ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2022/23

Minimum Spanning Tree (MST)

- Albero di copertura di peso minimo -

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

PROBLEMA (Minimum Spanning Tree):

INPUT: Grafo G = (V,E) indiretto connesso

funzione di peso sugli archi di G $c: E \rightarrow R$

OUTPUT: albero di copertura di peso minimo

Albero di copertura T per G=(V,E): T=(V, E'), tale che $E'\subseteq E$, è un albero (quindi |E'|=|V|-1) Peso di un albero di copertura T=(V,E') per G=(V,E):

$$\sum_{e \in E'} c(e)$$

soluzione ammissibile: albero di copertura per G (spanning tree)

costo soluzione: peso dell'albero di copertura

funzione obiettivo: minimo

soluzione ottima: soluzione ammissibile ottima (minimum spanning tree)

ESEMPIO

Una soluzione ammissibile

ESEMPIO

Una soluzione ammissibile

Soluzione ottima

ESEMPIO

La soluzione ottima può non essere UNICA!

Soluzione ottima

La soluzione ottima può non essere UNICA!

cost = 37

cost = 37

Immagini originali A. Montresor

MST VS cammini minimi

Minimum Spanning Tree e albero dei cammini minimi NON sono la stessa cosa!

MST

albero cammini minimi da sorgente 1

SOTTOSTRUTTURA OTTIMA

Dato un MST T = (V,E') per G = (V,E), gli alberi in $T' = (V, E \setminus \{(u,v)\})$, con $(u,v) \in E'$ sono MST per gli insiemi di vertici connessi in T'

perché?

SOTTOSTRUTTURA OTTIMA

supponiamo sia possibile trovare un MST per i nodi {1,2,3,4,6} di costo C < 27

SOTTOSTRUTTURA OTTIMA

Avremmo trovato un MST di costo MINORE rispetto al MST!

cost(T) = 43G cost = C < 2711 20 18 28 newT 15 25

supponiamo sia possibile trovare un MST per i nodi {1,2,3,4,6} di costo C < 27

Possiamo pensare di usare la strategia GREEDY

dobbiamo scegliere un sottoinsieme di archi del grafo che formino un MST

Quale scelta GREEDY?

Possiamo pensare di usare la strategia GREEDY

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente:
 ad ogni iterazione scegliere l'arco di
 peso minimo che unisca un nodo non
 ancora nell'albero ad un nodo già
 nell'albero
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente:
 ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente:
 ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente:
 ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente:
 ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente:
 ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente:
 ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente:
 ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Scelte implementative:

- Usiamo una lista per memorizzare gli archi scelti nel MST
- Terminiamo dopo aver selezionato n-1 archi

non l'abbiamo ancora visto, tornare a studiare lo pseudo-codice dopo che avremo fatto la struttura dati disjoint-set

ALGORTIMO DI KRUSKAL

```
Kruscal(G=(V,E),c)
S := make set(V) //disjoint set
T := new list()
ordina gli archi di E per ordine non decrescente di costo c
count := 0
while count < n - 1 do
 scegli il prossimo arco (u,v)∈ E nell'ordinamento
 if find-set(S,u) \neq find-set(S,v)
  then p := new list node()
       p.val := (u,v)
       insert-head(T,p)
       union(S,u,v)
       count := count + 1
return T
```

ALGORTIMO DI KRUSKAL

```
Kruscal(G=(V,E),c)
S := make set(V) //disjoint set O(n)
                                                    O(m \log m)
T := new_list() O(1)
ordina gli archi di E per ordine non decrescente di costo c
count := 0
                                             – # ripetizioni O(m)
while count < n - 1 do ←
 scegli il prossimo arco (u,v)∈ E nell'ordinamento
 if find-set(S,u) \neq find-set(S,v)
  then p := new list node()
       p.val := (u,v)
       insert-head(T,p)
       union(S,u,v)
       count := count + 1
                 O(\log n) + O(1) + O(\log n) \in O(\log n)
return T
```

In totale: $O(n) + O(1) + O(m \log m) + O(m \log n) \in O(m \log n)$ Algoritmi e Strutture Dati - CdS Informatica - Prof. M. Montangero $m \le n^2 \Rightarrow \log m \le 2 \log n$ UNIMORE

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente:
 ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente:
 ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

Algoritmo di PRIM (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

Scelte implementative:

- teniamo traccia del fatto che un nodo sia o meno nel MST
- teniamo traccia del costo per raggiungere un nodo
- usiamo una CODA con PRIORITÀ per scegliere il nodo in ogni iterazione
- teniamo traccia dei nodi padre

ALGORTIMO DI PRIM

```
Prim(G=(V,E),C)
for all v \in V do
 cost[v] := +\infty
prev[v] := NIL
 S[v] := 0
scegli un nodo s \in V
cost[s] := 0
S[s] := 1
Q := make priority queue(V') // coppie nodi di V e cost[]
while NOT is_empty_queue(Q) do
 u := DeQueue(Q)
 S[u] := 1
 for all (u,v) \in E do
  if S[v] = 0 AND cost[v] > c(u,v)
    then
     cost[v] := c(u,v)
     prev[v] := u
     Decrease_Priority(Q,v,cost[v])
return prev[]
```

ALGORTIMO DI PRIM

```
Prim(G=(V,E),C)
for all v \in V do
 cost[v] := +\infty
                  O(n)
 prev[v] := NIL
 S[v] := 0
scegli un nodo s \in V
                        O(1)
cost[s] := 0
S[s] := 1
Q := make_priority_queue(V') // coppie nodi di V e cost[] O(n)
while NOT is_empty_queue(Q) do
                                          — in totale O(n \log n)
u := DeQueue(Q)←
 S[u] := 1
 for all (u,v) \in E do
  if S[v] = 0 AND cost[v] > c(u,v)
   then
     cost[v] := c(u,v)
     prev[v] := u
     Decrease_Priority(Q,v,cost[v]) \leftarrow in totale O(m \log n)
return prev[]
```

In totale: $O(n) + O(1) + O(n \log m) + O(m \log n) \in O(m \log n)$

Gli algoritmi di Kruskal e Prim sono corretti?

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Algoritmo di **PRIM** (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

PRIMA DOMANDA: restituiscono degli alberi di copertura?

Gli algoritmi di Kruskal e Prim sono corretti?

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

SI, per costruzione abbiamo:

- gli archi scelti non formano cicli-> è un albero
- è connesso perché lo era il grafo di partenza

Algoritmo di **PRIM** (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

SI, per costruzione

PRIMA DOMANDA: restituiscono degli alberi di copertura?

Gli algoritmi di Kruskal e Prim sono corretti?

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Algoritmo di PRIM (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

SECONDA DOMANDA: restituiscono dei MST?

TEOREMA:

Dati un grafo G=(V,E) e una funzione di costo $c:E\to R$ sugli archi, sia $S\subset V$ un sottoinsieme proprio e non vuoto di V (cioè 0<|S|<|V|) e sia $e=(u,v)\in E$ un arco id costo minimo tale che $u\in S$ e $v\in V\setminus S$, allora l'arco e appartiene ad un MST per G

DEFINIZONI:

- * La partizione $(S, V \setminus S)$ è detta **TAGLIO** del grafo G = (V, E)
- * L'arco $e = (u, v) \in E$ un arco di costo minimo che attraversa un taglio del grafo G è detto **SAFE**

DIMOSTRAZIONE:

ci sono due casi:

- l'arco e appartiene ad un MST per G $\stackrel{\longleftarrow}{\longrightarrow}$ OK
- l'arco e NON appartiene ad un MST per G

DIMOSTRAZIONE:

- l'arco e NON appartiene ad un MST per G

Nessun MST di G usa e = (u, v) per connettere i nodi del taglio,

Tutti i MST usano un solo arco e' = (u', v') che attraversa il taglio diverso da e

DIMOSTRAZIONE:

- l'arco e NON appartiene ad un MST per G

Sostituendo e' con e nel MST troviamo un albero di copertura di costo non maggiore di MST

DIMOSTRAZIONE:

- l'arco e NON appartiene ad un MST per G \leftarrow NON è possibile!

Sostituendo e' con e nel MST troviamo un albero di copertura di costo non maggiore di MST

Gli algoritmi di Kruskal e Prim sono corretti?

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Algoritmo di **PRIM** (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

SECONDA DOMANDA: restituiscono dei MST?

SI, se ad ogni iterazione viene scelto un arco SAFE

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Sceglie un arco SAFE ad ogni iterazione?

Iterazione i-esima: si sceglie l'arco (u,v)

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Sceglie un arco SAFE ad ogni iterazione?

SI

Iterazione i-esima: si sceglie l'arco (u,v)

Sceglie un arco SAFE ad ogni iterazione?

Iterazione i-esima: si sceglie l'arco (u,v)

Algoritmo di PRIM (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

Sceglie un arco SAFE ad ogni iterazione?

Iterazione i-esima: si sceglie l'arco (u,v) Algoritmo di PRIM (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

Algoritmo di KRUSKAL (1956):

- Ordinare gli archi per ordine crescente di peso
- Scegliere gli archi del MST iterativamente: ad ogni iterazione scegliere l'arco di peso minimo che non crei cicli
- Termina quando tutti i nodi sono connessi

Algoritmo di **PRIM** (1957):

- Scegliere un nodo sorgente
- Costruire il MST incrementalmente: ad ogni iterazione scegliere l'arco di peso minimo che unisca un nodo non ancora nell'albero ad un nodo già nell'albero
- Termina quando tutti i nodi sono connessi

Gli algoritmi di Kruskal e Prim sono corretti

