

7. Übungsblatt

Teamaufgaben für die Woche vom 04. bis 08.01.2021. Lösen Sie die folgenden Aufgaben während der Übung gemeinsam in einer Kleingruppe in einem Breakout-Raum. Nach der vereinbarten Zeit kehren Sie in den Übungsraum zurück, wo Sie Ihre Ergebnisse präsentieren können.

A Gegeben seien die Mengen $A = \{a, b, c\}, B = \{x, y, z\}$ und $C = \{u, v\}$. Bestimmen Sie für die Relationen

$$R = \{(a, x), (b, x), (c, y), (c, z)\} \text{ und } S = \{(x, u), (z, v)\}$$

- (a) die Umkehrrelationen R⁻¹ und S⁻¹,
- (b) die Komposition R o S,
- (c) das Komplement von S in $B \times C$.
- **B** Geben Sie die Relationen $\langle , \geq , = , \neq \text{ auf der Menge A} = \{0, 1, 2, 3\}$ durch Aufzählung ihrer Elemente an. Untersuchen Sie jeweils, ob die Relation reflexiv, symmetrisch oder transitiv ist.

Hausaufgaben bis zum 10.01.2021. Geben Sie die folgenden Aufgaben wie folgt ab: Schreiben Sie die Lösungen aller Aufgaben in eine einzige, max. 10 MB große PDF-Datei "Vorname_Nachname_BlattNr.pdf" (Beispiel: "Max_Mustermann_07.pdf"). Laden Sie diese Datei bis spätestens 23:59 Uhr am Sonntagabend in den passenden Ordner "Abgaben der Hausaufgaben" Ihrer StudIP-Übungsgruppe hoch.

1 Die Relation "x ist Vater von y" sei durch

$$R = \{(Max, Anna), (Max, Hans), (Moritz, Max)\}$$

gegeben.

- (a) Wie viele Kinder hat Max? Wie stehen Moritz und Anna zueinander?
- (b) Außerdem sei die Relation "x ist verheiratet mit y" durch

gegeben. Listen Sie R o S explizit auf. Wie könnte man R o S in Worten beschreiben? Wie stehen Petra und Anna zueinander?

- 2 Untersuchen Sie, ob es sich bei den folgenden Relationen um Äquivalenzrelationen handelt.
 - (a) $R = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x^2 = y^2\},\$
 - (b) $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y = 42\},\$
 - (c) $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y \text{ ist gerade}\},\$
 - (d) $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \cdot y \text{ ist gerade}\},\$
 - (e) $R = \{(1,1), (1,-1), (-1,1), (-1,-1), (2,2), (2,-2), (-2,2), (-2,-2)\}$ auf der Menge $\{-2,-1,1,2\}$.

3 Bestimmen Sie Relationen $R \subseteq \mathbf{R} \times \mathbf{R}$, deren grafische Darstellungen den grauen Flächen in der Abbildung entsprechen.

Worüber Mathematiker lachen

Behauptung: Jede natürliche Zahl ist interessant.

Beweis: *Angenommen*, es gäbe eine uninteressante natürliche Zahl. Dann gäbe es auch eine *kleinste* uninteressante natürliche Zahl: Dies macht diese Zahl aber wirklich interessant! Also ist dies doch eine interessante Zahl.

Dieser Widerspruch zeigt, dass es keine uninteressante Zahl gibt