GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA	
Teoría General de Sistemas	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo Semestre	0025	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Dotar al alumno de la capacidad para reconocer a la Teoría General de Sistemas como una herramienta de interpretación y explicación para todos los ámbitos del conocimiento, aplicando sus principios, métodos y lenguaje propio a toda labor científica.

TEMAS Y SUBTEMAS

- 1. ¿Qué es la teoría general de sistemas?
- 1.1 El pensamiento de sistemas
- 1.2 La Teoría General de Sistemas desde el punto de vista epistemológico
- 1.3 Antecedentes y surgimiento de la Teoría General de Sistemas
 - 1.3.1 Vitalismo
 - 1.3.2 Macanicismo
 - 1.3.3 Positivismo lógico o empirismo lógico
 - 1.3.4 Organicismo
 - 1.3.5 Funcionalismo
 - 1.3.6 Estructuralismo
 - 1.3.7 El "Ars magna" de Ramón Rull
- 2. Generalidades de los sistemas.
- 2.1 Concepto de sistemas
- 2.2 Propiedades de los sistemas
 - 2.2.1 Sinergia
 - 2.2.2 Recursividad
 - 2.2.3 Leyes de la termodinámica
 - 2.2.4 Entropía
 - 2.2.5 Entropía y sistemas abiertos
 - 2.2.6 Neguentropía y subsistencia del sistema
 - 2.2.7 Generación de la neguentropía
 - 2.2.8 Entropía e información
 - 2.2.9 Homeostasis
 - 2.2.10 Isoformismo
 - 2.2.11 Equifinalidad
 - 2.2.12 Ley de la variedad requerida
- 2.3 Clasificación y tipos de sistemas
 - 2.3.1 Niveles del sistema
 - 2.3.2 Fronteras del sistema
 - 2.3.3 Sistemas físicos y abstractos
 - 2.3.4 Sistemas centralizados y descentralizados
 - 2.3.5 Sistemas naturales y elaborados
 - 2.3.6 Sistemas abiertos y cerrados
 - 2.3.7 Sistemas estables y en equilibrio
 - 2.3.8 Sistemas de retroalimentación
 - 2.3.9 Taxonomía de Building
 - 2.3.10 Taxonomía de Checkland

- 3. Análisis sistémico.
- 3.1 Características del análisis de sistemas
- 3.2 Representación sistémica
- 3.3 Proceso de modelización de sistemas
 - 3.3.1 Noción de modelo
 - 3.3.2 Características del modelo
 - 3.3.3 El modelo en la investigación científica
 - 3.3.4 Clases de modelos:
 - 3.3.5 Modelo formal e informal
 - 3.3.6 Función del modelo
 - 3.3.7 Formulación de modelos
- 3.4 La simulación como herramienta de análisis sistémico
- 3.5 Diseño de un análisis sistémico
 - 3.5.1 El proceso de diseño
 - 3.5.2 Fases del análisis de sistemas
 - 3.5.3 Pasos del análisis de sistemas

4. Orientaciones y aplicaciones de la teoría general de sistemas.

- 4.1 Tendencias que buscan la aplicación práctica de la Teoría general de Sistemas
 - 4.1.1 La cibernética
 - 4.1.2 Teoría de la información
 - 4.1.3 Teoría de los juegos
 - 4.1.4 Teoría de la decisión
 - 4.1.5 Topología o matemática relacional
 - 4.1.6 Análisis factorial
 - 4.1.7 Ingeniería de sistemas
 - 4.1.8 La investigación de operaciones
 - 4.1.9 Teoría de los autómatas

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor con base en textos, películas y temas elegidos, y con la participación activa del alumno en clase, utilizando técnicas como lluvia de ideas, exposiciones, debates y otros, reforzando el desarrollo de los temas mediante apoyo didáctico como retroproyector y cañón de proyección.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplicaran tres exámenes parciales que se evaluaran en cada uno de ellos los siguientes rasgos: Trabajos y control de lecturas, participaciones, asistencia, examen escrito.

Un examen final que se evaluará bajo el siguiente criterio: Examen escrito final, examen oral final, asistencia y participaciones, trabajo final. Todo esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros básicos:

- Teoría general de los sistemas. Fundamentos, desarrollo, aplicaciones, Bertalanffy, Ludvig Von., FCE, México, 1998 (Ciencia y Tecnología).
- La Ingeniería de Sistemas, Cárdenas, Miguel A., Filosofía y Técnicas. México.
- El Enfoque de Sistemas, Gerez, VIctor Y Grijalva, Manuel. México: Limusa.
- Ingeniería de Sistemas, Hall, Arthur D., México: CECSA.
- Introducción a la Teoría General de Sistemas, Johasen Bertoglio, Oscar, Limusa, México, 1992.

Libros de consulta:

- Esto es el caos, Marín Gómez, Edgar., CNCA, México, 1995.
- Introducción al Pensamiento Sistémico, McDermontt, O'Connor. Urano. 1997.
- Introducción al pensamiento complejo Morin, Edgar., Gedisa, Barcelona, 1994 (Ciencias cognitivas).
- Sistemas de Información Administrativa Murdick, Robert G., Prentice Hall Hispangemérica, México, 1988.
- La estructura de la ciencia Nangel, Ernest., Paidós, España, 1991.
- El nacimiento del tiempo, Prigogine, Ilya., Tusquets, Barcelona, 1998.
- Análisis de sistemas Stanford, I., FCE, México, 1980.

- Business Dynamics Sterman D, John.. Irwin McGraw-Hill. 2000
- Teoría General de Sistemas Van Gigch, John P.. México: Trillas.
- Pasos hacia una ecología de la mente, Bateson, Gregory., Lohlé Lamen, Buenos Aires, 1998.
- La trama de la vida. Una nueva perspectiva de los sistemas vivos, Capra, Fritjof., Anagrama, Barcelona, 1996, (Colección Argumentos, 204).
- El punto crucial. Ciencia, sociedad y cultura naciente, sin autor, 1982, Estaciones, Buenos Aires, 1998.
- Ciencia como consciencia, Morin, Edgar., Anthropos, Barcelona, 1984.

PERFIL PROFESIONAL DEL DOCENTE

Licenciado en Filosofía con Maestría o Doctorado en Filosofía.

