Ab initio calculation of the ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$ astrophysical S factor

Mack C. Atkinson

$^3{\rm He}(\alpha,\gamma)^7{\rm Be}$ important for solar-model predictions

$^3{\rm He}(lpha,\gamma)^7{\rm Be}$ important for solar-model predictions

$$\sigma(E) = \frac{S_{34}(E)}{E} \exp\left\{-\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2E/m}}\right\}$$

atkinson27@llnl.gov Mack C. Atkinson LLNL 2 / 9

$$\sigma(E) = \frac{S_{34}(E)}{E} \exp\left\{-\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2E/m}}\right\}$$

atkinson27@llnl.gov Mack C. Atkinson LLNL 2 / 9

• Reaction rates too low at solar energies in the lab

$$\sigma(E) = \frac{S_{34}(E)}{E} \exp \left\{ -\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2E/m}} \right\}$$

- Reaction rates too low at solar energies in the lab
- Current evaluations depend on both theory and experiment

$$\sigma(E) = \frac{S_{34}(E)}{E} \exp \left\{ -\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2E/m}} \right\}$$

- Reaction rates too low at solar energies in the lab
- Current evaluations depend on both theory and experiment
- Ideally, theory will accurately predict $S_{34}(0)$

$$\sigma(E) = \frac{S_{34}(E)}{E} \exp \left\{ -\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2E/m}} \right\}$$

Goal: Reduce the theoretical uncertainty in the determination of $S_{34}(0)$

Current evaluation:
$$S_{34}(0) = 0.56 \pm 0.02 ({\rm expt.}) \pm \textbf{0.02(theor.})$$

- **How?**: Perform an *ab initio* calculation of the ${}^{3}\text{He}(\alpha, \gamma)^{7}\text{Be}$ reaction
 - Previously only possible using 2N forces

• I present the first ab initio calculation of ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ including 3N forces

atkinson27@llnl.gov Mack C. Atkinson LLNL 3 / 9

$$\Psi^A = \sum_{N=0}^{N_{\rm max}} \sum_i c_{Ni} \, \Phi^A_{Ni}$$

ullet Construct the Hamiltonian from $\chi_{\it EFT}$

 \bullet Construct the Hamiltonian from $\chi_{\textit{EFT}}$

$$\hat{H} = \hat{T} + \hat{V}_{2N} + \hat{V}_{3N}$$

 \bullet Construct the Hamiltonian from $\chi_{\textit{EFT}}$

$$\hat{H} = \hat{T} + \hat{V}_{2N} + \hat{V}_{3N}$$

 \bullet Construct the Hamiltonian from $\chi_{\textit{EFT}}$

$$\hat{H} = \hat{T} + \hat{V}_{2N} + \hat{V}_{3N}$$

$$\hat{H}\ket{\Psi^A} = E\ket{\Psi^A}$$

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} | A \rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} | \hat{A}_{\nu} | \hat{A}_{\nu} \rangle$$

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} |A\rangle \langle A\rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} | \langle A-a\rangle \langle A-a\rangle \langle A-a\rangle \langle A-a\rangle$$

$$\left|\stackrel{(A)}{\bullet},\lambda\right\rangle = \left|^7 \mathrm{Be}\right\rangle$$

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} |A\rangle \langle A\rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} | \langle A-a\rangle \langle A-a\rangle \langle A-a\rangle \langle A-a\rangle$$

$$\langle A \rangle = |^7 \text{Be} \rangle$$

$$\left| \begin{array}{c} \vec{r} \\ (a) \end{array}, \nu \right\rangle \rightarrow \left| \alpha \right\rangle \otimes \left| ^{3} \mathrm{He} \right\rangle$$

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} |A\rangle \langle A\rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} | \langle A-a\rangle \langle A-a\rangle \langle A-a\rangle \langle A-a\rangle$$

$$|^{(A)}$$
 $\delta \delta$, $\lambda \rangle = |^7 \text{Be} \rangle$

$$\left| \begin{array}{c} \vec{r} \\ (A-a) \end{array} \right| (a), v \rangle \rightarrow |\alpha\rangle \otimes |^{3} \mathrm{He}\rangle$$

 \bullet $|^7{\rm Be}\rangle$, $|^3{\rm He}\rangle$, and $|\alpha\rangle$ from NCSM

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\Longrightarrow} \stackrel{\vec{r}}{\Longrightarrow}, \nu \right\rangle$$

$$\begin{vmatrix} \stackrel{(A)}{\bullet} & \stackrel{\rightarrow}{\bullet} \\ \stackrel{(a)}{\bullet} & \stackrel{\rightarrow}{\bullet} \\ \stackrel{(a)}{\bullet} & \stackrel{\rightarrow}{\bullet} \end{vmatrix} \rightarrow |\alpha\rangle \otimes |^{3} \text{He} \rangle$$

• $|^{7}$ Be \rangle , $|^{3}$ He \rangle , and $|\alpha\rangle$ from NCSM

atkinson27@llnl.gov Mack C. Atkinson LLNL

NCSMC Calculation of ³He+⁴He shows reasonable agreement with data

Results are promising but convergence needs to be explored

Results are promising but convergence needs to be explored

Summary and Outlook

- Included 3N forces in the calculation of 4He+3He using the boost formalism
- Results are promising but convergence needs to be explored

Thanks

- Sofia Quaglioni
- Kostas Kravvaris
- Petr Navratil
- Guillame Hupin