

Sistemas de Arquivos

Funções de um SO

- Gerência de processos
- Gerência de memória
- Gerência de Arquivos
- □ Gerência de I/O
- Sistema de Proteção

Necessidade de Armazenamento

- Grandes quantidades de informação têm de ser armazenadas
- Informação armazenada tem de sobreviver ao fim do processo que a utiliza
- Múltiplos processos devem poder acessar a informação de um modo concorrente
- ARQUIVO
 - Abstração criada pelo S.O. para gerenciar e representar os dados

Gerência de Arquivos

- Oferece a abstração de arquivos (e diretórios)
- Atividades suportadas
 - Primitivas para manipulação (chamadas de sistema para manipulação de arquivos)
 - criar, deletar
 - abrir, fechar
 - ler, escrever
 - posicionar
- Mapeamento para memória secundária

Estrutura Interna do Kernel UNIX

Sistema de Arquivos

□ O que é?

- Um conjunto de arquivos, diretórios, descritores e estruturas de dados auxiliares gerenciados pelo sub sistema de gerência de arquivos
- Permitem estruturar o armazenamento e a recuperação de dados persistentes em um ou mais dispositivos de memória secundária (discos ou bandas magnéticas)

Arquivo

- Um conjunto de dados persistentes, geralmente relacionados, identificado por um nome
- É composto por:
 - Nome: identifica o arquivo perante o utilizador
 - Descritor de arquivo: estrutura de dados em memória secundária com informação sobre o arquivo (dimensão, datas de criação, modificação e acesso, dono, autorizações de acesso)
 - Informação: dados guardados em memória secundária

Estrutura Interna de Arquivos (1)

Estrutura Interna de Arquivos (2)

- Seqüência não-estruturada de bytes
 - □ Forma mais simples de organização de arquivos
 - Sistema de arquivos não impõe nenhuma estrutura lógica para os dados, a aplicação deve definir toda a organização
 - Vantagem: flexibilidade para criar estruturas de dados, porém todo o controle de dados é de responsabilidade da aplicação
 - Estratégia adotada tanto pelo UNIX quanto pelo Windows

Estrutura Interna de Arquivos (3)

- Seqüência de Registros
 - Em geral, registros de tamanho fixo
 - Operação de leitura retorna um registro
 - Operação de escrita sobrepõe/anexa um registro
- Árvore de Registros
 - Cada registro é associado a uma chave
 - Árvore ordenada pela chave
 - Computadores de grande porte / aplicações que fazem muita leitura aleatória

Tipos de Arquivos (1)

- Arquivos Regulares
 - Arquivos ASCII
 - Binários
 - Apresentam uma estrutura interna conhecida pelo S.O.

- Diretórios
 - Arquivos do sistema
 - Mantêm a estrutura do Sistemas de Arquivos

Operações sobre Arquivos

- Dependem do tipo
 - create
 - delete
 - open
 - close
 - read
 - write
 - append
 - seek
 - get attributes
 - set attributes
 - rename

Diretórios (1)

- Modo como o sistema organiza os diferentes arquivos contidos num disco
- É a estrutura de dados que contém entradas associadas aos arquivos
 - localização física, nome, organização e demais atributos
- Quando um arquivo é aberto, o sistema operacional procura a sua entrada na estrutura de diretórios
- As informações do arquivo são armazenadas em uma tabela mantida na memória principal (tabela de arquivo abertos)
 - Fundamental para aumentar o desempenho das operações com arquivos

Diretórios (2)

- Sistemas de Diretório em Nível Único
 - Implementação mais simples
 - Existe apenas um único diretório contendo todos os arquivos do disco
 - Bastante limitado já que não permite que usuários criem arquivos com o mesmo nome
 - Isso ocasionaria um conflito no acesso aos arquivos

Diretórios (3)

- Estrutura de diretórios com dois níveis
 - Para cada usuário existe um diretório particular e assim poderia criar arquivos com qualquer nome.
 - Deve haver um nível de diretório adicional para controle que é indexado pelo nome do usuário
 - Cada entrada aponta para o diretório pessoal.

Diretórios (4)

- Estrutura de diretórios Hierárquicos
 - Adotado pela maioria dos sistemas operacionais
 - Logicamente melhor organizado
 - É possível criar quantos diretórios quiser
 - Um diretório pode conter arquivos e outros diretórios (chamados subdiretórios)
 - Cada arquivo possui um path único que descreve todos os diretórios da raiz (MFD – Master File Directory) até o diretório onde o arquivo está ligado
 - Na maioria dos S.O.s os diretórios são tratados como arquivos tendo atributos e identificação

Diretórios (5)

Estrutura de diretórios Hierárquicos

Esquema do Sistema de Arquivos

Esquema do Sistema de Arquivos

- A maioria dos discos é dividida em uma ou mais partições com Sistemas de arquivos independentes para cada partição
- O setor 0 do disco é chamado de Master Boot Record (MBR)
- Na inicialização do sistema, a BIOS lê e executa o MBR
 - O programa do MBR localiza a partição ativa, lê seu primeiro bloco, chamado de bloco de boot
 - O programa no bloco de boot carrega o S.O. contido na partição
- O esquema da partição varia de um S.O. para outro, mas é comum:
 - A definição de um SuperBloco: contém os principais parâmetros do sistema de arquivos (tipo, no. de blocos, etc.)
 - As informações sobre os blocos livres

- Alocação Contígua
 - Consiste em armazenar um arquivo em blocos sequencialmente dispostos
 - O sistema localiza um arquivo através do endereço do primeiro bloco e da sua extensão em blocos
 - O acesso é bastante simples
 - Seu principal problema é a alocação de novos arquivos nos espaços livres
 - Para armazenar um arquivo que ocupa n blocos, é necessário uma cadeia com n blocos dispostos sequencialmente no disco
 - Além disso, como determinar o espaço necessário a um arquivo que possa se estender depois da sua criação?
 - Pré-alocação (fragmentação interna)

Alocação Contígua (cont.)

Alocação Contígua (cont.)

- Alocação contínua:
 - Vantagens:
 - Simplicidade: somente o endereço do primeiro bloco e número de blocos no arquivo são necessários;
 - Desempenho para o acesso ao arquivo: acesso sequencial;
 - Desvantagens (discos rígidos):
 - Fragmentação externa:
 - Compactação → alto custo;
 - Reuso de espaço → atualização da lista de espaços livres;
 - Conhecimento prévio do tamanho do arquivo para alocar o espaço necessário;
 - CD-ROM e DVD-ROM (quando somente escrita);

- Alocação com lista encadeada:
 - A primeira palavra de cada bloco é um ponteiro para o bloco seguinte;
 - O restante do bloco é destinado aos dados;
 - Apenas o endereço em disco do primeiro bloco do arquivo é armazenado;
 - Serviço de diretório é responsável por manter esse endereço;

- Alocação com lista encadeada:
 - Desvantagens:
 - Acesso aos arquivos é feito aleatoriamente
 - processo mais lento;
 - A informação armazenada em um bloco não é mais uma potência de dois, pois existe a necessidade de se armazenar o ponteiro para o próximo bloco;
 - Vantagem:
 - Não se perde espaço com a fragmentação externa;

Alocação com lista encadeada

- Alocação com lista encadeada utilizando uma tabela na memória:
 - O ponteiro é colocado em uma tabela na memória ao invés de ser colocado no bloco;
 - FAT → Tabela de alocação de arquivos (File Allocation Table);
 - Assim, todo o bloco está disponível para alocação de dados;
 - Serviço de diretório é responsável por manter o início do arquivo (bloco inicial);
 - MS-DOS e família Windows 9x (exceto WinNT, Win2000 e WinXP NTFS);

- Acesso aleatório se torna mais fácil devido ao uso da memória;
- Desvantagem:
 - Toda a tabela deve estar na memória;
 - Exemplo:
 - Com um disco de 20Gb com blocos de 1kb, a tabela precisa de 20 milhões de entradas, cada qual com 3 bytes (para permitir um acesso mais rápido, cada entrada pode ter 4 bytes) ocupando 60 (80) Mb da memória;

Alocação com lista encadeada utilizando FAT

□ *I-nodes*:

- Cada arquivo possui uma estrutura de dados chamada i-node (index-node) que lista os atributos e endereços em disco dos blocos do arquivo;
 - Assim, dado o i-node de um arquivo é possível encontrar todos os blocos desse arquivo;
- Se cada i-node ocupa n bytes e k arquivos podem estar aberto ao mesmo tempo → o total de memória ocupada é kn bytes;
- UNIX e Linux;

Espaço de memória ocupado pelos i-nodes é proporcional ao número de arquivos abertos; enquanto o espaço de memória ocupado pela tabela de arquivo (FAT) é proporcional ao tamanho do disco;

Vantagem:

 O i-node somente é carregado na memória quando o seu respectivo arquivo está aberto (em uso);

Desvantagem:

- O tamanho do arquivo pode aumentar muito
 - Solução: reservar o último endereço para outros endereços de blocos;

□ *I-nodes*

□ *I-nodes*:

Endereços do disco

Atributos do arquivo	
Endereço do bloco 0	
Endereço do bloco 1	
Endereço do bloco 2	-
Endereço do bloco 3	→
Endereço do bloco 4	
Endereço do bloco 5	
Endereço do bloco 6	
Endereço do bloco 7	———
Endereço do bloco de ponteiros	Bloco com endereços
	adicionais

□ *I-nodes*:

□ I-nodes

□ *I-nodes*

Exercícios

- Considerando as estruturas de i-nodes, quantos acessos a disco são necessários para encontrar o seguinte arquivo: /etc/inet/hosts? Considere que apenas o i-node do diretório-raiz está na memória RAM e que todos os arquivos ocupam apenas um bloco. Mostre toda a seqüência de acesso.
- Considerando que um i-node possua 10 endereços de blocos diretos e um endereço de bloco indireto, todos com 4 bytes, e se todos os blocos forem de 1024 bytes, qual é o tamanho máximo do arquivo? E se todos os blocos forem de 2048 bytes, qual é o tamanho máximo do arquivo?