

PL₁

ASSUNTO - Algoritmia

OBJETIVOS GERAIS

Analisar e conceber algoritmos para resolução computacional de problemas

OBJETIVOS ESPECÍFICOS:

- Compreender e utilizar o conceito de variável e algoritmo na resolução computacional de problemas.
- Compreender e utilizar pseudocódigo e fluxogramas na descrição de algoritmos

CONTEÚDO DA AULA

Exercício 1

Calcular a percentagem de rapazes e raparigas existentes numa turma.

Dúvidas:

- Qual o tamanho da turma?
- Quantos rapazes?
- Quantos raparigas?
- Como se calcula uma percentagem?

Abordagem:

- → Perguntar a quantidade de rapazes e raparigas.
- → Total = rapazes + raparigas
- → Percentagem = valor parcial / total

PL₁

```
Uma proposta de resolução
ED: rapazes, raparigas, total INTEIRO
     percentagemDeRapazes, percentagemDeRaparigas REAL
     LER(rapazes, raparigas)
     total ← rapazes + raparigas
     percentagemRapazes ← rapazes / total
     percentagemRaparigas ← raparigas / total
     ESCREVER("percentagem de rapazes = ", percentagemDeRapazes)
     ESCREVER("percentagem de raparigas = ", percentagemDeRaparigas)
FIM
```


PL1

Exercício 2

Uma florista utiliza tulipas e rosas na execução de ramos de flores. O preço das flores varia com frequência. O preço unitário de cada flor é conhecido apenas quando é efetuado o pedido do ramo. Um cliente ao pedir o ramo de flores define a quantidade de rosas e tulipas que pretende. Calcule o preço final do pedido do cliente.

Dúvidas:

- Quantas rosas e quantas tulipas?
- Qual o preço unitário das rosas e das tulipas?
- Como se calcula o valor do ramo?

Abordagem:

- → Perguntar a quantidade de rosas e tulipas.
- → Perguntar o preço unitário das rosas e das tulipas
- → Total = rosas * preço unitário das rosas + tulipas * preço unitário das tulipas

```
Uma proposta de resolução

ED: rosas, tulipas INTEIRO
    precoRosa, precoTulipa, total REAL

INICIO

LER(rosas, tulipas)

LER(precoRosa, precoTulipa)

total ← rosas * precoRosa + tulipas * precoTulipa

ESCREVER("preço do ramo = ", total)
```

Representação do algoritmo em fluxograma

PL1

PL1

Exercício 3

Pretende-se calcular quantos litros é possível armazenar num vasilhame cilíndrico, conhecidos o raio da base e a altura do cilindro.

V = Área da base x altura

conversão 1 m³ = 1000L

Dúvidas:

- Como se calcula o volume do cilindro?
- Como se converte m3 para litros?

Abordagem:

- → Perguntar o raio da base e a altura do cilindro.
- → Calcular a área da base do cilindro.
- → Calcular o volume.
- → Converter metros cúbicos em litros.

```
Uma proposta de resolução

ED: A, r, h, V, litros REAL

INICIO

LER(r, h)

A ← 3.1415 * r * r

V ← A * h

litros ← V * 1000

ESCREVER("capacidade do cilindro = ", litros)

FIM
```

Representação do algoritmo em fluxograma

PL1

PL1

Exercício 4

Qual a distância a que se encontra uma trovoada? (https://www.ipma.pt/pt/educativa/faq/meteorologia/observacao/faqdetail.html?f=/pt/educativa/faq/meteorologia/observacao/faq_0009.html)

É possível determinar a distância a que está uma trovoada, medindo o intervalo de tempo entre a ocorrência do relâmpago e o instante em que se ouve o trovão. Como a velocidade da luz é de aproximadamente 300 000 000 m/s (1 079 252 849 km/h), o relâmpago é visível quase "instantaneamente". Contudo, como a velocidade do som no ar é substancialmente menor (1224 km/h), o trovão não se ouve em simultâneo.

Assim, a distância em metros ao local onde ocorreu a trovoada é obtida multiplicando a velocidade do som pelo intervalo de tempo, em segundos, entre o relâmpago e o trovão.

Por exemplo:

- se o intervalo é de 10 segundos, a trovoada está a 3 400 m (3,4 km);
- se a trovoada estiver a 5 000 m (5 km), o intervalo de tempo é de 14,7 s.

Dúvidas:

- Qual é o tempo que decorre entre o momento que se avista o relâmpago e se ouve o seu som?
- Como se converte a velocidade do som de km/h para m/s?
- Qual a fórmula de cálculo?

Abordagem:

- → Perguntar o tempo que demora a ouvir-se o som.
- → Converter a velocidade dom som para m/s.
- → Multiplicar o tempo decorrido pela velocidade do som.

Uma proposta de resolução

```
ED: tempo, velocidadeDoSom, distancia REAL
INICIO

LER(tempo)

velocidadeDoSom ← 1224 * 1000 / (60*60)
distancia ← tempo * velocidadeDoSom

ESCREVER("distancia da trovoada = ", distancia)
FIM
```


PL₁

Representação do algoritmo em fluxograma

Exercício 5

Calcular a altura de um edifício usando a gravidade (https://minilua.com/tres-metodos-diferentes-medir-altura-predio/)

Suba no edifício e lá do alto largue uma pedra. Cronometre o tempo que a pedra vai levar para atingir o chão. De seguida use a Equação do movimento variado (D=V₀.t +(a.t²)/2) para descobrir a distância percorrida pela pedra (que nada mais é do que a altura do prédio).

D - é a distância que a pedra vai percorrer (a altura do prédio).

 V_0 - é a velocidade inicial da pedra, que, como é largada, vai ser igual a zero.

a - é a aceleração da pedra, que neste caso é a gravidade da terra e vale 9,8 m/s².

t - é o tempo cronometrado no relógio (em segundos).

exemplo para uma pedra que demora 2s a chegar ao chão:

PL1

Exercício 6

Calcular a altura de um edifício usando o teorema de Tales (https://minilua.com/tres-metodos-diferentes-medir-altura-predio/)

Nesta abordagem vamos usar o Teorema de Tales, que nada mais é do que comparação de dois triângulos que são semelhantes. Esta abordagem só funciona em dias de sol 😉

Imagine o edifício e a respetiva sombra. Coloca-te ao lado deste edifício, de forma a apanhares sol. O edifício projeta uma sombra no chão que é necessário saber quanto mede. O teu corpo também projeta uma sobra no chão, mede-a também. Como conhece a tua altura, então isto basta para aplicar o Teorema de Tales que nada mais é do que comparar a tua altura com a altura do edifício através da sombra que vocês projetam.

Exemplo para uma pessoa que mede 2m de altura:

Exercicio /

Calcular a distância percorrida pelo Zé.

Dois amigos, O Manel e o Zé, são dois fanáticos por running. Adoram correr sempre que podem. Em tom de desafio, resolveram correr a maratona do Porto para verificar qual era o que estava mais em forma!

Correram juntos, lado a lado, até o Zé desistir. O Manel completou os 42195 m da prova em 4 horas, 2 minutos e 10 segundos. O Zé desistiu ao fim de 1 hora e 5 minutos de prova. Quantos km correu o Zé?

A velocidade média de um movimento é calculada pela razão entre o deslocamento percorrido e o intervalo de tempo.

Fórmula da velocidade média:
$$V = \frac{\Delta S}{\Delta V}$$

v – velocidade média

 ΔS – deslocamento

 Δt – intervalo de tempo

PL₁

Exercício 8

Dois operários mantêm um poste vertical esticando dois cabos de aço: um com 40 m de comprimento e o outro com 60 m. Os cabos fazem entre si um ângulo de 60°.

Calcula a distância a que se encontram os dois operários.

Na trigonometria, a lei dos cossenos ou Teorema de Carnot, relaciona os comprimentos dos lados de um triângulo ao cosseno de um de seus ângulos.

Teorema de Carnot ou Lei dos Cossenos

Fixada uma unidade de comprimento e dado um triângulo [ABC], de lados de medida $a = \overline{BC}$, $b = \overline{AC}$ e $c = \overline{AB}$, e sendo agudos os ângulos α , β e γ , de vértices em A, B e C, respetivamente, tem-se que:

•
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

$$b^2 = a^2 + c^2 - 2ac \cos \beta$$

$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

