Modeling PalEON biomass

Wesley Brooks

UW-Madison

May 23, 2013

Outline

- 🚺 Data
 - Overview of the data
 - Models

Methodological details

Goal

• Produce a model of per-species biomass at time of settlement

Table of Contents

- Data
 - Overview of the data
 - Models

2 Methodological details

Data

- Computed from settlement-era survey
- Working with composition, biomass, and stem density

	one-stage	two-stage	zero-inflated
independent	а	b	С
gam	d	е	f
inla	g	h	i

Models

There are two divisions for modeling biomass data:

- One-stage vs. two-stage
- Smoothing splines vs. GMRF

Two-stage models

- First stage: zero/non-zero
 - Logistic regression
 - $ightharpoonup Z \sim \text{Bernoulli}(\gamma)$
- Second stage: distribution of positive biomass
 - $ightharpoonup Y|Z=1\sim \mathsf{Gamma}(\alpha,\beta)$
 - $E(Y|Z=1) = \mu = \alpha\beta = f(x, y, p_k)$

Two-stage models

Mean and variance of the two-stage model:

•
$$E(Y) = \gamma \mu$$

•
$$\operatorname{var}(Y) = \gamma \alpha \beta^2 (1 + \alpha (1 - \gamma))$$

Tweedie model

The Tweedie model is a Gamma-Poisson mixture.

- Draw $N \sim \text{Poisson}(\lambda)$
- Now make N iid draws: $V_{\ell} \sim \mathsf{Gamma}(\alpha, \beta)$

$$\bullet \ \ Y = \sum_{\ell=1}^N V_\ell$$

Tweedie model

The Tweedie model is a Gamma-Poisson mixture.

•
$$f(y) = \exp \{\phi^{-1} [y\nu - \kappa(\nu)] + c(y, \phi, \nu)\}$$

- ullet ϕ is a scale parameter
- $\nu = \mu^{1-\theta}/(1-\theta)$
- $\kappa(\nu) = [(1-\theta)\nu]^{(2-\theta)/(1-\theta)}/(2-\theta) = \mu^{2-\theta}/(2-\theta)$

Table of Contents

- Data
 - Overview of the data
 - Models

Methodological details