INDIAN INSTITUTE OF TECHNOLOGY

DATE 13.1.09

Role of Trocess Tarameters on Surface SHEET NO. Finish.

Objective: To study the effect of feed and nose radius on surface roughness parameters in turning with a single Point tool.

Experimental Conditions and Observations:-

TI 6A1.4V Work material:

P20 composite carbite (WC-Co) Tool material:

0°6°6°6°75°15°4 Tool geometry.

Depth of cut: 3 mm

Cutting Velocity: 30m/min

INDIAN INSTITUTE OF TECHNOLOGY

(Z)		
		SHEET NO.
	DATE	
_		

51. No.	Feed (mm/rev)	Nose radius	(micron)	Rmax (micron)	(micron)	hm/10 (micron)	
1	0.08	0.4	0.607	3.37	3.10	₹.00	
२	0.13	0.4	0.901	4,93	4.78	4.5	
3	0.16	0.4	1.12	5.12	2.05	8	
Ч	0.30	0.4	2.03	8.17	8.00	125	
5	0.08	0.8	0.659	3.9	3.28	1	
6	0.13	0.8	0.839	4.6	4.53	2.25	
7	0.16	0.8	1,27	5.4	5.39		
8	0.20	0.8	1,67	7.89	7.06	6.25	
9	0.08	1.3	०.६२५	3.62	3.46	0.667	
10	0.13	1.3	0.437	2.5€	2.55	1.5	
11	0-16	1,2	0.733	3-58	3.54	2.67	
13	0.20	1.2	1-61	13.1	8.66	4.167	

hmax= 52 8R

hmax = theoretical surface roughness parameter hm for all combinations.

DISCUSSIONS:-

1. Derive the expression for surface rougheness parameters

Ans case 1: if tool is printed (5=feed)

d= Principle cutting edge angle

q = anxilliar A coffee angle

S= hman cut & + hman cut &,

Cutotcoto,

Casell: it tool is rounded with nose radius

Hman = IS - \left[1 - \left[1 - \frac{1}{2} \right] \right] (ph pinon & exbansion)

= \frac{5}{2} \right]

= \frac{5}{1} - \left[1 - \frac{1}{2} \right] \right] (ph pinon & exbansion)

3. Explain the nature of variation of surface rough.

Ans. As evident from the formula, surface roughness increases with increased teed and decreases with maxes (hmax=52). The variation may be plotted as:

Explain the reasons for variations between the theoretical and experimental values.

Ans As seen in the derivation of expression for surface roughness parameters with respect to nose radios

= 15-15/1-(21)5 - 15-15/17

WHOREPICAL = 15-15/17

Mow only when 5 << R i. e feed << rpse radius

Honce Hone :

Hence there is a variation between the theoretical and experimental value as our assumption of (SER)

Moreover due to experimental value doesnot match

