

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2017-1

[Cod: CM-142 Curso: Cálculo Vectorial II]

[Tema: Espacio euclidiano n- dimensional. Subespacios. Combinación lineal.]

[Prof: L. Roca, R. Mas, M. Moreno, D. Caytuiro.]

Práctica Dirigida N^o 3

1. Pará qué valores de a y b el sistema

$$egin{array}{llll} 3x & - & 2y & + & z & = & b \ 5x & - & 8y & + & 9z & = & 3 \ 2x & + & y & + & az & = & -1 \end{array}$$

tiene:

a) Solución única. b) No tiene solución c) Infinitas soluciones.

- 2. Hallar una matriz $A \in \mathbb{R}^{3\times 3}$ no nula, de modo que $v_1 = (1,0,-1), v_2 = (0,2,1)$ y $v_3 = (3,4,-1)$ sean soluciones del sistema homogéneo Ax = 0.
- 3. Demuestre que $\mathcal{L} = \{(x, y, z) \in \mathbb{R}^3/2x + y z = 0\}$ es un \mathbb{R} -espacio vectorial.
- 4. Probar que \mathbb{R}^2 es un \mathbb{R} -espacio vectorial con la suma \oplus y el producto \otimes definidos de la siguiente forma

$$(x,y) \oplus (x',y') = (x+x'-2,y+y'-1)$$

 $r \otimes (x,y) = r(x-2,y-1) + (2,1)$

Este espacio se denotará $\mathbb{R}^2_{(2,1)}$ para distinguirlo de \mathbb{R}^2 con la suma y el producto usual. La notación se basa en que el (2,1) resulta el neutro de la suma \oplus .

5. Si la ecuación matricial

$$A\left(egin{array}{c} x\ y \end{array}
ight)=\left(egin{array}{c} b_1\ b_2 \end{array}
ight)$$

tiene por solución

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 3 \\ 0 \end{array}\right) + t \left(\begin{array}{c} -2 \\ 1 \end{array}\right)$$

donde t es fijo y $t\in\mathbb{R},$ indicar el valor de verdad de las siguientes proposiciones justificando su respuesta

- a) $\det(A) \neq 0$ y el sistema corresponde a dos rectas que se intersectan en un punto.
- b) det(A) = 0 y el sistema corresponde a dos rectas que no se intersectan.
- c) det(A) = 0 y el sistema corresponde a dos rectas que coinciden.

6. Probar que la matriz $\begin{pmatrix} 4 & -4 \\ -6 & 16 \end{pmatrix}$ puede expresarse como combinación lineal de las siguientes:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix}, \quad \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$$

- 7. Dados $u=(1,2,3),\ v=(3,2,0)$ y w=(2,0,0), encuentre los números α,β y $\gamma\in\mathbb{R}$ tales que $(1,1,1)=\alpha u+\beta v+\gamma w.$
- 8. Si $u=(x_1,x_2,\ldots,x_n)$ y $v=(y_1,y_2,\ldots,y_n)$ son vectores de \mathbb{R}^n probar que uno de ellos es múltiplo del otro si y sólo si $x_iy_j=x_jy_i$ para todo $i,j=1,2,\ldots,n$.

- 9. Si $v_1, \ldots, v_n \in V$ son vectores l.i. y si $w \not\in \operatorname{span}\{v_1, \ldots, v_n\}$ probar que w, v_1, \ldots, v_n son l.i.
- 10. Sean V un espacio vectorial y $v_1, v_2, v_3 \in V$. Pruebe que: si $v_1 + 3v_2 v_3 = 0 = 2v_1 v_2 v_3$, entonces span $\{v_1, v_2, v_3\} = \text{span}\{v_3\}$.
- 11. Sea V un \mathbb{R} espacio vectorial y sean $v_1, v_2, \ldots, v_n \in V$ entonces probar que el conjunto $\{v_1, v_2, \ldots, v_n\}$ es linealmente independiente si y solo si

$$\operatorname{span}\left\{ v_{1},v_{2},...,v_{n}\right\} \neq \operatorname{span}\left\{ \left\{ v_{1},v_{2},...,v_{n}\right\} -v_{i}\right\}$$

para todo i = 1, 2, ..., n.

- 12. Sea $\{v_1, v_2, \cdots, v_n\}$ vectores linealmente independientes en V donde n es impar. Pruebe que $\{v_1 + v_2, v_2 + v_3, \cdots, v_{n-1} + v_n, v_n + v_1\}$ son linealmente independientes. De un contraejemplo cuando n es par.
- 13. Sea $\{v_1, v_2, \cdots, v_r\}$ un conjunto finito de vectores en \mathbb{R}^n . Pruebe que:
 - a) Si r > n entonces $\{v_1, v_2, \dots, v_r\}$ es l.d.
- b) Si r < n entonces span $\{v_1, v_2, \dots, v_r\}$ no genera a \mathbb{R}^n .
- 14. En \mathcal{P}_3 pruebe que $\{1-x^2,1+x^2,1+x+x^2\}$ son linealmente independientes.
- 15. Hallar una base del subespacio W de \mathbb{R}^3 generado por $\{(1,2,2),(3,2,1),(11,10,7),(7,6,4)\}$ ¿cuál es la dimensión de W?
- 16. Sea $V=\{A\in \mathrm{M}_{2\times 3}(\mathbb{R})\mid DA=A\}$ donde $D=\begin{pmatrix}2&2\\1&3\end{pmatrix}$. Probar que V es un espacio vectorial de dimensión 3.
- 17. Para los siguiente ejercicios, determinar si el conjunto W es un subespacio de \mathbb{R}^3
 - a) $W = \{(a, b, a + b 1) \mid a, b \in \mathbb{R}\}\$

c) $W = \{(a, b, c) \mid a, b, c \in \mathbb{R}, 2a - b + c = 0\}$

- b) $W = \{(a, 0, a b) \mid a, b \in \mathbb{R}\}$
- 18. Sea $n \ge 2$ y V el espacio vectorial de todas las matrices de orden n. ¿ Cuáles de los siguientes subconjunto de matrices de V son subespacios de ésta?
 - a) El conjunto de todas las matrices inversibles.
- c) El conjunto de todas las matrices que conmutan con una matriz B fija.
- b) El conjunto de todas las matrices no inversibles.
- d) El conjunto de todas las matrices A tales que $A^2 = A$.
- 19. Dada la matriz $A = \begin{pmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{pmatrix}$. Halle unas bases para los espacios fila y columna de A.
- 20. Sea V el espacio nulo del sistema homogéneo

$$\begin{pmatrix} 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 & 2 \\ 2 & 4 & 3 & 3 & 3 \\ 0 & 0 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

¿Cuál es la dimensión de V?

21. Dados u = (-1, -1, 1), v = (2, 1, -2), w = (0, 3, -1). Probar que $\mathbb{R}^3 = \{au + bv + cw \mid a, d, c \in \mathbb{R}\}$.

Uni, 25 de abril de 2017*

 $^{^*}$ Hecho en LATEX