Bagging

Statistical Learning

Master in Big Data. University of Santiago de Compostela

Manuel Mucientes

Bagging

- Bagging or bootstrap aggregation
- Technique to reduce the variance of an estimated prediction function
- Works especially well for high-variance, low-bias procedures
 - Example: trees
 - Split training in two parts at random
 - Fit a tree to both halves: results could be quite different
- Given a set of n independent observations Z_1 , ..., Z_n , each with variance σ^2 : $var(\bar{Z}) = \sigma^2/n$
 - Averaging a set of observations reduces variance

Bagging (ii)

First approach:

- Use many training sets
- Build a separate prediction model for each training set
- Average the resulting predictions

$$\hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$

Not practical: we do not have multiple training sets

Bagging:

- Use bootstrap to take samples from the training set
 - Generate *B* different bootstrapped training sets
- Train a model on each bth training set
- Average all the predictions
- For classification: majority vote

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

Random Forest (RF)

- Boosting appears to dominate bagging in most problems
- RF:
 - Substantial modification of bagging
 - Builds a large collection of trees and averages them
 - Reduce the variance by averaging many noisy but approximately unbiased models
 - Trees are ideal candidates for bagging:
 - Capture complex information
 - If grown sufficiently deep, have relatively low bias
 - Performance similar to boosting, but simpler to train and tune

Random Forest (ii)

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

Random Forest (iii)

- Bagging with trees:
 - Bias of bagged trees is the same as that of individual trees
 - The only hope of improvement is through variance reduction
- Boosting of trees:
 - Trees are grown on an adaptive way to remove bias
- In bagging, as B increases the variance reduces, but up to a limit:
 - For B large, the correlation of pairs of bagged trees limits the benefits of averaging
 - i.i.d. random variables: $\frac{1}{R}\sigma^2$
 - i.d. (identically distributed) random variables: $\rho\sigma^2 + \frac{1-\rho}{R}\sigma^2$
 - σ^2 : variance of a tree
 - ρ: positive pairwise correlation of two trees

Random Forest (iv)

- Idea in RF: improve variance reduction of bagging
 - Decreasing the correlation between trees
 - Without increasing variance too much
- Radom selection of input variables as candidates for splitting
 - Typical value for m: \sqrt{p}
 - Reducing m will reduce the correlation between any pair of trees:
 - Reduces the variance of the average
 - This does not mean that the error improves

Number of predictors for splitting

- The best value for m depends on the problem: tuning parameter
 - $\blacksquare \sqrt{p}$ is a reasonable choice
- Example: 15-class gene expression data

© Manuel Mucientes Statistical Learning: Bagging 10

Out of Bag (OOB) error

- OOB samples: for each observation $z_i = (x_i, y_i)$ construct the output by averaging those trees corresponding to bootstrap samples in which z_i did not appear
- OOB error estimate is almost identical to that of N-fold crossvalidation
- With OOB, RF can be fit in one sequence

11

RF and overfitting

- When the number of variables is high, but the fraction of relevant variables is small, RF is likely to perform poorly with small m
- If the number of relevant variables increases, RF is very robust to an increase in the number of noise variables
- Example: probability to select a relevant variable in any split for $m = \sqrt{p}$
 - (6, 100) gives 0.46 vs. (2, 100) gives 0.19

RF and overfitting (ii)

- RF can overfit for large B
- Small gains in performance by controlling the depths of the individual trees in RF
 - Full-grown trees seldom cost much
 - One less tuning parameter
- Example:
 - Low increase in error for deeper trees

14

Bibliography

- T. Hastie, R. Tibshirani, y J. Friedman, The elements of statistical learning. Springer, 2009.
 - Chapter 15
- G. James, D. Witten, T. Hastie, y R. Tibshirani, An Introduction to Statistical Learning with Applications in R. Springer, 2013.
 - Chapter 8, Sec. 8.2