Part1

任务一

基础问题

我认为是残差学习比较好,整个图形作为标准考虑,像素太多,没必要考虑那么多,专注雨层能减小计算量。

附加问题

- 1.雨丝像素的周围是曲线,且雨丝形状相差不大,或许可以获取曲线型的像素
- 2.有可能吧,模型依据其他地方的细节,模拟修复被遮挡的地方。但是如果遮挡面积过大,那么 修复出来的和原图像则可能会出现大规模的错误

任务二

目标函数

- 1. L1范数定义:向量元素的绝对值之和几何意义:原点到某点横纵移动的总长度比如(0,0)到(3,4)要走3横4纵,就为7 L2范数定义:向量元素的平方和的平方根几何意义:原点到某点的直线距离例子如上,这个直线距离求得为5
- 2. L1损失是计算两张图片每个像素差的绝对值然后求平均,L2损失是计算平方差然后求平均。 把模型输出的去雨图和真实无雨图像按照素位置对齐。然后,对每个相同位置的像素,用它 的像素值相减,对差值取绝对值(L1)或平方(L2)。接着,把图片中所有像素的这种惩罚 值加起来。最后,除以总像素数,就得到了一个代表两图差异程度的损失值

评估函数

1.PSNR

2.SSIM

- 1.从数学公式上来看是[-1,+1],但在图像问题中一般为[0,+1]
- 2.从亮度(Luminance), 对比度(Contrast), 结构 (Structure)三个角度
- 3.SSIM每一次的评估对象是一个个小窗口,一个局部特征,然后对其求平均

任务三

# Name	Version	Build	Channel
bzip2	1.0.8	h2bbff1b_6	
ca-certificates	2025.9.9	haa95532_0	
colorama	0.4.6	pypi_0	pypi
expat	2.7.1	h8ddb27b_0	F2F=
filelock	3.20.0	pypi_0	pypi
fsspec	2025.9.0	pypi_0	pypi
imageio	2.37.0	pypi_0	pypi
jinja2	3.1.6	pypi_0	pypi
lazy-loader	0.4	pypi_0	pypi
libffi	3.4.4	hd77b12b_1	F3 F =
libzlib	1.3.1	h02ab6af_0	
lpips	0.1.4	pypi_0	pypi
markupsafe	3.0.3	pypi_0	pypi
mpmath	1.3.0	pypi_0	pypi
networkx	3.5	pypi_0	pypi
numpy	2.3.4	pypi_0	pypi
openssl	3.0.18	h543e019_0	P3 P =
packaging	25.0	pypi_0	рурі
pillow	12.0.0	pypi_0	pypi
pip	25.2	pyhc872135_1	P3 P =
python	3.11.14	h981015d_0	
scikit-image	0.25.2	pypi_0	pypi
scipy	1.16.2	pypi_0	pypi
setuptools	80.9.0	py311haa95532_0	P3P-
sqlite	3.50.2	hda9a48d_1	
sympy	1.14.0	pypi_0	pypi
tifffile	2025.10.16	pypi_0	pypi
tk	8.6.15	hf199647_0	P3P-
torch	2.9.0	pypi_0	pypi
torch	2.9.0	pypi_0	рурі
torchvision	0.24.0	pypi_0	pypi
tqdm	4.67.1	pypi_0	pypi
typing-extensions	4.15.0	pypi_0	pypi
tzdata	2025b	h04d1e81_0	בקעק
ucrt	10.0.22621.0	haa95532_0	
VC	14.3	h2df5915_10	
vc14_runtime	14.44.35208	h4927774_10	
vs2015_runtime	14.44.35208	ha6b5a95_10	
wheel	0.45.1	py311haa95532	0
			_6
XZ	5.6.4	h4754444_1	
zlib	1.3.1	h02ab6af_0	
(derain) C:\Users\ROG>			

2.2

关于深层网络带来梯度消失、训练困难,而Resnet网络就是在解决这个问题,这个网络通过增加 Residual Block,其中最关键的一步是再Block中增加一个之前的输入(可以直接是X),这个可以 显著减小梯度的下降,同时减少退化问题的发生。

呃,跑的太晚跑不完了

3.2

学习到一个torch中一个叫functional的模块,可以不设置参数,对ReLU这样的激活函数很方便。 还有Batch Normalization,可以对参数进行批量的归一化,对网络有着积极影响