

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

ES726 - Laboratório de Sistemas Pneumáticos e Hidráulicos

Projeto Final Partiu bar - Parte IV - A Terra e o Tempo

Nome:	RA
Daniel Dello Russo Oliveira	101918
Marcelli Tiemi Kian	117892
Vinicius Ragazi David	120258

10 de junho de 2015

Sumário

1	Des	scrição Técnica do Processo	2			
2 Análise do Projeto						
	2.1	Modo Automático	4			
	2.2	Modo Passo a Passo	!			
	2.3	Modo Homming	!			
	2.4	Parada de emergência	!			
	2.5	Alarmes e tratamentos de Erros	!			
	2.6	IHM	ļ			
3	Tabela de designação					
4	Implementação do sistema					
5	Conclusões					

1 Descrição Técnica do Processo

Este relatório consiste na descrição da solução encontrada para o problema da maturação e filtragem da produção de cerveja. O processo começa após a fermentação da cerveja verde que é mandada para tanques de maturação como o da figura 1 (válvula V_{cv} e $timer_1$). No tanque a cerveja verde permanece entre 1h e 3h ($timer_2$) com controle constante de sua temperatura, esta necessitando estar em $0^{\circ}C$, ou no máximo entre -5 e $5^{\circ}C$. Este controle de temperatura deve ser feito com base no acionamento do fluido refrigerante (V_{fr}) e em um sensor de temperatura (S_t).

Figura 1: Tanque de maturação da cerveja verde.

Passado este tempo e com sucesso do controle de temperatura a cerveja verde torna-se cerveja madura e é despeja na próxima etapa (válvula V_{cm}). A etapa consiste em passar por um filtro com terra diatomácea (válvula V_{td}), que retira partículas desagradáveis à cerveja, como o mostrado na figura 2.

O resíduo do filtro deve ser descartado após o uso, o seu descarte é feito pela acionamento de uma válvula (V_r) que dependerá de um sensor (S_{bf}) .

Tanto a válvula de despejo da cerveja maturada quanto a da terra diatomácea dependem do sensor de volume do tanque de maturação (S_{bm}) .

Figura 2: Filtro da cerveja maturada

Após a filtragem a cerveja é então destinada à próxima etapa da sua fabricação, sendo esta não descrita por este trabalho.

2 Análise do Projeto

Figura 3: Diagrama grafcet do projeto

2.1 Modo Automático

O modo automático consiste na mudança de estado automática. Quando todas as condições necessárias para a mudança de estado se tornam verdadeiras e o modo automático está ativo a mudança de estado acontecerá, sendo assim, não sendo necessária a atuação humana. Este modo permite um processo mais rápido e mais barato por não necessitar de um funcionário presente para fazer as transições. Contudo poderá haver problemas caso a verificação para as condições estiver com problema, se os sensores, por exemplo, estiverem com problema o processo pode avançar mesmo não sendo o momento apropriado para tal.

2.2 Modo Passo a Passo

O modo passo a passo é o oposto do modo automático, sendo assim necessário a atuação humana para a transição de estados. Com todas as condições de transição verdadeiras o processo apenas mudará de estado caso um botão no IHM (interface homem máquina) seja apertado manualmente. Caso ascondições de transição não sejam obdecidas e o operador utilizar o botão do IHM nada acontecerá.

O valor do modo passo a passo é verificado em teste, já que o processo pode ser totaltmente controlado pelo engenheiro de qualidade, testando todas as transições e funcionalidade das entradas (sensores e timers) do sistema.

2.3 Modo Homming

O modo Homming quando acionado imposibilitará a transição do estado inicial (Home) para o próximo. A transição somente ocorrerá quando o botão "Iniciar" da IHM for apertado. Ele funciona como o modo passo a passo, mas somente para o estado Home, todos os demais funcionam normalmente, estamo no modo passo a passo ou no modo automático.

2.4 Parada de emergência

2.5 Alarmes e tratamentos de Erros

2.6 IHM

3 Tabela de designação

Tabela 1: Tabela de Input.

Entrada	Utilidade	Posição
S_{bm}	sensor de volume baixo no tanque de maturação	%I1.0
S_t	sensor de temperatura no tanque de maturação	%MD1
S_{bf}	sensor de volume baixo do filtro	%I1.1

Tabela 2: Tabela de Output.

Atuador	Utilidade	Posição
V_{cv}	acionamento da válvula da cerveja verde	%Q6.3
V_{cm}	acionamento da válvula da cerveja maturada	%Q6.2
V_{fr}	acionamento da válvula de fluido refrigerante	%Q7.0
V_{td}	acionamento da válvula de terra diatomácea	%Q7.1
V_r	acionamento da válvula de descarte	%Q7.2

Tabela 3: Tabela de Temporizadores.

Nome	Utilidade	Posição
$timer_1$	temporizador de entrada da cerveja verde	%M5.5
$timer_2$	temporizador da maturação da cerveja verde	%M5.6

4 Implementação do sistema

5 Conclusões

Referências

[1] K. Ogata, Engenharia de Controle Moderno, 6ª edição, 2011.