Presented by: Miguel Perelló-Nieto¹ and Raúl Santos-Rodríguez¹

> ¹University of Bristol, UK Email: 1{Miguel.PerelloNieto, enrsr}@bristol.ac.uk

> > December 8, 2017

Index

- Introduction
 - The problem
 - Supervised vs unsupervised
 - Semi-supervised learning
 - Discriminative vs generative
- 2 Baseline methods
 - Simple baselines
 - Other methods
- 3 Literature review
- 4 Related problems
- 5 Caveats and tradeoffs

Index

- 1 Introduction
 - The problem
 - Supervised vs unsupervised
 - Semi-supervised learning
 - Discriminative vs generative
- 2 Baseline methods
 - Simple baselines
 - Other methods
- 3 Literature review
- 4 Related problems
- 6 Caveats and tradeoffs

Motivation

Introduction

0000000

- We are overwhelmed with data
- Best learning methods need labels
- Labels are expensive (thus scarce)

4/29

Example

Introduction

00000000

Baseline methods Literature review Related problems Caveats and tradeoffs

Example

Introduction

00000000

Example

Introduction

00000000

(Bengio, 2009)

Notation

- Learning as drastically compress data
- Assume a hidden inherent simplicity of relationships via latent variables
- A model family is a $P(A|B, \theta)$
 - \triangleright A and B are disjoint sets of variables
 - $m{ heta} \in \Theta$ is a latent variable
- Divide and conquer
 - A model for A|B described as a *mixture* of models $A|\{B,k\}$

Introduction

- Learning as drastically compress data
- Assume a hidden inherent simplicity of relationships via latent variables
- A model family is a $P(A|B, \theta)$
 - \triangleright A and B are disjoint sets of variables
 - $\theta \in \Theta$ is a latent variable
- Divide and conquer
 - A model for A|B described as a *mixture* of models $A|\{B,k\}$

Introduction

Notation

- Learning as drastically compress data
- Assume a hidden inherent simplicity of relationships via latent variables
- A model family is a $P(A|B, \theta)$
 - $ightharpoonup \mathcal{A}$ and \mathcal{B} are disjoint sets of variables
 - ▶ $\theta \in \Theta$ is a latent variable
- Divide and conquer
 - A model for A|B described as a *mixture* of models $A|\{B,k\}$

Notation

- Learning as drastically compress data
- Assume a hidden inherent simplicity of relationships via latent variables
- A model family is a $P(A|B,\theta)$
 - \triangleright \mathcal{A} and \mathcal{B} are disjoint sets of variables
 - $\theta \in \Theta$ is a latent variable
- Divide and conquer
 - \blacktriangleright A model for $\mathcal{A}|\mathcal{B}$ described as a *mixture* of models $\mathcal{A}|\{\mathcal{B},k\}$

Introduction

Supervised learning

- Learn a model P(x,t) where $x \in X$ are input points and $t \in T$ are targets
- from *labeled* data $\{(x_i, t_i)|i=1,...,n\}$ drawn i.i.d from P(x,t)
 - in classification $T \in \{1, \dots, C\}$
 - in regression $T \in \mathcal{R}$
- Unsupervised learning
 - ▶ Learn a model P(x) from data $\{x_i | i = 1, ..., n\}$
 - ▶ E.g. clustering, anomaly detection, dimensionality reduction

Supervised vs Unsupervised learning

- Supervised learning
 - Learn a model P(x,t) where $x \in X$ are input points and $t \in T$ are targets
 - from *labeled* data $\{(x_i, t_i)|i=1,...,n\}$ drawn i.i.d from P(x,t)
 - in classification $T \in \{1, \dots, C\}$
 - in regression $T \in \mathcal{R}$
- Unsupervised learning
 - ▶ Learn a model P(x) from data $\{x_i | i = 1, ..., n\}$
 - ► E.g. clustering, anomaly detection, dimensionality reduction

Semi-supervised learning

- Learn a predictor $\hat{t}(x)$
- With small generalization error $P_{x,t}\{\hat{t}(x) \neq t\}$
- Given $D = (D_l, D_u)$
 - ▶ *labeled* samples $D_l = \{x_i, t\} | i = 1, ..., n\} = (X_l, T_l)$
 - unlabeled samples

$$D_u = \{x_i | i = n + 1, ..., n + m\} = (X_u, T_u)$$

- Where $T_u = (t_{n+1}, ..., t_{n+m})$ are missing labels
- and prior knowledge

December 8, 2017

Generative method

- Model P(x|t) with model families $\{P(x|t, \theta)\}$
- and class priors P(t) by $\pi_t = P(t|\boldsymbol{\pi})$
- Then by Bayes' formula

$$P(t|\mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\pi}) = \frac{\pi_t P(\mathbf{x}|t, \boldsymbol{\theta})}{\sum_{t=1}^{C} \pi_t P(\mathbf{x}|t, \boldsymbol{\theta})}$$
(1)

• Given D_l and D_u maximize the joint log likelihood

$$\sum_{i=1}^{n} \log \pi_t P(\boldsymbol{x}_i|t_i,\boldsymbol{\theta}) + \sum_{i=n+1}^{n+m} \log \sum_{t=1}^{C} \pi_t P(\boldsymbol{x}_i|t,\boldsymbol{\theta})$$
 (2)

Discriminative method

Introduction

0000000

- Model P(t|x) with model families $\{P(t|x,\theta)\}$
- Can not use D_u as P(x) is not modeled

Index

- Introduction
 - The problem
 - Supervised vs unsupervised
 - Semi-supervised learning
 - Discriminative vs generative
- 2 Baseline methods
 - Simple baselines
 - Other methods
- 3 Literature review
- 4 Related problems
- 6 Caveats and tradeoffs

Simple baselines

- 1. Discard D_u and train only with D_l
- 2. Evaluate in artificial data where we know the true D_u
- 3. Drop known labels from D_l to generate D_u

Cluster and discriminate

- Cluster the data into k clusters (eg. Gaussian Mixture Model)
- Compute distances for all points to the k clusters
- Use distances as the new features and train discriminative model (eg. k-nearest neighbor)
- 2. Separator variable k (details in page 23)
 - Assume x and t are conditionally independent given k
 - ▶ Train mixture model P(x,k)
 - Fix P(k) and P(x|k) and train P(t|k)
- Mixture of experts
 - Learn a probabilistic partitioning $P(k|x,\theta)$
 - ▶ Train expert k to learn $P(t|x, k, \tau)$ weighted $P(k|x_i, \theta)$

unsupervised followed by supervised learning

Cluster and discriminate

- Cluster the data into k clusters (eg. Gaussian Mixture) Model)
- Compute distances for all points to the k clusters
- Use distances as the new features and train discriminative model (eg. k-nearest neighbor)
- 2. Separator variable k (details in page 23)
 - Assume x and t are conditionally independent given k
 - ▶ Train mixture model P(x, k)
 - Fix P(k) and P(x|k) and train P(t|k)

unsupervised followed by supervised learning

1. Cluster and discriminate

- Cluster the data into k clusters (eg. Gaussian Mixture Model)
- Compute distances for all points to the k clusters
- Use distances as the new features and train discriminative model (eg. k-nearest neighbor)
- 2. Separator variable k (details in page 23)
 - Assume x and t are conditionally independent given k
 - ▶ Train mixture model P(x, k)
 - Fix P(k) and P(x|k) and train P(t|k)
- 3. Mixture of experts
 - Learn a probabilistic partitioning $P(k|x,\theta)$
 - ▶ Train expert k to learn $P(t|x, k, \tau)$ weighted $P(k|x_i, \theta)$

Expectation-maximization overview

- Learning of latent variables
- Need of prior knowledge
- Two iterative steps
 - E-step:
 - Assume the model is correct (fix the model)
 - Estimate latent variables or labels
 - M-step:
 - Assume the estimates are correct (fix the latent variables)
 - Modify the model to maximize a performance metric towards the estimates

Expectation-maximization with separator variable k

- Introduce a *separator variable* k
- joint log likelihood

$$\sum_{i=1}^{n} \log \sum_{k} \beta_{t_i,k} \pi_k P(\boldsymbol{x}_i|k,\boldsymbol{\theta}) + \sum_{i=n+1}^{n+m} \log \sum_{k} \pi_k P(\boldsymbol{x}_i|k,\boldsymbol{\theta})$$
 (3)

Index

- - The problem
 - Supervised vs unsupervised
 - Semi-supervised learning
 - Discriminative vs generative
- - Simple baselines
 - Other methods
- 3 Literature review

- Compatibility between different views of an example $x=(x^{(1)},x^{(2)})\in X=X^{(1)} imes X^{(2)}$
- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $\theta^{(1)}$, $\theta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps:
 - 1. Start with set $D_w = D_l$ and learn two hypotheses $\theta^{(1)}, \theta^{(2)}$ on $x^{(1)}, x^{(2)}$
 - 2. Increase set D_w with some samples from D_u and the predicted targets from one hypothesis $\theta^{(j)}$
 - 3. Train the other hypothesis with the augmented D_u
 - 4. Alternate the hypotheses as student and teacher

- Compatibility between different views of an example $x=(x^{(1)},x^{(2)})\in X=X^{(1)} imes X^{(2)}$
- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $heta^{(1)}$, $heta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps
 - 1. Start with set $D_w = D_l$ and learn two hypotheses $\theta^{(1)}, \theta^{(2)}$ on $x^{(1)}, x^{(2)}$
 - 2. Increase set D_w with some samples from D_u and the predicted targets from one hypothesis $\theta^{(j)}$
 - 3. Train the other hypothesis with the augmented D_u
 - 4. Alternate the hypotheses as student and teacher

- Compatibility between different views of an example $x = (x^{(1)}, x^{(2)}) \in X = X^{(1)} \times X^{(2)}$
- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $\theta^{(1)}$, $\theta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps:

 Compatibility between different views of an example $x = (x^{(1)}, x^{(2)}) \in X = X^{(1)} \times X^{(2)}$

Literature review

- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $\theta^{(1)}$, $\theta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps:

- Compatibility between different views of an example $x=(x^{(1)},x^{(2)})\in X=X^{(1)} imes X^{(2)}$
- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $heta^{(1)}$, $heta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps:
 - 1. Start with set $D_w = D_l$ and learn two hypotheses $\theta^{(1)}, \theta^{(2)}$ on $x^{(1)}, x^{(2)}$
 - 2. Increase set D_w with some samples from D_u and the predicted targets from one hypothesis $\theta^{(j)}$
 - 3. Train the other hypothesis with the augmented D_n
 - 4. Alternate the hypotheses as student and teacher

 Compatibility between different views of an example $x = (x^{(1)}, x^{(2)}) \in X = X^{(1)} \times X^{(2)}$

Literature review

- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $\theta^{(1)}$, $\theta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps:
 - 1. Start with set $D_w = D_l$ and learn two hypotheses $\theta^{(1)}, \theta^{(2)}$ on $x^{(1)}$, $x^{(2)}$
 - 2. Increase set D_w with some samples from D_u and the predicted targets from one hypothesis $\theta^{(j)}$

- Compatibility between different views of an example $x = (x^{(1)}, x^{(2)}) \in X = X^{(1)} \times X^{(2)}$
- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $\theta^{(1)}$, $\theta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps:
 - 1. Start with set $D_w = D_l$ and learn two hypotheses $\theta^{(1)}, \theta^{(2)}$ on $x^{(1)}$, $x^{(2)}$
 - 2. Increase set D_w with some samples from D_u and the predicted targets from one hypothesis $\theta^{(j)}$
 - 3. Train the other hypothesis with the augmented D_w

- Compatibility between different views of an example $x = (x^{(1)}, x^{(2)}) \in X = X^{(1)} \times X^{(2)}$
- Hypothesis θ on X is *compatible* with distribution P(x) if:
 - hypotheses $\theta^{(1)}$, $\theta^{(2)}$ on $X^{(1)}$, $X^{(2)}$ if for any $x=(x^{(1)},x^{(2)})$ predict the same labels
- It assumes that the views are conditionally independent
- Steps:
 - 1. Start with set $D_w = D_l$ and learn two hypotheses $\theta^{(1)}, \theta^{(2)}$ on $x^{(1)}$, $x^{(2)}$
 - 2. Increase set D_w with some samples from D_u and the predicted targets from one hypothesis $\theta^{(j)}$
 - 3. Train the other hypothesis with the augmented D_w
 - 4. Alternate the hypotheses as *student* and *teacher*

Restricted Bayes Optimal Classification [Tong and Koller, 2000]

- Usual discriminators use a loss function L(h(x),t) and regularization functional $\mathcal{R}(h)$
- We want a hypothesis which minimizes the tradeoff

$$E_{P_{emp}}[L(h(\boldsymbol{x}),t)] + \lambda \mathcal{R}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h(\boldsymbol{x}_i),t_i) + \lambda \mathcal{R}(h)$$
 (4)

- where $P_{emp}(x,t) = n^{-1} \sum_{i} \delta((x,t),(x_i,t_i))$ is the *empirical distribution* of the data D_l and λ is a tradeoff parameter
- Steps
 - 1. Estimate P(x,t) from data D_1, D_2 called $\hat{P}(x,t)$
 - 2. Minimize the following instead of Eq. 4

Restricted Bayes Optimal Classification [Tong and Koller, 2000]

- Usual discriminators use a *loss function* L(h(x), t) and regularization functional $\mathcal{R}(h)$
- We want a hypothesis which minimizes the tradeoff

$$E_{P_{emp}}[L(h(\boldsymbol{x}),t)] + \lambda \mathcal{R}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h(\boldsymbol{x}_i),t_i) + \lambda \mathcal{R}(h)$$
 (4)

- where $P_{emp}(x,t) = n^{-1} \sum_{i} \delta((x,t),(x_i,t_i))$ is the *empirical*

Restricted Bayes Optimal Classification [Tong and Koller, 2000]

- Usual discriminators use a *loss function* L(h(x), t) and regularization functional $\mathcal{R}(h)$
- We want a hypothesis which minimizes the tradeoff

$$E_{P_{emp}}[L(h(\boldsymbol{x}),t)] + \lambda \mathcal{R}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h(\boldsymbol{x}_i),t_i) + \lambda \mathcal{R}(h)$$
 (4)

- where $P_{emp}(x,t) = n^{-1} \sum_{i} \delta((x,t),(x_i,t_i))$ is the *empirical distribution* of the data D_l and λ is a tradeoff parameter

- Usual discriminators use a loss function L(h(x),t) and regularization functional $\mathcal{R}(h)$
- We want a hypothesis which minimizes the tradeoff

$$E_{P_{emp}}[L(h(\boldsymbol{x}),t)] + \lambda \mathcal{R}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h(\boldsymbol{x}_i),t_i) + \lambda \mathcal{R}(h)$$
 (4)

- where $P_{emp}(x,t) = n^{-1} \sum_{i} \delta((x,t),(x_i,t_i))$ is the *empirical distribution* of the data D_l and λ is a tradeoff parameter
- Steps:
 - 1. Estimate P(x,t) from data D_l, D_u called $\hat{P}(x,t)$
 - 2. Minimize the following instead of Eq. 4

$$E_{\hat{P}}[L(h(\boldsymbol{x}),t] + \lambda \mathcal{R}(h)]$$

Transduction [Vapnik and Kotz, 1982]

Index

- - The problem
 - Supervised vs unsupervised
 - Semi-supervised learning
 - Discriminative vs generative
- - Simple baselines
 - Other methods
- 4 Related problems

Active learning

Coaching [Tibshirani and Hinton, 1998]

- $\mathbf{x}, t, z \sim P(\mathbf{x}, t, z)$
- but z is expensive or difficult to collect.

$$P(t|\mathbf{x}) = \int P(t|\mathbf{x}, z) P(z|\mathbf{x}) dz$$

December 8, 2017

- $\mathbf{x}, t, z \sim P(\mathbf{x}, t, z)$
- but z is expensive or difficult to collect.

$$P(t|\mathbf{x}) = \int P(t|\mathbf{x},z)P(z|\mathbf{x})dz$$

Multitask Learning

Data Augmentation

- - The problem
 - Supervised vs unsupervised
 - Semi-supervised learning
 - Discriminative vs generative
- - Simple baselines
 - Other methods

- 6 Caveats and tradeoffs

Baseline methods Literature review Caveats and tradeoffs 0000

Caveats and tradeoffs

- Labels as missing data?

Baseline methods Literature review Related problems Caveats and tradeoffs 0000 0000 0000 0000 0000

Caveats and tradeoffs

- Labels as missing data?
- The sampling assumption: is iid realistic?

References I

- Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on Computational learning theory, pages 92–100. ACM.
- Seeger, M. (2002). Learning with labeled and unlabeled data. Technical report.
- Tibshirani, R. and Hinton, G. (1998). Coaching variables for regression and classification. Statistics and Computing, 8(1):25–33.
- Tong, S. and Koller, D. (2000). Restricted bayes optimal classifiers. In *AAAI/IAAI*, pages 658-664.

Baseline methods Literature review Related problems Caveats and tradeoffs

○○○○ ○○○○ ○○○●

References II

Vapnik, V. N. and Kotz, S. (1982).

Estimation of dependences based on empirical data, volume 40.

Springer-Verlag New York.

Learning with labeled and unlabeled data

Author: Matthias Seeger

Presented by:
Miquel Perelló-Nieto¹ and Raúl Santos-Rodríguez¹

¹University of Bristol, UK Email: ¹{Miquel.PerelloNieto, enrsr}@bristol.ac.uk

December 8, 2017

