rftest Documentation

espressif

2019年01月28日

Contents

1	_	ck Start Guide	2				
	1.1	Project Introduction	2				
	1.2	Start rftest	2				
	1.3	Common test commands	2				
	1.4	Basic functions test cases	3				
	1.5	Performance oprimization cases	3				
	1.6	TX/RX performance test	3				
	1.7	Current test	4				
	1.8	Generate docomments	4				
2	RFA	PI	4				
	2.1	common	4				
	2.2	wifi_api	5				
	2.3		11				
3	RFI.	JB .	13				
	3.1		13				
	3.2		14				
	3.3		14				
	3.4		15				
	J. 4	auc_ump	13				
4	TES	TCASE	16				
	4.1	rf_debug	16				
	4.2	performance	16				
	4.3		16				
	4.4	temprature	16				
5	Test.	Report	16				
Pv	Python 模块索引						
			17				
索	引		18				

1 Quick Start Guide

1.1 Project Introduction

RFAPI:

- In eagletest/py_script/hal
- it is to store software interface APIs.

RFLIB:

- In eagletest/py_script/rftest/rflib
- it is to store common RF test functions.

TestCase:

- In eagletest/py_script/rftest/testcase
- it is to store RF test cases.

RFDATA:

- In eagletest/py_script/rftest/rfdata
- it is to store RF test data.

DOCS:

- In eagletest/py_script/rftest/docs
- it is to store document and testreport.

1.2 Start rftest

```
In "eagletest/py_script/" run commands:

ipython -i autotest.py rftest

chip=RFTCS(com(6)) # 6 should change to your com port number
```

1.3 Common test commands

```
1. write/read memory
```

```
chip.mem.wrm(0x600060a0, 11, 8, 0x0)
chip.mem.rdm(0x600060a0, 11, 8)
```

2. write/read i2c

```
chip.i2c.rfrx.dtest = 0
chip.i2c.rfrx.dtest
```

3. write/read PBUS

```
chip.pbus.pbus_debugmode()
chip.pbus.pbus_wr('rfrx1', 'en1', 0x184)
chip.pbus.pbus_rd('rfrx1', 'en1')
```

```
chip.pbus.pbus_workmode()
  4. select RF channel
           chip.wifi.rfchsel(1) # 1~14
  5. TX Tone
           # Debug mode TX tone
           chip.pbus.pbus_debugmode()
           chip.pbus.open_tx(pa=0x5f, bb=0x120) # set PA and BB gain
           chip.rfcal.tos() # calibrate TX DC
           chip.wifi.txtone(1, 2, 40) #enable, frequency(mHz), digital attenuation(0.24db)
           # Debug mode stop TX tone
           chip.wifi.stoptone() #stop TX tone
           chip.pbus.pbus_workmode() # exit PBUS debug mode
           # Work mode TX tone
           chip.wifi.force_txon(1)
           chip.wifi.txtone(1, 2, 40) #enable, frequency(mHz), digital attenuation(0.24db)
           # Work mode stop TX tone
           chip.wifi.stoptone()
           chip.wifi.force_txon(0)
  6. RX dump test
           chip.dump.adcdumptest(dump_num=1024, plot_en=1)
1.4 Basic functions test cases
   1. Write and read test
           basic=BasicTest(chip.comport, chip.chipv)
           basic.mem_test()
           basic.i2c_test()
           basic.pbus_test()
```

1.5 Performance oprimization cases

basic=BasicTest(chip.comport, chip.chipv)

1.6 TX/RX performance test

basic.rfpll_sweep()

2. RFPLL CAP Sweep

open instrument server
 instru_server('iqx') #input: 'iqv', 'iqx', 'wt'

2. TX Power & EVM & MASK Test

```
test=WIFI_TXRX_TEST(chip.comport, chip.chipv)
test.WIFI_TX_PWR_EVM(cable_lose=2, channel=[14], data_rate=['mcs7'], iqv_no=2, iqv_num=10)
```

3. RX Sensitivity Test

```
test.WIFI_RX_sens(cable_lose=2, chan_in=[14], data_rate=['mcs7'],iqv_no=1)
```

4. RX Maximum input level Test

```
test.WIFI_RX_maxlevel(cable_lose=2, chan_in=[14], data_rate=['mcs7'], iqv_no=1)
```

5. RX Dynamic Range Test

```
test.WIFI_RX_range(cable_lose=2, chan_in=[14], data_rate=['mcs7'], rx_range=['[-75, 0]'], iqv_no=1)
```

1.7 Current test

1.8 Generate docomments

```
In "eagletest/py_script/rftest/docs" run commands: ipython doc_gen.py rftest
```

2 RFAPI

2.1 common

```
class common.CHIP_ID (channel, chipv='AUTO')
     基类: object
     docstring for CHIP ID
     chip_mac()
class common.CHIP_INFO(channel, INchipv='AUTO')
     基类: object
     docstring for CHIP_INFO
     get_chipv()
          Use UART Date register to determine the chip version
class common.I2C (channel, chipv='ESP32')
     基类: object
     docstring for I2C
     i2c_rd (block, host_id, reg_addr)
     i2c_rdm (block, host_id, reg_addr, msb, lsb)
     i2c_wr (block, host_id, reg_addr, value)
     i2c_wrm (block, host_id, reg_addr, msb, lsb, value)
```

```
class common.MEM(channel, chipv='ESP32')
     基类: object
     docstring for common
     accumiq(mem_addr, burst_len)
     clrmask (reg_addr, mask)
     rd (reg_addr)
     rdm(reg\_addr, msb, lsb)
     rdmem(mem\_addr, data\_len)
     setmask (reg_addr, mask)
     wr (reg_addr, value)
     wrm (reg_addr, msb, lsb, value)
class common.PBUS (channel, chipv='ESP8266')
     基类: object
     docstring for PBUS
     pbus_debugmode()
     pbus_rd (pbus_sel, pbus_en_sel)
     pbus_rm (pbus_sel, pbus_en_sel, msb, lsb)
     pbus_wm (pbus_sel, pbus_en_sel, msb, lsb, value)
     pbus_workmode()
     pbus_wr (pbus_sel, pbus_en_sel, value)
2.2 wifi api
class wifi_api.WIFIAPI (channel, chipv='ESP32')
     基类: object
                                   trig_mode='sw',
     adctrig(smp_num_aft_trig,
                                                     sample\_80m=0,
                                                                       trigcase=0,
                                                                                    dump\_trig=0,
               rx_gain_mode=0, rx_gain=0, rx_gain0=0, gain0_wait=0)
          return curr_ptr,wrap_flag, buff_addr, buff_size
     bbinit()
              Brief bb init
              Param

    no param

              返回
                  · no return
     cbw40m_en(en=0)
              Brief 40M bandwidth enable
              Param
                  • en:
                  • 0: HT40 disable
```

• 1: HT40 enable

返回

• print the status

cmdstop()

Brief wifi TX/RX state stop

Param

• no param

返回

• no return

esp_origin_mac()

Brief origin mac read

Param

• no param

返回

• the value of origin mac

esp_rx (chan=1, data_rate=23)

Brief rx packect command

Param

• chan: channel number (1 to 14)

• data_rate:

11b		11g		11n	
param	rate	param	rate	param	rate
0x0	1M	0xb	6M	0x10	MCS0
0x1	2ML	0xf	9M	0x11	MCS1
0x2	5.5ML	0xa	12M	0x12	MCS2
0x3	11ML	0xe	18M	0x13	MCS3
0x4	_	0x9	24M	0x14	MCS4
0x5	2MS	0xd	36M	0x15	MCS5
0x6	5.5MS	0x8	48M	0x16	MCS6
0x7	11MS	0xc	54M	0x17	MCS7

返回

• print the status

 $\texttt{esp_tx} \ (\textit{chan=1}, \textit{data_rate=23}, \textit{backoff=0})$

Brief tx packect command

Param

• chan: channel number (1 to 14)

• data rate:

11b		11g		11n	
param	rate	param	rate	param	rate
0x0	1M	0xb	6M	0x10	MCS0
0x1	2ML	0xf	9M	0x11	MCS1
0x2	5.5ML	0xa	12M	0x12	MCS2
0x3	11ML	0xe	18M	0x13	MCS3
0x4	_	0x9	24M	0x14	MCS4
0x5	2MS	0xd	36M	0x15	MCS5
0x6	5.5MS	0x8	48M	0x16	MCS6
0x7	11MS	0xc	54M	0x17	MCS7

• backoff: tx power attenuation, 4 indicates an attenuation 1dB

返回

• print the status

filltxpacket (PackLen, pdu0len, pdu1len, rate=0, key_no=0, bssid_no=0, lnkstartaddr=0, gi_type='long', ap_mac_5=1, ap_mac_4=2, ap_mac_3=3, ap_mac_2=4, ap_mac_1=5, ap_mac_0=6)

Brief wifi TX tone set

Param

- PackLen: include que_no and packeet_len,as (que_no<<16)+packlen
- pdu0len: include pdu0 and pdu2 length, as (pdu2len<<16)+pdu0len
- pdu1len: include pdu1 and pdu3 length, as (pdu3len<<16)+pdu1len
- for ampsdu and ampdu, pdu0len and pdu1len must set to zero
- lnkstartaddr:for ver5.0 above, it <<8+bssid_no as param to board

```
\verb"get_rx_tone_pwr" (rx\_freq\_cfg)
```

init_print()

Brief init print

Param

no param

返回

• no return

macinit()

Brief mac init

Param

• no param

返回

· no return

phyinit()

Brief phy init(include rfinit and bbinit and macinit)

```
Param
            • no param
        返回
            • no return
read_hw_noisefloor()
        Brief RF noisefloor read
        Param
            • no param
        返回
            • the value of hardware noisefloor
rfchsel (chan, cbw2040_cfg=0)
        Brief wifi channel set
        Param
            • chan: channel number (1 to 14)
            • cbw2040_cfg:
                - 1:HT40 enable
                - 0:HT40 disable
        返回
              • no return
rfinit()
          Brief rf init
          Param
                • no param
          返回
                • no return
rxdc_cal()
rxstart (rate_sym)
          Brief wifi RX state open
          Param
                • rate_sym: wifi rate (need to measure RX performance)
          返回
                • no return
set_noise_floor (noise=380)
          Brief RF noisefloor set
          Param
```

• noise: value of noisefloor

• no return

set_tx_dig_gain (force_en=1, dig_gain=25)

Brief set tx digital gain command

Param

- force_en:
 - 0: disable;
 - 1: enable
- dig_gain:

返回

• print the status

set_tx_gain (*pa_gain=95*, *bb_gain=288*)

Brief set tx gain command

Param

- pa_gain: 0x1f, 0x2f,0x3f,0x4f,0x5f,0x6f,0x7f
- bb_gain: ..., 0x100,0x140,0x20,0x60,...

返回

• print the status

stoptone (tone_no=0)

Brief wifi tx tone state close

Param

• tone_no: the number of tone

返回

no return

target_power_backoff(backoff_qdb)

Brief wifi target power backoff

Param

backoff_qdb: value of backoff

返回

• no return

 $\verb|test_txtone_pwr| (atten, loop_num, mode=0, step=0, delay_us=10)|$

 $tx_cbw40m_en(en=0)$

Brief Tx CBW40 enable

Param

- en:
- 0: Tx CBW40 disable

```
• 1: Tx CBW40 enable
```

• print the status

tx_contin_en (en=0)

Brief Tx continuous enable

Param

- en:
- 0: Tx continuous disable
- 1: Tx continuous enable

返回

• print the status

txstart (tx_rate , packnum, $que_no=1$, $frm_delay=100$, cbw40=0, $ht_dup=0$, $dis_cca=1$) txtone ($tone1_en=1$, $freq1_mhz=2$, $tone1_att=0$, $tone2_en=0$, $freq2_mhz=0$, $tone2_att=0$)

Brief wifi TX tone set

Param

- tone1 en:
 - 1: first tone enable
 - 0: fisrt tone disable
- freq1_mhz: first tone offset frequency
- tone1_att: first tone attenuation set
- tone2_en:
 - 1: second tone enable
 - 0: second tone disable
- freq2_mhz: second tone offset frequency
- tone2_att: second tone attenuation set

返回

• no return

txtone_step (*step1*=0, *att1*=0, *en2*=0, *step2*=0, *att2*=0)

wifiscwout (en=1, chan=1, backoff=0)

Brief SCW TX command

Param

- en: SCW Tx enable
 - 0: disable
 - 1: enable
- chan: channel number (1 to 14)
- backoff: tx power attenuation, 4 indicates an attenuation 1dB

• print the status

wifitxout (chan=1, data_rate=23, backoff=0)

Brief tx packect command

Param

- chan: channel number (1 to 14)
- data_rate:

11b		11g		11n	
param	rate	param	rate	param	rate
0x0	1M	0xb	6M	0x10	MCS0
0x1	2ML	0xf	9M	0x11	MCS1
0x2	5.5ML	0xa	12M	0x12	MCS2
0x3	11ML	0xe	18M	0x13	MCS3
0x4	_	0x9	24M	0x14	MCS4
0x5	2MS	0xd	36M	0x15	MCS5
0x6	5.5MS	0x8	48M	0x16	MCS6
0x7	11MS	0xc	54M	0x17	MCS7

• backoff: tx power attenuation, 4 indicates an attenuation 1dB

返回

• print the status

2.3 bt_api

class bt_api.BTAPI (channel, chipv='ESP32')

基类: object

bt_tx_tone (en=0, chan=1, backoff=0)

Brief BT tx tone open

Param

- en:
 - 1: BT tx tone enable
 - 0: BT tx tone disable
- chan: BT tx channel set (0 to 78)
- backoff: tone power attenuation set, step is 1(0.25dbm)

返回

• no return

fcc_bt_tx (pwr_level, FH_en, tx_chan, rate, DH, datatype)

Brief BR/EDR tx open

Param

• pwr_level: TX power level,range 0 to 7,step 3dbm

- FH en:
 - 1: frequency hopping enable
 - 0: frequency hopping disable
- tx_chan: BT tx channel set (0 to 78)
- rate: tx rate set,1=1Mbps,2=2Mbps,3=3Mbps
- DH: 1=DH1.3=DH3,5=DH5
- datatype: 0: 01010101, 1: 00001111, 2: prbs9

no return

fcc_le_tx (pwr_level, tx_chan, payload_len, datatype)

Brief LE tx open

Param

- pwr_level: TX power level,range 0 to 9,step 2dbm,deafult 4
- tx_chan: BT tx channel set (0 to 39)
- payload_len: payload length,range 0 to 255,deafult 250
- datatype: 0: 01010101, 1: 00001111, 2: prbs9

返回

• no return

fcc_le_tx_syncw (pwr_level, tx_chan, payload_len, datatype, syncw)

Brief le tx (add synchronization of DC offset compensation and identification)open

Param

- pwr_level: TX power level,range 0 to 9,step 2dbm,deafult 4
- tx_chan: BT tx channel set (0 to 39)
- payload_len: payload length,range 0 to 255,deafult 250
- datatype: 0: 01010101, 1: 00001111, 2: prbs9
- syncw: deafult syncw=0x71764129

返回

no return

rw_le_rx_per (rx_chan, syncw)

Brief LE Rx open

Param

- rx_chan: rx channel set (0 to 39)
 - channel 0 \ 1 \ 2-10 is corresponding frequency 2404MHz \ 2406MHz \ 2408MHz-2424MHz
 - channel 11 \ 12 \ 13-36 is corresponding frequency 2428MHz \ 2430MHz \ 2432MHz-2478MHz

- channel 37 \ 38 \ 39 is corresponding frequency 2402MHz \ 2426MHz \ 2480MHz
- syncw: synchronization of DC offset compensation and identification, is decide for instrument

· no return

rw_rx_per (modetype, rx_chan, ulap, ltaddr)

Brief BR/EDR Rx open

Param

- modetype:
 - 0: BR
 - 1: EDR
- rx_chan: rx channel set (0 to 78), even number channel is from 0 to 39, uneven number is from 40 to 78, for example: 1 is channel 2, 40 is channel 1
- ulap: BT MAC, size is 32bit, include UAP(8bit) + LAP(24bit), the param is decide for instrument
- ltaddr: logical transport address,is decide for instrument,range 0 to 7

返回

· no return

3 RFLIB

3.1 pbus

```
class pbus.pbus (comport, chipv='ESP32')
基类: object
all_pbus()
open_rx()
open_tx(pa=95, bb=288)
pbus_debugmode()
pbus_rd(pbus_sel, pbus_en_sel)
pbus_workmode()
pbus_wr(pbus_sel, pbus_en_sel, value)
read_dco()
set_dco(il=256, q1=256, i2=256, q2=256)
```

3.2 rfpll

```
class rfpll.rfpll(comport, chipv='ESP32')
    基类: object
    read_rfpll_reg()
    reset()
    restart_cal()
    set_freq(frf, cry_freq=40)
    set_freq_outband()
3.3 wifi lib
class wifi_lib.WIFILIB(comport, chipv='ESP32')
    基类: object
    GetDesirePackNum(result)
    GetEntryAddr (result)
    GetFcsErr (result)
    GetFreqoff(result)
    GetFrmCount (result)
    GetGain (result)
    GetGoodData(result)
    GetGoodPackNum(result)
    GetKeyMatch (result)
    GetNoise (result)
    GetRssi(result)
    GetRxHung (result)
    GetRxHung_status(result)
    GetRxState (result)
    GetTotErr (result)
    GetValidCount (result)
     cbw40m_en(en=0)
    chan2freq(chan)
    cmdstop()
    esp_rx (chan, rate_sym)
    esp_tx (chan=1, ratenum=23, backoff=0)
    force_tx_gain_init (chan=1, rate='mcs7', pa_gain=95, bb_gain=288, dig_gain=244)
    force\_txon(en=0)
    get_filename (folder, file_name, sub_folder=")
```

```
Folder file store folder
               File name file name
               Sub_folder if not need, it may be default ""
     get_length_delay_duty (rate=23, duty=0.1)
          set the duty cycle of tx packet, duty range(0,1]
     get_length_delay_mean (rate=23)
          set the diffrent duty cycle to meet average current at 140mA
     get_rate1st (rate1st, rx_rate_option=")
     get_rx_cable_lost (iqv_unit_no=1, cable_att=30, chan_m=[14], noise_ref=-95.2)
     get_rx_tone_pwr (rx_freq_mhz=5, rx_freq_cmp_mult20=0, gain_force=0, gain=40)
     get_rx_tone_pwr_scan (rx_freq_mhz=5, gain_force=0, gain=40, scan_range=10)
     i2c_ric(block, ctrl_name)
     i2c_wic (block, ctrl_name, value)
     rate2ht40 (rate)
     ratecheck (rate_sym)
     read_mac()
     rf tune()
     rfchsel (chan, cbw2040_cfg=0)
     rxdc_cal()
     rxresult (result_data)
     rxstart (rate_sym)
     save_init_print (folder=")
     stoptone()
     test_txtone_pwr (atten, loop_num, mode=0, step=0, delay_us=10)
     tx\_cbw40m\_en(en=0)
     tx_contin_en(en=0)
                        PackNum=0,
     txout (rate_sym,
                                       PackLen=1024,
                                                        cbw40=0,
                                                                    ht dup=0,
                                                                                 backoff_qdb=0,
            frm_delay=2000)
     txpacket (txchan=1, rate_sym='mcs7', PackNum=0, cbw40=0, ht_dup=0, backoff_qdb=0, duty=0)
     txtone (tone1_en=1, freq1_mhz=2, tone1_att=0, tone2_en=0, freq2_mhz=0, tone2_att=0)
     wifiscwout (en=0, chan=1, backoff=0)
3.4 adc dump
class adc_dump.DUMP (comport, chipv='ESP32')
     基类: object
```

adcdump (logdir, start_addr, byte_len, burst_len, buff_start, buff_size, trig_pos, adc_version='10bit',

chan no=1, dump 13bit=0)

4 TESTCASE

4.1 rf_debug

Store RF submodule test scripts for example: PA, I2C, TX Gain, RX Gain test

4.2 performance

Store RF performance scripts for example: wifiTX WIFIRX BTTX BTRX performance . . .

4.3 current

Store TX/RX current measurement scripts

4.4 temprature

Store multiple chips testing scripts in temperature chamber

5 TestReport

Python 模块索引

а adc_dump, 15 b bt_api, 11 С common, 4 pbus, 13 r rfpll, 14 W wifi_api,5 wifi_lib,14

索引

get_length_delay_duty() (wifi_lib.WIFILIB 方法), 15 get length delay mean() (wifi lib.WIFILIB 方法), 15 accumiq() (common.MEM 方法), 5 get ratelst() (wifi lib.WIFILIB 方法), 15 adc_dump (模块), 15 get rx cable lost() (wifi lib.WIFILIB 方法), 15 adcdump() (adc_dump.DUMP 方法), 15 get rx tone pwr() (wifi api.WIFIAPI 方法), 7 adcdumptest() (adc dump.DUMP 方法), 15 get_rx_tone_pwr() (wifi_lib.WIFILIB 方法), 15 adctrig() (wifi api.WIFIAPI 方法), 5 get_rx_tone_pwr_scan() (wifi_lib.WIFILIB 方法), 15 all pbus() (pbus.pbus 方法), 13 GetDesirePackNum() (wifi_lib.WIFILIB 方法), 14 В GetEntryAddr() (wifi lib.WIFILIB 方法), 14 GetFcsErr() (wifi lib.WIFILIB 方法), 14 bbinit() (wifi api.WIFIAPI 方法), 5 GetFreqoff() (wifi lib.WIFILIB 方法), 14 bt api (模块), 11 GetFrmCount() (wifi_lib.WIFILIB 方法), 14 bt tx tone() (bt api.BTAPI 方法), 11 GetGain() (wifi_lib.WIFILIB 方法), 14 BTAPI (bt api 中的类), 11 GetGoodData() (wifi lib.WIFILIB 方法), 14 GetGoodPackNum() (wifi_lib.WIFILIB 方法), 14 C GetKeyMatch() (wifi lib.WIFILIB 方法), 14 cbw40m en() (wifi api.WIFIAPI 方法), 5 GetNoise() (wifi_lib.WIFILIB 方法), 14 cbw40m en() (wifi lib.WIFILIB 方法), 14 GetRssi() (wifi_lib.WIFILIB 方法), 14 chan2freq() (wifi lib.WIFILIB 方法), 14 GetRxHung() (wifi lib.WIFILIB 方法), 14 CHIP ID (common 中的类), 4 GetRxHung status() (wifi lib.WIFILIB 方法), 14 CHIP_INFO (common 中的类), 4 GetRxState() (wifi lib.WIFILIB 方法), 14 chip mac() (common.CHIP ID 方法), 4 GetTotErr() (wifi lib.WIFILIB 方法), 14 clrmask() (common.MEM 方法), 5 GetValidCount() (wifi_lib.WIFILIB 方法), 14 cmdstop() (wifi_api.WIFIAPI 方法), 6 cmdstop() (wifi lib.WIFILIB 方法), 14 common (模块), 4 I2C (common 中的类), 4 i2c_rd() (common.I2C 方法), 4 D i2c rdm() (common.I2C 方法), 4 DUMP (adc dump 中的类), 15 i2c ric() (wifi lib.WIFILIB 方法), 15 i2c wic() (wifi lib.WIFILIB 方法), 15 E i2c wr() (common.I2C 方法), 4 esp_origin_mac() (wifi_api.WIFIAPI 方法), 6 i2c wrm() (common.I2C 方法), 4 esp rx() (wifi api.WIFIAPI 方法), 6 init_print() (wifi_api.WIFIAPI 方法), 7 esp_rx() (wifi_lib.WIFILIB 方法), 14 M esp_tx() (wifi_api.WIFIAPI 方法), 6 esp_tx() (wifi_lib.WIFILIB 方法), 14 macinit() (wifi api.WIFIAPI 方法), 7 MEM (common 中的类), 4 fcc_bt_tx() (bt_api.BTAPI 方法), 11 O fcc le tx() (bt api.BTAPI 方法), 12 open_rx() (pbus.pbus 方法), 13 fcc le tx syncw() (bt api.BTAPI 方法), 12 open_tx() (pbus.pbus 方法), 13 filltxpacket() (wifi api.WIFIAPI 方法), 7 force tx gain init() (wifi lib.WIFILIB 方法), 14 force_txon() (wifi_lib.WIFILIB 方法), 14 PBUS (common 中的类), 5 pbus (pbus 中的类), 13 G pbus (模块), 13 get chipv() (common.CHIP INFO 方法), 4 pbus debugmode() (common.PBUS 方法), 5 get_dump_accm() (adc_dump.DUMP 方法), 16 pbus debugmode() (pbus.pbus 方法), 13 get dump data() (adc dump.DUMP 方法), 16

pbus rd() (common.PBUS 方法), 5

pbus rd() (pbus.pbus 方法), 13

get_filename() (wifi_lib.WIFILIB 方法), 14

pbus_rm() (common.PBUS 方法), 5	
pbus_wm() (common.PBUS 方法), 5	
pbus_workmode() (common.PBUS 方法), 5	
pbus_workmode() (pbus.pbus 方法), 13	
pbus_wr() (common.PBUS 方法), 5	
pbus_wr() (pbus.pbus 方法), 13	
phyinit() (wifi_api.WIFIAPI 方法), 7	
phymin() (win_api.wir1Ar1 /) (\(\alpha\)), /	
R	
rate2ht40() (wifi_lib.WIFILIB 方法), 15	
ratecheck() (wifi_lib.WIFILIB 方法), 15	
rd() (common.MEM 方法), 5	
rdm() (common.MEM 方法), 5	
rdmem() (common.MEM 方法), 5	
read_dco() (pbus.pbus 方法), 13	
read_hw_noisefloor() (wifi_api.WIFIAPI 方法), 8	
read_mac() (wifi_lib.WIFILIB 方法), 15	
read_rfpll_reg() (rfpll.rfpll 方法), 14	
reset() (rfpll.rfpll 方法), 14	
restart_cal() (rfpll.rfpll 方法), 14	
rf_tune() (wifi_lib.WIFILIB 方法), 15	
rfchsel() (wifi_api.WIFIAPI 方法), 8	
rfchsel() (wifi_lib.WIFILIB 方法), 15	
rfinit() (wifi_api.WIFIAPI 方法), 8	
rfpll (rfpll 中的类), 14	
rfpll (模块), 14	
rw_le_rx_per() (bt_api.BTAPI 方法), 12	
rw_rx_per() (bt_api.BTAPI 方法), 13	
rxdc_cal() (wifi_api.WIFIAPI 方法), 8	
rxdc_cal() (wifi_lib.WIFILIB 方法), 15	
rxresult() (wifi_lib.WIFILIB 方法), 15	
rxstart() (wifi_api.WIFIAPI 方法), 8	
rxstart() (wifi_lib.WIFILIB 方法), 15	
S	
sampledeal() (adc_dump.DUMP 方法), 16	
save_init_print() (wifi_lib.WIFILIB 方法), 15	
set_dco() (pbus.pbus 方法), 13	
set_dump_mode() (adc_dump.DUMP 方法), 16	
set_freq() (rfpll.rfpll 方法), 14	
set_freq_outband() (rfpll.rfpll 方法), 14	
set_noise_floor() (wifi_api.WIFIAPI 方法), 8	
set_tx_dig_gain() (wifi_api.WIFIAPI 方法), 9	
Set_tx_dig_gain() (wii_api.wiFiAF1 /) (\(\frac{1}{2}\)), 9	
set_tx_gain() (wifi_api.WIFIAPI 方法), 9	
setmask() (common.MEM 方法), 5	
stoptone() (wifi_api.WIFIAPI 方法), 9	
stoptone() (wifi_lib.WIFILIB 方法), 15	
_	
T	

target_power_backoff() (wifi_api.WIFIAPI 方法), 9 test_txtone_pwr() (wifi_api.WIFIAPI 方法), 9 test_txtone_pwr() (wifi_lib.WIFILIB 方法), 15 tx_cbw40m_en() (wifi_api.WIFIAPI 方法), 9 tx_cbw40m_en() (wifi_lib.WIFILIB 方法), 15

tx_contin_en() (wifi_api.WIFIAPI 方法), 10 tx_contin_en() (wifi_lib.WIFILIB 方法), 15 txout() (wifi_lib.WIFILIB 方法), 15 txpacket() (wifi_lib.WIFILIB 方法), 15 txstart() (wifi_api.WIFIAPI 方法), 10 txtone() (wifi_api.WIFIAPI 方法), 10 txtone() (wifi_lib.WIFILIB 方法), 15 txtone_step() (wifi_api.WIFIAPI 方法), 10

W

wifi_api (模块), 5
wifi_lib (模块), 14
WIFIAPI (wifi_api 中的类), 5
WIFILIB (wifi_lib 中的类), 14
wifiscwout() (wifi_api.WIFIAPI 方法), 10
wifiscwout() (wifi_lib.WIFILIB 方法), 15
wifitxout() (wifi_api.WIFIAPI 方法), 11
wr() (common.MEM 方法), 5
write_dump_data() (adc_dump.DUMP 方法), 16
wrm() (common.MEM 方法), 5