Структура молекул: Приклад молекули води

Andriy Zhugayevych azh@uninet.kiev.ua

22 жовтня 2004 р.

1 Підготовчі обчислення

Представлення групи, розклад представлень групи обертань та симетрія базисних функцій підсумовані в таблиці:

	e	c_2	σ_x	σ_y	0	1	2	3	0	1	2	3
A_1	1	1	1	1	1	1	2	2	S	P_z	$D_{z^2}, D_{x^2-y^2}$	$F_{z(x^2-y^2)}, F_{z^3}$
A_2	1	1	-1	-1	$\ \cdot \ $		1	1			D_{xy}	F_{xyz}
B_1	1	-1	-1	1	$\ \cdot \ $	1	1	2		P_x	D_{zx}	$F_{x(y^2-z^2)}, F_{x^3}$
B_2	1	-1	1	-1		1	1	2		P_y	D_{yz}	$F_{y(z^2-x^2)}, F_{y^3}$

Орбіти (напрямки підвищеної симетрії) разом з представленнями групи C_{2v} на них та їх стабілізаторами наведені в наступній таблиці:

	e	c_2	σ_x	σ_y		
z	1	1	1	1	A_1	C_{2v}
xz	2	0	0	2	$A_1 + B_1$	C_{sy}
yz	2	0	2	0	$A_1 + B_2$	C_{sx}

Розклад представлень групи C_{2v} на незвідні представлення стабілізаторів такий:

		e	c_2	σ_x	σ_y		A_1	A_2	B_1	B_2
C_{sx}	A'	1		1		$S; P_z, P_y$	1			1
	A''	1		-1		P_x		1	1	
C_{sy}	A'	1			1	$S; P_z, P_x$	1		1	
	A''	1			-1	P_y		1		1

Таблиця множення групи має вигляд:

$$\begin{array}{c|cccc} & A_2 & B_1 & B_2 \\ \hline A_2 & A_1 & B_2 & B_1 \\ B_1 & & A_1 & A_2 \\ B_2 & & & A_1 \\ \end{array}$$

2 Молекула води H₂O

Координати атомів та їх положення

$$\begin{array}{|c|c|c|c|c|c|} \hline 1 & H & yz & 0 & a\sin(\alpha/2) & a\cos(\alpha/2) \\ 2 & H & yz & 0 & -a\sin(\alpha/2) & a\cos(\alpha/2) \\ 3 & O & z & 0 & 0 & 0 \\ \hline \end{array}$$

де $a=r_{\rm OH}=0.957$ А, кут НОН дорівнює $\alpha=104.5^{\circ}$. Елементи симетрії: $c_2[001]$, $\sigma_x=\sigma({\rm HOH})$, σ_y . Група симетрії C_{2v} (mm2). Елементарним фрагментом молекули є пара атомів ОН.

Рис. 1: Молекула води в площині yz

Рис. 2: Молекулярні орбіталі

2.1 Тензори фізичних величин

З розкладу групи обертань бачимо, що молекула води має дипольний момент направлений вздовж осі z. Розклад представлень D_u^l такий же як і для D_g^l , якщо поміняти A_1 і A_2 та B_1 і B_2 місцями. Тому формально найнижчий порядок магнітного моменту квадрупольний, реально ж це означає, що магнітний момент молекули вони визначається спіном.

Момент інерції перетворюється через представлення $[V^2] = D^0 + D^2 = 3A_1 + A_2 + B_1 + B_2$, тому всі три компоненти I_{xx} , I_{yy} , I_{zz} різні, і обертальний спектр складний.

2.2 Електронна структура

Тип зв'язку полярний парний ковалентний насичений $O^-sp^3 + H^+s$ з двома незв'язуючими електронними парами на атомі кисню. Координація деформована тетраедрична, кут $\alpha < \arccos(-1/3)$, що пояснюється моделлю чотирьох зарядів на сфері попарно різної величини. Незв'язуючі молекулярні орбіталі чітко проявляються в тетраедричній координації димера, а також в структурі води та льоду. Тому для адекватного опису електронної структури димера в методі ЛКАО необхідно враховувати ghost atoms на лінії водневого зв'язку.

Шукаємо молекулярні орбіталі в наближенні валентних електронів. Перший спосіб:

$$\begin{array}{c|cccc}
Os & \Gamma & A_1 = D^0 \times A_1 \\
Op & \Gamma & A_1 + B_1 + B_2 = D^1 \times A_1 \\
Hs & \Lambda & A_1 + B_2 = D^0 \times (A_1 + B_2)
\end{array}$$

Отже, маємо три орбіталі A_1 складу О $sp_z + HS$, дві орбіталі B_2 складу О $p_y + HP_y$, та одну незв'язуючу орбіталь B_1 О p_x , де HS і HP_y – базисні функції представлень A_1 і B_2 , побудованих на атомних орбіталях Hs атомів водню. Неважко здогадатися, що з точністю до перекриття

$$HS = \frac{1}{\sqrt{2}} (H_1 s + H_2 s), \quad HP_y = \frac{1}{\sqrt{2}} (H_1 s - H_2 s).$$

Заповнюємо псевдоорбітальні рівні: 1S A_1 , $1P_x$ B_1 , $1P_y$ B_2 , $1P_z$ A_1 , залишаються A_1 і B_2 змішаного типу. Останні, мабуть, будуть незаповнені, оскільки всього в системі 8 валентних електронів, а розрив по P-орбіталям видається малоймовірним.

Щоб уточнити це і правильно розташувати рівні, скористаємось другим способом. Беремо дві гібридизовані орбіталі $Osp^3 \pm Hs$ (точніше дві зв'язуючі і дві розрихляючі), розташовані в площині yz, що дасть $2(A_1+B_2)$. Крім того беремо ще дві обособлені орбіталі Osp^3 , розташовані в площині xz, що дасть A_1+B_1 . Першою піде зв'язуюча повносиметрична орбіталь Osp_z+Hs 1S A_1 , далі також зв'язуюча орбіталь Op_y+Hs $1P_y$ B_2 , незаповненими будуть, очевидно, розрихляючі $2SP_z$ A_1 , а далі $2P_y$ B_2 . Обособлені орбіталі перетинаються представленням A_1 з орбіталями атомів водню, тому третьою буде слабозв'язуюча орбіталь Osp_z+Hs $1P_z$ A_1 . Нарешті, четвертою буде незв'язуюча орбіталь Op_x B_1 . Це саме та орбіталь, яка в оксидах з лінійною координацією атомів кисню скривлює ланки -O- і робить дірки важкими.

Результат чисельного розрахунку вказаний на рис. 2.

2.3 Малі коливання

Класифікацію малих коливань проводимо на основі таблиці

O
$$A_1 + B_1 + B_2 = V \times A_1$$

H $2A_1 + A_2 + B_1 + 2B_2 = V \times (A_1 + B_2)$

Поступальний і обертальний рух описуються відповідно векторним $A_1(z)+B_1(x)+B_2(y)$ і аксіальним $A_2(\omega_z)+B_1(\omega_y)+B_2(\omega_x)$ представленнями. Віднімаючи їх, одержимо три коливних моди $2A_1+B_2$. Чисельні розрахунки вказують на такий порядок коливних мод: $A_1,\,A_1,\,B_2$.

Симетризовані зміщення такі:

	A_1	B_2				
О	u_z	u_y				
H	$u_{1z} + u_{2z}, u_{1y} - u_{2y}$	$u_{1z} - u_{2z}, u_{1y} + u_{2y}$				