DS-GA 3001.009 Modeling Time Series Data Lab 9

Artie Shen | Center for Data Science

- Recap
 - Gaussian Process Regression
 - Cholesky Decomposition
 - Sampling from Multivariate Gaussian
- Programming
 - GP Sampling
 - o GP Inference

..

Definition A Gaussian Process (GP) is a collection of random variables, such that any subset with finite number of elements have Gaussian distributions which can be categorized by a mean function m(x) and a covariance function K(x, x').

- Functions can be viewed as infinitely long vectors $f(x) = [f(t_1), f(t_2), ..., f(t_\infty)]^T, t_i \in \mathbb{R}$.
- GP can be viewed as distribution over functions.
- For a function f(x), in lots of cases, we only care about a subsets of $x \in \mathbb{X}$ (e.g. we have a test set).
- If $f(x) \sim GP(m(x), K(x, x'))$, we know that any finite subset of f(x) have Gaussian distributions.

Guassian Process Regression

- $y = f(x) + \epsilon \sigma_y, \epsilon \sim N(0, I)$
- $f(x) \sim GP(m(x), K(x, x'))$
- $y(x) \sim GP(m(x), K(x, x') + I\sigma_y^2)$
- $m(x): \mathbb{R}^{d_x} \to \mathbb{R}^{d_y}, K(x,x'): \mathbb{R}^{d_x} \times \mathbb{R}^{d_x} \to \mathbb{R}$
- In the lab, we will assume $\sigma_y = 0$ and m(x) = 0.

Goal Given training set $\mathbf{X}_2 \in \mathbb{R}^{n \times d_x}$, $\mathbf{y}_2 \in \mathbb{R}^{n \times d_y}$, test data $\mathbf{X}_1 \in \mathbb{R}^{m \times d_x}$, and a Gaussian Process Model GP(m(x), K(x, x')), we would like to find $\mathbf{y}_1 \in \mathbb{R}^{m \times d_y}$ that maximize the posterior conditional distribution $p(\mathbf{y}_1|\mathbf{y}_2)$.

$$\begin{split} p(\mathbf{y}_1, \mathbf{y}_2) &= \mathcal{N}\left(\left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right], \left[\begin{array}{c} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\mathsf{T} & \mathbf{C} \end{array}\right]\right) \\ p(\mathbf{y}_1|\mathbf{y}_2) &= \frac{p(\mathbf{y}_1, \mathbf{y}_2)}{p(\mathbf{y}_2)} & \qquad p(\mathbf{y}_2) = \mathcal{N}\left(\mathbf{b}, \mathbf{C}\right) \end{split}$$

5

$$\begin{split} p(\mathbf{y}_1, \mathbf{y}_2) &= \mathcal{N}\left(\left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right], \left[\begin{array}{c} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\mathsf{T} & \mathbf{C} \end{array}\right]\right) \\ p(\mathbf{y}_1|\mathbf{y}_2) &= \frac{p(\mathbf{y}_1, \mathbf{y}_2)}{p(\mathbf{y}_2)} &\longrightarrow p(\mathbf{y}_2) = \mathcal{N}\left(\mathbf{b}, \mathbf{C}\right) \end{split}$$

- $\mathbf{a} \in \mathbb{R}^{m \times d_y}$, $\mathbf{b} \in \mathbb{R}^{n \times d_y}$, the prior mean for every single y in $\mathbf{y}_1, \mathbf{y}_2$
- $\bullet \ A \in \mathbb{R}^{m \times m} = K(\mathbf{X_1}, \mathbf{X_1})$
- $B \in \mathbb{R}^{m \times n} = K(\mathbf{X_1}, \mathbf{X_2})$
- $C \in \mathbb{R}^{n \times n} = K(\mathbf{X_2}, \mathbf{X_2})$

$$p(\mathbf{y}_1|\mathbf{y}_2) = N(\mu_{y_1|y_2}, \Sigma_{y_1|y_2})$$

- $\mu_{y_1|y_2} = a + BC^{-1}(y_2 b)$
- $\bullet \ \Sigma_{y_1|y_2} = A BC^{-1}B^T$
- If we further assume m(x) = 0, we will have $\mathbf{a}, \mathbf{b} = \mathbf{0}$. Our posterior becomes:
- $\bullet \ \mu_{y_1|y_2} = BC^{-1}y_2$
- $\Sigma_{y_1|y_2} = A BC^{-1}B^T$

Cholesky Decomposition

Motivation In GP inference, we need to compute C^{-1} . However, C^{-1} is not guaranteed to be non-singular. Moreover, naive matrix inversion takes $O(n^3)$. We need a faster and more stable way to compute $\mu_{y_1|y_2}$ and $\Sigma_{y_1|y_2}$ without any naive matrix inversion.

Algorithm Cholesky Decomposition convert a Hermitian, positive-definite matrix A into the product of a lower triangular matrix L and its conjugate transpose L^* .

- \bullet $A = LL^*$
- In our case, C is a covariance matrix, which is positive-definite. Moreover, C is a real matrix that mirror itself along the diagonal $C_{i,j} = C_{j,i}$. Therefore, it's a Hermitian matrix.
- Using Cholesky Decomposition, we have $C = LL^* = L\bar{L}^T$. Since L is a real-value matrix, its conjugate is itself. We will have $C = LL^T$.
- Cholesky Decomposition is usually implemented as a iterative algorithm. It takes $O(kn^2)$ where k is the (small) number of iterations to reach the convergence.

Cholesky Decomposition

Use Cholesky Decomposition for GP Inference

- $\mu_{y_1|y_2} = BC^{-1}y_2 = B(LL^T)^{-1}y_2 = BL^{-T}L^{-1}y_2 = (L^{-1}B^T)^T(L^{-1}y_2)$
- $\Sigma_{y_1|y_2} = A BC^{-1}B^T = A BL^{-T}L^{-1}B^T = A (L^{-1}B^T)^T(L^{-1}B^T)$
- A, B, C, and y_2 are either given or can be computed using $K(x, x'), X_1$, and X_2 .
- L = cholesky(C)
- $L^{-1}B^T$ can be obtained by solving a linear system $Lx = B^T$ (np.linalg.solve) which is rather fast.
- The same condition holds for $L^{-1}y_2$.

Sampling from Multivariate Guassian

- $x \sim N(\mu, \Sigma)$, where $x, \mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$
- sample $z \in N(0, I), I \in \mathbb{R}^n$
- $L = cholesky(\Sigma)$
- use property of multivatiate Guassian, we have $x = \mu + Lz$
- for GP, we set $\mu = \mu_{y_1|y_2}, \Sigma = \Sigma_{y_1|y_2}$

More about Gaussian Process

- Kernels
 - The Kernel Cookbook: Advice on Covariance functions by David Duvenaud.
- Hyper-parameters
 - Cross Validation
 - Maximum Likelihood Estimation (sklearn)

*

- Github:
 - https://github.com/charlieblue17/timeser ies2018
- Due Date 04/12/2018 06:45 pm on NYU Classes
- Please rename your submission to net_id.ipynb

*