STATISTIK Pertemuan 8 dan 9

Ukuran Kemiringan dan Keruncingan I Ketut Putu Suniantara

suniantara.wordpress.com

A. Ukuran Kemiringan

- Ukuran kemiringan (skewness) adalah suatu ukuran yang dapat digunakan untuk menentukkan ketidaksimetrisan suatu kurva distribusi data.
- Ukuran kemiringan suatu kurva distribusi frekuensi dapat diketahui dari besarnya koefisiennya skewness (S_k) dan besarnya koefisien moment ketiga (α₃).

Koefisien Skewness

- Besarnya koefisien skewness (s_k) dapat dihitung dengan beberapa metode, antara lain:
 - a. Metode Karl Pearson
 - b. Metode Bowley
 - c. Metode '10 90 persentil'

suniantara.wordpress.com

Koefisien Skewness

a. Metode Karl Pearson

Pada metode ini, koefisien skewness dapat dihitung dengan rumus:

$$S_k = \frac{\overline{x} - Mo}{s}$$
 Turunan Pertama

secara empiris hubungan antara $\bar{x} - Mo = 3(\bar{x} - Me)$ maka dinyatakan sebagai:

Tur. Kedua
$$\longleftarrow$$
 $S_k = \frac{3(\overline{x} - Me)}{s}$

 S_k = koefisien Skewness

Mo = modus

Me = median

s = Simpangan baku

Koefisien Skewness

b. Metode Bowley

Pada metode ini, koefisien skewness dapat dihitung dengan rumus:

 $S_k = \frac{(K_3 - K_2) - (K_2 - K_1)}{(K_3 - K_1)} = \frac{(K_3 + K_1 - 2K_2)}{(K_3 - K_1)}$

 S_k = Koefisien Skewness

K₃ = Kuartil ketiga

K₂ = Kuartil kedua

K₁ = Kuartil pertama

suniantara.wordpress.com

Koefisien Skewness

C.Metode '10 – 90 Persentil'

Pada metode ini, koefisien skewness dapat dihitung dengan rumus:

$$S_k = \frac{(P_{90} - P_{50}) - (P_{50} - P_{10})}{(P_{90} - P_{10})}$$

 S_k = Koefisien Skewness

 P_{10} = Persentil ke - 10

 P_{50} = Persentil ke - 50

 P_{90} = Persentil ke - 90

Koefisien Skewness

Nilai koefisien skewness berkisar antara -1 sampai 1, tappi kadang - kadang melebihi 1. Nilai S_k mendekati 0 maka distribusi frekuensi tersebut semakin simetris.

Bila S_k positif, berarti ekor kanan distribusi frekuensinya lebih panjang dari ekor kirinya dan distribusinya menceng kekanan.

Bila S_k negatif, berarti ekor kiri distribusi frekuensinya lebih panjang dari ekor kanannya dan distribusinya menceng kekiri.

Kondisi ini dapat dijelaskan pada kurva berikut:

suniantara.wordpress.com

Koefisien Skewness

- 1. Jika nilai koefisien skewness nol, ini berarti mean = median = modus maka kurvanya berbentuk simetris.
- Jika nilai koefisien skewness positif maka Mean
 Me > Mo, maka kurva miring ke kanan atau condong kekiri.
- 3. Jika nilai koefisien negatif, maka Mean < Med < Mod, maka kurva miring ke kiri atau condong kekanan.

Contoh: Soal

Diketahui data Nilai UAS Statistik Semester 5 disuatu kampus X:

Nilai	f_{i}
31 – 40	1
41 – 50	2
51 – 60	5
61 - 70	15
71 – 80	25
81 – 90	20
91 – 100	12

Hitunglah Koefisien skewness dangan menggunakan metode Karl Pearson dan periksalah miring kemanakan distribusi frekuensi nilai tersebut?

Penyelesaian:

Langkah – langkah perhitungan:

 Membuat perhitungan dasar dengan menggunakan tabel berikut:

Nilai	fi	mi	di	di^2	fi*di	fi*di^2	Fk
31-40	1	35.5	-4	16	-4	16	1
41-50	2	45.5	-3	9	-6	18	3
51-60	5	55.5	-2	4	-10	20	8
61-70	15	65.5	-1	1	-15	15	23
71-80	25	75.5	0	0	0	0	48
81-90	20	85.5	1	1	20	20	68
91-100	12	95.5	2	4	24	48	80
	80				9	137	

Penyelesaian:

Langkah – langkah perhitungan:

2. Menghitung rata – rata dan Simpangan baku

$$\overline{x} = AM + p \left(\frac{\sum f_i . d_i}{n} \right) \qquad s = p \sqrt{\frac{\sum f_i . d_i^2}{n} - \left(\frac{\sum f_i . d_i}{n} \right)^2}$$

$$= 75,5 + 10 \left(\frac{9}{80} \right) \qquad = 10 \sqrt{\frac{137}{80} - \left(\frac{9}{800} \right)^2}$$

$$= 75,5 - 1,125 = 76,625 \sim 76,63 \qquad = 13,04$$

3. Menghitung Median dan Modeus $Mo = 70,5+10 \left(\frac{25-15}{(25-15)+(25-20)} \right) \quad Me = 70,5+10 \left(\frac{\frac{2}{4}(80)-23}{25} \right)$ $= 77,17 \qquad = 77,3$

Penyelesaian:

Langkah - langkah perhitungan:

4. Menghitung masing – masing dari kuartil:

$$K_{i} = Bb_{K_{i}} + p \left(\frac{(i/4)n - F_{K_{i}}}{f_{K_{i}}} \right)$$

$$K_{1} = 60,5 + 10 \left(\frac{20 - 8}{15} \right)$$

$$K_{3} = 80,5 + 10 \left(\frac{60 - 48}{20} \right)$$

$$= 86,5$$

suniantara.wordpress.com

Penyelesaian:

Ukuran Skewness dengan Karl Pearson:

a. Turunan pertama:

$$S_k = \frac{\overline{x} - M_0}{s} = \frac{76,63 - 77,17}{13,04} = -0,041$$

b. Turunan Kedua

$$S_k = \frac{3(\bar{x} - Md)}{s} = \frac{3(76,63 - 77,3)}{13,04} = -0.154$$

Melihat nilai Sk bertanda minus (-) menunjukkan bahwa distribusi nilai UAS tersebut miring ke kiri dan condong ke kanan.

Koefisien Momen Kemiringan

Koefisien momen kemiringan terbagi atas:

a. Untuk data tunggal

$$\alpha_3 = \frac{\sum (x_i - \overline{x})^3}{ns^3}$$

b. Untuk data keleompok

$$\alpha_{3} = \left\{ \frac{\sum fi.d_{i}^{3}}{n} - 3 \frac{\sum fi.di}{n} \cdot \frac{\sum fi.d_{i}^{2}}{n} + 2 \left(\frac{\sum fi.di}{n} \right)^{3} \right\} \frac{p^{3}}{s^{3}}$$

suniantara.wordpress.com

Koefisien Momen Kemiringan

Contoh Koefisien momen kemiringan ~ kembali contoh soal di atas dengan menampikan dalam tabel berikut:

Nilai	fi	mi	di	di^2	di^3	fi*di	fi*di^2	fi*di^3
31-40	1	35.5	-4	16	-64	-4	16	-64
41-50	2	45.5	-3	9	-27	-6	18	-54
51-60	5	55.5	-2	4	-8	-10	20	-40
61-70	15	65.5	-1	1	-1	-15	15	-15
71-80	25	75.5	0	0	0	0	0	0
81-90	20	85.5	1	1	1	20	20	20
91-100	12	95.5	2	4	8	24	48	96
	80					9	137	-57

Koefisien Momen Kemiringan

Dari tabel di atas diperoleh yaitu: n = 80, p = 10, s = 13,04

$$\sum fi.di = 9$$
, $\sum fi.d_i^2 = 137 \operatorname{dan} \sum fi.d_i^3 = -57$

Maka: $\alpha_{3} = \left\{ \frac{\sum fi.d_{i}^{3}}{n} - 3 \frac{\sum fi.di}{n} \cdot \frac{\sum fi.d_{i}^{2}}{n} + 2 \left(\frac{\sum fi.di}{n} \right)^{3} \right\} \frac{p^{3}}{s^{3}}$ $= \left\{ \frac{-57}{80} - 3 \frac{9}{80} \cdot \frac{137}{80} + 2 \left(\frac{9}{80} \right)^{3} \right\} \frac{10^{3}}{(13,04)^{3}}$ $= \left\{ -0.7125 - 0.5780 + 0.0028 \right\} \frac{1000}{2217,3425}$ = -0.58

suniantara.wordpress.com

PERTEMUAN 9

B. Ukuran Keruncingan

Ukuran keruncingan (Kurtosis) adalah suatu ukuran yang dapat digunakan untuk menentukan runcing tidaknya kurva suatu distribusi. Ukuran keruncingan biasanya menggunakan koefisien momen keempat (α_4). Ukuran ini meliputi:

a. Untuk data tunggal

$$\alpha_4 = \frac{\sum (x_i - \overline{x})^4}{ns^4}$$

b.Untuk data kelompok

$$\alpha_{4} = \left\{ \frac{\sum fi.d_{i}^{4}}{n} - 4 \frac{\sum fi.di}{n} \cdot \frac{\sum fi.d_{i}^{3}}{n} + 6 \left(\frac{\sum fi.di}{n} \right)^{2} \frac{\sum fi.d_{i}^{2}}{n} - 3 \left(\frac{\sum fi.di}{n} \right)^{4} \right\} \frac{p^{4}}{s^{4}}$$

suniantara.wordpress.com

B. Ukuran Keruncingan

Bentuk kurva dari ukuran keruncingan, yaitu:

- a. Nilai koefisien kurtosis lebih besar dari 3 ($\alpha_4 > 3$) maka kurva distribusi tersebut runcing disebut liptokurtik
- b. Nilai koefisien lebih kecil dari 3 (α_4 < 3) maka kurva distribusi tersebut landai disebut platikurtik
- c. Nilai koefisien kurtosis sama dengan 3 (α_4 = 3), maka kurva distribusinya berbentuk normal disebut mesokurtik.

Bentuk kurva normal dapat disajikan sebagai berikut:

Contoh: Soal

Diketahui data Nilai UAS Statistik Semester 5 disuatu kampus X:

Nilai	f_{i}
31 – 40	1
41 – 50	2
51 – 60	5
61 - 70	15
71 - 80	25
81 – 90	20
91 – 100	12

Hitunglah Koefisien skewness dangan menggunakan metode Karl Pearson dan periksalah miring kemanakan distribusi frekuensi nilai tersebut?

Penyelesaian:

Langkah – langkah perhitungan:

 Membuat perhitungan dasar dengan menggunakan tabel berikut:

Nilai	fi	mi	di	di^2	di^3	di^4	fi*di	fi*di^2	fi*di^3	fi*di^4
31-40	1	35.5	-4	16	-64	256	-4	16	-64	256
41-50	2	45.5	-3	9	-27	81	-6	18	-54	162
51-60	5	55.5	-2	4	-8	16	-10	20	-40	80
61-70	15	65.5	-1	1	-1	1	-15	15	-15	15
71-80	25	75.5	0	0	0	0	0	0	0	0
81-90	20	85.5	1	1	1	1	20	20	20	20
91-100	12	95.5	2	4	8	16	24	48	96	192
	80				·	·	9	137	-57	725

Penyelesaian

$$\alpha_4 = \left\{ \frac{725}{80} - 4\frac{9}{80} \left(\frac{-57}{80} \right) + 6 \left(\frac{9}{80} \right)^2 \frac{137}{80} - 3 \left(\frac{9}{80} \right)^4 \right\} \frac{10^4}{(13,04)^4}$$

$$= \left\{ \frac{9,0625 - 4(0,1125)(-0,7125) +}{6(0,0127)(1,7125) - 3(0,1125)^4} \right\} \frac{10000}{28914,1}$$

$$= \left\{ 9,0625 + 0,3206 + 0,1305 - 0,000481 \right\} 0,3459 = 3,29$$

Latihan Soal

Besarnya laba yang diperoleh oleh 100 pengembang perumahan (real estate) yang diambil sebagai sampel acak (dalam ratusan juta rupiah) ditiga kota yaitu Jakarta, Surabaya dan Makassar pada tahun 2010, disajikan dalam tabel pada slide selanjutnya.

Hitunglah koefisien skewness dari distribusi tersebut dengan menggunakan metode Karl Pearson dan metode Bowley dan koefisien kortusis serta periksalah menceng kemana distribusi frekuensi laba tersebut.

suniantara.wordpress.com

Laba (puluhan juta)	Banyak pengembang
20 - 29	4
30 - 39	7
40 - 49	9
50 - 59	16
60 - 69	25
70 - 79	15
80 - 89	17
90 - 100	7
Total	100