A számításelmélet alapjai I. (Tizedik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. április 25.

Tematika

- A veremautomata fogalma. A közvetlen (egylépéses) konfiguráció-átmenet, a (0 vagy többlépéses) konfiguráció-átmenet (közvetlen redukció, redukció) fogalma. Elfogadás elfogadó állapotokkal (végállapotokkal) vagy üres veremmel. A veremautomata által elfogadott nyelv. A determinisztikus veremautomata fogalma.
- Az üres veremmel elfogadó és az elfogadó állapotokkal elfogadó veremautomaták egyenlő felismerő ereje. A veremautomata (mindkét elfogadási mód esetében) és a környezetfüggetlen grammatikák egyenlő ereje (mindketten a környezetfüggetlen nyelvek osztályát határozzák meg).

Példa 1

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{ab^ncb^na \mid n \geq 1\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet és ismertessük ezen veremautomata működését!

Példa 2

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{c^m a^n b^n \mid m \ge 0, n \ge 1\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet és ismertessük ezen veremautomata működését!

Példa 3

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{a^n b^{n-1} \mid n \ge 1\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet és ismertessük ezen veremautomata működését!

Példa 4

Legyen $L = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$, ahol $|w|_a$ és $|w|_b$ a és b előfordulásainak számát jelöli w-ben.

- Adjunk meg egy, az L-et végállapotokkal felismerő (elfogadó állapotokkal elfogadó) veremautomatát!
- Adjunk meg egy, az L-et üres veremmel felismerő (elfogadó) veremautomatát!

Példa 5

Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$, $Z = \{z_0, a\}$, $T = \{a, b\}$, $F = \{q_1, q_2\}$, valamint

- $(1) \quad \delta(\varepsilon,q_0,a)=(a,q_0),$
- (2) $\delta(\varepsilon, q_0, \varepsilon) = (\varepsilon, q_1),$
- (3) $\delta(a,q_0,b)=(\varepsilon,q_2),$
- (4) $\delta(a, q_1, \varepsilon) = (\varepsilon, q_1),$
- $(5) \quad \delta(a,q_2,b)=(\varepsilon,q_2),$
- (6) $\delta(a, q_2, \varepsilon) = (\varepsilon, q_2).$
- Az alábbi szavak közül melyeket ismeri fel végállapotokkal az A veremautomata: b^2 , a^2b^2 , a^3b ?
- Adjuk meg az A veremautomata által végállapotokkal felismert L(A) nyelvet!

Példa 6

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{a^n b^m \mid n < m\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Példa 7

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{a^i b^j c^{j+1} \mid i, j \ge 0\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Példa 8

Legyen $V = \{a, b, c\}$ egy ábécé és legyen

$$L = \{a^{i}b^{j}c^{k} \mid i, j, k > 0, i = j + k\}.$$

Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Példa 9

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{ww^R \mid w \in \{a, b\}^*\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Példa 10

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{wcw^R \mid w \in \{a, b\}^*\}$. Mutassuk meg, hogy az L nyelv determinisztikus veremautomatával felismerhető!

Példa 11

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{w \in \{a, b\}^* \mid |w|_b \leq |w|_a\}$, ahol $|w|_a$ és $|w|_b$ a és b előfordulásainak számát jelöli w-ben. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Példa 12

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{a^n b^n \mid n > 0\}$. Mutassuk meg, hogy az L nyelv determinisztikus veremautomatával felismerhető!