

Jamming and physical layer attacks

Panos Papadimitatos

Networked Systems Security Group www.ee.kth.se/nss

Wireless Communication (WCOM)

Unintentional jamming or Interference

- Finite usable frequency spectrum
- Wireless networks, Bluetooth, and microwave ovens are close enough to interfere with each other

Frequency spectrum

Band name	Frequency	Example uses
LF, Low frequency	30-300 kHz	Navigation, time signals, AM longwave broadcasting, RFID, amateur radio
MF, Medium frequency	300-3000 kHz	AM mediumwave broadcasts, amateur radio, avalanche beacons
HF, High frequency	3-30 MHz	Shortwave broadcasts, citizens' band radio, amateur radio and over-the-horizon aviation
VHF, Very high frequency	30-300 MHz	FM, television broadcasts and line-of-sight aircraft communications. Land Mobile and Maritime Mobile communications, amateur radio, weather radio
UHF, Ultra high frequency	300-3000 MHz	Television broadcasts, microwave ovens, microwave devices/communications, mobile phones, wireless LAN, Bluetooth, ZigBee, GPS, FRS and GMRS radios, amateur radio

src: Wikipedia, Radio spectrum

Frequency spectrum (cont'd)

- Frequency bands reserved for a particular use
 - Government
 - Specific technology
 - E.g., GSM and other cellular network bands
- Frequency bands are more or less free-to-use
 - Industrial, scientific and medical (ISM) bands, e.g., 2.45 GHz
 - Wi-Fi and other popular technologies operate in the ISM band
 - Built to resist interference
- Differences between regions and countries

Frequency spectrum (cont'd)

Wireless networks we deal with

src: United States Department of Commerce

Error Control Coding (ECC)

- Introduce redundancy to handle errors
 - Use more data to say the same thing
- Mitigate interference or partial jamming
- Many types; for example:
 - Repetition codes
 - Parity
 - Cyclic redundancy check (CRC)
 - Forward error correction, e.g.,
 - Hamming
 - Erasure code

ECC: Parity bit

- Can detect one bit error
- Count number of ones
 - Even or odd parity
 - Make the entire number of bits even (with the parity bit)
 - E.g., even parity:
 - Set the parity bit to "1" if # of 1's is odd, to "0" if even

• Example:

- Want to send A, 1000001
- Even number of ones, 0 parity bit
- Send 1000001**0**
- Receive E, 10001010
- Odd number ones, so there was an error

ECC: Cyclic Redundancy Check

Cyclic redundancy check (CRC)

- Uses polynomial division to detect errors
 - $m(x) x^n = q(x) g(x) + r(x)$
 - Message m(x)
 - Generator polynomial g(x) of degree n
 - Reminder r(x) is the CRC value
- Easy to implement in hardware
- Parity check is a CRC with g(x) = x + 1

ECC: Hamming codes

- Example is the Hamming(7,4)
- Encodes 4 bits of data to 7 bits code words
- Can detect up to two bit errors, and correct one
- Can be seen as a constellation of parity bits

ECC: Hamming(7,4)

- Four data bits
 - d1, d2, d3, d4
- Three parity bits
 - p1, p2, p3

Sent Message

- Error introduced
- Two parity checks fail
- This error can be corrected

src: Wikipedia, Hamming(7,4)

ECC: Erasure codes

- Erasure codes have rate r=k/n
 - Data length k
 - Code word length n
- Can recover data from a number of errors and/or erasures
- Reed-Solomon
 - Can correct up to (n-k)/2 errors and/or erasures
 - Used in CD, DVD, BluRay, QR codes ...

Jamming

- Disrupting communication
- Concern mostly for wireless networks
- Long-known problem
- Deliberate interference

src: Spaceballs

Jamming (cont'd)

- Numerous commercially available devices (jammers)
 - Against WiFi, GSM, PCS, GPS, Bluetooth
- Applications in law enforcement, anti-terrorism, military operations

Jamming (cont'd)

Varying transmission power

Violation of regulations

Different types of jamming

Barrage jamming

Swept-spot jamming

Multi-spot jamming

Anti-jamming actions

- Handle interference
 - Correct errors, e.g., error correcting codes (at a higher layer)
 - Different frequency and modulation techniques
 - Increase transmission power
- Effective against unintentional interference
- Effective against jamming up to a point
- Alternative: React to jamming
 - Avoid jammer
 - Localize and remove jammer

Anti-jamming actions (cont'd)

- Popular technologies operate with:
 - Multiple channels, e.g., IEEE 802.11a/b/g/n, IEEE 802.15.4
 - DSSS, FHSS, OFDM
- Resilience depends (primarily) on:
 - Pre-established knowledge
 - Channel hopping pattern
 - Spreading codes
 - Spread spectrum communication parameters
 - Jammer strength (jammer to signal ratio)

Robust Antennas

Robust antenna and receiver designs (antenna arrays)

src:www.aero.org

Direct Sequence Spread Spectrum (DSSS)

- Modulate the signal x(t) with a wide-band pseudo-noise signal c(t)
 - x'(t) = x(t)c(t)
- DSSS makes signal detection harder
- DSSS creates a signal that more resembles white noise
- Is harder to jam the whole signal
- Used in e.g. 802.11b

DSSS (cont'd)

Figure 15.1-1 DSSS transmitter system and spectra.

src: Carlson, Communication Systems

DSSS (cont'd)

src: Poisel, Modern Communications Jamming Principles and Techniques

Orthogonal Frequency-Division Multiplexing (OFDM)

- OFDM is a specialized FDM with orthogonal carrier signals
- Used, e.g., in 802.11g and 802.11n
- Easy interference rejection/avoidance

Anti-jamming actions (cont'd)

- We want to avoid the jammer
- System diversity
 - Multiple channels available
 - Use each channel for a period of time
 - Then, "jump" to another channel
 - Assumption: the jammer is constrained
 - n available channels
 - The jammer can prevent communication (jam) in up to t < n channels

Anti-jamming actions (cont'd)

We want to avoid the jammer

 Can we predict the frequencies the jammer will jam?

 Can the jammer predict the frequencies we will transmit on?

Power

Frequency-hopping spread spectrum (FHSS)

- Transmit over a part of the available bandwidth for a short period of time
- Used in Bluetooth and is common in military radio.

FHSS (cont'd)

- FHSS patterns should be hard to determine
 - Essentially a secret key
- Adaptive FHSS patterns
 - Choose appropriate channels

Bluetooth FHSS

- 79 communication channels
- Used as Adaptive Frequency Hopping (AFH)

FHSS (cont'd)

- Bootstrapping without pre-shared information?
 - Uncoordinated Frequency Hopping
 - Random FHSS for both sender and receiver; the sender hops much faster than the receiver
 - Transmission of data fragments, from which the receiver has to reconstruct the message
 - Communication possible when both sender and receiver are simultaneously at the same channel

Jamming (cont'd)

- Bottom line: Jammer can overpower receivers
 - Technology known to adversary
 - Sufficiently high transmission power
 - Sufficient proximity to victims

Jamming (cont'd)

src: Graphic by Tektronix

Anti-jamming actions (cont'd)

- Jammer localization
- Detect the location and remove the jammer (physically)

 Determine the jamming signal direction from multiple points, using either directional antennas or time/frequency difference of arrival.

Jammer localization: TDOA

- TDOA: Time Difference of Arrival
- Two received signals

$$-x1(t) = s(t)$$

$$- x2(t) = s(t + \Delta)$$

 Can be cross-correlated to find a location hyperbola

$$- r(\tau) = E[x1(t) x2(t+\tau)]$$

Jammer localization: TDOA

(cont'd)

 With three receivers, one location can be determined

Jammer localization: TDOA (cont'd)

With three receivers, one location can be determined

Jammer localization: TDOA

(cont'd)

Example of cross correlation

Jammer localization: FDOA

- Frequency Difference of Arrival (FDOA)
 - Also called Differential Doppler
- Works in a similar way as TDOA, but looks at frequency shifts
- Can be combined with TDOA
- Good for fast-moving targets

Impact of Jamming

 Presence of jammer => Wireless links down within its zone of influence

Impact of Jamming (cont'd)

- Jamming or a stronger transmitter can be used as a tool for other attacks
- Those who scream the loudest are heard
- Receivers miss information intended for them
- Intelligent use of jamming
 - Erase messages that 'count' more

Impact of Jamming (cont'd)

- Jamming can be used against any communication
 - See the lectures on Secure Routing/Secure communication

Physical layer attacks

- Adversaries can use a vulnerability at the physical layer
- Attack at a different layer
 - Achieve a goal other than denial of service at the physical layer
- Exploit a vulnerability that is not related only to physical layer functionality
- Examples
 - IMSI catcher
 - SSID overtake
 - Packet (in packet) injection
 - Relaying, localization/distance manipulation (covered in ANSS)

IMSI-catcher

- IMSI: International Mobile Subscriber Identity
- GSM mobiles will connect to the strongest signal
- A Man-In-The-Middle (MITM) attack can be launched this way
 - Encryption is optional
 - Some countries do not use GSM encryption at all

IMSI-catcher (cont'd)

- The mobile will think it is talking to the base station
- Will accept to turn the encryption off
- Rohde & Schwarz has a patent on this
 - EP1051053: Method for identifying a mobile phone user or for eavesdropping on outgoing calls

SSID/MAC overtake

- Send a stronger signal than the base station
- Attract network traffic
- Same with clients and Media Access Control (MAC) address
 - MAC filtering does very little for your WLAN security

Packet injection

- Packets can be injected inside legitimate packets
- If the original header is missed/not received
 - Packets in packets (PIP)

Packet injection (cont'd)

- Further reading: Goodspeed et al, Packets in Packets:
 Orson Welles' In-Band Signaling Attacks for Modern Radios
- The title analogy comes from a 1938 radio show
 - War of the Worlds
 - Listeners who tuned in late thought it was a newscast
 - Thus they thought they were being invaded by aliens
 - Because they missed the header saying it was a theater

Packet injection (cont'd)

Can be used remotely, e.g. a client can be made to download a

Packet injection (cont'd)

- Packets in packets (PIP)
- If the initial header is missed, the receiver will think that the PIP header is the correct one
- Example from the ZigBee protocol:

src: Goodspeed et al, Packets in Packets: Orson Welles' In-Band Signaling Attacks for Modern Radios

Jamming at upper layers

- Flooding a CSMA/CA network with requests to send can cause a Denial of Service attack
 - See the lecture on (Distributed) Denial of Service

src: Pixar, Finding Nemo

Summary

- Usable frequency spectrum is finite
- Jamming, both intentional and accidental, is a problem
- Jamming can be a tool for more complicated attacks
- Ways to mitigate
 - Physical layer techniques
 - Avoiding the jamming
 - Locating and removing the jammer