DADS6003-APPLIED MACHINE LEARNING Project Firewall database

นายวศิน ถาวรวัฒนะ 6510422013 นายภัทรกร ผิวชอุ่ม 6510422024 นางสาววิชุนันท์ คำภิโร 6510422027

April 30, 2023

1 Get data

source from https://www.kaggle.com/datasets/tunguz/internet-firewall-data-set

Fatih Ertam (2018) ได้วิเคราะห์ข้อมูลการบันทึกบนอุปกรณ์ไฟร์วอลล์และควบคุมการรับส่งข้อมูลทางอินเทอร์เน็ตตามผล การวิเคราะห์ที่มาจากการบันทึกการใช้อุปกรณ์ไฟร์วอลล์ของ Firat University ซึ่งจำแนกข้อมูลออกเป็น 4 คลาส allow deny drop และ reset-both โดยใช้วิธี SVM ได้แก่ Linear, Polynomial, Sigmoid และ RBF วัดประสิทธิภาพของแบบจำลองโดย ใช้ Precesion recall และ F1-score เราสามารถระบุได้ว่าข้อมูลที่สร้างขึ้นจากการจัดหมวดหมู่มีความเกี่ยวข้องกับข้อมูลที่ตั้งใจ ไว้มากน้อยเพียงใด ในการศึกษานี้ ใช้ 11 ลักษณะ ในการวิเคราะห์ข้อมูลเหตุการณ์จำนวน 65,532 ครั้ง ตามตารางด้านล่างนี้

	TABLE I. FEATURES AND DESCRIPTION						
Feature	Description						
Source Port	Client Source Port						
Destination Port	Client Destination Port						
NAT Source Port	Network Address Translation Source Port						
NAT Destination Port	Network Address Translation Destination Port						
Elapsed Time (sec)	Elapsed Time for flow						
Bytes	Total Bytes						
Bytes Sent	Bytes Sent						
Bytes Received	Bytes Received						
Packets	Total Packets						
pkts_sent	Packets Sent						
pkts_received	Packets Received						
Action	Class (allow, deny, drop, reset-both)						

Figure 1: Features and Description.

SVM+Sigmoid ให้ค่า recall สูงสุด 98.5% ส่วน SVM+Linear ให้ค่า precision สูงสุดที่ 67.5% และ SVM+RBF ให้ค่า คะแนน F1 สูงสุดที่ 76.4% ในขณะที่ SVM+Polynomial ให้ค่า precision และ recall อยู่ในระดับต่ำ เมื่อใช้ค่าเฉลี่ย จะเห็น ได้ชัดว่าตัวแยกประเภทตามฟังก์ชันการเปิดใช้งาน SVM+RBF นั้นดีที่สุดสำหรับแต่ละคลาส ตามตารางด้านล่าง

TABLE III. EVALUATION RESULTS									
Method	F ₁ Score	Precision	Recall						
SVM Linear	75.4	67.5	85.3						
SVM Polynomial	53.6	61.8	47.4						
SVM RBF	76.4	63.0	97.1						
SVM Sigmoid	74.8	60.3	98.5						

Figure 2: Evaluation Result.

ข้อจำกัดในงานวิจัยนี้คือ SVM ใช้เพื่อจัดการปัญหาที่เกี่ยวข้องกับสองคลาสขึ้นไป ไม่เหมาะกับการใช้กับข้อมูลที่มีความ สูงต่ำกว่า data point จึงต้องแปลงข้อมูลให้อยู่ใน input space ไปสู่ transformed Space ที่เรียกว่า Feature space จึง สามารถใช้ตัวแบบ SVM ได้ในการแบ่ง ข้อมูลด้วย Hyperplane เช่น Polynomial Kernel, Radial Basis Function(RBF), Sigmoid Kernel นอกจากนี้ในงานวิจัยยังใช้แค่ SVM ในการทดลองทั้งที่ยังมี model classification อื่นๆอีกหลายแบบ

2 ขั้นตอน Collect data, Inspection data, Data Exploration (EDA)

2.1 จำนวน Action ที่เกิดขึ้นในtransaction

Figure 3: จำนวน Action ที่เกิดขึ้นในtransaction

2.2 การหาค่า mean ของ Elapsed time (sec)

Figure 4: ค่า mean ของ Elapsed time (sec)

2.3 การหาค่า mean ของ Bytes

Figure 5: การหาค่า mean ของ Bytes

2.4 การหา correlation ของ Bytes และ time

แบบไม่ได้ remove bytes ที่เป็น outliner ออก, แบบปรับค่า น้อยกว่าเท่ากับ 1,000, แบบปรับค่า น้อยกว่าเท่ากับ 10,000 และ แบบปรับค่า น้อยกว่าเท่ากับ 100,000

Figure 6: การหา correlation ของ Bytes และ time

2.5 การหา Top Destination port และ Top Source port ที่มีการเกิด transaction มากที่สุด

Figure 7: Top Destination port และ Top Source port ที่มีการเกิด transaction มากที่สุด

2.6 การหา Correlation heatmap เพื่อดูความสัมพันธ์ของFeature ทุกตัว

Figure 8: Correlation heatmap เพื่อดูความสัมพันธ์ของFeature ทุกตัว

3 Training and Testing Model

3.1 Cart Method

จากการrun model Cart จากข้อมูลtest 30% ได้F1 score = 0.9977 20% ได้F1 score = 0.9975 10% ได้ F1 score = 0.9971

```
#GridSearCV
```

GridSearchCV ได้ค่าพารามิเตอร์คือ DecisionTreeClassifier(ccp_alpha=0.001, criterion='entropy', max_depth=9, max_features='auto', random_state=1024)

Figure 9: Cart Method

3.2 Random Forest

Figure 10: Random Forest

3.3 XGBoost

```
xgb_cls = xgb.XGBClassifier(use_label_encoder=False, n_estimators=10)
xgb_cls.fit(x_train, y_train.astype(int))
ans_xgb = xgb_cls.predict(x_test)
print(classification_report(y_test, ans_xgb))
```

```
plot_tree(xgb_cls, rankdir='UT', num_trees=1)
fig = plt.gcf()
fig.set_size_inches(15, 10)
plt.show()
plt.savefig('log2-xgboot.png')
```


Figure 12: XGBoost tree

3.4 K-NN

จากการrun model KNN ค่าF1จาการ testข้อมูล 30% ให้F1 score = 0.9936 ในขณะที่ test 20% ได้F1 score 0.9933 และ F1 score 0.9924 Test 10% นั้นสะท้อนในให้เห็นว่ายิ่งมีdataในการtest มากขึ้นยิ่งเพิ่มประสิทธิภาพของmodel

#GridSearCV

Figure 13: K-NN

4 Evaluation)

4.1 ผล precision recall และ F1 Score

สรุปผล: จากการทดลอง จะเห็นได้อย่างชัดเจนว่าของ F1 score ของ xgboost มากที่สุด = 99.79% ในขณะที่ Model อื่น average อยู่ที่ 87.99% นอกจากนี้ยังสามารถเพิ่ม F1 score ของSVM ได้มากกว่าในreport ที่กล่าวมาข้างต้นจากเดิม 76.4% โดยปรับimblance data และ Feature scaling (normalization) ใน pycarte F1 score = 93.34%

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
xgboost	Extreme Gradient Boosting	0.9977	0.9997	0.9977	0.9981	0.9979	0.9960	0.9960	3.595
lightgbm	Light Gradient Boosting Machine	0.9973	0.9997	0.9973	0.9982	0.9977	0.9953	0.9953	0.984
et	Extra Trees Classifier	0.9971	0.9995	0.9971	0.9976	0.9973	0.9950	0.9950	1.139
rf	Random Forest Classifier	0.9968	0.9997	0.9968	0.9982	0.9974	0.9944	0.9944	1.304
dt	Decision Tree Classifier	0.9966	0.9982	0.9966	0.9975	0.9970	0.9941	0.9941	0.550
nb	Naive Bayes	0.9912	0.9990	0.9912	0.9970	0.9940	0.9849	0.9850	0.529
gbc	Gradient Boosting Classifier	0.9899	0.9997	0.9899	0.9981	0.9936	0.9826	0.9827	8.451
knn	K Neighbors Classifier	0.9888	0.9973	0.9888	0.9972	0.9928	0.9808	0.9810	0.699
lr	Logistic Regression	0.9164	0.9977	0.9164	0.9888	0.9449	0.8605	0.8688	1.591
svm	SVM - Linear Kernel	0.9026	0.0000	0.9026	0.9876	0.9334	0.8381	0.8494	0.584
ada	Ada Boost Classifier	0.8660	0.9991	0.8660	0.9706	0.8713	0.7866	0.8178	1.088
ridge	Ridge Classifier	0.7676	0.0000	0.7676	0.9130	0.8052	0.6406	0.6708	0.538
lda	Linear Discriminant Analysis	0.7592	0.9879	0.7592	0.9104	0.7983	0.6301	0.6623	0.567
qda	Quadratic Discriminant Analysis	0.5766	0.8569	0.5766	0.8024	0.5769	0.3672	0.4611	0.553
dummy	Dummy Classifier	0.5744	0.5000	0.5744	0.3299	0.4191	0.0000	0.0000	0.545

Figure 14: ผล precision recall และ F1 Score

4.2 ผล Confusion Matrix

Figure 15: ผล Confusion Matrix

4.3 ผล ROC Curve

Figure 16: ผล ROC Curve