Kernel integral operator by wavelet

Ref: Multiwavelet-based Operator Learning for Differential Equations

Outline

- Problem set
- Wavelet transformation v.s. Fourier transformation
- Math procedure
- Architecture
- Evaluation
- Conclusion

Problem set

Solve it, solve map problem

	Transform	Representation		Input	
	Fourier transform	$\hat{X}(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt$		f : frequency	
	Time-frequency analysis	ne–frequency analysis $X(t,f)$			
*	Wavelet transform	$X(a,b) = rac{1}{\sqrt{a}} \int_{-\infty}^{\infty} \overline{\Psi\left(rac{t-b}{a} ight)} x(t) dt$		a scaling ; b time shift factor	

Wavelet transformation v.s. Fourier transformation

- Fourier: 1D (time) -> 1D (frequency)
- Wavelet: 1D(time) -> 2D (frequency + time)
- Tradeoff: time , frequency

Math procedure

Evaluate Ta=u

$$Ta(x) = \int_D K(x, y)a(y)dy.$$

$$T_{n} = \sum_{i=L+1}^{n} (Q_{i}TQ_{i} + Q_{i}TP_{i-1} + P_{i-1}TQ_{i}) + P_{L}TP_{L}$$
 $A_{i} = Q_{i}TQ_{i}$
 $B_{i} = Q_{i}TP_{i-1}$
 $C_{i} = P_{i-1}TQ_{i}$
 $\bar{T} = P_{L}TP_{L}$
 $c_{i} = P_{i-1}TQ_{i}$
 $c_{i} = P_{L}TP_{L}$
 $c_{i} = P_{i-1}TQ_{i}$
 $c_{i} = P_{L}TP_{L}$
 $c_{i} = P_{L}TP_{$

$$\mathbf{s}_{l}^{n} = H^{(0)}\mathbf{s}_{2l}^{n+1} + H^{(1)}\mathbf{s}_{2l+1}^{n+1},$$

$$\mathbf{d}_{l}^{n} = G^{(0)}\mathbf{s}_{2l}^{n+1} + G^{(1)}\mathbf{s}_{2l+1}^{n+1}.$$

Decompose

$$\mathbf{s}_{2l}^{n+1} = \Sigma^{(0)} (H^{(0)T} \mathbf{s}_{l}^{n} + G^{(0)T} \mathbf{d}_{l}^{n}),$$

$$\mathbf{s}_{2l+1}^{n+1} = \Sigma^{(1)} (H^{(1)T} \mathbf{s}_{l}^{n} + G^{(1)T} \mathbf{d}_{l}^{n}).$$

Reconstruct

Math procedure - material

Decompose

Reconstruct

$$\mathbf{s}_{l}^{n} = H^{(0)}\mathbf{s}_{2l}^{n+1} + H^{(1)}\mathbf{s}_{2l+1}^{n+1},$$

$$\mathbf{d}_{l}^{n} = G^{(0)}\mathbf{s}_{2l}^{n+1} + G^{(1)}\mathbf{s}_{2l+1}^{n+1}.$$

$$\mathbf{s}_{2l}^{n+1} = \Sigma^{(0)} (H^{(0)T} \mathbf{s}_{l}^{n} + G^{(0)T} \mathbf{d}_{l}^{n}),$$

$$\mathbf{s}_{2l+1}^{n+1} = \Sigma^{(1)} (H^{(1)T} \mathbf{s}_{l}^{n} + G^{(1)T} \mathbf{d}_{l}^{n}).$$

$$\mathbf{s}_{l}^{n} = \left[\langle f, \phi_{il}^{n} \rangle_{\mu_{n}} \right]_{i=0}^{k-1} \quad \mathbf{d}_{l}^{n} = \left[\langle f, \psi_{il}^{n} \rangle_{\mu_{n}} \right]_{i=0}^{k-1}$$

$$\phi_{jl}^{n}(x) = 2^{n/2} \phi_{j}(2^{n}x - l), \quad j = 0, 1, \dots, k-1, \quad l = 0, 1, \dots, 2^{n} - 1, \text{w.r.t.} \quad \mu_{n}$$

$$\phi_{i} = \sqrt{2i+1} P_{i}(2x-1)$$

$$H_{ij}^{(0)} = \sqrt{2} \int_{0}^{1/2} \phi_{i}(x)\phi_{j}(2x)w(2x)dx, \qquad G_{ij}^{(0)} = \sqrt{2} \int_{0}^{1/2} \psi_{i}(x)\phi_{j}(2x)w(2x)dx, \qquad \Sigma_{ij}^{(0)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2x)w(x)dx, \qquad \Sigma_{ij}^{(0)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2x)w(x)dx, \qquad \Sigma_{ij}^{(0)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2x)w(x)dx, \qquad \Sigma_{ij}^{(1)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2x)\phi_{j}(2x)w(x)dx, \qquad \Sigma_{ij}^{(1)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2x)\phi_{j}(2x)w(x)dx, \qquad \Sigma_{ij}^{(1)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2x)\phi_{j}(2x)dx, \qquad \Sigma_{ij}^{(1)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2x)\phi_{j}(2x)\phi_{j}(2x)dx, \qquad \Sigma_{ij}^{(1)} = 2 \int_{0}^{1/2} \phi_{i}(2x)\phi_{j}(2$$

Filters

$$\begin{aligned} & \psi_{i} \leftarrow \phi_{i}^{(1)} - \sum_{j=0}^{m-1} \langle \phi_{i}^{(1)}, \phi_{j}^{(0)} \rangle_{\mu_{0}} \phi_{j}^{(0)} - \sum_{l=0}^{i-1} \langle \phi_{i}^{(i)}, \psi_{l} \rangle_{\mu_{0}} \psi_{l}, \\ & \psi_{i} \leftarrow \frac{\psi_{i}}{||\psi_{i}||_{\mu_{0}}}. \end{aligned}$$

Gram-Schmidt Orthogonalization (GSO)

$$\sum_{i=1}^{n} \omega_{i} f(x_{i}) = \int_{a}^{b} f(x) w(x) dx$$

$$\omega_{i} = \frac{a_{n}}{a_{n-1}} \frac{\int_{a}^{b} P_{n-1}^{2}(x) w(x) dx}{P'_{n}(x_{i}) P_{n-1}(x_{i})} \qquad iP_{i}(x) = (2i-1)x P_{i-1}(x) - (i-1)P_{i-2}(x)$$

$$(2i+1)P_{i}(x) = P'_{i+1}(x) - P'_{i-1}(x),$$

Gaussian Quadrature

Math

$$V_0^k \subset V_1^k \subset \cdots \subset V_{n-1}^k \subset V_n^k$$

Example: Legendre polynomials

n	$P_n(x)$
0	1
1	x
2	$rac{1}{2}\left(3x^2-1 ight)$
3	$rac{1}{2}\left(5x^3-3x ight)$
4	$rac{1}{8}\left(35x^4-30x^2+3 ight)$
5	$rac{1}{8}\left(63x^5-70x^3+15x ight)$
6	$rac{1}{16} \left(231 x^6 - 315 x^4 + 105 x^2 - 5 ight)$
7	$rac{1}{16} \left(429 x^7 - 693 x^5 + 315 x^3 - 35 x ight)$
8	$rac{1}{128} \left(6435 x^8 - 12012 x^6 + 6930 x^4 - 1260 x^2 + 35 ight)$
9	$rac{1}{128} \left(12155 x^9 - 25740 x^7 + 18018 x^5 - 4620 x^3 + 315 x ight)$
10	$\frac{1}{256} \left(46189x^{10} - 109395x^8 + 90090x^6 - 30030x^4 + 3465x^2 - 63\right)$

$$\omega_i = \frac{a_n}{a_{n-1}} \frac{\int_a^b P_{n-1}^2(x) w(x) dx}{P_n'(x_i) P_{n-1}(x_i)}$$

$$\psi_{i} \leftarrow \phi_{i}^{(1)} - \sum_{j=0}^{m-1} \langle \phi_{i}^{(1)}, \phi_{j}^{(0)} \rangle_{\mu_{0}} \phi_{j}^{(0)} - \sum_{l=0}^{i-1} \langle \phi_{i}^{(i)}, \psi_{l} \rangle_{\mu_{0}} \psi_{l},$$

$$\psi_{i} \leftarrow \frac{\psi_{i}}{||\psi_{i}||_{\mu_{0}}}.$$

Architecture

Architecture-MWT

Architecture-decompose & reconstruct

Result

Figure 6: Burgers' Equation validation at various input resolution s. Our methods: MWT Leg, Chb.

Networks	s = 32	s = 64	s = 128	s = 256	s=512
MWT Leg	0.0152	0.00899	0.00747	0.00722	0.00654
MWT Chb	0.0174	0.0108	0.00872	0.00892	0.00891
MWT Rnd	0.2435	0.2434	0.2434	0.2431	0.2432
FNO	0.0177	0.0121	0.0111	0.0107	0.0106
MGNO	0.0501	0.0519	0.0547	0.0542	-
LNO	0.0524	0.0457	0.0453	0.0428	-

Table 2: Benchmarks on Darcy Flow equation at various input resolution s. Top: Our methods. MWT Rnd instantiate random entries of the filter matrices in (6)-(9). Bottom: prior works on Neural operator.

	$\nu = 1e - 3$	$\nu = 1e - 4$	$\nu = 1e-4$	$\nu = 1e - 5$
Networks	T = 50	T = 30	T = 30	T = 20
	N = 1000	N = 1000	N = 10000	N = 1000
MWT Leg	0.00625	0.1518	0.0667	0.1541
MWT Chb	0.00720	0.1574	0.0720	0.1667
FNO-3D	0.0086	0.1918	0.0820	0.1893
FNO-2D	0.0128	0.1559	0.0973	0.1556
U-Net	0.0245	0.2051	0.1190	0.1982
TF-Net	0.0225	0.2253	0.1168	0.2268
Res-Net	0.0701	0.2871	0.2311	0.2753

Table 3: Navier-Stokes Equation validation at various viscosities ν . Top: Our methods. Bottom: previous works of Neural operators and other deep learning models.

Conclusion & Future work

- Conclusion
 - Another method to approximate the kernel integral
- Future work
 - Different transformation to compute integral operator
 - Different architecture