1. Why |X|?

Suppose you have a test $\phi(X)$. A sign transformation invariant test must give you the same result for X and -X. Say, if you are given either X=2 or X=-2, $\phi(2) = \phi(-2)$. This should be true for all X.

So a natural statistic we can come up with is T(X)=|X|.

(Note absolute value loses information only as much as the problem wants. A test based on nothing (eg. T(X)=0, T(X)=1.) is also sign invariant test, but it loses too much information. Of course, we can also think about $T(X)=X^2$ as an alternative to T(X)=|X|)

2. Need to find $\bar{g}(\theta)$ that corresponds to g(X) = -X.

-X	-2	-1	0	1	2
$P_{\theta}(-X) = P_{\theta}(g(X))$	$ heta_1 heta_2$	$\left(\frac{1}{2} - \alpha\right) \left(\frac{1 - \theta_1}{1 - \alpha}\right)$	$\alpha \left(\frac{1-\theta_1}{1-\alpha} \right)$	$\left(\frac{1}{2} - \alpha\right) \left(\frac{1 - \theta_1}{1 - \alpha}\right)$	$\theta_1(1-\theta_2)$

To have $\theta_1\theta_2=\bar{\theta}_1(1-\bar{\theta}_2)$ (and same for others), $\bar{g}(\theta)=(\theta_1,1-\theta_2)$

3. Then check Hypothesis invariance, test invariance,...

After this, it becomes a problem of UMP test using |X| and new parameters $(\bar{\theta}_1, \bar{\theta}_2)$. And forget about the original data (X) and original parameters.

4. Based on |X|, draw a distribution table.

X	0	1	2
P(X)	$\alpha \left(\frac{1 - \bar{\theta}_1}{1 - \alpha} \right)$	$2\left(\frac{1}{2}-\alpha\right)\left(\frac{1-\bar{\theta}_1}{1-\alpha}\right)$	$ar{ heta}_1$

The likelihood ratio comparing $\bar{\theta}_1 < \bar{\theta}_1'$:

X	0	1	2		
$\frac{P_{\overline{\theta}_1}(X)}{P_{\overline{\theta}'_1}(X)}$	$\left(\frac{1-\bar{\theta_1}}{1-\bar{\theta_1'}}\right)$	$\left(rac{1-ar{ heta}_1}{1-ar{ heta}_1'} ight)$	$rac{ar{ heta}_1}{ar{ heta}_1'}$		
	> 1	> 1	< 1		

Note the ratio is nondecreasing in |X|

Since it's flat between 0 and 1, we can also say that it is nondecreasing in I(|X| = 2).

I(X =2)	0	1
$P_{\overline{\theta}_1}(I(X =2))$	$(1-\bar{\theta}_1)$	$ar{ heta}_1$
$\overline{P_{\overline{\theta}_1'}(\mathrm{I}(\mathrm{X} =2))}$	$\left(\overline{1-ar{ heta_1'}} ight)$	$\overline{ar{ heta}_1'}$

5. If we use NP lemma based on I(|X| = 2), we end up getting a randomized rule

$$\phi(X) = \begin{cases} 1 & I(|X| = 2) < 0 \\ \gamma & I(|X| = 2) = 0 \\ 0 & I(|X| = 2) > 0 \end{cases} \text{ with } \gamma = \frac{\alpha}{1 - \alpha}$$

If we use NP lemma based on |X|, we will get a nonrandomized rule

$$\phi(X) = \begin{cases} 1 & |X| < 2 \\ \gamma & |X| = 2 \\ 0 & |X| > 2 \end{cases} \text{ with } \gamma = 0$$

So for 2(c), the answer depends on the statistic we choose.