[복습] 순방향신경망과 학습

학습 목표

• Day1에 배웠던 내용들을 복습해본다.

함수로서의 신경망

인공 신경망 (Artificial Neural Network)

- 생체 신경망의 작동 원리를 모방해서 만든 인공 신경망
- 인공 뉴런들이 서로 복잡하게 연결되어 있는 네트워크
- 뉴런은 신호를 받아서 임계치 이상이 되면 신호를 발화

3. 여러 함수들이 네트워크를 형성하고 있는 합성 함수

$$y = f(x; \theta)$$

깊은 신경망은 아주 복잡한 맵핑 관계를 표현하는 **맵핑 함수**이다!

사람의 뇌가 경험을 통해 학습하듯...

인공 신경망도 경험 데이터를 통해 학습

 $y = f(x; \theta)$ 아주 복잡한 맵핑 함수를 학습을 통해 스스로 만들어 낸다!

Universal Approximation Theorem

Universal Approximation Theorem

A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of Rⁿ, under mild assumptions on the activation function.

$$f(x) \in \mathbb{R}^n$$

Continuous function

"더 깊은 신경망이 필요한가?"

- 신경망을 깊게 하면 적은 수의 뉴런으로 함수를 구현할 수 있음
- 신경망이 깊어질수록 함수를 정확하게 근사할 수 있음 (임계점이 적어지고 Local Minima가 모여서 최적점을 잘 찾음) ("Geometry of energy landscapes and the optimizability of deep neural networks", Cambridge, 2018)

순방향 신경망

피드포워드 네트워크

Feedforward Network

- 모든 연결이 입력에서 출력 방향으로만 되어 있음
- 다층 퍼셉트론(Multi-Layered Perceptron)과 동일
 입력 데이터를 1차원 벡터 형태로 받아서 처리

네트워크 설계

 $y = f(x; \theta)$

1 Input

• 입력 형태

 $x \Rightarrow$

- 2 Output
- 출력 형태
- Activation Function

11

- **3** Hidden
- Activation Function
- 4 Network Size
 - 네트워크 깊이 (depth) : 레이어 수
 - 네트워크 폭 (width) : 레이어 별 뉴런 수
 - 연결 방식

Hidden Activation Function 종류

Activation Function

- Hidden Unit 설계는 주요 연구 분야로 명확한 가이드라인이 많지 않음
- ReLU 계열이 좋은 성능을 보이고 있는 상황

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

12

Output 출력 형태

분류 문제 (Classification)

Discrete Value

- 입력 데이터에 대한 클래스를 또는 카테고리를 예측하는 문제
- 출력은 입력 데이터가 속할 클래스
- 확률 모델 : 입력 데이터가 각 Class에 속할 확률 분포를 예측 ex) Bernoulli, Categorical Distribution

회귀 문제 (Regression)

- 여러 독립 변수와 종속 변수의 관계를 함수 형태로 분석하는 문제
- 출력은 입력 데이터에 대한 함수 값
- **확률 모델** : 관측 값에 대한 확률 분포를 예측 ex) Gaussian Distribution

Output Activation Function

분류 문제 (Classification)

Bernoulli Distribution

• 2개 카테고리로 분류된 이산 데이터

Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

Categorical Distribution

• n개 카테고리로 분류된 이산 데이터

Softmax

$$f(yi) = \frac{e^{y_i}}{\sum_{j=0}^{N} e^{y_j}}$$

Discrete Case

회귀 문제 (Regression)

Gaussian Distribution

μ

• 연속 데이터는 대부분 가우시안으로 가정

Identity

$$f(n) = n$$

Continuous Case

Output 이진 분류 (Binary Classification)

이진 분류는 베르누이 분포를 추정하는 문제!

Output 다중 분류 (Multiclass Classification)

다중 분류는 카테고리 분포를 추정하는 문제!

베르누이 분포를 2개 결과에서 m개 결과로 일반화한 분포

Categorical Distribution

$$p_{model}(y \mid x; \theta) = Categorical(f(x; \theta))$$

$$p(x \mid \mu) = \prod_{k=1}^{K} \mu_k^{x_k}$$
$$x = (x_1, x_2, ..., x_K)^{T} \qquad \mu = (\mu_1, \mu_2, ..., \mu_K)^{T}$$

$$x = (x_1, x_2, ..., x_K)^T$$
 $\mu = (\mu$

$$\mu = (\mu_1, \mu_2, ..., \mu_K)^T$$

$$x_k = \begin{cases} 1, k = i & i \in \{1, 2, ..., K\} \\ 0, k \neq i & \end{cases} \qquad \sum_{k=1}^K \mu_k = 1$$

$$\sum_{k=1}^{\infty} \mu_k = 1$$

i번째 Category에 속할 경우

Output 연속 함수 값 예측 (Regression)

연속 함수 값을 예측하는 것은 타깃의 분포를 예측하는 것!

- 관측 값은 실제 함수 값에 노이즈를 더해진 값
- 노이즈가 정규분포를 따르면 타깃도 노이즈의 분포를 따르게 됨

Gaussian Distribution

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Network Size 네트워크 크기 설계

Network의 Depth와 Width를 어떻게 정할 것인가?

네트워크 깊이가 깊을 수록

- 계층 별 뉴런을 적게 사용
- 적은 파라미터를 사용
- 일반화를 잘 함

하지만, 최적화가 어렵다.

문제에 따라 최적의 네트워크 구조는 Trial & Error로 찾아내야 한다!

Network Size 네트워크 깊이와 모델 크기

Model Scaling (Width, Depth, Resolution, Compounding)

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, Mingxing Tan Quoc V. Le (2019)

19

Network Size 네트워크 깊이와 모델 크기

모델이 커질수록 accuracy는 올라가지만 쉽게 saturation됨

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, Mingxing Tan Quoc V. Le (2019)

20

Network Size 네트워크 깊이와 모델 크기

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, Mingxing Tan Quoc V. Le (2019)

신경망 학습

인공 신경망의 학습

주어진 입력과 출력 데이터를 이용해서 신경망 스스로 함수를 찾아내는 것

신경망 스스로 파라미터를 찾아 함수를 정의하는 것을 학습이라고 한다!

23

최적화 문제

<u>회귀 (Regression)</u>

타깃과 인공신경망이 예측한 값의 차이를 최소화하는 파라미터를 찾아라.

파라미터
$$\theta$$
 $\frac{1}{n} \sum_{\text{th}(2-\frac{1}{2})} (t - f(x; \theta))^2$ 다 모델의 예측

평균 제곱 오차 (Mean Squared Error)

최적화 문제

분류 (Classification)

관측 분포와 인공신경망이 예측한 분포의 차이를 최소화하는 파라미터를 찾아라.

파라미터
$$-\frac{1}{n}\sum_{i=1}^n\sum_{k=1}^K t_k\cdot\log f(x;\theta)_k$$
 $K: Class 개수 관측 분포 나 모델이 예측한 분포$

크로스 엔트로피 (Cross Entropy)

Loss Surface

heta : 파라미터 공간

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/

Loss를 최소화 하려면?

Loss Minimization

<u>최적화 알고리즘</u>

1차 미분

- Gradient Descent
- Variants of Gradient Descent :
 - : SGD, Adagrad, Momentum, RMS prob, Adam

Deep Learning에서 주로 사용하는 방법

27

1.5차 미분

- Quasi-Newton Method
- Conjugate Gradient Descent
- Levenberg-Marquardt Method

2차 미분

- Newton Method
- Interior Point Method

Gradient Descent

Gradient Descent

Parameter Update

$$heta^+ = heta - lpha rac{\partial J}{\partial heta}$$
 Step Size ______ Gradient

3D View

28

Gradient Descent

Parameter Update

$$w_{nm}^{1} + w_{nm}^{1} - \alpha \frac{\partial J}{\partial w_{nm}^{1}}$$
Step Size Gradient

29

Gradient Descent

Gradient of Parameter

$$w_{nm}^{1} + = w_{nm}^{1} - \alpha \frac{\partial J}{\partial w_{nm}^{1}}$$
Step Size Gradient

$$J(y) = \frac{1}{N} \sum_{i=1}^{N} (y - t)^2$$

 $n = w_0^2 \cdot h_1 + w_2^2 \cdot h_2 + \dots + w_m^2 \cdot h_m$

"가중치는 Loss Function의 간접 파라미터이므로 직접 미분이 안됨"

30

Backpropagation

Gradient of Parameter

$$\frac{\partial J}{\partial w_{nm}^{1}} = \underbrace{ \frac{\partial J}{\partial y} \cdot \frac{\partial y}{\partial n} \cdot \frac{\partial n}{\partial h_{m}} \cdot \frac{\partial h_{m}}{\partial n_{m}} \cdot \frac{\partial n_{m}}{\partial w_{nm}^{1}} }_{nm} \cdot \underbrace{ \frac{\partial n_{m}}{\partial w_{nm}^{1}} }_{nm}$$
 연쇄 법칙 (Chain Rule) 사용
$$= \frac{1}{N} \sum_{i=1}^{N} 2(y-t) \cdot \text{Identity}'(n) \cdot w_{m}^{2} \cdot \text{ReLU}'(n_{m}) \cdot x_{n}$$

$$\frac{\partial J}{\partial y} = \frac{1}{N} \sum_{i=1}^{N} 2(y - t)$$

$$\frac{\partial y}{\partial n} = \text{Identity'}(n)$$

$$\frac{\partial n}{\partial h_m} = w^2_m$$

$$\frac{\partial h_m}{\partial n_m} = \text{ReLU'}(n_m)$$

$$\frac{\partial nm}{\partial w_{nm}^1} = x_n$$

31

Backpropagation

Loss J(z)에 대해 x, y, z의 미분을 구하라!

Backpropagation

33

각 노드에서 Local Gradient를 구한 후 전달 받은 Gradient와 곱해서 이전 노드에 전달

TensorFlow

Eager Execution

- 1.x : tf.enable_eager_execution()
- 2.x: Default
- **Define by Run** support (like PyTorch, Chainer)
- Rapid Development
- Easy Debugging (use Python toolchain) → easy to check bottlenecks
- Native Control Flow (if, for etc) → easy to make complex model
- Boost performance by AutoGraph

Eager Execution

TensorFlow 1.x:

TensorFlow 2.x:

Define and Run에서 Define by Run 으로!

import tensorflow as tf import tensorflow as tf a = tf.constant(5)a = tf.constant(5)symbolic concrete b = tf.constant(3)b = tf.constant(3)c = a + bc = a + bwith tf.session() as sess: print(c) print(sess.run(c)) 8 Tensor("add_2:0", shape=(), dtype=int32) Error tf.Tensor(8, shape=(), dtype=int32)

36

Eager Execution

TensorFlow 1.x

```
z = w * x + b 구현
```

TensorFlow 2.x

```
import tensorflow as tf
## 그래프 정의
g = tf.Graph()
with g.as default():
  x = tf.placeholder(dtype=tf.float32,
                    shape=(None), name='x')
  w = tf. Variable(2.0, name='weight')
  b = tf. Variable(0.7, name='bias')
  z = w * x + b
  init = tf.global_variables_initializer()
## 세션 생성 및 그래프 g 전달
with tf.Session(graph=g) as sess:
  ## w와 b 초기화
  sess.run(init)
  ## z 평가
  for t in [1.0, 0.6, -1.8]:
     print('x=%4.1f --> z=%4.1f'%(
        t, sess.run(z, feed_dict={x:t})))
```

```
import tensorflow as tf
w = tf. Variable(2.0, name='weight')
b = tf.Variable(0.7, name='bias')
### z 평가
for x in [1.0, 0.6, -1.8]:
  z = w * x + b
  print('x=\%4.1f --> z=\%4.1f'\%(x, z))
```

Keras

Keras

- High-Level Neural Networks Specification (https://keras.io) (2015. 03)
- Add to tf.contrib.keras at TensorFlow 1.2
- Promote to tf.keras at TensorFlow 1.4 (tf.layers → tf.keras)
- 1st Class Python API for TensorFlow 2.0
- Deprecated tf.layer, tf.contrib.layers(Slim)
- Keras 2.3.x is last major release of multi-backend Keras.
 Instead use tf.keras

Keras in TensorFlow2.0 by 박해선님

Class Hierarchy

변수 컨테이너 (tf.Variable)

variables(), trainable_variables()

계층 정의 (파라미터, Forward Pass)

 $_$ call $_$ () \rightarrow build() \rightarrow add $_$ weights() $|\rightarrow$ call() add $_$ loss()

신경망 계층 통합

layers(), summary(), save()

모델 훈련/검증/테스트

compile(), fit(), evaluate(), predict()

순차 모델 구성 add()

Keras in TensorFlow2.0 by 박해선님

Keras 모델 정의

Sequential API

```
from tensorflow import tf
                                                                                 Dense (64)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
                                                                                    ReLU
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
                                                                                 Dense (64)
#훈련 설정
                                                                                    ReLU
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              loss='categorical_crossentropy',
               metrics=['accuracy'])
                                                                                 Dense (10)
#모델 훈련
                                                                                  softmax
model.fit(train_data, labels, epochs=10, batch_size=32)
                                                                        model = tf.keras.Sequential([
#모델 평가
                                                                          tf.keras.layers.Dense(64),
model.evaluate(test_data, labels)
                                                                          tf.keras.layers.Dense(64),
                                                                          tf.keras.layers.Dense(10),
# 샘플 예측
model.predict(new_sample)
```

Functional API

```
from tensorflow import tf
# 입력과 출력을 연결해서 임의의 모델 그래프 생성
input = tf.keras.Input(shape=(784,), name='img') # 입력 플레이스 홀더 반환
h1 = tf.keras.layers.Dense(64, activation='relu')(inputs) # 각 계층 별로 Tensor를 전달하고 리턴 받음
h2 = tf.keras.layers.Dense(64, activation='relu')(h1)
output = tf.keras.layers.Dense(10, activation='softmax')(h2)
#모델생성
model = tf.keras.Model(input, output) # 입력 Tensor와 Output Tensor를 모델에 지정
#훈련 설정
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
             loss='categorical_crossentropy',
             metrics=['accuracy'])
```

Keras in TensorFlow2.0 by 박해선님

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

43

Functional API

"Inception module"

"Residual block"

44

- 다중 입력 모델
- 다중 출력 모델
- 층을 공유하는 모델 (동일한 층을 여러 번 호출합니다)
- 데이터 흐름이 차례대로 진행되지 않는 모델 (예를 들면 잔차 연결(residual connections)).

Custom Layer

```
from tensorflow import tf
class MyLayer(tf.keras.layers.Layer):
  def __init__(self, units, activation=None, **kwargs):
     self.units = units
     self.activation = keras.activations.get(activation)
     super().__init__(**kwargs)
  def build(self, input_shape):
     self.weight = self.add_weight(name='kernel',
                                    shape=(input_shape[1], self.units),
                                   initializer='uniform')
     self.bias = self.add_weight(name='bias',
                                 shape=(self.units,),
                                 initializer='zeros')
     super().build(input_shape)
  def call(self, X):
     z = tf.matmul(X, self.weight) + self.bias
     return self.activation(z)
```

Keras in TensorFlow2.0 by 박해선님

Custom Model

```
from tensorflow import tf
class MyModel(tf.keras.Model):
  def __init__(self, **kwargs):
     self.hidden = MyLayer(10, activation="relu")
     self.output = MyLayer(1)
     super().__init__(**kwargs)
  def call(self, input):
     h = self.hidden(input)
     return self.output(h)
model = MyModel()
```

Keras in TensorFlow2.0 by 박해선님

Training 방식

model.compile

훈련에 필요한 Optimizer, Loss, Metric을 설정하는 단계

```
회귀 모델 예시

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
loss='mse', # 평균 제곱 오차
metrics=['mae']) # 평균 절댓값 오차
```

분류 모델 예시

- 2. 객체를 생성해서 전달 (파라미터를 지정할 필요가 있을 때)

model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[tf.keras.metrics.CategoricalAccuracy()])

48

model.fit

모델을 고정된 epoch 수로 훈련

```
history = model.fit( normed_train_data, train_labels,
epochs=1000, validation_split = 0.2, verbose=0,
callbacks = [Earlystopping(),
Tensorboard(),
ModelCheckpoint()])
```

- batch_size: 배치 크기 (default 32)
- **epochs**: 총 epoch 수 (epoch는 training set을 한번 실행하는 단위)
- validation_split: training set에서 validation set으로 사용할 비율 ((0,1) 사이의 값)
- verbose: 훈련 진행 상황 모드 0 = silent, 1 = progress bar, 2 = one line per epoch
- callbacks: 훈련하면서 실행할 콜백 리스트

tf.GradientTape

```
@tf.function
def train_step(input, target):
 with tf.GradientTape() as tape:
  # forward Pass
  predictions = model(input)
  # compute the loss
                                                                        Forward Pass
  loss = tf.reduce_mean(
        tf.keras.losses.sparse_categorical_crossentropy(
        target, predictions, from_logits=True))
 # compute gradients
                                                                        Gradient 계산
 grads = tape.gradient(loss, model.trainable_variables)
 # perform a gradient descent step
 optimizer.apply_gradients(zip(grads, model.trainable_variables))
                                                                        Parameter Update
 return loss
```

Thank you!

