7 Vetores, Produto escalar e Vetorial

1. Considere o desenho

Onde A = (0, 1, -1), B = (0, 0, 1), D = (2, -1, 1). Determine

- a) o plano π que contém A, B, D,
- b) o ponto C, e verifique que $C \in \pi$,
- c) a área do triângulo \widehat{ABC} utilizando produto vetorial,
- d) a área do triangulo \widehat{ABC} utilizando a fórmula $A=\frac{\text{base-altura}}{2}$ onde a base é dada pelo segmento \overline{AC} .

Resposta:

a) A equação do plano π é

$$x + 2y + z = 1.$$

- b) o ponto C = (2, 0, -1)
- c) a área do triângulo \widehat{ABC} utilizando produto vetorial é $\sqrt{6}$,
- d) a área do triangulo \widehat{ABC} utilizando a fórmula $A=\frac{\text{base} \cdot \text{altura}}{2}$ onde a base é dada pelo segmento \widehat{AC} é $\sqrt{6}$.
- 2. Verificar se as afirmações abaixo são verdadeiras ou falsas.
 - Os pontos

$$A = (0, 1, 1), B = (1, 1, 1), C = (3, -3, 1) e D = (-5, 2, 4) de \mathbb{R}^3$$

são coplanares. Resposta: (FALSO)

• Sejam \vec{u}, \vec{v} e \vec{w} três vetores no espaço tais que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$, então

$$\vec{u} \times \vec{v} = \vec{v} \times \vec{w} = \vec{w} \times \vec{u}.$$

Resposta: (VERDADEIRO).

- Os vetores $\vec{u}=(1,-2,1),\, \vec{v}=(2,1,3)$ e $\vec{w}=(3,1,4)$ são linearmente dependentes. **Resposta:** (FALSO)
- Se \vec{u} e \vec{v} são dois vetores no espaço então

$$||\vec{u}||^2 \cdot ||\vec{v}||^2 = |\vec{u} \cdot \vec{v}|^2 + ||\vec{u} \times \vec{v}||^2$$

Resposta: (VERDADEIRO)

- Para quaisquer dois vetores \vec{u} e \vec{v} vale $||\vec{u} + \vec{v}|| \ge ||\vec{u} \vec{w}||$. Resposta: (FALSO)
- Para quisquer vectores \vec{u}, \vec{v} e \vec{w} de \mathbb{R}^3 vale

$$\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) - (\vec{w} \times \vec{u}).$$

Resposta: (VERDADEIRO)

- Para quaisquer dois vetores \vec{v} , \vec{w} vale $||\vec{v}||^2 + ||\vec{w}||^2 ||\vec{v} \vec{w}||^2 = 2 < \vec{v}$, $\vec{w} >$. **Resposta:** (VERDADEIRO)
- Para quaisquer três vetores \vec{u} , \vec{v} , \vec{w} em \mathbb{R}^3 vale

$$\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \times \vec{w}.$$

Resposta: (FALSO)

- Para quaisquer três vetores \vec{u} , \vec{v} , \vec{w} em \mathbb{R}^3 tais que $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$ vale $\vec{u} \times (\vec{v} \vec{w}) = \vec{0}$. **Resposta:** (VERDADEIRO)
- Determine a extremidade ou a origem do segmento orientado nos seguintes casos:
 - a) Representa o vetor v = (1, -2, 1) e sua origem é o ponto P = (1, 0, 1).
 - b) Representa o vetor v = (-1, 0, 1) e sua origem é o ponto médio entre os pontos $P_1 = (1, 1, 3)$ e $P_2 = (-1, 1, 1)$.
 - c) Representa o vetor v = (1, 1, 1) e sua extremidade é o ponto P = (1, 1, 1).

Resposta:

- a) Q = (2, -2, 2).
- b) Q = (-1, 1, 3).
- c) Q = (0, 0, 0).
- 4. Verifique se os pontos dados abaixo são colineares:
 - a) A = (1, 0, 1), B = (2, 2, 0) e C = (0, -2, 2);
 - b) A = (0, 1, -1), B = (1, 2, 0) e C = (0, 2, 1);
 - c) A = (3, 1, 4), B = (2, 7, 1) e C = (0, 1, 5).

Resposta:

- a) São colineares.
- b) Não são colineares.
- c) Não são colineares.
- 5. Dados os pontos A = (1, 0, 1), B = (-1, 1, 1) e C = (0, 1, 2).
 - a) Determine o ponto D tal que $A,\,B,\,C$ e D sejam os vértices consecutivos de um paralelogramo
 - b) Determine o ponto médio entre A e C e o ponto médio entre B e D.

Resposta:

- a) D = (2, 0, 2)
- b) O ponto médio entre A e C é $(\frac{1}{2}, \frac{1}{2}, \frac{3}{2})$. O ponto médio entre B e D é $(\frac{1}{2}, \frac{1}{2}, \frac{3}{2})$
- 6. Demonstre que as diagonais de um paralelogramo se cortam ao meio (Sugestão: Sejam M e N os pontos médios das duas diagonais. Mostre $\overline{MN}=\vec{0}$.)
- 7. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e seu comprimento é a média aritmética dos comprimentos das bases.
- 8. Sejam \overrightarrow{OA} e \overrightarrow{OB} dois vetores não colineares no espaço. Qual o conjunto dos pontos P tais que $\overrightarrow{OP} = \lambda \overrightarrow{OA} + (1 \lambda) \overrightarrow{OB}$?

Resposta: A reta que passa por $B \in A$.

- 9. a) Mostre que as medianas de um triângulo interseptam-se num ponto. Encontre a razão em que esse ponto divide cada mediana.
 - b) Tente generalizar o item (a) para tetraedros.
- 10. A área do triângulo ABC é $\sqrt{6}$. Sabendo-se que $A=(2,1,0),\ B=(-1,2,1)$ e que o vértice C está no eixo y, encontre as coordenadas de C.

Resposta:

$$C = (0, 3, 0)$$
 ou $C = \left(0, \frac{1}{5}, 0\right)$

- 11. a) Decompor o vetor $\vec{w} = (1,3,2)$ como soma de dois vetores $\vec{w} = \vec{u} + \vec{v}$, onde \vec{u} é paralelo ao vetor (0,1,3) e v é ortogonal a (0,1,3).
 - b) Encontre um vetor \vec{u} que seja ortogonal aos vetores (2,3,-1) e (2,-4,6) tal que $\parallel \vec{u} \parallel = 3\sqrt{3}$.

Resposta:

a)

$$\vec{u} = \left(0, \frac{9}{10}, \frac{27}{10}\right) \quad \vec{v} = \left(1, \frac{21}{10}, \frac{-7}{10}\right)$$

- b) $\vec{u} = \pm (3, -3, -3)$.
- 12. a) Demonstre que não existe x tal que os vetores $\vec{v}=(x,2,3)$ e $\vec{u}=(x,-2,3)$ sejam perpendiculares.
 - b) Encontre o ângulo entre os vetores $\vec{u}=(2,1,0)$ e $\vec{v}=(0,1,-1)$ e entre os vetores $\vec{w}=(1,1,1)$ e $\vec{z}=(0,-2,-2)$.
- 13. a) Dado um triângulo isósceles, mostre que a mediana relativa à base é a mediatriz (i.é., é perpendicular à base).
 - b) Mostre que: Se um triângulo tem duas medianas iguais então ele é isósceles.

- 14. Sejam \vec{u} e \vec{v} dois vetores de comprimentos iguais, mostre que para quaisquer números a e b, os vetores $a\vec{u}+b\vec{v}$ e $a\vec{v}+b\vec{u}$ têm o mesmo comprimento. O que significa isso?
- 15. Determine, se existir, os valores de x para que o vetor $\vec{v} = x\vec{i} + 6\vec{k}$ seja paralelo ao produto vetorial de $\vec{w} = \vec{i} + x\vec{j} + 2\vec{k}$ por $\vec{u} = 2\vec{i} + \vec{j} + 2\vec{k}$

Resposta: Não serão paralelos $\forall x \in \mathbb{R}$.

16. Determine x para que os pontos A = (x, 1, 2), B = (2, -2, -3), C = (5, -1, 1) e D = (3, -2, -2) sejam coplanares.

Resposta:

 $x \equiv 4$

- 17. Encontre o volume do paralelepípedo determinado pelos vetores \vec{u} , \vec{v} e \vec{w} nos seguintes casos:
 - a) Dados os pontos A = (1, 3, 4), B = (3, 5, 3), C = (2, 1, 6) e D = (2, 2, 5) tome $\vec{u} = \overrightarrow{AB}, \vec{v} = \overrightarrow{AC}$ e $\vec{w} = \overrightarrow{AD} = (1, 3, 4)$.
 - b) $\vec{u} = \vec{i} + 3\vec{j} + 2\vec{k}$, $\vec{v} = 2\vec{i} + \vec{j} \vec{k}$ e $\vec{w} = \vec{i} 2\vec{j} + \vec{k}$.

Resposta:

- a) vol = 1.
- b) vol = 20.
- 18. Sejam \vec{u} e \vec{v} vetores no espaço. Mostre que
 - a) $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v}) = 2\vec{v} \times \vec{u}$
 - b) Se $\vec{u} \times \vec{v}$ é não nulo e \vec{w} é um vetor qualquer no espaço então existem números reais a, b e c tal que $\vec{w} = a(\vec{u} \times \vec{v}) + b\vec{u} + c\vec{v}$.
 - c) Se $\vec{u} \times \vec{v}$ é não nulo e \vec{u} é ortogonal a \vec{v} então $\vec{u} \times (\vec{u} \times \vec{v})$ é paralelo a \vec{v} .
- 19. Sejam $A=(2,1,2),\,B=(1,0,0)$ e $C=(1+\sqrt{3},\sqrt{3},-\sqrt{6})$ três pontos no espaço. Calcule os ângulos do triângulo \widehat{ABC} , e os comprimentos da mediana e da altura que saem do vértice A.
- 20. Sejam $\vec{u}=(-1,1,1)$ e $\vec{v}=(2,0,1)$ dois vetores. Encontre os vetores \vec{w} que são paralelos ao plano determinado por O, \vec{u} e \vec{v} , perpendiculares a \vec{v} e $\vec{u} \cdot \vec{w} = 7$.

Resposta:

$$\vec{w} = \frac{5}{2} \cdot \vec{u} + \frac{1}{2} \cdot \vec{v}$$

21. O vetor \vec{w} é ortogonal aos vetores $\vec{u}=(2,3,-1)$ e $\vec{v}=(1,-2,3)$ e $\vec{w}\cdot(2,-1,1)=-6$. Encontre \vec{w} .

Resposta: $\vec{w} = (-3, 3, 3)$.

22. Sejam u = (1, -1, 3) e v = (3, -5, 6). Encontre $proj_{u+v}(2u - v)$.

Resposta:

$$proj_{u+v}(2u-v) = \frac{-22}{133} \cdot (4,6,9).$$

- 23. Responda, justificando, falso ou verdadeiro a cada uma das seguintes afirmações:
 - a) Se \vec{u}, \vec{v} e \vec{w} são vetores no espaço, com \vec{v} não nulo e $\vec{v} \times \vec{u} = \vec{v} \times \vec{w}$ então $\vec{u} = \vec{w}$.
 - b) Se \vec{u} , \vec{v} e \vec{w} são vetores no espaço então: $\mid \vec{u} \cdot (\vec{v} \times \vec{w}) \mid = \mid \vec{v} \cdot (\vec{u} \times \vec{w}) \mid = \mid \vec{v} \cdot (\vec{u} \times \vec{w}) \mid = \mid \vec{v} \cdot (\vec{v} \times \vec{u}) \mid = \mid \vec{v} \cdot (\vec{v}$
 - c) Se \vec{u} , \vec{v} e \vec{w} são vetores no espaço então $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \times \vec{w}$.
 - d) Se \vec{u} , \vec{v} e \vec{w} são vetores no espaço, \vec{u} é não nulo e $\vec{u} \times \vec{v} = \vec{u} \times \vec{w} = \vec{0}$ então $\vec{v} \times \vec{w} = \vec{0}$.

Resposta:

- a) Falso
- b) Verdadeiro
- c) Falso
- d) Verdadeiro