DCC008 - Cálculo Numérico Equações Não-Lineares

Bernardo Martins Rocha

Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br

Conteúdo

- ► Introdução
- ▶ Localização de raízes
- ► Método da bisseção
- ► Método da falsa posição
- ► Método do ponto fixo
- ► Método de Newton-Raphson
- ► Método da secante
- ► Métodos para raízes últiplas
- ► Conclusões e comparações

Vamos considerar agora métodos para resolver equações não-lineares. Dada uma função não-linear escalar $f:\mathbb{R}\to\mathbb{R}$, procuramos o valor de x para o qual

$$f(x) = 0$$

No caso vetorial onde $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^n$, o problema consiste em encontrar o vetor \mathbf{x} tal que todas as componentes de $\mathbf{f}(\mathbf{x})$ são iguais a zero simultaneamente.

Vamos considerar agora métodos para resolver equações não-lineares. Dada uma função não-linear escalar $f:\mathbb{R}\to\mathbb{R}$, procuramos o valor de x para o qual

$$f(x) = 0$$

No caso vetorial onde $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$, o problema consiste em encontrar o vetor \mathbf{x} tal que todas as componentes de $\mathbf{f}(\mathbf{x})$ são iguais a zero simultaneamente.

$$f(x) = x^2 - 4\sin(x) = 0$$

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} x_1^2 - x_2 + 0.25 \\ -x_1 + x_2^2 + 0.25 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Para polinômios de grau até quatro, suas raízes podem ser calculadas através de uma expressão fechada, como por exemplo no caso de uma função quadrática

$$ax^2 + bx + c = 0$$
 \Rightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

De forma geral, não podemos encontrar os zeros de uma função através de uma expressão fechada. Portanto, para encontrar os zeros de uma função temos que recorrer a *métodos aproximados*.

Para polinômios de grau até quatro, suas raízes podem ser calculadas através de uma expressão fechada, como por exemplo no caso de uma função quadrática

$$ax^2 + bx + c = 0$$
 \Rightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

De forma geral, não podemos encontrar os zeros de uma função através de uma expressão fechada. Portanto, para encontrar os zeros de uma função temos que recorrer a *métodos aproximados*.

Em alguns casos, os zeros das funções podem ser números complexos:

$$x^2 + 1 = 0 \quad \Rightarrow \quad x = \pm \sqrt{-1} = \pm i$$

Iremos trabalhar apenas com as raízes reais.

Exemplo de problemas

Considere a seguinte equação:

$$C = \frac{M}{r} \left[1 - (1+r)^{-n} \right]$$

onde C é o capital, M é a mensalidade, r é a taxa de juros por cada período (expressa como uma fração) e n é o número de anos.

Uma pessoa pode pagar uma mensalidade de 1250 reais. Se pretende contrair um empréstimo de 10000 reais a 10 anos, qual é a taxa que poderá suportar?

$$C = 10000, M = 1250, n = 10$$
 \Rightarrow $10000 = \frac{1250}{r} [1 - (1+r)^{-10}]$
$$f(r) = 10000 - \frac{1250}{r} [1 - (1+r)^{-10}] = 0$$

Exemplo de problemas

A seguinte equação pode ser usada para calcular o nível de concentração de oxigênio c em um rio, em função da distância x, medida a partir do local de descarga de poluentes:

$$c(x) = 10 - 20(e^{-0.2x} - e^{-0.75x})$$

Calcule a distância para a qual o nível de oxigênio desce para o valor 5. Pretende-se resolver c(x)=5. Podemos escrever como c(x)-5=0, isto é

$$10 - 20(e^{-0.2x} - e^{-0.75x}) - 5 = 0$$

O problema se resume a encontrar x tal que f(x) = 0.

Outros exemplos!

Definição (Zero)

Se $f:[a,b]\to\mathbb{R}$ é uma função dada, um ponto $\alpha\in[a,b]$ é um zero (ou raiz) de f se $f(\alpha)=0$.

Definição (Zero)

Se $f:[a,b]\to\mathbb{R}$ é uma função dada, um ponto $\alpha\in[a,b]$ é um zero (ou raiz) de f se $f(\alpha)=0$.

Exemplo

Seja $f:(0,\infty)\to\mathbb{R}$ e considere as seguintes funções $f(x)=\log{(x)}$ e f(x)=tanh(x)-x/3.

Definição (Multiplicidade)

Um ponto $\alpha \in [a,b]$ é uma raiz de multiplicidade m da equação f(x)=0 se $f(\alpha)=f'(\alpha)=\ldots=f^{(m-1)}(\alpha)=0$ e $f^{(m)}(\alpha)\neq 0$.

Definição (Multiplicidade)

Um ponto $\alpha \in [a,b]$ é uma raiz de multiplicidade m da equação f(x)=0 se $f(\alpha)=f'(\alpha)=\ldots=f^{(m-1)}(\alpha)=0$ e $f^{(m)}(\alpha)\neq 0$.

Exemplo

Seja $f(x)=x^2+2x+1=(x+1)^2$. Nesse caso temos $\alpha=-1$ com multiplicidade m=2, pois f'(x)=2(x+1) e assim temos que f(-1)=0 e f'(-1)=0.

Métodos para raízes de equações

Os métodos numéricos que vamos estudar geralmente podem ser divididos em duas etapas:

- 1. Localização das raízes
 - lacktriangle Encontrar o intervalo [a,b] que contenha apenas uma raiz.

Métodos para raízes de equações

Os métodos numéricos que vamos estudar geralmente podem ser divididos em duas etapas:

- 1. Localização das raízes
 - ightharpoonup Encontrar o intervalo [a,b] que contenha apenas uma raiz.
- 2. Refinamento da aproximação
 - ▶ A partir de uma aproximação inicial $x_0 \in [a,b]$, gerar uma sequência $\{x_0,x_1,x_2,\ldots\}$ que convirja para a raiz exata α de f(x)=0.

Métodos para raízes de equações

Os métodos numéricos que vamos estudar geralmente podem ser divididos em duas etapas:

- 1. Localização das raízes
 - ightharpoonup Encontrar o intervalo [a,b] que contenha apenas uma raiz.
- 2. Refinamento da aproximação
 - A partir de uma aproximação inicial $x_0 \in [a,b]$, gerar uma sequência $\{x_0,x_1,x_2,\ldots\}$ que convirja para a raiz exata α de f(x)=0.

Alguns métodos não precisam de um prévio isolamento de cada raiz, necessitam apenas de uma aproximação inicial x_0 (ou mais de uma, as vezes). Entretanto, boa parte deles precisa que a raiz esteja confinada em um intervalo e que ela seja única.

Teorema (1)

Seja $f(x):[a,b]\to\mathbb{R}$ uma função contínua. Se f(a)f(b)<0, então existe **pelo menos** um ponto $x\in[a,b]$, tal que f(x)=0.

Teorema (1)

Seja $f(x):[a,b]\to\mathbb{R}$ uma função contínua. Se f(a)f(b)<0, então existe **pelo menos** um ponto $x\in[a,b]$, tal que f(x)=0.

Geometricamente, o teorema diz que qualquer gráfico de uma função contínua que começa abaixo do eixo horizontal e termina acima deste, deve cruzar este eixo em algum ponto.

- $f(x) = x^3 x$, a = -2, b = 2
 - ▶ f é contínua
 - f(a) = -6, f(b) = 6, sinais opostos
 - ▶ 3 raízes no intervalo [a, b]!!!

- $f(x) = x^2 1$, a = -2, b = 2
 - ightharpoonup f é contínua
 - f(a) = (b) = 2, mesmo sinal!
 - ▶ Hipótese do teorema não satisfeita! Entretanto, existem raízes.

$$a = -1, b = 1$$

$$f(x) = \begin{cases} \frac{1}{x}, & \text{se } x \neq 0\\ \text{indef.}, & \text{se } x = 0 \end{cases}$$

- ightharpoonup f(a) = -1, f(b) = 1, sinais opostos
- ▶ f é discontínua!
- De fato, não existem raízes!

Exemplo

Como encontrar o intervalo da raiz positiva da seguinte equação $f(x)=\left(\frac{x}{2}\right)^2-\sin{(x)}=0.$

Exemplo

Como encontrar o intervalo da raiz positiva da seguinte equação $f(x)=\left(\frac{x}{2}\right)^2-\sin\left(x\right)=0.$

Solução do Exemplo

Exemplo

Como encontrar o intervalo da raiz positiva da seguinte equação $f(x)=\left(\frac{x}{2}\right)^2-\sin{(x)}=0.$

Solução do Exemplo

Inspeção visual $\Rightarrow \alpha \in [1.5, 2.0]$

Solução do Exemplo - (cont.)

Outra possibilidade é fazer uma tabela de valores de f(x), e usar o Teorema (1)

\boldsymbol{x}	$\left(\frac{x}{2}\right)^2$	$\sin\left(x\right)$	$\int f(x)$
1.6	0.64	0.996	< 0
1.7	0.72	0.991	< 0
1.8	0.81	0.974	< 0
1.9	0.90	0.946	< 0
2.0	1.00	0.909	> 0

Assim fica claro que existe pelo menos uma raiz em [1.9, 2.0].

Solução do Exemplo - (cont.)

Outra possibilidade é fazer uma tabela de valores de f(x), e usar o Teorema $(\mathbf{1})$

x	$\left(\frac{x}{2}\right)^2$	$\sin\left(x\right)$	f(x)
1.6	0.64	0.996	< 0
1.7	0.72	0.991	< 0
1.8	0.81	0.974	< 0
1.9	0.90	0.946	< 0
2.0	1.00	0.909	> 0

Assim fica claro que existe pelo menos uma raiz em [1.9, 2.0].

Atenção!

Na hora de fazer suas contas na calculadora, sempre calcule as funções trigonométricas com argumento x em radianos.

Teorema (2)

Sob as hipóteses do Teorema 1, se f'(x) existir e f'(x) preservar o sinal em [a,b] então o intervalo contém um único zero de f(x).

Teorema (2)

Sob as hipóteses do Teorema 1, se f'(x) existir e f'(x) preservar o sinal em [a,b] então o intervalo contém um único zero de f(x).

f'(x) não preserva o sinal

Exemplo

Seja $f(x) = \sqrt{x} - 5e^{-x}$ para $x \ge 0$. Logo, tabelando os valores da função temos

\boldsymbol{x}	\sqrt{x}	$5e^{-x}$	f(x)
0.0	0.0	5.0	< 0
1.0	1.0	1.83	< 0
2.0	1.41	0.67	> 0
3.0	1.73	0.24	> 0

Logo sabemos que existe pelo menos uma raiz no intervalo [1,2].

Exemplo

Seja $f(x) = \sqrt{x} - 5e^{-x}$ para $x \ge 0$. Logo, tabelando os valores da função temos

\boldsymbol{x}	\sqrt{x}	$5e^{-x}$	f(x)
0.0	0.0	5.0	< 0
1.0	1.0	1.83	< 0
2.0	1.41	0.67	> 0
3.0	1.73	0.24	> 0

Logo sabemos que existe pelo menos uma raiz no intervalo [1,2]. Entretanto, o Teorema 2 nos garante que existe uma única raiz pois

$$f'(x) = \frac{1}{2\sqrt{x}} + 5e^{-x} > 0, \quad \forall x > 0$$

Uma outra alternativa é rearranjar a equação f(x) dada como g(x)=h(x), de tal forma que os gráficos de g(x) e h(x) sejam mais fáceis de serem traçados do que o de f.

As raízes da equação original são dadas pelos pontos onde o gráfico de g intercepta o gráfico de h.

Uma outra alternativa é rearranjar a equação f(x) dada como g(x)=h(x), de tal forma que os gráficos de g(x) e h(x) sejam mais fáceis de serem traçados do que o de f.

As raízes da equação original são dadas pelos pontos onde o gráfico de g intercepta o gráfico de h.

$$f(x) = (x+1)^2 e^{(x^2-2)} - 1 = 0$$

Uma outra alternativa é rearranjar a equação f(x) dada como g(x)=h(x), de tal forma que os gráficos de g(x) e h(x) sejam mais fáceis de serem traçados do que o de f.

As raízes da equação original são dadas pelos pontos onde o gráfico de g intercepta o gráfico de h.

$$f(x) = (x+1)^2 e^{(x^2-2)} - 1 = 0$$

Podemos rearranjar $f(x)$ como

$$\to (x+1)^2 e^{(x^2-2)} = 1$$

Uma outra alternativa é rearranjar a equação f(x) dada como g(x)=h(x), de tal forma que os gráficos de g(x) e h(x) sejam mais fáceis de serem traçados do que o de f.

As raízes da equação original são dadas pelos pontos onde o gráfico de g intercepta o gráfico de h.

$$f(x) = (x+1)^2 e^{(x^2-2)} - 1 = 0$$

Podemos rearranjar $f(x)$ como

Uma outra alternativa é rearranjar a equação f(x) dada como g(x)=h(x), de tal forma que os gráficos de g(x) e h(x) sejam mais fáceis de serem traçados do que o de f.

As raízes da equação original são dadas pelos pontos onde o gráfico de g intercepta o gráfico de h.

$$f(x) = (x+1)^2 e^{(x^2-2)} - 1 = 0$$

Podemos rearranjar $f(x)$ como

Uma outra alternativa é rearranjar a equação f(x) dada como g(x)=h(x), de tal forma que os gráficos de g(x) e h(x) sejam mais fáceis de serem traçados do que o de f.

As raízes da equação original são dadas pelos pontos onde o gráfico de g intercepta o gráfico de h.

$$f(x) = (x+1)^2 e^{(x^2-2)} - 1 = 0$$

Podemos rearranjar $f(x)$ como

Isolamento das raízes

Uma outra alternativa é rearranjar a equação f(x) dada como g(x)=h(x), de tal forma que os gráficos de g(x) e h(x) sejam mais fáceis de serem traçados do que o de f.

As raízes da equação original são dadas pelos pontos onde o gráfico de g intercepta o gráfico de h.

Exemplo

$$f(x) = (x+1)^2 e^{(x^2-2)} - 1 = 0$$

Podemos rearranjar $f(x)$ como

Refinamento

Se o intervalo [a,b] para o qual queremos procurar uma raiz de f(x) já está isolado, o próximo passo consiste em gerar iterativamente uma sequência de aproximações $\{x_0,x_1,x_2,\ldots\}$ cada vez melhores que convirja para a raiz α .

Refinamento

Se o intervalo [a,b] para o qual queremos procurar uma raiz de f(x) já está isolado, o próximo passo consiste em gerar iterativamente uma sequência de aproximações $\{x_0,x_1,x_2,\ldots\}$ cada vez melhores que convirja para a raiz α .

Antes de estudarmos como os métodos geram as aproximações, precisamos decidir como que uma dada aproximação no passo k é suficientemente próxima da raiz exata?

Para isso precisamos definir um critério de parada que determina quando terminar o processo iterativo.

Critério de parada

Na prática a sequência é interrompida quando seus valores satisfizerem a pelo menos um dos seguintes critérios:

$$\left| \frac{|x_k - x_{k-1}| \le \epsilon}{\left| \frac{x_k - x_{k-1}}{x_k} \right| \le \epsilon} \right|$$

$$\left| |f(x_k)| \le \epsilon \right|$$

onde ϵ é a precisão/tolerância fornecida como parâmetro para o processo iterativo.

Critério de parada

As vezes não é possível atender a todos os critérios ao mesmo tempo.

A idéia fundamental do método da bissecção consiste em usar repetidamente o Teorema 1. O método subdivide o intervalo [a,b] ao meio a cada iteração e seleciona o subintervalo que contem a raiz.

De acordo com o Teorema 1, o subintervalo que contem a raiz é aquele em que f(x) tem sinais opostos nos extremos. A cada passo o intervalo é dividido ao meio:

$$m = \frac{a+b}{2}$$

então o novo intervalo será aquele que contém a raiz:

- [a, m], se f(a)f(m) < 0
- ightharpoonup [m,b], caso contrário

A busca continua até que o **critério de parada** escolhido seja satisfeito considerando m como aproximação para a raiz.

Seja a_k e b_k os extremos do intervalo no passo k e seja ainda x_k o ponto médio e uma aproximação para a raiz.

A cada iteração o método calcula o ponto médio do intervalo

$$x_k = \frac{a_k + b_k}{2}$$

Seja a_k e b_k os extremos do intervalo no passo k e seja ainda x_k o ponto médio e uma aproximação para a raiz.

A cada iteração o método calcula o ponto médio do intervalo

$$x_k = \frac{a_k + b_k}{2}$$

Podemos considerar $f(x_k) \neq 0$, caso contrário teríamos encontrado a raiz.

Sendo assim o método agora calcula $f(x_k)$ e decide o novo subintervalo $[a_{k+1},b_{k+1}]$ da seguinte forma

$$\operatorname{se} f(a_k) f(x_k) \begin{cases} <0, & \operatorname{ent\~ao} \ a_{k+1} = a_k & e \quad b_{k+1} = x_k \\ >0, & \operatorname{ent\~ao} \ a_{k+1} = x_k & e \quad b_{k+1} = b_k \end{cases}$$

Exemplo

O método da bissecção aplicado à equação $f(x)=\left(\frac{x}{2}\right)^2-\sin{(x)}=0$ com intervalo inicial [1.5,2.0], gera a seguinte sequência de aproximações:

Exemplo

O método da bissecção aplicado à equação $f(x)=\left(\frac{x}{2}\right)^2-\sin{(x)}=0$ com intervalo inicial [1.5,2.0], gera a seguinte sequência de aproximações:

Solução

k	a	b	x_k	f(a)	f(b)	$f(x_k)$
0	1.5	2.0	1.75	-0.4349	0.0907	-0.2184
1	1.75	2.0	1.875	-0.2184	0.0907	-0.0752
2	1.875	2.0	1.9375	-0.0752	0.0907	0.0050
3	1.875	1.9375	1.90625	-0.0752	0.0050	-0.0358
4	1.90625	1.9375	1.921875	-0.0358	0.0050	-0.0156
5	1.921875	1.9375	1.929688	-0.0156	0.0050	-0.0054
_6	1.929688	1.9375	1.933594	-0.0054	0.0050	-0.0002

Algoritmo

```
entrada: função f(x) contínua e tal que f(a)f(b) < 0 em [a,b]
  precisao \epsilon
k=0:
enquanto critério de parada não for satisfeito faça
   x_k = \frac{(a+b)}{2};
   se f(a)\tilde{f}(x_k) < 0 então b = x_k;
   senão
      a=x_k;
    fim-se
fim-enquanto
retorne x_k;
```

Intervalo

Se conhecemos apenas $a<\alpha$, podemos determinar um intervalo que contém a raiz e que possa ser usado pelo método da bisecção da seguinte forma.

Intervalo

Se conhecemos apenas $a < \alpha$, podemos determinar um intervalo

que contém a raiz e que possa ser usado pelo método da bisecção da seguinte forma. Escolhemos um passo inicial de tamanho h e nessa etapa calculamos

$$f(a+h), f(a+2h), f(a+4h), \dots$$

Intervalo

Se conhecemos apenas $a<\alpha$, podemos determinar um intervalo que contém a raiz e que possa ser usado pelo método da bisecção da seguinte forma. Escolhemos um passo inicial de tamanho h e nessa etapa calculamos

$$f(a+h), f(a+2h), f(a+4h), \dots$$

isto é, dobramos o passo até que um valor da função seja encontrado tal que

$$f(a)f(a+2^kh) < 0$$

Nesse ponto, temos uma raiz cercada em um intervalo, a qual pode ser usada como ponto de partida pelo método da Bisecção.

Algoritmo - Busca Intervalo

```
entrada: função f(x), x_{min}, x_{max}, n
saída: intervalo [a,b] tal que f(a)f(b) < 0
dx = (x_{max} - x_{min})/n;
a = x_{min}
i=0:
enquanto i < n faça
  i = i + 1;
b = a + dx;
  se f(a)f(b) < 0 então
   retorne a,b;
   fim-se
   a = b:
fim-enguanto
```

A cada iteração k a raiz α de f(x)=0 está no intervalo $[a_k,b_k].$ Temos assim a seguinte relação para o erro

$$|\alpha - x_k| \le \frac{1}{2}(b_k - a_k)$$

A cada iteração k a raiz α de f(x)=0 está no intervalo $[a_k,b_k]$. Temos assim a seguinte relação para o erro

$$|\alpha - x_k| \le \frac{1}{2}(b_k - a_k)$$

O tamanho do intervalo (b_k-a_k) no passo k pode ser escrito como

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_{k-2} - a_{k-2}}{2^2} = \dots = \frac{b_1 - a_1}{2^{k-1}} = \frac{b_0 - a_0}{2^k}$$

A cada iteração k a raiz α de f(x)=0 está no intervalo $[a_k,b_k]$. Temos assim a seguinte relação para o erro

$$|\alpha - x_k| \le \frac{1}{2}(b_k - a_k)$$

O tamanho do intervalo (b_k-a_k) no passo k pode ser escrito como

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_{k-2} - a_{k-2}}{2^2} = \dots = \frac{b_1 - a_1}{2^{k-1}} = \frac{b_0 - a_0}{2^k}$$

Portanto, o erro no passo k satisfaz

$$|\alpha - x_k| \le \frac{b_0 - a_0}{2^{k+1}}$$

onde $a_0 = a$ e $b_0 = b$.

Uma propriedade interessante do método da bissecção é que a convergência é **garantida** se f(x) for contínua em [a,b] e se $\alpha \in [a,b]$.

Também é possível determinar o número de iterações que serão necessárias para calcular a raiz com uma certa precisão ϵ .

Isto é, queremos encontrar o inteiro k tal que:

$$|\alpha - x_k| \le \frac{b_0 - a_0}{2^{k+1}} \le \epsilon$$

ou seja, quantas iterações são necessárias para que o erro entre a aproximação x_k da raiz α seja menor do que ϵ .

Encontrar k tal que:

$$|\alpha - x_k| \le \frac{b_0 - a_0}{2^{k+1}} \le \epsilon$$

portanto

$$\frac{b_0 - a_0}{2^{k+1}} \le \epsilon$$

$$\frac{b_0 - a_0}{\epsilon} \le 2^{k+1}$$

$$\log_2(2^{k+1}) \ge \log_2\left(\frac{b_0 - a_0}{\epsilon}\right)$$

$$k + 1 \ge \log_2\left(\frac{b_0 - a_0}{\epsilon}\right)$$

$$k \ge \frac{\ln\left(\frac{b_0 - a_0}{\epsilon}\right)}{\ln\left(2\right)} - 1$$

Exemplo

Qual o número de iterações necessárias para encontrar uma aproximação para a raiz de $f(x)=\left(\frac{x}{2}\right)^2-\sin\left(x\right)$ no intervalo [1.5,2.0] com uma precisão $\epsilon=10^{-5}$?

Solução

Precisamos encontrar k que satisfaz

$$k \ge \frac{\ln\left(\frac{b_0 - a_0}{\epsilon}\right)}{\ln(2)} - 1$$
$$k \ge \frac{\ln\left(\frac{2 - 1.5}{10^{-5}}\right)}{\ln(2)} - 1 \approx 15.61 - 1 = 14.61$$

Portanto, como k deve ser inteiro, temos que depois de 15 iterações o método atinge a precisão de 10^{-5} como desejado.

É importante definir com qual rapidez a sequência de aproximações $\{x_0,x_1,\ldots\}$ converge para a raiz exata α .

É importante definir com qual rapidez a sequência de aproximações $\{x_0,x_1,\ldots\}$ converge para a raiz exata lpha.

Definição (Ordem de convergência)

Uma sequência $\{x_n|n\geq 0\}$ é dita convergir com ordem $p\geq 1$ para um ponto α se

$$|\alpha - x_{n+1}| \le c|\alpha - x_n|^p, \quad n \ge 0$$

para uma constante c>0.

É importante definir com qual rapidez a sequência de aproximações $\{x_0,x_1,\ldots\}$ converge para a raiz exata lpha.

Definição (Ordem de convergência)

Uma sequência $\{x_n|n\geq 0\}$ é dita convergir com ordem $p\geq 1$ para um ponto α se

$$|\alpha - x_{n+1}| \le c|\alpha - x_n|^p, \quad n \ge 0$$

para uma constante c > 0.

Sendo c < 1, dizemos que :

- se p=1: convergência linear
- se 1 : convergência super-linear
- se p=2: convergência quadrática

Na prática o que isso significa?

$$|\alpha - x_{n+1}| \le c|\alpha - x_n|^p$$

Na prática o que isso significa?

$$|\alpha - x_{n+1}| \le c|\alpha - x_n|^p$$

Exemplo de convergência

▶ Linear: 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , ... com $c = 10^{-1}$

Na prática o que isso significa?

$$|\alpha - x_{n+1}| \le c|\alpha - x_n|^p$$

Exemplo de convergência

- ▶ Linear: 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , ... com $c = 10^{-1}$
- ▶ Linear: 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} , ... com $c = 10^{-2}$

Na prática o que isso significa?

$$|\alpha - x_{n+1}| \le c|\alpha - x_n|^p$$

Exemplo de convergência

- ▶ Linear: 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , ... com $c = 10^{-1}$
- ▶ Linear: 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} , ... com $c = 10^{-2}$
- ▶ Super-linear: 10^{-2} , 10^{-3} , 10^{-5} , 10^{-8} , . . .

Na prática o que isso significa?

$$|\alpha - x_{n+1}| \le c|\alpha - x_n|^p$$

Exemplo de convergência

- ▶ Linear: 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , ... com $c = 10^{-1}$
- ▶ Linear: 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} , ... com $c = 10^{-2}$
- ► Super-linear: 10^{-2} , 10^{-3} , 10^{-5} , 10^{-8} , ...
- ightharpoonup Quadrática: $10^{-2}, 10^{-4}, 10^{-8}, 10^{-16}, \dots$

Ordem de convergência do método da bissecção

Sendo assim para o método da bissecção fica claro que a partir de

$$|\alpha - x_k| \le \frac{b_0 - a_0}{2^{k+1}}$$

concluimos que a ordem de convergência para o método da bissecção é linear pois p=1 e que a constante é $c=\frac{1}{2}.$

lsto é

$$\frac{|\alpha - x_{k+1}|}{|\alpha - x_k|} \le \frac{1}{2}$$

que nos diz que em média o erro cai pela metade a cada iteração do método.

Implementações

Python

Exemplo

Utilize a implementação para resolver o problema exemplo com a seguinte equação:

$$C = \frac{M}{r} [1 - (1+r)^{-n}]$$

com C = 10000, M = 1250, n = 10.

Sendo assim:

- lacksquare Determine o intervalo [a,b] que contenha a raiz da equação
- ▶ Usando esse intervalo, encontre a raiz de forma aproximada usando o método da bisecção com uma precisão 0.000001.

Conteúdo

- Aula passada
 - ► Introdução e definições
 - ► Isolamento das raízes
 - Método da bisseção
- ► Aula de hoje
 - Método da falsa posição
 - Método do ponto fixo

Método da falsa posição

No método da bissecção a cada iteração calculamos o ponto médio do intervalo como aproximação para a raiz e então decidimos qual o próximo intervalo a continuar a busca pela raiz.

No método da falsa posição a aproximação para a raiz é dada pelo ponto x_k escolhido como sendo o zero da reta que passa pelos pontos $(a_k, f(a_k))$ e $(b_k, f(b_k))$.

De forma análoga ao método da bissecção a cada iteração o método encontra um intervalo que contem a raiz e continua o processo de busca nesse intervalo.

Método da falsa posição

Método da falsa posição

A equação da reta que passa pelos pontos $(a_k,f(a_k))$ e $(b_k,f(b_k))$ é dada por

$$g(x) = mx + n$$
 $\Rightarrow f(a) = ma + n$
$$\Rightarrow f(b) = mb + n$$

A equação da reta que passa pelos pontos $(a_k,f(a_k))$ e $(b_k,f(b_k))$ é dada por

$$\boxed{g(x) = mx + n} \quad \Rightarrow f(a) = ma + n$$
$$\Rightarrow f(b) = mb + n$$

$$f(b) - f(a) = mb - ma$$
 \Rightarrow $m = \frac{f(b) - f(a)}{b - a}$

A equação da reta que passa pelos pontos $(a_k,f(a_k))$ e $(b_k,f(b_k))$ é dada por

$$\boxed{g(x) = mx + n} \quad \Rightarrow f(a) = ma + n$$
$$\Rightarrow f(b) = mb + n$$

$$f(b) - f(a) = mb - ma$$
 \Rightarrow $m = \frac{f(b) - f(a)}{b - a}$

$$f(b) = \frac{f(b) - f(a)}{b - a}b + n \quad \Rightarrow \quad n = f(b) - \left[\frac{f(b) - f(a)}{b - a}\right]b$$

A equação da reta que passa pelos pontos $(a_k,f(a_k))$ e $(b_k,f(b_k))$ é dada por

$$g(x) = mx + n \Rightarrow f(a) = ma + n$$
$$\Rightarrow f(b) = mb + n$$

$$f(b) - f(a) = mb - ma$$
 \Rightarrow $m = \frac{f(b) - f(a)}{b - a}$

$$f(b) = \frac{f(b) - f(a)}{b - a}b + n \quad \Rightarrow \quad n = f(b) - \left\lceil \frac{f(b) - f(a)}{b - a} \right\rceil b$$

Assim

$$g(x) = \frac{f(b) - f(a)}{b - a}x + f(b) - \frac{f(b) - f(a)}{b - a}b$$
$$g(x) = f(b) + \frac{f(b) - f(a)}{b - a}(x - b)$$

$$g(x) = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) - \frac{f(b) - f(a)}{b - a}b = 0$$

$$g(x) = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) - \frac{f(b) - f(a)}{b - a}b = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) = \frac{f(b) - f(a)}{b - a}b$$

$$g(x) = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) - \frac{f(b) - f(a)}{b - a}b = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) = \frac{f(b) - f(a)}{b - a}b$$

$$\frac{f(b) - f(a)}{b - a}x = \frac{f(b) - f(a)}{b - a}b - f(b)$$

$$g(x) = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) - \frac{f(b) - f(a)}{b - a}b = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) = \frac{f(b) - f(a)}{b - a}b$$

$$\frac{f(b) - f(a)}{b - a}x = \frac{f(b) - f(a)}{b - a}b - f(b)$$

$$x = b - f(b)\frac{b - a}{f(b) - f(a)}$$

$$g(x) = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) - \frac{f(b) - f(a)}{b - a}b = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) = \frac{f(b) - f(a)}{b - a}b$$

$$\frac{f(b) - f(a)}{b - a}x = \frac{f(b) - f(a)}{b - a}b - f(b)$$

$$x = b - f(b)\frac{b - a}{f(b) - f(a)}$$

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Queremos encontrar x tal que g(x)=0, logo

$$g(x) = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) - \frac{f(b) - f(a)}{b - a}b = 0$$

$$\frac{f(b) - f(a)}{b - a}x + f(b) = \frac{f(b) - f(a)}{b - a}b$$

$$\frac{f(b) - f(a)}{b - a}x = \frac{f(b) - f(a)}{b - a}b - f(b)$$

$$x = b - f(b)\frac{b - a}{f(b) - f(a)}$$

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Portanto no passo k calculamos a próxima aproximação x_k usando

$$x_k = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Sendo assim, dado um intervalo [a,b], o método da falsa posição pode ser descrito pelo seguinte processo:

1. calcule o ponto de interseção x_k da reta que passa por $(a_k,f(a_k))$ e $(b_k,f(b_k))$ com o eixo x usando

$$x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)}$$

- 2. selecione um novo intervalo para continuar com a busca
- 3. o novo intervalo será dado por
 - $[a_k, x_k]$, se $f(a_k)f(x_k) < 0$
 - $ightharpoonup [x_k, b_k]$, caso contrário
- 4. o processo continua até satisfazer o critério de parada

Algoritmo

fim-para

```
entrada: função f contínua em [a,b], intervalo [a,b] tal que
           f(a)f(b) < 0, precisao \epsilon e número máximo de iterações
           maxit
xold = b:
para k de 1 até maxit faça
   X = \frac{af(b) - bf(a)}{f(b) - f(a)};
   se abs(x-xold) < \epsilon então
       retorne x;
    fim-se
   xold = x:
   se f(a)f(x) < 0 então
   b = x
   senão
    fim-se
```

Exemplo

Encontrar o zero de $f(x)=(x/2)^2-\sin{(x)}$ usando o seguinte intervalo [a,b]=[1.5,2].

Use $|f(x_k)| < \epsilon$ como critério de parada para $\epsilon = 0.0001$.

Exemplo

Encontrar o zero de $f(x)=(x/2)^2-\sin{(x)}$ usando o seguinte intervalo [a,b]=[1.5,2].

Use $|f(x_k)| < \epsilon$ como critério de parada para $\epsilon = 0.0001$.

Solução

k	a	b	x	f(a)	f(b)	f(x)
0	1.5	2.0	1.913731	-4.349950e-01	9.070e-02	-2.618006e-02
1	1.913731	2.0	1.933054	-2.618006e-02	9.070e-02	-9.243996e-04
2	1.933054	2.0	1.933730	-9.243996e-04	9.070e-02	-3.193009e-05
3	1.933730	2.0	1.933753	-3.193009e-05	9.070e-02	-1.102069e-06
4	1.933753	2.0	1.933754	-1.102069e-06	9.070e-02	-3.903695e-08

O método termina com x=1.933754 como aproximação para o zero desta função. \square

Convergência

Não iremos apresentar a análise de convergência do método da falsa posição.

Entretanto, cabe dizer que se as condições do método forem satisfeitas, isto é, se

- $lackbox{}{} f(x)$ for contínua no intervalo [a,b] e
- f(a)f(b) < 0

então o método apresenta convergência de primeira ordem.

Mais detalhes em no livro "Algoritmos Numéricos" do Frederico F. Campos.

Para encontrar a raiz da equação

$$f(x) = 0 (1)$$

onde f é uma função contínua no intervalo [a,b] que procuramos a raiz, iremos expressar a equação (1) da seguinte forma:

$$x = \phi(x) \tag{2}$$

de forma que a solução de (2) também seja solução de (1). Para qualquer função $\phi(x)$, qualquer solução de (2) é chamada de **ponto fixo** de $\phi(x)$.

Sendo assim temos a seguinte equivalência: problema de determinar o zero de $f(x) \to \text{problema}$ de determinar o ponto fixo de $\phi(x)$.

Exemplo

Seja $f(x) = x^2 - x - 2 = 0$. Podemos escrever

Exemplo

Seja
$$f(x) = x^2 - x - 2 = 0$$
. Podemos escrever a) $x = x^2 - 2$

Exemplo

Seja
$$f(x) = x^2 - x - 2 = 0$$
. Podemos escrever

- a) $x = x^2 2$
- b) $x = \sqrt{2 + x}$

Exemplo

Seja $f(x) = x^2 - x - 2 = 0$. Podemos escrever

- a) $x = x^2 2$
- b) $x = \sqrt{2 + x}$
- c) $x = 1 + \frac{2}{x}$

Exemplo

Seja $f(x) = x^2 - x - 2 = 0$. Podemos escrever

- a) $x = x^2 2$
- b) $x = \sqrt{2 + x}$
- c) $x = 1 + \frac{2}{x}$
- d) $x = \frac{x^2+2}{2x-1}$

Exemplo

Seja $f(x) = x^2 - x - 2 = 0$. Podemos escrever

- a) $x = x^2 2$
- b) $x = \sqrt{2 + x}$
- c) $x = 1 + \frac{2}{x}$
- d) $x = \frac{x^2+2}{2x-1}$

Existem diversas formas de expressar f(x)=0 como um **problema** de ponto fixo da forma $x=\phi(x)$, entretanto veremos que nem todas são satisfatórias para nossos objetivos.

Problemas:

- ▶ Zero de função: qual o valor de x tal que f(x) = 0?
- ▶ Ponto fixo: qual o valor de x tal que $x = \phi(x)$?

Problemas:

- ▶ Zero de função: qual o valor de x tal que f(x) = 0?
- ▶ Ponto fixo: qual o valor de x tal que $x = \phi(x)$?

Iremos considerar que:

Iremos considerar que:

▶ estas curvas se interceptam (existe pelo menos 1 solução)

Iremos considerar que:

- estas curvas se interceptam (existe pelo menos 1 solução)
- ullet $\phi(x)$ e $\phi'(x)$ são contínuas no intervalo [a,b]

Iremos considerar que:

- estas curvas se interceptam (existe pelo menos 1 solução)
- ullet $\phi(x)$ e $\phi'(x)$ são contínuas no intervalo [a,b]

Seja x_0 uma aproximação inicial para α . O método do ponto fixo obtem aproximações sucessivas x_k para α , usando o seguinte processo iterativo

$$x_{k+1} = \phi(x_k), \quad k = 0, 1, \dots$$

Iremos considerar que:

- estas curvas se interceptam (existe pelo menos 1 solução)
- ullet $\phi(x)$ e $\phi'(x)$ são contínuas no intervalo [a,b]

Seja x_0 uma aproximação inicial para α . O método do ponto fixo obtem aproximações sucessivas x_k para α , usando o seguinte processo iterativo

$$x_{k+1} = \phi(x_k), \quad k = 0, 1, \dots$$

Ou seja, dado uma aproximação x_k , calculamos o valor de $\phi(x_k)$ como aproximação para a raiz. Em seguida usamos esse valor como próximo argumento para a função de iteração $\phi(x)$.

Repetimos o processo até que o critério de parada seja satisfeito.

Exemplo

Resolver $x^2-x-2=0$ com a função de iteração $x=\sqrt{2+x}$ usando $x_0=2.5$. Econtrar a raiz $\alpha=2$.

Exemplo

Resolver $x^2-x-2=0$ com a função de iteração $x=\sqrt{2+x}$ usando $x_0=2.5$. Econtrar a raiz $\alpha=2$.

Solução

Pelo método do ponto fixo: $x_{k+1} = \phi(x_k)$, para $k=0,1,\ldots$ e, portanto

$$x_1 = \phi(x_0) = \sqrt{2 + 2.5} = \sqrt{4.5} = 2.12132$$

 $x_2 = \phi(x_1) = \sqrt{2 + 2.12132} = \sqrt{4.12132} = 2.030103$
 $x_3 = \phi(x_2) = \sqrt{2 + 2.030103} = \sqrt{4.030103} = 2.007511, \dots$

Exemplo

Resolver $x^2-x-2=0$ com a função de iteração $x=\sqrt{2+x}$ usando $x_0=2.5$. Econtrar a raiz $\alpha=2$.

Solução

Pelo método do ponto fixo: $x_{k+1} = \phi(x_k)$, para $k=0,1,\ldots$ e, portanto

$$x_1 = \phi(x_0) = \sqrt{2 + 2.5} = \sqrt{4.5} = 2.12132$$

 $x_2 = \phi(x_1) = \sqrt{2 + 2.12132} = \sqrt{4.12132} = 2.030103$
 $x_3 = \phi(x_2) = \sqrt{2 + 2.030103} = \sqrt{4.030103} = 2.007511, \dots$

Exemplo

Resolver $x^2-x-2=0$ com a função de iteração $x=\sqrt{2+x}$ usando $x_0=2.5$. Econtrar a raiz $\alpha=2$.

Solução

Pelo método do ponto fixo: $x_{k+1} = \phi(x_k)$, para $k=0,1,\ldots$ e, portanto

$$x_1 = \phi(x_0) = \sqrt{2 + 2.5} = \sqrt{4.5} = 2.12132$$

 $x_2 = \phi(x_1) = \sqrt{2 + 2.12132} = \sqrt{4.12132} = 2.030103$
 $x_3 = \phi(x_2) = \sqrt{2 + 2.030103} = \sqrt{4.030103} = 2.007511, \dots$

Exemplo

Resolver $x^2-x-2=0$ com a função de iteração $x=\sqrt{2+x}$ usando $x_0=2.5$. Econtrar a raiz $\alpha=2$.

Solução

Pelo método do ponto fixo: $x_{k+1} = \phi(x_k)$, para $k=0,1,\ldots$ e, portanto

$$x_1 = \phi(x_0) = \sqrt{2 + 2.5} = \sqrt{4.5} = 2.12132$$

 $x_2 = \phi(x_1) = \sqrt{2 + 2.12132} = \sqrt{4.12132} = 2.030103$
 $x_3 = \phi(x_2) = \sqrt{2 + 2.030103} = \sqrt{4.030103} = 2.007511, \dots$

As aproximações x_k convergem para a $\alpha=2$. Entretanto, para certas escolhas da função de iteração $\phi(x)$ o processo iterativo diverge.

Exemplo

Considere o mesmo problema do exemplo anterior, entretanto agora com o seguinte esquema de ponto fixo: $x=x^2-2$ com $x_0=2.5$ como aproximação inicial.

Exemplo

Considere o mesmo problema do exemplo anterior, entretanto agora com o seguinte esquema de ponto fixo: $x=x^2-2$ com $x_0=2.5$ como aproximação inicial.

Solução

$$x_1 = \phi(x_0) = x_0^2 - 2 = 6.25 - 2 = 4.25$$

Exemplo

Considere o mesmo problema do exemplo anterior, entretanto agora com o seguinte esquema de ponto fixo: $x=x^2-2$ com $x_0=2.5$ como aproximação inicial.

Solução

$$x_1 = \phi(x_0) = x_0^2 - 2 = 6.25 - 2 = 4.25$$

 $x_2 = \phi(x_1) = x_1^2 - 2 = 18.0625 - 2 = 16.0625$

Exemplo

Considere o mesmo problema do exemplo anterior, entretanto agora com o seguinte esquema de ponto fixo: $x=x^2-2$ com $x_0=2.5$ como aproximação inicial.

Solução

$$x_1 = \phi(x_0) = x_0^2 - 2 = 6.25 - 2 = 4.25$$

$$x_2 = \phi(x_1) = x_1^2 - 2 = 18.0625 - 2 = 16.0625$$

$$x_3 = \phi(x_2) = x_2^2 - 2 = 258.00 - 2 = 256.00$$
...

Exemplo

Considere o mesmo problema do exemplo anterior, entretanto agora com o seguinte esquema de ponto fixo: $x=x^2-2$ com $x_0=2.5$ como aproximação inicial.

Solução

$$x_1 = \phi(x_0) = x_0^2 - 2 = 6.25 - 2 = 4.25$$

$$x_2 = \phi(x_1) = x_1^2 - 2 = 18.0625 - 2 = 16.0625$$

$$x_3 = \phi(x_2) = x_2^2 - 2 = 258.00 - 2 = 256.00$$
...

que como vemos diverge rapidamente da raiz procurada.

Vamos analisar graficamente o que acontece com cada uma das opções, isto é, se o método converge ou diverge para cada escolha de $\phi(x)$.

Vamos analisar graficamente o que acontece com cada uma das opções, isto é, se o método converge ou diverge para cada escolha de $\phi(x)$.

No que segue

- ▶ a seta vertical corresponde à avaliação da função em um ponto
- ightharpoonup a seta horizontal apontando para y=x indica que o resultado da avaliação anterior é usado como entrada para a próxima

Para $f(x)=x^2-x-2$ e para as funções de iteração $\phi(x)$ listadas anteriormente, graficamente temos

Figura: O método do ponto fixo **converge** para $x = \sqrt{x+2}$.

Figura: O método do ponto fixo diverge para $x=x^2-2$.

Figura: O método do ponto fixo **converge** para x = 1 + x/2.

Algoritmo

```
entrada: função de iteração \phi(x),
     aproximação inicial x_0,
     precisão \epsilon
     número máximo de iterações maxit
para k de 1 até maxit faça
   x_1 = \phi(x_0);
   se abs(x_1 - x_0) < \epsilon então
       retorne x_1;
   fim-se
   x_0 = x_1;
fim-para
```

Iremos estudar agora as condições suficientes que a função de iteração $\phi(x)$ deve satisfazer para garantir a convergência do método do ponto fixo. Para a demonstração do Teorema do método do ponto fixo, iremos antes apresentar resultados importantes que serão usados na sua prova.

Iremos estudar agora as condições suficientes que a função de iteração $\phi(x)$ deve satisfazer para garantir a convergência do método do ponto fixo. Para a demonstração do Teorema do método do ponto fixo, iremos antes apresentar resultados importantes que serão usados na sua prova.

Teorema (TVM - Teorema do Valor Médio)

Se f é contínua em [a,b] e diferenciável em (a,b), então existe pelo menos um ponto ξ entre a e b, tal que:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} \Rightarrow f(b) - f(a) = f'(\xi)(b - a)$$

Iremos estudar agora as condições suficientes que a função de iteração $\phi(x)$ deve satisfazer para garantir a convergência do método do ponto fixo. Para a demonstração do Teorema do método do ponto fixo, iremos antes apresentar resultados importantes que serão usados na sua prova.

Teorema (TVM - Teorema do Valor Médio)

Se f é contínua em [a,b] e diferenciável em (a,b), então existe pelo menos um ponto ξ entre a e b, tal que:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} \quad \Rightarrow \quad f(b) - f(a) = f'(\xi)(b - a)$$

Teorema

Seja f uma função real **contínua** na vizinhança de x_0 . Se $f(x_0) \neq 0$, então $f(x) \neq 0$ para todo x numa vizinhança pequena de x_0 .

Teorema (Ponto fixo)

Seja $\phi(x)$ uma função contínua com $\phi'(x)$ contínua num intervalo fechado $I=(\alpha-h,\alpha+h)$, cujo centro α é a solução de $x=\phi(x)$.

Seja $x_0 \in I$ e seja M um limitante em I para $\phi'(x)$, isto é,

$$|\phi'(x)| \le M < 1.$$

Então:

- a) a iteração $x_{k+1}=\phi(x_k)$, $k=0,1,\ldots$ pode ser executada indefinidamente, pois $x_k\in I, \forall k;$
- b) $|x_k \alpha| \to 0$.

Prova

Vamos mostrar primeiro que o item a) é válido e depois iremos mostrar que b) também é válido.

a) Para provar que $x_k \in I, \forall k$, iremos usar indução matemática.

Prova

Vamos mostrar primeiro que o item a) é válido e depois iremos mostrar que b) também é válido.

- a) Para provar que $x_k \in I, \forall k$, iremos usar indução matemática.
 - i) Por hipótese $x_0 \in I$.

Prova

Vamos mostrar primeiro que o item a) é válido e depois iremos mostrar que b) também é válido.

- a) Para provar que $x_k \in I, \forall k$, iremos usar indução matemática.
 - i) Por hipótese $x_0 \in I$.
 - ii) Supomos que $x_0, x_1, \ldots, x_k \in I$.

Prova

Vamos mostrar primeiro que o item a) é válido e depois iremos mostrar que b) também é válido.

- a) Para provar que $x_k \in I, \forall k$, iremos usar indução matemática.
 - i) Por hipótese $x_0 \in I$.
 - ii) Supomos que $x_0, x_1, \ldots, x_k \in I$.
 - iii) Vamos mostrar que $x_{k+1} \in I$. Temos

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha)$$

Prova

Vamos mostrar primeiro que o item a) é válido e depois iremos mostrar que b) também é válido.

- a) Para provar que $x_k \in I, \forall k$, iremos usar indução matemática.
 - i) Por hipótese $x_0 \in I$.
 - ii) Supomos que $x_0, x_1, \ldots, x_k \in I$.
 - iii) Vamos mostrar que $x_{k+1} \in I$. Temos

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha)$$

Pelo TVM temos

$$\phi(x_k) - \phi(\alpha) = \phi'(\xi_k)(x_k - \alpha) = x_{k+1} - \alpha$$

onde ξ_k está entre x_k e α .

Prova (cont.)

Tomando o módulo segue que:

$$|x_{k+1} - \alpha| = |\phi'(\xi_k)(x_k - \alpha)|$$
$$= |\phi'(\xi_k)||x_k - \alpha|$$

Prova (cont.)

Tomando o módulo segue que:

$$|x_{k+1} - \alpha| = |\phi'(\xi_k)(x_k - \alpha)|$$
$$= |\phi'(\xi_k)||x_k - \alpha|$$

Pela hipótese de indução: $x_k \in I \Rightarrow \xi_k \in I$. E ainda como $|\phi'(x)| \leq M < 1$ em I temos

$$|x_{k+1} - \alpha| \le M|x_k - \alpha|$$

Prova (cont.)

Tomando o módulo segue que:

$$|x_{k+1} - \alpha| = |\phi'(\xi_k)(x_k - \alpha)|$$
$$= |\phi'(\xi_k)||x_k - \alpha|$$

Pela hipótese de indução: $x_k \in I \Rightarrow \xi_k \in I$. E ainda como $|\phi'(x)| \leq M < 1$ em I temos

$$|x_{k+1} - \alpha| \le M|x_k - \alpha|$$

Como M < 1, temos que $x_{k+1} \in I$.

E assim concluimos que $x_k \in I$ para todo k.

Prova (cont.)

b) Pelo item a), temos que

$$|x_k - \alpha| \le M|x_{k-1} - \alpha| \le M^2|x_{k-2} - \alpha|$$

$$\le \dots \le M^k|x_0 - \alpha|$$

Prova (cont.)

b) Pelo item a), temos que

$$|x_k - \alpha| \le M|x_{k-1} - \alpha| \le M^2|x_{k-2} - \alpha|$$

$$\le \dots \le M^k|x_0 - \alpha|$$

como M < 1, aplicando o limite

$$\lim_{k \to \infty} M^k \to 0 \quad \Rightarrow \quad |x_k - \alpha| \to 0$$

Prova (cont.)

b) Pelo item a), temos que

$$|x_k - \alpha| \le M|x_{k-1} - \alpha| \le M^2|x_{k-2} - \alpha|$$

$$\le \dots \le M^k|x_0 - \alpha|$$

como M < 1, aplicando o limite

$$\lim_{k \to \infty} M^k \to 0 \quad \Rightarrow \quad |x_k - \alpha| \to 0$$

Ou seja, $\{x_k\}$ converge para a raiz α .

64 / 156

Algumas observações sobre o resultado do Teorema:

- ▶ Se $|\phi'(\alpha)| < 1$, então existe um intervalo $I \subseteq [a,b]$ centrado em α que satisfaz as condições do Teorema do ponto fixo. Portanto, a iteração $x_{k+1} = \phi(x_k)$ irá **convergir**.
- ▶ Se $|\phi'(\alpha)| > 1$, então a iteração $x_{k+1} = \phi(x_k)$ irá **divergir**.
- Se $|\phi'(\alpha)| = 1$, nada pode ser dito a respeito da convergência do método.
- Fica a partir da demonstração do item b), que quanto menor for o valor de M, mais rápida será a convergência de $\{x_k\}$ para α .

Exemplo

O método do ponto fixo converge para $f(x)=x^2-x-2$ no intervalo I=[1.5,2.5] usando $\phi(x)=\sqrt{x+2}$?

Exemplo

O método do ponto fixo converge para $f(x)=x^2-x-2$ no intervalo I=[1.5,2.5] usando $\phi(x)=\sqrt{x+2}$?

Solução

Derivando $\phi(x)$ tem-se: $\phi'(x) = \frac{1}{2\sqrt{x+2}}$.

Para mostrar que o MP converge, precisamos encontrar um limitante M para $\phi'(x)$ tal que M<1, isto é

$$\max_{x \in I} |\phi'(x)| = \max_{x \in I} \left| \frac{1}{2\sqrt{x+2}} \right| = 0.267 < 1$$

Portanto, nessas condições, o Teorema do Ponto fixo garante a convergência do método.

Exemplo

O método do ponto fixo converge para $f(x)=x^2-x-2$ no intervalo I=[1.5,2.5] usando $x=x^2-2$?

Exemplo

O método do ponto fixo converge para $f(x)=x^2-x-2$ no intervalo I=[1.5,2.5] usando $x=x^2-2$?

Solução

Derivando $\phi(x)$ tem-se

$$\phi(x) = x^2 - 2 \quad \Rightarrow \quad \phi'(x) = 2x$$

Assim temos que $\phi(x)$ e $\phi'(x)$ são contínuas. Entretanto

$$\max_{x \in I} |\phi'(x)| = \max_{x \in I} |2x| > 1$$

que nos mostra que o método do ponto fixo não converge para essa escolha da função de iteração $\phi(x)$. De fato, o método diverge (como visto anteriormente).

Ordem de convergência do método do ponto fixo

Do Teorema temos que

$$x_{k+1} - \alpha = \phi'(\xi_k)(x_k - \alpha)$$

para algum ξ_k entre x_k e α . Logo

$$\frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} = |\phi'(\xi_k)| \le M$$

E portanto pela def. de ordem de convergência

$$|x_{k+1} - \alpha| \le M|x_k - \alpha|$$

temos que p=1 e dizemos então que a convergência do MPF é linear.

E ainda, o erro em qualquer iteração é proporcional ao erro da iteração anterior e a constante de proporcionalidade é dada por $\phi'(\xi_k)$.

Exemplo - Aula

Considere a equação $f(x)=2x^2-5x+2=0$, cujas raízes são $\alpha_1=0.5$ e $\alpha_2=2$. Considere os processos iterativos:

a)
$$x_{k+1} = \sqrt{\frac{5x_k}{2} - 1}$$

b)
$$x_{k+1} = \frac{2x_k^2 + 2}{5}$$

Qual dos dois processos você utilizaria para obter a raiz α_1 ? Porque?

Exemplo - Aula

Considere a equação $f(x)=2x^2-5x+2=0$, cujas raízes são $\alpha_1=0.5$ e $\alpha_2=2$. Considere os processos iterativos:

a)
$$x_{k+1} = \sqrt{\frac{5x_k}{2} - 1}$$

b)
$$x_{k+1} = \frac{2x_k^2 + 2}{5}$$

Qual dos dois processos você utilizaria para obter a raiz α_1 ? Porque?

Solução do Exemplo

Para a) temos que

$$\phi(x) = \left(\frac{5x}{2} - 1\right)^{1/2} \quad \Rightarrow \quad \phi'(x) = \frac{1}{2} \frac{1}{\sqrt{\frac{5x_k}{2} - 1}} \frac{5}{2}$$
$$|\phi'(\alpha_1)| = \frac{5}{4\sqrt{\frac{5 \cdot 0.5}{2} - 1}} = 2.5 > 1$$

Solução do Exemplo - (cont.)

Para b) temos que

$$\phi(x) = \frac{2x^2 + 2}{5} \quad \Rightarrow \quad \phi'(x) = \frac{4x}{5}$$
$$|\phi'(\alpha_1)| = \frac{4(0.5)}{5} = \frac{2}{5} = 0.4 < 1$$

Temos então que $\phi(x)$ e $\phi'(x)$ são contínuas e se x_0 for suficientemente próximo de α_1 , então o processo b) irá convergir, e portanto este é mais adequado para encontrar a raiz.

Exemplo - Aula

Seja $f(x)=x^3-9x+3$. Considere a seguinte função de iteração $x=\phi(x)=\frac{x^3+3}{9}$. Queremos encontrar a raiz de f(x)=0 no intervalo [0,1]. O método irá convergir?

Exemplo - Aula

Seja $f(x)=x^3-9x+3$. Considere a seguinte função de iteração $x=\phi(x)=\frac{x^3+3}{9}$. Queremos encontrar a raiz de f(x)=0 no intervalo [0,1]. O método irá convergir?

Solução do Exemplo

Temos que $\phi'(x)=\frac{x^2}{3}$, e portanto temos que $\phi(x)$ e $\phi'(x)$ são contínuas.

Exemplo - Aula

Seja $f(x)=x^3-9x+3$. Considere a seguinte função de iteração $x=\phi(x)=\frac{x^3+3}{9}$. Queremos encontrar a raiz de f(x)=0 no intervalo [0,1]. O método irá convergir?

Solução do Exemplo

Temos que $\phi'(x)=\frac{x^2}{3}$, e portanto temos que $\phi(x)$ e $\phi'(x)$ são contínuas. Verificamos agora que

$$|\phi'(x)| = \left|\frac{x^2}{3}\right| < 1, \forall x \in [0, 1]$$

E assim concluimos que o método irá convergir. Podemos verificar tomando $x_0=0.25$ e usando uma precisão $\epsilon=0.001$.

Solução do Exemplo - (cont.)

Na primeira iteração temos

$$x_1 = \frac{0.25^3 + 3}{9} = \frac{0.015625 + 3}{9} = 0.335069$$
$$f(x_1) = x_1^3 - 9x_1 + 3 = 0.037618 - 3.015621 + 3 = 0.021997 > \epsilon$$

Solução do Exemplo - (cont.)

Na primeira iteração temos

$$x_1 = \frac{0.25^3 + 3}{9} = \frac{0.015625 + 3}{9} = 0.335069$$
$$f(x_1) = x_1^3 - 9x_1 + 3 = 0.037618 - 3.015621 + 3 = 0.021997 > \epsilon$$

Mais uma iteração

$$x_2 = \frac{0.335069^3 + 3}{9} = 0.337513$$

$$f(x_2) = x_2^3 - 9x_2 + 3 = 0.038447 - 3.037617 + 3 = 0.00083 < \epsilon$$

Como o critério de parada $|f(x_2)|<\epsilon$ foi satisfeito, terminamos o processo com $x_2=0.337513$ como aproximação para a raiz.

Solução do Exemplo - (cont.)

Se tomarmos outra aproximação inicial $x_0=0.5$ mais distante da raiz temos os seguintes passos:

k	x_k	$f(x_k)$
0	0.5	-1.375
1	0.34722	-0.83137
2	0.33798	-0.0032529
3	0.33762	-0.00012219

73 / 156

Exemplo

Considere as seguintes funções:

- a) $\phi_1(x) = 2x 1$
- b) $\phi_2(x) = x^2 2x + 2$

Qual delas você escolheria para obter a raiz 1, utilizando o processo iterativo $x_{k+1}=\phi(x_k)$? Exiba a sequência gerada com sua escolha tomando $x_0=1.2$.

Exemplo

Considere as seguintes funções:

- a) $\phi_1(x) = 2x 1$
- b) $\phi_2(x) = x^2 2x + 2$

Qual delas você escolheria para obter a raiz 1, utilizando o processo iterativo $x_{k+1}=\phi(x_k)$? Exiba a sequência gerada com sua escolha tomando $x_0=1.2$.

Solução do Exemplo

Temos que $\phi_1(x)$ e $\phi_1'(x)$ são contínuas pois

$$\phi_1(x) = 2x - 1, \quad \phi_1'(x) = 2$$

Exemplo

Considere as seguintes funções:

- a) $\phi_1(x) = 2x 1$
- b) $\phi_2(x) = x^2 2x + 2$

Qual delas você escolheria para obter a raiz 1, utilizando o processo iterativo $x_{k+1}=\phi(x_k)$? Exiba a sequência gerada com sua escolha tomando $x_0=1.2$.

Solução do Exemplo

Temos que $\phi_1(x)$ e $\phi_1'(x)$ são contínuas pois

$$\phi_1(x) = 2x - 1, \quad \phi_1'(x) = 2$$

Mas $|\phi_1'(x)| = 2 > 1$, $\forall x$ próximo de $\alpha = 1$.

Solução do Exemplo - (cont.)

Por outro lado

$$\phi_2(x) = x^2 - 2x + 2, \quad \phi'_2(x) = 2x - 2$$

 $|\phi'_2(x)| = |2x - 2| < 1$

Solução do Exemplo - (cont.)

Por outro lado

$$\phi_2(x) = x^2 - 2x + 2, \quad \phi'_2(x) = 2x - 2$$

 $|\phi'_2(x)| = |2x - 2| < 1$

de onde temos

$$-1 < 2x - 2 < 1$$

$$1 < 2x < 3$$

$$\frac{1}{2} < x < \frac{3}{2}$$

Solução do Exemplo - (cont.)

Por outro lado

$$\phi_2(x) = x^2 - 2x + 2, \quad \phi'_2(x) = 2x - 2$$

 $|\phi'_2(x)| = |2x - 2| < 1$

de onde temos

$$-1 < 2x - 2 < 1$$

$$1 < 2x < 3$$

$$\frac{1}{2} < x < \frac{3}{2}$$

Portanto $|\phi_2'(x)|<1$ se e somente se $x\in I=[0.5,1.5]$. Como $\phi_2(x)$ e $\phi_2'(x)$ são contínuas, tomando uma aproximação inicial $x_0\in I$, temos a convergência do método garantida.

Exemplo

Vamos rever o caso $f(x)=x^2-x-2=0$. Temos os seguinte esquema, que já vimos que converge para $x=\sqrt{2+x}$. Vamos usar $x_0=2.5$, então

Exemplo

Vamos rever o caso $f(x)=x^2-x-2=0$. Temos os seguinte esquema, que já vimos que converge para $x=\sqrt{2+x}$. Vamos usar $x_0=2.5$, então

$$x_1 = \phi(x_0) = 2.121320$$

$$x_2 = \phi(x_1) = 2.030104$$

$$x_3 = \phi(x_2) = 2.007512$$

$$x_4 = \phi(x_3) = 2.001877$$

$$x_5 = \phi(x_4) = 2.000469$$

Exemplo

Vamos rever o caso $f(x)=x^2-x-2=0$. Temos os seguinte esquema, que já vimos que converge para $x=\sqrt{2+x}$. Vamos usar $x_0=2.5$, então

$$x_1 = \phi(x_0) = 2.121320$$

 $x_2 = \phi(x_1) = 2.030104$
 $x_3 = \phi(x_2) = 2.007512$
 $x_4 = \phi(x_3) = 2.001877$
 $x_5 = \phi(x_4) = 2.000469$

Vejamos agora o seguinte esquema

$$x = x - \frac{x^2 - x - 2}{2x - 1}$$

Exemplo

Usando o esquema

$$x = x - \frac{x^2 - x - 2}{2x - 1}$$

com $x_0 = 2.5$ obtemos

$$x_1 = \phi(x_0) = 2.062500$$

 $x_2 = \phi(x_1) = 2.001250$
 $x_3 = \phi(x_2) = 2.000001$

de onde concluimos que o esquema converge, e ainda, de forma muito mais rápida que o esquema anterior. Porque? Que função de iteração é essa?

Conteúdo

- Aula passada
 - ► Método do ponto fixo
- ► Aula de hoje
 - ► Método de Newton
 - ► Método da secante

Na aula anterior estudamos o método do ponto fixo que expressa f(x)=0 na forma

$$x = \phi(x)$$

Na aula anterior estudamos o método do ponto fixo que expressa f(x)=0 na forma

$$x = \phi(x)$$

Uma forma geral de escrever $\phi(x)$ é

$$\phi(x) = x + A(x)f(x) \tag{3}$$

para qualquer A(x) tal que $A(\alpha) \neq 0$. Vamos estudar agora o método de Newton que é uma das técnicas mais populares para se determinar raízes de equações não lineares.

Na aula anterior estudamos o método do ponto fixo que expressa f(x)=0 na forma

$$x = \phi(x)$$

Uma forma geral de escrever $\phi(x)$ é

$$\phi(x) = x + A(x)f(x) \tag{3}$$

para qualquer A(x) tal que $A(\alpha) \neq 0$. Vamos estudar agora o método de Newton que é uma das técnicas mais populares para se determinar raízes de equações não lineares.

Existem diversas formas de se deduzir o método de Newton

- 1. método de ponto fixo
- 2. interpretação geométrica
- 3. série de Taylor

No MPF vimos que

- ▶ se $\phi(x)$ e $\phi'(x)$ forem contínuas e se $|\phi'(x)| < 1, \forall x \in I$, então o método irá convergir
- lacktriangle a convergência será mais rápida quanto menor for $|\phi'(lpha)|$.

No MPF vimos que

- se $\phi(x)$ e $\phi'(x)$ forem contínuas e se $|\phi'(x)| < 1, \forall x \in I$, então o método irá convergir
- ightharpoonup a convergência será mais rápida quanto menor for $|\phi'(\alpha)|$.

A idéia do método de Newton, quando visto como um MPF, é tentar garantir e acelerar a convergência do MPF escolhendo a função de iteração $\phi(x)$ de tal forma que $\phi'(\alpha)=0$.

Partindo da forma geral de $\phi(x)$ dada em (3), queremos encontrar a função A(x) tal que $\phi'(\alpha)=0$.

No MPF vimos que

- se $\phi(x)$ e $\phi'(x)$ forem contínuas e se $|\phi'(x)| < 1, \forall x \in I$, então o método irá convergir
- ightharpoonup a convergência será mais rápida quanto menor for $|\phi'(\alpha)|$.

A idéia do método de Newton, quando visto como um MPF, é tentar garantir e acelerar a convergência do MPF escolhendo a função de iteração $\phi(x)$ de tal forma que $\phi'(\alpha)=0$.

Partindo da forma geral de $\phi(x)$ dada em (3), queremos encontrar a função A(x) tal que $\phi'(\alpha)=0$. Derivando

$$\phi(x) = x + A(x)f(x)$$

obtemos

$$\phi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$

No MPF vimos que

- ▶ se $\phi(x)$ e $\phi'(x)$ forem contínuas e se $|\phi'(x)| < 1, \forall x \in I$, então o método irá convergir
- ightharpoonup a convergência será mais rápida quanto menor for $|\phi'(\alpha)|$.

A idéia do método de Newton, quando visto como um MPF, é tentar garantir e acelerar a convergência do MPF escolhendo a função de iteração $\phi(x)$ de tal forma que $\phi'(\alpha)=0$.

Partindo da forma geral de $\phi(x)$ dada em (3), queremos encontrar a função A(x) tal que $\phi'(\alpha)=0$. Derivando

$$\phi(x) = x + A(x)f(x)$$

obtemos

$$\phi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$

avaliando em $x = \alpha$ temos

$$\phi'(\alpha) = 1 + A'(\alpha)\underbrace{f(\alpha)}_{=0} + A(\alpha)f'(\alpha)$$

Assim

$$\phi'(\alpha) = 1 + A(\alpha)f'(\alpha)$$

Assim

$$\phi'(\alpha) = 1 + A(\alpha)f'(\alpha)$$

Como queremos que $\phi'(\alpha) = 0$, fazemos

$$1 + A(\alpha)f'(\alpha) = 0 \quad \Rightarrow \quad A(\alpha) = -\frac{1}{f'(\alpha)}, \quad \text{com } f'(\alpha) \neq 0$$

Assim

$$\phi'(\alpha) = 1 + A(\alpha)f'(\alpha)$$

Como queremos que $\phi'(\alpha) = 0$, fazemos

$$1 + A(\alpha)f'(\alpha) = 0 \quad \Rightarrow \quad A(\alpha) = -\frac{1}{f'(\alpha)}, \quad \text{com } f'(\alpha) \neq 0$$

Tomando

$$A(x) = -\frac{1}{f'(x)}$$

Assim

$$\phi'(\alpha) = 1 + A(\alpha)f'(\alpha)$$

Como queremos que $\phi'(\alpha) = 0$, fazemos

$$1 + A(\alpha)f'(\alpha) = 0 \quad \Rightarrow \quad A(\alpha) = -\frac{1}{f'(\alpha)}, \quad \text{com } f'(\alpha) \neq 0$$

Tomando

$$A(x) = -\frac{1}{f'(x)}$$

temos

$$\phi(x) = x + A(x)f(x)$$
 \Rightarrow $\phi(x) = x - \frac{f(x)}{f'(x)}$

Assim

$$\phi'(\alpha) = 1 + A(\alpha)f'(\alpha)$$

Como queremos que $\phi'(\alpha) = 0$, fazemos

$$1 + A(\alpha)f'(\alpha) = 0 \quad \Rightarrow \quad A(\alpha) = -\frac{1}{f'(\alpha)}, \quad \text{com } f'(\alpha) \neq 0$$

Tomando

$$A(x) = -\frac{1}{f'(x)}$$

temos

$$\phi(x) = x + A(x)f(x)$$
 \Rightarrow $\phi(x) = x - \frac{f(x)}{f'(x)}$

e assim o processo iterativo do método de Newton fica definido como

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$$

Assim dada f(x)=0, obtemos a função de iteração

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

que é tal que $\phi'(\alpha) = 0$, pois

$$\phi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{f'(x)^2}$$

Assim dada f(x) = 0, obtemos a função de iteração

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

que é tal que $\phi'(\alpha) = 0$, pois

$$\phi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{f'(x)^2}$$
$$= \frac{f'(x)^2 - f'(x)f'(x) + f(x)f''(x)}{f'(x)^2}$$

Assim dada f(x) = 0, obtemos a função de iteração

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

que é tal que $\phi'(\alpha) = 0$, pois

$$\phi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{f'(x)^2}$$

$$= \frac{f'(x)^2 - f'(x)f'(x) + f(x)f''(x)}{f'(x)^2}$$

$$= \frac{f(x)f''(x)}{f'(x)^2}$$

Assim dada f(x)=0, obtemos a função de iteração

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

que é tal que $\phi'(\alpha) = 0$, pois

$$\phi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{f'(x)^2}$$

$$= \frac{f'(x)^2 - f'(x)f'(x) + f(x)f''(x)}{f'(x)^2}$$

$$= \frac{f(x)f''(x)}{f'(x)^2}$$

como $f(\alpha)=0$, isto implica que $\phi'(\alpha)=0$, desde que $f'(\alpha)\neq 0$, como queríamos.

Interpretação geométrica

Antes de estudarmos exemplos, algoritmo e convergência, vejamos as outras deduções do método.

Iremos apresentar o método de Newton agora sob o ponto de vista geométrico. Seja x_k uma aproximação para a raiz α de f(x)=0.

O valor de x_{k+1} é obtido graficamente traçando-se pelo ponto $(x_k,f(x_k))$ a reta tangente à curva y=f(x).

O ponto de interseção da reta tangente com o eixo dos x, determina o valor de x_{k+1} .

Interpretação geométrica

Interpretação geométrica

$$\tan(\theta) = f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}}$$

Interpretação geométrica

$$\tan(\theta) = f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}}$$
$$\Rightarrow f'(x_k)(x_k - x_{k+1}) = f(x_k)$$

Interpretação geométrica

$$\tan(\theta) = f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}}$$

$$\Rightarrow f'(x_k)(x_k - x_{k+1}) = f(x_k)$$

$$\Rightarrow x_k - x_{k+1} = \frac{f(x_k)}{f'(x_k)}$$

Interpretação geométrica

$$\tan(\theta) = f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}}$$

$$\Rightarrow f'(x_k)(x_k - x_{k+1}) = f(x_k)$$

$$\Rightarrow x_k - x_{k+1} = \frac{f(x_k)}{f'(x_k)}$$

$$\Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Interpretação geométrica

Assim temos

$$\tan(\theta) = f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}}$$

$$\Rightarrow f'(x_k)(x_k - x_{k+1}) = f(x_k)$$

$$\Rightarrow x_k - x_{k+1} = \frac{f(x_k)}{f'(x_k)}$$

$$\Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Vejamos agora a dedução através de série de Taylor.

Série de Taylor

Vamos deduzir o método de Newton usando série de Taylor em torno do ponto $a=x_k.$

Série de Taylor

Vamos deduzir o método de Newton usando série de Taylor em torno do ponto $a=x_k$. Assim temos

$$f(x) = f(x_k) + (x - x_k)f'(x_k) + R_1(x)$$

onde, como visto anteriormente, $R_1(x)=\frac{x-x_k}{2}f''(c_{x_k})$, com c_{x_k} entre x_k e x.

Série de Taylor

Vamos deduzir o método de Newton usando série de Taylor em torno do ponto $a=x_k$. Assim temos

$$f(x) = f(x_k) + (x - x_k)f'(x_k) + R_1(x)$$

onde, como visto anteriormente, $R_1(x)=\frac{x-x_k}{2}f''(c_{x_k})$, com c_{x_k} entre x_k e x. Avaliando a expressão anterior em $x=\alpha$ e desprezando o termo do erro, temos

$$f(\alpha) = 0 \quad \Rightarrow \quad f(x_k) + (\alpha - x_k)f'(x_k) \approx 0$$
$$(\alpha - x_k) \approx -\frac{f(x_k)}{f'(x_k)}$$
$$\alpha \approx x_k - \frac{f(x_k)}{f'(x_k)}$$

De onde definimos o método como

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Exemplo

Usando o método de Newton, determine a menor raiz positiva da equação $f(x)=4\cos{(x)}-e^x=0$ com erro inferior a $\epsilon=10^{-2}$. Use o seguinte critério de parada $|x_{k+1}-x_k|/|x_{k+1}|$.

Exemplo

Usando o método de Newton, determine a menor raiz positiva da equação $f(x)=4\cos{(x)}-e^x=0$ com erro inferior a $\epsilon=10^{-2}$. Use o seguinte critério de parada $|x_{k+1}-x_k|/|x_{k+1}|$.

Solução do Exemplo

Vamos fazer um gráfico para analisar e escolher um valor inicial para aproximar a raiz. Seja $y_1=4\cos{(x)}$ e $y_2=e^x$.

Solução do Exemplo - (cont.)

Do gráfico, escolhemos $x_0 = 1$ como chute inicial. Assim

$$f(x) = 4\cos(x) - e^x \quad \Rightarrow \quad f'(x) = -4\sin(x) - e^x$$

Solução do Exemplo - (cont.)

Do gráfico, escolhemos $x_0=1$ como chute inicial. Assim

$$f(x) = 4\cos(x) - e^x \quad \Rightarrow \quad f'(x) = -4\sin(x) - e^x$$

Portanto temos

$$x_{k+1} = x_k - \frac{4\cos(x_k) - e^{x_k}}{(-4\sin(x_k) - e^{x_k})}$$

$$x_1 = x_0 - \frac{4\cos(x_0) - e^{x_0}}{(-4\sin(x_0) - e^{x_0})} = 1 - \frac{4\cos(1) - e^1}{(-4\sin(1) - e^1)}$$

Solução do Exemplo - (cont.)

Do gráfico, escolhemos $x_0=1$ como chute inicial. Assim

$$f(x) = 4\cos(x) - e^x \quad \Rightarrow \quad f'(x) = -4\sin(x) - e^x$$

Portanto temos

$$x_{k+1} = x_k - \frac{4\cos(x_k) - e^{x_k}}{(-4\sin(x_k) - e^{x_k})}$$

$$x_1 = x_0 - \frac{4\cos(x_0) - e^{x_0}}{(-4\sin(x_0) - e^{x_0})} = 1 - \frac{4\cos(1) - e^1}{(-4\sin(1) - e^1)}$$
$$= 1 - \frac{(-0.557)}{(-6.048)} = 0.908$$

Solução do Exemplo - (cont.)

Do gráfico, escolhemos $x_0 = 1$ como chute inicial. Assim

$$f(x) = 4\cos(x) - e^x \quad \Rightarrow \quad f'(x) = -4\sin(x) - e^x$$

Portanto temos

$$x_{k+1} = x_k - \frac{4\cos(x_k) - e^{x_k}}{(-4\sin(x_k) - e^{x_k})}$$

$$x_1 = x_0 - \frac{4\cos(x_0) - e^{x_0}}{(-4\sin(x_0) - e^{x_0})} = 1 - \frac{4\cos(1) - e^1}{(-4\sin(1) - e^1)}$$
$$= 1 - \frac{(-0.557)}{(-6.048)} = 0.908$$
$$e_1 = \frac{|x_1 - x_0|}{|x_1|} = 0.101 > \epsilon$$

Solução do Exemplo - (cont.)

$$x_2 = x_1 - \frac{4\cos(x_1) - e^{x_1}}{(-4\sin(x_1) - e^{x_1})} = 0.908 - \frac{4\cos(0.908) - e^{0.908}}{(-4\sin(0.908) - e^{0.908})}$$
$$= 0.908 - \frac{(-0.019)}{(-5.631)} = 0.905$$

Solução do Exemplo - (cont.)

$$x_2 = x_1 - \frac{4\cos(x_1) - e^{x_1}}{(-4\sin(x_1) - e^{x_1})} = 0.908 - \frac{4\cos(0.908) - e^{0.908}}{(-4\sin(0.908) - e^{0.908})}$$
$$= 0.908 - \frac{(-0.019)}{(-5.631)} = 0.905$$
$$e_2 = \frac{|x_2 - x_1|}{|x_2|} = \frac{|0.905 - 0.908|}{|0.905|} = 0.0033 < \epsilon$$

Solução do Exemplo - (cont.)

Passo 2

$$x_2 = x_1 - \frac{4\cos(x_1) - e^{x_1}}{(-4\sin(x_1) - e^{x_1})} = 0.908 - \frac{4\cos(0.908) - e^{0.908}}{(-4\sin(0.908) - e^{0.908})}$$

$$= 0.908 - \frac{(-0.019)}{(-5.631)} = 0.905$$

$$e_2 = \frac{|x_2 - x_1|}{|x_2|} = \frac{|0.905 - 0.908|}{|0.905|} = 0.0033 < \epsilon$$

Portanto obtemos $x_2=0.905$ como aproximação para α com uma precisão de 10^{-2} .


```
entrada: f(x) e sua derivada f'(x) , aproximação inicial x_0, precisão \epsilon e número máximo de iterações maxit
```

```
\begin{array}{c|c} \mathbf{para}\ k\ de\ 1\ at\'e\ maxit\ \mathbf{faça}\\ x_1 = x_0 - \frac{f(x_0)}{f'(x_0)};\\ \mathbf{se}\ abs(x_1 - x_0) < \epsilon\ \mathbf{ent\~ao}\\ & |\ \mathbf{retorne}\ x_1;\\ \mathbf{fim-se}\\ & x_0 = x_1;\\ \mathbf{fim-para} \end{array}
```

Exemplo

Resolva $f(x)=x-x^{1/3}-2=0$ usando $x_0=3$ como aproximação inicial.

Exemplo

Resolva $f(x) = x - x^{1/3} - 2 = 0$ usando $x_0 = 3$ como aproximação inicial.

Solução do Exemplo

Temos que a derivada é

$$f'(x) = 1 - \frac{1}{3}x^{-2/3}$$

nesse caso a fórmula de iteração é

$$x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}}$$

Solução do Exemplo

Aplicando o método temos

k	x_k	$f'(x_k)$	$f(x_k)$
0	3.0	0.839750	-0.442250e+00
1	3.526644	0.856130	4.506792e-03
2	3.521380	0.855986	3.771414e-07
3	3.52137971	0.855986	0.00000e + 00

E assim ao final das iterações obtemos $\alpha \approx x_3 = 3.52137971$ como valor aproximado para a raiz.

Teorema (Ref: Ruggiero, página 69)

Sejam f(x), f'(x) e f''(x) contínuas em um intervalo I que contém a raiz α de f(x) = 0. Vamos supor que $f'(\alpha) \neq 0$.

Então existe um intervalo $\bar{I}\subset I$, contendo a raiz α , tal que se $x_0\in \bar{I}$, a sequência $\{x_k\}$ gerada pelo método de Newton $x_{k+1}=x_k-f(x_k)/f'(x_k)$ irá convergir para a raiz.

Teorema (Ref: Ruggiero, página 69)

Sejam f(x), f'(x) e f''(x) contínuas em um intervalo I que contém a raiz α de f(x)=0. Vamos supor que $f'(\alpha)\neq 0$.

Então existe um intervalo $\bar{I}\subset I$, contendo a raiz α , tal que se $x_0\in \bar{I}$, a sequência $\{x_k\}$ gerada pelo método de Newton $x_{k+1}=x_k-f(x_k)/f'(x_k)$ irá convergir para a raiz.

Prova

O método de Newton é um MPF com $\phi(x) = x - \frac{f(x)}{f'(x)}$.

Para provar a convergência do método, basta verificar, que sob as hipóteses desse Teorema, as hipóteses do Teorema do Ponto Fixo são satisfeitas para $\phi(x)$.

Precisamos provar que existe $\bar{I}\subset I$ centrado em α tal que

- (i) $\phi(x)$ e $\phi'(x)$ são contínuas em \bar{I}
- (ii) $|\phi'(x)| < 1, \forall x \in \bar{I}$

Prova (cont.)

Sabemos que

$$\phi(x) = x - \frac{f(x)}{f'(x)}, \quad \phi'(x) = \frac{f(x)f''(x)}{f'(x)^2}$$

Pelas hipóteses temos que

- $f'(\alpha) \neq 0$
- ► f'(x) é contínua

Então, $f'(x) \neq 0, \forall x$ na vizinhança de α .

Prova (cont.)

Sabemos que

$$\phi(x) = x - \frac{f(x)}{f'(x)}, \quad \phi'(x) = \frac{f(x)f''(x)}{f'(x)^2}$$

Pelas hipóteses temos que

- $f'(\alpha) \neq 0$
- ► f'(x) é contínua

Então, $f'(x) \neq 0, \forall x$ na vizinhança de α . Sendo assim é possível obter um intervalo $I_1 \subset I$ tal que $f'(x) \neq 0, \forall x \in I_1$.

Logo, em $I_1 \subset I$, temos que f(x), f'(x) e f''(x) são contínuas e $f'(x) \neq 0$. Portanto, concluímos que $\phi(x)$ e $\phi'(x)$ são contínuas em I_1 (pela continuidade da soma, produto e divisão). Item (i) OK!

Prova (cont.)

Como $\phi'(x)$ é contínua em I_1 e $|\phi'(\alpha)|=0<1$ (por construção do método de Newton), é possível escolher $I_2\subset I_1$ tal que $|\phi'(x)|<1, \forall x\in I_2$. E ainda, I_2 pode ser escolhido de forma que α esteja centrado neste intervalo.

Item (ii) OK!

Sendo assim, encontramos $I_2\subset I$, centrado em α onde $\phi(x)$ e $\phi'(x)$ são contínuas e $|\phi'(x)|<1, \forall x\in I_2$. Ou seja, $I_2=\bar{I}$.

Prova (cont.)

Como $\phi'(x)$ é contínua em I_1 e $|\phi'(\alpha)|=0<1$ (por construção do método de Newton), é possível escolher $I_2\subset I_1$ tal que $|\phi'(x)|<1, \forall x\in I_2$. E ainda, I_2 pode ser escolhido de forma que α esteja centrado neste intervalo.

Item (ii) OK!

Sendo assim, encontramos $I_2\subset I$, centrado em α onde $\phi(x)$ e $\phi'(x)$ são contínuas e $|\phi'(x)|<1, \forall x\in I_2$. Ou seja, $I_2=\bar{I}$.

Em resumo: se f, f' e f'' forem contínuas e $f'(\alpha) \neq 0$, o método de Newton converge, desde que a aproximação inicial x_0 seja escolhida "suficientemente próxima" da raiz α .

Prova (cont.)

Como $\phi'(x)$ é contínua em I_1 e $|\phi'(\alpha)|=0<1$ (por construção do método de Newton), é possível escolher $I_2\subset I_1$ tal que $|\phi'(x)|<1, \forall x\in I_2$. E ainda, I_2 pode ser escolhido de forma que α esteja centrado neste intervalo.

Item (ii) OK!

Sendo assim, encontramos $I_2\subset I$, centrado em α onde $\phi(x)$ e $\phi'(x)$ são contínuas e $|\phi'(x)|<1, \forall x\in I_2$. Ou seja, $I_2=\bar{I}$.

Em resumo: se f, f' e f'' forem contínuas e $f'(\alpha) \neq 0$, o método de Newton converge, desde que a aproximação inicial x_0 seja escolhida "suficientemente próxima" da raiz α .

<u>**E** se</u> $f'(\alpha) = 0$? Problemas de convergência. Veremos mais detalhes adiante.

Vamos supor que as hipóteses do Teorema estão todas satisfeitas, i.e.:

- f, f', f'' contínuas em um intervalo I com centro em α
- $f'(\alpha) \neq 0$

então subtraindo
$$\alpha$$
 de $x_{k+1}=\phi(x_k)=x_k-\frac{f(x_k)}{f'(x_k)}$ temos

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha)$$

Vamos supor que as hipóteses do Teorema estão todas satisfeitas, i.e.:

- f, f', f'' contínuas em um intervalo I com centro em α
- $f'(\alpha) \neq 0$

então subtraindo α de $x_{k+1}=\phi(x_k)=x_k-rac{f(x_k)}{f'(x_k)}$ temos

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha)$$

Expandindo $\phi(x_k)$ em série de Taylor em torno do ponto $a=\alpha$, resulta em

$$\phi(x_k) = \phi(\alpha) + (x_k - \alpha)\phi'(\alpha) + \frac{(x_k - \alpha)^2}{2}\phi''(\xi_k)$$

Vamos supor que as hipóteses do Teorema estão todas satisfeitas, i.e.:

- f, f', f'' contínuas em um intervalo I com centro em α
- $f'(\alpha) \neq 0$

então subtraindo lpha de $x_{k+1}=\phi(x_k)=x_k-rac{f(x_k)}{f'(x_k)}$ temos

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha)$$

Expandindo $\phi(x_k)$ em série de Taylor em torno do ponto $a=\alpha$, resulta em

$$\phi(x_k) = \phi(\alpha) + (x_k - \alpha)\phi'(\alpha) + \frac{(x_k - \alpha)^2}{2}\phi''(\xi_k)$$

assim

$$x_{k+1} - \alpha = \phi(\alpha) + (x_k - \alpha) \underbrace{\phi'(\alpha)}_{=0} + \frac{(x_k - \alpha)^2}{2} \phi''(\xi_k) - \phi(\alpha)$$

Portanto

$$x_{k+1} - \alpha = \frac{(x_k - \alpha)^2}{2} \phi''(\xi_k)$$
$$\frac{x_{k+1} - \alpha}{(x_k - \alpha)^2} = \frac{1}{2} \phi''(\xi_k)$$

Portanto

$$x_{k+1} - \alpha = \frac{(x_k - \alpha)^2}{2} \phi''(\xi_k)$$
$$\frac{x_{k+1} - \alpha}{(x_k - \alpha)^2} = \frac{1}{2} \phi''(\xi_k)$$

e assim obtemos

$$\frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^2} = \left| \frac{1}{2} \phi''(\xi_k) \right| \le c$$

Portanto

$$x_{k+1} - \alpha = \frac{(x_k - \alpha)^2}{2} \phi''(\xi_k)$$
$$\frac{x_{k+1} - \alpha}{(x_k - \alpha)^2} = \frac{1}{2} \phi''(\xi_k)$$

e assim obtemos

$$\frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^2} = \left| \frac{1}{2} \phi''(\xi_k) \right| \le c$$

isto é

$$|x_{k+1} - \alpha| \le c|x_k - \alpha|^2$$

Pela definição de ordem de convergência, concluimos que p=2 e portanto temos que o método de Newton tem convergência quadrática.

Observações

- A convergência do método de Newton é rápida
- O método requer o cálculo:
 - da derivada da função
 - da avaliação da função e da sua derivada a cada iteração
- Além disso, a função pode não ser diferenciável em alguns pontos.

Na prática, o que significa essa ordem de convergência quadrática?

Vamos supor que o erro em uma iteração k do algoritmo seja da ordem de 10^{-2} . Pela expressão anterior

$$|x_{k+1} - \alpha| \le c|x_k - \alpha|^2$$

ou seja, o erro na próxima iteração k+1 é aproximadamente 10^{-4} e assim temos

$$10^{-2}, 10^{-4}, 10^{-8}, 10^{-16}, \dots$$

Vejamos um exemplo prático.

Exemplo

Como exemplo considere $f(x)=4\sin{(x)}-e^x$ com $x_0=0.5$ e use $\epsilon=10^{-10}$.

Exemplo

Como exemplo considere $f(x)=4\sin{(x)}-e^x$ com $x_0=0.5$ e use $\epsilon=10^{-10}$.

Solução

O método de Newton com a precisão especificada produz os seguintes resultados:

k	x_k	e_k
0	3.555116e-01	1.444884e-01
1	3.704195e-01	1.490784e-02
2	3.705581e-01	1.386326e-04
3	3.705581e-01	1.220854e-08
4	3.705581e-01	1.110223e-16

Raiz aproximada = 0.3705581.

Problemas com o método de Newton

Em algumas situações o método de Newton pode falhar por conta de:

i) Aproximação inicial ruim.

Em algumas situações as condições sobre a função para a convergência do método são satisfeitas, porém a escolha da aproximação inicial está fora do intervalo para o qual o método converge.

Por exemplo, se um ponto x_0 é estacionário, i.e., $f'(x_0)=0$. Seja $f(x)=1-2x^2$, então f'(x)=-4x. Escolhendo $x_0=0$ temos que

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{1}{0}$$

Problemas com o método de Newton

i) Aproximação inicial ruim. Outra situação que pode levar à falha do método de Newton é a escolha de um ponto inicial que faz o método entrar em loop. Exemplo com $x_0=0$:

$$f(x) = x^3 - 2x + 2 \implies f'(x) = 3x^2 - 2$$

Problemas com o método de Newton

i) Aproximação inicial ruim. Outra situação que pode levar à falha do método de Newton é a escolha de um ponto inicial que faz o método entrar em loop. Exemplo com $x_0=0$:

$$f(x) = x^3 - 2x + 2 \implies f'(x) = 3x^2 - 2$$

Escolhendo $x_0=0$ o método entra em loop e gera uma sequência $\{1,0,1,0,\ldots\}$.

Obs: nesses casos, um método diferente, como por exemplo o método da Bissecção pode ser usado para obter uma aproximação inicial mais precisa para então ser usada no método de Newton.

Problemas com o método de Newton

- ii) Problemas com a derivada
 - Derivada discontínua.
 - Derivada não existe na raiz.
- iii) Convergência não quadrática.

Em algumas situações o método pode convergir com uma ordem não quadrática. Um exemplo é quando temos raízes com multiplicidade m>1, ou seja, quando a derivada é zero na raiz. Veremos como tratar isso adiante.

Como discutido uma séria desvantagem do método de Newton é a necessidade de se obter f'(x) e calcular o seu valor a cada passo. Existem algumas formas de modificar o método para contornar essa desvantagem.

Uma modificação consiste em substituir $f^{\prime}(x)$ pelo quociente das diferenças

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
 (4)

onde x_k e x_{k-1} são aproximações para α .

Dessa forma temos o seguinte esquema:

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}$$
$$= x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

Tirando o mínimo e simplificando

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

$$= \frac{x_k f(x_k) - x_k f(x_{k-1}) - f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
(5)

obtemos o seguinte processo iterativo

$$x_{k+1} = \frac{f(x_k)x_{k-1} - f(x_{k-1})x_k}{f(x_k) - f(x_{k-1})} \qquad k = 1, 2, \dots$$

o qual é conhecido como método da secante.

Note que para obter x_{k+1} precisamos x_k e x_{k-1} , ou seja, duas aproximações iniciais devem estar disponíveis para a equação anterior ser usada.

Interpretação Geométrica

Interpretação Geométrica

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Interpretação Geométrica

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \quad \Rightarrow \quad \frac{x_{k+1} - x_k}{f(x_k)} = \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Interpretação Geométrica

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \quad \Rightarrow \quad \frac{x_{k+1} - x_k}{f(x_k)} = \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
$$\Rightarrow \quad \frac{f(x_k)}{x_{k+1} - x_k} = \frac{f(x_k) - f(x_{k-1})}{(x_k - x_{k-1})}$$

Interpretação Geométrica

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \quad \Rightarrow \quad \frac{x_{k+1} - x_k}{f(x_k)} = \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
$$\Rightarrow \quad \frac{f(x_k)}{x_{k+1} - x_k} = \frac{f(x_k) - f(x_{k-1})}{(x_k - x_{k-1})}$$

$$\Rightarrow$$
 $\tan(\theta) = \frac{f(x_k)}{x_{k+1} - x_k} = \frac{f(x_k) - f(x_{k-1})}{(x_k - x_{k-1})}$

Interpretação Geométrica

Visto dessa forma o método consiste em tomar como aproximação a interseção da reta que passa pelos pontos $(x_k,f(x_k))$ e $(x_{k-1},f(x_{k-1}))$ com o eixo x. Sendo assim, partindo de (5) temos

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \quad \Rightarrow \quad \frac{x_{k+1} - x_k}{f(x_k)} = \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
$$\Rightarrow \quad \frac{f(x_k)}{x_{k+1} - x_k} = \frac{f(x_k) - f(x_{k-1})}{(x_k - x_{k-1})}$$

$$\Rightarrow$$
 $\tan(\theta) = \frac{f(x_k)}{x_{k+1} - x_k} = \frac{f(x_k) - f(x_{k-1})}{(x_k - x_{k-1})}$

Observação: note que a fórmula desse método é muito parecida com a do método da Falsa Posição, a diferença é que o método da Falsa Posição cerca a raiz α pelo intervalo [a,b] e o método da Secante usa 2 aproximações sucessivas.

Exemplo

Encontre a raiz de $\sqrt{x}-5e^{-x}=0$, usando o método da Secante com $x_0=1.4$ e $x_1=1.5$ com uma precisão $\epsilon=10^{-3}$.

Exemplo

Encontre a raiz de $\sqrt{x}-5e^{-x}=0$, usando o método da Secante com $x_0=1.4$ e $x_1=1.5$ com uma precisão $\epsilon=10^{-3}$.

Solução do Exemplo

Avaliando a função em x_0 e x_1 temos

$$f(x_0) = f(1.4) = \sqrt{1.4} - 5e^{-1.4} = 1.183 - 5(0.247) = -0.052$$

 $f(x_1) = f(1.5) = \sqrt{1.5} - 5e^{-1.5} = 1.225 - 5(0.223) = 0.110$

Exemplo

Encontre a raiz de $\sqrt{x}-5e^{-x}=0$, usando o método da Secante com $x_0=1.4$ e $x_1=1.5$ com uma precisão $\epsilon=10^{-3}$.

Solução do Exemplo

Avaliando a função em x_0 e x_1 temos

$$f(x_0) = f(1.4) = \sqrt{1.4} - 5e^{-1.4} = 1.183 - 5(0.247) = -0.052$$

 $f(x_1) = f(1.5) = \sqrt{1.5} - 5e^{-1.5} = 1.225 - 5(0.223) = 0.110$

pelo método da secante temos

$$x_2 = \frac{1.4f(1.5) - 1.5f(1.4)}{f(1.5) - f(1.4)} = \frac{1.4(0.110) - 1.5(-0.052)}{0.110 + 0.052} = 1.432$$

Exemplo

Encontre a raiz de $\sqrt{x}-5e^{-x}=0$, usando o método da Secante com $x_0=1.4$ e $x_1=1.5$ com uma precisão $\epsilon=10^{-3}$.

Solução do Exemplo

Avaliando a função em x_0 e x_1 temos

$$f(x_0) = f(1.4) = \sqrt{1.4} - 5e^{-1.4} = 1.183 - 5(0.247) = -0.052$$

 $f(x_1) = f(1.5) = \sqrt{1.5} - 5e^{-1.5} = 1.225 - 5(0.223) = 0.110$

pelo método da secante temos

$$\begin{split} x_2 &= \frac{1.4f(1.5) - 1.5f(1.4)}{f(1.5) - f(1.4)} = \frac{1.4(0.110) - 1.5(-0.052)}{0.110 + 0.052} = 1.432 \\ e_2 &= \frac{|x_2 - x_1|}{|x_2|} = 0.047 > \epsilon \quad \Rightarrow \text{ mais iterações!} \end{split}$$

Solução do Exemplo

Avaliando a função em x_2

$$f(x_2) = f(1.432) = \sqrt{1.432} - 5e^{-1.432} = 1.197 - 5(0.239) = 0.002$$

Solução do Exemplo

Avaliando a função em x_2

$$f(x_2) = f(1.432) = \sqrt{1.432} - 5e^{-1.432} = 1.197 - 5(0.239) = 0.002$$

assim

$$x_3 = \frac{1.5f(1.432) - 1.432f(1.5)}{f(1.432) - f(1.5)}$$
$$= \frac{1.5(0.002) - 1.432(0.110)}{0.002 - 0.110} = 1.431$$

Solução do Exemplo

Avaliando a função em x_2

$$f(x_2) = f(1.432) = \sqrt{1.432} - 5e^{-1.432} = 1.197 - 5(0.239) = 0.002$$

assim

$$x_3 = \frac{1.5f(1.432) - 1.432f(1.5)}{f(1.432) - f(1.5)}$$

$$= \frac{1.5(0.002) - 1.432(0.110)}{0.002 - 0.110} = 1.431$$

$$e_3 = \frac{|x_3 - x_2|}{|x_3|} = 0.0007 < \epsilon$$

Solução do Exemplo

Avaliando a função em x_2

$$f(x_2) = f(1.432) = \sqrt{1.432} - 5e^{-1.432} = 1.197 - 5(0.239) = 0.002$$

assim

$$x_3 = \frac{1.5f(1.432) - 1.432f(1.5)}{f(1.432) - f(1.5)}$$

$$= \frac{1.5(0.002) - 1.432(0.110)}{0.002 - 0.110} = 1.431$$

$$e_3 = \frac{|x_3 - x_2|}{|x_3|} = 0.0007 < \epsilon$$

Portanto, a raiz aproximada é $x_3 = 1.431$.

Algoritmo

```
entrada: função f(x), aproximações iniciais x0 e x1, precisão \epsilon e número máximo de iterações maxit
```

```
para k de 1 até maxit faça
   f_0 = f(x_0);

f_1 = f(x_1);

x_2 = x_1 - \frac{f_1(x_1 - x_0)}{f_1 - f_0};
    se abs(x_2 - x_1) < \epsilon então
          retorne x_2;
     fim-se
fim-para
```

$$x_k = x_{k-1} - f(x_{k-1}) \frac{x_{k-1} - x_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

Seja

$$x_k = x_{k-1} - f(x_{k-1}) \frac{x_{k-1} - x_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

então definindo $e_k=x_k-\alpha \Rightarrow x_k=\alpha+e_k$ e assim substituindo temos

$$(\alpha + e_k) = (\alpha + e_{k-1}) - f(x_{k-1}) \frac{e_{k-1} - e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

Seja

$$x_k = x_{k-1} - f(x_{k-1}) \frac{x_{k-1} - x_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

então definindo $e_k=x_k-\alpha \Rightarrow x_k=\alpha+e_k$ e assim substituindo temos

$$(\alpha + e_k) = (\alpha + e_{k-1}) - f(x_{k-1}) \frac{e_{k-1} - e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$
$$e_k = e_{k-1} - f(x_{k-1}) \frac{e_{k-1} - e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

Seja

$$x_k = x_{k-1} - f(x_{k-1}) \frac{x_{k-1} - x_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

então definindo $e_k=x_k-\alpha\Rightarrow x_k=\alpha+e_k$ e assim substituindo temos

$$(\alpha + e_k) = (\alpha + e_{k-1}) - f(x_{k-1}) \frac{e_{k-1} - e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

$$e_k = e_{k-1} - f(x_{k-1}) \frac{e_{k-1} - e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

$$= \frac{f(x_{k-1})e_{k-2} - f(x_{k-2})e_{k-1}}{f(x_{k-1}) - f(x_{k-2})}$$

Seja

$$x_k = x_{k-1} - f(x_{k-1}) \frac{x_{k-1} - x_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

então definindo $e_k=x_k-\alpha \Rightarrow x_k=\alpha+e_k$ e assim substituindo temos

$$(\alpha + e_k) = (\alpha + e_{k-1}) - f(x_{k-1}) \frac{e_{k-1} - e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

$$e_k = e_{k-1} - f(x_{k-1}) \frac{e_{k-1} - e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

$$= \frac{f(x_{k-1})e_{k-2} - f(x_{k-2})e_{k-1}}{f(x_{k-1}) - f(x_{k-2})}$$

Pelo Teorema do Valor Médio temos que existe c_{k-1} entre x_{k-1} e lpha tal que

$$(x_{k-1} - \alpha)f'(c_{k-1}) = f(x_{k-1}) - f(\alpha)$$

Sendo assim

$$f'(c_{k-1}) = \frac{f(x_{k-1})}{(x_{k-1} - \alpha)} = \frac{f(x_{k-1})}{e_{k-1}}$$

Sendo assim

$$f'(c_{k-1}) = \frac{f(x_{k-1})}{(x_{k-1} - \alpha)} = \frac{f(x_{k-1})}{e_{k-1}}$$

de onde obtemos

$$f(x_{k-1}) = f'(c_{k-1})e_{k-1}$$
$$f(x_{k-2}) = f'(c_{k-2})e_{k-2}$$

Sendo assim

$$f'(c_{k-1}) = \frac{f(x_{k-1})}{(x_{k-1} - \alpha)} = \frac{f(x_{k-1})}{e_{k-1}}$$

de onde obtemos

$$f(x_{k-1}) = f'(c_{k-1})e_{k-1}$$
$$f(x_{k-2}) = f'(c_{k-2})e_{k-2}$$

logo

$$e_k = \frac{f'(c_{k-1})e_{k-1}e_{k-2} - f'(c_{k-2})e_{k-1}e_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$
$$= \frac{f'(c_{k-1}) - f'(c_{k-2})}{f(x_{k-1}) - f(x_{k-2})}e_{k-1}e_{k-2}$$

Vamos supor que existe M>0 tal que

$$\max \left| \frac{f'(c_{k-1}) - f'(c_{k-2})}{f(x_{k-1}) - f(x_{k-2})} \right| < M$$

Então

$$|e_k| = M|e_{k-1}||e_{k-2}|$$

Então

$$|e_k| = M|e_{k-1}||e_{k-2}|$$

Suponha que para k muito grande exista algum C_k tal que

$$|e_k| = C_k |e_{k-1}|^p$$

onde p é a ordem de convergência do método.

Então

$$|e_k| = M|e_{k-1}||e_{k-2}|$$

Suponha que para k muito grande exista algum C_k tal que

$$|e_k| = C_k |e_{k-1}|^p$$

onde p é a ordem de convergência do método. De forma análoga temos que

$$|e_{k-1}| = C_{k-1}|e_{k-2}|^p \quad \Rightarrow \quad |e_{k-2}| = \frac{(|e_{k-1}|)^{(1/p)}}{(C_{k-1})^{(1/p)}}$$

Então

$$|e_k| = M|e_{k-1}||e_{k-2}|$$

Suponha que para k muito grande exista algum C_k tal que

$$|e_k| = C_k |e_{k-1}|^p$$

onde p é a ordem de convergência do método. De forma análoga temos que

$$|e_{k-1}| = C_{k-1}|e_{k-2}|^p \quad \Rightarrow \quad |e_{k-2}| = \frac{(|e_{k-1}|)^{(1/p)}}{(C_{k-1})^{(1/p)}}$$

Assim

$$\begin{aligned} |e_k| &= C_k |e_{k-1}|^p \\ |e_k| &= M |e_{k-1}| |e_{k-2}| = M |e_{k-1}| \frac{(|e_{k-1}|)^{(1/p)}}{(C_{k-1})^{(1/p)}} \end{aligned}$$

Então

$$|e_k| = M|e_{k-1}||e_{k-2}|$$

Suponha que para k muito grande exista algum C_k tal que

$$|e_k| = C_k |e_{k-1}|^p$$

onde p é a ordem de convergência do método.

De forma análoga temos que

$$|e_{k-1}| = C_{k-1}|e_{k-2}|^p \quad \Rightarrow \quad |e_{k-2}| = \frac{(|e_{k-1}|)^{(1/p)}}{(C_{k-1})^{(1/p)}}$$

Assim

$$|e_k| = C_k |e_{k-1}|^p$$

 $|e_k| = M|e_{k-1}||e_{k-2}| = M|e_{k-1}| \frac{(|e_{k-1}|)^{(1/p)}}{(C_{k-1})^{(1/p)}}$

Pela igualdade temos

$$\Rightarrow \left[\frac{C_k}{M} (C_{k-1})^{(1/p)} \right] |e_{k-1}|^p = |e_{k-1}|^{1+1/p}$$

Assim temos que p deve satisfazer

$$p = 1 + \frac{1}{p} \quad \Rightarrow \quad p^2 - p - 1 = 0$$

Assim temos que p deve satisfazer

$$p = 1 + \frac{1}{p} \quad \Rightarrow \quad p^2 - p - 1 = 0$$

de onde encontramos que

$$p = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

Assim temos que p deve satisfazer

$$p = 1 + \frac{1}{p} \quad \Rightarrow \quad p^2 - p - 1 = 0$$

de onde encontramos que

$$p = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

Assim concluimos que a ordem de convergência do método da secante é $p \approx 1.618$.

Assim temos que p deve satisfazer

$$p = 1 + \frac{1}{p} \quad \Rightarrow \quad p^2 - p - 1 = 0$$

de onde encontramos que

$$p = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

Assim concluimos que a ordem de convergência do método da secante é $p \approx 1.618$.

Observe que:

- (-) ordem de convergência menor do que a do método de Newton
- (+) este método não requer o conhecimento de f'(x)

Método da Secante

Exemplo

Resolva o exemplo anterior $f(x) = 4\sin(x) - e^x = 0$ usando

- Método de Newton com $x_0 = 0.5$
- Método da secante com $x_0 = 0$ e $x_1 = 1$
- Precisão de $\epsilon=10^{-10}$ para ambos.

Solução

Método da Secante

k	$ x_k $	e_k
0	6.06942655306e-01	3.93057344694e-01
1	-2.66518467137e-01	8.73461122443e-01
2	4.34798223441e-01	7.01316690578e-01
3	3.84606581747e-01	5.01916416945e-02
4	3.69925253915e-01	1.46813278320e-02
5	3.70563838916e-01	6.38585001888e-04
6	3.70558098277e-01	5.74063939790e-06
7	3.70558095970e-01	2.30728297579e-09
8	3.70558095970e-01	8.38218383592e-15

Método da Secante

Exemplo

Resolva o exemplo anterior $f(x) = 4\sin(x) - e^x = 0$ usando

- Método de Newton com $x_0 = 0.5$
- Método da secante com $x_0 = 0$ e $x_1 = 1$
- Precisão de $\epsilon=10^{-10}$ para ambos.

Solução

Método da Secante

k	$ x_k $	e_k
0	6.06942655306e-01	3.93057344694e-01
1	-2.66518467137e-01	8.73461122443e-01
2	4.34798223441e-01	7.01316690578e-01
3	3.84606581747e-01	5.01916416945e-02
4	3.69925253915e-01	1.46813278320e-02
5	3.70563838916e-01	6.38585001888e-04
6	3.70558098277e-01	5.74063939790e-06
7	3.70558095970e-01	2.30728297579e-09
8	3.70558095970e-01	8.38218383592e-15

Método da Secante

Exemplo

Resolva o exemplo anterior $f(x) = 4\sin(x) - e^x = 0$ usando

- Método de Newton com $x_0 = 0.5$
- Método da secante com $x_0 = 0$ e $x_1 = 1$
- Precisão de $\epsilon=10^{-10}$ para ambos.

Solução

Método da Secante

k	x_k	e_k			
0	6.06942655306e-01	3.93057344694e-01	Método de Newton		
1	-2.66518467137e-01	8.73461122443e-01	k	x_k	e_k
2	4.34798223441e-01	7.01316690578e-01	0	3.555116e-01	1.444884e-01
3	3.84606581747e-01	5.01916416945e-02	1	3.704195e-01	1 490784e-02
4	3.69925253915e-01	1.46813278320e-02	2	3.705581e-01	1.386326e-04
5	3.70563838916e-01	6.38585001888e-04	3	3.705581e-01	1.220854e-08
6	3.70558098277e-01	5.74063939790e-06	4	3.705581e-01	1.110223e-16
7	3.70558095970e-01	2.30728297579e-09			!
8	3.70558095970e-01	8.38218383592e-15			

Conteúdo

- Aula passada
 - Método de Newton
 - Método da Secante
- Aula de hoje
 - Método de Newton (Raízes Múltiplas)
 - Exemplos de aplicações
 - Códigos e comparações entre os métodos

Falamos anteriormente que o método de Newton converge de forma não quadrática em algumas situações. Em particular, quando uma raiz tem multiplicidade m>1, o método de Newton apresenta uma convergência linear e não quadrática.

Lembrando que, uma raiz α tem multiplicidade m>0 quando

$$f(\alpha) = f'(\alpha) = f''(\alpha) = \dots = f^{(m-1)} = 0$$

е

$$f^{(m)}(\alpha) \neq 0$$

Falamos anteriormente que o método de Newton converge de forma não quadrática em algumas situações. Em particular, quando uma raiz tem multiplicidade m>1, o método de Newton apresenta uma convergência linear e não quadrática.

Lembrando que, uma raiz α tem multiplicidade m>0 quando

$$f(\alpha) = f'(\alpha) = f''(\alpha) = \dots = f^{(m-1)} = 0$$

е

$$f^{(m)}(\alpha) \neq 0$$

$$f(x) = x^4 + 2x^3 - 12x^2 + 14x - 5 \rightarrow f(1) = 0$$

Falamos anteriormente que o método de Newton converge de forma não quadrática em algumas situações. Em particular, quando uma raiz tem multiplicidade m>1, o método de Newton apresenta uma convergência linear e não quadrática.

Lembrando que, uma raiz α tem multiplicidade m>0 quando

$$f(\alpha) = f'(\alpha) = f''(\alpha) = \dots = f^{(m-1)} = 0$$

е

$$f^{(m)}(\alpha) \neq 0$$

$$f(x) = x^4 + 2x^3 - 12x^2 + 14x - 5$$
 \rightarrow $f(1) = 0$
 $f'(x) = 4x^3 + 6x^2 - 24x + 14$ \rightarrow $f'(1) = 0$

Falamos anteriormente que o método de Newton converge de forma não quadrática em algumas situações. Em particular, quando uma raiz tem multiplicidade m>1, o método de Newton apresenta uma convergência linear e não quadrática.

Lembrando que, uma raiz α tem multiplicidade m>0 quando

$$f(\alpha) = f'(\alpha) = f''(\alpha) = \dots = f^{(m-1)} = 0$$

е

$$f^{(m)}(\alpha) \neq 0$$

$$f(x) = x^{4} + 2x^{3} - 12x^{2} + 14x - 5 \quad \rightarrow \quad f(1) = 0$$

$$f'(x) = 4x^{3} + 6x^{2} - 24x + 14 \quad \rightarrow \quad f'(1) = 0$$

$$f''(x) = 12x^{2} + 12x - 24 \quad \rightarrow \quad f''(1) = 0$$

Falamos anteriormente que o método de Newton converge de forma não quadrática em algumas situações. Em particular, quando uma raiz tem multiplicidade m>1, o método de Newton apresenta uma convergência linear e não quadrática.

Lembrando que, uma raiz α tem multiplicidade m>0 quando

$$f(\alpha) = f'(\alpha) = f''(\alpha) = \dots = f^{(m-1)} = 0$$

е

$$f^{(m)}(\alpha) \neq 0$$

$$f(x) = x^{4} + 2x^{3} - 12x^{2} + 14x - 5 \quad \rightarrow \quad f(1) = 0$$

$$f'(x) = 4x^{3} + 6x^{2} - 24x + 14 \quad \rightarrow \quad f'(1) = 0$$

$$f''(x) = 12x^{2} + 12x - 24 \quad \rightarrow \quad f''(1) = 0$$

$$f'''(x) = 24x + 12 \quad \rightarrow \quad f'''(1) = 36$$

Para ver porque isto acontece, vamos expandir f(x) em série de Taylor em torno de α , isto é

$$f(x) = f(\alpha) + (x - \alpha)f'(\alpha) + \frac{(x - \alpha)^2}{2!}f''(\alpha) + \frac{(x - \alpha)^3}{3!}f'''(\alpha) + \dots$$

Para ver porque isto acontece, vamos expandir f(x) em série de Taylor em torno de α , isto é

$$f(x) = f(\alpha) + (x - \alpha)f'(\alpha) + \frac{(x - \alpha)^2}{2!}f''(\alpha) + \frac{(x - \alpha)^3}{3!}f'''(\alpha) + \dots$$

considerando que a raiz tem multiplicidade m, temos

$$f(x) = \underbrace{f(\alpha)}_{=0} + (x - \alpha) \underbrace{f'(\alpha)}_{=0} + \underbrace{\frac{(x - \alpha)^2}{2!}}_{=0} \underbrace{f''(\alpha)}_{=0} + \dots + \underbrace{\frac{(x - \alpha)^{m-1}}{(m-1)!}}_{=0} \underbrace{f^{(m-1)}(\alpha)}_{=0} + \underbrace{\frac{(x - \alpha)^m}{m!}}_{m!} f^{(m)}(t), \quad t \in [x, \alpha]$$

Para ver porque isto acontece, vamos expandir f(x) em série de Taylor em torno de α , isto é

$$f(x) = f(\alpha) + (x - \alpha)f'(\alpha) + \frac{(x - \alpha)^2}{2!}f''(\alpha) + \frac{(x - \alpha)^3}{3!}f'''(\alpha) + \dots$$

considerando que a raiz tem multiplicidade m, temos

$$f(x) = \underbrace{f(\alpha)}_{=0} + (x - \alpha) \underbrace{f'(\alpha)}_{=0} + \underbrace{\frac{(x - \alpha)^2}{2!}}_{=0} \underbrace{f''(\alpha)}_{=0} + \dots + \underbrace{\frac{(x - \alpha)^{m-1}}{(m-1)!}}_{=0} \underbrace{f^{(m-1)}(\alpha)}_{=0} + \underbrace{\frac{(x - \alpha)^m}{m!}}_{m!} f^{(m)}(t), \quad t \in [x, \alpha]$$

portanto podemos escrever

$$f(x) = \frac{(x - \alpha)^m}{m!} f^{(m)}(t)$$
 (6)

Lembrando que

$$x_{k+1} = \phi(x_k), \quad \phi(x) = x - \frac{f(x)}{f'(x)}$$

Lembrando que

$$x_{k+1} = \phi(x_k), \quad \phi(x) = x - \frac{f(x)}{f'(x)}$$

Vamos escrever

$$f(x) = (x - \alpha)^m h(x)$$
, onde $h(x) = \frac{f^{(m)}(t)}{m!}$

Lembrando que

$$x_{k+1} = \phi(x_k), \quad \phi(x) = x - \frac{f(x)}{f'(x)}$$

Vamos escrever

$$f(x) = (x - \alpha)^m h(x)$$
, onde $h(x) = \frac{f^{(m)}(t)}{m!}$
 $f'(x) = m(x - \alpha)^{(m-1)} h(x) + (x - \alpha)^m h'(x)$

Lembrando que

$$x_{k+1} = \phi(x_k), \quad \phi(x) = x - \frac{f(x)}{f'(x)}$$

Vamos escrever

$$f(x) = (x - \alpha)^m h(x)$$
, onde $h(x) = \frac{f^{(m)}(t)}{m!}$
 $f'(x) = m(x - \alpha)^{(m-1)} h(x) + (x - \alpha)^m h'(x)$

e assim

$$\phi(x) = x - \frac{(x - \alpha)^m h(x)}{m(x - \alpha)^{m-1} h(x) + (x - \alpha)^m h'(x)}$$
$$= x - \frac{(x - \alpha)h(x)}{m h(x) + (x - \alpha) h'(x)}$$

$$\phi(x) = x - \frac{(x - \alpha)h(x)}{m \ h(x) + (x - \alpha) \ h'(x)}$$

$$\phi(x) = x - \frac{(x - \alpha)h(x)}{m \ h(x) + (x - \alpha) \ h'(x)}$$

Derivando temos (simplificando h(x) = h)

$$\phi'(x) = 1 - \frac{[h + (x - \alpha)h][mh + (x - \alpha)h'] - [(x - \alpha)h][mh' + h' + h''(x - \alpha)]}{[mh + (x - \alpha)h']^2}$$

$$\phi(x) = x - \frac{(x-\alpha)h(x)}{m\ h(x) + (x-\alpha)\ h'(x)}$$

Derivando temos (simplificando h(x) = h)

$$\phi'(x) = 1 - \frac{[h + (x - \alpha)h][mh + (x - \alpha)h'] - [(x - \alpha)h][mh' + h' + h''(x - \alpha)]}{[mh + (x - \alpha)h']^2}$$

Avaliando em $x = \alpha$ temos

$$\phi'(\alpha) = 1 - \frac{[h + (\alpha - \alpha)h][mh + (\alpha - \alpha)h'] - [(\alpha - \alpha)h][mh' + h' + h''(\alpha - \alpha)]}{[mh + (\alpha - \alpha)h']^2}$$

$$\phi(x) = x - \frac{(x - \alpha)h(x)}{m \ h(x) + (x - \alpha) \ h'(x)}$$

Derivando temos (simplificando h(x) = h)

$$\phi'(x) = 1 - \frac{[h + (x - \alpha)h][mh + (x - \alpha)h'] - [(x - \alpha)h][mh' + h' + h''(x - \alpha)]}{[mh + (x - \alpha)h']^2}$$

Avaliando em $x = \alpha$ temos

$$\phi'(\alpha) = 1 - \frac{[h + (\alpha - \alpha)h][mh + (\alpha - \alpha)h'] - [(\alpha - \alpha)h][mh' + h' + h''(\alpha - \alpha)]}{[mh + (\alpha - \alpha)h']^2}$$

ou seja

$$\phi'(\alpha) = 1 - \frac{mh(x)^2}{m^2h(x)^2} = 1 - \frac{1}{m} = \frac{m-1}{m}$$

Portanto, como m>1 temos que $\frac{m-1}{m}\neq 0$ e portanto temos que $\phi'(\alpha)\neq 0$, e o método de Newton nesse caso possui **não** apresenta mais convergência quadrática.

Portanto, como m>1 temos que $\frac{m-1}{m}\neq 0$ e portanto temos que $\phi'(\alpha)\neq 0$, e o método de Newton nesse caso possui **não** apresenta mais convergência quadrática.

Para ilustrar o problema iremos apresentar o desempenho do método de Newton para o seguinte problema:

$$f(x) = (x-5)^3 e^x$$

cuja multiplicidade da raiz $\alpha=5$ é m=3.

Portanto, como m>1 temos que $\frac{m-1}{m}\neq 0$ e portanto temos que $\phi'(\alpha)\neq 0$, e o método de Newton nesse caso possui **não** apresenta mais convergência quadrática.

Para ilustrar o problema iremos apresentar o desempenho do método de Newton para o seguinte problema:

$$f(x) = (x-5)^3 e^x$$

cuja multiplicidade da raiz $\alpha=5$ é m=3. Note que

$$f'(x) = 3(x-5)^{2}e^{x} + (x-5)^{3}e^{x}$$

$$f''(x) = 6(x-5)e^{x} + 3(2x-10)^{2}e^{x} + (x-5)^{3}e^{x}$$

Portanto $f(\alpha)=f'(\alpha)=f''(\alpha)=0$. Vamos usar como aproximação inicial $x_0=4.0$ e uma precisão de $\epsilon=10^{-8}$.

Convergência lenta do método de Newton

```
metodo de newton
                       f(xk)
                               | xk - xk-1
k
         xk
   4.500000e+00 -1.125214e+01
   4.700000e+00 -2.968574e+00 2.000000e-01
   4.811111e+00 -8.280532e-01 1.111111e-01
   4.878305e+00 -2.368325e-01 6.719368e-02
   4.920585e+00 -6.865801e-02 4.228017e-02
   4.947776e+00 -2.006279e-02 2.719149e-02
 5
   4.965493e+00 -5.891409e-03 1.771625e-02
   4.977129e+00 -1.735387e-03 1.163628e-02
   4.984811e+00 -5.122062e-04 7.682241e-03
 9
   4.989900e+00 -1.513777e-04 5.088691e-03
 10 4.993278e+00 -4.477676e-05 3.378070e-03
 11 4.995524e+00
                 -1.325227e-05 2.245706e-03
 12
    4.997018e+00
                 -3.923664e-06 1.494335e-03
 13
    4.998013e+00
                 -1.161988e-06 9.949826e-04
 14 4.998676e+00
                 -3.441787e-07 6.627717e-04
 . . .
 39
    5.000000e+00
                 -2.136250e-20 2.620374e-08
 40
    5.000000e+00
                 -6.329628e-21 1.746916e-08
 41
    5.000000e+00
                 -1.875445e-21 1.164610e-08
 42
    5.000000e+00
                  -5.556876e-22 7.764069e-09
 raiz
                      = 5.000000e + 00
```

Uma simples modificação do método de Newton, proposta por Schröder permite calcular uma raiz de multiplicidade m, mantendo a convergência quadrática.

Uma simples modificação do método de Newton, proposta por Schröder permite calcular uma raiz de multiplicidade m, mantendo a convergência quadrática. Basta usar o seguinte processo iterativo

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Uma simples modificação do método de Newton, proposta por Schröder permite calcular uma raiz de multiplicidade m, mantendo a convergência quadrática. Basta usar o seguinte processo iterativo

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Veremos agora como deduzir este método.

Da expansão em série de Taylor de f(x) quando a função tem uma raiz de multiplicidade m, da equação (6) temos que

$$f(x) = \frac{(x-\alpha)^m}{m!} f^{(m)}(t)$$

Uma simples modificação do método de Newton, proposta por Schröder permite calcular uma raiz de multiplicidade m, mantendo a convergência quadrática. Basta usar o seguinte processo iterativo

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Veremos agora como deduzir este método.

Da expansão em série de Taylor de f(x) quando a função tem uma raiz de multiplicidade m, da equação (6) temos que

$$f(x) = \frac{(x - \alpha)^m}{m!} f^{(m)}(t)$$

Vamos aproximar $f^{(m)}(x)$ por uma constante b, assim

$$f(x) \approx \frac{(x-\alpha)^m}{m!}b, \quad f'(x) \approx m\frac{(x-\alpha)^{m-1}}{m!}b$$

Consequentemente o método de Newton será modificado da seguinte forma

$$\frac{f(x)}{f'(x)} = \frac{\frac{(x-\alpha)^m}{m!}b}{m\frac{(x-\alpha)^{m-1}}{m!}b}$$

$$= \frac{b(x-\alpha)^m}{m!} \frac{m!}{b \ m(x-\alpha)^{m-1}}$$

$$= \frac{(x-\alpha)}{m}$$

Consequentemente o método de Newton será modificado da seguinte forma

$$\frac{f(x)}{f'(x)} = \frac{\frac{(x-\alpha)^m}{m!}b}{m\frac{(x-\alpha)^{m-1}}{m!}b}$$
$$= \frac{b(x-\alpha)^m}{m!} \frac{m!}{b \ m(x-\alpha)^{m-1}}$$
$$= \frac{(x-\alpha)}{m}$$

portanto

$$\alpha = x - m \frac{f(x)}{f'(x)}$$

Consequentemente o método de Newton será modificado da seguinte forma

$$\frac{f(x)}{f'(x)} = \frac{\frac{(x-\alpha)^m}{m!}b}{m\frac{(x-\alpha)^{m-1}}{m!}b}$$
$$= \frac{b(x-\alpha)^m}{m!} \frac{m!}{b \ m(x-\alpha)^{m-1}}$$
$$= \frac{(x-\alpha)}{m}$$

portanto

$$\alpha = x - m \frac{f(x)}{f'(x)}$$

o que sugere o seguinte método iterativo, conhecido como método de Schröder

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$$

Obs: uma desvantagem desse método é que precisamos conhecer a multiplicidade m da raiz que procuramos antes de usa-lo.

Uma outra alternativa para raízes múltiplas é o seguinte método: considere a função

$$u(x) = \frac{f(x)}{f'(x)}$$

onde $f(x) = (x - \alpha)^m h(x)$, onde $h(\alpha) \neq 0$.

Obs: uma desvantagem desse método é que precisamos conhecer a multiplicidade m da raiz que procuramos antes de usa-lo.

Uma outra alternativa para raízes múltiplas é o seguinte método: considere a função

$$u(x)=\frac{f(x)}{f'(x)}$$
 onde $f(x)=(x-\alpha)^mh(x)$, onde $h(\alpha)\neq 0$. Logo
$$u(x)=\frac{(x-\alpha)^mh(x)}{m(x-\alpha)^{m-1}h(x)+(x-\alpha)^mh'(x)}$$

Obs: uma desvantagem desse método é que precisamos conhecer a multiplicidade m da raiz que procuramos antes de usa-lo.

Uma outra alternativa para raízes múltiplas é o seguinte método: considere a função

$$u(x) = \frac{f(x)}{f'(x)}$$
 onde $f(x) = (x - \alpha)^m h(x)$, onde $h(\alpha) \neq 0$. Logo
$$u(x) = \frac{(x - \alpha)^m h(x)}{m(x - \alpha)^{m-1} h(x) + (x - \alpha)^m h'(x)}$$

$$= \frac{(x - \alpha)^m h(x)}{(x - \alpha)^{m-1} [mh(x) + (x - \alpha)h'(x)]}$$

Obs: uma desvantagem desse método é que precisamos conhecer a multiplicidade m da raiz que procuramos antes de usa-lo.

Uma outra alternativa para raízes múltiplas é o seguinte método: considere a função

$$u(x) = \frac{f(x)}{f'(x)}$$
 onde $f(x) = (x - \alpha)^m h(x)$, onde $h(\alpha) \neq 0$. Logo
$$u(x) = \frac{(x - \alpha)^m h(x)}{m(x - \alpha)^{m-1} h(x) + (x - \alpha)^m h'(x)}$$

$$= \frac{(x - \alpha)^m h(x)}{(x - \alpha)^{m-1} [mh(x) + (x - \alpha)h'(x)]}$$

$$= \frac{(x - \alpha)h(x)}{mh(x) + (x - \alpha)h'(x)}$$

Obs: uma desvantagem desse método é que precisamos conhecer a multiplicidade m da raiz que procuramos antes de usa-lo.

Uma outra alternativa para raízes múltiplas é o seguinte método: considere a função

$$\begin{split} u(x) &= \frac{f(x)}{f'(x)} \\ \text{onde } f(x) &= (x-\alpha)^m h(x), \text{ onde } h(\alpha) \neq 0. \text{ Logo} \\ u(x) &= \frac{(x-\alpha)^m h(x)}{m(x-\alpha)^{m-1} h(x) + (x-\alpha)^m h'(x)} \\ &= \frac{(x-\alpha)^m h(x)}{(x-\alpha)^{m-1} [mh(x) + (x-\alpha)h'(x)]} \end{split}$$

Assim concluimos que u(x) tem uma raiz em $x=\alpha$ com multiplicidade 1. Logo, podemos usar o método de Newton para encontrar a raiz de u(x) que teremos convergência quadrática.

 $= \frac{(x-\alpha)h(x)}{mh(x) + (x-\alpha)h'(x)}$

Calculando a derivada de u(x)

$$u(x) = \frac{f(x)}{f'(x)}$$
 \Rightarrow $u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$

Calculando a derivada de u(x)

$$u(x) = \frac{f(x)}{f'(x)}$$
 \Rightarrow $u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$

Usando o método de Newton para u(x)

$$x_{k+1} = x_k - \frac{u(x_k)}{u'(x_k)} = x_k - \frac{f(x_k)}{f'(x_k)} \frac{[f'(x_k)]^2}{f'(x_k)f'(x_k) - f(x_k)f''(x_k)}$$

Calculando a derivada de u(x)

$$u(x) = \frac{f(x)}{f'(x)}$$
 \Rightarrow $u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$

Usando o método de Newton para u(x)

$$x_{k+1} = x_k - \frac{u(x_k)}{u'(x_k)} = x_k - \frac{f(x_k)}{f'(x_k)} \frac{[f'(x_k)]^2}{f'(x_k)f'(x_k) - f(x_k)f''(x_k)}$$

que resulta no seguinte método

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{f'(x_k)^2 - f(x_k)f''(x_k)}$$

Calculando a derivada de u(x)

$$u(x) = \frac{f(x)}{f'(x)}$$
 \Rightarrow $u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$

Usando o método de Newton para u(x)

$$x_{k+1} = x_k - \frac{u(x_k)}{u'(x_k)} = x_k - \frac{f(x_k)}{f'(x_k)} \frac{[f'(x_k)]^2}{f'(x_k)f'(x_k) - f(x_k)f''(x_k)}$$

que resulta no seguinte método

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{f'(x_k)^2 - f(x_k)f''(x_k)}$$

Obs: nesse método além de f'(x) precisamos também de f''(x), mas por outro lado não é preciso conhecer a multiplicade m da raiz procurada.

Por fim, uma outra alternativa é reformular o problema de encontrar as raízes de forma que o novo problema tenha apenas uma raiz.

Por fim, uma outra alternativa é reformular o problema de encontrar as raízes de forma que o novo problema tenha apenas uma raiz.

A forma mais fácil de fazer isso é calcular a (m-1)-ésima derivada de f(x) e então resolver o problema [Atkinson, p.90]

$$f^{(m-1)}(x) = 0$$

Por fim, uma outra alternativa é reformular o problema de encontrar as raízes de forma que o novo problema tenha apenas uma raiz.

A forma mais fácil de fazer isso é calcular a (m-1)-ésima derivada de f(x) e então resolver o problema [Atkinson, p.90]

$$f^{(m-1)}(x) = 0$$

Exemplo

$$f(x) = -4.68999 + 9.1389x - 5.56x^2 + x^3$$

A raiz é $\alpha=1.23$ com multiplicidade m=2. Derivando uma vez

$$f'(x) = 9.1389 - 11.12x + 3x^2$$

Podemos então aplicar o método de Newton para f'(x)=0 para encontrar a raiz. \square

Vimos que a ordem de convergência do método do ponto fixo é linear, e que esta será tão rápida quanto menor for o valor de $\phi'(\alpha)$.

Podemos acelerar a convergência do MPF através de um método conhecido como aceleração de Aitken. A idéia básica do método é a partir de uma sequência $\{x_k\}$ que converge de forma linear, calcular uma sequência $\{\hat{x}_k\}$, a qual converge mais rápido para α .

Vimos que a ordem de convergência do método do ponto fixo é linear, e que esta será tão rápida quanto menor for o valor de $\phi'(\alpha)$.

Podemos acelerar a convergência do MPF através de um método conhecido como aceleração de Aitken. A idéia básica do método é a partir de uma sequência $\{x_k\}$ que converge de forma linear, calcular uma sequência $\{\hat{x}_k\}$, a qual converge mais rápido para α .

Do Teorema do Ponto Fixo e do estudo da convergência do método, temos que

$$\lim_{k \to \infty} \frac{\alpha - x_k}{\alpha - x_{k-1}} = \phi'(\alpha)$$

para $x_k = \phi(x_{k-1}), \ k = 1, 2, \dots$ Portanto podemos escrever

$$\alpha - x_k \approx \lambda(\alpha - x_{k-1})$$

onde
$$\lambda = \phi'(\alpha), |\lambda| < 1.$$

Vamos reescrever $\alpha - x_k pprox \lambda(\alpha - x_{k-1})$ da seguinte forma

$$\alpha - x_k \approx \lambda \alpha - \lambda x_{k-1}$$

Vamos reescrever $\alpha - x_k pprox \lambda(\alpha - x_{k-1})$ da seguinte forma

$$\alpha - x_k \approx \lambda \alpha - \lambda x_{k-1}$$
$$-\lambda \alpha + \alpha - x_k \approx -\lambda x_{k-1}$$

Vamos reescrever $\alpha - x_k \approx \lambda(\alpha - x_{k-1})$ da seguinte forma

$$\alpha - x_k \approx \lambda \alpha - \lambda x_{k-1}$$
$$-\lambda \alpha + \alpha - x_k \approx -\lambda x_{k-1}$$
$$\alpha (1 - \lambda) - x_k \approx -\lambda x_{k-1}$$

Vamos reescrever $\alpha - x_k \approx \lambda(\alpha - x_{k-1})$ da seguinte forma

$$\alpha - x_k \approx \lambda \alpha - \lambda x_{k-1}$$
$$-\lambda \alpha + \alpha - x_k \approx -\lambda x_{k-1}$$
$$\alpha (1 - \lambda) - x_k \approx -\lambda x_{k-1}$$
$$\alpha (1 - \lambda) \approx x_k - \lambda x_{k-1}$$

Vamos reescrever $\alpha - x_k \approx \lambda(\alpha - x_{k-1})$ da seguinte forma

$$\alpha - x_k \approx \lambda \alpha - \lambda x_{k-1}$$
$$-\lambda \alpha + \alpha - x_k \approx -\lambda x_{k-1}$$
$$\alpha (1 - \lambda) - x_k \approx -\lambda x_{k-1}$$
$$\alpha (1 - \lambda) \approx x_k - \lambda x_{k-1}$$
$$\alpha \approx \frac{x_k - \lambda x_{k-1}}{1 - \lambda}$$

Vamos reescrever $lpha - x_k pprox \lambda(lpha - x_{k-1})$ da seguinte forma

$$\alpha - x_k \approx \lambda \alpha - \lambda x_{k-1}$$
$$-\lambda \alpha + \alpha - x_k \approx -\lambda x_{k-1}$$
$$\alpha (1 - \lambda) - x_k \approx -\lambda x_{k-1}$$
$$\alpha (1 - \lambda) \approx x_k - \lambda x_{k-1}$$
$$\alpha \approx \frac{x_k - \lambda x_{k-1}}{1 - \lambda}$$

Se λ fosse um valor conhecido, poderiamos substituir na equação anterior para encontrar o valor de α .

Vamos manipular a equação anterior e escrevê-la de outra forma.

$$\alpha \approx \frac{x_k - \lambda x_{k-1} + \lambda x_k - \lambda x_k}{1 - \lambda}$$

$$\alpha \approx \frac{x_k - \lambda x_{k-1} + \lambda x_k - \lambda x_k}{1 - \lambda}$$
$$\approx \frac{x_k - \lambda x_k}{1 - \lambda} + \frac{\lambda x_k - \lambda x_{k-1}}{1 - \lambda}$$

$$\alpha \approx \frac{x_k - \lambda x_{k-1} + \lambda x_k - \lambda x_k}{1 - \lambda}$$
$$\approx \frac{x_k - \lambda x_k}{1 - \lambda} + \frac{\lambda x_k - \lambda x_{k-1}}{1 - \lambda}$$
$$\approx x_k + \frac{\lambda x_k - \lambda x_{k-1}}{1 - \lambda}$$

$$\alpha \approx \frac{x_k - \lambda x_{k-1} + \lambda x_k - \lambda x_k}{1 - \lambda}$$

$$\approx \frac{x_k - \lambda x_k}{1 - \lambda} + \frac{\lambda x_k - \lambda x_{k-1}}{1 - \lambda}$$

$$\approx x_k + \frac{\lambda x_k - \lambda x_{k-1}}{1 - \lambda}$$

$$\alpha \approx x_k + \frac{\lambda}{1 - \lambda} (x_k - x_{k-1})$$

$$\alpha \approx \frac{x_k - \lambda x_{k-1} + \lambda x_k - \lambda x_k}{1 - \lambda}$$

$$\approx \frac{x_k - \lambda x_k}{1 - \lambda} + \frac{\lambda x_k - \lambda x_{k-1}}{1 - \lambda}$$

$$\approx x_k + \frac{\lambda x_k - \lambda x_{k-1}}{1 - \lambda}$$

$$\alpha \approx x_k + \frac{\lambda}{1 - \lambda} (x_k - x_{k-1})$$

Temos que $\lambda = \phi'(\alpha)$. Poderíamos aproximar λ por

$$\lambda \approx \frac{\alpha - x_k}{\alpha - x_{k-1}}$$

entretanto, não conhecemos lpha.

Considere a seguinte razão

$$\lambda_k = \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$$

Considere a seguinte razão

$$\lambda_k = \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$$

para ver que λ_k é uma aproximação de λ a medida que x_k se aproxima de α , escreva

$$\frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}} = \frac{\phi(x_{k-1}) - \phi(x_{k-2})}{x_{k-1} - x_{k-2}} = \phi'(c_n)$$

onde c_n está entre x_k e x_{k-1} .

Considere a seguinte razão

$$\lambda_k = \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$$

para ver que λ_k é uma aproximação de λ a medida que x_k se aproxima de α , escreva

$$\frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}} = \frac{\phi(x_{k-1}) - \phi(x_{k-2})}{x_{k-1} - x_{k-2}} = \phi'(c_n)$$

onde c_n está entre x_k e x_{k-1} . Portanto, a medida que vamos nos aproximando de α , o número c_n também se aproxima de α . Então

$$\lambda_k o \lambda$$
 para $x_k o lpha$

Juntando tudo isso, podemos obter

$$\hat{x_k} = x_{k-1} + \frac{\lambda_k}{1 - \lambda_k} (x_k - x_{k-1})$$

com

$$\lambda_k = \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$$

onde $\hat{x_k}$ é chamado de extrapolação de Aitken de $\{x_k, x_{k-1}, x_{k-2}\}$ e $\hat{x_k} pprox \alpha$.

Juntando tudo isso, podemos obter

$$\hat{x_k} = x_{k-1} + \frac{\lambda_k}{1 - \lambda_k} (x_k - x_{k-1})$$

com

$$\lambda_k = \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$$

onde $\hat{x_k}$ é chamado de extrapolação de Aitken de $\{x_k, x_{k-1}, x_{k-2}\}$ e $\hat{x_k} \approx \alpha$. Substituindo λ_k e manipulando a expressão, chegamos a

$$\hat{x_k} = x_k - \frac{(x_k - x_{k-1})^2}{x_k - 2x_{k-1} + x_{k-2}}$$

O método pode ser usado da seguinte forma: dado x_0 , calculamos

$$x_1 = \phi(x_0), \quad x_2 = \phi(x_1),$$

e assim aplicamos a fórmula de Aitken para calcular \hat{x}_2 . Em seguida, usamos \hat{x}_2 como novo valor de partida, isto é, calculamos

$$x_3 = \phi(\hat{x}_2), \quad x_4 = \phi(x_3),$$

e usamos \hat{x}_2 , x_3 e x_4 para calcular \hat{x}_4 , e assim por diante.

Exemplo

Encontre a raiz de $f(x) = 6.28 - x + \sin(x)$ usando o processo iterativo $x_{k+1} = 6.28 + \sin(x)$ e usando o este mesmo processo com a aceleração de Aitken.

Solução do Exemplo

Neste caso a raiz é $\alpha = 6.015503072$, sendo assim temos que

$$\phi'(x) = \cos(x) \quad \Rightarrow \quad \phi'(\alpha) \approx 0.96$$

o que implica em uma convergência muito lenta para a raiz usando o MPF. Veja.

Solução do Exemplo

Usando
$$x_{k+1} = 6.28 + \sin(x)$$
 temos

$$x_0 = 6$$

 $x_1 = 6.28 + \sin(6) = 6.28 - 0.279415 = 6.000585$
 $x_2 = 6.28 + \sin(6.000585) = 6.28 - 0.278854 = 6.001146$
 $x_3 = 6.28 + \sin(6.001146) = 6.001685$
 $x_4 = 6.28 + \sin(6.001685) = 6.002202$
 $x_5 = 6.28 + \sin(6.002202) = 6.002700$
 $x_6 = 6.28 + \sin(6.002202) = 6.003178$
 $x_7 = \dots$

Solução do Exemplo

$$x_0 = 6$$

 $x_1 = 6.28 + \sin(6) = 6.28 - 0.279415 = 6.000585$
 $x_2 = 6.28 + \sin(6.000585) = 6.28 - 0.278854 = 6.001146$

Solução do Exemplo

$$x_0 = 6$$

 $x_1 = 6.28 + \sin(6) = 6.28 - 0.279415 = 6.000585$
 $x_2 = 6.28 + \sin(6.000585) = 6.28 - 0.278854 = 6.001146$
 $\hat{x}_2 = x_2 - \frac{(x_2 - x_1)^2}{x_2 - 2x_1 + x_0} = 6.014259$

Solução do Exemplo

$$x_0 = 6$$

 $x_1 = 6.28 + \sin(6) = 6.28 - 0.279415 = 6.000585$
 $x_2 = 6.28 + \sin(6.000585) = 6.28 - 0.278854 = 6.001146$
 $\hat{x}_2 = x_2 - \frac{(x_2 - x_1)^2}{x_2 - 2x_1 + x_0} = 6.014259$
 $x_3 = 6.28 + \sin(6.014259) = 6.014304$
 $x_4 = 6.28 + \sin(6.014304) = 6.014347$

Solução do Exemplo

$$x_0 = 6$$

$$x_1 = 6.28 + \sin(6) = 6.28 - 0.279415 = 6.000585$$

$$x_2 = 6.28 + \sin(6.000585) = 6.28 - 0.278854 = 6.001146$$

$$\hat{x}_2 = x_2 - \frac{(x_2 - x_1)^2}{x_2 - 2x_1 + x_0} = 6.014259$$

$$x_3 = 6.28 + \sin(6.014259) = 6.014304$$

$$x_4 = 6.28 + \sin(6.014304) = 6.014347$$

$$\hat{x}_4 = x_4 - \frac{(x_4 - x_3)^2}{x_4 - 2x_3 + \hat{x}_2} = 6.015272$$

Solução do Exemplo

$$x_0 = 6$$

$$x_1 = 6.28 + \sin(6) = 6.28 - 0.279415 = 6.000585$$

$$x_2 = 6.28 + \sin(6.000585) = 6.28 - 0.278854 = 6.001146$$

$$\hat{x}_2 = x_2 - \frac{(x_2 - x_1)^2}{x_2 - 2x_1 + x_0} = 6.014259$$

$$x_3 = 6.28 + \sin(6.014259) = 6.014304$$

$$x_4 = 6.28 + \sin(6.014304) = 6.014347$$

$$\hat{x}_4 = x_4 - \frac{(x_4 - x_3)^2}{x_4 - 2x_3 + \hat{x}_2} = 6.015272$$

$$x_5 = \dots$$

Comparação dos métodos

▶ Bisseção e Falsa Posição: se a função f(x) for contínua no intervalo [a,b] e mudar de sinal nos extremos do intervalo f(a)f(b) < 0, então temos garantia de convergência (!!!).

Comparação dos métodos

- ▶ Bisseção e Falsa Posição: se a função f(x) for contínua no intervalo [a,b] e mudar de sinal nos extremos do intervalo f(a)f(b) < 0, então temos garantia de convergência (!!!).
- Ponto Fixo: nem todas as escolhas da função de iteração do método do Ponto Fixo são adequadas, pois algumas divergem e outras podem convergir de forma muito lenta.

O MPF irá convergir se:

- lacktriangledown $\phi(x)$ e $\phi'(x)$ contínuas num intervalo I centrado em lpha
- $|\phi'(x)| < 1, \ \forall x \in I$

Comparação dos métodos

- ▶ Newton; possui critérios mais restritivos para convergência.
 - É preciso calcular f(x) e f'(x) a cada iteração
 - Convergência quadrática
 - ▶ Raiz com multiplicadade $m > 1 \Rightarrow$ convergência lenta.
- Secante: muito parecido com o método de Newton.
 - Precisa de duas aproximações para calcular uma nova aproximação.
 - Não é preciso conhecer a derivada.
 - ▶ O cálculo de f'(x) é obtido de forma aproximada.
 - Convergência super-linear

- Existem situações que o método de Newton pode falhar:
 - lacktriangle má escolha para a aproximação inicial x_0
 - ▶ apresentar uma convergência não quadrática, quando temos raízes com multiplicicade m>1 ou mesmo quando $f'(x_k)\approx 0$.

- Existem situações que o método de Newton pode falhar:
 - lacktriangle má escolha para a aproximação inicial x_0
 - ▶ apresentar uma convergência não quadrática, quando temos raízes com multiplicicade m>1 ou mesmo quando $f'(x_k)\approx 0$.
- ▶ De forma geral o método de Newton é o mais indicado sempre que for fácil avaliar as condições de convergência e que f'(x) estiver disponível.

- Existem situações que o método de Newton pode falhar:
 - lacktriangle má escolha para a aproximação inicial x_0
 - ▶ apresentar uma convergência não quadrática, quando temos raízes com multiplicicade m>1 ou mesmo quando $f'(x_k)\approx 0$.
- ▶ De forma geral o método de Newton é o mais indicado sempre que for fácil avaliar as condições de convergência e que f'(x) estiver disponível.
- ▶ Se f'(x) não está disponível ou é uma função muito custosa de se avaliar, então o método da Secante é o mais indicado, uma vez que é o método que converge de forma mais rápida entre os demais.

- Existem situações que o método de Newton pode falhar:
 - lacktriangle má escolha para a aproximação inicial x_0
 - apresentar uma convergência não quadrática, quando temos raízes com multiplicicade m>1 ou mesmo quando $f'(x_k)\approx 0$.
- ▶ De forma geral o método de Newton é o mais indicado sempre que for fácil avaliar as condições de convergência e que f'(x) estiver disponível.
- ▶ Se f'(x) não está disponível ou é uma função muito custosa de se avaliar, então o método da Secante é o mais indicado, uma vez que é o método que converge de forma mais rápida entre os demais.
- Podemos ainda usar um método como o da Bissecção/Falsa Posição cuja convergência é garantida para obter uma aproximação inicial mais precisa para ser usada no método de Newton, por exemplo.

Exemplo - (Ruggiero, Exemplo 18)

Considere a seguinte função $f(x)=e^{-x^2}-\cos{(x)}$. Para o método de Newton e do Ponto Fixo usamos:

$$f'(x) = \sin(x) - 2xe^{-x^2}$$

 $\phi(x) = \cos(x) - e^{-x^2} + x$

Precisão $\epsilon=10^{-8}$. Raiz encontrada $\alpha=1.447414$.

Exemplo - (Ruggiero, Exemplo 18)

Considere a seguinte função $f(x)=e^{-x^2}-\cos{(x)}$. Para o método de Newton e do Ponto Fixo usamos:

$$f'(x) = \sin(x) - 2xe^{-x^2}$$
$$\phi(x) = \cos(x) - e^{-x^2} + x$$

Precisão $\epsilon=10^{-8}$. Raiz encontrada $\alpha=1.447414$.

método	iterações	dados
bissecção	24	[1,2]
falsa posição	10	[1,2]
ponto fixo	14	$x_0 = 1.5$
newton	4	$x_0 = 1.5$
secante	7	$x_0 = 1, x_1 = 2$

Exemplo - (Ruggiero, Exemplo 19)

Considere a seguinte função $f(x)=x^3-x-1$. Para o método de Newton e do Ponto Fixo usamos:

$$f'(x) = 3x^2 - 1$$
$$\phi(x) = (x+1)^{1/3}$$

Precisão $\epsilon=10^{-8}$ Raiz encontrada $\alpha=1.324718$.

Exemplo - (Ruggiero, Exemplo 19)

Considere a seguinte função $f(x)=x^3-x-1$. Para o método de Newton e do Ponto Fixo usamos:

$$f'(x) = 3x^2 - 1$$
$$\phi(x) = (x+1)^{1/3}$$

Precisão $\epsilon=10^{-8}$. Raiz encontrada $\alpha=1.324718$.

método	iterações	dados
bissecção	24	[1, 2]
falsa posição	18	[1, 2]
ponto fixo	10	$x_0 = 1.0$
newton	22	$x_0 = 0$
secante	27	$x_0 = 0, x_1 = 0.5$

Exemplo - (Ruggiero, Exemplo 19)

A convergência lenta do método de Newton se deve ao fato do chute inicial $x_0=0$ estar distante da raiz, e ainda porque x_0 gera $x_1=0.5$ como aproximação que está muito próximo de um zero de $f'(x)=3x^2-1=0 \Rightarrow x=\pm\sqrt{3}/3\approx\pm0.57$

Idem para o método da Secante.

Exemplo - (Ruggiero, Exemplo 20)

Considere a seguinte função $f(x)=4\sin{(x)}-e^x$. Para o método de Newton e do Ponto Fixo usamos:

$$f'(x) = 4\cos(x) - e^x$$

 $\phi(x) = x - 2\sin(x) = 0.5e^x$

Precisão $\epsilon=10^{-8}$ Raiz encontrada $\alpha=0.3705581$.

Exemplo - (Ruggiero, Exemplo 20)

Considere a seguinte função $f(x)=4\sin{(x)}-e^x$. Para o método de Newton e do Ponto Fixo usamos:

$$f'(x) = 4\cos(x) - e^x$$

 $\phi(x) = x - 2\sin(x) = 0.5e^x$

Precisão $\epsilon=10^{-8}$. Raiz encontrada $\alpha=0.3705581$.

método	iterações	dados
bissecção	24	[0,1]
falsa posição	9	[0,1]
ponto fixo	8	$x_0 = 0.5$
newton	4	$x_0 = 0.5$
secante	8	$x_0 = 0, x_1 = 1$

Outros métodos e problemas

Outros métodos mais robustos

- Método pégaso
- Método Muller (aproximação quadrática)
- Método de van Wijngaarden-Dekker-Brent
 - ▶ Mais detalhes em [F. F. Campos, Cap. 6, Página 301]
 - Método usado na função fzero do MATLAB

Métodos específicos para raízes polinomiais

- Raízes complexas
- Mais detalhes em [N. B. Franco, Cap. 3, Página 92]

Implementações

- C
- Implementação simples.
- ► Python
 - Implementação simples de cada método para estudar os métodos.
 - Implementação da biblioteca da linguagem. Mais robusta e eficiente.
- MATIAB
 - Como usar as funções do ambiente para encontrar raízes.
- ► FORTRAN/FORTRAN90
 - Preparando...

MATIAB

fzero

Função fzero implementa o método de van Wijngaarden-Dekker-Brent.

Sintaxe:

```
x = fzero(fun,x0)
x = fzero(fun,x0,options)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)
```

- x é a a raiz encontrada
- x0 pode ser um escalar ou um vetor com 2 elementos (intervalo)
- options pode ser usado para exibir o resultado de cada passo do método, para especificar a precisão a ser usada, etc

MATLAB

fzero - Exemplo de uso

Achar a raiz de $f(x)=0.05x^3-0.4x^2+3\sin{(x)}x=0$ que se encontra no intervalo [10,12].

```
f = @(x) 0.05*x.^3 - 0.4*x.^2 + 3.0 * sin(x)*x
intv = [11,12]
[x,fx] = fzero(f,intv)

x = 11.744
fx = -2.3093e-13
```

MATLAB

Também é possível implementar suas próprias funções em MATLAB. O exemplo a seguir implementa o método da Bissecção.

```
function [ r ] = bisection( f, a, b, N, eps )
 if (f(a) * f(b) > 0)
   error( 'f(a) e f(b) nao possuem sinais opostos.' );
 end
 for k = 1:N
   c = (a + b)/2:
   if (abs(b - a) < eps)
     r = c;
     return:
   end
   if (f(c)*f(a) < 0)
    b = c:
   else
     a = c:
   end
 end
 error( 'o metodo nao convergiu');
end
```

Extra: Fractais

Definição (Fractal)

Um fractal é um objeto geométrico que pode ser dividido em partes, cada uma das quais semelhante ao objeto original.

Diz-se que os fractais têm infinitos detalhes, são geralmente autossimilares e independem de escala. Em muitos casos um fractal pode ser gerado por um padrão repetido, tipicamente um processo recorrente ou iterativo.

Referência: Wikipedia, Fractal

Extra: Fractais

Cientificamente, fractais podem ser usados para descrever objetos altamente irregulares.

Aplicações

- compressão de imagem
- mecânica dos fluidos (turbulência)
- cosmologia
- sismologia
- biologia (crescimento bacteriano, árvores, etc..)
- música/arte
- ► teoria do caos
- etc etc etc

Extra: Fractais

Vamos usar o método de Newton para gerar alguns fractais. Agora iremos trabalhar com funções complexas da variável $z\in\mathbb{C}$, z=x+iy, onde $i=\sqrt{-1}$.

Vamos usar o método de Newton para gerar alguns fractais. Agora iremos trabalhar com funções complexas da variável $z\in\mathbb{C}$, z=x+iy, onde $i=\sqrt{-1}$.

Vamos trabalhar com a seguinte função complexa:

$$f(z) = z^4 + 1 = 0, z \in \mathbb{C}$$

Vamos usar o método de Newton para gerar alguns fractais. Agora iremos trabalhar com funções complexas da variável $z\in\mathbb{C}$, z=x+iy, onde $i=\sqrt{-1}$.

Vamos trabalhar com a seguinte função complexa:

$$f(z) = z^4 + 1 = 0, z \in \mathbb{C}$$

as raízes dessa equação são

$$\cos\left(\frac{\pi}{4}(2n+1)\right) + i\sin\left(\frac{\pi}{4}(2n+1)\right), \quad n = 0, 1, 2, 3$$

Vamos usar o método de Newton para gerar alguns fractais. Agora iremos trabalhar com funções complexas da variável $z\in\mathbb{C}$, z=x+iy, onde $i=\sqrt{-1}$.

Vamos trabalhar com a seguinte função complexa:

$$f(z) = z^4 + 1 = 0, z \in \mathbb{C}$$

as raízes dessa equação são

$$\cos\left(\frac{\pi}{4}(2n+1)\right) + i\sin\left(\frac{\pi}{4}(2n+1)\right), \quad n = 0, 1, 2, 3$$

Vamos usar a fórmula de Euler

$$e^{ix} = \cos x + i\sin x$$

Vamos usar o método de Newton para gerar alguns fractais. Agora iremos trabalhar com funções complexas da variável $z\in\mathbb{C}$, z=x+iy, onde $i=\sqrt{-1}$.

Vamos trabalhar com a seguinte função complexa:

$$f(z) = z^4 + 1 = 0, z \in \mathbb{C}$$

as raízes dessa equação são

$$\cos\left(\frac{\pi}{4}(2n+1)\right) + i\sin\left(\frac{\pi}{4}(2n+1)\right), \quad n = 0, 1, 2, 3$$

Vamos usar a fórmula de Euler

$$e^{ix} = \cos x + i \sin x$$

Para
$$n=0$$
, temos que $\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)=e^{(i\pi/4)}$ então
$$f(e^{(i\pi/4)})=(e^{(i\pi/4)})^4+1=e^{i\pi}+1$$

$$=\cos\left(\pi\right)+i\sin\left(\pi\right)+1$$

$$=-1+0+1=0$$

A ideia básica de gerar o fractal de Newton é a seguinte:

- Escolha uma função complexa como p. ex. $f(z) = z^4 + 1$
- lacktriangle Escolha uma coleção de chutes iniciais z_0 para as raízes
- Execute o método de Newton para cada chute inicial
- Nesse exemplo, cada chute inicial irá convergir para alguma das 4 raízes
- Vamos colorir cada chute inicial no plano com uma cor, a qual estará associada com a raiz que aquele chute inicial convergiu
- O brilho da cor irá depender do número de iterações para convergir

Para ilustrar o algoritmo, iremos apresentar uma implementação em Python, usando a biblioteca PIL para manipular e criar imagens.

```
from PIL import Image
from math import *
delta = 1.0e-6 # precisao
res = 500  # tamanho da imagem (qto menor mais rapido)
                 # numero de iteracoes (qto mais alto, mais brilho)
iters = 30
# area para desenhar (-1,-1) a (1,1)
xa, xb = -1.0, 1.0
va, vb = -1.0, 1.0
# cria uma imagem para pintar, incialmente toda preta
img = Image.new("RGB", (res, res), (0,0,0))
# calcula soluções de z**4 + 1 = 0
solutions = [\cos((2*n+1)*pi/4)+1j*\sin((2*n+1)*pi/4) \text{ for n in range}(4)]
colors = [(1,0,0), (0,1,0), (0,0,1), (1,1,0)]
# continua ...
```

```
# loop sobre as partes real/imaginaria para usar como chute inicial
for re in range(0, res):
    zx = re * (xb - xa) / (res - 1) + xa
   for im in range(0,res):
        zy = im * (yb - ya) / (res - 1) + ya
        z = complex(zx, zy)
        for i in range(iters): # metodo de Newton
            try:
                z = (z**4+1)/(4*z**3)
            except ZeroDivisionError:
                continue
            if (abs(z**4+1) < delta): break
        # brilho eh funcao do numero de iterações
        color_depth = int(iters-i)*255.0/iters
        # encontra para qual solucao este chute inicial convergiu
        err = [abs(z-root) for root in solutions]
        distances = zip(err, range(len(colors)))
        # seleciona a cor associada com a solução
        color = [int(i*color_depth) for i in colors[min(distances)[1]]]
        img.putpixel((re,im), tuple(color))
                                                                         155 / 156
```

Exemplo: $f(z)=z^4+1$ em $[-1,-1]\times[1,1].$

