Data Structures and Algorithms

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

Department of Computer Science and Engineering IIT Bombay

Session: Properties of Line Segment

Introduction ¹

- branch of computer science that studies algorithms for solving geometric problems
- has applications in computer graphics, robotics, VLSI design, computer-aided design, molecular modeling, etc.
- input is a set of geometric objects, such as a set of points, a set of line segments, vertices of a polygon, etc
- output is response to a query about the objects, or a new geometric object

¹Chapter 33, CLRS, Third Edition

Properties of Line Segment

- A convex combination of two distinct points $p_1=(x_1,y_1)$ and $p_2=(x_2,y_2)$ is any point $p_3=(x_3,y_3)$ such that for some α in the range $0 \le \alpha \le 1$, we have $x_3=\alpha x_1+(1-\alpha)x_2$ and $y_3=\alpha y_1+(1-\alpha)y_2$ i.e. $p_3=\alpha p_1+(1-\alpha)2_2$
- Consider 3 points p_0 at (0,0), p_1 at (x_1,y_1) , and p_2 at (x_2,y_2)
 - ▶ Determine whether a segment $\overline{p_0p_1}$ is clockwise or counter-clockwise from the other segment $\overline{p_0p_2}$ with respect to the point p_0
 - Do the 2 line segments intersect?

Direction of p_1 from p_2 with respect to p_0

- Consider 3 points p_0 at (0,0), p_1 at (x_1,y_1) , and p_2 at (x_2,y_2)
- To determine whether p_1 is clockwise or counter-clockwise from p_2 with respect to the origin (0,0), compute the determinant of a matrix as follows:

$$p_1 \times p_2 = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$$
$$= x_1 * y_2 - x_2 * y_1$$

If this result is positive, then p_1 is clockwise from p_2 , else it is counter-clockwise

Direction of p_1 from p_2 with respect to p_0

Cross Product of vectors p_1 and p_2

Computing Cross Product

$$p_{3} = p_{1} + p_{2}$$

$$= (x_{1} + x_{2}, y_{1} + y_{2})$$

$$= (2 + 4, 3 + 1)$$

$$= (6, 4)$$

$$p_{1} \times p_{2} = x_{1} * y_{2} - x_{2} * y_{1}$$

$$= (2 * 1 - 4 * 3)$$

$$= -10$$

Since, the result of $p_1 \times p_2$ is negative, p_1 is counter-clockwise from p_2 , with respect to the origin p_0

Determine whether consecutive segments turn left or right

- lacksquare Consider two line segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$
- \blacksquare Do they turn left or right at point p_1
- We simply check whether directed segment $\overrightarrow{p_0p_2}$ is clockwise or counterclockwise with respect to directed segment $\overrightarrow{p_0p_1}$
- \blacksquare compute the cross product $(p_2-p_0)\times(p_1-p_0)$

Figure: Case 1

Figure: Case 2

Figure: Case 3

Figure: Case 4

Algorithm for detecting segments intersect

```
Algorithm SegmentsIntersect(p_1, p_2, p_3, p_4)
d_1 = Direction(p_3, p_4, p_1)
d_2 = Direction(p_3, p_4, p_2)
d_3 = Direction(p_1, p_2, p_3)
d_4 = Direction(p_1, p_2, p_4)
if ((d_1 > 0 \text{ and } d_2 < 0) \text{ or } (d_1 < 0 \text{ and } d_2 > 0)) and ((d_3 > 0 \text{ and } d_4 < 0) \text{ or } (d_3 < 0 \text{ and } d_4 > 0)) then
   return TRUE
else if d_1 == 0 and ONSegment(p_3, p_4, p_1) then
   return TRUE
else if d_2 == 0 and ONSegment(p_3, p_4, p_2) then
   return TRUE
else if d_3 == 0 and ONSegment(p_1, p_2, p_3) then
   return TRUE
else if d_4 == 0 and ONSegment(p_1, p_2, p_4) then
   return TRUE
else
   return FALSE
end if
```

Algorithm for detecting segments intersect

```
Algorithm Direction(p_i, p_j, p_k)
return (p_k - p_i) * (p_j - p_i)
```

Figure: Direction

```
Algorithm ONSegment(p_i,p_j,p_k) if min(x_i,x_j) \leq x_k \leq max(x_i,x_j) and min(y_i,y_j) \leq y_k \leq max(y_i,y_j) then return TRUE else return FALSE end if
```

Figure: On-Segment

Thank you