

INFO 251: Applied Machine Learning

Regularization

Announcements

- Assignment 3 due Thursday
- Quiz 1 scheduled for March 4, first ~40 minutes of class
 - Closed book: No access to slides/internet/GenAI/reference materials
 - Must be present to take quiz!
 - 10-15 multiple choice and short-answer questions
 - I'll be providing a few sample questions in class

Course Outline

- Causal Inference and Research Design
 - Experimental methods
 - Non-experiment methods
- Machine Learning
 - Design of Machine Learning Experiments
 - Linear Models and Gradient Descent
 - Non-linear models
 - Fairness and Bias in ML
 - Neural models
 - Deep Learning
 - Practicalities
 - Unsupervised Learning
- Special topics

Key Concepts (last lecture)

- Cost Functions
- Gradient Descent
- Local and global minima
- Convex functions
- Incremental vs. Batch GD
- Learning rates
- Feature scaling

Stopping conditions

```
Choose an initial vector of parameters \alpha, \beta
Choose learning rate R
Repeat until convergence (i.e., until an approximate minimum is obtained): \alpha <-\alpha - R \frac{\partial}{\partial \alpha} J(\alpha,\beta)
\beta <-\beta - R \frac{\partial}{\partial \beta} J(\alpha,\beta)
```

- How to know a minimum has been obtained?
 - Look for small changes in the gradient
 - Look for small improvements in cost
 - Look for no changes in parameters
 - Set a stopping condition!

Example Quiz Question: Gradient descent

- To ensure that your gradient descent algorithm is properly converging to a minimum:
 - 1. Plot $J(\theta)$ as a function of θ , and ensure $J(\theta)$ is decreasing
 - 2. Plot $J(\theta)$ as a function of number of iterations, and ensure $J(\theta)$ is decreasing
 - Plot $J(\theta)$ as a function of θ , and make sure $J(\theta)$ is convex
 - 4. Plot $J(\theta)$ as a function of learning rate R, and make sure $J(\theta)$ in monotonic (either constantly increasing or constantly decreasing) in R

Today's Outline

- Overfitting
- Regularization: Intuition and overview
- Ridge
- Lasso
- Logistic regression: Intro

Overfitting revisited

 Overfitting: If we have too many features, our model may fit the training set very well, but fail to generalize to new examples

$$wages_i = \theta_0 + \theta_1 E duc_i + \dots + \theta_5 E duc_i^5 + \epsilon_i$$

Overfitting: Solutions

- Later in the course:
 - Feature selection
 - Model selection
 - Dimensionality reduction
- Now: Regularization
 - For instance, ridge regularization: Keep all the features, but reduce magnitude of specific parameters

Regularization: Intuition

- Occam's Razor
 - A principle of parsimony, economy, or succinctness. It states that among competing hypotheses, the hypothesis with the fewest assumptions should be selected

Ockham chooses a razor

Regularization: Intuition

- Idea: Add a cost penalty for additional complexity in the model
- Example: polynomial regression
 - Model: $Y_i = \theta_0 + \theta_1 X_i + ... + \theta_k X_i^k$
 - Parameters: θ_0 , ..., θ_k
 - Original "Cost": $J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k Y_i)^2$

$$wages_i = \theta_0 + \theta_1 E duc_i + \epsilon_i$$

$$wages_i = \theta_0 + \theta_1 E duc_i + \dots + \theta_5 E duc_i^5 + \epsilon_i$$

Regularization: Intuition

Original cost from OLS (polynomial regression example)

•
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2$$

(Intuitive) Goal behind regularization

•
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k - Y_i)^2 + C(\theta_1, ..., \theta_k)$$

Example: Ridge regularization

 $J(\theta) = \frac{1}{2N} \left[\sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2 \right]$

New penalty

"Ridge" coefficient

Regularization parameter (λ)

Regularization and Linear Regression

Original Gradient Descent update rule

$$\alpha < -\alpha - R \frac{\partial}{\partial \alpha} J(\alpha, \beta)$$
$$\beta < -\beta - R \frac{\partial}{\partial \beta} J(\alpha, \beta)$$

• Original derivative of J (in linear regression, $Y_i = \alpha + \beta X_i$)

$$\alpha < \alpha - R \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)$$

$$\beta < \beta - R \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) \quad X_i$$

Regularized version has new partial derivatives:

$$\beta < -\beta - R \left[\frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i + \frac{\lambda}{N} \beta \right]$$

Rewritten:

$$\beta < \beta \left(1 - R\frac{\lambda}{N}\right) - R\frac{1}{N}\sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i$$

Regularization: Some notes

- How to select λ ?
 - Cross validation!

$$J(\theta) = \frac{1}{2N} \left[\sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2 \right]$$

- Choose λ that minimizes cross-validated performance (yellow boxes)
- i.e., repeat dark blue process for a variety of candidate values of λ

Regularization: Some notes

Example from an early paper I wrote

Regularization: Some notes

Polynomial regression example:
$$J(\theta) = \frac{1}{2N} \left[\sum_{i=1}^{N} \left(\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k - Y_i \right)^2 + \lambda \sum_{j=1}^{k} \theta_j^2 \right]$$

- What happens in regularization if features are in different units?
 - Penalty on different scales
 - One solution: Normalize features
- Do we penalize the intercept?
 - Typically, no.
 - The intercept is typically not a sign of overfitting, it indicates the global intercept
 - A common alternative: center the data around zero (Y is mean zero), regularize all coefficients
 - This can simplify implementation

Outline

- Overfitting
- Regularization: Intuition and overview
- Ridge
- Lasso
- Logistic regression: Intro

"Ridge"

$$J(\theta) = \frac{1}{2N} \left[\sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2 \right]$$

- L₂ norm (ridge regression): penalty proportional to θ^2
 - Works best when a subset of the true coefficients are small
 - Will never set coefficients to zero exactly
 - Cannot perform variable selection in the linear model
 - Coefficients don't have same natural interpretation as OLS
 - Convex and differentiable

Ridge: Coefficient plot

LASSO

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} |\theta_j|$$

- L₁ norm (lasso regression): penalty proportional to $|\theta|$
 - Selects more relevant features and discards the others, vs. Ridge regression which reduces parameters but doesn't drive to zero
 - Not differentiable
 - Coefficients still difficult to interpret, though "post-lasso" versions can reduce bias (e.g., Belloni & Chernozhukov)

LASSO: Coefficient plot

- Least Absolute Selection and Shrinkage Operator
 - See ESL section 3.4
 - Tibshirani (1996), "Regression Shrinkage and Selection via the Lasso"

Other forms of Regularization

Elastic net: combines Lasso and Ridge w/two hyperparameters (α, λ)

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \alpha \lambda \sum_{j=1}^{k} |\theta_j| + (1 - \alpha) \lambda \sum_{j=1}^{k} \theta_j^2$$

penalty	function	optimizer	reference
$\overline{\text{ridge}}$	$p(x_j) = \lambda x_j^2$	glmnet, ista	(Hoerl & Kennard, 1970)
lasso	$p(x_j) = \lambda x_j $	glmnet, ista	(Tibshirani, 1996)
adaptive Lasso	$p(x_j) = \frac{1}{w_i} \lambda x_j $	glmnet, ista	(Zou, 2006)
elasticNet	$p(x_j) = \alpha \lambda x_j + (1 - \alpha) \lambda x_j^2$	glmnet, ista	(Zou & Hastie, 2005)
cappedL1	$p(x_j) = \lambda \min(x_j , \theta); \theta > 0$	glmnet, ista	(Zhang, 2010)
lsp	$p(x_j) = \lambda \log(1 + x_j /\theta); \theta > 0$,	(Candès et al., 2008)
scad	$p(x_j) = \begin{cases} \lambda x_j & \text{if } x_j \\ \frac{-x_j^2 + 2\theta\lambda x_j - \lambda^2}{2(\theta - 1)} & \text{if } \lambda < \frac{1}{2(\theta - 1)} \\ (\theta + 1)\lambda^2 / 2 & \text{if } x_j \end{cases}$	$\leq \lambda$ $ x_j \leq \lambda \theta ; \theta > 2$ glmnet, ista $\geq \theta \lambda$	(Fan & Li, 2001)
mcp	$p(x_j) = \begin{cases} \lambda x_j - x_j^2/(2\theta) & \text{if } x_j \\ \theta \lambda^2/2 & \text{if } x_j \end{cases}$	$ \leq \frac{\theta \lambda}{\lambda \theta}; \theta > 0 $ glmnet, ista	(Zhang, 2010)

Outline

- Overfitting
- Regularization: Intuition and overview
- Ridge
- Lasso
- Logistic regression: Intro

Logistic regression: Basics

- Logistic regression
 - Models the (linear) relationship between one or more independent variables and one binary dependent variable
 - As with linear regression, can be used for inference and prediction; used to predict (and classify) binary outcomes

Inference	Prediction
What is the effect of an additional year of schooling on whether an individual is eligible for welfare?	Do we predict that an individual with 6 years of education will be eligible for welfare?
Why did the UCB datacenter go down this week?	Will the datacenter go down next week?
How big a factor is "home court advantage" in whether our team will win or lose?	Are we going to win this week?

Logistic Regression: Idea

- Logistic Regression: Model
 - The logistic regression model assumes that the independent variables have a linear relationship with the logit transformation of the dependent variable
 - i.e., $logit(y) = \alpha + \beta X + \cdots$

Logistic Regression: Idea

- Logit transformation maps probabilities to log of odds ratios
 - Odds ratio: probability success / probability failure, or $\frac{p}{1-p}$
 - Example: Probability success = 0.8
 - Odds ratio is 4
 - "Odds of success are 4 to 1"
- With logistic regression, our model/hypothesis is that the log of odds ratio is linear function of independent variables
 - $logit(p) = log(\frac{p}{1-p}) = \alpha + \beta X + \cdots$
 - Rewritten, this implies $p = \frac{e^{\alpha + \beta X + \cdots}}{1 + e^{\alpha + \beta X + \cdots}}$, or more generally, $= \frac{e^z}{1 + e^z}$

Logistic Regression: The logistic function

- What does this (sigmoid) function do? $g(z) = \frac{e^z}{1+e^z} = \frac{1}{1+e^{-z}}$
 - Transforms $[-\infty, +\infty] = > [0,1]$
 - "Squashing function": constrains output to be between o and 1
 - (We'll come back to the sigmoid function when we talk about neural nets)
 - In logistic regression,
 - Z is a linear function of parameters
 - i.e., $z = \alpha + \beta X + ...$
 - In other words, $g(z) = \frac{e^{\alpha + \beta X + \cdots}}{1 + \alpha^{\alpha + \beta X + \cdots}}$

Logistic Regression: Decision Boundary

- How to interpret g(z)?
 - Probability that y=1
 - $P(y = 1 | x : \alpha, \beta)$
- Simple classifier
 - Predict y=1 if $g(z) \ge 0.5$
 - Predict y=o if g(z)<o.5</p>

- How does this relate to values of z?
 - Predict y=1 if z≥o
 - Predict y=o if z<o</p>

Logistic Regression: Example

- Example: admission vs. GRE and GPA
 - Start with raw data
 - 2. Fit logistic regression
 - 3. Threshold converts g(z) to classification

Logistic Regression: Coefficients

- How do we interpret the coefficients from a logistic regression?
 - The coefficient tells you what change to expect in the log odds ratio of your dependent variable, for a one-unit increase in your independent variable.
- Ways to make this more intelligible
 - Convert from log odds ratio to odds ratio
 - $\exp(\beta)$
 - Convert from odds ratio to probability
 - $\frac{odds}{1 + odds}$

Logistic Regression: Coefficients

- Example with no predictor variables
 - Likelihood of being honor student (model with intercept and no regressors)%

•
$$logit(honor_i) = \alpha + \epsilon_i$$

• i.e., log(p/(1-p)) = -1.12546

Logistic regression				LR ch	r of obs i2(0) > chi2	= = =	200 0.00
Log likelihood	= -111.35502	2		Pseud		=	0.0000
hon	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
intercept	-1.12546	.1644101	-6.85	0.000	-1.4476	97 	8032217

• Note that $p = \exp(-1.12546)/(1+\exp(-1.12546)) = .245$

Cum.	Percent		hon
75.50 100.00	75.50 24.50	151 49	0 1
	100.00	200	Total

Logistic Regression: Coefficients

- Example with single predictor variable
 - Likelihood of honor student, by major
 - $logit(honor_i) = \alpha + \beta STEM_i + \epsilon_i$
 - Are STEM students more likely to be honors?
 - How much more likely?
 - \bullet exp(0.593) = 1.809
 - (this is the odds ratio)

Log likelihood = -109.80312

Number of obs	=	200
LR chi2(1)	=	3.10
Prob > chi2	=	0.0781
Pseudo R2	=	0.0139

P>|z| [95% Conf. Interval]

 stem
 .5927822
 .3414294
 1.74
 0.083
 -.0764072
 1.261972

 intercept
 -1.470852
 .2689555
 -5.47
 0.000
 -1.997995
 -.9437087

Std. Err.

- The odds radio can also be seen in the cross-tabs:
 - Odds for non-STEM: 0.23 (17/74)
 - Odds for STEM: 0.42 (32/77)
 - Odds for STEM 81% higher
 - 0.42 / 0.23 = 1.809
 - 0.644 / (1-0.644) = 1.809

		stem	
hon	no	yes	Total
0 1	74 17	77 32	151 49
Total	91	109	200