

ESC201: Introduction to Electronics Module 3: Frequency Domain Analysis

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Bode Plot

Dr. Shubham Sahay ESC201

Recall Example

Example: low pass filter...

Dr. Shubham Sahay ESC201

Adding more RC stages, makes the characteristics sharper

Filters

Removing Noise from Images

Equalization of Sound

Dr. Shubham Sahay ESC201

Filters for Electrical Signals

Filter – pass / amplify signal in a band of frequency and reject / attenuate the remaining

- Many practical applications in electronics and electrical systems
- Tuning radios, cleaning up communication signals, removing higher frequencies from Dr. Shubham Sahay ESC201

RC Filters

- Capacitor and resistor positions are swapped
- Low pass becomes high pass filter!
- In both cases $\omega_{3dB} = (R \cdot C)^{-1} \rightarrow f_{3dB} = (2\pi \cdot R \cdot C)^{-1}$

Single Capacitor Circuit $\omega_{3\mathrm{dB}}$

Find Thévenin resistance across the capacitance to find R_{eq} in time constant

Asymptotic Behaviour

Circuit Attenuating High and Low Frequency

A Bandpass Filter

For $f_1 > f_2$, it is a band pass filter

12

Example: Band Pass filter

Dr. Shubham Sahay ESC201

Band Stop Filter

Will this work?

Well, it does work if designed properly!

Example: Band Stop filter

Example: Band Stop filter (continued)

RL High Pass Filters

$$H(\omega) = \frac{V_O(\omega)}{V_S(\omega)}$$

$$H(\omega) = \frac{j\omega L}{R + j\omega L} = \frac{j(\omega/\omega_{3dB})}{1 + j(\omega/\omega_{3dB})}$$

$$\omega_{3dB} = \frac{R}{L}$$

RL Low Pass Filters

$$H(\omega) = \frac{R}{R + j\omega L} = \frac{1}{1 + j(\omega/\omega_{3dB})}$$

$$\omega_{3dB} = \frac{R}{L}$$

 $H(\omega) = \frac{V_O(\omega)}{V_S(\omega)}$

FM Radio

Different radio channels are separated by very narrow frequency interval.

Resonance

• Every system has its own natural frequency of oscillation.

• If you apply an external stimulus at natural frequency: System exhibits an extremely large response

RLC Circuit

$$\frac{V_r}{V_i} = \frac{R}{j\omega L + \frac{1}{j\omega C} + R}$$

$$\left| \frac{V_r}{V_i} \right| = \frac{\omega RC}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\omega RC\right)^2}}$$

Observe:

Low ω : $\approx \omega RC$

High ω : $\approx \frac{R}{\omega L}$ $\omega \sqrt{LC} = 1$: ≈ 1

Series Resonant Circuit

$$I_r = \frac{V_i}{Z_{eq}} \qquad \qquad Z_{eq} = R + j\omega L - j\frac{1}{\omega C}$$

Resonance is a condition in which capacitive and inductive reactance cancel each other to give rise to a purely resistive circuit

$$j\omega_O L - j\frac{1}{\omega_O C} = 0$$

$$\Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$
 Resonant frequency $f_0 = \frac{1}{2\pi\sqrt{LC}}$

$$Z_{eq} = R$$

$$f_O = \frac{1}{2\pi\sqrt{LC}}$$

Current and voltage are in phase (power factor is unity)!

Series Resonant Circuit

 ω_1 and ω_2 are called half-power frequencies

$$\omega_O = \frac{1}{\sqrt{LC}}$$

Half-power Frequency

$$|I(\omega)| = \frac{V_m}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} \qquad V_m/R$$

$$\omega_O = \frac{1}{\sqrt{LC}}$$

 ω_1 and ω_2 half-power frequencies

$$\omega_{O}=\sqrt{\omega_{1}\omega_{2}}$$

$$\Delta\omega = \omega_2 - \omega_1 = \frac{R}{L}$$

Bandwidth

$$|I(\omega_1)| = \frac{V_m}{\sqrt{R^2 + (\omega_1 L - \frac{1}{\omega_1 C})^2}} = \frac{V_m}{\sqrt{2}R}$$

$$|I(\omega_2)| = \frac{V_m}{\sqrt{R^2 + (\omega_2 L - \frac{1}{\omega_2 C})^2}} = \frac{V_m}{\sqrt{2}R}$$

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$Q = \frac{\omega_0}{\Delta \omega}$$

Quality Factor

$$Q = \frac{\sqrt{L}}{\sqrt{C}R}$$

RLC Circuit

$$|V_o(\omega)| = |V_I| \frac{R}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

Dr. Shubham Sahay ESC201

Bandwidth & Quality Factor

$$Q = \frac{\omega_0}{\Delta \omega}$$

Quality Factor

Q represents sharpness of resonance

For high Q circuits:

$$\omega_1 \simeq \omega_0 - \frac{B}{2}, \qquad \omega_2 \simeq \omega_0 + \frac{B}{2}$$

Parallel Resonance

$$Y_{eq} = \frac{1}{R} + j\omega C - j\frac{1}{\omega L}$$

Resonant frequency:

$$j\omega_{O}C - j\frac{1}{\omega_{O}L} = 0 \Rightarrow \omega_{O} = \frac{1}{\sqrt{LC}}$$

$$f_{O} = \frac{1}{2\pi\sqrt{LC}}$$

$$Z_{eq} = R$$

Example

What is the resonant frequency?

$$\mathbf{Y} = j\omega 0.1 + \frac{1}{10} + \frac{1}{2 + j\omega 2} = 0.1 + j\omega 0.1 + \frac{2 - j\omega 2}{4 + 4\omega^2}$$

At resonance, Im(Y) = 0

$$\omega_0 0.1 - \frac{2\omega_0}{4 + 4\omega_0^2} = 0 \qquad \Longrightarrow \qquad \omega_0 = 2 \text{ rad/s}$$

RLC Circuit

$$|V_{o}(\omega)| = |V_{I}| \frac{R}{\sqrt{R^{2} + (\omega L - \frac{1}{\omega C})^{2}}} \qquad |V_{o}(\omega)| = \frac{1}{\sqrt{1 + Q^{2} \left(\frac{\omega^{2}}{\omega_{o}^{2}} - 1\right)^{2}}}$$

$$|V_O(\omega)| = \frac{1}{\sqrt{1 + Q^2 \left(\frac{\omega^2}{\omega_O^2} - 1\right)^2}}$$

For $\omega = \omega_O$, $V_O = 1$ so the signal simply passes through!

How much Q do we need to pass 450KHz but reject 460KHz by 60dB?

$$\omega_0 = 2\pi \times 450 \times 10^3 = 2.827 \times 10^6 \, rad \, / \, s$$

$$\omega = 2\pi \times 460 \times 10^3 = 2.89 \times 10^6 \, rad \, / \, s$$

For an attenuation of -60dB or 10^{-3} at ω :

$$Q = \frac{1000}{(460/450)^2 - 1} = 23000$$

This is a large value of Q!

RLC Filters

30