><td>min</td><td></td><td></td><td></td><td></td><td>093</td><td>4</td><td></td><td>12</td><td></td><td>1_</td><td></td><td></td></t<>				min					093	4		12		1_		
249 11 max .001 1 .002 2 0 12 2.438e-4 4 NC 1 NC 2 250 min 0 5003 3063 4 1.062e-5 12 NC 1 392.992 4 251 12 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 252 min 0 5003 305 4 1.062e-5 12 NC 1 497.51 4 253 13 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 254 min 0 5002 3038 4 1.062e-5 12 NC 1 655.018 4 255 14 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 256 min 0 5002 3027 4 1.062e-5 12 NC 1 909.186 4 257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 258 min 0 5002 3018 4 1.062e-5 12 NC 1 1360.639 4 259 <td></td> <td></td> <td>10</td> <td></td>			10													
250 min 0 5 003 3 063 4 1.062e-5 12 NC 1 392.992 4 251 12 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 252 min 0 5 003 3 05 4 1.062e-5 12 NC 1 497.51 4 253 13 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 254 min 0 5 002 3 038 4 1.062e-5 12 NC 1 655.018 4 255 14 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 256 min 0 5 002 3 -			.											•		
251 12 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 252 min 0 5003 305 4 1.062e-5 12 NC 1 497.51 4 253 13 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 254 min 0 5002 3038 4 1.062e-5 12 NC 1 655.018 4 255 14 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 256 min 0 5002 3027 4 1.062e-5 12 NC 1 909.186 4 257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 258 min 0 5002 3018 4 1.062e-5 12 NC 1 1360.639 4 259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			11													
252 min 0 5 003 3 05 4 1.062e-5 12 NC 1 497.51 4 253 13 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 254 min 0 5 002 3 038 4 1.062e-5 12 NC 1 655.018 4 255 14 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 256 min 0 5 002 3 027 4 1.062e-5 12 NC 1 909.186 4 257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 258 min 0 5 002 3 -			40		_									•		
253 13 max 0 1 .002 2 0 12 2.438e-4 4 NC 1 NC 1 254 254 min 0 5002 3038 4 1.062e-5 12 NC 1 655.018 4 12 2.438e-4 255 14 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 NC 1 NC 1 NC 256 min 0 5002 3027 4 1.062e-5 12 NC 1 909.186 4 NC 257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 NC 1 NC 258 min 0 5002 3018 4 1.062e-5 12 NC 1 1360.639 4 NC 259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			12													_
254 min 0 5 002 3 038 4 1.062e-5 12 NC 1 655.018 4 255 14 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 256 min 0 5 002 3 027 4 1.062e-5 12 NC 1 909.186 4 257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 258 min 0 5 002 3 018 4 1.062e-5 12 NC 1 1360.639 4 259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			12											•		
255 14 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 256 min 0 5 002 3 027 4 1.062e-5 12 NC 1 909.186 4 257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 258 min 0 5 002 3 018 4 1.062e-5 12 NC 1 1360.639 4 259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			13													•
256 min 0 5 002 3 027 4 1.062e-5 12 NC 1 909.186 4 257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 258 min 0 5 002 3 018 4 1.062e-5 12 NC 1 1360.639 4 259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			1/1											•		
257 15 max 0 1 .001 2 0 12 2.438e-4 4 NC 1 NC 1 258 min 0 5 002 3 018 4 1.062e-5 12 NC 1 1360.639 4 259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			14													
258 min 0 5002 3018 4 1.062e-5 12 NC 1 1360.639 4 259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			15													
259 16 max 0 1 0 2 0 12 2.438e-4 4 NC 1 NC 1			1.0													
			16											•		
260 min 0 5 001 3 011 4 1.062e-5 12 NC 1 2287.404 4	260			min	0	5	001	3	011	4	1.062e-5	12	NC	1	2287.404	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
261		17	max	00	1	0	2	00	12	2.438e-4	_4_	NC	_1_	NC	1
262			min	0	5	0	3	005	4	1.062e-5	12	NC	1_	4719.573	4
263		18	max	0	1	0	2	00	12	2.438e-4	_4_	NC	_1_	NC	1
264			min	0	5	0	3	002	4	1.062e-5	12	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	2.438e-4	4	NC	_1_	NC	1
266			min	0	1	0	1	0	1	1.062e-5	12	NC	1_	NC	1
267	<u>M6</u>	1	max	.021	2	.029	2	0	1	1.873e-3	_4_	NC	3	NC	1
268			min	026	3	041	3	834	4	0	_1_	2649.683	2	92.325	4
269		2	max	.02	2	.026	2	0	1	1.987e-3	_4_	NC	3	NC	1
270		_	min	025	3	038	3	767	4	0	_1_	2920.389	2	100.4	4
271		3	max	.019	2	.024	2	0	1	2.102e-3	4_	NC	3	NC	1
272			min	023	3	036	3	7	4	0	<u>1</u>	3249.371	2	109.965	4
273		4	max	.017	2	.021	2	0	1	2.216e-3	_4_	NC	3	NC	1
274			min	022	3	034	3	634	4	0	1_	3653.624	2	121.404	4
275		5	max	.016	2	.019	2	0	1	2.33e-3	_4_	NC	3_	NC	1
276			min	021	3	032	3	569	4	0	_1_	4157.043	2	135.235	4
277		6	max	.015	2	.016	2	0	1	2.444e-3	4	NC	_1_	NC	1
278			min	019	3	03	3	506	4	0	_1_	4794.081	2	152.174	4
279		7	max	.014	2	.014	2	0	1	2.558e-3	4	NC	1_	NC	1
280			min	018	3	027	3	445	4	0	_1_	5615.886	2	173.232	4
281		8	max	.013	2	.011	2	0	1	2.673e-3	4	NC	1_	NC	1
282			min	016	3	025	3	385	4	0	1_	6701.092	2	199.871	4
283		9	max	.012	2	.009	2	0	1	2.787e-3	4	NC	1_	NC	1
284			min	015	3	023	3	329	4	0	1_	8175.768	2	234.281	4
285		10	max	.01	2	.008	2	0	1	2.901e-3	_4_	NC	_1_	NC	1
286			min	013	3	021	3	275	4	0	1_	NC	1_	279.855	4
287		11	max	.009	2	.006	2	0	1	3.015e-3	4	NC	1_	NC	1
288			min	012	3	018	3	225	4	0	<u>1</u>	NC	<u>1</u>	342.089	4
289		12	max	.008	2	.004	2	0	1	3.129e-3	4_	NC	_1_	NC	1
290			min	01	3	<u>016</u>	3	179	4	0	1_	NC	_1_	430.38	4
291		13	max	.007	2	.003	2	0	1	3.243e-3	_4_	NC	_1_	NC	1
292			min	009	3	014	3	137	4	0	_1_	NC	1_	561.913	4
293		14	max	.006	2	.002	2	0	1	3.358e-3	_4_	NC	_1_	NC	1
294		-	min	007	3	011	3	<u>1</u>	4	0	_1_	NC	1_	770.995	4
295		15	max	.005	2	0	2	0	1	3.472e-3	_4_	NC	_1_	NC	1
296			min	006	3	009	3	068	4	0	_1_	NC	1_	1134.752	4
297		16	max	.003	2	0	2	0	1	3.586e-3	_4_	NC	_1_	NC	1
298			min	004	3	007	3	041	4	0	_1_	NC	1_	1858.968	4
299		17	max	.002	2	0	2	0	1	3.7e-3	_4_	NC	_1_	NC	1
300		1.0	min	003	3	005	3	021	4	0	_1_	NC	1_	3666.135	
301		18	max	.001	2	0	2	0	1	3.814e-3		NC	1_	NC	1
302		10	min	<u>001</u>	3	002	3	007	4	0	_1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	3.928e-3	4_	NC		NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
306			min	0	1	0	1	0	1	-1.015e-3	4	NC	1_	NC	1
307		2	max	.001	3	0	15	.018	4	0		NC	1_	NC	1
308		+_	min	001	2	003	3	0	1	-2.66e-4	4_	NC	1_	NC	1
309		3	max	.002	3	0	15	.035	4	4.831e-4	4	NC	1_	NC	1
310			min	002	2	005	3	0	1	0	1_	NC NC	1_	9093.846	4
311		4	max	.003	3	001	15	.05	4	1.232e-3	4	NC	1	NC 7040,000	1
312			min	003	2	007	3	0	1	0	_1_	NC	1_	7219.329	
313		5	max	.005	3	002	15	.064	4	1.981e-3	4_	NC		NC 0507.070	1
314			min	005	2	009	3	0	1	0	1_	NC	1_	6587.379	
315		6	max	.006	3	002	15	.077	4	2.731e-3	4_	NC	1_	NC 2500 547	1
316			min	006	2	<u>011</u>	3	0	1	0	_1_	9447.207	4	6590.517	4
317		7	max	.007	3	003	15	.089	4	3.48e-3	4	NC	_1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
318			min	007	2	013	3	0	1	0	1_	8157.036	4	7126.929	4
319		8	max	.008	3	003	15	.099	4	4.229e-3	4	NC	<u>1</u>	NC	1
320			min	008	2	014	3	0	1	0	1	7362.557	4	8356.541	4
321		9	max	.009	3	003	15	.11	4	4.978e-3	4	NC	1_	NC	1_
322			min	009	2	015	3	0	1	0	1	6897.696	4	NC	1
323		10	max	.01	3	003	15	.119	4	5.727e-3	4	NC	1	NC	1
324			min	01	2	015	3	0	1	0	1	6682.352	4	NC	1
325		11	max	.012	3	003	15	.129	4	6.476e-3	4	NC	1	NC	1
326			min	011	2	016	3	0	1	0	1	6685.048	4	NC	1
327		12	max	.013	3	003	15	.139	4	7.225e-3	4	NC	1	NC	1
328			min	013	2	015	3	0	1	0	1	6910.863	4	NC	1
329		13	max	.014	3	003	15	.148	4	7.974e-3	4	NC	1_	NC	1
330			min	014	2	015	3	0	1	0	1	7404.944	4	NC	1
331		14	max	.015	3	003	15	.159	4	8.724e-3	4	NC	1	NC	1
332			min	015	2	014	3	0	1	0	1	8275.465	4	NC	1
333		15	max	.016	3	002	15	.17	4	9.473e-3	4	NC	1	NC	1
334			min	016	2	013	3	0	1	0	1	9760.472	4	NC	1
335		16	max	.017	3	002	15	.182	4	1.022e-2	4	NC	1	NC	1
336			min	017	2	012	3	0	1	0	1	NC	1	NC	1
337		17	max	.019	3	001	15	.196	4	1.097e-2	4	NC	1	NC	1
338			min	018	2	01	3	0	1	0	1	NC	1	NC	1
339		18	max	.02	3	0	10	.211	4	1.172e-2	4	NC	1	NC	1
340			min	019	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.021	3	.001	10	.228	4	1.247e-2	4	NC	1	NC	1
342			min	021	2	007	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.02	2	0	1	5.65e-5	5	NC	1	NC	1
344			min	0	15	022	3	228	4	0	1	NC	1	108.808	4
345		2	max	.005	1	.019	2	0	1	5.65e-5	5	NC	1	NC	1
346			min	0	15	021	3	21	4	0	1	NC	1	118.178	4
347		3	max	.005	1	.018	2	0	1	5.65e-5	5	NC	1	NC	1
348			min	0	15	02	3	192	4	0	1	NC	1	129.338	4
349		4	max	.005	1	.017	2	0	1	5.65e-5	5	NC	1	NC	1
350			min	0	15	018	3	174	4	0	1	NC	1	142.75	4
351		5	max	.004	1	.016	2	0	1	5.65e-5	5	NC	1	NC	1
352			min	0	15	017	3	156	4	0	1	NC	1	159.045	4
353		6	max	.004	1	.015	2	0	1	5.65e-5	5	NC	1	NC	1
354			min	0	15	016	3	138	4	0	1	NC	1	179.096	4
355		7	max	.004	1	.013	2	0	1	5.65e-5	5	NC	1	NC	1
356			min	0	15	015	3	121	4	0	1	NC	1	204.143	4
357		8	max	.003	1	.012	2	0	1	5.65e-5	5	NC	1	NC	1
358			min	0	15	013	3	105	4	0	1	NC	1	235.994	4
359		9	max	.003	1	.011	2	0	1	5.65e-5	5	NC	1	NC	1
360			min	0	15	012	3	089	4	0	1	NC	1	277.37	4
361		10	max	.003	1	.01	2	0	1	5.65e-5	5	NC	1	NC	1
362		- 10	min	0	15	011	3	075	4	0	1	NC	1	332.525	4
363		11	max	.003	1	.009	2	0	1	5.65e-5	5	NC	1	NC	1
364			min	0	15	01	3	061	4	0.000.0	1	NC	1	408.414	4
365		12	max	.002	1	.008	2	0	1	5.65e-5	5	NC	1	NC	1
366		12	min	0	15	009	3	048	4	0.000 0	1	NC	1	517.07	4
367		13	max	.002	1	.007	2	_ 040 _	1	5.65e-5	5	NC	1	NC	1
368		13	min	0	15	007	3	036	4	0.05e-5	1	NC	1	680.816	4
369		14	max	.002	1	.006	2	030 0	1	5.65e-5	5	NC	1	NC	1
370		14	min	0	15	006	3	026	4	0.000-0	1	NC NC	1	945.058	4
		15			1				1	_		NC NC	_		
371		15	max	.001	15	.004	2	0		5.65e-5	<u>5</u> 1		1	NC	1
372		10	min	0		005	3	018	4	0 5 650 5		NC NC		1414.419	
373		16	max	0	1	.003	2	0	1	5.65e-5	5	NC NC	1_1	NC	1
374			min	0	15	004	3	01	4	0	1	NC	<u>1</u>	2377.984	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
375		17	max	0	1	.002	2	0	1	5.65e-5	5_	NC	1	NC 4000.07	1
376		10	min	0	15	002	3	005	4	0	1_	NC NC	1_	4906.87	4
377		18	max	0	1	.001	2	0	1	5.65e-5	_5_	NC NC	1	NC NC	1
378		10	min	0	15	001	3	002	4	0	1_	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	5.65e-5	_5_	NC	1	NC NC	1
380	1440	-	min	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
381	M10	1	max	.006	2	.007	2	0	12	1.901e-3	4	NC NC	1	NC	2
382		_	min	008	3	013	3	833	4	2.208e-5	12	NC NC	1_	92.388	4
383		2	max	.006	2	.006	2	0	12	2.013e-3	4	NC NC	1	NC 400,400	2
384			min	008	3	012	3	<u>766</u>	4	2.089e-5	12	NC NC	1_	100.469	4
385		3	max	.006	2	.005	2	0	12	2.124e-3	4	NC	1	NC 440.040	2
386		+	min	007	3	012	3	7	4	1.97e-5	12	NC NC	1_	110.042	4
387		4	max	.005	2	.004	2	0	12	2.235e-3	4	NC NC	1	NC 101 10	2
388		-	min	007	3	012	3	634	4	1.85e-5	12	NC	1_	121.49	4
389		5	max	.005	2	.003	2	0	12	2.347e-3	4	NC	1	NC 405,000	1
390			min	006	3	011	3	<u>569</u>	4	1.731e-5	12	NC NC	1_	135.333	4
391		6	max	.005	2	.002	2	0	12	2.458e-3	4	NC NC	1	NC 450,007	1
392		+ -	min	006	3	011	3	<u>506</u>	4	1.612e-5	12	NC NC	1_	152.287	4
393		7	max	.004	2	0	2	0	12	2.57e-3	4	NC	1_	NC 470.000	1
394			min	005	3	<u>011</u>	3	444	4	1.493e-5	12	NC NC	1_	173.363	4
395		8	max	.004	2	0	2	0	12	2.681e-3	4	NC NC	1	NC 000,000	1
396			min	005	3	01	3	385	4	1.373e-5	12	NC	1_	200.028	4
397		9	max	.004	2	0	2	0	12	2.793e-3	4	NC NC	1	NC 004.474	1
398		4.0	min	004	3	01	3	328	4	1.254e-5	12	NC	1_	234.471	4
399		10	max	.003	2	002	2	0	12	2.904e-3	4_	NC	1	NC	1
400		1.4	min	004	3	009	3	275	4	1.135e-5	12	NC	1_	280.092	4
401		11	max	.003	2	002	15	0	12	3.015e-3	4_	NC	1	NC	1
402		10	min	004	3	008	3	225	4	1.016e-5	12	NC NC	1_	342.394	4
403		12	max	.003	2	002	15	0	12	3.127e-3	4_	NC	1_	NC NC	1
404		10	min	003	3	007	3	<u>179</u>	4	8.964e-6	12	NC	_1_	430.787	4
405		13	max	.002	2	002	15	0	12	3.238e-3	4	NC	1	NC 500,400	1
406		4.4	min	003	3	007	3	<u>137</u>	4	7.771e-6	12	NC NC	1_	562.483	4
407		14	max	.002	2	001	15	0	12	3.35e-3	4	NC NC	1	NC	1
408		4.5	min	002	3	006	4	<u>1</u>	4	6.578e-6	12	NC	1_	771.853	4
409		15	max	.001	2	001	15	0	12	3.461e-3	4	NC	1	NC 4400.400	1
410		10	min	002	3	005	4	068	4	5.386e-6	12	NC NC	1_	1136.169	
411		16	max	.001	2	001	15	0	12	3.573e-3	4	NC NC	1	NC	1
412		47	min	001	3	004	4	041	4	4.193e-6	12	NC NC	1_	1861.677	4
413		17	max	0	2	0	15	0	12	3.684e-3	4	NC NC	1	NC	1
414		40	min	0	3	003	4	021	4	3.001e-6	12	NC NC	1_	3672.771	4
415		18		0	2	0	15	0		3.795e-3	4	NC	1	NC NC	1
416		40	min	0	3	002	4	007	4	1.808e-6	12	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	3.907e-3	4	NC NC	1_4	NC NC	1
418	N/4.4	A	min	0	1	0	1	0	1	6.156e-7	12	NC NC	1_	NC NC	1
419	M11	1	max	0	1	0	1	0	1	-9.877e-8		NC NC	1	NC NC	1
420		_	min	0	1	0	1	0	1	-1.009e-3		NC NC	1	NC NC	1
421		2	max	0	3	0	15	.018	4	-1.853e-6		NC NC	1	NC NC	1
422		_	min	0	2	002	4	0	12	-2.576e-4	4_	NC NC	1	NC NC	1
423		3	max	0	3	001	15	.035	4	5.005e-4	5_4	NC	1_	NC	1
424		4	min	0	2	004	4	0	12	-5.968e-5	_1_	NC NC	1_	9443.988	4
425		4	max	.001	3	002	15	.05	4	1.248e-3	5_4	NC	1	NC 75.40.005	1
426		-	min	0	2	006	4	0	1	-8.889e-5	1_	NC NC	1_	7546.905	_
427		5	max	.001	3	002	15	.064	4	1.997e-3	_4_	NC NC	1_	NC COAF FOO	1
428			min	001	2	008	4	0	1	-1.181e-4	1	NC NC	1_	6945.598	
429		6	max	.002	3	003	15	.076	4	2.748e-3	4_	NC	1_4	NC 7020 252	1
430		-	min	001	2	01	4	0	1	-1.473e-4	1_	9131.001	4_	7030.253	
431		7	max	.002	3	003	15	.088	4	3.5e-3	4	NC	<u>1</u>	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

432	Member	Sec	min	x [in] 002	LC 2	y [in] 012	LC 4	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 4	(n) L/z Ratio	LC 4
433		8	max	.002	3	012	15	.099	4	4.251e-3	4	NC	2	NC	1
434		10	min	002	2	013	4	<u>.099</u>	1	-2.058e-4	1	7148.75	4	9305.029	4
435		9	max	.002	3	003	15	.109	4	5.003e-3	4	NC	5	NC	1
436		- 3	min	002	2	014	4	001	1	-2.35e-4	1	6709.118	4	NC	1
437		10	max	.002	3	004	15	.119	4	5.754e-3	4	NC	5	NC	1
438		10	min	003	2	015	4	002	1	-2.642e-4	1	6509.296	4	NC	1
439		11	max	.004	3	004	15	.128	4	6.506e-3	4	NC	5	NC	1
440			min	003	2	015	4	002	1	-2.934e-4	1	6520.119	4	NC	1
441		12	max	.004	3	004	15	.138	4	7.257e-3	4	NC	3	NC	1
442		12	min	003	2	014	4	003	1	-3.226e-4	1	6747.564	4	NC	1
443		13	max	.004	3	003	15	.148	4	8.008e-3	4	NC	2	NC	1
444			min	004	2	013	4	003	1	-3.519e-4	1	7236.496	4	NC	1
445		14	max	.005	3	003	15	.159	4	8.76e-3	4	NC	1	NC	1
446			min	004	2	012	4	004	1	-3.811e-4	1	8093.314	4	NC	1
447		15	max	.005	3	003	15	.17	4	9.511e-3	4	NC	1	NC	1
448			min	004	2	011	4	005	1	-4.103e-4	1	9551.529	4	9993.513	5
449		16	max	.006	3	002	15	.183	4	1.026e-2	4	NC	1	NC	1
450			min	004	2	009	4	006	1	-4.395e-4	1	NC	1	9840.566	5
451		17	max	.006	3	002	15	.196	4	1.101e-2	4	NC	1	NC	1
452			min	005	2	006	4	008	1	-4.687e-4	1	NC	1	NC	1
453		18	max	.006	3	001	15	.212	4	1.177e-2	4	NC	1	NC	2
454			min	005	2	004	4	009	1	-4.979e-4	1	NC	1	9800.507	1
455		19	max	.007	3	0	10	.229	4	1.252e-2	4	NC	1	NC	2
456			min	005	2	002	1	011	1	-5.272e-4	1	NC	1	8366.174	1
457	M12	1	max	.002	1	.005	2	.011	1	1.701e-4	5	NC	1	NC	3
458			min	0	12	007	3	229	4	-1.726e-4	1	NC	1	108.124	4
459		2	max	.002	1	.005	2	.01	1	1.701e-4	5	NC	1	NC	3
460			min	0	12	007	3	211	4	-1.726e-4	1	NC	1	117.427	4
461		3	max	.002	1	.004	2	.009	1	1.701e-4	5	NC	1	NC	3
462			min	0	12	006	3	193	4	-1.726e-4	1	NC	1	128.507	4
463		4	max	.002	1	.004	2	.008	1	1.701e-4	5	NC	1_	NC	3
464			min	0	12	006	3	175	4	-1.726e-4	1	NC	1_	141.825	4
465		5	max	.002	1	.004	2	.007	1	1.701e-4	5	NC	_1_	NC	3
466			min	0	12	005	3	157	4	-1.726e-4	1	NC	1_	158.006	4
467		6	max	.002	1	.004	2	.007	1	1.701e-4	_5_	NC	_1_	NC	3
468			min	0	12	005	3	139	4	-1.726e-4	<u>1</u>	NC	<u>1</u>	177.917	4
469		7	max	.002	1	.003	2	.006	1	1.701e-4	5_	NC	_1_	NC	3
470			min	0	12	005	3	122	4	-1.726e-4	1_	NC	1_	202.789	4
471		8	max	.001	1	.003	2	.005	1	1.701e-4	5_	NC	_1_	NC	2
472			min	0	12	004	3	106		-1.726e-4	1_	NC	1	234.417	4
473		9	max	.001	1	.003	2	.004	1	1.701e-4	5	NC		NC	2
474		10	min	0	12	004	3	09	4	-1.726e-4	1_	NC	1_	275.504	4
475		10	max	.001	1	.003	2	.004	1	1.701e-4	5	NC	1_	NC 000.070	2
476		4.4	min	0	12	003	3	075	4	-1.726e-4	1_	NC NC	1_	330.273	4
477		11	max	.001	1	.002	2	.003	1	1.701e-4	5	NC NC	1_	NC 405 coo	2
478		40	min	0	12	003	3	061	4	-1.726e-4	1_	NC NC	1_	405.632	4
479		12	max	0	1 12	.002	2	.002	1_4	1.701e-4	5	NC NC	1_1	NC 542 527	1
480		12	min	0		003	3	048	4	-1.726e-4	1_	NC NC	1_1	513.527	4
481		13	max	0	1 12	.002	2	.002	1	1.701e-4	5_1	NC NC	<u>1</u> 1	NC 676 125	1
482		1.1	min	0	1	002 .001	2	037 .001	1	-1.726e-4	<u>1</u>	NC NC		676.125 NC	4
483 484		14	max min	0	12	001	3	026	4	1.701e-4 -1.726e-4	<u>5</u> 1	NC NC	<u>1</u> 1	938.509	4
485		15	max	0	1	002 .001	2	<u>026</u> 0	1	1.701e-4	5	NC NC	1	NC	1
486		10	min	0	12	002	3	018	4	-1.726e-4	<u>5</u>	NC NC	1	1404.563	
487		16	max	0	1	<u>002</u> 0	2	<u>016</u> 0	1	1.701e-4	5	NC NC	1	NC	1
488		10	min	0	12	001	3	011	4	-1.726e-4	1	NC NC	1	2361.316	_
400			HIIII	U	14	001	J	011	4	1.7206-4		INC		2001.010	_+_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	1.701e-4	5	NC	1_	NC	1
490			min	0	12	0	3	005	4	-1.726e-4	1_	NC	1	4872.245	4
491		18	max	00	1	0	2	00	1	1.701e-4	_5_	NC	_1_	NC	1
492			min	0	12	0	3	002	4	-1.726e-4	_1_	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	1.701e-4	5	NC	1_	NC	1
494	244		min	0	1	0	1	0	1	-1.726e-4	1_	NC	1	NC	1
495	<u>M1</u>	1	max	.008	3	.087	2	.888	4	1.624e-2	1_	NC	1	NC NC	1
496			min	004	2	012	3	0	12	-2.77e-2	3	NC NC	1_	NC NC	1
497		2	max	.008	3	.04	2	.857	4	9.215e-3	4	NC	4	NC	1
498		2	min	004	2	002	3	008	4	-1.371e-2	3	2461.613 NC	2	9449.538 NC	5
499		3	max	.008 004	3	.013 01	2	.825 011	1	1.474e-2 -2.439e-4	<u>4</u> 1	1184.998	<u>5</u>	5156.3	5
500 501		4	min	.008	3	01 .04	3	.793	4	1.29e-2	4	NC	5	NC	2
502		4	max	004	2	0 4	2	011	1	-4.841e-3	3	746.819	2	3718.964	5
503		5	max	.008	3	.073	3	011 .76	4	1.105e-2	4	NC	5	NC	1
504			min	004	2	127	2	007	1	-9.541e-3	3	538.252	2	3003.298	5
505		6	max	.004	3	.11	3	.727	4	1.301e-2	2	NC	15	NC	1
506		—	min	004	2	185	2	003	1	-1.424e-2	3	423.485	2	2575.157	5
507		7	max	.008	3	.145	3	.692	4	1.736e-2	2	NC	15	NC	1
508			min	004	2	237	2	0	12	-1.894e-2	3	355.806	2	2269.067	4
509		8	max	.007	3	.174	3	.657	4	2.171e-2	2	9307.947	15	NC	1
510			min	004	2	278	2	0	12	-2.364e-2	3	315.806	2	2046.809	4
511		9	max	.007	3	.193	3	.62	4	2.504e-2	2	8692.664	15	NC	1
512			min	003	2	304	2	0	1	-2.373e-2	3	294.997	2	1911.319	4
513		10	max	.007	3	.2	3	.58	4	2.769e-2	2	8505.47	15	NC	1
514			min	003	2	312	2	0	12	-2.076e-2	3	288.913	2	1873.443	4
515		11	max	.007	3	.195	3	.538	4	3.034e-2	2	8692.328	15	NC	1
516			min	003	2	303	2	0	12	-1.779e-2	3	296.089	2	1918.832	4
517		12	max	.007	3	.178	3	.493	4	2.961e-2	2	9307.192	15	NC	1
518			min	003	2	276	2	001	1	-1.482e-2	3	319.165	2	2061.13	4
519		13	max	.007	3	.152	3	.444	4	2.376e-2	2	NC	15	NC	1
520			min	003	2	233	2	0	1	-1.186e-2	3	364.056	2	2412.252	4
521		14	max	.006	3	.118	3	.392	4	1.792e-2	2	NC	15	NC	1
522			min	003	2	178	2	0	12	-8.899e-3	3_	441.233	2	3127.493	4
523		15	max	.006	3	.08	3	34	4	1.208e-2	2	NC	5_	NC_	1
524		40	min	003	2	119	2	0	12	-5.937e-3	3	575.028	2	4634.574	4
525		16	max	.006	3	.042	3	.287	4	9.961e-3	4	NC 004.075	5	NC 0400-400	1
526		47	min	003	2	059	2	0	12	-2.976e-3	3	824.975		8492.462	4
527		17	max	.006	3	.005	3	.238	4	1.114e-2	4	NC	5	NC 0400 FC0	2
528		10	min max	003	3	005	2	102	12	-1.383e-5 1.246e-2	2	1363.879	2	9403.568	1
529		18		.006	2	.039	3	.193				NC	2	NC NC	1
530 531		19	min	003 .006	3	028 .077	2	<u> </u>	1 <u>2</u>	-5.243e-3 2.495e-2	2	2920.047 NC	1	NC NC	1
532		19	max min	003	2	058	3	002	1	-1.066e-2	3	NC NC	1	NC NC	1
533	M5	1	max	.026	3	.217	2	.887	4	0	1	NC	1	NC	1
534	IVIO		min	017	2	018	3	<u>.007</u>	1	-5.422e-6	4	NC	1	NC	1
535		2	max	.026	3	.098	2	.863	4	7.591e-3	4	NC	5	NC	1
536			min	018	2	.002	3	0	1	0	1	971.711	2	6986.514	4
537		3	max	.026	3	.042	3	.833	4	1.495e-2	4	NC	5	NC	1
538			min	018	2	034	2	0	1	0	1	459.876	2	4096.103	4
539		4	max	.025	3	.12	3	.801	4	1.218e-2	4	9484.442	15	NC	1
540			min	017	2	19	2	0	1	0	1	283.689	2	3179.747	4
541		5	max	.025	3	.222	3	.765	4	9.411e-3	4	6645.129	15	NC	1
542		Ť	min	017	2	357	2	0	1	0	1	200.935		2749.581	4
543		6	max	.024	3	.335	3	.729	4	6.641e-3	4	5120.354	15	NC	1
544			min	017	2	522	2	0	1	0.0410 0	1	156.041	2	2492.66	4
545		7	max	.024	3	.444	3	.692	4	3.871e-3	4	4238.926	15	NC	1
			,						<u> </u>	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_				

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

546	Member	Sec	min	x [in] 016	LC 2	y [in] 671	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 2	(n) L/z Ratio	LC 4
547		8	min max	.023	3	.535	3	.656	4	1.102e-3	4	3726.037	15	NC	1
548		10	min	016	2	79	2	0	1	0	1	114.565	2	2086.601	4
549		9	max	.023	3	.593	3	.62	4	0	1	3462.868	15	NC	1
550		- 3	min	016	2	865	2	0	1	-3.935e-6	5	106.672	2	1906.553	_
551		10	max	.022	3	.613	3	.58	4	0	1	3383.571	15	NC	1
552		10	min	015	2	891	2	0	1	-3.825e-6	5	104.368	2	1884.551	4
553		11	max	.022	3	.597	3	.538	4	0.0200 0	1	3462.971	15	NC	1
554			min	015	2	865	2	0	1	-3.714e-6	5	107.078	2	1940.589	
555		12	max	.021	3	.546	3	.495	4	7.823e-4	4	3726.288	15	NC	1
556		12	min	015	2	786	2	0	1	0	1	115.884	2	2022.395	_
557		13	max	.02	3	.463	3	.445	4	2.751e-3	4	4239.46	15	NC	1
558			min	015	2	659	2	0	1	0	1	133.275	2	2380.998	4
559		14	max	.02	3	.359	3	.391	4	4.72e-3	4	5121.432	15	NC	1
560			min	014	2	502	2	0	1	0	1	163.644	2	3318.605	4
561		15	max	.019	3	.243	3	.335	4	6.689e-3	4	6647.306	15	NC	1
562			min	014	2	332	2	0	1	0	1	217.37	2	6023.915	4
563		16	max	.019	3	.125	3	.28	4	8.658e-3	4	9489.06	15	NC	1
564			min	014	2	165	2	0	1	0	1	320.436	2	NC	1
565		17	max	.018	3	.014	3	.229	4	1.063e-2	4	NC	5	NC	1
566			min	014	2	018	2	0	1	0	1	549.265	2	NC	1
567		18	max	.018	3	.094	1	.186	4	5.395e-3	_4_	NC	5_	NC	1
568			min	014	2	08	3	0	1	0	1_	1211.555	2	NC	1
569		19	max	.018	3	.186	2	.152	4	0	1_	NC	_1_	NC	1
570	140		min	014	2	166	3	0	1	-3.346e-6	4_	NC NC	1_	NC NC	1
571	<u>M9</u>	1	max	.008	3	.087	2	.887	4	2.77e-2	3	NC NC	1	NC NC	1
572			min	004	2	012	3	002	1	-1.624e-2	1_	NC NC	1_	NC NC	1
573		2	max	.008	2	.04	2	.862	4	1.371e-2	3	NC	4	NC 7054 222	1
574		2	min	004		002	3	0	12	-7.941e-3	2	2461.613	2	7051.232	
575 576		3	max min	.008 004	3	.013 01	2	<u>.833</u>	12	1.493e-2 -4.895e-6	<u>4</u> 10	NC 1184.998	<u>5</u> 2	NC 4107.515	4
577		4	max	.004	3	.04	3	.8	4	1.169e-2	5	NC	5	NC	2
578		1	min	004	2	067	2	0	12	-4.305e-3	2	746.819	2	3167.064	
579		5	max	.008	3	.073	3	.765	4	9.541e-3	3	NC	5	NC	1
580		Ť	min	004	2	127	2	0	12	-8.657e-3	2	538.252	2	2722.766	
581		6	max	.008	3	.11	3	.729	4	1.424e-2	3	NC	15	NC	1
582			min	004	2	185	2	0	12	-1.301e-2	2	423.485	2	2459.899	4
583		7	max	.008	3	.145	3	.692	4	1.894e-2	3	NC	15	NC	1
584			min	004	2	237	2	0	1	-1.736e-2	2	355.806	2	2262.076	4
585		8	max	.007	3	.174	3	.656	4	2.364e-2	3	9284.749	15	NC	1
586			min	004	2	278	2	001	1	-2.171e-2	2	315.806	2	2071.915	4
587		9	max	.007	3	.193	3	.62	4	2.373e-2	3	8671.308	<u>15</u>	NC	1
588			min	003	2	304	2	0	12	-2.504e-2	2	294.997		1904.736	4
589		10	max	.007	3	.2	3	.58	4	2.076e-2	3_	8484.661	15	NC	1
590			min	003	2	312	2	0	1	-2.769e-2	2	288.913		1874.977	4
591		11	max	.007	3	.195	3	.538	4	1.779e-2	3	8671.007	<u>15</u>	NC	1
592		40	min	003	2	303	2	0	1	-3.034e-2	2	296.089	2	1928.108	
593		12	max	.007	3	.178	3	.494	4	1.482e-2	3_	9284.189	15	NC 0000 070	1
594		40	min	003	2	276	2	0	12	-2.961e-2	2	319.165	2	2036.979	
595		13	max	.007	2	.152	3	.444	4	1.186e-2	3	NC 364.056	<u>15</u>	NC	1
596 597		14	min	003 .006	3	<u>233</u> .118	3	<u> </u>	<u>12</u>	-2.376e-2 8.899e-3	3	364.056 NC	<u>2</u> 15	2416.308 NC	4
598		14	max min	003	2	178	2	003	1	-1.792e-2	2	441.233	2	3288.668	5
599		15	max	.006	3	.08	3	.335	4	6.29e-3	5	NC	5	NC	1
600		10	min	003	2	119	2	007	1	-1.208e-2	2	575.028	2	5389.004	
601		16	max	.006	3	.042	3	.281	4	8.497e-3	5	NC	5	NC	1
602			min	003	2	059	2	01	1	-6.232e-3	2	824.975	2	NC	1
JV2			,		_					J U	_	U_ 11070	_		

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.005	3	.23	4	1.071e-2	4	NC	5	NC	2
604			min	003	2	005	2	011	1	-7.001e-4	1	1363.879	2	9403.568	1
605		18	max	.006	3	.039	2	.188	4	5.243e-3	3	NC	4	NC	1
606			min	003	2	028	3	007	1	-1.246e-2	2	2920.047	2	NC	1
607		19	max	.006	3	.077	2	.152	4	1.066e-2	3	NC	1	NC	1
608			min	003	2	058	3	0	12	-2.495e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.