Name

TOPOLOGY QUALIFYING EXAM Fall 1999

(Maginnis and Strecker)

Choose and work any 6 of the following 14 problems. Start each problem on a new sheet of paper. <u>Do not turn in more than six problems</u>. In the problems below, a space always means a topological space.

- **1.** Prove or give a counterexample: If $f: X \to Y$ is an injective continuous function and Y is a Hausdorff space, then X is a Hausdorff space.
- **2.** Let $f: X \to Y$ be a quotient map such that for all $y \in Y$, $f^{-1}[\{y\}]$ is connected. Let $W \subseteq Y$ be an open connected subset. Prove $f^{-1}[W]$ is connected.
- **3.** A space X is called an R_0 -space if for every pair of points $\{x,y\} \subseteq X$, x is in the closure $\overline{\{y\}}$ if and only if y is in the closure $\overline{\{x\}}$. Prove or give a counterexample for each of the following statements.
 - a) Every T_0 -space is R_0 .
 - b) Every R_0 -space is T_0 .
 - c) A space is T_1 iff it is both T_0 and R_0 .
- **4.** Let \mathbb{R} be the real numbers with the usual topology. Prove that any open set in \mathbb{R} is a countable union of pairwise disjoint intervals.
- 5. Let ω_1 be the first uncountable ordinal number, let X be the set of all ordinals less than or equal to ω_1 , and let $Y = X \{\omega_1\}$. (Y is often called the minimal uncountable well-ordered set).
 - a) Prove that <u>no</u> sequence in Y converges to ω_1 .
 - b) Give either a net in Y or a filter in Y that converges to ω_1 .
- **6.** Let X be a compact Hausdorff space, and let $f: X \to X$ be a continuous function. Prove that there exists a nonempty subset $A \subseteq X$ such that f[A] = A.
- 7. Let X be a normal (and Hausdorff) space with a countable basis. Prove that every subspace of X is normal.
- 8. Prove or give a counterexample for each of the following statements.
 - a) A compact subset of a T_1 -space is closed.
 - b) A closed subset of a paracompact space is paracompact.
- **9.** Let \mathbb{R} be the real numbers with the usual topology. Prove there does <u>not</u> exist a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous precisely at the rational numbers. (i.e., continuous at the rationals and discontinuous at the irrationals.)

- **10.** Let $f: X \to Y$ be a continuous function.
 - a) Prove that there exists a space Z, a continuous surjection $s:X\to Z$, and an embedding $e:Z\to Y$ such that f is the composite $F=e\circ s$.
 - b) Prove that if $f = e \circ s$ and $f = \hat{e} \circ \hat{s}$, where $X \stackrel{s}{\to} Z \stackrel{e}{\to} Y$ and $X \stackrel{\hat{s}}{\to} \hat{Z} \stackrel{\hat{e}}{\to} Y$, are two factorizations of f as a composite of a continuous surjection and an embedding, then there exists a unique homeomorphism $h: Z \to \hat{Z}$ with $h \circ s = \hat{s}$ and $\hat{e} \circ h = e$.
- 11. Let X be a Hausdorff space such that every infinite subset has a limit point. Prove that every countable open cover of X has a finite subcover.
- 12 Let X be the countable product $X = \mathbb{R}^{\mathbb{N}} = \prod_{n=1}^{\infty} \mathbb{R}$, where \mathbb{R} is the real numbers with the usual topology. Prove that X, with the product topology, is locally connected but is not locally compact.
- **13.** Let X and Y be spaces which are homotopy equivalent, and assume X is connected. Prove Y is connected. (Recall that X and Y are homotopy equivalent if there exist four continuous functions $f: X \to Y$, $g: Y \to X$, $H_1: X \times I \to X$, and $H_2: Y \times I \to Y$ where I is the interval [0,1], satisfying $H_1(x,0) = g(f(x))$, $H_1(x,1) = x$, $H_2(y,0) = f(g(y))$, and $H_2(y,1) = y$, for all $x \in X$ and all $y \in Y$.)
- **14.** Prove or give a counterexample for each of the following:
 - a) Every bounded subset of a well ordered set has both a greatest lower bound and a least upper bound.
 - b) Every linearly ordered set (also called totally ordered) in which every bounded subset has both a greatest lower bound and a least upper bounded is well ordered.
 - c) Every linearly ordered subset of a partially ordered set has an upper bound.
 - d) In any well ordered set, the minimal element is the only element not having an immediate predecessor.