Jindřich Matoušek and Daniel Tihelka

Dept. of Cybernetics, NTIS – New Technologies for the Information Society Faculty of Applied Sciences, University of West Bohemia, Czech Republic

jmatouse@kky.zcu.cz, dtihelka@ntis.zcu.cz

1. Introduction

Glottal Closure Instants (GCIs)

- used for pitch-synchronous processing
- defined as speech signal amplitude extreme that corresponds to the moment of glottal closure
- precise GCI detection important in many speech-technology applications
- various algorithms proposed to detect GCIs directly in the speech signal [1]
- manual tuning often required

Problem Definition

- based on a classification framework
- a classifier trained on relevant features extracted around potential GCI locations (peaks in speech waveform)
- GCI detection viewed as a two-class classification problem: whether or not a peak represents a GCI
- best performance with these classifiers: extremely randomized trees (ERT)
- support vector machines (SVM with RBF kernel)
- k-nearest neighbors (KNN)
- multilayer perceptron (MLP)

Signals Used for Detection

- EGG signals used for reliable detection but: not always available (only speech often recorded)
- uncomfortable to record EGG signal
- GCI detection directly from the speech signal is very important

Aim of this Study

to propose a speech-only-based high-quality data-based GCI detection method with the parameters being set up automatically

4. Classifier Selection & Evaluation

Classification-Based GCI Detection Results

- performed on UWB validation dataset
- best classifiers for both kind of features selected (ERT-P3 and KNN-S30)
- combination of both kinds of features (ERT-P3S30 and KNN-P3S30) also evaluated
- Recall (R), Precision (P), and F1-score used

Classifier	R (%)	P (%)	F1 (%)
ERT-P3	96.46	98.09	97.27
KNN-S30	96.45	97.75	97.10
ERT-P3S30	96.74	97.65	97.20
KNN-P3S30	96.68	97.80	97.23

Statistical Significance

- McNemar's test
- \gg significantly better ($\alpha = 0.01$)
- > significantly better ($\alpha = 0.05$)
- ERT-P3 performs significantly better than other classifiers

Classifier	ERT-P3	KNN-S30	ERT-P3S30	KNN-P3S30
ERT-P3	=	>>	>>	>>
KNN-S30	«	=	<	<
ERT-P3S30	«	>	=	=
KNN-P3S30	«	>	=	=

Learning Curves

- learning curves for ERT-P3 classifier
- still some room for improvement
- more training data
- other features

2. Experimental Data & Features

Data Description

- in-house clean speech data (UWB)
- primarily intended for speech synthesis
- various speakers and languages included:
- Czech (male and female)
- Slovak (female)
- German (male)
- US English (male)

French (female)

true GCIs produced by a human expert

	Training	${\sf Validation}$	Total
# utterances	63	19	82
speech duration	9 min	3 min	12 min
GCI candidates	66,130	18,026	84,156
True GCIs	40,938	10,691	51,629

Speech Signal Pre-Processing

- speech signal low-pass filtered to reduce the high-frequency structure [2]
- zero-phase Equiripple-designed filter
- 0.5 dB ripple in the pass band
- 60 dB attenuation in the stop band 700 Hz cutoff frequency
- speech signal switched to have negative polarity
- peaks identified by zero-crossing used for feature extraction
- negative peaks taken as candidates for GCI placement
- true GCIs assigned to a corresponding negative peak

Peak-Based Features

- each negative peak described by a set of local descriptors reflecting the position and shape of other 2P neighboring peaks [2]
- $P = 3 \Rightarrow 32$ features in total
- A: amplitudes of negative peaks (7 features) B: amplitudes of positive peaks (6)
- C: time difference between negative peaks (6) D: width of negative peaks (7)
- E: correlation of negative peaks (6)

Waveform Sample-Based Features

- hanning-windowed waveform samples around a negative peak
- for window length 30 ms (S=30) and frequency sampling 16 kHz:
- 240 preceding samples
- 481 features in total

- the current sample of a negative peak
- 240 succeeding samples

3. Classifier Design

--**▲**-- KNN

Feature Engineering

- search for optimal number of features
- number of peaks surrounding each negative peak number of samples around each negative peak
- default classifier hyper-parameters according to Scikit-learn toolkit [3]

• 10-fold cross validation on the training dataset

Optimal Number of Peaks 95 **Optimal Number of Waveform Samples**

Hyper-Parameter Tuning

- grid search over relevant values of classifier hyper-parameters with the optimal features
- 10-fold cross validation on the training dataset
- evaluation in terms of F1-score and 95% confidence intervals
- $\mathsf{CLF}\text{-}\mathsf{P}m.$. No. of peaks prior and subsequent to current peak for classifier CLF $\mathsf{CLF} ext{-}\mathsf{S}n$... window length (ms) around the current peak for classifier CLF

5. Comparison with Other Methods

Methods

- ERT-P3
- github.com/ARTIC-TTS-experiments/2017_Interspeech
- SEDREAMS (COVAREP repository) [4] github.com/covarep
- Microcanonical Multiscale Formalism (MMF) [5] geostat.bordeaux.inria.fr/index.php/downloads.html
- DYPSA (VOICEBOX toolbox) [6] www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
- detected GCIs filtered by voiced/unvoiced detector (RAPT) and shifted towards the neighboring negative peak

Datasets

Datacet	Lang Proor		Minc
Dataset	Lang.&sex	# utts	IVIIIIS
UWB	see Sec. 2	19	3
BDL (CMU ARCTIC)	US male	1132	54
SLT (CMU ARCTIC)	US female	1132	54
KED (CSTR TIMIT)	US male	453	20

- UWB: hand-crafted reference GCIs used
- ARCTIC, TIMIT: no hand-crafted GCIs available \Rightarrow reference GCIs detected from EGG recordings using MPA [7]
- MPA also used as upper bound for UWB

Results

Dataset	Method	IDR (%)	MR (%)	FAR (%)	IDA (ms)	A25 (%)	E10 (%)	Reliability:
	MPA	97.06	0.66	2.28	0.21	84.65	97.03	$_{MP} = N_{M}$
	ERT-P3	95.87	1.99	2.14	0.29	81.06	95.93	$MR = \frac{N_M}{N_R}$
UWB	SEDREAMS	91.80	3.54	4.66	0.24	81.51	91.87	$FAR = \frac{N_{FA}}{N_B}$
	MMF	83.47	11.42	5.11	0.42	80.72	84.80	IDR = 1 - MR - FAR
	DYPSA	87.40	4.86	7.74	0.40	80.60	87.27	
	ERT-P3	91.96	2.98	5.06	0.41	88.41	91.78	Accuracy:
BDL	SEDREAMS	90.98	2.35	6.67	0.54	91.23	90.57	$A25 = \frac{N_{\zeta \le 0.25}}{N_R - N_M - N_{FA}}$
DDL	MMF	87.82	5.84	6.34	0.61	90.36	87.77	$IDA = \operatorname{stdev}(\zeta)$
	DYPSA	86.98	7.59	5.43	0.65	91.16	86.69	\ \ \ - \/
	ERT-P3	95.18	1.35	3.47	0.15	95.08	95.07	Combined dynamic measure:
CLT	SEDREAMS	92.96	1.15	5.89	0.19	89.09	92.61	$E10 = \frac{N_R - N_{\zeta > 0.1T_0} - N_M - N_{FA}}{N_R}$
SLT	MMF	91.16	5.33	3.51	0.37	77.53	91.32	
	DYPSA	91.50	2.80	5.70	0.30	81.23	91.24	$N_R = \dots \#$ reference GCIs $N_M = \dots \#$ missing GCIs
	ERT-P3	91.88	2.94	5.18	0.27	88.02	91.69	N_{FA} $\#$ false GCIs
KED	SEDREAMS	89.54	1.16	9.30	0.56	78.46	88.61	ζ identification error of corresp. GCIs
KED	MMF	89.11	4.61	6.28	0.57	83.52	88.92	$N_{\zeta \leq 0.25} \ldots \#$ corresp. GCIs with $\zeta \leq 0.25$ ms
	DYPSA	89.01	4.62	6.37	0.48	83.70	88.81	$N_{\zeta>0.1T_0}\#$ corresp. GCls with $\zeta>0.1T_0$

6. Conclusions

Conclusion

- classification-based GCI detection proposed
- data-based method ⇒ only true GCIs required; classifier parameters trained automatically
- the proposed method outperformed other state-of-the-art methods on several test datasets in terms of detection reliability and mostly also in terms of accuracy

Future work

- performance on more data from more speakers
- incorporation of other features (pitch-based, voiced/unvoiced or harmonic/noise related)
- only clean speech data investigated so far \Rightarrow performance on noisy signals and emotional/expressive speech?
- deep learning?

References

- [1] T. Drugman, M. Thomas, J. Gudnason, P. Naylor, & T. Dutoit, "Detection of glottal closure instants from speech signals: A quantitative review," IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 3, 2012.
- E. Barnard, A. Cole, M.P. Vea, & F.A. Alleva, "Pitch detection with a neural-net classifier," IEEE Trans. Signal Process., vol. 39. no. 2. 1991.
- [3] F. Pedregosa, G. Varoquaux, et. al, "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res., vol 12, 2011.
- [4] T. Drugman & T. Dutoit, "Glottal closure and opening instant detection from speech signals," in INTERSPEECH, 2009.
- [5] V. Khanagha, K. Daoudi, & H.M. Yahia, "Detection of glottal closure instants based on the microcanonical multiscale formalism," IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 12, 2014. [6] P.A. Naylor, A. Kounoudes, J. Gudnason, & M. Brookes, "Estimation of glottal closure instants in voiced speech using the
- DYPSA algorithm," IEEE Trans. Audio, Speech, Language Process., vol. 15, no. 1, 2007. [7] M. Legát, J. Matoušek, & D. Tihelka, "A robust multi-phase pitch-mark detection algorithm," in INTERSPEECH, 2007.
- This research was supported by the Czech Science Foundation (GA CR), project No. GA16-04420S. The access to the MetaCentrum clusters provided under the programme LM2010005 is highly appreciated.