

Факультет программной инженерии и компьютерной техники Информационные системы и базы данных

Лабораторная работа № 2 Вариант № 1133

Преподаватель: Харитонова Анастасия Евгеньевна

Выполнил: Геллер Леонид Александрович

Группа: Р33301

Задание

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

- опишите функциональные зависимости для отношений полученной схемы (минимальное множество)
- приведите отношения в 3NF (как минимум). Постройте схему на основе полученных отношений
- опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF
- преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF
- какие денормализации будут полезны для вашей схемы? Приведите подробное описание

Схема

Функциональные зависимости для отношений полученной схемы

Пусть задана переменная отношения R, и X и Y являются произвольными подмножествами заголовка R («составными» атрибутами).

В значении переменной отношения R атрибут Y функционально зависит от атрибута X в том и только в том случае, если каждому значению X соответствует в точности одно значение Y. В этом случае говорят также, что атрибут X функционально определяет атрибут Y (X является детерминантом (определителем) для Y, а Y является зависимым от X). Будем обозначать это как $R.X \rightarrow R.Y.$

Множество FD S называется минимальным в том и только в том случае, когда удовлетворяет следующим свойствам:

- 1. правая часть любой FD из S является множеством из одного атрибута (простым атрибутом);
- 2. детерминант (левая часть) каждой FD из S обладает свойством минимальности; это означает, что удаление любого атрибута из детерминанта приводит к изменению замыкания S^+ , т. е. порождению множества FD, не эквивалентного S;
- 3. удаление любой FD из S приводит к изменению S^+ , т. е. порождению множества FD, не эквивалентного S.

Отношение	FD (Functional Dependency)
Observer	observer_id → first_name
	observer_id → second_name
	observer_id → experience
Observation	{observer_id, shell_id} → salary
Shell	shell_id → penetration_energy
	shell_id → status
	shell_id → material
OrbitCrossing	{particle_id, shell_id} → time
	{particle_id, shell_id} → penetration_energy
Particle	particle_id → mass
	particle_id → speed
	particle_id → status
	particle_id → material

Отношения в 3NF

Форма	Требование
1NF	Значения всех атрибутов отношения атомарны (атомарность значения
	трактуется в том смысле, что значение типизировано, и с этим значением
	можно работать только с помощью операций соответствующего типа данных),
	в таблице не должно быть дублирующих строк, в столбце хранятся данные
	одного типа, отсутствуют массивы и списки в любом виде
2NF	Каждый неключевой (не входящий в первичный ключ) атрибут зависит от
	полного первичного ключа.
3NF	Каждый неключевой атрибут нетранзистивно (нет неключевых аттрибутов,
	зависящих от неключевых атрибутов) функционально зависит от первичного
	ключа
BCNF	Аттрибуты составного ключа не должны зависеть от неключевых аттрибутов

^{*} каждая последующая форма сохраняет требования предыдущих

Изменения в функциональных зависимостях, произошедшие после преобразования в 3NF

Изменений не произошло, отношения были изначально были в 3NF

Отношения в BCNF. Доказательство, что полученные отношения представлены в BCNF

Отношения изначально были в BCNF, детерминанты всех функциональных зависимостей являются потенциальными ключами

Какие денормализации будут полезны для вашей схемы? Приведите подробное описание

По моему мнению, в денормализациях в данной схеме нет необходимости, функциональные зависимости естественно представляются в BCNF, так что нет смысла в усложнении

Вывод

Нормализация таблицы может помочь улучшить обеспечение целостности и уменьшить дублирование данных, судя по примерам, изученным при изучении теоретического материала. Но также увлечение нормализацией может привести к усложнению модели и понижении производительности, так что не стоит бездумно убирать денормализации.