UNCLASSIFIED

AD 289 613

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Best Available Copy

289 613

MEMORANDUM RM-2826-PR NOVEMBER 1962

THE THERMODYNAMIC PROPERTIES AND SHOCK-WAVE CHARACTERISTICS OF A MODEL VENUS ATMOSPHERE

W. C. Strahle

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA . CALIFORNIA

MEMORANDUM RM-2826-PR NOVEMBER 1962

THE THERMODYNAMIC PROPERTIES AND SHOCK-WAVE CHARACTERISTICS OF A MODEL VENUS ATMOSPHERE

W. C. Strahle

This research is sponsored by the United States Air Force under Project RAND — Contract No. AF 49(638)-700 — monitored by the Directorate of Development Planning, Deputy Chief of Staff, Research and Technology, Hq USAF. Views or conclusions contained in this Memorandum should not be interpreted as representing the official opinion or policy of the United States Air Force. Permission to quote from or reproduce portions of this Memorandum must be obtained from The RAND Corporation.

PREFACE

This Project RAND Memorandum extends the study reported in RM-2292,

Thermodynamic Properties of Carbon Dioxide to 24,000°K - With Possible Application to the Atmosphere of Venus. Whereas that earlier study assumed an atmosphere of pure carbon dioxide, the present study assumes an atmospheric composition of 85 per cent carbon dioxide and 15 per cent nitrogen by volume.

The calculated thermodynamic properties of this mixture, as well as the normal-shock-wave properties at selected altitudes, are presented as an aid to studies of the aerodynamic phenomena of high-speed vehicle entry into the atmosphere of Venus.

ACKNOWLEDGMENTS

The author is very grateful for the many instructive discussions with J. L. Raymond, S. H. Dole, and F. R. Gilmore. The assistance of Jeannine McGann and Carolyn Huber with the calculations and graphs is also greatly appreciated.

SUMMARY

In this Memorandum a model for the atmosphere of Venus is developed which may be useful for design studies of early atmospheric-entry vehicles and for wind-tunnel simulation application. This atmosphere, derived from many questionable assumptions and scant experimental data, consists of 85 per cent carbon dioxide and 15 per cent nitrogen by volume.

The thermodynamic properties of the derived atmospheric composition are presented over the temperature-pressure range of 150°K to 24,000°K and 10^{-4} atm to 10^2 atm. To further assist in aerodynamic entry calculations, normal-shock-wave characteristics of such an atmosphere are also presented. The fact that nitrogen is present has important consequences in the thermodynamic properties and electron concentrations over the full temperature and pressure range. The effects are of the order of the percentage of nitrogen addition to pure carbon dioxide.

A graphical method of obtaining obtaining oblique-shock-wave data and a method of obtaining electron concentrations at low temperatures are included as appendixes.

CONTENTS

PREFACE	iii
ACKNOWLEDCMENTS	v
SUMMARY	vii
LIST OF SYMBOLS	xi
Section I. INTRODUCTION	1
II. A TENTATIVE ATMOSPHERE FOR VENUS Conditions and Assumptions Basic Data Theoretical Development Model of the Venus Atmosphere Discussion	3 4 6 12 17
III. THE THERMODYNAMIC PROPERTIES OF 15 PER CENT N2 AND 85 PER CENT CO2 BY VOLUME Conditions and Assumptions Method of Calculation Discussion	21 21 22 45
IV. NORMAL-SHOCK-WAVE CHARACTERISTICS OF A TENTATIVE VENUS ATMOSPHERE Conditions and Assumptions Method of Computation Discussion	47 47 47 49
Appendix	
A. TABLES	57
B. THE COMPUTATION OF TWO-DIMENSIONAL OBLIQUE-SHOCK-WAVE CHARACTERISTICS FROM NORMAL-SHOCK-WAVE DATA	90
C. CALCULATION OF ELECTRON CONCENTRATIONS AT LOW TEMPERATURES IN THE C-N-O GASEOUS SYSTEM	119
REFERENCES	100

SYMBOLS

- A area, cm²
- C specific heat, $\frac{Btu}{lb\text{-mole }^{O}R}$, $\frac{cal}{g\text{-mole }^{O}K}$
- E specific internal energy, cal/g-mole
- e specific internal energy, cal/g
- F Gibbs free energy, cal/g-mole
- g acceleration of gravity, cm/sec²
- H specific enthalpy, cal/g-mole
- h specific enthalpy, cal/g
- h specific enthalpy in Ref. 10, Btu/lb-mole
- $K_{\rm p}$ equilibrium constant for partial pressures
- L Avogadro's number, particles/g-mole
- M molecular weight (of mixture if without a subscript), g/g-mole
- $_{\rm O}^{\rm M}$ molecular weight of "cold" undissociated mixture, g/g-mole
- m mass, g
- n number of g-moles = $\sum_{i} n_{i}$
- p pressure, atm
- po standard pressure, 1 atm
- q polytropic exponent
- R universal gas constant, $\frac{\text{Btu}}{\text{lb-mole oR}}$, $\frac{\text{cal}}{\text{g-mole oK}}$
- r radius from center of planet, Km
- S specific entropy, cal/g-mole oK
- s specific entropy, cal/g oK
- T temperature, oK
- To standard temperature, 273.16°K

- u velocity component normal to a two-dimensional oblique shock wave, ft/sec
- v velocity component parallel to a two-dimensional oblique shock wave, ft/sec
- w free-stream velocity in two-dimensional flow = $\sqrt{u^2 + v^2}$, ft/sec
- β two-dimensional oblique-shock-wave inclination angle to free stream ($\leq 90^{\circ}$)
- γ ratio of specific heats = C_p/C_v
- θ two-dimensional oblique-shock-wave flow deflection angle
- p density, g/cm³
- p_o density at p_o , T_o , and M_o , g/cm^3
- entropy function tabulated in Ref. 10, Btu/lb-mole OR

SUBSCRIPTS

- E earth
- i ith species
- standard temperature, O $^{
 m O}$ K unless as specified by T $_{
 m O}$
- p constant pressure
- s surface of planet
- V Venus
- v constant volume
- 1 state upstream of shock wave
- 2 state aft of shock wave

SUPERSCRIPT

o standard pressure, 1 atm

I. INTRODUCTION

In order that design studies may be carried out concerning space-vehicle entry into planetary atmospheres, it is necessary that the atmospheric composition-pressure-density relation with altitude for a particular atmosphere in question be known to a fair degree of precision. Since shock-wave, deceleration, and aerodynamic-heating calculations are all dependent upon this relation, it must at least be bracketed within reasonable limits. (1) This study is concerned with estimating this relation for the atmosphere of Venus.

Unfortunately, very little is known concerning this atmosphere. Through theoretical arguments, spectroscopic, photometric, and radiometric measurements, several theories have been advanced, no two of which, however, appear to be the same. (1-8) An attempt is made here to bring about reasonable agreement between two theories that are approached from different viewpoints. The resulting atmospheric model could then be used as a tentative mean which could be compared to other theoretical and experimental models until more experimental data are gathered and a better understanding of the Venus atmosphere develops. The establishment of this mean model atmosphere and its thermodynamic and aerodynamic characteristics is the objective of this study.

The first theory on the Venus atmosphere which is considered is that of Dole. (3) The partial pressures given in Ref. 3 correspond to a per cent by volume equal to the reported per cent by weight. Since the molecular weight of N₂ and CO₂ are markedly different, this cannot be the case. Two methods for calculating atmospheric composition have been employed. Using the basic data on pp. 4-6 and the theory of Dole, the probable range of atmospheric compositions has been recalculated; a probable average composition

according to this theory has also been calculated. The second method employed makes use of some of the available experimental data, one of Dole's basic assumptions, and one assumption concerning the pressure-density relation of the Venus atmosphere below the cloud layer. The assumptions involved are open to debate and the experimental data are highly uncertain, but the remarkable result is that the two methods yield quantitative estimates of the atmospheric composition in close agreement with each other. It is taken as the basic statement of this Memorandum that these methods do yield a reasonable quantitative estimate of the atmospheric composition. The composition arrived at is 85 per cent $^{\rm CO}_2$ and 15 per cent $^{\rm N}_2$ by volume, and the atmosphere is then modeled; i.e., the pressure-temperature-altitude relation is derived. The thermodynamic properties of the chosen composition are calculated over the temperature-pressure ranges of $^{\rm 150^{\circ}K}$ to $^{\rm 24}$, $^{\rm 000^{\circ}K}$ and $^{\rm 10^{-4}}$ atm to $^{\rm 10^{\circ}}$ atm, respectively. Finally, normal shock-wave properties are presented for selected altitudes in the chosen atmospheric model.

The appendices include a method of obtaining oblique shock-wave properties from normal shock-wave properties and a method of obtaining electron concentrations at low temperatures. The first is useful when it is impractical to compute and plot oblique shock charts because of uncertainty in the characteristics of a particular atmosphere. The second is useful for determining the temperature and pressure influence on the electromagnetic environment, for example, of radio signals to or from an entry vehicle.

II. A TENTATIVE ATMOSPHERE FOR VENUS

CONDITIONS AND ASSUMPTIONS

Two methods will be used to deduce the composition of the Venus atmosphere: one is that of Dole. (3) while the other is based on a few selected experimental measurements. The first approach will merely require that slight numerical refinements be made in Dole's paper; the trace of argon mentioned in the paper will be neglected, but the theory will be assumed correct. The second approach will require assumptions concerning both the validity of some highly speculative experimental data and the pressure-temperature-altitude relation below the Venus cloud layer. More will be said later concerning the acceptance of these data and the assumptions involved in choosing the final model. However, before continuing with the derivation it is necessary to state that this is not intended to be a rigorous, absolute derivation of the composition of the Venus atmosphere. It is solely intended to provide some justification for assuming a particular model atmosphere. The discussion at the end of this section will shed some light on the difficulties associated with the acceptance of this model; as for acceptance of some of the experimental data, the reader may consult the referenced literature.

First, some general assumptions pertinent to both methods are necessary. The constituents of the atmosphere will be assumed to obey the perfect gas law, $p/\rho = RT/M$. The gas mixture will be assumed to be of constant composition throughout the atmosphere; this neglects "settling" of heavier constituents, diffusion, photodissociation, and ionization. The complete gas mixture is assumed to be in hydrostatic equilibrium in a constant gravitational field, with centrifugal force due to planetary

rotation being neglected. Now, as pointed out in Ref. 1, all of these assumptions except the perfect gas law may be far from realizable, especially at high altitudes. However, they introduce far less uncertainty than do the assumptions to follow, and they are fairly good assumptions for the altitude range of aerodynamic interest.

Following Dole, the amount of N_2 in the Venus atmosphere will be assumed equal to that in Earth's, but scaled down to make allowance for the difference in the sizes of the planets. Since the atmospheric gases are mainly generated at or near the surface of a planet, relative masses of N_2 in the two atmospheres will be scaled in proportion to the surface areas of the two planets. Moreover, the Venus atmosphere is assumed to consist of only ${\rm CO}_2$ and ${\rm N}_2$, the trace constituents being neglected. These two assumptions are basically deduced by Dole, and they are basic to both the numerical refinements in Dole's paper and to the second method.

The second method will require, in addition to the above, that the atmosphere of Venus exist in adiabatic equilibrium from the surface to "the top of the cloud layer." This is another very basic and important assumption.

The numerical data consistent both with what is known of Earth and Venus and with the above assumptions are presented below. For detailed information on these data, the reader is directed to the references. The composition of the Venus atmosphere will then be calculated from considerations of these two methods or approaches and the data below.

BASIC DATA

A. Composition of air by volume for Earth (9) $0_2 = 20.946$ per cent

B. Molecular weights (chemical scale) (9)

$$M_{N_2} = 28.016 \text{ g/g-mole}$$

 $M_{CO_2} = 44.011 \text{ g/g-mole}$
 $M_{Air} = 28.967 \text{ g/g-mole}$

C. Specific heats (450°K)(10)

$$(C_p)_{N_2} = 7.017 \text{ cal/g-mole }^{\circ}\text{K}$$
 $(C_v)_{N_2} = 5.031 \text{ cal/g-mole }^{\circ}\text{K}$
 $(C_p)_{CO_2} = 10.280 \text{ cal/g-mole }^{\circ}\text{K}$
 $(C_v)_{CO_2} = 8.294 \text{ cal/g-mole }^{\circ}\text{K}$

D. Mass of CO_2 per unit area of Earth's surface (in the atmosphere, sea water, carbonates, coal, etc.)⁽³⁾

$$\left(\frac{\text{m}_{\text{CO}_2}}{\text{A}_{\text{g}}}\right)_{\text{E}}$$
 = 7.23 - 9.66 kg/cm², estimated limits

E. Planetary data

$$m_V/m_E$$
 = 0.819 (averaged from Ref. 3)
 r_{s_V}/r_{s_E} = 0.950 (estimated from Ref. 3, including an estimate for the height of the cloud layer)
 r_{s_E} = 6371 km⁽¹¹⁾

$$g_{s_V}/g_{s_E} = 0.90748$$
 (computed from above)
 $g_{s_E} = 980.665$ cm/sec²(11)

F. Experimental (and highly uncertain) data concerning the atmosphere of Venus

Surface temperature

$$T_s = 600^{\circ} K^{(12)}$$

Temperature of reflecting layer above which there are 1000 $\mathrm{m\text{-}atm}^{\times}$ of CO $_{2}$

$$T_1 = 300^{\circ} K^{(2,13)}$$

Temperature at or near the "cloud top," but assumed to be above the 300°K reflecting layer (data compiled from original references in Ref. 6)

$$T_2 = 235^{\circ} K$$

THEORETICAL DEVELOPMENT

Dole's Approach

Dole's theory is based on the assumption that since the Earth and Venus are similar in mass and size the only differences between them must be fundamentally due to the amount of solar radiation received by each. Hence, an evolutionary theory of the origin of the Earth's atmosphere expressed by conservation equations of atmospheric constituents may be looked at by describing the effects of placing Earth in Venus' orbit some 3 or 4 billion years ago. Briefly, the results are that due to the increased surface temperature no surface water could exist. The water vapor would be subject to a

One m-atm of a gas is the mass contained in a tube 1 m long and with a 1-cm² cross-sectional area, when the gas is at standard pressure and temperature.

higher rate of dissociation due to increased radiation, and the result would be a dry planet. In the absence of liquid water, CO_2 produced by volcanic action would not go into solid carbonates or sea water. Atmospheric turbulence would be very high, wind erosion would be increased, and, coupled with a higher surface temperature and normal isostamy, surface oxidation would be very great. Together with the oxidation of CO produced by volcanic action, surface oxidation would remove most of the O_2 from the atmosphere. The balance of N_2 would be only slightly affected. Therefore, the net result is a dry atmosphere of CO_2 and N_2 . This enables a quantitative estimate of these constituents.

Under the assumption of static equilibrium with no centrifugal force, and considering a spherical coordinate system fixed to a planet, the hydrostatic differential equation may be shown to be of complete generality as

$$dp = -g\rho dr$$
 (1)

Now consider an atmosphere of constant composition consisting of "i" perfect gases in over-all hydrostatic equilibrium; also, consider the acceleration of gravity to be constant through the depth of the atmosphere. By integrating the mass of the atmosphere through its depth above a unit surface area using Eq. (1) and perfect gas relations, it may be shown that

$$\left| \frac{\text{mass of species i in the atmosphere}}{\text{per unit surface area}} \right| = \frac{1}{g_s} \frac{\frac{M}{i}}{M} p_{i_s}$$

or

$$p_{i_s} = \left(\frac{m_i}{A_s}\right) \frac{M}{M_i} g_s \tag{2}$$

Alternatively, since

$$m_{1} = n_{1}M_{1}$$

$$p_{1_{g}} = \left(\frac{n_{1}}{A_{g}}\right) M g_{g}$$
(3)

Therefore, if the mass of species i in the total atmosphere is known, and if the composition percentages are known along with the physical size of the planet, the partial pressure of species i at the surface may be found. Note that this equation requires that each species in a constant-composition atmosphere be not in hydrostatic equilibrium with itself, and that the surface partial pressure of a particular species be not generally equal to the weight per unit area of the gas above the surface as was reported by Dole. This is therefore a refinement in Dole's findings. It is known that for perfect gases partial-pressure ratios represent ratios of percentage by volume, not by weight. Therefore, it would be impossible to have the surface partial pressure of a particular species generally equal to the weight per unit area of this species above the surface of the planet. This refinement will decrease the fraction of CO₂ reported by Dole by approximately 4 per cent.

The method of computation then becomes

1. Consistent with the original assumption, the acceleration of gravity on Earth is assumed to be a constant with altitude. From the air composition data on p. 4 and from Eq. (2), the mass of N_2 in Earth's atmosphere per unit surface area is calculated.

$$\left(\frac{{}^{m}_{N_{2}}}{{}^{A}_{s}}\right)_{E} = \frac{{}^{P}_{N2_{E}} {}^{M}_{N_{2}}}{{}^{M}_{Air} {}^{g}_{s_{E}}} = 780.11 \text{ gm/cm}^{2}$$

2. From the data on p. 5 concerning the ${\rm CO}_2$ and from step (1) above, the composition by weight of ${\rm CO}_2$ and ${\rm N}_2$ is found. Under Dole's theory, and neglecting the trace of argon, this comprises the atmosphere of Venus.

$$(\% \text{ CO}_2 \text{ by weight}) = 100 \text{ x} \left(\frac{\text{m}_{\text{CO}_2}}{\text{A}_{\text{g}}}\right)_{\text{E}} / \left[\left(\frac{\text{m}_{\text{CO}_2}}{\text{A}_{\text{g}}}\right)_{\text{E}} + \left(\frac{\text{m}_{\text{N}_2}}{\text{A}_{\text{g}}}\right)_{\text{E}}\right]$$

$$(\% \text{ N}_2 \text{ by weight}) = 100 \text{ x} \left(\frac{\text{m}_{\text{N}_2}}{\text{A}_{\text{g}}}\right)_{\text{E}} / \left[\left(\frac{\text{m}_{\text{N}_2}}{\text{A}_{\text{g}}}\right)_{\text{E}} + \left(\frac{\text{m}_{\text{CO}_2}}{\text{A}_{\text{g}}}\right)_{\text{E}}\right]$$

3. From step (2) above, and the molecular-weight data previously mentioned, the composition by volume is found.

$$(\% CO_2 \text{ by weight}) \left(\frac{M_{N_2}}{M_{CO_2}}\right) = \frac{(\% CO_2 \text{ by weight}) \left(\frac{M_{N_2}}{M_{CO_2}}\right)}{1 + \frac{(\% CO_2 \text{ by weight})}{100} \left(\frac{M_{N_2}}{M_{CO_2}} - 1\right)}$$

$$(\% N_2 \text{ by volume}) = \frac{(\% N_2 \text{ by weight}) \left(\frac{M_{CO_2}}{M_{N_2}}\right)}{1 + \frac{(\% N_2 \text{ by weight}) \left(\frac{M_{CO_2}}{M_{N_2}} - 1\right)}{100}$$

4. From Eq. (2), the molecular weight and planetary data, step (3), and the assumption that the mass of N_2 in the atmosphere is proportional to surface area, the surface partial pressure of N_2 is found for Venus. Essentially the mass of N_2 per unit surface area is assumed to be the same for Earth and Venus.

$$M = \left(\frac{\text{\% CO}_2 \text{ by volume}}{100}\right) \quad M_{\text{CO}_2} + \left(\frac{\text{\% N}_2 \text{ by volume}}{100}\right) \quad M_{\text{N}_2}$$

$$p_{\text{N}_2} = \left(\frac{m_{\text{N}_2}}{A_{\text{S}}}\right)_{\text{E}} \quad \frac{M}{M_{\text{N}_2}} \quad g_{\text{S}_{\text{V}}}$$

5. From steps (3) and (4) the surface partial pressure of CO, is found.

$$P_{CO_{2_{S_V}}} = P_{N_{2_{S_V}}} \left(\frac{\% CO_2 \text{ by volume}}{\% N_2 \text{ by volume}} \right)$$

6. From steps (4) and (5) the total surface pressure is found.

$$p_{s_V} = p_{N_{2_{s_V}}} + p_{CO_{2_{s_V}}}$$

The results of this computation are presented in Table 1. It should not be construed, however, that the significant figures shown are indicative of the precision of the theory.

Second Approach

For an atmosphere in adiabatic equilibrium the following relation must hold

$$S_{a} = S_{b} \tag{4a}$$

where a and b denote any two positions in the atmosphere. Under our original assumptions and with the above-mentioned data, this relation must hold below the layer at 300° K, above which there are 1000 m-atm of CO_2 . In particular, it must hold between the points where $T_1 = 300^{\circ}$ K and $T_s = 600^{\circ}$ K. Using the data and methods of Ref. 10, the temperatures T_1 and T_s , and Eq. (4a), a relation among P_s , P_1 , and the composition is easily obtained.

$$n_{N_{2}} = R \ln \frac{p_{1}}{p_{s}} + (\vec{p}_{s} - \vec{p}_{1})_{N_{2}} n_{N_{2}} + n_{CO_{2}} R \ln \frac{p_{1}}{p_{s}} + (\vec{p}_{s} - \vec{p}_{1})_{CO_{2}} n_{CO_{2}} = 0$$
where $\vec{p} = \int_{T}^{C} dT + constant$

Since 1000 m-atm of $CO_2 = 4.461$ g-mole/em² of CO_2 , the partial pressure of the CO_2 at point 1 may be found by Eq. (3).

$$\mathbf{p}_{\text{CO}_{\mathbf{2_1}}} = \left(\frac{\mathbf{n}_{\text{CO}_{\mathbf{2_1}}}}{\mathbf{A_s}}\right) \mathbf{M} \mathbf{g_s}$$

Then from the law of partial pressures, the total pressure at point 1 may be found as a function of the composition.

$$p_1 = p_{CO_{2_1}} + p_{N_{2_1}} = p_{CO_{2_1}} \left(1 + \frac{n_{N_2}}{n_{CO_2}}\right) = \left(\frac{n_{CO_{2_1}}}{A_s}\right) M g_s \left(1 + \frac{n_{N_2}}{n_{CO_2}}\right)$$

The mass of N₂ in the atmosphere of Venus obtained in step (4) of Dole's approach is also assumed to hold here:

$$\left(\frac{n}{A_S}\right)_{N_{2_V}} = 27.845 \text{ g-mole/cm}^2$$

Now, from the law of partial pressures, Eq. (3), and the amount of N_2 , the total surface pressure p_s may be found as a function of composition.

$$p_{N_{2_s}} = \left(\frac{n_{N_2}}{A_s}\right) M g_s$$

$$p_s = p_{N_{2_s}} + p_{CO_{2_s}} = p_{N_{2_s}} \left(1 + \frac{n_{CO_2}}{n_{N_2}}\right) = \left(\frac{n_{N_2}}{A_s}\right) M g_s \left(1 + \frac{n_{CO_2}}{n_{N_2}}\right)$$

These three relations yield a relation for determining the composition.

$$\frac{p_{1}}{p_{s}} = \frac{\binom{n_{CO_{2_{1}}}/A_{s}}{\binom{n_{N_{2}}/A_{s}}{\binom{n_{N_{2}}+n_{CO_{2}}}{\binom{n_{N_{2}}+n_{CO_{2}}}{\binom{n_{N_{2}}+n_{CO_{2}}}{\binom{n_{N_{2}}+n_{CO_{2}}}{\binom{n_{N_{2}}+n_{CO_{2}}}{\binom{n_{N_{2}}+n_{CO_{2}}}}} = \frac{\binom{n_{CO_{2_{1}}}}{n_{CO_{2}}}}{\binom{n_{N_{2}}/A_{s}}}$$

$$A_{s}\binom{\binom{n_{N_{2}}}{A_{s}}}{\binom{n_{N_{2}}}{A_{s}}} \left[R \ln \binom{\binom{n_{CO_{2_{1}}}}}{\binom{n_{CO_{2_{1}}}}}{\binom{n_{CO_$$

which must be solved for $n_{\bigcirc{2}}$ by trial. Carrying out the computation gives the following composition

$$N_2 = 18.4 \text{ per cent}$$

compared to the average values obtained by Dole's approach

$$N_2 = 12.7 \text{ per cent}$$

Thus it is apparent that both theories give quantitative results in close agreement with each other.

MODEL OF THE VENUS ATMOSPHERE

Assuming therefore that these two theories do give good quantitative estimates of the atmosphere of Venus, the remaining problem is that of adopting a tentative composition for our model Venus atmosphere. Rather than investigate the probable effects of experimental uncertainty in the data, nomuniform gravitation, trace elements, imperfect gases, etc., which would

in fact invalidate all of the original assumptions and require more accuracy than is obviously contained in this model, we make a fundamental assumption: that the temperature lapse rate with altitude is slightly less than dry adiabatic. The experimental data and all of the original assumptions are retained except that of a dry adiabatic lapse rate below T_1 . As an alternative to Eq. (4a), the well-known relation

$$\frac{P_{a}}{P_{b}} = \left(\frac{T_{a}}{T_{b}}\right)^{\gamma/\gamma - 1} \tag{4b}$$

could have been written for an adiabatic atmosphere of perfect gases. It was not used because γ has a strong variation with temperature for this mixture, and a "proper" average γ would have had to be chosen as in the "C" data on p. 5. If a polytropic atmosphere is assumed where an adiabatic atmosphere was previously assumed, the following equation holds by definition

$$\frac{\mathbf{p_a}}{\mathbf{P_b}} = \left(\frac{\mathbf{T_a}}{\mathbf{T_b}}\right)^{\mathbf{q/q-1}} \tag{5}$$

For an adiabatic atmosphere, $q=\gamma$; for an isothermal atmosphere, q=1; therefore, we will choose $1 < q < \gamma$. Using this criterion and Eq. (5) in place of Eq. (4a), and repeating the computations of the second approach, it is found that the composition must contain more than 81.6 per cent CO_2 by volume. This tends to reduce the discrepancy between the two approaches. The atmosphere of Venus is now arbitrarily chosen to consist of 85 per cent CO_2 and 15 per cent N_2 by volume.

With a composition assumed, the atmosphere is modeled as follows:

- 1. From the known composition, amount of N_2 , and Eq. (3), the total surface pressure is found.
- 2. From the known composition, amount of 60 2 above point 1, 7 5, 7 7, and Eqs. (3) and (5), the exponent q is found.
- 3. This polytropic atmosphere is assumed to hold true until point 2 is reached, where $T_2 = 235^{\circ}K$, the assumed "cloud top."
- that this situation precisely prevails, but it should represent a reasonable assumption over altitudes of aerodynamic interest. From the standpoint of radiative equilibrium, the temperature probably drops to about 190°K at 55 km. There may also be a slight increase in temperature above this level due to 03 heating. This will be much more suppressed, however, than the case on Earth because of the absence of much 02 at these altitudes (provided, of course, that there is no appreciable amount of 02 in the atmosphere of Venus). Effects of this kind are neglected in this model, however, because they are inconsistent with the accuracy possible through use of the other assumptions of the model.
- 5. With the above information, Eq. (5), and the perfect gas law,
 Eq. (1) can be integrated. This yields a complete pressure-densitytemperature-altitude relation consistent with the assumptions and
 data. This relation is presented below, and it is represented in
 Table 2 and in Fig. 1.

Fig. 1 — Tentative atmosphere of Venus

For $0 \le (r - r_s) \le 42.16$ km, the cloud "top" altitude,

$$\frac{\mathbf{p}}{\mathbf{p}_{\mathbf{g}}} = \left[1 - \frac{\mathbf{M}}{\mathbf{R}} \frac{(\mathbf{q} - \mathbf{1})}{\mathbf{q}} \frac{\mathbf{g}_{\mathbf{g}}}{\mathbf{T}_{\mathbf{g}}} (\mathbf{r} - \mathbf{r}_{\mathbf{g}})\right]^{\mathbf{q}/\mathbf{q} - \mathbf{1}}$$
(6)

$$\frac{T}{T_{s}} = 1 - \frac{M}{R} \frac{(q-1)}{q} \frac{g_{s}}{T_{s}} (r - r_{s}) = (\frac{p}{p_{s}})$$
 (7)

$$\frac{\rho}{\rho_{s}} = \left[1 - \frac{M}{R} \frac{(q-1)}{q} \frac{g_{s}}{T_{s}} (\mathbf{r} - \mathbf{r}_{s})\right]^{\frac{1}{q-1}} = (\frac{p}{p_{s}})$$
(8)

For $42.16 \le (r - r_g)$

$$T = T_2 = 235^{\circ} K$$

$$\frac{\mathbf{p}}{\mathbf{p_s}} = \left(\frac{\mathbf{p_2}}{\mathbf{p_s}}\right) \exp \left[-\frac{\mathbf{Mg_s}}{\mathbf{RT_2}} \left(\mathbf{r} - \mathbf{r_2}\right)\right] \tag{9}$$

$$\frac{\rho}{\rho_{\rm g}} = \left(\frac{\rho_2}{\rho_{\rm g}}\right) \exp \left[-\frac{Mg_{\rm g}}{RT_2} \left(\mathbf{r} - \mathbf{r}_2\right)\right] \tag{10}$$

where consistent with the assumptions and derivation of the model

$$T_s = 600^{\circ} K$$

$$p_s = 6.784$$
 atm

$$\rho_{\rm g} = 5.734 \times 10^{-3} \, {\rm g/cm^3}$$

$$r_{g} = 6052.45 \text{ km}$$

$$p_2 = 5.464 \times 10^{-2} \text{ atm}$$

$$\rho_2 = 1.179 \times 10^{-14} \text{ g/cm}^3$$
 $g_s = 889.9 \text{ cm/sec}^2$
 $\frac{q}{q-1} = 5.1443$
 $M = 41.612 \text{ g/g-mole}$
 $\mathbf{r}_2 = \mathbf{r}_s + 42.16 \text{ km}$
 $R = 8.31433 \times 10^7 \text{ erg/g-mole}^{\circ} \text{K}$

DISCUSSION

It is necessary at this point to review exactly what has been done in order to see what assumptions are basic to this atmospheric model. In analogy to the Earth, it is immediately evident that the assumptions of uniform gravitation, constant composition, perfect gases, and hydrostatic equilibrium with no centrifugal force are not the major sources of uncertainty. It is in the statements that followed that great uncertainty was introduced. essence, Dole's theory was assumed correct at the outset, and was investigated as to compatibility with some experimental observations. It was necessary at the start to assume that CO_2 and N_2 are the only major constituents in the atmosphere and additionally to assume the total amount (not proportion) of No in the atmosphere. Then it was necessary to assume accuracy in some experimental data that are known to contain a high degree of uncertainty. Further, it was necessary to speculate on the nature of the cloud layer surrounding the planet so that the nature of the temperature lapse rate with altitude could be specified. At this point it would appear that the entire problem had been assumed away. However, there are indications that this may not be the case.

Consider first that Bole's approach is accepted and that the question is one of compatibility with some experimental measurements. In dealing with the second approach, it is found first of all that any uncertainty in the amount of N_{ρ} chosen greatly affects the derived composition. Uncertainties of 1 per cent in this amount affect the resulting fraction of N_2 by approximately 1 - 2 per cent. It is also found that uncertainties in the data concerning the amount of CO2 above the "reflecting surface" greatly affect the derived composition. For instance, if there were only 500 m-atm of CO, above this surface instead of the chosen figure of 1000 m-atm, the derived composition would contain approximately 30 per cent N_2 by volume. The results are also highly dependent upon the temperatures chosen and upon the nature of temperature lapse rate below the "reflecting surface." In other words, there are no chosen parameters that tend to suppress uncertainty effects or that cause less uncertainty in the results for No composition than is contained in the chosen parameter. It is then apparent that the close agreement of the two approaches must either be a remarkable coincidence or have some basis in fact. However, this model is inconsistent with the measurements of Ref. 7, and consequently with the results of Ref. 8.

It must also be noted that the amount of CO_2 reported by Dole is approximately one-half that which would result if the figures for the amount of Earth CO_2 from Ref. 14 were used. Attention must also be called to Ref. 15 in which a method similar to the second approach here is used to derive a composition of approximately 75 per cent CO_2 and 25 per cent N_2 .

All that is claimed here is that under the assumptions a tentative atmosphere of Venus has been derived. Now if the assumptions involved ultimately prove reasonable and the experimental data, and consequently the

ment of the two approaches indicates that the chosen composition may be representative of the Venus atmosphere. Further, the pressure-temperature distribution below the cloud layer may be reasonably correct. The difficulties in accepting an isothermal atmosphere above the cloud layer have been discussed previously. Above 100 km, photodissociation and ionization will surely become appreciable, and in going to these higher altitudes the assumption of a uniform gravitational field becomes poorer. The cutoff at 100 km was chosen because the density at this point roughly corresponds to that density in the Earth's atmosphere (at approximately 300,000 ft) at which incipient aerodynamic effects associated with re-entry nose cones are no longer negligible.

One immediate objection to the acceptance of this model concerns the arbitrary choice of the temperature lapse rate below the cloud layer. In reality, the real justification for choosing a lapse rate slightly less than an adiabatic lapse rate is that this choice reduces the discrepancy in atmospheric composition between the two approaches. However, it may be partially justified by other arguments. For instance, if the clouds are composed of water and ice crystals, the lapse rate in the cloud layer must be less than the dry adiabatic lapse rate because of the release of the heats of vaporization and fusion as altitude increases. The chosen lapse rate may then be considered an average between the surface and the top of the cloud layer. Yet another possibility may be considered. If the surface temperature is slightly greater than 600° K, as may well be possible considering the uncertainty in the data, Eq. (4a) requires that the surface pressure be higher than that originally derived. Assuming that the amount of N₂ is fixed, Eq. (2)

requires that there be more ${\rm CO}_2$. The chosen lapse rate may then be considered as a correction device to fix the surface temperature at $600^{\circ}{\rm K}$, but still be consistent with the amount of ${\rm CO}_2$ in the atmosphere. Of course this argument works in reverse if the surface temperature is less than $600^{\circ}{\rm K}$. It does not seem profitable to investigate all of these minor effects in view of the uncertainties already introduced. This lapse rate was chosen simply because it serves to reduce the discrepancy between the two approaches and appears to be as good as any other assumption at this time.

It is interesting to note that if the clouds surrounding Venus are assumed to consist of ice crystals, $^{(5,6)}$ according to the present model the vapor pressure above ice at $T_2 = 235^{\circ} K$ indicates that water vapor comprises 0.29 per cent by volume of the Venus atmosphere above the cloud layer (assuming a constant mixing ratio above this point). This is larger by a factor of approximately 40 than that which would exist in this model according to the recent measurements of the Moore-Ross balloon flight. (16) It must be cautioned, however, that these measurements contained a high degree of uncertainty.

In view of the above-mentioned difficulties, this model is proposed only as a first approximation with which aerodynamic entry problems concerning Venus may be studied. It may be used as a mean to which perturbations may be applied; this mean may be bracketed by other existing theories until more experimental data are accumulated. The significant figures presented for this model are obviously not indicative of the precision of the knowledge of the Venus atmosphere, but are consistent with the proposed model if the experimental data and assumptions involved are taken as "exact."

III. THE THERMODYNAMIC PROPERTIES OF 15 PER CENT NO AND 85 PER CENT CO BY VOLUME

CONDITIONS AND ASSUMPTIONS

The thermodynamic properties of a mixture of 85 per cent ${\rm CO}_2$ and 15 per cent ${\rm N}_2$ by volume will be presented on the premise that they may be useful regardless of specific application to this tentative Venus atmosphere. In this light, the calculations of this section will be carried out for exactly the stated composition and will contain far less computational uncertainty than does Section II concerning the constituency of the atmosphere of Venus.

The gas mixture constituents are assumed to obey the perfect gas law, $pM/R\rho T$ = 1. Investigation of the critical constants of the constituents shows that this is a good assumption over the selected temperature range of from 1000°K to 24,000°K. CO, deviates most from the perfect gas law (the effects of compressibility for this constituent have been discussed by Ray-Since N_2 is better-behaved in this respect than ${\rm CO}_2$, the compressibility at 1000°K and 10°2 atm for this mixture is slightly depressed from the value of 1.026 quoted by Raymond for pure CO2. However, this assumption becomes poorer at temperatures below 1000 K and at the higher pressures. The justification for neglecting the effects of intermolecular forces at these lower temperatures is that the thermodynamic states of interest with respect to the atmosphere of Venus do not occur where large effects of intermolecular forces are apparent. When the pressure is nearest the critical pressure (for ${\rm CO}_{\odot}$) the temperature is high; where the temperature approaches and falls below the critical temperature, the pressure is low. Again, the presence of $N_{\scriptsize \scriptsize \bigcirc}$ will generally tend to influence the mixture to behave more like a perfect gas than will pure CO2.

The mixture will be assumed to be in thermodynamic equilibrium. From the standpoint of the use of these properties, this assumes that for any particular state to which these properties are to be applied, e.g., aft of a shock wave, the time required for relaxation phenomena to take place is much shorter than that in which the gas changes appreciably in state. The equilibrium composition of the gas mixture is then computed by the method of Ref. 18 under the criteria that the Gibbs Free Energy is a minimum for a selected particular temperature and pressure.

Below 1000° K the mixture is assumed to consist solely of molecular CO_2 and N_2 . This assumption is justified by noting the calculated equilibrium composition at $T = 1000^{\circ}$ K and $p = 10^{-14}$ atm. Using perfect gas relations, the thermodynamic properties of the mixture can be calculated from the basic data in Ref. 10. However, a slight correction must be applied to these data in order that they may become consistent with the data above 1000° K; the method of correction will be described later.

METHOD OF CALCULATION

T ≥ 1000°K

Under the criteria of significantly contributing to the thermodynamic properties of the mixture it was first assumed that the mixture could consist of the following possible species: CO_2 , N_2 , O_2 , NO_2 , CO, NO, O_3 , C, N, O, C^+ , N^+ , O^+ , O^-_2 , O^- , CO^+ , NO^+ , N_2^+ , O_2^+ , C^{++} , N^{++} , O^{++} , and O^+ Using the basic referenced data in Tables 3 - 6, and the method of Ref. 18, the equilibrium composition was calculated over the temperature range $OCO^ OCO^ OCO^$

Thus, thermodynamic properties are presented for the following significant constituents in the temperature ranges specified below:

$$1000^{\circ} K \le T \le 4000^{\circ} K$$
 CO_2 , N_2 , O_2 , CO , NO , C , N , and O
 $4000^{\circ} K < T \le 24,000^{\circ} K$
 CO_2 , N_2 , O_2 , CO , NO , C , N , O , C^{\dagger} , N^{\dagger} , O^{\dagger}

The equilibrium composition is presented on the basis of one g-mole of the "cold" mixture in Figs. 2 and 3 and Tables 7 and 8 over a temperature range of 1000°K to 24,000°K and a pressure range of 10² atm to 10⁻¹⁴ atm.

Since the thermodynamic data are presented on the basis of one g-mole of the "cold" gas mixture, i.e., 41.612 g, the following relation applies

$$M = M_{0} \frac{n_{0}}{\sum_{i} n_{i}} = \frac{M_{0}}{n}$$
 (11)

since $n_0=1$ and Σ $n_1=n$. Thus, n_1/n represents the mole fraction of species i. The datum density, ρ_0 , is chosen to correspond to $p_0=1$ atm (on the surface of the earth) and $T_0=273.16^{0} \rm K$ for the original "cold" mixture. Thus

$$\rho_o = \frac{p_o M_o}{RT_o} = 1.85647 \times 10^{-3} \text{ gm/cm}^3$$

Then

$$\frac{\rho}{\rho_{o}} = \frac{(p/p_{o})(M/M_{o})}{T/T_{o}} \tag{12}$$

Fig. 2 — Total number of moles as a function of temperature

Fig. 3a — Molar composition

Fig. 3b — Molar composition

Fig. 3d — Molar composition

Fig. 3e — Molar composition

Fig.3f — Molar composition

Fig. 3g — Molar composition

The molecular weights and densities are shown in Tables 9 and 10 and Figs. 4 and 5.

The datum state chosen for the internal energy equal to 0 is where carbon (graphite), gaseous molecular oxygen, and gaseous molecular nitrogen exist at a temperature of 0°K and zero pressure. Then the internal energy per "cold" g-mole of the mixture may be calculated as follows:

$$E = \sum_{i} n_{i} E_{i}$$
 (13)

where

$$E_{i} = (E^{\circ} - E_{\circ}^{\circ})_{i} + E_{\circ}^{\circ}$$
 (14)

and E_{0}^{0} is the heat of formation of species i from the ground state mentioned above. In dimensionless form, the computing equation becomes

$$\frac{E}{RT_{o}} = \frac{T}{T_{o}} \sum_{i} n_{i} \left[\left(\frac{E^{o} - E_{o}^{o}}{RT} \right)_{i} + \left(\frac{E^{o}}{RT} \right)_{i} \right]$$
(15)

The basic data are taken from the previously mentioned tables.

Since the enthalpy is given by

$$H_{i} = E_{i} + p_{i}V = E_{i} + n_{i}RT$$
 (16)

the computing equation is

$$\frac{H}{RT_{o}} = \frac{T}{T_{o}} \sum_{i} n_{i} \left[\left(\frac{E - E_{o}^{o}}{RT} \right)_{i} + \left(\frac{E_{o}^{o}}{RT} \right)_{i} + 1 \right]$$
(17)

Fig. 4 — Molecular weight versus temperature

Fig. 5a — Density versus temperature

Fig. 5b — Density versus temperature

The Gibbs Free Energy is given by

$$F_4 = H_4 - TS_4 \tag{18}$$

Also

$$F_{i} = F_{i}^{O} + RT \ln p_{i}$$
 (19)

Then

$$\frac{S_{i}}{R} = \frac{E_{i} - F_{i}^{O}}{RT} - \ln p_{i} + 1$$
 (20)

or

$$\frac{S_{i}}{R} = \left(\frac{E^{\circ} - E_{o}^{\circ}}{RT}\right)_{i} - \left(\frac{F^{\circ} - E_{o}^{\circ}}{RT}\right)_{i} - \ln p_{i} + 1$$
(21)

Since

$$p_{i} = \frac{n_{i}}{n} p \tag{22}$$

and

$$\frac{S}{R} = \sum_{i} n_{i} \left(\frac{S}{R} \right)_{i} \tag{23}$$

the computing equation is

$$\frac{S}{R} = \sum_{i} n_{i} \left[\left(\frac{E^{O} - E^{O}_{O}}{RT} \right)_{i} - \left(\frac{F^{O} - E^{O}_{O}}{RT} \right)_{i} - \ln \left(\frac{n_{i}}{n} p \right) + 1 \right]$$
 (24)

Again, the basic energy data are taken from the previously mentioned tables.

The values for internal energy, enthalpy, and entropy are shown in Tables 11 - 13 and Figs. 6 - 8, respectively. High-temperature Mollier charts are presented in Figs. 9 and 10.

Fig.6—Internal energy, E/RT $_{\rm O}$, versus temperature

Fig. 7 — Enthalpy, H/RT_0 , versus temperature

Fig. 8 — Entropy, S/R, versus temperature

Fig.9 — Mollier chart to 24,000 °K for a volumetric mixture of 85% CO_2 and 15% N_2

Fig. 10 — Mollier chart to 12,000 °K for a volumetric mixture of 85% $\rm CO_2$ and 15% $\rm N_2$

To convert the thermodynamic properties to the mass basis, it is merely necessary to divide the properties by the "cold" molecular weight. Thus

$$\frac{e}{RT_o} = \frac{1}{M_o} \frac{E}{RT_o}$$
 (25)

$$\frac{h}{RT_{o}} = \frac{1}{M_{o}} \frac{H}{RT_{o}} \tag{26}$$

and

$$\frac{s}{RT_o} = \frac{1}{M_o} \frac{s}{R} \tag{27}$$

$T \le 1000^{\circ} K$

The thermodynamic properties in this range were computed from Tables 12 and 17 of Ref. 10 for a mixture of 0.85 g-mole of CO_2 and 0.15 g-mole of N_2 . In this reference the zero for internal energy and enthalpy is taken at $\mathrm{O}^0\mathrm{K}$. It was necessary, therefore, to add the heat of formation of CO_2 to the enthalpy of CO_2 tabulated in Ref. 10. In order for these data also to match the computed properties at $\mathrm{1000}^0\mathrm{K}$ but still retain the zero at $\mathrm{O}^0\mathrm{K}$, it is necessary to multiply the enthalpy data in Ref. 10 by a factor only very slightly different from unity. In effect, this means that the specific heat at constant pressure is multiplied by this factor. The computing equation then becomes

$$\frac{H}{RT_{o}} = \frac{1}{RT_{o}} \left[0.85 \left(\frac{K_{CO_{2}} \overline{h}_{CO_{2}}}{1.8} - 173.1048 \right) + 0.15 \left(\frac{K_{N_{2}} \overline{h}_{N_{2}}}{1.8} \right) \right]$$
 (28)

where the K's are the multiplying factors to match the data at 1000°K and

$$K_{CO_2} = 1.000324$$

Now the entropy function $\overline{\Phi}$, tabulated in Ref. 10, represents the following:

$$\overline{\Phi} = S^{\circ} = E^{\circ} - F^{\circ} + R \tag{29}$$

Also

$$\overline{\Phi} = \int \frac{c_p}{T} dT + constant$$
 (30)

Thus, the same multiplying factor must be applied to this function as is applied to the enthalpy above. The final matching of these data with the computed data at 1000°K is then taken care of by the additive constant in Eq. (30). Thus, the computing equation is

$$\frac{S}{R} = 0.85 \left[\frac{K_{CO_2} \overline{\Phi}_{CO_2}}{R} + B_{CO_2} - \ln (0.85p) \right] + 0.15 \left[\frac{K_{N_2} \overline{\Phi}_{N_2}}{R} + B_{N_2} - \ln (0.14p) \right]$$
(31)

where

$$B_{CO_2} = 0.0114$$

$$B_{N_2} = -0.0008$$

The values for the enthalpy, internal energy, and entropy over the range of 150°K to 800°K and 10² to 10⁻¹⁴ atm are shown in Figs. 6 - 8 and Tables 11 - 13. In Table 2, values are also included for the entropy at the particular pressure-temperature combinations that occur in the model of the Venus atmosphere selected in Section II.

DISCUSSION

Since much of the basic data were taken from Gilmore's paper, (9) the reader is referred to Ref. 9 for an adequate discussion of the accuracy of the basic data. Constituents having a large error in the basic data (due

to a summation over too few energy levels in the internal partition function) are present in such small amounts at the temperatures and pressures when the error is quite significant that the error introduced in the thermodynamic functions may be considered very slight. It should also be mentioned that the data are significantly in error near the liquefaction points of the CO_O.

For more accurate results in this region, better data for $^{\rm CO}_2$ should be used. $^{\rm (19)}$

Selected cases were calculated over the complete pressure range at temperatures of 5000° K and $12,000^{\circ}$ K for a mixture of 84.7 per cent CO_2 , 15 per cent CO_2 , and 0.3 per cent CO_2 vapor by volume. This was done to investigate the effect of water vapor on these properties in the event that a substantial amount of water vapor actually exists in the atmosphere of Venus. The additional constituents considered were CO_2 , 0H, H, H, H, CO_2 , 0H, H, H, and 0H. Table 8H shows the effect of this addition on the composition and thermodynamic properties of the mixture. It may be stated that the thermodynamic properties are not affected by more than the order of percentage addition of CO_2 .

The three most important differences between this case and that of pure $\mathrm{CO}_2^{(17)}$ are the reduction in internal degrees of freedom at low temperatures, since N_2 is present; the appearance of NO at moderate temperatures; and the reduction in electron concentration at high temperatures due to the high ionization potential of N_2 . Since NO forms quite readily around $5000^{\mathrm{O}}\mathrm{K}$, more energy goes toward dissociation at this level than in the pure- CO_2 case. Since NO ionizes quite readily, the electron concentration at this temperature level is higher than that for pure CO_2 . All effects mentioned are generally of the order of the percentage of N_2 addition to pure CO_2 .

IV. NORMAL-SHOCK-WAVE CHARACTERISTICS OF A TENTATIVE VENUS ATMOSPHERE

CONDITIONS AND ASSUMPTIONS

The gasdynamic properties of the atmosphere of Venus depend upon the gas mixture assumed and the thermodynamic properties at the high temperature and pressure ratios usually expected through a normal shock at high entry speeds. Therefore, it should be recalled that the gas mixture assumed is 85 per cent CO_2 and 15 per cent N_2 by volume (Section II), and that the calculations of the thermodynamic properties are based upon the assumption of thermodynamic equilibrium (Section III).

In addition, it must be assumed that aerodynamics of continuum flow apply; that is, that the shock thickness must be very much smaller than the characteristic length of the object causing the shock. This is necessary in order that the conservation equations may be applied across a very thin flow discontinuity. Since the highest altitude (and lowest density) chosen corresponds to the altitude in Earth's atmosphere where this assumption still generally applies, the assumption does not impose an appreciable limitation. However, it must be cautioned that the mean free path at 100 km is of the order of 10 cm.

METHOD OF COMPUTATION

Several methods of calculating shock-wave characteristics were investigated; (9,20,21) however, because the upstream state must be specified and because of the desirability of a rapid convergence of the iteration procedure, the method of Ref. 20 was selected, since it appeared to be well-suited to the solution of the problem. Applying conservation of mass, momentum, and energy across a flow discontinuity

Continuity:
$$\rho_1 u_1 = \rho_2 u_2 \tag{32}$$

Momentum:
$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$
 (33)

Energy:
$$h_1 + \frac{1}{2} u_1^2 = h_2 + \frac{1}{2} u_2^2$$
 (34)

Substituting Eq. (32) in Eq. (33) and manipulating, the pressure ratio becomes

$$\frac{p_2}{p_0} = \frac{p_1}{p_0} + \frac{\rho_1}{\rho_0} \frac{M_0}{RT_0} u_1^2 \left(1 - \frac{u_2}{u_1} \right)$$
 (35)

Rearranging and manipulating Eq. (34), the enthalpy becomes

$$\frac{H_{2}}{RT_{0}} = \frac{H_{1}}{RT_{0}} + \frac{M_{0}}{RT_{0}} \quad \frac{u_{1}^{2}}{2} \left[1 - \left(\frac{u_{2}}{u_{1}} \right)^{2} \right]$$
 (36)

From Section III the equation of state is presented in Tables 10 and 12 in the form

$$\frac{H_2}{RT_0} = f \left(T_2, p_2/p_0\right) \tag{37a}$$

$$\frac{\rho_2}{\rho_0} = f \left(T_2, p_2/p_0 \right) \tag{37b}$$

Finally, from Eq. (32)

$$\frac{\rho_1/\rho_0}{\rho_2/\rho_0} = \frac{u_2}{u_1} \tag{38}$$

With the equations above, the machine iteration procedure follows this pattern:

- 1. Pick an upstream thermodynamic state and velocity u₁, and enter all known quantities.
- 2. Assume $u_2/u_1 = 0$. Calculate p_2/p_0 from Eq. (35) and H_2/RT_0 from Eq. (36).
- 3. Enter these values in the tabular relations (Eq. (37)) and find ρ_0/ρ_0 .
 - 4. Calculate u_2/u_1 from Eq. (38) and enter this into Eqs. (35) and (36).
- 5. Repeat this procedure until u_2/u_1 obtained in step (4) above differs from that used in the previous iteration by less than 0.0001.
- 6. Print out p_2/p_1 , T_2/T_1 , ρ_2/ρ_1 , u_2/u_1 . The results of these computations are presented as a function of altitude in the adopted model of the Venus atmosphere in Figs. lla 11d and Tables 14a 14d ever a flight-speed range of 2,000 to 40,000 ft/sec. A typical sound speed is 910 ft/sec (at an altitude of 34.65 km in this model) so that the free-stream Mach number range is roughly 2.2 to 44.

DISCUSSION

It is interesting to note that to a good approximation at low Mach numbers, air may be treated as a perfect gas with constant specific heats as far as shock-wave relations are concerned; however, this atmosphere cannot be so treated because of the marked variation with temperature of the specific heats of ${\rm CO}_2$ in the normal temperature range of interest. It may be shown through an error analysis that the iteration procedure can be cut off when two successive values of ${\rm u_2/u_1}$ differ by less than 0.0001 and yet generally yield errors in the thermodynamic-state variables of the order of 0.01 per cent.

Fig. IIa-I — Normal – shock – wave characteristics of a tentative Venus atmosphere (pressure ratio, p_2/p_1)

Fig.IIa-2—Normal-shock-wave characteristics of a tentative Venus atmosphere (pressure ratio, p_2/p_1)

Fig. IIb — Normal-shock-wave characteristics of a tentative Venus atmosphere $(\text{temperature ratio, } T_2 \ / T_1)$

Fig. II c — Normal-shock-wave characteristics of a tentative Venus atmosphere (density ratio, ρ_2/ρ_1)

Fig. IId-I — Normol-shock-wove chorocteristics of o tentative Venus atmosphere (velocity ratio, u₂/u₁; u₁, from 0 to 40,000 fps)

Fig.11d-2—Normal-shock-wave characteristics of a tentative Venus atmosphere (velocity ratio, u₂/u₁; u₁, from O to 20,000fps)

APPENDIX A
TABLES

Table 1 ESTIMATION OF COMPOSITION OF ATMOSPHERE OF VENUS BY DOLE

70no+++110n+	Case L-low CO,	Partial Pressu r es at Surface	ssures	Per Cent Composition (at all altitudes)	mposition titudes)
cous cr caene	f H≠h1gh CO ₂	Atmospheres	тт Нв	By weight	By volume
	IJ	1210-9	4573.0	90.261	85.507
000	Н	8.1390	6185.6	92.528	88.742
J	Average	7.0754	5377.3	91.544	87.327
	ij	1.0199	775.1	9.739	14.493
N	н	1.0325	784.7	7.472	11.258
ı	Average	1.0268	780.4	8.456	12.673
	7	7.0370	1.8465	100,000	100,000
Totals	щ	9.1715	6970.3	100.000	100,000
	Average	8.1022	6157.7	100,000	100,000

Table 2

A TENTATIVE ATMOSPHERE OF VENUS

Altitude (km)	Temperature (°K)	T/T	Pressure (atm)	p/ps	Density $(g/cm^{\frac{1}{2}})$	s _{d/d}	E/RTo	H/RTo	S/R
0	009	1.0000	6.784		5.734-3	1.000	-139.84	-137.65	27.191
11.55	500	0.8333	2.655		2.693 ⁻³	1-969.4	-141.40	-139.57	27.173
23.10	700	0.6667	8.428-1	1.242-1	1.068-3	1.863-1	-142.83	-141.37	27,222
34.65	300	0.5000	1.918-1	2.827-2	3.242-4	5.655-2	-144.13	-143.03	27.395
42.16	235	0.3917	5.464-2	8.054-3	1.179-4	2.056 ⁻²	-144.89	-144.03	27.636
50	235	0.3917	1.236-2	1.822-3	2.667-5	4.652-3	-144.89	-144.03	29.376
9	235	0.3917	1.857 ⁻³	2.738-4	9-800.4	⁴ -066-9	-144.89	-144.03	31.247
70	235	0.3917	2.791-4	4.115-5	6.023-7	1.051-4	-144.89	-144.03	33.143
80	235	0.3917	4.195-5	6.183-6	9.051-8	1.579-5	-144.89	-144.03	35.038
90	235	0.3917	6.305-6	7-462.6	1.360-8	2.373-6	-144.89	-144.03	36.933
100	235	0.3917	424.6	1.397-7	5.044-9	3.565 ⁻⁷	-144.89	-144.03	38.828
For 0 < r	r - r < 42.16 Km	Kin			For 42.16 < r - r	1 1			
1	CC.)			

For
$$0 \le r - r_S \le 42.16$$
 Km

$$p/p_s = [1 - 1.44297 \times 10^{-2} (r - r_s)]$$
 5.1444
 $T/T_g = (p/p_g)^{1/5.14444}$

$$\rho/\rho_{\rm g} = ({\rm p/p_{\rm g}})({\rm T/T_{\rm g}})$$

$$p/p_s = 8.0535 \times 10^{-3} e^{-0.18955} (r - r_s - 42.158)$$

$$T/T_{\rm S} = 0.39167$$

$$\rho/\rho_{\rm g} = \frac{2.0561}{8.0535} \times 10 \ \rm p/p_{\rm s}$$

Table 3

BASIC PHYSICAL CONSTANTS AND CONVERSION FACTORS

Universal Gas Constant (chemical scale)

 $R = 8.31433 \times 10^7 \text{ erg/g-mole}^{\circ} \text{K}$

= 1.98717 cal/g-mole $^{\circ}$ K

= 82.0561 atm cm^3/g -mole o_K

Avogadro's Number (chemical scale)

 $L = 6.02306 \times 10^{23}/g$ -mole

Energy Conversion Factors (chemical scale)

 $1 \text{ cal/g-mole} = 4.33605 \times 10^{-5} \text{ ev}$

1 thermochemical calorie = 4.18400×10^7 erg

Pressure Conversion Factor

1 standard atmosphere = 1.01325×10^6 dyne/cm²

Ratio of Physical to Chemical Scales

 $M_{\text{phys}}/M_{\text{chem}} = L_{\text{phys}}/L_{\text{chem}} = 1.000275$

Table 4

ENERGIES OF FORMATION E

		•
Constituent	E° o kcal/g-mole	All obtained from Ref. 9 by method indicated below
co ⁵	-93 . 96 3 9	Direct
N ^S	0	Definition
05	0	Definition
CO	-27.1992	Direct
NO	21.479	Direct
C(g)	169.99	Direct
N	112.535	Computed
0	58.985	Computed
C ⁺	429.832	Computed
N+	448.051	Computed
0+	373.033	Computed
o ₂ +	277.9	Computed
co ⁺	295.981	Computed
NO ⁺	234.879	Computed
c ⁺⁺	992.125	Computed
N++	1130.969	Computed
o ⁺⁺	1183.77	Computed
o ⁻	25.485	Computed
e -	0	Definition

Table 5 Internal Energies (R - R)/RT

2.7749 2.6515 2.7787 1.5432 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0	_	4	+	+	+	++	÷	‡	,
6.10 (6.10) 5.0219 2.7749 2.6515 2.7787 1.5472 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		Σ	0	20	00	O _N	U	×	0	0
5.0621 2.8976 5.0819 2.9377 5.0370 1.52843 1.5 5.7503 5.0656 5.2626 5.0979 5.1790 1.5529 1.5025 5.7503 5.0456 5.2626 5.0979 5.1790 1.5529 1.5025 5.9432 5.2605 5.2721 5.3396 1.5529 1.5176 5.9432 5.2463 5.2602 5.2721 5.3396 1.5590 1.5572 1.5029 5.3432 5.2602 5.3569 5.3404 1.6217 1.7030 (6.34) 5.360 5.3569 5.3569 5.3404 1.6494 1.6027 1.7030 (6.34) 5.360 5.3569 5.3409 5.402 1.6494 1.7030 (6.34) 5.360 5.3569 5.3409 5.402 1.7030 1.7030 (6.55) (5.34415) (5.560) (5.552) 1.7030 1.7030 1.7030 (6.55) (5.552) (5.552) 1.7030 1.7030 1.7030 (6.55) (6.57) 5.655 (6.57) (6.57) (6.57) 5.655 (6.57) (6.5	1.5 1.6122	777	-				1.5	1.6669	1.6993	55.
5.5033 5.0000 5.2800 5.0919 5.1790 1.15629 1.5762 5.9490 5.1790 1.5790 1.5762 5.9490 5.1790 1.5790 1.5762 5.9490 5.2800 5.2701 5.3790 1.5572 1.5962 5.9490 5.2800 5.2702 1.5762 1	1.5 1.5562	1.5509 1.5041	41 1.5	3,58	¥ 003	8	2.5	1.5556	1.6001	
5.94% 5.24% 5.52% 5.27% 5.33% 6.159% 1.557% (6.20) 5.30% 5.56% 5.39% 1.60% 1.6	-	-		3.255		761.5	1.5	1.5417	1.5778 1	
(6.23) 3.394 5.6799 5.7266 5.3933 1.6244 1.6217 (6.23) 3.3945 3.7725 5.359 3.414 1.6244 1.7905 (6.24) 5.399 (6.24) 5.399 5.404 1.6030 1.7905 (6.24) 5.3945 (5.34) (5.402) (5.402) 1.7905 (6.24) 5.3945 (5.34) (5.402) (5.402) 1.699 1.7905 (6.51) (5.402) (5.252) (5.402) 1.7905 (6.53) (5.202) (5.202) (5.202) (5.202) (5.202) (5.202) (6.24) (5.202)	_			3.328		_	1.5	1.5334	1.5698 1	5
(6.23) 5.338 5.7220 5.369 5.414 1.6494 1.7030 (6.23) 5.339 5.7220 5.369 5.414 1.6494 1.7030 (6.42) 5.340 5.7220 5.409 5.452 1.6707 1.7095 (6.42) (5.3495) (5.400) 5.409 5.452 1.6707 1.7095 (6.51) (5.400) 5.409 5.409 1.7094 1.7095 (6.51) 5.409 5.4095 1.7094 1.7095 (6.51) 5.625 (6.52) 1.7094 1.7095 (6.57) 5.625 (6.57) 5.625 (6.57) 1.7094 1.7095 2.0107 (6.67) 5.625 (6.57) 5.629 1.7095 2.0107 (6.67) 5.625 (6.67) 5.625 (6.67) 5.625 (6.68) 1.7095 2.1235 (6.68) (6.69) 6.7095 (6.69)	_	1.5110 1.5736	36 1.5267	3.397			1.5004	1.5278	1.5716 1	5
(6.34) (5.346 (5.476) (5.476) (5.482) 1.6971 1.7905 1.671 1.7905 (6.482) (5.3445) (5.481) (5.482) 1.6898 1.9754 (6.51) (5.4415) (5.482) (5.523) 1.7034 1.9754 (6.53) (5.525) (5.523) 1.7034 1.9754 (6.53) (5.525) (5.523) 1.7034 1.9752 (6.57) (5.53) 1.7034 1.9752 (6.57) (5.53) 1.7034 1.9752 (6.57) (5.57) (_	_	_	3.478	_	5.376	1.5020	1.5240	1.5797	5
(6.42) (3.3945) (3.671) (3.470) (3.482) 1.6954 1.9754 (6.59) (3.5945) (3.567) (3.572) 1.7094 1.9752 (6.595) (3.597) 1.7209 2.0157 (6.595) 3.565 2.0157 (3.577) 1.7209 2.0157 (3.577) 1.7209 2.0157 (3.572) 1.7209 2.0157 (3.572) 1.7209 2.0157 (3.572) 1.7209 2.0157 (3.572) 1.7209 2.0157 (3.572) 1.7209 2.0157 (3.572) 1.7209 2.0157 (4.269) (3.592) (3.588) 1.7590 2.0157 (4.269) (3.592) (3.592) 1.976 2.2057 (4.202) (3.592) 1.976 2.2050 (4.202) (4.311) (4.595) (4.300) (3.592) (3.592) 2.0191 2.2929 (4.311) (4.357) (4.300) (3.592) (3.300) (3.592) 2.1954 2.1952 (4.202) (4.202) (3.592) (3.149) 2.2954 2.3952 (4.202) (3.592) (3.149) 2.2957 (4.202) (4.202) (3.592) (3.202) (3.592) (4.212) (3.562) (4.212) 2.3951 2.3951 (4.202) (3.592) (4.212) (3.562) (4.212) 2.3951 2.3953	1.7905 1.6048	1.5145 1.6137		3.583		5.438	1.5068	1.5216	1,5914 1	.5
(6.51) (5.4415) (5.960) (5.552) (5.523) 1.7094 1.9522 (6.53) (5.205) (4.055) (5.552) (5.573) 1.7290 2.0137 (6.67) 5.655 (4.205) (5.567) (5.573) 1.7290 2.0137 (6.67) 5.655 (4.205) (4.206) (5.922) (4.206) (5.922) (4.206) (4.306) (5.922) 1.7795 2.2237 (4.202) (4.505) (4.306) (5.923) 1.7795 2.2237 (4.202) (4.505) (4.505) (4.306) (5.923) 1.8762 2.207 (4.502) (5.202) (4.502) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (4.202) (5.502) (4.202) (5.502) (4.202) (5.502) (4.202) (5.502) (4.202) (5.502) (4.202) (5.502) (4.202) (5.502) (4.202)	1.9754 1.6227	1.5212 1.6323	23 1.6566	(3.730)	_	(3.511)	1.5173	1.5205	1.6049 1	
(6.55) (5.5205) (4.055) (5.657) (5.575) 1.7290 2.0187 (6.55) 5.652 4.759 3.752 3.628 1.7540 2.0187 (5.67) 5.652 (4.759) (5.713) (4.759) (4.759) (5.713) (4.759) (4.759) (5.713) (4.759) (5.759) (4.759) (5.759) (4.759) (5.759) (4.759) (5.759) (4.759) (5.759) (4.759) (5.759) (4.759) (5.759) (4.759) (5.759) (5.759) (4.759) (5.759) (4.759) (5.759) (5.759) (4.759) (5.759) (5.759)		_	_	(3.888)	_	(3.617)	1.5359	1.5211	1.6198 1	.5
(6.67) 5.635		_	_	(4.021)	(4.034)	(3.746)	1.5646	1.5237	1.6325 1	.5
(3.776) (4.269) (5.592) (5.688) 1.7856 2.1233 (5.922) (4.395) (4.118) (5.755) 1.828 2.1064 (4.202) (4.395) (4.340) (5.762) 1.828 2.207 (4.341) (4.351) (4.370) (5.922) 1.9376 2.2506 (4.341) (4.355) (4.802) (5.392) 2.010 2.2906 (4.341) (4.355) (4.802) (5.392) 2.010 2.2906 (4.375) (5.213) (4.369) 2.1064 2.4165 (4.725) (5.118) (5.438) (4.2115) (2.391 2.391 2.3748 (4.3755) (5.212) (5.249) (4.212) (2.391 2.391 2.3748 (4.392) (4.3755) (5.241) (5.680) 2.6680 2.6680	_	_	85 1.8413	4.211	1,122	1.884	1.6041	1.5295	1.6456 1	.5.
(5.922) (4.5%) (4.11%) (5.755) 1.8258 2.1664 (4.053) (4.5%) (4.340) (3.92) 1.976 2.2077 (4.502) (4.631) (4.5%) (5.982) 1.9376 2.2077 (4.341) (4.682) (5.982) 2.010 2.2981 (4.471) 4.83 5.025 (4.022 2.0934 2.3934 (4.725) (5.021) (4.045) 2.1864 2.4165 (4.725) (5.11%) (5.5%) (4.2115) 2.3931 (2.3931 (4.3755) (5.212) (5.5%) (4.2115) 2.3931 (2.5743)		1.5886	_	(4.165)	(4.190)	(4.035)	1.6544	1.5356	1.6576 1	.5 1
(4,062) (4,395) (4,340) (5,825) 1,8762 2.2077 (4,202) (4,631) (4,570) (5,822) 1,9376 2.2077 (4,431) (4,631) (4,602) (5,822) 1,9376 2.2096 1,4311) 1,835 5.029 (4,002) 2.0934 2.3528 (4,002) (5,001) (4,004) 2.1864 2.4165 (4,725) (5,118) (5,365) (4,149) 2.2876 2.992 (4,939) (5,222) (5,534) (4,212) 2.3931 2.3931 (4,995) (5,522) (5,534) (4,212) 2.5937 2.6680	2.1664 1.6924	1.6144	_	(4.525)	(4.255) ((4.200)	1.7143	1.5452	1.6694 1	.5
(4, 202) (4, 51) (4, 570) (3, 992) 1,9376 2.2506 (4, 341) (4, 955) (4, 802) (3, 959) 2.0101 2.2991 4.471 4.893 5.025 4.0292 2.0934 2.32981 4.725) (5, 201) (4, 0945) 2.1864 2.4165 (4, 7725) (5, 211) (4, 0945) 2.1864 2.4165 (4, 9725) (5, 222) (5, 534) (4, 149) 2.2876 2.4902 (4, 9755) (5, 234) (4, 2115) 2.3931 2.3791 2.5743 (4, 9755) (5, 341) (5, 662) (4, 2744) 2.5070 2.6680		1.6427	33 2.0004	(4.675)	_	(4.376)	1.7822	1.5573	1.6901 1	.5
(4,341) (4,355) (4,869) (3,359) (2,001) 2.2991 4,471 4,885 5,025 4,022 2.0934 2.3528 4,596 (5,001) (5,211) (4,0345) 2,1864 2,4155 (4,725) (5,118) (5,345) (4,149) 2.2876 2.402 (4,375) (5,222) (5,534) (4,213) 2.3971 2.371 (4,375) (5,341) (5,662) (4,274) 2.5070 2.6690	_	_		(4.415)	_	(4.560)	1.8557	1.5717	1,6901	.5.
1,471 1,483 5,025 1,022 2,0334 2,5568 1,566 1,472 1,683 5,025 1,022 1,024 2,034 2,5568 1,556 1,472 1,572 1,572 1,673 1,472 1,672 1,672 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,674 1,674 1,675 1,6				(016.4)	_	_	1.9326	1.5991	1.6994 1	.5
(4, 959) (5, 941) (4, 274) (2, 964) (4, 274) (4, 974) (4, 974) (4, 974) (4, 974) (4, 974) (4, 974) (4, 974) (5, 954) (4, 974) (2, 974) (2, 974) (4, 974) (2, 974) (2, 974) (4, 974) (2, 974) (2, 974) (4, 974) (2, 974) (4, 974) (4, 974) (5, 668)				5.043		4.923	2,0107	1.6063	1,7092 1	.5
(4, 9505) (5.118) (5.534) (4.149) 2.8976 2.4902 (4, 9505) (5.222) (5.534) (4.215) 2.3951 2.5743 (4.215) 2.5070 2.6680	_	_	_	(5,130)	(4.450)	()	2.0881	1.6262	1.7166 1	.5 1
(4,975) (5,222) (4,215) 2,3931 2,5743 (4,975) (5,241) (5,662) (4,274) 2,5970 2,6680	2 Lano 1 888A	_	_	(5,200)	(4.475)	(5.230)	2.1632	1.6473	1.7245 1	.5
(4.975) (5.341) (5.662) (4.274) 2.5680	_	_		(5.260)	(4.495)	_	2.2347	1.6695	1.7322 1	.5
(4.9/27) (7.3000) (7.000)		1.8700		(5.310)	_		2.3019	1.6925	1,7396 1	.5
10 100 100 100 100 100 100 100 100 100	_	0000	_	(5.360)	_	(5,540)	2.3642	1.7160	1.7469 1	.5
(3.10) (3.44) (3.10) (4.20) (5.00)		_	_			5.607	2.4214	1.7399	1.7540 1	.5
7.50	_	_								
Seference 17 9 17 9 17 8	17	17 8	17	6	6	6	11	B	17	æ
() Jacobsky sythesis (1945) (1945) (1945)		-								

Table 6 FREE ENERGIES $-(\mathbf{r}^O - \mathbf{E}_o^O)/\mathrm{RT}$

								-											
(c_opo	200	N _N	%	8	S.	υ	Z	0	†∪	+2	+ _C .	⁺ оч	÷8	, ON	‡ ₅	÷ _{27.}	‡ ₀	' o	٠.
-	27.243	1	25.512	445.45	26.100	19.4871	18.9500	19.8481	19.0628 19.6328	19.6328	19.1494			54.64	17.3329	19.1884		19.5550	3.0352
8	20.432	_	_	26.055	(27.635)	20.5151 19.9637		20.8992	20.8992 20.0971 20.6892 20.1631	20.6892	20,1631				18.3465	20.2577	20.7744	20.7744 20.5696	4.04Rg
	101			27.169	28.805	21.2418 20.6829 21.6371 20.8266	20.6829	21,6371	20.8266	21.4297 20.8823	20.8823			27.27	19.0657	21.0048	21.5435	21.5435 21.2878 4.769	4.7691
J +	33,675	28.017		28.798	30.470	22.2666	21.6968	22.6698	21.8506	22.4651	21.8959	29.933	29.457	28.90	20.0794	20.0794 22.0462	22.6071	22.6071 22.3015 5.7919	5.7818
1-	18.5			29.92		22.9995	22.4183	23.3999	22.5750	23.1969 22.6153	22.6153	31.142	30.650	30.08	20.7986	20.7986 22.7794	23.3516	23.3516 23.0207	6.5010
r w	47 114			30.938		23,5748 22,9838 23,9674 23,1359 23,7658	22.9838	23.9674	23.1359	23.7658	23.1741	32.099	31.600	31.04	21.3565	21.3565 23.3456	23.9257	23.9257 23.5786	7.0588
٧,	(18.14)		13.008	31.722		24.0506 23.4554	23.4554	24.4336 23	23.5938	24.2333	23.6329	32.893	32.396	31.92	21.8123	23.9069	24.3943	24.0344 7.5146	7.5146
10	20 73	5,00	33.731	32.384	34.149	24.4571		24.8306	6086	24.6315	24.0246	33.576	33.091	32.49	22,1978	22,1978 24,1963	24.7913	24.4197	7,9000
α	10.01	10.162	34.365	35.06	34.679		24.2321	25.1771	24.3164	24.9792	24.3689	34.179	33.705	33.08	22.5322	22.5322 24.5332	25,1365	24.7536	P. 2338
0 0	17	(30, 05)	(10 4)	(33, 40)	35,150)	25.1280 24.5658	24.5658	25.1850	25.4850 24.6130 25.2881	25.2881	24.6785	4.701	(34,190)	(33.62)	28.828	22.8282 24.8301	25.44.25	ž	A 5203
7.5			(45, 14)	(8)	(35.55)	25.4123 24.8728	94.8728	25.7600	25.7600 24.8791 25.5664	25.5564	24.9615		(34.705)	(34.08)	23.0941	25.0957		25.7176 25.3114 8.7917	7107.
3;	(00.00	<>>	(20)		(401 74)	25 6714	25 1574	2410.96	101	25.87.85	25 00 TH		(35.226)	(34.51)	23.3371	25.3361		25.9679 25.5497	0.00
1 5	(47.70)	_	100 m	A. B.	`	25, 9009 25, 4005 26, 2457 25, 3435 26, 0521	25. 120.5	26.2457	25. 34.35	26.0521	25.4670 36.14	16.14	35.69	70.75	23.5618	25.5558	26.1975 25.7		
: Ľ			(36.78)	(14.00)		26.13.15	25 6706	26 1506	18	26 2670 25 6976	25.6976	(36.54)	(36.10)		23.7722	25.75.85	26.1000	77.3	
7:		7 7 7 7 7	(37.7%)	(35 55)	-	26 330h 25 9037	25.00.77	26.6586	26,6586 25,7125 26,1668	26.1668	25.9145	(36.93)	(36.50)	_	23.9710	25.0467	26.6072	26.1506	0.6320
= ;		(36.35)	(47 51)	(8)	-	26 5360 26 1235		26.8449	26.8449 25.9238 26.6536	26.6536	26.1199	_	(36.87)	_	24.1606	24.1606 26.1227	26.7917	26.325.	O POP
۲; -		(37.020)	21.0	(16 27)		26 72 25 26 3310		27 000	36 000 26 8991 26	26.8001	8	_	(37.72)	(36.43)	1011 40	286 96 1011 10	26.0640	26. 0640 26 LAGL	0 0677
9		1000.001	(20.10)	()00.6()	100010	(2) (2)	50.775	500	10.00		2000	10000	(21.1.	1	01.0	00110	200.00	1000	3
17		(35.694)	(38.21)	(30.01)	(36.160)	26.9057	20.5504		27.1600 20.2504 20.9945	20.9945	-00°-02	(50.05)	(50.50)	(20.00)	24.5179	20.4440	57.1204	27.1204 20.0380	
18		35.99	38.53	36.97	38.45	27.0781 26.7204	26.7204	27.3451	27.3451 26.4139 27.1510 26.6772	27.1510	26.6772	38.40	37.82	(37.11		26.5931	57.5829	27.2829 26.7809	रा७:561
30		(36.267)	(38.82)	(37.29)	(38.694)	27.2478 26.9033	26.9033	27.4972 26.5627	26.5627	27.2995	26.8459	(38.70)	(38.12)	(37.43)		24.8526 26.7345	27.4296	27.4296 26.9161	10.396
, 6		(36.553)	(11.66)	(37.60)		27.4138	27,080t	27.6439	27.6439 26.7057 27.4409	27.4409	27.0070	(39.00)	(38.40)	(57.73)		25.0129 26.8697	27.5691	27.5691 27.0443	10.524
3 6		(36,830)	(39.40)	(37.92)		27.5768	27,2527	27.7864	27.7864 26.8433 27.5759	27.5759	27.1613	(39.30)	(38.67)	(38.03)	23.1690	26.9994	27.7022	23.1690 26.9994 27.7022 27.1663	10.646
1 8		(17.107)	(10.67)	(18.21)	(30.434)	27.7373	27.4211	27.9255	27.9255 26.9760 27.7050	27.7050	27.3090	_	(38.92)	(38.32)		25.3210 27.1241 27.9295	27.9295	27.2826	
y .		202 62	(10 01)	(1 8 K	(30,696)	27 8057	27 × AKL	28 060	28 A61 27 1043 27 8280 27 1507	27 A2Ro	27.1507	_	(30.17)	(38.65)		27 24LX	27 9514	77 2444 27 0514 27 4047	_
S	_	1060010	(04.40)		1000.60	10001			1	(0.00	0/01					1		100	_
24	_	37.67	40.20	38.83	39.93	28,0522	27.7491	27.7491 28.1969 27.2266	27.22%	27.9479 27.5868	27.5800	40,14	96.96	15.53 16.53	27.6136	27.3604	23.0005	27.5001	10.930
Reference	6	6	17	17	6	•		•	17	el	17	6	6	6	17	•	17	•	4

Table 7 TOTAL NUMBER OF G-MOLES n

					Pre	Pressure ((atm)						
T(^o K) x 10 ⁻³	10 ²	ጼ	OI.	3	Н	3×10-1	10-1	3x10 ⁻²	10-2	3x10 ⁻³	10-3	3x10-4	10 t
Н.	1.0000		1.0000		1,0000		1,0000		1.0000		5	,	
1.5	1.000		1,0001		1,0002		1,0004		1.0008		36.6		300
ณ	1.0015		1.0032		1,0068		1.01				300		L.0247
m	1.0567		1.1160		1.2258		1060		70.00 L		1.0000		1.1370
4	1.2272		1.4704		1.7013		1.8032		1.0400 1.0400		255		1.8479
īV,	1.5511		1.7580		1.8406		1.8734		1 0343		4.00 to		1.0924
9	1.7396		1.8454		1.9126		2.0950		0.5310		2867		7.700 0.700
-	1.8298		1.9427		2.2356		2,6006		2,000		2 0200		6.9399
ω	1.9308	2.0595	2.2509	2,5118	2.7085	2.8324	8278	0,0610	1.00th	ם אמר כ	3.0174	2 6362	2000 2000 2000 2000 2000 2000 2000 200
σ	2,1610				2.8818	2.9512	3.0319	1664	20100			3.0103	3.0001
ឧ	~	2.7106	2.8328	2.9141	2,9855		2000	2 LOSE	2 7062	2007	27.60	4.3400	4.0317
7	3	2,8490	2.9254	3.0128	3,1291		180	7000	,-		7. (247	7. KA	ひ・4320
검	2,8388	2.9300	3.0147	3.1494	, ~	2,610		70,40	гц	4. v.	7.374 (FOOD	7.7.(2	7.07.09 0.000 0.000
13	5	3.0106	3,1323	3.3399	3.623	4.0570		2000	14	נינה ה	2777		0.0717
7,	7		3.2894	3,5897	3.9811	4.5076		2000	, u	7.0111	00/00/	_	†OT).°C
15	7	3.2404	3,1000	2,866	1 2871	2000	7,00,0	7.4400	2000	7.070	5. (013)		5.7672
16	3,1626	2,1000	3.7266	74	1,785,1	2000	7,000	7. Vokk			7.7889		5.9433
17	0	3.5974	7-4		ארנו א	200.0	7.7330	200.1	5.85	5.7370			6,2383
18	3,4047	200	2000	1,100	•	11)+01	200	2.0000	_	5.8238			5.5372
2	1200	0.000		#*XC14		2.2.13	2.0000	5.7394	5.8127	5,9980	6.2572		6.8593
7 8	α []		200	7.1 (33)		2.6339	•	.7997		6.2390		. 8980	7.2996
3 5	0,150		4.00(1	7.3534			1678		6.1678	6.5088	6.8532	7.3201	8129
7.8	750-	2000	~	30,4	986					6.8116	7.2468	7.7952	3,1977
1 %	2807	2000			7 X		2017		. 1 969°9	7.1762	7.6863	8.1602	3,3969
) d	2000				_						8.0557	8.3653	3,14836
+			7.4737	2.0010	2,8240	000.0	6.4108	. 4848*	7.3875	1.9472	8.2912	8.4633 8	8,5201

Tedle 8A Molar cohfosition $\mathbf{n_1}$ (pressure = $\mathbf{10}^2$ aim)

	٠.	0 0 0.0001 0.0003 0.0005 0.00005 0.0005 0.0005 0.0005 0.0005 0.00005 0.00005 0.00005 0.0000005 0.000000 0.000000 0.00000000
	<u>'</u> o	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	* + 0	0
	† † *	o c c c c c c c c c c c c c c c c c c c
	‡ _r ,	0
	*0v	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	÷00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+ 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+2,	0 0 0.0001 0.0001 0.0003 0.000003 0.0
Constituent	•ບ	0 00 00 000 0000 0000 0000 0000 0000 0000
Co	0	0 0006 0013 0013 0013 0013 0013 0013 001
	Z	0 0 0.0001 0.0001 0.0139 0.013
	ပ	0 000000000000000000000000000000000000
	ON	00000000000000000000000000000000000000
	JO .	0.000.0000.0000.0000.0000.0000.0000.0000
	S _C N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
{	N _N	2000
	202	.95.00 .84.99 .77.38 .7568 .7568 .7568 .0098 .0099 .0005 .0005 .0001 .0001
	T(⁹ kx10 ⁻³)	\$3855666767676666666666666666666666666666

Table θB MOLAR COMPOSITION $n_{\underline{1}}$ (PRESSURE = 10 ATM)

	٠,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	‡0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	‡ _N	0 .0001 .0001 .0005 .0000
	‡5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+0N:	0 000000000000000000000000000000000000
	+8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+00	0
	+0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tuent	* _Z ,	0 0 0.000.000.000.000.000.000.000.000.0
Constituent	⁺ υ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0	0 0 0.0117 2.2504 6.6789 6.8053 6.805
	Z.	0 000000000000000000000000000000000000
	υ	0 0 0.0017 0.0017 0.0018 0.001
	ON	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	8	00000000000000000000000000000000000000
	050	0.0000 0.0070 0.
	N S	0.0000
	200	
	T(0x10-3)	238282824444444444444444444444444444444

Table 8c MOLAR COMPOSITION n₁ (PRESSURE = 1.0 AIM)

		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	.0	0 00001
	‡0	0 .0001 .0003 .0009 .0005 .0005 .0005 .0005
	‡ ₂₂	0 .0000. .0000. .0000. .0000. .0000. .0000.
	‡0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	, ov	0 .0001 .0003 .0003 .0001 .0001
	+00	0 0000000000000000000000000000000000000
	+_0	0
	† 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
went	+2	0 .00000000000000000000000000000000000
Constituent	÷ပ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0	.0001 .0006 .5006 .5000 .3169 .9371 .1008 .1.6639 .1.6639 .1.6639 .1.683 .1.2883 .1.2883 .1.2883 .1.787 .2779 .1737 .2779 .1757 .0069
	z	00000000000000000000000000000000000000
	ပ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1.0	0 .0005. .0156. .0151. .0070. .0078. .0078. .0009.
	00	00000000000000000000000000000000000000
	05	.0002 .00542 .00542 .0075 .0075 .0007 .0000
	N. 02	500 1900 1829 1377 0037 0037
	2 00	
	1(kx10 ⁻³)	2,5 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 8D ${\rm MOLAR} \ {\rm COMPOSITION} \ {\rm a_1} \ \left({\rm PRESSURE} \ {\rm - \ 10}^{-1} \ {\rm AUM} \right)$

1	1	1			Н о	9	٦.	.	<u>~</u>	د د	<u>ئ</u> رى	გ;	<u>-</u> 1 }	ዩኒ	2 2	2 %	2 1	Çά	2 5	χ t	- 9	V 80
	1 0	0		0	8 8	215	.0661	184	5	5.	71.1		07.7	200	3 6	- ά	v 0	200.0	7.5	7.01	7.17	3.560
	'0	0																				
	‡0	0												C	1000	5000		0500	200	700	5,55	1124
	† _N	0					-							0	1000	000	5100	00-	4010.	320	07+0	.0785
	‡ ₀	0									0	1000	7000	.0013	1100	.0127	9650	.0751	1507	.2620	.5950	.5222
	⁺ 2%	0		000	2000	.000	2															
	+8	0		0	.0001	1000	1000	-														
	+&4	0															_					
	+0	0		0	.0001	0000	0148	.0537	.1638	9504	.7715	1.1499	1.4158	1.5599	1.6298	1.6631	1.6789	1.6853	1.6842	1.6731	1.6445	1.5856
uent	+2;	0			0	.000	9600	.0141	8640.	.1022	.1754	.2344	.2684	.28₩8	.2923	.2955	.2963	.2945	.2888	.2766	.2547	.2213
Constituent	+υ	0		0	6000	0148	.1659	.3354	.5254	.6705	.7567	.8027	.8256	.8360	.8387	.8333	.8148	.TT34	1869:	.5874	7454.	.3277
	0	00	9000. 1904.	.8450	0486	1.5277	1.6828	1.6459	1.5361	1.2964	.9285	.5501	-2842	1401	1070.	.0367	88	.0117	.0071	- 00 -	.0030	0800.
	z	0	0	88. 848.	4712.	2000	2962.	.2858	.2562	.1978	9477	.0656	.0316	.0151	500	9	88	.3013	000	8	9003	8000°
	U	0		.0019	.1352	2001	.6817	.5142	.3245	.1795	.0933	.0 4 72	0540	.0126	0/00	9	±200°.	5100	0100	8	5000	3000
	NO	00	600 808 800 800 800 800 800 800 800 800	000	.0016	300	0								-							
	8	0.0007	.0290 6216 6218	674	.7138	0810	.0003	.000	.000	>										•		
	80	5000°	2053	9000	600	1000																
	N ₂	.1500	1397	1225	9.00	88.	1000	0														
	8°	.8500	38. S.	2000	0																	
	T("Kx10-3)	1.5	こうせ	· 60 /	9 1	- Φ	σ;	9 ;	1	¥ ;	⊋ ÷	1	3,4	11	3 6	2 2	£ 6	2 2	3 5	22	0 4	

Table 88 Holar composition $\mathbf{n_1}$ (pressure = 10^-2 aim)

	'e	0.0000 0.0000 0.0007 0.00007 0.000007 0.00007 0.00007 0.000007 0.0000007 0.00000000
	'0	0
	‡ ₀	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	‡ _N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	‡5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	NO.	0 000.
	+00	0 000.
	+00	o
	+0	0 .0001 .0001 .0014 .0114 .0590 .2374 .6477 1.149 1.64
ent	+ _N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Constituent	†∪	0 0.0001 0.0001 0.0007 0.0008
	0	0 0 0 0 10 10 10 10 10 10 10 10 10 10 10
	z	0 0091 .1372 .1372 .1372 .2837 .2837 .2837 .2837 .0072 .0072 .0092 .0092 .0092 .0092 .0092 .0092 .0092 .0092 .0092 .0092
	D.	0 0 0 10191 5526 7777 5627 7777 2002 7036 0136 0131 0005 0001 0000 0000 0000
	NO	000. 00154. 00167. 000. 000. 000.
	9	0005 00015 00015 00015 00015 00015 00015 00015
	000	
	N _S	.1500 .1493 .1418 .1432 .0832 .0832 .0059
	දි	.8500 .8485 .0889 .0662 .0005
	T(kx10-3)	2.002 00 00 00 00 00 00 00 00 00 00 00 00

Table 8F $\label{eq:modern} \text{MOLAR COMPOSITION }_{\mathbf{1}} \text{ (PRESSURE = 10$^{-3} ATM)}$

	,	0.0011.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.000001.000001.000001.000000
	'	0
	‡_	0 .0000. .00011 .00717 .00717 .00717 .00717 .007777 .00777 .00777 .00777 .00777 .00777 .00777 .00777 .00777 .0077777 .007777 .007777 .0077777 .007777 .007777 .007777 .007777 .0077777 .0077777 .007777 .007777 .0077777 .0077777 .0077777 .0077777 .0077777 .0077777 .0077777 .00777777 .00777777 .00777777 .00777777 .0077777777
	‡,	0 .0000 .0000 .00034 .00034 .00034 .00034 .00036 .00006 .00006 .00006 .00006 .00006 .00006 .00006 .00006 .00006 .0
	‡ ₀	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+ _{ON}	0
	+03	0
	+00	0
	+0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ent	⁺ z	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Constituent	+€0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	z	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	O	0 0 0
	NO	0 0 0 0 0 0 0 0 0 0
	8	0.0032 0032
	٥,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Z ^C	1.1500 1.1500 1.1461 1.1461 1.1355 0.0064
	8	
	T(2x10-3)	2000 00 00 00 00 00 00 00 00 00 00 00 00

Table $\Im c$ molar composition $\mathbf{n_1}$ (Pressure = $\mathbf{10^{-14}}$ aim)

	່ ນ	0.0069 0948 1.0364 1.0364 1.0364 1.0364 2.8669 2.8669 3.6878 3.6878 3.6878 3.6878 3.6878 3.6878 3.6878 3.6878 5.6701
	٥_	0
	* ₊ 0	0 .0002 .0008 .0019 .001
	* _×	0 .0002 .0002 .0007 .0007 .0009 .1766 .2755 .2756 .2990
	‡.	0 0 0.0020 0.0017 0.001
	+ ON	0 0001
	+08	0
	+04	0
	+0	0 .0001 .0001 .0016 .0016 .0017 .001
44	+N	0 0000.0000.0000.00000.00000.0000000000
Constituent	+0	0.0000.0000.00000.00000000000000000000
S	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	z	00007 00007 00007 00007 00009 00009 00009 00009
	D	0 0 0 550. 550. 1522 1522 1077 1000 0 0 0 0 0 0
	NO	1000. 1000. 1000.
	8	000. 00478 00478 00478 0059 000. 0000 0
	o	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	z	1.500 1.1450 1.1453 1.1453 1.0005 0
	8	
	"(9kx10-3)	1 1 2 2 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8H composition for atmosphere of 0.3 per cent $\rm H_2O,~84.7~Per~cent~co_2,~and~15~per~cent~N_2$

		'•		0.0068	0.0011	0.0002	0.0001	0.000	0	0			2.8410	2.7497	2.1191	1,1751	0.4890	0.1707	0.0537	
		_HO		0						0		Г	0						0	
		"		0						0			0						0	_
	ľ	60		0			***********		3	0			0		- w	0	0.0001	0.0002	0.0007	
		‡0		٥						0			0						0	
	l	‡ _N		٥						0			0						0	
		‡ _o		0						0			0.0017	0.0002	0				0	
		+ _{HO}		0						0			0						0	
ų.		±,0		0						0			0						0	
		*ON		0	0.0001	0.0001	0.0001	0.0001	0	0			0				0	0.0001	0.003	
		+000		0						0			0			0	0.0001	0.0003	0.0010	
j		† c		0						0			0						0	***
	1	† ₂₀₃		0						0			0,000.0	0.0057	0.0042	0.0015	0.0004	0.0001	0	
		÷0		0.0001	0					0			1.6877	1.6101	1.1475	0.4031	0.0992	0.0267	0.0078	
	tuent	*æ	x°x	0						0	20°K		0.2990	0.2306	0.2329	0.1023	0.0260	0.0078	0.0023	
	Constituent	*ບ	T = 5000°K	0 8900.0	0.0010	0,0001	0			0	T - 12000°K		6448.0	0.8430	0.8145	0.6682	0.3614	0.1359	0.0429	
		ж		0,000,0	0,000.0	0,0060	0,000.0	0.0059	0.0051	0.0029		0	0.0003	0.0018	0.0044	0.00%	9€0000	0.0015		
		0		1.4054	1,0028	0.8673	0.8450	0.8168	0.6794	0.3501		0.0093	6980.0	0.5495	1.2939	1.5973	1.6638	1.6241		
		N		0.2938	0.2470	0.1323	00500	0.0164	6100.0	0.0014		0.0010	0.0095	0.0671	0.1977	6.2719	0.2915	0.2914		
		υ		0.5487	0.1522	0.0191	0.0019	0.0002	0	0	1	0.0004	0.0036	0.0325	0.1788	0.4852	0.7055	0.7452		
		НО		0			0	0.0001	6000.0	0.00.0		0					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0		
		NO		0	0.0003	0.0013	0,0000	0.0161	0.0421	\$690.0		0				0	0.0002	0.0024		
		03		0.2915	0.6938	0.8280	6,448.0	9446.0	0.8282	0.7478		0			0	0.0003	0.0053	0.0579		
		ž		0						0		0			0	0.0002	टाळा:0	0.0022		
		00		0	0	0.0001	0.0008	0.0075	1,50.0	0.1639		0				0	0.0001	0.0013		
		N C		0.0031	0.0236	0.0832	0.1225	0.1338	0.1265	0.1145		0				0	0.0002	0.0018		
		H ₂ 0		0				_		0		0						0		-
		600		0		0	0.0002	0.0022	0.0188	0.0992		0			_) (_
		Pressure (atm)		707	10-3	2, or	7,3		Ú	102		30-4-OI	10-3	30_5 10	10. 1-01	900	101	201	· · · · · ·	

Table 8I

THERMODYNAMIC PROPERTIES FOR ATMOSPHERE
WITH 0.3 PER CENT WATER VAPOR

		Pı	operty									
Pressure (atm)	М	P/P ₀	E/RT _o	H/RT _O	s/R							
		Т =	5000 ⁰ к		<u> </u>							
10 ⁻⁴ 10 ⁻³	16.211 19.494	2.1323 ⁻⁶ 2.5642 ⁻⁵	459 . 25	506.15 296.76	96 . 563 79 . 747							
10 ⁰ 10 ⁻¹	21.438 22.135 22.529	2.8198 ⁻⁴ 2.9115 ⁻³ 2.9634 ⁻²	170.54 145.09 134.78	206.00 179.44 168.52	70.147 64.317 59.437							
10 ²	23.59 ⁴ 26.752	3.1035 ⁻¹ 3.5189	117.16 74.32	149.39 102.74	54.222 47.842							
	T = 12000°K											
10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰ 10 ¹	7.2981 7.4171 8.2261 10.319 12.442 13.784 14.642	3.9999-7 4.0651-6 4.5084-5 5.6554-4 6.8188-3 7.5544-2 8.0246-1	2489.4 2429.4 2072.7 1420.0 1006.8 822.47 731.09	2739.4 2675.4 2294.5 1596.8 1153.5 954.85 855.70	172.87 158.38 137.31 110.99 92.503 80.722 71.731							

Table 9 MOLECULAR WEIGHT M

	† - 01	#1.612 #1.547 10.989 10.989 10.989 10.989 10.989 10.850 10.853 10.863 10.887
	3x10-4	11.507 9.5637 7.9953 7.19953 7.19953 7.19953 6.915 6.915 6.9381 5.6864 7.1994 7.1994 1.9176
	10-3	11.612 12.345 12.345 13.800 12.349 12.349 12.349 12.349 13.800
	3x10 ⁻³	2.1698 6.1089 6.1089 7.1886 6.1089 7.1886 7.1886 7.1886 7.1886 7.1886 7.1886 7.1886
	10-2	11.612 12.041 13.051 13.051 14.428 13.051 14.428 14.428 17.0568 17
	3x10 ⁻²	14.039 13.142 10.496 10.496 9.1380 8.1641 7.6558 7.1544 7.1749 6.5748 6.3178
(atm)	10-01	41.612 41.597 41.020 29.595 22.823 22.823 19.863 14.360 13.725 11.614 10.335 9.1383 8.2611 7.7626 7.4043 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870 7.2870
Pressure (atm)	3x10 ⁻¹	14.691 13.435 12.515 10.256 10
À	٦	41.605 41.605 41.331 23.945 22.607 22.607 22.607 15.364 14.439 13.298 12.462 10.452 9.4850 8.6961 7.7926 7.7926 7.7926 7.7926
	8	16.567 14.849 13.812 13.812 10.99 10.99 10.99 13.83 17.77 13.88 17.88 17.88 18.83 18
	91	41.612 837.289 837.289 837.289 837.289 83.300 83
	8	20.20.20.17.20.20.14.20.20.13.37.51.12.33.75.11.23.37.57.11.23.37.57.11.23.37.57.11.23.37.57.57.57.57.57.57.57.57.57.57.57.57.57
	10 ²	11.612 23.980
	$T(^{0}K \times 10^{-3})$	2.000 00 00 00 00 00 00 00 00 00 00 00 00

Table 81

THERMODYNAMIC PROPERTIES FOR ATMOSPHERE WITH 0.3 PER CENT WATER VAPOR

		P	roperty		
Pressure (atm)	М	P/P ₀	E/RT _O	H/RT _o	s/R
		Т =	- 5000°K		
10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰ 10 ¹ 10 ²	16.211 19.494 21.438 22.135 22.529 23.594 26.752	2.1323 ⁻⁶ 2.5642 ⁻⁵ 2.8198 ⁻⁴ 2.9115 ⁻³ 2.9634 ⁻² 3.1035 ⁻¹ 3.5189	459.25 257.77 170.54 145.09 134.78 117.16 74.32	506.15 296.76 206.00 179.44 168.52 149.39 102.74	96.563 79.747 70.147 64.317 59.437 54.222
			12000°K	102.14	47.842
10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰ 10 ⁰ 10 ²	7.2981 7.4171 8.2261 10.319 12.442 13.784 14.642	3.9999-7 4.0651-6 4.5084-5 5.6554-4 6.8188-3 7.5544-2 8.0246-1	2489.4 2429.4 2072.7 1420.0 1006.8 822.47 731.09	2739.4 2675.4 2294.5 1596.8 1153.5 954.85 855.70	172.87 158.38 137.31 110.99 92.503 80.722 71.731

Table 9 MOLECULAR WEIGHT M

	1	
	17-OI	2.5.28 2.5.29 2.5.29 2.5.29 2.5.29 2.5.29 2.5.29 2.5.29 2.5.29 2.5.29 2.3.20 2.
	3x10 ⁻⁴	11.507 9.5687 7.9953 7.9953 7.8339 7.8339 6.9377 5.0381 6.9377 6.9377 6.9377
	10-3	11.612 39.050 28.993 14.711 13.880 10.637 10.637 10.637 10.638
	3×10 ⁻³	13.051 1.527 1.527 1.6594 7.6594 7.1884 6.9338 6.1089 6.3338 6.1089 6.3338 6.3338 7.25361 7.25361
	10-2	25.281 26.363 26
	3x10 ⁻²	4.039 3.142 1.894 0.496 6.1380 8.1641 7.2658 7.2628 7.3150 6.3178 6.3178
(atm)	10-1	41.612 41.597 41.020 29.595 22.823 22.823 22.823 19.863 11.614 10.335 11.614 10.335 11.614 10.335 11.614 11
Pressure (atm)	3x10 ⁻¹	14.691 14.100 13.435 12.515 11.417 10.256 9.1908 8.3839 7.6078 7.4607 7.4607 7.4607 7.2517 7.2517 7.2517 7.2517
ρi	٦	1.612 41.605 41.331 23.945 22.607 22.607 21.757 18.613 15.364 14.439 13.298 13.
	ю	16.567 14.849 13.812 13.812 13.812 13.812 13.812 10.678 9.0419 9.0419 8.0437 7.7730 7.7730 7.7730 7.7730
	01	41.612 41.609 41.480 37.285 28.300 23.670 22.550 21.420 11.920 11
	30	20.205 17.202 14.606 14.202 13.822 13.375 12.231 11.567 10.885 9.6145 9.6866 8.579
	102	41.612 41.612 41.550 39.381 38.580 26.827 23.920 22.741 19.256 16.761 15.314 13.579 13
	$T(^{0}K \times 10^{-3})$	110898989898989899999999999999999999999

ន	p/p_
Table	DENSITY

					Æ	Pressure (atm							
,0,	20.		;										
T(Tx10 ")	TO	3×TO	OI	2	~	3×10_1	10_1	3×10-2	10-2	3×10-3	10-3	3×10-4	10-4
1	2.7316		2.7316		2.7316-1		2.7316-2		2.7316-3		2.7316-4		6-7122 0
1.5	1.8210,		1.8209		1.8208-1		1.8204-2		1.8197-3		1.8181-4		1 8180-5
Q	1.3638*1	-	1.3615		1.3566-1		1.3464-2		1.3248-3		1 2817-4		1.000
3	8,6172		8.1586-1		7.4278-2		6.4759-3		5.5031-4		5-1150 5		9-2102-1
7	5.3467		4.6444-1	-	4.0140-2		3.7454-3		3.6930-4		3 665B-5		4.5675
5	3.5221		3.1077		2.9681-2		2.9162-3		2 Roun-4		5-12-5		9-1-1-6
9	2.6170		2.4671-1		2.3804-2		2,1731-3		1.7988-4		5-30/4 1 600e-5		2.1334 -
7	2.1326		2.0087		1.7455-2		1.4503-3		4-022		2-0907		1.5486
80	1.7684	4.9735 -1	1.5169-1	4.0781-2	1.2607-2	3.6165-3	1.1783-3	4-0254.8	4-0001	5-2010 x	1.6941	9-200	1,1847 -
6	1.4040	3.7639-1	1.1477 ⁻¹	3.2492-2	1.0532-2	3.0854-3	1,0011-3	2.8754-4	9.0676-5	0 5001-5	2.017)	9-0260-	7
10	1.1003	3.0232-1	9.6428-2	2.8121-2	9.1494-3	2.6458-3	8.3975-4	4-x04x-0	7 1055-5	5-mo	9-676	6-0750	6.2816
7	9.1381-1	2.6149-1	8,4894-2	2.4727-2	7.9361-3	5-2406-3	4-00x0-4	1 8701 -4	5- 405 2-5	1-2401	9-0001	2.5/45	4.9734
य	8.0185	2.3337-1	7.5508-2	2.1683-2	6-8160-3	1 8726-3	4- CE 27 -4	4-100-1	7.0677	. 01000	4.6393	1.3358	4.3898"
13	7.2172-1	2.0938-1	6.7084-2	1.8874-2	7080-3	1 5527-3	1. 611.1.	1.4996	4.5079 -	1.2570 /	4.0650-7	1.2046	3.9998-1
7		1 89.1, -1	5-2120 5	2-2017	1.0013	1.7771	7-0-4	1.2568	3.8650 /	1.1234 /	3.7057	1.1064	3.6801-1
1	6.000-1	1.00.1	7.9747	1.0700	4.9011	1.2928 /	3.8735	1.0783	3.4850-	1.0322	3.4251.0	1.0232-6	3.3831-7
द	7.9426	1,6659 7	5.2166	1.4019 -	4.1509	1,1007	3.3971-4	9.7868-7	3.2164-5	9.5770-6	3.1786-6	9.4200-7	7.0630-7
16	5.3983-1	1.5054-1	4.5693-2	1.2063-2	3.5678-3	9.7003-4	3.0853-4	5-9490.6	5-0470-5	8.0075-6	9-2920	7-77-7	7-272-0
17	4.8956-1	1.3430-1	3.9977-2	1.0474-2	3.1435-3	8.8108-4	2.8591-4	6-0x20-5	5-1008 c	9-X1170 A	9-1017	7-1007-7	. 1261.2
18	4.4312-1	1.1939*1	3.5110-2	9.2507-3	2.8419-3	8.1606-4	4-0449	5-1710	5-00-5	9-413-0	9-156-	1700-1	2.4580
19	4.0049-1	1.0595-1	3.1118-2	8.3372-3	2.6213-3	7.6473-4	4-92150	6-1267	6-02010	6 0130-6	6-460	0.9545	2.2124
20	3.6182-1	9.4671-2	2.7948-2	7.6538-3	2.4500-3	7.2053-4	4-089× 0	6-2810 A	5-4410 c	6 2061-6	2000-6		1.9695
21	3.2724-1	8.5231-2	2.5474-2	7.1260-3	5 x080-3	A Book -	1-1010	6-1017	C-070-5	6-2001-6	1.9929	5.5974	1.7481
22	2.9685-1	7.7492-2	2.3538-2	6-0669.9	2.1820-3	4- 1001 -4	2.6194	5-12921 -5	2.0610 °	9-1500	9-0461-1	5.0000-1	1.5867
23	2.7060-1	7.1219-2	2.1003-2	5-05x A	0.0667-3	4	- man	7.000.6	7.540.1	2.1907	7 4519.1		1.4787-1
170	2.4816-1	5-0219	2 m17-2 6 mme-3	6-mm 4	2.000/	0.01()	1.9190	5.4095 /	1.6916-7	9-8869.	1.4743-0	4.2592-1	1.3999-7
	1 2000	2	17/00-7	, comp	1.5040	2,6252	1.7754	; ;	1.5407	4.2965	1.3727	4.0345	1.3359-1
	below luctor a full relation is given by $\rho/\rho_0 = 273.16 \left(\frac{P}{T}\right)$ (p in atm, T in "K)	tnis reli	ation is g	lven by p/6	o = 273.16	(P) (p tn	atm, Tin	•K)					

Table 11
INTERNAL ENERGY E/RT
Pressure (atm)

	10-4	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80	-122.54	-80.071	97.824	133.34	459.32	658.74	862.14	1219.5	1834.3	2286.0	2428.4	2490.4	2547.2	2650.5	2891.6	3277.4	3693.8	4189.4	4901.7	5748.1	6403.4	6771.4	6964.3	70/0.8
	3×10 ⁻¹	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80								1062.2	1531.9	2103.0	2377.1	2475.2	2534.7	2599.7	2728.4	2991.2	3370.0	3785.2	4293.6	4989.1	2776.6	6401.3	6778.8	1.6060
	10-5	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132,80	-122.53	-96.848	89.722	121.29	257.21	603.88	716.98	925.99	1263.4	1785.8	2232.9	2429.9	2515.8	2578.8	2650.0	2787.1	3042.4	3398.4	3804.5	4594.7	4934.2	5,664.2	6294.6	1.67/0
	3×10 ⁻³	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-159.19	-136.46	-132.80								828.81	1085.4	1483.3	1981.7	2321.5	2476.4	2556.4	2623.5	2701.1	2844.2	3088.9	3425.9	3820.5	4292.0	4884.3	5560.5	6,1810
	10-2	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80	-122.73	-105.06	54.976	116.85	169.77	463.70	16.619	754.63	937.93	1222.4	1634.2	2073.6	2361.9	2508.0	2591.6	2659.0	2741.3	2872.6	3086.6	3387.7	3753.8	4185.5	4.6024	2517.2
	3×10 ⁻²	-145.76																																	0.880	\neg
Pressure (atm)	10_1	-145.76	-145.26	-144.88	-144.72	-144-13.	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80	-122.83	-108.99	1.8227	110.88	144.38	261.23	557.58	64.929	767.16	909.87	1123.8	1421.3	1787.5	2137.1	2389.0	2544.8	2645.2	2723.7	2804.3	2909.3	3061.8	3278.2	3561.2	3902.8
Presi	3×10-1	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80								644.38	724.38	824.21	19.476	1188.1	1471.0	1804.2	2125.0	2374.0	2542.8	2657.0	2744.4	2826.5	2921.9	3049.3	3225.7	3428.2
	1	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80	-122.88	-110.81	-38.568	85.414	134.08	180.10	345.64	585.62	688.81	763.67	864.41	1008.0	1203.4	1454.0	1746.7	2043.5	2299.5	2493.8	2633.9	2739.3	2828.6	2917.8	3022.2	3122.4
	3		-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80								493.74	650.20	726.00	800.15	899.19	1034.0	0.1151	1432.1	1689.0	1958.7	2210.1	2420.4	2584.7	2711.8	2815.2	2908.7	3004.5
	10	on of CO2	unuit	-144.88	-144.72	-144.13	-142.83	-141-40	-139.84	-138.19	-136.46	-132.80	-122.90	-111.68	-63.624	36.361	116.57	156.09	213.76	373.14	576.10	685.59	753.22	823.53	913.34	1030.4	1179.5	1362.6	1576.4	1810.3	2046.6	2266.5	2457.0	2614.9	2744.9	2855.5
	30	Liquefaction of CO ₂				-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80								286.47	1,71,77	628.04	714.83	99.111	844.30	925.88	1028.1	1154.6	1307.2	1484.8	1682.5	1891.6	2100.1	2296.5	2472.9	2626.8
	102	-145.76	-145.26	-144.88	-144.72	-144.13	-142.83	-141.40	-139.84	-138.19	-136.46	-132.80	-122.91	-गाइ.०	-77. 328	-5.6133	73.880	132.77	173.92	231.56	354.66	523.19	653.03	732.10	792.52	853.92	924.58	1009.6	1111.7	1232.4	1372.0	1529.2	1700.5	1880.4	2062.1	2239.6
	T(0Kx10-3)	.15	~•	.235	52.	۴.	\- -		,40	7.	- 60	1.0	1.5		ı w	\-	· ư	~	7	-ω	6	.01	1	य	13	17	15	16	17	18	13	50	21	25	23	57

	_	,		
į	7	ì		
	1	j		
٠	ē	į		
ł	á	đ		
٠	£	4		
		Ath 10	Cable 10	Cable 10

						-						T. 185.11	
"/ Grain-3	701	5×10	10	3	-	3×10-1	10-1	3×10-2	2-01	3×10-3	10-3	3×10-4	10-4
1	2.7816*1		2,7316		2.7316-1	_	2.7316-6		2.7316-3		2.7316-4		2.7316-5
5	1.8010		1.8209		1,9508-1		1.8204-2		1.8197*5		1.8181		1,8182-5
	1.3658+1		1.9615		1.3566-1		1.3464-2		1,3248-3		1.2817-4		1.2012-5
	8,6172		8.1586-1		7.4278-2		6.4759-3		5.5251-4		5.0311-5		4-9275-6
	5.3467		4.6444-1		4.0140-2		3.7454-3		3.6910-4		3.6658-5	21	3,6087-6
	3,5221		3,1077-1		2.3691-2		2.9162-3		2. Bost -4		2.5674-5		2,1354-6
, 40	2.6170		2.4671-1		2.3804-2		2.1731-3		1,7988-4		1.6905-5		1.5486-0
	2.1%6		2,0087	Į.	1.7455-2		1,4505-3		1.3530-4	(8	1,2941-5		1,1847-5
- 00	1,7684	4,9735-1	1.5169-1	4.0781-2	1.2607-2	3.6165-3	1,1783-3	3.4560-4	1.12324	3.21255	1.0133-5	2.8326-6	8.7864-7
	1.4040	5.7659-1	1.1477-1	3.2492-2	1.0532-2	3.0054-3	1,0011-5	2.875L+	9.0676-5	2,5224-5	7.7584-6	2.0938-6	6.2816-7
, 01	1,1003	5.0232-1	9.6428-2	2,8121-2	9.1494-3	2,6458-3	8.3975-4	2.3423-4	7.1955	1.9407-5	5.8067-6	1.57450	1-1579.4
:	0.3481-1	9.6349-1	8,4894-2	2.4727-2	7.9361-3	2.2406-3	6.9309-4	1.87914	5.6653-5	1.5018-5	4.6395-6	1.3558-6	1-3998-1
2	8.0185-1	2.3337-1	7.3508-2	2.1683-2	6.8169-3	1.8736-3	5.6537	1.4996-4	4.5079-5	1.2570"5	4-0650-4	1.2046-6	5.9998-7
1 5	7.2172-1	2.0958-1	6.7084-2	1.8874-2	5.7982-3	1.5537*5	4.6144-4	1,23684	3.8650-5	1.1234-5	3.7057-6		
1 4	6.5388-1	1.8814	5.9315 2	1.6306*2	6-1106.4	1,2928-3	5.8755	1.0783-4	3,4850-5	1.0322		1.0252-6	3.3831-7
	5 obse-1	1.6830-1	5.2166-2	1.4019*2	4,1509-3	1.1007-3	3.3971	9.7868-5	3.2161-5	9.5770-6	3,1786-6	9.4202-7	3.0639-7
2 4	K 2083-1	1.4084-1	4.5693-2	1,2063-2	1.5678-3	9.7003	3.0853-4	9.0646-5	2.9979-5	8.9275-6	2.9363-6	8.9477-7	
1 1	A Rose 1	1-34.00-1	1,0077-2	1.0474"2	\$.1445-5	8,5108-4	2.8591	8.4739-5	2.8001-5	8.2743-6	2.6793-6	7.6861-7	2.4580-7
7 0	4 4312-1	1.1000-1	3.5110-2	9.2507-3	2.8419-3	8.1626-4	2.6770-4	7.94617	2.6107-5	7.5905-6	2.4253-6	6.9343-7	2.2124-7
9	1-0000-1	1.0808-1	5.1118-2	8.3372-3	2,6013-3	7.6475-4	2.5176-4	7.4367-5	2.4132-5	6.9130-6	2,1969-6	6.2580-7	1.9695-1
00	1.61Rs-1	9.4671-2	2.7048-2	7.6538-5	2,4500-5	7.2053-4	2.36804	6,9183-5	2.2184-5	6.2951-6	1.9929-6	5.5974-7	1.7481-7
2 6	1-4070 x	B. 5241-2	2.474.6	7.1269-3	2.3080-3	6.8005 -4	2.2194-4	6.3931-5	2.0270-5	5.7288-6	1.7950-6	5.0060-7	1.5867-7
8	2.9685-1	7.7492-2	2.3538-2	6.6990-3	2.1829-3	6.4091-4	2.0688-4	3.8854.5	1.8542-3		1.6154-6	4.5647-7	1.4787-7
53	2,7060-1		2.1993-2	6.3350-3	2.0667-3	6.01754	1.9190-4	5.4009.5	5-9169.1	4.6989-6	9-67/47	1.2592-1	1.3999-7
1	1000	2	9		**	4	7-	5-	-	9	9.		- vana

Below 1000°K this relation is given by $a/a_0 = 273.16 \left(\frac{R}{a}\right)$ (p in stm, 7 in "K)

Teble 11 INTERNAL ENERGY E/RT_O

						Pres	Pressure (atm)						
T(2xx10-3)	102	30	10	3	-	3xt0-1	10-1	3×10-2	10-2	3×10 ⁻³	10-3	3×10-4	10-14
1	126.96	minne	William .	Willian .	-145.76	-145.76	-145.76	-145.76	-145.76	-145.76	-145.76	-145.76	-145.76
3.	201.0	Liquerdori	duetaction of CO2	-14º 26	-145.96	-145.26	-145.26	-145.26	-145.26	-145.26	-145.26	-145.26	-145.26
ou e	11, 20		1111 88	1144 88	-144.88	-144.88	-144.88	14.88	-144.88	-144.88	-144.88	-144.88	-144.88
.633	06 77		-144 75	114 72	-144.72	-144.72	-144.72	-144.72	-144.72	-144.72	-144.72	-144.72	-144.72
Q,	21.41.	11/1/11	1100 11	1144	-144.15	-144.13	-164.13	-144.13	-144.13	-144.13	-144.13	-144.13	-144.13
•	CT-141-	10 011	Tho Ak	110 83	140.83	-140.83	-142.83	-142.83	-142.83	-142.83	-142.83	-142.83	-142.83
* '	1142.00	50.31	1161 160	141.60	-141.40	-141.40	-141.40	-141.40	-141.40	-141.40	-141.40	-141.40	-141.40
Ů,	18 04	TRO SE	130.84	130.84	-139.84	-139.84	-139.84	-139.84	-139.84	-139.84	-139.84	-139.84	-139.84
0 1	128 10	300	148.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19	-138.19
- 0	136 16	74 PK	-136.46	-136.46	-136.46	-136.46	-136,46	-136.46	-136.46	-136.46	-136.46	-136.46	-136,46
Q .	140 Bu	180 Bo	139.80	-130.80	-132.80	-132.80	-132.80	-132.80	-132.80	-132.80	-132,80	-132.80	-132.80
2.	2001001		120 00		-122 BB		-122.83	00	-122.73		-122.53		-122.54
9	156.74		111 68		-110.81		-108.99		-105.06		-96.848		-80.071
2	907		Kr Koh		-18 568		1.8227		54.976		89.722		97.824
ή.	000		192 92		Re Lite		110.88		116,85		121.29		133.34
# 1	-5.0153		116.50		184,08		144.38		169.77		257.21		459.32
n's	20.00		186.00		180.10		261.23		463.70		603.88		658.74
D t	174.0		213.76		\$45.64		557.58		46.649		716.98		862.14
-0	117.74 211.14	PASS LIT	173 16	403,74	585,62	644.38	676.49	710.52	754.63	828.81	65.53	1062.2	1219.5
0 0	25. 55 35. 66	121 22	576.10	650,20	688.81	724.38	767,16	839.36	937.93	1085.4	1263.4	1531.9	1834.3
× -	403, 10	608.04	685.59	726.00	763.67	824.21	909.87	1048.2	1222.4	1483.3	1785.8	2103.0	2286.0
2 -	663 03	714 83	753.22	800,15	864.41	19.476	1123.8	1353.4	1634.2	1981.7	2232.9	2377.1	2428.4
1 2	730.10	277.66	823.53	844.19	1008.0	1188	1421.3	1754.7	2073.6	2321.5	6.6242	2475.2	5490.4
4 =	25.001	844.30	913.34	1034.0	1203.4	1471.0	1787.5	2140.0	2361.9	7.9242	2515.8	2534.7	2547.2
1-	83.88	88.68	1030.4	1211.0	1454.0	1,804.2	21,77-1	2395.0	2508.0	2556.4	2578.8	2599.7	2650.5
12	95, 198	1008.1	1179.5	1432.1	1746.7	2125.0	2389.0	2537.2	2591.6	2623.5	2650.0	2728.4	2891.6
7.9	1000.6	1154.6	1362.6	1689.0	2043.5	2374.0	2544.B	8.429%	2659.0	2701.1	2787.1	2991.2	3277.4
2 5	1111.7	1307.2	1576.4	1958.7	2299.5	2542.8	2645.2	2,9592	2741.3	2844.2	3042.4	3370.0	3693.8
100	1232.4	1484.8	1810.3	2210.1	2493.8	2657.0	2723.7	2779.5	2872.6	3088.9	3398.4	3785.2	4189.4
12	1372.0	1682.5	2046.6	2420.4	2633.9	2744.4	2804.3	2901.3	3086.6	3425.9	3804.5	4293.6	7.106t
50	1529.2	1891.6	2266.5	2584.7	2739.3	2.986.5	2909.3	3000.2	3387.7	3820.5	1.1894.7	1,999.1	5748.1
15	1700.5	2100.1	2457.0	2711.8	2828,6	2921.9	3061.8	5357	3753.8	1592	2. サングー	2//0.0	4000
8	1,880,4	2296.5	2614.9	2815.2	2917.8	3049.3	3278-2	3691.5	4185.5	1884	2000	21010	0/(T.4
53	2062.1	2472.9	6.4475	2908.1	3085.2	3225.7	3561.2	0.8804	4.6024	5560.5	6294.0	0.000	0.00
100	2239.6	2626.8	2855.5	3004.5	3155.4	3458.2	3906.8	1.900 H	5317.2	61819	6719.1	1.6060	0.0101
THE SECOND			The state of the s										

Table 12 ENTHALPY H/RT

2.0	-	-				1000		(100					
(_xx10_2)	102	30	10	^	24	3x10-1	7-01	3×10-2	10-2	5-01x5	5-01	7-1	17
.15	-145.21	i nun fare	00 00 00		the est	11.0	1			200	2	2×TO	10
O.	-144.53	2019001	200	111111111111111111111111111111111111111	13.64	-149.51	-145.21	-145.21	-145.21	16.541-	16.541-	11.0	
	145 00			65.	-144.33	14:53	111.00	-144.53	-144.53	17.7.	17.7.1	12.041-	-145.2
	100		25.44.	-144.8	-144.00	-144.00	-144.00	-144 00	32	27.	-144-22	-144.53	-144.5
	-T#3.80	77777777	7 -143.80	-143.80	-143.80	-141 AO	The Bo	11.7 00	-144.0c	8:41-	-144.02	-144.02	-144.0
	-143.03	-143.03	-143.05	-143.03	-143 ng	10.8 01		74.00	-145.80	-143.80	-143.80	-143.80	-14x A
	-141,37	-141.37	-141. 47	-111 km	1111	50.00	Cn.C+1-	-143.03	-143.03	-143.03	-143.03	-11,2 02	11.4
	23.40 67	130 53	100	10000	-141.36	-141.37	-141.37	-141.37	-141.37	72 [1/1-	1.0	0.4.	-142.0
	10000	1000	10.601	-139.37	-139.57	-139.57	-130.97	-130 57	120 57	170 01	16.141-	1-141.37	-141.37
	-137.69	-137.65	-137.65	-137.65	-137.65	-117.66	137 64	177.7	10.601	129.57	1-139.57	-139.57	-139.57
	-135.63	-135.63	-135,63	-135.63	139, 63	135 61	20.00	60.75	-157.65	-137.65	-137.65	-137.65	-137 65
	-133.53	-133.53	-133.53	-144 54	188 68	20000	-122.03	-135.63	-135.63	-135.63	-135.63	-135 62	72.00
	120.14	-190 14	1001	2000	177.33	-555.55	-133.53	-133.53	-133.53	-133.53	-133 52	(0.//-	-177.07
	1117 60	117 10	15311	17.67	+159.14	-129.14	-129.14	-129.14	-100.14	1.001	25.00	CC-CCT-	-155.53
	100	26. 144.	74.177	-14/141	-117.39	-117.38	-117.34	117.31	10.71	117.17	-163.14	+1.55.1+	-129.14
	0:50	77.4.00	124.33	-104,06	-103.44	-109.88	-101 56	12.00	17.17.)1.)11-	20./11-	-117.03	-117.04
	-65.723	-61,416	-51.367	-43,488	-25,105	10 30h	17 050	CC-201-	-71.010	-94.973	-89.045	-83.855	-71.746
	13.090	26,531	57,899	74,603	110 44	111	41.000	24.010	73.081	84.037	109.60	112.16	118 12
	102.27	116.21	148.75	27 75	120 00	2	12/12	139.47	143.94	145.33	148.57	וג פאן	191
	170.98	179.68	106.63	200	D/ - 101	6.77.7	178.68	186.63	205.17	232.47	206.16	250 17	201.02
	250 AT	286.61	1	12.40	555.11	247,65	307.25	370.86	519.29	וא אשר	666	773-11	200
	288	41.5.10	2000	8.50	402.93	470.01	626.53	655.73	101.87	10.11	10.00	02.50	(25.32
	1000	240.00	439.00	567.31	16.499	727.33	761.35	707 30	200	16.000	(7.4.6)	629.94	946.55
	453.86	551.47	663.22	742.53	783,76	801.61	100	171.76	040.00	762.19	1024.7	1168.1	1333.3
	614.07	727.28	789.29	832.68	972 07	03.7 50	2000	740.07	Z-040.2	1204.3	1392.3	1675.2	1993.5
	762.45	829.35	871.02	921.47	390.42	1308 8	0.6300	77.0.5	1,561.4	1637.9	1958.0	2293.5	2487.1
	856.80	906.38	355.96	1037.5	1194 7	Sala o	20000	1.6767	1812.0	2181.5	2448.5	2601.7	2656.9
13	951.82	987.58	1062.4	280	1175.0	1,000	1030.5	1924.7	2295.4	2560.2	2675.9	2724.3	2740 5
	1006.9	1085.3	1199.0	11005	1.000	1.4004	2.002	2382.5	5620.6	2743.4	2785.7	2805.8	08180
	1092.9	15.96.01	1471 0	3616	1 1000	20000	0.55	2673.2	2794.9	2847.1	2871.0	2800	2016
	1194.8	1393.0	15.83	1017 4	100101	2357.0	2003.3	2843.7	2902.5	2936.7	2064.5	2010	20102
	1315.0	1641 1	0.00	1.177	0.000	2002.5	2868.9	2955.8	2992.6	3037.2	3107 6	22/10 0	O'CTO'C
	1158 1	1216 4	1000	1.055	9717.0	2883.2	2994.9	3050.8	3008.2	20 YOU	7 31.12	776	2042.0
	1501	1100.1	1.000	2024.4	9.548	3054.6	5397.2	3157.1	3055 6	21.81.	0.0.0	2,001,2	4100.7
	1000	1,000	2300.0	2780.2	47.510	3136.7	\$201.5	7201 7	20000	7.101) orec	4517.8	4641.4
	1000	2200.5	2024.3	2976.6	147.5	1240.0	1331 K	2502	0.100	7079.9	5.6024	4773.0	5409.4
	2006.1	2452.1	2849.5	3132.7	261.0	3363.0	1010	0.000	0.7600	4597.0	1.9621	5525.0	6320.1
	2217.3	2683.6	3079.8	1,1901	0 1/2	2000	2775-4	3020.5	4547.1	4815.7	5491.3	6375.9	7033.6
	2431.7	2894.1	3199.6	1180 1	200	331/14	2/01.5	4201.3	4724.8	5462.2	6283.3	7058.5	7447
	2642.6	3080.5	REER O	2000	1.00	2164.5	4005.3	4642.5	5300.6	61080	6070	10	
		-								L*0	7	3	-

Table 13

	10-4	23.22 24.25 25.25 26
	3×10-4	121.20 155.4.20 166.27.4.60 178.96.99 198.88 198.88 198.88 255.00 255.00 255.00 256.00
	10-3	29.93 11.657 11.657 11.657 11.657 12.053 12.
	3x10-3	111-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6
	10-2	\$25.50 \$2
	3×10-2	98.88 113.50 113.50 113.50 113.50 113.50 113.50 113.50 113.50 113.50 113.50 113.50
Pressure (atm)	10-1	26.52 26.53
Press	3x10 ⁻¹	# 99.98 99.98 99.98 99.98 90.98 11.00 11.0
	٦	23. 23. 23. 23. 23. 23. 23. 23. 23. 23.
	٤	72.945 86.287 89.535 103.65 1115.24 1116.87 1116.87 1119.65 1119.65 1119.65 1119.65
	10	26.00 26
	30	60.185 65.772 74.507 74.507 76.893 10.00 94.480 105.03 11.65 106.03 11.65 11.6
	102	828989898987574757888888887575788888888887575788888888
	r(2x10-3)	id iggi vi 4 v 6 t 6 3 1 9 2 4 2 4 2 4 2 4 4 4 4 4 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8

Velocity			Altitud	le (Km)		
(ft/sec)	0	23.10	42.16	60	80	100
20 x 10 ² 20 x 10 ² 20 x 10 ² 215 x 10 ² 230 x 10 ² 230 x 10 ² 245 x 10 ² 25 x 10 ² 26 x 10 ² 27 x 10 ² 28 x 10 ² 29 x 10 ² 20 x 10 ² 215 x 10 ² 220 x 10 ² 221 x 10 ² 222 x 10 ² 223 x 10 ² 223 x 10 ²	2.692 4.275 6.217 8.504 11.132 14.135	4.016 6.374 9.269 12.709 16.669 21.136 26.178 31.840 37.932 44.687 51.941 59.702 68.066 77.092 86.829 97.252 107.835	6.773 10.745 15.638 21.457 28.208 33.43 53.834 53.921 75.638 101.5679 137.288 101.5679 137.293 147.881 183.744 164.7798 266.723 244.7798 266.723 244.7798 266.723 289.6867 392.321 419.9884 477.191 506.834 477.191	6.775 10.749 15.466 28.219 35.853 44.365 53.951 64.471 75.943 88.607 101.893 146.800 163.811 182.021 201.498 222.316.602 2341.410 367.136 393.809 421.4694 479.947 510.883 575.236 606.519 674.160 709.215 744.626 781.775 819.664 858.164 897.848 939.077 981.827	6.773 10.745 15.637 21.456 28.266 35.840 44.359 53.952 64.526 78.799 102.744 117.192 132.296 148.152 164.694 181.840 199.605 217.973 237.744 259.574 282.934 307.874 334.455 362.782 392.937 513.408 543.843 575.691 609.391 643.543 676.304 711.085 747.457 783.186 819.833 857.787 939.348 983.982	116.666 133.069 150.660 168.701 187.056 206.266 226.280 247.149 268.807 291.282 314.606 339.194 364.812 391.695 420.034 449.700 480.775 513.345 547.574 580.072 607.563 642.936 678.634 712.460 747.360 783.837 822.144 862.758 906.208 998.529

82
Table 14 A (cont'd)

Velocity			Altitude	(Km)		
(ft/sec)	0	23.10	42.16	60	80	100
235 x 102 240 x 102 245 x 102 250 x 102 255 x 102 255 x 102 255 x 102 265 x 102 275 x 102 275 x 102 285 x 102 305 x 102 305 x 102 305 x 102 335 x 102 345 x 102 355 x 102 365 x 102 375 x			1017.023 1062.885 1107.591 1152.523 1197.995 1244.175 1292.193 1342.545 1394.287 1447.309 1501.529 1555.679 1610.311 1666.009	1025.417 1070.229 1116.307 1163.631 1211.820 1259.769 1308.649 1358.935 1410.496 1463.583 1518.384 1574.651 1629.161 1684.821	1029.857 1077.403 1126.683 1174.318 1221.943 1270.447 1319.892 1370.325 1421.859 1474.498 1528.308 1583.374 1639.790 1697.658 1754.163 1810.509 1867.597 1926.238 1987.145 2048.959 2109.716 2171.228 2233.716 2297.411 2362.016 2428.009	1042.823 1087.627 1133.103 1179.510 1226.844 1275.156 1324.633 1375.053 1426.863 1480.148 1535.206 1591.342 1647.116 1704.202 1762.225 1820.444 1877.703 1936.733 1998.332 2061.871 2123.668 2186.632 2250.555 2315.431 2381.326 2448.545 2516.619 2585.719 2655.719 2655.719 2655.719 2655.719 2655.719 2655.719 2655.719 2655.719

Table 14B

Velocity			Altitud			
(ft/sec)	0	23.10	42.16	60	80	100
20 x 10 ² 25 x 10 ² 30 x 10 ²	1.222	1.407	1.824	1.824	1.824	
25 x 10 2	1.383	1.655	2.270	2.270	2.270	=
30 x 105	1.566	1.940	2.776	2.776	2.776	
// * ±0^	1.776	2.258	3.340	3.340	3.340	
10 x 10 ² 15 x 10 ²	2.009	2.618	3.958	3.958	3.958	
15 x 10 ₂	2.264	3.012	4.646	4.645	4.643 5.370	
0 x 102		3.438	5.385 6.174	5.382 6.164	6.136	
50 x 10 ² 55 x 10 ²		3.893 4.378	6.997	6.942	6.862	
		4.892	7.847	7.700	7.503	
		5.400	8.711	8.438	8.048	
75 × 10 ²		5.893	9.534	9.208	8.474	}
30 x 10 ²		6.367	10.315	9.977	9.034	8.747
35 x 10 ₂		6.810	11.034	10.716	9.655	8.796
40 X 10.		7.208	11.666	11.402	10.280	8.753
10 X IV.		7.551	12.187	12.006	10.901	8.931
		7.989	12.571	12.491	11.507	9.368
15 V I(1			12.866	12.853	12.087	9.819
163 37 163			13.508	13.066	12.628	10.277
			14.137	13.090	13.122	10.737
			14.742	12.985	13.516	11.191
			15.311	13.013	13.814	11.629
			15.830	13.497	13.996 14.034	12.359
ואר אר היי			16.284 16.651	13.980	13.895	12.628
			17.092	14.923	13.552	12.851
102 15 x 102 50 x 102			17.641	15.373	13.524	13.019
55 x 10 ₂			18.251	15.799	13.532	13.122
55 x 10 ² 60 x 10 ²			18.983	16.195	13.617	13.152
65 x 10 ²			19.740	16.549	14.317	13.091
70 v 10			20.519	16.867	15.044	12.908
/ h x 11/2.			21.317	17.441	15.792	13.215
OU X IU			22.355	18.492	16.555	14.749
			23.522	19.656	17.516	16.543
40 X TO			24.747	20.954	18.856	18.088
			26.021	22.294	20.440	19.341
$\mathbf{x} \mathbf{x} \mathbf{r} \mathbf{o}^2$		1	27.244	23.672	21.936	20.394
05 x 10 ²			28.651	25.095	23.090	21.224
05 x 10 ² 10 x 10 ²			30.229	26.364	24.089	21.804
15 x 10 ²		1	31.556	27.404	24.915	22.104

Velocity			Altitud	e (Km)		
(ft/sec)	0	23.10	42.16	60	80	100
220 x 102 225 x 102 235 x 102 235 x 102 245 x 102 255 x 102 257 x 102 257 x 102 258 x 102 259 x 102 259 x 102 259 x 102 259 x 102 250 x 102 250 x 102			32.660 33.574 34.313 34.863 35.216 35.967 36.811 37.654 38.495 39.252 39.774 40.239 40.656 41.036 41.585 42.186 42.770	28.290 29.002 29.523 30.085 30.574 30.990 31.344 31.707 32.245 32.727 33.146 33.493 33.758 34.045 34.638 35.247	25.543 25.951 26.108 26.208 26.187 26.029 26.319 26.782 27.230 27.658 28.062 28.425 28.753 29.281 29.470 29.602 30.060 30.771 31.599 32.505 33.481 34.528 35.638 36.821 38.099 39.151 40.993	22.094 21.734 21.565 21.942 22.411 22.883 23.333 23.755 24.143 24.791 25.038 25.220 25.318 25.407 25.661 26.206 26.615 27.401 29.993 30.806 31.537 32.255 33.659 34.267 35.391 35.391 35.391 35.391 35.391 36.486 36.992 37.463 37.487 38.325

NORMAL SHOCK WAVE CHARACTERISTICS OF A TENTATIVE VENUS ATMOSPHERE DENSITY RATIO, ρ_2/ρ_1

Velocity			Altitude	(Km)		
(ft/sec)	0	23.10	42.16	60	80	100
20x10 ² 25x10 ² 30x10 ² 35x10 ² 40x10 ² 45x10 ² 50x10 ² 55x10 ² 60x10 ² 75x10 ² 80x10 ² 75x10 ² 80x10 ² 95x10 ² 100x10 ² 115x10 ² 120x10 ² 125x10 ² 135x10 ² 140x10 ² 155x10 ² 155x10 ² 155x10 ² 160x10 ² 175x10 ² 175x10 ² 180x10 ² 175x10 ² 215x10 ² 220x10 ² 225x10 ² 225x10 ²	2.201 3.089 3.968 4.772 5.465 6.134	2.847 3.844 4.775 5.629 6.353 6.922 7.490 8.139 8.524 9.476 9.792 10.163 10.654 11.323 12.137 12.370	3.697 4.724 5.625 6.421 7.675 8.656 9.491 10.619 10.984 11.491 12.195 14.461 14.681 14.901 15.478 16.935 17.057 17.029 16.443 16.170 16	3.697 4.724 5.625 6.421 7.676 8.103 8.666 9.171 9.649 10.362 10.680 10.827 11.067 11.311 11.728 12.340 13.202 14.509 16.220 17.6551 17.750 17.838 17.975 18.093 17.975 18.093 17.975 18.093 17.975 18.093 17.971 17.280 17.319 16.477 16.331 16.130 15.6682	3.697 4.724 5.625 6.421 7.125 7.681 8.122 8.697 9.837 10.626 11.692 12.169 12.308 12.253 11.655 11.655 11.94 10.522 10.846 11.393 12.198 13.337 14.970 17.377 18.933 20.418 21.632 20.577 19.463 19.726 19.463 17.660 16.927 16.302 15.856 15.855	11.568 13.183 15.171 16.495 16.840 17.015 17.032 16.918 16.129 16.223 16.513 17.089 17.903 19.019 20.556 22.773 22.658 18.651 19.301 19.590 18.466 17.622 17.122 17.025 17.394 18.341 20.010

NORMAL SHOCK WAVE CHARACTERISTICS OF A TENTATIVE VENUS ATMOSPHERE

Table 14C (cont'd)

DENSITY RATIO, p2/p1

Velocity			Altitude	(Km)		
(ft/sec)	0	23.10	42.16	60	80	100
230x10 ² 235x10 ² 240x10 ² 245x10 ² 255x10 ² 265x10 ² 265x10 ² 275x10 ² 285x10 ² 285x10 ² 285x10 ² 235x10 ² 235x10 ² 235x10 ² 330x10 ² 315x10 ² 315x10 ² 335x10 ² 375x10 ² 375x10 ² 380x10 ² 375x10 ² 380x10 ² 395x10 ² 395x10 ² 400x10 ²			14.083 14.308 14.695 14.566 14.391 14.203 14.175 14.354 14.581 14.848 15.143 15.276 15.348 15.440	15.857 15.966 16.140 16.380 16.677 16.940 16.946 17.187 17.456 17.871 18.377 18.308 18.283	16.501 17.194 18.096 19.258 19.645 19.697 19.783 19.837 19.931 20.062 20.245 20.499 20.846 21.312 21.156 20.774 20.394 20.289 19.950 19.623 19.332 19.108 18.894 18.761	21.400 21.596 21.567 21.476 21.375 21.277 21.202 21.344 21.638 22.174 22.727 22.849 23.093 23.314 22.776 22.526 22.698 23.097 22.805 22.611 22.432 22.267 22.129 22.074 22.002 21.951 21.747 21.747 21.749 21.761

Velocity	T		Altitude	(Km)		
(ft/sec)	0	23.10	42.16	60	80	-100
20x10 ² 25x10 ² 35x10 ² 35x10 ² 45x10 ² 45x10 ² 55x10 ² 55x10 ² 65x10 ² 75x10 ² 85x10 ² 75x10 ² 80x10 ² 105x10 ² 115x10 ² 115x10 ² 115x10 ² 125x10 ² 125x10 ² 135x10 ² 135x10 ² 155x10 ² 160x10 ² 155x10 ² 180x10 ² 195x10 ² 215x10 ² 225x10 ² 235x10 ² 235x10 ² 235x10 ² 235x10 ²	.454 .324 .252 .210 .183 .163	. 351 . 260 . 210 . 178 . 157 . 144 . 123 . 117 . 110 . 106 . 102 . 098 . 094 . 088 . 082 . 081	.270 .212 .178 .156 .140 .130 .124 .116 .110 .105 .099 .097 .094 .091 .087 .082 .076 .070 .069 .068 .067 .066 .065 .063 .061 .059 .059 .060 .061 .062 .063 .067 .067 .067 .067 .067 .067 .067 .067	.270 .212 .178 .156 .140 .130 .123 .109 .1094 .0994 .0992 .0988 .085 .076 .0566 .0566 .0556 .0558 .0591 .062 .063 .063	.270 .212 .178 .156 .140 .130 .123 .108 .094 .082 .083 .086 .089 .081 .0882 .0881 .0882 .0881 .0882 .0882 .0882 .0883 .0884 .0995 .0995 .0996 .0966 .0966 .0966 .0966 .0966 .0966 .0966 .0966 .0966 .0966 .0	.086 .076 .066 .061 .059 .059 .059 .062 .062 .062 .062 .063 .059 .056 .059 .054 .054 .054 .052 .051 .054 .057 .058 .059 .059

NORMAL SHOCK WAVE CHARACTERISTICS OF A TENTATIVE VENUS ATMOSPHERE

Table 14D (cont'd)

NORMAL SHOCK WAVE CHARACTERISTICS OF A TENTATIVE VENUS ATMOSPHERE ${ t velocity \ Ratio, \ u_2/u_1}$

Velocity			Altitude	(Km)		
(ft/sec)	0	23.10	42.16	60	80	100
240x10 ² 245x10 ² 250x10 ² 255x10 ² 266x10 ² 275x10 ² 275x10 ² 285x10 ² 295x10 ² 300x10 ² 315x10 ² 315x10 ² 335x10 ² 355x10 ² 375x10 ² 380x10 ² 375x10 ² 385x10 ² 395x10 ² 395x10 ²			.068 .069 .069 .070 .071 .070 .069 .067 .066 .065 .065	.062 .061 .060 .059 .059 .059 .058 .057 .056 .054 .055	.055 .052 .051 .051 .051 .050 .050 .050 .049 .049 .047 .048 .049 .050 .049 .050 .051 .052 .052 .053 .053	.046 .047 .047 .047 .047 .047 .047 .044 .044

	Reaction								
T (OK)	1	2	3	4	5				
1000	3.022 -6 8	2.525-69	1.4604 ⁻⁵⁹	2.397 ⁻⁶⁸	2.216 ⁻⁵⁶				
1500	1.215-44	1.375-45	3.492 ⁻³⁹	5.054 ⁻⁴⁵	5.438-37				
2000	8.970-33	1.219-33	6 .33 2 ⁻²⁹	2.664-33	3.135 ⁻²⁷				
3000	9.254 ⁻²¹	1.793-21	1.855 ⁻¹⁸	1.979-21	2.519-17				
4000		2.828-15	4.191-13	2.108 ⁻¹⁵	2.765-12				
5000		1.686-11	7.601-10	9.868-12	3.290 ⁻⁹				
6000		6.088 ⁻⁹	1.209 ⁻⁷	2.995 ⁻⁹	3.984-7				

		p (atm)								
T (OK)	102	10	1	10-1	10-2	10 ⁻³	10-4			
2000	3.32-17	1.52-16	6.98-16	3.21-15	1.48-14	6.79-14	3.06-13			
3000	3.56-11	1.58-10	6.84-10	2.61 ⁻⁹	7 .27 ⁻⁹	1.15-8	1.48-8			
	3.59 ⁻⁸	1.29 ⁻⁷	3.20-7	5.19 ⁻⁷	1.08-6	3.40-6	1.63 ⁻⁵			
	1			2.61 ⁻⁵	1.4-4	1.1-3	7.4-3			
6000	1.33 ⁻⁵	4-41-5	1.8-4	1.2-3	7.9-3	3·3 ⁻²	1.1-1			

Appendix B

THE COMPUTATION OF TWO-DIMENSIONAL OBLIQUE-SHOCK-WAVE CHARACTERISTICS FROM NORMAL-SHOCK-WAVE DATA

The practical problems usually associated with aerodynamics generally involve heat transfer and aerodynamic forces which arise due to the motion of a body through a fluid. In the present application, both of these problems require a knowledge of the so-called inviscid parameters associated with both shock waves and expansive-type flows such as the Prandtl-Meyer expansion around a corner. The purpose of this appendix is to furnish a practical way to calculate the oblique-shock parameters. Since aerodynamic parameters change only in the direction normal to shock, only the oblique shock angle is required to solve the problem, when the normal-shock solution (Section IV) is known.

The present method may also prove useful for computing oblique-shock characteristics for any selected gas composition once its equilibrium thermodynamic properties are known. While the generally used iteration scheme for obtaining normal-shock data (20) is highly convergent, the iteration scheme for oblique-shock solutions presented in Ref. 20 is not, especially near the detachment point. It is presumed that if it is practical to obtain normal-shock data for a particular composition, the oblique-shock characteristics can be obtained by this method for a particular case.

As previously mentioned, all of the physics of the problem are contained in the normal-shock-wave data and the fact that the velocity component parallel to the shock wave remains constant across the shock (this follows directly from a conservation-of-mass-and-momentum analysis across a flow discontinuity). Therefore, no physical assumptions about the flow are necessary.

What is usually specified in an oblique-shock problem is the flow deflection angle, the upstream thermodynamic state, and the upstream velocity. If the wave inclination angle may be found, all downstream parameters may be calculated. Unfortunately, no explicit expression for the wave inclination angle exists, and a practical iteration scheme which always converges must be found.

Referring to Fig. 12, the following trigonometric relations across an oblique shock become obvious:

$$u_1 = w_1 \sin \beta \tag{39}$$

$$\frac{u_2}{u_1} = \frac{\tan (\beta - \theta)}{\tan \beta} \tag{40}$$

The same conservation equations apply to the normal stream component across a flow discontinuity as apply to the stream across a normal shock wave. Since for a given upstream state $\mathbf{u}_2/\mathbf{u}_1$ vs \mathbf{u}_1 is usually plotted for a particular gas if normal shock wave data are given, this relation must also hold for the normal stream components across an oblique shock if the upstream thermodynamic state is the same. The general form of the relation is shown in quadrant 2 of Fig. 13. This curve always assumes this form for a perfect gas. Real-gas effects will usually destroy the monotonic nature of this curve and will, in exceptional cases, cause a positive slope in a small \mathbf{u}_1 range. (20) However, this presents no problem, as will become evident later.

Equation (39) is very simple and presents no computational problem. Considering Eq. (40), the following equation for β may be developed after some manipulation:

Fig. 12 — Oblique – shock diagram

Fig. 13—Graphical solution for u_2/u_1 and β (weak-shock solution)

$$\beta = \arctan \frac{1}{2\left(\frac{u_2}{u_1}\right)\tan \theta} \left[\left(1 - \frac{u_2}{u_1}\right) + \sqrt{1 - 2\left(\frac{u_2}{u_1}\right)\left(1 + 2\tan^2\theta\right) + \left(\frac{u_2}{u_1}\right)^2} \right]$$
(41)

Differentiating Eq. (40), the maximum of u_2/u_1 vs β with θ a fixed parameter occurs at

$$\beta = 45^{\circ} + \frac{\theta}{2} \tag{42}$$

and

$$\frac{\binom{u_2}{u_1}}{\max} = \frac{1 - \sin \theta}{1 + \sin \theta}$$
 (43)

Also, referring to Fig. 13, it is seen that the negative sign in Eq. (41) corresponds to $\theta \le \beta \le (45^{\circ} + \theta/2)$, and the positive sign corresponds to $(45^{\circ} + \theta/2) \le \beta \le 90^{\circ}$. Note that $0^{\circ} \le \beta \le 90^{\circ}$ is the only range of interest. For reasons that will become apparent later, it is usually β which must be calculated from a known u_2/u_1 , rather than vice versa. Since Eq. (41) requires a rather tedious computation if done by hand in an iteration scheme, Fig. 14 is included for $0 < \theta < 30^{\circ}$.

It may be shown that $\beta \leq (45^{\circ} + \theta/2)$, i.e., $\beta \leq \beta$ corresponding to (u_2/u_1) for a given θ , must always be in the weak-shock-wave region. Stating this another way: if, for a given upstream state, β were plotted vs θ with upstream velocity as a parameter, $\beta \leq (45^{\circ} + \theta/2)$ would always be less than the β dictated by the line connecting the maximum θ solutions for a given upstream velocity. This may be seen for a perfect gas by plotting a line $\beta = (45^{\circ} + \theta/2)$ on pp. 42 and 43 of Ref. 22. The intersection of this

Fig.14—Graphical solution for shock-wave angle

line with $\theta=\theta_{\rm max}$ at Mach = ∞ is not a coincidence, but, as may be shown, a consistent result. The existence of real-gas effects does not alter the original statement, and as the upstream velocity becomes large $\beta=(45^{\circ}+6/2)$ approaches the limit of the weak-shock solutions. At low upstream Mach numbers a large range of weak-shock solutions lies where $\beta>(45^{\circ}+6/2)$, as may be seen on p. 42 of Ref. 22 (at low Mach numbers a gas usually behaves as a perfect gas). At any rate, the majority of physically possible solutions where the upstream Mach number is greater than 2 will occur where $\beta \leq (45^{\circ}+6/2)$; this will turn out to be fortunate, considering convergence of the method.

Now a solution satisfying Eqs. (39) and (40) and the normal shock relation of u_2/u_1 vs u_1 for a given upstream state, w_1 and θ , is desired. A qualitative plot is now constructed in Fig. 13 as follows:

- Quadrant 1: A functional relationship between u_2/u_1 and β for the given θ (Eq.(40))
- Quadrant 2: The normal-shock relation u_2/u_1 vs u_1 for the given upstream state (contains the physics of the problem)
- Quadrant 3: A functional relation between u_1 and β for the given $w_1 \ (u_1 = w_1 \sin \beta)$
- Quadrant 4: A 45° line to graphically convert the β axis in quadrant 1 to the β axis in quadrant 3

Line ABCDA can be seen to represent the weak-shock solution. The procedure to arrive at this solution is as follows:

- 1. Assume $\beta = 90^{\circ}$ in quadrant 3 such that $u_1 = w_1$ (point E).
- 2. From $u_1 = w_1$ find u_2/u_1 in quadrant 2 (point F).
- 3. From u_2/u_1 , find β in quadrant 1 (point G).

- 4. Carry over this β to quadrant 3 through quadrant 4 (point H). It is now apparent that through the monotonic nature of all the functions the solution has been bracketed between $\beta = 90^{\circ}$ and $\beta_{c} = \beta_{H}$.
 - 5. Obtain u, in quadrant 3 (point J).
 - 6. Obtain u2/u1 in quadrant 2 (point K).
- 7. Obtain β in quadrant 1 (point L). Again it is obvious that the solution is now bracketed between β_L and $\beta_C = \beta_H$.
- 8. Continuing in this clockwise fashion, it is seen that the process is rapidly convergent.

It is important to note that any attempt to construct this solution in a counterclockwise manner would have failed, since the process would diverge. It is easily seen that this process converges in the same manner when the normal-shock relation in quadrant 2 contains inflection points but retains negative slope. It will be stated without demonstration that this process also converges when the normal-shock relation contains a small region of positive slope as previously mentioned. In this case, however, the convergence to the solution is from one side only; the solution is not continually being bracketed as above.

One other difficulty may be encountered. On the second iteration point K may correspond to a $u_2/u_1 > (u_2/u_1)$. In this case the starting point for the third trial is the β corresponding to (u_2/u_1) , i.e., $\beta = (45^\circ + \theta/2).$ If on the third trial the ratio u_2/u_1 obtained in quadrant 2 is greater than (u_2/u_1) , the solution must be where $\beta > (45^\circ + \theta/2)$.

Figure 15 illustrates the case mentioned immediately above. Following the lines JKLMN and OPQR, it is apparent that the solution must not be where $\beta \leq (45^{\circ} + \theta/2)$. Now starting again at point J and proceeding to K,

Fig. 15—Graphical solution for u_2/u_1 and β (strong- and weak-shock solution)

continue the KL line to S where $\beta > (45^{\circ} + \theta/2)$. Continue with a clockwise iteration starting from JKSTV, always selecting $\beta > (45^{\circ} + \theta/2)$ in quadrant l; this is seen to converge to the solution ABCDA. Alternatively, starting from (u_2/u_1) at point 0 and proceeding counterclockwise, the iteration max begun by OWXYZ is seen to be converging to the solution EFGHE. It may also be seen that if β is originally selected such that $\beta_E < \beta < \beta_A$, the clockwise iteration will converge to ABCDA and counterclockwise iteration will converge to EFGHE. It will also be stated without demonstration that these conclusions are not altered if small regions of positive slope occur in the normal-shock relation (quadrant 2). It then becomes apparent that EFGHE is the weak-shock solution and ABCDA is the strong-shock solution.

With all cases now considered, the general method to be followed in obtaining a solution is outlined below.

Given: Upstream state, θ , w_1 , and the normal-shock relation between u_2/u_1 and u_1 for the given upstream thermodynamic state.

A. Weak-shock solution

- 1. Assume $\beta = 90^{\circ}$, i.e., $u_1 = w_1$
- 2. From the normal shock relation obtain u_0/u_1
- 3. From Eq. (41) or the included graphs, obtain a new β , choosing $\beta \leq (45^{\circ} + \theta/2)$
- 4. From this β compute a new u₁ from Eq. (39)
- 5. From the new \mathbf{u}_1 and the normal-shock relation obtain a new $\mathbf{u}_2/\mathbf{u}_1$
- 6. If this $u_2/u_1 \le (u_2/u_1)$ for the given θ from Eq. (40), repeat this procedure to the desired degree of convergence
- 7. If this $u_2/u_1 > (u_2/u_1)_{max}$ assume $\beta = 45^{\circ} + \theta/2$ and compute a

new u, from Eq. (39)

- 8. Using this \mathbf{u}_1 and the normal-shock relation obtain a new
- 9. If this $u_2/u_1 \le (u_2/u_1)$ proceed as in step 6

 10. If this $u_2/u_1 > (u_2/u_1)$, the solution will not lie where $\beta \le (45^\circ + \theta/2)$; assume $u_2/u_1 = (u_2/u_1)$; obtain u_1 from \max the normal shock relation
- 11. Compute β from Eq. (39) and this u_1
- 12. Using this β compute u_2/u_1 from Eq. (40) or obtain β from the included charts
- 13. Using this u_2/u_1 obtain u_1 from the normal-shock charts
- 14. Repeat steps 11 13 until the desired degree of convergence is reached

B. Strong-shock solution

- 1. Assume $\beta = 90^{\circ}$, i.e., $u_1 = w_1$
- 2. From the normal shock relation obtain u_2/u_1
- 3. From Eq. (41) or the included charts obtain a new β , choosing the $\beta > (45^{\circ} + \theta/2)$
- 4. Compute a new u from Eq. (39)
- 5. Repeat steps 2 4 until the desired degree of convergence is reached

It may be shown that if the normal shock solution is obtained by an iteration scheme that is stopped when two consecutive values of u_{ρ}/u_{1} differ by no more than 0.0001, a consistent degree of convergence in this method is arrived at when two consecutive values of β differ by no more than 0.05 per cent, i.e., $\Delta\beta/\beta \le 0.0005$; however, this is by no means absolutely true

over the entire range. The rapid convergence of this method is illustrated by three numerical examples for air given below.

It should be kept in mind that this procedure is not particularly useful when a complete set of oblique-shock charts for a known atmosphere is to be constructed. In such a case all that needs be done is to specify a β and iterate the normal-shock equations. The corresponding θ can then be immediately calculated.

EXAMPLES

1. Very Weak Shock

Given: $w_1 = 8000$ ft/sec in air

Altitude = 82,345 ft (1956 ARDC model atmosphere) (23) $\theta = 20^{\circ}$

Find: β for the weak-shock solution

Solution: (a) Assume $\beta = 90^{\circ}$, then $u_1 = 8000$ ft/sec

From the normal-shock data in Ref. 20, $u_2/u_1 = 0.1435$ From Eq. (41), taking the negative sign for $\beta \le (45^{\circ} + 9/2)$ $\beta = 23.58^{\circ}$

The solution is now bracketed between 23.58° and 90°

(b) Taking $\beta = 23.58^{\circ}$ and using Eq. (39), $u_1 = 3201$ ft/sec From the normal-shock data $u_2/u_1 = 0.2407$ From Eq. (41), $\beta = 26.98^{\circ}$ The solution is now bracketed between 26.98° and 26.16° Continuing:

(b.1)
$$u_1 = 3630 \text{ ft/sec}$$

$$\frac{u_2}{u_1} = 0.2198$$

$$\beta = 26.16^{\circ}$$

$$\frac{u_2}{u_1} = 0.2243$$

$$\beta = 26.33^{\circ}$$

$$(b.3) u_1 = 3548 \text{ ft/sec}$$

$$\frac{u_2}{u_1} = 0.2230$$

$$\beta = 26.29^{\circ}$$

$$(b.4) u_1 = 3544 ft/sec$$

 $\frac{u_2}{u_1} = 0.2230$ within the accuracy with which the charts can be read

 $\beta = 26.29^{\circ}$ which is the solution compared with

 $\beta = 26.3^{\circ}$ obtained from Ref. 20

2. Strong-Shock Solution and Illustration of Convergence Difficulties for the Weak Shock

Given

$$w_1 = 3000 \text{ ft/sec in air}$$

Altitude = 175,348 ft

$$\theta = 30^{\circ}$$

Find: β for the strong-shock solution

Solution:

First, hunting for the weak-shock solution, assume

$$\beta = 90^{\circ}$$

$$u_1 = 3000 \text{ ft/sec}$$

From the normal-shock data

$$\frac{u_2}{u_1} = 0.2740$$

From Fig. 14 for
$$\theta = 30^{\circ}$$
, $\frac{u_2}{u_1} = 0.2740$, and $\beta \le (45^{\circ} + \theta/2)$
 $\beta = 45.67^{\circ}$

From Eq. (39)

$$u_1 = 2176 \text{ ft/sec}$$

and from the normal-shock chart

$$\frac{u_2}{u_1} = 0.3866$$

But, as can be seen in Fig. 14, this is greater than

$$\left(\frac{u_2}{u_1}\right)_{max}$$

Therefore, assume

$$\frac{u_2}{u_1} = \left(\frac{u_2}{u_1}\right)_{max} \qquad \beta = (45^{\circ} + \frac{30^{\circ}}{2}) = 60^{\circ}$$

From Eq. (39)

$$u_1 = 2598 \text{ ft/sec}$$

and from the shock chart

$$\frac{u_2}{u_1} = 0.3140$$

which is now less than $\frac{u_2}{u_1}$ and the process will converge to the weak-shock solution where $\beta < (45^{\circ} + \theta/2)$. Looking for the strong-shock solution, choose $\beta = 90^{\circ}$, $u_1 = 3000$ ft/sec. Then as before $u_2/u_1 = 0.2740$. Now from Fig. 14 pick $\beta > (45^{\circ} + \theta/2)$.

$$\beta = 74.32^{\circ}$$

From Eq. (39)

$$u_1 = 2888 \text{ ft/sec}$$

From the shock charts

$$\frac{u_2}{u_1} = 0.2843$$

From Fig. 14

$$\beta = 73.07^{\circ}$$

Continuing:

$$u_1 = 2870 \text{ ft/sec}$$

$$\frac{u_2}{u_1} = 0.2848$$

$$\beta = 72.99^{\circ}$$

$$u_1 = 2869 \text{ ft/sec}$$

$$\frac{u_2}{u_1} = 0.2850$$

$$\beta = 72.96^{\circ}$$

And since on the last trial

$$\frac{\Delta\beta}{\beta} = \frac{72.99 - 72.96}{72.96} = 0.00041 < 0.0005$$

we step the process and take the strong-shock solution as $\beta = 72.96^{\circ}$

3. Weak-Shock Solution on Right Half of u2/u1 vs β Curve

Given: Mach number = 1.9 in air which is assumed a perfect gas

Normal-shock relations are taken from Ref. 22. $\theta = 20^{\circ}$

Find: β for weak shock

Solution: Clearly assuming $\beta = 90^{\circ}$, M_{normal} = 1.9 will yield

$$\frac{u_2}{u_1} > \left(\frac{u_2}{u_1}\right)$$
 max

on the second iteration. Therefore assume

$$\frac{u_2}{u_1} = \left(\frac{u_2}{u_1}\right)_{\text{max}}, \ \beta = 55^{\circ}$$

From Eq. (39), using the Mach numbers instead of velocity

$$M_{1_n} = 1.556$$

From Ref. 23

$$\frac{u_2}{u_1} = \frac{1}{\rho_2/\rho_1} = 0.5109$$

which is greater than $\left(\frac{u_2}{u_1}\right)$. Therefore, the weakshock solution must lie where $\beta > (45^{\circ} + \theta/2)$.

Now, using the previously mentioned counterclockwise solution, choose $\beta = (45^{\circ} + \theta/2)$ and $\left(\frac{u_2}{u_1}\right)_{max}$

$$\frac{u_2}{u_1} = 0.4903$$

From the normal shock tables

$$M_{1_n} = 1.604$$

and from Eq. (39)

$$\beta = 57.59^{\circ}$$

From Fig. 14

$$\frac{u_2}{u_1} = 0.14888$$

Continuing:

$$M_{1_n} = 1.608$$

$$\beta = 57.81^{\circ}$$

$$\frac{u_2}{u_1} = 0.4884$$

$$M_{n} = 1.6091$$

$$\beta = 57.87^{\circ}$$

$$\frac{u_2}{u_1} = 0.4883$$

$$M_{1_n} = 1.6094$$

$$\beta = 57.89^{\circ}$$

and since

$$\frac{\triangle\beta}{\beta} = \frac{57.89 - 57.87}{57.89} = 0.0003 < 0.0005$$

the process is stopped and

$$\beta = 57.89^{\circ}$$

compared to the solution in Ref. 22 of

$$\beta = 57.9^{\circ}$$

Appendix C

CALCULATION OF ELECTRON CONCENTRATIONS AT LOW TEMPERATURES IN THE C-N-O GASEOUS SYSTEM

It is known that strong interference with radio or telemetry transmission from atmospheric-entry vehicles is possible if the transmission frequency is equal to or less than the plasma frequency of the medium surrounding the antenna and if the collision frequency is large enough. Plasma frequency is directly dependent upon the square root of the electron concentration in the surrounding medium, and it may be desired to know this concentration to as low as 10^{-17} g-mole of electrons per g-mole of gas mixture. This concentration corresponds to a transmission frequency of 10 Mc through a medium, for example, at a pressure of 10^2 atm and a temperature of 1000^0 K in the present tentative Venus atmosphere.

Since the equilibrium composition of gases computed by the method of Ref. 18 does not show the trace constituents, it is not suited to the calculation of electron concentrations at low temperatures if the major constituents of the gas mixture are known. In particular, the present calculations apply to the C-N-O gaseous mixture but the general method may be applied to any arbitrary mixture. The calculated electron concentration is based on an ideal gas mixture in thermodynamic equilibrium when the major constituents of the gas mixture are known. Since the major constituents of the gas are generally computed on the basis of an ideal gas in thermodynamic equilibrium, these conditions are consistent.

For a chemical reaction of ideal gases in thermodynamic equilibrium, the equilibrium constant may be written

$$K_{\mathbf{p}} = \frac{\mathbf{1}}{\mathbf{1}} \mathbf{p_{j}} = \exp \left[-\frac{\Delta E_{\mathbf{o}}^{\circ}}{RT} + \sum_{\mathbf{j}} \left(\frac{F^{\bullet} - E_{\mathbf{o}}^{\circ}}{RT} \right)_{\mathbf{j}} - \sum_{\mathbf{j}} \left(\frac{F^{\bullet} - E_{\mathbf{o}}^{\circ}}{RT} \right)_{\mathbf{j}} \right]$$
(44)

where i denotes the products, j the reactants, and \triangle the change as measured by products minus reactants. From an examination of the reaction energies for the C-N-O system in Table 4, it is evident that at low temperatures the electrons may to a close approximation be considered to be produced solely by the following reactions:

1.
$$CO_2 \rightleftharpoons CO_2^+ + e^ \Delta E_0^0 = 317,731 \text{ cal/g-mole}^{(24)}$$
2. $CO \rightleftharpoons CO^+ + e^ \Delta E_0^0 = 323,180 \text{ cal/g-mole}^{(9)}$
3. $O_2 \rightleftharpoons O_2^+ + e^ \Delta E_0^0 = 277,900 \text{ cal/g-mole}^{(9)}$
4. $O \rightleftharpoons O^+ + e^ \Delta E_0^0 = 314,048 \text{ cal/g-mole}^{(9)}$
5. $C \rightleftharpoons C^+ + e^ \Delta E_0^0 = 259,842 \text{ cal/g-mole}^{(9)}$
6. $NO \rightleftharpoons NO^+ + e^ \Delta E_0^0 = 213,400 \text{ cal/g-mole}^{(9)}$

Using the law of partial pressures the equilibrium constant for the corresponding reactions may be expressed as

1.
$$K_{\mathbf{p}_{1}} = \frac{\binom{n_{\text{CO}_{2}}}{\binom{n}{e}} \binom{n_{e}}{\binom{n}{n}}}{\binom{n}{n}}$$
 (45)

2.
$$K_{p_2} = \frac{\binom{n_{CO+}}{n_{e}} \binom{n_{e}}{n_{e}}}{\binom{p}{n_{e}}}$$
 (46)

3-
$$K_{p_3} = \frac{\binom{n_{o_2}}{2}\binom{n_{e^-}}{n_{o_2}}}{\binom{p}{n}}$$
 (47)

4.
$$K_{p_{14}} = \frac{(n_{0+})(n_{e}^{-})}{n_{0}} (p_{n}^{2})$$
 (48)

5.
$$K_{p_5} = \frac{(n_{C+})(n_{e^-})}{n_{e}} (\frac{p}{n})$$
 (49)

6.
$$K_{p_6} = \frac{(n_{NO+})(n_{e^-})}{n_{NO}}(\frac{p}{n})$$
 (50)

Since it is assumed that all of the electrons come from the above ionized species

$$_{e^{-} = n_{CO_{+}} + n_{CO_{+}} + n_{O_{+}} + n_{O_{+}} + n_{C+} + n_{NO_{+}}}$$
 (51)

Combining Eqs. (45) - (51), the electron concentration on the basis of n g-moles of the mixture is

$$n_{e^{-}} = \sqrt{\left(n_{CO_{2}} \kappa_{p_{1}} + n_{CO} \kappa_{p_{2}} + n_{O_{2}} \kappa_{p_{3}} + n_{O} \kappa_{p_{4}} + n_{C} \kappa_{p_{5}} + n_{NO} \kappa_{p_{6}}\right) \left(\frac{n}{p}\right)} (52)$$

Some equilibrium constants have been calculated and are shown in Table 15 for a range of 1000° K to 6000° K. The amounts n_{1} of the major constituents are assumed known and may be placed in the computational Eq. (52) along with the equilibrium constants, and the electron concentrations may be determined. It is

suggested, however, that the accuracy obtained by this method be limited to two significant figures at temperatures where electron concentration becomes significant, since the molar constituents assumed in the calculation from Eq. (52) do not account for the presence of electrons.

For illustrative purposes, results of some of these computations for pure CO₂ corresponding to those of Ref. (17) have been made and are presented in Table 16.

REFERENCES

- 1. Kopal, Z., "Aerodynamic Effects in Planetary Atmospheres," Aerospace Eng., Vol. 19, No. 12, December 1960, p. 10.
- 2. Kuiper, G. P. (ed.), The Atmospheres of the Earth and Planets, 2d ed., University of Chicago Press, Chicago, 1952, pp. 248, 252, 306, 406.
- 3. Dole, S. H., The Atmosphere of Venus, The RAND Corporation, P-978, October 12, 1956.
- 4. Mintz, Y., Temperature and Circulation of the Atmosphere of Venus, The RAND Corporation, P-2003, May 27, 1960.
- 5. Sagan, C., The Radiation Balance of Venus, Doctoral Dissertation, University of Chicago, 1960.
- Shaw, J. H., and N. T. Bobrovnikoff, <u>Natural Environment of the Planet Venus</u>, WADC, Phase Technical Note 847-2, February 1959.
- 7. Vaucouleurs, G., de, Air Force Missile Development Center Technical
 Note (AFMDC-IN-59-37), Holloman Air Force Base, New Mexico,
 December 1959.
- 8. Kaplan, L. D., A New Interpretation of the Structure and CO₂ Content of the Venus Atmosphere, The RAND Corporation, P-2213, May 2, 1961.
- 9. Gilmore, F. R., Equilibrium Composition and Thermodynamic Properties of Air to 24,000°K, The RAND Corporation, RM-1543, August 24, 1955.
- 10. Keenan, J. H., and J. Kaye, <u>Gas Tables</u>, John Wiley and Sons, Inc. New York, 1948.
- ll. Hodgman, C. D. (ed.), <u>Handbook of Chemistry and Physics</u>, 39th ed., Chemical Rubber Publishing Company, Cleveland, Ohio, 1953.
- 12. Mayer, C. H., "Planetary Radiation at Centimeter Wavelengths," Astronom. J., Vol. 64, March 1959, p. 43.
- 13. Chamberlain, J. W., and G. P. Kuiper, "Rotational Temperature and Phase Variation of the CO Bands of Venus," Astrophys. J., Vol. 124, 1956, p. 399.
- 14. Hutchinson, G. E., "The Biochemistry of the Terrestrial Atmosphere," in G. P. Kuiper (ed.), The Earth as a Planet, University of Chicago Press, Chicago, 1954.
- 15. Barrett, A. H., "Microwave Absorption and Emission in the Atmosphere of Venus," <u>Astrophys. J.</u>, Vol. 133, No. 1, January 1961.

- 16. Summary of the Results of the Moore-Ross Flight of November 1959,
 Information Release by the Laboratory of Astrophysics and Physical
 Meteorology, The Johns Hopkins University, Baltimore, Maryland,
 March 1, 1960.
- 17. Raymond, J. L., Thermodynamic Properties of Carbon Dioxide to 24,000°K With Possible Application to the Atmosphere of Venus, The RAND Corporation, RM-2292, November 26, 1958.
- 18. White, W. B., S. M. Johnson, and G. B. Dantzig, "Chemical Equilibrium in Complex Mixtures," J. Chem. Phys., Vol. 28, No. 5, May 1958.
- 19. Sweigert, R. L., P. Weber, and R. L. Allen, "Thermodynamic Properties of Gases," <u>Ind. and Chem. Eng</u>., Vol. 38, No. 2, February 1946, p. 185.
- 20. Normal and Oblique Shock Characteristics at Hypersonic Speeds, Douglas
 Aircraft Company, Inc., Engineering Report No. LB-25599, December 31,
 1957; also R. A. Batchelder, Supplement I to the report.
- 21. Feldman, S., <u>Hypersonic Gas Dynamic Charts for Equilibrium Air</u>, AVCO-Everett Research Laboratory, Research Report 40, 1957.
- 22. Equations, Tables, and Charts for Compressible Flow, Ames Research Staff, NACA Report 1135, 1953, pp. 42-43.
- 23. Minzer, R. A., and W. S. Ripley, The ARDC Model Atmosphere, 1956, AFCRC TN-56-204, December 1956.
- 24. Tanaka, Y., A. S. Jursa, and F. J. LeBlanc, "Higher Ionization Potentials of Linear Triatomic Molecules. I. CO₂," <u>J. Chem. Phys.</u>, Vol. 32, No. 4, April 1960, p. 1199.