ECON3113 Microeconomic Theory I

Tutorial #2: The foundations of consumer choice

Today's tutorial

- Two components:
 - More on the foundations of consumer choice
 - A Practice Quiz (the last 15 minutes)

Where we got to last time and where we are going

- Towards a modern approach to the consumer choice problem
- We showed that a well-defined preference relation that obeys Completeness, Reflexivity and Transitivity generates a choice function:

ie preference relation => choice function

- Next step:
 - To introduce the utility function
 - To show the equivalence of the utility function, the preference relation and the choice function as long as completeness, reflexivity and transitivity are met

Introducing utility

- Given a set of alternatives $X = \{x_1, x_2, ..., x_n\}$
- Suppose that a consumer attaches a numerical score to each \boldsymbol{x}_i according to its desirability
 - Call this score the consumer's utility
- Then the consumer's utility function, u(X), is the mapping from X to u(X):
 - $\{x_1, x_2, ..., x_n\} \rightarrow \{u(x_1), u(x_2), ..., u(x_n)\}$
- Example:
 - $\{\text{tea, espresso, latte}\} \rightarrow \{30, 10, 30\}$

Notice that the utility function only gives us a <u>ranking</u> of desirability, <u>not a measure</u> of absolute or relative desirability

Utility and the preference relation

- The pairwise comparison of utilities defines a preference relation:
 - $x \ge y$ if and only if $u(x) \ge u(y)$
 - ie $x \ge y \Leftrightarrow u(x) \ge u(y)$
- Example:

Preference relation

tea > espresso

tea ~ latte

latte > espresso

Utility

u(tea) > u(espresso)

u(tea) = u(latte)

u(latte) > u(espresso)

From utility to the choice function

 We assume that given a selection of alternatives, A, the consumer <u>chooses</u> only those alternatives that have the <u>highest</u> utility score:

$$c_{u}(A) = \left\{ x \in A : u(x) \ge u(y) \text{ for all } y \in A \right\}$$
$$= \left\{ x \in A : u(x) = \max_{y \in A} u(y) \right\}.$$

- Example:
 - Given $A = \{\text{tea, espresso, latte}\}\ \text{and}\ \mathrm{u}(A) = \{30, 10, 30\}$
 - $c_u(A) = \{\text{tea, latte}\}$
- So our utility function implies a choice function

The main theorem:

Theorem

Suppose X is finite.

- (i) Given a utility function u, the implied choice function c_u is coherent. Moreover, the preference relation produced by u is complete and transitive.
- (ii) Given a complete transitive preference relation \succeq , the implied choice function c_{\succeq} is coherent. Moreover, there exists a utility function u that implies \succeq .
- (iii) Given a coherent choice function c, there exist a complete transitive preference relation \succeq and a utility function u that produces choices c.
- We illustrate each part (i)-(iii)

The main theorem: Part (i)

$\mathsf{Theorem}$

Suppose X is finite.

(i) Given a utility function u, the implied choice function c_u is coherent. Moreover, the preference relation produced by u is complete and transitive.

- Given:
- $X = \{\text{tea, espresso, latte, hot chocolate}\}$, $A = \{\text{tea, espresso, latte}\}$, $B = \{\text{tea, espresso, hot chocolate}\}$, and $A \cap B = \{\text{tea, espresso}\}$
- $u(X) = \{30,10,30,20\}$
- Then:
 - $c_u(A) = \{\text{tea, latte}\}, c_u(B) = \{\text{tea}\}$
 - Since espresso is available in A and B and not chosen in either, the choice function implied by
 u(X) is coherent

The main theorem: Part (i)

$\mathsf{Theorem}$

Suppose X is finite.

(i) Given a utility function u, the implied choice function c_u is coherent. Moreover, the preference relation produced by u is complete and transitive.

- We have $X = \{\text{tea, espresso, latte, hot chocolate}\}\$ and $u(X) = \{30,10,30,20\}$
- This implies:

	tea	espresso	latte	hot chocolate
tea	~	>	~	>
espresso	<	~	<	<
latte	~	>	~	>
hot chocolate	<	>	<	~

- Complete:
 - We have a comparison for each pair
- Transitive:
 - Can check
 - eg:
 - tea > hot chocolate
 - hot chocolate > espresso
 - and tea > espresso

The main theorem: Part (ii)

Theorem

Suppose X is finite.

(ii) Given a complete transitive preference relation \succeq , the implied choice function c_{\succeq} is coherent. Moreover, there exists a utility function u that implies \succeq .

- Given:
- $X = \{\text{tea, espresso, latte, hot chocolate}\}$, $A = \{\text{tea, espresso, latte}\}$, $B = \{\text{tea, espresso, hot chocolate}\}$, and $A \cap B = \{\text{tea, espresso}\}$, and complete, transitive preference relation given by:

	tea	espresso	latte	hot chocolate
tea	~	>	~	>
espresso	<	~	<	<
latte	~	>	~	>
hot chocolate	<	>	<	~

The main theorem: Part (ii)

- Is the choice function c_≥ coherent?
- For *A*, we have:

	tea	espresso	latte
tea	~	>	~
espresso	<	~	<
latte	~	>	~

• For B, we have:

	tea	espresso	hot chocolate
tea	~	>	>
espresso	<	~	<
hot chocolate	<	>	~

- $c_{\geq}(A) = \{\text{tea, latte}\}$
- $c_{\geq}(B) = \{\text{tea}\}$
- $A \cap B = \{\text{tea, espresso}\}\$, and espresso not in $c_{\geq}(A)$ or $c_{\geq}(B)$
- Therefore c_{\geq} is coherent

The main theorem: Part (ii)

• Is there a utility function that represents the preference relation ≥?

	tea	espresso	latte	hot chocolate
tea	~	>	~	>
espresso	<	~	<	<
latte	~	>	~	>
hot chocolate	<	>	<	~

- Notice that any scoring scheme will do that represents the <u>ranking</u> implied by the preference relation
 - Examples:
 - $u(X) = \{30,10,30,20\}$
 - $u(X) = \{ \pi, -4, \pi, e \}$
- So there is a utility function that represents \geq

The main theorem: Part (iii)

Theorem

Suppose X is finite.

(iii) Given a coherent choice function c, there exist a complete transitive preference relation \succeq and a utility function u that produces choices c.

- Given:
- $X = \{\text{tea, espresso, latte, hot chocolate}\}, A = \{\text{tea, espresso, latte}\}, B = \{\text{tea, espresso, hot chocolate}\}, \text{ and } A \cap B = \{\text{tea, espresso}\}, \text{ and coherent choice function } c_{\geq} \text{ such that } c_{\geq}(A) = \{\text{tea}\}\}$
- The following preference relation and utility function produce c_{\geq} :

	tea	espresso	latte	hot chocolate
tea	~	>	~	>
espresso	<	~	<	<
latte	~	>	~	>
hot chocolate	<	>	<	~

$$u(X) = \{30,10,30,20\}$$

The equivalence of the utility function, choice function and preference relation

• We have shown that if completeness, reflexivity and transitivity of a preference relation are met, then:

This is where we wanted to get to

Equivalent utility representations

 Can we distinguish between the following utility functions on the set X = {tea, espresso, latte, hot chocolate}?:

	u_1	u_2	u_3
tea	30	70	3.4012
espresso	10	30	2.3026
latte	30	70	3.4012
hot chocolate	20	50	2.9957

- No only the ranking matters, and they give the same ranking
- In general, given a utility function $u_i(X)$, if f is a well-defined and strictly increasing function on the set of utilities, then utility functions $u_i(X)$ and $f[u_i(X)]$ are equivalent
- We have $u_2 = 10 + 2u_1$, $u_3 = \ln(u_1)$
 - Notice that these functions are well-defined and are strictly increasing for $u_1(x_i) > 0$

In this theory, utility is an ordinal concept

From the lecture notes:

- In modern economic analysis, utility is an ordinal concept.
- It means that two utility functions are regarded as equivalent if the implied rankings over alternatives are identical.
- The following statements are inconsistent with the ordinal concept of utility.
 - John derives a utility of 10⁵⁰ from a dish of char siu so he must be extremely satisfied after eating it.
 - Mary's utility of eating a dish of char siu is -100 so she must hate it.
 - John is happier than Mary because the char siu dish gives John more utility than Mary.
 - As u (char siu) = 40 and u (roasted duck) = 20, char siu is twice better than roasted duck.

- The absolute size of the utility number bears no relation to the magnitude of satisfaction
- Comparisons of utility between consumers cannot be made
- The relative magnitude of utility of different goods does not reflect the relative magnitude of the satisfaction between them
 - All completely different to the traditional theory