	Bütünleme Sınavı Soru ve Cevap Kağıdı			1. S	2. S	3. S	4. S	Toplam	
Adı S	Soyadı								
Numarası			Grup no						
Bölümü						Tarih 12.06.2019			
Dersin Adı		MAT1320 LİNEER CEBİR		Süre	80 dk.		Sınıf		
Öğretim Üyesi						İmza			
YÖK'ün 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya buna teşebbüs etmek" fiili işleyenler bir veya iki yarıyıl uzaklaştırma cezası alırlar.									

x - y + 2z = 5S1) kx+2y-3z=-6 lineer denklem sisteminin hangi k değerleri için 3x+y+kz=3

- a) Çözümü yoktur?
- b) Sonsuz çözümü vardır?
- c) Tek çözümü vardır? [25 p]

$$\begin{bmatrix} 1 & -1 & 2 & | & 5 \\ k & 2 & -3 & | & -6 \\ 3 & 1 & k & | & 3 \end{bmatrix} \xrightarrow{-kS_1+S_2 \to S_2} \begin{bmatrix} 1 & -1 & 2 & | & 5 \\ 0 & k+2 & -2k-3 & | & -5k-6 \\ 0 & 4 & k-6 & | & -12 \end{bmatrix} \xrightarrow{S_2 \longleftrightarrow S_3} \begin{bmatrix} 1 & -1 & 2 & | & 5 \\ 0 & 4 & k-6 & | & -12 \\ 0 & k+2 & -2k-3 & | & -5k-6 \end{bmatrix}$$

$$\frac{1}{4}S_{2} \rightarrow S_{2}
\begin{bmatrix}
1 & -1 & 2 & 5 \\
0 & 1 & \frac{k-6}{4} & -3 \\
0 & k+2 & -2k-3 & -5k-6
\end{bmatrix}
\xrightarrow{-(k+2)S_{2}+S_{3} \rightarrow S_{3}}
\begin{bmatrix}
1 & -1 & 2 & 5 \\
0 & 1 & \frac{k-6}{4} & -3 \\
0 & 0 & \frac{-k(k+4)}{4} & -2k
\end{bmatrix}$$

(a)
$$k=-4$$
 igin rank $A=2<3=rank(A|B)$ olduğundan, gözüm yaktur.
(b) $k=0$ igin rank $A=rank(A|B)=2<3=degişken sayısı, olduğundan sonsuz gözüm vardır.$

S2) $S = \{t^2 + 1, t^2 + t, t + 1\}$ kümesinin P_2 'yi gerdiğini gösteriniz. [20 p]

 P_2 'nin standart tabon vektörlari $\mathbb{Z}t^2$, t, t] olduğundan $Boy(P_2) = 3$ dür. S'nin vektör sayısı $Boy(P_2)$ 'ye eşit olduğundan S'nin lineer bağımsız olduğunu ağstermek yeterli. $C_1(t^2+L) + C_2(t^2+t) + C_3(t+1) = 0$ $(C_1+C_2)t^2 + (C_2+C_3)t + C_1+C_3 = 0$

$$C_{1}+C_{2}=0$$

$$C_{2}+C_{3}=0 \Rightarrow \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 2 \neq 0$$

$$C_{1}+C_{3}=0 \Rightarrow 1 = 0 \Rightarrow 1$$

S3)
$$|\overrightarrow{v_1}| = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
 ve $\overrightarrow{v_2} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ vektörleri $A = \begin{bmatrix} a & b & -2 \\ c & -1 & 2 \\ d & 2 & e \end{bmatrix}$ matrisinin aynı öz

değerine karşılık gelen öz vektörleridir.

- a) Buna göre, $m{A}$ matrisini ve verilen öz vektörlerin karşılık geldiği öz değeri
- ${f b})~{f A}~$ matrisinin diğer öz değerini ve bu öz değere karşılık gelen bir öz vektörü bulunuz. [454] [35 p]
- (d) V, ve V2 vektörleri A matrisinin 2 özdegerine karrılık gelen 02 vektörler alsun. O halde, AVI=1/171 ve AVZ=1/172 alur.

$$\begin{bmatrix} a & b & -2 \\ c & -1 & 2 \\ d & 2 & e \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ \lambda_1 \\ 2\lambda_1 \end{bmatrix} \Rightarrow \begin{bmatrix} b-4=0 \Rightarrow b=4 \\ -1+4=\lambda_1 \Rightarrow \lambda_1=3 \\ 2+2e=2\lambda_1=6 \Rightarrow e=2 \end{bmatrix}$$

$$\begin{bmatrix} a & b & -2 \\ c & -1 & 2 \\ d & 2 & e \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ 0 \\ -\lambda_1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix} \Rightarrow \begin{array}{c} a+2=3 \Rightarrow \boxed{a=1} \\ c-2=0 \Rightarrow \boxed{c=2} \\ d-e=-3 \Rightarrow \boxed{d-2=-3} \Rightarrow \boxed{d=-1} \end{array}$$

O halde,
$$A = \begin{bmatrix} 1 & 4 & -2 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$$
 ve $\lambda_1 = 3$ bulunum

(b)
$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -4 & 2 \\ -2 & \lambda + 1 & -2 \\ 1 & -2 & \lambda - 2 \end{vmatrix} = \begin{pmatrix} \lambda - 3 & -4 & 2 \\ 0 & \lambda + 1 & -2 \\ -\lambda + 3 & -2 & \lambda - 2 \end{vmatrix} = \begin{vmatrix} \lambda - 3 & -4 & 2 \\ 0 & \lambda + 1 & -2 \\ 0 & -6 & \lambda \end{vmatrix} = \langle \lambda - 3 \rangle \cdot \begin{vmatrix} \lambda + 1 & -2 \\ -6 & \lambda \end{vmatrix}$$

$$=(\lambda-3)\cdot(\lambda^2+\lambda-12)=(\lambda-3)^2\cdot(\lambda+4).$$
 O halde, A matrisinin diger or deger $\lambda_2=-4$ tor.

$$\lambda_2 = -4 \text{ igin, } \lambda I - A = 0 \text{ ise } \begin{bmatrix} -5 & -4 & 2 & 0 \\ -2 & -3 & -2 & 0 \\ 1 & -2 & -6 & 0 \end{bmatrix} \xrightarrow{S_1 \leftrightarrow S_3} \begin{bmatrix} 1 & -2 & -6 & 0 \\ -2 & -3 & -2 & 0 \\ -5 & -4 & 2 & 0 \end{bmatrix} \xrightarrow{2S_1 + S_2 \to S_2}$$

$$\begin{bmatrix} 1 & -2 & -6 & 0 \\ 0 & -7 & -14 & 0 \\ 0 & -14 & -28 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & -2 & -6 & 0 \\ -\frac{1}{4}S_2 \rightarrow S_2 \\ 0 & 1 & 2 & 0 \end{bmatrix}} \xrightarrow{\begin{bmatrix} 1 & 0 & -2 & 0 \\ -S_2 \cdot S_3 \rightarrow S_3 \\ 0 & 1 & 2 & 0 \end{bmatrix}} \xrightarrow{\begin{bmatrix} 1 & 0 & -2 & 0 \\ -S_2 \cdot S_3 \rightarrow S_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}} \xrightarrow{X_1 - 2X_3 = 0} \xrightarrow{X_2 + 2X_3 = 0} \xrightarrow{X_2 + 2X_3} \xrightarrow{X_2 + 2X_3 = 0} \xrightarrow{X_2 + 2X_3} \xrightarrow{X_3 = C} \xrightarrow{X$$

[2] vektörü őzvektördűr. r=1 segersek, [2] vektörü 2=-4 öz -2r vektörü őzvektördűr. r=1 segersek, [2] degerine karrilik gelen [1] bir őzvektördűr.

Scanned by CamScanner

S4) P_3 'te c=2a-3b olmak üzere at^2+bt+c biçimindeki tüm vektörlerin W alt uzayı için bir taban bulunuz ve W'nin boyutunu belirleyiniz. [26p]

Walt uzayının her vektörü $at^2+bt+2a-3b$ bi çiminde olup $a(t^2+2)+b(t-3)=0$ olarak yazılabilik. t^2+2 ve t-3 vektörleri W'yi gerer. Ayrıca bu iki vektör biri digerinin katı olmadığından lineer bağımsızdır. $\{t^2+2,t-3\}$ W'nin bir tabanıdır. Boy(w)=2 'dir.

Linear baginsizh ich ikhai qózüm $c_{1}(t^{2}+2) + c_{2}(t-3) = 0$ $c_{1}t^{2} + c_{2}t + 2c_{1} - 3c_{2} = 0$ $c_{1}=0 \quad c_{2}=0 \quad dir$ $[t^{2}+2] \quad \text{ve} \quad [t-3] \quad \text{linear baginsizdir}$