# Predicting Success in Kickstarter Campaigns

Kelli Peluso Capstone 1 Springboard Data Science Career Track

#### **Table of Contents**

- Background
  - The Data
  - The Problem
  - The Approach
  - The Goal
- Data Wrangling
  - o Duplicate Values
  - Feature Manipulation
- Data Storytelling
  - Campaign Names
  - Campaign Categories
  - Campaign Goals
  - Campaign Duration
  - Campaign Backers
- Modeling & Statistics
  - Correlations
  - Random Forest Classifier
  - Logistic Regression
- Conclusion
  - Recommendations

# Background

#### **Kickstarter Campaigns**

The Data: obtained from Kaggle, this dataset includes 378,661 rows of data. Each Kickstarter campaign is represented by one row of data spanning 15 features.

The Problem: The success of Kickstarter campaigns benefits both the companies and creators who launch campaigns, and Kickstarter itself.

The Approach: An analysis of both failed and successful Kickstarter campaigns will address potential features that are predictive of the campaign outcome of future campaigns.

The Goal: Provide Kickstarter with the ability to make data-driven, impactful decisions in regards to: the services they offer, fees that they charge, and future campaign guidelines and recommendations

# Data Wrangling

#### **Data Wrangling**

- Duplicate Values: The data obtained was fairly clean, and did not require the removal of any duplicate campaigns.
- Null Values: Two features had null values 'name' (4) and 'usd\_pledged' (3797). The 4 null values from 'name' were dropped, and the entire 'usd\_pledged' feature was dropped, as there is an additional feature (usd\_pledged\_real) that is complete and more reliable.
- Feature Manipulation:
  - campaign\_state > binary\_state
    - Removal of 'live', 'undefined', 'suspended',
    - Creation of binary feature for campaign outcomes (target classifier)
  - o name\_len, name\_cl, main\_category\_encode, goal\_binned, pledge\_binned, backers\_binned, campaign\_duration, camp\_days

# Data Storytelling

#### **Campaign Name**



All Campaigns



Successful Campaigns



Failed Campaigns

#### **Campaign Names**





#### **Main Categories**



Main Categories by Count

Main Categories by USD Pledged

## **Main Categories**



## **Main Categories**



## **Campaign Goals**



#### **Campaign Duration**



— Art

Comics
Crafts
Dance

Design
 Fashion
 Film & Video

Food
Games
Journalism

Music
Photography
Publishing
Technology
Theater

#### **Campaign Countries of Origin**



#### **Campaign Backers**



Relationship between Funds Pledged and Campaign Backers

# **Modeling & Statistics**

#### **Correlations**



#### **Random Forest Classifier**



| Metric          | Result |
|-----------------|--------|
| Accuracy Score  | 92.87% |
| Precision Score | 90.38% |
| Recall Score    | 92.11% |
| F1 Score        | 91.24% |
| ROC_AUC         | 92.75% |

**Default Parameters** 

#### **Random Forest Classifier**



#### **Random Forest Classifier**

| Metric          | Default | Optimized | +/-    |
|-----------------|---------|-----------|--------|
| Accuracy Score  | 92.87%  | 92.68%    | -0.21% |
| Precision Score | 90.38%  | 89.35%    | -1.14% |
| Recall Score    | 92.11%  | 92.90%    | 0.86%  |
| F1 Score        | 91.24%  | 91.09%    | -0.16% |
| ROC_AUC         | 92.75%  | 92.71%    | -0.04% |



## **Logistic Regression**



| Metric          | Result |
|-----------------|--------|
| Accuracy Score  | 90.36% |
| Precision Score | 92.54% |
| Recall Score    | 82.79% |
| F1 Score        | 38.26% |
| ROC_AUC         | 89.14% |

### **Logistic Regression**



| Metric          | Result |
|-----------------|--------|
| Accuracy Score  | 90.36% |
| Precision Score | 92.52% |
| Recall Score    | 82.81% |
| F1 Score        | 38.26% |
| ROC_AUC         | 89.14% |

## **Logistic Regression**

#### **Feature Importance**



| Feature                  | Importance |
|--------------------------|------------|
| 0 - backers              | 0.05413    |
| 1 - name_cl              | -0.0003    |
| 2 - name_len             | 0.00182    |
| 3 - camp_days            | 0.00182    |
| 4 - usd_goal_real        | -0.00023   |
| 5 - main_category_encode | -0.02089   |

# **Conclusions**

#### **Thoughts and Recommendations**

After examining the data, and fine-tuning the random forest classifier, I believe that I can make several recommendations to Kickstarter. These recommendations should assist in their development of campaign services, campaign recommendations and guidelines, and their fee structure.

- 1. Campaigns with smaller, less ambitious goals tend to be more successful
- 2. The number of campaign backers will help determine whether or not a campaign will succeed or fail
- 3. Main categories of campaigns do matter, with some seeing much higher rates of success (Music, Comics, Theater, Dance) than others (Film & Video, Food, Technology, Publishing)