

Model Optimization and Tuning Phase Template

Date	11-07-2024
Team ID	739736
Project Title	SMOKE DETECTION USING IOT DATASET
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Model 1		
Model 2		

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
-------	------------------

Model Building [] from phlearn.tree inport DecisionTreeClassifier from shlearn.metrics import accuracy_soure.classification_report clf = DecisionTreeClassifier() # fruit the classifier so the training data clf.fit(x_train, y_train) **Decicion Tree** # Now predictions on the testing data y_pred = clf-predict(x_test) # Svaluate the classifier ##port = classification_report(g_test, g_pred) ##int("Classification Report(he", report) Classifier To Classification Naport) preciaios recall filocore support [] from sklearm.linear_model import LogisticRegression from sklearm.metrics import accuracy_score,classification_report O simitalizing the model model_lr - LogisticRegression() Logistic Regression model_ir.fit(s_train,y_train) lr_pred_test-model_lr.gredict(x_test) lr_pred_train-model_lr.gredict(x_train) test_acc_lr-accuracy_score(y_test,lr_pred_test) train_acc_in-accuracy_score(y_train,ir_pred_train) print('Logistic Regression test accuracy: ',test_acc_le) print(classification_report(y_test,ir_pred_test)) → Logistic Regression test accuracy: 8.9691848078788776 precision recall fi-score support 8.94 8.95 8.95 8.98 8.98 8.98 1 accuracy 8.96 8.96 8.95 12526 satisfactor avg 8.96 8.96 8.95 12526 satisfactor avg 8.97 8.97 8.97 12526 KNN classifier K-Nearest Neighbors [] from sklears.neighbors import KNeighborsClassifier from talears.neighbors import KNeighboraClassifler knn.fifts train.y train) knn.fifts train.y train) knn.pred_test=knn.predict(x_test) knn.pred_test=knn.predict(x_test) test_ac_knn=accuracy_score(y_test_knn_pred_test) train_acc_knn=accuracy_score(y_test_knn_pred_test) train_acc_knn=accuracy_score(y_train,knn_pred_test) print('DON Test_Accuracy_is' ',test_acc_knn) print(classification_report(y_test_knn_pred_test)) → KWW Test Accuracy Is: 0.0992814944914578 precision recall fi-score support 1.00 1.00 1.00 1005 1.00 1.00 1.00 8921 1.00 1.00 1.00 12526 1.00 1.00 1.00 12526 1.00 1.00 1.00 12526 accuracy [] confusion_matrix(y_test,knn_pred_test)

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	KNN was selected as the final model for its high accuracy and exact
K-Nearest	prediction of the target outcome and it can be able to handle complex
Neighbors	data.