Proofs and Programs

Phillipe Audebaud * ENS de Lyon

Contents

Ι	(Pure) λ -Calculus 0.1 Computing with functions?	3 3
1	A toolbox on λ -calculus	4
2		7 7 8 8
3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 9 11 12
II	I Polymorphisme	13
4	Abstraction des types 4.1 Motivations 4.2 Le système F à la Church 4.2.1 Système F à la Curry 4.2.2 Aspects dynamiques	13 13 14 14 15
5	Propriétés méta du système F 5.1 Propriétés de F-Church	15 15 16 16
II	II Égalité	18
0	Usage des inductifs dans Coq 0.1 Les booléens	18 18 18

 $^{{\}rm *https://perso.ens-lyon.fr/philippe.audebaud/PnP/}$

1	Types dépendants	19
2	Egalité (prélude)	19
3	Question d'égalité	20
	Mise en oeuvre de $Id_A(_,_)$ 4.1	

Basis

• Lecture: Tue 8h-10h (Philippe Audebaud)

• Tutorial: We 8h-10h (Aurore)

10 Weeks of courses (3x3), which is really low.

$$Final\ mark = 50\% \cdot CC + 50\% \cdot Exam$$

No mid-time exam, but weekly homework.

Warning Presence at the courses and tutorial will have an impact on the marks.

Prerequisites

- L2.2 \rightarrow Logical (Natacha P., Chapter 1 & 2):
 - Proof theory
 - Formal system for logic inference.
- λ -calculus
- Category theory

Part I

(Pure) λ -Calculus

0.1 Computing with functions?

How do we do mathematics?

- A. Having structures: numbers, spaces (points, vectors, functions) \rightarrow Eilenberg-Mac Lane (\sim 1942) Category theory
- B. Build, explore, transform structures \rightarrow Church (~ 1930) λ -Calculus
- C. Compare "stuff": equality \to Voevoski (
 $\sim 2006)$ Algebraic topology \to search HoTT (Hight order Type Theory)
- D. Provide a framework (rules) to reasoning on all that! \rightarrow 1st point

0.2 Church λ -calculus (informally)

$$f: A \to B$$
$$x \mapsto e$$

Given $a \in A$, f(a) is the "replacement of the occurrence of x in e by a"

$$f \stackrel{\text{def}}{=} \lambda x.e$$
 (λ -abstraction)
 $f a = (\lambda a.e) a$ (Application)

Notation

$$e\langle a/x\rangle$$

is the replacement in e of all the occurrences of a by x.

Example

1.

$$\lambda x.x$$

$$x \mapsto x$$

is the identity function

2.

$$\lambda x.y$$

$$x \mapsto y$$

Here x and y are variables, $x \neq y$. $(\lambda x.y)$ a leads to $y\langle a/x\rangle \equiv y$

$$(\lambda x.a) \ b \rightarrow_{\beta} a\langle b/x \rangle$$

 \rightarrow_{β} is a binary relation on lambda-terms \Rightarrow idea of computation on terms.

Notion of α -equivalence

$$\lambda x.a \stackrel{?}{=}_{\alpha} \lambda y.b$$

Pick a fresh variable, let say z,

$$a\langle z/x\rangle =_{\alpha} b\langle z/y\rangle$$

All the results and proofs will be done up to α -equivalence (no difference made between $\lambda x.x$ and $\lambda y.y$).

1 A toolbox on λ -calculus

 λ -calculus: Syntax and Semantics, Herk Barendregt (1977)

Let \mathcal{X} be a measurable set of variables, ranged over by x, y, z, ...

Definition 1. A λ -term e is generated by the grammar:

$$a, b, e... := x \in \mathcal{X} \mid \lambda x.e \mid a b$$

The set of λ -terms is denoted Λ .

Definition 2 (Free variable). The set of free variables in e, denoted FV(e) is defined inductively:

- if $e \equiv x \in \mathcal{X}$, $FV(x) \equiv \{x\}$
- if $e \equiv \lambda x.a_0$, $FV(\lambda x.a_0) \equiv FV(a_0) \setminus \{x\}$
- if $e \equiv a_1 \ a_2$, $FV(a_1 \ a_2) \equiv FV(a_1) \cup FV(a_2)$

A term e is closed if $FV(e) = \emptyset$

Definition 3 (Substitution). Given $x \in \mathcal{X}$, $a \in \Lambda$, the substitution of (all the) occurrences of a in $e \in \Lambda$, denoted $e\langle a/x \rangle$ is:

- if $y \in \mathcal{X} \setminus \{x\}$, $y\langle a/x \rangle \equiv y$ and $x\langle a/x \rangle \equiv a$
- $(\lambda y.e)\langle a/x\rangle = \lambda y.e\langle a/x\rangle$
- $(e f)\langle a/x\rangle = (e\langle a/x\rangle) f\langle a/x\rangle$

Definition 4 (\rightarrow_{β} reduction).

Example

1.

$$\underbrace{(\lambda x.(\lambda y.y) \ a)}_{\Rightarrow_{\beta}(\lambda y.y) \ b} \ b) \rightarrow_{\beta} ((\lambda y.y) \ a) \ \langle b/x \rangle \equiv ((\lambda y.y) \ \langle b/x \rangle) a \langle b/x \rangle$$
$$\equiv (\lambda y.y) \ a \langle b/x \rangle$$

2.

$$(\lambda x.y) \ a \rightarrow_{\beta} y$$

3.

$$(\lambda x.x \ x)(\lambda x.x \ x) \to_{\beta} (x \ x)\langle \lambda x.x \ x/x \rangle \text{ or } (x \ x)\langle \lambda y.y \ y/x \rangle$$
$$(\lambda x.x \ x)(\lambda x.x \ x)$$

Russell paradox: we get an infinite β -reduction!

$$\rightarrow_{\beta} \subseteq \beta_0 \subseteq \underbrace{\beta}_{\beta-\text{reduction}} = \beta_0^*$$

 \rightarrow_{β}^{*} is the β -reduction, noted $\twoheadrightarrow_{\beta}$

Definition 5 (β_0 -contraction). Let $a, b \in \Lambda$. $a \beta_0 b$ is defined by cases:

- $x \beta_0 x$
- $(\lambda x.u)v \beta_0 u\langle v/x\rangle$
- $(\lambda x.u) \beta_0 (\lambda x.v)$ if $u \beta_0 v$
- $(u \ v) \ \beta_0 \ (u' \ v) \ if \ u \ \beta_0 \ u'$
- $(u v) \beta_0 (u v')$ if $v \beta_0 v'$

Maintenant en français!

Remarque: β_0 est réflexive.

Definition 6. La β -réduction est la clôture transitive de β_0 :

$$\beta = \beta_0^*$$

Remarque Si $a, b \in \Lambda$, alors $a \beta b$ si il existe $n \ge 0$ et $(e_k)_{0 \le k \le n} \lambda$ -termes tels que :

- $a = e_0$ et $b = e_n$
- pour tout k < n, $e_k \beta_0 e_{k+1}$

Definition 7. Soit \mathcal{R} une relation binaire sur Λ . On dit que \mathcal{R} est λ -compatible si elle satisfait les propriétés suivantes :

- \bullet $x \mathcal{R} x$
- $si\ a\ \mathcal{R}\ b\ et\ c\ \mathcal{R}\ d\ alors\ a\ c\ \mathcal{R}\ b\ d$
- $si\ a\ \mathcal{R}\ b\ alors\ \lambda x.a\ \mathcal{R}\ \lambda x.b$

Propriété 1. La β -réduction est la plus petite relation λ -compatible et transitive contenant \rightarrow_{β}

 $Proof. \star On vérifie d'abord :$

$$\rightarrow_{\beta} \subseteq \beta_0 \subseteq \beta_0^* = \beta$$

D'autre part, β_0 est λ -compatible :

- par réflexivité, $x \beta x$
- soit $a \ \beta \ b$; par définition,il existe $n \ge 0$, $(e_k)_{0 \le k \le n}$ tel que $a = e_0$, $b = e_n$ et pour tout k < n, $e_k \ \beta_0 \ e_{k+1}$. Du coup, par définition de β_0 , pour tout k < n, $\lambda x.e_k \ \beta_0 \ \lambda x.e_{k+1}$.

 Ainsi, $\lambda x.a \ \beta \ \lambda x.b$.
- \star Soit \mathcal{R} une autre relation λ -compatible et transitive contenant \to_{β} . Montrons que $\beta \subseteq \mathcal{R}$. Il "suffit" de vérifier que $\beta_0 \subseteq \mathcal{R}$ (laissé en exercice).

Propriétés essentielles de la β -réduction

Remarque (Λ, β_0) est un système de réduction abstrait¹.

Definition 8 (Forme normale, Relation normalisante). Soit \mathcal{R} une relation binaire sur Λ ,

- On dit que a est une forme normale (relativement à \mathcal{R}) s'il n'existe pas $b \in \Lambda$ tel que a \mathcal{R} b.
- On dit que a a une forme normale (relativement à \mathcal{R}) s'il existe $b \in \Lambda$ tel que b est une forme normale et a \mathcal{R}^* b
- On dit que \mathcal{R} est normalisante si tout $a \in \Lambda$ a une forme normale

Exemple

- $\lambda x.x$ est une forme normale relativement à β_0
- β_0 n'est pas normalisante!

$$\Omega \equiv (\lambda x.x \ x) \ (\lambda x.x \ x)$$

$$\Omega \rightarrow_{\beta} \Omega$$

Definition 9 (Confluence). Soit \mathcal{R} une relation binaire sur Λ . On dit que \mathcal{R} est confluente si pour tout $(a,b,c) \in \Lambda^3$ tel que

$$a \mathcal{R}^* b et a \mathcal{R}^* c$$

alors il existe $d \in \Lambda$, tel que

$$b \mathcal{R}^* d et c \mathcal{R}^* d$$

Théorème 1. La β_0 -réduction est confluente.

Proof. En semaine 3 ou 4.

Corollaire 1. Tout λ -terme admet au plus une forme normale, relativement à β_0

 $^{1}\mathrm{Cf}\;\mathrm{ThPr}$

Notion d'égalité sur les λ -termes

Definition 10. La β -équivalence sur Λ est la relation binaire notée $=_{\beta}$, définie comme la clôture réflexive symétrique transitive de β_0 :

 $a =_{\beta} b \text{ s'il existe } n \geq 0 \text{ et } (e_k)_{0 \leq k \leq n} \text{ tel que } a = e_0 \text{ et } b = e_n \text{ et } \forall k < n, \text{ soit } e_k \beta_0 e_{k+1} \text{ soit } e_{k+1} \beta_0 e_k$

Definition 11 (λ -congruence). Une relation binaire \mathcal{R} (sur Λ) est une λ -congruence si c'est une relation d'équivalence et qu'elle est λ -compatible.

Théorème 2 (Church-Rosser). Pour tout $(a,b) \in \Lambda^2$, $a =_{\beta} b$ si et seulement si il existe $c \in \Lambda$ tel que $a \beta b$ et $b \beta c$

Proof. La condition est suffisante

Réciproquement, pour la condition nécessaire, on introduit $R \subseteq \Lambda \times A$ défini par : $a \mathcal{R} b$ s'il existe c tel que $a \beta c$ et $b \beta c$.

On remarque, par définition de \mathcal{R} ,

- R est réflexive et symétrique
- \mathcal{R} est transitive

De plus, \mathcal{R} contient β (ou β_0). Donc, si $a =_{\beta} b$, alors a R b.

Théorème 3. La relation d'équivalence $=_{\beta}$ est la plus petite λ -congruence contenant \to_{β} Proof. En exo.

Notation On note \equiv pour une définition ($\stackrel{\text{def}}{=}$), mais aussi pour l' α -équivalence ($=_{\alpha}$). On peut utiliser la notation de Bruijn (cf références).

2 Calcul propositionnel et correspondance de Curry-Howard

2.1 Éléments de langage (informels)

- Théorie de la démonstration (prouvabilité)
- Thème des modèles

Quelques "ingrédients" :

• énoncés (logiques) : ici les familles du calcul propositionnel:

$$A ::= x \mid \top \mid \bot \mid A \Rightarrow B \mid A \land B \mid A \lor B \mid \neg A^2 \tag{*}$$

La notation "A propriété" signifie que A est engendrée par la grammaire (\star)

- On parle de jugements sur ces énoncés : "A true"
- On introduit aussi des jugements hypothétiques : A_1 true, A_2 true, ... A_n true $\vdash B$ true Commentaires sur les différentes règles de (NJ):
- Le vrai
- L'implication (/!\: $A \Rightarrow B \neq \neg A \lor B \text{ dans (NJ)}$)
- Le faux
- La négation
- La disjonction

 $^{^2 \}neg A$ signifie en fait $A \Rightarrow \bot$

2.2 Fragments λ_{\rightarrow}

On peut associer des règles au typages de λ -termes en raisonnant sur $\lambda x.t:T$

Théorème 4 (Curry-Howard). Le fragment $NJ \rightarrow et \lambda \rightarrow sont \ en \ correspondance via:$

1. Si $\Delta \vdash t : T \ dans \ \lambda_{\rightarrow}$

$\lambda_{ ightarrow}$	$NJ_{ ightarrow}$	
type	proposition	
variable de type	proposition atomique	
type flèche	implication	
terme	$d\grave{e}rivation$	
variable de terme	hypothèse	
λ -abstraction	règle d'introduction	
application	règle d'élimination	
β -redex	coupure	
β -réduction	transformation sur les dérivations	
forme normale	dérivation sans coupure	

Figure 1: Correspondance de Curry-Howard

2.3 Interprétation BHK

L'interprétation de Brouwer-Heyting-Kolmogorov consiste à construire un témoin (une preuve) d'une proposition selon le protocole suivant :

- Un témoin pour $A \wedge B$ est une paire formée par un témoin pour A et un témoin pour B
- $\bullet\,$ Il y a un témoin unique pour \top
- Un témoin pour $A \vee B$ est soit un témoin pour A, soit un témoin pour B
- Il n'y a pas de témoin pour \bot
- Un témoin pour $A \Rightarrow B$ est une application de témoins pour A vers des témoins pour B
- Un témoin pour $\neg A$ est un témoin de $A \Rightarrow \bot$

Avec A, B engendrés par la grammaire

$$A ::= X \mid A \Rightarrow A \mid A \vee A \mid A \wedge A \mid \top \mid \bot$$

Definition 12 (Produit (paire)). Soit A,B. Le produit de A par B est le damier de $A \times B$, et de la propriété universelle suivante :

Pour tout $f: D \to A$ et $g: D \to B$, il existe $h: D \to A \times B$ tel que $\pi_1 \circ h = f$ et $\pi_2 \circ h = g^3$. De plus, h est unique et ne dépend que de f et de g,

$$h = \langle f, g \rangle$$

 $^{^3\}mathrm{Ces}$ égalité correspondent à des $\beta\text{-réduction}$ dans le $\lambda\text{-calcul}$

Par ailleurs, si $e: D \to A \times B$, alors

$$\begin{cases} \pi_1 \circ e : D \to A \\ \pi_2 \circ e : D \to B \end{cases}$$

Pour ce couple, il existe $\langle \pi_1 \circ e, \pi_2 \circ e \rangle : D \to A \times B$ Du coup, par unicité, on a nécessairement

$$\langle \pi_1 \circ e, \pi_2 \circ e \rangle = e$$

Cette observation donne lieu à :

- une transformation sur les dérivations
- une autre forme de réduction sur les λ -termes

On parle alors d' η -réduction.

On rajoute alors les règles de typage du produit (\times_i) et $(\times_{E,k})$ pour $k \in \{1,2\}$.

Definition 13 (Somme (coproduit)). Soit A,B. C'est la donné de A+B avec la propriété universelle suivante :

 $Si\ f:A\to C,\ et\ g:B\to C,\ il\ existe\ k:A+B\to C\ unique,\ ne\ dépendant\ que\ de\ f\ et\ de\ g\ noté\ \{f,g\},\ tel\ que$

$$\begin{cases} k \circ in_l = f \\ k \circ in_r = g \end{cases}$$

Par ailleurs, si on se donne

$$e: A + B \rightarrow C$$

Alors

$$\begin{cases} e \circ in_l : A \to C \\ e \circ in_r : B \to C \end{cases}$$

Donc

$$\{e \circ \in_l, e \circ in_r\} = e$$

On rajoute alors trois règles : (+Ig), (+Id) et (+E)

3 λ -calcul simplement typé

3.1 Quelques Lemmes

Lemme 1. Si $\Delta \vdash t : T$ clos, $FV(t) \subseteq FV(\Delta)$, où $FV(\emptyset) = \emptyset$, et $FV(\Delta, x : S) = FV(\Delta) \cup \{x\}$.

Attention : Un contexte de typage $\Delta \equiv x_1 : S, ..., x_p : S_p$ où $p \geq 0$ est valide si les variables $x_1, ..., x_p$ sont distinctes deux à deux.

On peut rajouter des règles sur la validité de Δ en tant que contexte.

$$\frac{\Delta \text{ contexte valide}}{\Delta, x: T \text{ contexte valide}} x \notin FV(\Delta)$$

Et on augmente (Hyp).

$$\frac{\Delta \text{ contexte valide } \quad x: T \in \Delta}{\Delta, x: T \text{ contexte valide}} \text{ (Hyp)}$$

Lemme 2 (Affaiblissement). Si $\Delta \vdash t : T$ et si $\Delta \subseteq \Delta'$, avec Δ' contexte valide, alors $\Delta' \vdash t : T$.

Proof. Par induction sur la dérivation principale, c'est-à-dire $\Delta \vdash t : T$. Le seul cas "délicat" est lorsque

$$\Delta, x: U \vdash a: V$$

Théorème 5. Si $\Delta \vdash t : T$, alors t est fortement normalisant.

Proof. Deux parties : poser la notation générale, puis l'adapter à \rightarrow_{λ} .

- 1. Définition générale : Si $e \in \Lambda$, $e \equiv \lambda \overline{x} \cdot \Delta \overline{u}$ avec $|\overline{x}| > 0$, $|\overline{u}| > 0$ et $\Delta \in \mathcal{X}$ ou bien Δ est un β -redex
 - e est en forme normale si $\Delta \in \mathcal{X}$ et chaque u_i est en forme normale
 - e est une forme normale de tête (HNF) si $\Delta \in \mathcal{X}$
 - si e n'est pas en HNF, c'est-à-dire Δ est un β -redex, Δ est appelé redex de tête.

Definition 14. $e \in \Lambda$ est fortement normalisant (SN) s'il n'existe pas de β -réduction infinie issue de e

Exemple

- Ω n'est pas SN
- $(\lambda x.\lambda y.y)$ Ω n'est pas SN (il existe une dérivation infinie) \rightarrow attention : la β -équivalence n'est pas compatible avec la propriété d'être fortement normalisant.

Par contre, si $a =_{\beta} b$ et b a une NF (resp HNF), alors a a une NF (resp HNF) De plus :

- Si e a une NF (resp HNF), $\lambda x.e$ a une NF (resp HNF)
- Si e est SN, $\lambda x.e$ est SN

Soit \mathcal{N} l'ensemble des termes SN, et $\mathcal{N}_0 \equiv \{x \ \overline{u} \mid x \ \overline{u} \in \mathcal{N}\} \subseteq \mathcal{N}$

Notation

- $e \in \Lambda$, $Succ(e) = \{e' \in \Lambda \mid e \beta_0 e'\}$, et cet ensemble est fini (réduction à branchements fini)
- Lemme de Koenig : si un arbre est infini et que cet arbre est a branchement fini, alors il existe un chemin infini

Si $e \in \mathcal{N}$, $\bigcup_{n>0} Succ^p(e)$ est fini, de sorte que la définition suivante est bien fondée :

Definition 15. Pour $e \in \mathcal{N}$, $\ell(e)$ désigne la somme des longueurs des chemins de tout réduction issue de e.

Lemme 3. Sont immédiats :

- $Si\ e \in \mathcal{N}$, $alors\ \lambda x.e \in \mathcal{N}$
- Si de plus $e' \in \mathcal{N}$ et $e \beta e'$, alors $e' \in \mathcal{N}$
- $Si\ e \in \Lambda\ tel\ que\ Succ(e) \subseteq \mathcal{N},\ alors\ e \in \mathcal{N}$

Proof. Pour le troisième point, soit $e \in \Lambda$ tel que $Succ(e) \subseteq \mathcal{N}$, pour tout $e' \in Succ(e)$, $\ell(e') < \ell(e) \to$ une récurrence simple sur $\ell(e)$ permet d'établir $\mathcal{P}(e) \equiv \text{"Succ}(e) \subseteq \mathcal{N}$ implique $e \in \mathcal{N}$ "

Soit
$$\mathcal{N}_0 \equiv \{\underbrace{x \ \bar{u}}_{(((x \ u_1) \ u_2) \dots) \ u_n} \mid x \ \bar{u} \in \mathcal{N}\} \subseteq \mathcal{N}$$

Lemme 4. i) Si $e \in \mathcal{N}$, alors $\lambda x.e \in \mathcal{N}$

- ii) Si $e \in \mathcal{N}$, et $e \beta' e$, alors $e' \in \mathcal{N}$
- iii) Si $e \in \Lambda$ tel que $Succ(e) \subseteq \mathcal{N}$, alors $e \in \mathcal{N}$
- iv) Si $e \in \Lambda$ et $x \in \mathcal{V}$, $e \ x \in \mathcal{N}$ implique $e \in \mathcal{N}$

Lemme 5. Si $b \in \mathcal{N}$ et $a\langle b/x \rangle$ $\bar{u} \in \mathcal{N}$

Proof. Par récurrence sur
$$l(b) + l(a\langle b/x \rangle \bar{u})$$
 Il suffit de montrer que $\sup_{\beta \in \mathcal{S}} ((\lambda x.a \ b \ \bar{u}) \subseteq \mathcal{N}$

3.2 Parties saturées de Λ

Definition 16. Soit $S \subseteq \Lambda$. Ont dit que S est saturée si elle satisfait les conditions suivantes:

$$\mathcal{N}_0 \subseteq S \subseteq \mathcal{N} \tag{Sat 1}$$

$$Si \ e \in S \ et \ e \ \beta_0^* \ e'$$
 (Sat 2)

Si
$$e \in \Lambda$$
 et e n'est pas une λ -abstraction, et si $Succ(e) \subseteq S, e \in S$ (Sat 3)

Propriété 2. i) \mathcal{N}_0 est saturée

- ii) \mathcal{N} est saturée
- iii) Si X,Y sont des parties saturées, alors $X \to Y = \{e \in \Lambda \mid \forall a \in X, e \ a \in Y\}$ est saturée

Proof. i) En exercice

- ii) Il suffit de vérifier (Sat 3) En clair, soit $e \in \Lambda$ qui n'est pas une λ -abstraction, et tel que $Succ(e) \in \mathcal{N}$. On procède par induction structurelle sur e.
 - * $e \in \mathcal{X}$ trivial
 - * $e \equiv e_0 \ a$, avec $Succ(e_0 \ a) \in \mathcal{N}$

$$\begin{array}{c} e \; \beta_0 \; e_0' \; a, \; \text{avec} \; e_0 \; \beta_0 \; e_0' \\ e \; \beta_0 \; e_0 \; a', \; \text{avec} \; a \; \beta_0 \; a' \\ e \; \beta_0 \; e_1 \langle a/x \rangle, \; \text{si} \; e_0 \equiv \lambda x. e_1 \end{array} \right] \quad \begin{array}{c} e_0' \; a \in \mathcal{N} \\ e_0 \; a' \in \mathcal{N} \\ e_1 \langle a/x \rangle \in \mathcal{N} \end{array}$$

- iii) $X,Y\in Sat(\Lambda)$, montrons que $X\to Y\in Sat(\Lambda)$ (Sat 1)
 - * $\mathcal{N}_0 \subseteq X \to Y$? Si $x \bar{u} \in \mathcal{N}$, et $a \in X \subseteq \mathcal{N}$
 - * $X \to Y \subseteq \mathcal{N}$ Si $e \in X \to Y$, c'est-à-dire pour tout $a \in X$, e $a \in Y \subseteq \mathcal{N}$

(Sat 2) facile : $e \in X \to Y$ et $e \beta_0 e'$

Si $a \in X$, $(e\ a)\ \beta_0\ (e'\ a)$ donc $e'\ a \in Suc(e\ a)$. Par hypothèse, $e \in X \to Y$, c'est-à-dire $e\ a \in Y$. Par (Sat 2) appliqué à $Y,\ e'\ a \in Y$.

(Sat 3) Soit e qui n'est pas un λ -abstraction et tel que $Succ(e) \subseteq X \to Y$; montrons que $e \in X \to Y$. Cela revient à établir que pour tout $a \in X, e$ $a \in Y$. On montre ça en appliquant (Sat 3) à Y, car e a n'est pas un λ -abstraction.

Il suffit de vérifier que $Succ(e\ a)\subseteq Y$:

$$e \ a \ \beta_0 \ e' \ a \ avec \ e \ \beta_0 \ e'$$

 $e \ a \ \beta_0 \ e' \ a \ avec \ a \ \beta_0 \ a'$

Et c'est tout ! On remarque qu'il suffit de faire une démonstration par récurrence sur $\ell(a) \to à$ faire !

3.3 Normalisation pour λ_{\rightarrow}

Théorème 6 (SN). $Si \Delta \vdash_{\lambda_{\rightarrow}} e : T, \ alors \ e \in \mathcal{N}$

Proof. * Une "interprétation" des types commes parties saturées

- * Un lemme d'"étiquetage"
- * Le théorème apparaît comme corollaire.

Definition 17. Soit $\rho \in \mathcal{V} \to Sat(\Lambda)$. On définit par induction structurelle l'interprétation d'un type T selon ρ notée $[T]_{\rho}$:

- * $Si T \in \mathcal{V}, [T]_{\rho} \equiv \rho(T)$
- * $Si T \equiv U \rightarrow V, [T]_{\rho} \equiv [U]_{\rho} \rightarrow [V]_{\rho}$

Proof. D'après la proposition précédente :

- ρ existe
- $[T]_{\rho} \in Suc(\Lambda)$

Remarque $[T]_{\rho}$ ne dépend que de $\rho \upharpoonright FT(T)$

Definition 18. $x_1,...,x_n \in \mathcal{X}$ et $t_1,...,t_n \in \Lambda$. La substitution $\sigma \equiv \langle t1/x_1,...,t_n/x_n \rangle$ donne lieu à $\sigma(t)$ où $t \in \Lambda$:

- $Si \ t \equiv x_i \in \{x_1, ... x_n\}, \ alors \ \sigma(t) = t_i$
- $Si \ t \in \mathcal{X}\{x_1, ..., x_n\}, \sigma(t) \equiv t$
- Si $t \equiv \lambda x.t_0$, on peut supposer que $x \notin \{x_1,...,x_n\} \cup \{\cup_{i \le n} FV(t_i)\}$ et $\sigma(t) \equiv \lambda x.\sigma(t_0)$
- $Si \ t \equiv a \ b, \ \sigma(t) = \sigma(a) \ \sigma(b)$

Propriété 3. Soit ρ une interprétation des types et $\Delta \vdash_{\lambda_t o} t : T$

Pour tout substitution σ de domaine $\subseteq FV(\Delta)$ telle que pour tout $x: S \in \Delta, \sigma(x) \in [S]_{\rho}$, on a:

$$\sigma(t) \in [T]_{\rho}$$

Proof. Par induction sur ka hauteur de la dérivation, le seul cas intéréssant est \rightarrow_i

$$\frac{\Delta, x : U \vdash a : V}{\Delta \vdash t : U \to V}$$

Où $t \equiv \lambda x.a.$

Soit σ de domaine $\subseteq FV(\Delta)$; montrons que si $\forall x: S \in \Delta, \sigma(x) \subseteq [S]_{\rho}$, alors $\sigma(\lambda x.a) \in [U \to V]_{\rho} = [U]_r ho \to [V]_{\rho}$. Par définition, cela revient à montrer que pour tout $b \in [U]_{\rho}$, $\sigma(\lambda x.a)$ $b \in [V]_{\rho}$. On peut faire en sorte que

$$x \notin dom(\Delta) \cup \{ \underset{y:S \in \Delta}{\cup} FV(\sigma(y)) \} \cup FV(b)$$

Du coup, $\sigma' \equiv \langle t_1/x_1,...,t_n/x_n,b/x\rangle$ où $\sigma \equiv \langle t_1/x_1,...,t_n/x_n\rangle$ avec $\{x_1,...,x_n\} \subseteq dom(\Delta)$ Et σ' satisfait :

$$\sigma(\lambda x.a) \ b \equiv \sigma'(a)$$

 σ' satisfait les hypothèses relatives à $\Delta, x : U$ car $\sigma'(x) = b \in [U]_{\rho}$. Du coup, par hypothèse d'induction,

$$\sigma'(a) \in [V]_{\rho}$$

Finalement,

$$(\lambda x.\sigma(a) \ b \ \beta_0 \ \sigma'(a) \in [V]_{\rho}$$

En résumé, $\lambda x.\sigma(a) \equiv \sigma(\lambda x.a) \in [U \to V]_{\rho}$

Part II

Polymorphisme

4 Abstraction des types

Programmation	Théorie des types	Raisonnement
λ -calcul	$\lambda_{ ightarrow}$	NJ (⇒)
λ -calcul enrichi	$\lambda_{\rightarrow,\times,\top\perp,}$	NJ
	$\lambda_{\rightarrow,\times,\top\perp,} \lambda_{\mu} \ (\sim 1990)$	NK
Calcul de combinateurs (S,K,I)	•	Système de Hilbert (1900)
*	Système F	//
	++	//

Figure 2: Correspondance programmation - langage de preuve

4.1 Motivations

Prenons quelques exemples:

1. L'identité :

Dans λ_{\rightarrow} , $\vdash \lambda x.x: T \rightarrow T$ pour n'importe quel type T.

On voudrait donner à $\lambda x.x$ un type "polymorphe"

2. Un entier de Church :

$$\bar{z} = \lambda x. \lambda f. f(fx). \text{ Dans } \lambda_{\rightarrow}, \vdash \lambda x. \lambda f. f(fx) : A \rightarrow (A \rightarrow A) \rightarrow A$$
$$x : A, f : B \vdash f \underbrace{(f x)}_{:V} : C$$

- (a) $f: b \equiv U \rightarrow V$ et x: U donc $A \equiv U$
- (b) $B \equiv V \to W$ et $W \equiv C$ et $U \to V \equiv V \to W$ d'où $U \equiv V$ et $V \equiv W$
- (c) $\Delta \equiv \lambda x.x \ x \ \text{qui nécessite} \ W = W \to V.$

Observations

⋆ On veut donner à un terme "plusieurs types" "d'un coup "

En $C \rightarrow \text{template}$

En O'Caml \rightarrow fun x \rightarrow x : $'\alpha \rightarrow \alpha$

- \star On peut avoir besoin de gérer plusieurs occurences d'une même variable
- * Observation de J.Reunolds ('74)
- * Introduit par JY Girard ('70) (cadre logique)

4.2 Le système F à la Church

Que veut-on?

* Une notion de généralisation (d'abstraction) sur les types

$$T ::= X \in \mathcal{V} \mid T \to T \mid \forall X.T$$

 \star Une notion d'instanciation de type

$$\forall X.T \leadsto T\langle S/X \rangle$$

La conséquence sur les termes :

$$t ::= x \in \mathcal{X} \mid \lambda x^T . t \mid t \mid \Lambda X . t \mid t \mid T$$

(Hyp), $(\rightarrow_i)^4$ et (\rightarrow_E) de λ_{\rightarrow} plus :

$$\frac{\Delta \vdash t : T \qquad X \notin FT(\delta)}{\Delta \vdash \Lambda X.t : \forall X.T} \;_{(\forall_i)} \qquad \qquad \frac{\Delta \vdash t : \forall X.T}{\Delta \vdash t \langle S/X \rangle : T \langle S/X \rangle} \;_{(\forall_e)}$$

Retour sur les exemples

- 1. $\vdash \lambda x.x: X \to X$ devient $\Lambda X.\lambda x^X.x: \forall X X \to X$
- 2. $\bar{z} \equiv \lambda x. \lambda f. f(f x)$

$$\frac{\vdash \lambda x^{X}.\lambda f^{X\to X}.f\ (f\ x): X\to (X\to X)\to X}{\vdash \Lambda X.\lambda x.\lambda f.f\ (f\ x): \forall X.X\to (X\to X)\to X}$$

3. $\lambda x.x x$

$$\begin{array}{l} \star \ x \ U : U \to U \\ \star \ x \ V : V \to V \\ \text{avec} \ V \to V \equiv U \end{array}$$

On en déduit que $W \equiv V \rightarrow V$.

$$\begin{array}{c|c} x \ U : U \to U & x \ V : V \to V \\ \hline x : \forall X.S \vdash x \ U : (V \to V) \to W & x : \forall X.S \vdash x \ V : V \to V \\ \hline & x : \forall x : S \vdash x \ U \ (x \ V) : W^{V \to V} \\ \hline & \vdash \lambda x^{\forall X.S} . x \ U \ (X \ V) : (\forall X.S) \to W \end{array}$$

On trouve un type $((\forall X.(X \to X) \to \forall X.(X \to X)) \to ((\forall X.(X \to X) \to \forall X.(X \to X)))$

4.2.1 Système F à la Curry

- \star λ -term pur
- \star Même types que dans le système à la Church
- \star (Hyp), (\rightarrow_i) , (\rightarrow_e)

 $^{^4}$ où $\lambda x^S.t$ précise le type de x

* Plus

$$\frac{\Delta \vdash t : T \qquad X \not\in FT(\Delta)}{\Delta \vdash t : \forall X.T} \; (\forall_i) \qquad \qquad \frac{\Delta \vdash t : \forall X.T}{\Delta \vdash t : T\langle S/X \rangle} \; (\forall_e)$$

4.2.2 Aspects dynamiques

- a. A la Church:
 - $\star (\lambda x^T.a) \ b \rightarrow_{\beta} a \langle b/x \rangle$
 - $\star (\Lambda X.t) S \rightarrow_{\beta} t \langle S/X \rangle$
- b. A la Curry:

5 Propriétés méta du système F

	F-Church	F-Cury
Confluence (Church-Rosser)	×	Déjà fait
SR (Subject Reduction)	Facile	Plus dure
SN (Strong Normalisation)	En TD	A partir de λ_{\rightarrow}

Figure 3: Propriétés de confluence de systèmes à la Curry et à la Church

Lemme 6 (Dans les deux versions du système F). i) $Si \ \Delta \vdash t : T \ et \ \Delta' \ contexte \ de typage \ tel \ que \ \Delta_{\upharpoonright FV(t)} = \Delta_{\upharpoonright FV(t)}, \ alors \ \Delta' \vdash t : T$

$$ii) \ \ Si \ \Delta \vdash t : T, \ alors \ pour \ tout \ S \ \ et \ pour \ tout \ X \in \mathcal{V}, \ \Delta \langle S/X \rangle \vdash \underbrace{t \langle S/X \rangle}_t : T \langle S/X \rangle$$

iii) Si
$$\Delta, x : S \vdash t : T$$
 et $\Delta \vdash s : S$ alors $\Delta \vdash t \langle s/x \rangle : T$

5.1 Propriétés de F-Church

Propriété 4 (Subject reduction). Si $\Delta \vdash_{Church} t : T \ et \ t \to t' \ alors \ \Delta \vdash t' : T$

Proof. En exercice.

Pour rappel, \rightarrow est l'analogue de β_0 :

$$\rightarrow_{\beta} \subseteq \rightarrow$$

également dans un terme.

Propriété 5 (Strong Normalization). Si $\Delta \vdash_{Church} t:T$, alors t est fortement normalisant.

Proof. Fiche d'exercice (semaine 7), basée sur le résultat pour λ_{\rightarrow}

Propriété 6 (Confluence faible). Si $\Delta \vdash_{Church} t : T$ et si $t \to t_1$, $t \to t_2$, il existe t_3 tel que $t_1 \to^* t_3$ et $t_1 \to^* t_3$.

Corollaire 2 (Confluence). La relation \rightarrow est confluente sur les termes bien typés.

Proof. On s'appuie sur SN et la confluence faible.

5.2 Propriétés de F-Curry

On veut établir le résultat suivant:

Propriété 7. Si $\Delta \vdash_{Curry} t : T$ et $t \xrightarrow[\beta_0]{} t'$, alors $\Delta \vdash t' : T$.

Le résultat est vrai, mais sa démonstration nécessite des détours...

5.2.1 Système alternatif

On introduit la notion de séquence de types.

$$\Delta \to_n T_0, ..., T_n$$
 seq

avec les règles suivantes :

$$(Gen) \begin{tabular}{l} (Ax) \hline $\Delta \vdash_0 T$ seq \\ \hline (Gen) \begin{tabular}{l} (Ax) \hline $\Delta \vdash_0 T$ seq \\ \hline (Gen) \begin{tabular}{l} (Ax) \hline $\Delta \vdash_n T_0, ..., T_n$ seq & $X \notin FT(\Delta)$ \\ \hline $\Delta \vdash_{n+1} T_0, ..., T_n, \forall X. T_n$ seq \\ \hline (Inst) \hline $\Delta \vdash_{n+1} T_0, ..., T_n$ seq & $T_n \equiv \forall X. T$ \\ \hline $\Delta \vdash_{n+1} T_0, ..., T_n, T \langle S / X \rangle$ seq \\ \hline (Hyp) \hline $\frac{x: T \in \Delta}{\Delta \vdash_0 x: T}$ \\ \hline (Sub) \hline $\frac{\Delta \vdash_0 t: T}{\Delta \vdash_n T_0, ..., T_n$ seq } \\ \hline (Ax) \hline $\Delta \vdash_n t: T_n$ \\ \hline (Ax) \hline$$

Propriété 8. $\Delta \vdash_{Curry} t : T$ si et seulement si il existe $n \geq 0$ tel que $\Delta \vdash_n t : T$

Proof. Dans chacun des sens, par induction.

Exo Si $\Delta \vdash_p t : T \text{ et } \Delta \vdash_p T_o, ..., T_q \text{ seq avec } T_0 \equiv T, \text{ alors}$

$$\Delta \rightarrow_{p+q-1} t : T_q$$

Exo Si $\Delta \to_n T_0, ..., T_n$ seq avec $T_0 \equiv U \to V$ et $T_n \equiv A \to B$ alors il existe $\bar{X} \subseteq \mathcal{V}$ et \bar{S} de même longueur tel que

$$A \equiv U \langle \bar{S}/\bar{X} \rangle, B \equiv V \langle \bar{S}/\bar{X} \rangle$$

Lemme 7. i) Si $\Delta \vdash_n t : T$, alors $\Delta \langle S/X \rangle \vdash_n t : TSX$

ii) Si $\Delta, x : S \vdash_n t : T$ et $\Delta \rightarrow_r s : S$ alors il existe $n' \geq 0$ tel que

$$\Delta \vdash_{n'} t\langle s/x \rangle : T$$

Proof. i) facile

ii) Considérons le cas où t est une variable. Soit:

$$\Delta$$
, $x: S \vdash_0 t: T$

- Si $t\equiv x,\,S\equiv T$

Par ailleurs, $\Delta \vdash_r s : T,$ du coup $\Delta \vdash_r t \langle s \big/ x \rangle : T$

- Si $t \not\equiv x, \, t : T \in \Delta$ et

$$(\text{Hyp}) \ \frac{x: T \in \Delta}{\Delta \vdash_0 x: T}$$

Soit $n \geq 0$:

$$\frac{\Delta \vdash_0 t : T_0 \qquad \Delta \vdash_n T_0, ..., T_n \text{ seq}}{\Delta \vdash_n t : T_n}$$

Par hypothèse d'induction, il existe $n'' \ge 0$ tel que $\Delta \to_{n''} t : T_0$. On en conclut $\Delta \vdash_{n''+n-1} t : T_n$

 \rightarrow La démonstration "séquence" est différente !

Lemme 8. Si $\Delta \vdash_n (\lambda x.a) b: T$, alors il existe $n, \geq 0$ tel que $\Delta \vdash_{n'} a\langle b/x \rangle: T$

Proof. On se limite ici au cas où n=0:

$$\frac{\Delta \vdash_p \lambda x.a : S \to T \qquad \Delta \vdash_q b : S}{\Delta \vdash_0 (\lambda x.a) b : T}$$

$$\frac{\frac{\Box}{\Delta, x : U \vdash_r a : V}}{\frac{\Delta \vdash_0 \lambda x.a : U \to V}{\Delta \vdash_p \lambda x.a : S \to T}} \Delta \vdash_p F_0, ..., F_p \text{ seq}$$

Avec $F_0 \equiv U \to V$ et $F_p \equiv S \to T$, donc il existe \bar{X}, \bar{S} tels que $S \equiv U \langle \bar{S}/\bar{X} \rangle$ et $T \equiv \langle \bar{S}/\bar{X} \rangle$ et $\bar{X} \cap FT(\Delta) = \emptyset$.

Par ailleurs,

$$\frac{\Delta \vdash_{o} b : S \qquad \Delta \vdash_{q} S_{0}, ..., S_{q} seq}{\Delta \vdash_{q} b : S \qquad (S_{q} \equiv S)}$$

On en déduit :

* $\Delta \langle \bar{S}/\bar{X} \rangle, x : U \langle \bar{S}/\bar{X} \rangle \vdash_r a : V \langle \bar{S}/\bar{X} \rangle$ mais, puisque $\bar{X} \cap FV(\Delta) = \emptyset$

$$\Delta, x : S \vdash_r a : T$$

* Finalement,

$$\left\{ \begin{array}{l} \Delta, x : S \vdash_r a : T \\ \Delta \vdash_q b : S \end{array} \right\} \Rightarrow \Delta \vdash_{r'} a \langle b / x \rangle : T$$

Pour un certain $r' \geq 0$

Propriété 9 (SR). Si $\Delta \vdash_n t : T$ et si $t \beta_0 t'$, alors il existe $n' \geq 0$ tel que $\Delta \vdash_{n'} t' : T$

Proof. On a vu le cas de base:

- * $\rightarrow_{\beta} \subseteq \beta_0$
- * On regarde les autres cas qui définissent β_0

Théorème 7 (SR). $Si \Delta \vdash_{Curry} t : T \ et \ si \ t \ \beta_0 \ t', \ alors \Delta \vdash_{Curry} t' : T$

Remarque Dans (SU)⁵, on utilise $\sigma \leq \tau$ avec σ, τ types.

Part III

Égalité

0 Usage des inductifs dans Coq

0.1 Les booléens

```
\begin{array}{l} \mathbf{bool} \equiv \{\mathbf{true}, \mathbf{false}\} \\ \quad \mathrm{En\ Coq}, \\ \\ \mathbf{Inductive\ bool} : \quad \mathbf{Type} := \\ \mid \mathbf{true} \\ \mid \mathbf{false} \\ \\ \mathbf{correspond\ \grave{a}\ la\ d\acute{e}claration\ de\ \mathbf{true}\ et\ \mathbf{false}\ comme\ \acute{e}l\acute{e}ments\ de\ type\ \mathbf{bool}.} \\ \quad \mathrm{Ce\ qui\ ``correspond''\ \grave{a}\ l'\acute{e}nonc\acute{e}\ d'un\ principe\ d'induction\ sur\ \mathbf{bool}\ :} \\ \\ \mathbf{Pour\ tout\ }P:\mathbf{bool} \rightarrow \mathbf{True}, \ \mathrm{si\ } \begin{cases} (P\ \mathbf{true})\ \mathrm{est\ habitable} \\ (P\ \mathbf{false})\ \mathrm{est\ habitable} \end{cases}, \ \mathrm{alors\ pour\ tout\ }b\ \mathbf{bool},\ P\ b\ \mathrm{est\ habitable}. \\ \\ \mathbf{Dans\ Coq},\ (\star)\ \mathrm{engendre}: \end{cases}
```

- un nouveau type bool
- Les constructeurs **true** et **false**
- Le principle d'induction, de type Π P: **bool** $\rightarrow Type$

0.2 Les entiers de Peano

Ce qui correspond à l'introduction d'un entier, et au principe de récurrence "standard".

0.3 Le produit $A \times B$

```
Inductive prod (A B : Type) : Type := pair : A \rightarrow B \rightarrow prod A B 

Inductive sum (A B : Type) : Type := | inl : A \rightarrow sum A B | inr : B \rightarrow sum A B
```

⁵Bouquin de référence

1 Types dépendants

$$\rightarrow (\Pi \ x : A) \ B(x) \ "\forall x \in A.B(x)"$$
$$\rightarrow (\Sigma \ x.A) \ B(X) \ "\exists x \in A.B(x)"$$

Terminologie

- On a des constantes d'univers : $Type_i, i \in \mathbb{N}$, noté "U" \to Ce sont des types
- Un objet T est est un type s'il existe un univers \mathcal{U} tel que $T:\mathcal{U}$
- Un objet t est un terme s'il existe un type T tel que : T (en particulier, on a toujours $Type_i : Type_{i+1}$, donc $\forall i \in \mathbb{N}, Type_i : \mathcal{U}$

2 Egalité (prélude)

Dans Coq:

* égalité de Leibniz.

a.b:A

"a = b" si pour tout $P: A \to Type, P \ a \to P \ b$.

$$a = b \equiv (\Pi A : A \to W) \underbrace{P a}_{\mathcal{U}} \to \underbrace{P b}_{\mathcal{U}} : \mathcal{U}$$

 \star Type identité (Martin-Löf)

 $A: \mathcal{U}, \quad a,b: A \quad Id_A(a,b): \mathcal{U}$

Peut être présenté à l'aide des inductifs de Coq :

Inductive {Id A : Type} (x, y :A) :=

| Id_reflexive : forall a : A, Id a a.

(** Ou @Id A a a pour forcer le premier argument**)

Qui fournit (entres autres):

- Le constructeur $Id_reflexive \leadsto règle$ d'introduction

$$\frac{A: Type \quad a: A}{Id_reflexive \ a: Id_A(a,a)}$$

- Un principe de raisonnement inductif \leadsto règle d'élimination (faire "Print Id_rect") Pour tout $A: Type, C: \prod_{a,b:A} Id_A(a,b) \to \mathcal{U}$, si pour tout a: A, C $(a,a,Id_reflexive\ a)$ est prouvable, alors pour tout a,b: A, pour tout $p: Id_A(a,b), C(a,b,p)$ est prouvable. $ind_{=_A}(C,c,a,b,p): C(a,b,p)$ avec $p: Id_A(a,b)$ vérifie $ind_{=_A}(C,c,x,x,Id_reflexive\ x) \equiv C\ x$ (β-règle, en fait i-règle, pour I inductif!

Remarques Si $a \equiv b$ dans A, alors $a =_A b$ via $Id_reflexive$ (i.e. $Id_A(a,b)$ prouvable)! " \equiv " est l'égalité définitionnelle, et " $=_A (Id_a(_,_))$ " est l'égalité propositionnelle.

Exemple soit
$$f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ a \mapsto x \star x \end{cases} \lambda x.x \star x$$

$$f(3) \equiv (\lambda x.x \star x) \ 3$$

Mais on n'a pas toujours $3 \star 3 \equiv 9$! Par contre, $3 \star 3 =_{\mathbb{N}} 9$? $\rightarrow Id_{\mathbb{N}}(3 \star 3, 9)$?

 $(\lambda x.x \star x) \ 3 \equiv 3 \star 3$

3 Question d'égalité

En Logique

Si P, Q sont énoncés logiques,

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Relation d'équivalence. Est-ce une notion d'égalité ? \rightarrow pas toujours en logique intuitionniste.

Isomorphisme en math

$$A \simeq B$$
 $f: A \to B$ $g: B \to A$ $g \circ f = id_A$; $f \circ g = id_B$

4 Mise en oeuvre de $Id_A(_{-},_{-})$

4.1

Lemme 9. $Id_A(_,_)$ est une relation d'équivalence.

Proof. i) Pour tout a:A, $Id_A(a,a)$ par application de $Id_reflexive$ "par réflexivité"

ii) Pour tout $a, b: A, Id_A(a, b) \to Id_A(b, a)$

$$\prod_{a,b:A} \prod_{p:Id_A(a,b)} Id_A(b,c)$$

On raisonne par induction sur le chemin $p: Id_A(a, b)$:

Il suffit de considérer le cas de base, c'est-à-dire lorsque b est a, et p est $refl_a$ (alors $Id_reflexive$). Dans ce cas, on doit prouver

$$Id_A(a,a)$$

Il suffit de fournir $refl_a$.

iii) pour tout a, b, c: A, $p: Id_a(a, b)$, $q: Id_A(b, c)$ on a $Id_A(a, c)$

On raisonne par induction sur p:

Le cas de base correspond à b est a et p est $refl_a$. Dans ce cas, il faut prouver $\prod_{q:Id_a(a,e)}Id_a(a,e)$. On raisonne par induction sur q:

Le cas de base : c est a, et q est $refl_a$: $refl_a$: $Id_a(a,a)$

On interprète $Id_A(a,b)$ comme un chemin de a à b: on obtient une structure de groupoïde.

Propriété 10. i) $p = p.refl_y$ et $p = refl_x.p$

ii)
$$p^{-1}.p = refl_x \text{ et } p.p^{-1} = refl_y$$

$$iii) (p^{-1})^{-1} = p$$

$$iv) p.(q.r) = (p.q).r$$

$$v) (refl_x)^{-1} = refl_x$$

4.2 Transport de l'égalité

Lemme 10. $f: A \to B, x, y: A$ et $p: x =_A y$ (elim $Id_A(x,y)$) Alors il existe un terme

$$ap_f(p): f(x) =_B f(y)$$

tel que pour tout $x: A, ap_f(refl_x) \equiv refl_{f(x)}$

Proof. Par induction sur la classe $p: x =_A y$, if suffit de considérer le cas de base : y est x et p est $refl_x$. Alors $refl_{f(x)} =_B f(x)$

Dans le cas dépendant:

Lemme 11. $f:\prod_{x:A}P(x)$, x,y:A et $P:x=_Ay$. Alors il existe un chemin noté $P_\star:P(x)\to P(y)$ tel que $(refl_x)_\star\equiv refl_{P(x)}$.