

Data Mining: Introduction to Deep Learning

马锦华

Edited based on Ian Goodfellow's slides from

www.deeplearningbook.org

数据科学与计算机学院 中山大学

Introduction to Deep Learning

- Architecture Design
- Convolutional Neural Networks (CNN)

Output Types

Output Type	Output Distribution	Output Layer	$egin{array}{c} \mathbf{Cost} \\ \mathbf{Function} \end{array}$
Binary	Bernoulli	Sigmoid	Binary cross- entropy
Discrete	Multinoulli	Softmax	Discrete cross- entropy
Continuous	Gaussian	Linear	Gaussian cross- entropy (MSE)
Continuous	Mixture of Gaussian	Mixture Density	Cross-entropy
Continuous	Arbitrary	See part III: GAN, VAE, FVBN	Various

Universal Approximator Theorem

- Why deeper?
 - Shallow net may need (exponentially) more width
 - Shallow net may overfit more
- Illustration of advantage of depth

Better Generalization with Greater Depth

Large, Shallow Models Overfit More

Dataset Augmentation

Early Stopping as Regularizer

Parameter Sharing

Dropout

10

Introduction to Deep Learning

- Architecture Design
- Convolutional Neural Networks (CNN)

Convolutional Networks

- Scale up neural networks to process very large images / video sequences
 - Sparse connections
 - Parameter sharing

- Automatically generalize across spatial translations of inputs
- Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, ...)

Key Idea

Replace matrix multiplication in neural nets with convolution

- Everything else stays the same
 - Maximum likelihood
 - Back-propagation
 - etc.

2D Convolution

Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Growing Receptive Fields

Parameter Sharing

Convolutional Network Components

Max Pooling and Invariance to Translation

Cross-Channel Pooling and Invariance to Learned Transformations

Pooling with Downsampling

Example Classification Architectures

Convolution with Stride

Zero Padding Controls Size

With zero padding

Kinds of Connectivity

Gabor Functions

Gabor-like Learned Kernels

sparse coding

CNN

Major Architectures

- Spatial Transducer Net: input size scales with output size, all layers are convolutional
- All Convolutional Net: no pooling layers, just use strided convolution to shrink representation size
- Inception: complicated architecture designed to achieve high accuracy with low computational cost
- ResNet: blocks of layers with same spatial size, with each layer's output added to the same buffer that is repeatedly updated. Very many updates = very deep net, but without vanishing gradient.