

Реализация дисциплины обслуживания CBWFQ для ядра Linux

Автор: Куклина Мария Дмитриевна Научный руководитель: Шинкарук Дмитрий Николаевич

Цели и задачи

Цель – реализация дисциплины обслуживания Class-Based Weighted Fair Queueing (CBWFQ) в ядре Linux.

Задачи

- ▼ Проанализировать и сравнить дисциплины обслуживания PQ, CBQ, HTB, HFSC, FWFQ, CBWFQ.
- ▼ Восстановить алгоритмы Class-Based WFQ.
- Настроить среду для реализации и тестирования.
- У Реализовать модуль ядра CBWFQ в ядре Linux.
- У Реализовать интерфейс утилиты tc для управления модулем.
- Провести тестирование.

Сравнительная таблица ДО

Свойство	PQ	CBQ	HTB	HFSC	FWFQ	CBWFQ
Метод планирования	RR	WRR	RR	RT/LS	WFQ	WFQ
Отбрасывание	TD	TD	TD	TD	ED/AD	TD/WRED
Честность	-	-	-	-	+	+
Разделение канала	-	+	+	+	-	-
Решение проблемы голодания	-	+	+	+	+	+
Сложность реализации	Низк	Выс	Сред	Выс	Сред	Сред
Сложность конфигурации	Низк	Выс	Сред	Выс	Низк	Низк
Конфигурация классов	-	+	+	+	-	+
Реализация в Linux	+	+	+	+	-	-

Обозначения: (W)RR – (Weighted) Round Robin, RT/LS – Real Time/Link Sharing. TD – Tail Drop, ED/AD – Early Dropping/Aggressive Dropping.

WFQ на основе вычисления порядкового номера пакета

Class-Based Weighted Fair Queueing

Схема движения пакетов в планировщике CBWFQ

- Гибкая конфигурация классов.
- Гарантированное выделение минимальной полосы пропускания.

Качество обслуживания в ядре Linux

Схема движения пакетов в ядре Linux.

Плагин для утилиты tc

Опции для настройки дисциплины.

- ✓ "bandwidth" пропускная способность канала.
- ✓ "defaut" ключевое слово, определяющее, что далее пойдут команды для настройки класса по умолчанию.

Опции для настройки классов.

- ▼ "rate" минимальная пропускная способность для класса.
- **♥** "limit" максимальное количество пакетов в очереди класса.

Блок-схемы основных алгоритмов CBWFQ

Начало О := дисциплина обслуживания cl := find min(O) pkt := dequeue(cl) Нет cl.queue пуста cl.sn := pkt.sn cl.sn := 0 Bce Нет классы Q.sn := 0 Q.sn := pkt.sn Вернуть pkt Конец

Алгоритм enqueue

Алгоритм dequeue

Настройка тестовой среды


```
tc qdisc add dev $IFACE root handle 1: cbwfq bandwidth \
100Mbps default rate 5Mbps
tc class add dev $IFACE parent 1: classid 1:2 cbwfq \
rate 25Mbps
tc class add dev $IFACE parent 1: classid 1:3 cbwfq \
rate 70Mbps
tc filter add dev ens4 parent 1:1 protocol ip u32 match \
ip dport $TESTPORT1 0 xfffff flowid 1:2
tc filter add dev ens4 parent 1:0 protocol ip u32 match \
ip dport $TESTPORT2 0 xfffff flowid 1:3
```


Структура эксперимента №1

Результат эксперимента №1, БОЛЬШЕ ШРИФТ

Структура эксперимента №2

Результат эксперимента №2, БОЛЛШЕ ШРИФТ

Вывод

- Проведён сравнительный анализ классовых дисциплин обслуживания.
- Проведено исследование модели WFQ.
- Реализован интерфейс для системы tc.
- У Реализован алгоритм CBWFQ в ядре Linux.
- ▼ Перспектива развития работы: реализация алгоритма WRED и доработка модуля до дисциплины LLQ.

Спасибо за внимание!