We define super digit of an integer \boldsymbol{x} using the following rules:

If *x* has only 1 digit, then its super digit is *x*.
Otherwise, the super digit of *x* is equal to the super digit of the sum of the digits of *x*.

For example, the super digit of **9875** will be calculated as:

Given an integer, we need to find the super digit of the integer.

```
super_digit(9875)
                       9+8+7+5 = 29
super_digit(29)
                       2 + 9 = 11
super_digit(11)
                       1 + 1 = 2
super_digit(2)
                       = 2
```

Example

n = '9875'

k=4

The number p is created by concatenating the string n k times so the initial p = 9875987598759875.

```
superDigit(p) = superDigit(9875987598759875)
              9+8+7+5+9+8+7+5+9+8+7+5+9+8+7+5 = 116
superDigit(p) = superDigit(116)
             1+1+6 = 8
superDigit(p) = superDigit(8)
```

All of the digits of p sum to 116. The digits of 116 sum to 8.8 is only one digit, so it is the super digit.

Function Description

Complete the function superDigit in the editor below. It must return the calculated super digit as an integer.

superDigit has the following parameter(s):

- string n: a string representation of an integer
- ullet int k: the times to concatenate $oldsymbol{n}$ to make $oldsymbol{p}$

• int: the super digit of \boldsymbol{n} repeated \boldsymbol{k} times

Returns

Input Format

The first line contains two space separated integers, $m{n}$ and $m{k}$.

Constraints

- $1 \le n < 10^{100000}$
- $1 \le k \le 10^5$

