

Diseño Lógico 2015 Ingeniería en Computación

Práctica de Laboratorio II: Procesador

El objetivo de esta práctica es implementar un procesador uniciclo (todas las instrucciones se realizan en un único ciclo de reloj), a partir de la descripción VHDL de sus componentes.

Este procesador se encuentra compuesto por:

- Memoria de instrucciones (ROM): almacena el programa instrucción por instrucción
- Contador de programa (PC): dirección de instrucción a ejecutar
- Registro de instrucción (IR): almacena la instrucción actual a ejecutar
- **Unidad de decodificación** (Decode): determina las señales de control que deben activarse para ejecutar la instrucción.
- Banco de registros (Regs): compuesto por 16 registros de 8 bits
- Registro acumulador (Reg_a): permite almacenar temporalmente el operando B de la ALU
- Unidad aritmético lógica (ALU)
- Registro de salida (Reg_out)

La arquitectura general se define en la siguiente figura,

Buses

Los buses de datos tienen un ancho de 8 bits, mientras que el de instrucción (IR) posee un ancho de 16 bits. En el esquema presentado se omiten las interconexiones de reloj y reset, para simplificar el diseño.

Instrucciones:

El registro de instrucción (IR) contiene la instrucción a ejecutar en el ciclo actual de operación y se divide en los siguientes campos:

Código de instrucción	rd	rs
8 bits	4 bits	4 bits

Código de instrucción	immediate
8 bits	8 bits

El procesador debe soportar las siguientes instrucciones con sus correspondientes códigos de operación.

IN rd

Codigo de instrucción: 0x01 Descripción: Reg[rd] = IN

OUT rs

<u>Codigo de instrucción:</u> 0x02 <u>Descripción</u>: Reg_out = Reg[rs]

MOV rd, rs

<u>Codigo de instrucción:</u> 0x03 <u>Descripción</u>: Reg[rd] = Reg[rs]

LDA rs

<u>Codigo de instrucción:</u> 0x04 <u>Descripción</u>: Reg_A = Reg[rs]

LDI immediate

<u>Codigo de instrucción:</u> 0x05 <u>Descripción</u>: Reg_A = immediate

ADD rd. rs

Codigo de instrucción: 0x10

<u>Descripción</u>: Reg[rd] = Reg[rs] + Reg_A

SUB rd, rs

Codigo de instrucción: 0x11

Descripción: Reg[rd] = Reg[rs] - Reg A

SHL rd, rs

Codigo de instrucción: 0x20

<u>Descripción</u>: Reg[rd] = Reg[rs] << 1

SHR rd, rs

Codigo de instrucción: 0x21

Descripción Reg[rd] = Reg[rs] >> 1

AND rd, rs

Codigo de instrucción: 0x12

Descripción: Reg[rd] = Reg[rs] and Reg_A

OR rd, rs

Codigo de instrucción: 0x13

Descripción: Reg[rd] = Reg[rs] or Reg_A

XOR rd, rs

Codigo de instrucción: 0x14

<u>Descripción</u>: Reg[rd] = Reg[rs] xor Reg_A

Ejercicios:

1. Complete la tabla e implemente la *Decode* (Decoding Unit). Esta unidad permite la activación de las señales de control a partir del valor del código de instrucción almacenado en IR. Se recomienda realizar la minimización de las funciones.

Instrucción	bus_sel	alu_op	reg_a_we	out_we	reg_we
IN (0x01)	10	000	0	0	1
OUT (0x02)					
MOV (0x03)					
LDA (0x04)	00	000	1	0	0
LDI (0x05)					
ADD (0x10)					
SUB (0x11)	00	011	0	0	1
AND (0x12)					
OR (0x13)					
XOR (0x14)					
SHL (0x20)					
SHR (0x21)					

- 2. Utilizando la unidad de decodificación del ejercicio 1, junto con los componentes desarrollados realice la arquitectura del procesador.
- 3. Implemente el testbench del procesador y realice la simulación del procesador con el siguiente conjunto de instrucciones, verificando el correcto funcionamiento:

0: in r3

1: lda r3

2: add r4, r3

3: sub r5,r4

4: or r6, r4

5: and r7, r0

6: mov r14, r4

7: out r3

8: out r4

9: out r5

10: out r6

11: out r7

12: out r8

13: out r13

14: out r14

Entrega:

Se debe realizar la entrega del archivo "proc.vhd" completo, el archivo "proc.vhd" y el resto de los archivos que se realizaron para lograr la implementación del procesador, junto con un informe en donde se describa el desarrollo del trabajo y las conclusiones.

Los trabajos prácticos desarrollados deben ser enviados por mail **antes** del 27 de noviembre. Todos los desarrollos adicionales que se realicen serán tenidos en cuenta en la evaluación.