UNIFORM DISCRETE RANDOM VARIABLES

Uniform discrete random variables.

If the possible values $x_1, x_2, ..., x_n$ of a discrete random variable X all have the same probability $\frac{1}{n}$ of occurring, then X is a uniform discrete random variable.

An example of a uniform discrete random variable is the result X when a die is rolled. The possible values of X are 1, 2, 3, 4, 5, and 6, and each value has probability $\frac{1}{6}$ of occurring.

By contrast, if two dice are rolled, the sum of the resulting numbers Y is not a uniform discrete random variable.

A magazine store recorded the number of magazines purchased by its customers in one week. 23% purchased one magazine, 38% purchased two, 21% purchased three, 13% purchased four, and 5% purchased five. Let X be the number of magazines sold to a randomly selected customer.

- a State the possible values of X.
- **b** Construct a probability table for X.
- **c** Graph the probability distribution.

a X = 1, 2, 3, 4, or 5

b	x	1	2	3	4	5
	P(X=x)	0.23	0.38	0.21	0.13	0.05

A probability distribution of a random variable can be expressed as a **probability distribution function** P(x) = P(X = x).

The domain is the set of possible values of the variable.

The range is the set of values in probability distribution.

Show that $P(x) = \frac{x^2 + 1}{34}$, x = 1, 2, 3, 4 is a valid probability distribution function.

$$P(1) = \frac{2}{34}$$
, $P(2) = \frac{5}{34}$, $P(3) = \frac{10}{34}$, $P(4) = \frac{17}{34}$

All of these obey
$$0 \le P(x_i) \le 1$$
,
$$\sum_{i=1}^{n} P(x_i) = \frac{2}{34} + \frac{5}{34} + \frac{10}{34} + \frac{17}{34} = 1$$

 \therefore P(x) is a valid probability distribution function.

1 a State whether each of the following is a valid probability distribution:

i	x	1	2	3	4
	P(X=x)	0.2	0.4	0.15	0.25

iii x 0 1 2 3 4 P(X = x) 0.2 0.2 0.2 0.2 0.2

b For which of the probability distributions in **a** is X a uniform random variable?

I

iv

2 Find k in each of these probability distributions:

a x 0 1 2 P(X = x) 0.3 k 0.5

x	0	1	2	3
P(X=x)	k	2k	3k	k

- 1 a i yes ii no iii yes iv no
 b For a iii, X is a uniform random variable.
- **2 a** k = 0.2 **b** $k = \frac{1}{7}$

3 Consider the probability distribution alongside.

- **a** Find the value of a.
- Is X a uniform discrete random variable? Explain your answer.

d Find $P(X \ge 2)$.

x	0	1	2	3
P(X=x)	0.1	0.25	0.45	a

4 The probability distribution for Jason scoring X home runs in each game during his baseball career is given in the following table:

x	0	1	2	3	4	5
P(x)	a	0.3333	0.1088	0.0084	0.0007	0.0000

a State the value of P(2).

b Find the value of a. Explain what this number means.

 \bullet Find the value of P(1) + P(2) + P(3) + P(4) + P(5). Explain what this means.

d Draw a graph of P(x) against x.

3 a a = 0.2

b No, as the probabilities of each outcome are not all equal.

d $P(X \ge 2) = 0.65$

- 4 a P(2) = 0.1088
 - **b** a = 0.5488 is the probability that Jason does not hit a home run in a game.
 - **c** P(1) + P(2) + P(3) + P(4) + P(5) = 0.4512 and is the probability that Jason will hit one or more home runs in a game.

Show that the following are valid probability distribution functions:

a
$$P(x) = \frac{x+1}{10}$$
 for $x = 0, 1, 2, 3$ **b** $P(x) = \frac{6}{11x}$ for $x = 1, 2, 3$.

b
$$P(x) = \frac{6}{11x}$$
 for $x = 1, 2, 3$.

Find k for the following probability distribution functions:

a
$$P(x) = k(x+2)$$
 for $x = 1, 2, 3$

b
$$P(x) = \frac{k}{x+1}$$
 for $x = 0, 1, 2, 3$.

9 **a**
$$P(0) = \frac{1}{10}$$
, $P(1) = \frac{2}{10}$, $P(2) = \frac{3}{10}$, $P(3) = \frac{4}{10}$ $0 \le P(x_i) \le 1$ in each case, and

$$\sum_{i=1}^{n} P(x_i) = \frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \frac{4}{10} = 1$$

$$\therefore$$
 $P(x)$ is a valid probability distribution function.

b
$$P(1) = \frac{6}{11}$$
, $P(2) = \frac{6}{22}$, $P(3) = \frac{6}{33}$

$$0 \leqslant P(x_i) \leqslant 1$$
 in each case, and

$$\sum_{i=1}^{n} P(x_i) = \frac{6}{11} + \frac{6}{22} + \frac{6}{33} = 1$$

$$\therefore$$
 $P(x)$ is a valid probability distribution function.

10 a
$$k = \frac{1}{12}$$
 b $k = \frac{12}{25}$

Two marbles are randomly selected without replacement from a bag containing 4 red and 2 blue marbles. Let X denote the number of red marbles selected.

- **a** Find the probability distribution of X.
- **b** Illustrate the probability distribution using a graph.

x	0	1	2
P(X=x)	$\frac{2}{30}$	$\frac{16}{30}$	$\frac{12}{30}$

- 13 A hat contains 2 red balls and 2 green balls. Balls are randomly selected without replacement until a green ball is selected. Let X denote the total number of balls selected.
 - **a** State the possible values of X.
 - **b** Find the probability distribution of X.
 - **13 a** X = 1, 2, or 3
 - **b** 1st selection 2nd selection 3rd selection

	$\frac{2}{4} \times \frac{1}{3} \times 1$	RRG	X = 3
	$\frac{2}{4} \times \frac{2}{3}$	RG	X = 2
	$\frac{2}{4}$	G	X = 1
Total	1		

x	1	2	3
P(X=x)	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

EXERCISE 2.04 (PAGE 66)

- Question 5
- Question 7