

Why Subnet?

- Using default Class A, B and C subnets (called Classful IP Addressing) is inefficient:
 - Wastes unused IP Addresses (Public IP Addresses)
- Allows you to create multiple logical networks that exist within a single Class A, B, or C network.
 - Breaks up larger networks into multiple smaller sub-networks, which are called subnets
- Allows for more efficient routing via router summarization.
- Increased network security!

Fixed Length Subnetting

- We will be learning about fixed-length subnetting, known as a fixed-length subnet mask (FLSM).
- There is also variable-length subnetting (VLSM), which is beyond the scope of this beginner's course.

Class C Subnetting Example

- You're the network administrator for the Computer Science department at a university.
- You're setting up four new lecture halls that must have their own 60-person wireless network.
- You've been assigned the 200.15.178.0 Class
 C Network by the university, that supports
 254 hosts per network by default.
- How do you break up this one Class C network into 4 smaller networks that support 60 host IP addresses per network?
- You subnet it.
- Subnetting allows your to breakup a larger network into smaller networks (subnets).

Subnet 1 (Lecture Hall 1)

- 200.15.178.0/26
- 62 Hosts

Subnet 2 (Lecture Hall 2)

- 200.15.178.64/26
- 62 Hosts

200.15.178.0 Class C Network (254 Hosts)

Subnet 3 (Lecture Hall 3)

- 200.15.178.128/26
- 62 Hosts

Subnet 4 (Lecture Hall 4)

- 200.15.178.192/26
- 62 Hosts

Process of Subnetting

- We borrow host bits to create more sub-networks (subnets) from a Class A, B, or C network.
- When you borrow hosts bits:
 - o You create additional sub-networks, i.e., subnets
 - You also decrease the amount of host IP addresses available to use

	8 bits	8 bits	8 bits	8 bits	
Class A:	Network = 8 Bits	Hosts = 24 Bits = 2 ²⁴ – 2 = 16,777,214			
Class B:	Network	= 16 Bits	Hosts = 16 Bits = 2 ¹⁶ – 2 = 65,534		
Class C:		Network = 24 Bits		Hosts = 8 Bits = 2 ⁸ – 2 = 254	

How to Create Subnets

- Borrow bits from the host portion of an IP address
 - Each bit we borrow is equal to 2¹ Subnets
 - Borrow 1 Host Bit = $2^1 = 2$
 - Borrow 2 Host Bits = $2^2 = 4$
 - Borrow 3 Host Bits = 2^3 = 8
 - Borrow 4 Host Bits = 2^4 = 16
 - Etc.

Creating Subnets Visualized

Subnetting Questions

- To Create a Subnet, Answer the Following Questions:
 - o How many subnets are needed?
 - How many hosts do you need per subnet?

Class C Possible Subnets

Binary (N.N.N.H)	Decimal	CIDR	# Subnets (2x)	Block Size (2 ^y)	# Hosts (2 ^y - 2)
N.N.N.00000000	255.255.255.0	/24	$2^0 = 1$	$2^8 = 256$	$2^8 - 2 = 254$
N.N.N.10000000	255.255.255.128	/25	$2^1 = 2$	$2^7 = 128$	$2^7 - 2 = 126$
N.N.N.11000000	255.255.255.192	/26	$2^2 = 4$	$2^6 = 64$	$2^6 - 2 = 62$
N.N.N.11100000	255.255.255.224	/27	$2^3 = 8$	$2^5 = 32$	$2^5 - 2 = 30$
N.N.N.11110000	255.255.255.240	/28	$2^4 = 16$	$2^4 = 16$	$2^4 - 2 = 14$
N.N.N.11111000	255.255.255.248	/29	$2^5 = 32$	$2^3 = 8$	$2^3 - 2 = 6$
N.N.N.11111100	255.255.255.252	/30	$2^6 = 64$	$2^2 = 4$	$2^2 - 2 = 2$

Number of Subnets (2^x)

• X = number of host bits we borrow to create subnets

Block Size (2^y)

• Y = number of remaining host bits left that are used for the subnet IP addresses

Hosts per Subnet (2^y – 2)

- There are two addresses per network (or subnet) that we cannot use to assign to hosts on that network:
 - Network Address: This is the address used to uniquely identify the network (or subnet).
 - o **Broadcast Address**: Address reserved for broadcast communication on the network.

Class B Possible Subnets

Binary (N.N.H.H)	Decimal	CIDR	# Subnets (2x)	Block Size (2 ^y)	# Hosts (2 ^y - 2)
N.N.00000000.00000000	255.255.0.0	/16	20 = 1	$2^{16} = 65,536$	$2^{16} - 2 = 65,534$
N.N.10000000.00000000	255.255.128.0	/17	$2^1 = 2$	$2^{15} = 32,768$	$2^{15} - 2 = 32,766$
N.N.11000000.00000000	255.255.192.0	/18	$2^2 = 4$	$2^{14} = 16,384$	$2^{14} - 2 = 16,382$
N.N.11100000.00000000	255.255.224.0	/19	$2^3 = 8$	$2^{13} = 8,192$	$2^{13} - 2 = 8,190$
N.N.11110000.00000000	255.255.240.0	/20	$2^4 = 16$	$2^{12} = 4,096$	$2^{12} - 2 = 4,094$
N.N.11111000.00000000	255.255.248.0	/21	$2^5 = 32$	$2^{11} = 2,048$	$2^{11} - 2 = 2,046$
N.N.11111100.00000000	255.255.252.0	/22	$2^6 = 64$	$2^{10} = 1,024$	$2^{10} - 2 = 1,022$
N.N.11111110.00000000	255.255.254.0	/23	$2^7 = 128$	$2^9 = 512$	$2^9 - 2 = 510$
N.N.11111111.00000000	255.255.255.0	/24	28 = 256	$2^8 = 256$	$2^8 - 2 = 254$
N.N.11111111.10000000	255.255.255.128	/25	$2^9 = 512$	$2^7 = 128$	$2^7 - 2 = 126$
N.N.111111111.11000000	255.255.255.192	/26	$2^{10} = 1,024$	$2^6 = 64$	$2^6 - 2 = 62$
N.N.111111111.11100000	255.255.255.224	/27	$2^{11} = 2,048$	$2^5 = 32$	$2^5 - 2 = 30$
N.N.1111111111110000	255.255.255.240	/28	$2^{12} = 4,096$	$2^4 = 16$	$2^4 - 2 = 14$
N.N.1111111111111000	255.255.255.248	/29	$2^{13} = 8,192$	$2^3 = 8$	$2^3 - 2 = 6$
N.N.1111111111111100	255.255.255.252	/30	$2^{14} = 16,384$	$2^2 = 4$	$2^2 - 2 = 2$

Class A Possible Subnets

Binary (N.H.H.H)	Decimal	CIDR	# Subnets (2x)	Block Size (2 ^y)	# Hosts (2 ^y - 2)
N.00000000.00000000.00000000	255.0.0.0	/8	$2^0 = 1$	$2^{22} = 16,777,216$	$2^{22} - 2 = 16,777,214$
N.10000000.00000000.00000000	255.128.0.0	/9	$2^1 = 2$	$2^{23} = 8,388,608$	$2^{23} - 2 = 8,388,606$
N.11000000.00000000.00000000	255.192.0.0	/10	$2^2 = 4$	$2^{22} = 4,194,304$	$2^{22} - 2 = 4,194,302$
N.11100000.00000000.00000000	255.224.0.0	/11	$2^3 = 8$	$2^{21} = 2,097,152$	$2^{21} - 2 = 2,097,150$
N.11110000.00000000.00000000	255.240.0.0	/12	$2^4 = 16$	$2^{20} = 1,048,576$	$2^{20} - 2 = 1,048,574$
N.11111000.00000000.00000000	255.248.0.0	/13	$2^5 = 32$	$2^{19} = 524,288$	$2^{19} - 2 = 524,286$
N.11111100.00000000.00000000	255.252.0.0	/14	$2^6 = 64$	$2^{18} = 262,144$	$2^{18} - 2 = 262,142$
N.11111110.00000000.00000000	255.254.0.0	/15	$2^7 = 128$	$2^{17} = 131,072$	$2^{17} - 2 = 131,070$
N.11111111.00000000.00000000	255.255.0.0	/16	$2^8 = 256$	$2^{16} = 65,536$	$2^{16} - 2 = 65,534$
N.11111111.10000000.00000000	255.255.128.0	/17	$2^9 = 512$	$2^{15} = 32,768$	$2^{15} - 2 = 32,766$
N.11111111.11000000.00000000	255.255.192.0	/18	$2^{10} = 1,024$	$2^{14} = 16,384$	$2^{14} - 2 = 16,382$
N.11111111.11100000.00000000	255.255.224.0	/19	$2^{11} = 2,048$	$2^{13} = 8,192$	$2^{13} - 2 = 8,190$
N.1111111111110000.00000000	255.255.240.0	/20	$2^{12} = 4,096$	$2^{12} = 4,096$	$2^{12} - 2 = 4,094$
N.1111111111111000.000000000	255.255.248.0	/21	$2^{13} = 8,192$	$2^{11} = 2,048$	$2^{11} - 2 = 2,046$
N.11111111.11111100.00000000	255.255.252.0	/22	$2^{14} = 16,384$	$2^{10} = 1,024$	$2^{10} - 2 = 1,022$
N.11111111.11111110.00000000	255.255.254.0	/23	$2^{15} = 32,768$	$2^9 = 512$	$2^9 - 2 = 510$
N.11111111111111111000000000	255.255.255.0	/24	$2^{16} = 65,536$	$2^8 = 256$	$2^8 - 2 = 254$
N.11111111.11111111.10000000	255.255.255.128	/25	$2^{17} = 131,072$	$2^7 = 128$	$2^7 - 2 = 126$
N.1111111111111111111000000	255.255.255.192	/26	$2^{18} = 262,144$	$2^6 = 64$	$2^6 - 2 = 62$
N.11111111.11111111.11100000	255.255.255.224	/27	$2^{19} = 524,288$	$2^5 = 32$	$2^5 - 2 = 30$
N.11111111111111111110000	255.255.255.240	/28	$2^{20} = 1,048,576$	$2^4 = 16$	$2^4 - 2 = 14$
N.11111111.11111111.11111000	255.255.255.248	/29	$2^{21} = 2,097,152$	$2^3 = 8$	$2^3 - 2 = 6$
N.11111111.11111111.11111100	255.255.255.252	/30	$2^{22} = 4,194,304$	$2^2 = 4$	$2^2 - 2 = 2$

Subnet Calculation Table (2x)

Host Bits Borrowed	2 ^x	Number of Subnets Created			
1	2 ¹	2			
2	2 ²	4			
3	2 ³	8			
4	2 ⁴	16			
5	2 ⁵	32			
6	2 ⁶	64			
7	2 ⁷	128			
8	2 ⁸	256			
9	2 9	512			
10	2 ¹⁰	1,024			
11	2 ¹¹	2,048			
12	2 ¹²	4,096			
Etc					

Subnet Hosts & Addresses Calculation Table (24)

Host Bits Left	2 ^y	Addresses per Subnet (2 ^y)	Hosts per Subnet (2 ^y – 2)
4	2 ¹	2	θ
2	2 ²	4	2
3	2 ³	8	6
4	24	16	14
5	2 ⁵	32	30
6	2 ⁶	64	62
7	27	128	126
8	2 ⁸	256	254
9	2 ⁹	512	510
10	2 ¹⁰	1,024	1,022
11	211	2,048	2,046
12	2 ¹²	4,096	4,094