

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
4. Januar 2001 (04.01.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/00802 A2

- (51) Internationale Patentklassifikation⁷: C12N 15/00 (81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (21) Internationales Aktenzeichen: PCT/EP00/05853
- (22) Internationales Anmeldedatum:
23. Juni 2000 (23.06.2000)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
199 29 365.1 25. Juni 1999 (25.06.1999) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): BASF-LYNX BIOSCIENCE AG [DE/DE]; D-69120 Heidelberg (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): MACK, Matthias [DE/DE]; Mönchhofstrasse 3 C, D-69120 Heidelberg (DE). HERBSTER, Karin [DE/DE]; Kolpingstrasse 23a, D-76694 Forst (DE).
- (74) Anwalt: GOLDSCHEID, Bettina; BASF Aktiengesellschaft, D-67056 Ludwigshafen (DE).

Veröffentlicht:

— Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 01/00802 A2

(54) Title: PARTIAL SEQUENCES OF THE GENES OF THE PRIMARY AND SECONDARY METABOLISM FROM *CORYNEBACTERIUM GLUTAMICUM* AND THEIR USE IN THE MICROBIAL PRODUCTION OF PRIMARY AND SECONDARY METABOLITES

(54) Bezeichnung: TEILSEQUENZEN DER GENE DES PRIMÄR- UND SEKUNDÄRMETABOLISMUS AUS *CORYNEBACTERIUM GLUTAMICUM* UND IHR EINSATZ ZUR MIKROBIELLEN HERSTELLUNG VON PRIMÄR- UND SEKUNDÄRMETABOLITEN

(57) Abstract: The invention relates to methods of producing primary and secondary metabolites using genetically engineered organisms.

(57) Zusammenfassung: Die vorliegende Erfindung befaßt sich mit Herstellungsverfahren für Primär- und Sekundärmetabolite mit Hilfe gentechnisch veränderter Organismen.

Teilsequenzen der Gene des Primär- und Sekundärmetabolismus aus *Corynebacterium glutamicum* und ihr Einsatz zur mikrobiellen Herstellung von Primär- und Sekundärmetaboliten

5

Beschreibung

Die vorliegende Erfindung befaßt sich mit den Herstellungsverfahren für Primär- und Sekundärmetabolite mit Hilfe eines gentechnisch veränderten Organismus. Diese Erfindung besteht in Teilsequenzen von Genen, die anabolische und katabolische Enzyme aus *Corynebacterium glutamicum* kodieren, und aus ihrem Einsatz zur mikrobiellen Herstellung von Metaboliten.

15 Die Konzentrationen der Metabolite sind in lebenden Zellen gewöhnlich gut ausbalanciert und überschreiten nicht eine gewisse Grenze. Unter manchen Wachstumsbedingungen oder als Folge einer gentechnischen Veränderung können sie allerdings im Überschuß gebildet und in das Kulturmedium ausgeschieden werden. Für das
20 Zellwachstum kann man relativ billige Stoffe als Kohlenstoffquelle verwenden. Mit Hilfe des biochemischen Potentials der Zellen (in den meisten Fällen mikrobiellen Ursprungs) oder der Enzyme lassen sich diese preiswerten Stoffe in ein breites Spektrum wertvollerer Substanzen umwandeln. Zur fermentativen
25 Herstellung von Metaboliten zu Verkaufszwecken setzt man insbesondere Mikroorganismen ein. Mikroorganismen lassen sich durch gentechnische Veränderung der Biosynthesewege in ihrer Biosyntheseleistung auf bestimmte Metabolite hin optimieren, und man erzielt dadurch höhere Syntheseleistungen. Gentechnische Verände-
30 rung meint hier, daß die Anzahl der Kopien oder die Geschwindigkeit der Transkription bestimmter Gene für bestimmte Synthesewege erhöht ist. Allerdings muß man die geeigneten Zielgene für diese Verbesserung zuerst identifizieren. Wir beschreiben nun im folgenden die Zielgene und Teilsequenzen davon, die durch Klonen der
35 DNA und anschließende Sequenzierung mit dem Ziel der Stammverbesserung identifiziert wurden.

Ein Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 1 beschrieben ist oder
40 sich von dieser Sequenz SEQ ID NR. 1 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 2 beschrieben ist
45 oder sich von dieser Sequenz SEQ ID NR. 2 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

2

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 3 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 3 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

5

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 4 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 4 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

10

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 5 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 5 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

15

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 6 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 6 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

20

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 7 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 7 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

25

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 8 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 8 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

30

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 9 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 9 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

35

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 10 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 10 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

40

Ein weiterer Teil der Erfindung besteht in einem Genfragment mit einer Nucleotidsequenz, die in der SEQ ID NR. 11 beschrieben ist oder sich von dieser Sequenz SEQ ID NR. 11 durch Substitution, Insertion oder Deletion von bis zu 20 % der Nucleotide ableitet.

45

3

Ein weiterer Teil der Erfindung besteht im Einsatz der Nucleotidsequenz SEQ ID NR. 1 oder SEQ ID NR. 2 oder SEQ ID NR. 3 oder SEQ ID NR. 4 oder SEQ ID NR. 5 oder SEQ ID NR. 6 oder SEQ ID NR. 7 oder SEQ ID NR. 8 oder SEQ ID NR. 9 oder SEQ ID NR. 10 oder SEQ ID NR. 11 zur Konstruktion genetisch modifizierter Mikroorganismen.

Die vollständigen Gene lassen sich mit Hilfe konventioneller Techniken wie Hybridisierung herstellen, wobei man von den oben offenbarten Genfragmenten ausgeht. Diese Gene lassen sich einsetzen zur Konstruktion rekombinater Wirtsorganismen, die die Biosynthese wertvoller Bioprodukte, wie Aminosäuren, Fettsäuren, Kohlenhydrate, Vitamine und Kofaktoren ermöglichen. Die biologische Aktivität dieser Gene wird im experimentellen Teil dieser Beschreibung offenbart. Mit Hilfe dieser Gene wird es möglich, Engpässe bei der Biosynthese von Bioprodukten zu umgehen und so die Syntheseleistung mikrobieller Systeme zu steigern.

Ein weiterer Gesichtspunkt dieser Erfindung besteht in einem Expressions-Vektor mit zumindest einem der oben erwähnten Polynucleotide. Der Expressions-Vektor verbindet funktionell eines oder mehrere dieser Polynucleotide mit regulatorischen Einheiten wie Promotoren, Terminatoren, ribosomale Bindungsstellen und dergleichen. Gewöhnlich gehören zu einem Expressions-Vektor weitere Einheiten wie Genmarker und Replikationsabschnitte.

Ein weiterer Gesichtspunkt der Erfindung besteht in der mit einem Expressions-Vektor transformierten Wirtszelle.

Zur gentechnischen Veränderung kann man jeden beliebigen prokaryontischen Mikroorganismus verwenden, vorzugsweise *Corynebacterium*- und *Bacillus*-Arten, aber auch jeden beliebigen eukaryontischen Mikroorganismus, vorzugsweise Hefestämme der Gattung *Ashbya*, *Candida*, *Pichia*, *Saccharomyces* und *Hansenula*.

Ein weiterer Gesichtspunkt der Erfindung besteht in einer Methode zur Herstellung und Reinigung eines Polypeptids, die in folgenden Schritten besteht:

(a) Kultivierung der Wirtszelle aus Anspruch 3 unter Bedingungen, die für die Expression des Peptids geeignet sind; und

(b) Gewinnung des Polypeptids aus der Wirtszellkultur.

In den folgenden Beispielen wird die Erfindung detaillierter beschrieben.

Beispiel 1

Herstellung einer Genombibliothek von *Corynebacterium glutamicum* ATCC 13032

- 5 Die DNA aus dem Genom von *Corynebacterium glutamicum* ATCC 13032 lässt sich nach Standardmethoden gewinnen, die z.B. von Altenbuchner, J. und Cullum, J. (1984, Mol. Genet. 195:134-138) beschrieben sind. Die Genom-Bibliothek lässt sich daraus mit jedem
10 beliebigen Klonierungsvektor, z.B. pBluescript II KS- (Stratagene) oder ZAP Express™ (Stratagene), nach Standardvorschriften gewinnen (z.B. Sambrook, J. et al. (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press). Jede beliebige Fragmentgröße kann man dabei verwenden, vorzugsweise
15 *Sau3AI*-Fragmente mit einer Länge von 1 kb, die sich in Klonierungsvektoren mit verdautem *BamHI* einbinden lassen.

Beispiel 2**20 Analyse der Nucleinsäuresequenzen der Genombibliothek**

- Aus der im Beispiel 1 hergestellten Genombibliothek kann man einzelne *E. coli*-Klone auswählen. *E. coli*-Zellen werden nach Standardmethoden in geeigneten Medien kultiviert (z.B. LB ergänzt
25 mit 100 mg/l Ampicillin), und danach lässt sich dann die Plasmid-DNA isolieren. Klont man Genomfragmente aus der DNA von *Corynebacterium glutamicum* in pBluescript II KS- (siehe Beispiel 1), lässt sich die DNA mit Hilfe der Oligonucleotide 5'- AATTAAC- CCTCACTAAAGGG-3' und 5'-GTAATACGACTCACTATAGGGC-3' sequenzieren.

- 30 Beispiel 3

Computeranalyse der isolierten Nucleinsäuresequenzen

- 35 Die Nucleotidsequenzen lassen sich z.B. mit Hilfe des BLASTX-Algorithmus (Altschul et al. (1990) J. Mol. Biol. 215: 403-410) aneinanderfügen. Auf diesem Weg kann man neuartige Sequenzen entdecken und die Funktion dieser neuartigen Gene aufklären.

40 Beispiel 4

Identifizierung eines *E. coli*-Klons mit einem Genfragment für die Fettsäuresynthase (2.3.1.85)

- 45 Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde, an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine

5

Sequenz, wie sie mit SEQ ID NR. 1 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) ergab diese Sequenz Ähnlichkeit mit Fettsäuresynthasen aus verschiedenen Organismen. Die größte Ähnlichkeit war mit einem Fragment mit 519 5 Basenpaaren für die Fettsäuresynthase aus *Corynebacterium ammoniagenes* gegeben (NRDB Q04846; 68% Übereinstimmung auf der Stufe der Aminosäuren).

Beispiel 5

10

Identifizierung eines *E. coli*-Klons mit dem Gen für die Phytoen-Dehydrogenase (EC 1.3.-.-)

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 be- 15 schrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 2 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit Phytoen-Dehydrogenasen aus verschiedenen Organis- 20 men. Die größte Ähnlichkeit ergab sich mit der Phytoen-Dehydrogenase aus *Methanobacterium thermoautotrophicum* (NRDB O27835; 37% Übereinstimmung auf der Stufe der Aminosäuren).

Beispiel 6

25

Identifizierung eines *E. coli*-Klons mit dem Gen für die Alkohol-Dehydrogenase (EC 1.1.1.1)

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 be- 30 schrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 3 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit Alkohol-Dehydrogenasen aus verschiedenen Organis- 35 men. Die größte Ähnlichkeit ergab sich mit der Alkohol-Dehydrogenase aus *Bacillus stearothermophilus* (NRDB P42327; 50% Übereinstimmung auf der Stufe der Aminosäuren).

Beispiel 7

40

Identifizierung eines *E. coli*-Klons mit einem Genfragment für ein Homologes der Adenosylmethionin-8-Amino-7-oxononanoat-Aminotransferase (EC 2.6.1.62)

45 Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 be- schrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine

6

Sequenz, die als SEQ ID NR. 4 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit Adenosylmethionin-8-Amino-7-oxononanoat-Aminotransferasen aus verschiedenen Organismen. Die größte Ähnlichkeit ergab sich mit einem aus 342 Basenpaaren bestehenden Fragment für die Adenosylmethionin-8-amino-7-oxononanoat-Aminotransferase aus *Erwinia herbicola* (NRDB P53656; 40% Übereinstimmung auf der Stufe der Aminosäuren).

10 Beispiel 8

Identifizierung eines *E. coli*-Klons mit einem Genfragment für ein Homologes der Phosphoglycerat-Mutase 2 (EC 5.4.2.1)

15 Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 5 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit Phosphoglycerat-Mutases 2 aus verschiedenen Organismen. Die größte Ähnlichkeit ergab sich mit einem aus 204 Basenpaaren bestehenden Fragment für die Phosphoglycerat-Mutase 2 aus *Mycobacterium tuberculosis* (NRDB P71724; 54% Übereinstimmung auf der Stufe der Aminosäuren).

25

Beispiel 9

Identifizierung eines *E. coli*-Klons mit einem Genfragment für die Xylulose-Kinase (EC 2.7.1.17)

30

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 6 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit Xylulose-Kinasen aus verschiedenen Organismen. Die größte Ähnlichkeit ergab sich mit einem aus 633 Basenpaaren bestehenden Fragment für die Xylulose-Kinase aus *Streptomyces rubiginosus* (NRDB P27156; 48% Übereinstimmung auf der Stufe der Aminosäuren).

40

Beispiel 10

Identifizierung eines *E. coli*-Klons mit einem Genfragment für eine Fettsäure-CoA-Ligase für langkettige Fettsäuren (EC 6.2.1.3)

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 7 beschrieben ist. Bei der Anwendung 5 des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit Fettsäure-CoA-Ligasen für langkettige Fettsäuren aus verschiedenen Organismen. Die größte Ähnlichkeit ergab sich mit einem aus 369 Basenpaaren bestehenden Fragment für die Fett- 10 säure-CoA-Ligase für langkettige Fettsäuren aus *Archaeoglobus fulgidus* (NRDB 030302; 48% Übereinstimmung auf der Stufe der Aminosäuren).

Beispiel 11

15 Identifizierung eines *E. coli*-Klons mit einem Genfragment für die Guanosinpentaphophat-Synthetase

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde und an die sich die im Beispiel 3 beschriebene 20 Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 8 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit Guanosinpentaphophat-Synthetasen aus verschiedenen Organismen. Die größte Ähnlichkeit ergab sich mit einem aus 25 606 Basenpaaren bestehenden Fragment für die Guanosinpentaphosphate-Synthetase aus *Streptomyces coelicolor* (NRDB 086656; 70% Übereinstimmung auf der Stufe der Aminosäuren).

Beispiel 12

30 Identifizierung eines *E. coli*-Klons mit einem Genfragment für ein NTRB-Homologes

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde und an die sich die im Beispiel 3 beschriebene 35 Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 9 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit NTRB-Homologen aus verschiedenen Organismen. NTRB 40 ist ein Regulatorgen für die Tanskription, das an der Regulierung der Stickstoffassimilation beteiligt ist. Die größte Ähnlichkeit ergab sich mit einem aus 645 Basenpaaren bestehenden Fragment für NTRB aus *Mycobacterium leprae* (NRDB Q50049; 61% Übereinstimmung auf der Stufe der Aminosäuren).

Beispiel 13

Identifizierung eines *E. coli*-Klons, der ein *nifS*-Homologes enthält

5

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine Sequenz, die als SEQ ID NR. 10 beschrieben ist. Bei der Anwendung 10 des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit *nifS* aus verschiedenen Organismen. *NifS* ist an der Stickstofffixierung beteiligt. Die größte Ähnlichkeit ergab sich mit einem aus 594 Basenpaaren bestehenden Fragment für *nifS* aus *Mycobacterium leprae* (NRDB Q49690; 62% Übereinstimmung auf 15 der Stufe der Aminosäuren).

Beispiel 14

Identifizierung eines *E. coli*-Klons, der ein *nifU*-Homologes enthält

Bei der Analyse der *E. coli*-Klone, wie sie im Beispiel 2 beschrieben wurde und an die sich die im Beispiel 3 beschriebene Analyse der dabei erhaltenen Sequenzen anschloß, fand sich eine 25 Sequenz, die als SEQ ID NR. 11 beschrieben ist. Bei der Anwendung des BLASTX-Algorithmus (siehe Beispiel 3) zeigte diese Sequenz Ähnlichkeit mit *nifU* aus verschiedenen Organismen. *NifU* ist an der Stickstofffixierung beteiligt. Die größte Ähnlichkeit ergab sich mit einem aus 339 Basenpaaren bestehenden Fragment für *nifU* 30 aus *Mycobacterium leprae* (NRDB Q49683; 61% Übereinstimmung auf der Stufe der Aminosäuren).

Sequenzliste

35 (I) Allgemeine Angaben

(1) Anmelder:

(A) Name:	BASF-LYNX Bioscience AG
40 (B) Straße:	Im Neuenheimer Feld 515
(C) Stadt:	Heidelberg
(D) Land:	Deutschland
(E) Postleitzahl:	69120
(F) Telephon:	06221/4546
45 (G) Telefax:	06221/454770

9

(2) Titel: Sequenzen der Gene für den Primär- und Sekundärmetabolismus im *Corynebacterium glutamicum* und ihr Einsatz zur mikrobiellen Herstellung von Primär- und Sekundärmetaboliten

5

(3) Anzahl der Sequenzen: 11

(4) Art der mit dem Computer lesbaren Form:

10

(A) Datenträger: Diskette
(B) Computer: IBM PC kompatibel
(C) Betriebssystem: Windows NT
(D) Software: Microsoft®Word 97 SR-1

15

(I) Angaben zur SEQ ID NR. 1:

(1) Sequenzcharakteristika:

20 (A) Länge: 693 Basenpaare
(B) Art: Nucleinsäure
(C) Strangtyp: Doppelstrang
(D) Topologie: linear

25 (2) Molekülart: DNA
(3) hypothetisch: nein
(4) Antisense: nein

(5) Herkunft:

30

(A) Organismus: *Corynebacterium glutamicum*

(6) Beschreibung der Sequenz: SEQ ID NR. 1:

35 CTGTTNCCGGGGATCAGATTACACNGGTCNGCCAGTGAAGTCGACGGTATTGGCGCGGATGC
TGCGCTCGCGAACAGTGGAAAGTTGCCCTGGGACAGCAGTTCTCTGCAATTCTGGTGGAGT
AGGTTTCCACGCCCTGCTTCTTCAGCTGCCCTGACCAAAGGATCGTGCCTGCCCATGAGGCCGGTG
CCGCGAACCCAACCGATGTGAGCGTGCACGAGGGAGGTGTGCTCCCCATGCAGCTGCTCTGC
GTTCCAACGGTAACCACGGCGTCGAGAGCTGCCCTGGATTACCGTATGCACCATGCCACCGA

40 AGCGTCCACGGTTGGTGAACCTGGGATGACCAACGTGCAGGCCGGTGACCCACGTTGATGGAGGAG
CCCAATGGCGAACGACCTGCGATGAGGCCTCAACAGACCCAGAGCAGAAGTCGCATCTGGGATTC
TGCTGTGGCCTGCATCTGCATGGATCCGGACACCGCAGGGTGCCTGCGAATGGGAACAGCAAGGTAN
GGACCAAACGGCTTGACCAAGCTGGATGCNCCTGACGGNGGTGGCTGTCGATCCACCGAGTTGA
TGATGGCTCGATGTCTGATANGACTAAGTTACCGCACGATCACAGTGCTGCCNTGCGGAA

45 CGTCCTANNANTCTTGAGAATTCAAGCCGNCTGCCAGTTGAN

10

(I) Angaben zu SEQ ID NR. 2:

(1) Sequenzcharakteristika:

5 (A) Länge:	1869 Basenpaare
(B) Typ:	Nucleinsäure
(C) Strangtyp:	Doppelstrang
(D) Topologie:	linear
(2) Molekülart:	DNA
10 (3) hypothetisch:	nein
(4) Antisense:	nein

(5) Herkunft:

15 (B) Organismus: *Corynebacterium glutamicum*

(6) Beschreibung der Sequenz: SEQ ID NR. 2:

ACAATCAATGTCATGACCAGCGGTGATCCAAAATTAAATTACGCTTCGTTCCCGCAATAACAAAGT
 20 TGTGCAAATAACAGATGCCGTGATCGTCTTCATTAAGCAGGCTGATGAGCTGATCGTGAAGA
 TCGACAAACTGCTTGAGAGCAAAAGAAAAAGTCCCGTTAAGTCCGATCCACACTGTTGTCCCCG
 CGGAGACGCTTGAGCACGTTCTGCAGAGATCAAACACATAGATAACGCCACCCCTGGAACGT
 GGTGTCACCTGCGTCATACAGGCCATCTACTTGCAGGGATTGTTAGAACCCCTAAAGAACGCCG
 ATTGTGCCAGGGTGTGTGAGGGGCCAATGGACCCGCCCTCAGGAGTTGTATCGGTCTGCGAAG
 25 TCGGCAGGGCCATGGTGGCTGCACAACAAATGGCTTCCAAACCATCAATGCCAGCCATCG
 CCCAATTGAGCCACTGCTGCTATTGCGATCCGGCCCACCATGTCAGATTCTCTCCGTAAGCGG
 ACCCGTGACCAATGGAGACATCGGGGGTACTGGGACCAAGGATGAAGAGGTTCTCGTGGCCTTCG
 GGTGCGGCATCGGAATCTGTTGCGGAGGTCTGGAGATCTAGATGGATTCTGAAGCCGGGAATT
 C TGGGGTGGAGCCGTCGAAAATTGCGGAAATCTTCGTCAGTCGGAGGAAAAGCAGGGTGTG
 30 CTCCCCCTTCACGCCCTGCCAAAACCAGCACAGTACTGAGGCCGGGTTGTTGTTCTTCAGCTCG
 TCTCCGGCTTCGCGCACACGAAAGCAGGTAGGAGTTGGGTTTCGGTGTGGCTGATCAGCCAG
 CTGATCACGATATCGGCTTCGATGAACCTCTGAGCCACTTGGACGCCCTGGCGTTTCGGCCTTG
 GGTGGTGAATTGCGCTGACGGGGTGGCAGGGACGGCGTCGTCGATAAGCAGAAATTAGTG
 CCTTGATGAAGGGCGGTGAAGCCGCCCTGGGATAGGAGACGCCCTGGACGAGGTGGTGTGGCTC
 35 ATGAGGTGATAGAGGCCGGGTGTGCGAAGGGTCTGAGGAGAGGAAAATGCCGGGTAGCTTAA
 GATTTGGCGCAGTTTGTTGATCGCGGAATTGGGTTGACCTTGACTTTAGCGAGGTCGACAGGC
 TTGCTAGAAGTTGGGTAAGGGCGCAGCATGCCGGGCTTAAGTATGGGATGAAGTTGGTGAAG
 TTGGTAGAGGAAGCCGTCGATGCCAGGGTTGAGACCTGTGTGGCGGAGTCGATATAGGTGCG
 CAGTTGGCGCCGGGCCGGGTTGCCGGATTGCGAAAAGCTGCCATCGCATCGATGTCGGAGG
 40 TGACGTCGATGAATTGCCGTGGTCGATGACGCCGGTAGGCCGGTTCAAGTGGCACGAGGTGCG
 AGGTGGTCGTCGATGGAGGTGCCGAGAGCTAAAGAAGTGGACATGCCGTGGCATGAGGTA
 CCAGCTGGGGCCGGTGTCCAGCGGAAGCCGTCGAGTCGAAGGTCCCGCGCCGAGG
 GCTCGTTTGTTCGACGCCGGACTTCATATCCTCGCGTAAGAGCAGTCGGTGGCTAGT
 CCTGCTAGTCCCCGCCGATGACCACTGCTTTGTCAAGTCTTCCACATTGCT
 45 TTGGTTGCCAGGCTGGCTTTTCATAGACGCCACCCGAATGCCCGTTTTAAGTCCTCGAG

11

GGACGCGGATTCCAGGTTGTCCACGAGGCAACCGTAGAGATCGGTCGCAGGCGCACACCGGTTC
GCGCGCAAATGGCAGCAGCGGAATGCTCAGCCGGCGGCATCCAAATC

(I) Angaben zur SEQ ID NR. 3:

5

(1) Sequenzcharakteristika:

(A) Länge: 1035 Basenpaare

(B) Typ: Nucleinsäure

10 (C) Strangtyp: Doppelstrang

(D) Topologie: linear

(2) Molekülart: DNA

(3) hypothetisch: nein

15 (4) Antisense: nein

(5) Herkunft:

(C) Organismus: *Corynebacterium glutamicum*

20

(6) Beschreibung der Sequenz: SEQ ID NR. 3:

ATGACCAC TGCTGCACCCCAAGAATT TACCGCTGCTGTGTTGAAA ATT CGTTCATGACGTGAC
CGTGAAGGATATTGACCTTCAAAGCCAGGGCCACACCAGGCATTGGTGAAGGTACTCACCTCCG

25 GCATTTGCCACACCGACCTCCACGCCCTGGAGGGCGATTGGCCAGTAAAGCCGAAACCACCATTC
GTACCAGGACACGAAGGTGTAGGTGAAGTTGTTGAGCTCGGACCAGGTGAACACGATGTGAAGGT
CGCGATATTGTCGGCAATGCGTGGCTCTGGTCAGCGTGTGGCACCTGCGAATACTGCATCACCG
GCAGGGAAACTCA GTGCAACGAAGCTGAGTATGGTGGCTACACCCAAAATGGATCCTCGGCCAG
TACATGCTGGTGGATA CCCGTTACGCCGCTCGCATCCCAGACGGCGTGGACTACCTCGAACGAGC

30 ACCAATTCTGTGTGCAGGCGTGA CTGTCTACAAGGCACTCAAAGTCTCTGAAACCCGCCGGGCC
AATT CATGGTGATCTCCGGTGTCCGGGACTTGGCCACATCGCAGTCAAATACGCAGCGCGATG
GGCATGCGTGTCA TTGCGGTAGATATTGCCGATGACAAGCTGGAACTTGCCCGTAAGCACGGTGC
GGAATT TACCGTGAATGCGCGTAATGAAGATT CAGCGAAGCTGTACAGAAGTACACCAACGGTG
GCGCACACGGCGTGTGACTGCAGTTCACGAGGCAGCATTGGCCAGGC ACTGGATATGGCT

35 CGACGTGCAGGAACAATTGTGTTCAACGGTCTGCCACCGGGAGAGTTCCCAGCATCCGTGTTCAA
CATCGTATTCAAGGGCCTGACC ATCCGTGGATCCCTCGTGGGAACCCGCCAAGACTTGCCCGAAG
CGCTCGATTCTTGACGCCGACTAATCAAGCCAACCGTGAGTGAGTGCTCCCTCGATGAGGTC
AATGGTGTGCTTACCGCATGCGAACGGCAAGATCGATGGTGTGGCGATT CGTTTC

40 (I) Angaben zur SEQ ID NR. 4:

(1) Sequenzcharakteristika:

(A) Länge: 1002 Basenpaare

45 (B) Typ: Nucleinsäure

(C) Strangtyp: Doppelstrang

12

(D) Topologie: linear

(2) Molekülart: DNA

(3) hypothetisch: nein

5 (4) Antisense: nein

(5) Herkunft:

(D) Organismus: *Corynebacterium glutamicum*

10

(6) Beschreibung der Sequenz: SEQ ID NR. 4:

AAGTGGAGCTCGCGCCTGCAGGTCGACACTAGTGGATCAGAGGCATACTCCGGCGGACTCACC
 TACTCCGGACACCCACTTGCAGTAGCACCCGCCAAGGCAGCGCTGGAGATTACGCCGAAGGAGA
 15 GATCATTCCACCGTAGCTGACTTGGCGCTGAAC TGATCGAACCTCGCCTCGTGAAC TAGCGG
 AAGAAAACGTAGCGATCGCTGACGTGCGGGCATCGGATTCTCTGGCAGTGGAGTTCAATGCA
 GACGCCACTGCCATGGCTGCCGGTGCTGCAGAAATTCAAGGAACGCCGGTGTGGCCGATGATCTC
 CGGCAACCGATTCCACATCGGCCGCCGCTGACCACCACTGATGACGAATTGGTAGCAGTGTGG
 ACGCGGTGGAAGCTGCAGCCCCAAGCTGTCGAGCTGACCTTCGCTGGGCGTTGTTCTAAGTTTC
 20 TAGATAACAAGGCCAGCACAGACCACATNTCTACGACCCAAAAACCGACTCCAAGCTCCGCCG
 CGACNAANCCGCGCTCGGCCACCGACCAAGCAGCCGGTCCAGGTTAAAGATTGCTTTCGA
 CGCTCCCCCTCCACCTCATTCAATGCCGGGAAGGGATTTCCTGCATGTTAAGCCTATAGGAAA
 AAGTGTGTCATATCACCCCTGTATTCCAACACTTGAGCGGGTAGANTGGGTGTAACNACCCNG
 GGAAAGGGGGAAAGACACCATGAGCATCNCCACNCACNTCCAAGCNCNTCCACAGCANTCAACGC
 25 CATCNACAACCATTGGNCAGCATGCTNAACATNGTGTTCNCCANAACAATANANGCNTNNA
 NCCCGACTCANCNCCTANAANACNCCTTCACCACAGCCNCCTCGNCCCCAAACCAAACCTCG
 CCNAAGCNCAACNCGCCACNCATTNGCTCCCCNCCTCCTNNATACTNCCNCCTCGGATATCN
 AGCANGGCCNCACCGNTCATTNCCN

30 (I) Angaben zur SEQ ID NR. 5:

(1) Sequenzcharakteristika:

(A) Länge: 1007 Basenpaare

35 (B) Typ: Nucleinsäure

(C) Strangtyp: Doppelstrang

(D) Topologie: linear

(2) Molekülart: DNA

40 (3) hypothetisch: nein

(4) Antisense: nein

(5) Herkunft:

45 (E) Organismus: *Corynebacterium glutamicum*

13

(6) Beschreibung der Sequenz: SEQ ID NR. 5:

TCCCNATTGGGTACCTACCTGGTACCCACCCGGGTGGAAAATCGATGGGCCGCGGCCGCTCTA
 GAAGTACTCTCGAGAAGCTTTGAATTCTTGATCCGAGCTAACACATGGGTGATGTTTTT
 5 TGAACCAGCACTGAGGCTGCGCTGGCCGCCTGTTGAAAGCCCAGGTCAAGACAGCTCTGTGTC
 AA TTGTCCTGCATTGGGACGTGGCGTTGTATTCACTGCCCCGTGTCGGAGCAGAACAGGC
 GAGTCACAGGACTACCTCTTAATCGTCCTCGTAGCCAGGCTCGTATTCACTGGCAAAGGTGG
 GTTCATCAATGCTGTCGATGTTGCGGATATCCGCCTCATCAGACCAGGAGGATNCACGCNTGAAG
 GTTTCAAGTCCTCAATTCAATGAGTGGCAGTCNCGGTACAGACNATCCANTCCGTATAACTC
 10 GCGCTCTGCCCTGTCGCTAACGTGGATAACAACCNAATCCGTAGTCAGGAGAACCCAACNGTTT
 CGCGGTTGCCCTCACGGCGCTTAGGCTCGAAACCAGCCTTGGTCATCTNCATCTTCGATCTCC
 NACAATGGGCCACCTGGCGCTCATTTGTCGCAGATGCAACNACNAANCAATTCTCGTGATT
 GNCGATCACTGTCNNAAACATCCAATNACAGCGATGTCNNCNGCCTTCTTNTGCCGCTGCT
 TTCGCCNCCATGGTCCCGAAGCCGATCGANTCCTCCATNTGCANATCAAAATTCCNNTAAANCAGC
 15 TNCNTGTNGTTCCNCACCNCTTTTANGTCCGAAACCNAACCTNCNGAAANAATCCCCACGTC
 AACCTCCCTNTTCCNCTANACGGGTGATTNCCTACTTNNGNTGAATTAAACTTTNA
 NCANATTTCCCTTNGGCTGGGCTGGGATCATTCCCTATTGATCCTNCTGGTAAAAATTG
 GGNTTNNGCTATTCTCNCCACCCCCCANGGA

20 (I) Angaben zur SEQ ID NR. 6:

(1) Sequenzcharakteristika:

(A) Länge:	748 Basenpaare
25 (B) Typ:	Nucleinsäure
(C) Strangtyp:	Doppelstrang
(D) Topologie:	linear
(2) Molekülart:	DNA
30 (3) hypothetisch:	nein
(4) Antisense:	nein

(5) Herkunft:

35 (F) Organismus: *Corynebacterium glutamicum*

(6) Beschreibung der Sequenz: SEQ ID NR. 6:

TTGANNCNTTNNNGAGCTCCCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCGACACGCTGAC
 40 ATCACCAAGGCTGCAAATCAAGGCCAAGCGCAGCCGAGCATTATCTCCCGTGCCTGCAGAACCTT
 TCACTCCACCTGGAGTTGTTCCCGCAATCGCATTGGGGCCAGGAGTTCAAGGAAGTTCCACCTCA
 TGGCCCAGCGCCAAGGCAGCTAGATCGGTGCCACGCACGATCACGCGTGTAGTAGCCCGT
 TCCAGAAGCATCACCATGGTCGGTACTTGGTCCCGTCCCATCAAATGCCAGGTGAGGAAAT
 CATGAGGCAACATCACCGACGCCGTGCGCGCTGCATTCTGGTTCATGATCACGCATCCACCGC
 45 ATTTTGGTGGCAGTTAAAGAAGCAACATACACACTTCCCGTGGCATCTACCGCAGCCTGATCGCC
 GCCGATCTCCTCATTGAGATCCAACGCAGCCTGGCAGAACGAGTGTCAATTCCATAACAAACGCCG
 GGCGAACGATTTCATCGTTCATCCAACGCCACCATGCCGTGCTGGCCTGCAATAGATACA

14

GC GTCC CGCG CGTT CTAACA ACCC CCTCGG TAGCTT GATCC AGCG CAGCG ATCC AC GCAC GTGG ATC
 TACTTC GACCC GTT CGGGG TGACT CGCG CGG CTTC GTG ATAC CTGG CC GG TGCG GGG GTCA CAA
 GCAA AAGC TTGC AGGA ATGGGT GGG ACTATC

5 (I) Angaben zur SEQ ID NR. 7:

(1) Sequenzcharakteristika:

(A) Länge: 648 Basenpaare

10 (B) Typ: Nucleinsäure

(C) Strangtyp: Doppelstrang

(D) Topologie: linear

(2.) Molekülart: DNA

(3.) hypothetisch: nein

15 (4) Antisense: nein

(5) Herkunft:

(G) Organismus: *Corynebacterium glutamicum*

20 (6) Beschreibung der Sequenz: SEQ ID NR. 7:

TGCAGCCC GG GG ATCACCGACGCCAAGGCTACGTAGGAATCCCCTCCCCACACCATCGTGC
 CATCGCAAACCCAGAAAACCTCGACGAAACCATGCCGACGGCAGCGAAGGGCAAGTCCTAGTCA
 AGGGCCCACAGGTGTTCAAGGGTTACCTCAACCAGGAAGAAGCCACCAAGAACAGCTTCCACGGC
25 GAGTGGTACCGCACCGGACGTGGAGTGATGGAAGAAGACGGGTTCATCCGCTAGTTGCTCG
 CATCAAGGAAGTCATCATCACTGGCGTTCAACGTGTACCCAGCTGAGGTTGAAGAACGTCCTCG
 CAGAGCACCCAGACATTGAAGATTCCCGCAGTCGTTGGTATCCC GCGTGAAGAACGGCTCCGAAAAC
 GTCGTTGCTGCATCACTTTGGTGGAGGTGCAGCGCTGGATCCGATGGCCTGAAGGAATTGCC
 GCAAGAACCTACCCGCTCAAGGTTCCCGCGACTTTCTACCACTTGAGGAGATGCCGCGGGATCA
30 GATGGCAAGATTAGGCGTGTGAAGTGCANGCGGAGTTGTTGAAGAACCTGGCAGTNACGCCGAT
 TAAGAGGTCAAGTTCAAATGGCACTTACCAATTGGNCTAGTTACCCCCANAAGCATTTGAGGG
 TTCCACTTTACCCAGTGGNTGTGATCCTNT

(I) Angaben zur SEQ ID NR. 8:

35

(1) Sequenzcharakteristika:

(A) Länge: 698 Basenpaare

(B) Typ: Nucleinsäure

40 (C) Strangtyp: Doppelstrang

(D) Topologie: linear

(2.) Molekülart: DNA

(3.) hypothetisch: nein

45 (4) Antisense: nein

15

(5) Herkunft:

(H) Organismus: *Corynebacterium glutamicum*

5 (6) Beschreibung der Sequenz: SEQ ID NR. 8:

GCAGCCGGGGATCCTTGGTGNACCACCCCTGGACATGCTCAAGATGGAACAGCAAATCGACTC
 CCTGGCACCAAGCGATGCGAAGCGCTACATGCACCACTACAACCTCCCTCCATACTCCACCGGTG
 AAACCGGTCGTGGCTCACCAAAGGCCGCGAAATCGGCCACGGTGCACTTGCAGAACCGCGCA
 10 GTTTGCCAGTAATCCCATCCGTGAGGAATTCCCATAACGCAATCCGTCAAGGTCTCTGAAGCTCT
 GGGCTCCAACGGCTCCACCTCCATGGGCTCTGTCTGTGCATCCACTCTGTCCCTGTACAACGCTG
 GTGTTCACTGAAGGCACCTGTTGCAGGTATGCCATGGGACTTGTTCGGTGAAATGACGGC
 AAGACCGAGTACGTTGCACCGACATCCTCGCGCAGAAGACGCATTGGCGACATGGACTT
 CAAGGTTGCCGGCACCGCAGACTTCATACCGNACTTCAGCTGGACACCCAAGCTGGACNGCATTCC
 15 TTCAAGGTGCTCTCGATGCGCTTGAGCANGCACGCGATNCCGACTGACATCTGAACACATGGCT
 GATGTATCAACGGACCTTGATGAGATGAGCAAGTTCGTTCTGCATACCAACCGNGAAATCCATGG
 CAAAATCGNGACTGTCGACCAAGGGTAGACATTACGCTTACNATTG

(I) Angaben zur SEQ ID NR. 9:

20

(1) Sequenzcharakteristika:

(A) Länge: 1159 Basenpaare

(B) Typ: Nucleinsäure

25 (C) Strangtyp: Doppelstrang

(D) Topologie: linear

(2) Molekülart: DNA

(3) hypothetisch: nein

30 (4) Antisense: nein

(5) Herkunft:

(I) Organismus: *Corynebacterium glutamicum*

35

(6) Beschreibung der Sequenz: SEQ ID NR. 9:

TTNANNCGTTGGAGCTCCCCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCACACAAAATGATT
 AGATTGTGTGCGAATTCAATGCCATTGCTGTCTATGCACTACGCATGGCAACACTATAAGGCGA
 40 TAATGGTATTCTGCAGGCCAAAACACCCCTTAAGATTGAATCACCTAATAATGGGGATAGC
 CAACTATTGGCGGGGTAAGT
 ATTAAATTAACCTCCGGAGTTCCATTCTGCAGCCTTAAAGGAGTCAGCTGCACCTCGTGCACCTTC
 TCGTCCAAACCAGCCATCTGGAAAGTGCCACCTTGCAGGAGCGCCCTGTCGACCTCGTGCACCTTC
 CGCGTCCCTCTGCCTTGGCGGTGRAGTCAGCCCATGGTGCTAGGAGATCCTCAAGCTCCACATAGG
 45 TGGAAACCTTGGCCAGATTGGAGCGGAATTGCCAACAGGGAAACCGCGCAGGTCCAACCCA
 TGTGCTTACCGAGATGCCAGCCCCCTGGTTGCCATCATGCTGCATGAGGAGTTCTGCGTGG
 CGCAGGATGATTGGTAACCTCGCCGAAGGTAGGCTCCTCTGGGATTCTCCACGAACAGC

16

AGCAGCAGCTCAGCAAAGAGCCAAGGCCTGCCAGGCAACCACgGCCAACCACGACGCCATCGC
 AGCCAGTTGCTCCATCATGCGCGTGTGATGCCGAAAATATGCCATTGCCAAAATC
 GGGATGCCGGTATCTGCCAAATGCTCYTTCAGGCGCGATCTYGTCCAATCAGCCTCACCGGA
 ATAGCGCTGCGCCAGTGCAGGGCGTGAAGCGCTACGGACTTCGCGCCGGCGTCGACAGCAATGC
 5 GTCCAGCAGTCCAAGTGAGTATGGTGCTCATCATCAATACCAACGCGGAACCTCACCGTCACCGGA
 ATGTCCGTGCCTCCGTAGCCTTCAGCCGCGAAACGATGTTCAAACAAACGGCGCTTGTAA
 AGGAATCGCAGAACCGCCACCCCGGCGGTGACCTTGAACCGGGCAGCAAAGTTCATATCAA
 TATGATCCCCCGGGCTGCAGGAATTGATATCAAGCTTATCGATAACGTCGACCTCGAGGGGGGG
 CCCGGTACCCAGCTTGTGTTCCAANGNTCCAA

10

(I) Angaben zur SEQ ID NR. 10:

(1) Sequenzcharakteristika:

15 (A) Länge: 761 Basenpaare
 (B) Typ: Nucleinsäure
 (C) Strangtyp: Doppelstrang
 (D) Topologie: linear

20 (2) Molekülart: DNA
 (3) hypothetisch: nein
 (4) Antisense: nein

(5) Herkunft:

25 (J) Organismus: *Corynebacterium glutamicum*

(6) Beschreibung der Sequenz: SEQ ID NR. 10:

30 TTGAANCCTTANNGGAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCTCGATTCACT
 CGAGCTTGTGAAACTGTCAAGGTCGGTGCCTTCACTCACCAGTCCAATGTGACCGGTGCTGTGG
 CTGATGTTCCAGAGTTGGTTCGTCGTGCCAAGGCTGTCGGCGCTCTCACGGTGCTTGATGCGTGC
 CAGTCTGTTCCCTCATATGCCAGTGAATTCCACGAGCTGGATGTAGATTCTCTGCATTCTCTGG
 CCATAAGATGCTGGGACCTGCAGGGCGTGGCGTTGTATGCAAAGTCCCCAATCTGGATGAA
 35 TGCCACCATTGGACTGGGTTCCATGATTGAAGTTGTACCATGGAGGGTTCCACCTACGCT
 GCCGCACCTCAACGTTTGAGGCCGGCACGAGATGACCAGCCAGGGTGTGGGCTTGGGTGCTGC
 CGTGGACATGCTGAATGAAATCGGTATGGAAGCAATCGCAGCNGCATGAGCACGCATTGACTGCT
 TACGCGTTGGAAAGCTCACGGCAATTAAAGGGACTAACCAATTGCTGGCCTTTGACTGCAGAG
 CATCGCGGNGGTGCAATCAGCTTNGTGTNANGCATTACCNACACGATCTANGCAAAGTGC
 40 TTGACCACATCAGGGCGTGAATATTCCGNCTGGGCACCACTGTGCCGTGGGCTGCACCGCANCATT
 GAACGTNCAATNGNANACAAGAGCATTCTATCTATTACACC

(I) Angaben zur SEQ ID NR. 11:

45 (1) Sequenzcharakteristika:

(A) Länge: 791 Basenpaare

17

(B) Typ: Nucleinsäure
 (C) Strangtyp: Doppelstrang
 (D) Topologie: linear

5 (2) Molekülart: DNA
 (3) hypothetisch: nein
 (4) Antisense: nein

(5) Herkunft:

10 (K) Organismus: *Corynebacterium glutamicum*

(6) Beschreibung der Sequenz: SEQ ID NR. 11:

15 TTGACCCTTAGCTGGTACCGGGCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATCGA
 ATTCCCTGCAGCCGGGGATCTTCATGCCAACAAACTGACCGGGAAACGATCATCTTCTCAA
 ATTCTGTGAGCTTTCCAGCGCCTGTCGACGGTTGCCACGATCTCCTCGGCCATAACGGAC
 GTGGAGGCCTGGCTGATTGAGCAACCAACTGCTCGTAGGAGACGTCCTCCACGGTGGAGCCGTC
 CTCAGACAGCTTCAGCGCAGAGTCAATTGTCGCCACAAGAAGGGTTGACGTGGTGAACCTCAG
 20 CATCGAAAGGATCCCAGGGCCCTTGCTGTGGTTTTGTAGTGGTCCAGGATCACCTCCTGG
 TACATCTGCTCAAGGTTCAATTACTCAACTCCAAAGAATTGCTTGGCCTTCTCGATCGCTGCCGCG
 AGGCGGTCGATTCTTCGAAGGTGTTATAGAGATAGAAAGATGCTCTTGCTGTCGATTGTACCGT
 TCATGCTGCGGTGCACGGCACCGCAGTGGTGGNCACGCCGGATATTCACGCCCTGATCGTCA
 AGCACTTGGCTAANC GTGTGGGTGAATGCCCGACACCGAACTGATGCACCGGNCTGCTNTN
 25 CATCAAAAGGACCANCNATGGTAAGTCCTTAATGCCNGAGCTTTCAACCGTAAGCAGGTAA
 TGCGNNCTATGCNCTGCGATGNTTCAACGATTNTAAGANTNTCCCCGGNTNCCCNANCCC
 NAAACTGGTTN

30

35

40

45

Patentansprüche

1. Ein gereinigtes Polynukleotid mit einer Nukleinsäuresequenz,
5 die aus der folgenden Gruppe ausgewählt ist: SEQ ID NR. 1, SEQ ID NR. 2, SEQ ID NR. 3, SEQ ID NR. 4, SEQ ID NR. 5, SEQ ID NR. 6, SEQ ID NR. 7, SEQ ID NR. 8, SEQ ID NR. 9, SEQ ID NR. 10, SEQ ID NR. 11.
- 10 2. Ein Expressions-Vektor mit einem dem Anspruch 1 entsprechenden Polynukleotid.
3. Eine Wirtszelle, die mit dem Expressions-Vektor aus Anspruch 2 transformiert ist.
- 15 4. Eine Methode zur Herstellung und Reinigung eines Polypeptids, die aus folgenden Schritten besteht:
 - (a) Kultivierung der Wirtszelle aus Anspruch 3 unter Bedingungen, die für die Expression des Peptids geeignet sind; und
 - 20 (b) Gewinnung des Polypeptids aus der Wirtszellkultur.

25

30

35

40

45