

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

REÇU 0 9 JAN. 2004

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 0 2 JAN. 2004

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

> INSTITUT NATIONAL DE LA PROPRIETE INDUSTRIELLE

> > ener erece

26 bis, rue de Saint Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (0)1 53 04 53 04 Télécopie : 33 (0)1 53 04 45 23 www.inpt.fr

BEST AVAILABLE COPY

BREVET D'INVENTION CERTIFICAT D'UTILITE

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES:

N° D'ENREGISTREMENT NATIONAL:

DÉPARTEMENT DE DÉPÔT:

DATE DE DÉPÔT:

SAN LEHU

BREVATOME

3, rue du Docteur Lancereaux

75008 PARIS

France

Vos références pour ce dossier: B14382 PV- DD2541

A LITTURE DE LA REMANDE			
1 NATURE DE LA DEMANDE Demande de brevet		<u>,</u>	
2 TITRE DE L'INVENTION			
2 TIRE DE L'INVENTION	PROCEDE DE CARACTERISATION OPTIQUE DE MATERIAUX SANS UTILISATION DE MODELE PHYSIQUE.		
3 DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE	Pays ou organisation	Dale	N°
Priorité N° 1	France	30 déc. 2002	02 16847
4-1 DEMANDEUR			
Nom	COMMISSARIAT A L'EN	NERGIE ATOMIQUE	•
Rue	31-33, rue de la Fédérat	ion	
Code postal et ville	75752 PARIS 15ème		
Pays	France		
Nationalité	France		
Forme juridique	Etablissement Public de	Caractère Scientifique	ue, technique et Ind
5A MANDATAIRE			
Nom	LEHU		
Prénom	Jean		
Qualité	Liste spéciale: 422-5 S/0	002, Pouvoir général:	7068
Cabinet ou Société	BREVATOME		
Rue	3, rue du Docteur Lance	ereaux	
Code postal et ville	75008 PARIS		
N° de téléphone	01 53 83 94 00		
N° de télécopie	01 45 63 83 33		
Courrier électronique	brevets.patents@breval	ex.com	

6 DOCUMENTS ET FICHIERS JOINTS	Fichier électronique	Pages		Détails
Texte du brevet	textebrevet.pdf	36		D 31, R 4, AB 1
Dessins	dessins.pdf	3		page 3, figures 5
Désignation d'inventeurs				
Rapport de recherche antérieur				
Doc. de priorité. 1				FR 02 16847
Pouvoir général				
7 MODE DE PAIEMENT				
Mode de palement	Prélèvement du con	npte courant		
Numéro du compte client	024			
8 RAPPORT DE RECHERCHE				
Etablissement Immédiat				
9 REDEVANCES JOINTES	Devise	Taux	Quantité	Montant à payer
062 Dépôt	EURO	0.00	1.00	0.00
063 Rapport de recherche (R.R.)	EURO	320.00	1.00	320.00
064 Déclaration d'un droit de priorité	EURO	15.00	1.00	15.00
Total à acquitter	EURO			335.00

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par Signataire: FR, Brevatome, J.Lehu Emelteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

Mandataire agréé (Mandataire 1)

L2 5#01:131£3£ INDUSTRIEBLE

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

> Demande de brevet : X Demande de CU:

DATE DE RECEPTION	2 octobre 2003		
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X	
		Dépôt sur support CD:	
№ D'ENREGISTREMENT NATIONAL	0350635		
ATTRIBUE PAR L'INPI			
Vos références pour ce dossier	B14382 PV- DD2541		
DEMANDEUR			
Nom ou dénomination sociale	COMMISSARIAT A L'ENERGIE ATOMIQUE		
Nombre de demandeur(s)	1		
Pays	FR		
TITRE DE L'INVENTION			
PROCEDE DE CARACTERISATION OPTI	QUE DE MATERIAUX SANS UTILISA	ATION DE MODELE PHYSIQUE.	
DOCUMENTS ENVOYES			
package-data.xml	Requetefr.PDF	fee-sheet.xml	
Design.PDF	ValidLog.PDF	textebrevet.pdf	
FR-office-specific-info.xml	application-body.xml	request.xml	
dessins.pdf	indication-bio-deposit.xml		
EFFECTUE PAR			
Effectué par.	J.Lehu		
Date et heure de réception électronique:	2 octobre 2003 13:26:55		
Empreinte officielle du dépôt	8B:C8:51:13:2F:C0:A2:21:6D:DB:7A:E	1:9D:A3:C0:48:5A:E7:AF:05	
L		/ INPL PARIS Section Dénôt	

/ INPI PARIS, Section Dépôt /

SIEGE SOCIAL INSTITUT 26 bis, ruo de Saint Petersbourg NATIONAL DE 75800 PARIS codo 4 03 LA PROPRIETE Téléphone : 01 53 04 53 04 INDUSTRIBLLE Télécopie : 01 42 83 50 30

PROCEDE DE CARACTERISATION OPTIQUE DE MATERIAUX SANS UTILISATION DE MODELE PHYSIQUE

DESCRIPTION

5 DOMAINE TECHNIQUE

La présente invention concerne un procédé de caractérisation optique de matériaux.

Ce procédé permet de caractériser des couches minces ou épaisses de ces matériaux, qui sont formées sur des substrats. Les grandeurs physiques, que ce procédé permet de déterminer, sont:

- l'épaisseur d'une couche d'un matériau,
- l'indice de réfraction de ce matériau, et
- le coefficient d'absorption de ce
- 15 matériau.

10

20

30

La caractérisation optique des matériaux est utile pour l'analyse chimique de ces matériaux des bandes d'absorption, étude (notamment propriétés densification propriétés de et des l.a microd'oxydation), dans les domaines de électronique, des capteurs, de la biologie, médecine), ou bien pour l'analyse des épaisseurs de dépôts de ces matériaux.

Pour des exemples d'application, on se 25 reportera au document [1] qui, comme les autres documents cités par la suite, est mentionné à la fin de la présente description.

La caractérisation des proprietés optiques d'un matériau est également utile lorsque le matériau est par la suite structuré (pour y former par exemple des gravures ou des rugosités) et que les propriétés de

diffraction optique de la structure obtenue doivent être calculées (voir le document [2]).

Indiquons dès à présent que l'invention est particulièrement utile lorsque la loi physique suivie par l'indice de réfraction complexe du matériau que l'on veut caractériser n'est, a priori, pas connue.

ETAT DE LA TECHNIQUE ANTERIEURE

5

15

20

25

30

On rappelle que les mesures optiques 10 peuvent être de diverses natures :

Il peut s'agir de mesures réflectométriques. Dans ce cas, le coefficient de réflexion en intensité d'une structure est mesuré sur un spectre (c'est-à-dire un intervalle) de longueurs d'ondes $[\lambda_m, \lambda_M]$.

L'angle d'incidence de la lumière d'éclairement peut être non nul. Le coefficient de réflexion peut être mesuré pour plusieurs angles d'incidence θ . Nous noterons R (θ, λ, p) le spectre réflectométrique, où p est la polarisation du faisceau incident et λ la longueur d'onde de ce dernier.

Généralement, l'angle θ est nul et la polarisation p indéterminée. Dans le cas où θ n'est pas nul, il faut connaître cette polarisation p. En général, cette dernière est de type (S) où (P).

Il peut s'agir aussi de mesures ellipsométriques. Les grandeurs mesurées sont alors les parties réelle et imaginaire du rapport du coefficient de réflexion en polarisation (P) au coefficient de réflexion en polarisation (S).

On note généralement $\rho=|\rho|\exp(j\Delta)$ ce rapport complexe (avec $j^2=-1$). Les grandeurs généralement traitées sont $|\rho|$, que l'on note $\tan(\psi)$, et $\cos(\Delta)$, ou des combinaisons des deux.

Par exemple, les variables issues d'un ellipsomètre à modulation de phase sont les suivantes :

 $I_s=\sin(2\psi)\sin(\Delta)$ et $I_c=\cos(2\psi)$.

Un ellipsomètre classique fournit, quant à lui, les variables suivantes :

 $\alpha = (\tan^2 \psi - 1) / (\tan^2 \psi + 1)$ et $\beta = \cos \Delta (1 - \alpha^2)^{1/2}$.

Par souci de généralité, nous noterons S_1 et S_2 les grandeurs traitées.

Les spectres S_i , ie [1,2], sont mesurés sur une plage de longueurs d'ondes $[\lambda_m, \lambda_M]$. L'angle d'incidence peut être quelconque. Plusieurs spectres peuvent être mesurés à différents angles d'incidence afin d'obtenir un spectre plus riche. Nous noterons $s(\theta,\lambda)=\{S_1(\theta,\lambda),S_2(\theta,\lambda)\}$ le spectre ellipsométrique.

facon complémentaire, des De goniométriques (coefficient de réflexion en fonction de 20 l'angle d'incidence) peuvent être ajoutées aux mesures à la caractérisation, afin de déterminer servant l'épaisseur des diverses couches, pour une ou plusieurs longueurs d'ondes. Ces mesures ne sont pas suffisantes en elles-mêmes puisque l'on veut déterminer l'indice de 25 réfraction complexe sur une gamme spectrale allant de $\lambda_{\rm m}$ à $\lambda_{\rm M}$.

Afin de simplifier l'exposé, nous noterons Y un ensemble de spectres réflectométrique ou/et

5

10

ellipsométrique(s) (et éventuellement goniométriques pour quelques longueurs d'ondes).

Sans perdre aucune généralité, nous n'exposerons, dans la présente description, le mode d'utilisation des procédés de l'art antérieur et de la présente invention que dans le cas d'une seule couche mince d'un matériau, formée sur un substrat connu.

L'épaisseur de cette couche est notée ϵ et l'indice de réfraction complexe du matériau à la longueur d'onde λ est noté n* (λ) .

On rappelle à ce propos que la partie réelle (respectivement imaginaire) de cet indice de réfraction complexe est notée $n(\lambda)$ (respectivement $k(\lambda)$) et appelée "indice de réfraction" (respectivement "coefficient d'extinction").

En outre on note Er $(\Psi^{(1)},\ \Psi^{(2)})$ une fonction d'erreur (par exemple l'écart quadratique moyen) entre deux spectres $\Psi^{(1)}$ et $\Psi^{(2)}$.

Par exemple, on pourra prendre, lorsque l'on dispose de spectres ellipsométriques sur plusieurs angles θ_i , ie $\{1..n\}$, et d'un spectre réflectométrique : $E_r(\Psi^{(1)},\Psi^{(2)})=$

$$\frac{1}{\lambda_{M} - \lambda_{m}} \int_{\lambda_{m}}^{\lambda_{M}} \left[\frac{1}{n} \sum_{i=1}^{n} \left[S_{1}^{(1)}(\theta_{i}, \lambda) - S_{1}^{(2)}(\theta_{i}, \lambda) \right]^{2} + \left[S_{2}^{(1)}(\theta_{i}, \lambda) - S_{2}^{(2)}(\theta_{i}, \lambda) \right]^{2} + \left[R^{(1)}(\lambda) - R^{(2)}(\lambda) \right]^{2} d\lambda \tag{1}$$

25

10

avec
$$\Psi^{(1)}(\lambda) = \{S_1^{(1)}(\theta_i, \lambda), S_2^{(1)}(\theta_i, \lambda), R^{(1)}(\lambda)\}$$

 $\Psi^{(2)}(\lambda) = \{S_1^{(2)}(\theta_i, \lambda), S_2^{(2)}(\theta_i, \lambda), R^{(2)}(\lambda)\}$
et $i \in \{1...n\}$

Des facteurs de pondération peuvent être apportés à l'intégrale de façon à ce que la fonction d'erreur puisse tenir compte de variations sur la précision de mesure des spectres.

5 La caractérisation optique de couches de matériaux s'articule généralement autour de deux applications:

La première application est le contrôle dimensionnel du dépôt de couches minces que l'on utilise en microélectronique.

Généralement on connaît bien le matériau déposé, c'est-à-dire que l'on connaît bien l'indice de réfraction complexe de ce matériau aux longueurs d'ondes de la lumière utilisée pour la caractérisation.

Les lois suivies par l'indice de réfraction complexe sont soit tabulées, soit approchées par des lois physiques connues telles que, par exemple, le modèle de Cauchy, le modèle de Sellmeier (voir le document [3]), les lois de Forouhi (voir le document [4]), et les lois lois d'oscillateurs harmoniques (voir le document [5]). Ces lois sont définies par un nombre fini de paramètres.

Par exemple, une loi de type Cauchy sans absorption, à deux paramètres, est définie de la manière suivante :

Re
$$[n*(\lambda)]$$
 = $n(\lambda) = a_0 + \frac{a_1}{\lambda^2}$

$$\operatorname{Im}\left[n*(\lambda)\right]=\mathrm{k}\left(\lambda\right)=0$$

Lorsque l'on est sûr de la valeur des coefficients $a_i (_{i} \in \{0,1\})$ mais que l'on ne connaît pas l'épaisseur, un algorithme de recherche est utilisé

afin de trouver l'épaisseur qui minimise l'erreur entre la mesure Ψ et la réponse théorique $\overline{\Psi}$ compte tenu de l'indice modélisé.

L'algorithme de recherche peut être, par exemple, la méthode du Simplex, la recherche Tabou, la méthode de Levendt-Marquart ou la méthode du recuit simulé (voir le chapitre 10 du document [6]).

Lorsque l'indice de réfraction est approximatif, les coefficients a_i sont intégrés dans la procédure d'ajustement de Ψ et $\overline{\Psi}$. La recherche des coefficients a_i constitue un procédé de caractérisation de l'indice de réfraction.

Cependant, lorsque la loi suivie par cet indice de réfraction est inconnue (il arrive que le matériau soit inconnu ou qu'il ne soit pas bien décrit par une loi physique connue), ce procédé reste approximatif et l'épaisseur risque d'être fausse.

La deuxième application est la caractérisation des matériaux.

De procédé utilisé reste le même, mis à part que le matériau n'est pas bien connu. C'est précisément la fonction d'indice de réfraction complexe la plus proche de la réalité qui est visée.

Le type de loi peut être choisi par 25 analogie avec d'autres matériaux. Cependant, la loi suivie par l'indice de réfraction complexe peut être compliquée, ce qui est par exemple le cas d'une loi d'oscillateurs harmoniques :

$$[n(E) + jk(E)]^2 = 1 + \sum_{i=1}^{n} \frac{Ai}{E + Ei + j\Gamma i} - \frac{Ai}{E - Ei + j\Gamma i}$$

10

Dans l'expression ci-dessus, $j^2=-1$ et l'indice de réfraction et le coefficient d'extinction sont exprimés non pas en fonction de λ mais de E, avec $E=1240/\lambda$ (λ en nm).

Dans ce cas, les coefficients des oscillateurs sont difficiles à trouver si l'on n'a pas leur ordre de grandeur. La recherche est difficilement automatisable, les algorithmes de recherche pouvant donner des réponses erronées et le temps perdu peut être considérable.

Il existe une alternative à la recherche des coefficients : la méthode point-à-point (PAP). Cette méthode PAP propose de ne pas choisir de loi physique et de rechercher l'indice de réfraction complexe du matériau pour chaque longueur d'onde λ_i , où i.e [1...n], avec $\lambda_1 = \lambda_m$ et $\lambda_n = \lambda_M$.

Pour chaque λ_i , un algorithme de recherche tente de trouver l'épaisseur, l'indice $n(\lambda_i)$ et le coefficient d'extinction $k(\lambda_i)$ qui minimisent l'erreur entre la mesure Ψ (λ_i) et la réponse théorique $\overline{\Psi}(\lambda_i, n(\lambda_i), k(\lambda_i), \epsilon)$.

Un tel procédé pose un problème parce que les divers points $(\lambda_i, \epsilon, n(\lambda_i), k(\lambda_i))$ ne sont pas forcément physiquement compatibles entre eux : par exemple, l'epaisseur trouvée peut varier en fonction de la longueur d'onde et la loi suivie par l'indice de réfraction complexe, plus simplement appelée loi d'indice, peut présenter des discontinuités.

15

20

Ce procédé est généralement valable seulement lorsque l'épaisseur est très bien connue et que les mesures sont de très bonne qualité.

5 EXPOSÉ DE L'INVENTION

10

25

La présente invention a pour but de remédier aux inconvénients précédents.

Le procédé objet de l'invention permet de caractériser un matériau sans utiliser un modèle physique, c'est-à-dire sans utiliser une loi physique suivie par l'indice de réfraction complexe du matériau étudié. Il est donc tout particulièrement utile lorsqu'une telle loi n'est pas connue.

Ce procédé constitue une alternative aux procédés de caractérisation connus, mentionnés plus haut. Il peut être appelé "méthode des nœuds" car il utilise des "nœuds" c'est-à-dire des points de coordonnées $(\lambda_i \ n_i^*)$, où n_i^* est la valeur prise par l'indice de réfraction complexe à la longueur d'onde λ_i et i prend un nombre limité de valeurs (entières).

De façon précise, la présente invention a pour objet un procédé de caractérisation optique d'au moins une couche d'un matériau dans un intervalle A de valeurs prises par une fonction α d'une longueur d'onde optique λ , lorsque λ varie dans un intervalle de longueurs d'ondes, cette couche étant formée sur un substrat, ce procédé étant caractérisé en ce qu'il comprend les étapes suivantes :

1) on effectue un ensemble de mesures de 30 réflectométrie et/ou d'ellipsométrie sur l'intervalle

A, cet ensemble de mesures conduisant à un spectre mesuré, noté Ψ , et l'on choisit les méthodes de calcul associées à la nature des mesures et au type de couche à caractériser,

- 5 2) on choisit m valeurs initiales α₁ ...α_m de la fonction α, appartenant à cet intervalle A, m étant un nombre entier au moins égal à 1, et l'on définit un intervalle B comme étant l'ensemble des points α de l'intervalle allant du plus petit au plus grand des 10 nombres α₁...α_m, lorsque m est supérieur à 1, et comme étant l'intervalle A lorsque m vaut 1,
 - 3) on choisit m valeurs initiales complexes d'un indice de réfraction complexe $n^*=n+jk$ aux m points α_i , i allant de 1 à m,
- 4) lorsque m est différent de 1, on choisit une loi d'interpolation qui permet de calculer l'indice de réfraction $n(\alpha)$ du matériau sur l'intervalle B, à partir des points (α_i, n_i) , avec $n_i = n(\alpha_i)$, i allant de 1 à m, et lorsque m vaut 1, $n(\alpha)$ est pris égal au nombre $n_1(\alpha_1)$ sur tout l'intervalle B,
 - 5) on choisit M paramètres variables, M étant inférieur ou égal à 2m+1,
- - 7) à l'aide d'une fonction de minimisation de Er(l', $\overline{\Psi}$) à M paramètres, on effectue la série d'étapes suivante :

- a) à l'aide de la loi d'interpolation des $(\alpha_i,n_i) \quad \text{sur} \quad \text{l'intervalle} \quad \text{B,} \quad \text{on} \quad \text{déduit} \quad n\left(\alpha\right), \quad \alpha$ appartenant à B,
- b) à l'aide de n(α) et de l'épaisseur ϵ de 5 la couche, et de méthodes de calcul de spectres, on calcule un spectre théorique $\overline{\Psi}$ (n(α), ϵ),
 - c) on compare Ψ et $\overline{\Psi}$ à l'aide de Er(Ψ , $\overline{\Psi}$) et, si Er(Ψ , $\overline{\Psi}$) est suffisamment petite, c'est-à-dire inférieure à une valeur prédéfinie \underline{e} , ou est minimale, on passe à l'étape e), sinon on passe à l'étape d),
 - d) on fait varier les M paramètres variables de façon à tendre vers le minimum de $\text{Er}(\Psi, \overline{\Psi})$ et l'on retourne à l'étape a),
- e) si $\text{Er}(\Psi, \overline{\Psi})$ est inférieure à \underline{e} , on obtient donc un ensemble de M paramètres variables, pour lequel $\text{Er}(\Psi, \overline{\Psi}(n(\alpha, M), \epsilon))$ est minimum et l'indice de réfraction est alors pris égal à celui qui a été obtenu en dernier, et si $\text{Er}(\Psi, \overline{\Psi})$ est supérieure ou égale à e on passe à l'étape 8),
- 20 8) on augmente le nombre m de valeurs initiales de la fonction α et l'on retourne à l'étape 2).
 - Il est donc par exemple possible d'effectuer la caractérisation optique :
- 25 sur un intervalle de longueurs d'ondes λ , en l'occurrence l'intervalle [λ min, λ max],
 - ou sur un intervalle de longueurs d'ondes inverses $1/\lambda$, en l'occurrence sur un intervalle

[$(1/\lambda)$ min, $(1/\lambda)$ max], où $(1/\lambda)$ min est égal à $1/(\lambda$ max) et $(1/\lambda)$ max à $1/(\lambda$ min),

- ou sur un intervalle d'énergies E (avec $E = hv = hc/\lambda$ où h est la constante de Planck, c la vitesse de la lumière dans le vide et v la fréquence correspondant à λ), en l'occurrence sur un intervalle [Emin, Emax], où Emin est égal à $hc/(\lambda max)$ et Emax à $hc/(\lambda min)$,

Il convient en outre de noter que l'invention est utilisable pour caractériser un spectre ou une partie de spectre.

Chaque loi d'interpolation peut être choisie parmi les lois d'interpolation linéaires, les lois d'interpolation cubiques, les lois d'interpolation polynômiales et les lois d'interpolation par exemple de type fonction « spline ».

20 Selon un mode de mise en œuvre préféré du procédé objet l'invention, le spectre est de échantillonné uniformément en α (λ), c'est-à-dire que les valeurs initiales de la fonction α (voir l'étape 2) mentionnée plus haut) sont réparties de manière 25 uniforme dans l'intervalle A, la répartition des nœuds étant ainsi homogène.

Comme on l'a vu, $\alpha(\lambda)$ peut être choisi parmi λ , $1/\lambda$ et hc/λ ou toute autre fonction de λ , où h est la constante de Planck et c est la vitesse de la lumière dans le vide.

30

De préférence, à l'étape 6) mentionnée plus haut, on mesure l'erreur sur un intervalle d'intérêt C qui est inclus dans l'intervalle B ou égal à cet intervalle B.

Les M paramètres variables peuvent être les parties réelles des indices de réfraction aux points α_i , i allant de 1 à m, ou les parties imaginaires de ces indices de réfraction, ou ces M paramètres variables peuvent être constitués par l'épaisseur du matériau dont on cherche l'indice de réfraction.

BRÈVE DESCRIPTION DES DESSINS

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés, sur lesquels :

- la figure 1 est une vue schématique de dispositifs permettant de caractériser une couche conformément à l'invention,
- la figure 2 montre les variations de l'indice de réfraction en fonction de la longueur d'onde, pour un matériau suivant une loi de Cauchy (courbe I) et pour un matériau caractérisé conformément à l'invention (courbe II),
- la figure 3A (respectivement 3B) montre les variations de l'indice de réfraction (respectivement du coefficient d'extinction) en fonction de la longueur d'onde, pour un matériau suivant une loi à deux oscillateurs harmoniques (courbe

20

25

I) et pour un matériau caractérisé conformément a l'invention, et

- la figure 4 illustre schématiquement les parametres utilisés dans une généralisation d'exemples de l'invention.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

L'invention propose une alternative aux procédés classiques, mentionnés plus haut. Elle permet d'allier la cohérence d'un modèle de couche (correspondant à une loi d'indice continue et à des épaisseurs physiques constantes), à la généralité concernant la loi d'indice à trouver (comme dans la méthode PAP). En outre, la résolution n'est limitée que par la résolution du spectre mesure.

Dans le procédé objet de l'invention, le spectre d'indice n^* (λ) est caractérisé par :

- un nombre réduit de "nœuds", qui sont des points de coordonnées (λ_i, n_i, k_i) ou (λ_i, n^*_i) , avec $n_i = n$ (λ_i) , $k_i = k$ (λ_i) et $n^*_i = n_i + jk_i$, où $j^2 = -1$, et

- une loi d'interpolation entre les nœuds, qui peut être, par exemple, linéaire, cubique, de type « spline » ou polynômiale (de degré quelconque).

Cette loi d'interpolation permet de calculer, à partir des nœuds, les indices de réfraction et les coefficients d'extinction pour les longueurs d'ondes situées entre les nœuds.

Par exemple, lorsque l'indice de réfraction est caractérisé par un ensemble de valeurs pour des 30 longueurs d'ondes λ_1 ... λ_m , on peut utiliser une

5

10

15

20

interpolation linéaire entre deux longueurs d'ondes λ_i et λ_{i+1} pour calculer l'indice n à la longueur d'onde λ (voir le document [6] chapitre 3) :

$$n(\lambda) = \frac{(\lambda_{i+1} - \lambda)n(\lambda_i) + (\lambda - \lambda_i)n(\lambda_{i+1})}{\lambda_{i+1} - \lambda_i}$$

5 avec $\lambda_i < \lambda < \lambda_{i+1}$

On peut faire de même pour le coefficient d'extinction.

Lorsque le nombre de nœuds le permet, des formules d'interpolation plus complexes, faisant 10 intervenir les nœuds voisins, peuvent être utilisées (voir le document [6] chapitre 3).

Un modèle de couche est donc caractérisé par une épaisseur & et une famille de nœuds.

On donne ci-après un exemple du procédé procé

20 Cette couche est une couche mince de sorte que l'épaisseur de cette couche est aussi une variable du problème. En outre, on suppose qu'une seule couche est inconnue, cette couche étant formée sur un substrat connu.

Expliquons d'abord brièvement cet exemple, qui utilise un algorithme (algorithme de la « méthode des nœuds » conformément à l'invention).

A partir d'informations supposées sur l'épaisseur ε de la couche étudiée et sur l'indice de

réfraction $n(\lambda)$ et le coefficient d'extinction $k(\lambda)$ du matériau de cette couche, on construit des nœuds de départ (en faible nombre) et une épaisseur de départ ϵ .

15

On dispose ainsi de m nœuds et, par interpolation, on peut connaître n(λ) et k(λ) en dehors des valeurs des longueurs d'ondes associées aux nœuds.

A partir de l'épaisseur de départ ϵ et de ces valeurs de départ $n(\lambda)$ et $k(\lambda)$, on détermine le spectre théorique $\overline{\Psi}$ en utilisant des calculs ellipsométriques et réflectrométriques.

Par ailleurs, au moyen de dispositifs d'ellipsométrie et de réflectrométrie et d'un spectromètre, on obtient $S_{1,2}$ (θ,λ) et $R(\lambda)$ et l'on en déduit les mesures notées Ψ (pour des conditions de mesure θ et λ).

On compare ensuite Ψ et $\overline{\Psi}$ en utilisant une fonction d'erreur Er et l'on optimise la valeur de l'indice de réfraction et la valeur du coefficient d'extinction aux différents nœuds, ainsi que la valeur de l'épaisseur, en cherchant à minimiser Er $(\Psi,\overline{\Psi})$.

Lorsque ces valeurs sont optimisées et si la précision sur le spectre $n(\lambda)$, le spectre $k(\lambda)$ et l'épaisseur ϵ n'est pas suffisante, on ajoute de nouveaux nœuds, on fait varier l'épaisseur ϵ , et l'on recommence la détermination de $\overline{\Psi}$, la comparaison de Ψ et $\overline{\Psi}$ et l'optimisation que l'on a mentionnées plus haut, etc.

On arrête la boucle ainsi définie lorsque la précision sur chacun des spectres $n\left(\lambda\right)$ et $k\left(\lambda\right)$ et

5

10

15

20

sur l'épaisseur ϵ est jugée suffisante (ajustement satisfaisant de Ψ et $\overline{\Psi}$).

Les spectres $n(\lambda)$, $k(\lambda)$ et l'épaisseur ϵ sont ainsi caractérisés.

Dans un exemple donné à titre purement indicatif et nullement limitatif, on trouve une épaisseur ε égale à 212,3nm pour la couche.

La figure 1 montre de façon schématique la couche étudiée 2, formée sur un substrat 4. On voit le dispositif d'ellipsométrie 5,6, le dispositif de réflectrométrie 8 et le spectromètre 10. On voit en outre des moyens électroniques de traitement 12, comprenant un ordinateur et permettant de caractériser $n(\lambda)$, $k(\lambda)$ et ϵ en fonction des informations fournies par le spectromètre 10 et conformément au procédé de l'invention.

Ces moyens 12 sont munis de moyens d'affichage 14 qui permettent, en particulier, d'afficher la courbe des variations de n en fonction de λ et la courbe des variations de k en fonction de λ .

Revenons de façon plus détaillée sur l'exemple donné.

Phase 1

Le procédé de cet exemple comporte d'abord 25 une étape d'initialisation.

L'algorithme débute avec un nombre réduit de nœuds, plus précisément au moins un nœud. On peut donc débuter par un seul nœud, en imposant un indice de réfraction et un coefficient d'extinction qui restent constants lorsque la longueur d'onde varie.

10

15

20

On choisit des positions de nœuds de façon à pouvoir, à partir de cette famille de nœuds, déduire tout le spectre par interpolation. Le modèle de couche est donc à 3 paramètres ou plus, puisque l'épaisseur est aussi une variable à déterminer. La table d'indice sur tout le spectre est donc déduite des nœuds par interpolation.

C'est le cas lorsque l'épaisseur des couches est de l'ordre de grandeur de la longueur d'onde (couches minces). Mais lorsque l'épaisseur de la couche est supérieure à la longueur de cohérence de la source de lumière, l'épaisseur n'intervient quasiment plus dans le calcul de la réponse de la couche, et n'est donc plus une variable du problème.

le de disques dans cas Par exemple, lesquels une couche très (CDROM), sur optiques importante est déposée (son épaisseur est de l'ordre de 1 millimètre), le coefficient de réflexion d'une telle couche n'est plus fonction de l'épaisseur de la couche mais seulement de l'indice de réfraction de celle-ci, la longueur de cohérence du faisceau lumineux incident étant inférieure à l'épaisseur de la couche. Dans ce longueur de cohérence du faisceau la précis, incident est déterminée par la rugosité des couches.

On choisit, par exemple, de placer les deux 25 premiers nœuds aux extrémités λ min et λ max du l'indice complexe Les valeurs de en ces spectre. extrémités sont choisies fonction du type du en spectre étudié. Par exemple, sur un matériau ellipsométrique entre 300nm et 800nm d'une couche mince 30

5

10

15

de résine photosensible, on prend n(300nm)=n(800nm)=1,5 et k(300nm)=k(800nm)=0.

Lorsque le spectre n'est caractérisé que l'indice entre les extrêmes est nœuds, par deux interpolation linéaire. Dans le cas déterminé par donc $n(\lambda)=1,5$ et $k(\lambda)=0$ pour λ considéré, on a appartenant à [300nm, 800nm].

A partir de trois nœuds, on choisit plutôt une interpolation cubique afin d'obtenir des formes de loi d'indice plus douces que celles obtenues par interpolation linéaire.

L'épaisseur de départ est, quant à elle, choisie aussi proche que possible de l'épaisseur réelle.

15 Phase 2

5

10

On procède ensuite à une détermination a optimale des valeurs de l'indice de réfraction et du coefficient d'extinction sur les nœuds et de la valeur de l'épaisseur.

Pour ce faire, les spectres $\overline{\Psi}(\lambda)$ sont calculés à l'aide du modèle de couche utilisé, résultant du choix des nœuds, de la loi d'interpolation et de l'épaisseur de la couche.

Le modèle physique utilisé pour le calcul de \$\overline{\Psi}\$ est bien sûr fonction de la méthode de mesure utilisée, c'est-à-dire notamment de l'angle d'incidence de la lumière, du spectre utilisé et du modèle de couches minces ou de couches épaisses le cas échéant (voir par exemple les modèles de couches empilées dans le document [3]).

Les spectres Ψ étant constitués par un ensemble de mesures de natures diverses (par exemple des mesures ellipsométriques et réflectométriques), on utilise pour les mesures de réflectométrie (respectivement d'ellipsométrie) une méthode de calcul de réflectométrie (respectivement d'ellipsométrie).

Les mesures réflectométriques et ellipsométriques sont combinées par l'intermédiaire d'une fonction d'erreur $\text{Er}(\Psi,\overline{\Psi})$ qui est par exemple du genre de celle qui est définie par l'équation (1).

Grâce à une fonction de recherche, on minimise l'écart entre $\overline{\Psi}(\lambda)$ et $\Psi(\lambda)$, en faisant varier la valeur de l'indice de réfraction et la valeur du coefficient d'extinction à la position de chacun des nœuds ainsi que l'épaisseur de couche (si cette épaisseur est un facteur important dans le calcul de $\overline{\Psi}$). Lorsque l'écart est minimum c'est-à-dire lorsque $\mathrm{Er}(\Psi,\overline{\Psi})$ est minimum, cela signifie que les mesures réflectométriques et ellipsométriques coïncident au mieux (pour un nombre de nœuds donné).

A ce stade, on obtient, pour un nombre connu de nœuds et une position spectrale connue pour chacun de ces des nœuds, le modèle de couche (indice de réfraction, coefficient d'extinction et épaisseur) qui correspond au mieux à la couche réelle.

La validité du modèle trouvé est d'autant plus assurée que le nombre de mesures est grand. Pour avoir un grand nombre de mesures, on pout par exemple utiliser plusieurs angles d'incidence de la lumière θ_i , $1 \le i \le \ell$, pour les spectres ellipsométriques, faire

5

10

15

20

25

une mesure réflectométrique et faire des mesures goniométriques complémentaires.

20

Phase 3

5

10

15

20

25

30

Ensuite, on augmente le nombre de nœuds.

On ajoute un nombre fini de nœuds. Dans un premier mode de réalisation, les nœuds rajoutés sont façon à représenter au mieux positionnés de spectres $n(\lambda)$ et $k(\lambda)$. A titre d'exemple, on place ces nœuds supplémentaires aux endroits où l'écart entre Ψ et $\overline{\Psi}$ est maximum ou aux endroits en lesquels les nœuds sont les plus espacés. Et l'on retourne à la phase 2 tant que la précision sur chacun des spectres $n(\lambda)$ et n'est pas suffisante, l'épaisseur & et sur précision : c'est-à-dire n'est pas égale à une prédéfinie.

Dans un deuxième mode de réalisation, on intercalle de nouveaux nœuds entre deux nœuds de l'ensemble de nœuds préalablement choisis, ces nouveaux noeuds se répartissant de façon homogène sur le spectre.

Il convient toutefois de noter ce qui suit. Lorsque l'on augmente le nombre de nœuds, il n'est pas nécessaire de conserver la position des l'on nœuds. Par exemple, admettons que anciens échantillonne uniformément un spectre de 400nm à 800nm avec 3 nœuds. Ces nœuds se situent donc respectivement à 400nm, 600nm et 800nm. Lorsque l'on passe à 6 nœuds, les trois nœuds additionnels ne peuvent être placés de spectre soit uniformément façon à ce que le échantillonné si l'on conserve la position des anciens nœuds. La position des 6 nœuds peut être définie, si

l'on souhaite un échantillonnage uniforme par les valeurs 400, 480, 560, 640, 720, 800nm. L'ancien nœud central à 600nm disparaît donc. Pour calculer la valeur de l'indice à ces positions à partir des anciens nœuds, on procède par interpolation.

21

Dans ce qui suit, nous donnons deux exemples courants d'application de l'invention. Ces exemples mettent en jeu deux types de matériaux qui suivent des lois différentes.

A partir de mesures ellipsométriques et réflectométriques, nous proposons de retrouver les lois physiques suivies par ces matériaux.

Nous procédons de la façon suivante :

Un matériau fictif est créé, ce matériau 15 suivant une loi théorique connue (une loi de Cauchy ou loi d'oscillateurs harmoniques), avec des une nous fixons arbitrairement. Les paramètres que l'indice de refraction complexe variations de en fonction de la longueur d'onde sont ainsi parfaitement 20 connues.

Nous imposons en outre au matériau unc épaisseur de 200,00nm, sur un substrat de silicium, ce dernier étant également très bien connu.

Des mesures fictives (mesures 25 ellipsométriques, mesures réflectométriques) sont calculées, puis bruitées de façon à introduire un défaut d'appareillage.

Tout se passe comme si nous avions des mesures réelles, effectuees sur le matériau. Mais, 30 contrairement à la réalité, nous connaissons parfaitement l'indice de réfraction complexe puisque

nous l'avons fixé, de même que nous avons fixé l'épaisseur de la couche de matériau.

22

Nous testons ici la méthode "en aveugle", c'est-à-dire que nous partons d'une épaisseur fausse (220nm) et d'indices de réfraction complexes faux, puisqu'ils sont sensés être inconnus.

Nous appliquons le procédé objet de l'invention puis nous comparons l'indice de réfraction complexe trouvé à l'indice de réfraction complexe théorique. Nous retrouvons bien les mêmes lois, très précisément, ainsi que la même épaisseur de couche.

Comme premier exemple, prenons un matériau dont l'indice de réfraction complexe suit une loi de Cauchy telle que :

$$n(\lambda) = 1.5 + 0.1 \frac{300^2}{\lambda^2} + 0.1 \frac{300^4}{\lambda^4}$$

 $k(\lambda) = 0$

5

10

15

Cette loi d'indice est typique des résines photosensibles (dans la plage spectrale allant de 300nm, à 800nm).

Afin de retrouver à l'aide de la méthode 20 objet (c'est-à-dire du procédé nœuds l'invention) la loi d'indice mentionnée ci-dessus, nous deux mesures, mesure à savoir une effectuons ellipsométrique à un angle de 70° et une mesure réflectométrique. 25

Les conditions de traitement sont les suivantes:

- le spectre traité est compris entre 300nm et 800nm,

- au départ, les nœuds sont aux positions (300nm, 1,6) et (800nm, 1,6), c'est-à-dire que l'indice est considéré comme variant linéairement entre 300nm et 800nm, et que sa valeur est constante (égale à 1,6),
- 5 le nombre de nœuds est augmenté itérativement selon la séquence $2\rightarrow 4\rightarrow 6$,
 - lors de la procédure d'augmentation des nœuds, la position en longueur d'onde de chaque nœud est calculée de façon que l'échantillonage en $1/\lambda$ soit uniforme (λ : longueur d'onde), la densité de points étant donc d'augmentée vers les faibles longueurs d'ondes,
 - la loi d'interpolation est une loi cubique, lorsque le nombre de nœuds est supérieur à 2, sinon elle est linéaire, et
 - l'algorithme de minimisation utilisé est un algorithme de type Simplex.

La figure 2 permet de comparer l'indice de réfraction correspondant au matériau fictif qui suit parfaitement une loi de Cauchy (courbe I) à l'indice de réfraction que nous trouvons par la méthode des nœuds (courbe II), à l'aide de 6 nœuds (représentés par des cercles sur la figure 2). Nous avons utilisé un Ψ composé d'une mesure ellipsométrique $\{S_1(\lambda), S_2(\lambda)\}$ à 70° et d'une mesure réflectométrique $R(\lambda)$.

Nous aboutissons à une épaisseur de 199,8384nm.

Comme deuxième exemple, prenons un matériau dont l'indice de réfraction complexe suit une loi à deux oscillateurs harmoniques, telle que :

10

15

20

$$[n(E) + jk(E)]^{2} = 1 + \sum_{i=1}^{2} \frac{A_{i}}{E + E_{i} + jG_{i}} - \frac{A_{i}}{E - E_{i} + jG_{i}}$$

avec

5

20

 $\dot{\jmath}^2 = -1$ et E = $1240/\lambda$ (λ en nm)

 $A_1=0,25x1,5^2$ $A_2=0,25x1,5^2$

 $E_1=1240/400$ $E_2=1240/300$

 $G_1=0,3$ $G_2=0,3$

Dans ce deuxième exemple, la méthode des appliquée à un ensemble de mesures est ellipsométriques effectuées entre 250nm et 800nm, à et 45°, avec en plus une mesure 75°, 70°, 60° 10 réflectométrique. L'épaisseur réelle du matériau étant de 200nm, on trouve une épaisseur de 200,25 nm avec la méthode des nœuds. L'ajustement sur la loi d'indice considérée dans ce deuxième exemple est très bon, comme le montrent les figures 3A et 3B. 15

figures 3A et 3B illustrent : Ces respectivement les reconstructions des courbes $n(\lambda)$ et $k(\lambda)$ du matériau à l'aide de la méthode des nœuds. La l'aide reconstruction est effectuée à de quatre spectres ellipsométriques et d'un spectre réflectométrique. Les pics d'absorption réels sont très la courbe obtenue représentés par bien interpolation cubique entre les nœuds (représentés par des cercles sur les figures 3A et 3B).

3A, la courbe Ι 25 Sur la figure (respectivement correspond à indice II) un réfraction n qui suit parfaitement la loi choisie (respectivement à un indice de réfraction n trouvé par la méthode des nœuds).

Ι la courbe 3B, Sur la fiqure coefficient (respectivement correspond à un II) d'extinction k qui suit parfaitement la loi choisie (respectivement à un coefficient d'extinction k trouvé par la méthode des nœuds).

On vient de décrire des exemples de l'invention. On remarquera d'une manière plus générale que, dans cette dernière, on considère un ensemble X de valeurs, avec $X = \{n_1, n_2, ..., n_i, ..., n_m, k_1, k_2, ..., k_i, ..., k_m, \epsilon\}$, où

 $n_i \ \mbox{est la valeur de l'indice de réfraction}$ (réel) au nœud correspondant à λ_i , $i \in \{1...m\}$, m étant le nombre de noeuds

 $k_i \text{ est la valeur du coefficient d'absorption} \\ \text{au nœud correspondant à $\lambda_i, i \in \{1...m\}, }$

ε est l'épaisseur de la couche étudiée.

Dans ce cas, l'opération de minimisation d'erreur Er $(\Psi,\overline{\Psi})$ revient à trouver l'ensemble ou « vecteur » X tel que Er soit minimum.

Lorsque l'on n'impose pas de contrainte particulière, la minimisation est une minimisation à 2xm+1 paramètres. On peut bien sûr ajouter des contraintes afin de diminuer le nombre de variables.

En particulier, si l'on sait que le matériau est non absorbant, on impose $k_i=0$ pour tout i de $\{1...m\}$ et X devient : $X=\{n_1,n_2...,n_i,...n_m,\epsilon\}$.

Si, par une mesure complémentaire (par exemple une mesure de goniomètrie ou une mesure directe non optique), on connaît l'épaisseur de la couche considérée avec une précision suffisante, l'épaisseur &

5

10

15

20

n'est plus une variable et l'on a : $X = \{n_1, n_2, ..., n_i, ..., n_m, k_1, k_2, ..., k_i, ..., k_m\}.$

Bien entendu, les deux options précédentes peuvent être combinées.

On explique dans ce qui suit un mode de mise en œuvre de l'invention sous une forme plus générale que les exemples donnés précédemment.

Soit α (λ) une fonction de la longueur d'onde λ de la lumière utilisée pour les mesures. On peut par exemple choisir :

 $\alpha(\lambda)\!=\!\!\lambda \ \ (\text{voir les figures 3A et 3B où le}$ spectre est uniformément échantillonné en $\lambda)$

 $\alpha(\lambda) = 1/\lambda \ \, (\text{voir la figure 2 où le spectre}$ est uniformément échantillonné en $1/\lambda)$

15 $\alpha(\lambda) = hc/\lambda \text{ où h est la constante de Planck}$ et c la vitesse de la lumière dans le vide, $\alpha(\lambda)$ étant alors homogène à une énergie.

Soit A l'intervalle du spectre de mesure, B l'intervalle spectral décrit par les « nœuds » et C l'intervalle d'intérêt.

L'intervalle C est inclus dans l'intervalle B ou égal à cet intervalle B. De même, l'intervalle B est inclus dans l'intervalle A ou égal à cet intervalle A.

On précise que chacun des intervalles A, B et C est du type $[\alpha_m, \alpha_M]$ où α_m est inférieur à α_M et il existe deux longueurs d'ondes λ_k et λ_1 telles que $\alpha_m = \alpha(\lambda_k)$ et $\alpha_M = \alpha(\lambda_1)$. A titre purement indicatif et nullement limitatif, la figure 4 montre un exemple des intervalles A, B et C et des courbes des variations de

 Ψ et de $\overline{\Psi}$ en fonction de $\alpha(\lambda)$, $\overline{\Psi}$ étant en fait une fonction de $n^*(\alpha(\lambda))$.

Les cercles N représentent les nœuds.

n'est l'indice complexe, qui est exprimé ici en fonction de $\alpha(\lambda)$ et dont les parties réelle et imaginaire sont respectivement notées $n(\alpha(\lambda))$ et k $(\alpha(\lambda))$.

On voit également, à titre purement indicatif et nullement limitatif, un exemple de la courbe des variations de n (respectivement k) en fonction de $\alpha(\lambda)$, passant par des points de coordonnées (n_i, α_i) (respectivement (k_i, α_i) , où $\alpha_i = \alpha(\lambda_i)$, $n_i = n(\alpha_i)$, $k_i = k(\alpha_i)$, $1 \le i \le m$ (m entier naturel non nul).

Sur la figure 4, on notera la 15 correspondance entre les nœuds N, les points $(n_i, \, \alpha_i)$ et les points $(k_i, \, \alpha_i)$.

Dans le mode de mise en œuvre considéré, on utilise un algorithme comprenant les étapes suivantes :

- on fait les mesures Ψ sur l'intervalle A
 et l'on choisit les méthodes de calcul associées aux mesures (calculs ellipsométriques ou réflectométriques);
- 2. on choisit m nombres α_i (constituant m valeurs initiales de la fonction α), i appartenant à $\{1,...,m\}$, avec $m\geq 1$, et $\{\alpha_i\}\subset \Lambda$ (les α_i correspondant aux « nœuds »); lorsque m>1, B est défini comme l'ensemble des points α tels que $\min(\alpha_i) \leq \alpha \leq \max(\alpha_i)$; lorsque m=1, on a B=A;

- 3. on choisit m valeurs initiales d'indice complexe n* aux m points α_i , i appartenant à $\{1,...,m\}$;
- 4. si $m\neq 1$ on choisit une loi d'interpolation qui permet de calculer l'indice de réfraction $n(\alpha)$ sur l'intervalle B à partir des points (α_i, n_i) , i appartenant à $\{1, ..., m\}$; si m=1, alors $n(\alpha)=n_1(\alpha_1)$ sur tout l'intervalle B;
- 5. on choisit M paramètres variables avec
 M≤2m+1 ; ces paramètres peuvent être par exemple :
- 10 les parties réelles des indices de réfraction aux points α_i , i appartenant à $\{1,...,m\}$, ou
 - les parties imaginaires des indices de réfraction en ces mêmes points, ou
- l'épaisseur du matériau dont on cherche 15 l'indice de réfraction ;
 - 6. on choisit une fonction d'erreur $\text{Er}(\Psi,\overline{\Psi})$ qui caractérise l'écart entre un spectre expérimental et un spectre mesuré ; en général, l'erreur est mesurée sur l'intervalle C ;
- 7. à l'aide d'une fonction de minimisation de Er($\Psi,\overline{\Psi}$) à M paramètres, on effectue la série d'étapes suivantes :
 - a) à l'aide de la fonction d'interpolation des $(\alpha_i,\ n_i)$ sur B, on déduit $n(\alpha)$ avec α appartenant à B;
 - b) à l'aide de n(α) de l'épaisseur ϵ et des méthodes de calcul de spectre, on calcule le spectre théorique $\overline{\Psi}$ (n(α), ϵ) ;

- c) on compare Ψ et $\overline{\Psi}$ à l'aide de $\text{Er=Er}(\Psi,\overline{\Psi})$; si Er est suffisamment petite (c'est-àdire si Er est inférieure à une valeur prédéfinie e), ou bien si Er est minimale, on passe à l'étape e), sinon on passe à l'étape d);
- d) on fait varier les M paramètres de façon à tendre vers le minimum de Er et l'on revient à l'étape a);
- e) si Er est inférieure à \underline{e} on obtient donc un ensemble de M paramètres tel que $\text{Er}(\Psi,\overline{\Psi}\ (n(\alpha,M),\epsilon))$ est minimum et le calcul de l'indice de réfraction est achevé : cet indice est pris égal à celui qui a été obtenu en dernier ; et si Er est supérieure ou égale à \underline{e} , on passe à l'étape 8) ;
- 8. on augmente m et l'on revient à l'étape
 2).
 - Il convient de noter que la présente invention peut utiliser non seulement des échantillonnages en longueur d'onde (λ) mais encore des échantillonnages en fréquence (c/λ ou, plus simplement $1/\lambda$), en énergie (hc/λ) et, plus généralement, en paramètre fonction de la longueur d'onde.
- essentielle de l'invention (étape 8) mentionnée plus haut) n'est pas limitée à l'ajout d'un ensemble de nœuds aux nœuds déjà existants : elle englobe le cas plus géneral où le nombre de nœuds augmente. Cela veut dire, dans un mode de réalisation particulier de l'invention, qu'après minimisation avec 3 nœuds, si 1'on veut passer à 6 nœuds au total, la position des 3

anciens nœuds est « effacée » de façon, par exemple, à avoir une densité de nœuds constante sur le spectre. En pratique, c'est la meilleure option. L'information sur l'ancienne position des anciens nœuds n'est pas perdue car la valeur des indices aux anciens nœuds est utilisée pour calculer la valeurs des 6 nouveaux nœuds (en fait 3 nouveaux nœuds plus trois anciens nœuds).

Ainsi, selon un mode de mise en œuvre particulier du procédé objet de l'invention, on peut augmenter le nombre de valeurs initiales de la fonction α en ajoutant une ou plusieurs valeurs aux valeurs initiales existantes ; mais, selon un mode de mise en œuvre préféré, on peut augmenter le nombre de valeurs initiales de la fonction α en remplaçant les valeurs initiales existantes par de nouvelles valeurs initiales dont le nombre est supérieur au nombre des valeurs initiales existantes.

La présente invention n'est pas limitée à la caractérisation de couches minces. Elle s'applique aussi à la caractérisation de couches épaisses.

En outre, la présente invention n'est pas limitée à la caractérisation d'une seule couche, formée sur un substrat. Elle s'applique aussi à la caractérisation de deux, ou plus de deux, couches formées sur un substrat.

Les documents cités dans la présente description sont les suivants :

[1] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, North-Holland Physics Publishing, 1997, chapitre 6.

5

10

15

20

25

- [2] B. K. Minhas, S.A. Coulombe, S. Sohail, H. Naqvi and J.R. McNeil, Ellipsometric scatterometry for the metrology of sub-0.1- μ m-linewidth structures, Applied Optics, 37(22) : 5112-5115, 1998.
- 5 [3] M. Born and E. Wolf, Principle of Optics, Cambridge University Press edition.
 - [4] A.R. Forouhi and I. Bloomer, Optical dispersion relations for amorphous semiconductors and amorphous dielectrics, Physical Review B, 34(10): 7018-7026, November 1986.
 - [5] F. L. Terry, Jr., A modified harmonic oscillator approximation scheme for the dielectric constants of $A1_xGa_1-_xAs$, Journal of Applied Physics, 70(1), 1991, pages 409-417.
- 15 [6] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C, Cambridge University Press, 1992, chapitres 3 et 10.

REVENDICATIONS

- 1. Procédé de caractérisation optique d'au moins une couche d'un matériau dans un intervalle A de valeurs prises par une fonction α d'une longueur d'onde optique λ , lorsque λ varie dans un intervalle de longueurs d'ondes , cette couche étant formée sur un substrat, ce procédé étant caractérisé en ce qu'il comprend les étapes suivantes :
- on effectue un ensemble de mesures de réflectométrie
 et/ou d'ellipsométrie sur l'intervalle A, cet ensemble de mesures conduisant à un spectre mesuré, noté Ψ, et l'on choisit les méthodes de calcul associées à la nature des mesures et au type de couche à caractériser,
- 2) on choisit m valeurs initiales α₁ ...α_m de la fonction α, appartenant à cet intervalle A, m étant un nombre entier au moins égal à 1, et l'on définit un intervalle B comme étant l'ensemble des points α de l'intervalle allant du plus petit au plus grand des nombres α₁...α_m, lorsque m est supérieur à 1, et comme étant l'intervalle A lorsque m vaut 1,
 - 3) on choisit m valeurs initiales complexes d'un indice de réfraction complexe $n^*=n+jk$ aux m points α_i , i allant de 1 à m,
- 4) lorsque m est différent de 1, on choisit une loi d'interpolation qui permet de calculer l'indice de réfraction $n(\alpha)$ du matériau sur l'intervalle B, à partir des points (α_i, n_i) , avec $n_i = n(\alpha_i)$, i allant de 1 à m, et lorsque m vaut 1, $n(\alpha)$ est pris égal au nombre $n_1(\alpha_1)$ sur tout l'intervalle B,

- 5) on choisit M paramètres variables, M étant inférieur ou égal à 2m+1,
- 6) on choisit une fonction d'erreur ${\rm Er}(\Psi,\ \overline{\Psi})$ qui caractérise l'écart entre un spectre mesuré Ψ et un spectre expérimental $\overline{\Psi}$,
- 7) à l'aide d'une fonction de minimisation de $\text{Er}(\Psi, \overline{\Psi})$ à M paramètres, on effectue la série d'étapes suivante :
- a) à l'aide de la loi d'interpolation des (α_i, n_i) sur 10 l'intervalle B, on déduit $n(\alpha)$, α appartenant à B,
 - b) à l'aide de n(α) et de l'épaisseur ϵ de la couche, et de méthodes de calcul de spectres, on calcule un spectre théorique $\overline{\Psi}$ (n(α), ϵ),
 - c) on compare Ψ et $\overline{\Psi}$ à l'aide de $\text{Er}(\Psi,\ \overline{\Psi})$ et, si
- 15 Er(Ψ , $\overline{\Psi}$) est suffisamment petite, c'est-à-dire inférieure à une valeur prédéfinie \underline{e} , ou est minimale, on passe à l'étape e), sinon on passe à l'étape d),
 - d) on fait varier les M paramètres variables de façon à tendre vers le minimum de $\text{Er}(\Psi, \overline{\Psi})$ et l'on retourne à l'étape a),
 - e) si $\text{Er}(\Psi, \overline{\Psi})$ est inférieure à \underline{e} , on obtient donc un ensemble de M paramètres variables, pour lequel $\text{Er}(\Psi, \overline{\Psi}(n(\alpha,M),\epsilon))$ est minimum et l'indice de réfraction est alors pris égal à celui qui a été obtenu en dernier, et si $\text{Er}(\Psi, \overline{\Psi})$ est supérieure ou égale à \underline{e} on passe à
 - 8) on augmente le nombre m de valeurs initiales de la fonction α et l'on retourne à l'étape 2).

1'étape 8),

5

20

- $\hbox{2. Proc\'ed\'e selon la revendication 1, dans} \\ \hbox{lequel on augmente le nombre de valeurs initiales de la} \\ \hbox{fonction α en ajoutant une ou plusieurs valeurs aux} \\ \hbox{valeurs initiales existantes.} \\ \\$
- 3. Procédé selon la revendication 1, dans lequel on augmente le nombre de valeurs initiales de la fonction α en remplaçant les valeurs initiales existantes par de nouvelles valeurs initiales dont le nombre est supérieur au nombre des valeurs initiales existantes.
 - quelcongue 4. Procédé selon l'une des revendications 1 à 3, dans lequel chaque loi choisie d'interpolation est parmi les lois d'interpolation linéaires, les lois d'interpolation cubiques, les lois d'interpolation polynômiales et les lois d'interpolation par exemple de type fonction. spline.
- 5. Procédé selon l'une quelconque des revendications à 4, lequel les valeurs 1 dans 20 initiales de la fonction α sont réparties de manière uniforme dans l'intervalle A, la répartition des nœuds étant ainsi homogène.
 - 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel $\alpha(\lambda)$ est choisi parmi λ , $1/\lambda$ et hc/λ , où h est la constante de Planck et c est la vitesse de la lumière dans le vide.
 - 7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel on mesure l'erreur, à l'étape 6), sur un intervalle d'intérêt C qui est inclus dans l'intervalle B ou égal à cet intervalle B.

25

- 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les M paramètres variables sont les parties réelles des indices de réfraction aux points α_i , i allant de 1 à m.
- 9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les M paramètres variables sont les parties imaginaires des indices de réfraction aux points α_i , i allant de 1 à m.
- 10. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les M paramètres variables sont constitués par l'épaisseur du matériau dont on cherche l'indice de réfraction.

Λk 0,8 0,6 0,4 0,24 λ (nm) * • ↑> 800 0 250 600 350 400 450 500 550 7<u>0</u>0 300 650 FIG. 3B

FIG. 4

BREVET D'INVENTION CERTIFICAT D'UTILITE

Désignation de l'inventeur

Vos références pour ce dossier	B14382 PV- DD2541
N°D'ENREGISTREMENT NATIONAL	
TITRE DE L'INVENTION	
	PROCEDE DE CARACTERISATION OPTIQUE DE MATERIAUX SANS UTILISATION DE MODELE PHYSIQUE.
LE(S) DEMANDEUR(S) OU LE(S)	
MANDATAIRE(S):	
DESIGNE(NT) EN TANT	
QU'INVENTEUR(S):	
Inventeur 1	
Nom	HAZART
Prénoms	Jérôme
Rue	10 Place St-Eynard
Code postal et ville	38000 GRENOBLE
Société d'appartenance	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, Brevatome, J.Lehu
Emetteur du certificat; DE, D-Trust GrnbH, D-Trust for EPO 2.0

Fonction

Mandataire agréé (Mandataire 1)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.