Amendments to the Claims

This list of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (original) A light conversion apparatus comprising:

a germanium-based photodiode; and

a polysilicon-based receiving electrode for receiving light to be converted by the photodiode, the receiving electrode being coupled with the photodiode, the receiving electrode permitting the received light to substantially pass through the receiving electrode to the photodiode, the photodiode being capable of converting the received light into an electrical signal.

Claim 2. (original) The apparatus as defined by claim 1 wherein the receiving electrode is doped.

Claim 3. (original) The apparatus as defined by claim 2 wherein the receiving electrode is doped with an n-type dopant.

Claim 4. (original) The apparatus as defined by claim 1 wherein the photodiode has a top surface, the receiving electrode substantially covering the entire top surface of the photodiode.

Claim 5. (original) The apparatus as defined by claim 1 further comprising a bottom electrode coupled to the photodiode, the apparatus further having a voltage between the top and bottom electrodes.

Claim 6. (original) The apparatus as defined by claim 1 further including a waveguide coupled with the receiving electrode.

Claim 7. (original) The apparatus as defined by claim 1 wherein the photodiode has a p-type

doped region, an n-type doped region, and an intrinsic region between the two doped regions, the receiving electrode being one of n-type or p-type doped, the receiving electrode being coupled closer to the doped region of the photodiode having a like doping to it than to the doped region of the photodiode having a different doping.

Claim 8. (original) A light conversion apparatus comprising:

a photodiode having an n-type region that is doped with n-type dopant and a p-type region that is doped with p-type dopant; and

a polysilicon-based receiving electrode doped with one of an n-type or a p-type dopant, the receiving electrode capable of receiving light to be converted by the photodiode and permitting the received light to substantially pass through it to the photodiode, the receiving electrode being coupled closer to the doped region of the photodiode having a like doping to it than to the doped region of the photodiode having a different doping.

Claim 9. (original) The apparatus as defined by claim 8 wherein the receiving electrode is doped with an n-type dopant, the receiving electrode being coupled closer to the n-type region of the photodiode than to the p-type region of the photodiode.

Claim 10. (original) The apparatus as defined by claim 8 wherein the photodiode is germanium based.

Claim 11. (original) The apparatus as defined by claim 8 wherein the photodiode has a top surface, the receiving electrode substantially covering the entire top surface of the photodiode.

Claim 12. (original) The apparatus as defined by claim 8 further comprising a bottom electrode coupled to photodiode, the apparatus further having a voltage between the top and bottom electrodes.

Claim 13. (original) The apparatus as defined by claim 8 wherein the receiving electrode has a

Appl. No. 10/656,850 Amendment dated October 14, 2003 Preliminary Amendment

thickness of between about 0.1 and 0.3 microns.

Claim 14. (original) The apparatus as defined by claim 8 wherein the receiving electrode has no less than about a ninety percent concentration of polysilicon.

Claim 15. (original) The apparatus as defined by claim 8 wherein the receiving electrode includes polysilicon germanium.

Claim 16. (original) A light conversion apparatus comprising:

a germanium-based photodiode; and

polysilicon-based means for receiving light to be converted by the photodiode, the polysilicon-based means permitting the received light to substantially pass through it to the photodiode, the photodiode being capable of converting the received light it receives into an electrical signal.

Claim 17. (original) The apparatus as defined by claim 16 wherein the polysilicon-based means includes a receiving electrode comprised of at least ninety percent polysilicon.

Claim 18. (original) The apparatus as defined by claim 16 wherein the polysilicon-based means includes doped polysilicon.

Claim 19. (original) The apparatus as defined by claim 16 further comprising a bottom electrode having a voltage difference with the polysilicon-based means.

Claim 20. (original) The apparatus as defined by claim 16 wherein the photodiode has a top surface, the polysilicon-based means substantially covering the entire top surface of the photodiode.

Claim 21. (new) The apparatus as defined by claim 1 wherein a doping process dopes a portion

Appl. No. 10/656,850 Amendment dated October 14, 2003 Preliminary Amendment

of the photodiode after the receiving electrode is coupled with the photodiode.