Assignment 1: N-grams and Misspelling Correction Report ELL884

Animesh Lohar - 2024EET2368

1 Introduction

This report details the implementation of an n-gram language model and its application to a probabilistic misspelling error correction system. The system comprises several components: a basic n-gram class, various smoothing techniques, and a noisy-channel model for misspelling correction. The report covers the implementation details of each component, performance analysis, text generation examples, and an explanation of the misspelling correction model.

2 Code Overview

The project is structured into several Python files:

- config.py: Defines all hyperparameters used in the implementation.
- ngram.py: Implements the base n-gram class (NGramBase).
- smoothing_classes.py: Implements different smoothing techniques.
- spelling_corrector.py: Implements the misspelling error correction system.
- main.py: Main script to load data, train the models, and evaluate the system.

2.1 config.py

This file defines the hyperparameters used throughout the project. Key configurations include:

- ngrams: Defines the order of the n-gram model (e.g., {"order": 3}).
- Smoothing technique configurations:
 - no_smoothing: Configuration for no smoothing.
 - add_k: Configuration for Add-k smoothing (e.g., {'k': 1.0}).
 - stupid_backoff: Configuration for Stupid Backoff smoothing (e.g., {'alpha': 0.4}).
 - good_turing: Configuration for Good Turing smoothing.
 - interpolation: Configuration for Interpolation smoothing (e.g., {'lambdas': [0.7, 0.3]}).
 - kneser_ney: Configuration for Kneser-Ney smoothing (e.g., {'discount': 0.75}).
- error_correction: Configuration for the misspelling error correction model, including the internal n-gram configuration and error model parameters.
- additional_hyperparameters: Other hyperparameters, such as the rare word threshold.

2.2 ngram.py - NGramBase Class

The NGramBase class provides the foundation for building n-gram language models.

- __init__(self, n: int = 2, lowercase: bool = True, remove_punctuation: bool = True):
 - Initializes the n-gram model with the specified order n, whether to convert text to lowercase, and whether to remove punctuation.
 - self.ngram_counts: A defaultdict(int) to store the counts of each n-gram.
 - self.context_counts: A defaultdict(int) to store the counts of each n-gram context (n-1 gram).
 - self.total_counts: Stores the total number of n-grams seen during training.
- method_name(self) -> str: Returns the name of the method.
- fit(self, data: List[List[str]]) -> None:
 - Takes a list of tokenized sentences as input.
 - Iterates through each sentence and counts the occurrences of each n-gram and its context.
 - Populates self.ngram_counts and self.context_counts.
- tokenize(self, text: str) -> List[str]:
 - Splits the input text into sentences based on periods and question marks.
- prepare_data_for_fitting(self, data: List[str], use_fixed = True) -> List[List[str]]:
 - Prepares the raw text data into a format suitable for fitting the model.
 - Applies preprocessing and tokenization steps.
- update_config(self, config) -> None:
 - Updates the current configuration of the class.
- preprocess(self, text: str) -> str:
 - Converts the input text to lowercase.
- fixed_preprocess(self, text: str) -> str:
 - Converts the input text to lowercase and removes punctuation.
- fixed_tokenize(self, text: str) -> List[str]:
 - Splits the input text into tokens based on whitespace.
- perplexity(self, text: str) -> float:
 - Calculates the perplexity of the given text based on the n-gram model.
 - Tokenizes and preprocesses the text.
 - Calculates the probability of each n-gram in the text.
 - Returns the perplexity score.
- probability(self, ngram: Tuple[str, ...]) -> float:
 - Calculates the probability of a given n-gram.
 - Uses the counts stored in self.ngram_counts and self.context_counts to estimate the probability.

2.3 smoothing_classes.py - Smoothing Techniques

This file implements various smoothing techniques as subclasses of NGramBase.

- NoSmoothing(NGramBase): Implements raw MLE estimation without any smoothing.
 - probability(self, ngram: Tuple[str, ...]) -> float: Returns the raw MLE probability of the given n-gram.
- AddK(NGramBase): Implements Add-k smoothing.
 - __init__(self, n: int = 2, k: float = 1.0, lowercase: bool = True, remove_punctuation: bool = True): Initializes the AddK smoothing with the specified k value.
 - fit(self, data: List[List[str]]) -> None: Fits the model to the data and calculates
 the vocabulary size.
 - probability(self, ngram: Tuple[str, ...]) -> float: Returns the Add-k smoothed probability of the given n-gram.
- StupidBackoff(NGramBase): Implements Stupid Backoff smoothing.
 - __init__(self, n: int = 2, lowercase: bool = True, remove_punctuation: bool = True, alpha: float = 0.4): Initializes the Stupid Backoff smoothing with the specified alpha value.
 - fit(self, data: List[List[str]]) -> None: Fits the model to the data and calculates
 the unigram counts.
 - probability(self, ngram: tuple) -> float: Returns the Stupid Backoff smoothed probability of the given n-gram.
- GoodTuring(NGramBase): Implements Good Turing smoothing.
 - fit(self, data: List[List[str]]) -> None: Fits the model to the data and calculates the n-gram count distribution.
 - probability(self, ngram: Tuple[str, ...]) -> float: Returns the Good Turing smoothed probability of the given n-gram.
- Interpolation(NGramBase): Implements Interpolation smoothing.
 - __init__(self, n: int = 2, lambdas: Tuple[float] = (0.5, 0.5), lowercase: bool = True, remove_punctuation: bool = True): Initializes the Interpolation smoothing with the specified lambdas values.
 - probability(self, ngram: Tuple[str, ...]) -> float: Returns the Interpolation smoothed probability of the given n-gram.
- KneserNey(NGramBase): Implements Kneser-Ney smoothing.
 - __init__(self, n: int = 2, discount: float = 0.75, lowercase: bool = True, remove_punctuate bool = True): Initializes the Kneser-Ney smoothing with the specified discount value.
 - fit(self, data: List[List[str]]) -> None: Fits the model to the data and calculates the unigram counts and continuation counts.
 - probability(self, ngram: Tuple[str, ...]) -> float: Returns the Kneser-Ney smoothed probability of the given n-gram.

2.4 spelling_corrector.py - SpellingCorrector Class

The SpellingCorrector class implements the misspelling error correction system.

- __init__(self):
 - Initializes the spelling corrector by loading the configuration and initializing the internal n-gram model based on the specified smoothing technique.

- self.word_probabilities: A defaultdict(float) to store the probabilities of each word in the training data.
- self.error_probabilities: A defaultdict(lambda: defaultdict(float)) to store the error probabilities between misspelled words and correct words.
- fit(self, data: List[str]) -> None:
 - Fits the n-gram model and the error model to the training data.
- fit_error_model(self, data: List[str]) -> None:
 - Estimates the error probabilities based on the common typos defined in the configuration and the word frequencies in the training data.
- candidates(self, word: str) -> List[str]:
 - Generates a list of candidate corrections for the given word based on the error model.
- correct(self, text: List[str]) -> List[str]:
 - Corrects the misspelled words in the input text based on the n-gram model and the error model.
 - Uses a noisy-channel approach to select the best candidate correction.

2.5 main.py

The main.py script orchestrates the entire process.

- load_data(file_path: str) -> List[str]: Loads data from a text file.
- load_misspelling_data(file_path: str) -> List[Tuple[str, str]]: Loads misspelling data from a file.
- main():
 - Loads the training data and misspelling data.
 - Initializes the SpellingCorrector.
 - Trains the spelling corrector.
 - Evaluates the spelling corrector on the misspelling data.
 - Writes the incorrect corrections to "output.txt".

3 Performance Analysis

Due to the lack of explicit evaluation code in the provided files (e.g., a dedicated perplexity evaluation loop or accuracy calculation on a held-out set), a comprehensive performance analysis is challenging. However, we can discuss potential evaluation strategies and expected trends.

- Perplexity Measurements: Perplexity can be used to evaluate the language model's performance. Lower perplexity indicates better performance.
 - N-value Impact: Increasing the n-gram order (n) typically reduces perplexity on the training data, as the model captures more context. However, it can also lead to overfitting and increased perplexity on unseen data.
 - Smoothing Technique Impact: Smoothing techniques are crucial for improving the generalization performance of n-gram models. Techniques like Kneser-Ney and Good-Turing typically outperform simpler techniques like Add-k smoothing.
- Error Correction Accuracy: The accuracy of the misspelling correction system can be measured as the percentage of misspelled words that are correctly corrected.
 - The current main.py calculates and output this metric to the terminal.

4 Text Generation Examples

The provided code does not include explicit text generation functionality. However, an n-gram model can be used to generate text by sampling the next word based on the probabilities predicted by the model

Example (Based on the output.txt line):

- Input (Incorrect Text): they ran away to get married in a little country called lawton was a huge house with seventeen rooms and in it lived mother father maids and four children the eldest was jenny who was 18 years of age she had 3 other brothers and sisters who were all under the age of 12 jenny had a boyfriend who live a few yards a way from her his name was johnny he was 20 years of age
- Output (Corrected Text): they ran away to get married in a little country called lawton was a huge house with seventeen rooms and in it lived mother father maids and four children the eldest was jenny who was 18 years of age she had 3 other brothers and sisters who were all under the age of 12 jenny had a boyfriend who live a few yards a way from her his name was johnny he was 20 years of age

5 Misspelling Correction Model Explanation

The misspelling correction model implemented in the SpellingCorrector class uses a noisy-channel approach:

$$\text{Corrected Word} = \underset{\text{candidate}}{\operatorname{argmax}} \ P(\text{candidate}) \cdot P(\text{word} \mid \text{candidate})$$

Where:

- candidate is a possible correction for the misspelled word.
- P(candidate) is the language model probability of the candidate word in its context.
- $P(\text{word} \mid \text{candidate})$ is the error model probability of observing the misspelled word given that the correct word is the candidate.

5.1 Error Model

The error model estimates the probability that a given word is misspelled and quantifies the likelihood of specific typo-to-correction transitions.

- Implementation: The fit_error_model method in SpellingCorrector estimates error probabilities based on error_correction['error_model']['common_typos'] in config.py. It assigns a fixed typo_probability to common typos and calculates word probabilities from the training data.
- Limitations: The current error model is quite basic and only considers a limited set of common typos.

5.2 Candidate Generation Strategy

The candidates method generates a list of candidate corrections for a given word.

- Implementation: The current implementation retrieves candidates directly from the self.error_probabilities dictionary, which is populated during error model fitting. If the word is not in self.error_probabilities, it returns the original word as the only candidate.
- Limitations: The candidate generation strategy is limited to the typos explicitly defined in config.py.

5.3 Combination and Evaluation

The correct method combines the language model probability and the error model probability to select the best candidate correction.

- Combination: The language model probability is obtained from the internal n-gram model (self.internal_ngram.probability(ngram)). The error model probability is obtained from self.error_probabilities. These probabilities are multiplied together to obtain a score for each candidate.
- Selection: The candidate with the highest score is selected as the corrected word.
- Evaluation: The main.py prints the incorrect corrections to the terminal.

6 Conclusion

The implemented n-gram language model and misspelling correction system provide a foundation for further development. Future work could focus on:

- Implementing more sophisticated error models (e.g., based on edit distance).
- Improving the candidate generation strategy (e.g., using a dictionary or phonetic similarity).
- Adding more comprehensive evaluation metrics.
- Implementing text generation functionality.