Ортогонализация. Изоморфизъм на евклидови пространства.

Следващата теореама дава конкретен метод за построяване на ортогонална система от вектори на базата на произволна система линейно независими вектори.

Теорема(метод за ортогонализация на Грам-Шмид). Нека V е евклидово пространство и a_1, a_2, \ldots, a_n е линейно независима система вектори от V. Тогава съществува система вектори e_1, e_2, \ldots, e_n , такива че

- $1. e_1, e_2, \ldots, e_n$ са всичките ненулеви,
- $2. \ e_1, e_2, \ldots, e_n$ са ортогонална (а оттам и линейно независима) система.
 - 3. Всеки вектор e_k , k = 1, 2, ..., n има вида

$$e_k = a_k + \nu_1 e_1 + \nu_2 e_2 + \dots + \nu_{k-1} e_{k-1}$$

з a числа $\nu_i \in \mathbb{R}$,

- 4. $\ell(a_1, a_2, \dots, a_k) = \ell(e_1, e_2, \dots, e_k)$ so $k = 1, 2, \dots, n$,
- 5. Ако за някое $k: 1 \le k \le n, a_1, a_2, \dots, a_k$ е ортогонална система, то $e_1 = a_1, e_2 = a_2, \dots, e_k = a_k$.

Доказателство. По индукция.

Стъпка 1: Избираме $e_1 = a_1$. Тогава:

- $1. e_1 \neq o$, защото $e_1 = a_1$, а a_1 образува линейно независима система и следователно е ненулев,
 - $2. e_1$ е ортогонална система, т.к. се състои само от един вектор,

3. Изпълнено е

$$e_1=a_1,$$

- 4. Очевидно $\ell(e_1) = \ell(a_1)$,
- 5. Системата a_1 се състои от един вектор, следователно е ортогонална и $e_1=a_1$ е изпълнено по построение.

Стъпка 2: Търсим вектор e_2 във вида

$$e_2 = a_2 + \lambda e_1$$

за реално число λ , което ще определим.

- 1. Ако допуснем, че $e_2 = o$, то получаваме $a_2 + \lambda e_1 = a_2 + \lambda a_1 = o$, което означава, че векторите a_1, a_2 са линейно зависими. Това е противоречие и следователно $e_2 \neq o$.
 - 2. За да бъде системата e_1, e_2 ортогонална трябва

$$(e_1, e_2) = 0.$$

Това последователно дава

$$(e_1, a_2 + \lambda e_1) = 0,$$

 $(e_1, a_2) + \lambda \underbrace{(e_1, e_1)}_{\neq 0} = 0,$
 $\lambda = -\frac{(e_1, a_2)}{(e_1, e_1)}.$

Следователно при тази стойност на λ системата е ортогонална.

- 3. Автоматично е изпълнено от вида, в който търсихме и определихме вектора e_2 .
- 4. $e_1=a_1$ и $e_2=a_2+\lambda a_1$ и следователно $e_1,e_2\in\ell(a_1,a_2)$. От друга страна $a_1=e_1$ и $a_2=e_2-\lambda e_1$ и следователно $a_1,a_2\in\ell(e_1,e_2)$. Така $\ell(e_1,e_2)=\ell(a_1,a_2)$.
- 5. Ако a_1,a_2 е ортогонална система, то имаме $e_1=a_1$ и $e_2=a_2+\lambda e_1=a_2-\frac{(e_1,a_2)}{(e_1,e_1)}e_1=a_2-\frac{(a_1,a_2)}{(a_1,a_1)}a_1=a_2-\frac{0}{(a_1,a_1)}a_1=a_2-0.a_1=a_2.$

И така нататък...

<u>Стъпка k</u>: Нека вече са намерени вектори $e_1, e_2, \ldots, e_{k-1}$, удовлетворяващи условията 1.-5. Търсим вектор e_k във вида

$$e_k = a_k + \nu_1 e_1 + \nu_2 e_2 + \dots + \nu_{k-1} e_{k-1},$$

където $\nu_i, i = 1, 2, \dots, k-1$ са реални числа, които ще определим.

- 1. Т.к.всеки от векторите $e_j, j=1,2,\ldots,k-1$ е линейна комбинация на векторите a_i за $i=1,2,\ldots,j$, то от вида, в който търсим вектора e_k следва, че допускането $e_k=o$ води до анулиране на линейна комбинация на векторите a_1,a_2,\ldots,a_k с коефициент $1\neq 0$ пред вектора a_k . Това би означавало, че векторите a_1,a_2,\ldots,a_k са линейно зависими, което е противоречие. Следователно $e_k\neq o$.
- 2. Т.к. векторите $e_1, e_2, \ldots, e_{k-1}$ вече образуват ортогонална система, остава e_k да е ортогонален на всеки от тях. Това означава за всяко $i = 1, 2, \ldots, k-1$ да е изпълнено $(e_k, e_i) = 0$. Това ни дава

$$(a_k + \nu_1 e_1 + \nu_2 e_2 + \dots + \nu_{k-1} e_{k-1}, e_i) = 0,$$

$$(a_k, e_i) + \nu_1 \underbrace{(e_1, e_i)}_{=0} + \dots + \nu_i \underbrace{(e_i, e_i)}_{\neq 0} + \dots + \nu_{k-1} \underbrace{(e_{k-1}, e_i)}_{=0} = 0,$$

откъдето за всяко $i=1,2,\ldots,k-1$ намираме, че $\nu_i=-\frac{(a_k,e_i)}{(e_i,e_i)}$. При така намерените стойности на ν_i системата е ортогонална.

- 3. Автоматично е изпълнено от вида, в който търсихме и определихме вектора e_k .
 - 4. Доказва се аналогично на случая k=2.
- 5. Нека a_1, a_2, \ldots, a_k е ортогонална система. Тогава системата $a_1, a_2, \ldots, a_{k-1}$ също е ортогонална и според индукционното предположение имаме, че $e_1 = a_1, e_2 = a_2, \ldots, e_{k-1} = a_{k-1}$. Тогава

$$\nu_i = -\frac{(a_k, e_i)}{(e_i, e_i)} = -\frac{(e_k, e_i)}{(e_i, e_i)} = -\frac{0}{(e_i, e_i)} = 0$$

за всяко $i=1,2,\ldots,k-1$ и следователно $e_k=a_k.$

Според принципа на математическата индукция теоремата е доказана и след n на брой стъпки изчерпваме векторите a_1, a_2, \ldots, a_n и получаваме новите вектори e_1, e_2, \ldots, e_n , които изпълняват свойствата 1.-5.

Твърдение 1. Нека евклидовото пространство V е крайномерно. Тогава

- (i) Всяка ортогонална система от ненулеви вектори може да се допълни до ортогонален базис на пространството,
 - (ii) V има ортонормиран базис.

Доказателство. (i) Нека $\dim V = n$. Ако $a_1, a_2, \ldots, a_m \in V$ е ортогонална система ненулеви вектори, то a_1, a_2, \ldots, a_m е линейно независима система и $m \leq n$. В такъв случай съществуват вектори $a_{m+1}, \ldots, a_n \in V$ (при m < n), така че $a_1, \ldots, a_m; a_{m+1}, \ldots, a_n$ да са базис на V. По метода на Грам-Шмид получаваме векторите $e_1, \ldots, e_m; e_{m+1}, \ldots, e_n$, които са ортогонална система и следователно образуват базис на V. При това, т.к. по условие векторите a_1, a_2, \ldots, a_m бяха ортогонални, то $e_1 = a_1, \ldots, e_m = a_m$ и така векторите $a_1, \ldots, a_m; e_{m+1}, \ldots, e_n$ образуват ортогонален базис на V.

(ii) Нека $a_1 \in V, \ a_1 \neq o$. Тогава a_1 е ортогонална система и според (i) съществува ортогонален базис a_1, e_2, \ldots, e_n на V. Нека $f_1 = \frac{1}{|a_1|} a_1$ и $f_i = \frac{1}{|e_i|} e_i$ за $i=2,3,\ldots,n$. Така f_1,f_2,\ldots,f_n е ортонормиран базис на V.

Нека V и V' са евклидови пространства, а $\varphi:V\longrightarrow V'$ е изображение. Изображението φ е изоморфизъм на евклидови пространства, ако φ е изоморфизъм на V и V' като линейни пространства над $\mathbb R$ и $(\varphi(x),\varphi(y))=(x,y)$ за всеки два вектора $x,y\in V$. Означаваме $V\cong V'$.

Твърдение 2. Две крайномерни евклидови пространства V и V' са изоморфни тогава и само тогава, когато $\dim V = \dim V'$.

Доказателство. Необходимост: Ако $V \cong V'$, то V и V' са изоморфни и като линейни пространства (над \mathbb{R}) и следователно dim $V = \dim V'$.

Достатъчност: Нека $\dim V = \dim V' = n$. Нека e_1, e_2, \dots, e_n е ортонормиран базис на V, а e'_1, e'_2, \dots, e'_n е ортонормиран базис на V'. Знаем, че изображението

$$\varphi: V \longrightarrow V',$$

дефинирано с

$$\varphi(\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n) = \lambda_1 e'_1 + \lambda_2 e'_2 + \dots + \lambda_n e'_n$$

е изоморфизъм на V и V' като линейни пространства над \mathbb{R} . Остава да проверим, че φ запазва скаларното произведение. Наистина, за произволни вектори $x=\mu_1e_1+\mu_2e_2+\cdots+\mu_ne_n\in V$ и $y=\nu_1e_1+\nu_2e_2+\cdots+\nu_ne_n\in V$ имаме, че

$$(x,y) = \mu_1 \nu_1 + \mu_2 \nu_2 + \dots + \mu_n \nu_n.$$

Сега, понеже $\varphi(x)=\mu_1e_1'+\mu_2e_2'+\cdots+\mu_ne_n'\in V'$ и $\varphi(y)=\nu_1e_1'+\nu_2e_2'+\cdots+\nu_ne_n'\in V'$ е ясно, че

$$(\varphi(x), \varphi(y)) = \mu_1 \nu_1 + \mu_2 \nu_2 + \dots + \mu_n \nu_n = (x, y).$$

Следователно φ е изоморфизъм на евклидови пространства, т.е. $V\cong V'$.

За произволно $n \in \mathbb{N}$ линейното пространство \mathbb{R}^n над \mathbb{R} е също и n-мерно евклидово пространство. Според Твърдение 2 всяко n-мерно евклидово пространство е изоморфно на \mathbb{R}^n , т.е. съществува единствено, с точност до изоморфизъм, n-мерно евклидово пространство, а именно \mathbb{R}^n .