System Test Plan Logic Based Testing

By: Cail Keeling

Table of Contents

1.	DET	ERMINATION FOR FINDEVEN PREDICATES	3
	1.1.	PREDICATE 1	3
2.	CAC	CC TEST REQUIREMENTS	6
3.	TES	T RESULTS WITH TRACEABILITY	7
4.	TES	T RESULTS WITH TRACEABILITY	8
		COVERAGE OF LOGIC-BASED TEST SUITE	
		FAULTS, ERRORS AND FAILURES	

1. Determination for findEven Predicates

1.1. Predicate 1

Predicate 1: i < digits.length - 2

Clauses:

• C1 = i < digits.length - 2

Reachability:

r(p1) = true (always reached)

$P1_{C1}$ determination = P1=C1

C1	P1
T	T
F	F

Predicate Table (PT) 1

Row ID C ₁		\mathbf{P}_1	P1 _{C1}
1 T		T	T
2	2 F		T

1.2. Predicate 2

Predicate 2: j < digits.length - 1

Clauses:

• C2 = j < digits.length - 1

Reachability:

$$r(p2) = r(p1) & p1$$
$$= i < digits.length - 2$$

$P2_{C2}$ determination = P2=C2

C2	P2
T	T
F	F

Predicate Table (PT) 2

Row ID	Row ID C2		P2c2	
1	T	T	T	
2	F	F	T	

1.3. Predicate 3

Predicate 1: k < digits.length

Clauses:

• C3 = k < digits.length

Reachability:

$$r(p3) = r(p2) \&\& p2$$

= (i < digits.length - 2) && (j < digits.length - 1)

$P3_{C3}$ determination = P3=C3

C3	P3
T	Т
F	F

Predicate Table (PT) 3

Row ID C3		Р3	P3c3	
1	T	T	T	
2	F	F	T	

1.4. Predicate 4

Predicate 1: i==j || j==k || i==k

Clauses:

- C4 = i = = i
- C5 = j = = k
- C6 = i = = k

Reachability:

r(p4) = r(p3) && p3

= (i < digits.length - 2) && (j < digits.length - 1) && (k < digits.length)

P4_{C4} determination =

 $P4_{C4} = (T \ v \ C5 \ v \ C6) \oplus (F \ v \ C5 \ v \ C6)$

 $P4_{C4} = (T \vee (C5 \vee C6)) \oplus (F \vee C5 \vee C6)$ Associative Law

 $P4_{C4} = T \oplus (C5 \vee C6)$ Domination and Identify Laws

 $P4_{C4} = \neg (C5 \text{ v C6})$ Identify Law

 $P4_{C4} = \neg C5 \land \neg C6$ De Morgan's Laws

P4_{C5} determination =

 $P4_{C5} = (C4 \text{ v T v C6}) \oplus (C4 \text{ v F v C6})$

 $P4_{C5} = (T \vee (C4 \vee C6)) \oplus (F \vee (C4 \vee C6))$ Associative Law

 $P4_{C5} = T \oplus (C4 \vee C6)$ Domination and Identify Laws

 $P4_{C5} = \neg (C4 \text{ v } C6)$ Identify Law

 $P4_{C5} = \neg C4 \land \neg C6$ De Morgan's Laws

P4_{C6} determination =

 $P4_{C6} = (C4 \text{ v } C5 \text{ v } T) \oplus (C4 \text{ v } C5 \text{ v } F)$

 $P4_{C6} = (T \vee (C4 \vee C5)) \oplus (F \vee (C4 \vee C5))$ Associative Law

$P4 c_6 = T \bigoplus (C4 \vee C5)$
$P4_{C6} = \neg (C4 \text{ v } C5)$
$P4 c6 = \neg C4 \land \neg C5$

Domination and Identify Laws Identify Law De Morgan's Law

Predicate Table (PT) 4

Row ID	C ₄	C ₅	C 6	P4	P4C4	P4C5	P4c6
1	T	T	T	T	F	F	F
2	T	T	F	T	F	F	F
3	T	F	T	T	F	F	F
4	T	F	F	T	T	F	F
5	F	T	T	T	F	F	F
6	F	T	F	T	F	T	F
7	F	F	T	T	F	F	T
8	F	F	F	F	T	T	T

1.5. Predicate 5

Predicate 5: num%2==0

Clauses:

• C7 = num%2 == 0

Reachability:

$$\begin{array}{l} r(p5) = r(p4) \;\&\&\;!p4 \\ = (i < digits.length - 2) \;\&\&\;(j < digits.length - 1) \;\&\&\;(k < digits.length) \;\&\&\;!(\; i == j \mid \mid \; j == k \mid \mid i == k) \end{array}$$

P_{C7} determination = P5=C7

C7	P5
T	T
F	F

Predicate Table (PT) 5

Row ID	C7	P5	P5 _{C7}
1	T	T	T
2	F	F	T

2. CACC Test Requirements

TR	PT ID	Row	Coverage	Feasible?
1	1	1	P _{C1} where	Y
-	_	_	$P_1 = True$	-
2	1	2	P _{C1} where	Y
			$P_1 = False$	
3	2	1	P _{C2} where	Y
			$P_2 = True$	
4	2	2	P _{C2} where	N - If P1 was false, then the for loop prior
			$P_2 = False$	to this condition would break, and if this
				condition was false, then P1 would have to
5	3	1	D vyhomo	have been false too.
3	3	1	P_{C3} where $P_3 = True$	I
6	3	2	P _{C3} where	N – If P1 was false, then the for loop prior
	3	2	$P_3 = False$	to this condition would break, and if this
				condition was false, then P1 would have to
				have been false too.
7	4	4	P _{C4} where	N – integers i, j, and k are all designated to
			$P_4 = True$	be 1+ their predecessor, so they will never
				equal each other.
8	4	6	P _{C5} where	N – integers i, j, and k are all designated to
			$P_4 = True$	be 1+ their predecessor, so they will never
9	4	7	P _{C6} where	equal each other.
9	4	/	$P_{4} = True$	N – integers i, j, and k are all designated to be 1+ their predecessor, so they will never
			14 – 11ue	equal each other.
10	4	8	P _{C4,5,6}	Y
			where $P_4 =$	
			False	
11	5	1	P _{C7} where	Y
			$P_5 = True$	
12	5	2	P _{C7} where	Y
			$P_5 = False$	

3. Test Results with Traceability

Test ID	Targeted TR	Input	Observed	Result
			Output	
1	1,3,5,10,12	[1,2,3]	[]	Failed
2	1,3,5,10,11	[3,1,2]	[312]	Failed
3	2	[1]	[]	Passed

4. Test Results with Traceability

4.1. Coverage of Logic-Based Test Suite

I do not believe that coverage can be improved, because predicate 4 ($i == j \parallel ...$) will never be triggered. During the initial run, i will be 0, then j will be 1, and k will be 2. The k loop will run until completion, to which it goes back to j, which increments to 2, and then the k loop starts again where it is set to j + 1, which is 2+1=3. This repeats for every iterance of i, j, and k and therefore P4 never ends up being true.

4.2. Faults, Errors and Failures

Fault: Because j and k never get the chance to start at 0, and because they are always 1 value higher than their predecessor, the code will never find all of the integers that meet the requirements.

Failure: Yes, my Junit tests produced 2 failures.