

KOMPRESIJA SLIKE

POGLAVLJE 7

KOMPRESIJA SLIKE

- Pojam smanjenja količine podataka potrebnih za predstavljanje digitalne slike
- Matematički gledano transformacija 2D matrice u skup statistički nekorelisanih podataka
- Zasniva se na uklanjanju redundantnih podataka
- Primenjuje se pre zapisivanja ili prenosa
- Dekompresijom se dobija "originalna" slika
- Kompresija bez oštećenja (losless compression)
 - Rekonstruisana slika identična je originalnoj (medicina)
- Kompresija sa oštećenjem (lossy compression)
 - Rekonstruisana slika razlikuje se od originalne u meri u kojoj to dozvoljava aplikacija (video prenos, fotografija,...)

OSNOVI KOMPRESIJE

- Redundansa podataka
 - Višak podataka za predstavljanje iste količine informacija
 - Ako su n_1 i n_2 broj simbola potrebnih za predstavljanje iste informacije, odnos kompresije je C_R , a relativna redundansa R_D

$$R_D = 1 - \frac{1}{C_R}, \quad C_R = \frac{n_1}{n_2}$$

- Tri vrste redundanse koriste se u kompresiji slike
 - Redundansa kodovanja (predstavljanja)
 - Predstavljanje vrednosti piksela na različite načine
 - Prostorna redundansa (Spatial redundancy)
 - Susedni pikseli imaju slične vrednosti "konstantne" razlike
 - Psihovizuelna redundansa
 - Moć opažanja je ograničena, pa nije potrebno sve prenositi

REDUNDANSA KODOVANJA

- Postoji kada vrednosti piksela nisu kodovane u skladu sa njihovim verovatnoćama pojavljivanja
 - Slike najčešće nemaju potpuno uniforman histogram, pa su neke vrednosti osvetljaja verovatnije od drugih
- Gotovo uvek postoji u slikama čiji su pikseli direktno binarno kodovani (n bita po pikselu)
 - Isti broj bita dodeljen je svim vrednostima u skali sivog
- Kod sa promenljivom dužinom kodne reči
 - $-p_r(r_k)$ odgovara vrednostima normalizovanog histograma, a $l(r_k)$ je dužina reči koja je dodeljena vrednosti r_k $L_{avg} = \sum_{k=1}^{L-1} l(r_k) p_r(r_k)$
 - L_{avg} je prosečna dužina koda

$$p_r(r_k) = \frac{n_k}{n}, \quad k = 0, 1, ..., L - 1$$

$$L_{avg} = \sum_{k=0}^{L-1} l(r_k) p_r(r_k)$$

REDUNDANSA KODOVANJA

- Kod sa promenljivom dužinom kodne reči
 - Kod 1 sa fiksnom
 - Kod 2 sa promenljivom
 - Prosečna dužina kodne reči manja je kod koda 2
 - Kako je faktor kompresije veći od 1, postoji redundansa ~0.1

	7
$L_{avg1} =$	$\sum 3p_r(r_k) = 3 \ bita$
	k=0

$$L_{avg2} = \sum_{k=0}^{7} l_2(r_k) p_r(r_k) = 2.7 \ bita$$

$$R_D = 1 - \frac{1}{\frac{L_{avg1}}{L_{avg2}}} = 1 - \frac{1}{1.11} = 0.099$$

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6

PROSTORNA REDUNDANSA

- Korelisanost piksela u slici usled geometrijskih relacija između piksela
 - Vrednost piksela može se dobro predvideti na osnovu vrednosti suseda, pa jedan piksel nosi malo informacija
 - Vrednost piksela redundantna je u odnosu na okolinu
- Preslikavanje (mapping) je transformacija kojom se smanjuje prostorna redundansa u slici
 - 2D matrica kojom je slika normalno vizuelno predstavljena transformiše se u efikasniji format (vizuelno nejasan)
 - Ukidaju se geometrijske zavisnosti između piksela
 - Slika se npr. može predstaviti preko razlike susednih piksela koja se može kodovati sa manjim brojem bita
 - Preslikavanje je reverzibilno ako se originalna slika može dobiti iz transformisanog skupa

PROSTORNA REDUNDANSA

- Primer korelisanosti piksela
 - Dve slike sa istim sadržajem po vrednostima piksela, ali sa različitim geometrijama
 - Histogrami dve slike veoma su slični, pa slike imaju istu redundansu kodovanja
 - Upotreba koda promenljive dužine dala bi isti rezultat
 - Autokorelacije u okviru jedne linije slike bitno se razlikuju
 - Autokorelacija desne slike periodična je zbog geometrije
 - Najbliži susedi piksela imaju u oba slučaja bliske vrednosti (za $\Delta n=1, \gamma\sim1$)

PROSTORNA REDUNDANSA

- Primer preslikavanja
 - Slika šeme štampane ploče i ista slika nakon binarizacije
 - Ako se iskoristi RLC kodovanje (Run-Length) moguće je čitavu liniju od 1024 piksela (bita), predstaviti sa 88 bita
 - Ostvarena kompresija je 2.63, a relativna redundansa 0.62
 - RLC kodovanje jeste preslikavanje u drugi (nevizuelni) format

Line 100: (1,63) (0,87) (1,37) (0,5) (1,4) (0,556) (1,62) (0,210)

PSIHOVIZUELNA REDUNDANSA

- Neke informacije imaju manju važnost od drugih pri vizuelnoj obradi slike u ljudskom mozgu
- Psihovizuelna redundansa može se eliminisati bez smanjenja kvaliteta slike koji doživljavamo
 - Mozak ne analizira svaki piksel u slici posebno već traži i kombinuje karakteristična obeležja – ivice i teksture
- Smanjenje psihovizuelne redundanse implicira gubitak kvantitativne informacije – kvantizacija
 - Kvantizacija je preslikavanje kojim se veliki skup ulaznih vrednosti prevodi u manji skup izlaznih
- Ireverzibilan proces koji prouzrokuje trajni gubitak informacije - kompresija sa oštećenjem

PSIHOVIZUELNA REDUNDANSA

- Kvantizacija sa 8 na 4 bita
 - Kompresija 2:1
- -Originalna slika
- -Slika nakon klasične kvantizacije
- -Slika nakon IGS kvantizacije (*Improved Gray-Scale quantization*)

Za vrednosti originalne slike bliske pragu, klasična kvantizacija daće bitno različite vrednosti (lažne konture)

IGS veštački dodaje šum pre kvantizacije kako bi se izbeglo stvaranje lažnih kontura – skoro kao original

Pixel	Gray Level	Sum	IGS Code
i - 1	N/A	0000 0000	N/A
i	0110 1100	01101100	0110
i + 1	1000 1011	1001 0111	1001
i + 2	1000 0111	1000 1110	1000
i + 3	1111 0100	1111 0100	1111

© 2002 R. C. Gonzalez & R. E. Woods

KRITERIJUMI KVALITETA KOMPRESIJE SA OŠTEĆENJEM

- Kriterijumi vernosti (Fidelity criterion)
- Objektivni kriterijumi MSE, PSNR i sl.
- Subjekivni kriterijum utisak posmatrača (ocena)

$$PSNR = 10 \log \frac{(L-1)^2}{\frac{1}{M} \frac{1}{N} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \left[f(x,y) - \hat{f}(x,y) \right]^2}$$

Value	Rating	Description
1	Excellent	An image of extremely high quality, as good as you could desire.
2	Fine	An image of high quality, providing enjoyable viewing. Interference is not objectionable.
3	Passable	An image of acceptable quality. Interference is not objectionable.
4	Marginal	An image of poor quality; you wish you could improve it. Interference is somewhat objectionable.
5	Inferior	A very poor image, but you could watch it. Objectionable interference is definitely present.
6	Unusable	An image so bad that you could not watch it.

MODEL KOMPRESIJE SLIKE

- Preslikavanje (Mapper) smanjuje prostornu redundansu
- Simbolski koder redundansa kodovanja (predstavljanja)
- Kvantizer smanjuje psihovizuelnu redundansu
 - U kompresiji bez gubitaka izostavlja se kvantizacija
- Dekompresija obuhvata suprotne procese
 - Kvantizacija je ireverzibilan proces, pa je nema u dekompresiji

KOMPRESIJA SLIKE BEZ GUBITAKA

- Uobičajeni algoritmi za kompresiju bez gubitaka (u izvornom obliku ili prilagođeni za sliku - 2D algoritmi)
 - Kodovi sa promenljivom dužinom kodne reči (Huffman)
 - Najkraću kodnu reč ima najverovatniji podatak
 - Aritmetičko kodovanje
 - Kodnu reč predstavlja broj u opsegu [0, 1]
 - Lempel-Ziv algoritam (GIF, TIFF, PDF formati)
 - Zasniva se na ponavljanju nizova kodna reč se sastoji od relativne pozicije i dužine ponovljenog niza
 - Kodovanje bitskih ravni
 - Dekompozicijom na bitske ravni omogućava se njihovo nezavisno kodovanje – Grejov kod povećava kompresiju
 - Prediktivno kodovanje
 - Na osnovu vrednosti nekoliko piksela vrši se predikcija, pa se koduje razlika između stvarne i predikovane vrednosti

KOMPRESIJA SLIKE BEZ GUBITAKA

- Kodovanje bitskih ravni
- Susedne kodne reči u Grejovom kodu razlikuju se samo za jedan bit
- *m*-bitni Grejov kod

$$g_i = a_i \oplus a_{i+1}, \ 0 \le i \le m-2$$

 $g_{m-1} = a_{m-1}$

- RLC kodovanje ostvaruje veću kompresiju sa Grejovim kodom
- Iz bitskih ravni prirodnog i

Grejovog koda uočava se veća prostorna redundansa kod Grejovog koda

RLC	Kompresija po bitskim ravnima i ukupni odnos kompresije											
Kod	7 6 5 4 3 2 1 0							0	Rc			
Prirodni	0.09	0.19	0.51	0.68	0.87	1.00	1.00	1.00	1.5:1			
Grejov	0.09	0.13	0.40	0.33	0.51	0.85	1.00	1.00	1.9:1			

PREDIKTIVNO KODOVANJE

- Koduje se razlika između stvarne i predikovane vrednosti
- Predikcija je zaokružena vrednost linearne kombinacije m susednih piksela
- Rekonstrukcija se vrši sabiranjem razlike sa predikovanom vrednošću
- Postoji mogućnost akumulacije
 (prostiranja) greške

$$f_n = e + \hat{f}_n$$

$$\hat{f}_n = round \left[\sum_{i=1}^m \alpha_i f_{n-i} \right]$$

-1D predikcija slike po y osi

$$\hat{f}(x,y) = round \left[\sum_{i=1}^{m} \alpha_i f(x,y-i) \right]$$

PREDIKTIVNO KODOVANJE

- Slika nakon prediktivnog kodovanja vizuelno ne zadovoljava, ali je njen histogram mnogo uži (veća redundansa kodovanja) pa omogućava veću kompresiju (modeluje se Laplasovom raspodelom)
- Manji dinamički opseg koduje se sa manjim brojem bita

Std. dev. = 47.44

Entropy = 6.81

128

Gray level

255

-100

Number of pixels (×10,000)

Prediction error

100

KOMPRESIJA SLIKE SA GUBICIMA

- Smanjena tačnost rekonstrukcije originalne slike na račun povećanja kompresije
 - Moguće je ostvariti značajna povećanja kompresije, ukoliko se oštećenja slike (vidljiva ili ne) mogu tolerisati
 - Kompresija prosečne slike bez oštećenja retko može da ostvari odnos kompresije 3:1
 - Kompresija sa oštećenjem ostvaruje odnose od 50:1 bez vidljivih oštećenja, a preko 100:1 sa vidljivim oštećenjima koja se mogu tolerisati – sadržaj slike je prepoznatljiv
- Kompresija sa oštećenjem u prostornom domenu
 - Prediktivno kodovanje
- Kompresija u transformacionom domenu
 - DFT, WHT, DCT, Wavelet transformacija

PREDIKTIVNO KODOVANJE

- Kvantizer omogućava povećanje kompresije, pri čemu stvara oštećenja u slici
 - Preslikava razliku (grešku) u konačan broj vrednosti
 - Sadrži i funkciju zaokruživanja prediktora bez oštećenja
 - Postavljanje prediktora u petlju onemogućava prostiranje greške usled kvantizacije na izlazu dekodera

PREDIKTIVNO KODOVANJE

Delta modulacija

 Jednostavna dobro poznata varijanta prediktivnog kodovanja sa oštećenjem

 1-bitno kodovanje izlaza (kodna brzina 1 bit/pikselu)

$$\dot{e}_n = \begin{cases} +\zeta, & e_n > 0 \\ -\zeta, & e_n \le 0 \end{cases}$$

 α – koeficijent predikcije (~1)

 ζ — pozitivna konstanta

- Zasićenje nagiba (slope overload)
 Na strmom delu signala korak je previše mali da bi ispratio promenu (Zamućenje ivica u slici)
- Zrnasti šum (Grannluar noise)
 Na ravnom delu (n=0-7) javlja se šum zbog velikog koraka
 (Šum u uniformnim oblastima slike)
- Dva protivurečna zahteva

In	put		oder		Decoder	Error	
n	f	\hat{f}	e	ė	\dot{f}	\hat{f} \dot{f}	$[f-\dot{f}]$
0 1 2 3	14 15 14 15 29 37 47 62 75	14.0 20.5 14.0 20.5 27.0 33.5 40.0 46.5 53.0		6.5 -6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	14.0 20.5 14.0 20.5	- 14.0 14.0 20.5 20.5 14.0 14.0 20.5 	0.0 -5.5 0.0 -5.5 2.0 3.5 7.0 15.5 22.0 17.5
	•		:	:	:	: :	

PREDIKTIVNO KODOVANJE

Optimalni prediktor

- Minimizuje srednju kvadratnu grešku linearne predikcije (određivanje koeficijenata α izjednačavanjem prvog izvoda sa nulom, uz pretpostavku da f ima srednju vrednost 0 i varijansu σ^2)
- Zanemaruje se greška kvantizera
- DPCM (Differential Pulse Code Modulation)
- R je autokorelaciona matrica ₋
- smisla pa se koristi model
- se izbegne prostiranje greške

$$\sum_{i=1}^{m} \alpha_i \le 1$$

$$E\{e_n^2\} = E\left\{ \left[f_n - \hat{f}_n \right]^2 \right\}$$

$$\dot{f}_n = \dot{e}_n + \hat{f}_n \approx e_n + \hat{f}_n = f_n$$

$$E\{e_n^2\} = E\left\{ \left[f_n - \sum_{i=1}^m \alpha_i f_{n-1} \right]^2 \right\}$$

$$\boldsymbol{\alpha} = \mathbf{R}^{-1} \mathbf{r}$$

-
$$\mathbf{R}$$
 je autokorelaciona matrica - Računanje optimalnih koeficijenata za svaku $\mathbf{R} = \begin{bmatrix} E\{f_{n-1}f_{n-1}\} & E\{f_{n-1}f_{n-2}\} & \dots & E\{f_{n-1}f_{n-m}\} \\ E\{f_{n-2}f_{n-1}\} & \dots & \dots & \dots \\ E\{f_{n-m}f_{n-1}\} & E\{f_{n-m}f_{n-2}\} & \dots & E\{f_{n-m}f_{n-m}\} \end{bmatrix}$ smisla pa se koristi model

slike (npr. 2D Markovljev izvor)
$$- \text{ Uslov da izlaz prediktora bude} \\ \text{u očekivanom opsegu i da} \\ \text{se izbegne prostiranje greške} \\ \mathbf{r} = \begin{bmatrix} E\{f_nf_{n-1}\} \\ E\{f_nf_{n-2}\} \\ \dots \\ E\{f_nf_{n-m}\} \end{bmatrix}, \ \boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_m \end{bmatrix}$$

$$\sigma_e^2 = \sigma^2 - \boldsymbol{\alpha}^T \mathbf{r} = \sigma^2 - \sum_{i=1}^m E\{f_n f_{n-i}\} \alpha_i$$

PREDIKTIVNO KODOVANJE

Greške predikcije DPCM linearnih prediktora

1.
$$\hat{f}(x,y) = 0.97 f(x,y-1)$$

2.
$$\hat{f}(x,y) = 0.5f(x,y-1) + 0.5f(x-1,y)$$

3.
$$\hat{f}(x,y) = 0.75 f(x,y-1) + 0.75 f(x-1,y) -0.5 f(x-1,y-1)$$

4.
$$\hat{f}(x,y) = \begin{cases} 0.97 f(x,y-1), & \Delta h \le \Delta v \\ 0.97 f(x-1,y), & \Delta h > \Delta v \end{cases}$$

$$\Delta h = |f(x-1,y) - f(x-1,y-1)|$$

$$\Delta v = |f(x,y-1) - f(x-1,y-1)|$$

-Za red veći od 3 kompleksnost se povećava bez većeg doprinosa kompresiji

PREDIKTIVNO KODOVANJE

Optimalni kvantizer

- Stepenasta funkcija kvantizacije
 t=q(s) je neparna i definisana
 sa L/2 vrednosti s_i i t_i
 (nivoi odluke i rekonstrukcije)
- Izbor najboljih s_i i t_i za dati kriterijum optimizacije i gustinu raspodele verovatnoće p(s)
- Uslovi za minimizaciju greške kvantizacije $E\{(s-t_i)^2\}$ (*Lloyd-Max*-ov kvantizer)
- * Nivoi rekonstrukcije su centroidi oblasti ispod krive p(s) nad datim intervalom odluke
- * Nivoi odluke su na sredini intervala rekonstrukcije

$$\text{di} \begin{cases} \int_{s_{i-1}}^{s_i} (s-t_i) p(s) ds = 0, \ i=1,2,...,L/2 \\ s_i = \begin{cases} 0, & i=0 \\ (t_i+t_{i+1})/2, & i=1,2,...,L/2 \\ \infty, & i=L/2 \end{cases} \\ s_{-i} = -s_i, \ t_{-i} = -t_i \end{cases}$$

PREDIKTIVNO KODOVANJE

- Optimalni kvantizer
 - Nivoi odluke i rekonstrukcije Lloyd-Max-ovog kvantizera sa 2, 4 i 8 nivoa, za Laplasovu raspodelu varijanse 1

Levels	2			4		8			
i	s_i		t_i	s_i		t_i	s_i		t_i
1	∞		0.707	1.102		0.395	0.504		0.222
2				∞		1.810	1.181		0.785
3							2.285		1.576
4							∞		2.994
θ		1.414			1.087			0.731	

- θ je korak **optimalnog uniformnog kvantizera** koji uz ostale zadovoljava i dodatni uslov $t_i t_{i-1} = s_i s_{i-1} = \theta$
- Optimalni uniformni kvantizer sa kodom promenljive dužine daće manju kodnu brzinu od Lloyd-Maxovog kvantizera sa kodom konstantne dužine reči za Laplasovu raspodelu
- Performanse ovih kvantizera značajno se mogu popraviti adaptivnom primenom u zavisnosti od lokalne raspodele
 - Fina kvantizacija regiona slike sa malom varijansom i obrnuto
 - Dovodi do smanjenja zasićenja nagiba i prisustva zrnastog šuma

PREDIKTIVNO KODOVANJE

Prva kolona

DPCM i *Lloyd-Max* kvantizacija sa 2, 4 i 8 nivoa

Druga kolona

Adaptivna kvantizacija – u svakom bloku od 16 piksela odabran je najbolji od 4 kvantizera

Greška je značajno manja kod adaptivne kvantizacije – zbog prefiksa za izbor kvantizera kompresija je manja od *Lloyd-Max* kvant.

- Slika se preslikava u skup transformacionih koeficijenata, koji se potom kvantizuju i koduju
 - Veliki broj mogućih transformacija (DFT, WHT, DCT,...)
 - Slika dimenzija $N \times N$ deli se na $(N/n)^2$ slika od $n \times n$ piksela
 - Podslike se transformišu u $n \times n$ koeficijenata u cilju dekorelacije susednih piksela kompakcija energije
 - Za većinu prirodnih slika, veliki broj koeficijenata ima male vrednosti i mogu se grubo kvantizovati ili eliminisati bez značajnog gubitka u kvalitetu slike

TRANSFORMACIONO KODOVANJE

- Izbor transformacije
 - Zavisi od greške rekonstrukcije koja se može tolerisati i raspoložive računarske platforme
 - Kompresija se ostvaruje kvantizacijom koeficijenata, a ne transformacijom
 - Za sliku f(x,y) dimenzija $N \times N$ diskretna transformacija T(u,v) definisana je kao

$$T(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)g(x,y,u,v), \quad u,v = 0, 1, 2, ..., N-1$$

$$f(x,y) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} T(u,v)h(x,y,u,v), \quad x,y = 0, 1, 2, ..., N-1$$

-g(x,y,u,v) i h(x,y,u,v) su jezgra (kerneli) direktne i inverzne transformacije respekt. – nazivaju se i bazne funkcije/slike

- Osobine transformacije
 - Kernel je separabilan ako važi

$$g(x, y, u, v) = g_1(x, u)g_2(y, v)$$

- 2D transformacija može se realizovati preko dve sukcesivne 1D transformacije po vertikali i horizontali
- Kernel je simetričan ako važi

$$g(x, y, u, v) = g_1(x, u)g_1(y, v)$$

- DFT diskretna Furijeova transformacija
 - Najpoznatiji par transformacionih kernela

$$g(x, y, u, v) = \frac{1}{N^2} e^{-j2\pi(ux+xy)/N}$$

$$h(x, y, u, v) = e^{j2\pi(ux+xy)/N}$$

TRANSFORMACIONO KODOVANJE

WHT (Walsh-Hadamard transform)

$$g(x, y, u, v) = h(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{m-1} \lfloor b_i(x)p_i(u) + b_i(y)p_i(v) \rfloor}, \ N = 2^m$$

 $b_k(z) - k$ -ti bit (s desna na levo) u binarnoj predstavi z

$$p_0(u) = b_{m-1}(u)$$

$$p_1(u) = b_{m-1}(u) + b_{m-2}(u)$$

$$p_2(u) = b_{m-2}(u) + b_{m-3}(u)$$

. . .

$$p_{m-1}(u) = b_1(u) + b_0(u)$$

Sva sabiranja su po modulu 2!

- Kernel se sastoji od naizmeničnih
 +1 i -1 u formi šahovskog polja
- Jednostavno za implementaciju
- WHT bazne slike za $N=4 \rightarrow \rightarrow \rightarrow$

TRANSFORMACIONO KODOVANJE

DCT – diskretna kosinusna transformacija

$$g(x, y, u, v) = h(x, y, u, v) = \alpha(u)\alpha(v)\cos\left[\frac{(2x+1)u\pi}{2N}\right]\cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

$$\alpha(u) = \begin{cases} \sqrt{\frac{1/N}{N}}, & u = 0\\ \sqrt{\frac{2}{N}}, & u = 1, 2, ..., N-1 \end{cases}$$

- Realna za razliku od DFT
- Ostvaruje veliku kompakciju energije slike u mali broj koeficijenata (JPEG standard)
- Kerneli predstavljaju kosinusne funkcije različitih perioda po horizontali i vertikali u formi šahovskog polja
- DCT bazne slike za $N=4 \rightarrow \rightarrow \rightarrow$
 - » Vektori baze u prostoru slika

- DFT, WHT, DCT primer
 - Slika dimenzija 512×512 piksela podeljena na podslike 8×8
 - Od 64 koeficijenta zadržana 32 sa najvećim amplitudama - 50%
 - Ostalih 32 su eliminisani
 - Inverznim transformacijama ostvaruje se rekonstrukcija
 - Bez kodovanja i kvantizacije preostalih 32 koeficijenta ostvaren je faktor kompresije 2
 - Na slikama se ne vide oštećenja koja se lako uočavaju na slikama greške (najmanje oštećenje ostvaruje DCT)

- Kompakcija energije
 - Može se pokazati da je greška rekonstrukcije za dimenziju podslike $n \times n$ data kao

$$e = \sum_{u=0}^{n-1} \sum_{v=0}^{n-1} \sigma_{T(u,v)}^{2} [1 - \gamma(u,v)],$$

$$\gamma(u,v) = \begin{cases} 0, & \text{koeficijent } T(u,v) \text{ eliminis an} \\ 1, & \text{koeficijent } T(u,v) \text{ sačuvan} \end{cases}$$

$$\sigma_{T(u,v)}^{2} - \text{varijansa koeficijenta } T(u,v)$$

- KLT (Karhunen-Loeve) je transformacija koja daje najmanji mogući broj koeficijenata velike varijanse, ali zavisi od podataka pa je nemoguće za svaku sliku generisati nove bazne slike
- DCT je transformacija nezavisna od podataka, koja je najsličnija KLT transformaciji

TRANSFORMACIONO KODOVANJE

Blok efekat

- Javlja se kao posledica deljenja na podslike dimenzija $n \times n$
- Implicitna n periodičnost DFT transformacije prouzrokuje greške na granicama blokova pri eliminaciji koeficijenata na visokim učestanostima
- Implicitna 2n periodičnost DCT transformacije smanjuje ovaj efekat (ali ga ne uklanja sasvim)

TRANSFORMACIONO KODOVANJE

Dimenzije podslike

- Biraju se tako da se smanji korelacija (redundansa)
 između susednih slika i da n bude stepen broja 2, radi jednostavnije implementacije
- Povećanjem dimenzija podslike raste faktor kompresije, ali raste i kompleksnost postupka
- Najčešće dimenzije su 8×8 i 16×16
- Greška rekonstrukcije pri eliminaciji 75% koeficijenata za različite dimenzije podslike
 - DCT i WHT pokazuju zasićenje
 - DFT asimptotski teži DCT
 - Za 2×2 svi su isti jer je samo DC komponenta ostala (25%)

- Dimenzije podslike
 - Uvećan detalj originalne slike
 - Rekonstruisane slike nakon DCT kompresije sa 75% eliminisanih koeficijenata i različitim dimenzijama podslika:
 - 2×2, 4×4, 8×8
 - Na 2×2 uočava se blok efekat, na 4×4 manje, a na 8×8 još manje

- Bitska alokacija
 - Proces eliminacije, kvantizacije i kodovanja koeficijenata transformisane podslike
 - Zonsko kodovanje (Zonal coding)
 - Eliminacija koeficijenata na osnovu varijanse
 - Informacija se posmatra kao neizvesnost, pa koeficijenti sa najvećom varijansom nose najviše informacija
 - Na osnovu statistike slike ili modela, formira se fiksna maska kojom se eliminišu (kvantizuju) koeficijenti
 - Kodovanje na osnovu praga (Threshold coding)
 - Eliminacija koeficijenata na osnovu amplitude
 - Zadržava se određeni broj koeficijenata sa najvećim amplitudama, a ostali se eliminišu
 - Maska kojom se eliminišu (kvantizuju) koeficijenti menja se u zavisnosti od rasporeda amplituda po koeficijentima

- Bitska alokacija
 - Kodovanje na osnovu praga (levo)
 - Zonsko kodovanje (desno)
 - U oba slučaja 87.5%
 DCT koeficijenata je eliminisano

- Zonsko kodovanje
 - Zadržavaju se koeficijenti sa najvećom varijansom
 - Varijansu je moguće odrediti na dva načina
 - Direktno na slici iz ansambla $(N/n)^2$ podslika
 - Na osnovu modela slike (npr. 2D Markovljev izvor)
 - Množenje koeficijenata T(u,v) sa maskom koja ima vrednosti 1 na mestima značajne varijanse, a na ostalim 0
 - Sačuvani koeficijenti kvantizuju se i koduju
 - Uniformna kvantizacija dodeljuje isti broj bita svakom koeficijentu
 - Adaptivna kvantizacija alocira bite u zavisnosti od značaja koeficijenata
 - Maska i alokacija bita →

								_							
1	1	1	1	1	0	0	0	8	7	6	4	3	2	1	0
1	1	1	1	0	0	0	0	7	6	5	4	3	2	1	0
1	1	1	0	0	0	0	0	6	5	4	3	3	1	1	0
1	1	0	0	0	0	0	0	4	4	3	3	2	1	0	0
1	0	0	0	0	0	0	0	3	3	3	2	1	1	0	0
0	0	0	0	0	0	0	0	2	2	1	1	1	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Kodovanje na osnovu praga
 - Koeficijenti sa najvećom amplitudom čine najveći doprinos pa ih treba sačuvati
 - Množenje koeficijenata T(u,v) sa maskom koja ima vrednosti 1 na mestima sa značajnim amplitudama
 - Cik-cak skeniranjem vrši se konverzija 2D podslike od $n \times n$ piksela u 1D niz sa n^2 koeficijenata
 - Ovaj niz sadrži duge nizove nula između zaostalih
 - VF koeficijenata pa se za kompresiju koristi RLC kodovanje
 - Maska koja označava preostale koeficijente i matrica koja definiše cik-cak skeniranje (redom od 0 do 63)

1	1	0	1	1	0	0	0	0	1	5	6	14	15	27	28
1	1	1	1	0	0	0	0	2	4	7	13	16	26	29	42
1	1	0	0	0	0	0	0	3	8	12	17	25	30	41	43
1	0	0	0	0	0	0	0	9	11	18	24	31	40	44	53
0	0	0	0	0	0	0	0	10	19	23	32	39	45	52	54
0	1	0	0	0	0	0	0	20	22	33	38	46	51	55	60
0	0	0	0	0	0	0	0	21	34	37	47	50	56	59	61
0	0	0	0	0	0	0	0	35	36	48	49	57	58	62	63

TRANSFORMACIONO KODOVANJE

- Kodovanje na osnovu praga
 - Globalni konstantni prag za sve podslike
 - Različit nivo kompresije između podslika
 - Prag se menja u zavisnosti od podslike K najvećih T(u,v)
 - Isti broj koeficijenata ostaje u svakoj podslici (konst. kompresija)
 - Prag koji je funkcija pozicije koeficijenta u podslici (JPEG)
 - (Realizuje se kroz neuniformnu kvantizaciju koeficijenata, gde matrica normalizacije Z(u,v) definiše korak kvantizacije)

$$\hat{T}(u,v) = round\left[\frac{T(u,v)}{Z(u,v)}\right]$$

$$\dot{T}(u,v) = \hat{T}(u,v)Z(u,v)$$

Matrica normalizacije koja se koristi u JPEG kompresiji →

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

- Kodovanje na osnovu praga
 - DCT transformacija sa podslikama dimenzija 8×8 piksela
 - Levo direktna primena
 JPEG matrice normalizacije
 (kompresija 34:1)
 - Desno JPEG matrica normalizacije pomnožena sa 4 (kompresija 67:1)

TRANSFORMACIONO KODOVANJE

- Wavelet kompresija (JPEG 2000)
- Faktori kompresije (s leva na desno)

34:1

67:1

108:1

167:1

 Nema blok efekta zbog prirode transformacije

ZAKLJUČAK

- Redundansa
 - Redundansa kodovanja
 - Prostorna redundansa
 - Psihovizuelna redundansa
- Kriterijumi kvaliteta kompresije
 - Objektivni i subjektivni kriterijumi
- Kompresija slike bez oštećenja
 - Kodovi promenljive dužine reči, aritmetičko kodovanje, Lempel-Ziv, prediktivno i kodovanje bitskih ravni
- Kompresija slike sa oštećenjem
 - U prostornom domenu: prediktivno kodovanje
 - U transformacionom domenu: DFT, WHT, DCT, Wavelet
 - Bitska alokacija: zonsko kodovanje i na osnovu praga