Geometric Quantisation

Benjamin C. W. Brown B.Brown@ed.ac.uk

Women in STEM Society Talk

 \sim

2nd February 2021

Classical Mechanics

- In classical mechanics, the space of all possible states of a system is given by phase space, M.
- "State" means not just the position but also the momentum (of a particle).

Example

For a particle of unit mass, energy function $E: M \to \mathbb{R}$:

$$E(x,p)=\frac{p^2}{2}+V(x).$$

$$\leadsto \frac{\partial E}{\partial x} = \frac{\partial V}{\partial x} = -\frac{\partial p}{\partial t}, \text{ and } \frac{\partial E}{\partial p} = p = \frac{\partial x}{\partial t}.$$

Quantum Mechanics

- ▶ Still have phase space *M* and energy *E*, but replaces states with *wavefunctions*.
- ► Classical energy function $E: M \to \mathbb{R}$ now becomes an operator $\hat{E}: M \to M$.

Example

State dynamics for a wavefunction $\psi: M \to \mathbb{C}$ are now described by solutions to *Schrödinger's equation*:

$$\frac{d\psi}{dt} = -\frac{i}{\hbar}\hat{E}\psi.$$

A Question

For a phase space M, what is Q(M)?

- ▶ Phase space M represents the position and momentum of a system, with energy function $E: M \to \mathbb{R}$.
- Quantisation $\mathcal{Q}(M)$ should then represent the wavefunctions $\psi: M \to \mathbb{C}$, with operators $\hat{E}: M \to M$.

Fock Space

A good candidate for Q(M) is *Fock space*:

$$\mathcal{Q}(\mathcal{M}) := \left\{ \Psi(\mathbf{z}) = e^{-|\mathbf{z}|^2} \psi(\mathbf{z}) : \psi \text{ holomorphic}, \ \int_{\mathcal{M}} |\Psi|^2 < \infty
ight\}.$$

Quantisation in Action - Preamble

- $M = \mathbb{R}^{2n} \cong \mathbb{C}^2 \text{ via } (x_k, p_k) \leadsto z_i = p_k + ix_k \in \mathbb{C}^n.$
- Consider the energy function:

$$E: M \to [0, \infty), \quad E(z) = \frac{\|z\|^2}{2}.$$

Associated operator is:

$$Q(\phi) = \sum_{k=1}^{n} \left(q_k \frac{\partial}{\partial p_k} - p_k \frac{\partial}{\partial q_k} \right), \quad \text{(rotational vector field)}.$$

- ► For $\lambda \in [0, \infty)$, energy level-set $E_{\lambda} := E^{-1}(\lambda) \cong S^{2n-1} \subseteq \mathbb{R}^{2n}$.
- Each E_{λ} has an S^1 -symmetry,

$$e^{i\theta}\cdot(z_1,\ldots,z_n)=(e^{i\theta}z_1,\ldots,e^{i\theta}z_n) \rightsquigarrow E(e^{i\theta}\cdot z)=E(z)=\lambda.$$

Quantisation in Action

- ▶ For $N \in \mathbb{N}$, can prove that a quantisation $\mathcal{Q}(E_N)$ exists.
- Eigenvalues for $Q(\phi)$ acting on $Q(E_N)$ can be identified with the set of *homogeneous* polynomials in *n* variables of *degree N*:

$$Q(E_N) \cong \left\{ z_1^{k_1} \cdots z_n^{k_n} : \sum_{j=1}^n k_j = N \right\}.$$