Examen final INF 302: Langages et Automates L2, 2016/2017

# Rappel des consignes et quelques conseils/remarques

- Durée : 2 heures. Aucune sortie avant 30 minutes. Aucune entrée après 30 minutes.
- Tout document du cours ou du TD est autorisé.
- Tout dispositif électronique est interdit (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte (-1 point en cas de manque de soin).
- Les exercices sont indépendants. Le barème est donné à titre indicatif. L'examen est sur 22 points.

## Exercice 1 (Vrai ou Faux - 3 points)

Indiquer si les affirmations suivantes sont vraies ou fausses. Justifier soigneusement vos réponses.

- 1. Un automate complet déterministe dont tous les états sont accepteurs reconnaît le langage universel.
- 2. La différence de deux langages réguliers est un langage régulier.
- 3. Il est possible que des langages non-réguliers satisfassent le lemme de l'itération.
- Dans la méthode de Floyd, la post-condition doit être impliquée par au moins une des prédicats associé à un des états terminaux.
- 5. Il est possible que l'entier naturel 0 soit la constante d'itération d'un langage.
- 6. Le nombre minimal d'étapes nécessaires lors de l'exécution de l'algorithme de minimisation est 1, c'est-à-dire que dans certain cas, il suffit de calculer  $\equiv_0$ .

#### Solution de l'exercice 1

- 1. Vrai. L'exécution de tout mot est définie et termine dans un état accepteur.
- 2. Vrai. Pour deux langages réguliers E, F quelconques,  $E \setminus F = E \cap \overline{F}$ . D'après la fermeture des langages réguliers par les opérations de complémentation et d'intersection, nous obtenons que  $E \setminus F$  est régulier.
- 3. Vrai. Le lemme de l'itération est satisfait par tous les langages réguliers. Rien n'est indiqué pour les langages non-réguliers.
- 4. Faux. La post-condition doit être impliquée par tous les prédicats associés aux états terminaux.
- 5. Vrai. Considérons le langage vide (qui est régulier), le lemme de l'itération s'applique pour N=0. Le langage ne contient aucun mot, donc le lemme de l'itération s'applique pour tout mot du langage de longueur supérieure ou égale à 0.
- 6. Vrai. Cela peut être le cas si l'automate (complet et déterministe) sur lequel on applique l'algorithme possède deux états, un accepteur, l'autre non-accepteur. Les deux états sont dans des classes d'équivalence différentes de cardinal 1.

## Exercice 2 (Expression régulière vers automate - 3 points)

Nous considérons l'expression régulière suivante :

$$\left(b\cdot d\cdot d + \left(a^* + b\cdot c\cdot d + \epsilon\right)\cdot \left(a^*\cdot d^* + b\cdot d^*\right) + a^+\cdot d^+ + \epsilon\right)^*\cdot \left(b\cdot c\cdot d\right)^*.$$

- 1. Simplifier l'expression régulière ; c'est-à-dire donner une expression régulière impliquant moins de symboles et dénotant le même langage.
- 2. Donner un automate non-déterministe avec  $\epsilon$ -transitions qui reconnait le langage dénoté par l'expression régulière simplifiée obtenue à la question précédente.

#### Solution de l'exercice 2

1.

$$((b \cdot c \cdot d + \epsilon) \cdot (a^* \cdot d^* + b \cdot d^*))^*$$

2. Un automate reconnaissant l'expression régulière est donné ci-dessous :



# Exercice 3 (Transformations d'automate - 4 points)

Nous considérons l'automate d'états finis non déterministe avec  $\epsilon$ -transitions représenté dans la Figure 1a. Il n'est pas autorisé de répondre aux deux questions en même temps.

- 1. Supprimer les  $\epsilon$ -transitions, c'est-à-dire, donner un automate d'états finis non-déterministe sans  $\epsilon$ -transitions qui reconnaît le même langage.
- 2. Déterminiser l'automate obtenu à la question précédente.

#### Solution de l'exercice 3

1. L'automate ci-dessous est l'automate résultant de la suppression des  $\epsilon$ -transitions. Les transitions ajoutées sont en bleu. Les états 7 et 9 deviennent accepteurs car, dans l'automate intitial, l' $\epsilon$ -cloture de ces états contient un état accepteur (l'état 4).



2. Nous représentons l'automate de la question précédente sous forme tabulaire avant déterminisation.

|   | 1 | 2 | 3 | 4 | 5 | 6       | 7          | 8 | 9       |
|---|---|---|---|---|---|---------|------------|---|---------|
| a | 2 | 2 |   |   |   | 4, 7, 9 |            |   |         |
| b | 4 | 4 |   | 5 |   |         | 4, 5, 8, 9 |   | 4, 5, 9 |
| c | 3 |   |   | 6 |   |         | 6          |   | 6       |
| d |   |   | 4 |   | 6 |         |            | 4 |         |

Nous appliquons l'algorithme de déterminisation. Nous obtenons l'automate représenté par le tableau suivant.

|                | 1 | 2 | 3 | 4 | 5 | 6       | 4, 7, 9    | 4, 5, 8, 9 | 4, 5, 9 | 4,6     |
|----------------|---|---|---|---|---|---------|------------|------------|---------|---------|
| $\overline{a}$ | 2 | 2 |   |   |   | 4, 7, 9 |            |            |         | 4, 7, 9 |
| b              | 4 | 4 |   | 5 |   |         | 4, 5, 8, 9 | 4, 5, 9    | 4, 5, 9 | 5       |
| c              | 3 |   |   | 6 |   |         | 6          | 6          | 6       | 6       |
| d              |   |   | 4 |   | 6 |         |            | 4,6        | 6       |         |

# Exercice 4 (Langages non-réguliers - 4 points)

- 1. Montrer que le langage  $L = \{w \mid w \in \{0,1\}^* \text{ et } w = w^R\}$  n'est pas régulier.
- 2. En supposant que le langage  $L_1 = \{a^n b^l c^{l+n} \mid n \geq 0 \text{ et } l \geq 0\}$  est non régulier, déduire que le langage  $L_2 = \{w \in \{a,b,c\}^* \mid |w|_a + |w|_b = |w|_c\}$  est non régulier.

#### Solution de l'exercice 4

- 1. Supposons que L soit un langage régulier. Soit n la constante du lemme d'itération et soit  $w=0^n10^n$ . Il est clair que  $w \in L$ , et  $|w| \ge n$ . Soit w=xyz la décomposition avec x,y,z fourni par le lemme de l'itération avec  $|xy| \le n$  et  $|y| \ge 1$ , Soit k=|y|, il faut noter que  $0 < k \le n$ . Alors  $xy^0z=0^{n-k}10^n$  n'appartient pas à L, parce que si c'était le cas, alors on aurait  $0^{n-k}10^n=(0^{n-k}10^n)^R=0^n10^{n-k}$ , et donc n-k=n, ce qui est impossible car  $k\ne 0$ .
- 2. Nous utilisons la propriété de fermeture des langages réguliers par intersection ensembliste et nous observons que  $L_1 = L_2 \cap a^* \cdot b^* \cdot c^*$ . Ainsi si  $L_2$  était régulier, alors  $L_1$  serait régulier.

# Exercice 5 (Minimisation d'automate - 3 points)

Nous considérons l'automate d'états finis déterministe représenté dans la Figure 1b.

1. Donner l'automate minimisé reconnaissant le langage reconnu par cet automate.

#### Solution de l'exercice 5

1. Nous complétons l'automate avant d'appliquer l'algorithme de minimisation.



Les étapes du calcul sont représentées ci-dessous.

| $\equiv_0$                                    | $\equiv_1$       | $\equiv_2$ | $\equiv_3$ |
|-----------------------------------------------|------------------|------------|------------|
| 0                                             | 0                | 0          | 0          |
| 1                                             | 1                | 1          | 1          |
| 2                                             | 2                | 2          | 2          |
| $\begin{bmatrix} 1\\2\\3\\4\\7 \end{bmatrix}$ | 1<br>2<br>3<br>5 | 3          | 3          |
| 4                                             |                  | 5          | 5          |
| 7                                             | 7                | 7          | 7          |
| 5                                             | 4                | 4          | 4          |
| 6                                             | 6                | 6          | 6          |

Chaque classe d'équivalence est de cardinal 1. L'automate est donc minimal.

# Exercice 6 (Méthode de Floyd - 5 points)

Nous considérons l'automate étendu A avec variables entières et représenté sur la Figure 2. L'état de contrôle  $q_1$  est l'état de contrôle initial et l'état de contrôle  $q_t$  est l'unique état de contrôle final.

- 1. Donner l'exécution de cet automate sur un état initial tel que la valeur de y est 1, et toutes les autres variables sont initialisées à 0.
- 2. Donner l'exécution de cet automate sur un état initial tel que la valeur de y est 2, et toutes les autres variables sont initialisées à 0.
- 3. Quelles sont les valeurs finales de y et z après une exécution où y est initialisée à 3. On ne demande pas d'exécution.
- 4. En utilisant la méthode de Floyd, montrer que cet automate étendu est partiellement correct par rapport à la spécification

$$(y > 0, z = y_0! \land y = 2^{y_0 - 1} * y_0).$$

L'invariant est de la forme ...!  $*z = y_0! \wedge ... = y_0 * 2^{...}$ .

Rappel : la factorielle d'un entier naturel n est notée n!. Lors de la preuve d'inductivité de l'automate, ne considérer que les transitions de  $q_3$  vers  $q_4$ , de  $q_4$  vers  $q_5$  et de  $q_3$  vers  $q_t$ .

#### Solution de l'exercice 6

### 1. **(0,5 points)**

| etat  | $\boldsymbol{x}$ | y | z |
|-------|------------------|---|---|
| $q_1$ | 0                | 1 | 0 |
| $q_2$ | 1                | 1 | 0 |
| $q_3$ | 1                | 1 | 1 |
| $q_t$ | 1                | 1 | 1 |

2. **(0,5 points)** 

| etat  | x | y | z |
|-------|---|---|---|
| $q_1$ | 0 | 2 | 0 |
| $q_2$ | 2 | 2 | 0 |
| $q_3$ | 2 | 2 | 1 |
| $q_4$ | 2 | 2 | 2 |
| $q_5$ | 2 | 4 | 2 |
| $q_3$ | 1 | 4 | 2 |
| $q_t$ | 1 | 4 | 2 |

3. **(0,5 points)** 

| etat  | x | y  | z |
|-------|---|----|---|
| $q_1$ | 0 | 3  | 0 |
| $q_2$ | 3 | 3  | 0 |
| $q_3$ | 3 | 3  | 1 |
| $q_4$ | 3 | 3  | 3 |
| $q_5$ | 3 | 6  | 3 |
| $q_3$ | 2 | 6  | 3 |
| $q_4$ | 2 | 6  | 6 |
| $q_5$ | 2 | 12 | 6 |
| $q_3$ | 1 | 12 | 6 |
| $q_t$ | 1 | 12 | 6 |

### 4. (1 point pour l'invariant correct, 0,5 point pour pre/post, 2 points pour la correction des transitions)

Nous prenons les prédicats suivants :

- $\begin{array}{l} -P_{q_1} \equiv y > 0, \\ -P_{q_2} \equiv y_0! = x! \wedge y = y_0 * 2^{y_0 x} \wedge x > 0, \\ -P_{q_3} \equiv x! * z = y_0! \wedge y = y_0 * 2^{y_0 x} \wedge x > 0 \text{ (invariant)}, \\ -P_{q_4} \equiv (x-1)! * z = y_0! \wedge y = y_0 * 2^{y_0 x} \wedge x > 0, \\ -P_{q_5} \equiv (x-1)! * z = y_0! \wedge y = y_0 * 2^{y_0 x} \wedge x > 0, \\ -P_{q_6} \equiv z = y_0! \wedge y = z^{y_0 x} \wedge z > 0, \\ -P_{q_6} \equiv z = y_0! \wedge y = z^{y_0 x} * y_0. \end{array}$

Il faut ensuite montrer que:

- La pré-condition implique  $P_{q_1}$ .
- La post-condition est impliquée par  $P_{q_t}$
- L'automate est inductif, c'est-à-dire pour chaque transition  $q \xrightarrow{b \to x := e} q'$  de l'automate où q et q' sont des états, b une expression booléenne, x une variable et e une expression arithmétique, pour tout état  $\sigma$ , nous devons montrer : si  $\sigma \models P_q \land b$  alors  $\sigma \left[ \left[ e \right]_{\sigma} / x \right] \models P_{q'}$

5



FIGURE 1: Automates pour les Exercices 3 et 5



FIGURE 2: Automate étendu ${\cal A}$  pour l'Exercice 6