PyData Venice

Venerdì 19 Aprile 2024 in presenza e in streaming alle ore 19:00

#OpenCV #UseCases

Astro Pi - ESA project

Elia Ernesto Stellin Programmatore Junior @ Emme informatica Srl

Alessandra Bilardi
Data / Automation Specialist
@ Corley Cloud

Promotori di PyData Venice #15

Agenda

OpenCV
Basics of machine learning
Face recognition
Object detection
Take away

OpenCV

may

open source

with you

OpenCV History

Details	Year
First alpha version	2000
1.1 version	2008
2.2 version, first version on GitHub	2010
non-profit foundation OpenCV.org for support	2012
3.1 version, Intel acquires Itseez	2016
Kickstarter campaign for the OpenCV Al Kit	2020
4.4 version, OpenCV launched OpenCV.ai	2020

OpenCV Applications

- 2D and 3D feature toolkits
- Egomotion estimation
- Facial recognition system
- Gesture recognition
- Human-computer interaction (HCI)
- Mobile robotics
- Motion understanding
- Object detection
- Segmentation and recognition
- Stereopsis stereo vision: depth perception from 2 cameras
- Structure from motion (SFM)
- Motion video tracking
- Augmented reality

- Boosting
- Decision tree learning
- Gradient boosting trees
- Expectation-maximization algorithm
- k-nearest neighbor algorithm
- Naive Bayes classifier
- Artificial neural networks
- Random forest
- Support vector machine (SVM)
- Deep neural networks (DNN)

OpenCV Applications

- 2D and 3D feature toolkits
- Egomotion estimation
- Facial recognition system
- Gesture recognition
- Human-computer interaction (HCI)
- Mobile robotics
- Motion understanding
- Object detection
- Segmentation and recognition
- Stereopsis stereo vision: depth perception from 2 cameras
- Structure from motion (SFM)
- Motion video tracking
- Augmented reality

- Boosting
- Decision tree learning
- Gradient boosting trees
- Expectation-maximization algorithm
- k-nearest neighbor algorithm
- Naive Bayes classifier
- Artificial neural networks
- Random forest
- Support vector machine (SVM)
- Deep neural networks (DNN)

OpenCV resources

- https://opencv.org/
 - o Get Started
 - GitHub & Wiki
 - Documentation
 - Forum
 - o <u>Courses</u>
- https://www.opencv.ai/
 - consulting
- https://roboflow.com/
 - object detection
- https://developer.opencv.fr/
 - face recognition

Devices

What can OpenCV run on? What's ready?

- https://towardsdatascience.com/installing-opency-on-raspberry-pi-3-b-46ab17a9fc5a
 - https://linuxize.com/post/how-to-install-opency-on-raspberry-pi/
 - https://www.instructables.com/Face-and-Eye-Detection-With-Raspberry-Pi-Zero-and-/
 - https://github.com/ArduCAM/RPI-Pico-Cam
 - https://github.com/joachimBurket/esp32-opency
 - https://github.com/kwrazi/esp32-opencv
 - https://github.com/0015/ESP32-OpenCV-Projects
- https://how2electronics.com/esp32-cam-based-object-detection-identification-with-opency/
 - o https://github.com/arunponnusamy/cvlib
 - https://github.com/Mjrovai/OpenCV-Face-Recognition
 - https://github.com/medsriha/real-time-face-recognition

Basics of machine learning

ABC data training data save the or preparation model tuning

ABC data training prediction data save the alias or preparation model tuning inference

ABC - Face recognition

ABC - Face recognition

ABC - Face recognition

Embeddings - trainer.yml

```
%YAML:1.0
opencv_lbphfaces:
 threshold: 1.7976931348623157e+308
 radius: 1
 neighbors: 8
 grid_x: 8
 grid_y: 8
 histograms:
   - !!opency-matrix
     rows: 1
     cols: 16384
     data: [ 0., 1.56250000e-02, 0., 0., 1.56250000e-02, 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 1.56250000e-02, 0., 0.,
       0., 0., 0., 0., 0., 0., 1.56250000e-02, 0., 0., 0., 0., 0.,
       0., 0., 1.56250000e-02, 0., 0., 0., 0., 0., 0.,
       1.56250000e-02, 0., 0., 0., 1.56250000e-02, 0.,
       3.12500000e-02, 0., 0., 0., 3.12500000e-02, 0.,
```


Embeddings - haarcascade_frontalface_default.xml

```
<?xml version="1.0"?>
<opencv_storage>
<cascade type_id="opencv-cascade-classifier"><stageType>B00ST</stageType>
 <featureType>HAAR</featureType>
 <height>24</height>
  <width>24</width>
 <stageParams>
   <maxWeakCount>211</maxWeakCount></stageParams>
  <featureParams>
   <maxCatCount>0</maxCatCount></featureParams>
  <stageNum>25</stageNum>
  <stages>
      <maxWeakCount>9</maxWeakCount>
      <stageThreshold>-5.0425500869750977e+00</stageThreshold>
      <weakClassifiers>
          <internalNodes>
            0 -1 0 -3.1511999666690826e-02</internalNodes>
          <leafValues>
            2.0875380039215088e+00 -2.2172100543975830e+00</leafValues></>>
```

Object detection

Object detection

ABC - Detection

Object detection

Take away

Where does it work?

Resources	Laptop	Raspberry 3	Raspberry Zero	Raspberry Pico
software	macOS	Raspberry PI OS	Raspberry PI OS	MicroPython / C
OS storage	500GB	microSD	microSD	264KB
RAM	8GB	1GB	512MB	2MB
cv2 + numpy	112MB + 56MB	V	V	X
trainer.yml	3.3MB / user	V	V	X
haarcascade.xml	1MB	V	V	X
3x3.cascade.xml	20K	V	V	V

Is OpenCV for everyone?

Action	Difficulty
Installation of python packages cv2 + numpy	
Create embeddings for own faces - trainer.yml	
Use embeddings for face detection - haarcascade.xml	
Create embeddings for object detection - 3x3.cascade.xml	

Take away

- OpenCV Object Detection
 - also on ESP32
 - but not yet on RPI Pico
 - o by <u>dnn module</u>

- OpenCV Cascade Classifier
 - <u>haar cascade</u> for <u>FR PoC</u>
 - how to create haar cascade

Prossimo incontro

• giovedì 27 giugno ore 19:00

Proposte

