Stort with c=0, i.e. xn= Rxn

Assume to is an eigenvetor corresponding to eigenvalue 2 mil 121>1.

 \Rightarrow $X_1 = Rx_0 = Rv = \lambda v = \lambda X_0$, where v is eigenvector

 $= > \chi_2 = R\chi_1 = R(\lambda v) = \lambda^2 v = \lambda^2 \chi_0$

=> \(\alpha_n = \gamma^n \chi_0\)

1° if $\lambda \neq 1$ and $|\lambda| \geq 1$, $\{x_n\}$ does not converge 2° if $\lambda = 1$, we choose c = v as well

: Xn+1 = P Xn + V , X0=V

Thus $X_n = (n+1) \cdot V$, prove by induction

[] Xo = (0+1)·V = V

Disen Xp = (kt))v, Xp+1 = RXp+v= P((p+1)v)+v=(p+1).Pv+v=(p+2)v #
So {Xn} does not converge

In conclusion, when eckist, there exist cekn, xoekn, s.t. (Xn) does not converge