INSTRUCTIVO DE PRACTICAS DE LABORATORIO DE MICROCONTROLADORES AVANZADOS

PRACTICA N° 8

MODULADOR DE ANCHO DE PULSO POR FASE CORRECTA

DE UN MICROCONTROLADOR ATMEGA328P

OBJETIVOS.

HABILITAR Y USAR LOS TEMPORIZADORES MEDIANTE MODULADOR DE ANCHO DE PULSO POR FASE CORRECTA.

INTRODUCCION

El PWM se utiliza principalmente para el control de motores mediante un puente H, esto es debido a que la pérdida de par es mínimo y la velocidad se puede controlar en un rango aceptable.

El AVR tiene dos modos de PWM el rápido y el de fase correcta, para esta ocasión se realizara la práctica en modo de fase correcta. Esta proporciona una resolución alta debido a que tiene una doble pendiente, primero va de 0 hasta llegar a 255 para después descender a 0, esto en el caso del temporizador (Timer) 0 y 2. Este modo tiene el doble de frecuencia que el de pendiente simple, sin embargo la simetría de sus pendientes lo hacen optimo para el control de motores.

El PWM se origina cuando hay una comparación en la cual se igualan los registros TCNT0 y OCR0, lo que origina que se limpie la salida OC0 cuando se está ascendiendo la cuenta y pone a uno cuando se está descendiendo y existe la igualdad vea la figura 8.1, en el modo no invertido y hace lo contrario en el modo invertido. El modo PWM de fase correcta tiene una frecuencia menor que el PWM rápido por lo cual se usa más en aplicaciones de control de motores.

Figura 8.1 Grafica de PWM fase correcta

INSTRUCTIVO DE PRACTICAS DE LABORATORIO DE MICROCONTROLADORES AVANZADOS

La frecuencia del PWM en el modo de fase correcta PWM puede calculada por la siguiente ecuación:

$$f_{OCnFCPWM} = \frac{f_{clk\ I/O}}{N*510}$$

La variable N representa el factor de pre-escala (1, 8, 64, 256 o 1024).

Los registros involucrados para el PWM en modo de fase correcta se muestran a continuación, cabe aclarar que la mayoría de los bits que intervienen se han descrito en las prácticas 5, 6 y 7.

TABLA 8.1 Modos de la generación de la forma de onda

WGM02	WGM01	WGM00	Descripción
0	0	0	Normal
0	0	1	PWM Fase Correcta
0	1	0	Limpia temporizador tras la comparación (CTC) OCRA
0	1	1	PWM Rápido
1	0	0	Reservado
1	0	1	PWM Fase Correcta OCRA
1	1	0	Reservado
1	1	1	PWM Rápido OCRA

TABLA 8.2 Modos de Comparación de la Salida, Modo PWM Fase Correcta

COM0A1	COM0A0	Descripción
0	0	Operación Normal del Puerto (OC0 desconectado)
0	1	Cambio Lógico de OC0 (al igualar en la comparación)
1	0	Pone en cero lógico OC0 (al igualar en la comparación)
1	1	Pone en uno lógico OC0 (al igualar en la comparación)

Registro e Control del Temporizador/Contador (TCCR0A)

BIT							
7	6	5	4	3	2	1	0
COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00

Registro e Control del Temporizador/Contador (TCCR0B)

BI	1						
7	6	5	4	3	2	1	0
FOC	0A FOC0B	-	-	WGM02	CS02	CS01	CS00

INSTRUCTIVO DE PRACTICAS DE LABORATORIO DE MICROCONTROLADORES AVANZADOS

Registro de la Máscara	de Interrupción del Temporizador/Contador
(TIMSK0)	

BIT							
7	6	5	4	3	2	1	0
-	-	-	-	-	OCIE0B	OCIE0A	TOIE0

Registro Temporizador/Contador (TCNT0)

BIT							
7	6	5	4	3	2	1	0

Registro de Salida de Comparación (OCR0A)

BIT							
7	6	5	4	3	2	1	0

Registro de Salida de Comparación (OCR0B)

BIT								
7	6	5	4	3	2	1	0	
								1

Registro de Banderas de Interrupción del Temporizador/Contador (TIFR0)

BH								
7	6	5	4	3	2	1	0	
-	-	-	-	-	OCF0B	OCF0A	TOV0	

MATERIAL Y EQUIPO

1 Protoboard

1 C.I. AVR ATMEGA 16

8 LEDs

8 resistencias de 330Ω

Fuente de Alimentación Regulada de 5 volts

Cables para conexión rápida

INSTRUCTIVO DE PRACTICAS DE LABORATORIO DE MICROCONTROLADORES AVANZADOS

1 Multimetro

DESARROLLO

Planteamiento del problema

Se requiere escribir un programa en el cual se aumente o disminuir el ciclo de trabajo del PWM en modo de fase correcta mediante dos botones, el botón 1 se empleara para aumentar mediante la interrupción externa 0 y el botón 2 se empleara para disminuir mediante la interrupción externa 1.

Procedimiento

- 1. Realizar el diagrama de flujo.
- 2. Incluir las bibliotecas necesarias
- 3. Desactivar la interrupción global
- 4. Definir la pre escala
- 5. Habilitar la interrupción por desbordamiento del temporizador 0
- 6. Habilitar la interrupcion global
- 7. En la función de interrupción sacar a puerto la variable que incrementa
- 8. Incrementar la variable

Diagrama del circuito

Figura 8.1 Diagrama del circuito para la practica 8.

CODIGO EN LENGUAJE C.

```
# define F_CPU 1600000UL
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/cpufunc.h>
int i=250;
ISR(INTO_vect, ISR_NAKED){
       i=i+10;
        OCR0A=i;
reti();
ISR(INT1_vect, ISR_NAKED){
        i=i-10;
        OCR0A=i;
reti();
        }
ISR(TIMERO_COMPA_vect, ISR_NAKED){
        PORTB=PINB;
        reti();
       }
int main(void)
        cli();
        DDRB = 0xff;
        DDRD = 0x00;
        PORTD=255;
       TCCR0A = (1 << WGM00) | (1 << COM0A1) | (1 << COM0A0);
       TCCR0B= (1<<WGM02)|(1<<CS02)|(1<<CS00);
        OCROA = i;
       TIMSK0 = (1 << OCIE0A);
        EIMSK = (1 << INT1) | (1 << INT0);
        EICRA = (1 << ISC11) | (1 << ISC10) | (1 << ISC01) | (1 << ISC00);
        sei();
        while(1)
                _NOP();
               _NOP();
        }
```

INSTRUCTIVO DE PRACTICAS DE LABORATORIO DE MICROCONTROLADORES AVANZADOS

ACTIVIDADES DE TRABAJO AUTÓNOMO.

1) Practica propuesta por el profesor en clase.