Name;	Teacher:
1 141110,	

SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE

2010

MATHEMATICS

Time Allowed: 3 hours plus 5 minutes reading time

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet
- At the end of the examination this examination paper must be attached to the front of your answers.
- All questions are of equal value and may be attempted (12 marks each).
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- A table of standard integrals is attached.

(for Markers Use Only)

Q1	Q2	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total
									/120

a) Expand and simplify $(\sqrt{2} - 3)^2$

1

b) Find $e^{-0.6}$ correct to three decimal places.

- 2
- c) Find the compound interest earned on \$80 000 if invested for three years at a rate of 6% per annum compounding quarterly.
- 2

d) Solve the equation $4x^2 = x$

2

e) Solve the equation |4 - x| = 2x.

2

f) Sketch the parabola $x^2 = -4y + 8$ showing its focus and directrix.

3

Question 2: (12 marks) (Start a new page)

a)

The graph represents the function $y = 6x^2 - x^3$.

The point A is an x intercept.

The point B is a local maximum.

The point C is a point of inflexion.

Find

(i) the coordinates of A

1

(ii) the coordinates of B

2

(iii) the coordinates of C

2

b)

(i) Find the length of BD as a simplified surd.

2

(ii) Find the length of BC correct to one decimal place.

3

(iii) Find the area of triangle ABD as a surd.

2

2

Question 3: (12 marks) (Start a new page)

a) The first term of an arithmetic sequence is 4 and the fifth term is four times the third term. Find the common difference.

2

b) Determine the derivates of:

(i)
$$(3x+7)^{14}$$

1

(ii)
$$\frac{2x}{x^2-1}$$

2

c) Find the **EXACT** values of the following definite integrals:

(i)
$$\int_0^1 e^{3x} dx$$

2

(ii)
$$\int_0^1 \frac{1}{1+x} dx$$

2

d) The sum of the first four terms of a geometric sequence is 30 and the limiting sum is 32. If the common ratio is negative, find the common ratio and the first term.

3

Question 4: (12 marks) (Start a new page)

a) Find the equation of the line (in general form) perpendicular to 2x - 3y - 6 = 0 and intersecting it on the x axis.

3

b) The line l passes through A (-1,3) and B (3,7).

- (i) Find the length of AB (in exact form)
- (ii) Find the equation of the line l.

1

- (iii) Show that the distance from O to the line l is $\frac{4}{\sqrt{2}}$ units.
- (iv) Calculate the area of $\triangle AOB$.
- c) The points A(2,-6) and B(4,8) are at opposite ends of the diameter of a circle.

Find

- (i) the centre of the circle.
- (ii) the radius of the circle.
- (iii) the equation of the circle.

Question 5:

a) Given $f'(x) = 3x^2 - 4$, 2 find y = f(x) if the function passes through (3, 8)

ABCD is a parallelogram.

Copy the above diagram onto your writing paper

- (i) Prove ΔΕΓC ||| ΔDFA.
 (ii) Find the value of x. (with a reason)
 (iii) Find the length of CG. (with reasons)
- c) A person wishes to invest \$A at the beginning of each month at a compound interest rate of 0.6% per month. How much does the person invest each month in order to have \$20 000 saved at the end of the first year?

Question 6: (12 marks) (Start a new page)

- a) (i) Sketch $y = x^2 + 6$ and y = 12 x on the same axes. 3 Find the x coordinate of the points in intersection.
 - (ii) Find the area in the first quadrant bounded by the y axis, $y = x^2 + 6$ and y = 12 x.
- b) Use Simpson's Rule with 5 function values to estimate $\int_0^4 \sqrt{5 + x^2} dx \quad \text{correct to 2 decimal places.}$
- c) Find log_{11} 57 correct to 2 decimal places.
- d) (i) Use logarithm laws to simplify $ln(\frac{\sqrt{x-1}}{x^2+1})$
 - (ii) Hence find $\frac{d}{dx} \left(\ln \frac{\sqrt{x-1}}{x^2+1} \right)$ 2

Question 7: (12 marks) (Start a new page)

a) The size of a colony of insects is given by the equation $P = 3000e^{kt}$

Where P is the population after t days.

- (i) Write down the initial population.
- (ii) If there are 3600 insects after one day, find the value of k, correct to2 decimal places.
- (iii) When will the colony double its initial population? (Answer correct to the nearest day).
- (iv) What is the rate of growth of the population after 2 days?
- b) Find the volume of the solid formed when the curve $y = \sqrt{x}$ is rotated about the x axis between x = 1 and x = 5. (Leave your answer in terms of π)

c) Consider the equation $2x^2 - (3 + k)x + 2 = 0$.

For what values of k does the equation have

(i) equal roots 2

(ii) different real roots 1

Question 8: (12 marks) (Start a new page)

a) Differentiate

(i)
$$\sin(1-2x^3)$$
 2

(ii)
$$tan3x$$
 2

(iii)
$$cos^2x$$

b)

An ornamental arch window 2 metres wide and 2 metres high is to be made in the shape of an arc of either a cosine curve or a parabola, as illustrated on axes above.

- i) If the arch is made in the shape of the curve $y = 2 \cos \frac{\pi}{2} x$, 2 find the area of the window. (Your answer may be left in terms of π).
- ii) If the arch is made the shape of an arc of a parabola, find :
 - α) the equation of the parabola 2
 - β) the area of the window 2

Question 9 (12 marks) (Start a new page)

a) (i) On the same diagram sketch the curve $y = \sin \pi x$ and the line y = x, in the domain $-1 \le x \le 1$.

3

(ii) Hence find the number of solutions to the equation $sin\pi x - x = 0$ in the domain $-1 \le x \le 1$.

1

b)

The diagram shows a sector OAB of a circle, centre O and radius x metres. Arc AB subtends an angle θ radians at O. An equilateral triangle BCO adjoins the sector.

Write down expressions for:

(i) the perimeter of the figure ABCO.

1

(ii) the area of the figure ABCO.

2

c) (i) Show that $\frac{d}{dx}(\sec x) = \sec x \tan x$

2

(ii) Hence find the equation of the normal to $y = \sec x$ at the point where $x = \frac{\pi}{4}$ (leave your answer in exact form)

3

Question 10 (12 marks) (Start a new page)

a)

The interior of a bowl is shaped by rotating the arc of the curve $y = log_e x$ from x = 1 to x = 5 around the y axis. Calculate the capacity of the bowl in terms of π .

b) Given that $a^2 + b^2 = 7ab$, use this result to show that

(i)
$$(\frac{a+b}{3})^2 = ab$$

(ii) and hence using part i) write

$$\log\left(\frac{a+b}{3}\right) - \frac{1}{2}(\log a + \log b)$$

3

in simplest form.

c) The diagram shows a rectangular field measuring 9 km by 15 km. From A, a bike rider wishes to go to B.

Riding across the field from A to C, he can average 5km/hr.

Along the road BC, he can average 13 km/hr.

Let
$$PC = x$$

(i) Show that the time he takes to go from A to C is
$$\frac{\sqrt{81+x^2}}{5}$$

(ii) Show that the total time he will take to go from A to C to B will be

$$T = \frac{\sqrt{81+x^2}}{5} + \frac{15-x}{13}$$

(iii) Show that the shortest time for the journey will occur when he rides to a point $3\frac{3}{4}km$ from P.

S.T.H.S TRIAL HSC 2UNIT

QUESTION 1

- 1) (12-3)2= 2-612+9 = 11-652
- 3) Ant = 80000 (1+200) Amt = \$95649.45
 - : Interest = \$15649.45
- d) 4012 = x 4012-01=0 2 (42 -1)=0
- -- 12 0, 1/4 e) 4-x = 2x4-1=2x 4-31=-206
 - 4 = 3x 4 = -x
 - x=4/3 ol=4

heck solutions:

- 14-41=-8 22/3 = 22/3/ 8 4-8 -: o(= 4/2 only solution
- x2= -4x +8 vertex (0,2) oc= -4 (y-2) Focal length Focus (0,1) ->x Directin's

QUESTION 2

- a) y= 60(2-0c
 - i) y=0 312 (6-31)=0 1.01=0,6
 - .. A (6,0)
- ii) dy = 122 322 dor st pts y1=0
 - 30(4-01)=0 3(=0 3(=4
 - B(4,32

iii) dry = 12-6x pt inf y =0 doi 12-6x=0 12=62

ot = 2.

- · · · (2,16)
- i) BD= 62+42- 2.4.6.6081200 = 36+16 - 48 x -1 = 52 + 24
 - 1. BD= 176 · Units
- BD = 2119 simplified sord
 - 5i~ 45° singo BC = 2/19, sin 450
 - B(= 7.1 Units
- iii) ABD= 1.6.4 517120

 - = 61300142

QUESTION 3

- a) AP: a=4 T5=4T3 a+4d = 4(a+2d)4+4d = 4(4+2d)4 + 4d = 16 + 8d-12 = 4d
- d=-3 b)i/d (3x+7)14 = 14.3 (3x+7) $= 42 (3x+7)^{13}$

- ii) de (2x) => quotient rule
 - u=2x / V= x2-1 1=2x
- $\frac{d}{dn!}\left(\frac{2x}{3n^2-1}\right) = \frac{2(3n^2-1) 2n(.2n)}{2}$ (0(2-1)2
 - = 2312-2-4312 (212-1)2
- $= -23(^{2}-2)$
- i) $\int e^{3x} ch dx = \left[\frac{e^{3x}}{2}\right]^{x}$ $= \frac{1}{3} \left[e^3 - e^0 \right]$
 - $= \frac{1}{3} \left(e^3 1 \right)$
- - = In 2 11°
- d) $GP: S_{\mu} = 30$ $S_{\infty} = 32$
 - $30 = a(1-r^{4})$ 32 = a
- - - 16 (1- +4) = 15
 - 16 16c4 =15
 - negative r= 1 since

.. fro~ (2)

DUESTION 4

- a) grad of 20c-34-6=0 34 = 201 - 6
 - .. w = 3 .. beib w = -3
 - 201-34-6=0 cuts x axis at (3,0)
- · required Hine mi=-3 thin (3,0) 4-0=-3 (x-3)
 - 24 = -3x +9
 - 311 +24 -9=0
- (i) $AB = \sqrt{(3-1)^2 + (1-3)^2}$
 - = 16+16
- = 4\12 units ii) $4: m = \frac{4}{4} = 1$
 - = 4.42.4 = 8units 4-7=1(21-3)

Area

△ AOB

- Noc-4-4=0 general
- iii) P= 0x1 + 0x-1+4

3	
() i) Centre (3,1)	20
(i) $R = \sqrt{(3-4)^2 + (1-8)^2}$ = $\sqrt{50}$	20
$\frac{111}{111} \left(\frac{3(-3)^2 + (y-1)^2 = 50}{2(2y-1)^2} \right)$	<u>O</u> t
QUESTION 5	ه)
a) $f'(31) = 331^2 - 4$ $f(31) = 31^3 - 4x + 6$ sub $(3,8)$ $8 = 27 - 12 + 6$ 8 = 15 + 6	
$c = -7$ $\therefore f(x) = .3(3 - 4x)(-7)$ $\Rightarrow \qquad \qquad$	_
F 10	11,
i) In A'S EFC, DFA EFC = DFA (vertically opposite of alternate BC AD A EFC ADFA (equipagular	
ii) $\frac{5c}{12} = \frac{10}{15} \left(\frac{\text{catio of corsp.}}{\text{sides in similar}} \right)$ $15 = 120 \qquad \text{triangles}$ $5c = 8$	
iii) pythag theroem in \triangle AFD: FD=9 " \triangle ECF: EF=6 ED= CG=15 (opp side) (cetange)	- (
$20,000 = A(1.006)^{12} + A(1.006)^{11} + A(1.006)^{12}$ $20,000 = A[1.006 + + 1.006]^{12}$	'4 I

r= 1.006

n= 12

50,000 = H[1.000 (1.00013-1)]
20,000 (.000) = A
1.006 (1.00612-1)
:. A = \$1602.76
QUESTION 6 a) i) Ay = $3c^2 + b$ $3c^2 + b = 12 - 7c$ $3c^2 + 3c - b = b$ $(7c + 3c - b = b)$ $(7c + 3c - b = b)$ $(7c + 3c - b = c)$ $(7c + 3c - b$
$A = \frac{2}{2} \left(\left(6 - 3 \zeta - 3 \zeta^2 \right) \right) d\alpha \zeta$
$= (12-2-\frac{8}{3})-0$
= 71/3 unit2
y (5 (6 3 \(\sqrt{14}\) \(\sqrt{12}\)
$\begin{cases} F & y_1, y_2, y_3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

= 12·53

= 774 insects/day

 $= 2 \left[\frac{2.2}{2} \sin \frac{\pi}{3} \right]$

$$= \frac{8}{\pi} \left[\sin \frac{\pi}{2} \right]_{0}^{1}$$

$$= \frac{8}{\pi} \left[\sin \frac{\pi}{2} - \sin 0 \right]$$

$$= \frac{8}{\pi} \sin^{2} \frac{1}{2}$$

ii)
$$\alpha$$
) usc $(x-h)^2 = -4a(y-k)$
vertex $(0,2)$
 $x^2 = -4a(y-2)$
sub pt $(1,0)$
 $1 = -4a.-2$
 $1 = 8a$
 $a = 1/8$
eqn parab: $x^2 = -\frac{1}{2}(y-2)$

$$A = 2 \int (2 - 2 \pi i^{2}) dsc$$

$$= 2 \left[2 \pi i - \frac{2 \pi i}{3} \right]$$

$$= 2 \left[2 - \frac{2}{3} \right]$$

$$= \frac{8}{3} unit^{2}$$

 $2x^{2} = -y + 2$ $y = 2 - 2x^{2}$

DUESTION 9

i)
$$y = \sin \pi x$$

period = $\frac{2\pi}{\pi} = 2$

i)

 $y = \sin \pi x$
 $y = \sin \pi x$

ii) 3 solutions

i)
$$P = 331 + x \theta$$

ii)
$$A = \frac{1}{2} x^2 \theta + \frac{1}{2} x^2 \sin \frac{\pi}{3}$$

$$= \frac{1}{2} x^2 \theta + \frac{1}{2} x^2 \frac{13}{2}$$

$$= \frac{1}{2} x^2 \theta + \frac{13}{4} x^2$$

c)
$$\frac{d}{dt} (\sec x) = \frac{d}{dt} (\cos x)^{-1}$$

i) $\frac{d}{dt} = -1.7 \sin x (\cos x)$

$$= \frac{S100L}{x^2 cos}$$

$$= \frac{1}{x cos} \cdot \frac{1}{x cos}$$

ii)
$$m_{\tau} = \frac{\tan x}{4} \cdot \sec x$$

$$m_{\tau} = \frac{\tan x}{4} \cdot \sec x$$

$$m_{N} = -\frac{1}{\sqrt{2}}$$

at
$$x = \frac{\pi}{4}$$
 $y = \sec \frac{\pi}{4}$

$$p + \left(\frac{\pi}{4}, \sqrt{2}\right) \text{ and } m_N = -\frac{1}{\sqrt{2}}$$

$$no(ma) \quad y - \sqrt{2} = -\frac{1}{\sqrt{2}} \left(3L - \frac{\pi}{4}\right)$$

$$\sqrt{2}y - \lambda = -x + \pi$$

$$y - \sqrt{2} = -\frac{1}{\sqrt{2}} (3)$$

$$\sqrt{2}y - \lambda = -x + \frac{\pi}{4}$$

$$x + \sqrt{2}y - \lambda - \frac{\pi}{4} = 0$$

QUESTION 10

a)
$$x=1 \Rightarrow y=0$$
 $x=5 \Rightarrow y=1.5$

$$V = \pi \int_{0}^{1.5} (e^{y})^{2} dy$$

$$V = \pi \left[\frac{e^{2y}}{2} \right]_{0}^{1.5}$$

$$V = \pi \left[\frac{e^{2y}}{$$

b)
$$(\frac{a+b}{3})^2 = \frac{a^2 + 2ab + b^2}{9}$$

$$= \frac{2ab + 7ab}{9}$$

$$= ab$$

$$LH = RHS$$

$$\log \left(\frac{a+b}{3}\right)^2 = \log ab$$

$$2 \log \left(\frac{a+b}{3}\right) = \log ab$$

$$\log \left(\frac{a+b}{3}\right) = \frac{1}{2} \log ab$$

$$\log \left(\frac{a+b}{3}\right) = \frac{1}{2} \left(\log a + \log b\right)$$

$$(\log \left(\frac{a+b}{3}\right) - \frac{1}{2} \left[\log a + \log b\right] = 0$$

c) i)
$$A = \sqrt{3c^2 + 81}$$
 pyth. th.
 $D = S \cdot T \cdot T \cdot T = D$
 $A = \sqrt{3c^2 + 81}$ $S = \frac{15 - 3c}{13}$

iii)
$$\frac{dT}{dol} = \frac{1}{2} \cdot \frac{25c}{5} \left(x^2 + 81 \right)^{\frac{1}{2}} - \frac{1}{13}$$

 $\frac{dT}{dol} = \frac{3c}{5\sqrt{5(2+8)}} - \frac{1}{13}$

$$\frac{5C}{5\sqrt{5(^{2}+8)}} = \frac{1}{13}$$

$$13x = 5\sqrt{5(^{2}+8)}$$

$$169x^{2} = 25(5(^{2}+8))$$

$$169x^{2} = 25x^{2} + 2025$$

$$144x^{2} = 2025$$

$$x^{2} = \frac{2025}{144}$$

$$5C = \pm \frac{45}{12}$$

test max min for x = 3.75

×	B	334	4
T'	_	0	+
		\	/+
		0	

.. min Time If x = 3.75