More Turing Machines

Sipser 3.2 (pages 148-154)

Turing machines

A Turing machine is a 7-tuple

$$(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

$$-\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R\}$$

Infinite tape

Bi-directional read/write head

Multitape Turing Machines

 Formally, we need only change the transition function to

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

Nondeterministic Turing machines

 Simply modify the transition function to satisfy:

$$\delta: Q \times \Gamma \longrightarrow P(Q \times \Gamma \times \{L,R\})$$

Enumerator

Multitape Turing Machines

 Formally, we need only change the transition function to

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

Seems more powerful, but...

 Theorem 3.13: Every multitape Turing machine has an equivalent single-tape Turing machine.

Turing-recognizable languages

 Corollary 3.15: A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.

Recognizing Composite Numbers

- Let $L = \{1^n \mid n \text{ is a composite number}\}$
- Designing a Turing machine to accept L would seem to involve factoring n
- However, if we could guess ...

Guessing

- Design a machine M that on input I^n performs the following steps:
 - 1. Nondeterministically choose two numbers p, q > 1 and transform the input into $\#1^n \#1^p \#1^q \#1$
 - 2. Multiply p by q to obtain $\#1^n \#1^{pq} \#1^{pq}$
 - 3. Checks the number of 1's before and after the middle # for equality
 - Accepts if equal, and rejects otherwise

Nondeterministic Turing machines

 Simply modify the transition function to satisfy:

$$\delta: Q \times \Gamma \longrightarrow P(Q \times \Gamma \times \{L,R\})$$

Guessing doesn't buy us anything!

 Theorem 3.16: Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Enumerator

Equivalence with Turing machines

- Theorem 3.21: A language is Turing-recognizable if and only if some enumerator enumerates it.
- Proof
 - (\Leftarrow) Suppose enumerator E enumerates
 - L. Define M = "On input w:
 - 1. Run E. Every time that E outputs a string, compare it with w.
 - 2. If w ever appears in the output of E, accept."

Equivalence with Turing machines

- Theorem 3.21: A language is Turing-recognizable if and only if some enumerator enumerates it.
- Proof
 - (⇒) Suppose TM M recognizes L. Build a lexicographic enumerator to generate the list of all possible strings $s_{p}, s_{p}, ...$ over Σ^{*} .

Define E = "Ignore input.

- 1. Repeat the following for i = 1, 2, 3, ...
- 2. Run M for i steps on each input $s_1, s_2, ..., s_i$.
- 3. If any computations accept, print out corresponding s_i ."

TMs take their own sweet time...

- Recognizers (like enumerators) may take a while to answer yes ... and even longer if the answer is no
- A TM that halts on all inputs is called a decider
- A decider that recognizes a languages is said to decide that language
- Call a language *Turing-decidable* if some Turing machine decides it

Recognizers and Deciders

- Theorem: A language is Turing-decidable if and only if both it and its complement are Turing-recognizable
- Proof:
 - (⇒) By definition and swapping accept/reject.

(\Leftarrow) Simulate, in parallel, $M_{_{I}}$ on tape 1 and $M_{_{2}}$ on tape 2.

17