

École nationale supérieure en systèmes avancés et réseaux

Projet 4A ESE Prototypage de systèmes à base de capteurs

EE410 & EE470 2,5 + 2,5 ECTS

Projet: 40% de la note finale des deux cours

Objectifs pédagogiques

- Développer une application intégrant un capteur non intégré (c.a.d. sans chaîne de conditionnement) avec une cible arduino
- Contexte : smart sensors, objets connectés (IoT)...
- Applications en lien avec l'environnement, la santé, l'habitat, le transport, etc...
- Compétences visées : concevoir/choisir un capteur, savoir l'intégrer au sein d'un système numérique pour développer une application, estimer la précision de la chaîne de mesure, travail en autonomie en binôme

Moyens et ressources nécessaires

- 10 séances de TP programmées (non encadrées) incluant les évaluations
- Malette arduino + ensemble de capteurs intégrés
- Possibilité ouverture des salles de TP en dehors des horaires prévus
- Achat de composants par le support EEA (voir ppt support technique)
- Budget par projet d'environ 50/60€

Organisation - planning

- Travail en binôme (ou 1 trinôme si nombre impair)
- Choix du système visé : 4 octobre 2024. Remettre une page décrivant le système imaginé, les mesures qui seront faites + toute autre info pertinente.
- Commande de composants (retour : + 2 semaines) : 17 octobre 2024 au plus tard
- Evaluation intermédiaire le : 24 octobre 2024
- Présentation orale : 29 novembre 2024
- Rendu du rapport final écrit : 06 décembre 2023 (23h59 max, sous chamilo EE470)
- Démonstrations lors des journées portes ouvertes Esisar : sur base de volontariat.
 Très intéressant et très apprécié par l'Esisar

Etapes du projet

- 1. Mettre en œuvre l'exemple simple d'application donnée, Mesure de T et de P, voir plus loin
- 2. Choisir un sujet de projet : scénario d'application avec capteur et électronique numérique arduino. Bien penser <u>au capteur arduino</u>, compatible avec l'application et disponible (liste ci-après).
- 3. Choisir un capteur non arduino
- 4. Faire valider votre application par l'enseignant.
- 5. Passer la commande des composants
- 6. Intégrer le capteur arduino dans l'application
- 7. Valider le fonctionnement du capteur et le fonctionnement de l'application

Eval intermédiaire

- 8. Développer une maquette pour la mesure et intégrer le capteur et non arduino. Le cas échéant, concevoir un conditionnement pour intégrer le second capteur.
- 9. Valider le fonctionnement (capteurs et application)
- 10. Comparer les résultats obtenus avec les 2 capteurs
- 11. Optionnel : Développer un modèle mixte du système sous SystemVision à base de VHDLAMS et de langage C

 Présentation finale

Méthode d'évaluation

- Evaluation intermédiaire en séance : 20%
- Evaluation finale orale (dernier créneau de 3h): 40%
 - Présentation et démonstration : 10mn + 10mn questions/réponses
 - Présence de tous obligatoire
- Rapport final : 40%
 - 10 pages max + sources du démonstrateur + archives contenant les sources + démonstrateur + annexes

Evaluation intermédiaire

A remettre lors de l'évaluation : Support écrit synthétique d'une page

- 1. Au début de l'évaluation intermédiaire : validation par l'enseignant du montage de base
- 2. Application développée utilisant le capteur arduino choisi (démo + questions/réponses)
- Justification du choix du capteur non arduino (analyse de ses spécifications, réponses aux questions concernant son principe de fonctionnement)

Evaluation finale

Présentation : **10 min** tout compris + **10 min** de questions/réponses. Un support de présentation est demandé.

- Présentation :
 - Fonctionnement : principe capteur, conditionnement et application
 - Comparaison des 2 capteurs (caractéristiques métrologiques)
 - Optionnel (points bonus) : modélisation et simulation du système
- Démo avec capteur non arduino. Suggestion : enregistrer un vidéo de la démo avant la présentation, à utiliser si la démo ne fonctionne pas le jour J.

Comparatif des deux capteurs

- 1. Se servir de la datasheet d'au moins un des deux capteurs comme référence afin de caractériser l'autre capteur
- 2. Générer plusieurs valeurs de mesure (cela peut être une difficulté, par exemple pour le capteur de pollution ?)
- 3. Comparer la plus petite variation de valeur détectée entre les 2 capteurs. Cela nécessite de pouvoir générer de très faibles valeurs reproductibles...

La conception du banc de test pour générer une mesure reproductible est une difficulté à ne pas négliger

Capteurs intégrés disponibles

Capteur d'humidité et de T°

Capteur HALL

Capteur de lumière

Capteur sonore

Capteur de distance

Capteur de mouvement

Boussole

Acceléro 3 Axes

Gyroscope 1 axe

Capteur peau

Capteur de pulsation

Capteur vibration

Capteur air

Baromètre

Exemple de Tutos et Datasheet

Pour démarrer :

https://www.arduino.cc/en/Guide/HomePage (anglais)

<u>http://eskimon.fr/category/arduino/partie-1</u> (français)

Fonctions de base :

https://www.arduino.cc/en/Reference/HomePage

Composants intégrés disponibles

Capteur	
d'humidité et de	http://www.gotronic.fr/art-capteur-d-humidite-et-de-t-grove-
T°	sen11301p-18963.htm
	http://www.gotronic.fr/art-capteur-a-effet-hall-grove-sen14034p-
Capteur HALL	18985.htm
Capteur de	http://www.gotronic.fr/art-detecteur-de-lumiere-grove-
lumière	sen10171p-20630.htm
	http://www.gotronic.fr/art-capteur-sonore-grove-sen02281p-
Capteur sonore	20631.htm
Capteur de	http://www.gotronic.fr/art-telemetre-a-ultrasons-grove-
distance	sen10737p-18976.htm
Capteur de	http://www.gotronic.fr/art-detecteur-de-mouvement-grove-
mouvement	sen32357p-18975.htm
	http://www.gotronic.fr/art-module-boussole-3-axes-grove-
Boussole	sen12753p-18955.htm
	http://www.gotronic.fr/art-accelerometre-3-axes-grove-
Axeléro 3 Axes	sen04051p-18957.htm

Composants intégrés disponibles

Gyroscope 1 axe	http://www.gotronic.fr/art-module-gyroscope-grove-1-axe-sen05091p-20339.htm
Capteur peau	http://www.gotronic.fr/art-module-de-conductivite-de-la-peau-gsr-grove-sen01400p-21341.htm
Capteur de pulsation	http://www.gotronic.fr/art-capteur-de-pulsations-grove-med03212p-19037.htm
Capteur vibration	http://www.gotronic.fr/art-capteur-de-vibrations-sen04031p-20075.htm
Capteur air	http://www.gotronic.fr/art-capteur-de-qualite-d-air-grove-sen01111p-18982.htm
Baromètre	http://www.gotronic.fr/art-barometre-de-precision-grove-811027001-21822.htm

École nationale supérieure en systèmes avancés et réseaux

Montage de base

Montage de base, capteurs de T et de P

- Capteurs d'humidité et de température et affichage des mesures sur PC via liaison série et ensuite liaison Bluetooth
- Liste des composants nécessaires (voir liste détaillée ci-après) :
 - Arduino Uno (+ code source fourni)
 - Bibliothèques DHT, SoftwareSerial, TM1637
 - Capteurs température et humidité SEN11301P
 - Grove base shield et câbles compatibles
 - Dongle Bluetooth PC et HC05
 - Bouton poussoir & Afficheur 7-segments

Photos du montage de base

Montage de base 1 Capteur et liaison série

Utiliser un capteur de température et d'humidité Afficher les valeurs mesurée sur l'écran du PC

Montage de base 1 Capteur et liaison série

- Utilisation de la bibliothèque :
 - > DHT.h
- Utilisation des fonctions principales :
 - dht.readHumidity();
 - dht.readTemperature();
 - > Serial.print(" ... ");

Montage de base 1 Capteur et liaison série

Liaison série (outils Arduino)

Montage de base 2 Switch

Utiliser un bouton poussoir Afin d'afficher la valeur maximale relevée de la température et de l'humidité

Montage de base 2 Switch

- Utilisation des fonctions principales :
 - digitalRead(...)

Montage de base 3 Afficheur

Utiliser un afficheur Afin d'afficher la valeur de la température

Montage de base 3 Afficheur

- Bibliothèque Afficheur 7-segments :
 - > TM1637.h
- Utilisation des fonctions principales :
 - digitalRead(...)

Montage de base 4 Bluetooth

Utiliser un module bluetooth et le dongle bluetooth Afin d'afficher les mesures via liaison sans fil sur le PC

Montage de base 4 Bluetooth

- Attention le module bluetooth n'est pas compatible Grove, il faut donc adapter la connectique et les fonctions à utiliser
- ➤ Attention la procédure d'appariement entre le dongle et le module bluetooth n'est pas automatique... (driver du dongle)
- Bibliothèque Emulation de Liaison série :
 - SoftwareSerial.h
- Utilisation des fonctions principales :
 - SoftwareSerial MaLiaisonBluetooth(pin1,pin2);

Montage de base 4 Bluetooth

Liaison Bluetooth

