101'95 Wires and Switches

โจทย์ตั้งต้น (ในการส่งให้ใช้ library ดังจะอธิบายในด้านหลัง)

Figure 1: Cable with three wires and three switches

In Figure 1, a cable with three wires connects side A to side B. On side A, the three wires are labeled 1, 2, and 3. On side B, wires 1 and 3 are connected to switch 3, and wire 2 is connected to switch 1.

In general, the cable contains m wires (1<=m<=90), labeled 1 through m on side A, and there are m switches on side B, labeled 1 through m. Each wire is connected to exactly one of the switches. Each switch can be connected to zero or more wires.

Measurements

Your program has to determine how the wires are connected to the switches by doing some measurements. Each switch can be made either conducting or non-conducting. Initially all switches are non-conducting. A wire can be tested on side A with probe P: Lamp L will light up if and only if the sensed wire is connected to a conducting switch.

Your program begins by reading one line with the number *m* from standard input. It then can give three kinds of commands by writing a line to *standard output*. Each command starts with a single uppercase letter: T (Test a wire), C (Change a switch), and D (Done). Command T is followed by a wire label, C by a switch label, and D by a list whose i-th element is the label of the switch to which wire i is connected.

After commands T and C, your program should read one line from *standard input*. Command T returns Y (Yes) when the wire's switch is conducting (the lamp lights up), otherwise it returns N (No). Command C returns Y if the new switch state is conducting, and N otherwise. The effect of command C is to change the state of the switch (if it was conducting then it will be non-conducting afterwards and vice versa); the result is returned just for feedback.

Your program may give commands T and C mixed in any order. Finally, it gives command D and terminates. Your program should give no more than nine hundred (900) commands in total.

Example

Figure 2 presents an example conversation involving 8 commands relating to Figure 1.

Standard Output	Standard Input
	3
C 3	Y
T 1	Y
T 2	N
T 3	Y
C 3	N
C 2	Y
T 2	N
D 3 1 3	
l	

Figure 2: Example conversation

ไลบรารี https://theory.cpe.ku.ac.th/~jittat/ioi/2017/wirelib/wirelib.zip

ให้ include "wirelib.h" และในการคอมไพล์ให้เพิ่ม wirelib.cpp เข้าไปด้วย ตอนส่งให้ส่งเฉพาะ โปรแกรมหลัก (ไม่ต้องส่ง wirelib.h และ wirelib.cpp)

คำสั่งใน wirelib:

- int wire_init() เรียกหนึ่งครั้งเพื่ออ่านค่า m
- bool cmd_T(int w) ส่งคำสั่ง T (ค่าที่คืนมาเป็น true/false)
- bool cmd_C(int s) ส่งคำสั่ง C (ค่าที่คืนมาเป็น true/false)
- void cmd_D(int sol[]) ส่งคำสั่ง D และจบการทำงาน ให้ sol ให้ระบุคำตอบ โดย สำหรับ i=1,2,3, ...,m ค่าใน sol[i] แทนหมายเลข switch ที่ wire i เชื่อมต่อด้วย สังเกตว่าอาร์เรย์เริ่มเก็บข้อมูลที่ช่อง ที่ 1

การทดสอบด้วยตนเอง: wirelib จะอ่านข้อมูลจาก standard input ในรูปแบบดังนี้
บรรทัดแรกระบุ m จากนั้นอีก m บรรทัดระบุหมายเลขสวิทซ์ที่สายแต่ละเส้นเชื่อมต่อ