Irrational Numbers - AN2 II

Number Systems On A Number Line

• Natural numbers are the collection of all *Positive*, *Whole* numbers. Arranging all of the **Natural Numbers** on a number Line:

• Whole numbers are the collection of all *Positive*, *Whole* numbers **and** zero. Arranging all of the **Whole Numbers** on a number line:

• Integers are the collection of all *Positive* and *Negative Whole* numbers, **and** zero. Arranging all of the **Integers** on a number line:

• The real numbers contain all **Rational** and **Irrational Numbers**. Arranging all of the **Real Numbers** on a number line:

• As there is an **infinite** amount of both **Rational** and **Irrational** numbers on any given interval, it is difficult to arrange them on a number line. However we can arrange them in order based on their value.

Ordering Irrational Numbers On A Number Line

Next, given a set of irrational numbers, can you order them on a number line?

• $\sqrt{26}$ • π • $2\sqrt{5}$ • $2\sqrt{14}$ • $5\sqrt{2}$

Practice: Order each of the following numbers from least to greatest:

- i. $\bullet \sqrt{2}$
- \bullet π
- $5\sqrt{2}$ $2\sqrt{5}$ $\sqrt{7}$

- ii. $\bullet \sqrt{21}$ $\bullet 2\sqrt{11}$ $\bullet 3\sqrt{8}$ $\bullet 9\sqrt{2}$ $\bullet 4\sqrt{3}$

- iii. • $\sqrt{20}$ • π
- $3\sqrt{3}$ $4\sqrt{5}$
- $\bullet \sqrt{48}$

- iv. $\bullet \sqrt{15}$ $\bullet 2\sqrt{8}$ $\bullet \sqrt{5}$ $\bullet 3\sqrt{3}$ $\bullet 5\sqrt{2}$

Approximating An Irrational Number To The Nearest 10^{th}

Example: Consider $\sqrt{52}$

• First find two squares that 52 lies between: $\sqrt{49} < \sqrt{52} < \sqrt{64}$

• So the answer lies between 7 and 8.: $7 < \sqrt{52} < 8$

• Next we know there is a total distance of 15 between 49 and 64: 64 - 49 = 15

• We also know that there is a total distance of 3 between 49 and 52: 52 - 49 = 3.

• So $\sqrt{52}$ is approximately $\frac{3}{15}$ above $\sqrt{49}$

3 15 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

• So: $\sqrt{52} \approx \sqrt{49} + \frac{3}{15}$

• Simplifying: $\sqrt{52} \approx 7 + \frac{1}{5}$

• $\sqrt{52} \approx 7.2$

Examples:

Approximate Each Of The Following Numbers To The Nearest 10^{th} :

i. $\sqrt{20}$

iii. $\sqrt{41}$

ii. $\sqrt{34}$

iv. $\sqrt{121}$