# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-096034

(43) Date of publication of application: 04.04.2000

(51)Int.CI.

C09K 3/00 B32B 27/20 C01B 35/18 C09D 5/00 C09D 7/12 G02B 5/22 G02B 5/26

(21)Application number: 10-267811

(71)Applicant: SUMITOMO METAL MINING CO LTD

(22)Date of filing:

22.09.1998

(72)Inventor: TAKEDA HIROMITSU

KUNO HIROKO ADACHI KENJI

# (54) SUN RADIATION SCREENING MATERIAL, COATING SOLUTION FOR SUN RADIATION SCREENING MEMBRANE AND SUN RADIATION SCREENING MEMBRANE

## (57) Abstract:

PROBLEM TO BE SOLVED: To prepare a coating solution that can form a membrane having high light transmission and low light reflection in the visible region, low transmission and high reflection in the near infrared region, electroconductivity controllable to about  $\geq 106~\Omega/\text{square}$  via a simple coating method in no need of expensive physical membrane formation method, and obtain a sun radiation—screening material to be used in the solution and a sun radiation—screening membrane prepared by using this material.

SOLUTION: This sun radiation—screening material contains particles of a hexaboride substance. This sun radiation—screening coating solution includes fine particles of hexaboride dispersed in a solution. In addition to the hexaboride particles, ATO, ITO, AZO may be used. In a preferred embodiment, the sun radiation screening membrane has a surface resistance value of  $\geq 106~\Omega/\text{square}$ , further the permeability profile of the membrane has a maximum in the range of from 400 nm to 700 nm, while a minimum in the range of from 700 to 1,800 nm where the difference between the maximum and the minimum is  $\geq 15~\text{points}$ .



# **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's d cision

Searching PAJ
of r jection]
[Date of xtinction of right]

Copyright (C); 1998,2003 Japan Pat nt Office

## (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-96034 (P2000-96034A)

(43)公開日 平成12年4月4日(2000.4.4)

|               |       |      | _    |       |     |       |    |    |      |            |
|---------------|-------|------|------|-------|-----|-------|----|----|------|------------|
| (51) Int.Ci.' |       | 識別記号 |      | FΙ    |     |       |    |    |      | テーマコード(参考) |
| C09K          | 3/00  | 105  |      | C 0 9 | K   | 3/00  |    | 10 | 5    | 2H048      |
| B 3 2 B       | 27/20 |      |      | B 3 2 | 2 B | 27/20 |    |    | Z    | 4F100      |
| C 0 1 B       | 35/18 |      |      | C 0 1 | B   | 35/18 |    |    |      | 4J038      |
| C09D          | 5/00  |      |      | C 0 9 | D   | 5/00  |    |    | M    |            |
|               | 7/12  |      |      |       |     | 7/12  |    |    | Z    |            |
|               |       |      | 審查請求 | 未請求   | 永簡  | 項の数17 | OL | (全 | 8 頁) | 最終頁に続く     |

| (21)出願番号 | 特顏平10-267811          | (71) 出願人  |                                        |
|----------|-----------------------|-----------|----------------------------------------|
| (22)出顧日  | 平成10年9月22日(1998.9.22) | (72)発明者   | 住友金属鉱山株式会社<br>東京都港区新橋5丁目11番3号<br>武田 広充 |
|          |                       | N=7,2=2,0 | 千葉県市川市中国分3-18~5 住友金属<br>鉱山株式会社中央研究所内   |
|          |                       | (72)発明者   | 久野 裕子<br>千葉県市川市中国分3-18-5 住友金属          |
|          |                       |           | 鉱山株式会社中央研究所内                           |
|          |                       | (72)発明者   | 足立 健治                                  |
|          |                       |           | 千葉県市川市中国分3-18-5 住友金属<br>鉱山株式会社中央研究所内   |
|          |                       |           | 最終頁に続く                                 |

# (54) 【発明の名称】 日射遮蔽材料、日射遮蔽膜用塗布液、及び、日射遮蔽膜

#### (57)【要約】

【課題】 可視光領域の光の透過率が高く反射率が低く、近赤外領域の光の透過率が低く反射率が高く、かつ膜の導電性がおおよそ10°Ω/□以上に制御可能な膜を、高コストの物理成膜法を用いずに簡便な塗布法で成膜できるための塗布液と、これに用いる日射遮蔽材料、これを用いた日射遮蔽膜を提供する。

【解決手段】 6ホウ化物粒子を含有する日射遮蔽材料。また、6ホウ化物機粒子を溶液中に分散した日射遮蔽膜用塗布液。6ホウ化物機粒子に加え、更にATO、ITO、AZOを含有してもよい。望ましくは表面抵抗値が10°Q/□以上であり、また、望ましくは膜の透過率プロファイルが、400~700mmに極大値を、700~1800mmに極小値をもち、かつその極大値と極小値との差が15ポイント以上である。



#### 【特許請求の範囲】

【請求項1】 6ホウ化物粒子を含有する日射遮蔽材

【請求項2】 6ホウ化物 (XB。) 微粒子を含有する 日射遮蔽材料であって、Xが、Ce、Gd、Tb、D y, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr、Caのうちの1種以上である日射遮蔽材料。

【請求項3】 6ホウ化物微粒子を溶液中に分散した日 射遮蔽膜用塗布液。

子を溶液中に分散した日射遮蔽膜用塗布液。

【請求項5】 塗布液中にバインダーとして、ケイ素、 チタン、ジルコニウム、アルミニウムのアルコキシド、 もしくは、アルミニウムのアルコキシドの部分加水分解 重合物が1種以上含まれる請求項3または請求項4に記 載の日射遮蔽膜用塗布液。

【請求項6】 塗布液中にバインダーとして、紫外線硬 化樹脂、常温硬化樹脂、もしくは、熱可塑性樹脂が1種 以上含まれる請求項3~請求項5いずれかに記載の日射 遮蔽膜用塗布液。

【請求項7】 6ホウ化物微粒子に加え、更に、アンチ モン含有酸化錫(ATO) 微粒子、錫含有酸化インジウ ム微粒子(ITO)、アルミニウム含有酸化亜鉛微粒子 (AZO) の1種以上を含有する日射遮蔽材料。

【請求項8】 6ホウ化物微粒子に加え、更に、アンチ モン含有酸化錫(ATO) 微粒子、錫含有酸化インジウ ム微粒子(1TO)、アルミニウム含有酸化亜鉛微粒子 (AΖО)の1種以上を溶液中に分散した日射遮蔽膜用 塗布液。

【請求項9】 請求項3~請求項8のいずれかに記載の 30 日射遮蔽膜用塗布液を基材に塗布して得た日射遮蔽膜。

【請求項10】 請求項3~請求項8のいずれかに記載 の日射遮蔽膜用塗布液を基材に塗布して得た日射遮蔽膜 を有する日射遮蔽板。

【請求項11】 請求項3~請求項8のいずれかに記載 の日射遮蔽膜用塗布液を基材に塗布した日射遮蔽膜に、 更に、該日射遮蔽膜と屈折率の異なる膜を1種以上重ね て多層膜とし、光の干渉効果を用いて効率よく日射を遮 蔽する多層膜。

【請求項12】 最上層を膜を保護するためのオーバー 40 内部空間が暗くなる、といった性質を抱えていた。 コート層とした請求項11に記載の多層膜。

【請求項13】 表面抵抗値が10°Ω/□以上である 請求項9に記載の日射遮蔽膜。

【請求項14】 表面抵抗値が10°Ω/□以上である 請求項11または請求項12に記載の多層膜。

【請求項15】 膜の透過率プロファイルが、400~ 700nmに極大値を、700~1800nmに極小値 をもち、かつ、その極大値と極小値との差が15ポイン ト以上である請求項9に記載の日射遮蔽膜。

700nmに極大値を、700~1800nmに極小値 をもち、かつ、その極大値と極小値との差が15ポイン ト以上である請求項11または請求項12に記載の多層 膜。

【請求項17】 上記いずれかの日射遮蔽膜または多層 膜が形成された日射遮蔽機能を有する透明基材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両、ヒル、事務 【請求項4】 粒径が200mm以下の6ホウ化物微粒 10 所、一般住宅の窓、電話ボックス、ショーウィンドー、 プラスチックフィルム、照明用ランプなど、ガラス、ブ ラスチックスその他の各種日射遮蔽機能を必要とする基 材に塗布して日射遮蔽膜とするための塗布液、これに用 いる日射遮蔽材料、及び、これにより得られた単層また は多層の日射遮蔽膜に関する。

[0002]

【従来の技術】従来、太陽光などからの熱成分を除去・ 減少させる方法として、ガラス表面に可視・赤外域の波 長を反射する薄膜を形成して熱線反射ガラスとすること 20 が行なわれていた。ここで用いられる薄膜の材料として は、FeOx、CoOx、CrOx、TiOx等の金属酸化 物や、Ag、Au、Cu、Ni、Al等の自由電子を多 量にもつ金属材料が選択された。

【0003】しかしこれらの材料は、特に太陽光線で熱 効果に大きく寄与する近赤外線以外に、可視光領域の光 も同時に反射もしくは吸収する性質があり、可視光透過 率が低下してしまう欠点があった。

【0004】そのため、建材、乗り物、電話ボックスな どにおける透明基材にとれらの材料を利用する場合は可 視光領域の高い透過率が必要とされ、膜厚を非常に薄く する操作が必要であった。そして、スプレー焼き付けや CVD法、或いはスパッタ法や真空蒸着法などの物理成 膜法を用いて10nmレベルの極めて薄い薄膜に成膜し て用いられてきた。これらの成膜方法は大がかりな装置 や真空設備を必要とし、生産性、大面積化に問題があ り、更に膜の製造コストが高かった。

【0005】また、これらの材料では、可視光透過率を 高くしようとすると日射遮蔽特性が低下し、逆に日射遮 蔽特性を高くすると可視光透過率が低下して膜を施した

【0006】また、これらの材料では可視光領域の反射 率も同時に高くなってしまう傾向があり、鏡のようなギ ラギラした外観を与えて美観を損ねてしまう欠点があっ

【0007】また更に、これらの材料では膜の導電性が 高くなるものが多く、この場合携帯電話やTV受信の電 波を反射して受信不能になったり、周辺地域に電波障害 を引き起こすなどの欠点があった。

【0008】以上のような欠点を改善するためには、障 【請求項16】 膜の透過率プロファイルが、400~ 50 の物理特性として、可視光領域の光の透過率が高く、近 赤外領域の光の透過率が低く、可視光領域の光の反射率が低く、近赤外領域の光の反射率が高く、かつ膜の導電性がおおよそ10°2/□以上に制御可能な膜を形成す

【0009】しかしながら従来このような膜、或いはこのような膜を形成する材料は知られていなかった。

【0010】可視光透過率が高く、かつ熱線遮蔽機能をもつ材料には、アンチモン含有酸化錫(ATO)や、錫含有酸化インジウム(ITO)、アルミニウム含有酸化亜鉛(AZO)が知られている。これらの材料は可視光 10反射率が比較的低く、ギラギラした外観を与えることはないが、ブラズマ波長が比較的長波長側にあり、可視光に近い近赤外域におけるこれらの膜の反射・吸収効果は十分ではなかった。また、物理成膜法でこれらの膜を形成した場合には、膜の導電性が上がり、上記の電波の反射妨害を引き起こす欠点があった。

#### [0011]

る必要があった。

【発明が解決しようとする課題】そこで本発明は、上記従来技術の問題点を解決し、可視光領域の光の透過率が高く反射率が低く、近赤外領域の光の透過率が低く反射 20率が高く、かつ膜の導電性がおおよそ10°Ω/□以上に制御可能な膜を、高コストの物理成膜法を用いずに簡便な塗布法で成膜できるための塗布液と、これに用いる日射遮蔽材料と、これを用いた日射遮蔽膜とを提供することを目的とする。

#### [0012]

【課題を解決するための手段】上記目的を達成するために、本発明者らは、材料そのものの特性として、自由電子を多量に保有する6ホウ化物に着目し、種々検討の結果、これを超微粒子化し、かつ高度に分散した膜を作製 30することにより、可視光領域に透過率の極大をもつとともに、可視光領域に近い近赤外域に強い吸収および反射を発現して透過率の極小をもつようになるという現象を見出し、更にこれらの特性は6ホウ化物に顕著にみられ、膜の表面抵抗を10°Ω/□以上に制御可能な膜を、高コストの物理成膜法を用いずに簡単な塗布法で成膜できることを見いだし本発明に至った。

【0013】すなわち、本発明の日射遮蔽材料は、6ホウ化物粒子を含有することを特徴とする。ここで6ホウ化物を「XB。」で表記した場合、Xが、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Caのうちの1種以上であることが望ましい。

【0014】また、本発明の日射遮蔽膜用塗布液は、6 ホウ化物微粒子が溶液中に分散されたことを特徴とし、望ましくは粒径が200nm以下の6ホウ化物微粒子が溶液中に分散され、また、望ましくは塗布液中にパインダーとして、ケイ素、チタン、ジルコニウム、アルミニウムのアルコキシド、もしくは、アルミニウムのアルコキシドの部分加水分解重合物が1種以上含まれ、また、

望ましくは塗布液中にバインダーとして、紫外線硬化樹脂、常温硬化樹脂、もしくは、熱可塑性樹脂が1種以上含まれるとよい。

【0015】本発明の他の日射遮蔽材料は、6ホウ化物 微粒子に加え、更に、アンチモン含有酸化錫(ATO) 微粒子、錫含有酸化インジウム微粒子(ITO)、アルミニウム含有酸化亜鉛微粒子(AZO)の1種以上が含有されていてもよい。

【0016】本発明の日射遮蔽膜は、上記いずれかの日射遮蔽膜用塗布液を基材に塗布して得たものであり、更に、該日射遮蔽膜と屈折率の異なる膜を1種以上重ねて多層膜とし、光の干渉効果を用いて効率よく日射を遮蔽する多層膜としてもよく、また、この場合に最上層を、膜を保護するためのオーバーコート層としてもよい。【0017】本発明の日射遮蔽膜は、望ましくは表面抵抗値が10°Ω/□以上であり、また、望ましくは膜の透過率ブロファイルが、400~700nmに極大値を、700~1800nmに極小値をもち、かつその極大値と極小値との差が15ポイント以上であるとよい。【0018】また、本発明の日射遮蔽機能を有する透明基材透明基材は、上記いずれかの日射遮蔽膜または多層膜を有する透明基材である。

#### [0019]

【発明の実施の形態】本発明に用いられる6ホウ化物微粒子を「XB。」で表記した場合、Xが、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Caである6ホウ化物微粒子がその代表的なものとして挙げられるが、これら2種以上の混合物や、これら以外の6ホウ化物であっても日射遮蔽効果が得られる。

【0020】6ホウ化物微粒子はその表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかしその場合でも日射遮蔽効果を発現する有効性に変わりはない。

【0021】また、これらの6ホウ化物機粒子は、結晶性が低くX線回折で極めてブロードな回折ビークを生じるようなものであっても、微粒子内部の基本的な結合が立方晶CaB。タイプの構造を有するものであるならば日射遮蔽効果を発現する。

【0022】 これらの6ホウ化物微粒子は、暗い青紫などに着色した粉末であるが、粒径が可視光波長に比べて十分小さく、薄膜中に分散した状態においては、膜に可視光透過性が生じる。しかし赤外光遮蔽能は十分強く保持できる。この理由は詳細には理解されていないが、これら材料は自由電子を比較的多く保有し、4 f - 5 d間のバンド間遷移や電子-電子、電子-フォノン相互作用による吸収が近赤外領域に存在することに由来すると考えられる。

50 【0023】実験によれば、これら微粒子を十分細かく

且つ均一に分散した膜では、透過率が波長400~70 0 n mの間に極大値をもち、かつ波長700~1800 nmの間に極小値をもつことが観察される。可視光波長 が380~780nmであり、視感度が550nm付近 をピークとする釣鐘型であることを考慮すると、このよ うな膜では可視光を有効に透過し、それ以外の日射を有 効に吸収・反射することが理解できる。

【0024】場合により使用されるITO微粒子、AT 〇微粒子、及びAZO微粒子は、可視光領域で光の吸収 がほとんど無く、1000nm以上の領域でプラズモン 10 に由来する反射・吸収が大きい。従って、上記の6ホウ 化物微粒子と合わせて使用することで、可視光透過率を さほど減少させずに、近赤外領域の太陽光線や、地表に 吸収された熱エネルギーの再放射を効率よく遮蔽すると とが可能となり、熱線遮蔽特性を向上させる効果が得ら れる。

【0025】塗布液中の6ホウ化物微粒子の粒径は20 0 n m以下が良く、好ましくは100 n m以下が良い。 粒子径が200nmよりも大きくなると、上に述べたよ うな特有の透過率プロファイル、すなわち透過率が波長 20 400~700 n mの間に極大値をもち、かつ波長70 0~1800nmの間に極小値をもつようなプロファイ ルの山と谷の差が小さくなり、可視光透過率を十分保っ たまま、効率よく日射透過率を低下させることが難しく なるからである。また粒子径が200nmよりも大きい 場合には、分散液中の微粒子同士の凝集傾向が強くな り、微粒子の沈降原因となるからである。

【0026】更に200nmを超える微粒子もしくはそ れらの凝集した粗大粒子は、光散乱源となって膜に曇り (ヘイズ)を生じたり可視光透過率が減少する原因とな 30 るので好ましくない。なお、現状の技術で経済的に入手 可能な最低の粒径は2 n m程度である。

【0027】場合により使用されるITO微粒子、AT O微粒子、またはAZO微粒子の粒径も、200nm以 下が良く、好ましくは100nm以下が良い。粒子径が 200mmよりも大きくなると分散液中の微粒子同士の 凝集傾向が強くなり、微粒子の沈降原因となるからであ る。また前記同様、200nmを超える微粒子もしくは それらの凝集した粗大粒子は、光散乱源となって膜に曇 なるので好ましくない。なお、現状の技術で経済的に入 手可能な最低の粒径は2nm程度である。

【0028】塗布液中の微粒子の分散媒は特に限定され るものではなく、塗布条件や塗布環境、塗布液中のアル コキシド、合成樹脂バインダーなどに合わせて選択可能 であり、例えば水、アルコール、エーテル、エステル、 ケトンなどの有機溶媒の各種が使用可能である。また必 要に応じて酸やアルカリを添加してpHを調整しても良 い。更に、塗布液中微粒子の分散安定性を一層向上させ るために、各種の界面活性剤、カップリング剤などを添 50 ウムの各金属のアルコキシド、もしくはこれら金属の加

加することも可能である。そのときのそれぞれの添加量 は、無機微粒子に対して30重量%以下、好ましくは5 重量%以下である。

【0029】との塗布液を用いた膜の導電性は、微粒子 の接触箇所を経由した導電パスに沿って行われるため、 例えば、界面活性剤やカップリング剤の量を加減すると とで導電バスを部分的に切断することができ、10°Q ∕□以上の表面抵抗値へ膜の導電性を容易に低下させる ことができる。また珪素、ジルコニウム、チタン、アル ミニウムの各金属のアルコキシド、もしくはこれらの部 分加水分解重合物、または合成樹脂バインダーの含有量 を加減することによっても導電性の制御が可能である。 【0030】上記微粒子の分散方法は、微粒子が均一に 溶液中に分散する方法であれば任意に選択できる。例と して、ピーズミル、ボールミル、サンドミル、超音波分 散などの方法を挙げることができる。

【0031】本発明の日射遮蔽膜は、基材上に上記微粒 子が高密度に堆積して膜を形成するものである。塗布液 中に、珪素、ジルコニウム、チタン、アルミニウムの各 金属のアルコキシド、もしくはこれら金属の部分加水分 解重合物、または合成樹脂バインダーを含ませると、塗 布液を塗布、硬化後、微粒子の基材への結着性が向上 し、更に膜の硬度が向上する。またこのようにして得ら れた膜上に、更に珪素、ジルコニウム、チタン、アルミ ニウムなどの各金属アルコキシドもしくはこれら金属ア ルコキシドの加水分解重合物または合成樹脂を含有する 層を重ねて形成することで、微粒子を主成分とする膜の 基材への結着力や、膜の硬度及び耐候性を一層向上させ るととができる。

【0032】塗布液中に珪素、ジルコニウム、チタン、 アルミニウムの各金属のアルコキシド、もしくはこれら 金属の加水分解重合物、または合成樹脂バインダーを含 ませない場合、この塗布液を基材に塗布後に得られる膜 は、基材上に上記微粒子のみが堆積した膜構造になる。 このままでも日射遮蔽効果を示すが、この膜に上記と同 様に更に、珪素、ジルコニウム、チタン、アルミニウム の各金属のアルコキシド、もしくはこれら金属の加水分 解重合物、または合成樹脂バインダーを含む塗布液を塗 布して被膜を形成し多層膜とすることにより、塗布液成 り(ヘイズ)を生じたり可視光透過率が減少する原因と 40 分が第1層の微粒子の堆積した間隙を埋めて成膜される ため、膜のヘイズが低減し可視光透過率が向上し、また 徴粒子の基材への結着性が向上する。

> 【0033】上記微粒子を主成分とする膜を、珪素、ジ ルコニウム、チタン、アルミニウムの各金属のアルコキ シド、もしくはこれら金属の加水分解重合物からなる被 膜で結着する方法としては、スパッタ法や蒸着法も可能 であるが、成膜工程の容易さやコストが低いなどの利点 から塗布法が有効である。この被膜用塗布液は、水やア ルコール中に、珪素、ジルコニウム、チタン、アルミニ

水分解重合物を1種もしくは2種以上含むものであり、 その含有液は加熱後に得られる酸化物換算で全溶液中の 40重量%以下が好ましい。また必要に応じて酸やアル カリを添加してpHを調整することも可能である。

【0034】このような液を上記微粒子を主成分とする 膜上に更に第2層として塗布し加熱することで、珪素、 ジルコニウム、チタン、アルミニウムなどの酸化物被膜 を容易に作製することができる。また、これらアルコキ シド以外に、一般に使用されている熱可塑性樹脂や、常 温硬化樹脂、紫外線硬化樹脂を用いて、上記微粒子を主 10 成分とする膜上に更に第2層として塗布し硬化させ、樹 脂被膜を容易に作製することもできる。

【0035】また、微粒子分散膜の屈折率と異なる屈折 率をもつ膜を多層に重ねて塗布することにより、各膜の 界面での屈折率差による光の干渉効果を利用して、目的 とする日射遮蔽特性を更に向上させることが可能であ

【0036】塗布液及び被膜用の塗布液の塗布方法とし ては、特に限定されるものではなく、スピンコート法、 スプレーコート法、ディップコート法、スクリーン印刷 20 法、ロールコート法、流し塗りなど、処理液を平坦且つ 薄く均一に塗布できる方法であれば如何なる方法でも適 宜採用することができる。

【0037】上記各金属アルコキシド及びその加水分解 重合物を含む塗布液の塗布後の基材加熱温度は、100 ℃未満では塗膜中に含まれるアルコキシド及びその加水 分解重合物の重合反応が未完結で残る場合が多く、また 水や有機溶媒が膜中に残留し、加熱後の膜の可視光透過 率の低減の原因となるので、100℃以上が好ましく、 更に好ましくは塗布液中の溶媒の沸点以上で加熱を実施 30 色や諸機能の劣化はほとんど生じない。

【0038】また合成樹脂パインダーを使用した場合は それぞれ最適な硬化方法に従って硬化させれば良く、例 えば紫外線硬化樹脂であれば紫外線を適宜照射すれば良 い。また常温硬化樹脂であれば塗布後そのまま放置して おけばよいため、既存の窓ガラスなどへの現場での塗布 が可能であり、汎用性が広がる。

【0039】本発明の塗布液に使用するバインダー成分 として、或いはオーバーコート用の塗布液としては、オ ルガノシラザン溶液を用いても良い。オルガノシザラン 40 溶液としては、側鎖基の修正や酸化触媒の添加で重合硬 化温度が100℃以下のものも市販されており、これら を用いることによって成膜温度をかなり低くすることが できる。

【0040】本発明の膜では上記微粒子の分散した膜で あるために、物理成膜法により製造された酸化物薄膜の ように結晶が緻密に膜内を埋めた鏡面状表面をもつ膜に 比べると、可視光領域での反射が少なく、ギラギラした 外観を呈することが回避できる。また可視光領域の反射 を更に抑制したい場合は、本徴粒子分散膜の上に、Si 50 分間振り切った後回転を止めた。これを180℃の電気

OzやMg Fのような低屈折率の膜を成膜することによ り、容易に視感反射率1%以下の多層膜を製造可能であ る。

【0041】塗布液には更に、ATOやITOやAZO などの微粒子を混合することも可能である。これらの透 明微粒子は添加量を増すと可視光に近い近赤外線領域で の吸収が増加するため、可視光透過率の高い日射遮蔽膜 とすることが可能である。また逆にATOやITOやA ZOなどの微粒子分散した液に本発明の塗布液を添加し て、膜に着色すると同時にその熱線遮蔽効果を補助する ことも可能である。この場合、主体となる I TOなどに 対して奔の僅かの添加量で日射遮蔽効果を補助できる。 【0042】本発明による塗布液は無機微粒子を分散し たものであり、焼成時の熱による塗布成分の分解或いは 化学反応を利用して目的の熱線遮蔽膜を形成するもので はないため、特性の安定した均一な膜厚の透過膜を形成 することができる。

【0043】本発明における微粒子分散膜は、基材上に 微粒子が高密度に堆積して膜を形成するものであり、塗 布液中に含まれる珪素、ジルコニウム、チタン、アルミ ニウムの各金属のアルコキシド、もしくはこれらの加水 分解重合物、もしくは合成樹脂バインダーは、塗膜の硬 化後、微粒子の基材上への結着性を向上させ、更に膜の 強度を向上させる効果がある。

【0044】このように本発明によれば上記無機微粒子 の材料を適当に混合することで、熱線遮蔽効果を有する 膜の製造が可能であるが、これらの微粒子材料は無機材 料であるので、有機材料と比べて耐候性は非常に高く、 例えば太陽光線(紫外線)の当たる部位に使用しても、

[0045]

【実施例】以下、本発明を実施例によってより詳細に説 明する。

実施例1 · · · CeB。微粒子(平均粒径90n m) 20g、ジアセトンアルコール (DAA) 78g、 および微粒子分散用カップリング剤2.0gを混合し、 直径4mmのジルコニアボールを用いて150時間ボー ルミル混合し、CeB。微粒子の分散液100gを作製 した(A液)。

【0046】次に、平均重合度で4~5量体であるエチ ルシリケート40(多摩化学工業株式会社製)を25 g、エタノール32g、5%塩酸水溶液8g、水5gで 調整したエチルシリケート溶液70gに、エタノール3 0gを良く混合してエチルシリケート混合液 100gを 調整し、これをバインダーとして使用した(B液)。 【0047】A液とB液とを表1の組成になるようにエ タノールで希釈して十分混合し、この溶液 15gを15 Orpmで回転する200×200×2mmのソーダラ

イム系板硝子基板上にピーカーから滴下し、そのまま5

炉に入れて30分加熱し、目的とする膜を得た。

【0048】形成された膜の透過率は日立製作所製の分光光度計を用いて、200~1800mmの透過率を測定し、JIS R 3106に従って日射透過率(τ e)、可視光透過率(τ v)を算出した。これらの結果を表1に示す。表1には実施例2~16、比較例1で得られた膜の特性についても併せて示した。またこの膜の代表的なブロファイルを図1に示す。

【0049】実施例2 ・・・ 実施例1のA液のCeB。微粒子をGdB。微粒子(平均粒径85nm)とした 10以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。

【0050】実施例3 ・・・ 実施例1のA液のCeB。微粒子をTbB。微粒子(平均粒径90nm)とした以外は実施例1と同様の方法で塗布液を調整し、これを、微粒子濃度が2.0重量%になるまでエタノールで希釈し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビ20一カーから滴下し、そのまま5分間振り切った後回転を止めた。この上に更に、B液のSiO、濃度を2.0%までエタノールで希釈した溶液15gを、150rpmで回転する上記塗布基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。

【0051】実施例4 ・・・ 実施例1のA液のCeB。微粒子をDyB。微粒子(平均粒径95nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコ 30ートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。

【0052】実施例5 ・・・ 実施例1のA液のCeB。微粒子をHoB。微粒子(平均粒径85nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。

【0053】実施例6 ・・・ 実施例1のA液のCe 40 B。微粒子をYB。微粒子(平均粒径90nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。との膜の光学特性を表1に示す。【0054】実施例7 ・・・ 実施例1のA液のCe B。微粒子をYB。微粒子(平均粒径90nm)とし、B 液の代わりに、信越シリコーン社製のシリコーン系UV 硬化樹脂をバインダーとして使用した以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを100℃の電気炉に入れて2分乾燥し溶媒を蒸発させた 50

後、高圧水銀灯を使用して2分間紫外線照射し、目的と する膜を得た。この膜の光学特性を表1に示す。

10

【0055】実施例8 ・・・ 実施例1のA液のCeB。微粒子をEuB。微粒子(平均粒径90nm)とし、B液の代わりに、三井化学社製のウレタンラッカーをバインダーとして使用し、スピン回転数を200rpmとした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを室温で放置し溶媒を蒸発させ、目的とする膜を得た。この膜の光学特性を表1に示す。

【0056】実施例9 ・・・実施例1のA液のCeB。微粒子をErB。微粒子(平均粒径120nm)とし、B液の代わりに、信越シリコーン社製の常温硬化樹脂をバインダーとして使用し、スピン回転数を200rpmとした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを室温で放置し溶媒を蒸発させ、目的とする膜を得た。この膜の光学特性を表1に示す。

【0057】実施例10 ・・・ 実施例1のA液のCeB。微粒子をTmB。微粒子(平均粒径110nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。

【0058】実施例11 ・・・ 実施例1のA液のCeB。微粒子をLuB。微粒子(平均粒径95nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し目的とする膜を得た。この膜の光学特性を表1に示す。

【0059】実施例12 ・・・ 実施例1のA液のCeB, 微粒子をSrB。微粒子(平均粒径95nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し目的とする膜を得た。この膜の光学特性を表1に示す。

【0060】実施例13 ・・・ 実施例1のA液のCeB。微粒子をCaB。微粒子(平均粒径80nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し目的とする膜を得た。この膜の光学特性を表1に示す。

【0061】実施例14 ・・・ 実施例1のA液のCeB。微粒子をTbB。微粒子(平均粒径80nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し目的とする膜を得た。この膜の光学特性を表1に示す。

【0062】実施例15 ··· ITO微粒子(平均 粒径55nm)35g、ジアセトンアルコール(DA A)61g、および微粒子分散用カップリング剤4.0 50 gを混合し、直径4mmのジルコニアボールを用いて1

2時間ボールミル混合して ITO 微粒子の分散液 100 gを作製した(C液)。このC液と、実施例1のA液と 信越シリコーン社製のシリコーン系UV硬化樹脂を表1 の実施例20の組成になるようにエタノールで希釈して 十分混合し、この溶液15gを200rpmで回転する 200×200×3mmのソーダライム系板硝子基板上 にピーカーから滴下し、そのまま5分間振り切った後回 転を止めた。これを100℃の電気炉に入れて2分乾燥 し溶媒を蒸発させた後、高圧水銀灯を使用して2分間紫 外線照射し、目的とする膜を得た。この膜の光学特性を 10 表1に示す。

【0063】実施例16 ··· ATO微粒子(平均 粒径50nm) 35g、ジアセトンアルコール (DA A) 61g、および微粒子分散用カップリング剤4.0 gを混合し、直径4 mmのジルコニアボールを用いて1 2時間ボールミル混合して ITO 微粒子の分散液 100 gを作製した(D液)。このD液と、実施例1のA液と 信越シリコーン社製のシリコーン系UV硬化樹脂を表1 の実施例20の組成になるようにエタノールで希釈して 十分混合し、この溶液15gを200rpmで回転する 20 200×200×3mmのソーダライム系板硝子基板上 にビーカーから滴下し、そのまま5分間振り切った後回 転を止めた。これを100℃の電気炉に入れて2分乾燥 し溶媒を蒸発させた後、高圧水銀灯を使用して2分間紫\*

\*外線照射し、目的とする膜を得た。この膜の光学特性を 表1に示す。

【0064】以上の実施例1~16では、全ての膜につ いて、可視光透過率よりも日射透過率が百分率で15ポ イント以上低く、明るさを保ちながら、効率よく日射を 遮蔽していることがよくわかり、日射遮蔽膜として有用 であることがわかる。また、実施例の全ての膜は可視光 領域での反射率が8%以下であって、ミラー状のギラツ キが無く、更に表面抵抗値が全ての膜で8×101°Ω/ □以上であって、電波透過性において問題の無いことが 確かめられた。

【0065】比較例1 ・・・ 塗布法に比べて高コス トの物理成膜法により作製された市販の熱線反射ガラス について、340~1800nmの分光透過率を測定 し、JIS R 3106に従って光学特性を調べたと とろ、可視光透過率61.8%、日射透過率63.4% となった。これは、上記6ホウ化物塗布膜と比較して可 視光透過率と日射透過率の差が小さく、日射遮蔽効率が 悪い。また可視光反射率は30以上%と非常に髙く、外 観もギラギラしたミラー状の外観を呈していた。また膜 面の表面抵抗値は83Ω/□と低く、電波透過性及び反 射性には問題があることが明らかであった。

[0066]

【表1】

|          | ·            | <b>塗布液</b>    | •          |     | 光学特性          |       |       |  |
|----------|--------------|---------------|------------|-----|---------------|-------|-------|--|
|          |              | 面形分量<br>(重量%) |            |     |               |       |       |  |
|          | 含有微粒子の       | 散粒            |            | オーバ | 14            | **    | 透過率の  |  |
|          | 移旗           | 7             | <b>4</b> — |     | (96)          | (%)   | 極大値と概 |  |
| <u> </u> |              |               |            | の有無 |               |       | 小値の差  |  |
| 実施例1     | CeBe         | 1.6           | 1, 5       | 無し  | 68. 5         | 44. 3 | 49.5  |  |
| 実施例2     | GdBB         | 1. 6          | 1. 5       | 無し  | 68. 1         | 52. 8 | 32.3  |  |
| 実施例3     | ТьВв         | 2.0           | 0.0        | 有り  | 64. 0         | 38. 4 | 31.2  |  |
| 実施例4     | DyB6         | 1. 5          | 2. 0       | 無し  | <b>65</b> . 8 | 50. 2 | 35.0  |  |
| 突施例5     | НоВ8         | 2. 0          | 2.0        | 無し  | 48. 7         | 33. O | 29,4  |  |
| 実施例6     | YB6          | 1. 2          | 1. 5       | 無し  | 76. 3         | 63. 1 | 47.6  |  |
| 実施例7     | SmB6         | 1. 8          | 10, 0      | 無し  | 56. 6         | 39. 1 | 33,7  |  |
| 実施例8     | Eu88         | 1.8           | 15. 0      | 無し  | 54. 2         | 39. 3 | 30.5  |  |
| 実施例9     | ErB8         | 2. C          | 20. 0      | 無し  | <b>60.</b> 9  | 34. 0 | 38.3  |  |
| 実施例10    | TmB6         | 2. 0          | O. B       | 無し  | 46. 0         | 30. 9 | 30.2  |  |
| 実施例17    | LuB5         | 1. 5          | 0. 8       | 無し  | 64. 3         | 43. 1 | 35.2  |  |
| 実施例12    | SrB6         | 1.0           | 1. 5       | 無し  | 77.2          | 61.3  | 25.6  |  |
| 実施例13    | Ce85         | 1. 0          | 1. 5       | 無し  | 78. 2         | 61, 9 | 24.3  |  |
| 実施例14    | <b>УЬВ</b> 6 | 1. 5          | 1. 5       | 無し  | 63. 8         | 48. 4 | 31.2  |  |
| 実施例15    | C+B8/ITO     | 0.8/20        | 20. 0      | 無し  | 70. 5         | 37. 3 | _     |  |
| 実施例16    | CeB6/ATO     | 0.8/20        | 20. 0      | 無し  | 67. 3         | 40. 2 | _     |  |
| 比較例1     | 日射速数がうな      |               |            |     | 61. 8         | 63. 4 | _     |  |

#### [0067]

【発明の効果】以上示したように、本発明によれば、可 視光領域の光の透過率が高くて、近赤外領域の光の透過 50 キが無く、膜の導電性が10°Ω/□以上に制御可能な

率が低いために、明るさを損なわずに日射の熱エネルギ ーを効率よく遮蔽でき、可視光反射率が低いのでギラツ 13

ので電波透過性に優れた日射遮蔽膜であり、これを、高コストの物理成膜法を用いずに簡便な塗布法で成膜できる塗布液と、これを用いた日射遮蔽膜とが提供できた。 【0068】この膜を、例えばビル等の窓ガラスに使用することで、夏場の冷房負荷を低減する効果があり、省\*

\*エネルギーにも役立ち、環境的にも有用性の高い工業製品である。

# 【図面の簡単な説明】

【図1】実施例1の膜による、横軸を波長(nm)、縦軸を透過率(%)とした代表的なプロファイルである。

# 【図1】



#### フロントページの続き

(51)Int.Cl.'

識別記号

FΙ

テーマコート' (参考)

G 0 2 B 5/22

5/26

G 0 2 B 5/22 5/26

Fターム(参考) 2H048 CA05 CA12 CA17 FA05 FA13 FA24

4F100 AA19A AA29A AA31A AA33A
AD10A AG00 AH06 AH08A
AK01A AS00A AT00B BA01
BA02 BA03 BA04 BA05 BA07
DE01A EH46 GB07 GB32
JB12A JB14A JB16A JD01
JG01 JG04A JN02 JN06A
JN08 JN18C YY00 YY00A
4J038 DL031 DM021 DN001 EA011
HA216 HA476 JA23 KA20
MA07 MA08 MA10 MA14 NA19

PA19 PB05 PC03 PC08