Analysis I und Lineare Algebra für Ingenieurwissenschaften Hausaufgabe 07 - Al-Maweri 13

Daniel Geinets (453843), Christopher Neumann (409098), Dennis Schulze (458415)

13. Januar 2021

Inhaltsverzeichnis

Aufgabe 1														2											
Aufgal																							2		
Aufgal	ре 3																							3	
	(b)																								
b)																									
	(b)																								
Aufgal	oe 4																							4	
b)																									
																								5	

Aufgabe 1

Für f:

$$f(x) = \begin{cases} z & \text{, für } x = z \ (1) \\ z & \text{, für } z < x < z + 1 \ (2) \end{cases}$$

- (1) Sprungstellen von z auf z+1 in ganz \mathbb{Z} und damit unstetig
- (2) konstant und damit stetig in]z, z + 1[für alle $z \in \mathbb{Z}$ \Rightarrow damit ist f unstetig

Für g:

 $g(x) = \frac{2}{2 + e^{-2x}}$, exp-Funktion positiv, also keine Polarstelle und stetig in ganz $\mathbb R$

Für $f \circ g$

$$f(g(x)) = f\left(\frac{2}{2+e^{-2x}}\right) = \lfloor \frac{2}{2+e^{-2x}} \rfloor, \text{ mit } e^{-2x} \mapsto]0, \infty[$$

 $\Rightarrow \lfloor \frac{2}{2+e^{-2x}} \rfloor = 0, \forall x \in \mathbb{R}$
 $\Rightarrow \text{ somit ist } f \circ g \text{ auf ganz } \mathbb{R} \text{ konstant und damit stetig}$

Aufgabe 2

Sei $a \in \mathbb{R}$ und sei da eine beliebige Folge x_n mit $\lim_{n\to\infty} x_n = a$, dann gilt

$$\lim_{n \to \infty} \sin(2\pi x_n) + 3 = \lim_{n \to \infty} \sin(2\pi x) + 3 = \sin(2\pi a) + 3$$

daraus folgt, $\sin(2\pi x) + 3$ ist stetig.

Ebenso gilt

$$\lim_{n \to \infty} (x_n)^3 - 1 = \lim_{x \to a} x^3 - 1 = a^3 - 1$$

daraus folgt, $x^3 - 1$ ist stetig.

Desweiteren gilt

$$\lim_{x \to 1} \sin(2\pi x) + 3 = \sin(2\pi \cdot 1) + 3 = \sin(2\pi) + 3 = 3$$
$$\lim_{x \to 1} (x^3 - 1) = (1)^3 - 1 = 0 \neq 3$$

daraus folgt, f ist nicht stetig in x=1.

Aufgabe 3

- a)
- (a)

Es gilt

$$\lim_{x \to x_0} \frac{\sqrt{2x} - \sqrt{2x_0}}{x - x_0} = \lim_{x \to x_0} \frac{2(x - x_0)}{(x - x_0)(\sqrt{2x} + \sqrt{2x_0})}$$

$$= \lim_{x \to x_0} \frac{2}{\sqrt{2x} + \sqrt{2x_0}}$$

$$\stackrel{\text{GWS}}{=} \frac{2}{2\sqrt{2x_0}} = \frac{1}{\sqrt{2x_0}}$$

$$\Rightarrow f'(x) = \frac{1}{\sqrt{2x}}$$

(b

Es gilt

$$f(x) = (x-1)|x-1| \Leftrightarrow f(x) = \begin{cases} (x-1)^2 & , x \ge 1 \\ -(x-1)^2 & , x < 1 \end{cases}$$

dann gilt

$$\lim_{x \to x_0} \frac{(x-1)^2 - (x_0 - 1)^2}{x - x_0} = \lim_{x \to x_0} \frac{(x + x_0 - 2)(x - x_0)}{x - x_0}$$
$$= \lim_{x \to x_0} (x + x_0 - 2) \stackrel{\text{GWS}}{=} 2x_0 - 2$$

desweiteren gilt

$$\lim_{x \to x_0} \frac{-(x-1)^2 + (x_0 - 1)^2}{x - x_0} = \lim_{x \to x_0} \frac{(x_0 + x - 2)(x_0 - x)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{-(x_0 + x - 2)(x - x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} -(x + x_0 - 2) \stackrel{\text{GWS}}{=} -2x_0 + 2$$

daraus folgt

$$f'(x) = \begin{cases} 2(x-1) & , x \ge 1\\ -2(x-1) & , x < 1 \end{cases}$$

b)

 (\mathbf{a})

Es gilt

$$(5x^6 - \cos(6x))' = 30x^5 + 6\sin(6x)$$

(b)

Es gilt

$$\left(\frac{\sin(2x^2 - 2\pi)}{\cos(5\pi - 2x^2)}\right)' = \left(\frac{\sin(2x^2)}{\cos(\pi - 2x^2)}\right)' = \left(\frac{\sin(2x^2)}{-\cos(-2x^2)}\right)' = \left(\frac{\sin(2x^2)}{-\cos(2x^2)}\right)'$$

$$= \left(\sin(2x^2)\left(-\cos(2x^2)\right)^{-1}\right)'$$

$$= -\cos(2x^2)4x(\cos(2x^2))^{-1} - \sin(2x^2)\frac{1}{\cos^2(2x^2)}\sin(2x^2)4x$$

$$= -4x - 4x\frac{\sin^2(2x^2)}{\cos^2(2x^2)} = -4x(\tan^2(2x^2) + 1)$$

(c)

Es gilt

$$\left(e^{(4x-2)(3x+3)}\right)' = \left(e^{12x^2+6x-6}\right)' = e^{12x^2+6x-6}(24x+6)$$

Aufgabe 4

a)

$$\lim_{x \nearrow 1} f(x) = \lim_{x \nearrow 1} (ax + b - 3) \stackrel{\text{GWS}}{=} a + b - 3$$

$$\lim_{x \searrow 1} f(x) = \lim_{x \searrow 1} (3x^2) \stackrel{\text{GWS}}{=} 3$$

Also:
$$\lim_{x \nearrow 1} f(x) = a + b - 3 = 3 = \lim_{x \searrow 1} f(x)$$

 $\Rightarrow f$ ist stetig in ganz \mathbb{R} , wenn $a + b = 6$ gilt.

b)

obere Teilfunktion:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{(ax+b-3)-(ax_0+b-3)}{x-x_0} = \frac{a(x-x_0)}{x-x_0} = a$$

untere Teilfunktion:

$$f'(x) = 6x$$

für:
$$f'(1) = 6 = a = \lim_{x \to x_0} f(x)$$

Somit ist f differenzierbar für: a = 6 und alle $b \in \mathbb{R}$

 (\mathbf{c})

obere Teilfunktion:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (6x + 3) \stackrel{\text{GWS}}{=} 6 + 3 = 9$$

Also:
$$\lim_{x \to 1} f(x) = 3 \neq 9 \lim_{x \to 1} f(x)$$

Somit ist f in x = 1 nicht stetig und damit auch nicht differenzierbar