Chapter 7. Ensemble Learning and Random Forests

Nidhin Pattaniyil

Table of Contents

- Voting Classifier
- Bagging and Pasting
- Random Forests
- Boosting
- Stacking

Introduction

- Ensemble: group of predictors
- Ensemble Learning: aggregate predictions of a group of predictors
- Ensemble method: ensemble learning algorithm
- Ensemble Methods:
 - Bagging
 - Boosting
 - Stacking
- Work best when predictors are independent from one another as possible

Voting Classifiers

Voting Classifiers

- Hard Voting Classifier: predict the class that gets the most vote

Voting Classifiers: Soft Voting

- clf1 -> [0.2, 0.8], clf2 -> [0.1, 0.9], clf3 -> [0.8, 0.2]
- With equal weights, the probabilities will get calculated as the following:
- Prob of Class 0 = 0.33*0.2 + 0.33*0.1 + 0.33*0.8 = 0.363
- Prob of Class 1 = 0.33*0.8 + 0.33*0.9 + 0.33*0.2 = 0.627
- The probability predicted by ensemble classifier will be [36.3%, 62.7%].

Logistic Regression: 0.864 RandomForestClassifier 0.896 SVC: 0.888

VotingClassifier 0.904

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
log clf = LogisticRegression()
rnd clf = RandomForestClassifier()
svm clf = SVC()
voting clf = VotingClassifier(
    estimators=[('lr', log clf), ('rf', rnd clf), ('svc', svm clf)],
    voting='hard')
voting clf.fit(X train, y train)
```

Bagging and Pasting

Bagging and Pasting

- Use same training algorithm but train on different random subsets of training set
- Two types:
 - Bagging: sampling with replacement;
 - Pasting: sampling without replacement
- Each individual predictor has a higher bias
- Ensemble has a similar bias but a lower variance than a single predictor trained on original training set

Bagging and Pasting

- Ensemble's prediction will likely generalize better than single Decision Tree

Figure 7-5. A single Decision Tree (left) versus a bagging ensemble of 500 trees (right)

Out-of-bag Dataset

Random Patches and Random Subspaces

- Sample features (bootstrap_features and max_features)
- Sample records: (bootstrap and max_samples)
- Random Patches
 - Sampling both training instances and features
- Random Subspaces
 - Keeping all training instances but sampling features
- Sampling features results in even more predictor diversity, trading a bit more bias for a lower variance.

Random Forests

Random Forest

- Ensemble of Decision Trees trained via bagging
- If using a BaggingClassifier of DecisionTreeClassifier, you could just use RandomForestClassifier
- All the hyperparameters of DecisionTree and BaggingClassifier
- at each split, it only searches for the best feature among a random subset of features..
- leads to greater tree diversity thus higher bias, low variance

-

Extra-Trees

- Faster to train than RandomForest
- Extra Trees uses random thresholds instead of searching for best threshold

Feature Importance

- For each feature we can collect how on average it decreases the impurity.
- The average over all trees in the forest is the measure of the feature importance.
- weighted average, where each node's weight is equal to the number of training samples that are associated with it

Boosting

Boosting

- In Random Forest, all the trees can be independently trained
- Train predictors sequentially, each trying to correct its predecessors error
- Two popular boosting methods:
 - AdaBoost: increase misclassified instance weight at each iteration
 - Gradient Boosting: new predictor trained on residual errors of previous predictor

AdaBoost

- 1. Assign every observation, Xi, an initial weight value, $w_i = \frac{1}{n}$, where n is the total number of observations.
- 2. Train a "weak" model. (most often a decision tree)
- 3. For each observation:
 - 3.1. If predicted incorrectly, wi is increased
 - 3.2. If predicted correctly, w; is decreased
- 4. Train a new weak model where observations with greater weights are given more priority.
- 5. Repeat steps 3 and 9 until abservations perfectly predicted or a preset number of trees are trained.

ChrisAlbor

Gradient Boosting (step 0)

- Trying to predict income

ID	A	Oit.		TARGET	PREDICTION	RESIDUAL
U	Age	City	Income	Income		
1	32	Α	51000	51000		
2	30	В	78000	78000		
3	21	Α	20000	20000		
	27	В	44000	44000		
	36	В	89000	89000		
	25	Α	37000	37000		
1	47	Α	56000	56000		
	54	В	92000	92000		

Reference:

https://www.analyticsvidhya.com/blog/2021/03/gradient-boosting-machine-for-data-scientists/

Gradient Boosting (step 1)

- Train model 1
- compute predictions

00000						
ID	٨٥٥	City	Incomo	TARGET	PREDICTION	RESIDUAL
ID	Age	City	Income	Income	Predictions	
1	32	Α	51000	51000		
2	30	В	78000	78000	61000	
3	21	Α	20000	20000	28500	
4	27	В	44000	44000	61000	
5	36	В	89000	89000	90500	
6	25	Α	37000	37000	28500	
7	47	Α	56000	56000	53500	
8	54	В	92000	92000	90500	

Reference: https://www.analyticsvidhya.com/blog/2021/03/gradient-boosting-machine-for-data-scientists/

Gradient Boosting (step 2)

- Using the predictions , compute residual
- Save model 1 predictions

20.50		20.000		Model 1
ID	Age	City	Income	Income
1	32	Α	51000	53500
2	30	В	78000	61000
3	21	Α	20000	28500
4	27	В	44000	61000
5	36	В	89000	90500
6	25	Α	37000	28500
7	47	Α	56000	53500
8	54	В	92000	90500

TARGET	PREDICTION	RESIDUAL
Income	Predictions	Error
51000	53500	-2500
78000	61000	17000
20000	28500	-8500
44000	61000	-17000
89000	90500	-1500
37000	28500	8500
56000	53500	2500
92000	90500	1500

Reference: https://www.analyticsvidhya.com/blog/2021/03/gradient-boosting-machine-for-data-scientists/

Gradient Boosting (step 3)

- Train a new model where the target is the error from model 1
- Save model 1 predictions
- Repeat for further models

Reference: https://www.analyticsvidhya.com/blog/2021/03/gradient-boosting-machine-for-data-scientists/

Gradient Boosting

- Model 0: predicts the target
- Model 1 and above, target is the previous error

Reference: https://www.analyticsvidhya.com/blog/2021/03/gradient-boosting-machine-for-data-scientists/

Gradient Boosting

- XGBoost, LightGBM, Catboost are other popular libraries
- Gradient Boosting also used for ranking

Stacking

Stacking

- Instead of using hard voting, train a model to perform the aggregating
- Training
 - Create a hold out dataset
 - Train classifiers on split 1
 - Get output from classifier on split 2 and use as training data
 - Blender is trained from first layers predictions

Summary

- Ensemble methods: Bagging / Boosting / Stacking
- Voting: Hard or Soft Voting
- Sample Training Data / Sample Features
- Random Forests: Bagging Tree Classifier; feature importance, OOB score
- Boosting: AdaBoost / Gradient Boosting
- Stacking: model to perform aggregation