Reinforcement Learning Lecture 1b

Markov Processes [RusNor] Sec. 15.1

Outline

- Environment dynamics
- Stochastic processes
 - Markovian assumption
 - Stationary assumption

Recall: RL Problem

Goal: Learn to choose actions that maximize rewards

Unrolling the Problem

 Unrolling the control loop leads to a sequence of states, actions and rewards:

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots$$

 This sequence forms a stochastic process (due to some uncertainty in the dynamics of the process)

Common Properties

- Processes are rarely arbitrary
- They often exhibit some structure
 - Laws of the process do not change
 - Short history sufficient to predict future
- Example: weather prediction
 - Same model can be used everyday to predict weather
 - Weather measurements of past few days sufficient to predict weather.

Stochastic Process

- Consider the sequence of states only
- Definition
 - Set of States: S
 - Stochastic dynamics: $Pr(s_t | s_{t-1}, ..., s_0)$

Stochastic Process

Problem:

Infinitely large conditional distributions

Solutions:

- Stationary process: dynamics do not change over time
- Markov assumption: current state depends only on a finite history of past states

K-order Markov Process

- Assumption: last k states sufficient
- First-order Markov Process

$$-\Pr(s_t|s_{t-1},...,s_0) = \Pr(s_t|s_{t-1})$$

Second-order Markov Process

$$-\Pr(s_t|s_{t-1},...,s_0) = \Pr(s_t|s_{t-1},s_{t-2})$$

Markov Process

- By default, a Markov Process refers to a
 - First-order process

$$\Pr(s_t|s_{t-1}, s_{t-2}, ..., s_0) = \Pr(s_t|s_{t-1}) \ \forall t$$

Stationary process

$$\Pr(s_t|s_{t-1}) = \Pr(s_{t'}|s_{t'-1}) \ \forall t'$$

 Advantage: can specify the entire process with a single concise conditional distribution

Examples

- Robotic control
 - **States:** $\langle x, y, z, \theta \rangle$ coordinates of joints
 - **Dynamics:** constant motion

- Inventory management
 - States: inventory level
 - Dynamics: constant (stochastic)
 demand

Non-Markovian and/or non-stationary processes

- What if the process is not Markovian and/or not stationary?
- Solution: add new state components until dynamics are Markovian and stationary
 - Robotics: the dynamics of $\langle x, y, z, \theta \rangle$ are not stationary when velocity varies...
 - Solution: add velocity to state description e.g.
 - $-\langle x, y, z, \theta, \dot{x}, \dot{y}, \dot{z}, \dot{\theta} \rangle$
 - If acceleration varies... then add acceleration to state
 - Where do we stop?

Markovian Stationary Process

 Problem: adding components to the state description to force a process to be Markovian and stationary may significantly increase computational complexity

• **Solution:** try to find the smallest state description that is self-sufficient (i.e., Markovian and stationary)

Inference in Markov processes

- Common task:
 - Prediction: $Pr(s_{t+k}|s_t)$
- Computation:

-
$$\Pr(s_{t+k}|s_t) = \sum_{s_{t+1}\dots s_{t+k}} \prod_{i=1}^k \Pr(s_{t+i}|s_{t+i-1})$$

- Discrete states (matrix operations):
 - Let T be a $|S| \times |S|$ matrix representing $Pr(s_{t+1}|s_t)$
 - Then $Pr(s_{t+k}|s_t) = T^k$
 - Complexity: $O(k|S|^3)$

Decision Making

- Predictions by themselves are useless
- They are only useful when they will influence future decisions

- Hence the ultimate task is decision making
- How can we influence the process to visit desirable states?
 - Model: Markov Decision Process