

Generative Artificial Intelligence

Sub-word Tokenization

Outline

Recap

Word Segmentation

Sub-word Tokenization

Recap: Word Representations

Recap: Word Representations (Details)

Basic Pipeline of Natural Language Processing

Build the vocabulary

Learn the representations (Training)

Perform predictions (Testing)

How to build the vocabulary?

- Segment words based on delimiters (e.g., white spaces).
- Then we can collect the words from training corpora.

Issues of Delimiter-based Segmentation

- Only work for Western languages.
 - Cannot work for Chinese, Japanese, ...
- Cannot handle unseen words (not shown up in the training corpora)
 - A misspelled word contains morphological information but become an unknown word.

Issues of Delimiter-based Segmentation (Continued.)

- For machine translation, there is not always a 1-to-1
 correspondence between source and target words since compound
 words may exist in target language.
- For example, sewage water treatment plant (English) ->

Abwasserbehandlungsanlage (German)

Sub-word units are favored.

sewage water treatment plant/facility

Common Sub-word Tokenization Algorithms

- Byte Pair Encoding (BPE) (Sennrich et al., 2016)^[1]
- WordPiece (Schuster and Nakajima, 2012)^[2]
- Unigram Language Model (Kudo, 2018)[3]

^[1] Sennrich, Rico, Barry Haddow, and Alexandra Birch. "Neural Machine Translation of Rare Words with Subword Units." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL), 2016.

^[2] Schuster, Mike, and Kaisuke Nakajima. "Japanese and korean voice search." 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2012.

^[3] Kudo, Taku. "Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates." Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL). 2018.

Segmentation vs. Tokenization

- All tokenization is segmentation, but not all segmentation is tokenization.
- Segmentation can be:
 - Word segmentation from a sentence
 - Sentence segmentation from a document
- Tokenization can be:
 - Word segmentation from a sentence (then `words` become `tokens`)
 - Sub-word tokenization from a word or sentence

Sub-word Tokenization (1)

Given a training corpus, we first turn each word

into a sequence of characters (separated by spaces)

Training corpus

low low low low lower lower newest newest newest newest newest widest widest widest

Word	Frequency
I o w	5
lower	2
n e w e s t	6
widest	3

</w> is a special end-of-word symbol,
 allowing us to restore the original tokenization.

Sub-word Tokenization (1)

• Initialize the vocabulary with the existing characters:

low low low low lower lower newest newest newest newest newest widest widest

Initial vocab: </w>, d, e, i, l, n, o, r, s, t, w

Sub-word Tokenization (2)

Find the character pair with the highest frequency

Word	Frequency
I o w	5
I o w e r	2
n e w e s t	6
widest	3

Found "e s" with the highest frequency 6+3=9

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w

Sub-word Tokenization (3)

Add the pair with the highest frequency to the vocab

Word	Frequency
I o w	5
I o w e r	2
newest	6
widest	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es

Sub-word Tokenization (4)

• Merge the characters by replacing all words in the corpus with the newly added pair.

Word	Frequency
I o w	5
I o w e r	2
n e w es t	6
widest	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es

Sub-word Tokenization (2)

Repeated (2)-(4) according to `num_merges`

• Find the character pair with the highest frequency

Word	Frequency
I o w	5
I o w e r	2
n e w es t	6
widest	3

Found "es t" with the highest frequency 6+3=9

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es

Sub-word Tokenization (3)

Repeated (2)-(4) according to `num_merges`

Add the pair with the highest frequency to the vocab

Word	Frequency
I o w	5
I o w e r	2
n e w es t	6
widest	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es est

Sub-word Tokenization (4)

Repeated (2)-(4) according to `num_merges`

• Merge the characters by replacing all words in the corpus with the newly added pair.

Word	Frequency
I o w	5
I o w e r	2
n e w est	6
w i d est	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es, est

Sub-word Tokenization (2)

Repeated (2)-(4) according to `num_merges`

Find the character pair with the highest frequency

Word	Frequency
I o w	5
I o w e r	2
n e w est	6
widest	3

Found "est </w>" with the highest frequency 6+3=9

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es, est

Sub-word Tokenization (3)

Repeated (2)-(4) according to `num_merges`

Add the pair with the highest frequency to the vocab

Word	Frequency
I o w	5
I o w e r	2
n e w est	6
widest	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>

Sub-word Tokenization (4)

Repeated (2)-(4) according to `num_merges`

Merge the characters by replacing all words in the corpus with the newly added pair.

Word	Frequency
I o w	5
I o w e r	2
n e w est	6
widest	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>

Sub-word Tokenization (2)

Repeated (2)-(4) according to `num_merges`

Find the character pair with the highest frequency

Word	Frequency
low	5
lower	2
n e w est	6
widest	3

Found "I o" with the highest frequency 5+2=7

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>

Sub-word Tokenization (3)

Repeated (2)-(4) according to `num_merges`

Add the pair with the highest frequency to the vocab

Word	Frequency
low	5
lower	2
n e w est	6
widest	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>, lo

Sub-word Tokenization (4)

Repeated (2)-(4) according to `num_merges`

Merge the characters by replacing all words in the corpus with the newly added pair.

Word	Frequency
lo w	5
lo w e r	2
n e w est	6
w i d est	3

Current Vocabulary: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>, lo

Finish Sub-word Leaning

- Assume `num_merges`=4 (we just repeated four times.)
- `num_merges` is a hyperparameter that you need to set for BPE.
- The learned vocabulary is: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>, lo

Tokenization with Learned BPE

- The learned vocabulary is: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>, lo
- We first turn each word into a sequence of characters with </w> placed at the end of a word, same as the first step during the learning phase.
- Then we can merge the characters according to the learned vocabulary.
- •Examples:

Properties of BPE

The final learned vocabulary size = initial size + `num_merges`

Initial vocab: </w>, d, e, i, l, n, o, r, s, t, w

Learned vocab: </w>, d, e, i, l, n, o, r, s, t, w, es, est, est</w>, lo

• This algorithm is based on statistics, so frequent sub-word units in provided corpora will be put to the learned vocabulary.

Why do we need Sub-word Tokenization?

- With sub-word tokenization algorithms, we can handle representations for unknown words (or mis-spelled words / compound words).
- In machine translation, the compound word issues between source and target languages can be alleviated.
- State-of-the-art pre-trained language models (e.g., GPT-3, BERT) adopt sub-word tokenization algorithms before pre-training.

Limitations of Sub-word Tokenization

- (Not many disadvantages for sub-word tokenization)
- The hyperparameter `num_merges` needs to be tuned.
- Once the learned vocabulary is created, it becomes fixed. The algorithm needs to be re-run after adding new data.

Thank you!

Sub-word Tokenization

Generative Artificial Intelligence

