Analysis on College Admission Data

Himani Gupta-95529 Pragya Moharatha-95474 Priya Phapale - 94662

Introduction

- College application process can be quite intimidating.
- Objective here is to analyze student information and predict admit/acceptance chances for the student.
- Decision tree/ Linear Regression for the predictive model analysis
- Optimize admission process by helping make a decision for student selection.

Data Source

Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
1	337	118	4	4.5	4.5	9.65	1	0.92
2	324	107	4	4	4.5	8.87	1	0.76
3	316	104	3	3	3.5	8	1	0.72
4	322	110	3	3.5	2.5	8.67	1	0.8
5	314	103	2	2	3	8.21	0	0.65
6	330	115	5	4.5	3	9.34	1	0.9
7	321	109	3	3	4	8.2	1	0.75
8	308	101	2	3	4	7.9	0	0.68
9	302	102	1	2	1.5	8	0	0.5
10	323	108	3	3.5	3	8.6	0	0.45

Input Dataset is taken from Admission_Predict.csv

- Here, Categorical Variables are University Ranking, SOP, LOR
- They are Ordinal Categorical Variable.
- Continuous Variables are GRE Score, TOEFL Score, CGPA, Chance Of Admit
- ❖ **Discrete Variables** are Serial No and Research

Data - Check for missing values

self.data.notnull().sum() / len(self.data)).sort_values(ascending=False)

Chance of A	dmit	1.0
Research		1.0
CGPA		1.0
LOR		1.0
SOP		1.0
University	Rating	1.0
TOEFL Score	E ·	1.0
GRE Score		1.0
Serial No.		1.0

Data had no missing values in any columns

Data summary statistics

self.data = pd.read_csv("Admission_Predict.csv")

describe = self.data.describe().transpose()

	count	mean	std	min	25%	50%	75%	max
Serial No.	400.0	200.500000	115.614301	1.00	100.75	200.50	300.2500	400.00
GRE Score	400.0	316.807500	11.473646	290.00	308.00	317.00	325.0000	340.00
TOEFL Score	400.0	107.410000	6.069514	92.00	103.00	107.00	112.0000	120.00
University Rating	400.0	3.087500	1.143728	1.00	2.00	3.00	4.0000	5.00
SOP	400.0	3.400000	1.006869	1.00	2.50	3.50	4.0000	5.00
LOR	400.0	3.452500	0.898478	1.00	3.00	3.50	4.0000	5.00
CGPA	400.0	8.598925	0.596317	6.80	8.17	8.61	9.0625	9.92
Research	400.0	0.547500	0.498362	0.00	0.00	1.00	1.0000	1.00
Chance of Admit	400.0	0.724350	0.142609	0.34	0.64	0.73	0.8300	0.97

Data Visualization

Features Vs. Target

Features:

- GRE Score
- TOEFL Score
- University Rating
- SOP
- LOR
- CGPA
- Research

Target:

• Chance of Admit

CGPA - Analysis

slope=0.20884722950069118, Rvalue = 0.8732890993553, stderr=0.0058403454390059265 Intercept=-1.0715116629342307, Pvalue =2.3365140004985676e-126,

GRE score - Analysis

Slope = 0.009975882025681376, Rvalue = 0.8026104595903499, Stderr = 0.00037163616056649364 Intercept =-2.4360842448510525, Pvalue = 2.458112414179777e-91,

TOEFL score - Analysis

Slope=0.018599296811431715, Rvalue =0.7915939869351045, stderr=0.0007196600972616436 Intercept=-1.2734004705158803, Pvalue =3.6341021759972773e-87,

Discrete/Categorical features

Prediction - Linear Regression

$$y = B_0 + B_1 x_1 +$$

	x1	x2	х3	x4	x5	х6	x7
features	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
Coefficients (ß)	0.0017676	0.0029032	0.00771492	-0.0053149	0.0282844	0.11736896	0.019229

Chance of Admit (Y)

=x1*0.00176755+x2*0.0029032+x3*0.00771492+x4*(-0.00531496)+x5*0.02828439+x6*0.11736896+x7*0.01922889 - 1.2748826685520998

Intercept (Bo) = - 1.2748826685520998

GRE	Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	predictions_LR
	324	110	3	3.5	3.5	9.04	1	0.82	0.800940
	325	107	3	3.0	3.5	9.11	1	0.84	0.804872
	330	116	4	5.0	4.5	9.45	1	0.91	0.905113
	312	103	3	3.5	4.0	8.78	0	0.67	0.723805
	333	117	4	5.0	4.0	9.66	1	0.95	0.923824

Prediction - Linear Regression

- Multiple Linear Regression model since n> 1
- ♦ Model summary:

0.0433

R2 = 0.73, Mean Squared error = 0.0035, Mean Absolute error =

Since R square = 1 -(SSError ÷ SSTotal) > 0.7, the relationship can be used.

Prediction - Decision Tree Regressor

- Regression- Creates model to predict value of target (numerical variable) using one or more predictors (numerical and categorical variables)
- Decision tree regressor is a tree kind of model which has decision nodes and leaf nodes
- Standard deviation is use to calculate homogeneity of numerical samples
- Constructing decision tree is all about finding an attribute that returns highest standard deviation reduction
- Use that node as root node and split further
- Coefficient of Deviation is used to decide when to stop branching

How it works?

- Step1 -Calculate standard deviation of the target attribute
- Step 2- After splitting further calculate standard deviation for each branch.
- Step 3- (Standard deviation before the split) (Resulting standard deviation) = standard deviation reduction.
- Step 4- The attribute with the largest standard deviation reduction is chosen for the decision node
- Step 5-The dataset is divided based on the values of the selected attribute and process continues
- Step 6- Model evalutation- MAE, MSE, R2

$$ext{SD} = \sqrt{rac{\sum |x - ar{x}|^2}{n}}$$

$$S(T, X) = \sum_{c \in X} P(c)S(c)$$

$$SDR(T, X) = S(T) - S(T, X)$$

$$MAE = \underbrace{\frac{1}{n} \sum_{\substack{\text{Sum} \\ \text{of}}} \underbrace{\frac{y}{y} - \widehat{y}}_{\text{The absolute value of the}}$$

$$MSE = \frac{1}{n} \sum_{\substack{\text{The square of the difference between actual and predicted}}} 2$$

User interface

Sample Output

GRE Score	TOEFL Score	University Rating	S0P	LOR	CGPA	Research	Chance of Admit	predictions_DR
324	110	3	3.5	3.5	9.04	1	0.82	0.763684
325	107	3	3.0	3.5	9.11	1	0.84	0.763684
330	116	4	5.0	4.5	9.45	1	0.91	0.925769
312	103	3	3.5	4.0	8.78	0	0.67	0.730714
333	117	4	5.0	4.0	9.66	1	0.95	0.925769

Model Summary:

- R2 = 0.735
- MAE = 0.055
- MSE = 0.0050

Comparison analysis

Code - Github

Python libraries:

- Numpy
- Pandas
- Matplotlib
- Sklearn
- Os
- Seaborn
- scipy

Code Structure

```
▼ Admission_Prediction
▶ Data
▶ GUI.py
▶ project.py
README.md
```

Thank You