Introductory Analysis of Successful Stock Portfolio Annual Returns Using Basic Regression Methods

Matthew Sears¹, Semere Habtemicael²

¹Sophomore, Department of Applied Mathematics, Wentworth Institute of Technology, Boston, MA 02115 ²Assistant Professor, Department of Applied Mathematics, Wentworth Institute of Technology, Boston, MA 02115

Data & Motivation

Regression Methods

Multiple Linear Regression

$$y = \sum_{i=1}^{q} \beta_i x_i + \epsilon \tag{1}$$

where β_i denotes the model's regression parameter coefficients and ϵ denotes the normally distributed error/residual.

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\sum_{i=1}^{q} x_i = 1$$

$$x_i \ge 0, \ i = 1, 2, \dots, 6$$

Quadratic Regression

$$y = \sum_{i=1}^{q} \beta_i x_i + \sum_{i=1}^{q} \sum_{i< j}^{q} \beta_{ij} x_i x_j + \epsilon$$
 (2)

with the same parameters as Equation (1)

Data Set

Sourced from the UCI Machine Learning Repository – "Stock portfolio performance Data Set" by I-Cheng Yeh [1].

Annual returns: the percentage of the yearly gains or losses of the stock portfolio **Stock-picking concepts:** methods used to pick stocks that show signs of high return rates and low risk

The data set used has 4 periods of stock market data, each of length 5 years.

Time frame	The beginning time of the 1st holding period	The beginning time of the 20th holding period
The 1st period	September 1990	June 1995
The 2nd period	September 1995	June 2000
The 3rd period	September 2000	June 2005
The 4th period	September 2005	June 2010

We use the first 2 periods as training data.

Can regression methods be used to predict long-term annual returns?

R Code Snippets

Extracting the Data

Generating the Models

Data Analysis

Plot of linear regression model supporting that our data and error are normally distributed

Plot showing which data points to consider as outliers via Cook's Distance

DOF Sum-of-Squares MSE F Ratio Prob > F
modelLR 6 3.22759284 0.537932140 1590.913 5.737034e-58
residualLR 51 0.01724453 0.000338128 NA NA
DOF Sum-of-Squares MSE F Ratio Prob > F
modelQR 21 3.241885167 0.154375484 52.29163 0.001032156
residualQR 1 0.002952203 0.002952203 NA NA
Training Set # 2 ~~~~

DOF Sum-of-Squares MSE F Ratio Prob > F
modelLR 6 1.150462630 0.1917437717 1141.431 2.407533e-53
residualLR 50 0.008399274 0.0001679855 NA NA
DOF Sum-of-Squares MSE F Ratio Prob > F
modelQR 21 1.156136936 0.055054140 20.20359 0.00423012

Analysis of Variance (ANOVA): Table of various calculations that provides useful information about our regression models

0.002724969 0.002724969

Successful Model

 $\beta_1 = 0.2879967$

 $\beta_2 = 0.2832200$

 $\beta_3 = 0.2779605$ $\beta_4 = 0.1754495$

 $\beta_5 = 0.1410966$

 $\beta_6 = 0.2517268$

Linear Regression 1 (model trained with the 1st period data)

References

- [1] Liu, Y. C., Yeh, I. C. Using mixture design and neural networks to build stock selection decision support systems. Neural Computing and Applications, 1-15.
- [2] Cornell J. A., Experiments with Mixtures: Designs, Models and the Analysis of Mixture Data. 3rd edition, 2002, John Wiley & Sons, New York.

Results and Conclusion

- Quadratic Regression overfit the data, performed poorly on testing data
- Linear Regression 1 has the highest correlation with testing data from the 3rd period, 77%
 - ⇒ We can use a linear model as a fairly accurate model to predict long-term high annual returns

residualQR