Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture #18 – Hypothesis Testing I

The Pepsi Challenge

Analogy between Hypothesis Testing and a Criminal Trial

Steps in a Hypothesis Test

The Pepsi Challenge

Our expert claims to be able to tell the difference between Coke and Pepsi. Let's put this to the test!

- Eight cups of soda
 - Four contain Coke
 - Four contain Pepsi
- The cups are randomly arranged
- How can we use this experiment to tell if our expert can really tell the difference?

The Results:

of Cokes Correctly Identified:

What do you think? Can our expert really tell the difference?

- (a) Yes
- (b) No

If you just guess randomly, what is the probability of identifying *all* four cups of Coke correctly?

- $\binom{8}{4} = 70$ ways to choose four of the eight cups.
- ▶ If guessing randomly, each of these is equally likely
- Only one of the 70 possibilities corresponds to correctly identifying all four cups of Coke.
- ▶ Thus, the probability is $1/70 \approx 0.014$

Probabilities if Guessing Randomly

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

If you're just guessing, what is the probability of identifying at least three Cokes correctly?

- Probabilities of mutually exclusive events sum.
- ▶ P(all four correct) = 1/70
- ▶ P(exactly 3 correct) = 16/70
- ▶ $P(\text{at least three correct}) = 17/70 \approx 0.24$

The Pepsi Challenge

- Even if you're just guessing randomly, the probability of correctly identifying three or more Cokes is around 24%
- In contrast, the probability of identifying all four Cokes correctly is only around 1.4% if you're guessing randomly.
- ▶ We should probably require the expert to get them all right. . .
- ▶ What if the expert gets them all wrong? This also has probability 1.4% if you're guessing randomly...

That was a hypothesis test! We'll go through the details in a moment, but first an analogy...

Criminal Trial

- The person on trial is either innocent or guilty (but not both!)
- "Innocent Until Proven Guilty"
- Only convict if evidence is "beyond a reasonable doubt"
- Not Guilty rather than Innocent
 - ► Acquit ≠ Innocent
- Two Kinds of Errors:
 - Convict the innocent
 - Acquit the guilty
- Convicting the innocent is a worse error. Want this to be rare even if it means acquitting the guilty.

Hypothesis Testing

- Either the null hypothesis H₀ or the alternative H₁ hypothesis is true.
- ightharpoonup Assume H_0 to start
- Only reject H₀ in favor of H₁ if there is strong evidence.
- ► Fail to reject rather than Accept H₀
 - (Fail to reject H_0) \neq (H_0 True)
- Two Kinds of Errors:
 - ► Reject true *H*₀ (Type I)
 - ▶ Don't reject false H₀ (Type II)
- ► Type I errors (reject true H₀) are worse: make them rare even if that means more Type II errors.

How is the Pepsi Challenge a Hypothesis Test?

Null Hypothesis H_0

Can't tell the difference between Coke and Pepsi: just guessing.

Alternative Hypothesis H_1

Able to tell which ones are Coke and which are Pepsi.

Type I Error – Reject H_0 even though it's true

Decide expert can tell the difference when she's really just guessing.

Type II Error – Fail to reject H_0 even though it's false

Decide expert just guessing when she really can tell the difference.

How do we carry out a hypothesis test?

Step 1 – Specify H_0 and H_1

- ▶ Pepsi Challenge: H_0 our "expert" is guessing randomly
- ▶ Pepsi Challenge: *H*₁ our "expert" can tell which is Coke

Step 2 – Choose a Test Statistic T_n

- ▶ T_n uses sample data to measure the plausibility of H_0 vs. H_1
- ▶ Pepsi Challenge: T_n = Number of Cokes correctly identified
- ► Lots of Cokes correct ⇒ implausible that you're just guessing

Step 3 – Calculate Distribution of T_n under H_0

- ▶ Under the null = Under H_0 = Assuming H_0 is true
- ▶ To carry out our test, need sampling dist. of T_n under H_0
- \blacktriangleright H_0 must be "specific enough" that we can do the calculation.
- ► Pepsi Challenge:

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

Step 4 – Choose a Critical Value c

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

- ▶ Pepsi Challenge: correctly identify many cokes ⇒ implausible you're guessing at random.
- ▶ Decision Rule: reject H_0 if $T_n > c$, where c is the critical value.
- Choose c to ensure $P(\mathsf{Type} \mid \mathsf{Error})$ is small. But how small?
- ▶ Significance level $\alpha = \max$. prob. of Type I error we will allow
- Choose c so that if H_0 is true $P(T_n > c) \le \alpha$
- ▶ Pepsi Challenge: if you are guessing randomly, then
 - $P(T_n > 3) = 1/70 \approx 0.014$
 - $P(T_n > 2) = 16/70 + 1/70 \approx 0.23$

Econ 103

How do we carry out a hypothesis test?

# Correct	0	1	2	3	4
Prob.	1/70	16/70	36/70	16/70	1/70

- Step 1 Specify Null Hypothesis H_0 and alternative Hypothesis H_1
- Step 2 Choose Test Statistic T_n
- Step 3 Calculate sampling dist of T_n under H_0
- Step 4 Choose Critical Value c
- Step 5 Look at the data: if $T_n > c$, reject H_0 .

Pepsi Challenge

If $\alpha = 0.05$ we need c = 3 so that $P(T_n > 3) \le \alpha$ under H_0 .

Based on the results for our expert, would we reject H_0 ?

Lecture #19 – Hypothesis Testing II

Test for the mean of a normal population (variance known)

Relationship Between Confidence Intervals and Hypothesis Tests

P-values

One-Sided Tests

A Simple Example

Suppose
$$X_1,\ldots,X_{100}\sim \text{ iid } N(\mu,\sigma^2=9)$$
 and we want to test

$$H_0$$
: $\mu = 2$

$$H_1$$
: $\mu \neq 2$

Step 1 – Specify Null Hypothesis H_0 and alternative Hypothesis $H_1 \checkmark$

Step 2 – Choose Test Statistic T_n

If \bar{X} is far from 2 then $\mu=2$ is implausible. Why?

If \bar{X}_n is far from 2, then $\mu = 2$ is implausible

Since $X_1, \ldots, X_{100} \sim \text{ iid N}(\mu, 9)$, if $\mu = 2 \text{ then } \bar{X} \sim N(2, 0.09)$

$$P(a \le \bar{X} \le b) = P\left(\frac{a-2}{3/10} \le \frac{X-2}{3/10} \le \frac{b-2}{3/10}\right)$$
$$= P\left(\frac{a-2}{0.3} \le Z \le \frac{b-2}{0.3}\right)$$

where $Z \sim N(0,1)$ so we see that if H_0 : $\mu=2$ is true then

$$P(1.7 \le \bar{X} \le 2.3) = P(-1 \le Z \le 1) \approx 0.68$$

 $P(1.4 \le \bar{X} \le 2.6) = P(-2 \le Z \le 2) \approx 0.95$
 $P(1.1 \le \bar{X} \le 2.9) = P(-3 \le Z \le 3) > 0.99$

Step 2 – Choose Test Statistic T_n

- ▶ Reject H_0 : $\mu = 2$ if the sample mean is far from 2.
- $ightharpoonup
 ightharpoonup T_n$ should depend on the distance from \bar{X} to 2, i.e. $|\bar{X}-2|$.
- ▶ We can make our subsequent calculations much easier if we choose a scale for T_n that is convenient under H_0 ...

$$\mu=2 \Rightarrow \quad ar{X}-2 \quad \sim \quad {\it N}(0,0.09)$$
 $\dfrac{ar{X}-2}{0.3} \quad \sim \quad {\it N}(0,1)$

So we will set
$$T_n = \left| \frac{\bar{X} - 2}{0.3} \right|$$

A Simple Example: $X_1, \ldots, X_{100} \sim \text{iid N}(\mu, \sigma^2 = 9)$

Step 1 -
$$H_0$$
: $\mu = 2$, H_1 : $\mu \neq 2$ \checkmark
Step 2 - $T_n = \left|\frac{\bar{X} - 2}{0.3}\right|$ \checkmark
Step 3 - If $\mu = 2$ then $\left(\frac{\bar{X} - 2}{0.3}\right) \sim N(0, 1)$ \checkmark
Step 4 - Choose Critical Value c

- (i) Specify significance level of
 - (i) Specify significance level α .
 - (ii) Choose c so that $P(T_n > c) = \alpha$ under H_0 : $\mu = 2$.

Choose c so that $P(T_n > c) = \alpha$ under H_0

$${\cal T}_n = \left| rac{ar X - 2}{0.3}
ight|$$
 and $\mu = 2 \implies rac{ar X - 2}{0.3} \sim {\it N}(0,1)$

$$P\left(\left|\frac{\bar{X}-2}{0.3}\right| > c\right) = \alpha$$

$$1 - P\left(\left|\frac{\bar{X}-2}{0.3}\right| \le c\right) = \alpha$$

$$P\left(\left|\frac{\bar{X}-2}{0.3}\right| \le c\right) = 1 - \alpha$$

$$P\left(-c \le \frac{\bar{X}-2}{0.3} \le c\right) = 1 - \alpha$$

Hence: $c = \text{gnorm}(1 - \alpha/2)$ which should look familiar!

A Simple Example: $X_1, \ldots, X_{100} \sim \text{iid N}(\mu, \sigma^2 = 9)$

Step 1 -
$$H_0$$
: $\mu = 2$, H_1 : $\mu \neq 2$
Step 2 - $T_n = \left| \frac{\bar{X} - 2}{0.3} \right|$

Step 3 - If
$$\mu=2$$
 then $\left(rac{ar{X}-2}{0.3}
ight)\sim extstyle extstyle N(0,1)$ \checkmark

Step 4 -
$$c = qnorm(1 - \alpha/2)$$
 \checkmark

- Step 5 Look at the data: if $T_n > c$, reject H_0
 - ▶ Suppose I choose $\alpha = 0.05$. Then $c \approx 2$.
 - ▶ I observe a sample of 100 observations. Suppose $\bar{x} = 1.34$

$$T_n = \left| \frac{\bar{x} - 2}{0.3} \right| = \left| \frac{1.34 - 2}{0.3} \right| = 2.2$$

▶ Since $T_n > c$, I reject H_0 : $\mu = 2$.

Reporting the Results of a Test

Our Example: $X_1, \ldots, X_{100} \sim \mathsf{iid} \ \mathsf{N}(\mu, 1)$

- H_0 : $\mu = 2$ vs. H_1 : $\mu \neq 2$
- $T_n = |(\bar{X}_n 2)/0.3|$
- $ho \quad \alpha = 0.05 \implies c \approx 2$

Suppose $\bar{x} = 1.34$

Then $T_n=2.2$. Since this is greater than c for $\alpha=0.05$, we reject $H_0: \mu=2$ at the 5% significance level.

Suppose instead that $\bar{x} = 1.82$

Then $T_n=0.6$. Since this is less than c for $\alpha=0.05$, we fail to reject H_0 : $\mu=2$ at the 5% significance level.

General Version of Preceding Example

 $X_1, \ldots, X_n \sim \text{iid N}(\mu, \sigma^2)$ with σ^2 known and we want to test:

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

where μ_0 is some specified value for the population mean.

- ▶ $|\bar{X}_n \mu_0|$ tells how far sample mean is from μ_0 .
- ▶ Reject H_0 : $\mu = \mu_0$ if sample mean is far from μ_0 .
- ▶ Under H_0 : $\mu = \mu_0$, $\frac{\bar{X}_n \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$.
- ▶ Test statistic $T_n = \left| \frac{\bar{X}_n \mu_0}{\sigma / \sqrt{n}} \right|$
- ▶ Reject H_0 : $\mu = \mu_0$ if $T_n > \text{qnorm}(1 \alpha/2)$

What is this test telling us to do?

Return to specific example where H_0 : $\mu=2$ vs. H_1 : $\mu\neq 2$ and $X_1,\ldots,X_{100}\sim \text{iid N}(\mu,1)$ with $\alpha=0.05$:

Reject
$$H_0$$
 if $\left|\frac{X_n-2}{0.3}\right|>2$
Reject H_0 if $|\bar{X}_n-2|>0.6$
Reject H_0 if $(\bar{X}_n<1.4)$ or $(\bar{X}_n>2.6)$

Reject H_0 : $\mu=2$ if \bar{X}_n is far from 2. How far? Depends on choice of α along with sample size and population variance.

This looks suspiciously similar to a confidence interval. . .

$$X_1,\ldots,X_n\sim \mathsf{iid}\ \mathsf{N}(\mu,\sigma^2)$$
 where σ^2 is known

$$T_n = \left| \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} \right|, c = \text{qnorm}(1 - \alpha/2), \text{ Reject } H_0: \mu = \mu_0 \text{ if } T_n > c$$

Another way of saying this is don't reject H_0 if:

$$(T_n \le c) \iff \left(\left| \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} \right| \le c \right) \iff \left(-c \le \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} \le c \right)$$

$$\iff \left(\bar{X}_n - c \times \frac{\sigma}{\sqrt{n}} \le \mu_0 \le \bar{X}_n + c \times \frac{\sigma}{\sqrt{n}} \right)$$

In other words, don't reject H_0 : $\mu = \mu_0$ at significance level α if μ_0 lies inside the $100 \times (1 - \alpha)\%$ confidence interval for μ .

Cls and Hypothesis Tests are Intimately Related

Our Simple Example

$$X_1,\ldots,X_{100}\sim \mathsf{iid}\,\,\mathsf{N}(\mu,\sigma^2=9)$$
 and observe $\bar{x}=1.34$

Test
$$H_0$$
: $\mu = 2$ vs. H_1 : $\mu \neq 2$ with $\alpha = 0.05$

$$T_n = 2.2$$
, $c = qnorm(1 - 0.05/2) \approx 2$. Since $T_n > c$ we reject.

95% Confidence Interval for μ

 $1.34\pm2 imes3/10$ i.e. 1.34 ± 0.6 or equivalently (0.74,1.94)

Another way to carry out the test...

Since 2 lies outside the 95% confidence interval for μ , if our significance level is $\alpha = 0.05$ we reject $H_0: \mu = 2$.

$$X_1,\ldots X_{100}\sim \mathsf{iid}\ \mathsf{N}(\mu_X,1)\ \mathsf{and}\ Y_1,\ldots,Y_{100}\sim \mathsf{iid}\ \mathsf{N}(\mu_Y,1)$$

Two researchers: H_0 : $\mu=2$ vs. H_1 : $\mu\neq 2$ with $\alpha=0.05$

Researcher 1

- $\bar{x} = 1.34$
- $T_n = 2.2 > 2$
- Reject H_0 : $\mu_X = 2$

Researcher 2

- $\bar{y} = 11.3$
- ► $T_n = 31 > 2$
- ▶ Reject H_0 : $\mu_Y = 2$

Both researchers would report "reject H_0 at the 5% level" but Researcher 2 found much stronger evidence against H_0 ...

What if we had chosen a different significance level α ?

$$T_n=2.2, \quad c= ext{qnorm}(1-lpha/2), \quad ext{Reject } H_0\colon \mu=2 ext{ if } T_n>c$$

$$lpha=0.32 \Rightarrow c=\operatorname{qnorm}(1-0.32/2) \approx 0.99$$
 Reject $lpha=0.10 \Rightarrow c=\operatorname{qnorm}(1-0.10/2) \approx 1.64$ Reject $lpha=0.05 \Rightarrow c=\operatorname{qnorm}(1-0.05/2) \approx 1.96$ Reject $lpha=0.04 \Rightarrow c=\operatorname{qnorm}(1-0.04/2) \approx 2.05$ Reject $lpha=0.03 \Rightarrow c=\operatorname{qnorm}(1-0.03/2) \approx 2.17$ Reject $lpha=0.02 \Rightarrow c=\operatorname{qnorm}(1-0.02/2) \approx 2.33$ Fail to Reject $lpha=0.01 \Rightarrow c=\operatorname{qnorm}(1-0.01/2) \approx 2.58$ Fail to Reject

Result of Test Depends on Choice of α !

```
\begin{array}{lll} \alpha = 0.32 & \Rightarrow & \text{Reject} \\ \alpha = 0.10 & \Rightarrow & \text{Reject} \\ \alpha = 0.05 & \Rightarrow & \text{Reject} \\ \alpha = 0.04 & \Rightarrow & \text{Reject} \\ \alpha = 0.03 & \Rightarrow & \text{Reject} \\ \alpha = 0.02 & \Rightarrow & \text{Fail to Reject} \\ \alpha = 0.01 & \Rightarrow & \text{Fail to Reject} \end{array}
```

- ▶ If you reject H_0 at a given choice of α , you would also have rejected at any larger choice of α .
- If you fail to reject H₀ at a given choice of α, you would also have failed to reject at any smaller choice of α.

Question

If α is large enough we will reject; if α is small enough, we won't.

Where is the dividing line between reject and fail to reject?

P-Value: Dividing Line Between Reject and Fail to Reject

$$T_n=2.2, \quad c= ext{qnorm}(1-lpha/2), \quad ext{Reject $H_0:$} \ \mu=2 \ ext{if $T_n>c$}$$

Question

Given that we observed a test statistic of 2.2, what choice of α would put us just at the cusp of rejecting H_0 ?

Answer

Whichever α makes c = 2.2! At this α we just barely fail to reject.

Calculating the P-value

Definition of a P-value

The significance level α such that the critical value c for the test is exactly equal to the observed value of the test statistic.

Our Example

The observed value of the test statistic is 2.2 and the critical value is $qnorm(1 - \alpha/2)$, so we need to solve:

$$\begin{array}{rcl} 2.2 & = & \operatorname{qnorm}(1-\alpha/2) \\ & \operatorname{pnorm}(2.2) & = & \operatorname{pnorm}\left(\operatorname{qnorm}\left(1-\alpha/2\right)\right) \\ & \operatorname{pnorm}(2.2) & = & 1-\alpha/2 \\ & \alpha & = & 2\times\left[1-\operatorname{pnorm}(2.2)\right] \approx 0.028 \end{array}$$

How to use a p-value?

Alternative to Steps 4-5

Rather than choosing α , computing critical value c and reporting "Reject" or "Fail to Reject" at $100 \times \alpha\%$ level, just report p-value.

Example From Previous Slide

P-value for our test of H_0 : $\mu=2$ against H_1 : $\mu\neq 2$ was ≈ 0.028

Using P-value to Test H_0

Using the p-value we can test H_0 for any α without doing any new calculations! For p-value $< \alpha$ reject; for p-value $\ge \alpha$ fail to reject.

Strength of Evidence Against H_0

P-value measures strength of evidence against the null. Smaller p-value = stronger evidence against H_0 . P-value does doesn't measure size of effect.

One-sided Test: Restricted Alternative Hypothesis

Same Example as Above

$$X_1, \ldots, X_{100} \sim \mathsf{iid} \ \mathsf{N}(\mu, 1) \ \mathsf{and} \ H_0 \colon \mu = 2.$$

Three possible alternatives:

Two-sided One-sided (
$$<$$
) One-sided ($>$) $H_1: \mu \neq 2$ $H_1: \mu < 2$ $H_1: \mu > 2$

- ▶ Two-sided: reject $\mu = 2$ whenever $|\bar{X}_n 2|$ is too large.
- ▶ One-sided (<): only reject $\mu = 2$ if X_n is far below 2.
- ▶ One-sided (>): only reject $\mu = 2$ if X_n is far above 2.

Testing H_0 : $\mu = \mu_0$ when $X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2)$

Reject
$$H_0$$
 whenever $\left| \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} \right| > \operatorname{qnorm}(1 - \alpha/2)$

One-Sided (<)

Reject
$$H_0$$
 whenever $\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} < \mathtt{qnorm}(\alpha)$

One-Sided (>)

Reject
$$H_0$$
 whenever $\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} > \text{qnorm}(1-\alpha)$

Why are the critical values different?

Why are the critical values different?

Make a picture with three rejection regions: one for each test. The key is controlling type one error. Type one error depends on rejection rule which depends on choice of alternative. Explain why we might want to do a one-sided test. Do an example with the test statistic 2.2 – less stringent. But have to specify the alternative in advance! Also relationship with confidence interval breaks down. Also p-value calculation is different. Maybe push this off until the end?

Roadmap

Next Time

More examples of hypothesis testing, using relationship with confidence intervals to help us.

Building Intuition

Now that you know a simple example of a hypothesis test and its relationship to a CI, think about the following:

- ▶ If we reject H_0 does that mean that H_0 is false?
- How does testing relate to random sampling?
- ▶ How does critical value of a test relate to width of a CI?