Compiled and interpreted languages

Troels Henriksen

24th of November, 2020

Roughly two kinds of languages

Compiled languages are transformed to machine code before execution (e.g. C) Interpreted languages are run directly by a software *interpreter* (e.g. Python)

Roughly two kinds of languages

Compiled languages are transformed to machine code before execution (e.g. C) Interpreted languages are run directly by a software *interpreter* (e.g. Python)

Pedantic disclaimer

Compilation/interpretation is strictly a property of *implementations*, not *languages*.

- You could have a C interpreter or Python compiler
- But most (not all!) languages are built with a specific implementation technique in mind
- A few languages (Lisp, JavaScript) have lots of very different implementations...

We teach you the big picture—the details are always more complicated in practice!

Tradeoffs

- Compiled languages
 - + Almost always faster
 - Require compilation after every change
 - Usually cannot run program fragments in isolation
 - Tend to have more restrictions (e.g. static typing)
 - Much more difficult to implement

Tradeoffs

- Compiled languages
 - + Almost always faster
 - Require compilation after every change
 - Usually cannot run program fragments in isolation
 - Tend to have more restrictions (e.g. static typing)
 - Much more difficult to implement
- Interpreted languages
 - Usually slow
 - + Can run immediately
 - + Can easily run fragments (e.g. single functions) in isolation
 - + Much easier to implement

Tradeoffs

- Compiled languages
 - + Almost always faster
 - Require compilation after every change
 - Usually cannot run program fragments in isolation
 - Tend to have more restrictions (e.g. static typing)
 - Much more difficult to implement
- Interpreted languages
 - Usually slow
 - + Can run immediately
 - + Can easily run fragments (e.g. single functions) in isolation
 - + Much easier to implement

Let us look at the scale of the overhead.

The Collatz conjecture

$$f(n) = \left\{ \begin{array}{ll} \frac{n}{2} & \text{if } n \text{ is even} \\ 3n+1 & \text{if } n \text{ is odd} \end{array} \right\}$$

- **Conjecture:** if we apply this function to some number greater than 1, we will eventually reach 1
- To disprove this conjecture, we only need a single counter-example that goes into a cycle instead
- People write programs to investigate the behaviour of this sequence

Listing 1: collatz.py

```
import sys
def collatz(n):
    i = 0
    while n != 1:
        if n \% 2 == 0:
            n = n / / 2
        else:
            n = 3 * n + 1
        i = i + 1
    return i
k = int(sys.argv[1])
for n in range(1, k):
    print(n, collatz(n))
```

Listing 2: collatz.c

```
#include <stdio.h>
#include <stdlib.h>
int collatz(int n) {
  int i = 0:
  while (n != 1) {
    if (n \% 2 = 0) {
     n = n / 2:
    } else {
      n = 3 * n + 1:
    i + +:
  return i:
int main(int argc, char** argv) {
  int k = atoi(argv[1]);
  for (int n = 1; n < k; n++) {
    printf("%d\_%d\n", n, collatz(n));
```

```
$ time python3 ./collatz.py 100000 >/dev/null
        0m1.368s
real
        0m1.361s
user
        0m0.007s
sys
$ gcc collatz.c -o collatz
$ time ./collatz 100000 >/dev/null
real
        0m0.032s
        0m0.030s
user
        0m0.002s
sys
```

```
$ time python3 ./collatz.py 100000 >/dev/null
        0m1.368s
real
       0m1.361s
user
        0m0.007s
sys
$ gcc collatz.c -o collatz
$ time ./collatz 100000 >/dev/null
real
        0m0.032s
        0m0.030s
user
        0m0.002s
sys
```

Speedup:
$$\frac{1.368}{0.032} = 42.75$$

Combining interpretation and compilation

- Interpreted languages can be fast when
 - Most of the run-time is spent waiting data from files or network
 - They mostly call functions written in faster compiled languages
- Best of both worlds: flexibility of interpretation, and speed of C

Different ways to compile

To executable program collatz

- \$ gcc collatz.c -o collatz
 - Can be run directly

Different ways to compile

To executable program collatz

- \$ gcc collatz.c -o collatz
 - Can be run directly

To object file collatz.o

- \$ gcc collatz.c -c -o collatz.o
 - Can be *linked* with other object files
 - Can be processed further

Different ways to compile

To executable program collatz

- \$ gcc collatz.c -o collatz
 - Can be run directly

To object file collatz.o

- \$ gcc collatz.c -c -o collatz.o
 - Can be linked with other object files
 - Can be processed further

To shared object file libcollatz.so

- \$ gcc collatz.c -fPIC -shared -o libcollatz.so
 - Can be linked at run-time by a running program
 - How compiled programs support dynamic "plug-ins"

All output files contain fully compiled machine code.

Calling C from Python

Compiling C program to shared library

```
$ gcc collatz.c -fPIC -shared -o libcollatz.so
```

Listing 3: collatz-ffi.py

```
import ctypes
import sys

c_lib = ctypes.CDLL('./libcollatz.so')

k = int(sys.argv[1])
for n in range(1, k):
    print(n, c_lib.collatz(n))
```

\$ time python3 ./collatz-ffi.py 100000 >/dev/null

real 0m0.165s user 0m0.163s sys 0m0.003s

Speedup:
$$\frac{1.368}{0.165} = 8.2$$

\$ time python3 ./collatz-ffi.py 100000 >/dev/null

real 0m0.165s user 0m0.163s sys 0m0.003s

Speedup:
$$\frac{1.368}{0.165} = 8.2$$

- Slower than pure C by about $5\times$
- Faster if we made fewer "foreign" calls, but each took more time
- Ideal case is single foreign function call that operates on many values
- This is exactly how NumPy works!

NumPy performance

```
def f_python(v):
    for i in range(len(v)):
        v[i] = v[i]*2 + 3

def f_numpy(v):
    return v * 2 + 3
```

Size of v	f_python	$\mathtt{f_numpy}$	Difference
1	0.01 <i>ms</i>	0.01 <i>ms</i>	0.9×
10	0.01 ms	0.01 ms	1.4 imes
100	0.1 ms	0.01 ms	$13.3 \times$
1000	0.98 <i>ms</i>	0.01 ms	$95.3 \times$
10000	9.96 <i>ms</i>	0.05 <i>ms</i>	$190.7 \times$
100000	98.59 <i>ms</i>	0.41 <i>ms</i>	240.7×

Now a high-level view

- We've looked at some technical details of compilers and interpreters
- Do we also have a high-level model?

Tombstone diagrams

Tombstone diagrams

Example of program written in Python

A machine that runs L programs

A machine that runs L programs

Example

A machine that runs L programs

Example

Incorrect! Languages (Python and x86) do not match!

An interpreter for F, written in T

F

Τ

Example

Stacking interpreters

A compiler from F to T, written in L

A compiler from F to T, written in L

Example

Compilers can be chained

Futhark \rightarrow C \rightarrow machine code

Compilers can be chained

Futhark \rightarrow C \rightarrow machine code

Compilers are also programs

- A C compiler is usually written in a high-level language, not in machine code
- Use old version of the compiler to compile the new version of the compiler

• All the way back to the first computers, where some primordial primitive compiler or assembler was written in machine code

Advantages and limitations of tombstone diagrams

- + Abstracts away technical details of object files, compilation modes etc
- Cannot express more complex situations such as dynamic linking
- In practice mostly used for visualising bootstrapping—the process of writing compilers in the language they compile, or bringing up new hardware

Conclusions

- Compiled languages tend to be fast, but less flexible
- Interpreted languages tend to be slower, but more flexible
- Best of both worlds: write computational primitives in fast languages, call them from slow languages
 - NumPy works like this
- Tombstone diagrams make the relationship between compiler, interpreter, and machine clear
 - Although in day-to-day work, we only use simple compositions