Algebra of Set Operations - union (AUB) - intersection (A N B) relative complement (A\B)

Algebra of Set Operations

Recall Useful laws from propositional calculus

PRecall Useful laws from propositional calculus

PRECALL Useful laws from propositional calculus

- · Commutativity of V and Λ : PVQ = QVP, $P\Lambda Q = Q\Lambda P$
- . Associativity of V and Λ : PV(QVR) = (PVQ)VR $P\Lambda(Q\Lambda R) = (P\Lambda Q\Lambda R)$
 - . Distributive laws : $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
- . De Morgan's laws $: \neg (PVQ) \equiv \neg P \land \neg Q$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$

Not an Element

(∀n) (xeA ⇔xeB)

Proposition 1

Let A and B be sets and let x be any object. Then:

- $2 x \notin A \cap B \text{ iff } x \notin A \text{ or } x \notin B.$

iff
$$\neg (x \in A)$$
 and $\neg (x \in B)$

(by De Morgan's laws)

De Morgan's Laws for Sets

"S\" should be thought of an analogue of

Theorem 1 (De Morgan's Laws for Sets)

Let S. A. and B be sets. Then:

Recall: A/B = fx: x & A and x & B}

THE XES and (X & A and 1 & B)

off (ZES and ZEA) and (ZES and ZEB)

iff XESIA and XESIB

XF XE(S/A) N(S/B)

(by Prop. 10) (by Dist. Laws)

negation

U en V, n en A

Tip (proof template) To show that two sets are equal, e.g., $X = Y, \quad \text{which means} \quad (\forall x)(x \in X \iff x \in Y),$ Use the following template.

Proof. For each element ν , $\lambda \in X$ iff --iff --i

Distributive Laws for Unions and Intersections

Theorem 2 (Distributive Laws for Unions and Intersections)

Let S, A, and B be sets. Then:

$$2 S \cup (A \cap B) = (S \cup A) \cap (S \cup B).$$

Proof of
$$O$$
 For each (element) λ ,

 $\lambda \in Sn(AUB)$ iff $\lambda \in S$ and $\lambda \in AUB$

iff $\lambda \in S$ and $(\lambda \in A \text{ or } \lambda \in B)$

iff $(\lambda \in S \text{ and } \lambda \in A)$ or $(\lambda \in S \text{ and } \lambda \in B)$ (by Pist. Laws)

iff $\lambda \in SnA$ or $\lambda \in SnB$

iff $\lambda \in SnA$ or $\lambda \in SnB$

Associative Laws for Unions and Intersections

Proposition 2 (Associative Laws for Unions and Intersections)

- Let A, B, and C be sets. Then:
 - $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$

LE (AUB) UC iff LE AUB or LEC

or
$$x \in C$$

Commutative Laws for Unions and Intersections

Proposition 3 (Commutative Laws for Unions and Intersections)

Let A and B be sets. Then:

- $2 A \cap B = B \cap A$