Worksheet 3.1 Big Bang & Nuclear

1.	Explain what has happened to the number of elements in the universe over time (beginning with the big bang, up to the present day).
	Now based on your explanation, draw a graph that illustrates the number of elements in the universe as a function of time (beginning with the big bang, up to the present day).
2.	Explain what has happened to the number of atoms in the universe over time (beginning with the big bang, up to the present day).
	Now based on your explanation, generate a graph that estimates the number of atoms in the universe as a function of time (beginning with the big bang, up to the present
	day).

3.	Draw a graph showing how the potential energy changes when two protons approach each other and fuse to form deuterium.			
		two parts! Explain how the PE changes in terms of forces where the electromagnetic force is in operation (about 10^{-14} to 10^{-13} m).		
		Draw just the part of the graph where the electromagnetic force is in operation (about 10^{-14} to 10^{-13} m). Put PE on the Y axis and distance on the X axis.		
	b.	Explain how the PE changes in terms of forces when the strong nuclear force comes into operation (smaller than 10^{-14} m).		
		Now just draw the part of the graph showing what happens when the strong nuclear force comes into operation (smaller than 10^{-14} m).		

- 4a. Give the symbol for an isotope of carbon that has 7 neutrons.
 - b. What isotope/atom has 5 valence electrons and 7 neutrons?
 - c. How many protons and neutrons does U-235 have?