SCC-240/540/640 Bases de Dados

Prof. Robson L. F. Cordeiro

Introdução

Material original editado: Profa. Elaine Parros Machado de Sousa

Tópicos da aula

- Evolução dos Sistemas de Informação
- Conceitos Básicos
- SGBDs
- Histórico

Evolução dos Sistemas de Informação

- Sistemas de Informação baseados em gerenciamento de arquivos
 - programas e arquivos orientados a cada unidade organizacional
 - rotinas específicas para tarefas específicas
 - dados armazenados em disco, usando uma determinada estrutura de dados

REDUNDÂNCIA

Aplicação de Produção **Arquivos de Dados** de Produção **Produtos**

REDUNDÂNCIA INCONSISTÊNCIA

Aplicação de Produção

Insere:

Nome: Notebook

NroSerie:1111111

Fabricante: Y

Arquivos de Dados de Produção

Aplicação de Vendas

Insere:

Nome: Notebook

NroSerie:1111111

Fabricante: X

Arquivos de Dados de Vendas

Consistência de Dados

Dados em estado inconsistente

informações **incorretas** ou **contraditórias** são fornecidas aos usuários

Consistência de Dados

- Consistência é "estado ou caráter do que é coerente, do que tem solidez, veracidade, credibilidade, estabilidade, realidade".
- Consistência: se determinada informação é replicada (redundância), seu valor é sempre o mesmo

SIs baseados em arquivos

- Problemas?
 - Redundância e inconsistência de dados
 - Dificuldade de acesso aos dados
 - Isolamento de dados
 - Anomalias no acesso concorrente
 - Segurança

Além disso...

- SIs baseados em arquivos ⇒ dados gravados em disco usando ESTRUTURAS DE DADOS
- Acesso requer conhecimento destas estruturas ⇒
 DEPENDÊNCIA DE DADOS.

Dependência dos Dados

- Vários programas compartilhando os mesmos dados ⇒ todos devem conhecer e manipular as mesmas estruturas
- E se houver uma alteração na estrutura de dados?

TODOS OS PROGRAMAS TERÃO QUE SER ALTERADOS

Independência dos Dados

Como tornar os programas
 INDEPENDENTES da estrutura de dados?

CRIANDO UM SISTEMA QUE GERENCIE A ESTRUTURA

Independência dos Dados

Sistema de Gerenciamento de Bases (ou Banco) de Dados **SGBD**

SGBD

Sistema de Gerenciamento de Bases de Dados

- o conjunto de dados
 - base (banco) de dados

 conjunto de programas para <u>acesso e</u> <u>manipulação</u> dos dados

SGBD

- Sistema de propósito geral
 - o armazenar grandes volumes de dados
 - o permitir <u>busca</u> e <u>atualização</u> dos dados
 - eficiência
- Manutenção de um conjunto lógico e organizado de dados
 - completamente autônomo em relação às aplicações

SGBDs

- Requisitos Fundamentais:
 - Segurança
 - Física (mais comum no passado)
 - Lógica
 - Usernames e passwords
 - · Perfis de usuário

SGBDs

- Requisitos Fundamentais (cont):
 - Integridade
 - consistência
 - validade

Restrições de Integridade!!!

SGBDs

- Requisitos Fundamentais (cont):
 - Recuperação / Tolerância a falhas
 - Transações atômicas
 - unidades lógicas de trabalho, em geral envolvendo várias operações
 - Registros de Log
 - Backup
 - Controle de concorrência
 - gerenciamento transações concorrentes

Por que usar SGBDs?

- Vantagens:
 - armazenamento persistente de dados e estruturas de dados;
 - INDEPENDÊNCIA DE DADOS;
 - CONSISTÊNCIA DE DADOS;
 - acesso compartilhado (multiusuário e concorrente) à informação;
 - distribuição de informações

Por que usar SGBDs?

- Vantagens:
 - reduz complexidade das aplicações
 - segurança
 - o controle de acesso aos dados
 - backup
 - utilização de padrões

Por que usar SGBDs?

- Desvantagens
 - Alto custo
 - Um sistema a mais a ser aprendido e gerenciado

- Os componentes funcionais do SGBD:
 - o componentes de processamento de consultas
 - componentes de gerenciamento de armazenamento

- Conceitos importantes:
 - Data Definition Language (DDL)
 - conjunto de comandos para definição do <u>esquema</u> da base de dados
 - Exemplos em linguagem SQL
 - create table
 - alter table
 - drop table
 - Compilador/Interpretador DDL

- Conceitos importantes (cont.):
 - Dicionário de Dados:
 - banco de dados do sistema
 - armazena descrição do esquema
 - armazena metadados
 - · armazena restrições de segurança e integridade
 - outras denominações: catálogo de dados, diretório de dados

- Conceitos importantes (cont.):
 - Data Manipulation Language (DML)
 - recuperação (consulta)
 - inserção
 - remoção
 - modificação
 - DML viabiliza manipulação dos dados de maneira compatível com o modelo de dados

- Conceitos importantes (cont.):
 - Data Manipulation Language (DML)
 - Exemplos em linguagem SQL
 - insert
 - select
 - delete
 - update
 - •

- Conceitos importantes (cont.):
 - Dois tipos de DML
 - **Procedural**: exige especificação de <u>quais</u> dados são necessários, e <u>como</u> obtê-los
 - requer uma sequência específica de operações a serem executadas
 - ex: álgebra relacional
 - Não-Procedural (Declarativa): exige apenas especificação de <u>quais</u> dados são necessários, e <u>não</u> de como obtê-los
 - ex: SQL

Tópicos da aula

- Evolução dos Sistemas de Informação
- Conceitos Básicos
- SGBDs
- Histórico

- Década de 1950:
 - Primeiros computadores.
 - Programação em linguagem de máquina
 - Surgimento de Sistemas Operacionais e Linguagens de Programação
 - Sistemas de arquivos com acesso não sequencial
 - 1959: Sistema RAMAC (IBM)

- Década de 1960:
 - CODASYL
 - Conference on Data System Languages
 - Conceituação de SGBD e modelos de dados
 - Proposta do Modelo de Rede
 - Primeiro SGBD comercialmente disponível -Modelo Hierárquico.
 - IMS IBM

- Década de 1970:
 - Proposta do Modelo Relacional.
 - Surgimento de protótipos de SGBDR
 - INGRES (UC Berkeley)
 - · Sistema R (IBM)
 - Proposta do Modelo Entidade -Relacionamento (MER)

- Década de 1980:
 - Primeiro SGBDR de grande porte disponível
 - DB2 IBM
 - Surge SQL vinculada ao Sistema R
 - SQL torna-se padrão
 - Modelos Orientados a Objetos

- Década de 1990 em diante:
 - SGBDs orientados a objetos
 - O2
 - ObjectStore
 - Objectivity/DB
 - Jasmine
 - •
 - SGBDs objeto-relacionais
 - Oracle8, Oracle9, Oracle10g, Oracle11g
 - PostGreSQL
 - Informix
 - SGBDs semi estruturados / NoSQL

Sugestão de leitura

 Capítulos introdutórios dos livros citados na bibliografia básica da disciplina