Contrôle de physique N°2

Durée: 1 heure 45 minutes. Barème sur 15 points.

NOM:	
	Groupe
PRENOM:	

Toute étape de raisonnement doit être justifiée.

1. Une boîte de longueur 2L et de section S est séparée en deux compartiments par un piston pouvant glisser librement.

On remplit les deux compartiments de manière identique avec un gaz monoatomique de sorte qu'à la température T_0 la pression du gaz soit p_0 . Le piston se trouve alors à une même distance L des parois latérales.

(a) Déterminer le nombre de molécules de gaz dans chacun des compartiments.

On élève la température dans le compartiment de gauche pour qu'elle atteigne T_1 , la température dans le compartiment de droite étant maintenue à T_0 .

- (b) Déterminer l'augmentation de l'énergie du gaz dans le compartiment de gauche.
- (c) Déterminer la pression du gaz dans chacun des compartiments, ainsi que le déplacement du piston.

4 pts

2.

A l'aide d'un ressort de constante k et de longueur au repos ℓ_0 , on envoie une bille de masse m, initialement au repos, sur un rail formé d'un tronçon AB rectiligne et horizontal, suivi d'un demicercle de rayon R situé dans un plan vertical.

Dans la partie circulaire, la bille est encore poussée en avant avec une force d'intensité constante $F=\frac{9mg}{8\pi}$. La masse quitte le demi-cercle en C défini par $\alpha_C=\frac{2\pi}{3}$. Les frottements sont négligeables.

- (a) Montrer que la vitesse de la bille en C est donnée par $v_C^2 = \frac{gR}{2}$.
- (b) Quelle a été la déformation initiale du ressort?
- (c) Esquisser et donner la forme de la trajectoire de la bille une fois qu'elle a quitté le rail en C. Quelle est alors la hauteur maximale atteinte par la bille?

6.5 pts

- EFF Lausaine COORS DE MATHEMATIQUES SPECIALES
 - 3. On remplit un verre de $50\,\mathrm{g}$ à une température de $20\,\mathrm{^{\circ}C}$ avec $100\,\mathrm{g}$ de glace à $-10\,\mathrm{^{\circ}C}$. L'ensemble est placé au soleil pendant 7 heures. On suppose que la puissance du rayonnement solaire reçu par le système verre+contenu est de $1.2\,\mathrm{W}$ et que $5000\,\mathrm{J}$ sont perdus dans l'atmosphère.
 - (a) Déterminer la quantité de chaleur fournie au système par le soleil.
 - (b) Caractériser l'état final du système.

$$c_{\rm glace} = 2.06 \cdot 10^3 \, {\rm J \, kg^{-1} \, K^{-1}}, \, c_{\rm eau} = 4.18 \cdot 10^3 \, {\rm J \, kg^{-1} \, K^{-1}}, \, \lambda_{\rm eau, \, fusion} = 3.3 \cdot 10^5 \, {\rm J \, kg^{-1}}, \\ c_{\rm verre(pyrex)} = 0.84 \cdot 10^3 \, {\rm J \, kg^{-1} \, K^{-1}}. \qquad \qquad 4.5 \, {\rm pts}$$

Total 15 pts