Vlastnosti algoritmů

5 kritérií

<u>Konečnost</u> – každý algoritmus musí skončit v konečném počtu kroků. každý vstup musí být konečný.

Obecnost – Neřeší jeden konkrétní problém, ale obecnou třídu podobných problémů

<u>Determinovanost</u> – každý krok musí být jednoznačně a přesně definován

<u>Výstup</u> – má alespoň jeden výstup, veličinu, která je v požadovaném vztahu k zadaným vstupům

Elementárnost – skládá se z konečného počtu jednoduchých kroků

Metody návrhu

<u>Shora dolů</u> – postup řešení rozkládáme na jednodušší operace, až dospějeme k jednoduchým krokům

Kreslení vývojových diagramů

	Konec a začátek algoritmu
	Běžný příkaz
	Podmínka
	Cyklus s počtem opakování
	Cyklus s podmínkou na začátku, cyklus s podmínkou na konci
	Zobrazení výstupů
	Podprogram
$\bigcirc \downarrow$	Spojovací značka, spojovací čára

Určení vhodných datových typů

<u>Ordinální datové typy</u> – hodnoty jsou seřazeny podle velikosti od nejmenšího po největší, zasílá se tedy hodnota po hodnotě.

Celé číslo – int - %d

Znak - char - %c

<u>Neordinální datové typy</u> – u těchto hodnot nelze určit velikost, tudíž se zasílají všechny hodnoty najednou.

<u>Desetinné číslo</u> – float - %f

<u>Textový řetězec</u> – char [] - %s

<u>Logická hodnota</u> – nabývá hodnot true a false. Jazyk C tento typ nedefinuje (používá se hodnota 0 a 1).

Proměnná – hodnota, která se může měnit během programu

Konstanta – hodnota, která je jasně daná na začátku programu, nemůže být měněna

Ošetření vstupních dat

Algoritmus musí být správný pro všechna přípustná data. Neexistuje univerzální metoda ověření, správnost lze dokázat matematicky sledem kroků vedoucích ke správnému výsledku. Důležitá je také kontrola chyb a ošetření špatných vstupních hodnot s upozorněním a zastavením programu, dokud chyba není opravena.

<u>Algoritmus</u>

Přesný postup / návod, jak vyřešit daný typ úlohy pomocí grafických symbolů.

Zdrojový kód

Soubor obsahující instrukce. Před jeho spuštěním musí být kompilován.

Spustitelný kód

Již přeložený (kompilovaný) zdrojový kód.