HCV Genome and Recombinant Proteins

FIG. 2

VTKYIMTCMSADLEVVTSTWVLVGGVLAALAAYCLSTGCVVIVGRVVLSGKPAIIPDREVLYREFDEMEEC
IDAHFLSQTKQSGENLPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEITLTHP
KPGIYRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTH
DVSVIPPIGDVVVVATDALMTGYTGDFDSVIDCNTCVTQTVDFSLDPTFTIETITLPQDAVSRTQRRGRTGRG
ATPPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGL
PNIRTGVRTITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLAT
TIMRSPVFTDNSSPPVVPQSFQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGID
LYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSAGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLE
GEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPKGPVIQMYTNVDQDLVGWPASQGTRSLTPCTCGSSD
MSPIDPMGHHHHHHGRRRASVAAGILVPRGSPGLDGICSIEEFAPITAYAQQTRGLLGCIITSLTGRDKNQVE

FIG. 3

10 PITAYA ATG GCG CCC ATC ACG GCG TAC GCC CAG CAG 20 \mathbf{T} S \mathbf{L} $\mathbf{T}^ \mathbf{G}$ G L L G C I I R ACA AGG GGC CTC CTA GGG TGC ATA ATC ACC AGC CTA ACT GGC CGG 30 V E G E V Q I V S T K N Q GAC AAA AAC CAA GTG GAG GGT GAG GTC CAG ATT GTG TCA ACT GCT 50 V C W T Q T F L A T C I N G GCC CAA ACC TTC CTG GCA ACG TGC ATC AAT GGG GTG TGC TGG ACT 70 60 G T R T I A S P K Α Y H G GTC TAC CAC GGG GCC GGA ACG AGG ACC ATC GCG TCA CCC AAG GGT 80 D L V G I O M Y T N V D Q CCT GTC ATC CAG ATG TAT ACC AAT GTA GAC CAA GAC CTT GTG GGC 100 90 G S R S L T P C C P Q TGG CCC GCT CCG CAA GGT AGC CGA TCA TTG ACA CCC TGC ACT TGC 110 D L Y L V T R H A GGC TCC TCG GAC CTT TAC CTG GTC ACG AGG CAC GCC GAT GTC ATT 130 120 D S R G S L R R G CCC GTG CGC CGG CGG GGT GAT AGC AGG GGC AGC CTG CTG TCG CCC 140 ISYLKGSS G CGG CCC ATT TCC TAC TTG AAA GGC TCC TCG GGG GGT CCG CTG TTG 160 150 AVGIFRAA v c G H TGC CCC GCG GGG CAC GCC GTG GGC ATA TTT AGG GCC GCG GTG TGC 170 F I P V E N V A K A V D R G ACC CGT GGA GTG GCT AAG GCG GTG GAC TTT ATC CCT GTG GAG AAC 190 180 R S P V F T D N M CTA GAG ACA ACC ATG AGG TCC CCG GTG TTC ACG GAT AAC TCC TCT

FIG. 4A

FIG. 4B

400 390 A Y Y R G L D V S Α V GGC ATC AAT GCC GTG GCC TAC TAC CGC GGT CTT GAC GTG TCC GTC 410 PIGDVVVV DAL Α T ATC CCG CCC ATC GGC GAT GTT GTC GTC GTG GCA ACC GAT GCC CTC 420 430 G D F D S V I D C N Y Т ATG ACC GGC TAT ACC GGC GAC TTC GAC TCG GTG ATA GAC TGC AAT 440 V T Q T V D L F D S ACG TGT GTC ACC CAG ACA GTC GAT TTC AGC CTT GAC CCT ACC TTC 460 450 TLPQDAVS \mathbf{T} E \mathbf{T} I ACC ATT GAG ACA ATC ACG CTC CCC CAA GAT GCT GTC TCC CGC ACT 470 G I Y R T G R G K P 0 R R G R CAA CGT CGG GGC AGG ACT GGC AGG GGG AAG CCA GGC ATC TAC AGA 490 480 F P R P S G M D Α G \mathbf{E} TTT GTG GCA CCG GGG GAG CGC CCC TCC GGC ATG TTC GAC TCG TCC 500 E C Y D Α G C A GTC CTC TGT GAG TGC TAT GAC GCA GGC TGT GCT TGG TAT GAG CTC 520 510 E T \mathbf{T} V R L R A ACG CCC GCC GAG ACT ACA GTT AGG CTA CGA GCG TAC ATG AAC ACC 530 PVCQD L E H CCG GGG CTT CCC GTG TGC CAG GAC CAT CTT GAA TTT TGG GAG GGC 550 540 T H I D A H F L S Q T G L GTC TTT ACA GGC CTC ACT CAT ATA GAT GCC CAC TTT CTA TCC CAG 560 L V A Y 0 S G E N L P Y ACA AAG CAG AGT GGG GAG AAC CTT CCT TAC CTG GTA GCG TAC CAA 580 570 Q A P P P S C T V W D A R A GCC ACC GTG TGC GCT AGG GCT CAA GCC CCT CCC CCA TCG TGG GAC

FIG. 4C

										GGG
								_		610 I ATC
	T ACG									
	L CTG					TGG				
	A GCT									
										670 I ATA
	R AGG									E GAG
686 C TGC				F	IG.	. 40)			

.

590

:

2

MEFA 12 Antigen Construct

FIG. 6

1	73		14	70.	v	C	**	т	10	C	D	G	D.	V	
M ATG	GCT	ACA	AAG	GCT	GTT	TGT	GTT	TTG	AAG	GGT	GAC	GGC	CCA	GTT	45 '
														30	
Q	G	I	I	20 N	F	E	Q	K	E	s	N	G	P		
CAA	GGT				TTC										90
									40						
					I										
AAG	GTG	TGG	GGA	AGC	TTA	AAA	GGA	CTG	ACT	GAA	GGC	CTG	CAT	GGA	135
				50										60	
F	Н	V	Н	E	F	G	D	N	T	A	G	C	T	S AGT	180
TTC	CAT	GTT	CAT	GAG	TTT	GGA	GAT	AAT	ACA	GCA	GGC	161	ACC	AGI	100
			•					_	70	_	~	_		a	
A GCA	G GGT	P CCT	H	F TTT	N AAT	P CCT	L CTA	S TCC	T ACG	R CGT	G GGT	TGC	N AAT	TGC	225
GCII	001	001	CIIC					100							
0	+	17	ъ	80	Н	7	TT.	C	ш	Ð	м	Δ	พ	90 K	
														AAG	270
τ.	G	S	Α	Α	R	т	т	S	100 G	F	v	S	L	F	
CTT	GGT	TCC	GCC	GCC	AGA	ACT	ACC	TCG	GGC	TTT	GTC	TCC	TTG	TTC	315
				110										120	
A	P	G	A	K	Q	N	E	Т	н	v	Т	G	G	Α	
GCC	CCA	GGT	GCC	AAA	CAA	AAC	GAA	ACT	CAC	GTC	ACG	GGA	GGC	GCA	360
									130						
A					s				s	L	F				
GCC	GCC	CGA	ACT	ACG	TCT	GGG	TTG	ACC	TCT	TTG	TTC	TCC	CCA	GGT	405

FIG. 7A

		140 I ATT					150 S TCT	450
		P CCC						495
		170 G GGC					180 A GCA	540
		K AAG					A GCA	585
		200 G GGT					210 D GAT	630
		T ACC					P CCC	675
		230 T ACC					240 C TGC	720
		Y TAT					S TCC	765
		260 S TCC					270 Q CAA	810
		G GGG					T ACC	855
		290 V GTC			N AAC	E GAG	300 V GTT	900

FIG. 7B

									310						
													A GCT		945
						G GGG							C TGT	330 H CAT	990
						E GAA							A GCA	L TTG	1035
G GGC	I ATC	N AAT	A GCC	350 V GTG	A GCC	Y TAC	Y TAC	R CGC	G GGT	L CTT	D GAC	V GTG	S TCC	360 V GTC	1080
						V GTT								L CTC	1125
													C TGC		1170
						K AAG								E GAA	1215
				410 E GAG		D GAT							Q CAG	420 H CAC	1260
						G GGG							F TTC		1305
				440 G GGC		S TCG								450 V GTT	1350
P CCA	D GAC			V GTG		Y TAT			460 Y TAC	D			E GAA	E GAG	1395

FIG. 7C

C TGC	S TCA	Q CAA	A GCT	470 A GCC	P CCA	Y TAT	I A'I'C	E GAA	Q CAA	A GCT	Q CAG	V GTA	I ATA	480 A GCT	1440
	Q CAG		K AAG									N AAT			1485
V GTG		V GTG	T ACT		D GAC					Y TAT			F TTT	510 D GAT	1530
E GAG	M ATG		E GAA	C TGC				A GCC		L CTC	I ATT	E GAG	E GAA	G GGG	1575
Q CAG		M ATG	A GCG					S TCT				G GGC	L CTC	540 L CTC	1625
G GGG	I ATA	L CTG	R CGC	R CGG	H CAC	V GTT	G GGT	P CCT	550 G GGC	E GAG			V GTG	Q CAG	1670
W TGG		N AAC		560 L CTG				A GCC				N AAC		570 V GTT	1715
S TCC			H CAC										A GCC	Q CAG	1760
A GCC	L CTG	P CCC	V GTT	590 W TGG	A GCG	R CGG	P CCG	D GAC	Y TAT	N AAC	P CCC	P CCG	L CTA	600 V GTG	1805
E GAG	T ACG	W TGG	K B AAA	K AAG	P	D GAC	Y TAC	E GAA	610 P CCA	P	V GTG			G GGC	1850
R AGA	S TCI	s TCI		620 R B AGA	F					P CCC		W TGG		630 R CGG	1895

FIG. 7D

640 Р P L V E Т K K W CCG GAC TAT AAC CCC CCG CTA GTG GAG ACG TGG AAA AAG CCC GAC 650 660 Y Р V V Н G R K Т K R Т TAC GAA CCA CCT GTG GTC CAT GGC AGA AAG ACC AAA CGT AAC ACC 670 R 0 D V K F Ρ G G G AAC CGG CGG CCG GAC GTC AAG TTC CCG GGT GGC GGT CAG ATC 680 690 Ų Y L P G P L R R R GTT GGT GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGA TTG GGT 700 R K Т S Ι K GTG CTC GCG ACG AGA AAG ACT TCC CCT ATC CCC AAG GCT CGT CGG 710 720 P R Т W Α Q P G Y CCC GAG GGC AGG ACC TGG GCT CAG CCC GGT TAC CCT TGG CCC CTC 730 Y G N K D R R s Т K S W G TAT GGC AAT AAG GAC AGA CGG TCT ACA GGT AAG TCC TGG GGT AAG 740 750 G Y Р \mathbf{T} W P R K K R N T CCA GGG TAC CCT TGG CCA AGA AAG ACC AAA CGT AAC ACC AAC CGG 760 R D V K F P G I G CGG CCG CAG GAC GTC AAG TTC CCG GGT GGC GGT CAG ATC GTT GGT 770 780 G Y L L ₽ R G P R L G \mathbf{L} R GGA GTT TAC TTG TTG CCG CGC AGG GGC CCT AGA TTG GGT GTG CTC 790 R Κ Т S P Ι P K Α R R GCG ACG AGA AAG ACT TCC CCT ATC CCC AAG GCT CGT CGG CCC GAG

FIG. 7E

810-800 WAQPGYPWPL G GGC AGG ACC TGG GCT CAG CCC GGT TAC CCT TGG CCC CTC TAT GGC 820 K G G R R S T G K S W N K D AAT AAG GAC AGA CGG TCT ACA GGT AAG TCC TGG GGT AAG CCA GGG 2480 829 Y P W P OC TAC CCT TGG CCC TAA TGAGTCGAC

FIG. 7F

FIG. 8