1. 5

THE UNIVERSITY OF MANITOBA

Date: Saturday, December 14, 2002 Department & Course No: 130.135

Paper No: 416

Examination: Engineering Statics Place: FR Kennedy Gold Gym

Page No: 1 of 5 Time: 1:30

→→→ ERES

Duration: 2 Hours Examiner: Drs: R.Hutchinson & A. Shah

Seats: 172 - 356

	Problem	Marks
PRINT LAST NAME	ī	
DOLLAR CHARLES NAMED	2	
PRINT GIVEN NAME	3	
	4	
STUDENT NUMBER	TOTAL	40

SEAT NUMBER

- There are <u>four</u> questions. All questions of equal value.
- Straight edge is required. Two decimal accuracy is expected
- Work directly on the examination paper.
- CLOSED BOOK. Textbooks, notes, problems are NOT permitted.
- · Calculators are permitted.
- Wherever necessary FBD must be drawn.
- · Write at the back of the previous page.

$$\frac{a^2 = b^2 + c^2 - 2bc \cos A}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\bar{P} \times \bar{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{vmatrix} = \hat{i} (P_y Q_z - P_z Q_y) - \hat{j} (P_x Q_z - P_z Q_x) + \hat{k} (P_x Q_y - P_y Q_x)
V = |\bar{V}| = \sqrt{V_x^2 + V_y^2 + V_z^2}$$

$$\cos \theta_x = \frac{V_x}{V}, \cos \theta_y = \frac{V_y}{V}, \cos \theta_z = \frac{V_z}{V}$$

$$\vec{M} = \vec{r} \times \vec{F}$$

$$M_{OL} = \vec{\lambda}_{OL} \bullet \vec{M}_O$$

Area of a circle = πr^2

Final Exam.

December 14, 2002

page 2 of 5

Question 1:

Locate the centroid $(\overline{x},\overline{y})$ of the shaded plane area shown in the figure.

Dogge are		y				
<u> </u>	600 mm	300 mm	300 mm			
	450 mm	3	9	600 mm		
		0)	450 mm		
·	Area	Σ	ÿ	$\bar{x}A$	₹A	
+	0.63m ^a	- 0.3m	0.535m	-0.189m3	0.331 m ³	
Ø +	0.27m *	0.3m	0.225m	0.081m3	0.0608m ³	
3 +	0.18m ²	0.15m	0.75m	0.027m 3	0.135m3	
4 +	0.09m ^{8.}	0.4m	0.65m	0.036m ³	0.0585m ³	
6 -	-0.318m²	-0.409m	0.6m	0.130 m ³	-0.191m3	
\sum	D. 852 m²			0.075m ³	0.394m ³	
$\overline{\chi} = \frac{\Sigma \overline{x} A}{\Sigma A} = \frac{0.085}{0.852} = 0.1 \text{m} = 100 \text{mm}$						
$\overline{\chi} = \frac{\sum \overline{x}A}{\sum A} = \frac{0.085}{0.852} = 0.1 \text{m} = 100 \text{mm}$ $\overline{\gamma} = \frac{\sum \overline{y}A}{\sum A} = \frac{0.394}{0.852} = 0.462 \text{m} = 462 \text{mm}$						

09/30/2003 TUE 15:02 FAX 204 474 7520

Final Exam.

December 14, 2002

page 3 of 5

→→→ ERES

Ouestion 2:

A frame is made up of two rigid members, BCDE and AEFGHIJ pinned together at E. A cable is attached at J. The cable passes over a simple frictionless pulley at K and supports a 500 N weight as shown in the figure. A couple of magnitude 600 N.m is applied at F. Determine the reactions at A and B.

$$\sum M_E (x) = 0$$
, $(Ay = 3) + 600 + (400 \times 9) - (30 \times 4) = 0$
 $Ay = -1000 N \downarrow (10 - 47aw)$
 $Ay = 1000 N \uparrow$

entire Frame $\leq M_A = 0$, $(B_x \times 4) + (400 \times 10) - (300 \times 4) + 600 = 0$ $B_X = -1050N \leftarrow (\pi - 360N)$ $B_X = 1050N \longrightarrow$

$$\Sigma F_{x=0}$$
, (300)+(1050)- $A_{x=0}$
 $A_{x} = 1350 N \leftarrow$

Final Exam.

December 14, 2002

page 4 of 5 AO-

Question 3:

An overhead crane consists of an I-beam supported by a simple truss as shown in the figure. If the uniform I-beam weighs 2400 N and carries a weight of 6000 N, find the force in each member of the truss. State whether cach member is in tension or compression.

ξξες.

 $\frac{point G:}{3466.7} = \frac{5}{68} = \frac{5}{68} + \frac{13}{68} = \frac{13}{68} + \frac{13}{68$

<-- MURE

Final Exam.

December 14, 2002

page 4 of 5 Ab

From EFy=0 $F_{DR} = 0$ $F_{DR} = 0$

FBC=10119.3N (T) as well

FBC=10119.3N

Chock at point B: $SF_{SQAD} = 0$ $SF_{SQAD} = 0$ SF

Final Exam.

December 14, 2002

page 5 <u>of 5</u>

 $\rightarrow \rightarrow \rightarrow$ ERES

Ouestion 4:

800

For the figure shown, determine the components of the forces on member ABCD when weight W = 320 N.

1240

ZFX=0 1240 - Cx=0 CX=1240

check: (member ABCD) IFy=0 -140-320+780-320=0 **۵**±۵√ Fx=0

-1940+360 +18A0 -360=0

Answer; Final member **760**.ωμ 140,004