梳州电子科技大学学生考试卷 (B) 卷

考试课程	随机信号原	理考试日期			<i>,</i> 是	
课程号	80802060	教师号	2016 年	6月21日	成绩	
学生性名		学号 (8位)	41434	任课教师	杨萌	
				班极		

- 一、填空题(共20分,填空题每空2分,选择题每题2分)
- $oxed{1}$ 、随机过程X(t),数学期望为 $oxed{m}_{x}(t)$,协方差函数为 $C_{x}(t_{1},t_{2})$,f(t)为确定的时间函数。

则随机过程Y(t) = X(t) + f(t)的均值为_____ $(m_x(t) + f(t))$ 。

- 2、随机过程 $X(t)=A\cos(\omega_0\,\mathsf{t}+\phi)$,其中,A和 ω_0 为常数, ϕ 为 $(0,2\pi)$ 上均匀分布的随机 变量。则随机过程X(t)的均值为____(0)。
- 3、随机过程X(t)和Y(t)单独和联合平稳。则随机过程Z(t)=X(t)+Y(t)的自相关函数为 $(R_{\chi}(\tau) + R_{\chi \gamma}(\tau) + R_{\chi \chi}(\tau) + R_{\gamma}(\tau)) .$
- 4、随机过程X(t)与Y(t)独立,且均值分别为 m_X 和 m_Y ,则互功率谱 $G_{XY}(\omega)$ 是

 $2\pi m_{\chi} m_{\chi} \delta(\omega)$.

是___C

- 5、高斯平稳随机信号通过线形时不变系统的输出信号仍为___高斯平稳___信号。
- 6、随机过程 X(t)=at, $-\infty < t < +\infty$, a 是在 $\left(0,1\right)$ 上服从均匀分布的随机变量,则 E[X(t)]

- C. t/2 ;
- D. 3t/2 .
- 7、下列描述正确的是__A__
- A. 两个随机过程相互独立则必然不相关;
- B. 两个随机过程不相关则必然相互独立;
- C. 两个随机过程相互正交则必然不相关;
- D. 两个随机过程相互正交则必然相互独立。
- 8、平稳相依随机过程X(t)和Y(t)的互相关函数为 $R_{XY}(\tau)$,则__
- A. $R_{xy}(\tau) = R_{yy}(\tau)$;
- B. R_{χγ}(τ)是偶函数;
- C. $R_{yy}(0) = R_{yy}(0)$;
- D. $R_{yy}(\tau) = R_y(\tau)R_y(\tau)$.
- 9、某线性时不变系统输入信号、输出信号的功率谱密度分别为 $G_{x}(\omega)$ 和 $G_{r}(\omega)$,其中, 系统的传输函数为 $H(\omega)$ 。则正确反映三者关系的为___D___
- A. $G_{Y}(\omega) = G_{X}(\omega) |H(\omega)|$;
- B. $G_{\chi}(\omega) = G_{\chi}(\omega) H(\omega)$:
- C. $G_X(\omega) = G_Y(\omega) |H(\omega)|^2$;
- D. $G_{\gamma}(\omega) = G_{\chi}(\omega) |H(\omega)|^2$.

第1页共4]

四、(15 分)两个统计独立的平稳随机过程 X(t)和 Y(t),其均值都为 0,自相关函数分别为

 $R_{\chi}(\tau) = e^{-|\tau|}, \quad R_{\gamma}(\tau) = \cos 2\pi \tau, \quad \text{id}$

- (1) Z(t) = X(t) + Y(t) 的自相关函数;
- (2) W(t) = X(t) Y(t) 的自相关函数;
- (3) 互相关函数 $R_{ZW}(\tau)$ 。

解:

(1)

$$R_{Z}(t+\tau,t) = E[Z(t+\tau)Z(t)] = E\{[X(t+\tau) + Y(t+\tau)] \times [X(t) + Y(t)]\}$$

$$= E[X(t+\tau)X(t)] + E[Y(t+\tau)Y(t)] = R_X(\tau) + R_Y(\tau) = e^{-|\tau|} + \cos(2\pi\tau)$$

(2)

$$R_{\mathcal{W}}(t+\tau,t) = E[\mathbf{W}(t+\tau)\mathbf{W}(t)] = E\{[\mathbf{X}(t+\tau) - \mathbf{Y}(t+\tau)] \times [\mathbf{X}(t) - \mathbf{Y}(t)]\}$$

$$= E[X(t+\tau)X(t)] + E[Y(t+\tau)Y(t)] = R_X(\tau) + R_Y(\tau) = e^{-|\tau|} + \cos(2\pi\tau)$$

(3)

$$R_{ZW}(t+\tau,t) = E[W(t+\tau)Z(t)] = E\{[X(t+\tau) - Y(t+\tau)] \times [X(t) + Y(t)]\}$$

$$= R_{\chi}(\tau) - R_{\gamma}(\tau) + R_{\chi\gamma}(\tau) + R_{\gamma\chi}(\tau)$$

又由于X(t)与Y(t)零均值相互独立,同时彼此正交,则 $R_{xy}(\tau) + R_{yx}(\tau) = 0$

$$R_{ZW}(t+\tau,t) = R_{X}(\tau) - R_{Y}(\tau) = e^{-|\tau|} - \cos(2\pi\tau)$$

五、(15分) 设随机过程 X(t) 和 Y(t) 平稳,且相互独立,它们的自相关函数分别为

$$R_{\nu}(\tau) = 2e^{-2|\tau|}\cos\omega_{\alpha}\tau$$

$$R_{\nu}(\tau) = 9 + e^{-3|r^{2}|}$$

令 Z(t) = VX(t)Y(t), 其中, V 为均值为 2, 方差为 9 的随机变量, 且与 X(t)和 Y(t)两两

独立。求

- (1) Z(t)的均值
- (2) Z(t)的方差
- (3) Z(t)的自相关函数

解:

均值:
$$EX(t) = 0, EY(t) = \pm 3$$
, $EZ(t) = 0$

自相关函数:

$$R_Z(t,t+\tau) = EZ(t)Z(t+\tau) = E[V^2X(t)Y(t)X(t+\tau)Y(t+\tau)]$$

$$= E[V^2]E[X(t)X(t+\tau)]E[Y(t)Y(t+\tau)]$$

$$=13R_{x}(\tau)R_{y}(\tau)=26e^{-3|\tau|}\cos(\omega_{0}\tau)(e^{-3|\tau^{2}|}+9)$$

方差:
$$R_z(0) - E(Z(t))^2 = 260$$

所以

- (1) Z(t)的均值为 0
- (2) Z(r)的方差为 260
- (3) Z(t)的自相关函数为 $26e^{-3t}\cos(\omega_0 \tau)(e^{-3t^2}+9)$

杭州电子科技大学学生考试卷(A)卷

考试课程	随机信号原理	考试日期	2015 年	月	B	成绩	
课程号		教师号	-	I de au	-		
考生姓名		MA CE (0 AL)		任课教师姓名			
		2 4 (O IN)	9	F级		专业	

- 一、填空题 (每空2分,共10分)。
- 随机变量 X 和 Y 的概率密度分别为 $f_{X}(x)$ 和 $f_{Y}(y)$,均值分别不为零的 m_{X} 和 m_{Y} ; 又已 知两者服从联合正态分布,且相互独立,则联合概率密度 $f_{xr}(x,y)=f_{x}(x)\,f_{r}(y)$,二 (相关 or 不相关)。
- 对信号进行希尔伯特变换等价于该信号通过一线性时不变系统,此等价系统的传输特 性 $H(\omega)$ 等于 $-j \operatorname{sgn}(\omega)$, 其单位冲激响应为1/m。
- 二、(12分)设有正弦波随机过程 $X(t)=A\sin(\pi t)$,其中A是均值为零,方差为 σ^2 的高斯随 机变量。
 - (1) 求 $X\left(\frac{1}{4}\right)$ 的概率密度函数;

$$X\left(\frac{1}{4}\right) = \frac{\sqrt{2}}{2}A, \ \ \text{均值 } 0, \ \ \vec{n} \not\equiv \sigma_A^2/2$$

$$f_X(x,1/4) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}} - \sqrt{\pi} \cdot \vec{0}_A$$

$$(2) \ \vec{x} \cdot X\left(\frac{1}{4}\right) = X\left(\frac{3}{4}\right) \cdot \vec{0} \cdot \vec{0} \cdot \vec{0}$$

$$X\left(\frac{3}{4}\right) = \frac{\sqrt{2}}{2}A, \ \ \text{相关系数为 } 1$$

$$X\left(\frac{3}{4}\right) = \frac{\sqrt{2}}{2}A$$
,相关系数为 1

- 三、(12 分) 若随机过程 $X(t) = A\cos(\omega_0 t + \Phi)$, 其中 A 可以是也可以不是随机变量, Φ 是在
 - (0,2π)上均匀分布的随机变量。求:
 - (1) X(t)的时间自相关函数和统计自相关函数;
 - (2) A具备什么条件时自相关函数满足遍历性。

解: (1) 时间自相关函数为:

$$\overline{X} = \frac{1}{2} A^2 c o \boldsymbol{\omega}_0 \boldsymbol{\tau} ,$$

统计自相关为:

$$R_X(t,t+\tau) = \frac{1}{2}E[A^2]\cos\omega_0\tau$$

(2) A 为常数时,两种自相关函数相等。

四、(16分)对于线性时不变的因果系统,若输入随机信号是宽平稳的,求证系统输出是 否宽平稳?输入信号与输出信号是否联合宽平稳?

输出宽平稳

输入和输出联合宽平稳

皆为平稳过程且相互正交,其功率谱用 $G_{rr}(\omega)$ 表示,求X(r)的功率谱。

 $R_X(t,t+ au) = \sum_{i=1}^N E[a_i^2 Y_i(t) Y_i(t+ au)] = \sum_{i=1}^N a_i^2 R_{\Gamma_i}(au)$ (由相互正交条件可知其中的交叉项为 0) $G_X(\omega) = \sum_{i=1}^N a_i^2 G_{\Gamma_i}(\omega)$

六、 $(10\, \mathcal{H})$ 设 X(t) 是雷达发射信号,其自相关函数为 $R_X(\tau)$,遇到目标后的回波信号 $aX(t-\tau_1),a<<1$, t_1 是信号返回时间,回波信号中包含噪声 N(t) ,于是接收机收到的全信号为 $Y(t)=aX(t-\tau_1)+N(t)$ 。已知 X(t) 和 Y(t) 联合平稳,并且 X(t) 和 N(t) 的互相关函数为 $R_{XY}(\tau)$,

- (1)求互相关函数 R_{XT}(t);
- (2)在上述条件(1)下,若N(t)均值为零,并与X(t)相互独立,求互相关函数 $R_{XT}(\tau)$ 。
- (1) $R_{XY}(\tau) = aR_X(\tau \tau_1) + E[X(t)N(t+\tau)]$
- (2) $R_{XY}(\tau) = aR_X(\tau \tau_1)$

七、(12分)统计独立、零均值平稳随机过程X(t)和Y(t)功率谱密度为:

$$G_{X}(\omega) = \frac{\omega^{2}}{\omega^{4} + 3\omega^{2} + 2}$$
$$G_{F}(\omega) = \frac{\omega^{2} + 3}{\omega^{4} + 3\omega^{2} + 2}$$

- (1) 求 X(t)和Y(t)的平均功率; (6分)
- (2) 求Z(t) = X(t) + Y(t)的功率谱密度: (3分)

(3) 求 V(t) = X(t) - Y(t) 的功率谱密度; (3分)

(1),

$$\begin{split} G_{X}(\omega) &= \frac{\omega^{2}}{\omega^{4} + 3\omega^{2} + 2} = \frac{2}{\omega^{2} + 2} - \frac{1}{\omega^{2} + 1} = \frac{\sqrt{2}}{2} \frac{2\sqrt{2}}{\omega^{2} + 2} - \frac{1}{2} \frac{2}{\omega^{2} + 1} \\ R_{X}(\tau) &= \frac{\sqrt{2}}{2} e^{-\sqrt{2}|\tau|} - \frac{1}{2} e^{-|\tau|} \end{split}$$

$$P_X = R_X(0) = \frac{\sqrt{2}}{2} - \frac{1}{2}$$

$$G_{Y}(\omega) = \frac{\omega^{2} + 3}{\omega^{4} + 3\omega^{2} + 2} = \frac{2}{\omega^{2} + 1} - \frac{1}{\omega^{2} + 2} = \frac{2}{\omega^{2} + 1} - \frac{\sqrt{2}}{4} \frac{2\sqrt{2}}{\omega^{2} + 2}$$

$$R_{\gamma}(\tau) = e^{-|\mathbf{r}|} - \frac{\sqrt{2}}{4} e^{-\sqrt{2}|\mathbf{r}|}$$

$$P_{Y} = R_{Y}(0) = 1 - \frac{\sqrt{2}}{4}$$

(2)

X(t)和Y(t) 统计独立, $E[X(t)Y(t+\tau)] = E[Y(t)X(t+\tau)] = 0$

$$\begin{split} &R_Z(t,t+\tau) = E[Z(t)Z(t+\tau)] = E[(X(t)+Y(t))(X(t+\tau)+Y(t+\tau))] \\ &= R_Y(\tau) + R_Y(\tau) \end{split}$$

$$G_Z(\omega) = G_X(\omega) + G_Y(\omega) = \frac{2\omega^2 + 3}{\omega^4 + 3\omega^2 + 2}$$

(3).

$$\begin{split} R_V(t,t+\tau) &= E[V(t)V(t+\tau)] = E[(X(t)-Y(t))(X(t+\tau)-Y(t+\tau))] \\ &= R_X(\tau) + R_{\tau}(\tau) \end{split}$$

$$G_V(\omega) = G_X(\omega) + G_Y(\omega) = \frac{2\omega^2 + 3}{\omega^4 + 3\omega^2 + 2}$$

八、 (10 分)已知随机过程X(t)的功率谱密度如下图所示,其中 $S_{x}(\omega)=0$, $|\omega|>B。取$

常数 $\omega_0 >> B$,构造一个新的随机过程 $Y(t) = X(t)\cos(\omega_0 t) - \hat{X}(t)\sin(\omega_0 t)$,求 Y(t)的功率谱

密度 $S_{Y}(\omega)$,并画图表示 $S_{X}(\omega)$ 和 $S_{Y}(\omega)$ 的关系。

$$R_{Y}(t,t+\tau) = R_{X}(\tau)\cos\omega_{0}\tau + \hat{R}_{X}(\tau)\sin\omega_{0}\tau$$

$$G_{Y}(\omega) = \frac{1}{2}[G_{X}(\omega+\omega_{0}) + G_{X}(\omega-\omega_{0}) - \operatorname{sgn}(\omega-\omega_{0})G_{X}(\omega-\omega_{0}) + \operatorname{sgn}(\omega+\omega_{0})G_{X}(\omega+\omega_{0})]$$

图形表示为将X的功率谱密度分别向正负 ω_0 搬移,正半轴上保留其中左半部分,负半轴上保留其中右半部分。

九、(12分)如图所示系统的输入是谱密度为 $N_0/2$ 的零均值白高斯噪声 X(t),A 为均值为 2,方差为 4 的高斯随机变量, θ 在 $(0,2\pi)$ 上均匀分布,A、 θ 和 X(t)相互统计独立。 $H_1(f)$ 为中心频率为 f_6 ,带宽为 B H_Z 的单位增益理想带通滤波器, $H_2(f)$ 为带宽为 B/2 H_Z 的单位增益理想低通滤波器。(1)求输出过程 Y(t)的功率谱密度 $S_Y(f)$;(2)求 Y(t)的方差。

H1 的输出设为 X1 , H2 的输入端设为 Y1

$$Y1(t) = AX1(t)\sin(2\pi f_c t + \theta)$$

$$R_{Y_1}(\tau) = E(A^2)R_{X_1}(\tau)[\sin(2\pi f_c t + \theta)\sin(2\pi f_c(t + \tau) + \theta)] = 4R_{X_1}(\tau)\cos(2\pi f_c \tau)$$

$$G_{Y_1}(\omega) = 2[G_{X_1}(\omega - 2\pi f_c) + G_{X_1}(\omega + 2\pi f_c)]$$

X1 的功率谱为带通, N0/2

Y1 的功率谱将带通搬移,再经低通后 Y 的功率谱仅剩低通部分,功率谱为 N0+N0=2N0

$$\sigma_Y^2 = P_Y = \frac{1}{2\pi} \int_{-B/2}^{B/2} 2N0d\omega = 2BN0$$