ELECTRIC VEHICLE POPULATION

An internship report submitted in partial fulfillment of the requirement of degree of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE ENGINEERING

Submitted

By

Aman Sinha 2022534811

Under the guidance of

Mr. Ashwani Balyan

SHARDA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SHARDA UNIVERSITY, GREATER NOIDA

TRAINING COMPLETION CERTIFICATE			
2			

DECLARATION

ACKNOWLEGEMENT

I would like to express my deepest gratitude to my mentors and advisors for their continuous support, insightful guidance, and invaluable feedback throughout the research and writing process. I am also thankful to the organizations that provided the data sets used in these analyses, enabling me to conduct comprehensive and impactful studies.

ABSTRACT

This report presents a comprehensive market size analysis of the electric vehicle (EV) population in the United States, with a focus on the state of Washington. By leveraging historical EV registration data, the study aims to assess market penetration, predict future growth trends, and identify key factors driving market expansion. The dataset comprises various attributes including vehicle identification numbers, geographic information, vehicle specifications, and utility service details. Through detailed data analysis, the report provides insights into the current state of the EV market, highlights the most common models and manufacturers, and examines the influence of legislative districts on EV registrations. The findings offer valuable information for stakeholders involved in production, infrastructure development, and policy-making.

Contents

TRAINING COMPLETION CERTIFICATE	2
DECLARATION	3
ACKNOWLEGEMENT	4
ABSTRACT	5
List of Figures	7
List of Tables	7
Introduction	8
Problem	8
Observations	9
Conclusion	22

List of Figures

- Statistical data types
- Numerical data types

List of Tables

- Top 5 rows of dataset
- Bottom 5 rows of dataset
- Most common Model in a Year
- Summary Table for vehicles of different Make and Electric Range
- City vs Base MSRP
- Ranked list of most registered electric in Legislative District
- Most common VIN prefixes and suffix
- Frequency Table of top 10 Models
- Legislative District vs Base MSRP

Introduction

This report presents a comprehensive market size analysis of the electric vehicle (EV) population in the United States, with a focus on the state of Washington. By leveraging historical EV registration data, the study aims to assess market penetration, predict future growth trends, and identify key factors driving market expansion. The dataset comprises various attributes including vehicle identification numbers, geographic information, vehicle specifications, and utility service details. Through detailed data analysis, the report provides insights into the current state of the EV market, highlights the most common models and manufacturers, and examines the influence of legislative districts on EV registrations. The findings offer valuable information for stakeholders involved in production, infrastructure development, and policy-making.

Problem

Market Size Analysis is the process of estimating the potential sales for a product or service within a particular market segment. In the context of electric vehicles (EVs), it involves assessing the total volume of EV registrations to understand the growth of the market, forecast future trends, and help stakeholders make informed decisions regarding production, infrastructure development, and policy-making

The provided dataset contains the following columns, each representing different aspects of the electric vehicle (EV) population in the United States:

- VIN (1-10): Partial Vehicle Identification Number.
- County: The county in which the vehicle is registered.
- City: The city in which the vehicle is registered.
- State: The state in which the vehicle is registered. It appears that this dataset may be focused on Washington (WA) state.
- Postal Code: The postal code where the vehicle is registered.
- Model Year: The year of the vehicle model
- Make: The manufacturer of the vehicle.
- Model: The model of the vehicle.
- Electric Vehicle Type: The type of electric vehicle, e.g., Battery Electric Vehicle (BEV).
- Clean Alternative Fuel Vehicle (CAFV) Eligibility: Eligibility status for clean alternative fuel vehicle programs.
- Electric Range: The maximum range of the vehicle on a single charge (in miles).
- Base MSRP: The Manufacturer's Suggested Retail Price.
- Legislative District: The legislative district where the vehicle is registered.
- DOL Vehicle ID: Department of Licensing Vehicle Identification.
- Vehicle Location: Geographic coordinates of the vehicle location.
- Electric Utility: The electric utility service provider for the vehicle's location.
- 2020 Census Tract: The census tract for the vehicle's location.

The primary objective of this analysis is to leverage historical EV registration data to understand the current market penetration of EVs, predict future market growth, and identify key trends and factors driving market expansion.

Dataset

	0	1	2	3	4
VIN (1-10)	5YJYGDEE1L	7SAYGDEE9P	5YJSA1E4XK	5YJSA1E27G	5YJYGDEE5M
County	King	Snohomish	King	King	Kitsap
City	Seattle	Bothell	Seattle	Issaquah	Suquamish
State	WA	WA	WA	WA	WA
Postal Code	98122.0	98021.0	98109.0	98027.0	98392.0
Model Year	2020	2023	2019	2016	2021
Make	TESLA	TESLA	TESLA	TESLA	NaN
Model	MODEL Y	MODEL Y	MODEL S	MODEL S	MODEL Y
Electric Vehicle Type	Battery Electric Vehicle (BEV)	Battery Electric Vehicle (BEV)	Battery Electric Vehicle (BEV)	Battery Electric Vehicle (BEV)	Battery Electric Vehicle (BEV)
Clean Alternative Fuel Vehicle (CAFV) Eligibility	Clean Alternative Fuel Vehicle Eligible	Eligibility unknown as battery range has not b	NaN	Clean Alternative Fuel Vehicle Eligible	Eligibility unknown as battery range has not b
Electric Range	291	0	270	210	0
Base MSRP	0	0	0	0	0
Legislative District	37	1	36	5	23
DOL Vehicle ID	125701579	244285107	156773144	165103011	205138552
Vehicle Location	POINT (-122.30839 47.610365)	POINT (-122.179458 47.802589)	POINT (-122.34848 47.632405)	POINT (-122.03646 47.534065)	POINT (-122.55717 47.733415)
Electric Utility	CITY OF SEATTLE - (WA) CITY OF TACOMA - (WA)	PUGET SOUND ENERGY INC	CITY OF SEATTLE - (WA) CITY OF TACOMA - (WA)	PUGET SOUND ENERGY INC CITY OF TACOMA - (WA)	PUGET SOUND ENERGY INC
2020 Census Tract	53033007800.0	53061051938.0	53033006800.0	53033032104.0	53035940100.0

Observations

1. Descriptive Statistics:

• What are the mean, median, and standard deviation of the base MSRP for the vehicles in the dataset?

Observation

- The Mean of Base MSRP is 0.00
- The Median of Base MSRP is 0.0
- The Standard Deviation of Base MSRP is 0.00

2. Data Distribution:

• What is the distribution of vehicle makes in the dataset? Represent it using a bar chart.

3. Model Year Analysis:

- What are the most common model years in the dataset? Provide
 - 1. A frequency table
 - 2. histogram.

Observation

•	Model Y	ear
	2013.0	6862
	2014.0	3509
	2015.0	4844
	2016.0	5483
	2017.0	8562
	2018.0	14323
	2019.0	10940
	2020.0	11768
	2021.0	19132
	2022.0	27776
	2023.0	57587
	2024.0	7080

• The year between 2023 had seen the most common modles in a year.

4. Electric Vehicle Type:

• What is the proportion of Battery Electric Vehicles (BEV) versus other types of electric vehicles?

Observation

- The raito of Battery Electric Vehicles (BEV) to other types of electric vehicles is 13921 : 177866.
- Or Battery Electric Vehicles (BEV) is 78.26% more compared to other electric vehicles.

5. Electric Range Analysis:

• What is the average electric range for vehicles of different makes? Provide a summary tabe.

Observation

• Summary Table for vehicles of different Make and Electric Range:

	Make	Electric Range
0	ALFA ROMEO	33.000000
1	AUDI	46.454745
2	AZURE DYNAMICS	56.000000
3	BENTLEY	19.666667
4	BMW	34.711427
5	CADILLAC	8.798429
6	CHEVROLET	76.570332

7		CHRYSLER	32.212162
8		DODGE	32.000000
9		FIAT	85.645408
10		FISKER	8.755102
11		FORD	10.812914
12		GENESIS	0.000000
13		GMC	0.000000
14		HONDA	46.600240
1 5		HYUNDAI	15.858715
16		JAGUAR	163.254310
17		JEEP	22.365402
18		KIA	38.850175
19		LAND ROVER	25.000000
20		LEXUS	18.800000
21		LINCOLN	23.543071
22		LUCID	0.000000
23		MAZDA	25.781513
24		MERCEDES-BENZ	9.346130
25		MINI	18.016704
26		MITSUBISHI	30.646138
27		NISSAN	79.839501
28		POLESTAR	30.399660
29		PORSCHE	42.693152
30		RIVIAN	0.000000
31		ROLLS ROYCE	0.000000
32		SMART	62.325926
33		SUBARU	1.350181
34		TESLA	60.214775
35		TH!NK	100.000000
36		TOYOTA	28.095102
37		VOLKSWAGEN	22.927058
38		V0LV0	16.135737
39	WHEEGO	ELECTRIC CARS	100.000000

6. County Distribution:

• How are vehicles distributed across different counties in Washington state? Represent the distribution using a barh chart.

 King has the greatest number of vehicles in the Washington state around 53%

7. Price Analysis:

• Compare the average base MSRP of vehicles eligible for the Clean Alternative Fuel Vehicle (CAFV) program versus those that are not

Observation

• Average Base MSRP for CAFV Eligible: \$0.00, Not Eligible: \$0.00

8. Geographical Analysis:

• How does the base MSRP vary across different cities in Washington state?

Observation

	City	Base MSRP
0	Aberdeen	0.0
1	Aberdeen Proving Ground	0.0
2	Acme	0.0
3	Adairsville	0.0
4	Addy	0.0
5	Adna	0.0
6	Airway Heights	0.0
7	Alameda	0.0
8	Alderdale	0.0
9	Alderwood Manor	0.0

9. Legislative Districts:

• Which legislative districts have the highest number of registered electric vehicles? Provide a ranked list

Observation

- 41 legislative districts have the highest number of registered electric vehicles
- Ranked List:
- Legislative District
 - 41.0 8831 45.0 7425 5.0 6810 48.0 6631

1.0 6265

Name: count, dtype: int64

Legislative District

Name: count, dtype: int64

10. Electric Utility Providers:

• What is the distribution of electric utility service providers for the vehicles in the dataset?

11. Census Tract Analysis:

• How are vehicles distributed across different 2020 Census Tracts? Provide insights based on vehicle counts per tract.

12. Electric Range Correlation:

• Is there a correlation between the electric range and the base MSRP of the vehicles? Provide the correlation coefficient and interpret the result.

Observation

- Correlation Coefficient between Electric Range and Base MSRP: nan
- Correlation Coefficient (r):
 - 1: Perfect positive correlation.
 - 0.7 to 0.9: Strong positive correlation.
 - 0.4 to 0.6: Moderate positive correlation.
 - 0.1 to 0.3: Weak positive correlation.
 - 0: No correlation.
 - -0.1 to -0.3: Weak negative correlation.
 - -0.4 to -0.6: Moderate negative correlation.
 - -0.7 to -0.9: Strong negative correlation.
 - -1: Perfect negative correlation
- There cannot be a Correlation between Electric Range and Base MSRP

13. VIN Analysis:

• Identify any patterns or commonalities in the VIN (1-10) for the vehicles. Are there any frequent prefixes or suffixes

Most common VIN prefixes (first 10 characters):
 VIN (1-10)
 7SAYGDEE6P 1239
 7SAYGDEE7P 1235
 7SAYGDEE8P 1197
 7SAYGDEEXP 1191
 7SAYGDEE5P 1177
 Name: count, dtype: int64

• Most common VIN suffixes (last 10 characters):

```
VIN (1-10)
7SAYGDEE6P 1239
7SAYGDEE7P 1235
7SAYGDEE8P 1197
7SAYGDEEXP 1191
7SAYGDEE5P 1177
```

Name: count, dtype: int64

14. Eligibility Status:

• What percentage of vehicles are eligible for the Clean Alternative Fuel Vehicle (CAFV) program

Observation

• Percentage of vehicles eligible for CAFV: 37.29%

15. Model Popularity:

• Which vehicle models are the most popular in the dataset? Provide a frequency table of the top 10 models

Observation

• Frequency Table of top 10 Models:

```
Model
MODEL Y
                   35993
MODEL 3
                   30091
LEAF
                   13365
MODEL S
                    7734
BOLT EV
                    6821
MODEL X
                    5796
VOLT
                    4796
ID.4
                    3937
WRANGLER
                    3392
MUSTANG MACH-E
                    3322
Name: count, dtype: int64
```

• MODEL Y is most popular in the dataset

16. Postal Code Distribution:

• How are vehicles distributed across different postal codes? Provide a heatmap or density plot

Observation

• Density Plot of Vehicle Distribution Across Postal Codes shows postal code at 100000 is maximum

17. Vehicle Location Analysis:

• Analyze the geographic coordinates to determine any clusters of electric vehicles in certain areas of Washington state.

- At longitude 49 and Longitude -120 the distribution is maximum 18. Model Year Trend:
- Analyze the trend in the number of registered electric vehicles by model year. Provide a line chart to show any increase or decrease over the years.

- The was a steady growth in between year 2014 and 2020
- 2020 to 2023 saw a skyroketting growth in the number of vehicle registered
- After mid of 2023 there was a drastic fall in number of registrations in 2024

19. Range vs. Year:

• Is there a trend between the model year and the electric range of the vehicles? Provide a scatter plot and analyze the trend.

- The correlation coefficient is -0.55
- This negative correlation indicates that newer model years generally have lower electric ranges compared to older model years.

20. Legislative District and MSRP:

• How does the average base MSRP vary across different legislative districts

Observation

- Legislative District
 - 1.0 0.0
 - 24 0.0
 - 23 0.0
 - 22 0.0
 - 21 0.0

Name: Base MSRP, dtype: float64

- The Base MSRP remains the same for every Legislative District
- There seems to be no connection between Legislative District and Base MSRP

Conclusion

The Electric Vehicle Population report provides a detailed analysis of the current state and future prospects of the electric vehicle (EV) market in the United States, focusing specifically on the state of Washington. The study leverages historical EV registration data to evaluate market penetration, forecast growth trends, and identify key factors influencing the market.

Key findings include:

- A steady increase in EV registrations, driven by technological advancements and favorable policies.
- Identification of the most common EV models and manufacturers.
- The influence of legislative districts on EV distribution patterns.

The report emphasizes the need for continuous support of clean alternative fuel vehicle programs and the development of robust charging infrastructure to sustain market growth. These insights are crucial for policymakers, manufacturers, and other stakeholders aiming to foster a sustainable transportation ecosystem.

Uber Data Analysis Report

The Uber Data Analysis report explores the impact of weather conditions on Uber ride patterns across different boroughs in New York City. The dataset includes hourly Uber pickup data and weather attributes such as temperature, visibility, wind speed, and precipitation.

Key findings include:

- A comprehensive understanding of the total number of Uber pickups, hourly and daily trends, and the correlation between weather variables and ride demand.
- Identification of peak ride-sharing times and the variation of pickups across different boroughs and weather conditions.
- Recommendations for Uber to optimize driver availability and improve service efficiency, such as implementing targeted promotions during low-demand periods and strategic driver incentives during extreme weather conditions.

The report provides actionable insights that can help Uber enhance its operational strategies, ensuring better service reliability and growth. These strategies aim to improve user experience and optimize driver availability during different weather scenarios.

Overall, both reports offer valuable insights and practical recommendations for enhancing the respective fields of electric vehicle market analysis and ride-sharing service optimization, contributing to the broader goals of sustainable transportation and efficient urban mobility.

Faculty Signature