IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Shimon Weiss

Art Unit: 2877

Appl. No.: 10/561,448

Examiner: F.L. Evans

Confirmation No.: 8178

Atty. Docket No.: 58086-226455

Filed: December 20, 2005

Customer No.

For: MODULATED EXCITATION

26694

FLUORESCENCE ANALYSIS

PATENT AND TRADEMARK OFFICE

DECLARATION UNDER 37 C.F.R. § 1.131

Honorable Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

I, the undersigned, being duly warned, declare the following:

- 1. I am a co-inventor of the subject matter described and claimed in the aboveidentified U.S. patent application. I have reviewed the claims of this application as currently amended.
- 2. I understand that the Office Action dated November 30, 2007 rejected the examined claims of this patent application under 35 U.S.C. § 102(a) over published German patent application Publication No. DE 10210737 A1 by Krieger et al. that published March 20, 2003.

Atty. Docket No.: 58086-226455 Declaration Under 37 C.F.R. § 1.131 3. I, together with my co-inventors, conceived the invention described and claimed

in at least independent claims 1 and 21 of this application, and reduced it to practice, prior to the

March 20, 2003 publication date of the cited reference. Our prior invention is evidenced by a

copy of a presentation by one of the co-inventors, Achillefs Kapanidis, at the Single-Molecule

Biophysics Conference in Aspen, CO on January 7, 2003, (copy attached as Exhibit A).

4. As documented by Exhibit A, my co-inventors and I conceived the invention of at

least current independent claims 1 and 21, and reduced it to practice, prior to January 7, 2003.

5. The acts described above in paragraphs 3 and 4 were carried out in the United

States of America, or else in a WTO member country.

6. I hereby declare that all statements made herein of my own knowledge are true

and that all statements made on information and belief are believed to be true; and further that

these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the

United States Code, and that such willful false statements may jeopardize the validity of the

application or any patent issuing thereon.

Date	Shimon Weiss
Date	Achillefs Kapanidis
Date	Ted A. Laurence
5/27/08	Nom ha Lee

Atty, Docket No.: 58086-226455 #958480 Declaration Under 37 C.F.R. § 1.131

Page 3 of 4

Exhibit A

Atty. Docket No.: 58086-226455 #958480

Gore RNA polymerse (Derst lab) Single-Molecule Amalysis of Transcription by RMA Polymerase Achillefs Kapanidis (Shimon Weiss' group, UCLA) Molecular Machines at Work:

Single-Molecule Biophysics Conference: Aspen, Jan. 7, 2003

TRANSCRIPTION INITIATION

RD_e (model)

 $(core + \sigma)$

X-ray structures -> static snapshots of the machine

SMD: "movie" of the dynamic process

Structure Dynamics

Local Environment

Intermediates Kinetics

Timing of Events

MECHANISM

FÖRSTER RESONANCE

ENERGY TRANSFER (FRET):

A "MOLECULAR RULER" FOR THE 2-10 nm REGIME

Efficiency, E = [1+ (R/R_o)6]-1

R = D-A Distance

TRAILING-EDGE and LEADING-EDGE FRET:

Assay of translocation of a protein relative to a nucleic acid

Trailing-edge FRET

Leading-edge FRET

Mukhopadhyay et al., 2001; Mekler et al., 2002

LIMITATIONS OF SINGLE-LASER EXCITATION SPFRET

- Complex FRET Acceptor photophysics
- . "Dark" states→D-only peak
- Photobleaching→ D-only peak
- Intermittency ("Blinking")
- · Complex FRET Donor photophysics
- Intermittency
- Transient QY changes
- Limited discrimination ability in the FRET coordinate 0
- FRET range of 0-0.3 not easily accessible
- Variable fluorescence contamination 0
- Adds variable counts to D-only peak

SP-FRET USING

EQUATIONS

Energy transfer ratio (E)

$$E = \frac{E^{DA}}{E^{DA}} + \frac{514ex}{E^{DA}}$$

ALEX-based ratio (ALEX)

$$ALEX = \frac{0+100}{0+100+0} \sim 1.0$$

$$ALEX = \frac{50 + 50}{50 + 50 + 100} \sim 0.5$$

$$ALEX = \frac{0+0}{0+0+100} \sim 0.0$$

DATA ANALYSIS FOR INDIVIDUAL SPECIES

<u>a</u>	Species 1	Species 2
670em, 514ex	71	60
670em, 638ex	ග	ග
580em, 514ex	7	~
FRET-sensitized A	52	09
E, simplified	%16	%&&
E, FRET-sensitized A	91%	%LL
ALEX	O.49	99.0

MODEL SYSTEMS: dsDNA

USING TRAILING-EDGE Sp-FRET TO ANALYZE

Core SIGMA RELEASE UPON PROMOTER ESCAPE ರ non-release model [0]D and A co-localize; High E Core 0 σ release model Core **ELONGATION** COMPLEX COMPLEX OPEN

D and A co-localize; Zero or low E

D and A do not co-localize; Zero E

Mukhopadhyay et al., 2001

TRAILING-EDGE SPFRET RNAPG™R,569→IacUV5-11Cy5,-40

TRAILING-EDGE SPFRET

RPo + Apa + 12.5 μ M UTP/GTP/ATP (RD $_{
m e,11}$)

DISSOCIATION HISTOGRAM MONITORS ABILITY OF RNAP TO BE "CHASED": TRAILING-EDGE SPFRET

RPo + ApA + 60 mM NTPs (chase)

USING LEADING-EDGE SPFRET TO ANALYZE

D and A co-localize; High E SIGMA RELEASE UPON PROMOTER ESCAPE core σ non-release model 0 D and A co-localize; Low or zero E core 0 σ release model core **ELONGATION** COMPLEX COMPLEX OPEN

D and A do not co-localize; Zero E

LEADING-EDGE SPFRET

RNAP_G^{TMR,366}→IacUV5-11^{Cy5,+25}

LEADING-EDGE SPFRET

TO TRANSLOCATE UPON ESCAPE: LEADING-EDGE SPFRET E HISTOGRAM MONITORS ABILITY OF RNAP

RPo + ApA + 60 µM NTPs (chase)

+ 25 µM UTP/GTP RPO + ADA $(\mathbb{RP}_{\mathsf{itc,2}})$ $(RD_{e,7})$

SURFACE-IMMOBILIZED RP, COMPLEXES TRAILING-EDGE SPFRET ON

Excitation: 514 nm line of Art laser

Overlay

10 prm

Sinava io 19dmuM

MONITORING SINGLE-ENZYME DYNAMICS ON IMMOBILIZED MOLECULES

- Developed robust assays for analysis of structure, dynamics, and activity of protein-DNA complexes
- · Confirmed sigma presence in early elongation complexes
- Determined activity for translocation and for chase reactions
- Detected movement of leading edge during abortive initiation
- Future work:
- Abortive initiation mechanism
- Sigma dynamics at various transcription steps

ACKNOWLEDGEMENTS

Shimon Weiss (UCLA) **Emmanuel Margeat** Xavier Michalet Thilo Lacoste **Ted Laurence** Sören Doose Nam Ki Lee

Richard Ebright (Rutgers U.) Jayanta Mukhopadhyay **Ekaterine Kortkhonjia** Andrey Revyakin **Vladimir Mekler Collaborators**:

Philip Tinnefeld (U.Heidelberg)

and all SMBs!

Funding: DOE, NIH

TRAILING-EDGE and LEADING-EDGE FRET: Assay of translocation of a protein relative to a nucleic acid

Trailing-edge/leading-edge FRET (TELE-FRET)

Step-Sequence of formation of promoter contacts using 2 FRET rulers

Ruler 2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

n re application of: Shimon Weiss

Art Unit: 2877

Appl. No.: 10/561,448

Examiner: F.L. Evans

Confirmation No.: 8178

Atty. Docket No.: 58086-226455

Filed: December 20, 2005

Customer No.

For: MODULATED EXCITATION

26694

FLUORESCENCE ANALYSIS

PATENT AND TRADEMARK OFFICE

DECLARATION UNDER 37 C.F.R. § 1.131

Honorable Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Atty. Docket No.: 58086-226455

Sir:

I, the undersigned, being duly warned, declare the following:

- 1. I am a co-inventor of the subject matter described and claimed in the aboveidentified U.S. patent application. I have reviewed the claims of this application as currently amended.
- 2. I understand that the Office Action dated November 30, 2007 rejected the examined claims of this patent application under 35 U.S.C. § 102(a) over published German patent application Publication No. DE 10210737 A1 by Krieger et al. that published March 20, 2003.

Declaration Under 37 C.F.R. § 1.131

3. I, together with my co-inventors, conceived the invention described and claimed

in at least independent claims 1 and 21 of this application, and reduced it to practice, prior to the

March 20, 2003 publication date of the cited reference. Our prior invention is evidenced by a

copy of a presentation by one of the co-inventors, Achillefs Kapanidis, at the Single-Molecule

Biophysics Conference in Aspen, CO on January 7, 2003, (copy attached as Exhibit A).

4. As documented by Exhibit A, my co-inventors and I conceived the invention of at

least current independent claims 1 and 21, and reduced it to practice, prior to January 7, 2003.

5. The acts described above in paragraphs 3 and 4 were carried out in the United

States of America, or else in a WTO member country.

6. I hereby declare that all statements made herein of my own knowledge are true

and that all statements made on information and belief are believed to be true; and further that

these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the

United States Code, and that such willful false statements may jeopardize the validity of the

application or any patent issuing thereon.

Date	Shimon Weiss
Date	Achillefs Kapanidis
5/28/2008 Date	Jed A. Laurence
Date	Nam K. Lee

Exhibit A

Atty. Docket No.: 58086-226455 #958480 Declaration Under 37 C.F.R. § 1.131

Gore RNYA polymerese (Derst leb)) Single-Molecule Amalysis of Transcription by RNA Polymerase Achillefs Kapanidis (Shimon Weiss' group, UGLA) Molecular Machines at Work:

Single-Molecule Biophysies Conference: Aspen, Jan. 7, 2003

TRANSCRIPTION INITIATION

X-ray structures -> static snapshots of the machine

SMD: "movie" of the dynamic process

Dynamics Structure

Local Environment

Intermediates Kinetics

of Events Timing

WECHANISM

Young et al., 2002

FÖRSTER RESONANCE

ENERGY TRANSFER (FRET):

A "MOLECULAR RULER" FOR THE 2-10 nm REGIME

FRET Efficiency, E = [1+ (R/R_o)6]-1

R = D-A Distance

TRAILING-EDGE and LEADING-EDGE FRET:

Assay of translocation of a protein relative to a nucleic acid 425 Low FRET 300000 425 Core High FRET Trailing-edge FRET 0

Mukhopadhyay et al., 2001; Mekler et al., 2002

LIMITATIONS OF SINGLE-LASER excitation spfret

- Complex FRET Acceptor photophysics 0
- "Dark" states→D-only peak
- Photobleaching > D-only peak
- Intermittency ("Blinking")
- Complex FRET Donor photophysics 0
- Intermittency
- Transient QY changes
- Limited discrimination ability in the FRET coordinate 0
- FRET range of 0-0.3 not easily accessible
- Variable fluorescence contamination

0

Adds variable counts to D-only peak

ALTERNATE LASER EXCITATION (ALEX) Sp-FRET USING

EQUATIONS

Energy transfer ratio (E)

ALEX-based ratio (ALEX)

A-only species

(STOICHIOMETRY AXIS)

DATA ANALYSIS FOR INDIVIDUAL SPECIES

තු	Species 1	Species 2
670em. 514ex	71	80 N
	9	ത
		7
- 10	52	09
E. simplified	%16	% & &
E. FRET-sensitized A	%L6	% L L
ALEX	0.40	0.66

MODEL SYSTEMS: dsDNA

D and A do not co-localize; Zero E

TRAILING-EDGE SPFRET RNAPo™,569→lacUV5-11Cy5,-40

RPo + ApA + 12.5 µM UTP/GTP/ATP (RDe,11)

DISSOCIATION HISTOGRAM MONITORS ABILITY OF RNAP "CHASED": TRAILING-EDGE SPFRET

RPo + ADA + 60 um NTPs (chase)

SIGMA RELEASE UPON PROMOTER ESCAPE USING LEADING-EDGE SPFRET TO ANALYZE

Mukhopadhyay et al., 2001

LEADING-EDGE SPFRET

LEADING-EDGE SPFRET

TO TRANSLOCATE UPON ESCAPE: LEADING-EDGE SPFRET E HISTOGRAM MONITORS ABILITY OF RNAP

SURFACE-IMMOBILIZED RP. COMPLEXES TRAILING-EDGE SPFRET ON

Excitation: 514 nm line of Art laser

10 µm

0

0

D emission A emission 2500 2000 1500 15 S 0 em 2/21nuo

Time (ms)

5 mm

 \bigcirc

MONITORING SINGLE-ENZYME DYNAMICS

CONCLUSIONS

- · Developed robust assays for analysis of structure, dynamics, and activity of protein-DNA complexes
- · Confirmed sigma presence in early elongation complexes
- · Determined activity for translocation and for chase reactions
- · Detected movement of leading edge during abortive initiation
- · Future work:
- · Abortive initiation mechanism
- · Sigma dynamics at various transcription steps

ACKNOWLEDGEMENTS

Shimon Weiss (UCLA)
Sören Doose
Thilo Lacoste
Ted Laurence
Nam Ki Lee
Emmanuel Margeat
Xavier Michalet

Collaborators:
Richard Ebright (Rutgers U.)
Ekaterine Kortkhonjia
Vladimir Mekler
Jayanta Mukhopadhyay
Andrey Revyakin

Philip Tinnefeld (U.Heidelberg)

Funding: DOE, NIH

TRAILING-EDGE and LEADING-EDGE FRET:

Assay of translocation of a protein relative to a nucleic acid

Trailing-edge/leading-edge FRET (TELE-FRET)

Step-Sequence of formation of promoter contacts using 2 FRET rulers

Ruler 2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Shimon Weiss

Appl. No.: 10/561,448

Confirmation No.: 8178

Filed: December 20, 2005

For: MODULATED EXCITATION

FLUORESCENCE ANALYSIS

Art Unit: 2877

Examiner: F.L. Evans

Atty. Docket No.: 58086-226455

Customer No.

26694

PATENT AND TRADEMARK OFFICE

DECLARATION UNDER 37 C.F.R. § 1.131

Honorable Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

- I, the undersigned, being duly warned, declare the following:
- 1. I am a co-inventor of the subject matter described and claimed in the aboveidentified U.S. patent application. I have reviewed the claims of this application as currently amended.
- 2. I understand that the Office Action dated November 30, 2007 rejected the examined claims of this patent application under 35 U.S.C. § 102(a) over published German patent application Publication No. DE 10210737 A1 by Krieger et al. that published March 20, 2003.

Atty. Docket No.: 58086-226455

Declaration Under 37 C.F.R. § 1.131

3. I, together with my co-inventors, conceived the invention described and claimed

in at least independent claims 1 and 21 of this application, and reduced it to practice, prior to the

March 20, 2003 publication date of the cited reference. Our prior invention is evidenced by a

copy of a presentation by one of the co-inventors, Achillefs Kapanidis, at the Single-Molecule

Biophysics Conference in Aspen, CO on January 7, 2003, (copy attached as Exhibit A).

4. As documented by Exhibit A, my co-inventors and I conceived the invention of at

least current independent claims 1 and 21, and reduced it to practice, prior to January 7, 2003.

5. The acts described above in paragraphs 3 and 4 were carried out in the United

States of America, or else in a WTO member country.

6. I hereby declare that all statements made herein of my own knowledge are true

and that all statements made on information and belief are believed to be true; and further that

these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the

United States Code, and that such willful false statements may jeopardize the validity of the

application or any patent issuing thereon.

Date	Shimon Weiss
28 May 2008	Ame
Date <i>O</i>	Achillefs Kapanidis
Date	Ted A. Laurence
Date	Nam K. Lee

Exhibit A

Atty. Docket No.: 58086-226455 #958480

Declaration Under 37 C.F.R. § 1.131

Gore TANA polymerese (Derst leb) Single-Molecule Amalysis of Transcription by RMA Polymerase Achillets Kapanidis (Shimon Weiss' group, UCLA) Wolecular Wachines at Works

Single-Molecule Biophysics Conference: Aspen, Jan. 7, 2003

TRANSCRIPTION INITIATION

X-ray structures → static snapshots of the machine

SMD: "movie" of the dynamic process

MECHANISM of Events E E Intermediates Kinetics **Local Environment Dynamics** Structure

FÖRSTER RESONANCE

ENERGY TRANSFER (FRET):

A "MOLECULAR RULER" FOR THE 2-10 nm REGIME

Efficiency, E = [1+ (R/R_)6]-1

R = D-A Distance

TRAILING-EDGE and LEADING-EDGE FRET:

Assay of translocation of a protein relative to a nucleic acid

Trailing-edge FRET

Leading-edge FRET

Mukhopadhyay e*t al.*, 2001; Mekler e*t al.*, 2002

LIMITATIONS OF SINGLE-LASER EXCITATION SPFRET

- Complex FRET Acceptor photophysics
- "Dark" states⇒D-only peak
- Photobleaching > D-only peak
- Intermittency ("Blinking")
- Complex FRET Donor photophysics
- Intermittency
- Transient QY changes
- Limited discrimination ability in the FRET coordinate 0
- FRET range of 0-0.3 not easily accessible
- Variable fluorescence contamination

 Adds variable counts to D-only peak

SP-FRET USING

EQUATIONS

Energy transfer ratio (E)

ALEX-based ratio (ALEX)

$$ALEX = \frac{F_{514ex}}{F_{514ex} + F_{38ex}} = \frac{F_{670em, 514ex} + F_{580em, 514ex}}{F_{670em, 514ex} + F_{580em, 514ex} + F_{670em, 633ex}}$$

$$ALEX = \frac{0+100}{0+100+0} \sim 1.0$$

$$ALEX = \frac{50 + 50}{50 + 50 + 100} \sim 0.5$$

$$ALEX = \frac{0+0}{0+0+100} \sim 0.0$$

DATA ANALYSIS FOR INDIVIDUAL SPECIES

<u>a</u>	Species 1	Species 2
670em, 514ex	11	60 10
670em, 638ex	60	ග
580em, 514ex	2	7
FRET-sensitized A	52	09
E, simplified	% I&	%@ @
E, FRET-sensitized A	% \%	%
ALEX	0.40	0.66

D-OM[y

all D-A

M-9-M

0.83

0.67

1.00

MODEL SYSTEMS: dsDNA

USING TRAILING-EDGE Sp-FRET TO ANALYZE

D and A co-localize; Zero or low E Core SIGMA RELEASE UPON PROMOTER ESCAPE σ non-release model D and A co-localize; High E Core o release model Core **ELONGATION** COMPLEX COMPLEX OPEN

D and A do not co-localize; Zero E

Mukhopadhyay et al., 2001

TRAILING-EDGE SPFRET RNAPo^{™R,569}→IacUV5-11^{cy5,-40}

RPo + Apa + 12.5 μ M UTP/GTP/ATP (RD_{e,11})

RPo + ADA + 60 mM NTPs (chase)

D and A do not co-localize; Zero E

SIGMA RELEASE UPON PROMOTER ESCAPE **USING LEADING-EDGE SPFRET TO ANALYZE**

D and A co-localize; High E core o non-release model D and A co-localize; Low or zero E core σ release model core **ELONGATION** COMPLEX COMPLEX OPEN

LEADING-EDGE SPFRET

LEADING-EDGE SPFRET

TO BE "CHASED": LEADING-EDGE SPFRET

9.0

0.4

0.2

W

SURFACE-IMMOBILIZED RP, COMPLEXES TRAILING-EDGE SPFRET ON

Excitation: 514 nm line of Ar* laser

Emission (650-700 nm)

Overlay

IMAGING AND TIME-TRAJECTORIES OF SINGLE RP_o COMPLEXES

Single-step photobleaching: evidence for imaging

Time-trajectory for a single RP_oshowing TE-FRET

45 — A emission — A emission — D emission —

Time (ms)

1500

8

MONITORING SINGLE-ENZYME DYNAMICS

CONCLUSIONS

- Developed robust assays for analysis of structure, dynamics, and activity of protein-DNA complexes
- Confirmed sigma presence in early elongation complexes
- Determined activity for translocation and for chase reactions
- Detected movement of leading edge during abortive initiation
- Future work:
- Abortive initiation mechanism
- Sigma dynamics at various transcription steps

ACKNOWLEDGEMENTS

Shimon Weiss (UCLA)
Sören Doose
Thilo Lacoste
Ted Laurence
Nam Ki Lee
Emmanuel Margeat
Xavier Michalet

Collaborators:
Richard Ebright (Rutgers U.)
Ekaterine Kortkhonjia
Vladimir Mekler
Jayanta Mukhopadhyay
Andrey Revyakin

Philip Tinnefeld (U.Heidelberg)

and all SMBs!

Funding: DOE, NIH

TRAILING-EDGE and LEADING-EDGE FRET

Assay of translocation of a protein relative to a nucleic acid

Trailing-edge/leading-edge FRET (TELE-FRET)

Step-Sequence of formation of promoter contacts using 2 FRET rulers

Ruler 1

Ruler 2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Shimon Weiss

Art Unit: 2877

Appl. No.: 10/561,448

Examiner: F.L. Evans

Confirmation No.: 8178

Atty. Docket No.: 58086-226455

Filed: December 20, 2005

For: MODULATED EXCITATION

Customer No.

FLUORESCENCE ANALYSIS

26694

PATENT AND TRADEMARK OFFICE

DECLARATION UNDER 37 C.F.R. § 1.131

Honorable Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

- I, the undersigned, being duly warned, declare the following:
- 1. I am a co-inventor of the subject matter described and claimed in the aboveidentified U.S. patent application. I have reviewed the claims of this application as currently amended.
- 2. I understand that the Office Action dated November 30, 2007 rejected the examined claims of this patent application under 35 U.S.C. § 102(a) over published German patent application Publication No. DE 10210737 A1 by Krieger et al. that published March 20, 2003.

Atty. Docket No.: 58086-226455

Declaration Under 37 C.F.R. § 1.131

- 3. I, together with my co-inventors, conceived the invention described and claimed
- in at least independent claims 1 and 21 of this application, and reduced it to practice, prior to the

March 20, 2003 publication date of the cited reference. Our prior invention is evidenced by a

copy of a presentation by one of the co-inventors, Achillefs Kapanidis, at the Single-Molecule

Biophysics Conference in Aspen, CO on January 7, 2003, (copy attached as Exhibit A).

4. As documented by Exhibit A, my co-inventors and I conceived the invention of at

least current independent claims 1 and 21, and reduced it to practice, prior to January 7, 2003.

5. The acts described above in paragraphs 3 and 4 were carried out in the United

States of America, or else in a WTO member country.

6. I hereby declare that all statements made herein of my own knowledge are true

and that all statements made on information and belief are believed to be true; and further that

these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the

United States Code, and that such willful false statements may jeopardize the validity of the

application or any patent issuing thereon.

05/28/08 Date	Shimon Weiss
Date	Achillefs Kapanidis
Date	Ted A. Laurence
Date	Nam K. Lee

Atty. Docket No.: 58086-226455 #958480

Declaration Under 37 C.F.R. § 1.131

Exhibit A

Atty. Docket No.: 58086-226455 #958480 Declaration Under 37 C.F.R. § 1.131

Gore RNA polymerese (Derst leb) Single-Molecule Amalysis of Transcription by RMA Polymerase Achillefs Kapenidis (Shimon Weiss' group, UCLA) Molecular Machines at Work:

Single-Molecule Biophysics Conference: Aspen, Jan. 7, 2003

J AAA2003 MRNA packaging The path from gene to protein 3' polyadenylation Splicing **GENE EXPRESSION:** Protein folding Gporx [] T ARAZOO 3 Dimerization & activation of transmembrane receptor Translation Termination 5' capping Elongation Nuclear localization Initiation Nuclear pore Chromatin Transcription factor activation CATOPLASM MUCLEUS

TRANSCRIPTION INITIATION

RD_e (model)

RNAP holoenzyme (core + σ)

X-ray structures → static snapshots of the machine

SMD: "movie" of the dynamic process

Structure

Dynamics —

Local Environment

Intermediates Timing Kinetics of Events

▼ MECHANISM

ENERGY TRANSFER (FRET): FÖRSTER RESONANCE

A "MOLECULAR RULER" FOR THE 2-10 nm REGIME

Efficiency, E

R = D-A Distance

TRAILING-EDGE and LEADING-EDGE FRET:

Assay of translocation of a protein relative to a nucleic acid

Trailing-edge FRET

Leading-edge FRET

Mukhopadhyay e*t al.*, 2001; Mekler e*t al.*, 2002

LIMITATIONS OF SINGLE-LASER EXCITATION SPFRET

- Complex FRET Acceptor photophysics
- "Dark" states⇒D-only peak
- Photobleaching→ D-only peak
- Intermittency ("Blinking")
- Complex FRET Donor photophysics
- Intermittency
- Transient QY changes
- Limited discrimination ability in the FRET coordinate 0
- FRET range of 0-0.3 not easily accessible
- Variable fluorescence contamination 0
- Adds variable counts to D-only peak

SP-FRET USING

EQUATIONS

Energy transfer ratio (E)

$$E = \frac{F^{DA}_{670em, 514ex}}{F^{DA}_{670em, 514ex} + F^{DA}_{580em, 514ex}}$$

ALEX-based ratio (ALEX)

$$ALEX = \frac{0+100}{0+100+0} \sim 1.0$$

$$ALEX = \frac{50 + 50}{50 + 50 + 100} \sim 0.5$$

$$ALEX = \frac{0+0}{0+0+100}$$

A-only species

DATA ANALYSIS FOR INDIVIDUAL SPECIES

S	pecies 1	Species 2
670em, 514ex	1	80 RU
670em, 638ex	တ္	ത
580em, 514ex	7	7
FRET-sensitized A	52	00
E, simplified	% 50	%&& &&
E, FRET-sensitized A	%↓ 6	%LL
ALEX	0.40 0.40	0.66

MODEL SYSTEMS: dsDNA

USING TRAILING-EDGE Sp-FRET TO ANALYZE

D and A co-localize; Zero or low E Core SIGMA RELEASE UPON PROMOTER ESCAPE σ non-release model +25 D and A co-localize; High E Core 0 D and A do not co-localize; Zero E σ release model Core \bigcirc **ELONGATION** COMPLEX COMPLEX OPEN $\sqrt{}$

Mukhopadhyay et al., 2001

TRAILING-EDGE SPFRET RNAPo™,569→lacUV5-11Cy5,-40

TO TRANSLOCATE UPON ESCAPE: TRAILING-EDGE SPFRET E HISTOGRAM MONITORS ABILITY OF RNAP

RPo + ApA + 12.5 μ M UTP/GTP/ATP (RD_{e,11})

SIGMA RELEASE UPON PROMOTER ESCAPE **USING LEADING-EDGE SPFRET TO ANALYZE**

D and A do not co-localize; Zero E

LEADING-EDGE SPFRET

LEADING-EDGE SPFRET

TO TRANSLOCATE UPON ESCAPE: LEADING-EDGE SPFRET E HISTOGRAM MONITORS ABILITY OF RNAP

9.0

0.4

0.2

Ш

SURFACE-IMMOBILIZED RP. COMPLEXES TRAILING-EDGE SPFRET ON

Excitation: 514 nm line of Art laser

Overlay

10 µm

IMAGING AND TIME-TRAJECTORIES OF SINGLE RP_o COMPLEXES

evidence for imaging photobleaching: Single-step

RP_oshowing TE-FRET

Time-trajectory for a single

D emission A emission

MONITORING SINGLE-ENZYME DYNAMICS ON IMMOBILIZED MOLECULES

CONCLUSIONS

- Developed robust assays for analysis of structure, dynamics, and activity of protein-DNA complexes
- Confirmed sigma presence in early elongation complexes
- Determined activity for translocation and for chase reactions
- Detected movement of leading edge during abortive initiation
- Future work:
- Abortive initiation mechanism
- Sigma dynamics at various transcription steps

ACKNOWLEDGEMENTS

Shimon Weiss (UCLA)
Sören Doose
Thilo Lacoste
Ted Laurence
Nam Ki Lee
Emmanuel Margeat
Xavier Michalet

SS (UCLA)
Richard
E
Ekaterine
E
Vladimir I
Jayanta N
largeat
Andrey R

Collaborators:
Richard Ebright (Rutgers U.)
Ekaterine Kortkhonjia
Vladimir Mekler
Jayanta Mukhopadhyay
Andrey Revyakin

Philip Tinnefeld (U.Heidelberg)

Funding: DOE, NIH

TRAILING-EDGE and LEADING-EDGE FRET:

Assay of translocation of a protein relative to a nucleic acid

Trailing-edge/leading-edge FRET (TELE-FRET)

Step-Sequence of formation of promoter contacts using 2 FRET rulers

Ruler 1

Ruler 2