

## Al For Youth

Módulo 8: Adquirir -Fundamentos de IA (Modelagem de Dados)

intel digital readiness

#### Avisos Legais

Os programas Intel® Digital Readiness e o Programa Intel® Al for Youth são desenvolvidos pela Intel Corporation.

Elntel Corporation. Intel, o logotipo da Intel e outras marcas da Intel são marcas comerciais da Intel Corporation ou de suas subsidiárias. \*Outros nomes e marcas podem ser reivindicados como propriedade de terceiros. Todos os direitos reservados. As datas do Programa e os planos de aula estão sujeitos a alterações.

As tecnologias Intel podem exigir hardware e software específicos ou ativação de serviço.

Nenhum produto ou componente pode ser absolutamente seguro.

Os resultados foram estimados ou simulados.

A Intel não controla nem audita dados de terceiros. Você deve consultar outras fontes para avaliar a precisão.

Seus custos e resultados podem variar.

## 2. Aquisição de Dados

Onde posso obter dados?

AI For Youth

# 3. Exploração de Dados Al For Youth

Por que precisamos explorar e visualizar dados?

#### Ciclo de projeto de IA



### 4. Modelagem

Al For Youth

#### Diferença entre IA, AM e AP

- 1. IA Qualquer técnica que permite que os computadores imitem a inteligência humana
- 2. Aprendizagem de Máquina Um subconjunto da IA que permite que as máquinas melhorem nas tarefas através da experiência
- 3. Aprendizagem Profunda Um subconjunto de AM que permite que o software treine por si só para executar tarefas com grandes quantidades de dados



#### Tipos de abordagens ao construir modelos em IA

- 1. Abordagens Baseadas em Regras
- 2. Abordagens de Aprendizagem
  - Aprendizagem de Máquina
  - Aprendizagem Profunda

#### Lembra desses modelos?



Gráfico de Barras



Gráfico de Dispersão



Gráfico de Linha



Diagrama de Árvore

#### Exemplos de Modelos Matemáticos



Uma abordagem baseada em regras significa que definimos o relacionamento

Uma abordagem de aprendizado de máquina significa que usamos máquinas para descobrir o relacionamento para nós, dados os dados

## Árvores de Decisão



| Outlook  | Temperature | Humidity | Wind   | Elephant<br>Spotted? |
|----------|-------------|----------|--------|----------------------|
| Sunny    | Hot         | High     | Weak   | No                   |
| Sunny    | Hot         | High     | Strong | No                   |
| Overcast | Hot         | High     | Weak   | Yes                  |
| Rain     | Mild        | High     | Weak   | Yes                  |
| Rain     | Cool        | Normal   | Weak   | Yes                  |
| Rain     | Cool        | Normal   | Strong | No                   |
| Overcast | Cool        | Normal   | Strong | Yes                  |
| Sunny    | Mild        | High     | Weak   | No                   |
| Sunny    | Cool        | Normal   | Weak   | Yes                  |
| Rain     | Mild        | Normal   | Weak   | Yes                  |
| Sunny    | Mild        | Normal   | Strong | Yes                  |
| Overcast | Mild        | High     | Strong | Yes                  |
| Overcast | Hot         | Normal   | Weak   | Yes                  |
| Rain     | Mild        | High     | Strong | No                   |



#### Sobreajuste com Dados Ruidosos









#### Princípio de Occam

"Quando você tem duas teorias concorrentes que fazem exatamente as mesmas previsões, a mais simples é a melhor"

William of Ockham

#### Pixel It

#### Pessoa 1



#### Pessoa 2



#### Pessoa 3



#### Pessoa 4





#### Prenda-o para formar uma linha



#### Múltiplas variações combinadas da mesma letra Adicone os quadrados pretos em cada coluna



- Peça a alguém para escrever uma carta desconhecida
- E uma carta que você treinou
- Verifique se o seu modelo é capaz de classificá-lo corretamente



# Como o aprendizado de máquina é diferente de uma abordagem baseada em regras?

#### Tipos de modelos em IA



## Quais modelos de aprendizado de máquina existem?

- 1. Em geral, existem 3 famílias de modelos:
  - Supervisionado
  - Não supervisionado
  - Aprendizagem por Reforço
- 2. Estaremos focando apenas no Aprendizado Supervisionado e Não Supervisionado



#### Supervisionado

- 1. Objetivo: Encontrar relacionamentos ou estruturas específicas nos dados de entrada que nos permitem produzir efetivamente dados de saída corretos
- 2. Os dados são rotulados
- 3. Algoritmos prevêem a saída dos dados de entrada
  - Classificação (mapeie a entrada para os rótulos de saída)
  - Regressão (mapear a entrada para uma saída contínua)

## SUPERVISED LEARNING



## Experimente a Máquina que pode ser ensinada

Link Aqui

#### Aprendizagem não Supervisionada

- 1. Objetivo: Aprender a estrutura inerente de nossos dados sem usar rótulos fornecidos explicitamente.
- Os dados não estão rotulados
- 3. Os algoritmos aprendem a estrutura inerente dos dados de entrada:
  - Clustering (aprender relacionamentos entre recursos individuais)
  - Redução de dimensionalidade (métodos usados para representar dados usando menos colunas ou recursos)

## UNSUPERVISED LEARNING



#### Experimente a Infinite Drum Machine

Link Aqui

## REINFORCEMENT LEARNING





Fonte: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/



#### Encerramento

O que você aprendeu?

