Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2031 - Geometría Moderna - Catedrático: María Eugenia Pinillos 29 de julio de 2021

Minitarea

Problema 1. Si una de las antiparalelas se refleja sobre la bisectriz entonces queda paralela a la otra.

Demostración. Considérese la reflexión de la línea antiparalela \overline{EF} respecto a Z, que forma la línea $\overline{E'F'}$. Ahora, nótese que tenemos un triangulo $\Delta \overline{I_1EZ}$ que su reflexión está dado por $\Delta \overline{I'_1E'Z'}$ en donde sus ángulos y lados se preservan por la reflexión. $\Longrightarrow \angle \overline{I_1EZ} \cong \overline{I'_1E'Z'}$. Por la definición de ángulos internos alternos, $\overline{EF} \parallel \overline{E'F'}$.

Problema 2. Las bisectrices de cada par de líneas son perpendiculares entre sí.

Demostración. Inmediatamente por la definición de antiparalelas y bisectriz.

1. Antiparalelas: $\angle \overline{EI_1I_2} \cong \overline{EI_2I_1}$.

2. Bisectriz: $\angle \overline{I_1EZ} \cong \overline{I_2EZ}$

Entonces, tenemos un $\triangle \overline{EI_1I_2}$ isósceles y por por lo tanto las bisectrices son perpendiculares entre sí.

Problema 3. Si a y b son antiparalelas entre sí, respecto a c, d entonces c, d son antiparalelas entre sí respecto a a, b.

Demostración. Sabemos $(a,b) \not | (c,d)$. Por el problema anterior, como sabemos que las bisectrices son perpendiculares entre sí y por definición de bisectriz los ángulos que conforman la partición de (a,b) son iguales. Entonces, tenemos dos triángulos que comparten dos ángulos iguales y por lo tanto, el tercer ángulo debe ser igual en ambos triángulos. Por lo tanto, $(c,d) \not | (a,b)$.