Spark ML

2022.10.12

발제자: 오효근, 우아라

Review: Spark

Features

- 오픈 소스 클러스터 컴퓨팅 프레임 워크
- 클러스터 환경 데이터 병렬 처리 라이브러리 집합으로 구성
- UC Berkely의 AMP Lab.에서 최초 개발
 - Zaharia, Matei, et al. "Spark: Cluster computing with working sets." 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10). 2010.
- Big data application 개발에 필요한 통합 플랫폼 제공 지향
- 데이터 읽기, SQL 처리, Machine learning 등 데이터 분석 작업과 같은 연산 엔진과 일관성 있는 API로 구성

□ Benefits

- S/W license 비용 없이 대용량 데이터 처리를 위한 최적의 솔루션
- 대용량 DW 영역에서 영역 확장 진행 중
- 다양한 오픈 소스 에코 시스템 지원
- 오픈 소스 기반 대량 데이터 처리의 중심

Spark ML

- □ Spark ML
 - Definition: Spark에서 제공하는 ML library
 - Spark MLlib vs. Spark ML
 - Spark MLlib: RDD (Resilient Distributed Dataset) 기반 ML library
 - Spark ML: DataFrame 기반 ML library

Spark MLlib

- Spark의 초기 버전 ML library
- Spark 2.0 부터 더 이상 사용되지 않음

- Machine Learning
 - Representative Models
 - Supervised Learning
 - Decision Tree
 - Random Forest
 - Naïve Bayes
 - Support Vector Machine (SVM)
 - Unsupervised Learning
 - K-Means Clustering
 - DBSCAN
 - Principal Components Analysis (PCA)
 - t-distributed stochastic neighbor embedding (t-SNE)
 - Definition: 컴퓨터가 특정 작업을 수행하기 위해 개발 프로세스 또는 특정 프로그래밍 없이도 지속적 학습 및 데이터 기반으로 목표를 수행하는 기술

- Spark의 최신 ML library
- DataFrame과 integration
- Scikit-Learn의 API 등에서 많은 영향

Features of Spark ML

- ☐ 일반적인 machine learning algorithm 제공
- □ Feature extraction, feature selection, transformation, dimensionality reduction 등 다양한 도구 제공
- ◘ 알고리즘과 모델 및 파이프라인의 저장, 로드, 데이터 처리, 통계학 등 유틸리티
- ☐ GPU를 활용하는 데이터 브릭스의 Spark Cluster 구성 사용 가능
- Hyperparameter tuning 기능 제공
- ❑ Scalar, Java, Python, R 등 각종 환경의 API 제공

Estimator

- Classification
- Regression
- Clustering
- · Collaborative Filtering

Pipeline

Pipeline

Transformer

- StringIndexer
- OneHotEncoder
- VectorAssebler
- StandardScaler
- Tokenizer

Evaluator

- RegressionEvaluator
- BinaryClassificationEvluator
- MultiClassificationEvaluator

Model Selection (Tuning)

- randomSplit
- TrainValidationSplit
- CrossValidator
- ParamGridBuilder

Extractor, Feature Selection

- TF-IDF
- Word2Vec
- ChiSqSelector

Spark ML vs. In-database ML

Machine Learning Process

- 1. 데이터 전처리
 - 데이터 클렌징
 - 결측치 처리: Null / NaN
 - 데이터 인코딩: 레이블, 원-핫 인코딩
 - 데이터 스케일링
 - 이상치 제거
 - Feature 추출 및 선택
- 2. 데이터 세트 분리
 - 학습 데이터 및 테스트 데이터 분리
- 3. 모델 학습 및 검증 평가
 - 알고리즘 학습
 - Hyperparameter 튜닝
- 4. 예측 수행
 - 테스트 데이터로 예측 수행
- 5. 평가
 - 예측 평가
 - 교차 검증 (cross validation)

Machine Learning Process in Spark ML

- 1. 데이터 소스를 Spark DataFrame으로 변환
 - iris_sdf = spark.createDataFrame(iris_pdf)
- 2. DataFrame을 학습 및 테스트 DataFrame으로 분할
 - train_sdf, test_sdf = iris_sdf.randomSplit([0.8, 0.2], seed = 42)
- 3. 학습 시키려는 여러 개의 feature columns를 하나의 feature vector로 변환
 - iris_columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
 - vec_assembler = VectorAssembler(inputCols = iris_columns, outputCol = 'features')
 - train_feature_vector_df = vec_assembler.transform(train_sdf)
- 4. ML algorithm 객체 생성 후 모델 학습
 - Ir = logisticRegression(featureCol = 'features', labelCol = 'target')
 - Ir_model = Ir.fit(train_feature_vector_df)
- 5. 학습 모델을 이용하여 테스트 데이터 예측
 - test_feature_vector_df = vec_assembler.transform(test_sdf)
 - predictions = Ir_model.transform(test_feature_vector_df)

실습