Topics in statistics III/IV (MATH3361/4071)

Michaelmas term, 2018-2019

Exercises: Likelihood methods for large samples a, b

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1

 $(\star\star)$ From Fatou-Lesbeque Lemma, prove Monotone Convergence theorem. (Hint: Use $Y\equiv 0$, use $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$)

Exercise 2

 $(\star\star)$ From Fatou-Lesbeque Lemma, prove Lesbeque Dominant Convergence theorem. (Hint: Use that $-Y \leq -X_n$ and $-Y \leq X_n$, use $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$)

Exercise 3

 $(\star\star)$ Let μ be a constant. Show that $X_n \xrightarrow{\mathrm{qm}} \mu$ if and only if $\mathrm{E}X_n \to \mu$ and $\mathrm{Var}(X_n) \to 0$, both in uni-variate and multivariate case.

Exercise 4

(**) Consider that $\sqrt{n}(X_n - \mu) \xrightarrow{D} Z$, where $Z \sim N(0, \Sigma)$ for $\Sigma > 0$ (positive definite). Show that $X_n \xrightarrow{P} \mu$. (Hint: Use the concept 'bounded in probability)'

Exercise 5

(**) Consider a sequence of discrete r.v. $\{X_n\}$ with probability $P(X_n = k) = \frac{1}{n}$, for k = 1/n, 2/n, ..., n/n. Show that $X_n \xrightarrow{D} X$ where $X \sim U(0, 1)$. (Hint: Just use the definition.)

Exercise 6

 (\star)

1. Show that

$$E_{\pi}(X - \theta)^{T}(X - \theta) = Var_{\pi}(X) + (E_{\pi}(X) - \theta)^{T}(E_{\pi}(X) - \theta)$$

 $[^]a {\rm Author:}$ Georgios P. Karagiannis.

^bAcknowledgments to students in 2018 for spotting typos.

, where is a constant point, and X is a random variable $X \sim d\pi(\cdot)$.

2. Show that

$$E_{\pi}|X - \theta|^2 = Var_{\pi}(X) + |E_{\pi}(X) - \theta|^2$$

, where is a constant point, X is a random variable $X \sim \mathrm{d}\pi(\cdot)$, and $|X| = \sqrt{X_1^2 + ... X_d^2}$ is the Euclidean norm.

Exercise 7

 $(\star\star)$

1. If $X_1, X_2, ...$ are IID in \mathbb{R}^2 with distribution giving probability

$$P(X = x) = \begin{cases} \theta_1 & \text{, if } x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \theta_2 & \text{, if } x = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ \theta_1 + \theta_2 & \text{, if } x = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{cases}$$

there $\theta_1 + \theta_2 \leq 1$.. What is the asymptotic distribution of \bar{X}_n given the CLT?

2. If $X_1, X_2, ...$ are IID from a Poisson distribution $Poi(\theta)$ distribution as

$$P(x|\theta) = \frac{e^{-\theta}\theta^x}{x!} 1(x \in \{0, 1, 2, ...\})$$

Let Z_n be the proportion of zeros observed $Z_n = \frac{1}{n} \sum_{j=1}^n 1(X_j = 0)$. What is the joint asymptotic distribution of (\bar{X}_n, Z_n)

Exercise 8

(****Super difficult) (The autoregressive model) Consider that $\{\epsilon_n\}$ are IID, with mean $E(\epsilon_n) = \mu$, and variance $Var(\epsilon_n) = \sigma^2$, $\forall n$. A time series $\{X_n\}_{n\geq 1}$ is modeled as $X_n \sim AR(\beta)$ where $\beta \in (-1,1)$ if

$$X_n = \beta X_{n-1} + \epsilon_n$$
; for $n \ge 2$
 $X_1 = \epsilon_1$

Show that $\bar{X}_n \xrightarrow{\mathrm{qm}} \mu/(1-\beta)$

- 1. Show that $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n \epsilon_j (1 \beta^{n-j+1})/(1 \beta)$
- 2. Find $\lim_{n\to\infty} E(\bar{X}_n) = ?$
- 3. Show that $\lim_{n\to\infty} \operatorname{Var}(\bar{X}_n) = 0$
- 4. Show that $\bar{X}_n \xrightarrow{\text{qm}} \mu/(1-\beta)$

[Hint] (1.) Show that $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n \epsilon_j (1 - \beta^{n-j+1})/(1 - \beta)$ (2) Find $\lim_{n \to \infty} E(\bar{X}_n) = \mu/(1 - \beta)$; (3) Show that $\lim_{n \to \infty} Var(\bar{X}_n) = 0$, (4.) ...

Exercise 9

- $(\star\star)$ Prove that:
 - 1. if $Z \sim N(0, I)$ then $\varphi_Z(t) = \exp(-\frac{1}{2}t^Tt)$, where $Z \in \mathbb{R}^d$
 - 2. if $X \sim \mathcal{N}(\mu, \Sigma)$ then $\varphi_X(t) = \exp(it^T \mu \frac{1}{2} t^T \Sigma t)$, where $X \in \mathbb{R}^d$

Hint: Assume as known that if $Z \sim N(0,1)$ then $\varphi_Z(t) = \exp(-\frac{1}{2}t^2)$, where $Z \in \mathbb{R}$

Exercise 10

(**) Let $X_i \stackrel{\text{IID}}{\sim} F_X$ for i=1,...,n, and $F_X=P(X\leq x)$. Show that the empirical distribution function $\hat{F}_X(x)=\frac{1}{n}\sum_{i=1}^n 1(x\in[x_i,\infty))$ is a strongly consistent estimator of F_X .

The next exercise is from Problem Class 2

Exercise 11

Consider random variables $X, X_1, X_2, ...,$ where $\mu_n = \mathrm{E}(X - \mu)^n$, and $\mu = \mathrm{E}(X)$

1. Show that,

$$\sqrt{n} \begin{pmatrix} \bar{X} \\ s_x^2 \end{pmatrix} - \begin{bmatrix} \mu \\ \sigma^2 \end{pmatrix} \xrightarrow{D} N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} \sigma^2 & \mu_3 \\ \mu_3 & \mu_4 - \sigma^4 \end{bmatrix} \end{pmatrix}$$

2. Show that the asymptotic distribution of the coefficient of variation $cv = \frac{s_x}{X}$, is

$$\sqrt{n}(\frac{s_x}{\bar{X}} - \frac{\sigma}{\mu}) \xrightarrow{D} N(0, \frac{\mu_4 - \sigma^4}{4\mu^2\sigma^2} - \frac{\mu_3}{\mu^3} + \frac{\sigma^4}{\mu^4})$$

3. Show that the asymptotic distribution of the 3rd central moment $m_3 = \frac{1}{n} \sum_{i=1}^n (X_j - \bar{X})^3$ is

$$\sqrt{n}(m_3 - \mu_3) \xrightarrow{D} N(0, \mu_6 - \mu_3^2 - 6\sigma^2\mu_4 + 9\sigma^6)$$

Exercise 12

 $(\star\star)$ Assume X_1, X_2, X_3 independent from Uniform distribution U(0, 1). Compare the exact, Normal approximation, and Edgeworth approximation.

Hint: The exact result is $P(X_1 + X_2 + x_3 \le 2) = 0.8333$

The next exercise is from Homework 3

Exercise 13

 $(\star\star\star)$ Consider an M-way contingency table and consider the quantities obs. cell counts, cell probabilities, cell proportions in their vectorised forms as

$$n = (n_1, ..., n_N)^T;$$
 $\pi = (\pi_1, ..., \pi_N)^T;$ $p = (p_1, ..., p_N)^T$

where $n = \sum_{j=1}^{N} n_j$, and $p_j = n_j/n$.

1. Consider a constant matrix $C \in \mathbb{R}^{k \times N}$, and show that

$$\sqrt{n}(C\log(p) - C\log(\pi)) \xrightarrow{D} N(0, C\operatorname{diag}(\pi)^{-1}C^T - C11^TC^T)$$
 (1)

2. Consider a 3×3 contingency table with probabilities $(\pi_{i,j})$. Find the joint asymptotic distribution of the vector of different log odd ratios

$$\log(\underline{\theta}^C) = \begin{bmatrix} \log(\frac{\pi_{11}\pi_{22}}{\pi_{21}\pi_{12}}) \\ \log(\frac{\pi_{22}\pi_{33}}{\pi_{23}\pi_{32}}) \end{bmatrix}$$

Exercise 14

(***) Consider a random sample $X, X_1, X_2, ...$ an IID sample with finite moments E(X) = 0, and $E(X^4) < \infty$.

1. Show that if $m_1 = \frac{1}{n} \sum_{i=1}^n X_i$ and $m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$ then

$$\sqrt{n} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} - \begin{bmatrix} 0 \\ \sigma^2 \end{pmatrix} \stackrel{D}{\longrightarrow} \mathcal{N}(0, \Sigma)$$

where
$$\Sigma = \begin{bmatrix} Var(X) & Cov(X^2, X) \\ Cov(X^2, X) & Var(X^2) \end{bmatrix}$$

2. Find an (1-a)% asymptotic confidence interval for S_n^2 .

The next exercise is from Homework 3

Exercise 15

 $(\star\star\star)$ Consider an IID sample $X,X_1,X_2,...$ with $EX=0,\,EX^4<\infty.$ Consider that

$$\sqrt{n} \frac{S_n^2 - \sigma^2}{\sqrt{EX^4 - \sigma^4}} \xrightarrow{D} N(0, 1)$$
 (2)

where $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$.

- 1. Find the asymptotic distribution of $\log(S_n^2)$.
- 2. Produce the 1-a asymptotic confidence interval for $\log(\sigma_n^2)$; by performing suitable calculations, so that the boundaries of the confidence interval do not depend on any unknown moments of the real distribution.

Exercise 16

 $(\star\star\star)$ Let function $g:\mathbb{R}\to\mathbb{R}$ such that $\dot{g}(x)$ and $\ddot{g}(x)$ are continuous in a neighborhood of $\mu\in\mathbb{R}$, and $\dot{g}(\mu)=0$. Prove the following statement:

• If $X_n \in \mathbb{R}$ is a sequence of random vectors such that $\sqrt{n}(X_n - \mu) \xrightarrow{D} \mathrm{N}(0, \sigma^2)$ then

$$n(g(X_n) - g(\mu)) \xrightarrow{D} \frac{\sigma^2 \ddot{g}(\mu)}{2} \chi_1^2$$

Hint-1. Use Taylor expansion of 2nd order.

Hint-2. The Taylor expansion of function $f: \mathbb{R} \to \mathbb{R}$ around point x_0 is:

$$f(x) = \sum_{k=0}^{n} \frac{1}{k!} (x - x_0) f^{(k)}(x_0) + R_n(x)$$

where $R_n(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n)}(x_0) = o((x-x_0)^n)$ as $x \to x_0$, provided that the *n*-th derivative $f^{(n)}(x)$ exists in some interval containing x_0 .

The next exercise is from Homework 3

Exercise 17

(***) Consider random sample $X, X_1, X_2, ...$ IID from a Bernoulli distribution with probability of success p. Find the variance stabilization transformation for the estimator average $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Exercise 18

Prove the Information inequality theorem:

Let $x \in \mathbb{R}^d$ random vector following distribution $\mathrm{d}f_{\theta}(\cdot)$ labeled by an parameter $\theta \in \Theta \subset \mathbb{R}^r$ and admitting PDF $f(\cdot|\theta)$. Consider an estimator $\hat{\theta}_n := \hat{\theta}_n(x) \in \Theta \subset \mathbb{R}^r$ such that $g(\theta) = \mathrm{E}_{f_{\theta}}(\hat{\theta}_n)$ exists on Θ . Assume that, $\frac{\mathrm{d}}{\mathrm{d}\theta}f(x|\theta)$ exists; $\frac{\mathrm{d}}{\mathrm{d}\theta}$ can pass under the integral sign in $\int f(x|\theta)\mathrm{d}x$ and $\int \hat{\theta}_n(x)f(x|\theta)\mathrm{d}x$. Then

$$\operatorname{var}_{f_{\theta}}(\hat{\theta}_{n}(x)) \ge \frac{1}{n} \dot{g}(\theta) \mathcal{I}(\theta)^{-1} \dot{g}(\theta)^{T}$$
(3)

where $\mathcal{I}(\theta)$ is the Fisher's information matrix.

• The quantity $\frac{1}{n}\dot{g}(\theta)\mathcal{I}(\theta)^{-1}\dot{g}(\theta)^T$ is called Cramer-Rao lower bound (CRLB).

Hint-1: Use $0 \le \text{var}_{f_{\theta}}(\hat{\theta}_n - \dot{g}(\theta)\mathcal{I}(\theta)^{-1}\Psi(x,\theta)) = \dots$

Hint-2: Use $\operatorname{var}_{f_{\theta}}(A+B) = \operatorname{var}_{f_{\theta}}(A) + \operatorname{var}_{f_{\theta}}(B) + 2\operatorname{cov}_{f_{\theta}}(A,B)$

Exercise 19

Consider random sample $x_1,...,x_n \overset{IID}{\sim} \mathrm{G}(a,b)$, $a>0,\,b>0$ with PDF

$$f(x|a,b) = \frac{1}{\Gamma(a)b^a} x^a e^{-x\frac{1}{b}} 1(x>0)$$

- 1. Find the moment estimator $\tilde{\theta}$ of $\theta = (a, b)^T$ by using the first raw moment and the first central moment
- 2. Is the moment estimator $\tilde{\theta}$ consistent and asymptotically Normal?

3. Find the one step estimator by Fisher scoring algorithm.

Hint-1 Digamma function $\psi(x) = \frac{\mathrm{d}}{\mathrm{d}x} \log \Gamma(x)$

Hint-2 Trigamma function $\psi_1(x) = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \log \Gamma(x)$

Hint-3
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Exercise 20

Prove the following statement: Given that the assumptions of Cramer Theorem (for the Normality of MLE) are satisfied, and that $\mathcal{I}(\theta)$ and $\mathcal{J}_n(\theta)$ are continuous on θ , then

$$\sqrt{n}\mathcal{I}(\theta_0)^{1/2}(\hat{\theta}_n - \theta_0) \xrightarrow{D} \mathcal{N}(0, I)$$
 (4)

$$\sqrt{n}\mathcal{I}(\hat{\theta}_n)^{1/2}(\hat{\theta}_n - \theta_0) \xrightarrow{D} \mathcal{N}(0, I)$$
 (5)

$$\mathcal{J}_n(\hat{\theta}_n)^{1/2}(\hat{\theta}_n - \theta_0) \xrightarrow{D} \mathcal{N}(0, I)$$
 (6)

where $\hat{\theta}_n$ denotes the MLE, θ_0 denotes the true value of θ , and $A^{1/2}$ denotes the lower triangular matrix of the Cholesky decomposition of A; i.e., $A = A^{1/2}(A^{1/2})^T$.

The next exercise is from Homework 4

Exercise 21

(Log likelihood ratio statistic) Let $x_1, x_2, ..., x_n$ be IID random variables generated from a distribution f_{θ} labeled by a d-dimensional parameter $\theta \in \Theta \subset \mathbb{R}^d$, and admitting PDF $f(\cdot|\theta)$. Assume the conditions from the Cramér Theorem are satisfied, and that θ_0 is the true value. Prove that

$$W_{\rm LR}(\theta_0) = -2(\ell_n(\theta_0) - \ell_n(\hat{\theta}_n)) \xrightarrow{D} \chi_d^2$$

it is where $\hat{\theta}_n$ is the MLE of θ .

Hint-1 Expand $\ell_n(\theta_0)$ around $\hat{\theta}_n$ by Taylor expansion

Hint-2 Prove that $W_{LR}(\theta_0) \xrightarrow{a.s} n(\theta_0 - \hat{\theta}_n)^T \mathcal{I}(\theta_0)(\theta_0 - \hat{\theta}_n)$

Hint-3 Prove that $W_{LR}(\theta_0) \xrightarrow{D} \chi_d^2$

The next exercise is from Homework 4

Exercise 22

Let $x_1,...,x_n \stackrel{IID}{\sim} f_{\theta}$ with unknown parameter $\theta \in (0,\infty)$ and PDF

$$f(x|\theta) = \begin{cases} \theta \exp(-x) + (1-\theta)x \exp(-x) & , x \ge 0\\ 0 & , x < 0 \end{cases}$$

- 1. Calculate the moment estimator $\tilde{\theta}_n$ of θ , (I give you a bit of freedom here)
- 2. Calculate the asymptotic distribution of the $\tilde{\theta}_n$
- 3. Find the 1-step estimator $\check{\theta}_n$ of θ such that it can be asymptotically efficient.

Hint: Recall that $\Gamma(a)=\int_0^\infty x^{a-1}e^{-x}\mathrm{d}x$, and $\Gamma(a)=(a-1)\Gamma(a-1)$

The next exercise is from Homework 4

Exercise 23

Let

$$y_i \stackrel{\text{ind}}{\sim} \text{Bin}(n, \pi_i)$$

where i = 1, ..., N. Consider that the probability of success is modeled such as

$$logit(\pi_i) = x_i^T \theta \tag{7}$$

where $\operatorname{logit}(\pi_i) = \operatorname{log}(\frac{\pi_i}{1-\pi_i})$. Here $x_i = (x_{i,1}, ..., x_{i,d})^T$ are known vertors containing the values of the d regessions at the i-th observation, and $\theta \in \mathbb{R}^d$.

1. Show that

$$\pi_i = \frac{e^{x_i^T \theta}}{1 + e^{x_i^T \theta}}$$

2. Assume that the MLE $\hat{\theta}$ of θ is known/calculated. Show that the (1-a) Wald confidence interval for the unknown parameter θ , by using the observed information matrix, is

C.I.:
$$\{\theta \in \mathbb{R}^d : (\hat{\theta}_n - \theta)^T X^T (\operatorname{diag}_{\forall i} (n\hat{\pi}_i (1 - \hat{\pi}_i))) X (\hat{\theta}_n - \theta) \le \chi_{d, 1-a}^2 \}$$

where

$$\hat{\pi}_i = \frac{e^{x_i^T \hat{\theta}}}{1 + e^{x_i^T \hat{\theta}}}$$

X is the so called design matrix from the regression

$$\begin{bmatrix} \operatorname{logit}(\pi_1) \\ \vdots \\ \operatorname{logit}(\pi_N) \end{bmatrix} = \underbrace{\begin{bmatrix} \longleftarrow x_1^T \longrightarrow \\ \vdots \\ \longleftarrow x_N^T \longrightarrow \end{bmatrix}}_{=X} \theta$$

and
$$\operatorname{diag}_{\forall i}(\heartsuit_i) = \begin{bmatrix} \heartsuit_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \heartsuit_N \end{bmatrix}$$
.

3. Find the score statistic rejection area for the hypothesis test $H_0: \theta = \theta_*$ versus $H_1: \theta \neq \theta_*$.

Exercise 24

For i = 1, ..., k, let $x_{i,1}, ..., x_{i,n} \stackrel{\text{IID}}{\sim} \text{Poi}(\theta_i)$. Find the asymptotic likelihood ratio rejection area for teasting the hypothesis

$$H_0: \theta_1 = ... = \theta_k$$

Hint: It is

$$f(x|\theta) = \frac{\theta^x e^{-\theta}}{x!} \mathbb{1}(x \in \mathbb{N})$$

Exercise 25

Let $x = (x_1, ..., x_c) \sim \text{Mult}(\pi_1, ..., \pi_c)$, with $\pi_i \in (0, \infty)$ and $\sum_{i=1}^c \pi_i = 1$. Find the asymptotic likelihood ratio rejection area for teasting the hypothesis

$$H_0: \pi_1 = \dots = \pi_c = \frac{1}{c}$$

Hint: It is

$$f(x|\theta) = \binom{n}{x_1...x_c} \prod_{i=1}^c \pi_i^{x_i}$$

The next exercise was addressed in the last Lecture in Term 1

Exercise 26

(Very difficult) Consider a contigency table with N cells. Consider a Multimomial sampling scheme was used to collect n observations. Let $y = (y_1, ..., y_N)^T$ be the observed counts, and $\pi = (\pi_1, ..., \pi_N)^T$ be the expected probabilities in N cells of a contingency table. Let the total number of observations be $n = \sum_{i=1}^{N} y_i$. Assume that

$$y \sim \text{Mult}(n, \pi)$$
 (8)

where

$$f(y|n,\pi) = \binom{n}{y_1...y_N} \prod_{i=1}^n \pi_i^{y_i}$$

Consider a log-linear model

$$\pi_i = \pi_i(\theta) = \frac{\exp(x_i^T \theta)}{\sum_{\forall k} \exp(x_i^T \theta)}$$
(9)

 $\theta \in \Theta$ is a d-dimensional vector of unknown coefficients, and $x_i = (x_{i,1}, ..., x_{i,d})^T$ are the values of d regressors.

In a matrix form

$$\pi = \frac{\exp(X\theta)}{1_d^T \exp(X\theta)}$$

where

$$X = \begin{bmatrix} \longleftarrow x_1^T \longrightarrow \\ \vdots \\ \longleftarrow x_N^T \longrightarrow \end{bmatrix}$$

Assume that Cramer's Theorem conditions are satisfied. Consider that the MLE $\hat{\theta}_n$ of θ is computed/calculated, and that θ_0 is the unknown true value of θ . Then

1. Show that

$$\frac{\mathrm{d}\pi}{\mathrm{d}\theta} = (\mathrm{diag}(\pi) - \pi\pi^T)X$$

2. Show that the likelihood equations to find the MLE $\hat{\theta}$ of θ are such as

$$X^T y = n X^T \pi(\hat{\theta}_n)$$

Does it ring a bell?

- 3. Consider the j-th single observation $\xi_j = (\xi_{j,1}, ..., \xi_{j,N})^T$ where $\xi_{j,i} = 1$ if it falls in cell i and $\xi_{j,i} = 0$ if it does not fall in cell i. Write the probability distribution $f(\xi_i|...) = ?$ in the form of the Multinomial distribution.
- 4. Calculate the asymptotic distribution of the MLE $\hat{\theta}$ of θ .

Hint: Use the fact that a single observation falls in only one cell, and use its probability.

- 5. Calculate the asymptotic distribution of cell probability estimators $\hat{\pi}$ of π .
- 6. Calculate the Wald's (1 a) CI for θ , that results as an ellipsoid easy to compute or plot in 2D on 3D.

Exercise 27

Show that

$$\lim_{n \to \infty} (1 + \frac{1}{n} a_n)^n = \exp(\lim_{n \to \infty} a_n)$$

provided that $\frac{1}{n}a_n \to 0$, as $n \to \infty$.

Hint: From Taylor expansion, it is

$$\log(1+x) = x + o(x)$$
, as $x \to 0$.