Recurrent Neural Networks 2

CSE 849 Deep Learning Spring 2025

Zijun Cui

Submission

- Project 0: the submitted folder is empty
- Project 1: the submitted pdf file can't be opened

Be careful with your submission files to avoid such errors

Outline

- Stability
- Exploding/Vanishing gradients
- LSTM

The behavior of recurrence...

Returning to an old model...

$$Y(t) = f(X(t-i), i = 0 ... K)$$

When will the output "blow up"?

"BIBO" Stability

- Time-delay structures have bounded output if
 - The function f() has bounded output for bounded input
 - Which is true of almost every activation function
 - -X(t) is bounded
- "Bounded Input Bounded Output" stability
 - This is a highly desirable characteristic

Is this BIBO?

- Will this necessarily be BIBO?
 - Guaranteed if output and hidden activations are bounded
 - What if the activations are linear?

Analyzing recurrence

- Sufficient to analyze the behavior of the hidden layer h_t since it carries the relevant information
 - Will assume only a single hidden layer for simplicity

Streetlight effect

- Easier to analyze *linear* systems
 - Will attempt to extrapolate to non-linear systems subsequently

All activations are identity functions

$$h_k = W_h h_{k-1} + W_\chi x_k$$
 Using index "k" for time $h_{k-1} = W_h h_{k-2} + W_\chi x_{k-1}$

Linear systems

$$\bullet \quad h_k = W_h h_{k-1} + W_x x_k$$

Using index "k" for time
$$h_{k-1} = W_h h_{k-2} + W_x x_{k-1}$$

•
$$h_k = W_h^2 h_{k-2} + W_h W_{x} x_{k-1} + W_{x} x_k$$

•
$$h_k = W_h^{k+1} h_{-1} + W_h^k W_{\chi} x_0 + W_h^{k-1} W_{\chi} x_1 + W_h^{k-2} W_{\chi} x_2 + \cdots$$

Using impulse response functions:

$$h_k = H_k(h_{-1}) + H_k(x_0) + H_k(x_1) + H_k(x_2) + \cdots$$

= $h_{-1}H_k(1_{-1}) + x_0H_k(1_0) + x_1H_k(1_1) + x_2H_k(1_2) + \cdots$

- $H_k(\mathbb{1}_{-1})=W_h^{k+1}$: The response to the initial condition.
- $H_k(1_t) = W_h^{k-t} W_x$: The response to an impulse at time t.

- Where $H_k(1_t)$ is the hidden response at time k when the input is $[0\ 0\ 0\ \dots 1\ 0\dots 0]$ (where the 1 occurs in the t-th position) with 0 initial condition
 - The initial condition may be viewed as an input of h_{-1} at t=-1

Streetlight effect

• Principle of superposition in linear systems:

$$h_k = h_{-1}H_k(1_{-1}) + x_0H_k(1_0) + x_1H_k(1_1) + x_2H_k(1_2) + \cdots$$

Linear recursions

Consider simple, scalar, linear recursion (note change of notation)

$$- h(t) = wh(t-1) + cx(t)$$

$$- h_0(t) = w^t c x(0)$$

• Response to a single input at 0

Linear recursions: Vector version

Vector linear recursion (note change of notation)

$$h(t) = Wh(t-1) + Cx(t)$$

$$h_0(t) = W^t Cx(0)$$
 Length of response vector to a single input at 0 is $|h_0(t)|$

- We can write $W = U \Lambda U^{-1}$
 - $-Wu_i = \lambda_i u_i$
 - For any vector x' = Cx we can write
 - $x' = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$
 - $Wx' = a_1\lambda_1u_1 + a_2\lambda_2u_2 + \dots + a_n\lambda_nu_n$
 - $W^t x' = a_1 \lambda_1^t u_1 + a_2 \lambda_2^t u_2 + \dots + a_n \lambda_n^t u_n$
 - $-\lim_{t\to\infty} |W^t x'| = a_m \lambda_m^t u_m \text{ where } m = \underset{j}{\operatorname{argmax}} \lambda_j$

Linear recursions

Vector linear recursion

$$-h(t) = Wh(t-1) + Cx(t)$$

$$-h_0(t) = W^t c x(0)$$

Response to a single input [1 1 1 1] at 0

Lesson...

- In linear systems, long-term behavior depends entirely on the eigenvalues of the recurrent weights matrix
 - If the largest Eigen value is greater than 1, the system will "blow up"
 - If it is lesser than 1, the response will "vanish" very quickly
 - Complex Eigen values cause oscillatory response but with the same overall trends
 - Magnitudes greater than 1 will cause the system to blow up
- The rate of blow up or vanishing depends only on the Eigen values and not on the input

With non-linear activations: Sigmoid

$$h(t) = sigmoid(wh(t-1) + cx(t) + b)$$

- Scalar recurrence with sigmoid activation
- Final value depends only on b and w but not x

Scalar recurrence

With non-linear activations: Tanh

- Final value depends only on b and w, but not on x
- "Remembers" χ value much longer than sigmoid

Scalar recurrence

With non-linear activations: RELU

$$h(t) = relu(wh(t-1) + cx(t) + b)$$

- Relu blows up if w > 1, for x > 0, and "dies" for x < 0
 - Unstable or useless

Scalar recurrence

Vector Process: Max eigenvalue 1.1

$$h(t) = f(Wh(t-1) + Cx(t) + b)$$

• Initial x(0): Top: [1,1,1,...], Bottom: [-1,-1,-1,...]

Vector Process: Max eigenvalue 0.9

$$h(t) = f(Wh(t-1) + Cx(t) + b)$$

• Initial x(0): Top: [1,1,1,...], Bottom: [-1,-1,-1,...]

Stability Analysis

- Formal stability analysis considers convergence of "Lyapunov" functions
 - Alternately, Routh's criterion and/or pole-zero analysis
 - Positive definite functions evaluated at h
 - Conclusions are similar: only the tanh activation gives us any reasonable behavior
 - And still has very short "memory"
- Lessons:
 - Bipolar activations (e.g. tanh) have the best memory behavior
 - Still sensitive to Eigenvalues of W and the bias
 - Best case memory is short
 - Exponential memory behavior
 - "Forgets" in exponential manner

How about deeper recursion

- Consider simple, scalar, linear recursion
 - Adding more "taps" adds more "modes" to memory in somewhat non-obvious ways

RNNs..

- Excellent models for time-series analysis tasks
 - Time-series prediction
 - Time-series classification
 - Sequence generation..
 - They can even simplify problems that are difficult for MLPs
- But the memory isn't all that great..
 - Also..

The vanishing gradient problem for deep networks

- A particular problem with training deep networks...
 - (Any deep network, not just recurrent nets)
 - The gradient of the error with respect to weights is unstable...

Training deep networks

• For

$$Div(X) = D\left(f_{N}\left(W_{N-1}f_{N-1}\left(W_{N-2}f_{N-2}\left(...W_{0}X\right)\right)\right)\right)$$

We get:

$$\nabla_{f_k} Div = \nabla D \cdot \nabla f_N \cdot W_N \cdot \nabla f_{N-1} \cdot W_{N-1} \cdot ... \nabla f_{k+1} W_{k+1}$$

- Where
 - $\nabla_{f_k} Div$ is the gradient Div(X) of the error w.r.t the output of the kth layer of the network
 - $-\nabla f_n$ is jacobian of $f_N()$ w.r.t. to its current input
 - All blue terms are matrices

Let's consider these
Jacobians for an RNN

The Jacobian of the hidden layers for an RNN

- ∇f_t () is the derivative of the output of the (layer of) hidden recurrent neurons with respect to their input
- For recurrent layers with scalar activations, this will be a diagonal matrix
 - The diagonals are the derivatives of the activation funcition
- There is a limit on how much multiplying a vector by the Jacobian will scale it
 - Bounded by the maximum value that the derivative will take

The derivative of the hidden state activation

$$\nabla f_{\mathsf{t}}(z_{\mathsf{i}}) = \begin{bmatrix} f_{\mathsf{t},\mathsf{1}}(z_{\mathsf{1}}) & 0 & \cdots & 0 \\ 0 & f_{\mathsf{t},\mathsf{2}}(z_{\mathsf{2}}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_{\mathsf{t},\mathsf{N}}(z_{\mathsf{N}}) \end{bmatrix} \xrightarrow{0.6} \xrightarrow{0.6} \xrightarrow{0.6} \xrightarrow{0.6} \xrightarrow{0.6}$$

- Most common activation functions, such as sigmoid, tanh() and RELU have derivatives that are always less than 1
- The most common activation for the hidden units in an RNN is the tanh()
 - The derivative of tanh() is never greater than 1 (and mostly less than 1)
- Multiplication by the Jacobian is always a shrinking operation

Training deep networks

- As we go back in layers, the Jacobians of the activations constantly *shrink* the derivative
 - After a few layers the derivative of the divergence at any time is totally "forgotten"

What about the weights

- The chain product for $\nabla_{f_k} Div$ will
 - Expand \(\nabla D \) along directions in which the singular values of the weight matrices are greater than 1
 - Shrink \(\nabla_D\) in directions where the singular values are less than 1
 - Repeated multiplication by the weights matrix will result in Exploding or vanishing gradients

Exploding/Vanishing gradients

$$\nabla_{f_k} Div = \nabla D. \nabla f_N. W_N. \nabla f_{N-1}. W_{N-1} ... \nabla f_{k+1} W_{k+1}$$

- Every blue term is a matrix
- **VD** is proportional to the actual error
 - Particularly for L₂ and KL divergence
- The chain product for $\nabla_{f_k} Div$ will
 - Expand \(\nabla D \) in directions where each stage has singular values greater than 1
 - Shrink \(\nabla_D\) in directions where each stage has singular values less than 1

Gradient problems in deep networks

- The gradients in the lower/earlier layers can explode or vanish
 - Resulting in insignificant or unstable gradient descent updates
 - Problem gets worse as network depth increases

ELU activation, Batch gradients

- 19 layer MNIST model
 - Different activations: Exponential linear units (ELU), RELU, sigmoid, tanh
 - Each layer is 1024 units wide Gradients
 - shown at initialization
 - Will actually decrease with additional training
- Figure shows $\log |
 abla_{
 m W_{neuron}}Div|$ where $W_{
 m neuron}$ is the vector of incoming weights to each neuron
 - I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

RELU activation, Batch gradients

Sigmoid activation, Batch gradients

Tanh activation, Batch gradients

ELU activation, Individual instances

- 19 layer MNIST model
 - Different activations: Exponential linear units, RELU, sigmoid, tanh
 - Each layer is 1024 units wide
 - Gradients shown at initialization
 - Will actually decrease with additional training

Vanishing gradients

- ELU activations maintain gradients longest
- But in all cases gradients effectively vanish after about 10 layers!
 - Your results may vary
- Both batch gradients and gradients for individual instances disappear
 - In reality a tiny number will actually blow up.

Recurrent nets are very deep nets

- The relation between X(0) and Y(T) is one of a very deep network
 - Gradients from errors at t=T will vanish by the time they're propagated to t=0
- Stuff gets forgotten in the forward pass too
 - Each weights matrix and activation can shrink components of the input

The long-term dependency problem

PATTERN1 [..... PATTERN 2

Jane had a quick lunch in the bistro. Then she...

- Any other pattern of any length can happen between pattern 1 and pattern 2
 - RNN will "forget" pattern 1 if intermediate stuff is too long
 - "Jane" -> the next pronoun referring to her will be "she"
- Must know to "remember" for extended periods of time and "recall" when necessary
 - Need a way to "remember" stuff

Exploding/Vanishing gradients

$$h = f_N \left(W_N f_{N-1} \left(W_{N-2} f_{N-1} \left(\dots W_1 X \right) \right) \right)$$

$$\nabla_{f_k} Div = \nabla D \cdot \nabla f_N \cdot W_N \cdot \nabla f_{N-1} \cdot W_{N-1} \dots \nabla f_{k+1} W_{k+1}$$

- The memory retention of the network depends on the behavior of the underlined terms
 - Which in turn depends on the parameter rather than what it is trying to "remember"
- Can we have a network that just "remembers" arbitrarily long, to be recalled on demand?
 - Not be directly dependent on vagaries of network parameters,
 but rather on input-based determination of whether it must be remembered

Exploding/Vanishing gradients

$$h = f_N \left(W_N f_{N-1} \left(W_{N-2} f_{N-1} \left(\dots W_1 X \right) \right) \right)$$

$$\nabla_{f_k} Div = \nabla D. \nabla f_N. W_N. \nabla f_{N-1}. W_{N-1} \dots \nabla f_{k+1} W_{k+1}$$

- Replace this with something that doesn't fade or blow up?
- Network that "retains" useful memory arbitrarily long, to be recalled on demand?
 - Input-based determination of whether it must be remembered
 - Retain memories until a switch based on the input flags them as ok to forget
 - Or remember less
 - $-Memory(k) \approx C(x_0).\sigma_1(x_1).\sigma_2(x_2)...\sigma_k(x_k)$

- History is carried through uncompressed
 - No weights, no nonlinearities enable long-term information retention
 - Only scaling is through the s "gating" term that captures other triggers
 - E.g. "Have I seen Pattern2"?

- Actual non-linear work is done by other portions of the network
 - Neurons that compute the workable state from the memory

The gate s depends on current input, current hidden state...

 The gate s depends on current input, current hidden state... and other stuff...

- The gate s depends on current input, current hidden state... and other stuff...
- Including, obviously, what is currently in raw memory

Enter the LSTM

- Long Short-Term Memory
- Explicitly latch information to prevent decay / blowup

Standard RNN

- Recurrent neurons receive past recurrent outputs and current input as inputs
- Processed through a tanh() activation function
 - As mentioned earlier, tanh() is the generally used activation for the hidden layer
- Current recurrent output passed to next higher layer and next time instant

Long Short-Term Memory

- The $\sigma()$ are multiplicative gates that decide if something is important or not
- Remember, every line actually represents a vector

LSTM: Constant Error Carousel

• Key component: a remembered cell state

LSTM: CEC

- C_t is the linear history carried by the constant-error carousel
- Carries information through, only affected by a gate
 - And addition of history, which too is gated...

LSTM: Gates

- Gates are simple sigmoidal units with outputs in the range (0,1)
- Controls how much of the information is to be let through

LSTM: Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- The first gate determines whether to carry over the history or to forget it
 - More precisely, how much of the history to carry over
 - Also called the "forget" gate
 - Note, we're actually distinguishing between the cell memory \mathcal{C} and the state
 h that is coming over time! They're related though

LSTM: Input gate

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- The second input has two parts
 - A perceptron layer that determines if there's something new and interesting in the input
 - A gate that decides if its worth remembering

LSTM: Memory cell update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- The second input has two parts
 - A perceptron layer that determines if there's something interesting in the input
 - A gate that decides if its worth remembering
 - If so its added to the current memory cell

LSTM: Output and Output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- The *output* of the cell
 - Simply compress it with tanh to make it lie between 1 and -1
 - Note that this compression no longer affects our ability to carry memory forward
 - Controlled by an output gate
 - To decide if the memory contents are worth reporting at this time

LSTM: The "Peephole" Connection

- The raw memory is informative by itself and can also be input
 - Note, we're using both C and h

The complete LSTM unit

• With input, output, and forget gates and the peephole connection..

LSTM computation: Forward

Forward rules:

Gates

$$f_{t} = \sigma(W_{f} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{f}) \qquad \tilde{C}_{t} = \tanh(W_{C} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{i}) \qquad C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [C_{t}, h_{t-1}, x_{t}] + b_{o}) \qquad h_{t} = o_{t} * \tanh(C_{t})$$

Variables

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$h_t = o_t * \tanh(C_t)$$

LSTM cell (single unit) Definitions

```
# Input:
# C : previous value of CEC
    h : previous hidden state value ("output" of cell)
     x: Current input
# [W,b]: The set of all model parameters for the cell
       These include all weights and biases
# Output
# C : Next value of CEC
# h : Next value of h
# In the function: sigmoid(x) = 1/(1+exp(-x))
#
                    performed component-wise
# Static local variables to the cell
static local z_f, z_i, z_c, z_o, f, i, o, C_i
function [C,h] = LSTM cell.forward(C,h,x,[W,b])
    code on next slide
```

LSTM cell forward

```
# Continuing from previous slide
# Note: [W,h] is a set of parameters, whose individual elements are
          shown in red within the code. These are passed in
# Static local variables which aren't required outside this cell
static local z_f, z_i, z_c, z_o, f, i, o, C_i
function [C_o, h_o] = LSTM cell.forward(C,h,x, [W,b])
     z_f = W_{fc}C + W_{fb}h + W_{fx}x + b_f
     f = sigmoid(z_f) # forget gate
     z_i = W_{io}C + W_{ib}h + W_{iv}x + b_i
     i = sigmoid(z;) # input gate
     z_0 = W_{co}C + W_{ch}h + W_{cr}x + b_{cr}
                                                            Assuming a peephole connection
                                                            into the tanh
     C_i = tanh(z_0) # Detecting input pattern
    C<sub>o</sub> = f<sub>o</sub>C + i<sub>o</sub>C<sub>i</sub> # "<sub>o</sub>" is component-wise multiply
     z_0 = W_{0c}C_0 + W_{0b}h + W_{0x}x + b_0
     o = sigmoid(z<sub>o</sub>) # output gate
    h<sub>o</sub> = ootanh(C<sub>o</sub>) # "o" is component-wise multiply
     return C, h
```

LSTM network forward

```
# Assuming h(-1,*) is known and C(-1,*)=0
# Assuming L hidden-state layers and an output layer
# Note: LSTM cell is an indexed class with functions
# [W{1},b{1}] are the entire set of weights and biases
#
              for the lth hidden layer
# Wo and bo are output layer weights and biases
for t = 0:T-1 # Including both ends of the index
    h(t,0) = x(t) \# Vectors. Initialize h(0) to input
    for 1 = 1:L # hidden layers operate at time t
        [C(t,1),h(t,1)] = LSTM cell(t,1).forward(...
               ...C(t-1,1),h(t-1,1),h(t,1-1)[W{1},b{1}])
    z_o(t) = W_oh(t,L) + b_o
    Y(t) = softmax(z_o(t))
```

Training the LSTM

- Identical to training regular RNNs with one difference
 - Commonality: Define a sequence divergence and backpropagate its derivative through time

• Difference: Instead of backpropagating gradients through an RNN unit, we will backpropagate through an LSTM cell

Gated Recurrent Units: Let's simplify the LSTM

Simplified LSTM which addresses some of your concerns of why

Gated Recurrent Units: Lets simplify the LSTM

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- Don't bother to separately maintain compressed and regular memories
 - Redundant representation

Gated Recurrent Units: Lets simplify the LSTM

- Combine forget and input gates
 - If new input is to be remembered, then this means old memory is to be forgotten

LSTM architectures example

- Each green box is now a (layer of) LSTM or GRU cell(s)
 - Keep in mind each box is an array of units
 - For LSTMs the horizontal arrows carry both C(t) and h(t)

Bidirectional LSTM

- Like the BRNN, but now the hidden nodes are LSTM units.
 - Or layers of LSTM units