Model Visualisation

Amit Kapoor @amitkaps

Story

"We don't see things as they are, we see them as we are."

— Anais Nin

The Blind Men & the Elephant

"And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong."

— John Godfrey Saxe

The Elephant: Data

"Data is just a clue to the end truth"

— Josh Smith

The Men: Building Models

"All models are wrong, but some are useful"

— George Box

Ladder of Abstraction

Data Abstraction
Visual Abstraction
Model Abstraction

Why Build Models?

First Level of Ignorance

"I know, what I don't know"

Why Visualise Models?

Second Level of Ignorance

"I don't know, what I don't know"

Machine Learning (ML) Speak

Data Transformation
Visual Exploration
Model Building

ML Pipeline

```
Data Transformation ———— Model Building
  (Tidy Data)
Visual Exploration
   (Data-Vis)
```

ML Pipeline++

```
Data Transformation ————
                              Model Building
                               (Tidy Model)
   (Tidy Data)
Visual Exploration
                             Model Exploration
   (Data-Vis)
                                (Model-Vis)
```

Model-Vis Key Concept

Use visualisation to aid the transition of implicit knowledge in the data and your head to explicit knowledge in the model.

Model-Vis Approach

```
[0] Visualise the data space
[1] Visualise the predictions in the data space
[2] Visualise the errors in model fitting
[3] Visualise with different model parameters
[4] Visualise with different input datasets
[5] Visualise the entire model space
[6] Visualise the entire feature space
[7] Visualise the many models together
```

Model-Vis Examples

```
Regression: Small
Classification: Large p
Regression: Large n
```

Model-Vis Examples

```
Cars (n < 50, p = 4)
Digits (n ~ 5K, p = 785)
Taxi (n ~ 10M, p = 20)
```

Regression: Small

Cars dataset - price vs kmpl Scraped from comparison website Refined & tidied up Base version for petrol cars Price < ₹ 1,000K, n = 42

brand	model	price	kmpl	type	bhp
Tata	Nano	199	23.9	Hatchback	38
Suzuki	Alto800	248	22.7	Hatchback	47
Hyundai	EON	302	21.1	Hatchback	55
Nissan	Datsun	312	20.6	Hatchback	67
• • •	• • •	• • •	• • •	• • •	• • •
Suzuki	Ciaz	725	20.7	Sedan	91
Skoda	Rapid	756	15.0	Sedan	104
Hyundai	Verna	774	17.4	Sedan	106
VW	Vento	785	16.1	Sedan	104

Model-Vis Approach

```
[0] Visualise the data space
[1] Visualise the predictions in the data space
[2] Visualise the errors in model fitting
[3] Visualise with different model parameters
[4] Visualise with different input datasets
[5] Visualise the entire model space
[6] Visualise the entire feature space
[7] Visualise the many models together
```

Model-Vis & ML Approach

```
[O] DATA VIS: the data space
[1] PREDICTION: the predictions in the data space
[2] VALIDATION: the errors in model fitting
[3] TUNING: with different model parameters
[4] BOOTSTRAP: with different input datasets
[5] ENSEMBLE: the entire model space
[6] FEATURE ENGG: the entire feature space
[7] N-MODELS: the many models together
```

Move through Layers

Iterative, not linear
Up and Down, not lateral
Complementary, not exclusive

p/n/N Model-Vis challenge

```
p -- High dimensional data
n -- Large and big data
N -- Multiple models
```

Classification: 2 Class

```
MNIST - digit recognition
Reduced to 2-class: 1 and 2
p = 784, 28 x 28 gray pixel map
n > 5000
```

MNIST dataset: Examples of number 1 and 2

Visualise the data space

Identify the features - Symmetry & Intensity

Easy to visualise errors in data space

How to scale for large p?

Curse of dimensionality
Mesh approach computationally
expensive
Need to use projections

High-p Boundary Classifiers

Github: highdimensional-decision-boundary-plot

Regression: Large n

```
NYC Taxi Trip Data
n ~ 10M (in just one month)
p = 20, geo location (drop &
pick up), fare breakup,
passenger no. etc.
```

Data-Vis Issue

Plotting is hard e.g. alpha

Sampling (~1%) may be
effective

Require careful tuning parameters e.g. overweighting unusual values

Binning Helps

"Bin - Summarize - Smooth: A framework for visualising big data" - Hadley Wickam Package in R: 'BigVis' (2013)

Recent Interactive implementation in Python Package in Python: 'Datashader' (2016)

Vis Data Space

Plot the probability of getting a tip

Start to see the patterns in the visualisation

Vis Predictions

Predict the probability of getting tip

Simple Linear Model - drop coords, passenger count, time and day of week

Vis Errors

Visualise the errors in tip probability distribution

N-Models Challenge

Model Explosion

Entire Model Space

- + Add Tuning Models
- + Add Bootstrap Models
- + Add Ensemble Models
- + Add Cross-Validation Models

N-Models Challenge

Keep track of prediction & errors

Keep track of model output parameters

Tidy Model

Augment predictions & errors to dataset Create output parameters data frame Visualise like Tidy Data

Managing N-Models

"Managing Many Models in R"
by Hadley Wickham
"Broom Package in R
by David Robinson

p/n/N Model-Vis challenge

```
p -- High dimensional data
n -- Large and big data
N -- Multiple models
```

p/n/N Model-Vis approach

```
p ---
p -- use Projections
n -- use Binning or Sampling
N -- use Tidy Model
```

Model-Vis

Similar challenges to Data-Vis More an Art, than a Science Essential in ML Model Pipeline Both to Explain or to Predict Scope for easier tooling

Model-Vis

Slides and Code
http://modelvis.amitkaps.com

Mini-Site and Explanation (by End of 2016)

Model Visualisation

Amit Kapoor @amitkaps

amitkaps.com