25. Pohjoismainen matematiikkakilpailu Ratkaisuja

1. Olkoot $a_0, a_1, \ldots, a_{1000}$ numeroita. Voiko 1001-numeroisten lukujen $a_0a_1 \ldots a_{1000}$ ja $a_{1000}a_{999}\ldots a_0$ summassa olla vain parittomia numeroita?

Ratkaisu. Osoitetaan, että vastaus on kielteinen. Käytetään selvyyden vuoksi lukua, jonka numerot ovat vasemmalta oikealle n_0, n_1, \ldots, n_k , tavanomaista merkintää $\overline{n_0 n_1 \ldots n_k}$. Olkoon

$$\overline{a_0 a_1 \dots a_{1000}} + \overline{a_{1000} a_{999} \dots a_0} = \overline{s_{1001} s_{1000} \dots s_1 s_0},$$

Ratkaisun ymmärtää helpommin, jos hahmottaa yhteenlaskun allekkain suoritettuna:

missä s_{1001} voi olla 0. Nyt $s_i = a_{1000-i} + a_i + b_{1000-i}$, missä $b_{1000-i} \in \{0, 1, -10, -9\}$. (Ajatellaan yhteenlaskemista allekkain ja muistinumeroa). Tehdään vastaoletus, jonka mukaan jokainen s_i on pariton. Osoitetaan induktiolla, että tällöin $a_{1000-2i} + a_{2i}$ on pariton, kun $i = 1, 1, \ldots, 250$. Tästä seuraa ristiriita, koska $a_{1000-2\cdot2\cdot50} + a_{2\cdot250} = 2 \cdot a_{500}$. Rakennetaan induktio. Koska $s_0 = a_{1000} + a_0$ tai $s_0 = a_{1000} + a_0 - 10$, $a_{1000} + a_0$ on pariton. Induktio pääsee siis alkuun. Oletetaan sitten, että $a_{1000-2i} + a_{2i}$ on pariton jollain $i, 0 \le i \le 249$. Koska $s_{1000-2i}$ on pariton, vaihtoehdot $s_{1000-2i} = a_{2i} + a_{1000-2i} + 1$ ja $s_{1000-2i} = a_{2i} + a_{1000-2i} - 9$ eivät tule kysymykseen, ts. sarake numero 1000 - 2i - 1 oikealta ei tuota muistinumeroa. Siis $a_{1000-2i-1} + a_{2i+1} \le 9$. Mutta tästä seuraa, ettei myöskään sarake 2i + 1 oikealta tuota muistinumeroa. Jos olisi $a_{1000-(2i+1)} + a_{2i+1} \ge 10$, olisi oltava $a_{1000-(2i+1)} + a_{2i+1} = 10$, jolloin olisi $s_{2i+1} = 0$ eli parillinen. Siis $s_{2i+2} = a_{1000-2(i+1)} + a_{2(i+1)}$, joten $a_{1000-2(i+1)} + a_{2(i+1)}$ on pariton, ja induktioaskel on otettu.

2. Oletetaan, että kolmiossa ABC on AB = AC. Olkoon D sivun AB jatkeella, niin että A on D:n ja B välissä, ja E sivulla BC niin, että suorat CD ja AE ovat yhdensuuntaisia. Todista, että CD $\geq \frac{4h}{BC} \cdot CE$, missä h on kolmion ABC A:sta piirretyn korkeusjanan pituus. Milloin epäyhtälössä vallitsee yhtäsuuruus?

Ratkaisu. Koska $AE \parallel DC$, kolmiot ABE ja DBC ovat yhdenmuotoisia. Siis

$$CD = \frac{BC}{BE} \cdot AE$$

ja

$$CD = \frac{AE \cdot BC}{BE \cdot CE} \cdot CE. \tag{1}$$

Jos AF on kolmion korkeusjana, niin $AE \geq AF = h$,

ja yhtäsuuruus vallitsee silloin, kun E = F. Koska ABC on tasakylkinen F on sivun BC keskipiste. Aritmeettis-geometrisen epäyhtälön perusteella

$$BE \cdot CE \le \left(\frac{BE + EC}{2}\right)^2 = \left(\frac{BC}{2}\right)^2,$$

ja yhtäsuuruus vallitsee, kun E on BC:n keskipiste eli F. Kun saadut arviot sijoitetaan epäyhtälöön (1), saadaan väite; lisäksi on havaittu, että yhtäsuuruus on yhtäpitävää sen kanssa, että E=F

3. Määritä kaikki funktiot f, joille

$$f(f(x) + y) = f(x^2 - y) + 4yf(x)$$
 (1)

 $kaikilla\ reaaliluvuilla\ x\ ja\ y.$

Ratkaisu. Koska (1) on voimassa, kun $y = x^2$ ja kun y = -f(x), saadaan $f\left(f(x) + x^2\right) = f(0) + 4x^2 f(x)$ ja $f(0) = f\left(x^2 + f(x)\right) - 4f(x)^2$, joista seuraa $x^2 f(x) = f(x)^2$ kaikilla x. Jokaisella x on siis f(x) = 0 tai $f(x) = x^2$. Erityisesti f(0) = 0. Osoitetaan, että jos $f(a) \neq 0$ jollain $a \neq 0$, niin $f(x) \neq 0$ kaikilla $x \neq 0$. Nyt $f(a) = a^2$. Yhtälöstä (1) seuraa $f(a^2 + y) = f(a^2 - y) + 4a^2y$ kaikilla y. Jos jollain $y \neq 0$ olisi $f(a^2 - y) = 0$, olisi $f(a^2 + y) = 4a^2y \neq 0$. Silloin olisi $f(a^2 + y) = (a^2 + y)^2 = 4a^2y$ eli $(a^2 - y)^2 = 0$. Tämä merkitsee sitä, että f(x) = 0 vain, kun x = 0. Kaiken kaikkiaan yhtälön (1) toteuttaa siis kaksi funktiota: f(x) = 0 kaikilla x tai $f(x) = x^2$ kaikilla x.

4. Olkoon $n \geq 2$ kokonaisluku. Tarkastellaan murtolukuja $\frac{1}{ab}$, missä a ja b ovat yhteistekijättömiä positiivisia kokonaislukuja, $a < b \leq n$ ja a + b > n. Osoita, että kaikkien tällaisten murtolukujen summa on $\frac{1}{2}$.

Ratkaisu. Olkoon tehtävässä nimetty summa S_n . Todistetaan väite induktiolla n:n suhteen. Kun n=2, ainoat tehtävän ehdon toteuttavat luvut ovat a=1 ja b=2, joten $S_2=\frac{1}{2}$. Oletetaan, että $S_{n-1}=\frac{1}{2}$ jollain n>2. Ne termit, jotka ovat summassa S_{n-1} , mutta eivät ole summassa S_n ovat yhteistekijättömiä lukuja a,b, joille pätee $0 < a < b \le n-1$ ja a+b=n. Summaan S_n mutta ei summaan S_{n-1} puolestaan kuuluvat luvut $\frac{1}{an}$, missä 0 < a < n ja a ja n ovat yhteistekijättömiä. Merkitään lukujen x ja y suurinta yhteistä tekijää tavan mukaan (x,y). Induktioaskel $S_{n-1}=S_n$ tulee otetuksi, kun todistetaan, että S_{n-1} :stä S_n :ään siryttäessä otetaan pois ja lisätään yhtä paljon eli että

$$\sum_{\substack{0 < a < n/2 \\ (a, n-a)=1}} \frac{1}{n(a-n)} = \sum_{\substack{0 < a < n \\ (a, n)=1}} \frac{1}{an}.$$

Mutta jos (a, n) = 1, niin (n-a, n) = 1. Oikean puolen summan termit voidaan ryhmitellä niin, että yhdistetään $\frac{1}{an}$ ja $\frac{1}{(n-a)n}$. Mutta

$$\frac{1}{an} + \frac{1}{(n-a)n} = \frac{n-a+a}{a(n-a)n} = \frac{1}{a(n-a)}.$$

Kaikki oikean puolen termit parittuvat näin, koska josnon parillinen n ja $\frac{n}{2}$ eivät ole yhteistekijättömiä.