On the norm principle for quadratic forms

M.Ojanguren, I.Panin, K.Zainoulline February 1, 2008

Abstract

We prove a version of Knebusch's Norm Principle for finite étale extensions of semi-local Noetherian domains with infinite residue fields of characteristic different from 2. As an application we prove Grothendieck's conjecture on principal homogeneous spaces for the spinor group of a quadratic space.

Keywords: quadratic space, spinor group, local ring

MSC: 20G35, 13H05

1 Introduction

Let E/F be a finite field extension and $q:V\to F$ a quadratic space over F. Let $D_q(F)\subset F^*$ (resp. $D_q(E)$) be the subgroup generated by the set of non-zero elements of the field F (resp. E) represented by the form q (resp. $q_E=q\otimes_F E$). The well-known Knebusch's Norm Principle for quadratic forms over fields [5], [4, VII.5.1] says that $N_F^E(D_q(E))\subset D_q(F)$, where $N_F^E:E^*\to F^*$ is the norm map. The goal of the present article is to show that the Knebusch's Norm Principle holds for finite étale extensions of semi-local Noetherian domains with infinite residue fields of characteristic different from 2 (see Theorem 3.2). Previously, the Norm Principle for quadratic spaces over semi-local rings was proved for F of characteristic 0 in [9]. As an application we prove Grothendieck's conjecture on principal homogeneous spaces for the spinor group of a quadratic space (see Theorem 4.1).

This article is organized as follows. Section 2 is devoted to some preliminary results. In Section 3 we prove the Norm Principle for quadratic spaces over local rings. Finally, we prove Grothendieck's conjecture (Sect. 4).

Acknowledgments The second author thanks very much for the support the RTN-Network HPRN-CT-2002-00287, the grant of the years 2001 to 2003 of the "Support Fund of National Science" at the Russian Academy of Science, the RFFI-grant 03-01-00633a and the Swiss National Science Foundation. The last author is also grateful to SFB478, Münster and AvH Foundation for hospitality and support.

2 Preliminary Lemmas

In the present section we state and prove few auxiliary results which are the main tools in the proof of Theorem 3.2.

- **2.1.** Let F be an infinite field of characteristic different from 2. Let E be a finite étale F-algebra of degree n. Let (V,q) be a quadratic space over F of rank m. Let (V_E, q_E) be the base change of (V,q) via the extension E/F, i.e., $V_E = V \otimes_F E$ and $q_E = q \otimes_F E$. Sometimes we identify the vector space V_E with the set $\mathbb{A}_E^m(E)$ of E-points of the affine space \mathbb{A}_E^m .
- **2.2.** Since E is étale over F, there exists an element $\alpha \in E^*$ such that the powers $1, \alpha, \ldots, \alpha^{n-1}$ form a basis of the F-vector space E. Such an element is called *primitive*. In other words, E can be written as the quotient $F[t]/(f_{\alpha}(t))$ of the polynomial ring F[t] modulo the ideal generated by a monic separable polynomial $f_{\alpha}(t)$ of degree n. In this case α is identified with the image of t by means of the quotient map $F[t] \to F[t]/(f_{\alpha}(t))$. The polynomial $f_{\alpha}(t)$ is called a *minimal polynomial* of α .
- **2.3.** Observe that the subset of primitive elements of E is big enough in the following sense: Let $\beta = b_0 + b_1 \alpha + \cdots + b_{n-1} \alpha^{n-1}$ with $b_0, \ldots, b_{n-1} \in F$ be an element of E. Then, for every integer i with $0 \le i \le n-1$,

$$\beta^i = b_0^{(i)} + b_1^{(i)} \alpha + \dots + b_{n-1}^{(i)} \alpha^{n-1}$$
, with $b_j^{(i)} \in F$.

Clearly, each $b_j^{(i)}$ is a polynomial in b_0, \ldots, b_{n-1} . The condition that β be primitive is the non-vanishing of the determinant of $(b_j^{(i)})$ and can, thus, be expressed by the non-vanishing of a polynomial $d(b_0, \ldots, b_{n-1})$. We define an open subset P of the Weil restriction $R_{E/F}(\mathbb{G}_{m,E})$ of the multiplicative group $\mathbb{G}_{m,E}$ by

$$P = \{(b_0, \dots, b_{n-1}) \mid d(b_0, \dots, b_{n-1}) \neq 0\}.$$

By definition, the set P(F) of the F-points of P is the subset of primitive invertible elements of E.

2.4 Lemma. Let X be an F-rational variety. Then any non-empty open subset U of X has a rational point.

Proof. The proof follows from the fact that F is infinite. \Box

From this point onwards we will use the following notations and terminology.

- **2.5.** Assume there is given an element $\alpha \in P(E)$ and a vector $v \in V_E$ such that $\alpha q(v) = 1$. Denote by $f_{\alpha}(t) \in F[t]$ the minimal polynomial of α .
- **2.6.** Let Q be the quadric over E given by

$$Q = \{ \omega \in \mathbb{A}_E^m \mid \alpha q(\omega) = 1 \}.$$

Since the element v is an E-point of Q, the variety Q is E-rational. Set $Y = R_{E/F}(Q)$ to be the Weil restriction of Q (see [2]). The variety Y is a closed subvariety of dimension (m-1)n of the affine space $R_{E/F}(\mathbb{A}_E^m) = \mathbb{A}_F^{nm}$ and we have the bijection Y(F) = Q(E) between the sets of F-points of Y and Y-points of Y is rational over Y-points of Y

2.7. In order to define the next variety U we identify $R_{E/F}(\mathbb{A}_E^m)$ with the affine space $M_{n,m}$ of $n \times m$ -matrices over F by choosing $\{1, \alpha, \ldots, \alpha^{n-1}\}$ as a basis of the vector space E over F. Thus, a vector $\omega = (\omega_0, \ldots, \omega_{m-1}) \in R_{E/F}(\mathbb{A}_E^m)(F)$ corresponds to the matrix $(\omega_{i,j})_{i,j=0}^{n-1,m-1}$, where the entries $\omega_{i,j} \in F$ are defined by $\omega_j = \sum_{i=0}^{n-1} \omega_{i,j} \alpha^i$. For any $\omega = (\omega_{=}, \ldots, \omega_{n-1})$ we define $\omega(t) = (\omega_0(t), \ldots, \omega_{m-1}(t))$, where $\omega_j(t) = \sum_{i=0}^{n-1} \omega_{i,j} t^i$. Note that each $\omega_j(t)$ is of degree at most n-1. We define U to be the open subset of the affine space $R_{E/F}(\mathbb{A}_E^m)$ defined by

$$U = \{ \omega \in M_{n,m} \mid \Phi_{\omega}(t) = tq(\omega(t)) - 1 \text{ is separable of degree } 2n - 1 \}.$$

Clearly, the coefficients of the polynomial $\Phi_{\omega}(t) \in F[t]$ depend on the choice of the isomorphism $R_{E/F}(\mathbb{A}_E^m) \cong M_{n,m}$, i.e., they depend on the choice of α .

2.8 Lemma. The open subset $U \cap Y$ of Y contains an F-point.

Proof. Since Y is F-rational and $U \cap Y$ is open in Y, by Lemma 2.4 it is enough to show that $U \cap Y$ contains a point ρ over the algebraic closure \bar{F} of the field F. Let q(t) be a polynomial over F such that

- 1. $\deg g(t) = n 1$
- 2. g(t) is coprime with the polynomial $f_{\alpha}(t)$
- 3. $-g(0)f_{\alpha}(0)=1$
- 4. g(t) is separable

Choose a hyperbolic plane \mathbb{H} in the quadratic space $(V_{\bar{F}}, q_{\bar{F}})$ over \bar{F} . Choose a basis $\{e_1, e_2\}$ of \mathbb{H} such that $q(e_1) = q(e_2) = 0$ and $q(e_1 + e_2) = 1$. Let $g_1(t), g_2(t)$ be polynomials over \bar{F} of degree n-1 such that

$$tg_1(t)g_2(t) = g(t)f_{\alpha}(t) + 1.$$

Set $\rho(t) = g_1(t)e_1 + g_2(t)e_2$ to be a vector of polynomials over \bar{F} which can be identified with an \bar{F} -point of $R_{E/F}(\mathbb{A}_E^m)$ following 2.7. Then we have

$$tq(\rho(t)) = t(q(e_1)g_1(t)^2 + q(e_1 + e_2)g_1(t)g_2(t) + q(e_2)g_2(t)^2) =$$
$$= tg_1(t)g_2(t) = g(t)f_{\alpha}(t) + 1$$

and

- $\alpha q(\rho(\alpha)) = g(\alpha) f_{\alpha}(\alpha) + 1 = 1$
- $\Phi_{\rho}(t) = tq(\rho(t)) 1 = g(t)f_{\alpha}(t)$ is separable of degree 2n 1.

Hence $\rho \in (U \cap Y)(\bar{F})$ is the desired point.

2.9. Define one more open subset of Y. For that consider a closed subset $Z \subset \mathbb{A}^m_E$ defined by

$$Z = \{ \omega \in \mathbb{A}_E^m \mid \langle v, \omega \rangle - 1 \in \{0\}_E \},\$$

where $\langle , \rangle : V_E \times V_E \to E$ is the bilinear form associated with the quadratic form αq_E and $\{0\}_E$ the image of the zero section $\operatorname{Spec} E \to \mathbb{A}_E^m$ of \mathbb{A}_E^m . Set $W = R_{E/F}(Q \setminus Z)$. Passing to the algebraic closure \bar{F} we see that W is a non-empty open subset of $Y = R_{E/F}(Q)$. The set W(F) of F-points of W consists of all $w \in Q(E)$ satisfying the condition $\langle v, \omega \rangle - 1 \in E^*$.

- **2.10 Lemma.** There exists $\omega' \in V_E$ such that
 - (i) $\alpha q(\omega') = 1$

- (ii) $\langle v, \omega' \rangle 1 \in E^*$
- (iii) the polynomial $\Phi_{\omega'}(t)$ is separable of degree 2n-1.

Proof. By Lemma 2.8 the set $U \cap Y$ is non-empty open in Y. The set W defined in 2.9 is also non-empty open in Y. Since the variety Y is irreducible, the set $W \cap U \cap Y$ is non-empty open in Y. Since Y is F-rational, the set $W \cap U \cap Y$ contains an F-point. Recall that $Y(F) = Q(E) \subset V_E$. Let $\omega' \in (W \cap U \cap Y)(F) \subset V_E$. We claim that ω' satisfies (i) to (iii). In fact, property (i) holds because $\omega' \in Q(E)$, property (ii) holds because $\omega' \in W(F) = (Q \setminus Z)(E)$ and property (iii) holds because $\omega' \in U(F)$. \square

3 The Norm Principle

3.1. Let R be a semi-local Noetherian domain with infinite residue fields of characteristic different from 2 (in this case $\frac{1}{2} \in R$). Let S/R be a finite étale R-algebra (not necessarily a domain). Let (V, q) be a quadratic space of rank m over R. Let (V_S, q_S) be the base change of (V, q) via the extension S/R. Let $D_q(R)$ (resp. $D_q(S)$) be the group generated by the invertible elements of R (resp. S) represented by the form q.

The goal of the present section is to prove the following

3.2 Theorem. There is an inclusion of the subgroups of R^*

$$N_R^S(D_q(S)) \subset D_q(R),$$

where $N_R^S: S^* \to R^*$ is the norm map for the finite étale extension S/R.

3.3. For simplicity we will consider only the case of local R. By a variety over R we will mean a reduced separated scheme of finite type over Spec R. From this point onwards, by "bar" we mean the reduction modulo the maximal ideal \mathfrak{m} of R. So that $\overline{S} = S/\mathfrak{m}S$. We will write F for \overline{R} and E for \overline{S} . So E/F is a finite étale algebra.

To prove Theorem 3.2 we need the following auxiliary results.

3.4 Lemma. Let (S^m, ϕ) be a quadratic space over S and let $\langle , \rangle : S^m \times S^m \to S$ be the associated bilinear form. Let $v \in S^m$ be such that $\phi(v) = 1$. Let $\omega' \in E^m$ be such that $\overline{\phi}(\omega') = \overline{1}$ and $\langle \overline{v}, \omega' \rangle - \overline{1} \in E^*$ (a unit). Then there exists $\omega \in S^m$ satisfying the conditions

- (i) $\phi(\omega) = 1$
- (ii) $\overline{\omega} = \omega'$ in E^m .

Proof. If $\tilde{\omega}$ is a lift of ω' we have $\phi(\tilde{\omega}) = 1 + h$ and $\langle v, \tilde{\omega} \rangle - 1 = u$ with $h \in \mathfrak{m}$ and $u \in \mathbb{R}^*$. Putting

$$\omega = \frac{\lambda v + \tilde{\omega}}{\lambda + 1}$$

we find

$$\phi(\omega) = \frac{\lambda^2 + 2\lambda(1+u) + 1 + h}{(\lambda+1)^2} .$$

Thus, for $\lambda = -h/2u$ we have $\phi(\omega) = 1$ and since $h \in \mathfrak{m}$, ω is a lift of ω' . \square

- **3.5.** Recall that a polynomial $f(t) \in R[t]$ is said to be separable if the quotient ring R[t]/(f(t)) is a finite étale extension of R. Since R is local, a polynomial f is separable iff its reduction \overline{f} modulo the maximal ideal \mathfrak{m} is a separable polynomial over \overline{R} .
- **3.6.** Similar to 2.2, since, S being étale over R, there exists an element $\alpha \in S^*$ such that the powers $1, \alpha, \ldots, \alpha^{n-1}$ form a basis of the free R-module S. As in the case of fields such an element is called *primitive*. In other words, S can be written as a quotient $R[t]/(f_{\alpha}(t))$ of the polynomial ring R[t], where $f_{\alpha}(t)$ is a monic separable polynomial called the *minimal polynomial* for α . In this case α is identified with the image of t by means of the quotient map $R[t] \to R[t]/(f_{\alpha}(t))$.
- **3.7.** As in 2.3 consider a primitive element α of the extension S/R. An element $\beta \in S^*$ can be written as $\beta = b_0 + b_1 \alpha + \cdots + b_{n-1} \alpha^{n-1}$ in S^* with $b_0, \ldots, b_{n-1} \in R$. Then, for every integer i with $0 \le i \le n-1$,

$$\beta^i = b_0^{(i)} + b_1^{(i)} \alpha + \dots + b_{n-1}^{(i)} \alpha^{n-1} \text{ with } b_i^{(i)} \in R.$$

Clearly, each $b_j^{(i)}$ is a polynomial in b_0, \ldots, b_{n-1} . The condition that β be primitive is the non-vanishing of the determinant of $(b_j^{(i)})$ and can thus be expressed by the non-vanishing of a polynomial $d(b_0, \ldots, b_{n-1})$. We define an open subset P of $R_{S/R}(\mathbb{G}_{m,S})$ by

$$P = \{(b_0, \dots, b_{n-1}) \mid d(b_0, \dots, b_{n-1}) \in R^*\}.$$

Observe that P(R) is the set of primitive invertible elements of S.

3.8. Following 2.7, for a given primitive element α and any vector $\omega \in V_S$ we define the polynomial $\Phi_{\omega}(t) \in R[t]$ as follows. We identify the free S-module V_S with the set of matrices $M_{n,m}(R)$ using $\{1,\alpha,\ldots,\alpha^{n-1}\}$ as a basis of S over R. Thus, a vector $\omega = (\omega_0,\ldots,\omega_{m-1}) \in V_S$ corresponds to the matrix $(\omega_{i,j})_{i,j=0}^{n-1,m-1}$, where the entries $\omega_{i,j} \in R$ are defined by $\omega_j = \sum_{i=0}^{n-1} \omega_{i,j} \alpha^i$. We set

$$\Phi_{\omega}(t) = tq(\omega(t)) - 1 \in R[t],$$

where $\omega(t) = (\omega_0(t), \dots, \omega_{m-1}(t))$ is the vector of m polynomials $\omega_j(t) = \sum_{i=0}^{m-1} \omega_{i,j} t^i$ of degree at most n-1. Clearly, the coefficients of the polynomial $\Phi_{\omega}(t)$ depend on the choice of α .

- **3.9 Lemma.** Let $\alpha \in S$ be a primitive invertible element of the finite étale extension S/R. Consider the quadratic space $(V_S, \alpha q_S)$ over S. Assume $\alpha q(v) = 1$ for a vector $v \in V_S$. Then there exists an $\omega \in V_S$ such that
 - (i) $\alpha q(\omega) = 1$;
 - (ii) the polynomial $\Phi_{\omega}(t)$ (defined in 3.8) is separable of degree 2n-1.

Proof. According to our notation we write V_F for $V/\mathfrak{m}V$ and V_E for $V_S/\mathfrak{m}V_S$. The element $\overline{\alpha} \in E$ is a primitive element of E/F. It satisfies the relation $\overline{\alpha q}(\overline{v}) = \overline{1}$ for the vector $\overline{v} \in V_E$. By Lemma 2.10 applied to $\overline{\alpha}$ and \overline{v} there exists $\omega' \in V_E$ satisfying the conditions $\overline{\alpha q}(\omega') = \overline{1}$ and $\langle \overline{v}, \omega' \rangle - \overline{1} \in E^*$, where $\langle , \rangle : V_E \times V_E \to E$ is the bilinear form associated with $\overline{\alpha q}$.

Now apply Lemma 3.4 to the quadratic space $(V_S, \alpha q_S)$ and the vectors $v \in V_S$, $\omega' \in V_E$. We find a vector $\omega \in V_S$ such that

- (i) $\alpha q(\omega) = 1$ in S;
- (ii) $\overline{\omega} = \omega'$ in V_E .

Property (ii) implies that the reduction modulo \mathfrak{m} of the polynomial $\Phi_{\omega}(t) \in R[t]$ coincides with the polynomial $\Phi_{\omega'}(t) \in F[t]$. The polynomial $\Phi_{\omega'}(t)$ is separable of degree 2n-1 by property (iii) of 2.10. Hence, $\Phi_{\omega}(t)$ is separable of degree 2n-1 (see 3.5).

3.10 Lemma. Let (V,q) be a quadratic space over R. Then the group of squares $(R^*)^2$ is contained in $D_q(R)$. In particular, $a \in D_q(R)$ if and only if $a^{-1} \in D_q(R)$.

Proof. For any $b \in S^*$ and $q(u) \in R^*$ we have $b^2 = q(ub)/q(u) \in D_q(R)$. \square

3.11 Proposition. Let $\alpha \in S$ be a primitive invertible element of the finite étale extension S/R. In particular, the ring S can be written as $S = R[t]/(f_{\alpha}(t))$, where $f_{\alpha}(t)$ is the minimal polynomial of α . Assume $\alpha q(v) = 1$ for a vector $v \in V_S$. Then $N_R^S(q(v)) \in D_q(R)$.

Proof. By Lemma 3.9 there exists $\omega \in V_S$ such that

- (i) $\alpha q(\omega) = 1$;
- (ii) the polynomial $\Phi_{\omega}(t)$ is separable of degree 2n-1.

We have $\Phi_{\omega}(\alpha) = \alpha q(\omega) - 1 = 0$. This implies $\Phi_{\omega}(t) = c \cdot h(t) f_{\alpha}(t)$, where $c \in \mathbb{R}^*$ and h(t) is some monic polynomial of degree n-1. The polynomial h(t) is separable, since $\Phi_{\omega}(t)$ is separable. Clearly, we have the relation

$$1 + c \cdot h(t) f_{\alpha}(t) = tq(\omega(t)). \tag{1}$$

The proof proceeds by the induction on degree of the extension S/R. The case n=1 is obvious. Assume that the proposition holds for all finite étale extensions of degree strictly less than n.

Consider the finite étale extension T = R[t]/(h(t)) over R, where h(t) is the polynomial appearing in (1). Observe that the degree of T/R is n-1. Let β be the image of t under the quotient map $R[t] \to R[t]/(h(t))$. Observe that β is a primitive element of the R-algebra T with the minimal polynomial h(t).

Consider the reduction modulo the ideal (h(t)) of the relation (1). We get $1 = \beta q(u)$ in T for some $u \in V_T$. By Lemma 3.10 we get $\beta \in D_q(T)$. Substituting t = 0 in (1) we get $f_{\alpha}(0) = -1/(c \cdot h(0))$. Together with the fact that for the extension $S = R[t]/(f_{\alpha}(t))$ over R, $N_R^S(\alpha) = (-1)^{\deg(S/R)} f_{\alpha}(0)$, this implies the following chain of relations in R:

$$N_R^S(q(v)) = 1/N_R^S(\alpha) = (-1)^n/f_\alpha(0) = c \cdot (-1)^{n-1}h(0) = c \cdot N_R^T(\beta).$$

Since c is the leading coefficient of the polynomial $tq(\omega(t))$ of degree 2n-1, it is represented by the form q. Namely, $c=q(\omega_{n-1,0},\ldots,\omega_{n-1,m-1})$, where $\omega_{n-1,j} \in R$ are the leading coefficients of polynomials $\omega_j(t)$. By the induction hypothesis the norm $N_R^T(\beta)$ lies in $D_q(R)$. Hence $N_R^S(q(v)) \in D_q(R)$. This completes the proof of Proposition 3.11

3.12 Lemma. Consider the multiplicative group $\mathbb{G}_{m,S}$ over the semi-local scheme Spec S. Let W be an open subset of $\mathbb{G}_{m,S}$ such that for each closed point $x \in \operatorname{Spec} S$ the fiber W_x over x is non-empty. Then there exists $b \in S^*$ such that $b^2 \in W(S)$.

Proof. For each closed point x of Spec S there is an element a_x in the residue field of x such that $a_x^2 \in W_x$. Since S is semi-local there is an element $b \in S^*$ such that $b_x = a_x$ in the residue field of x, for each x. Clearly, $b^2 \in W(S)$. \square

Proof of Theorem 3.2. Let $a=q(u)\in S^*$ for certain $u\in V_S$. Consider the non-empty open subset P of $R_{S/R}(\mathbb{G}_{m,S})$ defined in 3.7. Clearly, each closed fiber of aP over Spec S is non-empty. By Lemma 3.12 there exists an element $b\in S^*$ such that $b^2\in aP(S)$. It means that $\alpha=a^{-1}b^2$ is in P(S), i.e., primitive. Replacing a by α and u by $v=u\cdot b^{-1}$, we get $\alpha q(v)=1$. Then, by Lemma 3.10 and Proposition 3.11, we get the desired inclusion $N_R^S(a)=N_R^S(q(v))\cdot N_R^S(b)^2\in D_q(R)$.

3.13. As before let R be a semi-local Noetherian domain with infinite residue fields of characteristic different from 2. Let S/R be a finite étale R-algebra of degree n. Let (V,q) be a quadratic space over R of rank m. By $D_q^0(S)$ (resp. $D_q^1(S)$) we denote the set of all even (resp. odd) products of invertible elements of S represented by q_S , i.e.,

$$D_q^i(S) = \{ \prod_{j=0}^l q(v_j) \mid v_j \in S^m, \ q(v_j) \in S^*, \ l \equiv i \mod 2 \}, \quad i = 0, 1.$$

Observe that $D_q^0(S)$ is a subgroup of the group $D_q(S)$ and $(S^*)^2 \subset D_q^0(S)$. Clearly, if $c \in D_q^i(S)$, i = 0, 1, and $b \in D_q^0(S)$, then $cb \in D_q^i(S)$. The following result is an obvious consequence of the proof of Theorem 3.2.

3.14 Theorem. Let $N_R^S: S^* \to R^*$ be the norm map. Then

$$N_R^S(D_q^0(S)) \subset D_q^0(R),$$

Proof. For a positive integer n we set $D_q^n(S) = D_q^0(S)$ if n is even and $D_q^n(S) = D_q^1(S)$ if n is odd. By the proof of Proposition 3.11 and Theorem 3.2 it follows that $N_R^S(a) \in D_q^n(R)$, where a is an element represented by q_S and S/R is an extension of degree n.

4 Grothendieck's conjecture for the spinor group

Let R be a local domain with residue field of characteristic different from 2 and q be a quadratic space over R. Following [6, IV.6] we define the spinor group (scheme) $Spin_q$ to be $Spin_q(R) = \{x \in S\Gamma_q(R) \mid x\sigma(x) = 1\}$, where σ is the canonical involution, $S\Gamma_q(R) = \{c \in C_0(V,q)^* \mid cVc^{-1} \subset V\}$ is the special Clifford group and $C_0(V,q)$ is the even part of the Clifford algebra of the respective quadratic space (V,q) over R. The present section is devoted to the proof of the following result:

4.1 Theorem. Let R be a local regular ring containing an infinite field of characteristic different from 2. Let K be its quotient field. Let q be a quadratic space over R. Then the induced map on the sets of principal homogeneous spaces

$$H^1_{et}(R,Spin_q) \to H^1_{et}(K,Spin_q)$$

has trivial kernel, where $Spin_q$ is the spinor group for the quadratic space q.

4.2. Observe that the theorem is a particular case of Grothendieck's conjecture on principal homogeneous spaces [3], which states that, for a smooth reductive group scheme G over R, the induced map $H^1_{et}(R,G) \to H^1_{et}(K,G)$ has trivial kernel.

Proof. The proof is based on the results of [7], [10] and [11].

Assume R is a local regular ring containing a field of characteristic different from 2. Let K be its quotient field. We have the following commutative diagram (see [6, IV.8.2.7]):

$$SO_{q}(R) \xrightarrow{SN} R^{*}/(R^{*})^{2} \longrightarrow H^{1}_{et}(R, Spin_{q}) \longrightarrow H^{1}_{et}(R, SO_{q})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$SO_{q}(K) \xrightarrow{SN} K^{*}/(K^{*})^{2} \longrightarrow H^{1}_{et}(K, Spin_{q}) \longrightarrow H^{1}_{et}(K, SO_{q}),$$

where $SN: SO_q(R) \to H^1_{et}(R, \mu_2) = R^*/(R^*)^2$ is the spinor norm. The main result of [7] says that the vertical arrow on the right hand side has trivial kernel (see also [10, 3.4]). Thus, in order to show that the middle one has trivial kernel, it is enough to check that the induced map on the cokernels $coker(SN)(R) \to coker(SN)(K)$ is injective. First, we prove the geometric case. To do that we use the following slight modification of the main result of section 2 of [10].

- **4.3 Proposition.** Let R be a local regular ring of geometric type over an infinite field. Let F be a presheaf from the category of affine schemes over R to abelian groups. Assume F satisfies the axioms C, E of [10] and the weak versions of the axioms TE, TA, TB of [10] (see 4.4). Then the canonical map $F(R) \to F(K)$ is injective.
- 4.4. The weak versions of the axioms TE, TA and TB state
 - For a finite étale R-algebra T (instead of finitely generated projective considered in [10]) there is given a transfer map $Tr_R^T: F(T) \to F(R)$.
 - This transfer map is additive in the sense of TA of [10].
 - For a finitely generated projective R[t]-algebra S such that the algebras S/(t) and S/(t-1) are finite étale over R there is the commutative diagram of the axiom TB of [10]

$$F(S) \xrightarrow{F(S/(t))} F(S/(t))$$

$$\downarrow \qquad \qquad \downarrow_{Tr}$$

$$F(S/(t-1)) \xrightarrow{Tr} F(R)$$

The proof of 4.3 follows immediately after one replaces the Geometric Presentation Lemma [8, 10.1] used in section 1.1 of [10] by its stronger (étale) version

- **4.5 Lemma (Étale Geometric Presentation Lemma).** Let R be a local essentially smooth algebra over an infinite field k, m its maximal ideal and S an essentially smooth k-algebra which is an integral domain and finite over the polynomial algebra R[t']. Suppose that $e: S \to R$ is an R-augmentation and let $I = \ker e$. Assume that S/mS is smooth over the residue field R/m at the maximal ideal $e^{-1}(m)/mS$. Then, given a regular function $f \in S$ such that S/(f) is finite over R, we can find a $t \in I$ such that
 - S is finite over R[t];
 - There is an ideal J comaximal with I and such that $I \cap J = (t)$;
 - (f) and J are comaximal; (f) and (t-1) are comaximal;
 - S/(t) is étale over R; S/(t-1) is étale over R.

Proof. See [11, 6.1]

Consider the presheaf of abelian groups $F: T \mapsto coker(SN)(T)$. According to 4.3 to prove the mentioned injectivity we have to show that the functor F satisfies axioms C, E and the weak versions of axioms TE, TA, TB of [10] (see 4.4). Axioms C, E, TA and TB hold by the same arguments as in sections 3.2 and 3.4 of [10].

Consider, for instance, the proof of axiom E. First, following the proof of E.(a) and E.(b) of [10, 3.2] for a given quadratic space q over R we construct the R-algebra \tilde{S} , two quadratic spaces $q_1 = q \otimes_A \tilde{S}$ and $q_2 = q \otimes_R \tilde{S}$ over \tilde{S} and the isomorphism Ψ between them such that the restrictions $q_1|_R$ and $q_2|_R$ coincide with q and the restriction $\Psi|_R$ is the identity. Then following the proof of E.(c) the isomorphism Ψ induces a commutative diagram

$$SO_{q_1}(T) \xrightarrow{\Psi} SO_{q_2}(T)$$

$$\downarrow^{SN} \qquad \downarrow^{SN}$$

$$T^*/(T^*)^2 \xrightarrow{\Psi} T^*/(T^*)^2$$

for any \tilde{S} -algebra T. Taking the cokernels of the vertical arrows we obtain the desired functor transformation $\Phi: F_1(T) \to F_2(T)$ of E.(c).

Hence, in order to prove the injectivity, it remains to produce a well-defined transfer map $Tr_R^S: F(S) \to F(R)$ for any finite étale extension S/R of a local regular ring of geometric type over an infinite field.

To produce such a map it suffices to take the norm map $N_R^S: S^* \to R^*$ and to check the inclusion

$$N_R^S(SN(SO_q(S))) \subset SN(SO_q(R)).$$

Since in the semi-local case $SN(SO_q(S)) = D_q^0(S)$ and $SN(SO_q(R)) = D_q^0(R)$ (see [6, IV.6], [1, III.3.21]) it remains to check the inclusion

$$N_R^S(D_q^0(S)) \subset D_q^0(R).$$

This inclusion holds by Theorem 3.14. Hence, the norm map $N_R^S: S^* \to R^*$ induces the desired transfer map $Tr_R^S: F(S) \to F(R)$. This completes the proof of Theorem 4.1 in the geometric case.

Finally, to extend our result to the case of a local regular ring R containing an infinite field of characteristic different from 2 we use Popescu's approximation theorem [11, 7.5]. We refer to the item 1 of section 5 of [10] for the precise arguments.

References

- [1] R. Baeza: Quadratic forms over semi-local rings, Lecture Notes in Mathematics, Vol. 655, Springer-Verlag, 1978.
- [2] M. Demazure and P. Gabriel: Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, North-Holland, 1970.
- [3] A. Grothendieck, Le groupe de Brauer. II. Théorie cohomologique. (French) Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam; Masson, Paris, 1968, pp.67-87.
- [4] T.Y. Lam: The algebraic theory of quadratic forms, W.A. Benjamin, 1973.
- [5] M. Knebusch, Ein Satz über die Werte von quadratischen Formen über Körpern, Invent. Math. 12 (1971), 300–303.
- [6] M.-A. Knus: Quadratic and Hermitian Forms over Rings, Grund. Math. Wiss. 294, Springer-Verlag, 1991.
- [7] M. Ojanguren, Quadratic forms over regular rings, J. Indian Math. Soc. 44: 109–116 (1980).
- [8] M. Ojanguren, I. Panin, Rationally trivial hermitian spaces are locally trivial, *Math. Z.* 237: 181–198, 2001.
- [9] K. Zainoulline: On Knebusch's Norm Principle for quadratic forms over semi-local rings, Preprints of Max-Planck-Institute für Mathematik 40, 2003.
- [10] K. Zainoulline, On Grothendieck's conjecture on principal homogeneous spaces for some classical algebraic groups, St. Petersburg Math. J. 12(1): 117–143, 2001.
- [11] K. Zainoulline, The Purity Problem for Functors with Transfers, K-Theory 22(4): 303–333, 2001.

Manuel Ojanguren Ecole Polytechnique Fédérale de Lausanne Institut de Géométrie, Algèbre et Topologie Bâtiment BCH 1015 Lausanne Switzerland e-mail: manuel.ojanguren@epfl.ch

Ivan Panin
St. Petersburg Department of
V.A. Steklov Institute of Mathematics
27, Fontanka
St. Petersburg 191023
Russia
e-mail: panin@pdmi.ras.ru

Kirill Zainoulline
Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
Germany
e-mail: kirill@mathematik.uni-bielefeld.de