《微分几何入门与广义相对论》 部分习题参考解答

by 薛定谔的大喵¹

2020年6月15日

 $^{^{1}}$ wyj1234@mail.ustc.edu.cn

目录

第一部分 上册	3
第一章 拓扑空间简介	4
第二章 流形和张量场	8
第三章 黎曼(内禀)曲率张量	25
第四章 李导数、Killing 场和超曲面	44
第五章 微分形式及其积分	53
第六章 狭义相对论	73
第七章 广义相对论基础	90
第八章 爱因斯坦方程的求解	92
第九章 施瓦西时空	93
第十章 宇宙论	94
第二部分 中册	95
第十一章 时空的整体因果结构	96
附录 B 量子力学数学基础简介	98
附录 G 李群和李代数	99

第一部分

上册

第七章 广义相对论基础

习题

1. 试证弯曲时空麦氏方程 $\nabla^a F_{ab} = -4\pi J_b$ 蕴含电荷守恒定律,即 $\nabla_a J^a = 0$ 。注: $\nabla^a F_{ab} = -4\pi J_b$ 等价于式 (7-2-8) 而非 (7-2-9) ,故本题表明式 (7-2-8) 而非式 (7-2-9) 可推出电荷守恒。

证明

$$-4\pi \nabla_a J^a = \nabla_a \nabla_b F^{ba} = 0.$$

2. 试证 $\frac{\mathrm{D}_{\mathrm{F}}\omega_a}{\mathrm{d}\tau} = \frac{\mathrm{D}\omega_a}{\mathrm{d}\tau} + (A_a \wedge Z_b)\,\omega^b \quad \forall \omega_a \in \mathscr{F}_G(0,1).$

证明 $\forall v^a \in \mathscr{F}_G(1,0)$,

$$\begin{split} v^a \frac{\mathbf{D_F} \omega_a}{\mathrm{d}\tau} &= \frac{\mathbf{D_F} \left(v^a \omega_a \right)}{\mathrm{d}\tau} - \omega_a \frac{\mathbf{D_F} v^a}{\mathrm{d}\tau} \\ &= v^a \frac{\mathbf{D}\omega_a}{\mathrm{d}\tau} + \omega_a \frac{\mathbf{D}v^a}{\mathrm{d}\tau} - \omega_a \left(\frac{\mathbf{D}v^a}{\mathrm{d}\tau} + 2A^{[a}Z^{b]}v_b \right) \\ &= v^a \left(\frac{\mathbf{D}\omega_a}{\mathrm{d}\tau} - 2A_{[b}Z_{a]}\omega^b \right) \\ &= v^a \left(\frac{\mathbf{D}\omega_a}{\mathrm{d}\tau} + A_a \wedge Z_b\omega^b \right). \end{split}$$

3. 试证费米导数性质 3.

证明 性质 3 如下:

性质 若 w^a 是 $G(\tau)$ 上的空间矢量场 (对线上各点 $w^a Z_a = 0$), 则

$$D_{\rm F}w^a/d\tau = h^a_{\ b}\left(Dw^b/d\tau\right),\,$$

其中 $h^a_{\ b}=g_{ab}+Z_aZ_b$, $h^a_{\ b}=g^{ac}h_{cb}$ 是 G(au) 上各点的投影映射。

证明 $h^a_{\ b} = g^{ac} \left(g_{cb} + Z_c Z_b \right) = \delta^a_{\ b} + Z^a Z_b,$

$$h^{a}_{b} \frac{\mathrm{D}w^{b}}{\mathrm{d}\tau} = (\delta^{a}_{b} + Z^{a}Z_{b}) \frac{\mathrm{D}w^{b}}{\mathrm{d}\tau}$$

$$= \frac{\mathrm{D}w^{a}}{\mathrm{d}\tau} + Z^{a} \left(\frac{\mathrm{D}\left(Z_{b}w^{b}\right)}{\mathrm{d}\tau} - w^{b} \frac{\mathrm{D}Z_{b}}{\mathrm{d}\tau} \right)$$

$$= \frac{\mathrm{D}w^{a}}{\mathrm{d}\tau} - Z^{a}A^{b}w_{b}$$

$$= \frac{\mathrm{D}w^{a}}{\mathrm{d}\tau} + \left(A^{a}Z^{b} - Z^{a}A^{b}\right)w_{b}$$

$$= \frac{\mathrm{D}_{F}w^{a}}{\mathrm{d}\tau}.$$

4. 试证类时线 $G(\tau)$ 上长度不变 (且非零) 的矢量场必经受时空转动。提示:令 $u^a \equiv \mathrm{D} v^a/\mathrm{d} \tau$,则 $u_a v^a = 0$ 。先证:无论 $v_a v^a$ 为零与否,总有 $G(\tau)$ 上矢量场 v'^a 使 $v'_a v^a = 1$ 。再验证 v^a 经受以 $\Omega_{ab} \equiv 2v'_{[a}u_{b]}$ 为角速度 2 形式的时空转动。

证明 1.
$$i$$
건 $u^a=rac{\mathrm{D} v^a}{\mathrm{d} au}$,则 $rac{\mathrm{D} \left(v_a v^a
ight)}{\mathrm{d} au}=2u_a v^a=0$ 。

2. 若 $v^a v_a \neq 0$, 令

$$v'^a = \frac{v^a}{v^b v^b},$$

若 $v^a v_a = 0$, 则 $Z^a v_a$ 不为零,因为与类时矢量内积为零则为类空矢量。于是定义

$${v'}^a = \frac{Z^a}{Z^b v_b}.$$

3. 定义 $\Omega_{ab}=2{v'}_{[a}u_{b]}$,则

$$-\Omega^{ab}v_b = u^a = \frac{\mathrm{D}v^a}{\mathrm{d}\tau},$$

故 v^a 经受以 Ω_{ab} 为角速度 2 形式的时空转动。

第二部分 中册

Bibliography

Hafele, J. C. and Richard E. Keating (1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains". In: Science 177.4044, pp. 166–168. ISSN: 0036-8075. DOI: 10.1126/science.177.4044.166. eprint: https://science.sciencemag.org/ content/177/4044/166.full.pdf. URL: https://science.sciencemag.org/ content/177/4044/166.

郭硕鸿 (1995). 电动力学. 第二版. 北京: 高等教育出版社.