

Prototipagem e Montagem de Placa de Circuito Impresso

Aula 10 - Prático nº 07 - Processo de Teste e Programação

Material Didático do Instituto Metrópole Digital - IMD Versão 5.3 - Todos os Direitos reservados

Apresentação

Na aula anterior você aprendeu como envernizar a placa e soldar os componentes nela. Nesta aula aprenderemos a testá-la e programá-la, ou melhor, testar as soldas realizadas na placa e programar o microcontrolador que faz parte da placa, respectivamente.

Vídeo 01 - Apresentação

Objetivos

Esta aula tem como objetivos ensinar você a:

- Testar os pontos de solda realizados na placa, verificando se existe algum curto-circuito nela; e
- Programar o microcontrolador que faz parte do nosso projeto.

Teste da placa

Neste curso, quando falamos em teste da placa estamos falando em testar as soldagens que foram realizadas para fixar os componentes nela. No vídeo apresentado a seguir vamos verificar que o principal instrumento para se fazer esse teste é por meio do multímetro, em que um curto-circuito pode ser detectado ao se medir uma resistência nula entre uma trilha que deveria estar isolada e a malha de terra do circuito. Alguns multímetros emitem um alarme sonoro diante dessa condição (teste de continuidade). Caso o multímetro que você esteja usando não tenha essa função, basta configurá-lo para medir valores de resistência.

Vídeo 02 - Processo de Teste e Programação - pt.1

Remoção de erros de soldagem

Já que você observou como detectar um curto-circuito na placa, que é o principal tipo de erro de soldagem o qual poderá levar ao mau funcionamento da placa, agora é a hora de aprender a removê-los.

Vídeo 03 - Processo de Teste e Programação - pt.2

Outra forma de remover o curto-circuito da placa é retirando a solda que provoca o problema. E como fazer isso? Utilizando um sugador de solda. O primeiro passo é aproximar a ponteira de solda do ponto com curto-circuito, fazendo com que o estanho fique derretido. Depois, sem afastar o ferro de solda ou ponteira de solda aproxime o sugador de solda da solda derretida, acione a válvula de

solad, aproxime o sagador de solad da solad derrecida, acione a valvala de

acionamento para baixo e depois o botão de acionamento que fica na lateral do sugador. Por último, afaste o ferro de solda e o sugador. Você verificará que a solda será removida, senão por completo, pelo menos o excedente que provoca o curto. A imagem da Figura 1 ilustra o passo a passo que foi descrito.

3- Pressione para baixo
a válvula
de acionamento

2- Aproxime o sugador
da solda derretida

1- Derreta a solda estanho
com o ferro de solda

4- Acione o botão lateral

5- Retire o sugador
e o ferro
de sobre a placa

Figura 01 - Passos para utilização do sugador de solda.

Pesquise mais sobre métodos para remoção de curtos-circuitos em PCBs na internet.

Programar microcontrolador da placa

Após verificar a inexistência de erros na placa, para o nosso caso em que o circuito projetado tem nele um microcontrolador, devemos, então, programá-lo. Senão, poderíamos dar por encerrado o processo de construção do protótipo utilizando uma PCB. O vídeo a seguir explica como realizar a programação do microcontrolador na placa.

Vídeo 04 - Processo de Teste e Programação - pt.4

Lembre que no nosso projeto foi inserido um DIP switch de 4 entradas para efeitos de teste, por exemplo: modifique o código do microcontrolador para que "as luzes amarelas" do sinal fiquem piscando quando a palavra do DIP switch for '0010', simulando, dessa forma, que o sinal está quebrado ou que os semáforos mantêm

esse 'status' das 23h às 05h; crie outra condição no código fazendo com que o sinal fique desligado quando a palavra do DIP switch estiver em '0001'. Use a criatividade para inventar outras estratégias. Compile o código e grave o código HEX gerado conforme você aprendeu no vídeo, tantas vezes quanto precisar.

RESUMO

A etapa de um processo de prototipagem de uma PCB foi apresentada nesta aula: etapa de teste da placa. Após as etapas de projeto da placa, fabricação, limpeza, aplicação de máscara de proteção e soldagem, a placa de circuito impresso estará finalizada. Contudo, uma última etapa essencial é a realização de testes do circuito, principalmente, o teste de continuidade das trilhas do circuito. O uso de equipamentos de medição, como multímetro, é essencial nesses testes da PCB. Por fim, como o projeto desenvolvido nesta disciplina conta com um microcontrolador, esta aula também apresentou a etapa de gravação e testes de funcionalidades da placa.

Agora você já entender todas as etapas de **Projeto de uma Placa de Circuito Impresso**, desde a etapa de esquemático do circuito até o teste do protótipo. Parabéns!