Finite-State Methods

Finite state acceptors (FSAs)

Defines the language a? c^* = {a, ac, acc, accc, ..., ϵ , c, cc, ccc, ...}

- Things you may know about FSAs:
 - Equivalence to regexps
 - Union, Kleene *, concat, intersect, complement, reversal
 - Determinization, minimization
 - Pumping,Myhill-Nerode

n-gram models not good enough

- Want to model grammaticality
- A "training" sentence known to be grammatical:

trigram model must allow these trigrams

- Resulting trigram model has to overgeneralize:
 allows sentences with 0 verbs
 - allows sentences with 0 verbs
 BOS mouse traps EOS
 - allows sentences with 2 or more verbs
 BOS mouse traps catch mouse traps
 catch mouse traps catch mouse traps
 EOS
- Can't remember whether it's in subject or object (i.e., whether it's gotten to the verb yet)

Finite-state models can "get it"

- Want to model grammaticality
 BOS mouse traps catch mouse traps EOS
- Finite-state can capture the generalization here:

Noun+ Verb Noun+

Allows arbitrarily long NPs (just keep looping around for another Noun modifier).

Still, never forgets whether it's preverbal or postverbal!

(Unlike 50-gram model)

How powerful are regexps / FSAs?

- More powerful than n-gram models
 - The hidden state may "remember" arbitrary past context
 - With k states, can remember which of k "types" of context it's in
- Equivalent to HMMs
 - In both cases, you observe a sequence and it is "explained" by a hidden path of states. The FSA states are like HMM tags.
- Appropriate for phonology and morphology

```
Word = Syllable+

= (Onset Nucleus Coda?)+

= (C+V+C^*)+

= ((b|d|f|...)+(a|e|i|o|u)+(b|d|f|...)^*)+
```

How powerful are regexps / FSAs?

- But less powerful than CFGs / pushdown automata
 - Can't do recursive center-embedding
 - Hmm, humans have trouble processing those constructions too ...
- This is the rat that ate the malt.
- This is the malt that the rat ate.
- This is the cat that bit the rat that ate the malt.
- This is the malt that the rat that the cat bit ate.

finite-state can handle this pattern (can you write the regexp?)

- This is the dog that chased the cat that bit the rat that ate the malt.
- This is the malt that [the rat that [the cat that [the dog chased] bit] ate].
 but not this pattern,
 which requires a CFG

How powerful are regexps / FSAs?

- But less powerful than CFGs / pushdown automata
- More important: Less explanatory than CFGs
 - An CFG without recursive center-embedding can be converted into an equivalent FSA – but the FSA will usually be far larger
 - Because FSAs can't reuse the same phrase type in different places

We've already used FSAs this way ...

- CFG with regular expression on the right-hand side:
 - $X \rightarrow (A \mid B) G H (P \mid Q)$ $NP \rightarrow (Det \mid \epsilon) Adj* N$
- So each nonterminal has a finite-state automaton, giving a "recursive transition network (RTN)"

We've already used FSAs once ...

NP → rules from the WSJ grammar become a single DFA

But where can we put our weights?

CFG / RTN

bigram model
 of words or tags
 (first-order
 Markov Model)

Hidden Markov Model of words and tags together??

Another useful FSA

Network

Wordlist

clear
clever
ear
ever
fat
father

Weights are useful here too!

Wordlist

clear 0 clever 1 ear 2 ever 3 fat 4 father 5

Network

Computes a perfect hash! Sum the weights along a word's accepting path.

Example: Weighted acceptor

Network Clear 0 clever 1 ear 2 ever 3 fat 4 father 5

- Compute number of paths from each state (Q: how?)
- Successor states partition the path set
- Use offsets of successor states as arc weights
- Q: Would this work for an arbitrary numbering of the words?

Example: Unweighted transducer

Example: Unweighted transducer

Example: Unweighted transducer

- Bidirectional: generation or analysis
- Compact and fast
- Xerox sells for about 20 languages including English, German, Dutch, French, Italian, Spanish, Portuguese, Finnish, Russian, Turkish, Japanese, ...
- Research systems for many other languages, including Arabic, Malay

What is a function?

- Formally, a set of <input, output> pairs
 where each input ∈ domain, output ∈ co-domain.
- Moreover, ∀x ∈ domain, ∃ exactly one y such that <x,y> ∈ the function.

What is a relation?

square: int → int

• inverse(square): int → int

• Is inverse(square) a function?

$$^{-}$$
 0 \mapsto {0} 9 \mapsto {3,-3} 7 \mapsto {} -1 \mapsto {}

- No we need a more general notion!
 - A relation is any set of <input, output> pairs

Regular Relation (of strings)

- Relation: like a function, but multiple outputs ok
- Regular: finite-state
- Transducer: automaton w/ outputs
- b → {b} a → {}
 aaaaa → {ac, aca, acab, acabc}
 - Invertible?
 - Closed under composition?

Regular Relation (of strings)

- Can weight the arcs: → vs. →
- $\bullet b \to \{b\} \quad a \to \{\}$
- aaaaaa → {ac, aca, acab, acabc}

- How to find <u>best</u> outputs?
 - For aaaaa?
 - For all inputs at once?

Function from strings to ...

Acceptors (FSAs)

Transducers (FSTs)

Sample functions

Acceptors (FSAs)

Transducers (FSTs)

Unweighted

{false, true}

Grammatical?

strings

Markup Correction Translation

Weighted

numbers

How grammatical?
Better, how probable?

(string, num) pairs

Good markups Good corrections Good translations

Terminology (acceptors)

Terminology (transducers)

Perspectives on a Transducer

Remember these CFG perspectives:

3 views of a context-free rule

- generation (production): $S \rightarrow NP \ VP \ (randsent)$
- parsing (comprehension): S ← NP VP (parse)
- verification (checking):
 S = NP VP
- Similarly, 3 views of a transducer:
 - Given 0 strings, generate a new string pair (by picking a path)
 - Given one string (upper or lower), transduce it to the other kind
 - Given two strings (upper & lower), decide whether to accept the pair

FST just defines the regular relation (mathematical object: set of pairs). What's "input" and "output" depends on what one <u>asks</u> about the relation. The 0, 1, or 2 given string(s) constrain which paths you can use.

Functions

Functions

Function composition: f ° g

[first f, then g – intuitive notation, but opposite of the traditional math notation]

Like the Unix pipe: cat $x \mid f \mid g > y$

Example: Pass the input through a sequence of ciphers

Often in NLP, all of the functions or relations involved can be described as finite-state machines, and manipulated using standard algorithms.

Inverting Relations

Inverting Relations

Inverting Relations

Building a lexical transducer

Building a lexical transducer

- Actually, the lexicon must contain elements like
 big +Adj +Comp
- So write it as a more complicated expression:

```
(big | clear | clever | fat | ...) +Adj (ε | +Comp | +Sup) ← adjectives | (ear | father | ...) +Noun (+Sing | +PI) ← nouns ← ...
```

Q: Why do we need a lexicon at all?

Weighted version of transducer: Assigns a weight to each string pair

