Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет» (национальный исследовательский университет) Высшая школа электроники и компьютерных наук Кафедра «Информационно-измерительная техника»

Разработка электронного устройства на базе микроконтроллера

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ

по дисциплине: «Цифровые измерительные устройства»

ЮУрГУ-12.03.01.2020.308/415 ПЗКП

Нормоконтролер:	Руководитель:			
Вставская Е.В.	Вставская Е.В.			
«» 2021г.	«» 2021г.			
	Автор проекта			
	Студент группы КЭ-413			
	Ильин С.С.			
	«»2021г.			
	Проект защищён с оценкой			
	« » 2021г.			

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет» (национальный исследовательский университет)

Высшая школа электроники и компьютерных наук Кафедра «Информационно-измерительная техника»

ТВЕРЖДАЮ аведующий кафедрой ИнИТ	
М.Н. Самодурова	
2021 г.	

ЗАДАНИЕ

на курсовой проект студента Ильина Семена Сергеевича Группа КЭ-413

- 1. Дисциплина: «Цифровые измерительные устройства».
- 2. Тема проекта: Разработка электронного устройства на базе микроконтроллера
 - 3. Срок сдачи студентом законченного проекта: 8 марта 2020 г.
 - 4. Перечень вопросов, подлежащих разработке:

Разработать устройство, обеспечивающее отображение количества нажатий кнопки, полученное по интерфейсу USART, на трех 7-сегментных индикаторах.

Bход/Выход – интерфейс USART.

Выход – три 7-сегментных индикатора.

Устройство запрашивает значение по интерфейсу USART и отображает полученное значение на 7-сегментных индикаторах.

* Предусмотреть возможность переключения частоты опроса 1Γ ц или 0.2Γ ц.

Предусмотреть возможность внутрисхемного программирования микроконтроллера.

Задание выполняется совместно с вариантом 5

5. Календарный план

Наименование разделов	Срок выполнения	Отметка о выполнении
курсового проекта	разделов проекта	руководителя
Введение	27.12.2021	
Обзор литературы	27.12.2021	
Выбор и расчёт	27.12.2021	
элементов схемы		
Проектирование	27.12.2021	
принципиальной схемы		
Составление программы	27.12.2021	
для микроконтроллера		
Оформление	27.12.2021	
пояснительной записки		

Руководитель проекта	/Е.В. Вставская
Студент	/С.С. Ильин/

КИЦАТОННА

Ильин С.С., Разработка датчика бесконтактного измерения температуры. — Челябинск: ЮУрГУ, КЭ-413, 15 с., библиогр. список. —3 наименований.

Цель работы: разработка устройства с возможностью измерять температуру бесконтактным датчиком.

Задачи работы:

- разработать архитектуру программного обеспечения в виде диаграммы UML.
 - разработать код программного обеспечения;
- работа программы должна быть продемонстрирована совместно с платой XNUCLEO-F411RE.

В ходе выполнения данного курсового проекта по варианту было разработано устройство, позволяющего измерять температуру бесконтактным способом.

Предусмотрена возможность питания от солнечной батареи за счёт подключения соответствующего модуля.

Проект реализован в программе MS Word 2019, принципиальная схема и перечень элементов устройства создавалась в программе AutoCAD 2021.

					12.03.01.2022.308/401.BKP			
Изм.	Лист	№ Докум.	Подпись	Дата	1			
Pa	зраб.	Ильин С.С.			D	Литера	Лист	Листов
Π	Гров.	Вставская Е.В.			Разработка информационно-		4	15
					измерительной системы ЮУрГУ			
H.1	Контр	А.С. Волосников			мониторинга здоровья	1		
	Утв.	Вставская Е.В.		·	мониторинга здоровья кафедра ИнИТ		НИΙΙ	

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ		6
1. ОБЗОР		7
1.1. Плата S	TM32F411	7
1.2. Бесконт	актный инфракрасный датчик температуры	
MLX90	514	9
БИБПИОГРАФ	оический список	15

			·	
Изм.	Лист	№ докум.	Подп.	Дата

ВВЕДЕНИЕ

Микроконтроллер (microcontroller), как следует из названия, – это маленький (micro) инструмент для управления (control) какими-либо процессами реального мира. С этой целью в микроконтроллере предусмотрены периферийные аппаратные средства: порты ввода-вывода, АЦП, ЦАП, счётчики-таймеры, приёмопередатчики. Обработка и формирование сигналов, связанных с этими процессами, осуществляются сердцем микроконтроллера — однокристальной микропроцессорной системой в соответствии с программным обеспечением, обычно хранящимся в энергонезависимой памяти. Маленьким микроконтроллер делает конструктивное объединение всех перечисленных устройств на одном кристалле.

Микроконтроллер помимо центрального процессора (ЦП) содержит память и многочисленные устройства ввода/вывода: аналого-цифровые преобразователи, последовательные и параллельные каналы передачи информации, таймеры реального времени, широтно-импульсные модуляторы (ШИМ), генераторы программируемых импульсов и т.д. Его основное назначение – использование в системах автоматического управления, встроенных в самые различные устройства: кредитные карточки, фотоаппараты, сотовые телефоны, видеомагнитофоны музыкальные центры, телевизоры, И видеокамеры, стиральные машины, микроволновые печи, системы охранной сигнализации, системы зажигания бензиновых двигателей, электроприводы локомотивов, ядерные реакторы и др.

Микроконтроллеры используются во всех сферах жизнедеятельности человека, устройствах, которые окружают его. Простота подключения и большие функциональные возможности. С помощью программирования микроконтроллера можно решить многие практические задачи аппаратной техники.

Изм.	Лист	№ докум.	Подп.	Дата

1. ОБЗОР

1.1. Плата STM32F411

STM32F411 [1]— линейка плат с оптимизированной динамической потребляемой мощностью и увеличенным объёмом ОЗУ (до 128 кбайт). Максимальная рабочая частота этих микроконтроллеров достигает 100 МГц.

Микроконтроллер STM32F411 построен на базе микропроцессорного ядра Cortex-M4 и сочетает все преимущества предыдущих семейств (рисунок 1):

- высокая производительность;
- сверхнизкое потребление;
- низкая цена.

Рисунок 1 – преимущества STM32F411

Главной отличительной особенностью STM32F411(рисунок 2) является оптимизация внутренней архитектуры и применение новых технологий, объединённых под названием Dynamic Efficiency. Этим разработчики хотели подчеркнуть, что нововведения позволили значительно снизить потребление. По величине динамической потребляемой мощности новые линейки сравнимы с малопотребляющими STM32L1.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 2 – STMF411

STM32F4.11 обладают производительностью, характерной для семейств STM32F4. Используемый процессор Cortex-M4 (рисунок 3) ничем не отличается от того, который применяется в топовых линейках STM32F42/43. Аппаратный ускоритель (ART Accelerator), блок для выполнения операций над числами с плавающей запятой (FPU) — все это обеспечивает высокую производительность даже при цифровой обработке сигналов. Единственное ограничение связано со снижением максимальной рабочей частоты до 84 МГц (STM32F401) и 100 МГц (STM32F411).

Отличительные способности данного микроконтроллера [2]:

- ядро ARM 32-бит Cortex-M4;
- рабочая частота 100 МГц;
- рабочее напряжение 1,7...3,6 В;
- память: 512 Кб Flash, 128 Кб SRAM;

Изм.	Лист	№ докум.	Подп.	Дата

• интерфейсы: 1 x SDIO, 1 x USB 2.0 FS, 5 x SPI или 5 x I2C, 3 x USART, 3 x I2C, 1 x АЦП (12 бит, 16 каналов).

Процессоры с архитектурой ARM (ARM-процессоры) разработаны британской фирмой AconComputers. В настоящее время это корпорация один из крупнейших разработчиков 32-разрядных RISC-процессоров занимается Изм. Лист № докум. Подп. Дата Лист 9 12.03.01.2022.308/415 ПЗ лишь разработкой процессорных архитектур и их лицензированием. В настоящее время ARM-процессоры более распространены в мобильных устройствах и встроенных системах различного применения.

Рисунок 3 – Ядро Cortex-M4

Сохранение производительности и снижение потребления не сильно сказалось на цене. Новые линейки рассчитаны на применение в приложениях, где низкая стоимость является одним из самых важных требований.

1.2. Бесконтактный инфракрасный датчик температуры MLX90614

Для измерения температуры использовался бесконтактный инфракрасный (ИК) датчик температуры MLX90614 (рисунок 4) в корпусе ТО-39. Сенсор способен определять температуру объекта, не прикасаясь к нему, в зависимости

Изм.	Лист	№ докум.	Подп.	Дата

от излучаемых ИК-волн. Датчик обладает возможностью измерять среднюю температуру по площади. Бесконтактный, высокая точность, высокое разрешение, быстрый отклик.

Рисунок 4 – MLX90614

Характеристики [3].

- Мощность: 3,3 B ~ 5 B.
- Диапазон измерения (площадь): 40° C $\sim 85^{\circ}$ C.
- Диапазон измерения (объект): -70° C $\sim 380^{\circ}$ C.
- Разрешение: 0,02°C. Точность: ±0,5°C (0~50°C).

Распиновка:

- VCC 3,3B / 5B;
- GND земля;
- SDA ввод даны I2C;
- SCL тактовый контакт I2C.

Стартовый сигнал: SCL имеет высокий уровень, SDA переключается с высокого на низкий, начинается передача данных.

Сигнал остановки: SCL имеет высокий уровень, SDA переходит от низкого уровня к высокому, передача завершена.

Датчик имеет цифровой выход PWM и SMBus (шина управления системой). В этом документе мы вводим только связь SMBus. SMBus – это двухпроводной интерфейс, основанный на принципе I2C.

Изм.	Лист	№ докум.	Подп.	Дата

2. ПРИМЕНЕНИЕ SMBUS И USART

SMBus (System Management Bus) — протокол обмена данными для устройств питания. Основан на шине I2C, но использует более низкий уровень сигнального напряжения (3,3 В). Основное назначение интерфейса — управление подсистемой питания, мониторинг оборудования и сопутствующих подсистем.

SMBus является двухпроводным интерфейсом, по которому простые устройства могут обмениваться информацией с остальной системой. Сообщения идут к устройствам и от них, вместо прохождения по отдельным управляющим линиям. Таким образом обеспечиваются преимущества:

- уменьшается количество проводов (не требуются отдельные линии управления);
- гарантируется дальнейшая расширяемость путём приёма сообщений по протоколу I2C.

В данной работе SMBus использовался для подключения к ИК датчику MLX90614.

Для считывания данных по SMBus были выполнены следующие действия.

- 1) Настроен модуль SMBus:
- Подаётся тактирование на модуль I2C.
- Для переключения из режима I2C в режим SMBus необходимо устанавливается бит SMBus в регистре I2C_CR1.
 - Указывается тип устройства (Host или Device), в нашем случае Device.
- Определяется, какой режим I2C нам необходим (fast или standard), так как используется SMBus, подходит достаточно «Standard mode».
 - После записывается значение частоты.
 - Скидываем биты частоты шины тактирования APB1.
- Устанавливается TRISE, обеспечивающий максимальную продолжительность петли обратной связи SCL в Master режиме.
 - Устанавливается бит РЕ, чтобы включить периферию.
 - Записывается бит high в выходной регистр данных.

Изм.	Лист	№ докум.	Подп.	Дата

- Далее происходит настройка портов (перевод в альт. режим, установка альт. функций, настройка выходов, указание скорости, установка подтяжки к единице).
 - 2) Для считывания данных с ИК-датчика прописан код:
- Функция должна принимать адрес поля, в котором хранится значение температуры в ИК-датчике.
 - Запускается модуль I2C.
- Разрешается АСК для модуля I2С. Данный бит необходимо установить сразу, потому что потом он может не работать.
 - Проверяется, установился ли стартовый бит.
 - Получаются данные с регистра SR1.
- В регистр DR передаётся адрес MLX90614 (если устройство одно, то адрес по умолчанию 0x00).
 - Проверяется, был ли согласован адрес Master с адресом Slave устройства.
 - Получаются данные с регистров SR1 и SR2.
 - Опустошение регистра.
- Записывается адрес датчика, в котором хранятся значения температуры (рисунок 5).

RAM (32x17)						
Name	Address	Read access				
Melexis reserved	0x00	Yes				
•••	•••					
Melexis reserved	0x03	Yes				
Raw data IR channel 1	0x04					
Raw data IR channel 2	0x05					
T _A	0x06	Yes				
T _{OBJ1}	0x07	Yes				
T _{OBJ2}	80x0	Yes				
Melexis reserved	0x09	Yes				

Melexis reserved	0x1F	Yes				

Рисунок 5 – Адрес, в котором хранится значение температуры

Изм.	Лист	№ докум.	Подп.	Дата

- Далее нужно перезагрузить модуль I2C, проверить установку стартового бита.
- После отправляется команда на чтение и проверяется согласование адреса Master c Slave.
- Проверяется посылка на ошибки при помощи бита POS, получаются данные с регистров SR1 и SR2.
 - Затем ожидается окончание передачи и остановка I2C.
- В конце значение температуры с датчика записывается в переменную, при это учитывая условие, описанное в документации на датчик (рисунок 6).

3) Общение с платой расширения должно осуществляться через USART.

USART (Universal Synchronous Asynchronous Receiver Transmitter) — это модуль последовательного ввода-вывода, который может использоваться для работы с периферийными устройствами.

USART может работать в трех режимах:

- асинхронный, полный дуплекс;
- ведущий синхронный, полудуплекс;
- ведомый синхронный, полудуплекс.

UASRT STM микроконтроллера очень обширный, но мы рассмотрим только то, что относится к UART В модуле USART можно настраивать следующие параметры:

- Скорость обмена до 4 мбит/с.
- Контроль четности.
- 1 или 2 стоповых битов.
- 8 или 9 бит данных.

·			·	·
Изм.	Лист	№ докум.	Подп.	Дата

- • Запросы на детектирование ошибок приемо-передачи. Изм. Лист № докум. Подп. Дата Лист 14 12.03.01.2022.308/415 ПЗ
- Прерывания по приему, передачи, ошибкам передачи. Для настройки и работы модуля UART нужны всего несколько регистров.
 - • USART_CR1/CR2/CR3 регистр настройки 1.
 - • USART_DR регистр принятого символа (регистр данных).
 - • USART_BRR регистр настройки скорости передачи.
 - USART_SR регистр состояния.

Модуль приемо-передатчика обеспечивает полнодуплексный обмен по последовательному каналу, при этом скорость передачи данных может варьироваться в довольно широких пределах. Длина посылки может составлять от 5 до 9 битов. В модуле присутствует схема контроля и формирования бита чётности.

Для корректной работы USART необходимо выполнить следующие лействия:

- 1) Подать тактирование на шину USART.
- 2) Настроить порты А2, А3 в альтернативный режим.
- 3) Указать альтернативные функции ТХ, RX для соответствующих портов.
- 4) Указать скорость.
- 5) Включить модуль USART.

Изм.	Лист	№ докум.	Подп.	Дата

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. 1. https://www.waveshare.com/wiki/XNUCLEO-F411RE. XNUCLEOF411RE.
- 2. XNUCLEO-F411RE, Отладочный комплект на базе MCU STM32F411RET6 (Cortex-M4), ST-LINK/V2 (mini), Arduino-интерфейс. https://www.chipdip.ru/product/xnucleo-f411re.
- 3. https://www.waveshare.com/infrared-temperature-sensor.htm. Contact-less Infrared Temperature Sensor.

Изм.	Лист	№ докум.	Подп.	Дата

				КЭ.413006.0	101 33		
					Лит.	Масса	Масштаδ
Изм. Лист	№ докум.	Подпись	Дата	Схема электрическая			_
Разраб .	Ильин С.С.			•	<i>y</i>		1:1
Провер .	Вставская Е.В.			ПРИНЦИПИАЛЬНАЯ			
Т.контр.				,	Лист 2.	3 /lucmot	1
						ЮУрГУ	
Н .контр .					\ \(\times_{\text{\(\text{\(\times_{\text{\(\times_{\text{\(\times_{\text{\(\times_{\text{\(\times_{\text{\(\times_{\text{\(\text{\(\times_{\text{\(\times_{\text{\(\times_{\text{\(\text{\) \}}}}}}}}}}}}}}}\engretion \)	тфедра ИнИ	1T
Утв.					K L	іфеора Ини	11

		Поз . обозн .	Наименование	Кол.	Примечание
. Ha	Перв. примен.		Конденсаторы		
мпди		C1, C 3– C 5	X7R 0402 -0,1mκΦ	4	
. ддә		C2, C 6	ECAP SMD-100 mkΦ, 16B	2	
		<i>C7, C8</i>	NPO 1206- 20πΦ	2	
H			Разъемы		
		X1	KLS-125	1	
		X2, X 3	СНП383–4ВП21	2	
No		<i>X</i> 4	MLX90614	1	
Справ. No					
Ŋ			Резисторы		
		R1–R4	SMD-0,125 -100	4	
		ZQ1	HC-49SM	1	
		DA1	L 78 L33ACD13TR	1	
D					
и дата		DD1	STM32F 411 RE	1	
Nođn. u					
Ш					
удл.					
Инв. Nº дубл.					
Инв					
J. No					
Взаим инв .No					
Взап					
L					
Подп. и дата					
лди. т	дп. и				
Ш		14	КЭ.4130	106.l	001
П.			N° докум. Подпись Дата Чирков А.М.	<u> </u>	Лит. Лист Листов
Инв. N° подп.			Вставская Е.В.	P	24
M. GH	Перечень элементов Н. контр.			ЮУрГУ Кафедра ИнИТ	
Z	Утв.				παφευρά ΜΠΙΠ