Estadística Inferencial

Capítulo X - Ejercicio 54

Aaric Llerena Medina

Las ventas medias semanales de las llantas PS214 en dos tiendas A y B de servicios, son aproximadamente iguales. Sin embargo el gerente de ventas de la tienda B cree que sus ventas son más consistentes. A continuación se presenta el número de llantas PS214 que se vendieron en las últimas 10 semanas en la tienda A y durante las últimas 11 semanas en la tienda B:

Suponga que tales ventas en cada tienda tienen distribución normal. En el nivel de significación $\alpha=0.05.$

- a) ¿Son homogéneas las varianzas de las ventas semanales?
- b) ¿Está usted de acuerdo con el gerente de la tienda B?

Solución:

Se calcula los datos necesarios:

	Tienda A	$\left(x_i - \bar{x}_A\right)^2$		Tienda B	$(x_i - \bar{x}_A)^2$
	32	0.36		39	0.07
	35	5.76		38	0.53
	34	1.96		40	1.62
	35	5.76		42	10.71
	32	0.36		45	39.35
	30	6.76		44	27.80
	33	0.16		35	13.89
	31	2.56		32	45.26
	31	2.56		36	7.44
	33	0.16		38	0.53
				37	2.98
Cantidad	10		Cantidad	11	
\mathbf{Suma}	326	26	Suma	426	150.18
Promedio	32.60		Promedio	38.73	
Varianza		2.93	Varianza		15.02

a) Se plantean las hipótesis:

$$H_0: \sigma_A^2 = \sigma_B^2 \quad \leadsto \quad \text{(Las varianzas de las ventas semanales son iguales)}$$

$$H_1: \sigma_A^2 \neq \sigma_B^2 \quad \leadsto \quad \text{(Las varianzas de las ventas semanales no son iguales)}$$

Para determinar si las varianzas son iguales, se determina el estadístico F:

$$F = \frac{\sigma_B^2}{\sigma_A^2} = \frac{15.02}{2.93} \approx 5.1263$$

Para un nivel de significación de 0.05 y con 10 grados de libertad para el numerador y 9 grados de libertad para el denominador, el valor crítico de $F_{0.05/2,10,9} \approx 3.9639$.

Como $F_{\rm cal}=5.1263>3.9639$ se rechaza la hipótesis nula. Por lo tanto, hay evidencia suficiente para concluir que las varianzas de las ventas semanales no son homogéneas al nivel de significación de 0.05.

b) Se plantea las hipótesis de acuerdo a lo que afirma el gerente de la tienda B:

$$H_0: \sigma_B^2 \ge \sigma_A^2$$
 contra $\sigma_B^2 < \sigma_A^2$

Dado que las varianzas no son homogéneas, se utiliza la prueba t para dos muestras independientes con varianzas desiguales (prueba de Welch). Por ello, el estadístico de prueba:

$$t = \frac{\bar{X}_A - \bar{X}_B}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{32.60 - 38.73}{\sqrt{\frac{2.93}{10} + \frac{15.02}{11}}} = \frac{-6.13}{1.2878} \approx -4.76$$

Los grados de libertad aproximados se calcula como:

$$df = \frac{\left(\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}\right)^2}{\left(\frac{s_A^2}{n_A}\right)^2 + \left(\frac{s_B^2}{n_B}\right)^2} = \frac{\left(\frac{2.93}{10} + \frac{15.02}{11}\right)^2}{\left(\frac{2.93}{10}\right)^2 + \left(\frac{15.02}{11}\right)^2} = \frac{(1.6585)^2}{0.1960} = 14.0338 \approx 14$$

Para un nivel de significación de 5% ($\alpha = 0.05$) y una prueba unilateral, el valor crítico de t con 14 grados de libertad es $t_{1-0.05,14} \approx 1.7613$. Por lo que la región de rechazo es $t_{\rm cal} > t_{1-\alpha,n-1}$.

El valor calculado del estadístico de prueba es $t \approx -4.76$ y como es menor que 1.7613 no se rechaza la hipótesis nula. Por lo tanto, el gerente de la tienda B tiene razón.