Exercise 1.4.7: Finish the proof of Theorem 1.4.5 by showing that the assumption $\alpha^2 > 2$ contradicts the assumption that $\alpha = \sup A$.

Proof. Consider the set,

$$A = \{a \in \mathbb{R} : a^2 < 2\}.$$

Let $\alpha = \sup A$. Suppose to the contrary that $\alpha^2 > 2$. Consider an element of A that is smaller than α , like $(\alpha - \frac{1}{n})$, where $n > \frac{2\alpha}{\alpha^2 - 2}$.

$$(\alpha - \frac{1}{n})^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2},$$

$$> \alpha^2 - \frac{2\alpha}{n},$$

$$> \alpha^2 - (\alpha^2 - 2),$$

$$= 2.$$

Thus we have shown that $(\alpha - \frac{1}{n})$ is greater than a for all $a \in A$ and therefore $(\alpha - \frac{1}{n})$ is an upper bound. Since $(\alpha - \frac{1}{n}) < \alpha$ we have contradicted $\alpha = \sup A$.

Exercise Supplemental 1: Give a from-scratch proof of the following facts:

- (a) If $f: A \to B$ has an inverse function g, then f is injective.
- (b) If $f: A \to B$ has an inverse function g, then f is surjective.

Proof (a). Suppose $f: A \to B$, whose inverse is $g: B \to A$, now consider $a_i, a_j \in A$ such that $f(a_i) = f(a_j)$. Using g as an intermediary we get the equality,

$$f(a_i) = f(a_j),$$

$$g(f(a_i)) = g(f(a_j)),$$

$$a_i = a_j.$$

Thus we have shown f is an injective function.

Proof (b). Suppose $f: A \to B$, whose inverse is $g: B \to A$. Consider some $b \in B$, by definition of g we know that there exists some $a \in A$ such that, g(b) = a. Taking the inverse of both sides we get,

$$f(g(b)) = f(a)$$
$$b = f(a).$$

Since $a \in A$ we have shown that for every $b \in B$ there exists some $a \in A$ such that f(a) = b thus f is surjective. \Box

Exercise Supplemental 2: Show that the sets [0, 1) and (0, 1) have the same cardinality.

Proof. Suppose the function $f:[0,1) \to (0,1)$ defined by,

$$f(x) = \begin{cases} 1 - \frac{1}{n+1} & 1 - \frac{1}{n}, n \in \mathbb{N} \\ x & \text{Otherwise} \end{cases}$$

Suppose $a, b \in [0, 1)$ such that f(a) = f(b). For the case where f(x) = x the function is trivially injective. let a, b be of the form $1 - \frac{1}{n}$ such that, $a = 1 - \frac{1}{n}$ and $b = 1 - \frac{1}{m}$, where $n, m \in \mathbb{N}$. Now consider f(a) = f(b), by definition,

$$f(a) = f(b),$$

$$1 - \frac{1}{n+1} = 1 - \frac{1}{m+1},$$

$$\frac{1}{n+1} = \frac{1}{m+1},$$

$$n+1 = m+1,$$

$$n = m.$$

Thus we have shown that n = m and therefore by substitution a = b. Thus f is injective.

Note that for the case where f(x) = x the function is trivially surjective. Suppose some $b \in (0, 1)$. Let b be of the form $b = 1 - \frac{1}{n+1}$, where $n \in \mathbb{N}$. Consider $a = 1 - \frac{1}{n}$ and note that, f(a) = b. Observe that $a \in [0, 1)$, thus f is surjective.

Exercise 1.5.10 (a) (c): (Wait until after Wednesday to start this one)

- (a) Let $C \subseteq [0, 1]$ be uncountable. Show that there exists $a \in (0, 1)$ such that $C \cap [a, 1]$ is uncountable.
- (c) Determine, with proof, if the same statement remains true replacing uncountable with infinite.

Proof (a). Suppose $C \subseteq [0,1]$ is uncountable. Suppose for the sake of contradiction that for all $a \in (0,1)$, $C \cap [a,1]$ is countable. Let $a = \frac{1}{n}$. Note that $C \cap [\frac{1}{n},1]$ is countable. By Theorem 1.5.8 we know that since $C \cap [\frac{1}{n},1]$ is countable the infinite union is also countable. Through set theory

$$\bigcup_{n=1}^{\infty} C \cap \left[\frac{1}{n}, 1\right] = C \cap \left(\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right]\right)$$
$$= C \cap (0, 1]$$

Therefore, $C \cap (0, 1] \cup \{0\} = C$ is also countable.

Proof (c). Suppose the countably infinite set $C = \{\frac{1}{n}, n \in \mathbb{N}\}$. By Archimedean Principle we know that for all $a \in (0,1)$ we can find some $\frac{1}{n} < a$, and therefore we force the set $C \cap [a,1]$ to be finite.

Math 401: Homework 3

Exercise Supplemental 3: (Wait until after Wednesday to start this one) Suppose for each $k \in \mathbb{N}$ that A_k is at most countable. Use the fact that $\mathbb{N} \times \mathbb{N}$ is countably infinite to show that $\bigcup_{k=1}^{\infty} A_k$ is at most countable. Hint: take advantage of surjection.

Proof. Suppose for each $k \in \mathbb{N}$ that A_k is at most countable. Recall that since all A_k are at most countable there must exists a surjection $g_k : \mathbb{N} \to A_k$. Consider the function $f : \mathbb{N} \times \mathbb{N} \to \bigcup_{k=1}^{\infty} A_k$ defined such that, $f(n,m) = g_n(m)$. Let $a \in \bigcup_{k=1}^{\infty} A_k$ and by definition we know that a must exist in some set A_i , where $i \in \mathbb{N}$. Furthermore, since g_i , is a surjection we know that there exists some $j \in \mathbb{N}$ where $g_i(j) = a$. Therefore we know that $f(i,j) = g_i(j)$ where $i, j \in \mathbb{N} \times \mathbb{N}$. Thus f is a surjection, and it follows that since $\mathbb{N} \times \mathbb{N}$ is countably infinite then $\bigcup_{k=1}^{\infty} A_k$ is at most countable.