Peroblem 1

For each red ball, a portion p, came from Bag l and the other $p_2 = 1 - p_1$ from Bag 2.

So,
$$\hat{\mathcal{U}}_1 = \frac{P_1}{1+P_1}$$
.
 $\hat{\mathcal{U}}_2 = \frac{P_2}{2+P_2}$.

Each seed ball is either from Bag 1 or Bag 2.

Likelihood for each 15:

_ 1 (1-11) \$ (\frac{1}{2} \mu_1) \times \frac{1}{2} (1-112) \times \frac{1}{2

1(1-M1) × (1 M2) × 1(1-M2) × 1(1-M2) → Bay 2.

The log-likelihood for these 2 cases:

 $LLHI = ln(I-M_1) + 3ln\mu_1 + 2ln(I-M_2) - 6ln^2$ (Bag 1)

 $LLH2 = ln(1-\mu_1) + 3ln\mu_2 + 2ln(1-\mu_2) - 6ln_2$ (Bog 2)

Expected Log Likelihood is:

PIXLLHI + P2 LLH2.

= $\ln (1-\mu_1) + 3p_1 \ln(\mu_1) + 3p_2 \ln(\mu_2) + 2 \ln(1-\mu_2) - 6 \ln 2$.

Maximization Step:

$$\frac{\partial \lambda L H}{\partial \mu_1} = \frac{-1}{1-\mu_1} + \frac{3p_1}{\mu_1} = 0.$$

$$\Rightarrow$$
 - $\mu_1 + 3p_1 - 3p_1\mu_1 = 0$.
 $\mu_1 (1+3p_1) = 3p_1$

$$\mathcal{L}_{1} = \frac{3P_{1}}{1+3P_{1}} \qquad \longrightarrow \mathbb{T}$$

$$\frac{\partial LLH}{\partial \mu_2} = \frac{3P_2}{\mu_2} - \frac{2}{1-\mu_2} = 0.$$

$$\Rightarrow 3p_2 - 3p_2 M_2 - 2M_2 = 0.$$

$$\mathcal{L}_2 = \frac{3P_2}{2+3P_2} \qquad \longrightarrow \bigcirc 2$$

$$P_1 = \frac{\mu_1}{\mu_1 + \mu_2}$$
; $P_2 = \frac{\mu_2}{\mu_1 + \mu_2}$

Combining the above 4 equations.

$$\mathcal{U}_1 \leftarrow \frac{3\mu_1}{4\mu_1 + \mu_2} \qquad \mathcal{U}_2 \leftarrow \frac{3\mu_2}{2\mu_1 + 5\mu_2}$$

Intutively, since we have 6 balls and probability of picking each bag is $\frac{1}{2}$, we can say three balls from each were fricked.

Since geven ball can be picked only from bag!

and blue only from bag2, we can say that

the three balls from Bag! are 1 Green & 2 Reds,

while the three balls from Bag2 are 2 Blue & 1

Red.

Green Red Red Red Blue Blue. So, the estimates: $\hat{\mathcal{M}}_1 = \frac{2}{3} \in \hat{\mathcal{M}}_2 = \frac{1}{3}$.

Initial Mu1 =0.9, Mu2 = 0.1	Mu1	Mu2
Iteration 1	0.730	0.130
Iteration 2	0.718	0.185
Iteration 3	0.705	0.235
Iteration 4	0.692	0.273
Iteration 5	0.683	0.298
Iteration 6	0.676	0.313
Iteration 7	0.672	0.322
Iteration 8	0.670	0.327
Iteration 9	0.668	0.330
Iteration 10	0.668	0.331
Iteration 11	0.667	0.332
Iteration 12	0.667	0.333

Initial Mu1 =0.7, Mu2 = 0.3	Mu1	Mu2
Iteration 1	0.677	0.310
Iteration 2	0.673	0.320
Iteration 3	0.670	0.326
Iteration 4	0.669	0.329
Iteration 5	0.668	0.331
Iteration 6	0.667	0.332
Iteration 7	0.667	0.333
Iteration 8	0.667	0.333

Initial Mu1 =0.5, Mu2 = 0.5	Mu1	Mu2
Iteration 1	0.600	0.429
Iteration 2	0.636	0.385
Iteration 3	0.652	0.361

Iteration 4	0.659	0.348
Iteration 5	0.662	0.342
Iteration 6	0.664	0.338
Iteration 7	0.665	0.336
Iteration 8	0.666	0.335
Iteration 9	0.666	0.334
Iteration 10	0.666	0.334
Iteration 11	0.667	0.334
Iteration 12	0.667	0.333
Iteration 13	0.667	0.333
Iteration 14	0.667	0.333
Iteration 15	0.667	0.333
Iteration 16	0.667	0.333
Iteration 17	0.667	0.333

Bushlem

Simple purbability to get a green leadl is

$$P(g) = \frac{1}{2}(1-\mu_1), \text{ to get a blue ball } P(b) = \frac{1}{2}(1-\mu_0)$$
and to get a sud ball $P(n) = \frac{1}{2} \mu_1 + \frac{1}{2} \mu_2$, thus the log-likelihood of the incomplete data is,

$$LLH = \sum lnp = Ng ln P(g) + Nn ln P(n) + Nb ln P(b).$$

$$= Ng ln \frac{1}{2}(1-\mu_1) + Ng ln \left(\frac{1}{2} \mu_1 + \frac{1}{2} \mu_2\right).$$

$$+ Nb ln \frac{1}{2}(1-\mu_2).$$

$$= Ng ln (1-\mu_1) + Ng ln (\mu_1 + \mu_2).$$

$$+ Nb ln (1-\mu_2) - Nln 2.$$

$$Taking downative wit μ_1, μ_2 and set them to zero, we have,
$$\frac{\partial L}{\partial \mu_1} = -\frac{Ng}{1-\mu_1} + \frac{Ng}{\mu_1 + \mu_2} = 0.$$

$$\frac{\partial L}{\partial \mu_2} = -\frac{Nb}{1-\mu_2} + \frac{Nh}{\mu_1 + \mu_2} = 0.$$$$

Solving this we have $U_2 = 1 - \frac{Nb}{Ng} + \frac{Nb}{Ng} U_1$,
taking this and putting into above egns we have $U_1 = 1 - 2 \frac{Ng}{N}$ and $U_2 = 1 - 2 \frac{Nb}{N}$

The likelihood $L_1 = Ng \ln Ng + N_b \ln \frac{N_b}{N} + N_{91} \ln \frac{N_{91}}{N}$.

But in this, $\mu_1 \in \mu_2$ are less than 0 when $N_g > N_1$ or $N_b > \frac{N}{2}$. So we need likelihood with $\mu_1 > 0$ $\mu_2 > 0$. μ_1 and μ_2 are implicitly less than I from the \log -likelihood formula.

Set $\mu_1 = 0$ and solve for oftimal $\mu_2 = \frac{N_{PL}}{N_{PL} + N_{D}}$,

which corresponds to a likelihood of $L_2 = N_D \ln \frac{N_D}{N_{PL} + N_D} + N_{PL} \ln \frac{N_{PL}}{N_{PL} + N_D} - N \ln \frac{2}{N_{PL} + N_D}$.

Similarly, setting $M_2 = 0$, oftimal $M_4 = \frac{N_{91}}{N_{91} + N_{92}}$ and $\Delta_3 = N_g \ln \frac{N_g}{N_{91} + N_g} + N_{91} \ln \frac{N_{91}}{N_{91} + N_g} - N \ln 2$.

We need to select the maximum likelihood among (1), (2) & (3), we compute

 $0-0 = Ng \ln \frac{N_a}{N} + N_b \ln \frac{N_{a1} + N_b}{N} + N_{a1} \ln \frac{N_{a1} + N_b}{N} + N_{a2} \ln \frac{N_{a1} + N_b}{N}$

$$= N \left[\frac{N_g}{N} \ln \frac{N_g}{N} + \left(1 - \frac{N_g}{N}\right) \ln \left(1 - \frac{N_g}{N}\right) + \ln 2 \right].$$

Let $x = \frac{Ng}{N}$ we have $\lambda_1 - \lambda_2 = N \left[x \ln x + (1-x) \ln(1-x) + \ln x \right]$.

$$Q M_1 = 0$$
, $M_2 = \frac{N_{H}}{N_b + N_{QL}}$ when $N_g > \frac{N}{2}$.

$$\Im \mathcal{M} = \frac{N_{\text{NL}}}{N_{\text{NL}} + N_{\text{g}}}$$
, $\mathcal{M}_2 = 0$ when $N_b > \frac{N}{2}$.

Intuitively this suggests than U, decreases as Ng increases evelative to N. That is, as the peroposition of green balls in the sample increases, the estimate for U, decreases.

This makes sense because if there are more gueen balls in the sample, there is less room for uncertainty (expresented by U,) about the purbability of drawing a green ball. Similarly, as Ng decreases relative to N, U1 increases. This suffects the increased uncertainty when there are fewer green balls in the sample. Similarly, for 1/2. As No increases relative to N, Similarly, for 1/2. As No increases relative to N, U2 decreases, indicating less uncertainty about the perobability of drawing a blue ball when there are perobability of drawing a blue ball when there are more blue balls in the sample. Conversely, as No decreases relative to N, U2 increases, suffecting increased uncertainty when there are fewer blue balls in the sample.

			Initial	Initial	Final	Final
N	Ng	Nb	Mu1	Mu2	Mu1	Mu2
6	1	2	0.9	0.1	0.667	0.333
6	1	2	0.7	0.3	0.667	0.333
6	1	2	0.5	0.5	0.667	0.333
6	1	2	0.2	0.8	0.667	0.333
100	10	20	0.9	0.1	0.8	0.6
100	10	20	0.7	0.3	0.8	0.6
100	10	20	0.5	0.5	0.8	0.6
100	10	20	0.2	0.8	0.8	0.6
100	30	10	0.9	0.1	0.4	0.8
100	30	10	0.7	0.3	0.4	0.8
100	30	10	0.5	0.5	0.4	0.8
100	30	10	0.2	0.8	0.4	0.8
1000	250	100	0.1	0.8	0.5	0.8
1000	250	100	0.4	0.8	0.5	0.8
1000	250	100	0.7	0.8	0.5	0.8
1000	250	100	0.9	0.1	0.5	0.8