ONLY 10 INTETARKS OF MOTION, 12 MRE REQUIRED TO SOLVE 289

WE ONLY REALLY CARE ABOUT RENTWE MOTION

ra = ri - ra Tie is more useru REFORMULATE OUR PIZOBLEM

REDO PROBLEM IN TENEMS To: FROM of TO ! How to her cons (rgi)

FRAME OF DIFFERENTIATION (INDICTOR)

TO APPLY NEW TON'S LAW OF MATION MUST DIFFERENTIATE IN METCHE PRIME AND SISE POINT OF POSITION NETTOR MUST BE FIRED IN THAT RUME .

CANADO APPLY F = Ma

BOT OF CAN BE WIZITTEN IN COLLECT TENUS

APPLY NEWTON'S UND TO TO AND TO

Top = - G & Mig Top EON APPLIED TO MQ (EAKTH)

GIVEN RELATIVE EDMS - CAN HE SOLVE STILL CAN'T SOLVE FOR 123

N=3: REQUIRES POS OF O REZ TO B OR (

-> REDUIRES ANOTHER WELTOR DE.

=> 12 SCALME 1ST ODE -> NO? SOLVABLE

N=2: NO M; PELTORBATIONS

2 nd ODE IN ONLY ONE WKNOWS

6 SCHURE EDS, 6 DEP. WALMBLES - REPOVIRES

(mconx oi) 25 MASSEND D

RELATINE MOTION OF TIDO BP. 15 SOLUTBLE

F + G (M1+m2) = =0

ME G. (MITM2)

	*			10	
#				2	
			39		
	k.		**************************************		1
¥			#3 #3	90. š	
			•	ž	
9		41			
(4)		*** ***			
	6)				
			5.2	1	
0. \$2	* %	e. *			
		*			
				5 7 a	
¥	V	×	2		

SOLUTION: RELATINE MOTION OF TLDD 13001ES

reutine 287

M= (7(MI+MZ)

rosk 2 DRD? SUBSCRIPTS

DESSIVATION

1. USE ANGULIE HOMENTON - SYSTEM ANGULAR MOMENTON

LET NED

SYSTER LINEAR MOMENTUM IS CONSERVED

T A COORD FRAME MOUNTY WITH COM IS INFRITAL

SO WE ASSOME COM IS "FIXED" IN NEW INFRITAL FUME USE COM AS INFRIVALLY FIXED BASE POINT

Co = mims (LXL) => mitus Co = [LXL=]

SPECIFIC ANGULAR MONENTUM

* = IdT RELATIVE NETOCTY CONSTANT NECTOR

IN I F. F -> PUTNE OF MOTION CONSTANT 2-0 MOTION

IN UNCLABLE PLANE - PLANE CONTHINS COM WHOSE MORMAL COINCIDES WITH h

CAN REPRESENT IN IN SCALAR FORM

IN = | FXF | = 120 N= r2 D 2 MAGNITUDE

RELATED TO MEET WELDLITY

KEPLER'S THIRD LAW: LINE JOINING PLANET + SUM SWEEPS OUT EQUAL AREAS IN EQUAL TIMES

ARRAL YELDURY: PLATE AT WHICH PLADIUS VIECTOR DESCRIBES A LUZVE

ASSUME MOTION IN PURIET > KNOWN FROM IN CONSTANT

DA REPRESENTS AREA OF TRUMPICLE OPQ SUREPT OVER BY

BADIOS VECTOR IN INTERVAL BY

AREA OF TRIANCILE = 1 (BASE) (HEIGHT)

AS AB DIMINISHES, INTO OF AREA OF TRANSITE TO THAT

TIMIT OF SMAD IS UNITY

$$\frac{dA}{dE} = \frac{1}{2} \int_{0}^{2} \frac{d\theta}{dt} = \frac{h}{2}$$
 AREAL RELOCITEY CONSTANT
BELAUSE IN 15 WHSTANT

USE EMENCIN - SCALAR

GIMMITH FIELD IS CONSECUTIVE

RENRITE IN RELATIVE WELABLES

$$\overline{r} = \frac{-M_2}{M_1 + M_2} \overline{r} \qquad \overline{r} = \frac{-M_2}{M_1 + M_2} \overline{r}$$

$$T = \frac{1}{2} m_{1} \left(\frac{m_{2}}{m_{1} + m_{2}} \stackrel{?}{=} e^{-M_{2}} \stackrel{?}{=} \right) + \frac{1}{2} m_{2} \left(\frac{m_{1}}{m_{1} + m_{2}} \stackrel{?}{=} e^{-M_{1}} \frac{m_{1}}{m_{1} + m_{2}} \stackrel{?}{=} e^{-M_{1}} \frac{m_{1}}{m_{1} + m_{2}} \stackrel{?}{=} e^{-M_{1}} \frac{m_{1}}{m_{1} + m_{2}} \frac{m_{1}}{m_{1} + m_{2}} = \frac{1}{2} \frac{m_{1} m_{2}}{m_{1} m_{2}} = \frac{1}{2} \frac{m_{$$

POTENTIAL

OF RELATIVE TWO M37802H ACOS!

DAPPLY OUR CONSTANTS OF MOTION - TO 287

CONSERNATION OF EMPLINY

CENTER OF MASS, WRT M,

$$(M,+MZ)$$
 From = $M,(0)$ + MZ Fiz F

 $COM = \frac{MZ}{M_1+MZ}$ F 2 COM WRT M,

So
$$\Gamma_1 = \frac{-M_2}{M_1 + M_2}$$

$$\overline{VZ} = \frac{M_1}{M_1 + M_2} \overline{V} = \frac{M_1}{M_1 + M_2} \overline{V}$$

$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}(M_1 + M_2)}{\Gamma} = \frac{\sqrt{2}}{2} - \frac{\sqrt{M}}{\Gamma}$$

2 mi(rixri) = C3 CONSTANT NECTOR

-WE KNOW LINGAR MOMENTUM 15 CONSERVED VCON = CONSTANT R.F. FRAME FIRED AT COM => INEXTIAL

42

$$(n_1+n_2) \overline{r}_{con} = n_2 \overline{r} + m_1(o)$$

$$\overline{r}_{con} = \frac{n_2}{n_1+n_2} \overline{r} = -\overline{n}$$

$$\overline{n} = \frac{n_2}{n_1+n_2} \overline{r}$$

$$\overline{n} = \frac{n_1}{n_1+n_2} \overline{r}$$

$$C_3 = \frac{m_1 m_2}{m_1 + m_2} \left(\frac{1}{2} \times \frac{1}{2} \right)$$

$$\frac{m_1 + m_2}{m_1 + m_2} \left(\frac{1}{2} \times \frac{1}{2} \right)$$

MITHER [3 = [TXT = N] SPECIFIC ANGULAR } CONSTANT
MOMENTUM USCREE }

TY TE - PURIE OF MOTION IS CONSTANT INVACUABLE PLANE

REPRESENT IN IN SCILAR FORM

USINITY KNOWN CONSTANTS (N.E)

REPLACE $\overrightarrow{\Gamma} + \underbrace{M}_{\Gamma 3} \overrightarrow{\Gamma} = 0$ and 00E - 11ETTOR1) TH TWO IST ODE WITH DAP WAR. (C.B)

TO PUMME MOTION: ONLY TWO WAS MAKELABLES

FIND SOLUTION FOR TIME HISTORY OF DEP. WEINBLE

$$h = r^2 \frac{d\theta}{dt} = > dt = \frac{r^2}{h} d\theta$$
 REMOVE TIME DEKINARON

$$2\xi = \left(\frac{r^2}{r^2} \frac{dr}{d\theta}\right)^2 + \frac{r^2}{r^2} - 20'$$

NEW WEIABLES

$$\frac{3}{N^{2}} \left[2 + 0' \right] = \left[\frac{d3}{d0} \right]^{2} + 3^{2}$$

$$\frac{35}{d0} = \pm \sqrt{\frac{2}{N^{2}}} \left[2 + 0' \right] - 3^{2}$$

$$d\theta = \frac{d3}{1 + \sqrt{\frac{5}{12} (E + U') - 3^2}} = \frac{3}{1 + \sqrt{\frac{5}{12} (E + U') - 3^2}}$$

$$= \frac{2}{1 + \sqrt{\frac{5}{12} (E + U') - 3^2}}$$

$$= \frac{2}{1 + \sqrt{\frac{5}{12} (E + U') - 3^2}}$$

$$= \frac{2}{1 + \sqrt{\frac{5}{12} (E + U') - 3^2}}$$

INTE GIVITE

$$\Theta = \cos^{-1} \frac{3 - \frac{N}{h^2}}{\sqrt{\frac{N^2}{h^4} + \frac{2E}{N^2}}} + \frac{2E}{N^2} + \frac{2E}{N^2$$

MEAS URED FROM

SOME REFERENCE

$$\frac{1}{r} = \frac{M}{h^2} + \sqrt{\frac{M^2}{h^4}} + \frac{2\xi}{h^2} \cos(\theta - \omega)$$

DERCILATION (1) ドト本でこの TELXE NOLE: $\frac{1}{2}q^{\frac{1}{2}} = \frac{1}{2}q^{\frac{1}{2}} = \frac$ ENRITE 1 = (T.F) F-(T.F) F AN (BXC) - (A·C)B-(A·B)C テキテュ(ア・ア)テート(ア・デ)ア $\frac{7}{7} = -\frac{1}{2} \times (2 \times 2) = (2 \times 2) \times 2 = 2 \times 2$ From (1) $\frac{r}{r^3} = -\frac{r}{r}$ I d'y = L x - E OR Y = E x N Y CONSONNES INTEGRATE UNCE 1 = FAN - e אדוני דשטפפשק APPLY A.B XC = C. AXB アード・ア・デメルートのを L= W . (LXL) - L. E r= h2 - roe T+ re ws(0) = h2

rews (O)

POLIC SECOND

SULUTION OF RELATIVE TWO ISDAY FOMS

& -> TIME - POSITION IN OCBIT

$$V_R = r = \frac{\partial r}{\partial \theta} \frac{\partial \theta}{\partial t} = -\frac{h^2/\mu \left(-e \sin \theta\right)}{\left(1 + e \cos \theta\right)^2} \times \frac{h}{r^2}$$

FLIGHT ISACH ANGLE