Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 03.10.2014

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note:
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	9	10	10	11	40	
	erreichte Punkte						
${\bf Bitte}\;$							
tragen Sie	Name, Vorname und	Matrik	elnumn	ner auf	dem I	Deckblat	tt ein,
rechnen Si	e die Aufgaben auf se	parater	n Blätte	ern, ni o	c ht auf	dem A	ngabeblatt,
beginnen S	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Vamen	sowie d	lie Mat	rikelnu	mmer a	ın,
begründen	Sie Ihre Antworten a	usführl	ich und	l			
kreuzen Si antreten k	e hier an, an welchem önnten: □ M		genden 10.2014			zur mün 9i., 14.10	

1. Bearbeiten Sie die folgenden Teilaufgaben.

9 P.|

1 P.

a) Gegeben ist das nichtlineare System

$$\dot{x}_1(t) = 1 - x_2(t)$$

$$\dot{x}_2(t) = x_1^2(t) - x_2^2(t).$$

- i. Bestimmen Sie sämtliche Ruhelagen.
- ii. Linearisieren Sie das System um seine Ruhelagen. 2 P.|
- iii. Untersuchen Sie die Ruhelage $\Delta \mathbf{x}_R = \mathbf{0}$ der linearisierten Systeme auf _{1 P.}| (globale) asymptotische Stabilität.
- b) Gegeben ist das lineare zeitinvariante Eingrößensystem

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}(t) = \begin{bmatrix} 1 & 4\\ -2 & -3 \end{bmatrix}\mathbf{x}(t) + \begin{bmatrix} -1\\ 1 \end{bmatrix}u(t)$$
$$y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix}\mathbf{x}(t) + 3u(t).$$

mit dem Zustand $\mathbf{x}(t) \in \mathbb{R}^2$, dem skalaren Eingang $u(t) \in \mathbb{R}$ und dem skalaren Ausgang $y(t) \in \mathbb{R}$.

- i. Bestimmen Sie die Übertragungsfunktion $G(s) = \hat{y}(s)/\hat{u}(s)$. 1.5 P.
- ii. Berechnen Sie die stationäre Ausgangsgröße $\lim_{t\to\infty} y(t)$ für einen Einheits- 1 P.| sprung $u(t) = \sigma(t)$.
- c) Bestimmen Sie die Impulsantwort des Systems mit der Übertragungsfunktion 2.5 P.

$$G(s) = \frac{2s^2 + 7s + 1}{s^2 + 5s + 6}.$$

2. Die Übertragungsfunktionen $G_1(s), G_2(s)$ und $G_3(s)$ des in Abbildung 1

10 P.

Abbildung 1: Regelkreis

dargestellten Regelkreises lauten

$$G_1(s) = \alpha \frac{s}{s+1},$$
 $G_2(s) = \frac{2}{s^2-1},$ $G_3(s) = \frac{2\alpha s + (s+1)(s^2-1)}{s(s^2-1)^2(s+4)},$

wobei α einen reellen positiven Parameter bezeichnet.

a) Bestimmen Sie eine Übertragungsfunktion für G(s) und vereinfachen Sie den 2 P. Ausdruck soweit wie möglich.

In den weiteren Teilaufgaben betrachten wir den Spezialfall $\alpha=1$ für den

$$G(s) = \frac{1}{(s^2 - 1)(s + 4)}$$

gilt.

b) Zeigen Sie mit Hilfe des Routh-Hurwitz Verfahrens, dass sich der geschlossene 2.5 P.| Regelkreis durch einen P-Regler

$$R(s) = K_p$$

nicht stabilisieren lässt.

c) Untersuchen Sie mittels des Routh-Hurwitz Verfahrens für welche Werte von $2.5 \,\mathrm{P.}|$ K_p und T_v der geschlossene Regelkreis mit Hilfe eines (idealen) PD-Reglers

$$R(s) = K_p(1 + T_v s)$$

stabilisiert werden kann.

d) Die Nyquist-Ortskurve des offenen Kreises L(s)=R(s)G(s) für einen PID- 3 P.| Regler

$$R(s) = K_p \left(1 + \frac{1}{T_n s} + T_v s \right), \quad K_p = 10, \quad T_v = 2, \quad T_n = 2$$

ist in Abbildung 2 zu sehen. Untersuchen Sie die Stabilität des geschlossenen Regelkreises mit Hilfe des Nyquist-Kriteriums.

Abbildung 2: Nyquist-Ortskurve

3. Wird das lineare zeitinvariante dynamische System

10 P.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$

mit

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \quad \text{und} \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (1)

mit einer Abtastzeit T_a abgetastet, ergibt sich ein zeitdiskretes Modell der Form

$$\mathbf{x}_{k+1} = \mathbf{\Phi}\left(T_a\right)\mathbf{x}_k + \mathbf{\Gamma}u_k.$$

a) Welche der angegebenen Matrizen beschreibt die Dynamik von obigem zeitdis- 3 P. kreten System?

$$\Phi_{1}(T_{a}) = \begin{bmatrix}
1 & T_{a} & T_{a} - \frac{3}{2}e^{-2T_{a}} + e^{-T_{a}} \\
0 & 1 & 1 - e^{-T_{a}} \\
0 & 0 & 3 - e^{-T_{a}} - e^{-2T_{a}}
\end{bmatrix}$$

$$\Phi_{2}(T_{a}) = \begin{bmatrix}
1 & \frac{3}{2}e^{T_{a}} - \frac{3}{2}e^{-2T_{a}} & -1 + \frac{1}{2}e^{T_{a}} + \frac{1}{2}e^{-T_{a}} \\
0 & \frac{1}{2}e^{T_{a}} + \frac{1}{2}e^{-2T_{a}} & \frac{1}{2}e^{T_{a}} - \frac{1}{2}e^{-2T_{a}} \\
0 & \frac{1}{2}e^{T_{a}} - \frac{1}{2}e^{-T_{a}} & \frac{1}{2}e^{T_{a}} + \frac{1}{2}e^{-T_{a}}
\end{bmatrix}$$

$$\Phi_{3}(T_{a}) = \begin{bmatrix}
1 & \frac{1}{2}e^{-2T_{a}} - 2e^{-T_{a}} + \frac{3}{2} & \frac{1}{2}e^{-2T_{a}} - e^{-T_{a}} + \frac{1}{2} \\
0 & -e^{-2T_{a}} + 2e^{-T_{a}} & e^{-T_{a}} - e^{-2T_{a}} \\
0 & -2e^{-T_{a}} + 2e^{-2T_{a}} & 2e^{-2T_{a}} - e^{-T_{a}}
\end{bmatrix}$$

Begründen Sie Ihre Antwort ausführlich!

b) Bestimmen Sie Γ zu obigem Modell.

2 P.

c) Das System startet zum Zeitpunkt t=0 beim Anfangszustand \mathbf{x}_0 und erreicht 2.5 P. mit abgeschalteter Stellgröße $(u(t) \equiv 0)$ zum Zeitpunkt $t=3T_a$ den Zustand

$$\mathbf{x}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

Bestimmen Sie \mathbf{x}_0 .

d) Ist das System (1) vollständig steuerbar?

 $1.5 \, P.$

e) Geben Sie eine Ausgangsgleichung für das zeitdiskrete System so an, dass es 1P. sprungfähig ist.

- 4. Bearbeiten Sie folgende Teilaufgaben, die unabhängig voneinander gelöst werden 11 P.| können.
 - a) Für welche Abtastzeiten T_a gehört die Übertragungsfunktion 3 P.

$$G^{\#}(q) = -\frac{1}{4} \frac{\left(\frac{q}{2} + 1\right)\left(\frac{q}{3} - 3\right)}{\left(\frac{q}{12} + \frac{1}{2}\right)\left(\frac{q}{4} - 1\right)}$$

zu einer

- i. sprungfähigen,
- ii. realisierbaren

Strecke?

b) Geben Sie die *Definition* von Erreichbarkeit im zeitdiskreten Fall *allgemein* an, 2 P. d.h. wann nennt man ein System der Form

$$\mathbf{x}_{k+1} = \mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}\mathbf{u}_k$$

vollständig erreichbar?

c) Geben Sie je ein Beispiel für ein

 $1.5\,\mathrm{P.}$

- autonomes, lineares
- zeitvariantes, nichtlineares
- lineares, instabiles

Abtastsystem zweiter Ordnung an.

d) Gegeben ist ein zeitdiskretes System in der Zustandsraumdarstellung 3 P.

$$\begin{bmatrix} x_{1,k+1} \\ x_{2,k+1} \\ x_{3,k+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ -1 & 1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x_{1,k} \\ x_{2,k} \\ x_{3,k} \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} u_k$$

mit dem Ausgang $y_k = x_{1,k}$.

- i. Zeigen Sie anhand des charakteristischen Polynoms, dass mit dem Regelgesetz $u_k = k_1 x_{1,k} + k_2 x_{2,k} + k_3 x_{3,k}$ nicht alle Eigenwerte des geschlossenen Kreises frei gewählt werden können.
- ii. Legen Sie die Koeffizienten k_1 , k_2 und k_3 des Regelgesetzes so fest, dass alle Eigenwerte im geschlossenen Kreis bei $-\frac{1}{2}$ liegen.
- e) Betrachten Sie ein System der Form

1.5 P.

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Gamma} u_k \tag{2}$$

mit $\mathbf{x}_k \in \mathbb{R}^n$ und n > 2, wobei $\mathbf{\Phi}$ ungleich der Nullmatrix ist. Zeigen oder widerlegen Sie die folgende Behauptung:

Für $u_k = 0$ und det $(\Phi - \mathbf{E}) = 0$ hat das System unendlich viele Ruhelagen.

Achten Sie auf eine ausreichende Begründung Ihrer Antwort!