Thus we need only describe the situation for α_n . This root is complex for Q_{γ} (and $s_{\alpha_n} \cdot Q_{\gamma} \neq Q_{\gamma}$) if and only if c_n and c_{n+1} are unequal natural numbers, with the mate for c_n to the left of the mate for c_{n+1} . In this case, $s_{\alpha_n} \cdot Q_{\gamma} = Q_{\delta}$, where δ is obtained from γ by interchanging c_n and c_{n+1} .

On the other hand, α_n is non-compact imaginary for Q_{γ} if and only if c_n and c_{n+1} are opposite signs. In this case, $s_{\alpha_n} \cdot Q_{\gamma} = Q_{\delta'}$, where δ' is obtained from γ by replacing c_n and c_{n+1} by a pair of matching natural numbers. In this case, α_n is of type I, since the cross action of s_{α_n} is to interchange the opposite signs in positions n, n+1, so that $s_{\alpha_n} \times Q_{\gamma} \neq Q_{\gamma}$.

4.2.3 Example

With the parametrization and ordering spelled out, consider the example n = 2. There are 11 orbits. The weak order graph appears as Figure B.10 of Appendix B.

To obtain a representative of each closed orbit, we use the method of [Yam97, Theorem 3.2.11]. In the case of closed orbits, whose clans once again consist only of signs, this amounts to the following: Letting $\gamma = (c_1, \ldots, c_{2n})$, choose a permutation $\sigma \in S_{2n}$ with the following properties:

- 1. If $i \leq n$ and $c_i = +, \sigma(i) \leq n$.
- 2. If $i \leq n$ and $c_i = -, \sigma(i) > n$.
- 3. For i = 1, ..., n, $\sigma(2n + 1 i) = 2n + 1 \sigma(i)$.

Having chosen such a σ , the flag $F_{\bullet} = \langle v_1, \ldots, v_{2n} \rangle$, with $v_i = e_{\sigma(i)}$, is a representative of Q_{γ} . Note that any representative so obtained is S-fixed, so it is straightforward to apply Proposition 4.2.1 to compute the class $[Q_{\gamma}]$. Divided difference operators (scaled by factors of $\frac{1}{2}$ where appropriate) then give the remaining formulas. The results are given in Table B.10 of Appendix B.