Exp. 2 - Caracterização de fontes de tensão

Prof. Pedro Augusto Franco Pinheiro Moreira ${\it April}~5,\,2013$

Conceitos

Caracterização de fontes de alimentação. Força eletromotriz (FEM) e resistência interna da fonte. Teorema de Thévenin. Transferência de potência da fonte para o usuário.

Introdução

É comum observar reduções da iluminação em casas quando algum chuveiro (ou outro equipamento potente) é ligado. Qual é a relação entre a lâmpada e o chuveiro? Estão alimentados pela mesma fonte (a rede elétrica) e a tensão desta depende da corrente exigida pelo(s) usuário(s).

O teorema de Thévenin, examinado neste experimento, permite caracterizar a fonte de alimentação em função da corrente fornecida.

Leis de Kirchoff

Formuladas em 1845, estas leis são baseadas no Princípio da Conservação da Energia, no Princípio de Conservação da Carga Elétrica e no fato de que o potencial elétrico tem o valor original após qualquer percurso em uma trajetória fechada (sistema não-dissipativo).

Primeira Lei de Kirchoff Em um nó, a soma das correntes elétricas que entram é igual à soma das correntes que saem, ou seja, um nó não acumula carga.

$$\sum\limits_{k=1}^{n}i_{k}=0$$
 , sendo a corrente elétrica $i=\frac{dq}{dt}.$

Isto é devido ao Princípio da Conservação da Carga Elétrica, o qual estabelece que num ponto qualquer a quantidade de carga elétrica que chega (dq_1) deve ser exatamente igual à quantidade que sai $(dq_2+dq_3),dq_1=dq_2+dq_3$. Dividindo por dt:

$$i_1 = i_2 + I_3$$
.

Lei de Kirchoff A soma algébrica da d.d.p (Diferença de Potencial Elétrico) em um percurso fechado é nula. Ou seja, a soma de todas as tensões (forças electromotrizes) no sentido horário é igual a soma de todas as tensões no sentido anti-horário, ocorridas numa malha, é igual a zero.

$$\sum_{k=1}^{n} U_k = 0$$

Características do circuito em série.

O circuito em série apresenta três características importantes:

- 1. Fornece apenas um caminho para a circulação da corrente elétrica;
- 2. A intensidade da corrente é a mesma ao longo de todo o circuito em série;
- funcionamento de qualquer um dos consumidores depende do funcionamento dos consumidores restantes.

Teorema de Thévenin

Muitas vezes a análise de circuitos eletrônicos fica facilitada com a substituição total ou parcial destes circuitos por outro equivalente que, para certos propósitos, tem as mesmas características do original. Um exemplo dessa possibilidade é a combinação em série e paralelo de resistores.

Quando uma resistência é colocada entre dois pontos A e B quaisquer de um circuito (corrente contínua, e componentes lineares) que apresente um número qualquer de FEMs, pode-se, para calcular a corrente na resistência, substituir o circuito inicial por uma fonte de FEM E_i em série com uma resistência R_i . Este circuito é conhecido como circuito equivalente de Thévenin. Para calcular os valores de Ei e Ri, usam-se as seguintes regras (veja Bibliografia para maiores detalhes):

- $E_i = V_{ca}$, onde V_{ca} é a tensão de circuito aberto, ou seja, é a tensão que aparece entre os bornes Ae B quando nenhuma resistência é ligada entre eles
- $R_i = \frac{E_i}{I_{cc}}$, onde I_{cc} é a corrente de curto-circuito, ou seja, é a corrente que circularia entre os bornes A e B se estes fossem curto-circuitados. R_i pode também ser obtido como sendo a resistência equivalente vista entre os bornes A e B quando todas as FEM do circuito original são desligadas (curto-circuitadas).

O teorema de Thévenin tem muitas aplicações. A seguir, apresentaremos dois exemplos:

1. Cálculo da tensão fornecida ao usuário - Para qualquer circuito com uma FEM E_i e uma resistência interna R_i (como o circuito mostrado na Figura 1), pelas Leis de Kirchhoff pode-se calcular que a tensão de usuário V_U fornecida pela fonte nos bornes de saída (A e B na figura) é igual à sua FEM E_i menos a queda de tensão na sua resistência interna R_i I_U :

$$V_U = E_i - R_i I_U.$$

2. Cálculo da máxima potência que um circuito (uma rede) pode fornecer a um usuário: No caso, o usuário é uma resistência R_U que será ligada aos nós A e B do circuito que, usando o teorema de Thévenin, representamos por uma FEM Ei e uma resistência interna Ri em série. Desta forma a corrente disponível na resistência do usuário é

$$\begin{split} I_U &= \frac{E_i}{(R_i + R_U)}. \\ \text{Assim a potência fornecida \'e} \\ P_U &= R_U I_{U2} = \frac{R_U E_{i2}}{(R_i + R_U)^2} \\ \text{que apresenta o m\'aximo igual a} \\ P_U &= \frac{E_{i2}}{4R_i} \\ \text{quando } R_U &= R_i. \text{ (Verifique !)}. \end{split}$$

Objetivos

Neste experimento caracterizaremos uma fonte de tensão formada por um divisor de tensão. Este consiste de dois resistores alimentados por uma fonte eletrônica de tensão (Figura 2 (a)).

Procedimento

- 1. Monte o divisor de tensão da Figura 2 (a), utilizando R_1 e R_2 (não esqueça de anotar os valores nominais). Meça os valores das resistências com o multímetro. Regule a fonte de tensão para obter $E \approx 3V$ (meça com o voltímetro). Verifique que a saída do divisor de tensão está em aproximadamente 1V (meça com o voltímetro). Considere que a saída deste divisor é sua "nova fonte de tensão", como indicado na Figura 2.
- 2. Conecte o divisor de tensão a uma resistência de década (que fará o papel da resistência de usuário R_U), conectando também o voltímetro e o miliamperímetro como mostrado na Figura 2 (b).
- 3. Varie R_U e meça a corrente I_U e a tensão V_U (leituras do miliamperímetro e voltímetro respectivamente). Colete aproximadamente 20 pontos de RU, IU e VU. Dica: varie RU entre $\sim 1\Omega\,e\,500\Omega$. Atenção: tome o cuidado de não ultrapassar a corrente de 30 mA.
- 4. Calcule a potência $P_U = V_U I_U$. Organize seus dados numa tabela de R_U, I_U, V_U, P_U .

Atenção: Inicie as medidas pelas correntes mais baixas.

Figure 1: Circuito básico constituído de uma fonte de tensão com FEM interna E_i e resistência interna R_i , que alimenta uma resistência de usuário R_U .

Estratégia para coleta de dados:

Tendo definido o espaço experimental ($\sim 1\Omega~e~500\Omega$) e o número de medidas (~ 20), o primeiro impulso do experimentalista é distribuir as medidas uniformemente. No entanto, esta é raramente uma boa estratégia. O modelo que descreve o fenômeno estudado pode apresentar variações maiores em algumas regiões do espaço experimental que outras. Por exemplo, na equação que

descreve a potência, há um máximo quando $R_U = R_i$, região em que mais medidas deveriam ser feitas para caracterizar melhor este máximo. Há técnicas estatísticas de planejamento experimental (por exemplo, o D-ótimo; Aguiar et al., 1995). Vamos aplicar neste experimento um procedimento mais básico: das 20 medidas, distribua 13 uniformemente e concentre 7 em torno de Ri (esta escolha é arbitrária).

Figure 2: (a) Divisor de tensão. (b) Circuito equivalente de Thévenin ligado a uma resistência de "usuário" R_U .

Relatório

- 1. Faça um gráfico de V_U versus I_U (ou seja, V_U no eixo das ordenadas e I_U no eixo das abscissas). Verifique a validade da relação proposta $(V_U = E_i R_i I_U)$.
- 2. A partir do gráfico, determine os valores E_i e R_i do circuito equivalente de Thévenin.
- 3. Compare estes valores com os valores de E_i e R_i teóricos, calculados a partir do teorema de Thévenin utilizando os valores de R_1, R_2 medidos com o multímetro e o valor de E medido com o voltímetro.
- 4. Faça um gráfico da potência transmitida à resistência externa P_U versus o valor R_U desta resistência.
- 5. Encontre e explique o máximo observado neste gráfico.

Bibliografia

• Brophy J.J. Eletrônica Básica, 3a Ed., Guanabara Dois, 1978; pp. 21-25.

• Aguiar, P.F. et al., 1995. D-optimal designs. Chemometrics and Intelligent Laboratory Systems, **30**, 199-210.