Deep Learning

PROF. ALCEU BRITTO

Deep Learning no contexto de IA e Aprendizagem de Máquina

- IA (Artificial Intelligence)
- ML (Machine Learning)
- DL (Deep Learning)
- DS (Data Science)

Definição CNN

- Rede Neural Convolucional (ConvNet / Convolutional Neural Network / CNN): Abordagem de aprendizado profundo proposta por (LECUN et al., 1998) e inspirada no cortex visual dos mamíferos. CNN é um modelo biologicamente inspirado pelos conceitos de campos receptivos. CNNs usam células complexas para realização de convoluções sobre o padrão de entrada e extrair características, enquanto células simples dispostas em camadas visam aprender uma tarefa de classificação ou regressão.
- Composta por camadas (layers) com funções específicas, organizadas em:
 - Camadas de convolução (Convolutional Layers)
 - Aprendem a representação do problema, a extração de características.
 - Camadas totalmente conectadas (Dense Layers)
 - Realizam a classificação (ou regressão, se for o caso)

CNN Model

Exemplo (LeNet com 7 camadas)

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998

CNN usando Keras (Sequential)

```
# Exemplo CNN (LeNet simples)

weight_decay = 1e-4
model = Sequential()

model.add(Conv2D(4, (5,5), padding='valid', kernel_regularizer=regularizers.l2(weight_decay), activation='relu', input_shape=x_train.shape[1:]))
model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Conv2D(12, (5,5), padding='valid', activation='relu', kernel_regularizer=regularizers.l2(weight_decay)))
model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Flatten())
model.add(Dense(300, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

CNN usando Keras (API funcional)

```
visible = Input(shape=(64,64,1))
conv1 = Conv2D(32, kernel_size=4, activation='relu')(visible)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(16, kernel_size=4, activation='relu')(pool1)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
flat = Flatten()(pool2)
hidden1 = Dense(10, activation='relu')(flat)
output = Dense(1, activation='sigmoid')(hidden1)
model = Model(inputs=visible, outputs=output)
```

Convolução

-Parâmetros principais

- Tamanho do kernel (máscara)
- Valor do passo (stride)
- Uso de padding (prenchimento)

- <u>Link para documentação do Keras</u>

Pooling (Agregação)

Redução de escala

- Principais parâmetros
 - Tipo: Max, Avg, Mean
 - Tamanho do filtro
 - Stride

Source. CS25111.Staffford.eut

- <u>Link para documentação do Keras</u>

Regularizadores (link para documentação do keras)

Aplicam penalidades aos parâmetros ou atividades das camadas da rede durante o treinamento.

Principais:

L1 (Lasso Regression)

Parâmetro de entrada

$$\sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij}eta_j)^2 + \lambda \sum_{j=1}^p |eta_j|$$

Cost function

L2 (Ridge Regression)

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \frac{\lambda \sum_{j=1}^{p} \beta_j^2}{\lambda \sum_{j=1}^{p} \beta_j^2}$$

Cost function

Objetivo: ambos reduzem os valores dos pesos. A diferença é que o Lasso reduz para zero os coeficientes de features com pequena importância na rede já o Ridge reduz para valores pequenos porém diferentes de zero.

Regularizadores

Suponha a equação: y=Wx+b, representa uma camada (layer da rede), sendo x a entrada, W a matriz de pesos e b o bias.

- Kernel Regularizer: busca reduzir os pesos (atua em W)
- Bias Regularizer: busca reduzir o bias (atua em b)
- Activity Regularizer: busca reduzir a saída da camada (layer). Logo, reduz os pesos e ajusta o bias para obter o menor valor de Wx+b.

Batch Normalization (link para documentação do keras)

Durante o treinamento é feito o seguinte:

• 1) Cálculo de média e variância dos 'm' exemplos no batch

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{Batch mean}$$

$$\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2 \qquad \text{Batch variance}$$

2) Normalização da entrada da camada

$$\overline{x_i} = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

3) Ajuste (escala e shift) para obter a saída da camada

 $y_i = \gamma \overline{x_i} + \beta$ Aprendido durante o treinamento

Aprendido durante o treinamento

Dropout (link para documentação do keras)

Dropout proposto no artigo: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15 (2014) 1929-1958.

 Atribui zero de forma aleatória zeros para a saída de neurônios de camadas ocultas durante o treinamento da rede.

Link para o artigo: srivastava14a.pdf (imlr.org)

Compilando o modelo (Keras)

model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.summary()

Link para documentação do keras

Model: "sequential 16"

Layer (type)	Output		Param #
conv2d_37 (Conv2D)	(None,	28, 28, 32)	832
batch_normalization_21 (Batc	(None,	28, 28, 32)	128
dropout_4 (Dropout)	(None,	28, 28, 32)	0
max_pooling2d_34 (MaxPooling	(None,	14, 14, 32)	0
conv2d_38 (Conv2D)	(None,	14, 14, 60)	48060
batch_normalization_22 (Batc	(None,	14, 14, 60)	240
dropout_5 (Dropout)	(None,	14, 14, 60)	0
max_pooling2d_35 (MaxPooling	(None,	7, 7, 60)	0
conv2d_39 (Conv2D)	(None,	7, 7, 128)	192128
batch_normalization_23 (Batc	(None,	7, 7, 128)	512
dropout_6 (Dropout)	(None,	7, 7, 128)	0
max_pooling2d_36 (MaxPooling	(None,	3, 3, 128)	0
flatten_14 (Flatten)	(None,	1152)	0
dense_17 (Dense)	(None,	100)	115300
dropout_7 (Dropout)	(None,	100)	0
dense 18 (Dense)	(None,	10)	1010

Non-trainable params: 440

Treinando o modelo (Keras)

```
#model.fit para executar treinamento
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1)
results = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1,
#validation_data=(x_val, y_val) validation_split=0.2)
```

- link para documentação keras (EarlyStopping)
- link para documentação keras (fit)

Consiste em adaptar modelo pré-treinado para um novo domínio.

- Por exemplo: adaptar CNN (VGG 16) já treinada na base Imagenet (1000 classes) para um problema de classificação de imagens contendo apenas 10 classes.
- Objetivo: Transferência do aprendizado. Treina-se em base maior e utilizada-se em domínio no qual a base é pequena.
- Estratégia comum: congela-se a parte convolucional (Convolutional Layers, CL), retreina-se apenas a parte Fully Connected (FC)
- Roteiro (Fine Tuning -> FC Layers)
 - 1) Escolha um modelo pré-treinado: LeNet, VGG16, VGG19, Inception, ... Há vários no Keras.
 - 2) Carregue o modelo pré-treinado selecionado, apenas a parte convolucional
 - from keras.applications import VGG16
 - vgg_conv = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
 - vgg conv.summary()

- Roteiro (Fine Tuning -> FC Layers)
 - 3) Adapte o modelo adicionando uma nova parte FC, considerando o número de classes do novo domínio.
 - model = Sequential()
 - model.add(vgg conv)
 - model.add(Flatten())
 - model.add(Dense(1024, activation='relu'))
 - model.add(Dropout(0.5))
 - model.add(Dense(10, activation='softmax'))
 - 4) Congele as camadas convolucionais
 - for layer in model.layers[:-4]:
 - layer.trainable = False

- Roteiro (Fine Tuning -> FC Layers)
 - 5) Verifique o status das camadas
 - for layer in model.layers:
 - print(layer, layer.trainable)
 - 6) Compile o modelo adaptado
 - model.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy'])
 - model.summary()
 - 7) Retreine o modelo
 - es = EarlyStopping(monitor='val_loss', mode='min', verbose=1)
 - history = model.fit(trainX, trainY,
 - batch size=128,
 - epochs=50,
 - verbose=1,
 - validation_split=0.2)

- Roteiro (Fine-Tunning FC Layers)
 - 8) Avalie o modelo criado
 - _, acc = model.evaluate(testX, testY, verbose=0)
 - print('Final Accuracy: > %.3f' % (acc * 100.0))

Veja script de exemplo: VGG16_Fine_Tuning

Considerações finais:

- permite ajuste fino de modelo pré-treinado para novos problemas (transfer learning). Estratégia importante para tratar problemas onde temos poucos dados para treinar um novo modelo do zero.
- problema: modelo pode perder desempenho na tarefa anterior quando é adaptado. Ver artigo de nossa autoria:
 - https://arxiv.org/abs/1905.12082

Data Augmentation

- Aumento da base de treinamento, artificialmente.
- Objetivo: aumentar a representatividade da base de treinamento.
- Estratégia: gerar novas imagens a partir da base de treinamento original aplicando transformações (rotação, translação, filtragem, flip, ...)
 - # Training the FC Layers considering data augmentation (Conv layers still frozen)
 - from keras.preprocessing.image import ImageDataGenerator
 - # initialize the generator
 - train_datagen = ImageDataGenerator(rotation_range=20, zoom_range=0.15, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True,
 - vertical flip=True)
 - # define how the batches of training samples will be generated
 - train_generator = train_datagen.flow(trainX, trainY, batch_size=16)
 - # training
 - history = model.fit(train_generator, epochs=epc, verbose=1)

Keras ImageDataGenerator and Data Augmentation - PyImageSearch

