Аннотация

Исследуется проблема повышения качества моделей прогнозирования временных рядов на примере динамики курса акций. Рассматривается метод включения в модель внешних данных. Вводится предположение, что агрегированные знания опытных инвесторов повышают качество тестируемой модели. Рассматриваются нейросетевые методы машинного обучения и проводятся вычислительные эксперименты на реальных данных.

Ключевые слова: временные ряды, нейронные сети, краткосрочное прогнозирование

Содержание

1	Введение					
	1.1	Обзор предметной области	4			
		Предложенный метод				
2	Пос	становка задачи прогнозирования	7			
3	Экс	спериментальные данные	8			
	3.1	Стационарность	8			
	3.2	Составление выборки	10			
4	Вычислительный эксперимент					
	4.1	ARIMA	12			
	4.2					
	4.3	LSTM				
		Горизонт прогнозирования				
		Transformer				
	4.6	Код вычислительного эксперимента				
5	Зак	лючение	24			

1 Введение

Актуальность темы. Прогнозирование цен на акции с помощью моделей машинного обучения является сложной задачей из-за высокой степени шума и множества факторов, влияющих на поведение цен. В этом случае помимо данных временного ряда можно использовать агрегированные знания опытных инвесторов.

Цель работы. Одним из способов повышения качества алгоритма машинного обучения является обогащение выборки - использование дополнительных данных. Цель данной работы заключается в повышении качества нейросетевых моделей прогнозирования временных рядов на примере динамики курса акций. Для этого предлагается использовать знания опытных инвесторов.

Новизна. Предложен подход, основанный на предположении о том, что внешние факторы, влияющие на курс акций, заложены в ответы опытных инвесторов.

Определение 1.1. Модель автоследования — временной ряд, составленный из агрегированных ответов опытных инвесторов о решении продажи или покупки акций.

1.1 Обзор предметной области

Основным подходом краткосрочного прогнозирования временных рядов является использование моделей семейства ARIMA, описанных в работе [1]. Данные модели основаны на использовании авторегрессии и скользящего среднего. В работах [3, 4] рассматриваются тесты стационарности, являющейся важным условием для работы с моделями из данного семейства. Задача прогнозирования цен на акции с использованием модели ARIMA описана в [2].

Нейросетевые методы прогнозирования используют Кодировщик-Декодировщик архитектуру, описанную в [8]. Кодировщик преобразует входную последовательность в векторное представление, используемое Декодировщиком при построении выходной последовательности, однако в качестве Кодировщика и Декодировщика также могут выступать различные архитектуры. В работе [8] в качестве Кодировщика и Декодировщика используется архитектура рекуррентной нейронной сети LSTM [5, 6].

В работе [9] предлагается использовать помимо архитектуры Кодировщика и Декодировщика также механизм внимания - меру сходства состояний модели. Различные виды данного механизма описаны в [10]. А в работе [11] описан механизм самовнимания - метод создания векторных представлений последовательностей.

Современные методы прогнозирования основаны на применении моделей трансформеров, описанных в [12]. Данный подход основан на использовании механизма внимания без применения рекуррентности. Еще одним важным аспектом данных моделей является позиционное кодирование [13] - включение дополнительной информации о порядке передаваемой последовательности.

Последние исследования в области прогнозирования временных рядов используют архитектуры эффективных трансформеров - модификаций базовой архитектуры трансформеров, направленных на повышение их производительности, снижение вычислительных затрат и улучшение обработки последовательностей. В работе [18] описана архитектура Informer, использующая механизм разреженного внимания - уменьшение размерности вектора запроса. Архитектура Autoformer [17] использует слой декомпозиции - разделение временных рядов на сезонные и трендовые компоненты и автокорреляцию в качестве механизма внимания.

Задача прогнозирования временных рядов находит свое применение во многих областях. Так, в [21] в качестве экспериментальных данных используются такие датасеты, как курс валют, метеорологические данные, данные о потреблении электричества и другие данные реального мира.

1.2 Предложенный метод

Предлагается в тестируемой модели использовать помимо данных временного ряда также ответы модели автоследования. Ожидается, что качество полученных моделей будет превышать качество моделей без использования ответов модели автоследования.

В качестве экспериментальных данных используются реальные данные подневной динамики курса акций YNDX и ответы опытных инвесторов - авторов стратегий автоследования Тинькофф Инвестиций.

2 Постановка задачи прогнозирования

 $y_1, y_2, ..., y_T$ - временной ряд, $y_i \in \mathbb{R}^n$.

Требуется получить модель временного ряда:

$$\hat{y}_{t+k}(\mathbf{w}) = f_{t,k}(y_{t-M+1}, ..., y_t; \mathbf{w})$$

 $k = 1, ..., K,$

где

M - размер входного окна,

K - горизонт прогнозирования,

w - вектор параметров модели.

Функция потерь \mathcal{L} , используемая при обучении модели:

$$\mathcal{L}(\mathbf{w}, \mathbf{Y}) = \sum_{t=M}^{T-K} \sum_{k=1}^{K} (f_{t,k}(y_{t-M+1}, ..., y_t; \mathbf{w}) - y_{t+k})^2,$$

Получаем оптимизационную задачу:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{W}} \mathcal{L}(\mathbf{w}, \mathbf{Y}).$$

3 Экспериментальные данные

Эксперимент проводится для данных курса акций YNDX. Задается временной ряд

$$x_1, x_2, x_3, ..., x_N, \quad x_i \in \mathbb{R}^5$$

$$x_i = \begin{bmatrix} c_i & o_i & h_i & l_i & a_i \end{bmatrix}^T,$$

где

 c_i - цена закрытия,

 o_i - цена открытия,

 h_i - максимальная цена,

 l_i - минимальная цена,

 a_i - ответ модели автоследования ($a_i=0$ в базовом варианте обучения модели)

3.1 Стационарность

Исходный ряд приводится к стационарному виду следующими преобразованиями:

- 1) Дифференцирование: $y'_t = y_t y_{t-1}$ 2) Сезонное дифференцирование $y''_t = y'_t y'_{t-s}, \ s=5$

Т.к. торги открыты только в будние дни, то выбранная длина сезона s=5.

Рис. 1: Временной ряд курса акций YNDX до и после преобразований

Для проверки ряда на стационарность используется критерий KPSS [3, 4]:

Для полученного ряда p-value>0.01 Для исходного ряда p-value<0.01

Для визуальной оценки стационарности ряда также построим Q-Q plot:

Рис. 2: Q-Q plot полученного ряда

Видно, что точки на графике примерно лежат на прямой линии, следовательно распределение полученного временного ряда близко к нормальному.

Также воспользуемся анализом автокорреляционной функции:

Рис. 3: АСГ полученного ряда

Близкие к нулю значения автокорреляций также указывают на стационарность полученного ряда.

3.2 Составление выборки

Методом скользящего окна составляется выборка $\mathfrak{D} = (\mathbf{X}, \mathbf{Y})$:

Рис. 4: Метод скользящего окна

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_M \\ x_2 & x_3 & \dots & x_{M+1} \\ x_3 & x_4 & \dots & x_{M+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{N-K-M+1} & x_{N-K-M+2} & \dots & x_{N-K} \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} c_{M+1} & c_{M+2} & \dots & c_{M+K} \\ c_{M+2} & c_{M+3} & \dots & c_{M+K+1} \\ c_{M+3} & c_{M+4} & \dots & c_{M+K+2} \\ \vdots & \vdots & \vdots & \vdots \\ c_{N-K+1} & c_{N-K+2} & \dots & c_{N} \end{pmatrix},$$

где M - размер окна, K - горизонт прогнозирования.

В качестве целевых значений используется цена закрытия.

В соотношении 80/20 выборка делится на обучающую и тестовую части: YNDX-train, YNDX-test.

4 Вычислительный эксперимент

Для анализа предложенного метода проводится вычислительный эксперимент для задачи прогнозирования временного ряда на K=5 шагов.

В качестве тестируемых моделей используются архитектуры Кодировщика - Декодировщика [8] на основе рекуррентной сети LSTM [5, 6] и модели трансформера [12].

Эксперимент проводится для выборок с размером входного окна, равного 5, 15 и 30. Каждая из выборок состоит из обучающей и тестовой части.

Таблица 1: Выборки

ие Размер входного окна Горизонт п

Выборка	Пояснение	Размер входного окна	Горизонт прогнозирования
YNDX-Train5	Обучающая часть	5	5
YNDX-Test5	Тестовая часть	5	5
YNDX-Train15	Обучающая часть	15	5
YNDX-Test15	Тестовая часть	15	5
YNDX-Train30	Обучающая часть	30	5
YNDX-Test30	Тестовая часть	30	5

Для решения оптимизационной задачи используется градиентный метод оптимизации Adam [14].

Для анализа качества моделей используются метрики:

- 1) Средняя квадратичная ошибка
- 2) Корреляция Пирсона, усредненная по каждому шагу прогнозирования (далее Корреляция Пирсона)

4.1 ARIMA

В качестве базовой модели прогнозирования используется архитектура ARIMA [1] с порядком дифференцирования d=0, поскольку передаваемый ряд приведен к стационарному виду.

$$ARIMA(p, d = 0, q)$$
:

$$y_t = \alpha_1 y_{t-1} + \dots + \alpha_p y_{t-p} + \varepsilon_t + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} + \dots + \beta_q \varepsilon_{t-q},$$

где

 y_t - стационарный временной ряд,

 $\alpha_1,...,\alpha_p,\beta_1,...,\beta_q$ - константы $(\alpha_p \neq 0,\beta_q \neq 0),$

 ε_t - гауссов белый шум с нулевым средним и постоянной дисперсией.

Модели-кандидаты обучаются на первых 80 % данных. Итоговый порядок модели определятся с помощью информационного критерия Акаике:

$$AIC = -2\log \mathcal{L} + 2k,$$

где

 ${\cal L}$ - значение функции правдоподобия модели,

k=p+q+1 - количество параметров модели

Качество полученной модели ARIMA(p=3,d=0,q=3) оценивается на оставшихся 20 % данных для задачи прогнозирования на K шагов.

Таблица 2: Качество моделей

Выборка	Модель	Дополнительные данные	Корреляция Пирсона	MSE
	ARIMA		0,340	0,0183

В таблице 2 представлены результаты сравнения полученных моделей.

Рис. 5: Остатки ARIMA

Остатки модели - разница между фактическими значениями и значениями, прогнозируемыми моделью.

На рис. 5 показана диагностика полученной модели:

- 1) График остатков позволяет увидеть, равномерно ли распределены остатки вокруг нуля
- 2) Гистограмма остатков помогает визуально оценить, нормально ли распределены остатки
- 3) Q-Q plot сравнивает распределение остатков с нормальным распределением
- 4) График автокорреляционной функции остатков показывает автокорреляцию остатков на разных лагах

Исходя из полученных графиков следует вывод, что остатки модели не содержат дополнительной информации, важной для улучшения качества модели.

4.2 Модель автоследования

В качестве предложенного метода повышения качества моделей прогнозирования временных рядов предлагается использовать агрегированные знания опытных инвесторов.

Автоследование — способ инвестирования, при котором все желающие могут подключиться к стратегии более опытного инвестора (он же автор стратегии) и автоматически повторять все его сделки на своем счете.

Для создания модели автоследования выделяются инвесторы авторы стратегий автоследования Тинькофф инвестиций.

Ответ инвестора =
$$\frac{\text{Сумма сделки}}{\text{Объем портфеля}}$$

При этом не рассматриваются сделки, сумма которых превышает объем портфеля. Путем усреднения ответов инвесторов о продаже или покупке акций составляется временной ряд $a_1, ..., a_N, a_i \in [-1, 1]$.

Рис. 6: Модель автоследования

Полученный временной ряд передается в тестируемую модель в качестве дополнительных данных.

4.3 LSTM

В качестве тестируемой модели используется архитектура Кодировщика - Декодировщика на основе рекуррентной сети LSTM.

Рис. 7: Ячейка LSTM [7]

$$f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$

$$\widetilde{C}_t = \operatorname{th}(W_C[h_{t-1}, x_t] + b_C)$$

$$C_t = f_t \odot C_{t-1} + i_t \odot \widetilde{C}_t$$

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$

$$h_t = o_t \odot \operatorname{th}(C_t)$$

Кодировщик, состоящий из последовательных ячеек LSTM, обрабатывает входную последовательность временного ряда и передает Декодировщику внутреннее представление с последнего шага, которое содержит информацию о всей входной последовательности. Декодировщик, также состоящий из последовательных ячеек LSTM, получает на вход последнее внутрнее представление Кодировщика и использует свои собственные предсказания для генерации последующих значений выходной последовательности.

Рис. 8: Кодировщик - Декодировщик архитектура на основе LSTM

Проводится сравнение тестируемой модели с моделями, где в качестве дополнительных данных используются:

- 1) Ответы модели автоследования
- 2) Нормальный шум $\mathcal{N}(0,1)$

Рис. 9: Качество аппроксимации на тестовой выборке. Все результаты усреднены по 3 запускам. а) Корреляция Пирсона; b) Средняя квадратичная ошибка

На рис. 9 показаны графики зависимости корреляции Пирсона и средней квадратичной ошибки на отложенной тестовой выборке между истинными значениями ряда и ответами модели.

На графиках видно, что модель, использующая ответы модели автоследования, показывает лучшее качество прогнозирования, при этом наблюдается снижение средней квадратичной ошибки.

Выборка	Модель	Дополнительные данные	Корреляция Пирсона	MSE
YNDX-Train5	Seq2Seq LSTM	_	$0,476 \pm 0,027$	0.0175 ± 0.0003
TNDA-ITamo	seqzseq LSTM	Автоследование	$0,510 \pm 0,036$	0.0171 ± 0.0001
YNDX-Train15	Seq2Seq LSTM	_	0.553 ± 0.004	0.0186 ± 0.0008
INDA-IIaiiii		Автоследование	$0,599 \pm 0,006$	0.0175 ± 0.0007
YNDX-Train30	Seq2Seq LSTM	_	$0,478 \pm 0,006$	0.0195 ± 0.0005
1 MDA-11ambu		Автоследование	0.538 ± 0.007	0.0186 ± 0.0017

Таблица 3: Качество моделей

Рис. 10: Прогнозы LSTM

На рис. 10 показаны примеры прогнозов модели Seq2Seq LSTM на отложенной тестовой выборке.

4.4 Горизонт прогнозирования

Выбор горизонта прогнозирования является одним из основных аспектов в задаче прогнозирования временных рядов. Поскольку используется рекурсивный метод построения прогнозов, то с каждым шагом накапливается ошибка прогноза. Поэтому правильный выбор горизонта позволяет сбалансировать качество прогноза и его пользу для принятия решений.

Проводится сравнение модели Seq2Seq LSTM в зависимости от выбранного горизонта прогнозирования.

Рис. 11: Качество аппроксимации на тестовой выборке. а) Корреляция Пирсона; b) Средняя квадратичная ошибка

На рис. 11 показаны графики зависимости корреляции Пирсона и средней квадратичной ошибки на отложенной тестовой выборке между истинными значениями ряда и ответами модели.

На графиках видно, что с увеличением горизонта прогнозирования качество модели ухудшается. Также наблюдается более поздний выход корреляции Пирсона на плато.

4.5 Transformer

В качестве тестируемой модели используется архитектура Кодировщика - Декодировщика на основе модели трансформера [12].

- 1. Добавляются позиционные векторы p_i : $h_i = x_i + p_i, \ H = (h_1, ..., h_n)$
- 2. Многомерное самовнимание: $h_i^j = \text{Attn}(W_q^j h_i, W_k^j H, W_v^j H)$
- 3. Конкатенация: $h_{i}^{'} = \mathrm{MH}_{j}(h_{i}^{j}) \equiv [h_{i}^{1},...,h_{i}^{J}]$
- 4. Сквозная связь + нормировка уровня: $h_{i}^{''} = \mathrm{LN}(h_{i}^{'} + h_{i}; \mu_{1}, \sigma_{1})$
- 5. Полносвязная 2х-слойная сеть FFN: $h_i''' = W_2 \text{ReLU}(W_1 h_i'' + b_1) + b_2$
- 6. Сквозная связь + нормировка уровня: $z_i = \mathrm{LN}(h_i^{'''} + h_i^{''}; \mu_2, \sigma_2)$

Рис. 12: Трансформер - Кодировщик

Трансформер - Кодировщик обрабатывает входную последовательность и передает свои выходы Трансформеру - Декодировщику.

Для всех $t = 1, 2, \dots$:

1. Маскирование данных:
$$h_t = y_{t-1} + p_t$$
; $H_t = (h_1, ..., h_t)$

- 2. Многомерное самовнимание: $h_t^{'} = \text{LN} \circ \text{MH}_j \circ \text{Attn}(W_q^j h_t, W_k^j H_t, W_v^j H_t)$
- 3. Многомерное внимание на кодировку Z: $h_t^{''} = \mathrm{LN} \circ \mathrm{MH}_j \circ \mathrm{Attn}(\tilde{W}_q^j h_t^{'}, \tilde{W}_k^j Z, \tilde{W}_v^j Z)$
- 4. Двухслойная полносвязная сеть: $y_t = \text{LN} \circ \text{FFN}(h_t'')$
- 5. Линейный предсказывающий слой: $p(\tilde{w}|t) = \operatorname{SoftMax}_{\tilde{w}}(W_y y_t + b_y)$

Рис. 13: Трансформер - Декодировщик

Генерация \tilde{w}_t

Трансформер - Декодировщик использует информацию от Трансформера - Кодировщика и генерирует выходную последовательность.

Проводится сравнение тестируемой модели с моделью, где в качестве дополнительных данных используются ответы модели автоследования.

Рис. 14: Качество аппроксимации на тестовой выборке. Все результаты усреднены по 3 запускам. а) Корреляция Пирсона; b) Средняя квадратичная ошибка

На рис. 14 показаны графики зависимости корреляции Пирсона и средней квадратичной ошибки на отложенной тестовой выборке между истинными значениями ряда и ответами модели.

На графиках видно, что модель, использующая ответы модели автоследования, показывает лучшее качество прогнозирования, при этом наблюдается снижение средней квадратичной ошибки.

Таблица 4: Качество моделей

Выборка	Модель	Дополнительные данные	Корреляция Пирсона	MSE
YNDX-Train5	Seq2Seq Transformer	_	0.379 ± 0.039	0.0225 ± 0.0005
TNDA-ITallio		Автоследование	$0,401 \pm 0,035$	0.0219 ± 0.0004
YNDX-Train15	Seq2Seq Transformer	_	$0,415 \pm 0,010$	0.0229 ± 0.0006
TNDA-IIaiiii		Автоследование	$0,440 \pm 0,001$	0.0218 ± 0.0009
YNDX-Train30	Seq2Seq Transformer	_	$0,406 \pm 0,011$	0.0211 ± 0.0010
I NDA-ITAIII50		Автоследование	$0,425 \pm 0,009$	0.0210 ± 0.0009

Рис. 15: Прогнозы Transformer

Ha puc. 15 показаны примеры прогнозов модели Seq2Seq Transformer на отложенной тестовой выборке.

4.6 Код вычислительного эксперимента

Весь код вычислительного эксперимента представлен в [23]. Также доступны письменный отчет и результаты экспериментов.

5 Заключение

Таблица 5: Результаты экспериментов

Выборка	Модель	Дополнительные данные	Корреляция Пирсона	MSE
	ARIMA		0,340	0,0183
	Seq2Seq LSTM	_	$0,476 \pm 0,027$	0.0175 ± 0.0003
YNDX-Train5		Автоследование	$0,510 \pm 0,036$	0.0171 ± 0.0001
TNDA-ITallio	Seq2Seq Transformer	_	0.379 ± 0.039	0.0225 ± 0.0005
		Автоследование	$0,401 \pm 0,035$	0.0219 ± 0.0004
	Seq2Seq LSTM	_	$0,553 \pm 0,004$	0.0186 ± 0.0008
YNDX-Train15		Автоследование	$0,599 \pm 0,006$	0.0175 ± 0.0007
TNDA-IIaiii15	Seq2Seq Transformer	_	$0,415 \pm 0,010$	0.0229 ± 0.0006
		Автоследование	$0,440 \pm 0,001$	0.0218 ± 0.0009
	Seq2Seq LSTM	_	$0,478 \pm 0,006$	0.0195 ± 0.0005
YNDX-Train30		Автоследование	$0,538 \pm 0,007$	0.0186 ± 0.0017
1 NDA-11amou	Seq2Seq Transformer	_	$0,406 \pm 0,011$	0.0211 ± 0.0010
		Автоследование	$0,425 \pm 0,009$	0.0210 ± 0.0009

В работе рассмотрена проблема повышения качества моделей прогнозирования временных рядов на примере динамики курса акций. Рассмотрены методы прогнозирования на основе рекуррентных сетей и моделей трансформеров. Был предложен подход включения в модель дополнительных данных — агрегированных знаний опытных инвесторов.

В ходе экспериментов, проведенных на реальных данных, было показано, что предложенный метод работает и повышает качество тестируемых моделей. Результаты экспериментов представлены в таблице 5.

Из таблицы видно, что качество модели зависит от размера входного окна: модели, обученные на выборке с входным окном размера 15, имеют наилучшее качество. Также во всех экспериментах качество тестируемой модели повышается при использовании дополнительных данных модели автоследования.

Список литературы

- [1] Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов. Финансы и статистика, 2003
- [2] Ariyo A.A., Adewumi A.O. Stock price prediction using the ARIMA model, 2014
- [3] Patterson K. Unit Root Tests In Time Series Volume 1, 2011
- [4] Herranz E. Unit root tests, 2017
- [5] Hochreiter S., Schmidhuber J. Neural Computation 9(8), 1997
- [6] Greff K., Schmidhuber J. LSTM: A Search Space Odyssey, 2017
- [7] Christopher Olah Understanding LSTM Networks, 2015 https://colah.github.io/posts/2015-08-Understanding-LSTMs
- [8] Cho K. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches, 2014
- [9] Bahdanau D. Neural Machine Translation By Jointly Learning To Align And Translate, 2016
- [10] *Dichao Hu* An Introductory Survey on Attention Mechanisms in NLP Problems, 2018
- [11] Lin Z., Bengio Y. A Structured Self-Attentive Sentence Embedding, 2017
- [12] Vaswani A. et al. Attention Is All You Need, 2017
- [13] Shaw P., Uszkoreit J., Vaswani A. Self-Attention with Relative Position Representations, 2018
- [14] Kingma D. P., Ba J. Adam: A Method for Stochastic Optimization, 2017

- [15] Wu N., Green B. Deep Transformer Models for Time Series Forecasting, 2020
- [16] Li S., Jin X. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting, 2019
- [17] Wu H., Xu J. Autoformer: Decomposition transformers with autocorrelation for long-term series forecasting, 2021
- [18] Zhou H., Zhang S. Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021
- [19] Liu S., Yu H. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting, 2021
- [20] Zhou T., Ma Z. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting, 2022
- [21] Liu Y., Hu T., Zhang H. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting, 2023
- [22] Воронцов К. В. Машинное обучение, курс лекций
- [23] Omvem https://github.com/kbayazitov/StockPricingForecasting