Implementing and Almost Ideal Demand System of mobility expenditure in Stan

Ariane Kehlbacher

DLR German Aerospace Center, Institute of Transport Research, Berlin

Expenditure Systems

are used in microeconomics to ...

- investigate welfare effects of price or income changes, or of taxes or subsidies
- predict across households or over time how demand changes in response to price/income changes

Expenditure Systems

need to account for...

- complementarity and substitution between goods
- lacktriangledown cross-equation error correlation ightarrow Seemingly unrelated regression (Zellner, 1962)
- censoring
 - Tobit model
 - Double Hurdle Model
 - Infrequency of Purchase Model (Blundell & Meghir, 1987)

Expenditure System Estimation

- commonly done using frequentist methods
- Bayesian approach by Tiffin and Arnoult (2010)
 - Gibbs Sampling (Casella and George, 1992)

expenditure share of good i

$$s_{ig} = lpha_i + \sum_{j=1}^{M} \gamma_{ij} \ln(p_{jg}) + eta_i \ln\left(rac{m_g}{P_g^*}
ight)$$
 (1)

where

- s_{ig} expenditure share of transport mode i of household group g
- p_{jg} is the price of transport mode j of household group g
- m_g is total household group expenditure for transport by group g
- $\ln(P_g^*)$ is the translog price index, which can be approximated by Stones price index $\ln(P_g^*) = \sum_k s_{ig} \ln(p_{mj})$ where s_{ig} are replaced by \bar{s}_i

Almost Ideal Demand System (cont.)

A system of demand functions derived from the maximisation of a utility function under a linear budget constraint, automatically satisfies some general restrictions.

- Adding-up $\sum_{i=1}^{M} \alpha_i = 1 \sum_{i=1}^{M} \gamma_{ij} = 0 \forall j \sum_{i=1}^{M} \beta_i = 0$ (all budget is spent)
- Homogeneity of degree zero $\sum_j \gamma_{ij} = 0$ (a proportional rise in prices & expenditure has no effect on demand)
- lacksquare Symmetry $\gamma_{ij}=\gamma_{ji}$ (substitution matrix is symmetric)
- Negativity (own price elasticities are negative)

Almost Ideal Demand System (cont.)

A system of demand functions derived from the maximisation of a utility function under a linear budget constraint, automatically satisfies some general restrictions.

- Adding-up $\sum_{i=1}^{M} \alpha_i = 1 \sum_{i=1}^{M} \gamma_{ij} = 0 \forall j \sum_{i=1}^{M} \beta_i = 0$ (all budget is spent)
- Homogeneity of degree zero $\sum_j \gamma_{ij} = 0$ (a proportional rise in prices & expenditure has no effect on demand)
- Symmetry $\gamma_{ij} = \gamma_{ji}$ (substitution matrix is symmetric)
- Negativity (own price elasticities are negative)
- \rightarrow restrictions need to be imposed \rightarrow reduces the number of parameters to be estimated

Model specification

Adding-up implies that one equation is dropped Rewrite model in (1) as

$$s = XB + \varepsilon \tag{2}$$

where s is a G(M-1) vector X is a (M-1) block diagonal matrix B is (M-1)k

Parameter restrictions

Homogeneity and symmetry are imposed on the set of M-1 equations using q parameter restrictions

$$\mathbf{R}B^{rest} = 0 \tag{3}$$

where

- **R** is an orthonormal matrix defining the restrictions
- B^{rest} is the restricted version of B which can be expressed as $B^{rest} = \mathbf{R}_{\perp} B^{free}$

Parameter restrictions (cont.)

How to make \mathbf{R}_{\perp} ? If M=4 equations, B looks like this

- make zero matrix **Z** with 18 columns and q=6 rows
- in a given row where **Z** is set to 1 the equivalent parameters will sum to zero

Using simulated data, in R:

■ compute R_⊥

■ generate $vec(B^{free})$

```
bfree.true = matrix(rnorm(k.free),k.free,1)
```

■ compute restricted B^{rest}

```
bvec.true = rperp%*%bfree.true
```

compute dependent variable

```
Ystar.t <- X%*%bvec.true+Evec.t
```

- > bvec.true
- [1,] -0.34945072
- [2,] 1.03534811
- [3,] -0.25708502
- [4,] -0.46490645
- [5,] -0.31335664 [6.] -0.01590289
- [7.] 0.41809309
- [8,] -0.25708502
- [9,] 0.29166730
- [10,] 0.09911658
- [11,] -0.13369886
- [12,] -0.69465199
- [13,] -0.78064472
- [14,] -0.46490645
- [15,] 0.09911658
- [16,] -0.62194387
- [17,] 0.98773374
- [18,] -0.87921086

For estimation in Stan need to compute

where Xr is
$$G(M-1) \times (m-1)k$$

In stan:


```
data {
int<lower=1> K; // total number of free parameters
int<lower=1> Kr; // number of restricted parameters per equation
int<lower=1> D; // number of equations
int<lower=0> N: // number of observations
int<lower=0,upper=1> y_ind[N,D]; // indicator if censored at zero
vector[D] v[N];
matrix[N*D.K] Xr: // restricted matrix
int<lower=0> index[N.D]:
matrix[Kr*D,K] rperp;
```



```
parameters {
vector[K] beta;
cholesky_factor_corr[D] L_Omega;
vector<lower=0>[D] L_sigma;
vector<upper=0>[N_neg] z_neg;
}
```

```
model {
mu vec = Xr*beta;
// reshape vector to array
for (i in 1:D){
for (i in 1:N){
mu[i, j] = mu_vec[index[i,j]];
}}
L_Sigma = diag_pre_multiply(L_sigma, L_Omega);
// priors
to_vector(beta) ~ normal(0, 1);
L_Omega ~ lkj_corr_cholesky(3);
L_sigma ~ normal(0, 1);
z ~ multi_normal_cholesky(mu, L_Sigma);
```


Simulated results: free parameters

beta[11] -0.7562456

Ariane Kehlbacher, Institute of Transport Research, 22.06,2023

1.3238252

beta[12]

		beta.post.free			
beta[1]	-1.8149578	-1.8563195	$L_sigma[1]$	$L_sigma[2]$	$L_sigma[3]$
beta[2]	-0.6274798	-0.7048428	1.548713	2.416292	2.786170
beta[3]	-2.0716180	-2.1260447			
beta[4]	-0.4943079	-0.5482699	1.5	2.5	3.0
beta[5]	-0.1943162	-0.1096420			
beta[6]	0.3787821	0.2448027			
beta[7]	-0.5280202	-0.4398354			
beta[8]	0.5477599	0.6080177			
beta[9]	0.2072907	0.1712506			
beta[10]	0.3162866	0 2353760			

hata nost free

-0.7908830

1.3674655

Simulated results: restricted parameters


```
> beta.post.mat
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.2229613 1.3582597645 -0.1053980 0.0008544288 -1.2537162 -0.103
\lceil 2. \rceil -1.8563195 -0.1053979817 -1.1339773 0.3569497885 0.8824255 0.244
\lceil 3. \rceil -0.4398354 0.0008544288 0.3569498 0.3342273951 -0.6920316 1.367
> bmat.true
[.1] [.2] [.3] [.4] [.5] [.6]
\lceil 1. \rceil -0.1651147 1.33403919 -0.08059262 -0.06276309 -1.1906835 -0.131650
[2,] -1.8149578 -0.08059262 -1.08795582 0.37920244 0.7893460 0.37878
\lceil 3. \rceil - 0.5280202 - 0.06276309 \ 0.37920244 \ 0.37804645 - 0.6944858 \ 1.323826
```

Aim of this application

To investigate substitute and complementary relationships between different transport modes so as to better understand the impact of recent changes in costs on transport demand.

Data on mobility expenditure

Mobility data usually do not contain information on prices \rightarrow combine two data sets

- 'Income and expenditure survey 2018' (EVS, 2018) contains data on quarterly household expenditure in **Euros** for car, train, and bus and taxi usage, which is scaled to daily expenditure
- 2. 'Mobility in Germany 2017' (MiD, 2017) contains data on how many **kilometers** a household travelled by car, train, bus and taxi on a given day

Household groups

Expenditure and travel data are aggregated over groups of households, which have attributes relevant to transport poverty:

- equivalised net household income (Quintiles 1-5)
- economic activity (0 persons, 1+ persons)
- region (agglomeration, urbanised, rural)
- car ownership (0 cars, 1+ cars)

This results in 60 possible combinations, of which data are available for all but one combination.

Variables

- *G* = 59 sample size
- M=3 transport modes car, train, bus/taxi (dropped)
- "price" = unit value = $\left(\frac{\text{median daily Euros}}{\text{median daily kilometres}}\right)$ for each travel mode i=1,...,M for each household group g=1,...,G
- censoring 46% car and 0% train

Estimating mobility expenditure system

4 chains, 1000 iterations

Divergences:

0 of 2000 iterations ended with a divergence.

Tree depth:

 $0\ \mbox{of}\ 2000$ iterations saturated the maximum tree depth of 20.

Energy:

 $\hbox{$E-$BFMI indicated no pathological behavior.}$

Computing elasticities

Use restrictions to recover parameters the dropped equation.

uncompensated price elasticity
$$\epsilon_{ij} = -\delta_{ij} + \frac{\gamma_{ij}}{\bar{s}_i} - \beta_i \frac{\bar{s}_j}{\bar{s}_i}$$
 (4)

expenditure elasticity
$$\epsilon_i = 1 + \frac{\beta_i}{\bar{s}_i}$$
 (5)

Results

Uncompensated price elasticities

	car	train	bus/taxi
car	-1.42		-0.30
	0.31	-0.79	0.22
bus/taxi	0.45	0.19	-0.68

Expenditure elasticities

car	1.95			
train	0.26			
bus/taxi	0.04			

Conclusions

- accounting for censoring is easy
- imposing restrictions done via a pre-computation of restricted data matrix
- lacktriangledown free parameters have no straight forward interpretation ightarrow difficult to include prior knowledge
- lacktriangle the system is highly constraint o not responsive to changes in the priors
- next steps: imposing negativity

References I

R. Blundell and C. Meghir.

Bivariate alternatives to the tobit model.

Journal of econometrics, 34(1-2):179–200, 1987.

G. Casella and E. I. George.

Explaining the gibbs sampler.

The American Statistician, 46(3):167–174, 1992.

A. Deaton and J. Muellbauer.

An almost ideal demand system.

The American economic review, 70(3):312-326, 1980.

References II

DeStatis.

Einkommens- und Verbrauchsstichprobe.

https://www.destatis.de, 2018.

infas.

Mobilität in Deutschland.

https://www.mobilitaet-in-deutschland.de, 2017.

R. Tiffin and M. Arnoult.

The demand for a healthy diet: estimating the almost ideal demand system with infrequency of purchase.

European Review of Agricultural Economics, 37(4):501-521, 2010.