

Presentation: Hannes Oberreiter, version: 2021-04-12

Beekeeper Crowdsourcing Data

Analysis of varroacide expenses and honey bee colony winter mortality on operation level in Austria

Hannes Oberreiter

Institute of Biology, University of Graz

Why?

- Imported aggressor *Varroa destructor*
 - High varroa mite infestation ~ greatest potential to raise winter colony losses (Morawetz, et al. 2019)
- Varroa control methods
 - Differ in efficiency and usage distribution (Oberreiter and Brodschneider, 2020)
- Novel descriptive analysis of treatment expenses

Why?

- Imported aggressor *Varroa destructor*
 - High varroa mite infestation ~ greatest potential to raise winter colony losses (Morawetz, et al. 2019)
- Varroa control methods
 - Differ in efficiency and usage distribution (Oberreiter and Brodschneider, 2020)
- Novel descriptive analysis of treatment expenses

How?

- Cooperation with the yearly colony loss survey
- Crowd sourced data of three winters

Question:

Estimated treatment expenses per colony without labor costs?

Index

1. **DS**

Descriptive Statistics

- 1. Quantitative Numbers
- 2. Central Tendencies of Survey Expenses
- 3. Distribution of Cohorts
- 4. Estimate of Expenses (Input Validation)

1.1 Quantitative Numbers

• ~ 4% of registered beekeepers*

Year	Survey [n]	Answered Expenses [n]	Percent [%]
18/19	1.534	1.195	77.9
19/20	1.539	1.170	76.0

^{*}Compared to the number of registered beekeeper and honey bee colonies with the national beekeeping association Biene Österreich

1.2 Central Tendencies of Survey Expenses

1.3 Distribution of Cohorts

1.4 Estimate of Expenses (Input Validation)

Index

1. DS

Exploratory Data Analysis

2. EDA

- 1. Single Factor
- 2. Extrapolation of total Expenses

2.1 Single Factor

- Operation Size
 - Hobby Beekeeper spend more (< Colonies)
 - No difference between medium and large Operations (20-50, >50 Colonies)
 - ~5 Euro / Colony difference (Median)

2.1 Single Factor

- Operation Size
 - Hobby Beekeeper spend more (< Colonies)
 - No difference between medium and large Operations (20-50, >50 Colonies)
 - ~5 Euro / Colony difference (Median)
- Migratory Beekeeper
 - spend less
 - ~3-4 Euro / Colony difference (Median)
 - o without treatment effect, no difference in survey 18/19

2.1 Single Factor

- Operation Size
 - Hobby Beekeeper spend more (< Colonies)
 - No difference between medium and large Operations (20-50, >50 Colonies)
 - ~5 Euro / Colony difference (Median)
- Migratory Beekeeper
 - spend less
 - ~3-4 Euro / Colony difference (Median)
 - o without treatment effect, no difference in survey 18/19
- Certified Organic Beekeeper
 - spend less
 - ~4 Euro / Colony difference (Median)
 - without treatment effect, low effect size

2.2 Extrapolation of Total Expenses

Index

- 1. DS
- 2. EDA
- 3. ToDo

Summary

- First investigation of varroa treatment related costs
- Novel description of the economics behind the mite agent sector

Outlook:

- Survey 2020/21
- Cost-benefit analysis including winter loss rate of honeybee colonies
- (Decision Tree Generation)

Appendix

History of Winter Colony Losses in Austria

Participants geographical Distribution

