Genome assembly Biodiversity genomics course Tena-Ecuador 2024

Raw read sequences Quality **Data inspection** evaluation Quality trimming/cleanup Choose appropriate parameter **Assembly** with set parameter set No **Assembly** OK? **Draft Assembly**

1. Sequencing of the reads

- Min. length is 500-1000 bp for long reads (e.g., PacBio, Oxford Nanopore).
- ➤ Raw read sequences is usually stored in a **FastQ** file.
- Reads must overlap by a minimum number of base pairs, or k-mers, before they can be mapped together.

3. Scaffolding (Assembling the contigs)

1. Mapping HiC data to Contigs:

This mapping process aims to:

- > Validate the contigs by confirming that the reads used to assemble them align correctly.
- ➤ Identify any errors in the contig sequences.
- > Calculate coverage depth (how many reads cover each position of the contig).

Hi-C data

- **1. Cross-linking:** To fix the DNA and preserve interactions between regions that are close together in the 3D.
- **2. Fragment:** To cut the cross-linked DNA into smaller pieces.
- **3. Proximity Ligation**: To join DNA fragments that were close together in the 3D space, capturing their interactions
- **4. Reversal of Cross-links:** To revert the cross-linking and purify the DNA.
- 5. DNA Fragmentation and Size Selection
- **6. Library Preparation:** add adapters
- 7. Sequencing

Chromosome assembly

https://pipelines.tol.sanger.ac.uk/

Where can we find genomes?

NCBI (National Center for Biotechnology Information):

https://www.ncbi.nlm.nih.gov/datasets/genome/

> ensembl

https://www.ensembl.org/index.html

> EMBL-EBI (European Molecular Biology Laboratory - European Bioinformatics Institute):

https://www.ebi.ac.uk/

ftp.ncbi.nlm.nih.gov/genomes/all/GC

FASTA Format

It is a text-based format for representing nucleotide sequences (DNA or RNA)

Description Line: Begins with a > character followed by an identifier and optional description.

Sequence Lines: The actual sequence data, typically represented over multiple lines for readability.

Assembly statistics

	GenBank		
Genome size	562.2 Mb		
Total ungapped length	562.2 Mb		
Number of contigs	203,084		
Contig N50	9.9 kb It is the median of th	It is the median of the contig lengths.	
Contig L50	14,088 It is the number of co assembly length.	ntigs (or scaffolds) that together contain at least 50% of the total	
GC percent	33.5		
Genome coverage	1.9x		
Assembly level	Contig		

Significance

N50: A higher N50 value indicates that the assembly contains longer contigs, suggesting better assembly quality and continuity.

L50: A lower L50 value indicates that fewer contigs are needed to cover 50% of the genome, suggesting higher assembly contiguity.

Quick exercise: Imagine you have contigs of the following lengths (in kb): 10, 15, 25, 30, 50, 70.

- 1. Sort the contigs in descending order
- 2. Calculate the total length
- 3. Find the N50
- 4. Find the L50

- 1. Sort the contigs in descending order: 70, 50, 30, 25, 15, 10.
- 2. Calculate the total length: 70 + 50 + 30 + 25 + 15 + 10 = 200 kb.

Find the N50:

- 50% of 200 kb is 100 kb.
- Cumulative lengths: 70 (70 kb), 70 + 50 = 120 kb (reaches 100 kb threshold).
- The contig length where we first exceed 100 kb cumulative is 50 kb.
- N50 = 50 kb.

4. Find the L50:

- Cumulative lengths: 70 (70 kb), 70 + 50 = 120 kb (reaches 100 kb threshold).
- Number of contigs used to reach this point: 2.
- L50 = 2 contigs.

References

- ➤ Jay Ghurye and Mihai Popl. 2019. Modern technologies and algorithms for scaffolding assembled genomes. Plos computational biology
- ➤ Edward S. Rice and Richard E. Green. 2018. New Approaches for Genome Assembly and Scaffolding. Annual Review of Animal Biosciences.
- > https://ucdavis-bioinformatics-training.github.io/2020-Genome_Assembly_Workshop/kmers/kmers
- https://www.youtube.com/watch?v=8w-CbyGV-pgv
- https://star-protocols.cell.com/protocols/1799
- https://training.galaxyproject.org/training-material/topics/sequence-analysis/tutorials/quality-control/tutorial.html#per-sequence-quality-scores