

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General Degree) Second year – Semester II Examination-September /October 2013 Algebra– MAP 2301

Answer six questions.

Time allowed: 3 hours only.

- 1). a). Define the following terms.
 - i. Reflexive relation
 - ii. Symmetric relation
 - iii. Transitive relation
 - b). Let R be a relation on $x=\{1,2,3,4,5\}$ such that $(x,y) \in R$. If x+y < 7. Check whether R is an equivalence relation. Find the equivalence class of each element.
 - c). An equivalence relation S defined on $A=\{1,2,3,4\}$ contains the pairs (1,1),(1,2),(2,3). Find S, given that S is not the whole $A\times A$.
- 2). Consider the group $\mathbb{Z}_{12} = \{0,1,2,\ldots,11\}$
 - i).List all subgroups of \mathbb{Z}_{12} .
 - ii). Find the order of the elements 1,3,4,7,9
 - iii).Is $\,\mathbb{Z}_{12}$ cyclic? If so, find all generators of $\,\mathbb{Z}_{12}$.
- 3). Let \mathbb{Z} be the set of integers. Define an operation * on \mathbb{Z} by a* b= a+ b- 7 where $a,b\in\mathbb{Z}$.
 - i). Show that $(\mathbb{Z},*)$ is a group.
 - ii).Is $(\mathbb{Z},*)$ abelian? Justify your answer.
 - b). Let $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 4 & 1 & 2 & 7 \end{pmatrix}$ and $v = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 3 & 7 & 2 & 1 & 4 \end{pmatrix}$ be permutations in S_7 .
 - i). Write γ and v as product of disjoint cycles and calculate their orders.
 - ii).Find γ^{-1} , υ^{-1} and $\gamma \upsilon \gamma^{-1}$
 - iii). Find α in S_7 such that $\alpha \gamma = \gamma v$

4). a). Refer to the mappings $f: \mathbb{R}^2 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = (x^2 + 1, x + y)$ and g(x, y) = (2x + y). Find the followings:

i).f(1,4)

iii). (gof)(2,3)

ii).g(1,4)

- iv). $f^3(1,4)$
- b). Solve the congruence, 296 X \equiv 176 (mod 114)
- 5). Show that the equation ax + by = c has integer solutions if and only if (a,b)|c. If (x_0, y_0) is solution, then show that all integer solutions are given by

 $x = x_0 + \frac{b}{(a,b)} n$ and $y = y_0 + \frac{a}{(a,b)} n$ where $n \in Z$

- ii). Solve the equation 247 x + 91 y = 39
- iii). Solve the equation 6x + 10y + 15z = 5
- 6). i). If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then show that $ac \equiv bd \pmod{m}$
 - ii). If $a \equiv b \pmod{m}$ then show that $a^k \equiv b^k \pmod{m}$ for all non-negative integers k.
 - iii). Using the Chinese reminder theorem, solve the following system of congruences.

 $2x \equiv 3 \pmod{5}$

 $4x \equiv 1 \pmod{7}$

 $2x \equiv 5 \pmod{9}$

- 7). a). Define the following terms
 - i) Abelian group
 - ii) Normal subgroup
 - iii) Homomorphism
 - iv). Sub group
 - b). Let $\varphi \colon G \to H$ be a homomorphism from a group G to a group H.Then show that
 - i). The kernel of φ is a normal subgroup of G
 - ii). The image of φ is a subgroup of H.