MODAL LOGIC

Some Theology

St. Anselm of Canterbury (1033–1109)

Modal Operators: \Diamond and \Box

 $\Diamond p$ could mean

- "p is possible"
- "p might happen"
- "p will happen (at some time in the future)"
- "I think p could be true"

 $\Box p = \neg \Diamond \neg p$. For each of the above, what does $\Box p$ mean?

Syntax

$$prop ::= p|q|r|...$$

$$\phi ::= prop|\neg \phi|(\phi \land \phi)|(\phi \lor \phi)|(\phi \to \phi)|\Diamond \phi|\Box \phi$$

e.g.

$$(\lozenge p \to \Box \lozenge p)$$

Frames

 $\mathcal{F} = (W, R)$ where $R \subseteq W \times W$ (a directed graph).

Valuation:

$$V: prop \rightarrow \wp(W) \text{ e.g.}$$

$$V(p) = \{1, 3, 5\}$$

 $V(q) = \{1, 2\}$
 $V(r) = \emptyset$

Semantics

Model
$$\mathcal{M} = (W, R, V)$$
. Let $v \in W$.

 $\mathcal{M}, v \models p \iff v \in V(p)$
 $\mathcal{M}, v \models \neg \phi \iff \mathcal{M}, v \not\models \phi$
 $\mathcal{M}, v \models (\phi \land \theta) \iff \mathcal{M}, v \models \phi \text{ and } \mathcal{M}, v, \models \theta$
 $\mathcal{M}, v \models \Diamond \phi \iff \text{there is } w \in W(v, w) \in R \text{ and } \mathcal{M}, w \models \phi$
 $\mathcal{M}, v \models \Box \phi \iff \text{for all } w \in W \text{ if } (v, w) \in R \text{ then } \mathcal{M}, w \models \phi$

Validity

Valid in a model

$$(W, R, V) \models \phi \iff \text{for all } v \in W(W, R, V), v \models \phi$$

Valid in a frame

$$(W,R) \models \phi \iff$$
 for all valuations $V(W,R,V) \models \phi$

Valid over a class of frames

$$\mathcal{K} \models \phi \iff$$
 for all frames $\mathcal{F} \in \mathcal{K} \ \mathcal{F} \models \phi$

▶ An instance of a propositional tautology, e.g. $\Box \Diamond p \to \Box \Diamond p$

- ▶ An instance of a propositional tautology, e.g. $\Box \Diamond p \to \Box \Diamond p$

- ▶ An instance of a propositional tautology, e.g. $\Box \Diamond p \to \Box \Diamond p$
- $\blacktriangleright \Box(p \land q) \to (\Box p \land \Box q)$
- $\blacktriangleright \ \Box(p \to q) \to (\Box p \to \Box q)$

- ▶ An instance of a propositional tautology, e.g. $\Box \Diamond p \to \Box \Diamond p$

But not

$$\blacktriangleright \Box (p \lor q) \to (\Box p \lor \Box q)$$

Axioms and Rules for Modal Logic K

Rules:

- ▶ Modus Ponens ($\vdash A$ and $\vdash (A \rightarrow B)$ implies $\vdash B$).

Axioms

- Axioms for propositional logic

Axioms and Rules for Modal Logic K

Rules:

- ▶ Modus Ponens ($\vdash A$ and $\vdash (A \rightarrow B)$ implies $\vdash B$).
- ▶ Necessitation ($\vdash A \text{ implies } \vdash \Box A$).

Axioms

- ► Axioms for propositional logic

Axioms and Rules for Modal Logic K

Rules:

- ▶ Modus Ponens ($\vdash A$ and $\vdash (A \rightarrow B)$ implies $\vdash B$).
- ▶ Necessitation ($\vdash A \text{ implies } \vdash \Box A$).

Axioms

- Axioms for propositional logic

Defining Classes of Frames

0			
ϕ defines ${\cal K}$ r	ϕ defines ${\mathcal K}$ means " ${\mathcal F} \models \phi \iff {\mathcal F} \in {\mathcal K}$ "		
Property	First-order def	Modal Defining Formula	
Reflexive	∀wRww	$\Box ho ightarrow ho$	
Transitive	$\forall u \forall v \forall w ((Ruv \land Rvw) \rightarrow Ruw)$	$\Box \rho \to \Box \Box \rho$	
Symmetric	orall u orall v (Ruv ightarrow Rvu)	$ ho ightarrow \Box \Diamond ho$	
Dense	$\forall u \forall v (Ruv \rightarrow \exists w (Ruw \land Rwv))$	$\Box\Box p \to \Box p$	

Equivalent Form

$$egin{aligned} igl(\Box\Box
ho
ightarrow \Box
hoigr) &\equiv igl(\lnot\Box
ho
ightarrow \lnot\Box\Box
hoigr) \ &\equiv igl(\lozenge q
ightarrow \lozenge\lozenge qigr) \end{aligned}$$

where $q = \neg p$.

Modal Logics

Class of frames	First-order def	Modal Logic
All frames	w = w	$K = MP$, Nec, Prop, $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
Reflexive frames	∀wRww	$T = K + (\Box p \rightarrow p)$
Reflexive and Transitive	$ \land \forall u \forall v \forall w ((Ruv \land Rvw) \rightarrow Ruw)$	$S4 = T + (\Box p \rightarrow \Box \Box p)$
Equivalence Rel	$ \land \forall u \forall v (Ruv \rightarrow Rvu)$	$S5 = S4 + (p \rightarrow \Box \Diamond p)$
•		

Let $\mathcal K$ be one of those classes (all frames, reflexive, reflexive and transitive, reflexive symmetric transitive) let A be the conjunction of corresponding axioms, write \vdash_A for 'provable using A' with Modus Ponens and Necessitation. For any frame $\mathcal F=(W,R)$

 $\triangleright \mathcal{F} \models A \iff \mathcal{F} \in \mathcal{K},$

Let $\mathcal K$ be one of those classes (all frames, reflexive, reflexive and transitive, reflexive symmetric transitive) let A be the conjunction of corresponding axioms, write \vdash_A for 'provable using A' with Modus Ponens and Necessitation. For any frame $\mathcal F=(W,R)$

 $ightharpoonup \mathcal{F} \models A \iff \mathcal{F} \in \mathcal{K}$, so A defines the class.

Let $\mathcal K$ be one of those classes (all frames, reflexive, reflexive and transitive, reflexive symmetric transitive) let A be the conjunction of corresponding axioms, write \vdash_A for 'provable using A' with Modus Ponens and Necessitation. For any frame $\mathcal F=(W,R)$

- $ightharpoonup \mathcal{F} \models A \iff \mathcal{F} \in \mathcal{K}$, so A defines the class.
- $\triangleright \mathcal{K} \models \phi \iff \vdash_{A} \phi$,

Let $\mathcal K$ be one of those classes (all frames, reflexive, reflexive and transitive, reflexive symmetric transitive) let A be the conjunction of corresponding axioms, write \vdash_A for 'provable using A' with Modus Ponens and Necessitation. For any frame $\mathcal F=(W,R)$

- $ightharpoonup \mathcal{F} \models A \iff \mathcal{F} \in \mathcal{K}$, so A defines the class.
- $ightharpoonup \mathcal{K} \models \phi \iff \vdash_{A} \phi$, so \vdash_{A} is sound and complete for \mathcal{K} .

Excercise

Find a modal formula ϕ valid in exactly one of $(\mathbb{N},<),(\mathbb{Q},<)$.

Labelled Frames

Modal Tableau

To check satisfiability of ϕ , make a queue of labelled frames. Initially, one frame in queue, with one world $\{w\}$ and label $\lambda(w) = \{\phi\}$.

- While gueue is not empty, degueue ((W, E), λ).
- ▶ If there is $w \in W$ and $\{p, \neg p\} \subseteq \lambda(w)$ then don't enqueue.
- If there are only boxed formulas, negated diamond formulas, and literals in $range(\lambda)$ then halt and return
- YES, model found. • Else, pick $w \in W$ and a formula $\theta \in \lambda(w)$, non-literal, not a box formula, not a negated diamond.
- Lise, pick $w \in V$ and a formula $v \in \lambda(w)$, non-interal, not a box formula, not a negated diamond. If θ is an α -formula let $\lambda'(w) := (\lambda(w) \setminus \{\theta\}) \cup \{\alpha_1, \alpha_2\}$ (else $\lambda'(v) = \lambda(v)$, $v \neq w$), enqueue $((W, E), \lambda')$.
- If θ is a β -formula let λ_1, λ_2 be same as λ except $\lambda_1(w) = (\lambda(w) \setminus \{\theta\}) \cup \{\beta_1\}$ and
- $\lambda_2(w) = (\lambda(w) \setminus \{\theta\}) \cup \{\beta_2\}$. Enqueue $((W, E), \lambda_1)$, enqueue $((W, E), \lambda_2)$. If $\theta = \Diamond A$ (or $\neg \Box A$) then let $W' = W \cup \{v\}$ (new), $E' = E \cup \{(w, v)\}$ and λ' be same as λ except
- $\lambda'(v) = \{A\} \cup \{B : \Box B \in \lambda(w)\} \cup \{\neg B : \neg \Diamond B \in \lambda(w)\} \text{ (respectively,}$ $\lambda'(v) = \{\neg A\} \cup \{B : \Box B \in \lambda(w)\} \cup \{\neg B : \neg \Diamond B \in \lambda(w)\}\}, \text{ and } \lambda'(w) = \lambda(w) \setminus \{\emptyset\}. \text{ Enqueue}$
- $((W', E'), \lambda').$
- ((W', E'), λ').

 If queue is empty return NO.

Tableau for reflexive frames

As before, but initially $E = \{(w, w)\}$ and whenever v is added to W also add (v, v) to E. Also, whenever $\Box A \in \lambda(w)$ also include $A \in \lambda(w)$, similarly if $\neg \Diamond A \in \lambda(w)$ also include $\neg A$ in $\lambda(v)$.

Tableau for symmetric frames

For diamond formulas in world w, when you add a new world v and an add an edge (w, v), also add an edge (v, w). Any box formulas (or negated diamonds) in v back propagate to w.

Tableau for transitive frames

When you have a diamond formula at w and add a new world v and add an edge (w,v), also add an edge (u,v) whenever $(u,w)\in E$. Include A in $\lambda(v)$ whenever $\Box A\in\lambda(u)$, include $\neg A$ in $\lambda(v)$ whenever $\neg\Diamond A\in\lambda(u)$, when $(u,w)\in E$. NB. May not terminate over transitive frames.

Frame and Model p-morphism

Let (W,R) and (W',R') be frames. A function $f:W\to W'$ is called a frame p-morphism if

- $(x,y) \in R$ implies $(f(x),f(y)) \in R'$ (a homomorphism), and
- ▶ if $(f(x), z) \in R'$ then there is $y \in W$ such that z = f(y) and $(x, y) \in R$.

Let $v: prop \to \wp(W)$ and $v': prop \to \wp(W')$ be valuations. If f is a frame p-morphism from (W,R) to (W',R'') and $x \in v(p) \iff f(x) \in v'(p)$ then f is a model p-morphism of model (W,R,v) to (W',R',v').

Frame *p*-morphism

Frame *p*-morphism

Frame *p*-morphism

p-morphism

Frame *p*-morphism example

Frame *p*-morphism example

If f is a model p-morphism from model (W,R,v) to model (W',R',v') and ϕ is any modal formula, for any $x\in W$ we have

$$W, R, v, x \models \phi \iff W', R', v', f(x) \models \phi$$

Proof. Base Case: $\phi = p$, by definition of p-morphism.

If f is a model p-morphism from model (W, R, v) to model (W', R', v') and ϕ is any modal formula, for any $x \in W$ we have

$$W, R, v, x \models \phi \iff W', R', v', f(x) \models \phi$$

Proof. Base Case: $\phi = p$, by definition of p-morphism. Induction Hypotheses: assume result for $\phi = A$ and for $\phi = B$.

If f is a model p-morphism from model (W,R,v) to model (W',R',v') and ϕ is any modal formula, for any $x\in W$ we have

$$W, R, v, x \models \phi \iff W', R', v', f(x) \models \phi$$

Proof. Base Case: $\phi = p$, by definition of p-morphism. Induction Hypotheses: assume result for $\phi = A$ and for $\phi = B$. Induction step. Cases $\phi = \neg A$ and $\phi = (A \lor B)$ are easy.

If f is a model p-morphism from model (W, R, v) to model (W', R', v') and ϕ is any modal formula, for any $x \in W$ we have

$$W, R, v, x \models \phi \iff W', R', v', f(x) \models \phi$$

Proof. Base Case: $\phi=p$, by definition of p-morphism. Induction Hypotheses: assume result for $\phi=A$ and for $\phi=B$. Induction step. Cases $\phi=\neg A$ and $\phi=(A\vee B)$ are easy. Case $\phi=\Diamond A$.

$$W, R, v, w \models \Diamond A \iff \exists u \in W, \ (w, u) \in R, \ W, R, v, u \models A$$

$$\Rightarrow (f(w), f(u)) \in R' \land W', R', v', f(u) \models A$$

$$\Rightarrow W', R', v', f(w) \models \Diamond A$$

$$\Rightarrow \exists z \in W'((f(w), z) \in R' \land (W', R', v', z \models A))$$

$$\Rightarrow \exists x \in W(f(x) = z \land (w, x) \in R \land (W, R, v, x \models A))$$

Class of irreflexive frames is not modally definable

A frame (W, R) is irreflexive if for all $x \in W$ we have $(x, x) \notin R$. Suppose for contradiction that modal formula ϕ defines irreflexive frames, i.e. $(W, R) \models \phi \iff (W, R)$ is irreflexive.

Let $\mathcal{F}_2(\{a,b\},\{(a,b),(b,a)\})$ be a two world irreflexive frame, let $\mathcal{F}_1=(\{c\},\{(c,c)\})$ be the one world reflexive frame, and let $f:\mathcal{F}_2\to\mathcal{F}_1$ be p-morphism: $a,b\mapsto c$. \mathcal{F}_1 is not irreflexive, so $\mathcal{F}_1\not\models\phi$. Hence there is a valuation v such that $\mathcal{F}_1,v,c\not\models\phi$. Define a valuation w over \mathcal{F}_2 by

$$w(p) = \begin{cases} \{a, b\} & \text{if } v(p) = \{c\} \\ \emptyset & \text{if } v(p) = \emptyset \end{cases}$$

Then f is a model p-morphism from (\mathcal{F}_2, w) to the (\mathcal{F}_1, v) . Hence $\mathcal{F}_2, w, x \not\models \phi$ (all $x \in \{a, b\}$). So $\mathcal{F}_2 \not\models \phi$, but \mathcal{F}_2 is irreflexive, so this is a contradiction.