

Procesamiento de señales, fundamentos

Maestría en sistemas embebidos Universidad de Buenos Aires MSE 5Co2O2O

Clase 5 - Applicaciones de DFT

Ing. Pablo Slavkin slavkin.pablo@gmail.com wapp:011-62433453

SAPI

Se aceptan pull request para la SAPI

SAPI DSP

Enuestas

Encuesta anónima clase a clase

Propiciamos este espacio para compartir sus sugerencias, criticas constructivas, oportunidades de mejora y cualquier tipo de comentario relacionado a la clase.

Encuesta anónima

https://forms.gle/1j5dDTQ7qjVfRwYo8

Link al material de la material

https://drive.google.com/drive/u/1/folders/1TIR2cgDPchL_4v7DxdpS7pZHtjKq38CK

Multiplicacion?!

Algoritmo de Multiplicacion de 2do grado

- Recordar la tecnica de multiplicacion aprendida
- Considerar que 1 2 es h(n) y 3 4 x(n)
- Suponer que tenemos mas que 10 simbolos y que no es necesario hacer acarreo
- Entran 2 numeros de 2 cifras y sale
 1 de 3

	1 3	
	4	
3	6	(
3	10	;

Descomposición delta

SUma deltas desplazadas

- Considerar escalar y desplazar h(n) para hacer la convolucion
- 2 movimientos para obtener el resultado
- Entran 2 vectores de 2 elementos y sale 1 de 3

	6	
3 0	6	0
	4	8
 3	10	8

Convolucion formal

Convolucion				
2				
		4		
		10		
		2		
		10	8	

- Invierto h(n) desplazo, multiplico y sumo
- 3 movimientos para obtener el resultado
- Entran 2 vectores de 2 elementos y sale 1 de 3

Convolucion como producto de polinomios

- Considerar cada elemento de h(n) y x(n) como coeficientes de un polinomio
- Multiplicar los 2 polinomios respetando exponentes
- Entran 2 vectores de 2 elementos y sale 1 de 3

$$(1x10^{1} + 2x10^{0}) * (3x10^{1} + 4x10^{0}) =$$

$$(3x10^{2} + 4x10^{1} + 6x10^{1} + 8x10^{0}) =$$

$$(3x10^{2} + 10x10^{1} + 8x10^{0})$$

Multiplicacion?!

Algoritmo de Multiplicacion

Multiplicacion de polinomios

$$(1x10^{1} + 2x10^{0}) * (3x10^{1} + 4x10^{0}) =$$

$$(3x10^{2} + 4x10^{1} + 6x10^{1} + 8x10^{0}) =$$

$$(3x10^{2} + 10x10^{1} + 8x10^{0})$$

1 2 0 3 0 0 3 6 0 0 1 2 0 4 0 3 6 0 0 4 8

SUma deltas desplazadas

Convolucion

		4	
	3	0	0
0			
		10	
0			

10

10

Convolucion en tiempo filtrado

- Conmutativa
- Distributiva
- Asociativa

Repaso Multiplicacion

Propiedad conmutativa

Repaso Multiplicacion

Propiedad asociativa

Repaso Multiplicacion

Propiedad distributiva

Teorema de la convolución

Multiplicación con DFT

Tiempo vs Frecuencia

- Ejemplo de calcular 12 conv 3 4 utilizando:
 - Convolución x desplazamiento de h(n)
 - Convolución invirtiendo h(n)
 - Convolución usando iFFT(fft(h)*fft(x))
- Notar que todos los resultados son iguales
- Notar que siempre la salida con N+M-1 datos
- En este ei. 2+2-1=3

Teorema de la convolución

- Imagen en donde se destaca el camino de la ifft para calcular la convolución
- Notar la representación en parte real e imaginaria

Convolución circular

- Efecto de la convolución circular
- De la definición de la DFT se supone que x(n) es periódica
- Dado que en la practica cortamos en algún pinto x(n) para procesar, cuando involucionamos con otra señal debemos agregar ceros para evitar el efecto de solapamiento en la salida y asegurarnos que la salida tenga cuando menos N+M-1 valores

Teorema de la convolución

- Ecuación para obtener la salida de un sistema usando DFT
- El resultado es el mismo que convolucionar en el tiempo
- A partir de unos 64 puntos para h(n) la velocidad de calculo de la DFT es superior a la convolución en el tiempo

x*y=DTFT $^{-1}igl[$ DTFT $\{x\}\cdot$ DTFT $\{y\}igr]$

Pasabajos

- Ejemplo de como tomar tramos de x, rellenar con ceros, tomar h, rellenar con ceros y luego convulocionar
- Al mismo tiempo, se calcula FFT(x-padd) FFT(h-padd), se multiplican entre si y luego se hace la IFFT para obtener el mismo resultado que la convolución

Pasaaltos

- Ejemplo de como tomar tramos de x, rellenar con ceros, tomar h, rellenar con ceros y luego convulocionar
- Al mismo tiempo, se calcula FFT(x-padd) FFT(h-padd), se multiplican entre si y luego se hace la IFFT para obtener el mismo resultado que la convolucion

Definición

- Plantilla de diseño de un filtro
- En el ejemplo se aprecia un pasabajos pero se destacan las zonzas de interés y los niveles de la banda de paso y de rechazo
- Cuanto mas exigente se la plantilla del filtro, mas puntos tendrá nuestra h(n) y mas lenta y compleja su convolución
- El objetivo es llegar a un compromiso entre los requisitos y la performance

PyFDA /opt/anaconda3/bin/pyfdax

- Uso de PyFDA como herramienta para diseño de filtros
- Inicialmente solo nos concentramos en la H(f) para visualizar de manera practica las zonas de paso y de rechazo

Pyfda /opt/anaconda3/bin/pyfdax

- Uso de PyFDA como herramienta para diseño de filtros
- Inicialmente solo nos concentramos en la H(f) para visualizar de manera practica las zonas de paso y de rechazo
- Notar la variedad de opciones disponibles y la respuesta en fase en esta imagen

Bibliografía

Libros, links y otro material

- [1] ARM CMSIS DSP. https://arm-software.github.io/CMSIS_5/DSP/html/index.html
- [2] Steven W. Smith. *The Scientist and Engineer's Guide to Digital Signal Processing*. Second Edition, 1999.
- [3] Wikipedia. https://en.wikipedia.org/wiki/Convolution_theorem
- [4] PyFDA doc. https://buildmedia.readthedocs.org/media/pdf/pyfda/latest/pyfda.pdf