Описание программной реализации

Разработан скрипт реализующий:

- Загрузку данных с помощью модуля Pillow. Входные изображения хранятся в формате .jpeg и имеют 3 цветовых канала R,G,B. Преобразование входных данных: нормализация ([0..255] → [0..1]), приведение размера к 128х128, разбиение на тренировочную и тестовую выборки в соотношении 70% к 30%.
- 2. Загрузку основных модулей Keras и TensorFlow для дальнейшей работы, установка начальных параметров. Описание тестируемых моделей глубоких сверточных сетей.

Тестовые конфигурации сетей

Была использована известная сеть - VGG16

Рис 1 (http://www.cs.toronto.edu/~frossard/post/vgg16/)

с измененным размером входных данных (128х128х3) и классификатором

Для сверточных слоев были взяты обученные веса (https://github.com/fchollet/deep-learning-models/releases/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5)

model – сеть для исходной залачи (VGG16).

my_model – сеть для целевой задачи, отличается от сети для исходной по структуре только классификатором

Целевая задача – распознавание 101 класса на данных 101_ObjectCategories

Исходная задача – распознавание 1000 классов на данных

Описание экспериментов:

- 1. Замена классификатора в model для распознавания 101-ого класса, обучение нового классификатора на 101_ObjectCategories (веса в сверточных слоях заморожены), тестирование на 101_ObjectCategories
- 2. Замена классификатора в model для распознавания 101-ого класса, обучение всей сети на 101_ObjectCategories (веса в сверточных слоях проинициализированы обученными весами из исходной AlexNet), тестирование на 101_ObjectCategories

3.	Замена классификатора в model для распознавания 101-ого класса, обучение всей сети на 101_ObjectCategories, при этом веса сверточных слоев переинициализируются, тоесть используется только структура исходной AlexNet. Тестирование на 101_ObjectCategories

Эксперименты

Тип	Общее время	Качество решения		
	выполнения (с)	целевой задачи		
		(точность на тестовом		
		наборе %)		
Использование	570	0.771		
модели, построенной				
для решения				
исходной задачи, в				
качестве				
фиксированного				
метода извлечения				
признаков при				
построении модели,				
решающей целевую				
задачу				
Тонкая настройка	1380	0.8		
параметров модели,				
построенной для				
решения исходной				
задачи, с целью				
решения целевой				
Использование	1374	0.559		
структуры глубокой				
модели, построенной				
для решения				
исходной задачи, с				
целью обучения				
аналогичной модели				
для решения целевой				
задачи				