

Предсказание временных рядов

Лекция 4

Глава 1

ETS Model

Давайте посмотрим на еще одну вариацию авторегрессионного алгоритма, только теперь мы будем:

• Брать лаг

- Брать лаг
- Учитывать последние n значений

- Брать лаг
- Учитывать последние n значений
- Учитывать все значения

- Брать лаг
- Учитывать последние n значений
- Учитывать все значения
- Учитывать все значения, но по разному

- Брать лаг
- Учитывать последние п значений
- Учитывать все значения
- Учитывать все значения, но по разному

Как же это сделать?

Как, а?

Как же это сделать?

Можно ведь просто давать более старым переменным меньшие веса!

А как?

Тут нам поможет экспоненциальное сглаживание.

Выглядит это так:

$$\hat{y}_{T+1|T} = \alpha \sum_{i=0}^{\infty} (1 - \alpha)^{i} y_{t-i}$$

А как?

Тут нам поможет экспоненциальное сглаживание.

Выглядит это так:

$$\hat{y}_{T+1|T} = \alpha \sum_{i=0}^{\infty} (1 - \alpha)^{i} y_{t-i}$$

То есть с каждым новым шагом мы как раз и будем давать все меньший вес нашим старым значениям.

А как?

И задача в простом понимании сводится к формулам:

Прогноз:
$$\hat{y}_{t+h|t} = l_t$$
 Сглаживание: $l_t = \alpha y_t + (1-\alpha)l_{t-1}$

Ho...

Но как же тренд? А сезонность? А какой-то шум?

Ho...

Но как же тренд? А сезонность? А какой-то шум?

Оно тут тоже есть - Error, Seasonal, Trend вместе и дают название модели.

ETS. Error

Если ошибка аддитивная, то функция будет такой:

$$y_{T+1} = l_t + b_t + \varepsilon_{T+1}$$

А если мультипликативной, то:

$$y_{T+1} = (l_t + b_t)(1 + \varepsilon_{T+1})$$

ETS. Trend

Аналогично - если тренда нет, то ничего не меняется. Если он постоянен:

$$\hat{y}_{T+h} = l_t + hb_t$$

А если сходит на нет со временем, то:

$$y_t = l_t + \phi_h b_t, \phi_h = \sum_{i=1}^h \phi^i$$

ETS. Seasonal

И сезонность - если аддитивная:

$$\hat{y}_{T+h} = l_t + s_{t+h-m(k+1)}$$
, где m – период, $k = [(h-1)/m]$

А если мультипликативная:

$$\hat{y}_{T+h} = l_t s_{t+h-m(k+1)}$$

Отступление

Кстати, а если у нас сезонность сохраняется, но дисперсия в каждом сезоне мультипликативно растет, что можно сделать?

Отступление

Кстати, а если у нас сезонность сохраняется, но дисперсия в каждом сезоне мультипликативно растет, что можно сделать?

Можно взять логарифм))

Как итог

Мы получаем большую и сложную модель, которая в разных случаях выглядит по-разному. Но работает она здорово!

Глава 2

Prophet

Наши дни

Чтож, базовые методы мы разобрали, но что же происходит в наши дни?

Наши дни

В 2017 году произошли следующие события:

- "Зенит" вылетел из Лиги Европы
- В 99-й раз отметили День Защитника Отечества
- Facebook выпустил Prophet

Наши дни

Что это?

open-source проект

Зачем?

user-friendly система для предсказания внутренних процессов

Как?

• Сейчас разберемся

Prophet

Выглядит он просто:

$$y(t) = g(t) + s(t) + h(t) + \epsilon_t$$

Где:

- ullet g(t) тренд
- ullet s(t) сезонность
- ullet h(t) аномальные дни
- ullet ϵ_t ШУМ

Prophet. Тренд

- Кусочно-линейная или логистическая функция
- Можно подать на вход точки изменения тренда...
- ... или Prophet найдет их сам :)

Prophet. Сезонность

- Недельная сезонность:
 - 6 экзогенных параметров: пн, вт, ср, чт, пт, сб
 - А куда делось вс?
- Годовая сезонность ряды Фурье.

Prophet. Аномальные дни

- Праздники
- Выходные
- Нерегулярные праздники черная пятница, Хеллоуин.

Prophet. Обучение

Как можно заметить, Prophet относится к **авторегрессионным моделям** - а значит обучается он так же, как **ARIMA**

Prophet. Профит

Глава 3

RNN & LSTM

Слишком просто

Давайте попробуем посложнее!

Neural Network

Работает просто (ну почти):

- На вход даем вектор *input layer*
- Умножаем его на матрицу весов hidden layer
- Умножаем еще раз, получаем ответ *output layer*

Neural Network

Работает просто (ну почти):

- На вход даем вектор *input layer*
- Умножаем его на матрицу весов hidden layer
- Умножаем еще раз, получаем ответ *output layer*

Как правило, не все так просто, конечно:

- Между линейными слоями (где умножаем на матрицу) вставляют нелинейные преобразования
- Размер сети, конечно, больше чем на картинке)

Neural Network

Обучение:

 Градиентный спуск + обратное распространение ошибки

Big Neural Network

И то это еще не большая...

Self Neural Network?

Мы видим что нейроны связаны со следующими нейронами.

А если мы хотим сделать связь каждого слоя с ним же?

Self Neural Network?

Мы видим что нейроны связаны со следующими нейронами.

А если мы хотим сделать связь каждого слоя с ним же?

Тут и появляются Recurrent Neural Network

Механизм выглядит так:

Таким образом, получаем сеть, которая может обрабатывать последовательности и выдавать ответы (1 или несколько)

Это же ровно то что нам и нужно!!!

Но есть нюанс - по схеме видно, что сама по себе информация о старых значениях "забывается". Что с этим делать?

LSTM - Long short-term memory

Немного усложненный вид RNN:

Зачем? Видите вот эту h, которая на вход приходит? Ровно она и несет в себе память из предыдущих входов. Круто, правда?)

Обучение:

• Все так же градиентный спуск

Обучение:

• Все так же градиентный спуск

Плюсы:

• Зачастую очень мощный инструмент, который используется во многих задачах машинного обучения

Минусы:

• Реализовывать заметно сложнее(

Вопросы?

