Indice

- Introduzione
- Convoluzione nella computer vision
- Padding, Stride
- Convoluzione su volumi

CNN – Convolutional Neural Network

- Una CNN è una rete neurale con almeno un livello convolutivo
- Nate ispirandosi dalla organizzazione della corteccia visiva animale
- Utilizzate in:
 - Riconoscimento in immagini e video
 - Sistemi di raccomandazione
 - NLP
 - Bioinformatica
 - Analisi segnali

Principale peculiarità: **pattern recognition**

CNN – Utilizzo tipico

→ Cat? (0/1)

64x64

- Classificazione di immagini
- Riconoscimento automatico di oggetti
- Trasferimento di stili
- Posizione di oggetti in un'immagine
- Segmentazione di un'immagine
- Riconoscimento pattern ricorrenti in segnali
- Classificazione testi
- Analisi serie temporali di dati

Convoluzione

- È una tecnica molto usata nella computer vision per effettuare dei filtraggi (es. Blur)
- Prende un'immagine in input e restituisce un'immagine in output
- Prevede l'utilizzo di un kernel o filtro di dimensione contenuta (es. 3x3, 5x5)
- Il kernel viene sovrapposto ad ogni gruppo di pari dimensioni dell'immagine originaria
- Vengono effettuate delle operazioni matematiche (prodotti e somme algebriche)
- I risultati sono i pixel della nuova immagine
- A seconda del kernel utilizzato è possibile estrarre feature diverse

Convoluzione

Convoluzione

https://setosa.io/ev/image-kernels/

Ipotesi

Ogni pixel di un'immagine di dimensioni WxH viene convoluta con un kernel di dimensioni W_KxH_K :

Risultato

L'immagine finale ha dimensioni $(W - W_K + 1) \times (H - H_K + 1)$

- Es.
 - Un'immagine ha dim. 6x6
 - Dim. Filtro: 3x3
 - l'immagine in output avrà dimensioni 4x4
- Questo accade perché i pixel della cornice non danno contributi in una convoluzione

- Per convoluzioni successive si potrebbe arrivare a dimensioni negative
- Si "allarga" l'immagine di una certa quantità di pixel settati a 0, detto padding

• Es. p = 1

• Una convoluzione che preserva la dimensione dell'immagine in input prende il nome di same

Una convoluzione che fa downsampling dell'immagine in input prende il nome di valid

Stride

- Indica di quanto si sposta il kernel mentre scorre le immagini
- s = 1 significa che il kernel viene traslato un pixel per volta
- s = 2 significa che il kernel "salta" un pixel (si sposta di 2 pixel per volta)

N.B. il kernel si sposta di una quantità pari a s <u>anche in verticale</u>

Stride

INPUT (7x7) s = 2

KERNEL

OUTPUT

Convoluzione volumetrica

R channel G channel B channel

Che **succede** se abbiamo **più canali** (es. Più colori?)

Es. Immagini RGB (Red, Green, Blue)

CNN - Reti Neurali Convolutive

Convoluzione volumetrica

- Si associa un kernel quadrato per ogni canale dell'immagine che abbiamo
- Un filtro è composto da un numero di kernel <u>uguale al</u> <u>numero di canali</u> dell'input
- Quindi abbiamo un kernel per canale (un kernel opera solo su un canale)

Convoluzione volumetrica

