

Section	De	Description														
	949		ws ×	39 col		тсн	HDL	Hemoglobin	PCV (%)	RBC (million cells/microliter)	MCV		Basophils	Platelet Count	Direct	
Data Overview		3.140	Age	consumption(years)	consumption	ich	IIDE	(g/dl)		cells/microliter)	(femtoliters/cell)		(%)	(lakhs/mm)	(mg/dl)	(mg/dl)
Data Overview	count				consumption (quarters/day)				920.000000		***************************************			(lakhs/mm)		(mg/dl)
Jata Overview	count		950.000000 50.632632	950.000000 20.606316	consumption	591.000000 197.544839	582.000000 35.486254	950.000000	920.000000	398.000000 3.390704	941.000000 87.651435	9	901.000000			
Data Overview		950.000000	950.000000	950.000000	consumption (quarters/day) 950.000000	591.000000	582.000000			398.000000	941.000000	5	901.000000	(lakhs/mm) 950.000000	950.000000	(mg/dl) 895.000000
Data Overview	mean	950.000000 475.500000	950.000000 50.632632	950.000000 20.606316	consumption (quarters/day) 950.000000 5.158947	591.000000 197.544839	582.000000 35.486254	950.000000 10.263979	33.810000	398.000000 3.390704	941.000000 87.651435	5	901.000000 0.498557	(lakhs/mm) 950.000000 475.130042	950.000000 4.040737	(mg/dl) 895.000000 2.457542
Data Overview	mean std	950.000000 475.500000 274.385677	950.000000 50.632632 8.808272	950.000000 20.606316 7.980664	consumption (quarters/day) 950.000000 5.158947 22.908785	591.000000 197.544839 26.694968	582.000000 35.486254 7.982057	950.000000 10.263979 1.942300	33.810000 5.751592	398.000000 3.390704 0.937089	941.000000 87.651435 13.844181	_ {	901.000000 0.498557 0.712546	(lakhs/mm) 950.000000 475.130042 6515.406159	950.000000 4.040737 2.757443	(mg/dl) 895.000000 2.457542 1.093691
Data Overview	mean std min	950.000000 475.500000 274.385677 1.000000	950.000000 50.632632 8.808272 32.000000	950.000000 20.606316 7.980664 4.000000	consumption (quarters/day) 950.000000 5.158947 22.908785 1.000000	591.000000 197.544839 26.694968 100.000000	582.000000 35.486254 7.982057 25.000000	950.000000 10.263979 1.942300 4.000000	33.810000 5.751592 12.000000	398.000000 3.390704 0.937089 1.000000	941.000000 87.651435 13.844181 60.000000		901.000000 0.498557 0.712546 0.000000	(lakhs/mm) 950.000000 475.130042 6515.406159 0.520000	950.000000 4.040737 2.757443 0.800000	(mg/dl) 895.000000 2.457542 1.093691 0.200000
Data Overview	mean std min 25%	950.000000 475.500000 274.385677 1.000000 238.250000	950.000000 50.632632 8.808272 32.000000 44.000000	950,000000 20,606316 7,980664 4,000000 15,000000	consumption (quarters/day) 950.000000 5.158947 22.908785 1.000000 2.000000	591.000000 197.544839 26.694968 100.000000 180.000000	582.000000 35.486254 7.982057 25.000000 30.0000000	950.000000 10.263979 1.942300 4.000000 9.000000	33.810000 5.751592 12.000000 30.000000	398.000000 3.390704 0.937089 1.000000 2.825000	941.000000 87.651435 13.844181 60.000000 78.000000	_ 5	901.000000 0.498557 0.712546 0.000000 0.000000	(lakhs/mm) 950.000000 475.130042 6515.406159 0.520000 1.200000	950.000000 4.040737 2.757443 0.800000 2.700000	(mg/dl) 895.000000 2.457542 1.093691 0.200000 2.000000

Data Collection and Preprocessing Phase

Date	4th June 2024
Team ID	-
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques.
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

			.read	ne Datase _excel('		Codes\Data\HealthCa	nreData.xlsx')													
Loading Data		S.NO	Age	Gender	Place(location where the patient lives)	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	Type of alcohol consumed	Hepatitis B infection	c	Diabetes Result	Blood pressure (mmhg)	Obesity	Family history of cirrhosis/ hereditary	тсн	TG	LDL		globin (g/dl)	
	0	1	55	male	rural	12	2	liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	12.0	40.0
	1	2	55		rural	12		liquor	negative	negative	YES	138/90	yes		205.0				9.2	
	2	3	55	male	rural	12		liquor	negative	500 00 00 00 00 00 00 00 00 00 00 00 00	YES	138/90	no		205.0				10.2	
	3 4	5	55	male	rural	12		liquor	negative	negative	NO YES	138/90	no no		NaN 205.0				7.2	

```
| df|"tc+"]=off|"cs"].fillaa(off|"cs"].sean()) | df|"vs."[-j.off|"vs."].fillaa(off|"cs"].sean()) | df|"vs."[-j.off|"vs."[-j.off|"vs."].fillaa(off|"cs"].sean()) | df|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.off|"vs."[-j.
```



```
categorical features = df.select dtypes(include=[np.object])
                                               categorical features.columns
                                           Index(['Gender', 'Place(location where the patient lives)',
                                                    'Type of alcohol consumed', 'Hepatitis B infection',
                                                   'Hepatitis C infection', 'Diabetes Result', 'Blood pressure (mmhg)',
                                                   'Obesity', 'Family history of cirrhosis/ hereditary', 'TG', 'LDL',
                                                   'Total Bilirubin
                                                                        (mg/dl)', 'A/G Ratio',
                                                   'USG Abdomen (diffuse liver or not)', 'Outcome'],
                                                  dtype='object')
                                               numeric_features = df.select_dtypes(include=[np.number])
                                               numeric_features.columns
Feature Engineering
                                           Index(['S.NO', 'Age', 'Duration of alcohol consumption(years)',
                                                    'Quantity of alcohol consumption (quarters/day)', 'TCH', 'HDL',
                                                   'Hemoglobin (g/dl)', 'PCV (%)', 'RBC (million cells/microliter)', 'MCV (femtoliters/cell)', 'MCH (picograms/cell)', 'MCHC (grams/deciliter)', 'Total Count', 'Polymorphs (%) ',
                                                   'Lymphocytes (%)', 'Monocytes (%)', 'Eosinophils (%)',
                                                   'Basophils (%)', 'Platelet Count (lakhs/mm)', 'Direct (mg/dl)',
                                                   'Indirect
                                                                   (mg/dl)', 'Total Protein
                                                                                                    (g/dl)', 'Albumin (g/dl)',
                                                                                                  (U/L)', 'SGOT/AST
                                                   'Globulin (g/dl)', 'AL.Phosphatase
                                                                                                                             (U/L)',
                                                   'SGPT/ALT (U/L)'],
                                                  dtype='object')
                                               # Save the cleaned and processed DataFrame to a CSV file
                                               df.to_csv('cleaned_data.csv', index=False)
                                               df.head()
                                             ✓ 0.0s
                                                           Place(location Duration of alcohol
                                                                                           Quantity of
                                                                                                                         Blood
                                                                                              alcohol
                                                                                                              Diabetes
                                                Age Gender
                                                                                                       alcohol
                                                                                                                       pressure Obesity
                                                                        consumption(years)
                                                                                          consumption
                                                                                                                Result
                                                             patient lives)
                                                                                                     consumed
                                                                                                                       (mmhg)
                                                                                        (quarters/day)
Save Processed Data
                                             0
                                               55.0
                                                                                    12.0
                                                                                                                           32
                                             1 55.0
                                                                                    12.0
                                                                                                 2.0
                                               55.0
                                                                                    12.0
                                                                                                                                    0
                                                                                    12.0
                                                                                                                                   0
                                                                                                                                    0
                                               55.0
```