

Raport inițial - Detecția și recunoașterea fețelor utilizând un smartphone

ECHIPĂ: barbatiVirili

Moloman Laurențiu-Ionut - m1 Grupa 1306B

Minea Eduard-Constantin - m2 Grupa 1306B

1 Descrierea temei

Tema proiectului:

• Detecția și recunoașterea fețelor utilizând un smartphone.

Relevanța proiectului:

• Recunoașterea facială reprezintă o zonă de interes crescut în industrie datorită multiplelor sale aplicații în securitate, medicină, comerț și alte domenii. Integrarea unui model pre-antrenat precum MobileFaceNets aduce precizie și eficiență în procesul de recunoaștere a feței, având potențialul de a aduce soluții inovatoare în diverse industrii.

Scop:

• Scopul este de a dezvolta o aplicație de telefon pe platforma Android care utilizează detecția și recunoașterea fețelor în real-time utilizând camera telefonului sau încărcând o imagine din local storage.

Obiective S.M.A.R.T.:

- Specific
- -Definirea și dezvoltarea unei aplicații mobile Android specializate pentru recunoașterea facială în timp real sau din local storage.
 - Measurable
- -Demonstrarea capacității aplicației de a captura imagini, detecta fețe și recunoaște fețele existente într-un set de date, asigurându-se că procesele sunt precise si eficiente.
 - Attainable
- -Implementarea soluției tehnice într-un mod fezabil și adaptabil, utilizând resursele tehnologice existente și abordând provocările specifice ale recunoașterii faciale în mediul mobil.
 - Relevant

- -Abordarea unei provocări actuale în tehnologia recunoașterii faciale, aplicând cunoștințe avansate pentru a crea o soluție relevantă și în pas cu cerințele actuale de autentificare și securitate.
 - Time-based
- -Finalizarea proiectului într-un interval stabilit, cu etape clare de dezvoltare și testare, în conformitate cu termenele predefinite pentru implementare si evaluare.

Prezentarea caracterului inovativ:

- Inovația proiectului constă în adăugarea unei abordări unice în dezvoltarea unei aplicații de recunoaștere facială în timp real pe platforma Android. Această abordare integrează tehnologia de vârf a recunoașterii faciale într-o interfață mobilă ușor accesibilă, oferind o soluție eficientă și precisă pentru autentificare și identificare.
- Folosirea un model rapid și foarte precis care nu necesită reantrenare pentru adăugarea de noi fețe. Abilitatea aplicației să salveze recunoașterile pentru utilizare ulterioară.

Cerinte funcționale:

- Activarea camerei pentru capturarea imaginilor în timp real.
- Detectarea fetelor în cadru și evidențierea acestora.
- Capturarea si salvarea imaginilor cu fete detectate.
- Recunoasterea facială în baza unui set de date pentru identificarea persoanelor.

Provocări tehnologice:

- Procesarea și prelucrarea eficientă a imaginilor în timp real pentru recunoașterea feței.
- Optimizarea performantei aplicatiei pe dispozitive mobile cu resurse limitate.

2 Rezultatul final

• Rezultatul final al proiectului constă în dezvoltarea unei aplicații de recunoaștere facială pe dispozitive mobile cu o interfață simplă de folosit, utilizând un model CNN (Convolutional Neural Networks). Această aplicație are multiple aplicații în diverse industrii, cum ar fi securitatea, tehnologia medicală si industria comercială.

Analiza Cererii și Nevoile Identificate

- O cerere crescândă pentru sisteme de securitate care să ofere soluții precise de recunoaștere facială, în special în domenii precum accesul la clădiri si controlul securizat al zonelor.
- Spitalele și centrele medicale caută soluții de identificare precisă a pacienților și gestionare a datelor medicale, astfel încât să ofere un serviciu eficient și sigur.

Potențiali Utilizatori și Consumatori

- Utilizatori de rând.
- Instituții Guvernamentale și de Securitate: Departamentele de securitate și guvernamentale pot beneficia de o soluție precisă de recunoaștere facială.
- Companii Comerciale și Retail: Retailerii pot beneficia de date demografice și comportamentale ale clientilor pentru a-si îmbunătăti strategiile de marketing.

Competitori și Analiza Pieței

• Microsoft Azure Face API, Amazon Rekognition și Google Cloud Vision: Ofertă software și API-uri puternice pentru recunoașterea facială, integrate în platforme cloud.

- Alte Aplicații și Platforme de Securitate: Companii specializate în securitate oferă soluții pentru recunoașterea facială, fie în sistemele de securitate ale clădirilor, fie în aplicații dedicate pentru autentificare si acces.
- Start-up-uri și Dezvoltatori Independenți: Există numeroase start-up-uri și dezvoltatori care explorează soluții inovatoare de recunoaștere facială, aducând abordări noi și unice pe piață.

3 Modalitatea de lucru propusă

- Se va utiliza un model pre-antrenat de inteligență artificială. MobileFaceNets este un model de recunoaștere a feței care a fost antrenat folosind tehnici de învățare profundă pentru a extrage reprezentări semnificative ale feței. Acest model poate fi utilizat pentru a calcula o reprezentare numerică (embedding) a feței, care poate fi apoi folosită pentru a realiza recunoașterea feței în aplicație.
- Pentru a integra modelul MobileFaceNets sau orice model CNN în aplicația Android, vom avea nevoie de TensorFlow Lite, o versiune optimizată a TensorFlow pentru dispozitive mobile. Acesta ne permite să rulăm modele TensorFlow în aplicații Android.
- IDE-ul folosit pentru realizarea interfeței va fi Android Studio, iar limbajul de programare folosit este Java.
- Pentru o detecție a fețelor în real-time am putea folosi ML Kit + CameraX (pentru preview la nivelul camerei). După modelul CNN antrenat va putea prelucra detecțiile faciale cropate pentru procesul de recunoaștere facială . Abordarea poate diferi în funcție de decizia tipului de aplicație.

Crearea unui sistem pentru stocarea și gestionarea datelor referitoare la fețele identificate. Implementarea unei metode sigure de gestionare a bazelor de date.

• Optimizarea aplicației pentru a funcționa eficient și rapid pe dispozitivele mobile Android. Testarea și ajustarea performantei sistemului de recunoastere facială în conditii diverse.

Identificarea și alocarea task-urilor

Task ID	Descriere task	Membru echipă
Documentație	Realizarea raportului initial	m1, m2
Friendly UI	Crearea unei interfețe de utilizator	m1
	intuitive pentru a permite utiliza-	
	torilor să captureze și să încarce	
	imagini. Integrarea funcționalității	
	camerei pentru capturarea imag-	
	inilor în timp real.	
Face detection	Realizarea detectărilor faciale fie	m1, m2
	folosind real-time, camera preview	
	sau folosind detectarea din imagini	
	salvate dintr-un local storage	
Prezentare intermediară	Prezentare power-point cu secțiunile	m2
	privind rezultatele obținute și con-	
	cluzii preliminare	
Salvarea Datelor	Crearea unui sistem pentru stocarea	m1,m2
	și gestionarea datelor referitoare la	
	fețele identificate.	
Face recognition	Realizarea recunoașterilor faciale	m1, m2

Git repository:

https://github.com/VedereArtificiala/prelucrareaimaginilor-proiect-barbativirili

Referinte

- [1] https://arxiv.org/ftp/arxiv/papers/1804/1804.07573.pdf Authors: Sheng Chen, Yang Liu , Xiang Gao , and Zhen Han1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing, Research Institute, Watchdata Inc., Beijing, China. China
- [2] https://medium.com/@estebanuri/real-time-face-recognition-with-android-tensorflow-lite-14e9c6cc53a5
- [3] https://medium.com/gravel-engineering/recognizing-face-in-android-using-deep-neural-network-tensorflow-l
- [4] https://chantrapornchai.medium.com/face-analysis-using-ml-kit-and-tensorflow-lite-b1945d48094a
- [4] https://www.tensorflow.org/lite
- [5] https://developer.android.com/training/camerax
- [6] https://developers.google.com/ml-kit
- [7] https://developer.android.com/docs