knn

January 26, 2021

0.1 This is the k-nearest neighbors workbook for ECE C147/C247 Assignment #2

Please follow the notebook linearly to implement k-nearest neighbors.

Please print out the workbook entirely when completed.

We thank Serena Yeung & Justin Johnson for permission to use code written for the CS 231n class (cs231n.stanford.edu). These are the functions in the cs231n folders and code in the jupyer notebook to preprocess and show the images. The classifiers used are based off of code prepared for CS 231n as well.

The goal of this workbook is to give you experience with the data, training and evaluating a simple classifier, k-fold cross validation, and as a Python refresher.

0.2 Import the appropriate libraries

```
[39]: import numpy as np # for doing most of our calculations import matplotlib.pyplot as plt# for plotting from cs231n.data_utils import load_CIFAR10 # function to load the CIFAR-10_□ → dataset.

# Load matplotlib images inline

# These are important for reloading any code you write in external .py files.

# see http://stackoverflow.com/questions/1907993/
→ autoreload-of-modules-in-ipython

%load_ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload_ext_autoreload

```
[40]: # Set the path to the CIFAR-10 data
cifar10_dir = 'cifar-10-batches-py' # You need to update this line
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
```

```
print('Training labels shape: ', y_train.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
     Training data shape: (50000, 32, 32, 3)
     Training labels shape: (50000,)
     Test data shape: (10000, 32, 32, 3)
     Test labels shape: (10000,)
[41]: # Visualize some examples from the dataset.
     # We show a few examples of training images from each class.
     classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', _
      num_classes = len(classes)
     samples_per_class = 7
     for y, cls in enumerate(classes):
         idxs = np.flatnonzero(y_train == y)
         idxs = np.random.choice(idxs, samples_per_class, replace=False)
         for i, idx in enumerate(idxs):
             plt idx = i * num classes + y + 1
             plt.subplot(samples_per_class, num_classes, plt_idx)
             plt.imshow(X_train[idx].astype('uint8'))
             plt.axis('off')
             if i == 0:
                 plt.title(cls)
     plt.show()
```



```
[42]: # Subsample the data for more efficient code execution in this exercise
    num_training = 5000
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]

    num_test = 500
    mask = list(range(num_test))
    X_test = X_test[mask]
    y_test = y_test[mask]

# Reshape the image data into rows
    X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    print(X_train.shape, X_test.shape)
```

(5000, 3072) (500, 3072)

1 K-nearest neighbors

In the following cells, you will build a KNN classifier and choose hyperparameters via k-fold cross-validation.

```
[43]: # Import the KNN class
from nndl import KNN
```

```
[44]: # Declare an instance of the knn class.
knn = KNN()

# Train the classifier.

# We have implemented the training of the KNN classifier.

# Look at the train function in the KNN class to see what this does.
knn.train(X=X_train, y=y_train)
```

1.1 Questions

- (1) Describe what is going on in the function knn.train().
- (2) What are the pros and cons of this training step?

1.2 Answers

- (1) knn.train() simply loads the training and testing data into memory by assigning X and y to X train and y train
- (2) Pros: Fast training time and simple to implement. Cons: It can be memory intensive and slow to make predictions

1.3 KNN prediction

In the following sections, you will implement the functions to calculate the distances of test points to training points, and from this information, predict the class of the KNN.

```
[9]: # Implement the function compute_distances() in the KNN class.

# Do not worry about the input 'norm' for now; use the default definition of the norm

# in the code, which is the 2-norm.

# You should only have to fill out the clearly marked sections.

import time

time_start = time.time()

dists_L2 = knn.compute_distances(X=X_test)

print('Time to run code: {}'.format(time.time()-time_start))

print('Frobenius norm of L2 distances: {}'.format(np.linalg.norm(dists_L2, □ → 'fro')))
```

Time to run code: 29.468750953674316 Frobenius norm of L2 distances: 7906696.077040902

Really slow code Note: This probably took a while. This is because we use two for loops. We could increase the speed via vectorization, removing the for loops.

If you implemented this correctly, evaluating np.linalg.norm (dists_L2, 'fro') should return: $\sim\!\!7906696$

1.3.1 KNN vectorization

The above code took far too long to run. If we wanted to optimize hyperparameters, it would be time-expensive. Thus, we will speed up the code by vectorizing it, removing the for loops.

Time to run code: 0.2480611801147461
Difference in L2 distances between your KNN implementations (should be 0): 0.0

Speedup Depending on your computer speed, you should see a 10-100x speed up from vectorization. On our computer, the vectorized form took 0.36 seconds while the naive implementation

took 38.3 seconds.

1.3.2 Implementing the prediction

Now that we have functions to calculate the distances from a test point to given training points, we now implement the function that will predict the test point labels.

```
[48]: # Implement the function predict_labels in the KNN class.
    # Calculate the training error (num incorrect / total samples)
      from running knn.predict_labels with k=1
   error = 1
    # ----- #
    # YOUR CODE HERE:
      Calculate the error rate by calling predict_labels on the test
      data with k = 1. Store the error rate in the variable error.
     y_pred = knn.predict_labels(dists_L2_vectorized, k=1)
   err_count = np.sum(y_test != y_pred)
   error = err_count / num_test
    # END YOUR CODE HERE
    print(error)
```

0.726

If you implemented this correctly, the error should be: 0.726.

This means that the k-nearest neighbors classifier is right 27.4% of the time, which is not great, considering that chance levels are 10%.

2 Optimizing KNN hyperparameters

In this section, we'll take the KNN classifier that you have constructed and perform cross-validation to choose a best value of k, as well as a best choice of norm.

2.0.1 Create training and validation folds

First, we will create the training and validation folds for use in k-fold cross validation.

```
[12]: # Create the dataset folds for cross-valdiation.
num_folds = 5

X_train_folds = []
y_train_folds = []
```

```
[13]: print(len(y_train_folds[0]))
```

1000

2.0.2 Optimizing the number of nearest neighbors hyperparameter.

In this section, we select different numbers of nearest neighbors and assess which one has the lowest k-fold cross validation error.

```
[66]: time_start =time.time()
     ks = [1, 2, 3, 5, 7, 10, 15, 20, 25, 30]
     # ----- #
     # YOUR CODE HERE:
       Calculate the cross-validation error for each k in ks, testing
        the trained model on each of the 5 folds. Average these errors
       together and make a plot of k vs. cross-validation error. Since
      we are assuming L2 distance here, please use the vectorized code!
        Otherwise, you might be waiting a long time.
     cross_val_err = []
     num_test_fold = 1000
     for k in ks:
        err_rates = []
        for idx in range(num folds):
           # get training and testing data
           X test fold = X train folds[idx]
           y_test_fold = y_train_folds[idx]
```

```
copy_X_train_folds = X_train_folds.copy()
       copy_X_train_folds.pop(idx)
       X_train_fold = np.concatenate(copy_X_train_folds)
       copy_y_train_folds = y_train_folds.copy()
       copy_y_train_folds.pop(idx)
       y_train_fold = np.concatenate(copy_y_train_folds)
       # print(y_train_fold.size)
       # train the model
       model = KNN()
       model.train(X=X_train_fold, y=y_train_fold)
       # make predictions
       dists = model.compute_L2_distances_vectorized(X_test_fold)
       y_pred_fold = model.predict_labels(dists, k=k)
       err_count = np.sum(y_test_fold != y_pred_fold)
       err_rates.append(err_count / num_test_fold)
   cross_val_err.append(sum(err_rates)/len(err_rates))
plt.plot(ks, cross_val_err, marker='o')
plt.grid()
plt.xlabel("k")
plt.ylabel("Cross Validation Error")
plt.show()
print(cross_val_err)
# ------ #
# END YOUR CODE HERE
# ----- #
print('Computation time: %.2f'%(time.time()-time_start))
```


[0.7344, 0.7626000000000000, 0.750400000000001, 0.72679999999999, 0.7256, 0.7198, 0.725, 0.721, 0.7242, 0.7266]
Computation time: 26.35

2.1 Questions:

- (1) What value of k is best amongst the tested k's?
- (2) What is the cross-validation error for this value of k?

2.2 Answers:

- (1) k = 10 gives the best testing results among the ks given.
- (2) The best cross-validation error is 0.7198.

2.2.1 Optimizing the norm

Next, we test three different norms (the 1, 2, and infinity norms) and see which distance metric results in the best cross-validation performance.

```
[68]: time_start =time.time()

L1_norm = lambda x: np.linalg.norm(x, ord=1)
L2_norm = lambda x: np.linalg.norm(x, ord=2)
Linf_norm = lambda x: np.linalg.norm(x, ord= np.inf)
norms = [L1_norm, L2_norm, Linf_norm]
```

```
# ------ #
# YOUR CODE HERE:
  Calculate the cross-validation error for each norm in norms, testing
  the trained model on each of the 5 folds. Average these errors
  together and make a plot of the norm used us the cross-validation error
# Use the best cross-validation k from the previous part.
#
  Feel free to use the compute distances function. We're testing just
# three norms, but be advised that this could still take some time.
  You're welcome to write a vectorized form of the L1- and Linf- norms
  to speed this up, but it is not necessary.
# ----- #
cross_val_err = []
num_test_fold = 1000
for norm in norms:
   model = KNN()
   for idx in range(num_folds):
       #get training and testing data
       X_test_fold = X_train_folds[idx]
       y_test_fold = y_train_folds[idx]
       copy_X_train_folds = X_train_folds.copy()
       copy_X_train_folds.pop(idx)
       X_train_fold = np.concatenate(copy_X_train_folds)
       copy_y_train_folds = y_train_folds.copy()
       copy_y_train_folds.pop(idx)
       y_train_fold = np.concatenate(copy_y_train_folds)
       # print(y_train_fold.size)
       #train the model
       model = KNN()
       model.train(X=X_train_fold, y=y_train_fold)
       # make predictions
       dists = model.compute distances(X test fold, norm=norm)
       y_pred_fold = model.predict_labels(dists, k=10)
       err_count = np.sum(y_test_fold != y_pred_fold)
       err_rates.append(err_count / num_test_fold)
   cross_val_err.append(sum(err_rates)/len(err_rates))
print(cross_val_err)
```

```
# ======= # # END YOUR CODE HERE # ========= # print('Computation time: %.2f'%(time.time()-time_start))
```

[0.7076, 0.7116666666666667, 0.7430000000000001]

Computation time: 554.90

```
[83]: plt.scatter([1,2,3], cross_val_err)
   plt.grid()
   plt.xlabel("Norms (1: L1, 2: L2, 3: Linf)")
   plt.ylabel("Cross-Validation Error")
   plt.show()
   print(cross_val_err)
```


[0.7076, 0.711666666666667, 0.7430000000000001]

2.3 Questions:

- (1) What norm has the best cross-validation error?
- (2) What is the cross-validation error for your given norm and k?

2.4 Answers:

(1) L1 norm has the best corss-validation error.

(2) The corss-validaton error for L1 norm and k = 10 is 0.7076

3 Evaluating the model on the testing dataset.

Now, given the optimal k and norm you found in earlier parts, evaluate the testing error of the k-nearest neighbors model.

```
[81]: error = 1
    # YOUR CODE HERE:
       Evaluate the testing error of the k-nearest neighbors classifier
       for your optimal hyperparameters found by 5-fold cross-validation.
    num_test = len(y_test)
    L1_norm = lambda x: np.linalg.norm(x, ord=1)
    model = KNN()
    model.train(X=X_train, y=y_train)
    dists = model.compute_distances(X=X_test, norm=L1_norm)
    y_pred = model.predict_labels(dists, k=10)
    err_count = np.sum(y_test != y_pred)
    error = err_count / num_test
    # ----- #
    # END YOUR CODE HERE
    # ------ #
    print('Error rate achieved: {}'.format(error))
```

Error rate achieved: 0.722

3.1 Question:

How much did your error improve by cross-validation over naively choosing k = 1 and using the L2-norm?

3.2 Answer:

The error imporved from 0.726 to 0.722 (by 0.004), which is not signifant. It implies that KNN isn't suitable to solve this problem.