

BLACKMAN

$$p(t) = \begin{cases} 0.42 - 0.5\cos(2\pi t/M) + 0.08\cos(4\pi t/M), & 0 < t < M, \\ 0, & \text{otherwise} \end{cases}$$

HANNING

$$p(t) = \begin{cases} 0.5 - 0.5\cos(2\pi t/M), & 0 < t < M, \\ 0, & \text{otherwise} \end{cases}$$

HAMMING

$$p(t) = \begin{cases} 0.54 - 0.46\cos(2\pi t/M), & 0 < t < M, \\ 0, & \text{otherwise} \end{cases}$$

Fig. 1

TITLE: PULSE SHAPING SIGNALS FOR ULTRAWIDEBAND COMMUNICATION
INVENTORS NAME: Keith R. Tinsley et al.
Dkt #: 884.B69US1

2/9

Fig. 2A

TITLE: PULSE SHAPING SIGNALS FOR ULTRAWIDEBAND COMMUNICATION

INVENTORS NAME: Keith R. Tinsley et al.

Opt. #: 884.B69US1

3/9

Fig. 2B

Fig.3

TITLE: PULSE SHAPING SIGNALS FOR ULTRAWIDEBAND COMMUNICATION

INVENTORS NAME: Keith R. Tinsley et al.

Dkt #: 884.B69US1

6/9

$x(t)$

Fig. 6

Fig. 8

Fig. 7

Fig. 9

TITLE: PULSE SHAPING SIGNALS FOR ULTRAWIDEBAND COMMUNICATION

INVENTORS NAME: Keith R. Tinsley et al.

Dkt #: 884.B69US1

9/9

Fig. 10