

Model Development Phase Template

Date	31 June 2024
Team ID	740677
Project Title	Software Salary Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Initial Model Training Code, Model Validation and Evaluation Report The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots

Random forest Model

```
rfr = RandomForestRegressor(n_estimators=100,random_state=42)
rfr.fit(X_train,y_train)
y_test_pred=rfr.predict(X_test)
y_train_pred=rfr.predict(X_train)

train_r2 = r2_score(y_train, y_train_pred) * 100
print("Training R2:",train_r2)
#Calculate and print the R2 score for the testing data
test_r2 = r2_score(y_test, y_test_pred) * 100
print("Testing R2",test_r2)

Training R2: 86.03987604146623
Testing R2 0.19943667460349257
```



```
[31] xg_reg = xgb.XGBRegressor()
     xg_reg.fit(X_train,y_train)
±
                                        XGBRegressor
      XGBRegressor(base_score=None, booster=None, callbacks=None,
                   colsample_bylevel=None, colsample_bynode=None,
                   colsample_bytree=None, device=None, early_stopping_rounds=None,
                   enable_categorical=False, eval_metric=None, feature_types=None,
                 • gamma=None, grow_policy=None, importance_type=None,
                   interaction_constraints=None, learning_rate=None, max_bin=None,
                   max_cat_threshold=None, max_cat_to_onehot=None,
                   max_delta_step=None, max_depth=None, max_leaves=None,
                   min_child_weight=None, missing=nan, monotone_constraints=None,
                   multi_strategy=None, n_estimators=None, n_jobs=None,
                   num_parallel_tree=None, random_state=None, ...)
[32] y_test_pred=xg_reg.predict(X_test)
     y train pred=xg reg.predict(X train)
[33]
     train_r2 = r2_score(y_train, y_train_pred) * 100
     print("Training R2:",train_r2)
#Calculate and print the R2 score for the testing data
     test_r2 = r2_score(y_test, y_test_pred) * 100
print("Testing R2: ",test_r2)
```


Decision tree for training data

y_train_pred = dtr.predict(X_train)
y_test_pred = dtr.predict(X_test)

r2_score(y_train, y_train_pred)*100

99.88283394123113

Model Validation and Evaluation Report:

	F1 Scor
Model	
Random Forest	
	86%
Decision Tree	
	83%
KNN	64%
Gradient Boosting	78%