

Precomputed Dynamic Appearance Synthesis and Rendering

Yaoyi Bai¹, Miloš Hašan², Ling-Qi Yan¹

¹University of California, Santa Barbara, USA

²Adobe Research, USA

Invited presenter: Iliyan Georgiev³
³Adobe Research, UK

Teasers

The 35th Eurographics Symposium on Rendering Imperial College London, South Kensington, London, UK

Background

Appearances

Appearance in computer graphics: textures, volumes, BRDFs, etc.

Appearance synthesis: interpolating existing appearances to create additional materials.

Existing issues:

- Ghosting artifact;
- Efficiency;
- Storage.

Motivation & Target

Our goal:

Integrating a **general**, efficient, and cross-dimensional **natural** appearance blending and rendering solution into traditional renderers.

Requirements:

- Natural distribution interpolation;
- High performance;
- Point-sample and/or importance-sample capability;
- No full data reconstruction needed: local query;
- Varying interpolation weights.

Optimal Transport (OT)

Mathematical tool:

- Offers promising solutions for natural interpolation between distributions;
- Provide CLOSEST distances between distributions:
 - minimum sum of moving distance
 - total "weight" conservation
- Discrete or continuous;
- Dimension-agnostic.

OT in Rendering

Existing OT solvers:

- Computationally intensive;
- No existing point query support for OT;
- Rendering integration:
 - Monte Carlo point-sampling structure
 - work with discrete point sets
 - one-to-one mapping

Our Method

Our Method

Step 1: Precomputation:

- A common proxy distribution;
- Calculate OT between each input and the proxy.

Step 2: Runtime renderer integration:

- Construct hierarchical query structure;
- Point query or range query to quickly find mapping;
- Interpolation based on blending weight.

Step 1: Precomputation

EGSR 2024 The 35" Eurographics Symposium on Rendering

Target:

- From common proxy distribution β to different inputs α_i
 - one-to-one discrete sample mapping

OT solver:

- Geomloss: by Feydy et al.;
- Runs on GPU;
- Discrete one-to-one point mapping.

Step 2-1: Hierarchical Query Structure

 Inspired by bounding volume hierarchy (BVH);

- Each level contains:
 - two axis-aligned AABB bounding boxes for samples Aij (j stands for the j-th hierarchical level)
 - o all samples in αi (i stands for the i-th input) and β inside the bounding box
 - two children pointers

Step 2-1: Hierarchical Query Structure

- Level subdivision on β:
 - based on the longest Euclidean distance of samples of one dimension
 - o divide the proxy bounding box *Bj* in half
 - o find mapped samples from input αi
 - o calculate input bounding box Aij

Subdivision until only one sample;

Facilitates range queries calculation.

Step 2-1: Hierarchical Query Structure

Step 2-2: Runtime Blending

EGSR 2024
The 35° Eurographics Symposium on Rendering Imperial College London, South Kensington, London, UK

- For a spatial point p that takes blending weight u:
 - traverse the hierarchical structure
 - find mapped bounding box at level j
 - point query: find the leaf nodes and perform blending
 - range query: find the largest covered bounding box and perform blending

Step 2-2: Runtime Blending

EGSR 2024

Imperial College London, South Kensington, London, UK

 No limitation on amount of inputs given proper u;

Flexibility to switch inputs;

 Query allows data generation only around the spatial point p.

Proxy Selection

- Different proxies:
 - Gaussian
 - Uniform
 - Spiral
 - No proxy

 The differences in using different proxies or without proxy are minimal.

Implementation

- Geomloss OT solver by Feydy et al.:
 - o on GPU
 - precomputation only
- Mitsuba renderer:
 - on CPU
 - minimum revision to the renderer
 - revision to the eval() function
- Storage
 - 1 million 2D texture samples with colors: 19 MB
 - 1 million 3D volume samples without color: 11 MB

Results & Comparisons

2D Texture Blending

EGSR 2024

The 35° Eurographics Symposium on Rendering Imperial College London, South Kensington, London, UK

- Comparison with Solomon et al.;
- Less runtime, and sharper results;
- Feydy et al. provides a sharper but different solver.

Ours. Pre.: 834.7s Query: 7.3s

2D Tileable Texture Blending

EGSR 2024

Inspired by Matusik et al.;

 Textures from Adobe Substance 3D Asset;

Also included rendering results.

2D Tileable Texture Blending

Tileable Texture Blending with Perlin Noise

- Extension to tileable blending and query structure;
- Perlin noise provide the blending weight;
- Query structure allows focusing on blending a small range of data instead of generating the whole chunk of data;
- Seamlessly and infinitely extendable.

Tileable Texture Blending with Perlin Noise

Level-of-Detail (LOD) and Range Query

- LOD: detail decreases as the model moves away from the viewer;
- Range query: less traversal, less details, higher efficiency;
- Move the middle three textures away from the camera along the viewing direction.

Closer view 512 spp, time = 33.17 mins

Further view 512 spp, time = 27.51 mins

3D Volume 2-Way Interpolation

The 35th Eurographics Symposium on Rendering Imperial College London, South Kensington, London, UK

3D Volume 3-Way Interpolation

 3-way volume blending inspired by Solomon et al.;

Inputs are on the corners.

BRDF 4-Way Blending

Measured BRDF from the MERL database;

 Inputs on the corners, and the blending weight starts at 1.0 for each BRDF on the corner and decreases by 0.2 with each step;

 Blending materials with different roughness, metallic, or Lambertian values.

BRDF 4-Way Blending

The 35° Eurographics Symposium on Rendering Imperial College London, South Kensington, London, UK

Interpolating BRDF

Conclusion & Limitations

Conclusion

A **general**, efficient, and cross-dimensional **natural** appearance synthesis and rendering solution into traditional renderers.

- Precomputation:
 - OT calculate maps between a proxy distribution and each input distributions
- Runtime:
 - hierarchical point or range query structure
 - cross-dimensional multiple-way blending
 - generation of necessary data only

Limitations

EGSR 2024.
The 35° Eurographics Symposium on Rendering Imperial College London, South Kensington, London, UK

Lack a theoretical analysis about proxy selection;

Lack a analysis about sample density analysis;

Require further study of using proxy vs without proxy.

Thank you so much!

