Carga de datos

In [237]:	import import %matpl import	numpy as np pandas as pd csv otlib inline matplotlib.pyplot as pandas.plotting import		_matplotli	b_converters						
In [170]:	df = p df	d.read_csv('./estacion	es_bici.	sv', deli	miter=';', encoding	="utf-8")	#Arci	nivo c	argad	o en df
Out[170]:		_id	available	connected	download_date	estation	free	open	ticket	total	updated
	0	5c6050a42554172704fccdc0	9	1	2019-02-10 17:25:37.787	64	11	1	0	20	2019-02-10 17:21:13.000
	1	5c6050a42554172704fccdc1	6	1	2019-02-10 17:25:37.787	73	14	1	1	20	2019-02-10 17:24:13.000
	2	5c605be225541729b7d50885	20	1	2019-02-10 18:13:39.827	63	0	1	1	20	2019-02-10 18:09:16.000
	3	5c605be225541729b7d50886	6	1	2019-02-10 18:13:39.827	64	14	1	0	20	2019-02-10 18:12:15.000
	4	5c605be225541729b7d50887	9	1	2019-02-10 18:13:39.827	65	10	1	1	19	2019-02-10 18:09:16.000
	27542	5c61face25541729b7d57419	0	1	2019-02-11 23:44:00.786	260	20	1	0	20	2019-02-11 23:42:16.000
	27543	5c61face25541729b7d5741a	15	1	2019-02-11 23:44:00.786	261	4	1	0	19	2019-02-11 23:39:16.000
	27544	5c61face25541729b7d5741b	1	1	2019-02-11 23:44:00.786	268	9	1	1	10	2019-02-11 23:42:16.000
	27545	5c61face25541729b7d5741c	1	1	2019-02-11 23:44:00.786	269	14	1	0	15	2019-02-11 23:39:16.000
	27546	5c61face25541729b7d5741d	8	1	2019-02-11 23:44:00.786	276	12	1	1	20	2019-02-11 23:42:16.000
	27547 r	ows × 10 columns									

Cargamos el archivo al dataframe "df" el cual usaremos a lo largo del documento, se utiliza la librería panda para hacer la conversión del archivo en formato csv a dataframe.

	4										
[172]:		ID	Disponible	Conectado	Fecha Descarga	Estacion	Libre	Abierto	Tiquete	Total	Actualizado
	0	5c6050a42554172704fccdc0	9	1	2019-02-10 17:25:37.787	64	11	1	0	20	2019-02-10 17:21:13.000
	1	5c6050a42554172704fccdc1	6	1	2019-02-10 17:25:37.787	73	14	1	1	20	2019-02-10 17:24:13.000
	2	5c605be225541729b7d50885	20	1	2019-02-10 18:13:39.827	63	0	1	1	20	2019-02-10 18:09:16.000
	3	5c605be225541729b7d50886	6	1	2019-02-10 18:13:39.827	64	14	1	0	20	2019-02-10 18:12:15.000
	4	5c605be225541729b7d50887	9	1	2019-02-10 18:13:39.827	65	10	1	1	19	2019-02-10 18:09:16.000
	27542	5c61face25541729b7d57419	0	1	2019-02-11 23:44:00.786	260	20	1	0	20	2019-02-11 23:42:16.000
	27543	5c61face25541729b7d5741a	15	1	2019-02-11 23:44:00.786	261	4	1	0	19	2019-02-11 23:39:16.000
	27544	5c61face25541729b7d5741b	1	1	2019-02-11 23:44:00.786	268	9	1	1	10	2019-02-11 23:42:16.000
	27545	5c61face25541729b7d5741c	1	1	2019-02-11 23:44:00.786	269	14	1	0	15	2019-02-11 23:39:16.000
	27546	5c61face25541729b7d5741d	8	1	2019-02-11 23:44:00.786	276	12	1	1	20	2019-02-11 23:42:16.000

En mi caso cambie los nombres de las columnas para hacer mas entendible el manejo de los datos, viendo los datos podemos quitar el ID y la Fecha de Descarga y quedarnos solamente con Disponible, Conectado, Estación, Libre, Abierto, Tiquete, Total y Actualizado.

Fecha de Entrega: 29 de marzo 2020

Alexander Basulto Arzola

Obtención de número de estaciones con total de 30

Para encontrar las estaciones que tienen una capacidad Total de 30, realizamos un filtro de la columna Total del dataframe y lo guardamos en una variable que nos va indicar cual fila cumple (True y cual no (False con el criterio de filtrado, luego simplemente lo mostramos o podemos usar la función "len", esto nos da el resultado de 1098 Estaciones con una capacidad de 30

173]:		ID	Disponible	Conectado	Fecha Descarga	Estacion	Libre	Abierto	Tiquete	Total	Actualizado
	29	5c605be225541729b7d508a0	30	1	2019-02-10 18:13:39.827	101	0	1	1	30	2019-02-10 18:09:16.000
	34	5c605be225541729b7d508a5	19	1	2019-02-10 18:13:39.827	117	11	1	1	30	2019-02-10 18:12:15.000
	82	5c605be225541729b7d508d5	7	1	2019-02-10 18:13:39.827	89	23	1	0	30	2019-02-10 18:12:15.000
	86	5c605be225541729b7d508d9	11	1	2019-02-10 18:13:39.827	105	19	1	0	30	2019-02-10 18:12:15.000
	113	5c605be225541729b7d508f4	21	1	2019-02-10 18:13:39.827	143	8	1	1	30	2019-02-10 18:09:16.000
	27417	5c61face25541729b7d5739c	0	1	2019-02-11 23:44:00.786	111	30	1	0	30	2019-02-11 23:39:16.000
	27419	5c61face25541729b7d5739e	0	1	2019-02-11 23:44:00.786	114	30	1	0	30	2019-02-11 23:39:16.000
	27460	5c61face25541729b7d573c7	9	1	2019-02-11 23:44:00.786	189	21	1	1	30	2019-02-11 23:39:16.000
	27490	5c61face25541729b7d573e5	1	1	2019-02-11 23:44:00.786	226	29	1	0	30	2019-02-11 23:39:16.000
	27510	5c61face25541729b7d573f9	0	1	2019-02-11 23:44:00.786	246	20	1	0	30	2019-02-11 23:39:16.000

Out[358]: 1098

Número de estación con la media más alta de bicis disponibles

Para encontrar la estación con la media mas alta disponible, tenemos primero que analizar el dataframe, viéndolo rápidamente notamos que hay alrededor de 100 filas por cada estación distribuido en todo el dataframe, por lo cual primero debemos agrupar el Dataframe por Estacion y luego realizar el cálculo de la media en la columna de "Disponible", para eso usamos la función "groupby" y "aggregate".

```
In [359]: estacion_grupo = df.groupby('Estacion').aggregate({'Disponible':['mean', 'count']})
          estacion_grupo
Out[359]:
                    Disponible
                    mean
                             count
           Estacion
                 1 12.040000
                 2 2.070000
                 3 3.300000
                              100
                 4 3.100000
                              100
                 5 8.730000
                              100
               272 13.444444
               273 6.242424
               274 4 989899
               275 16.222222
               276 15.323232
          276 rows x 2 columns
In [360]: solo_media = estacion_grupo.iloc[:, 0]
In [361]: media = solo_media.sort_values(0, ascending=False) #La estacion con la media mas alta de bicis Disponible es la #50
In [367]: media alta = media.iloc[0:1]
          media alta
Out[367]: Estacion
          Name: (Disponible, mean), dtype: float64
```

Una ves que tenemos el DataFrame con el número de estación y la media calculada para cada una, simplemente tenemos que usar la función "sort" con el operando "ascending=False" para que nos organice los datos de mayor a menor y luego con la función "iloc" escogemos la fila 1 que va ser el que tiene la media mas alta de Disponible y luego solo imprimimos el valor para saber cual es, que en este caso es la Estación 50 con una media de 31.26.

Alexander Basulto Arzola

Realizar el histograma de la estación de bicis disponibles de la Estación 50

Lo primero es extraer del dataframe principal, los datos de la Estación 50, para luego trabajar sobre ellos únicamente.

	estati	.on_50									
210]:		ID	Disponible	Conectado	Fecha Descarga	Estacion	Libre	Abierto	Tiquete	Total	Actualizado
	74	5c605be225541729b7d508cd	39	1	2019-02-10 18:13:39.827	50	1	1	1	40	2019-02-10 18:12:15.000
	350	5c605f8625541729b7d509e1	36	1	2019-02-10 18:29:13.135	50	4	1	1	40	2019-02-10 18:24:14.000
	625	5c60632925541729b7d50af4	33	1	2019-02-10 18:44:43.728	50	7	1	1	40	2019-02-10 18:42:14.000
	901	5c6066cf25541729b7d50c08	31	1	2019-02-10 19:00:14.475	50	9	1	1	40	2019-02-10 19:00:14.000
	1177	5c606a7325541729b7d50d1c	33	1	2019-02-10 19:15:48.800	50	7	1	1	40	2019-02-10 19:15:16.000
	26239	5c61ec4225541729b7d56f02	32	1	2019-02-11 22:41:56.937	50	8	1	1	40	2019-02-11 22:39:17.000
	26515	5c61efe525541729b7d57016	33	1	2019-02-11 22:57:27.760	50	7	1	1	40	2019-02-11 22:57:17.000
	26791	5c61f38825541729b7d5712a	33	1	2019-02-11 23:12:58.602	50	7	1	1	40	2019-02-11 23:12:16.000
	27067	5c61f72b25541729b7d5723e	32	1	2019-02-11 23:28:29.903	50	8	1	1	40	2019-02-11 23:27:14.000
	27343	5c61face25541729b7d57352	32	1	2019-02-11 23:44:00.786	50	8	1	1	40	2019-02-11 23:42:15.000

Ya con el dataframe de la estación 50 guardado podemos usar la librería matplotlib, para plotear el histograma en base a la columna de "Disponible"

Alexander Basulto Arzola

Realizar gráfica con la línea temporal de bicis disponibles de la Estación 50

Como para el histrograma ya teníamos el dataframe de la estación 50 filtrado, usamos la misma variable para trabajar el grafico lineal.

Establecemos y extraemos el eje Y (Data) y el eje X (Time), que respectivamente corresponden a las columnas de "Libre" y "Actualizado" del DataFrame.

Luego creamos un nuevo DataFrame, con únicamente las dos columnas que queremos graficar Time y Data, el DataFrame cuando lo creamos debemos usar la función de transpuesta para cambiar columnas por filas.

Una ves tenemos el DataFrame (df_T) podemos plotear usando la librearia matplotlib.

Nota: Una problemática que no pude resolver es que las fechas salieran por rangos en el eje X, como está el código se imprimen todas las fechas del DataFrame en el eje X y lo satura y por lo tanto no se ve bien. Si pudiera tener un feedback de como resolver este problema porque experimente y probé de todo, gracias.