Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2009.
df

Out[2]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2009- 10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.:
1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.
2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.
4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.
215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.5
215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.
215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.
215688	215688 rows × 17 columns										
										•	
◀											-

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24717 entries, 3 to 215687
Data columns (total 17 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
                             ----
0
    date
             24717 non-null object
             24717 non-null float64
 1
    BEN
 2
    CO
             24717 non-null float64
 3
    EBE
             24717 non-null float64
 4
             24717 non-null float64
    MXY
 5
             24717 non-null float64
    NMHC
 6
    NO_2
             24717 non-null float64
 7
    NOx
             24717 non-null float64
 8
    OXY
             24717 non-null float64
 9
    0 3
             24717 non-null float64
 10
    PM10
             24717 non-null float64
 11
    PM25
             24717 non-null float64
 12
    PXY
             24717 non-null float64
 13
    SO 2
             24717 non-null float64
 14
    TCH
             24717 non-null float64
 15
    TOL
             24717 non-null float64
 16 station 24717 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.4+ MB
```

In [6]:

```
data=df[['PXY', 'NOx', 'OXY']]
data
```

Out[6]:

	PXY	NOx	OXY
3	1.30	81.360001	1.57
20	0.84	19.240000	1.00
24	1.07	43.919998	1.28
28	1.04	48.869999	1.21
45	0.88	19.299999	1.00
215659	0.84	29.490000	0.86
215663	1.03	69.870003	1.26
215667	0.92	82.629997	1.13
215683	0.74	24.510000	1.00
215687	0.83	64.480003	1.06

24717 rows × 3 columns

Line chart

In [7]:

```
data.plot.line(subplots=True)
```

Out[7]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [8]:

data.plot.line()

Out[8]:

<AxesSubplot:>

Bar chart

In [9]:

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<AxesSubplot:>

Histogram

In [11]:

data.plot.hist()

Out[11]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [12]:

data.plot.area()

Out[12]:

<AxesSubplot:>

Box chart

In [13]:

data.plot.box()

Out[13]:

<AxesSubplot:>

Pie chart

In [14]:

```
b.plot.pie(y='OXY' )
```

Out[14]:

<AxesSubplot:ylabel='OXY'>

Scatter chart

In [15]:

```
data.plot.scatter(x='PXY' ,y='0XY')
```

Out[15]:

<AxesSubplot:xlabel='PXY', ylabel='OXY'>

In [16]:

```
df.info()
```

```
Int64Index: 24717 entries, 3 to 215687
Data columns (total 17 columns):
     Column
#
              Non-Null Count Dtype
     _____
              -----
 0
     date
              24717 non-null
                              object
 1
     BEN
              24717 non-null
                              float64
 2
     CO
              24717 non-null
                              float64
 3
     EBE
              24717 non-null
                              float64
 4
     MXY
              24717 non-null
                              float64
 5
     NMHC
              24717 non-null
                              float64
 6
     NO 2
              24717 non-null
                              float64
 7
     NOx
              24717 non-null
                              float64
 8
     0XY
              24717 non-null
                              float64
 9
     0_3
              24717 non-null
                              float64
 10
     PM10
              24717 non-null
                              float64
 11
     PM25
              24717 non-null
                              float64
                              float64
 12
     PXY
              24717 non-null
 13
     SO 2
              24717 non-null
                              float64
 14
     TCH
              24717 non-null
                              float64
 15
              24717 non-null
                              float64
     TOL
     station 24717 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.4+ MB
```

<class 'pandas.core.frame.DataFrame'>

```
In [17]:
```

```
df.describe()
```

Out[17]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000
mean	1.010583	0.448056	1.262430	2.244469	0.219582	55.563929
std	1.007345	0.291706	1.074768	2.242214	0.141661	38.911677
min	0.170000	0.060000	0.250000	0.240000	0.000000	0.600000
25%	0.460000	0.270000	0.720000	0.990000	0.140000	26.510000
50%	0.670000	0.370000	1.000000	1.490000	0.190000	47.930000
75%	1.180000	0.570000	1.430000	2.820000	0.260000	76.269997
max	22.379999	5.570000	47.669998	56.500000	2.580000	477.399994
4						•

In [18]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

sns.pairplot(df1[0:50])

Out[19]:

<seaborn.axisgrid.PairGrid at 0x2183dee99d0>

In [20]:

```
sns.distplot(df1['PXY'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]:

<AxesSubplot:xlabel='PXY', ylabel='Density'>

In [21]:

sns.heatmap(df1.corr())

Out[21]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [22]:
```

```
In [23]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [24]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

LinearRegression()

In [25]:

```
lr.intercept_
```

Out[25]:

28078901.21705944

In [26]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

	Co-efficient
BEN	-37.569492
со	-27.640183
EBE	7.444821
MXY	0.104949
NMHC	-18.836149
NO_2	-0.189433
NOx	0.210363
OXY	12.034927
O_3	0.022955
PM10	-0.056456
PXY	1.639321
SO_2	-0.369752
тсн	119.045865
TOL	-1.016695

In [27]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x2184fffb610>

ACCURACY

```
In [28]:
lr.score(x_test,y_test)
Out[28]:
0.2791163528241405
In [29]:
lr.score(x_train,y_train)
Out[29]:
0.2904829269822444
Ridge and Lasso
In [30]:
from sklearn.linear_model import Ridge,Lasso
In [31]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[31]:
Ridge(alpha=10)
Accuracy(Ridge)
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.2789736363242975
In [33]:
rr.score(x_train,y_train)
Out[33]:
0.2901722163574638
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
```

Lasso(alpha=10)

```
In [35]:
```

```
la.score(x_test,y_test)
```

Out[35]:

0.03411461118355863

Accuracy(Lasso)

```
In [36]:
la.score(x_train,y_train)
Out[36]:
0.03832089827644303
```

Accuracy(Elastic Net)

```
In [37]:
```

```
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
```

Out[37]:

ElasticNet()

In [38]:

```
en.coef_
```

Out[38]:

```
array([-7.09949154, -0.63183419, 0.29499383, 2.21487181, 0. , -0.23307397, 0.12859889, 1.00478444, -0.14991085, 0.07736015, 1.84017177, -0.83222241, 1.50100091, -1.89102312])
```

In [39]:

```
en.intercept_
```

Out[39]:

28079064.81809502

In [40]:

```
prediction=en.predict(x_test)
```

```
In [41]:
en.score(x_test,y_test)
Out[41]:
```

Evaluation Metrics

```
In [42]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
35.84045092335339
```

35.84045092335339 1465.2505318850974 38.27859103840027

0.10463204276063354

Logistic Regression

```
In [43]:
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [44]:
```

```
In [45]:
```

```
feature_matrix.shape
```

```
Out[45]:
```

(24717, 14)

```
In [46]:
```

```
target_vector.shape
```

Out[46]:

(24717,)

In [47]:

```
from sklearn.preprocessing import StandardScaler
```

```
In [48]:
fs=StandardScaler().fit_transform(feature_matrix)
In [49]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[49]:
LogisticRegression(max_iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [52]:
logr.classes_
Out[52]:
array([28079006, 28079024, 28079099], dtype=int64)
In [53]:
logr.score(fs,target_vector)
Out[53]:
0.8951733624630821
In [54]:
logr.predict_proba(observation)[0][0]
Out[54]:
5.447205522232353e-13
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[5.44720552e-13, 8.28692830e-44, 1.00000000e+00]])
```

Random Forest

```
In [56]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [57]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[57]:

RandomForestClassifier()

In [58]:

In [59]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[59]:

In [60]:

```
grid_search.best_score_
```

Out[60]:

0.8947460115206034

In [61]:

```
rfc_best=grid_search.best_estimator_
```

In [62]:

Conclusion

Accuracy

Linear Regression:0.2904829269822444

Ridge Regression:0.2901722163574638

Lasso Regression:0.03832089827644303

ElasticNet Regression:0.10463204276063354

Logistic Regression:0.8951733624630821

Random Forest: 0.8947460115206034

Logistic Regression is suitable for this dataset