

Research Questions

- Problem:
 - From niche to popular
 - Huge catalogue, which to pick?
 - o Daunting for newcomers and avid anime enjoyers
- How can we recommend anime that users would enjoy?
- How can we create and improve an anime recommender system?

Dataset (1)

Purpose: analyze user profiles and suggest an anime matching their interests

Used 2 Datasets from Kaggle:

- anime.csv: csv file that contains a list of animes with numerous features.
- 2) **ratings.csv** is a csv file that contains user ids and their ratings for different animes

Goal: Use this data to create a **cross referencing table** that will **map users** who have the same taste of anime **based on their ratings** and **suggest a list of animes** that can fit their profile

Dataset (2) - Anime Dataset

We can see that our anime data set is composed of 12 294 rows and contains 7 columns.

- anime_id: id to identify the anime
- name: title of the anime
- genre: Genre of the anime
- type: tye of the anime
- episodes: number of episodes of the anime
- rating: average rating out of 10 for this anime, provided by the website provider.
- members: number of community members that follow the particular anime

	anime_id	name	genre	type	episodes	rating	members
0	32281	Kimi no Na wa.	Drama, Romance, School, Supernatural	Movie		9.37	200630
1	5114	Fullmetal Alchemist: Brotherhood	Action, Adventure, Drama, Fantasy, Magic, Mili	TV	64	9.26	793665
2	28977	Gintama°	Action, Comedy, Historical, Parody, Samurai, S	TV	51	9.25	114262
3	9253	Steins;Gate	Sci-Fi, Thriller	TV	24	9.17	673572
4	9969	Gintama'	Action, Comedy, Historical, Parody, Samurai, S	TV	51	9.16	151266
5	32935	Haikyuu!!: Karasuno Koukou VS Shiratorizawa Ga	Comedy, Drama, School, Shounen, Sports	TV	10	9.15	93351
6	11061	Hunter x Hunter (2011)	Action, Adventure, Shounen, Super Power	TV	148	9.13	425855
7	820	Ginga Eiyuu Densetsu	Drama, Military, Sci-Fi, Space	OVA	110	9.11	80679
8	15335	Gintama Movie: Kanketsu-hen - Yorozuya yo Eien	Action, Comedy, Historical, Parody, Samurai, S	Movie		9.10	72534
9	15417	Gintama': Enchousen	Action, Comedy, Historical, Parody, Samurai, S	TV	13	9.11	81109

Dataset (3) - User Dataset

We can see that our user data set is composed of 3 columns.

- user_id: non identifiable randomly generated user id.
- anime_id : the anime that this user has rated.
- rating: rating out of 10 this user has assigned (-1 if the user watched it but didn't assign a rating).

	user_id	anime_id	rating
0	1	20	-1
1	1	24	-1
2	1	79	-1
3	1	226	-1
4	1	241	-1

Model Design (1) - Preprocessing

Further filtering is done to ensure that our models can predict better. We subjected the dataset to 2 major constraints:

- filter out users who have rated less than 200 animes
- filter out animes that have received less than 100 ratings

Then, we constructed a pivot table and replaced all NaN values by 0 as Matrix Factorization works best when NaN are set to 0

Model Design (2) - SVD

- Implemented an SVD model and set the number of components to 100.
- Number of components is a hyperparameter that can be changed. Results change according to that parameter.
- We then created a correlation matrix using the results from SVD transformation.
- Recommendations were made based on the top 1 anime.
- Filtered the animes by correlation to the top 1. Tries showed an upper bound correlation of 1.0 and a lower bound correlation of 0.878 provide the best results.

```
list(anime_names[(corr_popular_anime < 1.0) & (corr_popular_anime > 0.878)])

['Angel Beats!',
    'Code Geass: Hangyaku no Lelouch',
    'Code Geass: Hangyaku no Lelouch R2',
    'Elfen Lied',
    'Fullmetal Alchemist: Brotherhood',
    'Shingeki no Kyojin']
```

Model Design (3) - Random Forest

- Supervised Learning
- User-user Recommender
- Collaborative Filtering Approach
- Random Forest Algorithm
 - Manually Tuned Hyperparameters
- Regression model that predicts Ratings
- Results?

Results

- RMSE and MAE: most popular regression measurements metrics
- Used global average (7.287) and anime averages as baseline
- Lower is better

Conclusion and Discussion

- Retrospective on research questions.
- Satisfied with results?
 - Almost satisfied. The results are encouraging but we are interested in how we can optimize it and provide more precise and accurate results while ensuring a low running time.
- Issues?
 - Long computing times (ex: RandomSearchCV)
- What can be improved?
 - Further analysis on the effect of hyperparameter tweaking is considered for the TruncatedSVD.
 - User biases
 - Compare with content based recommender

Questions?

