<u>Dashboard</u> / My courses / <u>Mathematics Dept</u> / <u>Maths-even-sem-20-21</u> / <u>LA-even-sem-20-21</u> / <u>8 March - 14 March</u>

/ Linear Algebra Test-01 (2020-21)

Started on Friday, 12 March 2021, 8:30:46 AM

State Finished

Completed on Friday, 12 March 2021, 9:20:42 AM

Time taken 49 mins 56 secs

Grade 12.00 out of 20.00 (60%)

Ouestion 1

Not answered

Marked out of 2.00

Drag the correct answer

For what value of k and a, b, c the given system has a unique solution

$$2x + y = a$$
; $x + ky - z = b$; $y + 2z = c$

k not equal to 0 and for all values of a, b, c $| \mathbf{k} | = 0$ and for any value of a, b, c $| \mathbf{k} |$ not equal to 0 and for $| \mathbf{a} | = 0$

k not equal to 0 and for any value of a not equal to b and c=1

The correct answer is:

Drag the correct answer

For what value of k and a, b, c the given system has a unique solution

$$2x + y = a$$
; $x + ky - z = b$; $y + 2z = c$

[k not equal to 0 and for all values of a , b , c]

Question $\bf 2$

Incorrect

Mark 0.00 out of 2.00

Drag the correct values in the increasing order(smallest first)

The rank of the following matrix is 2 if and only if the value of x is neither \(\text{ x } \) nor \(\text{ x } \)

$$A = \begin{pmatrix} x & 9 \\ 3 & 3x \end{pmatrix}$$

The correct answer is:

Drag the correct values in the increasing order(smallest first)

The rank of the following matrix is 2 if and only if the value of x is neither [-3] nor [3]

$$A = \begin{pmatrix} x & 9 \\ 3 & 3x \end{pmatrix}$$

Question 3	
Correct	
Mark 3.00 out of 3.00	

Select True or False:

True	False		
	O x	The system of equations 3x + 4y + 5z = a; $4x + 5y + 6z = b$; $5x + 6y + 7z = care consistent only if a, b, c are in arithmeticprogression$	~

The system of equations

$$3x + 4y + 5z = a$$
; $4x + 5y + 6z = b$; $5x + 6y + 7z = c$ are consistent only if a, b, c are in arithmetic progression: True

Question 4
Correct
Mark 1.00 out of 1.00

True or False

Let $A = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$ be a rotation matrix. For all values of $x \in \mathbb{R}$, the rank of A is 2.

Select one:

- True
- False

The correct answer is 'True'.

Question 5
Correct
Mark 2.00 out of 2.00

Solve the following system and choose the correct answer.

$$\begin{array}{l} 3x_1\!+\!x_2\!=\!-x_3\\ x_1\!+\!x_2\!=\!-x_3\\ -\frac{3}{4}x_1\!-\!\frac{1}{4}x_2\!-\!\frac{1}{4}x_3\!=\!0\\ 12x_1\!+\!12x_2\!+\!12x_3\!=\!0 \end{array}$$

- system has infinitely many solutions
- system has no solutions
- system has unique solution
- system has only zero solution

The correct answer is: system has infinitely many solutions

Question 6	
Partially correct	
Mark 1.00 out of 2.00	

Fill in the blanks by dragging the correct boxes from the boxes below the question:

Let V be the usual vector space of all real valued functions defined on \mathbb{R} . The additive inverse of a constant function with range $\{k\}$ is V. If V is function is the only function which is the additive inverse of itself. $f(x) = x^2$ and $g(y) = y^2$ are V and the subspace generated by them is V.

f(x) = -k Zero equal, the set of all parabolas with center at origin. $f(x) \neq 0$ not the same, they are additive inverses of each other. the set of parabolas pointing upward, the set of all parabolas. Non zero Constant

The correct answer is:

Fill in the blanks by dragging the correct boxes from the boxes below the question:

Let V be the usual vector space of all real valued functions defined on \mathbb{R} . The additive inverse of a constant function with range $\{k\}$ is [f(x) = -k]. [Zero] function is the only function which is the additive inverse of itself. $f(x) = x^2$ and $g(y) = y^2$ are [equal.] and the subspace generated by them is [the set of all parabolas with center at origin.].

Question **7**Correct
Mark 2.00 out of 2.00

Choose correct answer.

Let A, B, C be $n \times n$ matrices, each with non-zero determinant. If ABCD = I, then B^{-1} is

- $D^{-1}A^{-1}C^{-1}$
- CDA
- O CAD
- $C^{-1}D^{-1}A^{-1}$

The correct answer is: CDA

Question **8**Correct

Mark 2.00 out of 2.00

What is the dimension of vector space of 5×5 real matrices with sum of entries of each row is zero?

Answer: 20 ✓

The correct answer is: 20

4/22, 3.29 FIVI	Linear Algebra Test-01 (2020-21). Altempt Teview	
Question 9		
Mark 0.00 out of	1.00	
If A ≠0 tl	hen a system $AX = B$ is $\begin{bmatrix} \times \\ \end{array}$	
inconsistent	t and has no solution consistent and has trivial solution consistent and has unique solution	
The correct		
" A ₹0 "	hen a system $AX = B$ is [consistent and has unique solution]	
Question 10		
Correct		
Mark 1.00 out of	1.00	
Given that 2	$2u_1 - 3u_2 + u_3 = 0$. Can you say that u_1 , u_2 , u_3 are dependent vectors?	
a. Yes		~
O b. No		
O c. Depe	ends on the vector space.	
O d. Can't	t say	
The correct	answer is: Yes	
Question 11		
Incorrect		
Mark 0.00 out of	1.00	
If $m{A}$ is a sq	quare matrix such that $A^2 = 0$, then the inverse of $(I + A)$ is	
Answer: I		×
The correct	t answer is:	
I-A		

Jump to...

· / · · ·		
Question 12		
Incorrect		
Mark 0.00 out of 1.00		
Determine whether the following statement is True or False.		
Set of vectors $\{(2,-3),(-4,6)\}$ forms a basis of \mathbb{R}^2 .		
Select one:		
True		×
○ False		
The correct answer is: False		
	,	
- Linear Argebra - Live and Necorded Lectures daing Webex		

Linear algebra(20-21): TEST-2 ►