Q1: Use Z table and find the values of $p = \Pr(Z > k)$

(1) If
$$\Pr(Z > k) = 0.2$$
, $k = ?$

From Z table, we get

$$Pr(Z \le 0.84) = 0.7995$$

 $Pr(Z \le 0.85) = 0.8023$

so, it is reasonable to assume

$$\Pr(Z \le 0.845) \approx 0.80 \tag{1}$$

and

$$\Pr(Z > 0.845) = 1 - \Pr(Z \le 0.845) \approx 1 - 0.80 = 0.2$$
 (2)

Therefore

$$k = 0.845 \tag{3}$$

(2) If
$$Pr(Z > k) = 0.1$$
, $k = ?$

From Z table, we get

$$Pr(Z \le 1.28) = 0.8997$$

 $Pr(Z \le 1.29) = 0.9015$

so, it is reasonable to assume

$$\Pr(Z \le 1.285) \approx 0.9 \tag{4}$$

and

$$Pr(Z > 1.285) = 1 - Pr(Z \le 1.285) \approx 1 - 0.90 = 0.1$$
 (5)

Therefore

$$k = 1.285 \tag{6}$$

(3) If
$$\Pr(Z > k) = 0.05$$
, $k = ?$

From Z table, we get

$$Pr(Z \le 1.64) = 0.9495$$

 $Pr(Z \le 1.65) = 0.9505$

so, it is reasonable to assume

$$\Pr(Z \le 1.645) \approx 0.95 \tag{7}$$

and

$$\Pr(Z > 1.645) = 1 - \Pr(Z \le 1.645) \approx 1 - 0.95 = 0.1$$
 (8)

Therefore

$$k = 1.645 \tag{9}$$

(4) If $\Pr(Z \leq k) = 0.2$, k =?

We have already known

$$\Pr(Z \le 0.845) \approx 0.80 \tag{10}$$

Because of the symmetry of Normal distribution

$$\Pr(Z \le k) = 1 - \Pr(Z \le 0.845) = 0.2$$

Therefore

$$k = -0.845 \tag{11}$$

(5) If $\Pr(Z \le k) = 0.1$, k = ?

We have already known

$$\Pr(Z \le 1.285) \approx 0.9 \tag{12}$$

Because of the symmetry of Normal distribution

$$\Pr(Z \le k) = 1 - \Pr(Z \le 1.285) = 0.1$$

Therefore

$$k = -1.285 \tag{13}$$

(6) If
$$\Pr(Z \leq k) = 0.05$$
, $k =$?

We have already known

$$\Pr(Z \le 1.645) \approx 0.95 \tag{14}$$

Because of the symmetry of Normal distribution

$$\Pr(Z \le k) = 1 - \Pr(Z \le 1.645) = 0.05$$

Therefore

$$k = -1.645 \tag{15}$$

Q2

Deer mice are small rodents native to North America. Their body lengths (excluding tail) are known to vary approximately Normally with mean $\mu=86$ mm and standard deviation $\sigma=8$ mm. Deer mice are found in diverse habitats and exhibit different adaptations to their environment. A random sample of 14 deer mice in a rich forest habitat gives an average body length of $\bar{x}=91.1$ mm. Assume that the standard deviation σ of all deer mice in this area is also 8 mm.

The population distribution is

$$N(\mu = 86, \sigma = 8) \tag{16}$$

(a) What is the standard deviation of the mean length of \bar{x}

If individual observations have the $N(\mu,\sigma)$ distribution, then the sample mean \bar{x} of an SRS of size n has the $N(\mu,\frac{\sigma}{\sqrt{n}})$ distribution.

Therefore, the standard deviation of the mean length of \bar{x} </hd>

$$\frac{\sigma}{\sqrt{n}} = \frac{8}{\sqrt{14}} = 2.138\tag{17}$$

(b) What critical value do you need to use in order to compute a 95% confidence interval for the mean μ ?

The critical value is

$$1.96 \times 2.138 = 4.19 \tag{18}$$

(c) Give a 95% confidence interval for the mean body length of all deer mice in the forest habitat.

95% confidence interval for μ is

$$91.1 \pm 4.19$$
 (19)

Q3

of \bar{x} =91.1 mm. Assume that the standard deviation of body length in the population of all deer mice in the forest habitat is the same as the $\sigma=8$ mm for the general deer mouse population.

(a) Following your approach in the previous exercise, now give a 90% confidence interval for the mean body length of all deer mice in the forest habitat.

The critical value is

$$1.645 \times 2.138 = 3.52 \tag{20}$$

95% confidence interval for μ is

$$91.1 \pm 3.52$$
 (21)

(b) This confidence interval is shorter than your interval in the previous exercise, even though the intervals come from the same sample. Why does the second interval have a smaller margin of error?

The confidence is the probability that the interval will capture μ . When we decrease the confidence, it means that the probability that the confidence interval will capture μ decreases. The case happens when the interval becomes shorter.

As you can see in the following figure, the green line(95% C-interval) has higher chance to capture μ than the magenta line(90% C-interval).

