

Bachelor Thesis

for obtaining the academic degree Bachelor of Science (B.Sc.) in Media Informatics, Department VI of Beuth University of Applied Sciences Berlin

Design and Implementation of a Tool to Collect Executionand Service-Data of Big Data Analytics Applications

Markus Lamm Matriculation number: 786697 markus.lamm@gmail.com

Berlin, 06.09.2016

Supervisor: Prof. Dr. Stefan Edlich Consultant: Prof. Dr. Böhler

ACKNOWLEDGMENTS

ABSTRACT

Illustration Index

Illustration 1: Use-Case diagram	16
Illustration 2: Class diagram CollectorClient	
Illustration 3: Class diagram CollectorManager	
Illustration 4: Class diagram JvmCollector	
Illustration 5: Class diagram DstatCollector	
Illustration 6: Class diagram FlinkJmxCollector	
Illustration 7: Class diagram FlinkRestCollector	
Illustration 8: Class diagram KafkaBrokerJmxCollector	
Illustration 9: Component diagram.	
Illustration 10: Sequence diagram Client discovery	
Illustration 11: Sequence diagram Client scheduling	
Illustration 12: Deployment diagram.	

Index of Tables

Table of Contents

Introduction	7
Goals of work	7
Structure of this thesis	7
Theoretical foundations	8
Big-Data-Analytics-Architectures	8
Stream-Processing	
Apache Flink	8
Apache Kafka	8
Data Analysis	9
Java Management Extensions (JMX)	9
Representational State Transfer (REST)	9
Requirements and Target Definition	10
Architecture and Implementation	12
Microservices, Service Discovery	12
Event-Stream	12
System-Overview	12
CollectorClient	12
CollectorManager	12
Collector Data Processor	12
Message-Broker	12
Indexer	12
Persistence	
Evaluation	
Conclusion	
Appendix	
Use-Case diagram	
Class diagrams	
CollectorClient	
CollectorManager	
JvmCollector	
DstatCollector	
FlinkJmxCollector	
FlinkRestCollector	
KafkaBrokerJmxCollector	
Component diagram	
Sequence diagrams	
Client discovery	
Client scheduling	
Deployment-Diagram	
Setup instructions for the prototype application	23

Introduction

According to a survey in Germany, nine out of ten companies (89 percent) analyze internal data for operational decision-making processes using modern Big Data Analytics Architectures, where 48 percent of respondents see the greatest potential of Big Data [BITK14]. The analysis of continuous data streams is taking up a growing importance for companies and therefore constitutes an important factor for business success.

Collecting, storing and analyzing system and operational data of Big Data Architectures is therefore an essential tool in order to ensure successful operation. By analyzing the existing data, problems can be tracked and potential sources of error identified as early as possible.

Goals of work

The main goal of the thesis is the design and implementation of a software system to ingest and store system and operational data of big data analytics frameworks. It should be investigated which data is available for Apache Flink and Apache Kafka . With regard to a possible user interface and further analytic-processes in the future, the measuring data must be collected on the source systems, transported and stored at a central data storage system to be accessible for other components.

Central questions of elaboration will be:

- What sources exist to gather data from Apache Kafka and Apache Flink?
- What data is relevant and shall be collected?
- How can the data be collected from existing sources
- How can the data be stored regarding to further analytics or display in a graphical user interface?

Structure of this thesis

First chapter introduction and goals

Second introduction to BDSA

Theoretical foundations

Big-Data-Analytics-Architectures

Stream-Processing

Apache Flink

Apache Kafka

Data Analysis

Java Management Extensions (JMX)

Representational State Transfer (REST)

(Dstat system utility)

Requirements and Target Definition

Architecture and Implementation

Microservices, Service Discovery

Event-Stream

System-Overview

CollectorClient

CollectorManager

CollectorDataProcessor

Message-Broker

Indexer

Persistence

Evaluation

Conclusion

Appendix

Use-Case diagram

Illustration 1: Use-Case diagram

Class diagrams

CollectorClient

Illustration 2: Class diagram CollectorClient

CollectorManager

Illustration 3: Class diagram CollectorManager

JvmCollector

Illustration 4: Class diagram JvmCollector

DstatCollector

Illustration 5: Class diagram DstatCollector

FlinkJmxCollector

Illustration 6: Class diagram FlinkJmxCollector

FlinkRestCollector

Illustration 7: Class diagram FlinkRestCollector

KafkaBrokerJmxCollector

Illustration 8: Class diagram KafkaBrokerJmxCollector

Component diagram

Illustration 9: Component diagram

Sequence diagrams

Client discovery

Illustration 10: Sequence diagram Client discovery

Client scheduling

Illustration 11: Sequence diagram Client scheduling

Deployment-Diagram

Illustration 12: Deployment diagram

Setup instructions for the prototype application