Ridge Regression

Nipun Batra

IIT Gandhinagar

September 10, 2025

Outline

- 1. Motivation: The Problem of Overfitting
- 2. Ridge Regression Formulation
- 3. Mathematical Derivation
- 4. Hyperparameter Selection
- 5. Examples and Applications
- 6. Implementation Details

Motivation: The Problem of Overfitting

The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree), we often observe:

- Training error decreases
- Test error increases
- Model coefficients become very large

The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree), we often observe:

- Training error decreases
- Test error increases
- Model coefficients become very large

Key Points: Key Insight

Large coefficient magnitudes often indicate overfitting!

The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree), we often observe:

- Training error decreases
- Test error increases
- Model coefficients become very large

Key Points: Key Insight

Large coefficient magnitudes often indicate overfitting!

In polynomial $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_d x^d$, watch $\max |c_i|$

Base Data Set

Fit with Degree 1 - Underfitting

Fit with Degree 3 - Good Fit

Fit with Degree 6 - Starting to Overfit

Fit with Degree 11 - Severe Overfitting

Coefficient Explosion with Overfitting

Key Points: Key Observation

As polynomial degree increases \rightarrow coefficients grow exponentially!

The Central Question

Important: Critical Question

How can we control coefficient magnitudes to prevent overfitting?

The Central Question

Important: Critical Question

How can we control coefficient magnitudes to prevent overfitting?

Key Points: Answer Preview

Ridge regression adds a penalty term to shrink coefficients!

Pop Quiz 1

Answer this!

Which statement about overfitting is TRUE?

- A) Higher polynomial degree always improves generalization
- B) Large coefficients indicate good model fit
- C) Overfitting occurs when training error >> test error
- D) Overfitting occurs when training error << test error

Answer: Pop Quiz 1

Answer this!

D) Overfitting occurs when training error << test error

Explanation:

- Training error becomes very small (model memorizes training data)
- Test error remains large (model fails to generalize)
- Large gap indicates overfitting

Ridge Regression Formulation

Solution: Regularization

Theorem: Ridge Regression Approach

Add a penalty term to control coefficient magnitudes:

Solution: Regularization

Theorem: Ridge Regression Approach

Add a penalty term to control coefficient magnitudes:

Definition: Constrained Formulation

$$\min_{m{ heta}} \quad \left(\mathbf{y} - \mathbf{X} m{ heta}
ight)^T (\mathbf{y} - \mathbf{X} m{ heta})$$
 subject to $\quad m{ heta}^T m{ heta} \leq \mathcal{S}$

where S > 0 controls the size of the coefficient vector.

Lagrangian Formulation

Theorem: Equivalence Theorem

The constrained problem is equivalent to the unconstrained:

$$\min_{\boldsymbol{\theta}} \quad (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda \boldsymbol{\theta}^T \boldsymbol{\theta}$$

where $\lambda \geq 0$ is the regularization parameter.

Lagrangian Formulation

Theorem: Equivalence Theorem

The constrained problem is equivalent to the unconstrained:

$$\min_{oldsymbol{ heta}} \quad (\mathbf{y} - \mathbf{X}oldsymbol{ heta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}oldsymbol{ heta}) + \lambda oldsymbol{ heta}^{\mathsf{T}}oldsymbol{ heta}$$

where $\lambda \geq 0$ is the regularization parameter.

Key Points: Key Insight

This transforms a constrained optimization into an unconstrained one with a penalty term.

Understanding the Ridge Penalty

$$J(\theta) = \underbrace{(\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)}_{\text{Fit to data (MSE)}} + \underbrace{\lambda \theta^T \theta}_{\text{Penalty term}} \tag{1}$$

$$= \mathsf{MSE}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_2^2 \tag{2}$$

Understanding the Ridge Penalty

$$J(\theta) = \underbrace{(\mathbf{y} - \mathbf{X}\theta)^{T} (\mathbf{y} - \mathbf{X}\theta)}_{\text{Fit to data (MSE)}} + \underbrace{\lambda \theta^{T} \theta}_{\text{Penalty term}} \tag{1}$$

$$= \mathsf{MSE}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_2^2 \tag{2}$$

Key Points: Key Components

- Data fitting term: Ensures good fit to training data
- Regularization term: L_2 penalty shrinks coefficients toward zero
- λ : Controls trade-off between fitting vs. regularization

Key Points: Parameter Effects

- $\lambda = 0$: No regularization (standard linear regression)
- λ small: Light regularization (slight shrinkage)
- λ large: Heavy regularization (strong shrinkage)
- $\lambda \to \infty$: Extreme regularization (coefficients $\to 0$)

Key Points: Parameter Effects

- $\lambda = 0$: No regularization (standard linear regression)
- λ small: Light regularization (slight shrinkage)
- λ large: Heavy regularization (strong shrinkage)
- $\lambda \to \infty$: Extreme regularization (coefficients $\to 0$)

Important: Key Trade-off

Higher $\lambda = \text{more regularization} = \text{more bias, less variance}$

Geometric Interpretation

Ridge solution where MSE contours touch constraint region

Key Points: Key Insight

Ridge finds the minimum MSE point within the constraint $\|m{ heta}\|_2^2 \leq S$

Mathematical Derivation

Step 1: Set up the Lagrangian

For the constrained optimization problem:

The Lagrangian is:

$$L(\boldsymbol{\theta}, \lambda) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{T} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda (\boldsymbol{\theta}^{T}\boldsymbol{\theta} - S)$$

where $\lambda \geq 0$ is the Lagrange multiplier.

Step 2: Apply KKT Conditions		
For optimality, we need:		
	(stationarity)	(3)
$\lambda \geq 0$	(dual feasibility)	(4)
$\boldsymbol{\theta}^{T}\boldsymbol{\theta} - \mathcal{S} \leq 0$	(primal feasibility)	(5)
$\lambda(\boldsymbol{\theta}^{T}\boldsymbol{\theta} - \boldsymbol{S}) = 0$	(complementary slackness)	(6)

Step 2: Apply KKT Conditions

For optimality, we need:

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = 0 \quad \text{(stationarity)} \tag{3}$$

$$\lambda \ge 0$$
 (dual feasibility) (4)

$$\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\theta} - \mathbf{S} \le 0 \quad \text{(primal feasibility)} \tag{5}$$

$$\lambda(\boldsymbol{\theta}^T \boldsymbol{\theta} - \boldsymbol{S}) = 0$$
 (complementary slackness) (6)

Key Points: Two Cases

- Case 1: $\lambda = 0 \Rightarrow \text{No constraint active (standard OLS)}$
- Case 2: $\lambda > 0 \Rightarrow \theta^T \theta = S$ (constraint is tight)

Step 3: Compute the Gradient

Taking the derivative of the Lagrangian with respect to θ :

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \left[(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda \boldsymbol{\theta}^T \boldsymbol{\theta} \right]$$

$$= \frac{\partial}{\partial \boldsymbol{\theta}} \left[\mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\theta} + \lambda \boldsymbol{\theta}^T \boldsymbol{\theta} \right]$$

$$= -2 \mathbf{X}^T \mathbf{y} + 2 \mathbf{X}^T \mathbf{X} \boldsymbol{\theta} + 2 \lambda \boldsymbol{\theta}$$
(9)

Step 4: Set Gradient to Zero Setting $\frac{\partial L}{\partial \theta} = 0$: $-2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} + 2\lambda \boldsymbol{\theta} = 0 \qquad (10)$ $-\mathbf{X}^T \mathbf{y} + (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) \boldsymbol{\theta} = 0 \qquad (11)$ $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y} \qquad (12)$

Step 4: Set Gradient to Zero

Setting $\frac{\partial L}{\partial \theta} = 0$:

$$-2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} + 2\lambda\boldsymbol{\theta} = 0 \tag{10}$$

$$-\mathbf{X}^{T}\mathbf{y} + (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\theta} = 0$$
 (11)

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$
 (12)

Theorem: Ridge Regression Solution

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Compare with OLS: $\hat{\theta}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

 $\lambda=1$ - Mild Regularization

 $\lambda=10$ - Moderate Regularization

 $\lambda=1000$ - Heavy Regularization

Pop Quiz 2

Answer this!

What happens to the Ridge regression solution as $\lambda \to \infty$?

- A) Coefficients approach the OLS solution
- B) Coefficients approach zero
- C) Solution becomes undefined
- D) Training error becomes zero

Answer: Pop Quiz 2

Answer this!

B) Coefficients approach zero

As $\lambda \to \infty$, the penalty term dominates:

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \approx \lambda^{-1}\mathbf{I}\mathbf{X}^{\mathsf{T}}\mathbf{y} \rightarrow \mathbf{0}$$

Coefficient Shrinkage: Visual Evidence

Coefficient Magnitudes vs λ (Real Estate Dataset)

Important: Important Question

Do coefficients ever become exactly zero?

Ridge Coefficient Behavior

Ridge Coefficients Shrink but Never Reach Zero

Ridge vs. Lasso: Key Difference

Key Points: Coefficient Behavior Comparison

- Ridge (L₂): Coefficients shrink toward zero but remain non-zero
- Lasso (L₁): Coefficients can become exactly zero (feature selection)

Ridge vs. Lasso: Key Difference

Key Points: Coefficient Behavior Comparison

- Ridge (L₂): Coefficients shrink toward zero but remain non-zero
- Lasso (L₁): Coefficients can become exactly zero (feature selection)

Important: Important Insight

Ridge provides shrinkage, Lasso provides selection!

Ridge Regression Solution

Theorem: Ridge Solution Formula

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Key Property 1: Always Invertible

Theorem: Invertibility Guarantee

 $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})$ is always positive definite for $\lambda > 0$

Key Property 1: Always Invertible

Theorem: Invertibility Guarantee

 $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})$ is always positive definite for $\lambda > 0$

Key Points: Why This Matters

- No singularity issues (unlike OLS)
- · Always has unique solution
- · Handles multi-collinearity gracefully

Key Property 2: Coefficient Shrinkage

Theorem: Shrinkage Effect

Ridge regression shrinks coefficients toward zero (but not exactly zero)

Key Property 2: Coefficient Shrinkage

Theorem: Shrinkage Effect

Ridge regression shrinks coefficients toward zero (but not exactly zero)

Key Points: Shrinkage Benefits

- Reduces overfitting
- Stabilizes coefficient estimates
- · Improves generalization

Key Property 3: Bias-Variance Trade-off

Theorem: Trade-off Effect

Ridge regression increases bias but reduces variance

Key Property 3: Bias-Variance Trade-off

Theorem: Trade-off Effect

Ridge regression increases bias but reduces variance

Key Points: Net Effect

- Total error often decreases
- · Better generalization to new data
- Controlled by λ parameter

Hyperparameter Selection

Choosing the Regularization Parameter λ

Important: Hyperparameter Selection

How do we choose the optimal value of λ ?

Choosing the Regularization Parameter λ

Important: Hyperparameter Selection

How do we choose the optimal value of λ ?

Theorem: Cross-Validation Approach

- 1. Split data into training and validation sets (k-fold CV)
- 2. For each candidate λ value:
 - Train ridge model on training data
 - Compute validation error
- 3. Select λ that minimizes validation error
- 4. Retrain on full dataset with chosen λ

Cross-Validation for Ridge Regression

Cross-validation curve showing optimal λ

Key Points: CV Pattern

- Small λ : Overfitting Large λ : Underfitting
- Optimal λ : Best trade-off

Bias-Variance Trade-off in Ridge Regression

Theorem: Bias-Variance Decomposition

Total $Error = Bias^2 + Variance + Irreducible Error$

Bias-Variance Trade-off in Ridge Regression

Theorem: Bias-Variance Decomposition

Total Error = $Bias^2 + Variance + Irreducible Error$

Key Points: Ridge Effect

Regularization increases bias but reduces variance, often leading to lower total error.

Small vs Large Regularization

Small λ ($\lambda \to 0$):

- · Low bias
- High variance
- Risk of overfitting

Large λ ($\lambda \to \infty$):

- High bias
- · Low variance
- Risk of underfitting

Pop Quiz 3

Answer this!

In ridge regression, as we increase λ , what happens to model bias and variance?

- A) Both bias and variance increase
- B) Both bias and variance decrease
- C) Bias increases, variance decreases
- D) Bias decreases, variance increases

Answer: Pop Quiz 3

Answer this!

C) Bias increases, variance decreases

Explanation:

- Increasing λ constrains coefficients more severely
- Model becomes simpler (higher bias)
- Less sensitive to training data variations (lower variance)
- This is the fundamental bias-variance trade-off!

Examples and Applications

Worked Example: Setup

Example: Ridge Regression Example

Given the following simple dataset, compare OLS vs. Ridge regression with $\lambda=2$:

Data:
$$(x_1, y_1) = (1, 1)$$
, $(x_2, y_2) = (2, 2)$, $(x_3, y_3) = (3, 3)$, $(x_4, y_4) = (4, 0)$

Model: $y = \theta_0 + \theta_1 x$

Worked Example: Setup

Example: Ridge Regression Example

Given the following simple dataset, compare OLS vs. Ridge regression with $\lambda=2$:

Data:
$$(x_1, y_1) = (1, 1)$$
, $(x_2, y_2) = (2, 2)$, $(x_3, y_3) = (3, 3)$, $(x_4, y_4) = (4, 0)$

Model: $y = \theta_0 + \theta_1 x$

Step 1: Set up matrices

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \quad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

Worked Example: OLS Setup

Step 2: Ordinary Least Squares

$$\hat{\boldsymbol{\theta}}_{\mathsf{OLS}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{y})$$

Worked Example: OLS Setup

Step 2: Ordinary Least Squares

$$\hat{\boldsymbol{\theta}}_{\mathsf{OLS}} = (\mathbf{X}^{T}\mathbf{X})^{-1}(\mathbf{X}^{T}\mathbf{y})$$

Step 3: Compute matrix products

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$
$$\mathbf{X}^{T}\mathbf{y} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

Worked Example: Matrix Inverse

Step 4: Compute the inverse
$$\begin{aligned} \text{For } \mathbf{X}^T \mathbf{X} &= \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} : \\ \det(\mathbf{X}^T \mathbf{X}) &= 4 \cdot 30 - 10 \cdot 10 = 20 \\ &(\mathbf{X}^T \mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \end{aligned}$$

Worked Example: OLS Calculation

Step 5: Final matrix multiplication

$$\hat{\boldsymbol{\theta}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

$$= \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 180 - 140 \\ -60 + 56 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 40 \\ -4 \end{bmatrix} = \begin{bmatrix} 2.0 \\ -0.2 \end{bmatrix}$$

OLS Final Result

Theorem: OLS Result

$$\hat{y} = 2.0 - 0.2x$$
 (No regularization)

Worked Example: Ridge Setup

Step 5: Ridge regression with
$$\lambda=2$$

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} (\mathbf{X}^T \mathbf{y})$$

Worked Example: Ridge Setup

Step 5: Ridge regression with $\lambda=2$

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{y})$$

Step 6: Add regularization term

$$\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} + 2\mathbf{I}$$
$$= \begin{bmatrix} 6 & 10 \\ 10 & 32 \end{bmatrix}$$

Worked Example: Matrix Inverse

Step 7: Compute inverse
$$\det(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) = 6 \cdot 32 - 10 \cdot 10 = 92$$
$$(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} = \frac{1}{92} \begin{bmatrix} 32 & -10 \\ -10 & 6 \end{bmatrix}$$

Worked Example: Ridge Calculation

Step 8: Matrix multiplication $\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} (\mathbf{X}^T \mathbf{y})$ $= \frac{1}{92} \begin{bmatrix} 32 & -10 \\ -10 & 6 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix}$

Worked Example: Ridge Calculation

Step 8: Matrix multiplication

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbf{I})^{-1} (\mathbf{X}^{\mathsf{T}} \mathbf{y})$$
$$= \frac{1}{92} \begin{bmatrix} 32 & -10 \\ -10 & 6 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

Step 9: Compute products

$$= \frac{1}{92} \begin{bmatrix} 32 \cdot 6 + (-10) \cdot 14 \\ (-10) \cdot 6 + 6 \cdot 14 \end{bmatrix}$$
$$= \frac{1}{92} \begin{bmatrix} 192 - 140 \\ -60 + 84 \end{bmatrix} = \frac{1}{92} \begin{bmatrix} 52 \\ 24 \end{bmatrix} = \begin{bmatrix} 0.565 \\ 0.261 \end{bmatrix}$$

Ridge vs OLS: Final Comparison

Theorem: Ridge Result

$$\hat{y} = 0.565 + 0.261x$$
 (With $\lambda = 2$)

Ridge regression provides more stable coefficients

Coefficient Magnitude Comparison

Theorem: OLS vs Ridge: $\sum \theta_i^2$

• OLS:
$$\theta_{OLS} = \begin{bmatrix} 2.0 \\ -0.2 \end{bmatrix}$$

• Ridge:
$$\theta_{Ridge} = \begin{bmatrix} 0.565 \\ 0.261 \end{bmatrix}$$

Coefficient Magnitude Comparison

Theorem: OLS vs Ridge: $\sum \theta_i^2$

• OLS:
$$\theta_{OLS} = \begin{bmatrix} 2.0 \\ -0.2 \end{bmatrix}$$

• Ridge:
$$heta_{\it Ridge} = egin{bmatrix} 0.565 \\ 0.261 \end{bmatrix}$$

Coefficient Norm Comparison

$$\|\boldsymbol{\theta}_{OLS}\|_{2}^{2} = (2.0)^{2} + (-0.2)^{2} = 4.0 + 0.04 = 4.04$$
 (13)
$$\|\boldsymbol{\theta}_{Ridge}\|_{2}^{2} = (0.565)^{2} + (0.261)^{2} = 0.319 + 0.068 = 0.387$$
 (14)

Coefficient Magnitude Comparison

Theorem: OLS vs Ridge: $\sum \theta_i^2$

• OLS:
$$\theta_{OLS} = \begin{bmatrix} 2.0 \\ -0.2 \end{bmatrix}$$

• Ridge:
$$heta_{\it Ridge} = egin{bmatrix} 0.565 \\ 0.261 \end{bmatrix}$$

Coefficient Norm Comparison

$$\|\boldsymbol{\theta}_{OLS}\|_{2}^{2} = (2.0)^{2} + (-0.2)^{2} = 4.0 + 0.04 = 4.04$$
 (13)
$$\|\boldsymbol{\theta}_{Ridge}\|_{2}^{2} = (0.565)^{2} + (0.261)^{2} = 0.319 + 0.068 = 0.387$$
 (14)

Multi-collinearity

 $(\mathbf{X}^T\mathbf{X})^{-1}$ is not computable when $|\mathbf{X}^T\mathbf{X}|=0$. This was a drawback of using linear regression

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix}$$

The matrix X is not full rank.

Ridge Solution to Multi-collinearity

Key Points: Ridge Advantage

With ridge regression, we invert $\mathbf{X}^T\mathbf{X} + \mu\mathbf{I}$ instead of $\mathbf{X}^T\mathbf{X}$

$$\mathbf{X}^T \mathbf{X} + \mu \mathbf{I} = \begin{bmatrix} 3 + \mu & 6 & 12 \\ 6 & 14 + \mu & 28 \\ 12 & 28 & 56 + \mu \end{bmatrix}$$

Why Ridge Fixes Singularity

Theorem: Key Result

The matrix $\mathbf{X}^T\mathbf{X} + \mu\mathbf{I}$ is always full rank for $\mu > 0$

Why Ridge Fixes Singularity

Theorem: Key Result

The matrix $\mathbf{X}^T\mathbf{X} + \mu\mathbf{I}$ is always full rank for $\mu > 0$

Important: Another Interpretation

 $\label{eq:Ridge regression} \textbf{Ridge regression} = \textbf{regularization} = \textbf{fixing singularity issues!}$

Why Ridge Fixes Singularity

Theorem: Key Result

The matrix $\mathbf{X}^T \mathbf{X} + \mu \mathbf{I}$ is always full rank for $\mu > 0$

Important: Another Interpretation

 $\label{eq:Ridge regression} \textbf{Ridge regression} = \textbf{regularization} = \textbf{fixing singularity issues!}$

Key Points: Summary

Ridge regression elegantly handles multi-collinearity problems!

Extension of the analytical model

For ridge with no penalty on θ_0

$$\hat{\boldsymbol{\theta}} = \left(\mathbf{X}^T \mathbf{X} + \mu \mathbf{I}^*\right)^{-1} \mathbf{X}^T \mathbf{y}$$

where,

$$\mathbf{I}^* = \begin{bmatrix} \mathbf{0} & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

Implementation Details

Ridge Regression via Gradient Descent

Theorem: Gradient Descent Update Rule

Standard gradient descent step for ridge regression:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla J(\boldsymbol{\theta}^{(t)})$$

Ridge Regression via Gradient Descent

Theorem: Gradient Descent Update Rule

Standard gradient descent step for ridge regression:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla J(\boldsymbol{\theta}^{(t)})$$

Ridge Gradient Computation

$$\nabla J(\boldsymbol{\theta}) = \nabla \left[\frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2} + \frac{\lambda}{2} \| \boldsymbol{\theta} \|_{2}^{2} \right]$$

$$= -\mathbf{X}^{T} (\mathbf{y} - \mathbf{X} \boldsymbol{\theta}) + \lambda \boldsymbol{\theta}$$
(15)

$$= -\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} + \lambda\boldsymbol{\theta} \tag{17}$$

Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)} + \lambda \boldsymbol{\theta}^{(t)})$$
$$= (1 - \alpha \lambda) \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)})$$

Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)} + \lambda \boldsymbol{\theta}^{(t)})$$
$$= (1 - \alpha \lambda) \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)})$$

Theorem: OLS Update (no shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\boldsymbol{\theta}^{(t)})$$

Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)} + \lambda \boldsymbol{\theta}^{(t)})$$
$$= (1 - \alpha \lambda) \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)})$$

Theorem: OLS Update (no shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha(-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\boldsymbol{\theta}^{(t)})$$

Key Points: Key Insight

The $(1 - \alpha \lambda)$ factor **shrinks** coefficients at each step!

Summary: What We Learned

Key Points: Ridge Regression Key Points

- Problem: Overfitting in linear regression with large coefficients
- **Solution**: Add L_2 penalty $\lambda \|\theta\|_2^2$ to loss function
- Effect: Shrinks coefficients, improves generalization
- Trade-off: Higher bias, lower variance

Key Formula & Next Steps

Theorem: Ridge Regression Solution

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Key Formula & Next Steps

Theorem: Ridge Regression Solution

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Important: Next Steps

- Compare with Lasso regression (L_1 penalty)
- Explore elastic net (combines L_1 and L_2)
- Apply to real-world datasets