Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
1(a)(i)	P1: $P(W) = 1$ and $P(\emptyset) = 0$, P2: If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$.	2
1(a)(ii)	Since $A \subseteq B$ then $B = A \cup (B \cap A^c)$ where A and $B \cap A^c$ do not overlap. Hence by P2 $P(B) = A^c$	3
	$P(A) + P(B \cap A^c) \ge P(A)$.	
1(b)(i)	By Bayes theorem $P(H_i E) = \frac{P(E H_i)P(H_i)}{P(E)}$ and since $P(E)$ is constant for each H_i we have that	2
	$P(H_i E) \propto P(E H_i)P(H_i)$.	
	Now $P(E H_1)P(H_1) = 0.8 \times 0.2 = 0.16$, $P(E H_2)P(H_2) = 0.6 \times 0.7 = 0.42$ and $P(E H_3)P(H_3) = 0.00$	1
	$0.5 \times 0.1 = 0.05$.	
	Hence, H_2 is most probable give E .	1
1(b)(ii)	By the theorem of total probability $P(E) = P(E H_1)P(H_1) + P(E H_1^c)(1 - P(H_1)) = 0.8 \times 0.2 + 0.3.8 = 0.000$	2
	0.4.	
	Hence, by Bayes theorem $P(H_1 E) = \frac{0.8 \times 0.2}{0.4} = 0.4$	1
1(c)(i)	The gain for Bet 1 is $S(1-p)\chi_A(w^*) - Sp(1-\chi_A(w^*)) = S((1-p)\chi_A(w^*) - p(1-\chi_A(w^*))) = S((1-p)\chi_A(w^*) - p(1-\chi_A(w^*)))$	3
	$S(\chi_A(w^*) - p\chi_A(w^*) - p + p\chi_A(w^*)) = S(\chi_A(w^*) - p)$	
	The gain for Bet 2 is $-S(1-p)\chi_A(w^*) + Sp(1-\chi_A(w^*)) = -\text{Bet 1 gain} = -S(\chi_A(w^*) - p)$	1
1(c)(ii)	For odds p' then Bet 1 gain is $S(\chi_A(w^*) - p') \ge S(\chi_A(w^*) - p) = \text{Bet 1 gain for odds } p$	2
	Also, the gain for Bet 2 given odds p' is $-S(\chi_A(w^*) - p') \le -S(\chi_A(w^*) - p) = \text{Bet 2 gain for odds } p$	1
	Hence, if the agent chooses Bet 1 when offered odd p then she should also choose Bet 1 when offered	1
	odd p' since in the latter case the Bet 1 gain will be higher and the Bet 2 gain lower than in the	
	former case.	

Continued on next page...

Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
2(a)(i)	${A, S, C} : 0.2, {S, C} : 0.4, {S} : 0.3, {A, C} : 0.1.$	4
2(a)(ii)	$Bel(\{S,C\}) = m(\{S,C\}) + m(\{S\}) = 0.7, \ Pl(\{S,C\}) = 1.$	2
2(b)(i)	$P(A m) = \sum_{B \subseteq W} P(A B)m(B)$	2
2(b)(ii)	$P(A m) = \sum_{B \subset W} P(A B)m(B) = \sum_{B \subset A} P(A B)m(B) + \sum_{B \subset A} P(A B)m(B)$	2
	$=\sum_{B\subseteq A} m(B) + \sum_{B\not\subset A} P(A B)m(B)$	1
	$=Bel(A) + \sum_{B \not\subset A} P(A B)m(B) \ge Bel(A)$	1
	Similarly, $P(A^c m) \ge Bel(A^c)$ and hence $P(A m) = P(A^c m) \le 1 - Bel(A^c) = Pl(A)$	1
	m_1/m_2 $\{w_1, w_2, w_4\} : 0.3 \mid \{w_4\} : 0.5 \mid \{w_2, w_3\} : 0.2$	
2(c)	$[w_1, w_2] : 0.4$ $[w_1, w_2] : 0.12$ $[w_2] : 0.08$	2
2(0)	$\{w_1, w_3\} : 0.4 \{w_1\} : 0.12 \emptyset : 0.2 \{w_3\} : 0.08$	
	$\{w_3, w_4\} : 0.2 \{w_4\} : 0.06 \{w_4\} : 0.1 \{w_3\} : 0.04$	
	$\boxed{m_1 \oplus m_2 := \{w_1, w_2\} : \frac{0.12}{0.6} = 0.2, \{w_1\} : \frac{0.12}{0.6} = 0.2, \{w_2\} : \frac{0.08}{0.6} = 0.1333, \{w_3\} : \frac{0.08 + 0.04}{0.6} = 0.1333,$	1
	$0.2, \{w_4\}: \frac{0.1+0.06}{0.6} = 0.2667$	
2(c)(ii)	$m \oplus m_B(C) = \frac{\sum_{D:B \cap D = C} m(D)}{1 - \sum_{D:D \cap B = \emptyset} m(D)} = \frac{\sum_{D:B \cap D = C} m(D)}{\sum_{D:D \cap B \neq \emptyset} m(D)} = \frac{\sum_{D:B \cap D = C} m(D)}{Pl(B)}$	2
	Hence, $Pl(A B) = \frac{\sum_{C:C \cap A \neq \emptyset} \sum_{D:B \cap D = C} m(D)}{Pl(B)} = \frac{\sum_{D:D \cap (A \cap B) \neq \emptyset} m(D)}{Pl(B)} = \frac{Pl(A \cap B)}{Pl(B)}$	2

Continued on next page...

Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
3(a)(i)	Let $P(r) = p_1$, $P(g) = p_2$, $P(b) = p_3$. Then $K = P(r \{r,g\}) = 0.6$	2
	p ₃ 1 V(K) 3/5 p ₁	
2(0)(;;)	Entropy is given by $H = 3\pi \log (3\pi)$ and $\log (\pi) = (1 - 5\pi) \log (1 - 5\pi)$	$\frac{2}{3}$
3(a)(ii)	Entropy is given by $H = -\frac{3}{2}p_2\log_2(\frac{3}{2}p_2) - p_2\log_2(p_2) - (1 - \frac{5}{2}p_2)\log_2(1 - \frac{5}{2}p_2)$ $\frac{dH}{dp_2} = -\frac{3}{2}\log_2(\frac{3}{2}p_2) - \log_2(p_2) + \frac{5}{2}\log_2(1 - \frac{5}{2}p_2)$	1
	$\frac{dH}{dp_2} = 0 \Rightarrow \log_2((\frac{3}{2}p_2)^{\frac{3}{2}}p_2) = \log_2((1 - \frac{5}{2}p_2)^{\frac{5}{2}}) \Rightarrow (\frac{3}{2})^{\frac{3}{2}}p_2^{\frac{5}{2}} = (1 - \frac{5}{2}p_2)^{\frac{5}{2}}$	1
	$\Rightarrow (\frac{3}{2})^{\frac{3}{5}}p_2 = (1 - \frac{5}{2}p_2) \Rightarrow p_2 = \frac{1}{(\frac{3}{8})^{\frac{3}{5} + \frac{5}{8}}} = 0.26487$	1
3(b)(i)	$P(X_1, \dots, X_n) = P(X_1) \frac{P(X_1, X_2)}{P(X_1)} \dots P(X_1, \dots X_{n-1}) \frac{P(X_1, \dots, X_n)}{P(X_1, \dots, X_{n-1})} = \prod_{i=1}^n P(X_i X_i, \dots X_{n-1}) = \prod_{i=1}^n P(X_i X_i)$	3
3(b)(ii)	Total values $1 + \sum_{i=2}^{n} 2^{i-1} = 1 + \sum_{i=0}^{n-2} 2^i = 1 + \frac{1(1-2^{n-1})}{1-2}$ (geometric series $a = 1, r = 2$) = 2^{n-1}	3
	X_1 X_2 X_3 X_4	
3 (b) (iii)		4

Continued on next page...

Q No.	PAPER NAME Uncertainty Modelling for Intelligent Systems Q.SETTER INITIALS JL	Marks
4(a)	$\tilde{A}_{\alpha} = \begin{cases} \{5, 6, 7\} : \alpha \in (0, 0.5] \\ \{5, 6\} : \alpha \in (0.5, 0.8] \\ \{5\} : \alpha \in (0.8, 1] \end{cases} \text{and} \tilde{B}_{\alpha} = \begin{cases} \{1, 2, 3\} : \alpha \in (0, 0.2] \\ \{1, 2\} : \alpha \in (0.2, 0.5] \\ \{1\} : \alpha \in (0.5, 1] \end{cases}$	1
	$ \begin{array}{ c c c c c c }\hline $\frac{\tilde{A}_{\alpha}}{\tilde{B}_{\alpha}}$ & \{5,6,7\}:(0,0.5] & \{5,6\}:(0.5,0.8] & \{5\}:(0.8,1] \\\hline \{1,2,3\}:(0,0.2] & \{5,6,7,\frac{5}{2},3,\frac{7}{2},\frac{5}{3},2,\frac{7}{3}\}:(0,0.2] & \emptyset & \emptyset \\\hline \{1,2\}:(0,2,0.5] & \{5,6,7,\frac{5}{2},3,\frac{7}{2}\}:(0.2,0.5] & \emptyset & \emptyset \\\hline \{1\}:(0.5,1] & \emptyset & \{5,6\}:(0.5,0.8] & \{5\}:(0.8,1] \\\hline \end{array} $	2
	$ \left(\frac{\tilde{A}}{\tilde{B}}\right)_{\alpha} = \begin{cases} \{5, 6, 7, \frac{5}{2}, 3, \frac{7}{2}, \frac{5}{3}, 2, \frac{7}{3}\} : \alpha \in (0, 0.2] \\ \{5, 6, 7, \frac{5}{2}, 3, \frac{7}{2}\} : \alpha \in (0.2, 0.5] \\ \{5, 6\} : \alpha \in (0.5, 0.8] \\ \{5\} : \alpha \in (0.8, 1] \end{cases} $	1
	$\frac{A}{B} = 5/1 + 6/0.8 + 7/0.5 + \frac{5}{2}/0.5 + 3/0.5 + \frac{7}{2}/0.5 + \frac{5}{3}/0.2 + 2/0.2 + \frac{7}{3}/0.2$	1
4(b)	$\{\alpha: w \in \tilde{A}_{\alpha} \cap \tilde{B}_{\alpha}\} = \{\alpha: \chi_{\tilde{A}}(w) \ge \alpha, \chi_{\tilde{B}}(w) \ge \alpha\} = (0, \min(\chi_{\tilde{A}}(w), \chi_{\tilde{B}}(w))]$	2
	Hence, $\sup\{\alpha: w \in \tilde{A}_{\alpha} \cap \tilde{B}_{\alpha}\} = \sup(0, \min(\chi_{\tilde{A}}(w), \chi_{\tilde{B}}(w))] = \min(\chi_{\tilde{A}}(w), \chi_{\tilde{B}}(w))$	2
4(c)	T1: $\forall x \in [0,1] \ T(x,1) = x$. T2: $\forall x,y,z \in [0,1]$, if $y \leq z$ then $T(x,y) \leq T(x,z)$. T3: $\forall x,y \in [0,1]$, 4
4(d)	$T(x,y) = T(y,x)$. T4: $\forall x,y,z \in [0,1]$, $T(x,T(y,z)) = T(T(x,y),z)$. Upper bound: $T(x,y) \leq T(x,1) = x$ by T1 and T2. Also $T(x,y) = T(y,x) \leq T(y,1) = y$ by T3,T2,T1. Hence, $T(x,y) \leq \min(x,y)$.	2
	Lower bound: By T1 $T(x, y) \le \min(x, y)$. Lower bound: By T1 $T(x, 1)$ and by T3 and T1 $T(1, y) = y$. Also, if $x, y < 1$ then $T(x, y) \ge 0$ at required.	5 2
4(e)	$\Box A$ is true in w_1 and w_3 .	3