

book recommendation system.

NATHASYA GUNAWAN | JCDS-09 JKT

HI, I'M NATHASYA GUNAWAN!

BACHELOR OF ARTS IN MEDIA, COMMUNICATION, AND CULTURAL STUDIES - NEWCASTLE UNIVERSITY

SEO CONTENT WRITER & DIGITAL STRATEGIC PLANNER

Timeline

BUSINESS DATASET EDA MACHINE EVALUATION PROBLEM

NATHASYA GUNAWAN | FINAL PROJECT

Business Problem

Recommendation System in Book Retail

Big data is now being utilized at a level that we could have never previously imagined, but the important part still remains on how we apply the data in a business context, and how we make the most out of it.

For online book retailers, product ratings can play a huge role for making sound business decisions. As the data on product ratings continue to grow over time, companies can take advantage of this information and enhance customer experiences.

Business Problem

Recommendation System in Book Retail

Can book recommendation system help book retail in giving out the best recommendation for their customer?

DATASET

The dataset contains about 1 million ratings across 10000 different books. In most cases, there are at least 10 books rated by each user and the rating lies between 0 and 5.

GOODBOOKS-10K

https://www.kaggle.com/zygmunt/goodbooks-10k

DATASET

- books.csv metadata for each book (goodreads IDs, authors, title, average rating, etc.) - (1000 x 23)
- book_tags.csv contains tags/shelves/genres assigned by users to books. Tags in this file are represented by their IDs. (999912 x 3)
- tags.csv translates tag IDs to names. (34252 x 2)
- rating.csv contains ratings (5976479 x 3)

DATA FEATURES

TITLE

The name under which the book was published.

AUTHORS

Names
of the authors of the book.
Multiple authors are delimited with
a comma (,).

AVERAGE_RATING

The average rating of the book received in total.

DATA FEATURES

RATINGS_COUNT

Total number of ratings the book received.

USER_ID

A unique Identification number for each user.

BOOK_ID

A unique Identification number for each book.

DATA FEATURES

RATINGS

Ratings given to a book by a user.

TAG_NAME

Book genres assigned to each book

BOOKS_COUNT

Number of editions a book have.

EXPLORATORY DATA ANALYSIS

Most Rated Books

Top Rated Books

Book Rating Distribution

Most people tend to give quite positive ratings to books. Most of the ratings are in the 3-5 range, while very few ratings are in the 1-2 range.

Book Genres

this data.

Correlation Heatmap

RELATIONSHIP BETWEEN THE NUMBER OF RATINGS & THE AVERAGE **RATINGS**

Theoretically, it might be that the popularity of a book (in terms of the number of ratings it receives) is associated with the average rating it receives, such that once a book is becoming popular it gets better ratings. However, our data shows that this is true only to a very small extent. The correlation between these variables is only 0.054.

RELATIONSHIP BETWEEN THE NUMBER OF **EDITIONS &** THE AVERAGE **RATINGS**

The dataset contains information about how many editions of a book are available in books_count. These can either be different editions in the same language or also translations of the book into different languages. So one might assume, that the better the book is the more editions should be available. In fact, data show exactly the opposite pattern: The more editions a book has the lower is the average rating. The causal direction of this association is of course unclear here.

DOES TITLE LENGTH AFFECTS RATING?

So, the highly rated books have rather short titles. The graph shows that a straight line can be plotted but very approximately to say that as the length of title increases, the rating remains constant (at around 4).

MACHINE LEARNING

CONTENT-BASED FILTERING

This approach utilizes the characteristics of an item to find items with similar properties. Those characteristics are the keywords of an item. For this particular machine learning, I utilize the feature Title, Authors, and Tag_Name (Genre) to give out recommendations.

	CountVectorizer	TfidfVectorizer
	Much Ado About Nothing	Much Ado About Nothing
	The Taming of the Shrew	The Merchant of Venice
	As You Like It	Measure for Measure
Get recommendation	Twelfth Night	The Taming of the Shrew
for title:	Measure for Measure	As You Like It
Romeo and Juliet	Hamlet	Twelfth Night
	The Merchant of Venice	Hamlet
	Anne of the Island (Anne of Green Gables, #3)	A Midsummer Night's Dream
	Women in Love (Brangwen Family, #2)	Absolute Fear (New Orleans, #4)
	The Blue Castle	Between, Georgia

TFIDFVECTORIZER & COUNTVECTORIZER

NATHASYA GUNAWAN | FINAL PROJECT

Get recommendation for title: Romeo and Juliet

Recommendation for 'Romeo and Juliet':

```
1: 'Hamlet', with distance: 0.5446055579484093 2: 'Macbeth', with distance: 0.5499705087391189
```

3: 'The Great Gatsby', with distance: 0.5505435126812175

4: 'To Kill a Mockingbird', with distance: 0.5587650419497711

5: The Adventures of Huckleberry Finn', with distance: 0.567469425854512

6: 'Pride and Prejudice', with distance: 0.5695462000464738

7:'Lord of the Flies', with distance: 0.5737375277153554

8:'Of Mice and Men', with distance: 0.5827465175266584

9: 'Animal Farm', with distance: 0.5878748701562182

10: 'Little Women (Little Women, #1)', with distance: 0.5890437006003466

NEAREST NEIGHBORS

For this machine, I use Nearest Neighbors by utilizing ratings to find the nearest title to the title being input by the user.

COLLABORATIVE FILTERING

The collaborative filter recommender systems are based on interactions between users and items. Instead of focusing on the characteristics of an item, the system compares similar actions made by other users.

EVALUATION

Both model seems to give out reasonable recommendations that will help customers who are looking for their next read. However each models come with their own weaknesses.

Content-Based Filtering

To get a better recommendation using content-based filtering, there needs to be data on either book descriptions or written text review. By utilizing these two data, we may be able to get a better recommendations.

Collaborative Filtering

As collaborative filtering rely on ratings given by the users, the data may be bias as popular books may receive more ratings.

THANK YOU!

