Logique

SAT: satisfaction de formules booléennes

Thomas Pietrzak Licence Informatique

Clauses de Horn

Prolog

```
Fait: a
```

But : b₁, ..., b_n

Clause : $a :== c_1, ..., c_n$

Logique

Fait: a

But: $b_1 \wedge ... \wedge b_n$

Clause: $c_1 \wedge ... \wedge c_n \Rightarrow a \equiv \neg c_1 \vee ... \vee \neg c_n \vee a$

Motivation

Trouver des variables qui satisfont une formule = résoudre un problème

Peu de variables : facile à faire la table de vérité.

Beaucoup de variables : exponentiel.

SAT

Soit φ une formule : existe-t-il une valuation v telle que $[\varphi]_v = 1$?

FNC

Forme normale conjonctive (FNC): conjonction de disjonctions

Littéral : variable propositionnelle ou négation de variable propositionnelle

Classes de complexité

Classe NP

Il existe un algorithme non-déterministe résolvant ce problème en temps polynomial.

Classe NP-complet

Ce problème appartient à NP.

Tous les problèmes de la classe NP se réduisent à ce problème en temps polynomial.

Théorème de Cook

SAT est NP-complet

Problèmes NP-complets

Tous les problèmes NP-complets sont équivalents à SAT.

En résolvant SAT on résout tous les autres problèmes.

3-SAT

SAT avec clauses de 3 variables

Équivalence entre SAT et 3-SAT

 $(a_1 \lor a_2 \lor ... \lor a_n) \equiv (a_1 \lor a_2 \lor b_1) \land (a_3 \lor \neg b_1 \lor b_2) \land ... \land (a_{n-1} \lor a_n \lor \neg b_{n-3})$

n-SAT

SAT avec clauses de n variables

Équivalence entre SAT et n-SAT

$$(a_1 \ v \ a_2 \ v \ ... \ v \ a_m) \equiv (a_1 \ v \ a_2 \ v \ ... \ v \ a_{n-1} \ v \ b_1) \ \Lambda$$

$$(a_{n+1} \ v \ ... \ v \ a_{2n-3} \ v \ \neg b_1 \ v \ b_2) \ \land \ ... \ \land \ (a_{m-n+1} \ v \ ... \ v \ a_m \ v \ \neg b_k)$$

2-SAT

SAT avec clauses de 2 variables

Pas NP-complet (P)

Résolution SAT

Table de vérité

2 possibilités par variable booléenne

Valuations à calculer : au plus 2ⁿ

300 variables : 2^{300} , soit plus que le nombre d'atomes dans l'univers ($\approx 10^{80} \approx 2^{266}$)

Il va falloir simplifier...

Simplifications

 $(a \lor a \lor ...) \equiv (a \lor ...)$: suppression des occurrences multiples

(a ∨ ¬a ∨ ...) ≡ ⊤ : suppression des clauses contenant des opposés

C'est bien, mais avec ça on n'ira pas loin...

Propagation unitaire

Clause unaire: a ou ¬a

 $a \wedge (\neg a \vee b_1 \vee ... \vee b_n) \wedge (a \vee c_1 \vee ... \vee c_n) \wedge R \equiv (b_1 \vee ... \vee b_n) \wedge R \text{ et } v(a) = T$

 $\neg a \land (\neg a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land R \equiv (c_1 \lor ... \lor c_n) \land R \text{ et } \lor (a) = \bot$

Élimination des littéraux purs

Littéral pur : littéral qui est soit toujours positif, soir toujours négatif

```
(a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n) \land R \equiv (d_1 \lor ... \lor d_n) \land R \text{ et } v(a) = T
```

$$(\neg a \lor b_1 \lor ... \lor b_n) \land (\neg a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n) \land R \equiv (d_1 \lor ... \lor d_n) \land R \text{ et } v(a) = \bot$$

Davis-Putnam (DP)

Résultante

```
c_1 = (a \lor b_1 \lor b_2 \lor ... \lor b_n) c_2 = (\neg a \lor d_1 \lor d_2 \lor ... \lor d_n)
```

Résultante : $r = (b_1 \lor b_2 \lor ... \lor b_n \lor d_1 \lor d_2 \lor ... \lor d_n)$

 $c_1 \wedge c_2$ satisfiable ssi r satisfiable

Démonstration ⇒

Soit $a = T : c_2$ satisfiable et $\neg a = \bot \rightarrow d_1 \lor d_2 \lor ... \lor d_n$ satisfiable, donc r aussi

Soit $a = \bot : c_1$ satisfiable et $a = \bot \rightarrow b_1 \lor b_2 \lor ... \lor b_n$ satisfiable, donc r aussi

 $(a \lor b) \land (a \lor \neg c) \land (\neg a \lor c)$

Il faut factoriser a

```
(a \lor b) \land (a \lor \neg c) \land (\neg a \lor c)
\equiv (a \lor (b \land \neg c)) \land (\neg a \lor c)
```

$$(a \lor b) \land (a \lor \neg c) \land (\neg a \lor c)$$

$$\equiv (a \lor (b \land \neg c)) \land (\neg a \lor c)$$

$$\equiv (b \land \neg c) \lor c$$

On calcule la résultante

$$(a \lor b) \land (a \lor \neg c) \land (\neg a \lor c)$$

$$\equiv (a \lor (b \land \neg c)) \land (\neg a \lor c)$$

$$\equiv (b \land \neg c) \lor c$$

$$\equiv (b \lor c) \land (\neg c \lor c)$$

On remet en FNC

$$(a \lor b) \land (a \lor \neg c) \land (\neg a \lor c)$$

$$\equiv (a \lor (b \land \neg c)) \land (\neg a \lor c)$$

$$\equiv (b \land \neg c) \lor c$$

$$\equiv (b \lor c) \land (\neg c \lor c)$$

Algorithme DP

1. Éliminer les clauses unitaires tant qu'il y en a

a $\land \neg a \land R \equiv \bot \rightarrow$ Formule non satisfiable

a $\land (\neg a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land R \rightarrow (b_1 \lor ... \lor b_n) \land R$ ¬a $\land (\neg a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land R \rightarrow (c_1 \lor ... \lor c_n) \land R$ Formule vide → Formule satisfiable

2. Éliminer les littéraux purs

$$(a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n) \land R \rightarrow (d_1 \lor ... \lor d_n) \land R$$

$$(\neg a \lor b_1 \lor ... \lor b_n) \land (\neg a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n) \land R \rightarrow (d_1 \lor ... \lor d_n) \land R$$

3. On simplifie les résultantes

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e)$

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor e) \land (b \lor c \lor d \lor \neg e)$

 \rightarrow (¬b v c v ¬d v f v e)^(¬b v ¬c v ¬d v e)^(¬b v ¬c v d v ¬f)^ ¬d ^(b v c v d v ¬e)

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor e) \land (b \lor c \lor d \lor \neg e)$

- \rightarrow (¬b ∨ c ∨ ¬d ∨ f ∨ e)^(¬b ∨ ¬c ∨ ¬d ∨ e)^(¬b ∨ ¬c ∨ d ∨ ¬f)^ ¬d ^(b ∨ c ∨ d ∨ ¬e)
- → (¬b ∨ ¬c ∨ ¬f)^(b ∨ c ∨ ¬e)

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor e) \land (b \lor c \lor d \lor \neg e)$

- \rightarrow (¬b v c v ¬d v f v e)^(¬b v ¬c v ¬d v e)^(¬b v ¬c v d v ¬f)^ ¬d ^(b v c v d v ¬e)
- \rightarrow (¬b \vee ¬c \vee ¬f) \wedge (b \vee c \vee ¬e)
- → ¬b ∨ ¬c ∨ ¬e

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor e) \land (b \lor c \lor d \lor \neg e)$

- \rightarrow (¬b v c v ¬d v f v e)^(¬b v ¬c v ¬d v e)^(¬b v ¬c v d v ¬f)^ ¬d ^(b v c v d v ¬e)
- → (¬b ∨ ¬c ∨ ¬f)^(b ∨ c ∨ ¬e)
- → ¬b ∨ ¬c ∨ ¬e
- \rightarrow \top

Algorithme DP

On n'obtient pas la valuation qui prouve la satisfiabilité.

Problème : simplification des résultantes

Que vaut a ?

Besoin d'un algorithme constructif.

Davis–Putnam– Logemann–Loveland (DPLL)

Valuation partielle

F[x/⊥] est la formule F dans laquelle x est évaluée à ⊥

F[x/T] est la formule F dans laquelle x est évaluée à T

F est satisfaisable ssi $F[x/\bot]$ est satisfaisable ou $F[x/\top]$ est satisfaisable.

Propriétés

$$a[a/T] = T$$

$$a[a/T] = T$$

$$\neg a[a/\top] = \bot$$

$$\neg a[a/\bot] = \top$$

$$(a \lor b_1 \lor b_2 \lor ... \lor b_n) [a/T] = T$$

$$(\mathbf{a} \vee \mathbf{b}_1 \vee \mathbf{b}_2 \vee \dots \vee \mathbf{b}_n)[\mathbf{a}/\bot] = (\mathbf{b}_1 \vee \mathbf{b}_2 \vee \dots \vee \mathbf{b}_n)$$

$$(\neg a \lor b_1 \lor b_2 \lor ... \lor b_n)[a/\top] = (b_1 \lor b_2 \lor ... \lor b_n)$$

$$(\neg a \lor b_1 \lor b_2 \lor ... \lor b_n)[a/\bot] = \top$$

Alternative à résultante

```
F = (a \lor b_1 \lor b_2 \lor ... \lor b_n) \land (\neg a \lor d_1 \lor d_2 \lor ... \lor d_n) \land R
```

Recherche par cas

```
a = T \rightarrow F satisfaisable ssi (d_1 \vee d_2 \vee ... \vee d_n) \wedge R est satisfaisable
```

 $a = \bot \rightarrow F$ satisfaisable ssi $(b_1 \lor b_2 \lor ... \lor b_n) \land R$ est satisfaisable

Arbre de recherche

x est la **variable pivot**

Clauses unitaires

a clause unitaire dans $F \Rightarrow F$ satisfiable ssi F[x/T] satisfiable.

¬a clause unitaire dans $F \Rightarrow F$ satisfiable ssi $F[x/\bot]$ satisfiable.

$$(a \land (\neg a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n))[a/\top] \equiv (b_1 \lor ... \lor b_n)[a/\top]$$

$$(\neg a \land (\neg a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n))[a/\bot] \equiv (c_1 \lor ... \lor c_n)[a/\bot]$$

Élimination des littéraux purs

a présent et ¬a jamais présent dans $F \Rightarrow F$ satisfiable ssi $F[x/\top]$ satisfiable.

¬a présent et a jamais présent dans $F \Rightarrow F$ satisfiable ssi $F[x/\bot]$ satisfiable.

$$((a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n))[x/\top] = (d_1 \lor ... \lor d_n)[x/\top]$$

$$((\neg a \lor b_1 \lor ... \lor b_n) \land (\neg a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n))[x/\bot] = (d_1 \lor ... \lor d_n)[x/\bot]$$

Algorithme DPLL

1. Éliminer les clauses unitaires tant qu'il y en a

```
a \land \neg a \land ... \equiv \bot \rightarrow Formule non satisfiable
a \land (\neg a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land R \rightarrow ((b_1 \lor ... \lor b_n) \land R)[a/T]
\neg a \land (\neg a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land R \rightarrow ((c_1 \lor ... \lor c_n) \land R)[a/L]
Formule vide → Formule satisfiable
```

2. Éliminer les littéraux purs

$$(a \lor b_1 \lor ... \lor b_n) \land (a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n) \land R \rightarrow ((d_1 \lor ... \lor d_n) \land R)[a/T]$$

$$(\neg a \lor b_1 \lor ... \lor b_n) \land (\neg a \lor c_1 \lor ... \lor c_n) \land (d_1 \lor ... \lor d_n) \land R \rightarrow ((d_1 \lor ... \lor d_n) \land R)[a/L]$$

3. On simplifie les résultantes

```
(a \lor b_1 \lor b_2 \lor ... \lor b_n) \land (\neg a \lor d_1 \lor d_2 \lor ... \lor d_n) \land R
\rightarrow ((b_1 \lor b_2 \lor ... \lor b_n) \land R)[a/\bot]
\rightarrow ((d_1 \lor d_2 \lor ... \lor d_n) \land R)[a/\top]
```

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e)$

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e)$

 \rightarrow (¬b ∨ ¬c ∨ ¬d ∨ e)^(¬b ∨ ¬c ∨ d ∨ ¬f)^ ¬d ^(b ∨ c ∨ d ∨ ¬e)[a/ \top]

(a ∨ ¬b ∨ c ∨ ¬d ∨ f)^(¬b ∨ ¬c ∨ ¬d ∨ e)^(¬b ∨ ¬c ∨ d ∨ ¬f)^(¬a ∨ ¬d)^(b ∨ c ∨ d √ ¬e)

F[d/⊥]

→ (¬b ∨ ¬c ∨ ¬d ∨ e)^(¬b ∨ ¬c ∨ d ∨ ¬f)^ ¬d ^(b ∨ c ∨ d ∨ ¬e)[a/⊤]

 $F[a/\bot]$

F[a/⊥]

 \rightarrow (¬b \vee ¬c \vee ¬f) \wedge (b \vee c \vee ¬e)[a/ \top][d/ \bot]

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor \neg e) \land (\neg b \lor \neg$

- \rightarrow (¬b ∨ ¬c ∨ ¬d ∨ e)^(¬b ∨ ¬c ∨ d ∨ ¬f)^ ¬d ^(b ∨ c ∨ d ∨ ¬e)[a/ \top]
- \rightarrow (¬b \vee ¬c \vee ¬f) \wedge (b \vee c \vee ¬e)[a/ \top][d/ \bot]
- \rightarrow (b \lor c \lor \neg e)[a/ \top][d/ \bot][f/ \bot]

 $(a \lor \neg b \lor c \lor \neg d \lor f) \land (\neg b \lor \neg c \lor \neg d \lor e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor d \lor \neg f) \land (\neg a \lor \neg d) \land (b \lor c \lor d \lor \neg e) \land (\neg b \lor \neg c \lor \neg e) \land (\neg b \lor \neg c \lor \neg$

- \rightarrow (¬b ∨ ¬c ∨ ¬d ∨ e)^(¬b ∨ ¬c ∨ d ∨ ¬f)^ ¬d ^(b ∨ c ∨ d ∨ ¬e)[a/ \top]
- \rightarrow (¬b \vee ¬c \vee ¬f) \wedge (b \vee c \vee ¬e)[a/ \top][d/ \bot]
- → (b ∨ c ∨ ¬e)[a/T][d/L][f/L]
- $\rightarrow \top [a/\top][d/\bot][f/\bot][b/\top]$

F