VI. Nemzetközi Magyar Matematika Verseny

Kaposvár, 1997. ápr. 2-6.

10. osztály

1. feladat: Bizonyítsuk be, hogy az $f(x) = (m-1)x^2 - 2(m-1)x + m - 5$ függvény grafikonja az m valós paraméter bármely értékére ugyanazon a ponton halad keresztül. Határozzuk meg ennek a pontnak a koordinátáit!

Zolnai Irén (Újvidék)

2. feladat: Az ABC háromszög BC oldalának felezőpontja A_1 , AB oldalának felezőpontja C_1 , S a háromszög súlypontja. Mekkorák a háromszög szögei, ha $CAA_1 \angle = CC_1A_1 \angle$, $A_1SC_1 \angle = BAC \angle + ACB \angle$?

Balázsi Borbála (Beregszász)

- **3. feladat:** Bizonyítsuk be, hogy ha p és q 5-nél nagyobb prímszám, akkor $p^4 q^4$ osztható 60-nal! Oláh György (Révkomárom)
- 4. feladat: Legyen n>1 természetes szám. Oldjuk meg a következő egyenletrendszert a pozitív természetes számok halmazán:

$$x_1 + x_2 x_3 \dots x_n = 1997$$

 $x_2 + x_1 x_3 \dots x_n = 1997$
 \vdots
 $x_n + x_1 x_2 \dots x_{n-1} = 1997$

Veres Pál (Miskolc)

- 5. feladat: Jelölje M az ABCD húrnégyszög átlóinak metszéspontját, valamint E, F, G, H az M merőleges vetületeit az AB, BC, CD, DA oldalakra; föltesszük, hogy ezek az oldalak belső pontjai. Igazoljuk, hogy M az EFGH négyszög oldalait érintő kör középpontja. Mikor lesz EFGH húrnégyszög? Bencze Mihály (Brassó)
- **6. feladat:** Van egy igen érdekes zsebszámológépünk, amely mindenféle kiinduló értéket képes fogadni, de ennek bevitele után már csak összeadni, kivonni és reciprokot képezni tud, és mindig pontos értéket ad. A gépnek tetszőlegesen sok memóriája van, amelybe a fenti műveletek végzése közben bármilyen érték bevihető, illetve előhívható onnan. Tehát a számolások során a kiindulási számot és minden részeredményt többször is felhasználhatunk, más számot azonban nem. Ilyen feltételek mellett megkaphatjuk-e az 1-et végeredményül, ha a kiindulási szám
 - a) $\sqrt{19} + 97$
 - b) $\sqrt{19} + \sqrt{97}$?

Kiss Sándor (Nyíregyháza)