Introduction to Quantum Computing 量子計算入門 Lecture 2: Quantum Algorithms

Rod Van Meter rdv@tera.ics.keio.ac.jp September 28-30, 2004 @会津大学 th numerous slides from E. Abe

アウトライン

- Review of basics from yesterday
- Deutsch-Jozsa
- Shor's factoring algorithm
- Grover's search algorithm
- Brief look at other algorithms

Course Outline

Lecture 1: Introduction

• Lecture 2: Quantum Algorithms

• Lecture 3: Quantum Computational Complexity Theory

• Lecture 4: Devices and Technologies

• Lecture 5: Quantum Computer Architecture

• Lecture 6: Quantum Networking

• Lecture 7: Wrapup

量子計算とは?

- ひとつの量子は同時に二つの所にある。
 - 誰も見ていない時だけ!
 - 有名なgedankenexperiment: Schroedinger's cat
 - Superposition (重ね合わせ)
- その重ね合わせを使って、ちょう並列計算できるようになっている。

量子計算は何に使えるか?

- 素因数分解(Shor's algorithm): 量子計算すると: O(L^3) for L-bit number 古典的な計算方法だと: O(2^L)
- 検索(Grover's algorithm): O(sqrt(N)) to search N items (N=2^L)
- Quantum Key Distribution: 物理学のせいで、絶対セキュア

Superposition (重ね合わせ) and ket Notation

- Qubit state is a vector
- | 0> means the vector for 0;
 | 1> means the vector for 1;
 | 00> means two bits, both 0;
 | 010> is three bits, middle one is 1;
 | etc.
- A qubit may be partially both! (but stay tuned for measurement...)

量子計算の基本

- Superposition, phase, and the ket notation
- Entanglement
- 1 and 2-qubit gates
- Measurement and decoherence

Entanglementとは? 絡み付き

• 二つのqubitのvalue (0,1)は相手次第である

Measurement and Decoherence (測定と位相緩和)

- Qubitを測定すると、重ね合わせがなくなります。必ず1か0かどちかの結果になります。
- その重ね合わせは計算に大事なので、計算がおわってから測定する。
- 偶然に測定されると、decoherence(位相緩和)と呼ぶ。この場合は、計算は失敗である。

How Do Quantum Algos Work?

- Runs are begun by creating a superposition of all possible input values.
- Executing a function gives a superposition of answers of all possible inputs! The hard part is extracting the answer we want.
- Every part of the superposition works independently on the algorithm.
- They all work by using *interference*. The *phase* of parts of the superposition are arranged to cancel out and leave only the interesting answer.

Graphic Representation

Each bar is the amplitude of the wave function, that is, the square root of the probability, of finding the system in a particular state.

量子並列性

例えば、 $x=0,1,\cdots,N-1$ に対して0か1の値をとる2値関数 f(x) が与えられたとするさらに、量子並列性によって f(x) に関する全ての情報の重ね合わせをつくれたとする

$$\frac{1}{2^{n/2}} (|f(0)\rangle + |f(1)\rangle + |f(2)\rangle + \dots + |f(N-1)\rangle)$$
f(x) を決定できるか?

NO! 測定したら f(x) の値のどれか1つを得るだけ

Start with all equal probabilities:

Flip the phase of the answer:

Flip all states about the mean (average):

The analog nature of phase figures in strongly!

量子アルゴリズム

- Deutsch-Jozsa(D-J)のアルゴリズム
 Proc. R. Soc. London A, 439, 553 (1992)
- Groverの検索アルゴリズム
 - Phys. Rev. Lett., 79, 325 (1997)
- Shorの素因数分解アルゴリズムSIAM J. Comp., 26, 1484 (1997)

D. Deutsch

R. Jozsa L. K. Grover

P. W. Shor

Deutsch-Jozsa takes advantage of *interference* in the phase to cancel out unwanted terms in the superposition.

But, D-J uses only +1 and -1 in the phase and essentially calculates parity.

Grover's algorithm takes advantage of the full continuous nature of phase to create interference...

(Note: Remember, phase applies to the whole term in the superposition, not just a single qubit! Shift the phase on any qubit and you shift it on the whole term in the superposition.)

Groverの検索アルゴリズム

 $N=2^n$ 個のfileの中から,所望のfile " β " を検索する

古典的には,順番にfileを調べて ,平均N/2回程度の操作が必要

Groverのアルゴリズムでは、N 個のfile(状態)の重ね合わせから,出発して \sqrt{N} 回程度のunitary演算G を実行することで,ほぼ所望のfileに到達

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle \longrightarrow \approx |\beta\rangle$$

実行例,N=8 各fi leの確率振幅の変化 $|\alpha\rangle|\beta\rangle$ 平面での $|\psi\rangle$ の変化 $|\beta\rangle$ $|\beta\rangle$

Oracle

所望のfileの中身を"知らない"のに、oracleを構成できるのか

例えば,「37で割り切れる番号のfileが欲しい」ときには,「file番号を37で割る回路」をつくって,「割り切れたときのみ符号反転」させればよい.つまり, oracle は「検索条件」だけで構成できる

応用範囲が広い!! (e.g. quantum simulation, quantum counting)

例 「file番号3のfileが欲しい」ときのoracle (N=4)

$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Groverのアルゴリズムの効率

所望のfileに到達するまで、何回のG ゲートが必要か?

始状態が
$$|\psi\rangle=\begin{bmatrix}\cos{(\theta/2)}\\\sin{(\theta/2)}\end{bmatrix}$$
で、1回 \mathbf{G} を実行するごとに θ 回転するので、 \mathbf{k} 回実行した後の状態は
$$G^k|\psi\rangle=\begin{bmatrix}\cos{\frac{2k+1}{2}}\theta\end{bmatrix}$$

アルゴリズムを終了するのは
$$\frac{2n+1}{2}\theta \approx \frac{\pi}{2}$$
 となるとき $\sin \frac{\theta}{2} = \frac{1}{\sqrt{2}} \approx \frac{\theta}{2}$ とすると

$$n \approx \frac{\pi}{4} \sqrt{N}$$
 回程度繰り返せばよい.

Grover and Shor

Grover uses interference in phase to cancel unwanted terms.

Shor goes a step further, broadening the range of conditions in which useful interference occurs, by doing a Fourier transform...

Shorの素因数分解アルゴリズム

 $66554087 = ?6703 \times 9929$

古典的な方法では、指数オーダーの時間を要する素因 数分解アルゴリズムしか知られていない

古典的には、0(2^L)

量子Fourier変換を使って、0(L^3)

一番有名な量子計算のアルゴリズム

QFTの実行例, N=8

$$\sum_{j=0}^{7} \alpha_{j} | j \rangle \quad \overline{QFT}_{8} \quad \sum_{k=0}^{7} \beta_{k} | k \rangle$$

r	input string { _j }	output string { k}	N/r
8	1 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	1
4	1 0 0 0 1 0 0 0	1 0 1 0 1 0 1 0	2
2	1 0 1 0 1 0 1 0	1 0 0 0 1 0 0 0	4
1	1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0	8

$$\frac{1}{\sqrt{2}}(|0\rangle+|4\rangle) \quad \overline{QFT}_{s} \quad \frac{1}{2}(|0\rangle+|2\rangle+|4\rangle+|6\rangle)$$

input string { j}							output string { k}								
1	0	0	0	1	0	0	0	1	0	1	0	1	0	1	0
0	1	0	0	0	1	0	0	1	0	i	0	-1	0	− <i>i</i>	0
0	0	1	0	0	0	1	0	1	0	-1	0	1	0	-1	0
0	0	0	1	0	0	0	1	1	0	-i	0	-1	0	i	0

$$\frac{1}{\sqrt{2}}(|3\rangle+|7\rangle) \quad \overline{QFT}_{8} \quad \frac{1}{2}(|0\rangle-i|2\rangle-|4\rangle+i|6\rangle)$$

量子Four ier変換

FFTの量子計算版 $|j\rangle$ \overline{QFT}_N $\frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}\exp(2\pi i j k l N)|k\rangle$

例 QFT_sを実行する量子回路

$$R_k = \begin{bmatrix} 1 & 0 \\ 0 & \exp(2\pi i I 2^k) \end{bmatrix}$$

QFT₈の行列表示 $QFT_8 = \frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^4 & \omega^6 & 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^1 & \omega^4 & \omega^7 & \omega^2 & \omega^5 \\ 1 & \omega^4 & 1 & \omega^4 & 1 & \omega^4 & 1 & \omega^4 \\ 1 & \omega^5 & \omega^2 & \omega^7 & \omega^4 & \omega^1 & \omega^6 & \omega^3 \\ 1 & \omega^6 & \omega^4 & \omega^2 & 1 & \omega^6 & \omega^4 & \omega^2 \\ 1 & \omega^7 & \omega^6 & \omega^5 & \omega^4 & \omega^3 & \omega^2 & \omega^1 \end{bmatrix} \qquad \omega = \exp\left(2\pi i/8\right) = \sqrt{i}$

置換の位数(order)

y から置換 π を繰り返して,元のy に戻る最小の回数を置換 π (y)の位数 r_{ν} と呼ぶ

置換π(y)の例

у	(y)					
0	3					
1	7					
2	5					
3	1					
4	2					
5	4					
6	6					
7	0					

一般に、置換の位数の決定 (orderfinding)には、指数オーダー の時間を要する

$$\begin{bmatrix} 6 \\ \end{bmatrix}$$
 $\pi^1(6) \Box$

 $r_6 = 1$

a^r □1 (mod L) を満たす最小のr を「乗法群の位数」と呼ぶ 「置換の位数」との関係は?

 $(y) \equiv ay \pmod{L}$ とすると、 π (y) は「置換」になっている

L =15以下のL と互いに素な数 $a = \{2,4,7,8,11,13,14\}$

a=7 \mathfrak{O} 3 4 5 6 5 3 (y) 0 7 14 6 13 12 10

a=11 のとき 5 10 | 11 6 7 12 13 | 14 10 6 2 13 9 12 3

 $a^{x} (mod L) \Leftrightarrow \pi^{x}(1)$ だから、「乗法群の位数」は「置換 $\pi(y)$ の位数」と同じ

素因数分解, L=15の例

L =15以下のL と互いに素な数 $a = \{2,4,7,8,11,13,14\}$

a = 11

a = 14

Other Order-Finding Algos.

- Abelian subgroup, discrete logarithm
- QFT based, but very different in classical portion of algorithm
- Hidden subgroup problems in general

Main Classes of Algorithms

- 1: Use the QFT to find periodicity
- 2: Grover's algorithm and friends
- 3: Simulating quantum physics
- (D-J seems to fall outside these)

Wrap-Up on Algorithms

- "Quantum" algorithms actually have both quantum and classical parts
- Use of quantum interference based on complex, analog phase is critical
- Period-finding algorithms work well (exponential speedup over best known algos, but not yet proven better)