Quantum resource theories

Kamil Korzekwa

Jagiellonian University, Poland PsiQuantum, USA

Outline

- I. Motivation
- II. Resource theories
 - A. Definition & examples
 - B. Resource-theoretic problems
 - C. Example: thermodynamics
- III. Selected research problems
 - A. Irreversibility beyond asymptotics
 - B. Resource resonance
 - C. Resource-theoretic perspective on fluctutation-dissipation theorem
- IV. Outlook

Motivation

Motivation (entanglement)

Quantum entanglement has clear operational meanings:

- Teleportation
- Super-dense coding
- E91 cryptographic protocol
- Bell inequalities violation

But:

There is no Hermitian operator such that the value of an entanglement measure could be given by its expectation value for any state of a composite quantum system*

So how can we quantify the amount of entanglement in a given state ρ ?

*App. Phys. B 89, 493 (2007)

Motivation (entanglement)

1. Identify the restricted setting for which entanglement has operational meaning as a resource

2. For pairs of states, verify whether you can transform them into each other using LOCC

3. Entanglement measure: any real-valued function preserving the LOCC order structure

$$\rho \xrightarrow{\text{LOCC}} \sigma \implies E(\rho) \ge E(\sigma)$$

Motivation (thermodynamics)

What can we say about the dynamics without solving equations of motion?

Closed systems Open systems \xrightarrow{p}

Resource theoretic approach to thermodynamics:

Using minimal assumptions of the quantum theory, find constraints on the evolution of a quantum system interacting with thermal baths

Energy conservation

Entropy growth

Motivation (thermodynamics)

Open dynamics approach:

Exact time evolution for a given model

Resource-theoretic approach:

Allowed final states compatible with the laws of thermodynamics

Resource theories

Definition and examples

- 1. Define the set of free operations \mathcal{O} (e.g., LOCC).
- 2. Define the set of free states S (e.g., separable states).
- 3. These imply resource measures (e.g., entropy of entanglement).

The set of free states needs to be closed under free operations.

Resource measures axioms:

- Faithfulness
- Monotonicity
- Convexity
- Subadditivity
- Asymptotic continuity

Definition and examples

Resource	Physical constraint	Free operations	Free states	Reference
Entanglement	Local quantum control	Local operations & classical communication	Separable	Rev. Mod. Phys. 81 , 865 (2009)
Asymmetry	Conservation laws / lack of a shared reference frame	G-covariant operations	Symmetric	I. Marvian's PhD thesis (2012)
Thermodynamics	No control over the degrees of freedom of environment	Thermal operations	Thermal	Rep. Prog. Phys. 82 , 114001 (2019)
Coherence	No experimental control to prepare certain superpositions	Incoherent operations	Incoherent	Rev. Mod. Phys. 89 , 865 (2017)
Magic	Restriction to stabilizer circuits	Stabilizer operations	Stabilizer	New J. Phys. 16 , 013009 (2014)
Non-Gaussianity	Typical quantum optics setup	Gaussian operations	Gaussian	Phys. Rev. A 82 , 052341 (2010)
•••	•••	•••	•••	•••

Quantum resource theories

Single-shot transformations

Find a set of necessary and sufficient conditions for $\rho \xrightarrow{\mathcal{O}} \sigma$

This full characterization for all states is usually very hard to obtain!

- Finding only necessary conditions yields constraints
- Finding only sufficient conditions yields protocols

Notable exceptions:

Bipartite pure entanglement

Majorization

Phys. Rev. Lett. 83, 436 (1999)

Incoherent thermodynamics

Thermomajorization

Nature Commun. 4, 2059 (2013)

U(1)-covariant pure states

Cyclic majorization

New J. Phys. 10, 033023 (2008)

Majorization intermission

• • •

Consider two entangled states of two spin-1 systems:

$$|\psi_{AB}\rangle = \sqrt{\frac{3}{8}}|\uparrow\uparrow\rangle + \frac{1}{2}|00\rangle + \sqrt{\frac{3}{8}}|\downarrow\downarrow\rangle$$
 $\boldsymbol{p}(\psi)^{\downarrow} = [3/8, 3/8, 1/2]$

$$|\phi_{AB}\rangle = \frac{1}{2}|\uparrow\uparrow\rangle + \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|\downarrow\downarrow\rangle$$
 $\boldsymbol{p}(\phi)^{\downarrow} = [1/2, 1/4, 1/4]$

Open problem: Transformation laws in the resource theory of thermodynamics at infinite temperature are exactly the reverse transformation laws in the resource theory of entanglement. Coincidence?

Asymptotic transformations

Maybe $\rho \xrightarrow{\mathcal{O}} \sigma$ is not possible, but $\rho^{\otimes 2} \xrightarrow{\mathcal{O}} \sigma$ is? If so, maybe $\rho^{\otimes 3} \xrightarrow{\mathcal{O}} \sigma^{\otimes 2}$ is possible?

In general, we ask for the maximal rate R for which $\rho^{\otimes N} \xrightarrow{\mathcal{O}} \sigma^{\otimes RN}$ is possible when N goes to infinity.

For a range of resource theories: $R = \frac{D(\rho)}{D(\sigma)}$ where: $D(\rho) := \min_{\tau \in \mathcal{S}} D(\rho || \tau)$

Bound entanglement completely breaks asymptotic reversibility

Phys. Rev. Lett. 80, 5239 (1998)

Catalytic transformations

Maybe $\rho \xrightarrow{\mathcal{O}} \sigma$ is not possible, but $\rho \otimes \tau \xrightarrow{\mathcal{O}} \sigma \otimes \tau$ is?

Surprisingly it is sometimes the case!

Entanglement catalysis:

$$|\psi_1\rangle = \sqrt{0.4} |00\rangle + \sqrt{0.4} |11\rangle + \sqrt{0.1} |22\rangle + \sqrt{0.1} |33\rangle,$$

 $|\psi_2\rangle = \sqrt{0.5} |00\rangle + \sqrt{0.25} |11\rangle + \sqrt{0.25} |22\rangle.$
 $|\phi\rangle = \sqrt{0.6} |44\rangle + \sqrt{0.4} |55\rangle.$

Phys. Rev. Lett. 83, 3566 (1999)

Check for more applications:

Accepted Paper

Catalysis in quantum information theory Rev. Mod. Phys.

Patryk Lipka-Bartosik, Henrik Wilming, and Nelly H. Y. Ng

Accepted 27 February 2024

E.g., catalytically improved teleportation

fidelity

Simulation of non-free operations

Decompose a non-free operation into free ones and some representative resource ones:

$$= T$$

$$= T$$

$$= T$$

$$= T$$

Replace non-free operations with non-free states (here: use gate teleportation)

How do we know that we found a decomposition that uses the smallest number of representative resources needed?

We can compare resource measures!

$$\mathcal{R}(|H^{\otimes 2}\rangle) < \mathcal{R}(|CS\rangle) < \mathcal{R}(|H^{\otimes 3}\rangle)$$

Also another optimality proof:

$$\mathcal{R}(|H^{\otimes 3}\rangle) < \mathcal{R}(|CCZ\rangle) < \mathcal{R}(|H^{\otimes 4}\rangle).$$

Phys. Rev. Lett. 118, 090501 (2017)

Example: thermodynamics

Thermodynamic transformations modelled by **thermal operations***:

$$\mathcal{E}^{\mathbf{T}}(\cdot) = \operatorname{Tr}_{B'}\left(U\left(\cdot \otimes \gamma_{\mathbf{B}}\right)U^{\dagger}\right) \quad \text{with} \quad [U, H + H_B] = 0$$

Gibbs state γ of the system at temperature T: $\gamma = e^{-\frac{H}{T}}/\mathcal{Z}$, $\mathcal{Z} = \text{Tr}\left(e^{-\frac{H}{T}}\right)$

*Nature Commun. 4, 2059 (2013)

Example: thermodynamics

Thermodynamic protocols are various instances of state interconversion problem

Quantum resource theories

Work extraction

Thermodynamically-free communication

Information erasure

Example: thermodynamics

Dissipation of free energy beyond the thermodynamic limit!

Quantum 2, 108 (2018)

Selected research problems

Irreversibility beyond asymptotics

Single-shot interconversion:

Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho) = \sigma$?

Many-copies interconversion:

Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho^{\otimes n}) \approx_{\epsilon} \sigma^{\otimes R_n n}$?

Optimal rate R_n for error ϵ ?

Irreversibility beyond asymptotics

Rate for large but finite n: $R_n = R_{\infty} - f(\rho, \sigma, \gamma, n, \epsilon)$

Relevant quantity quantifying irreversibility:

Relative entropy variance:

$$V(\rho \| \gamma) := \text{Tr} \left(\rho (\log \rho - \log \gamma - D(\rho \| \gamma))^2 \right)$$

Physical interpretation:

$$V(\gamma'||\gamma) = \frac{\partial \langle E \rangle_{\gamma'}}{\partial T'} \cdot \left(1 - \frac{T'}{T}\right)^2$$

Specific heat capacity

Carnot factor

Quantum 2, 108 (2018)

Irreversibility beyond asymptotics

Optimal conversion rate R_n with constant error ϵ :

Reversibility parameter:

$$R_n(\epsilon) = R_{\infty} + \sqrt{\frac{V(\rho \| \gamma)}{D(\sigma \| \gamma)^2}} \frac{Z_{\nu}^{-1}(\epsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$$

$$\nu = \frac{V(\sigma \| \gamma) / D(\sigma \| \gamma)}{V(\rho \| \gamma) / D(\rho \| \gamma)}$$

Rayleigh-normal distribution Z_{ν}^* :

 Z_0 - standard normal distribution Φ

 Z_1 - Rayleigh distribution $(Z_1(x) = 0 \text{ for } x \leq 0)$

*IEEE Trans. Inf. Theory **63**, 1829–1857 (2017)

Optimal conversion rate R_n with vanishing error $\epsilon = e^{-n^{\alpha}}$ and $\alpha \in (0,1)$:

$$R_n(\epsilon) = R_{\infty} - \sqrt{\frac{V(\rho \| \gamma)}{D(\sigma \| \gamma)^2}} \frac{\left| \sqrt{1/\nu} - 1 \right|}{\sqrt{n^{1-\alpha}}} + o\left(\frac{1}{\sqrt{n^{1-\alpha}}}\right)$$

When $\nu = 1$ correction term disappears for every error ϵ

No free energy dissipation!
(at least up to second order asymptotics)

(recall that $\nu = 1$ means that the relative fluctuations of free energy are the same for the initial state ρ and target state σ)

Phys. Rev. A 99, 032332 (2019)

Resonance example: Heat engine with a finite-size working body:

Working body: n = 200 qubits, energy gap EBackground (hot) bath: $T_h = 10E$

Predicting coherent resonance phenomenon:

Transformation with the asymptotic rate

PRX Quantum 5, 020335 (2024)

Fluctuation-dissipation relations

Thermodynamic distillation process

Non-zero free energy:

$$F := nD(\rho || \gamma)/\beta$$

Non-zero free energy fluctuations:

$$\sigma^2(F) := nV(\rho \| \gamma)/\beta^2$$

Non-zero free energy, but vanishing free energy fluctuations

Free energy fluctuations ?

Free energy dissipated in the process

London, 04 June 2024

Einstein-Smoluchowski relation for a Brownian particle:

Fluctuation-dissipation relations

Optimal error in thermodynamic distillation process:

$$\epsilon = \lim_{n \to \infty} \Phi\left(-\frac{\Delta F}{\sigma(F)}\right)$$

 $\Delta F\,$ - Free energy difference between initial and ${\bf target}$ state

Minimal amount of free energy dissipated in the optimal distillation process:

$$F_{\rm diss} \simeq a(\epsilon)\sigma(F)$$

 $F_{\rm diss}$ - Free energy difference between initial and **final** state

$$a(\epsilon) = -\Phi^{-1}(\epsilon)(1-\epsilon) + \exp(-[\Phi^{-1}(\epsilon)]^2/2)/\sqrt{2\pi}$$

Three regimes:

$$\lim_{n \to \infty} \frac{\Delta F}{\sqrt{n}} = \begin{cases} \infty, & \longrightarrow & \epsilon = 0, \quad F_{\text{diss}} = \Delta F \\ -\infty, & \longrightarrow & \epsilon = 1, \quad F_{\text{diss}} = 0 \end{cases}$$

Also holds for initial pure states with coherence!

Phys. Rev. E 105, 054127 (2022)

Outlook

Outlook

- Resource theories provide a unified framework for studying across fields
- With the raise of quantum hardware optimization of scarce quantum resources becomes crucial
- Allows both for practical (how many T gates needed) and fundamental investigations (existence of bound entanglement)
- Many other: resource theories of channels, Markovianity, mixed resource theories, etc.
- Important: not to get too abstract!
- Read more: Rev. Mod. Phys. **91**, 025001 (2019)

Thank you!