最优组队问题

某车间要参加单位举办的技术操作比赛,比赛设有 5 个单项和一个全能项目(同时参加 5 个单项)

问题 1: 如果比赛规定:

- (1) 每个车间可派 14 人参加比赛,每人至少参赛一项;
- (2) 参加比赛的队员中必须有 3 人参加全能比赛,其余队员参加单项比赛,且 参加每个单项比赛的队员数不得超过 6 人(不包括全能队员);
- (3) 参加全能的队员不能参加单项;
- (4) 参加单项比赛的队员至多可以参加3个单项;
- (5) 参加单项比赛的队员得分是其参加项目得分之和,参加全能比赛的队员得分是其参加项目得分和的 4/5, 车间的得分是车间所有参赛队员得分之和。

问如何安排参加比赛最好?

表 1: 某车间参加岗位技术比赛队员的期望得分

队员	1	2	3	4	5	6	7	8	9	10	11	12	13	14
单项 1	10	1	4	10	5	5	4	6	2	4	8	6	10	9
单项 2	9	5	6	4	4	7	4	7	8	6	7	8	1	4
单项 3	7	5	5	6	7	7	8	8	7	10	2	6	4	5
单项 4	3	5	9	5	8	6	9	10	6	6	5	4	2	4
单项 5	3	10	8	2	8	7	7	5	8	6	9	8	3	7

模型建立:

建立决策变量:

考察参加全能比赛的情况,令 $y_j = 1$ 表示第j人参加全能比赛;

 $y_i = 0$ 表示第 j 人不参加全能比赛。

参加全能比赛的为3人,则有:

$$\sum_{i=1}^{14} y_i = 3$$

考察参加单项比赛的情况,令 $x_{ii} = 1$ 表示第j人参加第i项单项比赛;

 $x_{ii} = 0$ 表示第 j 人不参加第 i 项单项比赛。

每个参加全能比赛的不参加单项比赛,则有:

$$x_{ii} \le 1 - y_i$$
 $j = 1, 2, \dots, 14; i = 1, \dots, 5$

该约束表示当第j人参加全能比赛时($y_j=1$), 则第j人则不参加所有单项比赛,因此必有 $x_{ij}=0$, $i=1,\cdots,5$ 。当第j人不参加参加全能比赛时($y_j=0$), 则第j人可参加也可不参加单项比赛, $x_{ij}=0$ 或 1。这样就把参加单项比赛和参加全能比赛分开考虑,计算各自得分。最后考虑总得分,方便建立模型和计算。

参加单项比赛的人至少参加1项,我们要求

当
$$y_j = 0$$
 时,要求 $\sum_{i=1}^{5} x_{ij} \ge 1$,则有: $\sum_{i=1}^{5} x_{ij} \ge 1 - y_j$ $j = 1, \dots, 14$

上式中当
$$y_j = 1$$
 时,有 $\sum_{i=1}^{5} x_{ij} \ge 0$ 。

参加单项比赛的人至多参加 3 项,则有: $\sum_{i=1}^{5} x_{ij} \le 3$ $j = 1, \dots, 14$

对参加单项比赛的队员,每个项目最多允许6人参加,则有:

$$\sum_{i=1}^{14} x_{ij} \le 6 \qquad i = 1, \dots, 5$$

设 a_{ii} 表示第j人参加第i个项目的期望得分,该数据已知。

设 s_i 表示第j人参加5个项目的总得分。则有:

$$s_j = \sum_{i=1}^{5} a_{ij}$$
 $j = 1, 2, \dots, 14$

参加全能比赛的队员总得分为: $z_1 = 0.8 \sum_{j=1}^{14} s_j . y_j$

参加单项比赛的队员总得分为: $z_2 = \sum_{i=1}^{5} \sum_{i=1}^{14} a_{ij} x_{ij}$

则车间 14 人参加比赛总得分为:

$$z = z_1 + z_2 = 0.8 \sum_{i=1}^{14} s_j . y_j + \sum_{i=1}^{5} \sum_{i=1}^{14} a_{ij} . x_{ij}$$

因此我们的目标函数是参加比赛的队员总得分最高,因此目标函数为:

$$z = 0.8 \sum_{j=1}^{14} s_j . y_j + \sum_{i=1}^{5} \sum_{j=1}^{14} a_{ij} . x_{ij}$$

总的 0-1 线性规划模型为:

$$z = 0.8 \sum_{i=1}^{14} s_j.y_j + \sum_{i=1}^{5} \sum_{j=1}^{14} a_{ij}.x_{ij}$$

$$\begin{cases} \sum_{j=1}^{14} y_j = 3 \\ x_{ij} \le 1 - y_j & j = 1, 2, \dots, 14; i = 1, \dots, 5 \\ \sum_{i=1}^{5} x_{ij} \ge 1 - y_j & j = 1, \dots, 14 \end{cases}$$

$$s.t. \begin{cases} \sum_{i=1}^{5} x_{ij} \le 3 & j = 1, \dots, 14 \\ \sum_{j=1}^{14} x_{ij} \le 6 & i = 1, \dots, 5 \end{cases}$$

$$s_j = \sum_{i=1}^{5} a_{ij} & j = 1, 2, \dots, 14 \\ x_{ij} = 0 \Rightarrow 1 & j = 1, 2, \dots, 14; i = 1, \dots, 5 \\ y_j = 0 \Rightarrow 1 & j = 1, 2, \dots, 14 \end{cases}$$

Lingo 程序为:

model:

sets:

person/1..14/:y,s;

item/1..5/;

assign(item, person):x,A;

endsets

data:

A=10 1 4 10 5 5 4 6 2 4 8 6 10 9 9 5 6 4 4 7 4 7 8 6 7 8 1 4 7 5 5 6 7 7 8 8 7 10 2 6 4 5 3 5 9 5 8 6 9 10 6 6 5 4 2 4 3 10 8 2 8 7 7 5 8 6 9 8 3 7;

enddata

$\max=z;$

z=z1+z2; !车间总得分;

z1=0.8*@sum(person(j):y(j)*s(j)); !参加全能比赛的总得分; z2=@sum(assign(i,j):a(i,j)*x(i,j)); !参加单项比赛的总得分;

```
@for(person(j):@sum(item(i):x(i,j))>=1-y(j));!每个参加单项比赛的队员至少参加1项;
```

@for(person(j):@sum(item(i):x(i,j))<=3);!每个参加单项比赛的队员最多不超过3项;

```
@for(item(i):@sum(person(j):x(i,j))<=6); !每个项目最多允许6人参加;
@for(assign(i,j):x(i,j)<=1-y(j)); !参加全能比赛的不能参加单项比赛;
@sum(person(j):y(j))=3; !总共只有3人参加全能比赛;
@for(person(j):s(j)=@sum(item(i):a(i,j))); !每个队员所得分;
@for(assign(i,j):@bin(x(i,j)));
@for(person(j):@bin(y(j)));
end
```

求解结果为:

总得分Z=309.8, 其中全能得分Z1=76.8, 单项得分Z2=233

$$y_5 = 1, y_6 = 1, y_{12} = 1$$

表示第5、第6、第12名队员参加全能比赛,

其它11人参加单项比赛情况见表2。

表2 参加单项比赛情况

				<i>-</i> /411 1		. 117 > 0					
队员	1	2	3	4	7	8	9	10	11	13	14
单项 1	1	0	0	1	0	1	0	0	1	1	1
单项 2	1	1	1	0	0	0	1	1	1	0	0
单项 3	1	0	0	1	1	1	1	1	0	0	0
单项 4	0	1	1	1	1	1	0	1	0	0	0
单项 5	0	1	1	0	1	0	1	0	1	0	1