

$$i_{t} = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{o})$$

$$\tilde{c}_{t} = \phi(W_{cx}x_{t} + W_{ch}h_{t-1} + b_{c})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot \tilde{c}_{t}$$

$$h_{t} = o_{t} \odot \phi(c_{t})$$

In the equations above, which term explicitly represents the memory component that enables the LSTM to retain **long-term information** across timesteps?

\square Output gate o_t
\square Hidden state h_t
$oxed{igsquare}$ Cell state c_t
$oxed{\ }$ Candidate cell state $ ilde{c}_t$
$oxedsymbol{\square}$ Input gate i_t
Solution: The cell state c_t retains long-term information while the hidden state h_t acts as a short-term memory.
Question 2 BERT introduces a special token, [CLS], at the beginning of every input sequence. Which of the following statements best describes the purpose of the [CLS] token?
It serves as a placeholder whose final hidden representation acts as a holistic sequence-level embedding, typically used for classification or next-sentence prediction tasks.
It serves primarily to separate multiple sentences within the same input (the same role as [SEP] does).
☐ It simply marks sentence boundaries and carries no trainable embeddings of its own.
☐ It marks the exact midpoint of the input sequence to ensure balanced bidirectional attention.
It is used only during masked language modeling and is dropped for downstream tasks.
Solution: The [CLS] special token is introduced to aggregate information about the entire sequence in its embedding and is used as input to a classification model.
Question 3 From the following set of models: {ELMo, BERT, GPT, BART, T5}, which group can each be directly used for both classification and generation tasks (without any modifications)?
ELMo, BERT
BERT, GPT
BART, T5

Solution: BART and T5 are encoder-decoder models capable of both classification and text generation. GPT also supports both tasks; however, in this question, it is always paired with bidirectional models like BERT and ELMo, which are not suitable for generation.

BERT, GPT, T5

ELMo, BART, GPT