1001011101111000001

第二章 物理层

引导性传输介质

10100110100010ZO

110001110

十么是引导性传输介质?

- □ 各位好!
- □ 物理层的功能是搬运比特,承载比特的就是传输介质, 事实上,传输介质是多种多样的。按照是否有形,将 其分为引导性(有线)传输介质和非引导性(无线) 传输介质两大类。

- □ 引导性(有线)传输介质包括:
 - ➤铜线
 - 同轴电缆
 - 双绞线
 - ▶光纤
- □非引导性(无线)传输介质
 - ▶无线电、卫星等

同轴电缆

- □由中心导体、绝缘材料层、网状导体、外部绝缘料4层组成,主要由两类:
- □基带同轴电缆: 50 Ω, 用于数字传输(屏蔽层为铜);
- □ 宽带同轴电缆: 75 Ω ,用于模 拟传输(屏蔽层为铝)

粗缆和细缆

- □根据同轴电缆的粗细,分为
- □ 粗缆:
 - ▶最大传输距离为500米
 - >两端安装终结器,以保证电缆屏蔽层接地
- □ 细缆(0.35cm):
 - ▶最大传输距离为185米
 - ▶ 两头安装BNC头,接在T型连接器两端

10BASE2 50 Ohm Coax Cable

双绞线(Twist Pair Cable)

- □铜线的一种
- □ 由两根具有绝缘层的铜导线按一定密度,逆时针方向 绞合而成。
 - ▶消除: 近端串扰 Crosstalk
- □ 绞距(扭距)
 - ▶一般地,绞距越紧(小),越均匀,则抵销效果越好,传输性能越好

双绞线(Twist Pair Cable)

- □双绞线主要分为两种
 - > 非屏蔽双绞线
 - >屏蔽双绞线
 - > 网屏式双绞线

非屏蔽双绞线(UTP: Unshielded Twisted Pair)

- □ 5类双绞线,提供10M、100M的数字 带宽, 使用了其中的两对线, 分别 用于收、发。
- □ 1000M以太网中,用到了全部的4对 线
- □ 最大传输距离100米,广泛用于局域 数字带宽: 10-100Mbps 网中。

RJ-45 Connector

- 成本:便宜
- 介质和连接器大小: 小、轻便 ___
- 最大传输距离:100米(短)

UTP的优缺点

- □ 优点:
 - ▶成本低
 - ▶尺寸小
 - ▶易于安装
- □缺点:
 - ▶易受干扰
 - ▶传输距离性能受到绞距影响

屏蔽双绞线(STP: Shielded Twisted Pair)

□相比UTP, STP加了两层屏蔽层, 分别位于每对线之外和全部4对线之外。

- 数字带宽: 10-100Mbps
- · 成本: 比UTP贵
- 介质和连接器大小: 中等偏大
- · 最大传输距离: 100米(短)

STP的优缺点

- □ 优点
 - ➤抗EMI/RFI干扰
- □ 缺点
 - ▶成本高
 - >安装不易

折中:网屏式双绞线(ScTP: Screened Twisted Pair)

□ 主要技术参数不变, 在成本和抗干扰之间做了折中。

- 数字带宽: 10-100Mbps
- · 成本:介于UTP和STP之间
- 介质和连接器尺寸: 中等
- ▶ 最大传输距离: 100米(short)

使用UTP需注意

- □ 在局域网中,使用最多的是UTP
- □ 只用了其中的12、36线 对
- □ 线序: 水晶头面向自己, 从左到右数起, 1、2、 3。。。。。。

直通线 VS. 交叉线

- □ 当用作直通线(比如,连接交换机和PC)时,线两头的线序 一致,不一致时,则用作交叉 线(比如,连接两台路由器)。
- □ 现在直通线和交叉线不再重要,可以自适应

电力线

- □家居中,电力线无处不在,使用电力线来传输数据, 其便利性不言而喻!想想看,当你把手机插入插座, 除了充电还能收邮件看电影!
- □ 但是电力线和传输介质的目的和电气特性截然不同, 虽然方便但是也很恐怖!
- □ 技术并非不可行,也许未来将大行其道!

视频中插入问题

- □ 局域网中,最常使用的传输介质是:
 - ▶粗缆
 - ▶细缆
 - ➤UTP (答案)
 - >STP

光纤

- □接下來,我们要学习另外一种非常重要的传输介质:光 纤
- □ 光纤是光导纤维的简称;
- □ 由极细的玻璃纤维构成,把光封闭在其中并沿轴向进行 传播。

Cladding

(glass)

Jacket

(plastic)

□一根光纤,由内而外,由极细的玻璃芯(微米级)、玻璃覆盖层和槊料封套构成。玻璃覆盖层的折射率比玻璃芯低,以保证光都被限制在玻璃芯内!

光纤工作原理

□ 全反射: 当光从光密物质射向光疏物质,入射角大于临界角时,光发生全反射,光全部被锁闭在光密物质中,全反射前行。

视频中插入问题

- □ 光纤能否弯曲?
 - >答案,可以,但是需遵循标准。

光纤的优缺点

- □优点
 - ▶重量轻
 - ▶损耗低、
 - > 不受电磁辐射干扰
 - ▶传输频带宽、通信容量大
- □缺点:昂贵、易断裂
- □通常以光缆的形式存在

Fiber Optic Cable

© Cisco Systems, Inc. 1999

光纤的分类

- □ 单模:以单一模式传输,激光产生的单束光,纤心细、高带宽、长距离,运行波长为850nm或1300nm;
- □ 多模:以多个模式同时传输,LED产生的多束光,纤 心粗、低带宽、短距离,运行波长为1310nm或

1550nm ο Core Glass
Single mode

125μm

Multi mode

□ 光传输系统组成: 光源、传输介质(光纤)和探测器

构成。

□ 有两种光源: LED和激光

ltem	LED	Semiconductor laser
Data rate	Low	High
Fiber type	Multimode	Multimode or single mode
Distance	Short	Long
Lifetime	Long life	Short life
Temperature sensitivity	Minor	Substantial
Cost	Low cost	Expensive

光纤的常用规格

□规格

□ 单模: 8.3/125μm

□ 多模: 62.5/125µm

□ 光纤接口:

➤SC: 方形

➤ST: 圆形

□ 光缆常埋在地下管沟,或海底

光纤断了怎么办?

- □ 当因为地震、地老鼠、挖掘、鱼咬等原因,导致光纤破损断裂,怎么办?
- □光纤连接
 - ▶光纤连接器(光损失10%~20%)
 - ▶机械拼接,特殊的套管夹紧(光损失10%
 - >熔合(几乎无损失)

光纤相对铜线的特性

- □ 带宽高,距离远,损耗低;
- □ 重量轻;
- □ 无电磁干扰和射频干扰(EMI和RFI), 防窃听;
- □端口设备价格高。

怎样选择传输介质?

- □传输速率
- □成本要求
- □周围环境
- □介质间的互操作性、相容性
- □最优的性价比

小结

- □ 传输介质分引导性(有线)和非引导性(无线)两种
- □ 光纤和UTP具有各自的特点
 - ▶到用户桌面的线缆大量使用UTP(水平 电缆)
 - >干线上大量使用光纤(垂直电缆)
- □ 选择传输介质的时候,综合考虑多种因素, 满足使用需求和环境要求,提高性价比

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!