Binary data and logistic regression

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Binary response data

• Two-class response ightarrow 0, 1

Examples:

- Credit scoring → "Default"/"Non-Default"
- Passing a test → "Pass"/"Fail"
- Fraud detection → "Fraud"/"No-Fraud"
- Choice of a product → "Product ABC"/"Product XYZ"

Binary data

UNGROUPED

- Single event
- Flip one coin
- Two of possible outcomes: 0/1
- Bernoulli(p) or
- Binomial(n = 1, p)

GROUPED

- Multiple events
- Flip multiple coins
- Number of successes in a given n number of trials
- Binomial(n, p)

Logistic function

Logistic function

- Test outcome: PASS = 1 or FAIL = 0
- Want to model

$$P(y=1) = \beta_0 + \beta_1 x_1$$

$$P(\text{Pass}) = \beta_0 + \beta_1 \times \text{Hours of study}$$

Logistic function

- Test outcome: PASS = 1 or FAIL = 0
- Want to model

$$P(y=1) = \beta_0 + \beta_1 x_1$$

$$P(\text{Pass}) = \beta_0 + \beta_1 \times \text{Hours of study}$$

• Use logistic function

$$f(z) = rac{1}{(1+\exp(-z))}$$

Odds and odds ratio

$$ODDS = \frac{\text{event occuring}}{\text{event NOT occuring}}$$

$$ext{ODDS RATIO} = rac{odds1}{odds2}$$

Odds example

• 4 games

Odds are 3 to 1

Odds and probabilities

$$odds \neq probability$$

$$odds = \frac{probability}{1 - probability}$$

$$probability = \frac{odds}{1 - odds}$$

From probability model to logistic regression

Step 1. Probability model

$$E(y) = \mu = P(y = 1) = \beta_0 + \beta_1 x_1$$

Step 2. Logistic function

$$f(z) = rac{1}{(1+\exp(-z))}$$

Step 3. Apply logistic function \rightarrow INVERSE-LOGIT

$$\mu = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 x_1))} = \frac{\exp(\beta_0 + \beta_1 x_1)}{1 + \exp(\beta_0 + \beta_1 x_1)}$$

$$1 - \mu = \frac{1}{1 + \exp(\beta_0 + \beta_1 x_1)}$$

From probability model to logistic regression

• Probability \rightarrow odds

$$ODDS = rac{\mu}{1-\mu} = exp(eta_0 + eta_1 x_1)$$

• Log transformation o LOGISTIC REGRESSION

$$LOGIT(\mu) = log(rac{\mu}{1-\mu}) = eta_0 + eta_1 x_1$$

Logistic regression in Python

Function - glm()

Input

```
y = [0,1,1,0,...]
y = ['No','Yes','Yes',...]
y = ['Fail','Pass','Pass',...]
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Interpreting coefficients

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Model coefficients

Generalized Linear Model Regression Results

Dep. Variable:			y No.	Observation:	5:	173
Model:			GLM Df F	Residuals:		171
Model Family:		Bino	mial Df M	Model:		1
Link Function:		ι	ogit Scal	le:		1.0000
Method:			IRLS Log-	-Likelihood:		-97.869
Date:	Sat	, 23 Feb	2019 Dev:	iance:		195.74
Time:		13:0	3:32 Pear	rson chi2:		168.
No. Iterations	s:		5 Cova	ariance Type	:	nonrobust
	coef	std err	z	P> z	[0.025	0.975]
Intercept weight	-3.6947 1.8151	0.880 0.377	-4.198 4.819	0.000 0.000	-5.420 1.077	-1.970 2.553

Coefficient beta

• eta > 0 o ascending curve

• $eta < 0 o ext{descending curve}$

Linear vs logistic

LINEAR MODEL

```
glm('y ~ weight',
    data = crab,
    family = sm.families.Gaussian())
```

$$\mu = -0.14 + 0.32 * weight$$

For every one-unit increase in weight

estimated probability increases by 0.32

LOGIT MODEL

$$log(odds) = -3.69 + 1.8 * weight$$

For every one-unit increase in weight

• log(odds) increase by 1.8

Logistic model

$$log(rac{\mu}{1-\mu})=eta_0+eta_1x_1$$

• Increase x by one-unit

$$log(\frac{\mu}{1-\mu}) = \beta_0 + \beta_1(\mathbf{x}_1 + \mathbf{1})$$

Logistic model

$$log(rac{\mu}{1-\mu})=eta_0+eta_1x_1$$

• Increase x by one-unit

$$log(\frac{\mu}{1-\mu}) = \beta_0 + \beta_1(x_1+1) = \beta_0 + \beta_1x_1 + \beta_1$$

Take the exponential

$$(rac{\mu}{1-\mu})=\exp(eta_0+eta_1x_1)\exp(eta_1)$$

Conclusion \rightarrow the odds are multiplied by $\exp(\beta_1)$

Crab model y ~ weight

$$log(\frac{\mu}{1-\mu}) = -3.6947 + 1.815 * weight$$

• The odds of satellite crab multiply by $\exp(1.815) = 6.14$ for a unit increase in weight

Crab model y ~ weight

$$log(rac{\mu}{1-\mu}) = -3.6947 + 1.8151 * weight$$

- ullet The odds of satellite crab multiply by $\exp(1.8151)=6.14$ for a unit increase in weight
- The intercept coefficient of -3.6947 denotes the baseline log odds
 - $\exp(-3.6947) = 0.0248$ are the odds when weight = 0.

• slope $o eta imes \mu (1-\mu)$

• slope $o eta imes \mu (1-\mu)$

Compute change in estimated probability

```
# Choose x (weight) and extract model coefficients
x = 1.5
intercept, slope = model_GLM.params
```

```
# Compute estimated probability
est_prob = np.exp(intercept + slope * x)/(1 + np.exp(intercept + slope * x))
```

0.2744

```
# Compute incremental change in estimated probability given x
ic_prob = slope * est_prob * (1 - est_prob)
```

0.3614

Rate of change in probability for every x

logit = -3.6947 + 1.8151 * weight

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Interpreting model inference

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Estimation of beta coefficient

- Maximum likelihood estimation (MLE)
- Estimated coefficient, $\hat{\beta}$
 - log-likelihood takes on the maximum value

Estimation of beta coefficient

Iteratively reweighted least squares (IRLS)

Generalized Linear Model Regression Results

Dep. Variable:				У	No.	Observations:		173
Model:				GLM	Df R	esiduals:		171
Model Family:			Bino	omial	Df M	odel:		1
Link Function:			1	logit	Scal	e:		1.0000
Method:				IRLS	Log-	Likelihood:		-97.869
Date:	Sur	, 24	Feb	2019	Devi	ance:		195.74
Time:				18:44	Pear	son chi2:		168.
No. Iterations	:			5	Cova	riance Type:		nonrobust
	coef		err		z	P> z	[0.025	0.975]
Intercept weight	-3.6947 1.8151		.880 .377	-	4.198 4.819	0.000 0.000	-5.420 1.077	-1.970 2.553

Significance testing

Generalized Linear Model Regression Results

Dep. Variable:				y No.	Observations	s:	173
Model:				GLM Df F	Residuals:		171
Model Family:			Binom	ial Df N	Model:		1
Link Function:			lo	git Sca	le:		1.0000
Method:			I	RLS Log-	-Likelihood:		-97.869
Date:	Su	n, 24	Feb 2	019 Dev:	iance:		195.74
Time:			12:18	:44 Pear	rson chi2:		168.
No. Iterations	:			5 Cova	ariance Type:		nonrobust
	coef	std	err	Z	P> z	[0.025	0.975]
Intercept	-3.6947	0.	880	-4.198	0.000	-5.420	-1.970
weight	1.8151	0.	377	4.819	0.000	1.077	2.553

Standard error (SE)

- Flatter peak
- → Location of maximum harder to define
- \rightarrow Larger SE

- Sharper peak
- → Location of maximum more clearly defined
- \rightarrow Smaller SE

Computation of the standard error

```
# Extract variance-covariance matrix
print(model_GLM.cov_params())
```

```
Intercept weight
Intercept 0.774762 -0.325087
weight -0.325087 0.141903
```

```
# Compute standard error for weight
std_error = np.sqrt(0.141903)
```

0.3767

Variance-covariance matrix

Significance testing

z-statistic

$$z=\hat{eta}/SE$$

- z large \Rightarrow coefficient $\neq 0 \Rightarrow$ variable significant
- Rule of thumb: cut-off value of 2

Example: horseshoe crab model

$$z = 1.8151/0.377 = 4.819$$

Confidence intervals for beta

- Uncertainty of the estimates
- 95% confidence intervals for β

[lower, upper]

$$[\hat{eta}-1.96 imes SE,\hat{eta}+1.96 imes SE]$$

Computing confidence intervals

Example: horseshoe crab model

	coef	std err	
Intercept	-3.6947	0.880	
weight	1.8151	0.377	

Extract confidence intervals

```
print(model_GLM.conf_int())
```

```
0 1
Intercept -5.419897 -1.969555
weight 1.076826 2.553463
```


Extract confidence intervals

```
print(model_GLM.conf_int())
```

```
lower 1
Intercept -5.419897 -1.969555
weight 1.076826 2.553463
```


Extract confidence intervals

```
print(model_GLM.conf_int())
```

```
0 upper
Intercept -5.419897 -1.969555
weight 1.076826 2.553463
```


Confidence intervals for odds

- 1. Extract confidence intervals for β
- 2. Exponentiate endpoints

```
print(np.exp(model_GLM.conf_int()))
```

```
0 1
Intercept 0.004428 0.139519
weight 2.935348 12.851533
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

Computing and describing predictions

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Computing predictions

After obtaining model fit

1. Fitted values for original x values

Computing predictions

After obtaining model fit

- 1. fitted values for original x values
- 2. New values of x for predicted values

Computing predictions

Horseshoe crab model y ~ weight

$$\mu = rac{\exp(-3.6947 + 1.8151 imes weight)}{1 + \exp(-3.6947 + 1.8151 imes weight)}$$

• New measurement: weight = 2.85

$$\mu = \frac{\exp(-3.6947 + 1.8151 \times 2.85)}{1 + \exp(-3.6947 + 1.8151 \times 2.85)} = 0.814$$

Predictions in Python

Compute model predictions for dataset new_data

```
# Compute model predictions
model_GLM.predict(exog = new_data)
```

From probabilities to classes

Computing class predictions

```
# Extract fitted probabilities from model
crab['fitted'] = model.fittedvalues.values

# Define cut-off value
cut_off = 0.4

# Compute class predictions
crab['pred_class'] = np.where(crab['fitted'] > cut_off, 1, 0)
```

Computing class predictions

```
# Count occurences for each class
crab['pred_class'].value_counts()
```

```
    1 151
    22
```

Cut-off	$\hat{y}=1$	$\hat{y} = 0$
$\mu=0.4$	151	22
$\mu=0.5$	126	47

Confusion matrix

Confusion matrix - True Negatives

Confusion matrix - True Positives

Confusion matrix - False Positives

Confusion matrix - False Negatives

Confusion matrix in Python

```
Predicted 0 1 All
Actual
0 15 47 62
1 7 104 111
All 22 151 173
```

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

