

Offline Evaluation of Ranking Policies with Click Models

Shuai Li¹ Yasin Abbasi-Yadkori² Branislav Kveton³ S. Muthukrishnan⁴ Vishwa Vinay² Zheng Wen² ¹The Chinese University of Hong Kong ²Adobe Research ³Google Research ⁴Rutgers University

Motivation

- Recommendations happen everywhere, such as Amazon, Facebook, Adobe Stock, Google Play, Netflix
- Suppose the existing policy π

with the expected CTR $V(\pi)$

Can we verify a new policy h

satisfies $V(n) \ge V(\pi)$ based on logged data under policy π ?

Setting

- Ground set $E = \{1, ..., L\}$ of L items
- A list is a K-permutation of E, which is an element of
- Context set X
- w(a, k|x): the expected CTR of putting item a in position k under context x
- A policy π is a conditional probability distribution of a list given context x: $\pi(\cdot | x)$
- The reward of list *A*

$$f(A, w) = \sum_{k=1}^{K} w(a_k, k)$$

The value of a policy

$$V(\pi) = \mathbb{E}_{x}[\mathbb{E}_{A \sim \pi(\cdot \mid \mathcal{X})} f(A, w(\cdot \mid \mathcal{X}))]$$

- At each time *t*
 - the environment draws context x_t and click realizations w_t
 - The learner observes x_t and selects A_t according to policy π
- The environment reveals $(w_t(a_k^t, k))_{k=1}^K$
- Logged dataset: $S = \{(x_t, A_t, w_t)\}_{t=1}^n$
- Objective
 - To design statistically efficient estimators based on logged dataset for any ranking policy
- Challenge
 - The number of different lists is exponential in K

Click Models & Estimators

List estimator [Strehl'2010]

$$\widehat{V}_L(h) = \frac{1}{|S|} \sum_{(x,A,w) \in S} f(A,w) \min \left\{ \frac{h(A|x)}{\widehat{\pi}(A|x)}, M \right\}$$

 $\hat{\pi}$: estimates of the logging policy

- Disadvantages:
 - Have to match the exact lists. The number of lists is extremely large, thus $\hat{\pi}(A|x)$ is very small

- With click-model assumptions, we can build estimators that leverage structures of click feedback
- Document-Based Click Model (DCTR):
 - w(a, k|x) only depends on item a

$$\widehat{V}_{I}(h) = \frac{1}{|S|} \sum_{(x,A,w)\in S} \sum_{k=1}^{K} w(a_k, k) \min\left\{\frac{h(a_k|x)}{\widehat{\pi}(a_k|x)}, M\right\}$$

$$\pi(a|x) = \sum_{A} \pi(A|x) \, 1\{a \in A\}$$

- Item-Position Click Model (IP):
 - w(a, k|x) depends on both item a and position k

$$\widehat{V}_{IP}(h) = \frac{1}{|S|} \sum_{(x,A,w)\in S} \sum_{k=1}^{K} w(a_k,k) \min \left\{ \frac{h(a_k,k|x)}{\widehat{\pi}(a_k,k|x)}, M \right\}
\pi(a,k|x) = \sum_{A} \pi(A|x) 1\{a_k = a\}$$

- Rank-Based Click Model (RCTR):
 - w(a, k|x) only depends on position k

$$\hat{V}_{R}(h) = \frac{1}{|S|} \sum_{(x,A,w) \in S} \sum_{k=1}^{K} w(a_{k},k)$$

- Position-Based Click Model (PBM):
 - $w(a, k|x) = \mu(a|x)p(k|x)$

 $V_{PBM}(h)$

$$= \frac{1}{|S|} \sum_{(x,A,w)\in S} \sum_{k=1}^{K} w(a_k, k) \min \left\{ \frac{\langle p(\cdot | x), h(a_k, \cdot | x) \rangle}{\langle p(\cdot | x), \hat{\pi}(a_k, \cdot | x) \rangle}, M \right\}$$

Experiments

- Yandex dataset
- The dataset is recorded over 27 days
- Each record contains
 - a query ID
 - the day when the query occurs
 - 10 displayed items as a response to the query
 - the corresponding click indicators of each displayed items
- Logged dataset S
 - any records except day d
 - $\hat{\pi}$ is the empirical distribution over S
- Evaluation policy h
 - Take the records of day d
 - h is the empirical distribution of these records
 - The value V(h) is the average CTR for these records
- Prediction errors on 100 most frequent queries as a function of clipping parameter M
 - Records of K = 2 or 3 positions

Records of K = 10 positions with DCG value

- The periormance or is estimator deteriorates fast with more positions
- The IP estimator performs best

Analysis

Proposition 1.[Unbiased in a larger class of policies] Let \mathcal{H}_Y contains all policies such that \hat{V}_Y is unbiased, for any $Y \in \{L, IP, I, PBM\}$. Then $\mathcal{H}_L \subseteq \mathcal{H}_{IP} \subseteq \mathcal{H}_I/\mathcal{H}_{PBM}$.

Proposition 2.[Lower bias in estimating policy] $\mathbb{E}_{S}[\hat{V}_{L}] \leq \mathbb{E}_{S}[\hat{V}_{IP}] \leq \mathbb{E}_{S}[\hat{V}_{I}] / \mathbb{E}_{S}[\hat{V}_{PBM}] \leq V(h)$

Proposition 3.[Policy optimization]

Suppose \tilde{h}_Y is the best policy under \hat{V}_Y , for any $Y \in$ $\{L, IP, I, PBM\}$. Then the lower bound on \tilde{h}_Y is at least as high as that on h_L .

Conclusions

- We propose various estimators for the expected number of licks on lists generated by ranking policies that leverage the structure of click models
- We prove that our estimators are better than the unstructured list estimators, in the sense that they are less biased and have better guarantees for policy optimization
- Our estimators consistently outperform the list estimator in our experiments

Contact

Shuai Li Email: shuaili@cse.cuhk.edu.hk

Branislav Kveton Email:bkveton@google.com

Vishwa Vinay Email: vinay@adobe.com Yasin Abbasi-Yadkori Email: abbasiya@adobe.com

S. Muthukrishnan Email: muthu@cs.rutgers.edu

Zheng Wen Email: zwen@adobe.com

Full Paper

- References
- 1. Strehl, Alex, John Langford, Lihong Li, and Sham M. Kakade. "Learning from logged implicit exploration data." In Advances in Neural Information Processing Systems, pp. 2217-2225. 2010.
- 2. Swaminathan, Adith, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John Langford, Damien Jose, and Imed Zitouni. "Off-policy evaluation for slate recommendation." In Advances in Neural Information Processing Systems, pp. 3632-3642. 2017.
- 3. Joachims, Thorsten, Adith Swaminathan, and Tobias Schnabel. "Unbiased learning-to-rank with biased feedback." In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 781-789. ACM, 2017.
- 4. Li, Shuai, Yasin Abbasi-Yadkori, Branislav Kveton, S. Muthukrishnan, Vishwa Vinay, Zheng Wen, "Offline evaluation of ranking policies with click models." In the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. 2018. (to appear)