On the CAD-compatible conversion of S-patches

Péter Salvi

Budapest University of Technology and Economics

WAIT 2019

Budapest, January 24th

P. Salvi

- Introduction
 - Motivation
 - Previous work
- Simplexes & S-patches
 - Simplexes
 - S-patches
- Conversion
 - Conversion to quadrilateral S-patch
 - Conversion to tensor product form
- Conclusion
 - Example
 - Discussion

Multi-sided surfaces in CAD software

- Standard surface representations:
 - Tensor-product Bézier surface
 - Tensor-product B-spline surface
 - Tensor-product NURBS surface
- No standard multi-sided representation
- Conversion to tensor-product patches
 - Trimming
 - Parameterization issues
 - Asymmetric
 - Not watertight
 - Central split
 - Loosely defined dividing curves
 - Only C^0 or G^1 continuity

Introduction

Solution

- Exact tensor product conversion
- Trimmed rational Bézier surface
 - Only polynomial (Bézier) boundaries
 - ullet Trimming curves \Rightarrow lines in the domain
- Native *n*-sided representation
 - S-patch
 - Generalization of Bézier curves & triangles
 - Suitable for G^1 hole filling [1]
- [1] P. Salvi, G^1 hole filling with S-patches made easy.

In: Proceedings of the 12th Conference of the Hungarian Association for Image Processing and Pattern Recognition, 2019 (accepted).

S-patches & simplexes

- [1989, Loop & DeRose]
 A multi-sided generalization of Bézier surfaces
 - The original S-patch publication
 - Contains theoretical results on the tensor product conversion
 - Missing from the description of the algorithm:
 - Composition of rational Bézier simplexes
 - Blossom of Wachspress coordinates
- [1987, Ramshaw]
 Blossoming: A connect-the-dots approach to splines
- [1988, DeRose]
 Composing Bézier simplexes
- [1993, DeRose et al.]
 Functional composition algorithms via blossoming

Simplex in nD

- (n+1) points in nD
- Let V_i denote these points
- Any nD point is uniquely expressed by the affine combination of V_i:

$$p = \sum_{i=1}^{n} \lambda_i V_i$$
 with $\sum_{i=1}^{n} \lambda_i = 1$

• λ_i are the barycentric coordinates of p relative to the simplex

(images from Wikipedia)

Let's look at the equation of a Bézier curve:

$$C(u) = \sum_{i=0}^{d} P_i B_i^d(u)$$

Let's look at the equation of a Bézier curve:

$$C(u) = \sum_{i=0}^{d} P_i B_i^d(u) = \sum_{i=0}^{d} P_i \frac{d!}{i!(d-i)!} u^i (1-u)^{d-i}$$

Let's look at the equation of a Bézier curve:

$$C(u) = \sum_{i=0}^{d} P_i B_i^d(u) = \sum_{i=0}^{d} P_i \frac{d!}{i!(d-i)!} u^i (1-u)^{d-i}$$

Let
$$\mathbf{s} = (i, d - i)$$
 and $\lambda = (u, 1 - u)$.

Let's look at the equation of a Bézier curve:

$$C(u) = \sum_{i=0}^{d} P_i B_i^d(u) = \sum_{i=0}^{d} P_i \frac{d!}{i!(d-i)!} u^i (1-u)^{d-i}$$

Let $\mathbf{s} = (i, d - i)$ and $\lambda = (u, 1 - u)$. Then

$$C(\lambda) = \sum_{\mathbf{s}} P_{\mathbf{s}} \frac{d!}{s_1! s_2!} \lambda_1^{s_1} \lambda_2^{s_2}$$

Bézier triangle

Now let's look at the equation of a Bézier triangle:

$$T(\lambda) = \sum_{\mathbf{s}} P_{\mathbf{s}} \frac{d!}{s_1! s_2! s_3!} \lambda_1^{s_1} \lambda_2^{s_2} \lambda_3^{s_3} = \sum_{\mathbf{s}} P_{\mathbf{s}} B_{\mathbf{s}}^d(\lambda)$$

- $\mathbf{s} = (s_1, s_2, s_3)$ with $s_i \ge 0$ and $s_1 + s_2 + s_3 = d$
- $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ barycentric coordinates of a 2D point relative to the domain triangle (simplex)

Did you know?

This was Paul de Casteljau's generalization of Bézier curves.

- "Bézier" curves were also his invention
- Tensor product surfaces were invented by Pierre Bézier
- de Casteljau worked at Citroën, while Bézier at Renault

Bézier simplex

• The logical generalization to (n-1) dimensions:

$$S(\lambda) = \sum_{\mathbf{s}} P_{\mathbf{s}} \frac{d!}{\prod_{i=1}^{n} s_{i}!} \prod_{i=1}^{n} \lambda_{i}^{s_{i}} = \sum_{\mathbf{s}} P_{\mathbf{s}} B_{\mathbf{s}}^{d}(\lambda)$$

- $\mathbf{s} = (s_1, s_2, \dots, s_n)$ with $s_i \ge 0$ and $\sum_{i=1}^n s_i = d$
- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ barycentric coordinates of an (n-1)D point relative to the domain simplex

Note

Bézier simplexes are mappings, not geometric entities!

S-patches as Bézier simplexes

• S-patch equation (*n* sides, depth *d*):

$$S(\lambda) = \sum_{\mathbf{s}} P_{\mathbf{s}} \frac{d!}{\prod_{i=1}^{n} s_{i}!} \prod_{i=1}^{n} \lambda_{i}^{s_{i}} = \sum_{\mathbf{s}} P_{\mathbf{s}} B_{\mathbf{s}}^{d}(\lambda)$$

- Domain for an *n*-sided S-patch:
 - Regular *n*-sided polygon (in 2D)
- Domain for an (n-1)-dimensional Bézier simplex:
 - An (n-1)-dimensional simplex (n barycentric coordinates)
- Needed:
 - Mapping from an n-sided polygon to n barycentric coordinates
 - Generalized barycentric coordinates
 - E.g. Wachspress, mean value, etc.
 - Defines an embedding in the (n-1)-dimensional simplex

Control structure

- Very complex many control points, hard to use manually
- Boundary control points define degree d Bézier curves
- Adjacent control points have shifted labels, e.g. $21000 \rightarrow 30000$, 11001, 20100, 12000

P. Salvi

Overview

Claim 6.4 in [1989, Loop & DeRose]

For every *m*-sided regular S-patch of depth *d*, there exists an equivalent *n*-sided regular S-patch of depth d(m-2).

Lemma 6.2 in [1989, Loop & DeRose]

For every 4-sided regular S-patch of depth d, there exists an equivalent tensor product Bézier patch of degree d.

- Convert the *n*-sided S-patch of depth *d* to a quadrilateral S-patch of depth d(n-2).
- Convert the quadrilateral S-patch to a tensor product Bézier patch of degree d(n-2).

Conversion as simplex composition

- Wachspress coordinates on an *n*-sided polygon
 - ... have a Bézier simplex form (denoted by W_n)
 - ... are pseudoaffine (have an affine left inverse W_n^{-1})
- Mapping from the domain polygon to a 3D point:

$$S \circ W_n$$

P. Salvi

Conclusion

Conversion to quadrilateral S-patch

Conversion as simplex composition

- Wachspress coordinates on an *n*-sided polygon
 - ... have a Bézier simplex form (denoted by W_n)
 - ... are pseudoaffine (have an affine left inverse W_n^{-1})
- Mapping from the domain polygon to a 3D point:

$$S \circ W_n = S \circ W_n \circ (W_4^{-1} \circ W_4)$$

Conversion

Conversion to quadrilateral S-patch

Conversion as simplex composition

- Wachspress coordinates on an *n*-sided polygon
 - ... have a Bézier simplex form (denoted by W_n)
 - ... are pseudoaffine (have an affine left inverse W_n^{-1})
- Mapping from the domain polygon to a 3D point:

$$S \circ W_n = S \circ W_n \circ (W_4^{-1} \circ W_4) = (S \circ W_n \circ W_4^{-1}) \circ W_4$$

Conversion to quadrilateral S-patch

Conversion as simplex composition

- Wachspress coordinates on an *n*-sided polygon
 - ... have a Bézier simplex form (denoted by W_n)
 - ... are pseudoaffine (have an affine left inverse W_n^{-1})
- Mapping from the domain polygon to a 3D point:

$$S \circ W_n = S \circ W_n \circ (W_4^{-1} \circ W_4) = (S \circ W_n \circ W_4^{-1}) \circ W_4$$

- The 4-sided formulation is the composition of 3 simplexes:
 - W_4^{-1} : defined by the vertices of the rectangular domain
 - S: the S-patch (with homogenized control points)
 - W_n : ??? [a rational Bézier simplex of degree n-2]
- Composition:
 - Two algorithms (simple vs. efficient) [see the paper]

Conversion to quadrilateral S-patch

Determining the control points of W_n – homogenization

$$\lambda_i(p) = \frac{\prod_{j \neq i-1, i} D_j(p)}{\sum_{k=1}^n \prod_{j \neq k-1, k} D_j(p)}$$

- $D_i(p)$ is the signed distance of p from the j-th side
- Rational expression ⇒ homogenized coordinates
 - Use the barycentric coordinates as "normal" coordinates
 - $(x, y, z) \equiv (wx, wy, wz, w(1 x y z))$
- Homogenized form of W_n :

$$\left\{\prod_{j\neq i-1,i}D_j(p)\right\}$$

P. Salvi

Determining the control points of W_n – polarization

For any homogeneous polynomial Q(u) of degree d, $\exists q$ s.t.

$$q(u_{1},...,u_{d}) = q(u_{\pi_{1}},...,u_{\pi_{d}}),$$

$$q(u_{1},...,\alpha u_{k_{1}} + \beta u_{k_{2}},...,u_{d}) = \alpha q(u_{1},...,u_{k_{1}},...,u_{d}) + \beta q(u_{1},...,u_{k_{2}},...,u_{d}),$$

$$q(u,...,u) = Q(u).$$

Then q is called the *blossom* of Q.

The control points of its Bézier simplex form are

$$P_{\mathbf{s}}^Q = q(\underbrace{V_1, \ldots, V_1}_{s_1}, \underbrace{V_2, \ldots, V_2}_{s_2}, \ldots, \underbrace{V_n, \ldots, V_n}_{s_n}),$$

where V_i are the vertices of the simplex.

P. Salvi

Conversion

Determining the control points of W_n – blossom

• The blossom of W_n is

$$q(p_1,\ldots,p_{n-2})_i = \frac{1}{(n-2)!} \cdot \sum_{\pi \in \Pi(n-2)} \prod_{\substack{k=1 \ j \neq i-1,i}}^{n-2} D_j(p_{\pi_k})$$

- $\Pi(n-2)$ is the set of permutations of $\{1,\ldots,n-2\}$
- k runs from 1 to n-2 while j from 1 to n skipping i-1 and i
- With this, the control points can be computed
- Simplex composition gives the quadrilateral S-patch
- Convert to "normal" homogeneous coordinates (wx, wy, wz, w)

Explicit formula for tensor product control points

An *n*-sided S-patch of depth *d* can be represented as

$$\hat{S}(u,v) = \sum_{i=0}^{d} \sum_{j=0}^{d} C_{ij} B_i^d(u) B_j^d(v),$$

where

$$C_{ij} = \sum_{\substack{\mathbf{s}\\s_2 + s_3 = i\\s_3 + s_4 = j}} \frac{\binom{d}{\mathbf{s}}}{\binom{d}{i}\binom{d}{j}} P_{\mathbf{s}}.$$

P. Salvi

Converting a 5-sided patch – control net

P. Salvi BME

Converting a 5-sided patch – contours

P. Salvi BME

Converting a 5-sided patch – trimmed tensor product

P. Salvi BME

Converting a 5-sided patch – untrimmed tensor product

P. Salvi
On the CAD-compatible conversion of S-patches

Limitations

- Efficiency
 - n = 5, d = 8 took > 5 minutes on a modern machine (How long would it have taken in 1989?)
 - Much faster algorithm is developed (see our upcoming paper)
- 3-sided patches
 - For Bézier triangles, the resulting patch is not rational
 - But there are simple alternative methods, e.g. [1992, Warren]
- Control net quality
 - Singularities on a circle around the domain
 - Denominator of Wachspress coordinates vanishes
 - Unstable control points near the corners
- Conclusion
 - The algorithm works, but it is not practical

Any questions?

Thank you for your attention.

P. Salvi BME