Data 621 - Homework 4

Group 2: William Aiken, Donald Butler, Michael Ippolito, Bharani Nittala, and Leticia Salazar November 6, 2022

Contents

Overview:	. 1
Objective:	. 1
Description:	. 2
Data Exploration:	. 3
Data Preparation:	. 3
Model Building:	. 3
Select Models:	. 3

Overview:

In this homework assignment, you will explore, analyze and model a data set containing approximately 8000 records representing a customer at an auto insurance company. Each record has two response variables. The first response variable, TARGET_FLAG, is a 1 or a 0. A "1" means that the person was in a car crash. A zero means that the person was not in a car crash. The second response variable is TARGET_AMT. This value is zero if the person did not crash their car. But if they did crash their car, this number will be a value greater than zero.

Objective:

Your objective is to build multiple linear regression and binary logistic regression models on the training data to predict the probability that a person will crash their car and also the amount of money it will cost if the person does crash their car. You can only use the variables given to you (or variables that you derive from the variables provided). Below is a short description of the variables of interest in the data set:

VARIABLE NAME	DEFINITION	THEORETICAL EFFECT
INDEX	Identification Variable (do not use)	None
TARGET_FLAG	Was Car in a crash? 1=YES 0=NO	None
TARGET_AMT	If car was in a crash, what was the cost	None
AGE	Age of Driver	Very young people tend to be risky. Maybe very old people also.
BLUEBOOK	Value of Vehicle	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_AGE	Vehicle Age	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_TYPE	Type of Car	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_USE	Vehicle Use	Commercial vehicles are driven more, so might increase probability of collision
CLM_FREQ	# Claims (Past 5 Years)	The more claims you filed in the past, the more you are likely to file in the future
EDUCATION	Max Education Level	Unknown effect, but in theory more educated people tend to drive more safely
HOMEKIDS	# Children at Home	Unknown effect
HOME_VAL	Home Value	In theory, home owners tend to drive more responsibly
INCOME	Income	In theory, rich people tend to get into fewer crashes
JOB	Job Category	In theory, white collar jobs tend to be safer
KIDSDRIV	# Driving Children	When teenagers drive your car, you are more likely to get into crashes
MSTATUS	Marital Status	In theory, married people drive more safely
MVR_PTS	Motor Vehicle Record Points	If you get lots of traffic tickets, you tend to get into more crashes
OLDCLAIM	Total Claims (Past 5 Years)	If your total payout over the past five years was high, this suggests future payouts will be high
PARENT1	Single Parent	Unknown effect
RED_CAR	A Red Car	Urban legend says that red cars (especially red sports cars) are more risky. Is that true?
REVOKED	License Revoked (Past 7 Years)	If your license was revoked in the past 7 years, you probably are a more risky driver.
SEX	Gender	Urban legend says that women have less crashes then men. Is that true?
TIF	Time in Force	People who have been customers for a long time are usually more safe.
TRAVTIME	Distance to Work	Long drives to work usually suggest greater risk
URBANICITY	Home/Work Area	Unknown
YOJ	Years on Job	People who stay at a job for a long time are usually more safe

Description:

Below is a short description of the variables of interest in the data set:

Load Libraries:

These are the libraries used to explore, prepare, analyze and build our models

```
library(tidyverse)
library(caret)
library(pROC)
library(corrplot)
library(GGally)
library(psych)
library(car)
library(kableExtra)
library(gridExtra)
library(performance)
library(faraway)
library(jtools)
```

Load Data set:

We have included the original data sets in our GitHub account and read from this location. Our data set includes 466 records and 13 variables.

```
## $ TARGET AMT <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 2946.000, 0.000, 4021.0~
## $ KIDSDRIV
                                                      <int> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ AGE
                                                      <int> 60, 43, 35, 51, 50, 34, 54, 37, 34, 50, 53, 43, 55, 53, 45~
## $ HOMEKIDS
                                                      <int> 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 2, 1~
## $ YOJ
                                                      <int> 11, 11, 10, 14, NA, 12, NA, NA, 10, 7, 14, 5, 11, 11, 0, 1~
## $ INCOME
                                                      <chr> "$67,349", "$91,449", "$16,039", "", "$114,986", "$125,301~
                                                      <chr> "No", "No", "No", "No", "Yes", "No", "No",
## $ PARENT1
                                                      <chr> "$0", "$257,252", "$124,191", "$306,251", "$243,925", "$0"~
## $ HOME VAL
                                                      <chr> "z_No", "z_No", "Yes", "Yes", "Yes", "z_No", "Yes", "Yes",~
<chr> "M", "M", "z_F", "M", "z_F", "z_F", "z_F", "M", "z_F", "M"~
## $ MSTATUS
## $ SEX
## $ EDUCATION
                                                      <chr> "PhD", "z_High School", "z_High School", "<High School", "~
                                                      <chr> "Professional", "z_Blue Collar", "Clerical", "z_Blue Colla~
## $ JOB
                                                      <int> 14, 22, 5, 32, 36, 46, 33, 44, 34, 48, 15, 36, 25, 64, 48,~
## $ TRAVTIME
                                                      <chr> "Private", "Commercial", "Private", "Private", "Private", ~
## $ CAR_USE
## $ BLUEBOOK
                                                      <chr> "$14,230", "$14,940", "$4,010", "$15,440", "$18,000", "$17~
                                                      <int> 11, 1, 4, 7, 1, 1, 1, 1, 7, 1, 7, 7, 6, 1, 6, 6, 7, 4, ~
## $ TIF
## $ CAR_TYPE
                                                      <chr> "Minivan", "Minivan", "z_SUV", "Minivan", "z_SUV", "Sports~
                                                      <chr> "yes", "yes", "no", "yes", "no", "no", "no", "yes", "no", ~
## $ RED CAR
                                                      <chr> "$4,461", "$0", "$38,690", "$0", "$19,217", "$0", "$0", "$~
## $ OLDCLAIM
                                                      <int> 2, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2~
## $ CLM FREQ
## $ REVOKED
                                                      <chr> "No", "No", "No", "Yes", "No", "No", "Yes", "No", "Na", "No", "Na", "Na"
## $ MVR PTS
                                                      <int> 3, 0, 3, 0, 3, 0, 10, 0, 1, 0, 0, 3, 3, 3, 0, 0, 0, 0, ~
                                                      <int> 18, 1, 10, 6, 17, 7, 1, 7, 1, 17, 11, 1, 9, 10, 5, 13, 16,~
## $ CAR_AGE
## $ URBANICITY <chr> "Highly Urban/ Urban", "Highly Urban/ Urban", "Highly Urba~
```

Data Exploration:

Data Preparation:

Model Building:

Select Models: