15-312 Assignment 1

Andrew Carnegie (andrew)

October 12, 2017

```
Type \tau ::=
                                                                                                   naturals
          nat
                                          nat
                                                                                                   unit
          unit
                                          unit
          bool
                                          bool
                                                                                                   boolean
          prod(\tau_1; \tau_2)
                                                                                                   product
                                           \tau_1 \times \tau_2
          \mathtt{arr}(\tau_1; \tau_2)
                                                                                                   function
                                           \tau_1 \rightarrow \tau_2
                                                                                                   list
          list(\tau)
                                           \tau\, {\tt list}
  Exp e
             ::=
                                                                                                   variable
          x
                                           \boldsymbol{x}
          nat[n]
                                          \overline{n}
                                                                                                   number
          unit
                                           ()
                                                                                                   unit
          Т
                                          Т
                                                                                                   true
                                          F
          F
                                                                                                   false
          if(x;e_1;e_2)
                                           \verb"if"\,x" \verb"then"\,e_1" \verb"else"\,e_2"
                                                                                                   if
          lam(x:\tau.e)
                                           \lambda x : \tau . e
                                                                                                   abstraction
                                                                                                   application
          ap(f;x)
                                           f(x)
                                           \langle x_1, x_2 \rangle
          tpl(x_1; x_2)
                                                                                                   pair
                                           case p\{(x_1; x_2) \hookrightarrow e_1\}
          \mathtt{case}(x_1, x_2.e_1)
                                                                                                   match pair
          nil
                                                                                                   nil
                                                                                                   cons
          cons(x_1; x_2)
                                          x_1 :: x_2
          \mathsf{case}\{l\}(e_1; x, xs.e_2)
                                           \operatorname{case} l\left\{\operatorname{nil} \hookrightarrow e_1 \mid \operatorname{cons}(x; xs) \hookrightarrow e_2\right\}
                                                                                                   match list
          let(e_1; x : \tau.e_2)
                                           \mathtt{let}\; x = e_1 \; \mathtt{in}\; e_2
                                                                                                   let
  \mathsf{Val} \ \ v \ \ ::=
          val(n)
                                                                                                   numeric value
                                          n
                                          Т
                                                                                                   true value
          val(T)
                                                                                                   false value
          val(F)
                                          F
          val(Null)
                                          Null
                                                                                                   null value
          val(cl(V; x.e))
                                          (V, x.e)
                                                                                                   function value
          val(l)
                                                                                                   loc value
          val(pair(v_1; v_2))
                                           \langle v_1, v_2 \rangle
                                                                                                   pair value
State s ::=
                                                                                                   live value
          alive
                                           alive
                                                                                                   dead value
                                           dead
          dead
  \mathsf{Loc} \ l \ ::=
          loc(l)
                                          l
                                                                                                   location
  Var l ::=
          var(x)
                                                                                                   variable
                                          \boldsymbol{x}
```

1 Garbage collection semantics

Model dynamics using judgement of the form:

$$V, H, R, F \vdash e \Downarrow v, H', F'$$

Where $V: \mathsf{Var} \to \mathsf{Val} \times \mathsf{State}$, $H: \mathsf{Loc} \to \mathsf{Val}$, and $R: \{\mathsf{Loc}\}$. This can be read as: under stack V, heap H, roots R, freelist F, the expression e evaluates to v, and engenders a new heap H' and freelist F'.

Note that the stack maps each variable to a value v and a state s. If s is alive, then v can still be used, while dead indicates that v is already used and cannot be used again. We write $\overline{V} = \{x \in V | V(x) = (_, \mathtt{alive})\}$ for the variables in V that are alive.

Roots represents the set of locations required to compute the continuation *excluding* the current expression. We can think of roots as the heap allocations necessary to compute the context with a hole that will be filled by the current expression.

Below defines the size of reachable values and space for roots:

$$\begin{split} reach_H((V,x.e)) &= \bigcup_{y \in FV(e) \backslash x} reach_H(V(y)) \\ reach_H(l) &= \{l\} \cup reach_H(H(l)) \\ reach_H(\langle v_1, v_2 \rangle) &= reach_H(v_1) \cup reach_H(v_2) \\ reach_H(-) &= \emptyset \\ \\ locs_{V,H}(e) &= \bigcup_{x \in FV(e)} reach_H(V(x)) \\ \\ size(\langle v_1, v_2 \rangle) &= size(v_1) + size(v_2) \\ size(-) &= 1 \\ \\ copy(H, L, \langle v_1, v_2 \rangle) &= \\ let \ L_1 \subseteq L \text{with } |L_1| = size(v_1) \text{ in } \\ let \ H_1, - &= copy(H, L_1, v_1) \text{ in } \\ copy(H, L, \setminus L_1, v_2) \\ copy(H, l, v) &= H[l \mapsto v], l \end{split}$$

$$\frac{x \in dom(V)}{V, H, R, F \vdash x \Downarrow V(x), H, F}(S_1) \qquad \frac{V, H, R, F \vdash \overline{n} \Downarrow val(n), H, F}{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_2) \qquad \frac{V, H, R, F \vdash \overline{n} \Downarrow val(T), H, F}{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_4) \qquad \frac{V, H, R, F \vdash T \Downarrow val(T), H, F}{V, H, R, F \vdash () \Downarrow val(Null), H, F}(S_5)$$

$$\frac{V(x) = \mathsf{T} \qquad g = \{l \in H | l \notin F \cup R \cup locs_{V,H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F'}{V, H, R, F \vdash \mathsf{if}(x; e_1; e_2) \Downarrow v, H', F'} \qquad (S_6)$$

$$\frac{V(x) = \mathsf{F} \qquad g = \{l \in H | l \notin F \cup R \cup locs_{V,H}(e_2)\} \qquad V, H, R, F \cup g \vdash e_2 \Downarrow v, H', F'}{V, H, R, F \vdash \mathsf{if}(x; e_1; e_2) \Downarrow v, H', F'} \qquad (S_7)$$

$$\frac{l \in F \qquad F' = F \setminus \{l\} \qquad H' = H[l \mapsto (V, x.e)]}{V, H, R, F \vdash \mathsf{lam}(x : \tau.e) \Downarrow J, H', F'} \qquad (S_8)$$

$$\frac{V(f) = (V_1, x.e) \qquad V(x) = v_1 \qquad V_1[x \mapsto v_1], H, R \vdash e \Downarrow v, H', F'}{V, H, R, F \vdash f(x) \Downarrow v, H', F'} \qquad (S_9)$$

$$\frac{V(x_1) = v_1 \qquad V(x_2) = v_2}{V, H, R, F \vdash (x_1, x_2) \Downarrow (v_1, v_2), H, F} \qquad (S_{10})$$

$$\frac{g = \{l \in H | l \notin F \cup R \cup locs_{V,H}(e)\} \qquad V(x_1 \mapsto v_1, x_2 \mapsto v_2], H, R, F \cup g \vdash e \Downarrow v, H', F'}{V, H, R, F \vdash \mathsf{case} \ x \ \{(x_1; x_2) \mapsto e\} \ \psi, H', F'} \qquad (S_{11})$$

$$\frac{v = \langle V(x_1), V(x_2) \rangle \qquad L \subseteq F \qquad |L| = size_H(v) \qquad F' = F \setminus L \qquad H', l = copy(H, L, v)}{V, H, R, F \vdash \mathsf{case} \ x \ (s_1; x_2) \Downarrow l, H', F'} \qquad (S_{12})$$

$$\frac{V(x) = \mathsf{Null} \qquad g = \{l \in H | l \notin F \cup R \cup locs_{V',H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F'}{V, H, R, F \vdash \mathsf{case} \ x \ (s_1; x_2) \Downarrow l, H', F'} \qquad (S_{14})$$

$$\frac{V(x) = \langle V(x_1), V(x_2) \rangle \qquad L \subseteq F \qquad |L| = size_H(v) \qquad F' = F \setminus L \qquad H', l = copy(H, L, v)}{V, H, R, F \vdash \mathsf{case} \ x \ (s_1; x_2) \Downarrow l, H', F'} \qquad (S_{15})$$

$$\frac{V(x) = \mathsf{Null} \qquad g = \{l \in H | l \notin F \cup R \cup locs_{V',H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F'}{V, H, R, F \cup g \vdash e_2 \Downarrow v, H', F'} \qquad (S_{15})$$

$$\frac{V(x) = \langle V(x_1), V(x_2) \rangle \qquad L \subseteq F \qquad |L| = size_H(v) \qquad V' + H, R, F \cup g \vdash e_2 \Downarrow v, H', F'}{V, H, R, F \vdash \mathsf{case} \ x \ (s_1; x_2) \Downarrow l, H', F' \qquad (s_2) \Downarrow v, H', F' \qquad (s_3)$$

2 Type rules

The type system takes into account of garbaged collected cells by returning potential locally in a match construct. Since we are interested in the number of heap cells, all constants are assumed to be nonnegative.

$$\frac{n \in \mathbb{Z}}{\Sigma; \emptyset \left| \frac{q}{q} \ n : \mathrm{nat}} (\mathrm{L:ConstI}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ () : \mathrm{unit}}{\Sigma; \emptyset \left| \frac{q}{q} \ n : \mathrm{nat}} (\mathrm{L:ConstI}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ T : \mathrm{bool}}{\Sigma; \emptyset \left| \frac{q}{q} \ F : \mathrm{bool}} (\mathrm{L:ConstF}) \qquad \frac{\Sigma; \Gamma \left| \frac{q}{q'} \ e_f : B \right|}{\Sigma; \Gamma, x : \mathrm{bool} \left| \frac{q}{q'} \ \text{if } x \ \text{then } e_t \ \text{else } e_f : B} (\mathrm{L:Cond}) \qquad \frac{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_f : B \right|}{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_f : B \right|} (\mathrm{L:Cond}) \qquad \frac{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_f : B \right|}{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_f : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ \mathrm{nil} : L^p(A) \right|}{\Sigma; \emptyset \left| \frac{q}{q'} \ \mathrm{nil} : L^p(A) \right|} (\mathrm{L:Nil}) \qquad \frac{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_f : B \right|}{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \left| \frac{q}{q'} \ e_f : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ \mathrm{nil} : L^p(A) \right|}{\Sigma; \Gamma, x : (A_1, A_2) \left| \frac{q}{q'} \ \mathrm{case} \ x \ \{(x_1; x_2) \hookrightarrow e\} : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ \mathrm{nil} : L^p(A) \right|}{\Sigma; \Gamma, x_1 : A_1, x_2 : A_1, x_2 : A_2, x_1 : A_1, x_2 : A_2, x_2 : A_1, x_3 : A_2, x_4 : A_2, x_4 : A_2, x_4 : A_3, x_4 : A_4, x_4$$

3 Paths and aliasing

In order prove soundness of the type system, we need some auxiliary judgements to defining properties of a heap. Below we define $root: Val \rightarrow \{\{Loc\}\}\}$ that maps stack values its the root multiset, the multiset of locations that's already on the stack.

$$root(\langle v_1, v_2 \rangle) = root(v_1) \uplus root(v_2)$$

 $root(l) = \{l\}$
 $root(_) = \emptyset$

For a multiset S, we write $\mu: S \to \mathbb{N}^+$ for the multiplicity function of S, which maps each element to the count of its occurrence. If $\forall s \in S.\mu(s) = 1$, then S is a property set, and we denote it by $\mathsf{set}(S)$.

Next, we define the judgements $H \models p : l \leadsto l'$ for path formulation and $H \models p = p' : l \leadsto l'$ for path equality. A path can be thought of as a sequence of locations that is traversable by following pointers in the heap.

$$\frac{l \in H}{H \vDash id_{l} : l \leadsto l} (\mathrm{Id}) \qquad \frac{H(l) = v \qquad l' \in root(v)}{H \vDash (l, l') : l \leadsto l'} (\mathrm{Edge})$$

$$\frac{H \vDash p : l \leadsto l' \qquad H \vDash q : l' \leadsto l''}{H \vDash q \circ p : l \leadsto l''} (\mathrm{Comp})$$

$$\frac{H \vDash p : l \leadsto l'}{H \vDash p \circ id_{l} \equiv p : l \leadsto l'} (\mathrm{LeftID}) \qquad \frac{H \vDash p : l \leadsto l'}{H \vDash id_{l'} \circ p \equiv p : l \leadsto l'} (\mathrm{RightID})$$

$$\frac{H(l) = v \qquad l' \in root(v) \qquad H \vDash p \equiv q : l' \leadsto l''}{H \vDash p \circ (l, l') : l \leadsto l''} (\mathrm{Eq})$$

Note that it is not the case that $id_l \equiv (l, l) : l \leadsto l$, since the former is an actual identity, while the latter is an infinite loop in the heap: H(l) = l.

Next, we define the predicates linear_H and no₋alias:

 $\begin{aligned} &\mathsf{linear}_H(R_1,R_2) \text{:} \quad \forall l_1 \in R_1, l_2 \in R_2, \text{ if } H \vDash p : l_1 \leadsto l \text{ and } H \vDash q : l_2 \leadsto l, \text{ then } H \vDash p \equiv q : l_1 \leadsto l. \\ &\mathsf{no_alias}(V,H) \text{:} \quad \forall l \in H, \, \forall x,y \in \overline{V}, \text{ let } r_x = root(\overline{V}(x)), \, r_y = root(\overline{V}(y)). \end{aligned}$

- 1. $set(root(H(l))), set(r_x), set(r_y)$
- 2. $r_x \cap r_y = \emptyset$
- 3. $\operatorname{linear}_H(r_x, r_x)$, $\operatorname{linear}_H(r_y, r_y)$, and $\operatorname{linear}_H(r_x, r_y)$

4 Soundness for heap allocation

We simplify the soundness proof of the type system for the general metric to one with monotonic resource. (No function types for now)

Task 1.1 (Soundness). let $H \vDash V : \Gamma$. If Σ ; $\Gamma \mid \frac{q}{q'} e : B$ and $V, H, R, F \vdash e \Downarrow v, H', F'$, then

1. If $\operatorname{no_alias}(V,H)$, $R \cap locs_{V,H}(e) = \emptyset$, and $F \cap locs_{V,H}(e) = \emptyset$, then $|F| - |F'| \leq \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$ and $\operatorname{no_alias}(V,H')$.

Proof. Induction on the evaluation judgement.

Case 1: E:Var

$$V, H, R, F \vdash x \Downarrow V(x), H, F$$
 (admissibility)

$$\Sigma; x : B \mid_{q}^{q} x : B$$
 (admissibility)

$$|F| - |F'|$$
 (1)

$$= |F| - |F|$$
 (ad.)

$$= 0$$
 (2)

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 (3)

$$= \Phi_{V,H}(x : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (ad.)

$$= \Phi_{H}(V(x) : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (def. of $\Phi_{V,H}$)

$$= 0$$
 (4)

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 ((3),(5))

Case 2: E:Const* Due to similarity, we show only for E:ConstI

$$|F| - |F'| = |F| - |F|$$

$$= 0$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') = \Phi_{V,H}(\emptyset) + q - (\Phi_{H}(v:int) + q)$$

$$= 0$$

$$(\text{def of } \Phi_{V,H})$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 4: E:App

Case 5: E:CondT

$$\Gamma = \Gamma', x : \mathsf{bool} \tag{ad.}$$

$$H \vDash V : \Gamma' \tag{def of W.F.E}$$

$$\Sigma; \Gamma' \left| \frac{q}{q'} e_t : B \tag{ad.}$$

$$V, H, R, F \cup g \vdash e_t \Downarrow v, H', F' \tag{ad.}$$

$$|F \cup g| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

Case 6: E:CondF Similar to E:CondT

Case 7: E:Let

$$\begin{array}{lll} V,H,R',F\vdash e_1\Downarrow v_1,H_1,F_1 & (\text{ad.}) \\ \Sigma;\Gamma_1|\frac{q}{p}\,e_1:A & (\text{ad.}) \\ H\vDash V:\Gamma_1 & (\Gamma_1\subseteq\Gamma) \\ |F|-|F_1|\leq \Phi_{V,H}(\Gamma_1)+q-(\Phi_{H_1}(v_1:A)+p) & (\text{III}) \\ V',H_1,R,F_1\cup g\vdash e_2\Downarrow v_2,H_2,F_2 & (\text{ad.}) \\ \Sigma;\Gamma_2,x:A|\frac{p}{q'}\,e_2:B & (\text{ad.}) \\ H_1\vDash v_1:A \text{ and} & (\text{Theorem 3.3.4}) \\ H_1\vDash V:\Gamma_2 & (???) \\ H_1\vDash V':\Gamma_2,x:A & (\text{def of }\vDash) \\ |F_1\cup g|-|F_2|\leq \Phi_{V',H_1}(\Gamma_2,x:A)+p-(\Phi_{H_2}(v_2:B)+q') & (\text{III}) \\ |F_1|-|F_2|\leq \Phi_{V',H_1}(\Gamma_2,x:A)+p-(\Phi_{H_2}(v_2:B)+q') & (\text{III}) \\ |F_1|-|F_2|\leq \Phi_{V',H_1}(\Gamma_2,x:A)+p-(\Phi_{H_2}(v_2:B)+q') & (\text{III}) \\ |F|-|F_1|+|F_1|-|F_2|\leq \Phi_{V,H}(\Gamma_1)+q-(\Phi_{H_1}(v_1:A)+p)+\Phi_{V',H_1}(\Gamma_2,x:A)+p-(\Phi_{H_2}(v_2:B)+q') \\ |F|-|F_2|\leq \Phi_{V,H}(\Gamma_1)+q-\Phi_{H_1}(v_1:A)+\Phi_{V',H_1}(\Gamma_2,x:A)-(\Phi_{H_2}(v_2:B)+q') & (\text{def of }\Phi_{V,H}) \\ |F|=\Phi_{V,H}(\Gamma_1)+\Phi_{V',H_1}(\Gamma_2)+q-\Phi_{H_1}(v_1:A)+\Phi_{V',H_1}(x:A)-(\Phi_{H_2}(v_2:B)+q') & (\text{Lemma 4.3.3}) \\ |\Phi_{V,H}(\Gamma)+q-\Phi_{H_1}(v_1:A)+\Phi_{H_1}(v_1:A)-(\Phi_{H_2}(v_2:B)+q') & (\text{def of }\Phi_{V,H}) \\ |\Phi_{V,H}(\Gamma)+q-\Phi_{H_1}(v_1:A)+\Phi_{H_1}(v_1:A)-(\Phi_{H_2}(v_2:B)+q') & (\text{def of }\Phi_{V,H}) \\ |\Phi_{V,H}(\Gamma)+q-(\Phi_{H_2}(v_2:B)+q') & (\text{def of }\Phi_{V,H}) \\ |\Phi_{V,H}(\Gamma)+q-(\Phi_{H_2$$

Case 8: E:Pair Similar to E:Const*

Case 9: E:MatP Similar to E:MatCons

Case 10: E:Nil Similar to E:Const*

Case 11: E:Cons

$$|F| - |F'|$$

$$= |F| - |F \setminus \{l\}| \qquad (ad.)$$

$$= 1$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

$$= \Phi_{V,H}(x_h:A,x_t:L^p(A)) + q + p + 1 - (\Phi_{H'}(v:L^p(A)) + q) \qquad (ad.)$$

$$= \Phi_{V,H}(x_h:A,x_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A)))$$

$$= \Phi_{H}(V(x_h):A) + \Phi_{H}(V(x_t):L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))) \qquad (ad.)$$

$$= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - \Phi_{H'}(v_t:L^p(A))) \qquad (ad.)$$

$$= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - (p + \Phi_{H'}(v_h:A) + \Phi_{H'}(v_t:L^p(A))) \qquad (Lemma 4.1.1)$$

$$= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - (p + \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A))) \qquad (Lemma 4.3.3)$$

$$= 1$$
Hence,
$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 12: E:MatNil Similar to E:Cond*

Case 13: E:MatCons

```
 \begin{split} &-\text{F} \cup g| - |F'| \leq \Phi_{V,H}(\Gamma', x_h : A, x_t : L^p(A)) + q + p + 1 - (\Phi_{H'}(v : B) + q') \\ &= \Phi_{V,H}(\Gamma') + \Phi_{H}(v_h : A) + \Phi_{H}(v_t : L^p(A)) + p + q + 1 - (\Phi_{H'}(v : B) + q') \\ &= \Phi_{V,H}(\Gamma') + \Phi_{H}(\langle v_h, v_t \rangle^L : L^p(A)) + q + 1 - (\Phi_{H'}(v : B) + q') \\ &= \Phi_{V,H}(\Gamma', z : L^p(A)) + q + 1 - (\Phi_{H'}(v : B) + q') \\ &= \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \\ &(l, n + 1) \in F \cup g \text{ and } \nexists !(l', k) \in F \cup g.l' = l \land k \neq n + 1 \\ &(l, n + 1) \notin F \\ &(l, n + 1) \in g \\ &|g| \geq 1 \\ &|F \cup g| - |F'| \\ &= |F| + |g| - |F'| \\ &\text{Hence}, \\ &|F| + |g| - |F'| \leq \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v : B) + q') \\ &\leq \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q') \end{split}
```