Chapter 9

Regular Languages

9.1 Properties of Regular Languages

Definition: A language that can be defined by a regular expression is a regular language.

Theorem 10 If L_1 and L_2 are regular languages, then $L_1 + L_2$, L_1L_2 , and L_1^* are also regular languages.

Proof. (by regular expressions)

- If L_1 and L_2 are regular languages, then there are regular expressions \mathbf{r}_1 and \mathbf{r}_2 that define these languages.
- $\mathbf{r}_1 + \mathbf{r}_2$ is a regular expression that defines the language $L_1 + L_2$, and so $L_1 + L_2$ is a regular language.
- $\mathbf{r}_1\mathbf{r}_2$ is a regular expression that defines the language L_1L_2 , and so L_1L_2 is a regular language.
- \mathbf{r}_1^* is a regular expression that defines the language L_1^* , and so L_1^* is a regular language.

Proof. (by machines)

- If L_1 and L_2 are regular languages, then there are transition graphs TG_1 and TG_2 that accept them by Kleene's Theorem.
- We may assume that TG_1 has a unique start state and unique final state, and the same for TG_2 .
- We construct the TG for $L_1 + L_2$ as follows:

• We construct the TG for L_1L_2 as follows:

 $\bullet\,$ We construct the TG for L_1^* as follows:

Remarks:

- The technique given in the tapes of lectures 11 and 12 is wrong.
- To see why, consider the following FA for the language $L = \{$ words having an odd number of b's $\}$

- Note that L^* is the language consisting of Λ and all words having at least one b, which has regular expression $\Lambda + (\mathbf{a} + \mathbf{b})^* \mathbf{b} (\mathbf{a} + \mathbf{b})^*$ (which was also wrong in the tape of lecture 12).
- If we use the (incorrect) technique to construct a TG for L^* given in the taped lecture, then we get the following:

- However, the above TG accepts the string $a \notin L^*$.
- On the other hand, if we use the method presented above to construct a TG for L^* , then we get the following correct TG:

Example: alphabet $\Sigma = \{a, b\}$ $L_1 = \text{all words ending with } a$

 $L_2 =$ all words containing the substring aa.

Regular expressions:

$$\mathbf{r}_1 = (\mathbf{a} + \mathbf{b})^* \mathbf{a}$$

$$\mathbf{r}_2 = (\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{a} (\mathbf{a} + \mathbf{b})^*$$

FA1:

FA2:

$$r_1 + r_2 = (a+b)*a + (a+b)*aa(a+b)*$$

TG for r₂*

9.2 Complementation of Regular Languages

Definition: If L is a language over the alphabet Σ , we define L' to be its complement, which is the language of all strings of letters from Σ that are not words in L, i.e., $L' = \{ w \in \Sigma^* : w \notin L \}$.

Example: alphabet $\Sigma = \{a, b\}$

 $L = \text{language of all words in } \Sigma^* \text{ containing the substring } abb.$

 $L' = \text{language of all words in } \Sigma^* \text{ not containing the substring } abb.$

Note that

$$(L')' = L$$

Theorem 11 If L is a regular language, then L' is also a regular language. In other words, the set of regular languages is closed under complementation.

Proof.

- ullet If L is a regular language, then there exists some FA that accepts L by Kleene's Theorem.
- Create new finite automaton FA' from FA as follows:
 - \blacksquare FA' has same states and arcs as FA.
 - Every final state of FA becomes a nonfinal state in FA'
 - Every nonfinal state of FA becomes a final state in FA'
 - \blacksquare FA' has same start state as FA.
- FA' accepts the language L'.
- Kleene's Theorem implies that L' is a regular language.

Example: $\Sigma = \{a, b\}$

L= all words with length at least 2 and second letter b $L^\prime=$ all words with length less than 2 or second letter a

FA:

FA':

9.3 Intersections of Regular Languages

Theorem 12 If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is a regular language. In other words, the set of regular languages is closed under intersection.

Proof.

• DeMorgan's Law for sets states that

$$L_1 \cap L_2 = (L_1' + L_2')'$$

$$L_1' + L_2'$$

- Since L_1 and L_2 are regular languages, Theorem 11 implies that L'_1 and L'_2 are regular languages.
- Theorem 10 then implies that $L'_1 + L'_2$ is a regular language.
- \bullet Theorem 11 then implies that $(L_1'+L_2')'$ is a regular language.

Example: alphabet $\Sigma = \{a, b\}$ $L_1 = \text{all words with length} \geq 2 \text{ and second letter } b$ $L_2 = \text{all words containing the substring } ab.$

$$r1 = (a+b)b(a+b)*$$
 $r2 = (a+b)*ab(a+b)*$

FA for (L1'+L2')':

As an exercise, we will now derive a regular expression for $L_1 \cap L_2$ using our FA for $(L'_1 + L'_2)'$ and our algorithm from Kleene's theorem:

Proof. (another for Theorem 12)

- In proof of Kleene's theorem, we showed how to construct FA_3 that is the union of FA_1 and FA_2 .
- Suppose states of FA_1 are x_1, x_2, \ldots
- Suppose states of FA_2 are y_1, y_2, \ldots
- We do the same construction of FA_3 except we now make a state in FA_3 a final state only if both the corresponding x and y states are final states.
- Then FA_3 accepts only words that are accepted by both FA_1 and FA_2 .

Example: alphabet $\Sigma = \{a, b\}$

 $L_1 = \text{all words with length} \geq 2 \text{ and second letter } b$

 $L_2 = \text{all words containing the substring } ab.$

