

2.2 一阶逻辑公式及解释

- 合式公式(简称公式)
- _ 个体变项的自由出现和约束出现
- 解释与赋值
- 公式分类

永真式,矛盾式,可满足式

字母表

定义 字母表包含下述符号:

- (1) 个体常项: $a, b, c, ..., a_i, b_i, c_i, ..., i ≥ 1$
- (2) 个体变项: $x, y, z, ..., x_i, y_i, z_i, ..., i \ge 1$
- (3) 函数符号: $f, g, h, ..., f_i, g_i, h_i, ..., i ≥ 1$
- (4) 谓词符号: $F, G, H, ..., F_i, G_i, H_i, ..., i ≥ 1$
- (5) 量词符号: ∀,∃
- (6) 联结词符号: ¬, ∧, ∨, →, ↔
- (7) 括号与逗号: (,),,

项

定义 项的定义如下:

- (1) 个体常项和个体变项是项.
- (2) 若 $\varphi(x_1, x_2, ..., x_n)$ 是任意的n元函数, $t_1, t_2, ..., t_n$ 是任意的n个项,则 $\varphi(t_1, t_2, ..., t_n)$ 是项.
 - (3) 所有的项都是有限次使用(1),(2) 得到的.

原子公式

定义 设 $R(x_1, x_2, \dots, x_n)$ 是任意的n元谓词, t_1, t_2, \dots, t_n 是任意的n个项,则称 $R(t_1, t_2, \dots, t_n)$ 是原子公式.

原子公式是由项组成的n元谓词.

例如,F(x,y), $F(f(x_1,x_2),g(x_3,x_4))$ 等均为原子公式

合式公式

定义合式公式(简称公式)定义如下:

- (1) 原子公式是合式公式.
- (2) 若A是合式公式,则 $(\neg A)$ 也是合式公式
- (3) 若A, B是合式公式,则($A \land B$), ($A \lor B$), ($A \lor B$), ($A \lor B$)
- (4) 若A是合式公式,则 $\forall xA$, $\exists xA$ 也是合式公式
- (5) 只有有限次地应用(1)~(4)形成的符号串是合式公式.

如 $x \ge 0$, $\forall x (F(x) \rightarrow G(x))$, $\forall x \exists y (x+y=1)$

个体变项的自由出现与约束出现

定义在公式 $\forall xA$ 和 $\exists xA$ 中,称x为指导变元,A为相应量词的辖域.在 $\forall x$ 和 $\exists x$ 的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现.

例如, 在公式 $\forall x(F(x,y) \rightarrow G(x,z))$ 中, $A=(F(x,y) \rightarrow G(x,z))$ 为 $\forall x$ 的辖域, x 为指导变元, A 中x 的两次出现均为约束出现, y 与z 均为自由出现.

闭式: 不含自由出现的个体变项的公式.

公式的解释与分类

闭式: 不含自由出现的个体变项的公式.

给定闭式 $A=\forall x(F(x)\rightarrow G(x))$

取个体域N, F(x): x>2, G(x): x>1

代入得 $A=\forall x(x>2\rightarrow x>1)$ 真命题

给定非闭式 $B=\forall xF(x,y)$

取个体域N, F(x,y): x≥y

代入得 $B=\forall x(x\geq y)$ 不是命题

令y=1, $B=\forall x(x\geq 1)$ 假命题

雨课堂 Rain Classroon

解释和赋值

例 公式 $\forall x(F(x) \rightarrow G(x))$

指定**1** 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 假命题

指定**2** 个体域:实数集, F(x): x>10, G(x): x>0 真命题

例 $\exists x F(x,y)$

指定 个体域:自然数集, F(x,y): x=y y=0 真命题

解释和赋值

定义 解释I由下面4部分组成:

- (a) 非空个体域 D_I
- (b) 对每一个个体常项a 指定一个 $\bar{a} \in D_I$
- (c) 对每一个函数符号f指定一个 D_I 上的函数 \bar{f}
- (d) 对每一个谓词符号F指定一个 D_I 上的谓词 \overline{F} 赋值 σ : 对每一个命题变项x指定一个值 $\sigma(x) \in D_I$

公式A在解释I和赋值 σ 下的含义: 取个体域 D_I ,并将公式中出现的a、f、F 分别解释成 \overline{a} 、 \overline{f} \overline{F} 把自由出现的x换成 $\sigma(x)$ 后所得到的命题.

在给定的解释和赋值下,任何公式都成为命题.

实例

例 给定解释 I 如下:

- (a) 个体域 D=N
- (b) $\overline{a} = 2$
- (c) $\overline{f}(x, y) = x + y$, $\overline{g}(x, y) = xy$
- (d) 谓词 $\overline{F}(x,y)$: x=y

以及赋值 σ : $\sigma(x)=0$, $\sigma(y)=1$, $\sigma(z)=2$.

说明下列公式在I与 σ 下的涵义,并讨论真值

(1) $\forall x F(g(x,a),y)$

(2) $\forall x F(f(x,a),y) \rightarrow \forall y F(x,f(y,a))$

$$\forall x(x+2=1) \rightarrow \forall y(0=y+2)$$
 真命题

(3) $\exists x F(f(x,y),g(x,z))$

$$\exists x(x+1=2x)$$
 真命题

(4) $\forall x \forall y \exists z F(f(x,y),z)$

$$\forall x \forall y \exists z (x+y=z)$$
 真命题

(5) $\exists x \forall y \forall z F(f(y,z),x)$

$$\exists x \forall y \forall z (y+z=x)$$
 假命题

闭式只需要解释,如(4),(5)

公式的分类

永真式(逻辑有效式):在任何解释和赋值下为真命题

矛盾式(永假式):在任何解释和赋值下为假命题

可满足式: 存在成真的解释和赋值

说明:

永真式为可满足式,但反之不真 谓词公式的可满足性(永真性,永假性)是不可判 定的

代换

定义 设 A_0 是含命题变项 $p_1, p_2, ..., p_n$ 的命题公式, $A_1, A_2, ..., A_n$ 是n个谓词公式,用 A_i 处处代替 A_0 中的 p_i (1 $\leq i \leq n$),所得公式A称为 A_0 的代换实例.

如 $F(x) \rightarrow G(x)$, $\forall x F(x) \rightarrow \exists y G(y) \neq p \rightarrow q$ 的代换实例

定理 重言式的代换实例都是永真式,矛盾式的代换实例都是矛盾式.

实例

例 判断下列公式的类型

(1) $\forall x F(x) \rightarrow \exists x F(x)$;

设I为任意的解释,若 $\forall xF(x)$ 为假,则 $\forall xF(x)\to\exists xF(x)$ 为真。若 $\forall xF(x)$ 为真,则 $\exists xF(x)$ 也为真,所以 $\forall xF(x)\to\exists xF(x)$ 也为真。 是逻辑有效式.

(2) $\forall x F(x) \rightarrow (\forall x \exists y G(x,y) \rightarrow \forall x F(x))$;

重言式 $p \rightarrow (q \rightarrow p)$ 的代换实例,是逻辑有效式.

(3) $\forall x F(x) \rightarrow (\forall x F(x) \lor \exists y G(y))$;

重言式 $p \rightarrow (p \lor q)$ 的代换实例,是逻辑有效式.

(4) $\neg (F(x,y) \rightarrow R(x,y)) \land R(x,y)$;

矛盾式 $\neg(p\rightarrow q)\land q$ 的代换实例, 是矛盾式.

(5) $\forall x \exists y F(x,y) \rightarrow \exists x \forall y F(x,y)$.

取解释I: 个体域N, F(x,y)为x=y.

公式被解释为 $\forall x \exists y(x=y) \rightarrow \exists x \forall y(x=y)$, 其值为假.

解释I': 个体域N, F(x,y)为 $x \le y$, 得到一个新的 在I'下,

公式被解释为 $\forall x \exists y (x \le y) \rightarrow \exists x \forall y (x \le y)$, 其值为真.

是非逻辑有效式的可满足式.

(6) $\exists x F(x,y)$

取解释I: 个体域N, F(x,y)为x < y. 赋值 σ_1 : $\sigma_1(y) = 1$. 在I和 σ_1 下, $\exists x(x < 1)$,真命题.

取解释I: 个体域N, F(x,y)为x < y. 赋值 σ_2 : $\sigma_2(y) = 0$. 在I和 σ_2 下, $\exists x(x < 0)$, 假命题 是非逻辑有效式的可满足式.