Spectrum Analysis in Mineralogy

A. A. FITCH,
A.R.C.S., D.L.C., Ph.D., F.G.S.

ADAM HILGER, L'TD.

24 Rochester Place, Camden Road,
LONDON, N.W. 1

ENGLAND

SPHERICITY, Phone, London Telephone; GUELIVER 8426

Spectrum Analysis in Mineralogy

BY

A. A. FITCH, A.R.C.S., D.I.C., Ph.D., F.G.S.

ADAM HILGER, LTD.

24 Rochester Place, Camden Road, LONDON, N.W.1

ENGLAND

SPHERICITY,
Phone, London

Telephone: GULLIVER 5426 549.1 F54

100 31	CONTENTS				
I.	Introductory	_	_		PAGE 3
II,	THE TECHNIQUE OF SPECTRUM ANALYSIS -	-	-	-	4
III.	Qualitative Analysis of Minerals -		-	-	10
IV.	Quantitative Analysis of Minerals -	-	-	4.	16
V.	Analysis of Mineral Concentrates -	_	_	:	17
VI.	Analysis of Rocks	-	-	-	18
VII.	Analysis of Meteorites	-	-	-	18
VIII.	Analysis of Natural Waters	_	- 1	_	18
IX.	X-RAY SPECTRUM ANALYSIS OF MINERALS	-	-	-	19
X.	IDENTIFICATION OF MINERALS BY ABSORPTION	SPE	CTRA	-	19
XI.	Examples of Analyses of Minerals by	SPE	CTRU	M	
	Analysis	1	-	-	20
XII.	BIBLIOGRAPHY	_	_	-	44

PRINTED IN ORDAY BRITAIN BY
ROBERT MAGLEMOSE Go., LTD. GLASGOW

Spectrum Analysis in Mineralogy

63

A. A. FITCH, A.R.C.S., D.I.C., Ph.D., F.G.S.

I. Introductory.

Spectrum analysis is being widely adopted in mineralogical laboratories, as an accessory means of identification of mineral species, and for investigations into their chemical composition. There is, however, no convenient summary of the technique to be employed in mineralogical spectrum analysis or of the results which the methods have yielded. The writer has been engaged in work on the spectrum analysis of minerals and of metals for Messrs. Adam Hilger, Ltd., and has thus read the scattered literature of the subject, making it convenient to prepare the present review.

The first worker in the field of mineralogical spectrum analysis was Hartley, who published his first paper in 1884: in this paper he initiated investigations into quantitative spectrum analysis which later received much attention from workers in Dublin. De Gramont, in a lengthy series of papers beginning in 1895, not only worked on some theoretical aspects of spectrum analysis, but also evolved a reliable technique for determining the presence of a particular metal in a mineral. He published descriptions of the spectra of a great many minerals, which, though they may be no longer necessary for their spectrographic identification, indicate the wide range of application of the methods. Since about 1920, many workers have adopted these methods, as can be seen from the bibliography.

In addition to the analysis of minerals, this review deals with the analysis of rocks and of meteorites, which has been carried out by some workers, although difficulties are here experienced in obtaining small representative samples. X-ray spectrum analysis requires a highly specialised technique and is therefore only dealt with in outline. Identification of minerals by means of their absorption spectra is another recent development, treated in the last section.

II. The Technique of Spectrum Analysis.

- (a) Excitation of the spectrum.
- (b) Preliminary treatment of the mineral.
- (c) Optical apparatus.
- (d) Spectroscopic technique.
- (e) Spectrographic technique.
- (a) Excitation of the spectrum.—For spectrum work with minerals, in the visual and ultra-violet parts of the spectrum, four methods of excita-

Fig. 1

tion need to be considered, namely, high-temperature flames, the electric arc, the condensed spark discharge and the vacuum tube discharge. The mineral under examination is treated in one of several ways available

to obtain a pair of electrodes—as is described fully in later sections,—and these electrodes are clamped in a holder of the type shown in Fig. 1.

The high-temperature flames which have been employed are :-

- (i) Oxy-coal gas.
- (ii) Oxy-hydrogen.
- (iii) Oxy-acetylene.

Hartley and Ramage used (ii), and de Gramont (iii), while (i) was used to a much smaller extent by Brun. A suitable refractory must be used to hold the mineral under examination: Hartley and Ramage used kyanite supports, while de Gramont used carbons. The oxygen and hydrogen are stored under compression, and the acetylene is most conveniently handled

in cylinders of dissolved acetylene under pressure. Coal gas is taken from the laboratory supply. The flame is directed upon the mineral by means of oxy-hydrogen or oxy-acetylene blow-pipes of the usual laboratory type.

The arc is obtained by connecting the terminals of the holder (Fig. 1) to a D.C. supply of 150 to 220 volts, with carbon filament lamps arranged in parallel to give a current of 3 to 6 amps. The arc is struck by allowing the electrodes to touch and then separating them by a few millimetres, or by touching both electrodes with a graphite rod, insulated at one end by having a strip of rubber tubing slipped over it. If A.C. only is available, only carbon arcs can be run, but they are suitable for many purposes. The material to be examined should always be placed on the positive pole of the D.C. arc.

The apparatus required for producing a spark discharge consists either of an induction coil, or, preferably, of a small transformer, which should be capable of giving about 15,000 volts on open circuit. A condenser is placed across the spark gap, and for certain classes of work a small self-induction coil is useful. Fig. 2 shows the arrangement of the circuit,

E representing the applied high potential from the transformer. If an A.C. supply is not available for the transformer, a small rotary converter must be added to the outfit. Fig. 3 shows the apparatus set up for producing a spark discharge, together with the condensing lens and the slit end of the spectrograph in position for taking a photograph.

A few workers have used compound methods of excitation. Thus de Gramont frequently used a condensed spark on a melt heated with a Meker burner, while Ramage has used an arc on which an oxy-hydrogen flame was directed.

Fig. 3

The fourth method, the vacuum tube discharge, is not suited to the analysis of minerals, as the spectrum given rarely shows any lines due to the electrodes, but only those due to the rarified gas in the tube. Such a method was used, however, in the recognition of helium in the gas evolved when certain minerals related to uraninite were heated, but it seems to have had no other application in mineralogy.

The mode of excitation to be adopted depends on the nature of the mineral and the particular purpose of the analysis.

For the alkalies, alkaline earths and thallium, the high-temperature flames are most successful, and also suffice for a limited number of the heavy metals. The spectra of the rare-earth elements comprehend a very large number of lines varying not greatly in intensity, and exhibit few lines which are both characteristic and intense. These circumstances make their spectra difficult to interpret.

For general qualitative work, the identification of mineral grains, and the search for rare elements, the arc is the most generally useful.

Where approximate quantitative results are required, the condensed spark is especially valuable, as the intensity of the light given off is kept more constant than with the other sources. The condensed spark also reveals lines of a number of metalloids which do not appear so well with the other means of excitation, namely tellurium, phosphorus, arsenic, antimony, carbon, silicon and boron.

(b) Preliminary treatment of the mineral.—The spectrum of a mineral can be excited without any previous treatment under the following circumstances:—

When high-temperature flames are used.

When the arc is used.

When the condensed spark is used, if the mineral is a conductor.

Generally, then, there is no treatment necessary except with non-conducting (i.e., most non-metallic) minerals which it is desired to examine with the spark, and several methods have been devised to meet this case.

De Gramont fused the non-conducting mineral in a small platinum cup with sodium or lithium carbonate, by heating with a Meker Burner, thus obtaining a conducting melt.

Others, notably Hartley and his co-workers, brought the minerals into solution, and submitted the liquid to the spark discharge in tubes of various kinds, the design of which has recently been modified by Dr. Hitchen and the author. Löwe has excited the spectra of solutions by introducing them into the crater of a carbon arc with a pipette, and striking an arc between this impregnated carbon and an upper one.

Other modifications of procedure with the arc have been devised for dealing with small grains of friable minerals. Thus Crookes compressed the powdered material with very pure silver powder, obtaining a solid electrode. Giusca embedded his minerals in molten lead or zinc. In most of such cases, however, the mineral can be successfully treated in the carbon arc.

The most satisfactory way of using spectrographic methods in mineral analysis is to run them in conjunction with complete chemical analyses, as has recently been done by a group of Italian workers, including Porlezza and Donati and Carrobbi, and by a number of Japanese mineralogists who have contributed a series of eight papers with the general title "The Chemical Investigation of Japanese Minerals Containing Rarer Elements." Each of these two schools has analysed spectrographically (in the arc) the original mineral and each precipitate arising in the course of the analysis. This is particularly necessary with the rare-earth metals which are difficult to separate.

(c) Optical apparatus.—Experience has shown that for analytical purposes prism instruments are preferable to grating instruments. In mineral analysis, both spectroscopes and spectrographs may be necessary. A useful visual instrument for use with minerals is shown in Fig. 4. It is of the "Direct Reading Wavelength Spectrometer" type.

The location of any line can be found readily by means of the graduated drum C.

Many of the sensitive lines of the elements, e.g., those which are present in the spectrum when the percentage of the element is very low, occur in

the ultra-violet region of the spectrum, and consequently it is often necessary to photograph the spectrum. For a similar reason, it is usually essential to have the optical train of the spectrograph entirely of quartz, as this is more transparent to the ultra-violet rays than is glass. The dispersion necessary depends on the type of mineral which is being examined. For general work, a spectrum from 2000 A to 10,000 A on a single 10×4 inch plate is all that is required,—such an instrument being the medium quartz spectrograph shown in Fig. 5. For minerals having very complex spectra, however, an instrument with a wider dispersion is required—such as the larger one shown in Fig. 6, which covers approximately the same range of wavelengths on four plates of the same size. The larger instrument is necessary for minerals whose dominant constituent is one of the following metals:—

Chromium Titanium
Cobalt Tungsten
Iron Uranium
Molybdenum Zirconium
Nickel

It is also preferable, but not essential for the analysis of minerals whose major constituent is one of the following:—

Manganese Vanadium
Thorium

In each case it is necessary to have a condensing lens to focus the light from the arc or spark on to the slit of the instrument. A sphero-cylindrical lens is customary, since it gives a line-image of the source, and tends to "average" any variations in the nature of the emission from different parts of the light source.

Special pieces of apparatus required for special purposes are described in later sections.

(d) Spectroscopic technique.—When using the spectroscope, the light source is set up at the distance specified in the maker's instructions, and aligned by observation through the eyepiece with a wide slit. The condensing lens is then introduced and aligned so that the image of the source of light falls on the plane of the slit, which is then narrowed to about 0.02 mm., a convenient width for working.

Wavelengths of the lines are determined approximately by bringing them on to the eye-piece pointer, and reading off the wavelength in I.A. from the graduated drum C, Fig. 4.

(e) Spectrographic technique.—With a spectrograph, the manipulation for alignment is as described above, the dark slide being removed during the process, and the visual region of the final spectrum examined with a small eyepiece. When this has been done, a photographic plate is put in

the dark slide, which is placed in position on the spectrograph. The shutter of the dark slide is drawn up, and the exposure made by uncovering the slit for the time of exposure (usually 30 secs. to 3 mins.) and covering it again. For the control of the exposure a small metal shutter is sometimes provided.

The choice of plates presents little difficulty: panchromatic plates are required to photograph the visual end of the spectrum, and Schumann Plates are of occasional use for the ultra-violet below 2100 A, while for some of the quantitative methods dealt with in a later section, process plates are required, but generally speaking any of the commercial plates are suitable, though they must usually be ordered "on thin glass." ¹ Development is carried out as in ordinary photography.²

III. The Qualitative Analysis of Minerals.

Under this heading there are two broad types of problem which can be solved by spectrum analysis.

- (a) Testing a mineral for the presence or absence of a particular specified metal.
- (b) Examining a mineral to determine all the metals present.

The usual procedure in each of these two cases will be considered.

(a) To ascertain whether a mineral contains a specified metal.—If a visual instrument is employed, a pair of electrodes of the metal to be sought are set up in an arc lamp, or a fragment of that metal or one of its compounds is put on one of the electrodes of a carbon arc. The arc or spark is then applied and one of the "lasting lines" located approximately by means of the graduated drum C: this is then brought directly on to the eyepiece pointer.

The drum is left in this position, and the mineral under examination placed in the crater of the lower of a fresh pair of carbons. The eye is kept at the eyepiece while the arc is struck, and it is observed whether any line appears opposite the pointer. If it does, the metal in question is present; if not, it is absent. The conclusion is confirmed by similar observations with one or more of the other "lasting lines." The electrodes should, of course, be of the highest purity.

¹ The reason being that for securing critical definition in the modern quartz spectrograph the plate is slightly curved in its holder (see, for instance, the Publishers' list of spectrographs).

² Fuller details of the technique of spectrum analysis will be found in "The Practice of Spectrum Analysis" (1s. 7d. post free) and "Foundations and Methods of Chemical Analysis by the Emission Spectrum" (the authorised translation of Gerlach and Schweitzer's "Die Chemische Emissionspektralanalyse") both 12s. 9d. published by Adam Hilger, Ltd.

³ These are ascertained by reference to "Visual Lines for Spectrum Analysis," D. M. Smith. Published by Adam Hilger Ltd., London.

The procedure with a photographic instrument is somewhat different. In front of the spectrograph slit is a sliding plate with three square apertures arranged en echelon. This is called a "Hartmann" diaphragm. With the bottom hole in position over the slit take a spectrogram of the carbon or other electrodes alone, or of any metal (in the purest form obtainable), which is known to be in the mineral in considerable quantity. Without moving the dark slide or shutter of the camera, and with the middle hole in position, take a spectrogram of the mineral under test. Again, with the top aperture in position, and without moving dark

slide or shutter, take a spectrogram of the metal whose presence or absence is to be determined.

It should be remembered that the top aperture of the Hartmann diaphragm corresponds with bottom spectrum.

If examinations for the presence of other metals require to be made on the same fragment, or if other metals are to be tested, the same plate can be used by racking the dark slide into a different position. Each set of spectra will be similar to Fig. 7 after development. This figure shows the determination of the presence of cadmium in spelter, though the spectra would be very similar for the determination of cadmium in sphalerite. The sensitive cadmium lines, 3261·1, 3403·6, 3466·2 and 3610·5 are seen to be present in the spectrum of the spelter, thus demonstrating the presence of cadmium in that metal. The two lines 3247·5 and 3274·0 which appear in all these spectra are the raies ultimes of copper, showing that even the supposedly pure zinc is not free from a small

quantity of this impurity. Lead is present in both the cadmium and the spelter, but not in the pure zinc, as shown by the lines 3683.5 and 3639.6. A small quantity of silver is present in all three samples: the line 3382.9 appears faintly in the three spectra, but the line 3280.7 which is present in the spectrum of the cadmium is masked by the strong zinc line 3282.3 in the two zinc spectra.

Among the examples of such a search for a given element may be quoted the work of Scutt (1926), and the more extensive investigations of Papish (1928-9) into the distribution of germanium in the mineral kingdom. Lacroix and de Gramont investigated the distribution of aluminium (1913) and boron (1919-21) in minerals. The former workers used the arc: the latter used the method of "fused salts" described by de Gramont (1895). Other examples are quoted in Section X.

Special methods have been used by investigators for particular purposes. Thus Lockyer (1895) and Deslandres (1895) passed the minute amount of gas evolved on heating various minerals of the uraninite group into a vacuum tube, and demonstrated the presence of helium. Misciatelli (1929) used the absorption spectrum of the rare-earth fraction from a specimen of pyromorphite to demonstrate the presence of neodymium.

(b) Examining a mineral to determine all the metals present.—This is difficult to carry out with a visual instrument, but it can be accomplished by extension of the method for individual metals. By this means the mineral is tested successively for all the possible metals.

With a photographic instrument, four methods of procedure are available:—

- (i) Determination of the wavelengths of all the lines present.
- (ii) Comparison with a set of standard spectra.
- (iii) Use of the R.U. Powder.
- (iv) By inspection.

Of these methods, (i) is the most general method, and can always be used. (ii) requires a considerable amount of preliminary work, but saves time if a large number of specimens of the same mineral are to be dealt with. (iii) is the most rapid, and is applicable to the recognition of all the metals excepting the rare-earth group and some other very rare metals. Method (iv) requires considerable experience of spectrum analysis, but when this has been acquired it assists the speedy recognition of the dominant elements of the mineral, and consequently leads to rapid identification of species.

METHOD I.—A set of photographs is taken as described above, the top spectrum (obtained through the bottom aperture of the Hartmann diaphragm) being iron for the large spectrograph and copper for the medium one.

14

The wavelengths of each unknown line must then be measured in the following way:—1

Choose two neighbouring iron lines, A of smaller wavelength and B of greater wavelength, lying on either side of the unknown line C, and the nearer the better. Such lines are shown in Fig. 8. Ascertain the wavelengths of the iron lines A and B by reference to the enlargement of the iron spectrum.

Now measure on a micrometer the distances AB and AC. Suppose these distances are 5.301 and 3.090 mm. respectively, then the wavelength of the unknown line

$$=5260 \cdot 33 + (5362 \cdot 45 - 5260 \cdot 33) \cdot \frac{3 \cdot 090}{5 \cdot 301} = 5319 \cdot 86.$$

The wavelength found for C will, of course, be on the same scale (e.g., Rowland or International) as that in which the wavelengths for A and B are given. All modern measurements are in the international scale.

Having found the wavelengths of a number of unknown lines in this way, reference to "Wavelength Tables for Spectrum Analysis" will enable the corresponding metals to be identified.

Having determined one or more of the constituents, a second photograph can be taken in which the bottom spectrum is that of the constituents thus found, and further search made for lines which are still present in the sample and not in the comparison spectrum.

METHOD 2.—A general method of determination is to prepare a series

The method of linear interpolation here described is only applicable over very narrow ranges. Thus the distance of the reference lines from the unknown line must not exceed the following if the full accuracy of a large quartz spectrograph is to be attained:—

1.000	 Ma	x. pe	rmissible d	istan
At		of re	eference lir	ies.
6000 A			20 A	
3000 A		4 14 1	10 A	
2100 A			3 A	

Should there be no reference lines sufficiently close, the Hartmann interpolation formula should be used as described in "The Practice of Spectrum Analysis." Published by Adam Hilger Ltd., London, Eng.

² Twyman and Smith, 2nd edition 1931. Published by Adam Hilger Ltd., London, 7s. 6d. net. 7s. 9d. post free.

of standard slides on which an electrode of constant kind is used, arranging the spectrograms and using them as follows:—

Spectrogram of the electrodes alone, e.g. iron.

Composite Spectrogram of the electrodes and the selected metal.

First, one must decide with what kind of electrodes one will work: carbon, iron, copper or silver; and then prepare a spectrogram as figured for each metal selected for inclusion in the series, *i.e.*, all those likely to be found in the minerals to be examined.

Using the micrometer, one selects any unknown line in the spectrum under study, and by the wavelength scale ascertains its wavelength approximately. It is found, for example, that it is in the neighbourhood of 3965 and that another unknown line of similar strength occurs near 3930. Reference to the tables will suggest the calcium lines 3968 48 and 3933 67 as the most probable. By the micrometer it is found that the first unknown line is say 1.057 mm. from the 3977.746 iron line, if iron electrodes are used, and that the second line is 3.734 mm. from the same iron line. On comparing this with the calcium standard, identical measurements will be observed, whence the lines and the element are identified. In the event of the speculation as to the element concerned being wrong, the effort has not been wasted, for from the differences in the micrometer readings one will get at once a close indication of the true wavelengths.

METHOD 3.—It will be seen that the method of comparison spectra, described for the determination of the presence or absence of a particular metal, obviates entirely the measurement of wavelengths. This could be extended to cover several components of a mineral, but it is obvious that it would be inconvenient to analyse thus a complex mineral, because a large number of spectra would have to be photographed.

Now it is not necessary to have for comparison the complete spectrum of an element in order to identify it in the sample. All that is essential is that the comparison should show the most important sensitive lines of the element, since if these are absent in the spectrum of the sample, the corresponding element must also be absent. The ideal comparison spectrum would thus be one in which the sensitive lines of each element appear, provided the number due to each element is sufficiently few to prevent confusion, and large enough to allow confirmations to be made. Such a comparison spectrum can now be obtained readily by the use of R.U. powder.

This powder consists of small quantities of 50 elements incorporated in a base material composed of zinc, magnesium and calcium oxides. The quantity of each element present has been adjusted so that only the raies ultimes and the most important sensitive lines appear when the spectrum is excited by placing some of the powder in the ordinary electric arc. On the average, about seven lines per element appear, which are recognized by reference to enlargements of the spectrum of the R.U. powder, while an approximate idea of the quantity present can be obtained from a set of tables issued with the R.U. powder.

METHOD 4.—A fourth means of identifying the metals present in the spectrum of a mineral is by mere inspection. It is found with a little experience that there are groups of lines highly characteristic of certain metals; these become familiar and are recognized at a glance.

These methods have been used by a number of workers, notably by de Gramont, who not only made use of them for complete qualitative analyses of minerals whose identity was known, but also for identifying minerals. Hartley and Ramage also investigated the composition of a number of minerals and rocks with great thoroughness.

Todd (1924) describes the identification of minerals by means of a spectrographic analysis.

IV. Quantitative Analysis of Minerals.

The methods previously described are essentially qualitative, in that there is no definite measure of the quantity of each metal present. The method of search for a particular element described on p. 15 can, however, be made approximately quantitative by standardisation with minerals of known composition. The procedure is identical with that of Hartley (1884), and Pollok and Leonard, who continued his work. The method is, briefly, to take spectrograms of analysed specimens of minerals, under standardised conditions, and preserve them for reference. When another specimen is required to be analysed, its spectrum is photographed under the same standardised conditions, and the intensities of the lines of the metals to be estimated compared with corresponding lines in the spectra of the minerals whose composition is known.

This method has recently been used with great success by Schneiderhöhn. His procedure for obtaining a perfectly pure sample of mineral for analysis was to drill out shavings from highly polished sections with a very fine dental drill, the operation being observed under the microscope, to avoid drilling into the neighbouring minerals. The shavings were united with a little Plastolin, and transferred to a carbon arc. As a result of his observations, Schneiderhöhn was able to formulate a theory as to the origin of the platinum deposits of the Bushveldt Complex.

De Gramont has done similar work, in particular with the estimation of silver in lead minerals. Thus he was able to show that a specimen of zorgite 1 contained between 0.2% and 0.5% of silver.

Other work on this subject is that of Hartley (1884), who estimated copper in pyrite, and calcium and magnesium in calcite: Jollibois and Bossnet (1925) determined the gold content of minerals by means of a spectrographic assay of the lead button arising in the course of the usual fire assay. Fesefeldt (1929) described the method of determining beryllium in aluminium minerals.

A summary of the work of Hartley, Pollok, Leonard, and de Gramont will be found in "Wavelength Tables for Spectrum Analysis." ²

V. Analysis of Mineral Concentrates.

This important commercial application of spectrum analysis has as yet received little attention, although the methods have been more widely employed for metals and other metallurgical products. Some work has recently been done on the subject by Dr. C. S. Hitchen and the writer.³

There is a little earlier work on the subject: Hartley, for instance, was able to carry out copper assays with considerable accuracy, but found the method more cumbersome than the chemical routine for that particular metal. Qualitative work has been carried out more frequently, e.g., analyses of ironstones by Hartley and Ramage, and an examination of bauxites for vanadium and titanium by de Gramont, though such tests are not of any very great importance from the commercial standpoint.

Some quantitative analysis of mineral concentrates has been carried out by Dr. C. S. Hitchen⁴ and the writer, using the logarithmic wedge sector described by Twyman and Simeon.⁵ The method has been more completely developed for steels by Twyman and Fitch,⁶ while further work by Hitchen on mineral concentrates will shortly be published.

¹ Since shown to be a mixture of clausthalite, and umangite, with smaller amounts of tiemannite. G. Frebold, Centr. Min. Geol. u. Pal., Abt. A., 1927, p. 16.

² Published by Adam Hilger Ltd.

³ A. A. Fitch, "Spectrum Analysis in Assaying," Mining Magazine, Vol. 43, p. 81, 1930.

⁴ C. S. Hitchen, "The Analysis of Wolfram and Scheelite," Mining Magazine, Vol. 43, p. 208, 1930.

⁵ F. Twyman and F. Simeon, "The Logarithmic Wedge Sector and its Use in Quantitative Spectrum Analysis," Transactions of the Optical Society, Vol. 31, p. 169, 1930.

⁶ F. Twyman and A. A. Fitch, "The Quantitative Analysis of Steels by Spectrum Analysis," Journal of the Iron and Steel Institute, p. 1, 1930.

VI. Analysis of Rocks.

The several methods which have been described in previous sections can all be applied to the analysis of rocks. There arises, however, a difficulty which is far more pronounced when dealing with rocks than when analysing minerals, namely, sampling. In most of the methods which have been detailed, a few milligrams at the most are volatilised. Many rocks require that the sample collected in the field shall be of several pounds weight to be truly representative: to reduce this to the minute weight required for spectrographic analysis would necessitate a long process of pulverisation and sampling. Failing this, the only method of quantitative analysis which is likely to be applied to rocks is the method of analysing solutions. No quantitative rock analyses have yet been made by this means, to the knowledge of the writer.

Precise sampling is not so necessary in qualitative work, and several rocks have been analysed spectrographically. Thus, Hartley and Ramage investigated the minor constituents of a number of ironstones and other rocks: de Gramont examined a number of laterites for vanadium and titanium. This search for a particular element is the type of rock analysis which has most often been attempted by spectrographic means.

The most complete rock analysis accomplished using spectrum analysis is one by Porlezza and Donati of a tuff from Fiuggi. The several fractions arising in the course of a very complete chemical analysis were subjected to the arc, and their spectra photographed.

VII. Analysis of Meteorites.

Analyses of the aerolites (stony meteorites) can be carried out with the same technique as that used for rock analyses, but all the work hitherto has been qualitative. The best set of analyses is that of Crookes, who developed a special technique. The meterorite was ground to powder, mixed with pure silver powder and pressed into hard electrodes. Arc spectra of these electrodes were photographed, and the composition determined from the spectrograms.

Other analyses, though not with the same method, have been made by Pereira-Forjaz and Risco.

A special type of analysis was carried out by Goldschmidt, using an X-ray method which is peculiarly suited to the determination of the rarer elements in complex bodies, owing to the small number of lines contributed by each element.

VIII. Analysis of Mineral Waters.

The spectrum analysis method of analysing mineral waters was exploited by Bunsen and Kirchoff in their early work which resulted in the

discovery of rubidium and caesium, but since their time little work has been done on the subject.

Judd Lewis (1920) has made spectrographic analyses of mineral waters in conjunction with chemical work on them.

Pereira-Forjaz (1928-9) examined a number of Portuguese mineral waters, paying particular attention to their radio-active content. He took spark spectra of the concentrated liquor, having first, in some cases, removed the alkaline earth metals.

Friend carried out some specialised investigations on Dead Sea water, to test for the presence of "eka-caesium" and "eka-chlorine." They were found to be absent.

IX. X-ray Spectrum Analysis of Minerals.

The description of the apparatus and methods of X-ray spectrum analysis are not treated of here and reference should be made to the papers listed in the bibliography.

The analysis referred to is not the X-ray analysis of crystal structure as practised by Bragg and others, but the qualitative and quantitative analysis by means of X-ray spectrum analysis, in the development of which, and the application of the method to mineral analysis, Hadding has played a considerable part.

Further investigations by the following writers, using X-rays, are included in the bibliography:—

Siegbahn, Lindh and Stensson.

Wild and Klemm.

Zvjaginstsev, Korsunski and Seljakow.

Bedr-chan.

Thomassen.

Eddy, Laby and Turner.

X. Mineral determination by means of absorption spectra.

All the methods of spectrum analysis hitherto described have been based upon various types of emission spectra. There remain to be considered those methods involving the use of absorption spectra.

Absorption spectra can be used with the ordinary type of spectroscope or spectrograph. The procedure is to pass a beam of white light through a plate of the mineral and so on to the slit. The position of the absorption bands can then be determined by visual or photographic means, and the presence of particular elements deduced therefrom, with the help of tables of the type given by Wherry. Such absorption work has been carried out by Becquerel and others using large spectrographs. Misciatelli examined

the absorption spectra of solutions obtained during the course of a mineral analysis, and concluded that particular elements were present: generally speaking, however, it may be concluded that examination of such solutions would best be carried out using emission spectra. Reference to recent work on this subject by Weigel and Habich and Weigel and Ufer will be found in the bibliography.

The type of spectrum analysis most familiar to the mineralogist is probably that carried out with the spectroscopic eyepiece, or microspectroscope. This is merely a low-dispersion, direct-vision spectroscope which is inserted in the microscope in the place of the eyepiece, and only resolves the more prominent of the bands. The method is quite widely used for the recognition of cerium in monazite and related minerals, but with the help of the tables given by Wherry, the method could be applied much more frequently.

XI. Examples of minerals which have been spectroscopically analysed. (The numbers refer to the bibliography.)

I. NATIVE ELEMENTS.

Mineral		Location	Elements	Reference
Native copper	-	Butte, Montana	Ge	53
,,		Mednorudyansk, Ural,	Ge	53
		nr. Nizhne Tagilsk		
,,	_	Merrit, British	Ge	53
		Columbia		
,,	-	Bisbee, Arizona	Ge	53
, ,,	-	Globe Arizona	Ge	53
,,,	-	Somerville, New Jersey	Ge	53
,,	-	Lake Linden, Michigan	Ge	53
Native Platinum	-	Columbia	Pt Fe Pd Rh Ir Os	27 & 28
			Ru	
9)	_	Gorablogodatski	Absence of dwi-	78
		region, Ural	manganese	
TI Commence of	, 202	. Theresand A	DOESTED AND AND AND AND AND AND AND AND AND AN	·

II. Sulphides, Selenides, Tellurdies, Arsenides, Antimonides.

Galena	_	-	-		S Ag Pb Cu Sn Fe	16
					Ca Mg Sb Bi	
3)	_	-	ě.	Egham, Derbyshire	K Na Cu Ag Fe Pb	31
					Ca	
,,	-	-	-	Derbyshire	K Na Cu Ag Fe Pb	31
					Ca	
,,	-	- :	_	Johanngeorgenstadt,	K Na Cu Ag Fe Pb	31
				Saxony	Mn	

Miner	al		Location	Elements Re	ference
Galena -	~	-	Frieberg, Saxony	K Na Cu Ag Fe Pb Mn	31
<u> </u>	-	-	Ratiborcitz, Saxony	K Na Cu Ag Fe Pb Mn	31
,, -	-	-	Schemnitz Selmecz-	K Na Cu Ag Fe Pb	31
			bamya, Bohemia	Mn	0.1
,,	-	_	Gersdorf	K Na Cu Ag Fe Pb	31
,, -		-	Nertschinsk, Siberia	K Na Cu Ag Fe Pb Ca	31
A	, -	-	day-removed.	Pb	4
Argyrite	-	-	-	S Ag Cu Sn Fe Ca Mg Pb Zn	16
Zorgite -	-	-		0·2%-0·5% Ag	17
Sphalerite		-	Cornwall	Cd In Ga Th	65
,,		-	Cumberland	Cd In Ga Th	65
, ,,	•••	-	Derbyshire	Cd In Ga Th	65
,,	-	-	Devil's Bridge, Aberystwith	Ge	65
,,	-		Picos de Europa, Santander	Zn S Al Ag Ca	15
33	_	-	Pierrefitte, Hautes	Na K Ag Cu Zn Fe	31
4			Pyrenees Lüderich Mine, Adit	Ga Pb Ca Cd	91
"	_	-	Franzisca, Bensburg,	Na K Ag Cu Zn Fe Ga Pb Ca Cd	31
,,,	-	-	nr. Cologne Santander, Spain	Na K Ag Cu Zn Fe Ga Pb Ca Cd In	31
. ,,	-	-	Alston Moor, Cumberland	Na K Ag Cu Zn Fe	31
				Ga Pb Ca Cd In Th	0.1
"	_	_	Silver Mines, Co.	Na K Ag Cu Zn Fe	31
	-	-	Tipperary, Ireland Zellerfeld, Saxony	Ga Pb In Ni Cr Na K Ag Cu Zn Fe	31
				Ga Pb Ca Cd	
"	-	-	Schemnitz, Hungary	Na K Ag Cu Zn Fe Ga Pb	31
,22	-	-	Matlock, Derbyshire	Na K Ag Cu Zn Fe Ga Pb Ca Cd Th	31
	-	-		Na K Ag Cu Zn Fe	31
, , ,	-	-	Co. Tipperary Ireland	Ga Pb Cd In Na K Ag Cu Zn Fe Ga Pb In Th	31
,,	60-0	-	La Cabada Mine, Rio Tinto, Spain	Na K Ag Cu Zn Fe Ga Ca Ni	31

Mineral	Location	Elements Rej	^f erence
	Laxay, Isle of Man	Na K Ag Cu Zn Fe	31
primarino		Ga Pb In	
_ =	Freiberg, Saxony	Na K Ag Cu Zn Fe	31
,,	2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Pb In	
_	Ravenswood, Queens-	Na K Ag Cu Zn Fe	31
"	land, Australia	Pb Ca In	
Pentlandite	Zwartfontein	Fe Co Ni Cu Pa Ir	64
		Sb Ag Au	
Greenockite	<u> </u>	V Fe Co Ni Ru Rh	75
		Pa Os Ir Pt Cu Cd	
Niccolite	<u> </u>	K Na Cu Ca Fe Ni	31
	. 1	Mn Pb Ag Co Ba Sr	
Pyrrhotite	Norway	K Na Cu Ca Fe Ni	31
		Mn Pb	
	Rom., Smalleneul,	Na K Ag Cu Ca Fe	31
STA .	Norway	Ni Mn	
	Anroen, Bamle, Norway	Na K Ag Cu Ca Fe	31
31, 30-jik (-		V Fe Co Ni Ru Rh	64
		Pd Os Ir Pt	
<mark>lia,,</mark> debois		V Fe Co Ni-Ru Rh	64
		Pd Os Ir Pt Cu Au	
Cubanite	Zwartfontein	V Fe Cu	64
Chalcopyrite		Na K Ag Cu Ca Fe	31
1 3		In Th Ni Pb	
	<u> </u>	Fe Co Ni	64
	Zermatt	K Li	4
	Serpentines du Geiss-	K Li	4
a to the second	pfad, Binnenthal		
Pyrites	Wheal Lane, Cornwall	Na K Ag Cu Ca Fe	31
		In Th Mn Pb	
:	- Esna, Norway	Na K Ag Cu Ca Fe	31
		Ga In Mn Pb	
	- Staffordshire	Na K Ag Cu Ca Fe	31
		Th Mn Ni Pb	
· · · · · · · · · · · · · · · · · · ·	- Roschau	Na K Ag Cu Ca Fe	31
		Mn Pb	
.,, i	- Freiberg, Saxony	Na K Ag Cu Ca Fe	31
		In Pb	0.7
.,,, -, -, -, -, -, -, -, -, -, -, -, -,	- Schemnitz, Selmecz-	Na K Ag Cu Ca Fe	31
	bamya, Hungary	Mn Pb	0.7
	- Isle of Elba	Na K Ag Cu Ca Fe	31
		Mn Pb	

Mineral	Location	Elements Re	ference
Pyrites	Goslar, Hartz	Na K Ag Cu Ca Fe	31
		Th Mn Pb	•
	Joachimsthal, Bohemia	Na K Ag Cu Ca Fe	31
		Pb	
,,	gastioner .	K Li	4
Marcasite	Dover	Na K Ag Cu Ca Fe	31
	e de la companya de	Th Ni Mn	91
Smaltite	•	K Na Cu Ca Fe Mn	31
Communita	Tweefontein,	Ni Pb Ag Co Rh Pd Ir Pt Ag Au	64
Sperrylite	Potgietersrust	Kii i d ii i t iig iid	OI.
Cooperite	Klipfontein-Kroondal	Rh Pd Ir Pt Ag Au	64
Cooperite	Mine, Rustenberg		
Stibiopalladinite -	Tweefontein,	Rh Pd Ir Pt Sb Ag	64
Stibiopaliadiii	Potgietersrust	Au	
III. Sulphosalts.		A + See	
		A a A a T1	11 .
Sartorite		As Ag Tl Tl	4
Hutchinsonite -	. —	Tl	4
•		TI	11
Baumhauerite -		Pb As	11
Dufrenoysite	-	Pb Tl	4
Pyrargyrite	Colquechaca, Dept.	Ge	53
· Joseph Gy	Potosi, Bolivia		
	,,	Ge absent	53
Binnite		Tl .	4
Jordanite		Pb Tl	4
Stannite	Itos Mine, Oruro,	Ge	53
	Bolivia		* 0
,,,,	Santo Cristo Mine,	Ge	53
	Oruro, Bolivia	C -	53
	Zeekan, Tasmania	Ge	53
	Cornwall, England	Ge	. 00
IV. HALOIDS.			
Rock Salt 6		Na K Fe	32
Sylvite	Stassfurt	Na K Fe	32
Fluorite	Amelia, Virginia	Y Sm Er Ce Pr Nd Sm Gd Er	75. 27
Fluocerite	Osterby	Dy-Cu Y	21
		Nd Pr	75
Cryolite (19
Cryonice (2.7.7.2)			

Mineral			Location	Elements Re	ference
Cryolite	_		Arsuk, Greenland	Na Al Li Si Mg Ca	15
Tachhydrite			Stassfurt		32
V. Oxides o	F SI	LIC	ON.		
Vein quartz		-	Silver Leaf Mine, Manitoba	Ge absent	54
,,	_	_	Rutherford, Maine	Ge absent	54
,,		_	Keystone, South Dakota	Ge absent	54
Quartz -	_	_		Na K Cu Ca Fe Mn	35
~				Pb	
-	_	_		Li	4
Amethyst	<u></u>	_	Mont Blanc	Li	4
,,	_	_		Cr Fe Ti	75
"	_	→		Fe Co Ti	75
"	_			Fe Co	75
Rose quartz	_	_		Mn	38
_	_	_		Mn	75
Smoky quar	tz	_	Uri, Switzerland	Ge absent	54
Chalcedony		_		Ge absent	54
Opal -	_	-		Ge absent	54
,,		_		Ge absent	54
VI. ANHYDE	ROUS	Ox	ides of the Metals.		
Cuprite -	-		·	Cu	75
Manganosite	-	_	<u>—</u> :	V Mn	75
Corundum	<u> </u>	_	· ·	B absent	46
,,	-	-	·	B absent	45
,,		_		Na K Ag Ga Fe	35
,,	_	_		Na K Cu Ag Ca Ga	35
				Fe Cr	
,,	-			Cr	75
	_	_		Fe	75
Sapphire	_	_	Anakia	Fe Ti	77
		_	Ceylon	B Al Fe Ge	77
,,	_	_		Ti	75
Ruby -				Na K Cu Ag Ca Ga	35
i i		•		Fe Mn Cr	
Haematite	_	_	Cleator Moor, Cumber-	K Na Cu Ag Fe	31
			land		
	_	_	Antwerp, New York,	K Na Cu Ag Fe	31
"			U.S.A.		
	-	-	Elba	K Na Cu Ag Fe	31

Minera	ıl		Location	Elements Re	ferenc e
Haematite	_	_	Canada	K Na Cu Ag Fe	31
	_		Osnaberg, Germany	Na K Mn Ca Pb In	31
,,	_	-,	Haycock Mine, Ontario	Na K Mn Ca Pb	31
	- ·	_	Esvenstock, Saxony	Na K Mn	31
,,	_		Altenberg, Saxony	Na K Mn Ca In	31
. ,,		_	Schwarzenberg,	Na K Mn Ca Ga Th	31
• • • • • • • • • • • • • • • • • • • •			Erzgebirge	In Rb	
		_	Schwarzenberg,	Na K Mn Ca Ga Ni	31
,,	•		Erzgebirge		
	_		Schneeberg, Saxony	Na K Mn	31
,,	_	_	Elba	Na K Mn Ca	31
,,		_	Norberg, Sweden	Na K Mn Ca	31
,,	_		Styria Styria	Na K Mn Ca Pb	31
, ,	_	`	nr. Llantrissant, Wales	Na K Mn Ca Pb Rb	31
,,			III. Dialitiissairt, Watos	Na K Mn Ca Pb	31
,, .	_	_	Darlkarlsberg, Sweden	Na K Mn Ca Pb Ga	31
,,,		_	Mossaberg, Sweden	Na K Mn Ca Pb Rb	31
"	_		Uri	Fe Li	4
, ,,	_	_	Binnenthal	Fe Li	4
Spinol	-		Difficitual	Na K Cu Ag Mg Ga	35
Spinel -	_	_		Fe Cr	00
_			· ,	Mn	75
,, –		_		Fe.	75
				Co Ti	75
,,				Cr Fe Co Ti	75
Magnetite	_		Moriah Mine, Essex	Na K Ag Cu Ca Ga	31
Magnetite		-	Co., N.Y.	Mn Fe Rb	01
			Ozarka Mountains,	Na K Ag Cu Ca Ga	31
"	-	-	Arkansas	Mn Fe Pb	01
				Na K Ag Cu Ca Ga	31
,,	-	_	Opdal Skage, Namsa,	Mn Fe Pb Ni	91
			Norway	Na K Ag Cu Ca Ga	31
,,	-	-	Darlkarlsberg, Sweden	Mn Fe Pb Rb	OI
			Diambana Carrodon	Na K Ag Cu Ca Ga	31
,,	-	-	Bispberg, Sweden	Mn Fe Pb Rb	91
			T) Company		31
,,			Dannemora, Sweden	Na K Ag Cu Ca Ga	OI
			7	Mn Fe Pb Rb In	4
,	-	-	Zermatt	Fe Li	4
	-	-	Serpentines du	Fe Cr	4
			Geisspfad, Binnenthal	Τ.	4
. ,,	-	-	Rympfischwänge,	Li	4
			Zermatt		

Miner	al		Location	Elements	Reference
Magnetite	-	, -	Geisspfad	Li	4
,,	-		Dalerma	Fe Cu Zn	27 & 28
Franklinite			New Jersey	Mn Fe Cu Zn	27 & 28
acobsite			-	Fe & Cr absent	4
Chromite	- 4	-	Serpentines du Geisspfad	Fe Cr	4
,,	_	_		V Fe Co Ni	4
,,		-	Baltimore	Cr Fe Ni Cu	27 & 2 8
				W Zn	
Cassiterite		-		Na In Fe Sn Pb	31
. ,,		-	Camborne, Cornwall	Na In Fe Sn Cu (Ca 31
			·	Mn	
,,		_	Ehrenfriesdorf,	Na In Fe Sn	31
and the second			Saxony	•	
,,,	_	_	St. Agnes, Cornwall	Na In Fe Sn Ag C	Cu 31
4.				Ca Mn Rb	
Rutile -		_	-	Na K Cu Ca Fe M	In 35
				Pb	
Pyrolusite	_	- '	Giessen, Saxony	Na K Cu Ca Fe M	[n 31
	•	-		Rb Ni Ag	
. ,,	-	-	Ilmenau, Thuringia	Na K Cu Ca Fe M	In 31
				Rb Th Ag	
	-	-) Delanimento	Na K Cu Ca Fe M	in 31
and the second				Rb Ga Th Ag	
2.3	-	-	Franklin Furnace	Na K Cu Ca Fe M	n 31
•				Ni	
		_		4.4	
II. Hydro	us (Oxi	DES OF THE METALS.		ξ,
Diaspore	-	-	, —	B absent	46
,,	-	-		B absent	45
<mark>Man</mark> ganite	-	-		Na K Cu Ca Fe M	n 31
				Ga Ni Ag	
"	-	-	_	Na K Cu Ca Fe M	n 31
				Ga Th Pb Sr Ba A	g
	-	-	Sargans	Fe Mn	4
Limonite		-		Na K Rb Ag Fe M	n 31
			_	Cu Ca Pb Ni Th C	
,,	-	-	Langenstrieges,	Na K Rb Ag Fe M	n 31
			Saxony	Cu Ca Pb Ni	Δ ,
Limonite	-	-	Lercoul, Arriège,	Na K Rb Ag Fe M	n 31
			France	Ca	*.
,,	-		Fleetwood,	Na K Rb Ag Fe M	n 31
			Pennsylvania, U.S.A.	Pb	

	OII		COM THE TOTAL IN M	INERGIE CO I	4/
Miner	al		Location	Elements Re	eference
Bauxite	-	-	_	K Na Cu Ca Ga Fe	31
				Ni Cr Ag	
,,	- '	-, -	Co. Antrim, Ireland	K Na Cu Ca Ga Fe	31
				Ni Mn Cr	
. ,,,	-	-	-	K Na Cu Ca Ga Fe	31
				Mn Cr Ag	
22	- (-	Arles, France	K Na Cu Ca Ga Fe	31
				Ni Cr Ag	
, ,		-	Arles, France	K Na Cu Ca Ga Fe	31
		•		Ni Cr Ag	
,,		-	Arles, France	K Na Cu Ca Ga Fe	31
				Ni Cr Ag	
. , ,	***	-	·	K Na Ca Ga Fe Ni	31
				Mn Cr	
,,	-	-	Arles	K Na Ca Ga Fe Ni	31
				Mn Cr	
,,	-		Arles	K Na Ca Ga Fe Ni	31
				Mn Cr	
22	-	-	North of Ireland	K Na Ca Ga Fe Ni	31
				Mn Cr	
,,	-	-	Arles	K Na Ca Ga Fe Ni	31
			. 4	Mn Cr	
,,,	-	~	Ireland	Cu	32
j)	<u> </u>	-	Var	Fe V	24
Hydrargylli	te		-	B absent	46
, ,,			• • •	B absent	45
Psilomelane	~	-	nr. Dolgelly, N. Wales	Na K Cu Ca Fe Mn	31
				Ga Ni Ag	
,,	-	-	Lorca, Spain	Na K Cu Ca Fe Mn	31
			· · · · · · · · · · · · · · · · · · ·	Rb Ga Sr Ba Ag	
,,	-	-	Siegen, Westphalia	Na K Cu Ca Fe Mn	31
				Rb Ni Sr Ag	
WIII C					
VIII. CARB	ONAT	ES.			
Calcite -	-	-	Pont de Bonieux, Near	Mg Sr	15
			Saint Jean de Maurienne		
		\	Saleve	Sr	. 4
<i>i</i> , –	-		Meillerie	Sr	4
		-		1% Mg 37% Ca	29
,, -	-	-	Joplin, Missouri	Nd	75
Dolomite	-	- ::	e e e	Ca Mg	3
,,	-	-		Sr	4

Siderite - East Pool, Cornwall Na K Ag Cu Ca In Mn Rb Pb
Cornwall Mn Co Ni Bi Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Na K Ag Cu Ca Na K Ag Cu Ca In 31 Mn Na K Ag Cu Ca In Na K Ag Cu Ca
Cornwall Mn Co Ni Bi West Cornwall Na K Ag Cu Ca In 31 Mn Pb Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Mn Pb Na K Ag Cu Ca In 31 Mn Na K Ag Cu
Cornwall Mn Co Ni Bi Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Pb Na K Ag Cu Ca In 31 Mn Na K Ag Cu Ca Nd Pr 75 Nd Pr Nd Pr Nd Pr
Mn Pb
Mn Pb
Mn Pb
Mn Pb Na K Ag Cu Ca In 31 Mn Na K Ag Cu Ca In 31 Mn Mn Mn Mn 75 Strontianite -
Mn
Mn
Strontianite - - Nd 75 Parisite - - "Dy" 2 Cordylite - - Nd Pr 75 Bastnaeite - - Nd Pr 75 Bastnaeite - - Nd Pr 75 Lanthanite - - U 75 Liebigite - - U 75 Uranothallite - - U 75 Voglite - - U 75 IX. DISILICATES AND POLYSILICATES. Vertalite - - Li Si Al Ca Rb 15 Felspar - - - - Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - - Winter Harbour, Cum- Ge 54 berland Sound - - - - -
Parisite - - " Dy " 2 Cordylite - - Nd Pr 75 Bastnaeite - - Nd Pr 75 Azurite - - - Cu 75 Lanthanite - - U 75 Liebigite - - U 75 Uranothallite - - U 75 Voglite - - U 75 IX. Disilicates And Polysilicates. - Li Si Al Ca Rb 15 Felspar - - - Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - - Winter Harbour, Cum- Ge 54 berland Sound - - 54
Cordylite - - Nd Pr 75 Bastnaeite - - Nd 75 Azurite - - Cu 75 Lanthanite - - Nd Pr 75 Liebigite - - U 75 Uranothallite - U 75 Voglite - - U 75 IX. Disilicates AND Polysilicates. Petalite - - Utö, Sweden Li Si Al Ca Rb 15 Felspar - - - Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - - Winter Harbour, Cum- Ge 54 berland Sound - - - - - -
Bastnaeite - - Nd 75 Azurite - - - Cu 75 Lanthanite - - Nd Pr 75 Liebigite - - U 75 Uranothallite - - U 75 Voglite - - U 75 IX. Disilicates and Polysilicates. Petalite - - Utö, Sweden Li Si Al Ca Rb 15 Felspar - - - Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - - Winter Harbour, Cum- Ge 54 berland Sound - 54
Bastnaeite - - Nd 75 Azurite - - - Cu 75 Lanthanite - - Nd Pr 75 Liebigite - - U 75 Uranothallite - - U 75 Voglite - - U 75 IX. Disilicates And Polysilicates. Petalite - - Utö, Sweden Li Si Al Ca Rb 15 Felspar - - - Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - - Winter Harbour, Cum- Ge 54 berland Sound - 54
Lanthanite Nd Pr 75 Liebigite U 75 Uranothallite U 75 Voglite U 75 IX. DISILICATES AND POLYSILICATES. Petalite - Utö, Sweden Li Si Al Ca Rb 15 Felspar Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - Winter Harbour, Cum- Ge 54 berland Sound
Liebigite U 75 Uranothallite U 75 Voglite U 75 IX. DISILICATES AND POLYSILICATES. Petalite Utö, Sweden Li Si Al Ca Rb 15 Felspar Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - Winter Harbour, Cum- berland Sound
Uranothallite U 75 Voglite U 75 IX. DISILICATES AND POLYSILICATES. Petalite Utö, Sweden Li Si Al Ca Rb 15 Felspar Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase Winter Harbour, Cumberland Sound
Uranothallite - — U 75 Voglite U 75 IX. DISILICATES AND POLYSILICATES. Petalite - Utö, Sweden Li Si Al Ca Rb 15 Felspar — Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase - Winter Harbour, Cumberland Sound
IX. DISILICATES AND POLYSILICATES. Petalite Utö, Sweden Li Si Al Ca Rb 15 Felspar Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase Winter Harbour, Cumberland Sound
IX. DISILICATES AND POLYSILICATES. Petalite Utö, Sweden Li Si Al Ca Rb 15 Felspar Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase Winter Harbour, Cumberland Sound
Petalite Utö, Sweden Li Si Al Ca Rb 15 Felspar Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase Winter Harbour, Cumberland Sound
Felspar Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb Orthoclase Winter Harbour, Cumberland Sound Li Na K Rb Cs Cu 35 Ca Al Ga Fe Mn Pb
Orthoclase Winter Harbour, Cum- berland Sound Ca Al Ga Fe Mn Pb 54
Orthoclase Winter Harbour, Cum- Ge berland Sound
berland Sound
- Fuchshach Silesia (re h4
,,
,, Brevig, Norway Ge 54
,, Herschell, Ontario Ge 54
,, Jones Falls Quarry, Ge 54
Baltimore, Md.
,, - Robinson, Colorado Ge 54
,, - Pike's Peak, Colorado Ge 54
Pacific Grove, California Ge 54
, ,,
Babsent 45
Babsent 45 - Itrongahy Babsent 46
B absent 45 Itrongahy B absent 46 Ceylon Little Al in 19
Itrongahy B absent 45 B absent 46 Ceylon Little Al in 19 - spectrum
" - Itrongahy B absent 45 " B absent 46 " Ceylon Little Al in 19 " spectrum " - Saint Gothard, Grisons Al 15
- Itrongahy B absent 45 B absent 46 B absent 46 Little Al in 19 spectrum - Saint Gothard, Grisons Al 15

M	ineral			Location	Elements	Reference
Orthoclas	se -	-	-	——————————————————————————————————————	Li Na K Rb Cu (Ca 35
					Fe Mn Pb	
,, (n	noonst	one)		_	Cu	26
,,	-	-	-	Viesch	Li	4
, ,	-	-		Kriegalp	Li	4
,,	-	-	-	Dammastock	Li	4
,,	-	-	-	Fellithal	Li	4
Microline	e -	-	-	Verona, Ontario	Ge	54
. ,,	-	-	-	Bathurst, Ontario	Ge	54
,,	-		-	Villeneuve, Quebec	Ge	54
,,	-	-	-	Bedford, New York	Ge	54
,,			-	Amelia Court House, Va.	Ge	54
,,	-		_	El Paso County, Colo.	Ge	54
. ,,	-		-	Keystone, South Dakota	Ge	54
,,			-	nr. Nain, Labrador	Ge . ·	54
,,	-		-	Maharita, Madagascar	Al	19
,,	-		-	Antaboaka, Madagascar	Al	19
• ,,	-		_	Dalkey, Co. Dublin	Na K Li Rb	30
,,	-		-	Madagascar	Rb Cs Ga Fe	26
,,			-	Madagascar	Rb Cs Ga Th	18
,,	-		-	Anjanambonoina	Cs Rb Ga Th	25
. 22.	-		-	Manjaka	Cs Rb Ga Th	25
,,	-		-	Antaboaka	Cs Rb Ga	25
,,	-		-	Antsongombato	Cs Rb Th	25
,,	_		-	Maharitra	Cs Rb	25
, ,	-		-	Tsilaizina	Rb Ga	25
Anortho	clase		-		Na Li	4
Albite			-	Alpe Ruschuna, near	Ge	54
				Vals, Switzerland		
,,		-	-	Silver Leaf Mine, Mani-	Ge	54
				toba		
,,		-	-	Amelia Court House, Va	Ge	54
,,	<u></u> .	-	-	Amelia Court House, Va	Ge	54
,,		-	-	Keene, New Hampshire	Ge	54
,,		-	-	Norway, Maine	Ge	54
,,		-	-	Keystone, S.D.	Ge .	54
Albite	- :		-	De Modana	Si Na Al Ca Mg	15
	risteri	te)	-	Villeneuve, Canada	Ca	15
Oligocla	ase	-	-	Siberia	Ge	54
· .,, .		-	-	Arendal, Norway	Ge	54
. ,,		-	-	Gilbertsville, Mass.	Ge	54
,,		-	-	Orange County, N.Y.	Ge	54

30	SPI	ECT	RUM ANALYSIS IN M	IINERALOGY			SI	PECT	RUM ANALYSIS IN M	INERALOGY	31
Minen	ral		Location	Elements	Reference		. Mineral		Location	Elements	Reference
Oligoclase	-	-	Anthony's Nose, near Peekskill, N.Y.	Ge	54		Pollucite -	-	Black Hill, S.D.	Ge B absent	54 45
	-	-	Media, Pa.	Ge	54		,,	_		B absent	46
"	_	_	Virginia	Ge	54		,, –			Cs Li Si Al Ca	15
Andesine		_	Cape Keglapait, Labra-	Ge	54		,,				
Andesine			dor		01						
	_	_	Bodenmais, Bavaria	Ge	54		XI. Pyroxene	e Gro	UP.		
"			Bodenmais, Bavaria	Ge	54		Enstatite -		Pelham, Mass.	Ge	54
,,	_	_	St. Raphael, France	Ge	54		Diopside -	-	De Kalb, New York	Ge	54
. "		_	Palmietfontein, Zont-	Ge	.54		(.),	-	Patterson, N.J.	Ge	54
. ,,			pansberg, Transvaal	ac	.01		,, -	· <u>-</u>	Haliburton County,	Ge absent	. 54
Oligoclase			Bakersville, N.C.	Na Si Al Ca	.15				Ontario		
Oligociasc		_	Ytterby, Sweden	Si Ca	15		. ,,	-	Itrongahy	B absent	45
Labradorit	Α	-	nr. Nain, Labrador	Ge	54		Augite		Buffaura, Fassathal,	Ge "	54
	_		nr. Sarnac Junction,	Ge	54				Piedmont		
,,	_		N.Y.		01		12:	· -	Fassathal, Piedmont	Ge absent	54
			Aci Trezzo, Cyclopean	Ge absent	54		Spodumene -	-	Halstead, New Hamp-	Ge	54
"	_		Islands, Italy	de absent	O I		1		shire		
			Mount Etna, Italy	Ge	. 54		- ,,		Goshen, Mass.	G.	54
1699			Millard County, Utah	Ge	54	*	,, -		Norwich, Mass.	Ge	54
. (%)	7		Coast of Labrador	Si Ca Na Al	15	Ç.	,, -	-	Chesterfield, Mass.	Ge	54
Bytownite	_	- [Bytown, Canada	Ge	54		,, -	_	Auburn, Maine	Ge	54
Dytownite	_		Crystal Bay, Minnesota	Ge	54		-	_	Andover, Maine	Ge	54
Anorthite			Pesmed, Fassathal,	Ge	54	r r	- ,,	_	Oxford Co., Maine	Ge	54
Anorthice	_		Tyrol	ac .	O'T		,,	_	nr. Paris, Maine	Ge	54
			Mount Somma, Naples	Ge.	54		,,	_ ,	Calmilla, California	Ge	54
7,199			Miakejima, Japan	Ge	.54		,,		Minas Geraes, Brazil	Ge .	54
. "			Somma Somma	Si Al Na Mg	15		,, -		Utö, Sweden	Ge	54
. ,,			New Caledonia	Si Al Na Mg	15		,, -			Co Na Sn	77
. "	_	_	TVEW Caledollia	or min ma	10		,, (hidden	nite) -		. Cr Na Sn V Mn	77
• 4							,, ,,	, -		Cr Co Ag Ti Na S	Sn 77
X. LEUCITI	e Gr	OUP	•							V Mn Li Co	
Leucite -	_	_	Ciriocia, Italy	Ge	54		,,			Mn Co Na	77
	_	_	Vesuvius	Ge	54		Hiddenite -	_	Hiddenite, Alexander	Ge	54
_	_	-	Frascati, Rome, Italy	Ge	54				Co., N.C.	-4 2"	
- 22	_	_	Capo di Boyi, near	Ge	54		,,, -	-		Cr	75
. ,,			Rome, Italy				Kunzite -	-	Pala, California	Ge	54
-	_	_	Civita Castellana, Lat-				,, -	_	Pala, California	Ge	54
			ium, Italy				,,		Pala, California	Ge	54
313	_	_	Pompeii, Italy	Ge	54	1	;,	·	Pala, California	Ge	54
Pollucite		_	Island of Elba	Ge	54		,,	-		Ga	75
	_	_	Buckfield, Maine	Ge	54		Kunzite -	_	· . —	Mn	75
د و ۔ ۔ ۔			, , , , , , , , , , , , , , , , , , ,								

Mineral	!		Location	Elements Re	ference
Wollastonite	-	_	Natural Bridge, N.Y.	Ge absent	54
	-	-	Orange County, N.Y.	Ge	54
Rhodonite	_		Valles de Louron	Si Mn Al	15
		٠,	Hautes Pyrenees		
"	-	-	nr. Dolgelly, N. Wales	Na K Cu Ca Fe Mn	31
			D:1 C 1	Ag Ni	0.7
,,	-	-	Paisberg, Sweden	Na K Cu Ca Fe Mn Ag Pb	31
,,	-	-		Mn	75
Wöhlerite	-	-		Na	75
		•			
XII. Amphi	BOLE	GF	ROUP.	•	**
Anthophyllit	te	-	Copper Mine, Washing-	? Ge	54
			ton Co., Md.	·	
. ,,	-	-	Kipps Bay, New York	Ge absent	54
,,	_	_	Harford Co., Md.	? Ge	54
" amphibole:	s "	_		Ca Li	4
Tremolite	_	_	Amity, Orange County,	Ge	54
			N.Y.		
. ,, .	_	_	Canaan, Connecticut	? Ge	54
,,	_	_	Ossinning, New York	? Ge	54
,,	-	_		Mn	75
Actinolite	_	_	Mineral Hill, Pa.	Ge	54
23.	_	_	Brewsters, New York	Ge absent	54
,,	_	_	Kent, Putnam County,	Ge absent	54
,,			N.Y.	G G G G G G G G G G G G G G G G G G G	01
Asbestos		_	Germany	? Ge	54
,,	_	_	Thetford, Quebec	? Ge	54
Mountain Le	eather	-	Nova Scotia	Ge absent	54
Riebeckite	-	_	St. Peter's Dome, El	? Ge	54
			Paso Co., Colo.		
XIII. OTHE	R ME	TAS	SILICATES.		
Beryl -		_	Limoges	Si Al Na Be Ca	15
,, -		-	Glencullen, Co. Dublin	Li Na K Rb Cs Cu	35
				Ag Ca Ga Th Fe Mn Pb	
23 -	-	-	Naegi, Japan	Si Be Fe Al Ca Mg	67
	_	_	Ishikawa, Japan	Cr Na K Sn Sc Si Be Fe Al Ca Mg	74
			, 3 T	Sc Sc	

Minera	l		Location	Elements I	Reference
Beryl -	_	_	Madagascar.	Cs Ga	26
,, -	-		Madagascar	Cs Ga	18
_	_	_	Antaboaka	Cs Rb Ga Th Li Mn	25
,, =	_	_	Maharitra	Ti Sc	25
,,	_	_	Antsongombato	Ti Sr	25
,,	_	_		Ga Mn Cs	77
,, -	_	_	Brasil	Cs	77
. ,,	-	_	Madagascar	Cs	77
,, -	_	-	Madasgascar	Ni Cu Zn Sn Pb L	i 77
,,			O	Ga Mn Na	
XIV. GARN	ет Съ	OU	P.		
Garnet -	D1 01	_	Airolo, Canton Ticino	Na K Cu Ag Mg Ca	a 35
Garnet •	-	_	Allolo, Califoli Tichio	Sr Ga Fe Mn Cr Pl	
Drymorpo			· ·	Cr	75
Pyrope Almandine	-	-		Cr	75
	-	_	Saint Marcel, Piedmont	Mn Si Ca Al Na	15
Spessartite	-	-	Saint Marcoi, I fedinoite	Cr	75
Demantoid	-	_		Cr	75
Demantoid	-	-		. 01	•
XV. OLIVIN	ie Gr	OU:	Ρ.		
Olivine -	_	_	procession and	Fe Co Ni	64
	_		<u>:</u>	Fe	75
,,					
XVI. IDOC	RASE.				
Idocrase (W	viluite))	Wilui, Siberia	B Ti F	45
,,	-	_	Pics de Pegneres,	B Ti F	45
٠			Hautes Pyrenees		
,,		-	Pic d'Arbizon	B Ti F	45
,,	-	-	Col de Bouts, Aragon	B Ti	45
,,	-	-	Vallee de Fleim, Tyrol	B Ti	45
,,	÷	-	Egg, Norway	B Ti F	45
,,	2019		Christiansand, Norway	B Ti	45
. , ,	-	-	Canigou	B Ti	45
,,	-	-	Pic du Midi du Bigorre	B Ti	45
,,	_	-	Sahun, Aragon	B Ti	45
,,	-	-	Pic des Posets Aragon	B Ti	45
,,	-	-	Ala, Piedmont	B Ti F	45
,,		-	Göpfersgrün, Bavaria	B Ti	45
,,	-	-	Parsonfield, Maine	B Ti	45
. 23	-		Rougedas, Morbihan	Ti B absent	45
22	-	_	Zermatt	Ti F B absent	45

SP	ECTF	RUM ANALYSI	S IN M	INER	ALOGY	
ıZ		Location			Elements	R
_	-	Schlackenwald,	Saxony	Ge		
		Schneckanstein	Savony	GA		

1	1 i nera	:I		Location	Elements R	eferenc e
Idocras	se (W	iluite)	Cziklova, Banat	Ti F B absent	45
,, (Egera	ne)	_	Eger, Bohemia	Ti B absent	45
	_	rdite)) -	Mantsala, Finland	Ti B absent	$\frac{45}{45}$
,, (Heter	omeri	ite)		Ti B absent	45
		inowi		,	Ti B absent	45
		ne)	,	Souland en Telemarken	Ti B absent	45
,, (Wilui	te)	_	_	B	46
,, (Egera	ne)	_		В	46
,, (Fruga	rdite)) -		B	46
		omeri		·	В	46
,, (Jewre	inowi	te)		В	46
,, (Cypri	ne)	_		В	46
1		-	_		B absent	46
,,	55	- '	_		Fe	75
,,		_	-	parameter	Fe	75
						. 10
XVII.	ZIRCO	on Gi	ROU	P.	$ v = \left(\frac{v^{2}}{v^{2}} - \frac{v^{2}}{v^{2}}\right)^{\frac{1}{2}}$	
Zircon		-	-	Miask, Urals	Zr Ca	15
,;	_	-	-	Ishikawa Hill	Pb Ba Ti Y Sc Nd 43	
					Gd Dy Er Yt Lu	00 22
"	-	-	-	Alter Pedroso	Si Zr Ca Al Fe Th	55
**** *********************************					Ti Mg Sn Bi Cu	
,,	-	-	-	<u> </u>	U ~	75
,, (J	argon) .	-		U	2
,,	-	-	-		Zr	71
, ,	-	-		Sveneroe, Norway	" Dy"	2
,,	-	-	-	Siberia	Mn	71
"	_	- '	-	Miask	U absent	71
,,	-	-	-		U	2
Naegite	;	-	-	Naegi	Ce Nd La Pr Sm Y	66
					Dy Er Yt Gd Tb Ho	
Hagata	lite			Hagata	Y Sc Nd Pr Eu Dy	44
o					Ho Er Tl Ge Nb Ta	
Oyamal	lite	-	-	Oyama	Y Nd Gd Dy Er Yt	44
VIIII	Day	D *** ***				
	DAN	BURIT	`E	COPAZ GROUP.		
Topaz	-	-	-	Tasmania	Ge	54
, ,,	-	-	-	Zinnwald, Bohemia	Ge	54
"	-	-	-	Zinnwald, Bohemia	Ge	54
"	-	- 1	-	Altenberg, Saxony	Ge	54
23	***	-	-	Altenberg, Saxony	Ge	54
"	-	-,	-	Altenberg, Saxony	Ge	54

	Mia	neral		Location	Elements	Reference
Conor		cercu	_	Schlackenwald, Saxony	Ge	54
Γopaz	_	_	_	Schneckanstein, Saxony		54
. "	-	_		Schneckenstein, Saxony		54
. 23	_	_	_	Brodbo, Sweden	Ge	54
"	-		_	Mursinzk, Siberia	Ge .	54
"	-	_	_	Sanark River, Ural	Ge	54
"		_		Ural Mountains	Ge	54
,,	-	-	_	Tanakami, Yama Ouir,	Ge	54 54
"	-	_	7	Japan	dc .	94
				Naegi Mino, Japan	Ge	54
"	-	-	_	Klein Spitzkopje, South-		54
"	_		-	west Africa	de .	94
				New South Wales	Ge	54
"	_	- #1 G	-	Silver Leaf Mine, Mani-	Ge	54
,,	-		-	toba	de	04
				Nathpop, Chaffee Co.,	Ge	54
"	_	_	_	Colorado	dç	04
				Florissant, Colorado	Ge	54
,,	_	_		Thomas Range, Millard	Ge	54
"	-	·	-	Co., Utah	de	94
				Sevier Lake, Utah	Ge	54
"		-	_	Trumbull, Conn.	Ge ·	5 4
"	-	_	-	Trumbull, Conn.	Ge	54
,,	-	: -		Easton, Conn.	Ge	54
"	_		-	Monroe, Conn.	Ge	5 4
"		-	-	Stoneham, Maine	Ge	5 4
25			-		Ge	5 4
"	-		-	Stoneham, Maine	Ge	5 4 54
, ,	_	-	-	Stoneham, Maine	Ge	54 54
"	-		-	San Luis, Potosi	Ge	54 54
,,	_	Name .	-	Villa Rica, Brazil	B absent	46
"	-	_	-	-	B absent	46
"	-	_	-	-	Al	19
,,	-	-	-	Calmadranatain	Ge	52
"	-	. –	-	Schneckenstein, Saxony	Ge	04
				Zinnwald, Bohemia	Ge	52
. "	-	-		Trumbull, Connecticut	Ge	52 52
,,	-	_		·	Ge	52 52
,,	-	-	_	Stoneham, Maine	Ge	52 52
,,	-		-	Florissant, Colorado	Ge	52 52
"	-	_	-	Naegi Mino, Japan		52
22.	-	-		Silver Leaf Mine,	Ge	32
				Manitoba		
					1	

36

Mii	neral		Location	Elements	Reference
Tourmali	ine -		De Kalb, New York	Ge	54
,,	-	-	Haddam, Conn.	Ge	54
"	-	-	Dunderburg Mts., New York	Ge	54
	-	_	Portland, Conn.	Ge	54
. ,,	_	_	Gibson, New Hampshire	e Ge	54
,,	_	_	Hebron, Maine	Ge	54
,,	_	_	Hebron, Maine	Ge	54
9.9	_	_	Rutherford, Maine	Ge	54
. ,,	-	_	Chesterfield, Maine	Ge	54
,,	_	-	Winter Harbour, Cum-	Ge	54
,,			berland Sound	Ge	54
	_	_	Pala, California	Ge	54
,,	_	_	Prevali, Corinthia	Ge	54
		·	Brevig, Norway	·Ge	54
,,	- .	-	Livinerthal, Switzer-land	Ge	54
	_	_	Mursinsk, Siberia	Ge	54
"	_	_	Island of Elba	Ge	54
,,	_		Anjanabonoina,	Ge	54
, , , ,			Madagascar		. 01
,,	· _	-	Minas Geraes, Brazil	Ge	54
٠ ,,	-	-	Wolkenberg, Saxony	Ge	54
,,	-	-	Utö Mines, Södermond-	Ge	54
			land, Sweden		
,,	-	-	Pyrenees	Al ·	46
,, (]	Rubellite	e) -		Al ·	46
,,	-	-	-	B Li	4
,, (Rubellit	e) -		Mn	75
Cerite -	-	-	I. of Gyttorp	Cu Ce Sm Mn Fe	27
,, -	-	-		Ce Nd Pr	75
Dumortic	erite	-	Beaunans, Lyons	В	45
,,			 .	В	46
Staurolit	e -		Mary manager	B absent	46
,	-	-	· ·	B absent	45
,,	-	-		Fe	75
Korneruj	oine -		Itrongahy	В	45
,, (]	Prismati	ine)	-	В	45
. ,,	,			В	46
Sapphirir	ne -	-	Itrongahy	В	45
, ,	-	-	Fiskeraes, Greenland	В	45
. ,,		-	•	B	46

XXII. Mica Division.

Will. Hill Dividion.								
Minera	ıl		Location	Elements Re	eference			
Mica -	-	-	Co. Dublin	Li Na K Rb Cs Cu	35			
				Ag Ca Ga Fe Mn Pb				
Muscovite	-	-	Fillenberg, nr. Marien-	Ge	54			
			bad, Bohemia					
,,	-	-	Mursinsk, Siberia	Ge ·	54			
	-	-	Winter Harbour, Cum-	Ge absent	54			
			berland Sound					
,,	-	-	Winter Harbour, Cum-	Ge	54			
			berland Sound					
,,	-	-	Speedway, New York	Ge absent	54			
			City					
,,	-	-	Paris, Maine	Ge	54			
,,	-	-	Keene, New Hampshire	Ge	54			
,,	-	-	Chaffee County, Colo.	Ge	54			
95	-	-	Mitchell Co., N.C.	Ge	54			
,,,		-	Pyrenees	Al	19			
**,	-	-		Na K Rb Cu Ag Ca	35			
				Al Ga Fe Ni Mn Pb	2.2			
	-	-	paradicine.	Cs & Li absent	26			
" Muscovite	,,,	-	Gotthard	K absent	21			
Muscovite	-	-	Madagascar	Li Na K Rb Cs	18			
,,,	-	-	Suizawa, Near Ishigure,	Pb Cu Sc Y La Eu	39			
			Mi-e Prefecture	Ga Dy Er Nd Ce Yb				
				Tm	2 =			
,,	· -		Antaboaka	Cs Rb Ga Tl Mn	25			
Fuchsite	-	-	Winnipeg River, Mani-	Ge	54			
			toba					
,,	-	-	Rutland, Vermont	Ge absent	54			
»	-	-	Brunswick, Maine	Ge	54			
,, ·		-	Pfitsch, Tyrol	Ge absent	54			
"	-	-	Zillerthal	Ge	54			
. ,,	-			Cr	75			
Paragonite	-	-		Al	19			
Lepidolite		-	Silver Leaf Mine,	Ge	54			
			Manitoba					
22	-	-	Paris, Maine	Ge	54			
,,	-	-	Mount Apatite, Auburn,	Ge	54			
			Maine		J /			
			Haddam Neck, Conn.	Ge	54			
. 33	-	-	Middletown, Conn.	Ge	54			

Miner	al		Location	Elements I	Reference
Lepidolite	-	-	Peerless Mine, Key-	Ge	54
			stone, S.D.		
"	-	-	Ingersoll Mine, Black Hills, S.D.	Ge	54
. 22	-	-	Pala, California	Ge	54
"	-	-	Rozena, Moravia	Ge	54
,,	-	-	Utö, Sweden	Ge	54
Lepidomela	ne	-	Madagascar	No Al bands	19
Lepidolite	-	***		Li Na K Rb Cs Cu	
				Ca Ga Tl Fe MnPb	
,,		-		Ga Th	26
,,	-	-	Rözna	K Na Li Rb Cs	4
,,	-		Pala, California	K Na Li Rb Cs Tl	4
,,		-	Pala, California	K Na Li Rb Cs Tl	4
,,,	-	-	Limoges	K Na Li Rb Cs Tl	4
,,	-	-	Campo San Pietro, Elba	K Na Li Rb Cs Tl	4
,,		-	Madagascar	Li Na K Rb Cs Ga	18
				Th	
,,		-	Antsongombato	Cs Rb Ga Tl Mn	25
,,	_	-	-	Mn	75
Zinnwaldite	: -	-	Madagascar	No Al bands	19
"	-	-	-	Ga Th	26
,,	-	-	Zinnwald	K Na Li Rb Cs	4
,,,		-	Auburn	K Na Li Rb Cs	4
"		-	Madagascar	Li Na K Rb Cs Ga	18
				Th	
,,	-	-	Antaboaka	Cs Rb Ga Tl Mn	25
Biotite -	·	-	Faraday Township,	Ge	54
			Ontario		
· ,, -	-		Mattawa, Ontario	? Ge	54
, ,	-	-	Windham, Maine	Ge absent	54
,, ,=		-	Madagascar	No Al bands	19
,, -	-	-	annihitad	Si Al K Li Fe Mn	72
				Ca Mg Na	
"	-	-		Ga Th	26
,, ¬	-	-	Mazatand, Haute- Vienne	Ti	21
,, ~ .	-	-	Ilmen Mounts	K Na Li Rb	4.
,,	-	-	Berwik	K Na Li Rb	4
,, =	_	_	Madagascar	Li Na K Rb Cs	18
,, -	-	-	Antaboaka	Cs Rb Ga Tl Li Mn	25
;, -	-	-	Maharitra	Ti Sc	25

	SPE	ECTI	RUM ANALYSIS IN M	INERALOGY	41
Miner	al		Location	Elements	Reference
Biotite	-	_	Antsongombato	Ti Sr Y Ca	25
Phlogopite	-	-	West Portland, Quebec	Ge	54
Margarite		-		Al	19
Seybertite		-		B absent	45
,,	-		waterman	B absent	46
Xanthophyl	lite	-		B absent	45
,,,				B absent	46
Venasquite	-	· _		B absent	45
,,	-	_		B absent	46
Waluewite		-	_	B absent	45
,,	- ,	_	<u> </u>	B absent	46
Chlinochlore	e -		<u> </u>	Fe	75
Rapidolite	_	_	Gothard	Li	4
",		·	Rhone Glacier	Li	4.
,,		_	Galenstock	Li	4
Pennine	_	_	Zermatt	Li	4
Masonite	_	-	<u> </u>	B absent	46
,,	_	-		B absent	45
Kammererit	te	-		Cr Fe	75
Aerinite	-			Sr V	51
,,	44	-	Casseras, Aragon	Si Ca Mg V Ba	15
XXIII. SEI	RPEN	TINE	and Tale Division.		
Serpentine		_	Lynfield, Mass.	Ge absent	54
,,	_	-	Geisspfad	Li (rare)	4
Garnierite	4		Kanala, New Caledonia	, ,	15
. ,,	_	-	New Caledonia	Ni	15
Talc	_	_	Rochester, New Hamp-	Ge absent	54
			shire	a.	
· , -,	-	-	Fengtien, Manchuria	Ge	54
,, –		-	Geisspfad	Li	4
Glauconite	-	-	Bellegarde	Li	4
XXIV. KAG	DLIN	Sub	DIVISION.	:	
Kaolinite		-	Tanokami	Ru	40
Britholite	-		-	Nd Pr	75
Hodgkinson	ite			Mn	75
Sphene -		-		Nb	21
,, -	-		Zermatt	Ca Si Ti Al	15
,,· –	-	-		Nd	75
Mosandrite	-			Nd	75

Minera	I.		Location	Elements R	eference.
Rinkite	in.	_	to record floated	Nd	75
Perowskite	-	-	Rymfischwänge,	Ca	4
			Zermatt		
XXV. NIOB	ATES	AN	ID TANTALATES.		
Pyrochlore	- `	-	. Backward	Nd	75
Fergusonite	- '	_	Iyo, Shikoku	Y Yb Sc Lu Dy Tu	63
				Nd Er Eu Pr Ho Cu	
				Pb Ge	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	-		Sm Er	75
Sipylite	-			Sm Er	75
Columbite	-	_	Ishikawa	MagAntining	68
Samarskite	-	-	Ishikawa	Y Er Dy Gd Sa Sc	68
•			· .	Tb Pb Ba Sr W	
"	-	-	·	Nd	69
Yttrotantali	te	-		Sm Er	75
Euxenite	2	-	Morefjar, nr. Naeskilen		22
2)	-	'	Naeskilen	Ti	21
Betafite		-	Ambolotara	Ti	21
Aeschinite	-	-		Nd -	75
Ishikawaite	<u>-</u>		Ishikawa	Pb Ba Sr Zn Be Y	68
				Er Gd Dy Sm La Sc	
				Cu Bi Pb	
***	÷	 . ,	Ishikawa	Y Er Gd Dy Sa La	69
		,		Sc Pb Ba Sr Zn Cu	
				Bi Pb	
XXVI PHO	SDTFAG	רזהפ	AND ARSENATES.	•	
				DI D C III II ao	. 0. 00
Samaiskite	-	-	Ishikawa	Pb Ba Sr W Y Er 68	X 69
Xenotime		_	Ishikawa Hill	Dy Ga Sm Sc Tb	40
ZZCIIOUIIIE	_	-	Ishikawa filii	Pb Ba Ti Y Sc Nd	43
				Gd Dy Er Yt Lu	n c
Monazite	_	_	Naegi —	Er Sm	75 ee
11101121110		_	ivaegi	Ce Nd La Sm Pd Dy Yt Ga Er Eu Tb Y	66
				Ho Tl Lu	
	_		Ishikawa	Ce La Nd Pr Y Dy	68
"			ADILLIXU YY.U	Gd Er Yb Ho Tb	00
	_	-	Kararfvet	Cu La Ce Pr Nd Sm	27
,,			and the LY OU	Gd Fe Pb Th Y	41
,,	_		Minister	Nd Pr	75
Manganapati	te	_	· ·	Ca P Mn Fe Al Mg Si	72
Gazza	-			out mill offing of	124

Mineral	Location	Elements Re	efevenc e			
Pyromorphite -	Gennamari Arbus,	Nd	50			
Vanadinite	Sardinia	Car VI Ca				
Amblygonite		Cu V Co Al Li P Si Fe Ca Na	75			
Ambrygomite	gradienskeine	Mg Mg	72			
Roselite		V Co	75			
Erythrite		V Co	75			
Rhabdophanite -		Nd Pr	75 75			
Churchite	Service Control of the Control of th	Nd Pr	75			
Torbernite	Sabugal	P U Cu Ca V Al Fe	55			
		Ra Ba Pb Mn Mg	00			
		Tl As Sn Bi				
,,	Nellas	P Cu Ca U Al Fe V	55			
· ·		Ra Ba Pb Mn Zn As				
		Sn Bi Mg Tl				
Autunite	Nellas	P Ca Cu U Al V Fe	55			
		Pb Mn As Sn Bi Mg				
	•	Tl				
VVVIII Don	TT					
XXVII. BORATES A	ND URANATES.					
Zeunerite		U	75			
Uranospinite	-	U	75			
Uranocircite -	C1	U	75			
Stassfurtite		Na K Fe Sr Ni	32			
	Manjaka	Čs Rb Ga Tl Li Be	25			
Parisite		Nd Pr	75			
Uraninite (Broegger ,, (Cleveite)		He He	7			
	Colorado	Zr Sc Hf	7			
1 itempleme	Colorado	Zr Sc Hi	9			
XXVIII. Sulphates, Chromates.						
Barytes		Ba S	15			
*	Binnenthal	Ba	4			
Celestine	Sicily	Sr Ba S	15			
Anhydrite	Simplon	Sr	4			
Crocoite	Tasmania	La Ce Sm Y Er Eu	5			
		Gd Ho Zr Ca Nd Th	Ü			
•	•	Nb Sr Al Tb Dy Ba				
Kainite	Stassfurt	Na K Fe Sr Mn	32			
Linarite	<u> </u>	Cu	75			
Gypsum	Buttes, Chaumont	Ca S	15			
,,	Bex	Sr Li	4			
	•					

Mineral			Location	Elements	Reference	
Gypsum	-	-	Granges, Valais	Little Sr or Li	4	
Kieserite	-	-	Stassfurt	Na K Fe	32	
Epsomite (-		Stassfurt	Na K Fe Sr Ni	32	
Chalcanthite	-	-		Cu	75	
Gilpinite	-	-		U	75	
Uranochalcite	е		·	U	75	
Voglianite	-	-	_	U	75	
Wulfenite		-	Bleiberg	Ce La Nd Sm Y Er	5	
				Tb Ba Rh? Gd Eu	L	
		:		Pt? Lu Ni Cr Fe Al	L	
		-	•	Ca Sr		
XXXIX. Tungstates.						
Scheelite [*]	- .		Traversella Piedmont	Nd Pr 7	5 & 2	

XII. Bibliography.

- 1. Becquerel, H. (1889).
 - "Sur les spectres d'absorption de l'épidote." Comptes Rendus à l'Académie des Sciences à Paris, vol. 108, p. 282.
- 2. Becquerel, H. (1888).
 - "Recherches sur les variations des spectres d'absorption dans les cristaux." Annales de Chimie et de Physique, Ser. 6, vol. 14, p. 170.
- 3. Bedr-Chan, S. (1925).
 - "Analyse des Alvits." Zeitschrift für anorganische und allgemeine Chemie, vol. 144, p. 304.
- 4. Brun, A. (1917).
 - "Note sur l'application du spectroscope à la minéralogie et à la pétrographie suisses." Archives des Sciences Physiques et Naturelles, 4th per., vol. 43, p. 487.
- 5. CAROBBI, G. (1928).
- "Ricerche chimiche e spettrografiche sulla crocoite di Tasmania e sulla wulfenite di Bleiberg." Annali di Chimica Applicata, vol. 18, p. 485.
- 6. Crookes, W. (1916).
- "On the photographic spectra of meteorites." Philosophical Transactions, Roy. Soc., vol. 217 A, p. 411.

- 7. Deslandres, H. (1895).
 - "Comparaison entre les spectres du gaz de la clévéite et de l'atmosphère solaire." Comptes Rendus à l'Académie des Sciences à Paris, vol. 120. p. 1112.
- 8. Fesefeldt, H. (1929).
 - "Der Spektrographische Nachweiss von Beryllium." Zeitschrift für Physicalische Chemie, vol. 140 A, p. 254.
- 9. Free, O. (1926).
- "Investigation of the zirconium in Colorado pitchblende." *Philosophical Magazine*, ser. 7, vol. 1, p. 950.
- 10. Friend, J. N. (1926).
 - "Examination of Dead Sea water for eka-caesium and eka-iodine."

 Nature, vol. 117, p. 789.
- 11. GIUSCA, D. (1929).
 - "Etude chalcographique des sulpharsénites de la Vallée de la Binna."

 Bulletin de la Section Scientifique de l'Académie Roumaine, vol. 12,

 No. 7 to 10, p. 44.
- 12. Goldschmidt, V. M. (1930).
 - "Über das Vorkommen des Germaniums in Meteoriten von Cranbourne." Zeitschrift für Physicalische Chemie, vol. 146, p. 404.
- 13. DE GRAMONT, A. (1895).
 - "Analyse spectrale direct des minéraux." Bulletin de la Société Minéralogique de France, vol. 18, pp. 171, 373.
- 14. DE GRAMONT, A. (1895).
 - "Sur l'analyse spectrale directe des minéraux et de quelques sels fondus." Comptes Rendus à l'Académie des Sciences à Paris, vol. 121, p. 121.
- 15. DE GRAMONT, A. (1898).
 - "Analyse spectrale des minéraux non conducteurs par les sels fondus." Bulletin de la Société Minéralogique de France, vol. 21, p. 94.
- 16. DE GRAMONT, A. (1907).
 - "Sur la photographie spectrale des minéraux dans les différentes régions du spectre: galène et argyrite." Comptes Rendus à l'Académie des Sciences à Paris, vol. 145, p. 231.
- 17. DE GRAMONT, A. (1908).
 - "Sur les indications quantitatives qui peuvent être fournies par les spectres de dissociation: argent." Comptes Rendus à l'Académie des Sciences à Paris, vol. 147, p. 307.

- 18. DE GRAMONT, A. (1912).

 Bulletin de la Société Minéralogique de France, vol. 35, p. 73.
- 19. DE GRAMONT, A. (1913).

 "Sur le spectre de bandes de l'aluminium, et sur sa présence dans les spectres de flamme de certains minéraux." Comptes Rendus à l'Académie des Sciences à Paris, vol. 157, p. 1364.
- 20. DE GRAMONT, A. (1917).

 "Recherches spectrales sur la composition de la goyazite." Bulletin

 de la Société Minéralogique de France, vol. 40, p. 26.
- 21. DE GRAMONT, A. (1918).

 "Recherches sur le spectra de lignes du titane et sur ses applications."

 Comptes Rendus à l'Académie des Sciences à Paris, vol. 166, p. 94.
- 22. DE GRAMONT, A. (1918).

 "Sur les raies ultimes et de grande sensibilité du colombium et du zirconium." Comptes Rendus à l'Académie des Sciences à Paris, vol. 166, p. 365.
- 23. DE GRAMONT, A. (1921).

 "Sur le spectre de dissociation des silicates minéraux par la méthode des sels fondus, et principalement dans l'ultraviolet." Bulletin de la Société Minéralogique de France, vol. 44, p. 77.
- 24. DE GRAMONT, A. (1922).

 "Recherches quantitatives sur les spectres de lignes du vanadium dans les sels en fusion." Comptes Rendus à l'Académie des Sciences à Paris, vol. 175, p. 1129.
- 25. DE GRAMONT, A. (1922). In Lacroix, A., Minéralogie de Madagascar, vol. 2, p. 315.
- 26. DE GRAMONT, A. (1923).

 "Sur l'emploi du chalumeau oxyacétylénique en analyse spectrale.

 Applications à la minéralogie." Comptes Rendus à l'Académie des Sciences à Paris, vol. 176, p. 1104.
- 27. Hadding, A. (1922).

 "Mineralienanalyse nach röntgenspektroskopische Methode." Zeitschrift für anorganische und allgemeine Chemie, vol. 122, p. 195.
- 28. HADDING, H. (1922).

 "Kvalitativ analys enligt röntgenografisk metod." Handlinger

 Ingeniors Vetenskaps Akademien, Stockholm, No. 11.

- 29. HARTLEY, W. N. (1884).
 - "Researches on spectrum photography in relation to new methods of quantitative chemical analysis." *Philosophical Transactions*, Roy. Soc., vol. 175, p. 325.
- 30. Hartley, W. N. (1894).

 "Flame spectra at high temperatures." Philosophical Transactions,
 Roy. Soc., vol. 185 A, p. 161.
- 31. Hartley, W. and Ramage, H. (1897).

 "The wide dissemination of some of the rarer elements, and the mode of their association in common ores and minerals." Journal of the Chemical Society, Transactions, vol. 71, p. 533.
- 32. Hartley, W. and Ramage, H. (1897).

 "On the spectrographic analysis of some commercial samples of metals, of chemical preparations, and minerals from the Stassfurth potash beds." Journal of the Chemical Society, Transactions, vol. 71, p. 547.
- 33. Hartley, W. and Ramage, H. (1896).

 "On the occurrence of the element gallium in the clay-ironstone of the Cleveland district of Yorkshire. Preliminary notice.

 Proceedings of the Royal Society, vol. 60, p. 35.
- 34. Hartley, W. and Ramage, H. (1896).

 "On the occurrence of gallium in the clay-ironstone of the Cleveland district of Yorkshire: determination of gallium in blast-furnace iron from Middlesborough." Proceedings of the Royal Society, vol. 60, p. 393.
- 35. Hartley, W. and Ramage, H. (1901).

 "On a simplified method for the spectrographic analysis of minerals."

 Iournal of the Chemical Society, Trans., vol. 79 (part 1), p. 61.
- 36. Hartley, W. and Ramage, H. (1900).

 "On a simplified method for the spectrographic analysis of minerals."

 Proceedings of the Chemical Society, vol. 16, p. 191.
- 37. Hilger, A. (1929).

 "Recent applications of the spectrograph to metallurgical analyses.

 Appendix: mineralogical analysis."
- 38. Holden, E. F. (1924).

 "The cause of colour of rose quartz." American Mineralogist, vol. 9, p. 101.

39. IIMORI, S. AND YOSHIMURA, J. (1929).

"A rosy muscovite from Suizawa and a dark-grey muscovite from Doi." Scientific Papers of the Institute of Physical and Chemical Research, vol. 10, p. 221.

40. IIMORI, S. AND YOSHIMURA, J. (1929).

"A pink kaolin, and ruthenium as a minor constituent of the Tanokami kaolins." Scientific Papers of the Institute of Physical and Chemical Research, vol. 10, p. 224.

41. IIMORI, S. (1929).

"The approximate content of gallium in the green kaolin from Tanokami. On the existance of gallium in the solar chromosphere." Scientific Papers of the Institute of Physical and Chemical Research, vol. 10, suppl. p. 1.

42. Jolibois, P. and Bossuet, R. (1925).

"Recherches de traces d'or par Spectrographie." Bulletin de la Société Chimique de France, ser. 4. vol. 37, p. 1297.

43. KIMURA, K. (1925).

"Analyses of zircon, xenotime and allanite of Ishikawa, Iwaki Province." Japanese Journal of Chemistry, Transactions and Abstracts, vol. 2, p. 73.

44. KIMURA, K. (1925).

"Analyses of Fergusonite of Hagata, Hagatalite of Hagata, and Oyamalite of Oyama, Iyo Province. Japanese Journal of Chemistry, Transactions and Abstracts, vol. 2, p. 81.

45. LACROIX, A. AND DE GRAMONT, A. (1919).

"Sur la présence du bore dans quelques silico-aluminates basiques naturels." Comptes Rendus à l'Académie des Sciences à Paris, vol. 168, p. 857.

46. LACROIX, A. AND DE GRAMONT, A. (1927).

"Sur la recherche spectrale du bore et sur sa présence dans quelques silico-aluminates naturels." Bulletin de la Société Minéralogique de France, vol. 44, p. 67.

47. Lewis, S. J. (1921).

"Recent applications of the spectroscope and the spectrophotometer to science and industry." Journal of the Royal Society of Arts, vol. 69, pp. 785, 799, 821.

48. Löwe, F. (1927).

"Über Spektralanalyse von Mineralien." Fortschritte der Mineralogie, vol. 12, p. 220.

49. MINAMI, Y. (1929).

"Analysis of allanite from Hagata-Mura, Iyo Province." Japanese
Journal of Chemistry, vol. 4, p. 1.

50. MISCIATELLI, P. (1928).

"Analisi di una piromorfite radioattiva di Gennammari (Sardegna)."

Atti della Reale Accademia Nazionale dei Lincei: Reconditi:

Classe di Scienze fisiche, matematiche e naturali: vol. 7, p. 929.

51. ORCEL, M. J. (1922).

"Sur la composition de l'aérinite." Comptes Rendus à l'Académie des Sciences à Paris, vol. 175, p. 309.

52. Papish, J. (1928).

"Occurrence of germanium in topaz." Science, vol. 68, p. 350.

53. Рарізн, Ј. (1928).

"New occurrences of germanium, I." Economic Geology, vol. 23, p. 660.

54. Papish, J. (1929).

"New occurrences of germanium, II. The occurrence of germanium in silicate minerals." *Economic Geology*, vol. 24, p. 470.

55. Pereira-Forjaz, A. (1917).

"Études spectrographiques des minéraux portugais d'uranium et de zirconium." Comptes Rendus à l'Académie des Sciences à Paris, vol. 164, p. 102.

56. Pereira-Forjaz, A. (1921).

"Étude spectrographique d'une météorite portugaise." Comptes Rendus à l'Académie des Sciences à Paris, vol. 173, p. 1170.

57. Pereira-Forjaz, A. (1921).

"Étude spectrographique des minéraux portugais de tungstène." Comptes Rendus à l'Académie des Sciences à Paris, vol. 173, p. 1170.

58. Pereira-Forjaz, A. (1928).

"Spectrochemie des eaux minérales portugaises: l'eau de Gerez." Comptes Rendus à l'Académie des Sciences à Paris, vol. 186, p. 1366.

59. Pereira-Forjaz, A. (1929).

"Spectrochemie des eaux minérales portugaises. L'eau de Cambres." Comptes Rendus à l'Académie des Sciences à Paris, vol. 189, p. 703.

60. Porlezza, C. and Donati, A. (1926).

"Analisi spettrografica del tufo di Fiuggi." Annali di Chimica Applicata, Vol. 16, p. 457.

- 61. RAMAGE, H. (1929).
 "Spectrographic chemical analysis." Nature, vol. 123, p. 601.
- 62. Risco, M. (1924).

 "Analyse spectrale de la météorite du 19 juin 1924." Comptes

 Rendus à l'Académie des Sciences à Paris, vol. 179, p. 771.
- 63. SATO, D. (1925).

 "Brief notes on fergusonite and allanite from Iyo, Shikoku." Journal of the Faculty of Science, Imperial University of Tokyo. Sect. 2, vol. 1, p. 49.
- 64. Schneiderhöhn, H. (1929).

 "Examination for platinum metals by means of the quartz spectrograph, using ultra-violet light, of the individual isolated mineral constituents of the ores." In Wagner, P.A. Platinum Deposits and Mines of South Africa, p. 230.
- 65. Scutt, W. 1926.
 "Germanium in a British mineral." Philosophical Magazine, ser. 7,
 vol. 1, p. 1007.
- 66. Shibata, Y. and Kimura, K. (1923).

 "Analyses of fergusonite, naegite and monazite of Naegi, Mino
 Province." Japanese Journal of Chemistry, vol. 2, p. 1.
- 67. SHIBATA, Y. AND UEMURA, T. (1923).

 "Analysis of beryl from Naegi, Mino Province." Japanese Journal of Chemistry, vol. 2, p. 7.
- 68. Shibata, Y. and Kimura, K. (1923).

 "Analyses of columbite, monazite, samarskite and ishikawaite, (a new mineral) of Ishikawa, Iwaki." Japanese Journal of Chemistry, vol. 2, p. 13.
- 69. Shibata, Y. and Kimura, K. (1922).

 "On samarskite, and ishikawaite, a new mineral, from Ishikawa,

 Iwaki Province." Journal of the Chemical Society of Japan,

 vol. 43, p. 301.
- 70. SIEGBAHN, M., LINDH, A. E. AND STENSSON, N. (1921).
 "Über ein Verfahren der Spektralanalyse mittels Röntgenstrahlen."

 Zeitschrift für Physik, vol. 4, p. 61.
- 71. SORBY, H. C. (1870).

 "On jargonium, a new elementary substance associated with zirconium." Philosophical Magazine, ser. 4., vol. 39, p. 65.

- 72. TODD, E. W. (1924).
 - "The quartz spectrograph in mineral analysis." University of Toronto Studies, Geological series, No. 17, p. 66.
- 73. TWYMAN, F. AND SMITH, D. M. (1928).
 - "Quantitative spectrum analysis." American Institute of Mining and Metallurgical Engineers, Technical Publication No. 79 (Issued with Mining and Metallurgy, April 1928).
- 74. UEMURA, T. (1926).
 - "Analysis of beryl from Ishikawa, Iwaki Province." Japanese Journal of Chemistry, vol. 2, p. 117.
- 75. WHERRY, E. T. (1929).
 - "Mineral determination by absorption spectra." American Mineralogist, vol. 14, pp. 299 and 323.
- 76. WHERRY, E. T. (1915).
 - "The microspectroscope in mineralogy." Smithsonian Miscellaneous Collections, vol. 65, No. 5.
- 77. WILD, G. O. AND KLEMM, R. (1925-1926).
 - '' Mitteilungen über spektroscopische Untersuchungen an Mineralien.''

I Saphir. Centralblatt für Mineralogie, &c. Abt. A, p. 273.

II Caesium haltige Berylle. Ibid., 1925, p. 295.

III Topas. IV Diamant. Ibid., 1925, p. 321.

V Spodumen. Ibid., 1925, p. 324.

VI Smaragd. Ibid., 1926, p. 21.

VII Roter Spinell. Ibid., 1926, p. 29.

VIII Rubin. IX Alexandrit. Ibid., 1926, p. 30.

- 78. Zvjaginstev, O., Korsunski, M. and Seljakow, N. (1926). "Dwi-manganese in native platinum." Nature, vol. 118, p. 262.
- 79. Eddy, C. E., Laby, T. H. and Turner, A. H. (1929).

 "Analysis by X-ray spectroscopy." Proc. Roy. Soc., London.

 Ser. A, vol. 124, p. 249.
- 80. FERSMAN, A. (1926).
 - "Über das färbende Pigment der Smaragde." Compt. Rend. Acad. Sci., USSR., p. 24. (German.)
- 81. KLEMM, R. AND WILD, G. O. (1926).
 - "Zur Kenntnis des edlen Korundes." Neues Jahrb. Min., Abt. A, vol. 53, p. 266.
- 82. Papish, J. and Holt, D. (1928).
 - "Gallium. I. Arc spectrographic detection of gallium. II. Extraction of gallium from lepidolite." Journ. Physical Chem., vol. 32, p. 142.

83. Papish, J., Brewer, F. M. and Holt, D. (1927).

"Germanium. Arc spectrographic detection and estimation of germanium. Occurrence of germanium in certain tin minerals.

Enargite as a possible source of germanium." Journ. Amer.

Chem. Soc., vol. 49, p. 3028.

84. RIMANN, E. (1929).
"Bodenbenderita, nuevo mineral de la Argentina." Bol. Acad.
Nac. Cienc., Córdoba, vol. 31, p. 5.

85. Schneiderhöhn, H. (1929).

"Erzmikroskopische Untersuchung von Cooperit Pt(AsS)₂, Stibiopalladinit Pd₃Sb und einem neuen Nickeleisenerz aus den platinführenden Nickelmagnetkiesgesteinen des Bushvelds." Centralblatt für Mineralogie, &c., Abt. A, p. 193.

86. Thomassen, Lars. (1926).
"Kjemisk Røntgenspektrografi." Oslo. Statens Råstoffkomité.
Publ. no. 21. (Norwegian with English summary, pp. 102-108.)

87. Weigel, O. and Habich, G. (1928).

"Über Mineralfärbungen. I. Absorption rot gefärbter Mineralien im sichtbaren Tiel des Spektrums." Neues Jahrb. Min., Abt. A, vol. 57, p. 1.

88. Weigel, O. and Ufer, H. (1928).
"Über Mineralfärbungen. II. Die Absorption einiger rot gefärbter
Mineralien und künstlicher Präparate im sichtbaren und ultravioletten Tiel des Spektrums." Ibid., 87, p. 397.

89. Zambonini, F. and Carrobi, G. (1927).

"A chemical study of the yellow incrustations on the Vesuvian lava of 1631." Abstract by H. S. Washington, Amer. Min., vol. 12, p. 1.

90. Zambonini, F. and Carrobi, G. (1925).

"Sulla presenza tra i prodotti dell' attuale attività del Vesuvio, del tetracloro-cupriato potassico diidrato." Ann. R. Osservatorio Vesuviano, Ser. 3, vol. 2, p. 7.

91. Zies, E. G. (1923).

"The fumarolic incrustations in the valley of Ten Thousand Smokes." Contrib. Techn. Papers, National Geogr. Soc. Washington, Katmai ser., vol. 1, p. 157.