Diszkrét matematika 1

1. előadás Logika

Mérai László

merai@inf.elte.hu

2024 tavasz

Logika

Frissítve: 2024. február 12.

Predikátumok

Definíció

Predikátum: olyan váltózóktól függő kijelentések, amelyhez a változóik értékétől függően valamilyen *igazságérték* tartozik: **igaz** (I, \uparrow), **hamis** (H, \downarrow), és a kettő egyidejűleg nem teljesül.

Példa

V(): A vonat késik. 0-változós, értéke: I.

G(x): x hölgy. 1-változós,

értéke: G('Éva') = I, G('Ádám') = H.

F(x): x felnőtt. 1-változós. P(x): x vizsgázó puskázott. 1-változós. B(x,y): x főnöke y-nak. 2-változós.

Logikai jelek

A predikátumokat logikai jelekkel tudjuk összekötni:

Definíció

Legyenek A, B predikátumok. Ekkor

tagadás, jele
$$\neg A$$
és, jele $A \wedge B$ vagy (megengedő), jele $\neg A \mid I \mid H$ $A \wedge B \mid I \mid H$ $A \vee B \mid I \mid H$ $A \cap B \mid$

vagy (megengedő), jele
$$A \lor B$$

$$\begin{array}{c|cccc}
A \lor B & I & H \\
\hline
I & I & I \\
H & I & H
\end{array}$$

ha..., akkor...
(implikáció), jele
$$A \Rightarrow B$$

$$A \Rightarrow B \mid I \mid H$$

$$I \mid I \mid H$$

$$H \mid I \mid I$$

Ekvivalencia, jele
$$A \Leftrightarrow B$$

$$\begin{array}{c|cccc}
A \Leftrightarrow B & I & H \\
\hline
I & I & H \\
H & H & I
\end{array}$$

Logikai jelek – implikáció

Az **implikáció** $(A \Rightarrow B)$ csak *logikai* összefüggést jelent, és nem okozatit!

$$\begin{array}{c|cccc} A \Rightarrow B & I & H \\ \hline I & I & H \\ H & I & I \end{array}$$

Példa

$$2 \cdot 2 = 4 \quad \Rightarrow \quad \sin(2\pi) = 0$$

$$2 \cdot 2 = 4 \implies$$
szerda van

Hamis állításból minden következik:

Példa

$$2 \cdot 2 = 5 \quad \Rightarrow \quad \sin(2\pi) = -2$$

Adott logikai jel, más módon is kifejezhető:

$$(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$$

Bizonyítás. Ugyanaz az igazságtáblájuk.

Logikai áramkörök – Boole-algebrák

Legyenek bitek a logikai értékek: 0–hamis, 1–igaz.

Legyenek $a, b \in \{0, 1\}$ bitek (vagy *Boole változók*). Ekkor

Példa

További áramkörök

Implikáció
$$\xrightarrow{a} \xrightarrow{a} \xrightarrow{a \Rightarrow b}$$

Kvantorok

A kvantorokkal a változókból "lokális változókat" képezhetünk.

• egzisztenciális kvantor: ∃ "létezik", "van olyan"

• univerzális kvantor: ∀ "minden"

Példa

V(x): x veréb M(x): x madár

- Minden veréb madár: $\forall x(V(x) \Rightarrow M(x))$, ill. $\forall x(\neg V(x) \lor M(x))$,
- Van olyan madár ami veréb: $\exists x (M(x) \land V(x)),$
- Minden veréb madár de nem minden madár veréb:

$$(\forall x(\neg V(x) \lor M(x))) \land (\exists x(M(x) \land \neg V(x)))$$

Formulák

A formulák predikátumokból és logikai jelekből alkotott "mondatok".

Definíció (Formulák)

- A predikátumok a legegyszerűbb, u.n. elemi formulák.
- Ha \mathcal{A} , \mathcal{B} két formula, akkor $\neg \mathcal{A}$, $(\mathcal{A} \land \mathcal{B})$, $(\mathcal{A} \lor \mathcal{B})$, $(\mathcal{A} \Rightarrow \mathcal{B})$, $(\mathcal{A} \Leftrightarrow \mathcal{B})$ is formulák.
- Ha $\mathcal A$ egy formula és x egy változó, akkor , $(\exists x \mathcal A)$ és $(\forall x \mathcal A)$ is formulák.

Példa

Minden veréb madár de nem minden madár veréb.:

$$(\forall x(V(x) \Rightarrow M(x))) \land (\exists x(M(x) \land \neg V(x))).$$
 egy formula.

Ha nem okoz félreértést, a zárójelek elhagyhatóak.