2. EJERCICIOS: Clustering

- 1. Coste computacional: Dado un conjunto de N instancias, se desea obtener la agrupación formada por k clusters (sub-conjuntos) que sea óptima según un criterio de proximidad dado.
 - a) ¿Cuántas agrupaciones posibles hay? es decir ¿cuántas formas distintas hay de obtener k sub-conjuntos?
 - b) Dado que deseamos buscar la mejor de las agrupaciones, si el criterio de proximidad tuviera un coste del orden $\mathcal{O}(N) \approx N^2$ ¿cuál sería el coste de un algoritmo que implemente una búsqueda exhaustiva?
 - c) ¿Recomendarías el uso de heurísticos de búsqueda?
- 2. * Algoritmo: Escribir, en pseudo-código, el algoritmo de clustering aglomerativo empleando *complete-link* como distancia inter-grupal.
- 3. Clustering jerárquico con ayuda de Weka:
 - a) Descargar mtcars dataset
 - b) Realizar clustering jerárquico de los datos mediante Weka (u otras herramientas)
 - c) ¿Cómo se ha calculado la distancia entre instancias?
 - d) ¿Cómo se ha calculado la distancia inter-grupal?
 - e) Visualizar dendograma
 - f) Interpretar el dendograma. ¿Qué coches que pertenecen al mismo cluster? (define los clusters de modo que sean separables según una distancia umbral dada)
- 4. Clustering jerárquico: La tabla $\boxed{1}$ muestra la matriz de distancias 5 instancias: $m_{i,j} = d(x_i, x_j)$

GIIGSI 2 MD

 X_5

4.24

2.00

2.24

1.41 0

	x_1	x_2	x_3	x_4	x_5
x_1	0	2.3	3.4	1.2	3.7
x_2		0	2.6	1.8	4.6
x_3			0	4.2	0.7
x_4				0	4.4
x_5					0

Tabla 1: Matriz de distancias entre instancias

Se pide:

- a) Clustering jerárquico con distancia single-link.
- b) Clustering jerárquico con distancia complete-link.
- 5. Disponemos de un conjunto de 5 instancias en un espacio bidimensional $X_1 \times X_2$

	X_1	X_2		$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{x_4}$	
$\mathbf{x_1}$	1	1	$\mathbf{x_1}$	0	3.16	2.24	4.47	4
$\mathbf{x_2}$	2	4	$\mathbf{x_2}$		0	2.24	1.41	2
$\mathbf{x_3}$	3	2	$\mathbf{x_3}$			0	3.00	2
$\mathbf{x_4}$	3	5	$\mathbf{x_4}$				0	1
$\mathbf{x_5}$	4	4	$\mathbf{x_5}$					
Instancias			Matriz de distancias					

Tabla 2: Conjunto de instancias y distancia euclídea entre instancias

Se pide representar las instancias en el espacio de atributos (el plano $X_1 \times X_2$).

- 6. k-means clustering: para las instancias de la tabla 2 y distancia euclidea
 - a) k=2 con centroides iniciales $\mathbf{m_1} = \mathbf{x_1} \ \mathrm{y} \ \mathbf{m_2} = \mathbf{x_2}$
 - b) k=2 con centroides iniciales $\mathbf{m_1} = \mathbf{x_4}$ y $\mathbf{m_2} = \mathbf{x_5}$
 - c) k=3 con centroides iniciales $\mathbf{m_1} = \mathbf{x_2}, \, \mathbf{m_2} = \mathbf{x_4} \, \mathbf{y} \, \mathbf{m_3} = \mathbf{x_5}$
- 7. Clustering jerárquico aglomerativo: para las instancias de la tabla 2 y distancia inter-grupal single link. A la vista del dendograma resultante:

GIIGSI 3 MD

- a) ¿Cómo se agrupan las instancias en k=2 clusters?
- b) ¿Cómo se agrupan las instancias en k=3 clusters?
- 8. Clustering jerárquico aglomerativo: para las instancias de la tabla 2 y distancia inter-grupal complete link. Construye el dendograma.
- 9. k-means clustering: para las instancias de la tabla 2 con
 - a) k=2 con centroides iniciales $\mathbf{m_1} = \mathbf{x_1}$ y $\mathbf{m_2} = \mathbf{x_2}$
 - b) k=2 con centroides iniciales $\mathbf{m_1} = \mathbf{x_4} \ \mathbf{y} \ \mathbf{m_2} = \mathbf{x_5}$
 - c) k=3 con centroides iniciales $m_1 = x_2$, $m_2 = x_4$ y $m_3 = x_5$
- 10. Evaluación: Supongamos que, en relación a los datos de la tabla 2, dos algoritmos de clustering han devuelto las siguientes, en relación a los datos de la tabla 2:

$$P_1 = \{\mathcal{G}_1, \mathcal{G}_2\}$$
 tal que $\mathcal{G}_1 = \{\mathbf{x_1}\}, \quad \mathcal{G}_2 = \{\mathbf{x_2}, \mathbf{x_3}, \mathbf{x_4}, \mathbf{x_5}\}$ (1)
 $P_2 = \{\mathcal{G}'_1, \mathcal{G}'_2\}$ tal que $\mathcal{G}'_1 = \{\mathbf{x_1}, \mathbf{x_3}\}, \quad \mathcal{G}'_2 = \{\mathbf{x_2}, \mathbf{x_4}, \mathbf{x_5}\}$ (2)

$$P_2 = \{\mathcal{G}'_1, \mathcal{G}'_2\} \quad \text{tal que} \quad \mathcal{G}'_1 = \{\mathbf{x_1}, \mathbf{x_3}\}, \quad \mathcal{G}'_2 = \{\mathbf{x_2}, \mathbf{x_4}, \mathbf{x_5}\} \quad (2)$$

Se pide:

- a) Según Sum of Squared Error ¿qué partición tiene mayor cohesión?
- b) Calcula la anchura media global de Silhouette para cada partición.
- 11. \star Dendograma: La tabla 3 muestra un conjunto, \mathcal{X} , de 5 datos caracterizados con 3 atributos. Ejemplo: los atributos para la instancia \mathbf{x}_4 son $(x_{4,1}, x_{4,2}, x_{4,3}) =$ (3, 10, 1)

	Atributos					
	X_1	X_2	X_3			
\mathbf{x}_1	2	4	6			
\mathbf{x}_2	3	5	7			
\mathbf{x}_3	1	1	4			
\mathbf{x}_4	3	10	1			
\mathbf{x}_5	3	9	2			

Tabla 3: $\mathcal{X} = \{\mathbf{x}_1, \cdots, \mathbf{x}_5\}$

GIIGSI 4 MD

Se pide representar gráficamente el agrupamiento de los datos mediante clustering jerárquico aglomerativo empleando como distancia inter-grupal average-link y la métrica (3) para la distancia entre instancias.

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{r=1}^{3} (x_{i,r} - x_{j,r})^2$$
(3)

12. Disponemos de un conjunto de 5 instancias en un espacio bidimensional $X_1 \times X_2$

	X1	X2
1	2	0
2	4	4
2 3 4	1	1
4	2	4
5	2	2
5 6 7 8	2	3
7	3	4
8	3	3
	Т ,	

	1	2	3	4	5	6	7	8
1	0	4.47	1.41	4.00	2.00	3.00	4.12	3.16
2		0	4.24	2.00	2.83	2.24	1.00	1.41
3			0	3.16	1.41	2.24	3.61	2.83
4				0	2.00	1.00	1.00	1.41
5					0			
6						0		
7							0	
8								0

Instancias

Matriz de distancias

Tabla 4: Conjunto de instancias y distancia euclídea entre instancias

Se pide:

- a) Completar la matriz de distancia euclídea entre instancias.
- b) Se pide representar las instancias en el espacio de atributos.
- 13. ★ k-means clustering: para las instancias de la tabla 4 con:
 - a) k=2 con centroides iniciales $\mathbf{m_1} = \mathbf{x_1} \ \mathbf{y} \ \mathbf{m_2} = \mathbf{x_2}$
 - b) k=2 con centroides iniciales $m_1 = x_4$ y $m_2 = x_5$
 - c) k=3 con centroides iniciales $\mathbf{m_1} = \mathbf{x_2}, \mathbf{m_2} = \mathbf{x_4} \ \mathrm{y} \ \mathbf{m_3} = \mathbf{x_7}$
- 14. * Evaluación: Supongamos que, en relación a los datos de la tabla 4 dos algoritmos de clustering han devuelto las siguientes particiones:

$$P_1 = \{\mathcal{G}_1, \mathcal{G}_2\} \text{ tal que } \mathcal{G}_1 = \{\mathbf{x_1}, \mathbf{x_3}\}, \quad \mathcal{G}_2 = \{\mathbf{x_2}, \mathbf{x_4}, \mathbf{x_5}, \mathbf{x_6}, \mathbf{x_7}, \mathbf{x_8}\}$$
 (4)

$$P_2 = \{\mathcal{G}_1', \mathcal{G}_2'\}$$
 tal que $\mathcal{G}_1' = \{\mathbf{x_1}, \mathbf{x_3}, \mathbf{x_5}\}, \quad \mathcal{G}_2' = \{\mathbf{x_2}, \mathbf{x_4}, \mathbf{x_6}, \mathbf{x_7}, \mathbf{x_8}\}$ (5)

GIIGSI 5 MD

Se pide:

- a) Según Sum of Squared Error ¿qué partición tiene mayor cohesión?
- b) Calcula la anchura media global de Silhouette para cada partición.