

Title	Engineering Prototype Report for EP-93 – 32 W/81 W Peak Supply Using PeakSwitch [™] (PKS606Y)				
Specification	90-265 VAC Input, 30 V, 1.07 A (continuous), 2 A (100 ms), 2.7 A (50 ms) Output				
Application	Printers, DVRs, Audio, General Purpose				
Author	Power Integrations Applications Department				
Document Number	EPR-93				
Date	22-Jun-2006				
Revision	1.4				

Summary and Features

- EcoSmart® meets all existing and proposed harmonized energy efficiency standards including: CECP (China), CEC, EPA, AGO, European Commission
 - No-load power consumption 200 mW at 265 VAC
 - 81.8% active-mode efficiency (exceeds requirement of 80.2%)
- Tight tolerance I²f parameter (-10%/+12%) reduces system cost:
 - Increases MOSFET and magnetics power delivery
 - Reduces worst-case overload power, which lowers component costs
 - Allows small EE25 core size
- Integrated PeakSwitch safety/reliability features:
 - Accurate (± 5%), auto-recovering, hysteretic thermal shutdown function maintains safe PCB temperatures under all conditions
 - Auto-restart protects against output short circuits and open feedback loops
 - Adaptive current limit reduces output overload power
 - Programmable smart AC line sensing provides latching shutdown during short circuit, overload and open loop faults and prevents power ON/OFF glitches during power down or brownout
- Meets EN55022 and CISPR-22 Class B conducted EMI with >14 dBµV margin
- Meets IEC61000-4-5 Class 3 AC line surge

EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply	22-Jun-2006

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

T	able O	of Contents	
1	Introd	duction	5
2	Powe	er Supply Specification	6
3	Sche	ematic	7
4	Circu	uit Description	8
		Input EMI Filtering	
		PeakSwitch Primary	
		Output Rectification and Filtering	
		Output Feedback	
		Output Protection	
5		Layout	
6	Bill C	Of Materials	11
7		sformer Specification	
		Electrical Diagram	
		Electrical Specifications	13
		Materials	
		Transformer Build Diagram	
		Transformer Construction	
8		sformer Spreadsheet	
9		ormance Data	
		Efficiency	19
	9.1.1		
		No-load Input Power	
		Available Standby Output Power	
	9.4 F	Regulation	
	9.4.1	5	
	9.4.2		
1(ermal Performance	
1		aveforms	
		Drain Voltage and Current, Normal Operation	
		Output Voltage Start-up Profile	
		Drain Voltage and Current Start-up Profile	
		Load Transient Response (1 A to 2 A Load Step)	
		Holdup Time	
		AC Line Disturbance	
12		Itput Ripple Measurements	
	12.1.	The second secon	
, .	12.1.		
1		utput Over-current Shutdown/Restart	
14		ne Surge	
1		onducted EMI	_
16		pendix	
۸-		Heat Sink Drawing	36 37
1	7 Ro	avision History	` イ /

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a 90-265 VAC input, 30 V, 1.07 A continuous, 2.7 A peak output power supply utilizing a PKS606Y. This power supply is intended as a general-purpose evaluation platform for *PeakSwitch*, and is ideal for applications where a significant pulsed output load is required, such as printers, audio amplifiers, DVRs and DC motor drives.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 1 – EP-93 Populated Circuit Board Photograph.

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V_{IN}	90		265	VAC	2 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-Load Input Power (230 VAC)				0.2	W	
Output						
Output Voltage	V_{OUT1}	27	30	33	V	± 10%
Output Ripple Voltage	V _{RIPPLE1}			400	mV	20 MHz bandwidth
Output Current	I _{OUT1}	0	1.07	2.71	Α	
Total Output Power						
Continuous Output Power	Pout		32		W	
Peak Output Power	P _{OUT_PEAK}			81	W	
Efficiency						
Full Load	η		82		%	Measured at P _{OUT} , 25 °C
Required average efficiency at	-	00.0			0/	Per California Energy Commission
25, 50, 75 and 100 % of P _{OUT}	$\eta_{\sf CEC}$	80.2			%	(CEC) / ENERGY STAR requirements
Environmental						
Conducted EMI		Mee	ts CISPR2	2B / EN55	5022B	
Cofoty		Design	ed to mee	t IEC950,		
Safety			Cla	iss II	•	
		1 (D)				1.2/50 μs surge, IEC 1000-4-5, Series Impedance:
Surge		2 (C)			kV	Differential Mode (D): 2 Ω
		_ (0)				Common Mode (C): 12 Ω
Surge		1 (D)			kV	100 kHz ring wave, 500 A short circuit current, differential (D) and
Surge		2 (C)			ΚV	common mode (C)
Ambient Temperature	T _{AMB}	0		50	°C	Free convection, sea level

3 Schematic

Figure 2 - EP-93 Schematic.

4 Circuit Description

4.1 Input EMI Filtering

Components C1, C2, C3, C10, C17, C19, R15, L1, and L2 provide common mode and differential mode EMI filtering. The use of two Y capacitors (C10 and C19) together with an output common choke (L2) and the frequency jitter feature of *PeakSwitch* allows the supply to meet EN55022B conducted EMI limits even with the output connected directly to safety earth ground. On the PCB layout C19 is placed so that the primary side is connected as close to the bulk capacitor as possible to route surge currents away from U1. Resistors R1 and R2 discharge C3 when AC power is removed.

4.2 PeakSwitch Primary

Components D5, C7, and R5, R6 provide AC line and under voltage sensing for PeakSwitch U1. At startup, switching is inhibited until the input voltage is above the under-voltage threshold, determined when a current >25 μ A flows into the EN/UV pin. Once the threshold is exceeded, the under-voltage status is not checked until auto-restart is triggered (no feedback for 30 ms). This allows the supply to continue to operate even below the under-voltage threshold as long as the output remains in regulation, maximizing hold-up time.

The separate AC sense network of D5 and C7 allows the *PeakSwitch* to determine the cause of loss of regulation. If the input voltage is above the under-voltage threshold, then a fault condition is assumed. In this case *PeakSwitch* will latch off. If the input voltage is below the under-voltage threshold then loss of regulation was due to a low line condition and *PeakSwitch* will stop switching (but not latch off) until the under-voltage threshold is exceeded again.

Once latched off, the supply can be reset by removing the AC input such that C7 discharges and the current into the EN/UV pin falls below 25 μ A. The under-voltage function can be disabled by removing R6. Resistor R16 provides a small amount of bias to the U1 EN/UV pin to keep the under-voltage lockout function activated during brownout conditions when C7 may discharge.

Diode D7, C6, C8, and R7 provide bias power and decoupling to U1.

Diode D6, C5, R3, R4, and VR1 clamp the U1 drain voltage to safe levels. Use of a moderately slow diode ($t_{RR} \le 500$ ns) for D6 increases power supply efficiency.

4.3 Output Rectification and Filtering

The secondary of the transformer is rectified and filtered by D8 and C12. As the peak load condition is of short duration, the output capacitor ripple current rating is appropriate for the continuous output current. As capacitor lifetime is a function of temperature rise, this can be used to determine if the capacitor rating (ESR and ripple current specification) is acceptable. Resistor R8 and capacitor C11 are fitted to reduce high frequency EMI.

4.4 Output Feedback

Diodes D9 and VR2, along with the forward drop of the LED of optocoupler U2, set the output voltage of the power supply. Resistor R13 provides a bias current through D9 and VR2 to improve regulation by operating VR2 closer to its knee and test current. Resistor R12 sets the overall gain of the feedback loop while capacitor C15 boosts high frequency loop gain to reduce pulse grouping. A high gain (300-600%) optocoupler U2 is used to reduce control loop delays.

4.5 Output Protection

Components Q1, Q2, R9 to R11, R14, C13, C16, D10, and VR3 are used for latching overvoltage and overcurrent protection in conjunction with the smart AC sensing feature, to shut down the supply in a fault condition. If either an output overvoltage (e.g. optocoupler failure), or overcurrent (e.g. motor stall) fault occurs, SCR Q2 is fired, shorting the output winding. The SCR is connected directly to the secondary winding to allow a lower current rating and lower cost device to be used, as the SCR does not have to discharge the output capacitor.

The value of VR3 is selected to give the desired overvoltage trigger threshold. For overcurrent protection, the value of R9 is selected to turn on Q1 at the desired overcurrent threshold while R10 and C13 provide a time constant, to prevent short duration (~200 ms) transient loads from triggering shutdown.

The shutdown condition can be reset by briefly removing AC power for ~ 3 seconds (maximum), the time required for C7 to discharge and the current into the EN/UV pin to fall below 25 μ A.

5 PCB Layout

Figure 3 – EP-93 Printed Circuit Layout.

6 Bill of Materials

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SID6 Carli 1151L32B0 Luminous Town Vishay HG470 Panasonic 104KF Panasonic 24M5U5CA Kemet A102MB Panasonic Vishay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vishay HG470 Panasonic 104KF Panasonic 24M5U5CA Kemet A102MB Panasonic Vishay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vishay HG470 Panasonic H04KF Panasonic H4M5U5CA Kemet H4102MB Panasonic Vishay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HG470 Panasonic 104KF Panasonic 24M5U5CA Kemet A102MB Panasonic Vishay
	HG470 Panasonic 104KF Panasonic 24M5U5CA Kemet A102MB Panasonic Vishay
Gen Purpose, (5 x 11)	104KF Panasonic 24M5U5CA Kemet A102MB Panasonic Vishay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24M5U5CA Kemet A102MB Panasonic Vishay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24M5U5CA Kemet A102MB Panasonic Vishay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A102MB Panasonic Vishay
9 1 C11 330 pF, 1 kV, Disc Ceramic 5GAT33 10 1 C12 330 μF, 50 V, 22 mΩ, Electrolytic, (10 x 25) EEU-FM1 11 1 C13 47 uF, 16 V, Electrolytic, Gen Purpose, ECA-1CH	Vishay
10 1 C12 330 μF, 50 V, 22 mΩ, Electrolytic, (10×25) EEU-FM1 1 C13 47 uF, 16 V, Electrolytic, Gen Purpose, ECA-1CH	
(10 x 25) 11 1 C13 47 uF, 16 V, Electrolytic, Gen Purpose, ECA-1CH	UIOO4I Damasania
11 1 C13 47 uF, 16 V, Electrolytic, Gen Purpose, ECA-1CH	1H331L Panasonic
(5 x 11.5)	HG470 Panasonic
12 2 C15 C16 100 nF, 50 V, Ceramic, Z5U C317C10	04M5U5CA Kemet
13 1 C17 4700 pF, 1 kV, Thru-hole, Disc Ceramic 5GAD47	Vishay/Sprague
14 5 D1 D2 D3 1000 V, 1 A, Rectifier, DO-41 1N4007	Vishay
15	Diodes Inc.
16 2 D7 D9 75 V, 300 mA, Fast Switching, DO-35 1N4148	Vishay
17 1 D8 150 V, 3 A, Schottky, DO-201AD STPS315	50RL ST
18 1 D10 200 V, 1 A, Ultrafast Recovery, 50 ns, UF4003 DO-41	Vishay
19 1 F1 3.15 A, 250 V, Slow, TR5 3,821,315	5,0410 Wickman
20 1 HS1 HEATSINK/Alum, TO-220 1-hole, 2 Mtg Custom Pins	Clark Precision Sheetmetal
21 1 J1 AC Input Receptacle and Accessory Plug, 161-R301 PCBM	1SN13 Kobiconn
22 1 J2 2 Position (1 x 2) header, 0.156-pitch, Vertical 26-48-102	21 Molex
23 1 J3 PCB Terminal Hole, 18 AWG N/A	N/A
24 1 JP1 Wire Jumper, Non-insulated, 22 AWG, 298 0.4 in	Alpha
25 1 JP2 Wire Jumper, Non-insulated, 22 AWG, 298 0.3 in	Alpha
26 1 L1 5.3 mH, 1 A, Common Mode Choke ELF15N0)10A Panasonic
27 1 L2 5.3 μH, 4 A, Common Mode Choke Bead Custom	
28 1 U1 (REF) Nut, Hex, Kep 4-40, Zinc Plate	
29 1 Q1 PNP, Small Signal BJT, 40 V, 0.2 A, TO- 2N3906	Vishay
30 1 Q2 SCR, 400 V, 1.25 A, TO-92 FS0202D	OA Fagor
31 2 R1 R2 1.3 MΩ, 5%, 1/4 W, Carbon Film CFR-25JI	
32 1 R3 10 kΩ, 5%, 1/2 W, Carbon Film CFR-50JI	
_ , ,	B-22R Yageo

34		R5	2.2 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2M2	Yageo
35	1	R6	2.4 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2M4	Yageo
36	1	R7	4.7 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-4K7	Yageo
37	1	R8	68 Ω, 5%, 1/2 W, Carbon Film	CFR-50JB-68R	Yageo
38	1	R9	0.33 Ω, 5%, 2 W, Metal Oxide	RS2 0.33 5% A	Stackpole/Sei
39	1	R10	1.5 kΩ, 5%, 1/8 W, Carbon Film	CFR-12JB-1K5	Yageo
40	1	R11	3 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-3K0	Yageo
41	2	R12 R13	1 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-1K0	Yageo
42	1	R14	100 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-91R	Yageo
43	1	R15	2.2 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-2R2	Yageo
44	1	R16	2.7 MΩ, 5%, 1/8 W, Carbon Film	CFR-12JB-2M7	Yageo
45	1	RT1	NTC Thermistor, 10 Ω, 1.7 A	CL-120	Thermometrics
46	1	U1 (REF)	SCR, Phillips, 4-40 X 5/16 Pan-head		
			Machine Screw, Steel, Zinc Plate		
47	1	T1	Transformer, EE25, 10 Pins, Vertical	SIL6039	Hi Cal
				LSPA10545	LiShin
				SNX1882	Santronics
48	1	U1	PeakSwitch, PKS606Y, TO-220-7C	PKS606Y	Power
					Integrations
49	1	U2	Optocoupler, 35 V, CTR 300-600%, 4-DIP	PC817X4	Sharp
50	1	VR1	100 V, 5%, 1 W, DO-41	1N4764A	Microsemi
51	1	VR2	28 V, 5%, 500 mW, DO-35	1N5255B	Microsemi
52	1	VR3	36 V, 5%, 500 mW, DO-35	1N5258B	Microsemi
53	1	U1 (REF)	Washer Flat #4, Zinc Plated	#4FWZ	Building
					Fasteners
54			PCB, EP-93, REVD		
55		J1 (REF)	Wire, UL1015, 18 AWG, GRN/YEL	8918-189	Belden
56	1	J1 (REF)	Heat Shrink, 1/4-inch, BLK	221014-6BK	Alpha
57		J1 (REF)	Snap-in Terminal	02-07-2102	Molex
58		U1 (REF)	Silicone Heat Sink Compound		
59	1	C4, RT1, L2 (REF)	Silicone Adhesive, Non-corrosive	19-155	GC Electronics

Note: (REF) indicates mechanical items associated with the referenced component(s) but that are not shown on the schematic.

7 Transformer Specification

7.1 Electrical Diagram

Figure 4 – Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	1 Second, from Pins 1-5 to	3000 VAC,
	Pins 6-10	60 Hz
Creepage	Between Pins 1-5 and Pins 6-10	6 mm (Min.)
Primary Inductance	Pins 1-2, All other Windings Open,	132 μΗ,
	Measured at 100 kHz, 0.4 VRMS	±10%
Resonant Frequency	Pins 1-2, All other Windings Open	2 MHz
		(Min.)
Primary Leakage	Pins 1-2, with Pins 6-10 Shorted,	5.5 μH
Inductance	Measured at 100 kHz, 0.4V RMS	(Max.)

7.3 Materials

Item	Description
[1]	Core: (EE25) E25/10/6 Ferroxcube 3C90 Material or Equivalent
	Gapped for Á∟ of 88 nH/T²
[2]	Bobbin: 10-pin EE25, Vertical Mount, Yih Hwa YW-360 or
	Equivalent
[3]	Magnet Wire: #29 AWG Double-coated
[4]	Triple Insulated Wire: #26 AWG
[5]	Tape, 3M #1298 or Equivalent 10.8 mm Wide
[6]	Varnish

7.4 Transformer Build Diagram

Figure 5 – Transformer Build Diagram.

7.5 Transformer Construction

F	
1/2 Primary	Start at Pin 2. Wind 20 bifilar turns of item [3] in
	approximately 1.25 layer, finish on Pin 3.
Basic Insulation	Use one layer of item [5] for basic insulation.
Bifilar Bias	Starting at Pin 5, wind 5 bifilar turns of item [3]. Spread turns
Winding	evenly across bobbin. Finish at Pin 4.
Basic Insulation	Use two layers of item [5] for basic insulation.
30 V Quad filar	Start at Pins 9 and 10. Wind 10 quad filar turns of item [4]
Secondary	(about 2 layers). Spread turns evenly across bobbin. Finish
Winding	on Pins 7 and 8.
Basic Insulation	Use two layers of item [5] for basic insulation.
Shield	Starting at Pin 1, wind 7 bifilar turns of item [3]. Spread turns
	evenly across bobbin. Leave 1/2-inch of flying lead at finish.
Basic Insulation	Use two layers of item [5] for basic insulation. Trap flying lead
	from shield winding between tape layers.
1/2 Primary	Start at Pin 3. Wind 19 bifilar turns of item [3] in
	approximately 1 layer, finish on Pin 1.
Finish Wrap	Use three layers of item [5] for finish wrap.
Final Assembly	Assemble and secure core halves. Dip Varnish (item [6]).

8 Transformer Spreadsheet

ACDC_PeakSwitch_0 31006; Rev.1.1; ©Copyright Power	INPUT	INFO	OUTPUT	UNIT	ACDC_PeakSwitch_031006_Rev1-1.xls; PeakSwitch Continuous/Discontinuous Flyback Transformer Design Spreadsheet
Integrations 2006					oproduction:
ENTER APPLICATION	VARIABL	ES		I	
VACMIN	90			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
Nominal Output	30.00			Volts	Nominal Output Voltage (at continuous power)
Voltage (VO)					, , ,
Maximum Output Current (IO)	2.71			Amps	Power Supply Output Current (corresponding to peak power)
Minimum Output	27.00		27.00	Volts	Minimum Output Voltage at Peak Power (Assuming output droop
Voltage at Peak Load					during peak load)
Continuous Power	32.00		32.00	Watts	Continuous Output Power
Peak Power			73.17	Watts	Peak Output Power
n	0.75				Efficiency Estimate at output terminals and at peak load. Enter 0.7 if no better data available
Z			0.60		Loss Allocation Factor (Z = Secondary side losses / Total losses)
tC Estimate	3.00			mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	150.00		150	uFarads	Input Capacitance
ENTER PeakSwitch VA	DIADIE	2			
PeakSwitch	PKS606		PKS606Y		PeakSwitch device
Chosen Device	1 113000		PKS606Y		I earowich device
ILIMITMIN				Amps	Minimum Current Limit
ILIMITMAX				Amps	Maximum Current Limit
fSmin			250000		Minimum Device Switching Frequency
I^2fmin				A^2kHz	In 2f (product of current limit squared and frequency is trimmed for
2			1333	A ZKIIZ	tighter tolerance)
VOR	120.00		120	Volts	Reflected Output Voltage (VOR <= 135 V Recommended)
VDS	8.00			Volts	PeakSwitch on-state Drain to Source Voltage
VD	1.00			Volts	Output Winding Diode Forward Voltage Drop
VDB	1.00			Volts	Bias Winding Diode Forward Voltage Drop
VCLO	170			Volts	Nominal Clamp Voltage
KP (STEADY STATE)	170		0.50		Ripple to Peak Current Ratio (KP < 6)
KP (TRANSIENT)			0.30		Ripple to Peak Current Ratio under worst case at peak load (0.25 < KP < 6)
ENTER UVLO VARIAB	LES				
V_UV_TARGET			89	Volts	Target DC under-voltage threshold, above which the power supply will start
V_UV_ACTUAL			92	Volts	Typical DC start-up voltage based on standard value of RUV_ACTUAL
RUV_IDEAL			3.47	Mohms	Calculated value for UV Lockout resistor
RUV_ACTUAL			3.60	Mohms	Closest standard value of resistor to RUV_IDEAL
_					_
BIAS WINDING VARIA	RLES				
VB			15.00	Volts	Bias winding Voltage
NB			5	. 0.10	Number of Bias Winding Turns
PIVB				Volts	Bias Rectifier Maximum Peak Inverse Voltage
. 175			00	v Oilo	Dias results maximum roun inverse voltage

ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES							
Core Type	EE25		EE25		User Selected Core Size(Verify acceptable thermal rise under continuous load conditions)		
Core		EE25		P/N:	PC40EE25-Z		
Bobbin		L	EE25_BOBBIN	P/N:	EE25_BOBBIN		
AE			0.404	cm^2	Core Effective Cross Sectional Area		

TRANSFORMER SECONDARY DESIGN PARAMETERS						
Lumped parameters						
ISP		10.06	Amps	Peak Secondary Current		
ISRMS		5.44	Amps	Secondary RMS Current		
IRIPPLE		4.72	Amps	Output Capacitor RMS Ripple Current		
CMS		1089	Cmils	Secondary Bare Conductor minimum circular mils		
AWGS		19	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)		
VOLTAGE STRESS PARAMET	EDC .					
	EKS					
VDRAIN		624	Volts	Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)		
PIVS		127	Volts	Output Rectifier Maximum Peak Inverse Voltage		

9 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

9.1 Efficiency

Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.

9.1.1 Active Mode CEC Measurement Data

All single output adapters, including those provided with products for sale in California after July 1st, 2006 must meet the California Energy Commission (CEC) requirement for minimum active mode efficiency and no-load input power. Minimum active mode efficiency is defined as the average efficiency of 25, 50, 75 and 100% of rated output power, with the limit based on the nameplate output power:

Nameplate Output (P _o)	Minimum Efficiency in Active Mode of Operation		
< 1 W	$0.49 \times P_O$		
≥ 1 W to ≤ 49 W	$0.09 \times \ln (P_0) + 0.49$ [ln = natural log]		
> 49 W	0.84		

For adapters that are single input voltage only, the measurement is made at the rated single nominal input voltage (115 VAC or 230 VAC). For universal input adapters the measurement is made at both nominal input voltages (115 VAC and 230 VAC).

To meet the standard, the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the CEC/Energy Star standard.

Percent of	Efficiency (%)		
Full Load	115 VAC	230 VAC	
25	81.0%	80.5%	
50	81.6%	81.5%	
75	82.4%	82.8%	
100	82.1%	83.4%	
Average	81.8%	82%	
CEC specified minimum average efficiency (%)	80.2	2%	

More states within the USA and other countries are adopting this standard. For the latest up to date information please visit the PI Green Room:

http://www.powerint.com/greenroom/regulations.htm

Figure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.

9.3 Available Standby Output Power

The chart below shows the available output power vs. line voltage for input power levels of 1 W and 3 W.

Figure 8 — Available Output Power vs. Input Voltage for P_{IN} of 1 W and 3 W.

9.4 Regulation

9.4.1 Load Regulation

Figure 9 – Output Regulation vs. Load, Room Temperature.

9.4.2 Line Regulation

Figure 10 - Line Regulation, Room Temperature, Full Load. (32 W).

10 Thermal Performance

Temperature of key components, open frame room temperature and 85 VAC input.

Item	Temperature (°C)
	85 VAC
Ambient	25.2
D8 (Output Rectifier)	65.8
C12 (Output Capacitor)	47.0
U1 (PeakSwitch)	70.0
T1 (Transformer)	58.0
L1 (Common Mode	
Choke)	47.0
C4 (Bulk Capacitor)	34.7

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

Figure 11 — 90 VAC, Full Load.

Upper: V_{DRAIN}, 100 V / div.

Lower: I_{DRAIN}, 0.5 A, 5 μs / div.

Figure 12 – 265 VAC, Full Load. Upper: V_{DRAIN}, 200 V / div. Lower: I_{DRAIN}, 0.5 A, 5 μs / div.

11.2 Output Voltage Start-up Profile

Figure 13 – Start-Up Profile, 90 VAC. 5 V, 5 ms / div.

Figure 14 – Start-Up Profile, 265 VAC. 5 V, 5 ms / div.

11.3 Drain Voltage and Current Start-up Profile

Figure 15 – 90 VAC Input, 32 W Load. Upper: V_{DRAIN}, 100 V, 2 ms / div. Lower: I_{DRAIN}, 2 A / div.

Figure 16 – 265 VAC Input, 32 W Load. Upper: V_{DRAIN}, 200 V, 2 ms / div. Lower: I_{DRAIN}, 2 A / div.

11.4 Load Transient Response (1 A to 2 A Load Step)

Figure 17 – Transient Response, 90 VAC, 1 A to 2 A to 1 A Load Step. Upper: Output Voltage, 1 V/div. Lower: Load Current, 1 A, 50 ms/div.

Figure 18 – Transient Response, 265 VAC, 1 A to 2 A to 1 A Load Step. Upper: Output Voltage, 1 V/div. Lower: Load Current, 1 A, 50 ms/div.

11.5 Holdup Time

All measurements taken at 32 W output load.

Figure 19 – Holdup Time, 90 VAC. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 1 A/div.

Bottom Trace: AC Input Current, 5 A, 10 ms/div.

11.6 AC Line Disturbance

All measurements taken at 32 W output load.

Figure 20 – Half-Cycle Dropout, 90 VAC, 60 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 100 V, 20 ms/div.

Figure 21 – Half-Cycle Dropout, 120 VAC, 60 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 100 V, 20 ms/div.

Figure 22 – Half-Cycle Dropout, 216 VAC, 50 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.

Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.

Figure 24 – Full Cycle Dropout, 120 VAC, 60Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.

Figure 25 – Full Cycle Dropout, 240 VAC, 50 Hz. Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div. Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.

Figure 26 – Line Sag from 120 VAC to 84 VAC (50 cycles), 60 Hz.

Top Trace: Output Voltage, 20 V/div. Middle Trace: Output Current, 2 A/div.

Bottom Trace: AC Input Voltage, 100 V, 200 ms/div.

Figure 27 – Line Sag from 120 VAC to 48 VAC (16 cycles), 60 Hz.

Top Trace: Output Voltage, 10 V/div.

Bottom Trace: AC Input Voltage, 100 V, 200 ms/div.

Figure 28 – Line Swell from 240 VAC to 300 VAC (500 msec), 50 Hz.

Top Trace: Output Voltage, 10 V/div.

Bottom Trace: AC Input Voltage, 500 V, 100 ms/div.

Figure 29 – Peak Drain Voltage During 300 VAC Line Swell, 100 V, 2 µs/div.

12.1.2 Measurement Results

Figure 32 – Output Ripple, 90 VAC, 60 Hz, Full Load. 200 mV, 5 ms / div.

Figure 33 – Output Ripple, 265 VAC, 50 Hz, Full Load. 200 mV, 2 ms / div.

13 Output Over-current Shutdown/Restart

Figure 34 – Supply Shutdown After Output Load Step from 1.07 A to 2.8 A, 85 VAC. Top Trace: Output Voltage, 10 V/div. Bottom Trace: Output Current, 1 A, 20 ms/div.

Figure 36 – Output Recovery Following Over-Current Shutdown and AC Input Recycle, 115 VAC. Top Trace: Output Voltage, 20 V/div.

Middle Trace: Output Current, 1 A/div.

Bottom Trace: AC Input Voltage, 100 V, 500 ms/div.

Figure 35 – Supply Shutdown After Output Load Step from 1.07 A to 2.8 A, 265 VAC. Top Trace: Output Voltage, 10 V/div. Bottom Trace: Output Current, 1 A, 20 ms/div.

14 Line Surge

Differential input line 1.2/50 μ s surge testing was completed on a single test unit to IEC61000-4-5, with 10 strikes per injection phase at 60 second intervals. Input voltage was set at 230 VAC / 60 Hz. Output was loaded at 32 W and operation was verified following each surge event.

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Test Result (Pass/Fail)
+1kV	230	L to N	0	Pass
-1kV	230	L to N	0	Pass
+1kV	230	L to N	90	Pass
-1kV	230	L to N	90	Pass
+1kV	230	L to N	270	Pass
-1kV	230	L to N	270	Pass
+2kV	230	L, N to GND	0	Pass
+2kV	230	L, N to GND	0	Pass
+2kV	230	L, N to GND	90	Pass
+2kV	230	L, N to GND	90	Pass
+2kV	230	L, N to GND	270	Pass
+2kV	230	L, N to GND	270	Pass

Unit passes under all test conditions.

15 Conducted EMI

For the measurements shown below, the power supply was resistively loaded to 32 W and attached to the LISN via a 2-meter IEC line cord arranged in a serpentine pattern. The power supply secondary return was hard-wired to the LISN ground using a 1-meter cable.

Figure 37 — Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits.

Figure 38 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits.

16 Appendix

16.1 Heat Sink Drawing

17 Revision History

Date	Author	Revision	Description & changes
17-Mar-06	PI SJ	1.0	First Release
24-Mar-06	PI SJ	1.1	Fix board picture and add
			transformer suppliers
30-Mar-06	PI SJ	1.2	Format for printing
04-May-06	PI SJ	1.3	Updated PeakSwitch symbol
-			in Figure 2
22-Jun-06	PI SJ	1.4	Revised ground connection
			on the circuit diagram in
			Figure 2

Notes

Notes

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.powerint.com/ip.htm.

The PI Logo, *TOPSwitch*, *TinySwitch*, *LinkSwitch*, *DPA-Switch*, *PeakSwitch*, *EcoSmart*, *Clampless*, *E-Shield*, *Filterfuse*, *PI Expert* and *PI FACTS* are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2006 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service:

Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@powerint.com

CHINA (SHANGHAI)

Rm 807-808A,
Pacheer Commercial Centre,
555 Nanjing Rd. West
Shanghai, P.R.C. 200041
Phone: +86-21-6215-5548

Fax: +86-21-6215-2468 e-mail: chinasales@powerint.com

CHINA (SHENZHEN)

Room 2206-2207, Block A, Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031

Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: chinasales@powerint.com

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany

Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 e-mail: eurosales@powerint.com

INDIA

261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India 560080
Phone: +91-80-5113-8020
Fax: +91-80-5113-8023
e-mail: indiasales@powerint.com

ITALY

Via Vittorio Veneto 12 20091 Bresso MI Italy

Phone: +39-028-928-6000 Fax: +39-028-928-6009

 $e\hbox{-}mail: eurosales @power int.com$

JAPAN

Keihin Tatemono 1st Bldg 2-12-20 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa ken,

Japan 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail*:

japansales@powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6

Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630

e-mail: koreasales@powerint.com

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015

e-mail:

singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist.

Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550

e-mail:

taiwansales@powerint.com

EUROPE HQ

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom

Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 e-mail: eurosales@powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX

World Wide +1-408-414-9760

