Gợi ý. **Cách 1:** Giả sử ngược lại, tức là $\exists x_0 \in [a,b] \quad f(x_0) \neq 0$. Có thể giả sử $f(x_0) > 0$. Do tính liên tục của f, tồn tại $\varepsilon > 0$ và khoảng $\left[\alpha,\beta\right] \subset [a,b]$ chứa x_0 sao cho $f(x) > \varepsilon \quad \forall x \in \left[\alpha,\beta\right]$. Khi đó $\int_{\alpha}^{\beta} f(x) \, dx \geq \int_{\alpha}^{\beta} \varepsilon dx = \varepsilon \left(\beta - \alpha\right) > 0$, dẫn đến mâu thuẫn. Vậy $f \equiv 0$ trên [a,b].

Cách 2: Xét $x_0 \in [a, b]$ bất kỳ. Chọn $x_0 + h \in [a, b]$. Theo định lý giá trị trung bình thứ nhất của tích phân

$$0 = \int_{x_0}^{x_0+h} f(x) dx = f(x_0 + \theta h), \quad 0 \le \theta \le 1.$$

Vì f liên tục tại x₀ nên

$$0 = \lim_{h \to 0} f\left(x_0 + \theta h\right) = f\left[\lim_{h \to 0} \left(x_0 + \theta h\right)\right] = f\left(x_0\right)$$

Do đó $f \equiv 0$ trên [a, b].

Nhận xét. Cách 1 dùng kỹ thuật tương tự Bài 1.4.15, Bài tập Giải tích, Tập 3, Kaczor W. J., còn cách 2 áp dụng định lý trung bình thứ nhất của tích phân. Cả hai cách cùng đều sử dụng tính liên tục của f ở các mức độ khác nhau.