Algèbre linéaire

TP écrit par Benjamin Monmège

Vous devrez utiliser la bibliothèque num qui implémente l'arithmétique exacte sur les nombres rationnels (entrer #load "nums.cma";; open Num;; au début du programme). Les opérations usuelles sur les rationnels sont notées +/, -/, */ et //. Le symbole =/ désigne le test d'égalité entre rationnels et la fonction num_of_int permet de convertir un entier ordinaire en rationnel de dénominateur 1.

Partie I : Polynôme caractéristique et interpolation de Lagrange

Soit $M \in \mathcal{M}_n(\mathbb{Q})$. Le polynôme caractéristique de M est $\chi_M = \det(M - XI_n) \in \mathbb{Q}_n[X]$. On étudie un algorithme de calcul de χ_M reposant sur le calcul d'un déterminant par la méthode du pivot de Gauss et sur la théorie de l'interpolation de Lagrange.

A - Calcul d'un déterminant par opérations élémentaires

On peut calculer det(M) en transformant M en une matrice triangulaire supérieure à l'aide d'opérations sur les lignes selon l'algorithme qui suit.

Traitement de la colonne j

Supposons avoir obtenu $M' = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ avec $A \in \mathcal{M}_{j-1}(\mathbb{Q})$ triangulaire supérieure de diagonale $(1, \ldots, 1)$ et $\lambda \in \mathbb{Q}$ tels que $\det(M) = \lambda \det(M') = \lambda \det(C)$ (on est dans ce cas initialement avec j = 1, M' = M et $\lambda = 1$).

- Si j = n alors $\det(M) = \lambda$.
- Sinon, si la première colonne de C est nulle (c'est-à-dire si $M'_{ij} = 0$ pour tout $i \geq j$) alors $\det(C) = 0$ et donc $\det(M) = 0$.
- Sinon, soit $M'_{ij} \neq 0$ avec $i \geq j$:
 - 1. si i > j, échanger les lignes i et j de M' et changer λ en $-\lambda$;
 - 2. diviser la ligne j de M' par M'_{jj} (maintenant non nul) et changer λ en $\lambda M'_{jj}$;
 - 3. pour tout i > j, retrancher M'_{ij} fois la ligne j de M' à la ligne i de M';
 - 4. passer alors à la colonne j + 1.

Programmer cet algorithme. On écrira une fonction \det qui prend une matrice M comme argument et qui retourne son déterminant. Cette fonction devra procéder en premier lieu à une copie de la matrice M de façon à ne pas la modifier.

B - Calcul du polynôme caractéristique

On peut théoriquement calculer χ_M par la méthode précédente en remplaçant M par $M-XI_n$, mais ceci impose de travailler avec des matrices à coefficients dans le corps $\mathbb{Q}(X)$ et non dans \mathbb{Q} , ce qui est délicat. Une méthode plus efficace consiste à calculer $\chi_M(\lambda)$ dans \mathbb{Q} pour n+1 valeurs rationnelles distinctes de λ et à en déduire les coefficients de χ_M par interpolation de Lagrange.

1. Interpolation de Lagrange

Soit $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{Q}$ tels que les x_i soient deux à deux distincts et P_n l'unique polynôme de $\mathbb{Q}_{n-1}[X]$ tel que pour tout $i, P_n(x_i) = y_i$. On note $Q_n = (X - x_1) \dots (X - x_n)$ et on a les relations de récurrence :

$$\begin{cases}
P_{n+1} = P_n + \frac{y_{n+1} - P_n(x_{n+1})}{Q_n(x_{n+1})} Q_n \\
Q_{n+1} = (X - x_{n+1}) Q_n
\end{cases}$$

Ecrire une fonction lagrange qui prend en argument deux tableaux x et y contenant respectivement les x_i et les y_i et qui retourne un tableau p contenant les coefficients du polynôme P_n (p est indexé par $\{0,\ldots,n-1\}$ et p(i) est le coefficient de X^i dans P_n). On programmera les calculs de $P_n(x_{n+1})$ et $Q_n(x_{n+1})$ efficacement.

2. Polynôme caractéristique

Ecrire une fonction poca prenant une matrice M en argument et retournant son polynôme caractéristique, sous forme de tableau de coefficients.

Partie II : Méthode de Fadeev

On étudie ici une autre méthode permettant de calculer le polynôme caractéristique d'une

- matrice. Notons $\chi_M = \sum_{k=0}^n p_k X^k$ et $B = M XI_n$. 1. Montrer que $\sum_{k=0}^{n-1} (k+1) p_{k+1} X^k = [\det(B)]' = \sum_{k=1}^n \det(B_k)$ où B_k est la matrice obtenue en dérivant la k-ième colonne de B.
- 2. En étudiant la transposée de la comatrice de la matrice B, qu'on notera C dans la suite, montrer que $[\det(B)]' = -\operatorname{tr} C$.
- 3. Montrer qu'on peut écrire $C = \sum_{k=0}^{n-1} C_k X^k$ avec $C_k \in \mathcal{M}_n(\mathbb{Q})$. En déduire que pour tout $k \in \{0, \dots, n-1\}, (k+1)p_{k+1} = -\operatorname{tr} C_k.$
- 4. En utilisant l'égalité reliant $B \ actra C$, montrer les relations suivantes

$$\begin{cases} MC_0 = p_0 I_n \\ MC_k - C_{k-1} = p_k I_n & \forall k \in \{1, \dots, n-1\} \end{cases}$$

Quitte à poser C_n égale à la matrice nulle, on peut prolonger la dernière égalité pour k = n.

5. En déduire les relations de récurrence suivantes

$$\begin{cases} p_n = (-1)^n & C_n = 0_n \\ C_{k-1} = MC_k - p_k I_n & \text{et} \quad p_{k-1} = \frac{\text{tr}(MC_{k-1})}{n-k+1} & \forall k \in \{1, \dots, n\} \end{cases}$$

- 6. Écrire une fonction Caml implémentant cet algorithme de calcul des coefficients du polynôme caractéristique de la matrice M.
- 7. En remarquant que les dernières valeurs calculées par l'algorithme de Fadeev sont C_0 $C(0) = {}^{t}co(M)$ et $p_0 = \det M$, en déduire un algorithme d'inversion de matrice, et l'écrire en Caml.

Partie III : Algorithme du pivot et opérations sur les sev de \mathbb{Q}^n

L'objectif est d'implémenter les opérations usuelles sur les sous-espaces vectoriels de \mathbb{Q}^n (base, dimension, calcul de la somme et de l'intersection de deux sev, comparaison pour l'inclusion). On représentera un sous-espace F de \mathbb{Q}^n par une matrice $n \times p$ à coefficients rationnels dont les colonnes constituent une famille génératrice, non nécessairement libre, de F.

A - Algorithme du pivot

Écrire une fonction **echelonne** qui prend en argument une matrice M et retourne une matrice M' échelonnée par rapport aux lignes et déduite de M par opérations sur les lignes uniquement. On utilisera l'algorithme du pivot et on s'inspirera de l'algorithme de calcul du déterminant de la partie précédente. On procèdera à une réduction complète, c'est-à-dire que les pivots de M' seront mis à 1 et dans chaque colonne contenant un pivot tous les coefficients autres que le pivot seront nuls.

Exemple : en partant de
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 7 \end{pmatrix}$$
, on aboutit à echelonne $(M) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Écrire une fonction pivots qui prend en argument une matrice M échelonnée par rapport aux lignes et retourne un tableau contenant la liste des colonnes des pivots de M. Avec l'exemple précédent, on aura pivots(echelonne(M)) = (1 3)

B - Base, dimension, somme, inclusion

À l'aide des fonctions précédentes, écrire les fonctions :

- base : retourne une base d'un sev donné par une famille génératrice;
- dimension : retourne la dimension d'un sev donné par une famille génératrice;
- somme : retourne une base de F + G, F et G étant des sev donnés ;
- inclus : retourne un booléen indiquant si un sev F est inclus dans un sev G.

C - Noyau d'une application linéaire

Soit $f: \mathbb{Q}^p \to \mathbb{Q}^n$ une application linéaire donnée par sa matrice M dans les bases canoniques de \mathbb{Q}^p et \mathbb{Q}^n et $F = \operatorname{Ker} f$. On veut déterminer une base de F. Soit $M' = \operatorname{echelonne}(M)$. Supposons dans un premier temps que tous les pivots de M' sont situés dans la partie gauche de M'. Alors M' est de la forme

$$M' = \begin{pmatrix} I_r & U \\ 0 & 0 \end{pmatrix} \tag{1}$$

où
$$r = \operatorname{rg}(M) = \operatorname{rg}(M')$$
, $U \in \mathcal{M}_{r,p-r}(\mathbb{Q})$ et (on s'en convaincra) $X = \begin{pmatrix} U \\ -I_{p-r} \end{pmatrix} \in \mathcal{M}_{p,p-r}(\mathbb{Q})$ représente une base de Ker f . Dans le cas général, il existe une permutation σ de $\{1,\ldots,p\}$ telle que la matrice $M'' = (M'_{\sigma(1)} \cdots M'_{\sigma(p)})$ soit de la forme (1) où M'_i désigne la i -ème colonne de M' . Alors la matrice Y dont la i -ème ligne est la $\sigma(i)$ -ème ligne de X représente une base de Ker f .

Ainsi, pour déterminer une base de Ker f, il suffit de procéder aux opérations suivantes :

- 1. Calculer M';
- 2. Calculer σ , où $\sigma(1), \ldots, \sigma(r)$ sont les numéros des colonnes contenant les pivots de M' et $\sigma(r+1), \ldots, \sigma(p)$ les numéros des autres colonnes;
- 3. Construire la matrice Y (directement, sans construire X).

Programmer cela . . . ; on pourra écrire une fonction seconds, analogue à la fonction pivots, qui retourne un tableau contenant la liste des colonnes de M ne comportant pas de pivots.

D - Orthogonal et intersection

À l'aide des fonctions précédentes, écrire les fonctions :

- orth : retourne une base de l'orthogonal dans $(\mathbb{Q}^n)^*$ d'un sev F donné par une famille génératrice ;
- intersect : retourne une base de $F \cap G$, F et G étant des sev donnés.

E - Tests

Testez vos fonctions, si ce n'est pas déjà fait, avec les matrices suivantes :

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \\ 0 & 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \\ 1 & 1 \end{pmatrix}$$

Faites les tests suivants et vérifier à la main les résultats :

```
dim a, dim b, dim c;;
base a, base b, base c;;
noyau a;;
somme a b;;
somme a c;;
inters a b;;
Array.map (Array.map string_of_num) (inters a c);;
orth a;;
orth b;;
orth c;;
```