5) State-Action Distribution Trajectory of MDP up to t, (So, ao, Si, ai, --, St, at) Stuchastic policies Consider possible $\mathbb{P}^{\mathbb{N}}(S_0, \alpha_0, \ldots, \mathbf{S}_{t}, \alpha_t) = tt(\alpha_0|S_i)\mathbb{P}(S_1|S_0, \alpha_0)$ $X \pi(a, s,) P(s_2|s_1,g)$ XP(St | St-1, 9t-1) x tt (Qt (St) (S_0) (S_2) .

$$P_{t}^{T}(S,a;S_{0}) = \sum_{\substack{q_{0:t-1} \in A^{t} \\ S_{1:t-1} \in S^{t-1}}} P_{t}^{T}(S_{0},a_{0},-,S_{t,q_{t}})$$

Discourted Average State-Action Distribution $\int_{S_0}^{T} (S, \alpha) = (I - Y) \sum_{t=0}^{\infty} Y^{t} P_{t}^{T}(S, \alpha; S_0)$ HWO: is this a valid distribution? $V^{T}(S_0) = \frac{1}{1-8} \sum_{s \in S} d_{s_0}^{T}(S, \alpha) r(S, \alpha)^{T}$ $\alpha \in S$ 2) Optimal Policies & Bellman optimality As policies! $T^* = avgmax$ $E\left[\sum_{t=0}^{\infty} t \, r(s_t, a_t)\right]$ $S_{t+1} \sim P(s_t, a_t)$ $Q = tr(s_t)$ Fact: there always exist

T*: S -> St. VTT*(s) > VT(s) notation: $V^{T*} = V^*$ Q $^T = Q^*$

Example: deterministic MDP

$$r(S_1, a_0) = 1$$
 $o otherwise$
 $v(S) = S_1 + S_2$
 $v(S) = A_0 + S_1$
 $v(S) = A_0 + S_1$

Poll EV. com/sarah dean OII

Bellman Optimality

Q* (S, CX)

$$V^*(S) = mo$$

$$A \in \mathcal{S}$$

$$\forall S \in \mathcal{S}$$

Theorem): $V^*(S) = \max_{\alpha \in \mathcal{A}} V(S,\alpha) + V \mathbb{E}[V^*(S')]$ $S^* \sim P(S,\alpha)$

IF V*(S') is known, (s)

$$\frac{1}{2}\left(\frac{S}{S}\right)$$

$$a'(s) = \{a'(s) = \{a'(s, a')\}$$

Prof: We Show $f(s) = argmax Q^*(s,a)$ + hat V(s) = V*(s)a) by definition $V^*(s) > V^*(s) + s$. b) now show $V^*(s) \leq V^{\hat{H}}(s)$ $V^*(S) = V(S, T^*(S)) + X \mathbb{E}[V^*(S)]$ $\leq max$ $\leq max$ $\leq max r(s, a) + y \neq [v*(s')]$ $= v(s, ft(s)) + y \neq [v*(s')]$ $\leq v(s, ft(s)) + y \neq [v*(s')]$

= \vee \uparrow (s)This means that ft acheives optimal value, so ttest argmax oxt(s,a) is an optimal policy Now, show Bellman Optimality is sufficient to characterize $V^*(S)$. Theorem 2: for any $V: S \rightarrow \mathbb{R}$ $= \sum_{i \in S} F(S_i \alpha) + V = \sum_{i \in S} F(S_i \alpha)$ for all SES, then $V(S) = V^{+}(S).$

CONFIN This means We can checura that $V = V^*$ by V(S) - max r(s,a) + XEV(S) $S^{1} P(S, \alpha)$ YS. = \bigcirc Proof $\left[V(S)-V^{*}(S)\right]=$ max r(s,a) + 8 EV(s') max | x(s) - x(s) | x(s') | x(s') | x(s') | x(s') | x(s') - x(s') | x($|V(s)-V^{*}(s)| \leq \max_{\alpha,\alpha'} \chi^{2} \mathbb{E} |V(s')-V^{*}(s')|$ $S'' \sim P(S, a)$ iterate k times

limit to infinity

(S) -V*(S) (> 0 $V(S) = V^{*}(S)$ Example: check tt(s) = ao +5
is optimal using
Bellman optimality; 3) Value Haration

How to find optimal policy? enumeration: O(AS) S3)

Rollman Operator 3 Define Bellman Operator of Perman operator
given Q:SxA > TR, Bellman operator JQ: SxA > TR, defined as $-JQ(S,\alpha)=r(S,\alpha)+8F[max Q(S,\alpha')]$ $shp(S,\alpha)$

Fixed Point Iteration

Bellman optimality

- **(s') $\Rightarrow Q^*(s,a) = V(s,a) + Y \neq \begin{bmatrix} max & Q^*(s,a) \\ a & Q & Q \end{bmatrix}$ $\int Q^* = Q^* \quad (fixed point)$ Alg: Value Heration (VI) Whalize Q° Por E=0,1,2,-Qt+1 L JQt Convergence Lemma (contraction) for any Q, Q! $\| \mathcal{J}Q - \mathcal{J}Q' \|_{\infty} \leq \| Q - Q' \|_{\infty}$ $\|Q\|_{\infty} = \max_{s, \alpha} Q(s, \alpha)$ rewember

Proof 1 Jals,a) - Ja'(s,a) | = Jatha) + 8 [[max & (s',a)] - (xts,a) + 8 [[max & (s',a)]] V_{a} V_{a Lemma (convergence)

11 Qt - Q* No \le \tau \le \no \delta \le \no Puall: $tt^*(s) = argmax Q^*(s, a)$

notes from offile MMNZ. misc $E(f(x)) \leq \max_{x \in X} f(x)$ E(X) < Max E(A) Jensen's inequality E(X) \leq EEPIS CONVEX f(+x1+(1-+)+2) $\geq t f(x_1) + (1-t)f(x_1)$