Clustering (unsupervised learning)

John Joseph Valletta

University of Exeter, Penryn Campus, UK

1st-2nd June 2015

www.exeter.ac.uk/as/rdp/

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- · Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

- What is clustering?
- Major types of clustering methods
- k-means clustering
- Agglomerative hierarchical clustering
- Gaussian mixture models
- How do we determine the correct number of clusters?

What's the problem?

Well, it's driven by your data, e.g which of these genes are co-regulated?

We want to find some underlying structure in the data o Clustering

What's the problem?

Gene expression: discovering co-regulated genes

Biological systematics: finding organisms sharing similar attributes

Computer vision: segmenting a digital image for object recognition

Epidemiology: identifying geographical clusters of diseases

Medical imaging: differentiating between tissues

Mathematical chemistry: grouping compounds by topological indices

Clustering is particularly useful in applications where labelling the data is very time consuming/expensive

What is clustering?

Formal definition

Identifying homogeneous and well separated groups of data points (features) by some similarity measure

What is clustering?

Formal definition

Identifying homogeneous and well separated groups of data points (features) by some similarity measure

Informal definition

The process of stereotyping your data e.g these are round(ish) faces, these are short(ish) people

What is clustering?

Formal definition

Identifying homogeneous and well separated groups of data points (features) by some similarity measure

Informal definition

The process of stereotyping your data e.g these are round(ish) faces, these are short(ish) people

But how many groups?

An unsolved problem. Issue lies in the subjectivity of the word **similar** and its mathematical definition

Are they similar?

Are they similar?

What are we after?

Motivation: How is the data structured? Any outliers? Goals: High intra-cluster similarity and low inter-cluster similarity

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statistical distributions

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statistical distributions

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statistical distributions

Partitional: The data (feature) space is partitioned into k regions

Hierarchical: Iteratively merging small clusters into larger ones (agglomerative) or breaking large clusters into smaller ones (divisive)

Distribution-based: Fit k multivariate statistical distributions

John Joseph Valletta 1st-2nd June 2015 9 / 23

Similarity measures

- A distance metric quantifies how close two data points are
- Several ways to define this distance which has a direct impact on the clustering result

Similarity measures

- A distance metric quantifies how close two data points are
- Several ways to define this distance which has a direct impact on the clustering result


```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- Select k centroids at random
- ② Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- $oldsymbol{1}$ Select k centroids at random
- ② Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- 3 Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- \bullet Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- $oldsymbol{1}$ Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- Ompute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)

# x - numeric matrix of data

# centers - no. of clusters k
```

- \bullet Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- 4 Compute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- \bullet Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- 4 Compute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

```
fit <- kmeans(x, centers)
# x - numeric matrix of data
# centers - no. of clusters k</pre>
```

- \bigcirc Select k centroids at random
- 2 Calculate distance between centroids and each data point
- 3 Assign each data point to the closest centroid
- 4 Compute new centroids; the average of all data points in that cluster
- Repeat steps 2 to 4 until data points remain in the same cluster or some maximum number of iterations reached

Note: k-means clustering should *only* be used with continuous data

12 / 23

12 / 23

1st-2nd June 2015

12 / 23

1st-2nd June 2015

k-means clustering

Pros

- Simple and intuitive
- Computationally inexpensive/fast

Cons

- What is *k*?
- Only applicable to continuous data where a mean is defined
- No guarantee of a global optimum solution

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- Assign each data point as its own cluster
- Compute distance between each cluster
- Merge the closest pair into a single cluster
- Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- Merge the closest pair into a single cluster
- Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- Merge the closest pair into a single cluster
- Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- Merge the closest pair into a single cluster
- @ Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- Merge the closest pair into a single cluster
- 4 Repeat 2 to 3 until you're left with one cluster

```
d <- dist(as.matrix(data), method)
# data - data frame
# method - distance method e.g "euclidean" or "manhattan"
fit <- hclust(d, method)
# method - linkage function e.g "complete" or "single"</pre>
```

- 1 Assign each data point as its own cluster
- 2 Compute distance between each cluster
- 3 Merge the closest pair into a single cluster
- 4 Repeat 2 to 3 until you're left with one cluster

Note: Step 3 is *key*, the distance method and linkage function dictate the final result

How do we compute the inter-cluster distance? The linkage function

```
Centroid: mean of data points (same as in k-means)
```

Single: distance between closest pair of points

Complete: distance between furthest pair of points

How do we compute the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of points

Complete: distance between furthest pair of points

How do we compute the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of points

Complete: distance between furthest pair of

How do we compute the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of points

Complete: distance between furthest pair of

points

How do we compute the inter-cluster distance? The linkage function

Centroid: mean of data points (same as in k-means)

Single: distance between closest pair of points

Complete: distance between furthest pair of

points

Average: mean pairwise distance between

all points

Hierarchical clustering in gene expression studies

Hierarchical clustering

Pros

- ullet No need to specify k
- Results can be visualised nicely irrespective of number of dimensions

Cons

- Can be computationally expensive
- Interpretation is subjective. Where should we draw the line (to separate clusters)?
- Choice of distance method and linkage function can significantly change the result

```
library(mclust)
fit <- Mclust(data, G)
# data - data frame
# G - no. of Gaussians
```

1 Fit k multivariate Gaussian distributions

The Expectation-Maximisation (EM) algorithm is used to estimate the parameters π_i (mixing coefficients), μ_i and σ_i

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \Sigma_i)$$
 and $\sum_{i=1}^{k} \pi_i = 1$

Can be seen as a "soft" version of k-means because every point is part of every cluster but with varying levels of membership

Pros

- Intuitive interpretation
- Computationally inexpensive

Cons

- What is k?
- Strong assumption on the data (normality)
- No guarantee of a global optimum solution

How do we determine the correct number of clusters?

Short answer: you can't

Because data is unlabelled the correct number of k is ambiguous

However we can plot some indices as a function of k to help us evaluate cluster validity:

- Within and between clusters sum-of-squares distances
- Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) when using distribution-based methods
- Silhouette plot

How do we determine the correct number of clusters?

How do we determine the correct number of clusters?

The NbClust package provides 30 different cluster validity metrics. A majority vote can be taken to deduce the appropriate number of clusters

```
library(NbClust)
NbClust(data, distance, method, min.nc, max.nc, index)
# data - data frame
# distance - similarity measure e.g "euclidean"
# method - clustering algorithm e.g "kmeans"
# min.nc - min number of clusters to consider
# max.nc - max number of clusters to consider
# index - which indices to compute, "all" computes all of them
```

Note:

- Indices only give us a ballpark range for "correct" number of clusters
- Are they biologically relevant? Does it make sense?
 Prior knowledge to the rescue
- E.g how many different phenotypes are you expecting?