Surabhi Singh

The Sparks Foundation

Exploratory Data Analysis

To find out the weak areas and other problems of business to make more profit

Python libraries being used

A. Data Analysis

```
import pandas as pd
import numpy as np
```

B. Data Visualization

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Data Extraction

Importing Data from Superstore Data

```
In [4]:
```

```
import types
import pandas as pd
from botocore.client import Config
import ibm boto3
def iter _(self): return 0
# @hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your c
redentials.
# You might want to remove those credentials before you share the notebook.
client df59ba2aae8f4254afb2ed76c5028249 = ibm boto3.client(service name='s3',
    ibm_api_key_id='COK_2AXL10McOwYapj_sm2un8kk7QWfw3bhgF6k6e3mK',
    ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
    config=Config(signature version='oauth'),
    endpoint url='https://s3-api.us-geo.objectstorage.service.networklayer.com')
body = client df59ba2aae8f4254afb2ed76c5028249.get object(Bucket='tsf-donotdelete-pr-spz8
z9iaocdhoc', Key='SampleSuperstore.csv')['Body']
# add missing __iter__ method, so pandas accepts body as file-like object
if not hasattr(body, " iter "): body. iter = types.MethodType( iter , body )
df = pd.read csv(body)
df.head(10)
```

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discou
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9600	2	0.0
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9400	3	0.0
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6200	2	0.0
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.5775	5	0.4
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.3680	2	0.1
5	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Furniture	Furnishings	48.8600	7	0.0
6	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Office Supplies	Art	7.2800	4	0.0
7	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Technology	Phones	907.1520	6	0.1
8	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Office Supplies	Binders	18.5040	3	0.1
9	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Office Supplies	Appliances	114.9000	5	0.0
4												···· Þ

In [5]:

df.tail(10)

Out[5]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Dis
9984	Standard Class	Consumer	United States	Long Beach	New York	11561	East	Office Supplies	Labels	31.500	10	
9985	Standard Class	Consumer	United States	Long Beach	New York	11561	East	Office Supplies	Supplies	55.600	4	
9986	Standard Class	Consumer	United States	Los Angeles	California	90008	West	Technology	Accessories	36.240	1	
9987	Standard Class	Corporate	United States	Athens	Georgia	30605	South	Technology	Accessories	79.990	1	
9988	Standard Class	Corporate	United States	Athens	Georgia	30605	South	Technology	Phones	206.100	5	
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furnishings	25.248	3	
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furnishings	91.960	2	
9991	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Technology	Phones	258.576	2	
9992	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Office Supplies	Paper	29.600	4	
9993	Second Class	Consumer	United States	Westminster	California	92683	West	Office Supplies	Appliances	243.160	2	
4												Þ

In [6]:

df.shape

Out[6]:

here, 13 columns and 9994 rows in this Data

In [7]:

dtypes: float64(3), int64(2), object(8)

In [8]:

```
duplicate=df.duplicated()
print(duplicate.sum())
df[duplicate]
```

memory usage: 1015.1+ KB

17

Out[8]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Di:
950	Standard Class	Home Office	United States	Philadelphia	Pennsylvania	19120	East	Office Supplies	Paper	15.552	3	
3406	Standard Class	Home Office	United States	Columbus	Ohio	43229	East	Furniture	Chairs	281.372	2	
3670	Standard Class	Consumer	United States	Salem	Oregon	97301	West	Office Supplies	Paper	10.368	2	
4117	Standard Class	Consumer	United States	Los Angeles	California	90036	West	Office Supplies	Paper	19.440	3	
4553	Standard Class	Consumer	United States	San Francisco	California	94122	West	Office Supplies	Paper	12.840	3	
5905	Same Day	Home Office	United States	San Francisco	California	94122	West	Office Supplies	Labels	41.400	4	
6146	Standard Class	Corporate	United States	San Francisco	California	94122	West	Office Supplies	Art	11.760	4	
6334	Standard Class	Consumer	United States	New York City	New York	10011	East	Office Supplies	Paper	49.120	4	
6357	Standard Class	Corporate	United States	Seattle	Washington	98103	West	Office Supplies	Paper	25.920	4	
7608	Standard Class	Consumer	United States	San Francisco	California	94122	West	Office Supplies	Paper	25.920	4	
7735	Standard Class	Corporate	United States	Seattle	Washington	98105	West	Office Supplies	Paper	19.440	3	

7759	Stan gari d Midde	C segnrate	United Country	HoustRy	Texale	Postel Code	Region	Office Getspaces	P a⊎e r Category	¹ 5a553	Quantity 3	Dis
8032	First Class	Consumer	United States	Houston	Texas	77041	Central	Office Supplies	Paper	47.952	3	
8095	Second Class	Consumer	United States	Seattle	Washington	98115	West	Office Supplies	Paper	12.960	2	
9262	Standard Class	Consumer	United States	Detroit	Michigan	48227	Central	Furniture	Chairs	389.970	3	
9363	Standard Class	Home Office	United States	Seattle	Washington	98105	West	Furniture	Furnishings	22.140	3	
9477	Second Class	Corporate	United States	Chicago	Illinois	60653	Central	Office Supplies	Binders	3.564	3	
41										\$000000	0000000000000	0.01

Removing duplicate data

```
In [9]:
```

```
df.drop duplicates(inplace = True)
```

Confirming if all duplicates are removed

```
In [10]:
```

```
dp = df.duplicated()
dp.sum()
```

Out[10]:

0

Checking null Data

```
In [11]:
```

```
df.isnull().sum()
```

Out[11]:

```
Ship Mode
                 0
Segment
                 0
Country
                 0
City
State
                 0
Postal Code
                 0
                 0
Region
Category
                 0
Sub-Category
                 0
                 0
Sales
                 0
Quantity
                 0
Discount
                 0
Profit
dtype: int64
```

Checking Unique Values

```
In [12]:
```

```
df.nunique()
```

Out[12]:

Ship Mode 4
Segment 3
Country 1

531 City 49 State 631 Postal Code 4 Region 3 Category Sub-Category 17 Sales 5825 Quantity 14 Discount 12 Profit 7287 dtype: int64

Dropping Postal code column from the analysis

In [13]:

```
df1=df.drop(columns='Postal Code', axis=1)
```

Final Summary of the Dataset

In [14]:

```
df1.describe()
```

Out[14]:

	Sales	Quantity	Discount	Profit
count	9977.000000	9977.000000	9977.000000	9977.00000
mean	230.148902	3.790719	0.156278	28.69013
std	623.721409	2.226657	0.206455	234.45784
min	0.444000	1.000000	0.000000	-6599.97800
25%	17.300000	2.000000	0.000000	1.72620
50%	54.816000	3.000000	0.200000	8.67100
75%	209.970000	5.000000	0.200000	29.37200
max	22638.480000	14.000000	0.800000	8399.97600

Presenting on Graph

In [15]:

```
df1.hist(figsize=(15, 10), bins=50)
plt.show()
```


Quantity

Correlation between the sales, Quantities, Discount rate and profit

In [16]:

```
df1.corr()
```

Out[16]:

	Sales	Quantity	Discount	Profit
Sales	1.000000	0.200722	-0.028311	0.479067
Quantity	0.200722	1.000000	0.008678	0.066211
Discount	-0.028311	0.008678	1.000000	-0.219662
Profit	0.479067	0.066211	-0.219662	1.000000

Heat map on above Correlation

In [17]:

```
corr = df1.corr()
sns.heatmap(corr,annot=True)
```

Out[17]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f58d4dd7d90>

Plotting the no. of orders for each Ship Mode

In [18]:

```
sns.countplot(df1['Ship Mode'])
plt.show()
```


Plotting the no. of orders for each Segment

In [19]:

```
sns.countplot(df1['Segment'])
plt.show()
```


Plotting the no. of orderes for each region

In [20]:

```
sns.countplot(df1['Region'])
plt.show()
```


Plotting the no. of orders for each category

```
In [21]:
```

```
sns.countplot(df1['Category'])
plt.show()
```

```
6000 -
```


No. of orders for each Sub-Category

In [22]:

```
grouped = df1.groupby(['Category','Sub-Category'])
grouped.size()
```

Out[22]:

Category	Sub-Category	
Furniture	Bookcases	228
	Chairs	615
	Furnishings	956
	Tables	319
Office Supplies	Appliances	466
	Art	795
	Binders	1522
	Envelopes	254
	Fasteners	217
	Labels	363
	Paper	1359
	Storage	846
	Supplies	190
Technology	Accessories	775
	Copiers	68
	Machines	115
	Phones	889

dtype: int64

In [23]:

```
subcategory_table = pd.crosstab(index=df1["Category"],
columns=df1["Sub-Category"])
subcategory_table
```

Out[23]:

Sub- Category	Accessories	Appliances	Art	Binders	Bookcases	Chairs	Copiers	Envelopes	Fasteners	Furnishings	Labels	ı
Category	•											
Furniture	0	0	0	0	228	615	0	0	0	956	0	
Office Supplies	0	466	795	1522	0	0	0	254	217	0	363	
Technology	775	0	0	0	0	0	68	0	0	0	0	
4												•

In [24]:

```
subcategory_table.plot(kind="bar",
figsize=(8,8),
stacked=True)
```

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f58d4dec3d0>

No. of orders for each State

```
In [25]:
```

```
df1['State'].value_counts().plot(kind = 'bar', figsize=(20,15))
```

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f58d505fb10>

No. of orders in each City

```
In [27]:
```

```
df1['City'].value counts()
Out[27]:
New York City
                 914
                 746
Los Angeles
                 536
Philadelphia
                 506
San Francisco
Seattle
Melbourne
Vacaville
                   1
San Mateo
                   1
Orland Park
                   1
Goldsboro
Name: City, Length: 531, dtype: int64
```

Top 30 cities with most no. of orders

```
In [28]:
```

```
df1['City'].value_counts().head(30).plot(kind = 'bar', figsize=(17,10))
```

Out[28]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f58d548cc10>

Quantities

Quantities Ordered by Ship Modes

In [30]:

```
df.shipmode = df.groupby('Ship Mode')['Quantity'].sum().reset_index()
print(df.shipmode)
```

Springfie
Dallé
acksonvil
Detrc
Newai
Richmor
Jacksc

```
Ship Mode Quantity
0 First Class 5690
1 Same Day 1956
2 Second Class 7418
3 Standard Class 22756
```

In [32]:

```
shipmode_quantity=pd.DataFrame(df.groupby('Ship Mode').sum()['Quantity'])
labels=df.shipmode['Ship Mode'].unique()
plt.figure(figsize=(5,5))
plt.pie(df.shipmode['Quantity'], labels=shipmode_quantity.index, autopct='%1.1f%%', expl
ode=(0.02, 0.02, 0.02, 0.02),)
plt.title('Quantities ordered by Ship Modes', size=15)
```

Out[32]:

Text(0.5, 1.0, 'Quantities ordered by Ship Modes')

Quantities ordered by Ship Modes

Quantities ordered by Segment

In [34]:

```
df.segment = df.groupby('Segment')['Quantity'].sum().reset_index()
print(df.segment)
```

```
Segment Quantity
Consumer 19497
Corporate 11591
Home Office 6732
```

In [36]:

```
segment_quantity=pd.DataFrame(df.groupby('Segment').sum()['Quantity'])
labels=df.segment['Segment'].unique()
plt.figure(figsize=(5,5))
```

```
plt.pie(df.segment['Quantity'], labels=segment_quantity.index, autopct='%1.1f%%', explod
e=(0.02, 0.02, 0.02),)
plt.title('Quantities ordered by Segment', size=15)
```

Out[36]:

Text(0.5, 1.0, 'Quantities ordered by Segment')

Quantities ordered by Segment

Quantities ordered by Categories

In [38]:

```
df.category = df.groupby('Category')['Quantity'].sum().reset_index()
print(df.category)
```

	Category	Quantity
0	Furniture	8020
1	Office Supplies	22861
2	Technology	6939

In [40]:

```
category_quantity=pd.DataFrame(df.groupby('Category').sum()['Quantity'])
labels=df.category['Category'].unique()
plt.figure(figsize=(5,5))
plt.pie(df.category['Quantity'], labels=category_quantity.index, autopct='%1.1f%%', expl
ode=(0.02, 0.02, 0.02),)
plt.title('Quantities ordered by Categories', size=15)
```

Out[40]:

Text(0.5, 1.0, 'Quantities ordered by Categories')

Quantities ordered by Categories

Quantities ordered by region

```
In [42]:
```

```
df.region = df.groupby('Region')['Quantity'].sum().reset_index()
print(df.region)
```

```
Region Quantity
0 Central 8768
1 East 10609
2 South 6209
3 West 12234
```

In [43]:

```
region_quantity=pd.DataFrame(df.groupby('Region').sum()['Quantity'])
labels=df.region['Region'].unique()
plt.figure(figsize=(5,5))
plt.pie(df.region['Quantity'], labels=region_quantity.index, autopct='%1.1f%%', explode=
(0.02, 0.02, 0.02, 0.02),)
plt.title('Quantities ordered by Region', size=15)
```

Out[43]:

Text(0.5, 1.0, 'Quantities ordered by Region')

Quantities ordered by Region

Quantities ordered by States

In [45]:

```
states_quantity=df.groupby('State')['Quantity'].sum().reset_index().sort_values(by='Quantity', ascending=False)
```

Top 10 States

In [46]:

```
top10_states_quantity=states_quantity.head(10)
sns.catplot('State', 'Quantity', data=top10_states_quantity, kind='bar', aspect=2, heigh
t=8, palette="RdBu")
```

Out[46]:

<seaborn.axisgrid.FacetGrid at 0x7f58d5662d10>

Bottom 10 States

In [47]:

```
bottom10_states_quantity=states_quantity.tail(10)
sns.catplot('State', 'Quantity', data=bottom10_states_quantity, kind='bar', aspect=4, he
ight=6, palette='ch:2.5,-.2,dark=.3')
```

Out[47]:

<seaborn.axisgrid.FacetGrid at 0x7f58d56fd1d0>

Quantities ordered by Sub-Categories

In [49]:

df.subcategory = df.groupby('Sub-Category')['Quantity'].sum().reset_index()
print(df.subcategory)

	Sub-Category	Quantity
0	Accessories	2976
1	Appliances	1729
2	Art	2996
3	Binders	5971
4	Bookcases	868
5	Chairs	2351
6	Copiers	234
7	Envelopes	906
8	Fasteners	914
9	Furnishings	3560
10	Labels	1396
11	Machines	440
12	Paper	5144
13	Phones	3289
14	Storage	3158
15	Supplies	647
16	Tables	1241

In [50]:

subcategory_quantity=pd.DataFrame(df.groupby('Sub-Category').sum()['Quantity'])
labels=df.subcategory['Sub-Category'].unique()
plt.figure(figsize=(12,12))
plt.pie(df.subcategory['Quantity'], labels=subcategory_quantity.index,)
plt.title('Quantities ordered by Sub-Categories', size=15)

Out[50]:

Text(0.5, 1.0, 'Quantities ordered by Sub-Categories')

Quantities ordered by Sub-Categories

Top 10 Cities

In [52]:

cities_quantity=df.groupby('City')['Quantity'].sum().reset_index().sort_values(by='Quantity', ascending=False)

In [53]:

```
top10_cities_quantity=cities_quantity.head(10)
sns.catplot('City', 'Quantity', data=top10_cities_quantity, kind='bar', aspect=2, height
=8, palette="mako")
```

Out[53]:

<seaborn.axisgrid.FacetGrid at 0x7f58d43e8710>

Bottom 10 Cities

In [55]:

```
bottom10_cities_quantity=cities_quantity.tail(10)
sns.catplot('City', 'Quantity', data=bottom10_cities_quantity, kind='bar', aspect=4, hei
ght=4, palette="mako")
```

Out[55]:

<seaborn.axisgrid.FacetGrid at 0x7f58d5117f50>

Sales

Shipmode wise sales

In [58]:

```
df.shipmodesales = df.groupby('Ship Mode')['Sales'].sum().reset_index()
print(df.shipmodesales)
```

```
Ship Mode Sales

First Class 3.513805e+05

Same Day 1.283217e+05

Second Class 4.591770e+05

Standard Class 1.357316e+06
```

In [57]:

```
shipmode_sales=pd.DataFrame(df.groupby('Ship Mode').sum()['Sales'])
labels=df.shipmodesales['Ship Mode'].unique()
plt.figure(figsize=(5,5))
plt.pie(df.shipmodesales['Sales'], labels=shipmode_sales.index, autopct='%.2f', explode=
(0.02, 0.02, 0.02, 0.02), radius=1.2)
```

```
centre_circle=plt.Circle((0,0), 0.90, fc='white')
fig=plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Sales ordered by Ship Modes', size=15)
```

Out[57]:

Text(0.5, 1.0, 'Sales ordered by Ship Modes')

Region Wise Sales

In [60]:

```
df.regionsales = df.groupby('Region')['Sales'].sum().reset_index()
print(df.regionsales)
```

```
Region Sales
0 Central 500782.8528
1 East 678435.1960
2 South 391721.9050
3 West 725255.6365
```

In [62]:

```
region_sales=pd.DataFrame(df.groupby('Region').sum()['Sales'])
labels=df.regionsales['Region'].unique()
plt.figure(figsize=(5,5))
plt.pie(df.regionsales['Sales'], labels=region_sales.index, autopct='%.2f', explode=(0.0 2, 0.02, 0.02, 0.02), radius=1.2)
centre_circle=plt.Circle((0,0), 0.90, fc='white')
fig=plt.gcf()
```


Cotogony wise Sales

Calegory wise Sales

In [64]:

```
df.categorysales = df.groupby('Category')['Sales'].sum().reset_index()
print(df.categorysales)
```

```
Category Sales
0 Furniture 741306.3133
1 Office Supplies 718735.2440
2 Technology 836154.0330
```

In [65]:

```
category_sales=pd.DataFrame(df.groupby('Category').sum()['Sales'])
labels=df.categorysales['Category'].unique()
plt.figure(figsize=(5,5))
plt.pie(df.categorysales['Sales'], labels=category_sales.index, autopct='%.2f', explode=
(0.02, 0.02, 0.02), radius=1.2)
centre_circle=plt.Circle((0,0), 0.90, fc='white')
fig=plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Sales ordered by Categories', size=15)
```

Out[65]:

Text(0.5, 1.0, 'Sales ordered by Categories')

Sales ordered by Categories

Segment wise Sales

In [67]:

```
df.segmentsales = df.groupby('Segment')['Sales'].sum().reset_index()
print(df.segmentsales)
```

```
Segment Sales

Consumer 1.160833e+06

Corporate 7.060701e+05

Home Office 4.292927e+05
```

In [69]:

```
segment_sales=pd.DataFrame(df.groupby('Segment').sum()['Sales'])
labels=df.segmentsales['Segment'].unique()
plt.figure(figsize=(6,6))
plt.pie(df.segmentsales['Sales'], labels=segment_sales.index, autopct='%.2f', explode=(0.02, 0.02, 0.02), radius=1.2)
centre_circle=plt.Circle((0,0), 0.90, fc='white')
fig=plt.gcf()
fig.gca().add_artist(centre_circle)
```

Out[69]:

<matplotlib.patches.Circle at 0x7f58d4e807d0>

Top 10 Cities-sales wise

In [72]:

```
cities_sales=df.groupby('City')['Sales'].sum().reset_index().sort_values(by='Sales', asc
ending=False)
top10_cities_sales=cities_sales.head(10)
sns.catplot('City', 'Sales', data=top10_cities_sales, kind='bar', aspect=3, height=8, pa
lette="magma")
```

Out[72]:

<seaborn.axisgrid.FacetGrid at 0x7f58d4ea9390>

Bottom 5 Cities wise Sales

In [73]:

```
bottom5_cities_sales=cities_sales.tail(5)
sns.catplot('City', 'Sales', data=bottom5_cities_sales, kind='bar', aspect=2, height=4,
palette="magma")
```

Out[73]:

<seaborn.axisgrid.FacetGrid at 0x7f58d425da50>

```
2.5 -
```


Discount

Shipmode- Average Discount

```
In [76]:
```

```
df.shipmodedisc = df.groupby('Ship Mode')['Discount'].agg(np.mean).reset_index().sort_va
lues(by='Discount', ascending=False)
print(df.shipmodedisc)
Ship Mode Discount
```

```
Ship Mode Discount
0 First Class 0.164587
3 Standard Class 0.160222
1 Same Day 0.152675
2 Second Class 0.138626
```

In [77]:

```
(markerline, stemlines, baseline) = plt.stem(df.shipmodedisc['Ship Mode'],
df.shipmodedisc['Discount'], use_line_collection=True)
plt.setp(markerline, marker='^', markersize=15,
markeredgewidth=2, color='blue')
plt.setp(stemlines, color='blue')
plt.setp(baseline, visible=False)
plt.tick_params(labelsize=12)
plt.xlabel('Ship Mode', size=12)
plt.ylabel('Discount', size=12)
plt.ylim(bottom=0)
plt.show()
```


Segments- Average Discount

```
In [79]:
```

```
df.segmentdisc = df.groupby('Segment')['Discount'].agg(np.mean).reset_index().sort_value
s(by='Discount', ascending=False)
print(df.segmentdisc)
```

```
Segment Discount
0
      Consumer 0.158308
1
     Corporate 0.158159
  Home Office 0.147178
In [81]:
(markerline, stemlines, baseline) = plt.stem(df.segmentdisc['Segment'],
df.segmentdisc['Discount'], use line collection=True)
plt.setp(markerline, marker='^', markersize=15,
markeredgewidth=2, color='blue')
plt.setp(stemlines, color='blue')
plt.setp(baseline, visible=False)
plt.tick_params(labelsize=12)
plt.xlabel('Segment', size=12)
plt.ylabel('Discount', size=12)
plt.ylim(bottom=0)
plt.show()
  0.16 -
   0.14
   0.12
  0.10
  0.08
   0.06
   0.04
   0.02
   0.00
```

Regions- Average Discount

Corporate Segment

Consumer

```
In [83]:
```

```
df.regiondisc = df.groupby('Region')['Discount'].agg(np.mean).reset_index().sort_values(
by='Discount', ascending=False)
print(df.regiondisc)

    Region Discount
0 Central 0.240250
2 South 0.147253
1 East 0.145343
3 West 0.109615
```

Home Office

```
In [84]:
```

```
(markerline, stemlines, baseline) = plt.stem(df.regiondisc['Region'],
df.regiondisc['Discount'], use_line_collection=True)
plt.setp(markerline, marker='*', markersize=15,
markeredgewidth=2, color='blue')
plt.setp(stemlines, color='blue')
plt.setp(baseline, visible=False)
plt.tick_params(labelsize=12)
plt.xlabel('Region', size=12)
plt.ylabel('Discount', size=12)
plt.ylim(bottom=0)
plt.show()
```


Categories- Average Discount

```
In [86]:
```

```
df.categorydisc = df.groupby('Category')['Discount'].agg(np.mean).reset_index().sort_val
ues(by='Discount', ascending=False)
print(df.categorydisc)
```

```
Category Discount
O Furniture 0.174027
Office Supplies 0.157385
Technology 0.132323
```

In [87]:

```
(markerline, stemlines, baseline) = plt.stem(df.categorydisc['Category'],
df.categorydisc['Discount'], use_line_collection=True)
plt.setp(markerline, marker='*', markersize=15,
markeredgewidth=2, color='blue')
plt.setp(stemlines, color='blue')
plt.setp(baseline, visible=False)
plt.tick_params(labelsize=12)
plt.xlabel('Category', size=12)
plt.ylabel('Discount', size=12)
plt.ylim(bottom=0)
plt.show()
```


Sub Categories- Average Discount

```
In [89]:
```

```
df.subcategorydisc = df.groupby('Sub-Category')['Discount'].agg(np.mean).reset_index().s
ort_values(by='Discount', ascending=False)
print(df.subcategorydisc)
```

```
Sub-Category Discount
3 Binders 0.372011
11 Machines 0.306087
16 Tables 0.261285
4 Bookcases 0.211140
5 Chairs 0.170244
1 Appliances 0.166524
```

```
1177111111111
                 U • 1 U U U Z 1
6
                 0.161765
        Copiers
13
         Phones 0.154556
    Furnishings 0.138494
9
8
     Fasteners 0.082028
7
      Envelopes 0.080315
0
    Accessories 0.078452
15
       Supplies 0.076842
2
            Art 0.074969
12
          Paper 0.074908
14
        Storage 0.074704
10
         Labels 0.068871
```

In [90]:

```
(markerline, stemlines, baseline) = plt.stem(df.subcategorydisc['Sub-Category'],
df.subcategorydisc['Discount'], use_line_collection=True)
plt.setp(markerline, marker='^', markersize=15,
markeredgewidth=2, color='gold')
plt.setp(stemlines, color='blue')
plt.setp(baseline, visible=False)
plt.tick_params(labelsize=12)
plt.xlabel('Sub-Category', size=15)
plt.ylabel('Discount', size=12)
plt.ylim(bottom=0)
plt.show()
```


Top 10 Sates having high average discount

```
In [92]:
```

```
df.statedisc = df.groupby('State')['Discount'].agg(np.mean).reset_index().sort_values(by
='Discount', ascending=False)
top10_states_disc=df.statedisc.head(10)
print(top10_states_disc)
```

```
State Discount
11
          Illinois 0.389206
41
             Texas 0.370539
      Pennsylvania 0.328840
36
              Ohio 0.325000
33
         Colorado 0.316484
4
          Arizona 0.303571
1
8
          Florida 0.299347
40
                   0.291257
         Tennessee
35
            Oregon 0.289431
   North Carolina 0.283534
31
```

In [93]:

```
plt.figure(figsize=(25,5))
  (markerline, stemlines, baseline) = plt.stem(top10_states_disc['State'],
  top10_states_disc['Discount'], use_line_collection=True)
  plt.setp(markerline, marker='^', markersize=15,
```

```
markeredgewidth=2, color='blue')
plt.setp(stemlines, color='red')
plt.setp(baseline, visible=False)
plt.tick_params(labelsize=12)
plt.xlabel('State', size=12)
plt.ylabel('Discount', size=12)
plt.ylim(bottom=0)
plt.show()
```


Top 10 Cities having high Average of Discounts

In [100]:

```
df.citydisc = df.groupby('City')['Discount'].agg(np.mean).reset_index().sort_values(by='
Discount', ascending=False)
top10_cities_disc=df.citydisc.head(10)
print(top10_cities_disc)
```

```
City Discount
1
                    0.800000
           Abilene
117
                    0.800000
         Deer Park
417
        Romeoville
                     0.800000
305
     Missouri City
                     0.800000
140
                     0.700000
            Elyria
                     0.700000
370
         Pensacola
354
      Ormond Beach
                     0.700000
259
                     0.700000
         Littleton
493
                     0.640000
             Tyler
55
             Bryan
                     0.616667
```

In [101]:

```
plt.figure(figsize=(25,5))
  (markerline, stemlines, baseline) = plt.stem(top10_cities_disc['City'],
  top10_cities_disc['Discount'], use_line_collection=True)
  plt.setp(markerline, marker='*', markersize=15,
  markeredgewidth=2, color='green')
  plt.setp(stemlines, color='black')
  plt.setp(baseline, visible=False)
  plt.tick_params(labelsize=12)
  plt.xlabel('City', size=12)
  plt.ylabel('Discount', size=12)
  plt.ylim(bottom=0)
  plt.show()
```


Profit

Profit by Ship Mode

In [102]:

```
shipmode_profit=df.groupby('Ship Mode')['Profit'].sum().reset_index().sort_values(by='Pr
ofit', ascending=False)
sns.catplot('Ship Mode', 'Profit', data=shipmode_profit, kind='bar', aspect=2, height=4,
palette="rocket")
```

Out[102]:

<seaborn.axisgrid.FacetGrid at 0x7f58cc635490>

Profit by Segments

In [104]:

```
segment_profit=df.groupby('Segment')['Profit'].sum().reset_index().sort_values(by='Profi
t', ascending=False)
sns.catplot('Segment', 'Profit', data=segment_profit, kind='bar', aspect=2, height=4, pa
lette="rocket")
```

Out[104]:

<seaborn.axisgrid.FacetGrid at 0x7f58cc7c9b90>

Profit by Region

In [105]:

```
region_profit=df.groupby('Region')['Profit'].sum().reset_index().sort_values(by='Profit'
, ascending=False)
sns.catplot('Region', 'Profit', data=region_profit, kind='bar', aspect=2, height=4, pale
```

```
tte="rocket")
```

Out[105]:

<seaborn.axisgrid.FacetGrid at 0x7f58cc7aad10>

Profit by Categories

In [106]:

```
category_profit=df.groupby('Category')['Profit'].sum().reset_index().sort_values(by='Pro
fit', ascending=False)
sns.catplot('Category', 'Profit', data=category_profit, kind='bar', aspect=2, height=4,
palette="rocket")
```

Out[106]:

<seaborn.axisgrid.FacetGrid at 0x7f58cc70c490>

Profit by Sub-Categories

In [107]:

```
subcategory_profit=df.groupby('Sub-Category')['Profit'].sum().reset_index().sort_values(
by='Profit', ascending=False)
sns.catplot('Sub-Category', 'Profit', data=subcategory_profit, kind='bar', aspect=1, heig
ht=18, palette="rocket")
```

Out[107]:

<seaborn.axisgrid.FacetGrid at 0x7f58d4edc750>

Top 10 States by Profit

In [108]:

```
states_profit=df.groupby('State')['Profit'].sum().reset_index().sort_values(by='Profit',
ascending=False)
top10_states_profit=states_profit.head(10)
sns.catplot('State', 'Profit', data=top10_states_profit, kind='bar', aspect=2, height=5,
palette="rocket")
```

Out[108]:

<seaborn.axisgrid.FacetGrid at 0x7f58d4ed9fd0>

Bottom 5 Sates by Profit

In [109]:

```
bottom5_states_profit=states_profit.tail(5)
sns.catplot('State', 'Profit', data=bottom5_states_profit, kind='bar', aspect=2, height=
4, palette="rocket")
```

Out[109]:

<seaborn.axisgrid.FacetGrid at 0x7f58cc3733d0>

Top 10 Cities by Profit

In [110]:

```
cities_profit=df.groupby('City')['Profit'].sum().reset_index().sort_values(by='Profit',
ascending=False)
top10_cities_profit=cities_profit.head(10)
sns.catplot('City', 'Profit', data=top10_cities_profit, kind='bar', aspect=2, height=8,
palette="rocket")
```

Out[110]:

<seaborn.axisgrid.FacetGrid at 0x7f58cc388090>

Bottom 10 Cities by Profit

In [111]:

```
bottom10_cities_profit=cities_profit.tail(10)
sns.catplot('City', 'Profit', data=bottom10_cities_profit, kind='bar', aspect=4, height=
6, palette="rocket")
```

Out[111]:

<seaborn.axisgrid.FacetGrid at 0x7f58cc27be10>

CONCLUSION

The segment - 'Home office' generates lowest profit and lowest sale also it is the least ordered segment.

Central region generatres lowest profit despite being offered highest average discount.

Southern region generates the lowest sale among all the regions.

Lowest sale and quantities were ordered from Wyoming and West Virginia.

Texas and Illinois generated least sale even after offering high discounts.

Among citites Philadelphia and Houston recorded highest losses.

Standard class accounts for majority of profits.

Sales of bookcase and tables are good but the profit is negative. The Company is facing loss because of these two products.

Improvements should be made for the same day shipment mode.

Office Supplies are excellent. We have to work more on Furniture and Technology Category of business.

When the profits of a state are compared with the discount provided in each state, the states which offered more discount went in loss.