

Proposal of Modeling Personal Values Using Large Language Models for Extracting Mentions of Item Attributes and Polarity from Review Texts

Koki Itai^{1*}, Hiroki Shibata¹, Yasufumi Takama¹

¹Tokyo Metropolitan University

*itai-koki@ed.tmu.ac.jp

Background

<u>Challenges in recommender systems</u> face the following issues: cold-start problem / sparsity problem

Personal Value-based User Modeling

- Estimate users' particular interests in item`s attributes
- Users' personal values are reflected in the priority of item's attributes when evaluating items
- Rating Matching Rate (RMrate) is an indicator that quantifies personal values.

$$RMrate(u,j) = \frac{O(u,j)}{O(u,j) + Q(u,j)}$$

O(u,j) / Q(u,j): The number of times the evaluation polarity of attribute j matches / mismatches the overall evaluation polarity of user u

- RMrate requires explicitly collected attribute evaluations
- → Can not be applied to some platforms
- User-written review texts strongly reflect preferences
- → Resource for extracting contain extractable attribute evaluations

Research Purpose

Construct a personal value-based user modeling by extracting attributes from review texts using LLMs

Methods

Two main components:

1. Sentiment Extraction Module using LLM:

Using LLM prompting to extract polarity of item attribute polarity from review texts

2. Recommendation Module:

Calculating RMrates based on extracted attribute polarities and explicitly given overall item evaluations.

Experiments: Settings

- Dataset: Yahoo! Movie Reviews (ja)
- > LLM used: GPT-3.5-turbo-1106
- Prompt type (Both English and Japanese versions):
 Zero-shot / Few-shot (3-shot) / Chain-of-Thoughts
- Ground truth datasets:
 - Explicit Evaluations
 - Manual Annotations

Experiments: Results

Accuracy of attribute polarity extraction

Explicit attribute ratings as ground truth:

- Low F1 scores regardless of method
- The reasoning provided through CoT is reasonable
- When there is a discrepancy between the sentiment expressed in the review text and the explicit attribute evaluations
- Inconsistency between review text polarity and attribute evaluations

• Manually annotation as ground truth:

- CoT (en) tends to show the high performance
- Attribute clearly mentioned in reviews, extraction accuracy is comparable to manually annotated
- Hard to predict reviews with vague writing or implicit attributes

Recommendation Accuracy

- ECFPV: Explicit Collaborative Filtering employing Personal Values

 → achieved best score
- ICFPV: Implicit Collaborative Filtering employing Personal Values
 → achieved comparable score to ECFPV

	Precision@5	Recall@5	F1@5	RMSE
KNN-pearson	0.273	0.146	0.191	1.057
KNN-cosine	0.555	0.234	0.330	1.066
ECFPV	0.618	0.270	0.376	1.058
ICFPV(Zero-shot)	0.603	0.258	0.361	1.063
ICFPV(Few-shot)	0.588	0.252	0.352	1.071

Conclusion / Key Findings

- The proposed method successfully extracted polarity from review texts using LLMs, with recommendation accuracy comparable to systems using explicit evaluations
- Demonstrates potential for model construction in scenarios without explicit attribute evaluations

Future Works

- Challenge: Extracting attributes from vague reviews <u>without</u> <u>explicit mentions</u>
- Issue: LLM inference time limits large dataset processing
- Potential Solution: Use of OSS LLMs (Llama, Gemma, etc.)

