Sets: Sets Definition

What is a Set?

Informally: A set is a collection of mathematical objects or elements.

A set of 4 things

```
 \{7, \text{``Albert R.''}, \pi/2, T\}  A set with 4 elements: two numbers, a string, and a Boolean. Same as  \{T, \text{``Albert R.''}, \pi/2, 7\}
```

-- order doesn't matter

In or not in

An element is either in a set or not in a set

 $\{7, 2\}$ is same as $\{7, 2, 7\}$

--No notion of being in the set more than once

Membership

```
x is a member of A: x \in A {7, "Albert R.", \pi/2, T}

T \in \{7, \text{"Albert R.", } \pi/2, T\}

14/2 \in
9 \notin
```

Subset(⊆)

 $A \subseteq B : A \text{ is a subset of } B$

Every element of A is also an element of B: $\forall x [x \in A \text{ implies } x \in B]$

 $\mathbb{Z} \subseteq \mathbb{R}$, $\{3\} \subseteq \{5,7,3\}$ $A \subseteq A$, $\emptyset \subseteq \text{every set}$

Why $\emptyset \subseteq \text{every set?}$ $\emptyset \subseteq B:$ $\forall x [x \in \emptyset \text{ implies } x \in B]$ false

true

```
A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}
```

```
(a, b): ordered 2-tuple (a1, a2, a3, ..., an): ordered n-tuple
```

```
A = \{1, 2, 3\}

B = \{a, b\}

A \times B = \{1, 2, 3\} \times \{a, b\}

= \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}
```

```
A = \{1, 2, 3\}

B = \{a, b\}

C = \{p, q\}

A \times B \times C = \{1, 2, 3\} \times \{a, b\} \times \{p, q\}
```

```
A = \{1, 2, 3\}

B = \{a, b\}

C = \{p, q\}

A \times (B \times C) = \{1, 2, 3\} \times (\{a, b\} \times \{p, q\})
```

Sets: Set Operations

New sets from old

Venn diagram for 2 sets

Set Operations: union

Union $A \cup B = \{x \mid x \in A \lor x \in B\}$ $A = \{1, 2, 3, 4\}$ $B = \{1, 2, 2, 2, 5, 6\}$ $A \cup B = \{1, 2, 3, 4, 5, 6\}$

Set Operations: intersection

Intersection

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

 $A = \{1, 2, 3, 4\}$
 $B = \{1, 2, 2, 2, 5, 6\}$
 $A \cap B = \{1, 2\}$

Set Operations: difference

Difference

$$A - B = \{x \mid x \in A \land x \notin B\}$$
 $A = \{1, 2, 3, 4\}$
 $B = \{1, 2, 2, 2, 5, 6\}$
 $A - B = \{3, 4\}$

Set Operations: complement

Complement

$$A' = U - A = \{x \mid x \notin A\}$$
 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $A = \{1, 2, 3, 4\}$
 $A' = \{5, 6, 7, 8, 9\}$

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
U =	1	1	1	1	1	1	1	1	1	1	1	1	1	1
							-	-					-	

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
U =	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		=	=	=	-	-	-	-	-	-	-	=		

 $A = \{1, 6, 8, 11, 12, 13, 16\}$

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
U =	1	1	1	1	1	1	1	1	1	1	1	1	1	1

A = 1 1 1

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
U =	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
U =	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
U =	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
U =	1	1	1	1	1	1	1	1	1	1	1	1	1	1
							•				•			
							•			Γ	ı			
Δ -	1	0	1	0	1	0	0	1	1	1	0	0	1	0

$$B = \{5, 7, 8\}$$

	1	5	6	7	8	9	10	11	12	13	14	15	16	17
													T	
J =	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Set operations: Union

Perform OR operation

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Set operations: Intersection

Perform AND operation

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Set operations: Complement

Toggle the bits

Set operations: Difference

$$A - B =$$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$A - B = \{x \mid x \in A \land x \in B'\}$$

Set operations: Difference

$$A - B = \{x \mid x \in A \land x \in B'\}$$

{1, 4} {2, 3, 4}