ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРИИ ВЕРОЯТНОСТЕЙ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА)

специалиста

СИСТЕМЫ ОБСЛУЖИВАНИЯ С ПЕРЕРЫВАМИ В РАБОТЕ ПРИБОРА И ЗАДЕРЖКАМИ

Выполнила студентка
631 группы
Рассохина Александра Николаевна
подпись студента
Научный руководитель:
д. фм.н., профессор
Афанасьева Лариса Григорьевна
полинет полиново руковолитола
подпись научного руководителя

Москва 2021

Оглавление

1	Введение	2
2	Модель с перерывами в работе прибора 2.1 Описание модели	4
3	Модель с перерывами в работе прибора и задержками 3.1 Постановка задачи 3.2 Описание модели 3.3 Вывод уравнений баланса 3.4 Необходимое и достаточное условие стабильности системы 3.5 Операционные характеристики	11 11 12 13 15
4	Оптимизационная задача	18
5	Литература	20

1 Введение

Исследование систем обслуживания, в которых прибор на случайное время становится полностью или частично недоступным, началось с семидесятых годов прошлого века, с тех пор, как идея перерывов впервые обсуждалась в работе [2].

Для такой частичной или полной временной недоступности прибора в англоязычной литературе существует термин vacation. В литературе на русском языке общепринятого термина нет. В нашей работе мы используем выражение "перерыв в работе прибора", считая, что перерывы могут начинаться в моменты, когда в системе нет требований. Существует множество систем с разными правилами поведения в течение перерыва: полное отключение, обслуживание требования другим, например, менее эффективным прибором и прочие. В нашей работе мы рассматриваем перерыв как полное отключение прибора, однако, учитываем возможность обрыва перерыва, когда в системе скопилось слишком большое число требований. Требования, поступившие в систему во время перерыва начинают обслуживаться только по завершении перерыва.

В некоторых системах до принятия решения о перерыве проходит случайное время, которое мы будем называть задержкой. Требования, поступающие в систему во время задержки, поступают на обслуживание сразу же. Система, в которой присуствуют и задержки, и перерывы, также будет рассмотрена в нашей работе.

Системы обслуживания с перерывами и задержками используются для моделирования многих процессов. Перерыв в обслуживании может быть следствием многих факторов. Например, он может быть вызван необходимостью профилактического осмотра или ремонта оборудования, или же необходимостью использовать прибор в других, более загруженных системах, чтобы избежать длительных простоев и неэффективного использования оборудования.

В нашей работе мы рассмотрим две модели. В первой модели рассматривается перерыв, который обрывается, когда в системе скапливается m требований. Во второй в моменты освобождения системы от требований начинается период задержки, и, если во время задержки требований так и не поступило, с вероятностью α прибор переходит в перерыв, то есть обслуживание прекращается на некоторое случайное время. Обе модели одноканальные с пуассоновским входящим потоком и экспоненциально распределенными временами перерывов и задержек. Времена обслуживания одной заявки прибором также имеют экспоненциальное распределение.

Далее мы подробнее остановимся на каждой из двух моделей и найдем формулы для распределения и математического числа требований в системе в стационарном режиме. Также мы приведем оптимизацонную задачу, в которой исследуется оптимальное число заявок, при которых следует выводить прибор из перерыва, чтобы минимизировать издержки, обусловленные, с одной стороны, простоем прибора, с другой — ожиданием обслуживания требованиями, пришедшими в систему.

2 Модель с перерывами в работе прибора

2.1 Описание модели

Рассмотрим одноканальную систему с перерывами в обслуживании, но без задержек. Все требования, пришедшие за время перерыва обслуживаются прибором только по окончании перерыва. То есть во время перерыва обслуживания нет. Пусть входящий поток — пуассоновский с параметром λ , η — длительность перерыва, случайная величина, экпоненциально распределенная с параметром ν . Времена обслуживания прибора распределены экспоненциально с параметром μ .

В этой модели рассматривается перерыв, который обрывается, когда в системе скапливается m требований. Устремив m к бесконечности, мы получаем систему, в которой обрываться не будет.

 $Y(\eta)$ — количество заявок, пришедших за перерыв длительности η , t_m — момент прихода m-го требования, $t_m \in (t,t+\eta)$. Мы рассмотрим случай, когда при приходе m требований перерыв оборвается, и начинается обслуживание, значит, введем обозначения, учитывающие обрыв перерыва.

 $\tilde{Y}(\eta)$ – количество заявок, пришедших в систему, с учетом обрыва перерыва. $\tilde{\eta}$ – длительность перерыва, с учетом того, что он может оборваться.

Выразим случайные величины $\tilde{Y}(\eta)$ и $\tilde{\eta}$ через $Y(\eta)$ и η :

$$(\tilde{Y}(\eta), \tilde{\eta}) = (Y(\eta), \eta) \cdot \mathbb{I}(Y(\eta) < m) + (m, t_m) \cdot \mathbb{I}(Y(\eta) \geqslant m).$$

Определим функции

$$G(z,s) = \mathbb{E}z^{Y(\eta)}e^{-s\eta}, \qquad g(s) = G(1,s),$$

$$C(z) = \mathbb{E}z^{Y(\eta)} = G(z,0) = \sum_{j=0}^{\infty} C_j z^j, \qquad |z| \leqslant 1, Res \geqslant 0.$$

$$V(z,t) = \mathbb{E}z^{Y(t)}\mathbb{I}(\eta > t) = \sum_{j=0}^{\infty} z^j \mathbb{P}(Y(t) = j, \eta > t).$$

Эти формулы нужны для нахождения распределения и математического числа требований в системе в стационарном режиме.

Рассмотрим случайный процесс q(t), представляющий собой число требований в нашей системе в момент t. Процесс q(t) стабилен, если при любом начальном состоянии q(0) существуют пределы

$$\lim_{t \to \infty} \mathbf{P}(q(t) = j) = p_j, \qquad (j = 0, 1, 2...), \qquad \sum_{j=0}^{\infty} p_j = 1,$$

не зависящие от начального состояния. Для цепи Маркова – это свойство эргодичности.

Процесс q(t) – регенерирующий, и в качестве его точек регенерации возьмем последовательные моменты $\{T_n\}_{n=1}^{\infty}$ возникновений перерывов, тогда, по теореме из работы [1], предполагая, что $\mathbb{E}\eta < \infty$ и $\mathbf{P}(Y(\eta) = 0) < 1$, процесс q(t) стабилен тогда и только тогда, когда $\rho = \frac{\lambda}{\mu} < 1$.

2.2 Нахождение формулы предельного распределения процесса q(t)

Используя результат из работы [1], полученный для одноканальной системы с перерывами, но не учитывающий возможность обрыва перерывов, найдем предельное распределение для процесса q(t).

Если $\mathbb{E}\tilde{\eta} < \infty$ и $\rho < 1$, то существует

$$\lim_{t \to \infty} \mathbb{E}z^{q(t)} = \pi(z) = \frac{1 - \rho}{\lambda \bar{\eta}(1 - \rho) + \rho Y_1} \times \left(\lambda \int_0^\infty \tilde{V}(z, t) dt + \frac{z(1 - \tilde{C}(z))}{1 - z} \cdot \frac{1 - \beta(\lambda - \lambda z)}{\beta(\lambda - \lambda z) - z}\right), \quad (1)$$

где
$$\beta(s) = \int_0^\infty e^{-sx} dB(x) = \int_0^\infty \mu e^{-(s+\mu)x} dx, Y_1 = \mathbb{E}\tilde{Y}(\mu), \bar{\mu} = \mathbb{E}\tilde{\mu}.$$

Заметим, что для получения предельного распределения в нашей системе мы используем $\tilde{\eta}, \tilde{C(z)}, V(z,t), \tilde{G(z,s)}$, которые получены из функций, введенных в 2.1, с учетом обрыва перерыва, то есть:

$$\begin{split} \tilde{G}(z,s) &= \mathbb{E} z^{\tilde{Y}(\eta)} e^{-s\eta}, & \tilde{g}(s) &= \tilde{G}(1,s), \\ \tilde{C}(z) &= \mathbb{E} z^{\tilde{Y}(\eta)} = \tilde{G}(z,0), & |z| \leqslant 1, Res \geqslant 0. \\ \tilde{V}(z,t) &= \mathbb{E} z^{\tilde{Y}(t)} \mathbb{I}(\tilde{\eta} > t) = \sum_{j=0}^{\infty} z^{j} \mathbb{P}(Y(t) = j, \tilde{\eta} > t). \end{split}$$

Найдём формулу для $\tilde{G}(z,s)$, а далее используем её вычисления других функций, использованных в формуле (1).

$$\begin{split} \tilde{G}(z,s) &= \mathbb{E}z^{\tilde{Y}(\eta)}e^{-s\tilde{\eta}} = \sum_{j=0}^{m-1}z^j\int\limits_0^\infty e^{-sx}e^{-\lambda x}\frac{(\lambda x)^j}{j!}\nu e^{-\nu x}\,dx + z^m\mathbb{E}e^{-st_m}\mathbb{I}(t_m<\eta) = \\ &\sum_{j=0}^{m-1}z^j\int\limits_0^\infty \nu e^{-(s+\lambda+\nu)x}\frac{(\lambda x)^j}{j!}\,dx + z^m\mathbb{E}\mathbb{E}(e^{-st_m}\mathbb{I}(t_m\leqslant\eta)|\eta) = \\ &\sum_{j=0}^{m-1}\nu\frac{(\lambda z)^j}{j!}\cdot\Gamma(j+1)\cdot\frac{1}{(\lambda+\nu+s)^{j+1}} + z^m\int\limits_0^\infty \nu e^{-\nu x}\,dx\int\limits_0^x e^{-sy}\,d\mathbb{P}(t_m\leqslant y) = \\ &\sum_{j=0}^{m-1}\nu\cdot\frac{(\lambda z)^j}{(\lambda+\nu+s)^{j+1}} + z^m(1-e^{-\nu x})\int\limits_0^x e^{-sy}\,d\mathbb{P}(t_m\leqslant y)\bigg|_0^\infty - z^m\int\limits_0^x (1-e^{-\nu x})e^{-sy}\,d\mathbb{P}(t_m\leqslant y) = \\ &\sum_{j=0}^{m-1}\frac{\nu}{\lambda+\nu+s}\cdot\left(\frac{\lambda z}{\lambda+\nu+s}\right)^j + z^m\int\limits_0^\infty e^{-sy}\,d\mathbb{P}(t_m\leqslant y) - z^m\int\limits_0^\infty e^{-sy}\,d\mathbb{P}(t_m\leqslant y) + z^m\int\limits_0^x e^{-(\nu+s)x}\,d\mathbb{P}(t_m\leqslant y) = \\ &\sum_{j=0}^{m-1}\frac{\nu}{\lambda+\nu+s}\cdot\left(\frac{\lambda z}{\lambda+\nu+s}\right)^j + z^m\int\limits_0^x e^{-(\nu+s)x}\,d\mathbb{P}(t_m\leqslant y) = \sum_{j=0}^{m-1}\frac{\nu}{\lambda+\nu+s}\cdot\left(\frac{\lambda z}{\lambda+\nu+s}\right)^j + \\ &+z^m\int\limits_0^x e^{-(\nu+s+\lambda)y}\cdot\frac{\lambda^m y^{m-1}}{(m-1)!}\,dy = \sum_{j=0}^{m-1}\frac{\nu}{\lambda+\nu+s}\cdot\left(\frac{\lambda z}{\lambda+\nu+s}\right)^j + \frac{(\lambda z)^m}{(\lambda+\nu+s)^m} = \end{split}$$

$$=\frac{\nu}{\lambda+\nu+s}\cdot\frac{1-\left(\frac{\lambda z}{\lambda+\nu+s}\right)^m}{1-\left(\frac{\lambda z}{\lambda+\nu+s}\right)}+\frac{(\lambda z)^m}{(\lambda+\nu+s)^m}=\frac{\nu}{\lambda+\nu+s-\lambda z}+\left(\frac{\lambda z}{\lambda+\nu+s}\right)^m\cdot\left(\frac{\lambda-\lambda z+s}{\lambda+\nu+s-\lambda z}\right).$$

Получили:

$$\tilde{G}(z,s) = \frac{\nu}{\lambda + \nu + s - \lambda z} + \left(\frac{\lambda z}{\lambda + \nu + s}\right)^m \cdot \left(\frac{\lambda - \lambda z + s}{\lambda + \nu + s - \lambda z}\right) \tag{2}$$

При подсчете $\tilde{G}(z,s)$ мы использовали формулу интегрирования по частям определенного интеграла, формулу суммы убывающей геометрической програссиии (так как $\lambda, \nu, \mu > 0, Res \geqslant 0, |z| \leqslant 1)$ и гамма-функцию $\int\limits_0^\infty e^{-x} x^{m-1} \, dx = \Gamma(m) = (m-1)!, \ \forall m \in \mathbb{N}.$

Проверим полученную формулу для $\tilde{G}(z,s)$, подставив в нее (1; 0).

$$\tilde{G}(z,s) = \frac{\nu}{\lambda + \nu + 0 - \lambda} + \left(\frac{\lambda}{\lambda + \nu + 0}\right)^m \cdot \left(\frac{\lambda - \lambda + 0}{\lambda + \nu + 0 - \lambda}\right) = \frac{\nu}{\nu} + 0 = 1.$$

Подставив в определение функции $\tilde{G}(z,s)$ значение (1,0):

$$G(z,s) = \mathbb{E}z^{Y(\eta)}e^{-s\eta}, \qquad \qquad \tilde{G}(1,0) = \mathbb{E}1^{\tilde{Y}(\eta)} = 1.$$

Получаем, что $\tilde{G}(1,0)=1$, что сходится с результатом подстановки в полученную нами формулу (2).

Далее найдем $\tilde{C}(z) = \mathbb{E} z^{\tilde{Y}(\eta)} = \tilde{G}(z,0)$:

$$\tilde{C}(z) = \sum_{j=0}^{m-1} \frac{\nu}{\lambda + \nu} \cdot \left(\frac{\lambda z}{\lambda + \nu}\right)^j + \frac{(\lambda z)^m}{(\lambda + \nu)^m} = \frac{\nu}{\lambda + \nu - \lambda z} + \left(\frac{\lambda z}{\lambda + \nu}\right)^m \cdot \left(\frac{\lambda - \lambda z}{\lambda + \nu - \lambda z}\right). \tag{3}$$

Далее найдем $\tilde{Y}_1 = \mathbb{E}\tilde{Y}(\eta)$:

$$\tilde{Y}_1 = \mathbb{E}\tilde{Y}(\eta) = \tilde{C}'_z(1) = \sum_{i=0}^{m-1} \frac{\nu}{\lambda + \nu} \cdot \left(\frac{\lambda}{\lambda + \nu}\right)^j \cdot j + \frac{m \cdot (\lambda z)^m}{(\lambda + \nu)^m} \tag{4}$$

Используем формулу (|a| < 1):

$$\sum_{j=0}^{\infty} j \cdot a^j = \frac{a}{(1-a)^2}, \qquad \sum_{j=0}^{m-1} j \cdot a^j = \frac{(m-1)a^{m+1} - a(ma^{m-1} - 1)}{(1-a)^2}.$$

Тогда получим:

$$\tilde{Y_1} = \frac{\nu}{\lambda + \nu} \cdot \frac{(m-1) \cdot \left(\frac{\lambda}{\lambda + \nu}\right) - \frac{\lambda}{\lambda + \nu} \left(m \cdot \left(\frac{\lambda}{\lambda + \nu}\right)^{m-1} - 1\right)}{\left(1 - \frac{\lambda}{\lambda + \nu}\right)^2} + \frac{m\lambda^m}{(\lambda + \nu)^m} = \frac{m\lambda^m}{(\lambda + \nu)^m}$$

$$=\frac{\lambda+\nu}{\nu}\cdot(m-1)\left(\frac{\lambda}{\lambda+\nu}\right)^{m+1}-\frac{\lambda+\nu}{\nu}\cdot\frac{\lambda}{\lambda+\nu}\cdot m\left(\frac{\lambda}{\lambda+\nu}\right)^{m-1}+\frac{\lambda+\nu}{\nu}\cdot\frac{\lambda}{\lambda+\nu}+\frac{m\lambda^m}{(\lambda+\nu)^m}=$$

$$= \frac{\lambda}{\nu} \cdot (m-1) \left(\frac{\lambda}{\lambda+\nu}\right)^m - \frac{\lambda}{\nu} \cdot m \left(\frac{\lambda}{\lambda+\nu}\right)^{m-1} + \frac{\lambda}{\nu} + \frac{m\lambda^m}{(\lambda+\nu)^m} = \left(\frac{\lambda}{\lambda+\nu}\right)^{m-1} \left((m-1)\frac{\lambda^2}{\nu(\lambda+\nu)} - \frac{\lambda}{\nu}m + \frac{m\lambda}{\lambda+\nu}\right) + \frac{\lambda}{\nu} = \left(\frac{\lambda}{\lambda+\nu}\right)^{m-1} \cdot \left((m-1)\frac{\lambda^2}{\nu(\lambda+\nu)} - \frac{\lambda^2}{\nu(\lambda+\nu)}m\right) + \frac{\lambda}{\nu} = \frac{\lambda}{\nu} - \left(\frac{\lambda}{\lambda+\nu}\right)^{m-1} \cdot \frac{\lambda^2}{\nu(\lambda+\nu)} = \frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda+\nu}\right)^m\right).$$

Получаем формулу для математического ожидания количества требований, пришедших за время перерыва:

 $\tilde{Y}_1 = \frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^m \right). \tag{5}$

Найдем математическое ожидание длительности перерыва с учетом обрыва, используем: $\mathbb{E} \tilde{\eta} = -\tilde{G}_s'(1,0).$

$$\tilde{G}'_{s} = \sum_{j=0}^{m-1} \frac{-(j+1)\nu \cdot (\lambda z)^{j} \cdot (\lambda + \nu + s)^{j}}{(\lambda + \nu + s)^{2j+2}} - \frac{m \cdot (\lambda + \nu + s)^{m-1}(\lambda z)^{m}}{(\lambda + \nu + s)^{2m}}$$

$$\mathbb{E}\tilde{\eta} = -\tilde{G}_s'(1,0) = \sum_{j=0}^{m-1} \frac{-(j+1) \cdot \nu \cdot \lambda^j}{(\lambda+\nu)^{j+2}} + \frac{m \cdot \lambda^m}{(\lambda+\nu)^{m+1}} = \sum_{j=1}^m \frac{\nu}{\lambda(\lambda+\nu)} \cdot \left(\frac{\lambda}{\lambda+\nu}\right)^j \cdot j + \frac{m \cdot \lambda^m}{(\lambda+\nu)^m} = \frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda+\nu}\right)^m\right).$$

Получаем:
$$\mathbb{E}\tilde{\eta} = \frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^m \right). \tag{6}$$

Проверим правильность результата, полученного для $\mathbb{E}\tilde{\eta}$, используя другой метод подсчета $\mathbb{E}\tilde{\eta}$:

$$\mathbb{E}\tilde{\eta} = \int_{0}^{\infty} y e^{-\nu y} \cdot \frac{\lambda(\lambda y)^{m-1}}{(m-1)!} \cdot e^{-\lambda y} \, dy + \int_{0}^{\infty} y e^{-\nu y} \, dy \int_{y}^{\infty} \frac{\lambda(\lambda x)^{m-1}}{(m-1)!} \cdot e^{-\lambda x} \, dx \tag{7}$$

Докажем эквивалентность формул (6) и (7) методом математической индукции.

• База индукции m=1:

Формула (6):

$$\frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right) \right) = \frac{1}{\nu} \cdot \frac{\nu}{\lambda + \nu} = \frac{1}{\lambda + \nu}.$$
Формула (7):

$$\int_{0}^{\infty} y e^{-\nu y} \cdot \lambda \cdot e^{-\lambda y} \, dy + \int_{0}^{\infty} y e^{-\nu y} \, dy \int_{y}^{\infty} \lambda \cdot e^{-\lambda x} \, dx = \frac{\lambda}{(\lambda + \nu)^{2}} + \int_{0}^{\infty} \nu y \cdot e^{-\lambda y - \nu y} \, dy = \frac{\lambda}{(\lambda + \nu)^{2}} + \frac{\nu}{(\lambda + \nu)^{2}} = \frac{1}{\lambda + \nu}.$$

• Допустим, формула (6) эквивалентна формуле (7) для m.

• Докажем, что из этого следует равенство формул для m+1:

Формула (6):

$$\mathbb{E}\tilde{\eta}(m+1) = \frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^{m+1} \right),$$

$$\mathbb{E}\tilde{\eta}(m) = \frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^{m} \right),$$

$$\mathbb{E}\tilde{\eta}(m+1) - \mathbb{E}\tilde{\eta}(m) = \frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^{m+1} \right) - \frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^{m} \right) = \frac{\lambda^{m}}{(\lambda + \nu)^{m+1}}.$$

Формула (7):

$$\begin{split} \mathbb{E}\tilde{\eta}(m) &= \int\limits_0^\infty y e^{-\nu y} \cdot \frac{\lambda(\lambda y)^{m-1}}{(m-1)!} \cdot e^{-\lambda y} \, dy + \int\limits_0^\infty y e^{-\nu y} \, dy \int\limits_y^\infty \frac{\lambda(\lambda x)^{m-1}}{(m-1)!} \cdot e^{-\lambda x} \, dx = \\ &= \frac{m\lambda^m}{(\lambda + \nu)^{m+1}} + \int\limits_0^\infty y e^{-\nu y} \int\limits_y^\infty \frac{\lambda(\lambda x)^{m-1}}{(m-1)!} \cdot e^{-\lambda x} \, dx. \\ \mathbb{E}\tilde{\eta}(m+1) &= \int\limits_0^\infty y e^{-\nu y} \cdot \frac{\lambda(\lambda y)^m}{m!} \cdot e^{-\lambda y} \, dy + \int\limits_0^\infty y e^{-\nu y} \, dy \int\limits_y^\infty \frac{\lambda(\lambda x)^m}{m!} \cdot e^{-\lambda x} \, dx = \\ &= \int\limits_0^\infty e^{-(\nu + \lambda)y} \cdot \frac{(\lambda y)^{m+1}}{m!} \, dy + \int\limits_0^\infty y \nu e^{-\nu y} \, dy \left(\frac{\lambda(\lambda x)^m}{-\lambda m!} \cdot e^{-\lambda x} \right) \Big|_y^\infty + \int\limits_y^\infty \frac{m\lambda^{m+1}x^{m-1}}{\lambda m!} \cdot e^{-\lambda x} \, dx = \\ &= \frac{(m+1)\lambda^{m+1}}{(\lambda + \nu)^{m+2}} + \frac{\lambda^m\nu(m+1)}{(\lambda + \nu)^{m+2}} + \int\limits_0^\infty y e^{-\nu y} \int\limits_y^\infty \frac{\lambda(\lambda x)^{m-1}}{(m-1)!} \cdot e^{-\lambda x} \, dx. \\ &\mathbb{E}\tilde{\eta}(m+1) - \mathbb{E}\tilde{\eta}(m) = \frac{(m+1)\lambda^{m+1}}{(\lambda + \nu)^{m+2}} + \frac{\lambda^m\nu(m+1)}{(\lambda + \nu)^{m+2}} + \int\limits_0^\infty y e^{-\nu y} \int\limits_y^\infty \frac{\lambda(\lambda x)^{m-1}}{(m-1)!} \cdot e^{-\lambda x} \, dx - \\ &- \frac{m\lambda^m}{(\lambda + \nu)^{m+1}} - \int\limits_0^\infty y e^{-\nu y} \int\limits_y^\infty \frac{\lambda(\lambda x)^{m-1}}{(m-1)!} \cdot e^{-\lambda x} \, dx = \frac{(m+1)\lambda^{m+1}}{(\lambda + \nu)^{m+2}} + \frac{\lambda^m\nu(m+1)}{(\lambda + \nu)^{m+2}} - \frac{m\lambda^m}{(\lambda + \nu)^{m+1}} = \\ &= \frac{\lambda^m(\lambda + \nu)(m+1)}{(\lambda + \nu)^{m+2}} - \frac{m\lambda^m}{(\lambda + \nu)^{m+1}} = \frac{\lambda^m}{(\lambda + \nu)^{m+1}}. \end{split}$$

Доказательство методом математической индукции завершено. Формулы (6) и (7) эквивалентны $\forall m \in \mathbb{N}$.

Далее найдем $\int_{0}^{\infty} \tilde{V}(z,t) dt = \int_{0}^{\infty} \sum_{i=0}^{\infty} z^{j} \mathbb{P}(Y(t) = j, \tilde{\eta} > t) dt$:

$$\int_{0}^{\infty} \tilde{V}(z,t) dt = \sum_{j=0}^{m-1} z^{j} \int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{j}}{j!} dt \int_{t}^{\infty} \nu e^{-\nu x} dx = \sum_{j=0}^{m-1} z^{j} \int_{0}^{\infty} e^{-(\lambda + \nu)t} \frac{(\lambda t)^{j}}{j!} dt =$$

$$= \sum_{j=0}^{m-1} z^{j} \int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{j}}{j!} dt \int_{t}^{\infty} \nu e^{-\nu x} dx = \sum_{j=0}^{m-1} \frac{\lambda^{j} z^{j}}{j!} \int_{0}^{\infty} e^{-(\lambda + \nu)t} t^{j} dt = \sum_{j=0}^{m-1} \frac{1}{\lambda + \nu} \cdot \left(\frac{\lambda z}{\lambda + \nu}\right)^{j}$$

$$= \frac{1}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^{m}\right).$$

Имеем:

$$\int_{0}^{\infty} \tilde{V}(z,t) dt = \frac{1}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu} \right)^{m} \right). \tag{8}$$

Для использования формулы для предельного распределения процесса q(t) необходимо ещё найти:

$$\beta(\lambda - \lambda z) = \int_{0}^{\infty} e^{-(\lambda - \lambda z)x} \mu e^{-\mu x} dx = \mu \int_{0}^{\infty} e^{-(\lambda - \lambda z + \mu)x} dx = \frac{\mu}{\lambda + \mu - \lambda z}.$$

Тогда найдем $\frac{1-\beta(\lambda-\lambda z)}{\beta(\lambda-\lambda z)-z}$:

$$\frac{1 - \beta(\lambda - \lambda z)}{\beta(\lambda - \lambda z) - z} = \frac{1 - \frac{\mu}{\lambda + \mu - \lambda z}}{\frac{\mu}{\lambda + \mu - \lambda z} - z} = \frac{\lambda + \mu - \lambda z - \mu}{\mu - \lambda z - \mu z + \lambda z^2} = \frac{\lambda(1 - z)}{(\mu - \lambda z)(1 - z)} = \frac{\lambda}{\mu - \lambda z}.$$
 (9)

Мы имеем:
$$\tilde{C}(z) = \frac{\nu}{\lambda + \nu - \lambda z} + \left(\frac{\lambda z}{\lambda + \nu}\right)^m \cdot \left(\frac{\lambda - \lambda z}{\lambda + \nu - \lambda z}\right). \tag{3}$$

$$1 - \tilde{C}(z) = 1 - \frac{\nu}{\lambda + \nu - \lambda z} - \left(\frac{\lambda z}{\lambda + \nu}\right)^m \cdot \left(\frac{\lambda - \lambda z}{\lambda + \nu - \lambda z}\right) = \left(\frac{\lambda - \lambda z}{\lambda + \nu - \lambda z}\right) \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right). \tag{5}$$

$$\tilde{Y}_1 = \frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right). \tag{5}$$

$$\mathbb{E}\tilde{\eta} = \frac{1}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^m \right). \tag{6}$$

$$\int_{0}^{\infty} \tilde{V}(z,t) dt = \frac{1}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu} \right)^{m} \right). \tag{8}$$

$$\frac{1 - \beta(\lambda - \lambda z)}{\beta(\lambda - \lambda z) - z} = \frac{\lambda}{\mu - \lambda z}.$$
(9)

Необходимо подставить полученные результаты в формулу (1):

$$\lim_{t \to \infty} \mathbb{E}z^{q(t)} = \pi(z) = \frac{1 - \rho}{\lambda \bar{\eta}(1 - \rho) + \rho Y_1} \times \left(\lambda \int_0^\infty \tilde{V}(z, t) \, dt + \frac{z(1 - \tilde{C}(z))}{1 - z} \cdot \frac{1 - \beta(\lambda - \lambda z)}{\beta(\lambda - \lambda z) - z}\right). \quad (1)$$

$$\pi(z) = \frac{\left(1 - \frac{\lambda}{\mu}\right) \cdot \left(\frac{\lambda}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right) + \frac{z\left(\frac{\lambda - \lambda z}{\lambda + \nu - \lambda z}\right) \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right)}{1 - z} \cdot \frac{\lambda}{\mu - \lambda z}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right) \left(1 - \frac{\lambda}{\mu}\right) + \frac{\lambda \lambda}{\mu} \frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right)}{\lambda + \nu - \lambda z} \cdot \frac{\lambda}{\mu - \lambda z}\right)} = \frac{\left(1 - \frac{\lambda}{\mu}\right) \cdot \left(\frac{\lambda}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right) + \frac{\lambda z \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right)}{\lambda + \nu - \lambda z} \cdot \frac{\lambda}{\mu - \lambda z}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right) \left(1 + \frac{\lambda z}{\mu - \lambda z}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right)}.$$

Таким образом, мы получили формулу **предельного распределения** количества требований в системе с перерывами в работе прибора:

$$\lim_{t \to \infty} \mathbb{E}z^{q(t)} = \pi(z) = \frac{\left(1 - \frac{\lambda}{\mu}\right) \cdot \frac{\lambda}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right) \left(1 + \frac{\lambda z}{\mu - \lambda z}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right)}.$$
 (10)

Чтобы проверить полученный результат, рассмотрим случай $m = \infty$, то есть такой случай, когда перерыв не обрывается, сколько бы заявок не пришло во время перерыва.

Для этого воспользуемся следствием 1 из работы [1]:

Если Y – пуассоновский процесс интенсивности λ , не зависящий от η и $\mathbb{E}(\eta) < \infty, \rho < 1$, то:

$$\pi(z) = \frac{(1-\rho)(1-z)\beta(\lambda-\lambda z)}{\beta(\lambda-\lambda z)-z)} \cdot \frac{1-g(\lambda-\lambda z)}{\lambda\bar{\eta}(1-z)}$$

Найдем $g(s), \beta(s), \bar{\eta}$ для нашего случая $(\hat{Y}(\eta), \hat{\eta}) = (Y(\eta), \eta)$.

$$\hat{G}(z,s) = \mathbb{E}z^{\hat{Y}(\eta)}e^{-s\hat{\eta}} = \sum_{j=0}^{\infty} z^j \int_{0}^{\infty} e^{-sx}e^{-\lambda x} \frac{(\lambda x)^j}{j!} \nu e^{-\nu x} dx = \frac{\nu}{\lambda + \mu + s - \lambda z}.$$

$$\hat{g}(s) = \hat{G}(1,s) = \frac{\nu}{\nu+s}, \qquad \qquad \beta(\lambda-\lambda z) = \frac{\mu}{\lambda+\mu-\lambda z}, \qquad \qquad \bar{\eta} = \frac{1}{\nu}.$$
 Тогда получим:

$$\pi(z) = \frac{\left(1 - \frac{\lambda}{\mu}\right)\nu\mu}{(\mu - \lambda z)(\nu + \lambda - \lambda z)}.$$

Теперь используем формулу (10), добавив $\lim_{m\to\infty}$:

$$\lim_{m \to \infty} \pi(z) = \frac{\left(1 - \frac{\lambda}{\mu}\right) \cdot \frac{\mu}{\mu - \lambda z} \cdot \frac{\lambda}{\lambda + \nu - \lambda z}}{\frac{\lambda}{\nu}}.$$

Результаты получились одинаковыми.

2.3 Нахождение формулы для математического ожидания числа требований в стационарном режиме

Используем теорему (3) из работы [1].

Теорема 3. Пусть $\mathbb{E}(\eta^2) < \infty, Y_1 > 0, \rho < 1, b_2 = \int_0^\infty x^2 dB(x) < \infty$, тогда:

$$\mathbb{E}q = \pi'(1) = \frac{(1-\rho)\lambda \cdot \int_{0}^{\infty} \mathbb{E}Y(t)\mathbb{I}(\eta \geqslant t) dt + \rho Y_1 \left(1 + \frac{Y_2 - Y_1}{2Y_1} + \frac{\lambda^2 b_2}{2\rho(1-\rho)}\right)}{\lambda \bar{\eta}(1-\rho) + \rho Y_1}.$$
 (11)

Формулу для математического ожидания числа треюований можно находть по-разному: можно продифференцировать полученную нами формулу для стационарного распределения, можно воспользоваться формулой (11), подставив недостающие функции.

$$\pi(z) = \frac{\left(1 - \frac{\lambda}{\mu}\right) \cdot \frac{\lambda}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^{m}\right) \left(1 + \frac{\lambda z}{\mu - \lambda z}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^{m}\right)}.$$
 (10)

$$\pi(z) = \frac{\left(1 - \frac{\lambda}{\mu}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^{m}\right)} \cdot \frac{\lambda}{\lambda + \nu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^{m}\right) \frac{\mu}{\mu - \lambda z} = K \cdot d(z),$$

где
$$K = \frac{\left(1 - \frac{\lambda}{\mu}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right)}$$
 и $d(z) = \frac{\lambda}{\lambda + \nu - \lambda z} \cdot \frac{\mu}{\mu - \lambda z} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right)$. Найдем $d'(z)$.

$$d'(z) = \frac{-\lambda\mu(-\lambda)(\mu - \lambda z) - \lambda\mu(-\lambda)(\lambda + \nu - \lambda z)}{(\lambda + \nu - \lambda z)^2(\mu - \lambda z)^2} \cdot \left(1 - \left(\frac{\lambda z}{\lambda + \nu}\right)^m\right) - \frac{m \cdot z^{m-1}\lambda^{m+1}\mu}{(\lambda + \nu - \lambda z)(\mu - \lambda z)(\lambda + \nu)^m},$$

$$d'(1) = \frac{\lambda^2 \mu(\mu + \nu - \lambda)}{\nu^2 (\mu - \lambda)^2} \cdot \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right) - \frac{m \cdot \lambda^{m+1} \mu}{\nu (\mu - \lambda)(\lambda + \nu)^m},$$

тогда

$$\pi'(1) = \frac{\left(1 - \frac{\lambda}{\mu}\right)}{\frac{\lambda}{\nu} \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right)} \cdot \left(\frac{\lambda^2 \mu(\mu + \nu - \lambda)}{\nu^2 (\mu - \lambda)^2} \cdot \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right) - \frac{m \cdot \lambda^{m+1} \mu}{\nu (\mu - \lambda)(\lambda + \nu)^m}\right)$$

Таким образом, находим **математическое ожидание** q(t):

$$\mathbb{E}q = \frac{\lambda}{\nu} \cdot \left(1 + \frac{\nu}{\mu - \lambda}\right) - \frac{m\left(\frac{\lambda}{\lambda + \nu}\right)^m}{1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m} \tag{12}$$

Можем получить такую же формулу для математического ожидания иначе, подставив в формулу (11) функции:

$$b_2 = \int_0^\infty x^2 dB(x) = \frac{2}{\mu^2},\tag{13}$$

 $Y_2 = -\frac{2\lambda m}{\nu} \left(\frac{\lambda}{\lambda + \nu}\right)^m + \frac{\lambda}{\nu} \cdot \frac{2\lambda + \nu}{\nu} \cdot \left(1 - \left(\frac{\lambda}{\lambda + \nu}\right)^m\right),\tag{14}$

$$\int_{0}^{\infty} \mathbb{E}Y(t)\mathbb{I}(\eta \geqslant t) dt = \frac{\lambda}{\nu^{2}} \left(1 - \left(\frac{\lambda}{\lambda + \nu} \right)^{m} \right) - \left(\frac{\lambda}{\lambda + \nu} \right)^{m} \cdot \frac{m}{\nu}. \tag{15}$$

3 Модель с перерывами в работе прибора и задержками

3.1 Постановка задачи

Рассмотрим систему массового обслужсивания с одним прибором. Входящий поток пуассоновский с параметром λ , времена обслуживания одной заявки прибором имеют экпоненциальное распределение с параметром ν .

В момент, когда система освобождается, начинается период задержки, времена которого экспоненциально распределенны с параметром μ . Если в течение этого периода поступает требование, период задержки обрывается, а требование начинает обслуживаться.

Если требование не поступает, то с вероятностью α прибор отключается на время, экпоненциально распределенное с параметром β , после чего начинается обслуживание. С вероятностью $1-\alpha$ после задержки, если ничего не поступило, начинается новая задержка.

Далее мы попытаемся найти условие стабильности и стационарное распределение для этой системы.

3.2 Описание модели

Множество состояний нашей системы можно разделить на три типа: первый - прибор включен и не находится в периоде задержки, в таком случае в системе находится количество заявок большее нуля. Состояния такого типа занумерованы на схеме выше (1,1),(2,1),(3,1) и так далее, где первое число - это количество заявок в системе, а второе - единица, чтобы отметить этот тип состояний.

Второй тип - прибор выключен. Состояния такого типа занумерованы (0,2),(1,2),(2,2) и так далее, где первое число - это количество заявок в системе, а второе число - два. Если количество заявок n в данном типе будет не равно нулю, то из состояния (n,2) второго типа система перейдет в состояние (n,1) первого типа сразу после включения прибора. Если система в состоянии (0,2), то есть заявок в системе нет, и прибор выключен, то система может перейти в состояние (1,2), если во время отключения придет одна заявка, или в состояние (3), период задержки, если прибор включится, но за время отключения ни одного требования так и не придет.

Третий тип - прибор в режиме задержки. В этом случае заявок в системе не будет, период задержки может наступить после обслуживания последнего требования или после того, как прибор включился, но новых требований за время отключения не пришло.

3.3 Вывод уравнений баланса

Таким образом, состояние системы в момент t описывается цепью Маркова $\Omega(t) = (q(t), \zeta(t)),$ где q(t) - число заявок на орбите, а $\zeta(t)$ определяется следующим образом:

$$\zeta(t) = \begin{cases} 1 & \text{прибор включен,} \\ 2 & \text{прибор выключен,} \\ 3 & \text{прибор в периоде задержки.} \end{cases}$$

Если система в момент времени t находится в периоде задержки, то нет необходимости вводить переменную q(t), ведь в этом случае в системе не будет ни одного требования. В этом случае естественно положить $\Omega(t) = \zeta(t)$.

Множество состояний цепи Маркова $\Omega(t)$ можно предстваить в виде $\Omega(t) = \{ \mathfrak{I}, (0,2), (i,2), (i,1) \},$ где i > 0.

Полученная цепь Маркова однородна:

$$\mathbf{P}(t) = (P_{ij}(t)) = P(\Omega(s+t) = j \mid \Omega(s) = i) = (\Omega(t) = j \mid \Omega(0) = i).$$

Пусть $(P_{ij}(t))$ —матрица переходных вероятностей. Она удовлетворяет уравнению Колмогорова - Чепмена:

$$\mathbf{P}(t+s) = \mathbf{P}(t)\mathbf{P}(s).$$

По определению, инфинитезимальная матрица, $Q = \lim_{h \infty} \frac{P(h) - E}{h}$, или, что эквивалентно $Q = (q_{ij}) = \left(\frac{dP_{ij}(h)}{dh}\right)\Big|_{h=0}$.

Из уравнения Колмогорова - Чепмена следует прямое уравнение Колмогорова:

$$\frac{dP(t)}{dt} = P(t)Q.$$

Стационарное распределение цепи Маркова - это распределение вероятности, которое не меняется с течением времени: $\exists \lim_{t \to \infty} P_{ij}(t) = P_j$. В частности $\lim_{t \to \infty} \frac{dP_{ij}(t)}{dt} = 0$.

Мы рассматриваем стационарный случай, прямое уравнение Колмогорова примет вид:

$$\frac{dP(t)}{dt} = 0 = \mathbf{P}(t)\mathbf{Q}$$
 — в матричной форме, или:

$$q_j P_j = \sum_{k \neq j} P_k q_{kj}.$$

На рисунке рядом со стрелками указаны q_{ij} для нашей модели, то есть производные вероятностей перехода из состояния i в состояние j за малое время h.

Уравнение для состояния (1, 1):

$$(\lambda + \nu) \cdot P_{ij} = \lambda P_3 + \beta P_{12} + \nu P_{21}. \tag{16}$$

Уравнения для остальных состояний первого типа (состояния (w,1), где w=1,2,3,...):

$$(\lambda + \nu) \cdot P_{w1}, l = \lambda P_{w-11} + \beta P_{w2} + \nu P_{w+11} \tag{17}$$

Уравнение для состояния (0,2):

$$(\lambda + \beta) \cdot P_{02} = \alpha \mu_3. \tag{18}$$

Уравнения для остальных состояний второго типа (состояния $(s,\,1),$ где $s=2,\,3,\,4...$):

$$(\lambda + \beta) \cdot P_{s2} = \lambda P_{s-12}$$
 где $s = 1, 2...$ (19)

Уравнение для состояния (з):

$$(\lambda + \alpha \mu) \cdot P_3 = \beta P_{02} + \nu P 11 \tag{20}$$

Введем производящие функции:

$$P_2(z) = \sum_{i=0}^{\infty} P_{i2} \cdot z^i,$$

$$P_1(z) = \sum_{i=1}^{\infty} P_{i1} \cdot z^{i-1}.$$

Так, домножая каждое из уравнений (16), (18), (20) на z^0 , а уравнения (17), (19), на z^1 , z^2 , z^3 и так далее, мы получим систему:

$$\begin{cases} (\lambda + \beta) \cdot P_2(z) = z\lambda P_2(z) + \alpha \mu P_3, \\ (\lambda + \nu - \frac{\nu}{z} - \lambda z) \cdot P_1(z) = \lambda P_3 + \frac{\beta}{z} P_2(z) - \frac{\beta}{z} P_{02} - \frac{\nu}{z} P_{11}, \\ (\lambda + \alpha \mu) \cdot P_3 = \beta P_{02} + \nu P_{11}. \end{cases}$$

Из первого уравнения системы можно выразить $P_2(z)$:

$$P_2(z) = \frac{\alpha \mu P_3}{\beta + \lambda - \lambda z} \tag{21}$$

Тогда, подставляя $P_2(z)$ во второе уравнение системы, получим:

$$(\lambda + \nu - \frac{\nu}{z} - \lambda z) \cdot P_1(z) - \lambda P_3 - \frac{\beta \alpha \mu P_3}{z(\beta + \lambda - \lambda z)} + \frac{\beta}{z} P_{02} + \frac{\nu}{z} P_{11} = 0$$
 (22)

Выразим $P_1(z)$ и $P_2(z)$ через P_3 :

$$\begin{cases}
P_2(z) = \frac{\alpha \mu P_3}{\beta + \lambda - \lambda z}, \\
(\lambda - \frac{\nu}{z})(1 - z) \cdot P_1(z) = \frac{P_3(1 - z)(\lambda^2 z - \alpha \mu \lambda - \beta \lambda - \lambda^2)}{z(\beta + \lambda - \lambda z)}, \\
(\lambda + \alpha \mu) \cdot P_3 = \beta P_{02} + \nu P_{11}.
\end{cases} (23)$$

Чтобы выразить P_3 воспользуемся нормировочным условием:

$$P_1(1) + P_2(1) + P_3 = \sum_{i=1}^{\infty} P_{i1} + \sum_{j=0}^{\infty} P_{j2} + P_3 = 1.$$

$$\frac{P_3 \cdot (-\alpha \mu \lambda - \beta \lambda)}{\beta(\nu - \lambda)} + \frac{\alpha \mu_3}{\beta} + P_3 = 1.$$
 (24)

$$P_3 \cdot \frac{\nu(\alpha\mu + \beta)}{\beta(\nu - \lambda)} = 1. \tag{25}$$

Таким образом, получим P_3 :

$$P_3 = \frac{\beta \left(1 - \frac{\lambda}{\nu}\right)}{\alpha \mu + \beta}.\tag{26}$$

3.4 Необходимое и достаточное условие стабильности системы.

Чтобы найти критерий стационарности, необходимо учесть:

$$0 < P_3 < 1; \ 0 < P_{i1} < 1; \ 0 < P_{j2} < 1; \ \forall i > 0, \ \forall j \geqslant 0.$$

Каждый из параметров $\lambda, \nu, \mu, \beta, \alpha$ больше нуля. Очевидно, что знаменатель в дроби (26) больше числителя, поэтому правое неравенство верно всегда:

$$0 < P_3 = \frac{\beta \left(1 - \frac{\lambda}{\nu}\right)}{\alpha \mu + \beta} < 1. \tag{27}$$

Для того, чтобы выполнялось левое неравенство, необходимо:

$$\frac{\lambda}{\nu} < 1. \tag{28}$$

Далее рассмотрим условия на параметры, возникающие при наложении аналогичных неравенств на вероятности вида $P_{i1}, P_{j2}, \forall i > 0, \forall j \geqslant 0$. Чтобы представить дробь в виде ряда, воспользуемся разложением вида:

$$\frac{1}{1-z} = \sum_{i=0}^{\infty} z^i$$
, где $z \in (-1;1)$.

$$P_2(z) = \sum_{i=0}^{\infty} P_{i2} \cdot z^i = \frac{\alpha \mu P_3}{\beta + \lambda - \lambda z} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda - \lambda z)} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\beta + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \lambda)} \cdot \frac{1}{1 - \frac{\lambda z}{\lambda + \beta}} = \frac{\alpha \mu \beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \lambda)} \cdot \frac{1}$$

$$= \frac{\alpha\mu\beta\left(1 - \frac{\lambda}{\nu}\right)}{(\alpha\mu + \beta)(\beta + \lambda)} \sum_{i=0}^{\infty} \left(\frac{\lambda}{\lambda + \beta} \cdot z\right)^{i}.$$
 (29)

Таким образом, мы можем выразить P_{i2} , $\forall i \geqslant 0$:

$$P_{i2} = \frac{\alpha\mu\beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha\mu + \beta)(\beta + \lambda)} \cdot \left(\frac{\lambda}{\lambda + \beta}\right)^{i}.$$
 (30)

Аналогично представим в виде ряда $P_1(z)$:

$$P_{1}(z) = \frac{P_{3}(\lambda^{2} + \alpha\mu\lambda + \beta\lambda - \lambda^{2}z)}{(\nu - \lambda z)(\lambda + \beta - \lambda z)} = \frac{P_{3}(\lambda^{2} + \alpha\mu\lambda + \beta\lambda - \lambda^{2}z)}{\nu(\lambda + \beta)\left(1 - \frac{\lambda z}{\lambda + \beta}\right)\left(1 - \frac{\lambda z}{\nu}\right)} = \frac{P_{3}(\lambda^{2} + \alpha\mu\lambda + \beta\lambda)}{\nu(\lambda + \beta)\left(1 - \frac{\lambda z}{\lambda + \beta}\right)\left(1 - \frac{\lambda z}{\nu}\right)} - \frac{P_{3}\lambda^{2}z}{\nu(\lambda + \beta)\left(1 - \frac{\lambda z}{\lambda + \beta}\right)\left(1 - \frac{\lambda z}{\nu}\right)} = \frac{P_{3}(\lambda^{2} + \alpha\mu\lambda + \beta\lambda)}{\nu(\lambda + \beta)} \cdot \frac{1}{\left(1 - \frac{\lambda z}{\lambda + \beta}\right)\left(1 - \frac{\lambda z}{\nu}\right)} - \frac{P_{3}\lambda^{2}}{\nu(\lambda + \beta)} \cdot \frac{z}{\left(1 - \frac{\lambda z}{\lambda + \beta}\right)\left(1 - \frac{\lambda z}{\nu}\right)}.$$

Разложим в ряд отдельно каждую дробь.

$$\frac{1}{\left(1 - \frac{\lambda z}{\lambda + \beta}\right) \left(1 - \frac{\lambda z}{\nu}\right)} = \frac{\lambda + \beta}{(\lambda + \beta - \nu) \left(1 - \frac{\lambda z}{\nu}\right)} - \frac{\nu}{(\lambda + \beta - \nu) \left(1 - \frac{\lambda z}{\lambda + \beta}\right)} = \frac{\lambda + \beta}{\lambda + \beta - \nu} \sum_{i=1}^{\infty} \left(\frac{\lambda}{\nu} \cdot z\right)^{i-1} - \frac{\nu}{\lambda + \beta - \nu} \sum_{i=1}^{\infty} \left(\frac{\lambda}{\lambda + \beta} \cdot z\right)^{i-1} \cdot \frac{z}{\left(1 - \frac{\lambda z}{\lambda + \beta}\right) \left(1 - \frac{\lambda z}{\nu}\right)} = \frac{(\lambda + \beta)z}{(\lambda + \beta - \nu) \left(1 - \frac{\lambda z}{\nu}\right)} - \frac{\nu z}{(\lambda + \beta - \nu) \left(1 - \frac{\lambda z}{\lambda + \beta}\right)} = \frac{\lambda + \beta}{\lambda + \beta - \nu} \sum_{i=1}^{\infty} \left(\frac{\lambda}{\nu}\right)^{i-1} \cdot z^{i} - \frac{\nu}{\lambda + \beta - \nu} \sum_{i=1}^{\infty} \left(\frac{\lambda}{\lambda + \beta}\right)^{i-1} \cdot z^{i-1}.$$

$$P_{1}(z) = \sum_{i=1}^{\infty} P_{i1} z^{i-1} = \sum_{i=1}^{\infty} \left(\left(\frac{\lambda}{\nu}\right)^{i} \cdot \frac{P_{3}(\lambda + \alpha\mu + \beta - \nu)}{\lambda + \beta - \nu} - \left(\frac{\lambda}{\lambda + \beta}\right)^{i} \cdot \frac{P_{3}\alpha\mu}{\lambda + \beta - \nu}\right) \cdot z^{i-1}. \quad (31)$$

Таким образом, получаем i > 0:

$$P_{i1} = \left(\frac{\lambda}{\nu}\right)^{i} \cdot \frac{P_{3}(\lambda + \alpha\mu + \beta - \nu)}{\lambda + \beta - \nu} - \left(\frac{\lambda}{\lambda + \beta}\right)^{i} \cdot \frac{P_{3}\alpha\mu}{\lambda + \beta - \nu}.$$
 (32)

Например, для i=1:

$$P_{11} = \frac{\lambda(\lambda + \alpha\mu + \beta)P_3}{\nu(\lambda + \beta)} = \frac{\lambda(\lambda + \alpha\mu + \beta)\beta\left(1 - \frac{\lambda}{\nu}\right)}{\nu(\lambda + \beta)(\alpha\mu + \beta)}.$$
 (33)

3.5 Операционные характеристики

Мы нашли явный вид стационарного распределения:

$$P_3 = \frac{\beta \left(1 - \frac{\lambda}{\nu}\right)}{\alpha \mu + \beta}.\tag{26}$$

$$P_{i2} = \frac{\alpha\mu\beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha\mu + \beta)(\beta + \lambda)} \cdot \left(\frac{\lambda}{\lambda + \beta}\right)^{i}, \quad \forall i \geqslant 0.$$
 (30)

$$P_{i1} = \left(\frac{\lambda}{\nu}\right)^{i} \cdot \frac{P_{3}(\lambda + \alpha\mu + \beta - \nu)}{\lambda + \beta - \nu} - \left(\frac{\lambda}{\lambda + \beta}\right)^{i} \cdot \frac{P_{3}\alpha\mu}{\lambda + \beta - \nu}, \quad \forall i > 0.$$
 (32)

Чтобы найденные решения системы действительно являлись стационарным распределением нужно, чтобы выполнялись неравенства:

$$0 < P_3 < 1; \ 0 < P_{i1} < 1; \ 0 < P_{j2} < 1; \ \forall i > 0, \ \forall j \geqslant 0.$$

Каждое из неравенств будет выполнено при условии:

$$\frac{\lambda}{\nu} < 1. \tag{28}$$

Найдем математическое ожидание числа требований в системе в стационарном случае:

$$\mathbb{E}q = P_3 \cdot 0 + \sum_{i=1}^{\infty} P_{i1} \cdot i + \sum_{j=0}^{\infty} P_{j2} \cdot j =$$

$$\sum_{i=1}^{\infty} \left(\left(\frac{\lambda}{\nu} \right)^{i} \cdot \frac{P_{3}(\lambda + \alpha\mu + \beta - \nu)}{\lambda + \beta - \nu} - \left(\frac{\lambda}{\lambda + \beta} \right)^{i} \cdot \frac{P_{3}\alpha\mu}{\lambda + \beta - \nu} \right) \cdot i + \sum_{j=0}^{\infty} \frac{\alpha\mu\beta \left(1 - \frac{\lambda}{\nu} \right)}{(\alpha\mu + \beta)(\beta + \lambda)} \cdot \left(\frac{\lambda}{\lambda + \beta} \right)^{j} \cdot j.$$
(34)

Воспользуемся разложением:

$$\sum_{n=0}^{\infty} n \cdot a^n = \frac{a}{(a-1)^2} \qquad \text{верно при } |a| < 1.$$

$$\sum_{i=0}^{\infty} \left(\frac{\lambda}{\nu}\right)^i \cdot i = \frac{\lambda \nu}{(\lambda - \nu)^2}.$$

$$\sum_{i=0}^{\infty} \left(\frac{\lambda}{\lambda + \beta}\right)^i \cdot i = \frac{\lambda(\lambda + \beta)}{\beta^2}.$$

$$\mathbb{E}q = \left(\frac{\beta \left(1 - \frac{\lambda}{\nu}\right) (\lambda + \alpha \mu + \beta - \nu)}{(\lambda + \beta - \nu)(\alpha \mu + \beta)}\right) \cdot \frac{\lambda \nu}{(\lambda - \nu)^2} - \left(\frac{\left(1 - \frac{\lambda}{\nu}\right) \alpha \mu \beta}{(\lambda + \beta - \nu)(\alpha \mu + \beta)}\right) \cdot \frac{\lambda(\lambda + \beta)}{\beta^2} +$$

$$\frac{\left(1 - \frac{\lambda}{\nu}\right)\alpha\mu\beta}{(\lambda + \beta)(\alpha\mu + \beta)} \cdot \frac{\lambda(\lambda + \beta)}{\beta^{2}} = \frac{\lambda\beta^{2}(\lambda + \alpha\mu + \beta - \nu)}{\beta(\lambda + \beta - \nu)(\alpha\mu + \beta)(\nu - \lambda)} - \frac{\lambda\alpha\mu(\nu - \lambda)^{2}}{\beta(\lambda + \beta - \nu)(\alpha\mu + \beta)(\nu - \lambda)} = \frac{\lambda\alpha\mu\beta + \lambda\alpha\mu\nu - \lambda^{2}\alpha\mu + \lambda\beta^{2}}{\beta(\alpha\mu + \beta)(\nu - \lambda)}.$$
(35)

Далее найдем формулу для $\mathbb{E}q^z$, где q – число требований в системе.

$$\pi(z) = \mathbb{E}z^{q} = P_{3} \cdot z^{0} + \sum_{i=1}^{\infty} P_{i1} \cdot z^{i} + \sum_{j=0}^{\infty} P_{j2} \cdot z^{j} = P_{3} \cdot z^{0} + z \cdot \frac{P_{3}(\lambda^{2} + \alpha\mu\lambda + \beta\lambda - \lambda^{2}z)}{(\nu - \lambda z)(\lambda + \beta - \lambda z)} + \frac{\alpha\mu P_{3}}{\beta + \lambda - \lambda z} = \frac{(\alpha\mu\nu + \nu(\lambda + \beta - \lambda z))\beta\left(1 - \frac{\lambda}{\nu}\right)}{(\alpha\mu + \beta)(\nu - \lambda z)(\beta + \lambda - \lambda z)}.$$
(36)

Заметим, что формула выше получена для стационарного распределения, не зависящего от времени.

Таким образом, можем сформулировать результат в виде теоремы: **Теорема.**

Если
$$\lambda < \nu$$
,тогда $\exists \lim_{t \to \infty} \mathbb{E} z^{q(t)} = \pi(z) = \frac{(\alpha \mu \nu + \nu(\lambda + \beta - \lambda z))\beta \left(1 - \frac{\lambda}{\nu}\right)}{(\alpha \mu + \beta)(\nu - \lambda z)(\beta + \lambda - \lambda z)}$

Неравенство $\frac{\lambda}{\nu} < 1$ является необходимым и достаточным условием стабильности для нашего случая.

4 Оптимизационная задача

Вернемся к модели 1 и решим следующую оптимизационную задачу:

Пусть C_1 – стоимость ожидания одним требованием в единицу времени.

 C_2 – стоимость невыполнения работы, штраф за единицу времени.

Тогда получим уравнение издержек:

$$\Phi(m)\Delta = C_1 \mathbb{E} q \Delta + C_2 \mathbb{P}_m \Delta$$

Необходимо минимизировать издержки за единицу времени Δ , где P_m – вероятность, что прибор находится в режиме перерыва, в системе m-1 требований, и за время Δ приходит ещё одно требование, и перерыв обрывается.

 $\mathbb{E}q$ – математическое ожидание количества требований в системе.

$$P(z)=rac{1}{ ilde{\eta}}\int\limits_0^\infty V(z,t)\,dt=rac{1}{ ilde{\eta}}\sum\limits_{i=0}^{m-1}rac{1}{\lambda+
u}\left(rac{\lambda z}{\lambda+
u}
ight)^j$$
 – предельное распределение в системе, находящейся в режиме перерыва.

Вероятность того, что в перерыве m-1 заявка ожидает обслуживания равна: $\frac{1}{\tilde{\eta}} \frac{1}{\lambda + \nu} \left(\frac{\lambda z}{\lambda + \nu} \right)^{m-1}$.

Вероятность того, что за малое время Δ поступило хотя бы 1 требование: $\mathbb{P}(X(\Delta)>0)=$

$$1 - \mathbb{P}(X(\Delta) = 0) = 1 - e^{-\lambda \Delta} = 1 - (1 + \lambda \Delta + \frac{(\lambda \Delta)^2}{2!} + \dots) = \lambda \Delta + \bar{o}(\Delta^2).$$

Вероятность нахождения системы в режиме перерыва: $\hat{p} = \frac{\bar{\eta}}{\mathbb{R}_{\tau}}$.

Тогда
$$P_m = \frac{1}{\mathbb{E}\tau} \frac{\lambda \Delta}{\lambda + \nu} \left(\frac{\lambda}{\lambda + \nu} \right)^{m-1}$$
, где $\mathbb{E}\tau = \frac{\lambda \bar{\eta} \left(1 - \frac{\lambda}{\mu} \right) + \frac{\lambda}{\mu} Y_1}{\lambda \left(1 - \frac{\lambda}{\mu} \right)}$.

Получим $\Phi(m)$:

$$\Phi(m) = C_1 \left(\frac{\lambda}{\nu} \cdot \left(1 + \frac{\nu}{\mu - \lambda} \right) - \frac{m \left(\frac{\lambda}{\lambda + \nu} \right)^m}{1 - \left(\frac{\lambda}{\lambda + \nu} \right)^m} \right) + C_2 \frac{\lambda \left(1 - \frac{\lambda}{\mu} \right)}{\lambda \bar{\eta} \left(1 - \frac{\lambda}{\mu} \right) + \frac{\lambda}{\mu} Y_1} \left(\frac{\lambda}{\lambda + \nu} \right)^m =$$

$$C_1 \frac{\lambda}{\nu} \cdot \left(1 + \frac{\nu}{\mu - \lambda} \right) - C_1 \frac{m \left(\frac{\lambda}{\lambda + \nu} \right)^m}{1 - \left(\frac{\lambda}{\lambda + \nu} \right)^m} + C_2 \frac{\nu \left(1 - \frac{\lambda}{\mu} \right)}{1 - \left(\frac{\lambda}{\lambda + \nu} \right)^m} \left(\frac{\lambda}{\lambda + \nu} \right)^m =$$

$$C_1 \frac{\lambda}{\nu} \cdot \left(1 + \frac{\nu}{\mu - \lambda} \right) + \frac{\left(\frac{\lambda}{\lambda + \nu} \right)^m}{1 - \left(\frac{\lambda}{\lambda + \nu} \right)^m} \cdot \left(C_2 \nu \left(1 - \frac{\lambda}{\mu} \right) - C_1 m \right).$$

Мы хотим найти такое количество заявок m, при котором издержки будут минимальны, то есть то число заявок, при котором нужно выводить прибор из состояния перерыва и начинать обслуживание. Мы ищем оптимальное число m. Пусть $\frac{\lambda}{\lambda + \nu} = a$, $\tilde{C}_2 = C_2 \nu \left(1 - \frac{\lambda}{\mu} \right)$, тогда поиск минимума функции $\Phi(m)$ сводится к поиску минимума функции $\Phi(\tilde{m})$:

$$\tilde{\Phi}(m) = \frac{a^m}{1 - a^m} \cdot \left(\tilde{C}_2 - C_1 m \right).$$

 $0 < a < 1, \tilde{C}_2, C_1, m > 0$, тогда $\tilde{\Phi}(m)$ убывающая функция, и стремится к нулю при $m \to \infty$. Получаем, что издержки будут минимизированы в случае, когда перерыв не обрывается. И в таком случае

$$\Phi_{opt} = C_1 \frac{\lambda}{\nu} \cdot \left(1 + \frac{\nu}{\mu - \lambda} \right).$$

5 Литература

- [1] Афанасьев Г.А. (2021) Система M/G/1 с перерывами в работе прибора и их задержками. Теория вероятностей и ее применения, Том 66, Выпуск 1.
- [2] Levy, Y. and Yechiali, U. (1975) Utilizatio of Idle Time in an M/G/1 Queueing System. Management Science, 22, 202-211.
- [3] Т.Л. Саати, Элементы теории массового обслуживания и её приложения, 2-е изд., Советское радио, М., 1971, 520 с.
- [4] Афанасьева Л.Г., Булинская Е.В. (1980) Случайные процессы в теории массового обслуживания и управления запасами. М.: Изд-во МГУ, 14-26.
- [5] Афанасьева Л.Г. (2007) Очерки исследования операций. М.: Изд-во МГУ, 117-160.
- [6] W. L. Smith, "Renewal theory and its ramifications", J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243-302.