Automates et logique temporelle LTL

Souffan Nathan Bouarah Romain Supervisé par François Laroussinie

8 juin 2021

Le sujet

- Découvrir la logique LTL
- ▶ Reconnaître les modèles d'une formule LTL à l'aide d'un automate
- ► Implémenter la construction de cet automate

```
Automates et logique temporelle LTL

Introduction

Vérification de modèles
```

Utilité

Définition (Vérification de modèles)

La vérification de modèles, ou *model checking*, consiste à vérifier certaines propriétés sur le modèle d'un système.

Utilité

Définition (Vérification de modèles)

La vérification de modèles, ou *model checking*, consiste à vérifier certaines propriétés sur le modèle d'un système.

Exemple

▶ On souhaite vérifier la sûreté et réactivité d'un ascenceur

Utilité

Définition (Vérification de modèles)

La vérification de modèles, ou *model checking*, consiste à vérifier certaines propriétés sur le modèle d'un système.

Exemple

- On souhaite vérifier la sûreté et réactivité d'un ascenceur
- Vérifier qu'il n'y a pas d'interblocage dans un programme concurrentiel

```
Automates et logique temporelle LTL

LTL

Définitions
```

Plusieurs logiques temporelles :

► Computation tree logic (CTL) ou logique du temps arborescent

Plusieurs logiques temporelles :

- ► Computation tree logic (CTL) ou logique du temps arborescent
- linear temporal logic (LTL) ou Logique temporelle de temps linéaire

Plusieurs logiques temporelles :

- ► Computation tree logic (CTL) ou logique du temps arborescent
- linear temporal logic (LTL) ou Logique temporelle de temps linéaire
- Signal Temporal Logic, Metric Interval Temporal Logic, ...

```
Automates et logique temporelle LTL
LTL
Définitions
```

Syntaxe

Soient f_1, f_2 des formules LTL et $p \in AP$ une proposition atomique. Une formule LTL f peut s'écrire comme :

- p : atome
- ► ⊤ : tautologie
- $ightharpoonup \neg f_1$: négation
- ▶ $f_1 \land f_2$: conjonction

```
Automates et logique temporelle LTL

LTL

Définitions
```

Syntaxe

Soient f_1, f_2 des formules LTL et $p \in AP$ une proposition atomique. Une formule LTL f peut s'écrire comme :

- p : atome
- ► ⊤ : tautologie
- $ightharpoonup \neg f_1$: négation
- $f_1 \wedge f_2$: conjonction
- \triangleright Xf_1 : suivant
- $ightharpoonup f_1 U f_2$: jusqu'à

Sémantique

On interprète une formule sur une position $i \ge 0$ le long d'une exécution étiquetée (p, l) où $p \in Q^{\omega}$ et $l : Q \to 2^{AP}$

Sémantique

On interprète une formule sur une position $i \ge 0$ le long d'une exécution étiquetée (p, l) où $p \in Q^{\omega}$ et $l : Q \to 2^{AP}$

- \triangleright $p, l, i \models v \Leftrightarrow v \in l(p(i))$ où $v \in AP$
- \triangleright $p, l, i \models \top$

Sémantique de suivant

$$p, l, i \models X\varphi \Leftrightarrow p, l, i+1 \models \varphi$$

Sémantique de jusqu'à

$$\begin{array}{c}
p, I, i \models \varphi U \psi \Leftrightarrow \\
[\exists j \geq i \quad (p, I, j \models \psi) \land (\forall i \leq k < j \quad p, I, k \models \varphi)]
\end{array}$$

Quelques exemples

 $a, b \in AP$

► GFa : (toujours(futur a)) ce qui signifie il y a une infinité de positions où a est vrai.

Quelques exemples

$a, b \in AP$

- GFa: (toujours(futur a)) ce qui signifie il y a une infinité de positions où a est vrai.
- ► aU(Gb): a est vrai tant que b est faux, dès que a est faux, b est toujours vrai par la suite

Définition (Automate de Büchi)

Un automate de Büchi est un quintuplet $\mathcal{A} = (\Sigma, Q, Q_I, \Delta, \mathscr{F})$ où :

- Σ est un alphabet
- Q est l'ensemble des états
- \triangleright $Q_I \subseteq Q$ est l'ensemble des états initiaux.
- ▶ $\Delta \subseteq Q \times \Sigma \times Q$ est l'ensemble des transitions.
- ▶ $\mathscr{F} \subseteq Q$ est l'ensemble des états finaux. Un mot w est accepté s'il existe une exécution acceptante de \mathcal{A} sur w.

Un exemple d'automate de Büchi

Soit $\mathcal{A} = (\{a,b\},\{q_0,q_1\},\{q_0\},\Delta,\{q_1\})$ un automate de Büchi. L'ensemble des transitions Δ est donné dans la figure.

Figure – Représentation graphique de ${\cal A}$

Définition (Exécution)

Soit $w\in \Sigma^\omega$ un mot infini. Une exécution de $\mathcal A$ sur w est une suite infinie $\rho=q_0q_1q_2\cdots\in Q^\omega$ telle que :

$$\forall i \geq 0 \quad (q_i, w_i, q_{i+1}) \in \Delta$$

☐ Définitions

Définition (Exécution)

Soit $w \in \Sigma^{\omega}$ un mot infini. Une exécution de \mathcal{A} sur w est une suite infinie $\rho = q_0 q_1 q_2 \cdots \in Q^{\omega}$ telle que :

$$\forall i \geq 0 \quad (q_i, w_i, q_{i+1}) \in \Delta$$

Définition (Exécution acceptante)

 $ho \in Q^\omega$ une exécution de $\mathcal A$ est dite acceptante si :

$$Etats_{\#\infty}(\rho) \cap \mathscr{F} \neq \varnothing$$

où $Etats_{\#\infty}(\rho)$ est l'ensemble des états apparaissants une infinité de fois dans ρ .

Un exemple d'automate de Büchi

Figure – Un automate de Büchi

Pour le mot a^{ω} , on a :

 $ightharpoonup q_0 q_0 \dots$ qui est une exécution

Définitions

Un exemple d'automate de Büchi

Figure – Un automate de Büchi

Pour le mot a^{ω} , on a :

- $ightharpoonup q_0 q_0 \dots$ qui est une exécution
- $ightharpoonup q_0 q_1 \dots$ qui est une exécution acceptante

Un exemple d'automate de Büchi

Figure – Un automate de Büchi

Pour le mot a^{ω} , on a :

- $ightharpoonup q_0 q_0 \dots$ qui est une exécution
- $ightharpoonup q_0 q_1 \dots$ qui est une exécution acceptante
- **...**

Automate de Büchi généralisé

Définition (Automate de Büchi généralisé)

Un automate de Büchi généralisé est un quintuplet

$$\mathcal{A} = (\Sigma, Q, Q_I, \Delta, \mathscr{F})$$
 où :

- \triangleright Σ , Q, Q_I, Δ sont comme précédemment.
- ▶ $\mathscr{F} \subseteq \mathcal{P}(Q)$ est la condition d'acceptation. \mathscr{F} est un ensemble d'ensembles finaux. De même, un mot w est accepté s'il existe une exécution acceptante de \mathcal{A} sur w.

 $\forall G \in \mathscr{F}$ on passe infiniment de fois par l'un des états de G.

```
Automates et logique temporelle LTL

Formule LTL -> automate de Büchi

Définitions
```

Sous formules

Définition

On note $SubF(\varphi)$ l'ensemble des sous formules de φ et leur négation.

Sous formules

Définition

On note $\mathit{SubF}(\varphi)$ l'ensemble des sous formules de φ et leur négation.

Exemple

Si $\varphi = aUb$ alors $SubF(\varphi) = \{a, \neg a, b, \neg b, aUb, \neg (aUb)\}.$

Définition (Sous-ensemble cohérent)

 $q \in 2^{SubF(\varphi)}$ est cohérent si :

- (i) $\perp \not\in q$.
- (ii) Si $\psi_1 \wedge \psi_2 \in q$ alors $\psi_1 \in q$ et $\psi_2 \in q$.
- (iii) Si $\psi_1 \vee \psi_2 \in q$ alors $\psi_1 \in q$ ou $\psi_2 \in q$.
- (iv) $\psi \in q \iff \neg \psi \notin q$.

Définition (Sous-ensemble cohérent)

 $q \in 2^{SubF(\varphi)}$ est cohérent si :

- (i) $\perp \not\in q$.
- (ii) Si $\psi_1 \wedge \psi_2 \in q$ alors $\psi_1 \in q$ et $\psi_2 \in q$.
- (iii) Si $\psi_1 \lor \psi_2 \in q$ alors $\psi_1 \in q$ ou $\psi_2 \in q$.
- (iv) $\psi \in q \iff \neg \psi \notin q$.

Définition (Sous-ensemble maximal)

 $q\in 2^{SubF(\varphi)}$ est maximal si pour tout $\psi\in SubF(\varphi)$ on a soit $\psi\in q$ soit $\neg\psi\in q$.

Définition (Sous-ensemble cohérent)

 $q \in 2^{SubF(\varphi)}$ est cohérent si :

- (i) $\perp \not\in q$.
- (ii) Si $\psi_1 \wedge \psi_2 \in q$ alors $\psi_1 \in q$ et $\psi_2 \in q$.
- (iii) Si $\psi_1 \lor \psi_2 \in q$ alors $\psi_1 \in q$ ou $\psi_2 \in q$.
- (iv) $\psi \in q \iff \neg \psi \notin q$.

Définition (Sous-ensemble maximal)

 $q \in 2^{SubF(\varphi)}$ est maximal si pour tout $\psi \in SubF(\varphi)$ on a soit $\psi \in q$ soit $\neg \psi \in q$.

Définition (Sous-ensemble conforme à la sémantique de LTL)

 $q \in 2^{SubF(\varphi)}$ est conforme à la sémantique de LTL :

- (i) Si $\psi_1 U \psi_2 \in q$ alors on a soit $\psi_1 \in q$ soit $\psi_2 \in q$.
- (ii) $\forall \psi_1 U \psi_2 \in SubF(\varphi)$ si $\psi_2 \in q$ alors $\psi_1 U \psi_2 \in q$.

Un exemple

Soit
$$\varphi = aU(Xb)$$
 alors

$$SubF(\varphi) = \{a, \neg a, b, \neg b, Xb, \neg (Xb), aU(Xb), \neg (aU(Xb))\}$$

Un exemple

Soit
$$\varphi = aU(Xb)$$
 alors
$$SubF(\varphi) = \{a, \neg a, b, \neg b, Xb, \neg (Xb), aU(Xb), \neg (aU(Xb))\}$$

1. $q_1 = \{\neg a, b, Xb, aU(Xb)\}$ est un sous-ensemble cohérent, maximal et conforme à la sémantique de LTL.

Un exemple

Soit
$$\varphi = aU(Xb)$$
 alors

$$SubF(\varphi) = \{a, \neg a, b, \neg b, Xb, \neg (Xb), aU(Xb), \neg (aU(Xb))\}$$

- 1. $q_1 = \{ \neg a, b, Xb, aU(Xb) \}$ est un sous-ensemble cohérent, maximal et conforme à la sémantique de LTL.
- 2. $q_2 = \{ \neg a, b, Xb, \neg (aU(Xb)) \}$ est un sous-ensemble cohérent, maximal mais non conforme à la sémantique de LTL car on a Xb et $\neg (aU(Xb))$.

On pose $\mathcal{A}_{\varphi}=(2^{AP},Q,Q_{I},\Delta,\mathscr{F})$ où :

- ▶ $Q \subseteq 2^{SubF(\varphi)}$ contient tout les sous-ensembles cohérents, maximaux et conformes à la sémantique de LTL.
- $Q_I = \{ q \in Q | \varphi \in q \}$
- $ightharpoonup (q, a, q') \in \Delta \text{ si } :$
 - (i) $\forall p \in AP \quad p \in q \iff p \in a \text{ (i.e. } a \text{ possède toutes les propositions atomiques de } q)$
 - (ii) $\forall X \psi \in SubF(\varphi) \quad X \psi \in q \iff \psi \in q'$
 - (iii) $\forall \psi_1 U \psi_2 \in SubF(\varphi) \quad \psi_1 U \psi_2 \in q \iff (\psi_2 \in q \lor (\psi_1 \in q \land \psi_1 U \psi_2 \in q'))$
- $\blacktriangleright \mathscr{F} = \{F_{\psi_1 U \psi_2} | \psi_1 U \psi_2 \in SubF(\varphi)\}$ où

$$F_{\psi_1 U \psi_2} = \{ q \in Q | \psi_1 U \psi_2 \not\in q \lor \psi_2 \in q \}$$

Exemple pour $\varphi = Xa$

Figure – l'automate de Büchi généralisé pour Xa sur $\{a\}$

Correction de la construction

Théorème

Soit φ une formule LTL sur AP. On a, $\mathcal{L}(\mathcal{A}_{\varphi}) = mod(\varphi)$ où $mod(\varphi)$ est l'ensemble des modèles reconnues par φ .

Lemme

Soit $\omega \in (2^{AP})^{\omega}$ et $p=q_0q_1\dots$ une exécution acceptante de \mathcal{A}_{φ} du mot ω alors :

$$\forall i \geq 0, \ \forall \psi \in SubF(\varphi): \ (\psi \in q_i \Leftrightarrow \omega_i \models \varphi)$$

```
Automates et logique temporelle LTL

Formule LTL -> automate de Büchi

Le principal théorème
```

Démonstration.

Démonstration.

$$\psi = v \in AP$$

Démonstration.

$$\forall \psi = v \in AP$$

$$\blacktriangleright \ \psi = \psi_1 \wedge \psi_2$$

Démonstration.

$$\psi = v \in AP$$

$$\psi = \neg \psi_1$$

Démonstration.

$$\psi = v \in AP$$

$$\Psi = X\psi_1$$

Démonstration.

- $\psi = v \in AP$
- $\blacktriangleright \psi = \neg \psi_1$
- $\blacktriangleright \psi = X\psi_1$
- $\qquad \qquad \psi = \psi_1 U \psi_2$

$$\mathcal{L}(\mathcal{A}_{arphi})\supseteq \mathsf{mod}(arphi)$$

Lemma

Si $w \in (2^{AP})^{\omega}$ un mot infini sur l'alphabet 2^{AP} tel que $w, 0 \models \varphi$ alors $w \in \mathcal{L}(\mathcal{A}_{\varphi})$.

└ Formule LTL -> automate de Büchi

Le principal théorème

$$\mathcal{L}(\mathcal{A}_{arphi})\supseteq \mathsf{mod}(arphi)$$

Lemma

Si $w \in (2^{AP})^{\omega}$ un mot infini sur l'alphabet 2^{AP} tel que $w, 0 \models \varphi$ alors $w \in \mathcal{L}(\mathcal{A}_{\varphi})$.

1.
$$\forall i \geq 0$$
 $q_i = \{ \psi \in SubF(\varphi) | w, i \models \psi \}$ et $\rho = q_0 q_1 q_2 \dots$

Le principal théorème

$$\mathcal{L}(\mathcal{A}_{arphi})\supseteq \mathsf{mod}(arphi)$$

Lemma

Si $w \in (2^{AP})^{\omega}$ un mot infini sur l'alphabet 2^{AP} tel que $w, 0 \models \varphi$ alors $w \in \mathcal{L}(\mathcal{A}_{\varphi})$.

- 1. $\forall i \geq 0$ $q_i = \{ \psi \in SubF(\varphi) | w, i \models \psi \}$ et $\rho = q_0 q_1 q_2 \dots$
- 2. $w, 0 \models \varphi$ donc $\varphi \in q_0$ donc q_0 est bien un état initial.

Le principal théorème

$$\mathcal{L}(\mathcal{A}_{arphi})\supseteq \mathsf{mod}(arphi)$$

Lemma

Si $w \in (2^{AP})^{\omega}$ un mot infini sur l'alphabet 2^{AP} tel que $w, 0 \models \varphi$ alors $w \in \mathcal{L}(\mathcal{A}_{\varphi})$.

- 1. $\forall i \geq 0$ $q_i = \{ \psi \in SubF(\varphi) | w, i \models \psi \}$ et $\rho = q_0q_1q_2...$
- 2. $w, 0 \models \varphi \text{ donc } \varphi \in q_0 \text{ donc } q_0 \text{ est bien un état initial.}$
- 3. If y a bien des transition (q_i, w_i, q_{i+1}) dans \mathcal{A}_{φ} .

Le principal théorème

$$\mathcal{L}(\mathcal{A}_{arphi})\supseteq \mathsf{mod}(arphi)$$

Lemma

Si $w \in (2^{AP})^{\omega}$ un mot infini sur l'alphabet 2^{AP} tel que $w, 0 \models \varphi$ alors $w \in \mathcal{L}(\mathcal{A}_{\varphi})$.

- 1. $\forall i \geq 0$ $q_i = \{ \psi \in SubF(\varphi) | w, i \models \psi \}$ et $\rho = q_0q_1q_2...$
- 2. $w, 0 \models \varphi \text{ donc } \varphi \in q_0 \text{ donc } q_0 \text{ est bien un état initial.}$
- 3. If y a bien des transition (q_i, w_i, q_{i+1}) dans \mathcal{A}_{φ} .
- 4. si $\psi_1 U \psi_2 \in q_i$, alors $w, i \models \psi_1 U \psi_2$ (par construction des q_i) donc $\exists j \geq i$ tel que $w, j \models \psi_2$ et $\forall k, i \leq k < j \quad w, k \models \psi_1$. Enfin, on a aussi $\psi_1 U \psi_2 \in q_j$ et il existe un chemin valide jusqu'à q_j ainsi ρ passe infiniment souvent par $F_{\psi_1 U \psi_2}$.

