

1. Externat Notre Dame - Grenoble

Table des matières

1	Nor	mbres décimaux 4
	I	lire et écrire des nombres entiers
	II	nombres décimaux
2	Cor	nparaison des nombres décimaux 7
	I	comparer deux nombres
	II	encadrement
3	Ada	lition et soustraction 9
	I	vocabulaire
	II	passage de l'addition à la soustraction
	III	propriétés de l'addition et de la soustraction
4	Mu	Itiplication 11
	I	vocabulaire
	II	propriété de la multiplication
	III	passage de l'addition à la multiplication
	IV	multiplier par 10, par 100, par 1000
	V	exemples importants
5	Div	ision 13
	I	division euclidienne
	II	multiple, diviseur
	III	critères de divisibilité
	IV	quotient tronqué et arrondi
6	Fra	etions 16
	I	fraction partage
	II	fractions égales
	III	fraction quotient
	IV	prendre « la fraction de »
7	Pro	portionnalité 18
	I	grandeurs proportionnelles
	II	tableau de proportionnalité
	III	exemples
	IV	échelle
	V	pourcentage 90

8	Org	inisation et représentations de données	22
	I	lire un tableau	22
	II	diagramme en bâtons	22
	III	graphique cartésien	23
	IV	~	23
9	Util	sation de la règle et du compas	24
	Ι		24
	II		25
	III	•	27
	IV	0	28
	V		29
10	Dro	tes perpendiculaires et droites paralléles	31
	I	1 1	31
	II		32
	III	1 1	32
	IV	1	33
11	C		o 4
TT	•	1 11	$\frac{34}{24}$
	I	1 0	34
	II	9	35
	III		36
	IV		36
	V	v i	37
	VI		37
	VII VIII		38 38
10			ഹ
12	_ •	8	39
	I		39
	II	polygones et axes de symétrie	40
13			43
	I II		43 44
	11	le parameteripede rectangle (le pave)	44
14		, , , ,	45
	I		45
	II		46
	III	unité de masse	48
15	Ang	es	49
	I	définition	49
	II	mesurer un angle	49
	III	angles et mesures	50
	IV	bissectrice d'un angle	51

16	Aire	es et volumes	52
	I	aire	52
	II	unité d'aire	52
	III	aires de figures usuelles	53
	IV	définition du volume	54
	V	conversion de volumes	55
	VI	volume et contenance	56

Nombres décimaux

I lire et écrire des nombres entiers

I - 1) des chiffres, des nombres

Il existe une infinité de nombres que l'on écrit avec seulement 10 chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

La **position** de chaque chiffre donne la **valeur** du chiffre dans le nombre.

Le tableau suivant est à connaître par coeur :

classe des MIL- LIARDS			classe des MILLIONS			classe des MILLE			classe des UNITES		
c	d	u	c	d	u	c	d	u	c	d	u
								4	2	1	5
		1	5	4	6	4	9	8	7	3	4
								1	2	0	0

I - 2) décomposition des nombres entiers

$$426 = (4 \times 100) + (2 \times 10) + (6 \times 1)$$

$$3\ 603 = (3 \times 1\ 000) + (6 \times 100) + (3 \times 1)$$

I - 3) abscisse d'un point

Sur une droite graduée, on repère chaque point par un nombre appelé abscisse de ce point.

L'abscisse du point D est 4.

II nombres décimaux

Sur le graphique précédent, si on imagine un point M placé entre les points A et B, son abscisse ne sera pas un nombre entier. Il faut donc « inventer » une autre écriture. L'écriture décimale peut répondre à ce problème.

De même, lorsque l'on mesure une longueur avec un double décimètre, il se peut que la longueur tombe entre deux graduations correspondants à des nombres entiers de centimètres : le résultat pourra alors être donné sous la forme d'un nombre décimal.

Un nombre décimal admet plusieurs écritures.

II - 1) écriture à virgule ou écriture décimale

Cette écriture est composée d'une partie entière et d'une partie décimale finie.

exemple: 523,012: 523 est la partie entière; 012 est la partie décimale.

remarque: un nombre entier est un nombre qui a une partie décimale égale à 0. Par exemple, 184 = 184,000

II - 2) écriture en toutes lettres

le nombre 8,042 peut s'écrire :

- huit virgule zéro quarante-deux
- huit unités, quarante-deux millièmes
- huit unités, quatre centièmes et deux millièmes
- huit mille quarante-deux millièmes

II - 3)écriture fractionnaire

un dixième
$$=0,1=\frac{1}{10}$$

un centième $=0,01=\frac{1}{100}$
un millième $=0,001=\frac{1}{1000}$

exemples:
$$0, 3 = \frac{3}{10}$$

$$4,6 = \frac{46}{10}$$

$$4,6 = \frac{46}{10} \qquad 20,05 = \frac{2005}{100} \qquad 0,253 = \frac{253}{1000}$$

$$0,253 = \frac{253}{1000}$$

II - 4) décomposition

$$426 = (4 \times 100) + (2 \times 10) + (6 \times 1)$$

$$42,63 = (4 \times 10) + (2 \times 1) + (6 \times 0, 1) + (3 \times 0, 01)$$
$$= 42 + \frac{63}{100}$$
$$= 42 + \frac{6}{10} + \frac{3}{100}$$

Comparaison des nombres décimaux

I comparer deux nombres

Vocabulaire:

comparer deux nombres, c'est dire s'ils sont égaux ou non; s'ils sont différents, on précise lequel est le plus grand

ordre **croissant** : du plus petit au plus grand.

ordre décroissant : du plus grand au plus petit.

< se lit : « plus petit que » ou « inférieur à »

> se lit : « plus grand que » ou « supérieur à »

Pour comparer deux nombres :

1. on compare d'abord les parties entières :

exemples: 25,02 > 24,02

7.89 < 12 412.99 < 421.01

12,2 > 1,86666

2. si les deux parties entières sont égales, on compare successivement les chiffres placés après la virgule :

exemples: 25,02 < 25,1

463,561 < 463,6

62,2 > 62,0256

Remarque importante : il est facile de comparer des nombres à l'aide de la droite graduée : si un point A est placé à gauche d'un point B, l'abscisse de A est inférieure à l'abscisse de B.

II encadrement

Encadrer deux nombres, c'est trouver un nombre plus petit et un nombre plus grand que ce nombre.

exemple: 12,5 < 13,125 < 152

On peut vouloir un encadrement :

- à l'unité; cela revient à encadrer le nombre par deux entiers consécutifs :

$$13 < 13,125 < 14$$
 ; $425 < 425,001 < 426$

 au dixième près; cela revient à encadrer le nombre par deux décimaux dont la différence est égale à un dixième :

$$102,7 < 102,72 < 102,8$$
; $15,1 < 15,19996 < 15,2$

Addition et soustraction

I vocabulaire

L'addition est l'opération qui permet de calculer **la somme** de deux ou plusieurs **termes**. Calculer la somme de 11,6 et 6:11,6+6=17,6.

La soustraction est l'opération qui permet de calculer la différence de deux termes. Calculer la différence entre 18,2 et 14,23 :

II passage de l'addition à la soustraction

A partir d'une addition, on peut obtenir des sous tractions : exemples:

* De l'addition : 4 + 8 = 12, on obtient :

$$12 - 4 = 8$$
 et $12 - 8 = 4$

* De l'addition : 12 + 23 = 35, on obtient :

$$35 - 12 = 23$$
 et $35 - 23 = 12$

III propriétés de l'addition et de la soustraction

Dans le calcul d'une somme, l'ordre des termes n'a pas d'importance.

exemples:

$$6+8+4=6+4+8=10+8=18$$

 $16+13+4+22=16+4+13+22=20+13+22=33+22=55$
 $16,2+7+0,8=16,2+0,8+7=17+7=24$

L'ordre dans lequel on écrit les termes d'une soustraction est très important.

exemple:

214 - 143 existe mais on ne sait pas faire 143 - 214 en classe de 6^{eme} .

Multiplication

I vocabulaire

La multiplication est l'opération qui permet de calculer le produit de deux ou plusieurs facteurs.

Calculer le produit de 35 par 21 :

II propriété de la multiplication

Dans le calcul d'un produit, l'ordre des facteurs n'a pas d'importance.

On regroupe les facteurs pour avoir les calculs les plus simples possibles.

exemples:

$$2 \times 42 \times 5 = 2 \times 5 \times 42 = 10 \times 42 = 420$$

$$0, 5 \times 16 \times 2 = 0, 5 \times 2 \times 16 = 1 \times 16 = 16$$

Produits utiles:

$$2 \times 5 = 10$$
 $4 \times 0, 5 = 2$

$$2 \times 0, 5 = 1$$
 $4 \times 0, 25 = 1$

$$2 \times 2, 5 = 5$$
 $4 \times 25 = 100$

III passage de l'addition à la multiplication

exemples:

$$5 + 5 + 5 = 3 \times 5 = 15$$

$$0, 6 + 0, 6 + 0, 6 + 0, 6 = 4 \times 0, 6 = 2, 4$$

remarque : cette interprétation est valable lors qu'au moins un des deux facteurs est un nombre entier

IV multiplier par 10, par 100, par 1000

Multiplier un nombre par 10 revient à décaler la virgule de 1 rang vers la droite en ajoutant 1 zéro si nécessaire.

exemples:

$$15 \times 10 = 150$$

$$3,85 \times 10 = 38,5$$

$$0.5 \times 10 = 5$$

Multiplier un nombre par 100 revient à décaler la virgule de 2 rangs vers la droite en ajoutant 1 ou 2 zéros si nécessaire.

exemples:

$$36 \times 100 = 3600$$

$$42,5 \times 100 = 4250$$

$$0.052 \times 100 = 5.2$$

Multiplier un nombre par 1000 revient à décaler la virgule de 3 rangs vers la droite en ajoutant 1, 2 ou 3 zéros si nécessaire.

exemples:

$$15 \times 1000 = 15000$$

$$3,85 \times 1000 = 3850$$

$$0,0005 \times 1000 = 0,5$$

V exemples importants

J'achète:

- * 1 kg de fraises à $4,50 \in le$ kilo. Je paie : $1 \times 4,50 = 4,50 \in .$
- * 2 kg de fraises à 4,50 \in le kilo. Je paie : $2 \times 4,50 = 9 \in$.
- * 0,5 kg de fraises à 4,50 €le kilo. Je paie : 0,5 × 4,50 = 2,25 €. Autre calcul : 4,50 ÷ 2 = 2,25 €.
- * 800 g de fraises à 4,50 €le kilo. Je paie : $0, 8 \times 4, 50 = 3,60$ €.

Calculs:

$$800 \text{ g} = 0.8 \text{ kg}$$

Division

I division euclidienne

La division euclidienne, c'est la division qu'on effectue à l'école primaire.

exemples:

Vocabulaire:

Quand on a terminé la division euclidienne, il y a **un reste**.

Ce reste peut être égal ou non à 0.

Dans le premier exemple, le reste est égal à 1.

dividende	diviseur
	quotient
reste	

II multiple, diviseur

Si un nombre a « est dans la table »du nombre b, on dit que :

- -a est un **multiple** de b,
- ou a est divisible par b,
- ou b est un diviseur de a,
- ou encore *b* divise *a*.

 $exemple: 45 = 5 \times 9$

Cela montre que : 45 est un multiple de 5 et aussi que 45 est un multiple de 9.

remarque: si a est un mulitple de b, alors le reste de la division euclidienne de a par b est égal à 0.

III critères de divisibilité

Comment savoir rapidement si un nombre est multiple de 2, de 3, de 5, de 10?

Un nombre entier est un multiple de 2 s'il se termine par : 0, 2, 4, 6, 8.

exemples:

- * 215 se termine par 5 : ce n'est pas un multiple de 2.
- * 456 se termine par 6 : c'est un multiple de 2.

Un nombre entier est un multiple de 5 s'il se termine par 0 ou par 5.

exemples:

- * 210 se termine par 0 : cest un multiple de 5.
- * 456 se termine par 6 : ce n'est pas un multiple de 5.

Un nombre entier est un multiple de 10 s'il se termine par 0.

exemples:

- * 210 se termine par 0 : cest un multiple de 10.
- * 456 se termine par 6 : ce n'est pas un multiple de 10.

Un nombre entier est un multiple de 3 si la somme de ses chiffres est un multiple de 3.

- * 123:1+2+3=6; 6 est un multiple de 3 donc 123 est un multiple de 3.
- * 416:4+1+6=11; 11 n'est pas un multiple de 3 donc 416 n'est pas un multiple de 3.

IV quotient tronqué et arrondi

Lorsque la division ne se termine pas, le quotient obtenu n'est pas un nombre décimal.

Un nombre est décimal lorsqu'il y a un **nombre fini** de chiffres après la virgule.

5 2 1	4	1 0 0		3	2 5	5		11
1 2	130,25	1 0		33,33	3	5		23,18
0 1 0		1 0				2 0		
2 0		1	0			9	0	
0			1				2	
$521 \div 4 = 13$	30, 25	$100 \div 3 = 33,333333$			$255 \div 11 = 23,181818$			
nombre déc	imal	valeur approchée			valeur approchée			
(valeur exacte)		* au dixième : 33,3			* au dixième : 23,2			: 23,2
	* au centième : 33,33			* au centième : 23,18			23,18	
		* au millième : 33,333			* au millième : 23,182			

remarque importante :

Diviser par : 10; 100; 1000 revient à déplacer la virgule de : 1; 2; 3 rangs vers la gauche.

Cela revient à multiplier par : 0,1; 0,01; 0,001.

$$26 \div 10 = 2,6$$
 $26 \times 0, 1 = 2,6$ $41,6 \times 0,01 = 0,416$ $41,6 \div 100 = 0,416$

Fractions

fraction partage

Une fraction peut servir à nommer un partage à parts égales.

La partie coloriée représente les $\frac{4}{10}$ ou les $\frac{2}{5}$ du rectangle.

IIfractions égales

Un quotient ne change pas si on multiplie ou on divise le numérateur et le dénominateur par un même nombre non nul.

remarque : on a pu le constater dans le premier paragraphe : $\frac{4}{10} = \frac{2}{5}$

$$\frac{11}{3} = \frac{33}{9}$$

$$\frac{12}{14} = \frac{6}{7}$$

$$\frac{5}{13} = \frac{10}{26}$$

$$\frac{25}{35} = \frac{5}{7}$$

$$\frac{1}{3} = \frac{7}{21}$$

$$\frac{25}{35} = \frac{5}{7} \qquad \qquad \frac{6}{18} = \frac{1}{3}$$

III fraction quotient

Le quotient de a par b (avec b non nul) se note : $\frac{a}{b}$

$$\frac{a}{b}$$
 signifie: $a \div b$

- * a est le **numérateur**,
- * b est le **dénominateur**.

exemple:

Le nombre manquant dans cette égalité : « $3 \times ? = 5$ » est : $\frac{5}{3}$

 $\frac{5}{3}$ signifie $5 \div 3$, mais cette division ne se « termine » pas : le quotient de 5 par 3 n'est pas un nombre décimal ; on doit donc noter sa **valeur exacte** $\frac{5}{3}$

1,67 est une valeur approchée au centième de $\frac{5}{3}$.

			1
5			3
2	0		1,66
		2	

IV prendre « la fraction de »

Prendre une fraction d'un nombre, c'est multiplier cette fraction par ce nombre.

exemples:

- * prendre les $\frac{2}{5}$ de 50, c'est multiplier $\frac{2}{5}$ par $50:\frac{2}{5}\times 50$
- * prendre les $\frac{3}{4}$ de 60, c'est multiplier $\frac{3}{4}$ par 60 : $\frac{3}{4} \times 60$

Méthode : il y a plusieurs manières d'effectuer ce calcul. On doit se rappeler de la règle suivante :

On a le droit d'allonger le trait de fraction, et de le faire glisser :

$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

exemple : on peut effectuer $\frac{2}{5}\times 50$ de trois manières différentes

*
$$\frac{2}{5} \times 50 = 0, 4 \times 50 = 20$$

$$*\frac{2}{5} \times 50 = \frac{2 \times 50}{5} = \frac{100}{5} = 20$$

*
$$\frac{2}{5} \times 50 = 2 \times \frac{50}{5} = 10 \times 2 = 20$$

Proportionnalité

I grandeurs proportionnelles

définition:

deux grandeurs sont proportionnelles si l'on peut calculer les valeurs de l'une en multipliant (ou divisant) les valeurs de l'autre par **un nombre**, **toujours le même**.

exemples:

- * le **prix** payé et le **nombre** de baguettes achetées sont (en général) proportionnels.
- * le **prix** payé et la **masse** de pommes achetées sont (en général) proportionnels.
- * l'âge et la taille d'une personne ne sont pas proportionnels.

II tableau de proportionnalité

On achète des pommes : on paie 3€pour 2 kg.

On peut construire le tableau suivant, le prix étant proportionnel à la masse :

masse en kg	2	1	5	10	12
prix en €	3	1,5	7,5	15	10,5

Dans ce tableau, les valeurs de la 2^{ème} ligne sont calculées en **multipliant** ceux de la 1^{ère} ligne par un même nombre : 1,5 dans cet exemple.

Ce nombre est appelé coefficient de proportionnalité.

III exemples

III - 1) périmètre d'un carré

côté du carré (en cm)	0,5	1	2	2,5	3
périmètre du carré (en cm)	2	4	8	10	12

Conclusion : le périmètre du carré est proportionnel à son côté. Le coefficient de proportionnalité est égal à 4.

III - 2) aire d'un carré

côté du carré (en cm)	0,5	1	2	2,5	3
aire du carré (en cm^2)	0,25	1	4	6,25	9

^{*} pour passer de 0,5 à 0,25 par exemple, on multiplie par 0,5.

Conclusion : il n'y a pas de coefficient de proportionnalité : l'aire d'un carré n'est pas proportionnelle à la longueur de son côté.

IV échelle

Lorsque les longueurs sur un plan sont proportionnelles aux longueurs réelles, on dit que **le plan est à l'échelle**.

exemple:

Jean fait le plan de sa chambre à l'échelle : 1 cm de son plan représente 200 cm en réalité.

 $remarque\ importante$: on dit que c'est un plan à l'échelle $\frac{1}{200}^{eme}$

On peut utiliser un tableau de proportionnalité pour passer des longueurs réelles à celles du plan :

longueur sur le plan (en cm)	1	2	12	0,3
longueur réelle (en cm)	200	400	2400	60

pour passer de la première à la deuxième ligne : on multiplie par 200. pour passer de la deuxième à la première ligne : on divise par 200.

^{*} pour passer de 1 à 1, on multiplie par 1.

V pourcentage

V - 1) un exemple

Dire qu'un yahourt aux fruits contient 15% de fruits signifie que :

* la masse de fruits est proportionnelle à la masse du yahourt,

 $^{\ast}~$ dans 100 g de yahourt, il y a 15 g de fruits.

Donc:

 * dans 200 g de yahourt, il y a 30 g de fruits,

* dans 50 g de yahourt, il y a 7,5 g de fruits,

* dans 250 g de yahourt, il y a 37,5 g de fruits,

 $remarque: 15\% = \frac{15}{100} = 0, 15$

masse de yaourt en g	100	300	120	420
masse de fruits en g	15	45	18	63

Pour passer de la première à la seconde ligne, on multiplie par 15%, c'est-à-dire par 0,15.

V - 2) à retenir

pour prendre le p% d'un nombre, on multiplie ce nombre par $\frac{p}{100}$

exemple: si on veut connaître la masse de fruits dans 180 g d'un yahourt à 15% de fruits, on effectue :

$$\frac{15}{100} \times 180 = 0,15 \times 180 = 27$$

On conclut qu'il y a 27 g de fruits.

V - 3) pourcentages faciles

10%	le dixième	diviser par 10 (ou multiplier par 0,1)		
25%	le quart	diviser par 4		
50%	la moitié	diviser par 2		
75%	les trois quarts	diviser par 4 puis multiplier par 3		
100%	le tout	multiplier par 1		
200%	le double	multiplier par 2		

*
$$50\%$$
 de $66 = \frac{50}{100} \times 66 = 66 \div 2 = 33$

* 25% de 80 =
$$\frac{25}{100} \times 80 = 80 \div 4 = 20$$

* 75% de 80 =
$$\frac{75}{100} \times 80 = 80 \div 4 \times 3 = 20 \times 3 = 60$$

* 10% de 17 =
$$\frac{10}{100} \times 17 = 17 \div 10 = 1,7$$

*
$$200\%$$
 de $32 = \frac{200}{100} \times 32 = 2 \times 32 = 64$

Organisation et représentations de données

I lire un tableau

- * la ligne grise donne le nombre d'élèves de 11 ans dans les classe de $6^{\text{ème}}$
- * la colonne grise donne la répartition des élèves de 6^{ème} 3, selon leur âge
- * « 15 », écrit à l'intersection de la colonne grise et de la ligne grise signifie que 15 élèves de $6^{\text{ème}}$ 3 ont 11 ans

classe âge	$6^{\text{ème}}$ 1	$6^{\mathrm{\`e}me}2$	6ème 3	$6^{\text{ème}} 4$
10 ans	0	1	2	0
11 ans	10	8	15	12
12 ans	9	12	9	8
13 ans	5	3	1	3

II diagramme en bâtons

On a demandé à des élèves le nombre d'heures (par semaine) qu'ils passaient sur internet à « chatter ».

D'après ce graphique (qui s'appelle un diagramme bâtons) :

- * 8 élèves passent une heure par semaine à chatter
- * 17 élèves passent moins de trois heures par semaine à chatter
- * 40 élèves ont été interrogés

III graphique cartésien

Ce graphique indique la température moyenne mensuelle (en °C) de la ville de Nîmes pour l'année 2007.

D'après ce graphique :

- * la température moyenne du mois de mai était 19°C
- * la température moyenne du mois de novembre était de 10°C

IV diagramme circulaire, semi-circulaire

On a demandé la couleur préférée de personnes. Les réponses sont répertoriées dans le diagramme ci-contre. Ce diagramme est appelé diagramme circulaire.

D'après ce diagramme :

- * 48 % des personnes interrogées préfèrent le bleu
- * plus de la moitié des personnes interrogées préfèrent le rouge ou le jaune

Diagramme en secteurs circulaires

Utilisation de la règle et du compas

I avec une règle non graduée

I - 1) le point

Le point A.

I - 2) la droite

La droite passe par A et B sans s'arrêter; elle est infinie.

La droite qui passe par A et B est notée (AB).

remarque: une droite peut aussi se noter (d) ou (xy).

Attention: x, y, d ne sont

pas des points.

I - 3) le segment

Le segment est une portion de droite limitée par deux points appelés « extrêmités ».

Le segment qui a pour **extrémités** A et B est noté : [AB].

I - 4) la demi-droite

La demi-droite est une portion de droite limitée par un point appelé origine.

La demi-droite qui a pour **origine** A et qui passe par B est notée : [AB).

II points et droite

II - 1) points alignés

Des points sont alignés s'ils appartiennent à la même droite.

exemples:

- * Les points A, B, C sont alignés.
- * Les points A, B, E ne sont pas alignés.

remarques:

- * Deux points sont toujours alignés.
- * La droite présentée ci-dessus peut se nommer : (AB), (BC), (AC) ...

II - 2) « appartenir à »

* Le point A appartient à la droite (d).

On écrit :
$$A \in (d)$$
.
On lit : « A appartient à (d) ».

On a aussi : $B \in (d)$; $A \in (AB)$; $B \in (d)$.

* Le point C n'appartient pas à la droite (d).

On écrit :
$$C \notin (d)$$
.
On lit : « C n' appartient pas à (d) ».

On a aussi : $C \notin (AB)$.

III le segment

III - 1) longueur d'un segment

La longueur du segment [AB] est notée : AB.

On peut reporter une longueur avec le compas :

les deux segments [AB] et [CD] ont la même longueur : AB = CD.

Pour indiquer que des longueurs sont égales, on met un codage $: //; /; X; O \dots$ sur les segments qui ont la même longueur.

III - 2) le milieu d'un segment

Le milieu d'un segment est le point de ce segment situé à la même distance de ses extrémités.

Mmilieu de [AB] signifie : $M \in [AB]$ et AM = MB

IV le cercle

IV - 1) définition

Le cercle est un ensemble de points situés **à la même distance** d'un point appelé **centre**.

Les points $A,\ B,\ C$ sont sur le cercle $\mathcal C$ de centre O.

On a:

- * $A \in \mathcal{C}$,
- * $B \in \mathcal{C}$,
- * $C \in \mathcal{C}$,
- * $O \notin \mathcal{C}$.

IV - 2) vocabulaire

- * \mathcal{C} est le **cercle** de **centre** \mathcal{O} .
- * [OB] est un rayon.
- * [AC] est un diamètre.

remarque : le mot « rayon » désigne à la fois tous les segments qui joignent le centre du cercle à un point du cercle, et la longueur de ces segments.

V polygones, triangles, quadrilatères

V - 1) polygones

Un polygone est une figure fermée dont les côtés sont des segments.

- * R, A, M et E sont les sommets du polygone.
- * [AM] et [ME] sont des cotés consécutifs.
- * [RE] et [AM] sont des côtés opposés.
- * [RM] et [AE]sont les diagonales de ce polygone.

Attention: le polygone ci-dessus peut se nommer, par exemple, RAME ou AMER (en lisant les lettres dans un ordre, en faisant le tour du quadrilatère). On ne doit pas le nommer ARME.

V - 2) triangles

Un triangle est un polygone à trois côtés.

cas particuliers:

Un triangle **rectangle** a un angle droit.

ABC est rectangle **en** A.

On a : $[AB] \perp [AC]$

Un triangle **isocéle** a deux côtés de même longueur.

ABC est isocèle **en** C.

On a :
$$AC = BC$$

Un triangle **équilatéral** a ses trois côtés de même longueur.

RST est équilatéral.

On a :
$$RS = RT = ST$$

remarque : un triangle peut être à la fois rectangle et isocéle.

V - 3) quadrilatères

Un quadrilatère est un polygone à quatre côtés.

cas particulier:

Un losange est un quadrilatère qui a 4 côtés de même longueur.

Droites perpendiculaires et droites paralléles

I droites sécantes

Deux droites sont **sécantes** si elles ont un point commun appelé « **point** d'intersection ».

 (d_1) et (d_2) sont sécantes en O.

 (d_1) et (d_2) sont sécantes.

II droites perpendiculaires

Deux droites sont **perpendiculaires** si elles sont sécantes en formant **un angle droit**.

III droites parallèles

Deux droites sont **parallèles** si elles ne sont pas sécantes : elles n'ont **aucun point commun**.

IV propriétés

IV - 1) première propriété

Si on a deux droites (d_1) et (d_2) parallèles entre elles. Si on sait qu'une droite (d_3) est perpendiculaire à la droite (d_1) , alors on peut conclure que la droite (d_3) est aussi perpendiculaire à la droite (d_2)

IV - 2) seconde propriété

Si on sait que les droites (d_1) et (d_2) sont perpendiculaires à la droite (d_3) , alors on peut conclure que les droites (d_1) et (d_2) sont parallèles entre elles.

Symétrie par rapport à une droite

I activités de pliage

remarques:

- * les figures sont renversées l'une par rapport à l'autre et sont de part et d'autre du pli.
- * elles sont à la même distance du pli.
- * elles sont identiques.
- * elles ont les mêmes formes, les mêmes dimensions.
- * les figures se touchent au même endroit sur le pli.
- * les figures se croisent au même endroit sur le pli.

II médiatrice d'un segment

II - 1) activité

- 1. tracer un segment [AB].
- 2. construire un point situé à 4 cm de A et à 4 cm de B. (est-ce toujours possible?)
- 3. construire d'autres points équidistants des extrémités du segment [AB].

Qu'observe-t'on?

réponse : l'ensemble des points équidistants aux points A et B (c'est-à-dire les points qui sont situés à la même distance de A et de B) sont alignés : ils forment une droite.

II - 2) définition

définition : la médiatrice du segment [AB] est l'ensemble des points équidistants à A et B.

 $Autre\ formulation:$

La médiatrice d'un segment est la droite qui coupe ce segment perpendiculairement en son milieu.

Construction:

programme de construction :

- 1. prendre le compas, choisir une ouverture (quelconque mais plus grande que la moitié du segment),
- 2. tracer deux arcs de cercle (un de chaque « côté »du segment) à partir de l'une des extrémités du segments,
- 3. recommencer depuis l'autre extrémité du segment,
- 4. relier les deux points former par les arcs de cercle.

III symétrique d'un point

III - 1) activité

Construire le symétrique du point A par rapport à la droite (d).

On remarque :

- * $(d) \perp [AA']$
- * (d) passe au milieu de [AA'].

Donc, (d) est la médiatrice de [AA'].

III - 2) définition

Deux points A et A' sont symétriques par rapport à une droite (d) si (d) est la médiatrice de [AA'].

IV symétrique d'un segment

Le symétrique d'un segment est un segment de même longueur.

V symétrique d'une droite

Le symétrique d'une droite est une droite.

VI symétrique d'un triangle

Le symétrique d'un triangle est un triangle de mêmes dimensions.

VII symétrique d'un cercle

Le symétrique d'un cercle est un cercle de même rayon.

Les deux centres sont symétriques.

VIII figures symétriques

Dans le paragraphe 1, les deux figures qui se superposent lors du pliage sont des figures symétriques par rapport à la droite.

Deux figures symétriques sont **superposables** : les longueurs sont les mêmes. On a aussi des angles de mêmes mesure, et la même aire.

Symétrie et figures usuelles

I définition

Si le symétrique d'une figure par rapport à une droite est la figure elle-même, on dit que cette droite est **un axe de symétrie** de cette figure.

exemples:

Deux exemples importants :

La bissectrice d'un angle est un axe de symétrie de cet angle.

Le cercle a une infinité d'axes de symétrie.

II polygones et axes de symétrie

II - 1) triangle isocèle

Le triangle isocèle possède un axe de symétrie qui est à la fois la médiatrice de la base et la bissectrice de l'angle au sommet.

II - 2) triangle équilatéral

Le triangle équilatéral a trois axes de symétrie qui sont à la fois les médiatrices des côtés et les bissectrices des angles.

II - 3) rectangle

Le rectangle a deux axes de symétrie : les médiatrices de ses côtés.

II - 4) losange

Le losange a deux axes de symétrie : ses diagonales.

II - 5) carré

Le carré a quatre axes de symétrie.

Parallélépipède rectangle

I le cube

I - 1) vue en perspective

vue en **perspective** d'un cube

Description : un cube est composé de :

- 6 **faces**, chaque face étant un carré.
- 8 sommets.
- 12 **arêtes** qui relient les sommets.

I - 2) patron(s) du cube

Remarques:

- Le patron est composé de carrés.
- Il existe plusieurs patrons possibles.

II le parallélépipède rectangle (le pavé)

II - 1) vue en perspective

vue en **perspective** d'un pavé

Description : un pavé est composé de :

- 6 **faces**, chaque face étant un rectangle : les faces opposées sont identiques.
- 8 sommets.
- 12 **arêtes** qui relient les sommets.

II - 2) patron(s) du pavé

Remarques:

- Le patron est composé de rectangles.
- Les faces opposées sont identiques : il faut savoir les repérer sur le patron.
- Il existe plusieurs patrons possibles.

Longueur, masse, durée

I unité de durée

L'unité de durée est la seconde, notée s.

Autres unités de durée :

```
* la minute (notée mn) : 1 mn = 60 s
```

* l'heure (notée h) : 1 h = 60 mn = 3600 s

* le jour : 1 jour $\approx 24 \ h$

exemple:

Je n'avais pas de chronomètre lors du cross du Collège ; j'ai regardé ma montre :

- * heure de départ : 9 h 15 mn 25 s
- * heure d'arrivée : 9 h 29 mn 42 s

J'ai mis 14 mn 17 s.

II Longueur

II - 1) unité de longueur

L'unité de longueur est le mètre, noté m.

Le tableau suivant est à connaître par coeur :

km	hm	dam	m	dm	cm	mm
(kilo)	(hecto)	(déca)		(déci)	(centi)	(milli)
			1	0	0	
				3	0	0
			0	3	0	
		2	4	0		
		0	4	5		
	4	6	1	2	3	
		0	0	0	2	0

$$1 \text{ m} = 100 \text{ cm}$$
 $30 \text{ cm} = 300 \text{ mm}$
 $30 \text{ cm} = 0.3 \text{ m}$
 $24 \text{ m} = 240 \text{ cm}$
 $0.45 \text{ dam} = 4.5 \text{ m}$
 $461.23 \text{ m} = 4612.3 \text{ dm}$
 $0.002 \text{ dam} = 20 \text{ mm}$

II - 2) périmètre

Le périmètre d'une figure est la longueur de son contour.

Pour calculer le périmètre d'un polygone, on **ajoute** les longueurs de ses côtés.

le périmètre de cette figure se calcule en faisant :

$$4+2+2+2+6+4=20$$
 cm.

II - 3) périmètre du carré et du rectangle

carré de côté c

rectangle de longueur L et de largeur l

$$c+c+c+c=4\times c$$

$$L + l + L + l = 2 \times (L + l)$$

II - 4) périmètre du cercle

Pour calculer le périmètre d'un cercle, il faut connaître **par coeur** une formule (on ne peut pas l'inventer!).

Formule du périmètre d'un cercle (on dit aussi **circonférence** du cercle) :

si le cercle a pour rayon r, alors le périmètre se calcule par la formule :

$$\mathcal{P} = 2 \times \pi \times r$$

où π est un nombre qui vaut environ 3,14

exemple : circonférence d'un cercle de rayon 10 cm : $2 \times \pi \times 10 \approx 2 \times 3, 14 \times 10 \approx 62, 8$ cm.

III unité de masse

L'unité de masse est le gramme, noté g.

Le tableau suivant est à connaître par coeur :

kg	hg	dag	g	dg	cg	mg
(kilo)	(hecto)	(déca)		(déci)	(centi)	(milli)
			1	0	0	0
1	0	0	0			
			0	3	0	
		2	4	0	0	0

$$1 g = 1000 mg$$

 $1 kg = 1000 g$

$$30~\mathrm{cg} = 0.3~\mathrm{g}$$

$$24 \; g = 24000 \; mg$$

Angles

I définition

Un angle est un morceau de plan limité par deux demi-droites de même origine.

- * O est le **sommet** de l'angle.
- * [Ox) et [Oy) sont les **côtés** de l'angle.
- * On note cet angle \widehat{xOy} ou \widehat{yOx} . La lettre du milieu désigne toujours le sommet.

exemples:

* l'angle (1) de sommet A se note :

$$\widehat{BAC}$$
 ou \widehat{CAB}

* l'angle (2) de sommet B se note :

$$\widehat{CBA}$$
ou \widehat{ABC}

* l'angle 3 de sommet C se note :

$$\widehat{BCA}$$
 ou \widehat{ACB}

II mesurer un angle

Pour mesurer un angle, on utilise un **rapporteur** : c'est un demi-cercle gradué de 0 à 180 degrés.

III angles et mesures

Un angle droit mesure 90°.

Un angle **plat** mesure 180°.

Un angle aigu mesure entre 0° et 90°.

Un angle obtu mesure entre 90° et 180°.

remarque : avant de mesurer un angle, il faut être capable de donner l'ordre de grandeur de sa mesure ; on repère déjà s'il est aigu ou obtu.

IV bissectrice d'un angle

La bissectrice d'un angle est la demi-droite qui partage l'angle en deux angles de même mesure :

exemple:

$$\widehat{xOy} = 50^{\circ}$$

 $\underbrace{(Oz)}_{x \overrightarrow{Oy}}$ est la bissectrice de \widehat{xOy} donc :

$$\widehat{xOz} = \widehat{zOy} = 25^{\circ}$$

Aires et volumes

I aire

L'aire d'une surface est sa mesure dans une unité d'aire donnée :

Ces deux figures ont pour aire : 24 carreaux.

II unité d'aire

L'unité d'aire est le **mètre carré**, noté m^2 : c'est l'aire d'un carré de 1 m de côté.

Le tableau suivant est à connaître par coeur :

km^2		hm^2		dam^2		m^2		dm^2		cm^2		mm^2	
											1	0	0
								1	6	3	4	2	
5	6	3	2	8	4								
					5	3	9	5	1				

Grâce au tableau précédent, on peut dire que :

 $-1 \text{ cm}^2 = 100 \text{ mm}^2$

 $-16,342 \text{ dm}^2 = 1634,2 \text{ cm}^2 = 163 \text{ } 420 \text{ } \text{mm}^2$

 $-56,3284 \text{ km}^2 = 5632,34 \text{ hm}^2 = 563284 \text{ dam}^2 = 56328400 \text{ m}^2$

 $-5,3951 \text{ dam}^2 = 539,51 \text{ m}^2 = 5395100 \text{ mm}^2$

III aires de figures usuelles

III - 1) aire d'un rectangle

 $\mathcal{A} = L \times l$

exemple:

L'aire d'un rectangle de 6 cm de longueur et 4 cm de largeur :

$$\mathcal{A} = L \times l = 6 \times 4 = 24 \text{ cm}^2$$

III - 2) aire d'un carré

 $\mathcal{A} = c \times c$

exemple:

L'aire d'un carré de 6 cm de côté :

$$\mathcal{A} = c \times c = 6 \times 6 = 36 \text{ cm}^2$$

III - 3) aire d'un triangle rectangle

$$\mathcal{A} = \frac{a \times b}{2}$$

exemple:

L'aire d'un triangle rectangle de 6 cm de base et 4 cm de hauteur :

$$A = \frac{a \times b}{2} = A = \frac{6 \times 4}{2} = \frac{24}{2} = 12 \text{ cm}^2$$

IV définition du volume

IV - 1) volume du cube

définition : le volume d'un cube (exprimé en cm³), c'est le nombre de cubes de 1 cm d'arête que l'on peut mettre à l'intérieur.

Dans la figure ci-contre, il y a : $5 \times 5 \times 5$ petits cubes. or : $5 \times 5 \times 5 = 25 \times 5 = 125$ et donc ce cube a un volume de 125 cm³.

Formule du volume d'un cube dont l'arête est égale à a :

$$\mathcal{V} = a \times a \times a$$

si a est en cm, \mathcal{V} est en cm³

IV - 2) volume du pavé

Dans la figure ci-contre, il y a : $5 \times 2 = 10$ petits cubes au premier niveau.

Il y a 3 niveaux, donc au total : $10 \times 3 = 30$ petits cubes.

On aurait pu faire directement : $5 \times 2 \times 3 = 10 \times 3 = 30$ pour trouver le résultat.

Ce pavé a un volume de 30 cm^3 .

Formule du volume d'un pavé qui mesure a sur b sur c :

$$\mathcal{V} = a \times b \times c$$

*a, b et c doivent avoir **la même unité de longueur**, *si a, b et c sont exprimés en m, V est en m³

V conversion de volumes

On peut utiliser un tableau de conversion des volumes pour passer d'une unité à une autre :

km^3		hm^3		dam^3		m^3		dm^3		cm^3		3	mm^3		3					
												1	6	3	4	2				
5	6	3	2	8	4															
						5	3	9	5	1	8	9								
																	2	8	4	5

Grâce à ce tableau, on peut dire que :

$$-163,42 \text{ dm}^3 = 163 420 \text{ cm}^3 = 0,16342 \text{ m}^3$$

$$-\ 563{,}284\ \mathrm{km}^{\ 3} = 563\ 284\ \mathrm{hm}^{3} = 563\ 284\ 000\ \mathrm{dm}^{3}$$

$$-\ 2.845\ cm^3 = 2845\ mm^3 = 0.002845\ dm^3$$

VI volume et contenance

Un volume se mesure en « $quelque\ chose\$ » (exemple : m^3 , cm^3 , etc.).

Une contenance se mesure en Litres (L)

A retenir : $1 \text{ dm}^3 = 1 \text{ L}$

exemple : 2,845 cm³ = 0,002845 dm³ = 0,002845 L