UAS Data Mining

Zul Fauzi Oktaviansyah

2110181056

3 - D4 IT - B

```
In [2]: dataset = pd.read_csv('transaction.csv')
    dataset
```

Out[2]:

	InvoiceNo	StockCode	Qty	InvoiceDate	CustomerID	Country
0	537626	22725	830	12/7/2010 14:57	12347	Iceland
1	537626	22729	948	12/7/2010 14:57	12347	Iceland
2	537626	22195	695	12/7/2010 14:57	12347	Iceland
3	542237	22725	636	1/26/2011 14:30	12347	Iceland
4	542237	22729	536	1/26/2011 14:30	12347	Iceland
10541	543911	21700	455	2/14/2011 12:46	17829	United Arab Emirates
10542	543911	22111	578	2/14/2011 12:46	17829	United Arab Emirates
10543	543911	22112	163	2/14/2011 12:46	17829	United Arab Emirates
10544	564428	23296	545	8/25/2011 11:27	17844	Canada
10545	564428	23294	643	8/25/2011 11:27	17844	Canada

10546 rows × 6 columns

Membaca data csv transaction

```
In [3]: dataset['Year'] = pd.DatetimeIndex(dataset['InvoiceDate']).year
    dataset['Month'] = pd.DatetimeIndex(dataset['InvoiceDate']).month
    dataset = dataset[dataset['Year'] == 2011]
    dataset = dataset.drop_duplicates(subset='InvoiceNo', keep='first')
    dataset
```

Out[3]:

	InvoiceNo	StockCode	Qty	InvoiceDate	CustomerID	Country	Year	Month
3	542237	22725	636	1/26/2011 14:30	12347	Iceland	2011	1
8	549222	23076	383	4/7/2011 10:43	12347	Iceland	2011	4
14	556201	23171	135	6/9/2011 13:01	12347	Iceland	2011	6
19	562032	23308	490	8/2/2011 8:48	12347	Iceland	2011	8
27	573511	47559	922	10/31/2011 12:25	12347	Iceland	2011	10
10515	559557	22398	948	7/11/2011 10:33	17444	Canada	2011	7
10529	545579	20723	822	3/4/2011 8:10	17508	Greece	2011	3
10531	555931	21733	580	6/8/2011 8:31	17828	Malta	2011	6
10535	543911	21485	469	2/14/2011 12:46	17829	United Arab Emirates	2011	2
10544	564428	23296	545	8/25/2011 11:27	17844	Canada	2011	8

Mengambil data tahun 2011, dan menghapus data dengan invoiceNo yang sama

```
In [4]: from sklearn.cluster import KMeans
In [5]: transaksi tinggi = []
In [6]: for i in range(1,13):
            data bulan = dataset[dataset['Month'] == i]
            transaction = pd.DataFrame(data_bulan['Country'].value counts())
            clustering = KMeans(n clusters=3).fit(transaction)
            clusters=clustering.labels
            centroid = clustering.cluster centers
            sortedIndex = np.argsort(centroid.sum(axis=1))
            zeroArray = np.zeros like(sortedIndex)
            zeroArray[sortedIndex] = np.arange(3)
            sortedCentroid =centroid[zeroArray]
            sortedLabel = zeroArray[clusters]
            label 2 = (sortedLabel == 2).nonzero()
            countryHigh = transaction.index[label 2]
            temp = []
            for item in countryHigh:
                temp.append(transaction['Country'][item])
            transaksi tinggi.append(temp)
```

Mengambil data jumlah transaksi pada tiap Bulan 1-12 untuk tiap2 Negara, kemudian Mencari cluster dengan k=3, kemudian Mengambil centroid dan mengurutkan Cluster dan centroidnya untuk mencari Label transaksi tinggi berdasarkan cluster Tinggi, kemudian mengambil jumlah transaksi Berdasarkan label transaksi tinggi

```
In [8]: from matplotlib import pyplot as plt
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean squared error
In [9]: averageTransaction = []
        for item in transaksi_tinggi:
            average = sum(item) / len(item)
            averageTransaction.append(average)
        averageTransaction
Out[9]: [27.0,
         19.0,
         22.0,
         21.0,
         33.5,
         22.66666666666668,
         29.0,
         26.5,
         43.0,
         47.0,
         55.0,
         15.5]
```

Menghitung average dari transaksi tinggi

```
In [10]: month = []
for i in range(1,13):
    month.append(i)
month

Out[10]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
```

```
In [11]: x=month
         y=averageTransaction
         plt.scatter(x, y)
         plt.plot(x, y)
         plt.xlabel('x')
         plt.ylabel('y')
Out[11]: Text(0, 0.5, 'y')
             55
             50
             45
             40
           > 35
            30
             25
             20
            15
                                                  10
```

Memvisualisasikan rata2 transaksi tiap2 Negara dimana x = month, y = transaksi

```
In [12]: linreg=LinearRegression()
    x=np.array(x).reshape(-1,1)
    linreg.fit(x, y)

Out[12]: LinearRegression()

In [13]: next_x=13
    next_x=np.array(next_x).reshape(-1,1)|
    pred_x=linreg.predict(next_x)

In [14]: print('\nPrediksi x \n', pred_x.item())

    Prediksi x
    40.729797979798
```

Prediksi bulan ke 13 menggunakan linear regression

```
In [15]: plt.scatter(next_x, pred_x, c='red')
         pred_y=linreg.predict(x)
         plt.plot(x, pred_y)
         plt.plot(x, y)
         plt.show()
           55
           50
           45
           40
           35
           30
           25
           20
          15
                                             10
                                                    12
```

Memvisualisasikan hasil prediksi