R package rrtable

Keon-Woong Moon 2018-04-12 16:48:12

```
require(moonBook)
require(xtable)
require(ztable)
require(rrtable)
require(ggplot2)
options(ztable.type='latex')
```

Introduction

If you are a data scientist or researcher, you will certainly be interested in reproducible research. R package rrtable makes it possible to make reports with HTML, LaTex, MS word or MS Powerpoint formats from a table of R codes.

Package Installation

You can install R package rrtable with the following command.

```
if(!require(devtools)){ install.packages("devtools") }
devtools::install_github("cardiomoon/rrtable")
```

Package Loading

You can load the **rrtable** package with the following R command.

```
require(rrtable)
```

Sample Data

Sample data sampleData3 is included in rrtable package. You can see the sampleData3 by folllowing R command.

```
str(sampleData3)
```

```
'data.frame': 15 obs. of 5 variables:
$ type : chr "title" "subtitle" "author" "text" ...
$ title : chr "" "" "Introduction" ...
$ text : chr "R package `rrtable`" "Reproducible Research with a Table of R codes" "Keon-Woong Moon"
$ code : chr "" "" "" "" ...
$ option: chr "" "" "" "" ...
```

Paragraph

You can make a paragraph with this data

ztable2(sampleData3,sidewaystable=TRUE)

type	title	text	code	option
title subtitle		R package 'rrtable' Reproducible Research with a Table of R codes		
author text	Introducti	Keon-Woong Moon If you are a data scientist or resear cher, you will certainly be intereste d in reproducible research. R package 'rrtable' makes it possible to make reports with HTML, LaTex, MS word or MS Powerpoint formats from a table of R codes.		
header2	Package In stallation	You can install R package 'rrtable' w ith the following command.	<pre>if(!require(dev tools)){ instal l.packages("dev tools") } devtools::insta ll_github("card iomoon/rrtable")</pre>	echo=TRUE, eval=FALSE
header2	Package Lo ading	You can load the 'rrtable' package wi th the following R command.	require(rrtable)	echo=TRUE
header2	Sample Dat a	Sample data sampleData3 is included in rrtable package. You can see the sampleData3 by folllowing R command.	$ str(sampleData3 \\)$	echo=TRUE, eval=TRUE
table	Paragraph	You can make a paragraph with this da ta	df2flextable3(s ampleData3)	landscape= TRUE
mytable	mytable ob ject	You can add mytable object with the f ollowing R code.	mytable(Dx~.,da ta=acs)	THOL
plot	Plot	You can insert a plot into your docum ent.	plot(iris)	
ggplot	ggplot	You can insert a ggplot into a docume nt	ggplot(iris,aes (x=Sepal.Length ,y=Sepal.Width, color=Species)) + geom_point()	
Rcode	R code	You can insert the result of R code. For example, you can insert the result of regression analysis.	fit=lm(mpg~wt*h p,data=mtcars)	
2ggplots	Two ggplot s	You can insert two parallel ggplots w ith the following code.	summary(fit) ggplot(iris,aes (Sepal.Length,S epal.Width))+ge	

2plots	Two plots	You can insert two parallel plots with the following code.	om_point() ggplot(iris,aes (Sepal.Length,S epal.Width,colo ur=Species))+ g eom_point()+gui des(colour=FALS E) hist(rnorm(1000))	
header2	HTML Repor	You can get report with HTML format(t his file) by following R command.	plot(1:10) data2HTML(sampl eData3)	echo=TRUE, eval=FALSE

mytable object

You can add mytable object with the following R code.

```
result= mytable(Dx~.,data=acs)
print(ztable(result,longtable=TRUE),type='latex')
```

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NOTEMI	CUEMI	TT 1-1 - A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NSTEMI (N. 152)	STEMI	Unstable Angina	р
Female					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		64.3 ± 12.3	62.1 ± 12.1	63.8 ± 11.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		((0.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		103 (67.3%)	220 (72.4%)	247 (61.8%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yes	4 (2.6%)	$48 \ (15.8\%)$	0 (0.0%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	entry				0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Femoral	58 (37.9%)	$133 \ (43.8\%)$	121 (30.2%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Radial	95~(62.1%)	171 (56.2%)	279 (69.8%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EF	55.0 ± 9.3	52.4 ± 9.5	59.2 ± 8.7	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	height	163.3 ± 8.2	165.1 ± 8.2	161.7 ± 9.7	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	weight	64.3 ± 10.2	65.7 ± 11.6	64.5 ± 11.6	0.361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BMI	24.1 ± 3.2	24.0 ± 3.3	24.6 ± 3.4	0.064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	obesity				0.186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No	106 (69.3%)	209 (68.8%)	252 (63.0%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yes				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TC	193.7 ± 53.6	183.2 ± 43.4	183.5 ± 48.3	0.057
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LDLC	126.1 ± 44.7	116.7 ± 39.5	112.9 ± 40.4	0.004
DM 0.209 No 96 (62.7%) 208 (68.4%) 249 (62.2%) Yes 57 (37.3%) 96 (31.6%) 151 (37.8%) HBP 0.002 No 62 (40.5%) 150 (49.3%) 144 (36.0%) Yes 91 (59.5%) 154 (50.7%) 256 (64.0%) smoking 0.000 Ex-smoker 42 (27.5%) 66 (21.7%) 96 (24.0%) Never 50 (32.7%) 97 (31.9%) 185 (46.2%)	HDLC	38.9 ± 11.9	38.5 ± 11.0	37.8 ± 10.9	0.501
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TG	130.1 ± 88.5	106.5 ± 72.0	137.4 ± 101.6	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DM				0.209
Yes 57 (37.3%) 96 (31.6%) 151 (37.8%) HBP 0.002 No 62 (40.5%) 150 (49.3%) 144 (36.0%) Yes 91 (59.5%) 154 (50.7%) 256 (64.0%) smoking 0.000 Ex-smoker 42 (27.5%) 66 (21.7%) 96 (24.0%) Never 50 (32.7%) 97 (31.9%) 185 (46.2%)	No	96 (62.7%)	208 (68.4%)	249 (62.2%)	
HBP 0.002 No 62 (40.5%) 150 (49.3%) 144 (36.0%) Yes 91 (59.5%) 154 (50.7%) 256 (64.0%) smoking 0.000 Ex-smoker 42 (27.5%) 66 (21.7%) 96 (24.0%) Never 50 (32.7%) 97 (31.9%) 185 (46.2%)	Yes			` /	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	НВР	(-: -, -,	(, -,	(-, -, -,	0.002
Yes 91 (59.5%) 154 (50.7%) 256 (64.0%) smoking 0.000 Ex-smoker 42 (27.5%) 66 (21.7%) 96 (24.0%) Never 50 (32.7%) 97 (31.9%) 185 (46.2%)		62 (40.5%)	150 (49.3%)	144 (36.0%)	
smoking 0.000 Ex-smoker 42 (27.5%) 66 (21.7%) 96 (24.0%) Never 50 (32.7%) 97 (31.9%) 185 (46.2%)	Yes	\ /	'		
Ex-smoker 42 (27.5%) 66 (21.7%) 96 (24.0%) Never 50 (32.7%) 97 (31.9%) 185 (46.2%)		- (*****)	- (- (/ 0)	(===,0)	0.000
Never $50(32.7\%)$ $97(31.9\%)$ $185(46.2\%)$	~	42 (27.5%)	66 (21.7%)	96 (24.0%)	3.000
	Smoker	61 (39.9%)	141 (46.4%)	119 (29.8%)	

Plot

You can insert a plot into your document.

plot(iris)

ggplot

You can insert a ggplot into a document

ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width,color=Species))+ geom_point()

R code

You can insert the result of R code. For example, you can insert the result of regression analysis.

```
fit=lm(mpg~wt*hp,data=mtcars)
summary(fit)
```

```
Call:
lm(formula = mpg ~ wt * hp, data = mtcars)
Residuals:
    Min    1Q Median    3Q Max
```

```
-3.0632 -1.6491 -0.7362 1.4211 4.5513
```

Coefficients:

Residual standard error: 2.153 on 28 degrees of freedom Multiple R-squared: 0.8848, Adjusted R-squared: 0.8724 F-statistic: 71.66 on 3 and 28 DF, p-value: 2.981e-13

Two ggplots

You can insert two parallel ggplots with the following code.

Two plots

You can insert two parallel plots with the following code.

Sepal.Length

HTML Report

You can get report with HTML format (this file) by following R command.

data2HTML(sampleData3)