Corporate Borrowing, Investment, and Credit Policies during Large Crises

Mahdi Ebsim Miguel Faria-e-Castro Julian Kozlowski NYU FRB St. Louis FRB St. Louis

Society for Economic Dynamics, Minneapolis, July 2021

The views expressed are those of the individual authors and do not necessarily reflect those of the Federal Reserve Bank of St. Louis, the Federal Reserve System, or of its Board of Governors.

- Large financial market disruptions hamper firms' ability to borrow and invest
- What type of credit/financial policies work best?
- Should depend on
 - Nature of underlying (aggregate) shock
 - 2. Distribution of firm financial characteristics
- Focus on two events: Great Financial Crisis and COVID-19 Recessio

- Large financial market disruptions hamper firms' ability to borrow and invest
- What type of credit/financial policies work best?
- Should depend on
 - 1. Nature of underlying (aggregate) shock
 - 2. Distribution of firm financial characteristics
- Focus on two events: Great Financial Crisis and COVID-19 Recessio

- Large financial market disruptions hamper firms' ability to borrow and invest
- What type of credit/financial policies work best?
- Should depend on:
 - 1. Nature of underlying (aggregate) shock
 - 2. Distribution of firm financial characteristics

Focus on two events: Great Financial Crisis and COVID-19 Recession

- Large financial market disruptions hamper firms' ability to borrow and invest
- What type of credit/financial policies work best?
- Should depend on:
 - 1. Nature of underlying (aggregate) shock
 - 2. Distribution of firm financial characteristics
- Focus on two events: Great Financial Crisis and COVID-19 Recession

This Paper: Empirics

What we do:

- Panel of maturity-matched corporate credit spreads (Gilchrist & Zakrajsek '12)
- Match w/ firm-level financials to study response of firm financing conditions to crises

What we find

- Different dynamics for firm financials
 - GFC: debt, liquid assets ↓
 - COVID-19: debt, liquid assets ↑
- Similar initial increase in median spreads in the two events
- ... but shocks have different effects in the cross-section
 - GFC: ↑ leverage ⇒ ↑ spreads, but no role for liquidity...
 - COVID-19: ↑ leverage ⇒ ↑ spreads, but ↑ liquidity ⇒ ↓ spreads

This Paper: Empirics

What we do:

- Panel of maturity-matched corporate credit spreads (Gilchrist & Zakrajsek '12)
- Match w/ firm-level financials to study response of firm financing conditions to crises

What we find:

- Different dynamics for firm financials:
 - GFC: debt, liquid assets ↓
 - COVID-19: debt, liquid assets ↑
- Similar initial increase in median spreads in the two events
- ... but shocks have different effects in the cross-section:
 - GFC: \uparrow leverage $\Rightarrow \uparrow$ spreads, but no role for liquidity...
 - COVID-19: \uparrow leverage $\Rightarrow \uparrow$ spreads, but \uparrow liquidity $\Rightarrow \downarrow$ spreads

This Paper: Empirics

What we do:

- Panel of maturity-matched corporate credit spreads (Gilchrist & Zakrajsek '12)
- Match w/ firm-level financials to study response of firm financing conditions to crises

What we find:

- Different dynamics for firm financials:
 - GFC: debt, liquid assets ↓
 - COVID-19: debt, liquid assets ↑
- Similar initial increase in median spreads in the two events
- ... but shocks have different effects in the cross-section:
 - GFC: ↑ leverage ⇒ ↑ spreads, but no role for liquidity...
 - COVID-19: \uparrow leverage $\Rightarrow \uparrow$ spreads, but \uparrow liquidity $\Rightarrow \downarrow$ spreads

This Paper: Model

What we do:

- Quantitative model of firm capital structure and investment
- Firms heterogeneous ex-ante, differ in leverage & liquidity
- Study effects of aggregate shocks: real (TFP), financial, liquidity
- Policy: QE (credit subsidies), credit guarantees, lump-sum transfers

What we find

- Different aggregate shocks elicit <u>different</u> responses in the <u>cross-section</u>
 - Real+financial: investment comoves with debt/liq. asset
 - Liquidity shock: investment moves in opposite direction
 - Model-implied elasticities \Rightarrow GFC = real + financial shocks; \Rightarrow COVID-19 = liquidity shock
- Different policies are effective against different types of shocks
 - QE/credit subsidies effective against financial shocks
 - Transfers and credit guarantees effective against liquidity shocks
 - Cross-sectional information helps policymakers pick the most appropriate policy

This Paper: Model

What we do:

- Quantitative model of firm capital structure and investment
- Firms heterogeneous ex-ante, differ in leverage & liquidity
- Study effects of aggregate shocks: real (TFP), financial, liquidity
- Policy: QE (credit subsidies), credit guarantees, lump-sum transfers

What we find:

- Different aggregate shocks elicit <u>different</u> responses in the <u>cross-section</u>
 - Real+financial: investment comoves with debt/liq. assets
 - Liquidity shock: investment moves in opposite direction
 - $\bullet \quad \mathsf{Model\text{-}implied} \ \mathsf{elasticities} \Rightarrow \mathsf{GFC} = \mathsf{real} + \mathsf{financial} \ \mathsf{shocks}; \Rightarrow \mathsf{COVID\text{-}}19 = \mathsf{liquidity} \ \mathsf{shock}$
- Different policies are effective against different types of shocks
 - QE/credit subsidies effective against financial shocks
 - Transfers and credit guarantees effective against liquidity shocks
 - Cross-sectional information helps policymakers pick the most appropriate policy

This Paper: Model

What we do:

- Quantitative model of firm capital structure and investment
- Firms heterogeneous ex-ante, differ in leverage & liquidity
- Study effects of aggregate shocks: real (TFP), financial, liquidity
- Policy: QE (credit subsidies), credit guarantees, lump-sum transfers

What we find:

- Different aggregate shocks elicit <u>different</u> responses in the <u>cross-section</u>
 - Real+financial: investment comoves with debt/liq. assets
 - Liquidity shock: investment moves in opposite direction
 - ullet Model-implied elasticities \Rightarrow GFC = real + financial shocks; \Rightarrow COVID-19 = liquidity shock
- Different policies are effective against different types of shocks
 - QE/credit subsidies effective against financial shocks
 - Transfers and credit guarantees effective against liquidity shocks
 - Cross-sectional information helps policymakers pick the most appropriate policy

Literature

Role of firm heterogeneity in the response to shocks: Kudlyak & Sanchez '17; Ottonello & Winberry '20; Jeenas '19; Tourré & Crouzet '21

Modeling of Firm Balance Sheets: Begenau & Salomao '19

- Credit Spreads during COVID-19: Kargar et al. '20; Boyarchenko et al. '20; Gilchrist et al. '20
- Firm heterogeneity during COVID-19: Crouzet & Gourio '20; Elenev et al. '20

Liquidity and Debt during Large Crises

Source: Financial Accounts of the United States, FRB

- ullet GFC: debt and liquid assets \downarrow
- COVID-19: debt and liquid assets ↑

Measuring Firm Financing Conditions

 Measure of firm financing conditions: maturity-matched corporate bond spreads, following Gilchrist & Zakrajsek (2012)

$$s_{ift} = y_{ift} - y_{ift}^{RF}$$

- y_{ift} : secondary market yield of bond i, issued by firm f, on week t
- y_{ift}^{RF} : yield on synthetic security that replicates cash flows for bond i, but discounted at the risk-free yield curve at t
- ullet \sim 6 M bond-week observations, June 2002 to December 2020 ullet details

Aggregate Spreads during Crises

- Is there any systematic relationship between firm financials and financing conditions?
- Focus on

$$\mathsf{liq}_{f,t} = \frac{\mathsf{Liquid}\;\mathsf{Assets}_{f,t}}{\mathsf{Assets}_{f,t}}, \quad \mathsf{lev}_{f,t} = \frac{\mathsf{Liabilities}_{f,t}}{\mathsf{Assets}_{f,t}}$$

Estimate:

$$\underbrace{s_{f,t}}_{\text{Firm outcome}} = \alpha_t + \gamma_f + \underbrace{\beta_{E(t)} \ \text{liq}_{f,t-r}}_{\text{liquid assets}} + \underbrace{\gamma_{E(t)} \ \text{lev}_{f,t-r}}_{\text{leverage}} + \Phi X_{f,t} + \varepsilon_{f,t}$$

- $s_{f,t}$: firm-level average credit spread (weighted)
- E(t): whether quarter t is a "normal period", Great Recession or COVID-19
- $X_{f,t}$ includes other firm-time controls (size, lagged $s_{f,t}$)

- Is there any systematic relationship between firm financials and financing conditions?
- Focus on

$$\mathsf{liq}_{f,t} = \frac{\mathsf{Liquid}\;\mathsf{Assets}_{f,t}}{\mathsf{Assets}_{f,t}}, \quad \mathsf{lev}_{f,t} = \frac{\mathsf{Liabilities}_{f,t}}{\mathsf{Assets}_{f,t}}$$

• Estimate:

$$\underbrace{s_{f,t}}_{\text{Firm outcome}} = \alpha_t + \gamma_f + \underbrace{\beta_{E(t)} \ \text{liq}_{f,t-r}}_{\text{liquid assets}} + \underbrace{\gamma_{E(t)} \ \text{lev}_{f,t-r}}_{\text{leverage}} + \Phi X_{f,t} + \varepsilon_{f,t}$$

- $s_{f,t}$: firm-level average credit spread (weighted)
- E(t): whether quarter t is a "normal period", Great Recession or COVID-19
- $X_{f,t}$ includes other firm-time controls (size, lagged $s_{f,t}$)

- Is there any systematic relationship between firm financials and financing conditions?
- Focus on

$$\mathsf{liq}_{f,t} = \frac{\mathsf{Liquid}\; \mathsf{Assets}_{f,t}}{\mathsf{Assets}_{f,t}}, \quad \mathsf{lev}_{f,t} = \frac{\mathsf{Liabilities}_{f,t}}{\mathsf{Assets}_{f,t}}$$

• Estimate:

$$\underbrace{s_{f,t}}_{\text{Firm outcome}} = \alpha_t + \gamma_f + \underbrace{\beta_{E(t)} \ \text{liq}_{f,t-r}}_{\text{liquid assets}} + \underbrace{\gamma_{E(t)} \ \text{lev}_{f,t-r}}_{\text{leverage}} + \Phi X_{f,t} + \varepsilon_{f,t}$$

- $s_{f,t}$: firm-level average credit spread (weighted)
- E(t): whether quarter t is a "normal period", Great Recession or COVID-19.
- $X_{f,t}$ includes other firm-time controls (size, lagged $s_{f,t}$)

$s_{f,t}$	
196.584***	
(34.804)	
-58.465***	
(21.736)	
43509	
0.75	

- Normal times: $\uparrow lev, \downarrow liq \Rightarrow \uparrow s_{f,t}$
- GR: leverage has larger effects, liquidity has no effects
- COVID: liquidity has a larger effect
- \uparrow 1 σ lev \rightarrow $s_{\rm ft}$ \uparrow 143 bps in GFC, \uparrow 69 bps in COVID
- \uparrow 1 σ *liq* \rightarrow s_{ft} \sim 0.0 in GFC, \downarrow 47 *bps* in COVID
- Investment ▶ Liquid Assets ▶ Debt

	$s_{f,t}$	
Leverage		
Normal	196.584***	
	(34.804)	
GR	867.605***	
	(131.905)	
Liquidity		
Normal	-58.465***	
	(21.736)	
GR	34.458	
	(67.256)	
N	43509	
R2	0.75	

- Normal times: $\uparrow lev, \downarrow liq \Rightarrow \uparrow s_{f,t}$
- GR: leverage has larger effects, liquidity has no effects
- COVID: liquidity has a larger effect
- ullet \uparrow 1 σ lev o $s_{\rm ft}$ \uparrow 143 bps in GFC, \uparrow 69 bps in COVID
- \uparrow 1 σ *liq* \rightarrow s_{ft} \sim 0.0 in GFC, \downarrow 47 *bps* in COVID

	$s_{f,t}$			
Leverage				
Normal	196.584***			
	(34.804)			
GR	867.605***			
	(131.905)			
COVID	464.949***			
	(90.324)			
Liquidity				
Normal	-58.465***			
	(21.736)			
GR	34.458			
	(67.256)			
COVID	-430.430***			
	(39.964)			
N	43509			
R2	0.75			

- Normal times: $\uparrow lev, \downarrow liq \Rightarrow \uparrow s_{f,t}$
- GR: leverage has larger effects, liquidity has no effects
- COVID: liquidity has a larger effect
- ullet \uparrow 1 σ lev o $s_{\rm ft}$ \uparrow 143 bps in GFC, \uparrow 69 bps in COVID
- \uparrow 1 σ *liq* \rightarrow s_{ft} \sim 0.0 in GFC, \downarrow 47 *bps* in COVID

	$s_{f,t}$
Leverage	
Normal	196.584***
	(34.804)
GR	867.605***
	(131.905)
COVID	464.949***
	(90.324)
Liquidity	
Normal	-58.465***
	(21.736)
GR	34.458
	(67.256)
COVID	-430.430***
	(39.964)
N	43509
R2	0.75

- Normal times: $\uparrow lev, \downarrow liq \Rightarrow \uparrow s_{f,t}$
- GR: leverage has larger effects, liquidity has no effects
- COVID: liquidity has a larger effect
- \uparrow 1 σ lev \rightarrow s_{ft} \uparrow 143 bps in GFC, \uparrow 69 bps in COVID
- † 1 σ liq \rightarrow s_{ft} \sim 0.0 in GFC, \downarrow 47 bps in COVID
- ► Investment ► Liquid Assets ► Debt

Quantitative Model

Model of firm capital structure and investment Prictions

- Issue defaultable debt: 1-period bonds, priced by risk-neutral investors (Eaton & Gersovitz '82)
- Hold liquid assets: firm subject to negative liquidity shocks (e.g., working capital)
- Can access costly intraperiod liquidity to satisfy liquidity needs
- Costly equity issuance ► Firm problem

Heterogeneous Firms

- Ex-ante differences in motives for leverage, liquidity, and default risk
- Split US corporates into 4 groups: high/low leverage, high/low liquidity

Quantitative Model

Model of firm capital structure and investment Prictions

- Issue defaultable debt: 1-period bonds, priced by risk-neutral investors (Eaton & Gersovitz '82)
- Hold liquid assets: firm subject to negative liquidity shocks (e.g., working capital)
- Can access costly intraperiod liquidity to satisfy liquidity needs
- Costly equity issuance ► Firm problem

Heterogeneous Firms

- Ex-ante differences in motives for leverage, liquidity, and default risk
- Split US corporates into 4 groups: high/low leverage, high/low liquidity
- Model calibrated to match these four groups

 Calibration
 Model Fit

Firm's balance sheet

Quantitative Model, cont'd

Crises

- Large, unexpected, and transitory shocks
- Real, Financial, or Liquidity shocks Shock details
- Compute aggregate and cross-sectional moments and responses

Policies

- QE, Credit Guarantees, or Transfers Policy details
- Aggregate and cross-sectional "multipliers"

Quantitative Model, cont'd

Crises

- Large, unexpected, and transitory shocks
- Real, Financial, or Liquidity shocks Shock details
- Compute aggregate and cross-sectional moments and responses

Policies

- QE, Credit Guarantees, or Transfers Policy details
- Aggregate and cross-sectional "multipliers"

Aggregate Shock Responses Potails

Aggregate Shock Responses Poetails

Aggregate Shock Responses Potails

Cross-Sectional Effects: Credit Spreads

Effects are stronger for...

- TFP: high leverage
- Financial: low leverage
- Liquidity: low liquidity
 Empirical Evidence

Cross-Sectional Effects: Investment

Cross-Sectional Effects of Shocks

	Real	Financial	Liquidity
	Aggregate effects		
Spreads	50	50	50
Investment	-83	-13	-51

	Elasticities		
Spreads			
Liquidity	-5.14	-4.26	-1071.58
Leverage	46.13	-37.15	109.92
Investment			
Liquidity	-2.81	-1.73	54.86
Leverage	-1.62	-0.51	-6.15

Real: larger effect for firms with high leverage

Financial: smaller effect for firms with high leverage

Liquidity: smaller effects for firms with high liquidity

Aggregate Effects of Policy: No (other) Shocks

Aggregate and cross-sectional Multipliers: QE Petails

- QE effective overall, less so vs. real shocks
- Financial: + support to high lev. firms
- Liquidity: + support to low liq. firms

- Not effective vs. real shocks
- Financial: + support to low lev. firms
- Liquidity: + support to low liq. firms

- More effective vs. liquidity shocks
- + support to low liquidity firms
- Financial: + support to low lev. firms

- Transfers: only policy that always raises probability of survival
- Useful if policy objective is to prevent defaults

Conclusions

Empirical analysis of credit spreads during two large crises

- GFC looks like a solvency crisis, key variable: firm leverage
- COVID looks more like a liquidity crisis, key variable: firm liquid assets
- Debt/liquid assets move in opposite directions during both crises

Quantitative model calibrated to match firm distribution of liquidity and leverage

- Different shocks may have similar aggregate effects, but very different cross-sectional implications
- Shocks & policies may generate different effects depending on
 - 1. Nature of aggregate shock
 - 2. Distribution of firm financial characteristic

Conclusions

Empirical analysis of credit spreads during two large crises

- GFC looks like a solvency crisis, key variable: firm leverage
- COVID looks more like a liquidity crisis, key variable: firm liquid assets
- Debt/liquid assets move in opposite directions during both crises

Quantitative model calibrated to match firm distribution of liquidity and leverage

- Different shocks may have similar aggregate effects, but very different cross-sectional implications
- Shocks & policies may generate different effects depending on
 - 1. Nature of aggregate shock
 - 2. Distribution of firm financial characteristics

- Bond yields sourced from TRACE, bond characteristics and payment schedules from Mergent FISD
- Sample selection: fixed- and zero-coupon bonds issued by US corporates, amount at issuance >
 \$ 1 M, maturity at issuance between 1 and 30 years

Variable	Mean	SD	Min	Median	Max
Number of bonds per firm/week	5.52	19.50	1.00	2.00	828.00
Market value of issue (\$ mil)	209.71	250.90	1.00	147.04	6422.77
Maturity at issue (years)	9.40	6.93	1.00	8.00	30.00
Coupon (pct.)	5.43	2.72	0.00	5.50	22.50
Credit Spread (basis points)	283.19	368.85	5.00	164.43	3499.99
Nominal yield (basis points)	606.08	472.96	17.55	523.54	10457.79
Number of observations	6,634,135				
Number of bonds	50,076				
Number of firms	3,646				
Callable (pct)	0.63				

Notes: Secondary market price of corporate bonds from the TRACE database. Credit spreads as in Gilchrist & Zakrajsek (2012). Restrict sample to US corporate bonds, fixed- and zero-coupon bonds, bonds with credit spreads between 5 and 3500

Investment Regressions back

	$\Delta log(k_{f,t})$
Leverage	
Normal	-4.011***
	(0.355)
Liquidity	
Normal	5.683***
	(0.573)
N	41781
R2	0.21

$$\Delta \log k_{f,t} = \alpha_t + \gamma_f + \beta_{E(t)} \operatorname{liq}_{f,t-r} + \gamma_{E(t)} \operatorname{lev}_{f,t-r} + \Phi X_{f,t} + \varepsilon_{f,t}$$

- Normal times: $\downarrow lev, \uparrow liq \Rightarrow \uparrow \Delta \log k_{f,t}$
- Coefficients similar across periods/events
- ullet H_0 of equal coefficients across events not rejected at 1%

Investment Regressions Pack

	$\Delta log(k_{f,t})$
Leverage	
Normal	-4.011***
	(0.355)
GR	-3.451***
	(0.636)
Liquidity	
Normal	5.683***
	(0.573)
GR	7.087***
	(0.792)
N	41781
R2	0.21
<u></u>	

$$\Delta \log k_{f,t} = \alpha_t + \gamma_f + \beta_{E(t)} \operatorname{liq}_{f,t-r} + \gamma_{E(t)} \operatorname{lev}_{f,t-r} + \Phi X_{f,t} + \varepsilon_{f,t}$$

- Normal times: $\downarrow lev, \uparrow liq \Rightarrow \uparrow \Delta \log k_{f,t}$
- Coefficients similar across periods/events
- ullet H_0 of equal coefficients across events not rejected at 1%

Investment Regressions Pack

_		
		$\Delta log(k_{f,t})$
L	_everage	
	Normal	-4.011***
		(0.355)
	GR	-3.451***
		(0.636)
	COVID	-3.677***
		(0.549)
Liquidity		
	Normal	5.683***
		(0.573)
	GR	7.087***
		(0.792)
	COVID	6.861***
		(1.862)
1	V	41781
F	R2	0.21

 $\Delta \log \textit{k}_{f,t} = \alpha_t + \gamma_f + \beta_{\textit{E}(t)} \text{liq}_{f,t-r} + \gamma_{\textit{E}(t)} \text{lev}_{f,t-r} + \Phi \textit{X}_{f,t} + \varepsilon_{f,t}$

- Normal times: $\downarrow lev, \uparrow liq \Rightarrow \uparrow \Delta \log k_{f,t}$
- Coefficients similar across periods/events
- ullet H_0 of equal coefficients across events not rejected at 1%

Repeated cross-sections:

$$\frac{a_{f,t}-a_{f,t-2}}{a_{f,t-2}}=\alpha_{s,t}+\beta_t \mathsf{liq}_{f,t-2}+\gamma_t \mathsf{lev}_{f,t-2}+\Phi_t X_{f,t-2}+\epsilon_{f,t}$$

Repeated cross-sections:

$$\frac{b_{f,t}-b_{f,t-2}}{b_{f,t-2}} = \alpha_{s,t} + \beta_t \mathsf{liq}_{f,t-2} + \gamma_t \mathsf{lev}_{f,t-2} + \Phi_t X_{f,t-2} + \epsilon_{f,t}$$

Cross-sectional Heterogeneity

- Similar movements for the median
- GFC featured larger increases at the top (90th and 95th percentiles)
 - ightarrow Some firms and/or bonds suffered much more during GF

Cross-sectional Heterogeneity

- Similar movements for the median
- GFC featured larger increases at the top (90th and 95th percentiles)
 - ightarrow Some firms and/or bonds suffered much more during GFC

Environment & Technology back

- Time is discrete and infinite, t = 0, 1, ...
- Finite set of firm types, i = 1, ..., N with mass $n_i, \sum_{i=1}^{N} n_i = 1$
- Firms produce according to a DRS production function that employs capital and labor

$$y = z^{1-\nu} k^{\alpha} \ell^{\nu}, \alpha + \nu < 1$$

• Investment in capital is subject to convex adjustment costs

$$\mathcal{A}^{K}(k',k) = \frac{\psi}{2} \left(\frac{k'-k}{k}\right)^{2} k$$

- Firms have constant productivity z, subject to two iid shocks:
 - 1. **Default Shocks** ε , "preference" shocks that follow Extreme Value distribution \bigcirc Details on Default
 - 2. **Liquidity Shocks** ω , follow a binomial distribution, $\omega = \omega_i$ w.p. p_{ω} , zero otherwise
- State variables:

$$s = \left(\underbrace{k}_{\text{capital}}, \underbrace{b}_{\text{liq. assets}}, \underbrace{\omega}_{\text{pref shock}}, \underbrace{\varepsilon}_{\text{pref shock}}\right)$$

Firms can borrow one-period debt b' at price q(k', b', a')

$$q(k', a', b') = (1 + \chi) \overbrace{\frac{\mathcal{P}(k', a', b')}{1 + r}}^{ ext{repayment prob}}$$

- χ captures "preference for debt" (i.e., tax advantage)
- Firms can also invest in risk-free assets a' that yield zero return
- Risk-free assets useful to satisfy liquidity constraint at the beginning of the period

$$k < \omega a + m'$$

where m' > 0 intra-period borrowing that entail an increasing and convex cost

$$\mathcal{A}^{M}(m') = r \exp(s_{m}m')m'$$

Costly equity issuance

$$\mathcal{A}^{D}(div) = \frac{\rho}{2} \max(-div, 0)^{2}$$

$$\begin{split} V\left(k,b,a,\omega\right) &= \max_{k',a',b' \geq 0} \operatorname{div} - \mathcal{A}^D(\operatorname{div}) + \beta \mathbb{E}_{\varepsilon,\omega'} \left[\max \left\{ V\left(k',b',a',\omega'\right) + \varepsilon, 0 \right\} \right] \\ \operatorname{div} &= \pi(k) + a - b + (1 - \delta)k - k' + q\left(k',b',a'\right)b' - q^a a' - \mathcal{A}^K(k',k) - \mathcal{A}^M(m') \\ \omega k \leq a + m' \\ \pi(k) &= \max_{\ell} z^{1-\nu} k^{\alpha} \ell^{\nu} - w \ell \\ q\left(k',b',a'\right) &= (1+\chi) \frac{\mathbb{E}\left[\mathcal{P}\left(k',b',a'\right)\right]}{1+r} \\ \mathcal{A}^D(\operatorname{div}) &= \frac{\rho}{2} \left(\max \left\{ -\operatorname{div},0 \right\} \right)^2 \\ \mathcal{A}^K(k',k) &= \frac{\psi}{2} \left(\frac{k'-k}{k}\right)^2 \\ \mathcal{A}^M(m') &= r \exp(s_m m') m' \end{split}$$

Sources of ex-ante heterogeneity

Firm Default Phack

• At the beginning of the period, firm draws iid extreme-value preference shocks $\varepsilon^D, \varepsilon^P$

$$V(k,b,\mathbf{a},\omega,\varepsilon^P,\varepsilon^D) = \max \left\{ V^P(k,b,\mathbf{a},\omega) + \varepsilon^P, V^D(k,b,\mathbf{a},\omega) + \varepsilon^D \right\}$$

- Normalize $V^D = 0$
- $\varepsilon = \varepsilon^P \varepsilon^D$ follows mean-zero logistic distribution with scale κ , implying

$$\mathcal{P}(k, a, b) = \sum_{\omega} \pi(\omega) \frac{\exp[V^{P}(k, b, a, \omega)/\kappa]}{1 + \exp[V^{P}(k, ab, a, \omega)/\kappa]}$$

Calibration • back

Externally calibrated parameters:

Parameter	Value	Description
Production		
α	0.255	Capital share, Gilchrist et. al. '14
ν	0.595	Labor share, Gilchrist et. al. '14
δ	0.096	Depreciation rate
W	1	Wage, normalization
Z	1	TFP, normalization
ψ	0.455	Capital adjustment, Cooper Haltiwanger '06
ρ	3	Large equity penalty, never issue equity
$oldsymbol{p}_{\omega}$	0.50	Probability of liquidity shock
Prices		
β	0.95	Discount factor
r	$1/\beta - 1$	Interest rate
q^a	1	Price of liquid assets
S _m	25	Slope of intraperiod borrowing cost

Internally calibrated Parameters Identification back

- N = 4, four types of ex-ante heterogeneous firms
- Split matched TRACE-Compustat dataset into four groups of firms

	Value
High	0.45
Low	0.20
High	0.11
Low	0.015
	166 bps
	Low

	Model Parameter			Model Moment			
	debt	liquidity	idiosyncratic	Leverage	Liquid	Credit	Mass
	preference (χ)	needs (ω)	risk (κ)		assets	spreads	ni
High lev, high liq	0.0172	0.1682	0.5175	0.45	0.11	167	0.203
Low lev, high liq	0.0054	0.1645	0.4738	0.20	0.11	166	0.297
High lev, low liq	0.0168	0.0490	0.5602	0.45	0.015	166	0.297
Low lev, low liq	0.0053	0.0500	0.5100	0.20	0.015	169	0.203

Untargeted Moments • back

Moment	Data, 2007Q2	Data, 2019Q4	Model
Mg Financing Cost	3.25%	3.25%	3.75 %
Investment Rate	8.56%	7.42%	6.90%
Profit Rate	13.4%	11.1%	13.0%
Debt to EBITDA	2.21	3.24	2.56
Equity payout rate	0.71%	1.52%	13.0%
Equity issuance rate	0.00%	0.00%	0.00%

Data moments correspond to Compustat medians for a given period; model moments correspond to model aggregates.

- Unexpected, transitory shocks, with persistence equal to $1-\zeta$
- Aggregate variables computed as $X = \sum_{i=1}^{N} n_i x_i$
- Shock sizes chosen to match rise in spreads of 50 bps
 - 1. **Real/TFP**: $z \downarrow$ by 25.5%
 - 2. **Financial**: $\chi \downarrow$ by 8.8 bps
 - 3. Liquidity: $\omega \uparrow$ to $\bar{\omega} = 0.235$

Policy Pack

We consider three policy interventions:

1. **QE**: government purchases debt securities at subsidized prices χ^{QE} , so that

$$q^{QE}(k',b',a') = (1+\chi+\chi^{QE})\frac{\mathcal{P}(k',b',a')}{1+r}$$

2. **Credit Guarantees**: government commits to repay the lender a fraction ϕ^{CG} of principal in case of default

$$q^{CG}(k', a', b') = (1 + \chi) \frac{\mathcal{P}(k', a', b')}{1 + r} + \phi^{CG} \frac{1 - \mathcal{P}(k', a', b')}{1 + r}$$

3. Transfers: lump-sum government transfers τ , able to circumvent liquidity constraint

$$\omega k \leq a + m' + \tau$$

Effects compared to the expected cost of each policy.

Policy: Aggregate Multipliers back

	QE	Transfers	Credit G.			
	No shock					
Υ	2.38	0.07	-2.18			
K	6.59	0.19	-6.05			
N	1.41	0.04	-1.3			
Repay	-2.01	0.08	-3.83			
	Re	eal shock				
Υ	2.99	0.12	-2.52			
K	8.25	0.32	-6.97			
Ν	1.78	0.07	-1.5			
Repay	-2.24	0.1	-4.07			
	Fina	ncial shock				
Υ	4.21	0.12	0.67			
K	11.65	0.34	1.83			
N	2.51	0.07	0.4			
Repay	-1.66	0.09	-2.9			
Liquidity shock						
Υ	2.99	0.28	0.81			
K	8.32	0.79	2.44			
N	1.78	0.17	0.48			
Repay	-0.75	0.2	-1.59			

- QE always effective, even in the absence of shocks
- Credit Guarantees not effective wrt real shocks
- Transfers more effective vs. Liquidity Shocks, only policy that reduces firm default
- Real shocks relatively harder to offset with policy

Survival Multipliers: Other Policies • back

