

AWS-LC Cryptographic Module (dynamic)

Module Version: AWS-LC FIPS 2.0.0

FIPS 140-3 Non-Proprietary Security Policy

Document version: 1.0

Last update: 2023-11-03

Prepared by: atsec information security corporation 4516 Seton Center Pkwy, Suite 250 Austin, TX 78759 www.atsec.com

1 Table of Contents

1	G	General		7
	1.1	l Overview		7
	1.2	2 Security Levels		7
	1.3	3 Additional Information		7
2	C	Cryptographic Module Specification	on	9
	2.1	l Description		9
	2.2	2 Operating Environments		9
	2.3	3 Excluded Components		0
	2.4	1 Modes of Operation of the Module	1	0
	2.5	5 Algorithms	1	0
	2.6	5 Security Function Implementation	1	6
	2.7	7 Algorithm Specific Information	1	6
	2	2.7.1 GCM IV	1	6
	2	2.7.2 AES XTS	1	7
	2	2.7.3 Key Derivation using SP 800	-132 PBKDF21	7
	2	2.7.4 Compliance to SP 800-56AR	ev3 assurances1	7
	2.8	RNG and Entropy		8
	2.9	9 Key Generation		8
	2.10	L0 Key Establishment		8
	2.11	L1 Industry Protocols		9
3	C	Cryptographic Module Interfaces	20	0
4	R	Roles, Services, and Authentication	on2	1
	4.1	L Authentication Methods	2	1
	4.2	2 Roles	2	1
	4.3	3 Approved Services	2	1
	4.4	Non-Approved Services	2	3
	4.5	External Software/Firmware Loaded	2	3
5	S	Software/Firmware Security	24	4
	5.1	l Integrity Techniques	2	4
	5.2	2 Initiate On-Demand Integrity Test	2	4
6	0	Operational Environment	2!	5
			Requirements	
	6.2	2 Configurable Settings and Restriction	ons2	5
7	P	Physical Security	20	6
8	N	Non-Invasive Security	2	7

9	Sensiti	ve Security Parameter Management	28
g	.1 Stora	ge Areas	28
g	.2 SSP II	nput-Output Methods	28
g	.3 Zeroi:	zation Methods	28
g	.4 SSPs.		28
g	.5 Trans	sitions	31
10	Self-Te	sts	32
1	.0.1 Pre-O	perational Self-Test	32
1	0.2 Cond	itional Self-Tests	32
	10.2.1	Conditional Cryptographic Algorithm Tests	34
	10.2.2	Conditional Pair-Wise Consistency Tests	34
1	.0.3 Perio	dic Self-Tests	34
1	.0.4 Error	States	34
1	.0.5 Opera	ator Initiation	35
11	Life-Cy	cle Assurance	36
1	1.1 Instal	lation, Initialization and Startup Procedures	36
1	1.2 Admi	nistrator Guidance	37
12	Mitigat	ion of Other Attacks	38
13	Glossa	ry and Abbreviations	39
14	Refere	nces	40

2 List of Tables

Table 1: Security Levels	7
Table 2: Tested Module Identification	9
Table 3: Tested Operational Environments	10
Table 4: Modes of Operation of the Module	10
Table 5: Approved Algorithms	14
Table 6: Vendor Affirmed Algorithms	15
Table 7: Non-Approved Allowed Algorithms with No Security Claimed	15
Table 8: Non-Approved Algorithms, Not Allowed in the Approved Mode of Operation	15
Table 9: Security Function Implementation	16
Table 10: Key Generation	18
Table 11: Key Establishment	19
Table 12: Ports and Interfaces	20
Table 13: Roles	21
Table 14: Approved Services	22
Table 15: Non-Approved Services	23
Table 16: Storage Areas	28
Table 17: SSP Input-Output	28
Table 18: Zeroization Methods	28
Table 19: SSP Information First	30
Table 20: SSP Information Second	31
Table 21: Pre-Operational Self-Tests	32
Table 22: Conditional Self-Tests	34
Table 23: Error States	35

3 List of Figures

Figure 1: Block diagram9

Copyrights and Trademarks

Amazon is a registered trademark of Amazon Web Services, Inc. or its affiliates.

1 General

1.1 Overview

This document is the non-proprietary FIPS 140-3 Security Policy for version AWS-LC FIPS 2.0.0 of the AWS-LC Cryptographic Module (dynamic). It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for an overall Security Level 1 module.

1.2 Security Levels

Table 1 describes the individual security areas of FIPS 140-3, as well as the security levels of those individual areas.

ISO/IEC 24759 Section 6. Subsections	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic Module Specification	1
3	Cryptographic Module Interfaces	1
4	Roles, Services, and Authentication	1
5	Software/Firmware Security	1
6	Operational Environment	1
7	Physical Security	N/A
8	Non-invasive Security	N/A
9	Sensitive Security Parameter Management	1
10	Self-tests	1
11	Life-cycle Assurance	1
12	Mitigation of Other Attacks	1

Table 1: Security Levels

1.3 Additional Information

This Security Policy describes the features and design of the module named AWS-LC Cryptographic Module (dynamic) using the terminology contained in the FIPS 140-3 specification. The FIPS 140-3 Security Requirements for Cryptographic Module specifies the security requirements that will be satisfied by a cryptographic module utilized within a security system protecting sensitive but unclassified information. The NIST/CCCS Cryptographic Module Validation Program (CMVP) validates cryptographic module to FIPS 140-3. Validated products are accepted by the Federal agencies of both the USA and Canada for the protection of sensitive or designated information.

This Non-Proprietary Security Policy may be reproduced and distributed, but only whole and intact and including this notice. Other documentation is proprietary to their authors.

The vendor has provided the non-proprietary Security Policy of the cryptographic module, which was further consolidated into this document by atsec information security together with other vendor-supplied documentation. In preparing the Security Policy document, the laboratory formatted the vendor-supplied documentation for consolidation without altering the technical statements therein contained. The further refining of the Security Policy document was conducted iteratively throughout the conformance testing, wherein the Security Policy was submitted to the vendor, who would then edit, modify, and add technical contents. The vendor would also supply additional documentation, which the laboratory formatted into the existing Security Policy, and resubmitted to the vendor for their final editing.

2 Cryptographic Module Specification

2.1 Description

Purpose and Use: The AWS-LC Cryptographic Module (dynamic) (hereafter referred to as "the module") provides cryptographic services to applications running in the user space of the underlying operating system through a C language Application Program Interface (API).

Module Type: Software

Module Embodiment: Multi-chip standalone

Module Characteristics: N/A

Cryptographic Boundary: The block diagram in Figure 1 shows the cryptographic boundary of the module, its interfaces with the operational environment and the flow of information between the module and operator (depicted through the arrows).

The module components consist of the bcm.o (AWS-LC FIPS 2.0.0), which is dynamically linked to the userspace application during the compilation process.

Figure 1: Block diagram

2.2 Operating Environments

Tested Module Identification - Software, Firmware, Hybrid (Executable Code Sets):

Package/File Names Software/ Firmware Version		Integrity Test Implemented	
bcm.o	AWS-LC FIPS 2.0.0	HMAC-SHA2-256	

Table 2: Tested Module Identification

Tested Operational Environments - Software, Firmware, Hybrid:

Operating System	Hardware Platform	Processor(s)	PAA/PAI	Hypervisor or Host OS	Version(s)
Amazon Linux 2	Amazon EC2 c5.metal with 192 GiB system	Intel ® Xeon ® Platinum	AES-NI and SHA extensions	N/A	AWS-LC FIPS 2.0.0
Amazon Linux 2023	memory and Elastic Block Store (EBS) 200	8275CL	(PAA) Neon and Crypto Extension (CE) (PAA)		1113 21010
Ubuntu 22.04	GiB				
Amazon Linux 2	Amazon EC2 c6g.metal with 128 GiB system memory and Elastic	Graviton3			AWS-LC
Amazon Linux 2023					FIPS 2.0.0
Ubuntu 22.04	Block Store (EBS) 200 GiB				

Table 3: Tested Operational Environments

2.3 Excluded Components

The module does not claim any excluded components.

2.4 Modes of Operation of the Module

Name	Description	Туре	Status Indicator
Approved Mode	Automatically entered whenever an approved service is requested.	Approved	Equivalent to the indicator of the requested service.
Non-approved Mode	Automatically entered whenever a non- approved service is requested.	Non-Approved	Equivalent to the indicator of the requested service.

Table 4: Modes of Operation of the Module

Mode change instructions and status indicators:

When the module starts up successfully, after passing the pre-operational self-test and the cryptographic algorithms self-tests (CASTs), the module is operating in the approved mode of operation by default and can only be transitioned into the non-approved mode by calling one of the non-approved services listed in Table 15. The module will transition back to approved mode when approved service is called. Section 4 provides details on the service indicator implemented by the module. The service indicator identifies when an approved service is called.

Degraded Mode Description:

The module does not implement a degraded mode of operation.

2.5 Algorithms

Approved Algorithms:

Algorithm			OE (Implementation)	Reference
Name	Numbers	Capabilities		
AES-CBC	A4489, A4493, A4501, A4484,	Encryption, Decryption using	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, CE, VPAES	FIPS197, SP800- 38A, SP 800-
	A4487, A4497	128,192,256 bits key	Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, CE, VPAES	38A Addendum
			Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: AES_C, CE, VPAES	
			Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
			Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
			Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
AES-CCM	· · · · · · · · · · · · · · · · · · ·	Authenticated Encryption,	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES	FIPS197, SP800- 38C
		Authenticated Decryption using 128	Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, BAES_CTASM, CE, VPAES	
		bit key	Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES	
			Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
			Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
			Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
AES-CMAC	A4501, A4487,	Message Authentication	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES	FIPS197, SP800-38B
	A4497	Generation 128- or 256-bits key	Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, BAES_CTASM, CE, VPAES	
			Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES	
			Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM	
			Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM	
			Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM	
AES-CTR		Encryption, Decryption	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES	FIPS 197, SP 800-38A, SP
	A4487, A4497	128,192,256 bits key	Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, BAES_CTASM, CE, VPAES	800-38A Addendum
			Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES	
			Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
			Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	
			Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	

Algorithm Name	CAVP Cert Numbers	Algorithm Capabilities	OE (Implementation)	Reference
AES-ECB	A4489, A4490, A4493, A4494, A4496, A4501, A4502, A4503, A4504, A4484, A4485, A4486, A4487, A4488, A4495, A4497, A4498, A4499, A4500	Encryption, Decryption using 128,192,256 bits key	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, AES_C GCM, CE_GCM_UNROLL8_EOR3, CE_GCM, VPAES, VPAES_GCM Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, AES_C GCM, VPAES, VPAES_GCM CE_GCM_UNROLL8_EOR3, CE_GCM, VPAES, VPAES_GCM Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: AES_C, AES_C_GCM, VPAES VPAES_GCM Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESNI_AVX, AESNI_ASM, AESASM, AESASM_AVX, AES_CLMULNI, BAES_CTASM_ASM AMAZON LINUX 2 ON EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESNI_AVX, AESNI_ASM, AESASM_ASM, AESASM_AVX, AES_CLMULNI, BAES_CTASM_ASM AMAZON LINUX 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESNI_ASNI, AESNI_ASM, AESASM_ASM, AESASM_AVX, AES_CLMULNI, BAES_CTASM_ASM AMAZON LINUX 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESNI_AVX, AES_CLMULNI, BAES_CTASM_ASM Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESNI_AVX, AESNI_ASM, AESASM, AESASM_ASM, AESASM_CLMULNI, BAES_CTASM_ASM, AESASM_CLMULNI, BAES_CTASM_ASM, AESASM_CLMULNI, BAES_CTASM_ASM, AESASM_CLMULNI, BAES_CTASM_ASM, AESASM_CLMULNI, BAES_CTASM_ASM, BAES_CTASM_CLMULNI, BAES_CTASM_ASM, BAES_CTASM_CLMULNI, BAES_CTASM_ASM, BAES_CTASM_CLMULNI, BAES_CTASM_ASM, BAES_CTASM_CLMULNI, BAES_CTASM_ASM, BAES_CTASM_CLMULNI, BAES_CTASM_ASM	FIPS 197, SP 800-38A, SP 800-38A Addendum
AES-GCM	A4490, A4494, A4496, A4502, A4503, A4504, A4485, A4486, A4488, A4495, A4498, A4499, A4500	Authenticated Encryption (with Internal IV Mode 8.2.2), using 128 or 256 bits key	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, AES_C_GCM, CE_GCM_UNROLL8_EOR3, CE_GCM, VPAES_GCM Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, AES_C GCM, CE_GCM_UNROLL8_EOR3, CE_GCM, VPAES_GCM Amazon Linux 2 on EC2 bare metal on Amazon	FIPS197, SP800-38D
AES-GCM AES-GMAC		Authenticated Decryption (with external IV) using 128- or 256-bits key Message Authentication Generation using 128- or 256-bits key	Graviton3: AES_C, AES_C_GCM, CE_GCM_UNROLL8_EOR3, CE_GCM, VPAES_GCM Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: ASENI_AVX, AESNI_ASM, AESASM_AVX, AES_CLMULNI, AESASM_ASM, AESNI_CLMULNI, BAES_CTASM_AVX, BAES_CTASM_CLMULNI, BAES_CTASM_ASM Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: ASENI_AVX, AESNI_ASM, AESASM_AVX, AES_CLMULNI, AESASM_ASM, AESNI_CLMULNI, BAES_CTASM_AVX, BAES_CTASM_CLMULNI, BAES_CTASM_ASM Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: ASENI_AVX, AESNI_ASM, AESASM_AVX, AES_CLMULNI, AESASM_ASM, AESNI_CLMULNI, BAES_CTASM_AVX, BAES_CTASM_CLMULNI, BAES_CTASM_ASM, AESNI_CLMULNI, BAES_CTASM_ASM, AESNI_CLMULNI, BAES_CTASM_ASM, BAES_CTASM_CLMULNI, BAES_CTASM_ASM	FIPS197, SP800-38D FIPS197, SP800- 38D
AES-KWP AES-XTS	A4489, A4493, A4501, A4484, A4487, A4497	Key Wrapping, Key Unwrapping using 128,192,256 bits key Encryption, Decryption using 256 bits key	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, AESNI, BAES_CTASM, CE, VPAES Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: AES_C, BAES_CTASM, CE, VPAES Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	FIPS197, SP800- 38F FIPS 197, SP 800-38E

© 2023 Amazon Web Services, Inc., atsec information security.

Algorithm Name	CAVP Cert Numbers	Algorithm Capabilities	OE (Implementation)	Reference
CTR_DRBG	A4489, A4493, A4501, A4484, A4487, A4497	Random Number Generation using AES 256 bits without derivation function or prediction resistance.	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: AES_C, CE, VPAES Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: AES_C, CE, VPAES Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: AES_C, CE, VPAES Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: AESNI, AESASM, BAES_CTASM	SP800-90Arev1
ECDSA	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Key Generation using P-224, P-256, P-384, P-521 Key Verification using P-224, P-256, P-384, P-521	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: SHA_ASM, SHA_CE, NEON Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: SHA_ASM, SHA_CE, NEON Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: SHA_ASM, SHA_CE, NEON Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA SHANI, SHA AVX2,	FIPS 186-5 A.2.2 FIPS 186- 5 Rejection Sampling FIPS 186-5 for all except FIPS 186-4 for signature
ECDSA with SHA2-224, SHA2-256, SHA2-384, SHA2-512 ECDSA with SHA-1, SHA2-		Signature Generation using P-224, P-256, P- 384, P-521 Signature Verification using P-224, P-256, P-	SHA_AVX, SHA_SSSE3 Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3 Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	verification with SHA-1
224, SHA2-256, SHA2-384, SHA2-512		384, P-521		
HMAC-SHA-1, HMAC-SHA2- 224, HMAC-SHA2- 256, HMAC-SHA2- 384, HMAC-SHA2- 512, HMAC-SHA2- 512/256	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Message Authentication Generation using 112- 524288 bits key	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: SHA_ASM, SHA_CE, NEON Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: SHA_ASM, SHA_CE, NEON Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: SHA_ASM, SHA_CE, NEON Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3 Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA SHANI,	FIPS198-1
KAS-ECC-SSC ECC Ephemeral Unified scheme	A4492, A4505,	Shared Secret Computation using P- 224, P-256, P-384, P- 521	SHA_AVX2, SHA_AVX, SHA_SSSE3 Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	SP800-56ARev3
KDA HKDF with HMAC-SHA-1, HMAC-SHA2- 224, HMAC- SHA-256, HMAC-SHA2- 384, HMAC- SHA2-512	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Key Derivation Derived Key Length: 2048 Shared Secret Length: 224-2048 Increment 8		SP800-56Crev1

Algorithm Name	CAVP Cert Numbers	Algorithm Capabilities	OE (Implementation)	Reference
	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Key Derivation		SP800-135rev1
	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Password based key derivation: Iteration Count: 1000- 10000 Increment 1 Password Length: 14- 128 Increment 1 Salt Length: 128-4096 Increment 8 Key Data Length: 128-4096 Increment 8	Amazon Linux 2023 on EC2 bare metal on Amazon Graviton3: SHA_ASM, SHA_CE, NEON Ubuntu on EC2 bare metal on Amazon Graviton3 AWS Graviton: SHA_ASM, SHA_CE, NEON Amazon Linux 2 on EC2 bare metal on Amazon Graviton3: SHA_ASM, SHA_CE, NEON Amazon Linux 2 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3 Amazon Linux 2023 on EC2 bare metal on Intel	SP800-132 Option 1a
RSA PKCS#1v1.5 with SHA2-224, SHA2-256, SHA2-384, SHA2-512 RSA PSS with SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA2-512, SHA2-512,	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Key Generation using 2048,3072, 4096 bits key Signature Generation using 2048,3072, 4096 bits key	Amazon Linux 2023 on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3 Ubuntu on EC2 bare metal on Intel Cascade Lake Xeon Platinum 8275CL: SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	FIPS 186-5 A.1.3 Random Probable Primes
RSA PKCS#1v1.5 with SHA-1, SHA2-224, SHA2-356, SHA2-384, SHA2-512; RSA PSS with SHA-1, SHA2- 224, SHA2-256, SHA2-384, SHA2-512, SHA2-512/256		Signature Verification using 1024, 2048,3072, 4096 bits key.		FIPS 186-5 except FIPS 186-4 for use of SHA-1 and 1024 bit key
SSH KDF with AES-128, AES- 192, AES-256; SHA-1, SHA2- 224, SHA2-256, SHA2-384, SHA2-512	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Key Derivation		SP800-135rev1
SHA-1, SHA2- 224, SHA2-256, SHA2-384, SHA2-512, SHA2-512/256	A4483, A4491, A4492, A4505, A4506, A4507, A4508	Message Digest		FIPS180-4

Table 5: Approved Algorithms

© 2023 Amazon Web Services, Inc., atsec information security.

Vendor-Affirmed Algorithms:

Algorithm Name	Algorithm Capabilities	OE (Implementation)	References
Cryptographic Key Generation (CKG)	FIPS 186-5 Key generation RSA: 2048, 3072, 4096 bits with 112, 128, 149 bits of key strength. EC: P-224, P-256, P 384, P-521 elliptic curves with 112-256 bits of key strength	Software; OE same as in Table 3	SP 800-133Rev2 section 5.1 and 5.2

Table 6: Vendor Affirmed Algorithms

Non-Approved, Allowed Algorithms:

The module does not implement non-approved algorithms that are allowed in the approved mode of operation.

Non-Approved, Allowed Algorithms with No Security Claimed:

Algorithm	Caveat	Use/Function
MD5	Allowed per IG 2.4.A	Message Digest used in TLS 1.0/1.1 KDF only

Table 7: Non-Approved Allowed Algorithms with No Security Claimed

Non-Approved Not Allowed Algorithms:

Algorithm/Functions	Use/Function
AES with OFB or CFB1, CFB8 modes	Encryption, Decryption
AES GCM, GCM, GMAC, XTS with keys not listed in Table 5	Encryption, Decryption
AES using aes_*_generic function	Encryption, Decryption
AES GMAC using aes_*_generic	Message Authentication Generation
Curve secp256k1	Signature Generation, Signature Verification, Shared Secret Computation
Diffie Hellman	Shared Secret Computation
HMAC-MD4, HMAC-MD5, HMAC-SHA1, HMAC-SHA-3, HMAC-RIPEMD-160	Message Authentication Generation
MD4	Message Digest
MD5	Message Digest (outside of TLS)
RSA using RSA_generate_key_ex	Key Generation
ECDSA using EC_KEY_generate_key	Key Generation
RSA using keys less than 2048 bits	Signature Generation
RSA using keys less than 1024 bits	Signature Verification
RSA	Key Wrapping, sign/verify primitive operations without hashing
RSA	Encryption primitive, PKCS#1 v1.5 and OAEP padding
SHA-1, SHA-3	Signature Generation
SHAKE, RIPEMD-160, SHA-3	Message Digest
TLS KDF using any SHA algorithms not listed in Table 5 or TLS KDF using non extended master secret	Key Derivation

Table 8: Non-Approved Algorithms, Not Allowed in the Approved Mode of Operation

2.6 Security Function Implementation

Name	Туре	Description	SF Capabilities	Algorithms
KAS-ECC-SSC [SP 800-56ARev3]	KAS	Shared secret computation	Curves: P-224, P-256, P-384, P-521 elliptic	KAS-ECC-SSC: A4483, A4491, A4492, A4505, A4506, A4507, A4508
AES KW, AES-KWP [SP 800-38F]	KTS	Key wrapping, key unwrapping	· · · · ·	AES: A4489, A4493, A4501, A4484, A4487, A4497
AES GCM [SP 800- 38D]	KTS	Key wrapping, key unwrapping	128, 256 bits with 128 and 256 bits of key strength Complaint with IG D.G	AES: A4490, A4494, A4496, A4502, A4503, A4504, A4485, A4486, A4488, A4495, A4498, A4499, A4500
AES CCM [SP 800- 38C]	KTS	Key wrapping, key unwrapping		AES: A4489, A4493, A4501, A4484, A4487, A4497

Table 9: Security Function Implementation

2.7 Algorithm Specific Information

2.7.1 GCM IV

The module offers three AES GCM implementations. The GCM IV generation for these implementations complies respectively with IG C.H under Scenario 1, Scenario 2, and Scenario 5. The GCM shall only be used in the context of the AES-GCM encryption executing under each scenario, and using the referenced APIs explained next.

Scenario 1. TLS 1.2

For TLS 1.2, the module offers the GCM implementation via the functions EVP_aead_aes_128_gcm_tls12() and EVP_aead_aes_256_gcm_tls12(), and uses the context of Scenario 1 of IG C.H. The module is compliant with SP800-52rev2 and the mechanism for IV generation is compliant with RFC5288. The module supports acceptable AES-GCM ciphersuites from Section 3.3.1 of SP800-52rev2.

The module explicitly ensures that the counter (the nonce_explicit part of the IV) does not exhaust the maximum number of possible values of 2^{64-1} for a given session key. If this exhaustion condition is observed, the module returns an error indication to the calling application, which will then need to either abort the connection, or trigger a handshake to establish a new encryption key.

In the event the module's power is lost and restored, the consuming application must ensure that a new key for use with the AES-GCM key encryption or decryption under this scenario shall be established.

Scenario 2, Random IV

In this implementation, the module offers the interfaces EVP_aead_aes_128_gcm_randnonce() and EVP_aead_aes_256_gcm_randnonce() for compliance with Scenario 2 of IG C.H and SP800-38D Section 8.2.2. The AES-GCM IV is generated randomly internal to the module using module's approved DRGB. The DRBG seeds itself from the entropy source. The GCM IV is 96 bits in length. Per Section 9, this 96-bit IV contains 96 bits of entropy.

Scenario 5. TLS 1.3

For TLS 1.3, the module offers the AES-GCM implementation via the functions EVP_aead_aes_128_gcm_tls13() and EVP_aead_aes_256_gcm_tls13(), and uses the context of Scenario 5 of IG C.H. The protocol that provides this compliance is TLS 1.3, defined in RFC8446 of

© 2023 Amazon Web Services, Inc., atsec information security.

August 2018, using the ciphersuites that explicitly select AES-GCM as the encryption/decryption cipher (Appendix B.4 of RFC8446). The module supports acceptable AES-GCM ciphersuites from Section 3.3.1 of SP800-52rev2.

The module implements, within its boundary, an IV generation unit for TLS 1.3 that keeps control of the 64-bit counter value within the AES-GCM IV. If the exhaustion condition is observed, the module will return an error indication to the calling application, who will then need to either trigger a re-key of the session (i.e., a new key for AES-GCM), or terminate the connection.

In the event the module's power is lost and restored, the consuming application must ensure that new AES-GCM keys encryption or decryption under this scenario are established. TLS 1.3 provides session resumption, but the resumption procedure derives new AES-GCM encryption keys.

2.7.2 AES XTS

The length of a single data unit encrypted or decrypted with AES XTS shall not exceed 2²⁰ AES blocks, that is 16MB, of data per XTS instance. An XTS instance is defined in Section 4 of SP 800-38E. The XTS mode shall only be used for the cryptographic protection of data on storage devices. It shall not be used for other purposes, such as the encryption of data in transit.

2.7.3 Key Derivation using SP 800-132 PBKDF2

The module provides password-based key derivation (PBKDF2), compliant with SP 800-132. The module supports option 1a from Section 5.4 of SP 800-132, in which the Master Key (MK) or a segment of it is used directly as the Data Protection Key (DPK). In accordance with SP 800-132 and FIPS 140-3 IG D.N, the following requirements shall be met:

- Derived keys shall only be used in storage applications. The MK shall not be used for other purposes. The module accepts a minimum length of 112 bits for the MK or DPK.
- Passwords or passphrases, used as an input for the PBKDF2, shall not be used as cryptographic Keys.
- The minimum length of the password or passphrase accepted by the module is 14 characters. This results in the estimated probability of guessing the password to be at most 10⁻¹⁴. Combined with the minimum iteration count as described below, this provides an acceptable trade-off between user experience and security against brute-force attacks.
- A portion of the salt, with a length of at least 128 bits (this is verified by the module to determine the service is approved), shall be generated randomly using the SP 800-90Ar1 DRBG provided by the module.
- The iteration count shall be selected as large as possible, if the time required to generate the key using the entered password is acceptable for the users. The module restricts the minimum iteration count to be 1000.

2.7.4 Compliance to SP 800-56ARev3 assurances

The module offers ECDH shared secret computation services compliant to the SP 800-56ARev3 and meeting IG D.F scenario 2 path (1). To meet the required assurances listed in section 5.6 of SP 800-56ARev3, the module shall be used together with an application that implements the "TLS protocol" and the following steps shall be performed.

- The entity using the module, must use the module's "Key Pair Generation" service for generating ECDH ephemeral keys. This meets the assurances required by key pair owner defined in the section 5.6.2.1 of SP 800-56ARev3.
- As part of the module's shared secret computation (SSC) service, the module internally
 performs the public key validation on the peer's public key passed in as input to the SSC

© 2023 Amazon Web Services, Inc., atsec information security.

function. This meets the public key validity assurance required by the sections 5.6.2.2.1/5.6.2.2.2 of SP 800-56Arev3.

• The module does not support static keys therefore the "assurance of peer's possession of private key" is not applicable.

2.8 RNG and Entropy

The module provides an SP800-90Arev1-compliant Deterministic Random Bit Generator (DRBG) using CTR_DRBG mechanism with AES-256 for generation of key components of asymmetric keys, and random number generation. The DRBG is seeded with 256-bit of entropy input provided from an external entity to the module. This corresponds to scenario 2 (b) of IG 9.3.A i.e., the DRBG that receives a LOAD command with entropy obtained from inside the physical perimeter of the operational environment but outside of module's cryptographic boundary. The calling application shall use an entropy source that meets the security strength required for the CTR_DRBG as shown in NIST SP 800-90Arev1, Table 3 and should return an error if minimum strength cannot be met.

Per the IG 9.3.A requirement, the module includes the caveat "No assurance of the minimum strength of generated keys".

2.9 Key Generation

Name	Туре	Properties
ECDSA	CKG	EC: P-224, P-256, P 384, P-521 elliptic curves with 112-256 bits of key strength Method: FIPS 186-5 A.2.2 Rejection Sampling using a DRBG compliant with SP800-90Arev1 Compliant with SP800-133Rev2 section 5.1 and 5.2
RSA	CKG	RSA: 2048, 3072, 4096 bits with 112, 128, 149 bits of key strength. Method: FIPS 186-5 A.1.3 Random Probable Primes using a DRBG compliant with SP800- 90Arev1 and SP800-133Rev2 section 5.1
KDA HKDF	Key Derivation	Key type: Symmetric key; Security strength: 112-256 bits Method: SP 800-56Cr1; (HMAC) SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512 Compliant with SP800-133Rev2 section 6.2
PBKDF	Key Derivation	Key type: Symmetric key; Security strength: 112-256 bits Method: option 1a of SP 800-132; (HMAC) SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512 Compliant with SP800-133Rev2 section 6.2
SSH	Key Derivation	Key type: Symmetric key; Security strength: 112-256 bits Method: SP 800-135r1; AES-128, AES-192, AES-256 with SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512 Compliant with SP800-133Rev2 section 6.2
TLS KDF	Key Derivation	Key type: Symmetric key; Security strength: 112-256 bits Method: SP 800-135r1; SHA2-256, SHA2-384, SHA2-512 Compliant with SP800-133Rev2 section 6.2

Table 10: Key Generation

2.10 Key Establishment

Name	Туре	Properties
KAS-ECC-SSC [SP800-56Arev3]	KAS (Shared Secret Computation)	Curves: P-224, P-256, P-384, P-521 elliptic curves with 112-256 bits of key strength Compliant with IG D.F scenario 2(1)
AES GCM [SP 800-38D]	KTS-Wrap (Key wrapping, Key unwrapping)	128 and 256 bits with 128 and 256 bits of key strength Compliant with IG D.G
AES CCM [SP 800-38C]		128 bits with 128 bits of key strength Compliant with IG D.G

^{© 2023} Amazon Web Services, Inc., atsec information security.

AES KW, AES KWP [SP 800-38F]	128, 192, 256 bits with 128-256 bits of key strength Compliant with IG D.G
	Complaint With 16 D.C

Table 11: Key Establishment

2.11 Industry Protocols

The module implements the SSH key derivation function for use in the SSH protocol (RFC 4253 and RFC 6668).

GCM with internal IV generation in the approved mode is compliant with versions 1.2 and 1.3 of the TLS protocol (RFC 5288 and 8446) and shall only be used in conjunction with the TLS protocol. Additionally, the module implements the TLS 1.2 and TLS 1.3 key derivation functions for use in the TLS protocol.

No parts of the SSH, TLS, other than those mentioned above, have been tested by the CAVP and CMVP.

3 Cryptographic Module Interfaces

As a Software module, the module interfaces are defined as Software or Firmware Module Interfaces (SMFI), and there are no physical ports.

Logical Interface	Data that passes over port/interface
Data Input	API input parameters for data.
Data Output	API output parameters for data.
Control Input	API function calls.
Status Output	API return codes, error message.

Table 12: Ports and Interfaces 1

 $^{^{1}}$ The control output interface is omitted on purpose because the module does not implement it. The physical ports are not applicable because the module is software only.

^{© 2023} Amazon Web Services, Inc., atsec information security.

4 Roles, Services, and Authentication

4.1 Authentication Methods

The module does not support authentication.

4.2 Roles

The module does not support concurrent operators.

Name	Туре	Operator Type	Authentication
Crypto Officer	Role	СО	N/A (Implicitly assumed)

Table 13: Roles

4.3 Approved Services

Name	Description	Indicator	Inputs	Outputs	Security Functions	Roles	SSP Access
Encryption	Encryption	Return value 1	AES key, plaintext	Ciphertext	AES CBC, CTR, ECB, XTS	СО	AES Key: W, E
Decryption	Decryption	from the function: FIPS	AES key, ciphertext	Plaintext	listed in Table 5		
Authenticated Encryption	Authenticated Encryption	service_ indicator_	AES key, plaintext	Ciphertext	AES CCM AES GCM listed		AES Key: W, E
Authenticated Decryption	Authenticated Decryption	check_appr oved()	AES key, ciphertext	Plaintext	in Table 5		
Key wrapping	Encrypting a key		AES key wrapping key, Key to be wrapped	Wrapped key	AES KW, KWP, CCM, GCM		AES key: W, E
Key unwrapping	Decrypting a key		AES key unwrapping key	Unwrapped key	AES KW, KWP, CCM, GCM		AES key: W, E
Message Authentication	MAC computation		AES key, message	MAC tag	AES CMAC, GMAC		AES Key: W, E
Generation			HMAC key, message		НМАС		HMAC Key: W, E
Message Digest	Generating message digest		Message	Message digest	SHA	-	N/A
Random	Generating		Output	Random	CTR_DRBG		Entropy Input: W, E
Number Generation	random numbers		length	bytes			DRBG Seed, V, Key: G, E
Key Generation	Generating key pair		Modulus size	RSA public key, RSA private key	RSA listed in Table 5 CKG	-	RSA Public Key: G, R; RSA Private Key: G, R
			Curve	EC public key, EC private key	ECDSA listed in Table 5, CKG		EC Public Key: G, R; EC Private Key: G, R
Key Verification	Verifying the public key		Public key	Success/ error	ECDSA listed in Table 5		ECDSA Public Key: W, E

Name	Description	Indicator	Inputs	Outputs	Security Functions	Roles	SSP Access
Signature Generation	Generating signature		Message, EC private key or RSA private key	Digital signature	RSA, ECDSA listed in Table 5		RSA/ECDSA Private Key: W, E
Signature Verification	Verifying signature		Signature, EC public key or RSA public key	Digital signature verification result	RSA, ECDSA listed in Table 5		RSA/ECDSA Public Key: W, E
Shared Secret Computation	Calculating the Shared Secret		EC public key, EC private key	Shared Secret	KAS-ECC-SSC		EC Public Key: W, E; EC Private Key: W, E
Key Derivation	Deriving Keys		TLS Pre- Master Secret	TLS Master secret	TLS KDF 1.0/1.1/1.2, KDA HKDF		Shared Secret: G, R TLS Pre-Master Secret: W, E
			TLS Master Secret	Derived Key	TLS KDF 1.0/1.1/1.2, KDA HKDF		TLS Master Secret: W, E, G; TLS Derived Keys: G; Derived Key: G, R
			Password, salt, iteration count		PBKDF2		Derived Key: G, R; Password: W, E
			Shared Secret, Key Length, Digest		KDA HKDF		Derived Key: G, R; Shared Secret: W, E
			Shared Secret, Key Length		SSH KDF		Derived Key: G, R
Zeroization	Zeroize PSP in volatile memory	N/A	SSP	N/A	None		All SSPs: Z
On-Demand Self-test	Initiate power-on self-tests by reset		N/A	Pass or fail	AES, HMAC, SHA, DRBG, RSA, ECDSA, KAS ECC SSC, TLS KDF, KDA HKDF, PBKDF		N/A
On-Demand Integrity Test	Initiate integrity test on-demand		N/A		HMAC-SHA2- 256		N/A
Show Status	Show status of the module state		N/A	Module status	N/A		N/A
Show Version	Show the version of the module using awslc_version_string		N/A	Module name and version	N/A		N/A

Table 14: Approved Services

For the above table, the convention below applies when specifying the access permissions (types) that the service has for each SSP.

• G = Generate: The module generates or derives the SSP.

© 2023 Amazon Web Services, Inc., atsec information security.

- R = Read: The SSP is read from the module (e.g., the SSP is output).
- W = Write: The SSP is updated, imported, or written to the module.
- E = Execute: The module uses the SSP in performing a cryptographic operation.
- Z = Zeroize: The module zeroizes the SSP.

For the role, CO indicates "Crypto Officer".

The module implements a service indicator that indicates whether the invoked service is approved. The service indicator is a return value 1 from the FIPS_service_indicator_check_approved function. This function is used together with two other functions. The usage is as follows:

• STEP 1: Should be called before invoking the service.

```
int before = FIPS service indicator before call();
```

STEP 2: Make a service call i.e., API function for performing a service.
 Func();

STEP 3: Should be called after invoking the service.

```
int after = FIPS service indicator after call();
```

• STEP 4: Return value 1 indicates approved service was invoked.

```
int ret = FIPS service indicator check approved(before, after);
```

Alternatively, all the above steps can be done by using a single call using the function CALL SERVICE AND CHECK APPROVED(approved, func).

4.4 Non-Approved Services

Service	Description	Algorithms Accessed	Role	Indicator
Encryption	Encryption	AES listed in Table 8	СО	Return value 0 from the
Decryption	Decryption	1		function
Message Authentication Generation	MAC computation	AES GMAC and HMAC listed in Table 8		FIPS_ service_ indicator
Message Digest	Generating message digest	MD4, MD5 outside TLS 1.0 usage, SHAKE, SHA-3, RIPEMD-160		check_ approved()
Signature Generation	Generating signature	Using SHA-1, SHAKE, SHA-3		
		RSA listed in Table 8, Curve secp256k1		
Signature Verification	Verifying signature	RSA listed in Table 8, Curve secp256k1		
Key Generation	Generating key pair	RSA or ECDSA listed in Table 8		
Shared Secret Computation	Calculating shared secret	Diffie-Hellman, Curve secp256k1		
Key Derivation	Deriving TLS keys	TLS KDF listed in Table 8		
Key Encapsulation	Decrypting a key	RSA		
Key Un-encapsulation	Encrypting a key	RSA		

Table 15: Non-Approved Services

4.5 External Software/Firmware Loaded

The module does not support loading of external software or firmware.

© 2023 Amazon Web Services, Inc., atsec information security.

5 Software/Firmware Security

5.1 Integrity Techniques

The integrity of the module is verified by comparing a HMAC value calculated at run time on the bcm.o file, with the HMAC-SHA2-256 value stored within the module that was computed at build time.

5.2 Initiate On-Demand Integrity Test

The module provides on-demand integrity test. The integrity test can be performed on demand by reloading the module. Additionally, the integrity test can be performed using the On-Demand Integrity Test service, which calls the BORINGSSL integrity test function.

6 Operational Environment

6.1 Operational Environment Type and Requirements

Type of Operational Environment: The module operates in a modifiable operational environment. The module runs on a commercially available general-purpose operating system executing on the hardware specified in section 2.

How requirements are satisfied: The module should be compiled and installed as stated in section 11. The user should confirm that the module is installed correctly by following steps 4 and 5 listed in section 11.

6.2 Configurable Settings and Restrictions

Instrumentation tools like the ptrace system call, gdb and strace, userspace live patching, as well as other tracing mechanisms offered by the Linux environment such as ftrace or systemtap, shall not be used in the operational environment. The use of any of these tools implies that the cryptographic module is running in a non-validated operational environment.

7 Physical Security

The module is comprised of software only and therefore this section is not applicable.

8 Non-Invasive Security

The module claims no non-invasive security techniques.

9 Sensitive Security Parameter Management

9.1 Storage Areas

Storage Area Name	Description	Persistence Type
RAM	Temporary storage for SSPs used by the module as part of service execution. The module does not perform persistent storage of SSPs	Dynamic

Table 16: Storage Areas

9.2 SSP Input-Output Methods

Name	From	То	Format Type	Distribution Type	Entry Type
API input parameters	Operator calling application (TOEPP)	Cryptographic module	Plaintext	Manual (MD)	Electronic (EE)
API output parameters	Cryptographic module	Operator calling application (TOEPP)	Plaintext	Manual (MD)	Electronic (EE)

Table 17: SSP Input-Output

The module does not support entry and output of SSPs beyond the physical perimeter of the operational environment. The SSPs are provided to the module via API input parameters in the plaintext form and output via API output parameters in the plaintext form to and from the calling application running on the same operational environment.

9.3 Zeroization Methods

Zeroization Method	Description	Rationale	Operator Initiation
Free Cipher Handle	Zeroizes the SSPs contained within the cipher handle.	Memory occupied by SSPs is overwritten with zeroes, which renders the SSP values irretrievable.	By calling the appropriate zeroization functions: OpenSSL_cleanse, EVP_CIPHER_CTX_cleanup, EVP_AEAD_CTX_zero, HMAC_CTX_cleanup, CTR_DRBG_clear, RSA_free, EC_KEY_free
Module Reset	De-allocates the volatile memory used to store SSPs	Volatile memory used by the module is overwritten within nanoseconds when power is removed.	By unloading and reloading the module.

Table 18: Zeroization Methods

9.4 SSPs

Name	Description	Size	Strength	Туре	Generation	Established By
	AES key used for encryption, decryption, and computing MAC tags		128-256 bits of strength	Symmetric key	N/A	N/A

^{© 2023} Amazon Web Services, Inc., atsec information security.

Name	Description	Size	Strength	Туре	Generation	Established By
HMAC Key	HMAC key for Message Authentication Generation	112-524288 bits	112-256 bits of strength	Authentication key	N/A	N/A
Entropy Input	Entropy input used to seed the DRBGs	256 bits	256 bits of strength	Entropy	N/A	N/A
DRBG Seed	DRBG seed derived from entropy input as defined in SP 800-90Ar1	256 bits	256 bits of strength	DRBG seed	CTR_DRBG (according to SP800- 90Arev1)	N/A
	Internal state of CTR_DRBG	256 bits	256 bits of strength	Internal state	CTR_DRBG (derived from DRBG seed according to SP800-90Ar1)	N/A
RSA Public Key	RSA public key used for RSA key generation, signature verification	1024, 2048, 3072, 4096 bits	80-150 bits of strength	Public key	RSA (generated according to FIPS 186-5) DRBG (for	N/A
RSA Private Key	RSA private key used for RSA key generation, signature generation	2048, 3072, 4096 bits	112-150 bits of strength	Private key	generation of random values)	N/A
EC Public Key	EC public key used for EC key generation, key verification, signature verification, shared secret computation	P-224, P-256, P-384, P-521	112-256 bits of strength	Public key	ECDSA (generated according to FIPS 186-5) DRBG (for generation of random values)	N/A
EC Private Key	EC private key used for EC key generation, key verification, signature generation, shared secret computation			Private key	random values)	N/A
Shared Secret	Shared Secret generated by KAS- ECC-SSC			Shard secret	N/A	KAS-ECC-SSC (established according to SP800- 56Arev3)
TLS Pre-Master Secret	TLS Pre-Master secret used for deriving the TLS Master Secret	112-256 bits	N/A	TLS pre-master secret	N/A	KAS-ECC-SSC (established according to SP800- 56Arev3)
TLS Master Secret	TLS Master secret used for deriving the TLS Derived Key	384 bits	N/A	TLS Master secret	TLS KDF (derived according to SP800- 135rev1)	N/A
TLS Derived key (AES/HMAC)	TLS Derived Key from TLS Master Secret	AES: 128-256 bits HMAC: 112 to 256 bits	AES: 128-256 bits of strength HMAC: 112-256 bits of strength	Symmetric key	1331CV1)	N/A

^{© 2023} Amazon Web Services, Inc., atsec information security.

Name	Description	Size	Strength	Туре	Generation	Established By
Derived Key	KDA HKDF derived key	112 to 256 bits	N/A	Symmetric key	KDA HKDF (derived according to SP800- 56Crev1)	N/A
	SSH KDF derived key				SSH KDF (derived according to SP800- 135rev1)	
	PBKDF derived key				PBKDF (derived according to SP800-132)	
Password	Password for PBKDF	112-524288 bits	N/A	Password	N/A	N/A
Intermediate Key Generation Value	Intermediate key generation value	224-4096	112-256 bits of strength	Intermediate value	CKG	N/A

Table 19: SSP Information First

Name	Used By	Inputs/Outputs	Storage	Zeroization	Category	Related SSPs
AES Key	Encryption, Decryption, Authenticated Encryption, Authentication Decryption, Key wrapping, Key unwrapping, Message Authentication Generation	API input parameters (input)	RAM	Free Cipher Handle, Module Reset	CSP	None
HMAC Key	Message Authentication Generation	API input parameters (input)			CSP	None
Entropy Input	Random Number Generation	N/A		Automatically	CSP	DRBG Seed
DRBG Seed	Random Number Generation	N/A			CSP	Entropy Input, DRBG Internal State
DRBG Internal State (V, Key)	Random Number Generation	N/A		Free Cipher Handle, Module Reset	CSP	DRBG Seed
RSA Public Key	Key Generation, Signature Verification	API input parameters (input), API			PSP	RSA Private Key
RSA Private Key	Key Generation, Signature Generation	output parameters (output)			CSP	RSA Public Key
EC Public Key	Key Generation, Key Verification, Signature Verification,	API input parameters (input), API output			PSP	EC Private Key, Shared Secret

^{© 2023} Amazon Web Services, Inc., atsec information security.

Name	Used By	Inputs/Outputs	Storage	Zeroization	Category	Related SSPs
	Shared Secret Computation	parameters (output)				
EC Private Key	Key Generation, Key Verification, Signature Generation, Shared Secret Computation				CSP	EC Public Key, Shared Secret
Shared Secret	Shared Secret Computation	API output parameters (output)			CSP	EC Public Key,
TLS Pre-Master Secret	Key Derivation	N/A			CSP	TLS Master Secret
TLS Master Secret	Key Derivation	N/A			CSP	TLS Pre-Master Secret
TLS Derived Key (AES/HMAC)	Key Derivation	API output parameters (output)			CSP	TLS Master Secret
Derived Key		API output parameters (output)			CSP	Key Derivation Key, Shared Secret, Password
Password		API input parameters (input)			CSP	Derived Key
Intermediate Key Generation Value	Key generation	N/A		Automatically	CSP	RSA Private Key, RSA Public Key, EC Private Key, EC Public Key

Table 20: SSP Information Second

9.5 Transitions

The SHA-1 algorithm as implemented by the module will be non-approved for all purposes, starting January 1, 2030.

10 Self-Tests

10.1 Pre-Operational Self-Test

Algorithm	Implementation	Test Properties	Test Method	Test Type	Indicator	Details
	SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3		0-		Module becomes operational	N/A

Table 21: Pre-Operational Self-Tests

The module performs the pre-operational self-test automatically when the module is loaded into memory; the pre-operational self-test is the software integrity test that ensures that the module is not corrupted. While the module is executing the pre-operational self-test, services are not available, and input and output are inhibited.

The software integrity test is performed after a set of conditional cryptographic algorithm self-tests (CASTs). The set of CASTs includes the self-test for HMAC-SHA2-256 algorithm used in the pre-operational self-test.

10.2 Conditional Self-Tests

Algorithm or Test	Test Properties	Test Method	Туре	Indicator	Details	Condition	Coverage	Coverage Notes
AES CBC AES GCM AES_C, AES_C_GCM, AESNI, AESNI_AVX, AESNI_ASM, AESAESM, AESASM_AVX, AESASM_CLMULNI, AESASM_ASM, CE,	128-bit AES key	Encrypt KAT for CBC	CAST	Module is operational	Encrypt	Power up	Self	N/A
	ESNI_ASM, ESAESM, ESAESM, ESASM_AVX, ESASM_CLMULNI, ESASM_ASM, CE, E_GCM_UNROLL8_E R3, CE_GCM, VPAES, PAES_GCM, ESNI_CLMULNI, AES_CTASM, AES_CTASM_AVX, AES_CTASM_CLMUL	KAT for			Decrypt		Self and ECB, KW, KWP, XTS (all implementatio ns)	IG 10.3.A, resolution 1.c
CE_GCM_UNROLL8_E OR3, CE_GCM, VPAES, VPAES_GCM, AESNI_CLMULNI, BAES_CTASM, BAES_CTASM_AVX, BAES_CTASM_CLMUL NI, BAES_CTASM_ASM			Encrypt		Self and CCM, CMAC, CTR, ECB, GMAC, KW, KWP, XTS all implementatio ns)	IG 10.3.A, resolution 1.d.(i)		
		KAT for			Decrypt		Self	N/A
SHA-1 SHA2-256 SHA2-512	N/A	SHA-1 KAT	CAST		Message digest	Power up	Self	N/A
SHAZ-512 SHA_CE, SHA_ASM, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3		SHA2-256 KAT					Self and SHA2- 224 all implementatio ns)	IG 10.3.A, resolution 2
							SSH KDF (all implementatio ns)	IG 10.3.A, resolution 12, note 18
		SHA2-512					Self and SHA2-	IG 10.3.A,

 $^{\ ^{\}circlearrowright}$ 2023 Amazon Web Services, Inc., atsec information security.

Algorithm or Test	Test Properties	Test Method	Туре	Indicator	Details	Condition	Coverage	Coverage Notes
		KAT					384, SHA2- 512/256 (all implementatio ns)	resolution 2
HMAC SHA_CE, SHA_ASM, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	SHA2-256	HMAC KAT	CAST		Message authenticati on	Power up	Self and HMAC-SHA-1, HMAC-SHA2- 224, HMAC-SHA2- 384, HMAC-SHA2- 512, HMAC-SHA2- 512/256	IG 10.3.A resolution 5
CTR_DRBG AES_C, AESNI,	AES 256	CTR_DRB G KAT	CAST		Seed Generation	Power up	Self	N/A
AESASM, AESASM_AVX, CE, VPAES, BAES_CTASM	N/A	SP800- 90Ar1 Section 11.3 Health Test			Seed Generation	Power up	Self	N/A
ECDSA SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	P-256 Curve and SHA2- 256	Sign KAT	CAST		Sign	Signature Generation or Key Generation service request	Self	N/A
ECDSA SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	P-256 Curve and SHA2- 256	Verify KAT			Verify	Signature verification or Key Generation service request	Self	N/A
KAS-ECC-SSC	P-256 Curve	Z computati on			Shared secret computation	Shared secret computatio n request	Self	N/A
ECDSA SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3		Signature generatio n and verificatio n	PCT		Sign and Verify	Key generation	Self and KAS- ECC-SSC PCT	IG 10.3.A additional comment 1.
TLS KDF SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	SHA2-256	TLS 1.2 KAT	CAST		Key derivation	Power up	Self	N/A
KDA HKDF SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	HMAC- SHA2-256	KAT	CAST		Key derivation	Power up	Self	N/A
PBKDF2 SHA_ASM, SHA_CE,	HMAC- SHA2-256	KAT	CAST		Key derivation	Power up	Self	N/A

^{© 2023} Amazon Web Services, Inc., atsec information security.

Algorithm or Test	Test Properties	Test Method	Туре	Indicator	Details	Condition	Coverage	Coverage Notes
NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3								
RSA SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	PKCS#1 v1.5 with 2048 bit key and SHA2-256	Sign KAT	CAST		Sign	Signature Generation or Key Generation service request	Self	N/A
RSA SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	PKCS#1 v1.5 with 2048 bit key and SHA2-256	Verify KAT	CAST		Verify	Signature Verification or Key Generation service request	Self	N/A
RSA SHA_ASM, SHA_CE, NEON, SHA_SHANI, SHA_AVX2, SHA_AVX, SHA_SSSE3	SHA2-256 and respective keys	Signature generatio n and verificatio n	PCT		Sign and Verify	Key generation	Self	N/A

Table 22: Conditional Self-Tests

10.2.1 Conditional Cryptographic Algorithm Tests

The module performs self-tests on approved cryptographic algorithms, using the tests shown in Table 22. Data output through the data output interface is inhibited during the self-tests. The CASTs are performed in the form of Known Answer Tests (KATs), in which the calculated output is compared with the expected known answer (that are hard-coded in the module). A failed match causes a failure of the self-test. If any of these self-tests fails, the module transitions to error state.

10.2.2 Conditional Pair-Wise Consistency Tests

The module implements RSA and ECDSA key generation service and performs the respective pairwise consistency test (PCT) using sign and verify functions when the keys are generated (Table 22). If any of these self-tests fails, the module transitions to error state and is aborted.

10.3 Periodic Self-Tests

The module does not support periodic self-tests.

10.4 Error States

Name	Description	Condition	Recovery Method	Status Indicator
Error	The library is aborted with SIGABRT signal. Module	Pre-operational test failure	Module reset	Error message is output on the stderr and then the module is aborted.
	is no longer operational the data output	Conditional test failure	Module reset	Error message is output in the error queue and then the module generates new key, If the PCT still does not pass, eventually the module will be aborted after 5 tries.

^{© 2023} Amazon Web Services, Inc., atsec information security.

Name	Description	Condition	Recovery Method	Status Indicator
	interface is inhibited			

Table 23: Error States

If the module fails any of the self-tests, the module enters the error state. To recover from the Error state, the module needs to be rebooted.

10.5 Operator Initiation

The software integrity tests and the CASTs for AES, SHS, DRBG, KAS-ECC-SSC, TLS KDF, KDA HKDF, PBKDF2 can be invoked by unloading and subsequently re-initializing the module. The CASTs for ECDSA and RSA can be invoked by requesting the corresponding Key Generation or Digital Signature services. Additionally, all the CASTs can be invoked by calling the BORINGSSL_self_test function. The PCTs can be invoked on demand by requesting the Key Generation service.

11 Life-Cycle Assurance

11.1 Installation, Initialization and Startup Procedures

The module bcm.o is embedded into the shared library l

[1] https://github.com/aws/aws-lc/archive/refs/tags/AWS-LC-FIPS-2.0.0.zip.

The downloaded zip file can be verified by issuing the "sha256sum AWS-LC-FIPS-2.0.0.zip" command. The expected SHA2-256 digest value is: 6241EC2F13A5F80224EE9CD8592ED66A97D426481066FEAA4EFC6F24E60BBC96

After the zip file is extracted, the instructions listed below will compile the module. The compilation instructions must be executed separately on platforms that have different processors and/or operating systems. Due to six possible combinations of OS/processor, the module count is six (i.e., there are six separate binaries generated, one for each entry listed in Table 3).

Amazon Linux 2 and Amazon Linux 2023:

- 1. sudo yum groupinstall "Development Tools"
- 2. sudo yum install cmake3 golang
- 3.cd aws-lc-fips-2022-11-02/
- 4. mkdir build
- 5.cd build
- 6.cmake3 -DFIPS=1 -DCMAKE BUILD TYPE=Release -DBUILD SHARED LIBS=1 ..
- 7. make

Ubuntu 22.04:

- 1. sudo apt-get install build-essential
- 2. sudo apt-get install cmake
- 3. Get latest Golang archive for your architecture
- 4. sudo tar -C /usr/local -xzf go*.tar.gz
- 5.cd aws-lc-fips-2022-11-02/
- 6.mkdir build
- 7.cd build
- 8.cmake -DFIPS=1 -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=1
 -DGO EXECUTABLE=/usr/local/go/bin/go ..
- 9. make

Upon completion of the build process, the module's status can be verified by the command below. If the value obtained is "1" then the module has been installed and configured to operate in FIPS compliant manner.

./tool/bssl isfips

Lastly, the user can call the "show version" service using awslc_version_string function and the expected output is "AWS-LC FIPS 2.0.0" which is the module version. This will confirm that the module is in the operational mode. Additionally, the "AWS-LC FIPS" also acts as the module identifier and the verification of the "dynamic" part can be done using following command with an application that was used for dynamic linking. The "U" in the output confirms that the module is dynamically linked.

<u>Command</u>: nm <application_name> | grep awslc_version_string <u>Example Output</u>: **U** awslc version string"

11.2 Administrator Guidance

When the module is at end of life, for the GitHub repo, the README will be modified to mark the library as deprecated. After a 6-month window, more restrictive branch permissions will be added such that only administrators can read from the FIPS branch.

The module does not possess persistent storage of SSPs. The SSP value only exists in volatile memory and that value vanishes when the module is powered off. So as a first step for the secure sanitization, the module needs to be powered off. Then for actual deprecation, the module will be upgraded to newer version that is approved. This upgrade process will uninstall/remove the old/terminated module and provide a new replacement.

12 Mitigation of Other Attacks

RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA decryption or signature operations, blinding must be used to protect the RSA operation from that attack.

The module provides the mechanism to use the blinding for RSA. When the blinding is on, the module generates a random value to form a blinding factor in the RSA key before the RSA key is used in the RSA cryptographic operations.

13 Glossary and Abbreviations

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions
CAVP Cryptographic Algorithm Validation Program

CAST Cryptographic Algorithm Self-Test

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining-Message Authentication Code

CFB Cipher Feedback

CMAC Cipher-based Message Authentication Code

CMT Cryptographic Module Testing

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption StandardDSA Digital Signature Algorithm

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

FIPS Federal Information Processing Standards Publication

FSM Finite State Model **GCM** Galois Counter Mode

HMAC Hash Message Authentication Code

KAT Known Answer Test **KW** AES Key Wrap

KWP AES Key Wrap with Padding **MAC** Message Authentication Code

NIST National Institute of Science and Technology

OFB Output FeedbackO/S Operating System

PAA Processor Algorithm Acceleration

PCT Pair-Wise Consistency Test

PR Prediction Resistance
PSP Public Security Parameter
PSS Probabilistic Signature Scheme
RNG Random Number Generator
RSA Rivest, Shamir, Addleman
SHA Secure Hash Algorithm
SHS Secure Hash Standard

14 References

FIPS 140-3 FIPS PUB 140-3 - Security Requirements for Cryptographic Modules

March 2019

https://doi.org/10.6028/NIST.FIPS.140-3

FIPS140-3 IG Implementation Guidance for FIPS PUB 140-3 and the

Cryptographic Module Validation Program

August 2023

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-

140-3-ig-announcements

FIPS180-4 Secure Hash Standard (SHS)

March 2012

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-5 Digital Signature Standard (DSS)

February 2023

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

FIPS197 Advanced Encryption Standard

November 2001

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)

July 2008

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography

Specifications Version 2.1

February 2003

http://www.ietf.org/rfc/rfc3447.txt

SP800-38A Special Publication 800-38A - Recommendation for Block Cipher

Modes of Operation Methods and Techniques

December 2001

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block

Cipher Modes of Operation: The CMAC Mode for Authentication

May 2005

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block

Cipher Modes of Operation: the CCM Mode for Authentication and

Confidentiality

May 2004

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

38c.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block

Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

November 2007

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block

Cipher Modes of Operation: Methods for Key Wrapping

December 2012

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800-38G NIST Special Publication 800-38G - Recommendation for Block

Cipher Modes of Operation: Methods for Format - Preserving

Encryption March 2016

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf

SP800-56Arev3 NIST Special Publication 800-56A Revision 2 - Recommendation for

Pair Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography May 2013

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

SP800-90Arev1 NIST Special Publication 800-90A - Revision 1 - Recommendation for

Random Number Generation Using Deterministic Random Bit

Generators June 2015

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

SP800-90B (Second DRAFT) NIST Special Publication 800-90B -

Recommendation for the Entropy Sources Used for Random Bit

Generation January 2016

http://csrc.nist.gov/publications/drafts/800-90/sp800-90b_second_draft.pdf

SP800-131Arev1 NIST Special Publication 800-131A Revision 1- Transitions:

Recommendation for Transitioning the Use of Cryptographic

Algorithms and Key Lengths

November 2015

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

SP800-133rev2 NIST Special Publication 800-133rev2 - Recommendation for

Cryptographic Key Generation

June 2020

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf

SP800-135rev1 NIST Special Publication 800-135 Revision 1 - Recommendation for

Existing Application-Specific Key Derivation Functions

December 2011

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

135r1.pdf