Esperienza di Laboratorio: XRD

Tommaso Raffaelli

2024 - 12 - 04

Indice

1	Introduzione	2
2	Materiali e tecniche sperimentali	2
	2.1 Legge di Bragg	3
3	Dati ottenuti	3
	3.1 Cell indexing	4
4	Conclusione	4
_		

Elenco delle figure

1 Introduzione

La diffrazione a raggi X (XRD) è una tecnica analitica fondamentale per lo studio dei materiali cristallini, utilizzata per determinare la struttura atomica o molecolare di un campione.

Proprio su questo si basa l'esperienza di laboratorio

La diffrazione a raggi X (XRD) è una tecnica analitica fondamentale per lo studio dei materiali cristallini, utilizzata per determinare la struttura atomica o molecolare di un campione. L'obiettivo principale dell'esperimento è identificare il reticolo cristallino e le sue caratteristiche, come la simmetria e le dimensioni delle celle unitarie. Questa tecnica sfrutta l'interazione tra i raggi X e il reticolo cristallino: quando un fascio di raggi X colpisce il campione, viene diffratto secondo le condizioni della legge di Bragg.

Durante il laboratorio, un campione policristallino sarà sottoposto a un fascio di raggi X in un diffrattometro. Il risultato sarà un diffrattogramma, ovvero un grafico che rappresenta l'intensità dei raggi diffratti in funzione dell'angolo di diffrazione (2θ) . Questo diffrattogramma permette di identificare le distanze interplanari e, attraverso il confronto con banche dati, di determinare la struttura cristallina e la fase del materiale.

L'esperimento fornisce una comprensione approfondita delle proprietà cristalline del materiale, che sono fondamentali per applicazioni in diversi settori, come la scienza dei materiali, la chimica e l'ingegneria.

2 Materiali e tecniche sperimentali

Una macchina per la diffrazione a raggi X (diffrattometro XRD) è progettata per analizzare la struttura cristallina dei materiali. Il suo funzionamento si basa sull'emissione di raggi X, la loro interazione con il campione, e la rilevazione delle radiazioni diffratte.

Componenti: * Sorgente di Raggi X: La macchina genera raggi X focalizzati tramite un tubo a raggi X, in cui elettroni ad alta energia colpiscono un bersaglio metallico (solitamente rame o molibdeno), producendo radiazioni elettromagnetiche di lunghezza d'onda caratteristica. * Sistema di Collimazione: I raggi X emessi sono collimati (orientati) in un fascio stretto per garantire che colpiscano il campione con un'incidenza precisa. * Campione: Il campione, che può essere un solido policristallino, una polvere o un film sottile, è posizionato su un supporto e orientato per massimizzare l'interazione con il fascio. * Goniometro: Il campione e il rilevatore sono montati su un goniometro, che ruota il campione e il rilevatore sincronizzandoli per rispettare la geometria richiesta dalla legge di Bragg. * Rilevatore: Il rilevatore misura l'intensità dei raggi X diffratti a diversi angoli (2θ) . Questo produce un diffrattogramma, che è una rappresentazione grafica dell'intensità dei raggi in funzione dell'angolo.

L'intero processo è altamente automatizzato e consente una rapida e precisa caratterizzazione strutturale dei materiali.

Funzionamento: La machina genera raggi X tramite un tubo a raggi X che vengono collimati, per aumentare l'accuratezza dell'angolo di incidenza, questi colpiscono il rilevatore che misura la

2.1 Legge di Bragg

La legge di Bragg è matematicamente espressa come:

$$\lambda = 2d\sin\theta$$

Dove:

- θ : angolo del fascio incidente
- λ : lunghezza d'onda dei raggi X
- d: distanza fra due piani del reticolo cristallino

La legge permette di collegare l'angolo di diffrazione (θ) e le caratteristiche della radiazione (λ) con le distanze interplanari (d) della struttura cristallina. Questo principio è alla base dell'analisi dei diffrattogrammi prodotti nelle tecniche XRD, consentendo di determinare la struttura atomica del materiale.

3 Dati ottenuti

Dalla macchina otteinamo essenzialmente una tabella che mette in relazione: 1. l'angolo di incidenza 2θ 2. Il valore ricavato dall'rivelatore Experimental

Nel caso del campione utilizzato in questa esperienza di laboratorio la tabella ha dimensione 4012×2 quindi per questioni di spazio farò vedere i primi elementi di essa.

Tabella 3.1. Campionamento generale

X2.theta	Experimental
30.0009	341.25
30.0208	263.33
30.0408	325.60
30.0607	417.02
30.0807	450.67
30.1006	387.85
30.1205	275.93
30.1405	311.55
30.1604	346.85
30.1804	393.16

Dalla tabella facendo un plot punto per punto possiamo ottenere quello che è il difrattogramma del campione che stiamo analizzando

Guardando il digrattogramma si possono notare alcuni picchi ben definiti, questi rappresentano gli angoli di incidenza per cui i raggi X hanno fatto interferenza costruttiva alla posizione del rivelatore.

3.1 Cell indexing

Indexing is the process of determining the unit cell dimensions from the peak positions. To index a powder diffraction pattern it is necessary to assign Miller indices, hkl, to each peak.

Indexing è il processo di determinare la dimensione della cella unitaia dalla posizione dei picchi del difrattogramma

Nel caso del campione osservato in laboratorio otteniamo 9 picchi, sapendo che gli indici di miller sono numeri interi piccoli tramite la seguente relazione

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

possiamo ricavare per tentativi gli indici di Miller h, k e l

4 Conclusione