# Testowanie stacjonarności

Natalia Nehrebecka

#7

# Plan zajęć

- Test Dickey-Fullera
- Rozszerzony test Dickey-Fullera
- Test KPSS

- najwcześniejszym i najpopularniejszym testem za pomocą którego badamy czy zmienna jest stacjonarna jest test Dickey-Fullera (test DF)
- model:

$$y_t = \beta y_{t-1} + \varepsilon_t \quad \varepsilon_t \sim IID(0, \sigma^2)$$

 $H_0$ :  $\beta = 1 - y_t$  jest błądzeniem przypadkowym, niestacjonarna

$$H_1$$
:  $|\beta| < 1 - y_t$  jest zmienną stacjonarną AR(1)

Brak podstaw do odrzucenia  $H_0 \implies$  zmienne w równaniu są niestacjonarne  $\implies$  nie można weryfikować bezpośrednio

W celu wyeliminowania potencjalnej niestacjonarności zmiennej objaśnianej w regresji testowej, od obu stron równania odejmujemy  $y_{t-1}$  i w ten sposób otrzymujemy zróżnicowaną (a więc potencjalnie stacjonarną) zmienną objaśnianą.

$$\Delta y_t = (\beta - 1)y_{t-1} + \varepsilon_t = \rho y_{t-1} + \varepsilon_t$$

$$H_0: \rho = 0 - y_t$$
 jest niestacjonarna

$$H_1: \rho \in (-2,0) - y_t$$
 jest stacjonarna

#### problem:

nie można używać statystki **t-Studenta** do testowania istotności parametru  $\rho$  ponieważ rozkłady statystyk testowych są niestandardowe jeśli w modelu zmienne niestacjonarne

$$\Delta y_t = (\beta - 1)y_{t-1} + \varepsilon_t = \rho y_{t-1} + \varepsilon_t$$

Statystyka DF ma postać: 
$$DF = t(\rho) = \frac{\widehat{\rho}_{MNK}}{se(\rho)}$$

- specjalne tablice z wartościami krytycznymi dla testu DF

#### The Dickey-Fuller Distribution



- test DF przeprowadzamy w następujący sposób:
  - **1**. regresja  $\Delta y_t$  na  $y_{t-1}$
  - **2**. porownujemy statystykę DF= $t(\rho)$  dla  $y_{t-1}$  z wartościami krytycznymi testu DF:
  - a) wartość statystyki testowej < wartości krytycznej odrzucamy  $H_0$  o niestacjonarności
  - b) wartość statystyki testowej > wartości krytycznej brak podstaw do odrzucenia  $H_0$  o niestacjonarności  $y_t$

#### Uwaga techniczna!

wielkości krytyczne rozkładu statystki DF są zawsze ujemne

#### Forma funkcyjna:

- 1. bez stałej
- 2. ze stałą
- 3. ze stałą i trendem

$$\Delta y_{t} = \rho y_{t-1} + \varepsilon_{t}$$

$$\Delta y_{t} = \mu + \rho y_{t-1} + \varepsilon_{t}$$

$$\Delta y_{t} = \mu + \beta t + \rho y_{t-1} + \varepsilon_{t}$$

 $H_0$ :  $y_t \sim zm$ .  $niestacjonarna (y_t jest przynajmniej <math>\sim I(1)$ )

 $H_1$ :  $y_t \sim zm. stacjonarna(y_t \sim I(0))$ 

- Forma funkcyjna:
  - 1. bez stałej

$$\Delta y_t = \rho y_{t-1} + \varepsilon_t$$



$$\Delta y_t = \rho y_{t-1} + \varepsilon_t$$

### H<sub>0</sub>: Random Walk, H<sub>1</sub>: Stacjonarna wokół zera





- Forma funkcyjna:
  - 2. ze stałą

$$\Delta y_{t} = \mu + \rho y_{t-1} + \varepsilon_{t}$$



 $\Delta y_t = \mu + \rho y_{t-1} + \varepsilon_t$ H<sub>1</sub>: Stacjonarna wokół stałej  $\neq$  0





- Forma funkcyjna:
  - 3. ze stałą i trendem

$$\Delta y_{t} = \mu + \beta t + \rho y_{t-1} + \varepsilon_{t}$$



- Forma funkcyjna:
  - 3. ze stałą i trendem

$$\Delta y_{t} = \mu + \beta t + \rho y_{t-1} + \varepsilon_{t}$$



$$\Delta y_{t} = \mu + \beta t + \rho y_{t-1} + \varepsilon_{t}$$

### H<sub>1</sub>: Stacjonarna wokół trendu liniowego





## Rozszerzony test Dickey-Fullera

często reszty z regresji:

$$\Delta y_t = \rho y_{t-1} + \varepsilon_t$$

wykazują silną autokorelację

rozszerzony test Dickey-Fullera (test ADF) różni się od standardowego testu DF rozszerzeniem regresji o dodatkowe elementy, których celem jest eliminacja autokorelacji reszt

## Rozszerzony test Dickey-Fullera

celem uzyskania statystyki testowej przeprowadzamy regresję:

$$\Delta y_t = \rho y_{t-1} + \sum_{i=1}^k \gamma_i \Delta y_{t-i} + \varepsilon_t$$

gdzie: 
$$\sum_{i=1}^{k} \gamma_i \Delta y_{t-i} - \text{rozszerzenie}$$

lacktriangle liczba opóźnień k dobieramy tak aby z reszt wyeliminować autokorelację

UWAGA! do oceny nie stosujemy testu DW (opóźniona zmienna objaśniana jako regresor...)

## Rozszerzony test Dickey-Fullera

- Jeśli  ${m k}$  jest zbyt  ${m male}$ , wartości DF są niewłaściwe zbyt często odrzucamy  $H_0$ .
- Jeśli k jest zbyt **duże**, moc testu DF jest mała zbyt rzadko odrzucamy  $H_0$ .

 dobry wybór: zacząć od w miarę dużej liczby opóźnień i eliminować je kolejno, sprawdzając autokorelacje reszt – pozostawić jak najmniej opóźnień, ale na tyle dużo, aby nie występowała autokorelacja reszt.

Stała k to najmniejsza liczba przy której reszty nie podlegają autokorelacji.

## Wady - test Dickey-Fullera

- Słaba moc testu w przypadku małej próby
- Słaba moc testu w przypadku, gdy szereg jest stacjonarny, ale parametr  $\beta$  bliski 1;

$$y_t = \beta y_{t-1} + \varepsilon_t \quad \varepsilon_t \sim IID(0, \sigma^2)$$

Rozwiązaniem jest wykorzystanie testu KPSS

### **Test KPSS**

- test KPSS (Kwiatkowski, Philips, Schmidt, Shin) testuje hipotezę zerową o stacjonarności zmiennej
- test KPSS oparty na modelu statystycznym:  $y_t = \delta + \zeta_t + \varepsilon_t$ ,

Gdzie: 
$$\varepsilon_t \sim IID(0, \sigma_{\varepsilon}^2)$$
;  $\zeta_t = \zeta_{t-1} + u_t$ ;  $u_t \sim IID(0, \sigma_{u}^2)$ ;

$$H_0: \sigma_u^2 = 0$$
, zmienna  $y_t$  jest stacjonarna

 $H_1: \sigma_u^2 > 0$ , zmienna  $y_t$  jest niestacjonarna

- hipotezę zerową odrzucamy gdy statystka testowa > wartości krytycznej
- statystyka to towa dla testu KPSS zawsze >0

# Dziękuję za uwagę