République Tunisienne Ministère de l'Enseignement Supérieur Institut Supérieur des Etudes Technologiques de Nabeul

Support de cours

PROGRAMMATION ORIENTEE OBJETS

Niveau: Troisième niveau de la section informatique

Option: Informatique Industrielle

Réalisé par : SGHAIER Imene

Année Universitaire: 2007-2008

Table des Matières

INTROI	DUCTION A LA POO	1
0.1	Rappel: Les Types Abstraits de données	1
0.2	Exemple: concept POO	2
CONCE	EPTS DE BASE DE LA POO	4
1.1	De la programmation classique vers la programmation orientée objet	4
1.2	Définitions	
LES CO	NCEPTS ORIENTES OBJETS EN JAVA	10
2.1	Notion de Classe	10
2.2	Attributs et Méthodes	12
2.3	Objets et Instanciation	
2.4	Membres statiques et Autres mots clés (final, this, null)	22
2.6	Les packages	
3.1	L'encapsulation	29
3.2	Modificateurs de visibilité et Accès	29
3.3	Surcharge des Méthodes	33
L'HERI'	TAGE	38
4.1	Le principe de l'héritage	38
4.3	L'accès aux propriétés héritées	40
4.4	Construction et initialisation des objets dérivés	42
4.5	Dérivations successives	
4.6	Redéfinition et surcharge de membres	44
4.7	Autres mots clés «final » et « super »	47
4.8	Des conseils sur l'héritage	48
LE POL	YMORPHISME	49
5.1	Concept de polymorphisme	49
5.2	Exemples et interprétations	
5.3	Conversion des arguments effectifs	52
5.4	Les conversions explicites de références	53
CLASSE	ES ABSTRAITES ET INTERFACES	
6.1	Les classes abstraites	57
6.2	Les interfaces	60

Présentation du cours

Ce cours est conçu comme une introduction aux paradigmes de la programmation orientée objet. Il présente les notions de base de cette technologie : type abstrait de données, classe, objet, héritage simple et multiple, objet complexe. Mécanisme d'abstraction, surcharge, généricité, polymorphisme. Les concepts seront illustrés avec le langage JAVA.

Niveaux cibles:

Étudiants du niveau 3, toutes filières (Réseaux Informatique, Informatique de gestion, informatique industrielle)

Pré-requis :

Algorithmique, Structures de données, Programmation I et Programmation II

Formule pédagogique:

- + Exposé informel
- → Laboratoire

Moyens pédagogiques:

- → Tableau
- → Support de cours

Méthodologie:

- → Cours intégré
- → Travaux dirigés (réalisation et correction d'exercices)
- → Travaux pratiques (JDK 1.5 + console MS-DOS)

Volume Horaire:

- → 22.5 heures de cours
- → 45 heures de travaux pratiques

Objectifs généraux :

- → Comprendre les origines et l'intérêt d'un nouveau style de programmation orientée objet
- → Maîtriser les concepts orientés objet en termes de définitions, syntaxe Java et usage
- → Savoir utiliser cette nouvelle approche pour modéliser des problèmes
- → Faire la liaison entre les différents éléments du cours (classes, objets, encapsulation, héritage, polymorphisme, classe abstraite et les interfaces)
- Traiter la gestion des exceptions afin de permettre une production du code efficace

Objectifs généraux	Conditions de réalisation de la performance	Critères d'évaluation de la performance
1- S'initier aux concepts orientés	A partir des notes du cours, des travaux	Aucune confusion entre les
objets et leurs intérêts pratiques.	dirigés et des références	principes de la
	bibliographiques, l'étudiant doit être	programmation classique et
	capable de dégager les lacunes de	la programmation objet
	l'approche classique de programmation	
	et de distinguer les principales	
	caractéristiques de POO	
2- Comprendre les concepts	A partir des notes du cours, des travaux	Les exercices relatifs à
orientés objet en termes de	dirigés et des références	l'implémentation d'une
concept, syntaxe Java et	bibliographiques, l'étudiant doit être	classe en Java doivent être
utilisation.	capable de concevoir des classes et des	réussis
	objets en Java	
3- Comprendre l'utilité et	A partir des notes du cours, des travaux	Les exercices relatifs à l'accès
l'application des concepts	dirigés et des références	aux membres privés doivent
d'encapsulation et de surcharge.	bibliographiques, l'étudiant doit	être maîtrisés
	maîtriser les concepts d'encapsulation et	
	surcharge	
4- Comprendre la technique	A partir des notes du cours, des travaux	Aucune erreur n'est permise
d'héritage et ses intérêts	dirigés et des références	au niveau de la définition et
pratiques	bibliographiques, l'étudiant doit être	la manipulation d'une classe
	capable de concevoir et implémenter des	dérivée
	classes dérivées.	
		Α 2
5- Comprendre le concept de	A partir des notes du cours, des travaux	Aucune erreur n'est permise au niveau de la liaison entre
polymorphisme et ses intérêts	dirigés et des références	
pratiques	bibliographiques, l'étudiant doit	l'héritage et le
	comprendre l'intérêt pratique de	polymorphisme
	polymorphisme et la relation avec	
(Canana 1 1 1 1 1	l'héritage	A
6- Comprendre et distinguer	A partir des notes du cours, des travaux	Aucune confusion entre les
entre les 2 concepts de classes	dirigés et des références	2 concepts n'est permise
abstraites et interfaces	bibliographiques, l'étudiant doit	
	comprendre l'utilité pratique des classes	
	abstraites et interfaces et distinguer les	
	nuances entre ces 2 concepts	

7- Faire découvrir la notion de	A partir des notes du cours, des travaux	Les exercices relatifs à
gestion des exceptions	dirigés, l'étudiant doit comprendre	l'implémentation des
	l'utilité pratique des exceptions.	mécanismes des exceptions
		en Java doivent être réussis

Évaluation: 1 test, 1 DS et un examen final écrits.

Nature	Contenu	Pourcentage	Date
évaluation			(environ)
	Semaine 1 à 4		Semaine 1 à 4
Test	ou	10%	ou
	Semaine 8 à 15		Semaine 8 à
			15
Devoir	Semaine 1 à 8	30%	Semaine 8
surveillé			
Note TP	Semaine 2 à 14	30%	Semaine 15
Examen	Semaine 1 à 15	40%	Semaine 16

Bibliographie:

- → http://java.sun.com
- → Lemay L, Le Programmeur JAVA 2, Campus Press.
- → Bailly C, Chaline J.F., Ferry H.C & al, Les langages orientés objets, Cepadues éditions.