

TABLE OF CONTENTS

Ol Introduction

04 Project Plan

02 Motivation

Data Visualizations

O3 Dataset

06 Conclusion

The project covers the cause and effect between climate change and the effects on the globe and specifically on the people of the United States.

Introduction

WHAT WE ARE WORKING ON

Project

Climate Change and its effects simplified.

Impact

Helps bridge the gap in scientific and general understanding the effects of climate change.

Analysis

Various climate change factors: temperature, carbon emissions etc to make an interactive dashboard.

Motivations

Why make this project?

Fig: NASA's Climate Change Vital Signs Dashboard

- Our main motivation is to give a simplified explanation to the layman about the effects of climate change.
- We also aim to make a comprehensive dashboard to help understand complex relations between different attributes.
- Make everything transparent and easy to understand.

Dataset

DATASET SOURCES

Dataset	Link					
Temperature Change	https://climatedata.imf.org/pages/climatechange-data					
Forest and Carbon	https://climatedata.imf.org/pages/climatechange-da					
GCB Emissions	https://www.kaggle.com/datasets/thedevastator/global-fossil-co2-emissions-by-country-2002-2022					
Disaster Frequency	https://climatedata.imf.org/pages/climatechange-data					
Melanoma	https://ephtracking.cdc.gov/DataExplorer/					
Extreme Precipitation	https://ephtracking.cdc.gov/DataExplorer/					
Heat Related illness and mortality rates	https://ephtracking.cdc.gov/DataExplorer/					
Exposure to UV	https://ephtracking.cdc.gov/DataExplorer/					

Total Rows

Total Columns

Total Datasets

Project Plan

What did we use in this project?

DATA PROJECT ARCHITECTURE

EDA

Distribution of Data

EDA

Outlier detection

Data Visualisations

Temperature change and disaster frequency vs years

Temperature change vs years

Country-wise Total Carbon Emissions across the years (1992-2020)

Climate Change Data Visualizations

Temporal Trends Geospatial Heatmaps Carbon Emissions Tree Map

Carbon Emissions Tree Map

Parallel Coordinates Plot Dynamic Scatter Plot Sankey Diagram Correlation Heatmap Animated Time Series

Carbon Emissions by Country and Year

Correlation Matrix

Total Carbon Emissions by different sources

Flow of Carbon Emissions

andside

andside

xiteme temperatur

rought

hare of forest area

and area (1000 HA

andex of forest exter

drex of carbon stod

orest area (1000 H

arbon stods in for

Analysis of Temperature, Carbon Emissions, Carbon Stocks, Disasters and Forest cover across the years

Temperature change vs Forest Area over time for all countries

Case Study

United States

The U.S. presents a unique and highly relevant case study for climate change due to its diverse geography, varied climate conditions, Policies, Public awareness, Data Availability and significant contributions to global greenhouse gas emissions.

UV Exposure Analysis

Skin Cancer Analysis

Extreme Precipitation - Choropleth Map

Temporal Trends	Geospatial Heatmaps	Carbon Emissions Tree Map	Parallel Coordinate: Plot	Dynamic Scatter Plot	Sankey Diagram	Correlation Heatmap	Animated Time Series	UV Exposure Trends	Melanoma Trends	Extreme Precipitatio Map
Select Year:										
2017										× ×
Reset Map										
								O	⊕ : ♀	H E X 6

Drill-Down Map: Extreme Precipitation

Conclusion

Takeaways

World Data:

- As temperature change increases, frequency of disasters also increases.
- As carbon emissions increase, the forest cover decreases.
- More the forest cover, more is its capacity to have carbon stocks.
- Forest cover decreases as Temperature Change decreases.
- Different Types of Carbon Emissions are weakly but still correlated with disasters such as droughts, floods etc as they affect the climate in the long run.
- The actual relationship between climate change, forest cover and natural disasters is way more complex than it seems.

Takeaways

US Data:

- The choropleth map illustrates that counties experiencing extreme precipitation were primarily located on the west coast initially. Over time, however, the areas receiving extreme precipitation have shifted towards the eastern part of the USA.
- Melanoma, a type of skin cancer, is caused by UV exposure. With the increase in UV exposure, primarily due to climate change, the number of skin cancer cases has also risen across various states.
- We analyzed 20 years of UV exposure data across different states in the USA. The trend reveals a significant increase in UV exposure from 2000 to 2020.

THANK YOU

OUR VIDEO LINK

Link - https://youtu.be/4HLkfctFBoE

