Name- Radheya Deshmukh

Elevate Labs Internship Task 5

Dataset Used: test.csv (File Attached in the Repository)

Objective: The main goal is to explore a dataset using Python tools such as Pandas, Matplotlib, and Seaborn. By doing this, we aim to find patterns, trends, insights, and any unusual points in the data through exploration and visualizations.

1. Read the dataset

df = pd.read_csv('test.csv')

: ▶	df													
t[4]:		Passengerid	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked		
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q		
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	s		
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q		
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	s		
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	s		
	413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S		
	414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С		
	415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	s		
	416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	s		
	417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С		

2. Preprocessing

df.isnull().sum()

```
In [8]:

    df.isnull().sum()

    Out[8]: PassengerId
            Pclass
                             0
            Name
                             0
            Sex
                             0
            Age
                            86
            SibSp
                             0
            Parch
                             0
            Ticket
                             0
            Fare
                             1
            Cabin
                           327
            Embarked
                             0
            dtype: int64
```

3. Basic Functions

df.info()

```
In [6]: ► df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 418 entries, 0 to 417
           Data columns (total 11 columns):
            # Column
                            Non-Null Count Dtype
                            -----
               -----
               PassengerId 418 non-null
                                            int64
            1
                Pclass
                            418 non-null
                                            int64
                Name
                            418 non-null
                                            object
                            418 non-null
                                           object
                Sex
                            332 non-null
                                           float64
               Age
               SibSp
                            418 non-null
                                           int64
                            418 non-null
                                            int64
               Parch
            7
               Ticket
                            418 non-null
                                           object
                            417 non-null
               Fare
                                           float64
                Cabin
                            91 non-null
                                            object
            10 Embarked
                            418 non-null
                                            object
           dtypes: float64(2), int64(4), object(5)
           memory usage: 36.0+ KB
```

df.describe()

In [7]: ■ df.describe()

Out[7]:

	Passengerid	Pclass	Age	SibSp	Parch	Fare	
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000	
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188	
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576	
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000	
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800	
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200	
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000	
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200	

if 'Sex' in df.columns: print(df['Sex'].value_counts())

```
    if 'Sex' in df.columns:

In [11]:
                  print(df['Sex'].value_counts())
              female
                        44
```

43 Name: Sex, dtype: int64

male

4. Visualization

Histograms df.hist(figsize=(12, 10), bins=30)
 plt.tight_layout()
 plt.show()

Observation: In the histograms, we observed the overall distribution of numeric features across the dataset. Most of the variables like 'Age', 'Fare', and others showed uneven distributions. For instance, 'Age' displayed a concentration around 20-40 years, indicating that most passengers belonged to this age group. The 'Fare' column was highly skewed towards the lower side, showing that the majority of passengers paid lower ticket prices, with very few paying extremely high fares. Some features like 'Pclass' exhibited a distinct distribution, confirming that they represent categorical-like data. These histograms help in understanding the spread and skewness of the data.

Boxplot: numeric_cols = df.select_dtypes(include=np.number).columns
 for col in numeric_cols:
 plt.figure(figsize=(6,4))
 sns.boxplot(y=df[col])
 plt.title(f'Boxplot of {col}')

Observation The boxplots provided clear insights into the presence of outliers in the dataset. Significant outliers were detected in the 'Fare' column, where a few passengers paid much higher amounts compared to others. The 'Age' column also showed slight outliers at the lower and higher ends of the age range. In general, most numeric features had their data points concentrated within the interquartile range (the box area), but a few extreme values were plotted as individual points outside the whiskers. These observations indicate that proper outlier handling or special treatment may be necessary before applying statistical models.

Scatterplot: if 'Age' in df.columns and 'Fare' in df.columns:
 plt.figure(figsize=(6,4))
 sns.scatterplot(x='Age', y='Fare', data=df)
 plt.title('Age vs Fare')
 plt.show()

Observation: The scatter plot between 'Age' and 'Fare' revealed that there was no strong relationship between the two variables. Passengers of all ages tended to pay a wide range of fares, mostly concentrated towards lower values. A few older individuals paid exceptionally high fares, but overall, no consistent trend or correlation was visible. This observation suggests that age alone does not influence the fare significantly and highlights the need to look at other factors (like 'Pclass') for better insights into fare determination.

Pairplot: selected_cols = ['Age', 'Fare', 'Pclass'] # Edit according to your dataset available_cols = [col for col in selected_cols if col in df.columns] if len(available_cols) > 1:
 sns.pairplot(df[available_cols])
 plt.show()

Observation: The pairplot gave a combined view of the relationships between 'Age', 'Fare', and 'Pclass'. It clearly showed that 'Pclass' and 'Fare' are related — passengers from first class paid higher fares, while those from lower classes paid less. The distribution of 'Age' across different classes and fares was more scattered, indicating no strong direct influence of class or fare on age. These plots helped identify visible clusters and separation, especially for the 'Pclass' feature, making it an important variable in survival prediction or passenger segmentation analysis.

Heatmap: plt.figure(figsize=(10,8))
 corr = df.corr()
 sns.heatmap(corr, annot=True, cmap="coolwarm", fmt='.2f')
 plt.title('Correlation Heatmap')
 plt.show()

Observation: The correlation heatmap provided a comprehensive view of how different numeric features are related. The strongest observation was a negative correlation between 'Pclass' and 'Fare', meaning higher classes (lower 'Pclass' number) generally had passengers paying higher fares. Other features like 'Age' showed very weak or no correlation with most variables. Importantly, the heatmap revealed no strong multicollinearity among variables, suggesting that each numeric feature carries mostly independent information useful for further modeling or analysis.