Heart disease diagnostic analysis

```
#Extracting zip file
from zipfile import ZipFile
data1=ZipFile('/content/Heart Disease data.zip')
files=data1.namelist()
print(files)
     ['Heart Disease data/', 'Heart Disease data/Dataset Details.txt', 'Heart Disease data
data1.extract('Heart Disease data/Heart Disease data.csv')
     '/content/Heart Disease data/Heart Disease data.csv'
import pandas as pd
data=pd.read_csv('/content/Heart Disease data/Heart Disease data.csv')
#Importing libraries
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# Display all the columns of the dataframe
data.columns
     Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
            'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
           dtype='object')
# Print shape of the dataframe
data.shape
     (1025, 14)
# First 5 rows of dataset
data.head()
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
0	52	1	0	125	212	0	1	168	0	1.0	2	2	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	

```
# Check missing values
data.isnull().sum()
```

```
age
           0
sex
           0
ср
trestbps
           0
chol
fbs
restecg
thalach
exang
oldpeak
slope
ca
thal
target
dtype: int64
```

Observation:- There is no missing value in any of the column

```
def heart_diseases(value):
    '''function to convert numerical features to categorical feature'''
    if value==1:
       return 'absence'
    else:
       return 'presence'
```

#Adding new column to dataset of converted data
data['heart_disease']=data['target'].apply(heart_diseases)

data

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	
0	52	1	0	125	212	0	1	168	0	1.0	2	2	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	

2	70	1	0	145	174	0	1	125	1	2.6	0	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1
4	62	0	0	138	294	1	1	106	0	1.9	1	3
1020	59	1	1	140	221	0	1	164	1	0.0	2	0
1021	60	1	0	125	258	0	0	141	1	2.8	1	1
1022	47	1	0	110	275	0	0	118	1	1.0	1	1
1023	50	0	0	110	254	0	0	159	0	0.0	2	0
1024	54	1	0	120	188	0	1	113	0	1.4	1	1

1025 rows × 15 columns

#Count number of people having heart disease and not having heart disease
hd=data.groupby('heart_disease')['target'].count()
hd

```
heart_disease
absence 526
presence 499
```

Name: target, dtype: int64

```
# Plot the chart of above using seaborn and matplotlib
plt.figure(figsize=(5,5))
clrs= sns.color_palette('bright')
explode=[0,0.05]
plt.pie(hd,labels=['absence','presence'],autopct="%0.0f%%",colors=clrs,explode=explode)
plt.title('Heart disease population by percentage')
plt.show()
```

Heart disease population by percentage

presence

From the above observation, people having heart disease (49%) are less than people who do not have heart disease

```
#Plotting countplot of population age using matplotlib and seaborn
plt.figure(figsize=(20,10))
plt.title('Population age')
sns.countplot(x='age',data=data,palette='bright')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```


We can observe the count of population according to their age (young, middle_age and elder

•

people)

```
# To find the minimum, maximum and average of the population age using statistical analysis
min_age=data['age'].min()
max_age=data['age'].max()
mean_age=data['age'].mean()
print(f"The minimum age is {min_age}")
print(f"The maximum age is {max_age}")
print(f"The average age is {np.round(mean_age,2)}")
     The minimum age is 29
     The maximum age is 77
     The average age is 54.43
#To divide the population age in different categories
young_age=data[(data['age']>=29)&(data['age']<40)]</pre>
middle_age=data[(data['age']>=40)&(data['age']<55)]</pre>
old_age=data[(data['age']>=55)]
print(f"Number of young age people={len(young_age)}")
print(f"Number of middle age people={len(middle_age)}")
print(f"Number of old age people={len(old_age)}")
     Number of young age people=57
     Number of middle age people=419
     Number of old age people=549
#Bar plot using matplotlib and seaborn for different categories of population age
cat=['young_age','middle_age','old_age']
_count=[len(young_age),len(middle_age),len(old_age)]
```


Age nange

From the above plot we observe that old age population is more than the middle age and young age population. And there is least population of young age.

```
# Converting the numerical data into categorical data

def age_range(row):
    '''converting population age into range of age'''
    if row>=29 and row<40:
        return 'YoungAge'
    elif row>=40 and row<55:
        return 'MiddleAge'
    else:
        return 'OldAge'

#Applying converted data in our dataset

data['ageRange']=data['age'].apply(age_range)
data.head()</pre>
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
0	52	1	0	125	212	0	1	168	0	1.0	2	2	;
1	53	1	0	140	203	1	0	155	1	3.1	0	0	1
2	70	1	0	145	174	0	1	125	1	2.6	0	0	1
3	61	1	0	148	203	0	1	161	0	0.0	2	1	;
4	62	0	0	138	294	1	1	106	0	1.9	1	3	

#Converting numerical data into categorical

```
def _sex(row):
    if row==1:
        return 'male'
    else:
        return 'female'

#Applying converted data in our dataset
data['Gender']=data['sex'].apply(_sex)
data.head()
```

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca tha

0	52	1	0	125	212	0	1	168	0	1.0	2	2	;
1	53	1	0	140	203	1	0	155	1	3.1	0	0	;
2	70	1	0	145	174	0	1	125	1	2.6	0	0	;
3	61	1	0	148	203	0	1	161	0	0.0	2	1	;
4	62	0	0	138	294	1	1	106	0	1.9	1	3	

#Scatter plot creation Age category vs gender using matplotlib

```
plt.figure(figsize=(12,10))
x=data.ageRange
y=data.age
sns.set(style='whitegrid',palette='bright')
sns.swarmplot(x,y,hue='Gender',data=data,dodge=True,order=['YoungAge','MiddleAge','OldAge']
plt.show()
```

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass
warnings.warn(

/usr/local/lib/python3.8/dist-packages/seaborn/categorical.py:1296: UserWarning: 25.3 warnings.warn(msg, UserWarning)

/usr/local/lib/python3.8/dist-packages/seaborn/categorical.py:1296: UserWarning: 33.8 warnings.warn(msg, UserWarning)

/usr/local/lib/python3.8/dist-packages/seaborn/categorical.py:1296: UserWarning: 5.9% warnings.warn(msg, UserWarning)

In the given dataset, number of male population is more than the female population in each age group

#Countplot of heart disease according to their age category

```
plt.figure(figsize=(12,8))
hue_orders = ['YoungAge','MiddleAge','OldAge']
plt.title("Heart disease according to their age category")
sns.countplot(x='heart_disease',hue='ageRange',data=data,hue_order=hue_orders,palette='bri{
plt.xlabel("Heart disease")
plt.ylabel("Counts")
plt.show()
```


Old Age people are most affected by Heart disease and young age are least affected

#Countplot for heart disease based on sex

```
plt.figure(figsize=(12,8))
plt.title("Heart disease based on sex",fontsize=18)
sns.countplot(x=data['heart_disease'],hue='Gender',data=data,palette='bright')
plt.xlabel("Heart disease")
plt.ylabel("Counts")
plt.show()
```


From the above graph it is observed that there are more number of males affected by heart disease as compared to females

#Countplot based on chest pain experienced

```
plt.figure(figsize=(12,8))
plt.title("Chest pain experienced",fontsize=18)
sns.countplot(x=data['heart disease'].hue='cp'.data=data.palette='bright')
```

Typical angine

```
plt.legend(labels=['Typical angine','atypical angine','non-anginal pain','asymptomatic'])
plt.xlabel("Heart disease")
plt.ylabel("Counts")
plt.show()
```


It is observed that people having typical anginal chest pain have higher chance of heart disease

```
#Count plot for chest pain according to gender

plt.figure(figsize=(12,8))
plt.title("Chest pain based on sex",fontsize=18)
sns.countplot('Gender',hue='cp',data=data,palette='bright')
plt.legend(labels=['Typical angine','atypical angine','non-anginal pain','asymptomatic'])
plt.xlabel("Sex",fontsize=15)
plt.ylabel("Counts")
plt.show()

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWarning: Pass
warnings.warn(

Chest pain based on sex
```


It is observed that higher number of males are suffering from typical angine chest pain

#Countplot for chest pain vs age group using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("Chest pain based on age group",fontsize=18)
sns.countplot(x=data['ageRange'],hue='cp',data=data,palette='bright',order=['YoungAge','Micplt.legend(labels=['Typical angine','atypical angine','non-anginal pain','asymptomatic'])
plt.xlabel("Age Group")
plt.ylabel("Counts")
plt.show()
```


It seems that old age group have higher typical angine chest pain

#Bar graph for Restin blood pressure (trestbs)(in mm Hg) based on gender using matplotlib a

```
plt.figure(figsize=(10,7))
plt.title("Blood pressure based on gender",fontsize=18)
sns.barplot(x='Gender',y='trestbps',data=data,palette='bright')
plt.xlabel("Sex")
plt.ylabel("Blood pressure(in mm Hg)")
plt.show()
```


It is observed that person's Resting blood pressure is almost same for males and females

#Bar Graph for Cholestrol level based on gender using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("Cholestrol level based on gender",fontsize=18)
sns.barplot(x='Gender',y='chol',data=data,palette='bright')
plt.xlabel("Sex")
plt.ylabel("Cholestrol level")
plt.show()
```


Cholestrol level is little bit more in females as compared to males

#Bar plot for Cholestrol level vs Heart disease using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("Cholestrol level vs Heart disease",fontsize=18)
sns.barplot(x='heart_disease',y='chol',data=data,palette='bright')
plt.xlabel("Heart disease")
plt.ylabel("Cholestrol level")
plt.show()
```


Cholestrol level might have affect on heart disease

#Bar Graph for blood pressure vs Heart disease using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("blood pressure vs Heart disease",fontsize=18)
sns.barplot(x='heart_disease',y='trestbps',data=data,palette='bright')
plt.xlabel("Heart disease")
plt.ylabel("Blood pressure(in mm Hg)")
plt.show()
```


Blood pressure might have affect on heart disease

#Line plot for blood pressure vs age using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("blood pressure vs age",fontsize=18)
sns.lineplot(x='age',y='trestbps',data=data,palette='bright')
plt.xlabel("Age")
plt.ylabel("Blood pressure(in mm Hg)")
plt.show()
```


Here we observe that blood pressure is normal from 30-50 and after 50 it increses gradually to

age of 60. And after 60 it is fluctuating drastically

```
#Line plot for cholestrol level vs age using matplotlib and seaborn
```

```
plt.figure(figsize=(10,7))
plt.title("cholestrol level vs age",fontsize=18)
sns.lineplot(x='age',y='chol',data=data,color='green')
plt.xlabel("age")
plt.ylabel("Cholestrol level")
plt.show()
```


Cholestrol level is start increasing at the age of 50

#Line plot for ST depression vs age using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("ST depression vs age",fontsize=18)
sns.lineplot(x='age',y='oldpeak',data=data,color='red')
plt.xlabel("age")
plt.ylabel("ST depression")
plt.show()
```

ST depression vs age

Depression is quite high in the age group of 30 to 40 and 50-60. For 40-50 it remains stable

#Bar plot for ST depression vs Heart disease using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("ST depression vs Heart disease",fontsize=18)
sns.barplot(x='heart_disease',y='oldpeak',data=data,palette='bright')
plt.xlabel("Heart disease")
plt.ylabel("ST depression")
plt.show()
```


People with ST depression have higher chance of heart disease

 $\# Bar \cdot graph \cdot for \cdot ST \cdot depression \cdot vs \cdot Gender \cdot using \cdot matplotlib \cdot and \cdot seaborn$

```
plt.figure(figsize=(10,7))
plt.title("ST·depression·vs·sex",fontsize=18)
sns.barplot(x='Gender',y='oldpeak',data=data,palette='bright')
plt.xlabel("Sex")
plt.ylabel("ST·depression")
plt.show()
```


It is observed that more number of males are prone to ST depression as compared to females

 $\#Bar \cdot graph \cdot for \cdot excercise \cdot induced \cdot Angine \cdot vs \cdot heart \cdot disease \cdot using \cdot matplotlib \cdot and \cdot seaborn$

```
plt.figure(figsize=(10,7))
plt.title("excercise·induced·Angine·vs·heart·disease",fontsize=18)
sns.barplot(x='heart_disease',y='exang',data=data,palette='bright')
plt.xlabel("Heart·disease")
plt.ylabel("excercise·induced·Angine")
plt.show()
```


It is observed that if the people already suffered with angine then exercise will make it worse condition for him/her

#Bar graph for excercise induced Angine vs gender using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("exercise induced Angine vs Sex",fontsize=18)
sns.barplot(x='Gender',y='exang',data=data,palette='bright')
plt.xlabel("Sex")
plt.ylabel("exercise induced Angine")
plt.show()
```

exercise induced Angine vs Sex

Male having high exercise induced Angine

#Bar graph for Fasting blood suger vs heart Gender using matplotlib and seaborn

```
plt.figure(figsize=(10,7))
plt.title("Fasting blood suger vs heart Sex",fontsize=18)
sns.barplot(x='Gender',y='fbs',data=data,palette='bright')
plt.xlabel("Sex")
plt.ylabel("Fasting blood suger ")
plt.show()
```


It is observed that males having high fasting blood sugar>120mg/dl

#Heatmap using seaborn

plt.figure(figsize=(16,8))
sns.heatmap(data.corr(),annot=True,linewidths=2,linecolor='white',cmap='Greens')

<AxesSubplot:>

age	1	-0.1	-0.072	0.27	0.22	0.12	-0.13	-0.39	0.088	0.21	-0.17	0.27	0.072	-0.23
sex	-0.1	1	-0.041	-0.079	-0.2	0.027	-0.055	-0.049	0.14	0.085	-0.027	0.11	0.2	-0.28
ср	-0.072	-0.041	1	0.038	-0.082	0.079	0.044	0.31	-0.4	-0.17	0.13	-0.18	-0.16	0.43
trestbps	0.27	-0.079	0.038	1	0.13	0.18	-0.12	-0.039	0.061	0.19	-0.12	0.1	0.059	-0.14
chol	0.22	-0.2	-0.082	0.13	1	0.027	-0.15	-0.022	0.067	0.065	-0.014	0.074	0.1	-0.1
fbs	0.12	0.027	0.079	0.18	0.027	1	-0.1	-0.0089	0.049	0.011	-0.062	0.14	-0.042	-0.041
restecg	-0.13	-0.055	0.044	-0.12	-0.15	-0.1	1	0.048	-0.066	-0.05	0.086	-0.078	-0.021	0.13
thalach	-0.39	-0.049	0.31	-0.039	-0.022	-0.0089	0.048	1	-0.38	-0.35	0.4	-0.21	-0.098	0.42
exang	0.088	0.14	-0.4	0.061	0.067	0.049	-0.066	-0.38	1	0.31	-0.27	0.11	0.2	-0.44
oldpeak	0.21	0.085	-0.17	0.19	0.065	0.011	-0.05	-0.35	0.31	1	-0.58	0.22	0.2	-0.44
slope	-0.17	-0.027	0.13	-0.12	-0.014	-0.062	0.086	0.4	-0.27	-0.58	1	-0.073	-0.094	0.35
ca	0.27	0.11	-0.18	0.1	0.074	0.14	-0.078	-0.21	0.11	0.22	-0.073	1	0.15	-0.38
thal	0.072	0.2	-0.16	0.059	0.1	-0.042	-0.021	-0.098	0.2	0.2	-0.094	0.15	1	-0.34
target	-0.23	-0.28	0.43	-0.14	-0.1	-0.041	0.13	0.42	-0.44	-0.44	0.35	-0.38	-0.34	1
	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target

data

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	
0	52	1	0	125	212	0	1	168	0	1.0	2	2	

1	53	1	0	140	203	1	0	155	1	3.1	0	0	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	

1025 rows × 17 columns

Colab paid products - Cancel contracts here

22 of 22