دورة سنة2007 العادية

امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل: ست مسابقة في مادة الرياضيات الاسم: المدة: أربع ساعات الرقم:

ملاحظة: :يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

		Réponses				
N°	Questions	a	b	С	d	
1	$z = -\sqrt{3} - i$. Un argument de \bar{z} est :	$\frac{-\pi}{6}$	$\frac{\pi}{6}$	$\frac{7\pi}{6}$	$\frac{5\pi}{6}$	
2	$\left(e^{i\frac{\pi}{4}}\right)^{12} =$	1	-1	e ³	3	
3	$C_{10}^6 - C_9^6 =$	1	C ₉ ⁵	C_{19}^{6}	0	
4	h est une fonction définie sur IR par $h(x) = \frac{1}{4+x^2}$; une primitive H de h est donnée par $H(x) = \frac{1}{4+x^2}$	$\arctan \frac{x}{2}$	$ln(4+x^2)$	$\frac{1}{2}\arctan\frac{x}{2}$	2arctanx	
5	$\lim_{X \to +\infty} \frac{\ln(e^X + 1)}{X} =$	1	0	e	+∞	
6	Si les affixes des points A, B et C vérifient la relation $\frac{z_A - z_B}{z_A - z_C} = 2 ; alors$	C est le milieu de [AB]	B est le milieu de [AC]	A, B et C forment un triangle rectangle	A, B et C sont sur un même cercle	

II- (3 points)

Dans l'espace rapporté à un repère orthonormé direct (0; i, j, k), on considère les droites (d_1) et (d_2)

- 1) Démontrer que (d_1) et (d_2) sont orthogonales et non coplanaires.
- 2) Vérifier que le vecteur $\stackrel{\rightarrow}{n}$ (-1; 1; 1) est orthogonal à (d₁) et (d₂).
- 3) Démontrer qu'une équation du plan (P) contenant (d_1) et parallèle à n est x y + 2z 3 = 0.
- 4) La droite (d₂) coupe le plan (P) en B. Déterminer les coordonnées de B.
- 5) Démontrer que la droite (D) passant par B et de vecteur directeur n coupe la droite (d₁) au point A (1; 0; 1).
- 6) Soit (Q) le plan contenant (d_1) et perpendiculaire au plan (P) et M un point variable de (d_2) . Démontrer que la distance de M à (Q) est égale à AB.

III- (3 points)

Dans un plan orienté, on donne un rectangle direct AEFD

tel que :
$$(\overrightarrow{AE}, \overrightarrow{AD}) = \frac{\pi}{2} (2\pi)$$
, $\overrightarrow{AE} = 2\sqrt{2}$ et $\overrightarrow{AD} = 2$.

On désigne par B et C les milieux respectifs de [AE] et [FD]. Soit S la similitude plane directe qui transforme A en C et E en B.

- a- Déterminer le rapport k et un angle α de S.
 b- Montrer que S (F) = E et déduire S (D).
- 2) Soit W le centre de S et soit h la transformation définie par h = S o S.
 - a- Déterminer la nature et les éléments caractéristiques de h.
 - b- Trouver h (D) et h (F) et construire le point W.
- 3) On désigne par I le milieu de [BE].
 - a- Démontrer que W, C et I sont alignés.
 - b- Exprimer WC en fonction de WI.
- 4) Le plan complexe est rapporté au repère orthonormé (A; \overrightarrow{u} , \overrightarrow{v}) avec $z_B = \sqrt{2}$ et $z_D = 2i$.
 - a- Trouver la forme complexe de S.
 - b- Déterminer l'affixe de W.

IV-(2 points)

Monsieur Khalil a trois fils : Sami, Farid et Zahi mariés et pères de familles.

Les enfants de ces trois familles sont répartis selon le tableau suivant :

	Famille de Sami	Famille de Farid	Famille de Zahi
Filles	2	1	3
Garçons	2	3	1

Le grand père Khalil décide de choisir au hasard **un enfant de chaque famille** pour l'accompagner à son village.

- 1) Quelle est la probabilité qu'il choisisse trois filles?
- 2) Soit les événements suivants :

F: «L'enfant choisi de la famille de Sami est une fille ».

G: «L'enfant choisi de la famille de Sami est un garçon ».

A: «Les trois enfants choisis sont deux filles et un garçon ».

a- Démontrer que la probabilité p (A/F) est égale à $\frac{5}{8}$.

b- Calculer p (A/G) et p (A).

3) Soit X la variable aléatoire égale au nombre de filles choisies par le grand père. Déterminer la loi de probabilité de X.

V-(3 points)

Dans le plan rapporté à un repère orthonormé (O; i , j), on considère les points A (5 ; 0),

F (3; 0) et la droite (δ) d'équation x = $\frac{25}{3}$.

Soit (E) l'ellipse de foyer F, de directrice (δ), d'excentricité e et dont A est un sommet principal.

1) a- Vérifier que $e = \frac{3}{5}$.

b-Vérifier que le point A' (-5 ; 0) est l'autre sommet principal de (E) et en déduire le centre de (E).

c- Ecrire une équation de (E) et tracer (E).

d- Calculer l'aire du domaine limité par l'ellipse (E) et son cercle principal.

2) Soit G et G ' les points de (E) d'abscisse 3.

a- Ecrire une équation de la tangente (D) en G à (E) et une équation de la tangente (D') en G ' à (E).

b- Vérifier que les droites (D), (D') et (δ) se coupent en un même point H sur l'axe des abscisses.

c- Montrer que tan $\overrightarrow{FHG} = \mathbf{e}$.

VI-(7points)

- A- Soit f la fonction définie sur IR par $f(x) = x + xe^{-x}$ et (C) sa courbe représentative dans un repère orthonormé (O; i, j) (unité 2 cm).
 - 1) a- Calculer $\lim_{x \to +\infty} f(x)$ et montrer que la droite (d) d'équation y = x est une asymptote à (C).

b- Calculer
$$\lim_{x \to -\infty} f(x)$$
 et $\lim_{x \to -\infty} \frac{f(x)}{x}$.

- 2) a- Calculer f'(x) et f''(x).
 - b- Dresser le tableau de variations de f' et en déduire que f'(x) > 0.
 - c- Montrer que la courbe (C) admet un point d'inflexion dont on déterminera les coordonnées.
 - d- Dresser le tableau de variations de f.
- 3) Déterminer les coordonnées du point A de la courbe (C) où la tangente (T) est parallèle à la droite (d) d'équation y = x.
- 4) Montrer que l'équation f(x) = 1 admet une racine unique α et vérifier que $0.65 < \alpha < 0.66$.
- 5) Tracer (d), (T) et (C).
- 6) Calculer, en cm², l'aire du domaine limité par la courbe (C), l'asymptote (d) et les deux droites d'équations x = 0 et x = 1.
- 7) On désigne par g la fonction réciproque de f et par (G) sa courbe représentative dans le repère (O; i , j).

Préciser l'asymptote et la direction asymptotique de (G) et tracer (G).

B- Soit f_n la fonction définie sur IR par $f_n(x) = x + x^n e^{-x}$ (n est un entier naturel non nul)

et soit la suite (U_n) définie par :
$$U_n = \int_0^1 [f_n(x) - x] dx$$
.

- 1) Déterminer la valeur de U_1 .
- 2) Montrer que $0 \le x^n e^{-x} \le 1$ sur [0; 1] et en déduire que la suite (U_n) est bornée.
- 3) Démontrer que la suite (U_n) est décroissante. La suite (U_n) est-elle convergente ? Justifier.