

Computer Networks 1

TRANSMISSION IMPAIRMENTS

Fatemeh Rezaei

TRANSMISSION IMPAIRMENTS

- Received signal is often a degraded form of the transmitted signal
- Why?
 - Attenuation
 - Distortion
 - Noise
 - Interference
- **Effect:**
 - On analog data
 - Some degradation in signal quality
 - On digital data
 - Fatal bit errors

SIGNAL POWER IN DECIBELS

$$10\log_{10}(P_{watt}) = P_{dB}$$

$$10\log_{10}(P_{mW}) = P_{dBm}$$

- \square Example: P=1 W
 - $P_{dB} = ?$
 - $P_{dBm}=?$

SIGNAL POWER IN DECIBELS

$$10\log_{10}(P_{watt}) = P_{dB}$$

$$10\log_{10}(P_{mW}) = P_{dBm}$$

- \square Example: P=1 W
 - $P_{dB} = 0 \text{ dB}$
 - $P_{dBm}=30 \text{ dBm}$

POWER RATIO IN DECIBELS

$$G = \frac{P_{out}}{P_{in}}$$

$$G_{dB} = 10 \log_{10} G = 10 \log_{10} (\frac{P_{out}}{P_{in}})$$

$$G = 2$$
 $G_{dB} = ?$ $G = 1/2$ $G_{dB} = ?$

$$G = 1/2$$
 $G_{dB} = ?$

OUTLINE

Attenuation

Distortion

Noise

OUTLINE

Attenuation

Distortion

Noise

ATTENUATION

- Signal strength falls off with distance traveled
 - Guided Media (Wires, etc.):
 - Exponential drop in signal power with distance:

$$P_{d} = P_{0} e^{-\alpha d}$$

$$\ln \left(\frac{P_{d}}{P_{0}}\right) = -\alpha d$$

$$10 \log \left(\frac{P_{d}}{P_{0}}\right) = -\alpha' d$$

Loss: α ' (dBs per km) (Depends on medium type)

ATTENUATION

- •Unguided Media (Open space):
 - Depends on
 - Absorption, scattering, weather
 - •Inverse square law spread with distance

$$P_d \propto \frac{P_0}{d^2}$$

Loss: 6 dBs for each distance doubling

LINK BUDGET

$$G = \frac{P_{out}}{P_{in}} \qquad G_{dB} = 10 \log(\frac{P_{out}}{P_{in}})$$

$$(P_{in})_{dB} + G_{dB} = (P_{out})_{dB}$$

$$L = \frac{P_{in}}{P_{out}} \qquad L_{dB} = 10 \log \frac{P_{in}}{P_{out}}$$

$$P_{in}$$
 Medium P_{out}

$$(P_{in})_{dB} - L_{dB} = (P_{out})_{dB}$$

DESIGN ISSUES RELATED TO ATTENUATION

- Received signal strength must be
 - Sufficiently Large enough to be detected
 - Sufficiently higher than noise to be interpreted correctly

$$(P_{out_Tx})_{dB} - L_{dB} > (P_{s_Rx})_{dB}$$

- Design Key parameters
 - Transmitted Power
 - Channel Loss
 - Receiver Sensitivity

TRANSMITTED POWER

- Increasing transmitted power
 - Power amplifier gains should not be too large

Nonlinearities

Saturation

Signal distortion

RECEIVER SENSITIVITY

- Increasing receiver sensitivity
 - Decreasing minimum receivable power
 - Bad news: Noise

CHANNEL ATTENUATION

- Limited distance
 - To overcome these issues using
 - Amplifiers (analog transmission)
 - Repeaters (digital transmission)

OUTLINE

Attenuation

Distortion

Noise

DISTORTION

DISTORTION

ATTENUATION DISTORTION

- Attenuation varies with frequency
- Causes bandwidth limitation
- ☐ In the transmitted bandwidth
 - Different Attenuation for frequency components of the signal
 - Causes signal distortion
 - Affects analog signals more
- ■To overcome this problem
 - Use Equalizers
 - Reverse the effect of frequency-dependent attenuation distortion

EQUALIZER

- Passive
 - Smooth out attenuation effects
 - Loading coils in telephone circuits
 - Change the electrical properties of the line
- Active
- Designing amplifier gain specifically
- Varying with frequency
- Reversing channel characteristics

ATTENUATION AS A FUNCTION OF FREQUENCY

- Measuring attenuation relative to the attenuation at 1000 Hz
 - A 1000-Hz tone of a given power is applied to the input
 - The power P₁₀₀₀ is measured at the output
 - For any frequency f, the procedure is repeated $\rightarrow Pf$
- Relative attenuation in decibels

$$N_f = -10 \log(Pf/P_{1000})$$

EQUALIZATION EFFECT ON ATTENUATION DISTORTION

ATTENUATION DISTORTION OF DIGITAL SIGNAL

- ☐ The strength of a digital signal falls off rapidly with frequency
 - Most of the content concentrated near the fundamental frequency
- Less problem for digital signals

COMPUTER NETWORKS 1, FATEMEH REZAEI

DISTORTION

DELAY DISTORTION

- Happens only on guided media
- Wave propagation velocity varies with frequency
 - Highest at the center frequency (minimum delay)
 - Lower at both ends of the bandwidth (larger delay)
- Various frequency components of a signal
 - Arrive at the receiver at different times
 - Experience different delays
- Received signal is distorted
- Solution
 - Equalizing techniques

DELAY DISTORTION FOR DIGITAL DATA

- Critical for digital data
 - Carrying by analog or digital signals
- Inter-symbol interference (ISI)
 - Delay distortion
 - Signal components of one bit position will spill over into other bit positions

Major limitation to maximum bit rate over a channel

EQUALIZATION EFFECT ON DELAY DISTORTION

OUTLINE

Attenuation

Distortion

Noise

NOISE

- Any additional unwanted signal
- Inserted between transmitter and receiver
- The most limiting factor in communication systems
- ■Noise Types
 - Thermal (White) Noise
 - Inter-modulation Noise
 - Impulse Noise
 - Crosstalk Noise

THERMAL NOISE

- Due to thermal agitation of electrons
- Increases with temperature
- White noise
 - Uniformly distributed over frequency
 - Exists even in the same bandwidth as the signal
 - Difficult to eliminate
- More significant effect on weak received signals
- Satellite communication

THERMAL NOISE

- ■White noise
 - Uniformly distributed over frequency
- Noise Power Spectral Density

$$N_0 = kT$$
 (W/Hz)

k: Boltzmann's constant, $k = 1.38 \times 10^{-23} J/^{\circ}K$

T: Absolute temperature in Kelvin

■ Noise Power in Bandwidth B Hz

$$N = N_0 B = kTB$$
 (Watts)

INTER-MODULATION NOISE

- When signals with various frequencies sharing a transmission system
- Caused by nonlinearities in the medium and equipment
- Resulting new frequency components within valid signal bands

INTER-MODULATION NOISE EXAMPLE

$$x(t) = \cos(2\pi f_1 t) + \cos(2\pi f_2 t)$$

$$y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t) + \cdots$$

IMPULSE NOISE

- ☐ Pulses (spikes) of
 - Irregular shape
 - High amplitude
 - Lasting short durations
- Causes
 - External electromagnetic interference
 - Due to switching large currents, lightning, ...
- ■Minor effect on analog signals
- e.g. crackling noise in voice channels
- ☐ Major effect on digital signals
 - Bit reversal error
- More damage at higher data rates
 - A noise pulse of a given width can destroy a larger block of bits

IMPULSE NOISE ON A DIGITAL SIGNAL

CROSSTALK NOISE

- A signal from one channel picked up by another channel in close proximity
- Examples
 - Physical proximity
 - coupling between adjacent twisted pair channels
 - Shield cables properly
 - Directional proximity
 - Antenna pick up from other directions
 - Use directional antennas
 - Spectral proximity
 - Leakage between adjacent channels in frequency division multiplexing (FDM) systems
 - Use guard bands between adjacent channels