

Human Computer Interaction

CSCI 4620 U/G | SOFE 4850 Dr. Christopher Collins

Acknowledgement: Parts of these lectures are based on material prepared by Ron Baecker, Ravin Balakrishnan, John Chattoe, Ilona Posner, Scott Klemmer, and Jeremy Bradbury.

People, not users.

Patent Application Publication Feb. 2, 2006 Sheet 44 of 52 US 2006/0026535 A1

WHY DOES HUMAN-COMPUTER INTERACTION MATTER?

Good design brings joy

Bad design costs lives, money, and time

10 minutes / day

=330,000,000 minutes / day in Canada

628 person years of wasted time EVERYDAY in Canada alone

Welcome!

- In today's class we will:
 - Get to know each other!
 - Review the course outline
 - Develop class norms
 - Get started with an intro to HCI EMR Case Study

About Me

- Canada Research Chair
- Information Visualization & HCI
- Computational Linguistics

- University of Toronto
- University of Calgary
- Memorial University of Newfoundland

Information Exploration

Text Analysis

NLP Interfaces

Documents

Literary Analysis

Text Collections

Linguistic Analysis

Streaming Data

More about my research...

WWW.CHRISTOPHERCOLLINS.CA

Teaching Assistant

HRIM MEHTA

http://vialab.science.uoit.ca/portfolio/hrim-mehta

Why HCI?

"Put That There" Richard A. Bolt, International Conference on Computer Graphics and Interactive Techniques, 1980.

Skinput: Appropriating the Body as an Input Surface

Chris Harrison

chris.harrison@cs.cmu.edu

Desney Tan

desney@microsoft.com

Dan Morris

dan@microsoft.com

Carnegie Mellon

Microsoft

COURSE OVERVIEW

A public service announcement

Schedule

• Lecture:

- Tuesday 8:10am-9:30am UL 11 (so early...)
- Friday 9:40am-11:00pm UL 11

• Labs:

- Tuesday 2:10-4:00 J 123-A
- Friday 1:10-3:00 J 123-A
- Attend your registered section!

Contact - Me

- UA 4024 and online:
 - Tuesday 10:00am-11:00am
 - By appointment
 - Blackboard Chat

Contact - TA

- UA 4029 and online:
 - Thursday 11:00am-12:00pm
 - By appointment
 - Blackboard Chat

What might you come talk about?

Talkin' bout Technology

- Blackboard
- Twitter: #csci4620

- Later:
 - Processing (processing.org)
 - The Simple Multitouch Toolkit (vialab.science.uoit.ca/smt)

Email

- Please use Blackboard to contact me, unless it is urgent (e.g. you will miss your midterm test).
 - Urgent contact info can be found in the syllabus.
- Take time when composing an email think of it as a professional message to a co-worker.
 - There won't be space for SMS-speak in your work life.
- Email turnaround:
 - Guaranteed: 2 days
 - Average: 1 day
 - Sometimes: 10 seconds
 - ... but don't count on that!

Course Outcomes

- Describe a typical process used to understand people and contexts, enumerate tasks and requirements, and to evaluate the success of implemented interfaces.
- Critique interactive interface design using well-founded theoretical explanations.
- Recognize the impact of human-computer interaction in everyday life situations.

Course Outcomes

- Implement universal design techniques and apply standards for universal accessibility.
- Apply principles of good interface design in the creation of small scale systems.
- Work in small teams on a multi-step project.

Course Outcomes

- Write and speak clearly about issues and challenges in hardware and software interface design, specific challenges uncovered during their term project.
- Apply general mathematical models in the assessment of interaction technique efficiency and effectiveness.

Topics

- 1. Introduction
- 2. Models & Paradigms
- 3. Developing a Rich Understanding
- 4. Evaluation
- 5. Implementation Issues
- 6. HCI Case Studies / Research Frontiers

Course Text

Available at the bookstore & online

David Benyon. Designing Interactive Systems, 3rd Edition (Pearson Education, 2013).

This book is the primary reference for the course material presented in the lectures.

Reference Text

- Not required, but a useful reference.
- Available online at the UOIT library.

Mackenzie, I. Scott. Human-Computer Interaction: An Empirical Research Perspective, 1st ed. (Morgan Kauffman, 2013).

This book is a reference for the course material presented in the lectures.

Reference Text

- Not required, but a useful reference.
- Available to borrow from me.

Alan Dix, Janet Finlay, Gregory D. Abowd, Russell Beale. Human-Computer Interaction, 3rd Edition (Pearson Education, 2004).

This book is a reference for the course material presented in the lectures.

Required Readings

- Most weeks, 1+ required readings and/or videos will be posted on Blackboard
 - Textbook chapters
 - Videos
 - Research papers
 - Media articles
 - Blog entries
- They are required, as in you have to read them.
- Readings will be included in the mid-term and final exam.

Evaluation - Undergraduate

Item	Value
Participation	3%
Labs	10 X 1% = 10%
Mid-term test	20%
Group project	45%
Final exam	22%
Total	100%

Item	Value	
Participation	3%	
Labs	10 X 1% = 10%	
Mid-term test	20%	
Group project	45%	
Final exam	22%	
Total	100%	

Lectures and Blackboard

Interim grade report after 5 weeks = opportunity to improve

Item	Value
Participation	3%
Labs	10 X 1% = 10%
Mid-term test	20%
Group project	45%
Final exam	22%
Total	100%

Attendance is required.
Short activities submitted during lab, often related to term project.

Item	Value
Participation	3%
Labs	10 X 1% = 10%
Mid-term test	20%
Group project	45%
Final exam	22%
Total	100%

Covering material up to the lesson before the test on October 17.

Item	Value
Participation	3%
Labs	10 X 1% = 10%
Mid-term test	20%
Group project	45%
Final exam	22%
Total	100%

Multi-part project

Groups of 3 or 4

Grad students: form grad student teams

Submitted in 8 parts

Item	Value
Participation	3%
Labs	10 X 1% = 10%
Mid-term test	20%
Group project	45%
Final exam	22%
Total	100%

Cumulative on the whole term.

Evaluation – Graduate Students

Item	Value
Participation	3%
Labs	10 X 1% = 10%
Mid-term test	10%
Group project	45%
Individual Assignments	2 x 10% = 20%
Final exam	12%
Total	100%

2 assignments based on readings and lecture materials. These are individual assignments, with a strong design component.

Individual vs Group Work

 Must pass individual portion of the grade to pass the class!

Labs

- If you miss a lab due to illness or a death in the family, you must obtain the appropriate documentation (UOIT Medical Certificate, death certificate) and submit it to the course instructor within five business days of missing the lab.
- As space allows, and with a legitimate reason, it may be possible to attend a different lab section or complete a lab on your own time. Contact your TA in advance for approval.
- Absence from more than two labs, regardless of any documented reasons, will result in a grade of F for the course (see

http://www.science.uoit.ca/undergraduate/current-students/academic-policies.php).

Labs

- 10 labs total
- No labs on the weeks of Sept 8-12, Oct 6-10,
 Dec 1-5
- Lab schedule in the labs folder on Blackboard

Tutorials?

- SOFE 4850 students are registered for tutorials
- CSCI 4620 students are registered for labs
- The contact hours are the same.
- Thus, you can think of the labs as tutorials they reinforce course materials through activities and offer an opportunity to meet with the teaching assistant.

Tentative Course Dates

Wednesday, Sept 10 Term project part 1a due (participation)

Thursday, Sept 18 Term project part 1b due (1% for submitting; must submit

and receive approval before proceeding)

Friday, Oct 3 Term project part 2a due (5%)

Friday, Oct 17 Midterm test (20%)

Sunday, Oct 19 Term project part 2b due (9%)
Thursday, Oct 30 Term project part 3a due (7%)
Sunday, Nov 23 Term Project part 3b due (13%)

Friday, Nov 28 Term project part 4a presentations (3%)

Wednesday, Dec 3 Term project part 4b due (7%)

Assignments are due on Blackboard at 11:59pm on the due date.

Late Assignments

- Extensions on request with valid reason.
- Without reason:
 - Subtract 10% each day or part day (including weekends)
 - Maximum 4 days late, then not accepted
- Caution! The term project is cumulative so extensions will cut into the time for the next part!

Remarking

- "Chris, this is totally stupid. You didn't tell us about X or Y, and anyway, I think I'm right."
 = 0% change
- It is very important that all assessments are fairly graded. If you think there is a problem, please submit an explanation, by email, within 7 days of receiving the grade.
- No requests accepted in class or more than 7 days later.

Accessibility

- Please speak to me as soon as possible.
- Accommodations can also be arranged through the Student Accessibility Services (see syllabus).

Academic Integrity

- You work must be your own: if you quote others, cite them appropriately.
- You may not work together, except on the group term project. Groups may not collaborate unless explicitly asked to do so.
- Academic misconduct is a serious offense, and will be handled under UOIT policies.
 - Note: 'allowing one's work to be copied' is an offense too.

What I expect of you...

- Come to class on time and prepared
- Read the assigned readings
- Participate in discussions in class and online
- Ask assignment-related questions early
- Do not spend class time playing games, surfing the Web or doing work for other courses
- 55

You should expect from me...

- Knowledgeable and prepared for class
- Fair grading
- Responsive to comments and suggestions
- Timely return of assignments
- Keep things interesting and relevant
- Ensure a welcome and accessible classroom
- 55

You expect from each other...

- Participate fully in your group
- Respect the time of group members
- Understand everyone has different abilities
- Encourage and organize to use strengths
- Welcome discussions and comments
- Pay attention to class presentations (laptops closed)
- 55

Case Study: Interfaces that kill.

Electronic Medical Records

- Idea: replaces paper charts with database file
- Potential advantages:
 - Accuracy / cross checking
 - Data sharing
 - Data mining / aggregation
 - Decision support
 - Efficiency improvements
 - Others?

Problems?

 What do you think could be some problems with such a system?

What the Medical Staff Say

See Usability Pain Points PDF

Task flow for Physician 1 Order labs, Compose Record Review Interact patient with medications, billing note chart patient and consultations Task flow for Physician 2 Order Record Interact Order Review Compose medications with labs patient billing note chart patient

Figure 2. Two different task flows for the same task

Usability of Electronic Medical Records

<u>John B. Smelcer, Hal Miller-Jacobs, and Lyle Kantrovich</u> Journal of Usability Studies, <u>Volume 4, Issue 2</u>, February 2009, pp. 70-84

Figure 3. EMR navigation with no feedback on completed steps

Usability of Electronic Medical Records

<u>John B. Smelcer, Hal Miller-Jacobs, and Lyle Kantrovich</u>
Journal of Usability Studies, <u>Volume 4, Issue 2</u>, February 2009, pp. 70-84

Figure 5. Possible navigation model with multiple levels

Usability of Electronic Medical Records

John B. Smelcer, Hal Miller-Jacobs, and Lyle Kantrovich

Journal of Usability Studies, Volume 4, Issue 2, February 2009, pp. 70-84

Things you may not think of...

http://money.msn.com/now/blog--more-doctors-are-switching-to-cash-only-practices

- Physical barrier
- Leads to focus on technology
- Leads to closed-ended questions (related to check boxes)

Usability Problems Can Kill

- Over/under dosing
- Communication failure (double ordering)
- Wrong patient
- Allergies ("alert fatigue")

Ongoing Course Evaluation

Feedback form in lecture folder:

Lecture 1 Daily Feedback

Your Action Items

- Read the "Group Project Roadmap" handout before next class
- Read posted required readings
- Start thinking about problems which may be solved using tabletop, wall display, or multitouch technology
- Post your personal introduction to the discussion board for Part 1a

Summary

- Today we:
 - Introduced the scope of this course
 - Discussed the class structure
 - Outlined course policies

Announcements

• Labs start Sept 16

Next Class

Introduction to term project