2. izpit iz Moderne fizike 1

14. maj 2021

čas reševanja 90 minut

- 1. Stanje delca v 3D opišemo z valovno funkcijo $\psi(r)=N\mathrm{e}^{-\alpha r}$, kjer je r radialna razdalja, N normalizacijska konstanta in α znan parameter.
 - (a) Izračunaj N.
 - (b) Izračunaj pričakovane vrednosti $\langle \vec{r} \rangle$, $\langle r \rangle$ in $\langle r^2 \rangle$ v tem stanju.
 - (c) Kolikšni sta nedoločenosti $(\Delta \vec{r})^2$ in $(\Delta r)^2$?
- 2. Na mirujočo protonsko tarčo usmerimo curek elektronov s spremenljivo kinetično energijo.
 - (a) Določi vrednost energije, pri kateri poleg začetnih delcev v končnem stanju, ustvarimo delec X z maso 4 GeV: $e^-p \to e^-pX!$
 - (b) Energijo vpadnega elektrona nastavimo na precej višjo vrednost in opazujemo dogodke, kjer vsi trije končni delci odletijo vzdolž smeri vpadnega curka in kjer sta gibalni količini cp_e in cp_p precej večji od mirovnih mas delcev, kar pa ne velja za delec X. Izračunaj E_X za tak primer!
- 3. Molekulo vodika H_2 opišemo kot rotator, sestavljen iz dveh atomov vodika na razdalji $r_0=0.074~\mathrm{nm}.$
 - (a) Koliko znašajo energije prvih treh vzbujenih stanj rotacije, če privzamemo, da je H_2 toga molekula?
 - (b) Pri natančnejšem računu upoštevamo, da molekula ni toga, pač pa je potencialna energija med atomoma enaka $U(r) = \frac{1}{2}k(r-r_0)^2$, kjer je k=3200 eV nm⁻². Koliko odstotkov znašajo popravki k energijam iz točke (a) zaradi centrifugalne distorzije? Namig: privzemi, da so popravki majhni.
- 4. Atom vodika pripravimo v stanju z n=2, l=1 in $\langle s_z \rangle = -\hbar/2$. Z dipolnim sevalnim prehodom ga vzbudimo v stanje z n=3, ki je linearna kombinacija lastnih stanj, ortogonalnih na $\psi_{n=3,l=0,m_l=0}$ in $\psi_{m=3,l=2,m_l=\pm 1}$. Pri vseh meritvah l_z na vzbujenem stanju vedno izmerimo le dve različni vrednosti, z nasprotnim predznakom. Določi linearno superpozicijo možnih stanj ter $\langle l^2 \rangle$. Sedaj vključimo močno magnetno polje 10 T, ter izmerimo, da se povprečna energija vzbujenega stanja poveča za 0.3 meV. Določi razmerja intenzitet opaženih spektralnih črt!