

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 2月21日

出 願 番 号 Application Number:

特願2003-043603

[ST. 10/C]:

Applicant(s):

[JP2003-043603]

出 願 人

セイコーエプソン株式会社

2003年10月20日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

PA04F305

【提出日】

平成15年 2月21日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

H01L 27/146

【発明者】

【住所又は居所】

長野県諏訪市大和三丁目3番5号 セイコーエプソン株

式会社内

【氏名】

谷戸 英則

【特許出願人】

【識別番号】

000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】

110000028

【氏名又は名称】

特許業務法人 明成国際特許事務所

【代表者】

下出 隆史

【電話番号】

052-218-5061

【手数料の表示】

【予納台帳番号】

133917

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0105458

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 固体撮像装置

【特許請求の範囲】

【請求項1】 フォトダイオードと光電荷検出用の絶縁ゲート型電界効果トランジスタとを有する単位画素が複数配列された画素アレイと、前記画素アレイの動作を制御する制御回路とを備える固体撮像装置であって、

前記フォトダイオードと前記絶縁ゲート型電界効果トランジスタとは、第1導電型の半導体基板上の第2導電型の半導体層内に形成された第1導電型のウェル領域を共有しており、

前記絶縁ゲート型電界効果トランジスタの前記ウェル領域内には、前記フォトダイオードに照射される光に応じて発生した所定の導電型の電荷を蓄積するための蓄積領域が形成されており、

前記制御回路は、前記半導体基板と前記半導体層とで構成される接合領域を順方向にバイアスされた状態とすることにより、前記蓄積領域に前記所定の導電型の電荷が所定量蓄積された状態とした後で、前記蓄積領域に蓄積されている前記所定の導電型の電荷を排出させるように制御することを特徴とする固体撮像装置

【請求項2】 請求項1記載の固体撮像装置であって、

前記絶縁ゲート型電界効果トランジスタは、

前記ウェル領域の表層に形成された第2導電型のソース拡散領域と、

前記ウェル領域の表層を除く前記半導体層の表層に形成された第2導電型のドレイン拡散領域と、

前記ドレイン拡散領域と前記ソース拡散領域との間の前記ウェル領域上にゲート絶縁膜を介して形成されたゲート電極と、

前記ゲート電極の下の前記ウェル領域の表層であって、第2導電型の不純物層 を有するチャネル領域と、

前記チャネル領域の下の前記ウェル領域内であってソース拡散領域の近辺に前記ウェル領域よりも高い不純物濃度を有し、前記蓄積領域を構成する第1導電型の高濃度埋込層と、を有し、

前記制御回路は、少なくとも前記ドレイン拡散領域に所定の電圧を印加して、 前記接合領域を順方向にバイアスされた状態とすることにより、前記蓄積領域に 前記所定の導電型の電荷が所定量蓄積された状態とした後で、前記蓄積領域に蓄 積されている前記所定の導電型の電荷を排出させるように制御することを特徴と する固体撮像装置。

【請求項3】 前記所定の導電型の電荷が所定量蓄積された状態は、蓄積可能な最大量の前記所定の導電型の電荷が前記蓄積領域に蓄積された飽和状態である請求項1または請求項2記載の固体撮像装置。

【請求項4】 第1導電型がp型で第2導電型がn型である場合には、前記所定の導電型の電荷は正孔である請求項1ないし請求項3のいずれかに記載の固体撮像装置。

【請求項5】 第1導電型がn型で第2導電型がp型である場合には、前記所定の導電型の電荷は電子である請求項1ないし請求項3のいずれかに記載の固体撮像装置

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、しきい値電圧変調方式によるMOS型の固体撮像素子に関する。

 $[0\ 0\ 0\ 2]$

【従来の技術】

携帯電話やディジタルカメラなど、小型のカメラを搭載した種々の電子機器が 普及しつつある。このようなカメラ向けの撮像素子の例として、しきい値変調型 撮像素子と呼ばれるMOS型の固体撮像素子が開発されている(例えば、特許文 献1参照。)。

[0003]

このしきい値変調型撮像素子は、同等の画素寸法および画素数を備えるCCD型固体撮像素子(CCD: Charge Coupled Device)と比べると、光感度はCCD型固体撮像素子に及ばないが、消費電力はCCD型固体撮像素子よりも低い。また、同等の画素寸法および画素数を備えるCMOS型固体撮像素子(CMOS

: Complementary Metal Oxide Semiconductor) と比べると、消費電力が同等であるのに対し、光感度が高いという特徴を有している。

[0004]

しきい値変調型撮像素子は、CMOS型固体撮像素子よりも光感度を高めて画 質を改善するために特殊な画素構造を有している。具体的には、CMOS型固体 撮像素子の1つの画素(以下、「単位画素」とも呼ぶ。)では、フォトダイオー ドで受光量に応じて光電変換された電荷(以下、「光電荷」とも呼ぶ。)を電圧 に変換(以下、「電荷電圧変換」と呼ぶ。)するとともに増幅するために、3個 ~4個のトランジスタが用いられるのに対し、しきい値変調型撮像素子の1つの 単位画素では、1個のトランジスタが用いられる。そして、この1個のトランジ スタには、汎用のMOSトランジスタとは異なる特殊な構造が採用されている。 具体的には、トランジスタ内にキャリアポケットと呼ばれるエネルギーのくぼみ (「井戸」とも呼ばれる。) が設けられている。このキャリアポケットは、例え ば、ホール(正孔)に対するポテンシャルが低くなる構造を有している。このた め、フォトダイオードで発生した光電荷のうち、ホール(以下、「光ホール」と も呼ぶ。)が蓄積される。トランジスタのしきい値は、このキャリアポケットに 蓄積される光ホールの個数に応じて変化し、このトランジスタにより構成される ソースフォロアのソース電位が変化する。従って、キャリアポケットに蓄積され た光ホールの個数に応じて変化するソース電位を読み出すことで受光量に応じた 画素データを検出することが可能である。

[0005]

【特許文献 1】

特開平11-195778号公報

[0006]

【発明が解決しようとする課題】

上記しきい値変調型撮像素子において、1枚の画像を撮像する際には、撮像前に、各画素のキャリアポケットに蓄積されている光電荷を排出(リセット)することが行われる。前の撮像によって蓄積された光電荷が残存していると、残存分の光電荷が加算されることになり、検出された各画素データに残像として悪影響

[0007]

この発明は、従来技術における上述の課題を解決するためになされたものであり、しきい値変調型固体撮像素子において、前の撮像において蓄積された光電荷による残像によって発生する画質の劣化を抑制することが可能な技術を提供することを目的とする。

[8000]

【課題を解決するための手段およびその作用・効果】

上述の課題の少なくとも一部を解決するため、本発明は、フォトダイオードと 光電荷検出用の絶縁ゲート型電界効果トランジスタとを有する単位画素が複数配 列された画素アレイと、前記画素アレイの動作を制御する制御回路とを備える固 体撮像装置であって、

前記フォトダイオードと前記絶縁ゲート型電界効果トランジスタとは、第1導電型の半導体基板上の第2導電型の半導体層内に形成された第1導電型のウェル領域を共有しており、

前記絶縁ゲート型電界効果トランジスタの前記ウェル領域内には、前記フォトダイオードに照射される光に応じて発生した所定の導電型の電荷を蓄積するための蓄積領域が形成されており、

前記制御回路は、前記半導体基板と前記半導体層とで構成される接合領域を順 方向にバイアスされた状態とすることにより、前記蓄積領域に前記所定の導電型 の電荷が所定量蓄積された状態とした後で、前記蓄積領域に蓄積されている前記 所定の導電型の電荷を排出させるように制御することを特徴とする。

[0009]

上記発明の固体撮像装置によれば、撮像により蓄積領域に蓄積されている所定 の導電型の光電荷を排出する前に、あらかじめ、半導体基板と半導体層とで構成

5/

[0010]

なお、前記絶縁ゲート型電界効果トランジスタは、

前記ウェル領域の表層に形成された第2導電型のソース拡散領域と、前記ウェル領域の表層を除く前記半導体層の表層に形成された第2導電型のドレイン拡散領域と、前記ドレイン拡散領域と前記ソース拡散領域との間の前記ウェル領域上にゲート絶縁膜を介して形成されたゲート電極と、前記ゲート電極の下の前記ウェル領域の表層であって、第2導電型の不純物層を有するチャネル領域と、前記チャネル領域の下の前記ウェル領域内であってソース拡散領域の近辺に前記ウェル領域よりも高い不純物濃度を有し、前記蓄積領域を構成する第1導電型の高濃度埋込層とを有し、

前記制御回路は、少なくとも前記ドレイン拡散領域に所定の電圧を印加して、 前記接合領域を順方向にバイアスされた状態とすることにより、前記蓄積領域に 前記所定の導電型の電荷が所定量蓄積された状態とした後で、前記蓄積領域に蓄 積されている前記所定の導電型の電荷を排出させるように制御することができる

$\{0\ 0\ 1\ 1\}$

上記のように、少なくともドレイン拡散領域に所定の電圧を印加すれば、半導体基板と半導体層とで構成される接合領域を容易に順方向にバイアスした状態とすることができる。

[0012]

ここで、前記所定の導電型の電荷が所定量蓄積された状態は、蓄積可能な最大 量の前記所定の導電型の電荷が前記蓄積領域に蓄積された飽和状態であることが 好ましい。

[0013]

蓄積可能な最大量の所定の導電型の電荷が蓄積領域に蓄積された飽和状態はほ は一定であるので、蓄積領域に蓄積されている電荷の量にかかわらず、半導体基 板と半導体層とで構成される接合領域を順方向にバイアスした状態とすれば、蓄 積領域の蓄積状態を容易に飽和状態とすることができる。

$[0\ 0\ 1\ 4]$

なお、第1導電型がp型で第2導電型がn型である場合には、所定の導電型の 電荷は正孔である。また、第1導電型がn型で第2導電型がp型である場合には 、所定の導電型の電荷は電子である。

[0015]

【発明の実施の形態】

以下、本発明の実施の形態を実施例に基づいて以下の順序で説明する。

- A. 固体撮像装置素子の構成:
- B. 比較例の撮像動作:
 - B1. 蓄積期間:
 - B2. 読み出し期間:
 - B3. リセット期間:
 - B 4. 問題点:
- C. 実施例の撮像動作:
- D. 変形例:

$[0\ 0\ 1\ 6]$

A. 固体撮像装置の構成:

図1は、本発明の実施の形態に係るイメージセンサ(固体撮像装置)の全体の構成について示す説明図である。このイメージセンサ10は、画像の1画素に対応する単位画素100がマトリクス状に配列された画素アレイ20を有している

$[0\ 0\ 1\ 7]$

また、画素アレイ20の左側および下側には、画素アレイ20内でマトリクス 状に配列されている単位画素を駆動するための垂直制御回路30および水平制御 回路40が配置されている。また、垂直制御回路30および水平制御回路40の 間には、これらの動作の基準となるタイミング信号を生成するタイミングジェネ レータ50が配置されている。また、画素アレイ20の上側と右側には、各単位 画素100の動作に要求される各種電圧を生成する電圧制御回路60が配置され ている。また、水平制御回路40の右側には、撮像された画像データを出力する 出力回路70が配置されている。

[0018]

図2は、単位画素内における素子レイアウトの一例を示す概略平面図である。 図3は、図2のA-A線概略断面図である。単位画素100内には、フォトダイオード(PDS)111と光電荷検出用のnMOSトランジスタ(PDTr)112とが隣接して設けられている。

[0019]

図3に示すように、p型シリコンからなる基板121(以下、「p型基板」とも呼ぶ。)上に基板121よりも不純物濃度の薄いp型(以下、「pー型」と呼ぶ。)のシリコンをエピタキシャル成長させることにより、pー型基板層122が形成されている。p型基板121とpー型基板層122とが実質的なp型の半導体基板を構成している。なお、列方向の隣接する単位画素同士の境界には、pー型基板層122および基板表面に図示しない酸化膜を介して設けられた素子分離ゲート124による画素分離領域123が形成されている。この画素分離領域123により、列方向の各単位画素100は電気的に分離されている。行方向に隣接する単位画素同士の境界には画素分離領域123は設けられておらず、行方向の単位画素同士は1つのn型のウェル領域125(以下、「nウェル領域」と呼ぶ。)が共有化されている。なお、行方向に隣接する単位画素同士の境界に画素分離領域を設けるようにしてもよい。画素分離領域123のpー型基板層12

8/

2の表層に設けられた基板121よりも不純物濃度の濃いp型(以下、「p+型」と呼ぶ。)の不純物拡散領域122aは、隣接するnウェル領域125同士の分離度を高めるために設けられている。具体的には、表層部分で発生する隣接するnウェル領域125間のパンチスルーを防止する。

[0020]

また、nウェル領域125の1つの単位画素100に相当する領域内には、フォトダイオード111とnMOSトランジスタ112とで共有される一つのpウェル領域126が埋め込まれている。フォトダイオード111のpウェル領域126は光照射による電荷の発生領域を構成し、nMOSトランジスタ112のpウェル領域126は電荷の転送領域と蓄積領域とを構成している。

$[0\ 0\ 2\ 1]$

フォトダイオード111は、pウェル領域126と、nウェル領域125と、このpウェル領域126を挟むようにnウェル領域125の表層に形成された不純物拡散領域127とで構成されている。この不純物拡散領域127は、nウェル領域125よりも不純物濃度の濃いn型(以下、「n+型」と呼ぶ。)領域である。

[0022]

nMOSトランジスタ112は、リング状のゲート電極128を有しており、このリング状ゲート電極128はnウェル領域125に囲まれた構造を有している。このリング状ゲート電極128およびpウェル領域126を囲むnウェル領域125のいずれかの表層にn+型のドレイン拡散領域129が形成されている。また、リング状のゲート電極128の中央部にn+型のソース拡散領域130が形成されている。なお、ゲート電極128とゲート電極128の下のnウェル領域132との間には、ゲート絶縁膜128aが形成されている。ゲート電極128の下のpウェル領域132がチャネル領域となる。

[0023]

また、チャネル領域の下のpウェル領域126内には、ソース拡散領域130を囲むようにp+型のキャリアポケット131が形成されている。キャリアポケ

ット131については後述する。

[0024]

なお、図2の平面図に示された3つの黒塗りの四角形は、ゲート電極、ドレイン電極、ソース電極のコンタクト領域を示している。ただし、図3の断面図においては、これらのコンタクトを省略し、各電極の電圧をゲート電圧VG、ドレイン電圧VD、およびソース電圧VSとして示している。

[0025]

B. 比較例の撮像動作:

まず、実施例の撮像動作を示す前に、基本的な撮像動作を比較例として示す。 図4は、比較例としての1つの単位画素における撮像のシーケンスを示す説明図 である。図4に示すように、リセット期間(T1)、蓄積期間(T2)、信号出 力期間(T3)、リセット期間(T4)、ノイズ出力期間(T5)の5つの期間 を経て1回の撮像動作が実行される。このシーケンスを繰り返すことにより、繰 り返し撮像動作が実行される。なお、他の各単位画素も同様である。

[0026]

B 1. 蓄積期間:

図5は、蓄積期間の動作を示す説明図である。図5は、図3と同じ単位画素100の概略断面図を示している。蓄積期間(図4の期間T2)では、撮像する画像からの光を、各画素に対応する単位画素100のフォトダイオード111で受光して光電変換し、これにより発生した光ホールをpウェル領域126のキャリアポケット131に蓄積させる。

$[0\ 0\ 2\ 7]$

蓄積期間では、ゲート電圧VGとして2V、ドレイン電圧VDおよびソース電 EVSとして1Vをそれぞれの電極に印加して、nMOSトランジスタ112を オン状態とする。なお、ゲート電圧VG、ドレイン電圧VDおよびソース電圧VSとして印加される各電圧は、図1の電圧制御回路60に含まれる一般的な定電 圧発生回路において生成されて、垂直制御回路30および水平制御回路40を介して供給される。フォトダイオード111のnウェル領域125とpウェル領域 1 2 6 によるp n 接合は逆バイアス状態とされており、このp n 接合の接合界面

付近に空乏領域(例えば、図5のハッチング領域)が形成されている。

[0028]

空乏領域では、フォトダイオード111に入射した光を光電変換して、電子(光電子)とホール(光ホール)の対よりなる電荷(光電荷)を発生する。ここで 、光電荷のうち、光電子は、nウェル領域125に分布するようになり、ドレイン拡散領域129を介して排出される。一方、光ホールは、pウェル領域126 に分布するようになる。

[0029]

図6は、図5のB-B線断面におけるポテンシャル分布を示す説明図である。 縦軸はポテンシャルを表し、横軸は基板表面(界面)からの深さを表す。図6に示したように、pウェル領域126に比べてキャリアポケット131のポテンシャルは低くなっているので、発生した光ホールはキャリアポケット131に集められて蓄積される。

[0030]

B 2. 読み出し期間:

読み出し期間、すなわち、図4の期間T3における信号出力期間(S出力期間)は、蓄積期間において蓄積された光ホールに基づく撮像データを読み出す期間である。また、図4の期間T5におけるノイズ出力期間(N出力期間)は、光ホールが蓄積されていない状態におけるノイズデータを読み出す期間である。

[0031]

図7は、読み出し期間におけるnMOSトランジスタを示す説明図である。これらの読み出し期間では、図7に示すように、nMOSトランジスタ112をソースフォロア回路として動作させて、読み出された信号を出力する。

[0032]

読み出し期間では、nMOSトランジスタ112にバイアス電圧を印加する。 例えば、図7に示すように、ゲート電圧VGとして2Vをゲート電極128に印加し、ドレイン電圧VDとして3.3Vをドレイン拡散領域(ドレイン電極)1 29に印加する。ソース拡散領域(ソース電極)130には、図示しない負荷回路が接続される。このとき、ソース電圧VSは、nMOSトランジスタ112の

1

しきい値電圧をVTHとすると、下式のように表される。

[0033]

 $VS = VG - VTH \cdots (1)$

[0034]

ここで、しきい値電圧VTHは、キャリアポケット131に蓄積された光ホールの個数に応じて変化する。すなわち、しきい値VTHはホール数Nhpをパラメータとする関数 f(Nhp)で表される。

[0035]

従って、(1)式で表されるソース電圧VSは、蓄積されたホール数Nhpに応じて変化する。すなわち、ソース電圧VSはフォトダイオード111で受光された光の量に応じた電圧となり、図4の期間T3におけるS出力期間では撮像データが出力される。また、図4の期間T5におけるN出力期間ではノイズデータが出力される。

[0036]

なお、S出力期間(期間T3)で読み出された撮像データからN出力期間(期間T5)で読み出されたノイズデータを差し引くことにより、ノイズ成分を除去した撮像データを得ることができる。

[0037]

B3. リセット期間:

図8は、リセット期間の動作を示す説明図である。図8は、図5と同じ単位画素100の概略断面図を示している。図4の期間T1におけるリセット期間では、期間T2の蓄積期間において、フォトダイオード111で発生した光ホールを蓄積するために、あらかじめキャリアポケット131に残留しているホール(正孔)をp型基板121側に排出する。また、図4の期間T4におけるリセット期間は、期間T2の蓄積期間にあらかじめキャリアポケット131に蓄積したホールをp型基板121側に排出する。

[0038]

図9は、図8のB-B線断面におけるポテンシャル分布を示す説明図である。 縦軸はポテンシャルを表し、横軸は基板表面(界面)からの深さを表す。

[0039]

なお、リセット期間では、ゲート電極128、ドレイン拡散領域129およびソース拡散領域130に通常の動作電圧よりも高い電圧を印加する。例えば、ソース電圧VSとして0Vの初期値に対し4Vをソース拡散領域(ソース電極)130に印加する。ただし、p型基板121の基板電圧VSUBは、図示しない基板電極を介してGND(アース:0V)とされており、同様にp-型基板122の電位もほぼ0Vとされている。

[0040]

この時、ゲート電極128がフローティング状態であっても、ソース・ゲート間の容量カップリングにより、ゲート電圧 VGとして6Vを印加することができる。同時に、ゲート電極128下のチャネル領域が導通するため、ドレイン電圧 VDがフローティング状態であっても、ソース電圧 VSとしてソース拡散領域130に印加した4Vの電圧がほとんどそのままドレイン拡散領域129およびドレイン拡散領域129を含むnウェル領域125に印加される。

[0041]

このとき、図9に実線で示すように、基板表面(界面)側のポテンシャルが最も高く、基板表面側から深さ方向に沿ってポテンシャルが低くなる。これにより、キャリアポケット131に残留するホールを、キャリアポケット131よりもポテンシャルの低いp-型基板122およびp型基板121側に排出することができる。なお、図の破線は、図6に示した蓄積期間におけるポテンシャル分布を示している。

[0042]

B 4. 問題点:

上記比較例における撮像のシーケンスでは、以下に示す問題がある。図10は、リセット期間におけるリセット動作終了後の残留ホール数について示す説明図である。上述のように、キャリアポケット131から光ホールを排出することにより、キャリアポケット131に蓄積された光ホールをリセットする場合、キャリアポケット131に残留するホール数は、一般に時間をパラメータとする指数関数で表される。従って、蓄積ホール数の多少にかかわらず、残留ホール数を0

とすることは困難である。

[0043]

また、フォトダイオード111に入射する光の量に応じてキャリアポケット131の蓄積ホール数は変化し、入射光量が多いほど多く、入射光量が少ないほど少なくなる。このとき、同一のリセット期間内に排出されるホール数は、リセット開始時における蓄積ホール数の多いほうが多くなり、少ないほうが少なくなるが、残留ホール数も蓄積ホール数の多いほうが多くなり少ないほうが少なくなる。従って、蓄積ホール数、すなわち、入射光量に依存して、リセット期間内にキャリアポケット131から排出されない残留ホールの数も変化する。仮に、残留ホール数が一定であれば、この残留ホール数による影響はノイズデータとしてキャンセルすることができる。しかしながら、上述のように蓄積ホール数に応じて残留ホール数が変化すると、入射光量の変化に応じた残留ホール数による影響をキャンセルすることができず、前のサイクルにおいて撮像された画像が次のサイクルにおいて撮像される画像中に残像するという問題が発生する場合がある。

[0044]

C. 実施例の撮像動作:

上記比較例における問題を解決するために、本実施例では以下で説明するよう に撮像素子を動作させる。

$[0\ 0\ 4\ 5]$

図11は、実施例としての1つの単位画素における撮像のシーケンスを示す説明図である。この実施例の撮像動作のシーケンスは、図4の比較例としての撮像のシーケンスにおけるリセット期間(期間T1およびT4)の前に、プリチャージ期間(期間T1のおよびT40)が設けられている点を除いて比較例と同じである。そこで、以下では、プリチャージ期間における単位画素100の動作についてのみ説明を加える。

[0046]

図12は、プリチャージ期間の動作を示す説明図である。図12は、図3と同じ単位画素100の概略断面図を示している。プリチャージ期間(図11の期間 T10およびT40)では、リセット期間(期間T1およびT4)におけるリセ

ット動作の前に、キャリアポケット131に対してホールの蓄積を実行する。

[0047]

図13は、図12のC-C線に沿ったポテンシャル分布を示す説明図である。 プリチャージ期間では、ゲート電圧VGとして2Vがゲート電極128に印加さ れ、ドレイン電圧VDとして-0.6Vがドレイン拡散領域(ドレイン電極)1 29に印加される。なお、p型基板121に印加される基板電圧VSUBは0V である。図13に破線で示すように、nウェル領域125のポテンシャルは、通 常、p型基板121、具体的には、P-型基板層122のポテンシャルよりも高 くなっており、隣接するnウェル領域125が隔離される。しかしながら、ドレ イン電圧VDとして-0.6Vをドレイン拡散領域129に印加すると、実線で 示すように n ウェル領域 1 2 5 のポテンシャルが低くなり、実効的に、P - 型基 板層122と、nウェル層125とで構成されるpn接合領域が順方向にバイア スされた状態となる。あるいは、言い換えると、P-型基板層122と、nウェ ル層125と、pウェル層126とによって構成される寄生のバイポーラトラン ジスタ(PTr)が導通状態となるとみることもできる。これにより、p型基板 121、具体的には、p-型基板層122側からpウェル領域126にホールを 流入させることが可能となる。この結果、キャリアポケット131に対してホー ルを蓄積させることができる。なお、上記例では、ドレイン電圧 VDとして-0 .6Vを印加しているが、これに限定されるものではなく、P-型基板層122 と、nウェル層125とで構成されるpn接合領域が順方向にバイアスされた状 態とすることができる電圧、言い換えると、P-型基板層122と、nウェル層 125と、pウェル層126とによって構成される寄生のバイポーラトランジス タ(PTr)を導通状態とすることができる電圧であればよい。

[0048]

図14は、プリチャージ後のホール数について示す説明図である。キャリアポケット131に蓄積可能なホール数(以下、「飽和ホール数」と呼ぶ。)は、有限である。そこで、プリチャージ期間では、プリチャージ前に蓄積されているホール数にかかわらず、キャリアポケット131が飽和となるようにホールを蓄積させる。これにより、プリチャージ後のキャリアポケット131の蓄積ホール数

は、プリチャージ前のホール数にかかわりなく、毎回ほぼ一定の値となる。

[0049]

. (

リセット開始前のホール数がほぼ一定ならば、リセット後の残留ホール数も毎回ほぼ一定とすることができるので、図11の期間T3におけるS出力から期間T5におけるN出力を差し引くことにより、残留ホールは入射光量に依存しなくなり、比較例の撮像動作で問題となっていた残留ホールによる残像の問題を抑制することが可能である。これにより、実施例のようなしきい値変調型固体撮像素子において、前の撮像の光ホールによる残像によって発生する画質の劣化を抑制することが可能である。

[0050]

D. 変形例:

なお、本発明は上記の実施例や実施形態に限られるものではなく、その要旨を 逸脱しない範囲において種々の態様において実施することが可能であり、例えば 次のような変形も可能である。

[0051]

上記実施例では、キャリアポケットに蓄積されているホール数が飽和状態となるようにプリチャージを行っているが、これに限定されるものではなく、飽和状態ではなく、所定のホール数となるようにプリチャージを行うようにしてもよい。

[0052]

上記実施例では、フォトダイオード111と光検出用のトランジスタ112とで、p型のウェル領域126を共有する構成とし、光検出用のトランジスタ112をnMOSとした場合を例に説明している。しかしながら、フォトダイオードと光検出用のトランジスタとで共有されるウェル領域をn型のウェル領域とし、光検出用トランジスタをpMOSとすることも可能である。ただし、この場合に、キャリアポケットに蓄積される光電荷(キャリア)は、ホールではなく電子となる。また、プリチャージ期間において導通状態とされる寄生のバイポーラトランジスタは、pnp型ではなくnpn型のトランジスタである。

【図面の簡単な説明】

- 【図1】 本発明の実施の形態に係るイメージセンサの全体の構成について示す説明図である。
- 【図2】 単位画素内における素子レイアウトの一例を示す概略平面図である。
 - 【図3】 図2のA-A線概略断面図である。
- 【図4】 比較例としての1つの単位画素における撮像のシーケンスを示す説明図である。
 - 【図5】 蓄積期間の動作を示す説明図である。
- 【図 6 】 図 5 の B B 線断面におけるポテンシャル分布を示す説明図である。
- 【図7】 読み出し期間における n MOSトランジスタを示す説明図である。
 - 【図8】 リセット期間の動作を示す説明図である。
- 【図9】 図8のB-B線断面におけるポテンシャル分布を示す説明図である。
- 【図10】 リセット期間におけるリセット動作終了後の残留ホール数について示す説明図である。
- 【図11】 実施例としての1つの単位画素における撮像のシーケンスを示す説明図である。
 - 【図12】 プリチャージ期間の動作を示す説明図である。
- 【図13】 図12のC-C線に沿ったポテンシャル分布を示す説明図である。
 - 【図14】 プリチャージ後のホール数について示す説明図である。

【符号の説明】

10…イメージセンサ、20…画素アレイ、30…垂直制御回路、40…水平制御回路、50…タイミングジェネレータ、60…電圧制御回路、70…出力回路、100…単位画素、111…フォトダイオード(PDS)、112…トランジスタ(PDTr)、121…基板(p型基板)、122…p—型基板層、122 a…不純物拡散領域、123…画素分離領域、124…素子分離ゲート、1

ページ: 17/E

25…ウェル領域(nウェル領域)、126…ウェル領域(pウェル領域)、127…不純物拡散領域、128…ゲート電極(リング状ゲート電極)、128a…ゲート絶縁膜、129…ドレイン拡散領域、130…ソース拡散領域、131…キャリアポケット、132…nウェル領域(チャネル領域)

【書類名】 図面 【図1】 10 出力回路 90 20 體田型領回路 <u>20</u> 単位画素100 8 水平制御回路 電圧制御回路 20 30 **墨迪斯德回路**

【図2】

【図3】

【図4】

【図7】

【図8】

【図9】

【図11】

【図12】

ページ: 1/E

【書類名】 要約書

【要約】

【課題】 しきい値変調型固体撮像素子において、前の撮像において蓄積された 光電荷による残像によって発生する画質の劣化を抑制する。

【解決手段】 固体撮像装置は、フォトダイオードと光電荷検出用の絶縁ゲート型電界効果トランジスタとを有する単位画素が複数配列された画素アレイと、画素アレイの動作を制御する制御回路とを備える。制御回路は、第1導電型の半導体基板と第2導電型の半導体層とで構成される接合領域を順方向にバイアスされた状態とすることにより、蓄積領域に所定の導電型の電荷が所定量蓄積された状態とした後で、蓄積領域に蓄積されている前記所定の導電型の電荷を排出させるように制御する。ただし、p型またはn型のいずれか一方が第1導電型で他方が第2導電型であるとする。

【選択図】 図12

特願2003-043603

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所 氏 名 東京都新宿区西新宿2丁目4番1号

セイコーエプソン株式会社