

ENUNCIADO DE AVALIAÇÃO

MODELO PED.018.01

Curso	Enge	Engenharia Informática					2020-20	021
Unidade curricular	Inteli	Inteligência Artificial						
Ano curricular	3.°	Semestre	1.º	Data	26.Fev.202	1 18:00	Duração	2h

EXAME (Componente Teórica: 60%)

Exercício	1.	2.	3. a)	3. b)	3. c)	3. d)	4.	5.	Total
Cotação	2.5	2.5	3.0	2.0	1.0	1.0	5.0	3.0	20

Regras para a realização da prova de Exame:

- 1. A prova de Exame será realizada com recurso à plataforma COLIBRI/Zoom no seguinte endereço: https://videoconf-colibri.zoom.us/j/87697691769
- 2. Os sinais de áudio e vídeo têm de estar ligados durante toda a prova.
- 3. Toda a sessão da prova de exame será gravada.
- 4. O computador é usado exclusivamente para visualizar o enunciado. Não podem ser utilizados auscultadores.
- 5. O smartphone é usado exclusivamente para emissão dos sinais de áudio e vídeo (durante a prova, se necessário).
- 6. A prova é feita em papel: cada página deverá ser <u>numerada</u> e ter o <u>nome</u> e <u>número</u> do estudante (no canto superior direito).
- 7. A máquina de calcular não pode ser utilizada.
- 8. O estudante deve indicar ao professor quando pretende terminar a prova, <u>mas deve</u> <u>aguardar que o professor indique quando pode iniciar esse procedimento.</u>
- 9. Procedimento para terminar a prova (<u>só após a autorização do professor a cada aluno</u>): o estudante captura a imagem de cada página e envia um email para o seguinte endereço: <u>celestin@ipg.pt</u> (confirmar se foram anexadas todas as páginas pretendidas).
- 10. O procedimento para terminar a prova, descrito no ponto anterior, não pode exceder 60 segundos. Além disso, o estudante deve aguardar pela confirmação do professor, antes de abandonar a sessão.

ENUNCIADO DE AVALIAÇÃO

MODELO PED.018.01

Exercício	1.	2.	3. a)	3. b)	3. c)	3. d)	4.	5.	Total
Cotação	2.5	2.5	3.0	2.0	1.0	1.0	5.0	3.0	20

- 1. A abordagem da Inteligência Artificial tem sido feita sob a perspetiva de 3 paradigmas distintos principais. Caracterize cada um desses paradigmas e indique um exemplo de uma estratégia de Inteligência Artificial proveniente de cada um desses paradigmas.
- **2.** Quais as possíveis abordagens para representar e implementar a função ação de um Agente Reativo? Caracterize uma delas.
- **3.** Considere o algoritmo de procura heurística IDA* (*Iterative Deepening A* search*).
 - a) Indique os passos necessários para encontrar a solução para ir desde o ponto <u>B</u> até ao ponto <u>E</u> (ver figura). Numere os nós pela ordem em que o algoritmo os analisa. Em cada expansão considere todos os nós. Indique a solução e o custo finais.
 - **b)** Aplicando agora ao mesmo problema o algoritmo de procura heurística <u>Trepa-Colinas</u> (*Hill-Climbing search*), indique os passos necessários para encontrar a solução para ir desde o ponto <u>B</u> até ao ponto <u>E</u>. Numere os nós pela ordem em que o algoritmo os analisa. Indique a solução e o custo finais.
 - c) Compare e justifique as soluções obtidas nas alíneas anteriores.
 - **d)** Indique o conteúdo das estruturas de dados (listas ordenadas) em cada iteração das estratégias das alíneas anteriores.

Estimativa					
para ir de					
até E					
Α	4				
В	3				
С	.5				
D	2				
Е	0				
F	2				
G	5				
Н	2				
I	5				
J	8				
K	6				
L	5				
М	6				
N	8				

ENUNCIADO DE AVALIAÇÃO

MODELO PED.018.01

Exercício	1.	2.	3. a)	3. b)	3. c)	3. d)	4.	5.	Total
Cotação	2.5	2.5	3.0	2.0	1.0	1.0	5.0	3.0	20

4. Considere que no desenvolvimento de um algoritmo genético se obteve, a dado momento, a seguinte população

Indivíduo	Cromossoma
1	11011010110101100101
2	10011011110010011011
3	10110111110011100011
4	11011101101001111101
5	01010011111101010100
6	10000010011011001011
7	01111110110101100010
8	10101101101010111100
9	01001100101011101000
10	11001110011011100010

Suponha também que, para obter a próxima geração da população, foram selecionados os seguintes indivíduos:

- Por elitismo foi selecionado os indivíduo 6;
- Por roleta foram selecionados para recombinação os indivíduos 4, 8, 3, 6, 7, 5, 6, 1 e 2.

Indique o resultado do operador de recombinação do algoritmo genético, supondo que foi utilizada a recombinação com 2 pontos de corte, bem como o resultado do operador de mutação.

Apresente a nova população obtida.

Apresente a sua resposta, descrevendo e justificando todos os passos necessários, com a indicação justificada dos valores escolhidos para todos os parâmetros do problema.

5. Considere que estão definidos os seguintes predicados em Prolog para representar sons de um cão (cao/1) e sons de um gato (gato/1):

Defina em Prolog o predicado <u>conversa/3</u> que aceita três listas constituídas por sons de cão e de gato (0, 1 ou mais sons em cada lista). O predicado será considerado uma conversa se para cada elemento da primeira lista correspondente a um latido de cão corresponder na mesma posição da segunda lista um miado de gato, e vice-versa, contudo, a terceira lista deve conter, nas mesmas posições, os respetivos sons de gato encontrados na primeira ou na segunda listas. Exemplos:

```
?- conversa([wouf,grr,miau], [miau,ronron,wouf], [miau,ronron,miau]).
yes
?- conversa([wouf,miau,ronron], [wouf,wouf,wouf], [miaaauuu,miau,ronron]).
no
```