Math 7014

Xingxing Yu

Spring 2019

1 An application of the regularity lemma to Ramsey Theory

Definition: For all graphs H, let $R(H) := \min\{n \in N | |V(G)| \ge n \text{ implies } H \subseteq G \text{ or } H \subseteq \bar{G}\}.$

We note that such an R(H) exists since if r = |V(H)|, then $H \subseteq K_r$ and by Ramsey's Theorem we know that $R(r,r) := R(K_r,K_r)$ exists. (For those unfamiliar, $R(H_1,H_2) = \min\{n \in N | |V(G)| \ge n \text{ implies } H_1 \subseteq G \text{ or } H_2 \subseteq \bar{G}\}$). Usually, R(r,r) is exponential in r, but if we have H with bounded maximum degree, then we can show that R(H) is linear in |V(H)|.

Theorem: (Chvatal, Rodl, Szemeredi, Trottor 1983)

For all $\Delta \geq 1$, there exists a constant $C = C(\Delta)$ such that $R(H) \leq C|V(H)|$ whenever $\Delta(H) \leq \Delta$.

Idea of the proof:

- Take G.
- Find an ϵ -regular partition of G.
- Construct the corresponding regularity graph, R, with no density threshold (just d = 0).
- Show that (since we chose the right parameters) such R has a K_m where m is at least a certain Ramsey Number which makes things work.
- With this K_m , we can get that any two coloring of it (which will arise from coloring an edge a certain color if the density of the corresponding pair was ≥ 0.5 or the other color if the density was < 0.5) has a monochromatic clique of size $\Delta + 1$.
- Basically what we're doing is constructing the desired C.

Proof:

Let $d=0.5, \Delta \geq 1$, and $s \in N$ be given. Then, there exists $\epsilon_0 > 0$ such that the embedding lemma applies to ϵ -regular partitions with parameters $\epsilon \leq \epsilon_0, l \geq \frac{s}{\epsilon_0}$, and d=0.5. Intuitively, we want to make such that n is large enough such that

we are guaranteed an ϵ -regular partition with those parameters. Namely, we want n large enough such that $K_m \subseteq R$ where $m \ge R(\Delta+1,\Delta+1)$. Let $m:=R(\Delta+1,\Delta+1)$ and $\epsilon>0$ such that $\epsilon \le \epsilon_0$ and $2\epsilon < \frac{1}{m} - \frac{1}{m-1}$. We then apply Szemeredi's Regularity lemma to get a partition. Namely, we know that there exists $M=M(\epsilon,d)$ such that any graph G with $|V(G)| \ge M$ has an ϵ -regular partition $\{V_0,V_1,\ldots,V_k\}$ with exceptional set V_0 and $m\le k\le M$. We then throw away V_0 and look at V_1,\ldots,V_k . We choose s:=|V(H)|. (The intuition here is that we might find H embedded completely within on V_i . It's unlikely but could happen). Then, $l=|V_1|=\cdots=|V_k|$. We see that $l=\frac{n-|V_0|}{k}\ge\frac{(1-\epsilon)n}{|M|}$. We want that $l\ge\frac{s}{\epsilon_0}$. So, we choose $n=\lceil\frac{SM}{(1-\epsilon_0)\epsilon_0}\rceil=\lceil\frac{M}{(1-\epsilon_0)\epsilon_0}|H|\rceil$. We set $C:=\lceil\frac{M}{(1-\epsilon_0)\epsilon_0}\rceil$. We will see that a graph with at least n vertices has either H as a subgraph or its complement does.

Our initial regularity graph R, will correspond to all ϵ -regular pairs with any density. (The intuition here is that even if the density is small, the corresponding density in the complement will be large). Let R denote the regularity graph with parameters $\epsilon, l, d = 0$. We want to show that R contains a complete subgraph on m vertices. We note that since our partition is ϵ -regular, the number of pairs which are not ϵ -regular is less than ϵk^2 , which means that $e(R) \geq (k \text{ choose } 2) - \epsilon k^2 = \frac{1}{2}k^2(1 - \frac{1}{k} - 2\epsilon) = \frac{1}{2}k^2\frac{m-2}{m-1}$. We want this quantity to be greater than $t_{m-1}k$ since that would imply that $K_m \subseteq R$. Let $R_1 :=$ the subgraph of R induced by the edges of R which correspond to pairs of density $\geq \frac{1}{2}$.

Let $R_2 :=$ the subgraph of R induced by edges of R corresponding to pairs of density $< \frac{1}{2}$. Note that $E(R) = E(R_1) \sqcup E(R_2)$, which means that $E(R_1), E(R_2)$ is a 2-edge coloring of R, which then induces a 2-edge coloring on the subgraph $K_m \subseteq R$. By Ramsey, we know that $K_{\Delta+1} \subseteq R_1$ or $K_{\Delta+1} \subseteq R_2$ (because we defined $m := R(\Delta+1, \Delta+1)$ and then choose n large enough that we got a $K_m \subseteq R$). If $K_{\Delta+1} \subseteq R_1$, then $H \subseteq R_1$ and $\phi(H) \subseteq \phi(R_1) \subseteq R^s$ (ϕ is the blow up map from R to R^s). Hence, the embedding lemma gives $H \subseteq G$. Otherwise if $K_{\Delta+1} \subseteq R_2$, then $H \subseteq R_2$ and $\phi(H) \subseteq \phi(R_2)$ which gives $H \subseteq G$ and the proof is done). (Our C (which can be written in terms of H and Δ) works).

2 Bounds on traditional Ramsey Numbers

We will see that $2^{\frac{1}{2}r} \leq R(r,r) \leq 2^{2r}$. If I define n := R(r,r) and then want to write r (the size of the largest clique or clique in the complement we are guaranteed) in terms of n, I get that $r \approx \log(n)$. We ask: what conditions can we impose on a class of graphs to get a larger r? What if we forbid certain subgraphs or induced subgraphs?

Erdos-Hajnal Conjecture: if forbid certain subgraphs ([these were not stated explicitly]) then can raise r(n) to a polynomial function of n.

Definition: Given graphs H_1, H_2 . Let $R(H_1, H_2) := \min\{n \in N | |V(G)| \ge n \text{ implies } H_1 \subseteq G \text{ or } H_2 \subseteq \bar{G}\}$. Once again, this number exists because the number $R(p,q) = R(K_p,K_q)$ exists as proved by Ramsey.

Example: What is R(p,2)? We see that R(p,2) = p, since if |V(G)| = p, then either G is a clique or it is missing some edge, which means that the complement has an edge (a K_2). Similarly, R(2,q) = q.

It can be shown that for $p,q \geq 3$, the following recursive formula holds. Namely, $R(p,q) \leq R(p-1,q) + R(p,q-1)$. Why? Consider a 2 edge coloring of K_n where n := R(p-1,q) + R(p,q-1). Pick a vertex v. Look at the edges adjacent to it. It has at least R(p-1,q) adjacent red edges or at least R(p,q-1) adjacent blue edges. Look at the graph induced by the vertices adjacent to v via a red edge. This graph has at least R(p-1,q) vertices, which means that it has a red K_{p-1} or a blue K_q . If it has a blue K_q , we are done. Otherwise it has a red K_{p-1} , which together with v, forms a red K_p and we are done. (The corresponding case for when v is adjacent to at least K(p,q-1) blue edges is similar).

case for when v is adjacent to at least K(p, q - 1) blue edges is similar). Corollary: $R(p,q) \leq {p+q-2 \choose p-1}$. We get this bound from the recursive formular for R(p,q) with base cases R(2,q) = q and R(p,2) = p.

for R(p,q) with base cases R(2,q)=q and R(p,2)=p. Fact: $R(p,p) \leq {2p-2 \choose p-1} \leq 2^{2p}$ (where the last inequality arises from Sterling's formula).

So, we have successfully constructed an upper bound on the diagonal Ramsey Numbers and next class we will construct a lower bound.