TEMA 4. GEOMETRIA EUCLIDEA. MOVIMIENTOS

4.1. ESPACIO AFIN EUCLIDEO. ORTOGONALIDAD DE VARIEDADES LINEALES

Def 4.1.1. Un espavo afin (A, E) se dire que es un espavo afin euclideo si (E, <, >) es un espavo euclideo.

Como ahera teremos un praducto escalar en E podemos medira

distancias entre puentos: dados p, q & A

$$d(p,q) = \|\vec{pq}\| = \sqrt{\langle \vec{pq}, \vec{pq} \rangle}$$

se llama distancia de p a q.

De las propiedades de la norma II II en un espaco euclideo se deducem las signientes propiedades de la distencia: si p,q,reA

- i) d(p,q) >0 y d(p,q)=0 => p=q
- (c) d(p,q)=d(q,p)
- ives d(p,q) & d(p,r) + d(r,q) (designal dad belongular)

Teorema de Pitagoxas (4.1.2) Sean p,q,r tres reputos de un españo enchido (Δ , E, <,>).

Si <pq, pr>=0 se umple $d(\eta q)^2 = d(p_1 q)^2 + d(p_1 r)^2$

$$D/d(r,q)^{2}=||rq^{2}||^{2}=||rp^{2}+pq^{2}||^{2}=||rp^{2}||^{2}+2\langle rp^{2},pq^{2}\rangle+||pq^{2}||^{2}$$

$$=||rp^{2}||^{2}+||pq^{2}||^{2}=d(p,r)^{2}+d(p,q)^{2}.$$

Sean $L_1^2a_1 + V_1$ y $L_2 = a_2 + V_2$ dos varie dades lineales de un españo afin encluder (A, E, <, >) - L_1 y L_2 se <u>diven ortogo</u> nales si $V_1 \subset V_2^{\perp}$ (esto es $\langle V_1, V_2 \rangle = 0$ $\forall N_1 \in V_1$, $\forall N_2 \in V_2$).

En este caso

 $\dim(V_1) \leq \dim(V_2) = n - \dim(V_2) \Rightarrow \dim(V_1) + \dim(V_2) \leq n$

Si dim (V_1) + dim (V_2) > n, diremos que V_1 es pretogonal a L_2 si $a_1 + V_1^{\perp}$ es ontogonal a $a_2 + V_2^{\perp}$, es deux $V_1^{\perp} \in V_2$.

EJEMPLO A. Sea $R_0 = \{p; \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ un sisteme de referencia ordenarmel, es deur, $\beta = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ es una base o.n. de (E, <, >). Sean

$$L_{1} = (0,0,0) + \mathcal{L}\{(1,1,1)\} , L_{2} = (1,2,3) + \mathcal{L}\{(-1,0,1)\}$$

$$L_{3} = (0,0,0) + \mathcal{L}\{(1,1,0), (1,0,-1)\}$$

L4= {(x,y,Z) & 123 : y-Z=1}

Promba que $L_1 \perp L_2$, $L_1 \perp L_3$ y $L_3 \perp L_4$ (<, > es el producto escalar asold en \mathbb{R}^3)

- S/i) $((1, 1, 1), (-1, 0, 1)) = -1 + 1 = 0 : L_1 \perp L_2$
 - (ii) (24,1,1), (1,-1,0) > 21-1=0 y ((2,1,1), (1,0,-1) > 21-1=0(1,1,1), (1,-1,0) > 21-1=0 y ((2,1,1), (1,0,-1) > 21-1=0
 - iii) En este caso dim (L_3) + dim (L_4) = 4 \geqslant 3. Tenemos gree estudian V_3^{\perp} y V_4^{\perp} ; V_3^{\perp} = d $\{(1,+1,1)\}$ y V_4^{\perp} = $\{(0,1,-1)\}$ Gamo $\{(1,1,1),(0,1,-1)\}$ = 1-1=0, se deduce L_3 L_4 .

.

4.2. DISTANCIA ENTRE VARIEDADES LINEALES

Def 4.2.1. Sea $(A, E, \langle , \rangle)$ un espació afin exclideo. La distancia de un ponto $p \in A$ a un conjunto $S \neq \emptyset$, $S \subset A$, se define umo el número real

d(a, 5) = inf {d(p,q): q < 5}.

Si 51 y 52 son dos unjuntos no vacios de A, la distamia entre ellos es el número real

d(S1, 52) = enf (dip,q): pe 51, be 52 }.

Sea $L_1 = p_1 + V_1$ una variedad lineal. Denotaremos por $P_{V_1}: E \to V_1$ a la proyection ortogenal sobre V_2 estudiada en el terma 1.

Como $V_1 \oplus V_1^{\perp} = E$ podemos considerar la progección sobre L_1 en la dirección de V_1^{\perp} estudiada en la sección 3.10, que llamaremos proyección cortogonal sobre L_1 . Recuerda que

Prop 4.2.2 (Distancia de un punto a una variedad lineal) — Sea $L_1 = a_1 + V_4$ una variedad lineal de un espacio afin euclideo (A, E, <, >) y $p \in A$. Se trone

y PL1(p) es el vivia ponto de L1 que cumple esta igualdad.

DI Sea p'= P₁(p). Para malquier b \(L_1, \overline{p} = \overline{p} \verline{p}' + \overline{p}' \\
Como \overline{p} \verline{p}' \in V_1 \\
\text{tione} \\
\tag{1}

Par el Terrema de Pitagores

d(p,b)2 = d(p,p1)2+d(p1,b)2 > d(p,p1)

cuando bely y b ≠ p' y salo se cumple la igualdad se b=p'. ■

Oscalano 4.2.3. Sea $L_1 = a_1 + V_1$ una variedad linear de un espano afin encludro (A, E, <, >) y $P \in A$. Se diene

D/ Sea p'= PL1(p) - + a = L1) ap = ap' + p'p con ap' & V1

y pro eVit. Entonces

y par la Prop 4.2.2

REPASO (Callado de proyectiones oxtogenales)

Para calcular $d(a, b_1)$ es necesado calcular $P_{V_1}(\vec{x})$, que se estudor en el Tema 1. Varias farmes:

1. Sea {M1, -, Mr} base de VI y {MnI, -, Mn] base de VI - Se escribe

y se resuelve el sistema que se abtiene, que es de n euravores y n invégnites 11, 12, -, 2n. La solución es

2. Se usa el producto escalar de E. Se escribe $V_1(\vec{N})$ = $1_1\vec{N}_1+...+1_r\vec{N}_r$ y como $\vec{N}-P_{V_1}(\vec{N})\in V_1^+$ se ha de tenez $\langle \vec{v} - P_{V_1}(\vec{v}), \vec{v}_1 \rangle = 0$, ..., $\langle \vec{v} - P_{V_2}(\vec{v}), \vec{v}_1 \rangle = 0$. (1) Este es un sistema de remandres con rencégnites, $\lambda_{i,-1}, \lambda_{i,-1}$ uya solution nos da el resultado.

3. Si hemos elegido $\{\vec{M}_1, \dots, \vec{M}_r\}$ base overtonoremal de V_1 , el sistema de emembres (1) se simplifica. Sistemas que, en este caso, $j = \langle \vec{N}, \vec{U}_j \rangle$, j = 1, 2, ..., r.

NO DIVIDAR QUE LOS VECTORES MJ DEBENTENER NORMA: 1

ESTE REPASO NO ES NECESARIO MACERLO SE PUEDE REPASAR AL MACER EJERCICIOS

1. $P_{L_1}(p)$ prede calcularse como sigue: sea $M = p + V_1^{\perp}$ la raviedad livial que pasa por el punto p y trore a V_1^{\perp} como sub. vertorial director. Como $V_1 + V_1^{\perp} = E$ el vertor $p\vec{a} \in V_2 + V_1^{\perp}$ A pare la Broposición 3.4.1, $M \cap L_1 \neq \emptyset$.

Ly M se cortan en un punto p'.

Este punto p' es la proyección de $I_1 = a_1 + V_1$ P sobre L_1 . $M = p + V_1^{\perp}$ $M = p + V_1^{\perp}$ $M = p + V_1^{\perp}$

2. Hay casos en los que resulta sencillo calular los emawors de M= p+V1.

2a) Si L1=a1+V1 es un hiperplano: su emanión implicitar es de la forma

bixi+ bixz+ . . +bnxn = b

en en sistema de reference $R = \{0; \vec{e}_1, -, \vec{e}_n\}$. Si R es un s. de r, ortogonal, who $V_1 = \{b_1x_1 + ... + b_nx_n = c\}$ el vectore $\vec{V} = \{b_1, ..., b_n\}_R$ es extrogonal a cu alquiez $\vec{V} = \{x_1, -, x_n\}_R$ con $\vec{V} \in V_1$. Entenus $V_1 = d\{\vec{A}^2\}$ y $M = p + d\{\vec{A}^2\}$.

2b) Si L_1= P_1+ V_1 es una recta: también en un side oc.
ortonormal, si V_1= LLN: } ion NEE, el subespano
V_1 es en superplano. de europores

b1 x1+ -- +bnxn =0

donde $\nabla = (b_{14} - , b_{n})_{i2}$. La emación implicita de $M = p + V_{\perp}^{\perp}$ es

dende p = b1p1+-+bnpn wn p=(p1,-,pn) ER.

EJEMPLO A. Halla la distancia del ponto R=(1,0,1) el pleno $TI=\{x+2y-z=2\}$ on IR^3 (Les weverdenados establados en el sistema de referencia comonido de IR^3 con el producto escalar usual)

S/ Un weder perpendicular a Π es $\vec{N} = (1, 2, -1)$

La Nowedad M = Q+ L(N2) (ructa)

Hallomes (a' = TI AM:

$$Q' = (1,0,1) + \frac{1}{3}(1,2,-1) = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$

lungo $d(\theta, \pi) = d(\theta, \theta') = \sqrt{\left(\frac{4}{3} - 1\right)^2 + \left(\frac{2}{3} - 0\right)^2 + \left(\frac{2}{3} - 1\right)^2}$ $= \sqrt{\frac{1}{9} + \frac{4}{9} + \frac{1}{9}} = \sqrt{\frac{6}{3}}$

Hay una formula senvilla para calcular la distancia de un punto a=(a1,-, an) Ro a un plano hiperplano

$$L_1 = \{ \lambda_1 x_1 + ... + \lambda_n x_n = b \}$$

Cuando las wordenados están dadas en un s.de re. arctenarmal. un resputo al producto escalar dada.

Brop 4.2.4 (Distance de un punto a un hiperplano)

Si a y L1 son como on el parrafo anteriore $d(a, L1) = \frac{|1_1a_1 + ... + |1_na_n - b|}{\sqrt{\lambda_1^2 + \lambda_2^2 + ... + \lambda_n^2}}$

D/ Sabomos que N= 21e1+. + Inên
es un vertor docutor de
V1. Entonus da' = kN para
algun k6 R. Observa que

d(a, L1)= d(a,a')= || aa'||= || || || || (2)

Por otro lado på=på'+a'a = på'+kr y på 1 r. mego <på, r> = <på', r> - <på', r> = & k || r || 2

Entenus $k = -\frac{\langle \vec{p}_{1}, \vec{v} \rangle}{||\vec{v}||^{2}}$ y usardo (2), $d(a_{1}L_{1}) = \frac{|\langle \vec{p}_{1}, \vec{v} \rangle|}{||\vec{v}||}$

y $||\vec{x}|| = \sqrt{a_1^2 + -+a_n^2}$, le que premeba el resultado.

EJEMPIOB. El ejemplo B es ahora una linea

$$d(0, \Pi) = \frac{|1+0-1-2|}{\sqrt{1+4+1}} = \frac{2}{\sqrt{6}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3}.$$

M=6'+V1

EJEMPIO C. Dados ion respecto al sisteme de x. canónico en \mathbb{R}^3 you el producto escalar sescel, sean r:(1,1,0)+t(2,0,1) sona xecta y $\alpha=(0,1,0)$ un ponto. Hella la distencia de α a n.

5/ La ecuación del pleno ortogonal a r que pasa por a es

2x+2=b wn b=2-1=1.

Teremos

Hallemos 1a1= rAM:

$$d(Q, r) = d(Q, Q') = ||QQ'|| = ||(\frac{4}{5} - 1, 0, -\frac{1}{5} - 1)|| = ||(-\frac{1}{5}, 0, -\frac{6}{5})||$$

$$= \sqrt{\frac{4}{25} + \frac{36}{25}} = \frac{\sqrt{37}}{5}.$$

ETEMPLO D. En \mathbb{R}^4 , halla la distencia del punto $\mathbb{Q}=(1,1,-1,1)$ al plano $\mathbb{T}=\left\{\begin{array}{l} X_1-X_2=1,\ X_3+X_4=-2\end{array}\right\}$ S/ Las emanons emplicates parametraicas de \mathbb{T} son

 $(x_{1},x_{2},x_{3},x_{4})=(1,0,-2,0)+t(1,1,0,0)+5(0,0,-1,1)=p+V_{1}$ Sean $\vec{M}_{1}=(1,1,0,0)$ y $\vec{M}_{2}=(0,0,-1,1)$ y $V=\vec{M}_{1},\vec{M}_{2}$ el Subespans director de TT.

Podatomos hallar $M = 6L + V^{\perp}$, para la que teremos que hallar dos vectores d. l'y ortogenates a V. Se tendrosa entonos $\Pi \cap M = \{6'\}$ y

 $d(Q, \Pi) = d(Q, Q')$.

Otra forma: Subernos que
$$Q' = P_{H}(Q)$$

= $p + P_{V}(\vec{p}\vec{k})$ con $p = (1,0,-2,0)$.
Tenemos $P_{V}(\vec{p}\vec{k}) = \vec{P}\vec{k}' = A_{I}M_{I} + A_{I}M_{Z}$

Tenemos Pripa) = Pa' = MIM, + Melle

PR = PR' + QR' y QQ'IV.

Entonus

luego
$$\mu_1 = \frac{1}{2} \langle \overrightarrow{PR}, \overrightarrow{M_1} \rangle = \langle (0, 1, 1, 1), (1, 1, 0, 0) \rangle = \frac{1}{2} \Rightarrow |\overrightarrow{M_1} = \frac{1}{2}|$$

M2= 1 <PR, V2) = <(0, 1, 1, 1), (0,0,-1, 1)> = 6. => [M2=@]

Teremos

$$a' = P_{\pi}(a) = P + \frac{1}{2}\vec{\alpha}_{i} = (4,0,-2,0) + \frac{1}{2}(4,4,0,0) = (\frac{3}{2},\frac{1}{2},-2,0).$$

Pour tento,

$$d(Q,Q') = ||(\frac{3}{2}-1,\frac{1}{3}-1,-2+1,-1)|| = \sqrt{\frac{1}{4}} + \frac{1}{4} + 1 + 1 = \frac{\sqrt{10}}{2}$$

NOTA: Se subespano V esta generado por V = (4-1,1,1) y 1/2= (-1, 1, 1, 1). Les escaciones emplicater de M=Q+X x1 +x2=2 , x4-x3=2.

Para hallor MAM se resuelve el sistema

$$x_{1}-x_{2} = 1$$
 $x_{3}+x_{4}=-2$
 $x_{1}+x_{2} = 2$
 $x_{1}+x_{2} = 2$
 $x_{2}+x_{4}=2$
 $x_{3}+x_{4}=2$
 $x_{4}+x_{5}=2$

que es el mismo resultado obtenodo antes

Brop 4.2.5 (Distancia entre vociedades pozalelos)

Green $L_1=a_1+V_1$ y $L_2=a_2+V_2$ des veriredades peraleles en un espano afin en $V_1 \subset V_2$. Entenus,

d(Lylz) = d(ps la) Ypeli.

NOTA: La prop 4.2.5 dice que puede avante avalquier ponto de la para calcular d(Ly, Lz) ne la distanua de cualquier ponto p a ly se ha dido como se calcula en la Pap 4.2.3.

[(widado: vsor L1 y no Lz en esta proporción]

D/ Busta probar que se $p, q \in L_1, p \neq q$ y $p' = P_{L_2}(p), q' = P_{L_2}(q)$ se trone d(p, p') = d(q, q')

Usando el Teorema de Pitagozas en la figura de la dececha se obtrere

d(p,q)2+d(q,q')2=d(p,q')2=d(p,p')2+d(p',q')2

Analogamente, con la otra figura se trène

d (pq)2+d(p,p')2=d(q,p')=d(q,q')2+d(q',p')2

Restando estas equaldados se obtoeve

 $d(q_1q_1)^2 - d(p_1p_1)^2 = d(p_1p_1)^2 - d(q_1q_1)^2$, de donde se declure el resultado deseado.

EJEMPLO E. Halla la distancia en \mathbb{R}^3 con el predicto escalar coval entre la xecta Y: (1,-1,3)+t(1,-2,4) y el plano $\mathcal{H}: \{2x+y=5\}$

fas wewedades son paraleles ponque un vertor perpendicular a π es $\vec{u}=(2,4,0)$ y un vertor director de \vec{v} es $\vec{V}=(2,-2,1)$ y se toene $\langle \vec{u}, \vec{V} \rangle = 2-2=0$. Además, $r \wedge \pi = pq$. $p=(1,-1,3) \notin \pi$

Tomor
$$p = (1, -1, 3) \in V$$
, for $4.2.5.$ $y 4.2.4$

$$d(\sqrt[4]{11}) = d(p, \pi) = \frac{|2.1 - \sqrt{4} + 0 - 5|}{\sqrt{2^2 + 1^2}} = \frac{4}{\sqrt{5}}$$

NOTA! Observa que se' he y Le se corctan (Len Le = \$) entences d(Le, Le) = 0.

Vamos à ocuparnos de daz una forma de calular la distancia entre dos variedades lineales acalesquiera. Neasitamos el siguiente:

LEMAY Seen $L_1 = a_1 + V_1$ y $L_2 = a_2 + V_2$ dus Naviedades lineales en un espacio afin encli dec (A, E, <, >). Si $L = a_2 + V$ con $V = V_1 + V_2$, exist $p \in L_1$ tal que $q = P_L(p) \in L_2$.

D/ Sea $M = a_2 + V_2 + V^{\perp}$. Como $V_1 + (V_2 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_2 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_2 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_2 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V^{\perp}) = (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + (V_1 + V_2) + (V_1 + V_2)^{\perp} = E,$ $a_1 a_2 + (V_1 + V_2) + ($

 $p = a_2 + \vec{N_2} + \vec{\omega}$ con $\vec{N_2} \in V_2$ y $\vec{\omega} \in V^{\perp}$. Entenus $a_2\vec{p} = \vec{N_2} + \vec{\omega}$ y $q = P_L(p) = a_2 + P_V(\vec{qp}) = a_2 + P_V(\vec{N_2} + \vec{\omega}) = a_2 + P_V(\vec{N_2}) = a_2 + \vec{V_2} \in L_2$ ya que $\vec{V_2} \in V_2 \subset V_1 + V_2 = V$.

NOTA 1. El vector \vec{p}_{q} del lemaanterior satisfau $\vec{p}_{q} = \vec{w} \in V^{\perp}$ = $(V_{1} + V_{2})^{\perp}$ y es par tanto pretogoral a V_{1} y a V_{2} .

2. Para el caso de dos rectas Liy Lz que se ocuzan en IR3, py q son lineas ya que

$$\dim(L_1 \cap M) = \dim(L_1) + \dim(M) - \dim(L_1 + \cap 1) =$$

$$= 1 + 2 - \dim(\mathbb{R}^3) = 0.$$

Teorema 4.2.7 (Distancia entre des variedades lineales) - Sean $L_1 = a_1 + V_1$ y $L_2 = a_2 + V_2$ dos variedades lineales en un espació a fin (A, E, 4, 7). Sea $V = V_1 + V_2$ y $L = a_2 + V$. Se toene

- a) a(L1,L2) = d(P,L) & REL1
- b) $d(L_1, L_2) = ||P_{V1}(P_1P_2)|| \quad \forall P_1 \in L_1, \ \forall P_2 \in L_2$ donde P_{V1} es la prayection outogoral sobre V^+ .

D/a) Gomo $L_2 = a_2 + V_2 < a_1 + (V_1 + V_2) = a_1 + V = L$, se trere que $d(L_1, L) \le d(L_1, L_2)$.

Pax sel lema 4.2.6, existen p EL1 y q EL2 tal que q=PL(p).
Entonies

Brap 4.2.2

 $d(L_1,L_2) \leq d(p,q) = d(p,P_L(p)) = d(p,L) \leq d(L_1,L).$ Per tanto $d(L_1,L_2) = d(L_1,L)$. Como $L_1 \parallel L$ con $V_1 \in V_1 + V_2 = V_3$ la proposición $L_1,2,5$ termina la praeba de a).

b) SU pieli y prely CL se trene

 $d(h_1, h_2) = d(p_1, L) = ||P_{V1}(p_2p_2)|| = ||P_{V1}(p_2p_2)||_y$ ya que el conodano 4.2.3 el velvido para todo ponto de L 4

en particular para $P_2 \in L_2 \subset L$.

EJEMPLO F. Halla la distancia en \mathbb{R}^4 entre las planos $\Pi_1: \begin{Bmatrix} x_3=1 \\ x_4=1 \end{Bmatrix}$ y $\Pi_2: \begin{Bmatrix} x_1-x_2=0 \\ x_2+x_4=0 \end{Bmatrix}$

que se ou zon.

S/ Salución 1 (Usamos b) del Tecrema 2.2.7)

 $V_1 = \mathcal{L} \{ \vec{u}_1 = (1,0,0,0), \vec{u}_2 = (0,1,0,0) \}$ $\vec{V}_2 = \mathcal{L} \{ \vec{v}_1 = (1,1,0,0), \vec{v}_2 = (0,0,1,-1) \}.$

Comprueba que r(M1 1 1 1 1 1 1 1 2) = 3. Clazamente VI es combinación lineal de M1 y M2 por lo que

Un vector $\vec{\mathbf{w}} = (a, b, c, d) \in V^{\perp}$ debe satisface a = c, b = cc - d = 0. Tomoz $\vec{\mathbf{w}} = (0, 0, 4, 1)$. Entenus $V^{\perp} = \mathcal{L}(\vec{\mathbf{w}})$.

Seen $p_1=(0,0,1,1) \in \Pi_1$ y $p_2=(0,0,0,0) \in \Pi_2$. Se there $P_{V\perp}(\vec{p_1}\vec{p_2}) = 1\vec{w}$ for $\vec{p_2}\vec{p_2} - 1\vec{w} \perp \vec{w}$ e.d.

 $0 = \langle p_1 \vec{p}_2, \vec{w} \rangle - 2 ||\vec{w}||^2 \Rightarrow \lambda = \frac{\langle p_1 \vec{p}_2, \vec{w} \rangle}{||\vec{w}||^2} = \frac{-1 - 1}{2} = -1$

Poor tento $d(\pi_1, \pi_2) \stackrel{(b)}{=} ||P_{11}(p_1 p_2)|| = |1|||\vec{w}|| = 1.\sqrt{2} = \sqrt{2}.$

Salución 2 (Usamos a) del Tecrema 4.2.7)

Las eurociones implicites de L= R2+V con p2=(0,0,0,0) son

$$\begin{vmatrix} 1 & 0 & 0 & \times_1 \\ 0 & 1 & 0 & \times_2 \\ 0 & 0 & 1 & \times_3 \\ 0 & 0 & -1 & \times_4 \end{vmatrix} = 0 \iff \times_4 + \times_3 = 0.$$

Por la Prop. 4.2.4 (distanua de un ponto a un hiperplano) un $p_1=(0,0,1,1)\in L_1$ $d(L_1,L_2)=d(p_1L)=\frac{11+11}{\sqrt{1^2+1^2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$.

Hay varias formas de hallor la distancia entre dos rectas que se cruzan ex 123

EJEMPLO G. Halla da distencia en IR3 entre las rectas $r_1=(1,1,0)+t(2,0,1)$ y $r_2=(0,0,-2)+5(1,-1,3)$ que se cruzan

Solution 1 (Usando a) del Tecrema 2.4.7) $V_1 = \mathcal{L}_1 \cdot \vec{U}_1 = (2,0,1) \}, \quad V_2 = \mathcal{L}_1 \cdot \vec{U}_2 = (2,-1,3) \} = L = (0,0,-2) + V = (0,0,-2) + \mathcal{L}_1 \cdot \vec{U}_2, \vec{U}_2 \}$

Sas emavores impliates de L son

$$\begin{vmatrix} 2 & 1 & \times \\ 0 & -1 & 4 \\ 1 & 3 & 2 + 2 \end{vmatrix} = 0 \iff x - 5y = 2z = 4$$

Tomer $p_1 = (1, 1, 0) \in V_1$. Seguin (1) y la Prop. 4.2.4 $d(v_1, v_2) = d(p_1, L) = \frac{11-5+0-41}{\sqrt{15-5^2+9^2}} = \frac{8}{\sqrt{30}}$

Salurion 2 (Usando b) del Teorema 2.4.7)

Con $p_{\perp} = (1, 1, 6)$ y $p_{2} = (0, 0, -2)$ la parte b) del Teorema 4.2.7 dice $d(K_{\perp}, V_{\perp}) = ||P_{V\perp}(P_{\perp}P_{2})||^{2}$

(come V= Llu, u) there dimension 2 en 123, V= S(N).

Si $\vec{W} = (a,b,C)$ se ha de terec $\langle \vec{W}, \vec{U}_i \rangle = 0$ y $\langle \vec{W}, \vec{U}_z \rangle = 0$, e.d.

 $\begin{cases} 2a + c = 0 \\ a - b + 3c = 0 \end{cases} \begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 3 \\ 0 & 2 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 2 & -5 \end{pmatrix}$ $a = -\frac{1}{2}c, b = \frac{5}{2}c. \quad Tomaz \quad \vec{W} = (-1, 5, 2).$

PV+ (PIPE) = 200 con PIPE - 200 1 00 e.d. 1 = <PIPE 003

 $=\frac{1}{\|\vec{\mathcal{Q}}\|^2} \left< (+1,-1,-2), (-1,5,2) \right> = \frac{1}{\|\vec{\mathcal{Q}}\|^2} \left(1-5-4 \right) = -\frac{8}{\|\vec{\mathcal{Q}}\|^2}.$

Por tanto,

d(r1, r2)= || P,1(P2P2)||= || 1 W || = 8 | || || = 8 | = 8 | || = 8 | || = 8 | || = 8 | || = 8 || =