立教大-社会科学部-過去問演習

大島

2025年10月28日

過去問演習の意味とは

受験生が受験勉強をする中で誰しも通るものが,過去問演習である.

ただし、その過去問演習は、**回数をこなすだけ** の勉強になってはいないだろうか. そこで、 私のおすすめの 過去問への取り組み方を少し述べようと思う.

過去問演習とは、 次の目的を達成するために用いるべし.

- 1. 受験校の難易度・傾向を掴む.
- **2.** 受験校の教授は、 どのような **数学的な発想・考え方をすることを要求しているのか?** を 把握する. (傾向に合わせた思考をできるようになる.)
- 3. 時間配分を考える.
- 4. どの程度できれば御の字なのかを把握し、 その正答率を目指して解く.
- **5.** 自分で採点せず、他の人に添削をお願いする.(自分では、良いように思えても実際、ダメなことがよくある.)
- **6.** 過去問演習は,2 週目まで.(周回して, 受かる気になっているだけ. 過去問で出題された問題はほぼ出ない.)
- 7. 良い点が取れなくても落ち込まない.(相性がある. その結果に一喜一憂している暇はない. その時間を勉強に充てよ.)
- 8. 最後まで、自分を信じて取り組むこと.(今、合格圏内にいる者はほとんどいない.(僕も、そうだった)最後まで、諦めない!!)

上にあ挙げたようなことを意識して過去問題演習に取り組むのが良いだろう.

最終局面が迫っています. 頑張りましょう.

大島 遙斗

目次

1	2023 年度 (2月6日実施)	4
2	2023 年度 (2 月 9 日実施)	12
3	2024 年度 (2 月 6 日実施)	20
4	2024 年度 (2 月 9 日実施)	28
5	2025 年度 (2 月 6 日実施)	36
6	2025 年度 (2 月 9 日実施)	44

1 2023 年度 (2月6日実施)

2023 年度

A数 学 問 題

注 意

- 1. 試験開始の指示があるまでこの問題冊子を開いてはいけません。
- 2. 解答用紙はすべて **黒鉛筆または黒のシャープペンシル** で記入することになっています。黒鉛筆・消しゴムを忘れた人は監督に申し出てください。(万年筆・ボールペン・サインペンなどを使用してはいけません。)
- 3. この問題用紙は 11 ページ までとなっています。試験開始後, ただちにページ数を確認してください。なお, 問題番号は $I \sim II$ となっています。
- 4. 解答用紙にはすでに受験番号が記入されていますので、 出席表の氏名欄に **氏名** のみを記入してください。 なお、 出席表は切り離さないでください。
- 5. 解答は、解答用紙の指定された場所に記入して、その他の部分には何も書いてはいけません。
- 6. 解答用紙を折り曲げたり、 破ったり、 傷つけたりしないように注意してください。
- 7. 計算には、この問題の余白部分を使ってください。
- 8. この問題冊子は持ち帰ってください。

I ・ 下記の空欄ア〜キにあてはまる数または式を解答用紙の所定欄に記入せよ.

tokeiichi 関数 $y = 4\cos^2\theta - 4\sin\theta - 5$ の最小値は ア である.

- (ii) 2つの実数 x, y が $x^2 + y^2 = 1$ を満たすとき, z = 2x + y のとりうる値の範囲は **イ** である.
- (iii) 三角形 ABC において AB = AC = 4, BC = 6 とする.AB 上の点 P が CP = 5 を満たすとき , AP = $\$ である.
- (iv) 大小 2 個のさいころを同時に投げる. 大きいさいころの出た目を a, 小さいサイコロの出た目を b とするとき, $\frac{a}{b}$ が整数になる確率は $\boxed{}$ である.
- (v) t を実数とする. 座標空間において、3 点 O(0,0,0),A(1,0,2),B(2,-1,0)の定める平面 OAB 上に点 Cp1+t,t,t-t があるとき,t= **オ** である.
- (vii) 座標平面の3つの部分空間

$$A = \{(x, -2x + 2) | x$$
は実数, $x < 0\}$

$$B = \{(x, 2x+2) | x$$
は実数, $x \ge 0 \}$

$$C = \{(x, -x+3) | x$$
 は実数 $\}$

に対し、 $(A \cup B) \cap C$ に属する点の座標をすべて求めると である.

- Π ・ 1年目の初めに新規に 100万円を預金し、2年目以降の毎年初めに 12万円を追加で預金する. ただし、毎年の終わりに、その時点での預金額の 8%が利子として預金に加算される. 自然数 n に対して、n年目の終わりに利子が加算された後の預金額を S_n 万円とする. このとき、次の間 (i)~(v) に答えよ. ただし、 $\log_{10} 2 = 0.3010$ 、 $\log_{10} 3 = 0.4771$ とする. 解答欄には、(i)、(ii) については答えのみを、(iii)~(v) については答えだけでなく途中経過も書くこと.
- (i) S_1 , S_2 をそれぞれ求めよ.
- (ii) S_{n+1} を S_n を用いて表せ.
- (iii) $S_n en em n c表せ.$
- (iv) log₁₀10.8を求めよ.
- (v) $S_n > 513$ を満たす最小の自然数 n を求めよ.

- **III.** p を正の実数とする.O を原点とする座標平面上の放物線 $C: y = \frac{1}{4}x^2$ 上の点 $P\left(p, \frac{1}{4p^2}\right)$ における接線を l, P を通り x 軸に垂直な直線を m とする. また, m 上の点 Q(p, -1) を通り, l に垂直な直線を n とし, l と n の交点を R とする. さらに, l に関して Q と対称な点を S とする. このとき, 次の問 (i) ~(v) に答えよ. 解答欄には, (i) については答えのみを, (ii) ~(v) については答えだけでなく途中経過も書くこと
- (i) l の方程式を p を用いて表せ.
- (ii) n の方程式および R の座標をそれぞれ p を用いて表せ.
- (iii) Sの座標を求めよ.
- (iv) l を対称軸として, l に関して m と対称な直線 m'の方程式を p を用いて表せ. また, m'と C の交点の うち P と異なる点を T とするとき, T の x 座標を p を用いて表せ.

(v)(iv)の T に対して、線分 ST、OS および C で囲まれた部分の面積を p を用いて表せ.

色々メモするスペース

2 2023 年度 (2月9日実施)

2023 年度

A数 学 問 題

注 意

- 1. 試験開始の指示があるまでこの問題冊子を開いてはいけません。
- 2. 解答用紙はすべて **黒鉛筆または黒のシャープペンシル** で記入することになっています。黒鉛筆・消しゴムを忘れた人は監督に申し出てください。(万年筆・ボールペン・サインペンなどを使用してはいけません。)
- 3. この問題用紙は 11 ページ までとなっています。試験開始後, ただちにページ数を確認してください。なお, 問題番号は $I \sim II$ となっています。
- 4. 解答用紙にはすでに受験番号が記入されていますので、 出席表の氏名欄に **氏名** のみを記入してください。 なお、 出席表は切り離さないでください。
- 5. 解答は、解答用紙の指定された場所に記入して、その他の部分には何も書いてはいけません。
- 6. 解答用紙を折り曲げたり、 破ったり、 傷つけたりしないように注意してください。
- 7. 計算には、この問題の余白部分を使ってください。
- 8. この問題冊子は持ち帰ってください。

- I . 下記の空欄ア \sim クにあてはまる数または式を解答用紙の所定欄に記入せよ.
- (i) 円に内接する AB=3, BC=6, CD=5, DA=2 である四角形 ABCD において, $\cos A=$ である.
- (ii) 整式 $(x+1)^{2023}$ を x^2 で割った余りは \top である.
- (iii) $\log_6 2 = a$ に対して、 $3\overline{1-a}$ は整数であり、その値は \red である.
- (iv) 座標平面上の 3 点 O(0,0), A(4,2), B(-6,6) を頂点とする三角形 OAB の外心の座標は $rac{}$ エ である.
- (\mathbf{v}) $z=\frac{\sqrt{3}+i}{2}$ に対して、 $z^6=a+bi$ とする.このとき、a= **オ**)、b= **カ** である.ただし,i は虚数単位とし、a、b は実数とする.
- $|\vec{a}|=3, |\vec{b}|=4, |\vec{a}+\vec{b}|=\sqrt{17}$ を満たす 2 つのベクトル \vec{a} , \vec{b} が作る平行四辺形の面積は \blacksquare である.
- (vii) 数列 $\{a_n\}$ が

$$a_1 = 0, a_{n+1} = -a_n + 3 \quad (n = 1, 2, 3, \dots)$$

を満たすとする. 自然数 n を 2 で割った商を m としたとき, $\sum\limits_{k=1}^{n}a_{k}$ を n を用いて表すと $\boxed{ \red extstyle extstyle$

- II A, B, C, Dの4人でじゃんけんをするゲームを行う.1回のじゃんけんで1人でも勝者が出た場合は、ゲームを終了する. だれも勝たずあいこになる場合は、4人でもう一度じゃんけんをし、勝者げでるまでじゃんけんを繰り返す. 次の間 (i)~(v) に答えよ. 解答欄には、(i) については答えのみを、(ii)~(v) については答えだけでなく途中経過も書くこと.
- (i) 1回目のじゃんけんで、Aだけが勝つ確率を求めよ.
- (ii) 1回目のじゃんけんで、Aを含む 2人だけが勝つ確率を求めよ.
- (iii) 1回目のじゃんけんで、Aが勝者に含まれる確率を求めよ.
- (iv) 1回目のじゃんけんで、だれも勝たずあいこになる確率を求めよ.
- (v) 2回目のじゃんけんで、ゲームが終了する確率を求めよ.

- **III.** 0 < t < 2 とし、座標平面上の曲線 $C: y = |x^2 + 2x|$ 上の点 A(-2,0) を通る傾き t の直線を l とする. C と l の、A 以外の異なる 2 つの共有点を P, Q とする. ただし、P の x 座標は、Q の x 座標より小さいとする. このとき、次の問(i)~(v)に答えよ. 解答欄には、(i)については答えのみを、(ii)~(v)については答えだけでなく途中経過も書くこと.
- (i) P, Q o x 座標をそれぞれ t を用いて表せ.
- (ii) 線分 AP と C で囲まれた部分の面積 $S_1(t)$ を t を用いて表せ.
- (iii) 線分 PQ と C で囲まれた部分の面積 $S_2(t)$ を t を用いて表せ.
- (iv) 線分 AQ と C で囲まれた 2 つの部分の面積の和 S(t) を t を用いて表せ、また、S(t) の導関数 S'(t) を求めよ、
- (v) t が 0 < t < 2 を動くとき, (iv) の S(t) を最小にするような t の値を求めよ.

色々メモするスペース

3 2024 年度 (2月6日実施)

2024 年度

A数 学 問 題

注 意

- 1. 試験開始の指示があるまでこの問題冊子を開いてはいけません。
- 2. 解答用紙はすべて **黒鉛筆または黒のシャープペンシル** で記入することになっています。黒鉛筆・消しゴムを忘れた人は監督に申し出てください。(万年筆・ボールペン・サインペンなどを使用してはいけません。)
- 3. この問題用紙は 11 ページ までとなっています。試験開始後, ただちにページ数を確認してください。なお, 問題番号は $I \sim II$ となっています。
- 4. 解答用紙にはすでに受験番号が記入されていますので、 出席表の氏名欄に **氏名** のみを記入してください。 なお、 出席表は切り離さないでください。
- 5. 解答は、解答用紙の指定された場所に記入して、その他の部分には何も書いてはいけません。
- 6. 解答用紙を折り曲げたり、 破ったり、 傷つけたりしないように注意してください。
- 7. 計算には、この問題の余白部分を使ってください。
- 8. この問題冊子は持ち帰ってください。

- I ・ 下記の空欄ア \sim コにあてはまる数または式を解答用紙の所定欄に記入せよ.
- (i) $1 \le x \le 8$ の範囲において、関数 $y = (\log_2 x)^2 8\log_2 x 20$ は $x = \boxed{r}$ のときに最小値 $\boxed{1}$ をとる.
- (ii) 等式

$$\frac{3x^2 - x + 4}{(x+1)^3} = \frac{a}{(x+1)^3} + \frac{b}{(x+1)^2} + \frac{c}{x+1}$$

が x についての恒等式となるような定数 a, b, c は, $a = \lceil \mathbf{r} \rceil$, $b = \lceil \mathbf{r} \rceil$, $c = \lceil \mathbf{r} \rceil$ である.

- (iii) さいころを 3 回投げて出る目をすべてかけた数が 4 の倍数となる確率は $\boxed{ \mathbf{h} }$ である.
- (iv) $\theta = \frac{\pi}{12}$ のとき、 $\frac{1}{\tan \theta} \tan \theta$ の値は **‡** である.
- (${\bf v}$) 初項と第 2 項がそれぞれ $a_1=1,\,a_2=1$ である数列 $\{a_n\}$ は, $n\geq 2$ のとき等式

$$a_{n+1} = a_1 + a_2 + \dots + a_n$$

をみたす. $n \ge 3$ のとき, a_n を n を用いて表すと $a_n = \boxed{}$ である.

(vi) $0 \le x \le 1$ の範囲において $f(x) \ge 0$ である 2 次関数 $f(x) = ax^2 + b$ は、等式

$$f(x)\bigg(\int_0^1 f(t)dt\bigg) = x^2 + 5$$

を満たす.このとき, 定数 a, b は, $a = \boxed{}$, $b = \boxed{}$ である.

- \coprod ・ p, q を正の実数とする. 座標平面上に放物線 C: $y = -x^2$ がある.C 上の点 $P(p, -p^2)$ における C の接戦を l, 点 $Q(-q, -q^2)$ における C の接戦を m とする. また, l と m の交点を R とする. このとき, 次の問(i)~(vi) に答えよ. 解答欄には, (i), (ii), (v) については答えのみを, (iii), (iv), (vi) については答えだけでなく途中経過も書くこと.
- (i) l, m の方程式を求めよ.
- (ii) Rの座標をp,qを用いて表せ.
- (iii) Qとlの距離dをp, qを用いて表せ.
- (iv) 三角形 PQR の面積 S を p, q を用いて表せ.
- (v) *l*と*m*が直交するとき, *q*を*p*を用いて表せ.
- (vi) $l \ge m$ が直交するとき、(4)の面積 Sの最小値をを求めよ. また、そのときの pの値を求めよ.

- **III** ・ 三角形 OAB において、OA = 5, OB = 7, AB = 8 とする. また、O を中心とする半径 r の円 C が 直線 AB 上の点 D で接している. さらに、A から C へ引いた接線と C との交点を E とする. ただし、E は D と 異なる点とする. $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ とおくとき、次の間(i)~(v)に答えよ. 解答欄には、(i)については答えのみを、(ii)~(v)については、答えだけでなく途中経過もかくこと.
- (i) 内積*a・b*を求めよ.
- (ii) $\overrightarrow{OD} e \overrightarrow{OD} = (1-t)\overrightarrow{a} + \overrightarrow{tb}$ と表すとき、定数 t の値を求めよ.
- (iii) r の値を求めよ.
- (iv) D から直線 OA へ下ろした垂線を DH とする.OHをaを用いて表せ.
- (\mathbf{v}) \overrightarrow{OE} \overrightarrow{EE} \overrightarrow{OE} \overrightarrow{OE}

色々メモするスペース

4 2024 年度 (2月9日実施)

2024 年度

A数 学 問 題

注 意

- 1. 試験開始の指示があるまでこの問題冊子を開いてはいけません。
- 2. 解答用紙はすべて **黒鉛筆または黒のシャープペンシル** で記入することになっています。黒鉛筆・消しゴムを忘れた人は監督に申し出てください。(万年筆・ボールペン・サインペンなどを使用してはいけません。)
- 3. この問題用紙は 19 ページ までとなっています。試験開始後, ただちにページ数を確認してください。なお, 問題番号は $I \sim II$ となっています。
- 4. 解答用紙にはすでに受験番号が記入されていますので、 出席表の氏名欄に **氏名** のみを記入してください。 なお、 出席表は切り離さないでください。
- 5. 解答は、解答用紙の指定された場所に記入して、その他の部分には何も書いてはいけません。
- 6. 解答用紙を折り曲げたり、 破ったり、 傷つけたりしないように注意してください。
- 7. 計算には、この問題の余白部分を使ってください。
- 8. この問題冊子は持ち帰ってください。

- I ・ 下記の空欄ア〜クにあてはまる数を解答用紙の所定欄に記入せよ.
- (i) 2 進数 a を $a_{(2)}$ と表す. $1011_{(2)} \times 11_{(2)} + 1111_{(2)}$ を計算した結果を 10 進数で表すと $\red r$ である.
- (ii) 袋の中に赤玉と白玉があわせて 20 個入っている. この袋の中から同時に 2 つの玉を取り出すとき, 取り出した玉が 2 個とも赤である確率は $\frac{21}{38}$ である. このとき, はじめに袋に入っていた赤玉は \frown 個である
- (iv) $x + \frac{1}{x} = -3$ であるとき, $x^3 + \frac{1}{x^3} =$ つである.
- (v) $-3 \le x \le 3$ において、関数 $f(x) = x^3 + 2x^2 4x$ の最小値は **オ** である.
- (vi) 座標空間において,点 A(-10, -3, 8) を通り,ベクトル $\vec{a} = (1, 2, -2)$ に平行な直線と, xy 平面との交点の座標は($\boxed{$ カ $\boxed{ }$, $\boxed{ }$ \boxed

 \coprod . 次のように定められる正の数からなる数列 $\{a_n\}$ がある.

$$a_1 = 1, a_2 = 2, a_{n+2} = \sqrt{\frac{a_{n+1}^3}{2a_n}}$$
 $(n = 1, 2, 3, \dots)$

このとき、次の問(i)~(v)に答えよ. 解答欄には、I 、I については答えのみを、II~V については答えだけでなく途中経過も書くこと.

- (i) $a_3 = 2^x$, $a_4 = 2^y$, $a_5 = 2^z$ と表すとき, x, y, z の値をそれぞれ求めよ.
- (ii) $b_n = \frac{a_{n+1}}{a_n} (n=1, 2, 3, \cdots)$ とくとき, b_{n+1} を b_n を用いて表せ.
- (iii) (ii)で定めた数列 $\{b_n\}$ に対して、 $c_n = \log_2 b_n (n=1,2,3,\cdots)$ によって定められる数列 $\{c_n\}$ の一般項を求めよ.
- (iv) (iii)で定めた数列 $\{c_n\}$ に対して、 $S_n = \sum\limits_{k=1}^n c_k e^k n^k e^k$ を用いて表せ.
- (\mathbf{v}) 数列 $\{a_n\}$ の一般項を $a_n=2^{d_n}$ と表す. ($\mathbf{i}\mathbf{v}$)の結果を用いて, d_n をnを用いて表せ.

- \coprod ・p, q を実数とする. 座標平面上に放物線 $C: y = x^2 + 2px + q$ と, 2 つの直線 $\ell: y = -x + \frac{3}{4}$, m: y = 2x がある. このとき, 以下の間 (i)~(v) に答えよ. 解答欄には, (ii) については答えのみを , (i) と (iii)~(v) については答えだけでなく途中経過も書くこと.
- (i) C が ℓ に接するとき, q を p を用いて表せ.
- (ii) C が ℓ に接するとき, C の頂点の座標を p を用いて表せ.
- (iii) C が ℓ と x 軸の両方にに接するとき, C の方程式を求めよ. また, そのときの C と ℓ の頂点の x 座標を求めよ.
- (iv) C が ℓ と m の両方に接するとき,C の方程式を求めよ.また,そのときの C と ℓ の接点の x 座標を求めよ.
- (v) (iii) で求めた C を C_1 , (iv) で求めた C を C_2 とする. このとき, C_1 , C_2 , ℓ で囲まれた部分の面積 S を求めよ.

色々メモするスペース

5 2025 年度 (2月6日実施)

2025 年度

A数 学 問 題

注 意

- 1. 試験開始の指示があるまでこの問題冊子を開いてはいけません。
- 2. 解答用紙はすべて **黒鉛筆または黒のシャープペンシル** で記入することになっています。黒鉛筆・消しゴムを忘れた人は監督に申し出てください。(万年筆・ボールペン・サインペンなどを使用してはいけません。)
- 3. この問題用紙は 19 ページ までとなっています。試験開始後, ただちにページ数を確認してください。なお, 問題番号は $I \sim III$ となっています。
- 4. 解答用紙にはすでに受験番号が記入されていますので、 出席表の氏名欄に **氏名** のみを記入してください。 なお、 出席表は切り離さないでください。
- 5. 解答は、解答用紙の指定された場所に記入して、その他の部分には何も書いてはいけません。
- 6. 解答用紙を折り曲げたり、 破ったり、 傷つけたりしないように注意してください。
- 7. 計算には、この問題の余白部分を使ってください。
- 8. この問題冊子は持ち帰ってください。

- I . 下記の空欄ア \sim クにあてはまる数または式を解答用紙の所定欄に記入せよ.
- (i) $x+y=\sqrt{5}, xy=1$ のとき, $x^4+y^4=$ ア である.
- (ii) $0 \le x < 2\pi$ のとき, $\sqrt{2}\sin\left(x + \frac{\pi}{4}\right) + 2\cos x$ の最大値は **イ** である.
- (iii) 等式 $\log_2 x = 2\log_x 4$ を満たす実数 x を全て求めると $x = \boxed{}$ である.

- (vi) 実数 a, b は定数とする.3 次関数 $f(x)=x^3+ax^2+bx+2$ が x=-1 と $x=\frac{1}{3}$ のそれぞれで極値をとるとき, a= カ , b= す である. このとき, f(x) の極大値は ク である.

 \coprod **.** n を 1 以上の整数とする. 箱の中に 1 から 7 までの数字が 1 つずつ書かれた 7 枚のカードがある . ただし、異なるカードには異なる数字が書かれたいるとする.

1 2 3 4 5 6 7

「この箱から 1 枚のカードを無作為に取り出し、そのカードに書かれた数字を記録してからカードを箱の中に戻す」という操作を n 回繰り返す。記録された n 個の数字の和が偶数となる確率を p_n とする。このとき、次の間 (i)~(v) に答えよ。解答欄には、(i) については答えのみを、(ii)~(v) については答えだけでなく途中経過も書くこと。

- (i) *p*₁, *p*₂を求めよ.
- (ii) *p*₃を求めよ.
- (iii) p_{n+1} を p_n を用いて表せ.
- (v) $S_n = \sum_{k=1}^n p_k e^{-n}$ を用いて表せ.

- (i) ℓの方程式を求めよ.
- (ii) ℓ が C と接するとき, b を a を用いて表せ.
- (iii) ℓ が P において C と接するとき, a, b の値をそれぞれ求めよ.
- (iv) a, b を(iii)で求めた値とする. また, ℓ と y 軸の交点を S とする. このとき,

線分 SP, $C \circ 0 \le x \le 2\sqrt{2} \circ$ の部分, 線分QS

で囲まれる図形の面積 X を求めよ.

(v) a, b を(iii) で求めた値とする. また, D 上の点 T を T(0, 1) とする. このとき,

線分 PR、 C の $0 \le x \le 2\sqrt{2}$ の部分、 線分 QT、 D の弧 TR

で囲まれる図形の面積 Y を求めよ. ただし、 弧 TR は $x \ge 0$ にあるとする.

色々メモするスペース

6 2025 年度 (2月9日実施)

2025 年度

C数 学 問 題

注 意

- 1. 試験開始の指示があるまでこの問題冊子を開いてはいけません。
- 2. 解答用紙はすべて **黒鉛筆または黒のシャープペンシル** で記入することになっています。黒鉛筆・消しゴムを忘れた人は監督に申し出てください。(万年筆・ボールペン・サインペンなどを使用してはいけません。)
- 3. この問題用紙は 19 ページ までとなっています。試験開始後, ただちにページ数を確認してください。なお, 問題番号は $I \sim II$ となっています。
- 4. 解答用紙にはすでに受験番号が記入されていますので、 出席表の氏名欄に **氏名** のみを記入してください。 なお、 出席表は切り離さないでください。
- 5. 解答は、解答用紙の指定された場所に記入して、その他の部分には何も書いてはいけません。
- 6. 解答用紙を折り曲げたり、 破ったり、 傷つけたりしないように注意してください。
- 7. 計算には、この問題の余白部分を使ってください。
- 8. この問題冊子は持ち帰ってください。

- I ・ 下記の空欄ア \sim コにあてはまる数または式を解答用紙の所定欄に記入せよ.
- (i) $2^{1-3x} \ge \left(\frac{1}{\sqrt{2}}\right)^x$ を満たす実数 x の範囲は \square である.
- (ii) 赤玉 3 個と白玉 4 個を無作為に 1 列に並べるとき、白玉が両端にある確率は \frown である.
- (iii) x, y, z は実数であり, x < y を満たすとする.3 つの数 3, x, y がこの順に等差数列となり, さらに , 4 つの数 4, x, y, z がこの順に等差数列となるとき, $x = \boxed{$ **ウ** , $y = \boxed{$ **エ** , $z = \boxed{$ **オ** である.
- (iv) 実数 z は定数とする. 座標平面上の 2 つの直線 (a+1)x+ay=1, ax+(a+2)y=2 がただ 1 つの交点をもつための a 条件は $\boxed{$ カ $\boxed{}$ である.
- (${\bf v}$) 定積分 $\int_0^2 (x+1)|x-1|dx$ の値は lacktriangleright である.
- (vi) 空間ベクトル $\overrightarrow{p}=(x,y,z)$ は $\overrightarrow{a}=(1,0,-2)$ と $\overrightarrow{b}=(0,3,2)$ の両方に垂直であり、 $\left|\overrightarrow{p}\right|$ かつ z>0 を満たしている. このとき, $\overrightarrow{p}=($ **ク 力 , 力)** である.

- II・ p, q を正の実数とする. 原点を O とする座標平面上に点 A(1,0), 点 $P\left(p,\frac{1}{p}\right)$, 点 $Q\left(q,\frac{2}{q}\right)$ がある. \angle $AOP = \alpha$, \angle $AOQ = \beta$ とおき, P, Q は $\alpha < \beta$ を満たしながら動くものとする. 三角形 OPQ の面積を S とし、また、 $T = \tan\left(\beta \alpha\right)$ とおく. 以下の問(i)~(v)に答えよ. 解答欄には、(i)、(ii)については答えのみを、(iii)~(v)については答えだけでなく途中経過も書くこと.
- (i) $\cos \alpha$, $\sin \alpha$ をそれぞれ p を用いて表せ. また, $\cos \alpha$, $\sin \beta$ をそれぞれ q を用いて表せ.
- (ii) T を p, q を用いて表せ.
- (iii) S を p, q を用いて表せ.
- (iv) t = pq とおく. $\frac{S}{T}$ を用いて表せ.
- (v) $\frac{S}{T}$ の最小値を求めよ.

- **III** ・ k を実数とする.3 次関数 $f(x) = x^3 x^2 + 1$ に対して、座標平面上の曲線 C を C: y = f(x) とする. また、C 上の点 P(1,1) を通り、傾きが k である直線を ℓ とする. このとき、次の問(i)~(vi)に答えよ、解答欄には、(i)~(iii)については答えのみを、(iv)~(vi)については答えだけでなく途中経過も書くこと.
- (i) ℓ の方程式をkを用いて表せ.
- (ii) f(x) の導関数 f'(x) を求めよ.
- (iii) f(x) の極値を求めよ.
- (iv) ℓ と C がちょうど 2 個の共有点をもつような k の値を求めよ.
- (v) ℓ と C が異なる 3 個の共有点をもつような k の値の範囲を求めよ.
- (vi) (v)のとき、異なる 3 個の共有点の y 座標を小さい方から順に y_1, y_2, y_3 とする. このとき、比の等式 (y_2-y_1) : $(y_3-y_2)=1$:2 を満たすような k の値の範囲を求めよ.