

GRUNDLAGEN DER ELEKTROTECHNIK 1

Vorlesung 12 Wechselstromleistung

WECHSELSTROM

Inhalte der Kapitel 5 bis 7: Wechselstrom

7 WECHSELSPANNUNG

- 7.1 Sinusförmige Größen
- 7.2 Komplexe Wechselstromrechnung
- 7.3 Elektrische Impedanz
- 7.4 Admittanz
- 7.5 Wechselstromleistung
- 7.6 Blindstromkompensation
- 7.7 Leistungsanpassung bei Impedanzen
- 7.8 Wechselstrom-Messbrücken

http://www.elektronik-kompendium.de/sites/grd/0201114.htm

HINTERGRUND: EINKAUF VON STROM

Niederspannung	54,69 €/kW*a	3,86 ct/kW
Ent ahmespannungsebene	Monatsleistungspreis	Arbeitsprei
Hodhspannung	10,99 €/kW*Monat	0,69 ct/kW
Unispannung Hoch-/Mittelspannung	7,01 €/kW*Monat	1,23 ct/kW
Mi <mark>l</mark> telspannung	9,49 €/kW*Monat	1,66 ct/kW
Unspannung Mittel-/Niederspannung	14,25 €/kW*Monat	1,66 ct/kW
ederspannung	9,12 €/kW*Monat	3,86 ct/kW
Entnahmespannungsebene	Tagesleistungspreis	Arbeitsprei
Hochspannung	0,36 €/kW*Tag	0,69 ct/kW
Umspannung Hoch-/Mittelspannung	0,23 €/kW*Tag	1,23 ct/kW
		1,66 ct/kW

Unterschreitet der durchschnittliche Leistungsfaktor den Wert 0,9 induktiv, so kann die monatlich 50 % der Wirkarbeit übersteigende Blindarbeit je Blindarbeitskilowattstunde (kvarh) berechnet werden.

Blindarbeitspreis

Beispiel:

1.53 ct/kvarh

Netzentgelte Stromnetz Hamburg

https://www.stromnetz-hamburg.de/download/netzentgelte-2020/?wpdmdl=17113

WECHSELSTROMLEISTUNG

Aufgabe:

Skizzieren Sie den Verlauf von $p(t) = u \cdot i$ in dem Diagramm.

$$\hat{\mathbf{u}} = 4V \angle -30^{\circ}$$

$$\hat{1} = 2mA \angle 0^{\circ}$$

WECHSELSTROMLEISTUNG

Ergebnis:

$$p(t) = u \cdot i$$

Beobachtung:

•

•

WECHSELSTROMLEISTUNG

Mathematisch betrachtet:

$$\sin x \cdot \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

mit i und u folgt aus:

$$i = \hat{\imath} \cdot \sin \omega t$$

$$u = \hat{\imath} \cdot \sin(\omega t + \varphi)$$

$$\Rightarrow p =$$

⇒ Amplitude des Wechselanteils:

→ Wirkleistung

→ Scheinleistung

DEFINITIONEN FÜR WECHSELSTROMLEISTUNG

Wirkleistung = mittlere Leistung

$$P = \frac{1}{T} \int_{0}^{T} p(t)dt$$

Mit den Effektivwerten *U* und *I* definiert man:

$$S = U \cdot I$$

Scheinleistung

mit[S] = 1 VA

$$P = U \cdot I \cos \varphi$$

$$\cos \varphi = P / S$$

Wirkleistung

mit [P] = 1 W

$$\cos \varphi = P / S$$

Leistungsfaktor

HINTERGRUND: EINKAUF VON STROM

https://www.stromnetz-hamburg.de/download/netzentgelte-2020/?wpdmdl=17113

AUFGABE ZU WECHSELSTROMLEISTUNG

Bestimmen Sie die Wirk- und Scheinleistung für $\hat{u} = 4 V$, $\hat{i} = 2 mA$ mit einer Phasendifferenz von 30°.

 $\cos \varphi =$

S =

P =

KOMPLEXE SCHEINLEISTUNG

Fasst man S als einen komplexen Zeiger $\underline{S} = S \angle \varphi$ auf, kann man ihn in der komplexen Ebene wie folgt darstellen:

$$\underline{S} = P + j Q$$

$$P = U \cdot I \cos \varphi = S \cos \varphi$$

$$Q = U \cdot I \sin \varphi = S \sin \varphi$$

Komplexe Scheinleistung

Wirkleistung mit

Blindleistung mit

[S] = 1 VA

[P] = 1 W

[Q] = 1 var

$$P = \text{Re}\{\underline{S}\}$$

$$Q = \operatorname{Im}\{S\}$$

$$S = |\underline{S}|$$

BERECHNUNG: KOMPLEXE SCHEINLEISTUNG

Sind die komplexen Effektivwerte \underline{U} und \underline{I} gegeben, so gilt:

$$\underline{S} = \underline{U} \cdot \underline{I}^*$$

mit \underline{I}^* = konjugiert komplexe Zahl von \underline{I}

BERECHNUNG DER KOMPLEXEN SCHEINLEISTUNG

Sind die komplexen Effektivwerte \underline{U} und \underline{I} gegeben, so gilt:

$$\underline{S} = \underline{U} \cdot \underline{I}^*$$

Beweis:

Allgemein gilt: $\underline{Z} = R + j X$ und $\underline{U} = \underline{Z} \underline{I}$.

$$R \cdot I =$$

$$X \cdot I =$$

$$P =$$

$$Q =$$

$$\Rightarrow S =$$

BEISPIEL: INDUKTIVITÄT L MIT $\underline{Z} = j\omega L$

$$\underline{U} = \underline{Z} \underline{I} =$$

$$\underline{S} = \underline{U} \underline{I}^* =$$

$$\Rightarrow P =$$

$$\Rightarrow Q =$$

AUFGABE: BESTIMMEN SIE DIE BLINDLEISTUNG

 $\omega =$

Z =

 $\underline{I} =$

S =

O =

 $\frac{U}{C} = 110 V$ $C = 100 \mu F$ $R = 10 \Omega$ f = 60 Hz

7 WECHSELSPANNUNG

- 7.1 Sinusförmige Größen
- 7.2 Komplexe Wechselstromrechnung
- 7.3 Elektrische Impedanz
- 7.4 Admittanz
- 7.5 Wechselstromleistung
- 7.6 Blindstromkompensation
- 7.7 Leistungsanpassung bei Impedanzen
- 7.8 Wechselstrom-Messbrücken

BLINDSTROMKOMPENSATION

Maschinen (ganze Fabriken) stellen eine induktive Last dar.

Es soll die Leistung $P = I^2 R$ erbracht werden.

Der Generator muss die Scheinleistung S mit S > P erbringen.

⇒ Es fließt durch die Zuleitung ein höherer Strom als nötig!

Idee:

UMSETZUNG EINER BLINDSTROMKOMPENSATION

Quelle: http://www.geier-starkstromtechnik.de/blindstromanlagen/blindstrom.html

Video: http://www.youtube.com/watch?v=MJPI-pTjiec&feature=share&list=UUEJTOdVH6s00WhaxKjExnAg&index=15

INDUKTIVE LAST OHNE KOMPENSATION

$$\underline{Z} =$$

$$\underline{I} =$$

$$\Rightarrow \qquad \underline{S} =$$

$$\Rightarrow$$
 φ =

$$\cos \varphi =$$

BLINDSTROMKOMPENSATION

$$\underline{Y}_{comp} =$$

$$\underline{I}_{comp} =$$

$$\underline{S}_{comp} =$$

Verbesserung des Leistungsfaktors:

 $\cos \varphi_{comp} = 1$: vollständige Kompensation

 $\cos \varphi_{comp} < 1$: Teilkompensation

gleiche Leistung P bei niedrigerem Strom I

$$\varphi = \cos \varphi =$$

BEISPIEL

Experimentelle Bestimmung der Kompensationskapazität

ohne Kondensator:

$$(C = 0 \mu F)$$

$$\Rightarrow I = 2.5 mA$$

Versuch zur Blindstromkompensation - Lab 4

Klask, T.; Looft, M.; Nohdurft, B: EE Laborversuch 4, 2013.

Bei Wahl des korrekten Kondensators ($C = 0.2 \mu F$) => Gesamtstromaufnahme nur noch I = 1.5 mA

7 WECHSELSPANNUNG

- 7.1 Sinusförmige Größen
- 7.2 Komplexe Wechselstromrechnung
- 7.3 Elektrische Impedanz
- 7.4 Admittanz
- 7.5 Wechselstromleistung
- 7.6 Blindstromkompensation
- 7.7 Leistungsanpassung bei Impedanzen
- 7.8 Wechselstrom-Messbrücken

LEISTUNGSANPASSUNG BEI IMPEDANZEN

 \underline{U}_0 : Wechselspannungsquelle

 Z_i : Innenimpedanz der Spannungsquelle

 Z_L : Lastimpedanz

Leistungsanpassung:

Anpassung der Last $\underline{Z}_L = R_L + jX_L$, so dass sich die maximale Wirkleistung

 P_L in \underline{Z}_L ergibt.

Frage:

Unter welcher Bedingung wird $P_L = f(\underline{Z}_i)$ maximal?

BEDINGUNG FÜR LEISTUNGSANPASSUNG

Wie berechnet sich $P_L = f(\underline{U}_0, \underline{Z}_i, \underline{Z}_L)$?

$$\underline{S}_L =$$

$$\underline{U}_L =$$

$$I =$$

$$S_L =$$

$$P_L =$$

Mit:

$$\underline{Z}_{i} = R_{i} + j X_{i}$$

$$\underline{Z}_{L} = R_{L} + j X_{L}$$

$$\underline{Z} = \underline{Z}_{i} + \underline{Z}_{L}$$

MAXIMUM DER WIRKLEISTUNG

$$P_L = \frac{U_0^2}{Z^2} \cdot R_L$$

Maximum wenn:
$$\frac{\partial P_L}{\partial R_L} = 0$$
 und $\frac{\partial P_L}{\partial X_L} = 0$

$$\frac{\partial P_L}{\partial X_L}$$
 (= partielle Ableitung nach $X_L \Rightarrow$ alles außer X_L sei konstant)

$$\begin{split} \frac{\partial P_L}{\partial X_L} &= \frac{\partial}{\partial X_L} \frac{U_0^2 \cdot R_L}{(R_i + R_L)^2 + (X_i + X_L)^2} = U_0^2 \cdot \frac{0 - 2 \cdot X_L \cdot (X_i + X_L)}{\left((R_i + R_L)^2 + (X_i + X_L)^2\right)^2} = -\frac{2U_0 \cdot X_L \cdot (X_i + X_L)}{\left((R_i + R_L)^2 + (X_i + X_L)^2\right)^2} \\ \frac{\partial P_L}{\partial R_L} &= \frac{\partial}{\partial R_L} \frac{U_0^2 \cdot R_L}{(R_i + R_L)^2 + (X_i + X_L)^2} = U_0^2 \cdot \frac{(R_i + R_L)^2 + (X_i + X_L)^2 - 2 \cdot R_L \cdot (R_i + R_L)}{\left((R_i + R_L)^2 + (X_i + X_L)^2\right)^2} \\ &= U_0^2 \cdot \frac{R_i^2 + 2R_iR_L + R_L^2 + (X_i + X_L)^2 - 2R_LR_i - 2R_L^2}{\left((R_i + R_L)^2 + (X_i + X_L)^2\right)^2} = U_0^2 \cdot \frac{R_i^2 - R_L^2 + (X_i + X_L)^2}{\left((R_i + R_L)^2 + (X_i + X_L)^2\right)^2} \end{split}$$

BEDINGUNG FÜR LEISTUNGSANPASSUNG

$$\frac{\partial P_L}{\partial R_L} = 0 \Leftrightarrow R_i^2 - R_L^2 + (X_i + X_L)^2 = 0$$

$$\frac{\partial P_L}{\partial X_L} = 0 \Leftrightarrow 2U_0 \cdot X_L \cdot (X_i + X_L) = 0$$

$$R_L =$$

$$X_L =$$

$$\Leftrightarrow$$

$$Z_{L} =$$

Wir erhalten:
$$P_{L,\text{max}} = \frac{U_0^2 \cdot R_L}{(R_i + R_L)^2 + (X_i + X_L)^2} = \frac{U_0^2}{4R_i}$$

ÜBUNG ZUR LEISTUNGSANPASSUNG

Bestimmen Sie die Innenimpedanz einer Spannungsquelle, die für Leistungsanpassung an eine Lastimpedanz $R_L=20~\Omega$ und $X_L=-10~\Omega$ an einer 10V Wechselspannungsquelle bei $\omega=100~s^{-1}$ benötigt wird. Welche Wirkleistung wird in Z_L umgesetzt?

$$R_i =$$

$$X_i =$$

$$L_i =$$

$$P_L =$$

WAS SIE MITNEHMEN SOLLEN ...

Wechselstromleistung

• Wirkleistung P =

• Scheinleistung S =

• Blindleistung Q =

• Leistungsfaktor $\cos \varphi$

• komplexe Leistung $\underline{S} =$

verstehen und berechnen

Blindstromkompensation

 $\omega L =$

- Blindstromkompensation anwenden können
- Leistungsfaktor nach Korrektur berechnen können

Leistungsanpassung

 $R_L =$

 $X_L =$

· Leistungsanpassung verstehen und anwenden können