

Kinematics of miniBot-7R

Aykut C. Satici Member, IEEE

Abstract—This technical report contains the kinematics of the minibot-7R robot.

Index Terms—kinematics

I. INTRODUCTION

We want to derive the kinematics of the 7-degree-of-freedom robotic manipulator, minibot-7R. A kinematic diagram of the robot is provided in Figure 1.

Fig. 1: Schematic of minibot-7R.

We will follow the classic Denavit-Hartenberg convention as presented in [1].

II. DENAVIT-HARTENBERG FORMULATION

The transformation matrices between consecutive frames are given as follows.

TABLE I: DH Table for minibot-7R

Link	$\alpha_i \ [^{\circ}]$	a_i	d_i [mm]	θ_i [°]
1	-90	0	450.5	θ_1^*
2	90	0	0	$ heta_2^*$
3	-90	0	320.5	θ_3^*
4	-90	0	0	$ heta_4^*$
5	90	0	256	θ_5^*
6	-90	0	0	θ_6^*
7	0	0	106	$ heta_7^*$
Home:	$\theta_i = 0^{\circ},$	$i \neq 4;$		$\theta_4 = 90^{\circ}$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$A_{3} = \begin{bmatrix} c_{3} & 0 & -s_{3} & 0 \\ s_{3} & 0 & c_{3} & 0 \\ 0 & -1 & 0 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & d_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{6} = \begin{bmatrix} c_{6} & 0 & -s_{6} & 0 \\ s_{6} & 0 & c_{6} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$A_{7} = \begin{bmatrix} c_{7} & -s_{7} & 0 & 0 \\ s_{7} & c_{7} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$(1)$$

The forward kinematics map is then given by

$$f: \mathcal{Q} \triangleq \prod_{1}^{7} \mathbb{S}^{1} \to \mathrm{SE}(3), \quad f(q) = \prod_{1}^{7} A_{i}(q_{i}),$$

where $q_i = \theta_i$ are the joint variables.

III. VELOCITY KINEMATICS

We derive the Jacobian $J: \mathbb{R}^7 \to \mathfrak{se}(3)$, that maps the rate of change of the joint variables to the end effector twist. This map can be represented in its matrix form by the concatenation of two submatrices, J_v and J_ω , as

$$J = \begin{pmatrix} J_v \\ J_\omega \end{pmatrix},\tag{2}$$

where J_v and J_ω are both elements of $\mathbb{R}^{3\times 4}$. The construction of these matrices are subsequently shown, starting with J_v .

$$J_{v} = \begin{bmatrix} J_{v_{1}} & J_{v_{2}} & \cdots & J_{v_{7}} \end{bmatrix}, J_{v_{i}} = z_{i-1} \times (o_{c} - o_{i-1}).$$
 (3)

The second part of the Jacobian matrix is constructed as

$$J_{\omega} = \begin{bmatrix} z_0 & z_1 & \cdots & z_6 \end{bmatrix}. \tag{4}$$

With the Jacobian constructed as in (2), the end-effector twist $\xi \in \mathfrak{se}(3)$ is related to the joint rates $\dot{q} \in \mathbb{R}^7$ as

$$J\dot{q} = \xi$$
.

IV. INVERSE KINEMATICS

Suppose that we are given a point $H \in SE(3)$:

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}.$$

We want to find a $q \in \mathcal{Q}$ such that f(q) = H.

We first consider the inverse position kinematics problem, which assumes that the inverse orientation kinematics may be solved by using the final three joints, i.e., whatever the rotation matrix 0R_4 is, there exist q_5 , q_6 and q_7 , such that ${}^0R_4{}^4R_7=R$. The inverse position kinematics problem is then to find q_1 through q_4 such that the product $\prod_1^4 A_i$ has as its translation vector the wrist center location, $o_c \in \mathbb{R}^3$.

In order to solve the inverse position problem, we first find the location of the wrist center o_c in the base coordinate system, Σ_0 :

$$o_c = o - d_7 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

We denote the current guess to the solution q^d to the inverse position kinematics problem by $q^{(k)}$ and perform the following iteration.

$$q^{(k+1)} = q^{(k)} - \alpha_k M(q^{(k)}) (f(q^{(k)}) - o_c),$$
 (5)

where the matrix M could be taken as \bar{J}_v^{\dagger} or \bar{J}_v^{\top} . \bar{J}_v is the translation part of the Jacobian matrix that relates \dot{q}_1 through \dot{q}_4 to the rate of change of the wrist center, i.e., $\bar{J}_v\dot{q}_{1:4}=\dot{o}_c$, where

$$\bar{J}_v = \begin{bmatrix} \bar{J}_{v_1} & \cdots & \bar{J}_{v_4} \end{bmatrix},$$

where $\bar{J}_{v_{i+1}} = z_i \times (o_c - o_i)$, for $i = 0, \dots 3$.

REFERENCES

 M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. Wiley, 2020.