PolarHV[™] Power MOSFET

IXTA4N80P IXTP4N80P

 $V_{DSS} = 800 V$ $I_{D25} = 3.6 A$ $R_{DS(on)} \le 3.4 \Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	800	V	
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	800	V	
V _{GSS}	Continuous	± 30	V	
V _{GSM}	Transient	± 40	V	
I _{D25}	$T_{_{\rm C}} = 25^{\circ}{\rm C}$	3.6	A	
	$T_{_{\rm C}} = 25^{\circ}{\rm C}$, pulse width limited by $T_{_{\rm JM}}$	8	A	
I _{AR}	T _c = 25°C	2	A	
E _{AR}	T _c = 25°C	20	mJ	
E _{AS}	T _c = 25°C	250	mJ	
dv/dt	$I_{_{S}} \leq I_{_{DM}}, di/dt \leq 100 A/\mu s, V_{_{DD}} \leq V_{_{DSS}}, \ T_{_{J}} \leq 150 ^{\circ}C, R_{_{G}} = 18 \Omega$	10	V/ns	
P_{D}	T _c = 25°C	100	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 s Mounting torque (TO-220)	300 260 1.13/10	°C °C Nm/lb.in.	
M _d	TO-220	4 3	9	
Weight	TO-263		9	

Symbol (T. = 25°C. u	Test Conditions unless otherwise specified)		Characteristic Values Min. Typ. Max.			
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		800			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 100\mu A$		3.0		5.5	V
I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125°C			5 150	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ Pulse test, $t \le 300 \mu s$, duty of	cycle d ≤2%			3.4	Ω

TO-263 (IXTA)

TO-220 (IXTP)

G = Gate D = Drain S = Source TAB = Drain

Features

- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

Symbo	ol	Test Conditions $(T_{_{\rm J}}=25^{\circ}{\rm C}$			ristic Values rise specified) Max.
g _{fs}		$V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse test}$	2.5	4.0	S
C _{iss})			750	pF
\mathbf{C}_{oss}	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		70	pF
\mathbf{C}_{rss}	J			6.3	pF
t _{d(on)})			22	ns
t,		$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$		24	ns
$\mathbf{t}_{d(off)}$	($R_{\rm G}$ = 18 Ω (External)		60	ns
t _f)			29	ns
$\mathbf{Q}_{g(on)}$)			14.2	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$		4.8	nC
\mathbf{Q}_{gd}	J			4.8	nC
$\mathbf{R}_{\mathrm{thJC}}$					1.25 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		(TO-220)		0.25	°C/W

Source-Drain Diode

Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions	Min.	Тур.	Max.	
I _s	$V_{GS} = 0 V$			3.5	Α
I _{SM}	Repetitive			8	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$			1.5	V
t _{rr}	$I_{_F}=3.5$ A, -di/dt = 100 A/µs, Pulse test, t ≤ 300 µs, duty cycle d ≤ 2 %		560		ns

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Pins: 1 - Gate 2 - Drain 3 - Source 4 - Drain

MY2	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
Α	.170	.190	4.32	4.83		
b	.025	.040	0.64	1.02		
b1	.045	.065	1.15	1.65		
С	.014	.022	0.35	0.56		
D	.580	.630	14.73	16.00		
E	.390	.420	9.91	10.66		
е	.100	.100 BSC		BSC		
F	.045	.055	1.14	1.40		
H1	.230	.270	5.85	6.85		
J1	.090	.110	2.29	2.79		
k	0	.015	0	0.38		
L	.500	.550	12.70	13.97		
L1	.110	.230	2.79	5.84		
ØΡ	.139	.161	3.53	4.08		
Q	.100	.125	2.54	3.18		

Fig. 1. Extended Output Characteristics @ 25°C

Fig. 2. Output Characteristics

Fig. 3. $R_{DS(on)}$ Normalized to $I_D = 2A$ Value vs. Junction Temperature

Fig. 4. R_{DS(on)} Normalized to I_D = 2A Value vs. Drain Current

Fig. 5. Maximum Drain Current vs.

Case Temperature

Fig. 6. Input Admittance

Fig. 11. Maximum Transient Thermal Impedance

