

LECTURE - 04 CHEMICAL KINETICS

Today's Goal

1st order reaction in terms of pressure
Pseudo 1st order reaction & Practice

1st order reaction Question

 $10^{-1}\,\mathrm{s}^{-1}$

10⁻³ s⁻¹

10⁻² s⁻¹

10⁻⁴ s⁻¹

 \mathbf{c} $\mathbf{t}_{1/2}$ of first order reaction is given by 0.693/k , $\mathbf{t}_{3/4}$ would be equal to:

$$\frac{0.693}{k}$$

$$\frac{1.386}{k}$$

$$\frac{0.346}{k}$$

$$\frac{0.924}{k}$$

The $t_{1/2}$ of a first order reaction is found to be 2 minutes. The percentage of the reactant left after 360 seconds is:

12.5

15

25

7.5

Various Time

$$t_{75\%} = 2 t_{50\%}$$
 $t_{87.5\%} = 3 t_{50\%}$
 $t_{93.75\%} = 4 t_{50\%}$
 $t_{90\%} = 3.33 t_{50\%}$
 $t_{99\%} = 6.66 t_{50\%}$
 $t_{99.99\%} = 9.99 t_{50\%} \simeq$
 $t_{99.99\%} = 13.34 t_{50\%}$

A first order reaction is 75% completed in 100 min. How long time will it take for its 87.5% completion?

125 min

175 min

150 min

200 min

The rate constant for a first order reaction whose half-life is 480 sec

 $1.44 \times 10^{-3} \text{ sec}^{-1}$

1.44 sec⁻¹

 $0.72 \times 10^{-3} \,\mathrm{sec^{-1}}$

 $2.88 \times 10^{-3} \text{ sec}^{-1}$

99% of a first order reaction was completed in 32 min when 99.9 % of the reaction will complete?

50 min

48 min

46 min

49 min

The rate constant of a reaction is 0.069 min⁻¹ and the initial concentration is 0.2 M. the half life period is

400 Sec

800 sec

600 sec

1200 sec

For the first order homogenous gaseous A -> 2B + C. the initial pressure was P_i while total pressure of the time 't' was P_t then write expression for the rate constant k in terms of P_i P_t & t.

$$k = \frac{2.303}{t} \log \left(\frac{2P_i}{3P_i - P_t} \right)$$

$$k = \frac{2.303}{t} \log \left(\frac{P_i}{3P_i - P_t} \right)$$

$$k = \frac{2.303}{t} \log \left(\frac{2P_i}{3P_t - P_i} \right)$$

None of these

The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume. $A_{(3)} \rightarrow B_{(3)} + C_{(3)}$

$$SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$$

Experiment	Time(s)	Total pressure/atm
1	0	(0.5) Pi
2	100	(0.6) Pt

Calculate the rate of the reaction when total pressure is 0.65 atm.

For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained.

Calculate the rate constant.

For a homogeneous gaseous reaction A \rightarrow 3B, if pressure after time t was P_T and after completion of reaction, pressure was P_{∞} then select correct relation

$$k = \frac{1}{t} \ln \left(\frac{P_{\infty}}{3(P_{\infty} - P_t)} \right)$$

$$k = \frac{1}{t} \ln \left(\frac{3P_{\infty}}{2P_{\infty} - P_t} \right)$$

$$k = \frac{1}{t} \ln \left(\frac{2P_{\infty}}{3(P_{\infty} - P_T)} \right)$$

$$k = \frac{1}{t} \ln \left(\frac{2P_{\infty}}{3 P_{\infty} - P_{T}} \right)$$

At 100°C, the gaseous reaction $A \rightarrow 2B + C$ is found to be of first order. Starting with pure A, if at the end of 10 min, the total pressure of the system is 176 mm and the end of reaction, it is 270 mm, the partial pressure of A at the end of 10 min is:

94 mm

43 mm

47 mm

176 mm

At 300 K, a gaseous reaction: $A \rightarrow B + C$ was found to follow first order kinetics. Starting with pure A, the total pressure at the end of 20 minutes was 100 mm of Hg. The total pressure after the completion of the reaction is 180 mm of Hg. The partial pressure of A (in mm of Hg) is

94 mm_____

43 mm

176 mn

THANK YOU!!

Homework

REVISE FORMULA OF LAST CHAPTER
DPP Of this Lecture

