

CE320: Microcomputers I

Lab4: Code conversion

Jung Me Park, Ph.D

ECE Department, Kettering University
jpark@kettering.edu

Binary Coded Decimal (BCD)

- Although all computers work internally with binary numbers,
 - the input and output equipment generally uses decimal numbers.
 - the decimal numbers must be coded in terms of binary signals.

- □ A binary coded decimal (BCD):
 - In the simplest form of binary code, each decimal digit is represented by its binary equivalent.
 - For example, 5,678 is represented by

```
5 6 7 8
0101 0110 0111 1000
```

This representation is called a Binary Coded Decimal (BCD)

Binary Coded Decimal (BCD)

■ Binary Coded Decimal (BCD) is a very convenient way of representing numbers that will be sent to external 7-segment displays.

Lab4: Data Allocation in Lab4

Binary to BCD Conversion

- A binary number can be converted to BCD format using repeated division by 10.
 - The number is divided by 10, the remainder is recorded
 - The quotient is then divided by 10, the remainder is recorded
 - The process is repeated until the quotient is zero
- □ Ex:

	Quotient	Remainder	
12345/ 10 =	1234	5	;Least significant digit
1234/10	123	4	
123/10	12	3	
12/10	1	2	
1/10	0	1	;Most significant digit

Division Instructions

Assembly Instruction	Meaning	Operation :Important!
IDIV	Integer DIVision 16 bit by 16 bit unsigned Integer Division	[D] ÷ [X]
IDIVS	Integer DIVision 16 bit by 16 bit Signed integer Division	[D] ÷ [X]
EDIV	Extended DVI sion unsigned 32 bit by 16 bit division	[Y :D] ÷ [X] ⇒ Y=Quotient D=Remainder
EDIVS	Extended DVIsion Signed 32 bit by 16 bit division	[Y :D] ÷ [X] ⇒ Y=Quotient D=Remainder

Binary to BCD Conversion

- Pseudocode: How to convert Binary to BCD
 - Load the address of BCD for the least significant digit.

```
LDY # BCDNum +4
```

- Load the 16 bit number into register D
- 3. Compare register Y with # BCDNum

```
CPY # BCDNum
```

4. If register Y < # BCDNum, then exit the loop

```
BLO ExitLoop ; ExitLoop is a label
```

Load #10 into register X

- ; register X is a divider
- 6. IDIV ; register D / register X
 - i) Quotient is saved in register X, ii) Remainder is saved in register D (B register inside D)
- 7. Save the remainder (register B) at the memory location in Y
- 8. **XGDX** : Exchange D with X ; \rightarrow so D can hold the Quotient for the next division
- Decrement register Y by 1
- 10. BRA Step3.

The BCD output will be displayed at the memory location, \$1020:1024. Take the screen shots of the BCD output in the memory pane, Assembly pane and Register pane.

BCD result at \$1020:1024

ASCII CODE CONVERSION

Binary to BCD Conversion: Example Code(I)

Binary to Ascii Conversion

- Pseudocode: How to convert Binary to BCD
 - 1. Load the address of Ascii for the least significant digit.

```
LDY # AsciiNum +4
```

- Load the 16 bit number into register D
- 3. Compare register Y with # AsciiNum

```
CPY # AsciiNum
```

4. If register Y < #AsciiNum, then exit the loop

```
BLO ExitLoop ; ExitLoop is a label where the brach is taken
```

- Load #10 into register X
- ; register **D / register X**

; register X is a divider

- , regions 2 to the contract of the contract of
- i) Quotient is saved in register X, ii) Remainder is saved in register D (B register inside D)
- Add \$30 to register B
- Save register B at the memory location in register Y
- 9. **XGDX** ;Exchange register D with register X, so D can hold the Quotient ; for the next division
- Decrement register Y register by 1
- 11. BRA Step3.

IDIV

12. Move a byte \$00 at the memory location AsciiNum +5 (=\$1035)

The BCD output will be displayed at the memory location, \$1020:1024. Take the screen shots of the BCD output in the memory pane, Assembly pane and Register pane.

ASCII code result at \$1030:1034 and ending with a special character, \$00 at \$1035