ELEC 221 Formula Sheet

Signals Basics

DT signals	$x[n], n \in \mathbb{Z}$
CT signals	$x(t), t \in \mathbb{R}$
IV transformation	$x(t) \to x(\alpha t +$

1. Shift by
$$\beta$$

2. Compress by
$$|\alpha|$$

3. Reverse if $\alpha < 0$

 β)

Periodic, period
$$T$$
 $x(t+T) = x(t)$
Odd $x(-t) = -x(t)$

Even
$$x(-t) = x(t)$$

Systems Basics

DT systems
$$x[n] \rightarrow y[n]$$

CT systems $x(t) \rightarrow y(t)$

1. Memoryless
$$y(t_0)$$
 depends only on $x(t_0)$

2. Invertible distinct
$$x(t)$$
 map to distinct $y(t)$

3. Causal
$$y(t_0)$$
 depends only on $x(t)$ for $t \leq t_0$

4. Stable bounded input
$$\implies$$
 bounded output

5. Linear
$$ax_1(t) + bx_2(t) \to ay_1(t) + by_2(t)$$

6. Time-invariant
$$x(t-t_0) \rightarrow y(t-t_0)$$

DT Impulse and Convolution Sum

$$\begin{aligned} \text{DT unit impulse} \qquad & \delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases} \\ \text{DT unit step} \qquad & u[n] = \begin{cases} 1 & n \geq 0 \\ 0 & n < 0 \end{cases} \\ \text{Relations} \qquad & \delta[n] = u[n] - u[n-1] \\ & u[n] = \sum_{m=0}^{\infty} \delta[n-m] = \sum_{k=-\infty}^{n} \delta[k] \end{cases} \\ \text{Sampling} \qquad & x[k] = x[n]\delta[n-k] \\ \text{Weighted sum} \qquad & x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \\ \text{Impulse response} \qquad & \delta[n-k] \to h_k[n] \\ & y[n] = \sum_{k=-\infty}^{\infty} x[k]h_k[n] \\ \text{Time-invariant} \qquad & \delta[n] \to h[n] \\ & \delta[n-k] \to h[n-k] \\ \text{Convolution} \qquad & y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \end{aligned}$$

y[n] = x[n] * h[n]

Convolution Properties

Associative	$x[n] * (h_1[n] * h_2[n])$
	$= (x[n] * h_1[n]) * h_2[n]$
Commutative	x[n]*h[n] = h[n]*x[n]
Distributive	$x[n] * (h_1[n] + h_2[n])$
	$= x[n] * h_1[n] + x[n] * h_2[n]$

CT Impulse and Convolution Integral

CT unit impulse
$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(\tau) d\tau = 1$$
CT unit step
$$u(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases}$$
Relations
$$\delta(t) = \frac{du(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$
Weighted integral
$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$
Impulse response
$$\delta(t) \to h(t)$$
Convolution
$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$

$$y(t) = x(t) * h(t)$$

Systems Properties

1. Memoryless
$$h(t) = K\delta(t)$$

2. Invertible
$$h_i(t) * h(t) = \delta(t)$$

3. Stable
$$|x(t)| \leq B \implies$$

$$|y(t)| \le B \int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$$

4. Causality h(t) = 0 for t < 0

Fourier Series

Euler Identities	$e^{j\theta} = \cos\theta + j\sin\theta$
	$\cos\theta = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$
	$\sin \theta = \frac{1}{2j} \left(e^{j\theta} - e^{-j\theta} \right)$
$x(t) = e^{st}$	$y(t) = e^{st} \int_{-\infty}^{\infty} e^{-s\tau} h(\tau) d\tau$
	$y(t) = x(t) \cdot H(s)$
System function	$H(s) = \int_{-\infty}^{\infty} e^{-s\tau} h(\tau) d\tau$
Frequency response	$H(j\omega) = \int_{-\infty}^{\infty} e^{-j\omega\tau} h(\tau) d\tau$
Synthesis equation	$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega t}$
	$y(t) = \sum_{k=-\infty}^{\infty} c_k H(jk\omega) e^{jk\omega t}$
Real $x(t)$	$c_{-k}^* = c_k$
$x(t) = a_0 + \sum_{k=1}^{\infty}$	$(a_k\cos(k\omega t) + b_k\sin(k\omega t))$

Analysis equation $c_k = \frac{1}{T} \int_T e^{-jk\omega t} x(t) dt$

Dirichlet Conditions

For a periodic x(t) over one period, if

1. x(t) is single-valued

2. x(t) is absolutely integrable

3. x(t) has a finite maxima, minima, discontinuities \implies Fourier series converges to x(t) where continuous, and half the jump where discontinuous.

Fourier Series Properties

Linear
$$z(t) = Ax(t) + By(t) \implies c_k = Aa_k + Bb_k$$

Time shift $x(t - t_0) \implies c'_k = e^{-jk\omega t_0}c_k$
Time scale $x(\alpha t) \implies T' = \frac{T}{\alpha} \quad \omega' = \omega \alpha$
Product $z(t) = x(t)y(t) \implies c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$
Parseval $\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$

DT Fourier Series

Complex
$$x[n] = Ce^{jwn} = C\cos(\omega n) + jC\sin(\omega n)$$

Periodic $e^{j\omega n} = e^{j(\omega + 2\pi)n} \iff 0 \le \omega < 2\pi$
 $\omega = \frac{2\pi}{N}, N \text{ is the fundamental period}$
Harmonics $x_k[n] = e^{jk\frac{2\pi}{N}n}, \quad k = 0, 1, \dots, N-1$

$$x[n] = e^{j\omega n}$$

$$y[n] = e^{j\omega n} \sum_{k=-\infty}^{\infty} e^{-j\omega k} h[k]$$

$$y[n] = x[n] H(e^{j\omega})$$

Frequency response
$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} e^{-j\omega k} h[k]$$

Synthesis equation $x[n] = \sum_{k=0}^{N-1} c_k e^{jk\frac{2\pi}{N}n}$
Analysis equation $c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N}n}$

Filters

- 1. Low-pass: $H(j\omega) = 0$ for $\omega > \omega_c$
- 2. High-pass: $H(j\omega) = 0$ for $\omega < \omega_c$
- 3. Band-pass: $H(j\omega) = 0$ for $\omega < \omega_1$ or $\omega > \omega_2$

Fourier Transform

Synthesis
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
Analysis
$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
Impulse
$$H(j\omega) = \int_{-\infty}^{\infty} e^{-j\omega \tau} h(t) dt$$

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} H(j\omega) d\omega$$

Impulse train $X(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi c_k \delta(w - k\omega_0)$

Fourier Transform Properties

Linear
$$ax(t) + by(t) \stackrel{\mathcal{F}}{\longleftrightarrow} aX(j\omega) + bY(j\omega)$$
 Time shift
$$x(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega t_0}X(j\omega)$$
 Time scale
$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|}X\left(\frac{j\omega}{a}\right)$$
 Time reversal
$$x(-t) = X(-j\omega)$$
 Conjugation
$$x^*(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(-j\omega)$$
 Convolution
$$y(t) = h(t) * x(t) \to Y(j\omega) = H(j\omega)X(j\omega)$$

Differentiation and Integration

Magnitude	$ Y(j\omega) = X(j\omega) H(j\omega) $
Phase	$\sphericalangle Y(j\omega) = \sphericalangle X(j\omega) + \sphericalangle H(j\omega)$
Differentiation	$\frac{dx(t)}{dt} \stackrel{\mathcal{F}}{\longleftrightarrow} j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega)$
Unit impulse	$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$

Unit impulse
$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$

Unit step $u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{i\omega} + \pi \delta(\omega)$

Generic ODE

$$\begin{split} & \sum_{k=0}^{N} \alpha_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} \beta_k \frac{d^k x(t)}{dt^k} \\ & H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{M} \beta_k (j\omega)^k}{\sum_{k=0}^{N} \alpha_k (j\omega)^k} = \frac{\mathbf{X} \text{ coeffs}}{\mathbf{Y} \text{ coeffs}} \end{split}$$

Filter Behavior

Step response
$$s(t) = h(t) * u(t) = \int_{-\infty}^{t} h(\tau) d\tau$$
1st order
$$T\frac{dy(t)}{dt} + y(t) = x(t)$$

$$H(j\omega) = \frac{1}{1+j\omega T}$$

$$s(t) = (1 - e^{-t/T})u(t)$$
2nd order
$$\frac{d^{2}y(t)}{dt^{2}} + 2\zeta\omega_{n}\frac{dy(t)}{dt} + \omega_{n}^{2}y(t) = \omega_{n}^{2}x(t)$$

$$H(j\omega) = \frac{\omega_{n}^{2}}{(j\omega)^{2} + 2\zeta\omega_{n}(j\omega) + \omega_{n}^{2}}$$

$$H(j\omega) = \frac{\omega_{n}^{2}}{(j\omega - c_{+})(j\omega - c_{-})}$$

$$c_{\pm} = -\zeta\omega_{n} \pm \omega_{n}\sqrt{\zeta^{2} - 1}$$

$$s(t) = \left[1 + \frac{\omega_{n}}{2\sqrt{\zeta^{2} - 1}}\left(\frac{e^{c_{+}t}}{c_{+}} - \frac{e^{c_{-}t}}{c_{-}}\right)\right]u(t)$$

DT Fourier Transform

Synthesis	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$
Analysis	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
Convergence	$\sum_{n=-\infty}^{\infty} x[n] < \infty \text{ or } \sum_{n=-\infty}^{\infty} x[n] ^2 < \infty$

Difference Equations

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{\sum_{k=0}^{N} a_k e^{-j\omega k}} = \frac{X \text{ coeffs}}{Y \text{ coeffs}}$$

Sampling

Sampling	$p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$
	$x_p(t) = x(t)p(t)$
Impulse train	$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$
Freq domain	$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$

Nyquist rate $\omega_s > 2\omega_M$

CT-DT Conversion
Freq resp
$$X_d(e^{j\Omega}) = X_p(j\frac{\Omega}{T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j\frac{\Omega - 2\pi k}{T})$$

DT Sampling

Sampling	$p[n] = \sum_{k=-\infty}^{\infty} \delta[n - kN]$
	$x_p[n] = \begin{cases} x[n], & n \text{ multiple of } N \\ 0 & \text{otherwise} \end{cases}$
	$x_{p[n]} = \begin{cases} 0 & \text{otherwise} \end{cases}$
Impulse train	$P(e^{j\omega}) = \frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$ $X_p(j\omega) = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j(\omega - k\omega_s)})$
Freq domain	$X_p(j\omega) = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j(\omega - k\omega_s)})$
Decimation	$x_b[n] = x[nN]$
	$X_b(e^{j\omega}) = X_p(e^{j\frac{\omega}{N}})$
Interpolation	add $N-1$ points between

Modulation

Modulation
$$Y(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) P(j(\omega - \theta)) d\theta$$

Amplitude (AM) $c(t) = e^{j(\omega_c t + \theta_c)}$
Sinusoidal AM $c(t) = \cos(\omega_c t + \theta_c)$

Laplace Transform

Laplace
$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$

 $X(s) = \mathcal{F}[e^{-\sigma t}x(t)]$ $s = \sigma + j\omega$

- 1. ROC no $i\omega$ axis \iff FT does not converge
- 2. ROC of rational \mathcal{L} contains no poles
- 3. x(t) finite duration and absolutely integrable \implies ROC = s-plane
- 4. x(t) left sided and $Re(s) = \sigma_0$ in ROC \implies s.t. Re(s) < σ_0 in ROC
- 5. x(t) right sided and $Re(s) = \sigma_0$ in ROC \implies s.t. Re(s) > σ_0 in ROC
- 6. x(t) two sided, then ROC is a strip or does not exist Laplace Transform Properties

Linear
$$ax_1(t) + bx_2(t) \xleftarrow{\mathcal{L}} aX_1(s) + bX_2(s)$$

$$ROC \supseteq R_1 \cap R_2$$
Time shift
$$x(t - t_0) \xleftarrow{\mathcal{L}} e^{-st_0}X(s) \quad ROC = R$$
Time scale
$$x(at) \xleftarrow{\mathcal{L}} \frac{1}{|a|}X\left(\frac{s}{a}\right) \quad ROC = aR$$

Time scale
$$x(at) \longleftrightarrow \frac{1}{|a|} X(\frac{1}{a})$$
 $ROC = aR$
Time reversal $x(-t) = X(-s)$ $ROC = -R$

Differentiation
$$\frac{dx(t)}{dt} \stackrel{\mathcal{L}}{\longleftrightarrow} sX(s)$$
 ROC $\supseteq R$

$$-tx(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{dX(s)}{ds} \qquad \qquad \text{ROC} = R$$
Conjugation $x^*(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X^*(-s^*) \qquad \qquad \text{ROC} = R$

Convolution
$$x_1(t) * x_2(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X_1(s)X_2(s)$$

$$ROC \supseteq R_1 \cap R_2$$

Systems

ROC is a right-half plane Causal

Stable for rational H(s), stable iff ROC contains $j\omega$ and there aren't more zeros than poles

ODE

$$\sum_{k=0}^{N} \alpha_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} \beta_k \frac{d^k x(t)}{dt^k}$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} \beta_k s^k}{\sum_{k=0}^{N} \alpha_k s^k} = \frac{X \text{ coeffs}}{Y \text{ coeffs}}$$
of zeros at infinity = deg(D)-deg(N)

Feedback Systems

Feedback

Inverse

$$Q(s) = \frac{K}{1 + KP(s)} \approx \frac{1}{P(s)}$$
 for large K

Stabilize

$$H(s) = \frac{b}{s-a} \implies Q(s) = \frac{b}{s-a+Kb}$$
. Stable if $K > \frac{a}{b}$

Z Transform

Transform
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Feedback $Q(z) = \frac{H(z)}{1+H(z)G(z)}$
 $X[n] \longrightarrow y[n]$

 $\begin{array}{c} {\rm \bullet \ } {\it D(z)} \ {\rm is \ a \ system \ that \ causes \ a \ delay \ of \ } {\it K} \ {\rm steps} \\ {\rm \bullet \ } {\it G(z)} \ {\rm is \ a \ system \ with \ gain \ } {\it g} \\ Q(z) = \frac{z^k}{z^k-g} \end{array}$

$$Q(z) = \frac{z^k}{z^k - a}$$

Miscellaneous

Geometric
$$\sum_{k=0}^{N} a^k = \frac{1-a^{N+1}}{1-a}$$

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property	Section	Periodic Signal	Fourier Series Coefficient
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$egin{aligned} a_k \ b_k \end{aligned}$
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	3.5.2	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency Shifting		$e^{jM\omega_0t} = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	3.5.6	$x^*(t)$	a_{-k}^*
Time Reversal	3.5.3	x(-t)	a_{-k}
Time Scaling	3.5.4	$x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution		$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0a_k=jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)$
			$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ 4 a_k = -4 a_{-k} \end{cases}$
Conjugate Symmetry for	3.5.6	x(t) real	$\int dm(a_k) = -dm(a_k)$
Real Signals	3.3.0	x(i) icai	$\int_{-\infty}^{\infty} \frac{3m_1u_k}{u_k} = -3m_1u_{-k}$
Real Signals			$ a_k = a_{-k} $
			$\{ \not < a_k = - \not < a_{-k} \}$
Real and Even Signals	3.5.6	x(t) real and even	a_k real and even
Real and Odd Signals	3.5.6	x(t) real and odd	a_k purely imaginary and or
Even-Odd Decomposition		$\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re\{a_i\}$
of Real Signals		$\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$igm\{a_k\}$
		(20(1) (20(2)) [2(1) (201)	John

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients	
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	a_k Periodic with b_k period N	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi lN)n_0}$ a_{k-M} a_{-k}	
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_k \left(\begin{array}{c} \text{viewed as periodic} \\ \text{with period } mN \end{array} \right)$	
Periodic Convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k	
Multiplication	x[n]y[n]	$\sum_{l=\langle N\rangle}a_lb_{k-l}$	
First Difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$	
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$	
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \mathfrak{R}e\{a_k\} = \mathfrak{R}e\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \stackrel{\checkmark}{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_$	
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and ode	
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re\{a_k\}$ $j\mathfrak{I}m\{a_k\}$	
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=(N)} x[n] ^2 = \sum_{k=(N)} a_k ^2$		

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section	Property	Aperiodic signal	Fourier transform
		x(t) y(t)	$X(j\omega)$ $Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\theta)Y(j(\omega-\theta))d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega)+\pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
			$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \end{cases}$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} \mathfrak{Gm}\{X(j\omega)\} = -\mathfrak{Gm}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \end{cases}$
			$\langle X(j\omega) = -\langle X(-j\omega) \rangle$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
4.3.3	Even Old December	$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re\{X(j\omega)\}$
4.3.3	Even-Odd Decompo- sition for Real Sig- nals	$x_o(t) = \mathfrak{O}d\{x(t)\}$ [x(t) real]	$j \mathfrak{G}m\{X(j\omega)\}$
4.3.7	Parseval's Relation	on for Aperiodic Signals $= \frac{1}{2\pi} \int_{-\pi}^{+\infty} X(j\omega) ^2 d\omega$	

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal Fourier transform		Fourier series coefficients (if periodic)	
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise	
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$	
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$	
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$	
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$	
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k	
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_	
$\delta(t)$	1	_	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_	
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	_	
$te^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	_	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	_	

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		x[n]	$X(e^{j\omega})$ periodic with
		y[n]	$Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_{0}n}x[n]$	$X(e^{j(\omega-\hat{\omega_0})})$
5.3.4	Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re \{X(e^{j\omega})\} = \Re \{X(e^{-j\omega})\} \\ \Im \{X(e^{j\omega})\} = -\Im \{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \Im \{X(e^{j\omega}) = -\Im X(e^{-j\omega})\} \end{cases}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}\nu\{x[n]\} [x[n] \text{ real}]$	$\Re e\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = Od\{x[n]\}$ [x[n] real]	$i \mathfrak{I}m\{X(e^{j\omega})\}$
5.3.9	Parseval's Re	elation for Aperiodic Signals	
	1 ~	$ ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$	

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)		
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k		
$e^{j\omega_0n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic		
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic		
sin ω ₀ n	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic		
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$		
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$		
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k		
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_		
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_		
$\frac{\sin w_n}{\pi n} = \frac{w}{\pi} \operatorname{sinc}\left(\frac{w_n}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_		
$\delta[n]$	i			
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_		
$\delta[n-n_0]$	$e^{-j\omega n_0}$			
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$			
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_		

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

Section	Property	Signal	Laplace Transform	ROC			
		$x(t) \\ x_1(t) \\ x_2(t)$	$X(s) X_1(s) X_2(s)$	R R ₁ R ₂			
9.5.1 9.5.2	Linearity Time shifting	$ax_1(t) + bx_2(t) x(t-t_0)$	$aX_1(s) + bX_2(s)$ $e^{-st_0}X(s)$	At least $R_1 \cap R_2$			
9.5.3	Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)			
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)			
9.5.5	Conjugation	$x^{\star}(t)$	$X^*(s^*)$	R			
9.5.6	Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$			
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R			
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R			
9.5.9	Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$			
		Initial- and Fi	nal-Value Theorems	3			
9.5.10	If $x(t) = 0$ for $t < 0$ and x	(t) contains no imp	ulses or higher-orde	er singularities at $t = 0$, then			
		$x(0^+) =$	$\lim_{s \to \infty} sX(s)$				
	If $x(t) = 0$ for $t < 0$ and $x(t)$ has a finite limit as $t \longrightarrow \infty$, then						
	$\lim_{t \to \infty} x(t) = \lim_{s \to \infty} sX(s)$						

TABLE 9.2 LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

Transform pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$
3	-u(-t)	$\frac{1}{s}$	$\Re e\{s\} < 0$
4	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
5	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$
7	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\alpha$
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$
9	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} < -\alpha$
10	$\delta(t-T)$	e^{-sT}	All s
11	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
12	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
14	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
15	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s ⁿ	All s
16	$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{}$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
	n times		