

COPS and STOPS

Cluster and/or Structure Optimized Proximity Scaling

Outline

- 1 Problem Motivation
- 2 COPS: Cluster Optimized Proximity Scaling
 - C-Clusteredness
 - The COPS Procedure
 - COPS Variants
 - COPS Example
- 3 STOPS: Structure Optimized Proximity Scaling
 - STOPS Framework
 - Structuredness Indices
 - Optimization
 - Package
 - STOPS Example
- 4 Conclusion and Outlook

This is joint work with Kurt Hornik (WU) and Patrick Mair (Harvard).

- In exploratory data analysis we may look for anything, but find little to nothing
- E.g., "I'm a Republican, because..." statements (Mair et al., 2014) with MDS on cosine distance between words from co-occurrences.

Looked for word clusters but have a lack of structure

Another Example

- In MDS this is not an uncommon situation (embedded sparse sphere phenomenon)
- Mental States Data: Tamir et al. (2016) investigates how our brain represents the mind of others (social cognition) by correlation of activation patterns of fMRI brain scans
 - For 20 individuals and 60 mental states
 - Task was to choose for a given mental state the one out of two situations most likely to induce the state in others
 - In supplement the authors invite readers to explore the neural similarity of states directly by means of 2-dim MDS

Neural States MDS

Dimensionality Reduction

- Methods that provide a mapping from a higher dimensional to a lower dimensional space based on some idea of optimality
- Example: Multidimensional Scaling (MDS)
 - Least Squares MDS utilizes the STRESS loss function

$$\sigma_{MDS}(X) = \sum_{i < j} w_{ij}^* \left[f_{ij}(\delta_{ij}) - g_{ij}(d_{ij}(X)) \right]^2$$

and minimizes it to find the configuration X

$$\arg\min_{X}\sigma_{MDS}(X)$$

 $d_{ij}(X)$... fitted distances, δ_{ij} ... proximities $g_{ij}(\cdot), f_{ij}(\cdot)$... transformation functions w_{ij}^* ... finite weights

Multidimensional Scaling (MDS)

- Provides an optimal map into continuous space \mathbb{R}^M and looks for directions of spread in the low dimensional space (objective 1)
- But we may be interested in some structural idea, e.g., discrete structures of similarity between objects ("clusters"; objective 2)
- MDS does solve objective 1 but not objective 2. The latter is often inferred from the former by how it looks
- It can happen that what is optimal for objective 1 is not very useful for objective 2
- One way out: Use transformations so clustering is clearer.
- Often this means that the fit may get worse

COPS for the Rescue

Our solution to this problem: COPS (Cluster Optimized Proximity Scaling; Rusch et al., 2015a).

- Use STRESS with θ -parametrized monotonic nonlinear transformations of proximities and/or fitted distances. e.g., power transformations (powerStress, $g(d_{ij}(X)) = d_{ij}(X)^{\kappa}$ and $f(\delta_{ij}) = \delta_{ij}^{\lambda}$, $w_{ii}^* = w_{ii}^{\nu}$, so $\theta = c(\kappa, \lambda, \nu)$)
- Use an index of the obtained degree of clusteredness in the configuration (c-clusteredness) to quantify how clustered the result is
- Combine this into a single target function and optimize
- Two versions:
 - COPS-C (Optimize combined loss to get *X*)
 - P-COPS (Profile method to find θ)

C-Clusteredness

C-Clusteredness: The amount of clusteredness of a configuration

OPTICS Cordillera - I

Index for clusteredness: OPTICS Cordillera (Rusch et al., 2016)

- Employs OPTICS (Ankerst et al., 1999) with metaparameters k, ϵ on the configuration distances. For row vectors x_j of X returns an ordering R of these points, $R = \{x_{(i)}\}_{i=1,...,N}$.
- OPTICS also returns a reachability plot (dendrogram of minimum reachabilities $r_{(i)}^*$ of point $x_{(i)}$)
- Ordering and reachability represent the clustering structure. We aggregate that to an index OC'(X) by defining (for metaparameter q > 0)

$$\mathsf{OC'}(X) = \left(\frac{\sum_{i=2}^{N} |r_{(i)}^* - r_{(i-1)}^*|^q}{d_{max}^q \cdot \left(\left\lceil \frac{N-1}{k} \right\rceil + \left\lfloor \frac{N-1}{k} \right\rfloor\right)}\right)^{1/q}$$

It holds that $0 \le OC'(X) \le 1$.

OPTICS Cordillera - II

SLIDE 11 WU Statmath BBS, 07-12-2016

The COPS Procedure

Combine the θ - parametrized STRESS, $\sigma_{MDS}(X(\theta), \theta)$ and the OPTICS cordillera OC(X) to cluster optimized loss (coploss):

$$coploss(X, \theta) = v_1 \cdot \sigma_{MDS}(X, \theta) - v_2 \cdot OC(X)$$
 (1)

and $v_1, v_2 \in \mathbb{R}$ controlling how much weight should be given to the individual parts of coploss.

We derive two versions from this loss

- COPS-C: coploss($X; \theta$) = $v_1 \cdot \sigma_{MDS}(X; \theta) v_2 \cdot OC(X; \theta)$
- P-COPS: coploss(θ) = $v_1 \cdot \sigma_{MDS}(X(\theta), \theta) v_2 \cdot OC(X(\theta))$ with $X(\theta) := arg \max_X \sigma(X, \theta)$.

COPS-C

- Using COPS to find a configuration
- We need to do

$$coploss(X; \theta) \rightarrow min_X!$$

- We use the derivative free heuristic NEWUOA
- Works well when initial configuration is near the optimum
- Set initial configuration X^0 to $min_X \sigma_{MDS}(X)$
- Local improvement towards more c-clusteredness for the MDS solution

P-COPS

- Profile Version of COPS for hyperparameter selection
- We need to do

$$\mathsf{coploss}(\theta) \to \mathsf{min}_{\theta}!$$

- We use a nested algorithm that first solves for $X(\theta)$ and then minimizes over θ .
 - For the inner part, i.e., finding $X(\theta)$ standard MDS optimization is used (e.g., majorization)
 - The outer part of this optimization problem we use metaheuristics (good experiences with an adapted Luus-Jaakola algorithm (Luus & Jaakola, 1973)

Example: Mental States COPS

Model: COPS with parameters kappa= 1 lambda= 1 nu= 1

Stress of configuration (default normalization): 0.3671

■ COPS-C: cops(dis, 'COPS-C', stressweight=0.9, cordweight=0.1)

```
OPTICS Cordillera: Raw 10.94 Normed 0.2504
   Cluster optimized loss (coploss): 0.09625
   Stress weight: 0.9 OPTICS Cordillera weight: 0.1
   Number of iterations of Newuoa optimization: 13292
■ P-COPS: cops(dis,'P-COPS',loss='powerstress')
   Call: [1] "[deleted]"
   Model: COPS with powerstress loss function and parameters kappa= 1.853 lambda= 8.987 nu= 0.579
   Number of objects: 60
   MDS loss value: 0.07394
   OPTICS condillera: Raw 5.315 Normed 0.1217
   Cluster optimized loss (coploss): -0.3079
   MDS loss weight: 1 OPTICS cordillera weight: 3.138
   Number of iterations of ALJ optimization: 134
```

Call: [1] "[deleted]"

Number of objects: 60

COPS Mental States - I

COPS Mental States - I

COPS Mental States - II

Why Stop with COPS?

We can go further than COPS:

- Other structures might be of interest
- Other transformations might be of interest
- Other dimensionality reduction methods might be of interest

We can rehash ideas from COPS:

- Idea behind P-COPS is rather flexible
- Conceptual and computational framework for hyperparameter selection by structure considerations
- Building blocks: θ -parametrized loss function, structuredness index(es), combination and algorithm for outer optimization.

With MDS-type losses we call this STOPS (Structure Optimized Proximity Scaling; Rusch et al., 2017).

Dimensionality Reduction - II

In MDS-type dimension reduction (proximity scaling) we have a loss function that measures misfit

$$\sigma(X,\theta) = L(\Delta^*, D^*(X), \theta)$$

with $\delta_{ii}^* = f_{ij}(\delta_{ij}; \theta)$ and $d_{ii}^* = g_{ij}(d_{ij}; \theta)$ which we minimize to find the configuration X given θ

$$X(\theta) = \arg\min_{X} \sigma(X, \theta)$$

- \blacksquare $X(\theta)$ has some structural appearance (C-Structuredness).
- \blacksquare C-Structuredness changes with different θ

STOPS - I

- We capture p = 1, ..., P structures by indices $I_p(X(\theta); \gamma)$.
- We combine the misfit and the indices to stoploss(θ)

Two STOPS models

Additive STOPS

$$\mathsf{aSTOPS}(\theta, v_0, \dots, v_p; \Delta) = v_0 \cdot \sigma(X(\theta), \theta) + \sum_{p=1}^P v_p I_p(X(\theta); \gamma)$$

Multiplicative STOPS

$$\mathsf{mSTOPS}(\theta, \mathsf{v}_0, \dots, \mathsf{v}_p; \Delta) = \sigma(\mathsf{X}(\theta), \theta)^{\mathsf{v}_0} \cdot \prod_{p=1}^r \mathsf{I}_p(\mathsf{X}(\theta); \gamma)^{\mathsf{v}_p}$$

 v_0 .. stressweight (redundant), $v_1,...,v_P$... structuredness weights, γ ... (optional) metaparameters for structuredness indices

STOPS - II

For hyperparameter selection we then need to find

$$\underset{\vartheta}{\operatorname{arg\,min}}$$
 aSTOPS $(\theta, v_0, \dots, v_k; \Delta)$

or

$$\underset{\vartheta}{\operatorname{arg\,min}} \operatorname{mSTOPS}(\theta, v_0, \dots, v_k; \Delta)$$

where $\vartheta \subseteq \{\theta, v_0, \dots, v_k\}$. Typically ϑ will be a subset of all possible parameters here (e.g., the weights might be given a *priori*, so $\vartheta = \theta$).

Structures and Indices - I

C-Structuredness Indices:

- They capture the essence of a particular structure in a configuration.
- They should be numerically high (low) the more (less) structure.
- They are solely a function of X (not of Δ and σ).
- They are bound from above and below, i.e., have unique finite minima and maxima.
- Reasonably regular in their behaviour as a function of the c-structuredness.
- They quantify what a human may perceive in the configuration.

Structures and Indices - II

- C-Association: Pairwise nonlinear association between principal axes (pairwise maximal maximum information coefficient; Reshef et al. 2011)
- C-Clusteredness: A clustered appearance (normed OPTICS Cordillera)
- C-Complexity: Complexity of the functional relationship between any principle axes (pairwise maximal minimum cell number; Reshef et al. 2011)
- C-Dependence: Random vectors of projections onto the axes are stochastically dependent (distance correlation; Szekely et al., 2007)
- C-Functionality: Pairwise functional, smooth, noise-free relationship between axes (mean pairwise maximum edge value; Reshef et al. 2011)

Structures and Indices - III

- C-Linearity: Points lie close to linear subspace (maximal multiple correlation)
- C-Manifoldness: Points lie close to a smooth sub manifold (maximal correlation; Sarmanov, 1958)
- C-Nonmonotonicity: Deviation from monotonicity of axes (pairwise maximal maximum assymmetry score; Reshef et al. 2011)
- C-Ultrametric: How well is the overall distance variability explained by an ultrametric (VAF and DAF)
- C-Randomness: How close to a random pattern (under some model) is the configuration (not clear yet)
- C-Faithfulness: How accurate is the neighbourhood of Δ^* preserved in D^* (adjusted M_d index of Chen & Buja, 2013)

Any other ideas?

Optimization-I

We need to find

$$\underset{\vartheta}{\operatorname{arg\,min}} \operatorname{stoploss}(X(\theta), \vartheta; \Delta)$$

- We use a nested algorithm
 - **1** First solve for $X(\theta) = \arg \max_{X} \sigma(X, \theta)$
 - **2** Then minimize stoploss($X(\theta), \vartheta; \Delta$) over ϑ
- Advantages:
 - For finding $X(\theta)$ we can use standard solutions (reasonably good)
 - The inner part (1.) allows flexible specifications of dimensionality reduction method
 - $I_p(X)$ only depends on $X(\theta)$, not on $\sigma(X)$
 - Dimensionality of outer problem is usually not very high

Optimization-II

The difficulty lies in how to optimize over ϑ

- Inner minimization is costly
- Stoploss is a hard function to optimize (we basically only know function evaluations)
- Estimation of Step 1 may be noisy (premature termination, local minimum)
- We need a way to solve step 2 with a global optimization
 - only knowing target function values at some parameters
 - as little function evaluations as possible
 - the possibility that the function evaluations are noisy

Optimization-III

This can be done with Efficient Global Optimization (Bayesian Optimization).

- Black box global optimization if target function is costly
- The surrogate model allows to deal with noise
- Works well in low dimensions

Strategy is popular for hyperparameter tuning in machine learning

Optimization-IV

The idea behind this approach

- Choose a (flexible) surrogate model (prior)
- Evaluate the target function at some values (data)
- Update the prior with the function evaluations (posterior)
- Maximize an acquisition function (e.g., expected improvement (EI)) over the posterior surface
- Maximal El suggests a candidate parameter combination
- Evaluate at candidate and repeat

One samples the "best" candidate point given the current knowledge and model.

Optimization-V

We use two types of priors:

- Simple Kriging model (Gaussian Process) with covariance kernels (Roustant et al., 2012)
 - Squared Exponential ("Gaussian"; very smooth)
 - Matern 5/2 and 3/2 (smooth)
 - Exponential (Ohrnstein Uhlenbeck process; very rough)
 - Power exponential (rough, but less so then OU)
 - Appears good for inner optimization by gradient methods or SVD
- Treed Gaussian Process with Jumps to Linear Models (Grammacy, 2007)
 - Nonstationary process by partitioning
 - Allows flexible combination of different GP, piecewise linear trends, jumps
 - Appears good for inner part estimated with majorization

R Package stops

All of this is implemented in the R package stops

- High level function for COPS cops (delta, variant,...)
- High level function for STOPS stops (delta, loss, ...)
- Prespecified MDS models (argument loss) for STOPS and P-COPS are strain, SMACOF (smacofSym), sammon mapping, elastic scaling, SMACOF on a sphere (smacofSphere), sstress, rstress, powerstress, Sammon mapping and elastic scaling with powers (powersammon, powerelastic)
- Planned for STOPS also are Isomap, t-SNE, Diffusion Map
- Optimization with Bayesian optimization (kriging, tgp) or ALJ or simulated annealing (SANN) or a particle swarm algorithm (pso).
- Features various structuredness indices.
- S3 methods: plot, summary, print, coef, residuals, plot3d, plot3dstatic

Example: Mental States - I

- Badness of fit: Power Stress MDS
- Structures: C-Clusteredness and C-Manifoldness
- Optimization with treed gaussian process prior with jump to linear models (for 20 steps)

```
R> res1 <- stops(dis,loss="powermds",theta=c(1,1,1),structures=c("ccluste
R> res1
```

```
Call: stops(dis = dis, loss = "powermds", theta = c(1, 1, 1), structures = c("cclusteredness", "cmanifoldness"), optimmethod = "tgp", lower = c(1, 0.7, 1), upper = c(2, 5, 1.1), verbose = 5, initpoints = 10, itmax = 20)

Model: additive STOPS with powermds loss function and theta parameters= 1.677 0.826 1

Number of objects: 60

MDS loss value: 0.2539

C-Structuredness Indices: cclusteredness 0.2588 cmanifoldness 0.9664

Structure optimized loss (stoploss): -0.3587

MDS loss weight: 1 c-structuredness weights: -0.5 -0.5

Number of iterations of tgp optimization: 20
```

Example: Mental States - III

Example: Mental States - IV

Example: Mental States - IV

Summary

COPS

- We presented a new dimension reduction technique to obtain clustered configurations: COPS
- Two versions (COPS-C and P-COPS)

STOPS

- A framework for hyperparameter optimization in MDS based on structure considerations
- Generalization of P-COPS

Outlook

For STOPS

- More models and more structures
- Extend to general dimension reduction techniques (e.g., the Gifi system)

Beyond that

- We are working on a general framework for directly obtaining structured configurations by penalization
- Very much at the beginning

References

- Ankerst, M., Breunig, M., Kriegel, H.-P. & Sander, I. (1999) OPTICS: Ordering points to identify the clustering structure. ACM Sigmod Record 28, 49-60.
- Gramacy, R. B. (2007), top: an R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models. Journal of Statistical Software, 19(9), 1-46.
- Luus, R. & Jaakola, T. (1973) Optimization by direct search and systematic reduction of the size of search region, AIChE Journal, 19, 760-766.
- Mair, P., Rusch, T., & Hornik, K. (2014) The grand old party a party of values? SpringerPlus, 3, 697.
- Reshef, D., Reshef, Y., Finucane, H., Grossman, S., McVean, G., Turnbaugh, P., Lander, E., Mitzenmacher, M., & Sabeti, P. (2011) Detecting novel associations in large data sets. Science, 334, 1518-1524.
- Roustant, O., Ginsbourger, D., & Deville, Y. (2012). Dicekriging, Diceoptim: Two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization, Journal of Statistical Software, 51(1), 1-54.
- Rusch, T., Hornik, K., Mair, P. (2016) Assessing and quantifying clusteredness: The OPTICS Cordillera. Report 2016/1, Discussion Paper Series / Center for Empirical Research Methods, 2016/1, WU Vienna University of Economics and Business, Vienna,
- Rusch, T., Mair, P. & Hornik, K. (2015) COPS: Cluster optimized proximity scaling, Report 2015/1, Discussion Paper Series / Center for Empirical Research Methods, WU Vienna University of Economics and Business, Vienna.
- Rusch, T., Mair, P. & Hornik, K. (in preparation) Structure based hyperparameter selection for Dimensionality Reduction: The STOPS framework for Structure Optimized Proximity Scaling.
- Sarmanov, O (1958). Maximum correlation coefficient (symmetric case). Doklady Akad. Nauk SSR, 120, 715–718.
- Szekely, G., Rizzo, M., & Bakirov, N. (2007). Measuring and Testing Independence by Correlation of Distances, Annals of Statistics, 35 (6), 2769âAS2794.
- Tamir, D.I., Thornton, M.A., Contreras, J.M., & Mitchell, J. P. (2016) Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence. PNAS, 113 (1), 194-199. 4 D > 4 A > 4 B > 4 B >

Backup Slides

Optimization Details

Adaptive Luus-Jakola Algorithm (ALJ): An adaptation of Luus-Jakola search (Luus & Jaakola, 1973)

- Sample $\theta^{(i)}$ from within t-orthotope $[I, u]^t$ with I, u are lower, upper boundaries
- Set d to be the length of the search space
- Repeat until termination (accd, maxiter, acc) :
 - Pick $a^{(i)} \sim U_t(-d,d)$
 - Set $\theta^{(i+1)} \leftarrow \theta^{(i)} + a^{(i)}$
 - If $coploss(\theta^{(i+1)}) < coploss(\theta^{(i)})$ set $\theta^{(opt)} = \theta^{(i+1)}$, else set $d = d \cdot s$
- Here (this is the customized part): $s = o \cdot \frac{m+1-i}{m}$, $m = \min\left(\left\lfloor \frac{\log(accd) \log(\max(u-l))}{\log(o)} \right\rfloor, maxiter\right)$ and $0 \le o \le 1$.

Example: Mental States - 3D

Thank You for Your Attention

Thomas Rusch

Competence Center for Empirical Research Methods email: thomas.rusch@wu.ac.at

URL: http://wu.ac.at/methods/team/dr-thomas-rusch

WU Vienna University of Economics and Business Welthandelsplatz 1, 1020 Vienna Austria

License

Please attribute Thomas Rusch, Patrick Mair and Kurt Hornik. Except where otherwise noted, this work is licensed under CC-BY-SA:

https://creativecommons.org/licenses/by-sa/4.0/