Exercice 1: Rotation gauche

Réaliser la rotation gauche sur le nœud P

<u>Algorithme</u>

Arbre: A, B;

<u>Début</u>

 $B \leftarrow A \rightarrow FD$;

A -> FD <- B-> FG;

B -> FG <- A;

A <- B;

<u>Fin</u>

<u>Trace d'exécution :</u>

Instruction 1:	Instruction 2:	Instruction 3:	Instruction 4:
B <- A -> FD;	A -> FD <- B->	B -> FG <- A;	A <- B;
	FG;		
B C	A C	Q P C	Q Q C A B

Exercice 2 :: Rotation droite

Réaliser la rotation gauche sur le nœud Y

<u>Algorithme</u>

Arbre: A, B;

<u>Début</u>

B <- A -> FG;

A -> FG <- B-> FD;

B -> FD <- A;

A <- B;

<u>Fin</u>

<u>Trace d'exécution :</u>

<u>Instruction 1</u> :	<u>Instruction 2</u> :	<u>Instruction 3</u> :	Instruction 4 :
B <- A -> FG;	A -> FG <- B-> FD;	B -> FD <- A;	A <- B ;
A Y	A B	A Y B C	A Y C

Exercice 3: Arbre rouge est noir

- 1) Quels sont les propriétés que doit vérifier un arbre R&N
- Un nœud est soit rouge soit noir;
- La racine est noire;
- Les enfants d'un nœud rouge sont noirs;
- Tous les nœuds ont 2 enfants. Ce sont d'autres nœuds ou des feuilles **NIL**, qui ne possèdent pas de valeur et qui sont les seuls nœuds sans enfants. Leur couleur est toujours **noire** et rentre donc en compte lors du calcul de la hauteur noire.
- Le chemin de la racine à n'importe quelle feuille (**NIL**) contient le même nombre de nœuds noirs. On peut appeler ce nombre de nœuds noirs la **hauteur noire**.
- 2) Donner des illustrations du plus **grand** nombre possible de nœuds dans un arbres R&N de hauteur noir k

Quand on intercale des nœuds rouges et noirs.

3) Donner des illustrations du plus **petit** nombre possible de nœuds dans un arbres R&N de hauteur noir k

Quand tous les nœuds sont noir.

4) F	Peut-on remplacer 1 nœud rouge par 1 nœud noir ?
١	Non sauf si le rouge et le noir sont sur le même niveau.
5) F	eut-on remplacer 2 nœuds rouge par 2 nœuds noir ? Généraliser
	Dui si les deux rouges dont sur le même niveau et sur la hauteur 1 (la hauteur de l'arbre augmente de 1)
6) [Donner un exemple d'un arbre R&N de hauteur noir = 3
7) É	crire un algorithme de reconnaissance d'un arbres R&N
Algorith	ime reconnaissance d'un arbre R&N
Arbre:	a;
Entier : I	h, hn
<u>Début</u>	
h = 0;	
hn = -1	l:

Info0401 Algorithme

```
Si (a->couleur = R) ET (a->fg = NULL OU a->fd = NULL OU a->fg->couleur = R) alors :
      Retourner faux;
 Sinon si (a->fg = NULL) ET (a->fd != NULL OU a->fd = NULL ) ET (a->fg != NULL) alors :
      Retourner faux;
 Sinon
  Si(a->couleur = N) alors:
   h <- h+1;
  Fin si
  Si (a->fg = NULL) ET (a->fd = NULL) alors :
   Si (hn = -1) alors:
    hn <- hauteur:
    Retourner vrai;
   Fin si
 Sinon si (h!= hn) alors:
    Retourner faux;
Fin si
Sinon
```