TEOREMA 2.2 DAS NOTAS DE PETER SCHOLZE SOBRE MATEMÁTICA CONDENSADA

Igor Martins Silva

02 e 09 de dezembro de 2022

Antes de enunciarmos o Teorema 2.2, das notas de Peter Scholze, e apresentarmos sua demonstração, que é o objetivo deste texto, vamos relembrar o que é uma categoria de grupos abelianos κ -condensados, definir categoria abeliana e apresentar os axiomas de Grothendieck (AB3), (AB4), (AB5), (AB6), (AB3*) e (AB4*). Porém, antes de mais nada, vale ressaltar que uma categoria \mathscr{C} , a menos que se expresse o contrário, é sinônimo de categoria pequena, ou seja, $Obj(\mathscr{C})$ e $Hom(\mathscr{C})$ são conjuntos.

Vamos começar relembrando a definição de categoria de grupos abelianos κ -condensados, assunto discutido no seminário sobre conjuntos condensados, ministrado por Luiz Felipe Andrade Campos. Sejam

- (a) **HTop** a categoria cujos objetos são espaços topológicos Hausdorff e os morfismos são funções contínuas, e
- (b) **TfinSet** a categoria cujos objetos são conjuntos finitos com a topologia discreta e os morfismos são funções contínuas.

Note que **TfinSet** é uma subcategoria de **HTop**. Seja \mathscr{D} um poset, isto é, uma categoria cujos objetos são elementos de um conjunto parcialmente ordenados e os morfismos são dados pela relação de ordem, \geq , no seguinte sentido: dados $X,Y \in \mathrm{Obj}(\mathscr{D})$, temos que $\mathrm{Hom}_{\mathscr{D}}(X,Y) \neq \mathscr{D}$, se, e somente se, $X \geq Y$. Suponha ainda que \mathscr{D} é direcionado para cima, isto é, dados $X,Y \in \mathrm{Obj}(\mathscr{D})$, existe $Z \in \mathrm{Obj}(\mathscr{D})$ tal que $Z \geq X,Y$. Seja $F : \mathscr{D} \to \mathrm{HTop}$ um funtor tal que $F(\mathscr{D})$ está em **TfinSet**. No seminário sobre limites, colimites e conjuntos profinitos, ministrado pelo professor John MacQuarrie, vimos que o limite de F é um cone, ou seja, é um par $(L,(\varphi_D)_{D\in\mathscr{D}})$, onde $L \in \mathrm{Obj}(\mathrm{HTop})$ e $\varphi_D \in \mathrm{Hom}_{\mathrm{HTop}}(L,F(D))$, que satisfaz uma propriedade universal. O objeto dado pelo limite de F é o que chamamos de **conjunto profinito**. A categoria cujos objetos são conjuntos profinitos e os morfismos são funções contínuas é denotada por **ProfinSet**.

Seja κ um cardinal limite forte não enumerável, isto é, um cardinal não enumerável tal que, para todo $\lambda < \kappa$, vale que $2^{\lambda} < \kappa$. Definimos κ -ProFinSet como sendo a categoria cujos objetos são conjuntos profinitos de cardinalidade menor do que κ e os morfismos são funções contínuas.

Denote por \mathcal{A} b \mathcal{G} rp a categoria cujos objetos são grupos abelianos e os morfismos são homomorfismos de grupos. Um **grupo abeliano** κ -**condensado** é um feixe

$$T: \kappa$$
-ProFinSet^{op} \rightarrow AbGrp

Como feixes são funtores, se T e S são grupos abelianos κ -condensados, então um morfismo de T para S é uma transformação natural de T para S. Assim, podemos definir uma categoria onde os objetos são grupos abelianos κ -condensados e os morfismos são transformações naturais. Vamos denotar tal categoria por κ -Cond(fbGrp). Para mais detalhes sobre feixes, ver o seminário sobre feixes e esquemas, ministrado pelo professor André Contiero.

Vamos, agora, definir categoria abeliana. Para isso, precisamos, antes, de alguns conceitos. Seja $\mathscr C$ uma categoria. Dizemos que $C \in \mathrm{Obj}(\mathscr C)$ é um **objeto inicial**, se, para todo $X \in \mathrm{Obj}(\mathscr C)$, existe um único morfismo em $\mathrm{Hom}_{\mathscr C}(C,X)$. Analogamente, dizemos que $C \in \mathrm{Obj}(\mathscr C)$ é um **objeto final**, se, para todo $X \in \mathrm{Obj}(\mathscr C)$, existe um único morfismo em $\mathrm{Hom}_{\mathscr C}(X,C)$. Uma categoria $\mathscr C$ é dita **pré-aditiva**, se,

- (a) para todo $X, Y \in \text{Obj}(\mathscr{C})$, existe uma operação binária + sobre $\text{Hom}_{\mathscr{C}}(X, Y)$ tal que $(\text{Hom}_{\mathscr{C}}(X, Y), +)$ é grupo abeliano;
- (b) para todo $X,Y,Z\in \mathrm{Obj}(\mathcal{C}),$ a composição

$$\circ: \operatorname{Hom}_{\mathscr{C}}(Y,Z) \times \operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{C}}(X,Z)$$

é bilinear, isto é, $(f+f') \circ g = f \circ g + f' \circ g$ e $f \circ (g+g') = f \circ g + f \circ g'$, para todo $f, f' \in \operatorname{Hom}_{\mathscr{C}}(Y, Z)$ e todo $g, g' \in \operatorname{Hom}_{\mathscr{C}}(X, Y)$.

Denotaremos o elemento neutro do grupo $Hom_{\mathscr{C}}(X,Y)$ por O_{XY} .

Observação 1. Se $\mathscr C$ é uma categoria pré-aditiva e $f \in \operatorname{Hom}_{\mathscr C}(Z,X)$, então $0_{XY} \circ f = (0_{XY} + 0_{XY}) \circ f = 0_{XY} \circ f + 0_{XY} \circ f$. Logo, $0_{XY} \circ f = 0_{ZY}$. Analogamente, se $f \in \operatorname{Hom}_{\mathscr C}(Y,Z)$, então $f \circ 0_{XY} = 0_{XZ}$.

Lema 1. Sejam $\mathscr C$ uma categoria pré-aditiva e $C \in \mathrm{Obj}(\mathscr C)$. Então as seguintes afirmações são equivalentes.

- (a) *C* é um objeto inicial.
- (b) *C* é um objeto final.
- (c) $id_C = 0_{CC} \in Hom_{\mathscr{C}}(C, C)$.

Demonstração. Vamos mostrar que (a) implica (c). Assim, suponha que C é um objeto inicial. Então, $\operatorname{Hom}_{\mathscr{C}}(C,C)$ é o grupo abeliano trivial. Uma vez que $\operatorname{id}_X \in \operatorname{Hom}_{\mathscr{C}}(X,X)$, para todo $X \in \operatorname{Obj}(\mathscr{C})$, então $\operatorname{id}_C = 0_{CC} \in \operatorname{Hom}_{\mathscr{C}}(C,C)$. A demonstração que (b) implica (c) é idêntica a que fizemos. Vamos mostrar, agora, que (c) implica (a). Assuma que $\operatorname{id}_C = 0_{CC} \in \operatorname{Hom}_{\mathscr{C}}(C,C)$. Sejam $X \in \operatorname{Obj}(\mathscr{C})$ e $f \in \operatorname{Hom}_{\mathscr{C}}(C,X)$. Como $\operatorname{id}_C = 0_{CC}$, então $f = f \circ 0_{CC}$. Mas pela Observação 1, $f = 0_{CX}$. Portanto, C é um objeto inicial. Analogamente, prova-se que (c) implica (b), o que finaliza a demonstração.

Em uma categoria pré-aditiva, um objeto inicial (ou final) é chamado de **objeto zero** e é denotado por $0_{\mathscr{C}}$.

Relembre, do seminário sobre limites, colimites e conjuntos profinitos, que dadas duas categorias, \mathscr{D} e \mathscr{C} , onde os morfismos de \mathscr{D} são apenas as identidades, e dado um funtor F: $\mathscr{D} \to \mathscr{C}$, definimos o $\operatorname{produto}$ de $\left(F(D)\right)_{D \in \operatorname{Obj}(\mathscr{D})}$ como sendo o limite de F. Analogamente, define-se o $\operatorname{coproduto}$, usando-se o colimite.

Assim, se $\mathscr C$ é uma categoria e $(C_i)_{i\in I}$ é uma família de objetos de $\mathscr C$, definindo $\mathscr D$ como sendo a categoria onde $\operatorname{Obj}(\mathscr D)=\{C_i\mid i\in I\}$ e $\operatorname{Hom}(\mathscr D)=\{\operatorname{id}_{C_i}\mid i\in I\}$ e $F:\mathscr D\to\mathscr C$ o funtor que leva objetos e morfismos neles mesmos, temos que o **produto** de $(C_i)_{i\in I}$ é um par ordenado, onde a primeira coordenada é um objeto em $\operatorname{Obj}(\mathscr C), \prod_{j\in I} C_j$, e a segunda coordenada é uma família de morfismo em $\operatorname{Hom}(\mathscr C), (\pi_i:\prod_{j\in I} C_j\to C_i)_{i\in I}$, tal que, para todo $X\in\operatorname{Obj}(\mathscr C)$ e toda família $(f_i:X\to C_i)_{i\in I}$ em $\operatorname{Hom}(\mathscr C)$, existe único morfismo $\Psi:X\to\prod_{i\in I} C_i$ em $\operatorname{Hom}(\mathscr C)$ tal que $\pi_i\circ\Psi=f_i$, para todo $i\in I$.

De maneira análoga, o **coproduto** de $(C_i)_{i\in I}$ é um par ordenado, onde a primeira coordenada é um objeto em $\mathrm{Obj}(\mathscr{C}), \coprod_{j\in I} C_j$, e a segunda coordenada é uma família de morfismo em $\mathrm{Hom}(\mathscr{C}), \ (\iota_i:C_i\to\coprod_{j\in I}C_j)_{i\in I}$, tal que, para todo $X\in\mathrm{Obj}(\mathscr{C})$ e toda família $(f_i:C_i\to X)_{i\in I}$ em $\mathrm{Hom}(\mathscr{C})$, existe único morfismo $\Psi:\coprod_{j\in I}C_j\to X$ em $\mathrm{Hom}(\mathscr{C})$ tal que $\Psi\circ\iota_i=f_i$, para todo $i\in I$.

Proposição 1. Seja & uma categoria pré-aditiva.

(a) Se $\left(\prod_{j\in I} C_j, (\pi_i:\prod_{j\in I} C_j\to C_i)_{i\in I}\right)$ é o produto de $(C_i)_{i\in I}$, com $|I|<\infty$, então existem $\iota_i\in \operatorname{Hom}_{\mathscr{C}}(C_i,\prod_{j\in I} C_j)$, para cada $i\in I$, tal que $\left(\prod_{j\in I} C_j, (\iota_i)_{i\in I}\right)$ é o coproduto de $(C_i)_{i\in I}$.

(b) Se $\left(\coprod_{j\in I} C_j, (\iota_i: C_i \to \coprod_{j\in I} C_j)_{i\in I}\right)$ é o coproduto de $(C_i)_{i\in I}$, com $|I| < \infty$, então existem $\pi_i \in \operatorname{Hom}_{\mathscr{C}}(\prod_{j\in I} C_j, C_i)$, para cada $i\in I$, tal que $\left(\coprod_{j\in I} C_j, (\pi_i)_{i\in I}\right)$ é o produto de $(C_i)_{i\in I}$.

Demonstração. Mostraremos apenas a afirmação (a), pois a (b) é similar. A demonstração é por indução sobre |I|. Suponha que |I|=2. Pela definição de produto, tomando o objeto C_1 e os morfismos id_{C_1} e $0_{C_1C_2}$, temos que existe único $\iota_1:C_1\to C_1\prod C_2$ tal que $\pi_1\circ\iota_1=\mathrm{id}_{C_1}$ e $\pi_2\circ\iota_1=0_{C_1C_2}$. Novamente, pela definição de produto, tomando, agora, o objeto C_2 e os morfismos id_{C_2} e $0_{C_2C_1}$, temos que existe único $\iota_2:C_2\to C_1\prod C_2$ tal que $\pi_1\circ\iota_2=0_{C_2C_1}$ e $\pi_2\circ\iota_2=\mathrm{id}_{C_2}$.

Para qualquer $X \in \text{Obj}(\mathscr{C}), \ j_1 \in \text{Hom}_{\mathscr{C}}(C_1, X) \ \text{e} \ j_2 \in \text{Hom}_{\mathscr{C}}(C_2, X), \ \text{defina} \ \varphi_{(j_1, j_2)} \in \text{Hom}_{\mathscr{C}}(C_1 \prod C_2, X) \ \text{como sendo} \ j_1 \circ \pi_1 + j_2 \circ \pi_2. \ \text{Assim, considerando o objeto} \ C_1 \prod C_2 \ \text{e} \ \text{os morfismos} \ \iota_1 : C_1 \to C_1 \prod C_2 \ \text{e} \ \iota_2 : C_2 \to C_1 \prod C_2, \ \text{temos que}$

$$\pi_1 \circ \varphi_{(\iota_1, \iota_2)} = \pi_1 \circ \iota_1 \circ \pi_1 + \pi_1 \circ \iota_2 \circ \pi_2 = \mathrm{id}_{C_1} \circ \pi_1 + 0_{C_1 C_2} \circ \pi_2 = \pi_1.$$

Analogamente, $\pi_2 \circ \varphi_{(\iota_1,\iota_2)} = \pi_2$. Isso significa que o seguinte diagrama comuta:

Como $\mathrm{id}_{C_1\prod C_2}$ também comuta esse diagrama, pela unicidade, temos que $\varphi_{(\iota_1,\iota_2)}=\mathrm{id}_{C_1\prod C_2}$, ou seja, $\iota_1\circ\pi_1+\iota_2\circ\pi_2=\mathrm{id}_{C_1\prod C_2}$. A partir dessa observação, vamos mostrar que o coproduto de C_1 e C_2 é o par $\left(C_1\prod C_2,(\iota_1,\iota_2)\right)$. Sejam $X\in\mathrm{Obj}(\mathscr{C}),\ f_1\in\mathrm{Hom}_\mathscr{C}(C_1,X)$ e $f_2\in\mathrm{Hom}_\mathscr{C}(C_2,X)$. Considerando $\varphi_{(f_1,f_2)}=f_1\circ\pi_1+f_2\circ\pi_2$, temos que

$$\varphi_{(f_1,f_2)} \circ \iota_1 = f_1 \circ \pi_1 \circ \iota_1 + f_2 \circ \pi_2 \circ \iota_1 = f_1 \circ \operatorname{id}_{C_1} + f_2 \circ 0_{C_1C_2} = f_1.$$

De maneira análoga, $\varphi_{(f_1,f_2)} \circ \iota_2 = f_2$. Isso quer dizer que o diagrama abaixo é comutativo.

Suponha que $g \in \operatorname{Hom}_{\mathscr{C}}(C_1 \prod C_2, X)$ seja um morfismo que também comuta o dia-

grama acima. Então

$$\begin{split} \varphi_{(f_{1},f_{2})} - g &= (\varphi_{(f_{1},f_{2})} - g) \circ \mathrm{id}_{C_{1} \prod C_{2}} \\ &= (\varphi_{(f_{1},f_{2})} - g) \circ \varphi_{(\iota_{1},\iota_{2})} \\ &= (\varphi_{(f_{1},f_{2})} - g) \circ (\iota_{1} \circ \pi_{1} + \iota_{2} \circ \pi_{2}) \\ &= (\varphi_{(f_{1},f_{2})} \circ \iota_{1} - g \circ \iota_{1}) \circ \pi_{1} + (\varphi_{(f_{1},f_{2})} \circ \iota_{2} - g \circ \iota_{2}) \circ \pi_{2} \\ &= (f_{1} - f_{1}) \circ \pi_{1} + (f_{2} - f_{2}) \circ \pi_{2} \\ &= 0_{C_{1} \prod C_{2}X}. \end{split}$$

Portanto, $\varphi_{(f_1,f_2)}=g$. Isso significa que $\varphi_{(f_1,f_2)}$ é o único morfismo que comuta o diagrama acima, ou seja, o par $\left(C_1\prod C_2,(\iota_1,\iota_2)\right)$ é o coproduto de C_1 e C_2 . Para |I|>2, aplica-se indução.

Uma categoria \mathscr{C} é chamada de **aditiva**, se

- (a) \mathscr{C} é pré-aditiva,
- (b) existe um objeto zero em $Obj(\mathscr{C})$ e
- (c) existe o produto para qualquer família $(C_i)_{i \in I}$ de objetos em $\mathrm{Obj}(\mathscr{C})$, com $|I| < \infty$.

Seja \mathcal{D} a categoria com dois objetos, D_1 e D_2 , e dois morfismos paralelos de um objeto para o outro, φ_1 e φ_2 . Pense em \mathcal{D} como sendo representada pelo diagrama abaixo.

Sejam $\mathscr C$ uma categoria pré-aditiva e $f\in \operatorname{Hom}_{\mathscr C}(C_1,C_2)$ um morfismo. Defina $F:\mathscr D\to\mathscr C$ como sendo o funtor tal que $F(D_1)=C_1$, $F(D_2)=C_2$, $F(\varphi_1)=f$ e $F(\varphi_2)=0_{C_1C_2}$.

Definimos o **núcleo** de f como sendo o limite de F, ou seja, é um par ordenado, onde a primeira coordenada é um objeto em $\mathrm{Obj}(\mathscr{C})$, $\ker(f)$, e a segunda coordenada é um morfismo em $\mathrm{Hom}(\mathscr{C})$, $k: \ker(f) \to C_1$, tal que $f \circ k = 0_{\ker(f)C_2}$ e, para todo $X \in \mathrm{Obj}(\mathscr{C})$ e todo $g: X \to C_1$ em $\mathrm{Hom}(\mathscr{C})$, que satisfazem a propriedade $f \circ g = 0_{XC_2}$, existe único morfismo $\Psi: X \to \ker(f)$ em $\mathrm{Hom}(\mathscr{C})$ tal que $k \circ \Psi = g$.

Similarmente, o **conúcleo** de f é o colimite de F, ou seja, é um par ordenado, onde a primeira coordenada é um objeto em $\mathrm{Obj}(\mathscr{C})$, $\mathrm{coker}(f)$, e a segunda coordenada é um morfismo em $\mathrm{Hom}(\mathscr{C}), q: C_2 \to \mathrm{coker}(f)$, tal que $q \circ f = 0_{C_1 \operatorname{coker}(f)}$ e, para todo $X \in \mathrm{Obj}(\mathscr{C})$ e todo $g: C_2 \to X$ em $\mathrm{Hom}(\mathscr{C})$, que satisfazem a propriedade $g \circ f = 0_{C_1 X}$, existe único morfismo $\Psi: \mathrm{coker}(f) \to X$ em $\mathrm{Hom}(\mathscr{C})$ tal que $\Psi \circ q = g$.

Uma categoria $\mathscr C$ é dita **pré-abeliana**, se $\mathscr C$ é aditiva e se, para todo $f:X\to Y$ em $Hom(\mathscr C)$, existe núcleo e conúcleo de f.

Sejam $\mathscr C$ uma categoria e $f\in \mathrm{Hom}_{\mathscr C}(C_1,C_2)$. Dizemos que f é **monomorfismo**, se, para todo $X\in \mathrm{Obj}(\mathcal{C})$ e para todo $g_1,g_2\in \mathrm{Hom}_{\mathcal{C}}(X,C_1)$, temos que $g_1=g_2$, sempre que $f\circ g_1=f\circ g_2$. Dizemos que f é **epimorfismo**, se, para todo $X\in \mathrm{Obj}(\mathscr{C})$ e para todo $g_1, g_2 \in \text{Hom}_{\mathscr{C}}(C_2, X)$, temos que $g_1 = g_2$, sempre que $g_1 \circ f = g_2 \circ f$.

Lema 2. Sejam $\mathscr C$ uma categoria pré-aditiva, $f \in \operatorname{Hom}_{\mathscr C}(C_1,C_2)$, $(\ker(f),k:\ker(f)\to C_1)$ o núcleo de fe (coker
(f), $q:C_2\to\operatorname{coker}(f))$ o conúcleo de
 f . Então ké monomorfismo e q é epimorfismo.

Demonstração. Mostraremos apenas que k é monomorfismo, já que a demonstração que qé epimorfismo é análoga. Sejam $i, j \in \text{Hom}_{\mathscr{C}}(X, \ker(f))$ tais que $k \circ i = k \circ j$. Então $k \circ (i - i)$ $j) = 0_{XC_1}$. Pela definição de núcleo de f, tomando o objeto X e o morfismo 0_{XC_1} , temos que existe único morfismo $\psi \in \operatorname{Hom}_{\mathscr{C}}(X,\ker(f))$ tal que $k \circ \psi = 0_{XC_1}$. Uma vez que $k \circ 0_{X\ker(f)} = 0$ 0_{XC_1} , então tal ψ é, exatamente, $0_{X\ker(f)}$. Acontece que $i-j\in \operatorname{Hom}_{\mathscr{C}}(X,\ker(f))$ também satisfaz a condição de $k \circ (i - j) = 0_{XC_1}$.

Portanto, pela unicidade, $i - j = 0_{X \ker(f)}$. Logo, i = j.

Proposição 2. Sejam $\mathscr C$ uma categoria pré-abeliana e $f \in \operatorname{Hom}_{\mathscr C}(X,Y)$. Sejam também

(a) $(\ker(f), k)$ o núcleo f,

- (c) $(\ker(q), k')$ o núcleo q e

Então existe único \overline{f} : $\operatorname{coker}(k) \to \ker(q)$ tal que $f = k' \circ \overline{f} \circ q'$.

 \boxtimes

$$\ker(f) \xrightarrow{k} X \xrightarrow{f} Y \xrightarrow{q} \operatorname{coker}(f)$$

$$q' \qquad \circlearrowleft \qquad \downarrow k'$$

$$\operatorname{coker}(k) \xrightarrow{\overline{f}} \ker(q)$$

Demonstração. Pela definição de conúcleo de f, temos que $q \circ f = 0_{X \operatorname{coker}(f)}$. Logo, pela definição de núcleo de q, exite único $f' \in \operatorname{Hom}_{\mathscr{C}}(X, \ker(q))$ tal que

$$k' \circ f' = f,\tag{1}$$

ou seja, que comuta o diagrama abaixo.

Uma vez que $(\ker(f), k)$ o núcleo f, então $f \circ k = 0_{\ker(f)Y}$. Daí, podemos concluir que

$$k' \circ f' \circ k \stackrel{\text{(1)}}{=} f \circ k = 0_{\ker(f)Y} = k' \circ 0_{\ker(f)\ker(g)}$$

Não perca de vista que temos a seguinte cadeia de morfismo:

$$\ker(f) \xrightarrow{k} X \xrightarrow{f'} \ker(q) \xrightarrow{k'} Y$$

Logo, como k' é monomorfismo, $f' \circ k = 0_{\ker(f)\ker(q)}$. Daí, pela definição de conúcleo de k, exite único $\overline{f} \in \operatorname{Hom}_{\mathscr{C}}(\operatorname{coker}(k), \ker(q))$

$$\overline{f} \circ q' = f', \tag{2}$$

ou seja, que comuta o diagrama abaixo.

Com isso, obtemos

$$k' \circ \overline{f} \circ q' \stackrel{(2)}{=} k' \circ f' \stackrel{(1)}{=} f.$$

o que conclui a demonstração.

Uma categoria $\mathscr C$ é denominada **abeliana**, se $\mathscr C$ é pré-abeliana e se, para todo $f:X\to Y$ em Hom($\mathscr C$), o morfismo $\overline f$, dado pelo Proposição 2, é um isomorfismo.

Exemplo 1. Vamos ver que a categoria AbGrp é uma categoria abeliana. Sabemos, da Teoria de Grupos, que AbGrp é pré-aditiva, já que $\operatorname{Hom}_{\operatorname{AbGrp}}(G,H)$ é grupo abeliano e a composição é bilinear. O grupo trivial $\{0\}$ é o elemento zero dessa categoria e, no seminário sobre limites, colimites e conjuntos profinitos, vimos que, dados $(G_i)_{i=1}^n$ grupo abelianos, a soma direta $\bigoplus_{i=1}^n G_i$, junto das inclusões $\iota_i:G_i \to \bigoplus_{i=1}^n G_i$, é o coproduto de $(G_i)_{i=1}^n$. Portanto, AbGrp é aditiva. Seja $f \in \operatorname{Hom}_{\operatorname{AbGrp}}(G,H)$. Afirmamos que

$$\ker(f) = \{g \in G \mid f(g) = 0\}, \quad \text{junto do morfismo} \quad k : \ker(f) \to G$$

$$g \mapsto g$$

 \boxtimes

é o núcleo de f, e

$$\operatorname{coker}(f) = \frac{H}{\operatorname{im}(f)}$$
, junto do morfismo $q: H \to \operatorname{coker}(f)$
 $h \mapsto h + \operatorname{im}(f)$

onde $\operatorname{im}(f) = \{h \in H \mid \exists g \in G \ f(g) = h\}$, é o conúcleo de f. Vamos mostrar só a afirmação para o núcleo. Note que $f \circ k = 0$, pois f(g) = 0, para todo $g \in \ker(f)$. Sejam $X \in \operatorname{Obj}(\operatorname{AbGrp})$ e $g \in \operatorname{Hom}_{\operatorname{AbGrp}}(X,G)$ tal que $f \circ g = 0$. Isso quer dizer que f(g(x)) = 0, para todo $x \in X$, ou seja, $g(x) \in \ker(f)$. Daí, podemos restringir o contradomínio de g e considerá-la em $\operatorname{Hom}_{\operatorname{AbGrp}}(X,\ker(f))$. Assim, temos que o seguinte diagrama comuta.

Seja $h \in \operatorname{Hom}_{\operatorname{fbGrp}}(X, \ker(f))$ tal que $k \circ h = g$. Então, como $g = k \circ g$, temos que $k \circ h = k \circ g$. Uma vez que, por definição, k é injetiva, temos que h = g. Portanto, $(\ker(f), k)$ é o núcleo de f. Logo, fbGrp é pré-abeliana. Finalmente, seja $f \in \operatorname{Hom}_{\operatorname{fbGrp}}(G, H)$ e sejam

- $(\ker(f), \ker(f) \xrightarrow{k} G)$ o núcleo f,
- $(\operatorname{coker}(f), H \xrightarrow{q} \operatorname{coker}(f))$ o conúcleo de f,
- $(\ker(q), \ker(q) \xrightarrow{k'} H)$ o núcleo q e
- $(\operatorname{coker}(k), G \xrightarrow{q'} \operatorname{coker}(k))$ o conúcleo de k.

Note que $\ker(q) = \{h \in H \mid q(h) = 0\} = \{h \in H \mid h + \operatorname{im}(f) = 0\}$. Logo, $\ker(q) \subseteq \operatorname{im}(f)$. Reciprocamente, se $h \in \operatorname{im}(f)$, então $h + \operatorname{im}(f) = 0$, ou seja, q(h) = 0. Assim, $\ker(q) = \operatorname{im}(f)$. Agora, veja que $\operatorname{coker}(k) = \frac{G}{\operatorname{im}(k)}$. Mas k é injetiva, logo $\operatorname{im}(k) = \frac{G}{\operatorname{im}(k)}$.

 $\ker(f)$. Daí, $\operatorname{coker}(k) = \frac{G}{\ker(f)}$. Pelo Teorema do Isomorfismo, o homomorfismo de grupos $\overline{f}: \frac{G}{\ker(f)} \to \operatorname{im}(f)$, $g + \ker(f) \mapsto f(g)$, é um isomorfismo. Logo,

$$\overline{f}$$
: $\operatorname{coker}(k) \to \ker(q)$
 $g + \ker(f) \mapsto f(g)$

é um isomorfismo. Pela definição de núcleo e conúcleo, temos que

$$k'(\overline{f}(q'(g))) = k'(\overline{f}(g + \underbrace{\operatorname{im}(k)})) = k'(f(g)) = f(g),$$

isto é, $f = k' \circ \overline{f} \circ q'$. Portanto, AbGrp é abeliana.

Observação 2. Seja \mathscr{C} uma categoria e considere a categoria cujos objetos são funtores de \mathscr{C} para AbGrp e cujos morfismos são transformações naturais, a qual denotaremos por $\mathsf{Func}(\mathscr{C}, \mathsf{AbGrp})$. Vamos ver, sem muitos detalhes, que essa categoria é abeliana.

- Sejam $F,G:\mathscr{C}\to \mathsf{AbGrp}$ funtores e $\eta,\nu:F\to G$ transformações naturais. Dado $C\in \mathsf{Obj}(\mathscr{C})$, definimos $(\eta+\nu)_C\coloneqq \eta_C+\nu_C$ (note que a soma à direita da igualmente é a soma entre homomorfismos de grupos). Isso faz $\eta+\nu\coloneqq (\eta_C+\nu_C)_{C\in \mathsf{Obj}(\mathscr{C})}$ uma transformação natural. Além disso, com tal soma, $\mathsf{Hom}_{\mathsf{Func}(\mathscr{C},\mathsf{AbGrp})}(F,G)$ é um grupo abeliano, já que $\mathsf{Hom}_{\mathsf{AbGrp}}(F(C),G(C))$ é um grupo abeliano.
- Sejam $F,G,H:\mathscr{C}\to \mathsf{AbGrp}$ funtores e $\eta,\nu:F\to G$ e $\zeta:H\to F$ transformações naturais. Dado $C\in \mathsf{Obj}(\mathscr{C})$, definimos $\big((\eta+\nu)\circ\zeta\big)_C\coloneqq (\eta_C+\nu_C)\circ\zeta_C$ (note que a composição à direita da igualmente é a composição entre homomorfismos de grupos). Assim, a composição em Func $(\mathscr{C},\mathsf{AbGrp})$ herda a bilinearidade da composição em AbGrp .
- Seja 0_{AbGrp} o objeto zero em AbGrp. Defina $0_{\text{Func}(\mathscr{C},\text{AbGrp})}:\mathscr{C}\to\text{AbGrp}$, como sendo o funtor tal que $C\mapsto 0_{\text{AbGrp}}$ e $C_1\xrightarrow{f}C_2\mapsto 0_{\text{AbGrp}}\xrightarrow{0_{0_{\text{AbGrp}}}0_{\text{AbGrp}}}0_{\text{AbGrp}}$. Tal funtor é o objeto zero em $\text{Func}(\mathscr{C},\text{AbGrp})$, porque, dado qualquer funtor $F:\mathscr{C}\to\text{AbGrp}$, se $\eta:0_{\text{Func}(\mathscr{C},\text{AbGrp})}\to F$ é uma transformação natural, então η_C só pode ser o homomorfismo que leva 0_{AbGrp} em 0_{AbGrp} , para todo $C\in\text{Obj}(\mathscr{C})$.

 \bullet Sejam $F_1,\dots,F_n:\mathscr{C}\to \mathcal{A}\mathsf{bGrp}$ funtores. Defina o funtor

$$\bigoplus_{i=1}^{n} F_{i}: \mathcal{C} \to \mathbf{flbGrp}$$

$$C \mapsto \bigoplus_{i=1}^{n} F_{i}(C)$$

$$C_{1} \xrightarrow{f} C_{2} \mapsto \bigoplus_{i=1}^{n} F_{i}(C_{1}) \xrightarrow{\bigoplus_{i=1}^{n} F_{i}(f)} \bigoplus_{i=1}^{n} F_{i}(C_{2})$$

$$(g_{i})_{i=1}^{n} \mapsto (F_{i}(f)(g_{i}))_{i=1}^{n}.$$

Para j = 1, ..., n, defina a transformação natural $\eta^j : F_j \to \bigoplus_{i=1}^n F_i$, onde $\eta_C^j = \iota_C^j : F_j(C) \to \bigoplus_{i=1}^n F_i(C)$ a inclusão. Pode-se provar que $\bigoplus_{i=1}^n F_i$, junto das transformações naturais $\eta^j : G_j \to \bigoplus_{i=1}^n G_i$, é o coproduto de $(F_i)_{i=1}^n$.

 \bullet Seja $\eta: F \to G$ uma transformação natural. Defina o funtor

$$\begin{array}{cccc} \ker(\eta) : & \mathscr{C} & \to & \mathit{flbGrp} \\ & C & \mapsto & \ker(\eta_C) \\ & C_1 \xrightarrow{f} C_2 & \mapsto & \ker(\eta_{C_1}) & \xrightarrow{\ker(\eta)(f)} & \ker(\eta_{C_2}) \\ & g & \mapsto & F(f)(g). \end{array}$$

Usando a definição de núcleo de um homomorfismo de grupos e o fato de $\eta_{C_2} \circ F(f) = G(f) \circ \eta_{C_1}$, pode-se provar que esse funtor está bem definido. Defina a transformação natural $k : \ker(\eta) \to F$, onde $k_C : \ker(\eta_C) \to F(C)$, $g \mapsto g$ é a inclusão. Pode-se também provar que $(\ker(\eta), k)$ é o núcleo de η . Similarmente, defina o funtor

Novamente, usando que $\eta_{C_2} \circ F(f) = G(f) \circ \eta_{C_1}$, pode-se provar que esse funtor está bem definido. Definindo, agora, a transformação natural $q: G \to \operatorname{coker}(\eta)$, onde $q_C: G(C) \to \operatorname{coker}(\eta)$

 $\operatorname{coker}(\eta_C)$, $g \mapsto g + \operatorname{im}(\eta_C)$, pode-se também provar que $(\operatorname{coker}(\eta), q)$ é o conúcleo de η .

• Dado $\eta: F \to G$ uma transformação natural, pelo Exemplo 1, temos que $\overline{\eta}_C: \operatorname{coker}(k_C) \to \ker(q_C), \ g + \ker(\eta_C) \mapsto \eta_C(g)$ é um isomorfismo e comuta o diagrama da Proposição 2. Isso prova que que $\overline{\eta}: \operatorname{coker}(k) \to \ker(q)$ é isomorfismo e que comuta o mesmo diagrama.

Com isso, temos que $Func(\mathscr{C}, AbGrp)$ é uma categoria abeliana.

Apresentada a definição de categoria abeliana, estamos quase prontos para enunciarmos o Teorema 2.2, das notas de Peter Scholze. Falta vermos os axiomas de Grothendieck (AB3), (AB4), (AB5), (AB6), (AB3*) e (AB4*). Porém, antes, vamos a mais alguns conceitos.

Sejam $\mathscr C$ uma categoria onde existem limites e colimites e $(f_i:X_i\to Y_i)_{i\in I}$ uma família de morfismos em $\mathrm{Hom}(\mathscr C)$. Sejam $\left(\prod_{j\in I}X_j,(\pi_i^X:\prod_{j\in I}X_j\to X_i)_{i\in I}\right)$ o produto de $(X_i)_{i\in I}$ e $\left(\prod_{j\in I}Y_j,(\pi_i^Y:\prod_{j\in I}Y_j\to Y_i)_{i\in I}\right)$ o produto de $(Y_i)_{i\in I}$. Pela propriedade universal do produto, existe único morfismo em $\mathrm{Hom}_{\mathscr C}(\prod_{j\in I}X_j,\prod_{j\in I}Y_j)$, o qual denotaremos por $\prod_{j\in I}f_j$, tal que $\pi_i^Y\circ\prod_{j\in I}f_j=f_i\circ\pi_i^X$, para todo $i\in I$, ou seja, que comuta o diagrama abaixo.

O morfismo $\prod_{j\in I} f_j$ é dito **produto** de $(f_i)_{i\in I}$. Similarmente, o **coproduto** de $(f_i)_{i\in I}$ é o único morfismo em $\operatorname{Hom}_{\mathscr{C}}(\coprod_{j\in I} X_j, \coprod_{j\in I} Y_j)$, o qual denotaremos por $\coprod_{j\in I} f_j$, que $\coprod_{j\in I} f_j \circ \iota_i^X = \iota_i^Y \circ f_i$, para todo $i\in I$, ou seja, que comuta o diagrama abaixo.

Observação 3. Sejam $\mathscr C$ uma categoria onde existem limites e colimites e $(f_i: X_i \to Y_i)_{i \in I}$ e $(g_i: Y_i \to Z_i)_{i \in I}$ famílias de morfismos em $\operatorname{Hom}(\mathscr C)$. Considere o diagrama abaixo.

Pode-se provar, usando a comutatividade do diagrama e a unicidade do produto de morfismos, que

$$\prod_{j\in I}(g_j\circ f_j)=\prod_{j\in I}g_j\circ\prod_{j\in I}f_j$$

O mesmo raciocínio se aplica para o coproduto de morfismos.

Seja $\mathcal D$ uma categoria de índices (no seminário sobre limites, colimites e conjuntos profinitos, chamamos $\mathcal D$ de "categoria combinatória"). Essa categoria é chamada **filtrada**, se

- (a) $Obj(\mathcal{D}) \neq \mathcal{O}$,
- (b) para todo $X, Y \in \text{Obj}(\mathcal{D})$, existe $Z \in \text{Obj}(\mathcal{D})$ tal que $\text{Hom}_{\mathcal{D}}(X, Z) \neq \mathcal{D} \neq \text{Hom}_{\mathcal{D}}(Y, Z)$,
- (c) dados $f, g: X \to Y$, existem $Z \in \text{Obj}(\mathcal{D})$ e $h: Y \to Z$ tal que $h \circ f = h \circ g$.

Se $\mathscr C$ é uma categoria onde existem limites e colimites e $F:\mathscr D\to\mathscr C$ é um funtor, onde $\mathscr D$ é uma categoria filtrada, o colimite de F é dito **colimite filtrado**.

Sejam $F,G,H: \mathcal{D} \to \mathscr{C}$ funtores, com \mathcal{D} sendo uma categoria de índices e \mathscr{C} uma categoria abeliana. Sejam $\eta: F \to G$ e $v: G \to H$ transformações naturais. Se, para todo $D \in \mathrm{Obj}(\mathcal{D})$, a sequência $0 \to F(D) \xrightarrow{\eta(D)} G(D) \xrightarrow{\nu(D)} H(D) \to 0$ é uma sequência exata curta em \mathscr{C} , então dizemos que a sequência $0 \to F \xrightarrow{\eta} G \xrightarrow{v} H \to 0$ é uma sequência exata curta na categoria cujos objetos são funtores de \mathscr{D} para \mathscr{C} e cujos morfismos são transformações naturais.

Considere ainda $F,G: \mathcal{D} \to \mathscr{C}$ como no parágrafo anterior e $\eta: F \to G$ uma transformação natural qualquer. Sejam $\left(\operatorname{colim}(F), (\varphi_D^F: F(D) \to \operatorname{colim}(F))_{D \in \operatorname{Obj}(D)}\right)$ e $\left(\operatorname{colim}(G), (\varphi_D^G: G(D) \to \operatorname{colim}(G))_{D \in \operatorname{Obj}(D)}\right)$ colimites de F e G, respectivamente. Se $D_1, D_2 \in \operatorname{Obj}(\mathcal{D})$ e $f: D_1 \to D_2$ é um morfismo, então, pela propriedade da transformação natural η , temos que $G(f) \circ \eta_{D_1} = \eta_{D_2} \circ F(f)$. Pela propriedade do colimite de G, temos que $\varphi_{D_1}^G = \varphi_{D_2}^G \circ G(f)$.

Portanto,

$$\varphi_{D_2}^G \circ \eta_{D_2} \circ F(f) = \varphi_{D_2}^G \circ G(f) \circ \eta_{D_1} = \varphi_{D_1}^G \circ \eta_{D_1},$$

como se vê no diagrama anterior. Logo, pela propriedade do colimite de F, existe único morfismo de $\operatorname{colim}(F)$ para $\operatorname{colim}(G)$, o qual denotaremos por $\operatorname{colim}(\eta)$, tal que $\operatorname{colim}(\eta)$ \circ $\varphi_D^F = \varphi_D^G \circ \eta_D$, para todo $D \in \text{Obj}(\mathcal{D})$.

Definimos o **produto** de $(\mathcal{D}_i)_{i \in I}$, uma família de categorias, denotado por $\prod_{i \in I} \mathcal{D}_i$, como sendo a categoria cujos objetos são $\prod D^i$, onde $D^i \in \text{Obj}(\mathcal{D}_i)$, e os morfismos são $\prod f^i$, onde $f^i \in \text{Hom}(\mathcal{D}_i)$. Pode-se provar que se $(\mathcal{D}_i)_{i \in I}$ é uma família de categorias filtradas, então $\prod \mathcal{D}_i$ também é uma categoria filtrada. Sejam $(\mathcal{D}_i)_{i \in I}$ uma família de categorias filtradas, $\mathscr C$ uma categoria onde existem limites e colimites, e $F_i: \mathscr D_i \to \mathscr C$ funtores indexados por $i \in I$. Seja $\left(\operatorname{colim}(F_i), (\psi^i_{D^i}: F_i(D^i) \to \operatorname{colim}(F_i))_{D^i \in \operatorname{Obj}(\mathcal{D}_i)}\right)$ o colimite de F_i . Se $f^i: D^i_1 o D^i_2$ é um morfismo em $\operatorname{Hom}(\mathscr{D}_i)$, então, pela propriedade do colimite de F_i . Se $f^i: D^i_1 o D^i_2$ é um morfismo em $\operatorname{Hom}(\mathscr{D}_i)$, então, pela propriedade do colimite de F_i , $\psi^i_{D^i_1} = \psi^i_{D^i_2} \circ F_i(f^i)$. Defina o funtor $F: \prod_{i \in I} \mathscr{D}_i o \mathscr{C}$, onde $F(\prod_{i \in I} D^i) = \prod_{i \in I} F_i(D^i)$ e $F(\prod_{i \in I} f^i) = \prod_{i \in I} F_i(f^i)$. Seja $\operatorname{Colim}(F), (\varphi_{\prod_{i \in I} D^i} : F(\prod_{i \in I} D^i) o \operatorname{colim}(F))_{\prod_{i \in I} D^i \in \operatorname{Obj}(\prod_{i \in I} \mathscr{D}_i)}$ o colimite de F. Se $\prod_{i \in I} f^i : \prod_{i \in I} D^i_1 o \prod_{i \in I} D^i_2$ é um morfismo em $\operatorname{Hom}(\prod_{i \in I} \mathscr{D}_i)$, usando a Observação 3, temos que

$$\prod_{i \in I} \psi^{i}_{D^{i}_{2}} \circ \prod_{i \in I} F_{i}(f^{i}) = \prod_{i \in I} (\psi^{i}_{D^{i}_{2}} \circ F_{i}(f^{i})) = \prod_{i \in I} \psi^{i}_{D^{i}_{1}}$$

o que quer dizer que o diagrama abaixo é comutativo.

Logo, pela propriedade do colimite de F, existe único morfismo ξ : colim $(F) \to \prod_{i \in I} \text{colim}(F_i)$ tal que $\xi \circ \varphi_{\prod_{i \in I} D^i} = \prod_{i \in I} \psi_{D^i}^i$, para todo $\prod_{i \in I} D^i \in \operatorname{Obj}(\prod_{i \in I} \mathscr{D}_i)$. Sejam \mathscr{C} uma categoria onde existem limites e colimites, $X \in \operatorname{Obj}(\mathscr{C})$ e considere o

funtor

$$\operatorname{Hom}_{\mathscr{C}}(X,\cdot): \mathscr{C} \to \operatorname{Set}$$

$$Y \mapsto \operatorname{Hom}_{\mathscr{C}}(X,Y)$$

$$f: Y_1 \to Y_2 \mapsto f^*: \operatorname{Hom}_{\mathscr{C}}(X,Y_1) \to \operatorname{Hom}_{\mathscr{C}}(X,Y_2)$$

$$g \mapsto f \circ g$$

Seja $F: \mathscr{D} \to \mathscr{C}$ um funtor, com \mathscr{D} sendo uma categoria filtrada, e considere a composição $\operatorname{Hom}_{\mathscr{C}}(X, F(\cdot))$. Sendo $\left(\operatorname{colim}(F), (\psi_D: F(D) \to \operatorname{colim}(F))_{D \in \operatorname{Obj}(\mathscr{D})}\right)$ o colimite de F, então, para todo $f: D_1 \to D_2$ em $\operatorname{Hom}(\mathscr{D})$, temos que $\psi_{D_1} = \psi_{D_2} \circ F(f)$. Assim, note que, se $g \in \operatorname{Hom}_{\mathscr{C}}(X, F(D_1))$, então

$$(\psi_{D_2}^* \circ F(f)^*)(g) = \psi_{D_2}^*(F(f) \circ g) = \psi_{D_2} \circ F(f) \circ g = \psi_{D_1} \circ g = \psi_{D_1}^*(g),$$

ou seja, o diagrama abaixo comuta.

Logo, existe único morfismo $\Psi: \operatorname{colim} \big(\operatorname{Hom}_{\mathscr{C}}(X, F(\cdot)) \big) \to \operatorname{Hom}_{\mathscr{C}}(X, \operatorname{colim}(F))$, pela propriedade do colimite de $\operatorname{Hom}_{\mathscr{C}}(X, F(\cdot))$, tal que $\Psi \circ \varphi_D = \psi_D^*$, para todo $D \in \operatorname{Obj}(\mathscr{D})$. Se o morfismo Ψ for um isomorfismo, então dizemos que X é **compacto**.

Sejam $\mathscr C$ uma categoria e $X\in \mathrm{Obj}(\mathscr C)$. Se $\mathrm{Hom}_{\mathscr C}(X,\cdot)$ preserva epimorfismos, então dizemos que X é **projetivo**. Se $\mathrm{Hom}_{\mathscr C}(X,\cdot)$ é fiel, então dizemos que X é um **gerador** de $\mathscr C$.

Agora, vamos ver os axiomas de Grothendieck (AB3), (AB4), (AB5), (AB6), (AB3*) e (AB4*). Seja & uma categoria abeliana. Os axiomas são:

(AB3) existe o coproduto para qualquer família $(C_i)_{i \in I}$ de objetos em Obj (\mathscr{C}) , com I um conjunto de índices qualquer,

(AB4) $\mathscr C$ satisfaz (AB3) e coprodutos são exatos, isto é, se I é um conjunto de índices e $0 \to X_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} Z_i \to 0$ é uma sequência exata curta, com $i \in I$ e $X_i, Y_i, Z_i \in \mathrm{Obj}(\mathscr C)$, então a sequência

$$0 \to \coprod_{i \in I} X_i \xrightarrow{\coprod_{i \in I} f_i} \coprod_{i \in I} Y_i \xrightarrow{\coprod_{i \in I} g_i} \coprod_{i \in I} Z_i \to 0$$

também é uma sequência exata curta,

(AB5) $\mathscr C$ satisfaz (AB3) e colimites filtrados são exatos, isto é, se $0 \to F \xrightarrow{\eta} G \xrightarrow{\nu} H \to 0$ é uma sequência exata curta, com $F, G, H: \mathscr D \to \mathscr C$ funtores, onde $\mathscr D$ é uma categoria filtrada, então a sequência

$$0 \to \operatorname{colim}(F) \xrightarrow{\operatorname{colim}(\eta)} \operatorname{colim}(G) \xrightarrow{\operatorname{colim}(\nu)} \operatorname{colim}(H) \to 0$$

também é uma sequência exata curta,

(AB6) $\mathscr C$ satisfaz (AB3) e o morfismo $\xi: \mathrm{colim}(F) \to \prod_{i \in I} \mathrm{colim}(F_i)$ é um isomorfismo, onde

- $(\mathcal{D}_i)_{i \in I}$ é uma família de categorias filtradas,
- $F_i: \mathcal{D}_i \to \mathscr{C}$ funtores indexados por $i \in I$,

•
$$F: \prod_{i \in I} \mathcal{D}_i \to \mathcal{C}$$
 é um funtor, onde $F(\prod_{i \in I} D^i) = \prod_{i \in I} F_i(D^i)$ e $F(\prod_{i \in I} f^i) = \prod_{i \in I} F_i(f^i)$

conforme apresentado em algum parágrafo anterior,

(AB3*) existe o produto para qualquer família $(C_i)_{i\in I}$ de objetos em Obj (\mathscr{C}) , com I um conjunto de índices qualquer,

(AB4*) $\mathscr C$ satisfaz (AB3*) e produtos são exatos, isto é, se I é um conjunto de índices e $0 \to X_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} Z_i \to 0$ é uma sequência exata curta, com $i \in I$ e $X_i, Y_i, Z_i \in \mathrm{Obj}(\mathscr C)$, então a sequência

$$0 \to \prod_{i \in I} X_i \xrightarrow{\prod_{i \in I} f_i} \prod_{i \in I} Y_i \xrightarrow{\prod_{i \in I} g_i} \prod_{i \in I} Z_i \to 0$$

também é uma sequência exata curta.

Observação 4. Analogamente a definição de núcleo e conúcleo de um morfismo, considere \mathcal{D} a categoria com dois objetos, D_1 e D_2 , e dois morfismos paralelos de um objeto para o

outro, φ_1 e φ_2 , e sejam $\mathscr C$ uma categoria abeliana e $f,g\in \operatorname{Hom}_{\mathscr C}(C_1,C_2)$ morfismos. Defina $F:\mathscr D\to\mathscr C$ como sendo o funtor tal que $F(D_1)=C_1$, $F(D_2)=C_2$, $F(\varphi_1)=f$ e $F(\varphi_2)=g$.

Definimos o **equalizador** de f e g como sendo o limite de F, ou seja, é um par ordenado, onde a primeira coordenada é um objeto em $\mathrm{Obj}(\mathscr{C})$, $\mathrm{eq}(f,g)$, e a segunda coordenada é um morfismo em $\mathrm{Hom}(\mathscr{C})$, $e:\mathrm{eq}(f,g)\to C_1$, tal que $f\circ e=g\circ e$ e, para todo $X\in\mathrm{Obj}(\mathscr{C})$ e todo $h:X\to C_1$ em $\mathrm{Hom}(\mathscr{C})$, que satisfazem a propriedade $f\circ h=g\circ h$, existe único morfismo $\Psi:X\to\mathrm{eq}(f,g)$ em $\mathrm{Hom}(\mathscr{C})$ tal que $e\circ \Psi=h$.

Similarmente, definimos o **coequalizador** de f e g como sendo o colimite de F. Uma vez que $\mathscr C$ é uma categoria abeliana, temos que existem núcleo e conúcleo, para todo morfismo. Assim, pode-se mostrar que $\left(\ker(f-g),k:\ker(f-g)\to C_1\right)$ é o equalizador de f e g e que $\left(\operatorname{coker}(f-g),q:C_2\to\operatorname{coker}(f-g)\right)$ é o coequalizador de f e g.

No seminário sobre limites, colimites e conjuntos profinitos, vimos um teorema que diz: "se \mathscr{C} é uma categoria que possui (co)produtos arbitrários e (co)equalizadores, então todo funtor $F: \mathscr{D} \to \mathscr{C}$ possui (co)limite". Logo, os axiomas (AB3) e (AB3*) são equivalentes a dizer, respectivamente, que todo colimite existe e que todo limite existe.

Exemplo 2. Apresentaremos, sem muitos detalhes, as ideais que justificam que a categoria **AbGrp** satisfaz os axiomas de Grothendieck (AB3), (AB4), (AB5), (AB6), (AB3*) e (AB4*).

(AB3) Sejam $(G_i)_{i \in I}$ uma família de grupos abelianos. Então $\Big(\bigoplus_{i \in I} G_i, (\iota_i : G_i \to \bigoplus_{i \in I} G_i)_{i \in I}\Big)$ é o coproduto de $(G_i)_{i \in I}$, onde $\bigoplus_{i \in I} G_i = \{(g_i)_{i \in I} \mid g_i \in G_i \text{ e } g_i \neq 0 \text{ somente para uma quantidade finita de índices}\}$. Para ver isso, basta notar que, dados $f_i : G_i \to X$ homomorfismos de grupos indexados por $i \in I$, temos que $\psi : \bigoplus_{i \in I} G_i \to X$, $(g_i)_{i \in I} \mapsto \sum_{i \in I} f_i(g_i)$ é o único homomorfismo tal que $f_i = \psi \circ \iota_i$.

(AB4) Sejam $(G_i)_{i\in I}$, $(H_i)_{i\in I}$ e $(K_i)_{i\in I}$ famílias de grupos abelianos e $(f_i:G_i\to H_i)_{i\in I}$ e $(r_i:H_i\to K_i)_{i\in I}$ famílias de homomorfismos de grupos tais que $0\to G_i\overset{f_i}\to H_i\overset{r_i}\to K_i\to 0$ é uma sequência exata curta, com $i\in I$. Pode-se provar que o coproduto de $(f_i)_{i\in I}$ é o homomorfismo $\bigoplus_{i\in I}f_i:\bigoplus_{i\in I}G_i\to\bigoplus_{i\in I}H_i$, $(g_i)_{i\in I}\mapsto (f_i(g_i))_{i\in I}$. O mesmo vale para o coproduto de $(r_i)_{i\in I}$. Assim, usando que f_i é injetiva, r_i é sobrejetiva e im $(f_i)=\ker(r_i)$, para todo $i\in I$, pode-se provar que

$$0 \to \bigoplus_{i \in I} G_i \xrightarrow{\bigoplus_{i \in I} f_i} \bigoplus_{i \in I} H_i \xrightarrow{\bigoplus_{i \in I} r_i} \bigoplus_{i \in I} K_i \to 0$$

também é uma sequência exata curta.

(AB5) Sejam \mathscr{D} uma categoria filtrada e $F, G, H : \mathscr{D} \to \mathsf{AbGrp}$ funtores tais que $0 \to F \xrightarrow{\eta} G \xrightarrow{\nu} H \to 0$ é uma sequência exata curta. Seja $\bigsqcup_{D \in \mathsf{Obj}(\mathscr{D})} F(D)$ a união disjunta de todos os grupos F(D), indexados por $D \in \mathsf{Obj}(\mathscr{D})$, isto é,

$$\bigsqcup_{D \in \mathrm{Obj}(\mathcal{D})} F(D) = \bigcup_{D \in \mathrm{Obj}(\mathcal{D})} \{\underbrace{(x, D)}_{\mathbb{H}} \mid x \in F(D)\} = \bigcup_{D \in \mathrm{Obj}(\mathcal{D})} \{x_D \in F(D)\}.$$

Defina a relação \sim em $\bigsqcup_{D \in \mathrm{Obj}(\mathcal{D})} F(D)$ da seguinte maneira:

$$x_{D_1} \sim x_{D_2} \iff \exists D \in \text{Obj}(\mathcal{D}) \ \exists d_1 : D_1 \to D \ \exists d_2 : D_2 \to D \ F(d_1)(x_{D_1}) = F(d_2)(x_{D_2})$$

Pode-se provar que essa relação é uma relação de equivalência. Assim, podemos considerar o conjunto das classes de equivalência, $\binom{\bigcup}{D\in \operatorname{Obj}(\mathscr{D})} F(D)$ $\sim = \{[x_D] \mid x_D \in F(D)\} =: L_F$. Sejam $[x_{D_1}]$ e $[x_{D_2}]$ duas classes de equivalência e $D\in \operatorname{Obj}(\mathscr{D})$ tal que existe $d_1:D_1\to D$ e $d_2:D_2\to D$ (lembre-se de que \mathscr{D} é uma categoria filtrada). Definimos $[x_{D_1}]+[x_{D_2}]:=[F(d_1)(x_{D_1})+F(d_2)(x_{D_2})]$. Pode-se mostrar essa operação é bem definida e que faz o con-

junto L_F ser um grupo abeliano. Também pode-se provar que o colimite de F é o par $(L_F, (s_D : F(D) \to L_F)_{D \in \text{Obj}(\mathcal{D})})$, onde $s_D(x_D) = [x_D]$ (para mais detalhes ver [2], Proposição 2.13.3, e [6], seção 10.8). O mesmo se aplica aos funtores G e H.

Pode-se provar que o colimite de η é o morfismo $\operatorname{colim}(\eta): L_F \to L_G, [x_D] \mapsto [\eta_D(x_D)].$ Vamos ver que ela está bem definida. Suponha que $[x_{D_1}] = [x_{D_2}].$ Então existem $d_1: D_1 \to D$ e $d_2: D_2 \to D$ tais que $F(d_1)(x_{D_1}) = F(d_2)(x_{D_2}).$ Como η é uma transformação natural, então

$$G(d_1)(\eta_{D_1}(x_{D_1})) = \eta_D(F(d_1)(x_{D_1})) = \eta_D(F(d_2)(x_{D_2})) = G(d_2)(\eta_{D_2}(x_{D_2})),$$

como se vê no diagrama abaixo.

Logo, $[\eta_{D_1}(x_{D_1})] = [\eta_{D_2}(x_{D_2})]$. Da mesma forma define-se o colimite de ν .

Finalmente, prova-se que a sequência $0 \to L_F \xrightarrow{\operatorname{colim}(\eta)} L_F \xrightarrow{\operatorname{colim}(v)} L_H \to 0$ é uma sequência exata curta.

(AB6) Esse axioma segue de um resultado que diz que na categoria **AbGrp** limites finitos comutam com colimites filtrados. Veja, por exemplo, [2], Corolário 2.13.6.

(AB3*) Analogamente ao que foi feito em (AB3), sejam $(G_i)_{i \in I}$ uma família de grupos abelianos. Então $\left(\prod_{i \in I} G_i, (\pi_i : \prod_{i \in I} G_i \to G_i)_{i \in I}\right)$ é o produto de $(G_i)_{i \in I}$, onde $\prod_{i \in I} G_i = \{(g_i)_{i \in I} \mid g_i \in G_i\}$. Para ver isso, basta notar que, dados $f_i : X \to G_i$ homomorfismos de grupos indexados por $i \in I$, temos que $\psi : X \to \prod_{i \in I} G_i, x \mapsto (f_i(x))_{i \in I}$ é o único homomorfismo tal que $f_i = \pi_i \circ \psi$.

(AB4*) Aplica-se, nesse axioma, o mesmo raciocínio usado em (AB4), onde o produto de homomorfismos é definido igualmente ao coproduto. □

Finalmente, vamos enunciar e demonstrar o Teorema 2.2.

Teorema 1 (Teorema 2.2, das notas de Peter Scholze). A categoria κ -Cond(AbGrp) é uma categoria abeliana e satisfaz os axiomas de Grothendieck (AB3), (AB4), (AB5), (AB6), (AB3*) e (AB4*). Além disso, tal categoria é gerada por objetos projetivos compactos.

Demonstração. ⊠

Referências

- [1] ASSEM, I.; SIMSON, D.; SKOWROŃSKI, A. *Elements of the Representation Theory of Associative Algebras*. Cambridge University Press, 2006. Apêndice A.
- [2] BORCEUX, F. Handbook of Categorical Algebra I. Cambridge University Press, 1994.
- [3] nLab. Separator. Website.
- [4] ROCH, S. A Brief Introduction to Abelian Categories. Notas de aula. Website.
- [5] SCHOLZE, P. Lectures on Condensed Mathematics. Notas de aula. Website.
- [6] The Stacks Project Authors. *Stacks Project*. Seções 4.19, 4.21, 10.8, 12.3, 12.5 e 19.10. Website.
- [7] Wikipedia. Abelian Category. Website.
- [8] Wikipedia. Compact Object. Website.
- [9] Wikipedia. *Projective Object*. Website.