厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

习题 3.5 直和分解

1. 在 ℝ³ 中, 记

$$V_1 = \{(a, a, c)^T \mid a, c \in \mathbb{R}\}, V_2 = \{(a, 2a, a)^T \mid a \in \mathbb{R}\}.$$

求证:

- (1) V_1, V_2 是 \mathbb{R}^3 的子空间;
- (2) $\mathbb{R}^3 = V_1 \oplus V_2$.

证明: (1) 首先, $(0,0,0) \in V_1$, 故 V_1 是非空的. 其次, 对于任意的 $(a,a,c)^T$, $(b,b,d)^T \in V_1$, 有 $(a,a,c)^T + (b,b,d)^T = (a+b,a+b,c+d)^T \in V_1$. 即 V_1 关于加法 封闭. 最后, 对于任意的 $b \in F$, $(a,a,c)^T \in V_1$, 总有 $b(a,a,c)^T = (ba,ba,bc)^T \in V_1$, 即 V_1 关于数乘封闭. 综上, V_1 是 \mathbb{R}^3 的子空间. 同理可证 V_2 是 \mathbb{R}^3 的子空间.

(2) (法一) 首先, $\dim V_1 = 2$, $\dim V_2 = 1$, 故 $\dim \mathbb{R}^3 = 3 = \dim V_1 + \dim V_2$; 其次,对任意的 $\alpha \in V_1 \cap V_2$, 即 $\alpha = (a, a, c)^T = (b, 2b, b)^T$, 解得 a = b = c = 0, 从而 $\alpha = (0, 0, 0)^T$, 即 $V_1 + V_2 = V_1 \oplus V_2$. 综上, $\mathbb{R}^3 = V_1 \oplus V_2$.

(法二) 对任意的 $\alpha = (a,b,c)^T \in \mathbb{R}^3$, 总有 $\beta = (2a-b,2a-b,c-b+a)^T \in V_1$, $\gamma = (b-a,2(b-a),b-a)^T \in V_2$, 使得 $\alpha = \beta + \gamma$, 即 $\mathbb{R}^3 = V_1 + V_2$; 此外, V_1 的基 $(1,1,0)^T$, $(0,0,1)^T$ 和 V_2 的基 $(1,2,1)^T$ 一起凑成 \mathbb{R}^3 的基. 因此, $R^3 = V_1 \oplus V_2$. \square

2. 设齐次线性方程组 $x_1=x_2=\cdots=x_n$ 的解空间为 V, 齐次线性方程组 $x_1+x_2+\cdots+x_n=0$ 的解空间为 U. 求证: $F^n=V\oplus U$.

证明: (法一) 首先,对任意 $\alpha = (a_1, a_2, \dots, a_n)^T \in F^n$,令 $a = \frac{a_1 + a_2 + \dots + a_n}{n}$, $\beta = (a, a, \dots, a)^T \in V$, $\gamma = (a_1 - a, a_2 - a, \dots, a_n - a)^T \in U$,则 $\alpha = \beta + \gamma$,因此 $F^n = V + U$. 其次,对任意 $\alpha = (a_1, a_2, \dots, a_n)^T \in V \cap U$, $a_1 = a_2 = \dots = a_n$, $a_1 + a_2 + \dots + a_n = 0$,因此 $a_i = 0$,i $i = 1, 2, \dots, n$,即 $\alpha = 0$ 。故 $i = 1, 2, \dots, n$,即 $\alpha = 0$ 。故 $i = 1, 2, \dots, n$,如 $\alpha = 0$ 。故 $\alpha = 1, \alpha = 1, \alpha$

(法二) 首先,对任意 $\alpha = (a_1, a_2, \cdots, a_n)^T \in F^n$,令 $a = \frac{a_1 + a_2 + \cdots + a_n}{n}$, $\beta = (a, a, \cdots, a)^T \in V$, $\gamma = (a_1 - a, a_2 - a, \cdots, a_n - a)^T \in U$,则 $\alpha = \beta + \gamma$,因此 $F^n = V + U$. 其次,直接验证知 $(1, 1, \cdots, 1)^T$ 和 $(1, -1, \cdots, 0)^T$, $(0, 1, -1, \cdots, 0)^T$,

 \cdots , $(0, \dots, 1, -1)^T$ 分别是 V 和 U 的一个基. 故 $\dim V = 1$, $\dim U = n-1$, 从而 $\dim F^n = n = \dim V + \dim U$. 综上, $F^n = V \oplus U$. \square

证明: 因为 $V=V_1\oplus V_2$, 所以对任意 $v\in V$, 存在唯一 $u\in V_1$, $w\in V_2$, 使得 v=u+w. 又因为 $V_2=U_1\oplus U_2$, 所以对 $w\in V_2$, 存在唯一 $u_1\in U_1, u_2\in U_2$, 使得 $u=u_1+u_2$. 故存在唯一的 u_1,u_2,w , 使得 $v=u_1+u_2+w$. 故 $V=V_1\oplus U_1\oplus U_2$.

4. 设 V_1, V_2, \dots, V_m 是有限维空间 V 的子空间,求证: $V_1 + V_2 + \dots + V_m = V_1 \oplus V_2 \oplus \dots \oplus V_m$ 的充分必要条件是对于任意的 $i(1 \le i \le m)$ 都有

$$V_i \cap (V_1 + \dots + V_{i-1} + V_{i+1} + \dots + V_m) = 0.$$

证明: (必要性) 对任意的 $\alpha \in V_i \cap (V_1 + \dots + V_{i-1} + V_{i+1} \dots + V_m)$, 即 $\alpha = \alpha_i = \alpha_1 + \dots + \alpha_{i-1} + a_{i+1} + \dots + \alpha_n$, 其中 $a_k \in V_k$, $k = 1, 2, \dots, n$, 则 $0 = \alpha_1 + \dots + \alpha_{i-1} - \alpha_i + a_{i+1} + \dots + \alpha_n = \sum_{i=1}^n 0$. 因为 $V_1 + V_2 + \dots + V_m = V_1 \oplus V_2 \oplus \dots \oplus V_m$, 0 向量的分解式唯一,故 $\alpha_i = 0$, $i = 1, 2, \dots, n$.

(充分性) 对任意 $\alpha \in V_1 + V_2 + \cdots + V_m$, 设 $\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_m = \beta_1 + \beta_2 + \cdots + \beta_m$, 往证 $\alpha_i = \beta_i$.

事实上,由上式可得对任意的 $i, 1 \leq i \leq m$,总有 $\alpha_i - \beta_i = \sum_{j \neq i} (\beta_j - \alpha_j) \in V_i \cap (V_1 + \dots + V_{i-1} + V_{i+1} \dots + V_m)$. 由已知 $V_i \cap (V_1 + \dots + V_{i-1} + V_{i+1} \dots + V_m) = 0$,故 $\alpha_i - \beta_i = 0$,即 $\alpha_i = \beta_i$. 由 i 的任意性,知 α 的分解式唯一,即 $V_1 + V_2 + \dots + V_m = V_1 \oplus V_2 \oplus \dots \oplus V_m$. \square

5. 求证: n 维线性空间可以表示成为 n 个一维子空间的直和.

证明: 设 V 是 F 上的 n 维线性空间, $\xi_1, \xi_2, \dots, \xi_n$ 是 V 的一个基,往证 $V = \langle \xi_1 \rangle \oplus \langle \xi_1 \rangle \oplus \dots \oplus \langle \xi_1 \rangle$.

事实上,对任意的 $\alpha \in V$, 因 $\xi_1, \xi_2, \dots, \xi_n$ 是 V 的一个基, 所以必存在唯一的 $a_i \in F$, 使得 $\alpha = \sum_{i=1}^n a_i \xi_i, a_i \xi \in \langle \xi_i \rangle, i = 1, 2, \dots, n$. 故命题得证. \square

(李小凤解答)