

Chapter objectives

- accounting identities for the open economy
- small open economy model
 - what makes it "small"
 - how the trade balance and exchange rate are determined
 - how policies affect the trade balance & exchange rate

ports and exports of selected countries, 2013

In an open economy

- spending need not equal output
- saving need not equal investment

Preliminaries

$$\boldsymbol{C} = \boldsymbol{C^d} + \boldsymbol{C^f}$$

$$oldsymbol{I} = oldsymbol{I}^{oldsymbol{d}} + oldsymbol{I}^{oldsymbol{f}}$$

$$\boldsymbol{G} = \boldsymbol{G^d} + \boldsymbol{G^f}$$

superscripts:

d = spending on domestic goods

f = spending on foreign goods

$$IM = imports = C^f + I^f + G^f$$

= spending on foreign goods

Preliminaries, cont.

```
NX = net exports (the "trade balance")
= EX - IM
```

- If NX > 0,
 country has a trade surplus equal to NX
- If NX < 0, country has a trade deficit equal to – NX

GDP = expenditure on domestically produced g & s

$$Y = C^d + I^d + G^d + EX$$

$$= (C - C^f) + (I - I^f) + (G - G^f) + EX$$

$$= C + I + G + EX - (C^f + I^f + G^f)$$

$$= C + I + G + EX - IM$$

$$= C + I + G + NX$$

The national income identity in an open economy

International capital flows

- Net capital outflows
 - = S I
 - = net outflow of "loanable funds"
 - net purchases of foreign assets
 the country's purchases of foreign
 assets
 minus foreign purchases of domestic
 assets
- When S > I, country is a net lender
- When S < I, country is a net borrower

Another important identity

$$NX = Y - (C + I + G)$$
implies

$$NX = (Y - C - G) - I$$
$$= S - I$$

trade balance = net capital outflows

Saving, investment, and the trade balance 1960–

U.S.: the world's largest debtor nation

- Every year since the 1980s: huge trade deficits and net capital inflows, i.e., net borrowing from abroad
- As of 12/31/2014:
 - U.S. residents owned \$24.7 trillion worth of foreign assets
 - Foreigners owned \$31.6 trillion worth of U.S. assets
 - U.S. net indebtedness to rest of the world: \$6.9 trillion—higher than any other country, hence U.S. is the "world's largest debtor nation"

Saving and Investment in a Small Open Economy

- An open-economy version of the loanable funds model from chapter 3.
- Includes many of the same elements:

production function:
$$Y = \overline{Y} = F(\overline{K}, \overline{L})$$

consumption function:
$$C = C(Y - T)$$

investment function:
$$I = I(r)$$

exogenous policy variables:
$$G = \overline{G}$$
, $T = \overline{T}$

National Saving: The Supply of Loanable Funds

Assumptions re: capital flows

- a. domestic & foreign bonds are perfect substitutes (same risk, maturity, etc.)
- perfect capital mobility: no restrictions on international trade in assets
- c. economy is **small**: cannot affect the world interest rate, denoted

a & b imply $r = r^*$ c implies r* is exogenous

Investment: The Demand for Loanable Funds

If the economy were closed...

...the interest rate would adjust to equate investment and saving:

the exogenous world interest rate determines investment...

...and the difference between saving and investment determines net capital outflows and net exports

Three thought experiments

- 1. Fiscal policy at home
- 2. Fiscal policy abroad
- 3. An increase in investment demand

An increase in *G* or decrease in *T* reduces saving.

Results:

$$\Delta \boldsymbol{I} = 0$$

$$\Delta NX = \Delta S < 0$$

(% of GDP), 1965–2014

2. Fiscal policy abroad

Expansionary fiscal policy abroad raises the world interest rate.

Results:

$$\Delta \boldsymbol{I} < 0$$

$$\Delta NX = -\Delta I > 0$$

3. An increase in investment demand

EXERCISE:

Use the model to determine the impact of an increase in investment demand on NX, S, I, and net capital outflow.

ANSWERS:

 $\Delta I > 0$, $\Delta S = 0$, net capital outflows and net exports fall by the

amount Δ /

The nominal exchange rate (名义汇率)

e = nominal exchange rate, the relative price of domestic currency in terms of foreign currency (e.g. Yen per Euro or Pound)

A few exchange rates, as of 1/13/2015

country	exchange rate
Euro area	0.85 euro/\$
Indonesia	12,576 rupiahs/\$
Japan	118.0 yen/\$
Mexico	14.6 pesos/\$
Russia	65.85 rubles/\$
South Africa	11.50 rand/\$
U.K.	0.66 pounds/\$

The real exchange rate

(实际汇率)

the lowercase Greek letter epsilon real exchange rate,
the relative price of
domestic goods
in terms of foreign goods
(e.g. price of a Mars bar in
Tokyo per price of a Mars bar
in Frankfurt)

Example

- one good: Mars bar
- price in Tokyo:

price in Frankfurt:

nominal exchange rate
 e = 120 Yen/€

$$\varepsilon = \frac{e \times P}{P^*}$$

$$= \frac{120 \text{Yen}/\text{€} \times \text{€}0.60}{48 \text{Yen}} = 1.5$$

To buy an European
Mars bar, someone from
Japan would have to
pay an amount that
could buy 1.5 Japanese
Mars bars.

ε in the real world & our model

- In the real world:
 We can think of ε as the relative price of a basket of domestic goods in terms of a basket of foreign goods
- In our macro model:
 There's just one good, "output."
 So ε is the relative price of one country's output in terms of the other country's output

How NX depends on ε

 $\uparrow_{\boldsymbol{\varepsilon}} \Rightarrow$ home goods become more expensive relative to foreign goods

 $\Rightarrow \downarrow EX, \uparrow IM$

 $\Rightarrow \sqrt{NX}$

net exports and the real exchange rate, 1973-2014

The net exports function

 The net exports function reflects this inverse relationship between NX and ε:

$$NX = NX(\varepsilon)$$

The NX curve

How ε is determined

- The accounting identity says NX = S I
- We saw earlier how S I is determined:
 - S depends on domestic factors (output, fiscal policy variables, etc)
 - I is determined by the world interest rate r*
- So, ε must adjust to ensure

$$NX(\varepsilon) = \overline{S} - I(r^*)$$

How ε is determined

Neither S nor I depend on ε , so the net capital outflow curve is vertical.

 $\boldsymbol{\varepsilon}$ adjusts to equate \boldsymbol{NX} with net capital outflow, $\boldsymbol{S}-\boldsymbol{I}$.

Interpretation: supply and demand in the foreign exchange market

Demand:

Foreigners need dollars to buy U.S. net exports.

Supply:

Net capital outflow (*S* – *I*) is the supply of dollars to be invested abroad.

Four experiments

- 1. Fiscal policy at home
- 2. Fiscal policy abroad
- 3. An increase in investment demand
- 4. Trade policy to restrict imports

1. Fiscal policy at home

A fiscal expansion reduces national saving, net capital outflows, and the supply of pounds in the foreign exchange market...

...causing the real exchange rate to rise and **NX** to fall.

2. Fiscal policy abroad

An increase in *r** reduces investment, increasing net capital outflows and the supply of pounds in the foreign exchange market...

...causing the real exchange rate to fall and *NX* to rise.

3. An increase in investment demand

An increase in investment reduces net capital outflows and the supply of pounds in the foreign exchange market...

...causing the real exchange rate to rise and **NX** to fall.

4. Trade policy to restrict imports

At any given value of ϵ , an import quota (配额)

- $\Rightarrow \downarrow IM \Rightarrow \uparrow NX$
- ⇒ demand for pounds shifts right

Trade policy doesn't affect **S** or **I**, so capital flows and the supply of pounds remains fixed.

4. Trade policy to restrict imports

Results:

 $\Delta \varepsilon > 0$ (demand increase)

 $\Delta NX = 0$ (supply fixed)

 $\Delta IM < 0$ (policy)

 $\Delta EX < 0$ (rise in ε)

The Determinants of the Nominal Exchange Rate

Start with the expression for the real exchange rate:

$$\epsilon = \frac{e \times P}{P^*}$$

Solve it for the nominal exchange rate:

$$e = \varepsilon \times \frac{P^*}{P}$$

The Determinants of the Nominal Exchange Rate

- So e depends on the real exchange rate and the price levels at home and abroad...
- ...and we know how each of them is determined:

$$\boldsymbol{e} = \boldsymbol{\varepsilon} \times \frac{\boldsymbol{p}^*}{\boldsymbol{p}^*} = \boldsymbol{L}^*(\boldsymbol{r}^* + \boldsymbol{\pi}^*, \boldsymbol{Y}^*)$$

$$\boldsymbol{N}\boldsymbol{X}(\boldsymbol{\varepsilon}) = \overline{\boldsymbol{S}} - \boldsymbol{I}(\boldsymbol{r}^*)$$

The Determinants of the Nominal Exchange Rate

$$e = \varepsilon \times \frac{P^*}{P}$$

 We can rewrite this equation in terms of growth rates (see "arithmetic tricks for working with percentage changes):

$$\frac{\Delta e}{e} = \frac{\Delta \varepsilon}{\varepsilon} + \frac{\Delta P^*}{P^*} - \frac{\Delta P}{P} = \frac{\Delta \varepsilon}{\varepsilon} + \pi^* - \pi$$

For a given value of ε,
 the growth rate of e equals the difference between foreign and domestic inflation rates.

for a cross section of countries

Purchasing Power Parity (PPP) (购买力平价)

- def1: a doctrine that states that goods must sell at the same (currency-adjusted) price in all countries.
- def2: the nominal exchange rate adjusts to equalize the cost of a basket of goods across countries.
- Reasoning: arbitrage (套利), the law of one price

Purchasing Power Parity (PPP)

(购买力平价)

• PPP:

$$e \times P = P^*$$

Cost of a basket of foreign goods, in foreign currency.

Cost of a basket of domestic goods, in foreign currency.

Cost of a basket of domestic goods, in domestic currency.

- Solve for e: $e = P^*/P$
- PPP implies that the nominal exchange rate between two countries equals the ratio of the countries' price levels.

• If
$$\mathbf{e} = P^*/P$$
,
then $\boldsymbol{\varepsilon} = \boldsymbol{e} \times \frac{\boldsymbol{p}}{\boldsymbol{p}^*} = \frac{\boldsymbol{p}^*}{\boldsymbol{p}} \times \frac{\boldsymbol{p}}{\boldsymbol{p}^*} = 1$

and the NX curve is horizontal:

Under PPP, changes in (S - I) have no impact on $\boldsymbol{\varepsilon}$ or \boldsymbol{e} .

Does PPP hold in the real world?

No, for two reasons:

- 1. International arbitrage not always possible.
 - non-traded goods
 - transportation costs
- 2. Goods of different countries not perfect substitutes.

Nonetheless, PPP is a useful theory:

- It's simple & intuitive
- In the real world, nominal exchange rates have a tendency toward their PPP values over the long run.

The Reagan Deficits Revisited

Jan 1		1970s	1980s	actual change	closed economy	small open economy
	G-T	2.2	3.9	↑	↑	↑
-	S	19.6	17.4	→	←	\
	r	1.1	6.3	1	↑	no change
	1	19.9	19.4	→	\	no change
	NX	-0.3	-2.0	\	no change	\
-	3	115.1	129.4	1	no change	1

Data: Decade averages; all except \mathbf{r} and $\boldsymbol{\varepsilon}$ are expressed as a percent of GDP; $\boldsymbol{\varepsilon}$ is a trade-weighted index.

The U.S. as a large open economy

- So far, we've learned long-run models for two extreme cases:
 - closed economy
 - small open economy
- A large open economy—like the U.S.—falls between these two extremes.
- The results from large open economy analysis are a mixture of the results for the closed & small open economy cases.
- For example . . .

A fiscal expansion in three environments

A fiscal expansion causes national saving to fall.

The effects of this depend on the degree of openness:

	closed economy	large open economy	small open economy
r	rises	rises, but not as much as in closed economy	no change
I	falls	falls, but not as much as in closed economy	no change
NX	falls, but not as much as in small open economy		falls

Chapter summary

- 1. Net exports--the difference between
 - exports and imports
 - a country's output (Y) and its spending (C + I + G)
- 2. Net capital outflow equals
 - purchases of foreign assets minus foreign purchases of the country's assets
 - the difference between saving and investment
- 3. National income accounts identities:
 - Y = C + I + G + NX
 - trade balance NX = S I net capital outflow

Chapter summary

- 4. Impact of policies on NX:
 - NX increases if policy causes S to rise or I to fall
 - NX does not change if policy affects neither S nor I. Example: trade policy

5. Exchange rates

- nominal: the price of a country's currency in terms of another country's currency
- real: the price of a country's goods in terms of another country's goods.
- The real exchange rate equals the nominal rate times the ratio of prices of the two countries.

Chapter summary

- 6. How the real exchange rate is determined
 - NX depends negatively on the real exchange rate, other things equal
 - The real exchange rate adjusts to equate *NX* with net capital outflow
- 7. How the nominal exchange rate is determined
 - e equals the real exchange rate times the country's price level relative to the foreign price level.
 - For a given value of the real exchange rate, the percentage change in the nominal exchange rate equals the difference between the foreign & domestic inflation rates.