第七讲正规子群、商群

陈建文

November 5, 2022

定义1. 设G为一个群,G的任意子集称为群子集。在 2^G 中借助于G的乘法引入一个代数运算,称为群子集的乘法: $\forall A,B\in 2^G$,

$$AB = \{ab | a \in A \coprod b \in B\}$$

对任意的 $A \in 2^G$, 定义

$$A^{-1} = \{a^{-1} | a \in A\}$$

定理1. 设G为一个群,则 $\forall A, B, C \in 2^G$,(AB)C = A(BC)。

定理2. 设G为一个群,则 $\forall A, B \in 2^G$, $(AB)^{-1} = B^{-1}A^{-1}$ 。

定理3. 设G为一个群,H为G的一个子群,则 $HH=H,H^{-1}=H,HH^{-1}=H\circ$

定理4. 设A, B为群G的子群,则AB为G的子群的充分必要条件为AB = BA。

证明. ⇒设AB为G的子群,则 $AB = (AB)^{-1} = B^{-1}A^{-1} = BA$ 。

 $\Leftrightarrow \Diamond AB = BA$,往证 $AB \Rightarrow G$ 的子群。

由(AB)(AB) = A(BA)B = A(AB)B = (AA)(BB) = AB知G中的运算 在AB中封闭。其次, $\forall a \in A, b \in B, (ab)^{-1} = b^{-1}a^{-1} \in BA = AB$ 。所以AB为G的子群。

例. 设H为G的一个子群且 $H \neq \{e\}$ 。 如果存在一个元素 $x_0 \in G$ 使得 $H(x_0^{-1}Hx_0) = G$,则 $H \cap (x_0^{-1}Hx_0) \neq \{e\}$ 。

证明. 因为 $x_0 \in G = H(x_0^{-1}Hx_0)$,所以 $\exists h_1, h_2 \in H$ 使得 $x_0 = h_1x_0^{-1}h_2x_0$,从而 $e = h_1x_0^{-1}h_2$ 。于是, $x_0 = (h_1^{-1}h_2^{-1})^{-1} = h_2h_1 \in H$,从而 $x_0^{-1}Hx_0 = H$ 。因此, $H \cap (x_0^{-1}Hx_0) = H \neq \{e\}$ 。

定义2. 设H为群G的子群,如果 $\forall a \in G$, aH = Ha,则称H为G的正规子群。

定理5. 设H为群G的一个子群,则下列四个命题等价:

- (1) H为群G的正规子群;
- (2) $\forall a \in G, aHa^{-1} = H;$
- (3) $\forall a \in G, aHa^{-1} \subseteq H$;
- (4) $\forall a \in G, \forall h \in H, aha^{-1} \in H$.

证明. 先证(1) ⇔(2):

 $\forall a \in G, \ aH = Ha \Leftrightarrow aHa^{-1} = H \circ$

再证 (2) ⇔ (3):

 $(2) \Rightarrow (3)$ 显然成立。

以下证明 (3) ⇒ (2)。

只需证 $\forall a \in G, H \subseteq aHa^{-1}$ 。

 $\forall h \in H, \ h = a(a^{-1}ha)a^{-1} = a(a^{-1}h(a^{-1})^{-1})a^{-1} \in aHa^{-1}, \ \text{这里}a^{-1}h(a^{-1})^{-1} \in H$ 是因为 $a^{-1}H(a^{-1})^{-1} \subseteq H$ 。

定理6. 设H为群G的正规子群,则H的所有左陪集构成的集族 S_l 对群子集乘法形成一个群。

证明. $\forall aH, bH \in S_l$, $(aH)(bH) = a(Hb)H = a(bH)H = (ab)(HH) = (ab)H \in S_l$, 这验证了群子集乘法在 S_l 上封闭: 。

群子集乘法显然满足结合律。

 $\forall aH \in S_l, H(aH) = (eH)(aH) = aH$,所以 $H \ni S_l$ 中乘法的左单位元。

 $\forall aH \in S_l$, $(a^{-1}H)(aH) = (a^{-1}a)H = eH = H$, 所以, $a^{-1}H$ 为aH的左逆元。因此, S_l 对群子集乘法构成一个群。

定理7. 设H为群G的正规子群,H的所有左陪集构成的集族为 S_l ,在 S_l 上定义乘法运算如下: $\forall aH, bH \in S_l, (aH)(bH) = (ab)H$,则 S_l 对于在其上定义的乘法构成一个群。

证明. 首先证明: 如果aH=a'H, bH=b'H, 则(ab)H=(a'b')H。由 $(ab)^{-1}(a'b')=b^{-1}a^{-1}a'b'=(b^{-1}b')b'^{-1}a^{-1}a'b'\in H$ 知(ab)H=(a'b')H。这验证了 S_l 上乘法运算的合理性。

 $\forall aH, bH, cH \in S_l, ((aH)(bH))(cH) = (abH)(cH) = ((ab)c)H, (aH)((bH)(cH)) = (aH)(bcH) = (a(bc))H, 从而((aH)(bH))(cH) = (aH)((bH)(cH)), 这验证了乘法运算满足结合律。$

 $\forall aH \in S_l, H(aH) = (eH)(aH) = aH$,所以 $H \ni S_l$ 中乘法的左单位元。

 $\forall aH \in S_l$, $(a^{-1}H)(aH) = (a^{-1}a)H = eH = H$, 所以, $a^{-1}H$ 为aH的左逆元。因此, S_l 对乘法运算构成一个群。

定义3. 群G的正规子群H的所有左陪集构成的集族,对群子集乘法构成的群称为G对H的商群,记为G/H。

课后作业题:

练习1. 设A和B为群G的两个有限子群,证明:

$$|AB| = \frac{|A||B|}{|A \cap B|}$$

证明. 因为 $A \cap B$ 为A的子群,因此存在 $a_1, a_2, \dots, a_n \in A$,使得

$$A = a_1(A \cap B) \cup a_2(A \cap B) \cup \cdots \cup a_n(A \cap B)$$

这里 $n = \frac{|A|}{|A \cap B|}$ 。以下验证 $AB = a_1B \cup a_2B \cup \cdots \cup a_nB$,并且对任意的 $i, j, 1 \le i \le n, 1 \le j \le n, a_iB \cap a_jB = \phi$,于是 $|AB| = n|B| = \frac{|A||B|}{|A \cap B|}$ 。

 $\forall g \in AB$,存在 $a \in A$, $b \in B$ 使得g = ab。进一步,存在i, $1 \le i \le n$, $x \in A \cap B$ 使得 $a = a_i x$,于是 $g = a_i x b \in a_i B$ (因为 $x \in A \cap B \subseteq B$, $b \in B$,从而 $x b \in B$)。

以下用反正法证明对任意的 $i, j, 1 \le i \le n, 1 \le j \le n, a_i B \cap a_j B = \phi$ 。假设存在 $i, j, 1 \le i \le n, 1 \le j \le n$,使得 $a_i B \cap a_j B \ne \phi$,则存在 $x, x \in a_i B \cap a_j B$ 。设 $x = a_i b_1 = a_j b_2$,这里 $b_1 \in B$, $b_2 \in B$,则 $a_i^{-1} a_j = b_1 b_2^{-1} \in A \cap B$,从而 $a_i (A \cap B) = a_j (A \cap B)$,与 $a_i (A \cap B) \cap a_j (A \cap B) = \phi$ 矛盾。

练习2. 利用上题的结论证明: 六阶群中有唯一的一个三阶子群。

证明. 设A和B为六阶群G的两个三阶子群, 由练习1结论可得:

$$|AB| = \frac{|A||B|}{|A \cap B|}$$

由于 $A\cap B$ 为A的子群,所以必有 $|A\cap B|$ |A|,从而 $|A\cap B|=1$ 或3。如果 $|A\cap B|=1$,则|AB|=9,这与G为一个六阶群,AB为G的群子集矛盾,从而 $|A\cap B|=3$,此时必有A=B,结论得证。

练习3. 设G为一个 n^2 阶的群,H为G的一个n阶子群。证明: $\forall x \in G, x^{-1}Hx \cap H \neq \{e\}$ 。

证明. 用反证法,假设存在 $x \in G$, $x^{-1}Hx \cap H = \{e\}$ 。由练习1结论可得,

$$|H(x^{-1}Hx)| = \frac{|H||x^{-1}Hx|}{|H\cap(x^{-1}Hx)|} = n^2$$

又由于G为一个 n^2 阶的群,所以 $H(x^{-1}Hx)=G$,由教材例题结论可得 $x^{-1}Hx\cap H\neq\{e\}$,矛盾。

练习4. 证明: 指数为2的子群为正规子群。

证明. 设H为群G的指数为2的子群,则存在 $a \in G$ 使得 $G = H \cup aH$ 。

 $\forall g \in G$,如果 $g \in H$,则显然 $gHg^{-1} \subseteq H$;如果 $g \in aH$,则存在 $h \in H$ 使得g = ah,以下证明 $gHg^{-1} \subseteq H$,从而可得H为G的正规子群。

 $\forall x \in gHg^{-1}$,存在 $h_1 \in H$ 使得 $x = gh_1g^{-1}$,再由g = ah得 $x = ahh_1(ah)^{-1} = ahh_1h^{-1}a^{-1}$ 。此时必有 $x \in H$,否则 $x \in aH$,从而存在 $h_2 \in H$ 使得 $x = ah_2$,于是 $ahh_1h^{-1}a^{-1} = ah_2$,由此可得 $a = h_2^{-1}hh_1h^{-1} \in H$,与 $a \in aH$ 矛盾。

练习5. 证明: 两个正规子群的交还是正规子群。

证明. 设 N_1 和 N_2 为群G的两个正规子群,显然 $N_1 \cap N_2$ 为G的子群。 $\forall a \in G$,易得 $a(N_1 \cap N_2)a^{-1} \subseteq aN_1a^{-1} \subseteq N_1, a(N_1 \cap N_2)a^{-1} \subseteq aN_2a^{-1} \subseteq N_2$,由此可得 $a(N_1 \cap N_2)a^{-1} \subseteq N_1 \cap N_2$,这证明了 $N_1 \cap N_2$ 为G的正规子群。

练习6. 设H为群G的子群,N为群G的正规子群,试证: NH为群G的子群。

证明. 设群G的单位元为e,则 $e = ee \in NH$,从而NH非空。

 $\forall x,y \in NH, \exists n_1 \in N, h_1 \in H, n_2 \in N, h_2 \in H, \ \ \text{使得} x = n_1h_1, \ \ y = n_2h_2, \\ \text{从而} xy^{-1} = (n_1h_1)(n_2h_2)^{-1} = n_1h_1h_2^{-1}n_2^{-1} = n_1(h_1h_2^{-1}n_2^{-1}(h_1h_2^{-1})^{-1})h_1h_2^{-1} \in NH, \ \ \text{这里} h_1h_2^{-1}n_2^{-1}(h_1h_2^{-1})^{-1} \in N$ 是因为N为G的正规子群。

练习7. 设G为一个阶为2n的交换群, 试证: G必有一个n阶商群。

证明. 由以前作业题知G中存在一个阶为2的元素a,则G/(a)为G的一个n阶商群。

练习8. 设H为群G的子群,证明:H为群G的正规子群的充分必要条件是 $\forall a,b \in G, (aH)(bH) = (ab)H$ 。

证明. 由教材定理知如果H为群G的正规子群,则 $\forall a,b \in G, (aH)(bH) = (ab)H \circ$ 以下假设 $\forall a,b \in G, (aH)(bH) = (ab)H$,往证H为群G的正规子群。

 $\forall a \in G, (aH)(a^{-1}H) = (aa^{-1})H = eH = H, 从而 \forall h \in H, aha^{-1}h \in H, 于是 \exists h_1 \in H, aha^{-1}h = h_1, 由此可得 aha^{-1} = h_1h^{-1} \in H, 这证明了 aHa^{-1} \subset H, 即 H为群G的正规子群。$