## 5. Transformações lineares

- 5. 1. Determine se a transformação  $T: \mathbb{R}^3 \to \mathbb{R}^3$  dada é ou não linear. Em caso afirmativo, calcule a matriz que a representa em relação à base dos vectores coordenados unitários.
  - (a) T(x, y, z) = (y, z, x)
- (b)  $T(x, y, z) = (x, y^2, z^3)$ (d)  $T(x, y, z) = (0, y, e^z)$ 
  - (c) T(x, y, z) = (y z, x z, 0)
- (e) T(x, y, z) = (2x y + 3z, y + 2z, -2z)
- 5. 2. Considere a transformação  $T_{\theta}:\mathbb{R}^2 \to \mathbb{R}^2$  que roda cada ponto do plano por um ângulo fixo  $\theta$  em torno da origem no sentido directo.
  - a) Verifique que  $T_{\theta}$  é uma transformação linear.
  - b) Calcule a matriz que representa  $T_{\theta}$  em relação à base dos vectores coordenados unitários.
  - c) Sem realizar cálculos, indique a matriz que representa  $(T_{\theta})^{-1}$ .
  - d) Usando a alínea b) e a correspondência entre composição de transformações lineares e produto de matrizes, represente matricialmente a relação  $T_{\phi} \circ T_{\theta} =$  $T_{\theta+\phi}$ . Que fórmulas suas conhecidas ficam assim demonstradas?
- 5. 3. Construa geometricamente a imagem do rectângulo ABCDE da figura 1 por efeito da transformação linear representada, na base canónica, por cada uma das seguintes matrizes:
  - a) A rotação  $R_{\pi/2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ .
  - b) A rotação  $R_{\pi/4} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ .
  - c) A "distorção"  $D = \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix}$ .
  - d) A transformação de Lorentz  $L_2 = \begin{bmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{bmatrix}$ .
  - e) A transformação de corte  $S_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ .
  - f) A transformação de corte  $S_2 = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 3/2 \end{bmatrix}$ .



Figura 1: Rectângulo ABCDE cujas imagens se pretende construir (problema 3).

g) A reflexão 
$$E_0 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

h) A reflexão 
$$E_{\pi/4} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.

i) A projecção 
$$P_{\pi/4}=\left[\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array}\right].$$

j) A transformação nilpotente 
$$N_0 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
.

k) A transformação nilpotente 
$$N_{\pi/4}=\left[\begin{array}{cc} -1/2 & 1/2 \\ -1/2 & 1/2 \end{array}\right].$$

- **5. 4.** Considere, no plano  $\mathbb{R}^2$ , as transformações lineares R, rotação em torno da origem no sentido inverso por um ângulo de  $\pi/2$ , e E, reflexão no eixo dos yy.
  - a) Calcule, em relação a bases à sua escolha, as matrizes  $A_R$  e  $A_E$  que representam respectivamente R e E.
  - b) Mostre, a partir de a), que  $R \circ E \neq E \circ R$ .

- 3
- c) Represente geometricamente os vectores da base canónica e os seus transformados através de  $R \circ E$  e de  $E \circ R$ .
- **5.** Construa, para cada uma das seguintes transformações de  $\mathbb{R}^3$  em  $\mathbb{R}^3$ , a matriz que a representa na base canónica:
  - a) Reflexão do vector  $[x, y, z]^t$  no plano yz.
  - b) Rotação do vector  $[x, y, z]^t$  por um ângulo  $\theta$  em torno do eixo yy', no sentido directo quando observado dos yy positivos.
  - c) Projecção do vector  $[x, y, z]^t$  no plano yz.
- **5. 6.** Considere, no espaço vectorial  $\mathbb{R}^3$ , as bases ordenadas  $\mathcal{B}_1 = \{\overline{e}_1, \overline{e}_2, \overline{e}_3\}$ , base canónica, e  $\mathcal{B}_2 = \{[-1 \ 1 \ 1]^t, [-1 \ -1 \ 1]^t, [0 \ 0 \ 1]^t\}$ .
  - a) Determine a matriz S que realiza a mudança de base de  $\mathcal{B}_1$  para  $\mathcal{B}_2$ .
  - b) Dado um vector  $u = x_1\overline{e}_1 + x_2\overline{e}_2 + x_3\overline{e}_3$ , isto é, de coordenadas  $[x_1 \ x_2 \ x_3]^t$  na base  $\mathcal{B}_1$ , determine as suas coordenadas  $[y_1 \ y_2 \ y_3]^t$  na base  $\mathcal{B}_2$  (Sugestão: Inverta S).
  - c) Considere a transformação linear  $T:\mathbb{R}^3\to\mathbb{R}^3$  cuja representação matricial na base canónica é

$$\begin{bmatrix} 2 & -4 & -4 \\ 0 & 5 & 1 \\ 0 & 1 & 5 \end{bmatrix}.$$

Usando os resultados de a) e b), determine a matriz que representa T na base  $\mathcal{B}_2$ .

- **5. 7.** Seja  $\mathcal{P}_2(\mathbb{R})$  o espaço linear real dos polinómios de grau  $\leq 2$ , e  $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$  a transformação linear definida por  $T(1+t^2)=2t, \ T(t^2)=2t, \ T(1+t)=1$ .
  - a) Determine a matriz A que representa T na base canónica de  $\mathcal{P}_2(\mathbb{R})$ .
  - b) Determine a matriz B que representa T na base ordenada  $\{1, 1+t, 1+t+t^2\}$ . Indique a matriz de mudança de base S tal que  $B = S^{-1}AS$ .
- **5. 8.** Considere a transformação linear  $T: \mathbb{C}^2 \to \mathbb{C}^2$  definida por  $T(z_1, z_2) = (z_1 + z_2, i z_2)$ . Determine as representações matriciais de T:
  - a) na base canónica de  $\mathbb{C}^2$   $\mathcal{B} = \{(1, 0), (0, 1)\};$
  - b) na base  $\mathcal{B}' = \{(-1 i, 2), (1,0)\}.$

Qual das representações lhe parece mais agradável? Porquê?

**5. 9.** Como sabe, uma transformação linear  $T: V \to W$  entre espaços de dimensão finita, fixas bases em V e W, é univocamente determinada por uma matriz  $A_T$ .

Construa bases para os espaços imagem e núcleo, indicando as respectivas dimensões, quando  $A_T$  é dada por cada uma das matrizes abaixo. Em cada caso, verifique o teorema da dimensão.

a) 
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 5 & 5 & -5 \\ 6 & 11 & -7 \end{bmatrix}$$
 b)  $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$  c)  $A = \begin{bmatrix} 2 & 1 & 4 & 5 \\ 1 & 3 & 0 & 2 \end{bmatrix}$ 

- **5. 10.** Seja  $P_n$  o espaço linear dos polinómios de grau menor ou igual a n.
  - (a) Mostre que a transformação  $T: P_3 \to P_3$  definida por

$$T(p) = p'' + ap' + bp,$$

onde a e b são números reais, é uma transformação linear.

- (b) Determine a representação matricial para T em relação à base ordenada  $\{1, t, t^2, t^3\}$ .
- (c) Discuta a dimensão do núcleo de T em termos de a e b. Em cada caso, indique uma base para o núcleo.
- (d) Utilize os resultados da alínea anterior para determinar as soluções em  $P_3$  da equação diferencial

$$p'' + ap' + bp = 0.$$

(e) Utilize os resultados da alínea (c) para determinar todas as soluções em  $P_3$  da equação diferencial

$$p'' + ap' + bp = 1 - t^2.$$

**5. 11.** Seja V o espaço linear real das matrizes reais de  $2 \times 2$  de entradas  $a_{ij}$  satisfazendo  $a_{11} + a_{22} = 0$ ,  $a_{12} + a_{21} = 0$ , e considere as seguintes matrizes de V:

$$H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \ , \ J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

- (a) Mostre que H e J são linearmente independentes. Determine a dimensão e indique uma base para V.
- (b) Dada a transformação linear  $T:V\to V$  definida através das seguintes relações:

$$T(H) = J$$
,  $T(J) = -H$ 

determine a matriz que representa T em relação a uma base contendo H e J.

(c) Determine a característica e a dimensão do núcleo de T, e indique justificadamente se é invertível.

- (d) Calcule todas as soluções U da equação linear T(U)=B onde  $B=\begin{bmatrix} a & b \\ -b & -a \end{bmatrix}$ .
- **5. 12.** Seja V um espaço linear de dimensão finita e  $T:V\to V$  uma transformação linear de V em V. Pode T ser injectiva mas não sobrejectiva? Pode T ser sobrejectiva mas não injectiva?
- **5. 13.** A Teoria da Relatividade Restrita afirma que a relação entre as coordenadas espacio-temporais (x, y, z, t) e (x', y', z', t') de dois referenciais de inércia que se deslocam um em relação ao outro com velocidade v é dada por

$$\begin{cases} x' = \beta(x - vt), \\ y' = y, \\ z' = z, \\ t' = \beta(t - \frac{v}{c^2}x), \end{cases}$$

onde c é a velocidade da luz, |v| < c e  $\beta = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ . A transformação linear

que passa dos sistemas de coordenadas (x,t) para (x',t') chama-se transformação de Lorentz.

- a) Determine a matriz  $L_v$  que representa a transformação de Lorentz na base canónica de  $\mathbb{R}^2$ .
- b) Mostre que  $L_0 = I$  e que  $L_v$  é não-singular.
- c) Demonstre a lei relativística de adição das velocidades:  $L_v L_u = L_w$ , onde  $w = \frac{u+v}{1+\frac{uv}{c^2}}$ . Compare com o resultado clássico e comente.