Интеграл локального потенциального векторного поля по непрерывному пути

Лемма 1 (о гусенице).

•
$$\gamma: [a,b] \to O \subset \mathbb{R}^m$$
 — μ enp.

Тогда \exists дробление $a=t_0 < t_1 < \dots < t_n=b$ и \exists шары $B_1\dots B_n \subset O: \gamma[t_{k-1},t_k] \subset B_k.$

Рис. 1: "Гусеница" — покрытие пути шарами

Доказательство. $\forall c \in [a,b]$ возьмём $B_c := B(\gamma(c),\underbrace{r_c}_{\text{произвольн.}}) \subset O.$

 $\overline{\alpha_c} := \inf\{\alpha \in [a,b] : \gamma[\alpha,c] \subset B_c\}$

 $\overline{\beta_c}:=\sup\{\alpha\in[a,b]:\gamma[c,\beta]\subset B_c\}$ — момент первого выхода после посещения точки $\gamma(c)$

Возьмём (α_c, β_c) : $\overline{\alpha}_c < \alpha_c < c < \beta_c < \overline{\beta}_c$

Таким образом $c\mapsto (\alpha_c,\beta_c)$ — открытое покрытие [a,b], если для c=a или c=b вместо α_c,β_c брать $[a,\beta_a),(\alpha_b,b]$

$$[a,b]$$
 — компактно $\implies [a,b] \subset \bigcup_{\mathrm{кон.}} (\alpha_c,\beta_c)$

Не умаляя общности ни один интервал не накрывается целиком остальными $\Leftrightarrow \forall (\alpha_c, \beta_c) \exists d_c$, принадлежащая "только этому" интервалу.

Рис. 2: Выбор точек t_k

Точка t_k выбирается на d_k, d_{k+1} и $t_k \in (\alpha_k, \beta_k) \cap (\alpha_{k+1}, \beta_{k+1})$.

$$\gamma([t_{k-1}, t_k]) \subset \gamma(\alpha_k, \beta_k) \subset B_k$$

 Π римечание. $\forall \delta>0$ мы можем требовать, чтобы все $r_k<\delta$

Примечание. В силу произвольности r_c можно требовать, чтобы шары B_c удовлетворяют некоторому локальному условию.

Например пусть V — локально потенциальное поле в O. Мы можем требовать, чтобы во всех шарах существовал потенциал V. Тогда будем называть $\{B_k\}$ V-гусеницей.

Определение.

• V — локально потенциальное поле в $O \subset \mathbb{R}^m$

 $\gamma, \tilde{\gamma}: [a,b] o O$ называются похожими (V-похожими), если у них есть общая V-гусеница: $\exists t_0 = a < t_1 < t_2 < \dots < t_n = b \ \exists \ \text{шары} \ B_k \subset O:$

$$\gamma[t_{k-1}, t_k] \subset B_k, \tilde{\gamma}[t_{k-1}, t_k] \subset B_k$$

Следствие 1.

• V — локально потенциальное поле в $O \subset \mathbb{R}^m$

Тогда любой путь V-похож на ломаную:

Рис. 3: Построение ломаной (розовая) по пути (чёрный) с помощью V-гусеницы (круги)

Лемма 2 (о равенстве интегралов локально-потенциальных векторных путей по похожим путям).

- V- локально-потенциальное векторное поле в $O\subset \mathbb{R}^m$
- $\gamma, \tilde{\gamma}: [a,b] \to O V$ -похожие, кусочно гладкие
- $\gamma(a) = \tilde{\gamma}(a), \gamma(b) = \tilde{\gamma}(b)$

Тогда $\int_{\gamma} \sum V_i dx_i = \int_{\tilde{\gamma}} \sum V_i dx_i$

Доказательство. Рассмотрим общую V-гусеницу. Пусть f_k — потенциал V в шаре B_k , $a=t_0 < t_1 < \cdots < t_n = b$

Сдвинем потенциалы прибавлением константы, так что $f_k(\gamma(t_k)) = f_{k+1}(\gamma(t_k))$ при $k=1\dots n$

Тогда

$$\int_{\gamma} \sum_{i} V_{i} dx_{i} = \sum_{t_{k-1}, t_{k}} \int_{[t_{k-1}, t_{k}]} \dots$$

$$= \sum_{t_{k}} f_{k}(\gamma(t_{k})) - f_{k}(\gamma(t_{k-1}))$$

$$= f_{n}(\gamma(b)) - f_{1}(\gamma(a))$$
(1)

(1): По обобщенной формуле Ньютона-Лейбница.

Для $\tilde{\gamma}$ воспользуемся свойством: $f_k\Big|_{B_k\cap B_{k+1}}=f_{k+1}\Big|_{B_k\cap B_{k+1}}$ и тогда аналогично

$$\int_{\tilde{\gamma}} \sum v_i dx_i = f_n(\tilde{\gamma}(b)) - f_1(\tilde{\gamma}(a))$$

Примечание. Вместо условия " $\gamma(a)=\tilde{\gamma}(a), \gamma(b)=\tilde{\gamma}(b)$ " можно взять условие: $\gamma, \tilde{\gamma}-$ петли. Тогда утверждение леммы тоже верно.

Лемма 3.

- $\gamma: [a,b] \to O \text{Henp.}$
- V- локально-потенциальное векторное поле в $O\subset\mathbb{R}^m$

Тогда $\exists \delta>0:$ если $\tilde{\gamma},\tilde{\tilde{\gamma}}:[a,b]\to O$ таковы, что:

$$\forall t \in [a,b] \ |\gamma(t) - \tilde{\gamma}(t)| < \delta, |\gamma(t) - \tilde{\tilde{\gamma}}(t)| < \delta$$

Тогда $\gamma, \tilde{\gamma}, \tilde{\gamma} V$ -похожи.

Доказательство. Берём V-гусеницу для γ .

 δ_k -окрестность множества $A:=\{x:\exists a\in A\ \ \rho(a,x)<\delta\}=\bigcup_{a\in A}B(a,\delta)$

$$\forall k \;\; \exists \delta_k > 0 : (\delta_k$$
-окрестность $\gamma[t_{k-1}, t_k]) \subset B_k$

Это следует из компактности:

Пусть $B_k = B(w,r)$, функция $t \in [\gamma_{k-1},\gamma_k] \mapsto \rho(\gamma(t),w)$ непрерывна \Rightarrow достигается тах, $\rho(\gamma(t),w) \leq r_0 < r$

Рис. 4: δ_k -окрестность множества $\gamma[t_{k-1},t_k]$

$$\delta_k := \frac{r-r_0}{2}, \delta := \min(\delta_1 \dots \delta_k)$$

При таком δ все три пути лежат в одной гусенице.

Определение (Интеграл локального потенциального векторного поля V по непрерывному пути γ). Возьмём $\delta > 0$ из леммы 3.

Пусть $\tilde{\gamma}-\delta$ -близкий кусочно-гладкий путь, т.е. $\forall t \;\; |\gamma(t)-\tilde{\gamma}(t)|<\delta.$

Полагаем $I(V,\gamma) := I(V,\tilde{\gamma}).$

Корректность (нет произвольности) следует из лемм 3 и 2

Равномерная сходимость функциональных рядов (продолжение)

Теорема 1 (признак Дирихле).

- $\sum a_n(x)b_n(x)$ вещественный ряд.
- $x \in X$
- Частичные суммы ряда $\sum a_n$ равномерно ограничены :

$$\exists C_a \ \forall N \ \forall x \in X \ \left| \sum_{k=1}^n a_k(x) \right| \le C_a$$

• $\forall x$ последовательность $b_n(x)$ — монотонна по n и $b_n(x) \xrightarrow[n \to +\infty]{X} 0$

Тогда ряд $\sum a_n(x)b_n(x)$ равномерно сходится на X

Доказательство. Преобразование Абеля (суммирование по частям)

$$\sum_{M \le k \le N} a_k b_k = A_N b_N - A_{M-1} b_{M-1} + \sum_{M \le k \le N-1} A_k (b_k - b_{k+1})$$

$$\left| \sum_{k=m}^{N} a_{k}(x)b_{k}(x) \right| \leq C_{A}|b_{N}| + C_{A}|b_{M-1}| + \sum_{M \leq k \leq N-1} C_{A}|b_{k} - b_{k+1}|$$

$$\leq C_{A} \left(|b_{N}(x)| + |b_{M-1}(x)| + \sum_{k=M}^{N-1} |b_{k} - b_{k+1}| \right)$$

$$\leq C_{A} \left(2|b_{N}(x)| + |b_{M-1}(x)| + |b_{M}(x)| \right)$$

$$(2)$$

(2) : Все разности одного знака \Rightarrow телескопически $=\pm(b_M-b_N)$

$$\forall \varepsilon > 0 \ \exists K : \forall l > K \ \forall x \in X \ |b_l(x)| < \frac{\varepsilon}{4C_A}$$

Значит, при $M, N > K \ \forall x \in X$:

$$\left| \sum_{k=m}^{N} a_k(x) b_k(x) \right| < \varepsilon$$

Это критерий Больцано-Коши равномерной сходимости ряда.

Пример.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}, x \in \mathbb{R}$$

1. f(x) — непр. на \mathbb{R}

 $\left| \dfrac{\sin nx}{n^2} \right| \leq \dfrac{1}{n^2}, \sum \dfrac{1}{n^2}$ сходится. По признаку Вейерштрасса ряд равномерно сходится на $\mathbb{R} \Rightarrow$ ряд f- непр. на \mathbb{R}

2. f - дифф.?

По теореме 3' $\sum f_n'(x) - ?$ равномерно сходится в окрестности x_0 . Если да, то $f \in C^1(V(x_0))$.

$$f' = \sum rac{\cos nx}{n}$$
, но при $x = 2\pi k \sum$ расходится.

Применим признак Дирихле для $a_n=\cos nx, b_n=\frac{1}{n}, x\in [\varepsilon, 2\pi-\varepsilon]$

$$|\cos x + \cos 2n + \dots + \cos nx| = |\Re(e^{ix} + e^{2ix} + \dots + e^{nix})|$$

$$\leq \left| e^{ix} \frac{e^{nix} - 1}{e^{ix} - 1} \right|$$

$$= |e^{ix}| \frac{|e^{nix} - 1|}{|e^{ix} - 1|}$$

$$\leq \frac{2}{|e^{ix} - 1|}$$

$$\leq \frac{2}{e^{i\varepsilon} - 1}$$

$$=: C_A$$

 b_n — монотонно, ightarrow 0, не зависит от x, поэтому ightharpoonup 0

Таким образом, призак Дирихле сработал и $f'(x) = \sum rac{\cos nx}{n}$ при $x \in (0, 2\pi)$

Упражнение. 1. При $x = 2\pi k \ f(x)$ не дифференцируемая.

- 2. Существует ли f''(x) при $x \in (0, 2\pi)$?
- 3. Если $q(x) = \sum \frac{\sin nx}{\sqrt{n}}, x \in (0, 2\pi)$:
 - (а) Непрерывна?
 - (b) Дифференцируема?

Степенные ряды

 $B(r_0,r)\subset\mathbb{C}$ — открытый круг

Определение. Степенной ряд: $\sum\limits_{n=0}^{+\infty}a_n(z-z_0)^n$, где $z_0\in\mathbb{C}, a_n\in C, z$ — переменная $\in C$

Теорема 2 (о круге сходимости степенных рядов).

•
$$\sum a_n(z-z_0)^n$$
 — степенной ряд

Тогда выполняется ровно один из трех случаев:

- 1. Ряд сходится при всех $z \in \mathbb{C}$
- 2. Ряд сходится только при $z=z_0$
- 3. $\exists R \in (0, +\infty)$:
 - (a) при $|z z_0| < R$ ряд абсолютно сходится
 - (b) при $|z z_0| > R$ ряд расходится

Примечание. Ряд не может никогда не сходиться, т.к. при $z=z_0$ ряд $=a_0+0+0+\cdots=a_0$.

Доказательство. Применим признак Коши: $\overline{\lim} \sqrt[n]{|a_n|} = r$, если r < 1, ряд сходится, если r > 1, ряд расходится.

$$\overline{\lim} \sqrt[n]{|a_n| \cdot |z - z_0|^n} = \overline{\lim} \sqrt[n]{|a_n|} |z - z_0| = |z - z_0| \overline{\lim} \sqrt[n]{|a_n|}$$

M3137y2019

- 1. $\overline{\lim} = 0$. Тогда r = 0, есть абсолютная сходимость при всех z.
- 2. $\overline{\lim} = +\infty$. Тогда $r = +\infty$ при $z \neq z_0$. При $z = z_0$ сходимость очевидна.

3.
$$\overline{\lim} \neq 0, +\infty$$
. Тогда $|z-z_0|\overline{\lim} \sqrt[n]{|a_n|} < 1 \Leftrightarrow |z-z_0| < \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} \stackrel{\mathrm{def}}{=} R$

Определение. $\sum a_n(z-z_0)^n$, тогда число $R=rac{1}{\overline{\lim}_n \sqrt[n]{|a_n|}}$. Это формула Адамара.