- 1. 물질의 분류 중 반도체에 대한 설명으로 가장 옳지 않은 것은?
 - ① 순수한 상태에서는 전기가 통하지 않는다.
 - ② 빛, 열, 특정 불순물을 넣어주면 도체처럼 전기가 흐른다.
 - ③ 은(Ag), 구리(Cu), 금(Au) 등이 있다.
 - ④ 반도체 소자로는 다이오드, 트랜지스터, 사이리스터, IGBT 등이 있다.
- 2. 전기와 자기에 대한 설명으로 가장 옳은 것은?
 - ① 전기는 +, -의 분리가 불가능하다.
 - ② 전기장의 세기는 $E = \frac{1}{4\pi\epsilon} \times \frac{Q}{r^2} [\text{V/m}]$ 이다.
 - ③ 자기의 유전율은 $\mu = \epsilon_0 \mu_s$ 이다.
 - ④ 자기에 대한 쿨롱의 법칙은 $F=9\times 10^9 \frac{Q_1Q_2}{r^2}$ 이다.
- 3. 〈보기〉는 전류에 의한 자기장 발생을 관찰하는 실험이다. 스위치(SW)를 닫았을 때 나침반의 N극이 가리키는 방향은?

- ① 동(오른쪽)
- ② 서(왼쪽)
- ③ 남(아래쪽)
- ④ 북(위쪽)
- 4. $10[\Omega]$ 의 리액턴스 값을 가진 커패시터 C만의 교류 회로에 $i = 5\sin(wt + 30^\circ)[A]$ 의 전류가 흘렀다면 회로에 인가 해준 전압 v[V]는?
 - ① $2\sin(wt-60^{\circ})$
 - ② $2\sin(wt+120^{\circ})$
 - $3 50\sin(wt-60^{\circ})$
 - $40.50\sin(wt+120^\circ)$

5. 어떤 소자에 교류전원을 인가했더니 교류전원의 주파수에 따라 리액턴스 값이 〈보기〉와 같이 측정되었다. 이 소자에 대한 설명으로 가장 옳지 않은 것은?

- ① 유도성 리액턴스 성분이다.
- ② 주파수가 높을수록 전류는 증가한다.
- ③ 흐르는 전류는 전압보다 위상이 90° 앞선다.
- ④ 소자에 저장되는 에너지는 전압의 제곱에 비례한다.
- 6. 〈보기〉의 회로에서 임피던스 $Z=60+j80[\Omega]$ 일 때, 회로에 흐르는 전류의 실횻값 $I_{rms}=2[A]$ 이다. 이때 인가한 전압의 실횻값[V]과 유효전력[W]은?

	전압의 실횻값[V]	<u> 유효전력[W]</u>
1	100	240
2	100	320
3	200	240
(4)	200	320

- 7. 정격이 15[V], 10[Ah]인 축전지 10개를 병렬 접속하여 15[V]용 150[W] 전구를 연결하였다. 이 전구가 점등할 수 있는 최대 시간[h]은? (단, 누설 전류는 없다.)
 - ① 10

② 15

3 20

- **4** 30
- 8. $\langle \text{보기} \rangle$ 의 회로에서 I=4[A]일 때, R의 값[Ω]은?

1 4

2 8

3 16

4 32

전기이론(9급 - 고졸자)

A 책형

2/3쪽

9. 〈보기〉의 회로에 흐르는 전류 *I*의 값[A]은?

10. 전원과 코일만으로 이루어진 〈보기〉의 교류회로에서 전압의 최댓값 $v_{\rm max} = 100 [{
m V}]$ 이고 $L = 5 [{
m H}]$ 이며 $w = 10 [{
m rad/s}]$ 일 때, 회로에 흐르는 전류의 최댓값 $i_{\rm max}[{
m A}]$ 는?

11. \langle 보기 \rangle 는 t=0에서 스위치가 닫히는 회로이다. 회로가 정상상태 $(t=\infty)$ 에 도달할 경우 a-b 양단의 합성 저항 $R_0[\Omega]$ 및 전류 I[A]는?

	합성 저항 $R_0[\Omega]$	<u>전류 <i>I</i>[A]</u>
1	5	20
2	10	10
3	12.5	8
4	25	4

12. 〈보기〉는 직류 전동기의 회전 원리를 나타내는 그림이다. 직선 도체 a-b와 c-d의 양단에 각각 작용하는힘의 방향을 옳게 짝지은 것은?

- ④ 힘이 발생하지 않는다. 힘이 발생하지 않는다.

- 13. 평행판 커패시터(콘덴서)의 정전용량을 크게 하는 방법으로 가장 옳지 않은 것은?
 - ① 극판의 면적을 좁게 한다.
 - ② 극판 사이의 간격을 작게 한다.
 - ③ 평행판 커패시터(콘덴서)를 추가로 병렬로 연결한다.
 - ④ 극판 사이의 유전체를 비유전율이 큰 것을 사용한다.

14. 〈보기〉의 회로에 w=100[rad/s], V=200[V]의 교류 전압을 인가할 때, 유효전력[W]과 무효전력[Var]은?

	<u> 유효전력[W]</u>	무효전력[Var]
1	240	160
2	240	320
3	480	160
(1)	480	320

15. 〈보기〉는 원자를 이루는 전자에 대한 특성을 나열한 것이다. 〈보기〉에서 옳은 것을 모두 고른 것은?

----(보기)--

- ㄱ. 원자핵의 일부분이다.
- ∟. $e = -1.602 \times 10^{-19}$ [C]의 전기량을 가진다.
- ㄷ. 원자핵 가장자리를 회전하는 최외각 전자에 에너지가 공급되면 이동이 가능한 상태가 된다.
- ㄹ. 질량은 양성자의 약 1,840배에 해당한다.
- ① ¬

- ② ㄴ, ㄷ
- ③ ㄴ, ㄹ
- ④ ㄴ, ㄷ, ㄹ

16. 〈보기〉는 최댓값이 12[V]이고, 주기가 25[ms]인 직사각형파(구형파)를 나타낸 것이다. 구형파의 기본파 주파수, 제3고조파 주파수, 제5고조파 주파수의 값[Hz]은?

	기본파 주파수	제3고조파 주파수	제5고조파 주파수
1	4	12	20
2	4	20	12
3	40	120	200
4	40	200	120

- 17. 자석에 대한 설명으로 가장 옳은 것은?
 - ① 자석은 고온이 되면 자력이 증가한다.
 - ② 자석은 같은 극끼리 서로 끌어당긴다.
 - ③ 자력선은 S극에서 나와 N극으로 향한다.
 - ④ 철심에 코일을 감고 전류를 가했을 때 자성을 띠는 자석을 전자석이라 한다.

18. 같은 용량의 4개의 콘덴서 C를 직렬로 접속할 경우 합성 정전용량이 $1[\mu F]$ 이라면, 동일한 콘덴서 C를 〈보기〉와 같이 직·병렬 접속했을 때 합성 정전용량의 값[μF]은?

- 3 1.5

4 2

19. 〈보기〉의 병렬 *RLC* 회로에서 전류가 최솟값인 상태의 주파수[Hz]는?

- 20. 쿨롱의 법칙에 대한 설명으로 가장 옳지 않은 것은?
 - ① 같은 종류의 전하 사이에는 반발력이 작용한다.
 - ② 힘의 방향은 두 전하 사이의 일직선상으로 존재한다.
 - ③ 힘의 크기는 두 전하 사이에 존재하는 매질의 종류와 관계없이 동일하다.
 - ④ 힘의 크기는 두 전하량의 곱에 비례하고 떨어진 거리의 제곱에 반비례한다.

이 면은 여백입니다.