Introduction to NEURON(90 Mins):

- 30 mins presentation
 - Who am I?
 - Why use NEURON (5-10 mins):
 - Use-cases: What does it do?
 - What do i need to use it?
 - Resources
 - Basics of NEURON (20-25 mins):
 - 2 Parts: HOC and .mod files
 - GUI vs HOC
 - Example simulation: Single Compartment HH with current injection
 - Representing cell morphology

- Using channels
- Stimuli
- Running the simulation
- Plotting the results
- 45 mins exercise
 - Based on David Sterrat and Andrew Gillies tutorial
- 15 mins Wrap up
 - nrnivmodl
 - More things with NEURON: cvode,
 - Interfacing with Python (limitations)
 - other simulators GENESIS, MOOSE
 - other options; morphforge, neuroml, nineml, neuronvisio, pynn;
 - Links to other tools

Why use NEURON (5-10 mins)

From the NEURON website (my bold type):

- is a flexible and powerful simulator of neurons and networks
- has important advantages over general-purpose simulators helps users focus on important biological issues rather than purely computational concerns
- has a convenient user interface
- has a user-extendable library of biophysical mechanisms
- has many enhancements for efficient network modeling
- offers customizable initialization and simulation flow control
- is widely used in neuroscience research by experimentalists and theoreticians
- is well-documented and actively supported
- is free, open source, and runs on (almost) everything

Use-cases - What does it do? I

- Modelling of multicompartmental neurons
 - keeps track of ion movements
- Connections between cells through synapses
- Defining your own channels & synapses
- If you are interested in large networks of 'simple', single compartement neurons, there are other options.

Use-cases - What does it do? II

- For a single compartment cell with simple HH dynamics, you can probably write your own solver using ODE solvers in matlab/python.
- As your models develop more complexity:
 - Current dependancies e.g. intracellular Ca2+ dependant K channels
 - Solving of Cable Equations for multicompartmental neurons
 - Connections via synapses & gap junctions
- You may find that you are reimplementing lots of mathematical solving, which has been already been done efficiently in NEURON.
- MOD files provide a standard for exchanging channel descriptions (e.g. modeldb)
- There is a python interface
- Highly parallelisable (e.g. BBP) for large networks

What do i need to use it?

- It runs on most operating systems (Windows/Linux/Mac). On the NEURON website:
 - Windows installer
 - Mac package
 - Linux .deb, .rpm package
- Eilif Muller has a precompiled binaries including Python support http://neuralensemble.org/people/eilifmuller/software.html

Resources

- Active questions board
- ModelDB

Basics of NEURON (20-25 mins)

2 Parts: HOC and NMODL files

- Two main types of language:
 - Interpreted languages (Python/matlab) are interactive, but slow
 - Compiled languages (Fortran/C/C++/...) are fast
- NEURON uses both:
 - 'HOC Interpreter' which controls the 'structure' of the simulation
 - 'NMODL' a compiled language for specifying the dynamics of channels/synapses in math

2 Parts: HOC and .mod files

- NEURON has an interactive interpreter, HOC, which controls the 'structure' of the simulation:
 - creating morphologies
 - defining which channels to apply and changing certain parameters (channel densities)
 - creating stimuli: current clamps, voltage clamps
 - defining what you want to record: voltages, internal states
 - setting simulation parameters: stimulation time-steps,
 - running the simulation

GUI vs HOC

Example Simple simulation: Single Compartment HH with current injection

Representing cell morphology

Using channels

Stimuli

Running the simulation

Plotting the results