# INTRODUCTION AU TRAITEMENT D'IMAGES

**1ere Partie** 

**Donatello Conte** 

### Structure de l'oeil



### Fonctionnement de l'oeil



### Cônes et bâtonnets

- Cellules photo-réceptrices sensibles spécifiquement à des longueurs d'onde:
  - cônes
  - bâtonnets





# Acquisition d'images



### Acquisition d'images

#### **Echantillonnage et quantification**

- Résolution spatiale
- Le plus petit détail discernable
- Résolution tonale (de tons de gris)
- Le plus petit changement discernable
- Une image a donc une résolution spatiale de M x N pixels et une résolution de tons de gris de K bits ou de L niveaux ou tons
- Le nombre de bits pour stocker une image est donc : b = M x N x K



FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.



### Résolution d'une image

#### **Echantillonnage et quantification**

Résolution spatiale









Résolution tonale



6 bits 4 bits 3 bits 2 bits 1 bit

## Résolution (spatiale) d'une image

La dimension du pixel change



## Résolution (spatiale) d'une image

La dimension du pixel ne change pas









32

512

1024

### Résolution (tonale) d'une image

 Attention aux apparences (dans l'être humain il y a le cerveau qui intègre l'information)







2 couleurs (1 bit par pixel)

### Qu'est ce qu'une image?

Une image numérique est un tableau de pixel.

Un pixel s est décrit par :

- ses coordonnées dans l'image (i, j)
- sa valeur I(i,j), représentant sa couleur (ou son niveau de gris)





### Qu'est ce qu'une image?



### Qu'est ce qu'une image?

La valeur I(i,j) d'un pixel s=(i,j) représente son intensité lumineuse

#### En niveau de gris

binaire : I(i,j) = 0 noir ou I(i,j) = 1 blanc

 $\operatorname{codage} \ 8 \ \operatorname{bits}: \ (\operatorname{le plus classique}) \ I(i,j) = 0,...,255 \ \operatorname{du plus} \ \operatorname{fonc\'e} \ \operatorname{au plus} \ \operatorname{clair}$ 

#### En couleur

codage dans l'espace RGB : trois intensités lumineuses rouge, vert, bleu. codage 24 bits :  $I_R(i,j)=0,...,255$ ;  $I_V(i,j)=0,...,255$ ;  $I_B(i,j)=0,...,255$ 











Modèle additif

### Voisinage entre pixels

 Pour un pixel p ayant coordonnées (x, y), ces 4-voisins (dénotés N₄(p)) ont les coordonnées suivantes

- (x + 1, y)
- (x 1, y)
- (x, y + 1)
- (x, y 1)



### Voisinage entre pixels

 L'ensemble des 8-voisins de p (dénotés N<sub>8</sub>(p)) è composé par les 4-voisins plus les pixels de coordonnées suivantes

• 
$$(x - 1, y + 1)$$

• 
$$(x + 1, y + 1)$$

• 
$$(x + 1, y - 1)$$



### Connexité

- La relation de voisinage est liée à la notion de connexité entre pixels
- Deux pixels sont connexes s'ils sont voisins (4- ou 8voisins) et leur niveau de couleur satisfait un certain critère de similarité
- Le critère de similarité peut par exemple consister à appartenir à un certain ensemble de valeurs d'intensité V
  - Dans une image binaire le critère de similarité est, par exemple,
     l'appartenance du pixel au niveau noir ou blanc

#### Connexité

- Sur la base du voisinage on définit les types de connexité suivants:
  - 4-connexité: deux pixels p et q qui son 4-voisins ayant un niveau de couleur dans V
  - 8-connexité: deux pixels p et q qui sont 8-voisins ayant un niveau de vouleur dans V
  - m-connexité: deux pixels p et q qui ont un niveau de couleur dans V et
    - q est dans N<sub>4</sub>(p), ou
    - q est dans N<sub>8</sub>(p) mais N<sub>4</sub>(p)∩N<sub>4</sub>(q)=Ø
  - La m-connexité a été introduite pour avoir des chemins de connexion uniques entre les pixels



8-connexité



m-connexité

#### Autres définitions

- Deux pixels 4-,8- ou m-connexes sont entre eux adjacents
- Deux ensemble S1 et S2 de pixels sont adjacents s'il existe au moins un pixel dans S1 qui est adjacent à un pixel de S2
- Un chemin du pixel p(x,y) au pixel q(s,t) est une séquence de pixels de coordonnées:
  - $(x_0,y_0), (x_1,y_1), ..., (x_n,y_n)$
  - $(x_0,y_0)=(x,y)$
  - $(x_n, y_n) = (s, t)$
  - (x<sub>i</sub>,y<sub>i</sub>) est voisin de (x<sub>i+1</sub>,y<sub>i+1</sub>)
- n est la longueur du chemin
- Etant donné deux pixels p et q d'un ensemble S, p est connexe à q dans S s'il existe un chemin entre p et q entièrement composé de pixels de S

#### Autres définitions

- Pour chaque pixel p de S, l'ensemble de pixels de S connexes à p est une composante connexe de S
- Toutes couples de pixels d'une composante connexe est composé de pixels connexes
- Dans la définition de composante connexe il est important de définir quel type de voisinage on utilise



### Régions et bords

- Un sous-ensemble R d'une image est une région de l'image si R est une composante connexe
- Son contour est l'ensemble de pixels de la région qui ont un ou plusieurs pixels adjacent qui n'appartiennent pas à R
- Si R est tout l'image, le contour est formée par la première et la dernière ligne, et par la première et la dernière colonne
- Le contour d'une région (finie) est un chemin fermé (caractéristique globale de la région)
- Un bord (edge en anglais) est une caractéristique locale, étant la mesure de discontinuité d'un niveau de gris dans un point

### Distance entre pixels

- Considérons les pixels p(x,y) et q(s,t)
- La distance euclidienne est définie comme suit:

• 
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

La distance D<sub>4</sub> (city block) est définie comme suit:

• 
$$D_4(p,q) = |x-s| + |y-t|$$

La distance D<sub>8</sub> (chessboard) est définie comme suit:

• 
$$D_8(p,q) = \max(|x-s| + |y-t|)$$

- La distance D<sub>4</sub> entre deux points coïncide avec la longueur du plus petit 4-chemin entre les deux points
- La distance D<sub>8</sub> entre deux points coïncide avec la longueur de plus petit 8-chemin entre les deux points

$$2 \quad 1 \quad (x,y) \quad 1 \quad 2$$

### Histogramme des niveaux de gris

- L'histogramme représente la distribution des niveaux de gris (ou de couleurs) dans une image
- H(k) = nombre de pixels de l'image ayant la valeur k.
- Dynamique d'une image = [valeur\_min,valeur\_max]



Histogramme normalisé

 $P(k)=H(k) / Nb_pixels$ 



# Exemples





Image sombre





Image peu contrastée

# Exemples





Image sombre et peu contrastée





Image claire et peu contrastée

## Exemples





Image équilibrée





Image équilibrée mais un peu moins contrastée

### Types de traitement

#### Transformations ponctuelles

$$I(x,y) \stackrel{t}{\rightarrow} I'(x,y) = t(I(x,y))$$

Ex. seuillage, ajustement luminosité/contraste opérations algébriques, manip. d'histogramme



$$I(x,y) \xrightarrow{t} I'(x,y) = t (I(\mathscr{V}(x,y)))^{y}$$
Ex. filtrage

Transformations globales

$$I(x,y) \stackrel{t}{\rightarrow} I'(x,y) = t(I)$$

Ex. transformation dans l'espace de Fourier



### Traitements ponctuels

- Une opération générique peut s'écrire:
  - g(x,y)=t[f(x,y)]
  - g est l'image de sortie, f l'image en entrée, T est un opérateur sur f, calculé à partir de la valeur du pixel (x,y)
- · Les opération ponctuels sont divisées en
  - Homogènes: les operateurs ne dépendent pas de la position du pixel
    - Ex. : ajustement de luminosité
  - Non-homogènes: les operateurs dépendent de la position du pixel
    - Ex.: somme entre images

## Opérations homogènes

- Le traitement s'applique à chaque pixel de l'image
- Etant l'opérateur dépendant que du niveau de gris (ou couleur) du pixel, la transformation peut s'écrire
  - s = t(r)
  - r est le niveau de gris (ou couleur) du pixel dans l'image d'entrée et s est le niveau de gris (ou couleur) du pixel dans l'image traitée

### Amélioration du contraste

 Les valeurs basses des pixels sont baissées et les valeurs hautes sont rendues plus claires



### Expansion de la dynamique

- Effet : rehaussement du contraste par expansion de la dynamique
- Remarque : pas d'effet si i<sub>min</sub> =0 et i<sub>max</sub> =255

$$i' = \frac{255}{i_{max} - i_{min}} (i - i_{min})$$
avec
$$\frac{i - i_{min}}{i_{max} - i_{min}} \in [0, 1]$$



### Expansion de la dynamique









## Seuillage

Dans le cas limite on a l'operation de seuillage

$$s = \begin{cases} 0 & r < m \\ L - 1 & r \ge m \end{cases}$$



# Exemple







### Binarisation par seuillage

- Seuillage manuel → C'est la méthode la plus simple et la plus utilisée
- Il y a une relation entre les niveaux de gris d'un pixel et son appartenance ou non à une forme



### Binarisation par seuil global fixe

- Comment choisir le bon seuil 
   une multitude de méthodes
  - Différents objectifs : tramage, segmentation, ...
  - Otsu, ...



### Inconvénient d'un seuil global

Idées de solution ?







### Seuillage adaptatif

- On définit un seuil pour chaque pixel en fonction de son voisinage
- Le Niblack :  $S = m + ks^2$  avec  $k = -0,2 \mid m$  : moyenne et s : l'écart-type



18/01/2019

#### Inverse

C'est un exemple d'opération inversible

• 
$$s = L - 1 - r$$







18/01/2019

#### Inverse





#### Opération Puissance

$$s = cr^{\gamma}$$

- γ est un paramètre et c est un facteur d'échelle
- Si γ est inférieur à 1 l'opération équivaut à augmenter les valeurs basses de niveau de gris en baissant les valeurs élevées
- Si γ est supérieur à 1 le comportement est inversé



# Opération Puissance







$$\gamma = 4$$



 $\gamma = 5$ 

### Opérations non homogènes

- Les opérations non homogènes dépendent de la valeur de niveau de gris, mais aussi de la position
- Les plus importantes opérations non homogènes sont les opérations arithmétiques et logiques sur les images
- Ces opérations ont en entrée deux images ou bien le deuxième opérande est une constante

### Opérations logiques & arithmétiques

#### **Principe:**

- Appliquer, pixel à pixel, les opérations logiques et arithmétiques classiques à deux (ou plusieurs) images
- Les images opérandes doivent être de même taille
- peuvent être des images constantes.

#### **Exemples:**

- Addition, soustraction, ...
- ET logique, OU logique, ...

#### Problèmes:

- débordements de [0, 255]
- normalisation ...



$$I_1(x, y), I_2(x, y) \stackrel{t}{\to} I'(x, y) = t(I_1(x, y), I_2(x, y))$$

### Opérations logiques & arithmétiques

- Addition :  $g(x, y) = f_1(x, y) + f_2(x, y)$
- Soustraction :  $g(x, y) = f_1(x, y) f_2(x, y)$
- Multiplication :  $g(x, y) = f_1(x, y) \times f_2(x, y)$
- Division :  $g(x, y) = f_1(x, y) / f_2(x, y)$
- ET logique :  $g(x, y) = f_1(x, y)$  ET  $f_2(x, y)$
- OU logique :  $g(x, y) = f_1(x, y)$  OU  $f_2(x, y)$

### Opérations logiques

 Elle sont utilisées surtout pour l'extraction de régions d'intéret

```
10010011 AND 111111111 = 10010011
10010011 AND 00000000 = 000000000

10010011 OR 11111111 = 11111111
10010011 OR 00000000 = 10010011
```

## Opérations logiques



**AND** 



=





OR



=



## Opérations logiques









OR



=

### Opérations logiques



#### Stratégies de dépassement

- Wrapping (retour circulaire à zero)
- Saturation (remplacer les valeurs qui dépassent par la limite supérieur ou inferieur)
- Décalage des valeurs avant l'opération
- Pré-calcul des valeurs finales (théoriques) minimale et maximale puis recadrage de la dynamique

## Exemples





### Exemples



+ 100 (wrapping overflow)



### Exemples



+ 100 (saturating overflow)



## Exemples



\*0.8)+100



## Exemples



\*1.3



### Opérations arithmétiques

#### **Addition d'images**

- Principe: l'(x,y)=l<sub>1</sub>(x,y)+l<sub>2</sub>(x,y) pour tout pixel de coordonnées (x,y)
- Stratégies si dépassement de capacité
  - · Décalage des valeurs dans [0, 127] avant addition
  - Saturation :  $I'(x,y) = min (I_1(x,y) + I_2(x,y), 255)$
  - Pré-calcul des valeurs finales (théoriques) minimale et maximale puis recadrage de la dynamique
- Utilisations principales :
  - Augmentation de la luminance d'une image (par addition d'1 constante ou d'1 image avec elle-même)
  - Diminution du bruit dans une série d'images

#### Soustraction d'images

- Principe: I'(x,y) = I<sub>1</sub>(x,y) I<sub>2</sub>(x,y) pour tout pixel de coordonnées (x,y)
- Stratégies si dépassement de capacité
  - Saturation :  $I'(x,y) = max (I_1(x,y) I_2(x,y), 0)$
  - Différence absolue : l'(x,y) = | l<sub>1</sub>(x,y) l<sub>2</sub>(x,y) |
- Utilisations principales
  - Diminution de la luminance d'une image
  - Détection de changements entre images
    - défauts (par comparaison avec une image de référence)
    - mouvements (par comparaison avec une autre image de la séquence)

## Opérations arithmétiques









18/01/2019

#### Opérations arithmétiques

#### Multiplication

- Principe:  $I'(x,y) = I_1(x,y) \times I_2(x,y)$  ou, plus souvent,  $I'(x,y) = K \times I(x,y)$
- Stratégies si dépassement de capacité : saturation
- Utilisations principales : amélioration du contraste et de la luminosité d'une image

#### Combinaison linéaire

- **Principe**:  $I'(x,y) = k \times I_1(x,y) + (1-k) \times I_2(x,y)$
- Le facteur k définit la contribution relative de I1 et de I2
- Utilisation principale : superposition d'images

#### **Division**

- Principe:  $I'(x,y)=I_1(x,y) / I_2(x,y)$  ou, plus souvent, I'(x,y)=I(x,y) / k
- Problème : éviter la division par 0 ; comment normaliser ?
- Utilisation principale : détection des changements et de leur amplitude

