CHEMISTRY -THEORY (CYI 101)

Inorganic Chemistry

Instructor: Dr. R P John

Department of Chemistry & Chemical Biology

Evaluation and Study Material

Examination/Class tests/others

- See Academic Calendar
- Will be informed time to time

Course Material

- What the instructor teaches!
- Books: Inorganic chemistry: Huheey, Keiter and Keiter
 Inorganic Chemistry: Housecroft and Sharpe
 Shriver Atkin's Inorganic Chemistry: Atkins, Overton, Rourke, Weller and Armstrong

Tetrahedral Field

Tetrahedral Field

Tetrahedral Field

$$\Delta_{t} < \Delta_{o}$$

$$\Delta_{t} = 0.45 \Delta_{o}$$

For the same metal and ligands and the same internuclear distances

Distortions of Octahedral Complexes

Distortions of Octahedral Complexes: Jahn-Teller effect

'Any non-linear molecule having an orbitally degenerate electronic configuration is unstable, and the system undergo distortion to remove

the degeneracy.'

Distortions of Octahedral Complexes

Ni²⁺: Only one way of filling the orbitals; not degenerate and no Jahn-Teller Distortion

Cu²⁺: Two ways of filling the e_g orbitals; there is degeneracy and Jahn-Teller Distortion is observed

Distortions of Octahedral Complexes

Jahn-Teller Distortion in d⁹ Complexes

 $\Delta o \gg \delta 1 > \delta 2$.

Jahn-Teller Distortion in d¹ Complexes

d^{1} Vs d^{9}

Distortions are more pronounced if the degeneracy occurs in an \mathbf{e}_{g} orbital

Distortions in Low-Spin Complexes

Distortions in High-Spin Complexes

Magnetism

Each electron has a magnetic moment owing to its:

spin angular momentum

orbital angular momentum

Orbital motion of e generates current and magnetic field

Spin motion of e about its own Axis also generates a magnetic field

n = no. of unpaired electrons

$$\mu = \{n(n+2)\}^{1/2} \mu_B$$

Ion	n	S	μ/μ _B Calculated	Experimental
Ti ³⁺	1	1/2	1.73	1.7 – 1.8
V^{3+}	2	1	2.83	2.7 – 2.9
Cr ³⁺	3	3/2	3.87	3.8
Mn ³⁺	4	2	4.90	4.8 – 4.9
Mn ²⁺	5	5/2	5.92	5.9 - 6.3

Similar Calculation can be done for Low-spin Complex

The d^8 complexes $[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$ are square planar and tetrahedral respectively. Will these complexes be paramagnetic or diamagnetic?

Thus, $[NiCl_4]^{2-}$ is paramagnetic while $[Ni(CN)_4]^{2-}$ is diamagnetic.

The origin of the color of the transition metal compounds

$$\Delta E = E_2 - E_1 = h\nu$$

Ligands influence Δ_0 , therefore the colour

The colour can change depending on a number of factors e.g.

- 1. Metal charge
- 2. Ligand strength

As Cr^{3+} goes from being attached to a weak field ligand to a strong field ligand, Δ increases and the color of the complex changes from green to yellow.

Calculate Δ_o for $[Ti(OH_2)_6]^{3+}$

The optical absorption spectrum of $[Ti(OH_2)_6]^{3+}$

A more resolved absorption spectrum of the complex has a shoulder

Home work Assignment 1

- 1. What are the limitations of crystal field theory?
- 2. Show the filling of electrons in the d-orbitals and calculate the spin only magnetic moments of a) trans-[Cu(NH₃)₄(H₂O)₂]²⁺, b) trans-[V(py)Cl₄], c) [MnCl₆]³⁻, d) [Ni(H₂O)₆]²⁺, e) trans-Ni(py)₄(H₂O)₂]²⁺, f) [NiCN₄]²⁻, g) [Ni(CN₆)]³⁻
- 3. A complex $[Mn(H_2O)_6]^{3+}$ absorbs at 560nm. Identify the ground state and excited state electronic configuration and calculate the energy of transition between HOMO and LUMO in cm⁻¹.

Limitations of CFT

Considers Ligand as Point charge/dipole only
Does not take into account of the overlap of ligand and
metal orbitals

Consequence

e.g. Fails to explain why CO is stronger ligand than CN⁻ in complexes having metal in low oxidation state

Homework assignment 2

- 1, Identify Jahn- Teller distortions and the consequent ordering of energy levels in the following. K₃[Co(CN)₆], [Cu(en)₃]Cl₂, K₂[VOCl₄], [Mn(H₂O)₆]SO₄
- 2. Predict the spin only magnetic moment of the octahedral complexes formed by the reaction of Mn³⁺ with H₂O and CN⁻. Given: the Pairing energy (P) for Mn³⁺ = 28,000 cm⁻¹, Δ_0 (H₂O) = 21000 cm⁻¹, Δ_0 (CN⁻) = 38000 cm⁻¹.