МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №8

по дисциплине «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Вариант №2

Группа: Р3212

Выполнили: Беляев,

Билошицкий, Сиразетдинов

Проверила: Танченко Ю. Б.

ЦЕЛЬ РАБОТЫ

Используя метод наименьших квадратов, требуется сгладить предложенную табличную зависимость их при помощи формул. Помимо этого, следует вычислить невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую. Предварительно зависимость следует линеаризовать.

ДАННЫЕ

. !									
			0.625						
	y(i)	1.32	0.78	0.69	0.55	0.43	0.36	0.31	0.26

РЕШЕНИЕ ОБРАТНОЙ ФОРМУЛОЙ

Сглаживание при помощи формулы:

$$z = \frac{1}{a + bt}$$

Линеаризуем:

$$\frac{1}{z} = a + bt, y = \frac{1}{z}, x = t$$

х	1.25	0.625	0.5	0.4	0.31	0.25	0.21	0.18
у	0,758	1,282	1.449	1,818	2,326	2,778	3,226	3,846

Найдем точную оценку линейной модели

$$y = \tilde{a} + \tilde{b}x$$

Метод наименьших квадратов:

$$S(a_0, a_1) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{8} (y_i - \tilde{a} - \tilde{b}x_i)^2 \to min$$

Экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{8} y_i - 8\tilde{a} - \tilde{b} \sum_{i=1}^{8} x_i\right) = 0\\ \frac{\partial S}{\partial b} = -2\left(\sum_{i=1}^{8} x_i y_i - \tilde{a} \sum_{i=1}^{8} x_i - \tilde{b} \sum_{i=1}^{8} x_i^2\right) = 0\\ \sum_{i=1}^{8} x_i = 3.725, \sum_{i=1}^{8} y_i = 17.483, \sum_{i=1}^{8} x_i^2 = 2.598, \sum_{i=1}^{8} x_i y_i = 5.986 \end{cases}$$

После решения системы:

$$\begin{cases} \tilde{a} = 3,3471 \\ \tilde{b} = -2,495 \end{cases}$$

Подставляем коэффициенты:

$$\tilde{y} = 3,3471 - 2,495x$$

Точечная оценка:

$$\tilde{z} = \frac{1}{3,3471 - 2,495t}$$

Значения оценки и невязки:

t	1.25	0.625	0.5	0.4	0.31	0.25	0.21	0.18
Z	1.32	0.78	0.69	0.55	0.43	0.36	0.31	0.26
$ ilde{Z}$	4.379	0.559	0.476	0.426	0.389	0.367	0.354	0.345
ϵ	-3.059	0.221	0.214	0.124	0.041	-0.007	-0.044	-0.085

График обратной модели:

РЕШЕНИЕ ДРОБНОЙ ФОРМУЛОЙ

Сглаживание при помощи формулы:

$$z = \frac{t}{a + bt}$$

Линеаризуем:

$$\frac{1}{z} = \frac{a}{t} + b$$
, $y = \frac{1}{z}$, $x = \frac{1}{z}$

x	0.8	1.6	2	2.5	3.226	4	4.762	5.556
у	0,758	1,282	1.449	1,818	2,326	2,778	3,226	3,846

Найдем точную оценку линейной модели

$$y = \tilde{a} + \tilde{b}x$$

$$S(a_0, a_1) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{8} (y_i - \tilde{a} - \tilde{b}x_i)^2 \to min$$

$$\begin{cases} \frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{8} y_i - 8\tilde{a} - \tilde{b}\sum_{i=1}^{8} x_i\right) = 0\\ \frac{\partial S}{\partial b} = -2\left(\sum_{i=1}^{8} x_i y_i - \tilde{a}\sum_{i=1}^{8} x_i - \tilde{b}\sum_{i=1}^{8} x_i^2\right) = 0 \end{cases}$$

$$\sum_{i=1}^{8} x_i = 24.44, \sum_{i=1}^{8} y_i = 17.483, \sum_{i=1}^{8} x_i^2 = 93.403, \sum_{i=1}^{8} x_i y_i = 65.446$$

После решения системы:

$$\begin{cases} \tilde{a} = 0.2232 \\ \tilde{b} = 0.6423 \end{cases}$$

$$\tilde{y} = 0.2232 + 0.6423x$$

Точечная оценка:

$$\tilde{z} = \frac{t}{0.6423 + 0.2232t}$$

Значения оценки и невязки:

t	1.25	0.625	0.5	0.4	0.31	0.25	0.21	0.18
Z	1.32	0.78	0.69	0.55	0.43	0.36	0.31	0.26
$ ilde{Z}$	1.357	0.799	0.663	0.547	0.436	0.358	0.305	0.264
ϵ	-0.037	-0.019	0.027	0.003	-0.006	0.002	0.005	-0.004

График дробной модели:

РЕШЕНИЕ СТЕПЕННОЙ ФОРМУЛОЙ

Сглаживание при помощи формулы:

$$z = at^b$$

Линеаризуем:

$$\ln z = \ln a t^b = \ln a + \ln t^b = \ln a + b \ln t$$
$$y = \ln z, x = \ln t, c = \ln a$$

x	0.223	-0.47	-0.693	-0.916	-1.171	-1.386	-1.561	-1.715
y	0.278	-0.248	-0.371	-0.598	-0.844	-1.022	-1.171	-1.347

Найдем точную оценку линейной модели

$$y = \tilde{c} + \tilde{b}x$$

$$S(a_0, a_1) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{8} (y_i - \tilde{c} - \tilde{b}x_i)^2 \to min$$

$$\begin{cases} \frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{8} y_i - 8\tilde{c} - \tilde{b}\sum_{i=1}^{8} x_i\right) = 0\\ \frac{\partial S}{\partial b} = -2\left(\sum_{i=1}^{8} x_i y_i - \tilde{c}\sum_{i=1}^{8} x_i - \tilde{b}\sum_{i=1}^{8} x_i^2\right) = 0 \end{cases}$$

$$\sum_{i=1}^{8} x_i = -7.689, \sum_{i=1}^{8} y_i = -5.323, \sum_{i=1}^{8} x_i^2 = 10.2601, \sum_{i=1}^{8} x_i y_i = 7.5262$$

После решения системы:

$$\begin{cases} \tilde{c} = 0.1417 \\ \tilde{b} = 0.8398 \end{cases}, \tilde{c} = \ln \tilde{a}$$
$$\tilde{a} = 1,152$$

Точечная оценка:

$$\tilde{z} = 1{,}152t^{0,8398}$$

Значения оценки и невязки:

t	1.25	0.625	0.5	0.4	0.31	0.25	0.21	0.18
Z	1.32	0.78	0.69	0.55	0.43	0.36	0.31	0.26
$ ilde{z}$	1.389	0.776	0.644	0.534	0.431	0.36	0.311	0.273
ϵ	-0.069	0.004	0.046	0.016	-0.001	0	-0.001	-0.013

График степенной модели:

РЕШЕНИЕ ЭКСПОНЕНЦИАЛЬНОЙ ФОРМУЛОЙ

Сглаживание при помощи формулы:

$$z = ae^{bt}$$

Линеаризуем:

$$\ln z = \ln a e^{bt} = \ln a + \ln e^{bt} = \ln a + bt$$
$$y = \ln z, x = t, c = \ln a$$

x	1.25	0.625	0.5	0.4	0.31	0.25	0.21	0.18
γ	0.278	-0.248	-0.371	-0.598	-0.844	-1.022	-1.171	-1.347

Найдем точную оценку линейной модели

$$y = \tilde{c} + \tilde{b}x$$

$$S(a_0, a_1) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{8} (y_i - \tilde{c} - \tilde{b}x_i)^2 \to min$$

$$\begin{cases} \frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{8} y_i - 8\tilde{c} - \tilde{b}\sum_{i=1}^{8} x_i\right) = 0\\ \frac{\partial S}{\partial b} = -2\left(\sum_{i=1}^{8} x_i y_i - \tilde{c}\sum_{i=1}^{8} x_i - \tilde{b}\sum_{i=1}^{8} x_i^2\right) = 0 \end{cases}$$

$$\sum_{i=1}^{8} x_i = 3.725, \sum_{i=1}^{8} y_i = -5.323, \sum_{i=1}^{8} x_i^2 = 2.598, \sum_{i=1}^{8} x_i y_i = -1.238$$

После решения системы:

$$\begin{cases} \tilde{c} = -1.3343 \\ \tilde{b} = 1.4365 \end{cases}, \tilde{c} = \ln \tilde{a}$$
$$\tilde{a} = 0.2633$$

Точечная оценка:

$$\tilde{z} = 0,2633e^{1,4365t}$$

Значения оценки и невязки:

t	1.25	0.625	0.5	0.4	0.31	0.25	0.21	0.18
Z	1.32	0.78	0.69	0.55	0.43	0.36	0.31	0.26
$ ilde{Z}$	1.586	0.646	0.54	0.468	0.411	0.377	0.356	0.341
ϵ	-0.266	0.134	0.15	0.082	0.019	-0.017	-0.046	-0.081

График степенной модели:

вывод

Используя метод наименьших квадратов, сгладили предложенную табличную зависимость при помощи формул, вычислили невязки с точностью до тысячных и отобразили на графиках табличные данные и сглаживающую кривую.