# Quantum Mechanics

October 27, 2016

CONTENTS 2

# Contents

| 1 | Wa  | ve Functions and Operators         | 3  |
|---|-----|------------------------------------|----|
|   | 1.1 | Wave Function and States           | 3  |
|   | 1.2 | Operators and Observables          | 4  |
|   |     | 1.2.1 Expectation values           | 5  |
|   |     | 1.2.2 Eigenvalues and Eigenstates  | 6  |
|   |     | 1.2.3 Additional comments          | 6  |
|   | 1.3 | Infinite well or particle in a box | 7  |
| 2 | The | e Schrödinger Equation             | 9  |
|   | 2.1 | Stationary states                  | 9  |
|   | 2.2 | Conservation of Probability        | 10 |
|   | 2.3 | Wave packets and particles         | 11 |
| 3 | Bou | and States in One Dimension        | 13 |
|   | 3.1 | Potential Well                     | 13 |
|   | 3.2 | General Properties                 | 14 |
|   |     | 3.2.1 Bound state energies         | 14 |
| 4 | Exp | pectation and Uncertainty          | 17 |
|   | 4.1 | Hermitian Operators                | 17 |
|   | 4.2 | Ehrenfest's Theorem                | 18 |
|   | 4 3 | The Uncertainty Principle          | 10 |

#### 1 Wave Functions and Operators

We introduce some of the mathematical structure of quantum mechanics (QM) by considering a particle in one dimension.

#### 1.1 Wave Function and States

A classical point particle in one dimension has a position x at each time. In QM a particle has a state at each time given by a complex wave function  $\psi(x)$ .

**Postulate.** A measurement of position gives a result x with probability density  $|\psi(x)|^2$ , i.e.

$$|\psi(x)|^2 \delta x$$

will be the probability that particle is found between x and  $x + \delta x$ , or

$$\int_{a}^{b} |\psi\left(x\right)|^{2} dx$$

is the probability that the particle is found in the interval  $a \leq x \leq b$ . This obviously requires

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$$

We say  $\psi$  is normalised if it satisfies this condition.

Example. (Gaussian wave function) Let

$$\psi\left(x\right) = Ce^{-\frac{\left(x-x_0\right)^2}{2\alpha}}$$

For some real  $\alpha > 0$ .

If  $\alpha$  is small,  $|\psi|^2$  will be sharply peaked around  $x = x_0$ . If  $\alpha$  is large,  $|\psi|^2$  is more spread out.

Since  $\psi$  needs to be normalised,

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = |C|^2 \int_{-\infty}^{\infty} e^{-\frac{(x-x_0)^2}{\alpha}} dx$$
$$= |C|^2 (2\pi)^{1/2}$$
$$= 1$$

So  $\psi$  is normalised if

$$C = \left(\frac{1}{2\pi}\right)^{1/4}$$

It is convenient to deal more generally with normalisable wave functions that are not identically zero, and satisfy

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx < \infty$$

In fact,  $\psi(x)$  and  $\phi(x) = \lambda \psi(x)$  contain the same physical information for any complex  $\lambda \neq 0$ .

If  $\psi(x)$  is normalisable, we can choose  $\lambda$  to ensure  $\psi(x)$  is normalised. Note also  $\psi(x)$  and  $e^{i\alpha}\psi(x)$  are physically equivalent for any real  $\alpha$ , and when  $\psi$  is normalised,

$$|\psi(x)|^2 = |e^{i\alpha}\psi(x)|^2$$

i.e. they have the same probability distribution.

In general we will consider normalisable wave functions  $\psi, \phi, \chi, ...$  that are *smooth* (differentiable any number of times) except at isolated points (see examples below). Also,  $\psi, \psi', ... \to 0$  as  $|x| \to \infty$ .

Given states  $\psi_1(x)$  and  $\psi_2(x)$  can form new state

$$\psi\left(x\right) = \psi_1\left(x\right) + \psi_2\left(x\right)$$

which is called superposition.

Example. Take

$$\psi\left(x\right) = B\left(e^{-\frac{x^2}{2\alpha}} + e^{-\frac{(x-x_0)^2}{2\alpha}}\right)$$

i.e. the superposition of Gaussian wave function and itself at different positions.

By drawing the image of  $|\psi(x)|^2$  we can get the probability distribution for single particle, with appropriate choice of B.

# 1.2 Operators and Observables

A quantum state contains information about other physical quantities *observables*, for example, momentum and energy, in addition to position. In QM, each observable is represented by an *operator* acting on wave functions: Position:

$$\hat{x} = x$$
$$(\hat{x}\psi)(x) = x\psi(x)$$

Momentum:

$$\hat{p} = -i\hbar \frac{d}{dx}$$

$$(\hat{p}\psi)(x) = -i\hbar \frac{d\psi}{dx} = -i\hbar\psi'(x)$$

Energy, or *Hamiltonian*, for a particle of mass m moving at potential V(x):

$$H = \frac{\hat{p}^2}{2m} + V(\hat{x})$$
$$= -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

If an observable Q is measured when the system is in a state  $\psi$ , we would like to know:

- (i) what results are possible;
- (ii) what is the probability for each result.

#### 1.2.1 Expectation values

For any normalisable  $\psi(x)$  and  $\phi(x)$ , define

$$(\psi, \phi) = \int_{-\infty}^{\infty} \psi(x)^* \phi(x) dx$$

For normalised  $\psi(x)$ , define the expectation value of Q (some operator) in this state to be

$$\langle Q \rangle_{\psi} = (\psi, Q\psi) = \int_{-\infty}^{\infty} \psi^* Q\psi dx$$

Note for  $Q = \hat{x}$ ,

$$\langle \hat{x} \rangle_{\psi} = (\psi, \hat{x}\psi) = \int_{-\infty}^{\infty} x |\psi(x)|^2 dx$$

standard expression for mean or expectation of x, and for  $Q = \hat{p}$ ,

$$\langle \hat{p} \rangle_{\psi} = (\psi, \hat{p}\psi) = \int_{-\infty}^{\infty} -i\hbar \psi^* \psi' dx$$

**Postulate.** For any observable,  $\langle Q \rangle_{\psi}$  is the mean result of measuring Q when the system is in state  $\psi$ .

Now consider  $\phi$  and  $\psi$  (normalised) with

$$\phi\left(x\right) = \psi\left(x\right)e^{ikx}$$

for real k. Then  $|\phi\left(x\right)|^2=|\psi\left(x\right)|^2$ . As a result,  $\langle\hat{x}\rangle_{\phi}=\langle\hat{x}\rangle_{\psi}$ , but

$$\begin{split} \langle \hat{p} \rangle_{\phi} &= \int_{-\infty}^{\infty} -i\hbar \phi^* \phi' dx \\ &= \int_{-\infty}^{\infty} -i\hbar \psi^* \psi' + \int_{-\infty}^{\infty} \hbar k \psi^* \psi \\ &= \langle \hat{p} \rangle_{,b} + \hbar k \end{split}$$

So additional factor of  $e^{ikx}$  changes momentum by hk.

Example. Let

$$\psi = C e^{-\frac{x^2}{2\alpha}}$$

as in the last subsection but with  $x_0 = 0$ .

Then  $\langle \hat{p} \rangle_{\psi} = 0$ ,

$$\phi = Ce^{-\frac{x^2}{2\alpha}}e^{ikx}$$

with  $\langle \hat{p} \rangle_{\phi} = \hbar k$ .

#### 1.2.2 Eigenvalues and Eigenstates

Consider an operator corresponding to an observable, Q, with

$$Q\psi = q\psi$$

for some number q. Then  $\psi\left(x\right)$  is called an eigenfunction, or eigenstate of Q with eigenvalue q.

**Postulate.** If Q is measured when the system is in an eigenstate  $\psi$ , then the result is the eigenvalue q with probability 1.

**Example.**  $Q = \hat{x}$ . This has no normalisable eigenfunctions, since if

$$\hat{x}\psi\left(x\right) = x\psi\left(x\right) = q\psi\left(x\right)$$

for some q, then  $\psi(x) = 0$  for all  $x \neq q$ .

**Example.** Set  $Q = \hat{p} = -i\hbar \frac{d}{dx}$ , and q = p. Then  $\psi = Ce^{ikx}$  is an eigenfunction with  $p = \hbar k$ . However, this is not normalisable on the real line (we'll return to this later)

**Example.** Set Q = H with  $V(x) = \frac{1}{2}kx^2$  with k > 0, a harmonic oscillator, and q = E. Then the eigenvalue equation

$$H\psi = -\frac{\hbar^2}{2m}\psi'' + \frac{1}{2}kx^2\psi = E\psi$$

is satisfied by

$$\psi = Ce^{-x^2/2\alpha}$$

(where C is chosen to normalise  $\psi$ ) for  $\alpha^2 = \hbar^2/km$  and  $E = \frac{\hbar}{2}\sqrt{\frac{k}{m}}$ .

In general, the energy eigenvalue equation

$$H_{\psi} = E_{\psi}$$

or

$$-\frac{\hbar}{2m}\frac{d^{2}\psi}{dx^{2}}+V\left( x\right) \psi=E\psi\left( x\right)$$

for particle in potential  $V\left(x\right)$  is called the *time-independent Schrödinger Equation*(SE). Solving this determines all states of definite energy.

#### 1.2.3 Additional comments

**Remark.** If  $\psi$  is any normalised state, then  $\langle \hat{p} \rangle_{\psi}$  and  $\langle H \rangle_{\psi}$  are real. This follows from definitions using integration by parts, e.g.

$$\begin{split} \langle \hat{p} \rangle^* &= \left( \int_{-\infty}^{\infty} -i\hbar \psi^* \psi' dx \right)^* \\ &= \left( \int_{-\infty}^{\infty} i\hbar \psi \left( \psi^* \right)' dx \right) \\ &= i\hbar \left[ \psi \psi^* \right]_{\infty}^{\infty} (=0) - i\hbar \int_{-\infty}^{\infty} \psi' \psi^* dx \\ &= \langle \hat{p} \rangle_{\psi} \end{split}$$

Similarly we can check

$$\langle H \rangle_{\psi} = \int_{-\infty}^{\infty} \left( -\frac{\hbar^2}{2m} \psi^* \psi'' + \psi^* V \psi \right) dx$$

is real, integrate first term by parts twice after taking complex conjugate (assume V real).

Remark. Postulate 3 is consistent with Postulate 2 since

$$\begin{split} H\psi &= E\psi \\ \Longrightarrow \left\langle H\right\rangle_{\psi} &= \int_{-\infty}^{\infty} \psi^* H\psi dx = \int_{-\infty}^{\infty} E\psi^* \psi dx = E \end{split}$$

for  $\psi$  normalised.

**Remark.** From the previous two remarks, the energy eigenvalue for a normalised eigenstate  $\psi$  is always real.

# 1.3 Infinite well or particle in a box

Let

$$V(x) = \begin{cases} 0 & |x| \le a \\ \infty & |x| > a \end{cases}$$

assume  $\psi(\pm a) = 0$  and justify at end and  $\psi(x) = 0$  for |x| > a.

Consider SE for  $-a \le x \le a$ 

$$-\frac{\hbar^2}{2m}\psi'' = E\psi$$

for E > 0, set  $E = \frac{\hbar^2 k^2}{2m}$  where k > 0 so that SE becomes

$$\psi'' + k^2 \psi = 0$$

So

$$\psi = A\cos kx + B\sin kx$$

But  $A\cos ka \pm B\sin ka = 0$  from boundary condition. That implies either

$$B=0,\ ka=rac{n\pi}{2}\ n=1,3,...$$

or

$$A=0,\ ka=rac{n\pi}{2}\ n=2,4,...$$

Solutions:

$$\psi_n(x) = \left(\frac{1}{a}\right)^{1/2} \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \frac{n\pi}{2a} x \text{ for } n > 0 \left\{ \begin{array}{c} \text{odd} \\ \text{even} \end{array} \right\}$$

energy eigenfunctions and discrete set of energy eigenvalues

$$E_n = \frac{\hbar^2 \pi^2 n^2}{8ma^2}$$

For E < 0, set

$$E = -\frac{\hbar^2 k^2}{2m}$$

with k > 0 so that SE becomes

$$\psi'' - k^2 \psi = 0$$

Solutions are

$$\psi = Ae^{kx} + Be^{-kx}$$

and cannot satisfy boundary conditions, except by A=B=0.

To justify boundary conditions, consider potential with  $V\left(x\right)=U\gg E$  for  $\left|x\right|>a$ . Setting

$$U - E = \frac{\hbar^2 k^2}{2m}$$

and SE is

$$\psi'' - k^2 \psi = 0$$

for |x| > a. So for normalisable solutions, we need

$$\psi = \begin{cases} Ae^{-kx} & x > a \\ Be^{+kx} & x < -a \end{cases}$$

Taking  $U \to \infty$  with E fixed,  $k \to \infty$ , and  $\psi \to 0$  for |x| > a.

# 2 The Schrödinger Equation

To continue our development of QM (in one dimension), we need to consider how things evolve in time.

Classical dynamics of a particle can be specified by the potential V(x) (Force f(x) = -V'(x)). Quantum dynamics is also specified by Hamiltonian

$$H = \frac{\hat{p}^2}{2m} + V\left(\hat{x}\right)$$

also determined by potential.

Evolution of a quantum state in time is described by a t-dependent wave function  $\Psi\left(x,t\right)$  which satisfies

$$i\hbar\frac{\partial}{\partial t}\Psi = H\Psi \tag{1}$$

the time-dependent  $Schr\"{o}dinger$  Equation.

The operators  $\hat{x}$  and  $\hat{p}$  do not change in time, and (1) is

$$i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi}{\partial x^{2}}+V\left( x\right) \psi$$

a PDE linear in  $\Psi$  and first order in t, so specify  $\Psi(x,0)$  and  $\Psi(x,t)$  can be determined uniquely.

# 2.1 Stationary states

Consider a wave function of definite frequency:

$$\Psi(x,t) = \psi(x) e^{-i\omega t}$$

Substituting in (1) gives

$$\psi\hbar\omega e^{-i\omega t} = (H\psi)\,e^{-i\omega t}$$

This holds if and only if

$$H\psi = E\psi$$

with  $E = \hbar \omega$ .

Alternatively, look for a separable solution

$$\Psi\left(x,t\right)=f\left(t\right)\psi\left(x\right)$$

and find

$$\frac{1}{\psi}H\psi=\frac{i\hbar}{f}\dot{f}=E$$

which is a separation constant. This implies  $H\psi = E\psi$  and  $f(t) = f(0) e^{-iEt/\hbar}$ .

A solution of this special form is called a *stationary state*. Special properties of stationary states:

(i)

$$\left|\Psi\left(x,t\right)\right|^{2} = \left|\psi\left(x\right)\right|^{2}$$

So probability density does not change with time;

(ii)

$$\Psi(x,t) = \psi(x) e^{-iEt/\hbar}$$

is the unique solution with  $\Psi\left(x,0\right)=\psi\left(x\right)$  and  $H\psi=E\psi$ . Then  $H\Psi=E\Psi$  implies that the measurement of energy gives result E with certainty (probability 1) for all t.

**Example.** Consider particle in a box in chapter 1.3: found energy eigenstates  $\psi_n\left(s\right) \left(\begin{array}{c} \sin \\ \cos \end{array}\right)$  with

$$E_n = \frac{\hbar^2 \pi^2}{8ma^2} n^2$$

for n = 1, 2, ....

Stationary state solutions of time dependent SE:

$$\Psi_n(x,t) = \psi_n(x) e^{-iE_n t/\hbar}$$

Note however  $\psi_1 + \psi_2$  is *not* an energy eigenstate:

$$H(\psi_1 + \psi_2) = E_1 \psi_1 E_2 \psi_2 \not\propto \psi_1 + \psi_2$$

## 2.2 Conservation of Probability

The probability density

$$P(x,t) = \left|\Psi(x,t)\right|^2$$

obeys a conservation equation

$$\frac{\partial P}{\partial t} = -\frac{\partial J}{\partial x}$$

where

$$J\left(x,t\right)=-\frac{i\hbar}{2m}\left(\Psi^{*}\Psi^{\prime}-\left.\Psi^{\prime}\right.^{*}\Psi\right)$$

which is real (here  $'=\frac{\partial}{\partial x})$ , and is called the *probability current*.

This follows from time dependent SE

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\Psi'' + V\Psi$$

and its conjugate

$$-i\hbar\frac{\partial\Psi^*}{\partial t} = -\frac{\hbar^2}{2m}\;{\Psi^*}^{\prime\prime} + V\Psi^*$$

So

$$\begin{split} \frac{\partial P}{\partial t} &= \Psi^* \frac{\partial \Psi}{\partial t} + \frac{\partial \Psi^*}{\partial t} \Psi \\ &= \Psi^* \frac{i\hbar}{2m} \Psi'' - \frac{i\hbar}{2m} \; {\Psi^*}'' \, \Psi \end{split}$$

Since the potential terms (V) cancel each other. That is equal to

$$-\frac{\partial J}{\partial x}$$

as claimed.

The conservation equation implies

$$\frac{d}{dt} \int_{a}^{b} P(x,t) dx = \int_{a}^{b} + \frac{\partial P}{\partial t} (x,t) dx$$
$$= \int_{a}^{b} - \frac{\partial J}{\partial x} (x,t) dx$$
$$= -J(b,t) + J(a,t)$$

Then boundary conditions  $\Psi, J \to 0$  as  $x \to \pm \infty$  (for fixed t) gives

$$\int_{-\infty}^{\infty} \left| \Psi \left( x, t \right) \right|^2 dx$$

which is independent of time.

Hence  $\Psi(x,0)$  normalised  $\Longrightarrow \Psi(x,t)$  normalised for all  $t \geq 0$ .

## 2.3 Wave packets and particles

Any wave function that represents a particle localised in space (about some point, on some scale) is called a wave packet.

For example, consider Gaussian

$$\psi\left(x\right) = A \frac{1}{\alpha^{1/2}} e^{-x^2/2\alpha}$$

where  $A = (\alpha/\pi)^{1/4}$ .

Wave packet localised around x=0 on length scale  $\sqrt{\alpha}$ .

So the solution of time dependent SE with V=0 (free particle) and  $\Psi\left(x,0\right)=\psi\left(x\right)$ . Then

$$\Psi\left(x,t\right) = A \frac{1}{\gamma\left(t\right)^{1/2}} e^{-x^{2}/2\gamma\left(t\right)}$$

with

$$\gamma\left(t\right) = \alpha + \frac{i\hbar t}{m}$$

(see example sheet 1).

Then the probability density is

$$P_{\Psi}(x,t) = |\Psi(x,t)|^{2}$$
$$= \frac{|a|^{2}}{|\gamma(t)|} e^{-\alpha x^{2}/|\gamma(t)|^{2}}$$

localised around x=0 but the length scale  $|\gamma(t)|/\sqrt{\alpha}$  spreads with t.

However it's easy to check

$$\langle \hat{x} \rangle_{\Psi} = \langle \hat{p} \rangle_{\Psi} = 0$$

for all t.

Previously noted  $\phi(x) = \psi(x) e^{ikx}$  has expectation value  $\hbar k$  for momentum. Solution to SE with  $\Phi(x,0) = \phi(x)$  is

$$\Phi\left(x,t\right) = \Psi\left(x-ut,t\right)e^{ikx}e^{-i\left(\hbar k^{2}/2m\right)t}$$

with  $mu = \hbar k$  (can be checked directly). We can also check

$$\langle \hat{x} \rangle_{\Phi} = ut$$

and

$$\langle \hat{p} \rangle_{\Phi} = \hbar k$$

Moreover,

$$P_{\Phi} = |\Phi(x,t)|^2 = |\Psi(x - ut, t)|^2 = P_{\Psi}(x - ut, t)$$

So  $\Phi$  corresponds to the moving particle with  $mu = \hbar k$  momentum.

Gaussian wave function spreads out on time-scale  $\tau \sim \frac{m\alpha}{\hbar}$ .

For example, consider an electron  $m=m_e$  and  $\sqrt{\alpha}=10^{-12}$  meter. Then  $\tau\sim 10^{-20}$  sec.

Now take  $m=10^{-6}$  kg and  $\alpha=10^{-6}$  meter. Then  $\tau\sim 10^{16}$  sec.

#### 3 **Bound States in One Dimension**

A bound state for a particle of mass m in a potential V(x) is a normalisable energy eigenstate (or stationary state)

$$H\psi = -\frac{\hbar^2}{2m}\psi'' + V(x)\psi = E\psi$$

(time-independent SE). This corresponds to a bounded classical orbit.

If  $V(x) \to 0$  as  $|x| \to \infty$ , need E < 0 (see section 3.2 below).

#### Potential Well 3.1

Consider a potential well

$$V\left(x\right) = \left\{ \begin{array}{ll} -U & |x| < a \\ 0 & |x| \ge a \end{array} \right.$$

Seek solutions of time-independent SE with -U < E < 0:

$$-\frac{\hbar^2}{2m}\psi'' = (E+U)\psi \quad |x| < a$$
$$-\frac{\hbar^2}{2m}\psi'' = E\psi \quad |x| > n$$

Set  $U+E=\frac{\hbar^2 k^2}{2m}$  and  $E=-\frac{\hbar^2 \kappa^2}{2m}$  for  $k,\kappa\in\mathbb{R}^+.$  Then

$$k^2 + \kappa^2 = \frac{2mU}{\hbar^2}$$

Then SE becomes

$$\psi'' + k^2 \psi = 0 \quad |x| < a$$
  
$$\psi'' - \kappa^2 \psi = 0 \quad |x| > a$$

$$\psi'' - \kappa^2 \psi = 0 \quad |x| > a$$

Need  $\psi, \psi'$  continuous but  $\psi''$  discontinuous at  $x = \pm a$ .

Consider even parity solutions with  $\psi(-x) = \psi(x)$ :

$$\psi = \begin{cases} A\cos kx & |x| < a \\ Be^{-\kappa x} & |x| > a \end{cases}$$

Matching  $\psi$  and  $\psi'$  at x = a (x = -a automatic for  $\psi$  even):

$$A\cos ka = Be^{-\kappa a}$$
$$-Ak\sin ka = -B\kappa e^{-\kappa a}$$

These give the same result for A/B if and only if

$$k \tan ka = \kappa$$

To see when solutions exists, convenient to set

$$\xi = ak, \eta = a\kappa$$

which are dimensionless (and positive), and consider

$$\eta = \xi \tan \xi,$$
  
$$\xi^2 + \eta^2 = \frac{2ma^2}{\hbar^2} U$$

For each point of intersection, we get one solution for  $\xi$ ,  $\eta$  or k,  $\kappa$  and corresponding value of E.

Hence there is exactly one solution for  $\frac{2ma^2}{\hbar^2}U < \pi^2$ .

In general, there are n solutions for  $(n-1)^2 \pi^2 < \frac{2ma^2U}{\hbar\hbar^2} < n^2\pi^2$ .

There are finite number of allowed energy eigenstates.



Note that now we have non-zero probability density  $|\psi(x)|^2$  of measuring particle outside classically allowed region |x| < a (for E < 0).

We can consider *odd parity* solutions  $\psi(-x) = -\psi(x)$  similarly (see example sheet 1).

## 3.2 General Properties

## 3.2.1 Bound state energies

Consider time-independent SE with  $V(x) \to 0$  as  $x \to \pm \infty$ . For 2nd order ODE, there are 2 complex constants in general solution.

But this is linear in  $\psi$ , so one complex constants corresponds to  $\psi \to \lambda \psi$ .

Now

$$-\frac{\hbar^2}{2m}\psi^{\prime\prime}\sim E\psi$$

as  $x \to \pm \infty$ . So

$$\psi \sim A_{\pm}e^{ikx} + B_{\pm}e^{-ikx}$$
  $E = \frac{\hbar^2 k^2}{2m} > 0$   
 $\psi \sim A_{\pm}e^{\kappa x} + B_{\pm}e^{-\kappa x}$   $E = -\frac{\hbar^2 \kappa^2}{2m} < 0$ 

For E > 0 there is no normalisable solution.

For E < 0 we have normalisable solution if

$$\psi \sim \left\{ \begin{array}{ll} B_{+}e^{-\kappa x} & x \to +\infty \ (A_{+}=0) \\ A_{-}e^{\kappa x} & x \to -\infty \ (B_{-}=0) \end{array} \right.$$

Only one complex constant left to choose, so specifying behaviour at both boundaries  $\implies$  over-determined system, solutions exist for *particular* values of  $E \implies$  bound state energies quantised.

We may have several bound states:



or none:



Furthermore, if  $V(x) \geq V_0$  (constant), then for  $\psi$  normalisable,

$$\begin{split} H\psi &= E\psi \implies E = \langle H \rangle_{\psi} \\ &= \int_{-\infty}^{\infty} \left( -\frac{\hbar^2}{2m} \psi^* \psi'' + V\left(x\right) |\psi\left(x\right)|^2 \right) dx \\ &= \int_{-\infty}^{\infty} \left( \frac{\hbar^2}{2m} |\psi'|^2 + V\left(x\right) |\psi|^2 \right) dx \\ &\geq 0 + V_0 \end{split}$$

(integration by parts). So  $0 > E > V_0$  for any bounded state.

# 4 Expectation and Uncertainty

## 4.1 Hermitian Operators

Recall earlier definition

$$(\phi, \psi) = \int_{-\infty}^{\infty} \phi(x)^* \psi(x) dx$$

with properties

$$(\psi, \alpha \psi) = \alpha (\phi, \psi) = (\alpha^* \phi, \psi)$$

and similarly

$$(\phi, \psi)^* = (\psi, \phi)$$

Regarding this as an inner product on wave functions, define the *norm* of psi, denoted  $||\psi||$ , by

$$||\psi||^2 = (\psi, \psi) = \int_{-\infty}^{\infty} |\psi(x)|^2 dx$$

which is real and positive, and  $||\psi|| = 1$  is  $\psi$  is normalised.

An operator Q is hermitian if

$$(\phi, Q\psi) = (Q\phi, \psi)$$

for all normalisable  $\psi, \phi$ . This implies

$$(\psi, Q\psi) = (Q\psi, \psi) = (\psi, Q\psi)^*$$
$$\implies \langle Q \rangle_{\psi} = \langle Q \rangle_{\psi}^*$$

The operators  $\hat{x}, \hat{p}$ , and  $H = \frac{\hat{p}^2}{2m} + V(\hat{x})$  are hermitian (for V real).

Check:

$$(\phi, \hat{x}\psi) = (\hat{x}\phi, \psi)$$

$$\iff \int_{-\infty}^{\infty} \phi(x)^* (x\psi(x)) dx = \int_{-\infty}^{\infty} (x\phi(x))^* \psi(x) dx$$

which is true (x is real).

$$(\phi, \hat{p}\psi) = (\hat{p}\phi, \psi)$$

$$\iff \int_{-\infty}^{\infty} \phi^* (-i\hbar\psi') dx = \int_{-\infty}^{\infty} (-i\hbar\phi')^* \psi dx$$

by parts and  $[\phi^*\psi]_{-\infty}^{\infty} = 0$ .

To show  $(\phi, H\psi) = (H\phi, \psi)$ , check KE and PE terms separately:

KE:  $(\phi, \psi'') = -(\phi', \psi') = (\phi'', \psi);$ 

PE: 
$$(\phi, V(x)\psi) = (V(x)\phi, \psi)$$
 for V real.

(Later in chapter 6 we'll prove other general properties of hermitian operators, e.g. eigenvalues are real, eigenstates with distinct eigenvalues are orthogonal with respect to inner product.)

#### 4.2 Ehrenfest's Theorem

Consider normalised  $\Psi(x,t)$  satisfying SE

$$i\hbar\dot{\Psi}=H\Psi=\left(\frac{\hat{p}^{2}}{2m}+V\left(\hat{x}\right)\right)\Psi=-\frac{\hbar^{2}}{2m}\Psi^{\prime\prime}+V\left(x\right)\Psi$$

The expectation values

$$\langle \hat{x} \rangle_{\Psi} = (\Psi, \hat{x}\Psi)$$

and

$$\langle \hat{p} \rangle_{\Psi} = (\Psi, \hat{p}\Psi)$$

depend on t through  $\Psi$ . Ehrenfest's Theorem states

$$\frac{d}{dt} \langle \hat{x} \rangle_{\Psi} = \frac{1}{m} \langle \hat{p} \rangle_{\Psi}$$

and

$$\frac{d}{dt} \langle \hat{p} \rangle_{\Psi} = - \langle V'(\hat{x}) \rangle_{\Psi}$$

which is the quantum counterparts to classical equations of motion (in first order form).

Proof.

$$\begin{split} \frac{d}{dt} \left< \hat{x} \right>_{\Psi} &= \left( \dot{\Psi}, \hat{x} \Psi \right) + \left( \Psi, \hat{x} \dot{\Psi} \right) \\ &= \left( \frac{1}{i \hbar} H \Psi, \hat{x} \Psi \right) + \left( \Psi, \hat{x} \frac{1}{i \hbar} H \Psi \right) \end{split}$$

Since H is hermitian,

$$\begin{split} &-\frac{1}{i\hbar}\left(H\Psi,\hat{x}\Psi\right) + \frac{1}{i\hbar}\left(\Psi,\hat{x}H\Psi\right) \\ &= -\frac{1}{i\hbar}\left(\Psi,H\hat{x}\Psi\right) + \frac{1}{i\hbar}\left(\Psi,\hat{x}H\Psi\right) \\ &= \frac{1}{i\hbar}\left(\Psi,\left(\hat{x}H - H\hat{x}\right)\Psi\right) \end{split}$$

But

$$(\hat{x}H - H\hat{x})\Psi = \frac{-\hbar^2}{2m} (x\Psi'' - (x\Psi)'') + (xV - Vx)\Psi$$
$$= +\frac{\hbar^2}{2m} 2\Psi'$$
$$= \frac{i\hbar}{m} \hat{p}\Psi$$

as required.

Similarly,

$$\begin{split} \frac{d}{dt} \left\langle \hat{p} \right\rangle_{\Psi} &= \left( \dot{\Psi}, \hat{p} \Psi \right) + \left( \Psi, \hat{p} \dot{\Psi} \right) \\ &= \left( \frac{1}{i \hbar} H \Psi, \hat{p} \Psi \right) + \left( \Psi, \hat{p} \frac{1}{i \hbar} H \Psi \right) \\ &= \frac{1}{i \hbar} \left( \Psi, \left( \hat{p} H - H \hat{p} \right) \Psi \right) \end{split}$$

But

$$(\hat{p}H - H\hat{p})\Psi = -i\hbar \left(-\frac{\hbar^2}{2m}\right) \left((\Psi'')' - (\Psi')''\right) (= 0) - i\hbar \left((V\Psi)' - V\Psi'\right)$$
$$= -i\hbar V'(x)\Psi$$

as required.

# 4.3 The Uncertainty Principle

If  $\psi$  is any normalised state (at fixed time) define the *uncertainty* in position  $(\Delta x)_{\psi}$  and momentum  $(\Delta p)_{\psi}$  by

$$(\Delta x)_{\psi}^{2} = \left\langle (\hat{x} - \langle \hat{x} \rangle - \psi)^{2} \right\rangle_{\psi} \neq = \left\langle \hat{x}^{2} \right\rangle_{\psi} - \left\langle \hat{x} \right\rangle_{\psi}^{2}$$

and the same formula for  $(\Delta p)_{\psi}$ .

These quantify 'spread' of possible results of measurements.

Heisenberg's Uncertainty Principle states

$$(\Delta x)_{\psi} (\Delta p)_{\psi} \ge \frac{\hbar}{2}$$

Interpretation: we can never reduce combined uncertainty in measurements of position and momentum below this threshold.

Note:  $X = \hat{x} - \alpha$  and  $P = \hat{p} - \beta$  are both hermitian for any real  $\alpha, \beta$ .

$$(\psi, X^2 \psi) = (X\psi, X\psi) = ||X\psi||^2 \ge 0, \ (\psi, P^2 \psi) = (P\psi, P\psi) = ||P\psi||^2 \ge 0$$

Choosing  $\alpha = \langle \hat{x} \rangle_{\psi}$  and  $\beta = \langle \hat{p} \rangle_{\psi}$ , we deduce  $(\Delta x)_{\psi}^2$  and  $(\Delta p)_{\psi}^2$  are indeed real and positive, as required in our definition.

Example. For Gaussian

$$\psi\left(x\right) = \left(\frac{1}{\alpha\pi}\right)^{\frac{1}{4}} e^{-x^{2}/2\alpha}$$

find

$$\langle \hat{x} \rangle_{y} = \langle \hat{p} \rangle_{y} = 0$$

and

$$(\Delta x)_{\psi}^{2} = \alpha/2, (\Delta p)_{\psi}^{2} = \hbar^{2}/2\alpha$$

So

$$(\Delta x)_{\psi} (\Delta p)_{\psi} = \frac{\hbar}{2}$$