IN THE CLAIMS

(currently amended) A breathing assistance device,
comprising:

a turbine to generate a flow of pressurised respiratory gas,

a duct <u>adapted</u> to carry the pressurised gas to a patient, and

control means for controlling gas pressure capable of elaborating computing a pressure setting for the turbine,

wherein the turbine is associated connected to a speed sensor capable of acquiring a signal corresponding to a rotation speed of a rotating element of the turbine, and the control means includes means of calculation connected to said speed sensor to elaborate compute the pressure setting using only said speed signal the pressure setting and send the pressure setting to the turbine, said means of calculation being adapted to detect new inspiratory or expiratory cycles using only said speed signal, and consequently adapting a level of said pressure setting.

- 2. (previously presented) A device as claimed in claim 1, wherein said speed sensor implements a Hall effect sensor.
- 3. (previously presented) A device as claimed in claim 1, wherein said speed sensor is a sensor capable of acquiring a turbine speed signal directly connected to the rotation speed of the rotating element of the turbine.
- 4. (currently amended) A device as claimed in claim 1, wherein the means of calculation elaborates computes the pressure setting according to variations in speed.

5. (cancelled)

6. (currently amended) A device as claimed in claim 51, wherein said means of calculation is associated to further comprising a program for detecting an inspiratory cycle using a comparison between:

a memorized speed value memorized stored in a memory of the device, said speed value being extrapolated using recent values of measured speeds, and

an actually measured instantaneous speed.

7. (currently amended) A device as claimed in claim <u>51</u>, wherein said means of calculation is associated to <u>further</u> comprising a program for detecting an inspiratory cycle using a comparison between:

a memorized speed value memorized to red in a memory of the device, said speed value being representative of a recent speed bearing, and

an actually measured instantaneous speed.

8. (currently amended) A device as claimed in claim 6, wherein said means of calculation is associated to further comprising a program for detecting an inspiratory cycle using a comparison between:

a memorized speed value memorized stored in a memory of the device, said speed value being representative of a speed at the an end of an expiratory cycle, and

an actually measured instantaneous speed.

9. (currently amended) A device as claimed in claim 6, further comprising wherein said means of calculation is associated to several programs for detecting an inspiratory cycle operating simultaneously, and is capable of claborating

<u>computing</u> a pressure setting corresponding to a start of inspiratory cycle as soon as one of said programs for detecting the inspiratory cycle has signalled a start of inspiration.

- 10. (currently amended) A device as claimed in claim 6, wherein the program for detecting the inspiratory cycle is associated to disabling means is configured to be disabled for a determined duration following the a start of a new expiratory cycle.
- 11. (currently amended) A device as claimed in claim 51, wherein the means of calculation is associated to further comprising a program for detecting an expiratory cycle.
- 12. (currently amended) A device as claimed in claim 11, wherein said program for detecting the expiratory cycle uses a comparison between:
- a memorized maximum turbine speed stored in a memory of the device and corresponding to an inspiratory cycle, and an actually measured instantaneous speed.
- 13. (previously presented) A device as claimed in claim 1, wherein said means of calculation includes a microprocessor connected to the speed sensor and to a turbine pressure setting input.
- 14. (currently amended) A device as claimed in claim 1, wherein the device further includes a pressure-regulating loop comprising:
 - a pressure sensor on the duct, and
- a circuit receiving the pressure setting coming from the means of calculation as well as a pressure measured by the pressure sensor, said circuit being capable of elaborating

<u>computing</u> an instantaneous rotation speed setting for the turbine, said circuit being connected to a turbine speed setting input.

15. (currently amended) A method for regulating a pressure of a respiratory gas delivered by a turbine to a patient, the method comprising:

providing a signal representative of a rotation speed of a rotating element of the turbine; and

 $\frac{\text{elaborating}}{\text{computing}} \text{ a pressure setting for the}$ turbine based $\frac{\text{only}}{\text{on}}$ on the signal representative of the rotation speed,-

said method being adapted to detect new inspiratory or expiratory cycles using only said signal, and of consequently adapting a level of the pressure setting.

16. (previously presented) A method as claimed in claim 15, wherein said signal corresponds to the rotation speed of the turbine rotor.

17. (cancelled)

- 18. (currently amended) A method as claimed in claim 1715, wherein the method implements a program for detecting an inspiratory cycle using a comparison between:
 - a memorized speed value stored in a memory, said speed value being extrapolated from recent values of measured speeds, and

an actually measured instantaneous speed.

19. (currently amended) A method as claimed in claim $\frac{1715}{}$, wherein the method implements a program for detecting an inspiratory cycle using a comparison between:

a memorized speed value stored in a memory, said speed value being representative of a recent speed bearing, and an actually measured instantaneous speed.

- 20. (currently amended) A method as claimed in claim 1715, wherein the method implements a program for detecting inspiratory cycles using a comparison between:
- a memorized speed value stored in a memory, said speed value being representative of a speed at the end of an expiratory cycle, and

an actually measured instantaneous speed.

- 21. (currently amended) A method as claimed in claim 18, wherein the method implements several programs for detecting inspiratory cycles operating simultaneously, and elaborates computes the pressure setting corresponding to an inspiratory flow as soon as one of said programs for detecting the inspiratory cycles has signalled the start of inspiration.
- 22. (currently amended) A method as claimed in claim 18, wherein the program for detecting inspiratory cycles is associated with a stopping disabled during a determined duration following the start of a new expiratory cycle.
- 23. (currently amended) A method as claimed in claim $\frac{1715}{}$, wherein the method implements a program for detecting expiratory cycles.
- 24. (currently amended) A method as claimed in claim 23, wherein said program for detecting expiratory cycle uses a comparison between:
- a memorized maximum turbine speed stored in a memory and corresponding to an inspiratory cycle, and

an actually measured instantaneous speed.