MODELAÇÃO DE DADOS

1. INTRODUÇÃO

- Negócios com necessidade de métodos mais eficazes de tomada de decisão
- Busca de redução de custos e aumento de qualidade e competitividade
 - ✓ Importância da informação

Dados como recurso estratégico

software inteligente como auxiliar dedutivo

hardware cada vez mais compacto como ferramenta de ponta tecnologia de comunicações

Dados

- exigem maior trabalho metodológico e conceptual para o alcance consistente da informação vital para os processos decisórios
- são produzidos na empresa em função do seu negócio e dos sistemas que o suportam
- têm uma genética conceptual e fluidez complexa

É tratando bem os dados que se obtêm as melhores informações e consequentemente melhor conhecimento.

Implica na prática a aplicação de três conceitos fundamentais:

a) Dados Modelados:

Devem ser estudados no seu formato, origem, meio, natureza e formação e no seu relacionamento com outros dados.

Os dados não deverão ser propriedade específica de uma área ou grupo, mas, sim pertencer ao património da empresa, mantidos os requisitos de segurança e privacidade definidos na sua área de origem.

b) Dados Resguardados:

Os dados deverão apresentar os requisitos básicos de:

- integridade garantia de sua veracidade lógica
- segurança define o seu estado físico e os seus aspetos de privacidade
- documentação representa a permanência de sua verdade semântica e a garantia de seu entendimento ao longo do tempo

c) Dados Disponibilizados:

Deverá existir um conjunto de ferramentas que permitam o acesso, a atualização, a consolidação, visualização e a simulação de informações para a tomada de decisões

A aplicação destes conceitos

Dados: Expressão em estado bruto de factos ou eventos, que sem necessariamente terem uma interpretação são transformados em Informação

2. ANÁLISE DE SISTEMAS

Análise de sistemas é, sob vários aspetos, a parte mais difícil do desenvolvimento de um sistema de informação

Analista como intermediário:

- comunidade dos utilizadores percebem com maior ou menor sensibilidade dos seus problemas, mas acham difícil explicá-los e são vagos sobre a forma de serem ajudados
- programadores capazes de desenvolverem as função de processamento, mas sem a informação adequada para saber o que é melhor para a empresa

Analista - deve combinar o que é atualmente possível e o que vale a pena ser feito para a empresa; deve dar respostas a questões que lhe são colocadas e não às que não lhe são formuladas... pelo menos ponderar!

Principais problemas que encontra

- a) Difícil aprender o bastante sobre a empresa para conseguir determinar os requisitos do sistema através da visão dos utilizadores.
 - Não pode saber o que não lhe foi dito... ou pode?!!!
 - Pode perguntar, o que implica: experiência...
- b) Os utilizadores não sabem o suficiente sobre processamento de dados para saberem o que é viável
- c) Sobrecarga de detalhes sobre o negócio e técnicos, inerentes ao novo sistema

- d) O documento que define os detalhes do novo sistema é um contrato que os utilizadores muitas vezes não entendem pela sua dimensão e conceitos técnicos, acabando por ser aceite na base de que os informáticos sabem o que estão a fazer
- e) Muitas vezes se o documento de especificações faz sentido para os utilizadores, pode não ser útil para os projetistas e programadores: obriga a reanálise redefinindo os dados e a lógica dos processos

2.1.- Abordagens top-down, bottom-up, middledown

Top-Down: baseia-se em observações amplas da empresa Objetivo: através de uma visão macro da empresa criar as entidades e relacionamentos que fundamentam os seus negócios

Vantagem: identifica o universo de dados da empresa e possibilita uma visão de integração entre as partes.

Dificuldade: mobilização necessária para empreender um trabalho de modelação que se estende às várias unidades funcionais da empresa

Bottom-up: orientação aos processos e aos dados produzidos

Dificuldade: agregação dos atributos necessários às visões lógicas dos utilizadores da aplicação.

Middle-down: objetivo: os modelos criados por um sistema, devem poder ser consolidados com outros já existentes conseguindo uma integração contínua e gradativa

2.2 - Perspetiva histórica das metodologias de modelação

Análise Estruturada Clássica – Gane & Sarson e DeMarco (76-77)

- abordagem top-down por decomposição funcional gradativa;
- sem integração com Modelo de Dados;
- aplicação típica: sistema com estrutura de dados simples e funcionalidade complexa;
- técnica de modelação utilizada: DFD

Engenharia de Informações – Finkeistein & Martin (80)

- abordagem voltada a dados: modelos construídos em volta de diagramas ER;
- modelo de funções mais a nível de projeto que de análise;
- aplicação típica: sistemas com estruturas de dados complexas e comportamento simples;
- técnicas de modelação utilizadas: Normalização Relacional, Diagrama ER

Análise Estruturada '80' – Gane(82)

- abordagem top-down como análise estruturada clássica;
- modelo de dados é construído a partir do modelo funcional;
- modelo de dados disponível somente após toda a modelação de funções;
- técnicas de modelação utilizadas: DFD, Normalização Relacional, Diagrama ER

Análise Estruturada Moderna – McMenamin & Palmer(84), Yourdon(89)

- abordagem bottom-up, a partir de lista de eventos;
- fácil integração com modelo de dados;
- metodologia: modelo conceptual, modelo de dados, lista de eventos, diagrama comportamental (reação do sistema a um evento: um por evento), documentação bottom-up;
- técnicas de modelação utilizadas: DFD, Diagrama ER,
 Diagrama de Transação de Estados de Eventos,
 Modelação de Eventos

Análise Orientada a Objectos – Rumbaugh OMT(90); Coad & Yourdon(OOA, OOD); Schlaer & Mellor, Booch(91,94), Fusion, ...

- conceitos de encapsulamento (objeto reúne uma entidade com os métodos que a tratam) e herança (de atributos e métodos);
- técnicas aplicáveis para aqueles que vão implementar em OO;
- técnicas de modelação utilizadas: DFD, diagrama de objetos, modelação de eventos, state-charts

3. MODELAÇÃO

MODELO - representação abstrata da realidade, atingido através da perceção do modelador, utilizando uma ou mais metodologias

MODELAÇÃO - criação de uma descrição de um "mundo real", para que diferentes observadores o consigam visualizar de um modo não ambíguo, com o objetivo de permitir especificar de forma conceptual o que o software deve fazer.

Passos na modelação

REALIDADE → Perceção, denominação, seleção, classificação → MODELO

Na prática não é possível descrever todas propriedades de um sistema num único modelo.

As técnicas de modelação descrevem o sistema em perspetivas:

- Dados (modelo estático)
 - modelo de dados de um sistema;
 - de forma abstrata: a definição do conjunto de estados do sistema;
 - modelos: Entidade-Relação ER
- Controlo (modelo dinâmico)
 - fluxo de controlo do sistema;
 - que atividades s\(\tilde{a}\) executadas sequencialmente, que atividades ocorrem independentemente;
 - modelos: Fluxograma, Redes de Petri

- Funções

- sistema é dividido em unidades funcionais;
- fluxo de dados entre unidades funcionais;
- modelos DFD

Objetivos da modelação:

- Representar o ambiente observado
- Documentar e normalizar
- Fornecer processos de validação
- Garantir processos de relacionamentos entre objetos

4. MODELO DE DADOS

4.1. Etapas na construção do modelo:

(visão tradicional)

1 - Modelo conceptual

Representa as regras de negócio sem limitações tecnológicas ou de implementação

Temos:

Visão Geral do negócio

Facilidade de entendimento entre utilizadores e analistas

Possui somente as entidades e atributos principais (Pode conter relacionamentos N para M....)

2- Modelo Lógico

Leva em conta os limites impostos por algum tipo de tecnologia de SGBD. (base de dados hierárquica, base de dados relacional, etc.)

Características:

Deriva do modelo conceptual e visa a representação do negócio

Possui entidades associativas em lugar de relacionamentos N:M

Define as chaves primárias das entidades Normalização até a 3a. forma normal Adequação ao padrão de nomenclatura

Entidades e atributos documentados

3- Modelo físico

Leva em consideração limites impostos pelo SGBD (Sistema Gestão de Base de dados) e pelos requisitos não funcionais dos programas que usam os dados.

Características:

Elaborado a partir do modelo lógico

Pode variar segundo o SGBD

Pode ter tabelas físicas (log, parâmetros, ...)

Pode ter colunas físicas (ids, replicação, ...)

Revisões às etapas:

Modelo conceptual: se surgir a tentação de identificação de relações N:M, terão de ser investigadas, percebida a sua importância como parte fulcral do negócio e transformadas em entidades – tipicamente as mais relevantes para o negócio.

Modelo Lógico: deixa de fazer sentido falar de entidades associativas e normalização.

4.2. Etapas na construção do modelo:

(revisão)

1 - Modelo conceptual

A melhor forma de descrever o negócio é através da linguagem corrente.

Na etapa conceptual far-se-á a recolha de todo o conhecimento que descreva as entidades envolvidas, as suas relações, as suas características e os processos em que estão envolvidas.

Nota: dado o foco na construção do modelo de dados, a parte de processos deverá ser usada para suportar a descrição do negócio e eventuais parametrizações que possam vir a ser necessárias.

É fundamental nesta etapa perceber de facto todas as relações que possam existir entre entidades. As relações podem surgir de forma explícita, e neste caso a sua caracterização virá com a descrição, ou poderão ser questionadas sobre a informação que nos é transmitida. Este último exercício é fundamental para tornar visíveis algumas das relações do negócio que nem sempre são devidamente transmitidas. É com este exercício que irão ser caracterizadas e percebidas o que na abordagem tradicional são as relações M:N.

Estas relações, na maior parte das vezes, são as que contêm o negócio propriamente dito. Vejamos um exemplo simples de uma organização em que são referidas faturas e recibos, com a informação adicional de que os recibos pagam as faturas, ou até eventualmente sem informação adicional alguma. Dado que os pressupostos do analista e de quem descreve o negócio são muitas vezes diferentes, a relação pode não ser clarificada. Dado que a solução para a qual se procura o modelo não será certamente para criar uma lista de faturas e outra de recibos, será necessário averiguar a forma como a relação ocorre, e identificar ou criar no modelo as entidades necessárias para um suporte adequado.

Da recolha de informação realizada sobre o negócio resultará assim um texto com o conjunto de requisitos.

Dado que o nosso objetivo é a criação de um modelo relacional não adiantará camuflá-lo ou ignorá-lo e as suas características poderão ser introduzidas desde o início. As relações entre entidades são uma forma muito natural de expressar o conhecimento.

Na etapa conceptual, e para melhor suporte do conhecimento extraído pela análise do negócio, deverá fazer-se um exercício simples de tradução:

Traduz-se então cada requisito numa ou mais frases com a sintaxe admissível na linguagem de modelação.

Desta forma teremos uma descrição textual do negócio com uma tradução agregada para a linguagem de modelação.

Fundamental nesta etapa conceptual é que todo o negócio tenha sido percebido. Ou, dito por outras palavras, é fundamental que não haja relações de outro tipo que não o 1:M. Se isto não foi alcançado, o negócio não foi percebido e não deverá avançar-se.

2 - Modelo lógico

O modelo lógico terá duas fases. Uma primeira em que se fará a fusão de todos os requisitos resultando assim um esquema global para o negócio e uma segunda fase em que se deverá fazer um exercício de simplificação do modelo.

A simplificação consistirá em analisar o modelo e procurar semelhanças de vários tipos.

Podem procurar-se identidades que sendo diferentes são caracterizadas do mesmo modo e que portanto se poderão fundir numa única. Por exemplo cliente, fornecedor, funcionário, etc...têm praticamente os mesmos atributos, ou atributos muito semelhantes e eventualmente com uma tipificação acessória poderão reduzir-se a uma única. Na realidade muitas das entidades distinguem-se pelo papel que desempenham e não pela sua caracterização.

Podem procurar-se entidades que sendo diferentes desempenham papéis semelhantes e que se poderão também fundir numa única com alguma caracterização adicional. São exemplo disto os inúmeros documentos de uma organização e de todas as relações que podem ser identificadas entre eles. Mesmo limitando o tipo de documentos a 20, se for necessário relacionar cada um com todos os outros, teremos 400 tabelas de relação. Na prática incomportável de gerir. Se só forem previstas algumas das relações poderá ser difícil evoluir o modelo. Com uma tipificação adequada o mesmo problema resolve-se com 3 tabelas. Podem também, por exemplo, procurar-se caracterizações em cascata, do tipo, família, subfamília, sub-sub-família, que podem ser resolvidas com uma auto-relação.

Na prática todas estas simplificações deverão traduzirse em menos tabelas e maior versatilidade sem adulterar o negócio e sem hipotecar as suas funcionalidades => Preferencialmente tornando-o mais versátil. No caso dos documentos, a existência de uma tabela para a sua tipificação permitirá na prática que se criem documentos de todos os tipos e como está resolvido o problema do relacionamento entre documentos não será necessária mais nenhuma tabela.

No caso das classificações hierárquicas resolvidas com recurso a uma auto-relação, torna-se possível que existam mais dos que os 3 níveis iniciais.

Poderá, por inerência à versatilização, ser necessário introduzir o conceito de parametrização com os benefícios inerentes. Ou seja, poderá ter de se dotar o modelo de tabelas de parâmetros de forma a comportar o negócio da forma que foi descrito e permitir por outro lado suportar outras opções que passam a ser oferecidas. Isto leva-nos ao modelo físico.

3 - Modelo físico

Com a introdução de tabelas de parametrizações e outras necessárias à montagem da solução, esta etapa resumir-se-á a uma implementação concreta do modelo no SGBD escolhido.

Poderão igualmente ser resolvidas de forma prática as ligações entre tabelas, com a criação de alguns campos (IDs) que as simplifiquem, bem como a introdução de outros campos de controlo ligados à implementação.

4.3. Conceitos

Entidade - qualquer objeto do mundo real do qual se quer guardar informação:

ex: Cliente, produto, Contrato, Vendas, ...

Atributo - tudo o que se pode relacionar como propriedade da entidade, unidades de informação atómicas, designadas por colunas (campos) ex: Código do cliente, referência do produto, data do contrato, valor da venda, ...

Instância de uma entidade: ocorrência de uma entidade - registo (*tuple*), corresponde à unidade de informação da entidade

Domínio: conjunto de valores possíveis do atributo

Dicionário de dados: definição formal dos elementos

Atributo obrigatório: aquele que para cada instância da entidade tem de ter um valor

Atributo opcional: pode possuir um valor

Chave primária: atributo (ou atributos) que identifica de forma exclusiva cada ocorrência de uma entidade e que foi escolhida para a representar.

Chave candidata: atributo ou agrupamento de atributos que identificam de forma única cada ocorrência da entidade; pode vir a ser chave primária.

A chave candidata que não é chave primária é uma chave alternativa.

Características da chave primária:

- a NÃO PODE haver duas ocorrências de uma mesma entidade com o mesmo conteúdo na Chave Primária;
- b A chave primária não pode ser composta por atributo opcional, ou seja, por um atributo que aceite nulo;
- c Os atributos identificadores devem ser o conjunto mínimo que pode identificar cada instância de uma entidade;
- d Cada atributo identificador da chave deve possuir um tamanho reduzido;
- e- Pode ser gerada automaticamente pelo sistema.

Chave estrangeira: atributo de uma relação que é chave primária de outra.

- pode ter o valor nulo
- pode ter valores duplicados

Relação entre entidades: associação entre instâncias de entidades devido a regras de negócio. Ocorre entre instâncias de duas entidades mas pode ocorrer entre instâncias da mesma entidade (auto relação)

Cardinalidade: indica quantas ocorrências de um entidade participam no mínimo e no máximo da relação

Cardinalidade mínima: define se a relação entre duas entidades é obrigatória

Cardinalidade máxima: define a quantidade máxima de ocorrências da entidade que pode participar da relação

Tipos de Cardinalidade

- Um para um
 - temos um lado obrigatório e um lado opcional
 - usadas excecionalmente:

dividir tabelas

grande número de campos

especificidade de alguns registos

isolar parte dos campos por questões de segurança

- Um para N
 - leva a chave primária do lado Um para o lado N
 - o atributo do lado N recebe o nome de chave estrangeira
- N para N
 - leva para o modelo lógico a necessidade de mais uma entidade: Associativa

Normalização:

Conjunto de regras que visa minimizar as anomalias de modificação de dados e dar maior flexibilidade na sua utilização

- Minimiza as redundâncias e inconsistências
- Facilita a manipulação de dados
- Facilita a manutenção

A versão final dos dados pode sofrer alterações para atender a necessidades específicas do sistema por decisão do analista de desenvolvimento durante o projeto físico.

4.4. MODELO ENTIDADE-RELAÇÃO

4.4.1. Introdução

- Formalizado nos fins dos anos 1960 por C.W. Bachman

- Coloca ênfase na simplicidade e facilidade de leitura
- Proporciona uma correta representação lógica da organização
- Diversas ferramentas C.A.S.E. integram capacidade de modelação E/R

4.4.2 Benefícios

- Focaliza a atenção na importância das relações
- Utiliza uma sintaxe de diagramas que conduz uma elevada taxa de informação a um estado percetível
- Representa os requisitos de uma dada realidade de forma compreensível, tanto ao analista como ao programador

4.4.3. Fatores críticos de sucesso no desenho de BD

- Conhecimento profundo dos requisitos o negócio
- Comunicação constante e aberta com os utilizadores finais
- Emprego de uma metodologia estruturada em todas as fases do processo
- Utilização de diagramas de representação

5. BASE DE DADOS RELACIONAL

5.1. Uma definição:

Coleção de dados operacionais inter-relacionados e armazenados de forma independente dos programas que os utilizam e que servem múltiplas aplicações

- Coleção: agrupamento com repetição
- Operacionais: estratégicos para a tomada de decisões
- Inter-relacionados: uma BD mantém um agrupamento de entidades - factos da realidade em questão, e de relações entre elas
- Independente dos programas: suportes físicos diferentes e autónomos
- Servem múltiplas aplicações: os dados de uma BD podem ser partilhados por diferentes aplicações

5.2. SGBD - Sistema gestão de base de dados

5.2.1. Definição

Sistema cujo objetivo é gerir o acesso e a correta manutenção dos dados de uma BD

- Acesso: o SGBD deve disponibilizar uma interface que permita a comunicação com as aplicações - via uma linguagem
- Correta manutenção: devem ser garantidos aspetos de integridade, segurança e concorrência de modo a manter os dados consistentes

5.2.2 Funções básicas

a) Métodos de acesso

DDL - Data Definition Language: permite a especificação do esquema da organização, ou seja, entidades com seus atributos e tipos de dados relacionados, as relações entre estas entidades e os índices de acesso associados aos atributos. Esquema: organização lógica dos dados de uma realidade, adequados ao modelo de dados do SGBD;

DML - Data Manipulation Language: permite as operações usuais de manipulação de dados, executados pelas aplicações:

inclusão (*insert*), alteração (*update*), exclusão (*delete*) e consulta (*select*).

- b) Restrições de integridade asseguram consistência dos dados, devem garantir:
 - Estados possíveis da informação, ex: um desconto não pode ser superior a 40%, uma venda não pode levar as existências a negativo
 - Manutenção das relações entre entidades, ex: não pode existir uma consulta sem estar associada a um médico

O SGBD disponibiliza a **DCL** - Data Constraint Language: permite programar:

- testes (ex: desconto menor que 40%) e
- ações (ex: remover todas as consultas se um médico é removido).

- c) Segurança: evita a violação da consistência dos dados por agentes e/ou situações não previstas (falhas)
 - autorização de acesso: permitir que apenas agentes autorizados (utilizadores ou aplicações), realizem certas operações sobre certos dados;
 - recuperação de falhas: possibilitar o retorno do BD a um estado consistente de seus dados após a ocorrência de uma falha involuntária.
- d) Controlo da concorrência: evita conflitos de acesso simultâneo a dados por mais de uma transação bloqueios (*locks*).
- e) Independência dos dados: transparência de gestão e armazenamento.
 - Física: a aplicação não se preocupa com detalhes de localização física dos dados ou controlo de integridade e segurança.
 - Lógica: garante que uma aplicação tenha condições de especificar a porção da BD a que quer ter acesso, não precisando ter conhecimento do esquema global.

5.3. Objetivos e requisitos de uma BD relacional

A construção de uma BD Relacional deve visar a integração das atividades de gestão e operacionais de uma organização; deve ser alcançada dotando a BD de capacidade para:

- absorver a expansão das atividades da organização, possibilitando sistemas mais complexos;
- prover mecanismos de controlo centralizado das informações e representação de dados;

- comportar as últimas inovações do mercado, tais como sons, vídeos, gráficos;
- facilitar manutenção de dados e oferecer instrumentos para rápida restauração em situações de erro.

Esses pontos são traduzidos por uma série de conceitos que devem ser assegurados pela BD:

Independência de Dados: permitir que haja evolução na descrição de dados da empresa, como a criação de uma nova estrutura lógica decorrente de uma nova aplicação, ou a inclusão de um dado novo numa estrutura existente, sem que os sistemas ou aplicações tenham de ser alterados.

Controlo de Redundância dos Dados: representado pelo controlo centralizado dos dados partilhados por diversas aplicações; reduz a repetição de dados a um mínimo justificável e aceite apenas por uma questão de desempenho.

Partilha de Dados: os dados devem poder ser partilhados por mais de um utilizador.

Garantia de Integridade dos Dados: capacidade de evitar que aplicações ou utilizadores concorrentes realizem atualizações sobre os dados, tornando-os inconsistentes. Essa capacidade traduz-se na introdução de recursos no sistema que inibam o acesso a um dado por uma aplicação quando esse mesmo dado já tiver sido lido para modificação por outra aplicação. Outro importante recurso que garante a integridade dos dados

- é a possibilidade de desfazer alterações erradas introduzidas por alguma aplicação.
- **Segurança de Dados:** abrange conceitos como os de procedimentos de validação e controlo, garantia de integridade e controlo de acesso, que visam resguardar a BD de uma possível perda ou destruição de dados por falha de programa ou equipamento.
- <u>Privacidade dos Dados</u>: são controlos que devem ser estabelecidos para que os dados possam ser acedidos somente por pessoa autorizada.
- Relações entre Dados: a relação entre os dados armazenados em arquivos diferentes deve ser controlada de maneira automática sem intervenção do programador.
- Controlo do Espaço de Armazenamento: a BD deve ser provida de mecanismos de controlo de acesso do espaço reservado, do espaço real utilizado e da disponibilidade de espaço no SGBD. Além disso, deve incorporar técnicas para a otimização do armazenamento, tais como compressão de dados e reaproveitamento automático de espaços libertados por eliminação de dados.

5.4 - Metodologia de desenvolvimento de uma Base de Dados

Fases:

* Estratégia: Análise das Necessidades;

* Análise: Modelo Conceptual da Base de Dados;

* Projeto: Modelo Lógico da Base de Dados;
* Construção: Projeto Físico da Base de Dados;

* Implementação: Instalação da Base de Dados;

* Implantação: Monitorização e Sintonização.

Estratégia - A Análise das Necessidades:

- identificar as deficiências do sistema corrente,
- estabelecer novas metas,
- determinar se é viável o trabalho,
- sugerir melhorias.

Análise - O Modelo Conceptual:

- estrutura as necessidades globais de informação;
- desenho do **DHF** (Design History File, com a documentação de todo o conhecimento adquirido sobre o sistema), do Diagrama de Contexto (**DC** entidades externas que influem no sistema), do **DFD** (representação gráfica de processos mediante funções, fluxos e repositório de dados) e do **ER**;
- balanceamento entre entidades e funções.

Projeto - O Modelo Lógico:

- propõe-se a análise das opções de montagem de uma BD;
- normalização das entidades, atributos e seus relacionamento; escolha das chaves candidatas e primárias;

Construção - O Projeto Físico

- transforma o Projeto Lógico no formato mais adequado a um SGBD específico. Cria-se a Estrutura Física da Base de Dados para um motor específico.

A Implementação:

- geração e processamento das definições da BD;
- construção dos programas;
- carga inicial do BD;
- geração da segurança de acesso.

A monitorização na fase de Implantação

- mede o desempenho da BD, avaliando: utilização da BD pelos sistemas de aplicações; acompanhamento da utilização; análise da evolução do desempenho.

A fase de sintonização

- apresenta uma crítica construtiva do desempenho através de: análise dos pontos críticos no desempenho; especificação de novas estruturas; otimização da BD central e nos vários servidores da rede.

5.5. Regras de Integridade

O Modelo Relacional prevê duas regras gerais de integridade:

Integridade de entidade - qualquer atributo que faça parte da chave primária de uma relação não pode conter valores nulos - ausência de valores.

Integridade referencial - garante que as referências entre tabelas existam, ou seja, qualquer valor de chave estrangeira deve existir como valor de chave primária na tabela relacionada, ou deve ser nulo.

6. ÁLGEBRA RELACIONAL

Conceitos:

- Relação: Representada por uma tabela de duas dimensões (linhas e colunas).
- * Registo: Corresponde a uma linha de relação.
- Atributo: Corresponde a uma coluna da relação.
- Domínio: Valores possíveis dos atributos.
- Chave primária: Atributo, ou atributos (superkey) que identificam univocamente cada registo.
- Chave estrangeira: Atributo de uma relação que é chave primária de outra relação.

Álgebra Relacional: Conjunto de operações sobre modelos relacionais de dados.

Podem ser agrupadas em duas categorias:

A) Operações Tradicionais (Teoria dos Conjuntos)

- União, Intersecção, Diferença, Produto Cartesiano.

2010-2011: UPT/ CMA/ FBD BDmod - 26/ 31

- B) Operações Relacionais (Específicas da Álgebra Relacional)
 - Seleção, Projeção, Junção, Divisão.

UNIÃO de duas relações A e B é o conjunto de todos os registos pertencentes a A ou a B

A = ABCDEFGH, B = FGHIJKL união: ABCDEFGHIJKL

INTERSECÇÃO de duas relações A e B é o conjunto de todos os registos pertencentes a A e a B

intersecção: FGH

DIFERENÇA de duas relações A e B é o conjunto de todos os registos de A não pertencentes a B

diferença: ABCD

PRODUTO CARTESIANO de duas relações A e B é o conjunto de todos os registos originados pela concatenação de cada registo de A com cada registo de B

A = A,B,C, B=X,Y; produto cartesiano = AX, AY, BX, BY, CX, CY

- **SELEÇÃO** É a operação usada para construir um subconjunto horizontal de uma relação, cujos registos satisfaçam uma determinada condição
- **PROJEÇÃO** É a operação usada para construir um subconjunto vertical de uma relação, obtida pela escolha de alguns atributos

JUNÇÃO de duas relações R1 e R2, que possuem um atributo em comum 'b'. A junção é o subconjunto do produto cartesiano das duas relações, cujos valores dos elementos do atributo comum sejam iguais nas duas relações.

Na relação resultante elimina-se a repetição da coluna 'b'

A1	B1
A2	B2
A3	B3

B1	C1
B2	C2
B3	C3

A1	B1	C1
A2	B2	C2
A 3	B3	C 3

DIVISÃO - Seja R1 uma relação com atributos x e y, e R2 uma relação com atributo z, com y e z definidos sobre o mesmo domínio.

Define-se a operação divisão, como sendo o conjunto dos elementos x, com pares (x,y) pertencentes a R1 para todos os valores y pertencentes a R2.

R1	
X	У
Α	X
Α	Υ
Α	Z
В	X
В	Υ

7. CONSTRUÇÃO FÍSICA PARA MODELOS E/R

Terminologia

Modelo Lógico	Modelo Físico
Modelo dados E/R	Esquema da BD
Entidades	Tabelas
Atributos	Colunas
Relações	Restrições de integridade Índices PK e FK
Ocorrência	Registo

Elementos da construções física

- Nomes

```
seguir uma convenção
definir nomes únicos e significativos
evitar sinónimos - nomes diferentes para o mesmo
significado
evitar homónimos - nomes iguais para significados
diferentes
```

```
Tipo de dados
tipo de informação a armazenar
capacidade
tipo de operações com valores
precisa de ser ordenado/ agrupado?
(alguns tipos não permitem)
como tem de ser a ordenação?
(1, 10, 100, 2, 20, 200, .... está ordenado, se for texto!)
Tipos genéricos:
text
memo
number
```

date/time currency autonumber yes/ no ole object

 Nulo ou não nulo não é a mesma coisa que zero ou string vazia valor predefinido operadores e funções próprias

- Único

- Chaves candidatas

simples únicas compostas não únicas

- Chave primária
- Chaves estrangeiras
- Restrições de integridade: constrangimentos impostos aos atributos
- Restrições de integridade de entidade: a PK não pode ser nula nem se pode repetir
- Restrições de integridade referencial: garante a consistência da informação que estabelece a relação entre tabelas: não pode haver órfãos
 - uma modificação do valor da PK deve ter como reflexo a modificação dos valores de todas as FK correspondentes

 a FK pode ser nula e só aceita valores que existam na PK correspondente

Tipos de integridade referencial

Reflexa: integridade de uma tabela com ela própria

Cíclica: de pai para filho

Múltipla: integridade de uma tabela com várias

outras

- Integridade de domínio: conjunto de valores que uma coluna pode conter:

tipo de dados conjunto de valores possíveis (sexo: M ou F ...)

- Integridade aplicacional: restrições impostas pelas regras de negócio

stock mínimo só alguns utilizadores podem efetuar algumas operações

- Considerar a parametrização em tabelas específicas de todas as constantes identificadas
- Considerar a parametrização em tabelas específicas de todas as opções de negócio identificadas e suscetíveis de alterarem os processos de negócio
- Outras propriedades dos campos formato máscara de introdução valor predefinido regra de validação (restrição)