IoT Networks IoT LPWANs

IoT LPWANs

- LPWAN (Low-Power Wide Area Network)
- Wireless telecommunication network designed for long range communication at low power and low bit rates
- LPWAN Types
 - LoRa based networks
 - UNB (Ultra Narrow Band) networks
 - Sigfox, NB-IoT (3GPP), etc.

LPWAN (Low-Power Wide Area Network)

Types of wireless communication

IoT LPWANs

LPWAN (Low-Power Wide Area Network)

Types of wireless communications

	Local/Personal Area Network	Low Power Wide Area Network	Cellular Network
Strong	Well established standards	Low power consumption Low cost	High data rate Coverage
Week	Battery life Network cost	Low data rate Emerging standards	Total cost of ownership
Standards	Bluetooth, Wi-Fi, ZigBee	LoRa, Sigfox	3G, 4G LTE, LTE-A, 5G

❖ LoRa / LoRaWAN

- Wireless modulation technology that can support Long Range communication links
 - Single gateway or base station can cover an entire city (hundreds of square kilometers)
 - CSS (Chirp Spread Spectrum) radio modulation
 - Uses license-free radio frequency bands
 - 169 MHz, 433 MHz
 - 868 MHz (Europe)
 - 915 MHZ (North America)

IoT LPWANs

❖ LoRa / LoRaWAN

MAC: Medium Access Control HAL: Hardware Abstraction Layer SPI: Serial Peripheral Interface

- LoRaWAN defines the network communication protocol (MAC) and system architecture
 - Version 1.1 released in October 2017

LoRaWAN Characteristics

- More than 10 km range with high link budget
 - longer than cellular, deep indoor coverage
- 10-20 year battery lifetime
 - 10x greater than cellular M2M
- Low data rate from 0.3 ~ 50 kbps
- Integration with the backhaul IP network
- LoRa Alliance based standardization
 - Cisco, IBM, Semtech, Swisscom, Kerlink, etc.

IoT LPWANs

- Sigfox is a LPWAN technology that uses UNB (Ultra Narrow Band) modulation
- Suitable for low data rate, lightweight device based IoT services
 - UNB modulation (D-BPSK) + low bit rate
 - → High BS (Base Station) receiving sensitivity

- ❖ Sigfox sigfox
 - Small and lightweight messages
 - Uplink max. 12 octets for payload
 - Downlink max. 8 octets for payload
 - 14 octets for the header
 - Maximum 140 transmissions per day with a data rate of 100 bps

IoT LPWANs

- Sigfox uses the license free ISM (Industrial, Scientific & Medical) RF (Radio Frequency) bands
 - 868-869 MHz in Europe
 - 902-928 MHz in the USA

Sigfox operation

Sigfox network architecture

- Each Sigfox device and station has a unique Sigfox ID
 - ID and Signature are transmitted for authentication of each device

IoT LPWANs

❖ Sigfox operation

Sigfox network architecture

- Objects transmit data to a Sigfox station
- Sigfox stations are directly connected to a single Sigfox CLOUD™

❖ Sigfox operation

Sigfox network architecture

- Sigfox stations detect, demodulate, and report the message to the Sigfox CLOUD™
- Sigfox CLOUD™ pushes the message to the user application or customer platform

IoT Networks
Reference

References

- J. Bradley, J. Barbier, and D. Handler, "Embracing the Internet of Everything To Capture Your Share of \$14.4 Trillion," Cisco, White Paper, 2013.
- J. Bradley, C, Reberger, A. Dixit, and V. Gupta, "Internet of Everything: A \$4.6 Trillion Public-Sector Opportunity," Cisco, White Paper, 2013.
- D. Evans, "The Internet of Everything," Cisco IBSG, White Paper, 2012.
- S. Mitchell, N. Villa, M. Stewart-Weeks, and A. Lange, "The Internet of Everything for Cities," Cisco, White Paper, 2013.
- O. Hersent, D. Boswarthick, and O. Elloumi, The Internet of Things: Key Applications and Protocols. John Wiley & Sons, Dec. 2011.
- "Machine 2 Machine Perspective on Industry Status (Key Challenges and Opportunities)," Frost & Sullivan, Research Paper, Nov. 2011.
- "M2M Sector Map," Beecham Research, Sep. 2011. [Online] Available from: http://www.beechamresearch.com/download.aspx?id=18 [Accessed June 1, 2015]

References

- F. Behmann and K. Wu, Collaborative Internet of Things (C-IoT). John Wiley & Sons, 2015.
- J. Gubbia, R. Buyyab, S. Marusica, and M. Palaniswamia, "Internet of Things (IoT): A vision, architectural elements, and future directions," Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.
- L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.
- S. Li, L. D. Xu, and S. Zhao, "The Internet of Things: a Survey," Information Systems Frontiers, vol. 17, no, 2, pp. 243-259, Apr. 2015.
- A. J. Jara, L. Ladid, and A. Skarmeta, "The Internet of Everything through IPv6: An Analysis of Challenges, Solutions and Opportunities," Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 4, no. 3, pp. 97-118, 2013.
- O. Vermesan and P. Friess, Internet of Things Global Technological and Societal Trends From Smart Environments and Spaces to Green ICT. River Publishers, 2011.

References

- O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, and P. Doody, "Internet of Things Strategic Research Roadmap," European Research Cluster on the Internet of Things, Sep. 2011.
- IEEE Std. 802.15.4-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE, Sep. 2006.
- N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals," IETF RFC 4919, Aug. 2007.
- G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," IETF RFC 4944, Sep. 2007.
- ZigBee Alliance, "ZigBee specification: ZigBee document 053474r13 Version 1.1," Dec. 2006.
- ZigBee Alliance, www.zigbee.org