De novo сборка генома

В идеальном мире

[http://bioinformatics.org.au/ws13/wp-content/uploads/ws13/sites/3/FullPresentations/Torsten-Seemann_2013-Winter-School-presentation.pdf]

WGS секвенирование

Несколько копий ДНК молекул

Фрагменты длиной 200 - 200,000 п.н.

Не остается информации из какой части генома взят тот или иной фрагмент

Технологии секвенирования

1-е поколение

Sanger sequencing

• 2-е поколение

WGS секвенирование: фрагменты

Секвенатор считывает по **100-1000 п.н.** с конца/концов фрагмента. Размеры фрагментов известны с точностью **±** 10-20%.

Сборка генома

У лукоморья дуб зеленый; Златая цепь на дубе том:

Чтения:

У лукоморья ду леный; Златая

морья дуб зеле Златая цепь н

зуб зеленый; 3 я цепь на дубе

пь на дубе том

Чтения:

У лукоморья ду леный; Златая

морья дуб зеле Златая цепь н

зуб зеленый; 3 я цепь на дубе

пь на дубе том

Перекрытия:

У лукоморья ду

морья дуб зеле

зуб зеленый; 3

леный; Златая

Златая цепь н

я цепь на дубе

пь на дубе том

Перекрытия:

У лукоморья ду

морья дуб зеле

зуб зеленый; 3

леный; Златая

Златая цепь н

я цепь на дубе

пь на дубе том

Перекрытия:

У лукоморья ду

морья дуб зеле

зуб зеленый; 3

леный; Златая

Златая цепь н

я цепь на дубе

пь на дубе том

Консенсус:

У лукоморья дуб зеленый; Златая цепь на дубе том

AGCTACAGTATGCT TACAGTATGCTTAT

GTATGCTTATCTGA TGATACCTTAGCCA

TGCTTATCTGATAC

TACAGTATGCTTAT

AGCTACAGTATGCT TACAGTATGCTTAT

TACAGTATGCTTAT GTATGCTTATCTGA

TACAGTATGCTTAT

TGCTTATCTGATAC

AGCTACAGTATGCT TACAGTATGCTTAT AGCTACAGTATGCT TACAGTATGCT TACAGTATGCTTAT

AGCTACAGTATGCT TACAGTATGCTTAT

AGCTACAGTATGCT
TACAGTATGCTTAT

Overlap graph **AGCTACAGTATGCT TACAGTATGCTTAT TGCTTATCTGATAC GTATGCTTATCTGA TGATACCTTAGCCA**

Overlap graph **AGCTACAGTATGCT TACAGTATGCTTAT TGCTTATCTGATAC GTATGCTTATCTGA TGATACCTTAGCCA**

AGCTACAGTATGCT
TACAGTATGCTTAT
GTATGCTTATCTGA
TGCTTATCTGATAC
TGATACCTTAGCCA
AGCTACAGTATGCTATCTGATACCTTAGCCA

Секвенирования с помощью гибридизации

Секвенирование с помощью гибридизации

• ДНК чип с 4³ пробами

Целевая ДНК: AAATGCG

AAA₽	AAC₽	AAG₽	AAT₽	ACA₽	ACC₽	ACG₽	ACT₽ ¹
ATT₽	ATG₽	ATC₽	ATA₽	AGG₽	AGT₽	AGC₽	AGA₽
CCC₽	CCA₽	CCG₽	CCT₽	CAA₽	CAC₽	CAG₽	CAT ₽
CTC₽	CTG₽	CTA₽	CTT₽	CGA₽	CGC₽	CGG₽	CGT⊕ ¹
GGA₽	GGC₽	GGT₽	GGG₽	GAA₽	GAT₽	GAC₽	GAG₽
GTT₽	GTG₽	GTC₽	GTA₽	GCG₽	GCT₽	GCC₽	GCA₽ ¹
TTA₽	TTC₽	TTG₽	TTT₽	TAA₽	TAC₽	TAG₽	TAT₽
TGT₽	TGG₽	TGC₽	TGA₽	TCC₽	TCA₽	TCG₽	TCT₽ °

K=5

AGCTACAGTATGC

AGCTA

K=5

AGCTA GCTAC

K=5

AGCTACAGTATGC

AGCTA GCTAC CTACA

K=5

AGCTACAGTATGC

AGCTA GCTAC CTACA

TACAG

K=5

AGCTACAGTATGC

AGCTA GCTAC CTACA

TACAG ACAGT

K=5

AGCTACAGTATGC

AGCTA GCTAC CTACA

TACAG ACAGT CAGTA

K=5

AGCTACAGTATGC

AGCTA GCTAC CTACA

TACAG ACAGT CAGTA

AGTAT

K=5

AGCTACAGTATGC

AGCTA GCTAC CTACA

TACAG ACAGT CAGTA

AGTAT GTATG

K=5

AGCTACAGTATGC

AGCTA GCTAC CTACA

TACAG ACAGT CAGTA

AGTAT GTATG TATGC

K-меры. De Bruijn граф. AGCTACAGTATGC TATGCTTATCTGA

K-меры. De Bruijn граф. AGCTACAGTATGC TATGCTTATCTGA

AGCTACAGTATGC

TATGCTTATCTGA

AGCTA GCTAC
TACAG CTACA
AGTAT GTATG
ACAGT CAGTA

TATGC

GCTTA ATGCT
CTTAT TTATC
TATCT ATCTG
TGCTT TCTGA

$$K+1=6$$

AGCTACAGTATGC

AGCTAC CTACA
AGCTAC

TACAG ACAGT CAGTA

AGTAT GTATG TATGC

K+1=6

AGCTACAGTATGC

AGCTAC GCTACA
AGCTAC GCTACA
TACAG ACAGT CAGTA

AGTAT GTATG TATGC

K + 1 = 6

AGCTACAGTATGC

AGCTA GCTAC CTACA AGCTAC GCTACA CTACAG TACAG ACAGT CAGTA TACAGT ACAGTA CAGTAT AGTAT GTATG TATGC AGAGTG GTATGC

AGCTA

GCTAC

AGCTAC AGCTAC GCTAC

AGCTAC AGCTAC GCTAC

K=2 AGCTACAGTATGC TATGCTTATCTGA

K=10 AGCTACAGTATGC TATGCTTATCTGA

Более реалистичный пример графа

[http://bioinformatics.org.au/ws13/wp-content/uploads/ws13/sites/3/FullPresentations/Torsten-Seemann_2013-Winter-School-presentation.pdf]

Число возможных реконструкций генома

[Kingsford C. et al. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics. 2010 Jan 12;11:21]

Что усложняет графы

• Ошибки в чтениях

 Приводят к появлению в графе ошибочных ребер и вершин.

• Диплоидные и полиплоидные организмы

 Приводит к появлению дополнительных путей в графе

• Повторы

Что такое повтор?

- Участок ДНК, который встречается более одного раза в геномной последовательности.
- Наиболее частые
 - Транспозоны
 - Сателлитные повторы
 - Дуплицированные гены(паралоги)

Эффект оказываемый на сборку

Эффект оказываемый на сборку

SOAPdenovo

Контиги

- Непрерывные, однозначные фрагменты, собираемой ДНК последовательности.
- Концы контигов соответсвуют
 - Настоящим концам(для линейных ДНК молекул)
 - Dead ends(провалы покрытия)
 - Точкам принятия решений (узлам в графе в которые входит и/или выходит больше одного ребра)

[http://bioinformatics.org.au/ws13/wp-content/uploads/ws13/sites/3/FullPresentations/Torsten-Seemann_2013-Winter-School-presentation.pdf]

Скаффолдинг

Типы чтений

- Пример фрагмента
- atcgtatgatcttgagattctctcttctcttatagctgctata
- Одноконцевое чтение
- atcgtatgatcttgagattctctcttctcttatagctgctata
- Последовательность с одного из концов
- Парноконцевое чтение
- atcgtatgatcttgagattctctcttctcttatagctgctata
- Последовательность с обоих концов
- эту информацию можно использовать!

Что такое длина вставки?

От контигов к скаффолдам

Что такое N50? N50 показывает качество сборки

N50 — это такая минимальная длина контига (скаффолда), что контиги (скаффолды) с длинами большими либо равными ей покрывают 50% генома.

Влияние длины вставки библиотеки на N50

Что нужно знать о данных из которых вы собираетесь делать de novo сборку

- Технология секвенирования.
- Длина чтения.
- Тип библиотеки. SE, PE. **Длина вставки**.
- Покрытие.
- Имеется ли загрязнение образца?

Что такое покрытие?

Это сколько раз в среднем покрыт ридами нуклеотид генома?

Влияние покрытия на N50

Если вы хотите собрать большой геном

Требуйте библиотеки с разными длинами вставок Геном Ficedula flycatchers - 1.1 Gb

Библиотеки:

1)~200 4)~500 7)~5100

2)~300 5)~2400 8)~18000

3)~400 6)~4100 9)~21000

[Ellegren H et al., The genomic landscape of species divergence in Ficedula flycatchers. Nature 2012, 491.]

• Удаление адаптеров и тримминг

Trimmomatic

• Фильтрация по содержанию к-меров Quake, BayesHammer, ...

[http://www.homolog.us/blogs/blog/2011/09/20/maximizing-utility-of-available-rams-in-k-mer-world/]

• Парноконцевые чтения с перекрывающейся вставкой

PEAR. FLASH ...

http://thegenomefactory.blogspot.ru/2012/11/tools-to-merge-overlapping-paired-end.html

• Mate pairs (Nextera MP reads - NxTrim, NextClip)

[http://www.illumina.com/documents/products/technotes/technote_nextera_matepair _data_processing.pdf]

Что делать с загрязнением?

• «Очистка» чтений.

Что делать с загрязнением?

• «Очистка» контигов.

Evgeny V Leushkin et al. The miniature genome of a carnivorous plant *Genlisea* aureacontains a low number of genes and short non-coding sequences. BMC Genomics 2013, 14:476

68

Чем собирать?

• Геном размером до 100-200 млн. п.н.

Spades, Ray, IDBA, Abyss....

- Большие геномы.
 - Риды до 200 п.н.

SOAP, MaSuRCA, Meraculous, Platanus, ALLPaths-LG, IDBA, Ray, Abyss, Minia.....

— Риды длиннее 200 п.н.

Newbler, Celera assembler, MIRA, ARACHNE, SGA, HGAP, Falcon, MHAP, SSPACE, CANU, PBcR, Sprai....

• Геномы видов с высокой гетерозиготностью dipSpades, Platanus, newbler

Оценка качества сборки

• Число контигов

– чем меньше тем лучше.

N50

– чем больше тем лучше

Total consensus

 должен быть близок к ожидаемой длине генома

• Число "N"

– чем меньше тем лучше

Валидация сборки

• Самосогласованность

- Картирование чтений обратно на контиги
- Тест на наличие ошибок или несогласованных парноконцевых чтений

• Второе мнение

- Использование двух друг друга дополняющих методов секвенирования
- Проверка «подозрительных» регионов с использованием ПЦР
- Использование полногеномных «рестрикционных карт»

Программы для оценки качества и валидации сборки

- **Оценка качества**. QUAST
- Оценка числа реконструированных генов BUSCO
- Валидация сборки путем картирования чтений обратно на сборку.

REAPR, ALE...

ALE

[Scott C. Clark et al. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics (2013) 29 (4): 435-443.]

73

ALE

[Scott C. Clark et al. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics (2013) 29 (4): 435-443.]

74

ALE

Likelihoods of GAGE assemblies of human chromosome 14

Assembler	Likelihood	Number of reads mapped	Coverage (%)	Scaffold N50 (kb)	Contig N50 (kb)
ABySS	-23.44 × 10 ⁸	22096466	82.22	2.1	2
ALLPATHS-LG	-22,77 × 10 ⁸	23122569	97.24	81647	36.5
CABOG	-21.26 × 10 ⁸	23433424	98.32	393	45.3
SOAPdenovo	a	a	98.17	455	14.7
Reference	-19.04 × 10 ⁸	23978017	-	-	-

Rahman and Pachter Genome Biology 2013 14:R8 doi:10.1186/gb-2013-14-1-r8

a Likelihood not computed as reads could not be mapped with Bowtie 2.

Финализация сборки

- Скаффолдинг по транскриптому.
- L_RNA_scaffolder, BESST ...
- Скаффолдинг «вручную»

Bandage

• Объединение сборок(Assembly reconcilation)

MIX, Slicembler ...

- Соединение концов скаффолдов с использованием ПЦР.
- Генетическая карта.

Irys technology

High-Throughput, High-Resolution Imaging Gives Contiguous Reads up to Mb Length

Samples or to a Reference

· Automated SV Detection

· Scaffolding · Gap Sizing

Chicago method

Chicago method

[https://dovetailgenomics.com/wp-content/uploads/2016/01/Dovetail-White-Paper.pdf]

Как собирали геном морковки?

Какие были данные

Sequencing method	Insert Size	Read Length (nt)	Total Data (nt×10 ⁹)	Sequence Depth (×)
	170nt	100	29,2	61,7
	285nt	100	25,1	53,2
	800nt	100	15,5	32,8
Illumina, Paired- ends	2knt	49	12,9	27,2
	5knt	49	7,1	14,9
	10knt	49	20,5	43,3
	20knt	49	22,4	47,4
	40knt	49	14,4	30,5
Total	_	_	147,2	311,1
Sanger, BAC	148±70knt	566	0,04	0,08

Размер генома ~470 млн. п.н.

Daucus carota

Как собирали геном морковки?

Сборка из чтений РасВіо

< 5x PacBio Coverage > 50x

РасВіо. Терминология

[http://files.pacb.com/software/smrtanalysis/2.2.0/doc/smrtportal/help/!SSL!/Webhelp/Portal_PacBio_Glossary.htm]

Сборка из чтений РасВіо

Oropetium thomaeum

Размер генома ~250 млн. п.н.

Сборка из чтений РасВіо

Raw Input:	
Mean Subread Length	12,872 bp
N50 (Subread Length)	16,485 bp
Total Number of	18,022,966,707
sequenced Bases	bp
Number of Reads	1,400,150

HGAP Preassembly (BLASR):

16,000 bp
6,281,202,330
bp
464,567
18,572 bp

Output (Celera Assembler):

Number of Polished	625	
Contigs		
Max Contig Length	7,984,151 bp	
N50 Contig Length	2,386,328 bp	
Sum of Contig Lengths	243,174,629 bp	

Сборка из длинных ридов

PacBio

HGAP, HGAP2, Falcon, Canu, Spades, Celera assembler, DBG2OLC

minION

 Spades, Celera assembler, NanoPolish, Canu, DBG2OLC

Article | Open Access | Published: 06 January 2020

The genome sequence of celery (*Apium graveolens* L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family

Meng-Yao Li, Kai Feng, Xi-Lin Hou, Qian Jiang, Zhi-Sheng Xu, Guang-Long Wang, Jie-Xia Liu, Feng Wang & Ai-Sheng Xiong [™]

Horticulture Research 7, Article number: 9 (2020) | Cite this article

3339 Accesses | 11 Citations | 2 Altmetric | Metrics

Library	Library	Clean data	Sequence
insert size	number	(Gb)	coverage ($ imes$)
180 bp	18	211.47	66.50
500 bp	14	152.35	47.91
800 bp	18	136.35	42.88
2 kb	8	47.78	15.03
5 kb	8	27.78	8.74
10 kb	2	25.07	7.88
Total	68	600.80	188.93

CutAdapt+SOAPdenovo2 +GapCloser

Feature	Value
Genome size	2.21 Gb
Genome GC%	35.35%
Gene number	34,277
Gene no. per 100 kb	1.44
Average gene length (bp)	3267
Exon region GC (%)	42.06%
Exon number	180,591
Average exon length (bp)	243.48
Exon no. per gene	5.27

Property	Contig	Scaffold
Min sequence length (bp)	500	500
Max sequence length (bp)	228,328	556,749
Total sequence number	432,762	257,842
N50 length (bp)	13,108	35,567
N90 length (bp)	1136	4841
<i>N</i> number	648,982	280,637, 212
N rate (%)	0.031	11.8
Total sequence length (bp)	2,017,581,028	2,372,941,895

What is N50?

N50 statistic defines assembly quality

What is the smallest piece at 50% of genome

[http://www.discoveryandinnovation.com/BIOL202/notes/lecture25.html]

Feature	Value
Genome size	2.21 Gb
Genome GC%	35.35%
Gene number	34,277
Gene no. per 100 kb	1.44
Average gene length (bp)	3267
Exon region GC (%)	42.06%
Exon number	180,591
Average exon length (bp)	243.48
Exon no. per gene	5.27

Property	Contig	Scaffold
Min sequence length (bp)	500	500
Max sequence length (bp)	228,328	556,749
Total sequence number	432,762	257,842
N50 length (bp)	13,108	35,567
N90 length (bp)	1136	4841
<i>N</i> number	648,982	280,637, 212
N rate (%)	0.031	11.8
Total sequence length (bp)	2,017,581,028	2,372,941,895

Irys technology

· Automated SV Detection

ScaffoldingGap Sizing

Scaffolding by HiC

[The cells sequenced in (A) normal conditions, (B) during mitosis, and (C) Dovetail Chicago]

How was the carrot genome assembled?

Data was used

Sequencing method	Insert Size	Read Length (nt)	Total Data (nt×10 ⁹)	Sequence Depth (×)
	170nt	100	29,2	61,7
	285nt	100	25,1	53,2
	800nt	100	15,5	32,8
Illumina, Paired- ends	2knt	49	12,9	27,2
	5knt	49	7,1	14,9
	10knt	49	20,5	43,3
	20knt	49	22,4	47,4
	40knt	49	14,4	30,5
Total	_	_	147,2	311,1
Sanger, BAC	148±70knt	566	0,04	0,08

Genome size ~470 Mbp

Daucus carota

How was the carrot genome assembled?

Assembly from PacBio reads

< 5x PacBio Coverage > 50x

Assembly from PacBio reads

Oropetium thomaeum

Genome size ~250 Mbp

Assembly from PacBio reads

Raw Input:	
Mean Subread Length	12,872 bp
N50 (Subread Length)	16,485 bp
Total Number of	18,022,966,707
sequenced Bases	bp
Number of Reads	1,400,150
HGAP Preassembly (BL	ASR):
Seed length cutoff	16,000 bp
	(201 202 220

Pre-Assembled Bases 6,281,202,330 bp
Pre-Assembled Reads 464,567
Pre-Assembled N50 18,572 bp

Output (Celera Assembler): Number of Polished Contigs Max Contig Length N50 Contig Length 2,386,328 bp

Sum of Contig Lengths

243,174,629 bp

Genome assembly of Ophiorrhiza pumila

Article | Open Access | Published: 15 January 2021

Chromosome-level genome assembly of *Ophiorrhiza* pumila reveals the evolution of camptothecin biosynthesis

Amit Rai [™], Hideki Hirakawa, Ryo Nakabayashi, Shinji Kikuchi, Koki Hayashi, Megha Rai, Hiroshi Tsugawa, Taiki Nakaya, Tetsuya Mori, Hideki Nagasaki, Runa Fukushi, Yoko Kusuya, Hiroki Takahashi, Hiroshi Uchiyama, Atsushi Toyoda, Shoko Hikosaka, Eiji Goto, Kazuki Saito & Mami Yamazaki [™]

Nature Communications 12, Article number: 405 (2021) | Cite this article

1768 Accesses 48 Altmetric Metrics

[doi: 10.1038/s41467-020-20508-2]

Genome assembly of Ophiorrhiza pumila

Table 1 O. pumila reference genome assembly statistics at different stages and combinations of scaffolding.

Assembly	Number of contigs	Number of scaffolds	Number of contigs assigned to scaffolds	Contig N50 (Mb)	Scaffold N50 (Mb)	Number of gaps	Assembly size (Mb)
PacBio ^a only (Canu assembly)	243	_	_	9.38	_	_	449.00
Bionano de novo Optical Map	_	458	_	_	1.68	_	442.00
PacBio + Optical ^b Map	108	45	83	8.21	21.05	117	442.00
PacBio + Hi-C ^c	213	34	198	9.39	40.80	96	441.00
PacBio + Hi-C + Optical Map ^d	239	26	208	8.21	24.17	91	441.90
PacBio + Optical Map + Hi-Ce	108	13	108	8.21	37.11	85	439.00
PacBio + Optical Map + Hi-C + PbJelly (PacBio) + genome polishing (final <i>O. pumila</i> reference genome)	31	13 (11 Chromosomes + 1 MT + 1 CP)	31	18.49	40.06	21	439.90

O. pumila is a medicinal plant that can produce the anticancer monoterpene indole alkaloid (MIA) camptothecin. Here, the authors report its genome assembly, and propose a working model for MIA evolution and biosynthesis through comparative genomics, synteny, and metabolic gene cluster analyses.

[doi: 10.1038/s41467-020-20508-2]

^aPacBio refers to contig assembly derived using Pacbio reads only and Canu²² assembler.

^bPacbio + Optical Map refers to Pacbio contig-level assembly scaffolded by Bionano de novo assembly.

^cPacBio + Hi-C refers to Pacbio contig-level assembly scaffolded by Hi-C library sequencing datasets.

^dPacBio + Hi-C + Optical Map refers to Pacbio + Hi-C assembly scaffolded by Bionano de novo assembly.

ePacBio + Optical Map + Hi-C refers to Pacbio + Optical Map assembly scaffolded by Hi-C library sequencing datasets.

Genome assembly of Ophiorrhiza pumila

[doi: 10.1038/s41467-020-20508-2]

Советы

- Не надо разрабатывать свой собственный сборщик.
- Быстро получите первую версию генома сразу станет понятно есть ли у проекта шансы.
- Пробластуйте порцию чтений против NT нет ли у вас значительных загрязнений.
- **Бластуйте** собранные **контиги** против **NT** получили ли тот вид, что ожидали?
- Если вы занимаетесь сборкой больше двух месяцев то скорее всего вы застряли. Переходите к следующей стадии проекта.

Полезные ссылки

Monya Baker. De novo genome assembly: what every biologist should know. Nature Methods 9, 333-337 (2012).

http://bsc2010.bioinformatics.ucdavis.edu/handson/index.html