

Dynamique

Une tige (AB) homogène de masse m, de longueur 2a et de centre d'inertie G glisse sans frottement dans un anneau (A) circulaire et de rayon r.

Le système reste dans le plan (xOy)

Le repère $(\vec{x}, \vec{y}, \vec{z})$ est lié à la partie fixe

L'anneau (A) roule sans glisser en I sur l'axe x avec une vitesse angulaire ω constante.

Le repère $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{z})$ est lié à la tige (AB)

On pose : $\theta = (\overrightarrow{CI}, \overrightarrow{CG})$; $\overrightarrow{OI} = x.\overrightarrow{x}$; $\overrightarrow{g} = -g.\overrightarrow{y}$; $\overrightarrow{CG} = L.\overrightarrow{u}$

- 1) Déterminer le vecteur $\overrightarrow{\Omega_{AB}}_{/R}$ le vecteur rotation de la barre (AB) par rapport au repère
- 2) Déterminer le vecteur vitesse du point C : $\overrightarrow{V_{C_{/R}}}$
- 3) Déterminer le vecteur vitesse du point G : $\overrightarrow{V_{G}}_{/R}$
- 4) Ecrire le torseur cinématique de la barre (AB) : $\{v_{AB/R}\}$
- 5) Déterminer le vecteur accélération du point G : $\overrightarrow{arGamma_{G/R}}$
- 6) Démontrer que la matrice d'inertie de la barre (AB) en G est :

$$I(G, barre) = \begin{bmatrix} \frac{ma^2}{3} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & \frac{ma^2}{3} \end{bmatrix}_{(u,v,z)}$$

- 7) Déterminer le moment cinétique en G $\overline{\sigma_{G~tige(AB)/R}}$ de la barre (AB) par rapport à R
- 8) Déterminer le moment dynamique en G $\overline{\delta_{G~tige(AB)/R}}$ de la barre (AB) par rapport à R
- 9) Ecrire le torseur dynamique de la tige (AB) $\left\{\mathcal{D}_{AB/R}\right\}$ en G
- 10) En appliquant le théorème du moment dynamique au point C dans le repère R, montrer que l'on obtient l'équation : $\ddot{\theta} \left[L + \frac{a^2}{3L} \right] + \ddot{x}.\cos\theta + g.\sin\theta = 0$

11) Justifier que les actions de contact en A ($\overrightarrow{R_A}$) et en B ($\overrightarrow{R_B}$) s'écrivent :

$$\overrightarrow{R_A} = R_A \cdot \overrightarrow{y_A} \text{ et } \overrightarrow{R_B} = R_B \cdot \overrightarrow{y_B}$$

- 12) Ecrire $\overrightarrow{R_A}$ et $\overrightarrow{R_B}$ dans le repère $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{z})$ (on exprimera α en fonction de r et de a)
- 13) Faire le bilan des actions appliquées à la barre (AB) puis appliquer le théorème de la résultante dynamique, et déterminer les actions de contact aux points A et B (on fera les projections sur le repère $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{z})$
- 14) Calculer l'énergie cinétique de la barre (AB) T_(barre AB/R)
- 15) Calculer les travaux des forces extérieures exercées sur la barre (AB)
- 16) En appliquant le théorème de l'énergie cinétique retrouver l'équation de la question 10)