複素平面上の電圧

●LR直列回路

$$\dot{V}_{R} = \frac{R}{R + j\omega L} E = \frac{ER^{2}}{R^{2} + \omega^{2}L^{2}} - j\frac{\omega LER}{R^{2} + \omega^{2}L^{2}}$$

$$\dot{V}_L = \frac{j\omega L}{R + j\omega L} E = \frac{\omega^2 L^2 E}{R^2 + \omega^2 L^2} + j \frac{\omega L E R}{R^2 + \omega^2 L^2}$$

複素平面上の電圧

●LR直列回路

$$\dot{V}_{R} = \frac{R}{R + j\omega L} E = \frac{ER^{2}}{R^{2} + \omega^{2}L^{2}} - j\frac{\omega LER}{R^{2} + \omega^{2}L^{2}}$$

$$\dot{V}_L = \frac{j\omega L}{R + j\omega L} E = \frac{\omega^2 L^2 E}{R^2 + \omega^2 L^2} + j \frac{\omega L E R}{R^2 + \omega^2 L^2}$$

●数值例

$$\omega = 1, R = \sqrt{3}, L = 1$$

$$\theta = \tan^{-1}\frac{R}{\omega L} = \tan^{-1}\sqrt{3} = \frac{\pi}{3}$$

複素電圧,電流の解釈

- ●極座標形式の複素電圧,電流
 - $re^{j\theta} (= r(\cos\theta + j\sin\theta))$
 - **◆**r: 絶対値
 - θ: 偏角
- Re[複素数 $e^{j\omega t}]$ = 時間表現
- ●絶対値 r =振幅
- ●偏角の差=位相の差

フェーザ図 (ベクトル図)

- •フェーザ (phasor, phase vector)
 - ■正弦波を複素数で表現したもの
- フェーザ図
 - \blacksquare フェーザ $re^{j\theta}$ をベクトルで図示したもの
 - ◆基本的に, 複素平面上での複素電流, 電圧を図示
 - ◆直感的な理解を助ける
 - ■ベクトルの水平軸に対する角度 = θ
 - ベクトルの長さ=絶対値 r
 - ◆電流,電圧は異なるスケールで描いてよい

Lのみの回路のフェーザ図

Lのみの回路

$$\mathbf{I} = \frac{1}{j\omega L}E$$

$$= -j\frac{1}{\omega L}E = e^{-j\frac{\pi}{2}}\frac{1}{\omega L}E$$

■ オイラーの公式:
$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$e^{-j\frac{\pi}{2}}\dot{C} = e^{-j\frac{\pi}{2}}re^{j\theta} = re^{j\left(\theta - \frac{\pi}{2}\right)}$$

■時計回りに90°回転

Cのみの回路のフェーザ図

Cのみの回路

$$\vec{I} = \frac{E}{\frac{1}{j\omega C}}$$

$$= j\omega CE = e^{j\frac{\pi}{2}} \omega CE$$

■オイラーの公式:
$$e^{j\theta} = \cos \theta + j \sin \theta$$

- ●複素電流,電圧に*jをかける意味*
 - $e^{j\frac{\pi}{2}}\dot{C} = e^{j\frac{\pi}{2}}re^{j\theta} = re^{j\left(\theta + \frac{\pi}{2}\right)}$
 - 反時計回りに90°回転

LR直列回路のフェーザ図

●LR直列回路

- $\dot{V}_R = R\dot{I}$
- $\mathbf{V}_{L} = j\omega L\dot{I}$
- ●描き方の例
- 1. Eのベクトルをかく
- 2. iのベクトルをかく
 - A:B=R:ωL の方向

LR直列回路のフェーザ図

●LR直列回路

- $\dot{V}_R = R\dot{I}$
- $\mathbf{V}_{L} = j\omega L\dot{I}$
- ●描き方の例
- 3. $\dot{V_R}$ と $\dot{V_L}$ をかく
 - *V_R*は*i*と同じ方向
 - \dot{V}_L はiから反時計回りに90°の方向
 - $\vec{v}_R + \dot{V}_L = E$

描き方のバリエーション

RC並列回路のフェーザ図

●電流で考える

$$\vec{I}_R = \frac{E}{R}$$

$$\vec{I}_C = \frac{E}{\frac{1}{j\omega C}} = j\omega CE$$

- $\vec{I} = \vec{I}_R + \vec{I}_C$
- ●描き方の例
- 1. Eのベクトルをかく
- \vec{I}_R のベクトルをかく
 - *I*_Rは*E*と同じ方向

RC並列回路のフェーザ図

●電流で考える

$$\vec{I}_R = \frac{E}{R}$$

$$\vec{I}_C = \frac{E}{\frac{1}{j\omega C}} = j\omega CE$$

- $\vec{I} = \vec{I}_R + \vec{I}_C$
- ●描き方の例
- 3. $\dot{I_c}$ をかく
 - I_c はEから時計回りに90°の方向
- 4. *İ*をかく
 - $\vec{I} = \vec{I}_R + \vec{I}_C$

RC並列回路のフェーザ図

・数式との一致を確認

$$\vec{I}_R = \frac{E}{R}$$

$$\vec{I}_C = \frac{E}{\frac{1}{j\omega C}} = j\omega CE$$

$$\vec{I} = \vec{I}_R + \vec{I}_C = \frac{E}{R} + j\omega CE$$

$$|\dot{I}| = \sqrt{\left(\frac{E}{R}\right)^2 + \omega^2 C^2 E^2}$$
$$= \frac{E}{R} \sqrt{1 + (\omega CR)^2}$$

 $\theta = \tan^{-1} \omega CR$

インピーダンスの合成

直列

合成インピーダンス: $\dot{Z}_1 + \dot{Z}_2$

注. キャパシタの直列接続で, 上式 が成り立つには, もともと電荷が たまっていないという条件が必要

合成インピーダンス: $\frac{1}{\frac{1}{Z_1} + \frac{1}{Z_2}}$

重ね合わせの原理

- ●複数の電源を含む回路の電流分布は、電源が個々に単独に存在する場合の電流分布の和に等しい
 - ■線形回路において成り立つ

注. 電源が異なる周波数の場合は, 周波数毎に分けて考えることができる

交流回路のテブナンの定理

- ●対象:抵抗と同一周波数の交流電源からなる回路
 - 端子a, bをもつ
- ●任意の回路を,複素電圧Éをもつ電源とインピーダンスŹ₀の直列に置き換えられる
 - *É*:端子*b*から*a*への複素電圧
 - \dot{z}_0 :電圧源を短絡したときの端子a b間のインピーダンス

問04

(b) RC直列回路のフェーザ図 (1), (2), (3)に対応する複素 電圧 $(\dot{V}_R, \dot{V}_C, E)$ は?

