Introduction Navier-Stokes Equations

We will study the system defined by the Navier-Stokes equations eq:Incompressibility and eq:Momentum. align $\rho t + \vec{\nabla} \cdot (\rho \vec{u}) = 0$ eq: Incompressibility

Let us quickly describe and name each term of eq:Momentum. description

[Local acceleration $\vec{u}t$] is simply the local acceleration of a fluid particle.

[Advection term $(\vec{u} \cdot \vec{\nabla}) \vec{u}$] is the non linear term representing the acceleration due to the fluid itself.

Pressure gradient term $-1\rho\vec{\nabla}p$ represents the effects of the pressure on the fluid.

Gravitational term \vec{g} is the force acting on the fluid due to gravity.

Coriolis term $2\vec{\Omega} \wedge \vec{v}$ is an apparent force arising from the rotation of our reference frame.

Viscous term $\nu \Delta \vec{u}$ is the diffusion of the momentum due to to fluid viscosity.