INDEX OF AUTHORS

VOLUME LI

TRANSACTIONS OF AMERICAN SOCIETY FOR METALS

1959

A	G
Achter, M. R244-255	Gensamer, M666-676
Alessandrini, E. I150–161	Girardi, D. J335-352
В	Goldenstein, A. W1036–1054 Grange, R. A377–393, 495–516
Backofen, W. A946-960	Greenlee, M. L
Bailey, D. M1097-1102	Griest, A. J935-945
Berry, J. M	н
Bittner, T. P	
Bunshah, R. F961–980	Harrington, J. J377–393
2000	Hendrickson, J. A629-642 Hlinka, J. W353-376
C	IIIIIka, J. W
Carlson, O. N	J
Chiotti, P	Jaffee, R. I.
Chubb, W	256–281, 282–298, 802–819, 820–842
Clark, D. S	Jaraiz, Emilio, F
Clark, J. B	
Clausing, R. E	K
Couling, S. L	Kalish, Herbert S736-751
Croan, L. S	Kehl, George L
_	Kessler, H. D
D 042.001	Klepfer, H. H
Daniels, R. D	Klopp, William D256-281, 282-298
Dickinson, J. M758-771, 1055-1071	Kobrin, C. L394-401
Dodd, R. A394-401	Koeneman, J
Dorn, J. E900–910	Koistinen, D. P
E	Krafft, J. M
Eichelberger, T. W136-149	
Eichen, Erwin454-475	L
Elliott, R. P	Lambert, V. E377–393
Erkun, N. M	Landon, P. R
F	Lenning, G. A
Fields, D. S. Jr	Leslie, W. C310–334
Fountain, R. W	Letner, H. R402-420
Frost, P. D	Lytton, J. L

M	S
Majors, Harry, Jr421-437	Sabroff, A. M935-945
Manly, W. D	Samans, C. H589-608
Manson, S. S	Schaller, F. W609-628
Marburger, R. E537-555	Schmatz, D. J299-309, 476-494
Margolin, H	Schwartzberg, F. R 802-819
Mehl, R. F	Shahinian, Paul244-255
Mendel, Eric717-735	Shepherd, L. A900-910
Mentser, Morris517-536	Sims, Chester T256-281, 282-298
Metcalfe, A. G1036-1054, 1072-1082	Smith, J. F
Mueller, Melvin H717-735	Spretnak, J. W
Murphy, Daniel J683-696	Sturkey, L
N	Succop, G
N	Sullivan, A. M643–665
Nelson, R. D	
0	T
	Tanaka, Hiroshi 1083-1096
Obinata, Ichiji1083–1096	Tavernelli, J. F
P	Tisinai, G. F
	Troiano, A. R843-861
Parris, W. M981–998	
Paschkis, V	V
Pashak, J. F94–107	Van Horn, David D185-198
Patriarca, P	van Horn, David D165-196
Payson, P	w
Plaskett, T. S	
Pollock, W. I	White, R. W
Q	Williams, D. N802-819, 820-842
Quigg, R. J843-861	Winegard, W. C
Quigg. R. J	Wood, D. S
R	Y
Rhines, F. N 199-221	
Richardson, L. S 758-771, 1055-1071	Yao, Y. L
Rickett, R. L310–334	
Rittenhouse, John B871–899	. Z
Rizzitano, F. J999–1016	Zackay, V. F.
Rostoker, W 1017-1035, 1036-1054	
Rough, F. A697-716	Zukas, E. G

SUBJECT INDEX*

ASM Awards	SOBJECT	1110011
ASM Metals Engineering Institute	ASM Chapters and Officers.XII-XIX ASM Constitution Amendments. 45–50 ASM Convention, 40th annual programs	Activation energy for cross-slip in aluminum
Institute	The state of the s	
ASM Seminars 1, 2, 9, 10, 31, 32 ASM Standing Committees . X-XI Abrasives, aluminous effect of particle size	Institute	Age hardening
ASM Standing Committees. X-XI Abrasives, aluminous effect of particle size		
Abrasives, aluminous effect of particle size		
effect of particle size		
Activation energy for age hardening	effect of particle size	in Ni-Cr-Fe alloys136-149 effect of Mo, Ti and V141-143, 145 effect of two soln. treatments140 in normalized copper-steels
H embrittlement		
Activation energy for age hardening		
Activation energy for age hardening		
hardening 146, 149 Activation energy for creep of aluminum 901, 902 of copper and nickel 900–910 of nickel 250 of Ni-Cr alloys 249, 254 Activation energy for diffusion 195 of O₂ in Cb and Cb binary alloys 275, 287, 290, 291, 295 *Abbreviations Used in Index a/o atomic per cent C.T cooling transformation comp co		
of aluminum		for evaluating overaged properties
of copper and nickel	Activation energy for creep	
of nickel	of aluminum901, 902	advantages of788, 797-799
of Ni-Cr alloys	of copper and nickel900-910	
Activation energy for diffusion 195 of O ₂ in Cb and Cb binary alloys 275, 287, 290, 291, 295 *Abbreviations Used in Index a/o atomic per cent C.T cooling transformation comp composition Di ideal diameter clec clevated elev clevated FNA fuming nitric acid FTA fuming nitric acid	of nickel250	for Ti-6A1-4V793
*Abbreviations Used in Index a/oatomic per cent C.Tcooling transformation compcomposition Diideal diameter elecelectric elevelevated FNAfuming nitric acid H.T. heat treatment at various temps288–291 Aircraft fasteners of Ti1030 *Mathmathematical mechmechanical R.Areduction in area SACsubaquatic casting solnsolution T.T.T. time-temperature-transformation T.T.T. time-temperature-transformation T.T.T. time-temperature-transformation T.T.T. time-temperature-transformation	of Ni-Cr alloys 249, 254	for Ti-7Al-4Mo793
*Abbreviations Used in Index a/oatomic per cent C.Tcooling transformation compcomposition Diideal diameter elecelectric elevelevated FNAfuming nitric acid H.T. heat treatment Aircraft fasteners of Ti1030 Mathmathematical mechmechanical R.Areduction in area SACsubaquatic casting solnsolution T.T.T. time-temperature-transformation T.T.T. time-temperature-transformation T.T.T. time-temperature-transformation	Activation energy for diffusion 195	Air reaction of Cb with,
*Abbreviations Used in Index a/o atomic per cent math. mathematical C.T. cooling transformation mech. mechanical C.T. comp. composition R.A. reduction in area Di. ideal diameter SAC subaquatic casting clec. clectric SACC subaquatic continuous casting soln. solution FNA fuming nitric acid T.T.T. time-temperature-transformation H.T. heat treatment T.S. ten-ile strength	of O2 in Cb and Cb binary	at various temps288-291
a/o	alloys275, 287, 290, 291, 295	Aircraft fasteners of Ti
	a/o atomic per cent C.T cooling transformation comp composition Di ideal diameter clec clectric clev clevated FNA fuming nitric acid H.T. heat treatment	mech. mechanical R.A. reduction in area SAC subaquatic casting SACC subaquatic continuous casting soln. solution T.T.T. time-temperature-transformation T.S. ten.ile strength temp. temperature vs. versus

Alexander and Balluffi	Alloy steels (cont.)
theory of sintering	tempering curves of
Allotropic transformation	balanced "R" and "S"71
in high purity iron454-475	Alloy steels,
by shear mechanism 468, 470, 471	1.1 Cr, 2 V, 4.6 W, 4.6 Mo
determination of criterion. 455, 456	effect of Cr on tempering
motion pictures .459, 460, 461, 462	parameters70
specimen preparation457, 458	4.5 Cr and 0.5 V
thermionic emission	effect of C, W, and Mo on
microscope tests459	tempering parameters69
visual observation	4.5 Cr, 2 V, 4.7 W, 4.5 Mo
conclusions459, 460	effect of C on
Alloy carbides	tempering parameters70
chem. comp. of extracted83-87	4.5 Cr, 5 W, 4.8 Mo
electron microscopy of73-83	effect of C and V on
exp. procedures	tempering parameters70
identification by electron	M2, tempering curves71
diffraction80-84	Alloys
in alloy steels, precipitation90-92	development of non-creeping 120
in tool steels62	negative creep in108–122
ingot solidification in	for pressure vessels123
eutectic	for large steam turbines932, 933
microstructure	Alpha iron
Alloy constitution in magnesium	specific magnetization522
alloys, relationship of weld	
cracking	Aluminum
Alloying elements and	effect of temp. on
hardenability in steel	strain-rate sensitivity 955, 959
Alloying elements	high velocity of crystallization 1083
in alloy steels	in alpha-beta
effect on red hardness67–73	Ti alloys. 820, 821, 831–834, 836
in alpha-beta titanium alloys	mech. properties of SAC1089
effects on H tolerance820–842	room temp. cyclic fatigue438–453 solidification of droplets
in carbon steel	
hardenability influence348, 349	in water
in Cb	stress-strain data947
effect on oxidation and	Aluminum, high purity, polycrystalline
contamination	activation energy
resistance256–281	for creep901, 902, 905, 906
in uranium for powder	activation energy for self-
	diffusion and cross slip.901, 902
metal compacts746, 747	stacking fault energy903
Alloy martensites, tempering of62-65	Aluminum-rich end of the
Alloy steels	aluminum-vanadium
effect of tempering on length	system
changes88, 89	Aluminum alloys
changes	Aluminum alloys hardenability prediction 1033

Aluminum alloys (cont.)	Aluminum ingots (cont.)
mech. properties of SAC	hardness1090
and chill-cast .1087, 1089, 1090	homogeneity of1083, 1094
subaquatic casting of 1083–1096	macrostructure
Aluminum alloys, Trade designations	
2S, macrostructure of SAC	preliminary experiment1085–1089
and usual cast1091–1093	properties of cast1083, 1087, 1089
3S, mech. properties of SAC	subaquatic casting1083–1096
and chill-cast1089	
24S, mech. properties of SAC	Aluminum-Mg alloys growth conditions for
and chill-cast1089	equiaxed crystals222–230
24 ST, room temp. cyclic	phase diagram, partial223
fatigue	surface macrostructures225
2024	Aluminum-1.5 Mg
effect of temp. on strain	temp. dependence of
rate sensitivity955	flow stress953, 954
shear stress-strain curves	Aluminum-3.2 a/o Mg alloy
at various temps951, 952	solute atom locking in908
temp. and strain-rate	
combinations 955, 958	Aluminum-Mg-Zn system
torque-twist records949, 957	diffusion layer formation199–221 diffusion layer structures and
2024-0	relation to phase
strain aging953	diagram201–203
temp, and rate dependence	experimental procedure 214–217
of strain hardening in .946–960 temp. dependence of	micrographs of diffusion
flow stress953–955	layers204–208
56 S, mech. properties of SAC	phase diagram201
and chill-cast1089	Aluminum-silicon alloys
75 S, mech. properties of SAC	weld cracking and constitution401
and chill-cast1089	Aluminum-1.25 Si
Aluminum-base alloys, retrogres-	length changes on aging109, 111
sion during creep testing114	Aluminum-6.3 vanadium alloy1099
Aluminum binary alloys, weld	
cracking characteristics	Aluminum-vanadium system . 1097–1102
394, 399, 401	differential heating curves1099 phase diagram1098, 1100
Aluminum-3 Cu ingot, inverse	phases in
segregation.1087, 1088, 1094, 1095	
properties of SAC and	Annealing
chill-cast	of Re-Mo alloys1057, 1071 of Ti-140A
Aluminum-4.08 Cu alloy	effect on magnetic
density on aging109, 110	susceptibility868
Aluminum-5 Cu, temp. dependence	isothermal curves866
of flow stress953, 954	
Aluminum ingots	Annual Address of President12-19
casting experiments in	Application of rate process theory
practical size1089, 1090, 1095	to the heat treatment of
explosion hazards 1091–1094	titanium alloys787–801

Application of time temperature	Brittle fracture (cont.)
parameters to accelerated	in steel, prediction of temp630, 641
creep-rupture testing911-934	in 1020 steel, effect of grain
Argon dry box	size and strain rate674
in compacting739-741	Brittle materials
Atmosphere effect	effect of thermal cycling421
on Ni-Cr alloy244-255	Burger's vector in crystal growth167
Ausforming process (steel)494	Burnishing balls, steel411, 417
Austenite, retained	
decomposition of 518, 524, 525, 529	CT diagram for Ni-Cr-Mo
effect on red hardness63, 64	eutectoid steel497, 500-503
in tempered steel518	Cadmium
Austenite transformation and	macrographs of crystals
incubation in an alloy steel of	166, 169, 170, 171, 174, 175
eutectoid carbon content 495-516	micrographs of
Austenitizing power of nitrogen	crystal growth179, 180
in Fe-Cr-N alloys	single crystals
589, 590, 594–596, 598	grown in vacuum. 163, 164, 184
	spiral growth during vapor
Banding in deformation97-104	deposition162–184
use of polarized light97	supersaturation in crystal
Bands formed on cold-rolling in	growth165, 174, 180
Mg-base alloys 97-99, 102-104	Carbide precipitation in deformed
Barium carbonate, activator of	high-alloy steels485–487
thermionic emission457	Carbide transformations in tem-
Bay area on phase diagram for	pering of a high-carbon
high alloy steel, deformation	steel
478, 480, 482, 483, 486, 489, 494	Carbon
Bearing steel (52100)	in alloy steels
effect of tempering on64	effect on red hardness67-73
Berg-Barrett X-ray diffraction	in high alloy steel
technique	effect on properties of
Beta stabilizers in alpha-beta	deformed and undeformed
Ti alloys	482, 483
effectiveness of	in mild steel
820, 821, 836, 837, 840	effect on yield delay-time 643-666
Mo 820, 821, 827, 830, 831,	Carbon martensite
836, 840	X-ray reflection from551
use of more than one. 820, 829, 835	Carbon paper
Boundary migration in diffusion	thermocouple weldments 1034
effect of initial composition191	Carbon steel
effect of relative diffusivity191	carbide precipitation sequences
effect of temp. dependence192	in tempering529, 534
effect of time conditions195, 196	experimental procedures73
Brass, ordering in beta308	hardness with tempering62
Brittle fracture	precipitation hardening in62-65
in single crystals	Taylor and White heat treatment.60
cleavage step formation556-588	X-ray residual stress
metallography557, 566-576, 579	measurements537-555

Carbon steel (1.00% C) hardenability effects of Mn, Si, Cr, Ni, and Mo335–352 hardness corresponding to 10% transformation341 measured and calculated hardenabilities in338–340 Campbell Memorial Lecture60–93	Cleavage steps 559 definition 559 ductile 566 formed by fracture 560, 563-565 geometry of 559-566 micrographs 566-576, 579 Cobalt-chromium alloys negative creep in 114, 121
Camphor as lubricant in	Cobalt oxide (CoO) prepared by
U powder metallurgy747	halide decomposition150-161
Case hardenability of hypereutec-	Cold-rollability of
toid steels,	Mg-base alloys94-107
calculation of335–352	Cold working of Ti-140A
use and limitations of	effect on magnetic
multiplying factors346–348	susceptibility862–870
Casting	Columbium
crystal growth in a222	contamination rate257, 258
Casting under water	contamination studies on291-295
of aluminum ingots1083-1096	effect on U-Ti alloys687-694
of phosphor bronze1096	ignition temp. in 0_2
Cathodic behavior	kinetics of reactions with
of inclusions in U718-720, 735	0 _z , N and air282–298
Cementite in steel	oxygen-diffusion rates 273, 274, 293
Curie pt	oxidation resistance at
identification534	high temp256-258
specific magnetization521, 522	oxidation studies on283-291, 295
Christenson and Rowland	properties and applications
diffractometer conditions	for high temp. use282, 283
537, 538, 545	stability of its oxides257
Chromium	X-ray diffraction266
hardenability effects in	Columbium alloys, oxidation and
carbon steels335–352	contamination resistance
Chromium steels	of binary
hardenability with various	Columbium-boron alloys261, 264
heat treatments346	Columbium-chromium
no secondary hardening in90	alloys256, 260, 269, 270, 274 Columbium-molybdenum
Circular patch test	alloys256, 260, 269, 274
for weld cracking396, 397	Columbium oxides
Clark-Wood yield delay	as scale
on steel647-649, 657	diffusion of 0 ₂ through294, 295
Cleavage plane, main	properties
definition and types559	structure of three283
geometry of	X-ray diffraction
Cleavage rupture surface	studies265–268, 286, 288
of pearlite-free steel 582, 583	Columbium pentoxide 257, 264, 265
of iron-silicon alloy584	Columbium-silicon alloys 261, 264, 269
	contamination rate coefficients
Cleavage step formation in brittle- fracture propagation 556-588	and diffusion274
acture propagation	and director

Columbium-silicon alloys (cont.)	Constitution
depth of 0₂ contamination 269	of rhenium-Mo alloys1055-1071
Columbium-tantalum	Constitution
alloys	of rhenium-W alloys758-771
Columbium-titanium alloys	Constitutional diagram
256, 260, 263, 267-274	See Phase diagram
Columbium-tungsten	Constructional steels, improvement
alloys	by deformation hardening .476-494
Columbium-V alloys.256, 260, 269, 274	Contamination
	high-temp. of Cb291-295
Columbium-Zr alloys261, 267-274	maximum depth of, defined268
Compacting	resistance of
cold and hot pressing	binary Cb alloys264–281
of Uranium736, 739–742	Contraction, due to precipitation,
lubricants for	relation of creep elongation
Comparator	to111, 112
for stress measurement406-408	Contribution to the hardenability
Compilation and interpretation of	problem in Ti alloys1017-1035
cyclic strain-fatigue tests	Coolants for low temp. tests612
on metals	Cooling transformation diagram
Composition	for Ni-Cr-Mo eutectoid steel 497
of Mg alloys, relationship	comparison of measured and
to weld cracking394-401	derived502, 503, 513
of steel, hardenability	relationship to I.T500, 501
calculations from347	Copper alloying effect on steel377
of Ti alloys, effect on	effect on H.T. characteristics
hydrogen embrittlement.820-842	of medium-carbon steel .377–393
effect on properties967, 969	effect on properties of
Compression flow curves	low-carbon steel310–334
for Ti-6 Al-4 V940	effect on transformation
for Ti-4 A1-4 Mn940	in 1045 steel382, 383, 385
Compressive flow stresses	solubility of, in ferrite311, 312
of mild steel	Copper, OFHC
of Ti alloys935-945	room temp. cyclic fatigue438-453
equipment937-939	Copper, polycrystalline
experimental procedure936, 937	activation energy
testing procedure and	for creep of900-910
results939-942	activation energy
Computer study	for self diffusion904
of ingot solidification353-376	stacking-fault energy903
Computers	Copper-Sn-Zn, diffusion in200
analogous network (electric)367	Copper steel, general properties377
difference in differential and	Corrosion of titanium alloys
analog375, 376	corrosion-time curves881-886
Concentration gradients	elec. wire burning tests. 872, 889, 890
in solidification222	experimental procedures872-874
Concentration-penetration curves	results and discussion874-892 storage tests-90 days886
in diffusion.186, 187, 192, 193, 196	summary
m diffusion.100, 107, 192, 193, 190	Summing

Corrosion of Ti-8 Mn alloy	Creep-rupture testing (cont.)
in F.N.A871-899	form of parameters912, 913
Corrosion, pyrophoricity and stress-	Graham-Walles parameter .933, 934
corrosion cracking of Ti alloys	isostatic tests914-917
in fuming nitric acid871-899	Larson-Miller parameter
Corrosion resistance of U-Ti alloys	912, 913, 920, 927, 929–932
effects of alloying elements.685-696	Manson-Haferd
Crack initiation and H	parameter912, 913, 925-931
concentration843, 844, 851, 858	master curves912-918
Crack nucleation (in steel)	on Ni-Cr alloys244-249
slip and twinning674, 676	practical implications922-924
Cracks (in fracture)	reliability of extrapolation923
intersections of 2577, 578	time saving922-923
restarting model580	validity of parameters911, 912
Creep	Creep testing of various alloys,
in Cu, activation energy of 900-910	contraction in114
in Ni, activation energy of 900-910	Critical tensile stress for
in polycrystalline alloys900, 906	fracture initiation630-641
Creep, high-temp.	Cross slip, activation energy for
mechanisms for901, 902, 908	Al, Cu and Ni902, 903, 907
rate-controlling mechanism. 907, 908	"Cross-twin"
Creep, negative	fracture562-564, 571, 572
in Co-Cr alloys121	Crucible, graphite,
in Fe-Al alloys122	in solidification study223, 224
in Fe-W alloys108-119	Cryostats for low-temp. work .668, 669
in Ni-Mo alloys108-119	Crystal growth
Creep, oscillating in Fe-Al	basic mechanism studies162
alloys	breakdown of columnar to
Creep and relaxation	equiaxed
tests	classical theory in 162, 163
in Al-base alloys114	dissociation of spiral steps178
in Co-Cr alloys114	effect of poisons
in Mg-base alloys114	on156, 159, 160, 161
in stainless steels114	in cooling Al-Mg ingots225-228
Creep behavior of various alloys,	rates
need of refined techniques120-122	screw dislocations in167, 168, 172
Creep curves for Ni-Cr alloys	Crystal structure
in air and vacuum250	of metal oxides
Creep rate in Fe-Al-Si alloys,	of phases in Al-V alloys1101
ordering and302, 303, 307, 308	Crystal study
	X-ray diffraction techniques
Creep resistance in 3 Ti alloys997	for imperfections231, 232
Creep-rupture testing	Crystals, single
application of time-temp.	fracture equipment558
parameters to	of Fe-Si cleavage study556–588
accelerated911–934	preparation techniques .150–153, 158
development of isothermals918–922	
Dorn parameter912, 913, 920	Crystals, metal monoxide new
experimental procedure-master	production method150-153
curve913–918	Crystals, solidification study222-230

Curie points for epsilon Fe carbide 525, 524-536	Delayed failure (H induced) (cont.)
for Hägg Fe carbide535	in Ti-4 Al-4 Mn alloy (cont.)
identification of phases by 520	material and procedures844, 845
inflection points and535	summary and
Cyclic fatigue in metals,	conclusions858, 859
compilation and	Density
interpretation438-453	of alloys, creep behavior and 108-113
	of uranium powder
Cyclic strain fatigue (at room	compacts
temp.)	742, 746, 747, 750, 781
of Al and Al alloy 24 ST, Cu, low-C steel, Ni and stainless	Deposition of metal oxides
steel 347	in crystal production155, 156
Cyclic strain fatigue testing	Di values
Baldwin et al method440, 442	in hardenability338-341, 342
Coffin method	in hardenability of Cu steel. 378, 379
Gross and Stout method441, 443	Differential thermal analysis
	of Al-V system1098, 1099
Johansson method	Differential torsion testing
Low method	on Al alloy 2024946–949
present method	reproducibility
Deformation	
band formation in97-104	Diffusion
in Fe-Cr-Mn-N steels618	as a rate process
in Mg-base alloys92-107	in solid state185–197
shearing modes in94	layer formation in Al-Mg-Zn.199-221
Deformation hardening of	parabolic growth
high-alloy steel	law213, 218, 219, 221
wedge specimen478	relationship to phase
critical amounts for	diagram203, 218
significant increase in	mathematical analysis in
mech. properties486	solids
Deformation resistance	multi-phased growth law220, 221
in Ti alloys941-942	nucleation and, in iron472
Degree of constraint	of H into Ti alloys in hydrogen
in fatigue tests431	embrittlement
Deimel H cryostat tensile machine. 668	814, 815, 819, 853, 856, 857
Delayed failure (H induced)	of O ₂ into Cb binary alloys274-277
in Ti-4 Al-4 Mn alloy 843-861	of 3 metals into one another 119, 200
cracking in	Al-Mg-Zn system 213, 214
definition843, 845, 860	testing procedures216, 217
effect of heat treatment851	penetration, parabolic law185
effect of H	Dilation measurements
content816, 817, 848-850	equipment113
effect of microstructure845-848	on Fe-W alloys113, 115 116
effect of prior stress on 855-857	on Ni-Mo alloys113, 115, 116
effect of strength level 850-852	Dilute ternary alloys of U683-696
effect of temp853, 857, 858	Dimensionless parameters in
failure time vs reciprocal	solidification study on
temp	ingots354, 355

Discontinuous grain boundary migration in rock salt and Zn471	Effect of composition on the H embrittlement of alpha-beta
Dislocation density	titanium alloys820-842
in single crystals of metal oxide. 160	Effect of Cu on the heat treating
Dislocations, screw	characteristics of medium-
in crystal growth167, 168, 172	carbon steel
Disorder-order reactions occur by nucleation and growth468	Effect of grain size and C content on the yield delay-time of
Dispersion hardening in Ti alloys, mean free path976, 978	mild steel
Dorn parameter	elevated temperature stress
in creep-rupture	stability of Ti alloys981-998
testing	Effect of strain rate and
Ductile materials	temperature on the
effect of thermal cycling421	compressive flow stresses of
Ductile to brittle transition	three Ti alloys935-945
in steel	Effect of stress on the eutectoid
in 1020 steel	decomposition of
effect of grain size and	Ti-Cr alloys1036-1054
testing speed	Effects of cold work and
666, 669, 670, 676	quenching on magnetic
in U-2 Mo alloy	susceptibility of a commercial
Ductility	Ti alloy
in Al alloy 2024-0950	Effects of microstructure and heat
in deformed high-alloy	treatment on the H
steel479, 481, 482, 486	embrittlement of
in Fe-Al-Si alloys	alpha-beta Ti alloys802-819
effect of Si on299-301	Elastic modulus of Ti-Cr
in Fe-Cr-Mn-N steel	alloys 1039, 1042, 1043, 1050
effect of nitrogen622	Elastic-plastic stress analysis of
with crosshead	Izod impact specimen of
speeds and temps617-621	mild steel632–634, 640
with martensite content613-616	boundary for test at
with strain rate616-621, 626	2 temps 639, 640
in Hastelloy Alloy B on	geometry of notch642
aging128, 129, 134	math. analysis 633–635
in mild steel650, 652, 655, 656	prediction of
in Re-Mo alloys1070, 1071	transition636, 637, 640
in 1020 steel	upper yield stress636, 637
in four Ti alloys970–973	Election of Officers50, 51
in Ti-6 Al-4 V	Electric analogy method in ingot
in Ti-7 Al-4 V999, 1006, 1014	solidification367–370
in Ti-Cr alloys1051, 1052	Electric wire burning tests in
Dynamic modulus tests on Zr-U	corrosion study on Ti and
alloys suitability in	Ti alloys .872, 882, 883, 889, 890
determining transformation kinetics	Electrical resistance
kinetics/13-/10	of Fe-Al-Si alloys, effect of
	Si on299, 303, 304
Educational Films and Aids35, 36	of Ti-Cr alloys1039, 1041

Electron diffraction identification of carbides by80-84	Eutectoid alloy steel transformation kinetics
of metal oxides153, 154	
Electron micrographs	in
extraction replica technique73	alloys, effect of stress
of alloy carbides74–79	on
of deformed high-alloy steel .483-485	Eutectoid temperature in TTT
of low-C steel (contg. up to	study of Ti-Cr alloys1046-1048
1% Cu)311-316	Expansion during tempering
of molybdenum steel73-76	of alloy steels
of vanadium steel77–79	Explosion hazards
Electron microscope,	in fine metal powders898
thermionic emission type457	in SAC casting of Al 1091–1094
Electronic analog computer374-376	Explosion sensitivity tests
possible use in solidification 374-376	on Ti and Ti alloys888, 889
Electroplating: metallography	
technique719, 720, 731-734	Fabrication of Re-W alloys759, 770
Elevated temp. stress stability	Fatigue behavior in metals,
in Ti alloys, effect of H.T.	prediction methods450, 453
on	Fatigue properties
Elongation, due to creep111, 112	of steel, role of residual stress537
comparison with negative111, 112	of tool steel, effect of
Embrittlement	compressive stress in
in austenitic Cr-Mn-Fe	surface402, 403
alloys	Fatigue testing
in Ti-Cr	cyclic methods 439-442
alloys1036, 1037, 1049-1052	Ferrite in steel
in Ti-2 Mo-2 Fe-2 Cr804, 805	specific magnetization522, 523
in Zr-U alloys709-713, 715	Finely divided metal powder
End-quench hardenability	chemical activity of 898
testing337, 338	Flow stress in Al alloy 2024-0
on Ti alloys, cooling	at shear strain of 1.5954, 959
curves	Fluid displacement measurements
Epsilon iron carbide517, 518,	on beta plutonium677, 678
521, 527–529, 534–536	Forgeability
Curie point of525, 534-536	in Ti-6A1-4V999
reaction with ferrite528	in Ti-7A1-4V999
specific magnetization521, 535, 536	Forging temp. survey on Ti-Al-V
transition of, to	alloys conclusions1014
cementite517, 528, 529	experimental work 1000–1004
Equilibrium transformation temp.	general 1000 1013 1014
for medium-carbon steel	considerations .1009, 1013, 1014
effect of Cu on	materials and procedures1000
Etchants in diffusion study of	microstructure
Al-Mg-Zn system217	results and discussion1004-1008
Etching to remove stressed layers	water quenching
in tool steel404, 406, 407	Fracture ductility, significance in
Eutectiferous system relationship	low-cycle fatigue
between composition and	Fracture in notched specimens
weld cracking395	of mild steel631

Fracture of Fe-Si crystals	Grain size (cont.)
crack growth577-580	in Inconel
crystallography559-560	effect of grain size on
equipment for single	load cycling437
crystals557-559	in mild steel
geometry559-566	effect on yield delay-time.643-666
metallography566-576, 579	in Ni and Ti
schematic of developing	effect in load-cycling
surfaces561, 562	fatigue424, 425, 436, 437
shear stresses	in 1020 steel
Fracture profiles,	effect on low-temp.
micrographs and sketches	properties669–670
562, 564, 567, 570–574, 576, 579	in U powder
Freezing front in ingot	compacts739-741, 746, 751
solidification, progression	Grain structure
of359–368	in carbon steel
Freezing of ingots353-376	effect on hardenability
Fuming nitric acid, rocket	calculations344–346
propellant, corrosion of Ti	in low-carbon steel
alloys in872–874	contg. up to 1% Cu321-331
preparation of	in medium-carbon steel377-393
effect of comp. of, on corrosion874	in recrystallized Cu
safe concentration range896	steels
Furnace, high-temp. tube for	Grossmann multiplying factor
Re-Mo alloys 1056	method in hardenability349
	Growth, epitaxial
Galvanic action	in single crystal films158
between alpha and beta	Growth cell assembly
Ti879, 880, 896	for single crystals163, 164
Gamma to alpha transformation	Growth conditions for equiaxed
in Fe-Cr-Mn-N steels	crystals in Al-Mg alloys222-230
ductility and 613-619	Growth spirals in crystal
in pure iron	formation
criterion for	dissociation of spiral steps178
Heidenrich's interpretation473	examination at room temp178–180 examples165, 167–171
shear mechanism	schematic with polar coordinates. 176
Gas pressures	
in solubility of H in Mg. 1074-1081	screw dislocations and 167, 168, 183 small steps form large
Geiger counter	steps174–176, 178, 181
X-ray diffractometer773	time features
Geometry of fracture559-566	time features
Graham-Walles parameter	
for creep-rupture testing933, 934	Hägg iron
Grain refinement in as-cast	carbide517-519, 529, 534, 535
structures222	Hardenability
Grain size	contributions of alloying
in alpha-beta Ti alloys	elements
effect on H embrittlement .802-819	criteria for
in high-temp alloys	Di (Diameter ideal)338-342

Hardenability (cont.)	Heat and Mass flow analyzer354
factors based on grain	techniques of
structure	computation 368-370, 375, 376
in hypereutectoid steels	Heat conduction in a slab367
effect of Mn, Si, Cr, Ni,	Heat flow in Jominy bars
Mo335–352	math. analysis 1022-1028
in medium-carbon steel	Heat treatment
effect of Cu	of alpha-beta Ti alloys
in steel	effect on H
in Ti alloys1017–1035	embrittlement802-819
cooling curves1020, 1021	of carbon steels
equipment for1018–1020	effect on hardenability
interpretation and	calculations344, 345
prediction1030, 1033	of medium-carbon steel
J.D. (Jominy distance)338–342	effect of Cu on377–393
use and limitations of,	of rhenium-tungsten alloys759
factors346–348	of titanium alloys
Hardened steel	application of rate process
X-ray residual stress	theory
measurements in537-555	beta and beta-plus alpha 968, 969
Hardening mechanism	effect of diameter1028, 1029
in Mg-base alloys102, 103	effect of temp. on H
	embrittlement802-819
Hardening technique	effect on stress stability981-998
for Cb in O ₂ ,N, and	in forging temp. survey1005
air284, 290, 291	of Ti-4A1-4Mn alloy
for high-alloy steel476-494	in delayed-failure study845, 846
Hardness	of Ti-Cr alloys1037, 1038, 1053 of tool steel60
as indication of O ₂	of U-2Mo alloy
diffusion258, 259, 267-269	of Zr-U alloys
high temp. See Hot hardness	Helium
of Al ingots1090	as an ideal gas1078, 1079
of Cb-Cr alloys270	in solubility testing
of Cb-Zn alloys271	of Mg1073, 1076, 1078, 1079
of Hastelloy Alloy B133	Hexagonal crystal growth
of high-temp. alloys, with	due to spiral growth
variable content and	of Cd crystals
aging139–146	
of inclusions in uranium729	Hexagonal iron carbide
of low-carbon steels	(Fe _{1.6} C)
(contg. up to 1% Cu)310-334	See also Epsilon iron carbide
of Re-Mo alloys1069, 1070	High-alloy steel
of tempered alloy martensites 68, 72	effect of C content and tempering
of two Ti alloys	on properties 480–482, 487
vs. aging parameter797, 801	hardening techniques 476–494
of U-Ti-Cb alloys688–691, 695	microstructure of
of U-Ti-Mo alloys692, 695	deformed
of U-Ti-Pt alloys692, 695	plastic deformation and
of Zr-U alloys711-713	properties478, 480, 483, 486

High-carbon steel	High-temp. tube furnace
hardenability effects of	for Re-Mo alloys1056
alloying elements in336	Homogenization of four Ti
hardness corresponding to	alloys962
10% transformation341	Hopkinson bar compression
magnetic analysis of phase	loading device644, 645
changes produced in	Hot-cold working procedure on high strength steel490, 491
tempering517–536 measured and calculated	Hot compression tests
hardenabilities in338–340	on Ti alloys
multiplying factors	Hot hardness of alloy steels 65-67
for hardenability344–346	Hot plastic deformation
phase changes taking place in	of Ti alloys1014, 1015
tempering of518, 519, 529	Hot short temperature range .395, 396
High-speed steel tempering63-65	Hot shortness in Mg alloys394-401
High-speed steel, trade	Hot tearing and weld
designations M 268, 71	cracking 394, 395, 398, 400, 401
High-temp. alloy steels	Hot workability
development of61, 62	in aluminum935, 936
High-temp. alloys	in steel935, 936
age hardness with varying V,	in Ti alloys935–945
Ti, Mo, and temp 140-144, 149	Hot-work steel
effect of two soln. treatments	deformation hardening in491-494
on age hardening140	effect of tempering64
for reactors and jet engines. 256, 282	Hydrogen
grain size with soln. treatment138	as an ideal gas1078, 1079
insoluble Ti in	in Al ingots1087
microstructure147, 148	solubility in alpha-beta Ti-4Al-4Mn
phase relationships in,	alloy825, 826, 832, 835,
containing N	836, 839, 840, 845, 848–850
trade designations	solubility in Mg1072–1082
A 286	Hydrogen embrittlement
Discaloy	as a diffusion-controlled process.853
Nimonic 80A and	at high- and slow-strain
90925, 926, 931, 932	rates
Tinidur	compared to delayed-failure860
High-temp. contamination	detection procedures824, 825
of Cb282-298	in alpha-beta Ti alloys
of Cb-binary alloys264-281	effect of composition820-842
High-temp. forging techniques	effect of microstructure
for Ti alloys999, 1013, 1014	and H.T802-819
High-temperature hardness	in alpha-beta Ti-4Al-4Mo alloy
See Hot hardness	with delayed-failure843–861
High-temp, oxidation and	temp, and strain rate
contamination of Cb282-298	dependence
High-temp. properties	Hydrogen tolerance
of Fe-Al-Si alloys299–309	in alpha-beta Ti alloys
of Ti alloys969, 970, 979	effect of composition820–842
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	Career or compositionoad=042

Hydrogen tolerance (cont.) in alpha-beta Ti alloys (cont.) effect of H.T802-819 effect of microstructure802-819	Incubation and transformation (cont.) in eutectoid alloy steel (cont.) effect of time508-512, 514, 515 effect upon subsequent 800°F
Hydrogen-induced delayed-	transformation507, 508
failure in alpha-beta	in iron459, 460
Ti-4Al-4Mn842–861	in 4340 steel
	Induction furnace (Westing-
I.T. curves for beta	house)137
plutonium	Influence of forging temperature
I.T. diagram for Ni-Cr-Mo	on mechanical properties of
eutectoid steel	Ti-Al-V alloys999-1016
Ignition sensitivity of Ti and	Ingot solidification study353-376
Ti alloys in corrosion	appendices
studies	correlation of temp. data
Ignition temp. in O2	and errors
for Cb and Mg297, 298	early time equations370
Impact embrittlement	electric analogy method367-370
in Ti alloys	interface temp 359–361, 371, 372
Impact energy in Ti-Al-V	mathematical analysis 355, 356
alloys effect of forging	nomenclature
temp. on	progress of freezing front359-364
Impact strength	question of size374, 375
of two Ti alloys	review of literature355, 356
of U-2Mo alloy753, 755, 756	six approaches of investigation353
Impact testing	temp. distribution in liquid and
geometry of notch642	solid regions364–368, 372, 373
on Ti and Ti alloys	thermal aspects of
in corrosion studies887, 888	Instability in Al alloy 2024-0950-952
in stress-stability study981-998	Interface movements in transfor-
Inclusions in uranium	mation of Fe462, 463, 474 Interferograms of cadmium
cathodic behavior in an	crystal growth169–172
electrolyte	
electrodeposition of Cu719, 720	Iron
experimental procedure718, 719	high-purity, allotropic transfor-
hardness	mation mechanism in454-475
identification of717-735	in Al, effect on weld cracking401
Inconel	Iron alloys
grain size influence	heat treatments and properties454
on load cycling437	Iron-aluminum alloys
plastic strain in load or	order-disorder transformation in .122
thermal cycling 428, 435, 436	oscillating creep in 121, 122
stress-to-rupture124	Iron-Al-Si alloys
Incubation and transformation	compositions selected
in eutectoid alloy steel 495-516	ductility of299–301
additive effect504	effect Si on properties300-304, 308
definition504	elec. resistivity299, 303, 304
effect of cooling rate511	mechanical properties at room
effect of double	and elev. temp
incubation510, 511	microstructure305, 306

Iron-Al-Si alloys (cont.) ordering in299, 304–308 oxidation resistance299–304	Iron-Cr-Mo-V ("17-22-A"S) (cont.) nominal constant stress data.915, 924 rupture time vs. reciprocal
stress-rupture curves301, 302, 307, 308	temp
trade designation, Sendust299	Iron-Cr-Ni-Mo (16-15-6)
Iron-carbon alloys Di-hardenability	comp. and H.T
Iron-Cr-Mn-C-N steels 624, 625 impact tests 624, 625 low-temp. embrittlement 623, 624, 626, 627 magnetic response 624	Iron oxide (FeO) prepared by halide decomposition
Iron-Cr-Mn-N alloys ductile-to-brittle transition in 609 ductility and martensite content 613–617 impact strength vs. temp 610 low-temp. embrittlement of austenitic	Iron-silicon (3.5% Si) cleavage-rupture surface
nitrogen and phases with heat treatment	Iron-tungsten alloys creep and relaxation tests113–116 dilation measurements113 length changes on aging111 negative creep in108–119
Iron-Cr-Ni-N system	Isothermal annealing curves for Ti-140A866, 867
austenite-austenite and ferrite limits for 2200°F and 2000°F	Isothermal creep-rupture curves time-temp. parameters for .911-934
austenitizing temp. for each composition	Isothermal transformation in beta plutonium
sigma phase in604, 605	Isothermals for master curves
Iron-Cr-Mo-V ("17-22-A"S) calculated isothermals	of Fe-Cr-Mo-V
Manson-Haferd parameter928, 929, 933, 934	model for stress analysis632 prediction of transition temp641

J.DDi. relations	Load-cycling fatigue of Ni and Ti
in hardenability338–342	(cont.)
Jack hammer, ultrasonic717 Jatczak-Girardi	experimental results
multiplying factors in	symbols and terms
hardenability335–352	Lorenz-polarization factor
Jominy end-quench tests	in X-ray diffraction541, 542 Low-carbon steel
J.DDi. relations in	room-temp. cyclic fatigue 438–453
hardenability338–342	Low-carbon steels (contg. up to
on Ti alloys1020–1022, 1029, 1035	1% Cu)
on U ternary alloys686, 688, 695	hardness, recrystallization and
on U-Zr alloys698–701	structure310-334
on c an anoys	solubility of Cu in ferrite311, 312
Larson-Miller parameters	Low-carbon martensite
in creep-rupture testing912,	in tempering of steel519, 526, 529
913, 920, 927, 929, 930, 932	Low-cycle fatigue vs. high-cycle
Lathe tool of 190060	fatigue
Lattice constants	Low strain rate embrittlement in
for alpha uranium775, 776	Ti alloys 808, 809, 812-815
for beta uranium776, 779, 780	See also Slow strain rate
for gamma uranium779–781	embrittlement
spacings vs. temp.	Low-temperature embrittlement of
for beta U785, 786	austenitic Cr-Mn-N-Fe
Lattice curvature	alloys
in W crystal study239, 240, 242	Low-temperature observations of
X-ray diffraction	1020 steel
techniques for231, 232	
Lattice distortion in crystals	M, temperature of medium-carbon
illustrations in W.233, 234, 240-242	steel, effect of Cu on .380, 381, 392
X-ray diffraction technique231–232	Macrostructures
Lattice parameters	of Al-Mg alloys225
of low-carbon steel314	of Cd crystal.166, 168-171, 174, 175
of U (25-1132°C)772-786	Magnesium
experimental procedures	diffusion constant in A1203
and materials772-775	ignition temp. in 0_2
math. analysis	solubility of H in1072–1082
temp. dependence775, 781, 783	effect of lower temp1081
Lead alloy, recrystallization	experimental procedure
time	and technique 1073–1077
Length changes in alloys	previous work 1072, 1073
with aging	vapor pressure 1074, 1075, 1080-1082
math. analysis	welding characteristics394
Letner precision mech. deflection	Magnesium, single crystals
method for measuring residual	deformation and fracture in 105-107
stress	parting failures in twins under reduction105-107
of high-alloy steel477, 486 Load-cycling fatigue of Ni and Ti	Magnesium alloys cold rollability
definition431	impurities in weld cracking401
equipment	microporosity in
equipment424	inicroporosity iii

Magnesium alloys (cont.)	Magnetic tape recording of
retrogression during creep	Jominy end-quench temp1018 Magnetization, specific of phases
testing114	
trade designations	of iron
AZ 31B, cold rollability94 EKOO95, 96, 98, 101, 103	carbon steels335–352
H.O. (Mg and 1.5Th)	Manganese steel
95, 96, 99–103	low-temp. embrittlement of
variation of properties with	Hadfield609, 610, 615, 622
reduction96–100	stress effects of abrasive
weldability	tumbling402–420
Magnesium-aluminum system . 397, 398	Manson-Haferd parameter in
Magnesium-base alloys	creep-rupture testing
deformation and aging94-107	912, 913, 925-931
Magnesium binary alloys	Martensite
relationship between weld	in carbon steel
cracking and composition. 394-401	effect of Cu377–393
Magnesium-cerium system398	temp. range of formation 381-384
Magnesium-lead system398	in copper-bearing steels
Magnesium-rare earth systems398	effect of Cu on hardness of 389
Magnesium ternary alloys	resistance to softening
relationship between weld crack-	on tempering387–390
ing and composition in 394-401	in Fe-Cr-N steels
Magnesium-1.5 thorium . 95, 96, 99-103	as embrittling agent618, 619
Magnesium-tin system	deformation at temp. and
Magnesium-zinc system 397–399	effect with nitrogen
Magnesium-Zn-Al399	in steel
Magnesium-Zn-rare earths	decomposition of, and retained
	austenite at 170°C 524
Magnesium-Zr, diffusion in193, 194	field dependence of
Magnetic analysis	magnetization521, 522
equipment for	strained-induced, cause of
of phase changes produced in	embrittlement610
tempering a high-carbon	X-ray diffraction peaks for
steel517–536	tetragonal554, 555
Magnetic properties of metals and	Martensite transformation
alloys, ASM Seminar Pro-	formation time of 475
gram1, 2, 32	haziness in criteria for 470, 471, 473
Magnetic susceptibility	Martensites, tempered alloy60-93
of non-ferromagnetic metals	Mean free path length in disper-
equipment864	sion hardening of alloys976, 978
Honda-Owen plot864, 867	Mechanical fatigue of Ni and
general characteristics	Ti421–437
of pure Ti862	Mechanical properties and heat
of Ti-140A	treatment response of Zr-U
effect of cold work and	alloys
quenching on862–870 experimental method and	Mechanical properties of de- formed metastable austenitic
results863–870	ultra high strength steel476–494
1 CSUILS	uitra nign strength steel 4/0-494

Mechanical properties	Microfractography in fracture
of alpha-beta Ti alloys826-829	studies
of Fe-Al-Si alloys at room and	Micrographs
elev. temp299-309	See also Microstructure
of SAC aluminum ingots1087-1090	of Cd crystal growth179, 180
of 1020 steel	of creep-rupture samples of
effect of grain size on	Ni-Cr alloys251, 252
low-temp	of diffusion in Al-Mg-Zn204-208
effect of testing speed on	of fracture in Fe-Si
low-temp	crystals566-576, 579
of Ti-Cu-Al alloys961-980	of low-carbon steel (contg. up to
of Ti-Cu-Al-Sn alloys961-980	1% Cu)315, 321, 322, 326–328
of Ti-Al-V alloys	of metal oxides155, 156
influence of forging temp. 999-1016	of Ti and
of U-Ti alloys	Ti alloys878–881, 887, 888, 897
effect of alloying elements. 685-696	of W crystals, arc-cast.233, 234, 237
Mechanical property testing at	Microsegregation of hydrides
room and elev. temp. for Ti	in titanium alloys814, 815
alloys experimental proce-	Microstrain, pre-yield
dures982–983	in yield delay-time study 663
improvement from H.T997	Microstructure and mechanical
notched and unnotched	properties of Ti-Cu-Al and
results984-991, 996	Ti-Cu-Al-Sn961–980
Mechanism of the allotropic	Microstructure
transformation in high purity	of alloy carbides73-79
iron454–475	of Al ingot (SAC)
Mechanized Literature Searching	
Project	of alpha-beta Ti alloys
Medium-carbon steel	effect on H embrittle-
effect of Cu on hardness of	ment
martensite389	of Hastelloy Alloy B, effect of
effect of Cu on H.T377-393	aging time and
T.S. of highly deformed486, 487	temp 126, 129–133
Membership Award, Honorary 51, 52	of high-alloy steel
Metal halide, decomposition . 150-157	(deformed)483–486 of high-carbon steels, criterion
Metal monoxides	for hardenability335–352
	of high-temp. alloys147, 148
Metal (pure)	of inclusions in uranium
ingot solidification354, 356, 357	718, 721–723, 725, 726, 728, 732
Metallographic identification of	of Fe-Al-Si alloys305, 306
inclusions in uranium717-735	of low-carbon steels
Metallography	of Mg-base alloys97–99
of diffusion in Al-Mg-Zn216, 217	of medium-carbon steel . 386, 387 391
of Re-Mo alloys1057, 1058	of molybdenum steel73–76
of Re-W alloys	of Ni-Cr-Mo eutectoid steel,
of Ti-Cr alloys1039, 1043, 1050	continuously-cooled com-
of U-Ti ternary alloys. 686, 688, 689	pared to isothermally-
Metals Engineering Institute36, 37	transformed499, 500
Microscope, thermionic emission457	of Re-Mo alloys1061-1065, 1069

Microstructure (cont.)	Multiplying factors (cont.)
of Re-W alloys762, 764–768	for Cu in hardenability
of 1020 steel	of Cu steel
of Ti alloys837, 838	in hardenability, use and
of Ti-4Al-4Mn alloy845–848	limitations346–348
of Ti-6A1-4V	Mushet self-hardening steel60
of Ti-7Al-4Mo789, 790	National Metal Congress38, 39
of Ti-Cr alloys1043, 1044, 1050 of Ti-Cu-Al alloys961–980	Negative creep, definition 108 See also Creep, negative
Ti-5Cu-3A1965, 966, 977	Nickel
Ti-5Cu-3A1-2Sn	creep-rupture tests in
965, 966, 971, 972, 977	vacuum and air244, 253
Ti-8Cu-3A1965, 966, 977	diffusion into Cu193, 194
of U powder metal compacts	hardenability effects in
738, 743	carbon steel335-352
of U-Ti-Cb alloys667–693	oxidation resistance253, 254
of vanadium steel	Nickel, type A
of Zr-U alloys702-705, 707	room-temp. cyclic fatigue 438-453
Misorientation in subgrains in W crystal235, 236, 238, 242	thermal and mech. fatigue 421-437
	Nickel, polycrystalline
Mold, ingot for 25# ingot	activation energy for creep900-910
"sufficient," definition .357, 374, 375	activation energy for self
Mold-melt interface study during	diffusion904
ingot solidification353–376	stacking-fault energy903
	strain aging908
Molybdenum compacting with U736, 745–748	Nickel alloys, trade designations
effect on age hardening of	Hastelloy Alloy B
Ni-Cr-Fe alloy136–149	aging characteristics123-135
effect on properties of	microstructure129-132
U-Ti alloys692, 694	precipitation in 123, 128-134
hardenability effects in	properties124, 125
carbon steels335–352	Nickel-base alloys
in alpha-beta Ti alloys	precipitation hardening with
820, 821, 827, 830, 831, 840	aging at high temp135
Molybdenum-nickel, phase	Nickel-chromium alloys
diagram126	creep-rupture tests in
	vacuum and air244-255
Molybdenum steel carbides in80-83, 85-87	micrographs of creep251, 252
electron microscopy of	oxidation resistance250, 253, 254
	temp, and stress dependence of
carbides in	atmosphere effect on244-255
Morphology of diffusion layer	tensile properties246, 248, 249
structures in Al-Mg-Zn system . 212	Nickel-Cr-Fe alloy
Multiplying factors	effect of Ti, Mo and V on age
for the calculation of	hardening in 136–149
hardenability of	Nickel-Cr-Mo eutectoid steel
hypereutectoid steels	austenite transformation and
hardened from 1700 ° F 335-352	incubation in495–516

Nickel-Cr-Mo eutectoid steel (cont.) reaction curves at high-temp. 505-507	Nucleation and growth (cont.) in transformation in iron (cont.)
transformation in496-498	criteria for .455, 456, 470, 471, 473
Nickel-molybdenum alloys	definition
creep and relaxation tests113-117	disorder-order reactions 468
dilation measurements	schematic
length changes on aging111	in Zr-U alloys704, 706
negative creep in108-119	Nucleation and shear
stress-relaxation behavior116-118	in transformation in iron
Nickel oxide (Ni O)	criteria for456, 468-470, 473
antiferromagnetic ordering .156, 160	schematic
cracks in	
poisoning of156, 159–161	Omega phase
prepared by halide	in titanium alloys971–973
decomposition150–161	in Ti-Cr alloys1039, 1041,
Nickel-zinc, diffusion in195	1044, 1045, 1048–1051
Niobium	Order-disorder transformation
See Columbium	in Fe-Al alloys122
Nitrogen	Ordering
austenitizing	effect of silicon on299, 304, 308
power589, 590, 594–596	in beta brass
diffusion into alloy steel589-608	in Fe-Al-Si299, 304–308
diffusion into Fe-C alloys in	Oscillograms, stress-time645
gradient furnace 598, 599, 607	Overaging
in Fe-Cr-Mn-N steels, effect	in Hastelloy Alloy B
on ductility622	in precipitation hardening390
reaction of Cb with, at	Oxidation
various temp	high-temp. of columbium
transfer in steel607, 608	results with O ₂ ,N and air .284-291
Nomographs	test procedures284
for concentration-penetration in diffusion 188-190	use of Cr ₂ O ₃ markers296–298
parameters and tempering	of Ni and Ni-Cr alloys 244, 250-254
curves	of tantalum at 1000 °C298
Notch ductility in Ti alloys983, 997	Oxidation resistance
Notched-bar impact test, pre-	of binary Cb alloys256-281
diction of transition temp629-642	experimental procedure258
Nuclear reactor fuels	tabular data259, 262
uranium	of Fe-Al-Si alloys, effect of
uranium alloys683–696, 745, 749	silicon on
Zr-U alloys	of Ni-Cr alloys250, 253, 254
	Oxide crystal
Nucleation 222 230	apparatus for producing151-153
in grain refinement222, 229	catalyst in production
in solidification of binary	mixed gases in production152
alloy crystals222, 229	substrate in apparatus151, 153
Nucleation and growth	Oxygen
in beta plutonium681, 682	in alpha-beta Ti alloys and
in transformation in iron	hydrogen tolerance
by diffusion	821, 831-834, 836, 840

Oxygen (cont.) reactions of Cb with, at	Phase diagram (cont.) of Mo-Ni system
various temp284-288	of Re-Mo alloys1055-1071
Oxygen-diffusion hardening of	Dickinson-Richardson .1059, 1067
Cb and Cb binary alloys272-277	Knapton 1067, 1068
	of two binary phases
	of U-Ti system684
Palladium window on Sieverts'	of Zr-U alloys697, 698
apparatus1075	Phase equilibria studies with
Parabola fitting in x-ray	powder metallurgy
diffraction study	specimens
542–549, 552–555	Phase relationships in the Fe-Cr-
Parabolic law for diffusion	Ni-N system589-608
penetration185	Phase study
Parameter master curves	of Al-V system1097–1102
for Fe-Cr-Mo-V ("17-22-A"-S)	of beta plutonium677–682
916, 920–922, 926–929, 933, 934	of Fe-Cr-Ni-N system589-608
for Fe-Cr-Ni-Mo	of Re-Mo alloys1055–1071
(16-15-6)	of Re-W alloys
Parameters in creep-rupture	of Ti-Cr
testing	alloys1037, 1039, 1041, 1054
forms and assumptions913	Phenomenon of negative creep
linear926-934	in alloys
validity of911, 912	Phosphor bronze
Peak assymmetry in X-ray	subaquatic casting of1096
diffraction caused by type of	Photograms of Cd crystal growth
lattice	166, 168–171, 174, 175, 181
theoretical corrections .539-542, 546	Plastic deformation
Pearlite, effect on grain size	in fracture580, 585, 586
effect in yield point644	of metastable austenite 483, 486–491
Pendulum balance in magnetic	Plastic strain
analysis	equations
Peritectic compounds in	in thermal and load
aluminum-vanadium	
	cycling428, 429, 432
Phase boundaries, motion of 185-197	Plastic strain range vs. cycles
Phase changes	to failure
in iron	basic quantity for determination
in tempering steel530-532	of fatigue life453
chart for529	current investigation445, 449
identification534	determination from various
magnetic analysis517-536	reports443-446
Phase diagram	for Al, Cu, Ni and several
of Al-Mg (partial)223	steels
of Al-Mg-Zn (partial) .201, 209, 212	math. relationships451, 452
of Al-V system1098, 1100	Platinum
of high-alloy steel	effect on properties of
"bay" area and deformation	U-Ti alloys692, 694
studies 478, 480,	Plutonium
482, 483, 486, 489, 494	crystal structure677

Plutonium (cont.) I.T. in	Progression of the freezing front and the temp. distribution in ingots during solidification
Poisoning in crystal growth	of alloy steels, effect of
in nickel oxide156, 159–161	tempering on
	of as-cast and H.T. Mo-U
Polygonization in Mg-base alloys	alloy
on reduction102–104	of Mg-base alloys, variation
Pouring speed in SAC of	with reduction96-100
aluminum ingots1090	Pyrophoricity
Powder, chemical activity of	of Ti-8 Mn alloys in fuming
finely divided898	nitric acid871-899
Powder metallurgy	
of U and U alloys736-751	Quench severity H
hot and cold pressing .736, 739-742	methods for calculation 1022-1028
processes for736, 739-742	Quenching
specimens used in phase	of Ti-140 A, effect on magnetic
equilibria study589-608	susceptibility862-870
Precipitation hardening	D
in alloy steels62-65	Rate process theory787–801
in carbon steels62, 63	constants and processes
in Hastelloy Alloy B123, 128-135	for Ti alloys787, 788, 794
in high-alloy steel485-487	equations
in low-carbon steels (contg.	Recrystallization
up to 1%	in low-carbon steel (contg. up
Cu)312, 314, 316, 330-332	to 1% Cu)
in medium-carbon steel	effect of Cu on
effect of Cu on377-393	effect of H. T
overaging390	optimum temp. for desired grain structure323, 324
in 1045 steel (contg. Cu)388	in Mg-base alloys96, 97
Prediction of transition temp.	Recrystallization, structure and
in a notched-bar impact	hardness of low-carbon steels,
test	containing up to 1% Cu 310–334
Preparation of FeO, NiO and	Red hardness
CoO crystals by halide	effect of alloy carbides90
decomposition150–161	effect of composition
Preparation of uranium and	effect of retained austenite
uranium powder metal	on
compacts	in alloy steels
President's Annual Address12-19	in tool steels
	Reflections in X-ray diffraction
Press forging of titanium alloys937, 942–945, 999	analysis of
Probing tests in corrosion	uranium774, 780, 782–785
on Ti and Ti alloys889	Relationship between weld
	cracking and alloy
Proeutectoid ferrite reaction	constitution in some binary
in steel, proposed experiment473	and ternary Mg alloys394-401

Relaxation test on Ni-Mo	Saturation magnetization tests
alloy116-119	on Fe-Cr-Mn-N steels612, 613
Residual stresses	on pure martensite613
ASM Seminar Program9, 10	Sauveur Achievement Award54, 55
in fatigue endurance of steel	Scaling rate in Cb alloys280
effect of grinding on545, 546	Screw dislocations in crystal
measurement difficulties .537, 552	
Response of an iron-base alloy	growth, schematic167, 168, 172
hardened with Ti to various	Secondary hardening
aging times and	in alloy martensites90-92
temperatures	in alloy steels
Rhenium	in chromium steels90
high melting point	Secretary's Report25-40
Rhenium-molybdenum alloys	Self diffusion, activation energies
annealing	for aluminum900, 901
constitution1055-1071	for Cu and Ni904
ductility	
experimental procedure1057-1060	Sensitization in Fe-Cr-Mn-N
hardness	steels
metallography1057, 1058	Sieverts' apparatus for solubility
microstructure1061-1065, 1069	testing
phase study1055-1071	iron container1075
preparation of1055, 1057	Palladium window1075
solubilities1055, 1060, 1066, 1067	Shear mechanism and nucleation
twinning in	distribution of lengths464-466
workability 1055, 1069, 1070	duration of rest period466, 467
X-ray diffraction	effect with undercooling468
1057, 1058, 1065–1068	in transformation in Fe455
Rhenium-tungsten alloys	Shear transformation
constitution	definition
fabrication and properties769–771	methods of studying
hardness	phase changes by
heat treatment	schematic
melting points	
metallography	Silicon
microstructure762, 764–768	effect on properties of
phase diagram	Fe-Al-Si alloys300-304, 308
	effect with bainite350
phase study	hardenability effects in
Ridge boundaries, spiral growth	carbon steels335–352
at, in cadmium	in aluminum, effect on weld
165, 168, 172, 176, 180, 181	cracking401
"River pattern" in fracture	in high-alloy steel480
studies557, 559, 560, 569,	Silicon-iron, cleavage studies
571, 574, 575, 583, 585, 587	on crystals556-588
Rocket propellant-fuming nitric	Simplified procedure for
acid (FNA)895, 896	calculating peak position in
SAC of aluminum ingots1083-1096	X-ray residual stress
SACC of aluminum ingots1083–1090	measurements on hardened
ingots1089–1091, 1094	steel
mgots1009-1091, 1094	stees

Sintering	Standard Izod impact test,
Alexander-Balluffi's theory751	transition temp. from629
in U powder metal compacts747	Steel
Slow strain rate embrittlement	calculation of martensite in
See also Low strain rate	untempered530
embrittlement	cleavage rupture surface in
in Ti alloys824-826, 833-839	pearlite-free582, 583
in Ti-4 Al-4 Mn alloy852, 853	correlation of room and elev.
Solid louvers in crystal	temp. hardness in 3.5 Cr-
growth168, 172, 173, 180, 181	Mo-V68
Solid state diffusion and the	creep-rupture properties72
motion of phase	development of Tenelon606, 607
boundaries	hardenability.1017, 1022, 1033, 1035
Solidification	hot workability and strain
of Al droplets in water1083–1085	rate
of Al-Mg ingot223, 224	kinetics of solidification in
in ingots	ingots353–376
Solubility	phase changes in tempering518
of hydrogen in	thermal diffusivity1017, 1022
magnesium1072–1082	Steel, carburizing
evaporation problem	case hardenability studies345-348
1074, 1075, 1080	measured and calculated
method of test1075–1078	hardenability351
pressure differential	multiplying factors for
modification .1076, 1077, 1080	hardenability345–348
Sieverts' apparatus 1073–1075	Steel, copper-bearing
of Mo in Re 1060, 1066, 1067	recrystallization, grain
of Re in Mo. 1055, 1060, 1066, 1067	structure and hardness
Solute atom locking and high	in310–334
activation energy in Al alloy	Steel, ferritic
and nickel908	susceptibility to brittle
Spiral growth during vapor	fracture
deposition of cadmium162-184	Steel, hypereutectoid
Stability in powder metallurgy	hardenability study335-352
of uranium alloys748	multiplying factors for
Stacking fault energy for	hardenability344-347
Al, Cu and Ni903	transformation kinetics974, 975
Stainless steel	Steel, mild
plastic strain in load or	dynamic yielding659, 660, 663
thermal cycling428, 435	effect of grain size and C content
retrogression in creep114	on yield delay-time643-666
thermal cycling421	Izod impact tests638-640
trade designations	predicted and experimental
302, low-temp.	transition temp640
embrittlement624, 626	susceptibility to brittle fracture 629
304, low-temp. embrittlement	Steel, tempered
and impact test625-627	decomposition of phases524
316, stress-to-rupture124	magnetic analysis of phase
347, room-temp. fatigue438-453	changes517-536

Steel, tempered (cont.) tempering stages with phase changes	Strain aging (cont.) in nickel
notch-tensile results997, 998	dependence946–960 Zener-Hollomon
4350	parameter956-959
effect of hot rolling on	Strain rate
tensile strength490, 494	embrittlement in Ti alloys
6415	824–826, 833–839, 852, 853
measurement of residual	in compression studies on
stresses by two	titanium alloys935–945
methods552, 553	in hot working
52100 - 64	of aluminum and steel935, 936
effect of tempering on64 X-ray diffraction	of Ti and Ti alfoys937, 940–945 in Ti alloys, effect on H.T829, 830
540–542, 553–555	sensitivity in pure Al
Non-A.I.S.I. numbers	sensitivity in Al alloy
H 12, correlation of room and	2024-0953, 955, 959
elev. temp. hardness68	Strain-to-fracture in Al alloy
M 2, correlation of room and	2024-0950
elev. temp. hardness68	Stress-corrosion cracking
T 1, correlation of room and	of Ti and Ti alloys in FNA.871-899
elev. temp. hardness68	of Ti-8 Mn in FNA871-899
WB 44 and WB 49, correlation of room and elev. temp.	Stress effects of abrasive
hardness68	tumbling
16-15-6, austenitic	Stress in transformation study
See Fe-Cr-Ni-Mo alloy	in Ti-Cr alloys1040-1050
"17-22-A" S, ferritic	Stress measurement by X-ray
See Fe-Cr-Mo-V alloy	diffraction537-555
Steel, ultra-high strength	Stress-relaxation behavior of
mech. properties of deformed	alloys
metastable austenitic 476-494	Stress-relieving treatments on
Step growth in Cd	Ti alloys892, 894, 896
crystals 174–176, 178	Stress-rupture properties
Strain aging	of alpha-beta Ti alloys830
in Al alloy 2024-0 in	of Fe-Al-Si
deformation 946, 953, 956–959	alloys301, 302, 307, 308

Stress-rupture tests on Ti alloys	TTT curves (cont.)
notched vs. unnotched tests807	for 1045 steel381–384
Stress-stability testing	for Ti-Cr alloys1036–1054
experimental procedures and	for Ti-5 Cu-3 Al alloys963
results	for Ti-5 Cu-3 Al-2 Sn964
on Ti alloys at various	for Ti-8 Cu-3 Al
temp	for Ti-8 Cu-3 Al-2 Sn964
Stress-strain data	Tape recording of Jominy end-
on Al alloy 2024-0947–960	
	quench temp
on Al-Cu alloys947	Tantalum, oxidation studies at
on Al-Mg alloys947	1000 °C
on low-carbon steel674	Taylor and White heat treatment
on pure aluminum947	of tool steel60
Stress-time oscillograms645	Technical Program, 40th Annual
Stresses from abrasive tumbling	Convention1-10
comparator measurement of	Temperature and rate dependence
biaxial	of strain hardening in the Al
compressive	alloy 2024-0946-960
effect of particle size of	Temperature and stress
abrasive417	dependence of the atmosphere
magnitude and depth406-417	effect on a Ni-Cr Alloy244-255
math. equations	Temperature distribution in
Studies of the oxidation and	ingot solidification359-368
contamination resistance of	Temperature measurement during
1: 1 1: 11 256 201	crystal solidification 223-225
binary columbium alloys256-281	crystal solidification223-223
Subaquatic casting	Tempered alloy martensites60-93
Subaquatic casting	Tempered alloy martensites60-93
Subaquatic casting of aluminum ingots1083-1096	Tempered alloy martensites60-93 Tempering
Subaquatic casting of aluminum ingots1083-1096 of phosphor bronze1096	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64
Subaquatic casting of aluminum ingots1083-1096 of phosphor bronze1096 Subgrains in X-ray analysis of	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect
Subaquatic casting of aluminum ingots1083-1096 of phosphor bronze1096 Subgrains in X-ray analysis of tungsten233-235, 238-241	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478-487
Subaquatic casting of aluminum ingots 1083–1096 of phosphor bronze 1096 Subgrains in X-ray analysis of tungsten 233–235, 238–241 Substrate material cadmium for Cd	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478-487 of high-carbon steel, carbide transformations in517-536
Subaquatic casting of aluminum ingots1083-1096 of phosphor bronze1096 Subgrains in X-ray analysis of tungsten233-235, 238-241 Substrate material cadmium for Cd crystal162-164, 168, 180	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478-487 of high-carbon steel, carbide transformations in517-536 Tenelon, development of606, 607
Subaquatic casting of aluminum ingots 1083–1096 of phosphor bronze 1096 Subgrains in X-ray analysis of tungsten 233–235, 238–241 Substrate material cadmium for Cd	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478-487 of high-carbon steel, carbide transformations in517-536 Tenelon, development of606, 607 Tensile properties
Subaquatic casting of aluminum ingots 1083–1096 of phosphor bronze 1096 Subgrains in X-ray analysis of tungsten 233–235, 238–241 Substrate material cadmium for Cd crystal 162–164, 168, 180 in crystal growth 150–158	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478-487 of high-carbon steel, carbide transformations in517-536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125-129
Subaquatic casting of aluminum ingots 1083-1096 of phosphor bronze 1096 Subgrains in X-ray analysis of tungsten 233-235, 238-241 Substrate material cadmium for Cd crystal 162-164, 168, 180 in crystal growth 150-158 Supercooling ahead of a dendritic interface in	Tempered alloy martensites60-93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478-487 of high-carbon steel, carbide transformations in517-536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125-129 of high-alloy steel478-483
Subaquatic casting of aluminum ingots1083–1096 of phosphor bronze1096 Subgrains in X-ray analysis of tungsten233–235, 238–241 Substrate material cadmium for Cd crystal162–164, 168, 180 in crystal growth150–158 Supercooling ahead of a dendritic interface in solidification	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478–487 of high-carbon steel, carbide transformations in517–536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125–129 of high-alloy steel478–483 of Ti alloys789–801,
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478–487 of high-carbon steel, carbide transformations in517–536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125–129 of high-alloy steel478–483 of Ti alloys789–801, 807, 808, 815, 816
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478–487 of high-carbon steel, carbide transformations in517–536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125–129 of high-alloy steel478–483 of Ti alloys
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478–487 of high-carbon steel, carbide transformations in517–536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125–129 of high-alloy steel478–483 of Ti alloys789–801, 807, 808, 815, 816 of Ti-Cr alloys1047–1050 of U-2 Mo alloy
Subaquatic casting of aluminum ingots	Tempered alloy martensites 60–93 Tempering of alloy steel, effect of H.T 64 of high-alloy steel, effect on properties 478–487 of high-carbon steel, carbide transformations in 517–536 Tenelon, development of 606, 607 Tensile properties of Hastelloy Alloy B 125–129 of high-alloy steel 478–483 of Ti alloys 789–801, 807, 808, 815, 816 of Ti-Cr alloys 1047–1050 of U-2 Mo alloy 752–757 of Zr-U alloys 708–713
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478–487 of high-carbon steel, carbide transformations in517–536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125–129 of high-alloy steel
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478–487 of high-carbon steel, carbide transformations in517–536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125–129 of high-alloy steel478–483 of Ti alloys
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties478–487 of high-carbon steel, carbide transformations in517–536 Tenelon, development of606, 607 Tensile properties of Hastelloy Alloy B125–129 of high-alloy steel478–483 of Ti alloys789–801, 807, 808, 815, 816 of Ti-Cr alloys1047–1050 of U-2 Mo alloy752–757 of Zr-U alloys
Subaquatic casting of aluminum ingots	Tempered alloy martensites60–93 Tempering of alloy steel, effect of H.T64 of high-alloy steel, effect on properties

Thermal cycling tests	Titanium, commercial (cont.)
definition431	plastic-strain range vs.
effect on brittle and ductile	cycles to failure432-434
materials421	strain-cycling resistance 432, 433
equipment	Titanium alloys
experimental results425-429, 437	active eutectoid systems961, 974
grain size variation437	application of rate process
plastic strain in	theory to H. T. of 787–801
symbols and terms430, 431	compressive flow stresses effect
temp. conditions	of strain rate and temp935–945
test specimen422, 423, 425	containing one or more beta
Thermal diffusivity	stabilizers as Fe, Cr, Mn,
in steel	Mo, Ta, Cb and V827–841
in Ti alloys1022-1034	
effect of comp. and trans-	corrosion of, in FNA871-899
formation during	micrographs of .878-881, 888, 897
cooling1031–1034	delayed failure843–861
methods for calculating 1022-1028	elev. temp. stress
non-constancy1028	stability
Thermocouple weldments	fabrication temp
	forging temp. and deformation
Time-temp. parameters in	rate study935–945
accelerated creep-rupture	hardenability1017–1035
testing	heat treatment
Tin in alpha-beta Ti	effect of rate process
alloys821, 831–834, 836	theory
Titanium	effect on stress stability981-998
compression studies on935–945	hot workability and strain
cooling curves on Jominy	rate
bars1020, 1031	hydrogen embrittlement
corrosion, pyrophoricity and	effect of composition820-842
stress-corrosion cracking in	effect of H.T802-819
fuming nitric acid871–899	effect of microstructure802-819
effect of history on corrosion878	hypoeutectoid systems974, 975
effect of strain rate and temp.	Jominy bars1018–1022
on deformation941	mech. properties, effect of
elec. resistance vs. corrosion .882, 883	composition967-969, 979
effect on age hardening of	phase proportions and thermal
Ni-Cr-Fe alloy 136–149	diffusivity
fabricating temp	pyrophoricity in FNA871-899
	transformation hardening700
hot workability	Titanium alloys, alpha-beta
micrograph of corrosion880	effect of comp. on hydrogen
pyrophoricity872, 873, 886–899	embrittlement820–842
soluble and insoluble content	effect of microstructure and
	H. T. on the hydrogen
in high-temp. alloys138–142	embrittlement802–819
stress-corrosion cracking 892	hydride phases and hydrogen
Titanium, commercial	
effect of impurities on	tolerance835 microstructure837–839
fatigue434, 436	inicrostructure

Titanium alloys, trade designations	Titanium-chromium alloys (cont.)
C-120 AV	microstructure1043
See Ti-6 Al-4 V	properties1039-1042, 1047-1050
C-130 AM	relationship of structure and
See Ti-4 Al-4 Mn	ductility
C-135 A Mo	transformations in, with and
See Ti-7 Al-4 Mo	without stress1036-1054
Ti-75 A	transformation kinetics 974, 975
corrosion studies886, 887	Titanium-copper alloys
thermal and mech. fatigue. 421-437	with Al and Sn, mech. properties
Ti-140 A	and microstructure961-980
See Ti-2 Fe-2 Cr-2 Mo	with ternary and quaternary
Ti-155 A	additions961
See Ti-5 Al-1.5 Fe-1.5 Cr-1.5 Mo	Titanium-Cu-Al alloys
Titanium-5 Al-1.5 Fe-1.5 Cr-	mech. properties and
1.5 Mo (Ti-155 A)	microstructure961-980
effect of H.T. on elevtemp.	
stress stability981-998	Titanium-5 Cu-3 Al
Titanium-4 Al-4 Mn (C-130 AM)	composition
compression studies on935-945	high-temp. mech. properties968
delayed failure	microstructure965, 966, 977
hydrogen embrittlement	stability of Ti ₂ Cu976, 978
	T T T diagram963
mech. properties .822, 823, 828, 833	Titanium-8 Cu-3 Al
Titanium-7 Al-4 Mo (C-135 A Mo)	composition962
application of rate process	high-temp. mech. properties968
theory to H. T787-801	microstructure965, 966, 977
Titanium-Al-V alloys	T T T diagram963
high-temp. applications999	Titanium-Cu-Al-Sn alloys
Titanium-6 Al-4 V (C-120 A V)	mech. properties and
application of rate process	microstructure961-980
theory to H. T787-801	Titanium-5 Cu-3 Al-2 Sn
compression studies on935-945	composition962
corrosion studies886, 887	high-temp. mech. properties . 966, 970
elevtemp. stress stability981-998	microstructure965, 966, 972, 977
hydrogen embrittlement	stability of Ti ₂ Cu976, 978
808-810, 822, 823, 828	T T T diagram964
influence of forging temp. on	thermal stability969
mech. properties999-1016	Titanium-8 Cu-3 Al-2 Sn
Titanium-7Al-4 V	composition962
influence of forging temp. on	high-temp. mech. properties968
mech. properties999-1016	T T T diagram964
Titanium chromate (Ti Cr2)	
separation out 1039, 1041–1054	Titanium-2 Fe-2 Cr-2 Mo
	(Ti-140 A)
Titanium-chromium alloys	effect of H.T. on high-temp.
effect of stress on eutectoid	stress stability981–998
decomposition1036–1054	isothermal annealing curve866, 867
eutectoid reactions and temp	magnetic susceptibility862–870
974, 975, 1036, 1046–1048	strain aging

Titanium-8 Mn alloy	Transformation (cont.)
corrosion in FNA871–899	in U-Cr alloys470
hydrogen embrittlement808-	in zirconium
810, 822, 823, 828, 833, 836	possible use of Jominy test 694, 695
micrography878–881, 888, 897	Transformation hardening
pyrophoricity in FNA871–899	in titanium-base alloys700
stress-corrosion cracking871–899	in Zr-Mo alloys700
Titanium-4 Mo	in Zr-U alloys698–700
	Transformation kinetics
hydrogen sensitivity and	dynamic moduli vs. time may be
properties825–827	
Titanium-2 Mo-2 Cr-2 Fe	useful for716
hydrogen embrittlement808-	in beta plutonium
811, 813, 822, 823, 829	in eutectoid alloy steel 495–516
Titanium-5 V, thermal	in Ti-Cr alloys1036–1054
diffusivity	Transition temperatures
Titanium-20 V alloys, thermal	definition
diffusivity	from Izod impact tests629-637
Tongues in cleavage	prediction of629-637
studies575, 576, 582-585	Treasurer's Report20-25
Tool steel	Tungsten,
depth of stresses in 415, 419	high melting point
effect of abrasive tumbling 408-414	X-ray metallographic study of
etching to remove stressed	arc-cast231-243
layer	Tungsten steel (5.8 W)
first use of V in62	identification of carbides in .80-85
hardenability calculations335-352	Tumbling, abrasive, stress effects
red hardness	on tool steel
stress effects of abrasive	Tumbling tests on tool steels
tumbling402-420	conditions for
Taylor and White H.T60	equipment
tempered alloy martensites60-93	stress measurement406-408
Topographic analysis of misori-	Twin-parent crystal interfaces
entation in W crystal236, 239	in cleavage studies563, 564,
	570-576, 580, 581, 585-587
Torque-twist tests on Al alloy	Twinning
2024-0 949, 957	in band formation in Mg
Toughness	alloys104, 105
in Ti-6 Al-4 V999	in Re-Mo alloys1070, 1071
in Ti-7 Al-4 V999, 1007, 1008	in 1020 steel
Transformation	III 1020 Steel
characteristics of dilute	
ternary alloys of	
uranium	Ultimate strength of Ti-7A1-4Mo
in iron, visible observation	vs aging parameter798
of fronts	Ultra high strength steel mech.
in medium-carbon steel, effect	properties of deformed
of Cu on377–393	metastable austenitic 476-494
in Ni-Cr-Mo steel	Ultrasonic "jack hammer" in
in Ti-Cr alloys1036-1054	identification of U
in uranium	inclusions
	ARTHURAN BURNES

Undercooling, effect on	Uranium nitride carbide (UCN)
transformation in Fe	microstructure and
454, 460, 461, 467, 468, 474	identification
Unique deformation and aging	
characteristics of certain	properties
Mg-base alloys 94–107	Uranium-1.4 w/o Mo alloy
Uranium	effect of method on stability 748
allotropic forms	powder metal compact746-748
alpha-beta transformation782	Uranium-2 w/o Mo alloy
atomic volume782	experimental procedure 752-754
compacting with other	properties with temp752-757
metals745-747	Uranium-2 w/o Mo-0.5 w/o Zr749
density vs. compacting	Uranium-silicon alloys736
temp742, 750, 751, 781	Uranium ternary alloys
derby or biscuit737, 750	transformation
effect of Ti and other elements	characteristics
on properties	Uranium-titanium system
electrolytic etching731, 734	constitutional diagram684
lattice parameters	heat treatment and cooling685
(25-1132 °C)772-786	suppression of beta phase
low-temp, tensile properties. 751, 754	in cooling
metallographic identification	Uranium-0.5 titanium effect of
of inclusions in	ternary additions on
microstructure	properties
preparation of powder metal	Uranium-Ti-Cb alloys
compacts	hardness profiles 691
thermal expansion	microstructure687-690
Uranium alloys	transformation characteristics694
preparation of powder metal	X-ray diffraction analysis693
compacts	Uranium-Ti-Mo alloys
Uranium-chromium alloys	hardness profiles692
for powder metal compacts746	transformation characteristics 694
martensitic transformation in 471	Uranium-Ti-Pt alloys
Uranium-columbium alloys 736	hardness profiles692
Uranium dioxide (UO2)	transformation characteristics 694
diffraction pattern and	Uranium-vanadium alloys746
lattice parameter727	Uranium-zirconium alloys 736, 746
microstructure	lattice parameter study .773, 774, 780
Uranium ferrite (UeFe)729	,,,,
Uranium hydride (UH ₃)	
microstructure and	Vacuum pump, high
identification .724, 725, 738, 747	in X-ray diffraction of U773
properties	Valences of alloying elements
used in powder metal	dissolved in Cb oxide280
compacts	Van Ostrand-Dewey solution to
Uranium monocarbide723, 724	Fick's second law272, 273, 291
Uranium mononitride720-722, 726	Vanadium
	effect on age hardening of
Uranium monoxide	Ni-Cr-Fe alloy136-149
(UO)726, 727, 729	negative effect145, 149

Vanadium steel	X-ray diffraction analysis (cont.)
electron microscopy of	measurement of residual
carbides in	stresses (cont.)
identification of	corrections and
carbides in80–83, 86	calculations542–547
length changes and carbide	experimental technique538, 539
comp. in89	in carbon martensite551
Variation in properties from one	in surface of hardened
heat to another, due to aging	carbon steel537-555
in Ti alloys790	in 6415 steel552, 553
Visiting Lectureship Program33, 34	location of peaks537, 538, 540
Volume changes in alloys	parabola fitting
creep behavior and108-113, 118	543, 544, 548, 549, 552-555
math. analysis110-111	procedure for calculating
with precipitation from	peak position537-555
solid solution 109-110	speed of method552
Vycor, attack by Mg1075	of columbium oxides265-267
	of diffusion in Al-Mg-Zn216, 217
	of ferric chloride residues594, 600
Water	of inclusions in U719
in SAC of Al ingots	of Re-Mo alloys
effect of temp1084, 1085	1057, 1058, 1065, 1066, 1068
effect of amount1092-1094	of Re-W alloys760, 762, 763
Weld cracking	of Ti-Cr alloys1039, 1044, 1045
biaxial stresses in400	of Ti-8Mn alloy898
hot tear susceptibility 394, 401	of tungsten231–243
in Mg alloys	of tungsten
tests for	
types394	of U-Ti-Cb alloys693
Welding apparatus	X-ray metallographic study of arc-
for diffusion studies215	cast tungsten231-243
Weldment of thermocouples	
in hardenability of Ti	Yield delay-time of mild steel
alloy study .1018, 1019, 1034, 1035	definition643
Widmanstätten structure	effect of composition643, 650-657
	effect of grain size and
in Hastelloy Alloy B126-134	C content
Workability	experimental procedure644-646
of Re-Mo alloys 1055, 1069, 1070	
	extension of Clark-Wood data
37 177 1	647–649, 657
X-ray diffraction analysis	review of literature643, 644
equipment	specimen material646-647
Berg-Barrett technique232	Yield effect at high temp. in stress-
double-crystal camera232	strain study on Al alloy 2024-0
two-exposure method538, 539	952-953
X-ray beam547	Yield point
TYPE A LIM . THE FAC	in iron
XRD-3 diffractometer538, 543	
MRD-3 diffractometer538, 543 measurement of residual stresses	in steel
	in steel

Yield point (cont.)	Zinc, diffusion constant in Al203
testing in steel	Zirconium, transformation in 470
effect of grain size675	Zirconium-uranium alloys
twinning in	annealing for minimum
Yield strength	hardness706, 708
of high-alloy	constitutional diagram697, 698
steels476, 477, 479, 481, 482	effect of composition and temp.
of Ti-Al-V alloys1004-1006	on dynamic modulus713-715
Yield stress of mild	experimental alloys697, 698
steel631, 632, 636, 637	hardness and tensile
steel	properties711-713
	heat treatment survey 698-708
Zener-Hollomon parameter in	mech. property708-715
stress-strain studies 956, 957, 959	phase transformations in 700-708

