Getting Started with tcaCALC

J.R. Alger

<u>jeff@neurospectroscopics.com</u> <u>jeffry.alger@utsouthwestern.edu</u>

Navambar 20 2024

November 29, 2024

tcaCALC

- The tcaCALC software tool is designed to determine best fit metabolic fluxes in studies that use ¹³C- or ¹⁴C-enriched tracers to probe TCA cycle metabolism.
- The newest version of tcaCALC was written in MATLAB.
 - MATLAB assures compatibility across multiple operating system platforms.
 - tcaCALC is based on previous versions that were written in the C programming language and ran only under the now obsolete Microsoft Disk Operating System.
- The user submits measured values of specific atom fractional enrichments, ¹³C NMR multiplet relative integrated intensities, or relative mass isotopologue intensities of common products of TCA cycle metabolism together with the substrate isotopic enrichment that was used in a particular experiment.
- tcaCALC iteratively determines the PDH, YPC, YS and PK rates (relative to citrate synthase) that best fit the measured data.

User-input: Two methods

- tcaCALC can be run with user-input
 - from GUI (General User Interface) or
 - from two user-generated comma-separated-value (CSV) spreadsheets.
- The GUI method is useful for learning and understanding software but is cumbersome when complex studies need to be analyzed
- This presentation is focussed on user-input via the csv spreadsheet

Create a CSV spreadsheet that describes the hypothetical metabolic models

 An example csv is provided at .\InputTemplates\MetabolicModelInput\MetabolicModels_All.csv

Create a CSV spreadsheet that describes the measured data

- An example csv is provided at .\InputTemplates\GDAInput\GeneralDataArrayInp ut.csv
- Legal entries for MoleculeID and Measures
 columns in this spreadsheet are given in
 .\InputTemplates\GDAInput\ LegalGDAEntries.txt

Start tcaCALC software

- Open the tcaCALC distribution folder
- Select tcaCALC20190901.m
- MATLAB will open

Run tcaCALC with MATLAB

- Select the green arrow in the MATLAB editor to run the tcaCLAC software
- The tcaCALC GUI will open

Input the Metabolic Models

Select Load Metabolic Models ...

Input the Metabolic Models

Navigate to and select the metabolic models csv

Input the measured data

Select Load Measured Data CSV

Input the measured data

 Navigate to and select the measured data csy

Run tcaCALC

Select Run tcaCALC

Run tcaCALC

tcaCALC in progress window appears

Run tcaCALC

Monitor tcaCALC in MATLAB window (if desired)

tcaCALC completion

• On completion tcaCALC presents results as graphics

tcaCALC completion

• Select OK to save and close all graphics output

tcaCALC completion

 tcaCALC graphics and numerical results are saved to the directory that contains the Metabolic Models .csv

tcaCALC All Models Output Results (Graphics) Summary Plot

tcaCALC Model Output Results (Graphics) One produced for Each Model

tcaCALC Models Output Results (Numerical)

