CCS210 - Data Structures and Algorithms

Module Code	CCS210	Module Title	Data Structures and Algor	ithms		
Credits	3	Hours/Week	Lectures	2		
		_	Practical	2	Pre/Co – requisites	CCS100
GPA/	GPA	(For 15 weeks)	Tutorial	1	requisites	
NGPA		,				

Aims

Impart the knowledge about data collections such as stacks, queues, heaps, sets, hash sets, trees and graphs and associated algorithms available to manipulate data represented in such collections using a high-level programming language and the complexity of algorithms.

Learning Outcomes

At the end of the module the student will be able to:

1	Use a suitable algorithm to solve given problem.
2	Use a suitable data structure to represent a given problem.
3	Characterize the performance of a non-trivial algorithm.
4	Solve non-trivial problems using suitable data representation(s) and algorithm(s)

Outline Syllabus

1	Linear data structures [5 h]: Linked-lists, stacks, queues, their implementation strategies and their applications.
2	Hashing and sets [5 h]: has functions, set ADT, collision handling, performance implications, applications
3.	Simple algorithms [3 h] bubble, selection, insertion sort. Linea search
4.	Algorithmic complexity [2 h]: Framework for Management and control, Collection of data, Project termination, Visualizing progress, Cost monitoring, Earned Value Analysis, Project tracking, Change control, Software Configuration Management, Managing contracts, Contract Management.
5.	Trees [5 h r]: Tree ADT, implementation strategies, traversals, binary search trees, balanced trees. Example applications.
6.	Graphs [10 h r]: Graphs ADT, implementation strategies, graph algorithms, weighted and directed graphs.

Applications. Mapping of Learning Outcomes to Program Outcomes and Assessment Methods for each Learning Outcome PO Assessment PO 7 Method 1 2 3 4 5 6 8 9 10 11 12 13 LO1 Continuous, Н Μ mid-semester, Μ end-semesters LO2 Tutorials, Mid-Н semester, Μ assignments Final exam LO3 Tutorials/assig L Μ nment, Midsemester Μ exam, Final exam LO4 Teamwork Н Н Μ **Overall Contribution** M Н Н to POs **Recommended Textbooks** 1. A. V. Aho, J. D. Ullman and J. E. Hopcroft, Data structures and algorithms, Pearson, 1983. 2. R. Sedgewick and K. Wayne, Algorithms, Addison-Wesley, 4th Edition, 2011. **TBA Lecturer in Charge**