Deloitte.

AI Academy Capstone Team 2 March 2024

Meet the Team!

Sabrina Callejo
Solution Analyst
Deloitte Consulting
scallejo@deloitte.com

Syed Ali Irtaza
Solution Analyst
Deloitte Consulting
sirtaza@deloitte.com

Ari Kohl

Analyst

Deloitte Risk & Financial Advisory

arikohl@deloitte.com

Levin Sam

Analyst

Deloitte Risk & Financial Advisory

lesam@deloitte.com

Introduction

Predicting returns in e-commerce using the Kaggle dataset

Retailers' average return rate jumps... (cnbc.com)

16.6% of total merchandise returned in 2021, a jump from an average return rate of 10.6% in 2020

Introduction/Business Understanding

What are the factors that influence buying behavior of ecommerce customers to minimize returns of products for businesses?

Our goal: To help the e-commerce market industry gain insights on buying behavior to determine an effective way of increasing revenue.

Focused primarily on determining factors that lead to returns from customers

Dataset

https://www.kaggle.com/datasets/willianoliveiragibin/websites-e-comerce

	accessed_Ffom	age	gender	country	membership	language	returned	pay_method
0	Chrome	28	Female	CA	Normal	English	No	Credit Card
1	Mozilla Firefox	21	Male	AR	Normal	English	No	Debit Card
2	Mozilla Firefox	20	Male	PL	Normal	English	No	Cash
3	Mozilla Firefox	66	Female	IN	Normal	Spanish	No	Credit Card
4	Mozilla Firefox	53	Female	KR	Normal	Spanish	No	Cash

Pre-Processing Steps

Data Exploration

Data Exploration – Target Variable

Data Exploration – Age of Users

Data Exploration - Country

Data Exploration - Language

Data Exploration - Gender

Nearly identical split in the whole and subset

Data Exploration – Membership Type

Nearly identical split in the whole and subset

Data Exploration – Payment Methods

Very similar splits in the whole and subset

Data Exploration – Access Method

• Nearly identical split in whole and subset

Methods

Imbalanced Data Problem

01

Biased Models

Possibility of bias toward the majority class, resulting in poor performance on the minority class

02

Difficulty in Model Evaluation

Metrics such as accuracy can be misleading as high accuracy can be achieved by predicting the majority class

03

Feature Importance Bias

Model may focus more on features that help distinguish the majority class, neglecting features important for minority class prediction

Solution: Oversampling/Under sampling Data

- Oversampling and Under sampling was essential in fixing the data imbalance issue
- Both classes had equal distributions of data

Logistic Regression

- Statistical model used for binary classification tasks where target variable is categorical and has only two possible outcomes
- Estimates the probability that a given input belongs to one of the classes by fitting a logistic function to the observed data

Random Forest

- Random Forest is a learning algorithm used for classification and regression tasks in machine learning
- Belongs to the family of tree-based methods known for its high predictive accuracy
- Used for binary classification tasks where the target variable is categorical with two possible outcomes capturing complex relationships and provide robust predictions

Metrics/Results

Accuracy Metrics

Training	Logistic regression	LogReg GridSearch	Random Forest	RanFor GridSearch	
Oversampling	53.95%	53.86%	95.87%	94.95%	
Undersampling	54.19%	54.39%	96.37%	78.18%	
SMOTE	77.37%	77.90%	94.68%	89.54%	

Testing	Logistic regression	LogReg GridSearch	Random Forest	RanFor GridSearch
Oversampling	40.80%	40.70%	73.95%	72.63%
Undersampling	39.66%	39.60%	51.90%	46.54%
SMOTE	74.03%	75.62%	70.79%	66.20%

Data Visualization

AUC Results

0.985 AUC

Training

0.527 AUC

Testing

Data Visualization

Precision and Recall Metrics

$$Precision = \frac{True\ Positive(TP)}{True\ Positive(TP) + False\ Positive(FP)}$$

$$Recall = \frac{True\ Positive(TP)}{True\ Positive(TP) + False\ Negative(FN)}$$

© Deloitte & Touche LLP Group 2 - Capstone Project

27

Precision and Recall Metrics

• The precision and recall is higher when predicting non-returned rather than predicting returned

	precision	recall	f1-score	support
0	0.86	0.82	0.84	18098
1	0.15	0.19	0.17	3081
accuracy			0.73	21179
macro avg	0.50	0.50	0.50	21179
weighted avg	0.75	0.73	0.74	21179

Conclusion

Conclusion

Next Steps

More data

Richer reviews

Fit a proper neural network to the dataset

Add additional data collection for returns (ex. 5 reasons why the items were returned)

Implement a more robust returns process

Deloitte.

Questions?

