Ortogonalitate. Transformări ortogonale.

Colaboratori: Andrei STAN, Mihaela-Andreea Vasile, Florin Pop

February 18, 2025

Cuprins

1	1 Obiective laborator		1	
2 Noțiuni teoretice			1	
	2.1	Norme		1
		2.1.1	Norme vectoriale	1
		2.1.2	Norme matriceale	1
	2.2	Produ	s scalar. Proiecții	3
		2.2.1	Proiecții	3
	2.3	Vector	ri ortogonali. Matrice unitară/ortogonală	4
2.4		Transf	ormări ortogonale. Descompunerea QR	6
		2.4.1	Reflexii. Transformarea Householder	6
		2.4.2	Rotații Givens	9
3	Pro	bleme		9

1 Objective laborator

În urma parcurgerii acestui laborator, studentul va fi capabil să:

- definească noțiunile de vectori ortogonali și matrice ortogonală;
- aplice metode de transformare ortogonală: Householder și Givens;
- implementeze procesul Gram-Schmidt;
- folosească polinoame ortogonale.

2 Noțiuni teoretice

2.1 Norme

Considerând un spațiu vectorial V peste un corp \mathbb{K} , o normă pe V este o funcție $||\cdot||:V\to\mathbb{R}$ care satisface următoarele proprietăți pentru orice $x,y\in V$ și $\alpha\in\mathbb{K}$:

- $||x|| \ge 0$ și $||x|| = 0 \Leftrightarrow x = 0$ (pozitiv definită);
- $||\alpha x|| = |\alpha| \cdot ||x||$;
- $||x+y|| \le ||x|| + ||y||$ (inegalitatea triunghiului).

2.1.1 Norme vectoriale

- Valoarea absolută. Este o normă pe $\mathbb R$ sau $\mathbb C$. Numerele complexe formează un spațiu unidimensional peste $\mathbb C$ și unul bi-dimensional peste $\mathbb R$.
- Distanța Manhatten. $||\mathbf{x}||_1 \coloneqq \sum_i |x_i|$.
- Norma euclidiană. Pe \mathbb{R}^n , norma euclidiană este definită ca $||\mathbf{x}||_2 := \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$. Luând în considerare numerele complexe, acestea se identifică cu \mathbb{R}^2 .
- Norma infinit. $||\mathbf{x}||_{\infty} \coloneqq \max_i |x_i|$.
- Norma p. $||\mathbf{x}||_p := (\sum_i |x_i|^p)^{1/p}$. Normele de mai sus sunt particularizări ale normei p pentru diferite valori ale lui p.

2.1.2 Norme matriceale

Multe norme matriceale mai au proprietatea de a fi submultiplicative:

$$||AB|| \le ||A|| \cdot ||B||$$

• Norma p matriceală. Ea este indusă de norma p a vectorilor.

$$||A||_p := \max_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \max_{||x||=1} ||Ax||_p.$$

 $-\mathbf{p}=\mathbf{1}$. $||A||_1 := \max_j \sum_i |a_{ij}|$. Este suma maximă a valorilor absolute de pe coloane.

- **p = 2.** Norma/Raza spectrală. $||A||_2 := \sqrt{\lambda_{max}(A^*A)}$. Este rădăcina patrată a celei mai mari valori proprii a matricei A^*A . Este egala cu cea mai mare valoare singulară a matricei A. **Demonstrație.** Fie $B = A^*A$. Atunci B este simetrică și din teorema spectrală avem o bază ortonormată de vectori proprii v_i și valori proprii λ_i . Fie $v = \sum_i \alpha_i v_i$ și ||v|| = 1. Atunci:

$$||Av||_2^2 = \langle Av, Av \rangle = \langle v, A^*Av \rangle = \langle \sum_i \alpha_i v_i, \sum_i \alpha_i \lambda_i v_i \rangle = \sum_i \lambda_i \alpha_i^2$$

Având constrângerea ||v|| = 1, $\sum_i \alpha_i^2 = 1 \implies ||A||_2 = \lambda_{max}(A)$.

- $-\mathbf{p} = \infty$. $||A||_{\infty} := \max_{i} \sum_{j} |a_{ij}|$. Este suma maximă a valorilor absolute de pe rânduri.
- Norma Frobenius. $||A||_F := \sqrt{\sum_{i,j} |a_{ij}|^2} = \sqrt{trace(A^*A)}$.

Teorema Gelfand. Pentru orice normă matriceală avem:

$$\lim_{k \to \infty} ||A^k||^{1/k} = \rho(A)$$

Mai mult, $\rho(A) \leq ||A||$ pentru orice normă matriceală.

Demonstrație. Fie λ valoarea proprie cea mai mare a lui A și v un vector propriu asociat. Atunci:

$$||A|| \ge \frac{||Av||}{||v||} (\forall v) = \frac{||\lambda v||}{||v||} = |\lambda| \Rightarrow \rho(A) \le ||A||$$

Ce ne indică normele matriceale induse de vectori? Ele ne dau o măsură a cât de mult se dilată un vector atunci când este aplicată o anumită transformare liniară. În 1 avem o reprezentare a vectorilor unitari.

Figura 1: Vectori unitate

Ce se întâmplă dacă aplicăm transformarea $A1 = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$?

Figura 2: Transformarea A1

2.2 Produs scalar. Proiecții.

Produsul scalar al unui spațiu vectorial V peste F este o funcție $\langle\cdot,\cdot\rangle:V\times V\to F$ care satisface următoarele proprietăți pentru orice $x,y,z\in V$ și $\alpha\in F$:

- $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (conjugare simetrică);
- $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ (liniaritate);
- $\langle x, x \rangle \ge 0$ și $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ (pozitivitate).

Din aceastea rezultă și altele:

- $\langle x, \alpha y + \beta z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle;$
- $\langle x+y, x+y \rangle = \langle x, x \rangle + 2\Re(\langle x, y \rangle) + \langle y, y \rangle;$

Orice produs scalar induce o normă pe spațiul vectorial V prin $||x|| = \sqrt{\langle x, x \rangle}$.

Într-un spațiu euclidian, produsul scalar este definit ca $\langle x,y\rangle=x^Ty$.

2.2.1 Proiecții

Teoremă. $\langle x,y\rangle=u^Tv=||u||||v||\cos(\theta)$, unde θ este unghiul dintre cei doi vectori.

Demonstrație. Fie $\mathbf{r} = \mathbf{u} - \mathbf{v}$. Atunci, din teorema cosinusului avem:

$$||\mathbf{r}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

$$||\mathbf{u} - \mathbf{v}||^2 - ||\mathbf{u}||^2 - ||\mathbf{v}||^2 = -2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

$$-2\sum_{i} u_i v_i = -2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

$$\sum_{i} u_i v_i = ||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

Astfel, putem scrie produsul scalar ca $\langle x, y \rangle = u^T v = ||u||||v|| \cos(\theta)$.

Fie doi vectori \mathbf{x} și \mathbf{y} , iar proiecția lui \mathbf{x} pe \mathbf{y} este $\mathbf{x}_{\mathbf{y}}$. Pentru a îl găsi pe $\mathbf{x}_{\mathbf{y}}$, ne gândim astfel:

- În primul rând, ne trebuie norma lui $\mathbf{x}_{\mathbf{y}}$: $||\mathbf{x}|| \cos(\theta)$.
- Având norma, trebuie să avem și o direcție. Proiecția fiind pe \mathbf{y} , o putem găsi prin normalizare: $\frac{\mathbf{y}}{||\mathbf{y}||}$.

Avem și o interpretare geometrică a produsului scalar: produsul dintre norma proiecției pe un vector și norma vectorului pe care se proiectează.

Definim operatorul de proiecție astfel: $proj_y x = \frac{||x|| \cos(\theta)}{||y||} y = \frac{\langle x, y \rangle}{\langle y, y \rangle} y$.

$$proj_y x = \frac{||x||\cos(\theta)}{||y||} y = \frac{||y||||x||\cos(\theta)}{||y||^2} y = \frac{\langle x, y \rangle}{\langle y, y \rangle} y$$

2.3 Vectori ortogonali. Matrice unitară/ortogonală.

Doi vectori $x, y \in \mathbb{R}^n$ sunt ortogonali dacă produsul lor scalar este zero, adică $x^T y = 0$. Cu alte cuvinte, direcțiile lor sunt perpendiculare. În plus, dacă $||x||_2 = ||y||_2 = 1$, atunci cei doi vectori sunt ortonormați.

O bază a unui spațiu vectorial se numește ortogonală, respectiv ortonormată, dacă vectorii acesteia sunt ortogonali, respectiv ortonormați.

O matrice $A \in \mathbb{C}^{n \times n}$ se numește unitară dacă $A^*A = AA^H = I_n$, unde A^* este conjugata transpusă a lui A. Dacă A este reală, atunci matricea se numește ortogonală și putem scrie $A^TA = AA^T = I_n$. Ele sunt foarte utilizate în diverse aplicații, precum descompunerea QR sau descompunerea valorilor singulare.

O matrice $A \in \mathbb{C}^{n \times n}$ sau $\mathbb{R}^{n \times n}$ unitară/ortogonală are următoarele proprietăți:

- coloanele (rândurile) sale formează o bază ortonormată a spațiului vectorial \mathbb{C}^n sau \mathbb{R}^n ;
- norma vectorilor coloană (rând) este 1;
- $A^{-1} = A^*$ sau $A^{-1} = A^*$;

- este normală, adică $A^*A = AA^*$;
- este diagonalizabilă;
- valorile proprii se află pe cercul unitate;
- vectorii proprii sunt ortogonali;
- $det(A) = \pm 1$;
- $||A||_2 = 1;$
- conservă produsul scalar: $(Ax)^*(Ay) = x^*A^*Ay = x^*y;$

Astfel, matricile ortogonale se pot interpreta geometric ca fiind rotații, reflecții, permutări, identități sau combinații ale acestora.

Ce se întâmplă dacă aplicăm o matrice ortogonală asupra vectorilor unitari?

Fie
$$A2 = \begin{bmatrix} \cos(\frac{\pi}{7}) & -\sin(\frac{\pi}{7}) \\ \sin(\frac{\pi}{7}) & \cos(\frac{\pi}{7}) \end{bmatrix}$$
.

Figura 3: Transformarea A2

Toți vectorii au fost rotiți cu un unghi de $\frac{\pi}{7}$. Nu s-a modificat nimic alteeva! Norma vectorilor a rămas la fel și deci graficele coincid. În următoarea figură, aplicăm A3 = 2 * A2, matrice care nu mai este ortogonală.

Figura 4: Transformarea A2

2.4 Transformări ortogonale. Descompunerea QR.

Definiție. Fie $T: V \to V$ o transformare liniară.

$$T$$
 - ortogonală $\equiv \langle T(x), T(y) \rangle = \langle x, y \rangle$

Utilitatea transformărilor ortogonale în cazul sistemelor liniare constă în faptul că putem aplica o serie de astfel transformări pentru a introduce 0-uri în matricea sistemului. La final, aflarea soluției va consta în rezolvarea unui sistem triunghiular. Matricea va avea forma A=QR, unde Q este o matrice ortogonală și R este o matrice superior triunghiulară.

$$Ax = b \Leftrightarrow QRx = b \Leftrightarrow Rx = Q^*b$$

Cu aceste transformări, ne dorim să aducem vectori de la forma $\begin{bmatrix} x \\ y \end{bmatrix}$ la forma $\begin{bmatrix} x' \\ 0 \end{bmatrix}$.

2.4.1 Reflexii. Transformarea Householder.

Căutăm o transformare P astfel încât Pv = ||v||e, unde e este un vector din baza canonică.

Pentru reflexie, ne alegem un vector d care ne va da $direcția de reflexie, <math>||d||_2 = 1$

$$v' = proj_d(-v) = \frac{\langle v, d \rangle}{\langle d, d \rangle} d$$
$$v' = -v^* dd = -dd^* v \implies$$

$$Pv = v - 2v' = v - 2dd^*v$$
$$P = I - 2dd^*$$

Iar în cazul în care d nu are norma 1, ajungem la forma generală a reflectorului Householder, prin normalizare:

$$P = I - 2\frac{dd^T}{d^T d}$$

Afirmație. P este ortogonală.

 $\textbf{Demonstrație.} \ \ P^TP = (I - 2dd^*)^*(I - 2dd^*) = I - 2dd^* - 2dd^* + 4dd^*dd^* = I - 4dd^* + 4dd^* = I. \ \blacksquare$

Cum găsim d pentru a introduce 0-uri?

Cum P este ortognală, știm că $||Pv||_2 = ||v||_2$. Astfel, ne dorim ca $Pv = \pm ||v||_2 e_1$.

$$v+d=Pv$$

$$v+d=\pm||v||_2e_1$$

$$d=\pm||v||_2e_1-v, \text{cum semnul lui }d\text{ nu contează, alegem}$$

$$d=v\pm||v||_2e_1$$

Plus sau minus? Răspunsul îl putem găsi efectuând puțină analiză numerică, fără a demonstra nimic formal de data asta. Plecăm de la următoarea întrebare: Este bine ca Pv și v să fie apropiate?

Știind că calculul numeric nu este perfect, putem presupune că nici reflexia nu va fi perfectă. Problema este că dacă \mathbf{v} este deja foarte aproape de axe, e foarte posibil ca $\mathbf{P}\mathbf{v}$ să fie chiar mai departe de aceasta.

 \hat{I} n schimb, dacă \mathbf{v} și reflexia acestuia sunt depărtate, eroare poate fi neglijabilă.

Ne dorim ca $||v - \alpha||v||_2 e_1||_2$ să fie maximă, unde $\alpha = \pm 1$. Considerăm doar cazul numerelor reale.

$$||v - \alpha||v||_{2}||_{2} = (v - \alpha||v||_{2}e_{1})^{T}(v - \alpha||v||_{2}e_{1}) = (v - \alpha||v||_{2}e_{1})^{T}(v - \alpha||v||_{2}e_{1})$$

$$= v^{T}v - 2\alpha||v||_{2}v^{T}e_{1} + \alpha^{2}||v||_{2}^{2}e_{1}^{T}e_{1}$$

$$= v^{T}v - 2\alpha||v||_{2}v_{1} + ||v||_{2}^{2}$$

Cum $v^T v$ și $||v||_2^2$ sunt constante, trebuie să găsim maximul termenului $-\alpha ||v||_2 v_1$, mai precis $-\alpha v_1$. Cum α poate fi doar 0 sau 1, rezultă imediat că $\alpha = -sign(v_1)$.

În figura de mai jos (figura 5), avem un grafic al $||A-QR||_2/||A||_2$. Au fost generate 1000 de teste, deci avem 1000 de puncte pe grafic. În fiecare test s-a generat o matrice 3x3 aleatorie iar prima sa coloană a fost înlocuită cu $\begin{bmatrix} 1 & \delta & 0 \end{bmatrix}^T$, unde δ lua 17 valori între 10^{-16} și 1. Cu albastru avem cazul când alegem semnul ca mai sus, iar cu roșu când alegem semnul opus.

Figura 5: Eroarea relativă

Se poate observa că eroarea relativă, în medie, mai mică atunci când alegem semnul bine.

Anulare catastrofală. Având o precizie limitată în calculul numeric, se pare că diferența a două aproximari a unor numere foarte apropiate poate duce la o aproximare foarte rea.

Demonstrație. Fie aproximările \overline{x} și \overline{y} , cu erorile relative $\epsilon_x = \frac{x-\overline{x}}{x}$ și $\epsilon_y = \frac{y-\overline{y}}{y}$.

$$\overline{x} = x(1 + \epsilon_x)$$
 $\overline{y} = y(1 + \epsilon_y)$

Atunci,

$$\overline{x} - \overline{y} = x(1 + \epsilon_x) - y(1 + \epsilon_y) = x - y + x\epsilon_x - y\epsilon_y$$

$$= x - y + (x - y)\epsilon_{xy}, \text{ unde } \epsilon_{xy} = \frac{x\epsilon_x - y\epsilon_y}{x - y}$$

$$= (x - y)(1 + \epsilon_{xy})$$

Numitorul lui ϵ_{xy} este foarte mic daca $x \approx y$, deci eroarea devine foarte mare.

În concluzie, obținem următoarea formulă pentru $d: d = v + sign(v_1)||v||_2 e_1$.

Pentru a oferi un exemplu practic a descompunerii QR cu Householder, mai e utilă următoarea informație: putem "umple" vectorul d cu 0-uri în locurile unde ne dorim ca vectorii să nu fie afectați. De exmeplu,

dacă avem 3 dimensiuni și vrem să punem 0 **doar** pe poziția 3, atunci $d = \begin{bmatrix} 0 \\ v2 - sign(v_2)||v'||_2 \\ v3 \end{bmatrix}$ sau

$$d = \begin{bmatrix} v1 - sign(v_1)||v'||_2 \\ 0 \\ v3 \end{bmatrix}, \text{ unde } v' = \begin{bmatrix} v2 \\ v3 \end{bmatrix}, \text{ respectiv } v' = \begin{bmatrix} v1 \\ v3 \end{bmatrix}$$

Exemplu. Fie matricea $A_1 = \begin{bmatrix} 2 & 4 & 5 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$. Ne dorim să găsim matricea Q și R astfel încât A = QR și Q să fie ortogonală.

La prima iterație ne dorim să punem 0-uri pe pozițiile (2, 1) și (3, 1).

$$v = \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \quad ||v||_2 = 3, \quad d = \begin{bmatrix} 2 - sign(2) * 3\\1\\2 \end{bmatrix} = \begin{bmatrix} -1\\1\\2\\2 \end{bmatrix}, \quad ||d||_2^2 = 6$$

$$H_1 = I_3 - 2\frac{dd^T}{d^Td} = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -1\\1\\2 \end{bmatrix} \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}$$

$$H_1 = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 & -1 & -2\\-1 & 1 & 2\\-2 & 2 & 4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 2\\1 & 2 & -2\\2 & -2 & -1 \end{bmatrix}$$

$$A_2 = H_1 A_1 = \frac{1}{3} \begin{bmatrix} 2 & 1 & 2\\1 & 2 & -2\\2 & -2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5\\1 & -1 & 1\\2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3\\0 & 0 & 3\\0 & 3 & 3 \end{bmatrix}$$

La a doua iteratie ne dorim să punem 0 pe poziția (2, 3).

$$v = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \quad ||v||_2 = 3, \quad d = \begin{bmatrix} 0 \\ -sign(0) * 3 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix}, \quad ||d||_2^2 = 18$$

$$H_2 = I_3 - 2\frac{dd^T}{d^Td} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{9} \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix} \begin{bmatrix} 0 & -3 & 3 \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{9} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & -9 \\ 0 & -9 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$A_3 = H_2 A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 0 & -3 & -3 \\ 0 & 0 & -3 \end{bmatrix}$$

 A_3 este matricea R,iar $Q=H_1^TH_2^T=H_1H_2$ este matricea ortogonală.

2.4.2 Rotații Givens

3 Probleme

Referințe

[1] Michael L. Overton, Pinze Yu. On the choice of sign defining Householder transformations. Numerical Algebra, Control and Optimization, 2025, 15(2): 502-505. doi: 10.3934/naco.2023025