EECS 376 Discussion 12

Sec 27: Th 5:30-6:30 DOW 1017

IA: Eric Khiu

Slide deck available at course drive/Discussion/Slides/Eric Khiu

Agenda

- Probability Bounds
 - Chernoff bounds
 - ► Union Bounds
- Fingerprinting
- ► Fast Modular Exponentiation (if time)
- Diffie-Hellman Key Exchange

Probability Bounds

Review: Markov Inequality

▶ Markov's Inequality: Let X be a positive RV and a > 0, then

$$\Pr[X \ge a] \le \frac{E[X]}{a}$$

Rearranging, we get

$$\Pr[X \ge a \cdot E[X]] \le \frac{1}{a}$$

"Reverse" Markov's Inequality: Let X be a positive RV upper-bounded by B, then

$$\Pr[X > a] \ge \frac{E[X] - a}{B - a}$$

Large Deviation Chernoff Bound

Let $X = X_1 + X_2 + \cdots + X_n$ be the sum of n independent indicator RV with expected value $\mathbb{E}[X] = \mu$ (WARNING: IT'S NOT $\mathbb{E}[X_i]$!)

Sanity Check: Can X be negative? What about μ ?

▶ Large deviation Chernoff bound says that the probability of X exceeding μ by some $\lambda \ge 1$ is

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda u}{3}}$$

Large Deviation Chernoff Bound

Let $X = X_1 + X_2 + \cdots + X_n$ be the sum of n independent indicator RV with expected value $\mathbb{E}[X] = \mu$ (WARNING: IT'S NOT $\mathbb{E}[X_i]!$)

Sanity Check: Can X be negative? What about μ ?

▶ Large deviation Chernoff bound says that the probability of X exceeding μ by some $\lambda \ge 1$ is

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda u}{3}}$$

Probability that *x* lies in this range

Small Deviation Chernoff Bounds

▶ Small deviation Chernoff bounds says that the probability of X exceeding μ by some at least some $\lambda \in [0,1]$ is

Small Deviation Chernoff Bounds

▶ Small deviation Chernoff bounds says that the probability of X exceeding μ by some at least some $\lambda \in [0,1]$ is

▶ And the probability of X below μ by at least some $\lambda \in [0,1]$ is

$$\Pr[\mu - X \ge \lambda \mu] = \Pr[X - \mu \le -\lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$$

Chernoff Bounds Exercise

- ▶ Suppose we roll a fair 4-sided die 24 times. Let *X* be the random variable representing the number of 1's obtained
- Using Chernoff bounds, give an upper bound to the probabilities
 - $ightharpoonup \Pr[X \ge 18]$
 - $Pr[X \ge 9]$

Hint: First compute $\mu = \mathbb{E}[X]$

Let $X_i = 1$ if the *i*th roll is a 1, $\mathbb{E}[X] = 24 \cdot \frac{1}{4} = 6$

Large deviation $(\lambda \ge 1)$:

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda u}{3}}$$

Small deviation ($\lambda \in [0,1]$):

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$$

$$\Pr[X - \mu \le -\lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$$

Chernoff Bounds Exercise 1

- ▶ Suppose we roll a fair 4-sided die 24 times. Let *X* be the random variable representing the number of 1's obtained
- ▶ Using Chernoff bounds, give an upper bound to $Pr[X \ge 18]$

Let
$$X_i = 1$$
 if the *i*th roll is a 1, $\mathbb{E}[X] = 24 \cdot \frac{1}{4} = 6$

- Step 1: Rewrite the expression as $X \mu$ $\Pr[X \ge 18] = \Pr[X - 6 \ge 18 - 6] = \Pr[X - 6 \ge 12]$
- \triangleright Step 2: Find λ

$$12 = 6\lambda \Rightarrow \lambda = \frac{12}{6} = 2 \ge 1$$

▶ Step 3: Apply the large deviation Chernoff bound

$$\Pr[X - 6 \ge 2(6)] \le e^{-\frac{2(6)}{3}} \approx 0.0183$$

Large deviation $(\lambda \geq 1)$:

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda u}{3}}$$

Small deviation $(\lambda \in [0,1])$:

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$$

$$\Pr[X - \mu \le -\lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$$

Chernoff Bounds Exercise 2

- ▶ Suppose we roll a fair 4-sided die 24 times. Let *X* be the random variable representing the number of 1's obtained
- ▶ Using Chernoff bounds, give an upper bound to $Pr[X \ge 9]$

Let
$$X_i = 1$$
 if the *i*th roll is a 1, $\mathbb{E}[X] = 24 \cdot \frac{1}{4} = 6$

- Step 1: Rewrite the expression as $X \mu$ $\Pr[X \ge 9] = \Pr[X - 6 \ge 9 - 6] = \Pr[X - 6 \ge 3]$
- \triangleright Step 2: Find λ

$$3 = 6\lambda \Rightarrow \lambda = \frac{3}{6} = \frac{1}{2} \le 1$$

Step 3: Apply the small deviation Chernoff bound

$$\Pr\left[X - 6 \ge \frac{1}{2}(6)\right] \le e^{-\frac{\left(\frac{1}{2}\right)^2(6)}{3}} \approx 0.6065$$

Large deviation $(\lambda \ge 1)$:

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda u}{3}}$$

Small deviation $(\lambda \in [0,1])$:

$$\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$$

$$\Pr[X - \mu \le -\lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$$

Union Bound

- ► The probability of any one of many events occurring is less than the sums of the probabilities of each event
- Let $A_1, A_2, ..., A_n$ be a set of (possible dependent) events, then

$$\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \le \sum_{i=1}^n \Pr[A_i]$$

$\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \le \sum_{i=1}^n \Pr[A_i]$

Union Bound Exercise

- In a computer system equipped with 50 processors, each engaged in concurrent multithreading tasks, there exists a probability of 0.001 for an individual processor to experience failure. Determine the probability that at least one processor encounters failure.
- ▶ Let $X_i = 1$ if the *i*-th processor fails and 0 otherwise, so $Pr[X_i] = 0.001$
- ▶ $Pr[at least one fails] = Pr[X_1 \cup X_2 \cup \cdots \cup X_{50}]$
- ► Apply Union Bound

$$\Pr[X_1 \cup X_2 \cup \dots \cup X_{50}] \le \sum_{i=1}^{50} \Pr[X_i] = 50(0.001) = 0.05$$

Summary of Probabilities Bounds

Probability Bounds	Constraints
Markov's inequality: $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$	• X is a positive RV
"Reverse" Markov's inequality: $\Pr[X > a] \ge \frac{\mathbb{E}[X] - a}{B - a}$	 X is a positive RV X is upper bounded by some B
Chernoff large deviation bound: $\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda u}{3}}$	 X is a sum of independent IRV E[X] = μ λ > 1
Chernoff small deviation bounds: $\Pr[X - \mu \ge \lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$ $\Pr[X - \mu \le -\lambda \mu] \le e^{-\frac{\lambda^2 u}{3}}$	 X is a sum of independent IRV E[X] = μ λ ∈ [0,1]
Union bounds: $\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \leq \sum_{i=1}^n \Pr[A_i]$	N/A

Fingerprinting

Setup

- Suppose Alice wants to communicate some large n-bits number x to Bob
- She wants to send as few bits as possible, so instead she uploads this number to a server for him to download
- The server is untrusted, so once Bob downloads the number y, he and Alice will need to confirm that x and y are the same

Randomized Fingerprinting

- Alice randomly chooses a prime p from the first 10n primes and sends Bob the message $(p, x \mod p)$
- ▶ Bob computes *y* mod *p*
 - ▶ If $x \mod p = y \mod p$, Bob concludes that x = y
 - ▶ Otherwise, Bob concludes that $x \neq y$
- ▶ When x = y, this protocol is correct for all choices of p
- ▶ When $x \neq y$, this protocol is correct for at least 90% of the choices of p
 - ► Example: p = 3; $x = 1, y \in \{7,10,13,...\}$ breaks the protocol

Randomized Fingerprinting Exercise

- Alice randomly chooses a prime p from the first 10n primes and sends Bob the message $(p, x \mod p)$
- ▶ Bob computes *y* mod *p*
 - ▶ If $x \mod p = y \mod p$, Bob concludes that x = y
 - ▶ Otherwise, Bob concludes that $x \neq y$
- ightharpoonup State whether the algorithm is correct for all choices of p, or give all examples of p that cause the protocol to result in the incorrect decision
 - x = 70, y = 64
 - x = 342, y = 342

Hint: If $x \mod p = y \mod p$, what is $(x - y) \mod p$?

Randomized Fingerprinting Exercise

- ▶ Recall that a and b are congruent modulo n, written as $a \equiv b \pmod{n}$ if
 - $ightharpoonup a \mod n = b \mod n$, or equivalently,
 - $ightharpoonup \exists k \in \mathbb{Z}$ such that a = b + kn, or equivalently
 - ightharpoonup a-b is a multiple of n
- ▶ So if $x \mod p = y \mod p$, then $(x y) \mod p = 0$
- ▶ This means we just need to find the prime divisors of x y
- \blacktriangleright State whether the algorithm is correct for all choices of p, or give all examples of p that cause the protocol to result in the incorrect decision
 - x = 70, y = 64
 - x = 342, y = 342

Unit 5: Cryptography

Fast Modular Exponentiation

Exponentiation in Modular Arithmetic

- ▶ Recall that if $a \equiv b \pmod{n}$, then for any $k \in \mathbb{Z}$,
 - $a + k \equiv b + k \pmod{n}$
 - $ightharpoonup ak \equiv bk \pmod{n}$
- Property 215: Suppose $a = a' \pmod{n}$ and $b = b' \pmod{n}$, then $ab \equiv a'b' \pmod{n}$
 - ▶ Proof idea: Let a a' = kn and b b' = mn for some integers k and m, then $ab = (kn + a') \cdot (mn + b') = \cdots = (kmn + a'm + b'k)n + a'b'$
 - ► Therefore, ab a'b' = (kmn + a'm + b'k)n, so $ab \equiv a'b' \pmod{n}$
- ▶ Corollary: If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$
 - Proof idea: $a^k = \underbrace{a \cdot a \cdot \dots \cdot a}_{k \text{ times}}$, use property 215 and induction

Fast Modular Exponentiation

Property 215: Suppose $a = a' \pmod{n}$ and $b = b' \pmod{n}$, then

$$ab \equiv a'b' \pmod{n}$$

- Suppose we want to compute $a^b \mod n$
- Consider the binary representation of b

$$b = b_r \cdot 2^r + b_{r-1} \cdot 2^{r-1} + \dots + b_0 \cdot 2^0$$

- \blacktriangleright Here, b_i is either 0 or 1
- $ightharpoonup r = \lfloor \log_2 b \rfloor$
- \triangleright Then, we can represent a^b as

$$a^{b} = a^{b_{r} \cdot 2^{r} + b_{r-1} \cdot 2^{r-1} + \dots + b_{0} \cdot 2^{0}}$$
$$= a^{b_{r} \cdot 2^{r}} \times a^{b_{r-1} \cdot 2^{r-1}} \times \dots \times a^{b_{0} \cdot 2^{r-1}}$$

Thus, we can compute $a^{2^i} \mod n$ for each $a \le i \le r$ and include those whose $b_i = 1$ in the product

Fast Modular Exponentiation

- ► Example: 3⁵ mod 14
- Step 1: Express b = 5 in binary

$$5 = 101$$

► Step 2: Compute $3^{2^i} \mod 14$ for $i = 0 \le i \le \lfloor \log_2 5 \rfloor = 2$ $3^{2^0} = 3^1 = 3 \equiv 3 \pmod{14}$ $3^{2^1} = 3^2 = 9 \equiv 9 \pmod{14}$ $3^{2^2} = 9^2 = 81 \equiv 11 \pmod{14}$

Step 3: Multiply and simplify

$$3^{5} = 3^{4} \cdot 3^{1}$$

 $\equiv 11 \cdot 3 \pmod{14}$
 $\equiv 33 \pmod{14}$
 $\equiv 5 \pmod{14}$

Your turn: Compute 3⁵⁷ mod 14 | Ans: 13

Property 215: Suppose $a = a' \pmod{n}$ and $b = b' \pmod{n}$, then

$$ab \equiv a'b' \pmod{n}$$

```
14 × 1 = 14

14 × 2 = 28

14 × 3 = 42

14 × 4 = 56

14 × 5 = 70

14 × 6 = 84

14 × 7 = 98

14 × 8 = 112

14 × 9 = 126

14 × 10 = 140
```

Fast Modular Exponentiation Algorithm

► (Take home) exercise: Complete the following DP algorithm for fast modular exponentiation and analyze the runtime:

```
FastModExp(a,b,n):

r \leftarrow \lfloor \log b \rfloor

allocate an empty array DP[0, ..., r]

DP[0] \leftarrow a

for i = 1, ..., r do

ans \leftarrow 1

for i = 0, ..., r do

if _______ then

return ans
```

See Algorithm 220 on course notes for solution

Congruent Class and Generator

Congruent class

- ▶ Congruent class: For any $n \in \mathbb{N}$, we define $\mathbb{Z}_n = \{0,1,2,...,n-1\}$ as the set of congruence class modulo n.
- The group $\mathbb{Z}_n^* \subseteq \mathbb{Z}_n$ is the set of nonzero elements of \mathbb{Z}_n that have an inverse in modulo n, i.e.,

$$\mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n : \gcd(x, n) = 1 \}$$

Discuss: What if n is prime?

- ► A prime number is coprime to all natural numbers smaller than it
- Arr $\mathbb{Z}_n^* = \{1, 2, ..., n-1\}$

Generator

- ▶ Generator: Let p be a prime. $g \in \mathbb{Z}_p^*$ is a *generator* if for every $x \in \mathbb{Z}_p^*$, there exists some $i \in \mathbb{N}$ such that $x = g^i \mod p$
- ▶ Example: g = 2 is a generator of \mathbb{Z}_5^* :
 - $\mathbb{Z}_5^* = \{1,2,3,4\}$
 - \triangleright 2⁰ = 1 \equiv 1 (mod 5)
 - $ightharpoonup 2^1 = 2 \equiv 2 \pmod{5}$
 - $ightharpoonup 2^2 = 4 \equiv 4 \pmod{5}$
 - $ightharpoonup 2^3 = 8 \equiv 3 \pmod{5}$

- But g=2 is a not generator of \mathbb{Z}_7^* :

 - $2^0 = 1 \equiv 1 \pmod{7}$
 - $2^1 = 2 \equiv 2 \pmod{7}$

 - $2^4 = 16 \equiv 2 \pmod{7}$
 - **...**

Concept Check

- ▶ Is g = 3 a generator of \mathbb{Z}_{11}^* ?

 - \rightarrow 3⁰ = 1 \equiv 1 (mod 11)
 - $> 3^1 = 3 \equiv 3 \pmod{11}$
 - \rightarrow 3² = 9 \equiv 9 (mod 11)
 - \rightarrow 3³ = 27 \equiv 5 (mod 11)
 - \rightarrow 3⁴ = 81 \equiv 4 (mod 11)
 - \rightarrow 3⁵ = 3 · 3⁴ \equiv 3 · 4 = 12 \equiv 1(mod 11)
 - **...**

Generator: Let p be a prime. $g \in \mathbb{Z}_p^*$ is a generator if for every $x \in \mathbb{Z}_p^*$, there exists some $i \in \mathbb{N}$ such that $x = g^i \mod p$

```
11 x 1 = 11

11 x 2 = 22

11 x 3 = 33

11 x 4 = 44

11 x 5 = 55

11 x 6 = 66

11 x 7 = 77

11 x 8 = 88

11 x 9 = 99

11 x 10 = 110
```

Another Definition of Generator

- ▶ We had the following definition for a generator:
 - Let p be a prime. $g \in \mathbb{Z}_p^*$ is a *generator* if for every $x \in \mathbb{Z}_p^*$, there exists some $i \in \mathbb{N}$ such that $x = g^i \mod p$
- ► The following definition is equivalent:
 - ▶ Let p be a prime. $g \in \mathbb{Z}_p^*$ is a *generator* if for every $x \in \mathbb{Z}_p^*$, there exists some $y \in \{0, ..., p-2\}$ such that $x = g^y \mod p$
 - ▶ So instead of defining congruent class of a prime number as

$$\mathbb{Z}_p^* = \{x \in \mathbb{Z}_p : \gcd(x, n) = 1\} = \{1, 2, ..., p - 1\}$$

► The following definition is equivalent:

$$\mathbb{Z}_p^* = \{g^y \mod p : y \in \{0,1,...,p-2\}\}$$

Main takeaway: g generates \mathbb{Z}_p^* iff $g^0 \mod p$ through $g^{p-2} \mod p$ hit all elements of \mathbb{Z}_p^* (exactly once)

Diffie-Hellman Key Exchange

Diffie-Hellman Protocol

- Alice and Bob need a shared secret key in order to encrypt and send messages, but there's an eavesdropper Eve on their communication channel
- ightharpoonup Public information: a prime number p and a generator g

Choose $a \in \mathbb{Z}_p^*$ Compute $B^a \mod p$

Secret key: $g^{ab} \mod p = B^a \mod p = A^b \mod p$

Choose $b \in \mathbb{Z}_p^*$ Compute $A^b \mod p$

Diffie-Hellman Protocol Example

- ▶ Suppose the prime is p = 7 and the generator is g = 3
- ▶ Suppose you were Alice and you pick a = 3, what do you send to Bob?
 - $A = 3^3 \mod 7 = 27 \mod 7 = 6$
- \blacktriangleright After sending A to Bob, suppose you receive B=2, what is the shared key?

$$B^a = 2^3 = 8 \equiv 1 \pmod{p}$$

Diffie-Hellman Protocol:

- Alice chooses some secret $a \leftarrow \mathbb{Z}_p^*$ at random
- \bullet Bob chooses some secret $b \leftarrow \mathbb{Z}_p^*$ at random
- Alice sends $A = g^a \mod p$ to Bob
- Bob sends $B = g^b \mod p$ to Alice
- Alice computes $B^a = g^{ab} \mod p$ as the secret key
- Bob computes $A^b = g^{ab} \mod p$ as the secret key