probability and stochastic processes

statistics

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

- 2. sample median if n is even: $\tilde{x} = \frac{x_{\frac{n+1}{2}} + x_{\frac{n+2}{2}}}{2}$
- 3. sample median if n is odd $\tilde{x}=x$
- 4. sample variance: X_1, X_2, \cdots, X_n is denoted by σ^2

$$\sigma^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

5. sample standard deviation: $s = \sqrt{s^2}$

probability

- $A \cap A' = \emptyset$, $A \cup A' = S$

- (A ∪ B)' = A' ∩ B
- 2. mutually exclusive events A_1 and A_2 , $P[A_1 \cup A_2] = P[A_1] + P[A_2]$
- 3. if $A=A_1\cup A_2\cup\cdots\cup A_m$ and $A_i\cap A_j=\emptyset$ for all $i\neq j$, then $P[A]=\sum_{i=1}^m P[A_i]$
- 4. P[.], $P[\emptyset] = 0$, $P[A^c] = 1 P[A]$, $P[A \cup B] = P[A] + P[B] P[A \cap B]$, and $A \subset B$, $P[A] \le P[B]$
- 5. $B=s_1,s_2,\cdots,s_m$ is the sum of the probabilities of the outcomes contained in the event:

$$P[B] = \sum_{i=1}^{m} P[s_i]$$

6. $S=s_1,s_2,\cdots,s_n$ in which each outcomes s_i is equally likely

$$P[s_i] = \frac{1}{n}$$
 $1 \le i \le n$

- 7. conditional probability measure P[A|B]
- P[B|B] = 1
- $A=A_1\cup A_2\cup\cdots\cup A_m$ and $A_i\cap A_j=\emptyset$ for all $i\neq j$, then, $P[A|B]=P[A_1|B]+P[A_2|B]+\cdots+P[A_m|B]$
- 8. partition $B=B_1,B_2,\cdots,B_m$ and any event A in the sample space, let $C_i=A\cap B_i$ For $i\neq j$, the events C_i and C_j are mutually exclusive and $A=C_1\cup C_2\cup\cdots$
- 9. A and partition B_1, B_2, \cdots, B_m

$$P[A] = \sum_{i=1}^{m} P[A \cap B_i]$$

10. law of total probability B_1, B_2, \cdots, B_m with $P[B_i] > 0$ for all i_r

$$P[A] = \sum_{i=1}^{m} P[A|B_i]P[B_i]$$

11. conditional probability

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 if $P(A) > 0$

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^{k} P(B_i \cap A)} = \sum_{i=1}^{k} \frac{P(B_r \cap A)}{\sum_{i=1}^{k} P(B_i|A)P(B_i)}$$

$$P[B|A] = \frac{P[A|B]P[B]}{P(A|B)}$$

$$P[AB] = P[A]P$$

3. Discrete Random Variables

- 1. **probability mass function** is the set of ordered pars (x,f(x)) is a probability function, probability mass function, or probability distribution of the discrete random variable X if for each possible outcome x.
- 2. f(x) > 0
- 4. P(X = x) = f(x)

let X be the random variable: number of heads in 3 tosses of a fair coin

sample space	х
TTT	0
TTH	1
THT	1
THH	2
HTT	1
HTH	2
ННТ	2
ннн	3

the probability P(X=x) that the outcome is a specific x value is the probability that the number of heads is x.

x	0	1	2	3
P(X = x)	1/8	3/8	3/8	1/8

2. the cumulative distribution function F(x) of a discrete random variable X with probability distribution f(x) is

$$F(x) = P(X \le x) = \sum f(t)$$
, for $-\infty \le x \le \infty$

- $P(a < X \le b) = P(a < X < b) = P(a \le X < b) = P(a \le X \le b)$
- 4. the function f(x) is a **probability density function** (pdf) for the continuous random variable X, defined over the set of real numbers, if
- 5. f(x) > 0 for all $x \in R$
- 6. $\int_{-\infty}^{\infty} f(x)dx = 1$
- 7. $P(a < X < b) = \int_{a}^{b} f(x)dx$
- 8. definition of joint probability distribution / probability mass function f(x,y) = P(X=x,Y=y)the function f(x,y) is a joint probability distribution or **probability mass function** of the disc random variables X and Y if
- 10. $\sum_{x} \sum_{y} f(x, y) = 1$

11.
$$P(X=x,Y=y)=f(x,y)$$
 for any region A in the xy plane, $P[(X,Y)\in A]=\sum\sum_A f(x,y)$

mathematical expectation

1.1. expeted value let X be a random variable with probability distribution f(x), the mean or expected value of X is

if X is discrete

$$\mu = E(X) = \sum_x x f(x) dx$$

if X is continuous

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

4.1. example a lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. a sample of 3 is taken by the inspector. find the expected value of the number of good components in this sample.

let X represent the number of good components in the sample. the probability distribution of X is

$$f(x) = \frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}}, x = 0, 1, 2, 3$$

$$f(0) = 1/35$$
, $f(1) = 12/35$, $f(2) = 18/35$, $f(3) = 4/35$

$$\mu = E(X) = \sum_{x} x f(x) dx = (0) \frac{1}{35} + (1) \frac{12}{35} + (2) \frac{18}{35} + (3) \frac{4}{35} = 1.7$$

therefore if a sample size 3 is selected at random over and over again from a lot of 4 good components and 3 defective components, it will contain on average 1.7 good components

4.4. example a coin is biased such that a head is three times as likely to occur as a tail. Find the expected number of tails when this coin is tossed twice.

assigning weights of 3w and w for a head and tail respectively. we obtain P(H)=3/4 and P(T)=1/4. the sample space for the experiment is S=HH,HT,TH,TT. now if X represents the number of trials that occur in two tosses of coins, we have

$$P(X = 0) = P(HH) = (3/4)(3/4) = 9/16$$

$$P(X = 1) = P(HT) + P(TH) = (3/4)(1/4) + (1/4)(3/4) = 3/8$$

$$P(X = 2) = P(TT) = (1/4)(1/4) = 1/16$$

the probability distribution for X is then

х	0	1	2
f(x)	9/16	3/8	1/16

expected value is
$$\mu = E(X) = (0)(9/16) + (1)(3/8) + (2)(1/16) = 1/2$$

1.2. expected value let X and Y be random variables with joint probability distribution f(x, y), the mean or expected value of the random variable g(X,Y) is

if X and Y are discrete

$$\mu_{g(X,Y)}=E[g(X,Y)]=\sum_x\sum_y g(x,y)f(x,y)$$

if X and Y are continuous

$$\mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy$$

1.3. **standard deviation** let X be a random variable with probability distribution f(x) and mean μ . the variance of X is σ^2 . the variance σ^2 is called the standard deviation.

if X is discrete

$$\sigma^2 = E[(X - \mu)^2] = \sum_{x} (x - \mu)^2 f(x) dx$$

if X is continuous

$$\sigma^2 = E[(X-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) ds$$

1.4. the variance of the random variable X is $\sigma^2 = E(X^2) - \mu^2$

1.5. Let X be a random variable with probability distribution f(x) the variance of the random variable g(X) is

if X is discrete

$$\sigma_{g(X)}^2 = E[g(X) - \mu_{g(X)}^2 = \sum_x [g(x) - \mu_{g(X)}]^2 f(x)$$

if X is continuous

$$\sigma_{g(X)}^2 = E[g(X) - \mu_{g(X)}]^2 = \int_{-\infty}^{\infty} [g(x) - \mu_{g(X)}]^2 f(x) dx$$

1.6. ${f covariance}$ let X and Y be random variables with joint probability distribution f(x,y) the covariance of X and Y is if X and Y are discrete

$$\sigma_{XY} = E[(X-\mu_X)(Y-\mu_Y)] = \sum_x \ sum_y(x-\mu_X)(y-\mu_y)f(x,y)$$

if X and Y are continuous

$$\sigma_{XY} = E[(X-\mu_X)(Y-\mu_Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-\mu_X)(y-\mu_y)f(x,y)dxdy$$