Homework 1 solutions

Total points: 5

 $1 \ (0.5 pt). \ What integers \ do \ the \ sets \ Z_{28} \ and \ Z_{28}* \ contain? \ For each \ set, list \ all \ additive inverse \ pairs \ and \ multiplicative inverse \ pairs.$

 $Z_{28} \hspace{-0.05cm}= \{0.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27\}$

 $Z_{28} \! = \{1,\!3,\!5,\!9,\!11,\!13,\!15,\!17,\!19,\!23,\!25,\!27\}$

Additive inverse pairs:

(0,0), (1,27), (2,26), (3,25), (4,24), (5,23), (6,22), (7,21), (8,20), (9,19), (10,18), (11,17), (12,16), (13,15), (14,14)

Multiplicative inverse pairs:

(1,1),(3,19),(5,17)(13,13)(11,23),(15,15),(25,9),(27,27)

2 (1pt). Using extended Euclidean algorithm, show the steps of finding the following multiplicative inverses

a) 321⁻¹ mod 56709.

q	r1	r2	r	t1	t2	t
176	56709	321	213	0	1	-176
1	321	213	108	1	-176	177
1	213	108	105	-176	177	-353
1	108	105	3	177	-353	530
35	105	3	0	-353	530	-18903 է
	3	0		530	-18903	

Gcd(321,56709) != 1, so the multiplicative inverse doesn't exist.

345⁻¹ mod 76408

q	r1	r2	r	t1	t2	t
221	76408	345	163	0	1	-221
2	345	163	19	1	-221	443
8	163	19	11	-221	443	-3765
1	19	11	8	443	-3765	4208
1	11	8	3	-3765	4208	-7973
2	8	3	2	4208	-7973	20154
1	3	2	1	-7973	20154	-28127
2	2	1	0	20154	-28127	76408
	1	0		-28127	76408	

Gcd(345,76408) = 1, so $345^{-1} \mod 76408 = -28127 \mod 76408 = 48218$

3(1pt). Find the all solutions to each of the following linear equations

a) $24x \equiv 12 \pmod{28}$

gcd(24, 28) = 4 and 4 divides 12, so there is 4s olution.

Dividing both sides by 4:

 $6x \equiv 3 \pmod{7}$

 $6^{-1} \bmod 7 \equiv 6 \bmod 7$

 $x0 = (3 * 6^{-1}) \mod 7 = 18 \mod 7 = 4$

x1 = 4 + 1(28/4) = 11

x2 = 4 + 2(28/4) = 18

x3 = 4 + 3(28/4) = 25

b) $4x + 5 \equiv 17 \pmod{10}$

 $\grave{a} \ 4x \ + 5 \equiv 7 \pmod{10}$

 $\grave{a} 4x \equiv 2 \pmod{10}$

Gcd(4,10) = 2, so there are 2 solutions

Divide both sides by 2:

 $2x \equiv 1 \pmod{5}$

 $x0 = 2^{-1} \mod 5 = 3$

x1 = 3 + (10/2) = 8

c) $5x \equiv 15 \pmod{25}$

gcd(5,25) = 5, 5 divides 15, so there are 5 solutions

divide both sides by 5

 $x0 = 3 \pmod{5}$

x1 = 3 + 1(25/5) = 8

x2 = 3 + 2(25/5) = 13

1 of 3 06/29/2015 7:26 PM

```
x3 = 3+3(25/5) = 18

x4 = 3+4(25/5) = 23

d) 24x + 20 = 29 \pmod{69}

a = 24x = 9 \pmod{69}

a = 24x = 9 \pmod{69}

a = 3 \pmod{24}

a = 3 \pmod{23}

a = 3 \pmod{33}

a = 3 \pmod{33
```

4 (0.5pt). Encrypt the message "do not attack" using the following ciphers. Ignore the space between the words. Decrypt the message to get the original plaintext. (note: please ignore the spaces)

a). Additive cipher with key = 12

The encrypted message is: PAZAFMFFMOW

b). multiplicative cipher with key = $\frac{11}{15}$

Ciphertext: T C N C Z A Z Z A E U

To decrypt it, we need to find the multiplicative inverse of 15.

71 .						
q	r1	r2	r	t1	t2	t
1	26	15	11	0	1	-1
1	15	11	4	1	-1	2
2	11	4	3	-1	2	-5
1	4	3	1	2	-5	7
3	3	1	0	-5	7	-26
	1	0		7	-26	

```
15^{-1} \mod 26 = 7
```

```
Ciphertext: T=> 19 Decryption: (19*7) \mod 26 Plaintext: 3 > 0 Ciphertext: C=> 2 Decryption: (2*7) \mod 26 Plaintext: 4 > 0 Ciphertext: N=> 13 Decryption: (13*7) \mod 26 Plaintext: 4 > 0 Ciphertext: C=> 14 Decryption: (14*7) \mod 26 Plaintext: 4 > 0 Ciphertext: Z=> 25 Decryption: (25*7) \mod 26 Plaintext: 4 > 0 Ciphertext: A=> 00 Decryption: (0*7) \mod 26 Plaintext: 4 > 0 Plaintext:
```

Plaintext: d=> 03 Encryption: (3 * 15+12) mod 26 Ciphertext: 5 => F

2 of 3 06/29/2015 7:26 PM

```
Plaintext: o => 14 Encryption: (14 * 15+12) mod 26 Ciphertext: 14 => O
Plaintext: t \Rightarrow 19 Encryption: (19 * 15+12) \mod 26 Ciphertext: 11 \Rightarrow L
Plaintext: a => 00 Encryption: (0 *15+12) mod 26 Ciphertext:12 => M
Plaintext: t => 19 Encryption: (19 * 15+12) \mod 26 Ciphertext: 11=> L
Plaintext: t \Rightarrow 19 Encryption: (19 * 15+12) \mod 26 Ciphertext: 11 \Rightarrow L
Plaintext: a \Rightarrow 00 Encryption: (0 * 15+12) \mod 26 Ciphertext: 12 \Rightarrow M
Plaintext: c \Rightarrow 02 Encryption: (2*15+12) \mod 26 Ciphertext: 16 \Rightarrow Q
Plaintext: k \Rightarrow 10 Encryption: (10* 15+12) mod 26 Ciphertext: 6 \Rightarrow G
The ciphtertext: FOZOLMLLMQG
Decryption:
Ciphertext: F=>5 Decryption: ((5-12)*7) \mod 26 Plaintext: 3=>d
Ciphertext: O => 14 Decryption: ( (14-12) * 7) mod 26 Plaintext: 14 => 0
Ciphertext: Z=> 25 Decryption: ((13-12)*7) mod 26 Plaintext: 13 => n
Ciphertext: O => 14 Decryption: ((14-12) * 7) mod 26 Plaintext: 14 \Rightarrow 0
Ciphertext: L => 11 Decryption: ((25-12)*7) mod 26 Plaintext: 19 => t
Ciphertext: M \Rightarrow 12 Decryption: ((0-12) *7) mod 26 Plaintext: 0 \Rightarrow a
Ciphertext: L => 11 Decryption: ((25-12) * 7) mod 26 Plaintext: 19 \Rightarrow t
Ciphertext: L => 11 Decryption: ((25-12) * 7) \mod 26 Plaintext: 19 =>t
Ciphertext: M \Rightarrow 12 Decryption: ((0-12) * 7) \mod 26 Plaintext: 0 \Rightarrow a
Ciphertext: Q => 16 Decryption: ((4-12)*7) mod 26 Plaintext: 2 => c
Ciphertext: G=> 6 Decryption: ((20-12)* 7) mod 26 Plaintext: 10 => k
```

Plaintext: o => 14 Encryption: (14 * 15+12) mod 26 Ciphertext: 14 => O

5.(1pt). a) Construct a Playfair key matrix with the keyword "university" b) Use the matrix created in a) to encrypt the message "attackistomorrow"

u	n	i/j	V	е
r	S	t	У	а
b	С	d	f	g
h	k		m	0
g	a	W	Х	Z

Plaintext pairs

at	ta	ck	is	to	mo	rx	ro	WX

Ciphertext

RY	YR	KQ	NT	AL	OH	YP	AH	XZ

```
6. (0.5pt). The encryption key in a transposition cipher is
```

(5, 12, 3, 7, 9, 6, 4, 14, 1, 13, 10, 8, 15, 2, 11, 16).

Find the decryption key

Add indices

```
(5, 12, 3, 7, 9, 6, 4, 14, 1, 13, 10, 8, 15, 2, 11, 16)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
```

Swap contents and indices:

```
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
5, 12, 3, 7, 9, 6, 4, 14, 1, 13, 10, 8, 15, 2, 11, 16
```

Sort based on indices:

```
(9, 14, 3, 7, 1, 6, 4, 12, 5, 11, 15, 2, 10, 8, 13, 16)
01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16
```

The decryption key is: (9, 14, 3, 7, 1, 6, 4, 12, 5, 11, 15, 2, 10, 8, 13, 16)

```
7. (0.5pt) Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For example, 475 \equiv 4+7+5 \equiv 16 \equiv 1+6 \equiv 7 \pmod{9}.
```

Any integer N can be written in the following format:

```
N = a_p * 10^p + a_{p-1} * 10^{p-1} + \dots + a_2 * 10^2 + a_1 * 10 + a_0
```

Where $a_0, a_1, \dots a_p$ are its decimal digits, p is an integer.

So N mod 9 =
$$(a_p * 10^p + a_{p-1} * 10^{p-1} + ... + a_2 * 10^2 + a_1 * 10 + a_0) \mod 9$$

=
$$[(a_p*10^p \mod 9) + (a_{p-1}*10^{p-1} \mod 9) + ... + (a_0 \mod 9)] \mod 9$$

=[
$$a_p * (10^p \mod 9) + a_{p-1} * (10^{p-1} \mod 9) + ... + (a0 \mod 9)] \mod 9$$

=($a_p + a_{p-1} + ... + a0$) mod p (because $10^p \mod 9 = 1$)

3 of 3 06/29/2015 7:26 PM