Modul 84111

Schienenfahrzeugtechnik I

Prof. Dr. Raphael Pfaff Sommersemester 2015

Schienenfahrzeugtechnik I – Übung 5

Längsdynamik

Aufgabe 1 (Massenband/Massenpunktmodell). Ein siebenteiliger Triebzug ($m_w=50\,\mathrm{t},\,l_w=25\,\mathrm{m}$) fährt auf einer Strecke, die der Vorschrift

$$h(x) = \begin{cases} 0, & x < 5000 \\ -100\cos\frac{x - 5000}{5000} + 100, & x \ge 5000 \end{cases}$$

entspricht. Hierbei wird die Position der Zugspitze x in m gemessen.

- a) Bestimmen Sie die maximale Streckenneigung i_{max} der Strecke.
- b) Bestimmen Sie den Punkt, an dem $E_{pot} > 0$ gilt im Massenband- bzw. Massenpunktmodell.
- c) Bestimmen Sie für x=7000 die Neigungswiderstandskraft des Zugverbands, jeweils im Massenbandbzw. Massenpunktmodell.

Aufgabe 2 (Kuppelsoß/Crash). Ein dreiteiliger Metro-Triebzug ($m_w=50\,\mathrm{t}$) soll mit einer automatischen Mittelpufferkupplung ausgestattet werden, die Kuppeln mit $v=4\,\mathrm{\frac{km}{h}}$ zulässt. Der maximale Hub der Frontkupplung sei auf $s_{max}=50\mathrm{mm}$ begrenzt, die Zwischenkupplungen seien starr. Das stehende Fahrzeug ist während des Kuppelns mit der selbsttätigen Bremse gebremst.

- a) Welche Kraft muss über den Verzögerungsweg durchschnittlich herrschen, um die dieses Kuppeln zuzulassen? Hierbei sei die Energie ausschließlich über die Kupplung verzehrt.
- b) Was geschieht mit dem stehenden Fahrzeug?
- c) Welche Verzögerung herrscht unter dem Annahmen von Aufgabe a) im fahrenden Fahrzeug?
- d) Bei einem Crash mit einem baugeichen Fahrzeug mit $v=18\frac{\mathrm{km}}{h}$ stehen Energieverzehrelemente mit einem Hub von $s=200\mathrm{mm}$ zur Verfügung. Welche Verzögerung und welche Kraft stellt sich ein?