

Università di Pisa

Dept. of Information Engineering

Course on Wireless Networks - 2020/2021

Virtualization (LAB)

Alessandra Fais – PhD Student

email: alessandra.fais@phd.unipi.it

web page: for.unipi.it/alessandra_fais/

LAB organization

- PART I (theoretical)
 - ☐ Introduction to SDN, NFV, MEC * concepts
 - Cloud computing and service-based architectures

- □ PART II
 - OpenStack cloud computing platform
 - OpenStack and NFV
 - Live session: OpenStack platform of the DII CrossLab project

* SDN = Software Defined Networking, NFV = Network Function Virtualization, MEC = Multi-access Edge Computing

LAB organization

□ PART III

* VM = Virtual Machine

- Virtualization overview and different approaches
 - VMs* on hypervisors, containers, alternative solutions
- ☐ Hands-on session: VirtualBox + Ubuntu Linux VM creation

- PART IV
 - □ Containers -> Docker
 - Orchestrators -> Kubernetes
 - Hands-on session: Docker, docker-compose, Kubernetes

PART I

Outline

- 1) ETSI standardization group
- 2) Software Defined Networking (SDN)
- 3) Network Function Virtualization (NFV)
- Multi-access Edge Computing (MEC)
 - Cloud computing
 - Edge computing
 - MEC and NFV

- European Telecommunications Standards Institute (ETSI)
 - ICT standardization group in Europe

From the technologies/networks section in the ETSI site:

"Today's consumers expect communications services to be easily accessible and available everywhere, on whatever devices they are using. Technically, this means networks must converge. We provide a comprehensive set of standards for access network technologies."

- European Telecommunications Standards Institute (ETSI)
 - ICT standardization group in Europe
- Sets the requirements, reference architecture and infrastructure specifications necessary to ensure support to
 - Multi-access Edge Computing (MEC)
 - Network Functions Virtualization (NFV)
 - Open Source NVF Management and Orchestration (MANO)

and many others!

Software Defined Networks (SDNs) Network Function Virtualization (NFV)

SDN

Replace distributed static network protocols with centralized, flexible, software network applications

- Centralized control plane
- Network flexibility and programmability
- New functionalities can be deployed, relocated and upgraded depending on the needs in nearly no time

NFV

Use generic hardware to run software solutions instead of using specialized non-programmable network devices

- Hardware becomes cheaper (COTS)*
- Network functionalities can be easily relocated, optimizing network performance such as latency and capacity

SDN and NFV are often used in conjunction!

Traditional Networks to SDNs

Software-Defined Network

Architecture

Bibliography:

https://www.researchgate.net/publication/319876305 An SDN Perspective to Mitigate the Energy Consumption of Core Networks - GEANT2

ONF White Paper - Software Defined Networking - The New Norm for Networks:

http://opennetworking.wpengine.com/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf

Traditional Networks to Virtualized Networks

Bibliography:

NFV: benefits and promises

- Equipment costs (CAPEX) and operational costs (OPEX) are reduced *
 - Reduced energy consumption and space, improved network monitoring
- Time to market speed is increased
 - Software-oriented innovation to rapid prototype and test
 - Development of new services is encouraged
 - New revenue streams are generated
- Multi-version and multi-tenant network appliances
 - Single platform can support different applications, users and tenants
- Flexibility
 - Rapid and dynamic provisioning and instantiation of new services in various locations

^{*} CAPEX = Capital Expenditure, OPEX = Operational Expenditure

ETSI NFV architecture framework

General components of NFV platform

Virtualized Network Functions (VNFs)

 Software implementation of network functions (e.g. routers, firewalls, mobile packet processors, load balancers)

• NFV infrastructure (NFVi)

- Comprehends physical resources (compute, network, storage) and the virtualization layer that makes up the infrastructure
- Foundation for the NFV layer
- Managed by the Virtual Infrastructure Manager (VIM)

General components of NFV platform

NFV Management and Orchestration (MANO)

- Provides service management and orchestration required throughout the network function life-cycle
- Service definition, monitoring and life-cycle management are decoupled from the physical infrastructure
- Two interacting entities: Virtual Network Function Manager (VNFM) and Orchestrator (NFVO)
 - NFVO interacts with databases and business function applications (e.g. billing, support) and can create new services for a customer
 - VNFM triggers the instantiation of a new virtualized function (this may result in multiple virtual machine instances) when NFVO asks for a new service

Multi-access Edge Computing (MEC)

Bibliography:

ETSI - 5g Standards - MEC https://www.etsi.org/technologies/multi-access-edge-computing

Application developers and content providers can use MEC resources to obtain

- cloud computing capabilities
- IT service environment

at the **edge** of the network

- Edge environment characteristics
 - ultra-low latency
 - high bandwidth
 - o applications can access in real-time to radio network information
- MEC will enable new vertical segments
 - video analytics
 - location services
 - Internet of Things (IoT)

- augmented reality
- optimized local content distribution
- data caching

Cloud Computing

Definition

Cloud Computing

From the Official NIST definition:

- Model for enabling convenient, on-demand network access to a shared pool
 of configurable computing resources
- Computing resources
 - Networks

Applications

Servers

Services

- Storage
- Resources can be rapidly provisioned and released with minimal management effort or service provider interaction

Agreements

Browser as a Platform

Bibliography:

Utility Computing

https://csrc.nist.gov/projects/cloud-computing

Cloud Computing

Application Stack

Cloud Computing Application Stack

Physical hardware

- tangible infrastructures
 - servers, storage, networks connecting servers

Virtual hardware

- hardware components mapped into virtual counterparts
- users perceive the system as composed by virtual computing, storage, networking resource

Cloud Computing Application Stack

Operating systems

- basic software installed on top of virtualized infrastructure
 - e.g., Windows Server, Linux,Apple OS X Server

Middleware

- software installed on OS
- provides an environment to execute applications and handle data storage
- e.g., Java Virtual Machine, IBM WebSphere, MySQL

Cloud Computing Application Stack

Applications

- applications interfacing with users
- provide tools to execute tasks/activities
 - e.g., email, FTP, web browsing

Business processes

- complex set of activities
- typically managed by companies
- e.g., order processing, budget approval, payments

Cloud Computing

Service Models

Cloud Computing Service Models

Infrastructure as a Service (laaS)

 Virtual or physical hw accessible to customers (computing, storage and networking resources)

Platform as a Service (PaaS)

 An execution environment is offered to customers to deploy their apps

Software as a Service (SaaS)

 Applications directly available to users (e.g. email, web browsing) through Graphical User Interface (GUI) or Application Program Interfaces (APIs)

Edge Computing

Edge Computing

From the Official ETSI ISG MEC definition:

Multi-access Edge Computing offers to application developers and content providers cloud-computing capabilities and an IT service environment at the

edge of the network

- Edge incorporates benefits of virtualization and cloud computing
 - high-powered computing capability close to users
 - leverage proximity to minimize latency
 - improve privacy aspects

MEC and NFV

Edge Computing: scenario

Bibliography:

https://www.researchgate.net/publication/339622665 Adaptive Real-Time Offloading Decision-Making for Mobile Edges
Deep Reinforcement Learning
Framework and Simulation Results

Functional entities in the MEC architecture

Bibliography:

https://builders.intel.com/docs/ networkbuilders/edge-computi ng-from-standard-to-actual-infr astructure-deployment-and-sof tware-development.pdf

ETSI MEC architecture framework

Bibliography:

https://builders.intel.com/do cs/networkbuilders/edge-co mputing-from-standard-to-a ctual-infrastructure-deploym ent-and-software-developm ent.pdf

32

What kind of services can we find on MEC?

Consumer-oriented services

- services directly used by end-users
- e.g., gaming, augmented/assisted reality, application computation offloading

Network performance and QoE improvements

- services not directly used by end-users
- improve user experience by improving network performance
- e.g., content/DNS caching, performance optimization

Operator/third-party services

- services that use computing/storage resources at the edge of the operator's network
- not used directly by end-users
- typically used by third-party services
- e.g, active device location tracking, big data and video analytics

How services can interact with each others?

- expose a API based on HTTP and REST **
- simplify deployment and evolution of networks
 - modular design of applications

** API = Application Programming Interface, REST = Representational State Transfer API: set of definitions exposed by a software application

- <u>contract</u> between information provider and the user requiring the information
- needed to interact with the app/service (retrieve information, perform function)

<u>REST:</u> architectural style/constraints to represent state/information to be transferred

- information delivered via HTTP
- format can be JSON, plain text, ...

Formats to Represent Data to Exchange

- JSON (JavaScript Object Notation)
 - text format for data interchange
 - easy for humans to read and write
 - easy for machines to parse and generate
- Built on two structures
 - Object is an unordered set of name-value pairs between {} and separated by , comma
 - values can be string, number, true, false, null, objects, arrays
 - Ordered lists/arrays of values between [] and separated by , comma

Encode data objects into strings to transmit or store them in a file

 a series of bytes can be easily stored or sent across the network

This process is commonly referred to as data serialization and deserialization

Object:

```
{foo: [1, 4, 7, 10], bar: "baz"}
```

JSON string representing the initial object:

```
'{"foo":[1,4,7,10],"bar":"baz"}'
```

SDN, NFV and MEC - recap slide

Software Defined Networking (SDN)

- logically centralized control plane
- flexible and rapid configuration of network resources

Network Function Virtualization (NFV)

- deploy network functions as software components
- they run on commodity hardware platforms instead of specialized hardware

Multi-access Edge Computing (MEC)

- cloud-computing capabilities at the edge of the network for
 - processing, storage
 - network services, control and management

Levels of orchestration - recap and tools

Useful references

Useful references

- ONF Software-Defined Networking: The New Norm for Networks
 - https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new -norm-for-networks/
 - http://opennetworking.wpengine.com/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf
- IBM SDN Versus Traditional Networking Explained
 - https://www.ibm.com/services/network/sdn-versus-traditional-networking
- ETSI report on SDN usage in NFV architectural framework
 - https://www.etsi.org/deliver/etsi gs/NFV-EVE/001 099/005/01.01.01 60/gs nfv-eve005v010101p
 .pdf
- GSMA Smart Port MEC Security Application
 - https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/4 Powered-by-SA Smar t-Port-MEC-Security-Application China-Mobile GSMA.pdf
- GSMA- The 5G Guide
 - https://www.gsma.com/wp-content/uploads/2019/04/The-5G-Guide GSMA 2019 04 29 compressed.pdf

Useful references

- Cloud Service Models
 - https://www.ibm.com/cloud/learn/iaas-paas-saas
- NIST Cloud Computing program
 - https://csrc.nist.gov/projects/cloud-computing
- ETSI MEC
 - https://www.etsi.org/technologies/multi-access-edge-computing
 - https://www.etsi.org/images/files/technologies/ETSI-MEC-Public-Overview.pdf