Tutorial 6: Refactoring R Code

Introduction

In this tutorial, you will refactor the code into separate scripts corresponding to each section. The dataset we will use comes from the palmerpenguins package, which contains measurements of penguins from three species.

Load Libraries and Data

```
Rows: 333 Columns: 8
-- Column specification ------
Delimiter: ","
chr (3): species, island, sex
dbl (5): bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g, year
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
  ```{r setup}
 head(data)
A tibble: 6 x 8
 species island
 bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
 <dbl>
 <chr>
 <chr>
 <dbl>
 <dbl>
 <dbl>
1 Adelie Torgersen
 39.1
 18.7
 181
 3750
2 Adelie Torgersen
 39.5
 17.4
 186
 3800
3 Adelie Torgersen
 40.3
 18
 195
 3250
4 Adelie Torgersen
 36.7
 19.3
 193
 3450
 20.6
5 Adelie Torgersen
 39.3
 190
 3650
6 Adelie Torgersen
 38.9
 17.8
 181
 3625
i 2 more variables: sex <chr>, year <dbl>
```

### **Methods**

In this section, we perform exploratory data analysis (EDA) and prepare the data for modeling.

```
i Use `spec()` to retrieve the full column specification for this data.
```

i Specify the column types or set `show\_col\_types = FALSE` to quiet this message.

```
head(model_data)
```

# A tibble: 6 x 5

	species	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Adelie	39.1	18.7	181	3750
2	Adelie	39.5	17.4	186	3800
3	Adelie	40.3	18	195	3250
4	Adelie	36.7	19.3	193	3450
5	Adelie	39.3	20.6	190	3650
6	Adelie	38.9	17.8	181	3625

### Model

We will fit a classification model using tidymodels to predict the species of a penguin based on its physical characteristics.

```
Run 03_model.R
penguin_fit <- readr::read_rds("~/work/output/penguin_fit.RDS")
summary(penguin_fit)</pre>
```

	Length	Class	Mode
pre	3	stage_pre	list
fit	2	stage_fit	list
post	1	${\tt stage\_post}$	list
trained	1	-none-	logical

## **Results**

We evaluate the performance of the model using the test dataset.

```
Run 04_results.R
conf_mat <- readr::read_rds("~/work/output/conf_mat.RDS")
conf_mat</pre>
```

#### \$table

```
Truth

Prediction Adelie Chinstrap Gentoo
Adelie 36 0 0
Chinstrap 1 17 0
Gentoo 0 0 30

attr(,"class")
[1] "conf_mat"
```

# Package Installation

We test out the output of the package regexcite20250416.

```
Run 05_package.R
 func_outputs <- readr::read_csv("~/work/output/func_outputs.csv")</pre>
Rows: 3 Columns: 2
-- Column specification ------
Delimiter: ","
chr (1): Function
dbl (1): Output
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
 func_outputs
A tibble: 3 x 2
 Function
 Output
 <chr>>
 <dbl>
1 regexcite20250416::is_leap(2000)
2 regexcite20250416::is_leap(1900)
 0
3 regexcite20250416::temp_conv(41, 'F', 'C')
```

### **Conclusion**

In this tutorial, we:

- $\bullet\,$  Loaded and cleaned the  ${\tt palmerpenguins}$  dataset.
- Performed exploratory data analysis.
- Built a k-Nearest Neighbors classification model using tidymodels.
- Evaluated the model's performance.