PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/12, 15/85, 5/10, C12Q 1/68, C07K 14/72, 14/685, G01N 33/566, A61K 38/17

(11) International Publication Number:

WO 98/10068

(43) International Publication Date:

12 March 1998 (12.03.98)

(21) International Application Number:

PCT/US97/15565

A2

(22) International Filing Date:

4 September 1997 (04.09.97)

(30) Priority Data:

08/706,281

4 September 1996 (04.09.96) US

(71) Applicant: OREGON HEALTH SCIENCES UNIVERSITY [US/US]; 3181 S.W. Sam Jackson Park Road, Portland, OR 97201-3098 (US).

(71)(72) Applicants and Inventors: CONE, Roger, D. [US/US]; 16563 S. Hattan Road, Oregon City, OR 97045 (US). FAN, Wei [CN/US]; 3323 S.W. U.S. Veterans Hospital Road, Portland, OR 97201 (US). BOSTON, Bruce, A. [US/US]; 1589 Worthington, Portland, OR 97034 (US). KESTERTON, Robert, A. [US/US]; 8326 S.E. 28th Avenue, Portland, OR 97202 (US). LU, Dongsi [CN/US]; 5181 S.W. 158th Avenue, Beaverton, OR 97007 (US). CHEN, Wenbiao [CN/US]; Apartment 6, 3415 S.W. 11th Avenue, Portland, OR 97201 (US).

(74) Agent: NOONAN, Kevin, E.; McDonnell Boehnen Hulbert & Berghoff, 300 South Wacker Drive, Chicago, IL 60606 (US). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHODS AND REAGENTS FOR DISCOVERING AND USING MAMMALIAN MELANOCORTIN RECEPTOR AGONISTS AND ANTAGONISTS TO MODULATE FEEDING BEHAVIOR IN ANIMALS

(57) Abstract

The present invention provides recombinant expression constructs comprising nucleic acid encoding mammalian melanocortin receptors, and mammalian cells into which said recombinant expression constructs have been introduced that express functional mammalian melanocortin receptors. The invention provides a panel of such transformed mammalian cells expressing melanocortin receptors for screening compounds for receptor agonist and antagonist activity. The invention also provides methods for using such panels of melanocortin receptor-expressing mammalian cells to specifically detect and identify agonists and antagonists for each melanocortin receptor, as well as patterns of agonist and antagonist activity of said compounds for the class of melanocortin receptors. Such screening methods provide a means for identifying compounds with patterns of melanocortin agonist and antagonist activity which is associated with the capacity to influence or modify metabolism and behavior, particularly feeding behavior.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad .
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE		GN '	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	Belgium Burkina Faso	GR	Greece	****	Republic of Macedonia	TR	Turkey
BF		HU	Hungary	MI.	Mali	TT	Trinidad and Tobago
BG	Bulgaria	IE	Ireland	MN	Mongolia	UA	Ukraine
BJ	Benin	IL	Israel	MR	Mauritania	UG	Uganda
BR	Brazil	IS	Iceland	MW	Malawi	US	United States of America
BY	Belarus	IS IT		MX	Mexico	UZ.	Uzbekistan
CA	Canada		Italy	NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan 	NL	Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya			zw	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan	NO	Norway New Zealand	2511	Simono
· CI	Côte d'Ivoire	KP	Democratic People's	NZ			
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore	•	

METHODS AND REAGENTS FOR DISCOVERING AND USING MAMMALIAN MELANOCORTIN RECEPTOR AGONISTS AND ANTAGONISTS TO MODULATE FEEDING BEHAVIOR IN ANIMALS

5

10

15

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the cloning, expression and functional characterization of mammalian melanocortin receptor genes. The invention provides nucleic acid encoding mammalian melanocortin receptors, recombinant expression constructs comprising said nucleic acid, and mammalian cells into which said recombinant expression constructs have been introduced, and that express functional mammalian melanocortin receptors. The invention also provides a panel of such transformed mammalian cells expressing melanocortin receptors for screening compounds for receptor agonist and antagonist activity. The invention provides methods for using such panels of melanocortin receptor-expressing mammalian cells to specifically detect and identify agonists and antagonists for each melanocortin receptor, as well as patterns of agonist and antagonist activity of said compounds for the class of melanocortin receptors. Such screening methods provide a means for identifying compounds with patterns of melanocortin agonist and antagonist activity which is associated with the capacity to influence or modify physiological function and behavior, particularly metabolism and feeding behavior.

2. Background of the Invention

25

30

20

The proopiomelanocortin (POMC) gene product is processed to produce a large number of biologically active peptides. Two of these peptides, α-melanocyte stimulating hormone (αMSH), and adrenocorticotropic hormone (ACTH) have well understood roles in control of melanocyte and adrenocortical function, respectively. Both of these hormones are also found in a variety of forms with unknown functions, for example, γ-melanocyte stimulating hormone (γMSH), which has little or no ability to stimulate pigmentation (Ling et al., 1979, Life Sci. 25: 1773-1780; Slominski et al., 1992, Life Sci. 50: 1103-1108). A melanocortin receptor gene specific for each of the αMSH, ACTH and γMSH hormones has been discovered by some of the present inventors (see U.S. Patent Nos. 5,280,112, 5,532,347 and U.S. Application Serial No. 08/044,812, incorporated by reference herein). In addition, two other melanocortin receptor genes

have been discovered by some of the present inventors (see Lu et al, 1994, Nature 371: 799-802; Mountjoy et al, 1994, Molec. Endocrinol. 8: 1298-1308) and others (see Gantz et al., 1993, J. Biol. Chem. 268: 15174-15179 and Labbe et al., 1994, Biochem. 33: 4543-4549).

5

10

Along with the well-recognized activities of αMSH in melanocytes and ACTH in adrenal and pituitary glands, the melanocortin peptides also have a diverse array of biological activities in other tissues, including the brain and immune system, and bind to specific receptors in these tissues with a distinct pharmacology (see, Hanneman et al., in Peptide Hormone as Prohormones, G. Martinez, ed. (Ellis Horwood Ltd.: Chichester, UK) pp. 53-82; DeWied & Jolles, 1982, Physiol. Rev. 62: 976-1059 for reviews). A complete understanding of these peptides and their diverse biological activities requires the isolation and characterization of their corresponding receptors. Some biochemical studies have been reported in the prior art.

15

Shimuze, 1985, Yale J. Biol. Med. <u>58</u>: 561-570 discusses the physiology of melanocyte stimulating hormone.

Tatro & Reichlin, 1987, Endocrinology 121: 1900-1907 disclose that MSH receptors are widely distributed in rodent tissues.

Sola et al., 1989, J. Biol. Chem. 264: 14277-14280 disclose the molecular weight characterization of mouse and human MSH receptors linked to radioactively and photoaffinity labeled MSH analogues.

20

Siegrist et al., 1991, J. Receptor Res. 11: 323-331 disclose the quantification of receptors on mouse melanoma tissue by receptor autoradiography.

25

Cone & Mountjoy, U.S. Patent No. 5,532,347 disclose the isolation of human and mouse α -MSH receptor genes and uses thereof (incorporated herein by reference).

Cone & Mountjoy, U.S. Patent No. 5,280,112 disclose the isolation of human and bovine ACTH receptor genes and uses thereof (incorporated herein by reference).

Mountjoy et al., 1992, Science 257: 1248-1251 disclose the isolation of cDNAs encoding mammalian ACTH and MSH receptor proteins.

30

POMC neurons are present in only two regions of the brain, the arcuate nucleus of the hypothalamus, and the nucleus of the solitary tract of the brain stem. Neurons from both sites project to a number of hypothalamic nuclei known to be important in feeding behavior, including the paraventricular nucleus, lateral hypothalamic area, and

5

10

15

20

25

30

ventromedial hypothalamic nucleus. While previous reports have claimed both stimulatory and inhibitory effects of a-MSH on feeding behavior (see Shimizu et al., 1989, Life Sci. 45: 543-552; Tsujii et al., 1989, Brian Res. Bull. 23: 165-169), knowledge of specific melanocortin receptors, their location within the central nervous system and the necessary pharmacological tools were not sufficiently developed at that time to allow the resolution of this issue. The present inventors have shown herein that a novel antagonist of the MC-3 and MC-4 melanocortin receptors can substantially increase food consumption in animals engaged in normal or fast-induced feeding behavior. This is consistent with expression of both MC-3 and MC-4 receptor mRNAs at these sites in in situ hybridization studies (Roselli-Rehfuss et al., 1993, Proc. Natl. Acad. Sci. USA 90: 8856-8860; Mountjoy et al., 1994, Molec. Endocrinol. 8: 1298-1308). Moreover, the regulation of arcuate nucleus POMC gene expression is consistent with an inhibitory role for POMC in feeding behavior. POMC mRNA levels are decreased following a fast (Bergendahl et al., 1992, Neuroendocrinol. 56: 913-920; Brady et al., 1990, Neuroendocrinol. 52: 441-447), and a significant diurnal variation in POMC mRNA levels in the arcuate nucleus is seen in rat, with the nadir occurring around the onset of nighttime feeding at 1800 hrs (Steiner et al., 1994, FASEB J. 8: 479-488).

Thus, the experimental evidence indicates that POMC neurons play an important role in tonic inhibition of feeding behavior, wherein obesity results from a chronic disruption of this inhibitory tone by antagonism of central melanocortin receptors in at least one animal model (agouti).

These results reveal for the first time a need in the art for a means for characterizing mammalian melanocortin receptor agonists and antagonists in vitro for the development of compounds that affect feeding behavior in animals.

SUMMARY OF THE INVENTION

The present invention provides a biological screening system for identifying and characterizing compounds that are agonists or antagonists of mammalian melanocortin receptors. The biological screening system of the invention comprises a panel of transformed mammalian cells comprising a recombinant expression construct encoding

a mammalian melanocortin receptor, and expressing said receptor thereby. The invention provides such a panel of transformed mammalian cells wherein the panel comprises cells expressing each type of mammalian melanocortin receptor. Thus, the invention also provides nucleic acid encoding mammalian melanocortin receptors, recombinant expression constructs comprising said nucleic acid, and mammalian cells into which said recombinant expression constructs have been introduced, and that express functional mammalian melanocortin receptors. Methods for using such panels of melanocortin receptor-expressing mammalian cells to specifically detect and identify agonists and antagonists for each melanocortin receptor, as well as patterns of agonist and antagonist activity of said compounds for the class of melanocortin receptors, are also provided. Such screening methods provide a means for identifying compounds with patterns of melanocortin agonist and antagonist activity which is associated with the capacity to influence or modify metabolism and behavior in an animal, particularly feeding behavior.

15

20

25

10

5

Thus, the invention provides in a first aspect a biological screening panel for determining the melanocortin receptor agonist/antagonist profile of a test compound. The panel comprises a first mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the α-MSH (MC-1) receptor. The panel also comprises a second mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the ACTH (MC-2) receptor. The panel also comprises a third mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-3 receptor. The panel also comprises a fourth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-4 receptor. The panel also comprises a fifth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-5 receptor. As provided by the invention, each mammalian cell expresses the melanocortin receptor encoded by the recombinant expression construct comprising said cell.

30

In preferred embodiments, the melanocortin receptors encoded by the recombinant expression constructs comprising the transformed mammalian cells comprising the panel are mouse MC-1 receptor (SEQ ID Nos.: 3 and 4); human MC-1

receptor (SEQ ID Nos.: 5 and 6), human MC-2 (ACTH) receptor (SEQ ID Nos.: 7 and 8), bovine MC-2 receptor (SEQ ID Nos.: 9 and 10), rat MC-3 receptor (SEQ ID Nos.: 11 and 12), human MC-4 receptor (SEQ ID Nos.: 15 and 16) and mouse MC-5 receptor (SEO ID Nos.: 17 and 18).

5

In a second aspect, the invention provides a method for using the melanocortin receptor panel to identify and characterize test compounds as melanocortin receptor agonists and/or antagonists. In this embodiment, the method provided by the invention identifies a melanocortin receptor agonist, and comprises the steps of contacting each of the cells of the panel with a test compound to be characterized as an agonist of a mammalian melanocortin receptor and detecting binding of the test compound to each of the mammalian melanocortin receptors by assaying for a metabolite produced in the cells that bind the compound. In a preferred embodiment, the detected metabolite is cAMP.

In a preferred embodiment of this method, each of the cells of the panel of

15

20

25

10

mammalian cells expressing mammalian melanocortin receptors further comprises a recombinant expression construct encoding a cyclic AMP responsive element (CRE) transcription factor binding site that is operatively linked to a nucleic acid sequence encoding a protein capable of producing a detectable metabolite. In preferred embodiments, said protein is β-galactosidase, most preferably encoded by a nucleic acid comprising the recombinant expression construct identified as pCRE/β-galactosidase (as disclosed in Chen et al., 1994, Analyt. Biochem. 226: 349-354). As provided by the invention, expression of the protein that produces the detectable metabolite is dependent on binding of the test compound to the melanocortin receptor expressed by each cell in the panel and the intracellular production of cAMP as a result. In this embodiment, cAMP production results in expression of a protein capable of producing a detectable metabolite, the protein most preferably being β-galactosidase. In preferred embodiments, the detectable metabolite absorbs light to produce a colored product. Thus, this embodiment of the invention provides a panel of melanocortin receptorexpressing cells whereby melanocortin hormone binding results in the production of a colored product in proportion to the extent of cAMP production in the cell as a result of hormone receptor binding.

In another embodiment of this aspect of the invention is provided a method for characterizing a compound as an antagonist of a mammalian melanocortin receptor. In this embodiment, the method comprises the steps of contacting each of the cells of the panel with an agonist of the mammalian melanocortin receptor in an amount sufficient to produce a detectable amount of a metabolite produced in the cells that bind the agonist, in the presence or absence of a test compound to be characterized as an antagonist of a mammalian melanocortin receptor, and detecting the amount of the metabolite produced in each cell in the panel in the presence of the test compound with the amount of the metabolite produced in each cell in the panel in the panel in the absence of the test compound. As provided by the assay, inhibition of the production of the detectable metabolite is used as an indication that the tested compound is a melanocortin receptor antagonist, which is further characterized quantitatively by the extent of said inhibition.

5

10

15

20

25

30

In a preferred embodiment of this method, each of the cells of the panel of mammalian cells expressing mammalian melanocortin receptors further comprises a recombinant expression construct encoding a cyclic AMP responsive element (CRE) transcription factor binding site that is operatively linked to a nucleic acid sequence encoding a protein capable of producing a detectable metabolite. In preferred embodiments, said protein is β-galactosidase, most preferably encoded by a nucleic acid comprising the recombinant expression construct identified as pCRE/β-galactosidase. As provided by the invention, expression of the protein that produces the detectable metabolite is dependent on binding of the test compound to the melanocortin receptor expressed by each cell in the panel. In preferred embodiments, the detectable metabolite absorbs light to produce a colored product. Thus, this embodiment of the invention provides a panel of melanocortin receptor-expressing cells whereby melanocortin hormone binding results in the production of a colored product in proportion to the extent of cAMP production in the cell as a result of hormone receptor binding.

The invention also provides melanocortin receptor agonists identified by the methods and using the screening panel of the invention. In preferred embodiments, the agonist is an agonist of the MC-3 mammalian melanocortin receptor. In other preferred embodiments, the agonist is an agonist of the MC-4 mammalian melanocortin receptor.

The invention provides melanocortin receptor antagonists identified by the methods and using the screening panel of the invention. In preferred embodiments, the

antagonist is an antagonist of the MC-3 mammalian melanocortin receptor. In other preferred embodiments, the antagonist is an antagonist of the MC-4 mammalian melanocortin receptor.

5

10

15

20

25

30

The invention also provides methods for characterizing mammalian melanocortin receptor agonists for the capacity to modify or influence metabolism and feeding behavior in an animal. In a first aspect, the invention provides a method for characterizing melanocortin receptor MC-3 or MC-4 agonists as inhibitors of feeding behavior in an animal, the method comprising the steps of providing food to an animal that has been deprived of food for at least 12 hours, with or without administering to the animal an MC-3 or MC-4 receptor agonist of the invention, and comparing the amount of food eaten by the animal after administration of the MC-3 or MC-4 receptor agonist with the amount of food eaten by the animal without administration of the MC-3 or MC-4 receptor agonist.

In another aspect, the invention provides a method for characterizing a melanocortin MC-3 or MC-4 receptor antagonist as a stimulator of feeding behavior in an animal. In this embodiment, the method comprises the steps of providing food to an animal not deprived of food for at least 12 hours, with or without administering to the animal an MC-3 or MC-4 receptor antagonist, immediately prior to the onset of darkness or nighttime, and comparing the amount of food eaten by the animal after administration of the MC-3 or MC-4 receptor antagonist with the amount of food eaten by the animal without administration of the MC-3 or MC-4 receptor antagonist.

Thus, the invention also provides methods for using certain of the melanocortin receptor agonists and antagonists for modifying feeding behavior in an animal. In a first aspect, the invention provides a method for stimulating feeding in an animal, the method comprising administering to the animal an MC-3 or MC-4 receptor antagonist. In a preferred embodiment, the antagonists are administered systemically. In additional embodiments, the antagonists are administered intracerebroventricularly.

In another aspect, the invention provides a method for inhibiting feeding in an animal, the method comprising administering to the animal an MC-3 or MC-4 receptor agonist. In a preferred embodiment, the agonists are administered systemically. In additional embodiments, the agonists are administered intracerebroventricularly.

In yet another aspect, the invention provides mammalian melanocortin receptor agonists having the general formula:

A-B-C-D-E-F-G-amide

5

10

15

20

25

30

wherein A is an aliphatic amino acid residue, including for example Leu, Ile, Nle and Met, as well as analogues and substituted derivatives thereof; B is an acidic amino acid residue, including for example Asp and Glu; C is a basic amino acid residue, such as His; D is an aromatic amino acid residue having a D- conformation, including D-Phe, D-Tyr and substituted derivatives thereof; E is a basic amino acid residue, for example Arg, Lys, homoArg, homoLys, and analogues or substituted derivatives thereof; F is Trp or substituted derivatives thereof; and G is Lys, homoLys or a substituted derivative thereof. In the peptide embodiments of the melanocortin receptor agonists of the invention, the peptide is cyclized by the formation of an amide bond between the side chain carboxyl group of the Asp or Glu residue at position B in the peptide, and the side chain amino group of the Lys or homoLys residue at position G. In preferred embodiments, the melanocortin receptor agonists of the invention are agonists of the MC-3 or MC-4 receptor.

The invention also provides mammalian melanocortin receptor antagonists having the general formula:

A-B-C-D-E-F-G-amide

wherein A is an aliphatic amino acid residue, including for example Leu, Ile, Nle and Met, as well as analogues and substituted derivatives thereof; B is an acidic amino acid residue, including for example Asp and Glu; C is a basic amino acid residue, such as His; D is an aromatic amino acid residue having a D- conformation, including D-Nal and substituted derivatives thereof; E is a basic amino acid residue, for example Arg, Lys, homoArg, homoLys, and analogues or substituted derivatives thereof; F is Trp or substituted derivatives thereof; and G is Lys, homoLys or a substituted derivative thereof. In the peptide embodiments of the melanocortin receptor antagonists of the invention, the peptide is cyclized by the formation of an amide bond between the side chain carboxyl group of the Asp or Glu residue at position B in the peptide, and the side chain amino group of the Lys or homoLys residue at position G. In preferred embodiments, the melanocortin receptor antagonists of the invention are agonists of the MC-3 or MC-4 receptor.

It is an advantage of the present invention that it provides an *in vitro* screening method for characterizing compounds having melanocortin receptor activities that relate to feeding behavior in animals. Specifically, the invention advantageously provides means and methods for identifying compounds having melanocortin receptor agonist and/or antagonist activity that have been associated with either stimulating or inhibiting feeding behavior when administered to an animal. The invention thus provides an economical first step in screening compounds for the capacity to affect feeding behavior, including synthetic, peptidomimetic or organomimetic derivatives of melanocortin receptor agonists or antagonists as disclosed herein or elsewhere.

10

5

Specific preferred embodiments of the present invention will become evident from the following more detailed description of certain preferred embodiments and the claims.

15

DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B illustrate the nucleotide (SEQ ID No.: 3) and amino acid (SEQ ID No.: 4) sequence of the mouse melanocyte stimulating hormone receptor gene.

Figures 2A and 2B illustrate the nucleotide (SEQ ID No.: 5) and amino acid (SEQ ID No.: 6) sequence of the human melanocyte stimulating hormone receptor gene.

20

25

Figures 3A and 3B illustrate the nucleotide (SEQ ID No.: 7) and amino acid (SEQ ID No.: 8) sequence of the human adrenocorticotropic stimulating hormone receptor gene.

Figures 4A and 4B illustrate the nucleotide (SEQ ID No.: 9) and amino acid (SEQ ID No.: 10) sequence of the bovine adrenocorticotropic stimulating hormone receptor gene.

Figures 5A and 5B illustrate the nucleotide (SEQ ID No.: 11) and amino acid (SEQ ID No.: 12) sequence of the rat melanocortin-3 receptor gene.

Figures 6A and 6B illustrate the nucleotide (SEQ ID No.: 15) and amino acid (SEQ ID No.: 16) sequence of the human melanocortin-4 receptor gene.

30

Figures 7A and 7B illustrate the nucleotide (SEQ ID No.: 17) and amino acid (SEQ ID No.: 18) sequence of the mouse melanocortin-5 receptor gene.

Figure 8 shows a graph of intracellular cAMP accumulation resulting from melanocyte stimulating hormone receptor agonist binding in human 293 cells transfected with a MSH receptor-encoding recombinant expression construct, wherein - \Box - represents binding of NDP-MSH, - \Diamond - represents binding of ACTH and - \Diamond - represents binding of α MSH.

Figure 9 illustrates the cAMP response of mouse Y1 cells to binding of melanocortin peptides to human melanocortin-2 (ACTH) receptor, as measured by the β-galactosidase assay described in Example 4, wherein -= represents binding to wild-type ACTH-R and -A-represents binding to an ACTH-R variant.

10

5

15

Figures 11A through 11C illustrate the results of experiments showing intracellular cAMP accumulation caused by receptor-ligand binding in human 293 cells expressing the MC-3 receptor. In Figure 11A, $-\bullet$ - represents binding of α MSH, $-\blacksquare$ - represents binding of γ_2 -MSH, $-\triangle$ - represents binding of des-acetyl α MSH and $-\square$ - represents binding of ACTH_{1.39}. In Figure 11B, $-\bullet$ - represents binding of γ_1 -MSH, $-\blacksquare$ - represents binding of γ_2 -MSH and $-\triangle$ - represents binding of des-acetyl γ_1 -MSH. In Figure 11C, $-\bullet$ - represents binding of ACTH₄₋₁₀, $-\blacksquare$ - represents binding of NDP-MSH and $-\triangle$ - represents binding of ORG2766.

25

20

Figure 12 shows a graph of intracellular cAMP accumulation resulting from peptide binding to human melanocortin-4 receptor agonist in human 293 cells transfected with a MC-4 receptor-encoding recombinant expression construct, wherein - \Box - represents binding of ACTH₄₋₁₀, - \blacksquare - represents binding of ACTH₁₋₃₉, - \blacksquare - represents binding of NDP-MSH, - \Box - represents binding of α MSH, - Δ - represents binding of γ 2-MSH, and - Δ - represents binding of des-acetyl α MSH.

30

Figure 13 illustrates the results of cAMP accumulation and cAMP-dependent β -galactosidase assays of melanocortin peptide binding to a rat melanocortin-5 receptor, wherein -D- represents binding of α MSH, - Δ - represents binding of β -MSH, and -O-

represents binding of γ -MSH, each determined using the β -gal method, and wherein -represents binding of α MSH, - Δ - represents binding of β -MSH, and - Θ - represents binding of γ -MSH, each determined using the cAMP method.

Figure 14 illustrates the structure of the pCRE/ β -gal plasmid.

5

Figure 15 illustrates the results of the β-galactosidase-coupled, colorimetric melanocortin receptor binding assay using cells expressing each of the MC-1, MC-3, MC4 or MC-5 receptors and contacted with αMSH or a variety of αMSH analogues, wherein -=- represents binding of αMSH, --- represents binding of NDP-MSH, --- represents binding of SHU9128 (para-Fl substituted), -□- represents binding of SHU9203 (p-Cl substituted), -Δ- represents binding of SHU8914 (p-I substituted), and -0- represents binding of SHU9119.

10

15

Figures 16A through 16 D show the results of the β-galactosidase-coupled, colorimetric melanocortin receptor binding assay to determine antagonist activity of melanocortin analogues SHU9119 and SHU8914 in cells expressing each of the melanocortin receptors MC-3 and MC-4. In Figure 16A, --- represents binding of αMSH, --- represents binding of 100nM SHU9119, -Δ- represents binding of 10nM SHU9119, and --- represents binding of 1nM SHU9119. In Figure 16B, --- represents binding of αMSH, --- represents binding of 100nM SHU9119, -Δ- represents binding of 50nM SHU9119, and --- represents binding of 10nM SHU9119. In Figure 16C, --- represents binding of αMSH, --- represents binding of 100nM SHU8914, -Δ- represents binding of 100nM SHU8914, and --- represents binding of 100nM SHU8614.

In Figure 16D, --- represents binding of αMSH, --- represents binding of 100nM SHU8614.

25

20

Figure 17 shows the results of classic competition binding assays using the melanocortin analogues SHU9119 and SHU8914 at the MC3-R and MC-4 R receptors, wherein -- represents binding of NDP-MSH, -Δ- represents binding of SHU8914 (p-I substituted), and -0- represents binding of SHU9119.

30

binding of NDP-MSH, -▲- represents binding of MTII and -▼- represents binding of forskolin. In Figure 18B,
--- represents binding of MTII, -▲- represents binding of NDP-MSH and -▼- represents binding of forskolin.

5

10

15

20

25

. 30

Figures 20A through 20C show the effect on food intake of intracerebroventricular administration of melanocortin analogue MTII in mice. In Figure 20A, -●- represents administration of acsf (n=8), -▼- represents administration of 0.1nmol MTII (n=8), -■- represents administration of 1nmol MTII (n=7) and -▲- represents administration of 3nmol MTII (n=9). In Figure 20B, -●- represents administration of acsf (n=12), -□- represents administration of 3nmol MTII and 6nmol SHU9119 (n=9) and -▲- represents administration of 3nmol MTII (n=9).

Figures 21A through 21D show the effect on food intake of intracerebroventricular administration of melanocortin analogue MTII in mice. In Figure 21A, -•- represents administration of acsf (n=6) and -•- represents administration of 3nmol MTII (n=7). In Figure 21B, open bars represent administration of acsf (n=6), solid bars represents administration of 1.18nmol neuropeptide Y (NPY; n=6) and stipled bars represents administration of 3nmol MTII and 1.18nmol NPY (n=6). In Figure 21C, -•- represents administration of acsf (n=7) and -•- represents administration of 3nmol MTII (n=7). In Figure 21D, -•- represents administration of 100nmol MTII (n=6) and -•- represents administration of vehicle alone (n=6).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The term "melanocortin receptor" as used herein reference to proteins having the biological activity of any of the disclosed melanocortin receptors, including the MC-1 (SEQ ID Nos.: 3, 4, 5 and 6), MC-2 (ACTH; SEQ ID Nos.: 7, 8, 9 and 10), MC-3 (SEQ ID Nos.: 11 and 12), MC-4 (SEQ ID Nos.: 15 and 16) or MC-5 (SEQ ID Nos.: 17 and 18) receptors, as well as naturally-occurring and genetically-engineered allelic variations in these sequences.

Cloned nucleic acid provided by the present invention may encode MC receptor protein of any species of origin, including, for example, mouse, rat, rabbit, cat, and human, but preferably the nucleic acid provided by the invention encodes MC receptors of mammalian, most preferably rodent and human, origin.

The production of proteins such as the MC receptors from cloned genes by genetic engineering means is well known in this art. The discussion which follows is accordingly intended as an overview of this field, and is not intended to reflect the full state of the art.

DNA which encodes MC receptors may be obtained, in view of the instant disclosure, by chemical synthesis, by screening reverse transcripts of mRNA from appropriate cells or cell line cultures, by screening genomic libraries from appropriate cells, or by combinations of these procedures, as illustrated below. Screening of mRNA or genomic DNA may be carried out with oligonucleotide probes generated from the MC receptor gene sequence information provided herein. Probes may be labeled with a detectable group such as a fluorescent group, a radioactive atom or a chemiluminescent group in accordance with know procedures and used in conventional hybridization assays, as described in greater detail in the Examples below. In the alternative, MC receptor gene sequences may be obtained by use of the polymerase chain reaction (PCR) procedure, with the PCR oligonucleotide primers being produced from the MC receptor gene sequences provided herein. See U.S. Patent Nos. 4,683,195 to Mullis et al. and 4,683,202 to Mullis.

MC receptor proteins may be synthesized in host cells transformed with a recombinant expression construct comprising a nucleic acid encoding each of the receptors disclosed herein. Such a recombinant expression construct can also be comprised of a vector that is a replicable DNA construct. Vectors are used herein either

5

10

15

20

to amplify DNA encoding an MC receptor and/or to express DNA which encodes an MC receptor. For the purposes of this invention, a recombinant expression construct is a replicable DNA construct in which a DNA sequence encoding an MC receptor is operably linked to suitable control sequences capable of effecting the expression of the receptor in a suitable host cell. The need for such control sequences will vary depending upon the host selected and the transformation method chosen. Generally, control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites, and sequences which control the termination of transcription and translation. Amplification vectors do not require expression control domains. All that is needed is the ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants. See, Sambrook et al., 1990, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press: New York).

5

10

15

20

25

30

Also specifically provided by the invention are reporter expression constructs comprising a nucleic acid encoding a protein capable of expressing a detectable phenotype, such as the production of a detectable reporter molecule, in a cell expressing the construct. Such constructs can be used for producing recombinant mammalian cell lines in which the reporter construct is stably expressed. Most preferably, however, the reporter construct is provided and used to induce transient expression over an experimental period of from about 18 to 96 hrs in which detection of the reporter protein-produced detectable metabolite comprises an assay. Such reporter expression constructs are also provided wherein induction of expression of the reporter construct is controlled by a responsive element operatively linked to the coding sequence of the reporter protein, so that expression is induced only upon proper stimulation of the responsive element. Exemplary of such a responsive element is a cAMP responsive element (CRE), which induces expression of the reporter protein as a result of an increase in intracellular cAMP concentration. In the context of the present invention, such a stimulus is associated with melanocortin receptor binding, so that a reporter construct comprising one or more CREs is induced to express the reporter protein upon binding of a receptor agonist to a MC receptor in a recombinantly transformed mammalian cell. Production and use of such a reporter construct is illustrated below in Example 5.

Vectors useful for practicing the present invention include plasmids, viruses (including phage), retroviruses, and integratable DNA fragments (i.e., fragments integratable into the host genome by homologous recombination). The vector replicates and functions independently of the host genome, or may, in some instances, integrate into the genome itself. Suitable vectors will contain replicon and control sequences which are derived from species compatible with the intended expression host. A preferred vector is the plasmid pcDNA/neo I. Transformed host cells are cells which have been transformed or transfected with recombinant expression constructs made using recombinant DNA techniques and comprising mammalian MC receptor-encoding sequences. Preferred host cells are human 293 cells. Preferred host cells for the MC-2 (ACTH) receptor are Y1 cells (subclone OS3 or Y6). Transformed host cells are chosen that ordinarily express functional MC receptor protein introduced using the recombinant expression construct. When expressed, the mammalian MC receptor protein will typically be located in the host cell membrane. See, Sambrook et al., ibid.

15

10

5

Cultures of cells derived from multicellular organisms are a desirable host for recombinant MC receptor protein synthesis. In principal, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. However, mammalian cells are preferred, as illustrated in the Examples. Propagation of such cells in cell culture has become a routine procedure. *See Tissue Culture*, Academic Press, Kruse & Patterson, editors (1973). Examples of useful host cell lines are human 293 cells, VERO and HeLa cells, Chinese hamster ovary (CHO) cell lines, mouse Y1 (subclone OS3), and WI138, BHK, COS-7, CV, and MDCK cell lines. Human 293 cells are preferred.

25

20

Cells expressing mammalian MC receptor proteins made from cloned genes in accordance with the present invention may be used for screening agonist and antagonist compounds for MC receptor activity. Competitive binding assays are well known in the art and are described in the Examples below. Such assays are useful for drug screening of MC receptor agonist and antagonist compounds, as detected in receptor binding assays as described below.

30

One particular use of such screening assays are for developing drugs and other compounds useful in modifying or changing feeding behavior in mammals. The invention provides an assay system, comprising a panel of recombinant mammalian

cells, heterologously expressing each of the MC receptors disclosed herein, wherein the panel is constructed of at least one cell line expressing an MC receptor, and most preferably comprising cells expressing each of the MC receptors. The invention provides such panels also comprising a detection means for detecting receptor agonist or antagonist binding, such as the reporter expression constructs described herein, using direct binding and competition binding assays as described in the Examples below. In the use of this panel, each MC receptor is assayed for agonist or antagonist patterns of binding a test compound, and a characteristic pattern of binding for all MC receptors is thereby determined for each test compound. This pattern is then compared with known MC receptor agonists and antagonists to identify new compounds having a pattern of receptor binding activity associated with a particular behavioral or physiological effect.

5

10

15

20

25

30

For example, provided herein is experimental evidence that MC-3 or MC-4 receptor antagonists are capable of stimulating feeding in hungry animals, and that MC-3 or MC-4 agonists are capable of inhibiting feeding in animals otherwise stimulated to eat. The invention provides an *in vitro* assay to characterize MC-3 and MC-4 agonists/antagonists as a preliminary and economical step towards developing feeding behavior-modulating drugs for use *in vivo*.

These results on feeding behavior *in vivo* have been obtained with certain MC receptor binding analogues, SHU9119 and MTII. These compounds have the following chemical structure:

Ac-Ne⁴-Asp⁵-His⁶-QNa(2)⁷-Arg⁶-Trp⁶-Lye¹⁰-NH₂ SHU-8119

5

10

15

20

25

30

Generally, those skilled in the art will recognize that peptides as described herein may be modified by a variety of chemical techniques to produce compounds having essentially the same activity as the unmodified peptide, and optionally having other desirable properties. For example, carboxylic acid groups of the peptide, whether carboxyl-terminal or sidechain, may be provided in the form of a salt of a pharmaceutically-acceptable cation or esterified to form a C₁-C₁₆ ester, or converted to an amide of formula NR₁R₂ wherein R₁ and R₂ are each independently H or C₁-C₁₆ alkyl, or combined to form a heterocyclic ring, such as 5- or 6-membered. Amino groups of the peptide, whether amino-terminal or sidechain, may be in the form of a pharmaceutically-acceptable acid addition salt, such as the HCl, HBr, acetic, benzoic, toluene sulfonic, maleic, tartaric and other organic salts, or may be modified to C_1 - C_{16} alkyl or dialkyl amino or further converted to an amide. Hydroxyl groups of the peptide sidechain may be converted to C₁-C₁₆ alkoxy or to a C₁-C₁₆ ester using wellrecognized techniques. Phenyl and phenolic rings of the peptide sidechain may be substituted with one or more halogen atoms, such as fluorine, chlorine, bromine or iodine, or with C₁-C₁₆ alkyl, C₁-C₁₆ alkoxy, carboxylic acids and esters thereof, or arnides of such carboxylic acids. Methylene groups of the peptide sidechains can be extended to homologous C2-C4 alkylenes. Thiols can be protected with any one of a

number of well-recognized protecting groups, such as acetamide groups. Those skilled in the art will also recognize methods for introducing cyclic structures into the peptides of this invention to select and provide conformational constraints to the structure that result in enhanced binding and/or stability. For example, a carboxyl-terminal or amino-terminal cysteine residue can be added to the peptide, so that when oxidized the peptide will contain a disulfide bond, thereby generating a cyclic peptide. Other peptide cyclizing methods include the formation of thioethers and carboxyl- and amino-terminal amides and esters.

5

10

15

20

25

30

Peptidomimetic and organomimetic embodiments are also hereby explicitly declared to be within the scope of the present invention, whereby the three-dimensional arrangement of the chemical constituents of such peptido- and organomimetics mimic the three-dimensional arrangement of the peptide backbone and component amino acid sidechains in the peptide, resulting in such peptido- and organomimetics of the peptides of this invention having substantial biological activity. It is implied that a pharmacophore exists for the receptor agonist and antagonist properties of these and related MC receptor binding analogues. A pharmacophore is an idealized, three-dimensional definition of the structural requirements for biological activity. Peptido- and organomimetics can be designed to fit each pharmacophore with current computer modeling software (computer aided drug design). MC receptor binding analogues derived using such software and comprising peptido- and organomimetics of SHU9119 and MTII and related analogues are within the scope of the claimed invention.

The MC receptor binding analogues, in particular those analogues that are MC-3 or MC-4 receptor agonists or antagonists are provided to be used in methods of influencing, modifying or changing feeding behavior in mammals *in vivo*. Specific examples of uses for the MC receptor binding analogues of the invention include but are not limited to treatment of eating disorders such as anorexia and obesity, and other pathological weight and eating-related disorders. Other examples are failure to thrive disorders and disease-related cachexia, such as occurs in cancer patients. Also within the scope of the analogues of the invention is use for enhancing appearance, athletic ability, or adjuvant to other therapies to treat disorders such as high blood pressure, high

serum cholesterol, vascular and heart disease, stroke, kidney disease, diabetes and other metabolic disorders.

The Examples which follow are illustrative of specific embodiments of the invention, and various uses thereof. They set forth for explanatory purposes only, and are not to be taken as limiting the invention.

EXAMPLE 1

Isolation of an aMSH Receptor Probe by Random PCR Amplification of Human Melanoma cDNA Using Degenerate Oligonucleotide Primers

10

15

5

In order to clone novel G-protein coupled receptors, cDNA prepared from RNA from human melanoma cells was used as template for a polymerase chain reaction (PCR)-based random cloning experiment. PCR was performed using a pair of degenerate oligonucleotide primers corresponding to the putative third and sixth transmembrane regions of G-protein coupled receptors (Libert et al., 1989, Science 244: 569-72; Zhou et al., 1990, Nature 347: 76-80). The PCR products obtained in this experiment were characterized by nucleotide sequencing. Two novel sequences representing novel G-protein-coupled receptors were identified.

20

PCR amplification was performed as follows. Total RNA was isolated from a human melanoma tumor sample by the guanidinium thiocyanate method (Chirgwin et al., 1979, Biochemistry 18: 5294-5299). Double-stranded cDNA was synthesized from total RNA with murine reverse transcriptase (BRL, Gaithersburg, MD) by oligo-dT priming (Sambrook et al., ibid.). The melanoma cDNA mixture was then subjected to 45 cycles of PCR amplification using 500 picomoles of degenerate oligonucleotide primers having the following sequence:

25

Primer III (sense):

GAGTCGACCTGTG(C/T)G(C/T)(C/G)AT(C/T)(A/G)CIIT(G/T)GAC(C/A)G(C/G)TAC (SEQ ID NO:1)

30

and

Primer VI (antisense):

CAGAATTCAG(T/A)AGGGCAICCAGCAGAI(G/C)(G/A)(T/C)GAA (SEQ ID NO:2)

in 100 µl of a solution containing 50 mM Tris-HCl (pH 8.3), 2.5 mM MgCl₂, 0.01% gelatin, 200 µM each dNTP, and 2.5 units of *Taq* polymerase (Saiki *et al.*, 1988, *Science* 239: 487-491). These primers were commercially synthesized by Research Genetics Inc. (Huntsville, AL). Each PCR amplification cycle consisted of incubations at 94°C for 1 min (denaturation), 45 C for 2 min (annealing), and °72 C for 2 min (extension).

Amplified products of the PCR reaction were extracted with phenol/chloroform and precipitated with ethanol. After digestion with *EcoRI* and *SalI*, the PCR products were separated on a 1.2% agarose gel. A slice of this gel, corresponding to PCR products of 300 basepairs (bp) in size, was cut out and purified using glass beads and sodium iodide, and the insert was then cloned into a pBKS cloning vector (Stratagene, LaJolla, CA).

A total of 172 of such pBKS clones containing inserts were sequenced using Sequenase (U.S. Biochemical Corp., Cleveland, OH) by the dideoxynucleotide chain termination method (Sanger et al., 1977, Proc. Natl. Acad. Sci. USA 74: 5463-5467). Two types of sequences homologous to other G-protein coupled receptors were identified.

EXAMPLE 2A

20

25

5

10

15

Isolation of a Mouse aMSH (MC-1) Receptor cDNA

Probes isolated in Example 1 was used to screen a Cloudman melanoma cDNA library in order to isolate a full-length cDNA corresponding to the cloned probe. One clone was isolated from a library of 5 x 10⁶ clones screened as described below in Example 2B. This clone contained an insert of 2.6 kilobases (kb). The nucleotide sequence of the complete coding region was determined (see co-owned U.S. Patent No. 5,532,347, incorporated by reference); a portion of this cDNA comprising the coding region was sequenced and is shown in Figures 1A and 1B (SEQ ID Nos: 3 & 4).

EXAMPLE 2B

30

Isolation of a Human aMSH (MC-1) Receptor cDNA

In order to isolate a human counterpart of the murine melanocyte α MSH receptor gene disclosed in Example 2A and co-owned U.S. Patent No. 5,532,347, a

human genomic library was screened at high stringency (50% formamide, 42°C) using the human PCR fragments isolated as described in Example 1. A genomic clone was determined to encode an human MSH receptor (SEQ ID NO:5). The human MSH receptor has a predicted amino acid sequence (SEQ ID NO:6) that is 75% identical and colinear with the mouse α MSH receptor cDNA sequence (Figures 2A and 2B, represented as human MSH-R). The predicted molecular weight of the human MSH^R is 34.7kD.

EXAMPLE 2C

10

15

5

Isolation of a Human ACTH (MC-2) Receptor cDNA

For cloning the ACTH receptor (MC-2), a human genomic library was screened at high stringency (50% formamide, 1M NaCl, 50nM Tris-HCl, pH 7.5, 0.1% sodium pyrophosphate, 0.2% sodium dodecyl sulfate, 100µg/ml salmon sperm DNA, 10X Denhardt's solution, 42°C), using the human PCR fragments isolated as described in Example 1 herein and U.S. Patent No. 5,280,112, incorporated by reference. A genomic clone was isolated that encodes a highly related G-coupled receptor protein (SEQ ID NO:7 and Figures 3A and 3B). The predicted amino acid sequence (SEQ ID NO:8) of this clone is 39% identical and also colinear, excluding the third intracellular loop and carboxy-terminal tail, with the human MSH receptor gene product. The predicted molecular weight of this putative ACTH^R is 33.9 kilodaltons (kD). This clone was identified as encoding an MC-2 receptor based on its high degree of homology to the murine and human MSH receptors, and the pattern of expression in different tissue types, as described in Example 3 in U.S. Patent 5,280,112.

25

30

20

EXAMPLE 2D

Isolation of a Bovine ACTH (MC-2) Receptor cDNA

A bovine genomic DNA clone encoding the bovine counterpart of the MC-2 (ACTH) receptor was isolated from a bovine genomic library, essentially as described in Example 2C above, and its nucleotide sequence determined (as shown in Figures 4A and 4B; SEQ ID Nos:9 & 10).

EXAMPLE 2E

Isolation of a Rat y-MSH (MC-3) Receptor cDNA

The mouse αMSH receptor cDNA isolated as described in Example 2A and coowned U.S. Patent No. 5,532,347 was used to screen a rat hypothalamus cDNA library at low stringency (30% formamide, 5X SSC, 0.1% sodium pyrophosphate, 0.2% sodium dodecyl sulfate, 100µg/ml salmon sperm DNA, and 10% Denhardt's solution) at 42°C for 18h. A 1 kb cDNA clone was isolated and sequenced as described in co-owned U.S. Patent No. 5,532,347, and this clone used to re-screen the rat hypothalamus cDNA library at high stringency (same conditions as above except that formamide was present at 45%). A cDNA clone approximately 2.0 kb in length was isolated and analyzed as described in co-pending U.S. Application Serial No. 08/044,812, incorporated by reference; a portion of this cDNA comprising the coding region was sequenced and is shown in Figures 5A and 5B (SEQ ID Nos:11 & 12).

15

10

5

EXAMPLE 2F

Isolation of a Human MC-4 Receptor DNA

For cloning the MC-4 receptor, a human genomic library was screened at moderate stringency (40% formamide, 1M NaCl, 50mM Tris-HCl, pH 7.5, 0.1% sodium pyrophosphate, 0.2% sodium dodecyl sulfate, $100\mu g/ml$ salmon sperm DNA, 10X Denhardt's solution, $42^{\circ}C$), using rat PCR fragments isolated as described in Example 1 herein, with the exception that the following primers were used for PCR: Primer II (sense):

GAGTCGACC(A/G)CCCATGTA(C/T)T(AGT)(C/T)TTCATCTG (SEQ ID NO:13)

25

20

and

Primer VII (antisense):

30

35

CAGAATTCGGAA(A/G)GC(A/G)TA(G/T)ATGA(A/G)GGGTC (SEQ ID NO:14)

A genomic clone was isolated that encodes a highly related G-coupled receptor protein (SEQ ID NO:15 and Figures 6A and 6B) on a 1.9kb *HindIII* fragment. The predicted amino acid sequence (SEQ ID NO:16) of this clone is 55-61% sequence

identity with human MC-3 and MC-5 receptors, and 46-47% sequence identity with the human MC-1 and MC-2 (ACTH) receptor.

EXAMPLE 2G

5

Isolation of a Mouse MC-5 Receptor DNA

One million clones from a mouse 129SVJ genomic library comprising 5,000,000 clones in the λ FixII vector (Stratagene) was screened at low stringency (hybridization in 40% formamide at 42°C, washing performed in 0.5X SSC at 60°C, as described above in Example 2E) using radiolabeled probed from the rat MC-3 and MC-4 receptors (as described in Examples 2E and 2F). Positively-hybridizing clones were isolated and sequenced, and the sequences obtained were compared to previously-isolated melanocortin receptor clones. One clone, comprising a previously-unknown sequence, was determined to encode the MC-5 melanocortin receptor. The nucleotide and amino acid sequences of this receptor are shown in Figures 7A and 7B (SEQ ID No.: 17 & 18).

15

10

EXAMPLE 3

Construction of a Recombinant Expression Construct, DNA Transfection and Functional Expression of the MCR Gene Products

20

In order to produce recombinant mammalian cells expressing each of the melanocortin receptors of Example 2, cDNA from each receptor was cloned into a mammalian expression construct, the resulting recombinant expression construct transfected into human 293 cells, and cell lines generated that expressed the melanocortin receptor proteins in cellular membranes at the cell surface.

25

The mouse α MSH receptor was cloned by excising the entire coding region of the α MSH^R (MC-1) cDNA insert comprising a 2.1kb fragment and subcloning this fragment into the *BamHI/XhoI* sites of pcDNAI/neo expression vector (Invitrogen, San Diego, CA). The resulting plasmid was prepared in large-scale through one cycle of CsCI gradient ultracentrifugation, and 20 μ g of the plasmid transfected into each 100mm dish of 293 cells using the calcium phosphate method (*see* Chen & Okayama, 1987, /. γ : 2745-2752). After transfection, cells were cultured in DMEM media supplemented with 10% calf serum in a 3% CO₂ atmosphere at 37°C. Selection was

performed with neomycin (G418; GIBCO) at a concentration of 1000 μ g/ml; selection was started 72 hr after transfection and continued for 3 weeks.

The aMSH^R is known to couple to G-proteins and thereby activate adenyl cyclase, increasing intracellular levels of cAMP (see Buckley & Ramachandran, 1981, Proc. Natl. Acad. Sci. USA 78: 7431-7435; Grahame-Smith et al., 1967, J. Biol. Chem. 242: 5535-5541; Mertz & Catt, 1991, Proc. Natl. Acad. Sci. USA 88: 8525-8529; Pawalek et al., 1976, Invest. Dermatol. 66: 200-209). This property of cells expressing the α MSH receptor was used analyze expression of the α MSH receptor in cell colonies transfected with the expression vectors described herein as follows. Cells (~1x106) were plated in 6-well dishes, washed once with DMEM containing 1% bovine serum albumin (BSA) and 0.5mM IBMX (a phosphodiesterase inhibitor), then incubated for 45 minutes at 37°C with varying concentrations of the melanotropic peptides αMSH, βMSH, γMSH, the MSH peptide analogues Nle⁴, D-Phe⁷-αMSH (NDP-MSH), and ACTH. Following hormone treatment, the cells were washed twice with phosphate buffered saline and intracellular cAMP extracted by lysing the cells with 1ml of 60% ethanol. Intracellular cAMP concentrations were determined using an assay (Amersham) which measures the ability of cAMP to displace [8-3H] cAMP from a high affinity cAMP binding protein (see Gilman, 1970, Proc. Natl. Acad. Sci. USA <u>67</u>: 305-312).

20

25

30

5 .

10

15

The results of these experiments are shown in Figure 8. The abscissa indicates the concentration of each hormone and the ordinate indicates the percentage of basal intracellular cAMP concentration achieved by each treatment. Points indicate the mean of duplicate incubations; the standard error did not exceed 15% for any data point. None of the peptides tested induced any change in intracellular cAMP in cells containing the vector alone. Cells expressing the murine αMSH receptor responded to melanotropic peptides with a 2-3 fold elevation of intracellular cAMP, similar to levels of cAMP induced by these peptides in the Cloudman cell line (see Pawalek, 1985, Yale J. Biol. Med. 58: 571-578). The EC₅₀ values determined for αMSH (2.0x10⁻⁹M), ACTH (8.0x10⁹ M) and the superpotent MSH analogue NDP-MSH (2.8x10⁻¹¹M) correspond closely to reported values (see Tatro et al., 1990, Cancer Res. 50: 1237-1242). As expected, the βMSH peptide had an EC₅₀ value comparable

to α MSH, while γ MSH had little or no activity (see Slominski et al., 1992, Life Sci. 50: 1103-1108), confirming the identity of this receptor as a melanocyte α MSH receptor.

5

A similar series of experiments were performed using mouse Y1 cells (subclone OS3; Schimmer et al., 1995, J. Cell. Physiol. 163: 164-171) expressing the human and bovine MC-2 (ACTH) receptor clones of Examples 2C and 2D. These results are shown in Figure 9, where the extent of cAMP responsive element-linked β -galactosidase activity (see Example 4, below) is shown with increasing concentrations of ACTH.

10

15

The entire coding region of the MC-3 receptor cDNA insert, obtained as described above in the co-pending U.S. Serial No. 08/044,812, was contained in a 2.0kb restriction enzyme digestion fragment and was cloned into the *BamHI/XhoI* sites of pcDNA/neo I expression vector (Invitrogen, San Diego, CA). The resulting plasmid was prepared in large-scale through one cycle of CsCl gradient ultracentrifugation and 20 μg pcDNA/MC-3 receptor DNA were transfected into each 100 mm dish of 293 cells using the calcium phosphate method (*see* Chen & Okayama, 1987, *Mol. Cell. Biol.* 7: 2745-2752). After transfection, cells were cultured in DMEM media supplemented with 10% calf serum in a 3% CO₂ atmosphere at 37°C. Selection was performed with neomycin (G418; GIBCO) at a concentration of 1000 μg/ml; selection was started 72 h after transfection and continued for 3 weeks.

20

25

Specific binding of melanocortin peptides to cells expressing the MC-3 receptor was demonstrated by competition experiments using 125 I-labeled Nle⁴-D-Phe⁷- α -MSH (NDP-MSH, as described in Tatro *et al.*, 1990, *Cancer Res.* 50: 1237-1242). Suspended cells (2x10⁵) were incubated at 37°C with 500,000 cpm of labeled peptide for 10 min in binding buffer (Ham's F10 media plus 10mM HEPES, pH 7.2, 0.25% bovine serum albumin, 500K IU/ml aprotinin, 100 μ g/ml bacitracin and 1mM 1,10-phenanthroline) in the presence or absence of the indicated concentrations of peptides. Maximum labeling was achieved within 10 min.

30

The results of these experiments are shown in Figure 10. Labeled NDP-MSH binding to cells expressing the MC-3 receptor, produced as described above, is inhibited by competition with unlabeled peptides known to be melanocortin receptor agonists, having a relative order of potency as follows:

NDP-MSH > γ -MSH > α -MSH > ACTH₄₋₁₀ >>> ORG2766. Approximate K, values derived from this experiment are as shown in Table I:

TABLE I

5

Agonist	K _i (approx)
NDP-MSH	2 x 10 ⁻⁸
γ-MSH	5 x 10 ⁻⁸
α-MSH	1 x 10 ⁻⁷
ACTH ₄₋₁₀	8 x 10 ⁻⁵

10

15

20

cAMP production assays as described above were also used to analyze expression of MC3-R in cells transfected with the expression vectors described herein as follows. Cells (~5x10⁶) were plated in 6-well dishes, washed once with DMEM containing 1% bovine serum albumin (BSA) and 0.5mM IBMX (a phosphodiesterase inhibitor), then incubated for 1h at 37°C with varying concentrations of the melanotropic peptides αMSH, γ₃MSH, γMSH, the MSH peptide analogues Nle⁴-D-Phe⁷-αMSH (NDP-MSH), ACTH₄₋₁₀ and ACTH₁₋₃₉. Following hormone treatment, the cells were washed twice with phosphate buffered saline and intracellular cAMP extracted by lysing the cells with 1ml of 60% ethanol. Intracellular cAMP concentrations were determined using an assay which measures the ability of cAMP to displace [8-³H] cAMP from a high affinity cAMP binding protein (see Gilman, 1979, Proc. Natl. Acad. Sci. USA 67: 305-312).

25

The results of these experiments are shown in Figures 11A through 11C. The abscissa indicates the concentration of each hormone and the ordinate indicates the percentage of basal intracellular cAMP concentration achieved by each treatment. Points indicate the mean of duplicate incubations; the standard error did not exceed 15% for any data point. Figure 11A depicts the results of experiments using peptides found in vivo; Figure 11B depicts results found with γ-MSH variants; and Figure 11C shows results of synthetic melanocortin analogues. None of the peptides tested induced any change in intracellular cAMP in cells containing the vector alone. Cells expressing rat MC3-R responded strongly to every melanotropic peptide containing the MSH sequence

His-Phe-Arg-Trp, with up to a 60-fold elevation of intracellular cAMP levels. EC_{50} values ranged from 1-50 nM. The most potent ligand and the one having the lowest EC_{50} was found to be γ MSH. The order of potency for the naturally occurring melanocortins was found to be:

 γ_2 -MSH = γ MSH > α MSH = ACTH_{1.39} > γ_3 -MSH > des-acetyl- α MSH > ACTH₄₋₁₀. Ec₅₀ values for these compounds are shown in Table II:

TABLE II

10

5

Agonist	EC _{so}
NDP-MSH	1 x 10 ⁻⁹
γ _ι -MSH	3 x 10 ⁻⁹
γ₂-MSH	3 x 10 ⁻⁹
α-MSH	4 x 10 ⁻⁹
ACTH ₁₋₃₉	4 x 10 ⁻⁹
γ ₃ -MSH	6 x 10 ⁻⁹
desacetyl-αMSH	8 x 10 ^{.9}
ACTH ₄₋₁₀	1 x 10 ⁻⁷

15

20

Additionally, a synthetic melanocortin peptide (ORG2766), known to have the greatest activity *in vivo* in stimulation of retention of learned behavior and in stimulation of neural regeneration, was unable to stimulate MC3-R-mediated cAMP production, and was also inactive as an antagonist. The results strongly indicate that this peptide does not bind to MC3-R protein.

25

The MC-4 receptor was cloned in a 1.9kb HindIII genomic DNA fragment after PCR amplification of a lambda phage clone into pcDNAI/Neo (Invitrogen). This plasmid was stably introduced into human 293 cells by calcium phosphate co-precipitation using standard techniques, and plasmid-containing cells selected in G418 containing media. Specificity of receptor-hormone binding was assayed using adenylate cyclase activity as described above. The MC-4 receptor was found to couple to adenylate cyclase activity having the following pattern of agonist affinity:

30

NDP-MSH > des-acetyl- α -MSH >/= ACTH₁₋₃₉ >/= α -MSH >> γ_2 -MSH = ACTH₄₋₁₀

PCT/US97/15565 WO 98/10068

whereas the synthetic ACTH₄₋₉ analogue ORG2766 showed no detectable binding to the MC-4 receptor. The results of adenylate cyclase activity assays are shown in Figure 12. EC₅₀ values for each of the tested MC-4 receptor agonists are as shown in Table III:

5

TABLE III

Agonist	Ec ₅₀
NDP-MSH	1.1 x 10 ⁻¹¹ M
desacetyl-aMSH	4.9 x 10 ⁻¹⁰ M
ACTH ₁₋₃₉	6.8 x 10 ⁻¹⁰ M
α-MSH	1.5 x 10 ⁻⁹ M
γ₂-MSH	$> 10^{-7}M$
ACTH ₄₋₁₀	> 10 ⁻⁷

15

20

25

30

10

A 1.6kb ApaI-HindIII fragment comprising the entire coding sequence of the mouse MC-5 melanocortin receptor disclosed in Example 2G above was cloned into the pcDNA/neo expression vector (Invitrogen) after PCR amplification of the lambda phage clone. This plasmid was stably introduced into human 293 cells by calcium phosphate co-precipitation using standard techniques, and plasmid-containing cells selected in G418 containing media. Specificity of receptor-hormone binding was assayed using adenylate cylcase activity as described above. The MC-5 receptor was found to couple to adenylate cyclase activity having the following pattern of agonist affinity:

$$\alpha$$
-MSH > β MSH > > γ -MSH

The results of adenylate cyclase activity assays are shown in Figure 13. EC₅₀ values for each of the tested MC-5 receptor agonists are: α -MSH=1.7 x 10⁻⁹M; and β MSH = 5 x 10⁻⁹M.

EXAMPLE 4

Melanocortin Analogue Binding to Mammalian Melanocortin Receptors

Recombinant cells prepared as described above in Example 3 were used to characterize receptor binding of two melanocortin analogues comprising cyclic lactam heptapeptides.

The melanocortin receptor analogue SHU9119 has the following chemical structure:

15

20

25

30

Ac-Nle⁴-cyclo(Asp⁵, D-Nal(2)⁷, Lys¹⁰) αMSH-(4-10)-amide

The melanocortin receptor analogue MTII has the following chemical structure:

Ac-Nle⁴-cyclo(Asp⁵, His⁶, D-Phe⁷, Arg ⁸, Trp⁹, Lys¹⁰) αMSH-(4-10)-amide

These analogues were prepared as described in Hruby et al. (1995, J. Med. Chem. 38: 3454-3461).

These analogues were tested for melanocortin receptor binding using a colorimetric assay system developed by some of the instant inventors (Chen et al., 1995, Analyt. Biochem. 226: 349-354) as follows. A series of concatamers of the synthetic oligonucleotide:

5

10

15 ·

20

25

30

5'-GAATTCGACGTCACAGTATGACGGCCATGG-3' (SEQ ID No:19)

was produced by self-annealing and ligation and a tandem tetramer obtained. This fragment was cloned upstream of a fragment of the human vasoactive intestinal peptide (-93-+152; SEQ ID No.: 13; see Fink et al., 1988, Proc. Natl. Acad. Sci. USA 85: 6662-6666). This promoter was then cloned upstream of the β-galactosidase gene from E. coli. The resulting plasmid construct is shown in Figure 14.

Transient transfection of the pCRE/β-gal plasmid described above was performed as follows. Cells grown to between 40-60% confluency (corresponding to about 1.5 million cells/6cm tissue culture plate) were incubated with Opti-MEM (GIBCO-BRL, Long Island, NY) and then contacted with a pCRE/β-gal-lipofectin complex which was prepared as follows. 3μg plasmid DNA and 20μL lipofectin reagent (GIBCO) were each diluted into 0.5mL Opti-MEM media and then mixed together. This mixture was incubated at room temperature for 15-20 min., and then the mixture (1mL) added to each 6cm plate. Transfected plates were incubated at 37°C for 5-24h, after which the plates were washed and incubated with DMEM media (GIBCO) and the cells split equally into a 96-well culture plate.

To assay melanocortin receptor analogue binding, human 293 cells expressing each of the melanocortin receptors MC-1, MC-3, MC-4 and MC-5, and mouse Y1 cells expressing the MC-2 receptor, were transiently transfected with pCRE/ β -gal as described above and assayed as follows. Two days after transfection, cells were stimulated with hormones specific for each receptor or hormone analogue by incubation for 6h at 37°C with a mixture comprising 10^{-12} - 10^{-6} M) hormone or analogue, 0.1 mg/mL bovine serum albumin and 0.1 mM isobutylmethylxanthine in DMEM. The effect of hormone or analogue binding was determined by β -galactosidase assay according to the method of Felgner *et al.* (1994, *J. Biol. Chem.* 269: 2550-2561). Briefly, media was aspirated from

culture wells and 50µL lysis buffer (0.25M Tris-HCl, pH 8/0.1% Triton-X100) added to each well. Cell lysis was enhanced by one round of freezing and thawing the cell/lysis buffer mixture. 10μ L aliquots were sampled from each well for protein determination using a commercially-available assay (BioRad, Hercules, CA). The remaining 40μ L from each well was diluted with 40μ L phosphate buffered saline/0.5% BSA and 150μ L substrate buffer (60mM sodium phosphate/ 1mM MgCl₂/ 10mM KCl/ 5mM β -mercaptoethanol/ 2mg/mL o-nitrophenyl- β -D-galactopyranoside) added. Plates were incubated at 37°C for 1h and then absorbance at 405nm determined using a 96-well plate reader (Molecular Devices, Sunnyvale, CA). A series of two-fold dilutions from 20ng of purified β -galactosidase protein (Sigma Chemical Co, St. Louis, MO) were assayed in parallel in each experiment to enable conversion of OD₄₀₅ to known quantity of β -galactosidase protein.

The results of these experiments are shown in Figure 15. This Figure shows the results of the β -galactosidase assay described above using cells expressing each of the MC-1, MC-3, MC-4 or MC-5 receptors and contacted with α MSH or a variety of α MSH analogues, including SHU9119. These results showed that SHU9119 had relatively weak agonist activity for both the human MC-3 and MC-4 receptors.

These results demonstrated the development of a colorimetric assay for cAMP accumulation as the result of melanocortin receptor binding to agonists and antagonists.

20

25

5

10

15

The action of MTII, SHU9119, and the endogenous mouse *agouti* peptide as agonists or antagonists of rodent MC receptors was first determined by examining their ability to elevate intracellular cAMP in 293 cell lines expressing the rat MC3-R or mouse MC4-R (expressed as IC₅₀ values representing ligand concentration required for half-maximal inhibition of binding of (I-125)-(Nle⁴, D-Phe) α -MSH tracer). Agonist/antagonist activity was also shown by demonstrating inhibition of cAMP elevation by the potent α -MSH analogue [Nle⁴, D-Phe⁷] α -MSH, using either a cAMP-responsive β -galactosidase reporter construct as described above, or by direct adenyl cyclase assay as described in Example 3 (wherein EC₅₀ values represent ligand concentration required for half-maximal activation of a cAMP-responsive β -galactosidase reporter). Competition binding experiments were determined as the amount of radioactivity bound in the presence of $5 \times 10^{-6} M$ unlabeled [Nle⁴, D-Phe⁷] α -MSH, and was typically 3-5% of total counts bound.

In these experiments, murine *agouti* peptide was produced using a baculovirus system as described by Lu *et al.* (1994, *Nature* 371: 799-802), with the modification that the *agouti* peptide was purified from baculovirus supernatants by 0.6M NaCl step elution from an EconoS cation exchange column (BioRad). Agouti peptide used in these assays was approximately 60% pure.

5

10

15

20

25

30

Competition binding assays were performed to determine whether SHU9119 had antagonist activity towards αMSH binding to either the MC-3 or MC-4 receptors. These assays were performed as follows. Human 293 cells (100,000 cells/well in 24-well plates) expressing either the MC-3 or MC-4 receptors prepared as described above were incubated with a solution of 1mg/mL BSA in PBS containing 100,000cpm (3.1 x 10⁻¹⁰M [¹²⁵I](Nle⁴, D-Phe⁷)αMSH and varying concentrations of αMSH, (Nle⁴, D-Phe⁷)αMSH or SHU9119. Cells were incubated for 30min at 37°C, washed twice with PBS-BSA, lysed with 0.5mL 0.5N NaOH, and counted using a γ-counter to quantitate the amount of bound [¹²⁵I](Nle⁴, D-Phe⁷)αMSH. Control experiments showed non-specific binding to occur at about 3-5% levels, and this was taken into account when analyzing the experimental results.

The SHU9119 analogue was found to be a potent antagonist of both the human MC-3 and MC-4 receptors, as shown in Figure 16. These assays showed pA_2 values of 8.3 and 9.3 for the human MC-3 and MC-4 receptors, respectively, as determined using the method of Schild (1947, *Brit. J. Pharmacol.* 2: 189-206). In contrast, no significant alteration in IC₅₀ values was detected in binding experiments using this analogue with either the MC-3 or MC-4 receptors (Figure 17).

The activity of the MTII analogue was also assayed for melanocortin receptor agonist activity. These results are shown in Figures 18A and 18B, and confirmed that the MTII analogue is a specific agonist of the MC-3 and MC-4 receptors.

Specific competition of [Nle⁴,D-Phe⁷]α-MSH binding to rat MC-3 receptor by agouti peptide was observed, although accurate IC₅₀ values could not be determined because the peptide preparation was not homogenous (results not shown). Specific competition of α-MSH activation of human MC4-R by agouti was previously disclosed (Lu et al., 1994, Nature 371: 799-802).

EXAMPLE 5

Feeding Behavior Effect of Melanocortin Analogue Binding in Brain

5

10

15

20

25

30

The results shown in Example 4 above suggested a role in the regulation of feeding behavior in mammalian brain for MC receptor agonists and antagonists, in view of the antagonist properties of the agouti peptide at the MC-3 and MC-4 receptors. The agouti peptide was known to cause obesity when expressed ectopically in the mouse, and has been found to be a high affinity antagonist of the melanocyte stimulating hormone receptor (MC1-R) and of the hypothalamic MC-4 receptor (see Lu et al., ibid.). The former activity explained the inhibitory effect of the agouti peptide on eumelanin pigment synthesis. Similarly, it was hypothesized by the inventors that agouti causes obesity in mice by antagonizing hypothalamic MC-4 receptors. The cyclic melanocortin analogue, SHU9119, having been shown herein and elsewhere (Hruby et al.) to be a specific, high affinity antagonist of the central MC-3 and MC-4 receptors, was tested for the effect of direct administration to mouse brain on feeding behavior in the animals. Intracerebroventricular (ICV) administration of SHU9119 was performed to avoid any complications caused by inhibition of peptide traverse of the blood-brain barrier.

Briefly, male C57B1/6J mice (18-29g) were maintained on a normal 12hr/12hr light dark cycle with food (Purina mouse chow) and water ad libitum. Animals were housed individually for 24 hrs, distributed into experimental and control groups, avoiding any bias as a function of prior weight, then injected with vehicle or vehicle plus drug just prior to the onset of a 12hr light or dark cycle. Fasted animals were deprived of food from 18:00 to 10:30 hrs to stimulate feeding during the daytime experimental period. Animals were lightly anesthetized with halothane, and administered into one lateral ventricle 2 µL of a solution of artificial cerebrospinal fluid alone (acsf. comprising 130mM NaC1, 27mM NaHCO3, 1.2mM Na HPQ, 0.3mM NaH PQ, 0.5mM Na₂SO₄, 1.0mM CaCl₂, 1.0mM MgCl₂, and 2.5mM KCl), or 6nmol SHU9119 in acsf. Freehand injections were performed as described by Laursen and Belknap (1986, J. Pharmacol. Methods 16: 355-357) with some modifications. A 10µl luertip syringe (Hamilton 701LT) was fitted with a 0.5 inch 27 gauge needle. Stiff tygon tubing was slipped over the needle to expose 3mM of the needle tip. The syringe was held at a 45° angle from the front of the skull with the bevel facing up. The coronal suture was found by lightly rubbing the needle over the skull. Maintaining the 45° angle, the needle

was then inserted 1-2mm lateral to the midline, using only mild pressure to insert and remove the needle. The compounds indicated in a 2µl volume of acsf were administered slowly over approximately 15 seconds, and the needle removed after 35 seconds. Animals were allowed to recover from anesthesia and placed into a cage containing a premeasured quantity of food pellets in a spill-free cup. Moribund animals were not included in the study.

Stimulation of feeding by intracerebroventricular administration of the melanocortin antagonist SHU9119 is shown in Figures 19A through 19C. Curves show cumulative food intake as a function of time following administration of the substances shown. Figure 19A shows stimulation of feeding by administration of SHU9119 just prior to lights off (19:00 hrs) to C57B1/6J mice fed ad libitum. Figure 19B, in contrast, shows no effect of morning (10:00 hrs) SHU9119 administration in C57B1/6J mice fed ad libitum. Figure 19C illustrates stimulation of daytime feeding by SHU9119 administration in fasted C57B1/6J mice. In deriving the data points comprising these Figures, food remaining was briefly removed and weighted at the time intervals indicated. Data points indicate the mean and bars indicate standard error. Significance of the effect over time was determined by ANOVA with repeated measures. Significance of drug effects at individual time points was determined by two-way ANOVA, and is indicated in each Figure (***=P<0.001, **=P<0.05).

20

15

5

10

These results demonstrated that ICV administration of SHU9119 into one lateral ventricle of the C57B1/6J mouse just prior to lights out led to a mean 60% increase in food intake over 12 hrs (Figure 19A; P<0.005). In contrast, daytime food intake in animals fed ad libitum was not stimulated by administration of SHU9119 (Figure 19B). SHU9119-treatment did, however, significantly stimulate daytime food intake in animals fasted for 16 hrs prior to the experiment (Figure 19C; P<0.001). Stimulation of feeding was evident at approximately two hrs post-treatment, and continued for 12 hrs, to produce a mean 34% in food intake relative to vehicle-injected controls.

30

25

These results supported the hypothesis that agouti and/or SHU9119 stimulate feeding by antagonizing MC receptors in the central nervous system. To further test this hypothesis, a series of experiments were performed wherein MC receptor agonists were administered to animals primed by fasting to eat, to determine whether feeding in such animals could be inhibited by the MC receptor agonists. Animals were induced to feed

by food deprivation for 16h prior to ICV administration of the non-specific melanocortin agonist MTII. In these experiments, ICV injections in male C57B1/6J mice (20-30g) and the measurement of food intake were performed as described above.

Results of these experiments are shown in Figures 20A through 20C. In comparison to vehicle-injected animals, MTII was found to produce a potent inhibition of feeding within one hour after administration (Figure 20A) in a dose-responsive manner. Food intake was significantly inhibited for up to four hours following administration (P<0.001) at the highest dose administered (3nmol), and decreased food intake continued for the next four hours with normal rates of food intake resuming at about 8 hours after treatment. This dose-responsive inhibition of feeding had an IC₅₀ at the two hour time point of approximately 0.5nmol (Figure 20B). However, inhibition of feeding with 3nmol MTII was completely blocked by co-administration of 6nmol SHU9119 (Figure 20C; P<0.001), demonstrating that the effect results specifically from agonist binding to the MC-4 and/or MC-3 receptor.

15

20

10

5

Locomotor assays were performed to determine whether the effects on feeding behavior observed in these mice were secondary to generalized behavioral effects caused by administration of these melanocortin analogues. The effects of MTII on locomotor activity were tested by placing vehicle or MTII-treated mice in sound and light-proof cages containing multiple light beam detectors. These assays were performed by first injecting 3nmol MTII or acsf as described above. At three hours (2:45-3:25) post-injection, 12 mice were placed into 12 separate boxes containing multiple infrared light sources and photodetectors. The boxes were contained within separate ventilated light and sound attenuating chambers (Coulbourn model E10-20). Disruption of the infrared beams, with a 10msec resolution, was tallied independently for each one minute time period in each cage. The results of these assays are shown in Figure 20D. Data points indicate the mean total activity (# of light breaks) for 6 animals in each experimental group. Four way ANOVA statistical analysis was used to analyze the data, and indicated an absence of a significant difference among the two groups.

30

25

Inhibition of feeding by MTII could not be explained by any apparent behavioral abnormalities, or any effect on arousal or locomotor activity. MTII-treated animals appeared alert and exhibited no unusual behavior relative to controls. At approximately three hours after ICV administration, MTII-treated animals exhibited locomotor activity

that was indistinguishable from vehicle-treated animals (Figure 20D). The higher initial activity, indicative of exploratory behavior, and continued locomotion over a 15 min period was indistinguishable between the two groups, indicating that the inhibition of feeding was not due to decreased locomotion or decreased arousal.

5

10

15

The administration of MTII also inhibited food intake in three other models of hyperphagia: the C57B1/6J-Lep^{ob} mouse, a neuropeptide Y (NPY)-injected C57B1/6J mouse and a C57B1/6J-A^r mouse. Figure 21A shows inhibition of feeding by intracerebroventricular administration of MTII in A^Y mice (females, 19-28gms). Figure 21B shows inhibition of feeding by intracerebroventricular administration of MTII in C57B1/6J mice (females, 21-25gm) stimulated to feed by co-administration of NPY. Figure 21C shows inhibition of feeding by intracerebroventricular administration of the MTII in ob/ob mice (females, 48-69 gms). Figure 21D shows inhibition of feeding in ob/ob mice by intraperitoneal administration of MTII (females, 40-45 gms). ICV injections and measurement of food intake were performed as described above, with the exception of NPY treated animals, which were not fasted prior to experimentation. Animals treated intraperitoneally received 100µl of a 1mM solution of MTII in saline, and vehicle injections consisted of the same amount of saline alone. Significance indicated for individual time points, determined as described above, was for 3nmol MTII vs. acsf (Figure 21A), 1.18 nmol NPY vs. 1.18 nmol NPY + 3 nmol MTII (Figure 21B), 3nmol MTII vs. acsf (Figure 21C), and 100 nmol MTII vs. saline (Figure 21D).

20

The hyperphagia in these models can be clearly seen by comparing the 12 hr food intake following a fast in vehicle-injected C57B1/6J (2.4g, Figure 19A), C57B1/6J- A^{γ} (3.7g, Figure 21A) and C57B1/6J- Lep^{ob} (3.7g. Figure 21C) animals. As expected, MTII treatment inhibited food intake following a 16 hr fast in the C57B1/6J- A^{γ} mouse (Figure 21A; P<0.05). Interestingly, while food intake for the first four hours is significantly inhibited relative to vehicle-injected animals, it is also significantly less inhibited in the C57B1/6J- A^{γ} animal than in the C57B1/6J animal given the same 3nmol dose (compare, Figure 20A versus Figure 21A, 1-4 hrs; P<0.001). The decreased effectiveness of the agonist in the presence of the A^{γ} allele is consistent with the proposal that this allele results in chronic expression of agouti peptide melanocortin antagonist in the brain.

30

25

MTII, upon co-administration, also significantly inhibited the profound stimulation of feeding induced by NPY, measured over a three hr period (Figure 21C;

P<0.005). Co-administration of an approximately two-fold molar excess of MTII produced a 74% inhibition of NPY-stimulated food intake at the three hour time point.

Finally, MTII also inhibited hyperphagia due to absence of leptin in the C57B1/6J- Lep^{ob} mouse (Figure 21C; P<0.001). MTII potently blocked feeding (Figure 20A) in these animals, in contrast to the less potent inhibition described above for the C57B1/6J- A^{γ} mouse.

5

10

15

20

25

30

The C57B1/6J-Lep^{ob} animal was also used to test the ability of MTII to regulate feeding when administered peripherally. Moderate doses (100nmol) of MTII inhibited feeding in the C57B1/6J-Lep^{ob} mouse (P<0.001) while low doses (10nmol) did not (date not shown). The kinetics were similar to those seen with ICV administration, with a potent inhibition of feeding for the first four hours. The 100-fold higher dose required peripherally, as well as the similar kinetics, suggest a primarily central nervous system-based mechanism of action of MTII.

These data show that melanocortinergic neurons exert a tonic inhibition of feeding behavior, and that disruption of this signal leads to hyperphagia. With regard to the recently-discovered leptin hormone made by adipocytes, which is generally expressed at elevated levels in obese humans and rodents (such as the C57B1/6J-Lep^{ob} animal), the regulatory defect is understood to be an incapacity to respond properly to the leptin hormone signal. The instant results indicate that the melanocortins act independently, and physiologically "downstream," from the leptin hormone/receptor interaction, because it has been shown herein that melanocortin receptor agonists can potently inhibit feeding in the C57B1/6J-Lep^{ob} animal.

These results suggest that MC receptor agonists and antagonists can affect mammalian feeding behavior, and provide a means for determining candidate compounds for the development of effective pharmacological products directed towards alleviating such human ailments as obesity, anorexia and cachexia.

EXAMPLE 6

Use of MC Receptor-Expressing Recombinant Cells for Screening Compounds that Affect Feeding Behavior in Mammals

The results obtained in Example 5 indicated that cells expressing a variety of mammalian melanocortin receptors are useful for characterizing compounds as a first

step towards developing MC receptor agonists and antagonists for controlling feeding behavior in mammals, particularly obesity and overweight disorders in general, as well as anorexia, cachexia and other failure-to-thrive disorders.

A panel of mammalian melanocortin receptor-expressing recombinant cells are provided as described above in Example 3, wherein each member of the panel comprises appropriate mammalian cells, such as human 293 cells, comprising a recombinant expression construct encoding the MC-1, MC-2 (ACTH), MC-3, MC-4 or MC-5 receptor, the panel constructed to comprise cells functionally expressing each of these MC receptor proteins.

10

5

The panel is used as follows. Receptor agonist activity is assayed by transient or stable expression of a protein which produces a metabolite reporter molecule in response to receptor binding by any of the MC receptor proteins. An example of such a reporter system is the recombinant expression construct described in Example 4, wherein cAMP responsive elements (CREs) are operatively linked to a bacterially-derived β -galactosidase (β -gal) gene. In the event of receptor binding, cAMP is produced in the mammalian cell, and the CRE induces β -gal expression. When coincubated with a colorless substrate for β -gal, receptor binding results in conversion of the colorless substrate to a blue-colored product, which can be easily scored visually or spectrophotometrically. Alternative reporter genes, such a luciferase, can also be used as reporter systems, provided that expression of the reporter molecule-producing protein is functionally linked to receptor binding of a test compound. Alternatively, cAMP production resulting from MC receptor binding can also be measured directly.

20

15

Assay panels are arranged so that agonist activity can be identified, quantitated and correlated with expression of each MC receptor. Automated assays using such panels are also envisioned, whereby the qualitative and quantitative detection of a reporter metabolite is detected in an array (such as a 96-well tissue culture plate) and the data collected and assembled into a computer data-base or other analytical program.

30

25

Antagonist activity is detected by a modification of the above assay. In this assay, the inhibition of cAMP production by a standardized amount of a known receptor agonist, specific for each receptor, is assayed in the presence of a putative antagonist compound. Production of metabolite reporter molecules and their qualitative and quantitative detection is achieved as described above, and the specificity and potency of

each antagonist compound characterized with regard to the degree of inhibition achieved for each receptor.

In view of the instant disclosure, MC-3/MC-4 receptor antagonists are expected to be useful to inhibit food intake in a hungry animal, and MC-3/MC-4 receptor agonists are expected to be useful to increase food intake in an animal. Alternative patterns of feeding behavior associated with different patterns of MC receptor agonist/antagonist activity can be determined using this assay.

5

10

15

20

25

Compounds having agonist or antagonist activity with the MC-3 or MC-4 receptors detected using this assay are further screened *in vivo* to determine whether the observed receptor binding activity results in modification of feeding behavior when administered to an animal. In these assays, the MC receptor binding compounds detected using the assay are administered intracranioventricularly as described above in Example 5 to animals after an overnight fast, to waking animals, or to animals that are not otherwise primed to be hungry. Feeding and locomotor activity is monitored in these animals, and compounds affecting eating behavior (either by inhibiting feeding in otherwise hungry animals or stimulating feeding in otherwise sated animals) are selected for further development.

In addition, systemic administration of compounds found to be active by ICV administration assays is used to screen such compounds for the ability to cross the blood-brain barrier. Such compounds are also useful as templates for modifications aimed at increasing the availability of these compounds in the brain after systemic administration, for increasing bioactivity, or both.

It should be understood that the foregoing disclosure emphasizes certain specific embodiments of the invention and that all modifications or alternatives equivalent thereto are within the spirit and scope of the invention as set forth in the appended claims.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: Oregon Health Sciences University
 - (B) STREET: 3181 S.W. Sam Jackson Park Road
 - (C) CITY: Portland
 - (D) STATE: Oregon
 - (E) COUNTRY: USA
 - (F) POSTAL CODE (ZIP): 97201
 - (G) TELEPHONE: 503-494-8200
 - (H) TELEFAX: 503-494-4729
 - (ii) TITLE OF INVENTION: Methods and Reagents for Discovering and
 Using Mammalian Melanocortin Receptor Agonists and Antagonists
 To Modulate Feeding Behavior in Animals
 - (iii) NUMBER OF SEQUENCES: 19
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (v) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: mics feature
 - (B) LOCATION: 1..35

PCT/US97/15565

WO 98/10068

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAGTCGACCT GTGYGYSATY RCNNTKGACM GSTAC

35

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: mics_feature
 - (B) LOCATION: 1..32
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CAGAATTCAG WAGGGCANCC AGCAGASRYG AA

32

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1260 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (ix) FEATURE:
 - (A) NAME/KEY: 5'UTR
 - (B) LOCATION: 1..14
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 15..959
 - (ix) FEATURE:
 - (A) NAME/KEY: 3'UTR
 - (B) LOCATION: 960..1260

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TTCCTGACAA GACT		CAG AAG AGT CTT Gln Lys Ser Let 10	Leu Gly	50
TCT CTC AAC TCC Ser Leu Asn Ser 15				
TCA GAG CCT TGG Ser Glu Pro Trp 30				:6
AGC CTA GGG CTG Ser Leu Gly Leu 45				14
ATC ACC AAA AAC Ile Thr Lys Asn				2
TGC CTG GCC CTG Cys Leu Ala Leu 80			Leu Glu	ι Ο
ACT ACT ATC ATC Thr Thr Ile Ile 95				8
GCT TTG GTG CAG Ala Leu Val Gln 110				6
TCC ATG GTG TCC Ser Met Val Ser 125				4
TAC ATC TCC ATC Tyr Ile Ser Ile				2
CCC AGA GCA CGA Pro Arg Ala Arg 160			Ile Val	0
TCC AGC ACC CTC Ser Ser Thr Leu 175				8

															CTG	626
Cys	Leu 190	Val	Thr	Phe	Phe	Leu 195	Ala	Met	Leu	Ala	Leu 200	Met	Ala	Ile	Leu	
TAT	GCC	CAC	ATG	TTC	ACG	AGA	GCG	TGC	CAG	CAC	GTC	CAG	GGC	ATT	GCC	674
Tyr	Ala	His	Met	Phe	Thr	Arg	Ala	Cys	Gln	His	Val	Gln	Gly	Ile	Ala	
205					210					215			•		220	
CAG	CTC	CAC	AAA	AGG	CGG	CGG	TCC	ATC	CGC	CAA	GGC	TTC	TGC	CTC	AAG	722
Gln	Leu	His	Lys	Arg 225	Arg	Arg	Ser	Ile	Arg 230	Gln	Gly	Phe	Cys	Leu 235	Lys.	
GGT	GCT	GCC	ACC	CTT	ACT	ATC	CTT	CTG	GGG	ATT	TTC	TTC	CTG	TGC	TGG	770
Gly	Ala	Ala	Thr 240	Leu	Thr	Ile	Leu	Leu 245	Gly	Ile	Phe	Phe	Leu 250	Cys	Trp	•
GGC	CCC	TTC	TTC	CTG	CAT	CTC	TTG	CTC	ATC	GTC	CTC	TGC	CCT	CAG	CAC	818
Gly	Pro	Phe 255	Phe	Leu	His	Leu	Leu 260	Leu	Ile	Val	Leu	Сув 265	Pro	Gln	His	
CCC	ACC	TGC	AGC	TGC	ATC	TTC	AAG	AAC	TTC	AAC	CTC	TTC	CTC	CTC	CTC	866
Pro	Thr 270	Cys	Ser	Cys	Ile	Phe 275	Lys	Asn	Phe	Asn	Leu 280	Phe	Leu	Leu	Leu	
														CGC		914
Ile 285	Val	Leu	Ser		Thr 290	Val	Asp	Pro	Leu	11e 295	Tyr	Ala	Phe	Arg	Ser 300	
						CTC										959
Gln	Glu	Leu	Arg	Met 305	Thr	Leu	Lys		Val 310	Leu	Leu	Cys	Ser	Trp 315		
TGAT	CAGA	.GG G	CGCT	GGGC	A GA	GGGT	GACA	GTG	ATAT	CCA	GTGG	CCTG	CA 1	CTGI	GAGAC	1019
CACA	GGTA	CT C	ATCC	CTTC	C TG	ATCT	CCAT	TTG	TCTA	AGG	GTCG	ACAG	GA I	'GAGC	TTTAA	1079
ATA	GAAA	.cc c	AGAG	TGCC	T GG	GGCC	AGGA	GAA	AGGG	TAA	CTGT	GACT	GC A	GGGC	TCACC	1139
CAGG	GCAG	CT A	CGGG	AAGT	g ga	.GGAG	ACAG	GGA	TGGG	AAC	TCTA	GCCC	TG A	GCAA	GGGTC	1199
AGAC	CACA	GG C	TCCT	GAAG	A GC	TTCA	CCTC	TCC	CCAC	CTA	CAGG	CAAC	TC C	TGCT	CAAGC	1259
e 🖓								.'								1260

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 315 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ser Thr Gln Glu Pro Gln Lys Ser Leu Leu Gly Ser Leu Asn Ser 1 5 10 15

- Asn Ala Thr Ser His Leu Gly Leu Ala Thr Asn Gln Ser Glu Pro Trp
 20 25 30
- Cys Leu Tyr Val Ser Ile Pro Asp Gly Leu Phe Leu Ser Leu Gly Leu 35 40 45
- Val Ser Leu Val Glu Asn Val Leu Val Val Ile Ala Ile Thr Lys Asn 50 55 60
- Arg Asn Leu His Ser Pro Met Tyr Tyr Phe Ile Cys Cys Leu Ala Leu 65 70 75 80
- Ser Asp Leu Met Val Ser Val Ser Ile Val Leu Glu Thr Thr Ile Ile 85 90 95
- Leu Leu Leu Glu Val Gly Ile Leu Val Ala Arg Val Ala Leu Val Gln
 100 105 110
- Gln Leu Asp Asn Leu Ile Asp Val Leu Ile Cys Gly Ser Met Val Ser 115 120 125
- Ser Leu Cys Phe Leu Gly Ile Ile Ala Ile Asp Arg Tyr Ile Ser Ile 130 135 140
- Phe Tyr Ala Leu Arg Tyr His Ser Ile Val Thr Leu Pro Arg Ala Arg 145 150 155 160
- Arg Ala Val Val Gly Ile Trp Met Val Ser Ile Val Ser Ser Thr Leu 165 170 175
- Phe Ile Thr Tyr Tyr Lys His Thr Ala Val Leu Leu Cys Leu Val Thr 180 185 190
- Phe Phe Leu Ala Met Leu Ala Leu Met Ala Ile Leu Tyr Ala His Met 195 200 205
- Phe Thr Arg Ala Cys Gln His Val Gln Gly Ile Ala Gln Leu His Lys 210 215 220
- Arg Arg Arg Ser Ile Arg Gln Gly Phe Cys Leu Lys Gly Ala Ala Thr 225 230 235 240
- Leu Thr Ile Leu Gly Ile Phe Phe Leu Cys Trp Gly Pro Phe Phe 245 250 9 255

															_		
Leu	His	Leu	Leu 260	Leu	Ile	Val	Leu	Cys 265	Pro	Gln	His	Pro	Thr 270	Cys	Ser		
Cys	Ile	Phe 275	Lys	Asn	Phe	Asn	Leu 280	Phe	Leu	Leu	Leu	Ile 285	Val	Leu	Ser		
Ser	Thr 290	Val	Asp	Pro	Leu	Ile 295	Tyr	Ala	Phe	Arg	Ser 300	Gln	Glu	Leu	Arg		
Met 305	Thr	Leu	Lys	Glu	Val 310	Leu	Leu	Cys	Ser	Trp 315					,		
					*.									•			
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	ro : 5 :		<i>i</i>								
•	(i)	(A (B	LE TY	E CH INGTH PE: RAND POLO	: 16 nucl	33 b eic SS:	ase acid sing	pair	S						. -	·•	
	(ii)	MOL	ECUL	E TY	PE:	CDNA	to	mRNA									
	(ix)	(A) NA	: ME/K CATI													
	(ix)	(A) NA	: ME/K CATI			.141	5								·	
	(ix)	A)) NAI	: ME/KI CATIO				33									
	(xi)	SEQ	JENCI	E DE	SCRII	PTIO	N: S	EQ II	ONO:	5:	-						
CCCG	CATG	IG GO	CCGC	CTC	Y ATO	GGAG	GCT	CTG	AGAA	GA C	CTTT	LAAA?	AC GO	CAGA	AAAA	60)
AGCT	CCAT	rc Ti	rccci	AGAC	TC	AGCG	CAGC	CCTC	GCCC	CAG C	GAAGO	GAGG	A G	ACAG	AGGCC	120	כ
AGGA	CGGT	CC AC	BAGGT	rgtco	AA E	ATGT	CTG	GGA	CCT	AG C	CAGCA	AGCCA	AC CZ	\GGG/	AAGAG	180)

240

300

GCAGGGAGGG AGCTGAGGAC CAGGCTTGGT TGTGAGAATC CCTGAGCCCA GGCGGTTGAT

GCCAGGAGGT GTCTGGACTG GCTGGGCCAT GCCTGGGCTG ACCTGTCCAG CCAGGGAGAG

GGTGTGAGG	G CAGATCTG	GG GGTGCCCAGA	A TGGAAGGAGG	CAGGCATGGG GACACCCAAG	360
GCCCCTGG	C AGCACCATO	GA ACTAAGCAG	G ACACCTGGAG	GGGAAGAACT GTGGGGACCT	420
GGAGGCCTC	CC AACGACTC	CT TCCTGCTTC	C TGGACAGGAC	T ATG GCT GTG CAG Met Ala Val Gln 1	473
GGA TCC C Gly Ser G	CAG AGA AGA Bln Arg Arg	CTT CTG GGC Leu Leu Gly 10	TCC CTC AAC Ser Leu Asn 15	TCC ACC CCC ACA GCC Ser Thr Pro Thr Ala 20	521
ATC CCC C	CAG CTG GGG Sln Leu Gly 25	CTG GCT GCC Leu Ala Ala	AAC CAG ACA Asn Gln Thr 30	GGA GCC CGG TGC CTG Gly Ala Arg Cys Leu 35	569
GAG GTG T	CCC ATC TCT Ser Ile Ser 40	GAC GGG CTC Asp Gly Leu	TTC CTC AGC Phe Leu Ser 45	CTG GGG CTG GTG AGC Leu Gly Leu Val Ser 50	617
TTG GTG G Leu Val G	EAG AAC GCG Slu Asn Ala 55	CTG GTG GTG Leu Val Val 60	GCC ACC ATC Ala Thr Ile	GCC AAG AAC CGG AAC Ala Lys Asn Arg Asn 65	665
CTG CAC T Leu His S 70	CCA CCC ATG Ser Pro Met	TAC TGC TTC Tyr Cys Phe 75	ATC TGC TGC Ile Cys Cys	CTG GCC TTG TCG GAC Leu Ala Leu Ser Asp 80	713
CTG CTG G Leu Leu V 85	eTG AGC GGG Val Ser Gly	ACG AAC GTG Thr Asn Val 90	CTG GAG ACG Leu Glu Thr 95	GCC GTC ATC CTC CTG Ala Val Ile Leu Leu 100	761
CTG GAG G Leu Glu A	GCC GGT GCA Ala Gly Ala 105	CTG GTG GCC Leu Val Ala	CGG GCT GCG Arg Ala Ala 110	GTG CTG CAG CAG CTG Val Leu Gln Gln Leu 115	809
GAC AAT G Asp Asn V	GTC ATT GAC Val Ile Asp 120	GTG ATC ACC Val Ile Thr	TGC AGC TCC Cys Ser Ser 125	ATG CTG TCC AGC CTC Met Leu Ser Ser Leu 130	857
Cys Phe I	CTG GGC GCC Leu Gly Ala	ATC GCC GTG Ile Ala Val 140	GAC CGC TAC Asp Arg Tyr	ATC TCC ATC TTC TAC Ile Ser Ile Phe Tyr 145	905
GCA CTG C Ala Leu A 150	CGC TAC CAC	AGC ATC GTG Ser Ile Val 155	ACC CTG CCG Thr Leu Pro	CGG GCG CCG CGA GCC Arg Ala Pro Arg Ala 160	953
GTT GCG G Val Ala A 165	GCC ATC TGG Ala Ile Trp	GTG GCC AGT Val Ala Ser 170	GTC GTC TTC Val Val Phe 175	AGC ACG CTC TTC ATC Ser Thr Leu Phe Ile 9 180	1001

		TAC Tyr		His					Leu					Phe		1049
				185					190					195		
		ATG	-													1097
Leu	Ala	Met	Leu 200	Val	Leu	Met	Ala	Val 205	Leu	Asp	Val	His	Met 210	Leu	Ala	
		TGC														1145
Arg	Ala	Cys 215	Gln	His	Ala	Gln	Gly 220	Ile	Ala	Arg	Leu	His 225	Lys	Arg	Gln	
		GTC														1193
Arg	Pro 230	Val	His	Gln	Gly	Phe 235	Gly	Leu	Lys	Gly	Ala 240	Val	Thr	Leu	Thr	
		CTG														1241
11e 245	Leu	Leu	Gly	Ile	250	Phe	Leu	Cys	Trp	G1y 255	Pro	Phe	Phe	Leu	His 260	
															ATC	1289
Leu	Thr	Leu	Ile	Val 265	Leu	Cys	Pro	Glu	His 270	Pro	Thr	Cys	Gly	Cys 275	Ile	
		AAC														1337
Phe	Lys	Asn	Phe 280	Asn	Leu	Phe	Leu	Ala 285	Leu	Ile	Ile		Asn 290	Ala	Ile	٠
		CCC														1385
Ile	Asp	Pro 295	Leu	Ile	Tyr		Phe 300	His	Ser	Gln		Leu 305	Arg	Arg	Thr	
		GAG							TGA	GCGC	GGTG	CA C	GCGC	TTTA	A	1435
Leu	Lys 310	Glu	Val	Leu	Thr	Cys 315	Ser	Trp								
GTGI	GCTC	GG C	AGAG	GGAG	G TG	GTGA	TATI	GTG	GTCT	GGT	TCCT	GTGT	GA C	CCTG	GGCAG	1495
TTCC	TTAC	CT C	CCTG	GTCC	C CG	TTTG	TCAA	AGA	.GGAT	GGA	СТАА	ATGA	TC T	CTGA	AAGTG	1555
TTGA	AGCG	CG G	ACCC	TTCT	G GG	CAGG	GAGG	GGT	CCTG	CAA	AACT	CCAG	GC A	GGAC	TTCTC	1615
ACCA	GCAG	TC G	TGGG	AAC					•				٠			1633

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 317 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Met Ala Val Gln Gly Ser Gln Arg Arg Leu Leu Gly Ser Leu Asn Ser 1 5 10 15
- Thr Pro Thr Ala Ile Pro Gln Leu Gly Leu Ala Ala Asn Gln Thr Gly
 20 25 30
- Ala Arg Cys Leu Glu Val Ser Ile Ser Asp Gly Leu Phe Leu Ser Leu 35 40 45
- Gly Leu Val Ser Leu Val Glu Asn Ala Leu Val Val Ala Thr Ile Ala 50 55 60
- Lys Asn Arg Asn Leu His Ser Pro Met Tyr Cys Phe Ile Cys Cys Leu 65 70 75 80
- Ala Leu Ser Asp Leu Leu Val Ser Gly Thr Asn Val Leu Glu Thr Ala 85 90 95
- Val Ile Leu Leu Glu Ala Gly Ala Leu Val Ala Arg Ala Ala Val 100 105 110
- Leu Gln Gln Leu Asp Asn Val Ile Asp Val Ile Thr Cys Ser Ser Met 115 120 125
- Leu Ser Ser Leu Cys Phe Leu Gly Ala Ile Ala Val Asp Arg Tyr Ile 130 135 140
- Ser Ile Phe Tyr Ala Leu Arg Tyr His Ser Ile Val Thr Leu Pro Arg 145 150 155 160
- Ala Pro Arg Ala Val Ala Ala Ile Trp Val Ala Ser Val Val Phe Ser 165 170 175
- Thr Leu Phe Ile Gly Tyr Tyr Asp His Val Ala Val Leu Leu Cys Leu 180 185 190
- Val Val Phe Phe Leu Ala Met Leu Val Leu Met Ala Val Leu Asp Val 195 200 205
- His Met Leu Ala Arg Ala Cys Gln His Ala Gln Gly Ile Ala Arg Leu 210 215 220
- His Lys Arg Gln Arg Pro Val His Gln Gly Phe Gly Leu Lys Gly Ala 225 230 235 240
- Val Thr Leu Thr Ile Leu Leu Gly Ile Phe Phe Leu Cys Trp Gly Pro 245 250 255

Pne	Pne	ьeu	260	ьeu	Thr				ren	•	PIO	GIU	270	PIO	Inr
Cys	Gly	Cys 275	Ile	Phe	Lys	Asn	Phe 280	Asn	Leu	Phe	Leu	Ala 285	Leu	Ile	Ile
_	_				_	_	_		_				_		

Cys Asn Ala Ile Ile Asp Pro Leu Ile Tyr Ala Phe His Ser Gln Glu 290 295 300

Leu Arg Arg Thr Leu Lys Glu Val Leu Thr Cys Ser Trp * 305 310 315

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2012 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (ix) FEATURE:
 - (A) NAME/KEY: 5'UTR
 - (B) LOCATION: 1..693
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 694..1587
- (ix) FEATURE:
 - (A) NAME/KEY: 3'UTR
 - (B) LOCATION: 1588..2012
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AC	AACACTTT	ATATATATT	TTATAAATGT	AAGGGGTACA	AAGGTGCCAT	TTTGTTACAT	60
GG	ATATACCG	TGTAGTGGTG	AAGCCTGGGC	TTTTAGTGTA	TCTGTCATCA	GAATAACATA	120
CG	TGTTACCC	ATAGGAATTT	CTCATCACCC	GCCCCTCCA	CCCTTCGAGT	CTCCAATGTC	180
CA	TTCCACAC	TCTATATCCA	CGTGTATGCA	TATAGCTCCA	CATATAAGTG	AGAACATGTA	240
GT	ATTTGACT	TCCTCTTTCT	GAGTTATTTC	ACTTTGATAA	TGGCCTCCAC	TTCCATCCAT	300
GT	TGCTGCAA	AAGACATGAC	CTTATTCTTT	TTGATAGCTG	GGGAGTACTC	CATTGTGTAT	360
AT	GTACCACA	TTTCTTTATC	CATTCACCCA	TTGAGAACAC	TTAGTTGATT	CCATATCTTT	420

GCT	TTGI	CA C	CTAG	rgcto	C AF	TAA	CAT	CAT	GTG	CAGG	CTC	TTC	CAA 1	CATAC	CTGATT	480
TAT	\TTT	TAT (GAG/	GAG	AT AG	AGT	CTT	A GCC	AGTO	TGC	TGT	TAT	TC 7	CAGTO	TACTT	540
GCA	CTA	ATA 1	TCT	TAT	AC TO	CCTI	TAGO	TGA	ATTGO	GAGA	TTTA	ACT	TAG A	ATCT	CAGCA	600
AGTO	CTAC	CAA	BAAG	\AAA(SA TO	CTG	AGA	TCA	ATC	AAGT	TTCC	GTG	AAG 7	CAAC	STCCAA	660
GTA	CATO		CGCC1	CAAT?	C AC	CAAGO	AGGA	A GAZ	Met	AAG Lys	CAC His	TATT	ATC E Ile	. Asr	TCG Ser	714
					AAC											762
Tyr	Glu	Asn 10	Ile	Asn	Asn	Thr	Ala 15	Arg	Asn	Asn	Ser	Asp 20	Cys	Pro	Arg	٠.
TGT	GTT	TTG	CCG	GAG	GAG	ATA	TTT	TTC	ACA	ATT	TCC	TTA	GTT	GGA	GTT	810
Cys	Val 25	Leu	Pro	Glu	Glu	Ile 30	Phe	Phe	Thr	Ile	Ser 35	Ile	Val	Gly	Val	
TTG	GAG	AAT	CTG	ATC	GTC	CTG	CTG	GCT	GTG	TTC	AAG	AAT	AAG	AAT	CTC	858
	Glu	Asn	Leu	Ile	Val	Leu	Leu	Ala	Val	Phe 50	Lys	Asn	Lys	Asn	Leu 55	
40				-	45					30	•				23	•
CAG	GCA	CCC	ATG	TAC	TTT	TTC	ATC	TGT	AGC	TTG	GCC	ATA	TCT	GAT	ATG	906
Gln	Ala	Pro	Met	Tyr 60	Phe	Phe	Ile	Cys	Ser 65	Leu	Ala	Ile	Ser	Asp 70	Met	
CTG	GGC	AGC	CTA	TAT	AAG	ATC	TTG	GAA	AAT	ATC	CTG	ATC	ATA	TTG	AGA	954
Leu	Gly	Ser	Leu 75	Tyr	Lys	Ile	Leu	Glu 80	Asn	Ile	Leu	.Ile	Ile 85	Leu	Arg	
AAC	ATG	GGC	ATA	CTC	AAG	CCA	CGT	GGC	AGT	TTT	GAA	ACC	ACA	GCC	CAT	1002
Asn	Met	Gly 90	Ile	Leu	Lys	Pro	Arg 95	Gly	Ser	Phe	Glu	Thr 100	Thr	Ala	His	
GAC	ልጥሮ	ATC	GAC	TCC	CTG	TTT	CTG	CTC	TCC	CGT	CTT	GGC	TCC	ATC	TTC	1050
Asp	Ile	Ile	Asp	Ser	Leu	Phe	Leu	Leu	Ser	Arg	Leu	Gly	Ser	Ile	Phe	
	105		. •			110					115	·	•			
GAC	СТС	СТС	GTG	ATT	GCT	GCG	GAC	CGC	TAC	ATC	ACC	ATC	TTC	CAC	GCA	1098
Asp	Leu	Leu	Val	Ile	Ala	Ala	Asp	Arg	Tyr	Ile	Thr	Ile	Phe	His	Ala	
120					125					130					135	
CTG	CGG	TAC	CAC	AGC	ATC	GTG	ACC	ATG	CGC	CGC	ACT	GTG	GTG	GTG	CTT	1146
Leu	Arg	Tyr	His	Ser	Ile	Val	Thr	Met	Arg	Arg	Thr	Val	Val	Val	Leu	
				140					145					150		•
ACG	GTC	ATC	TGG	ACG	TTC	TGC	ACG	GGG	ACT	GGC	ATC	ACC	ATG	GTG	ATC	1194
Thr	Val	Ile	Trp	Thr	Phe	Cys	Thr	Gly	Thr	Gly	Ile	Thr	Met	Val	Ile	
			155					160				. 🥹	165			

								Ile							CCG Pro	1242
				TTC Phe												1290
•				ACC Thr												1338
				ACA Thr 220												1386
				GTG Val											AGT Ser	1434
				GCC Ala											ATG Met	1482
				AAT Asn	Ala		4 4			Phe						1530
				AGG Arg					Lys					Ser		1578
TAC		TAG *	AATG	GCTG	AT C	CCTG	GTTT	T AG	AATC	CATG	GGA	ATAA	CGT	,		1627
TGCC	AAGT	GC C	AGAA	TAGT	G TA	ACAT	TCCA	ACA	AATG(CCA	GTGC	FCCT	CA C	TGGC	CTTCC	1687
TTCC	CTAA	TG G	ATGC.	AAGG.	A TG	ACCC	ACCA	GCT	AGTG'	TTT	CTGA	ATAC'	ra T	GCC.	AGGAA	1747
CAGT	CTAT	TG T	AGGG	GCAA	C TC	TATT	rgtg	ACT	GGAC	AGA '	TAAA	ACGT	GT A	GTAA	AAGAA	1807
GGAT	AGAA	TA C	AAAG	TATT	A GG	TACA	AAAG	TAA'	TTAG	err '	TGCA:	TAC	FT A	rgac:	DTAAA	1867
CATT	ACTT	TT G	CACC	AATC	r agʻ	IAAA1	ACAG	CAA'	IAAAI	AAT :	rcaa(GGC1	rr ro	GGC'	FAAGG	.1927
CAAA	GACT	TG C'	TTTC(CTGT	G GA	CATTA	AACA	AGC	CAGT	CT (GAGG	CGCC	T T	CCA	GGTGG	1987
AGGC	CATT	GC A	GCCA	ATTT	C AG	AGT			•				•			2012

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 297 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
- Met Lys His Ile Ile Asn Ser Tyr Glu Asn Ile Asn Asn Thr Ala Arg 1 5 10 15
- Asn Asn Ser Asp Cys Pro Arg Cys Val Leu Pro Glu Glu Ile Phe Phe 20 25 30
- Thr Ile Ser Ile Val Gly Val Leu Glu Asn Leu Ile Val Leu Leu Ala 35 40 45
- Val Phe Lys Asn Lys Asn Leu Gln Ala Pro Met Tyr Phe Phe Ile Cys
 50 55 60
- Ser Leu Ala Ile Ser Asp Met Leu Gly Ser Leu Tyr Lys Ile Leu Glu 65 70 75 80
- Asn Ile Leu Ile Ile Leu Arg Asn Met Gly Ile Leu Lys Pro Arg Gly 85 90 95
- Ser Phe Glu Thr Thr Ala His Asp Ile Ile Asp Ser Leu Phe Leu Leu 100 105 110
- Ser Arg Leu Gly Ser Ile Phe Asp Leu Leu Val Ile Ala Ala Asp Arg 115 120 125
- Tyr Ile Thr Ile Phe His Ala Leu Arg Tyr His Ser Ile Val Thr Met 130 135 140
- Arg Arg Thr Val Val Val Leu Thr Val Ile Trp Thr Phe Cys Thr Gly
 145 150 155 160
- Thr Gly Ile Thr Met Val Ile Phe Ser His His Val Pro His Val Ile 165 170 175
- Thr Phe Thr Ser Leu Phe Pro Leu Met Leu Val Phe Ile Leu Cys Leu 180 185 190
- Tyr Val His Met Phe Leu Leu Ala Arg Trp His Thr Arg Lys Ile Ser 195 200 205
- Thr Leu Pro Arg Ala Asn Met Lys Gly Ala Met Thr Leu Thr Ile Leu 210 215 220

	wo 9	8/100	68			•	. •				٠.		•	•	PC	T/US97/15
Leu 225	Gly	Val	Phe	Ile	Phe 230	Cys	Trp	Ala	Pro	Phe 235	Val	Leu	His	Val	Leu 240	
Leu	Met	Thr	Phe	Cys 245		Ser	Asn	Pro	Tyr 250		Ala	Cys	Tyr	Met 255	Ser	
Leu	Phe	Gln	Val 260		Gly	Met	Leu	Ile 265	Met	Cys	Asn	Ala	Val 270	Ile	Asp	
Pro	Phe	Ile 275	Tyr	Ala	Phe	Arg	Ser 280	Pro	Glu	Leu		Asp 285	Ala	Phe	Lys	
Lys	Met 290		Phe	Cys	Ser	Arg 295	Tyr	Trp	*							
			· · · · · · · · · · · · · · · · · · ·	٠.		••				:					٠	
(2)	INFO	RMAT	rion	FOR	SEQ	ID 1	10 : 9 :	:						٠.		
	(i)	(<i>I</i>	A) LI 3) T	CE CH ENGTH (PE:	I: 11 nucl	los i Leic	ase acid	pain i	r s							
				POLC				gle			1					
	(ii)	MOL	ECUI	E TY	PE:	CDNA	to	mRNA								
	(ix)) N2	: ME/K CATI									•		٠	
	(ix)	•	L) NA	: ME/K CATI			.102	16				;.			•	
	(ix)) NA	:: ME/K CATI				06								
	(xi)	SEC	UENC	E DE	SCR1	PTIC)N: S	EQ I	D NO	9:9:						
GGGG	CCAG	AA A	GTTC	CTGC	T TC	AGAG	CAGA	AGA	TCTT	CAG	CAAG	AACT	AC A	AAGA	AGAAA	60

AGATTCTGGA GAATCAATCA AGTTTCCTGT CAAGTTCCAG TAACGTTTCT GTCTTAACTG 120 CACACAGGAA AG ATG AAA CAC ATT CTC AAT CTG TAT GAA AAC CTC AAC 168 Met Lys His Ile Leu Asn Leu Tyr Glu Asn Leu Asn

			Arg					Суя					Leu		GAA Glu	216
	ATA Ile 30	Phe										Glu			ATG Met	264
	CTT Leu					Lys										312
Phe	TTC Phe	Ile	Cys	Ser 65	Leu	Ala	Ile	Ser	Asp 70	Met	Leu	Gly	Ser	Met 75	Tyr	360
Lys	ATT Ile	Leu	Glu 80	Asn	Val	Leu	Ile	Met 85	Phe	Lys	Asn	Met	Gly 90	Tyr	Leu	408
	Pro															456
	TTC Phe 110															504
	GCT Ala															552
_	ATG Met															600
	TGC Cys											Ser				648
	ACA Thr															696
	CTG Leu 190															744
	AGG Arg															792

CTG	ACT	GTC	CTG	CTC	GGG	GTC	TTC	ATT	TTC	TGT	TGG	GCA	CCC	TTT	GTC		840
Leu	Thr	Val	Leu	Leu	Gly	Val	Phe	Ile	Phe	Cys	Trp	Ala	Pro	Phe	Val		
				225					230					235			
CTT	CAT	GTC	CTC	TTG	ATG	ACA	TTC	TGC	CCA	GCT	GAC	CCC	TAC	TGT	GCC		888
Leu	His	Val	Leu	Leu	Met	Thr	Phe	Cys	Pro	Ala	Asp	Pro	Tyr	Cys	Ala		
			240					245					250				
						a. a											
														TGT			936
Cys	Tyr		Ser	Leu	Phe	GIn		Asn	GIÅ	vaı	Leu		Met	Сув	Asn		
		255					260					265					
GCC	ATC	ATC	GAC	CCC	TTC	АТА	TAT	GCC	TTT	CGG	AGC	CCA	GAG	CTC	AGG		984
														Leu			701
	270					275	-,-			3	280						
GTC	GCA	TTC	AAA	AAG	ATG	GTT	ATC	TGC	AAC	TGT	TAC	CAG	TAG				1026
Val	Ala	Phe	Lys	Lys	Met	Val.	Ile	Cys	Asn	Cys	Tyr	Gln	*				
285					290					295		·					
	. a mmc	ıam a	aama	3 mmm	m 20			000	3 M 3 M	N CITT	ama s	~~~×	a	a com			1006
AATG	ATTU	iGT C	CCTG	ATTI	T AG	GAGC	CACA	ر بالنان	ATAT	ACT	GICA	ADDD	CA G	AGTA	GCGTG	į	1086
ACAG	ACCA	AC A	ACAC	TAGG	A CT												1108
			_				•										

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 297 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Lys His Ile Leu Asn Leu Tyr Glu Asn Leu Asn Ser Thr Ala Arg

1 10 15

Asn Asn Ser Asp Cys Pro Ala Val Ile Leu Pro Glu Glu Ile Phe Phe 20 25 30

Thr Val Ser Ile Val Gly Val Leu Glu Asn Leu Met Val Leu Leu Ala 35 40 45

Val Ala Lys Asn Lys Met Leu Gln Ser Pro Met Tyr Phe Phe Ile Cys 50 55 60

Ser Leu Ala Ile Ser Asp Met Leu Gly Ser Met Tyr Lys Ile Leu Glu 65 70 75 80

Asn Val Leu Ile Met Phe Lys Asn Met Gly Tyr Leu Glu Pro Arg Gly 85 90 95

Ser Phe Glu Ser Thr Ala Asp Asp Val Val Asp Ser Leu Phe Ile Leu 100 105 110

Ser Leu Leu Gly Ser Ile Cys Ser Leu Ser Val Ile Ala Ala Asp Arg 115 120 125

Tyr Thr Thr Ile Phe His Ala Leu Gln Tyr His Arg Ile Met Thr Pro 130 135 140

Ala Pro Cys Pro Arg His Leu Thr Val Leu Trp Arg Gly Cys Thr Gly
145 150 155 160

Ser Gly Ile Thr Ile Val Thr Phe Ser His His Val Pro Thr Val Ile 165 170 175

Ala Phe Thr Ala Leu Phe Pro Leu Met Leu Ala Phe Ile Leu Cys Leu 180 185 190

Tyr Val His Met Phe Leu Leu Ala Arg Ser His Thr Arg Arg Thr Pro 195 200 205

Ser Leu Pro Lys Ala Asn Met Arg Gly Ala Val Thr Leu Thr Val Leu 210 215 220

Leu Gly Val Phe Ile Phe Cys Trp Ala Pro Phe Val Leu His Val Leu 225 230 235 240

Leu Met Thr Phe Cys Pro Ala Asp Pro Tyr Cys Ala Cys Tyr Met Ser 245 250 255

Leu Phe Gln Val Asn Gly Val Leu Ile Met Cys Asn Ala Ile Ile Asp 260 265 270

Pro Phe Ile Tyr Ala Phe Arg Ser Pro Glu Leu Arg Val Ala Phe Lys 275 280 285

Lys Met Val Ile Cys Asn Cys Tyr Gln ' 290 295

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1338 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(ix) FEATURE:

(A) NAME/KEY: 5'UTR
(B) LOCATION: 1..297

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 298..1269

(ix) FEATURE:

(A) NAME/KEY: 3'UTR

(B) LOCATION: 1270..133B

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TCAGAGCGAC AGGGGATGAG ACAGGCTGGT CAGAGTCTGC ACTGATTGTT GGAGACGCAA 1.	20
AGGAAAGTTT TTTCTATGTC TCCAACCTCC CCCTCCTCCC CCGTTTCTCT CTGGAGAAAC	80
TAAAATGTAG ACTGGACAGC ATCCACAAGA GAAGCACCTA GAAGAAGATT TTTTTTCCC 24	40
AGCAGCTTGC TCAGGACCCT GCAGGAGCTG CAGCCGGAAC TGGTCCCGCC GATAACC 29	97
ATG AAC TCT TCC TGC TGC CCG TCC TCT TAT CCG ACG CTG CCT AAC Met Asn Ser Ser Cys Cys Pro Ser Ser Ser Tyr Pro Thr Leu Pro Asn	45
1 5 10 15	
	93
Leu Ser Gln His Pro Ala Ala Pro Ser Ala Ser Asn Arg Ser Gly Ser 20 25 30	
000 110 100 010 011 111 1111 1111 1111	1
Gly Phe Cys Glu Gln Val Phe Ile Lys Pro Glu Val Phe Leu Ala Leu 35 40 45	
GGC ATC GTC AGT CTG ATG GAA AAC ATC CTG GTG ATC CTG GCT GTG GTG 48	9
Gly Ile Val Ser Leu Met Glu Asn Ile Leu Val Ile Leu Ala Val Val 50 55 60	
AGG AAC GGC AAC CTG CAC TCC CCC ATG TAC TTC TTC CTG CTG AGC CTG 53	7
Arg Asn Gly Asn Leu His Ser Pro Met Tyr Phe Phe Leu Leu Ser Leu 65 70 75 80	
CTG CAG GCC GAC CTG CTG GTG AGC CTG TCC AAC TCC CTG GAG ACC ATC 58	5
Leu Gln Ala Asp Leu Leu Val Ser Leu Ser Asn Ser Leu Glu Thr Ile 85 90 95	

						AGC Ser										63	3
						ATC Ile										68	.1
						CTC Leu 135	Leu									72	9
						CGT Arg								Arg		77	7
						GCC Ala		Trp								82	5
						TCC Ser										87	3
						ATG Met										92	1
						AGG Arg 215										96	9
						GCC Ala										101	7
						CTG Leu										106	5
CCT Pro						GTC Val									CCC Pro	111	3
						GCG Ala										116	1
ATG Met	TGC Cys 290	AAC Asn	TCT Ser	GTC Val	ATC Ile	GAC Asp 295	CCC Pro	CTC Leu	ATC Ile	TAC Tyr	GCC Ala 300	Phe	CGC Arg	AGC Ser	CTG Leu	120	9

GAG CTG CGA AAC ACC TTC AAG GAG ATT CTC TGC GGT TGC AAT GGC ATG
Glu Leu Arg Asn Thr Phe Lys Glu Ile Leu Cys Gly Cys Asn Gly Met
305 310 315 320

AAC GTG GGC TAG GAACCCCCGA GGAGGTGTTC CACGGCTAGC CAAGAGAGAA 1309
ASN Val Gly *

AAGCAATGCT CAGGTGAGAC ACAGAAGGG 1338

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 323 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Asn Ser Ser Cys Cys Pro Ser Ser Ser Tyr Pro Thr Leu Pro Asn
1 5 10 15

Leu Ser Gln His Pro Ala Ala Pro Ser Ala Ser Asn Arg Ser Gly Ser 20 25 30

Gly Phe Cys Glu Gln Val Phe Ile Lys Pro Glu Val Phe Leu Ala Leu 35 40 45

Gly Ile Val Ser Leu Met Glu Asn Ile Leu Val Ile Leu Ala Val Val
50 55 60

Arg Asn Gly Asn Leu His Ser Pro Met Tyr Phe Phe Leu Leu Ser Leu 65 70 75 80

Leu Gln Ala Asp Leu Leu Val Ser Leu Ser Asn Ser Leu Glu Thr Ile 85 90 95

Met Ile Val Val Ile Asn Ser Asp Ser Leu Thr Leu Glu Asp Gln Phe 100 105 110

Ile Gln His Met Asp Asn Ile Phe Asp Ser Met Ile Cys Ile Ser Leu 115 120 125

Val Ala Ser Ile Cys Asn Leu Leu Ala Ile Ala Val Asp Arg Tyr Val 130 135 140

Thr Ile Phe Tyr Ala Leu Arg Tyr His Ser Ile Met Thr Val Arg Lys 145 150 155 160

Ala Leu Ser Leu Ile Val Ala Ile Trp Val Cys Cys Gly Ile Cys Gly 165 170 175

- Val Met Phe Ile Val Tyr Ser Glu Ser Lys Met Val Ile Val Cys Leu 180 185 190
- Ile Thr Met Phe Phe Ala Met Val Leu Leu Met Gly Thr Leu Tyr Ile 195 200 205
- His Met Phe Leu Phe Ala Arg Leu His Val Gln Arg Ile Ala Ala Leu 210 215 220
- Pro Pro Ala Asp Gly Leu Ala Pro Gln Gln His Ser Cys Met Lys Gly 225 230 235 240
- Ala Val Thr Ile Thr Ile Leu Leu Gly Val Phe Ile Phe Cys Trp Ala 245 250 255
- Pro Phe Phe Leu His Leu Val Leu Ile Ile Thr Cys Pro Thr Asn Pro 260 265 270
- Tyr Cys Ile Cys Tyr Thr Ala His Phe Asn Thr Tyr Leu Val Leu Ile 275 280 285
- Met Cys Asn Ser Val Ile Asp Pro Leu Ile Tyr Ala Phe Arg Ser Leu 290 295 300
- Glu Leu Arg Asn Thr Phe Lys Glu Ile Leu Cys Gly Cys Asn Gly Met 305 310 315

Asn Val Gly *

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: mics_feature
 - (B) LOCATION: 1..30
 - (D) OTHER INFORMATION: /function = "Degenerate oligonucleotide primer (sense)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

(2)	INFORMATION	FOR	SEO	ID	NO:	15:
-----	-------------	-----	-----	----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1671 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (ix) FEATURE:
 - (A) NAME/KEY: 5'UTR
 - (B) LOCATION: 1..393
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 394..1389
- (ix) FEATURE:
 - (A) NAME/KEY: 3'UTR
 - (B) LOCATION: 1390..1671
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

AGCTTCCGAG AGGCAGCCGA TGTGAGCATG TGCGCACAGA TTCGTCTCCC AATGGCATGG	60
CAGCTTCAAG GAAAATTATT TTGAACAGAC TTGAATGCAT AAGATTAAAG TTAAAGCAGA	120
AGTGAGAACA AGAAAGCAAA GAGCAGACTC TTTCAACTGA GAATGAATAT TTTGAAGCCC	180
AAGATTTTAA CGTGATGATG ATTAGAGTCG TACCTAAAAA AGACTAAAAA CTCCATGTCA	240
AGCTCTGGAC TTGTGACATT TACTCACAGC AGGCATGGCA ATTTTAGCCT CACAACTTTC	300
AGACAGATAA AGACTTGGAG GAAATAACTG AGACGACTCC CTGACCCAGG AGGTTAAATC	360
AATTCAGGGG GACACTGGAA TTCTCCTGCC AGC ATG GTG AAC TCC ACC CAC CGT Met Val Asn Ser Thr His Arg 1 5	414
GGG ATG CAC ACT TCT CTG CAC CTC TGG AAC CGC AGC AGT TAC AGA CTG	462
Gly Met His Thr Ser Leu His Leu Trp Asn Arg Ser Ser Tyr Arg Leu 10 15 20	
CAC AGC AAT GCC AGT GAG TCC CTT GGA AAA GGC TAC TCT GAT GGA GGG	510
His Ser Asn Ala Ser Glu Ser Leu Gly Lys Gly Tyr Ser Asp Gly Gly 25 30 35 3	

				CTT Leu												558
				TTG Leu 60												606
				CAT His												654
				CTG Leu				Ser							ATC Ile	702
				AAC Asn												750
				GTC Val												798
TCC Ser	ATT Ile	TGC Cys	AGC Ser	CTG Leu 140	CTT Leu	TCA Ser	ATT Ile	GCA Ala	GTG Val 145	GAC Asp	AGG Arg	TAC Tyr	TTT Phe	ACT Thr 150	ATC Ile	846
TTC Phe	TAT Tyr	GCT Ala	CTC Leu 155	CAG Gln	TAC Tyr	CAT His	AAC Asn	ATT Ile 160	ATG Met	ACA Thr	GTT Val	AAG Lys	CGG Arg 165	GTT Val	GGG Gly	894
				TGT Cys												942
TTC Phe	ATC Ile 185	ATT Ile	TAC Tyr	TCA Ser	GAT Asp	AGT Ser 190	AGT Ser	GCT Ala	GTC Val	ATC Ile	ATC Ile 195	TGC Cys	CTC Leu	ATC Ile	ACC Thr	990
				ATG Met												1038
TTC Phe	CTG Leu	ATG Met	GCC Ala	AGG Arg 220	CTT Leu	CAC His	ATT Ile	AAG Lys	AGG Arg 225	ATT Ile	GCT Ala	GTC Val	CTC Leu	CCC Pro 230	GGC Gly	1086
ACT Thr	GGT Gly	GCC Ala	ATC Ile 235	CGC Arg	CAA Gln	GGT Gly	GCC Ala	AAT Asn 240	ATG Met	AAG Lys	GGA Gly	Ala	ATT Ile 245	ACC Thr	TTG Leu	1134

			ATT Ile													1182
THE	116	250	116	GIY	Val	Pne	255	val	Cys	пр	AIG	260	FIIC	FILE		
			TTC													1230
His	Leu 265	Ile	Phe	Tyr	Ile	Ser 270	Cys	Pro	Gln	Asn	Pro 275	Tyr	Cys	Val	Cys	
TTC	ATG	TCT	CAC	TTT	AAC	TTG	TAT	CTC	ATA	CTG	ATC	ATG	TGT	AAT	TCA	1278
Phe	Met	Ser	His	Phe		Leu	Tyr	Leu	Ile		Ile	Met	Cys	Asn		•
280					285					290					295	
ATC	ATC	GAT	CCT	CTG	ATT	TAT	GCA	CTC	CGG	AGT	CAA	GAA	CTG	AGG	AAA	1326
Ile	Ile	Asp	Pro	Leu	Ile	Tyr	Ala	Leu		Ser	Gln	Glu	Leu		Lys	
	:			300			٠		305					310		
			GAG													1374
Thr	Phe	Lys	Glu	Ile	Ile	Ser	Ser		Pro	Leu	Gly	Gly		Cys	Asp	
			315					320					325			
TTG	TCT	AGC	AGA	TAT	TAAA	TGGG	GA C	AGAG	CACG	C AA	TATA	GGAA	CAT	CCAT	AAG	1429
Leu	Ser	Ser 330	Arg	Tyr												
AGAC	TTT	TC A	CTCT	TACC	C TA	CCTG	AATA	TTC	TACT	TCT	GCAA	CAGC	TT I	CTCT	TCCGT	1489
GTAG	GGTA	CT G	GTTG	AGAT	A TO	CATT	GTGT	' AAA	TTTA	AGC	CTAT	'GATI	TT T	'AATG	AGAAA	1549
AAAT	GCCC	AG I	CTCT	GTAT	T AT	TTCC	AATC	TCA	TGCT	ACT	TTTT	TGGC	CA I	'AAAA'	TATGA	1609
ATCI	'ATGT	TA T	'AGGT	TGTA	G GC	ACTG	TGGA	TTT	ACAA	AAA	GAAA	AGTC	CT I	'ATTA	ÁAAGA	1669
TT							•									1671

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Val Asn Ser Thr His Arg Gly Met His Thr Ser Leu His Leu Trp
1 5 10 15

Asn Arg Ser Ser Tyr Arg Leu His Ser Asn Ala Ser Glu Ser Leu Gly
20 25 30

Lys Gly Tyr Ser Asp Gly Gly Cys Tyr Ala Gln Leu Phe Val Ser Pro 35 40 45

- Glu Val Phe Val Thr Leu Gly Val Ile Ser Leu Leu Glu Asn Ile Leu 50 55 60
- Glu Ile Val Ala Ile Ala Lys Asn Lys Asn Leu His Ser Pro Met Tyr 65 70 75 80
- Phe Phe Ile Cys Ser Leu Ala Val Ala Asp Met Leu Val Ser Val Ser 85 90 95
- Asn Gly Ser Glu Thr Ile Ile Ile Thr Leu Leu Asn Arg Thr Asp Thr 100 105 110
- Asp Ala Gln Ser Phe Thr Val Asn Ile Asp Asn Val Ile Asp Ser Val 115 120 125
- Ile Cys Ser Ser Leu Leu Ala Ser Ile Cys Ser Leu Leu Ser Ile Ala 130 135 140
- Val Asp Arg Tyr Phe Thr Ile Phe Tyr Ala Leu Gln Tyr His Asn Ile 145 150 155 160
- Met Thr Val Lys Arg Val Gly Ile Ser Ile Ser Cys Ile Trp Ala Ala 165 170 175
- Cys Thr Val Ser Gly Ile Leu Phe Ile Ile Tyr Ser Asp Ser Ser Ala 180 185 190
- Val Ile Ile Cys Leu Ile Thr Met Phe Phe Thr Met Leu Ala Leu Met 195 200 205
- Ala Ser Leu Tyr Val His Leu Phe Leu Met Ala Arg Leu His Ile Lys 210 215 220
- Arg Ile Ala Val Leu Pro Gly Thr Gly Ala Ile Arg Gln Gly Ala Asn 225 230 235 240
- Met Lys Gly Ala Ile Thr Leu Thr Ile Leu Ile Gly Val Phe Val Val 245 250 255
- Cys Trp Ala Pro Phe Phe Leu His Leu Ile Phe Tyr Ile Ser Cys Pro 260 265 270
- Gln Asn Pro Tyr Cys Val Cys Phe Met Ser His Phe Asn Leu Tyr Leu 275 280 285
- Ile Leu Ile Met Cys Asn Ser Ile Ile Asp Pro Leu Ile Tyr Ala Leu 290 295 300 U

Arg Ser Gln Glu Leu Arg Lys Thr Phe Lys Glu Ile Ile Ser Ser Tyr 305 310 315 320

Pro Leu Gly Gly Leu Cys Asp Leu Ser Ser Arg Tyr 325 330

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 978 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..975
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

				TCC												48
Met	naA	Ser	Ser	Ser	Thr	Leu	Thr	Val		Asn	Leu	Thr	Leu		Ala	
1				5					. 10					15		
														•		
				ATT												96
Ser	Glu	Asp	Gly	Ile	Leu	Gly	Ser		Val	Lys	Asn	Lys		Leu	Ala	
			20					25					30			
				GGC												144
Сув	Glu	Glu	Met	Gly	Ile	Ala		Glu	Val	Phe	Leu		Leu	Gly	Leu	
		35					40					.45				
				GAG												192
Val	Ser	Leu	Leu	Glu	Asn	Ile	Leu	Val	Ile	Gly		Ile	Val	Lys	Asn	
•	50					55				•	60					
				TCA												240
	Asn	Leu	His	Ser		Met	Tyr	Phe	Phe		GIA	Ser	Leu	Ala		
65					70					75					80	
													-			
				GTG												288
Ala	Asp	Met	Leu	Val	Ser	Met	Ser	Asn		Trp	GIu	Thr	vaı		TTE	
				85					90					95		•
						a> c		omc.	2002	000	CNC	3 CC	entrito.	ama	CCN	336
				AAT												336
ıyr	nen	теп		Asn	тАа	WIS	ren	105	TIG	WIG	чар	rûr	110	AGI	AT 9	
			100					TUD					110			

CAC His	ATC Ile	GAC Asp 115	AAC Asn	GTG Val	TTC Phe	GAC Asp	TCC Ser 120	ATG Met	ATC Ile	TGC Cys	ATC Ile	TCT Ser 125	GTG Val	GTG Val	GCC Ala	384
	ATG Met 130	Сув														432
TTC Phe 145	TAT Tyr	GCC Ala	TTG Leu	CGC Arg	TAC Tyr 150	CAC His	CAC His	ATC Ile	ATG Met	ACC Thr 155	GCG Ala	AGG Arg	CGC Arg	TCG Ser	GGG Gly 160	480
Val	ATC Ile	Ile	Ala	Cys 165	Ile	Trp	Thr	Phe	Cys 170	Ile	Ser	Cys	Gly	Ile 175	Val	528
Phe	ATC Ile	Ile	Tyr 180	Tyr	Glu	Ser	Lys	Tyr 185	Val	Ile	Ile	Cys	Leu 190	Ile	Ser	576
Met	TTC Phe	Phe 195	Thr	Met	Leu	Phe	Phe 200	Met	Val	Ser	Leu	Tyr 205	Ile	His	Met	624
Phe	Leu 210	Leu	Ala	Arg	Asn	His 215	Val	Lys	Arg	Ile	Ala 220	Ala	Ser	Pro		672
Tyr 225	AAC Asn	Ser	Val	Arg	Gln 230	Arg	Thr	Ser	Met	Lys 235	Gly	Ala	Ile	Thr	Leu 240	720
Thr	ATG Met	Leu	Leu	Gly 245	Ile	Phe	Ile	Val	Сув 250	Trp	Ser	Pro	Phe	Phe 255	Leu	768
His	CTT Leu	Ile	Leu 260	Met	Ile	Ser	Сув	Pro 265	Gln	Asn	Val	Tyr	Cys 270	Ser	Сув	816
Phe	ATG Met	Ser 275	Tyr	Phe	Asn	Met	Tyr 280	Leu	Ile	Leu	Ile	Met 285	Cys	Asn	Ser	864
Val	ATC Ile 290	Asp	Pro	Leu	Ile	Tyr 295	Ala	Leu	Arg	Ser	Gln 300	Glu	Met	Arg	Arg	912
ACC Thr 305	TTT Phe	AAG Lys	GAG Glu	ATC Ile	GTC Val 310	Cys	TGT Cys	CAC His	GGA Gly	TTC Phe 315	CGG Arg	CGA Arg	CCT Pro	TGT	AGG Arg 320	960

CTC CTT GGC GGG TAT TAA Leu Leu Gly Gly Tyr 325 978

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 325 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Asn Ser Ser Ser Thr Leu Thr Val Leu Asn Leu Thr Leu Asn Ala

Ser Glu Asp Gly Ile Leu Gly Ser Asn Val Lys Asn Lys Ser Leu Ala 20 25 30

Cys Glu Glu Met Gly Ile Ala Val Glu Val Phe Leu Thr Leu Gly Leu 35 40 45

Val Ser Leu Leu Glu Asn Ile Leu Val Ile Gly Ala Ile Val Lys Asn 50 55 60

Lys Asn Leu His Ser Pro Met Tyr Phe Phe Val Gly Ser Leu Ala Val 65 70 75 80

Ala Asp Met Leu Val Ser Met Ser Asn Ala Trp Glu Thr Val Thr Ile

Tyr Leu Leu Asn Asn Lys His Leu Val Ile Ala Asp Thr Phe Val Arg 100 105 110

His Ile Asp Asn Val Phe Asp Ser Met Ile Cys Ile Ser Val Val Ala 115 120 125

Ser Met Cys Ser Leu Leu Ala Ile Ala Val Asp Arg Tyr Ile Thr Ile 130 140

Phe Tyr Ala Leu Arg Tyr His His Ile Met Thr Ala Arg Arg Ser Gly 145 150 155 160

Val Ile Ile Ala Cys Ile Trp Thr Phe Cys Ile Ser Cys Gly Ile Val 165 170 9 175

Phe Ile Ile Tyr Tyr Glu Ser Lys Tyr Val Ile Ile Cys Leu Ile Ser 180 185 190

- Met Phe Phe Thr Met Leu Phe Phe Met Val Ser Leu Tyr Ile His Met 195 200 205
- Phe Leu Leu Ala Arg Asn His Val Lys Arg Ile Ala Ala Ser Pro Arg 210 215 220
- Tyr Asn Ser Val Arg Gln Arg Thr Ser Met Lys Gly Ala Ile Thr Leu 225 230 235 240
- Thr Met Leu Leu Gly Ile Phe Ile Val Cys Trp Ser Pro Phe Phe Leu 245 250 255
- His Leu Ile Leu Met Ile Ser Cys Pro Gln Asn Val Tyr Cys Ser Cys 260 265 270
- Phe Met Ser Tyr Phe Asn Met Tyr Leu Ile Leu Ile Met Cys Asn Ser 275 280 285
- Val Ile Asp Pro Leu Ile Tyr Ala Leu Arg Ser Gln Glu Met Arg Arg 290 295 300
- Thr Phe Lys Glu Ile Val Cys Cys His Gly Phe Arg Arg Pro Cys Arg 305 310 315 320

Leu Leu Gly Gly Tyr 325

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1..32
 - (D) OTHER INFORMATION: /function = "Degenerate oligonucleotide primer (antisense)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGACG TCACAGTATG ACGGCCATGG

WHAT WE CLAIM IS:

1. A method for characterizing a compound as an agonist of a mammalian melanocortin receptor, the method comprising the steps of:

(a) providing a panel comprising a first mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the α-MSH receptor, a second mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the ACTH receptor, a third mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-3 receptor, a fourth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-4 receptor, and a fifth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-5 receptor, wherein each mammalian cell expresses the melanocortin receptor encoded by the recombinant expression construct comprising the cell;

(b) contacting each of the cells of the panel with a test compound to be characterized as an agonist of a mammalian melanocortin receptor;

(c) detecting binding of the test compound to each of the mammalian melanocortin receptors by assaying for a metabolite produced in the cells that bind the compound.

20

25

30

5

10

15

- 2. The method of claim 1, wherein the metabolite detected in subpart (c) is cyclic AMP.
- 3. The method of claim 1, each of the cells further comprising a recombinant expression construct encoding a cyclic AMP responsive element (CRE) transcription factor binding site operatively linked to a nucleic acid sequence encoding a protein capable of producing a detectable metabolite.
- 4. The method of claim 3, wherein the nucleic acid sequence encodes β -galactosidase.

5. The method of claim 3, wherein the recombinant expression construct is pCRE/β-galactosidase.

- 6. The method of claim 3, wherein the detectable metabolite produced by the protein encoded by the recombinant expression construct is produced by binding of the test compound to the mammalian melanocortin receptor encoded by each of the cells of the panel.
 - 7. A method for characterizing a compound as an antagonist of a mammalian melanocortin receptor, the method comprising the steps of:

10

15

20

25

30

- (a) providing a panel comprising a first mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the α-MSH receptor, a second mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the ACTH receptor, a third mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-3 receptor, a fourth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-4 receptor, and a fifth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-5 receptor, wherein each mammalian cell expresses the melanocortin receptor encoded by the recombinant expression construct comprising the cell;
- (b) contacting each of the cells of the panel with an agonist of the mammalian melanocortin receptor in an amount sufficient to produce a detectable amount of a metabolite produced in the cells that bind the agonist, in the presence or absence of a test compound to be characterized as an antagonist of a mammalian melanocortin receptor;
- (c) detecting the amount of the metabolite produced in each cell in the panel in the presence of the test compound with the amount of the metabolite produced in each cell in the panel in the absence.
- 8. The method of claim 7, wherein the metabolite detected in subpart (c) is cyclic AMP.

	9.	The	method	of	claim	7,	each	of	the	cells	further	comprising	g a
reco	nbinant e	expres	sion con	stru	ct enco	din	g a cy	clic	AM	P resp	onsive (element (CI	RE)
trans	cription f	actor l	oinding si	ite c	perativ	ely	linke	d to	a nu	cleic a	icid sequ	ence encod	ing
а рго	tein capa	ble of	producii	ig a	detecta	able	meta	boli	te.				

5

- 10. The method of claim 9, wherein the nucleic acid sequence encodes β -galactosidase.
- The method of claim 9, wherein the recombinant expression construct is
 pCRE/β-galactosidase.
 - 12. The method of claim 9, wherein the detectable metabolite produced by the protein encoded by the recombinant expression construct is produced by binding of the test compound to the mammalian melanocortin receptor encoded by each of the cells of the panel.
 - 13. The method of claim 1 wherein the test compound is an agonist of the MC-3 mammalian melanocortin receptor.
 - 14. The method of claim 1 wherein the test compound is an agonist of the MC-4 mammalian melanocortin receptor.
 - 15. The method of claim 3 wherein the test compound is an agonist of the MC-3 mammalian melanocortin receptor.

25

30

15

20

- 16. The method of claim 3 wherein the test compound is an agonist of the MC-4 mammalian melanocortin receptor.
- 17. The method of claim 7 wherein the test compound is an antagonist of the MC-3 mammalian melanocortin receptor.

18. The method of claim 7 wherein the test compound is an antagonist of the MC-4 mammalian melanocortin receptor.

19. The method of claim 9 wherein the test compound is an antagonist of the MC-3 mammalian melanocortin receptor.

5

15

20

25

- 20. The method of claim 9 wherein the test compound is an antagonist of the MC-4 mammalian melanocortin receptor.
- 10 21. A mammalian melanocortin MC-3 receptor agonist according to claims 13 or 15.
 - 22. A mammalian melanocortin MC-4 receptor agonist according to claims 14 or 16.
 - 23. A mammalian melanocortin MC-3 receptor antagonist according to claims 17 or 19.
 - 24. A mammalian melanocortin MC-4 receptor antagonist according to claims 18 or 20.
 - 25. A method of inhibiting feeding behavior in an animal, the method comprising administering an effective amount of a mammalian melanocortin MC-3 or MC-4 receptor agonist according to claim 21.
 - 26. A method of stimulating feeding behavior in an animal, the method comprising administering an effective amount of a mammalian melanocortin MC-3 or MC-4 receptor antagonist according to claim 24.
- 30 27. A method for characterizing a mammalian melanocortin MC-3 or MC-4 receptor agonist as an inhibitor of feeding behavior in an animal, the method comprising:

(a) providing food to an animal that has been deprived of food for at least 12 hours with or without administering to the animal a mammalian melanocortin MC-3 or MC-4 receptor agonist according to claim 25; and

- (b) comparing the amount of food eaten by the animal with and without administration of the mammalian melanocortin MC-3 or MC-4 receptor agonist.
- 28. A method for characterizing a mammalian melanocortin MC-3 or MC-4 receptor antagonist as a stimulator of feeding behavior in an animal, the method comprising:
- (a) providing food to an animal that has not been otherwise deprived of food for at least 12 hours, with or without administering to the animal a mammalian melanocortin MC-3 or MC-4 receptor antagonist according to claim 26 immediately prior to the onset of darkness or nighttime; and
- (b) comparing the amount of food eaten by the animal with and without administration of the mammalian melanocortin MC-3 or MC-4 receptor antagonist.
- 29. A mammalian melanocortin MC-3 or MC-4 receptor agonist having the general formula:

20

5

10

15

A-B-C-D-E-F-G-amide

wherein

A is Leu, Ile, Nle, Met, or substituted analogues thereof;

B is Asp, Glu, or substituted analogues thereof;

C is His or substituted analogues thereof;

D is D-Phe, D-Tyr or substituted analogues thereof;

25

E is Arg, Lys, homoArg, homoLys, or substituted analogues thereof:

F is Trp or substituted analogues thereof;

G is Lys, homoLys or substituted analogues thereof;

and wherein the peptide is cyclized by the formation of an amide bond between the side chain carboxyl group of the Asp or Glu residue at position B in the peptide, and the side chain amino group of the Lys or homoLys residue at position G.

30

30. A mammalian melanocortin MC-3 or MC-4 receptor antagonist having the general formula:

A-B-C-D-E-F-G-amide

wherein

A is Leu, Ile, Nle, Met, or substituted analogues thereof;

5

B is Asp, Glu or substituted analogues thereof;

C is His or substituted analogues thereof;

D is D-Nal or substituted analogues thereof;

E is Arg, Lys, homoArg, homoLys or substituted analogues thereof;

F is Trp or substituted analogues thereof;

10

G is Lys, homoLys or substituted analogues thereof;

and wherein the peptide is cyclized by the formation of an amide bond between the side chain carboxyl group of the Asp or Glu residue at position B in the peptide, and the side chain amino group of the Lys or homoLys residue at position G.

15

20

31. A biological screening panel for determining the receptor agonist/antagonist profile of a test compound, the panel comprising a first mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the α-MSH receptor, a second mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the ACTH receptor, a third mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-3 receptor, a fourth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-4 receptor, and a fifth mammalian cell comprising a recombinant expression construct encoding a mammalian melanocortin receptor that is the MC-5 receptor, wherein each mammalian cell expresses the melanocortin receptor encoded by the recombinant expression construct comprising the

25

cell.

FIG. 1A

TTCC	CTGAC	AA	GACT	ATG Met 1	TCC Ser	ACT Thr	CAG Gln	GAG Glu 5	Pro	CAG Gln	Lys	AGT Ser	Leu 10	Leu	GGT	50
TCT Ser	CTC Leu	AAC Asn 15	TCC Ser	AAT Asn	GCC Ala	ACC Thr	TCT Ser 20	CAC His	CTT	gga gly	CTG Leu	GCC Ala 25	ACC Thr	AAC Asn	CAG Gln	98
TCA Ser	GAG Glu 30	CC1 Pro	TGG Trp	TGC Cys	CTG Leu	TAT Tyr 35	GTG Val	TCC Ser	ATC Ile	CCA Pro	GAT Asp 40	GIY	CTC Leu	TTC Phe	CTC Leu	146
AGC Ser 45	CTA Leu	ggg gly	CTG Leu	GTG Val	AGT Ser 50	CTG Leu	GTG Val	GAG Glu	TAA nbA	GTG Val 55	CTG Leu	GTT Val	GTG Val	ATA Ile	GCC Ala 60	194
ATC Ile	ACC Thr	AAA Lys	AAC ABD	CGC Arg 65	AAC Asn	CTG Leu	CAC His	TCG Ser	CCC Pro 70	ATG Met	TAT Tyr	TAC Tyr	TTC Phe	ATC Ile 75	TGC Cys	242
TGC Cys	CTG Leu	GCC Ala	CTG Leu 80	TCT Ser	GAC Asp	CTG Leu	ATG Met	GTA Val 85	AGT Ser	GTC Val	AGC Ser	ATC Ile	GTG Val 90	CTG Leu	GAG Glu	290
ACT Thr	act Thr	ATC Ile	ATC : Ile	CTG Leu	CTG Leu	CTG	GAG Glu 100	GTG Val	GGC Gly	ATC Ile	CTG Leu	GTG Val 105	GCC Ala	AGA Arg	GTG Val	338
GCT Ala	TTG Leu 110	GTC Val	CAG Gln	CAG Gln	CTG Leu	GAC Asp 115	AAC Asn	CTC Leu	ATT	GAC Asp	GTG Val 120	CTC Leu	ATC Ile	TGT Cys	GGC Gly	386
TCC Ser 125	ATG Met	GTG Val	TCC Ser	AGT Ser	CTC Leu 130	TGC Cys	TTC Phe	CTG Leu	GGC	ATC Ile 135	ATT Ile	GCT Ala	ATA Ile	gac Asp	CGC Arg 140	434
TAC Tyr	ATC Ile	TCC	ATC	TTC Phe 145	Tyr	GCG Ala	CTG	CGT	TAT Tyr 150	CAC His	AGC Ser	ATC Ile	GTG Val	ACG Thr 155	CTG Leu	482
CCC Pro	ADA Arg	GC/ Ala	A CGA Arg 160	Arg	gct Ala	GTC Val	GTG Val	GGC Gly 165	Ile	TGG Trp	ATG Met	Val	AGC Ser 170	ATC Ile	GTC Val	530

FIG. 1B

CCC	AGC	ACC	CTC	TTT	ATC	ACC	TAC	TAC	aag	CAC	ACA	GCC	GIT	CIG	CTC		578
Ser	Ser	Thr	Leu	Phe	Ile	Thr	Tyr	Tyr	Lye	His	Thr		Val	Leu	Leu		
		175					180					185			,		
															~~~		<b>CD</b> C
rgc	CTC	GTC	ACT	TTC	TTT	CTA	GCC	ATG	CIG	GÇA	Cic	ATU	31-	ATT	CTG		626
-		Val	Thr	Phe	Phe		Ala	Met	Leu	VIT.	ren	Met	ATG	TIC	Leu	•	
	190					195					200						
										~~	-	CNG	aac	R over	acc		674
TAT	GCC	CAC	DTA	TTC	ACG	AGA	GCG	TGC	CAG	CAC	GIC	21-	alv	TIA	GCC		0 /4
-	Ala	His	Met	Phe		Arg	AIA	Сув	GIN	215	ATT	Q111	Gry	116	220		
205					210					413							
	~~~	<b>a</b>		100	000	CGG	WCC	3 T/C	cac	CAA	aac	TTC	TGC	CTC	AAG	٠.	722
CAG	CIC	CAC	AAA	AGG	200	COG	Por	TIL	A	Gln	alv	Phe	CVB	Leu	Lys		
GIN	Leu	HIE	гÀВ		Arg	Arg	SEI	TTE	230	924	GZZ.		-,-	235	-2-		
				225					230	٠.							
	~~	-	100	~~~	3 CT	8.000	~~	C-TY2	aaa	ATT	TTC	TTC	CTG	TGC	TGG		770
GGT.	GCT	GCC	ACC	CIT	WCI	TIO	Lan	LAU	alv	Tle	Phe	Phe	Leu	Cvs	Trp		
GTÅ	VIT	VIG		Wen	Int	TTE	Den	245	GAI				250	-,-			
			240					443									
		-		CTV2	Chr	CTC	July 2	CTC	ATC	GTC	CTC	TGC	CCT	CAG	CAC		818
73	Dro.	Dhe	Dhe	Lau	uia	Len	Leu	Leu	Ile	Val	Leu	CVB	Pro	Gln	His		
GTÅ	PIO	255		Deu	WIP	Dea	260	202		-		265					
		433															
~~~	100	<b>***</b> *********************************	300	***	N TOC	4	200	ABC	יארים.	AAC	CTC	TTC	CTC	CTC	CTC		866
500 500	WCC.	760	Com	TOC	TIA	Dhe	Tare	lan	Dhe	Asn	Leu	Phe	Leu	Leu	Leu		
PTO	270		Ser	Cyn	116	275		<b>7911</b>	FILE	-	280						•
	210					213											
8 777	OTC:	CTC	age.	TYY-	N Call	GTT	GAC	ccc	CTC	ATC	TAT	GCT	TTC	CGC	AGC		914
TI.	Wal.	LAN	CAT	Ser	Thr	Val	ARD	Pro	Leu	Ile	TVI	Ala	Phe	Arg	Ser		
285		He.	361	JUL	290					295				•	300	٠	
<b>4</b> 03														•			
CNG	GMG	CTC	· cac	ATG	ACA	CTC	AAG	GAG	GTG	CTG	CTG	TGC	TCC	TGG			959
aln	Glu	Lev	Ara	Met	Thr	Leu	Lvs	Glu	Val	Leu	Leu	Сув	Ser	Trp			
GAN	. 514			305			_,_		310			•		315		. 3	
				303						•			٠.		*		
TYLE	TOAG	DOG	GCGC	TGGG	CA G	AGGG	TGAC	A GT	GATA	TCCA	GTG	GCCI	GCA	TCTG	TGAGAC	2	1019
CAC	AGGT	ACT	CATC	CCTI	ec 1	GATC	TCCA	T TI	GICI	AAGG	GIC	GACA	GGA	TGAG	CITTAL	A.	1079
AAT	AGDA'	ACC	CAGA	GTGC	CT G	GGGC	CAGG	A GA	AAGG	GTAA	CIG	TGAC	TGC	AGGG	CTCACC	2	1139
																	٠.
CAG	iggca	GCT	ACGG	GAAD	TG G	ADDA	GACA	OD D.	ATGG	GAAC	TC	AGCC	CTG	AGCA	AGGGT	3	1199
AGF	CCAC	DDA	CTCC	TGAR	GA G	CTTC	ACCI	C TO	:ccci	CCTA	CAC	IGCAA	CTC	CIGO	TCAAG	C	1259
																	•
C											e.						1260

### FIG. 2A

GAAAA 60	GCAG	AAC	TTAA	CII	ADDA	gaga	T CT	GGGC	ADDT.	CA A	CCCI	acca	3 <b>T</b> G	GCAT	ccc
AGGCC 120	GACA	GGA	GGGA	GAA	CCAG	TGGC	c cc	GCAG	CAGC	CC I	CAGA	TTCC	TTC	TCCA	AGC
AAGAG 180	CAGG	CAC	CAGC	CAG	TGAG	AACC	g ga	TCCT	DTAL	CG A	GTGT	agag	rec	ACGG'	DDA
TTGAT 240	GCG	CCA	GAGC	CCT	aatc	TGAG	T TG	TTGG	AGGC	AC C	DDAD	AGCT	3 <b>G</b> G	<b>GGGA</b>	GCA
GAGAG 300	CCAG	CAG	TGTC	ACC	CTG	CTGG	T GC	GCCA	CTGG	TG G	GGAC	ater	3GT	ADDA	gcc.
CCAAG 360	GACA	GGG (	3CAT	CAG	ZAGG	DAAD	A TG	CCAG	GTGC	GG G	TCTG	CAGA	3GG	ADTE	GGI
GACCT 420	GTGG	ACT (	AAGA	GGG	GGAG	ACCI	3 AC	GCAG	CTAA	A AD	CCAT	AGCA	3GC	CCT	gCC(
	rg cz al gl				3GAC	BACA	C TG	CITO	CCTG	CT T	ACTC	AACG.	rcc	3GCC:	GGA
									Leu			AGA Arg			
												CIG			
												ATC Ile 40			
												AAC Asi			
												CCC			
												AGC Ser			
												GGT			
												ATT Ile 120			
												GIY			
3CC 953	CGA Arg	CCG Pro	GCG Ala	CGG Arg 160	CCG Pro	CTG Leu	ACC Thr	Val	ATC Ile 155	AGC Ser	CAC His	TAC Tyr	CGC Arg	CTG Leu 150	3CA Ala

### FIG. 2B

GTT Val	GCG Ala	GCC Ala	ATC Ile	TGG	GTG Val	GCC Ala	AGT Ser	GTC Val	GTC Val	TTC Phe	AGC Ser	ACG Thr	CTC Leu	TTC Phe	ATC Ile	1001
165					170					175					180	
GCC	TAC	TAC Tyr	GAC	CAC	GTG	GCC	GTC	CTG	CTG	TGC	CTC	GTG	GTC	TTC	TTC	1049
				185					190					195	ě	
CTG	GCT	ATG	CTG	GIG	CTC	ATG	GCC	GTG	CTG	TAC	GTC	CAC	DTA	CIG	GCC	1097
		Met	200					205					210			
CGG	GCC	TGC	CAG	CAC	GCC	CAG	GGC	ATC	GCC	CGG	CTC	CAC	DAA	AGG	CAG	1145
		Cys 215					220					225				-
CGC	CCG	GTC Val	CAC	CAG	GGC	TTT	GGC	CIT	AAA	GGC	GCT	GTC	ACC	CTC	ACC	1193
	230			•		235					240					
ATC	CIG	CTG	GGC	ATT	TTC	TIC	CTC	TGC	TGG	GGC	CCC	TTC	TTC	CTG	CAT	1241
245		Leu			250		٠			255					260	
TC	ACA	CTC	ATC	GTC	CTC	TGC	CCC	GAG	CAC	CCC	ACG	TGC	GGC	TGC	ATC	1289
		Leu		<b>26</b> 5					270					275		•
TC	AAG	AAC	TTC	AAC	CIC	TTT	CIC	GCC	CTC	ATC	ATC	TGC	AAT	GCC	ATC	1337
		Asn	280					285	•			F.	290			
ATC	GAC	CCC	CIC	ATC	TAC	GCC	TTC	CAC	AGC	CAG	GAG	CIC	CGC	AGG	ACG	1385
		Pro 295				: .	300					305			Thr	
TC	AAG	GAG	GTG	CIG	ACA	TGC	TCC	TGG	DADT	ICGCG	GT G	CACC	CCCI	T		1432
æu	310	Glu	AGT	ren	THE	315	SEI	irp		•					* **	
DAA	TGTG	cr c	KGCA	GAGG	G AG	KITGG	TGAI	ATI	GTGG	TCT	GGTT	CCTG	TG I	GACC	CTGGG	1492
															AAADT	1552
						NGGGC	'AGGG	AGG	IGGTC	CIG	CAAA	ACTO	CA G	IGCAG	GACTT	1612
TCA	CCAG	ica g	TCGT	<b>GGGA</b>	AC							Terrer				1633

### FIG. 3A

ACAI	ACAC	TT	ATAT.	TATA	TT T	TATA	DTAA	T AA	GGGG	TACA	AAG	GTGC	CAT	TTTG	TTACA	r 60
GGA?	rata)	cca	TGTA	GTGG	A DT	AGCC	TGGG	C TT	TTAG	TGTA	TCT	GTCA	TCA	gaat	AACATI	A 120
CCTY	TTA:	ccc	atag	gaat	TT C	TCAT	CACC	c cc	cccc	TCCA	ccc	TTCG	agt	CTCC	AATGT	180
CAT	rcca	CAC	TCTA	TATC	CA C	GTGT	ATGC	A TA	TAGC	TCCA	CAT	ATAA	gtg	AGAA	CATGTI	240
GTA?	rttg	CT	TCCT	CTTT	CT G	AGTT	ATTT	C AC	TTTG	ATAA	TGG	ccrc	CAC	TTCC	ATCCAT	300
GTT	CTG	CAA	AAGA	CATG	AC C	TTAT	CTT	r TT	GATA	CTG	GGG	AGTA	ctc	CATT	GTGTAT	360
ATG	racci	ACA	TTTC	TTTA:	rc c	ATTC	ACCC	A TT	GAGA	ACAC	TTA	GTTG.	ATT	CCAT	ATCTT	420
GCT/	ATTG:	rca ·	CTAG	TGCT	GC A	ATAA	<b>ACAT</b>	A CA	TGTG	CAGG	CTC	CITC	TAA	TATA	CTGATT	r 480
TAT	ATTT:	TAT	GGAG	AGAG	AT A	GAGT	CTT	A GC	GAGT	3TGC	TGT	TTAT	TTC	TDAT	GTACT1	540
GCAJ	CTA	ATA	TTCT	STATE	AC T	CCCT	rtag(	3 TO	ATTG	ADAE	TTT	AACT	TAG	ATCT	CCAGC	600
AGTO	CTAC	AA.	gaagi	AAAA	T AE	CCTG	AAGA.	A TC	RATC	TDAA	TTC	CGTG	RAG	TCAA	GTCCA	660
GTA	CATO	ccc (	cacc	PTAA(	CC A	CAAG	CAGG	A GA	Me				-		c TCG n Ser	714
			ATC Ile													762
			CCG Pro													810
			CTG Leu													858
			ATG Met													906
CTG Leu	ggc gly	AGC Ser	CTA Leu 75	TAT Tyr	aag Lys	ATC Ile	TTG Leu	GAA Glu 80	AAT Asn	ATC Ile	CTG Leu	ATC Ile	ATA Ile 85	TTG Leu	AGA Arg	954
			TAT Tyr													1002
ДБР	Ile	Ile	GAC Asp	Ser	Leu	Phe	Val	Leu	Ser	Leu	Leu	Gly				1050

### FIG. 3B

									TAC Tyr							1098
CTG	CGG Arg	TAC Tyr	CAC His	AGC Ser 140	ATC Ile	GTG Val	ACC Thr	ATG Met	CGC Arg 145	CGC Arg	ACT Thr	GTG Val	GTG Val	GTG Val 150	CTT Leu	1146
									ACT Thr							1194
									ACC Thr							1242
Leu									TAT Tyr							1290
GCT Ala 200																1338
aaa Lys																1386
TCG							Val									1434
AAC Asn																1482
TTG . Leu																1530
AGC Ser 280	Pro	Glu	Leu	Arg	Asp 285	Ala	Phe	Lyc	Lys	Met 290	Ile	Phe	Сув	Ser	Arg 295	1578
TAC		TAGA	ATGG	CT G	ATCC	CIGG	T TI	TAGA	ATCC	ATG	GGAA	TĀA.	CGTI	'GCCA	AG .	1634
ATGG TTGT	atgc aggg	AA G GC A	GATG ACTC	ACCC TATT	A CC	AGCI	DTDA:	TTT AGA	CTGA TAAA	ATA ACG	CTAT TGTA	GGCC GTAA	AG G	AACA AAGG	ATOOO ADATA ADATA	
TTTG	CACC TTTC	AA 1 CT G	CTAG TGGA	TAAA CATT	A CA	GCAA	TAAA	TAA .	TCAA	.GGG	CITI	GGGC	TA A	GGCA	AAGAC KGCCAT	1934

### FIG. 4A

GGGC	CCAC	IAA I	AGTTO	CTG	T T	CAGAC	CAG	A AGI	ATCT	rcag	CAAC	BAACT	CAC 1	AAAG)	AAGAA	A 60	)
LADA	TCT	GA (	TAAE	CAAT	ZA AC	TTT	CTG	CA	AGTTO	CAG	TAAC	GTT	CT (	TCT	PAACT	3 120	)
CAC	CACK	I AAI	AG AT	rg AJ et Ly 1	AA CI /8 H:	AC AT	le L	C AJ Su Ai 5	AT C	rg Ti eu Ty	AT GI yr Gi	Lu Ai	AC A? sn I! LO	C Al Le Ai	AC sn	<b>16</b> 0	3
AGT Ser	ACA Thr	GCA Ala 15	AGA Arg	TAA Taa	AAC Asn	TCA Ser	GAC Asp 20	тот Сув	CCT Pro	GCT Ala	GTG Val	ATT Ile 25	TTG Leu	CCA Pro	GAA Glu	216	5
GAG Glu	ATA Ile 30	TTT Phe	TTC Phe	ACA Thr	GTA Val	TCC Ser 35	ATT Ile	GTT Val	GGG Gly	GTT Val	TTG Leu 40	GAG Glu	AAC Asn	CTG Leu	ATG Met	264	L
GTC Val 45	CTT Leu	CTG Leu	GCT Ala	GTG Val	GCC Ala 50	aag Lyb	AAT Asn	AAG Lys	AGT Ser	CTT Leu 55	CAG Gln	TCG Ser	CCC Pro	ATG Met	TAC Tyr 60	312	2
TTT Phe	TTC Phe	ATC Ile	TGC Cys	AGC Ser 65	TTG Leu	GCT Ala	ATT Ile	TCC Ser	GAT Asp 70	ATG Met	CTG Leu	GGG Gly	AGC Ser	CTG Leu 75	TAC Tyr	360	}
AAG Lys	ATT	TTG Leu	GAA Glu 60	AAC Asn	GIT Val	CTG Leu	ATC	ATG Met 85	TTC Phe	AAA Lys	AAC Asn	ATG Met	GGT Gly 90	TAC	CTC Leu	401	3
GAG Glu	CCT Pro	CGA Arg 95	GCC	AGT Ser	TTT Phe	GAA Glu	AGC Ser 100	ACA Thr	gca Ala	GAT Asp	GAT Asp	GTG Val 105	GTG Val	GAC Asp	TCC	456	5
CTG Leu	TTC Phe 110	ATC Ile	CTC Leu	TCC Ser	CTT Leu	CTC Leu 115	GGC Gly	TCC Ser	ATC Ile	TGC Cys	AGC Ser 120	CTG Leu	TCT Ser	GTG Val	ATT Ile	504	į
GCC Ala 125	Ala	GAC Asp	CGC	TAC Tyr	ATC Ile 130	ACA Thr	ATC Ile	TTC Phe	CAC His	GCT Ala 135	CTG Leu	CAG Gln	TAC Tyr	CAC His	CGC Arg 140	552	2
ATC Ile	ATG Met	ACC Thr	CCC Pro	GCA Ala 145	CCG Pro	TGC Cys	CCT	CGT Arg	CAT His 150	CTG Leu	ACG Thr	GTC Val	CTC Leu	TGG Trp 155	GCA Ala	600	)
GGC Gly	TGC Cys	ACA Thr	GGC Gly 160	AGT Ser	GGC Gly	ATT Ile	Thr	ATC Ile 165	GTG Val	ACC Thr	TTC Phe	TCC Ser	CAT His 170	CAC His	GTC Val	641	3
CCC	ACA Thr	GTG Val 175	ATC Ile	GCC Ala	TTC Phe	ACA Thr	GCG Ala 180	CTG Leu	TTC Phe	CCG Pro	CTG Leu	ATG Met 185	CTG Leu	GCC Ala	TTC Phe	690	5
ATC Ile	CTG Leu 190	TGC Cys	CTC	TAC Tyr	GTG Val	CAC His 195	ATG Met	TTC Phe	CTG Leu	CTG Leu	GCC Ala 200	CGC Arg	TCC Ser	CAC His	ACC Thr	74	1
AGG Arg 205	Arg	ACC	CCC Pro	TCC	CTT Leu 210	CCC Pro	AAA Lys	GCC Ala	AAC Asn	ATG Met 215	AGA Arg	GGG Gly	GCC Ala	GTC Val	ACA Thr 220	79:	2

# FIG. 4B

CIG	ACT	GTC	CIG	CTC	GGG	GTC	TTC	ATT	TTC	TGT	TGG	GCA	CCC	TIT	GTC	840
Leu	Thr	Val	Leu		Gly	Val	Phe	Ile		Сув	Trp	Ala	Pro		Val	
				225					230					235		
CTT	CAT	GTC	CTC	TTG	ATG	ACA	TTC	TGC	CCA	GCT	GAC	ccc	TAC	TGT	GCC	888
Leu	His	Val	Leu	Leu	Met	Thr	Phe	Сув	Pro	Ala	Авр	Pro	Tyr	Сув	Ala	
			240					245			_		250			
TGC	TAC	DTA	TCC	crc	TTC	CAG	GTG	AAT	GGT	GTG	TTG	ATC	ATG	TGT	AAT	936
							Val									
•	•	255					260		•			265		•		
GCC	ATC	ATC	GAC	ccc	TTC	ATA	TAT	GCC	TTT	CGG	AGC	CCA	GAG	CTC	AGG	984
Ala	Ile	Ile	Asp	Pro	Phe	Ile	Tyr	Ala	Phe	Arg	Ser	Pro	Glu	Leu	Arg	
	270					275					280					
GTC	GCA	TTC	AAA	AAG	ATG	GTT	ATC	TGC	AAC	TGT	TAC	CAG	TAG	LETA	\TT	1033
Val	Ala	Phe	Lys	Lys	Met	Val	Ile	Сув	Asn	Сув	Tyr	Gln				
285			•	=	290			•		295					٠	
GGT	CCT	IAT 1	MITI	DADE	C A	CAGG	ata:	r act	rgtci	/GGG	ACAG	e e e e	AGC (	MOTE	CAGAÇC	1093
AAC	<b>LACA</b>	TA C	GAC	r											•	1108

### FIG. 5A

GGC	IGIA	ACT.	GTAG	CAAC	נט ט	1911	GGGT	G GG	DTAD	AGAA	GAG	ACCA	GAG	AGAG	AGAGG	3 60
TCA	BAGC	GAÇ	AGGG	GATG	AG A	CAGG	CTGG	T CA	CAGT	CTGC	ACT	TTAD	GTT	GGAG	ACGCA	A 120
AGG	DAAA	TTT	TTTC	DTAT	TC T	CCAA	CCTC	c cc	CTCC	rccc	CCG	TTTC	TCT	CTGG	AGAAA	180
TAAI	AATC	TAG .	actg	GACA	GC A	TCCA	CAAG	A GA	AGCA	CCTA	GAA	GAAG	ATT	TTTT	Titcc	240
AGC	AGCT	TGC	TCAG	GACC	CT G	CAGG	agcty	g CA	gCC@	GAAC	TGG	TCCC	acc	GATA	ACC	. 297
ATG Met 1	AAC Asn	TCT Ser	TCC Ser	TGC Cys 5	TGC Cys	Pro	TCC	TCC Ser	TCT Ser 10	TAT Tyr	CCG	ACG Thr	CTG	CCT Pro 15	AAC Asn	345
			CAC His 20													393
															CTG Leu	441
			AGT Ser													489
AGG Arg 65	AAC Asn	GGC Gly	AAC Asn	CTG Leu	CAC His 70	TCC Ser	CCC Pro	ATG Met	TAC Tyr	TTC Phe 75	TTC Phe	CTG Leu	CTG Leu	AGC Ser	CTG Leu 80	537
			GAC Asp													585
ATG Met	ATC Ile	GTG Val	GTT Val 100	Ile	AAC Asn	AGC Ser	gac Asp	TCC Ser 105	CTG Leu	ACC Thr	TTG Leu	GAG Glu	GAC Asp 110	CAA Gln	TTC Phe	633
			ATG Met													681
GTG Val	GCC Ala 130	TCC Ser	ATC Ile	TGC Cys	AAC Asn	CTC Leu 135	CTG Leu	GCC Ala	ATC Ile	GCC Ala	GTG Val 140	GAC Asp	AGG Arg	TAC Tyr	GTC Val	729
ACC Thr 145	ATC Ile	TTC Phe	TAT Tyr	gcc Ala	CTC Leu 150	CGT Arg	TAC Tyr	CAC His	AGC Ser	ATC Ile 155	ATG Met	ACG Thr	GTT Val	AGG Arg	AAA Lys 160	777
GCC Ala	CTC Leu	TCC Ser	TTG Leu	ATC Ile 165	GTG Val	GCC Ala	ATC Ile	TGG Trp	GTC Val 170	TGC Cys	TGT Cys	GGC	ATC Ile	TGC Cys 175	GGC Gly	825
GTG Val	ATG Met	TTC Phe	ATC Ile 180	GTC Val	TAC Tyr	TCC Ser	GAG Glu	AGC Ser 185	AAG Lys	ATG Met	GTC Val	ATC Ile	GTG Val 190	TGC Cys	CTC Leu	873

# FIG. 5B

ATC Ile	ACC	Met 195	Phe	Phe	Ala	Met	Val 200	Leu	Leu	Met	gly	Thr 205	Leu	Tyr	Ile	921
			CTC Leu												CTG Leu	969
			GAC Asp													1017
			ATC Ile													1065
CCT Pro	TTC Phe	TTC Phe	CTC Leu 260	CAC His	CTG Leu	OTC Val	CTC Leu	ATC Ile 265	ATC Ile	ACC Thr	TGC Cys	CCC	ACC Thr 270	AAC Asn	CCC	1113
TAC Tyr	TGC Cys	ATC Ile 275	TGC Cys	TAC Tyr	ACG Thr	GCG Ala	CAC His 280	TTC Phe	AAC Asd	ACC Thr	TAC Tyr	CTG Leu 285	GTT Val	CTC	ATC Ile	1161
ATG Met	TGC Cys 290	AAC Asn	TCT Ser	GTC Val	ATC Ile	GAC Asp 295	CCC Pro	CTC Leu	ATC Ile	TAC Tyr	GCC Ala 300	TTC Phe	CGC Arg	AGC Ser	CTG Leu	1209
			AAC Asn			Lys										1257
		GGC Gly	TAG	BAAC	- -	CGAG	DDAE	IG T	rcca(	cacc	T AG	CAA	adae			1306
AAD	AAGC	AAT (	crc	AGGT	JA G	ACAC	AGAA	3 GG								1338

### FIG. 6A

AGCTTCCGAG AGGCAGCCGA IGTGAGCATG IGCGCACAGA ITCGTCTCCC AATGGCATGG	60
CAGCTTCAAG GAAAATTATT TTGAACAGAC TTGAATGCAT AAGATTAAAG TTAAAGCAGA	120
AGTGAGAACA AGAAAGCAAA GAGCAGACTC TTTCAACTGA GAATGAATAT TTTGAAGCCC	180
AAGATTITAA AGTGATGATG ATTAGAGTCG TACCTAAAAG AGACTAAAAA CTCCATGTCA	240
AGCTCTGGAC TTGTGACATT TACTCACAGC AGGCATGGCA ATTTTAGCCT CACAACTTTC	300
AGACAGATAA AGACTTGGAG GAAATAACTG AGACGACTCC CTGACCCAGG AGGTTAAATC	360
AATTCAGGGG GACACTGGAA TTCTCCTGCC AGC ATG GTG AAC TCC ACC CAC CGT Met Val Asn Ser Thr His Arg 1 5	414
GGG ATG CAC ACT TCT CTG CAC CTC TGG AAC CGC AGC AGT TAC AGA CTG Gly Met His Thr Ser Leu His Leu Trp Asn Arg Ser Ser Tyr Arg Leu 10 15 20	462
CAC AGC AAT GCC AGT GAG TCC CTT GGA AAA GGC TAC TCT GAT GGA GGG His Ser Asn Ala Ser Glu Ser Leu Gly Lys Gly Tyr Ser Asp Gly Gly 25 ' 30 35	510
TOC TAC GAG CAA CTT TTT GTC TCT CCT GAG GTG TTT GTG ACT CTG GGT Cys Tyr Glu Gln Leu Phe Val Ser Pro Glu Val Phe Val Thr Leu Gly 40 45 50 55	558
FTG ATC AGC TTG TTG GAG AAT ATC TTA GTG ATT GTG GCA ATA GCC AAG Val Ile Ser Leu Leu Glu Asn Ile Leu Val Ile Val Ala Ile Ala Lys 60 65 70	606
AAC AAG AAT CTG CAT TCA CCC ATG TAC TTT TTC ATC TGC AGC TTG GCT ASN Lys Asn Leu His Ser Pro Met Tyr Phe Phe Ile Cys Ser Leu Ala 75 80 85	654
PTG GCT GAT ATG CTG GTG AGC GTT TCA AAT GGA TCA GAA ACC ATT ATC Val Ala Asp Met Leu Val Ser Val Ser Asn Gly Ser Glu Thr Ile Ile 90 95	702
ATC ACC CTA TTA AAC AGT ACA GAT ACG GAT GCA CAG AGT TTC ACA GTG lle Thr Leu Leu Asn Ser Thr Asp Thr Asp Ala Gln Ser Phe Thr Val 105	750
AAT ATT GAT AAT GTC ATT GAC TCG GTG ATC TGT AGC TCC TTG CTT GCA ASN Ile ASP ASN Val Ile ASP Ser Val Ile Cys Ser Ser Leu Leu Ala 120 125 130 135	798
TCC ATT TGC AGC CTG CTT TCA ATT GCA GTG GAC AGG TAC TTT ACT ATC Ser Ile Cys Ser Leu Leu Ser Ile Ala Val Asp Arg Tyr Phe Thr Ile 140 145 150	846
Phe Tyr Ala Leu Gln Tyr His Asn Ile Met Thr Val Lys Arg Val Gly 155 160 165	894
ATC AGC ATA AGT TGT ATC TGG GCA GCT TGC ACG GTT TCA GGC ATT TTG Ile Ser Ile Ser Cys Ile Trp Ala Ala Cys Thr Val Ser Gly Ile Leu 170 175 180	942

### FIG. 6B

			TAC									Сув				990
ATG Met 200	TTC Phe	TTC Phe	ACC Thr	ATG Met	CTG Leu 205	GCT Ala	CTC Leu	ATG Met	GCT Ala	TCT Ser 210	CTC Leu	TAT Tyr	GTC Val	CAC His	CTG Leu 215	1038
TTC Phe	CTG Leu	ATG Met	GCC Ala	AGG Arg 220	CTT	CAC His	ATT Ile	AAG Lys	AGG Arg 225	ATT Ile	GCT Ala	GTC Val	CTC Leu	CCC Pro 230	GGC Gly	1086
ACT Thr	GGT Gly	GCC Ala	ATC Ile 235	CGC Arg	CAA Gln	GGT Gly	GCC Ala	AAT Asn 240	ATG Met	AAG Lys	GGA Gly	GCG Ala	ATT 11e 245	Thr	TTG Leu	1134
			ATT Ile													1182
CAC Hib	TTA Leu 265	ATA Ile	TTC Phe	TAC Tyr	ATC Ile	TCT Ser 270	TGT Cys	CCT Pro	CAG Gln	AAT Asn	CCA Pro 275	TAT Tyr	TGT Cys	GTG Val	TGC Cys	1230
TTC Phe 280	ATG Met	TCT Ser	CAC His	TTT Phe	AAC Asn 285	TTG Leu	TAT Tyr	CTC Leu	ATA Ile	CTG Leu 290	ATC Ile	ATG Met	TGT Cys	AAT Asn	TCA Ser 295	1278
			CCT Pro													1326
			GAG Glu 315													1374
			AGA Arg		TAAT	TGG	IGA (	AGAC	CACG	ic ar	TAT#	AEDDA	CAT	CCAT	:AAG	1429
AGAC	TTT	TC A	CTCI	TACC	C TA	CCTG	ATA	TTC	TACI	TCT	GCAA	CAGO	TT 1	CTCI	TCCGT	1489
DATE	IGGTA	ICT G	GTTG	iagat	A TO	CATT	GTGT	KAA :	TTTA	AGC	CTAI	GATT	TT 7	AATG	AGAAA	1549
TAAA	:GCCC	ag 1	CTCI	GTAT	T AT	TTCC	AATC	TC	TGCI	ACT	TTTT	TGGC	CA 1	AAAA'	TATGA	1609
ATCI	'ATGI	TA 1	[AGGT	TOTA	re ec	ACTO	TGG	ŢŢŢ	ACAA	AAA	GAAA	AGTO	CT 1	ATTA	AAAGC	1669
TT							•								•	1671

### FIG. 7A

															Ala	
									Val					Leu	GCC Ala	
															CTC	144
												Ile			AAC Asd	192
			CAC His												GTG Val 80	240
			CTG Leu													286
			AAT Asn 100													336
			AAC Asn													384
			AGT Ser												ATC Ile	432
			TTG Leu													480
			GCC Ala													528
TC he	ATC Ile	ATC Ile	TAC Tyr 180	TAT Tyr	GAG Glu	TCC Ser	AAG Lys	TAT Tyr 185	Val	ATC Ile	ATT Ile	TGC Cys	CTC Leu 190	ATC Ile	TCC Ser	576
			ACC Thr								Leu					624
TC he	CTC Leu 210	CTG Leu	GCC Ala	CGG Arg	AAC Asn	CAT His 215	GTC Val	AAG Lys	CGG Arg	ATA Ile	GCA Ala 220	GCT Ala	TCC Ser	CCC Pro	AGA Arg	672
TAC Tyr 225	AAC Asn	TCC Ser	GTG Val	AGG Arg	CAA Gln 230	AGG Arg	ACC Thr	AGC Ser	ATG Met	AAG Lys 235	GGG Gly	GCT Ala	ATT Ile	ACC Thr	CTC Leu 240	720

## FIG. 7B

		CTG							Leu	768
	Ile	TTA Leu 260								816
		TAC Tyr								864
		CCT Pro								 912
 		GAG Glu	_		 				 	960
	_	GGG Gly		TAA		 				978

## FIG. 8







cAMP-dependent β-galactosidase







18/46







20/46

[PEPTIDE] (M)



SUBSTITUTE SHEET (RULE 26)



22/46

SUBSTITUTE SHEET (RULE 26)

### FIG. 14



Log[compound] (M)

hMC1-R



SUBSTITUTE SHEET (RULE 26)



hMC3-R





**SUBSTITUTE SHEET (RULE 26)** 















34/46

SUBSTITUTE SHEET (RULE 26)



35/46

SUBSTITUTE SHEET (RULE 26)



36/46

























أكسساعتامه food intake (هم)





4 5/4 6
SUBSTITUTE SHEET (RULE 26)



46/46