Governo Federal

Ministério da Educação

Universidade Federal do Maranhão

A Universidade que Cresce com Inovação e Inclusão Social

Grafos Conceitos

Estrutura de Dados II

História

Problema das pontes de Konigsberg (1736)

- A cidade é cortada pelo rio Pregel, criando ilhas na cidade.
- Existiam sete pontes conectando as ilhas e as margens opostas do rio.
- O problema consiste em determinar se é possível ou não fazer um passeio pela cidade começando e terminando no mesmo lugar, cruzando cada ponte exatamente uma única vez.

Königsberg Prussia/Alemanha (1255-1946) Kaliningrado URSS/Russia (1946-)

História

Konigsberg/Kaliningrado

Leonh. Culer 1707 - 1783

História

Euler raciocinou da seguinte maneira: ao atravessar cada ponto, são gastos exatamente duas linhas, uma para entrar no ponto e outra para sair. Para atravessar qualquer vértice, são gastas duas linhas, uma para entrar no vértice e outra para sair. Conclusão, cada vértice deve ter grau par de linhas. Acontece que o grafo das pontes de Königsberg tem pontos de grau ímpar e, portanto, o problema não pode ter solução

Motivação

- Muitas aplicações em computação necessitam considerar conjunto de conexões entre pares de objetos:
 - Existe um caminho para ir de um objeto a outro seguindo as conexões?
 - Qual é a menor distância entre um objeto e outro objeto?
 - Quantos outros objetos podem ser alcançados a partir de um determinado objeto?

Aplicações

- Alguns exemplos de problemas práticos que podem ser resolvidos através de uma modelagem em grafos:
 - Máquinas de busca para localizar informação relevante na Web.
 - Relação entre componentes em circuitos eletrônicos
 - Descobrir qual é o roteiro mais curto para visitar as principais cidades de uma região turística.
 - Carteiro: caminho mais curto para realizar as entregas
 - Malhas: rodoviária, ferroviária e área.
 - Caminhão da coleta de lixo
 - Representação de dependências de tabelas em banco de dados

Aplicações Redes Sociais

Co-autores

Pessoas conhecidas

Aplicações SIG

Aplicações – Redes de computadores

Introdução

- Um grafo G=(V,E) consiste em um conjunto V de vértices e um conjunto E de arestas de G;
- Uma aresta e ∈ E(G) é representada por e= (u,v) e sempre interliga dois vértices quaisquer u e v de V.

- Os grafos são uma forma de modelar os problemas.
- Muitos problemas algorítmicos são simplificados ao pensarmos neles em termos de grafos.

Introdução

 A teoria dos Grafos fornece uma linguagem para tratarmos com as propriedades dos grafos.

 Conhecer diferentes problemas algorítmicos em grafos é melhor do que entender os detalhes de algoritmos particulares em grafos.

Conteúdo

- Estruturas de dados básicas
 - Representação: Lista de Adjacências e Matriz de adjacências.
- operações para pesquisar em um grafo.
 - Pesquisa em grafo:
 - Significa acompanhar sistematicamente as arestas do grafo de modo a alcançar os vértices do grafo.
- Algoritmos mais sofisticados para: caminhos mais curtos, ordenação topológica, árvore geradora mínimo e fluxo máximo.

Observações

- Grafos podem ser utilizados para modelar uma variedade de estruturas e relações.
- Muitas aplicações de grafos podem ser reduzidas a propriedades padrão de grafos e usando algoritmos bem conhecidos.
- Busca em profundidade e busca em largura fornecem mecanismos para visitar cada aresta e cada vértice do grafo.

Conceitos Básicos

- Grafo: conjunto de vértices e arestas.
- Vértice: objeto simples que pode ter nome e outros atributos.
- Aresta: conexão entre dois vértices.

Grafos Direcionados

- Um grafo direcionado G é um par (V,E), onde V é um conjunto finito de vértices e E é uma relação binária em V.
 - Uma aresta (u, v) sai do vértice u e entra no vértice
 v. O vértice v é adjacente ao vértice u.
 - Podem existir arestas de um vértice para ele mesmo, chamadas de self-loops.

Grafos Não Direcionados

- Um grafo não direcionado G é um par (V,E), onde o conjunto de arestas E é constituído de pares de vértices não ordenados.
 - As arestas (u; v) e (v; u) são consideradas como uma única aresta. A relação de adjacência é simétrica.
 - Self-loops não são permitidos.

Grau de um Vértice

Em grafos não direcionados:

- O grau de um vértice é o número de arestas que incidem nele.
- Um vértice de grau zero é dito isolado ou não conectado.

Ex.: O vértice 1 tem grau 2 e o vértice 3 é isolado.

Grau de um Vértice

Em grafos direcionados

- O grau de um vértice é o número de arestas que saem dele (out-degree) mais o número de arestas que chegam nele (in-degree).
 - Arestas (in) + Arestas (out)

Ex.: O vértice 2 tem in-degree 2, out-degree 2 e grau 4.

Caminho entre Vértices

- Um caminho de comprimento k de um vértice x a um vértice y em um grafo G = (V,E) é uma seqüência de vértices (v0, v1, v2,..., vk) tal que x = v0 e y = vk, e (v(i-1), vi) E E para i = 1, 2, ..., k.
- O comprimento de um caminho é o número de arestas nele, isto é, o caminho contém os vértices v0, v1, v2,..., vk e as arestas (v0, v1); (v1, v2),....,(vk-1; vk).
- Se existir um caminho c de x a y então y é alcançável a partir de x via c.

Caminho entre Vértices

- Um caminho é simples se todos os vértices do caminho são distintos.
- Ex.: O caminho (0, 1, 2, 3) é simples e tem comprimento 3. O caminho (1, 3, 0, 3) não é simples.

Ciclos

• Em um grafo direcionado:

- Um caminho (v0, v1, ..., vk) forma um ciclo se v0 =
 vk e o caminho contém pelo menos uma aresta.
- O ciclo é simples se os vértices v1, v2, ..., vk são distintos.
- O self-loop é um ciclo de tamanho 1.
- Dois caminhos (v0, v1, ..., vk) e (v'0, v'1, ..., v'k) formam o mesmo ciclo se existir um inteiro j tal que v'i = v(i+j) mod k para i = 0, 1, ..., k -1.

Ciclos

Ex.: O caminho (0,1,2,3,0) forma um ciclo. O caminho(0,1,3,0) forma o mesmo ciclo que os caminhos (1,3,0,1) e (3,0,1,3).

Ciclos

Em um grafo não direcionado:

- Um caminho (v0, v1,..., vk) forma um ciclo se v0 = vk
 e o caminho contém pelo menos três arestas.
- O ciclo é simples se os vértices v1, v2,..., vk são distintos.

Ex.: O caminho (0, 1, 2, 0) é um ciclo.

Caminho Hamiltoniano

Grafo Hamiltoniano:

- Possui ciclo Hamiltoniano:
 - É um ciclo em um grafo não-dirigido onde cada vértice é visitado uma única vez retornando ao ponto de partida.
 - Todo grafo ciclico formado por um único ciclo é Hamiltoniano

Caminho Euleriano - propriedades

- Caminho no grafo que visita cada aresta uma única vez iniciando e terminando no mesmo vértice.
 - Criado por Euler para resolver o problema das pontes de Konigsberg.
- Um grafo não-dirigido é Euleriano se não tiver nenhum vértice de grau ímpar.
- Um grafo dirigido é Euleriano se todos os vértices tiverem grau de entrada igual ao seu grau de saída.
- Um grafo semi-Euleriano (que permite um caminho Euleriano) possui exatamente dois vértices de grau ímpar, um é o ponto de partida e outro é o ponto de chegada.

Caminho Euleriano

É Euleriano mas não é Hamiltoniano

Componentes Conectados

- Um grafo não direcionado é conectado se cada par de vértices está conectado por um caminho.
- Os componentes conectados são as porções conectadas de um grafo.
- Um grafo não direcionado é conectado se ele tem exatamente um componente conectado.

Ex.: Os componentes são: $\{0, 1, 2\}, \{4, 5\}$ e $\{3\}$.

Componentes Fortemente Conectados

- Um grafo direcionado G = (V,E) é fortemente conectado se cada dois vértices quaisquer são alcançáveis a partir um do outro.
- Os componentes fortemente conectados de um grafo direcionado são conjuntos de vértices sob a relação "são mutuamente alcançáveis".
- se existe um caminho de a para b e de b para a, para cada par a,b de vértices do grafo
- um grafo que tem mais de um **componente** não é fortemente conexo.

Componentes Fortemente Conectados

 Ex: {0,1,2,3} são componentes fortemente conectados. {4,5} não o é pois o vértice 5 não é alcançável a partir do vértice 4.

• É possível encontrar os componentes conectados utilizando a Busca em profundidade.

Subgrafos

Um grafo G(V, E), H(V', E') é um subgrafo de G se $V' \subseteq V$ e $E' \subseteq E$.

Ex.: Subgrafo induzido pelo conjunto de vértices $\{1,2,4,5\}$.

(c)

Versão Direcionada de um Grafo Não Direcionado

- A versão direcionada de um grafo não direcionado G = (V,E) é um grafo direcionado G' = (V',E') onde (u, v) E E' se e somente se (u, v) E E.
- Cada aresta não direcionada (u, v) em G é substituída por duas arestas direcionadas (u, v) e (v, u)
- Em um grafo direcionado, um vizinho de um vértice u é qualquer vértice adjacente a u na versão não direcionada de G.

Versão Não Direcionada de um Grafo Direcionado

- A versão não direcionada de um grafo direcionado G = (V,E) é um grafo não direcionado G' = (V',E') onde (u, v) E A' se e somente se u <> v e (u, v) E A.
- A versão não direcionada contém as arestas de G sem a direção e sem os self-loops. Em um grafo não direcionado, u e v são vizinhos se eles são adjacentes.

Outras Classificações de Grafos

- Grafo ponderado: possui pesos associados às arestas.
- Grafo bipartido: grafo não direcionado G = (V,E) no qual V pode ser particionado em dois conjuntos V1 e V2 tal que (u, v) E A implica que u E V1 e v E V2 ou u E V2 e v E V1 (todas as arestas ligam os dois conjuntos V1 e V2).
- Hipergrafo: grafo não direcionado em que cada aresta conecta um número arbitrário de vértices.

Outras Classificações de Grafos

Figure 1 – Directed hypergraph H = (V, A).

Grafo Ponderado

Grafo Bipartido

Grafo Bipartido Completo

Grafos Completos

- Um grafo completo é um grafo não direcionado no qual todos os pares de vértices são adjacentes.
- Possui (|V|² |V|)/2 = |V|(|V|-1)/2 arestas, pois do total de |V|² pares possíveis de vértices devemos subtrair |V| self-loops e dividir por 2 (cada aresta ligando dois vértices é contada duas vezes).
- O número total de grafos diferentes com |V| vértices é $2^{|V|(|V|-1)/2}$ (número de maneiras diferentes de escolher um subconjunto a partir de |V|(|V|-1)/2 possíveis arestas).

Grafos isomórficos

 Dois grafos G e G' são isomórficos se e somente se seus vértices podem ser rotulados de tal forma que as suas correspondentes adjacências sejam iguais

Dígrafo

 Um grafo direcionado D(V,E), ou dígrafo, possui um conjunto não vazio de vértices V e um conjunto de arestas E, tal que para toda aresta (u,v) ∈ E existe uma única direção de u para v.

Representação de Grafos

- Técnicas básicas para representação de grafos:
 - Matriz de adjacências
 - Adequada para grafos densos (i.e., |E| é próximo de |V|)

- Lista de adjacências
 - Adequada para grafos esparsos (i.e., |E| é muito menor que |V|)

■ Matriz |V|x|V| com E = (e_{ij}), dado que:

$$e_{ij} = \begin{cases} 1, \text{ se (i,j)} \in E, \\ 0, \text{ caso contrário} \end{cases}$$

- A matriz de adjacências de um grafo requer memória ⊕(|V|²), independente do número de arestas
- Dado que um em um grafo não-direcionado (u,v) e (v,u) representam a mesma aresta, a matriz de adjacências de um grafo não direcionado é igual à sua transposta: A = A^T

Matriz de adjacências com Peso

Arestas que não existem podem ser representadas com o valor 0 ou []

Considerações:

- Exige bastante memória O(|V|²), pois geralmente os grafos são esparsos Grafos esparsos levam a matrizes esparsas
- O espaço pode ser reduzido armazenando-se apenas a matriz triangular

- Representação da lista de adjacências de um grafo G = (V, E) consiste de um vetor de |V| listas, uma para cada vértice em V
- Para cada u ∈ V, a lista de adjacências Adj[u] contém ponteiros para todos os vértices v em que exista uma aresta (u, v) ∈ E
 - Se G é um grafo direcionado, a soma dos tamanhos de todas as listas de adjacências é |E|
 - Se G for um grafo não-direcionado, a soma dos tamanhos de todas as listas de adjacências é 2 | E |
- Quantidade de memória consumida: O(max(V,E)) = O(|V|+|E|)

Lista de Adjacências com Pesos

Considerações:

- Consome menos memória
- É a forma mais simples
- Se o grafo for orientado a lista de adjacências é menor ainda
- No pior caso a busca por uma adjacência é Θ(n)

Ex: O grafo de relacionamento

O grafo de relacionamento

- Se sou seu amigo, você é meu amigo?
- Sou amigo de mim mesmo?

O grafo de relacionamento

- Existe um caminho de relacionamento entre quaisquer duas pessoas no mundo?
- Quem tem mais amigos? E menos?

Circuitos

[poscomp 2015] Exercicio

Seja G = (V, E) um grafo em que V é o conjunto de vértices e E é o conjunto de arestas. Considere a representação de G como uma matriz de adjacências.

O correspondente grafo orientado G é:

[poscomp 2015] Exercício

Resposta: O correspondente grafo orientado G é:

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	0 0 1 0 0

[Poscomp2017] Exercício

QUESTÃO 36 – Em relação ao grafo da Figura (a), as Figuras (b) e (c) representam, respectivamente,

- A) matriz de arestas e lista de incidências.
- B) matriz de adjacências e lista de adjacências.
- C) matriz de conexões e lista de arestas.
- D) matriz de incidências e lista de vértices.
- E) matriz de vértices e lista de conexões.