§7.7: L'HÔPITAL'S RULE §7.8 INVERSE TRIG Math 1910

NAME:		
	October 12	2017

ONE-PAGE REVIEW

(1) **L'Hôspital's Rule:** If
$$f(\alpha) = g(\alpha) = 0$$
, then $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \frac{1}{g(x)}$

- (2) What are all the indeterminate forms? There are seven of them.
- (3) To evaluate the limit involving an indeterminate form 0^0 , 1^∞ , or ∞^0 , first take the logarithm and then apply L'Hôspital's rule.
- (4) Domain and range of inverse trigonometric functions.

Function	Domain	Range
$\sin^{-1}(x)$	[-1,1]	$[-\pi/2,\pi/2]$
$\cos^{-1}(x)$	[-1,1]	$[-\pi/2,\pi/2]$
$tan^{-1}(x)$	$(-\infty,\infty)$	$(-\pi/2,\pi/2)$
$\cot^{-1}(x)$	$(-\infty,\infty)$	(0, π)
$sec^{-1}(x)$	$(-\infty,-1)\cup(1,\infty)$	$[0,\pi/2)\cup(\pi/2,\pi]$
csc^{-1}	$(-\infty,-1)\cup(1,\infty)$	$[-\pi/2,0) \cup (0,\pi/2]$

(5) Derivatives and integrals involving inverse trigonometric functions.

f(x)	$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{f}(x)$
$\sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1}(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$tan^{-1}(x)$	$\frac{1}{x^2+1}$
$\cot^{-1}(x)$	$\frac{-1}{x^2+1}$
$sec^{-1}(x)$	$\frac{1}{ x \sqrt{x^2+1}}$
$csc^{-1}(x)$	$\frac{-1}{ x \sqrt{x^2+1}}$

f(x)	$\int f(x) dx$
$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}(x) + C$
$\frac{1}{x^2+1}$	$ \tan^{-1}(x) + C $
$\frac{1}{ x \sqrt{x^2+1}}$	$\sec^{-1}(x) + C$

PROBLEMS

- (1) Use L'Hôspital's Rule to calculate the limit
 - (a) $\lim_{x \to \infty} \frac{3x^3 + 4x^2}{4x^3 7}$
 - (b) $\lim_{x\to 8} \frac{x^{5/3} 2x 16}{x^{1/3} 2}$
 - (c) $\lim_{x\to 0} \left(\frac{1}{x^2} \csc^2 x \right)$
 - (d) $\lim_{x \to \infty} \frac{e^x e}{\ln x}$
 - (e) $\lim_{x \to \infty} x^{1/x^2}$
 - (f) $\lim_{x\to 0^+} x^{\sin x}$
- (2) Find the derivative.
 - (a) $y = \arctan(x/3)$
 - (b) $y = \sec^{-1}(x+1)$
 - (c) $y = e^{\cos^{-1}(x)}$
 - (d) $y = \csc^{-1}(x^{-1})$
 - (e) $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$
 - (f) $y = \frac{\cos^{-1}(x)}{\sin^{-1}(x)}$
 - (g) $y = \cos^{-1}(x + \sin^{-1}(x))$
 - (h) y = ln(arcsin(x))
- (3) Evaluate the integral
 - (a) $\int_0^4 \frac{1}{4x^2 + 9} \, \mathrm{d}x$
 - (b) $\int_{-1/5}^{1/5} \frac{1}{\sqrt{4 25x^2}} \, \mathrm{d}x$
 - (c) $\int_{\sqrt{2}/4}^{1/2} \frac{1}{x\sqrt{16x^2 1}} dx$
 - $(d) \int \frac{1}{x\sqrt{x^4 1}} \, dx$
 - (e) $\int \frac{(x+1)}{\sqrt{1-x^2}} \, \mathrm{d}x$
 - (f) $\int \frac{\tan^{-1}(x)}{1+x^2} \, \mathrm{d}x$
 - $(g) \int \frac{1}{\sqrt{5^{2x} 1}} \, \mathrm{d}x$