${\bf Contents}$

1	Ger	neral Guidance	2			
	1.1	Figure numbering	2			
	1.2	Dates and numbers	2			
	1.3		2			
	1.4		2			
	1.5		2			
2	\mathbf{Spe}	cific words and terms	3			
3	Math and notation					
	3.1	Cross-sections	5			
	3.2	Integrals				
	3.3	Matrices	5			
	3.4	Vectors	5			
4	Other LATEX specific items					
	4.1	Figures	6			
	4.2		6			
	4.3	Package settings	6			
	4.4	Programming language names	6			
	4.5	References and citations	6			
	4.6	Spacing	7			

1 General Guidance

1.1 Figure numbering

Tables, Figures and Captions (see Sec. 4 for formatting properly in LATEX).

```
In Eq. (13), (14), and (16)
In Fig. 4(a)
In Ref. 5
```

Place the caption under figures and images and above tables.

1.2 Dates and numbers

02 February 2016 (no commas)

four or fewer numbers closed up:

1200

 $24.0032~{\rm cm}$

Five or more digits, spaces instead of commas:

12 000

24.07789 cm

one throgh ten

11,12 and above

2x2 matrix (numerals)

0.03 and 106.0 (no "naked" decimal points

6 V (number before units are always numerals)

1D, 2D, 3D

1.3 Punctuation

en-dash: Paris-London train, (1950–), University of Wisconsin-Madison

serial commas (a, b, and c)

hyphenate multi-word modifiers: macro-time

parenthesis:

inserted into another sentence, no period (such as this).

isolated, period inside. (Such as this.)

pairs surrounded letters in innumerated list (a) and (b)

possessives: Smith and Green's theory

plurals:

1950s

x's, K's

quotation marks after commas and periods, before colons and semi-colons

in general, place "e.g." and "i.e." in parenthesis, not commas and include a comma after (e.g., like this).

1.4 Abbreviations

Plural add 's: LCAO's

1.5 Names & proper nouns

Book titles should be italicized.

Article titles should be in quotation marks.

2	Specific words and terms	I	
\mathbf{A}			indexes (to book)
	α particle		indices (to variable)
	angular-flux (adj)		$in \ situ$
	ad hoc	J	
	à la	K	
	anti-compounds closed (antilogarithm)	${f L}$	
В			Laplacian
	burnup (n)		l.h.s.
C	- \ /		lifetime
\mathbf{C}	Cartesian	\mathbf{M}	
	collision-flux estimator		Maxwell(ian)
	cross-section (n)		midpoint
	cross term		modeling
	cross term		multigroup
D			multivarient
	delta-tracking		
	Doppler	N	
	downscatter		non-compound closed:
${f E}$			nonelastic nonradioactive
	eigenfunction		but proper noun, symbol, numeral:
	eigenvalue		non-Fermi
\mathbf{F}			12-fold
Г	Fourier transform/analysis/spectra	O	
	Fourier transform/anarysis/spectra	P	
\mathbf{G}			path length
	Gauss-Seidel (adj)	Q	
Н		Q R	
	half-compound hyphenated:	п	radioactive
	half-life		ray tracing
	halfway		r.h.s.
			runtime

```
\mathbf{S}
       scalar-flux (adj)
       setup
       self-compound hyphenated:
             self-shielded (adj)
       semiempirical
       semi-infinite
{f T}
       {\rm track}\ {\rm length}
       {\it track-length\ estimator}
\mathbf{U}
       upscatter
       uranium
\mathbf{V}
W
       waveheight
       wavelength
\mathbf{X}
       x ray (n)
       x-ray (adj)
\mathbf{Y}
```

 ${\bf Z}$

3 Math and notation

3.1 Cross-sections

Macroscopic cross-sections are used so infrequently in neutronics that reserving the use of capital sigma, Σ , is inefficient. Use the following notation to differentiate between the two:

macroscopic: $\tilde{\sigma}$ microscopic: σ

3.2 Integrals

To ease reading, for single-integration integrals, place the differential on the right side, with a space between the last variable and the d,

\begin{equation*}
 \int f(x)\,dx
\end{equation*}

$$\int f(x) \, dx$$

For multiple-integration integrals place the differential immediately after its corresponding integral symbol, place a space after the last differential:

 $\int_{0}^{1} dx \int_{0}^{1} dy , f(x,y)$

$$\int_0^1 dx \int_0^1 dy \, f(x,y)$$

The space helps emphasize that the differential is a single variable.

Use parenthesis or brackets for any integral with multiple terms, the extra space is not required if the \left and \right commands are used, but are required otherwise; see examples:

$$\int \left[f(x) + g(x) \right] dx$$

 $\inf [f(x) + g(x)] \setminus dx$

$$\int [f(x) + g(x)] dx$$

\int_{0}^{1}dx \int_{0}^{1} dy\left[f(x,y) + g(x,y)\right]

$$\int_{0}^{1} dx \int_{0}^{1} dy \left[f(x,y) + g(x,y) \right]$$

\int_{0}^{1}dx \int_{0}^{1} dy\,[f(x,y) + g(x,y)]

$$\int_{0}^{1} dx \int_{0}^{1} dy \left[f(x,y) + g(x,y) \right]$$

3.3 Matrices

Bold capital letters, A.

Use brackets (bmatrix) for normal matrix, pipes (vmatrix) for determinants, and double pipes (Vmatrix) for a matrix norm.

3.4 Vectors

Topped with an arrow, $\vec{\phi}$. Vector superscripts must be shifted slightly using $\ensuremath{\mbox{vec}{\phi}}^{\hbar}_{\hbar}$. For comparison:

 $\label{eq:condition} $\operatorname{\phi}^{\ell} : \vec{\phi}^\ell \end{subarray} $$\operatorname{\phi}^{\ell} : \vec{\phi}^\ell $$$

Use hats to denote unit vectors, $\hat{\Omega}$.

In general, if a vector is made up of other vectors, use a capital letter for the larger vector, and lowercase for the smaller vectors.

$$ec{\Phi} = egin{bmatrix} ec{\phi_0} \ ec{\phi_1} \end{bmatrix}$$

4 Other LATEX specific items

4.1 Figures

Place the \label{} for figures inside the caption to ensure correct references:

```
\caption{This is the caption.\label{fig:ref}}
```

4.2 Labels

Use the following formats for labels:

```
Chapters \label{sec:chapter_name}
Sections \label{sec:chapter_name:section_name}
```

4.3 Package settings

Always hide boxes from hyperref package:

```
\usepackage[hidelinks]{hyperref}
```

4.4 Programming language names

For the C++ programming language use:

```
\label{localize} $$\operatorname{Cpp}[1][]_{\text{C}} = \frac{4} \ -05em} \ (.4ex)^{++}#1}$
```

This greatly improves the look of the name:

4.5 References and citations

For equations, use the amsmath \eqref{label} function.

$$E = mc^2 (1)$$

This correctly formats Eq. ~\eqref{eq:relativity} as Eq. (1).

Use Sec. ~\ref{sec:latex} for sections, which correctly formats as Sec. 4.

For figures, use Fig. ~\ref{fig:image}, which correctly formats as Fig. 1.

For subfigures, include the packages and commands:

```
\usepackage{caption, subcaption}
\renewcommand\thesubfigure{(\alph{subfigure})}
\captionsetup[sub]{labelformat=simple}
```

and reference the subfigure itself, which will format correctly as Fig. 1(a). See documentation for these packages if needed.

Figure 1: Subfigure with parts (a) and (b).

4.6 Spacing

For abbreviations use .\ or .~ if a tie is needed (titles or other words that should not be separated).

Normal e.g. this example; seen in Fig. 1 Proper e.g. this example; seen in Fig. 1

Note: the bibliography handles this correctly already.

Specify interspace spacing, $\setminus @$. if a capital letter ends a sentence:

Normal The code is called BART. As you can see. Proper The code is called BART. As you can see.