Introduction to Deep Learning

Lecture 5 Modern CNNs

Maria Vakalopoulou & Stergios Christodoulidis

MICS Laboratory

CentraleSupélec Université Paris-Saclay

Wednesday, November 24, 2021

Last Lecture

2D Discrete Convolution

$$C[i,j] \triangleq \sum_{m=0}^{(M_a-1)} \sum_{n=0}^{(N_a-1)} f[m,n] \cdot g[i-m,j-n]$$

30	3,	22	1	0
02	02	1_{0}	3	1
30	1,	2_2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

How can convolutions be used in Deep Learning?

- Convolution kernels can be trainable.
- Essentially it can be performed by applying a dot product (Toepliz matrix transformation).
- The convolution operation can be applied in any number of dimensions (1D, 2D, 3D, ... etc.)
- The gradient w.r.t. it's parameters and inputs:

$$\frac{\partial a_{rc}}{\partial w_{ij}} = x_{r-i,c-j}$$

$$\frac{\partial \mathcal{L}}{\partial w_{ij}} = \sum_{r} \sum_{c} \frac{\partial \mathcal{L}}{\partial a_{rc}} x_{r-i,c-j}$$

What Input Maximizes Feature Map Outputs?

Transfer Learning

- Assume two datasets S and T
- Dataset S (source) is
 - Fully annotated, plenty of images
 - We can build a model h_S
- Dataset T (target) is
 - Not a much annotated, or much fewer images
 - The annotations of S do not need to overlap with T
- We can use the model h_S to learn a better h_T
- This is called transfer learning

(Source, e.g. ImageNet 1M samples)

(Target, 1K samples)

Today's Lecture

Today's Lecture

- Modern/ Popular CNN architectures
- Go deeper on what makes them tick
 - What makes them different

VGG16

• 7.3% error rate in ImageNet

Compared to 18.2% of Alexnet

VGG16

- Input size: 224 x 224
- Filter sizes: 3 x 3
- Convolution stride: 1
 - Spatial resolution preserved
- Padding: 1
- Max pooling: 2 x 2 with a stride of 2
- ReLU activations
- No fancy input normalizations
 - No local response normalizations
- Although deeper, number of weights in not exploding

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224×224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool	10			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
FC-4096							
FC-4096							
FC-1000							
soft-max							

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	Е
Number of parameters	133	133	134	138	144

Why 3x3 filters?

- The smallest possible filter to capture the "up", "down", "left", "right"
- Two 3x3 filters have the receptive field of one 5 x 5
- Three 3x3 filters have the receptive field of ...

Why 3x3 filters?

- The smallest possible filter to capture the "up", "down", "left", "right"
- Two 3x3 filters have the receptive field of one 5 x 5
- Three 3x3 filters have the receptive field of 7 x 7
- 1 large filter can be replaced by a deeper stack of successive smaller filters
- Benefit?

Why 3x3 filters?

- The smallest possible filter to capture the "up", "down", "left", "right"
- Two 3x3 filters have the receptive field of one 5 x 5
- Three 3x3 filters have the receptive field of 7 x 7
- 1 large filter can be replaced by a deeper stack of successive smaller filters
- Benefit?
- Three more nonlinearities for the same "size" of pattern learning
- Also fewer parameters and regularization
 - (3x3xC)x3 = 27 C, (7x7xC)x1 = 49C
- Conclusion: 1 large filter can be replaced by a deeper, potentially more powerful, stack of successive smaller filters

Even smaller filters?

- Also 1x1 filters are used
- Followed by a nonlinearity
- Why?

Even smaller filters?

- Also 1x1 filters are used
- Followed by a nonlinearity
- Why?
- Increasing nonlinearities without affecting receptive field sizes
 - Linear transformation of the input channels

Training

- Batch size: 256
- SGD with momentum = 0.9
- Weight decay $\lambda = 5 \cdot 10^{-4}$
- Dropout on first two fully connected layers
- Learning rare $\eta_0 = 10^{-2}$, then decreased by factor of 10 when validation accuracy stopped improving
 - Three times this learning rate decrease

Inception

- Basic idea
 - Salient parts have great variation in sizes
 - Naively stacking convolutional operations is expensive
 - Very deep nets are prone to overfitting

Picture credit: Bharath Raj

Inception

- Module
 - Multiple kernel filters of different sizes (1x1,3x3,5x5)
 - Naive version
 - Problem?

(a) Inception module, naïve version

Picture credit: Bharath Raj

Inception

- Module
 - Multiple kernel filters of different sizes (1x1,3x3,5x5)
 - Naive version
 - Problem?
 - Very expensive!
 - Add intermediate 1x1 convolutions

Picture credit: Bharath Raj

(a) Inception module, naïve version

(b) Inception module with dimension reductions

5x5 convolutions

1x1 convolutions

1x1 convolutions

3x3 max pooling

concatenation

3x3 convolutions

1x1 convolutions

Previous layer

1x1 convolutions

Architecture

- 9 Inception Modules
- 22 layers deep (27 with the pooling layers)
- Global average pooling at the end of last Inception Module
- 6.67% Imagenet error, compared to 18.2% of Alexnet

Main Problem: Vanishing gradients

- The network was too deep (at the time)
- Roughly speaking, backprop is lots of matrix multiplications

$$\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$$

- Many of intermediate terms $<1 \to {\rm the\ final\ } \frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- Extremely small gradient → ?

Main Problem: Vanishing gradients

- The network was too deep (at the time)
- Roughly speaking, backprop is lots of matrix multiplications

$$\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$$

- Many of intermediate terms <1 \to the final $\frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- Extremely small gradient → Extremely slow learning

Architecture

- 9 Inception Modules
- 22 layers deep (27 with the pooling layers)

Picture credit: Bharath Ra

- Global average pooling at the end of last Inception Module
- Because of the increased depth → Vanishing gradients
- Inception solution to vanishing gradients: intermediate classifiers
 - Removed after training

Inceptions v2, v3, v4

- Factorize 5x5 in two 3x3 filters
- Factorize nxn in two nx1 and 1xn filters (quite a lot cheaper)
- Make nets wider

RMSprop, BatchNorms, .

ResNets, DenseNets, HighwayNets

Some facts

- The first truly Deep Network, going deeper than 1000 layers
- More importantly the first Deep Architecture that proposed a novel concept on how to gracefully go deeper than a few dozen layers
 - Not simply getting more GPUs, more training time etc.
- Smashed Imagenet with a 3.57% error (in ensembles)
- Won all object classification, detection, segmentation, etc. challenges

Hypothesis

- Hypothesis: Is it possible to have a very deep network at least as accurate as averagely deep networks?
- Thought experiment: Let's assume two Convnets A, B. They are almost identical, in that B is same as A, with extra "identity" layers. Since identity layers pass the information unchanged, the errors of the two networks should...

Hypothesis

- Hypothesis: Is it possible to have a very deep network at least as accurate as averagely deep networks?
- Thought experiment: Let's assume two Convnets A, B. They are almost identical, in that B is same as A, with extra "identity" layers. Since identity layers pass the information unchanged, the errors of the two networks should be similar. Thus, there is a Convnet B, which is at least as good as Convnet A w.r.t. training error

Testing the hypothesis

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Testing the hypothesis

- Adding identity layers increases training error!!
 - Training error, not testing error
- Performance degradation not caused by overfitting
 - Just the optimization task is harder
- Assuming optimizers are doing their job fine, it appears that not all networks are the same as easy to optimize

What is the problem?

- Very deep networks stop learning after a bit
 - An accuracy is reached, then the network saturates
- Signal gets lost through so many layers

G and M act as Identity Functions. Both the Networks Give same output

Basic Idea (Residual idea, intuitively)

- Let's say we have the neural network nonlinear a = F(x)
- Easier to learn a function a = F(x) to model differences $a \sim \delta y$ than to model absolutes $a \sim y$
 - Think of it like in input normalization → you normalize around 0
 - Think of it like in regression → you model differences around the mean value
- So, ask the neural network to explicitly model different mapping $F(x) = H(x) x \Rightarrow H(x) = F(x) + x$
- F(x) are the stacked nonlinearities
- X is the input to the nonlinear layer

ResNet block

- $\bullet \ \ H(x) = F(x) + x$
- If dimensions don't match
 - Either zero padding
 - Or a projection layer to match dimensions

Figure 2. Residual learning: a building block.

Hard to get F(x)=x and make y=x an identity mapping

Easy to get F(x)=0 and make y=x an identity mapping

Testing Hypothesis

 Without the residual connections deeper networks attain worse scores

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

ResNet breaks records

- Ridiculously low error in ImageNet
- Up to 1000 layers ResNets trained
 - Previous deepest network ~30-40 layers on simple datasets

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

ResNet architecture & ResNeXt

Fig. 4(c)

Fig. 4(d)

Fig. 4(e)

7.84

6.71

6.37

6.14

5.91

5.46

ReLU before addition

full pre-activation

ReLU-only pre-activation

ResNeXt

Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

	setting	top-1 err (%)	top-5 err (%)
1× complexity refer	ences:		
ResNet-101	1 × 64d	22.0	6.0
ResNeXt-101	$32 \times 4d$	21.2	5.6
2× complexity mode	els follow:		
ResNet-200 [15]	1 × 64d	21.7	5.8
ResNet-101, wider	1 × 100d	21.3	5.7
ResNeXt-101	2 × 64d	20.7	5.5
ResNeXt-101	64 × 4d	20.4	5.3

Table 4. Comparisons on ImageNet-1K when the number of FLOPs is increased to $2\times$ of ResNet-101's. The error rate is evaluated on the single crop of 224×224 pixels. The highlighted factors are the factors that increase complexity.

Some observations

- BatchNorms absolutely necessary because of vanishing gradients
- Networks with skip connections (like ResNets) converge faster than the same network without skip connections
- Identity shortcuts cheaper and almost equal to project shortcuts

HighwayNet

 Similar to ResNets, only introducing a gate with learnable parameters on the importance of each skip connection

$$y = H(x, W_H) \cdot T(x, W_T) + x \cdot (1 - T(x, W_T))$$

Similar to.... LSTMS as we will see later

DenseNet

 Add skip connections to multiple forward layers

$$y = h(x_l, x_{l-1}, \dots, x_{l-n})$$

• Why?

DenseNet

 Add skip connections to multiple forward layers

$$y = h(x_l, x_{l-1}, \dots, x_{l-n})$$

- Assume layer 1 captures edges, while layer 5 captures faces (and other stuff)
- Why not have a layer that combines both faces and edges (e.g. to model a scarred face)
- Standard ConvNets do not allow for this
 - Layer 6 combines only layer 5 patterns, not lower

State of the art

EfficientNet

- Automatic hyperparameter definition (AutoML)
- Scaling up CNNs. however many many ways to do it

EfficientNet

- Automatic hyperparameter definition (AutoML)
- Scaling up CNNs. however many many ways to do it
- Balance dimensions of width/depth/resolution by scaling with a constant ratio
 - a,b, γ are constant coefficients determined by a small grid search on the original small model
 - Fix $\phi=1$ and do a small grid search of the re
 - EfficientNet-B0 is with $\phi=1$
 - Fixing afterward the rest we obtain
 - EfficientNet-B1 to B7

depth:
$$d=\alpha^{\phi}$$
 width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha\geq 1, \beta\geq 1, \gamma\geq 1$

EfficientNet

- m denotes accuracy; T denotes target FLOPs
- Search space from NAS

$$ACC(m) \times [FLOPS(m)/T]^w$$

Stage	Operator	Resolution	#Channels	#Layers
i	$ar{\mathcal{F}}_i$	$\hat{H}_i \times \hat{W}_i$	\bar{C}_i	\bar{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

R-CNNs, Fully Convolutional Nets

Sliding window on feature maps

- SPPnet [He2014]
- Fast R-CNN [Girshick2015]

Fast R-CNN: Steps

- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)

Fast R-CNN: Steps

- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)
- Given single location → ROI pooling module extracts fixed length feature

Region-of-Interest (ROI) Pooling Module

- Divide feature map in TxT cells
 - The cell size will change depending on the size of the candidate location

Fast R-CNN: Steps

- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)
- Given single location → ROI pooling module extracts fixed length feature
- Connect to two final layers, 1 for classification, 1 for box refinement

Some Results

Fast-RCNN

- Reuse convolutions for different candidate boxes
 - Compute feature maps only once
- Region-of-Interest pooling
 - Define stride relatively → box width divided by predefined number of "poolings" T
 - Fixed length vector
- End-to-end training
- (Very) accurate object detection
- (Very) Faster
 - Less than a second per image
- But: External box proposals needed

Faster R-CNN [Girshick2016]

- Fast R-CNN → External candidate locations
- Faster R-CNN → deep network proposes candidate locations

Slide the feature map → k anchor boxes per

Region Proposal Network

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

Going Fully Convolutional [LongCVPR2014]

Image larger than network input → slide the network

Going Fully Convolutional [LongCVPR2014]

Image larger than network input → slide the network

Deconvolutional modules

Coarse → Fine Output

Deconvolutional modules

Agony of Choice

- Architecture: depth, width, scales, residuals,
- Loss function: cross entropy, focal loss, MSE, ...
- Optimization: optimizer, learning rate, momentum, ...
- Data normalization
- Modelization of the problem

Kaggle Competition is out!!

https://www.kaggle.com/c/fdl21-fdl-dsba

- Segmentation of remote sensing data
- Images acquired from UAVs
- 25 different land cover classes

Kaggle Competition is out!! (50% grade)

- https://www.kaggle.com/c/fdl21-fdl-dsba
- Evaluation Dice Score

$$Dice = \frac{2 \times TP}{(TP + FP) + (TP + FN)}$$

- Baseline U-Net
 - Resize to 1024x1024
 - Crop 512x512 patches
 - Batch size:8, epochs:100, cross entropy, SDG, lr=0.1
- Score 0.62310

Kaggle Competition is out!! (50% grade)

- https://www.kaggle.com/c/fdl21-fdl-dsba
- Teams of 2-3 people
- You will have to submit to fdl.dsba@gmail.com
 - Your results on the leaderboard
 - A report with your method
 - The code to reproduce your results
 - Deadline 20/12

