Lösungen für den dritten Multiple Choice Test

Jendrik Stelzner

16. Februar 2016

1

Die Aussage ist wahr: Es sei $\mathcal B$ eine Basis von V und $\mathcal B^*$ die zugehörige duale Basis von V^* . Der Rang $\operatorname{rang}(f)$ ist der Spaltenrang von $\operatorname{Mat}_{\mathcal B,\mathcal B}(f)$ und der Rang $\operatorname{rang}(f^*)$ ist der Spaltenrang von $\operatorname{Mat}_{\mathcal B^*,\mathcal B^*}(f^*)$. Da $\operatorname{Mat}_{\mathcal B^*,\mathcal B^*}(f^*) = \operatorname{Mat}_{\mathcal B,\mathcal B}(f)^T$ ist $\operatorname{rang}(f^*)$ also der Zeilenrang von $\operatorname{Mat}_{\mathcal B,\mathcal B}(f)$. Die angegebene Gleichheit ist also genau die Gleichheit von Spalten- und Zeilenrang von $\operatorname{Mat}_{\mathcal B,\mathcal B}(f)$.

2

Die Aussage ist wahr: Es sei $U\coloneqq\bigcup_{n\in\mathbb{N}}U_n$. Es ist $0\in U_0\subseteq U$. Für $\lambda\in K$ und $u\in U$ gibt es ein $n\in\mathbb{N}$ mit $u\in U_n$; da U_n ein Untervektorraum ist, ist deshalb auch $\lambda u\in U_n\subseteq U$. Sind schließlich $u,u'\in U$, so gibt es $n,n'\in\mathbb{N}$ mit $u\in U_n$ und $U_{n'}$. Für $m=\max\{n,n'\}$ ist dann $u,u'\in U_m$ (da $U_n\subseteq U_m$ und $U_{n'}\subseteq U_m$), und somit auch $u+u'\in U_m\subseteq U$, da U_m ein Untervektorraum ist.

3

Die Aussage ist falsch falls charK=2, also etwa für $K=\mathbb{F}_2$. Dann ist nämlich $v_1+v_2=v_1-v_2$. Ist char $K\neq 2$, so gilt die Aussage: Sind dann $\lambda,\mu\in K$ mit

$$0 = \lambda(v_1 + v_2) + \mu(v_1 - v_2) = (\lambda + \mu)v_1 + (\lambda - \mu)v_2,$$

so ist $\lambda+\mu=\lambda-\mu=0$, da (v_1,v_2) linear unabhängig ist, und Lösen dieses LGS ergibt $\lambda=\mu=0$ (zum Lösen des LGS muss in einem Schritt durch 2 geteilt werden, weshalb sich die Notwendigkeit von char $K\neq 2$ ergibt).

4

Die Aussage ist wahr: Ist \mathcal{B} ein Basis von V und \mathcal{B}^* die entsprechende duale Basis von V^* , so ist $\mathrm{Mat}_{\mathcal{B}^*,\mathcal{B}^*}(f^*)=\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)^T$, weshalb $\mathrm{Mat}_{\mathcal{B}^*,\mathcal{B}^*}(f^*)$ und $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ dasselbe charakteristische Polynom haben.

5

Die Aussage ist falsch: Betrachtet man etwa

$$f \colon K^2 \to K^2, \quad x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x,$$

so enthält die angegebene Menge die beiden Standardbasisvektoren e_1 und e_2 , aber nicht e_1+e_2 . (Die angegebene Menge ist genau die Vereinigung der Eigenräume, und ist deshalb nur in Ausnahmefällen ein Untervektorraum. Nämlich genau dann, wenn f höchstens einen Eigenwert hat.)

6

Die Aussage ist falsch für char $K \neq 2$, man betrachte $A = -\mathbbm{1}_n$ für ungerades n, etwa n = 1. Es gilt allerdings, dass $\det(A) = \pm 1$, da

$$1 = \det(\mathbb{1}_n) = \det(AA^{-1}) = \det(AA^T) = \det(A)\det(A^T) = \det(A)^2.$$

Bemerkung. Eine invertierbare Matrix A mit $A^{-1}=A^T$ heißt orthogonal. Die orthogonalen Matrizen bilden eine Untergruppe der $\operatorname{GL}_n(K)$, und für $K=\mathbb{R}$ entsprechen diese Matrizen genau den Drehungspiegelungen des \mathbb{R}^n .

7

Die Aussage ist falsch: Für n=1 ist die Determinante gegeben durch

$$\det: \operatorname{Mat}(1 \times 1, K) \to K, \quad (a) \mapsto a,$$

und somit linear. (Für den Fall n=1 entspricht die Multilinearität genau der Linearität. Für $n\geq 2$ ist dies nicht der Fall.)

8

Die Aussage ist wahr: Wir zeigen, dass $b_i=c_i$ für alle $1\leq i\leq n$; hierfür fixieren wir ein solchen i. Dann ist $b_i=\sum_{j=1}^n\lambda_jc_j$ mit $\lambda_1,\ldots,\lambda_n\in K$. Für alle $1\leq k\leq n$ ist

$$\lambda_k = c_k^* \left(\sum_{j=1}^n \lambda_j c_j \right) = c_k^*(b_i) = b_k^*(b_i) = \delta_{ik},$$

also $b_i = \sum_{j=1}^n \delta_{ij} c_j = c_i$.

Bemerkung. Dies zeigt, dass die Abbildung

 $\{\text{geordnete Basen von }V\} \rightarrow \{\text{geordnete Basen von }V^*\}, \quad \mathcal{B} \mapsto \mathcal{B}^*$

injektiv ist. Sie ist auch surjektiv, also bijektiv. Mithilfe des natürlichen Isomorphismus $V\cong V^{**}$ lässt sich auch explizit eine Umkehrabbildung angeben.

9

Die Aussage ist wahr: Da $A \in \mathrm{GL}_n(\mathbb{C})$ ist $\det(A) \neq 0$. Da $A \in \mathrm{Mat}(n \times n, \mathbb{R})$ ist auch $\det(A) \in \mathbb{R}$. Es ist auch $\mathrm{Adj}(A) \in \mathrm{Mat}(n \times n, \mathbb{R})$. Somit ist schließlich $A^{-1} = \mathrm{Adj}(A)/\det(A) \in \mathrm{Mat}(n \times n, \mathbb{R})$.

Alternativ lässt sich auf A der Gauß-Algorithmus zum Invertieren einer Matrix anwenden; alle dabei vorkommenden Matrizen, inklusive dem Zwischenergebnissen und dem Endergebniss, sind dabei reell.