Numerical Optimization with Python 2025B

Programming Assignment 01

In this exercise we will:

- Implement Line Search minimization with several methods.
- Test it on some examples and visualize its performance
- Organize our project and use one of Python's testing frameworks

1. <u>Instructions for project organization:</u>

- a. Your numerical optimization project should have two directories: src and tests.
- b. Your src directory should have two modules: unconstrained_min.py (your algorithms) and utils.py (common functions such as plotting, printouts to console, etc.)
- c. Your tests directory should have two modules: test_unconstrained_min.py and examples.py

2. Requirements for implementing your line search minimization:

- a. Your implementation can be either a class or a function, that should support, according to user's selection: Gradient Descent or Newton search directions.
- b. The minimization function (or class method) should be implemented in unconstrained_min.py. It should take the following parameters: f, x0, obj_tol, param_tol, max_iter.
- c. f is the function minimized, x0 is the starting point, max_iter is the maximum allowed number of iterations.
- d. obj_tol is the numeric tolerance for successful termination due to small enough objective change or Newton Decrement.
- e. param_tol is the numeric tolerance for successful termination in terms of small enough distance between iterations.
- f. At each iteration, the algorithm reports (prints to console) the iteration number i, the current location x_i , and the current objective value $f(x_i)$.

- g. The algorithm returns: the final location, final objective value and a success/failure Boolean flag: success means at least one of the termination criteria is met. Failure means the maximal number allowed iterations is reached, or some unexpected termination.
- h. Your algorithm should enable access to the entire path of iterations and objective values when done (either return them or store them in your class) for later usage in visualization.

3. Requirements for implementing examples.py:

- a. The examples are the objective functions we minimize. In this exercise they are implemented as functions taking a vector \mathbf{x} and a bool flag, specifying whether or not Hessian evaluation is needed. Do not evaluate Hessians if not needed!
- b. There are three return values f, g, h: the scalar function value, the gradient vector and the Hessian matrix (if needed only!), evaluated at x, respectively.
- c. Implement three quadratic examples: $f(x) = x^T Qx$ for the following Q's:
 - i. $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (contour lines are circles)
 - ii. $Q = \begin{bmatrix} 1 & 0 \\ 0 & 100 \end{bmatrix}$ (contour lines are axis aligned ellipses)

iii.
$$Q = \begin{bmatrix} \frac{\sqrt{3}}{2} & -0.5 \\ 0.5 & \frac{\sqrt{3}}{2} \end{bmatrix}^T \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -0.5 \\ 0.5 & \frac{\sqrt{3}}{2} \end{bmatrix}$$
 (contour lines are rotated ellipses)

- d. Implement the Rosenbrock function: $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$. Contour lines are banana shaped ellipses. This is a famous optimization benchmark which is challenging to test your implementation on. It is NOT a convex function.
- e. Implement a linear function $f(x) = a^T x$ for some nonzero vector a you choose. Contour lines are straight lines.
- f. Implement the function $f(x_1, x_2) = e^{x_1 + 3x_2 0.1} + e^{x_1 3x_2 0.1} + e^{-x_1 0.1}$. Contour lines look like smoothed corner triangles (example is adopted from Boyd's book, p. 470, example 9.20).

4. Requirements for implementing utils.py:

a. A utility to create a plot, that given an objective function and limits for the 2D axes, plots the contour lines of the function.

See https://matplotlib.org/3.5.1/api/ as gen/matplotlib.pyplot.contour.html for a possible

implementation choice. Make sure you chose proper levels and limits so the picture is clearly showing the interesting area of the problem. Make a clear title that describes the plotted function. Do not submit a figure with awkward looking contours that do not explain clearly the area of interest.

- b. If also provided algorithm paths, the above plotting utility should plot the paths and their names in the legend.
- c. A utility that plots function values at each iteration, for given methods (on the same, single plots) to enable comparison of the decrease in function values of methods.

5. Requirements for implementing test unconstrained min.py:

- a. See the very first, basic example in https://docs.python.org/3/library/unittest.html for test module structure using Python's unittest framework.
- For each of the functions in your examples file, your testing module should trigger
 minimization with both methods, and with backtracking Wolfe conditions for step length.
- c. The test run should create two plots for each example:
 - i. The contour lines of the objective with iteration paths of both methods
 - ii. The function values vs. the iteration number for both methods
 - NOTE: Do not plot the 3D surface. Plot the contour lines in 2D and the paths overlayed.

6. Submission instructions:

- a. Submit a single file, your report in PDF format, and the GitHub link to your code should appear very clearly at the beginning of your report.
- b. Your report should include two plots created by each of your test examples:
 - i. Plot of contours with iteration paths per GD and NT.
 - ii. Graph of function value vs. iteration number per GD and NT.
- c. For each test your report should include the last iteration report printed to console (the details of your final iterate and success/failure algorithm output flag).
- d. DO NOT print in the report the entire path of iterations! Only the final one and the plots.

7. Important tips and other helpful info:

- a. Choose Initial points for all your examples to be: $x_0 = [1,1]^T$, except for the Rosenbrock example, for which $x_0 = [-1,2]^T$
- b. Choose numeric tolerances for your termination to be 10^{-8} for step tolerance and 10^{-12} for objective function change tolerance.
- c. Allow max iterations 100 for all your examples, except for Gradient Descent with Rosenbrock example, for which you should allow 10,000.
- d. Use the Wolfe condition constant 0.01 with backtracking constant of 0.5.
- e. Regarding all the above constants: play with several values to get a feel of their effect on the behavior, before you submit your final run! (but submit your results with the constants as above)

Good luck!