Exam 4a Chem 1141 Spring 2008

Name:				
MULTIPLE CHOICE. [2.5 pts ea.] Circle	the best response	e. [45 pts total.]	
Q1. How many valence	electrons does as	n atom of boron	contain?	
a) 1	b) 2	c) 3	d) 4	e) 5
Q2. How many core ele a) 1	ectrons does an at b) 2	com of boron con	tain? d) 4	e) 5
,	,	,	d) 4	<i>c) 3</i>
Q3. The electron config a) 1s ²			d) 1s ² 2s ² 2p ⁶ 3s ² 3	e) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²
Q4. The relative sizes of a) $C < O < S$	f carbon, oxygen, b) S < O < C			e) O < C < S
$I_4 = 14100 \text{ kJ/mol}$. Which element	would it be most	likely to be?	= 422 kJ/mol , $I_3 = 12430 \text{ kJ/mol}$
a) Si	b) Al	c) Mg	d) Na	e) Ne
Q6. The chemical equation $(A \cap A) = A \cap A$ a) $(A \cap A) = A \cap A$ b) $(A \cap A) = A \cap A$ c) $(A \cap A) = A \cap A$ d) $(A \cap A) = A \cap A$ d) $(A \cap A) = A \cap A$ d) $(A \cap A) = A \cap A$	+(g) + e- +(aq) + e- → Na-(g)	g to the first elec	tron affinity of so	odium is:
Q7. The total number of	of valence electron	ns in the NO+ cat	ion is:	
a) 16	b) 14	c) 12	d) 11	e) 10
Q8. The type of bond f a) Ionic	ormed by the sha b) Polar covaler	_	es is: c) single bond	d) double bond e) triple bond
Q9. The number of lon	e pairs on the am	monia molecule,	NH ₃ is:	
a) 0	b) 1	c) 2	d) 3	e) 4
Q10. Which bond would a) B—C		lar: B—C, B—N c) B—O		r B—Cl? e) B—Cl

Q11. The formal charge on the sulfur atom in the following molecule is:

Q12. The formal charge on each oxygen atom in the following molecule is:

Q13. The molecular geometry of the following molecule is:

a) Linear b) Bent

c) Square Planar d) Tetrahedral e) Trigonal bipyramidal

Q14. The molecular geometry of the following molecule is:

c) Square Planar d) Tetrahedral e) Trigonal bipyramidal

Q15. What type of hybrid orbital would be found on the carbon atom in the following molecule:

Q16. Given that BF₃ has the geometry below, identify the correct statement:

- a) The B—F bonds are polar, and the molecule is polar
- b) The B—F bonds are polar, and the molecule is non-polar
- c) The B—F bonds are non-polar, and the molecule is non-polar

- Q17. An XY₃ molecule (where X and Y represent different elements) is found to be non-polar. Therefore its molecular geometry must be:
 - a) Linear
- b) Trigonal planar
- c) Trigonal pyramidal

d) 4 σ , 4 π

- d) T-Shaped
- e) Tetrahedral
- Q18. How many sigma (σ) and pi (π) bonds are there in the following molecule:

- a) 2σ , 4π e) 4σ , 3π
- b) 2 σ, 5 π f) 6 σ, 2 π
- c) 3σ , 2π
- g) 7 σ, 0 π

Short Response.

Show ALL work to receive credit. Use the conversion factor method for all problems to receive full credit. Q19. [10 pts.] Write full electron configurations for the following ions:

- a) Cu+
- b) Al3+
- c) Sc²⁺
- d) Fe3+
- Q20. [6 pts.] What does the term *isoelectronic* mean? Give three examples of atoms/ions that are isoelectronic with argon, Ar.

Q21. [5 pts.] Draw a valid Lewis structure for the nitrite ion, NO ₂									
Q22. [6 pts.] Draw all possible resonance structures for ozone, O ₃ .									
(22. [a ktol] 2.3m. m. koosaa saasaa saasaa saasaa saasaa saasaa saasaa									

Q23. [12 pts.] Predict the *molecular* geometry of PCl₃ using VSEPR theory. Be sure to include (1) a valid Lewis structure, (2) a sketch of the molecular geometry, (3) the name of the molecular geometry, and (4) approximate bond angles.

BONUS: Predict ΔH^{o} for the reaction:

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

Given the following table of bond energies:

Type of Bond	Bond Energy / kJ mol-1
Н–Н	436.4
O=O	498.7
О–Н	460

How much heat would be produced/absorbed if 12.0 g of water was formed?

Seful Information

	Periodic Table of the Elements																
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	T																18
1																	2
H 1.01																	He 4.00
3	2											13 5	14	15 7	16 8	17 9	10
Li	Be											в	ů	Ń	ô	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											ΑĬ	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
•																т	
	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	1	
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	1	