TRANSFORMADA RÁPIDA DE FOURIER FFT

Ing. Federico Paredes

Transformada Discreta de Fourier

Transformación lineal que mapea una señal compleja x_n en una señal compleja X_k de acuerdo a la siguiente ecuación.

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{i2\pi}{N}kn} \qquad k = 0, 1, \dots, N-1$$

Y de manera inversa

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{i2\pi}{N}kn}$$
 $n = 0, 1, ..., N-1$

Algunas Aplicaciones

- Análisis Espectral
- •Compresión de datos
- Filtrado
- •Correlación cruzada

Obtención de la DFT

Cálculo de la DFT

La DFT se puede obtener correlacionando las N exponenciales complejas.

Esto requiere N² sumas y N² multiplicaciones.

FFT - Fast Fourier Transform

El algoritmo de la Transformada Rápida de Fourier permite reducir de manera significativa la cantidad de operaciones necesarias para calcular la DFT.

Divide y Conquistarás

Objetivo del Algoritmo

- Correlacionar una única muestra con una exponencial compleja de una muestra e índice cero, nos devuelve la misma muestra.
 Por ende -> La DFT de una señal de una sola muestra es la misma muestra.
- El método de división permite obtener N transformadas de una muestra a partir de un señal de N muestras.
- La tarea principal del algoritmo FFT es la de ensamblar N transformadas de una muestra en una sola transformada de N muestras.
- Para ello, se debe aplicar el equivalente en frecuencia, de la inversa de la operación aplicada en el tiempo para descomponer la señal.
- Si el método de división se elige correctamente, las operaciones necesarias se simplifican.

Objetivo del Algoritmo

N señales en Frecuencia de 1 muestra N señales en Frecuencia de 1 muestra

Bit Reverse Ordering

Consiste en separar muestras pares e impares sucesivamente.

Bit Reverse Ordering

Obtención del ordenamiento propuesto

Posición original	Posición en binario	Bits reflejados	Posición resultante		
0	000	000	0		
1	001	100	4		
2	010	010	2		
3	011	110	6		
4	100	001	1		
5	101	101	5		
6	110	011	3		
7	111	111	7		

Reconstrucción de la señal en el domino del tiempo

Reconstrucción de la señal en el domino de la frecuencia

Propiedades de la transformada de Fourier: Upsampling

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-\frac{2\pi i}{N}kn} \qquad k = 0, \dots, N-1 \qquad Y[l] = \sum_{n=0}^{N-1} x[n]e^{-\frac{2\pi i}{N}ln} \qquad l = 0, \dots, LN-1$$

Reconstrucción de la señal en el domino de la frecuencia

Propiedades de la transformada de Fourier: Rotación

Frecuencia

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-\frac{2\pi i}{N}kn} \qquad k = 0, \dots, N-1$$

$$Y[l] = \sum_{n=0}^{N-1} x[n] e^{-\frac{2\pi i}{N} ln} e^{-\frac{2\pi i}{N} lm}$$

Reconstrucción de la señal en el domino de la frecuencia

	tiempo	frecuencia
1. Upsampling	x[0]	X[0] X[0]
2. Rotación	0 x[4]	$w_0 \times [4]$ $w_1 \times [4]$
3. Suma →	x[0]	X[0] X[0] Factores de giro
•	0 x[4]	w_0 x [4] w_1 x [4]
	0 4	0′ 4′

El Bloque Base: Butterfly

Factores de giro (Twiddle factors)

Ecuación: $e^{-j\frac{2\pi}{N}mk}$ N: Cantidad de mue m: desplazamiento

N: Cantidad de muestras

k: índice de muestras

Índice	Factor	Real	Imag
0	$e^{-j\frac{\pi}{4}0}$	1	0
1	$e^{-j\frac{\pi}{4}1}$	0.707	-0.707
2	$e^{-j\frac{\pi}{4}2}$	0	-1
3	$e^{-j\frac{\pi}{4}3}$	-0.707	-0.707
4	$e^{-j\frac{\pi}{4}4}$	-1	0
5	$e^{-j\frac{\pi}{4}5}$	-0.707	0.707
6	$e^{-j\frac{\pi}{4}6}$	0	1
7	$e^{-j\frac{\pi}{4}7}$	0.707	0.707

Igual a la mitad anterior con el signo

Factores de giro (Twiddle factors)

Butterfly simplificada

Butterfly simplificada

Multiplicador Complejo

Cálculo a realizar: $(A+jB) \times (C+jD) = AC-BD + j(AD+BC)$

La operación base se replica hasta reconstruir la señal de N muestras

Índices por etapa y por butterfly

	Butterfly 1		Butterfly 2		Butterfly 3		Butterfly 4					
ETAPA	X0/Y0	X1/Y1	TF	X0/Y0	X1/Y1	TF	X0/Y0	X1/Y1	TF	X0/Y0	X1/Y1	TF
1	0	1	0	2	3	0	4	5	0	6	7	0
2	0	2	0	1	3	3	4	6	0	5	7	3
3	0	4	0	1	5	1	2	6	2	3	7	3

X0: Entrada X0

X1: Entrada X1

Y0: Salida Y0

Y1: Salida Y1

TF: Factor de Giro

- La tarea se reducirá entonces a aplicar el bloque butterfly etapa por etapa sobre las muestras mostradas en la tabla anterior
- Se usarán N/2 butterflies
- Se necesitarán log₂N etapas
- La replicación puede realizarse mediante bucles for anidados
- Se necesita un mínimo de dos lazos:
 - Uno para barrer las butterflies
 - Otro para recorrer las etapas
- Para poder obtener los índices de entrada/salida de cada butterly podemos identificar la existencia de *grupos de butterflies*

← 4 grupo de 1 butterfly

← 2 grupo de 2 butterflies

← 1 grupo de 4 butterflies

- Dentro de cada grupo, las butterflies se numeran.
- En la primer etapa hay solo una butterfly, por lo tanto numerada como butterfly 1
- En la segunda etapa hay dos butterflies, numeradas como 1 y 2
- En la tercer etapa hay cuatro butterflies, numeradas 1, 2, 3 y 4
- La numeración se corresponde con el factor de giro a utilizar

Resumen

Los pasos para aplicar la FFT son:

- 1 Calcular el vector de factores de giro (N/2) elementos
- 2 Ordenar el vector de muestras con el método bit reverse
- 3 Crear la función butterfly: el bloque base de la FFT
- 4 Con bucles FOR anidados aplicar la butterfly etapa por etapa. De manera que los índices de las muestras de entrada y de salida coincidan con la tabla.
 - Se puede tomar el mismo vector de entrada como vector de salida

Ejemplo realizado con 3 bucles FOR