第一节 DDR3 基础知识

1、DDR3全称第三代双倍速率同步动态随机存储器。

特点:①掉电无法保存数据,需要周期性的刷新。②时钟上升沿和下降沿都会传输数据。③突发传输,突发长度 Burst Length 一般为 8。

2、DDR3 的存储: bank、行地址和列地址

数据怎么存入到 DDR3: 先指定一个 Bank 地址,再指定行地址,最后指定列地址。

DDR3 容量计算: bank 数量 × 行数量 × 列数量 × 存储单元容量。

比如 bank address 位宽为 3, Row address 位宽为 14, Column address 为 10,则容量为: 2^3 × 2^14 × 2^12 × 16bit

3、DDR3 命名

以镁光公司的 DDR3 为例子: MT41J 64M16-125

从 DDR3 的命名,我们可以得出几点有用的信息:

- ① DDR3 传输数据端口的位宽
- ② DDR3 支持的**最大的**时钟频率
- ③ DDR3 传输数据的带宽

第二节 时钟

1、时钟类别(不要弄混淆哦)

系统时钟: MIG IP 核工作时钟,一般命名为 sys clk。

参考时钟: MIG IP 的参考时钟, 必须为 200M, 命名为 ref clk

DDR3 芯片工作的时钟:由 FPGA 输入到 DDR3 芯片,为差分时钟

用户端时钟: MIG IP 核输出给用户端的时钟,命名为 ui_clk

2、DDR3 芯片工作的时钟与用户端时钟有一个比例关系:

DDR3 芯片工作的频率: 用户端时钟频率为 4:1 或者 2:1, 当 DDR3 芯片工作的时钟为 800M 时候,比例只能为 2:1

第三节 MIG IP 核的配置

1、用户端接口有两种: Native 接口和 AXI4 接口

①Native 接口

1. System clock (sys_clk_p and sys_clk_n/sys_clk_i), Reference clock (clk_ref_p and clk_ref_n/clk_ref_i), and system reset (sys_rst_n) port connections are not shown in block diagram.

Figure 1-51: 7 Series FPGAs Memory Interface Solution

②AXI4 接口

2、带宽计算(重点)

①FPGA 写入数据到 DDR3 芯片的带宽为:

 $800M \times 2 \times 16bit$

②用户端写入数据到 MIG IP 核的带宽为:

200M ×用户端数据位宽

因为 800M × 2 × 16bit = 200M ×用户端数据位宽

所以用户端数据位宽为128bit

3、系统时钟 system clock 关于 No Buffer、Single-Ended、Differential 怎么选择?

系统时钟由内部时钟产生,比如经过 PLL 后产生的 200M 时钟,选择 No buffer。

系统时钟由 FPGA 外部晶振产生,输入到 FPGA 的管脚,再输入到 MIG IP 核,选择 Single-Ended 或者 Differential。外部晶振产生的时钟为单端时钟,选择 Single-Ended; 外部晶振产生的时钟为差分时钟,选择 Differential;

No Buffer 是什么意思?

No Buffer 就是 MIG IP 核内部没有例化 IBUF 原语

3、参考时钟 Reference Clock 怎么选择?

No Buffer、Single-Ended、Differential 选择的判据同上。

如果系统时钟为 200M,则选择"Use System Clock"。

4、绑定管脚如何选择?

- ①只需要仿真 DDR3,学习 DDR3,不上板子调试,选择第一个"New Design"
 - New Design: Pick the optimum banks for a new design
- ②需要上板调试,选择"Fixed Pin Out"
 - Fixed Pin Out: Pre-existing pin out is known and fixed

第四节 官方源码 example design 解读(Native 接口)

1、MIG IP 核端口信号

① 与 DDR3 物理芯片连接的信号

```
mig_7series_0 u_mig_7series_0 (
    // Memory interface ports
    .ddr3 addr
                                                 (ddr3_addr), // output [13:0]
                                                                                                   ddr3_addr
    .ddr3_ba
                                                 (ddr3_ba), // output [2:0]
                                                                                             ddr3 ba
                                                 (ddr3_cas_n), // output [0:0]
(ddr3_ck_n), // output [0:0]
(ddr3_ck_p), // output [0:0]
(ddr3_cke), // output [0:0]
    .ddr3 cas n
                                                                                                   ddr3 cas n
    .ddr3 ck n
                                                                                                   ddr3 ck n
    .ddr3_ck_p
                                                                                                   ddr3_ck_p
    .ddr3_cke
                                                                                                   ddr3 cke
    .ddr3_ras_n
                                                 (ddr3_ras_n), // output
                                                                                                   ddr3_ras_n
    .ddr3_reset_n
                                                 (ddr3_reset_n), // output
                                                                                                   ddr3_reset_n
                                                (ddr3_we_n), // output
(ddr3_dq), // inout [15:0]
(ddr3_dqs_n), // inout [1:0]
(ddr3_dqs_p), // inout [1:0]
(ddr3_dqs_cn), // output [0:0]
    .ddr3 we n
                                                                                             ddr3 we \overline{n}
    .ddr3_dq
.ddr3_dqs_n
                                                                                             ddr3 dq
                                                                                                  ddr3_dqs_n
    .ddr3_dqs_p
                                                                                                   ddr3_dqs_p
    .ddr3 cs n
                                                                                                  ddr3 cs n
    .ddr3 dm
                                                 (ddr3_dm), // output [1:0]
                                                                                             ddr3_dm
    .ddr3 odt
                                                 (ddr3 odt), // output [0:0]
                                                                                                   ddr3 odt
```

② 用户端读写信号(重要)

```
// Application interface ports
.app_addr
                                          (app_addr), // input [27:0]
                                                                                  app_addr
                                         (app_cmd), // input [2:0]
(app_en), // input
(app_rdy), // output
.app_cmd
                                                                                  app_cmd
.app_en
                                                                                  app_en
.app_rdy
                                                                                  app_rdy
                                         (app_wdf_data), // input [127:0]
(app_wdf_end), // input
.app_wdf_data
                                                                                             app_wdf_data
.app_wdf_end
                                                                                             app_wdf_end
                                         (app_wdf_wren), // input
(app_wdf_rdy), // output
(app_wdf_mask), // input [15:0]
.app_wdf_wren
                                                                                             app_wdf_wren
                                                                                        app_wdf_rdy
.app_wdf_rdy
.app_wdf_mask
                                                                                             app_wdf_mask
.app_rd_data
                                         (app_rd_data), // output [127:0]
                                                                                             app_rd_data
                                         (app_rd_data_end), // output
(app_rd_data_valid), // output
.app_rd_data_end
                                                                                             app_rd_data_end
.app_rd_data_valid
                                                                                             app_rd_data_valid
```

③ 用户端时钟与复位、系统时钟与复位

```
.ui_clk (ui_clk), // output ui_clk
.ui_clk_sync_rst (ui_clk_sync_rst), // output ui_clk_sync_rst

// System Clock Ports
.sys_clk_i (sys_clk_i),
.sys_rst (sys_rst) // input sys_rst
```

④ 其他不那么重要的信号

```
.app_sr_req
.app_ref_req
.app_ref_req
(app_ref_req), // input app_sr_req
.app_ref_req
(app_ref_req), // input app_ref_req
.app_zq_req
(app_zq_req), // input app_zq_req
.app_sr_active (app_sr_active), // output app_sr_active
.app_ref_ack (app_ref_ack), // output app_ref_ack
.app_zq_ack (app_zq_ack), // output app_zq_ack
.device_temp_i (device_temp_i), // input [11:0] device_temp_i
```

思考一个问题,MIG IP 核用户端的 app_addr 地址信号如何与 DDR3 芯片的 地址对应起来?

- Row Width 15
- Bank Width 3
- Column Width 10

Example (1) – When the selected option in the MIG GUI is BANK_ROW_COLUMN and the address to the controller is mapped accordingly.

	Original Mapping of the Address Bits																										
BANK Address Bits		ROW Address Bits														COLUMN Address Bits											
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В2	В1	ВО	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	C9	C8	C7	C6	C5	C4	С3	C2	C1	C0
									Rem	napp	ed A	ddre	SS W	ith	TG_	TES	Т										

2、用户端时序

如何学习用户端与 MIG IP 核之间的数据交互时序?

- ① 阅读 MIG IP 核的 User Guide
- ② 看官方 design example 源码以及仿真波形

第五节 搭建仿真平台

1、为什么要搭建仿真平台?