Métodos numéricos (método de Euler)

Junio 14, 2018

Usando la recta tangente

Suponemos que el problema con valores iniciales $y = f(x, y), y(x_0) = y$

tiene una solución. Una manera de aproximarse a esta solución es emplear rectas tangentes. Cuando x está cerca del punto evaluado, los puntos en la curva solución están cerca de la recta tangente (el elemento lineal). La recta con esa pendiente se llama linealización de y(x) que se puede utilizar para aproximar los valores dentro de una pequea vecindad de x.

Para generalizar el procedimiento anterior, usamos la linealización de una solución incógnita y(x) de (1) en $x = x_0$:

$$L(x) = y_0 + f(x_0, y_0)(x - x_0).$$

La gráfica de esta linealización es una recta tangente a la gráfica de y=y(x). Ahora hacemos que h sea un incremento positivo del eje x. Entonces sustituyendo x por $x_1=x_0+h$ en la ecuación obtenemos $L(x_1)=y_0+f(x_0,y_0)(x_0+h-x_0)$ o $y_1=y_0+hf(x_1,y_1)$. Por supuesto la precisión de la aproximación depende fuertemente del incremento de h.

Normalmente debemos elegir este tamaño de paso para que sea "razonablemente pequeo". Ahora repetimos el proceso usando una "segunda recta tangente" en (x_1, y_1) y resulta $y(x_2) = y(x_0 + 2h) = y(x_1 + h) \approx y_2 = y_1 + h f(x_1, y_1)$.

Si continuamos de esta manera vemos que y_n se puede definir recursivamente mediante la fórmula general

$$y_{n+1} = y_n + hf(x_n, y_n).$$

A este procedimiento de uso sucesivo de las "rectas tangentes" se conoce como método de Euler.

$$\begin{aligned} \mathbf{1.}y' &= 2x - 3y + 1, y(1) = 5; y(1.2) \\ &\operatorname{Con} h = 0.1 \\ y_1 &= 5 + (0.1)(2*1 - 3*5 + 1) = 3.8 \\ y_2 &= 3.8 + (0.1)(2(1.1) - 3(3.8) + 1) = 2.98 \\ y_3 &= 2.98 + (0.1)(2(1.2) - 3(2.98) + 1) = 2.42 \\ &\operatorname{Con} h = 0.05 \\ y_1 &= 5 + (0.05)(2*1 - 3*5 + 1) = 4.4 \\ y_2 &= 4.4 + (0.05)(2*1.05 - 3*4.4 + 1) = 3.895 \\ y_3 &= 3.895 + (0.05)(2*1.1 - 3*3.895 + 1) = 3.47 \\ y_4 &= 3.47 + (0.05)(2*1.15 - 3*3.47 + 1) = 3.1151 \\ y_5 &= 3.1151 + (0.05)(2*1.2 - 3*3.1151 + 1) = 2.8178 \end{aligned}$$

$$2 \cdot y' = x + y^2, y(0) = 0; y(0.2)$$

$$\operatorname{Con} h = 0.1$$

$$y_1 = 0 + (0.1)(0+0) = 0$$

$$y_2 = 0 + (0.1)(0.1+0) = 0.01$$

$$y_3 = 0.01 + (0.1)(0.2 + 0.01^2)$$

$$\operatorname{Con} h = 0.05$$

$$y_1 = 0 + (0.05)(0+0) = 0$$

$$y_2 = 0 + (0.05)(0.05 + 0) = 0.0025$$

$$y_3 = 0.0025 + (0.05)(0.1 + 0.0025^2) = 0.0075$$

$$y_4 = 0.0075 + (0.05)(0.15 + 0.0075^2) = 0.015$$

$$y_5 = 0.015 + (0.05)(0.2 + 0.015^2) = 0.025$$

3.y' = y, y(0) = 1; y(1.0)							
	\mathbf{x}_n	y_n	Valor real	Error absoluto	% Error relativo		
Con h = 0.1	0.000000	1.000000	1.000000	0.000000	0.000000		
	0.100000	1.100000	1.000000	0.100000	10.000000		
	0.200000	1.210000	1.105171	0.104829	9.485328		
	0.300000	1.331000	1.221403	0.109597	8.973063		
	0.400000	1.464100	1.349859	0.114241	8.463196		
	0.500000	1.610510	1.491825	0.118685	7.955714		
	0.600000	1.771561	1.648721	0.122840	7.450606		
	0.700000	1.948717	1.822119	0.126598	6.947862		
	0.800000	2.143589	2.013753	0.129836	6.447470		
	0.900000	2.357948	2.225541	0.132407	5.949419		
	1.000000	2.593742	2.459603	0.134139	5.453699		
	1.100000	2.853117	2.718282	0.134835	4.960298		
			X 7 1 1	T			
	$\frac{\mathbf{X}_n}{\mathbf{X}_n}$	<u>y</u> _n	Valor real	Error absoluto	% Error relativo		
	0.000000	1.000000	1.000000	0.000000	0.000000		
	0.050000	1.050000	1.000000	0.050000	5.000000		
	0.100000	1.102500	1.051271	0.051229	4.873044		
	0.150000	1.157625	1.105171	0.052454	4.746242		
	0.200000	1.215506	1.161834	0.053672	4.619592		
	0.250000	1.276282	1.221403	0.054879	4.493096		
	0.300000	1.340096	1.284025	0.056070	4.366753		
	0.350000	1.407100	1.349859	0.057242	4.240563		
	0.400000	1.477455	1.419068	0.058388	4.114525		
Con h = 0.05	0.450000	1.551328	1.491825	0.059504	3.988640		
	0.500000	1.628895	1.568312	0.060582	3.862907		
	0.550000	1.710339	1.648721	0.061618	3.737326		
	0.600000	1.795856	1.733253	0.062603	3.611897		
	0.650000	1.885649	1.822119	0.063530	3.486619		
	0.700000	1.979932	1.915541	0.064391	3.361493		
	0.750000	2.078928	2.013753	0.065175	3.236518		
	0.800000	2.182875	2.117000	0.065875	3.111694		
	0.850000	2.292018	2.225541	0.066477	2.987022		
	0.900000	2.406619	2.339647	0.066972	2.862500		
	0.950000	2.526950	2.459603	0.067347	2.738128		
	1.000000	2.653298	2.585710	0.067588	2.613907		

4.y' = 2xy, y(1) = 1; y(1.5)

	\mathbf{x}_n	y_n	Valor real	Error absoluto	% Error relativo
	1.000000	1.000000	1.000000	0.000000	0.000000
	1.100000	1.200000	1.000000	0.200000	20.000000
Con h = 0.1	1.200000	1.464000	1.233678	0.230322	18.669534
	1.300000	1.815360	1.552707	0.262653	16.915796
	1.400000	2.287354	1.993716	0.293638	14.728183
	1.500000	2.927813	2.611696	0.316116	12.103862

	\mathbf{x}_n	y_n	Valor real	Error absoluto	% Error relativo
Con h = 0.05	1.000000	1.000000	1.000000	0.000000	0.000000
	1.050000	1.100000	1.000000	0.100000	10.000000
	1.100000	1.215500	1.107937	0.107563	9.708374
	1.150000	1.349205	1.233678	0.115527	9.364432
	1.200000	1.504364	1.380575	0.123789	8.966459
	1.250000	1.684887	1.552707	0.132180	8.512872
	1.300000	1.895498	1.755055	0.140443	8.002226
	1.350000	2.141913	1.993716	0.148197	7.433223
	1.400000	2.431071	2.276183	0.154888	6.804721
	1.450000	2.771421	2.611696	0.159725	6.115740
	1.500000	3.173277	3.011686	0.161591	5.365475

$$\mathbf{5.}y' = e^{-}y, y(0) = 0; y(0.5)$$

$$y(0.5) \approx 0.4854 \text{ (con } h = 0.1)$$

$$y(0.5) \approx 0.4455$$
 (con $h = 0.05$).

6.
$$y' = x^2 + y^2, y(0) = 1; y(0.5)$$

$$y(0.5) \approx 2.1995 \text{ (con } h = 0.1)$$

$$y(0.5) \approx 2.1325 \text{ (con } h = 0.05)$$

$$\mathbf{7.}y' = (x - y)^2, y(0) = 0.5; y(0.5)$$

$$y(0.5) \approx 2.1995 \text{ (con } h = 0.1)$$

$$y(0.5) \approx 2.1325 \text{ (con } h = 0.05)$$

$$8.y' = xy + \sqrt{y}, y(0) = 1; y(0.5)$$

$$y(0.5) \approx 1.9047 \text{ (con } h = 0.1)$$

$$y(0.5) \approx 1.8305 \text{ (con } h = 0.05)$$

$$\begin{array}{l} \mathbf{9.}y' = xy^2 - \frac{y}{x}, \ \mathrm{y}(1) {=} 1; \ \mathrm{y}(1.5) \\ \mathrm{y}(0.5) {\approx} \ 1.2194 \ (\mathrm{con} \ h = 0.1) \end{array}$$

$$v(0.5) \approx 1.2194 \text{ (con } h = 0.1)$$

$$y(0.5) \approx 1.2695 \text{ (con } h = 0.05)$$

$$\mathbf{10.}y' = y - y^2, y(0) = 0.5; y(0.5)$$

$$y(0.5) \approx 0.6466 \text{ (con } h = 0.1)$$

$$y(0.5) \approx 0.6345 \text{ (con } h = 0.05)$$