Casos de test

String_inverso

Argumento	Salida esperada	Justificación de elección
"	69	String vacío.
'hola'	'aloh'	String solamente con caracteres del abecedario.
'h2! Ñ;'	';Ñ !2h'	String compuesto por caracteres de todo tipo.
'1000'	'0001'	String compuesto por números.

Decimal_a_binario

Argumento	Salida esperada	Justificación de elección
1	'1'	Primer número natural.
8	'1000'	Números naturales no balanceados.
13	'1101'	
2	'10'	Números naturales balanceados.
9	'1001'	
35	'100011'	

Es_binario_balanceado

Argumento	Salida esperada	Justificación de elección
2	True	Primer natural balanceado.
9	True	Naturales balanceados.
50	True	
1	False	Primer natural no balanceado.
5	False	Naturales no balanceados.
84	False	

Cantidad_binarios_balanceados_entre

Argumento	Salida esperada	Justificación de elección
(9,9)	1	Ambos parámetros son iguales y balanceados.
(11,11)	0	Ambos parámetros son iguales, pero no balanceados.
(2,10)	3	Ambos parámetros son balanceados y tienen balanceado entre sí.
(1,3)	1	Ambos parámetros no son balanceados, pero tienen uno entre sí.
(2,8)	1	Un parámetro es balanceado, pero el otro no y no existen balanceados entre sí.
(41,60)	7	Intervalo grande entre parámetros, con balanceados entre sí.
(3,8)	0	Ambos parámetros no son balanceados y no contienen uno entre sí.
(15,30)	0	

Siguiente_binario_balanceado

Argumento	Salida esperada	Justificación de elección
1	2	Primer natural no balanceado.
2	9	Número natural balanceado.
3	9	Números naturales no balanceados.
27	35	

Anterior_binario_balanceado

Argumento	Salida esperada	Justificación de elección
3	2	Primer número natural elegible.
5	2	Natural no balanceado.
10	9	Número natural balanceado.

Binario_balanceado_más_cercano

Argumento	Salida esperada	Justificación de elección
1	2	Único valor natural elegible, cuyo valor de retorno será estrictamente
		mayor.
2	2	Naturales balanceados, por lo que esperan como valor de retorno a sí
50	50	mismos.
3	2	Natural no balanceado, que se encuentra entre dos valores balanceados.
20	12	Naturales no balanceados, que se encuentran entre dos valores
28	35	balanceados (12 y 35).
51	52	Natural no balanceado, que se encuentra entre dos valores a la misma distancia de cada uno (espera recibir el mayor de ellos).

Terminación y correctitud

i) Es_binario_balanceado:

Terminación

- La variable i comienza valiendo 0 (cero).
- En cada iteración i se incrementa en 1.
- bina es una variable tipo string, que es resultado de la conversión de n a binario y no se modifica en ningún momento luego de ser definida. Además, por el requiere sabemos que n>0. Por lo tanto, su conversión a binario siempre tendrá necesariamente un dígito o más. Como resultado, la longitud de bina (len(bina)) siempre será >0.
- Por lo tanto, es inevitable que en algún momento i llegue al valor de la longitud de bina (len(bina)).
- En ese momento, la condición i < len(bina) es falsa, por lo que el ciclo termina.

Correctitud

Predicado invariante:

- 0 <= i <= len(bina)
- Ceros es la cantidad de ceros (0's) en las primeras i-posiciones de bina (n, en su expresión binaria).
- Unos es la cantidad de unos (1's) en las primeras i- posiciones de bina (n, en su expresión binaria).

#A

- 0 <= i <= len(bina) es correcto porque i = 0.
- Ambas variables ceros como unos, representan la cantidad de tales números dentro de las primeras i-posiciones recorridas. Como i = 0, es correcto que valgan 0 al no haber recorrido ninguna posición todavía.

#B -> #C

- Entramos al ciclo por lo que la guarda se cumple, es decir, i < len(bina). Así, 0 <= i <= len(bina) sigue siendo válido.
- Llamando Φ al valor de i en #B, es verdadero que Φ < len(bina). Como entre #B y #C i se incrementa en uno, vale Φ + 1. Por eso, i puede seguir siendo menor a len(bina) o pasar a ser igual a len(bina), por lo que 0 <= i <= len(bina) se cumple.
- Si el carácter analizado en la posición i es igual a '1', unos se incrementa en uno. En el caso contrario tendrá el valor de '0', ya que bina únicamente está compuestos por unos y ceros, por el devuelve de la función decimal_a_binario. En ese caso ceros aumenta en 1. Por tal razón, unos y ceros siguen representando la cantidad de sus números respectivos en las primeras i-posiciones de bina.

#D

- Podemos llegar a #D desde el punto #A, evaluando la guarda y que ésta resulte falsa o partiendo desde #C, evaluando la guarda y que ésta también resulte falsa. En ambos casos, el invariante sigue siendo válido, ya que tanto entre #A y #D como entre #C y #D no se modifican los valores de i, ceros y unos.
- Cuando la guarda es falsa, i >= len(bina). Por el invariante sabemos que i <= len(bina).
 Así, necesariamente i = len(bina).
- Por el invariante sabemos que ceros y unos valen la cantidad de 0's y 1's respectivamente en las primeras i-posiciones, es decir, en las primeras len(bina) posiciones, es decir, en todo bina. Por eso, en la última línea de la función el valor de retorno, que es unos == ceros, será True si la cantidad de unos y ceros en toda la función es la misma y False, si es diferente (que es lo que especifica el Devuelve). Así, podemos afirmar que la función hace lo especificado.
- ii) Siguiente_binario_balanceado:

Terminación

- La variable i comienza valiendo n.
- La variable encontrado comienza valiendo False.
- En cada iteración i se incrementa en 1 (uno).
- Por lo tanto, en la condición if(es_binario_balanceado(i)) voy a analizar los números naturales > n, aumentando de uno en uno.
- Como existen infinitos balanceados, i al ir aumentando en una unidad, en algún momento será balanceado estrictamente mayor a n, sin importar de qué número iniciemos.

- Por lo anterior, inevitablemente la condición (if es_binario_balanceado(i)) será verdadera en algún momento y allí encontrado tomará el valor de True.
- En ese momento, la guarda es falsa y el ciclo termina.

Correctitud

Predicado invariante:

- n <= i</p>
- encontrado es True si i es un número balanceado y todos los números entre n no incluido e i – 1 inclusive no son balanceados.

#A

- El invariante n <= i, se cumple, ya que i comienza valiendo n.</p>
- Como n y i -1 (que es n -1) no hay ningún número natural, se cumple trivialmente que no hay balanceado entre ellos, por lo que la segunda parte del invariante es valida.

#B -> #C

- Suponemos que en #B el invariante es válido.
- Llamando Φ al valor de i en #B, en cada iteración del ciclo se le suma 1 a i, por lo que en #C i vale de Φ + 1.
- En cada iteración encontrado toma el valor de es_binario_balanceado(i), es decir, se vuelve True si Φ + 1 es balanceado, y permanece False si no lo es.
- Como existen infinitos balanceados mayores a n (sea cual sea n), al i irse incrementando de uno en uno, eventualmente será un balanceado.
- En esa iteración (la llamaremos iteración original) encontrado toma el valor True. Siendo que iteración original sea la primera iteración del ciclo o cualquier iteración posterior, se puede afirmar que Φ no es balanceado. De ser así, encontrado se hubiera vuelto True en la iteración anterior a la original y el ciclo hubiera terminado (por lo explicado en la terminación), nunca llegando así a la iteración original.
- Así, podemos afirmar que i > n, y que encontrado es True si i es binario balanceado y todos los números entre n e i – 1 no son balanceados, por lo que el invariante sigue siendo válido.

#D

- Se puede decir que a #D se llega únicamente desde #C y como entre #C y #D no hubo modificación a i, n < i.
- Según lo explicado en #C, es verdadero que cunado encontrado es True, i es el menor balanceado estrictamente mayor a n. Como el valor de retorno de la función es i, la función cumple con lo especificado.