## ЦИФРОВОЙ ПРОРЫВ

Разработка программного комплекса для хранения и данных геоинформационного сервиса для визуализаци в дополненной реальности

# Введение.Проблема.



- В настоящее время связи с быстрым ростом технологий AR(Argumenty Reality)/VR(Virtual Reality) многие крупные технологические компании выпускают свои решения. На 1/4 решений приходится применение технологии дополненной реальности.
- Основные сферы применения AR:
  - Применение в образовательных решениях( геймфикация в образовательных продуктах);
  - Применение в медицине (проведение сложных операций);
  - Применение в промышленном производстве (инструкции ,тренажеры);
  - Применение в строительстве(моделирование зданий)
- Проведение изыскательских работ требует большое количество ресурсов и времени.

Точность получаемых геолокациионных данных.

## Задача



- Исследовать способы создания сцены дополненной реальности с привязкой к геоинформационному сервису
- Анализ и выбор алгоритмов для визуализации и хранения 3-х мерных зданий
- Привязка геоинформационного сервиса к алгоритмам построения рельефа местности
- Провести анализ текущих решений позволяющих привязывать объекты геоинформационных систем к сцене дополненной ральности
- Провести анализ систем координат и их корреляцию
- Решить частную задачу вычисления погрешности преобразований из одной системы координат в другую
- Предложить способ уменьшения погрешности
- Предложить способ визуализации информации об объектах в интересах подготовительных работ

## Инструменты для создания дополненной реальности.



- Основные платформы для носимых мобильных устройств:
  - iOS
  - Android
- Библотеки:
  - ARKit (Apple) iOS,WebAR
  - ARCore (Google) Android, WebAR
  - AR Foundation (Unity) cross platform (iOS,Android etc)
- Языки: Objective-C/Swift iOS SDK, Java/Kotlin Android SDK, C# Unity SDK
- SDK: Mapbox, ArGis

# Алгоритмы.



- 1. Инициализация AR
- 2. Инициализация Core Location
- 3. Расчет смещения между координатами
- 4. Отображение интеркативной информации
- 5. Генерация модели рельефа и привязка к сцене дополнений реальности
- 6. Визуальный анализ влияния построении на будущее здание



## Архитектура комплекса.





# Разработка комплекса.



#### Клиентская часть:

- Мобильный клиент Swift
- Веб версия JS

### Серверная часть:

VAPOR - Swift

### Хранение данных:

PostgreSQL - Deploy Heroku CLI

### ГИС подложка:

HERE Maps SDK/API









# Прототип.

## ЦИФРОВОЙ <u>СТРАНА</u> ПРОРЫВ <u>ВОЗМОЖНОСТЕЙ</u>

## Видео прототипа:





# Экономический эффект

• Экономия на затратах при проведение работ на местности

## Этапы развития.



### Доработка MVP:

• 2 месяца

### Реализация проекта для региона:

• 5 месяцев(включает оцифровка ЦМР, нанесение зданий/сооружений)

## Пилотный запуск:

• 3 месяца

#### Стоимость:

• 2 млн.

# Масштабируемость



 Возможность генерировать на карте без необходимости выезда на местность модели застроек

# Команда.





## Спасибо за внимание!