

## Author Index of Volume 159

|                                                                                                                                                                                              |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Alarcón, E. see Borja, R.I.                                                                                                                                                                  | 103–122 |
| Borja, R.I., Tamagnini, C. and Alarcón, E. Elastoplastic consolidation at finite strain. Part 2: Finite element implementation and numerical examples                                        | 103–122 |
| Dubois, T., Jauberteau, F. and Temam, R. Incremental unknowns, multilevel methods and the numerical simulation of turbulence                                                                 | 123–189 |
| Fonseca, J.S.O. see Silva, E.C.N.                                                                                                                                                            | 49– 77  |
| Garikipati, K. and Hughes, T.J.R. A study of strain localization in a multiple scale framework—The one-dimensional problem                                                                   | 193–222 |
| Hassenpflug, W.C. Branched channel free-streamlines                                                                                                                                          | 329–354 |
| Hughes, T.J.R. see Garikipati, K.                                                                                                                                                            | 193–222 |
| Jauberteau, F. see Dubois, T.                                                                                                                                                                | 123–189 |
| Jiménez, A. see Matesanz, A.                                                                                                                                                                 | 383–394 |
| Jin, H. and Prudhomme, S. A posteriori error estimation of steady-state finite element solutions of the Navier–Stokes equations by a subdomain residual method                               | 19– 48  |
| Khoei, A.R. see Lewis, R.W.                                                                                                                                                                  | 291–328 |
| Kikuchi, N. see Silva, E.C.N.                                                                                                                                                                | 49– 77  |
| Lee, S.-T. see Yang, J.-Y.                                                                                                                                                                   | 261–289 |
| Lewis, R.W. and Khoei, A.R. Numerical modelling of large deformation in metal powder forming                                                                                                 | 291–328 |
| Liew, K.M. and Teo, T.M. Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates                                                                     | 369–381 |
| Lu, J. see Papadopoulos, P.                                                                                                                                                                  | 1– 18   |
| Matesanz, A., Velázquez, A., Jiménez, A. and Rodríguez, M. Numerically robust 3-D finite element Reynolds Averaged Navier–Stokes solver for the study of turbulent supersonic external flows | 383–394 |
| Miehe, C. A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric                                       | 223–260 |
| Moës, N., Oden, J.T. and Zohdi, T.I. Investigation of the interactions between the numerical and the modeling errors in the Homogenized Dirichlet Projection Method                          | 79–101  |
| Oden, J.T. see Moës, N.                                                                                                                                                                      | 79–101  |

- Papadopoulos, P. and Lu, J. A general framework for the numerical solution of problems in finite elasto-plasticity 1– 18  
Prudhomme, S. see Jin, H. 19– 48
- Rodríguez, M. see Matesanz, A. 383–394
- Silva, E.C.N., Fonseca, J.S.O. and Kikuchi, N. Optimal design of periodic piezocomposites 49– 77  
Song, C. see Wolf, J.P. 355–367
- Tamagnini, C. see Borja, R.I. 103–122  
Tang, Y.-H. see Yang, J.-Y. 261–289  
Temam, R. see Dubois, T. 123–189  
Teo, T.M. see Liew, K.M. 369–381
- Velázquez, A. see Matesanz, A. 383–394
- Wolf, J.P. and Song, C. Unit-impulse response of unbounded medium by scaled boundary finite-element method 355–367
- Yang, J.-Y., Tang, Y.-H. and Lee, S.-T. A high-order streamline Godunov scheme for steady supersonic/hypersonic equilibrium flows 261–289
- Zohdi, T.I. see Moës, N. 79–101

## Subject Index of Volume 159

### *Boundary element methods*

- Unit-impulse response of unbounded medium by scaled boundary finite-element method,  
J.P. Wolf and C. Song 355–367

### *Composite materials*

- Investigation of the interactions between the numerical and the modeling errors in the  
Homogenized Dirichlet Projection Method, N. Moës, J.T. Oden and T.I. Zohdi 79–101

### *Conformal mapping*

- Branched channel free-streamlines, W.C. Hassenpflug 329–354

### *Coupled problems*

- Unit-impulse response of unbounded medium by scaled boundary finite-element method,  
J.P. Wolf and C. Song 355–367

### *Dynamics*

- Numerical modelling of large deformation in metal powder forming, R.W. Lewis and  
A.R. Khoei 291–328

- Unit-impulse response of unbounded medium by scaled boundary finite-element method,  
J.P. Wolf and C. Song 355–367

### *Elasticity*

- Investigation of the interactions between the numerical and the modeling errors in the  
Homogenized Dirichlet Projection Method, N. Moës, J.T. Oden and T.I. Zohdi 79–101

- Modeling via differential quadrature method: Three-dimensional solutions for rectangular  
plates, K.M. Liew and T.M. Teo 369–382

### *Electromagnetic fields*

- Optimal design of periodic piezocomposites, E.C. Nelli Silva, J.S.O. Fonseca and  
N. Kikuchi 49– 77

### *Electronics*

- Optimal design of periodic piezocomposites, E.C. Nelli Silva, J.S.O. Fonseca and  
N. Kikuchi 49– 77

### *Finite element and matrix methods*

- A general framework for the numerical solution of problems in finite elasto-plasticity,  
P. Papadopoulos and J. Lu 1– 18

- A posteriori error estimation of steady-state finite element solutions of the Navier–Stokes  
equations by a subdomain residual method, H. Jin and S. Prudhomme 19– 48

- Optimal design of periodic piezocomposites, E.C. Nelli Silva, J.S.O. Fonseca and  
N. Kikuchi 49– 77

|                                                                                                                                                                                           |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Elastoplastic consolidation at finite strain. Part 2: Finite element implementation and numerical examples, R.I. Borja, C. Tamagnini and E. Alarcón                                       | 103–122 |
| Investigation of the interactions between the numerical and the modeling errors in the Homogenized Dirichlet Projection Method, N. Moës, J.T. Oden and T.I. Zohdi                         | 79–101  |
| A study of strain localization in a multiple scale framework—The one-dimensional problem, K. Garikipati and T.J.R. Hughes                                                                 | 193–222 |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe                                    | 223–260 |
| Numerical modelling of large deformation in metal powder forming, R.W. Lewis and A.R. Khoei                                                                                               | 291–328 |
| Unit-impulse response of unbounded medium by scaled boundary finite-element method, J.P. Wolf and C. Song                                                                                 | 355–367 |
| Numerically robust 3-D finite element Reynolds Averaged Navier–Stokes solver for the study of turbulent supersonic external flows, A. Matesanz, A. Velázquez, A. Jiménez and M. Rodríguez | 383–394 |
| <br><i>Fluid mechanics</i>                                                                                                                                                                |         |
| Branched channel free-streamlines, W.C. Hassenpflug                                                                                                                                       | 329–354 |
| <br><i>Gas dynamics</i>                                                                                                                                                                   |         |
| A high-order streamline Godunov scheme for steady supersonic/hypersonic equilibrium flows, J.-Y. Yang, Y.-H. Tang and S.-T. Lee                                                           | 261–289 |
| <br><i>Incompressible and near incompressible media</i>                                                                                                                                   |         |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe                                    | 223–260 |
| <br><i>Material physics</i>                                                                                                                                                               |         |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe                                    | 223–260 |
| <br><i>Nonlinear dynamics of systems</i>                                                                                                                                                  |         |
| A high-order streamline Godunov scheme for steady supersonic/hypersonic equilibrium flows, J.-Y. Yang, Y.-H. Tang and S.-T. Lee                                                           | 261–289 |
| <br><i>Nonlinear mechanics</i>                                                                                                                                                            |         |
| A general framework for the numerical solution of problems in finite elasto-plasticity, P. Papadopoulos and J. Lu                                                                         | 1– 18   |
| Elastoplastic consolidation at finite strain. Part 2: Finite element implementation and numerical examples, R.I. Borja, C. Tamagnini and E. Alarcón                                       | 103–122 |
| A study of strain localization in a multiple scale framework—The one-dimensional problem, K. Garikipati and T.J.R. Hughes                                                                 | 193–222 |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe                                    | 223–260 |
| Numerical modelling of large deformation in metal powder forming, R.W. Lewis and A.R. Khoei                                                                                               | 291–328 |
| <br><i>Numerical solution procedures</i>                                                                                                                                                  |         |
| A posteriori error estimation of steady-state finite element solutions of the Navier–Stokes equations by a subdomain residual method, H. Jin and S. Prudhomme                             | 19– 48  |
| Optimal design of periodic piezocomposites, E.C. Nelli Silva, J.S.O. Figueira and N. Kikuchi                                                                                              | 49– 77  |

|                                                                                                                                                                   |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Elastoplastic consolidation at finite strain. Part 2: Finite element implementation and numerical examples, R.I. Borja, C. Tamagnini and E. Alarcón               | 103–122 |
| Investigation of the interactions between the numerical and the modeling errors in the Homogenized Dirichlet Projection Method, N. Moës, J.T. Oden and T.I. Zohdi | 79–101  |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe            | 223–260 |
| A high-order streamline Godunov scheme for steady supersonic/hypersonic equilibrium flows, J.-Y. Yang, Y.-H. Tang and S.-T. Lee                                   | 261–289 |
| Numerical modelling of large deformation in metal powder forming, R.W. Lewis and A.R. Khoei                                                                       | 291–328 |
| Unit-impulse response of unbounded medium by scaled boundary finite-element method, J.P. Wolf and C. Song                                                         | 355–367 |
| Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates, K.M. Liew and T.M. Teo                                           | 369–382 |
| <br><i>Optimization and design of structures</i>                                                                                                                  |         |
| Optimal design of periodic piezocomposites, E.C. Nelli Silva, J.S.O. Fonseca and N. Kikuchi                                                                       | 49– 77  |
| A study of strain localization in a multiple scale framework—The one-dimensional problem, K. Garikipati and T.J.R. Hughes                                         | 193–222 |
| <br><i>Plasticity</i>                                                                                                                                             |         |
| A general framework for the numerical solution of problems in finite elasto-plasticity, P. Papadopoulos and J. Lu                                                 | 1– 18   |
| Elastoplastic consolidation at finite strain. Part 2: Finite element implementation and numerical examples, R.I. Borja, C. Tamagnini and E. Alarcón               | 103–122 |
| A study of strain localization in a multiple scale framework—The one-dimensional problem, K. Garikipati and T.J.R. Hughes                                         | 193–222 |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe            | 223–260 |
| Numerical modelling of large deformation in metal powder forming, R.W. Lewis and A.R. Khoei                                                                       | 291–328 |
| <br><i>Problems in physics</i>                                                                                                                                    |         |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe            | 223–260 |
| <br><i>Shells and plates</i>                                                                                                                                      |         |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe            | 223–260 |
| Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates, K.M. Liew and T.M. Teo                                           | 369–382 |
| <br><i>Solution of differential equations</i>                                                                                                                     |         |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe            | 223–260 |
| Branched channel free-streamlines, W.C. Hassenpflug                                                                                                               | 329–354 |
| Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates, K.M. Liew and T.M. Teo                                           | 369–382 |
| <br><i>Solutions of ordinary and partial differential equations</i>                                                                                               |         |
| Incremental unknowns, multilevel methods and the numerical simulation of turbulence, T. Dubois, F. Jauberteau and R. Temam                                        | 123–189 |

|                                                                                                                                                                                           |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe                                    | 223–260 |
| <i>Stability in fluid mechanics</i>                                                                                                                                                       |         |
| Incremental unknowns, multilevel methods and the numerical simulation of turbulence, T. Dubois, F. Jauberteau and R. Temam                                                                | 123–189 |
| <i>Structural mechanics</i>                                                                                                                                                               |         |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe                                    | 223–260 |
| Unit-impulse response of unbounded medium by scaled boundary finite-element method, J.P. Wolf and C. Song                                                                                 | 355–367 |
| Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates, K.M. Liew and T.M. Teo                                                                   | 369–382 |
| <i>Subsonic flow</i>                                                                                                                                                                      |         |
| A posteriori error estimation of steady-state finite element solutions of the Navier–Stokes equations by a subdomain residual method, H. Jin and S. Prudhomme                             | 19– 48  |
| Incremental unknowns, multilevel methods and the numerical simulation of turbulence, T. Dubois, F. Jauberteau and R. Temam                                                                | 123–189 |
| <i>Supersonic flow</i>                                                                                                                                                                    |         |
| A high-order streamline Godunov scheme for steady supersonic/hypersonic equilibrium flows, J.-Y. Yang, Y.-H. Tang and S.-T. Lee                                                           | 261–289 |
| Numerically robust 3-D finite element Reynolds Averaged Navier–Stokes solver for the study of turbulent supersonic external flows, A. Matesanz, A. Velázquez, A. Jiménez and M. Rodríguez | 383–394 |
| <i>Turbulence</i>                                                                                                                                                                         |         |
| Incremental unknowns, multilevel methods and the numerical simulation of turbulence, T. Dubois, F. Jauberteau and R. Temam                                                                | 123–189 |
| Numerically robust 3-D finite element Reynolds Averaged Navier–Stokes solver for the study of turbulent supersonic external flows, A. Matesanz, A. Velázquez, A. Jiménez and M. Rodríguez | 383–394 |
| <i>Viscoelastic and viscoplastic media</i>                                                                                                                                                |         |
| A study of strain localization in a multiple scale framework—The one-dimensional problem, K. Garikipati and T.J.R. Hughes                                                                 | 193–222 |
| <i>Viscous flow</i>                                                                                                                                                                       |         |
| A posteriori error estimation of steady-state finite element solutions of the Navier–Stokes equations by a subdomain residual method, H. Jin and S. Prudhomme                             | 19– 48  |
| Incremental unknowns, multilevel methods and the numerical simulation of turbulence, T. Dubois, F. Jauberteau and R. Temam                                                                | 123–189 |
| <i>Wave motion</i>                                                                                                                                                                        |         |
| Unit-impulse response of unbounded medium by scaled boundary finite-element method, J.P. Wolf and C. Song                                                                                 | 355–367 |
| <i>Workhardening structures</i>                                                                                                                                                           |         |
| A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, C. Miehe                                    | 223–260 |

