Meine Antwort zum erweiterten Wigner's Freund Gedankenexperiment

Jannis Naske

April 21, 2019

Abstract

In diesem Dokument schlage ich zwei mögliche Korrekturen zum erweiterten Wigner's Freund Gedankenexperiment von Renner und Frauchiger vor. Durch diese Verbesserungen wird der Widerspruch vernichtet, und alle drei Annahmen, (Q), (C) und (S), bleiben unverletzt.

Der erste Fehler

Im Artikel von Renner und Frauchiger wird folgendes Statement hergeleitet:

• Statement 1 by F_1 : "If I get t, I know that W_2 will measure plus"

Der Beweis, welcher benutzt wird, ist folgender(ich lasse in diesem Dokument die doppelten Symbole weg, da dies in diesem Fall redundante Information ist):

Nachdem F_1 t gemessen hat, setzt er den Spin für F_2 in die Superposition $\frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$. In der Basis $\left\{|+\rangle_{L_2}, |-\rangle_{L_2}\right\}$, mit $|+\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$, $|-\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle - \frac{1}{\sqrt{2}} |\uparrow\rangle$, ist diese Superposition dargestellt als $|+\rangle_{L_2}$, und W_2 wird somit $|+\rangle_{L_2}$ messen, und die Aussage folgt.

Jedoch wurde bei diesem Beweis weggelassen, dass die Superposition durch das Messen von W_1 verändert wird. Wenn W_1 nach Annahme $|-\rangle_{L_1} = \frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ misst, geht die Superposition, nach dem Artikel, in $|-\rangle_{L_1} |\uparrow\rangle = \frac{1}{\sqrt{2}} |h\rangle |\uparrow\rangle - \frac{1}{\sqrt{2}} |t\rangle |\uparrow\rangle = \left(\frac{1}{\sqrt{2}} |h\rangle - \frac{1}{\sqrt{2}} |t\rangle\right) \left(|+\rangle_{L_2} - |-\rangle_{L_2}\right) = \frac{1}{2} |h\rangle |+\rangle_{L_2} - \frac{1}{2} |t\rangle |+\rangle_{L_2} - \frac{1}{2} |h\rangle |-\rangle_{L_2}$ über. Es ist also doch möglich, dass $W_2 |t\rangle |-\rangle_{L_2}$ misst, und Statement 1 stellt sich als falsch heraus.

Zum Schluss misst W_2 nach Annahme noch $|-\rangle_{L_2}$, und der Zustand geht in $\frac{1}{\sqrt{2}}|t\rangle\,|-\rangle-\frac{1}{\sqrt{2}}|h\rangle\,|-\rangle=\frac{1}{2}|t\rangle\,|\downarrow\rangle-\frac{1}{2}|t\rangle\,|\uparrow\rangle-\frac{1}{2}|h\rangle\,|\downarrow\rangle+\frac{1}{2}|h\rangle\,|\uparrow\rangle$ über.

Der zweite Fehler

Da das Statement 1 nicht mehr gilt, verschwindet die sich widersprechende Aussage aus dem ursprünglichen Bericht. Jedoch gibt es noch ein Problem. Oben

haben wir den Zustand $\frac{1}{2}|t\rangle|\downarrow\rangle - \frac{1}{2}|t\rangle|\uparrow\rangle - \frac{1}{2}|h\rangle|\downarrow\rangle + \frac{1}{2}|h\rangle|\uparrow\rangle$ als Schlusszustand hergeleitet, worauf die Korrektur des ersten Fehlers keinen Einfluss hat. Wenn aber in diesem Zustand in den Standardbasen gemessen wird, ist es möglich, den Zustand $|h\rangle|\uparrow\rangle$ zu messen. Dies scheint aber aus der Perspektive von F_1 nicht möglich zu sein; Wenn er h misst, wird er das Qubit, dass er dann an F_2 weiterleitet, in den Zustand $|\downarrow\rangle$ versetzen. Ist dies ein anderer Widerspruch? Um diese Frage zu beantworten, betrachten wir zuerst ein simpleres Problem, und wenden dann unsere Erkenntnis auf das Ursprüngliche Problem an.

Der Aufbau des Experiments ist in Bild 1.1 dargestellt. Q_1 und Q_2 stellen Quantenbits dar, der Freund, F, befindet sich mit den Bits in einer Isolation, die dann von Wigner, W, gemessen wird. Q_1 kann die Zustände $|t\rangle$, $|h\rangle$ annehmen, und Q_2 $|\downarrow\rangle$, $|\uparrow\rangle$. Eine Umrandung um Elemente bedeutet, dass die Umrandung isoliert ist, der Inhalt sich also in eine Superposition versetzen lässt. Die Ellipse um Q_1 verdeutlicht hierbei, dass Q_1 von F gemessen wird. Es werden die gleichen Messregeln wie im originalen Artikel angewendet. Der Plan läuft wie folgt ab:

- Schritt 1: F setzt Q_1 in eine Superposition $\frac{1}{\sqrt{2}}|h\rangle + \frac{1}{\sqrt{2}}|t\rangle$.
- Schritt 2: F misst Q_1 . Ist das Ergebnis $|h\rangle$, setzt er Q_2 als $|\downarrow\rangle$, sonst setzt er Q_2 als $|\uparrow\rangle$.
- Schritt 3: W misst sein Labor in der Basis $\{|+\rangle, |-\rangle\}$, mit $|+\rangle = \frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ und $|-\rangle = \frac{1}{\sqrt{2}} |h\rangle \frac{1}{\sqrt{2}} |t\rangle$.

Nach Schritt 2 hat das Labor von W den Zustand $\frac{1}{\sqrt{2}}|h\rangle|\downarrow\rangle + \frac{1}{\sqrt{2}}|t\rangle|\uparrow\rangle =$ $\frac{1}{2} |+\rangle |\downarrow\rangle + \frac{1}{2} |-\rangle |\downarrow\rangle + \frac{1}{2} |+\rangle |\uparrow\rangle - \frac{1}{2} |-\rangle |\uparrow\rangle. \text{ Wir nehmen nun an dass } W |-\rangle$ misst. Der Endzustand lautet: $\frac{1}{\sqrt{2}} |-\rangle |\downarrow\rangle - \frac{1}{\sqrt{2}} |-\rangle |\uparrow\rangle = \frac{1}{2} |h\rangle |\downarrow\rangle - \frac{1}{2} |t\rangle |t\rangle - \frac{1}{2} |t\rangle |t\rangle |t\rangle - \frac{1}{2} |t\rangle$ $\frac{1}{2}|h\rangle|\uparrow\rangle+\frac{1}{2}|t\rangle|\uparrow\rangle$. Auch hier sehen wir, dass aus Sicht von F die Werte $|t\rangle|\downarrow\rangle$ und $|h\rangle |\uparrow\rangle$ nicht in Frage kommen. Wie kann es aber sein, dass unsere Berechnungen zu so einer Wahrscheinlichkeitsverteilung führen? Meine Behauptung: Die Annahmen, die wir bei der Berechnung beim Messen machen, sind falsch. Wir betrachten bei unserer Annahme ein Quantenregister mit zwei Qubits, im Zustand $\frac{1}{\sqrt{2}}|h\rangle|\downarrow\rangle+\frac{1}{\sqrt{2}}|t\rangle|\uparrow\rangle$, siehe Bild 1.2. W misst hier das Quantenregister, welches in einer Superposition ist. Dieses Modell entspricht aber nicht der wirklichen Situation! Im richtigen Modell haben wir ein geschachteltes System: Q_2 ist ein Qubit im Labor von F, welches im Labor von W ist(wobei Q_2 nicht unbedingt isoliert sein muss, da es nicht in eine Superposition gesetzt wird; Hier würde auch ein normales Bit ausreichen). Die Schachtelung entsteht dadurch, dass F auch eine Messungen durchführt, aber F's Handlungen selber nur eine Superposition im Labor von W sind. Um die Superposition richtig zu messen, schlage ich vor, das zweite Qubit bei der Berechnung zu ignorieren, und es nachher wieder richtig einfügen. Die physikalische Interpretation wäre hierbei, dass wir die Isolation zu F's Labor zerbrechen, aber nicht die Isolation zwischen F's Labor und Q_2 . Konkret bedeutet das mathematisch: Wir stellen den Zustand nach Schritt 2, $\frac{1}{\sqrt{2}}|h\rangle|\downarrow\rangle + \frac{1}{\sqrt{2}}|t\rangle|\uparrow\rangle$, so dar, dass wir Q_2 entfernen: $\frac{1}{\sqrt{2}}|h\rangle + \frac{1}{\sqrt{2}}|t\rangle = |+\rangle$. W wird nun ausschliesslich $|+\rangle$ messen. Wir schreiben nun $|+\rangle$ in der Standardbasis, und fügen Q_2 hinzu, und erhalten wieder: $\frac{1}{\sqrt{2}}|h\rangle|\downarrow\rangle + \frac{1}{\sqrt{2}}|t\rangle|\uparrow\rangle$. Ich rechtfertige diesen Schritt dadurch, dass das Setzen von Q_2 prinzipiel keinen Einfluss auf das Gesamtsystem hat, da Q_2 nicht in eine Superposition gesetzt wird. Das Ergebnis muss also das Gleiche sein wie das Ergebnis wenn Q_2 aus dem Experiment entfernen.

1.1: Situation des simplen Problems

1.2: Wie das Problem fälschlicherweise gemessen wird

Allerdings bedeutet dies auch im Allgemeinen, dass es komplexer als erwartet ist, Berechnungen von einem geschachtelten Quantensystem durchzuführen, da man für jeden Anteil der Superposition des äusseren Systems auch eine komplette Superposition des inneren Systems abspeichern muss. Die genaue Beschreibung lasse ich aber hier aus, um mich wieder dem eigentlichen Gedankenexperiment zu widmen.