

Self-Attentive Ensemble Transformer: Representing Ensemble Interactions in Neural Networks for Earth System Models

Tobias Sebastian Finn

Tackling Climate Change with Machine Learning Workshop at ICML 2021

Why do we need to post-process ensemble simulations?

Model bias

Mean error in 2-metre-temperature of the IFS-EPS ensemble mean to the ERA5-reanalysis on a bilinearly regridded grid for 2019

Uncalibrated forecast

Rank histogram in 2-metre-temperature of the IFS-EPS compared to the ERA5-reanalysis for all grid points and the year 2019

+ Forecast non-modelled variables

How to post-process the ensemble data?

Let's use neural networks to correct the model bias

How to incorporate ensemble information?

Use self-attention similar to ensemble data assimilation

→ Ensemble transformer

	Raw Ensemble	PPNN (Rasp & Lerch, 2013)	W/o self- attention	Transfromer (This talk)
Bias correction	×	√	✓	√
Calibration	×	✓	×	√
Non-parametric output	✓	×	✓	√
Correlated output	✓	×	?	✓

23.07.2021 2/13

Global post-processing case

ERA5 reanalysis

2-metre-temperature

Global regression with convolution neural networks

Geopotential on 500 hPa

Temperature on 850 hPa

2-metre-temperature

IFS-EPS (50 members, lead time: 48 h)

Ensemble transformer architecture

23.07.2021 4/13

Main idea of a single self-attention module

Self-attention can explain itself and create informative maps

Attention maps for 2019-09-01 12:00 UTC

Positive temperature anomalies?

6/13 23.07.2021

Experiment: Used methods

23.07.2021 7/13

Experiment: Training

2017 & 2013: Training and validation (10 %)

2019: Testing

Optimizer: Adam

Optimized: Univariate continous ranked probability score (CRPS) for Gaussians

Subsampled ensemble members for each training step:

	RMSE (K)	Spread (K)
10 samples	0.91	0.91
20 samples	0.92	0.90
50 samples	0.92	0.89

Increased noise during training +
Increased trainig speed

Transformer has lowest error and best spread-skill ratio

		RMSE (K)	Spread (K)
	IFS-EPS	1.12	0.73
"State-of-the-art" Parametric approach	PPNN (Rasp & Lerch, 2013)	0.93	0.87
Apply NN to each member independently	w/o Self-Attention	0.95	0.70
	Transformer	0.90	0.90

Self-attention can extract additional information from ensemble data + helps to calibrate the ensemble

23.07.2021 9/13

PPNN and Transformer are similarly good calibrated

Similar to a rank histogram – Probability integral transform

Transformer can represent spatial correlations

Cold wave in North America – 2019-01-26 12:00 UTC

Conclusions of this study

Self-attention can be used to improve post-processing for Earth system models

- \rightarrow Extraction of additional information \rightarrow Reduced error
- → Calibration of ensemble for improved uncertainty estimation

The ensemble transformer enables member-by-member post-processing with neural networks

→ Non-parametric processing of ensemble members without aggregated statistics

→ Output of spatially and multivariately correlated forecasts

If you have questions

Take a look into the paper:

Self-Attentive Ensemble Transformer: Representing Ensemble Interactions in Neural Networks for Earth System Models

Tobias Sebastian Finn 12

<u>and/or</u> take a look into the official code: https://github.com/tobifinn/ensemble_transformer

and/or write me an e-mail:

tobias.sebastian.finn@uni-hamburg.de

and/or follow me on twitter:

@tobias_finn