

MAT1320-Linear Algebra Lecture Notes

Special Types of Square Matrices

Mehmet E. KÖROĞLU Fall 2024

YILDIZ TECHNICAL UNIVERSITY, DEPARTMENT OF MATHEMATICS ${\it mkoroglu@yildiz.edu.tr}$

Table of contents

1. Special Types of Square Matrices

2. Complex Matrices

Special Types of Square Matrices

Periodic Matrix

A square matrix A such that $A^{k+1} = A$, for some positive integer k, is called a periodic matrix.

Periodic Matrix

A square matrix A such that $A^{k+1} = A$, for some positive integer k, is called a periodic matrix. For example,

$$A = \begin{pmatrix} 1 & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3 \end{pmatrix} \Rightarrow A^3 = A$$

is a periodic matrix of period 2.

Idempotent Matrix

A square matrix A such that $A^2 = A$ is called an idempotent matrix.

Idempotent Matrix

A square matrix A such that $A^2 = A$ is called an idempotent matrix. For example,

$$A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \Rightarrow A^2 = A$$

is an idempotent matrix.

Nilpotent Matrix

A square matrix A such that $A^k = 0$, for some positive integer k, is called a nilpotent matrix

Nilpotent Matrix

A square matrix A such that $A^k = 0$, for some positive integer k, is called a nilpotent matrix and k is called the nilpotency index of A.

Nilpotent Matrix

A square matrix A such that $A^k = 0$, for some positive integer k, is called a nilpotent matrix and k is called the nilpotency index of A. For example,

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix} \Rightarrow A^2 = 0$$

is a nilpotent matrix of nilpotency index 2.

Involute or Involutary Matrix

A square matrix A such that $A^2 = I$ is called an involute or involutary matrix,

Involute or Involutary Matrix

A square matrix A such that $A^2 = I$ is called an involute or involutary matrix, where I is the identity matrix of the appropriate size.

Involute or Involutary Matrix

A square matrix A such that $A^2 = I$ is called an involute or involutary matrix, where I is the identity matrix of the appropriate size. For example,

$$A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix} \Rightarrow A^2 = I_3$$

is an involute matrix.

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero.

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag\left(d_{11}, d_{22}, \ldots, d_{nn}\right)$$

where some or all the d_{ii} may be zero.

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag(d_{11}, d_{22}, \ldots, d_{nn})$$

where some or all the d_{ii} may be zero. For example,

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 2
\end{array}\right),$$

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag\left(d_{11}, d_{22}, \ldots, d_{nn}\right)$$

where some or all the d_{ii} may be zero. For example,

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \left(\begin{array}{ccc}
4 & 0 \\
0 & -5
\end{array}\right),$$

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag(d_{11}, d_{22}, \ldots, d_{nn})$$

where some or all the d_{ii} may be zero. For example,

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \left(\begin{array}{ccc}
4 & 0 \\
0 & -5
\end{array}\right), \quad \left(\begin{array}{cccc}
6 & & & \\
& 0 & & \\
& & -9 & \\
& & & 8
\end{array}\right)$$

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag(d_{11}, d_{22}, ..., d_{nn})$$

where some or all the d_{ii} may be zero. For example,

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \left(\begin{array}{ccc}
4 & 0 \\
0 & -5
\end{array}\right), \quad \left(\begin{array}{cccc}
6 & & & \\
& 0 & & \\
& & -9 & \\
& & & 8
\end{array}\right)$$

are diagonal matrices, which may be represented, respectively, by

$$diag(3, -7, 2),$$

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag(d_{11}, d_{22}, \ldots, d_{nn})$$

where some or all the d_{ii} may be zero. For example,

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \left(\begin{array}{ccc}
4 & 0 \\
0 & -5
\end{array}\right), \quad \left(\begin{array}{cccc}
6 & & & \\
& 0 & & \\
& & -9 & \\
& & & 8
\end{array}\right)$$

are diagonal matrices, which may be represented, respectively, by

$$diag(3, -7, 2), diag(4, -5),$$

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag(d_{11}, d_{22}, ..., d_{nn})$$

where some or all the d_{ii} may be zero. For example,

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \left(\begin{array}{ccc}
4 & 0 \\
0 & -5
\end{array}\right), \quad \left(\begin{array}{cccc}
6 & & & \\
& 0 & & \\
& & -9 & \\
& & & 8
\end{array}\right)$$

are diagonal matrices, which may be represented, respectively, by

$$diag(3, -7, 2), diag(4, -5), diag(6, 0, -9, 8)$$

A square matrix $D = [d_{ij}]$ is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes denoted by

$$D = diag(d_{11}, d_{22}, \ldots, d_{nn})$$

where some or all the d_{ii} may be zero. For example,

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -7 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \left(\begin{array}{ccc}
4 & 0 \\
0 & -5
\end{array}\right), \quad \left(\begin{array}{cccc}
6 & & & \\
& 0 & & \\
& & -9 & \\
& & & 8
\end{array}\right)$$

are diagonal matrices, which may be represented, respectively, by

$$diag(3, -7, 2), diag(4, -5), diag(6, 0, -9, 8)$$

Observe that patterns of 0's in the third matrix have been omitted.

A square matrix $A = [a_{ij}]$ is upper triangular or simply triangular if all entries below the (main) diagonal are equal to 0 that is, if $a_{ii} = 0$ for i > j.

A square matrix $A = [a_{ij}]$ is upper triangular or simply triangular if all entries below the (main) diagonal are equal to 0 that is, if $a_{ij} = 0$ for i > j. Generic upper triangular matrices of orders 2, 3, 4 are as follows:

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array}\right),$$

A square matrix $A = [a_{ij}]$ is upper triangular or simply triangular if all entries below the (main) diagonal are equal to 0 that is, if $a_{ij} = 0$ for i > j. Generic upper triangular matrices of orders 2, 3, 4 are as follows:

$$\left(\begin{array}{ccc} a_{11} & a_{12} \\ 0 & a_{22} \end{array}\right), \quad \left(\begin{array}{cccc} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{33} \end{array}\right),$$

A square matrix $A = [a_{ij}]$ is upper triangular or simply triangular if all entries below the (main) diagonal are equal to 0 that is, if $a_{ij} = 0$ for i > j. Generic upper triangular matrices of orders 2, 3, 4 are as follows:

$$\left(\begin{array}{ccc} a_{11} & a_{12} \\ 0 & a_{22} \end{array}\right), \quad \left(\begin{array}{cccc} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{33} \end{array}\right), \quad \left(\begin{array}{ccccc} c_{11} & c_{12} & c_{13} & c_{14} \\ & c_{22} & c_{23} & c_{24} \\ & & c_{33} & c_{34} \\ & & & c_{44} \end{array}\right)$$

A square matrix $A = [a_{ij}]$ is upper triangular or simply triangular if all entries below the (main) diagonal are equal to 0 that is, if $a_{ij} = 0$ for i > j. Generic upper triangular matrices of orders 2, 3, 4 are as follows:

$$\left(\begin{array}{ccc} a_{11} & a_{12} \\ 0 & a_{22} \end{array}\right), \quad \left(\begin{array}{cccc} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{33} \end{array}\right), \quad \left(\begin{array}{ccccc} c_{11} & c_{12} & c_{13} & c_{14} \\ & c_{22} & c_{23} & c_{24} \\ & & c_{33} & c_{34} \\ & & & c_{44} \end{array}\right)$$

As with diagonal matrices, it is common practice to omit patterns of 0's.

A square matrix $A = [a_{ij}]$ is upper triangular or simply triangular if all entries below the (main) diagonal are equal to 0 that is, if $a_{ij} = 0$ for i > j. Generic upper triangular matrices of orders 2, 3, 4 are as follows:

$$\left(\begin{array}{ccc} a_{11} & a_{12} \\ 0 & a_{22} \end{array}\right), \quad \left(\begin{array}{cccc} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{33} \end{array}\right), \quad \left(\begin{array}{ccccc} c_{11} & c_{12} & c_{13} & c_{14} \\ & c_{22} & c_{23} & c_{24} \\ & & c_{33} & c_{34} \\ & & & c_{44} \end{array}\right)$$

As with diagonal matrices, it is common practice to omit patterns of 0's.

Note: A lower triangular matrix is a square matrix whose entries above the diagonal are all zero.

• A matrix A is symmetric if $A^T = A$.

• A matrix A is symmetric if $A^T = A$. Equivalently, $A = [a_{ij}]$ is symmetric if symmetric elements (mirror elements with respect to the diagonal) are equal-that is, if each $a_{ij} = a_{ji}$.

- A matrix A is symmetric if $A^T = A$. Equivalently, $A = [a_{ij}]$ is symmetric if symmetric elements (mirror elements with respect to the diagonal) are equal-that is, if each $a_{ij} = a_{ji}$.
- A matrix A is skew-symmetric if $A^T = -A$

- A matrix A is symmetric if $A^T = A$. Equivalently, $A = [a_{ij}]$ is symmetric if symmetric elements (mirror elements with respect to the diagonal) are equal-that is, if each $a_{ij} = a_{ji}$.
- A matrix A is skew-symmetric if $A^T = -A$ or, equivalently, if each $a_{ij} = -a_{ji}$.

- A matrix A is symmetric if $A^T = A$. Equivalently, $A = [a_{ij}]$ is symmetric if symmetric elements (mirror elements with respect to the diagonal) are equal-that is, if each $a_{ij} = a_{ji}$.
- A matrix A is skew-symmetric if $A^T = -A$ or, equivalently, if each $a_{ij} = -a_{ji}$. Clearly, the diagonal elements of such a matrix must be zero, because $a_{ii} = -a_{ii}$ implies $a_{ii} = 0$

- A matrix A is symmetric if $A^T = A$. Equivalently, $A = [a_{ij}]$ is symmetric if symmetric elements (mirror elements with respect to the diagonal) are equal-that is, if each $a_{ij} = a_{ji}$.
- A matrix A is skew-symmetric if $A^T = -A$ or, equivalently, if each $a_{ij} = -a_{ji}$. Clearly, the diagonal elements of such a matrix must be zero, because $a_{ii} = -a_{ji}$ implies $a_{ii} = 0$
- Note that a matrix A must be square if $A^T = A$ or $A^T = -A$.

Example

Let
$$A = \begin{pmatrix} 2 & -3 & 5 \\ -3 & 6 & 7 \\ 5 & 7 & -8 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 3 & -4 \\ -3 & 0 & 5 \\ 4 & -5 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Example

Let
$$A = \begin{pmatrix} 2 & -3 & 5 \\ -3 & 6 & 7 \\ 5 & 7 & -8 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 3 & -4 \\ -3 & 0 & 5 \\ 4 & -5 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

i. By inspection, the symmetric elements in A are equal, or $A^T = A$. Thus, A is symmetric.

Symmetric and Skew-Symmetric Matrices

Let
$$A = \begin{pmatrix} 2 & -3 & 5 \\ -3 & 6 & 7 \\ 5 & 7 & -8 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 3 & -4 \\ -3 & 0 & 5 \\ 4 & -5 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- i. By inspection, the symmetric elements in A are equal, or $A^T = A$. Thus, A is symmetric.
- ii. The diagonal elements of B are 0 and symmetric elements are negatives of each other, or $B^T = -B$. Thus, B is skew-symmetric.

Symmetric and Skew-Symmetric Matrices

Let
$$A = \begin{pmatrix} 2 & -3 & 5 \\ -3 & 6 & 7 \\ 5 & 7 & -8 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 3 & -4 \\ -3 & 0 & 5 \\ 4 & -5 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- i. By inspection, the symmetric elements in A are equal, or $A^T = A$. Thus, A is symmetric.
- ii. The diagonal elements of B are 0 and symmetric elements are negatives of each other, or $B^T=-B$. Thus, B is skew-symmetric.
- iii. Because C is not square, C is neither symmetric nor skew-symmetric.

A real matrix A is orthogonal if $A^T = A^{-1}$ that is, if $AA^T = A^TA = I$. Thus, A must necessarily be square and invertible.

A real matrix A is orthogonal if $A^T = A^{-1}$ — that is, if $AA^T = A^TA = I$. Thus, A must necessarily be square and invertible.

Let
$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
.

A real matrix A is orthogonal if $A^T = A^{-1}$ — that is, if $AA^T = A^TA = I$. Thus, A must necessarily be square and invertible.

Let
$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
. Multiplying A by A^T yields I ; that is, $AA^T = I$.

A real matrix A is orthogonal if $A^T = A^{-1}$ — that is, if $AA^T = A^TA = I$. Thus, A must necessarily be square and invertible.

Let
$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
. Multiplying A by A^T yields I ; that is, $AA^T = I$. This means $A^TA = I$, as well. Thus, $A^T = A^{-1}$; that is, A is orthogonal.

Let A be a matrix with complex entries.

Let A be a matrix with complex entries. Recall that if z = a + bi is a complex number, then $\bar{z} = a - bi$ is its conjugate.

Let A be a matrix with complex entries. Recall that if z = a + bi is a complex number, then $\bar{z} = a - bi$ is its conjugate.

The conjugate of a complex matrix A, written \bar{A} , is the matrix obtained from A by taking the conjugate of each entry in A.

Let A be a matrix with complex entries. Recall that if z = a + bi is a complex number, then $\bar{z} = a - bi$ is its conjugate.

The conjugate of a complex matrix A, written \bar{A} , is the matrix obtained from A by taking the conjugate of each entry in A.

That is, if $A = [a_{ij}]$, then $\bar{A} = [b_{ij}]$ where $b_{ij} = \bar{a}_{ij}$.

Let A be a matrix with complex entries. Recall that if z = a + bi is a complex number, then $\bar{z} = a - bi$ is its conjugate.

The conjugate of a complex matrix A, written \bar{A} , is the matrix obtained from A by taking the conjugate of each entry in A.

That is, if $A = [a_{ij}]$, then $\bar{A} = [b_{ij}]$ where $b_{ij} = \bar{a}_{ij}$. We denote this fact by writing $\bar{A} = [\bar{a}_{ij}]$.

Let A be a matrix with complex entries. Recall that if z=a+bi is a complex number, then $\bar{z}=a-bi$ is its conjugate.

The conjugate of a complex matrix A, written \bar{A} , is the matrix obtained from A by taking the conjugate of each entry in A.

That is, if $A = [a_{ij}]$, then $\bar{A} = [b_{ij}]$ where $b_{ij} = \bar{a}_{ij}$. We denote this fact by writing $\bar{A} = [\bar{a}_{ij}]$.

The two operations of transpose and conjugation commute for any complex matrix A, and the special notation A^H is used for the conjugate transpose of A.

Let A be a matrix with complex entries. Recall that if z = a + bi is a complex number, then $\bar{z} = a - bi$ is its conjugate.

The conjugate of a complex matrix A, written \bar{A} , is the matrix obtained from A by taking the conjugate of each entry in A.

That is, if $A = [a_{ij}]$, then $\bar{A} = [b_{ij}]$ where $b_{ij} = \bar{a}_{ij}$. We denote this fact by writing $\bar{A} = [\bar{a}_{ij}]$.

The two operations of transpose and conjugation commute for any complex matrix A, and the special notation A^H is used for the conjugate transpose of A. That is, $A^H = (\bar{A})^T = (\overline{A^T})$

Let A be a matrix with complex entries. Recall that if z = a + bi is a complex number, then $\bar{z} = a - bi$ is its conjugate.

The conjugate of a complex matrix A, written \bar{A} , is the matrix obtained from A by taking the conjugate of each entry in A.

That is, if $A = [a_{ij}]$, then $\bar{A} = [b_{ij}]$ where $b_{ij} = \bar{a}_{ij}$. We denote this fact by writing $\bar{A} = [\bar{a}_{ij}]$.

The two operations of transpose and conjugation commute for any complex matrix A, and the special notation A^H is used for the conjugate transpose of A. That is, $A^H = (\bar{A})^T = (\overline{A^T})$

Note that if A is real, then $A^H = A^T$.

Let A be a matrix with complex entries. Recall that if z = a + bi is a complex number, then $\bar{z} = a - bi$ is its conjugate.

The conjugate of a complex matrix A, written \bar{A} , is the matrix obtained from A by taking the conjugate of each entry in A.

That is, if $A = [a_{ij}]$, then $\bar{A} = [b_{ij}]$ where $b_{ij} = \bar{a}_{ij}$. We denote this fact by writing $\bar{A} = [\bar{a}_{ij}]$.

The two operations of transpose and conjugation commute for any complex matrix A, and the special notation A^H is used for the conjugate transpose of A. That is, $A^H = (\bar{A})^T = (\overline{A^T})$

Note that if A is real, then $A^H = A^T$. Some texts use A^* instead of A^H .

Example Let

$$A = \begin{pmatrix} 2+8i & 5-3i & 4-7i \\ 6i & 1-4i & 3+2i \end{pmatrix}.$$

Example Let

$$A = \left(\begin{array}{ccc} 2+8i & 5-3i & 4-7i \\ 6i & 1-4i & 3+2i \end{array}\right).$$

Then

$$A^{H} = \begin{pmatrix} 2 - 8i & -6i \\ 5 + 3i & 1 + 4i \\ 4 + 7i & 3 - 2i \end{pmatrix}.$$

A complex matrix A is said to be Hermitian if $A^H = A$.

A complex matrix A is said to be Hermitian if $A^H = A$. Clearly, $A = [a_{ij}]$ is Hermitian if and only if symmetric elements are conjugate;

A complex matrix A is said to be Hermitian if $A^H = A$. Clearly, $A = [a_{ij}]$ is Hermitian if and only if symmetric elements are conjugate; that is, if each $a_{ij} = \bar{a}_{ji}$, in which case each diagonal element a_{ii} must be real.

A complex matrix A is said to be Hermitian if $A^H = A$. Clearly, $A = [a_{ij}]$ is Hermitian if and only if symmetric elements are conjugate; that is, if each $a_{ij} = \bar{a}_{ji}$, in which case each diagonal element a_{ii} must be real.

A complex matrix A is said to be skew-Hermitian if $A^H = -A$.

A complex matrix A is said to be Hermitian if $A^H = A$. Clearly, $A = [a_{ij}]$ is Hermitian if and only if symmetric elements are conjugate; that is, if each $a_{ij} = \bar{a}_{ji}$, in which case each diagonal element a_{ii} must be real.

A complex matrix A is said to be skew-Hermitian if $A^H = -A$. Similarly, if A is skew-symmetric, then each diagonal element $a_{ii} = 0$ or pure complex.

A complex matrix A is said to be Hermitian if $A^H = A$. Clearly, $A = [a_{ij}]$ is Hermitian if and only if symmetric elements are conjugate; that is, if each $a_{ij} = \bar{a}_{ji}$, in which case each diagonal element a_{ii} must be real.

A complex matrix A is said to be skew-Hermitian if $A^H = -A$. Similarly, if A is skew-symmetric, then each diagonal element $a_{ii} = 0$ or pure complex.

Note that A must be square if $A^H = A$ or $A^H = -A$.

A complex matrix A is said to be Hermitian if $A^H = A$. Clearly, $A = [a_{ij}]$ is Hermitian if and only if symmetric elements are conjugate; that is, if each $a_{ij} = \bar{a}_{ji}$, in which case each diagonal element a_{ii} must be real.

A complex matrix A is said to be skew-Hermitian if $A^H = -A$. Similarly, if A is skew-symmetric, then each diagonal element $a_{ii} = 0$ or pure complex.

Note that A must be square if $A^H = A$ or $A^H = -A$.

A complex matrix A is unitary if $A^HA = AA^H = I$; that is, if $A^H = A^{-1}$.

Example

Consider the following complex matrices:

$$A = \begin{pmatrix} 3 & 1-2i & 4+7i \\ 1+2i & -4 & -2i \\ 4-7i & 2i & 5 \end{pmatrix}, B = \frac{1}{2} \begin{pmatrix} 1 & -i & -1+i \\ i & 1 & 1+i \\ 1+i & -1+i & 0 \end{pmatrix}$$

Example

Consider the following complex matrices:

$$A = \begin{pmatrix} 3 & 1 - 2i & 4 + 7i \\ 1 + 2i & -4 & -2i \\ 4 - 7i & 2i & 5 \end{pmatrix}, B = \frac{1}{2} \begin{pmatrix} 1 & -i & -1 + i \\ i & 1 & 1 + i \\ 1 + i & -1 + i & 0 \end{pmatrix}$$

i. By inspection, the diagonal elements of A are real, and the symmetric elements 1-2i and 1+2i are conjugate, 4+7i and 4-7i are conjugate, and -2i and 2i are conjugate. Thus, A is Hermitian.

Example

Consider the following complex matrices:

$$A = \begin{pmatrix} 3 & 1 - 2i & 4 + 7i \\ 1 + 2i & -4 & -2i \\ 4 - 7i & 2i & 5 \end{pmatrix}, B = \frac{1}{2} \begin{pmatrix} 1 & -i & -1 + i \\ i & 1 & 1 + i \\ 1 + i & -1 + i & 0 \end{pmatrix}$$

- i. By inspection, the diagonal elements of A are real, and the symmetric elements 1-2i and 1+2i are conjugate, 4+7i and 4-7i are conjugate, and -2i and 2i are conjugate. Thus, A is Hermitian.
- ii. Multiplying B by B^H yields I; that is, $BB^H = I$. This implies $B^HB = I$, as well. Thus, $B^H = B^{-1}$ which means B is unitary.

?