Année universitaire : 2013/2014 L2 – Informatique

module : Logique Mathématique

Examen de Rattrapage

Durée 1h 30mn

Exercice 1: (6 pts)

1) Montrer que l'ensemble $\{\rightarrow\}$ n'est pas un système complet de connecteurs (pour ce faire, monter qu'il existe une fonction logique qui ne peut pas s'exprimer en utilisant uniquement \rightarrow).

2)

- 2-1) l'ensemble $\{\lor, \to\}$ est-il complet ?
- 2-2) qu'en est-il de l'ensemble $\{\neg, \rightarrow\}$, est ce qu'il est complet ?

Exercice 2: (6 pts)

1) Montrer que les formules suivantes sont des théorèmes :

1-a)
$$\neg (A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

1-b)
$$(C \rightarrow ((A \rightarrow (C \rightarrow B)) \rightarrow B)) \rightarrow (C \rightarrow (\neg A \rightarrow B))$$

2) Soit CPF⁺ l'extension du CPF obtenue an ajoutant la formule suivante (*) comme quatrième axiome :

$$(*) \neg A \rightarrow (\neg A \rightarrow B)$$

À l'aide de la méthode axiomatique, montrer que CPF⁺ est inconsistant (pour cela, montrer que toute formule A est un théorème de CPF⁺).

Exercice 3: (8 pts)

On considère les prémisses suivantes :

- (E1) Si Amar et Brahim viennent à Alger, Chabane viendra aussi ;
- (E2) Si Brahim vient à Alger, Amar aussi;
- (E3) Brahim ou Chabane, l'un des deux au moins, viendra à Alger.

Les questions aux quelles on veut répondre sont, à partir de ces prémisses, peut-on déduire que :

- (A)- Amar viendra à Alger?
- (B)- Brahim viendra à Alger?
- (C)- Chabane viendra à Alger?
- 1) Formaliser les prémisses et les questions à l'aide de formules du calcul propositionnel.
- 2) Répondre aux questions en utilisant des tables de vérité.
- 3) Répondre aux questions en utilisant la résolution propositionnelle.

------ Bon courage! -------

Bref corrigé : (Rattrapage – Log-Mat – L2 informatique – 2013/2014)

Ex. 1:

1) Soit la fonction f(x)=0 (x : variable booléenne, f : fonction logique constante égale à 0).

Soit $E_n(x)$ une expression logique comportant n connecteurs \rightarrow .

Montrons par récurrence sur n qu'il n'existe aucun n pour lequel $f(x)=E_n(x)$.

Pour n=1, $E_1(x) = x \rightarrow x = 1 \neq 0$. f ne peut pas s'exprimer à l'aide de E_1 .

Pour n=2,
$$E_2(x) = 1$$
 (c'est $x \to (x \to x)$) ou $E_2(x) = x$ (c'est $(x \to x) \to x$));

et f ne peut pas s'exprimer à l'aide de E₂.

Supposons que la propriété est vraie jusqu'au rang n=k.

Pour n = k+1: on peut avoir $E_{k+1}(x) = E_i(x) \rightarrow E_i(x)$ avec i+j=k (donc $i \le k$ et $j \le k$).

Pour avoir E_{k+1} =0 il est nécessaire que E_j soit nulle pour tout x (à cause de l'implication) ;

or d'après l'hypothèse de récurrence aucune E_i ne peut être nulle. D'où le résultat.

2)

2-1) L'ensemble $\{\lor, \to\}$ n'est pas complet. Il suffit de remarquer que $A \lor B = (A \to B) \to B$.

Donc $\{\lor, \to\}$ a le même pouvoir d'expression que $\{\to\}$.

2-2) L'ensemble $\{\neg, \rightarrow\}$ est complet, exprimons les autres connecteurs en fonction des éléments de cet ensemble :

$$A \lor B = \neg A \rightarrow B$$

$$A \wedge B = \neg (A \rightarrow \neg B)$$

$$A \leftrightarrow B = \neg ((A \rightarrow B) \rightarrow \neg (B \rightarrow A))$$

Ex. 2:

1)

$$1-a$$
) $\vdash \neg(A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

- 1. $\neg A \rightarrow (A \rightarrow \neg B)$ thm c) exo 12 série 2
- 2. $(\neg A \rightarrow (A \rightarrow \neg B)) \rightarrow (\neg (A \rightarrow \neg B) \rightarrow \neg \neg A)$ thm e) exo 12 série 2
- $3. \neg (A \rightarrow \neg B) \rightarrow \neg \neg A MP + 1. + 2.$
- 4. $\neg \neg A \rightarrow A$ thm a) exo 12 série 2
- $5. \neg (A \rightarrow \neg B) \rightarrow A \quad Trans + 3. + 4.$
- 6. $A \rightarrow (B \rightarrow A)$ Ax1
- 7. $\neg (A \rightarrow \neg B) \rightarrow (B \rightarrow A)$ Trans + 5. + 6. COFD.

$$1\text{-b}) \vdash \ (C \to ((A \to (C \to B)) \to B)) \to (C \to (\neg A \to B))$$

1.
$$C \rightarrow ((A \rightarrow (C \rightarrow B)) \rightarrow B)$$
 hyp

3.
$$(A \rightarrow (C \rightarrow B)) \rightarrow B MP + 1. + 2.$$

4.
$$\neg A \rightarrow (A \rightarrow (C \rightarrow B))$$
 thm c) exo 12 série 2

5.
$$\neg A \rightarrow B$$
 Trans + 3. + 4.

CQFD.

2) \vdash A (pour tout A), dans CPF^+

1.
$$(\neg A \rightarrow (\neg A \rightarrow A)) \rightarrow (\neg A \rightarrow A)$$
 thm f1, exo 14, série 2

2.
$$\neg A \rightarrow (\neg A \rightarrow A)$$
 thm (*)

$$3. \neg A \rightarrow A \quad MP + 1. + 2.$$

$$4. (\neg A \rightarrow A) \rightarrow ((\neg \neg A \rightarrow A) \rightarrow A)$$
 thm g, exo 12, série 2

5.
$$(\neg \neg A \rightarrow A) \rightarrow A \quad MP + 3. + 4.$$

6.
$$\neg \neg A \rightarrow A$$
 thm a, exo 12, série 2

7. A
$$MP + 7. + 8.$$

CQFD.

Ex. 3:

1) Formalisation à l'aide de formules du calcul propositionnel :

$$E1 = (A \wedge B) \rightarrow C$$

$$E2 = B \rightarrow A$$

$$E3 = B \lor C$$

Soit $E = E1 \land E2 \land E3$; les trois questions peuvent s'exprimer comme suit :

$$Q1 = E \rightarrow A$$

$$Q2 = E \rightarrow B$$

$$Q3 = E \rightarrow C$$

2)

Α	В	С	A . D	Б1	E2	Б2	Б	01	02	02
A	D	C	$A \wedge B$	E1	EZ	E3	E	Q1	Q2	Q3
0	0	0	0	1	1	0	0	1	1	1
0	0	1	0	1	1	1	1	0	0	1
0	1	0	0	1	0	1	0	1	1	1
0	1	1	0	1	0	1	0	1	1	1
1	0	0	0	1	1	0	0	1	1	1
1	0	1	0	1	1	1	1	1	0	1
1	1	0	1	0	1	1	0	1	1	1
1	1	1	1	1	1	1	1	1	1	1

Ce que l'on peut déduire c'est que Chabane viendra à Alger ; mais il n'en est pas de même pour Amar et Brahim.

3) En utilisant la résolution par réfutation :

Pour Q1:

- 1. $\neg A \lor \neg B \lor C$
- $2. \neg B \lor A$
- 3. B ∨ C
- 4. ¬A
- 5. $A \lor C Res(2,3)$
- 6. $\neg B \text{ Res}(2,4)$
- 7. $\neg B \lor C Res(1,2)$
- 8. C Res(3,7)

. . .

On remarque que l'on ne peut pas obtenir de littéral A (mais pour que la preuve soit complète, il faut montrer que quelque soit l'application de règles de résolution effectuées, on n'obtient pas A).

Pour Q2:

Idem que pour Q1 (avec B au lieu de A).

Pour Q3:

- 1. $\neg A \lor \neg B \lor C$
- $2.\, \neg B \lor A$
- 3. B ∨ C
- 4. ¬C
- 5. $\neg B \lor C Res(1,2)$
- 6. C Res(3,5)
- 7. \Box Res(4,6)

CQFD.