

Statistik

CH.12 - Multiple Regression

SS 2021 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Outline

- 1 Multiple Lineare Regression
- 2 Hypothesentests
- 3 Residualdiagnostik
- 4 Multikollinearität
- 5 Nichtlinearität

$$Y = f(X_1, X_2, \dots, X_p) + \epsilon$$

- Mit Hilfe der einfachen linearen Regression kann derZusammenhang einer abhängigen Variablen Y mit einer unabhängigen Variablen X modelliert werden.
- Die **multiple lineare Regression** erlaubt das modellieren Zusammenhangs einer abhängigen Variablen Y mit **mehreren** unabhängigen Variablen $X_1, X_2, ..., X_p$.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \epsilon$$

- Die zuvor diskutierte einfache lineare Regression kann als **Spezialfall** der multiple linearen Diskussion aufgefasst werden bei der gilt p = 1.
- Wir nehmen weiterhin an, dass innerhalb des Wertebereichs der Daten, der wahre Zusammenhang zwischen Y und den Prädiktoren durch ein lineares Modell approximiert werden kann.
- Jeder Regressor geht mit einem eigenen Koeffizienten $\beta_0, \beta_2, \ldots, \beta_p$ in die Gleichung ein. Der Fehlerterm ϵ enthält zudem keine systematischen Informationen zur Erklärung der Streuung von Y die nicht bereits durch die Regressoren abgebildet wurden.

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$

 $i = 1, 2, \dots, n$

- Aus der Modellgleichung folgt die obige Darstellung für jede Beobachtung. Dabei repräsentiert y_i die i-te Beobachtung der abhängigen Variablen Y. Die Werte $x_{i1}, x_{i2}, \ldots, x_{ip}$ sind die Werte der zugehörigen Regressoren, für die i-te Beobachtung in der Stichprobe (üblicherweise i-te Zeile im Datensatz).
- Der Wert ϵ_i ist der Anpassungsfehler (Fehlerterm) der linearen Approximation für die *i*-te Beobachtungseinheit.

Beispiel: Autodaten

d

```
1100km
                                    weight hp cyl
                                                         hub
## Mazda RX4
                       11 200714 1 1884110 110
                                                  6 2 621936
## Mazda RX4 Wag
                       11.200714 1.3040770 110
                                                  6 2.621936
## Datsun 710
                       10.316447 1.0523334 93
                                                  4 1.769807
## Hornet 4 Drive
                                                  6 4 227872
                       10 991355 1 4582983 110
## Hornet Sportabout
                       12.578342 1.5603565 175
                                                  8 5 899356
## Valiant
                       12.995304 1.5694283 105
                                                  6 3.687098
## Duster 360
                       16 448601 1 6193234 245
                                                  8 5 899356
## Merc 240D
                                                  4 2 403988
                        9 639959 1 4469585 62
## Merc 230
                       10.316447 1.4288148
                                                  4 2.307304
## Merc 280
                       12.250781 1.5603565 123
                                                  6 2.746478
## Merc 280C
                       13.214326 1.5603565 123
                                                  6 2 746478
## Merc 450SF
                       14.342378 1.8461194 180
                                                  8 4.519562
## Merc 450SL
                       13.596243 1.6918982 180
                                                  8 4.519562
## Merc 450SLC
                       15 474671 1 7145778 180
                                                  8 4 519562
## Cadillac Fleetwood 22.616827 2.3813580 205
                                                  8 7 734711
## Lincoln Continental 22.616827 2.4602830 215
                                                  8 7.538066
## Chrysler Imperial
                       16.001020 2.4244492 230
                                                  8 7 210324
## Fiat 128
                        7 259722 0 9979024 66
                                                  4 1 289665
## Honda Civic
                        7.737336 0.7325511
                                            52
                                                  4 1.240503
## Toyota Corolla
                        6.938496 0.8323413
                                                  4 1.165123
## Tovota Corona
                       10.940233 1.1181043 97
                                                  4 1.968091
## Dodge Challenger
                       15.175161 1.5966438 150
                                                  8 5.211098
## AMC Javelin
                       15.474671 1.5580885 150
                                                  8 4.981678
## Camaro 728
                       17.685338 1.7417933 245
                                                  8 5 735485
## Pontiac Firebird
                                                  8 6 554840
                       12 250781 1 7440612 175
## Fiat X1-9
                                                  4 1.294581
                        8.615934 0.8777005 66
```

Datenbeschreibung

l100km Kraftstoffverbrauch in Litern pro 100km bei normaler Fahrweise. weight Fahrzeuggewicht in Tonnen.

hp Motorleistung in PS. cyl Anzahl der Zylinder des Fahrzeugmotors.

hub Hubraum des Motors in Litern.

Beispiel: Autodaten

```
dim(d)  # Anzahl Beobachtungen und Anzahl Variablen
## [1] 32 5
```

t(sapply(d, summary)) # Deskriptive Statistik für alle Variablen

```
##
               Min.
                      1st Ou.
                                  Median
                                                Mean
                                                        3rd Ou.
                                                                      Max.
  l100km 6.9384956 10.316447
                               12,250781
                                           12,755060
                                                      15.250039
                                                                 22,616827
                                1.508193
                                            1.459319
                                                                  2.460283
  weight 0.6862847
                      1.170834
                                                       1.637467
  hp
         52.0000000 96.500000 123.000000 146.687500 180.000000 335.000000
##
## cyl
         4.0000000 4.000000
                                6.000000
                                            6.187500
                                                       8.000000
                                                                  8.000000
## hub
          1.1651228 1.979971
                                3.216788 3.780862
                                                       5.342195
                                                                  7.734711
```

Beispiel: Autodaten

round(var(d),4) # Varianz-Kovarianz-Matrix ## l100km weight hp cyl hub ## l100km 14.9247 1.5258 202.0862 5.6144 6.9033 ## weight 1.5258 0.1970 20.0454 0.6202 0.8004 hp 202.0862 20.0454 4700.8669 101.9315 110.1403 ## ## cyl 5.6144 0.6202 101.9315 3.1895 3.2719 ## hub 6.9033 0.8004 110.1403 3.2719 4.1249 # Paarweise Korrelationskoeffizienten round(cor(d),4) l100km weight hp ## cyl hub ## l100km 1.0000 0.8899 0.7629 0.8137 0.8798 weight 0.8899 1.0000 0.6587 0.7825 0.8880 hp 0.7629 0.6587 1.0000 0.8324 0.7909 ## cyl 0.8137 0.7825 0.8324 1.0000 0.9020

hub 0.8798 0.8880 0.7909 0.9020 1.0000

Y =
$$\beta_0$$
 + $\beta_1 X_1$ + $\beta_2 X_2$ + ϵ Kraftstoffverbrauch = β_0 + β_1 Gewicht + β_2 Motorleistung + ϵ

- Wir nehmen an, dass Y linear von (mindestens) zwei erklärenden Variablen abhängig ist.
- Diese Annahme muss verifiziert werden (was wir zunächst ignorieren), da sonst nicht sichergestellt ist, dass diese Variablen einen Einfluss haben oder entscheidende Variablen im Modell fehlen.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Kraftstoffverbrauch = $\beta_0 + \beta_1$ Gewicht + β_2 Motorleistung + ϵ

- Wir nehmen an, dass Y linear von (mindestens) zwei erklärenden Variablen abhängig ist.
- Diese Annahme muss verifiziert werden (was wir zunächst ignorieren), da sonst nicht sichergestellt ist, dass diese Variablen einen Einfluss haben oder entscheidende Variablen im Modell fehlen.

Wie können die Parameter $\beta_0, \beta_1, \dots, \beta_p$ bei der multiplen linearen Regression bestimmt werden?

Parameterschätzung

Parameterschätzung

- Lösung: Minimieren der Fehlerquadratsumme nach dem Prinzip der kleinsten Quadrate (Kleinste-Quadrate-Schätzung).
- Der Anpassungsfehler für jede Beobachtung ergibt sich aus der umgestellten Beobachtungsgleichung:

$$\epsilon_i = y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \ldots - \beta_p x_{ip}$$

Die zu minimierende Funktion in Abhängigkeit der Parameter $\beta_0, \beta_1, \dots, \beta_p$ ergibt sich damit wie folgt:

$$S(\beta_0, \beta_1, \dots, \beta_p) = \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \dots - \beta_p x_{ip})^2$$

 $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ bzw. b_0, b_1, \dots, b_p sind die Werte, die die Funktion S() minimieren.

Parameterschätzung

Your Turn

```
mod \leftarrow lm(l100km \sim 1 + weight + hp, data=d) mod
```

Schreiben Sie die zugehörige Regressionsgleichung auf.

```
##
## Call:
## lm(formula = l100km ~ 1 + weight + hp, data = d)
##
## Coefficients:
## (Intercept) weight hp
## 1.48306 5.95580 0.01759
```

- Multiple lineare Regressionsmodelle können in R ebenfalls mit Hilfe der Funktion lm() geschätzt werden.
- R greift für die Bestimmung der Parameterschätzer ebenfalls auf die Methode der kleinsten Quadrate zurück.

Darstellung und Interpretation

- Einfache Regressionsmodelle (nur X_1) können als Gerade dargestellt werden. Multiple Regressionsmodelle (X_1 und X_2) können mit einer Ebene oder als Hyperebene (mehr als zwei Prädiktoren) dargestellt werden. Diese Darstellung wird sehr schnell unübersichtlich.
- β_0 ist der Achsenabschnitt und der abgebildete Wert von Y, wenn $X_1 = X_2 = ... = X_p = 0$.
- Die Steigungskoeffizienten β_i haben mehrere Interpretationen:
 - β_j ist die **Veränderung** in Y wenn sich X_j um eine Einheit erhöht und alle anderen Prädiktoren konstant gehalten werden (ceteris paribus).
 - eta_j wird also als **Partialeffekt** bezeichnet, weil er den Effekt von X_j auf Y abbildet, nachdem die Zielvariable um die Effekte der anderen Variablen adjustiert wurde.

Darstellung und Interpretation

```
mod <- lm(l100km ~ 1 + weight + hp, data=d)
summarv(mod)
##
## Call:
## lm(formula = l100km \sim 1 + weight + hp. data = d)
##
## Residuals:
       Min
               10 Median
                               30
                                      Max
## -3 9678 -1 1667 0 1802 0 9415 3 3444
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.483062
                         0.962884 1.540 0.13435
## weight
            5.955801 0.840115 7.089 8.45e-08 ***
## hp
              0.017592 0.005438 3.235 0.00303 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.562 on 29 degrees of freedom
## Multiple R-squared: 0.8471, Adjusted R-squared: 0.8365
## F-statistic: 80.33 on 2 and 29 DF, p-value: 1.494e-12
```

Your Turn

Interpretieren Sie die Schätzergebnisse (α = 0.05) und das Gütemaß des Regressionsmodells.

Darstellung und Interpretation

In wissenschaftlichen Aufsätzen werden Regressionsmodelle häufig schrittweise aufgebaut und in übersichtlich in Tabellen dargestellt.

	Model 1	Model 2	Model 3
(Intercept)	1.45	6.45***	1.48
	(1.10)	(1.07)	(0.96)
weight	7.75***		5.96***
	(0.72)		(0.84)
hp		0.04***	0.02**
		(0.01)	(0.01)
R ²	0.79	0.58	0.85
Adj. R ²	0.78	0.57	0.84
Num. obs.	32	32	32

^{***}p < 0.001; **p < 0.01; *p < 0.05

Statistical models

Outline

- 1 Multiple Lineare Regression
- 2 Hypothesentests
- 3 Residualdiagnostik
- 4 Multikollinearität
- 5 Nichtlinearität

- Ergänzend zum t-Test für die einzelnen Koeffizienten ($H_0: \beta_j = 0$ vs. $H_1: \beta_j \neq 0$) gibt es auch die Möglichkeit **alle Koeffizienten auf einmal** einem Hypothesentest zu unterziehen.
- Das Szenario ob alle Regressoren zusammen genommen einen Effekt auf die abhängige Variable Y haben kann mit Hilfe des F-Tests untersucht werden.
- Die Idee dieses simultanen Testens ist zu prüfen, ob mit hoher Wahrscheinlichkeit davon auszugehen ist, dass nicht alle Parameter $\beta_1, \beta_2, \dots, \beta_p$ gleich 0 sind, also zu prüfen:

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_p$$
 vs $H_1: \beta_j \neq 0$ für min. ein j

FM:
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \epsilon$$

RM: $Y = \beta_0 + \epsilon$

- Die Nullhypothese ist gleichbedeutend mit der Tatsache, dass auch ein reduziertes Modell (RM) ohne Regressoren den gleichen Erklärungsgehalt liefert wie das volle Modell (FM) mit allen p Regressoren.
- Dieser fehlende **Fit** kann mit Hilfe der Fehlerquadratsumme (SSE), für die beiden Modelle messbar gemacht werden.

$$SSE(FM) = \sum (y_i - \hat{y}_i)^2$$
 $SSE(RM) = \sum (y_i - \hat{y}_i^*)^2$

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

- Die Differenz SSE(RM) SSE(FM) gibt die Erhöhung der Residualstreuung durch Rückgriff auf das reduzierte Model an. Wenn diese Differenz groß ist, ist das RM mit k Parametern nicht adäquat.
- Wenn der beobachtete F-Wert größer ist als der kritische Wert, ist der F-Test signifikant zum Level α .
- Das beudetet, dass das reduzierte Modell (RM) nicht zufriedenstellend ist und die Nullhypothese (und die entsprechenden Werte für die β 's) verworfen werden kann.
- Verwerfe *H*₀ wenn gilt:

$$F \ge F_{(p+1-k, n-p-1; 1-\alpha)}$$
 oder $p(F) \le \alpha$

```
mod <- lm(l100km ~ 1 + weight + hp, data=d)
summary(mod)</pre>
```

```
##
## Call:
## lm(formula = l100km ~ 1 + weight + hp, data = d)
##
## Residuals:
      Min
              10 Median 30
                                     Max
## -3.9678 -1.1667 0.1802 0.9415 3.3444
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.483062 0.962884 1.540 0.13435
## weight 5.955801 0.840115 7.089 8.45e-08 ***
## hp
            0.017592 0.005438 3.235 0.00303 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.562 on 29 degrees of freedom
## Multiple R-squared: 0.8471, Adjusted R-squared: 0.8365
## F-statistic: 80.33 on 2 and 29 DF, p-value: 1.494e-12
```

Outline

- 1 Multiple Lineare Regression
- 2 Hypothesentests
- 3 Residualdiagnostik
- 4 Multikollinearität
- 5 Nichtlinearität

Residualdiagnostik

- Modellierungsprobelme, wie inkorrekt spezifizierte Modelle, fehlende und vergessene Variablen äußern sich häufig in einer Verletzung der Annahmen der Residuen.
- Um zu überprüfen ob das ausgewählte Regressionsmodelle den theoretischen Anfroderungen genügt, müssen daher die Residuen inspiziert werden. Dieses Prozess nennt man Resdidualdiagnostik.
- Residuen sollten (annähernd) Normalverteilt sein, keine Zusammenhangsstrutkur aufweisen (i.i.d.) und frei von Ausreißern sein. Diese Eigenschaften werden häufig in grafischen Darstellungen der Residuen sichtbar.
- **R-Funktion:** residuals() erlaubt das Extrahieren von Residuen aus der Rückgabe der lm() Funktion.

Residualdiagnostik

■ Darstellung Residuen der Regression Kraftstroffverbrauch Y erklärt durch Fahrzeuggewicht (X_1) und Motorleistung (X_2).

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Indexplot der Residuen

Histogramm der Residuen

Outline

- 1 Multiple Lineare Regression
- 2 Hypothesentests
- 3 Residualdiagnostik
- 4 Multikollinearität
- 5 Nichtlinearität

Multikollinearität

- Die Interpretation der Koeffizienten eines multiplen Regressionsmodells setzt vorraus, dass die Prädiktoren keinen ausgeprägten Zusammenhang untereinander haben, da die (ceteris paribus) Interpretation der Koeffizienten dann nicht mehr greift.
- Wenn eine starke Abhängigkeitsstruktur zwischen den Prädiktoren vorhanden ist, dann bezeichnet man dieses Problem als
 Multikollinearität. Multikollinearität ist ein Problem in den Daten und kein Problem der Modellierung.
- Multikollinearität führt zu unplausiblen Werten der Koeffizientenschätzer und wird durch spezielle Maßzahlen, wie Varianzinflationsfaktoren (VIF), messbar.

Multikollinearität

cor(d)

```
## l100km weight hp cyl hub
## l100km 1.0000000 0.8898927 0.7629477 0.8137493 0.8798217
## weight 0.8898927 1.0000000 0.6587479 0.7824958 0.8879799
## hp 0.7629477 0.6587479 1.0000000 0.8324475 0.7909486
## cyl 0.8137493 0.7824958 0.8324475 1.0000000 0.9020329
## hub 0.8798217 0.8879799 0.7909486 0.9020329 1.0000000
```

Varianzinflationsfaktoren

Um Multikollinearitätprobleme zu diagnostizieren, müssen die Zusammenhangsstrukturen zwischen den Prädiktoren untersucht werden. Das beinhaltet die Analyse des R², dass aus der Regression jedes Prädiktors auf alle verbleibenden Prädiktoren resultiert.

$$VIF_j = \frac{1}{1 - R_i^2}$$
 with $j = 1, ..., p$

■ R_j^2 bezeichnet das Bestimmtheitsmaß bei der Erklärung von X_j durch alle verbleibenden p-1 Prädiktoren. Wenn X_j gut durch die anderen Variablen erklärt werden kann, wird das R_j^2 nah bei 1 sein und in einem großen Wert des VIF $_j$ resultieren.

 $\label{eq:conversion} \mbox{Ein Wert von VIF} > \mbox{10 wird oft als Grenzwert gesehen, ab dem man von} \\ \mbox{Multikollinearität in problematischem Ausmaß ausgeht.}$

Varianzinflationsfaktoren

##

##

 Varianzinflationsfaktoren können mit der R-Funktion vif() aus dem Zusatzpaket car berechnet werden.

```
mod1 <- lm(l100km ~ 1 + weight + hp, data=d)
car::vif(mod1)

## weight hp
## 1.766625 1.766625

mod2 <- lm(l100km ~ 1 + weight + hp + hub + cyl, data=d)
car::vif(mod2)</pre>
```

weight hp hub cyl

4.848016 3.405983 10.373286 6.737707

Outline

- 1 Multiple Lineare Regression
- 2 Hypothesentests
- 3 Residualdiagnostik
- 4 Multikollinearität
- 5 Nichtlinearität

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \epsilon$$

- Die lineare Regression ist linear im Bezug auf die Tatsache, dass die Paramter $\beta_0, \beta_1, \dots, \beta_p$ linear in das Modell eingehen.
- Mit der linearen Regression können dennoch nicht-lineare
 Zusammenhänge modelliert werden indem nicht-lineare
 Transformationen als zusätzliche unabhängige Variablen in das Modell integriert werden.

Nichtlinearität

Welches Modell passt besser zu den gezeigten Daten?

Nichtlinearität

```
mod1
##
## Call:
## lm(formula = y \sim 1 + x)
##
## Coefficients:
## (Intercept)
  5.334 6.779
##
mod2
##
## Call:
## lm(formula = y \sim 1 + x + x_sq)
##
## Coefficients:
## (Intercept)
                    X
                               x_sq
     25.5809 1.4377 0.2498
##
```

Verständnisfragen

- Wie ist das Bestimmtheitsmaß R² bei der multiplen Regression zu interpretieren?
- Was ist damit gemeint, dass die diskutierten Regressionsmodelle lineare Modelle sind?
- Was ist Multikollinearität?