Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques

> Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4)



# Cours d'Analyse

Séries numériques Suites et Série de fonctions Séries entières

A. Bourass, A. Ghanmi, N. Madi

(FSR 2009-2010)

# Table des matières

| 1 | Sér | éries numériques fsr/smp(s4)           | 3  |
|---|-----|----------------------------------------|----|
|   | 1.1 | Définitions et premières propriétés    | 3  |
|   | 1.2 | Séries à termes positifs               |    |
|   | 1.3 | Séries alternées                       |    |
| 2 | Sui | ites et Série de fonctions FSR/SMP(S4) | 10 |
|   | 2.1 | Rappels                                | 10 |
|   | 2.2 | Suites de fonctions                    | 11 |
|   | 2.3 | Séries de fonctions                    | 14 |
| 3 | Sér | éries entières FSR / SMP(S4)           | 17 |
|   | 3.1 | Définition et permières propriétés     | 17 |
|   | 3.2 | Développement en série entière         | 18 |

# Chapitre 1

# Séries numériques

## 1.1 Définitions et premières propriétés

### Definition 1.1.

1) On appelle série à termes dans  $\mathbb{K} = (\mathbb{R} \text{ ou } \mathbb{C})$  tout couple  $((u_n)_n, (S_n)_n)$  forme d'une suite  $(u_n)$  d'éléments de  $\mathbb{K}$  et de la suite  $(S_n)$  définie par

$$S_n = \sum_{k=0}^n u_k$$

 $u_n$  est appelé le terme général de la série et  $S_n$  est la somme partielle d'ordre n. On écrira formellement  $\sum u_n$  ou lieu de  $((u_n)_n, (S_n)_n)$ .

2) La série  $\sum u_n$  converge, ou est convergente, si et seulement si  $(S_n)$  est convergente

et  $S = \lim S_n$  est appelée la somme de la série  $\sum u_n$ . On note alors  $S = \sum_{n=1}^{+\infty} u_n$ .

La série diverge (ou est divergente) si elle ne converge pas.

**Proposition 1.2** (Condition nécessaire). *Si la série*  $\sum u_n$  *converge alors*  $u_n \longrightarrow 0$  *quand*  $n \longrightarrow +\infty$ .

Preuve : Ceci résulte du fait que

$$u_n = S_n - S_{n-1} \longrightarrow S - S = 0$$

### Exemples 1.3.

où  $S_n = \sum_{k \le n} u_k$ .

1. La série  $\sum_{n>1} \frac{1}{n}$ :

Pour n assez grand, on a bien  $ln(n) \ge ln(2)$ . Alors, si on note par m la partie

entière de  $\frac{\ln n}{\ln 2}$ ,  $m = E(\frac{\ln n}{\ln 2})$ , on obtient  $m \le \frac{\ln n}{\ln 2} < m+1$  et donc  $m \ln(2) \le \ln(n)$ . En appliquant  $e^x$  qui est une fonction croissante, on voit que

$$2^{m} < n$$
.

Par suite

$$S_n = \sum_{k=1}^n \frac{1}{k} \ge \sum_{k=1}^{2^m} \frac{1}{k}.$$

Or

$$\sum_{k=1}^{2^{m}} \frac{1}{k} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \dots + \frac{1}{8}) + \dots + (\frac{1}{2^{m-1} + 1} + \dots + \frac{1}{2^{m}})$$

$$\geq 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{m-1} \frac{1}{2^{m}} = 1 + \frac{m}{2} \longrightarrow \infty$$

Par conséquent  $S_n \geq 1 + \frac{m}{2}$ . Il en résulte donc que la série  $\sum \frac{1}{n}$  diverge.

*Résultat fondamental* : La série  $\sum \frac{1}{n}$  est divergente.

# 2. Série géométrique $\sum_{n\geq 0} a^n$ :

La suite des sommes partielles est donnée par  $S_n = 1 + a + \cdots + a^n$ . Alors, on a

$$S_{n+1} = 1 + a + \dots + a^{n+1} = 1 + a(1 + \dots + a^n) = 1 + aS_n.$$

D'autre part, on a  $a^{n+1} = S_{n+1} - S_n$  et donc

$$a_{n+1} = 1 + aS_n - S_n = 1 + (a-1)S_n.$$

 $Si |a| \neq 1$  on a  $S_n = \frac{a^{n+1}-1}{a-1}$  et s'en suit alors que  $S_n$  diverge  $S_n$ 

Résultat fondamental:

La série 
$$\sum\limits_{n\geq 0}a^n$$
 converge si et seulement si  $|a|<1$  et sa somme est  $\sum\limits_{n=0}^{+\infty}\frac{1}{a-1}$ .

**Definition 1.4.** Soit  $\sum u_n$  une série convergente. On appelle reste d'ordre n de cette série la quantité  $R_n$  donnée par

$$R_n = \sum_{k=n+1}^{\infty} u_k.$$

On a alors

$$S = \sum_{k=0}^{\infty} u_k = S_n + R_n.$$

**Proposition 1.5.** Le reste d'ordre n d'une série convergente  $\sum u_n$  tend vers 0, lorsque  $n \to 0$ .

Preuve: En effet

$$R_n = \sum_{k=0}^{\infty} u_k - S_n = S - S_n \longrightarrow 0.$$

**Proposition 1.6.** Soient  $\sum u_n$  et  $\sum v_n$  deux séries convergentes. Alors  $\sum (u_n + \lambda v_n)$  converge pour tout  $\lambda \in \mathbb{R}$ .

*Preuve* : Il suffit de passer aux suites partielles.

**Proposition 1.7.** On désigne par  $\Re u_n$  (resp.  $\Im u_n$ ) la partie réele (resp. immaginaire) de  $u_n$ . Alors, on a

$$\sum u_n$$
 converge  $\Leftrightarrow$   $\left\{ \begin{array}{l} \sum \Re u_n \\ \sum \Im u_n \end{array} \right.$  converge  $\Leftrightarrow \sum \overline{u_n}$ .

**Proposition 1.8.** Soient  $\sum u_n$  et  $\sum v_n$  deux séries convergentes telles que  $u_n \leq v_n$ . Alors

$$\sum_{n=0}^{\infty} u_n \le \sum_{n=0}^{\infty} v_n$$

## 1.2 Séries à termes dans $\mathbb{R}^+$

**Lemme 1.9.** Soit  $\sum u_n$  une série à termes positifs,  $u_n \geq 0$ . Alors  $\sum u_n$  converge si et seulement si la suite des sommes partielles est majorée, c'est-à-dire  $\exists M > 0$  tel que

$$S_n = \sum_{k=0}^n u_k \le M, \forall n.$$

*Preuve* : La série  $\sum u_n$  converge si et seulement si (par définition) la suite  $(S_n)_n$  converge. Mais comme  $(S_n)_n$  est croissante, puisque  $u_n \geq 0$ , on sait que  $(S_n)_n$  converge si et seulement si elle est majorée.

**Théorème 1.10 (Critères de convergence).** Soient les deux séries  $\sum u_n$  et  $\sum v_n$ . Alors on a

- 1. Si  $0 \le u_n \le v_n$ , alors on a  $\sum v_n$  converge  $\Rightarrow \sum u_n$  converge et  $\sum u_n$  diverge  $\Rightarrow \sum v_n$  diverge.
- 2. Si  $u_n = O(v_n)$  avec  $u_n \ge 0$  et  $v_n \ge 0$ , alors  $\sum v_n$  converge  $\Rightarrow \sum u_n$  converge.
- 3. Si  $u_n \sim v_n$  pour  $n \to +\infty$  et  $v_n \ge 0$ , alors  $\sum u_n$  et  $\sum v_n$  sont de même nature
- 4. **Régle**  $n^{\alpha}u_n \to 0$ : S'il existe  $\alpha > 1$  tel que  $n^{\alpha}u_n \to 0$  alors  $\sum u_n$  converge.
- 5. **Régle de Cauchy :** Soit  $u_n \ge 0$  telle que  $\sqrt[n]{u_n} \to l$ , alors  $\sum u_n$  converge si l < 1 et diverge si l > 1.
- 6. **Régle de D'Alembert :** Soit  $u_n > 0$  telle que  $\frac{u_{n+1}}{u_n} \to l$ , alors  $\sum u_n$  converge si l < 1 et diverge si l > 1.

**Mise en garde :** Le cas l=1 dans les régles de Cauchy et D'Alembert est un casqu'il conviendrait d'étudier à part dans chaque cas.

### Exemple 1.11 (Exemple fondamental : Série de Riemann).

On considère la série  $\sum \frac{1}{n^{\alpha}}$  avec  $\alpha \in \mathbb{R}$ .

- $Si \ \alpha \leq 0 \ alors \ \sum \frac{1}{n^{\alpha}} \ diverge \ car \ \frac{1}{n^{\alpha}} \ \not\rightarrow 0.$
- $Si \alpha = 1$  alors la série  $\sum \frac{1}{n}$  diverge (voir Exemples 1.3).
- Si  $0 < \alpha < 1$ , on a bien  $\frac{1}{n} < \frac{1}{n^{\alpha}}$  est donc la série  $\sum \frac{1}{n^{\alpha}}$  diverge d'après (1) du théorème précédent.
- $Si \alpha > 1$ , alors on a

$$\frac{1}{n^{\alpha}} < \int_{n-1}^{n} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1} \left( \frac{1}{(n-1)^{\alpha - 1}} - \frac{1}{n^{\alpha - 1}} \right)$$

et donc

$$\sum_{n=1}^{N} \frac{1}{n^{\alpha}} \leq \frac{1}{\alpha - 1} \sum_{n=1}^{N} \left( \frac{1}{(n-1)^{\alpha - 1}} - \frac{1}{n^{\alpha - 1}} \right) = \frac{1}{\alpha - 1} (1 - \frac{1}{N^{\alpha - 1}}) \leq \frac{1}{\alpha - 1}.$$

Il en résulte alors que  $\sum \frac{1}{n^{\alpha}}$  converge puisque la suite  $S_N = \sum_{n=1}^N \frac{1}{n^{\alpha}}$  est majorée.

*Résultat fondamental* : La série  $\sum \frac{1}{n^{\alpha}}$ ;  $\alpha \in \mathbb{R}$ , converge si et seulement si  $\alpha > 1$ .

#### 1.2. SÉRIES À TERMES POSITIFS

7

## Exemples 1.12.

1.  $u_n = \frac{2^{2n}e^{-2n}}{n}$ .

Par la régle de D'Alembert, on a

$$\frac{u_{n+1}}{u_n} = \frac{\frac{2^{2(n+1)}e^{-2(n+1)}}{n+1}}{\frac{2^{2n}e^{-2n}}{n}} = \left(\frac{2}{e}\right)^2 \left(\frac{n}{n+1}\right) \longrightarrow \left(\frac{2}{e}\right)^2 < 1.$$

Donc  $\sum \frac{2^{2n}e^{-2n}}{n}$  est convergente. On peut utiliser aussi la régle de Cauchy.

2.  $u_n = (\frac{n}{n+1})^{n^2} = (1 + \frac{1}{n})^{-n^2}$ . Par la règle de Cauchy, on a

$$\sqrt[n]{u_n} = (1 + \frac{1}{n})^{-n} = \frac{1}{(1 + \frac{1}{n})^n} \to \frac{1}{e} < 1.$$

Alors  $\sum (\frac{n}{n+1})^{n^2}$  converge.

3. Soit  $u_n = (\frac{an}{n+1})^{n^2}$ ;  $a \in \mathbb{R}^+$ ,

Par la régle de Cauchy, on a  $\sqrt[n]{u_n} \left(\frac{a}{(1+\frac{1}{n})}\right)^n = \frac{a^n}{(1+\frac{1}{n})^n}$ 

- $\sqrt[n]{u_n} \rightarrow 0$  si a < 1
- $\sqrt[n]{u_n} \rightarrow \frac{1}{e} < 1 \text{ si } a = 1$   $\sqrt[n]{u_n} \rightarrow +\infty \text{ si } a > 1$

Par suite, la série  $\sum (u_n = (\frac{an}{n+1})^{n^2})$ ;  $a \in \mathbb{R}^+$ , converge si et seulement si  $a \leq 1$ .

4. Soit  $u_n = an \ln(1 + \frac{1}{n}) - b \cos \frac{1}{n} + c \sin \frac{1}{n}$ . On sait que

$$\ln(1 + \frac{1}{n}) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o(\frac{1}{n^3})$$

$$\cos\frac{1}{n} = 1 - \frac{1}{2n^2} + o(\frac{1}{n^2})$$

$$\sin\frac{1}{n} = \frac{1}{n} + o(\frac{1}{n^2}).$$

Il en résulte que

$$u_n = a - b + (c - \frac{a}{2})\frac{1}{n} + (\frac{a}{3} + \frac{b}{2})\frac{1}{n^2} + o(\frac{1}{n^2}).$$

- Si  $a \neq b$  alors  $u_n \longrightarrow a b \neq 0$ , et donc  $\sum u_n$  diverge. a = b et  $c \neq \frac{a}{2}$  alors  $u_n \sim \alpha \frac{1}{n}$  et donc  $\sum u_n$  diverge d'après (3) du théorème précédent (puisque  $\sum \frac{1}{n}$  diverge).
- Si a = b,  $c = -\frac{a}{2}$  et  $\frac{a}{3} + \frac{b}{2} \neq 0$ , alors  $u_n \sim \alpha \frac{1}{n^2}$ , donc  $\sum u_n$  converge.
- Si a=b,  $c=-\frac{a}{2}$  et  $\frac{a}{3}+\frac{b}{2}=0$ , alors  $u_n=o\left(\frac{1}{n^2}\right)$ , donc  $\sum u_n$  converge.
- 5.  $u_n = \int_0^{\frac{\pi}{n}} \frac{\sin x}{1+x^2} dx$ .

*Pour tout*  $x \in [0, \frac{\pi}{n}] \subset [0, \pi]$  *on a*  $\frac{1}{1+\pi^2} \leq \frac{1}{1+x^2} \leq 1$ . *D'où*,

$$\frac{\sin(x)}{1+x^2} \le \sin(x)$$

 $car \sin(x) \ge 0$  pour  $x \in [0, \pi]$ . On en déduit,

$$0 \le u_n \le \int_0^{\frac{\pi}{n}} \sin dx = 1 - \cos \frac{\pi}{n} \sim \frac{\pi^2}{n^2}.$$

*Donc*  $\sum u_n$  *converge.* 

**Definition 1.13.** La série  $\sum u_n$  est dite absolument convergente si la série à termes positifs  $\sum |u_n|$  converge.

**Proposition 1.14.** Si la série  $\sum u_n$  est absolument convergente, alors  $\sum u_n$  converge

*Preuve*: Posons 
$$S_n = \sum_{k=0}^n u_k$$
 et  $T_n = \sum_{k=0}^n |u_k|$ , on a

$$|S_{n+p}-S_n|=|u_{n+1}+\cdots+u_{n+p}|\leq |u_{n+1}|+\cdots+|u_{n+p}|=T_{n+p}-T_n.$$

Mais  $(T_n)$  converge par hypothèse, donc  $(T_n)$  est de Cauchy. Il en résulte que  $(S_n)$ est aussi de Cauchy, et donc converge.

## 1.3 Séries alternées

**Definition 1.15.** La série  $\sum u_n$  est dite alternée si et seulement si pour tout  $n \in \mathbb{N}$ , on a  $u_n = (-1)^n |u_n|$  ou  $u_n = -(-1)^n |u_n|$ .

**Théorème 1.16.** Soit  $\sum u_n$  une série alternée. Si la suite  $(|u_n|)_n$  décroit et  $|u_n| \to 0$ , alors  $\sum u_n$  converge.

*Preuve* : Supposons que  $u_n = (-1)^n |u_n|$ , on a alors

$$S_{2p+2} - S_{2p} = u_{2p+1} + u_{2p+2} = -|u_{2p+1}| + |u_{2p+2}| \le 0$$

et

$$S_{2p+3} - S_{2p+1} = u_{2p+3} + u_{2p+2} = -|u_{2p+3}| + |u_{2p+2}| \ge 0.$$

De plus

$$S_{2n+1} - S_{2n} = u_{2n+1} \to 0.$$

Ainsi, les deux suites extraites  $(S_{2p})_p$  et  $(S_{2p+1})_p$  sont adjacentes et donc  $S_{2p}$  et  $S_{2p+1}$  ont même limite. Ceci montre que  $(S_n)_n$  converge.

## Exemples 1.17.

- 1. On considère la série  $\sum \frac{(-1)^n}{n^{\alpha}}$  avec  $\alpha \in \mathbb{R}$ .
  - $Si \ \alpha \leq 0$ , alors  $\frac{(-1)^n}{n^{\alpha}} \rightarrow 0$  et donc la série diverge.
  - Si  $0 < \alpha \le 1$ , alors  $\sum \frac{(-1)^n}{n^{\alpha}}$  converge d'après le théorème précédent.
  - $Si \ \alpha > 1$ , alors  $\sum \frac{(-1)^n}{n^{\alpha}}$  converge absolument et donc  $\sum \frac{(-1)^n}{n^{\alpha}}$  converge.
- 2. Soit  $u_n = \frac{1}{n^2+1}((-1)^n n + a)$ ;  $a \in \mathbb{R}$ .

La série n'est pas absolument convergente, car  $|u_n| \sim \frac{1}{n}$  et donc  $\sum |u_n|$  ne converge pas. Pourtant, la série  $\sum u_n$  est convergente. En effet, on a

$$u_n = \frac{(-1)^n n}{n^2 + 1} + \frac{a}{n^2 + 1} = v_n + w_n$$

où  $v_n = \frac{(-1)^n n}{n^2+1}$  est une suite alternée  $\searrow_0$ . Donc d'après le théorème précédent  $\sum v_n$  converge. Comme  $\sum w_n$  est aussi convergente (car  $\frac{a}{n^2+1} \sim \frac{1}{n^2}$ ), on conclut alors que la série  $\sum u_n$  est convergente.

# Chapitre 2

## Suites et Série de fonctions

## 2.1 Rappels

Soit  $\mathbf{K} = \mathbb{R}$  ou  $\mathbb{C}$  et  $A \subset \mathbb{R}$ . On note par  $\mathfrak{F}(A, \mathbf{K})$  l'espace vectoriel sur  $\mathbf{K}$  des fonctions de A dans  $\mathbf{K}$ ,  $\mathfrak{F}(A, \mathbf{K}) = \{f : A \to \mathbf{K}\}$ . On dit que  $f \in \mathfrak{F}(A, \mathbf{K})$  est bornée si et seulement s'il existe une constante M > 0 tel que

$$|f(x)| \le M, \forall x \in A.$$

On note par  $\mathfrak{B}(A, \mathbf{K})$  le sous espace vectoriel de  $\mathfrak{F}(A, \mathbf{K})$  constitué des fonctions bornées,

$$\mathfrak{B}(A,\mathbf{K})=\left\{f\in\mathfrak{F}(A,\mathbf{K}),fborne\right\}.$$

Par  $\mathfrak{C}(A, \mathbf{K})$  on désigne l'ensemble des fonctions continues de A dans  $\mathbf{K}$ . C'est un sous espace vectoriel de  $\mathfrak{F}(A, \mathbf{K})$ . Enfin, on définit la norme

$$||f||_{\infty} = \sup_{x \in A} |f(x)|.$$

**Théorème 2.1.** Soit A = I = [a,b] avec  $a,b \in \mathbb{R}$  et a < b. Alors, toute fonction continue sur [a,b] est bornée. De plus, il existe  $x_1,x_2 \in [a,b]$  tels que  $\inf_{x \in [a,b]} f(x) =$ 

$$f(x_1)$$
 et  $\sup_{x \in [a,b]} f(x) = f(x_2),$ 

$$f(x_1) \le f(x) \le f(x_2) \forall x \in [a, b].$$

**Théorème 2.2** (T.A.F). *Soit*  $f \in \mathfrak{C}(A, \mathbf{K})$  *une fonction dérivable. On suppose de plus que*  $|f'(x)| \leq M$ ,  $\forall x \in A$ . *Alors, on a* 

$$|f(x)-f(y)| \le M|x-y|, \quad \forall x,y \in A.$$

## 2.2 Suites de fonctions

#### Definition 2.3.

- 1. On dit que la suite de fonctions  $(f_n)_n$  converge simplement sur A vers la fonction f si pour tout  $x \in A$ , la suite numérique  $(f_n(x))_n$  converge vers f(x).
- 2. On dit que  $(f_n)_n$  converge uniformément sur A vers f et on écrit  $f_n \stackrel{unif.}{\longrightarrow} si$   $\sup_{x \in A} |f_n(x) f(x)|$  converge vers f0. Cela signifie que la suite numérique  $(\|f_n f\|_{\infty})_n$  converge vers f0.

**Propriété 2.4.** Si  $f_n \xrightarrow{unif.} f$ , alors  $f_n \to f$  simplement.

**Remarque pratique :** Pour montrer que  $f_n \stackrel{unif.}{\longrightarrow} f$ , on étudie  $|f_n(x) - f(x)|$ . On essaie de majorer  $|(f_n(x)) - f(x)|$  par une quantité  $u_n$  indépendante de x telle que  $u_n \longrightarrow 0$ .

## Exemples 2.5.

1. Soit  $(f_n(x)) = \frac{nx^3}{1+nx^2}$ .

Pour x = 0 on a  $f_n(0) \longrightarrow 0$ .

 $Si \ x \neq 0 \ on \ a \ f_n(x) \longrightarrow x.$ 

Alors, la suite de fonctions  $(f_n)_n$  converge simplement sur  $\mathbb{R}$  vers la foncion f(x) = x. De plus, on a

$$|f_n(x) - f(x)| = \frac{|x|}{1 + nx^2} \le |x|.$$

- $Si |x| \leq \frac{1}{\sqrt{n}}$ ,  $alors |f_n(x) f(x)| \leq \frac{1}{\sqrt{n}}$ .
- Du fait que  $\frac{nx^2}{1+nx^2} \le 1$  on déduit que  $\frac{n|x|}{1+nx^2} \le \frac{1}{n|x|}$ . Il s'ensuit alors que si  $|x| \ge \frac{1}{\sqrt{n}}$  on a

$$|f_n(x) - f(x)| = \frac{|x|}{1 + nx^2} \le \frac{1}{n|x|} \le \frac{1}{\sqrt{n}}.$$

Par suite

$$\sup_{x\in\mathbb{R}}|f_n(x)-f(x)|\leq \frac{1}{\sqrt{n}}\longrightarrow 0.$$

Alors, la suite de fonctions  $(f_n)_n$  converge aussi uniformement sur  $\mathbb{R}$  vers la fonction f(x) = x.

2. On considère la suite de fonctions  $f_n(x) = \ln(1 + \frac{x}{n})$ . Il est claire que cette suite converge simplement vers 0 sur  $\mathbb{R}^+$  car

$$f_n(x) \sim \frac{x}{n}$$
 quand  $n \longrightarrow +\infty$ .

Mais, elle ne converge pas uniformement sur  $\mathbb{R}^+$ . En effet, pour tout  $n \in \mathbb{N}^*$  fixé, on a

$$\sup_{x\in\mathbb{R}^+}|f_n(x)-0|=\sup_{x\in\mathbb{R}^+}|f_n(x)|=+\infty.$$

Toutefois, elle converge uniformement vers 0 sur tout intervalle [0,a] fermé borné de  $\mathbb{R}^+$ ; en effet pour tout  $x \in [0,a]$ , on  $a \mid f_n(x) \mid \leq \ln(1+\frac{a}{n})$  et donc

$$\sup_{x\in[0,a]}|f_n(x)|\leq \ln(1+\frac{a}{n})\stackrel{n\to\infty}{\longrightarrow}0.$$

**Théorème 2.6.** Soit  $f_n: I \to \mathbb{R}$  avec I = [a, b]. On suppose que  $f_n \longrightarrow f$  uniformement sur I.

- 1. Si les  $f_n$  sont continues sur I, il en est de même de f.
- 2. Si les  $f_n$  sont intégrables alors f est intégrable et

$$\lim_{n} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx.$$

3. On définit  $F_n(x) = \int_a^x f_n(t)dt$  et  $F(x) = \int_a^x f(t)dt$ . Alors

$$F_n \xrightarrow{unif.} F$$
 sur  $[a, b]$ .

Preuve: On a

$$|F_n(x) - F(x)| = |\int_a^x (f_n(t) - f(t))dt|$$

$$\leq \int_a^x |f_n(t) - f(t)|dt$$

$$\leq ||f_n - f||_{\infty} |x - a|$$

Par suite

$$|F_n(x) - F(x)| \le |b - a|||f_n - f|| \longrightarrow 0.$$

Remarque et Exemple 2.7. On considère la suite des fonctions

$$f_n(x) = \begin{cases} \frac{1}{n} & si \ x \in [0, n] \\ 0 & sinon \end{cases}$$

On a bien

$$f_n \stackrel{unif.}{\longrightarrow} 0$$

mais

$$\int_0^{+\infty} f_n(t)dt = 1 \to 0.$$

**Théorème 2.8.** Le théorème précédent n'est plus vrai si I n'est pas un intervalle fermé borné. Soit  $f_n : [a,b] \longrightarrow \mathbb{R}$  une suite de fonctions vérfiant

- *i)* Il existe  $\alpha \in [a,b]$  tel que  $f_n(\alpha) \stackrel{n \to +\infty}{\longrightarrow} l \in \mathbb{R}$
- ii)  $f'_n \stackrel{unif.}{\longrightarrow} g$ .

Alors  $(f_n)_n$  converge uniformement vers une fonction f qui est la primitive de g prenant la valeur l au point  $\alpha$ , et on a f' = g.

*Preuve* : Pour tout *x* fixé, on a

$$f_n(x) = f_n(\alpha) + \int_{\alpha}^{x} f'_n(t)dt.$$

Alors, par passage à la limite on obtient

$$\lim_{n} f_n(x) = l + \int_{\alpha}^{x} g(t)dt.$$

Si on pose  $f(x) = l + \int_{\alpha}^{x} g(t)dt$ , alors  $||f_n - f||_{\infty} \xrightarrow{n \to +\infty} 0$  d'après le théorème précédent. En effet, posons

$$F_n(x) = \int_{\alpha}^{x} f'_n(t)dt = f_n(x) - f_n(\alpha)$$

et  $F(x) = \int_{\alpha}^{x} g(t)dt$ . On a donc d'après le théorème précédent  $F_n \longrightarrow F$  uniformément sur [a,b]. C'est à dire puisque  $f_n(\alpha) \longrightarrow l$ :

$$f_n(x) \longrightarrow l + \int_{\alpha}^{x} g(t)dt = f(x),$$

où f est la primitive de g qui prend la valeur l au point  $x = \alpha$ .

## 2.3 Séries de fonctions

### Definition 2.9.

14

- 1. On appelle série de fonctions un couple de deux suites  $(f_n)_n$  et  $(S_n)_n$  avec  $S_n = \sum_{k \le n} f_k$ , on la note  $\sum f_n$ .
- 2.  $\sum f_n$  converge simplement sur A si la suite  $(S_n)_n$  converge simplement sur A, c'est-à-dire si et seulement si pour tout  $x \in A$  la série numérique  $\sum f_n(x)$  converge. La fonction  $x \longmapsto \sum_{k \geq n} f_k(x)$  est appelée reste de la série  $\sum f_n$ .

On note par  $\sum_{n=0}^{+\infty} f_n$  la somme de la série  $\sum f_n$ , i.e. la fonction f définie par

$$\left(\sum_{n=0}^{+\infty} f_n\right)(x) = \sum_{n=0}^{+\infty} f_n(x).$$

3. La série  $\sum f_n$  converge uniformement sur A si et seulement si la suite de fonctions  $(S_n)_n$  converge uniformement sur A: Autrement dit s'il existe une fonction S:  $A \to \mathbb{R}$  telle que

$$\sup_{x\in A}|s_n(x)-s(x)|\longrightarrow_n 0.$$

- 4. La série  $\sum f_n$  converge absolument sur A si la série  $\sum |f_n|$  converge simplement sur A.
- 5. On dit que la série de fonctions  $\sum f_n$  converge normalement sur A si et seulement si la série  $\sum ||f_n||_{\infty}$  converge dans  $\mathbb{R}^+$ , avec

$$||f||_{\infty} \sup_{x \in A} |f_n(x)|.$$

#### Théorème 2.10.

- 1. Si la série  $\sum f_n$  converge normalement, alors  $\sum f_n$  converge uniformément, et donc  $\sum f_n$  converge simplement.
- 2. La série  $\sum f_n$  converge normalement si et seulement s'il existe une série  $\sum u_n$  à termes positifs et convergente telle que

$$|f_n(x)| \leq u_n, \quad \forall x, \ \forall n.$$

### Exemples 2.11.

1. Soit  $f_n(x) = \sin \frac{nx}{n!}$ . On a

$$|f_n(x)| \le \frac{1}{n!}.$$

*La sa série numérique*  $\sum \frac{1}{n!}$  *converge. Alors*  $\sum f_n$  *converge normalement d'après 2) du théorème précédent.* 

2. Soit  $f_n(x) = nx^2e^{-x\sqrt{n}}$  sur  $\mathbb{R}^+$ . La série  $\sum f_n$  converge simplement mais pas normalement sur  $\mathbb{R}^+$ . En effet, pour tout n fixé, on a

$$f_n'(x) = nx(2 - x\sqrt{n})e^{-x\sqrt{n}}.$$

Le tableau de variation de la fonction  $f_n(x)$  montre que

$$||f_n||_{\infty} = f_n(\frac{2}{\sqrt{n}}) = \frac{4}{e^2}.$$

Par suite la série numérique  $||f_n||_{\infty}$  diverge et donc  $\sum f_n$  ne converge pas normalement sur  $\mathbb{R}^+$ .

ullet Pourtant, pour un réel a>0 et un entier  $N\geq 0$  tel que  $rac{2}{\sqrt{N}}< a$ , on a bien

$$\sup_{x>a} |f_n(x)| = f_n(a) = na^2 e^{-a\sqrt{n}}$$

et donc on a la convergence normale de la série  $\sum f_n$  sur tout  $[a, +\infty[$ ; a > 0.

• Notons aussi que comme  $||f_n||_{\infty} = \frac{4}{e^2} \rightarrow 0$  alors la série  $\sum f_n$  ne converge pas uniformément sur  $\mathbb{R}^+ = [0, +\infty[$ . Mais, elle converge uniformément sur tout  $[a, +\infty[$ ; a > 0.

**Théorème 2.12.** Soit  $\sum f_n$  une série de fonctions définies sur I = [a, b]. On suppose que  $\sum f_n$  converge uniformément sur [a, b] et que les  $f_n$  sont continues. Alors

- *i)* La fonction  $f = \sum f_n$  est continue.
- ii) La série  $\sum (\int_a^b f_n(t)dt)$  converge et on a

$$\int_{a}^{b} (\sum f_n(x)) dx = \sum (\int_{a}^{b} f_n(x) dx).$$

**Théorème 2.13.** Soit  $f_n$  une suite de fonctions de classe  $C^1$  vérifiant

i)  $\sum f_n$  converge simplement

ii)  $\sum f'_n$  converge uniformément.

Alors, on a

- a.  $\sum f_n$  converge uniformément. b.  $f = \sum f_n$  est de classe  $C^1$ . c.  $f' = (\sum f_n)' = \sum f'_n$ .

# **Chapitre 3**

## Série entières

## 3.1 Définition et première propriétés

**Definition 3.1.** Une série entière est une série de fonctions  $f_n$  où  $f_n(z) = a_n z^n$ , autrement dit ce sont les séries de la forme

$$\sum a_n z^n$$
,  $a_n \in \mathbb{C}$ .

**Lemme 3.2 (d'Abel).** S'il existe  $\rho \in \mathbb{C}$  tel que  $\sum |a_n \rho^n|$  converge, alors pour tout  $z \in \mathbb{C}$  tel que  $|z| \leq |\rho|$ , la série  $\sum a_n z^n$  est absolument convergente.

**Definition 3.3 (théorème).** Soit  $\sum a_n z^n$  une série entière. Alors, il existe  $R \in [0, +\infty]$  tel que

- *i)* Si  $z \in \mathbb{C}$  tel que |z| < R, alors  $\sum a_n z^n$  converge.
- ii) Si  $z \in \mathbb{C}$  tel que |z| > R, alors  $\sum a_n z^n$  diverge.

R est appelé rayon de convergence de la série entière  $\sum a_n z^n$ .

## Exemple 3.4.

- La série  $\sum z^n$  est de rayon de convergence R=1, et elle diverge pour tout  $z\in\mathbb{C}$  tel que |z|=1.
- La série  $\sum \frac{z^n}{n^2}$  est de rayon de convergence R=1, et converge pour tout  $z\in\mathbb{C}$  tel que |z|=1.

**Proposition 3.5 (Règle de D'Alembert).** Si  $\lim \left| \frac{a_{n+1}}{a_n} \right| = l \in [0, +\infty]$ , alors le rayon de convergence de la série entière  $\sum a_n z^n$  est

$$R = \frac{1}{I}$$

avec les conventions  $\frac{1}{0} = +\infty$  et  $\frac{1}{+\infty} = 0$ .

**Proposition 3.6.** Soit la série entière  $\sum a_n x^n$ . Alors la série entière dérivée  $\sum_{n\geq 1} na_n x^{n-1}$  a le même rayon de convergence que la série  $\sum a_n x^n$ .

### Théorème 3.7.

- 1.  $\sum a_n x^n$  converge normalement sur tout intervalle fermé borné contenu dans  $]-R,R[=I_R$
- 2. La fonction  $S(x) = \sum a_n x^n$  est continue sur  $I_R$
- 3. S(x) est de classe  $C^{\infty}$  sur  $I_R$  et on a pour tout  $k \in \mathbb{N}$ ,

$$S^{(k)}(x) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k}.$$

## 3.2 Développement en série entière

**Definition 3.8.** On dit qu'une fonction f est développable en série entière s'il existe une série entière  $\sum a_n x^n$  de rayon de convergence R tel que

$$f(x) = \sum a_n x^n, \quad x \in I \subset ]-R, R[,$$

et on a f est de classe  $C^{\infty}$  sur I et

$$a_n = \frac{f^n(0)}{n!}.$$

**Proposition 3.9.** Si f est développable en série entière avec  $f(x) = \sum a_n x^n$ , alors

- *i)* Si f est pair, alors  $a_{2p+1} = 0$ .
- ii) Si f est impair, alors  $a_{2p} = 0$ .

**Proposition 3.10.** Soit f: I = ]-a,  $a[\longrightarrow \mathbb{C}$  une fonction de classe  $C^{\infty}$ . Alors f est développable en série entière, (DES(0)), si et seulement s'il existe  $\alpha$  tel que  $0 < \alpha \le a$  et des constantes A > 0 et B > 0 vérifiant

$$\forall x, -\alpha < x < \alpha, \text{ on } a \qquad |f^n(x)| \leq B.A^n n!.$$

**Proposition 3.11.** Soit  $f: I = ]-\alpha, \alpha[ \longrightarrow \mathbb{R}$  une fonction de classe  $C^{\infty}$  de formule de Taylor avc reste intégral

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Alors f est développable en série entière si et seulement s'il existe  $\beta$ ;  $0 < \beta < \alpha$  tel que

$$R_n(f)(x) := f(x) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k \longrightarrow 0, \quad \forall x \in ]-\beta, \beta[.$$

*Preuve* : Il est clair que si f est développable en série entière alors  $R_n(f)(x) \longrightarrow 0$  sur ]-R, +R[. Réciproquement, si  $R_n(f)(x) \longrightarrow 0$  sur  $]-\beta$ ,  $\beta[$ , alors

$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} = f(x) - R_n(f)(x) \longrightarrow f(x).$$

De plus la série  $\sum\limits_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$  est de rayon de convergence  $R \geq \beta > 0$ .

### Exemples 3.12.

1. Soit 
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
.

On a

$$e^{x} = \sum_{0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{t} dt.$$

Alors

$$\left| \int_0^x \frac{(x-t)^n}{n!} e^t dt \right| \le \max(1, e^x) \left| \int_0^x \frac{(x-t)^n}{n!} dt \right|$$

$$= \max(1, e^x) \left| \int_x^0 \frac{(u)^n}{n!} du \right|$$

$$= \max(1, e^x) \frac{|x|^{n+1}}{(n+1)!}$$

Il en résulte que pour tout  $x \in \mathbb{R}$  on a

$$\left| \int_0^x \frac{(x-t)^n}{n!} e^t dt \right| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Par suite, pour tout  $x \in \mathbb{R}$  on a

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(x) - R_n(f)(x) \stackrel{n \to \infty}{\longrightarrow} f(x).$$

Enfin,  $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$  est de rayon de convergence égale à  $+\infty$ .

$$2. \ \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k.$$

3. *Soit*  $f(x) = \cos(x)$ .

$$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^{k} x^{(2k)}}{(2k)!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} \cos(t) dt$$
$$= \left| \int_{0}^{x} \frac{(x-t)^{n}}{n!} \cos(t) dt \right| \le \left| \int_{0}^{x} \frac{u^{n}}{n!} du \right| = \frac{|x^{n+1}|}{(n+1)!}$$

4. 
$$\ln(1-x) = \sum_{n=0}^{\infty} \frac{x^n}{n}$$
.

**Propriété 3.13 (Opérations).** Soient f et g deux fonctions DES(0) avec  $f(x) = \sum a_n x^n$  et  $g(x) = \sum b_n x^n$ . Alors

- i) f + g est DES(0) et on a  $f + g = \sum (a_n + b_n)x^n$ .
- ii)  $f \times g$  est DES(0) et on a  $f \times g = \sum c_n x^n$  avec

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

- iii) f' est DES(0) et on a  $f' = \sum_{n=1}^{\infty} na_n x^{n-1}$ .
- iv)  $f^{(k)}$  est DSE(0).
- v) Les primitives de f sont aussi DES(0).