Notes for Week 8/1/19 - 8/8/19

Alden Green

August 5, 2019

1 Bound on Eigenvalue Tail Decay of Neighborhood Graph

Let $\mathcal{D} = [0,1]^d$. We consider two graphs over data on \mathcal{D} .

Suppose we observe the random design $X = x_1, \ldots, x_n$ independently sampled from probability measure P supported on \mathcal{D} . For any $r \geq 0$, let the kernel function $\eta_r : \mathcal{D} \times \mathcal{D} \to \mathbb{R}_{\geq 0}$ be given by $\eta_r(x,y) = \mathbf{1}(\|x-y\| \leq r)$. Then, let the r-neighborhood graph over x_1, \ldots, x_n be the undirected, unweighted graph G = (V, E), where V = [n] and for $i, j \in [n]$, $(i, j) \in E$ if $\eta_r(x_i, x_j) = 1$.

Let B be the incidence matrix associated with G, and let $L = B^T B$ be the corresponding Laplacian. Write $L = V \Lambda V^T$ for the eigen decomposition of L, where $V = (v_1 \dots v_n)$ is an orthonormal matrix with the eigenvectors of L as its columns, and Λ is a diagonal matrix with entries $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$. For a given s > 0 and C > 0, let $N(C) = \#\{k : \lambda_k^s \leq C^2\}$. We wish to prove the following result.

Theorem 1. Let $r \to 0$ as $n \to \infty$ sufficiently slowly so that $r(\log n/n)^{1/d} \to \infty$. Then, for each s > 0 and $C \le \sqrt{2}$,

$$N(C) \le nC^{d/s}. (1)$$

with probability tending to one as $n \to \infty$.

2 Theory

To prove Theorem 1, we will make use of another graph on points within \mathcal{D} , whose spectral properties are very well-understood. Let ξ be the set of evenly spaced lattice points over \mathcal{D} ; formally $\xi = \{k/n : k \in [\ell]^d\}$ where $\ell = n^{1/d}$, and we define $[\ell]^d = \{(\ell_1, \dots, \ell_d) : \ell_k \in [\ell] \text{ for each } \ell_k\}$. Then, let the grid graph over ξ be given by $\widetilde{G} = (\widetilde{V}, \widetilde{E})$, where $\widetilde{V} = \xi$ and $(\xi_k, \xi_{k'})$ is in \widetilde{E} if $\|\xi_k - \xi_{k'}\|_1 = 1/\ell$.

Let \widetilde{L} be the Laplacian of \widetilde{G} , and let $\widetilde{\lambda_1} \leq \ldots \leq \widetilde{\lambda_n}$ be the ordered eigenvalues of \widetilde{L} . Write $\widetilde{N}(C) = \#\{k : \widetilde{\lambda_k^s} \leq C^2\}$. We have that the desired scaling rate (1) holds with respect to the grid graph \widetilde{G} .

Lemma 1. For each s and every $C \leq \sqrt{2}$, we have

$$\widetilde{N}(C) \le 2^d \left(nC^{d/s} + 1 \right) \tag{2}$$

Proof. It will be sufficient to show that

$$\lambda_k^s \le C^2 \Rightarrow \left| k^{1/d} \right|^d \le C^{d/s} n \tag{3}$$

To show this, observe that for any $\tau \in \mathbb{N}$ and $k = \tau^d$, we have

$$\lambda_k \ge 4 \sin^2 \left(\frac{\pi k^{1/d}}{2n^{1/d}} \right) \ge \frac{\pi^2 k^{2/d}}{4n^{2/d}} \wedge 2$$

Therefore, if $\lambda_k^s \leq C^2$ and $C \leq \sqrt{2}$, this implies

$$\frac{\pi^{2s} k^{2s/d}}{4^s n^{2s/d}} \le C^2$$

and rearranging, we obtain

$$k \le \frac{C^{d/s} 2^d n}{\pi^d} \le C^{d/s} n$$

If $k^{1/d}$ is not a natural number, applying the same argument to $k' = \lfloor k^{1/d} \rfloor^d$ yields (3).

In light of Lemma 1, to prove Theorem 1 it is sufficient to show that $\widetilde{L} \leq L$, since by the Courant-Fischer min-max theorem, the ordering $\widetilde{L} \leq L$ implies that $\widetilde{\lambda}_k \leq \lambda_k$ for all $k \in [n]$. The next result details the conditions under which this ordering holds. This condition will be stated with respect to the min-max matching distance between ξ and X, i.e. the minimum over all bijections $T : \xi \to X$ such that

$$\min_{T} \max_{i \in [n]} \left| T^{-1}(x_i) - x_i \right|$$

Lemma 2. For any radius r satisfying

$$r \ge 2 \min_{T} \max_{i \in [n]} |T^{-1}(x_i) - x_i| + n^{-1/d}$$
 (4)

we have that $\widetilde{L} \leq L$.

Proof. Let T_{\star} achieve the min-max matching distance, i.e

$$\max_{i \in [n]} |T_{\star}^{-1}(x_i) - x_i| = \min_{T} \max_{i \in [n]} |T^{-1}(x_i) - x_i|.$$

It will be sufficient to prove that for every pair $(T_{\star}^{-1}(x_i), T_{\star}^{-1}(x_j)) \in \widetilde{E}$, the corresponding edge (i, j) is in E. To see this, let A denote the adjacency matrix associated with the neighborhood graph G, and \widetilde{A} the adjacency matrix associated with the grid \widetilde{G} . Precisely A is the $n \times n$ matrix with entries $A_{ij} = \eta_r(x_i, x_j)$, and \widetilde{A} is the $n \times n$ matrix with entries $\widetilde{A}_{ij} = \mathbf{1}\{T_{\star}^{-1}(x_i), T_{\star}^{-1}(x_j) \in \widetilde{E}\}$. Our goal is to show that, for every $z \in \mathbb{R}^d$, we have

$$z^{T}Lz = \frac{1}{2} \sum_{i,j=1}^{n} (z_{i} - z_{j})^{2} A_{ij} \le \frac{1}{2} \sum_{i,j=1}^{n} (z_{i} - z_{j})^{2} \widetilde{A}_{ij} = z^{T} \widetilde{L}z.$$

which certainly holds if $\widetilde{A}_{ij} \leq A_{ij}$ for all $i, j \in [n]$.

Now, assume $(T_{\star}^{-1}(x_i), T_{\star}^{-1}(x_j)) \in \widetilde{E}$. This implies

$$||x_{i} - x_{j}||_{2} \leq ||x_{i} - T_{\star}^{-1}(x_{i})||_{2} + ||T_{\star}^{-1}(x_{j}) - T_{\star}^{-1}(x_{j})||_{2} + ||x_{j} - T_{\star}^{-1}(x_{j})||_{2}$$

$$\leq 2 \max_{i \in [n]} |T_{\star}^{-1}(x_{i}) - x_{i}| + n^{-1/d}$$

$$< r.$$

so $\eta_r(x_i, x_j) = 1$ and therefore $(i, j) \in E$.

Finally, the following Lemma demonstrates that, for sufficiently large r, the condition (4) will hold with high probability.

Lemma 3. Assume P has density p which is bounded above and below uniformly over \mathcal{D} ; that is, there exist constants p_{\min} and p_{\max} such that

$$0 < p_{\min} < p(x) < p_{\max} < \infty$$
, for all $x \in \mathcal{D}$.

Then, for any $r = r_n$ such that $r(\log(n)/n)^{1/d} \to \infty$, we have that the event

$$r < 2 \min_{T} \max_{i \in [n]} |T^{-1}(x_i) - x_i| + n^{-1/d}$$

occurs with probability tending to 0 as $n \to \infty$.

Together Lemmas 1, 2, and 3 imply Theorem 1.