

Mean

The mean or average (\bar{x}) of x observations of n is as follows.

$$mean = \frac{number\ of\ observations}{numerous\ observers}$$

or

$$\bar{x} = \frac{\sum x}{n}$$

When calculating the mean of a frequency distribution, the formula used is as follows:

$$mean = \bar{x} = \frac{\sum x f}{n} = \frac{\sum x f}{\sum f}$$

For grouped data, the formula for the mean is

$$mean = \bar{x} = \frac{\sum x_i f_i}{n} = \frac{\sum x_i f_i}{\sum f_i}$$

Where x_i is midpoint of the i and f_i is the frequency of the i data interval.

EXAMPLE

Single data: 2,2,6,7,7,7,10,13

The mean is (2+2+6+7+7+7+10+13)/8

= 6.75

Value	f	x_i	x_i f	
45 – 50	4	47,5	190	
51 – 56	4	53,5	214	
57 – 62	8	59,5	476	
63 – 68	30	65,5	1965	
69 – 74	31	71,5	2216,5	
75 – 80	20	77,5	1550	
81 – 86	2	83,5	167	
87 – 92	1	89,5	89,5	
Jumlah	100		6868	
				ł

So that

$$\overline{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{6868}{100} = 68,68$$

EXAMPLE

Value	f
45 – 50	4
51 – 56	4
57 – 62	8
63 – 68	30
69 – 74	31
75 – 80	20
81 – 86	2
87 – 92	1
total	100

The mode is determined based on the class interval with the highest frequency, which is 31, in the range of 69 to 74

$$M = 68.5 + 6\left(\frac{31 - 30}{(31 - 30) + (31 - 20)}\right)$$
$$= 68.5 + 6\left(\frac{1}{12}\right) = 69$$

Modus

The mode of a dataset is the value that appears most frequently

example:in a dataset

2,2,6,7,7,7,10,13

The mode is 7

The formula for the mode of grouped data:

$$modus = L + c\left(\frac{l}{l+u}\right)$$

- L: lower class boundary of the mode class
- c: class interval
- *l*: difference between the frequency of the mode class and the one before it
- *u*: difference between the frequency of the mode class and the one after it

Median

The median is the middle value of a dataset when the data is arranged in ascending or descending order.

Example:

The median or middle value of the data 4, 7, 8, 9, 12, 15, 26 is 9.

When the number of data points is even, the median of the data can be found by adding the two middle terms and then dividing the result by 2.

$$median = Me = \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2} + 1\right)}}{2}$$

The formula for the median of grouped data is:

$$Me = b + p \left(\frac{\frac{1}{2}n - F}{f}\right)$$

n = banyak data

b = batas bawah kelas

median (batas bawah -0,5)

f = frekuensi kelas median

p = panjang kelas

F = jumlah frekuensi kelas sebelum kelas median

Median

EXAMPLE (group data)

Value	f	f sum
45 – 50	4	4
51 – 56	4	8
57 – 62	8	16
63 – 68	30	46
69 – 74	31	77
75 – 80	20	97
81 – 86	2	99
87 – 92	1	100
Total	100	

The location of the median is 1/2 of all data = n/2 or $1/2 \times 100=50$ (see cumulative frequency). So the median will lie in the fifth interval class. So that,

$$Me = 68.5 + 6\left(\frac{50 - 46}{31}\right)$$
$$= 68.5 + 0.774 = 69.27$$

	$\left[\frac{x_{n+1}}{2}, jika \ n \ ganjil\right]$
$Me = Q_2 =$	$\begin{cases} x_{\underline{n}} + x_{\underline{n}+1} \\ \frac{2}{2} & \text{iika } n \text{ genap} \end{cases}$

Contoh:

Data Ganjil : 3, 4, 5, 6, 7, 8, 9 Median = 6

Data N Genap: 3, 4, 5, 6, 8, 9

Median =
$$\frac{5+6}{2}$$
 = 5.5