1. VC-dimension

Suppose we have an infinite collection of sets \mathcal{F} . Take n many of those sets. They generate a boolean algebra. Count the number of atoms in it. There can be at most 2^n atoms, though depending on the collection there may be much less. For a given n, out of all choices of n sets, record the highest possible number of atoms generated. We define that to be a shatter function.

Definition 1.1.

 $\pi_{\mathcal{F}}(n) = \max \{ \# \text{ of atoms in boolean algebra generated by } S \mid S \subset \mathcal{F} \text{ and } |S| = n \}$

Example 1.2. (1) Let \mathcal{F} be a set of lines on a plane. Then

$$\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$$

(2) Let \mathcal{F} be a set of disks on a plane. Then

$$\pi_{\mathcal{F}}(n) = n^2 - n + 2$$

(3) Let \mathcal{F} be a set of balls in \mathbb{R}^3 . Then

$$\pi_{\mathcal{F}}(n) = n(n^2 - 3n + 8)/3$$

(4) Let \mathcal{F} be a set of intervals on a line. Then

$$\pi_{\mathcal{F}}(n) = 2n$$

(5) Let \mathcal{F} be a set of half-planes. Then

$$\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$$

(6) Let \mathcal{F} be a collection of finite subsets of \mathbb{N} . Then

$$\pi_{\mathcal{F}}(n) = 2^n$$

(7) Let \mathcal{F} be a collection of polygons in a plane. Then

$$\pi_{\mathcal{F}}(n) = 2^n$$

Theorem 1.3 (Sauer-Shelah). Shatter function is either 2^n or bounded by a polynomial.

Definition 1.4. Families of sets with polynomially bounded shatter functions are said to have a finite VC-dimension.

Definition 1.5. Suppose \mathcal{F} has a finite VC-dimension. Let k be the smallest real such that

$$\pi_{\mathcal{F}}(n) = O(n^k)$$

1

We define such k to be the vc-density of \mathcal{F} .