طراحی الگوریتم ها (CE221)

جلسه ششم: مرتب سازی سریع

> سجاد شیرعلی شهرضا بهار 1401 *دوشنبه، 2 اسفند 1400*

اطلاع رساني

بخش مرتبط کتاب برای این جلسه: 5

مرتب سازی سریع

یک نمونه واقعی و کاربردی از الگوریتم های تصادفی

QUICKSORT OVERVIEW

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

 $O(n^2)$

QUICKSORT OVERVIEW

EXPECTED RUNNING TIME

O (n log n)

WORST-CASE RUNNING TIME

 $O(n^2)$

In practice, it works great! It's competitive with MergeSort (& often better in some contexts!), and it runs *in place* (no need for lots of additional memory)

Let's use DIVIDE-and-CONQUER again!

Select a pivot at random

Partition around it

Recursively sort L and R!

Select a pivot

Select a pivot

3 2 7 6 1 5 4 8

Pick this pivot uniformly at random!

Partition around it

Partition around pivot: L has elements less than pivot, and R has elements greater than pivot.

Select a pivot

Partition around it

Recurse!

Select a pivot

Partition around it

Recurse!

QUICKSORT: PSEUDO-PSEUDOCODE

```
QUICKSORT(A):
    if len(A) <= 1:</pre>
        return
    pivot = random.choice(A)
    PARTITION A into:
        L (less than pivot) and
        R (greater than pivot)
    Replace A with [L, pivot, R]
    QUICKSORT(L)
    QUICKSORT(R)
```

RECURRENCE RELATION

```
QUICKSORT(A):
    if len(A) <= 1:
        return
    pivot = random.choice(A)
    PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
    Replace A with [L, pivot, R]
    QUICKSORT(L)
    QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

IDEAL RUNTIME?

```
QUICKSORT(A):
    if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

In an ideal world, the pivot would split the array exactly in half, and we'd get:

$$T(n) = T(n/2) + T(n/2) + O(n)$$

IDEAL RUNTIME?

```
Recurrence Relation for
QUICKSORT(A):
                                                  QUICKSORT
    if len(A) <= 1:
        return
                         In an ideal world:
                                                      + T(|R|) + O(n)
    pivot = random
                                                      T(1) = O(1)
    PARTITION A ir
                       T(n) = 2 \cdot T(n/2) + O(n)
        L (less th
                          T(n) = O(n \log n)
        R (greater
                                                      the pivot would split the
    Replace A with LL, pivot, KJ
                                            array exactly in half, and we'd get:
    QUICKSORT(L)
                                         T(n) = T(n/2) + T(n/2) + O(n)
    QUICKSORT(R)
```

WORST-CASE RUNTIME

```
QUICKSORT(A):
    if len(A) <= 1:
        return
    pivot = random.choice(A)
    PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
    Replace A with [L, pivot, R]
    QUICKSORT(L)
    QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

WORST-CASE RUNTIME

```
QUICKSORT(A):
    if len(A) <= 1:
        return
   pivot = random.choice(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
   QUICKSORT(L)
   QUICKSORT(R)
```

Recurrence Relation for QUICKSORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

With the unluckiest randomness, the pivot would be either min(A) or max(A):

$$T(n) = T(0) + T(n-1) + O(n)$$

WORST-CASE RUNTIME

```
Recurrence Relation for
QUICKSORT(A):
                                                    QUICKSORT
    if len(A) \ll 1:
        return
                 With the worst "randomness"
                                                           T(|R|) + O(n)
    pivot = ra
                                                            = O(1)
    PARTITION
                          T(n) = T(n-1) + O(n)
        L (less
                              T(n) = O(n^2)
        R (grea
                                                           domness, the pivot
                          (recursion tree/table or substitution method!)
    Replace A w.
                                                          nin(A) or max(A):
    QUICKSORT(L)
                                            T(n) = T(0) + T(n-1) + O(n)
    QUICKSORT(R)
```


AN **INCORRECT** PROOF:

AN **INCORRECT** PROOF:

• E[|L|] = E[|R|] = (n-1)/2

AN ASIDE: why is E[|L|] = (n-1)/2?

$$E[|L|] = E[|R|]$$
 (by symmetry)

$$E[|L| + |R|] = n - 1$$

(because L and R make up everything except the pivot)

$$E[|L|] + E[|R|] = n - 1$$

(by linearity of expectation)

$$2 \cdot E[|L|] = n - 1$$

(plugging the first line)

$$E[|L|] = (n - 1)/2$$
(Solving for E[|L|])

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).
- Therefore, the expected running time is O(n log n)!

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).
- Therefore, the expected running time is O(n log n)!

Why is this wrong?

Well, for starters, we can use the exact same argument to prove something false...

```
SLOW SORT(A):
   if len(A) <= 1:</pre>
       return randomly choose either!
   pivot = either max(A) OR min(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
    SLOW SORT(L)
    SLOW SORT(R)
```

```
SLOW SORT(A):
   if len(A) <= 1:
       return
                      randomly choose either!
   pivot = either max(A) or min(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
   SLOW SORT(L)
   SLOW SORT(R)
```

Recurrence Relation for SLOW SORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

```
SLOW SORT(A):
   if len(A) <= 1:
       return
                      randomly choose either!
   pivot = either max(A) or min(A)
   PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
   Replace A with [L, pivot, R]
    SLOW SORT(L)
    SLOW SORT(R)
```

Recurrence Relation for SLOW SORT

$$T(n) = T(|L|) + T(|R|) + O(n)$$

 $T(0) = T(1) = O(1)$

Same recurrence relation!

We also still have:

$$E[|L|] = E[|R|] = (n-1)/2$$

But now, one of |L| or |R| is always n-1 & the runtime is $\Theta(n^2)$, with probability 1

SLOW SORT(A): if len(A) return pivot = e**PARTITION** L (les R (gre Replace A **SLOW SORT** SLOW SORT (R)

Recurrence Relation for SORT

We could use the exact same (incorrect) proof to prove that **SLOWSort** has expected runtime **O(n log n)**, when it actually has expected runtime of $\Theta(n^2)$...

ll have:] = (n-1)/2

& the runtime is ⊖(n²), with probability 1

AN **INCORRECT** PROOF:

- E[|L|] = E[|R|] = (n-1)/2
- If this occurs, then T(n) = T(|L|) + T(|R|) + O(n) could be written as T(n) = 2T(n/2) + O(n).
- Therefore, the expected running time is O(n log n)!

Why is this wrong?

AM

Basically:

E[f(x)] is *not necessarily* the same as f(E[x])

e.g. $E[X^2]$ is not the same as $(E[X])^2$

We were reasoning about T(E[x]) instead of E[T(x)]

wny is this wrong:

Instead, to prove that the expected runtime of QuickSort is O(n log n), we're going to count the **number of comparisons** that this algorithm performs, and take the expectation of that!

How many times are any two items compared?

امید ریاضی زمان اجرای مرتب سازی سریع

راه حل درست: تعداد مورد انتظار مقایسه دو عنصر با همدیگر چند بار است؟

HOW MANY COMPARISONS?

HOW MANY COMPARISONS?

Everything is compared to 5 once in this first step... and then never again with **5**.

Everything is compared to 5 once in this first step... and then never again with **5**.

Everything is compared to 5 once in this first step... and then never again with **5**.

Everything is compared to 5 once in this first step... and then never again with **5**.

Only 1, 3, & 4 are compared to **2**.

And only 7 & 8 are compared with **6**.

No comparisons ever happen between two numbers on opposite sides of 5.

Seems like whether or not two elements are compared has something to do with pivots...

Everything is compared to 5 once in this first step... and then never again with **5**.

Only 1, 3, & 4 are compared to **2**.

And only 7 & 8 are compared with **6**.

No comparisons ever happen between two numbers on opposite sides of 5.

Each pair of elements is compared either **0** or **1** times.

Let $\mathbf{X}_{\mathbf{a},\mathbf{b}}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$

if **a** and **b** are compared

$$X_{a,b} = 0$$

otherwise

Each pair of elements is compared either **0** or **1** times.

Let $\mathbf{X}_{\mathbf{a},\mathbf{b}}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$
 if **a** and **b** are compared

$$X_{a,b} = 0$$
 otherwise

In our example, $\mathbf{X}_{2,5}$ took on the value **1** since **2** and **5** were compared. On the other hand, $\mathbf{X}_{3,7}$ took on the value **0** since **3** and **7** are *not* compared.

Each pair of elements is compared either **0** or **1** times.

Let $\mathbf{X}_{\mathbf{a},\mathbf{b}}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$

 $X_{a,b} = 1$ if **a** and **b** are compared $X_{a,b} = 0$ otherwise

$$X_{a,b} = 0$$

In our example, $X_{2.5}$ took on the value **1** since **2** and **5** were compared. On the other hand, $X_{3,7}$ took on the value **0** since **3** and **7** are *not* compared.

Total number of comparisons =

$$\mathbb{E}\left[\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}X_{a,b}\right] = \sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}\left[X_{a,b}\right]$$

Each pair of elements is compared either **0** or **1** times.

Let $\mathbf{X}_{\mathbf{a},\mathbf{b}}$ be a Bernoulli/indicator random variable such that:

$$X_{a,b} = 1$$
 if **a** and **b** are compared

otherwise

In our example, $X_{2.5}$ took on the value **1** since **2** and **5** were compared. On the other hand, $X_{3,7}$ took on the value **0** since **3** and **7** are *not* compared.

Total number of comparisons =

$$\mathbb{E}\left[\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}X_{a,b}\right] = \sum_{\substack{\text{by linearity of}\\ \text{expectation!}}}^{n-2}\sum_{a=0}^{n-1}\sum_{b=a+1}^{n-1}\mathbb{E}\left[X_{a,b}\right]$$

$$\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}$$

We need to figure out this value!

So, what's $E[X_{a,b}]$?

$$E[X_{a,b}] = 1 \cdot P(X_{a,b} = 1) + 0 \cdot P(X_{a,b} = 0) = P(X_{a,b} = 1)$$

So, what's $P(X_{a,b} = 1)$? It's the probability that **a** and **b** are compared. Consider this example:

 $P(X_{3,7} = 1)$ is the probability that 3 and 7 are compared.

This is exactly the probability that either 3 or 7 is first picked to be a pivot out of the highlighted entries.

If 4, 5, or 6 get picked as a pivot first, then 3 and 7 would be separated and never see each other again.

So, what's **E[X, L]**?

$$P(X_{a,b} = 1)$$
 aka probability that $a \& b$ are compared

probability that either **a** or **b** are selected as a pivot before elements between **a** and **b**.

$$\frac{2}{\mathbf{b} - \mathbf{a} + 1}$$

So

3

1 2 3 4 5 7 8 If 4, 5, or 6 get picked as a pivot first, then 3 and 7 would be separated and never see each other again.

ıple:

ed.

irst

2S.

Total number of comparisons =

$$\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}ig[X_{a,b}ig]$$

Total number of comparisons =

$$\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}ig[X_{a,b}ig] = \sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}rac{2}{b-a+1}$$

We just computed $E[X_{a,b}] = P(X_{a,b} = 1)$

Total number of comparisons =

$$egin{aligned} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b} = 1)$

Introduce c = b – a to make notation nicer

Total number of comparisons =

$$egin{align} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b} = 1)$

Introduce c = b - a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Total number of comparisons =

$$egin{align} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{1}^{n-1} rac{1}{c+1} \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b} = 1)$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

Total number of comparisons =

$$egin{align} \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{c=1}^{n-1} rac{1}{c+1} \ &\leq 2n \sum_{c=1}^{n-1} rac{1}{c} \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b} = 1)$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

decrease each denominator → we get the harmonic series!

Total number of comparisons =

$$egin{aligned} \sum_{=a+1}^{n-1} \mathbb{E}ig[X_{a,b}ig] &= \sum_{a=0}^{n-2} \sum_{b=a+1}^{n-1} rac{2}{b-a+1} \ &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{c=1}^{n-1} rac{1}{c+1} \ &\leq 2n \sum_{c=1}^{n-1} rac{1}{c} \ &= O(n \log n) \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b} = 1)$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

decrease each denominator → we get the harmonic series!

Total number of comparisons =

$$\sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}\mathbb{E}ig[X_{a,b}ig] = \sum_{a=0}^{n-2}\sum_{b=a+1}^{n-1}rac{2}{b-a+1}$$

If E[# comparisons] = O(n log n), does this mean E[running time] is also O(n log n)?

YES! Intuitively, the runtime is dominated by comparisons.

$$egin{aligned} &= \sum_{a=0}^{n-2} \sum_{c=1}^{n-a-1} rac{2}{c+1} \ &\leq \sum_{a=0}^{n-1} \sum_{c=1}^{n-1} rac{2}{c+1} \ &= 2n \sum_{c=1}^{n-1} rac{1}{c+1} \ &\leq 2n \sum_{c=1}^{n-1} rac{1}{c} \ &= O(n \log n) \end{aligned}$$

We just computed $E[X_{a,b}] = P(X_{a,b} = 1)$

Introduce c = b – a to make notation nicer

Increase summation limits to make them nicer (hence the ≤)

Nothing in the summation depends on a, so pull 2 out

decrease each denominator → we get the harmonic series!

QUICKSORT

```
QUICKSORT(A):
    if len(A) <= 1:
        return
    pivot = random.choice(A)
    PARTITION A into:
       L (less than pivot) and
       R (greater than pivot)
    Replace A with [L, pivot, R]
    OUICKSORT(L)
    OUICKSORT(R)
```

Worst case runtime: **O(n²)**

Expected runtime: O(n log n)

BETTER WORST CASE RUNTIME

- Select a better pivot
 - Ideally, split the array into two equal parts
 - Select the median as pivot
- If the pivot is median, then we will have:
 - \circ T(n) = 2T(n/2) + O(n) = O(n log n)
- How to select the median in O(n)?
 - Will see how to do it next week

مرتب سازی سریع در عمل

چگونگی پیاده سازی (و آیا واقعا کسی از آن استفاده می کند؟)

IMPLEMENTING QUICKSORT

In practice, a more clever approach is used to implement PARTITION, so that the entire QuickSort algorithm can be implemented "in-place" (i.e. via swaps, rather than constructing separate L or R subarrays)

7 2 3 6 1 5 4 8

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

23781546

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

 $\qquad \qquad \Longrightarrow \qquad$

Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

Initialize and

Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

Choose pivot & swap with last element so pivot is at the end.

Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

Initialize and

Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

⇒ so

Increment until it sees something smaller than pivot, **swap** the things ahead of the bars & increment both bars

Repeat until the bar reaches the end, then swap the pivot into the right place.

Choose pivot & swap with last element so pivot is at the end.

IMPLEMENTING QUICKSORT

There's another in-place partition algorithm called Hoare Partition that's even more efficient as it performs less swaps.

(you're not responsible for knowing it in this class)

QUICKSORT vs. MERGESORT

	QuickSort (random pivot)	MergeSort (deterministic)
Runtime	Worst-case: O(n²) Expected: O(n log n)	Worst-case: O(n log n)
Used by	Java (primitive types), C (qsort), Unix, gcc	Java for objects, perl
In-place? (i.e. with O(log n) extra memory)	Yes, pretty easily!	Easy if you sacrifice runtime (O(nlogn) MERGE runtime). Not so easy if you want to keep runtime & stability.
Stable?	No	Yes
Other Pros	Good cache locality if implemented for arrays	Merge step is really efficient with linked lists

You do not need to understand any of this stuff