Matematyka dyskretna Zbiory

Anna Wąsik

8 listopada 2023

Źródła

Źródła i bibliografia

- JT Jerzy Topp, *Wstęp do matematyki*, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk 2015
- EPG opracowanie Elżbiety Puźniakowskiej-Gałuch z przedmiotu matematyka dyskretna

Uwaga do zadań

Umieszczone screeny zadań są zaczerpnięte z EPG. Wyjątkiem są zadania na dwóch ostatnich slajdach.

Czym jest zbiór?

W matematyce zbiór oraz należenie do zbioru są pojęciami pierwotnymi, to znaczy, że nie definiuje się ich. Bazujemy więc na intuicji.

W 1895 roku Georg Cantor (twórca teorii mnogości – działu matematyki zajmującym się badaniem zbiorów) napisał: "Przez zbiór rozumiemy dowolną kolekcję M, składającą się z dobrze określonych obiektów, które postrzegamy bądź są wytworami naszej myśli"

Dla zaznaczenia, że obiekt a jest elementem zbioru A (mówimy też, że a należy do zbioru A lub a jest w A) używamy symbolu \in i piszemy:

$$a \in A$$
.

Jeżeli obiekt a nie jest elementem zbioru A, to zamiast pisać $\neg(a \in A)$ piszemy:

Oznaczenia zbiorów lub ich elementów

Oznaczenia ogólne

W większości przypadków używa się następujących oznaczeń:

- wielkich liter A, B, C, ..., X, Y, Z do oznaczenia **zbiorów**;
- małych liter a, b, c, ..., x, y, z do oznaczenia elementów zbiorów;
- liter kaligraficznych $\mathcal{A}, \mathcal{B}, \mathcal{C}, ..., \mathcal{X}, \mathcal{Y}, \mathcal{Z}$ do oznaczenia **rodzin zbiorów**, czyli zbiorów, których elementami są zbiory.

W matematyce są też pewne "specjalne" oznaczenia zbiorów.

Oznaczenia

- ∅ zbiór pusty.
- N zbiór liczb naturalnych.
- Z − zbiór liczb całkowitych.
- Q zbiór liczb wymiernych.
- ullet R zbiór liczb rzeczywistych. ${\mathbb C}$ zbiór liczb zespolonych.

Sposoby zapisywania zbiorów

W matematyce większość zbiorów określamy za pomocą własności wyróżniającej elementy zbioru. Jeśli $\varphi(x)$ jest funkcją zdaniową, to zapis

$$A = \{x : x \in X \land \varphi(x)\}$$

czytamy: A jest zbiorem wszystkich tych x, które należą do X i mają własność φ . Często piszemy krócej

$$A = \{x \in X : \varphi(x)\}$$
 lub $A = \{x \in X | \varphi(x)\},$

albo nawet

$$A = \{x : \varphi(x)\}$$
 lub $A = \{x | \varphi(x)\},$

gdy zbiór X jest znany.

Działania na zbiorach

Definicja

Dla zbiorów A i B możemy zdefiniować:

- sume, czyli $A \cup B = \{x : x \in A \lor x \in B\}$,
- iloczyn, czyli $A \cap B = \{x : x \in A \land x \in B\},\$
- różnicę, czyli $A B = \{x : x \in A \land x \notin B\},\$
- różnicę symetryczną, czyli $A \oplus B = (A B) \cup (B A)$.

Uwaga 1: Iloczyn = część wspólna = przekrój zbiorów.

Uwaga 2: Różnicę zbiorów A i B można oznaczać także $A \setminus B$

Diagramy Venna

Rysunek: Źródło: JT, str 51.

Wybrane własności działań na zbiorach

Twierdzenie

Dla dowolnych zbiorów A, B, C mamy następujące równości:

- $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$ (łączność różnicy symetrycznej)

Uwaga: własności działań na zbiorach jest oczywiście więcej, jednak do zadania przydadzą nam się powyższe.

1. Niech $A = \{1, 2, 3, 4, 5\}, B = \{1, 3, 5, 7\}$ i $C = \{4, 5, 6, 7, 8\}$. Oblicz $A \cup B \cup C, A \cap B \cap C, A - B, A \cap (B - C), A \oplus B, A \oplus B \oplus C$.

Iloczyn kartezjański zbiorów

Definicja

Iloczynem kartezjańskim zbiorów A i B nazywamy zbiór

$$A \times B = \{(a, b) : a \in A \land b \in B\},\$$

gdzie (a, b) jest parą uporządkowaną.

Rysunek: Źródło: JT, str. 59.

2. Niech $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3\}$. Wypisz elementy $A \times B$, $B \times A$ oraz B^2

Moc zbioru i podzbiory

|A| oznacza $moc\ zbioru\ A$, czyli liczbę jego elementów,

$$|\{3,6,9\}| = 3,$$
 $|\emptyset| = 0.$

Lemat 1

Dla zbiorów X i Y mamy

$$|X \times Y| = |X| \cdot |Y|$$

Lemat 2

Wszystkich podzbiorów zbioru A jest $2^{|A|}$.

Rodzinę wszystkich podzbiorów zbioru A oznaczamy $\wp(A)$ lub $\mathcal{P}(A)$ lub 2^A .

Przykład: Niech $A = \{a, b, c\}$. Wówczas

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}.$$

Relacje i funkcje

Definicja

Niech X oraz Y będą zbiorami. Relacją pomiędzy elementami zbioru X a elementami zbioru Y nazywamy dowolny podzbiór R iloczynu kartezjańskiego $X \times Y$.

Definicja

Relacja $F \subset X \times Y$ jest funkcją, jeżeli dla każdego $x \in X$ istnieje dokładnie jeden element $y \in Y$ taki, że $(x,y) \in F$. Zwykle zamiast $(x,y) \in F$ będziemy pisać F(x) = y

- 3. Niech $X=\{A,B,C\}, Y=\{a,b\}.$ Ile jest relacji w zbiorze $X\times Y.$ Czy relacja $R=\{(A,a),(A,b),(B,a)\}$ jest funkcją
- 4. Niech $A=\{1,2,3,4\},\ B=\{1,2,3\}.$ wypisz wszystkie elementy relacji $R=\{(a,b)\in A\times B\mid a< b\}.$ Czy relacja R jest funkcją?
- 5. Niech $X = \{a, b, c\}$. Wypisz elementy X^2 , X^3 oraz $\{(x, y) \in X^2 \mid x \neq y\}$.

Anna Wasik Matematyka dyskretna 8 listopada 2023 11/22

Składanie relacji

Złożenie relacji dwuargumentowych – uogólnienie złożenia funkcji na dowolne relacje dwuargumentowe; sposób konstrukcji relacji dwuargumentowej z dwóch innych, a zarazem wynik tej konstrukcji. Formalnie dla zbiorów X,Y,Z i relacji $R\subseteq X\times Y,S\subseteq Y\times Z$ złożenie tej dwójki to zbiór $S\circ R$ zdefiniowany warunkiem $^{[1][2]}$:

$$S\circ R:=ig\{(x,z)\in X imes Z: \mathop{\exists}\limits_{y\in Y}x\ R\ y\wedge y\ S\ zig\};$$

innymi słowy $x\ (S\circ R)\ z$ wtedy i tylko wtedy, gdy dla pewnego y zachodzi $x\ R\ y\ S\ z^{[3]}$.

Przykłady [edytuj | edytuj kod]

Niech R i S będą takimi relacjami w zbiorze \mathbb{N} , że:

$$R = \{(2,1), (3,1), (4,2), (4,5), (5,3)\}$$

$$S = \{(1,3), (4,1), (3,6), (6,8), (6,7)\}$$

Wtedy odpowiednio złożeniem relacji będą:

$$S \circ R = \{(2,3), (3,3), (5,6)\}$$

 $R \circ S = \{(1,1)\}$

Rysunek: Złożenie relacji,

//pl.wikipedia.org/w/index.php?title=Z%C5%82o%C5%BCenie_relacji&oldid=71656867 (ostatni dostep paź. 9, 2023).

12 / 22

Składanie relacji – zadania do domu

6. Dane są dwie relacje:

$$P = \{(1, a), (2, b), (3, b)\} \subset \{1, 2, 3\} \times \{a, b\}$$

oraz

$$R = \{(a, 1), (a, 2), (b, 3)\} \subset \{a, b\} \times \{1, 2, 3\}.$$

Oblicz złożenie $P \circ R$.

7. Dane są dwie relacje:

$$P = \{(0,1), (0,2), (1,1), (1,2)\} \subset \{0,1\} \times \{1,2,3\}$$

oraz

$$R = \{(3,1), (3,2), (3,3)\} \subset \{1,2,3\} \times \{1,2,3\}.$$

Oblicz ich złożenie $P \circ R$.

Rysunek: Źródło: EPG, zbiory.

Relacja równoważności

Definicja [edytuj | edytuj kod]

Niech X będzie dowolnym zbiorem. Relację $R\subseteq X\times X$ nazywamy **relacją równoważności** wtedy i tylko wtedy, gdy jest ona

- ullet zwrotna, tzn. dla dowolnych $x\in X$ zachodzi $x\,R\,x,$
- ullet symetryczna, tzn. dla dowolnych $x,y\in X$ $x\,R\,y\Rightarrow y\,R\,x,$
- przechodnia, tzn. dla dowolnych $x,y,z\in X$ zachodzi wynikanie $(x\,R\,y\wedge y\,R\,z)\Rightarrow x\,R\,z.$

Dwa elementy $x,y\in X$ takie, że $(x,y)\in R$, oznacza się symbolicznie $x\,R\,y^{[3][4]}$ i nazywa się **równoważnymi** lub **tożsamymi w sensie R**. Relacje równoważności oznacza się zwykle symbolami \sim , \equiv lub podobnymi.

Rysunek: Relacja równoważności, //pl.wikipedia.org/w/index.php?title=Relacja_r%C3%B3wnowa%C5%BCno%C5%9Bci&oldid=71656851 (ostatni dostęp paź. 9, 2023).

Matematyka dyskretna

Relacje – zadania

- 8. Niech $X=\{a,b,c\}$. i relacja $R=\{(x,y)\in X^2\mid x\neq y\}$. Czy relacja R jest relacją równoważności? Oblicz złożenie $R\circ R$
- 9. Niech $A = \{a, b\}$. Ile jest relacji w zbiorze A^2 . Które z nich są a) zwrotne, b) relacjami równoważności?
- 10. Niech $A = \{a, b, c\}$. Ile jest relacji w zbiorze A^2 . Które z nich są a) zwrotne, b) relacjami równoważności
- 11. Czy relacja $R = \{(a,b) \in N \times N \mid a < b\}$ w zbiorze liczb naturalnych jest przechodnia?

Rysunek: Źródło: EPG, zbiory.

Obraz zbioru przez funkcję

Definicja 4.7.1. Dana jest funkcja $f\colon X\to Y$ i podzbiór A zbioru X. Obrazem zbioru A poprzez funkcję f (lub wyznaczonym przez funkcję f) (zob. rys. 4.23), nazywamy zbiór

$$f(A) = \{ y \in Y : \exists_{x \in A} \ y = f(x) \} = \{ f(x) : x \in A \},$$

czyli zbiór złożony ze wszystkich wartości f(x) dla wszystkich możliwych elementów x ze zbioru A.

Rysunek 4.23. Ilustracja do definicji 4.7.1

Rysunek: Źródło: JT, str. 129.

Przeciwobraz zbioru przez funkcje

Definicja 4.7.2. Dana jest funkcja $f: X \to Y$ i podzbiór B zbioru Y. Przeciwobrazem zbioru B względem funkcji f (lub wyznaczonym przez funkcję f) (zob. rvs. 4.24), nazywamy zbiór

Przeciwobraz zbioru

$$f^{-1}(B) = \{ x \in X \colon f(x) \in B \}.$$

Z powyższej definicji jest oczywiste, że mamy równoważność:

$$x \in f^{-1}(B) \Leftrightarrow f(x) \in B.$$

Rysunek: Źródło: JT, str. 131.

Zadanie + notacja uogólniona działań na zbiorach

12. Niech $X=\{1,2,3\}$ i $Y=\{a,b,c\}$. niech $F=\{(1,a)(2,b),(3,a)\}\subset X\times Y$. Czy relacja F jest funkcją? Wyznacz obraz $F(\{1,3\})$ oraz przeciwobraz $F^{-1}(\{b,c\})$.

Uogólnione działania na zbiorach

Niech $I = \{1, 2, 3, ..., n\}$, wówczas

•

$$\bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup A_3 \cup ... \cup A_{n-1} \cup A_n$$

•

$$\bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_{n-1} \cap A_n$$

•

$$\bigoplus_{i\in I} A_i = \bigoplus_{i=1}^n A_i = A_1 \oplus A_2 \oplus A_3 \oplus ... \oplus A_{n-1} \oplus A_n$$

Uogólnione sumy i iloczyny

Twierdzenie 0.5 Różnica symetryczna n zbiorów

$$A_1 \oplus A_2 \oplus \ldots \oplus A_n$$

zawiera elementy, które należą do nieparzystej liczby spośród zbiorów $A_1,\,A_2,\,\ldots\,,A_n.$

Rysunek: Źródło: EPG, zbiory.

- 13. Niech $I = \{1, 2, 3, 4, 5\}$ będzie zbiorem indeksów. Dla każdego $i \in I$ określamy zbiór $B_i = \{x \in \mathbb{N} \mid i \leqslant x \leqslant 2i\}$. Oblicz $\bigcup_{i \in I} B_i, \bigcap_{i \in I} B_i, B_1 \oplus B_3 \oplus B_5$ oraz $B_1 \oplus B_2 \oplus B_3 \oplus B_4 \oplus B_5$.
- 14. Niech $I = \{1, 2, 3, 4, 5\}$. Dla każdego $i \in I$ mamy $A_i = \{3i 3, 3i, 3i + 3\}$. Oblicz $\bigcup_{i \in I} A_i$, $\bigcap_{i \in I} A_i$ oraz $A_1 \oplus A_2 \oplus A_3 \oplus A_4 \oplus A_5$.
- 15. Niech $I = \{1, 2, 3, 4, 5\}$ będzie zbiorem indeksów. Dla każdego $i \in I$ określamy zbiór $C_i = \{x \in \mathbb{N} \mid 1 \le x \le 30 \text{ oraz } i \text{ dzieli } x\}$. Oblicz $\bigcup_{i \in I} C_i$ oraz $\bigcap_{i \in I} C_i$.

19 / 22

Relacja równoważności – zadania

16. Niech F będzie dowolną funkcją z A w B. Udowodnić, że relacja

$$R = \{(a,b) \mid F(a) = F(b)\}$$

jest relacją równoważności.

17. Niech $A_1, ..., A_k$ będzie podziałem zbioru A. To znaczy zbiory $A_1, ..., A_k$ są parami rozłączne i w sumie tworzą zbiór A. Zdefiniujmy relację $R \subset A \times A$. Para $(a,b) \in R$ wtedy i tylko wtedy, gdy a i b należą do tego samego zbioru A_i . Udowodnić, że relacja R jest relacją równoważności.

Dodatkowe zadania z relacji równoważności

Poniższe zadania można znaleźć w JT, str. 162.

Zadanie 1

Niech R będzie relacją w zbiorze $A=\{1,2,3,...7\}$, taką że $(a,b)\in R$ wtedy i tylko wtedy, gdy liczba $a/b=2^m$ dla pewnej liczby całkowitej m. Wyznacz wszystkie pary (a,b) należące do relacji R. Wyjaśnij, dlaczego R jest relacją równoważności w zbiorze A.

Zadanie 2

Niech R będzie relacją w zbiorze $A=\{1,2,3,...,9\}$, taką że $(a,b)\in R$ wtedy i tylko wtedy, gdy liczba ab jest kwadratem liczby naturalnej. Wyznaczyć wszystkie pary (a,b) należące do relacji R. Wyjaśnić, dlaczego R jest relacją równoważności w zbiorze A.

Dodatkowe zadania na relację równoważności

Zadanie 3

Czy relacja $R \subset \{1,2,3\}^2$ jest relacją równoważności, gdy:

Odpowiedź uzasadnij.