Chun-Min Chang

Phone: +1 (608) 504-8316 | E-mail: twcmchang@gmail.com | LinkedIn: chun-min-chang

I am a machine learning engineer with three-year research and work experience. I am interested in developing efficient and robust deep learning models for mobile devices and productizing deep learning models for healthcare applications. I am thrilled to work in a fast-paced environment and have work experience in startups.

Education

University of Wisconsin-Madison, M.S. in Electrical and Computer Engineering

expected Aug. 2020

- Machine Learning and Signal Processing (GPA: 4.0/4.0, image processing, computer vision, machine learning)

National Taiwan University, M.S. in Electrical Engineering

Aug. 2015

National Taiwan University, B.S. in Electrical Engineering

Jun. 2013

Work Experience

Machine Learning Engineer, Cardinal Blue Software Inc. (PicCollage), Taiwan

Jan. 2019 - Jul. 2019

Focused on building deep learning models for computer vision tasks on mobile.

- Developed efficient models to execute image segmentation on mobile devices in less than 0.5 seconds.
- Used network pruning, quantization, and knowledge distillation to improve efficiency by 50%.
- Developed compact deep learning models for image super-resolution and enhancement, smaller than 1MB.

Research Assistant, Data Insight Research Lab at Academia Sinica, Taiwan

Oct. 2015 - Dec. 2018

Conducted research on the efficiency and robustness of deep learning and its applications in healthcare.

- Built a nephrologist-level chronic kidney disease diagnosis system using TensorFlow.
- Built a 3D CNN to predict patients' chronological age by CT images and detect neurodegeneration.
- Proposed a multi-scale CNN to process ECG and PPG signals for non-invasive glucose estimation.
- Other research projects: crime factor analysis and quantitative evaluation of VR systems.

Selected Projects

Automation of Kidney Functionality Prediction and Classification

Sep. 2017 - Nov. 2018

Nature Digital Medicine (2nd author)

cooperated with China Medical University Hospital in Taiwan

- Built automatic programs to extract massive kidney ultrasound images from 200,000 reports in 12 hours.
- Designed a residual neural network to predict kidney functionality (e-GFR) using TensorFlow.
- Achieved a nephrologist-level classification accuracy for diagnosing chronic kidney disease.

Efficient and Robust Deep Learning for Mobile Applications

Dec. 2018 - Mar. 2019

2019 IEEE International Joint Conference on Neural Networks (1st author)

- Proposed to train a compact and dynamic CNN that allows to trade off accuracy for efficiency.
- Reduced 90+% model size with only a 1-3% accuracy drop in VGG-16 over CIFAR-10 and CIFAR-100.
- Improved the robustness against various adversarial attacks like I-FGSM by at least 10%.

Non-invasive Glucose Prediction using ECG/PPG Signals by 1-D CNN

May. 2018 - Jun. 2018

- Performed extensive signal processing techniques to filter out noises and enhance signals.
- Built a multi-scale CNN that made all predictions in the safe zones of Parke/Clarke Error Grid.

Brain Health Evaluation using CT Images by a Compact 3-D CNN

May. 2018 - Jun. 2018

- Built a 3-D CNN to predict patient's age and compare with chronological age to evaluate brain health.
- Used pointwise convolution to reduce heavy computations caused by the large volume of CT images.

Skills

Programming language: Python, R, Matlab, C++, SQL, Swift, git, LaTeX

Library/Package: TensorFlow, Keras, PyTorch, CoreML, cleverhans, scikit-learn, OpenCV, ggplot2, dplyr

Other Research Projects

Demystifying the Insect Colour Diversity along Elevational Gradients

May. 2018 - Jul. 2019

Nature Communications (co-first author)

cooperated with Bio-diversity Research Institute at Academia Sinica

- Trained a residual neural network to learn the embedding of color traits in insects using Keras.
- Analyzed the relationship between color traits, weather, and habitat by structural equation modeling.
- Concluded that colder environments selecting for darker coloration limit the color trait diversity.

Why Batch Normalization Works so Well

May. 2017 - Jun. 2017

Best Project Award among 32 teams in Machine Learning Course at NTU

- Demonstrated that adding BN will push the distribution of singular values of the Jacobian matrix toward one.
- Found that BN has a better norm-preserving property and also benefits gradient flows through networks.
- Showed that BN has the effect of weight regularization and can improve model generalization like dropout.

Face Recognition on Mobile Devices

May. 2018 - Jun. 2018

Best Project Award in the Deep Learning for Computer Vision Course at NTU

- Built a compact deep learning model (0.7 MB) to recognize 2,360 identities with 86.5% accuracy.
- Applied the concept of center loss to boost performance by 5% and used L1 loss for network pruning.
- Outperformed state-of-the-art compact models such as MobileNet-V1 and SqueezeNet by 10+%.

Progressive GAN for Biomedical Signal Generation

Sep. 2018 - Sep. 2018

- Implemented the progressive generative adversarial network to produce realistic bio-signals.
- Found that BN has a better norm-preserving property and also benefits gradient flows through networks.

Publications

- 1. Shipher Wu[†], Chun-Min Chang[†], et al. "Artificial Intelligence Reveals Environmental Constraints on Colour Diversity in Insects.", Nature communications 10.1 (2019): 1-9. (†: equal contribution)
- 2. **Chun-Min Chang**, Chia-Ching Lin, and Kuan-Ta Chen (2019). "Efficient and Robust Convolutional Neural Networks via Channel Prioritization and Path Ensemble.", 2019 31st IEEE International Joint Conference on Neural Networks (IJCNN).
- 3. Chin-Chi Kuo, **Chun-Min Chang**, et al. (2019). "Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning.", Nature Digital Medicine. 2. 10.1038/s41746-019-0104-2.
- 4. Nathan Kuo, **Chun-Min Chang**, and Kuan-Ta Chen (2017). "Exploring spatial and social factors of crime: a case study of Taipei City.", Asian Conference on Intelligent Information and Database Systems. Springer, Cham, 2017.
- 5. **Chun-Min Chang**, Shi-Chung Chang, and Chun-Hung Chen (2017). "How simplified models of different variability affects the performance of ordinal transformation.", 2017 13th IEEE Conference on Automation Science and Engineering (CASE).
- 6. **Chun-Min Chang**, et al (2016). "Performance measurements of virtual reality systems: Quantifying the timing and positioning accuracy." Proceedings of the 2016 ACM on Multimedia Conference.