This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGAN International Bureau

A1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/12, 15/85, C07K 14/47, 14/475, 16/18, A01K 67/027

(11) International Publication Number:

WO 97/48797

(43) International Publication Date:

24 December 1997 (24.12.97)

(21) International Application Number:

PCT/US97/00785

(22) Intérnational Filing Date:

16 January 1997 (16.01.97)

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(30) Priority Data:

17 June 1996 (17.06.96) US 08/665,259 08/720,614 1 October 1996 (01.10.96) US 08/762,500 9 December 1996 (09.12.96) US

GENZYME CORPORATION [US/US], One (71) Applicant: Mountain Road, Framingham, MA 01701 (US).

(72) Inventors: LANDES, Gregory, M.; 19 Indian Meadow Drive, Northborough, MA 01532 (US). BURN, Timothy, C.; 3 Adams Road, Northborough, MA 01532 (US). CONNORS, Timothy, D.; 304 Hayden Rowe Street, Hopkinton, MA 01748 (US). DACKOWSKI, William, R., 4 Valentine Road, Hopkinton, MA 01748 (US). VAN RAAY, Terence, J.; 43 Worcester Avenue, Hudson, MA 01749 (US). KLINGER, Katherine, W.; 54 Bowditch Road, Sudbury, MA 01776 (US).

(74) Agent: DUGAN, Deborah, A.; Genzyme Corporation, One Mountain Road, Framingham, MA 01701 (US).

(54) Title: NOVEL HUMAN CHROMOSOME 16 GENES, COMPOSITIONS, METHODS OF MAKING AND USING SAME

(57) Abstract

In accordance with the present invention, there are provided isolated nucleic acids encoding a human netrin, a human ATP binding cassette transporter, a human ribosomal L3 subtype, and a human augmenter of liver regeneration as well as isolated protein products encoded thereby. The present invention provides nucleic acid probes that hybridize to invention nucleic acids as well as isolated nucleic acids comprising unique gene sequences located on chromosome 16. Further provided are vectors containing invention nucleic acids, host cells transformed therewith, as well as transgenic non-human mammals that express invention polypeptides. The present invention includes antisense oligonucleotides, antibodies and compositions containing same. Additionally, the invention provides methods for identifying compounds that bind to invention polypeptides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain ·	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	l.atvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan .
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	MI.	Mali	TT	Trinidad and Tobago
BJ	Benin .	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
· CA	Canada	IT	ltaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon .		Republic of Korea	PL	Poland ·		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark -	LK	Sri Lanka	SE	Sweden	-	
EE	Estonia	LR	Liberia	SG	Singapore		•

NOVEL HUMAN CHROMOSOME 16 GENES, COMPOSITIONS, METHODS OF MAKING AND USING SAME

BACKGROUND OF THE INVENTION

The assembly of contiguous cloned genomic reagents is a necessary step in the process of disease-gene identification using a positional cloning approach. rapid development of high density genetic maps based on polymorphic simple sequence repeats has facilitated contig assembly using sequence tagged site (STS) content mapping. Most contig construction efforts have relied on yeast artificial chromosomes (YACs), since their large insert size uses the current STS map density more advantageously than bacterial-hosted systems. This approach has been validated for multiple human chromosomes with YAC coverage ranging from 65-95% for many chromosomes and contigs of 11 to 36 Mb being described (Chumakov et al., Nature 377 (Supp.):175-297, 1995; Doggett et al., Nature 377 (Supp.):335-365, 1995b; Gemmill et al., Nature 377 (Supp.):299-319, 1995; Krauter et al., Nature 377 (Supp.):321-333, 1995; Shimizu et al., Cytogenet. Cell Genet. 70:147-182, 1995; van-Heyningen et al., Cytogenet. Cell Genet. 69:127-158, 1995).

Despite numerous successes, the YAC cloning system is not a panacea for cloning the entire genome of complex organisms due to intrinsic limitations that result in substantial proportions of chimeric clones (Green et al., Genomics 11:658-669, 1991; Bellanne-Chantelot et al., Cell 70:1059-1068, 1992; Nagaraja et al., Nuc. Acids Res. 22:3406-3411, 1994), as well as clones that are rearranged, deleted or unstable (Neil et al., Nuc. Acids Res. 18:1421-1428, 1990; Wada et al., Am. J. Hum. Genet. 46:95-106, 1990; Zuo et al., Hum. Mol. Genet. 1:149-159, 1992; Szepetowski et al., Cytogenet. Cell Genet. 69:101-107,

1995). At least some of these cloned artifacts are a product of the recombinational machinery of yeast acting on the various types of repetitive elements in mammalian DNA (Neil et al., supra. 1990; Green et al., supra. 1991; Schlessinger et al., Genomics 11:783-793, 1991; Ling et al., Nuc. Acids Res. 21:6045-6046, 1993; Kouprina et al., Genomics 21:7-17, 1994; Larionov et al., Nuc. Acids Res. 22:4154-4162, 1994).

Accordingly, alternative cloning systems must be used in concert with YAC-based approaches to complement localized YAC cloning deficiencies, to enhance the resolution of the physical map, and to provide a sequence-ready resource for genome-wide DNA sequencing. Several exon trapping methodologies and vectors have been described for the rapid and efficient isolation of coding regions from genomic DNA (Auch et al., Nuc. Acids Res. 18:6743-6744, 1990; Duyk et al., Proc. Natl. Acad. Sci., USA 87:8995-8999, 1990; Buckler et al., Proc. Natl. Acad. Sci., USA 88:4005-4009, 1991; Church et al., Nature Genet. 6:98-105, 1994). The major advantage of exon trapping is that the expression of cloned genomic DNAs (cosmid, P1 or YAC) is driven by a heterologous promoter in tissue culture cells. This allows for coding sequences to be identified without prior knowledge of their tissue distribution or developmental stage of expression. A second advantage of exon trapping is that exon trapping allows for the identification of coding sequences from only the cloned template of interest, which eliminates the risk of characterizing highly conserved transcripts from duplicated This is not the case for either cDNA selection or direct library screening.

Exon trapping has been used successfully to identify transcribed sequences in the Huntington's disease locus (Ambrose et al., Hum. Mol. Genet. 1:697-703, 1992; Taylor et al., Nature Genet. 2:223-227, 1992; Duyao et al., Hum. Mol. Genet. 2:673-676, 1993) and BRCA1 locus (Brody et al., Genomics 25:238-247, 1995; Brown et al., Proc. Natl.

Acad. Sci., USA 92:4362-4366, 1995). In addition, a number of disease-causing genes have been identified using exon trapping, including the genes for Huntington's disease (The Huntington's Disease Collaborative Research Group, Cell 72:971-983, 1993), neurofibromatosis type 2 (Trofatter et al., Cell 72:791-800, 1993), Menkes disease (Vulpe et al., Nature Genet. 3:7-13, 1993), Batten Disease (The International Batten Disease Consortium, Cell 82:949-957, 1995), and the gene responsible for the majority of Long-QT syndrome cases (Wang et al., Nature Genet. 12:17-23, 1996).

A 700 kb CpG-rich region in band 16p13.3 has been shown to contain the disease gene for ~90% of the cases of autosomal dominant polycystic kidney disease (PKD1) (Germino et al., Genomics 13:144-151, 1992; Somlo et al., Genomics 13:152-158, 1992; The European Polycystic Kidney Disease Consortium, Cell 77:881-894, 1994) as well as the tuburin gene (TSC2), responsible for one form of tuberous sclerosis (The European Chromosome 16 Tuberous Sclerosis Consortium, Cell 75:1305-1315, 1993). An estimated 20 genes are present in this region of chromosome 16 (Germino et al., Kidney Int. Supp. 39:S20-S25, 1993). Characterization of the region surrounding the PKD1 gene in 16p13.3, however, has been complicated by duplication of a portion of the genomic interval more proximally at 16p13.1 (The European Polycystic Kidney Disease Consortium, supra. 1994).

This chromosomal segment serves as a challenging test for large-insert cloning systems in *E. coli* and yeast since it resides in a GC-rich isochore (Saccone et al., Proc. Natl. Acad. Sci., USA 89:4913-4917, 1992) with an abundance of CpG islands (Harris et al., Genomics 7:195-206, 1990; Germino et al., supra. 1992), genes (Germino et al., supra. 1993) and Alu repetitive sequences (Korenberg et al., Cell 53:391-400, 1988). Chromosome 16 also contains more low-copy repeats than other chromosomes with almost 25% of its cosmid contigs hybridizing to more than one chromosomal location when analyzed by fluorescence in situ hybridization (FISH) (Okumura et al., Cytogenet. Cell

Genet. 67:61-67, 1994). These types of repeats and sequence duplications interfere with "chromosome walking" techniques that are widely used for identification of genomic DNA and pose a challenge to hybridization-based methods of contig construction. This is because these techniques rely on hybridization to identify clones containing overlapping fragments of genomic DNA; thus, there is a high likelihood of "walking" into clones derived from homologues instead of clones derived from the authentic gene. In a similar manner, the sequence duplications and chromosome 16-specific repeats also interfere with the unambiguous determination of a complete cDNA sequence that encodes the corresponding protein. Furthermore, low copy repeats may lead to instability of this interval in bacteria, yeast and higher eukaryotes.

Thus, there is a need in the art for methods and compositions which enable accurate identification of genomic and cDNA sequences corresponding to authentic genes present on highly repetitive portions of chromosome 16, as well as genes similarly situated on other chromosomes. The present invention satisfies this need and provides related advantages as well.

SUMMARY OF THE INVENTION

In accordance with the present invention, there are provided isolated nucleic acids encoding a human netrin, a human ATP binding cassette transporter, a human ribosomal L3 subtype, and a human augmenter of liver regeneration.

The present invention further provides isolated protein products encoded by a human netrin gene, a human ATP binding cassette transporter gene, a human ribosomal L3 gene, and a human augmenter of liver regeneration gene.

Additionally, the present invention provides nucleic acid probes that hybridize to invention nucleic acids as well as isolated nucleic acids comprising unique gene sequences located on chromosome 16.

Further provided are vectors containing invention nucleic acids as well as host cells transformed with invention vectors.

Transgenic non-human mammals that express invention polypeptides are provided by the present invention.

The present invention includes antisense oligonucleotides, antibodies and compositions containing same.

Additionally, the invention provides methods for identifying compounds that bind to invention polypeptides. Such compounds are useful for modulating the activity of invention polypeptides.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a schematic diagram of the P1 contig and trapped exons.

Figures 2A and 2B show an alignment of selected exon traps with sequences in the databases.

Figures 3A through 3C show 6803 bp of hNET genomic sequence from P1 clone 53.8B (SEQ ID NO:19).

Figures 4A and 4B show 1743 bp of hNET cDNA and deduced amino acid sequence coding for a human homologue of chicken netrin genes (SEQ ID NOs:20 and 21).

Figures 4C and 4D show the nucleotide sequence of the 1.9 kb hNET cDNA including both 5' and 3' UTRs (SEQ ID NO:78).

Figure 5 shows an amino acid comparison between chicken netrin-1 (SEQ ID NO:22), chicken netrin-2 (SEQ ID NO:23) and hNET (SEQ ID NO:21). Shaded boxes denote regions of identical homology. The laminin domains V and VI and the C-terminal domain (C) are indicated by arrows with domain V divided into three sub-components (V-1 to V-3). The asterisks identify a motif for adhesion/signaling receptors.

Figure 6 shows a graphical representation of the homology between domains of chicken netrin-1, chicken netrin-2 and hNET.

Figure 7 shows exon traps, RT-PCR products and cDNA from the ABCgt.1 clone. Exon traps are shown above. ABCgt.1 DNA is shown below the exon traps with the position of the Genetrapper selection (S) and repair (R) oligonucleotides indicated. The position of the RT-PCR clones are shown below the cDNA.

Figures 8A-8G show 5.8 kb of cDNA and deduced amino acid sequence encoding ABCgt.1 clone (SEQ ID NOs:24 and 25).

Figure 9A-9D show an amino acid alignment of murine ABC1 (SEQ ID NO:26) and ABC2 (SEQ ID NO:27) with clone ABCgt.1 (SEQ ID NO:25). Hyphens denote gaps; asterisks denote identical residues, while periods denote conservative substitutions. The location of the ATP binding cassettes is shown by the boxed regions. Numbers at the right show the relative position of the proteins.

Figure 10 shows the region of the transcriptional map of the PKD1 locus from which P1 clones 49.10D, 109.8C and 47.2H were isolated. The open boxes represent trapped exons with their relative position indicated below the RPL3L (SEM L3) gene. **c**, **r** and **h** identify the location of the capture, repair and hybridization oligonucleotides, respectively.

Figures 11A-11B show the nucleotide and deduced amino acid sequence of the SEM L3 cDNA, now designated RPL3L (SEQ ID NOs:28 and 29). The 5' upstream inframe stop codon is underlined and the arrows indicate the site of the polyA tract of the two shorter cDNA clones that were also isolated.

Figure 12 shows a comparison of the deduced amino acid sequences from human (SEQ ID NO:30), bovine (SEQ ID NO:31), murine (SEQ ID NO:32) and the RPL3L (SEM L3) (SEQ ID NO:29) genes. Dashes indicate sequence identity to the human L3 gene. The nuclear targeting sequence at the N-terminal end is shaded and the bipartite motif is boxed.

Figure 13 shows the nucleotide and deduced amino acid sequence of the hALR cDNA (SEQ ID NO:33 and 34).

Figure 14 shows a comparison of the deduced amino acid sequences from rat ALR and human ALR (SEQ ID NOs:35 and 34), respectively.

Figures 15A-15J show the nucleotide and deduced amino acid sequence of full-length hABC3 cDNA (SEQ ID NOs:74 and 75).

Figure 16 shows a physical map of the region containing the hABC3 gene.

Figure 17A shows the deduced amino acid sequence for hABC3 (SEQ ID NO:75) aligned to the murine ABC1 (SEQ ID NO:26) and ABC2 (SEQ ID NO:27) sequences (Luciani et al., Genomics 21:150-159, 1994) and sequence predicted to be encoded by C. elegans cosmid C.48B4.4 (SEQ ID NO:77) (Wilson et al., Nature 368:32-38, 1994). Sequence identity is shown by letters, with mismatches denoted as periods. Gaps inserted during the alignment are also shown (=). For ABC1, ABC2 and C.48B4.4, only those sequences included in, and C-terminal to, the first ATP-binding domain are shown. Boxes denote the ATP binding cassettes (I and III) and the HH1 domain (II).

Figure 17B shows a schematic diagram of the ABC3 protein showing the transmembrane (TM) domains, ATP binding cassette (ABC) domains, Linker and HH1 domains.

Figure 18 shows a map of the genomic interval surrounding the human netrin gene.

Figure 19A shows a GRAIL2 analysis of coding sequences in the 6.8 kb genomic sequence from 53.8B Pl.

Figure 19B shows the results of a Pustell DNA/protein matrix comparing genomic sequence to chicken netrin-2.

Figure 20A shows alignment of the human netrin with chicken netrin-1, chicken netrin-2 and UNC-6 (SEQ ID NO: 79).

Figure 20B shows a schematic of the genomic sequence with boxes representing exons and lines denoting the introns. Untranslated region is shown in black, with the location of the start codon indicated by the arrow. The domain structure of the human netrin protein is shown below the gene structure. The position of introns in the Drosophila netrin genes is shown by arrows, with the non-conserved intron being denoted by the open arrow.

DETAILED DESCRIPTION OF THE INVENTION

All patent applications, patents, and literature references cited in this specification are hereby incorporated by reference in their entirety. In case of conflict or inconsistency, the present description, including definitions, will control.

Definitions:

- 1. "complementary DNA (cDNA)" is defined herein as a single-stranded or double-stranded intronless DNA molecule that is derived from the authentic gene and whose sequence, or complement thereof, encodes a protein.
- 2. As referred to herein, a "contig" is a continuous stretch of DNA or DNA sequence, which may be represented by multiple, overlapping, clones or sequences.
- 3. As referred to herein, a "cosmid" is a DNA plasmid that can replicate in bacterial cells and that accommodates large DNA inserts from about 30 to about 51 kb in length.
- 4. The term "P1 clones" refers to genomic DNAs cloned into vectors based on the P1 phage replication mechanisms. These vectors generally accommodate inserts of about 70 to about 105 kb (Pierce et al., Proc. Natl. Acad. Sci., USA, 89:2056-2060, 1992).
- 5. As used herein, the term "exon trapping" refers to a method for isolating genomic DNA sequences that are flanked by donor and acceptor splice sites for RNA processing.
- 6. "Amplification" of DNA as used herein denotes a reaction that serves to increase the concentration of a particular DNA sequence within a mixture

WO 97/48797 PCT/US97/00785

of DNA sequences. Amplification may be carried out using polymerase chain reaction (PCR) (Saiki et al., Science, 239:487, 1988), ligase chain reaction (LCR), nucleic acid-specific based amplification (NSBA), or any method known in the art.

7. "RT-PCR" as used herein refers to coupled reverse transcription and polymerase chain reaction. This method of amplification uses an initial step in which a specific oligonucleotide, oligo dT, or a mixture of random primers is used to prime reverse transcription of RNA into single-stranded cDNA; this cDNA is then amplified using standard amplification techniques e.g. PCR.

A P1 contig containing approximately 700 kb of DNA surrounding the PKD1 and TSC2 gene was assembled from a set of 12 unique chromosome 16-derived P1 clones obtained by screening a 3 genome equivalent P1 library (Shepherd et al., Proc. Natl. Acad. Sci., USA 91:2629-2633, 1994) with, 15 distinct probes. Exon trapping was used to identify transcribed sequences from this region in 16p13.3.

96 novel exon traps have been obtained containing sequences from a minimum of eighteen genes in this interval. The eighteen identified genes include five previously reported genes from the interval and a previously characterized gene whose location was unknown (Table I). Additional exon traps have been mapped to genes based on their presence in cDNAs, RT-PCR products, or their hybridization to distinct mRNA species on Northern blots.

TABLE 1: Database Homologies

Gene ^a	Independent Exon Traps ^b	Clonec	Transcript Size	Database Homology ^d	Accession Number of Best	P valu⊄
A	9	2 kb (cDNA)	8 kb	Probable protein kinase (S. cerevisiae)	248149	6 3c-83
В	-	1.3 kb (cDNA)	2.5	No Significant homology		
Q		0.55 kb (Exon Trap)	1.4 kb	N-acetylglucosamine-6-phosphate deacetylase [C.	P34480	7,46-73
		0.6 kb (3' RACE)		elegans		•
۵	2	Exon trap (159 bp)	•	Neuin-2 (G. gallus)	B\$4665	3.7e.11
		Exon trap (196 bp)	•	Neuin-2 [G. gallus]	B54665	6 le.33
ш	-	Exon trap (100 bp)	,	ABCI gene product [M musculus]	P41233	0 0017
ú.	3	1.1 kb (RT-PCR)	7 kb ·	ABC2 gene product [M. musculus]	P41234	3.0c-28
-	2	2.8 kb (cDNA)	7 kb	ABC1 gene product [M: musculus]	P41233	7.14-65
U	2	I.8 kb (cDNA)	2.5 kb	RNA-Binding protein (Homo sapiens)	L37368	2 6e-176
Ξ	2	1.2 kb (RT-PCR)	2 5 kb	phi AP3 [M. musculus]	541688	2.9c-169
	-	0.45 kb (Exon Trap)	30 + 4.5 kb	No significant homologies		
, [2	0.24kb (RT-PCR)	2 kb	Rab26 [R. nonegious]	U18771	3 6e-56
×	-	Éxon trap (219 bp)		405 Ribosomal protein S4 (Homo saptens)	P15880	7.3e-18
7	\$	1.7 kb (cDNA)	1.6 kb	60s Ribosomal protein L.3 [Homo sapiens]	\$34195	6 7e-233
Σ.	_	0.7 kb (cDNA)	1.3 kb	Hypothetical 17.2 Kd protein IC. elegans)	P34436	6.2c-10 ·

Gene as denoted in Fig. 1.

Number of the trapped exon present in cloued cDNA or PCR product. Size of clone with type of clone indicated in parentheses. Significant homology in databases as determined by BLASTX. Accession Number of best hit. Smallest sum probability for the best database match.

Northern analysis was not performed due to the sinall size of the exon traps.

Up to 200 copies of LLREP3 are present in the genome.

Exon trapping was performed using an improved trapping vector (Burn et al., Gene 161:183-187, 1995), with the resulting exon traps being characterized by DNA sequence analysis. In order to determine the relative efficiency of the exon trapping procedure, exon traps were compared to the cDNA sequences for those genes known to be in the interval around the PKD1 gene (Figure 1). exon traps were obtained from the human homologue of the ERV1 (Lisowsky et al., Genomics 29:690-697, 1995) and the ATP6C proton pump genes (Gillespie et al., Proc. Natl. Acad. Sci., USA 88:4289-4293, 1991). The horizontal line at the top of Figure 1 shows the position of relevant DNA markers with the scale (in kilobases). The position of NotI sites is shown below the horizontal line. The position and orientation of the known genes is indicated by arrows with the number of exon traps obtained from each gene shown in parentheses. The position of the transcription units described in this report (A through M) are shown below the known genes. The Genbank Accession numbers of corresponding exon traps are shown below each transcriptional unit. P1 clones are indicated by the overlapping lines with the name of the clone shown above the line. The position of trapped exons which did not map to characterized transcripts are shown below the P1 contig. Vertical lines denote the interval within the P1 clone(s) detected by the exon traps in hybridization studies.

In contrast, eight individual exon traps were isolated from the TSC2 gene and ten from the CCNF gene (The European Chromosome 16 Tuberous Sclerosis Consortium, supra. 1993; Kraus et al., Genomics 24:27-33, 1994). Trapped sequences from three of the exons present in the PKD1 gene were obtained (The American PKD1 Consortium, Hum. Mol. Genet. 4:575-582, 1995; The International Polycystic Kidney Disease Consortium, Cell 81:289-298, 1995; Hughes et al., Nature Genet. 10:151-160, 1995). 16 additional exon traps from the 109.8C and 47.2H P1 clones were also obtained.

Sequences present in two exon traps (Genbank Accession Nos. L75926 and L75927), localizing to the region of overlap between the 96.4B and 64.12C P1 clones, were shown to contain sequences from the previously described human homologue to the murine RNPS1 gene (Genbank Accession No. L37368), encoding an S phase-prevalent DNA/RNA-binding protein (Schmidt et al., Biochim. Biophys. Acta 1216:317-320, 1993). A comparison of these exon traps to the dbEST database indicated that they were also contained in cDNA 52161 from the I.M.A.G.E. Consortium (Lennon et al., Genomics 33:151-152, 1996). Based on these data, the hRNPS1 gene can be mapped to 16p13.3 near DNA marker D16S291 (transcript G in Figure 1).

Two exon traps from the 1.8F P1 clone were found to have a high level of homology to the previously described murine Φ AP3 encoding a zinc finger-containing transcription factor (Fognani et al., EMBO J. 12:4985-4992, 1993). The m Φ AP3 protein, a zinc finger-containing transcription factor, is believed to function as a negative regulator for genes encoding proteins responsible for the inhibition of cell cycling (Fognani et al., supra.). The two exon traps were linked by PCR, with the resulting 1.2 kb PCR product being 85% identical at the nucleotide level to the murine Φ AP3 cDNA. Hybridization of the Φ AP3-like exon traps to the dot blotted P1 contig indicated that the gene lies in the non-overlapping region of the 1.8F P1, between the DNA markers KLH7 and GGG12 (transcript H in Figure 1).

Significant homology was also seen between two exon traps obtained from the 97.10G Pl and the rat Rab26 gene encoding a ras-related GTP-binding protein involved in the regulation of vesicular transport (Nuoffer et al, Ann. Rev. Biochem. 63:949-990, 1994; Wagner et al., Biochem. Biophys. Res. Comm. 207:950-956, 1995). The Rab26-like exon traps were linked by RT-PCR (transcript J in Figure 1).

with the encoded sequences being 94% (83/88) identical at the protein level to Rab26. See, for example, Figure 2 showing an alignment of the following selected exon traps with sequences in the databases. An alignment of sequences encoded by exon trap L48741 (SEQ ID NO:1) and N-acetylglucosamine-6-phosphate deacetylase from C. Elegans (SEQ ID NO:2), E. coli (SEQ ID NO:3) and Haemophilus (SEQ ID NO:4). The EGF repeat from netrin-1 (SEQ ID NO:7), netrin-2 (SEQ ID NO:6) and UNC-6 (SEQ ID NO:8) are shown aligned to one of the translated netrin-like exon traps (Genbank Accession No. L75917) (SEQ ID NO:5). alignment of sequences from the second netrin-like exon trap (Genbank Accession No. L75916) (SEQ ID NO:9) and netrin-1 (SEQ ID NO:11) and netrin-2 (SEQ ID NO:10) is shown. An alignment of the translated Rab26-like RT-PCR product (Genbank Accession Nos. L48770-L48771) (SEQ ID NO:12) and rat Rab26 (SEQ ID NO:13). Sequences encoded by exon trap L48792 (SEQ ID NO:14) are shown aligned to sequences from the pilB transcriptional repressor from Neisseria gonorrhoeae (SEQ ID NO:15), sequences predicted by computer analysis to be encoded by cosmid F44E2.6 from C. elegans (SEQ ID NO:17), the YCL33C gene product from . yeast (Genbank Accession No. P25566) (SEQ ID NO:16), and a transcriptional repressor from Haemophilus (SEQ ID NO:18). Periods denote positions where gaps were inserted in them protein sequence in order to maintain alignment.

In order to correlate exon traps with individual transcripts, cDNA library screening and PCR based approaches were used to clone transcribed sequences containing selected exon traps. RT-PCR was used to link individual exon traps together in cases where the two exon traps had homology to similar sequences in the databases. In cases where only single exon traps were available, 3' RACE or cDNA library screening was used to obtain additional sequences. Sequences from the exon traps and cloned products were used to map the position, and when possible the orientation, of the corresponding transcription units.

Six unique exon traps, containing sequences from at least eight exons, were shown to be from a transcriptional unit in the centromeric most P1 clone, 94.10H (transcript A in Figure 1). A 2 kb cDNA linking the six exon traps was isolated and shown to hybridize to an 8 kb transcript. Additional hybridization studies indicated that the gene was oriented centromeric to telomeric, with at least 6 kb of the transcript originating from sequences centromeric of the P1 contig. Extensive homology was observed between the translated cDNA and a variety of protein kinases; however, the presence of the conserved HRDLKPEN motif (SEQ ID NO:71) encoded in exon trap L48734, as well as the partial cDNA, suggests that it encodes a serine/threonine kinase (van-der-Geer et al., Ann. Rev. Cell Bio. 10:251-337, 1994).

cDNAs were isolated using sequences derived from a separate 94.10H exon trap (Genbank Accession No. L48738) and the position and orientation of the corresponding transcription unit were determined. Two cDNA species were obtained using exon trap L48738 as a probe, with the only homology between the two species arising from the 109 bases contained in the exon trap. Using oligonucleotide probes, the transcription unit was mapped to a position near the 26-6DIS DNA marker, in a telomeric to centromeric orientation; however, only one of the cDNA species mapped to the Pl contig (transcript B in Figure 1). Based on these data, it is likely that the second cDNA species originated from a region outside of the P1 contig, possibly from the duplicated 26-6PROX marker located further centromeric in 16p13.3 (Gillespie et al., Nuc. Acids Res. 18:7071-7075, 1990).

The 110.1F P1 clone contains at least two genes in addition to the ATP6C gene. Using BLASTX to search the protein databases, significant homology was observed between sequences encoded by exon trap L48741 and the N-acetylglucosamine-6-phosphate deacetylase (nagA) proteins

trom *C. elegans* (Wilson et al., supra. 1994), *E. coli* (Plumbridge, Mol. Microbiol. 3:505-515, 1989) and Haemophilus (Fleischmann et al., Science 269:496-512, 1995). An alignment of the nagA proteins to the translated exon trap revealed the presence of multiple conserved regions (Figure 2), suggesting that the exon trap contains sequences from the human nagA gene. Additional sequences from the nagA-like transcript have been cloned using 3' RACE and the transcription unit mapped to a region between NotI sites 2 and 3 in Figure 1. The gene is oriented telomeric to centromeric with NotI site 2 being present in the 3' UTR of the RACE clone (transcript C in Figure 1).

Two additional exon traps (Genbank Accession Nos. L75916 and L75917), mapping to the region of overlap between the 110.1F and 53.8B P1 clones (transcript D in Figure 1), were shown to have homology with the chicken netrins (Kennedy et al., Cell 78:425-435, 1994; Serafini et al., Cell 78:409-424, 1994) and the C. elegans UNC-6 protein (Ishii et al., Neuron 9:873-881, 1992) (Figures 2... and 20A).

Sequences encoded by exon trap, L75917, were shown to have significant homology with the C-terminal most epidermal growth factor (EGF) repeat found in the netrinand UNC-6 proteins (Figures 2 and 20A). Exon trap L75917 encodes sequences which are 98% identical to sequences from the third epidermal growth factor (EGF) repeat of chicken netrin-2 and 90% identical to sequences from the same region of netrin-1. The netrin-like trap, L75916, encodes sequences from the more divergent C-terminal domain of the netrins which are 43% identical to sequences contained in the C-terminal domain of netrin-1 and netrin-2 (Figures 2) and 20A). This region is the least conserved between UNC-6 and the netrins, with sequences being 63% conserved between netrin-1 and netrin-2 and 29% conserved between netrin-2 and UNC-6 (Serafini et al., supra.).

The netrins define a family of chemotropic factors which have been shown to play a central role in axon guidance. Axonal growth cones are guided to their target by both local cues, present in the extracellular matrix or on the surface of cells, and long-range cues in the form of diffusible chemoattractants and chemorepellents (Goodman and Shatz, Cell 72:77-98, 1993; Keynes and Cook, Curr. Opin. Neurobiol. 5:75-82, 1995).

Chicken netrin-1 and netrin-2 have been shown to function as chemoattractants for developing spinal commissural axons (Serafini et al., Cell 78:409-424, 1994; Kennedy et al., Cell 78:425-435, 1994) with netrin-1 also acting as a chemorepellant for trochlear motor axons (Colamarino and Tessier-Lavigne, Cell 81:621-629, 1995). Comparative analysis revealed the presence of extensive homology between the chicken netrins and C. elegans UNC-6 protein which is required for circumferential cell migration and axon guidance (Hedgecock et al., Neuron 4:61-85, 1990; Ishii et al., Neuron 9:873-881, 1992) More recently, two Drosophila netrins, NETA and NETB, have been described and shown to be required for commissural axon guidance as well as for guidance of motor neurons to their target muscles (Harris et al., Cell 17:217-228, 1996; Mitchell et al., Cell 17:203-215, 1996). These studies indicate that the netrin family of chemoattractant and chemorepellant proteins is conserved between invertebrates and vertebrates.

The genomic interval containing the netrin-like exon traps was sequenced in order to obtain additional sequence information from the gene and to rule out the possibility that the exon traps were derived from a pseudogene. In preliminary studies using the 53.8B genomic P1 clone, the netrin-like exon traps were mapped to a 6 kb XhoI fragment. See, for example, Figure 18 wherein relevant DNA markers are shown on top of the horizontal line, with NotI sites (N) being shown below the line. The location and orientation of the ATP6C, CCNF, and nagA

transcriptional units have been previously described (Gillespie et al., Proc. Natl. Acad. Sci., USA 88: 4289-4293, 1991; Kraus et al., Genomics 24: 27-33, 1994; Burn et al., Genome Research 6: 525-537, 1996) and are shown below the genomic interval. The two P1 clones containing the netrin gene are shown below the schematic diagram of the interval. The location of the 6.8 kb of genomic sequence is enlarged below the P1 clones. The position of the two exon traps in the 6.8 kb of genomic sequence is also indicated.

The 6 kb fragment, and the adjacent 3.5 kb XhoI fragment, were subcloned and used to screen a random shotgun library from the 53.8B Pl clone. Subclones which were positive by hybridization were sequenced with forward and reverse vector primers. A total of 88 subclones were sequenced in this manner.

Additional sequence was obtained using internal primers as well as end sequence from the parental *XhoI* fragments. A total of 6.8 kb of genomic sequence with an overall redundancy of 7-fold was sequenced. The GC-content for the sequenced region was found to be 68.9%, which is slightly higher than the 62.8% observed for the 53 kb of genomic sequence from the PKD1 gene, located 350 kb further telomeric (The American PKD1 Consortium, 1995, *supra*; Burn *et al.*, 1996, *supra*).

Computer analyses were performed to identify putative exons. GRAIL2 analysis predicted six exons within the 6.8 kb of genomic sequence with database analysis indicating that all but one exon (exon 1), encoded sequences with homology to the chicken netrins. Figure 19A shows a GRAIL2 analysis of coding sequences in the 6.8 kb of genomic sequence from the 53.8B Pl, with the gray scale denoting GC-content (white to light gray is GC rich and gray to black is AT rich), vertical boxes indicating relative quality of the predicted exons. A graphical

depiction of the predicted exons is shown above the vertical boxes with light colored boxes denoting exons with a score of "excellent" (>80% probability) and dark colored boxes denoting exons with a score of "good" (>60% probability). The position of exon traps L75917 and L75916 (left to right, respectively) are shown above the GRAIL2 predicted exons. The structure of the gene based on comparison of the RT-PCR products and genomic sequence is shown at the top, the position of the exons in the genomic sequence is shown by the numbers above the exons. The 5' and 3' untranslated regions are also shown.

Additionally, the 6.8 kb of genomic sequence was compared to the protein sequences of the chicken netrins using a Pustell DNA/protein matrix. The genomic sequence (translated in all six frames) was compared to chicken netrin-2 in Figure 19B, using a PAM250 matrix with the minimum homology set at 50% and the window set at 20. Regions of homology are shown by heavy diagonal lines. Five exons were predicted by this analysis, with only the first GRAIL2 predicted exon not appearing to be bona fide. Sequences from the two exon traps were also predicted by GRAIL2; however, there were noteworthy differences (cf Figure 19A). In predicting sequences present in exon trap L75917, GRAIL2 included an additional 55 bp at the 5' end of the exon. The first of the two exons present in exon trap L75916 was not predicted by GRAIL2, while GRAIL2 added additional bases to the 5' and 3' ends of the second exon present in this exon trap.

A search of the Expressed Sequence Tags (EST) database did not reveal the presence of any ESTs from the human netrin gene. Nor was the human netrin message detected by Northern and/or RNA dot blot analysis using mRNA from over fifty different adult and fetal tissues, suggesting that hNET has an extremely restricted pattern of expression and when expressed is present in low abundance. Two murine ESTs, however, were identified from a brain library and a whole fetus library (Genbank Accession Nos.

PCT/US97/00785

WO 97/48797

W59766 and AA048205, respectively) which have significant homology to hNET. The murine ESTs contain overlapping sequence with a total of 477 bp of contiguous sequence being represented. This 477 bp contiguous sequence aligns to the 5' end of the human netrin cDNA and includes 47 bp of 5' UTR and sequences encoding the N-terminal 143 amino acids. A comparison of the deduced human and murine protein sequence indicated that the two proteins were 89.5% (128/143) identical.

Characterization of the Human Netrin Transcript

In order to confirm the structure of the netrin gene, RT-PCR was performed using primers designed from the predicted exons. Since the predicted human netrin appeared to slightly more homologous to netrin-2 than netrin-1 (57% versus 54%, respectively) and netrin-2 is expressed in the spinal cord of chicken, adult human spinal cord polyA+ RNA was utilized as a template. RT-PCR products were obtained with only a portion of the primer pairs; however, even this required the use of nested primers and two rounds of PCR, with low yields making it necessary to use hybridization and radiolabeled probes to visualize the products. yield, and lack of RT-PCR products in some cases, was attributed to the high GC-content of the products (70-80%). The addition of betaine to a final concentration of 2.5 M in the PCR reactions was found to dramatically improve yield and purity of the RT-PCR products. (International Publication No. WO 96/12041; Reeves et al. (1994) Am. J. Hum. Genet. 55:A238; Baskaran et al. (1996) Genome Research 6:633-638).

Assembly of the RT-PCR products revealed a 1743 bp open reading frame (ORF) with an in-frame stop codon upstream of the proposed start methionine. In verifying the start and stop codons, a 209 bp 5' UTR and a 22 bp 3' UTR were cloned. Additional sequences from the respective UTRs were not cloned, however, since the goal of the RT-PCR experiments was to only confirm the predicted protein

sequence and not to assemble a full-length cDNA. The position of the intron-exon boundaries was determined based on the comparison of the genomic sequence and the RT-PCR clones (Figure 19A).

A 1.9 kb cDNA, hNET, was cloned by performing nested PCR using spinal cord cDNA as template and standard PCR conditions with the addition of betaine. The human netrin protein is predicted to be 580 amino acids in size. with the common domain structure of the netrin family being conserved. In Figure 20A positions where the chicken netrins and UNC-6 sequences match the human sequence are denoted by periods while gaps introduced during the alignment are shown by hyphens. Arrows above the sequence alignment show the boundaries of the laminin VI and V domains, and C-terminal region (C) as described (Serafini et al., Cell 78: 409-424, 1994). The signal sequence (S) is also shown. V-1, V-2, and V-3 designate each of the EGF domains that constitute domain V. The hNET coding sequence and its predicted protein product are shown in Figures 4A and 4B. Figures 4C and 4D show full length hNET cDNA including both 5' and 3' UTR sequence.

Several lines of evidence rule against the possibility that the human netrin gene described herein represents a pseudogene. First, none of the exons in the coding region contain stop codons. Secondly, the overall gene structure described is highly conserved when compared to other members of the netrin/UNC-6 family. Third, despite the lack of signal in the Northern and RNA blot analysis, a mature transcript was isolated by RT-PCR. Finally, sequences in the murine EST database have been identified which are highly conserved. Taken together, these data indicate that a novel human netrin gene with a restricted pattern of expression has been identified.

Human netrins may have a significant role in neural regeneration. Though netrins do not by themselves

WO 97/48797 PCT/US97/00785

promote axon growth, they do play a role in the orientation of axon growth. The combination of growth promoting activities with axon guidance cues would be a necessary requisite for directed neural regeneration.

The ability to clone a gene with such a restricted pattern of expression points out one of the strengths of the exon trapping procedure, since it is unlikely that the netrin gene would have been identified using cDNA selection or direct library screening. These results highlight the need for using a variety of approaches to identify and clone sequences from a large genomic contig.

Exon trapping results further show that there is a novel ATP Binding Cassette (ABC) transporter in the PKD1 locus located between the LCN1 and D16S291 markers in a centromeric to telomeric orientation. Database searches with the exon trap sequences show homology to the murine ABC1 and ABC2 genes (Luciani et al., supra. 1994). The human homologs of murine ABC1 and ABC2 have been cloned and mapped to human chromosome 9 (Luciani et al. supra. 1994). Sequences derived from the trapped exons along with those from cDNA selection and SAmple SEquencing (SASE) were used to recover overlapping partial cDNA clones.

Seven exon traps with homology to ABC transporters were isolated from P1 clones 30.1F, 64.12C and 96.4B. Additional sequences encoded by the ABC3 gene were obtained by RT-PCR (placenta and brain RNA as template) and library PCR (using commercially available lung cDNA library as template) using custom primers designed from the exon traps (Tables II and III). Three exon traps (L48758, L48759 and L48760) were obtained from the region of overlap between the 30.1F, 64.12C and 96.4B P1 clones (transcript F Figure 1), while a fourth exon (L48753) maps to the 79.2A P1 clone, exclusively (transcript E in Figure 1).

TABLE II: Oligonucleotides Used to Clone Additional Sequences

												,
clone sizee	7.100	2.0 KD	1.3 Kb	1 0 A VB	0.0 NO	1.1Kb	177	1.100	0.24kb	171/2	1.780	0.7 kh
SEQ Oligonucleotide 2 ^d ID NO:		COCCA ACCEPTATION TO CO.	CGGCAAGCTGGTGAT"I'AACA	GCGGAGCCACCTTCATCA	COLUMN COCCA	1 CGC I GACCGCCAGGAT	の中でいることである。	וועסספסד דיססייינייייייייייייייייייייייייייייי	AGGAGGCCTTGTTGGTGACA	AAACCACCACCACCA	WOOT DOUD DOUD THE	GCAGTCCCGATTCTGAATAT
SEQ NO: NO:	37	30	`	41	43	2	45	7.7	4/	49		71
Oligonucleotide1°	TGACGCCGTGCCCATCCAGT		Secretary of the secret	CGGCAGAGGATGCTGTGT	GACGCAGAGAGAGAGAGA		CTGTCGGGAAGGTCTCACTG		G1616GGGAAGACCIGICIG	ACGGACACCTGGGCTTC		1'6'1'GGC'1'A'I'GAGC'FGTTCTC
S S S S	36	38	Ç	2	42		‡	46	2	4 8	40	3
jene" Method"	Genetrapper	Genetrapper	3'D A CE	איניי	RT-PCR	חילת ידים	RI-FUR	RT-POR		Genetrapper	Genetronner	Oculeu appei
Gene	A	В	C	,	Œ,		-			L	N	121

a. Gene as denoted in Figure 1.

Method used to clone additional sequences. Lifetechnologies Genetrapper system, 3'RACE and RT-PCR.

in the direct selection step. In the case of 3'RACE experiments, this oligonucleotide was the external prime. In the case of RT-Sequence of oligonucleotides used to obtain additional sequences. For the Genetrapper system, this oligonucleotide was used PCR experiments, the designated oligonucleotide was used as a sense primer.

Sequence of oligonucleotides. In the Genetrapper experiments, this oligonucleotide was used in the repair step. For 3'RACE experiments, this was the internal primer. For RT-PCR experiments, this was the anitsense primer.

Size of clone obtained using the primer pair.

Clone Additional Sequences from human ABC3 TABLE IIIa: Oligonucleotides Used to

SEQ ID Oligonucleotide 16 NO.	SEQ ID	1	1	2c	clone named	clone
.01.		,	,			Sizec
53	53		CATCGC	CATCGCCGCCTCCTTCATG	ABC3 (at 1)	41.00
73	73	74 0000	7 0000		(11,13)	J.0 7.D
+	+	せりりつり - +5 -	くりつつつ	WITE IOUND SECTION IN THE SECTION I	ABC3 (A12)	7 ::
1 95	1 95	7 V V V V V V V V V V V V V V V V V V V	UUL V		(22.0)	
200	200	7710	215	くりつりてしてりしりつこ	ABC3 (3-12)	<u>-</u>
5/ AGGGATTCGACATYGCC 58	58	S8 CTTC	CTTC	CTTCAGACTCAGGGGGAT	A D C 3 (212)	
) + ()	,			

Mothed used to clone additional sequences. Lifetechnologies Genetrapper system and RT-PCR

Sequence of oligonucleotides used to obtain additional sequences. For the Genetrapper system, this oligonucleotide was used

Sequence of oligonucleotides. In the Genetrapper experiments, this oligonucleotide was used in the repair step. For RT-PCR in the direct selection step. In the case of RT-PCR experiments, the designated oligonucleotide was used as a sense primer.

experiments, this was the anitsense primer.

Assigned name of the isolated clone

Size of clone obtained using the primer pair

TABLE IIIb: Oligonucleotides Used to Clone Additional Sequences from human ABC3

)))))))	5' primer ^b	3' clonec	SEQ B	3' primer	clone name ^c	clone
et L/18757	52	CATTGCCCGTGCTGTCGTG	et L48758	54	GCGGAGCCACCTTCATCA	ARC3 (A12)	317C
ct L48758	55	GACGCTGGTGAAGGAGC	et L48760	56	ATCCTGGCGGTCAGCGA	413C3 (7.12) 413C3 (3.12)	OV -
et L48760	57	AGGGATTCGACATTGCC	et L75924 58	58	CTTCAGAGACTCAGGGGAAT	٦ [٦	0 1
sel. cDNA/SASE	76	AGCTGGCGCTCCTCCTCT	et L48757 53	53	CATCGCCGCCTCCTTCATG	1	0.0

Clone used to derive the 5' primer.

Sequence of the sense primer used in the RT-PCR reaction.

Clone used to derive the 3' primer.

Sequence of the antisense primer used in the RT-PCR reaction.

Size of clone obtained using the primer pair. Assigned name of the isolated clone.

25

TABLE IV: Oligonucleotides Used to Clone Sequences from the human Netrin

4 2 4 1 5 € A	CT CTS					
	NO:	Oligonucleotide 15	SEC ID	Oligonucleotide 2°	clone name ^d	clone
RT-PCR	59	GCCTGTCATCGCTCTAG	09	CAGTCGCAGGCCCTGCA		2775
PCR	61	GAGGACGCCCAACATC	62	CGGCAGTAGTGGCAGTG	1101-1103	106.452
RT-PCR	63	CCTGCCTCGCTTGCTCCTGC	64	CGGGCAGCCGCAGGCCGCAT	C211 2211	101041
PCR	. 65	CCTGCAACGGCCATGCCCGC	99	GCATCCCCGGCGGGCACCCA	1131-1511	KOTHS
1° RT-PCR	08	CTTGCAGGGCCTGCGAC	81	GAAGGCACAGGGTGAAC	111111111111111111111111111111111111111	40100
2° PCR	82	CTGCAACCAGACCACAG	83	TAGATGTGGGAGCAGCG	1125-1127	ad 009
						一 ユラ ハイン 一

Method used to clone sequences. For 2° PCR, the 1° RT-PCR product was diluted to a final concentration of one to one thousand. Sequence of sense-strand oligonucleotides. ظ ہ

Sequence of antisense-strand oligonucleotides Assigned name of the isolated cDNA clones. ن

Size of clone obtained using the primer pair. မ် ဂ

Exon traps from the hABC3 transporter encoded by transcript F encode sequences with homology to the R-domain of the murine ABC1 and ABC2 genes. The R-domain is believed to play a regulatory role based on the comparison to a conserved region in CFTR. To date, only ABC1, ABC2 and CFTR have been shown to contain an R-domain (Luciani et al., supra. 1994).

Additionally, a 1.1 kb RT-PCR product which links the three exon traps from transcript F, with the RT-PCR product detecting a 7 kb message on Northern blots has been obtained. Based on a search of the dbEST database, a cDNA from this region was obtained with sequences from exon traps L75924 and L75925 being contained in cDNA 49233 from the I.M.A.G.E. Consortium (Lennon et al., supra.). The presence of both cloned reagents in the same transcription unit has been confirmed using RT-PCR.

The ATP binding cassette (ABC) transporters, or traffic ATPs, comprise a family of more than 100 proteins responsible for the transport of a wide variety of substrates across cell membranes in both prokaryotic and eukaryotic cells (Higgins, C. F., Annu. Rev. Cell. Biol. 8:67-113, 1992; Higgins, C. F. Cell 82:693-696, 1995). Proteins belonging to the ABC transporter superfamily are linked by strong structural similarities. Typically ABC transporters have four conserved domains, two hydrophobic domains which may impart substrate specificity (Payne et al., Mol. Gen. Genet. 200:493-496, 1985; Foote et al., Nature 345:255-258, 1990; Anderson et al., Science 253:202-205, 1991; Shustik et al., Br. J. Haematol. 79:50-56, 1991; Covitz et al., EMBO J. 13:1752-1759, 1994), and two highly conserved domains associated with ATP binding and hydrolysis (Higgins, supra. 1992). ABC transporters govern unidirectional transport of molecules into or out of cells and across subcellular membranes (Higgins, supra. 1992). Their substrates range from heavy metals (Ouellette et al., Res. Microbiol. 142:737-746 1991) to peptides and full size proteins (Gartner et al., Nature Genet. 1:16-23 1992).

In eukaryotic cells, ABC transporters exist either as single large symmetrical proteins containing all four domains or as dimers resulting from the association of two smaller polypeptides each containing a hydrophobic and ATP-binding domain. Examples of this multimeric structural form are human TAP proteins (Kelly et al., Nature 355:641-644 1992) and the functional PMP70 protein (Kamijo et al., J. Biol. Chem. 265:4534-40 1990). This multimeric structure is also found in numerous prokaryotic ABC transporters. The hydrophobic regions are comprised of up to six transmembrane spanning segments. Each ATP binding domain operates independently and may or may not be functionally equivalent (Kerem et al., Science 245:1073-80 1989; Mimmack et al., Proc. Natl. Acad. Sci., USA 86:8257-61 1989; Cutting et al., Nature 346:366-369 1990; Kerppola et al., J. Biol. Chem. 266:9857-65 1991).

Several of the ABC transporters thus far identified in humans have been shown to be clinically important. For example, overexpression of P-glycoproteins is responsible for multi-drug resistance in tumors (Gottesman et al., Ann. Rev. Biochem. 62:385-427 1993). Classical cystic fibrosis (CF) as well as a large proportion of cases of bilateral congenital disease of the vas deferens (CBAVD) are caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC transporter (Kerem et al., supra.; Cutting et al., supra.). Defects in ABC transporters have also been implicated in Zellweger syndrome (Gartner et al., supra.), and adrenoleukodystrophy (Mosser et al., Nature 361:726-730 1993).

Two members of a novel ABC transporter subgroup (murine ABC1 and ABC2) have been shown to contain domains similar to the regulatory R-domain of CFTR (Luciani et al., supra. 1994). Functionally, the mouse ABC1 protein has been shown to play a role in macrophage engulfment of apoptotic cells (Luciani et al., EMBO J. 16:226-235, 1996),

while the function of ABC2 remains unknown. All three proteins contain a large charged region containing several potential phosphorylation sites (Kerem et al., supra.; Luciani et al., supra. 1994). The charged amino acid residues within this region are sequentially arranged in blocks of alternating positive and negative charge.

A common feature of these particular ABC transporters, including hABC3, is the presence of a large linker domain between the two ATP binding cassettes. presence of numerous polar residues and potential phosphorylation sites in the linker domain suggest that this region may play a regulatory role perhaps similar to that of the R-domain of CFTR (Kerem et al., supra.). In addition, the four proteins also contain a hydrophobic region, the HH1 domain (Luciani et al., supra. 1994), within the conserved linker domain. Although there is little homology at the sequence level between the HH1 domains of hABC3 and the murine ABCs, they appear to be structurally conserved with each domain predicted to have ß-sheet conformation. The similarity between these proteins would suggest that they all belong to the same ABC subfamily, originally defined by ABC1 and ABC2 (Luciani et al., supra. 1994). The genes encoding the human homologues of ABC1 and ABC2 have been mapped to human chromosome 9 at q22-q31 and q34, respectively (Luciani et al., supra. 1994).

Despite being members of the same subfamily, it is likely that ABC1, ABC2 and hABC3 have different functional roles. The differences present in the transmembrane and linker domains of ABC1, ABC2 and hABC3 may confer each with a unique substrate specificity. For example, alterations and mutations in the transmembrane domains of both prokaryotic and eukaryotic ABC transporters have been shown to alter substrate specificity (Payne et al., supra.; Foote et al., supra.; Covitz et al., supra.) while changes to the R-domain of CFTR have been shown to alter its ion selectivity (Anderson et al., supra.; Rich et

al., Science 253:205-207 1991). The differences in the expression patterns of ABC1, ABC2 and hABC3 also suggest that the proteins may be functionally distinct. Murine ABC1 and ABC2 have been shown to be expressed at varying levels in a wide variety of adult and embryonic tissues, with the highest levels of ABC1 expression being seen in pregnant uterus and regions rich in monocytic cells while highest levels of ABC2 expression were seen in brain (Luciani et al., supra. 1994; Luciani et al., supra. 1996). In contrast, hABC3 is preferentially expressed in lung with significantly lower levels of expression being seen in brain, heart, and pancreas.

Apart from the structural differences between ABC1, ABC2 and hABC3, it is always possible that the three proteins play similar functional roles in different cell populations. To date, no function has been proposed for murine ABC2. However, recent data indicate that ABC1 is required for the engulfment of cells undergoing apoptosis, though the molecular mechanism underlying ABC1 function is unknown (Luciani et al., supra. 1996). If hABC3 functions in a manner similar to ABC1, it could be expressed by pulmonary macrophages involved in host defense.

ABC transporters have been described for substrates ranging from small ions to large polysaccharides and proteins. Based on the high level of expression in lung, the substrate for hABC3 may play an integral role in the lung function, including ion or polysaccharide transport. Further clues may be provided by a closer examination of hABC3 expression in the lung. These studies would include the identification of the lung cells responsible for hABC3 expression as well as determining the subcellular localization of hABC3. The identification and cloning of the hABC3 cDNA may have implications for cystic fibrosis, since it contains a potential R-domain and is expressed at highest levels in the lung. If hABC3 does play an integral role in lung function, then modulation or

WO 97/48797 PCT/US97/00785

alteration of hABC3 substrate specificity could have significant therapeutic implications for CF.

Several cDNAs were cloned using the GeneTrapper direct selection system and oligos designed from the 5' most trapped exon encoding sequences with homology to ABC1 (trapped exon L48747). The longest clone isolated with the GeneTrapper system from a normal human lung cDNA library using custom oligonucleotides designed from the 5' most exon trap was 5719 bp in length (ABCgt.1). An additional cDNA clone (ABC.5) was isolated using a radiolabeled 1.1 kb RT-PCR product (ABC3-12) as a probe (Figure 15). The 5' end of the ABC3 cDNA was further characterized using 5' RACE, with several RACE products containing multiple in-frame stop codons upstream of the start methionine.

Accordingly, the present invention provides a novel human ABC gene which has homology to the murine ABC1 and ABC2 genes, as well as sequences predicted to be encoded by cosmid C48B4.4 from *C. elegans* (Wilson *et al.*, supra.). A 6.4 kb cDNA has been assembled for the hABC3 transporter. The assembled cDNA contains a 5116 nucleotide long open reading frame encoding 1705 amino acids, with the predicted protein having a molecular weight of 191 kDa. The proposed start methionine is 50 bp upstream of the 5' end of clone ABCgt.1.

Five trapped exons from P1 clones 109.8C and 47.2H were shown to contain sequences with homology to the human ribosomal protein L3 cDNA, with hybridization studies indicating that the L3-like gene is oriented centromeric to telomeric (transcript L in Figure 1). The ribosomal L3 gene product is one of five essential proteins for peptidyltransferase activity in the large ribosomal subunit (Schulze and Nierhaus, EMBO J. 1:609-613, 1982). Not surprisingly, the L3 amino acid sequence is highly conserved across species. Mammalian L3 genes showing ~98% protein sequence identity have been characterized from man (Genbank Accession No. X73460), mouse (Peckham et al.,

Genes Dev. 3:2062-2071, 1989), rat (Kuwano and Wool, Biochem. Biophys. Res. Comm. 187:58-64, 1992) and cow (Simonic et al., Biochim. Biophys. Acta 1219:706-710, 1994). The cumulative percent identity between the trapped exons and the reported human ribosomal protein L3 cDNA was 74% (537/724) at the nucleotide level.

A full-length cDNA encoding a novel ribosomal L3 protein subtype, SEM L3, was isolated and sequenced (Figure 11). This gene is now designated RPL3L and has been assigned GenBank Accession No. U65581. The deduced protein sequence is 407 amino acids long and shows 77% identity to other known mammalian L3 proteins, which are themselves highly conserved. Hybridization analysis of human genomic DNA suggests this novel gene is single copy and has a tissue specific pattern of expression.

The expression pattern of the previously identified human L3 gene and the novel human RPL3L was determined using multiple tissue Northern blots. The human L3 gene showed a ubiquitous pattern of expression in all tissues with the highest expression in the pancreas. contrast, the novel gene described herein is strongly expressed in skeletal muscle and heart tissue, with low levels of expression in the pancreas. This novel gene, RPL3L (Ribosomal Protein L3-Like), is located in a gene-rich region near the PKD1 and TSC2 genes on chromosome 16p13.3.

The RPL3L protein is more closely related to the above mentioned cytoplasmic ribosomal proteins than to previously described nucleus-encoded mitochondrial proteins (Graack et al., Eur. J. Biochem. 206:373-380, 1992). The presence of a highly conserved nuclear localization sequence in the RPL3L further supports the hypothesis that it represents a novel cytoplasmic L3 ribosomal protein subtype and not a nucleus-encoded mitochondrial protein.

WO 97/48797 PCT/US97/00785

In addition, an exon trap (Genbank Accession No. L48792) from a gene which is located telomeric of the L3-like gene was obtained (transcript M in Figure 1). Sequences encoded by transcript M were shown to have homology to pilB from Neisseria gonorrhoeae (Taha et al., EMBO J. 7:4367-4378, 1988) as well as to a computer predicted 17.2 kDa protein encoded by cosmid F44E2.6 from C. elegans (Wilson et al., supra.).

Using sequences from exon trap L48792, a 600 bp partial cDNA was isolated and it was determined that the corresponding gene is oriented centromeric to telomeric. 1.3 kb message was detected by the cDNA on Northern blots. Sequences conserved between the partial cDNA and the hypothetical 17.2 kDa protein were also conserved in the pilB protein from Neisseria gonorrhoeae (Taha et al., supra. 1988), a hypothetical 19.3 kDa protein from yeast (Genbank Accession No. P25566), and a fimbrial transcription regulation repressor from Haemophilus (Fleischmann et al., Science 269:496-512 1995) (Figure 2). The pilB protein has homology to histidine kinase sensors and has been shown to play a role in the repression of pilin production in Neisseria gonorrhoeae (Taha et al., supra. 1988; Taha et al., Mol. Microbiol. 5:137-148, 1991). However, residues conserved between pilB, transcript M and the C. elegans, yeast, and Haemophilus sequences do not include the conserved histidine kinase domains from pilB (Taha et al., supra. 1991). These findings suggest that the conserved region in transcript M has a function which is independent of the proposed histidine kinase sensor activity of pilB.

An additional exon trap from region of overlap between the 109.8C and 47.2H P1 clones was shown to contain human LLRep3 sequences (Slynn et al., Nuc. Acids Res. 18:681, 1990). Hybridization studies indicated that the LLRep3 sequences (transcript K in Figure 1) were located between the sazD and L3-like genes. The region of highest gene density appears to be at the telomeric end of this

cloned interval, particularly the region between TSC2 and D16S84, with a minimum of five genes mapping to this region (transcription units K, L and M, sazD and hERV1).

Also mapped to this region, was an exon trap which is 86% identical (170/197) at the nucleotide level to the previously described rat augmenter of liver regeneration (Hagiya et al., Proc. Natl. Acad. Sci., USA 91:8142-8146, 1994). ALR is a growth factor which augments the growth of damaged liver tissue while having no effect on the resting liver. Studies have demonstrated that rat ALR is capable of augmenting hepatocytic regeneration following hepatectomy.

This ALR-like exon trap was also shown to contain sequences from the recently described hERV1 gene, which encodes a functional homologue to yeast ERV1 (Lisowsky et al., supra.).

A 468 bp cDNA, hALR, has been obtained from the human ALR gene (Figure 13). The ALR sequences encode a 119 amino acid protein which is 84.8% identical and 94.1% similar to the rat ALR protein (Figure 14).

The cloning of human ALR has significant implications in the treatment of degenerative liver diseases. For example, biologically active rat ALR has been produced from COS-7 cells expressing rat ALR cDNA (Hagiya et al., supra.). Accordingly, recombinant hALR could be used in the treatment of damaged liver. In addition, a construct expressing hALR could be used in gene therapy to treat chronic liver diseases.

Forty three of the trapped exons did not have significant homology to sequences in the protein or DNA databases, nor were ESTs (expressed sequence tags) containing sequences from the exon traps observed in dbEST. The absence of ESTs containing sequences from these novel exon traps is not surprising since one of the criterion for

WO 97/48797 PCT/US97/00785

selecting exon traps for further analysis was the presence of an EST in the database. These trapped exons are likely to represent bona fide products, since in many cases they were trapped multiple times from different P1 clones and in combination with flanking exons.

The present invention encompasses novel human genes an isolated nucleic acids comprising unique exon sequences from chromosome 16. The sequences described herein provide a valuable resource for transcriptional mapping and create a set of sequence-ready templates for a gene-rich interval responsible for at least two inheritable diseases.

Accordingly, the present invention provides isolated nucleic acids encoding human netrin (hNET), human ATP Binding Cassette transporter (hABC3), human ribosomal L3 (RPL3L) and human augmenter of liver regeneration (hALR) polypeptides. The present invention further provides isolated nucleic acids comprising unique exon sequences from chromosome 16. The term "nucleic acids" (also referred to as polynucleotides) encompasses RNA as well as single and double-stranded DNA, cDNA and oligonucleotides. As used herein, the phrase "isolated" means a polynucleotide that is in a form that does not occur in nature.

One means of isolating polynucleotides encoding invention polypeptides is to probe a human tissue-specific library with a natural or artificially designed DNA probe using methods well known in the art. DNA probes derived from the human netrin gene, hNET, the human ABC transporter gene, hABC3, the human ribosomal protein L3 gene, RPL3L, or the human augmenter of liver regeneration gene, hALR, are particularly useful for this purpose. DNA and cDNA molecules that encode invention polypeptides can be used to obtain complementary genomic DNA, cDNA or RNA from human, mammalian, or other animal sources, or to isolate related

cDNA or genomic clones by the screening of cDNA or genomic libraries, by methods described in more detail below.

The present invention encompasses isolated nucleic acid sequences, including sense and antisense oligonucleotide sequences, derived from the sequences shown in Figures 3, 4, 8, 11 and 15. hNET-, hABC3-, RPL3L- (SEM L3-), and hALR-derived sequences may also be associated with heterologous sequences, including promoters, enhancers, response elements, signal sequences, polyadenylation sequences, and the like. Furthermore, the nucleic acids can be modified to alter stability, solubility, binding affinity, and specificity. For example, invention-derived sequences can further include nuclease-resistant phosphorothioate, phosphoroamidate, and methylphosphonate derivatives, as well as "protein nucleic acid" (PNA) formed by conjugating bases to an amino acid backbone as described in Nielsen et al., Science, 254:1497, 1991. The nucleic acid may be derivatized by linkage of the α -anomer nucleotide, or by formation of a methyl or ethyl phosphotriester or an alkyl phosphoramidate linkage. Furthermore, the nucleic acid sequences of the present invention may also be modified with a label capable of providing a detectable signal, either directly or indirectly. Exemplary labels include radioisotopes, fluorescent molecules, biotin, and the like.

In general, nucleic acid manipulations according to the present invention use methods that are well known in the art, as disclosed in, for example, Sambrook et al., Molecular Cloning, A Laboratory Manual 2d Ed. (Cold Spring Harbor, NY, 1989), or Ausubel et al., Current Protocols in Molecular Biology (Greene Assoc., Wiley Interscience, NY, NY, 1992).

Examples of nucleic acids are RNA, cDNA, or genomic DNA encoding a human netrin, a human ABC transporter, a human ribosomal L3 subtype, or a human

WO 97/48797 PCT/US97/00785

augmenter of liver regeneration polypeptide. Such nucleic acids may have coding sequences substantially the same as the coding sequence shown in Figures 3, 4, 8, 11 and 15, respectively.

The present invention further provides isolated oligonucleotides corresponding to sequences within the hNET, hABC3, RPL3L (formerly SEM L3), hALR genes, or within the respective cDNAs, which, alone or together, can be used to discriminate between the authentic expressed gene and homologues or other repeated sequences. These oligonucleotides may be from about 12 to about 60 nucleotides in length, preferably about 18 nucleotides, may be single- or double-stranded, and may be labeled or modified as described below.

This invention also encompasses nucleic acids which differ from the nucleic acids shown in Figures 3, 4, 8, 11 and 15, but which have the same phenotype, i.e., encode substantially the same amino acid sequence set forth in Figures 3, 4, 8, 11 and 15, respectively. Phenotypically similar nucleic acids are also referred to as "functionally equivalent nucleic acids". As used herein, the phrase "functionally equivalent nucleic acids" encompasses nucleic acids characterized by slight and nonconsequential sequence variations that will function in substantially the same manner to produce the same protein product(s) as the nucleic acids disclosed herein. particular, functionally equivalent nucleic acids encode proteins that are the same as those disclosed herein or that have conservative amino acid variations. For example, conservative variations include substitution of a non-polar residue with another non-polar residue, or substitution of a charged residue with a similarly charged residue. variations include those recognized by skilled artisans as those that do not substantially alter the tertiary structure of the protein.

Further provided are nucleic acids encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, and human augmenter of liver regeneration polypeptides that, by virtue of the degeneracy of the genetic code, do not necessarily hybridize to the invention nucleic acids under specified hybridization conditions. Preferred nucleic acids encoding the invention polypeptide are comprised of nucleotides that encode substantially the same amino acid sequence set forth in Figures 4, 8, 11 and 15. Alternatively, preferred nucleic acids encoding the invention polypeptide(s) hybridize under high stringency conditions to substantially the entire sequence, or substantial portions (i.e., typically at least 12 to 60 nucleotides) of the nucleic acid sequence set forth in Figures 3, 4, 8, 11 and 15, respectively.

Stringency of hybridization, as used herein, refers to conditions under which polynucleotide hybrids are stable. As known to those of skill in the art, the stability of hybrids is a function of sodium ion concentration and temperature. (See, for example, Sambrook et al., supra.).

The present invention provides isolated polynucleotides operatively linked to a promoter of RNA transcription, as well as other regulatory sequences. As used herein, the phrase "operatively linked" refers to the functional relationship of the polynucleotide with regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences. For example, operative linkage of a polynucleotide to a promoter refers to the physical and functional relationship between the polynucleotide and the promoter such that transcription of DNA is initiated from the promoter by an RNA polymerase that specifically recognizes and binds to the promoter, and wherein the promoter directs the transcription of RNA from the polynucleotide.

Promoter regions include specific sequences that are sufficient for RNA polymerase recognition, binding and transcription initiation. Additionally, promoter regions include sequences that modulate the recognition, binding and transcription initiation activity of RNA polymerase. Such sequences may be cis acting or may be responsive to trans acting factors. Depending upon the nature of the regulation, promoters may be constitutive or regulated. Examples of promoters are SP6, T4, T7, SV40 early promoter, cytomegalovirus (CMV) promoter, mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, and the like.

Vectors that contain both a promoter and a cloning site into which a polynucleotide can be operatively linked are well known in the art. Such vectors are capable of transcribing RNA in vitro or in vivo, and are commercially available from sources such as Stratagene (La Jolla, CA) and Promega Biotech (Madison, WI). In order to optimize expression and/or in vitro transcription, it may be necessary to remove, add or alter 5' and/or 3' untranslated portions of the clones to eliminate extra, potential inappropriate alternative translation initiation codons or other sequences that may interfere with or reduce expression, either at the level of transcription or translation. Alternatively, consensus ribosome binding sites can be inserted immediately 5' of the start codon to enhance expression. Similarly, alternative codons, encoding the same amino acid, can be substituted for coding sequences of the human netrin, human ABC3 transporter, the human ribosomal L3 subtype, or the human augmenter of liver regeneration polypeptide in order to enhance transcription (e.g., the codon preference of the host cell can be adopted, the presence of G-C rich domains can be reduced, and the like).

Examples of vectors are viruses, such as baculoviruses and retroviruses, bacteriophages, cosmids, plasmids, fungal vectors and other recombination vehicles

_____PCT/US97/00785

typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression.

Polynucleotides are inserted into vector genomes using methods well known in the art. For example, insert and vector DNA can be contacted, under suitable conditions, with a restriction enzyme to create complementary ends on each molecule that can pair with each other and be joined together with a ligase. Alternatively, synthetic nucleic acid linkers can be ligated to the termini of restricted polynucleotide. These synthetic linkers contain nucleic acid sequences that correspond to a particular restriction site in the vector DNA. Additionally, an oligonucleotide containing a termination codon and an appropriate restriction site can be ligated for insertion into a vector containing, for example, some or all of the following:a selectable marker gene, such as the neomycin gene for selection of stable or transient transfectants in mammalian cells; enhancer/promoter sequences from the immediate early gene of human CMV for high levels of transcription; transcription termination and RNA processing signals from SV40 for mRNA stability; SV40 polyoma origins of replication and ColEl for proper episomal replication; versatile multiple cloning sites; and T7 and SP6 RNA promoters for in vitro transcription of sense and antisense Other means are well known and available in the art. RNA.

Also provided are vectors comprising a polynucleotide encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, and human augmenter of liver regeneration polypeptides, adapted for expression in a bacterial cell, a yeast cell, an amphibian cell, an insect cell, a mammalian cell and other animal cells. The vectors additionally comprise the regulatory elements necessary for expression of the polynucleotide in the bacterial, yeast, amphibian, mammalian or animal cells so located relative to the polynucleotide encoding human

netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptides as to permit expression thereof. As used herein, "expression" refers to the process by which polynucleotides are transcribed into mRNA and translated into peptides, polypeptides, or proteins. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA, if an appropriate eukaryotic host is selected. Regulatory elements required for expression include promoter sequences to bind RNA polymerase and transcription initiation sequences for ribosome binding. For example, a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG (Sambrook et al., supra.). Similarly, a eukaryotic expression vector includes a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome. Such vectors can be obtained commercially or assembled by the sequences described in methods well known in the art, for example, the methods described above for constructing vectors in general. Expression vectors are useful to produce cells that express the invention receptor.

This invention provides a transformed host cell that recombinantly expresses the human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptides. Invention host cells have been transformed with a polynucleotide encoding a human netrin, a human ABC3 transporter, a human ribosomal L3 subtype, or a human augmenter of liver regeneration polypeptide. An example is a mammalian cell comprising a plasmid adapted for expression in a mammalian cell. The plasmid contains a polynucleotide encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide and the regulatory elements necessary for expression of the invention protein.

Appropriate host cells include bacteria, archebacteria, fungi, especially yeast, plant cells, insect cells and animal cells, especially mammalian cells. particular interest are E. coli, B. Subtilis, Saccharomyces cerevisiae, SF9 cells, C129 cells, 293 cells, Neurospora, and CHO cells, COS cells, HeLa cells, and immortalized mammalian myeloid and lymphoid cell lines. Preferred replication systems include M13, ColE1, SV40, baculovirus, lambda, adenovirus, artificial chromosomes, and the like. A large number of transcription initiation and termination regulatory regions have been isolated and shown to be effective in the transcription and translation of heterologous proteins in the various hosts. Examples of these regions, methods of isolation, manner of manipulation, and the like, are known in the art. appropriate expression conditions, host cells can be used as a source of recombinantly produced hNET, hABC3, RPL3L (formerly SEM L3) and/or hALR.

Nucleic acids (polynucleotides) encoding invention polypeptides may also be incorporated into the genome of recipient cells by recombination events. For example, such a sequence can be microinjected into a cell, and thereby effect homologous recombination at the site of an endogenous gene encoding hNET, hABC3, RPL3L (formerly SEM L3), and/or hALR an analog or pseudogene thereof, or a sequence with substantial identity to a hNET-, hABC3-, RPL3L (SEM L3-), or hALR- encoding gene. Other recombination-based methods such as nonhomologous recombinations or deletion of endogenous gene by homologous recombination, especially in pluripotent cells, may also be used.

The present invention provides isolated peptides, polypeptides(s) and/or protein(s) encoded by the invention nucleic acids. The present invention also encompasses isolated polypeptides having a sequence encoded by hNET, hABC3, RPL3L (SEM L3), and hALR genes, as well as peptides

of six or more amino acids derived therefrom. The polypeptide(s) may be isolated from human tissues obtained by biopsy or autopsy, or may be produced in a heterologous cell by recombinant DNA methods as described herein.

As used herein, the term "isolated" means a protein molecule free of cellular components and/or contaminants normally associated with a native in vivo environment. Invention polypeptides and/or proteins include any natural occurring allelic variant, as well as recombinant forms thereof. Invention polypeptides can be isolated using various methods well known to a person of skill in the art.

The methods available for the isolation and purification of invention proteins include, precipitation, gel filtration, and chromatographic methods including molecular sieve, ion-exchange, and affinity chromatography using e.g. hNET-, hABC3-, RPL3L- (SEM L3-), and/or hALRspecific antibodies or ligands. Other well-known methods are described in Deutscher et al., Guide to Protein Purification: Methods in Enzymology Vol. 182, (Academic Press, 1990). When the invention polypeptide to be purified is produced in a recombinant system, the recombinant expression vector may comprise additional sequences that encode additional amino-terminal or carboxyterminal amino acids; these extra amino acids act as "tags" for immunoaffinity purification using immobilized antibodies or for affinity purification using immobilized ligands.

Peptides comprising hNET-, hABC3-, RPL3L- (SEM L3-) or hALR-specific sequences may be derived from isolated larger hNET, hABC3, RPL3L (SEM L3), or hALR polypeptides described above, using proteolytic cleavages by e.g. proteases such as trypsin and chemical treatments such as cyanogen bromide that are well-known in the art. Alternatively, peptides up to 60 residues in length can be

WO 97/48797 PCT/US97/00785

routinely synthesized in milligram quantities using commercially available peptide synthesizers.

An example of the means for preparing the invention polypeptide(s) is to express polynucleotides encoding hNET, hABC3, RPL3L (SEM L3), and/or hALR in a suitable host cell, such as a bacterial cell, a yeast cell, an amphibian cell (i.e., oocyte), an insect cell (i.e., drosophila) or a mammalian cell, using methods well known in the art, and recovering the expressed polypeptide, again using well-known methods. Invention polypeptides can be isolated directly from cells that have been transformed with expression vectors, described below in more detail. The invention polypeptide, biologically active fragments, and functional equivalents thereof can also be produced by chemical synthesis. As used herein, "biologically active fragment" refers to any portion of the polypeptide represented by the amino acid sequence in Figures 4, 8, 11 and 15 that can assemble into an active protein. Synthetic polypeptides can be produced using Applied Biosystems, Inc. Model 430A or 431A automatic peptide synthesizer (Foster .City, CA) employing the chemistry provided by the manufacturer.

Modification of the invention nucleic acids, polynucleotides, polypeptides, peptides or proteins with the following phrases: "recombinantly expressed/produced", "isolated", or "substantially pure", encompasses nucleic acids, polynucleotides, polypeptides, peptides or proteins that have been produced in such form by the hand of man, and are thus separated from their native in vivo cellular environment. As a result of this human intervention, the recombinant nucleic acids, polynucleotides, polypeptides, peptides and proteins of the invention are useful in ways that the corresponding naturally occurring molecules are not, such as identification of selective drugs or compounds.

WO 97/48797 PCT/US97/00785

Sequences having "substantial sequence homology" are intended to refer to nucleotide sequences that share at least about 90% identity with invention nucleic acids; and amino acid sequences that typically share at least about 95% amino acid identity with invention polypeptides. It is recognized, however, that polypeptides or nucleic acids containing less than the above-described levels of homology arising as splice variants or that are modified by conservative amino acid substitutions, or by substitution of degenerate codons are also encompassed within the scope of the present invention.

The present invention provides a nucleic acid probe comprising a polynucleotide capable of specifically hybridizing with a sequence included within the nucleic acid sequence encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide, for example, a coding sequence included within the nucleotide sequence shown in Figures 3, 4, 8, 11 and 15, respectively.

As used herein, a "nucleic acid probe" may be a sequence of nucleotides that includes from about 12 to about 60 contiguous bases set forth in Figures 3, 4, 8, 11 and 15, preferably about 18 nucleotides, may be single- or double-stranded, and may be labeled or modified as described herein. Preferred regions from which to construct probes include 5' and/or 3' coding sequences, sequences predicted to encode transmembrane domains, sequences predicted to encode cytoplasmic loops, signal sequences, ligand binding sites, and the like.

Full-length or fragments of cDNA clones can also be used as probes for the detection and isolation of related genes. When fragments are used as probes, preferably the cDNA sequences will be from the carboxyl end-encoding portion of the cDNA, and most preferably will include predicted transmembrane domain-encoding portions of the cDNA sequence. Transmembrane domain regions can be

predicted based on hydropathy analysis of the deduced amino acid sequence using, for example, the method of Kyte and Doolittle (*J. Mol. Biol.* 157:105, 1982).

As used herein, the phrase "specifically hybridizing" encompasses the ability of a polynucleotide to recognize a sequence of nucleic acids that are complementary thereto and to form double-helical segments via hydrogen bonding between complementary base pairs. Nucleic acid probe technology is well known to those skilled in the art who will readily appreciate that such probes may vary greatly in length and may be labeled with a detectable agent, such as a radioisotope, a fluorescent dye, and the like, to facilitate detection of the probe. Invention probes are useful to detect the presence of nucleic acids encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptides. For example, the probes can be used for in situ hybridizations in order to locate biological tissues in which the invention gene is expressed. Additionally, synthesized oligonucleotides complementary to the nucleic acids of a polynucleotide encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptides are useful as probes for detecting the invention genes, their associated mRNA, or for the isolation of related genes using homology screening of genomic or cDNA libraries, or by using amplification techniques well known to one of skill in the art.

Also provided are antisense oligonucleotides having a sequence capable of binding specifically with any portion of an mRNA that encodes human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide so as to prevent translation of the mRNA. The antisense oligonucleotide may have a sequence capable of binding specifically with any portion of the sequence of the cDNA encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, or

human augmenter of liver regeneration polypeptide. As used herein, the phrase "binding specifically" encompasses the ability of a nucleic acid sequence to recognize a complementary nucleic acid sequence and to form double-helical segments therewith via the formation of hydrogen bonds between the complementary base pairs. An example of an antisense oligonucleotide is an antisense oligonucleotide comprising chemical analogs of nucleotides (i.e., synthetic antisense oligonucleotide, SAO).

Compositions comprising an amount of the antisense oligonucleotide, (SAOC), effective to reduce expression of the human netrin, the human ABC3 transporter, the human ribosomal L3 subtype, or the human augmenter of liver regeneration polypeptide by passing through a cell membrane and binding specifically with mRNA encoding the human netrin, the human ABC3 transporter, the human ribosomal L3 subtype, or the human augmenter of liver regeneration polypeptide so as to prevent its translation and an acceptable hydrophobic carrier capable of passing through a cell membrane are also provided herein. acceptable hydrophobic carrier capable of passing through cell membranes may also comprise a structure which binds to a receptor specific for a selected cell type and is thereby taken up by cells of the selected cell type. The structure may be part of a protein known to bind to a cell-type specific receptor.

This invention provides a means to modulate levels of expression of invention polypeptides by the use of a synthetic antisense oligonucleotide composition (SAOC) which inhibits translation of mRNA encoding these polypeptides. Synthetic oligonucleotides, or other antisense chemical structures designed to recognize and selectively bind to mRNA, are constructed to be complementary to portions of the nucleotide sequences shown in Figures 3, 4, 8, 11 and 15, of DNA, RNA or chemically modified, artificial nucleic acids. The SAOC is designed to be stable in the blood stream for administration to a

subject by injection, or in laboratory cell culture conditions. The SAOC is designed to be capable of passing through the cell membrane in order to enter the cytoplasm of the cell by virtue of physical and chemical properties of the SAOC which render it capable of passing through cell membranes, for example, by designing small, hydrophobic SAOC chemical structures, or by virtue of specific transport systems in the cell which recognize and transport the SAOC into the cell.

In addition, the SAOC can be designed for administration only to certain selected cell populations by targeting the SAOC to be recognized by specific cellular uptake mechanisms which bind and take up the SAOC only within select cell populations. For example, the SAOC may be designed to bind to a receptor found only in a certain cell type, as discussed supra. The SAOC is also designed to recognize and selectively bind to the target mRNA sequence, which may correspond to a sequence contained within the sequence shown in Figures 3, 4, 8, 11 and 15. The SAOC is designed to inactivate the target mRNA sequence by either binding to the target mRNA and inducing degradation of the mRNA by, for example, RNase I digestion, or inhibiting translation of the mRNA target by interfering with the binding of translation-regulating factors or ribosomes, or inclusion of other chemical structures, such as ribozyme sequences or reactive chemical groups which either degrade or chemically modify the target mRNA. SAOCs have been shown to be capable of such properties when directed against mRNA targets (see Cohen et al., TIPS, 10:435, 1989 and Weintraub, Sci. American, January pp.40, 1990).

This invention further provides a composition containing an acceptable carrier and any of an isolated, purified human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide, an active fragment thereof, or a purified, mature protein and active fragments thereof.

wetting agents.

Also provided are antibodies having specific reactivity with the human netrin, the human ABC3 transporter, the human ribosomal L3 subtype, or the human augmenter of liver regeneration polypeptides of the subject invention. Active fragments of antibodies are encompassed within the definition of "antibody". Invention antibodies can be produced by methods known in the art using the invention proteins or portions thereof as antigens. For example, polyclonal and monoclonal antibodies can be produced by methods well known in the art, as described, for example, in Harlow and Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory 1988).

The polypeptides of the present invention can be used as the immunogen in generating such antibodies. Alternatively, synthetic peptides can be prepared (using commercially available synthesizers) and used as immunogens. Where natural or synthetic hNET-, hABC3-, RPL3L- (SEM L3-), and/or hALR-derived peptides are used to induce a hNET-, hABC3-, RPL3L- (SEM L3-), and/or hALRspecific immune response, the peptides may be conveniently coupled to an suitable carrier such as KLH and administered in a suitable adjuvant such as Freund's. Preferably, selected peptides are coupled to a lysine core carrier substantially according to the methods of Tam, Proc. Natl. Acad. Sci, USA 85:5409-5413, 1988. The resulting antibodies may be modified to a monovalent form, such as, for example, Fab, Fab2, FAB', or FV. Anti-idiotypic antibodies may also be prepared using known methods.

In one embodiment, normal or mutated hNET, hABC3, RPL3L (SEM L3), or hALR polypeptides are used to immunize mice, after which their spleens are removed, and splenocytes used to form cell hybrids with myeloma cells and obtain clones of antibody-secreted cells according to techniques that are standard in the art. The resulting monoclonal antibodies are screened for specific binding to hNET, hABC3, RPL3L (SEM L3), and/or hALR proteins or hNET-, hABC3-, RPL3L- (SEM L3-), and/or hALR-related peptides.

In another embodiment, antibodies are screened for selective binding to normal or mutated hNET, hABC3, RPL3L (SEM L3), or hALR sequences. Antibodies that distinguish between normal and mutant forms of hNET, hABC3, RPL3L (SEM L3), or hALR may be used in diagnostic tests (see below) employing ELISA, EMIT, CEDIA, SLIFA, and the like. Anti- hNET, hABC3, RPL3L (SEM L3), or hALR antibodies may also be used to perform subcellular and histochemical localization studies. Finally, antibodies may be used to block the function of the hNET, hABC3, RPL3L (SEM L3), and/or hALR polypeptide, whether normal or mutant, or to perform rational drug design studies to identify and test inhibitors of the function (e.g., using an anti-idiotypic antibody approach).

Amino acid sequences can be analyzed by methods well known in the art to determine whether they encode hydrophobic or hydrophilic domains of the corresponding polypeptide. Altered antibodies such as chimeric, humanized, CDR-grafted or bifunctional antibodies can also be produced by methods well known in the art. Such antibodies can also be produced by hybridoma, chemical synthesis or recombinant methods described, for example, in Sambrook et al., supra., and Harlow and Lane, supra. Both anti-peptide and anti-fusion protein antibodies can be used. (see, for example, Bahouth et al., Trends Pharmacol. Sci. 12:338, 1991; Ausubel et al., supra.).

Invention antibodies can be used to isolate invention polypeptides. Additionally, the antibodies are useful for detecting the presence of the invention polypeptides, as well as analysis of polypeptide localization, composition, and structure of functional domains. Methods for detecting the presence of a human netrin, a human ABC3 transporter, a human ribosomal L3 subtype, or a human augmenter of liver regeneration polypeptide comprise contacting the cell with an antibody that specifically binds to the polypeptide, under conditions permitting binding of the antibody to the polypeptide, detecting the presence of the antibody bound to the cell, and thereby detecting the presence of the invention polypeptide on the cell. With respect to the detection of such polypeptides, the antibodies can be used for in vitro diagnostic or in vivo imaging methods.

Immunological procedures useful for in vitro detection of the target human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide in a sample include immunoassays that employ a detectable antibody. Such immunoassays include, for example, ELISA, Pandex microfluorimetric assay, agglutination assays, flow cytometry, serum diagnostic assays and immunohistochemical staining procedures which are well known in the art. An antibody can be made detectable by various means well known in the art. For example, a detectable marker can be directly or indirectly attached to the antibody. Useful markers include, for example, radionuclides, enzymes, fluorogens, chromogens and chemiluminescent labels.

For *in vivo* imaging methods, a detectable antibody can be administered to a subject and the binding of the antibody to the invention polypeptide can be detected by imaging techniques well known in the art. Suitable imaging agents are known and include, for example, gamma-emitting radionuclides such as ¹¹¹In, ^{99m}Tc, ⁵¹Cr and the like, as well as paramagnetic metal ions, which are

PCT/US97/00785

described in U.S. Patent No. 4,647,447. The radionuclides permit the imaging of tissues by gamma scintillation photometry, positron emission tomography, single photon emission computed tomography and gamma camera whole body imaging, while paramagnetic metal ions permit visualization by magnetic resonance imaging.

The invention provides a transgenic non-human mammal that is capable of expressing nucleic acids encoding a human netrin, a human ABC3 transporter, a human ribosomal L3 subtype, or a human augmenter of liver regeneration polypeptide. Also provided is a transgenic non-human mammal capable of expressing nucleic acids encoding a human netrin, a human ABC3 transporter, a human ribosomal L3 subtype, or a human augmenter of liver regeneration polypeptide so mutated as to be incapable of normal activity, i.e., does not express native protein.

The present invention also provides a transgenic non-human mammal having a genome comprising antisense nucleic acids complementary to nucleic acids encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide so placed as to be transcribed into antisense mRNA complementary to mRNA encoding a human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide, which hybridizes thereto and, thereby, reduces the translation thereof. polynucleotide may additionally comprise an inducible promoter and/or tissue specific regulatory elements, so that expression can be induced, or restricted to specific cell types. Examples of polynucleotides are DNA or cDNA having a coding sequence substantially the same as the coding sequence shown in Figures 3, 4, 8, 11 and 15. Examples of non-human transgenic mammals are transgenic cows, sheep, goats, pigs, rabbits, rats and mice. Examples of tissue specificity-determining elements are the metallothionein promoter and the T7 promoter.

Animal model systems which elucidate the physiological and behavioral roles of invention polypeptides are produced by creating transgenic animals in which the expression of the polypeptide is altered using a variety of techniques. Examples of such techniques include the insertion of normal or mutant versions of nucleic acids encoding human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide by microinjection, retroviral infection or other means well known to those skilled in the art, into appropriate fertilized embryos to produce a transgenic animal. See, for example, Carver et al., Bio/Technology 11:1263-1270, 1993; Carver et al., Cytotechnology 9:77-84, 1992; Clark et al., Bio/Technology 7:487-492, 1989; Simons et al., Bio/Technology 6:179-183, 1988; Swanson et al., Bio/Technology 10:557-559, 1992; Velander et al., Proc. Natl. Acad. Sci., USA 89:12003-12007, 1992; Hammer et al., Nature 315:680-683, 1985; Krimpenfort et al., Bio/Technology 9:844-847, 1991; Ebert et al., Bio/Technology 9:835-838, 1991; Simons et al., 🚉 Nature 328:530-532, 1987; Pittius et al., Proc. Natl. Acad. Sci., USA 85:5874-5878, 1988; Greenberg et al., Proc. Natl. Acad. Sci., USA 88:8327-8331, 1991; Whitelaw et al., Transg. Res. 1:3-13, 1991; Gordon et al., Bio/Technology 5:1183-1187, 1987; Grosveld et al., Cell 51:975-985, 1987; Brinster et al., Proc. Natl. Acad. Sci., USA 88:478-482, 1991; Brinster et al., Proc. Natl. Acad. Sci., USA 85:836-840, 1988; Brinster et al., Proc. Natl. Acad. Sci., USA 82:4438-4442, 1985; Al-Shawi et al., Mol. Cell. Biol. 10(3):1192-1198, 1990; Van Der Putten et al., Proc. Natl. Acad. Sci., USA 82:6148-6152, 1985; Thompson et al., Cell 56:313-321, 1989; Gordon et al., Science 214:1244-1246, 1981; and Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory, 1986).

Another technique, homologous recombination of mutant or normal versions of these genes with the native gene locus in transgenic animals, may be used to alter the regulation of expression or the structure of the invention

polypeptides (see, Capecchi et al., Science 244:1288, 1989; Zimmer et al., Nature 338:150, 1989). Homologous recombination techniques are well known in the art. Homologous recombination replaces the native (endogenous) gene with a recombinant or mutated gene to produce an animal that cannot express native (endogenous) protein but can express, for example, a mutated protein which results in altered expression of the human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide.

In contrast to homologous recombination, microinjection adds genes to the host genome, without removing host genes. Microinjection can produce a transgenic animal that is capable of expressing both endogenous and exogenous human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptides. Inducible promoters can be linked to the coding region of the nucleic acids to provide a means to regulate expression of the transgene. Tissue-specific regulatory elements can be linked to the coding region to permit tissue-specific expression of the transgene. Transgenic animal model systems are useful for in vivo screening of compounds for identification of ligands, i.e., agonists and antagonists, which activate or inhibit polypeptide responses.

The nucleic acids, oligonucleotides (including antisense), vectors containing same, transformed host cells, polypeptides, as well as antibodies of the present invention, can be used to screen compounds in vitro to determine whether a compound functions as a potential agonist or antagonist to the invention protein. These in vitro screening assays provide information regarding the function and activity of the invention protein, which can lead to the identification and design of compounds that are capable of specific interaction with invention proteins.

In accordance with still another embodiment of the present invention, there is provided a method for identifying compounds which bind to human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptides. The invention proteins may be employed in a competitive binding assay. Such an assay can accommodate the rapid screening of a large number of compounds to determine which compounds, if any, are capable of binding to invention polypeptides. Subsequently, more detailed assays can be carried out with those compounds found to bind, to further determine whether such compounds act as modulators, agonists or antagonists of invention polypeptides.

In accordance with another embodiment of the present invention, transformed host cells that recombinantly express invention polypeptides can be contacted with a test compound, and the modulating effect(s) thereof can then be evaluated by comparing the human netrin, human ABC3 transporter, human ribosomal L3 subtype, or human augmenter of liver regeneration polypeptide-mediated response in the presence and absence of test compound, or by comparing the response of test cells or control cells (i.e., cells that do not express invention polypeptides), to the presence of the compound.

As used herein, a compound or a signal that "modulates the activity" of an invention polypeptide refers to a compound or a signal that alters the activity of the numan netrin, the human ABC3 transporter, the human ribosomal L3 subtype, or the human augmenter of liver regeneration polypeptide so that the activity of the invention polypeptide is different in the presence of the compound or signal than in the absence of the compound or signal. In particular, such compounds or signals include agonists and antagonists. An agonist encompasses a compound or a signal that activates polypeptide function. Alternatively, an antagonist includes a compound or signal that interferes with polypeptide function. Typically, the

effect of an antagonist is observed as a blocking of agonist-induced protein activation. Antagonists include competitive and non-competitive antagonists. A competitive antagonist (or competitive blocker) interacts with or near the site specific for agonist binding. A non-competitive antagonist or blocker inactivates the function of the polypeptide by interacting with a site other than the agonist interaction site.

The following examples are intended to illustrate the invention without limiting the scope thereof.

Example I: Contig Assembly

A. Cosmids

Multiple cosmids were used as reagents to initiate walks in YAC and P1 libraries. Clones 16-166N (D16S277), 16-191N (D16S279), 16-198N (D16S280) and 16-140N (D16S276) were previously isolated from a cosmid library (Lerner et al., Mamm. Genome 3:92-100, 1992). Cosmids cCMM65 (D16S84), c291 (D16S291), cAJ42 (ATP6C) and cKG8 were recovered from total human cosmid libraries (made in-house or by Stratagene, La Jolla, CA) using either a cloned insert (CMM65) or sequence-specific oligonucleotides as probe. The c326 cosmid contig and clone 413C12 originated from a flow-sorted chromosome 16 library (Stallings et al., Genomics 13(4):1031-1039, 1992). The c326 contig was comprised of clones 2H2, 77E8, 325A11 and 325B10.

B. YACs

Screening of gridded interspersed-repetitive sequence (IRS pools from Mark I, Mark II and Mega-YAC libraries) with cosmid-specific IRS probes was as previously described (Liu et al., Genomics 26:178-191, 1995). IRS probes were made from cosmids 16-166N, 16-191N, cAJ42, 16-198N, 325All, cCMM65, and 16-140N. Biotinylated YAC probes were generated by nick-translating complex mixtures of IRS products from each YAC. Mixtures of

C. Pls

Chromosome walking experiments were done using a single set of membranes which contained the gridded P1 library pools (Shepherd et al., supra. 1994). The gridded filters were kindly provided by Dr. Mark Leppert and the Technology Access Section of the Utah Center for Human Genome Research at the University of Utah. P1 gridded membranes were screened using end probes derived from a set of chromosome 16 cosmids (see above) and P1 clones as they were identified. Both RNA transcripts and bubble-PCR products were utilized as end probes.

D. Probes

Radiolabeled transcripts were generated using restriction enzyme digested cosmids or Pls (AluI, HaeIII, RsaI, TaqI) as template for phage RNA polymerases T3, T7 and SP6. The T3 and T7 promoter elements were present on the cosmid-derived templates while T7 and SP6 promoter sequences were contained on the P1-based templates. Transcription reactions were performed as recommended by the manufacturer (Stratagene, La Jolla, CA) in the presence of $[\alpha P^{32}]$ -ATP (Amersham, Arlington Heights, IL).

Bubble-PCR products were synthesized from restriction enzyme digested P1s (AluI, HaeIII, RsaI, TaqI). Bubble adaptors with appropriate overhangs and phosphorylated 5' ends were ligated to digested P1 DNA basically as described for YACs (Riley et al., Nuc. Acids Res. 18:2887-2890, 1990). The sequence of the universal vectorette primer derived from the bubble adaptor sequence was 5'-GTTCGTACGAGAATCGCT-3' (SEQ ID NO:67), and differed from that of Riley and co-workers with 12 fewer 5'

nucleotides. The T_m of the truncated vectorette primer more closely matched that of the paired amplimer from the vector-derived promoter sequence (SP6, T7). The desired bubble-PCR product was gel purified prior to radiolabeling (Feinberg et al., Anal. Biochem. 132:6-13, 1983; Feinberg and Vogelstein, Anal. Biochem. 137:266-267, 1984).

The specificity of all end probes was determined prior to their use on the single set of gridded P1 filter arrays. Radiolabeled probes were pre-annealed to Cotl DNA as recommended (Life Technologies Inc., Gaithersburg, MD) and then hybridized to strips of nylon membrane to which were bound 10-20 ng each of the following DNAs: the cloned genomic template used to create the probe; one or more unrelated cloned genomic DNAs; cloned vector (no insert); and human genomic DNA.

Hybridizations were performed in CAK solution (5x SSPE, 1% SDS, 5x Denhardt's Solution, 100 mg/mL torula RNA) at 65°C overnight. Individual end probes were present at a concentration of 5x10⁵ cpm/mL. Hybridized membranes were washed to a final stringency of 0.1x SSC/0.1% SDS at 65°C. The hybridization results were visualized by autoradiography. Probes which hybridized robustly to their respective cloned template while not hybridizing to unrelated cloned DNAs, vector DNA or genomic DNA were identified and used to screen the gridded P1 filters.

Hybridization to the arrayed P1 pools was performed as described for the nylon membrane strips (above) except that multiple probes were used simultaneously. Positive clones were identified, plated at a density of 200-500 cfu per 100 mm plate (LB plus 25 mg/mL kanamycin), lifted onto 82 mm HATF membranes (Millipore, Bedford, MA), processed for hybridization (Sambrook et al., supra.) and then rescreened with the complex probe mixture.

A single positive clone from each pool was selected and replated onto a master plate. To identify the colony purified genomic P1 clone and its corresponding probe, multiple P1 DNA dot blots were prepared and each hybridized to individual radiolabeled probes. All hybridizations contained a chromosome 16p13.3 reference probe, e.g. cAJ42, as well as a uniquely labeled P1 DNA probe.

Example II: Exon Trapping

Genomic P1 clones were prepared for exon trapping experiments by digestion with PstI, double digestion with BamHI/BglII, or by partial digestion with limiting amounts of Sau3AI. Digested P1 DNAs were ligated to BamHI-cut and dephosphorylated vector, pSPL3B, while PstI-digested P1 DNA was subcloned into PstI-cut dephosphorylated vector, pSPL3B.

Ligations were performed in triplicate using 50 ng of vector DNA and 1, 3 or 6 mass equivalents of digested P1 DNA. Transformations were performed following an overnight 16°C incubation, with 1/10 and 1/2 of the transformation being plated on LB (ampicillin) plates.

After overnight growth at 37°C, colonies were scraped off those plates having the highest transformation efficiency (based on a comparison to "no insert" ligation controls) and miniprepped using the alkaline lysis method. To examine the proportion of the pSPL3B containing insert, a small portion of the miniprep was digested with HindIII, which cuts pSPL3B on each side of the multiple cloning site.

Example III: RNA Preparation

Approximately 10 μg of the remaining miniprep DNA was ethanol precipitated, resuspended in 100 μl of sterile PBS and electroporated into approximately 2 x 10^6 COS-7 cells (in 0.7 ml of ice cold PBS) using a BioRad GenePulser

electroporator (1.2 kV, 25 μF and 200 $\Omega)$. The electroporated cells were incubated for 10 min. on ice prior to their addition to a 100 mm tissue culture dish containing 10 ml of prewarmed complete DMEM.

Cytoplasmic RNA was isolated 48 hours post-transfection. The transfected COS-7 cells were removed from tissue culture dishes using 0.25% trypsin/1 mM EDTA (Life Technologies Inc., Gaithersburg, MD). Trypsinized cells were washed in DMEM/10% FCS and resuspended in 400 μ l of ice cold TKM (10 mM Tris-HCl pH7.5, 10 mM KCl, 1 mM MgCl₂) supplemented with 1 μ l of RNAsin (Promega, Madison, WI). After adding 20 µl of 10% Triton X-100, the cells were incubated for 5 min. on ice. The nuclei were removed by centrifugation at 1200 rpm for 5 min. at 4°C. Thirty microliters of 5% SDS was added to the supernatant, with the cytoplasmic RNA being further purified by three rounds of extraction using phenol/chloroform/isoamyl alcohol (24:24:1). The cytoplasmic RNA was ethanol precipitated and resuspended in 50 μ l of H₂0.

Reverse transcription and PCR were performed on the cytoplasmic RNA prepared above as described (Church et al., supra. 1994) using commercially available exon trapping oligonucleotides (Life Technologies Inc., Gaithersburg, MD). The resulting CUA-tailed products were shotgun subcloned into pAMP10 as recommended by the manufacturer (Life Technologies Inc.). Random clones from each ligation were analyzed by colony PCR using secondary PCR primers (Life Technologies Inc.).

Miniprep DNA containing the pAMP10/exon traps was prepared from overnight cultures by alkaline lysis using the EasyPrep manifold or a QIAwell 8 system according to the manufacturers' instructions (Pharmacia, Pistcataway, NJ and Qiagen Inc., Chatsworth, CA, respectively). DNA products containing trapped exons, based on comparison to

WO 97/48797 PCT/US97/00785

the 177 bp "vector only" DNA product, were selected for sequencing.

Example IV: Sequencing

DNA sequencing was performed using Pharmacia ALF and Applied Biosystems 377 PRISM automated DNA sequencers (Piscataway, NJ, and Foster City, CA). DNA sequences were aligned using Sequencher DNA analysis software (Genecodes, Ann Arbor, MI). DNA and protein database searches were performed using the BLASTN (Altschul et al., J. Mol. Biol. 215:403-410, 1990) and BLASTX (Altschul et al., supra. 1990; Gish et al., Nat. Genet. 3:266-272, 1993) programs. SASE sequences were analyzed by processing BLAST (Altschul et al., supra. 1990; Gish et al., supra. 1993) and FASTA (Lipman et al., Science 227:1435-1441, 1985) searches. Protein sequences were analyzed using MacVector (Oxford Molecular Group, Cambell, CA), BCM Launcher (Smith et al., Genome Research 6:454-462, 1996), ClustalW (Thompson et al., Nucleic Acids Res. 22:4673-4680, 1994), and PSORT (Nakai et al., Genomics 14:897-911 1992).

Example V: RT-PCR, RACE, SASE and cDNA Isolation

Based upon the sequence determined (above) two oligonucleotide primers (Table II) were designed for each exon trap using Oligo 4.0 (National Biosciences Inc., Plymouth, MN).

To determine which tissue-specific library to screen for transcript or cDNA, RT-PCR reactions and/or PCR reactions were performed using different tissue-derived RNAs and/or cDNA libraries, respectively, as template with the oligonucleotide primers designed for each exon trap (above).

The oligonucleotides designed from the exons (Table II), were then used in one or more of the following

positive selection formats to screen the corresponding tissue-specific cDNA library.

For RT-PCR experiments, the first oligonucleotide was used as a sense primer and the second oligonucleotide was used as an antisense primer. RT-PCR was performed as described using polyA+ RNA from adult brain and placenta (Kawasaki, In PCR Protocols: A Guide to Methods and Applications, Eds. Innis et al., Academic Press, San Diego, CA, pp. 21-27, 1990). All PCR products were cloned using the pGEM-T vector as described by the manufacturer (Promega, Madison, WI).

To clone sequences 3' to selected exon traps, rapid amplification of cDNA ends (RACE) was performed as described (Frohman, PCR Met. Appl. 4:S40-S58, 1994). In 3' RACE experiments, the first oligonucleotide was used as the external primer and the second oligonucleotide was used as the internal primer.

For the Genetrapper cDNA Positive Selection System, the first oligonucleotide primer was biotinylated and used for direct selection, while the second oligonucleotide was used in the repair.

In addition to exon trapping, the cloned contig was also screened using cDNA selection essentially as described (Parimoo et al., Anal. Biochem. 228:1-17 1995), using the genomic P1 clones from this interval (Dackowski et al., Genome Res. 6:515-524, 1996). Other coding sequence was obtained by SAmple SEquencing (SASE).

SASE was performed as a functional genomics method for gene identification. Briefly, DNA from individual P1s were partially digested with Sau3A and 3 kb fragments were subcloned into the pBluescriptKS+ plasmid (Stratagene, La Jolla, CA). Subclones were sequenced from both ends to generate sequences semi-randomly from the P1 clone.

Example VI: Nucleotide Sequence Analysis

hNET: A random shotgun library was prepared from the 53.8B Pl clone (Figure 18) by subcloning randomly sheared Pl DNA into the pAMP10 vector (Life Technologies Inc., Gaithersburg, MD) essentially as described (Andersson et al., (1994) Anal. Biochem. 218:300-308). Pl DNA was randomly sheared using a nebulizer (Hudson RCI, Temecula, CA). The library was initially screened with a 6 kb XhoI fragment, which had been shown to contain the netrin encoding exon traps (Figure 18). The library was subsequently screened with an adjacent 3.5 kb XhoI fragment in order to obtain additional clones for sequencing. Positive clones were sequenced using forward and reverse vector primers as previously described (The American PKD1 Consortium (1995) Hum. Mol. Genet. 4:575-582).

The genomic sequence was edited and assembled using Sequencher (GeneCodes, Ann Arbor, MI). The coding region was predicted using the World Wide Web version of the GRAIL2 program (Uberbacher and Mural (1991) Proc. Natl. Acad. Sci., USA 88:11261-11265; Xu et al. (1994) Genet. Eng. N.Y. 16:241-253) and a MacVector (Oxford Molecular Group, Cambell, CA) Pustell DNA/protein matrix analysis comparing the genomic sequence (translated in all reading frames) to the chicken netrins. Database searches were performed using BLASTN (Altschul et al. (1990) J. Mol. Biol. 215:403-410) and BLASTX (Altschul et al., 1990, supra; Gish and States (1993) Nat. Genet. 3:266-272).

RT-PCR: Both adult (brain, heart, kidney, leukocytes, liver, lung, a lymphoblastoid cell line, placenta, spleen, and testis) and fetal (kidney and brain) cDNA libraries were prescreened for the presence of netrin cDNAs by PCR as described (Van Raay et al., 1996, supra). Nested RT-PCR was utilized to clone transcribed sequences from the netrin gene. Briefly, spinal cord polyA+ RNA (Clontech, Palo Alto, CA) was reverse transcribed using

random primers as described (Kawasaki, 1990 In "PCR Protocols: A Guide to Methods and Applications" (M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White. Eds.), pp. 21-27, Academic Press, Inc., San Diego).

Primers for PCR (Table IV) were designed based on the exons predicted from the analysis of the genomic sequence and used to amplify spinal cord RNA since spinal cord has been previously shown to express low levels of chicken netrin (Serafini et al. supra.). Nested PCR was required to detect RT-PCR products from human spinal cord Spinal cord RNA was reverse transcribed with random primers and primary PCR was performed in the presence of 2.5 M betaine (Sigma Chemical Co., St. Louis, MO) using the primers designed from the gene model (Table IV). primary PCR reactions were then diluted 1:20 and secondary PCR was performed on 1 μ L of the diluted primary reactions using nested primers (also designed from the gene model), again in the presence of betaine. The inclusion of betaine at a final concentration of 2.5 M in the PCR reactions dramatically increased the purity and yield of the human netrin RT-PCR products (see, for example, International Publication No. WO 96/12041; Reeves et al. (1994) Am. J. Hum. Genet. 55:A238; Baskaran et al. (1996) Genome Research 6:633-638).

RT-PCR products were subcloned using pGEM-T (Promega, Madison, WI) as recommended by the manufacturer. The resulting RT-PCR clones were sequenced with vector primers and internal primers using the ABI dye terminator chemistry (Perkin Elmer, Foster City, CA) and an ABI 377 automated sequencer (Perkin Elmer, Foster City, CA). Multiple sequence alignments were performed using ClustalW (Thompson et al., (1994) Nucleic Acids Res. 22:4673-4680).

Sequence analysis of the RT-PCR products indicated that hNET contains at least six exons. The RT-PCR data indicate that the fourth predicted exon is actually split by an intron in the human netrin gene and is

Northern blot analysis: Genomic and RT-PCR probes were radiolabeled (Feinberg and Vogelstein, Anal. Biochem. 132:6-13, 1983) and used to probe Northern blots containing RNAs from a variety of adult tissues (Clontech, Palo Alto, CA), including a panel of RNAs from different neural tissues including spinal cord. In addition, a human RNA Master Blot (Clontech, Palo Alto, CA) containing RNAs from 50 different adult and fetal tissues was screened as recommended by the manufacturer.

hABC3: A human lung cDNA library (LTI, Gaithersburg, MD) was screened with the GeneTrapper system (LTI, Gaithersburg, MD) using capture and repair oligonucleotides (5'-CATTGCCCGTGCTGTCGTG-3' (SEQ ID NO:52) and 5'-CATCGCCGCCTCCTTCATG-3' (SEQ ID NO:53), respectively) designed from trapped exon L48757, the 5' most trapped exon with homology to murine ABC1. Direct cDNA library screening was also performed using an RT-PCR clone as probe. 5' RACE (Frohman, M.A. in Methods Enzymol. (J.N. Abelson and M.I. Simon Eds.) pp. 340-356, Academic Press, San Diego, CA 1993) was used to isolate additional 5' sequences from the ABC3 transcript.

Northern blot analysis: A 679 bp fragment from the 3' untranslated region (UTR) of the ABC3 cDNA was radiolabeled by random priming (Feinberg et al., supra. 1983) and used to probe a multiple tissue northern blot (Clontech, Palo Alto, CA) under conditions recommended by the manufacturer.

Identification of coding sequence for the novel ABC The gene for a novel ATP binding cassette transporter: (ABC) transporter, designated ABC3, has been mapped to the PKD1 locus on chromosome 16 (Burn et al., Genome Res. 6:525-537, 1996). Eight exons from the hABC3 gene were obtained from the 30.1F, 64.12C and 96.4B Pl clones using exon trapping. See, Figure 16 showing the genomic interval surrounding the hABC3 gene at the top, with NotI sites, DNA markers, and distance in kilobases (in kb) also being shown. Genomic Pl clones from the interval which contain sequence from the hABC3 gene are shown below the genomic map. The relative position of the hABC3 cDNA is provided below the P1 clones, with the selected cDNA, trapped exons, RT-PCR clones, and cDNAs being indicated. Trapped exons and RT-PCR clones used in the isolation of additional hABC3 sequences have been labeled. The discontinuity in the line for clone ABCgt.1 represents the absence of an alternatively spliced exon.

Seven of these trapped exons encoded sequences having homology to murine ABC1 and ABC2 based on BLASTX analysis (Altschul et al., supra. 1990; Gish et al., supra. 1993), with sequences from the trapped exons L48758, L48759, and L48760 having highest homology. Sequences encoded by the trapped exon L48760 also had homology to a Caenorhabditis elegans ABC transporter predicted from genomic sequence (Wilson et al., supra.).

cDNA selection yielded a single 261 bp cDNA clone which mapped near the 5' end of the ABC3 gene. Like L48760, this clone encoded sequences having homology to the hypothetical *C. elegans* ABC transporter. Initial analysis of the SASE results from the 30.1F P1 clone indicated that 4 of the 164 reactions encoded sequences with homology to ABC1 or ABC2. Subsequent comparison of the SASE data to the final hABC3 cDNA indicated that an additional seven sequencing reactions contained coding sequences from the ABC3 gene. A total of 1.6 kb of ABC3 coding sequence aligned with the SASE data. In that only 3.5 kb of coding

Assembly and analysis of a cDNA for the novel ABC transporter: Two complementary approaches were employed to assemble the full-length hABC3 cDNA. First, RT-PCR was utilized to link the trapped exons, selected cDNA, and SASE data. Secondly, cDNA library screening was performed using direct selection as well as radiolabeled probes.

Using primers designed from the trapped exons L48757, L48758, L48760 and L75924, three RT-PCR products, containing 3.3 kb of coding sequence were cloned (Table I and Figure 16). An additional RT-PCR primer was designed from a region of identity between the selected cDNA and the SASE data (Table I). A 900 bp RT-PCR clone was obtained using the latter primer in conjunction with a trapped exon derived primer. In total, 4.2 kb of coding sequence was obtained using RT-PCR.

Several cDNAs were cloned using the GeneTrapper direct selection system and oligos designed from the 5' most trapped exon encoding sequences with homology to ABC1 (trapped exon L48747). The longest clone isolated with the GeneTrapper system was 5719 bp in length (ABCgt.1) (Figure 8). This cDNA contains a 792 bp 3' untranslated region with a consensus polyadenylation - cleavage site 20 bp upstream of the polyA tail. An additional cDNA clone (ABC.5) was isolated using a radiolabeled 1.1 kb RT-PCR product (ABC3-12) as a probe (Figure 16). The 5' end of the ABC3 cDNA was further characterized using 5' RACE, with several RACE products containing multiple in-frame stop codons upstream of the start methionine.

Sequence analysis indicated that clone ABCgt.1 lacks 147 bp of sequence found in the RT-PCR clones and the cDNA clone ABC.5. The additional 147 bp segment is likely to be the result of alternative splicing, in that it does

PCT/US97/00785

not interrupt the open reading frame. The presence of both transcript populations has been confirmed by PCR using primers flanking the alternatively spliced exon.

A 6.4 kb cDNA has been assembled for the hABC3 transporter. The assembled cDNA contains a 5116 nucleotide long open reading frame encoding 1705 amino acids, with the predicted protein having a molecular weight of 191 kDa. The proposed start methionine is 50 bp upstream of the 5' end of clone ABCgt.1. Although the sequence surrounding the start methionine matches the Kozak sequence in only 6 of 10 positions (Kozak, *J. Cell Biol.* 115:887-903, 1991), the two positions which have been shown to be critical for function (an A at -3 and a G at +4) are conserved in hABC3. The hABC3 cDNA contains a 792 bp 3' UTR with a consensus polyadenylation/cleavage site 20 bp upstream of the polyA tract.

A 6.8 kb transcript is detected by a 3' UTR cDNA probe on northern blots with highest levels of expression being observed in lung with lesser amounts in brain, heart, and pancreas. Significantly lower levels of expression were observed in placenta and skeletal muscle after longer exposure times. The ABC3 transcript was not detected in either liver or kidney.

RPL3L (SEM L3): The longest cDNA is 1548 nucleotides in length (Figure 11). All three cDNAs have an open reading frame (ORF) of 1224 nucleotide with the longest cDNA containing a 48 nucleotide 5' untranslated region. An inframe stop codon at position 7 is followed by the Kozak initiation sequence CCACCATGT (SEQ ID NO:68) (Kozak, supra.). The 3' UTR for each of the three cDNAs vary in length, and lacks a consensus polyadenylation cleavage site.

The longest cDNA was compared to the human, bovine and murine ribosomal L3 genes. At the nucleotide level there is only 74% identity between the RPL3L (SEM L3)

PCT/US97/00785

CDNA and the consensus from these other ribosomal L3 cDNAs. This is in sharp contrast to the 98% identity shared between human, bovine, and murine L3 nucleotide sequences. There is no similarity between the 3' UTR of the cDNAs isolated here and the other L3 genes.

hALR: Sequences were cloned from the human ALR gene by 3' RACE using primers (e.g., external 5'-TGGCCCAGTTCATACATTTA-3' (SEQ ID NO:69) and internal 5'-TTACCCCTGTGAGGAGTGTG-3' (SEQ ID NO:70)) designed from the exon trap. A total of 468 bp have been obtained from the human ALR gene (Figure 13).

Example VII: Amino Acid Sequence Analysis

hNET: hNET cDNA has at least 210 bp of 5' untranslated sequence, a 5' start methionine codon, a 3' stop codon (TGA) and is predicted to be 580 amino acids in length (Figure 4), with the common domain structure of the netrin family being conserved (Figure 20A). Overall, the human netrin was found to have higher homology to chicken netrin-2 than netrin-1, i.e., 56.3% versus 53.9%. As is the case with the other members of the netrin family, the region of greatest conservation includes the three EGF repeats, while the C-terminal domains are less well conserved (Figure 20A). The EGF repeats are 78.7% and 82.2% identical between the human netrin and chicken netrin-1 and netrin-2, respectively, and 66.3% identical when compared to UNC-6. The C-terminal domains of the human netrin and chicken netrin -1 and -2 are 41.9% and 42.5% indentical, respectively with the same domain of UNC-6 being only 29.4% identical to human netrin. Overall, the human netrin more closely resembles the chicken netrins and UNC-6 than Drosophila NETA and NETB, since NETA contains an expansion in the C-domain while NETB contains additional sequences in the VI and V-1 domains (Harris et al., 1996, supra; Mitchell et al., 1996, supra).

PCT/US97/00785

The Structure of the Netrin Genes is Conserved Between Drosophila and Human

The positions of the introns in the human gene were compared to the encoded protein to determine if the overall gene structure of the netrin/UNC-6 family is conserved (Figure 20B). This analysis revealed striking similarities between the Drosophila netrin genes and the human netrin gene. In the human gene, exon 1 contains the signal peptide, domain VI and the first EGF domain (domain V-1), while exons two and three each contain an EGF repeat, domains V-2 and V-3, respectively. Exons 4, 5, and 6 contain portions of the C-domain. With the exception of an additional intron in the C-domain, this motif/exon arrangement is conserved in the Drosophila netrin genes. The coding regions of the two Drosophila netrin genes have been shown to be highly conserved with each being disrupted by six introns that occur in homologous sites (Harris et al., 1996, supra). The position of five of the six Drosophila introns was found to be conserved in the human gene (Figure 20B). The UNC-6 gene contains 12 introns in the coding region (Ishii et al., 1992, supra), the position of five of which correlate with the positions of the introns in the human gene. Interestingly, the sixth Drosophila intron that does not have a counterpart in the human gene and is the only intron from Drosophila that is not conserved in the UNC-6 gene.

nabc3: Database searches revealed homology between ABC3 and murine ABC1 and ABC2 (Luciani et al., supra. 1994). In addition to the murine ABC1 and ABC2 proteins, ABC3 also shows homology to the putative C. elegans protein encoded by the cosmid sequence of C48B4.4 (Wilson et al., supra.). Overall, ABC3, ABC1, ABC2 and sequences encoded by C. elegans cosmid C48B4.4 have highest homology in the regions surrounding the ATP binding cassettes (Figure 17). However, when one compares the sequence between the first ATP binding cassette and the second transmembrane domain, referred to as the linker domain (Luciani et al., supra.

Further analysis of the deduced ABC3 protein sequence revealed additional similarities to the ABC1/ABC2 subfamily. Based on PSORT analysis (Nakai et al., supra.), the ABC3 protein does not appear to contain an N-terminal signal sequence and is likely to be a Type III membrane protein (Singer, Annu. Rev. Cell Biol. 6:247-296 1990), with sequences N-terminal of the first transmembrane domain being located in the cytoplasm (Figure 17). topography has been described for ABC1 (Luciani et al., supra. 1994) and all other ABC transported described to. date (Higgins, supra. 1992). As mentioned above, murine ABC1 and ABC2 have been shown to contain a novel hydrophobic region, HH1, within the conserved linker domain. Although the HH1 domain is not well conserved at the amino acid level in ABC3, an HH1 domain does appear to be present within the linker region based on hydrophilicity analysis. A similar HH1 domain is also found in sequences encoded by cosmid C48B4.4 from C. elegans. In all these cases, the HH1 domain is predicted to have a ß-sheet conformation.

RPL3L (SEM L3): The RPL3L (SEM L3) cDNA open reading frame predicts a 407 amino acid polypeptide of 46.3 kD (Figure 11). *In vitro* transcription - translation of RPL3L (SEM L3) cDNA resulted in a protein product with an

agular vaight of 46 kD which

apparent molecular weight of 46 kD which is in close agreement with the predicted weight of 46.3 kD.

Two nuclear targeting sequences, which are 100% conserved between man, mouse and cow, diverged slightly in the RPL3L (SEM L3) amino acid sequence. The first targeting site is the 21 amino acid N-terminal oligopeptide. The serine and arginine present at positions 13 and 19 respectively, in human, bovine and murine L3 are replaced with histidines in RPL3L (SEM L3) (Figure 12). The second potential nuclear targeting site is the bipartite motif. Here the human, bovine and murine proteins have a KKR-(aa)₁₂-KRR at position 341-358 while the SEM L3 gene has KKR-(aa)₁₀-HHSRQ at position 341-358. The second half of this bipartite motif, while remaining basic, does not match those found in other nuclear targeting motifs (Simonic et al., supra. 1994). Overall, there is 77.2% amino acid identity between the RPL3L (SEM L3) and the consensus from the other mammalian L3 ribosomal genes, with 56% of the nucleotide differences between RPL3L (SEM L3) and the human L3 being silent.

hALR: hALR cDNA sequences encode a 119 amino acid protein which is 84.8% identical and 94.1% similar to the rat ALR protein (see, Figures 13 and 14).

Although the invention has been described with reference to the disclosed embodiments, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the claims which follow the Sequence Listing.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: GENZYME CORPORATION
 - (ii) TITLE OF INVENTION: NOVEL HUMAN CHROMOSOME 16 GENES, COMPOSITIONS, METHODS OF MAKING AND USING SAME
 - (iii) NUMBER OF SEQUENCES: 83
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: GENZYME CORPORATION
 - (B) STREET: One Mountain Road
 - (C) CITY: Framingham
 - (D) STATE: Massachusetts
 - (E) COUNTRY: United States of America
 - (F) ZIP: 01701
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 16-JAN-1997
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/665,259
 - (B) FILING DATE: 17-JUN-1996
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/720,614
 - (B) FILING DATE: 01-OCT-1996
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/762,500
 - (B) FILING DATE: 09-DEC-1996
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US96/10469
 - (B) FILING DATE: 17-JUN-1996
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Dugan, Deborah A.
 - (B) REGISTRATION NUMBER: 37,315
 - (C) REFERENCE/DOCKET NUMBER: IG5-9.4
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (508) 872-8400
 - (B) TELEFAX: (508) 872-5415
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 179 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Leu His Leu Glu Gly Pro Phe Ile Ser Arg Glu Lys Arg Gly Thr His 1 $$ 10 $$ 15

Pro Glu Ala His Leu Arg Ser Phe Glu Ala Asp Ala Phe Gln Asp Leu 20 25 30

Leu Ala Thr Tyr Gly Pro Leu Asp Asn Val Arg Ile Val Thr Leu Asp 35 40 45

Pro Glu Leu Gly Arg Ser His Glu Val Phe Arg Thr Leu Thr Xaa Arg 50 55 60

Ser Ile Cys Val Ser Leu Gly His Ser Val Ala Asp Leu Arg Ala Ala 65 70 75 80

Glu Asp Ala Val Trp Ser Gly Ala Thr Phe Ile Thr His Leu Phe Asn 85 90 95

Ala Met Leu Pro Phe His His Arg Asp Pro Gly Ile Val Gly Leu Leu 100 105 110

Thr Ser Asp Arg Pro Ala Gly Arg Cys Ile Phe Tyr Gly Met Ile Ala 115 120 125

Asp Gly Thr His Thr Asn Pro Ala Ala Leu Arg Ile Ala His Arg Ala 130 135 140

His Pro Gln Gly Leu Val Leu Val Thr Asp Ala Ile Pro Ala Leu Gly 145 150 155 160

Leu Gly Asn Gly Arg His Thr Leu Gly Gln Gln Glu Val Glu Val Asp 165 170 175

Gly Leu Thr

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 90 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

His Leu Glu Gly Pro Phe Ile Ser Lys Arg Gly His Pro Glu Ser Tyr

5 10 15

Gly Asn Ile Val Thr Pro Glu Leu Glu Val Ser Gly His Ser Ala Leu 20 25 30

Glu Ala Val Ser Gly Ala Ile Thr His Leu Phe Asn Ala Met His His 35 40 45

Arg Asp Pro Gly Gly Leu Leu Thr Ser Leu Tyr Gly Ile Asp Gly His 50 55 60

ini Ala Leu Arg Ile Ala Gly Leu Val Leu Val Thr Asp Ala Ile Ala 65 70 75 80

Leu Gly Gly His Leu Gly Glr Val Gly Leu 85 90

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 64 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
 - Leu His Leu Glu Gly Pro Lys Gly Thr His Arg Ala Ala Asp Leu Asp 1 5 10 15
 - Val Thr Leu Pro Glu Glu Val Leu Ile Val Ser Gly His Ser Ala Leu 20 25 30
 - Ala Gly Thr Phe Thr His Leu Asn Ala Met Pro Gly Leu Leu Ile Gly 35 40 45
 - Ile Ala Asp Gly His Ala Arg Ala Arg Leu Leu Val Thr Asp Ala Gly 50 55 60
- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
 - Leu His Glu Pro Ser Glu Lys Gly His Arg Asp Leu Gly Asp Thr Glu
 1 10 15
 - Ile Val Ser Gly His Ser Ala Ala Gly Ala Thr Phe Thr His Leu 20 25 30
 - Asn Ala Met Pro Gly Gly Ile Asp Gly His Asn Arg Ile Leu Val Thr 35 40 45
 - Asp Ile Ala Gly Leu Gly Thr 50 55
- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Cys Asp Cys His Pro Val Gly Ala Ala Gly Lys Thr Cys Asn Gln Thr

5 10 15

Thr Gly Gln Cys Pro Cys Lys Asp Gly Val Thr Gly Leu Thr Cys Asn 20 25 30

Arg Cys Ala Pro Gly Phe Gln Gln Ser Arg Ser Pro Val Ala Pro Cys 35 40 45

Val

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Cys Asp Cys His Pro Val Gly Ala Ala Gly Lys Thr Cys Asn Gln Thr 1 5 10 15

Thr Gly Gln Cys Pro Cys Lys Asp Gly Val Thr Gly Leu Thr Cys Asn 20 25 30

Arg Cys Ala Pro Gly Phe Gln Gln Ser Arg Ser Pro Val Ala Pro Cys 35 40 45

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Cys Asp Cys His Pro Val Gly Ala Ala Gly Thr Cys Asn Gln Thr Thr 1 5 10 15

Gly Gln Cys Pro Cys Lys Asp Gly Val Thr Gly Thr Cys Asn Arg Cys 20 25 30

Ala Lys Gly Gln Gln Ser Arg Ser Pro Ala Pro Cys 35 40

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Cys Cys His Pro Val Gly Gly Cys Asn Gln Gly Gln Cys Cys Lys Gly
1 10 15

Val Thr Gly Thr Cys Asn Arg Cys Ala Lys Gly Gln Gln Ser Arg Ser 20 25 30

Val Pro Cys 35

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

His Ser Pro Ser Leu Ser Ala Glu Thr Pro Ile Pro Gly Pro Thr Glu
1 10 15

Asp Ser Ser Pro Val Gln Pro Gln Asp Cys Asp Ser His Cys Lys Pro 20 25 30

Ala Arg Gly Ser Tyr Arg Ile Ser Leu Lys Lys Phe Cys Lys Lys Asp 35 40 45

Tyr

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ile Ser Pro Asp Cys Asp Ser Cys Lys Pro Ala Gly Tyr Ile Lys Lys

10
15

Cys Lys Lys Asp Tyr 20

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Pro Pro Thr Ser Ser Pro Asp Cys Asp Ser Cys Lys Gly Ile Lys Lys 1 10 15

Cys Lys Lys Asp Tyr 20

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Leu Val Gly Asp Ser Gly Val Gly Lys Thr Cys Leu Leu Val Arg

1 10 15

Phe Lys Asp Gly Ala Phe Leu Ala Gly Thr Phe Ile Ser Thr Val Gly 20 25 30

Ile Asp Phe Arg Asn Lys Val Leu Asp Val Asp Gly Val Lys Ala Lys 35 40 45

78

WO 97/48797 PCT/US97/00785

Ceu Gin Met Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Ser Val Thr 50 60

His Ala Tyr Tyr Arg Asp Ala His Ala Leu Leu Leu Leu Tyr Asp Val 65 70 75 80

Thr Asn Lys Ala Ser Phe Asp Asn 85

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 83 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Leu Val Gly Asp Ser Gly Val Gly Lys Thr Cys Leu Leu Val Arg $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Lys Asp Gly Ala Phe Leu Ala Gly Thr Phe Ile Ser Thr Val Gly 20 25 30

Ile Asp Phe Arg Asn Lys Val Leu Asp Val Asp Gly Lys Lys Leu Gln 35 40 45

Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Ser Val Thr His Ala Tyr 50 55 60

Tyr Arg Asp Ala His Ala Leu Leu Leu Leu Tyr Asp Thr Asn Lys Ser 65 70 75 80

Pne Asp Asn

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 83 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Phe Gln Asn His Phe Glu Pro Gly Val Tyr Val Cys Ala Lys Cys Gly
1 5 10 15

Tyr Glu Leu Phe Ser Ser Arg Ser Lys Tyr Ala His Ser Ser Pro Trp

Pro Ala Phe Thr Glu Thr Ile His Ala Asp Ser Val Ala Lys Arg Pro 35 40 45 WO 97/48797 PCT/US97/00785

Glu his Asn Arg Ser Glu Ala Leu Lys Val Ser Cys Gly Lys Cys Gly 50 55 60 .

Asn Gly Leu Gly His Glu Phe Leu Asn Asp Gly Pro Lys Pro Gly Gln 65 70 75 80

Ser Arg Phe

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Phe Pro Gly Tyr Val Gly Leu Phe Ser Ser Lys Tyr Trp Pro Phe Thr 1 5 10 15

Ile Ala Ser Val Val Leu Gly His Phe Asp Gly Pro 20 25

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Glu Gly Val Tyr Cys Ala Cys Asp Leu Ser Ser Lys Trp Pro Ala Phe

Glu Ala Cys Cys Leu Gly His Phe Gly Lys
20 25

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17	(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:17
---	------	----------	--------------	-----	----	-------

Phe His Phe Glu Gly Tyr Val Cys Cys Gly Glu Leu Phe Ser Lys Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Ala Phe Glu Val Cys Cys Leu Gly His Phe Asn Asp Gly Pro Lys 20 25 30

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Phe Gly Tyr Val Gly Phe Ser Ser Lys Trp Pro Phe Thr Fle Asp Val

Gly Asn Leu Gly His Phe Asp Gly Pro Lys Gly Arg 20 25

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6803 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

60	CAATAGGTGA	GATAAATGTG	ATAGGCGCTC	CCGAGGCATA	TGGAAACCCC	GGAGCTCGGT
120	GGCAGGGAAT	TTCTGGGCTG	AGACAGCAGG	GTCTGGGGGG	GCTTGCAGGC	ACATGTGGTG
180	TAGGACTGTC	CCCTGCCGCC	ACTCTCAGCT	TACAGGAAAG	ACGGGCATCT	TATTGGATCA
240	ACTCTAGGGG	TGGAGCTGCC	GCCCCAAAGC	CCCAGCCTGT	ATGCCCTCTC	CAGCCCATCT
300	GGTGGGGGGA	CTGAGTTGCA	GCACTGCGGC	GGGAGGCGAA	GGTGGGGAGG	TGAGGGGTGG
360	AGTGGAGAGG	GGGCAGGGCC	TGCCAGGAGG	TTGCAGAAGG	AGCTTCTTTG	GGGGAGGCGG
420	CTGGGGAGCA	GGCTGGGTCC	TGGGACAGGT	AGCCAGGGGC	GAGAGGCCCC	TGGGAGGTGG
480	CATCTGTGAG	TCCCAAACAC	CCTTCCTAAC	GTGGGGAGGC	CTTGGGCGCT	ATAAGTCCCG
540	AGGCCCTGTG	TCCTGGGGAG	AGAGGACTGT	TAGCGTGTGC	GGGGGCAGAG	GGCTGGGGGT
600	CACGGCCTCC	CCTCTGGGCC	GTACAATGGC	GGAGCTGGCG	TOCTCOCTGG	ACCAGCGGCC

	CGCCGCTGCT	GCTGACCCAG	ATGAACAATT	GGGGCAGGGC	TGAGCCCCAG	GCACCTACTT	- 660
	TCCCCCACCC	CAGAAGCCAC	CAGACGTTCT	GCAGACCCCA	GTCCTGGCTC	ACAGGGAAGC	720
	TGAGCTGGAG	ACAAAGCCAG	CCCCTCTGAT	GAGGGTGGAA	GAGGCTGCTG	GCCACTGTCC	780
	CTCTTGCAGC	CTGGCTGGCA	GCCAGTCTGG	CAGT'GGCCCT	GACGTCCAGA	GACAGCTTGG	840
	GTTTCCCCAG	AGGCTTGTCT	CTGGCCAGTG	GGACCCCTCT	GTCAGGCCTG	GGCTTTTCTC	900
	TCCACTGTCC	CAGAATGATG	ATCTCAGCCC	CCATAGTCCC	CCCAGGGTTC	CTCCCACCCT	960
	TAGGGTGGG	TGTCGGGGGG	TGGGGGTTGG	GAGCCAGAAG	GACCTTGAAG	AGGGTGGTTG	1020
	GGACGTTTCA	GGTTCTAAGC	TTGACCCACA	GAGCGGAGCG	TGAGCCCCGT	CAGGTTGAGG	1080
	TCCCTCAACT	TGTAAAGGAC	ACAATTCCAT	TCTCTTTATC	AGGAAGCTGA	GGGGCAGGGG	.1140
	CCCTGTGGCA	GAGAGAGAGC	CCCTTAGCCC	TCTCTGTTCA	GTCCTCCGGT	GCCCCCATCC	1200
	CTGTGCATCT	GTGGCTGTCA	CATGCAGATG	TGTGGCAAGG	AGAAGGTGCC	CACCAGCCAG	1260
	TGTCAGŢTGC	TCCAGGAGCC	AAGCCAGGTG	CCCTATCACC	CTGTCTTCCC	GTTCCTCCCC	1320
	TCCATGGTCA	GGCCCTCCTG	СТСССТССТС	TGGTCCTTCA	GTTTCCCCTA	GGAGGCTTCC	1380
	GTGTCCTCCT	GCCCCTCCTC	TCCCCAACAG	CGGGATGCGT	CTACCTCTCC	ATTCTCTTCC	1440
	TCCTGGTCCT	TGCTCATCTC	TGGTCGTGTC	CAGGGTAGCA	CCCACGTGGC	CTCCTCCACC	1500
	AGCTGCAGGC	CTGGCCTCCC	ATCTGAAACG	GGGCATTCAG	GCCTCGATGC	TGGCCCTGCA	1560
	CGGAACTTGT	TCCCTGCCCC	TCCCTGGGAT	GCTTGGCCTC	CTCTGTCAAG	GACCTGAAAG	1620
	TCGGAGGGGA	GGAGGTTTCT	CTGACCAGAG	CTGTTCCTGG	ACCCTCTTTG	GTGGTGTCGC	1680
	TCCCAGGCAC	AGCTACCCCA	TCCCCAGCTA	GTCCCCAGGC	CACCCAGCTG	GGCTTCTGCC	1740
	TCAGTTTCCC	TGCCCAAACG	TGCTGTGACG	TAGGGCAGTG	GGCTCCGGGT	TGCGACCAGC	1800
	CCCTTCCCAT	GATTAAACCC	TACTCCCTGC	CCCTGCAGAG	GGGTCCTCAA	CAGCTAACCA	1860
	AGCCCCGAA	CCCCAAGAAG	CCACCCCATC	CCACCCTCCA	GCTTCCATGT	CCTCCCTGCC	1920
	AGCTGGGCCC	GTGGCAGAGG	TGCCCTAGA	AACTTGCAGA	CCCAGGGAGC	TTTGGGATCA	1980
	GAATCTGGCC	TGGTGCAGGG	GATGCTGGCC	TCATGTCTTA	GCCCAGCTCA	GGCCCATGGG	2040
•	GGTGCCCCC	TTCCTCAACA	TGGGCAGGAG	ACACTCCAAT	TTGTGCAGCT	CTCGACTTGG	2100
	GCCTGATGCC	ACTTGAGACT	CATCAAATCC	AACAGCTTCA	GAGCGCGTGC	TGAGTAACAG	2160
	GCATCTGGCA	GGTGAGGAAA	CAGGAGCCCA	AGACATGCAG	CCAGAAATGG	GGCAGTTGGA	2220
	ттсаааатта	GACCTGACCG	AATCCTGGGT	TCCTTCTACT	CGAGTAGATG	CTGCTTTGGG	2280
	GATGACCCTT	CAACTGGTGG	TTACTTGGCT	TCCCTACCTG	GGGAACATCC	AGGGCCTCTG	2340
	CTGTCAGACC	CGGGGCCTTG	CCTGCCTGAT	GGTCTTCAGG	GAGGAGGCGA	CCCAGACCCC	2400
	CGTCCAGCAC	GTGGCACAGC	CCCAGGAGCA	GTAAAGACCT	GGCTGTGGGC	CCAGGACCCT	2460
	GCTGGGTGGT	CCCCCACGGG	CTGCGAAGGC	TGAGCTGCCC	CCCTCCAGAC	CCCTCCCGCC	2520
	AGCGCATTCC	TGGCTCCCCG	GCCCCTCCCC	TGGCTCCCGG	GCCTCCCAGC	CCCCTTCCCC	2580

GCTGGCCCAC	CCCCC- CTC	AATCTGCTTC	TGATTCCAGC	TCTGCGATGA	GGCCCCCTCC	2640
CCTCCCCTGC	CTCCTTCCCG	ACCCGAGCAG	cccccccc	GGCTGGGCCC	GGGCTTGCGC	2700
CTGCTGCGCC	CCCCACCCC	TCCTGGCACA	GCTCGTCCGC	CCTCGCTGCA	GCCGGGAGGA	2760
GGCGGCGGCC	CGTGCACCGC	AGGCCCCGCC	CGCCCACGGC	CCTTCCCGGG	AGGCCGGGAG	2820
ACCTGCTCCC	CCCGCCCCTC	GGTGGGTGAG	TGCGAGCGGC	GGGTGGGGCC	TCCGCGGGCG	2880
GAGGCACCGG	GAGCGGGGC	GACGCCTGTC	ATCGCTCTAG	GCCCAGCGGG	AGGACGCGCC	2940
AACATCCCC	CTGCTGTGCT	GGGCCCGGGG	CGTGCCCGCC	GCTGCTCCCA	CCTCTGGGCC	3000
GGGCTGGGGC	ccccccccc	CCCTGTTCCT	CGGCATTGCG	GGCCTGGTGG	GCAGAGCCGC	3060
GGAGAGGGCT	TCTTTTCCCC	AAGGGCAGCG	TCTTGGGGCC	CGGCCACTGG	CTGACCCGCA	3120
GCGGCTCCGG	CCATGCCTGG	CTGGCCCTGG	GGGCTGCTGC	TGACGGCAGG	CACGCTCTTC	3180
GCCGCCCTGA	GTCCTGGGCC	GCCGGCGCCC	GCCGACCCCT	GCCACGATGA	GGGGGTCCG	3240
CCCCGCGGCT	GCGTGCCAGG	ACTGGTGAAC	GCCGCCCTGG	GCCGCGAGGT	GCTGGCTTCC	3300
AGCACGTGCG	GGCGGCCGGC	CACTCGGGCC	TGCGACGCCT	CCGACCCGCG	ACGGGCACAC	3360
TCCCCCGCCC	TCCTTACTTC	CCCAGGGGGC	ACGCCAGCC	CTCTGTGCTG	GCGCTCGGAG	3420
TCCCTGCCTC	GGGCGCCCCT	CAACGTGACT	CTCACGGTGC	CCCTGGGCAA	GGCTTTTGAG	3480
CTGGTCTTCG	TGAGCCTGCG	CTTCTGCTCA	GCTCCCCCAG	CCTCCGTGGC	CCTGCTCAAG	3540
TCTCAGGACC	ATGGCCGCAG	CTGGGCCCCG	CTGGGCTTCT	TCTCCTCCCA	CTGTGACCTG	3600
GACTATGGCC	GTCTGCCTGC	CCCTGCCAAT	GGCCCAGCTG	GCCCAGGGCC	TGAGGCCCTG	3660
TGCTTCCCCG	CACCCCTGGC	CCAGCCTGAT	GGCAGCGGCC	TTCTGGCCTT	CAGCATGCAG	3720
GACAGCAGCC	CCCCAGGCCT	GGACCTGGAC	AGCAGCCCAG	TGCTCCAAGA	CTGGGTGACC	3780
GCCACCGACG	TCCGTGTAGT	GCTCACAAGG	CCTAGCACGG	CAGGTGACCC	CAGGGACATG	3,840
GAGGCCGTCG	TCCCTTACTC	CTACGCAGCC	ACCGACCTCC	AGGTGGGCGG	GCGCTGCAAG	3.900
TGCAATGGAC	ATGCCTCACG	GTGCCTGCTG	GACACACAGG	GCCACCTGAT	CTGCGACTGT	3960
CGGCATGGCA	CCGAGGCCC	TGACTGCGGC	CGCTGCAAGC	CCTTCTACTG	CGACAGGCCA	4020
TGGCAGÇGGG	CCACTGCCCG	GGAATCCCAC	GCCTGCCTCG	GTGAGGCCTT	GGAGGGTGGC	4080
CTGGGGACCT	TGGACACAAC	CAGCCTGCCC	CTGACCCATC	CCTCCCTGCA	GCTTGCTCCT	4140
GCAACGGCCA	TGCCCGCCGC	TGCCGCTTCA	ACATGGAGCT	GTACCGACTG	TCCGGCCGCC	4200
GCAGCGGGGG	TGTCTGTCTC	AACTGCCGGC	ACAACACCGC	CGGCCGCCAC	TGCCACTACT	4260
GCCGGGAGGG	CTTCTATCGA	GACCCTGGCC	GTGCCCTGAG	TGACCGTCGG	GCTTGCAGGG	4320
GTGAGCCACC	ACCGGCCACC	TGCAGGCCCT	CACCCTCTGA	CTTCCCAGAT	CCCCAGACAG	4380
GCTTCTGACC	AGGCCCTTCC	CACCTCTGTC	CTCAGCCTGC	GACTGTCACC	CCGTTGGTGC	4440
TGCTGGCAAG	ACCTGCAACC	AGACCACAGG	CCAGTGTCCC	TGCAAGGATG	GĊGTCACTGG	4500
CCTCACCTGC	AACCGCTGCG	CGCCTGGCTT	CCAGCAAAGC	CGCTCCCCAG	TGGCGCCCTG	4560

		,				
TGTTAGTGAC	TGACCCTGCC	CCGCCTCAGC	CACCAAGCCA	AGGCCACCCC	AGCTCCCTGC	4620
TGTTGTCCCG	TCTATTCCCC	GAGCCCTGCA	GATCTCTCTC	CCCCTCCATC	GCAGGCCATT	4680
CTCCCTCCCT	CTCTGCAGAG	ACCCCTATCC	CTGGACCCAC	TGAGGACAGC	AGCCCTGTGC	4740
AGCCCCAGGG	TGAGTGGACA	CAGGACAGGG	CCCCAGACTO	GCATGACTTT	GGGGGAGGG	4800
GCTCTGGGAG	GAGAGGGTGG	GGAAAGGGAG	TCTGTGCCAG	CCTCCCACCT	TCTACCCAGA	4860
CTGTGACTCG	CACTGCAAAC	CTGCCCGTGG	CAGCTACCGC	ATCAGCCTAA	AGAAGTTCTG	4920
CAAGAAGGAC	TATGGTAGGT	GCCCTCAGGC	CTCCCGCGGA	CCTTCCCACC	TTCCTCCTCT	4980
CCCTACCTTC	CCTCCTCCGC	CAGCTTCCCC	TTGGAACGCC	TTGACCCTTG	CTGGGCCCCA	5040
AGGCCCATCC	TCATCCCTCA	GGTCCTCCAC	GGGCAGCGAC	CCCGCCCCTT	CAGCCCCCAC	5100
TGCCCTCCTG	GTGTCCTCCC	CGTGCCTCCC	CCTACCGCGG	GCAGGCCGCC	CCTTCCTGAC	5160
CCCGCCCCCT	CTCGCTCTCC	CCGCAGCGGT	GCAGGTGGCG	GŢGGGTGCGC	GCGGCGAGGC	5220
GCGCGGCGCG	TGGACACGCT	TCCCGGTGGC	GGTGCTCGCC	GTGTTCCGGA	GCGGAGAGGA	5280
GCGCGCGCGG	CCCCGGAGTA	GCGCGCTGTG	GGTGCCCGCC	GGGGATGCGG	CCTGCGGCTG	5340
CCCGCGCCTG	CTCCCCGGCC	GCCGCTACCT	CCTGCTGGGG	GGCGGCCCTG	GAGCCGCGGC	5400
TGGGGGCGCG	GGGGGCCGGG	GGCCCGGGCT	CATCGCCGCC	CGCGGAAGCC	TCGTGCTACC	5460
CTGGAGGGAC	GCGTGGACGC	GGCGCCTGCG	GAGGCTGCAG	CGACGCGAAC	GCCGGGGGCG	5520
CTGCAGCGCC	GCCTGAGCCC	GCCGGCTGGG	CAGGGGGGCC	GCTGCTCCCA	CATCTAGGCG	5580
CACGTTCACC	CTGTGCCTTC	GCCTGCCAAG	GAGTCCTTGC	TCGCGTCGCG	CGTGTCGCCA	5640
CCTGGGCGGC	CGCCCCGTCC	CCGCCGGCAG	CTCCCTCGGT	ACCTCCCGTC	TGGCCCTGGG	5700
GGGATGTGAC	CGGCGCACGG	ACAGCCCGCC	CCGCACAGAG	GCAGATGATA	TGGCACACCC	5760
GGAGGACCCC	ATGGTCTCCC	GCCCTCTGGC	TGTCGGCCCT	GTCCCAGGGG	CACTGGGATA	5820
CCCGGAAGGC	TGTGAATCCT	TCGTGATGCC	GGCCCTCTC	GGGGATCTCA	GATCATCCCC	5880
GGGCCGCŢG	TGATGCACCC	CCACCTGTGC	GGCGACCCGC	CAGGAGCGCA	CTGACCTCCC	5940 -
CAAAGACTGT	GGCCACCGCA	GGCGCCTTGG	ACCCCCATGG	GGGACAGGGC	GTCCCCTGCC .	6000
TCCTGCAGCC	CCACGAGGGC	GGCGGCCTTG	GCCCTGCGGC	TGGGCGTCCG	CGTCCGGGCG	6060
CCCCGCGGCG	TCTGCTGCCG	GGTCCCGTAA	CTTTCTTGGC	CGCCTGTGTC	CCCGTCTGCC	6120
GGCTCCGTCC	GGCCGTCCCT	CTCTCTGCCG	CGTCTCTGAC	CCTCGGCGCC	ACAGCTCCTC	6180
AGCTCAGGGC	CCGTCCCAGA	ACCTCCTTCC	AGCCCTTCTC	CCCCGACTCG	GGAAGGGACG	6240
TCGTGCCCAC	GCGGTTCCGG	ATCCACGCGT	GACCCGGCCG	GACCGCGACT	CCGACAGGCG	6300
GCTGTCCGGG	CCCCCGATGC	CCTCGGCAGG	GCCGTGCCAC	cccccccccc	TTGTTGTCCC	6360
CCCGGGACCG	GCACTGCCGT	TTGCCTCCTC	TCCGCACGGG	ACCGGTTCCC	GGCCGGCCCC	6420
AGCTTCCGCC	GCTGCGGCCG	CCGACCGTCA	GCGCGCATGC	CCAGAGCCGG.	GCAGGCCGGA	6480
GCCCGGCCGG	CTCTCCGGGG	TGGGCACAGG	GCGACAGC'PC	GGCGGGGGCG	GGGCCGAGCA	6540

CGCGCGTGCG CAGAAAGGCC GGCGCGGCAG GCTGAGGAGA AAGCGGCGCG CGGAGGTGGG 66	600
TGCGCTCGGG GCGTGCGGG GCGCGCGGGC GGGGTGCCGG GTGGCGGGGC CGGGTCCCCG 66	660
CTGTCACCGC GGTCGGCGCG TGCTGGGGGC GGGAGCGTGG GGGCCGGGCT GCGTGCCCCA 67	720
TTCGAGGCGG GGATCCCCGG CCACGCGCGG GTTGGGGGCT CCAGAGCCCG GCACCGCCCG 67	780
GCGCTGCAGC TGCGGCTTGG CCT 68	303

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1743 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..1740

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

						GGG											48
						CCG Pro									GAT Asp .		96
						GGC Gly											144
						GCT Ala 55											192
						GAC Asp											240
						ACG Thr											288
						CTC Leu											336
AAG Lys	GCT Ala	TTT Phe 115	GAG Glu	CTG Leu	GTC Val	TTC Phe	GTG Val 120	AGC Ser	CTG Leu	CGC Arg	TTC Phe	TGC Cys 125	TCA Ser	CCT Ala	CCC Pro	:	384
						CTC Leu 135										•	432

WO 97/48 7 97				PCT/US97/00785
GCC CCG CTG Ala Pro Leu 145	GGC TTC TTC TG Gly Phe Phe S	CC TCC CAC TC er Ser His Cy	T GAC CTG GAC TAT 'S Asp Leu Asp Tyr 155	GGC CGT 480 Gly Arg 160
CTG CCT GCC Leu Pro Ala	CCT GCC AAT G Pro Ala Asn G 165	GC CCA GCT GG Ly Pro Ala Gl 17	C CCA GGG CCT GAG y Pro Gly Pro Glu 0	GCC CTG 528 Ala Leu 175
TGC TTC CCC Cys Phe Pro	GCA CCC CTG GG Ala Pro Leu A. 180	CC CAG CCT GA a Gln Pro As 185	T GGC AGC GGC CTT p Gly Ser Gly Leu 190	CTG GCC 576 Leu Ala
TTC AGC ATG Phe Ser Met 195	CAG GAC AGC AG Gln Asp Ser Se	GC CCC CCA GG er Pro Pro G1 200	C CTG GAC CTG GAC y Leu Asp Leu Asp 205	AGC AGC 624 Ser Ser
CCA GTG CTC Pro Val Leu 210	CAA GAC TGG GT Gln Asp Trp Va 2:	l Thr Ala Th	C GAC GTC CGT GTA r Asp Val Arg Val 220	GTG CTC 672 Val Leu
ACA AGG CCT Thr Arg Pro 225	AGC ACG GCA GC Ser Thr Ala GI 230	T GAC CCC AG y Asp Pro Ar	G GAC ATG GAG GCC g Asp Met Glu Ala 235	GTC GTC 720 Val Val 240
CCT TAC TCC Pro Tyr Ser	TAC GCA GCC AC Tyr Ala Ala Th 245	C GAC CTC CAC r Asp Leu Gli 250	G GTG GGC GGG CGC n Val Gly Gly Arg	TGC AAG 768 Cys Lys 255
Cys Asn Gly	CAT GCC TCA CC His Ala Ser Ar 260	G TGC CTG CTG g Cys Leu Lei 265	G GAC ACA CAG GGC 1 Asp Thr Gln Gly 270	CAC CTG 816 His Leu
ATC TGC GAC Ile Cys Asp 275	TGT CGG CAT GC Cys Arg His Gl	C ACC GAG GGG y Thr Glu Gly 280	C CCT GAC TGC GGC y Pro Asp Cys Gly 285	CGC TGC 864 Arg Cys
AAG CCC TTC Lys Pro Phe 290	TAC TGC GAC AC Tyr Cys Asp Ar 29	g Pro Trp Gli	G CGG GCC ACT GCC 1 Arg Ala Thr Ala 300	CGG GAA 912 Arg Glu
Ser His Ala (TGC CTC GCT TG Cys Leu Ala Cy 310	s Ser Cys Asr	GGC CAT GCC CGC Gly His Ala Arg 315	CGC TGC 960 Arg Cys 320
CGC TTC AAC AAC AAC AAC AAC AAC AAC AAC AA	ATG GAG CTG TA Met Glu Leu Ty 325	C CGA CTG TCC r Arg Leu Ser 330	GGC CGC CGC AGC Gly Arg Arg Ser	GGG GGT 1008 Gly Gly 335
Val Cys Leu I	AAC TGC CGG CA Asn Cys Arg Hi 3 40	C AAC ACC GCC s Asn Thr Ala 345	C GGC CGC CAC TGC 1 Gly Arg His Cys 350	CAC TAC 1056 His Tyr
TGC CGG GAG (Cys Arg Glu (355	GGC TTC TAT CG Gly Phe Tyr Ar	A GAC CCT GGG g Asp Pro Gly 360	C CGT GCC CTG AGT Arg Ala Leu Ser 365	GAC CGT 1104. Asp Arg
CGG GCT TGC A Arg Ala Cys A 370	AGG GCC TGC GA Arg Ala Cys As 37	p Cys His Pro	G GTT GGT GCT GCT over the GTT GCT GCT GCT GCT GCT GCT GCT GCT GCT	GGC AAG 1152 Gly Lys
ACC TGC AAC (Thr Cys Asn (385	CAG ACC ACA GG Gln Thr Thr Gl 390	C CAG TGT CCC y Gln Cys Pro	TGC AAG GAT GGC (Cys Lys Asp Gly (395	GTC ACT 1200 Val Thr 400

		DCTTICOTIONTO
WO 97/48797		PCT/US97/00785

				•						
		TGC Cys								1248
		CCC Pro 420								1296
		GTG Val								1344
		TAC Tyr								1392
		GTG Val								1440
		CCG Pro								1488
		CGC Arg 500				 -			 	1536
		TGC Cys								1584
		CCT Pro								1632
		GCC Ala								1680
		CGC Arg							CGC Arg	1728
	GCC Ala	GCC Ala 580	TGA							1743

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Pro Gly Trp Pro Trp Gly Leu Leu Leu Thr Ala Gly Thr Leu Phe $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ala Ala Leu Ser Pro Gly Pro Pro Ala Pro Ala Asp Pro Cys His Asp 20 25 30

Glu Gly Gly Ala Pro Arg Gly Cys Val Pro Gly Leu Val Asn Ala Ala Leu Gly Arg Glu Val Leu Ala Ser Ser Thr Cys Gly Arg Pro Ala Thr Arg Ala Cys Asp Ala Ser Asp Pro Arg Arg Ala His Ser Pro Ala Leu Leu Thr Ser Pro Gly Gly Thr Ala Ser Pro Leu Cys Trp Arg Ser Glu Ser Leu Pro Arg Ala Pro Leu Asn Val Thr Leu Thr Val Pro Leu Gly 105 Lys Ala Phe Glu Leu Val Phe Val Ser Leu Arg Phe Cys Ser Ala Pro Pro Ala Ser Val Ala Leu Leu Lys Ser Gln Asp His Gly Arg Ser Trp 135 Ala Pro Leu Gly Phe Phe Ser Ser His Cys Asp Leu Asp Tyr Gly Arg 150 Leu Pro Ala Pro Ala Asn Gly Pro Ala Gly Pro Gly Pro Glu Ala Leu 170 Cys Phe Pro Ala Pro Leu Ala Gln Pro Asp Gly Ser Gly Leu Leu Ala 185 Phe Ser Met Gln Asp Ser Ser Pro Pro Gly Leu Asp Leu Asp Ser Ser 195 200 Pro Val Leu Gln Asp Trp Val Thr Ala Thr Asp Val Arg Val Val Leu 215 Thr Arg Pro Ser Thr Ala Gly Asp Pro Arg Asp Met Glu Ala Val Val Pro Tyr Ser Tyr Ala Ala Thr Asp Leu Gln Val Gly Gly Arg Cys Lys 245 Cys Asn Gly His Ala Ser Arg Cys Leu Leu Asp Thr Gln Gly His Leu 265 Ile Cys Asp Cys Arg His Gly Thr Glu Gly Pro Asp Cys Gly Arg Cys Lys Pro Phe Tyr Cys Asp Arg Pro Trp Gln Arg Ala Thr Ala Arg Glu 290 295 Ser His Ala Cys Leu Ala Cys Ser Cys Asn Gly His Ala Arg Arg Cys 310 Arg Phe Asn Met Glu Leu Tyr Arg Leu Ser Gly Arg Arg Ser Gly Gly Val Cys Leu Asn Cys Arg His Asn Thr Ala Gly Arg His Cys His Tyr 340 345 Cys Arg Glu Gly Phe Tyr Arg Asp Pro Gly Arg Ala Leu Ser Asp Arg Arg Ala Cys Arg Ala Cys Asp Cys His Pro Val Gly Ala Ala Gly Lys

Thr Cys Asn Gln Thr Thr Gly Gln Cys Pro Cys Lys Asp Gly Val Thr 390 395 Gly Leu Thr Cys Asn Arg Cys Ala Pro Gly Phe Gln Gln Ser Arg Ser 405 Pro Val Ala Pro Cys Val Lys Thr Pro Ile Pro Gly Pro Thr Glu Asp 425 Ser Ser Pro Val Gln Pro Gln Asp Cys Asp Ser His Cys Lys Pro Ala Arg Gly Ser Tyr Arg Ile Ser Leu Lys Lys Phe Cys Lys Lys Asp Tyr 455 Ala Val Gln Val Ala Val Gly Ala Arg Gly Glu Ala Arg Gly Ala Trp Thr Arg Phe Pro Val Ala Val Leu Ala Val Phe Arg Ser Gly Glu Glu 490 Arg Ala Arg Arg Gly Ser Ser Ala Leu Trp Val Pro Ala Gly Asp Ala 505 -Ala Cys Gly Cys Pro Arg Leu Leu Pro Gly Arg Arg Tyr Leu Leu Leu Gly Gly Pro Gly Ala Ala Ala Gly Gly Ala Gly Gly Arg Gly Pro 535 Gly Leu Ile Ala Ala Arg Gly Ser Leu Val Leu Pro Trp Arg Asp Ala 550 555 Trp Thr Arg Arg Leu Arg Arg Leu Gln Arg Arg Glu Arg Arg Gly Arg Cys Ser Ala Ala 5.80

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 606 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
 - Met Pro Arg Arg Gly Ala Glu Gly Pro Leu Ala Leu Leu Leu Ala Ala 1 5 10 15
 - Ala Trp Leu Ala Gln Pro Leu Arg Gly Gly Tyr Pro Gly Leu Asn Met 20 25 30
 - Phe Ala Val Gln Thr Ala Gln Pro Asp Pro Cys Tyr Asp Glu His Gly 35 40 45
 - Leu Pro Arg Arg Cys Ile Pro Asp Phe Val Asn Ser Ala Phe Gly Lys 50 55 60

											\				
Glu 65	Val	Lys	Val	Ser	Ser 70	Thr	Cys	Gly	Lys	Pro 75	Pro	Ser	Arg	Туг	Cys 80
Val	Val	Thr	Glu	Lys 85	Ġly	Glu	Glu	Gln	Val .90	Arg	Ser	Cys	His	Leu 95	Cys
Asn	Ala	Ser	Asp 100		Lys	Arg	Ala	His 105		Pro	Ser	Phe	Leu 110	Thr	Asp
Leu	Asn	Asn 115	Pro	His	Asn	Leu	Thr 120	Cys	Trp	Gln	Ser	Asp 125	Ser	Туг	Val
Gln	Tyr 130	Pro	His	Asn	Val	Thr 135	Leu	Thr	Leu	Ser	Leu 140	Gly	Lys	Lys	Phe
Glu 145	Val	Thr	Туr	Val	Ser 150	Leu	Gln	Phe	Суз	Ser 155	Pro	Arg	Pro	Glụ	Ser 160
Met	Ala	Ile	Tyr	Lys 165	Ser	Met	Asp	Туr	Gly 170	Lys	Thr	Trp	Vál	Pro 175	Phe
Gln	Phe	Tyr	Ser 180	Thr	Gln	Cys	Arg	Lys 185	Met	Tyr	Asn	Lys	Pro 190	Ser	Arg
Ala	Ala	Ile 195	Thr	Lys	Gln	Asn	Glu 200	Gln	Glü	Ala	Ile	Cys 205	Thr	Asp	Ser
His	Thr 210	Asp	Val	Arg	Pro	Leu 215	Ser	Gly	Gły	Leu	11e 220	Λla	Phe	Ser	Thr
Leu 225	Asp	Gly	Arg	Pro	Thr 230	Ala	His	Asp	Phe	Asp 235	Asn	Ser	Pro	Val	Leu 240
Gln	Asp	Trp	.Val	Thr 245	Ala	Thr	Asp	Ile	Lys 250	Val	Thr	Phe	Ser	Arg 255	Leu
His	Thr	Phe	Gly 260	Asp	Glu	Asn	Glu	Asp 265	Asp	Ser	Glu	Leu	Ala 270	Arg	Asp ·
Ser	Tyr	Phe 275	туг	Ala	Val	Ser	Asp 280	Leu	Gln	Val	Gly	Gly 285	Arg.	Cys	Lys
Cys	Asn 290	Gly	His	Ala	Ser	Arg 295	Cys	Val	Arg	Asp	Arg 300	Asp	Asp	Asn	Leu
Val 305	Cys	Asp	Cys	Lys	His 310	Asn	Thr	Ala	Gly	Pro 315	Glu	Cys	Asp	Arg	Cys 320
Lys	Pro	Phe.	His	Tyr 325	Asp	Arg	Pro	Trp	Gln 330		Ala	Thr	Ala	Arg 335	Glu
Ala	Asn	Glu	Cys 340	Val	Ála	Cys	Asn	Cys 345	Asn	Leu	His		Arg 350		Cys
Arg	Phe	Asn 355	Met	Glu	Leu	Tyr	Lys 360	Leu	Ser	Gly	Arg	Lys 365	Ser	Gly	Gly
Val	Cys 370	Leu	Asn	Cys	Arg	His 375	Asn	Thr	Ala	Gly	Arg 380	His	Суя	His	Туг
Cys 385	Lys	Glu	Gly	Phe	Туг 390	Arg	Asp	Leu	Ser	Lys 395	Pro	Ile	Ser	His	Arg 400
Lys	Ala	Cys	Lys	Glu 405	Суѕ	Asp	Cys	His	Pro 410	Val	Gly	Ala	Ala	Gly 415	Ğln

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 581 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein .
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
- Leu Arg Leu Leu Thr Thr Ser Val Leu Arg Leu Ala Arg Ala Ala 1 5 10 15
- Asn Pro Glu Val Ala Gln Gln Thr Pro Pro Asp Pro Cys Tyr Asp Glu 20 25 30
- Ser Gly Ala Pro Arg Arg Cys Ile Pro Glu Phe Val Asn Ala Ala Phe 35 40 45
- Gly Lys Glu Val Gin Ala Ser Ser Thr Cys Gly Lys Pro Pro Thr Arg 50 55 60
- His Cys Asp Ala Ser Asp Pro Arg Arg Ala His Pro Pro Ala Tyr Leu 65 70 75 80

Ala	Ile	Asn 435	Pro	Thr	Ser	Leu	Val 440	Thr	Ser	Thr	Glu	Ala 445	Pro	Ala	Asp
Суѕ	Asp 450	Ser	Tyr	Cys	Lys	Pro 455	Ala	Lys	Gly	Asn	Туг 460	Lys	Ile	Asn	Met
Lys 465	Lys	Tyr	Cys	Lys	Lys 470	Asp	Tyr	Val	Val	Gln 475	Val	Asn	Ile	Leu	Glu 480
Met	Glu	Thr	Val	Ala 485	Asn	Trp	Ala	Lys	Phe 490	Thr	Ile	Asn	Ile	Leu 495	Ser
Val	Туr	Lys	Cys 500	Arg	Asp	Glu	Arg	Val 505	Lys	Arg	Gly	Asp	Asn 510	Phe	Leu
Trp	Ile	His 515	Leu	Lys	Asp	Leu	Ser 520	Cys	Lys	Cys	Pro	Lys 5 25	Ile	Gln	Ile
Ser	Lys 530	Lys	Tyr	Leu	Val	Met 535	Gly	Ile	Ser	Glu	Asn 540	Ser	Thr	Asp	Arg
Pro 545	Gly	Leu	Met		A sp 550	Lys	Asn	Ser	Leu	Val 555	Ile	Gln	Trp	Arg	Asp 560
Ala	Trp	Thr	Arg	Arg 565	Leu	Arg	Lys	Leu	Gln 570	Arg	Ärg	Glu	Lys	Lys 5 75	Gly
Lys	Cys	Val	Lys 580	Pro											•

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5894 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..5053
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

G AAG GTC CTG GTG ACG GTC CTG GAA CTC TTC CTG CCA TTC Lys Val Leu Val Thr Val Leu Glu Leu Phe Leu Pro Leu	
1 5 10	15
TCT GGG ATC CTC ATC TGG CTC CGC TTG AAG ATT CAG TCG C Ser Gly Ile Leu Ile Trp Leu Arg Leu Lys Ile Gln Ser C 20 25	
CCC AAC GCC ACC ATC TAC CCG GGC CAG TCC ATC CAG GAG C Pro Asn Ala Thr Ile Tyr Pro Gly Gln Ser Ile Gln Giu I 35 40	
TTC TTC ACC TTC CCT CCG CCA GGA GAC ACC TGG GAG CTT C Phe Phe Thr Phe Pro Pro Pro Gly Asp Thr Trp Glu Leu A	

WO 97/48797			PCT/US97/00785
			•

														,		
	TCT Ser 65	His														238
GCA Ala 80	CTT Leu	GTG Val	ATC Ile	AAC Asn	ATG Met 85	CGA Arg	GTG Val	CGC Arg	GGC Gly	TTT Phe 90	CCC Pro	TCC Ser	GAG Glu	AAG Lys	GAC Asp 95	286
TTT Phe	GAG Glu	GAC Asp	TAC Tyr	ATT Ile 100	AGG Arg	ТАС Туг	GAC Asp	AAC Asn	TGC Cys 105	TCG Ser	TCC Ser	AGC Ser	GTG Val	CTG Leu 110	GCC Ala	334
GCC Ala	GTG Val	GTC Val	TTC Phe 115	GAG Glu	CAC His	CCC Pro	TTC Phe	AAC Asn 120	CAC His	AGC Ser	AAG Lys	GAG Glu	CCC Pro 125	CTG Leu	CCG Pro	382
CTC Leu	GCG Ala	GTG Val 130	AAA Lys	ТАТ Туг	CAC His	CTA Leu	CGG Arg 135	TTC Phe	AGT Ser	TAC Tyr	ACA Thr	CGG Arg 140	AGA Arg	AAT Asn	TAC Tyr	430
ATG Met	TGG Trp 145	ACC Thr	CAA Gln	ACA Thr	GGC Gly	TCC Ser 150	TTT Phe	TTC Phe	CTG Leu	AAA Lys	GAG Glu 155	ACA Thr	GAA Glu	GGC Gly	TGG Trp	478
CAC His 160	ACT Thr	ACT Thr	TCC Ser	CTT Leu	TTC Phe 165	CCG Pro	CTT Leu	TTC Phe	CCA Pro	AAC Asn 170	CCA Pro	GGA Gly	CCA Pro	AGG Arg	GAA Glu 175	526
CTA Leu	ACA Thr	TCC Ser	CCT Pro	GAT Asp 180	GGC Gly	GGA Gly	GAA Glu	CCT Pro	GGG Gly 185	TAC Tyr	ATC Ile	CGG Arg	GAA Glu	GGC Gly 190	TTC Phe	574
CTG Léu	GCC Ala	GTG Val	CAG Gln 195	CAT His	GCT Ala	GTG Val	GAC Asp	CGG Arg 200	GCC Ala	ATC Ile	ATG Met	GAG Glu	TAC Tyr 205	CAT His	GCC Ala	622
GAT Asp	GCC Ala	GCC Ala 210	ACA Thr	CGC Arg	CAG Gln	CTG Leu	TTC Phe 215	CAG Gln	AGA Arg	CTG Leu	ACG Thr	GTG Val 220	ACC Thr	ATC Ile	AAG Lys	670
AGG Arg	TTC Phe 225	CCG Pro	TAC Tyr	CCG Pro	CCG Pro	TTC Phe 230	ATC Ile	GCA Ala	GAC Asp	CCC Pro	TTC Phe 235	CTC Leu	GTG Val	GCC Ala	ATC Ile	718
	TAC Tyr															766
CTC Leu	ACC Thr	ATT	GCC Ala	CGT Arg 260	GCT Ala	GTC Val	GTG Val	CAG Gln	GAG Glu 265	AAG Lys	GAA Glu	AGG Arg	AGG Arg	CTG Leu 270	AAG Lys	814
GAG Glu	TAC Tyr	AŢG Met	CGC Arg 275	ATG Met	ATG Met	GGG Gly	CTC Leu	AGC Ser 280	AGC Ser	TGG Trp	CTG Leu	CAC His	TGG Trp 285	AGT Ser	GCC Ala	862
TGG Trp	TTC Phe	CTC Leu 290	TTG Leu	TTC Phe	TTC Phe	CTC Leu	TTC Phe 295	CTC Leu	CTC Leu	ATC Ile	GCC Ala	GCC Ala 300	TCC Ser	TTC Phe	ATG Met	910
ACC Thr	CTG Leu 305	Leu	TTC Phe	TGT Cys	GTC Val	AAG Lys 310	GTG Val	AAG Lys	CCA Pro	AAT Asn	GTA Val 315	GCC Ala	GTG Val	CTG Leu	TCC Ser	958

WO 97/48797		PCT/US97/00785

	ser		CTG Leu 325							1006
			AGC Ser							1054
			TTC Phe							1102
			GCC Ala							1150
			CTC Leu							1198
			TTT Phe 405							1246
			GTC Val							1294
			CTG Leu							1342
			GTC Val							1390
			ATG Met							1438
			GAA Glu 485					AGA Arg 495	•	1486
			GCC Ala							1534
			AAG Lys							1582
			AAC Asn							1630
			GGT Gly							1678
			CCC Pro 565						•	1726

														,		
							CAG Gln									1774
CCG Pro	CAG Gln	CAC His	GAC Asp 595	ATC	CTG Leu	TTT Phe	GAC Asp	AAC Asn 600	TTG Leu	ACA Thr	GTC Val	GCA Ala	GAG Glu 605	CAC His	CTT Leu	1822
ТАТ Туг	TTC Phe	TAC Tyr 610	GCC Ala	CAG Gln	CTG Leu	AA G Lys	GGC Gly 615	CTG Leu	TCA Ser	CGT Arg	CAG Gln	AAG Lys 620	TGC Cys	CCT Pro	GAA Glu	1870
GAA Glu	GTC Val 625	AAG Lys	CAG Gln	ATG Met	CTG Leu	CAC His 630	ATC Ile	ATC Ile	GGC Gly	CTG Leu	GAG Glu 635	GAC Asp	AAG Lys	TGG Trp	AAC Asn	1918
TCA Ser 640	CGG Arg	AGC Ser	CGC Arg	TTC Phe	CTG Leu 645	AGC Ser	GGG Gly	GGC Gly	ATG Met	AGG Arg 650	CGC Arg	AAG Lys	CTC Leu	TCC Ser	ATC Ile 655	1966
GGC G1y	ATC Ile	GCC Ala	CTC Leu	ATC Ile 660	GCA Ala	GGC Gly	TCC Ser	AAG Lys	GTG Val 665	CTG Leu	ATA Ile	CTG Leu	GAC Asp	GAG Glu 670	CCC Pro	2014
ACC Thr	TCG Ser	GGC Gly	ATG Met 675	GAC Asp	GCC Ala	ATC Ile	TCC Ser	AGG Arg 680	Arg	GCC Ala	ATC Ile	TGG Trp	GAT Asp 685	CTT Leu	CTT Leu	2062
CAG Gln	CGG Arg	CAG Gln 690	AAA Lys	AGT Ser	GAC Asp	CGC Arg	ACC Thr 695	ATC Ile	GTG Val	CTG Leu	ACC Thr	ACC Thr 700	CAC His	TTC Phe	ATG Met	2110
GAC Asp	GAG Glu 705	GCT Ala	GAC Asp	CTG Leu	CTG Leu	GGA Gly 710	GAC Asp	CGC Arg	ATC Ile	GCC Ala	ATC Ile 715	ATG Met	GCC Ala	AAG Lys	GGG Gly	2158
GAG Glu 720	CTG Leu	CAG Gln	TGC Cys	TGC Cys	GGG Gly 725	TCC Ser	TCG Ser	CTG Leu	TTC Phe	CTC Leu 730	AAG Lys	CAG Gln	AAA Lys	TAC Tyr	GGT Gly 735	2206
GCC Ala	GGC Gly	TAT Tyr	CAC His	ATG Met 740	ACG Thr	CTG Leu	GTG Val	AAG Lys	GAG Glu 745	CCG Pro	CAC His	TGC Cys	AAC Asn	CCG Pro 750	GAA Glu	2254
							CAC His									2302
AGC Ser	AGC Ser	GCT Ala 770	GGG Gly	GCC Ala	GAG Glu	CTG Leu	TCT Ser 775	TTC Phe	ATC Ile	CTT Leu	CCC Pro	AGA Arg 780	GAG Glu	AGC Ser	ACG Thr	2,350
CAC	AGG Arg 785	TTT Phe	GAA Glu	GGT Gly	CTC Leu	TTT Phe 790	GCT Ala	AAA Lys	CTG Leu	GAG Glu	AAG Lys 795	AAG Lys	CAG Gln	AAA Lys	GAG Glu	2398
CTG Leu 800	GGC Gly	ATT Ile	GCC Ala	AGC Ser	TTT Phe 805	GGG Gly	GCA Ala	TCC Ser	ATC Ile	ACC Thr 810	ACC Thr	ATG Met	GAG Glu	GAA Glu	GTC Val 815	2446
TTC Phe	CTT Leu	CGG Arg	GTC Val	GGG Gly 820	AAG Lys	CTG Leu	GTG Val	GAC Asp	AGC Ser 825	AGT Ser	ATG Met	GAC Asp	ATC Ile	CAG Gln 830	GCC Ala	2494

					•											
						_					AGG Arg				GAC Asp	2542
			Asp								GAC Asp	•				2590
											GTC Val 875					2638
											ATG Met					2686
											GCG Ala					2734
											GCC Ala					2782
											ACC Thr					2830
											ACC Thr 955					2878
											CAG Gln					2926
											TTC Phe					2974
									Glu		TGC Cys			Ala		3022
			Asp					Thr			AAC Asn		Leu			3070
		Ala					Ala				GCC Ala 1035	Val			AAC Asn	3118
	Leu					Cys					TCC Ser					3166
					Arg					Ala	GCC Ala					3214
				Lys					Ala		AAC Asn			Phe		3262

i i	
O 97/48797	PCT/US97/00785

				•												
ATG Met	GCA Ala	TTC Phe 109	Leu	GCC Ala	AGC Ser	ACG Thr	TTC Phe 109	TCC Ser 5	ATC Ile	CTG Leu	GCG Ala	GTC Val 110	Ser	GAG Glu	AG G Arg	3310
GCC Ala	GTG Val 110	Gln	GCC Ala	AAG Lys	CAT His	GTG Val 111	Gln	TTT Phe	GTG Val	AGT Ser	GGA GÍY 1115	Val	CAC His	GTG Val	GCC Ala	3358
AGT Ser 112	Phe	TGG Trp	CTC Leu	TCT Ser	GCT Ala 112	Leu	CTG Leu	TGG Trp	GAC Asp	CTC Leu 1130	Ile	TCC Ser	TTC Phe	CTC Leu	ATC Ile 1135	3406
CCC Pro	AGT Ser	CTG Leu	CTG Leu	CTG Leu 114	Leu	GTG Val	GTG Val	TTT Phe	AAG Lys 1149	Ala	TTC Phe	GAC Asp	GTG Val	CGT Arg 115	Ala	3454
TTC Phe	ACG Thr	CGG Arg	GAC Asp 1155	Gly	CAC His	ATG Met	GCT Ala	GAC Asp 1160	Thr	CTG Leu	CTG Leu	CTG Leu	CTC Leu 116	Leu	CTC Leu	3502
TAC Tyr	GGC Gly	TGG Trp 117	Ala	ATC Ile	ATC Ile	CCC Pro	CTC Leu 1179	ATG Met	TAC Tyr	CTG Leu	ATG Met	AAC Asn 1180	Phe	TTC Phe	TTC Phe	3550
ŤTG Leu	GGG Gly 1185	Ala	GCC Ala	ACT Thr	GCC Ala	TAC Tyr 1190	Thr	AGG Arg	CTG Leu	ACC Thr	ATC Ile 1195	Phe	AAC Asn	ATC Ile	CTG Leu	3598
Ser 1200	Gly)	Ile	Ala	Thr	Phe 1205	Leu	Met	GTC Val	Thr	11e 1210	Met)	Arg	Ile	Pro	Ala 1215 .	3646
Val	Lys	Leu	Glu	Glu 1220	Leu)	Ser	Lys	ACC Thr	Leu 1225	Asp	His	Val	Phe	Leu 1230	Val	3694
Leu	Pro	Asn	His 1235	Cys S	Leu	Gly	Met	GCA Ala 1240	Val	Ser	Ser	Phe	Tyr 1245	Glu	Asn	3742
TAC Tyr	GAG Glu	ACG Thr 1250	Arg	AGG Arg	TAC Tyr	TGC Cys	ACC Thr 1255	TCC Ser	TCC Ser	GAG Glu	GTC Val	GCC Ala 1260	Ala	CAC His	TAC Tyr	3790
ĊAz	Lys 1265	Lys	Tyr	Asn	Ile	Gln 1270	Tyr)	CAG Gln	Glu	Asn	Phe 1275	Tyr	Ala	Trp	Ser	3838
GCC Ala 1280	Pro	GGG Gly	GTC Val	GGC Gly	CGG Arg 1285	Phe	GTG Val	GCC Ala	TCC Ser	ATG Met 1290	Ala	GCC Ala	TCA Ser	GGG Gly	TGC Cys 1295	3886
GCC Ala	TAC Tyr	CTC Leu	ATC Ile	CTG Leu 1300	Leu	TTC Phe	CTC Leu	ATC Ile	GAG Glu 1305	Thr	AAC Asn	CTG Leu	CTT Leu	CAG Gln 1310	Arg	3934
CTC	AGG Arg	GGC Gly	ATC Ile 1315	Leu	TGC Cys	GCC Ala	CTC Leu	CGG Arg 1320	Arg	AGG Arg	CGG Arg	ACA Thr	CTG Leu 1325	Thr	GAA Glu	3982
TTA Leu	TAC Tyr	ACC Thr 1330	Arg	ATG Met	CCT Pro	GTG Val	CTT Leu 1335	CCT Pro	GAG Glu	GAC Asp	CAA Gln	GAT Asp 1340	Val	GCG Ala	GAC Asp	4030

		Thr					Pro					Leu	CTC Leu			4078
	Leu					Leu					Glu		CGG Arg			4126
					Arg					Val			GGG Gly		Cys	4174
TTC Phe	GGC Gly	CTG Leu	CTG Leu 1399	Giy	TTC Phe	AAT Asn	GGA Gly	GCC Ala 1400	Gly	AAG Lys	ACC Thr	ACG Thr	ACT Thr 1409	Phe	AAA Lys	4222
			Gly					Thr					TTT Phe)			4270
GGT Gly	CAC His 1429	Arg	ATC Ile	AGC Ser	TCT Ser	GAT Asp 1430	Val	GGA Gly	AAG Lys	GTG Val	CGG Arg 1435	Gln	CGG Arg	ATC Ile	GGC Gly	4318
TAC Tyr 1440	Cys	CCG Pro	CAG Gln	Phe	GAT Asp 1445	Ala	TTG Leu	CTG Leu	GAC Asp	CAC His 1450	Met	ACA Thr	GGC Gly	CGG Arg	GAG Glu 1455	4366
					Ala					Ile			CGC Arg		Ile	4414
				Glu					Gly				GAG Glu 1485	Pro		4462
GCC Ala	AAC Asn	AAG Lys 1490	Leu	GTC Val	AGG Arg	ACG Thr	TAC Tyr 1495	Ser	GGT Gly	GGT Gly	AAC Asn	AAG Lys 1500	CGG Arg	AAG Lys	CTG Leu	4510
		Gly					Gly					Ile	TTC Phe			4558
	Pro					Asp					Arg		CTT Leu			4606
ACC Thr	GTG Val	GCA Ala	CGA Arg	GCC Ala 1540	Arg	GAG Glu	TCT Ser	GGC Gly	AAG Lys 1545	Ala	ATC Ile	ATC Ile	ATC Ile	ACC Thr 1550	Ser	4654
				Glu					Cys				GCC Ala 1565	Ile		4702
GTG Val	CAG Gln	GGG Gly 1570	Gln	TTC Phe	AAG Lys	TGC Cys	CTG Leu 1575	Gly	AGC Ser	CCC Pro	CAG Gln	CAC His 1580	CTC Leu	AAG Lys	AGC · Ser	4750
AAG Lys	TTC Phe 1585	Gly	AGC Ser	GGC Gly	TAC Tyr	TCC Ser 1590	Leu	CGG Arg	GCC Ala	AAG Lys	GTG Val 1595	Gln	AGT Ser	GAA Glu	GGG Gly	4798

·	
CAA CAG GAG GCG CTG GAG GAG TTC AAG GCC TTC GTG GAC CTG ACC TTT Gln Gln Glu Ala Leu Glu Glu Phe Lys Ala Phe Val Asp Leu Thr Phe 1600 1605 1610 1615	4846
CCA GGC AGC GTC CTG GAA GAT GAG CAC CAA GGC ATG GTC CAT TAC CAC Pro Gly Ser Val Leu Glu Asp Glu His Gln Gly Met Val His Tyr His 1620 1625 1630	4894
CTG CCG GGC CGT GAC CTC AGC TGG GCG AAG GTT TTC GGT ATT CTG GAG Leu Pro Gly Arg Asp Leu Ser Trp Ala Lys Val Phe Gly Ile Leu Glu 1635 1640 1645	4942
AAA GCC AAG GAA AAG TAC GGC GTG GAC GAC TAC TCC GTG AGC CAG ATC Lys Ala Lys Glu Lys Tyr Gly Val Asp Asp Tyr Ser Val Ser Gln Ile 1650 1660	4990
TCG CTG GAA CAG GTC TTC CTG AGC TTC GCC CAC CTG CAG CCG CCC ACC Ser Leu Glu Gln Val Phe Leu Ser Phe Ala His Leu Gln Pro Pro Thr 1665	5038
GCA GAG GAG GGG CGA TGAGGGGTGG CGGCTGTCTC GCCATCAGGC AGGGACAGGA Ala Glu Glu Gly Arg 1680	5093
CGGGCAAGCA GGGCCCATCT TACATCCTCT CTCTCCAAGT TTATCTCATC CTTTATTTTT	5153
AATCACTTTT TTCTATGATG GATATGAAAA ATTCAAGGCA GTATGCACAG AATGGACGAG	5213
TGCAGCCCAG CCCTCATGCC CAGGATCAGC ATGCGCATCT CCATGTCTGC ATACTCTGGA	5273
GTTCACTTTC CCAGAGCTGG GGCAGGCCGG GCAGTCTGCG GGCAAGCTCC GGGGTCTCTG	5333
GGTGGAGAGC TGACCCAGGA AGGGCTGCAG CTGAGCTGGG GGTTGAATTT CTCCAGGCAC	5393
TCCCTGGAGA GAGGACCCAG TGACTTGTCC AAGTTTACAC ACGACACTAA TCTCCCCTGG	5453
GGAGGAAGCC GGAAGCCAGC CAGGTTGAAC TGTAGCGAGG CCCCCAGGCC GCCAGGAATG	5513
GACCATGCAG ATCACTGTCA GTGGAGGGAA GCTGCTGACT GTGATTAGGT GCTGGGGTCT	5573
TAGCGTCCAG CGCAGCCCGG GGGCATCCTG GAGGCTCTGC TCCTTAGGGC ATGGTAGTCA	5633
CCGCGAAGCC GGGCACCGTC CCACAGCATC TCCTAGAAGC AGCCGGCACA GGAGGGAAGG	5693
TGGCCAGGCT CGAAGCAGTC TCTGTTTCCA GCACTGCACC CTCAGGAAGT CGCCCGCCCC	5753
AGGACACGCA GGGACCACCC TAAGGGCTGG GTGGCTGTCT CAAGGACACA TTGAATACGT	5813
TGTGACCATC CAGAAAATAA ATGCTGAGGG GACACAAAAA AAAAAAAAAA	5873
AAAAAAAA AAAAAAAAA A	5894

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1684 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

WO 97/48797 PCT/US97/00785

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Lys Val Leu Val Thr Val Leu Glu Leu Phe Leu Pro Leu Leu Phe Ser Gly Ile Leu Fle Trp Leu Arg Leu Lys Ile Gin Ser Glu Asn Val Pro Asn Ala Thr Ile Tyr Pro Gly Gln Ser Ile Gin Glu Leu Pro Leu Phe Phe Thr Phe Pro Pro Pro Gly Asp Thr Trp Glu Leu Ala Tyr Ile Pro Ser His Ser Asp Ala Ala Lys Ala Val Thr Glu Thr Val Arg Arg Ala Leu Val Ile Asn Met Arg Val Arg Gly Phe Pro Ser Glu Lys Asp Phe 90 Glu Asp Tyr Ile Arg Tyr Asp Asn Cys Ser Ser Scr Val Leu Ala Ala 105 Val Val Phe Glu His Pro Phe Asn His Ser Lys Glu Pro Leu Pro Leu Ala Val Lys Tyr His Leu Arg Phe Ser Tyr Thr Arg Arg Asn Tyr Met 135 Trp Thr Gln Thr Gly Ser Phe Phe Leu Lys Glu Thr Glu Gly Trp His 150 Thr Thr Ser Leu Phe Pro Leu Phe Pro Asn Pro Gly Pro Arg Glu Leu 165 Thr Ser Pro Asp Gly Gly Glu Pro Gly Tyr Ile Arg Glu Gly Phe Leu Ala Val Gln His Ala Val Asp Arg Ala Ile Met Glu Tyr His Ala Asp 200 Ala Ala Thr Arg Gln Leu Phe Gln Arg Leu Thr Val Thr Ile Lys Arg 215 Phe Pro Tyr Pro Pro Phe Ile Ala Asp Pro Phe Leu Val Ala Ile Gln 230 235 Tyr Gln Leu Pro Leu Leu Leu Leu Ser Phe Thr Tyr Thr Ala Leu Thr Ile Ala Arg Ala Val Val Gln Glu Lys Glu Arg Arg Leu Lys Glu 260 265 Tyr Met Arg Met Met Gly Leu Ser Ser Trp Leu His Trp Ser Ala Trp 280 Phe Leu Leu Phe Phe Leu Phe Leu Leu Ile Ala Ala Ser Phe Met Thr 295 Leu Leu Phe Cys Val Lys Val Lys Pro Asn Val Ala Val Leu Ser Arg 315 Ser Asp Pro Ser Leu Val Leu Ala Phe Leu Leu Cys Phe Ala Ile Ser

330

325

WO 97/48797 PCT/US97/00785

Thr	Ile	Ser	Phe 340	Ser	Phe	Met	Val	Ser 345	Thr	Phe	Phe	Ser	Lys 350	Ala	Asn
Met	Ala	Ala 355	Ala	Phe	Gly	Gly	Phe 360	Leu	Tyr	Phe	Phe	Thr 365	Tyr	Ile	Pro
Tyr	Phe 370	Phe	Val	Ala	Pro	Arg 375	Tyr	Asn	Trp	Met	Thr 380	Leu	Ser	Gln	Lys
Leu 385	Cys	Ser	Cys	Leu	Leu 390	Ser	Asn	Val	Ala	Met 395	Ala	Met	Gly	Ala	Gln 400
Leu	Ile	Gly	Lys	Phe 405	Glu	Ala	Lys	Gly	Met 410	Gly	Ile	Gln	Trp	Arg 415	Asp
Leu	Leu	Ser	Pro 420	Val	Asn	Val	Asp	Asp 425	Asp	Phe ·	Cys	Phe	Gly 430	Gln	Val
Leu	Gly	Met 435	Leu	Leu	Leu	Asp	Ser 440	Val	Leu	Tyr	Gly	Leu 445	Val	Thr	Trp
Туг	Met 450	Glu	Ala	Val	Phe	Pro 455	Gly	Gln	Phe	Gly	Val 460	Pro	Gln	Pro	Тrp
Tyr 465	Phẹ	Phe	Ile	Met	Pro 470	Ser	Tyr	Trp	Cys	Gly 475	Lys	Pro	Arg	Ala	Val 480
Ala	Gly	Lys	Glu	Glu 485	Glu	Asp	Ser	Asp	Pro 490	Glu	Lys	Ala	Leu	Arg 495	Asn
Glu	Туr	Phe	Glü 500	Ala	Glu	Pro	Glu	Asp 505	Leu	Val	Ala	Gly	Ile 510	Lys	Ile
Lys	His	Leu 515	Ser	Lys	Val	Phe	Arg 520	Val	Gly	Asn	Lys	Asp 525	Arg	Ala	Ala
Val	Arg 530	Asp	Leu	Asn	Leu	Asn 535	Leu	Tyr	Glu	Gly	Gln 540	Ile	Thr	Val	Leu
Leu 545	Gly	His	Asn	Gly	Ala 550	Gly	Lys	Thr	Thr	Thr 555	Leu	Ser	Met	Leu	Thr 560
Gly	Leu	Phe	Pro	Pro 565	Thr	Ser	Gly	Arg	Ala 570	Tyr	Ile	Ser	Gly.	Tyr 575	Glu
Ile	Ser	Gln	Asp 580	Met	Val	Gln	Ile	Ärg 585	Lys	Ser	Leu	Gly	Leu 590	Cys	Pro
Gln	His	Asp 595	Ile	Leu	Phe	Asp	Asn 600	Leu	Thr	Val	Ala	Glu 605	His	Leu	Tyr
Phe	Туг 610	Ala	Gln	Leu	Lys	Gly 615	Leu	Ser	Arg	Gln	Lys 620	Суѕ	Pro	Glu	Glu
Val 625	Lys	Gln	Met	Leu	His 630	Ile	Ile	Gly	Leu	Glu 635	Asp	Lys	Trp	Asn	Ser 640
Arg	Ser	Arg	Pḥe	Leu 645	Ser	Gly	Gly	Met	Arg 650	Arg	Lys	Leu	Ser	Ile 655	Gly
Ile	Ala	Leu	Ile 660	Ala	Gly	Ser	Lys	Val 665	Leu	Ile	Leu	Asp	Glu 670	Pro	Thr
Ser _.	Gly	Met 675	Asp	Ala	Ile	Ser	Arg 680	Arg	Ala	Ile	Trp	Asp 685	Leu	Leu	Gln

WO 97/48797

Arg Gln Lys Ser Asp Arg Thr IIe Val Leu Thr Thr His Phe Met Asp 690

Glu Ala Asp Leu Leu Gly Asp Arg IIe Ala IIe Met Ala Lys Gly Glu 720

Gly Tyr His Met Thr Leu Val Lys Glu Pro His Cys Asn Pro Glu Asp 740 745 750

Leu Gln Cys Cys Gly Ser Ser Leu Phe Leu Lys Gln Lys Tyr Gly Ala

Ile Ser Gln Leu Val His His His Val Pro Asn Ala Thr Leu Glu Ser 755 760 765

Ser Ala Gly Ala Glu Leu Ser Phe Ile Leu Pro Arg Glu Ser Thr His 770 . 780

Arg Phe Glu Gly Leu Phe Ala Lys Leu Glu Lys Lys Gln Lys Glu Leu 785 790 795 800

Gly Ile Ala Ser Phe Gly Ala Ser Ile Thr Thr Met Glu Glu Val Phe 805 810 815

Leu Arg Val Gly Lys Leu Val Asp Ser Ser Met Asp Ile Gln Ala Ile 820 825 830

Gln Leu Pro Ala Leu Gln Tyr Gln His Glu Arg Arg Ala Ser Asp Trp 835 840 845

Ala Val Asp Ser Asn Leu Cys Gly Ala Met Asp Pro Ser Asp Gly Ile 850 855 860

Gly Ala Leu Ile Glu Glu Glu Arg Thr Ala Val Lys Leu Asn Thr Gly 865 870 875 880

Leu Ala Leu His Cys Gin Gln Phe Trp Ala Met Phe Leu Lys Lys Ala 885 890 895

Ala Tyr Ser Trp Arg Glu Trp Lys Met Val Ala Ala Gln Val Leu Val 900 905 910

Pro Leu Thr Cys Val Thr Leu Ala Leu Leu Ala Ile Asn Tyr Ser Ser 915 920 925

Giu Leu Phe Asp Asp Pro Met Leu Arg Leu Thr Leu Gly Glu Tyr Gly 930 . 935 940

Arg Thr Val Val Pro Phe Ser Val Pro Gly Thr Ser Gln Leu Gly Gln 945 . 950 955 960

Gln Leu Ser Glu His Leu Lys Asp Ala Leu Gln Ala Glu Gly Gln Glu 965 970 975

Pro Arg Glu Val Leu Gly Asp Leu Glu Glu Phe Leu Ile Phe Arg Ala 980 985 990

Ser Val Glu Gly Gly Phe Asn Glu Arg Cys Leu Val Ala Ala Ser 995 1000 1005

Phe Arg Asp Val Gly Glu Arg Thr Val Val Asn Ala Leu Phe Asn Asn 1010 1020

Gln Ala Tyr His Ser Pro Ala Thr Ala Leu Ala Val Val Asp Asn Leu 1025 1030 1035 1040

- Leu Phe Lys Leu Cys Gly Pro His Ala Ser Ile Val Val Ser Asn 1045 1050 1055
- Phe Pro Gln Pro Arg Ser Ala Leu Gln Ala Ala Lys Asp Gln Phe Asn 1060 1065 1070
- Glu Gly Arg Lys Gly Phe Asp Ile Ala Leu Asn Leu Leu Phe Ala Met 1075 1080 1085
- Ala Phe Leu Ala Ser Thr Phe Ser Ile Leu Ala Val Ser Glu Arg Ala 1090 1095 1100
- Val Gln Ala Lys His Val Gln Phe Val Ser Gly Val His Val Ala Ser 1105 1110 1115 1120
- Phe Trp Leu Ser Ala Leu Leu Trp Asp Leu Ile Ser Phe Leu Ile Pro 1125 1130 1135
- Ser Leu Leu Leu Val Val Phe Lys Ala Phe Asp Val Arg Ala Phe 1140 1145 1150
- Thr Arg Asp Gly His Met Ala Asp Thr Leu Leu Leu Leu Leu Tyr 1155 1160 1165
- Gly Trp Ala Ile Ile Pro Leu Met Tyr Leu Met Asn Phe Phe Leu 1170 1175 1180
- Gly Ala Ala Thr Ala Tyr Thr Arg Leu Thr Ile Phe Asn Ile Leu Ser 1185 1190 1195 1200
- Gly Ile Ala Thr Phe Leu Met Val Thr Ile Met Arg Ile Pro Ala Val 1205 1210 1215
- Lys Leu Glu Glu Leu Ser Lys Thr Leu Asp His Val Phe Leu Val Leu 1220 1225 1230
- Pro Asn His Cys Leu Gly Met Ala Val Ser Ser Phe Tyr Glu Asn Tyr 1235 1240 1245
- Glu Thr Arg Arg Tyr Cys Thr Ser Ser Glu Val Ala Ala His Tyr Cys 1250 1255 1260
- Lys Lys Tyr Asn Ile Gln Tyr Gln Glu Asn Phe Tyr Ala Trp Ser Ala 1265 1270 1275 1280
- Pro Gly Val Gly Arg Phe Val Ala Ser Met Ala Ala Ser Gly Cys Ala 1285 1290 1295
- Tyr Leu Ile Leu Leu Phe Leu Ile Glu Thr Asn Leu Leu Gln Arg Leu . 1300 1305 1310
- Arg Gly Ile Leu Cys Ala Leu Arg Arg Arg Arg Thr Leu Thr Glu Leu 1315 1320 1325
- Tyr Thr Arg Met Pro Val Leu Pro Glu Asp Gln Asp Val Ala Asp Glu 1330 1340
- Arg Thr Arg Ile Leu Ala Pro Ser Pro Asp Ser Leu Leu His Thr Pro 1345 1350 1355 1360
- Leu Ile Ile Lys Glu Leu Ser Lys Val Tyr Glu Gln Arg Val Pro Leu
 1365
- Leu Ala Val Asp Arg Leu Ser Leu Ala Val Gln Lys Gly Glu Cys Phe 1380 1385 1390

Gly Leu Ceu Gly Phe Asn Gly Ala Gly Lys Thr Thr Phe Lys Met 1395 1400 1405

Leu Thr Gly Glu Glu Ser Leu Thr Ser Gly Asp Ala Phe Val Gly Gly 1410 1415

His Arg Ile Ser Ser Asp Val Gly Lys Val Arg Gln Arg Ile Gly Tyr 1425 1430 1435 1440

Cys Pro Gln Phe Asp Ala Leu Leu Asp His Met Thr Gly Arg Glu Met 1445 1450 1455

Leu Val Met Tyr Ala Arg Leu Arg Gly Ile Pro Glu Arg His Ile Gly 1460 1465 1470

Ala Cys Val Glu Asn Thr Leu Arg Gly Leu Leu Glu Pro His Ala 1475 1480 1485

Asn Lys Leu Val Arg Thr Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser 1490 1500

Thr Gly Ile Ala Leu Ile Gly Glu Pro Ala Val Ile Phe Leu Asp Glu 1505 1510 1515 1520

Pro Ser Thr Gly Met Asp Pro Val Ala Arg Arg Leu Leu Trp Asp Thr 1525 1530 1535

Val Ala Arg Ala Arg Glu Ser Gly Lys Ala Ile Ile Ile Thr Ser His 1540 1550

Ser Met Glu Glu Cys Giu Ala Leu Cys Thr Arg Leu Ala Ile Met Val 1555 1560 1565

Gln Gly Gln Phe Lys Cys Leu Gly Ser Pro Gln His Leu Lys Ser Lys 1570 1580

Phe Gly Ser Gly Tyr Ser Leu Arg Ala Lys Val Gln Ser Glu Gly Gln 1585 1590 1595

Gln Glu Ala Leu Glu Glu Phe Lys Ala Phe Val Asp Leu Thr Phe Pro 1605 1610 1615

Gly Ser Val Leu Glu Asp Glu His Gln Gly Met Val His Tyr His Leu 1620 1625 1630

Pro Gly Arg Asp Leu Ser Trp Ala Lys Val Phe Gly Ile Leu Glu Lys 1635 1640 1645

Ala Lys Glu Lys Tyr Gly Val Asp Asp Tyr Ser Val Ser Gln Ile Ser 1650 1660

Leu Glu Gln Val Phe Leu Ser Phe Ala His Leu Gln Pro Pro Thr Ala 1665 1670 1675 1680

Glu Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1375 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein

(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:26:						
Cys 1	Met	Glu	Glu	Glu 5	Pro	Thr	His	Leu	Arg 10	Leu	Gly	Val	Ser	11e 15	GIn
Asn	Leu	Val	Lys 20	Val	Туr	Arg	Asp	Gly 25	Йet	Lys	Val	Ala	Val 30	Aśp	Gly
Leu	Ala	Leu 35	Asn	Phe	Tyr	Glų	Gly 40	Gln	Ile	Thr	Ser	Phe 45	Leu	Gly	His
Asn	Gly 50	Ala	Gly	Lys	Thr	Thr 55-	Thr	Met	Ser	Ile	Leu 60	Thr	Gly	Leu	Phe
Pro 65	Pro	Thr	Ser	Gly	Thr 70	Ala	Tyr	Ile	Leu	Gly 75	Lys	Asp	Ile	Arg	Ser 80
Glu	Met	Ser	Ser	Ile 85	Arg	Gln	Asn	Leu	Gly 90	Val	Cys	Pro	Gln	His 95	Asn
Val	Leu	Phe	Asp 100	Met	Leu	Thr	Val	Glu 105	Glu	His	Ile	Trp	Phe 110	Туr	Ala
Arg	Leu	Lys 115	Gly	Leu	Ser	Glu	Lys 120	Hıs	Val	Lys	Ala	Glu 125	Met	Glu	Ġln
Met	Ala 130	Leu	Asp	Val	Gly	Leu 135	Pro	Pro	Ser	Lys	Leu 140	Lys	Ser	Lys	Thr
Ser- 145	Gln	Leu	Ser	Gly	Gly 150	Met	Gln	Arg	Lys	Leu 155	Ser	Val	Ala	Leu	Ala 160
Phe	Val	Gly	Gly	Ser 165	Lys	Val	Val	Ile	Leu 170	Asp	Glu	Pro	Thr	Ala 175	Gly
Val	Asp	Pro	Tyr 180	Ser	Arg	Arg	Gly	11e 185	Trp	Glu	Leu	Leu	Leu 190	Lys	Tyr
Arg	Gln	Gly 195		Thr	Ile	Ile	Leu 200	Ser	Thr	His	His	Met 205	Asp	Glu	Ala
Asp	11e 210	Leu	Gly	Asp	Arg	11e 215	Ala	Ile	Ile	Ser	His 220	Gly	Lys	Leu	Cys
Cys 225	Val	Gly	Ser	Ser	Leu 230	Phe	Leu	Lys	Asn	Gln 235	Leu	Glý	Thr	Gly	Tyr 240
Tyr	Leu	Thr	Leu	Val 245	Lys	Lys	Asp	Val	Glu 250	Ser	Ser	Leu	Ser	Ser 255	Cýs
Arg	Asn	Ser	Ser 260	Ser	Thr	Val	Ser	Cys 265	Leu	Lys	Lys	Glu	Asp 270	Ser	Val
Ser	Gln	Ser 275	Ser	Ser	Asp	Ala	Gly 280	Leu	Gly	Ser	Asp	His 285	Glu	Ser	Asp
Thr	Leu 290	Thr	Ile	Asp	Val	Ser 295	Ala	Ile	Ser	Asn	Leu 300	Ile	Arg	Lys	His
Val 305	Ser	Glu	Ala	Arg	Leu 310	Val	Glu	Asp	Ile	Gly 315	His	Glu	Leu	Thr	Tyr 320

Va l	. Leu	Pro	Туг	Glu 325		Ala	Lys	Glu	Gly 330		Phe	· Val	Glu	Leu 335	
His	Glu	Ile	Asp 340		Arg	Leu	Ser	Asp 345		Gly	tle	Ser	Ser 350		Gly
Ile	Ser	Glu 355		Thr	Leu	Glu	Glu 360	!le	Phe	Leu	Lys	Val 365		Glu	Glu
Ser	Gly 370	Val	Asp	Ala	Glu	Thr 375	Ser	Asp	Gly	Thr	Leu 380		Ala	Arg	Arg
Asn 385	Λrg	Arg	Ala	Phe	Gly 390	Asp	Lys	Gln	Ser	Сүs 395		His	Pro	Phe	Thr 400
Glu	-Asp	Asp	Ala	Val 405	Asp	Pro	Asn	Asp	Ser 410	Asp	Ile	Asp	Pro	Glu 415	Ser
Arg	Glu	Thr	Asp 420	Leu	Leu	Ser	Gly	Met 425	Asp	Gly	Lys	Gly	Ser 430	Tyr	Gln
Leu	Lys	Gly 435	Trp	Lys	Leu	Thr	Gln 440	Gln	Gln	Phe	Val	Ala 445	Leu	Leu	Trp
Lys	Arg 450	Leu	Leu	Ile	Ala	Arg 455	Arg	Ser	Arg	Lys	Gly 460	Phe	Phe	Ala	Gln
11e 465	Val	Leu	Pro	Ala	Val 470	Phe	Val	Cys	Ile	Ala 475	Leu	Val	Phe	Ser	Leu 480
Tle	Val	Pro	Pro	Phe 485	Gly	Lys	Tyr	Pro	Ser 490	Leu	Glu	Leu	Gln	Pro 495	Trp
Met	Tyr	Asn	Glu 500	Gln	Tyr	Thr	Phe	Val 505	Ser	Asn	Asp	Ala	Pro 510	Glu	Asp
Met	Gly	Thr 515	Gln	Glu	Leu	Leu	Asn 520	Ala	Leu	Thr	Lys	Asp 525	Pro	Gly	Phe
Gly	Thr 530	Arg	Cys	Met	Glu	Gly 535	Asn	Pro	Ile	Pro	Asp 540	Thr	Pro	Cys	Leu
Ala 545	Gly	Glu	Giu	Asp	Trp 550	Thr	Ile	Ser	Pro	Val 555	Pro	Gln	Ser	Ile	Val 560
Asp	Leu	Phe	Gln	Asn 565	Gly	Asn	Trp	Thr	Met 570	Lys	Asn	Pro	Ser	Pro 575	Ala
Cys	Gln	Cys	Ser 580	Ser	Asp	Lys	Ile	Lys 585	Lys	Met	Leu	Pro	Val 590	Cys	Pro
Pro	Gly	Ala 595	Gly	Gly	Leu	Pro	Pro 600	Pro	Gln	Arg	Lys	Gln 605	Lys	Thr	Ala
Asp	Ile 610	Leu	Gln	Asn	Leu	Thr 615	Gly	Arg	Asn	Ile	Ser 620	Asp	Tyr	Leu	Val
Lys 625	Thr	Tyr	Val	Gln	Ile 630	Ile	Ala	Lys	Ser	Leu 635	Lys	Asn	Lys	Ile	Trp 640
Val	Asn	Glu	Phe	Arg 645	Tyr	Gly	Gly	Phe	Ser 650	Leu	Gly	Val	Ser	Asn 655	Ser
Gln	Ala	Leu	Pro 660	Pro	Ser	His	Glu '	Val 665	Asn	Asp	Ala	Ile	Lys 670	Gln	Met

								•					,		
Lyš	Lys	Leu 675		Lys	Leu	Thr	Lys 680		Thr	Ser	Ala	Asp 685		Phe	Leu
Ser	Ser 690	Leu	Gly	Arg	Phe	Met 695		Gly	Leu	Asp	Thr 700		Asn	Asn	Val
Lys 705	Val	Trp	Phe	Asn	Asn 710	Lys	Gly	Trp	His	Ala 715		Ser	Ser	Phe	Leu 720
Asn	Val	Ile	Asn	Asn 725	Ala	Ile	Leu	Arg	Ala 730		Leu	Gln	Lys	Gly 735	Glu
Asn	Pro	Ser	Gln 740	Туг	Gly	Ile	Thr	Ala 745	Phe	Asn	His	Pro	Leu 750	Asn	Leu
Thr	Lys	Gln 755	Gln	Leu	Ser	Glu	Val 760	Ala	Leu	Met	Thr	Thr 765	Ser	Val	Asp
Val	Leu 770	Val	Ser	Ile	Cys	Val 775	Ile	Phe	Ala	Met	Ser 780	Phe	Val	Pro	Ala
Ser 785	Phe	Val	Val	Phe	Leu 790	Ile	Gln	Glu	Arg	Val 795	Ser	Lys	Ala	Lys	His 800
Leu	Gln	Phe	Ile	Ser 805	Gly	Val	Lys	Pro	Val 810	Ile	Tyr	Trp	Leu	Ser 815	Asn
Phe	Val	Trp	Asp 820	Met	Cys	Asn	Tyr	Val 825	Val	Pro	Ala	Thr	Leu 830	Val	Ile
Ile	Ile	Phe 835	Ile	Cys	Phe	Gln	Gln 840	Lys	Ser	Tyr	Val	Ser 845	Ser	Thr	Asn
Leu	Pro 850	Val	Leu	Ala	Leu	Leu 855	Leu	Leu	Leu	Tyr	Gly 860	Trp	Ser	Ile	Thr
Pro 865	Leu	Met	Tyr	Pro	Ala 870	Ser	Phe	Val	Phe	Lys 875	Ile	Pro	Ser	Thr	Ala 880
Tyr	Val	Val	Leu	Thr 885	Ser	Val	Asn	Leu	Phe 890	Ile	Gly	Ile	Asn	Gly 895	Ser
Val	Ala	Thr	Phe 900	Val	Ļeu	Glu	Leu	Phe 905	Thr	Asn	Asn	Lys	Leu 910	Asn	Asp
Ile	Asn	Asp 915	Ile	Leu	Lys	Ser	Val 920	Phe	Leu	Ile	Phe	Pro 925	His	Phe	Cys
Leu	Gly 930	Arg	Gly	Leu	Ile	Asp 935	Met	Val	Lys	Asn	Gln 940	Ala	Met	Ala	Asp
Ala 945	Leu	Glu	Arg	Phe	Gly 950	Glu	Asn	Arg	Phe	Val 955	Ser	Pro	Leu	Ser	Trp 960
Asp	Leu	Val	Gly	Arg 965	Asn	Leu	Phe	Ala	Met 970	Ala	Val	Glu	Gly	Val 975	Val
Phe	Phe	Leu	Ile 980	Thr	Val	Leu	Ile	Gln 985	Tyr	Arg	Phe	Phe	Ile 990	Arg	Pro
Arg	Pro	Val 995	Lys	Ala	Lys	Leu	Pro 1000		Leu	Asn	Asp	Glu 1005		Glu	Asp
Val	Arg 1010	Arg	Glu	Ārg	Gln	Arg 1015		Leu	Asp	Gly	Gly 1020		Gln	Asn	Asp

Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile Tyr Arg Arg Lys Arg Lys 1025 1030 1035 1040

Pro Ala Val Asp Arg Ile Cys Ile Gly Ile Pro Pro Gly Glu Cys Phe 1045 1050 1055

Gly Leu Leu Gly Val Asn Gly Ala Gly Lys Ser Thr Thr Phe Lys Met 1060 1065 1070

Leu Thr Gly Asp Thr Pro Val Thr Arg Gly Asp Ala Phe Leu Asn Lys 1075 1080 1085

Asn Ser Ile Leu Ser Asn Ile His Glu Val His Gln Asn Met Gly Tyr 1090 1095 1100

Cys Pro Gln Phe Asp Ala Ile Thr Glu Leu Leu Thr Gly Arg Glu His 1105 1110 1115 1120

Val Glu Phe Phe Ala Leu Leu Arg Gly Val Pro Glu Lys Glu Val Gly 1125 1130 1135

Lys Phe Gly Glu Trp Ala Ile Arg Lys Leu Gly Leu Val Lys Tyr Gly 1140 1145 1150

Glu Lys Tyr Ala Ser Asn Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser 1155 1160 1165

Thr Ala Met Ala Leu Ile Gly Gly Pro Pro Val Val Phe Leu Asp Glu 1170 1175 1180

Pro Thr Thr Gly Met Asp Pro Lys Ala Arg Arg Phe Leu Trp Asn Cys 1185 1190 1195 1200

Ala Leu Ser Ile Val Lys Glu Gly Arg Ser Val Val Leu Thr Ser His 1205 1210 1215

Ser Met Glu Glu Cys Glu Ala Leu Cys Thr Arg Met Ala Ile Met Val 1220 1225 1230

Asn Gly Arg Phe Arg Cys Leu Gly Ser Val Gln His Leu Lys Asn Arg 1235 1240 1245

Phe Gly Asp Gly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Pro 1250 1255 1260

Asp Leu Lys Pro Val Gln Glu Phe Phe Gly Leu Ala Phe Pro Gly Ser 1265 1270 1275 1280

Val Leu Lys Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser 1285 1290 1295

Ser Leu Ser Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys 1300 1305 1310

Lys Arg Leu His Ile Glu Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp 1315 1320 1325

Gln Val Phe Val Aan Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu 1330 1335 1340

Lys Asp Leu Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val 1345 1350 1360

Leu Thr Ser Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 1365 1370 1375

(2) INFORMATION FOR SEQ ID NO:27:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1457 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
- Met Glu Glu Glu Pro Thr His Leu Pro Leu Val Val Cys Val Asp Lys
 1 10 15
- Leu Thr Lys Val Tyr Lys Asn Asp Lys Lys Leu Ala Leu Asn Lys Leu 20 25 30
- Ser Leu Asn Leu Tyr Glu Asn Gln Val Val Ser Phe Leu Gly His Asn 35 . 40 45
- Gly Ala Gly Lys Thr Thr Met Ser Ile Leu Thr Gly Leu Phe Pro 50 60
- Pro Thr Ser Gly Ser Ala Thr Ile Tyr Gly His Asp Ile Arg Thr Glu 65 70 75 80
- Met Asp Glu Ile Arg Lys Asn Leu Gly Met Cys Pro Gln His Asn Val 85 90 95
- Leu Phe Asp Arg Leu Thr Val Glu Glu His Leu Trp Phe Tyr Ser Arg 100 105 110
- Leu Lys Ser Met Ala Gln Glu Glu Ile Arg Lys Glu Thr Asp Lys Met 115 120 125
- Ile Glu Asp Leu Glu Leu Ser Asn Lys Arg His Ser Leu Val Gln Thr 130 135 140
- Leu Ser Gly Gly Met Lys Arg Lys Leu Ser Val Ala Ile Ala Phe Val 145 150 155 160
- Gly Gly Ser Arg Ala Ile Ile Leu Asp Glu Pro Thr Ala Gly Val Asp 165 170 175
- Pro Tyr Ala Arg Arg Ala Ile Trp Asp Leu Ile Leu Lys Tyr Lys Pro 180 185 190
- Gly Arg Thr Ile Leu Leu Ser Thr His His Met Asp Glu Ala Asp Leu 195 200 205
- Leu Gly Asp Arg Ile Ala Ile Ile Ser His Gly Lys Leu Lys Cys Cys 210 225 220
- Gly Ser Pro Leu Phe Leu Lys Gly Ala Tyr Xaa Asp Gly Tyr Arg Leu 225 230 235 240
- Thr Leu Val Lys Gln Pro Ala Glu Pro Gly Thr Ser Gln Glu Pro Gly 245 250 255
- Leu Ala Ser Ser Pro Ser Gly Cys Pro Arg Leu Ser Ser Cys Ser Glu 260 265 270

Pro	Gln	Val 275		Gln	Phe	Ile	Arg 280	Lys	His	Val	Ala	Ser 285		Leu	Leu
Val	Ser 290		Thr	Ser	Thr	Glu 295	Leu	Ser	Туг	Ile	Leu 300		Ser	Glu	Ala
Val 305		Lys	Gly	Ala	Phe 310		Arg	Leu	Phe	Gln 315	Ģln	Leu	Glu	His	Ser 320
Leu	Asp	Ala	Leu	His 325		Ser	Ser	Phe	Gly 330		Met	qsA	Thr	Thr 335	Leu
Glu	Glu	Val	Phe 340	Leu	Lys	Val	Ser	Glu 345	Glu	Asp	Gln	Ser	Leu 350	Glu	Asn
Ser	Glu	Ala 355	qsA	Val	Lys	Glu	Ser 360	Arg	Lys	Asp	Val	Leu 365	Pro	Gly	Ala
Glu	Gly 370	Leu	Thr	Ala	Val	Gly 375	Gly	Gln	Ala	Gly	Asn 380	Leu	Ala	Arg	Cys
Ser 385	Glu	Leu	Ala	Gln	Ser 390	Gln	Ala	Ser	Leu	Gln 395	Ser	Ala	Ser	Ser	Val 400
Gly	Şer	Λla	Arg	Gly 405	Glu	Glu	Gly	Thr	Gly 410	Tyr	Ser	Asp	Gly	Туг 415	Gly
Asp	Tyr	Arg	Pro 420	Leu	Phe	Asp	Asn	Leu 425	Gln	Àsp	Pro	Asp	Asn 430	Vāl	Ser
Leu	Gln	Glu 435	Ala	Glu	Met	Glu	Ala 440	Leu	Ala	Gln	Val	Gly 445	Gln	Gly	Ser
Arg	Lys 450	Leu	Glu	Gly	Trp	Trp 455	Leu	Lys	Met	Arg	Gln 460	Phe	His	Gly	Leu
Leu 465	Val	Lys	Arg	Phe	His 470	Cys	Ala	Arg	Arg	Asn 475	Ser	Lys	Ala	Leu	Cys 480
Ser	Gln	Ile	Leu	Leu 485	Pro	Ala	Phe	Phe	Val 490	Cys	Val	Ala	Met	Thr 495	Vai
Ala	Leu	Ser	Val 500	Pro	Glu	Ile	Gly	Asp 505	Leu	Pro	Pro	Leu	Val 510	Leu	Ser
Pro	Ser	Gln 515	Tyr	His	Asn	Tyr	Thr 520	Gln	Pro	Arg	Gly	Asn 525	Phe	Ile	Pro
Туr	Ala 530	Asn	Glu	Glu	Arg	Gln 535	Glu	туг	Arg	Leu	Arg 540	Leu	Ser	Pro	Asp
Ala 545	Ser	Pro	Gln	Gln	Leu 550	Val	Ser	Thr	Phe	Arg 555	Leu	Pro	Ser	Gly	Val 560
Gly	Ala	Thr	Cys	Val 565	Leu	Lys	Ser	Pro	Ala 570	Asn	Gly	Ser	Leu	Gly 575	Pro
Met	Leu	Asn	Leu 580	Ser	Ser	Gly	Glu	Ser 585	Arg	Leu	Leu	Ala	Ala 590	Arg	Phe
Phe	Asp	Ser 595	Met	Cys	Leu	Glu	Ser 600	Phe	Thr	Gln	Gly	Leu 605	Pro	Leu	Ser
Asn	Phe 610	Val	Pro	Pro	Pro	Pro 615	Ser	Pro	Ala	Pro	Ser 620	Asp	Ser	Pro	Val

											`				
Xaa 625	Pro	Asp	Glu	Asp	Ser 630	Leu	Gln	Ala	Trp	Asn 635	Met	Ser	Leu	Pro	Pro 640
Thr	Ala	Gly	Pro	Glu 645	Thr	Trp	Thr	Ser	Ala 650	Pro	Ser	Leu	Pro	Arg 655	Leu
Val	His	Glu	Pro 660	Val	Arg	Cys	Thr	Cys 665	Ser	Ala	Gln	Gly	Thr 670	Gly	Phe
Ser	Cys	Pro 675	Ser	Ser	Val	Glγ	Gly 680	His	Pro	Pro	Gln	Met 685	Arg	Val	Va1
Thr	Gly 690	Asp	Ile	Leu	Thr	Asp 695	Ile	Thr	Gly	His	Asn 700	Val	Ser	Glu	Tyr
Leu 705	Leu	Phe	Thr	Ser	Asp 710	Arg	Phe	Arg	Leu	His 715	Àrg	Tyr	Gly	Ala	Ile 720
Thr	Phe	Gly	Asn	Val 725	Gln	Lys	Ser	Ile	Pro 730	Ala	Ser	Phe	Gly	Ala 735	Arg
Val	Pro	Pro	Met 740	Val	Arg	Lys	Ile	Ala 745	Val	Arg	Arg	Val	Ala 750	Gln	Val
Leu	ТÀÌ	Asn 755	Asn	Lys	Gly	Tyr	His 760	Ser	Met	Pro	Thr	Tyr 765	Leu	Asn	Ser
Leu	Asn 770	Asn	Ala	Ile	Leu	Arg 775	Ala	Asn	Leu	Pro	Lys 780	Ser	Lys	Gly	Asn
Pro 785	Ala	Ala	Tyr	Xaa	Ile 790	Thr	Val	Thr	Asn	His 795	Pro	Met	Asn	Lys	Thr 800
Ser	Ala	Ser	Leu	Ser 805	Leu	Asp	Tyr	Leu	Leu 810	Gln	Gly	Thr	Asp	Val 815	Val
Ile	Ala	Ile	Phe 820	Ile	Ile	Val	Ala.	Met 825	Ser	Phe	Val	Pro	Ala 830	Ser	Phe
Vạl	Val	Phe 835	Leu	Val	Ala	Glu	Lys 840	Ser	Thr	Lys	Ala	Lys 8 4 5	His	Leu	Gln
Phe	Val 850	Ser	Gly	Cys	Asn	Pro- 855	Va·l	Ile	Tyr	Trp	Leu 860	Ala	Asn	Туr	Val·
Trp 865	Asp	Met	Leu	Asn	Tyr 870	Leu	Val	Pro	Ala	Thr 875	Суз	Cys	Val	Ile	11e 880
Leu	Phe	Val	Phe	Asp 885	Leu	Pro	Ala	Туr	Thr 890	Ser	Pro	Thr	Asn	Phe 895	Pro
Ala	Val	Leu	Ser 900	Leu	Phe	Leu	Leu	Tyr 905	Gly	Trp	Ser	Ile	Thr 910	Pro	Ile
Met	Tyr	Pro 915	Ala	Ser	Phe	Trp	Phe 920	Glu	Val	Pro	Ser	Ser 925	Ala	Tyr	Val
Phe	Leu 930	Ile	Val	Ile	Asn	Leu 935	Phe	Ile	Gly	Ile	Thr 940	Alà	Thr	Val	Ala
Thr 945	Phe	Leu	Leu	Gln	Leu 950	Phe	Glu	His	Asp	Lys 955	Asp	Leu	Lys	Val	Val 960
Asn	Ser	Туr	Leu	Lys 965	Ser	Cys	Phe	Leu	Ile 970	Phe	Pro	Asn	Tyr	Asn 975	Leu

Gly His Gly Leu Met Glu Met Ala Tyr Asn Glu Tyr Ile Asn Glu Tyr 980 985 990

Tyr Ala Lys Ile Gly Gln Phe Asp Lys Met Lys Ser Pro Phe Glu Trp 995 1000 1005

Asp Ile Val Thr Arg Gly Leu Val Ala Met Thr Val Glu Gly Phe Val 1010 1015 1020

Gly Phe Phe Leu Thr Ile Met Cys Gln Tyr Asn Phe Leu Arg Gln Pro 1025 1030 1035 1040

Gln Arg Leu Pro Val Ser Thr Lys Pro Val Glu Asp Asp Val Asp Val 1045 1050 1055

Ala Ser Glu Arg Gln Arg Val Leu Arg Gly Asp Ala Asp Asn Asp Met 1060 1065 1070

Val Lys Ile Glu Asn Leu Thr Lys Val Tyr Lys Ser Arg Lys Ile Gly 1075 1080 1085

Arg Ile Leu Ala Val Asp Arg Leu Cys Leu Gly Val Cys Val Pro Gly 1090 1095 1100

Glu Cys Phe Gly Leu Leu Gly Val Asn Gly Ala Gly Lys Thr Ser Thr 1105 1110 1115

Phe Lys Met Leu Thr Gly Asp Glu Ser Thr Thr Gly Gly Glu Ala Phe 1125 1130 1135

Val Asn Gly His Ser Val Leu Lys Asp Leu Leu Gln Val Gln Gln Ser 1140 1145 1150

Leu Gly Tyr Cys Pro Gln Phe Asp Val Pro Val Asp Glu Leu Thr Ala 1155 1160 1165

Arg Glu His Leu Gln Leu Tyr Thr Arg Leu Arg Cys Ile Pro Trp Lys 1170 1180

Asp Glu Ala Gln Val Val Lys Trp Ala Leu Glu Lys Leu Glu Leu Thr 1185 1190 1195 1200

Lys Tyr Ala Asp Lys Pro Ala Gly Thr Tyr Ser Gly Gly Asn Lys Arg 1205 1210 1215

Lys Leu Ser Thr Ala Ile Ala Leu Ile Gly Tyr Pro Ala Phe Ile Phe 1220 1235 1230

Leu Asp Glu Pro Thr Thr Gly Met Asp Pro Lys Ala Arg Arg Phe Leu 1235 1240 1245

Trp Asn Leu Ile Leu Asp Leu Ile Lys Thr Gly Arg Ser Val Val Leu 1250 1255 1260

Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu Cys Thr Arg Leu Ala 1265 1270 1275

Ile Met Val Asn Gly Arg Leu His Cys Leu Gly Ser Ile Gln His Leu 1285 1290 1295

Lys Asn Arg Phe Gly Asp Gly Tyr Met Ile Thr Val Arg Thr Lys Ser 1300 1310

Ser Gln Asn Val Lys Asp Val Val Arg Phe Phe Asn Arg Asn Phe Pro 1315 1320 1325

Glu	Ala	His	Ala	Gln	Gly	Lys	Thr	Pro	Tyr	Lys	Val	Gln	Tyr	Gln	Len
	1330) .				1335			-	•	1340		-		200

Lys Ser Glu His Ile Ser Leu Ala Gln Val Phe Ser Lys Met Glu Gln 1345 1350 1355 1360

Val Val Gly Val Leu Gly Ile Giu Asp Tyr Ser Val Ser Gln Thr Thr 1365 1370 1375

Leu Asp Asn Val Phe Val Asn Phe Ala Lys Lys Gln Ser Asp Asn Val 1380 1385 1390

Giu Gln Gln Glu Ala Glu Pro Ser Ser Leu Pro Ser Pro Leu Gly Leu 1395 1400 1405

Leu Ser Leu Leu Arg Pro Arg Pro Ala Pro Thr Glu Leu Arg Ala Leu 1410 1415 1420 .

Val Ala Asp Glu Pro Glu Asp Leu Asp Thr Glu Asp Glu Gly Leu Ile 1425 1430 1435 1440

Ser Phe Glu Glu Arg Ala Gln Leu Ser Phe Asn Thr Asp Thr Leu 1445 1450 1455

Cys

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1548 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

55

- (A) NAME/KEY: CDS
- (B) LOCATION: 49..1271
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GGC	GGCT.	AGC (GGCG.	AGGC	CC C	rtcc'	rgta(CT"	rcag(GGAT	CGG	CCAC			C CAC His	57
CGC Arg	AAG Lys 5	TTT Phe	TCC Ser	GCC Ala	CCT Pro	CGG Arg 10	CAC His	GGA Gly	CAC His	CTG Leu	GGC Gly 15	TTC Phe	CTG Leu	CCC Pro	CAT His	105
AAG Lys 20	AGG Arg	AGC Ser	CAC His	CGG Arg	CAC His 25	CGG Arg	GGC Gly	AAG Lys	GTG Val	AAG Lys 30	ACG Thr	TGG Trp	CCG Pro	CGG Arg	GAT Asp 35	153
GAC Asp	CCC Pro	AGC Ser	CAG Gln	CCC Pro 40	GTG Val	CAC His	CTC Leu	ACG Thr	GCC Ala 45	TTC Phe	CTG Leu	GGC Gly	TAC Tyr	AAG Lys 50	GCG Ala	201
GGC Gly	ATG Met	ACC. Thr	CAC	ACC Thr	CTG Leu	CGG Arg	GAG Glu	GTG Val	CAC His	CGG Arg	CCG Pro	GGG Gly	CTC Leu	AAA Lys	ATT Ile	249

60

••	9 7	•(0,7)														37 11 00 103
			Glu				GCG Ala 75									297
							GGC Gly									345
							GCA Ala				Ser					393
							CAC His									441
							GAC Asp									489
							AAG Lys 155									537
							CTG Leu									585
							GGT Gly									633
							AAG Lys									681
							GTC Val									729
GTC Val	AAA Lys	GGG Gly 230	GTC Val	ACA Thr	AGC Ser	CGC Arg	TGG Trp 235	CAT His	ACC Thr	AAG Lys	AAG Lys	CTG Leu 240	CCG Pro	CGC Arg	AAG Lys	777
ACC Thr	CAT His 245	AAG Lys	GGC Gly	CTG Leu	CGC Arg	AAG Lys 250	GTG Val	GCC Ala	TGC Cys	ATT Ile	GGC Gly 255	GCC Ala	TGG Trp	CAC His	CCC Pro	825
GCC Ala 260	CGC Arg	GTG [.] Val	GGC Gly	TGC Cys	TCC Ser 265	ATT Ile	GCT Ala	CGG Arg	GCC Ala	GGG Gly 270	CAG Gln	AAG Lys	GGC Gly	TAT Tyr	CAC His 275	873
CAC His	CGC Arg	ACG Tḥr	GAG Glu	CTC Leu 280	AAC Asn	AAG Lys	AAG Lys	ATC Ile	TTC Phe 285	CGC Arg	ATC Ile	GGC Gly	AGG Arg	GGC Gly 290	CCG Pro	921
							GTG Val									969
GAC Asp	GTG Val	ACT Thr 310	GCC Ala	AAG Lys	TCC Ser	ATC Ile	ACA Thr 315	CCG Pro	CTG Leu	GGT Gly	GGC Gly	TTC Phe 320	CCC Pro	CAC His	TAC Tyr	1017

PCT/US97/00785

WO 97/48797

GGG	GAA Glu 325	GTG Val	AAC Asn	AAC Asn	GAC Asp	TTC Phe 330	GTC Val	ATG Met	CTG Leu	AAG Lys	GGT Gly 335	TGT Cys	ATT Ile	GCT Ala	GGT Gly		1065
				GTC Val													1113
AGT Ser	CGC Arg	CAA Gln	GCC Ala	GTG Val 360	GAG Glu	AAT Asn	ATT Ile	GAG Glu	CTC Leu 365	AAG Lys	TTC Phe	ATT Ile	GAC Asp	ACC Thr 370	ACC Thr		1161
TCC Ser	AAG Lys	TTC Phe	GGC Gly 375	CAT	GGC Gly	CGC Arg	TTC Phe	CAG Gln 380	ACA Thr	GCC Ala	CAA Gln	GAG Glu	AAG Lys 385	AGG Arg	GCC Ala		1209
TTC Phe	ATG Met	GGC Gly 390	CCC Pro	CAA Gln	AAG Lys	AAG Lys	CAT His 395	CTG Leu	GAG Glu	AAG Lys	GAA Glu	ACG Thr 400	CCG Pro	GAG Glu	ACC Thr	٠	1257
		GAC Asp		та с	GCTG	TGTC	G GG	TGGA	ATGAA	CCC	TGAA	AGCG	CAC	CGCAC	CTG		1311
TCTC	cccc	AA T	GTCI	'AACA	LA AG	GCCC	GAGG	CGA	CTCT	TCC	TGCG	SAGGT	CT (CAGAG	CCCT	3	1371
TGTA	ACCG	icc c	AAGG	GGTT	C VC	CTTG	CCTG	CTC	CCTA	GAC	AAAG	CCGA	TT C	ATTA	AGAC	Α.	1431
GGGG	TTAA	GC A	ATAC	AGAA	A GA	.GTAA	TTCA	CAC	AGAG	CTG	GCTG	TGCG	GG A	GACC	GGAG'	r	1491
TTTA	TGTT	TT A	T AT T.	TACT	'C AA	ATCG	АТСТ	CTT	TGAG	CAA	AAAA	AAAA	A.A.	LAAA A	AA		1548

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 407 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Met Ser His Arg Lys Phe Ser Ala Pro Arg His Gly His Leu Gly Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Pro His Lys Arg Ser His Arg His Arg Gly Lys Val Lys Thr Trp
20 25 30

Pro Arg Asp Asp Pro Ser Gln Pro Val His Leu Thr Ala Phe Leu Gly 35 40 45

Tyr Lys Ala Gly Met Thr His Thr Leu Arg Glu Val His Arg Pro Gly 50 60

Leu Lys Ile Ser Lys Arg Glu Glu Val Glu Ala Val Thr Ile Val Glu 65 70 75 80

Thr Pro Pro Leu Val Val Val Gly Val Val Gly Tyr Val Ala Thr Pro 85 90 95

Arg Gly Leu Arg Ser Phe Lys Thr Ile Phe Ala Glu His Leu Ser Asp 100 105 110

Giu Cys Arg Arg Arg Phe Tyr Lys Asp Trp His Lys Ser Lys Lys Lys Ala Phe Thr Lys Ala Cys Lys Arg Trp Arg Asp Thr Asp Gly Lys Lys Gin Leu Gin Lys Asp Phe Ala Ala Met Lys Lys Tyr Cys Lys Val Ile 155 Arg Val Ile Val His Thr Gln Met Lys Leu Leu Pro Phe Arg Gln Lys 165 170 Lys Ala His Ile Met Glu Ile Gln Leu Asn Gly Gly Thr Val Ala Glu Lys Val Ala Trp Ala Gln Ala Arg Leu Glu Lys Gln Val Pro Val His Ser Val Phe Ser Gln Ser Glu Val Ile Asp Val Ile Ala Val Thr Lys Gly Arg Gly Val Lys Gly Val Thr Ser Arg Trp His Thr Lys Lys Leu 235 Pro Arg Lys Thr His Lys Gly Leu Arg Lys Val Ala Cys Ile Gly Ala Trp His Pro Ala Arg Val Gly Cys Ser Ile Ala Arg Ala Gly Gln Lys Cly Tyr His His Arg Thr Clu Leu Asn Lys Lys Ile Phe Arg Ile Gly Arg Gly Pro His Met Glu Asp Gly Lys Leu Val Lys Asn Asn Ala Ser 295 Thr Ser Tyr Asp Val Thr Ala Lys Ser Ile Thr Pro Leu Gly Gly Phe Pro His Tyr Gly Glu Val Asn Asn Asp Phe Val Met Leu Lys Gly Cys 330 Ile Ala Gly Thr Lys Lys Arg Val Ile Thr Leu Arg Lys Ser Leu Leu 345 Val His His Ser Arg Gln Ala Val Glu Asn Ile Glu Leu Lys Phe Ile Asp Thr Thr Ser Lys Phe Gly His Gly Arg Phe Gln Thr Ala Gln Glu 375 Lys Arg Ala Phe Met Gly Pro Gln Lys Lys His Leu Glu Lys Glu Thr 385 390 395 Pro Glu Thr Ser Gly Asp Leu 405

- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 403 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: Met Ser His Arg Lys Phe Ser Ala Pro Arg His Gly Ser Leu Gly Phe Leu Pro Arg Lys Arg Ser Ser Arg His Arg Gly Lys Val Lys Ser Phe Pro Lys Asp Asp Pro Ser Lys Pro Val His Leu Thr Ala Phe Leu Gly Tyr Lys Ala Gly Met Thr His Ile Val Arg Glu Val Asp Arg Pro Gly Ser Lys Val Asn Lys Lys Glu Val Val Glu Ala Val Thr Ile Val Glu Thr Pro Pro Met Val Val Val Gly Ile Val Gly Tyr Val Glu Thr Pro Arg Gly Leu Arg Thr Phe Lys Thr Val Phe Ala Glu His Ile Ser Asp Glu Cys Lys Arg Arg Phe Tyr Lys Asn Trp His Lys Ser Lys Lys Ala Phe Thr Lys Tyr Cys Lys Lys Trp Gln Asp Glu Asp Gly Lys Lys Gln Leu Glu Lys Asp Phe Ser Ser Met Lys Lys Tyr Cys Gln Val Ile Arg Val Ile Ala His Thr Gln Met Arg Leu Leu Pro Leu Arg Gln Lys 165 170 Lys Ala His Leu Met Glu Ile Gln Val Asn Gly Gly Thr Val Ala Glu Lys Leu Asp Trp Ala Arg Glu Arg Leu Glu Gln Gln Val Pro Val Asn Gln Val Phe Gly Gln Asp Glu Met Ile Asp Val Ile Gly Val Thr Lys 215 Gly Lys Gly Tyr Lys Gly Val Thr Ser Arg Trp His Thr Lys Lys Leu Pro Arg Lys Thr His Arg Gly Leu Arg Lys Val Ala Cys Ile Gly Ala 245 250 255 Trp His Pro Ala Arg Val Ala Phe Ser Val Ala Arg Ala Gly Gln Lys 265 Gly Tyr His His Arg Thr Glu Ile Asn Lys Lys Ile Tyr Lys Ile Gly Gln Gly Tyr Leu Ile Lys Asp Gly Lys Leu Ile Lys Asn Asn Ala Ser Thr Asp Tyr Asp Leu Ser Asp Lys Ser Ile Asn Pro Leu Gly Gly Phe

Val His Tyr Gly Glu Val Thr Asn Asp Phe Val Met Leu Lys Gly Cys 325

Val Val Gly Thr Lys Lys Arg Val Leu Thr Leu Arg Lys Ser Leu Leu 345

Val Gln Thr Lys Arg Arg Ala Leu Glu Lys Ile Asp Leu Lys Phe Ile 355

Asp Thr Thr Ser Lys Phe Gly His Gly Arg Phe Gln Thr Met Glu Glu 370

Lys Lys Ala Phe Met Gly Pro Leu Lys Lys Asp Arg Ile Ala Lys Glu 385

Glu Gly Ala

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 403 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
- (:i) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:
- Met Ser His Arg Lys Phe Ser Ala Pro Arg His Gly Ser Leu Gly Phe 1 5 10 15
- Leu Pro Arg Lys Arg Ser Ser Arg His Arg Gly Lys Val Lys Ser Phe 20 25 30
- Pro Lys Asp Asp Ser Ser Lys Pro Val His Leu Thr Ala Phe Leu Gly
 35 40 45
- Tyr Lys Ala Gly Met Thr His Ile Val Arg Glu Val Asp Arg Pro Gly 50 55 60
- Ser Lys Vai Asn Lys Lys Glu Val Val Glu Ala Val Thr Ile Val Glu 65 70 75 80
- Thr Pro Pro Met Val ile Val Gly Ile Val Gly Tyr Val Glu Thr Pro 85 90 95
- Arg Gly Leu Arg Thr Phe Lys Thr Ile Phe Ala Glu His Ile Ser Asp 100 105 110
- Glu Cys Lys Arg Arg Phe Tyr Lys Asn Trp His Lys Ser Lys Lys 115 120 125
- Ala Phe Thr Lys Tyr Cys Lys Lys Trp Gln Asp Ala Asp Gly Lys Lys 130 135
- Gln Leu Glu Arg Asp Phe Ser Ser Met Lys Lys Tyr Cys Gln Val Ile 145 150 155 160
- Arg Val Ile Ala His Thr Gln Met Arg Leu Pro Leu Arg Gln Lys 165 170 175

WO 97/48797

				_											
Lys	Ala	His	Leu 180	Met	Glu	Val	Gln	Val 185	Asn	Gly	Gly	Thr	Val 190		Glu
Lys	Leu	Asp 195	Trp	Ala	Arg	Glu	Arg 200	Leu	Glu	Gln	Gln	Val 205	Pro	Vāl	Asn
Gin	Val 210	Phe	Gly	Gln	Asp	Glu 215	Met	fle	Asp	Väl	11e 220	Gly	Val	Thr	Lys
Gly 225	Lys	Gly	Tyr	Lys	Gly 230	Val	Thr	Ser	Àrg	Trp 235	His	Thr	Lys	Lys	Leu 240
Pro	Arg	Lys	Thr	His 245	Arg	Gly	Leu	Arg	Lys 250	Val	Ala _.	Cys	Ile	Gly 255	Ala
Trp	His	Pro	Ala 260	Arg	Val	Ala	Phe	Ser 265	Val	Ala	Arg	Ala	Gly 270	Gln	Lys
Gly	Tyr	His 275	His	Arg	Thr	Glu	Ile 280	Asn	Lys	Lys	Ile	Tyr 285	Lys	Ile	Gly
Gln	Gly 290	Tyr	Leu	Ile	Lys	Asp 295	Gly	Lys	Leu	Ile	Lys 300	Asn	Asn	Ala	Ser
Thr 305	Asp	Tyr	qzA	Leu	Ser 310	Asp	Lys	Ser	Ile	Asn 315	Pro	Leu	Gly	Gly	Phe 320
Val	His	Tyr	Gly	Glu 325	Val	Thr	Asn	Asp	Phe 330	Val	Met	Leu	Lys	Gly 335	Суѕ
Val	Val	Gly	Thr 340	Lys	Lys	Arg	Val	Leu 345	Thr	Leu	Arg	Lys	Ser 350	Leu	Leu
Val	Gln	Thr 355	Lys	Arg	Arg	Ala	Leu 360	Glu	Lys	Ile	Asp	Leu 365	Lys	Phe	Ile
Asp	Thr 370	Thr	Ser	Lys	Phe	Gly 375	His	Gly	Arg	Phe	Gln 380	Thr	Val	Glu	Glu
Lys. 385	Lys	Аlа	Phe	Met	Gly 390	Pro	Leu	: Lys	Lys	Asp 395	Arg	Ile	Ala	Lys	Glu 400
Glu	Gly	Ala													

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 403 amino acids(B) TYPE: amino acid

 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
- Met Ser His Arg Lys Phe Ser Ala Pro Arg His Gly Ser Leu Gly Phe $1 \ \ \, 5$
- Leu Pro Arg Lys Arg Ser Ser Arg His Arg Gly Lys Val Lys Ser Phe 20

			•	,											
Pro	Lys	Asp 35	Asp	Ala	Ser	Lys	Рго 40	Val	His	Leu	Thr	Ala 45	Phe	Leu	Gly
Тyr	Lys 50	Ala	Gly	Met	Thr	His 55	Ile	Va l	Arg	Glu	Val 60	Asp	Arg	Pro	Gly
Ser 65	Lys	Val	Asn	Lys	Lys 70	Glu	Val	Va l	Glu	Ala 75	Val	Thr	Ile	Val	Glu 80
Thr	Pro	Pro	Met	Val 85	Vāl	Val	Gly	Ile	Val 90	Gly	Tyr	Val	Glu	Thr 95	Pro
Arg	Gly	Leu	Arg 100	Thr	Phe	Lys	Thr	Val 105	Phe	Ala	Glu	His	Ile 110	Ser	Asp
Glu	Суѕ	Lys 115	Arg	Arg	Phe	Туг	Lys 120	Asn	Trp	His	Lys	Ser 125	Lys	Lys	Lys
Ala	Phe 130	Thr	Lys	Tyr	Суѕ	Lys 135	Lys	Trp	Gln		Asp 140	Thr	Gly	Lys	Lys
G1n 145	Leu	Glu	Lys	Asp	Phe 150	Asn	Ser	Met	Lys	Lys 155	Туr	Cys	Gln	Val	Ile 160
Arg	[le	Ile	Ala	His 165	Thr	Gln	Met	Arg	Leu 170	Leu	Pro	Leu	Arg	Gln 175	Lys
Lys	Ala	His	Leu 180	Met	Glu	Ile	Gln	Val 185	Asn	Gly	Glγ	Thr	Val 190	Ala	Glu
Lys	Leu	Asp 195	Trp	Ala	Arg	Glu	Arg 200	Leu	Glu	·Gln	Gln	Val 205	Pro	Val	Ser
Gln	Val 210	Phe	Gly	Gln	Asp	Glu 215	Met	Ile	Asp	Val	Tle 220	Gly	Val	Thr	Lys
Gly 225	Lys	Gly	Tyr	Lys	Gly 230		Thr	Ser	Arg	Trp 235	His	Thr	Lys	Lys	Leu 240
Pro	Arg	Lys	Thr	His 245	Arg	Gly	Leu	Arg	Lys 250	Val	Ala	Cys	Tle	Gly 255	Ala
Trp	His	Pro	Ala 260	Arg	Val	Ala	Phe	Thr 265	Val	Ala	Arg	Ala	Gly 270	Gln	Lys
Gly	Tyr	His 275	His	Arg	Thr	Glu	11e 280		Lys	Lys	Ile	Tyr 285	Lys	Ile	Gly
Gln	Gly 290	Tyr	Leu	Ile	Lys	Asp 295	Gly	Lys	Leu	Ile	Lys	Asn	Asn	Ala	Ser
Thr 305	qsA	Tyr	Asp		Ser 310	Asp _.	Lys	Ser	Ile	Asn 315	Pro	Leu	Gly	Gly	Phe 320
Val	His	Tyr	Gly	Glu 325	Val	Thr	Asn	Asp	Phe 330	Ile	Met	Leu	Lys	Gly 335	Cys
Val	Val	Gly	Thr 340	Lys	Lys	Arg	Val	Leu 345		Leu	Arg	Lys	Ser 350	Leu	Leu
'Val	Gin	Thr 355	Lys	Arg	Arg	Ala	Leu 360	Glu	Lys	fle	Asp	Leu 365	Lys	Phe	Ile
Asp	Thr 370	Thr	Ser	Lys	Phe	Gly 375	His	Gly	Arg	Phe	Gln 380	Thr	Met	Glu	Glu

Lys Lys Ala Phe Met Gly Pro Leu Lys Lys Asp Arg Ile Ala Lys Glu 385 390 395 400

Glu Gly Ala

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 468 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..357

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CGG Arg 1	GAC Asp	ACC Thr	AAG Lys	TTT Phe 5	AGG Arg	GAG Glu	GAC Asp	TGC Cys	CCG Pro 10	CCG Pro	GAT Asp	CGC Arg	GAG Glu	GAA Glu 15	CTG Leu		48
				TGG Trp											CCC · Pro		96
GAC Asp	CTG Leu	CCC Pro 35	ACC Thr	CCA Pro	GAA Glu	CAG Gln	CAG Gln 40	CAA Gln	GAC Asp	ATG Met	GCC Ala	CAG Gln 45	TTC Phe	ATA Ile	CAT His		144
TTA Leu	TTT Phe 50	TCT Ser	AAG Lys	TTT Phe	TAC Tyr	CCC Pro 55	TGT Cys	GAG Glu	GAG Glu	TGT Cys	GCT Ala 60	GAA Glu	GAC Asp	CTA Leu	AGA Arg		192
				AGG Arg												-	240
				TGC Cys 85													288
AAG . Lys				GAC Asp													336
				TCC Ser			TAGA	reće.	rgg 1	CAGO	CCAGA	AG CT	CATO	GGAC			387
AGCT	AGCC	CAG C	CATO	GTTC	G A	raggo	GCAC	GGG	CACTO	CATT	AAAC	STGC	ATC A	ACAGO	CAGA	3	447
AAAA	AAA.	AAA A	AAAA	\AAA.	AA A												468

(2) INFORMATION FOR SEQ ID NO:34: ...

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Arg Asp Thr Lys Phe Arg Glu Asp Cys Pro Pro Asp Arg Glu Glu Leu

1 5 10 15

Gly Arg His Ser Trp Ala Val Leu His Thr Leu Ala Ala Tyr Tyr Pro 20 25 30

Asp Leu Pro Thr Pro Glu Gln Gln Asp Met Ala Gln Phe Ile His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Phe Ser Lys Phe Tyr Pro Cys Glu Glu Cys Ala Glu Asp Leu Arg 50 55 60

Lys Arg Leu Cys Arg Asn His Pro Asp Thr Arg Thr Arg Ala Cys Phe 65 70 75 80

Thr Gln Trp Leu Cys His Leu His Asn Glu Val Asn Arg Lys Leu Gly 85 90 95

Lys Pro Asp Phe Asp Cys Ser Lys Val Asp Glu Arg Trp Arg Asp Gly 100 105

Trp Lys Asp Gly Ser Cys Asp 115

- (2) INFORMATION FOR SEQ ID NO:35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:
 - Met Arg Thr Gln Gln Lys Arg Asp Ile Lys Phe Arg Glu Asp Cys Pro

 1 10 15
 - Gln Asp Arg Glu Glu Leu Gly Arg Asn Thr Trp Ala Phe Leu His Thr 20 25 30
 - Leu Ala Ala Tyr Tyr Pro Asp Met Pro Thr Pro Glu Gln Gln Asp 35 40 45
 - Met Ala Gln Phe Ile His Ile Phe Ser Lys Phe Tyr Pro Cys Glu Glu 50 55 60
 - Cys Ala Glu Asp Ile Arg Lys Arg Ile Asp Arg Ser Gln Pro Asp Thr 65 70 75 80
 - Ser Thr Arg Val Ser Phe Ser Gln Trp Leu Cys Arg Leu His Asn Glu 85 90 95

Val Asn Arg Lys Leu Gly Lys Pro Asp Phe Asp Cys Ser Arg Val Asp 100 105

Glu Arg Trp Arg Asp Gly Trp Lys Asp Gly Ser Cys Asp 115 120

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

TGACGCCGTG CCCATCCAGT

20

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CAGCGTGGTG TTATGTTCCT

20

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TTGGGCCTGT GCTGAACTAC

20

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "oligonucleotide primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CGGCAAGCTG GTGATTAACA

20

- (2) INFORMATION FOR SEQ ID NO:40:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:40:

CGGCAGAGGA TGCTGTGT

18

- (2) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GCGGAGCCAC CTTCATCA

18

- (2) INFORMATION FOR SEQ ID NO:42:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GACGCTGGTG AAGGAGC

17

(2)	INFORMATION FOR SEQ ID NO:43:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
TCG	CTGACCG CCAGGAT	17
(2)	INFORMATION FOR SEQ ID NO:44:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
,	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
CTGT	TCGGGAA GGTCTCACTG	20
(2)	INFORMATION FOR SEQ ID NO:45:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
GTTC	CACCGCC TTGGAGGATT	20
	INFORMATION FOR SEQ ID NO:46:	20
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide primer"

PCT/US97/00785

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

WO 97/48797

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

TGTGGCTATG AGCTGTTCTC

20

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GCAGTCCCGA TTCTGAATAT

20

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - . (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CATTGCCCGT GCTGTCGTG

19

- (2) INFORMATION FOR SEQ ID NO:53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (x1) SEQUENCE DESCRIPTION: SEO ID NO:53:

CATCGCCGCC TCCTTCATG

19

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54: GCGGAGCCAC CTTCATCA 18 (2) INFORMATION FOR SEQ ID NO:55: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55: GACGCTGGTG AAGGAGC 17 (2) INFORMATION FOR SEQ ID NO:56: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56: ATCCTGGCGG TCAGCGA 17 (2) INFORMATION FOR SEQ ID NO:57: (i) SEQUENCE CHARACTERISTICS:

PCT/US97/00785

(A) DESCRIPTION: /desc = "oligonucleotide primer"

(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

WO 97/48797

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

CAGTCGCAGG CCCTGCA

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

130

17

- (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide primer"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

GAGGACGCGC CAACATC

17

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

CGGCAGTAGT GGCAGTG

17

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

CCTGCCTCGC TTGCTCCTGC

20

- (2) INFORMATION FOR SEQ ID NO:64:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

CGGGCAGCCG CAGGCCGCAT

20

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65: CCTGCAACGG CCATGCCCGC 20 (2) INFORMATION FOR SEQ ID NO:66: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (11) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66: GCATCCCGG CGGGCACCCA 20 (2) INFORMATION FOR SEQ ID NO:67: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: GTTCGTACGA GAATCGCT 18 (2) INFORMATION FOR SEQ ID NO: 68: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 base pairs (B) TYPE: nucleic acid

(A) DESCRIPTION: /desc = "Kozak Initiation Sequence"

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

His Arg Asp Leu Lys Pro Glu Asn

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(2) INFORMATION FOR SEQ ID NO:72:

420

480

540

(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
GTCCTTCTTG CAGAACT	. 17
(2) INFORMATION FOR SEQ ID NO:73:	. 17
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide primer"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
AGACAGCCCA AGAGAAGAGG	20
(2) INFORMATION FOR SEQ ID NO:74:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6525 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 5735684	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
CACATAAAAT ACACCGCCCC GGCGCCCAGG CTCGGTGCTG GAGAGTCATG CCTGTGAGCC	60
CTGGGCACCT CCTGATGTCC TGCGAGGTCA CGGTGTTCCC AAACCTCAGG GTTGCCCTGC	120
CCCACTCCAG AGGCTCTCAG GCCCCACCCC GGAGCCCTCT GTGCGGAGCC GCCTCCTCCT	180
GGCCAGTTCC CCAGTAGTCC TGAAGGGAGA CCTGCTGTGT GGAGCCTCTT CTGGGACCCA	240
GCCATGAGTG TGGAGCTGAG CAACTGAACC TGAAACTCTT CCACTGTGAG TCAAGGAGGC	300
TTTTCCGCAC ATGAAGGACG CTGAGCGGGA AGGACTCCTC TCTGCCTGCA GTTGTAGCGA	360

GTGGACCAGC ACCAGGGGCT CTCTAGACTG CCCCTCCTCC ATCGCCTTCC CTGCCTCTCC

AGGACAGAGC AGCCACGTCT GCACACCTCG CCCTCTTTAC ACTCAGTTTT CAGAGCACGT

TTCTCCTATT TCCTGCGGGT TGCAGCGCCT ACTTGAACTT ACTCAGACCA CCTACTTCTC

WO 97/48797	PCT/US97/00785
-------------	----------------

	TAG	CAGC	ACT	GGGC	GTCC	CT T	TCAG	CAAG	A CG						CAG Gln		593
				Leu											GTC Val		641
															ATC Ile		689
															GCC Ala		737
	ATC Ile	TAC Tyr	CCG Pro	GGC Gly	CAG Gln 60	TCC Ser	ATC Ile	CAG Gln	GAG Glu	CTG Leu 65	CCT Pro	CTG Leu	TTC Phe	TTC Phe	ACC Thr 70	TTC Phe	785
															CAC His		833
															GTG Val		881
•	AAC Asn	ATG Met 105	CGA Arg	GTG Val	CGC Arg	GGC Gly	TTT Phe 110	CCC Pro	TCC Ser	GAG Glu	AAG Lys	GAC Asp 115	TTT Phe	GAG Glu	GAC Asp	TAC Tyr	929
															GTC Val		977
	GAG Glu	CAC His	CCC Pro	TTC Phe	AAC Asn 140	CAC His	AGC Ser	AAG Lys	GAG Glu	CCC Pro 145	CTG Leu	CCG Pro	CTG Leu	GCG Ala	GTG Val 150	AAA Lys	1025
			Leu												ACC Thr		1073
															ACT Thr		1121
	CTT Leu	TTC Phe 185	CCG Pro	CTT Leu	TTC Phe	CCA Pro	AAC Asn 190	CCA Pro	GGA Gly	CCA Pro	AGG Arg	GAA Glu 195	CTA Leu	ACA Thr	TCC Ser	CCT Pro	1169
	GAT Asp 200	GGC	GGA Gly	GAA Glu	CCT Pro	GGG Gly 205	TAC Tyr	ATC Ile	CGG Arg	GAA Glu	GGC Gly 210	TTC Phe	CTG Leu	GCC Ala	GTG Val	CAG Gln 215	1217
	CAT His	GCT Ala	GTG Val	GAC Asp	CGG Arg 220	GCC Ala	ATC Ile	ATG Met	GAĞ Glu	TAC Tyr 225	CAT His	GCC Ala	GAT Asp	GCC Ala	GCC Ala 230	ACA Thr	1265
	CGC Arg	CAG Gln	CTG Leu	TTC Phe 235	CAG Gln	AGA Arg	CTG Leu	ACG Thr	GTG Val 240	ACC Thr	ATC Ile	AAG Lys	AGG Arg	TTC Phe 245	CCG Pro	TAC Tyr	1313

WO 97/48797	PCT/US97/00785

CC) Pro	G CCC Pro	TTC Phe 250	: Ile	GCA Ala	A GAC A Asp	CCC Pro	TTC Phe 255	: Leu	GTC Val	GCC Alá	ATC Ile	CAG Gln 260	туг	CAC Gln	CTG Leu	1361
CCC Pro	CTC Leu 265	: Leu	CTG Leu	CTC Leu	CTC Leu	AGC Ser 270	Phe	ACC Thr	ТАС Туг	ACC Thr	GCG Ala 275	Leu	ACC Thr	: ATT	GCC Ala	1409
CG7 Arg 280	, Ala	GTC Val	GTG Val	CAG Gln	GAG Glu 285	AAG Lys	GAA Glu	AGG Arg	AGG Arg	CTG Leu 290	Lys	GAG Glu	TAC Tyr	ATG Met	CGC Arg 295	1457
ATG Met	ATG Met	GGG Gly	CTC Leu	AGC Ser 300	AGC Ser	TGG Trp	CTG Leu	CAC His	TGG Trp 305	Ser	GCC Ala	TGG Trp	TTC Phe	CTC Leu 310	TTG Leu	1505
TTC Phe	TTC Phe	CTC Leu	TTC Phe 315	CTC Leu	CTC Leu	ATC Ile	.GCC Ala	GCC Ala 320	TCC Ser	TTC Phe	ATG Met	ACC Thr	CTG Leu 325	CTC Leu	TTC Phe	1553
TGT Cys	GTC Val	AAG Lys 330	GTG Val	AAG Lys	CCA Pro	AAT Asn	GTA Val 335	GCC Ala	GTG Val	CTG Leu	TCC Ser	CGC Arg 340	AGC Ser	GAC Asp	CCC Pro	.1601
TCC Ser	CTG Leu 345	GTG Val	CTC Leu	GCC Ala	TTC Phe	CTG Leu 350	CTG Leu	TGC Cys	TTC Phe	GCC Ala	ATC Tle 355	Ser	ACC Thr	ATC Ile	TCC Ser	1649
TTC Phe 360	Ser	TTC Phe	ATG Met	GTC Val	AGC Ser 365	ACC Thr	TTC Phe	TTC Phe	AGC Ser	AAA Lys 370	GCC- Ala	AAC Asn	ATG Met	GCA Ala	GCÁ Ala 375	1697
GCC Ala	TTC Phe	GGA Gly	GGC Gly	TTC Phe 380	CTC Leu	TAC Tyr	TTC Phe	TTC Phe	ACC Thr 385	TAC Tyr	ATC Ile	CCC Pro	TAC Tyr	TTC Phe 390	TTC Phe	1745
GTG Val	GCC Ala	CCT Pro	CGG Arg 395	TAC Tyr	AAC Asn	TGG Trp	ATG Met	ACT Thr 400	CTG Leu	AGC Ser	CAG Gln	AAG. Lys	CTC Leu 405	TGC Cys	TCC Ser	1793
TGC Cys	Leu	CTG Leu 410	TCT Ser	AAT Asn	GTC Val	GCC Ala	ATG Met 415	GCA Ala	ATG Met	GGA Gly	GCC Ala	CAG Gln 420	CTC Leu	ATT Ile	GGG Gly	1841
AAA Lys	TTT Phe 425	GAG Glu	GCG Ala	AAA Lys	GGC Gly	ATG Met 430	GGC Gly	ATC Ile	CAG Gln	TGG Trp	CGA Arg 435	GAC Asp	CTC Leu	CTG Leu	AGT Ser	1889
CCC Pro 440	GTC Val	AAC Asn	GTG Val	GAC Asp	GAC Asp 445	GAC Asp	TTC Phe	TGC Cys	TTC Phe	GGG Gly 450	CAG Gln	GTG Val	CTG Leu	GGG Gly	ÀTG Met 455	1937
CTG Leu	CTG Leu	CTG Leu	GAC Asp	TCT Ser 460	GTG Val	CTC Leu	TAT Tyr	GGC Gly	CTG Leu 465	GTG Val	ACC Thr	TGG Trp	TAC Tyr	ATG Met 470	GAG Glu	1985
GCC Ala	GTC Val	TTC Phe	CCA Pro 475	GGG Gly	CAG Gln	TTC Phe	GGC Gly	GTG Val 480	CCT Pro	CAG Gln	CCC Pro	TGG Trp	TAC Tyr 485	TTC Phe	TTC Phe	2033
ATC Ile	ATG Met	CCC Pro 490	TCC Ser	TAT Tyr	TGG Trp	TG T Cys	GGG Gly 495	AAG Lys	CCA Pro	AGG Arg	GCG Ala	GTT Val 500	GCA Ala	GGG Gly	AAG Lys	2081

WO 97/48797			PCT/US97/00785
-------------	--	--	----------------

								AAA Lys								2129
								GCG Ala								2177
								AAG Lys								2225
CTG Leu	AAC Asn	CTC Leu	AAC Asn 555	CTG Leu	TAC Tyr	GAG Glu	GGA Gly	CAG Gln 560	ATC Ile	ACC Thr	GTC Val	CTG Leu	CTG Leu 565	GGC Gly	CAC His	2273
AAC Asn	GGT Gly	GCC Ala 570	GGG Gly	AAG Lys	ACC Thr	ACC Thr	ACC Thr 575	CTC L∈u	TCC Ser	ATG Met	CTC Leu	ACA Thr 580	GGT Gly	CTC Leu	TTT Phe	2321
								ATC Ile								2369
								CTG Leu								2417
								GCA Ala								2465
								AAG Lys 640								2513
								GAC Asp			Asn					2561
								AAG Lys								2609
ATC Ile 680	GCA Ala	GGC Gly	TCC Ser	AAG Lys	GTG Val 685	CTG Leu	ATA Ile	CTG Leu	GAC Asp	GAG Glu 690	CCC Pro	ACC Thr	TCG Ser	GGC Gly	ATG Met 695	2657
GAC Asp	GCC Ala	ATC Ile	TCC Ser	AGG Arg 700	AGG Arg	GCC Ala	ATC Ile	TGG Trp	GAT Asp 705	CTT Leu	CTT Leu	CAG Gln	CGG Arg	CAG Gln 710	AAA Lys	2705
								ACC Thr 720								2753
CTG Leu	CTG Leu	GGA Gly 730	GAC Asp	CGC Arg	Ilė	GCC Ala	ATC Ile 735	ATG Met	GCC Ala	AAG Lys	GGG Gly	GAG Glu 740	CTG Leu	CAG Gln	TGC Cys	2801
TGC Cys	GGG Gly 745	TCC Ser	TCG Ser	CTG Leu	TTC Phe	CTC Leu 750	AAG Lys	CAG Gln	AAA Lys	TAC Tyr	GGT Gly 755	GCC Ala	GGC Gly	TAT Tyr	CAC His	2849

WO 97/48797		PCT/US97/00785
-------------	--	----------------

ATG Met 760	ACG Thr	CTG Leu	GTG Val	AAG Lys	GAG Glu 765	CCG Pro	CAC His	TGC Cys	AAC Asn	CCG Pro 770	GAA Glu	GAC Asp	ATC Ile	TCC Ser	CAG Gln 775	2897
CTG Leu	GTC Val	CAC His	CAC His	CAC His 780	GTG Val	CCC Pro	AAC Asn	GCC Ala	ACG Thr 785	CTG Leu	GAG Glu	AGC Ser	AGC Ser	GCT Ala 790	Gly	2945
GCC Ala	GAG Glu	CTG Leu	TCT Ser 795	TTC Phe	ATC Ile	CTT Leu	CCC Pro	AGA Arg 800	GAG Glu	AGC Ser	ACG Thr	CAC His	AGG Arg 805	TTT Phe	GAA Glu	2993
GGT Gly	CTC Leu	TTT Phe 810	GCT Ala	AAA Lys	CTG Leu	GAG Glu	AAG Lys 815	AAG Lys	CAG Gln	AAA Lys	GAG Glu	CTG Leu 820	GGC Gly	ATT Ile	GCC Ala	3041
AGC Ser	TTT Phe 825	GGG Gly	GCA Ala	TCC Ser	ATC Ile	ACC Thr 830	ACC Thr	ATG Met	GAG Glu	GAA Glu	GTC Val 835	TTC Phe	CTT Leu	CGG Arg	GTC Val	3089
GGG Gly 840	AAG Lys	CTG Leu	GTG Val	GAC Asp	AGC Ser 845	AGT Ser	ATG Met	GAC Asp	ATC Ile	CAG Gln 850	GCC Ala	ATC Ile	CAG Gln	CTC	CCT [*] Pro 855	3137
GCC Ala	C T G Leu	CAG Gln	TAC Tyr	CAG Gln 860	CAC His	GAG Glu	AGG Arg	CGC Arg	GCC Ala 865	AGC Ser	GAC Asp	TGG Trp	GCT Ala	GTG Val 870	GAC Asp	31.85
AGC Ser	AAC · Asn	CTC Leu	TGT Cys 875	GGG Gly	GCC Ala	ATG Met	GAC Asp	CCC Pro 880	TCC Ser	GAC Asp	GGC Gly	ATT Ile	GGA Gly 885	GCC Ala	CTC Leu	3233
ATC Ile	GAG Glu	GAG Glu 890	GAG Glu	CGC Arg	ACC Thr	GCT Ala	GTC Val 895	AAG Lys	CTC Leu	AAC Asn	Thr	GGG Gly 900	CTC Leu	GCC Ala	CTG Leu	3281
CAC His	TGC Cys 905	CAG Gln	CAA Gln	TTC Phe	TGG Trp	GCC Ala 910	ATG Met	TTC Phe	CTG Leu	AAG Lys	AAG Lys 915	GCC Ala	GCA Ala	TAC Tyr	AGC Ser	3329
TGG Trp 920	CGC Arg	GAG Glu	TGG Trp	AAA Lys	ATG Met 925	GTG Val	GCG Ala	GCA Ala	CAG Gln	GTC Val 930	CTG Leu	GTG Val	CCT Pro	CTG Leu	ACC Thr 935	3377
TGC Cys	GTC Val	ACC Thr	CTG Leu	GCC Ala 940	CTC Leu	CTG Leu	GCC Ala	ATC Ile	AAC Asn 945	TAC Tyr	TCC Ser	TCG Ser	GAG Glu	CTC Leu 950	TTC Phe	3425
GAC Asp	GAC Asp	CCC Pro	ATG Met 955	CTG Leu	AGG Arg	CTG Leu	ACC Thr	TTG Leu 960	GGC Gly	GAG Glu	TAC Tyr	GGC Gly	AGA Arg 965	ACC Thr	GTC Val	3473
GTG Val	CCC Pro	TTC Phe 970	TCA Ser	GTT Val	CCC Pro	Gly	ACC Thr 975	TCC Ser	CAG Gln	CTG Leu	GGT Gly	CAG Gln 980	CAG Gln	CTG Leu	TCA Ser	3521
GAG Glu	CAT His 985	CTG Leu	AAA Lys	GAC Asp	GCA Ala	CTG Leu 990	CAG Gln	GCT Ala	GAG Glu	GGA Gly	CAG Gln 995	GAG Glu	CCC Pro	CGC Arg	GAG Glu	3569
GTG Val 1000	Leu	GGT Gly	GAC Asp	CTG Leu	GAG Glu 1005	Glu	TTC Phe	TTG Leu	ATC Ile	TTC Phe 1010	Arg	GCT Ala	TCT Ser	GTG Val	GAG Glu 1015	3617

WO 97/48797		PCT/US97/00785

GI7 GGC	G GGC / Gly	GGC Gly	TTT Phe	AAT Asn 102	Glu	CGG Arg	TGC Cys	CTT	GTC Val	Ala	GCG Ala	TCC Ser	TTC Phe	AGA Arg	A GAT J Asp 10	3665
GTC Val	G-GGA . Gly	GAC Glu	CGC Arg 103	Thr	GTC Val	GTC Val	AAÇ Asn	GCC Ala 104	Leu	TTC Phe	AAC Asn	AAC Asn	CAC Gln 104	Ala	TAC	3713
CAC His	TCT Ser	CCA Pro 105	Ala	ACT Thr	GCC Ala	CTG Leu	GCC Ala 105	Val	GTG Val	GAC Asp	AAC Asn	CTT Leu 106	Leu	TTC Phe	AAC Lys	3761
CTG Leu	CTG Leu 106	Cys	GGG Gly	CCT Pro	CAC His	GCC Ala 107	Ser	ATT Ile	GTG Val	GTC Val	TCC Ser 107	Asn	TTC Phe	CCC Pro	CAG Gln	3809
CCC Pro 108	Arg	AGC Ser	GCC Ala	CTG Leu	CAG Gln 108	Ala	GCC Ala	AAG Lys	GAC Asp	CAG Gln 109	Phe	AAC Asn	GAG Glu	Gly	CGG Arg 1095	3857
AAG Lys	GGA Gly	TTC Phe	GAC Asp	ATT Ile 110	Ala	CTC Leu	AAC Asn	CTG Leu	CTC Leu 110	Phe	GCC Ala	ATG Met	GCA Ala	TTC Phe 111	Leu	3905
GCC Ala	AGC Ser	ACG Thr	TTC Phe 111	Ser	ATC Ile	CTG Leu	GCG Ala	GTC Val 112	Ser	GAG Glu	AGG Arg	GCC Ala	GTG Val 112	Gln	CCC Ala	3953
AAG Lys	CAT His	GTG Val 113	Gln	TTT Phe	GTG Val	AGT Ser	GGA Gly 1135	Val	CAC His	GTG Val	GCC Ala	AGT Ser 114	Phe	TGG Trp	CTC Leu	4001
TCT Ser	GCT Ala 114	Leu	CTG Leu	TGG Trp	GAC Asp	CTC Leu 1150	Ile	TCC Ser	TTC Phe	CTC Leu	ATC Ile 115	CCC Pro	AGT Ser	CTG Leu	CTG Leu	4049
CTG Leu 1160	Leu	GTG Val	GTG Val	TTT Phe	AAG Lys 1169	Ala	TTC Phe	GAC Asp	GTG Val	CGT Arg 1170	Ala	TTC Phe	ACG Thr	CGG Arg	GAC Asp 1175	4097
GGC Gly	CAC His	ATG Met	GCT Ala	GAC Asp 1180	Thr	CTG Leu	CTG Leu	CTG Leu	CTC Leu 1185	Leu	CTC Leu	TAC Tyr	GGC Gly	TGG Trp 1190	Ala	4145
Ile	Ile	Pro	Leu 1195	Met	Tyr	Ļeu	Met	Asn 1200	Phe	Phe	Phe	TTG Leu	Gly 1205	Ala	Ala	4193
ACT Thr	GCC Ala	TAC Tyr 1210	Thr	AGG Arg	CTG Leu	ACC Thr	ATC Ile 1215	Phe	AAC Asņ	ATC Ile	CTG Leu	TCA Ser 1220	Gly	ATC Ile	GCC Ala	4241
ACC Thr	TTC Phe 1225	Leu	ATG Met	GTC Val	ACC Thr	ATC Ile 1230	Met	CGC Arg	ATC Ile	CCA Pro	GCT Ala 1235	GTA Val	AAA Lys	CTG Leu	GAA Glu	4289
GAA Glu 1240	Leu	TCC Ser	AAA Lys	ACC Thr	CTG Leu 1245	Asp	CAC His	GTG Val	TTC Phe	CTG Leu 1250	Val	CTG Leu	CCC Pro	AAC Asn	CAC His 1255	4337
TGT Cys	CTG Leu	GGG Gly	Met	GCA Ala 1260	Val	AGC Ser	AGT Ser	TTC Phe	TAC Tyr 1265	Glu	AAC Asn	TAC Tyr	GAG Glu	ACG Thr 1270	Arg	4385

WO 97/48797			PCT/US97/00785
-------------	--	--	----------------

AGG TAC TGC ACC TCC T Arg Tyr Cys Thr Ser S 1275	CC GAG GTC GCC GCC CAG er Glu Val Ala Ala Hi 1280	TAC TGC AAG AAA TAT 4433 s Tyr Cys Lys Lys Tyr 1285
AAC ATC CAG TAC CAG G Asn Ile Gln Tyr Gln G 1290	G AAC TTC TAT GCC TGG u Asn Phe Tyr Ala Tr 1295	G AGC GCC CCG GGG GTC 4481 o Ser Ala Pro Gly Val
GGC CGG TTT GTG GCC TG Gly Arg Phe Val Ala So 1305	r ATG GCC GCC TCA GGC r Met Ala Ala Ser Gly 1310	G TGC GCC TAC CTC ATC 4529 Cys Ala Tyr Leu Ile 1315
CTG CTC TTC CTC ATC GLeu Leu Phe Leu Ile Glazo	G ACC AAC CTG CTT CAC u Thr Asn Leu Leu Glr 25	n Arg Leu Arg Gly Ile
CTC TGC GCC CTC CGG AG Leu Cys Ala Leu Arg An 1340	G AGG CGG ACA CTG ACA g Arg Arg Thr Leu Thi 1345	GAA TTA TAC ACC CGG 4625 Glu Leu Tyr Thr Arg 1350
ATG CCT GTG CTT CCT GAMET Pro Val Leu Pro G	G GAC CAA GAT GTA GCC u Asp Gin Asp Val Ala 1360	G GAC GAG AGG ACC CGC 4673 Asp Glu Arg Thr Arg 1365
ATC CTG GCC CCC AGC CC Ile Leu Ala Pro Ser Pr 1370	G GAC TCC CTG CTC CAC o Asp Ser Leu Leu His 1375	ACA CCT CTG ATT ATC 4721 Thr Pro Leu Ile Ile 1380
AAG GAG CTC TCC AAG G1 Lys Glu Leu Ser Lys Va 1385	G TAC GAG CAG CGG GTC l Tyr Glu Gln Arg Val 1390	CCC CTC CTG GCC GTG 4769 Pro Leu Leu Ala Val 1395
GAC AGG CTC TCC CTC GC Asp Arg Leu Ser Leu Al 1400	G GTG CAG AAA GGG GAG a Val Gln Lys Gly Glu 05	Cys Phe Gly Leu Leu
GGC TTC AAT GGA GCC GC Gly Phe Asn Gly Ala Gl 1420	G AAG ACC ACG ACT TTC y Lys Thr Thr Thr Phe 1425	AAA ATG CTG ACC GGG 4865 Lys Met Leu Thr Gly 1430
GAG GAG AGC CTC ACT TO Glu Glu Ser Leu Thr Se 1435	T GGG GAT GCC TTT GTC r Gly Asp Ala Phe Val 1440	GGG GGT CAC AGA ATC 4913 Gly Gly His Arg Ile 1445
AGC TCT GAT GTC GGA AA Ser Ser Asp Val Gly Ly 1450	s Val Arg Gln Arg Ile	GGC TAC TGC CCG CAG 4961 Gly Tyr Cys Pro Gln 1460
TTT GAT GCC TTG CTG GAPhe Asp Ala Leu Leu As	C CAC ATG ACA GGC CGG p His Met Thr Gly Arg 1470	GAG ATG CTG GTC ATG 5009 Glu Met Leu Val Met 1475
TAC GCT CGG CTC CGG GG Tyr Ala Arg Leu Arg Gl 1480	y Ile Pro Glu Arg His	Ile Gly Ala Cys Val
	85 149	0 1495
GAG AAC ACT CTG CGG GG Glu Asn Thr Leu Arg Gl 1500	C CTG CTG CTG GAG CCA	CAT GCC AAC AAG CTG 5105

WO 97/48797		PCT/US97/00785
-------------	--	----------------

GCC CTG ATC GGA GAG CCT GCT GTC ATC TTC CTG GAC GAG CCG TCC ACT Ala Leu Ile Gly Glu Pro Ala Val Ile Phe Leu Asp Glu Pro Ser Thr 1530 1535 1540	5201
GGC ATG GAC CCC GTG GCC CGG CGC CTG CTT TGG GAC ACC GTG GCA CGA Gly Met Asp Pro Val Ala Arg Arg Leu Leu Trp Asp Thr Val Ala Arg 1545	5249
GCC CGA GAG TCT GGC AAG GCC ATC ATC ATC ACC TCC CAC AGC ATG GAG Ala Arg Glu Ser Gly Lys Ala Ile Ile Ile Thr Ser His Ser Met Glu 1560 1565 1570 1575	5297
GAG TGT GAG GCC CTG TGC ACC CGG CTG GCC ATC ATG GTG CAG GGG CAG Glu Cys Glu Ala Leu Cys Thr Arg Leu Ala Ile Met Val Gln Gly Gln 1580 1585 1590	5345
TTC AAG TGC CTG GGC AGC CCC CAG CAC CTC AAG AGC AAG TTC GGC AGC Phe Lys Cys Leu Gly Ser Pro Gln His Leu Lys Ser Lys Phe Gly Ser 1595 1600 1605	5393
GGC TAC TCC CTG CGG GCC AAG GTG CAG AGT GAA GGG CAA CAG GAG GCG Gly Tyr Ser Leu Arg Ala Lys Val Gln Ser Glu Gly Gln Gln Glu Ala 1610 1615 1620	5441
CTG GAG GAG TTC AAG GCC TTC GTG GAC CTG ACC TTT CCA GGC AGC GTC Leu Glu Glu Phe Lys Ala Phe Val Asp Leu Thr Phe Pro Gly Ser Val 1625 1630 1635	5489
CTG GAA GAT GAG CAC CAA GGC ATG GTC CAT TAC CAC CTG CCG GGC CGT Leu Glu Asp Glu His Gln Gly Met Val His Tyr His Leu Pro Gly Arg 1640 1655	5537
GAC CTC AGC TGG GCG AAG GTT TTC GGT ATT CTG GAG AAA GCC AAG GAA Asp Leu Ser Trp Ala Lys Val Phe Gly Ile Leu Glu Lys Ala Lys Glu 1660 1665 1670	5585
AAG TAC GGC GTG GAC GAC TAC TCC GTG AGC CAG ATC TCG CTG GAA CAG Lys Tyr Gly Val Asp Asp Tyr Ser Val Ser Gln Ile Ser Leu Glu Gln 1675 1680 1685	5633
GTC TTC CTG AGC TTC GCC CAC CTG CAG CCG CCC ACC GCA GAG GAG GGG Val Phe Leu Ser Phe Ala His Leu Gln Pro Pro Thr Ala Glu Glu Gly 1690 1695 1700	5681
CGA TGAGGGGTGG CGGCTGTCTC GCCATCAGGC AGGGACAGGA CGGGCAAGCA Arg	5734
GGGCCCATCT TACATCCTCT CTCTCCAAGT TTATCTCATC CTTTATTTTT AATCACTTTT	5794
TTCTATGATG GATATGAAAA ATTCAAGGCA GTATGCACAG AATGGACGAG TGCAGCCCAG	5854
CCCTCATGCC CAGGATCAGC ATGCGCATCT CCATGTCTGC ATACTCTGGA GTTCACTTTC	5914
CCAGAGCTGG GGCAGGCCGG GCAGTCTGCG GGCAAGCTCC GGGGTCTCTG GGTGGAGAGC	5974
TGACCCAGGA AGGGCTGCAG CTGAGCTGGG GGTTGAATTT CTCCAGGCAC TCCCTGGAGA	6034
GAGGACCCAG TGACTTGTCC AAGTTTACAC ACGACACTAA TCTCCCCTGG GGAGGAAGCG	6094
GGAAGCCAGC CAGGTTGAAC TGTAGCGAGG CCCCCAGGCC GCCAGGAATG GACCATGCAG	6154
ATCACTGTCA GTGGAGGGAA GCTGCTGACT GTGATTAGGT GCTGGGGTCT TAGCGTCCAG	6214
CGCAGCCCGG GGGCATCCTG GAGGCTCTGC TCCTTAGGGC ATGGTAGTCA CCGCGAAGCC	6274

WO 97/48797		PCT/US97/00785
-------------	--	----------------

GGGCACCGTC	CCACAGCATC	TCCTAGAAGC	AGCCGGCACA	GGAGGGAAGG	TGGCCAGGCT	6334
CGAAGCAGTC	TCTGTTTCCA	GCACTGCACC	CTCAGGAAGT	CGCCCGCCCC	AGGACACGCA	6394
GGGACCACCC	TAAGGGCTGG	GTGGCTGTCT	CAAGGACACA	TTGAATACGT	TGTGACCATC	6454
CAGAAAATAA	ATGCTGAGGG	GACACAAAAA	ΑΑΑΑΑΑΑΑ	AAAAAAAA	AAAAAAAA	6514
AAAAAAAA	A		•			6525

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1704 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:
- Met Ala Val Leu Arg Gln Leu Ala Leu Leu Leu Trp Lys Asn Tyr Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$
- Leu Gln Lys Arg Lys Val Leu Val Thr Val Leu Glu Leu Phe Leu Pro 20 25 30
- Leu Leu Phe Ser Gly Ile Leu Ile Trp Leu Arg Leu Lys Ile Gln Ser 35 40 45
- Glu Asn Val Pro Asn Ala Thr Ile Tyr Pro Gly Gln Ser Ile Gln Glu 50 55 60
- Leu Pro Leu Phe Phe Thr Phe Pro Pro Pro Gly Asp Thr Trp Glu Leu 65 70 75 80
- Ala Tyr Ile Pro Ser His Ser Asp Ala Ala Lys Ala Val Thr Glu Thr 85 90 95
- Val Arg Arg Ala Leu Val Ile Asn Met Arg Val Arg Gly Phe Pro Ser 100 105 110
- Glu Lys Asp Phe Glu Asp Tyr Ile Arg Tyr Asp Asn Cys Ser Ser Ser 115 120 125
- Val Leu Ala Ala Val Val Phe Glu His Pro Phe Asn His Ser Lys Glu 130 135 140
- Pro Leu Pro Leu Ala Val Lys Tyr His Leu Arg Phe Ser Tyr Thr Arg 145 150 155 160
- Arg Asn Tyr Met Trp Thr Gln Thr Gly Ser Phe Phe Leu Lys Glu Thr 165 170 175
- Glu Gly Trp His Thr Thr Ser Leu Phe Pro Leu Phe Pro Asn Pro Gly 180 185 190
- Pro Arg Glu Leu Thr Ser Pro Asp Gly Gly Glu Pro Gly Tyr Ile Arg 195 200 205
- Glu Gly Phe Leu Ala Val Gln His Ala Val Asp Arg Ala Ile Met Glu 210 215 220
- Tyr His Ala Asp Ala Ala Thr Arg Gln Leu Phe Gln Arg Leu Thr Val 225 230 235 240

													N.		
Sei	c Gly	7 Tyı 599	Glu 5	ı Ile	e Ser	Gln	Asp 600	Met	Val	. Gln	Ile	Arg 605		Ser	Leu
Gly	/ Let 610	ı Cys	Pro	Glr	His	Asp 615		Leu	Phe	Asp	Asn 620	Leu	Thr	· Val	Ala
Glu 625	His	: Leu	туг	Phe	Tyr 630	Ala	Gln	Leu	Lys	Gly 635		Ser	Arg	Gln	Lys 640
Cys	Pro	Glu	Glu	Val 645	Lys	Gln	Met	Leu	His 650	Ile	Ile	Gly	Leu	Glu 655	Asp
Lys	Trp	Asn	Ser 660	Arg	Ser	Arg	Phe	Leu 665	Ser	Gly	Gly	Met	Arg 670	Arg	Lys
Leu	Ser	Ile 675	Gly	lle	Ala	Leu	Ile 680	Ala	Gly	Ser	Lys	Val 685	Leu	Ile	Leu
Asp	Glu 690	Pro	Thr	Ser	Gly	Met 695	Asp	Ala	Ile	Ser	Arg 700	Arg	Ala	Ile	Trp
Asp 705	Leu	Leu	Gln	Arg	Gln 710	Lys	Ser	Asp	Arg	Thr 715	Ile	Val	Leu	Thr	Thr 720
His	Phe	Met	Asp	Glu 725	Ala	Asp	Leu	Leu	Gly 730	Asp	Arg	Ile	Ala	Ile 735	Met
Ala	Lys	Gly	Glu 740	Leu	Gln	Cys	Cys	Gly 745	Ser	Ser	Leu	Phe	Leu 750	Lys	Gln
Lys	Tyr	Gly 755	Ala	Gly	Tyr	His	Met 760	Thr	Leu	Val	Lys	Glu 765	Pro	His	Cys
Asn	Pro 770	Glu	Asp	Ile	Ser	Gln 7 7 5	Leu	Val	His	His	His 780	Val	Pro	Asn	Ala
Thr 785	Leu	Glu	Ser	Ser	Ala 790	Gly	Ala	Glu	Leu	Ser 795	Phe	Ile	Leu	Pro	Arg 800
Glu	Ser	Thr	His	Arg 805	Phe	Glu :	Gly	Leu	Phe 810	Ala	Lys	Leu	Glu	Lys 815	Lys
Gln	Lys	Glu	Leu 820	Gly	Ile	Ala	Ser	Phe 825	Gly	Ala	Ser	lle	Thr 830	Thr	Met
Glu	Glu	Val 835	Phe	Leu	Arg	Val	Gly 840	Lys	Leu ·	Val	Asp	Ser 845	Ser	Met	Asp
Ile	Gln 850	Ala	Ile	Gln	Leu	Pro 855	Ala	Leu	Gln	Туr	Gln 860	His	Glu	Arg	Arg
Ala 865	Ser	Asp	Trp	Ala	Val 870	Asp	Ser	Asn	Leu	Cys 875	Gly	Ala	Met	Asp	Pro 880
Ser	Asp	Gly	Ile	Gly 885	Ala	Leu	Ile		Glu 890	Glu	Arg	Thr	Ala	Val 895	Lys
Leu	Asn	Thr	Gly 900	Leu	Ala	Leu	His	Cys 905	Gln	Gln	Phe		Ala 910	Met	Phe
Leu	Lys	Lys 915	Ala	Ala	Tyr	Ser	Trp 920	Arg	Glu	Trp		Met 925	Val	Ala	Ala
Gln	Val 930	Leu	Val	Pro	Leu	Thr 935	Cys	Val	Thr	Leu	Ala 940	Leu	Leu	Ala	Ile

												•			
Asn 945		Ser	Ser	Glu	Leu 950	Phe	Asp	Asp	Pro	Met 955	Leu	Arg	Leu	Thr	Leu 960
Gly	Glu	Tyr	Gly	Arg 965	Thr	Val	Val	Pro	Phe 970	Ser	Val	Pro	Gly	Thr 975	Ser
Gln	Leu	Gly	Gln 980	Gln	Leu	Ser	Glu	His 985	Leu	Lys	Asp	Ala	Leu 990	Gln	Ala
Glu	Gly	Gln 995		Pro	Arg	Glu	Val 100		Gly	Asp	Leu	Glu 100		Phe	Leu
Ile	Phe 101		Ala	Ser	Val	Glu 1015		Gly	Gly	Phe	Asn 102		Arg	Cys	Leu
Val 102		Ala	Ser	Phie	Arg 1030		Val	Gly	Glu	Arg 103		Val	Val	Asn	Ala 1040
Leu	Phe	Asn	Asn	Gln 1049	Ala 5	Туг	His	Ser	Pro 1050		Thr	Ala	Leu	Ala 1059	
Val	Asp	Asn	Leu 106		Phe	Lys	Leu	Leu 1069		Gly	Pro	His	Ala 107		Ile
Val	Val	Ser 107		Phe	Pro	Gln	Pro 1080	_	Ser	Ala	Leu	Gln 1089		Ala	Lys
Asp	Gln 1090		Asn	Glu	Gly	Arg 1095		Gly	Phe	Asp	11e 110		Leu	Asn	Leu
Leu 110		Ala	Met	Ala	Phe 1110		Ala	Ser	Thr	Phe		Ile	Leu	Ala	Val 1120
Ser	Glu	Arg	Ala	Val 1125	Gln	Ala,	Lys	His	Val 1130		Phe	Val	Ser	Gly 1135	
His	Val	Ala	Ser 1140	Phe	Trp	Leu	Ser	Ala 1149		Leu	Trp	Asp	Leu 1150		Ser
Phe	Leu	Ile 1159		Ser	Leu	Leu	Leu 1160		Val	Val	Phe	Lys 1165		Phe	Asp
Val	Arg 1170	Ala	Phe	Thr	Arg	Asp 1175		His	Met	Ala	Asp 1180		Leu	Leu	Leu
Leu 1189		Leu	Tyr	Gly	Trp 1190		Ile	Ile	Pro	Leu 1195		Tyr	Leu	Met	Asn 1200
Phe	Phe	Phe	Leu	Gly 1205	Ala	Ala	Thr	Ala	Tyr 1210		Arg	Leu	Thr	Ile 1215	
Asn	Ile	Leu	Ser 1220		Ile	Ala	Thr	Phe 1225		Met	Val	Thr	Ile 1230		Arg
Ile	Pro	Ala 1235	Val	Lys	Leu	Glu	Glu 1240		Ser	Lys	Thr	Leu 1245		His	Val
Phe	Leu 1250		Leu	Pro.	Asn	His 1255		Leu	Gly	Met	Ala 1260		Ser	Ser	Phe
Tyr 1265		Asn	Tyr	Glu	Thr 1270		Arg	Tyr	Cys	Thr 1275		Ser	Glu	Val	Ala 1280
Ala	His	Туr	Cys	Lys 1285	Lys	Tyr	Asn	Ile	Gln 1290	_	Gln	Glu	Asn	Phe 1295	

Ala Trp Ser Ala Pro Gly Val Gly Arg Phe Val Ala Ser Met Ala Ala 1300 1305 1310

Ser Gly Cys Ala Tyr Leu Ile Leu Leu Phe Leu Ile Glu Thr Asn Leu 1315 1320 1325

Leu Gln Arg Leu Arg Gly Ile Leu Cys Ala Leu Arg Arg Arg Thr 1330 1340

Leu Thr Glu Leu Tyr Thr Arg Met Pro Val Leu Pro Glu Asp Gln Asp 1345 1350 1355 1360

Val Ala Asp Glu Arg Thr Arg Ile Leu Ala Pro Ser Pro Asp Ser Leu 1365 1370 1375

Leu His Thr Pro Leu Ile Ile Lys Glu Leu Ser Lys Val Tyr Glu Gln 1380 1385 1390

Arg Val Pro Leu Leu Ala Val Asp Arg Leu Ser Leu Ala Val Gln Lys 1395 1400 1405

Gly Glu Cys Phe Gly Leu Leu Gly Phe Asn Gly Ala Gly Lys Thr Thr 1410 1415 1420 .

Thr Phe Lys Met Leu Thr Gly Glu Glu Ser Leu Thr Ser Gly Asp Ala 1425 1430 1435 1440

Phe Val Gly Gly His Arg Ile Ser Ser Asp Val Gly Lys Val Arg Gln 1445 1450 1455

Arg Ile Gly Tyr Cys Pro Gln Phe Asp Ala Leu Leu Asp His Met Thr 1460 1465 1470

Gly Arg Glu Met Leu Val Met Tyr Ala Arg Leu Arg Gly Ile Pro Glu 1475 1480 1485

Arg His Ile Gly Ala Cys Val Glu Asn Thr Leu Arg Gly Leu Leu Leu 1490 1495 1500

Glu Pro His Ala Asn Lys Leu Val Arg Thr Tyr Ser Gly Gly Asn Lys 1505 1510 1515 1520

Arg Lys Leu Ser Thr Gly Ile Ala Leu Ile Gly Glu Pro Ala Val Ile 1525 1530 1535

Phe Leu Asp Glu Pro Ser Thr Gly Met Asp Pro Val Ala Arg Arg Leu 1540 1545 1550

Leu Trp Asp Thr Val Ala Arg Ala Arg Glu Ser Gly Lys Ala Ile Ile 1555 1560 1565

Ile Thr Ser His Ser Met Glu Glu Cys Glu Ala Leu Cys Thr Arg Leu 1570 1580

Ala Ile Met Val Gln Gly Gln Phe Lys Cys Leu Gly Ser Pro Gln His 1585 1590 1595 1600

Leu Lys Ser Lys Phe Gly Ser Gly Tyr Ser Leu Arg Ala Lys Val Gln 1605 1610 1615

Ser Glu Gly Gln Gln Glu Ala Leu Glu Glu Phe Lys Ala Phe Val Asp 1620 1625 1630

Leu Thr Phe Pro Gly Ser Val Leu Glu Asp Glu His Gln Gly Met Val 1635 1640 1645

His Tyr His Leu Pro Gly Arg Asp Leu Ser Trp Ala Lys Val Phe Gly 1650 1660

Ile Leu Glu Lys Ala Lys Glu Lys Tyr Gly Val Asp Asp Tyr Ser Val 1665 1670 1675 1680

Ser Gin Ile Ser Leu Glu Gln Val Phe Leu Ser Phe Ala His Leu Gln
1685 1690 1695

Pro Pro Thr Ala Glu Glu Gly Arg 1700

- (2) INFORMATION FOR SEQ ID NO:76:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Oligonucleotide primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

AGCTGGCGCT CCTCCTCT

- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 349 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:
 - Gly Gln Leu Cly His Asn Gly Ala Gly Lys Thr Thr Ser Ile Gly
 - Arg Pro Thr Gly Ile Gly Tyr Asp Arg Gly Cys Pro Gln Leu Asp Leu 20 25 30
 - Thr Val Glu His Leu Leu Lys Gly Lys Leu Leu Lys Asn Leu Ser Gly 35 40 45
 - Gly Met Arg Lys Leu Gly Leu Asp Glu Pro Thr Ala Gly Met Asp Arg . 50 55 60
 - Leu Arg Lys Arg Thr Ile Leu Thr Thr His Met Asp Glu Ala Leu Gly 70 75 80
 - Asp Ile Met His Gly Leu Gly Leu Lys Gln Lys Gly Gly Tyr Thr Val 85 90 95
 - Glu Gln Pro Ala Arg Phe Leu Leu Ser Phe Gly Ser Thr Glu Val Phe 100 105 110

Ile	Gly	Asp 115	His	Arg	Gly	Ala	G1ri 120	Phe	Lys	Lys	Tyr	Ser 125	Arg	Trp	Gln
Val	Leu 130	Pro	Leu	Asp	Leu	Thr 135	Glu	Val	Phe	Pro	Leu 140	Pro	Gly	Ala	Leu
Phe 145	Asn	Туг	His	Thr	Ser 150	Val	Ser	Gln	Alā	Leu 155	Ala	Ser	Thr	Phe	Glu 160
Arg	Gln	Ala	His	Gln 165	Phe	Gly	Phe	Leu	Asp 170	Ile	Ser	Leu	Leu	Phe 175	Asp
His	Ala	Leu	L∈u 180	Tyr	Ser	Pro	Tyr	Phe 185	Phe	Ala	Leu	Ile	Ala 190	Leu	Val
Glu	Leu	Leu 195	Phe	Leu	Pro	Gly	Ala 200	Asn	Trp	Gly	Phe	Leu 205	Arg	Met	Leu
Pro	Val 210	Glu	Arg	Arg	Asn	Leu 215	Ile	Lys	Leu	Lys	Ala 220	Val	Leu	Leu	Ala
Val 225	Glu	Cys	Phe	Gly	Leu 230	Leu	Gly	Asn	Gly	Ala 235	Gly	Lys	Thr	Thr	Thr 240
Phe	Leu	Thr	Gly	Ser 245	Ser	Gly	Ala	Gly	Gly 250	Asp	Val	Ile	Gly	Tyr 255	Cys
Pro	Gln	Phe	Asp 260	Ala		Thr	Gly	Arg 265	Glu	Leu	Ala	Gly	Ala 270	Glu	Leu
His	Ala	Lys 275	Leu	Val	Arg	Tyr	Ser 280	Gly	Gly	Lys	Arg	Lys 285	Ser	Gly	Ala
Leu	Leu 290	Pro	Gln	Ile	Leu	Asp 295	Glu	Pro	Gly	Asp	Pro 300	Aia	Arg	Arg	Trp
Glu 305	Ser	Ala	Thr	Ser	His 310	Ser	Met	Glu	Суѕ	Glu 315	Ala	Leu	Cys	Arg	Ala 320
Glγ	Gly	Ser	Gln	Leu 325	Lys	Ser	Gly	Tyr	Val 330	Pro	Ser	Val	Leu	Leu 335	Pro
Trp .	Phe	Gly	Val 340	Asp	Gln	Ser	Leu	Glu 345	Phe	Leu	Ala	Leu			

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1974 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

CAGCGGGAGG	ACGCGCCAAC	ATCCCCGCTG	CTGTGCTGGG	CCCGGGGCGT	GCCCGCCGCT	60
GCTCCCACCT	CTGGGCCGGG	CTGGGGCCGC	CCGGGGGCCC	TGTTCCTCGG	CATTGCGGGC	120
CTGGTGGGCA	GAACCGCGGA	GAGGGCTTCT	TTTCCCCAAG	GGCAGCGTCT	TGGGGCCCGG	180

					10170	20100163
CCACTGGCTG	ACCCGCAGCG	GCTCCGGCCA	TGCCTGGCTG	GCCCTGGGGG	CTGCTGCTGA	240
CGGCAGGCAC	GCTCTTCGCC	GCCCTGAGTC	CTGGGCCGCC	GGCGCCGGC	GACCCCTGCC	300
ACGATGAGGG	GGGTGCGCCC	CCCGCCTGCG	TGCCAGGACT	GGTGAACGCC	GCCCTGGGCC	360
GCGAGGTGCT	GGCTTCCAGC	ACGTGCGGGC	GGCCGGCCAC	TCGGGCCTGC	GACGCCTCCG	420
ACCCGCGACG	GGCACACTCC	CCCGCCCTCC	TTACTTCCCC	AGGGGGCACG	GCCAGCCCTC	480
TGTGCTGGCG	CTCGGAGTCC	CTGCCTCGGG	CGCCCCTCAA	CGTGACTCTC	ACGGTGCCCC	540
TGGGCAAGGC	TTTTGAGCTG	GTCTTCGTGA	GCCTGCGCTT	CTGCTCAGCT	CCCCCAGCCT	600
CCGTGGCCCT	GCTCAAGTCT	CAGGACCATG	GCCGCAGCTG	GGCCCCGCTG	GGCTTCTTCT	660
CCTCCCACTG	TGACCTGGAC	TATGGCCGTC	TGCCTGCCCC	TGCCAATGGC	CCAGCTGGCC	720
CAGGGCCTGA	GGCCCTGTGC	TTCCCCGCAC	CCCTGGCCCA	GCCTGATGGC	AGCGGCCTTC	780
TGGCCTTCAG	CATGCAGGAC	AGCAGCCCCC	CAGGCCTGGA	CCTGGACAGC	AGCCCAGTGC	840
TCCAAGACTG	GGTGACCGCC	ACCGACGTCC	GTGTAGTGCT	CACAAGGCCT	AGCACGGCAG	900
GTGACCCCAG	GGACATGGAG	GCCGTCGTCC	CTTACTCCTA	CGCAGCCACC	GACCTCCAGG	960
TGGGCGGGCG	CTGCAAGTGC	AATGGACATG	CCTCACGGTG	CCTGCTGGAC	ACACAGGGCC	1020
ACCTGATCTG	CGACTGTCGG	CATGGCACCG	AGGCCCTGA	CTGCGGCCGC	TGCAAGCCCT	1080
TCTACTGCGA	CAGGCCATGG	CAGCGGGCCA	CTGCCCGGGA	ATCCCACGCC	TGCCTCGCTT	1140
GCTCCTGCAA	CGGCCATGCC	CGCCGCTGCC	GCȚTCAACAT	GGAGCTGTAC	CGACTGTCCG	1200
GCCGCCGCAG	CGGGGGTGTC	TGTCTCAACT	GCCGGCACAA	CACCGCCGGC	CGCCACTGCC	1260
ACTACTGCCG	GGAGGGCTTC	TATCGAGACC	CTGGCCGTGC	CCTGAGTGAC	CGTCGGGCTT	1320
GCAGGGCCTG	CGACTGTCAC	CCGGTTCGTG	CTGCTGGCAA	GACCTGCAAC	CAGACCACAG	1380
GCCAGTGTCC	CTGCAAGGAT	GGCGTCACTG	GCCTCACCTG	CAACCGCTGC	GCGCCTGGCT	1440
TCCAGCAAAG (CCCCTCCCCA	GTGGCGCCCT	GTGTTAAGAC	CCCTATCCCT	GGACCCACTG	1500
AGGACAGCAG (CCCTGTGCAG	CCCCAGGACT	GTGACTCGCA	CTGCAAACCT	GCCCGTGGCA	1560
GCTACCGCAT (CAGCCTAAAG	AAGTTCTGCA	AGAAGGACTA	TGCGGTGCAG	GTGGCGGTGG	1620
GTGCGCGCGG 'C	CGAGGCGCGC	GGCGCGTGGA	CACGCTTCCC	CCTCCCCGTC	CTCGCCGTGT	1680
TCCGGAGCGG A	AGAGGAGCGC	GCGCGGCGCG	GGAGTAGCGC	GCTGTGGGTG	cccgccgggg	1740
ATGCGGCCTG (CGGCTGCCCG	CGCCTGCTCC	CCGGCCGCCG	CTACCTCCTG	CTGGGGGGCG	1800
GGCCTGGAGC (1860
GAAGCCTCGT (•				•	1920
GCGAACGGCG C	GGGGCGCTGC .	AGCGCCGCCŤ	GAGCCCGCCG	GCTGGGCAAG	GCGC	1974

PCT/US97/00785

WO 97/48797

(2) INFORMATION FOR SEQ ID NO:79:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 612 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Met Ile Thr Ser Val Leu Arg Tyr Val Leu Ala Leu Tyr Phe Cys Met 1 5 10 15

Gly Ile Ala His Gly Ala Tyr Phe Ser Gin Phe Ser Met Arg Ala Pro 20 25 30

Asp His Asp Pro Cys His Asp His Thr Gly Arg Pro Val Arg Cys Val 35 40 45

Pro Glu Phe Ile Asn Ala Ala Phe Gly Lys Pro Val Ile Ala Ser Asp 50 55 60

Thr Cys Gly Thr Asn Arg Pro Asp Lys Tyr Cys Thr Val Lys Glu Gly 65 70 75 80

Pro Asp Gly Ile Ile Arg Glu Gln Cys Asp Thr Cys Asp Ala Arg Asn 85 90 95

His Phe Gln Ser His Pro Ala Ser Leu Leu Thr Asp Leu Asn Ser Ile 100 105 110

Gly Asn Met Thr Cys Trp Val Ser Thr Pro Ser Leu Ser Pro Gln Asn 115 120 125

Val Ser Leu Thr Leu Ser Leu Gly Lys Lys Phe Glu Leu Thr Tyr Val 130 135 140

Ser Met His Phe Cys Ser Arg Leu Pro Asp Ser Met Ala Leu Tyr Lys 145 150 155 160

Ser Ala Asp Phe Gly Lys Thr Trp Thr Pro Phe Glr. Phe Tyr Ser Ser 165 170 175

Glu Cys Arg Arg Ile Phe Gly Arg Asp Pro Asp Val Ser Ile Thr Lys 180 185 190

Ser Asn Glu Gln Glu Ala Val Cys Thr Ala Ser His Ile Met Gly Pro 195 200 205

Gly Gly Asn Arg Val Ala Phe Pro Phe Leu Glu Asn Arg Pro Ser Ala 210 215 220

Gln Asn Phe Glu Asn Ser Pro Val Leu Gln Asp Trp Val Thr Ala Thr 225 230 235 240

Asp Ile Lys Val Val Phe Ser Arg Leu Ser Pro Asp Gin Ala Glu Leu 245 250 255

Tyr Gly Leu Ser Asn Asp Val Asn Ser Tyr Gly Asn Glu Thr Asp Asp 260 265 270

Glu Val Lys Gln Arg Tyr Phe Tyr Ser Met Gly Glu Leu Ala Val Gly 280 Gly Arg Cys Lys Cys Asn Gly His Ala Ser Arg Cys lie Phe Asp Lys Met Gly Arg Tyr Thr Cys Asp Cys Lys His Asn Thr Ala Gly Thr Glu Cys Glu Met Cys Lys Pro Phe His Tyr Asp Arg Pro Trp Gly Arg Ala Thr Ala Asn Ser Ala Asn Ser Cys Val Ala Cys Asn Cys Asn Gln His 345 Ala Lys Arg Cys Arg Phe Asp Ala Glu Leu Phe Arg Leu Ser Gly Asn Arg Ser Gly Gly Val Cys Leu Asn Cys Arg His Asn Thr Ala Gly Arg 375 Asn Cys His Leu Cys Lys Pro Gly Phe Val Arg Asp Thr Ser Leu Pro Met Thr His Arg Arg Ala Cys Lys Ser Cys Gly Cys His Pro Val Gly Ser Leu Gly Lys Ser Cys Asn Gln Ser Ser Gly Gln Cys Val Cys Lys 425 Pro Gly Val Thr Gly Thr Thr Cys Asn Arg Cys Ala Lys Gly Tyr Gln 440 Gln Ser Arg Ser Thr Val Thr Pro Cys Ile Lys Ile Pro Thr Lys Ala 455 Asp Phe Ile Gly Ser Ser His Ser Glu Glu Gln Asp Gln Cys Ser Lys 470 Cys Arg Ile Val Pro Lys Arg Leu Asn Gln Lys Lys Phe Cys Lys Arg 490 Asp His Ala Val Gln Met Val Val Ser Arg Glu Met Val Asp Gly 505 Trp Ala Lys Tyr Lys Ile Val Val Glu Ser Val Phe Lys Arg Thr Glu Asn Met Gln Arg Arg Gly Glu Thr Ser Leu Trp Ile Ser Pro Gln Gly 535 Val Ile Cys Lys Cys Pro Lys Leu Arg Val Gly Arg Arg Tyr Leu Leu 555 Leu Gly Lys Asn Asp Ser Asp His Glu Arg Asp Gly Leu Met Val Asn Pro Gln Thr Val Leu Val Glu Trp Glu Asp Asp Ile Met Asp Lys Val 585 Leu Arg Phe Ser Lys Lys Asp Lys Leu Gly Gln Cys Pro Glu Ile Thr 595 600 Ser His Arg Tyr 610

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single:

(D) TOPOLOGY: linear

- - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

CTTGCAGGGC CTGCGAC

17

- (2) INFORMATION FOR SEQ ID NO:81:
- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

GAAGGCACAG GGTGAAC

- (2) INFORMATION FOR SEQ ID NO:82:
 - (i) SEQUENCE CHARACTERISTICS:
 - '(A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

CTGCAACCAG ACCACAG

.17

- (2) INFORMATION FOR SEQ ID NO:83:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Oligonucleotide primer;antisense strand"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

TAGATGTGGG AGCAGCG

- 1. Isolated nucleic acid encoding human netrin (hNET) or its complement.
- 2. Isolated nucleic acid according to claim 1, wherein said nucleic acid is mRNA.
- 3. Isolated nucleic acid according to claim 1, wherein said nucleic acid is DNA comprising the sequence set forth in SEQ ID NO:19.
- 4. Isolated nucleic acid according to claim 1, wherein said nucleic acid is DNA comprising the sequence set forth in SEQ ID NO:20.
- 5. Isolated nucleic acid according to claim 1, wherein said nucleic acid is DNA comprising the sequence set forth in SEQ ID NO:78.
- 6. Isolated nucleic acid that hybridizes under stringent conditions to the nucleic acid of claim 1.
- 7. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-GCCTGTCATCGCTCTAG-3' (SEQ ID NO:59).
- 8. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-CAGTCGCAGGCCCTGCA-3' (SEQ ID NO:60).
- 9. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-GAGGACGCGCCAACATC-3' (SEQ ID NO:61).

Isolated nucleic acid according to claim 6, comprising the sequence: 5'-CGGCAGTAGTGGCAGTG-3' (SEQ ID NO:62).

- 11. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-CCTGCCTCGCTTGCTCCTGC-3' (SEQ ID NO:63).
- 12. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-CGGGCAGCCGCAGGCCGCAT-3' (SEQ ID NO:64).
- 13. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-CCTGCAACGGCCATGCCCGC-3' (SEQ ID NO:65).
- 14. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-GCATCCCCGGCGGCACCCA-3' (SEQ ID NO:66).
- 15. Isolated nucleic acid according to claim 6, comprising the sequence: 5'-CTTGCAGGGCCTGCGAC-3' (SEQ ID NO:80).
- 16. Isolated nucleic acid according to claim 6, comprising the sequence 5'-GAAGGCACAGGGTGAAC-3' (SEQ ID NO:81).
- 17. Isolated nucleic acid according to claim 6, comprising the sequence 5'-CTGCAACCAGACCACAG-3' (SEQ ID NO:82).
- 18. Isolated nucleic acid according to claim 6, comprising the sequence 5'-TAGATGTGGGAGCAGCG-3' (SEQ ID NO:83).

19. An antisense oligonucleotime that specifically binds to and modulates translation of mRNA according to claim 2.

- 20. Isolated human netrin (hNET) and biologically active fragments thereof.
- 21. Isolated hNET according to claim 20 comprising the amino acid sequence set forth in SEQ ID NO:21.
- 22. A vector comprising the isolated nucleic acid of claim 1.
- 23. A host cell comprising the vector of claim 22.
- 24. A method for producing human netrin protein, said method comprising:
- (a) culturing the host cell of claim 23 in a medium and under conditions suitable for expression of said protein, and
 - (b) isolating said expressed protein.
- 25. An antibody that specifically binds to human netrin (hNET).
- 26. A composition comprising an amount of the oligonucleotide according to claim 19, effective to modulate expression of hNET by passing through a cell membrane and binding specifically with mRNA encoding hNET in the cell so as to prevent its translation and an acceptable hydrophobic carrier capable of passing through a cell membrane.
- 27. A composition comprising an amount of the antibody according to claim 25, effective to block binding

5

of natural occurring ligands to hNET and an acceptable carrier.

- 28. A transgenic non-human mammal expressing DNA encoding human netrin (hNET).
- 29. A method for identifying compounds which bind to human netrin (hNET), said method comprising a competitive binding assay wherein the cells according to claim 23 are exposed to a plurality of compounds and identifying compounds which bind thereto.
- 30. Isolated nucleic acid encoding human ATP Binding Cassette transporter (hABC3) or its complement.
- 31. Isolated nucleic acid according to claim 30, wherein said nucleic acid is mRNA.
- 32. Isolated nucleic acid according to claim 30, wherein said nucleic acid is DNA comprising the sequence set forth in SEQ ID NO:24.
- 33. Isolated nucleic acid according to claim 30, wherein said nucleic acid is DNA comprising the sequence set forth in SEQ ID NO:74.
- 34. Isolated nucleic acid that hybridizes under stringent conditions to the nucleic acid of claim 30.
- 35. Isolated nucleic acid according to claim 34, comprising the sequence: 5'-GACGCTGGTGAAGGAGC-3' (SEQ ID NO:42).
- \$36.\$ Isolated nucleic acid according to claim \$34.\$ comprising the sequence: $5^\prime\text{-TCGCTGACCGCCAGGAT-3}^\prime$ (SEQ ID NO:43).

- 37. Isolated nucleic acid according to claim
 34. comprising the sequence: 5'-CATTGCCCGTGCTGTCGTG-3' (SEQ
 ID NO:52).
- 38. Isolated nucleic acid according to claim 34, comprising the sequence: 5'-CATCGCCGCCTCCTTCATG-3' (SEQ ID NO:53).
- 39. Isolated nucleic acid according to claim 34. comprising the sequence: $5^{\prime}\text{-GCGGAGCCACCTTCATCA-}3^{\prime}$ (SEQ ID NO:54).
- 40. Isolated nucleic acid according to claim 34, comprising the sequence: 5'-GACGCTGGTGAAGGAGC-3' (SEQ ID NO:55).
- 41. Isolated nucleic acid according to claim 34. comprising the sequence: 5'-ATCCTGGCGGTCAGCGA-3' (SEQ ID NO:56).
- 42. Isolated nucleic acid according to claim 34, comprising the sequence: 5'-AGGGATTCGACATTGCC-3' (SEQ ID NO:57).
- 43. Isolated nucleic acid according to claim 34, comprising the sequence: 5'-CTTCAGAGACTCAGGGGCAT-3' (SEQ ID NO:58).
- 44. Isolated nucleic acid according to claim 34, comprising the sequence 5'-AGCTGGCGCTCCTCT-3' (SEQ ID NO:76).
- 45. An antisense oligonucleotide that specifically binds to and modulates translation of mRNA according to claim 31.

transporter (hABC3) and biologically active fragments thereof.

- 47. Isolated hABC3 according to claim 46 comprising the amino acid sequence set forth in SEQ ID NO:25.
- 48. Isolated hABC3 according to claim 46 comprising the amino acid sequence set forth in SEQ ID NO:75.
- 49. A vector comprising the isolated nucleic acid of claim 30.
- 50. A host cell comprising the vector of claim 49.
- 51. A method for producing human ATP binding cassette transporter (hABC3), said method comprising:

 (a) culturing the host cell of claim 50 in a medium and under conditions suitable for expression of said protein, and
 - (b) isolating said expressed protein.
- 52. An antibody that specifically binds to human ATP binding cassette transporter (hABC3).
- 53. A composition comprising an amount of the oligonucleotide according to claim 45, effective to modulate expression of hABC3 by passing through a cell membrane and binding specifically with mRNA encoding hABC3 in the cell so as to prevent its translation and an acceptable hydrophobic carrier capable of passing through a cell membrane.

- 54. A composition comprising an amount of the antibody according to claim 52, effective to block binding of naturally occurring ligands to hABC3 and an acceptable carrier.
- 55. A transgenic non-human mammal expressing DNA encoding human ATP binding cassette transporter (hABC3).
- 56. A method for identifying compounds which bind to human ATP binding cassette transporter (hABC3), said method comprising a competitive binding assay wherein the cells according to claim 50 are exposed to a plurality of compounds and identifying compounds which bind thereto.
- 57. Isolated nucleic acid encoding human ribosomal L3 (RPL3L) or its complement.
- 58. Isolated nucleic acid according to claim 57, wherein said nucleic acid is mRNA.
- 59. Isolated nucleic acid according to claim 57, wherein said nucleic acid is DNA comprising the sequence set forth in SEQ ID NO:28.
- 60. Isolated nucleic acid that hybridizes under stringent conditions to the nucleic acid of claim 57.
- 61. Isolated nucleic acid according to claim 60. comprising the sequence: 5'-ACGGACACCTGGGCTTC-3' (SEQ ID NO:48).
- 62. Isolated nucleic acid according to claim 60, comprising the sequence: $5\,'\text{-AAACGGGAGGAGGTGGA-3}\,'$ (SEQ ID NO:49).

Isolated nucleic acid according to claim 60, comprising the sequence: 5'-AGACAGCCCAAGAGAAGAGG-3' (SEQ ID NO:73).

- 64. An antisense oligonucleotide that specifically binds to and modulates translation of mRNA according to claim 58.
- 65. Isolated human ribosomal L3 (RPL3L) and biologically active fragments thereof.
- 66. Isolated RPL3L according to claim 65 comprising the amino acid sequence set forth in SEQ ID NO:29.
- 67. A vector comprising the isolated nucleic acid of claim 57.
- 68. A host cell comprising the vector of claim 67.
- 69. A method for producing human ribosomal L3 (RPL3L), said method comprising:
- (a) culturing the host cell of claim 68 in a medium and under conditions suitable for expression of said protein, and
 - (b) isolating said expressed protein.
- 70. An antibody that specifically binds to human ribosomal L3 (RPL3L).
- 71. A composition comprising an amount of the oligonucleotide according to claim 64, effective to modulate expression of RPL3L by passing through a cell membrane and binding specifically with mRNA encoding RPL3L in the cell so as to prevent its translation and an

acceptable hydrophobic carrier capable of passing through a cell membrane.

- 72. A composition comprising an amount of the antibody according to claim 70, effective to block binding of naturally occurring ligands to RPL3L and an acceptable carrier.
- 73. A transgenic non-human mammal expressing DNA encoding human ribosomal L3 (RPL3L).
- 74. A method for identifying compounds which bind to human ribosomal L3 (RPL3L), said method comprising a competitive binding assay wherein the cells according to claim 68 are exposed to a plurality of compounds and identifying compounds which bind thereto.
- 75. Isolated nucleic acid encoding human augmenter of liver regeneration (hALR) or its complement.
- 76. Isolated nucleic acid according to claim 75, wherein said nucleic acid is mRNA.
- 77. Isolated nucleic acid according to claim 75, wherein said nucleic acid is DNA comprising the sequence set forth in SEQ ID NO:33.
- 78. Isolated nucleic acid that hybridizes under stringent conditions to the nucleic acid of claim 75.
- 79. Isolated nucleic acid according to claim 78, comprising the sequence: 5'-TGGCCCAGTTCATACATTTA-3' (SEQ ID NO:69).
- 80. Isolated nucleic acid according to claim 78, comprising the sequence: 5'-TTACCCCTGTGAGGAGTGTG-3' (SEQ ID NO:70).

- 81. An antisense oligonucleotide that specifically binds to and modulates translation of mRNA according to claim 76.
- 82. Isolated human augmenter of liver regeneration (hALR) and biologically active fragments thereof.
- \$83.\$ Isolated hALR according to claim \$82 comprising the amino acid sequence set forth in SEQ ID \$N0:34.\$
- 84. A vector comprising the isolated nucleic acid of claim 75.
- 85. A host cell comprising the vector of claim 84.
- 86 . A method for producing human augmenter of liver regeneration (hALR), said method comprising:
- (a) culturing the host cell of claim 85 in a medium and under conditions suitable for expression of said protein, and
 - (b) isolating said expressed protein.
- 87. An antibody that specifically binds to human augmenter of liver regeneration (hALR).
- 88 . A composition comprising an amount of the oligonucleotide according to claim 81, effective to modulate expression of hALR by passing through a cell membrane and binding specifically with mRNA encoding hALR in the cell so as to prevent its translation and an acceptable hydrophobic carrier capable of passing through a cell membrane.

5

- 89 A composition comprising an amount of the antibody according to claim 87, effective to block binding of naturally occurring ligands to hALR and an acceptable carrier.
- 90 . A transgenic non-human mammal expressing DNA encoding human augmenter of liver regeneration (hALR).
- 91. A method for identifying compounds which bind to human augmenter of liver regeneration (hALR), said method comprising a competitive binding assay wherein the cells according to claim 85 are exposed to a plurality of compounds and identifying compounds which bind thereto.

381 406 410

rin-2 rin-1

.75916

etrin-2

xon Trap

425 etrin-1

450

--I-----S---P-DCDS-CKPA-G-Y-I--KK-CKKDY --P-PI--SS---P-DCDS-CK---G---I--KK-CKGDY

HSPSILSAETP1 PGPTEDSSPVQPQDCDGHCKPARCSYR1S1.KKFCKKDY

MINEDSONGKICI IVRFKOCAFI AGIFISIVGIDFRNKVI DVIGVKAKI QMDTAQQERFRSVIHAYYRDAHALI I LYDVINKASFIN MINICISSACINICILIARFIDGAFLAGTFISTVGIDFRANNILDADG-K-KIQ-MODAQQERFRSVIHAYYRDAHALLILIAD-TANK-SFIN AB26 RT-PCR at Rab26

48792

on Trap

FONHIERGVYVCAKOGYELFSSRSKAKAHSSFWPAFTETTHADSVAKRPENNRSEALKV·SOGKOGNELGHEFINDGPKROOGRF 410

--C--C---IGH-F---G-K-----IGH-F--DIP------F-PG-YV----G--LFSS--KY-----WP-FT--I-A-SV-----E-GVY-CA-CD--L-SS--K-------WPAF-E--68

--V.-C--C---IGH-F-NDGPK----F--HFE-G-YVC--CG-ELF-S--K-----WPAF-E---

--GN-LGH-F--DGPK-G--R-

----F--G-W-----G---FSS--K------WP-FT--I--D-V-241 infuenza

55

elegans

cerevisiae IB Protein

FIG. 2B

CFACTTTCCTTTCCAAACCCCCCGAGGCATAATAGGCGCTCGATAAATGTGCAATAGGTGAACATGTGGTGGC 1 73 GGAAAGACTICTCAGCTCCCTGCCGCCTAGGACTGTCCAGCCCATCTATGCCCTCTCCCCAGCCTGTGCCCCA 145 217 289 TGGCAGGTGGCAGAGGCCCAGCCAGGCGCTGGCACAGGTGGCTGGGTCCCTGGGCAGCAATAAGTCCGGCT 361 TEGGCGCTGTGGGGAGGCCCTTCCTAACTCCCAAACACCATCTGTGAGGGCTGGGGGTGGGGGGCACACTAGC 433 GTGTGCAGAGCACTGTTCCTGGGGAGAGGCCCTGTGACCAGCGGCCTCCTCCCTGGGGAGCTGCCGTACAA 505 577 TGGCCTCTGGGCCCACGGCCTCCCGCCGCTGCTGCTGCTGACCAGATGAACAATTGGGGCAGGGCTGAGCCCC AGGACCTACTTTCCCCCACCCCAGAGCCACCACACGTTCTGCAGACCCCAGTCCTGGCTCACAGGGAAGC 649 TGAGCTGCAGACAAAGCCAGCCCCTCTGATGAGGGTGGAAGAGGCTGCTGCCCACTGTCCCTCTTGCAGCCT 721 GCCTGCCAGCCAGTCTGCCAGTGCCCCTGACGTCCAGAGACACCCTTGGGTTTCCCCCAGAGGCTTGTCTCTGG 793 CCAGTGGGACCCCTCTGTCAGGCCTGGGCTTTTCTCTCCACTGTCCCAGAATGATGATCTCAGCCCCCATAG 865 937 TCCCCCAGGGTTCCTCCCACCCTTAGGGTGGGGGTGCGGGGGTTGGGAGCCAGAAGCACCTTGA AGAGGTIGGTTGGGACGTTTCAGGTTCTAAGCTTGACCCACAGAGCGGABCGTGAGCCCCGTCAGGTTGAGG 1009 TCCCTCAACTTGTAAAGGACACAATTCCATTCTCTTTATCAGGAAGCTGAGGGGCAGGGGCCCTGTGGCAGA 1081 CAGAGAGCCCCTTIAGCCCTCTGTTCAGTCCTCCGGTGCCCCCATCCCTGTGCATCTGTGGCTGTCACATC 1153 CAGATGTGTGGCAAGGAGAAGGTGCCCACCAGCCAGTGTCAGTTGCTCCAGGAGCCAAGCCAGGTGCCCTAT 1225 1297 CACCTGTCTTCCCGTTCCTCCCCTCCATGGTCAGGCCCTCCTCCTCCTCTCTGGTCTTCAGTTTCCCC TAGGAGGCTTCCGTGTCCTCCTCCCCCCCCCAACAGCGGGATGCGTCTACCTCTCCATTCTCTTCC 1369 TCCTGGTCCTTGCTCATCTCTGGTCGTGTCCAGGGTAGCACCCGCGGGCCTCCTCCACCAGCTGCAGGCCT 1441 GCCTCCCATCTGAAACGGGCCATTCAGGCCTCCATGCTGGCCCTGCACGGAACTTGTTCCCTGCCCCTCCC 1513 1585 1657 TEGGCTTCTGCCTCAGTTTCCCTGCCCAAACGTGCTGTGACGTAGGCCAGTGGGCTCCGGGTTGCGACCAGC 1729 CCCTTCCCATGATTAAACCCTACTCCCTGCCCCTGCAGAGGGGTCCTCAACAGCTAACCAAGCCCCGGAACC 1801 CCAAGAAGCCACCCATCCCACCTCCAGCTTCCATGTCCTCCCTGCCAGCTGGGCCCGTGGCAGAGGTGCC 1873 CCTAGAAACTTGCAGACCCAGGGAGCTTTGGGATCAGAATCTGGCCTGGTGCAGGGGATGCTGGCCTCATGT 1945 CTTAGCCCAGCTCAGGCCCATGGGGTGCCCCCCTTCCTCAACATGGGCAGACACACCCCAATTTGTGCAG 2017 2089 CTCTOGACTTGGGCCTGATGCCACTTGAGACTCAAATCCAACAGCTTCAGAGCGCGTGCTGAGTAACAG CCATCTGCAGGTGAGGAACAGGAGCCCAAGACATGCAGCCAGAAATGGGGCAGGTTGGATTCAAAATTAGA 2161 2233 CCICACCCAATCCTCCGTTCCTTCTACTCCAGTACATCCTCCTTTCCCCATCACCCTTCAACTCCTCTTAC TIGGCITCCCTACCIGGGGAACATCCAGGGCCTCIGCTGTCAGACCCGGGGCCTTGCCTGCCTGATGGTCTT 2305 CAGGAGGAGGCACCCAGACCCCGTCCAGCACGTGGCACCACCAGGAGCAGTAAAGACCTGGCTGTGG 2377 CCCAGGACCCTGCTGGGTGGTCCCCCAGGGGCTGGGAAGGCTGAGCTGCCCCCCTCCAGACCCCTCCGGCC 2449 AGGCATTCCTGGCTCCCGGCCCTCCCCTGGCTCCCGGGCCTCCCAGCCCCTTCCCCGGCTGGCCCAGCC 2521 2593 2665 2737 2809 GGAGGCGGGAGACTICCTCCGCCGGGCCTCGGTGGGTGAGTGCGAGCGGCGGGTGGGGGCCTCCGCGGGGG

FIG. 3A

GAGGCACCGGGAGCGGGGGCGACGCCTGTCATCGCTCTAGGCCCAGCGGGGAGGACGCCCCAACATCCCCGCT 2881 2953 GCIGIGCIGGGCCCGGGGCCGCCGCCTCCCCACCICIGGGCCGGGGCCGGGGGCCCGGGGGCCCCT GITCCTCGGCATTIGCGGGCCIGGTGGGCACAGCCGGGCACAGGGCTTCTTTTCCCCCAAGGGCAGCGTCTTGG 3025 3097 GGCCCGCCACTGGCTGACCCGCAGCGGCTCCGGCCATGCCTGGCCTGGCGGGGGCTGCTGCTGACGGCA GGCACGCTCTTCGCCGCCCTCAGTCCTGGGCCGCCGGCGGCGCCCCACCCTGCCACCATGAGGGGGGTGGG 3169 CCCCGCGCCTGCCCAGCACTGGTCAACGCCGCCCTGGGCCGCCAGGTGCTGGCTTCCAGCACGTGCGGC 3241 3313 GGGGGCACGGCCACCCTCTGTGCTGGCGCTCGCAGTCCCTGCCTCGGGCGCCCCTCAAGGTGACTCTCACG 3385 GIGCOCCIGGGCAAGGCTTTTGAGCTGGTCTTCGTGAGCCTGCGCTTCTGCTCAGCTCCCCCAGCCTCCGTG 3457 GCCCTGCTCAAGTCTCAGGACCATGGCCGCAGCTGGGCCCCCCTGGGCTTCTTCTCCTCCCACTGTGACCTG 3529 GACTATGGCCGTCTGCCCTGCCCAATGGCCCAGCTGGCCCAGGGCCTGAGGCCCTGTGCTTCCCCGCA 3601 CCCCTGGCCCAGCCTGATGGCAGCGGCCTTCTGGCCTTCAGCATGCAGCAGCAGCAGCCCCCAGGCCTGGAC 3673 3745 CTGGACAGCAGCCAGTGCTCCAAGACTGGGTGACCGCCACCGACGTCCGTGTGGTGCTCACAAGGCCTAGC ACGCAGGIGACCCCAGGGACATGGAGGCCGTCGTCCCTTACTCCTACGCAGCCACCGACCTCCAGGTGGGC 3817 3889 GGGCGCTGCAAGTGCAATGGACATGCCTCACGGTGCCTGCTGGACACACAGGGGCCACCTGATCTGCGACTGT CGCATGGCACCGAGGCCCTGACTGCGGCCGCTGCAAGCCCTTCTACTGCGACAGGCCATGGCAGCCGGCC 3961 4033 ACTOCCOGGAATCCCACGCCTCCCTCCGTGAGGCCTTGGAGGGTGGCCTGGGGACCTTGGACACAACCAGC CIGCCCTGACCCATCCCTCCCTGCAGCTTCCTCCTGCAACGGCCATGCCCGCCGCCGCTGCCCTTCAACATGG 4105 4177 ACTOCCACTACTOCCGGGAGGGCTTCTATCGAGACCCTGGCCGTGCCCTGAGTGACCGTCGGGCTTGCAGGG 4249 GIGAGCCACCACCGGCCACCIGCAGGCCTCACCCTCTGACTTCCCAGATCCCCAGACAGGCTTCTGACCAG 4321 4383 GCCCTTCCCACCTCTGTCCTCAGCCTGCGACTGTCACCCGGTTGGTGCTGCTGCCAAGACCTGCAACCAGAC 4465 4537 AAGCCCTCCCCAGTGGCCCCTGTGTTAGTGAGTGACCCTGCCCCGCCTCAGCCACCAAGCCAAGCCAAC 4609 CTCCCTCCCTCTCTGCAGAGCCCCTATCCCTGGAGCCCAGGTGAGGAGCAGCCGTGTGCAGCCCAGGGTG 4681 4753 AGGGAGICIGIGCCAGCCICCCACCITCIACCCAGACTGICACTGGCACTGCAAACCTGCCGTGGCAGCTA 4825 COGCATCAGOCTAAAGAAGTTICTGCAAGAAGGACTATGGTAGGTGCCCTCAGGCCTCCCGGGGACCTTCCCA 4897 CCITCCICCICCCCIACCITCCCICCCCCCAGCITCCCCTTGCAACCCTTGCTGGGCCCCA 4969 5041 AGGCCCATCCTCATCCCTCAGGTCCTCCAGGGCCAGGGCACCCGGCCCCTTCAGCCCCCACTGCCCTCGTGGT GICCICCCGIGCCICCCCIACCGCGGCAGGCCGCCCTTCCTGACCCGCCCCCTCTCGCTCTCCCCGC 5113 5185 5257 5329 5401 TGGGGCCGGGGGGCCGGGCTCATCGCCGCGCGAAGCCTCGTGCTACCCTGGAGGGACGC 5473 5545 GCTGGGCAGGGCGCCTGCTCCCACATCTAGGCGCACGTTCACCCTGTGCCTTCGCCTGCCAAGGAGTCC 5617 - 5689 TCTGGCCCTGGGGGGATGTCACCGGCGCACGGACAGCCCGCACAGAGGCAGATGATTATGGCACACCC

FIG. 3B

5761	GCAGGACCCCATGGTCTCCCGCCCTCTGGCTGTCCGCCCTGTCCCAGGGGCCACTGGCCATTACCCGCAAGGCTG
5833	TCAATCCTTOGTCATGCCGGGCCCTCTCGGGGGATCTCAGATCATCCCCGGGGCCGCTGTCATGCACCCCAC
5905	CIGIGOGGCCACCOCCAGGAGCGCACIGACCICCOCCAAAGACIGIGGCCACCGCAGGCGCCCTIGGACCCCC
5977	ATGGGGGACAGGGGGTCCCCTGCCTCCTGCAGCCCCAGGAGGGGGGGG
6049	COCCICCOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
6121	GGCTCCGTCCGGCCGCTCTCTCTCGCCGCGCTCTCTCACCTCGGCGCCACAGCTCCTCAGCTCAGCGCCC
6193	GICCCAGAACCICCITICCAGCCCITCICCCCCGACTOGGGAAGGGACGICGIGCCCACGCGGITICCGGATCC
6265	ACGCGTGACCCGGCACCCGCCACTCCCACAGGCGGCTGTCCGGCAGGCCCGATGCCCTCGGCAGGGCCGTG
6337	CCACCCCCCCCCTTGTTGTCCCCCCGGCACCGGCACTGCCGTTTGCCTCCTCTCCGCACGGGACCGGTTC
6409	CCGGCCGCCCCAGCTTCCGCCGCTGCGGCCGCCCACCGTCAGCCGCCATGCCCAGCCCGCCAGGCCGGA
6481	GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6553	CAAAGGCCGGCGCGCGCTCAGCAGAAAGCGGCGCGCGCGC
6625	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6697	GIGGGGCCCGGCIGCCCCATTCCAGGCGGGATCCCCGGCCACGCGGGTTGGGGGCTCCAGAGCC
67 6 9	CGGCACCGCCGGCGCIGCAGCIGCGGCTIGGCCT

FIG. 3C

M P G W P W G L L T A G T L F A A L S P G P P GCCCCCCCCCACCCTGCCACGATGAGGGGGGTGCCCCCGCGGGGCTGCCTGGTGAACGCCG APADPCHDEGGAPRGCVPGLVNA 143 CCCTGGGCCGCAGGTGCTGGCTTCCAGCACGTGCGGGCGCCGCCACTCGGGCCTGCGACGCCTCCGAC ALGREVLASSTCGRPATRACDASD CCGCCACGGCCACACTCCCCCCCCCCTTACTTCCCCAGGGGCCACGGCCAGGCCTCTGTGCTGGGGGCTC PRRAHSPALLTSPGGTASPLCWR...S GGAGICCCIGCCICGGGCCCCICAACGIGACICTCACGGIGCCCCIGGGCAAGGCITTIGAGCIGGICT 285 ESLPRAPLNVTLTVPLGKAFELV TCGTGAGCCTGCTCTCTCTCAGCTCCCCCAGCCTCCGTGGCCCTGCTCAAGTCTCAGGACCATGGCCGC 358 F V S L R F C S A P P A S V A L L K S Q D H G R 427 SWAPLGFFSSHCDLDYGRLPAPAN TGCCCAGCTGGCCCAGGGCCTGAGGCCCTGTGCTTCCCCGCACCCCTGGCCCAGCCTGATGGCAGGGGCC 498 G P A G P G P E A L C F P A P L A Q P D G S G TTCTGGCCTTCAGCATGCAGCACAGCCCCCCAGGCCTGGACCTGGACAGCAGCCCAGTGCTCCAAGAC LLAFSMQDSSPPGLDLDSSPVLOD TGGGTGACCGCCACGGACGTCCGTGTAGTGCTCACAAGGCCTAGCACGGCAGGTGACCCCAGGGACATGGA 640 $\begin{smallmatrix} W & V & T & A & T & D & V & R & V & V & L & T & R & P & S & T & A & G & D & P & R & D & M & E \\ \end{smallmatrix}$ 711 AVVPYSYAATDLQVGGRCKCNGH CCTCACGGTGCCTGCACACACACAGGGCCACCTGATCTGCGACTGTCGGCATGGCACGGAGGGCCCTGAC A S R C L L D T Q G H L I C D C R H G T E G P D

FIG. 4A

TGCGGCCGCTGCAAGCCCTTCTACTGCGACAGGCCATGGCAGGGGCCACTGCCCGGGAATCCCACGGCTG 853 CGRCKPFYCDRPWQRATARESHAC CCTCGCTTGCTCCTGCAACGGCCATGCCCGCCGCCGCCGCTTCAACATGGAGCTGTACCGACTGTCCGGCC LACSCNGHARRCRFNMELYRLSG GCCGCAGCGGGGGGGCTCTCTCTCCCACTGCCACTACTGCCACTACTGCCACTACTGCCACTACTGCCGCAC RRSGGVCLNCRHNTAGRHCHYCRE GCCTICTATCCAGACCCTGGCCGTGCCCTCAGTGACCGTCGCCCTTGCAGGGCCTGCGACTGTCACCCGGT G F Y R D P G R A L S D R R A C R A C D C H P V 1137 TGGTGCTGCTGCAAGACCTGCAACCAGACCACAGGCCAGTGTCCCTGCAAGGATGGCGTCACTGGCCTCA G A A G K T C N Q T T G Q C P C K D G V T G L CCTGCAACCGCTGCGCCCCGCCTTCCAGCAAAGCCGCTCCCCAGTGGCGCCCCTGTGTTAAGACCCCTATC TCNRCAPGFOOSRSPVAPCVKTPI 1279 OCTGGACCCACTGAGGACAGCAGCCCTGTGCAGCCCCAGGACTGTGACTGGCACTGCAAACCTGCCCGTGG P G P T E D S S P V Q P Q D C D S H C K P A R G CAGCTACOCCATCAGCCTAAAGAAGTTCTGCAAGAAGGACTATGCGGTGCAGGTGGCGGGGGGGTGCGCGCG SYRISLKKFCKKDYAVOVAVGAR 1421 GOGAGGGGGGGGGGGACAGGCTTCCCGGTGGGGGTGCTGGCGGGTGTTCCGGAGGGGAGAGGAGGGC G E A R G A W T R F P V A V L A V F R S G E E R ARRGSSALWVPAGDAACGCPRLLP GRRYLLLGGGPGAAAAGGAGGRGP G L I A A R G S L V L P W R D A W T R R L R R L 1705 CAGCGACGCGAACGGCGGGGGGGCGCTGCAGCGCCCCCCCA QRRERRGRCSAA

FIG. 4B

FIGURE 4C

CAGCGGGAGG	ACGCGCCAAC	ATCCCCGCTG	CTGTGCTGGG	CCCGGGGCGT	GCCCGCCCT'	. 60
GCTCCCACCT	CTGGGCCGGG	CTGGGGCCGC	CCGGGGGCCC	TGTTCCTCGG	CATTGCGGGC	120
CTGGTGGGCA	GAACCGCGGA	GAGGCCTTCT	TTTCCCCAAG	GGCAGCGTCT	TGGGGCCCGG	180
CCACTGGCTG	ACCCGCAGCG	GCTCCGGCCA	TGCCTGGCTG	GCCCTGGGGG	CTGCTGCTGA	240
CGGCAGGCAC	GCTCTTCGCC	GCCCTGAGTC	CTGGGCCGCC	GGCGCCCGCC	GACCCCTGCC	300
ACGATGAGGG	GGGTGCGCCC	CGCGGCTGCG	TGCCAGGACT	GGTGAACGCC	GCCCTGGGCC	360
	GGCTTCCAGC					420
	GGCACACTCC					480
	CTCGGAGTCC	•				540
	TTTTGAGCTG					600
	GCTCAAGTCT					660
	TGACCTGGAC		•			720
	GGCCCTGTGC				••	780
	CATGCAGGAC					840
	GGTGACCGCC				•	900
	GGACATGGAG					960
	CTGCAAGTGC				•	1020
1000000000	CIGCAMGIGC					

FIGURE 4D

ACCTGATCTG	CGACTGTCGG	CATGGCACCG	AGGGCCCTGA	CTGCGGCCGC	TGCAAGCCCT	1080
TCTACTGCGA	CAGGCCATGG	CAGCGGGCCA	CTGCCCGGGA	ATCCCACGCC	TGCCTCGCTT	1140
GCTCCTGCAA	CGGCCATGCC	CGCCGCTGCC	GCTTCAACAT	GGAGCTGTAC	CGACTGTCCG	1200
GCCGCCGCAG	CGGGGGTGTC	TGTCTCAACT	GCCGGCACAA	CACCGCCGGC	CGCCACTGCC	1260
ACTACTGCCG	GGAGGGCTTC	TATCGAGACC	CTGGCCGTGC	CCTGAGTGAC	CGTCGGGCTT	1320
GCAGGGCCTG	CGACTGTCAC	CCGGTTGGTG	CTGCTGGCAA	GACCTGCAAC	CAGACCACAG	1380
GCCAGTGTCC	CTGCAAGGAT	GGCGTCACTG	GCCTCACCTG	CAACCGCTGC	GCGCCTGGCT	1440
TCCAGCAAAG	CCGCTCCCCA	GTGGCGCCCT	GTGTTAAGAC	CCCTATCCCT	GGACCCACTG	1500
AGGACAGCAG	CCCTGTGCAG	CCCCAGGACT	GTGACTCGCA	CTGCAAACCT	GCCCGTGGCA	1560
GCTACCGCAT	CAGCCTAAAG	AAGTTCTGCA	AGAAGGACTA	TGCGGTGCAG	GTGGCGGTGG	1620
GTGCGCGCGG	CGAGGCGCGC	GGCGCGTGGA	CACGCTTCCC	GGTGGCGGTG	CTCGCCGTGT	1680
TCCGGAGCGG	AGAGGAGCGC	GCGCGGCGCG	GGAGTAGCGC	GCTGTGGGTG	CCCGCCGGGG	1740
ATGCGGCCTG	CGGCTGCCCG	CGCCTGCTCC	CCGGCCGCCG	CTACCTCCTG	CTGGGGGGCG	1800
GGCCTGGAGC	CGCGGCTGGG	GGCGCGGGG	GCCGGGGGCC	CGGGCTCATC	GCCGCCGCG	1860
GAAGCCTĊGT	GCTACCCTGG	AGGGACGCGT	GGACGCGGCG	CCTGCGGAGG	CTGCAGCGAC	1920
GCGAACGCC	GGGCGCTGC	AGCGCCGCCT	GAGCCCGCCG	GCTGGGCAAG	GCGC	1974

•	11/4/
Netrin-1	MPRRGAEGETATELABAWDAOPDEGEYEGLNMEAVOTAORDEGEYDHELE
Netrin-2	DRUTTTSVÜRLA RAANE EVAQOTEEDEGEYE
hNet	MPG WEWGLILTAGTUFAAUSPEPE APADEGHAEGGA
Netrin-1 Netrin-2 hNet	RGGVEGLWWYLER WLASHWORK ER PAID AG
Netrin-1	EKRAHEESFUUDUN PHÜLIGMOSDEYVOYERNYILMUS ICIKARIYT
Netrin-2	ERRAHEEAYULDEN TAANMAGWREETUHHLEHNYILIPUR ICIKARIY
hNet	ERRAHSPALITESPGGTASPLEWRSESIPRAELNYILMIVP DEKA JELVE VS
Netrin-1	LOEGSPREESMALYKSMDXGKUWYPFDEXSTOCEKMYN SER PAINKON
Netrin-2	DOEGSPREESTATEKSMDXGKUWYPYDYKSSIOCEKI KOKOSK ATVILKON
hNet	DRECSAPPASVALLKSODHGRSWAPLGEFSSHEDLDYGRLPAPANGPAGP
Netrin-1	EOEATCHDSHUDVRZISCEDDA SKADCKETA HOEDNS VARODWYR YN Y
Netrin-2	EOEALCHDGLADLYEDTGGBARSHADBERES AODEDS SWARODWY VAN DE
hNet	GPEATGFPAPLAOPDGSGGEAFSMODSSPEGL DLDSS WYDDWARACHDV
Netrin-1 Netrin-2 hNet	KUTESRUHTEGDE NEDDSELARDSHE VOSDLEVER KUTESRUHTEGDE NEDDSELARDSHE VOSDLEVER KUTESRUHTEGOVER VIS
Netrin-1	ROVRDRDD NEVEDERHNTAGEEODREKEEHVORPWORAHARDANEGVAG
Netrin-2	RCVKDKEO KUVCDCKHNTEGEEODREKEEHVORPWORASAREANEGNAG
hNet	RCLLLDTOGHUICDERHGTEGEDCGREKEEYCDREWORATARESHAGUAG
Netrin-1	NCNIHARRGRENMELIYKUSGRKSGGVGINGRUNIVAGRUGUKGKISH SARAM
Netrin-2	NCNIHARRGRENMELIYKUSGRKSGGVGINGRUNIVAGRUGUKGI SARAM
hNet	SCNGRARRGRENMELIYRIBSGRRSGGVGUNGRUNIPAGRUGUVGR EGIVAKUP
Netrin-1	SKFTSHRKACKEEDEHEVGAAGOITONOFFIGOGFIGKDGVIJGI MULIKOAKGY
Netrin-2	SKSITDRKAGKAGDEHEVGAAGKTENOFFIGOGFIGKDGVIJGIVIGINGAKGI
hNet	GRALSDRAGRAGDEHEVGAAGKTIGNOFFIGOGFIJKDGVIJGIVFSIJKGAPGIS
Netrin-1	DOSRSEJAPCIKIPAAPEPTAASSTEEPADGBSYCKASKEKLKUNKKKE
Netrin-2	OOSRSEVAPCIKUPAINPUSUVTSTEAPADGBSYCKPAKENYKENNKKKE
hNet	OOSRSEVAPCVKTEIPGETED-SSPVOPODGBSHEKPARESVRESLEKFE
Netrin-1	KKDYAVOIHUMK AEKNADWWKENVNEISVYKOESNELREGDOTUWHEK
Netrin-2	KKDYVVOVNILE METVANWAKETINILSVYKCRDERVKREDNFLWIHLK
hNet	KKDYAVOVAVGARGEARGAWTREPVAVLAVFRSGEERARKESSALWVPAG
Netrin-1	DIACKGEKVKEMKKYGLIGSTEDSPDOSEIIADKSS GVIOTKUT
Netrin-2	DISCKERKIQISKKYLVMCISENSTDRPGLMADKNS AVIOVEDA
hNet	DAACGCERLLEGRRYLDEGGGPGAAAGGAGGRGPGLIAARGSKYLPWEDA
Netrin-1	WARRERKFOOREKKOKGREA
Netrin-2	WEREER BORRERRERESAA
hNet	WEREER BORRERRERESAA

SUBSTITUTE SHEET (RULE 26)

signal peptide

domain VI

domain V

domain C

FIG. 6

SUBSTITUTE SHEET (RULE 26)

e B B B & & GGA GAC ACC TOG 8 8 £ 7 00 a ပ္ပ ၕ CAG TCC ATC CAG GAG CTG CCT CTG TTC TTC ACC TTC CCT Q S I Q E L P L F F T F P <u>1</u>00 ≥ GGG ATC S S CTG TTT L F CTG CCA TTG C TTC F CTG GAA CTC 1 AAC GCC ACC ATC TAC CCG GGC N A T I Y P G) S P PG AAT GTG N V

ဗွ ဗ ဗ္ဗ GAG ACA GTG CGC AGG GCA CTT GTG ATC AAC ATG CGA GTG E T V R R A L V I N M R V P C o C CAC AGT GAC GCT GCC AAG GCC H S D A A K A S S TAC ATC CCT Y ₩ 8 1 1

T. 8 ~ ၌ ၕ ල් ස F . orc V or or ე ▼ ည **န** g I ट्याट ८ S S 3 S op s ဥ္သင့္မ AAC N g D D TITI GAG GAC TAC ATT AGG TAC F E D Y I R Y GAG AAG GAC 1 E K D I g S 88 ~

g ဗ E G CAA ACA 1 T CCG CTT TTC CCA AAC CCA GGA CCA AGG GAA CTA ACA TCC ₹ F £ ₹ AGC AAG GAG CCC CTG CCG CTG GCG GTG AAA TAT CAC CTA CGG TTC AGT TAC ACA CGG AGA AAT TAC ATG S K E P L P L A V K Y H L R F S Y T R R N Y M $\,$ CTT TTC CTG AAA GAG ACA GAA GGC TGG CAC ACT ACT TCC L K E T E G W H T T S TTC F E CAC TIT F ဋ္ဌ **26)**

88 **~** gat d CAT GCC H 600 CAG CAT GCT GTG GAC CGG GCC ATC ATG GAG TAC Q H A V D R A I M E Y GAA CCT GGG TAC ATC CGG GAA GGC TTC CTG GCC GTG E P G Y I R E G F L A V GAT GGC D G

FIG. 8A

ATC I AGG AGG CAG TAC CAG CTG CTG CTG CTG CTC AGC TTC ACC TAC ACC GCG CTC ACC ATT GCC CGT GCT GTC GTG CAG GAG AAG GAA 700 GCA GAC CCC TTC C A D P F L OCC ACA COC CAG CTG TTC CAG AGA CTG ACG GTG ACC ATC AAG AGG TTC CCG TAC CCG CCG TTC ATC A T R R F P Y P P F I

ပ္တ CTC ATC TTC. £ -3 F F FF F J. 1 22 -3 TTC F . ₹ ე გ AGT . CAC TOG ? 1 1 7g ∡ နှင့် လ လ လူ . 1 ဗွိ ဗ ATG M ATG M ဗွ 🕿 TAC GAG E

TIC TIC ည န L V L **3**00 **8** S D P ည လ GCC GTG CTG TCC TCC TTC ATG ACC CTG CTC TTC TGT GTC AAG GTG AAG CCA AAT GTA

15/47 ဗ္ဗ ဗ 1000 TOC TIVE GCC AIC TUT ACT TIVE AGE TIVE AGE ACT TIVE TIVE AGE AAA GCC AAC ATG GCA GCA GCC TIVE C F A I S T I S F S F M V S T F F S K A N M A A A F

1 1 1 CCC TAC TITC TITC GTG GCC CCT CGG TAC AAC TGG ATG ACT CTG AGC CAG AAG CTC TGC TCC TGC PC Y F F V A P R Y N W M T L S Q K L C S · C TIC TIC ACC TAC ATC

AAA TIT GAG GCG AAG GGC ATC CAG TGG CGA GAC CTC CTG AGT K F E A K G M G I Q W R D L L S မွ ဗ CTG TCT AAT GTC GCC ATG GCA ATG GGA GCC CAG CTC ATT L S N V A M A M G A Q L I 1200

TAC * CCC GTC AAC GTG GAC GAC TTC TGC TTC GGG CAG GTG CTG GGG ATG CTG CTG GAC TCT GTG CTC TAT GGC CTG GTG ACC TGG P V N V D D D F C F G Q V L G M L L L D S V L Y G L V T W

88 ~ g ဗ 9 **₹** GAC CTG GAG E g 4 e B B 9 8 8 3 S 2 S 1500 *TT GAA G 8 2 ATC ATG (I M I TET T AAA GCA CTC AGA AAC GAG TAC K A L R N E Y CAG CCC TGG TAC TTC TTC Q P W Y F F CC. GAG E) S > 8 8 8 ပ္ပ ဗ GAC D GAC AGT (TIC ည် တ ဗ္ဗ ဗ GCG AAG GAG GAA GAA G K E E E

900 ATC AAG ATC AAG CAC CTG TCC AAG GTG TTC AGG GTG GGA AAT AAG GAC AGG GCG GCC GTC AGA GAC CTG AAC CTG TAC GAG I K I K H L S K V F R V G N K D R A A V R D L N L JN L Y B

88 % **9** 0 1700 C TIT CCC CCC ACC AGT G F P P T S G CAG ATC ACC GTC CTG CTG GGC CAC AAC GGT GCC GGG AAG ACC ACC CTC TCC ATG CTC ACG GGT CTC Q I T V L L G H N G A G K T T T L S M L T G L

2 1 CAG AAG TOC CCT GAA GAA GTC AAG CAG ATG Q K C P E E V K Q M D D D ე Έ S 0 CTG TGC CCG C CAG ATC CGG AAG AGC CTG GGC QC I R K S L G ACA GTC GCA GAG CAC CTT TAT TTC TAC GCC CAG CTG AAG GGC CTG TCA CGT T V A E H L Y F Y A Q L K G L S R TAC ATC AGC GGG TAT GAA ATT TCC CAG GAC ATG GTT Y I S G Y E I S Q D M V

1900 ATC GCC CTG GAG GAC AAG TGA AAC TCA CGG AGC CTG AGC GGG GGC ATG AGG CTC TCC ATC GCC CTC I G L E D K W N S R S R F L S G G M R R K L S I G I A L

ATC OCA GGC TCC AAG GTG CTG ATA CTG GAC GCC ATG GAC GCC ATC TCC AGG AGG GCC ATC TGG GAT CTT CTT CAG I A G S K V L I L D E P T S G M D A I S R R A I W D L L Q

g Ä ပ္တင္က CTG CTG GGA GAC G B B 0 0 0 TTC ATG S S E GTC CTC ACC ACC CAG AAA

OTC AAG GAG CCG V K E P 4 GGC TAT CAC ATG ACG CTG S P S TAC GGT Y G 2200 CAG AAA ' CTC AAG TCG CTG S L ဗ္ဗ ဗ ဦ ပ ည် ပ 90 13 13 යු වි

TCT S 12 12 13 ට ව ය ₩ **8** AGC AGC GCT (S S S A C 2300 ACG CTG GAG A T L E S ე გ A N CAC GTG O CAC H OTC CAC ر. ت S C 3g s GAA GAC ATC E D I

17/47 800 A GAG CTG GGC ATT GCC AGC TTT GELGELGELGELAGE GAA GGT CTC TTT GCT AAA CTG GAG AAG AAG CAG AAA E G L F A K L E K K Q K AGC ACG CAC AGG TTT S T H R F 9 9 9

ည် ၁ ATC I 2600 GCC CTC A L 8 g ATG GAG GAA GTC TTC CTT CGG GTC GGG AAG CTU GTG GAC AGC AGT ATG GAC ATC CAG GCC ATC CAG CTC CCT M E E V F L R V G K L V D S S M D I Q A I Q L P g GAC CCC TCC GAC GOC ATT D P S D G I GGG GCC ATG C 161 C 1. 1. N A GAC AGC D one v ₽ **₽** GAC TOG O AGC S 000 **A** ည က AGG R GAG E ე ლ 9 0

AGC S ర్ట్ « TTC CTG AAG AAG GCC F L K K A ATG. ည္တ 🏽 £ 3 TTC 4 **≸** ∘ CAG ဥ္ပ ပ S E 55 73 ဗ္ဗ ဗ AČŢ N A E 1 AAG K) |-|ğ « AC T ဗွ 🗠 9 9 9

ပ

GAG E Z Z CTC CTG GCC ATC 13 13 GTC ACC (ဋ ACC T 5 orc orc orc oct v o G GTG GCG ATG M TGG CGC GAG TGG AAA W R E W K

 $\overline{\infty}$

12 12

ე ლ 9 0 Z SC g = CAG GCC AAG G COG AAG GGA TTC R K G F GAG GAG TTC : 15C GGG C 7 7 7 8 % GTC GTG GAC AAC CTT CTG TTC AAG CTG CTG V V V D N L L F K L L 915 V GAC CTG ව ස ස ပ္ပ ဗ 3300 GCG GTC AGC GAG AGG GCC A V S E R A ပ 3200 ctg cag gct gcc aag gac cag ttt aac gag L Q a a R D Q F N E3000 TIT AAT GAG CGG TGC CTT GTG GCA GCG TCC TTC AGA GAT GTG GGA F N E R C L V A A S F R D V G CGC GAG GTG CTC GGT R E V L G CCC ATC CTG AGG CTG ACC TTG GGC GAG TAC GGC AGA ACC GTC GTG CCC TTC TCA P M L R L T L G E Y G R T V V P F S g L ري م TCC ATC > GGA CAG GAG C SE SEC TIC K ACG T J 3100 T GCC (GAG E GTG GTC TCC AAC TTC CCC CAG CCC CGG AGC GCC V V S N F P Q P R S A TTC TTG GCC AGC F L A S GAC GCA CTG CAG GCT D A L Q A AAC AAC CAG GCG TAC CAC TCT CCA GCC ACT N N Q A Y H S P A T ე გ TCT OTTO CARG GGG GGC GGC S V E G G G 2900 CTG AAA C L K I CAT H 2 2 3 3 2800 GAC GAC D D AAC N P GG £ 4 9 5 0 ₩ ₩ 3 ე ე ე

3400 TCC TTC CTC ATC CCC AGT S F L I P S GCT CTG CTG TGG GAC CTC ATC
A L L W D L I

8E GTG CAG TIT GTG AGT GGA GTC CAC GTG GCC AGT TTC TGG CTC

V Q F V S G V H V A S F W L

FI

ر 1 ع 13 12 2 CAC ATG GCT GAC ACC H M A D T ပ္တ ဗ GAC D 7 7 ပ္ပ ઇ 215 V TTC GAC

E . CTG ACC TAC ACG AGG C ည္တ 🔻 ეე ▼ ည္တြင္ FF 7 ည္တြေ 2 3

ည် ၃ CTG GAT CAC ₽ P * \$ ည္သ CTG GAA GAA CTT L E E L * **}** ATC 8 8 ATG M ATC I ACC T ည် နှင့် နှင့် ATG M ည န ATC ပ္ပ ဗ

19/47 s S 7 ACC ည် သ TAC Y 3700 GTG CTG CCC AAC CAC TGT CTG GGG ATG GCA GTC AGC AGT TTC TAC GAG AAC TAC GAG ACG CGG AGG V L P N H C L G M A V S S F Y E N Y E T R R TAC TCC AAG AAA TAT AAC ATC CAG TAC CAG GAG AAC TTC TAT Y C K K Y N I Q Y Q E N F Y

ည ဇ

धुट ८

CGG TITT R F

ဗ္ဗ ဗ

والا د

OCC TOG AGC GCC CCG GGG A W S A P G

ည် န CTC ATC GAG ACC AAC CTG CTT CAG AGA CTC AGG GGC ATC CTC L I E I N L L Q R L R G I L TIC 3900 GCC TAC CTC ATC CTG CTC A Y L I L L S G C A ည္တ န

13 13 GAG GAC CAA GAT GTA GCG GAC GAG AGG ACC CGC E D Q D V A D E R T R हु व CT. ० २ 4000 TAC ACC CGC ATC CCT Y T R M P A A A

SUBSTITUTE SHEET (RULE 26)

E G

g •

515 >

පු ස

80

GAG E

TAC Y

AAG GTG K V

ည်

9

G G

AAG K

CTG ATT ATC I

Ž r

£ 7

ည္ရွိ

ည် ပ

g

ညွှ

g «

20/47

13 AAG ACC ACG ACT K T T T ဗွဲ ပ 4200 A GCC (**§** 0 AAT N FF F ႘ၟ ၑ E 13 g ... ႘ၟ ၒ TT F ည္က ပ S 3 ႙ၟ ပ & × 80) |-| ည္ဆင္သ £ 7

႘ၟ ၒ ATC g ~ § 0 8 4 9 4300 GGA AAG G K 56 GAT Ω TCT S AGC S ATC AGA R S I g Ö 8 G g H ပ္ပ 4 GAT Ω 8 Ö 7 တ Ę ۲ **E** 12. S လ 9 9 9 S S S

႘ၟၕ Z Z ည်း ය හූ g a ည် ပ 4400 - ATC C I Ę 8 TAC Y Ö **A**CC **8** ∞ A AGG g a g ≈ **GIC** > 12 हें द GCC AAC AAG C ATC TAC ج د وبر 5 1 g I CTC CAC CCA (GAG ATG Σ ធា M . 9 ≈ CTG CTG (မွ ೮ A F ATG M ဗ္ဗ Ö ည် ၕ g = . 1 1 ည်ရှိ £ 1 ACT T GAG AAC I 71C ည္တ 🛾) S GAT ۵ E 4 ည္ညွ ပ 3 ဗွ 8 3

ပ္ပ g a AIG M ည္သ <u>م</u> 8 GAG E CPC CPC £ 7 स् g GAG E **წ** 0 ATC 1 E 1 გ <u>~</u> ATC I ႘ၟ ၒ **A** Agc s g **₹**

9 E ည် 9 8 ATG # လ ဗွင **₩** ည္သ ₽ ₽ CGA GAG TCT GGC AAG GCC ATC ATC ATC R E S G K A I I I I ႘ၟ ᠼ **8** ≈ **ુ** ∢) Sig > **1 9** <u>1</u>90 **≥** £ -1 2

FIG. 8G

CTG TOC ACC CGG CTG GCC ATC ATG GTG CAG GGG CAG TTC AAG TGC CTG GGC AGC CAG CAC CTC AAG AGC AAG TTC GGC AAG TAC

GGT ATT CTG GAG AAA GCC CTG GAA GAT GAG CAC CAA GGC ATG GTC CAT TAC CAC CTG CCG GGC CGT GAC CTC AGC TGG GCG AAG GTT TTC

OTTO CARC TAC TEC OTTO AGE CAG ATE. TEG CTTG CAA CAG GTE TTE V D D D Y S V S Q I S L E Q V F

AGTCACCGCGAAGCGGGCACCGTCCCACAGCATCTCCTAGAAGCAGCGGCGCCGCACAGGAGGGAAGGTGGCCAGGCTCGAAGTCGAAGTCGATTTTCCAGCACTGCACCCTCAGGAAGTCGCC AATGGACCATGCAGATCACTGTCAGTGGAGGGGAAGCTGTGATTAGGTGCTGGGGTCTTAGCGTCCAGCGCCGGGGCCCGGGGGCATCCTGGAGGCTCTGCTTAGGGCATGGT aaaaaaaaaaaaaaaaaaaa

FIG. 8H

	abc1 abc2 hABC3	ITSF WSF ITVL	PTSGTAYILGK PTSGSATIYGH PTSGRAYISGY	989 90 575	
	abc1	* ** * * * * * * * * * * * * * * * * *		1067	
S	abc2 hABC3	DIRTEMDEIRKNLGMCPQHNVLFUKLIVEEHLWFYSKLKSMAQEEIRKEIDKMIEDLELS-NRKHSLVQILSGGMRKK EISQDMVQIRKSLGLCPQHDILFDNLTVAEHLYFYAQLKGLSRQKCPEEVKQMLHIIGLE-DKWNSRSRFLSGGMRRK * * * * * * * * * * * * * * * * * * *	VILLSGGMRRK SRFLSGGMRRK *****	652	
UBSTITUTE S	abc1 abc2 hABC3	LSVALAFVGGSRVVILDEPTAGVDPYSRRGIWELLLKYRQGRTIILSTHHMDEADILGDRIAIISHGKLCCVGSSLFL LSVAIAFVGGSRAIILDEPTAGVDPYARRAIWDLILKYKPGRTILLSTHHMDEADLLGDRIAIISHGKLKCCGSPLFL LSIGIALIAGSRVLILDEPTSGMDAISRRAIWDLLQRQKSDRTIVLTTHFMDEADLLGDRIAIMAKGELQCCGSSLFL **		245 245 538	22141
HEET (RULE 26	abc1 abc2 hABC3	KNQLGTGYYLTLVKKDVESSLSSCRNSSSTVSCLKKEDSVSQSSSDAGLGSDHESDTLTIDVSALSNLIRKHVSEARL KGAYXDGYRLTLVKQPAEPGTSQEPGLASSPSGCPRLSSCSEPQ	• .	1223 303 766	
j)	abc1 abc2 hABC3	VEDIGHELTYVLPYEAAKEGAFVELFHEIDDRLSDLGISSYGISETTLEEIFLKVAEESGVDAETSDG-TLP VSDTSTELSYILPSEAVKKGAFERLFQQLEHSLDALHLSSFGLMDTTLEEVFLKVSEEDQSLENSEADVKESRKDVLP ESSAGAELSFILPRESTHRFEGLFAKLEKKQKELGIASFGASITTMEEVFLRVGKLVDSSMDIQAIQLPALQ ** * * * * * * * * * * * * * * * * * *	•	1294 380 838	

FIG. 94

abc1		1339
ADC2 hABC3	VAEGELIAVGGVAGNIAAN SELAKUSUKSASSVGSARGEEGIGISDGIGDIRKLEDNUQDFUNVSLQEAEMEALAQV YQHERRASDWAVDSNLCGAMDPSDGIGALIEEER	872
abc1 abc2 hABC3	GKGSYQLKGWKLTQQQFVALLWKRLLIARRSRKGFFAQIVLPAVFVCIALVFSLIVPPFGKYPSLELQPWMYNEQYTF GQGSRKLEGWWLKMRQFHGLLVKRFHCARRNSKALCSQILLPAFFVCVAMTVALSVPEIGDLPPLVLSPSQYHNYTQP -TAVKLNTGLALHCQQFWAMFLKKAAYSWREWKMVAAQVLVPLTCVTLALLAINYSSELFDDPMLRLTLGEYGRTVVP * * * * * * * * * * * * * * * * * * *	1417 537 949
abc1 abc2 hABC3	VSNDAPBDMGTQELLNALTKDPGFGTRCMEGNPIPDTPCLAGEEDWTISPVPQS RGNFIPYANEERQEYRLRLSPDASPQQLVSTFRLPSGVGATCVLKSPANGSLGPMLNLSSGESRLLAARFFDSMCLES FSVPGTSQLGQQLSEHLK	1471 615 967
) THE SHEET () THE BC3	IVDLFQNGNWTMKNPSPACQCSSDKIKKMLPVCPPGAGGLPPPQRKQKTADILQNLTGRNISDYLVKTYVQIIA FTQGLPLSNFVPPPPSPAPSDSPVXPDEDSLQAWNMSLPPTAGPETWTSAPSLPRLVHEPVRCTCSAQGTGFSCPSS DALQAEGQEGQEGQE	1545 692 1006
(92 3108 hABC3	KS-LKNKIWVNEFRYGGFSLGVSNSQALPPSHEVNDAIKQMKKLLKLTKDTSADRFLSSLGRFMAGLDTKNNVKVWFNN VGGHPPQMRVVTGDILTDITGHNVSEYLLFTSDRFRLHRYGAITFGNVQKSIPASFGARVPPMVRKIAVRRVAQVLYNN ASFRDVGERTVVNALFNN	1623 771 1024
abc1 abc2 hABC3	KGWHAISSFLNVINNAILRANLQKGE-NPSQYGITAFNHPLNLTKQQLSEVALMTTSVDVLVSICVIFAMSFVPASFVVV KGYHSMPTYLNSLNNAILRANLPKSKGNPAAYXITVTNHPMNKTSASLSLDYLLQG-TDVVIAIFIIVAMSFVPASFVV QAYHSPATALAVVDNLLFKLLCGPHASIVVSNFPQPRSALQAAKDQFNEGRKGFDIALNLLFAMAFLASTFSI	1701 849 1097

abc1	FLIQERVSKAKHLQFISGVKPVIYWLSNFVWDMCNYVVPATLVIIIFICFQQKSYVSSTNLPVLALLLLLYGWSITPLM 1780	0
abc2	FLVAEKSTKAKIILQFVSGCNPVIYWLANYVWDMLNYLVPATCCVIILFVFDLPAYTSPTNFPAVLSLFLLYGWSITPIM 928	8
hABC3	LAVSERAVQAKHVQFVSGVHVASFWLSALLWDLISFLIPSLLLLVVFKAFDVRAFTRDGHMADTLLLLLLYGWAIIPLM 1176	9
	* * * * * * * * * * * * * * * * * * * *	
abc1	YPASFVFKIPSTAYVVLTSVNLFIGINGSVATFVLELFTNNK-LNDINDILKSVFLIFPHFCLGRGLIDMVKN 1852	7
abc2	YPASFWFEVPSSAYVFLIVINLFIGITATVATFLLQLFEHDKDLKVVNSYLKSCFLIFPNYNLGHGLMEMAYN 1001	1 54
Line Co		•
abc1	QAMADALERFGE-NRFVSPLSWDLVGRNLFAMAVEGVVFFLITVLIQYRFFIRPRPVKAKLP 1913	m
abc2	EYINEYYAKIGQFDKMKSPFEWDIVTRGLVAMTVEGFVGFFLTIMCQYNFLRQPQRLPVSTK 1063	3
hABC3	TSSEVAAHYCKKYNIQYQENFYAWSAPGVGRFVASMAASGCAYLILLFLIETNLLQRLRGILCALRRRTLTELYTRMP 1333	
T OU	* * *	/47
19 1901	PLNDEDEDVRRERQRILDGGGQNDILEIKELTKIYRRKRKPAVDRICIGIP-PGECFGLLGVNGAGKSTTFKM 1985	Ŋ
abc2	PVED-DVDVASERORVLRGDADNDMVKIENLTKVYKSRKIGRILAVDRLCLGVCVPGECFGLLGVNGAGKTSTFKM 1138	œ
DABC3	VLPE-DQDVADERTRILAPSPDSLLHTPLIIKELSKVYEQRVPLLAVDRLSLAVQ-KGECFGLLGFNGAGKTTTFKM 1408	80
iF'	化水银矿 化水铁水铁 化水铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁	
2 8 \		
abc1	LIGDIPVIRGDAFLNKNSILSNIHEVHONMGYCPQFDAITELLIGKEHVEFFALLKGVPEKEVGKFGEWAIRKLGLVKY 2064	7
abc2	LIGDESTIGGEAFVNGHSVLKDLLQVQQSLGYCPQFDVPVDELTAREHLQLYTRLRCIPWKDEAQVVKWALEKLELIKY 1217	7
hABC3	LIGEESLISGDAFVGGHRISSDVGKVRQRIGYCPQFDALLDHMTGREMLVMYARLRGIPERHIGACVENTLRGLLLEPH 1487	7
	* * * * * * * * * * * * * * * * * * * *	

					•	25/	47					
2143	1296 1566		2220	1372	1645		2276	1451	1684			•
GEKYASNYSGGNKRKLSTAMALIGGPPVVFLDEPTTGNDPKARRFLWNCALSIVKEGRSVVLTSHSMEECEALCTRMAI 2143	ADKPAGTYSGGNKRKLSTAIALIGYPAFIFLDEPTTGMDPKARRFLWNLILDLIKTGRSVVLTSHSMEECEALCTRLAI 1296	我我,我们我们我们的我们的我们,		MVNGRLHCLGSIQHLKNRFGDGYMITVRTKSSQNVKDVVRFFNRNFPEAHAQGKTPYKVQYQLKSEHISLAQVFSK 1372		* * * * * * * * * * * * * * * * * * * *	LSQSKKRLHIEDYSVSQTTLDQVFVNFAKDQSDDDHLKDLSLHKN-QTVVDVAVLTS	MEQVVGVLGIEDYSVSQTTLDNVFVNFAKKQSDNVEQQEAEPSSLPSPLGLLSLLRPRPAPTELRALVADEPEDLDTED	LEKAKEKYGVDDYSVSQISLEQVFLSFAHLQPPTAEEGR	FLQDEKVKESYV 2288	EGLISFEEERAQLSFNTDTLC 1472	TIC 9D
abc1	abc2 hABC3			abc2	hABC3		abc1	abc2	ET (RU	abcl	apc ₂	hABC3
			S	UB	128	MI	ES	HE	et (Ry	LE Z	D)	

BNSDOCID: <WO___9748797A1_I_>

800 251

CCCATAAGAGGAGCCACCGGGGAGGGATCGGCCACCATGTCCCACGGAAGTTTCCGCCCTCGGCACACGTTCCTGC M S H R K F S A P R H G H L G F L CCCATAAGAGGAGCCACCGGGGGAAGGTGAAGACGTGGCCGCGGGATGACCCCCAGCCAG	100
PHKRSHRHRGKVKTWPRDDPSQPVHLTAFLGYKA	21
G M T H T L R E V H R P G L K I S K R E E V E A V T I V E T P P L 84	300
GTGGTGGGGCTGGGGCTACGTGGCCCCCCCGAGGTCTCCAAAACCCATCTTTGCAGAACACCTCAGTGATGAGTGCCGGCGCGAT V V V G V V G Y V A T P R G L R S F K T I F A E H L S D E C R R R R	400
TCTACAAGGACTGGCACAAGAAGAAAGAAAGCCTTCACCAAGGCCTGCAAGAGGTGGCGGGACACAGACGGGAAAAAGCAGCTACAGAAGGACTTCGC 500 F Y K D W H K S K K K A F T K A C K R W R D T D G K K Q L Q K D F A 151	500
CGCCATGAAGAAGTACTGCAATTTGGGTCATTGTCCACACTCAGATGAAACTGCTGCCCTTCCGGCAGAAGAAGAGCCCACATCATGGAGATCCAG A M K K Y C K V I R V I V H T Q M K L L P F R Q K K A H I M E I Q	600
CTGAACGGIGGCACGGIGGCCGAGGCCCAGGCCCGGCIGGAGAAGCAGGIGCCCGIGCACAGCGTGITCAGCCAGAGTGAGGICAIIG 700 L N G G T V A E K V A W A Q A R L E K Q V P V H S V F S Q S E V I 217	700

FIG. 11A

ATGTCATTGCTGTCAAGGGTCGAGGGGTCAAAGGGGGTCAAAGCCGCTGGCAAGAAGCTGCCGCGGAAGACCCATAAGGGCCTGCGCAAGGT D V I A V T K G R G V K G V T S R W H T K K L P R K T H K G L R K V

1300

1000 TICCGCATCGGCAGGGCCCGGCACATGGAGGACGGGAAGCTGGTGAAGAACAATGCATCCACCTACGACGTGACTGCCAAGTCCATCACACGCTGG GTGGCTTCCCCCCACTACGGGAAGTGAACAACGACTTCGTCATGCTGAAGGGTTGTATTGCTGGTACCAAGAAGCGGGTCATTACGCTGAGAAGTCCCT GGCCTGCATTGGCGCCTGGCACCCCGCCCGCGTGGGTGCTCCATTGCTCGGGCCGGGCAGAAGGGCTATCACCACCGCAGCGCAGGTCAAGAAGATC

CCTGGTGCATCACAGTCGCCAAGCCGTGGAGAATATTGAGCTCAAGTTCATTGACACCACCTCCAAGTTCGGCCATGGCCGCTTCCAGACAGCCCAAGAG 1200

CCTGTGCATCACAGCCGTGGAATAITGAGCTCAAGTTCATTGACACCTCCAAGTTCGGCCATGGCCGCTTCCAGACAGCCCAAGAG

L V H H S R Q A V E N I E L K F I D T T S K F G H G R F Q T A Q E

AAGAGGCCTTCATGGGCCCCCAAAAGAAGCATCTGGAAAAGGAACTTGGGAAGCTTGTAGGCTGTGTGGGGTGAAACCTGAAGC

T K R A F M G P Q K K H L E K E T S G D L

GCACCGCACTGTCTGCCCCAAAGGCCGGAGGCGACTTTCCTGCGAGGTCTCAGAGCGCTGTAACGCCCAAGGGGTTCACCTTGCCT

T GCACCGCACTGTCTGCCCCAATGTCTAACAAAGGCCGACTCTTCCTGCGAGGTCTCAGAGCGCTGTAACCGCCCAAGGGGTTCACCTTGCCT

HUMAN L3	MSHRKFSAPRHGSLGFLPRKRSSRHRGKVKSFPKDDPSKPVHLTAFLGYI
BOVINE L3 MURINE L3	
SEM L3	H——H———TW-R———Q—————
HUMAN L3 BOVINE L3	AGMTHIVREVDRPGSKVNKKEVVEAVTIVETPPMVVVGIVGYVETPRGLF
MURINE L3 SEM L3	TLHL-IS-R-ELVA
HUMAN L3 BOVINE L3	TFKTVFAEHISDECKRRFYKNWHKSKKKAFTKYCKKWQDEDGKKQLEKDF
MURINE L3	DT
SEM L3	SIL
HUMAN L3	SSMKKYCQVIRVIAHTQMRLLPLRQKKAHLMEIQVNGGTVAEKLDWARER
BOVINE L3	V
MURINE L3	NI
SEM L3	AAVKFILVAQA-
HUMAN L3	LEQQVPVNQVFGQDEMIDVIGVTKGKGYKGVTSRWHTKKLPRKTHRGLRK
BOVINE L3	
MURINE L3 SEM L3	SKKK
HUMAN L3	VACIGAWHPARVAFSVARAGQKGYHHRTEINKKIYKIGQGYLIKDGKLIK
BOVINE L3	
MURINE L3	TT
SEM L3	FRR-PHMEV-
HUMAN L3	NNASTDYDLSDKSINPLGGFVHYGEVTNDFVMLKGCVVGTKKRVLTLRKS
BOVINE L3	
MURINE L3	II
SEM L3	SVTATPNIAI
HUMAN L3	LLVQTKRRALEKIDLKFIDTTSKFGHGRFQTMEEKKAFMGPLKKDRIAKE
BOVINE L3	V
MURINE L3	
SEM L3	HHS-Q-V-N-EAQRQHLEKET
HUMAN L3	EGA
BOVINE L3	
MURINE L3	
SEM L3	PETSGDI.

FIG. 12

10	ACAGC TAGCC AGGCA TGGTT GGATA GGGGC AGGGC ACTCA TTAAA GTGCA TCACA
GAA CTG CGC CGC CAG AGG AGG <td>3GC ACTCA TTAAA GTGC</td>	3GC ACTCA TTAAA GTGC
GAA CTG GGC CGC CAC AGC TGG TGG <td>3GC ACTICA TTAAA (</td>	3GC ACTICA TTAAA (
GAA CTC GGC CGC CAC AGC E L G R H S 120 130 CAG CAG ATG ATG AGC Q Q D M A 190 200 M A CTA AGA AAA AGG CTG TGC L R R L C C C LGO AAA AGG CTG TGC AGC	3GC ACTCA TT
GAA CTG GGC CGC CAC E L G R H 120 13 CAG CAG CAA GAC ATG Q Q Q D M. 190 200 CTA AGA AAA AGG CTG L R K R L L 160 270 CTG CAC AAT GAA GTG L H N E V L A10 GAC CGC CAC A10 A20	3GC ACTC
GAA CTG GGC CGC E L G R 120 CAG CAG CAA GAC Q Q Q D 2 CTA AGA AAA AGG L R K R L R K R 160 CTG CAC AAT GAA G L H N E L H N E L H N E L H N E L H N E L H N E L H N E L H N E	366.7
GAA CTG GGC E L G 120 CAG CAG CAA Q Q Q Q 190 CTA AGA AAA L L R K L R K L R K L R K GGC CTG CAC CAG AAA L R K L G GGC CTG CAC AAT G A10 A10	. ()
GAA CTG E L 120 CAG CAG Q Q Q TH R L R L R L R L R GAC GAC 7 GAC GAC 7	AG.
GAA CTA 190 CTG CTA 1 L L L L L L L L L L L L L L L L L L	30000
	TAC
40 GAG GAC D CAC II II 330 CGC R	. 63
CGC CR CGC CR CGC CR CGC CGC CGC CGC CGC	CCIII
GAT D D D SCT C C T C C T C C T C C C T C C C C C	. S
30 CCG CCG G P P P 100 CTG CCC A L P D L P D 250 CAG TGT G E C 250 Q W 320 GAT GAG C	. AGC
CCCC P P O O O O O O O O O O O O O O O O	AGCC
TGC (C) 100 GAC (C) D GAC (C) D GAC (C) T T T T C (C)	IGC 1
GAC OF THE TO C C C C C C C C C C C C C C C C C C	
20 GAG E TAC Y Y TGC 7 C C C C C S	NGG
TTT AGG GAG GAC TGC (F) C C C C C C C C C C C C C C C C C C C	TC 7
TTT F GCC A A 166 TTT 7 F CGG C CGG C R D	, AGC
10 K F R 90 GCC GCC TAC A A A Y F Y 160 A A C C G C G C C C C C C C C C C C C C	SCCAC
ACC TE E E E E E E E E E E E E E E E E E	AGGGT GGTCA GCCAG AGCTC ATGGG
CGG GAC ACC AAG R D T K 80 CAC ACC CTG GCC H T L A 150 L F S K 220 220 230 240 CCC CGC ACC D T R T 150 AG CCT GAC TTC K P D F	ˈ [Ş
CGG GAC ACC R R D T 80 CAC ACC CTG G H T L L F S L F S D T R 220 GAC ACC CGC R D T R R 290 AAG CCT GAC T R R	و ۔

FIG. 13

GCCAG AAAAA AAAAA AAAAA AAA

460

450

SUBSTITUTE SHEET (RULE 26)

1 MRTQQKRDIKFREDCPQDREELGRNTWAFLHTLAAYYPDMPTPEQQQDMAQFIHIFSKFY RDTKFREDCPPDREELGRHSWAVLHTLAAYYPDLPTPEQQQDMAQFIHLFSKFY ** **********************************	<pre>A</pre>	121 DGSCD DGSCD
ralr halr	rALR	rALR hALR

SUBSTITUTE SHEET (RULE 26)

FIGURE 15A

CAC	ATA.	TAA	ACAC	CGCC	cc c	GGCGC	CCAG	G CI	rcgg1	GCTC	GAC	SAGTO	CATG	CCTC	STGAGO	CC	. 60
CTC	GGCA	CCT	CCTC	SATGT	CC 1	rgcga	GTC	A CC	GTGI	TCCC	: AAA	CCTC	CAGG	GTTC	CCCTC	SC .	. 120
CCC	ACTO	CAG	AGGC	TCTC	AG C	cccc	ACCC	C GC	SAGCO	CTCT	GTC	GGG#	AGCC	GCCI	CCTCC	T	180
GGC	CAGT	TCC	CCAG	TAGT	CC 1	GAAG	GGAG	A CC	TGCT	GTGT	' GGA	GCC1	CTT	CTGG	GACCO	îλ	240
GCC	ATGA	GTG	TGGA	GC T G	AG C	AACT	GAAC	C TG	AAAC	TCTT	CCA	CTG1	GAG	TCAA	GGAGG	SC .	300
TTT	TCCG	СУС	ATGA	AGGA	.CG C	TGAG	CGGG	A AG	GACT	CCTC	TCT	GCCI	GCA	GTTG	TAGCO	A	360
GTG	GACC	AGC	ACCA	GGGG	CT C	TCTA	GACT	G CC	CCTC	СТСС	ATC	GCCI	TCC	CTGC	CTCTC	ic ·	420
AGG	ACAG	AGC	AGCC	ACGT	CT G	CACA	CCTC	G CC	CTCT	TTAC	ACT	CAGT	TTT	CAGA	GCACG	Т	480
TTC	TCCT.	АТТ	TCCT	GCGG	G T T	GCAG	CGCC	T AC	TTGA	ACTT	ACT	CAGA	CCA	CCTA	CTTCT	C	540
TAG	CAGC.	ACT	GGGC	GTCC	CT T	TCAG	CAAG.	A CG		Ala					CTG Leu		593
			CTC Leu										Lys			•	641
			CTG Leu													_	689
			CGC Arg														737
			GGC Gly														785
			GGA Gly 75	Asp													833
			AAG Lys														881
			GTG Val														929

FIGURE 15B

	Ar					C TCC S Ser					a Ala					ie [*]	977
GAC Glu	G CAG	C CC	C TT(C AA(e Asi 14(n His	AGC Ser	AAG Lys	GA0 Glu	Pro 145	Leu	CCC Pro	CTO Le	G GC0 u Ala	G GT a Va 15	l Ly	A s	1025
				g Phe		TAC Tyr			Arg					Th			1073
ACA Thr	GGC	TC0 Sex 170	Phe	TTC Phe	CTG Leu	AAA Lys	GAG Glu 175	ACA Thr	GAA Glu	GGC Gly	TGG Trp	CAC His	Thr	C ACC	r TC	c r	1121
CTT Leu	TTC Phe 185	Pro	CTI Leu	TTC Phe	CCA Pro	AAC Asn 190	CCA Pro	GGA Gly	CCA Pro	AGG Arg	GAA Glu 195	CTA Leu	ACA Thr	TCC Ser	CC'	r o	1169
						TAC Tyr										1	1217
						ATC Ile											1265
CGC Arg	CAG Gln	CTG Leu	TTC Phe 235	CAG Gln	AGA Arg	CTG Leu	Thr	GTG Val 240	ACC Thr	ATC Ile	AAG Lys	AGG Arg	TTC Phe 245	CCG Pro	TAC Tyr		1313
CCG Pro	CCG Pro	TTC Phe 250	ATC Ile	GCA Ala	GAC Asp	CCC Pro	TTC Phe 255	CTC Leu	GTG Val	GCC Ala	ATC Ile	CAG Gln 260	TAC Tyr	CAG Gln	CTG Leu		1361
Pro						AGC Ser 270				Thr .							1409
						AAG (Lys (Arg								1457
						TGG (lis '									1505
						ATC (Ile A	ala A					Thr					1553

FIGURE 15C

 			AAT Asn					Ser		1601
			CTG Leu 350				Ser			1649
			ACC Thr							1697
			TAC Tyr							1745
			TGG Trp						TCC Ser	1793
			GCC Ala							1841
			ATG Met 430	•						 1889
			GAC Asp							1937
			CTC Leu							1985
			TTC Phe							2033
			TGT Cys							2081
			CCC Pro 510.							2129
			CTG Leu							2177

FIGURE 15D

TCC AAG GTG TTC AGG GTG GGA AAT AAG GAC AGG GCG GCC GTC AGA GAC Ser Lys Val Phe Arg Val Gly Asn Lys Asp Arg Ala Ala Val Arg Asp 540 545 550	2225
CTG AAC CTC AAC CTG TAC GAG GGA CAG ATC ACC GTC CTG GGC CAC Leu Asn Leu Asn Leu Tyr Glu Gly Gln Ile Thr Val Leu Leu Gly His 555 560 565	2273
AAC GGT GCC GGG AAG ACC ACC CTC TCC ATG CTC ACA GGT CTC TTT Asn Gly Ala Gly Lys Thr Thr Thr Leu Ser Met Leu Thr Gly Leu Phe 570 580	2321
CCC CCC ACC AGT GGA CGG GCA TAC ATC AGC GGG TAT GAA ATT TCC CAG Pro Pro Thr Ser Gly Arg Ala Tyr Ile Ser Gly Tyr Glu Ile Ser Gln 585 590 595	2369
GAC ATG GTT CAG ATC CGG AAG AGC CTG GGC CTG TGC CCG CAG CAC GAC Asp Met Val Gln Ile Arg Lys Ser Leu Gly Leu Cys Pro Gln His Asp 600 605 610 615	2417
ATC CTG TTT GAC AAC TTG ACA GTC GCA GAG CAC CTT TAT TTC TAC GCC Ile Leu Phe Asp Asn Leu Thr Val Ala Glu His Leu Tyr Phe Tyr Ala 620 625 630	2 4 65
CAG CTG AAG GGC CTG TCA CGT CAG AAG TGC CCT GAA GAA GTC AAG CAG Gln Leu Lys Gly Leu Ser Arg Gln Lys Cys Pro Glu Glu Val Lys Gln 635 640 645	2513
ATG CTG CAC ATC ATC GGC CTG GAG GAC AAG TGG AAC TCA CGG AGC CGC Met Leu His Ile Ile Gly Leu Glu Asp Lys Trp Asn Ser Arg Ser Arg 650 660	2561
TTC CTG AGC GGG GGC ATG AGG CGC AAG CTC TCC ATC GGC ATC GCC CTC Phe Leu Ser Gly Gly Met Arg Arg Lys Leu Ser Ile Gly Ile Ala Leu 665 670 675	2609
ATC GCA GGC TCC AAG GTG CTG ATA CTG GAC GAG CCC ACC TCG GGC ATG Ile Ala Gly Ser Lys Val Leu Ile Leu Asp Glu Pro Thr Ser Gly Met 680 685 690 695	2657
GAC GCC ATC TCC AGG AGG GCC ATC TGG GAT CTT CTT CAG CGG CAG AAA Asp Ala Ile Ser Arg Arg Ala Ile Trp Asp Leu Leu Gln Arg Gln Lys 700 705 710	2705
AGT GAC CGC ACC ATC GTG CTG ACC ACC CAC TTC ATG GAC GAG GCT GAC Ser Asp Arg Thr Ile Val Leu Thr Thr His Phe Met Asp Glu Ala Asp 715 720 725	2753
CTG CTG GGA GAC CGC ATC GCC ATC ATG GCC AAG GGG GAG CTG CAG TGC Leu Leu Gly Asp Arg Ile Ala Ile Met Ala Lys Gly Glu Leu Gln Cys 730 735 740	2801

FIGURE 15E

	TCG Ser								2849
	GTG Val								2897
	CAC His								2945
	TCT Ser 795								2993
	GCT Ala								3041
	GCA Ala								3089
	GTG Val							=	3137
	TAC Tyr							3	3185
	TGT Cys 875							3	3233
	GAG Glu							3	3281
	CAA Gln							3	3329
	TGG Trp							3	3377
	CTG Leu								3425

FIGURE 15F

			ATG Met 955	Leu					Gly					Thr			3473
			TCA Ser														3521
			AAA Lys														3569
	Leu		GAC Asp			Glu					Arg						3617
			TTT Phe		Glu					Ala					Asp		3665
			CGC Arg 1035	Thr					Leu					Ala			3713
			GCC Ala)					Val					Leu				3761
		Cys	GGG Gly				Ser					Asn				***	3809
	Arg		GCC Ala			Ala					Phe						3857
			GAC Asp		Ala					Phe					Leu		3905
			TTC Phe 1115				Ala		Ser			Ala		Gln			3953
			CAG '			Ser					Ala		Phe				4001
Ser		Leu	CTG ' Leu '		Asp					Leu							4049

FIGURE 15G

CTG CTG GTG GTG TTT AAG GCC TTC GAC GTG CGT GCC TTC ACG CGG GAC Leu Leu Val Val Phe Lys Ala Phe Asp Val Arg Ala Phe Thr Arg Asp 1160 1165 1170 1175	4097
GGC CAC ATG GCT GAC ACC CTG CTG CTG CTC CTG CTC TAC GGC TGG GCC Gly His Met Ala Asp Thr Leu Leu Leu Leu Leu Leu Tyr Gly Trp Ala 1180 1185 1190	4145
ATC ATC CCC CTC ATG TAC CTG ATG AAC TTC TTC TTC TTG GGG GCC GCC Ile Ile Pro Leu Met Tyr Leu Met Asn Phe Phe Leu Gly Ala Ala 1195 1200 1205	4193
ACT GCC TAC ACG AGG CTG ACC ATC TTC AAC ATC CTG TCA GGC ATC GCC Thr Ala Tyr Thr Arg Leu Thr Ile Phe Asn Ile Leu Ser Gly Ile Ala 1210 1215 1220	4241
ACC TTC CTG ATG GTC ACC ATC ATG CGC ATC CCA GCT GTA AAA CTG GAA Thr Phe Leu Met Val Thr Ile Met Arg Ile Pro Ala Val Lys Leu Glu 1225 1230 1235	4289
GAA CTT TCC AAA ACC CTG GAT CAC GTG TTC CTG GTG CTG CCC AAC CAC Glu Leu Ser Lys Thr Leu Asp His Val Phe Leu Val Leu Pro Asn His 1240 1255	4337
TGT CTG GGG ATG GCA GTC AGC AGT TTC TAC GAG AAC TAC GAG ACG CGG Cys Leu Gly Met Ala Val Ser Ser Phe Tyr Glu Asn Tyr Glu Thr Arg 1260 1265 1270	4385
AGG TAC TGC ACC TCC TCC GAG GTC GCC GCC CAC TAC TGC AAG AAA TAT Arg Tyr Cys Thr Ser Ser Glu Val Ala Ala His Tyr Cys Lys Lys Tyr 1275 1280 1285	4433
AAC ATC CAG TAC CAG GAG AAC TTC TAT GCC TGG AGC GCC CCG GGG GTC Asn Ile Gln Tyr Gln Glu Asn Phe Tyr Ala Trp Ser Ala Pro Gly Val 1290 1295 1300	4481
GGC CGG TTT GTG GCC TCC ATG GCC GCC TCA GGG TGC GCC TAC CTC ATC Gly Arg Phe Val Ala Ser Met Ala Ala Ser Gly Cys Ala Tyr Leu Ile 1305 1310 1315	452 9
CTG CTC TTC CTC ATC GAG ACC AAC CTG CTT CAG AGA CTC AGG GGC ATC Leu Leu Phe Leu Ile Glu Thr Asn Leu Leu Gln Arg Leu Arg Gly Ile 1320 1325 1330 1335	4577
CTC TGC GCC CTC CGG AGG AGG CGG ACA CTG ACA GAA TTA TAC ACC CGG Leu Cys Ala Leu Arg Arg Arg Thr Leu Thr Glu Leu Tyr Thr Arg 1340 1345 1350	4625
ATG CCT GTG CTT CCT GAG GAC CAA GAT GTA GCG GAC GAG AGG ACC CGC Met Pro Val Leu Pro Glu Asp Gln Asp Val Ala Asp Glu Arg Thr Arg 1355 1360 1365	4673

FIGURE 15H

			Pro		CCG Pro			Leu					Leu		ATC Ile	4721
		Leu			GTG Val		Glu					Leu				4769
	Arg				GCG Ala 1409	Val					Суз					4817
					GGC Gly)					Phe					Gly	4865
				Thr	TCT Ser				Phe					Arg		4913
			Val		AAG Lys			Gln					Cys			4961
		Ala			GAC Asp		Met					Met				5009
	Ala.				GGC Gly 1485	Ile					Ile					\$057
					GGC Gly					Pro					Leu	5105
				Ser	GGT Gly				Arg					Gly		5153
			Gly		CCT Pro	Ala		Ile					Pro			5201
		Asp			GCC Ala		Arg					Thr				5249
GCC Ala 1560	Arg	GAG Glu	TCT Ser	G1y GGC	AAG Lys 1 56 5	Ala	ATC Ile	ATC	ΛTC Ile	ACC Thr 1570	Ser	CAC His	AGC Ser	ATG Met	GAG Glu 1575	5297

FIGURE 15I

					Cys					Ile	ÁTG Met				G1		5345
				Gly					Leu		AGC Ser			Gly			5393
GGC Gly	TAC Tyr	TCC Ser 1610	Leu	CGG Arg	GCC Ala	AAG Lys	GTG Val 1615	Gln	AGT Ser	GAA Glu	GGG Gly	CAA Gln 1620	Gln	GAG Glu	GC(G a	5441
Leu		Glu					Val				TTT Phe 1635	Pro					5489
						Gly					CAC His					3	5537
			Trp .		Lys					Leu	GAG Glu				Glu		5 58 5
		Gly					Ser				ATC '	Ser		Glu			5633
GTC 1	he l	CTG L Leu : 1690	AGC '	TTC (GCC (His	CTG (Leu (1 69 5	CAG (CCG (Pro	CCC A	ACC (Thr A	GCA (Ala (L 70 0	GAG Glu	GAG Glu	GGG Gly		5681
CGA I	GAGO	GGT	GG CO	GCT	GTCT	c GC	CATCI	AGGC	AGG	GACA	GGA (CGGG	CAAG	CA	•		5734
GGCC	CATO	T T	ACATO	CTCI	r cro	CTCC	LAGT	TTAT	CTC	ATC C	TTT	\TTT1	ΓT A.	ATCA	CTT!	rT	5794
тста	TGAT	G GA	TATO	SAAAA	ATT	CAAC	GCA	GTAT	CCAC	CAG A	ATG	SACGA	AG T	GCAG	CCC	AG	5854
CCTC	ATGC	C CA	AGGAT	rcago	ATC	GCGC	ATCT	CCAT	GTCI	rgc A	TACI	CTGG	GA G	TTCAG	CTT	r C	5914
CAGA	GCTG	G GG	CAGG	CCGG	GCA	AGTCI	rgcg	GGCA	AGCI	rcc G	GGGT	CTCI	rg ga	GTGG/	AGAC	GC .	5974
											TCCA		•				6034
											CTCC						6094
											CCAG						6154

FIGURE 15J

CGCAGCCCGG	GGGCATCCTG	GAGGCTCTGC	TCCTTAGGGC	ATGGTAGTCA	CCGCGAAGCC	6274
GGCACCGTC	CCACAGCATC	TCCTAGAAGC	AGCCGGCACA	GGAGGGAAGG	TGGCCAGGCT	6334
CGAAGCAGTC	TCTGTTTCCA	GCACTGCACC	CTCAGGAAGT	caccacaca	AGGACACGCA	.6394
GGGACCACCC	TAAGGCTGG	GTGGCTGTCT	CAAGGACACA	TTGAATACGT	TGTGACCATC	6454
CAGAAAATAA	ATGCTGAGGG	GACACAAAAA	AAAAAAAAA	AAAAAAAA	АДАДАДАДА	6514
ААААААААА	Α					6525

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 17A

ABC J	MAY LRQLALLLIMKNYTLQKRKVLVTVLELFLPLLFSGILIWLRLK10SENVFNAT I YPCQSIQELPLFFTFPPFGDTWELAY I PSHSDAAKAVTETVRRALV I NMRVRGFP	. 111
	SEKDFEDY I RYDNOSSSVLAAVVFEHPFNHSKE PLPLAVKYHLRFSYTRRNYM-TOTOSFFLKET EG-HITT SLF PLF PN PG PRELTS PDGGEPGY I REGFLAVOHAVDRA I	222
	HEYHADAATRQLFQRLTVTIKRFPYPPFIADPFLVAIQYQLPLLLLLSFTYTALTIARAVVQEKERRLKEYHRHHGLSSWLHHSAWFLLFFLFLLIAASFHTLLFCVKVKP	333
	HVAVLSRSDPSLVLAFILCFAISTISFSFHVSTFFSKANNAAAFGGFLYFFTYIPYFFVAPRYNMHTLSOKLGSCLLSHVAHAHGAQLIGKFEAKGHGIQHRDLLSPVHVD	444
	DDFCFOOVLCHLLLDSVLYGLVTWYMEAVFPCQFCVPQPWYFFDHPSYWCGKPRAVAGKEEEDSDPEKALRNEYFEAEPEDLVAGIKIKHLSKVFRVCHKDRAAVRDLNL	554
ABC)		
ABC1 ABC2 C4884	H. YECQIT. LGIBNGACKTIT. S. LTGLFPPTSG.AYI. G.DI H IR LG. CPQH. VLFD. LTV. ENI. FYA. LKGLSE E QH GL K S LSCQH. RKL NLYE. Q LGIBNGACKTIT. S. LTGLFPPTSG.ATI. G.DI H IRK. LG. CPQH. VLFD. LTV. ENL. FY LK E H K MS LSCQH. RKL I	1
ABCI ABCI ABC2 C4884	L	•
ABC) ABC 1 ABC 2 (4484	H., SrG, S., 1. E. VFI., G., *********************************	,
BC1	ASD========AVDSNLCGAMDFSD==GIGALIEEER===========TAVKLNTGLALHCOOFWAMFLKKAYSWREMMYAAQVLVPLTCVTL A==================================	939
BC2 48B4	- 000000000000000000000000000000000000	11
BC 3	ALLALMYSSELFODPMERLT CEYGRTWPFSVPEHLEDALOAE-	993
BC3	A E. D. P. L. L	
4884 BC3	L. V. F. Pessessessessessessessessessessessessess	
BC1		1028
BC2 1884	P	
3C3	FRDVGERTVVNALFNRQAYHSPATALAVVDNLLFKLLCGPHA-SIVVSNTPOPRSALQAAKDQFNEGRKGFDIALNLLFAHAFLASTTSILAVSERAVQAKH	1129
C1 C2 884	V. FIN. H. L.V.N	
C }	VQPVSGVNVASPMLSALLHDLISPLIPSLLLLVVTKAFDVRAFTROGIONADTLLLLLLYGVATIPLHYLDNFFFLGAATAYTRLTIFNILSGIATFLNVTLIGRIPAVKL-«EELSKTLDM	1247
	. GP. GC	
C.3	VFLeVLPHNCLGHAVSSFYENYETRRYCTSSEVALHYCKXYNIOYOENFYAMSAFGVGRFVASHAASGCAYLILLFLIETHTLORLRGILCALARRRTLTELYTRHFVLPEDQDVADERT VFLe. P. CLG	1366
<u>63</u>	R.L. Desen. I. L. KYY. R. LAVDRL L.V. GEOFGLIG. NGACK. THYRRITG. T. GDAF I.S V.Q GYCFQFDA TGRE ALL	1403 1111
C) C1 C2	RGIPERRICACVENTIRGLILEPHANKLYRTYSCGKRKLSTGIALIGEPAVIFIDEPSTODDYARRILIMDTVARARE_SCKAIIITSHSHEECEALCTRIA INVQQFKCLGSPOHLK RG.PEG.E.R.L.L.X.YSQGMUKLIST. ALIGGPPV. FLDEF. TOMBF. ARR. LN	1602
=2	SKPGSCY LRAKVOSEOQGEALEEFKAFVOLITY PCSVLEDENOGN/N===YHLPGR=DLSWAKVFGILEXAKEK YGVDDYSVSQISLEQVYFLSFAHLQPPTAEECR 1704 1.FG.CY == L. F. L. FPGSVL. H. Ha==Y.LP=:S	

FIG. 17B


```
r►s
                            s → r vi
            MPGWPWGLLLTAGTLFAALSPGPP-----APADPCHDEGGAPRGCVPGLVNAALGREV
Human
        MPRRGAEG.LA...A.AW.AQP.RG.Y.GLNMFAVQT.QP...Y..H.L..R.I.DF..S.F.K..
NET1
                 LR....TSV.RL.RAA----NPFVAQQT.P...Y..S.A..R.I.EF....F.K..
NET2
        MITSVLRYVLA.YFCM.IAHG.YFS--Q----FSMRAPDH....HT.R.VR...EFI...F.KP.
UNC6
        LASSTCGRP-ATRAC------DASDPRRAHSPALLTSPGGTASPLCWRSESLPRA
Human
        KV.....K.-PS.Y.VVTEKGE-EQVRSCHLCN....K...P.SF..DLNNPHNLT..Q.D.YVQY
NET1
        Q......P..Y..DLNTA.NMT.....T.HHL
NET2
        I..D...THRPDKY.TVKEGPDGIIREQCDTC..RNHFQS.PAS...DLNSIGNMT..V.-TPSLS
UNC6
        PLNVTLTVPLGKAFELVFVSLRFCSAPPASVALLKSQDHGRSWAPLGFFSSHCDLDYGRLPAPANG
        .H....LS...K..VTY...Q...PR.E.M.IY..M.Y.KT.V.FQ.Y.TQ.RKM.NKPSRA.IT
NET1
        .H....LS...K..V.Y...Q...PR.E.T.IF..M.Y.KT.V.YQYY..Q.RKI..KPSKATVT
NET2
         .Q.S.LS.K.TY.SMH.RL.D.M.Y.A.F.KT.T.FQ.Y.E.RRIF.D.DVSIT
INC6
        PAGPGPEALCFPAPLAQ-PDGSGLLAFSMQDSSPPGLDLDSSPVLQDWVTATDVRVVLTRPSTAGD
        KQNE-Q..I.TDSHTDVR.LSG..I...TL.GR.TAH.F.N.....IK.TFS.LH.F..
NET1
        KQNE-Q....TDGLTDLY.LTG..I...TL.GR.SAQ.F..............I...FS..HLFRE
NET2
        KSNE-O. V. TASHIMG--P.GNRV. PFLENR.SAONFEN. . . . IK. FS.L. PDQA
UNC 6
        PR-----DMEAVVPYSYAATDLQVGGRCKCNGHASRCLLDTQGHLICDCRHGTEGPD
Human
        EN------VR.RDDN.V...K.N.A..E
NET1
        LGG-----REAGEEDGGAGAT..Y.SVGE......VK.KEQK.V...K.N...E
NET2
        UNC6
Human
        .D. ...HY ........ANE.V.N.L......K...K....
NET1
        .D.....HY.......S...ANE.....N..L............K.....K.......
        NET2
                        .NSANS.V..N..Q..K....DA..F....N..........N.
UNC6
        HYCREGFYRDPGRALSDRRACRACDCHPVGAAGKTCNQTTGQCPCKDGVTGLTCNRCAPGFQQSRS
Human
        ...K....LSKPI.H....KE.....Q.......I.....K.Y.....
NET1
        .L.KP. V. TSLPMTH. KS.G. SL.S. SS. V. P. T. K.Y....
NET2
UNC 6
        PVAPCVKTPIPGPTEDS-SPVQPQDCDSHCKPARGSYRISLKKFCKKDYAVQVAVGARGEARGAWT
Human
        .I. I.I.AAP.PTAAS.TEE.A. Y.ASK.KLK.NM.Y. ...IHI-LKA.KNAD.W
....I.I.AIN.SLVT.TEA.A. ..Y. ..K.N.K.NM.Y. ...V. .NI-LEM.TVAN.A
NET1
NET2
        T.T..I.I.TKADFIG.-. HSEE..QC.K.RIVP--K.LNQ.....R.H...MV.-VSR.MVDG.A
UNC 6
        RFPVAVLAVFRSGEERARRGSSALWVPAGDAACGCPRLLPGRRYLLLGGGPGAAAGGAGGRGPGLI
Human
        K.T.NIIS.YKQ.SN.L...DQT...H.K.I..K..KVK.MKK....STE-----DSPDQS.I.
NET1
        K.TINI.S.YKCRD..VK..DNF..IHLK.LS.K..KIQISKK..VM.ISE-----NSTDR...M
NET2
        KYKIV.ES..KRT.NMQ...ETS..ISPQGVI.K..K.RV......KND-----SDHERD..M
UNC6
        AARGSLVLPWRDAWTRRLRRLQRRERRGRCSAA
Human
        .DKS...IQ...T.A....KF.Q..KK.K.RK.
NET1
        . DKN...IQ......K....KK.K.VKP
NET2
        VNPOTVLVE . E . DIMDKVL . FSKKDKL . Q . PEITSHRY
UNC6
```

FIG. 20A

.47/47

		Identity with hNet	
DOMAIN	Netrin-1	Netrin-2	UNC-6
VI.	45.7% (106/232)	49.1% (114/232)	38.8% (90/232)
\mathbf{v}	78.7% (133/169)	82.2% (139/169)	66.3% (112/169)
С	41.9% (67/160)	42.5% (68/160)	29.4% (47/160)
Overall	53.9% (313/580)	56.3% (327/580)	43.4% (252/580)

FIG. 20B

Application No. Internati PCT/US 97/00785

A. CLASSIFICATION OF SUBJECT IPC 6 C12N15/12 C12N15/85 C07K16/18 C07K147 C07K14/47 A01K67/027

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N C07K A01K IPC 6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 97 02346 A (GENZYME CORP) 23 January 1997 see the whole document	1-29
Α .	CELL, vol. 81, 19 May 1995, CELL PRESS,CAMBRIDGE,MA,US;, pages 471-474, XP002017866 J. DODD AND A. SCHUCHARDT: "Axon guidance: A compelling case for repelling growth clones" see the whole document	1-29
A	WO 95 13367 A (UNIV CALIFORNIA ;UNIV COLUMBIA (US)) 18 May 1995 see the whole document	1-29

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
* Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 7 May 1997	Date of mailing of the international search report 2 6. 88. 97
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patendaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer HORNIG H.

Form PCT/ISA/210 (second sheet) (July 1992)

Interna I Application No

Category *	Citation of deciment, both indication, where appropriate of the relevant passages	Relevant to claim No.
auegory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CELL, vol. 78, 12 August 1994, CELL PRESS, CAMBRIDGE, MA, US;, pages 409-424, XP002017867 T. SERAFINI ET AL.: "The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6" see the whole document	1-29
_		
A	CELL, vol. 78, 12 August 1994, CELL PRESS, CAMBRIDGE, MA, US;, pages 425-435, XP002017868 T.E. KENNEDY ET AL.: "Netrins are diffusible chemotropic factors for comissural axons in the embryonic spinal cord" see the whole document	1-29
A	HUMAN MOLECULAR GENETICS, vol. 2, no. 11, 1993, OXFORD UNIVERSITY PRESS, UK, pages 1915-1920, XP002017869 D.M. CHURCH ET AL.: "Identification of human chromosome 9 specific genes using exon amplification" see the whole document	1-29
A	NATURE GENETICS, vol. 6, January 1994, NATURE PUBLISHING CO., NEW YORK, US, pages 98-105, XP000608940 D.M. CHURCH ET AL.: "Isolation of genes from complex sources og mammalian genomic DNA using exon amplification" cited in the application see the whole document	1-29
A	WO 92 13071 A (MASSACHUSETTS INST TECHNOLOGY) 6 August 1992 see the whole document	1-29
A	DE 40 21 458 C (MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN) 29 August 1991 see the whole document	1-29
	-/	·
	-	
	·	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

1

Interns | Application No PCT/US 97/00785

		PC1/03 9	7
	OOCUMENTS CON RED TO BE RELEVANT on of document, with indication, where appropriate, of the relevant passages	<u> </u>	Relevant to claim No.
vo PR pa TH SC ch sc	ELL, ol. 75, 31 December 1993, CELL RESS,CAMBRIDGE,MA,US;, ages 1305-1315, XP002017870 HE EUROPEAN CHROMOSOME 16 TUBEROUS CLEROSIS CONSORTIUM: "Identification and characterization of the touberous celerosis gene on chromosome 16" cited in the application see the whole document		1-29
26	see the whole document		
PF PF PF CO di ar ch	CELL, vol. 77, 17 June 1994, CELL PRESS, CAMBRIDGE, MA, US;, pages 881-894, XP002017871 THE EUROPEAN POLYCYSTIC KIDNEY DISEASE CONSORTIUM: "The polycystic kidney disease 1 gene encodes a 14kb transcript and lies within a duplicated region on thromosome 16" cited in the application see the whole document		1-29
Pi Bi G G ai d	KIDNEY INTERNATIONAL, vol. 43, no. s39, 1993, SPRINGER VERLAG, BERLIN, BRD, pages S20-S25, XP000608988 G.G. GERMINO ET AL.: "Positional cloning approach to the dominant polycystic kidney disease gene, PKD1" cited in the application see the whole document		1-29
V, P P M, C S C	HUMAN MOLECULAR GENETICS, vol. 2, no. 6, 1993, OXFORD UNIVERSITY PRESS, UK, pages 673-676, XP002017872 M.P. DUYAO ET AL.: "A gene from chromosome 4p16.3 with similarity to a superfamily of transporter proteins" cited in the application see the whole document		1-29
V S P M C W C	PROC. NATL.ACAD SCI., vol. 92, May 1995, NATL. ACAD SCI., WASHINGTON, DC, US;, pages 4362-4366, XP002017873 M.A. BROWN ET AL.: "Physical mapping, cloning, and identification of genes within a 500-kb conatining BRCA1" cited in the application see the whole document -/		1-29
р М	pages 4362-4366, XP002017873 M.A. BROWN ET AL.: "Physical mapping, cloning, and identification of genes within a 500-kb conatining BRCA1" cited in the application		

DCT/ICA (210 (materialism of second sheet) (July 1992

Interns al Application No

C.(Conunu	Agon) DOCUMENTS CO RED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	CELL, vol. 72, 26 March 1993, CELL PRESS, CAMBRIDGE, MA, US;, pages 971-983, XP002017874 THE HUNTINGTON'S DISEASE COLLABORATIVE RESEARCH GROUP: "A novel gene containing a trinucleotide repeat that is expanded and unsrable on Huntington's disease chromosome" cited in the application see the whole document	1-29	
A	GENE, vol. 161, no. 2, 19 August 1995, ELSEVIER SCIENCE PUBLISHERS, B.V., AMSTERDAM, NL;, pages 183-187, XP002017875 T.C. BURN ET AL.: "Increased exon-trapping efficiency through modifications to the pSPL3 splicing vector" cited in the application see the whole document	1-29	
•			
	·		
		·	
		•	

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

1

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: see continuation-sheet As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-29 The additional search fees were accompanied by the applicant's protest Remark on Protest No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

Claims: 1-29

Isolated nucleic acid encoding human netrin (hNET) or its complement; isolated nucleic acid that hybridizes under stringent conditions to said nucleic acid; an antisense oligonucleotide that specifically binds to and modulates translation of mRNA of said hNET; isolated human netrin and biological active fragments thereof; a vector comprising said DNA; a host cell comrising said vector; a method for producing hNET; an antibody that specifically binds to human netrin; a transgenic non-human mammal expressing said DNA encoding hNET; a method for identifying compounds which bind to human netrin.

Claims: 30-56

Methods and products as in invention one but limited to human ATPase binding cassette transporter (hABC3) or its complement.

Claims: 57-74

Methods and products as in invention one but limited to human ribosomal L3 (RPL3L) or its complement.

Claims: 75-93

Methods and products as in invention one bur limited to human augmenter of liver regeneration (hALR) or its complement.

information on patent family members

Interns J Application No PCT/US 97/00785

	4	N		
	Patent document cited in search report	Publication date	Patent fami member(s)	Publication date
	. WO 9702346 A	23-01-97	AU 6386596 A	05-02-97
i	WO 9513367 A	18-05-95	US 5565331 A CA 2174971 A	15-10-96 18-05-95
	WO 9213071 A	06-08-92	NONE	
	DE 4021458 C	29-08-91	US 5252475 A	12-10-93
Ì				