

Analysis of Sequential Data Signal Processing Basics

Prof. Dr. H.-P. Hutter, HII-Group, InIT/ZHAW,

hans-peter.hutter@zhaw.ch

Objectives

- You know what a digital signal is
- You know different types of digital signals
- You know basic terms of signal processing

Sequential Data

- Examples
 - Music
 - Speech
 - Text
 - Video
 - Sensor signals, mesurements
 - DNA sequence
 - Financial data

Analysis of Sequential Data

Digital Signal

- Very common type of sequential data
- Digital signal
 - Often results from sampling an analog signal x(t), $-\infty \le t \le \infty$
 - Sequence of numbers x(n), $-\infty < n < \infty$, $n \in \mathbb{N}$, $x \in \mathbb{Q}$
 - x(n) is a discrete function of n
- Digital Signal Processing
 - Wants to find out from x(n)
 - Something about the information i(t)
 - Something about the Transformation Channel

Digital Signal

A/D-Conversion

- ullet Take samples of analog signal x(t) at regular times T_s
- Digitize analog value x(t) into an integer value x(n)

Sampling

- Sampling period T_s [s]
- Sampling frequency $f_S = \frac{1}{T_S}[Hz, s^{-1}]$
- $x(n) = x(t = nT_s)$

Sampling period Ts = 0.25ms (from figure) Sampling frequency = $1/\text{Ts} = 1/(0.25 * 10^{-3} \text{ s})$ = 4000 Hz

Sampling and Aliasing

Sampling rate must be high enough:

$$f_{s_{min}} > 2 * f_h$$

 f_h : highest frequency in analog signal.

Otherwise aliasing occurs

Digitization introduces (small) quantization errors

Characteristics of Digital Signals

- Discrete in time $x(n) = x(t = nT_s)$
- Discrete in amplitude
- Important types of (digital) signals
 - Non stationary signals
 - Unit Sample (Impulse)
 - Unit Step
 - Real Exponential

Characteristics of Digital Signals

- Discrete in time $x(n) = x(t = nT_s)$
- Discrete in amplitude
- Important types of (digital) signals
 - Stationary signals
 - Don't change characteristics in time
 - Periodic
 - Aperiodic: noise signals

Sinusoidal Signal

Basic signal of all periodic signals

$$x(t) = A \cos(\omega t + \Phi)$$

- Amplitude A
- Phase Φ
- Angular frequency ω [rad/s]

$$\omega = \frac{2\pi}{T} = 2\pi f$$

f: linear frequency [Hz = s^{-1}]

T: period [s]

Sinusoidal Sequence

Sinusoidal sequence

$$x(n) = A \cos(\omega_0 n + \Phi)$$

- Amplitude A
- Phase Φ
- Normalized angular frequency ω_0 [rad]

$$\omega_0 = \frac{2\pi}{T_0} = 2\pi f_0$$

 $T_0 = 40$ (from figure)

 $f_s = 8 \text{ kHz}, -> T_s = 1/f_s = 0.125 \text{ms}$

$$T_0 = 40$$
 (from figure)
 $T = T_0 T_s = 40 \ 0.125 \text{ms} = 5 \text{ms}$
 $f = 1/T = 200 \ \text{Hz}$

 f_0 : normalized linear frequency $\frac{f}{f_s}$ [0..1]

 T_0 : normalized period $\frac{T}{T_s} (\geq 1)$

Sinusoidal Sequence

Complex exponential sequence

$$x(n) = A e^{i(\omega_0 n + \Phi)}$$

$$= A \cos(\omega_0 n + \Phi) + i A \sin(\omega_0 n + \Phi)$$

- Amplitude A
- Phase Φ
- Normalized angular frequency ω_0

$$\omega_0 = \frac{2\pi}{T_0} = 2\pi f_0$$

f₀: normalized linear frequency $\frac{f}{f_s}$ [0..1] T₀: normalized period $\frac{T}{T_s} (\geq 1)$

Periodic Sequences

■ With period *N* (integer) for which the following holds true:

$$x(n) = x(n + N)$$
, for all n

Each periodic sequence with period N can be represented by a sum of N complex exponential functions (Discrete Fourier Series):

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{i(2\pi/N)kn}$$

With

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-i(2\pi/N)kn}$$

- $\blacksquare X(k)$; $0 \le k < N$
 - Amplitude of the k-th frequency component in signal x(n)
 - Is called the **Discrete Fourier Spectrum (N-point DFT spectrum)** of signal x(n)
 - It shows the N frequency components that comprise the periodic signal x(n)

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-i(2\pi/N)kn} \quad 0 \le k < N$$

$$X(k) = X(f = \frac{f_s k}{N})$$

■ X(k) is equal to the continuous spectrum $X(\omega)$ of x(n) sampled at N equally spaced intervals $(2\pi/N)$ in the range $0 \le \omega < 2\pi$, i.e. in the lin. frequency range of $0 \le f < f_s$

$$X(k) = X\left(f = \frac{f_S k}{N}\right); 0 \le k < N$$

 f_s : sampling frequency

N: sampling period

Example: Spectrum of the periodic signal

$$x(t) = \sum_{m=1}^{8} \frac{1}{m} \cos(m\omega_0 t - \frac{\pi}{2})$$

- $\omega_0 = 2\pi f_0$, $f_0 = 200 \ Hz$
- x(n) = x(t) sampled at 8kHz
- |X(k)| shows the amplitudes A of the frequency components $f = (\frac{f_s k}{N})$

Example: Spectrum of the periodic signal

Note:

- |X(k)| has additional frequency components
 - Original components mirrored at $\frac{f_s}{2}$
 - Due to sampling and Euler formula $cos(\omega t) = \frac{1}{2} (e^{i\omega t} + e^{-i\omega t})$

DFT dB-Spectrum

- Amplitudes in the dBspectrum are normalized to a reference amplitude
- The ratio is depicted in Decibel:

$$A[dB] = 20 \log(\frac{A}{A_{ref}})$$

- 20 dB -> 10 times higher 40 dB -> 100 times (!)
- A_{ref} may be the highest amplitude, e.g.

- Inverse Discrete Fourier Transform
 - x(n) can be calculated from X(k) using the IDFT

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{i(2\pi/N)kn} \quad , 0 \le n < N$$

- DFT and IDFT form a transformation (analysis/synthesis) pair:
 - Frequency domain (DFT):

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-i(2\pi/N)kn}$$
 , $0 \le k < N$

Time domain (IDFT):

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{i(2\pi/N)kn}$$
 , $0 \le n < N$

Important Properties of the DFT

Property	Time Domain $x(n)$	Frequency Domain (DFT $X(k)$)
Periodicity	$x(n) = x((n))_N$	$X(k) = X((k))_N$
Linearity	$ax_1(n) + bx_2(n)$	$aX_1(k) + bX_2(k)$
Convolution	$x_1(n) * x_2((n))_N$	$X_1(k)X_2(k)$
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{N}(X_1(k) * X_2((k))_N)$

Signal Transformation

- In general: $y(n) = T\{x(n)\}$
 - T maps input sequence x(n) to output sequence y(n)

- Delay system y(n) = x(n d)
- Moving average

$$y(n) = \frac{1}{2M+1} \sum_{k=-M}^{M} x(k)$$

ARIMA system

Signal Transformation LTI Sytems

- Linear Time-Invariant Systems (LTI)
 - linear:

$$T\{a_1x_1(n) + a_2x_2(n)\}\$$

$$= a_1T\{x_1(n)\} + a_2T\{x_2(n)\}\$$

$$= a_1 y_1(n) + a_2y_2(n)$$

• Time-invariant if $y(n) = T\{x(n)\}$ then $y(n-d) = T\{x(n-d)\}$

Linear

$$T\{.\}$$
 $a_1x_1(n) + a_2x_2(n) \longrightarrow a_1y_1(n) + a_2y_2(n)$

Time-invariant

$$x(n-d) \xrightarrow{T\{.\}} y(n-d)$$

Signal Transformation LTI Sytems

- Linear Time-Invariant Systems (LTI)
 - Examples:
 - Delay system y(n) = x(n-d)
 - Moving average

$$y(n) = \frac{1}{2M+1} \sum_{k=-M}^{M} x(k)$$

- ARIMA systems
- Non-LTI examples
 - Median smoother
 - Hard limiter
 - Full/Half wave rectifier

Linear

$$T\{.\}$$
 $a_1x_1(n) + a_2x_2(n) \longrightarrow a_1y_1(n) + a_2y_2(n)$

Time-invariant

$$x(n-d) \xrightarrow{T\{.\}} y(n-d)$$

Signal Transformation LTI Sytems

LTI systems are fully characterized by there impulse response h(n)

$$y(n) = \sum_{k=-\infty}^{\infty} x(n)h(n-k)$$
$$= x(n) * h(n)$$

* denotes the convolution operator

Impulse response

$$\delta(n) \xrightarrow{T\{.\}} h(n)$$

General response

$$x(n)$$
 $\xrightarrow{T\{.\}}$ $y(n) = x(n) * h(n)$

Discrete Convolution

 $y(n) = s_1(n) * s_2(n)$

$$=\sum_{k=-\infty}^{\infty}s_1(k)s_2(n-k)$$

Circular convolution (modulo N)

$$s_1(n) * s_2((n))_N$$

$$= \sum_{k=0}^{N-1} s_1(k) s_2((n-k))_N$$

Discrete Convolution Exercise

$$S_1(n) = 0, 1, 2, 2, 0$$

$$s_2(n) = 1, 0, 0, 0, 0$$

- What is the discrete convolution
- $y(n) = s_1(n) * s_2(n)$?

$$y(n) = s_1(n) * s_2(n)$$

$$= \sum_{k=-\infty}^{\infty} s_1(k) s_2(n-k)$$

$$s_1(n) = 0, 1, 2, 2, 0$$

 $s_2(-n) = 0, 0, 0, 0, 1$

Discrete Convolution

Property	Equivalences
Commutative	x(n) * h(n) = h(n) * x(n)
Associative	$x(n) * (h_1(n) * h_2(n))$ = $(x(n) * h_1(n)) * h_2(n)$ = $x(n) * h_1(n) * h_2(n)$
Distributive	$x(n) * (h_1(n) + h_2(n))$ = $x(n) * h_1(n) + x(n) * h_2(n)$

Frequency Response of LTI systems

Fourier Transform of h(n):

$$H(\omega) = \sum_{n=-\infty}^{\infty} h(n)e^{-i\omega n}$$

- $H(\omega)$ is called the **frequency response** or **transfer function** of the LTI system
- $H(\omega)$ is periodic with period 2π
- LTI-systems:

$$y(n) = x(n) * h(n)$$

$$Y(\omega) = X(\omega)H(\omega)$$

• A frequency component ω of x(n) is transformed by the LTI into a signal with the same frequency amplified/attenuated by $H(\omega)$

Important LTI Systems Filters

Filters

- Attenuate or amplify certain frequencies of the input signal x(n)
- $Y(\omega) = X(\omega)H(\omega)$
- ~linear in pass band
- Filter types
 - Lowpass filter
 - Highpass filter
 - Bandpass filter
 - Bandstop filter
- Filter design is a discipline of its own

Important LTI Systems FIR Filters

- FIR-Filters
 - Finite Impulse Response Filter
 - General form:

$$y(n) = a_1 x(n) + a_2 x(n-1) + a_2 x(n-2) + ... + a_p x(n-p)$$

- p: filter order
- Depending on coefficients a_i:
 - Highpass filter
 - Lowpass filter
 - Bandpass filter
 - Other filters