Analog antegrated Circlits lec13, 8moser ID Design Methodology.

-- Page 1

- 1 The problem.
 - L'Since Berkoley Spile Simulation on 1970s thire's no major Change on analog design flow!
 - 2 Nano-meter transistor models are very Complex
 - 3 No Systematic analog design process
- 2 Why as Transistor Different

The transistor 7s athree terminal device where the Voltage between two terminals Controls the Current Flowing anto the third terminal.

2 The transistor Works as VCCS

I Transistor modeling

I nonlinear Char;

(lag Sig. model)

Under Char

(Small Charge)

Under Char

(YGS)

(Small charge)

1 of there's small change on Voter of results a small Change on lout -> this area assumed to be linear

Slope = A Tout = 9m The L.

Tout = f(Vont)

Im The Erans Conductor a of Transistor

2 as the VCCS of Transistor

75 not rde at > there will result

an output resistance $r_0 = V_{out}$ $r_0 = \frac{1}{945} = (\frac{\Delta \Gamma_{out}}{\Delta V_{out}})^{-1} = \frac{V_{out}}{T_{out}}$

4 Vont = - In Votil x ro = - In Vin x ro Tatainsic Vin = In to = In INA Intrinsic gain is the max gain Can be achived from transistor (4) In Controls the Speed. Van Veen Veen To I a 1 Av = Vol = 9 m ro P or = 7 : $= B\omega = \frac{\omega_P}{2\pi c} = \frac{1}{2\pi c} = \frac{1}{2\pi c}$ 2 GBW = IAol. BW = In (for a single Pole Systems) = 277 G 3 In Controls the Speed of Amplifier Speed A, gn 1 5) In Controls the Noise - We can show that for both MOSFET thermal moise and BJT Shot noise Vn.in (1) 2 (9m) : In Controls the noise Noise +, Int 6 We must Pay In to Buy In I on Thigher Stope > Trighton In Ja

Ta

Thigher 1'a

Thigher 1'

IC = Is & VT

exponitial Charactersbics B + Is E Small E BJT Story,

VBE

VBE

VT 2 ° Jm = 8lope = DIC TC also exp 3 TE = Im = 1 7 1 26 my ~ 38,5511 Constant (i) is no or design methodology. E 4 The digital Prespective 78 How much change in Votre (NBE) for lox change this.

Spec 25 = Plogro Ic) = (23 =)-1 = 28 V7 = 6 mV

Subtrished Slope

Subtrished Slope B BJT TATRIASIC grin Voul: - In Uctor x ro - - In N: x ro Mul = Vout = 2 To = 2. VA = VA - FC : IAUI = VA Const (8) The old school MOSFET 1 N- Gpe Channel region (Toversion Loyer) boined 2 VGS> VTH - VGS = VTH + YOU 2 The channel as Pinchol of al VGO & VTH - VOS > Vov 3 Ti Simple long Channel model as 10 = 46x W USB = 46x W (VGS-VTH)

-> Page 4
4 There's a large diviation between Square-Law and
4 There's a large diviation between Square-Law and actual charactristics for short Channel devices. 5 Short Channel Effects
5 Short Channel Effects In The Linear dependance on Vas In the Uclocity Saturation In The Mook of Week) dependence on L
La mobility degradation
3. 9m : Destinar = Constant Dlarge Vor
6 The Equare law fails to describe Strong-musion (SI) allurately (3)
I The Square Law fails to describe weak Inversion (WI)
Completely (0)
& Julio depends on bias point Jonal In SI
Empletely (i) large In WE 8 2-110 depends on bias point I small In SI 5. Tuning MOSFET on 15 H. Core of of To design methodology. (i)
4 Since 3- Seturates moull) We expect To characteratics 75
exponentially dependant on YGS
Similar to BIT &
9 The Subthreshold Operation (Weak Inversion)
1 To Weak Towersian We still That the depletion region
2. Mas Structure will be
2 Mas behave as Bot with Con the Contraction of the Property of the Contraction of the Co
This base coupled to the jale & I DO BAT
through Capacitive divides The
VBC = VGS COX+GOP in - M = Cox+Coop> 1 - Toff e nVT

0	V deally V- should not affect In - Place
_	Vos -> rdoally vos should not affect ID - flages
	6, 1100 13 100 101
	- But practically increasing Vos increases ID DIBL
	- Vos effect modeled by ro: To
	- Yost, VAT, rot as we go deeper into Sat.
	- We need large YDS (much Larger than) YDSN-
	to notice the difference of VA (ro)
	- Yosat and Y+
	C. H. Square Law
	$\frac{2}{T_0} = \frac{2}{V_{ov}} \rightarrow V_{ov} : \frac{2!}{g!T_0}$
	10 Nov
	We deter new param anspired by Vor
	Y* = 2 Compated from Simulation
	So This Valid on all region
	•
	- Yt 75 always Lorger than Vosal. © So It Can be used as an estimate for
	So It Can be used as an estimate for
	Saturation
	- This gurantee biasing a little desper This Sul
	VDS 78 Set to V++ VOSal-margin
3	Yas 75 the Primary Voltage Controlling the
	device behaviour
	- Sollis 75 the prinary Voltage Controling ID (VCCS)
	- In analog ICs, We usually Set the bias Current rather than
	Setting the bias Voltage (VGS) - Chrient mirror biasing is replace VGS by ID in the Dofs life
	or replace Vas by To In the Dofs list

4 Length (L) - Shorter Lallows Smaller area and higher Speed - but analog designers usually tend to use relatively long L use longer 2 78
you want use Shorter L of you want 1 High gain (high Va) 1 Smaller Area - Smaller Cop * Most Thave large Vosat-margin 2 Thigh Speed (high fr = 2 Th (qg) 2 less random mis match 3 low flicker naise 5 Width (W) - Choosing was one of the most difficult tasks - the Choice of W 15 affected by How much I do you use I how much I do you use I how much I do you force - the Search range of W 15 Unit large. - the Search range of W 15 very large. - The meaning but Search range depends on 2, L, and To (12) The Ind lesign methodology. 1 What We care most about is the (TE) on 2 where 8n Captures the relation between the basic function To of the transistor (2) and the most valuable resource (Power Consumption IO) Replace W by In on the Dols

> Page f

Think gm/ID!

Use small gm/ID if you want

- > Strong-inversion (SI) biasing
- > Small gm (for a given ID)
 - Devices whose gm do
 - NOT contribute to gain
 (Ex: active loads)
- > Small area
- > Small capacitance
- High speed
- Large V_A (large ro)
 - The gate has better control on channel (VDS effect is less)

Use large gm/ID if you want

- > Moderate inversion (MI) or weak-inversion (WI) biasing
- > Large gm (for a given ID)
 - Devices whose gm do contribute to gain (Ex: input stage and cascode devices)
- > High efficiency
 - Low power consumption (low ID) for a given speed or noise spec (gm spec)
- Less random mismatch
 - Large gm/ID implies larger W (larger area) (beware of exceptions due to non-uniform doping profile)
- Low flicker noise
 - Large gm/ID implies larger W (larger area)
- Large input range and/or output swing
 - Large gm/ID implies small V*

The gm/ID Design Methodology Demystified

www.master-micro.com

gm/ID and Gain

$$g_m r_o = \frac{g_m}{I_D} \cdot V_A$$

For high intrinsic gain go for high gm/ID

- But beware that V_A (and consequently r_o) decreases as you go in WI
 - The gate has less control in WI
 - The effect of VDS on ID increases

(3 m. To) Saturate

egm/ID Design Methodology Demystified

www.master-micro.com

52

$$|A_v| = g_{m1}(r_{o1}||r_{o2}) = \frac{g_{m1}}{g_{ds1} + g_{ds2}} = \frac{(g_m/I_D)_1}{\frac{1}{V_{A1}} + \frac{1}{V_{A2}}}$$
vective
D may be good for M1
m/ID is better for M2 (higher V_{A2})

- From gain perspective
 - A large gm/ID may be good for M1
 - But a small gm/ID is better for M2 (higher V_{A2})

- ullet Use large gm/ID for transistors whose g_m contribute to the gain
 - Ex: input stage and cascode devices
- ullet Use small gm/ID for transistors whose g_m do not contribute to gain
 - Ex: active loads

The gm/ID Design Methodology Demystified

www.master-micro.com

gm/ID and Thermal Noise

$$v_{n,in}^2(f) \approx \frac{4kT\gamma}{g_{m1}} \left(1 + \frac{g_{m2}}{g_{m1}} \right)$$

- A large gm/ID is good for M1
- But a small gm/ID is better for M2 (higher V_{A2})

- Use large gm/ID for transistors whose g_m contribute to gain
 - Ex: input stage and cascode devices
- Use small gm/ld for transistors whose g_m do not contribute to gain
 - Ex: active loads

0.6 VGS (V)

From gm/ID to W

10⁰

10-5

ID (mA)

- ☐ The problem is that you cannot plugin gm/ID in the simulator
 - Side note: you can directly plugin gm/ID in the Analog Designer's Toolbox (ADT) ©
- ☐ The good news is that ID is always proportional to $W: I_D \propto W$
 - This holds for both long and short channel devices
 - This holds for all operating regions (WI, MI, SI)
 - Simply, the wider the street (the channel) the more cars (electrons) can pass

☐ The exception is narrow-width devices

 But they are seldom used in analog as they will have excessive mismatch and excessive flicker noise

The gm/ID Design Methodology Demystified

www.master-micro.com

55

W = 500u

W = 50u

W = 5u

From gm/ID to W

- ☐ Assume a reference device with Width = W
- ☐ For a given L, there is one-to-one correspondence between VGS and ID
- ☐ And there is one-to-one correspondence between gm/ID and VGS
 - Points to the left of the max gm/ID are discarded
- ☐ Thus, there is one-to-one correspondence between gm/ID and ID
- Similarly, we can plot any other parameter vsgm/ID

The gm/ID Design Methodology Demystified

www.master-micro.com

-> Page !!

From gm/ID to W

10⁰

□ Apply cross multiplication

Ref Device	ID (from chart or look-up table)	W (reference device width)
Design Problem	IDx (defined in problem DOFs)	Wx = ?

$$W_x = W \times \frac{I_{Dx}}{I_D}$$

The gm/ID Design Methodology Demystified

Recapping MOSFET DOFs

Origina	The Old-School	The gm/ID Methodology
W	Vov (square law)	gm/ID (use charts or LUTs to get W)
L	L (get a rough estimate for $V_A=1/\lambda$)	L (use charts or LUTs)
VGS	ID (current mirror biasing)	(current mirror biasing)
VDS	VDS = Vov + VDsat_margin (get a rough estimate for VDsat_margin)	VDS = VDsat + VDsat_margin (taken into account by using charts or LUTs)
VSB	Forced by topology (use simple model or ignore)	Forced by topology (taken into account by using charts or LUTs)