

<u>Lecture 14: Wald's Test, Likelihood</u> <u>Ratio Test, and Implicit Hypothesis</u>

课程 □ Unit 4 Hypothesis testing □ Test

☐ 5. Introduction to Wald's Test

5. Introduction to Wald's Test Introduction to Wald's Test

Start of transcript. Skip to the end.

Here, we based the test.

So we have some sort of a natural way of progressing,

right?

So we start by building estimators, and confidence

interval, and tests that are based on the mean.

Remember our KISS example?

That was a natural estimator and it came in.

视频

下载视频文件

字幕

下载 SubRip (.srt) file 下载 Text (.txt) file

Review: Manipulating Multivariate Gaussians

1/1 point (graded)

Recall that a **multivariate Gaussian** $\mathcal{N}(\vec{\mu}, \Sigma)$ is a random vector $\mathbf{Z} = \left[Z^{(1)}, \ldots, Z^{(n)}\right]^T$ where $Z^{(1)}, \ldots, Z^{(n)}$ are **jointly Gaussian**, meaning that the density of \mathbf{Z} is given by the joint pdf

$$egin{aligned} f: \, \mathbb{R}^n &
ightarrow \, \, \mathbb{R} \ & \mathbf{Z} & \mapsto \, \, rac{1}{(2\pi)^{n/2} \sqrt{\det{(\Sigma)}}} \mathrm{exp}\left(-rac{1}{2} (\mathbf{Z} - ec{\mu})^T \Sigma^{-1} \, (\mathbf{Z} - ec{\mu})
ight) \end{aligned}$$

where

$$ec{\mu}_i \; = \mathbb{E}\left[Z^{(i)}
ight], \qquad ext{(vector mean)} \, .$$
 $\Sigma_{ij} \; = \mathsf{Cov}\left(Z^{(i)}, Z^{(j)}
ight) \qquad ext{(positive definite covariance matrix)} \, .$

Suppose that $\mathbf{Z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}\right)$. Let \mathbf{M} denote an n imes n matrix.

What is the distribution of MZ?

$$\circ$$
 $\mathcal{N}\left(\mathbf{0},\Sigma\right)$

$$\circ$$
 $\mathcal{N}\left(\mathbf{0},\mathbf{M}\Sigma\right)$

Now, let $\mathbf{Z} \sim \mathbf{V}_2$ ($\mathbf{0}, \mathbf{1}_{2\times 2}$), i.e. \mathbf{Z} is a standard Gadssian in 2 differentiations. Is it true that $\mathbf{W}\mathbf{Z} \sim \mathbf{V}_2$ (μ, \mathbf{Z}_{MZ}), for some μ, \mathbf{Z}_{MZ}

● True □

Find the mean $ec{\mu} = \mathbb{E}\left[\mathbf{MZ}\right]$ and covariance matrix $\Sigma_{\mathbf{MZ}}$ of \mathbf{MZ} .

(Enter your answer as a vector or matrix. For example, type [1,3] for the vector $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$; type [[1,2],[5,1]] for the matrix $\begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}$. Note the square brackets, and the commas as separators.)

$$\vec{\mu} = \mathbb{E}\left[\mathbf{MZ}\right] = \begin{bmatrix} 0,0 \end{bmatrix}$$
 \square Answer: $[0,0]$

$$\Sigma_{MZ} = [[1,0],[0,1]]$$
 \Box Answer: $[[1,0],[0,1]]$

STANDARD NOTATION

Solution:

$$egin{aligned} \mathbf{M}\mathbf{M}^T &= egin{pmatrix} \cos\phi & -\sin\phi \ \sin\phi & \cos\phi \end{pmatrix} egin{pmatrix} \cos\phi & \sin\phi \ -\sin\phi & \cos\phi \end{pmatrix} \ &= egin{pmatrix} \cos^2\phi + \sin^2\phi & \cos\phi\sin\phi - \cos\phi\sin\phi \ \cos\phi\sin\phi - \cos\phi\sin\phi & \sin^2\phi + \cos^2\phi \end{pmatrix} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}. \end{aligned}$$

Hence $\mathbf{M}^T\mathbf{M} = \mathbf{1}_{2\times 2}$ or equivalenly $\mathbf{M}^T = \mathbf{M}^{-1}$ norm

Remark: Geometrically, \mathbf{M} rotates a vector \mathbf{z} by an angle $\boldsymbol{\phi}$ counterclockwise. Hence $\|\mathbf{M}\mathbf{z}\| = \|\mathbf{z}\|$ for any nonzero \mathbf{z} .

- Recall a main property of (multivariate) Gaussian variables is that any linear transformation of them remain (multivariate) Gaussian.
- Compute the mean and covariance of **MZ**:

$$egin{array}{lll} \mathbb{E}\left[\mathbf{M}\mathbf{Z}
ight] &=& \mathbf{M}\mathbf{0} = \mathbf{0} \\ \Sigma_{\mathbf{M}\mathbf{Z}} &=& \mathbf{M}\Sigma_{\mathbf{Z}}\mathbf{M}^T = \mathbf{M}\mathbf{1}_{2 imes2}\mathbf{M}^T = \mathbf{M}\mathbf{M}^{-1} = \mathbf{1}_{2 imes2}. \end{array}$$

Hence, $\mathbf{MZ} \sim \mathcal{N}_d\left(\mathbf{0}, \mathbf{1}_{2 imes 2}
ight)$, , i.e. a **standard** Gaussian vector.

Remark: Real matrices satisfying $\mathbf{M}^T = \mathbf{M}^{-1}$ (or equivalently $\mathbf{M}\mathbf{M}^T = \mathbf{M}^T\mathbf{M} = \mathbf{1}_{d\times d}$,) are called **orthogonal** matrices. In general, in d dimensions and for any orthogonal matrix \mathbf{M} , $\mathbf{M}\mathbf{Z}$ is also a **standard** multivariate Gaussian vector if \mathbf{Z} is a standard multivariate Gaussian.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

Review: Asymptotic Normality of the MLE

1/1 point (graded)

Let $X_1, \ldots, X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ for some true parameter $\theta^* \in \mathbb{R}^d$. We construct the associated statistical model $(\mathbb{R}, \{\mathbf{P}_{\theta}\}_{\theta \in \mathbb{R}^d})$ and the maximum likelihood estimator $\hat{\theta}_n^{MLE}$ for θ^* .

Recall that, under some technical conditions,

$$\sqrt{n} \, (\hat{ heta}_n^{MLE} - heta^*) \stackrel{(d)}{\longrightarrow} \mathcal{N} \, (0, \mathcal{I}(heta^*)^{-1})$$

where $\mathcal{I}(\theta^*)$ denotes the Fisher information. That is, the MLE $\hat{\theta}_n^{MLE}$ is asymptotically normal with asymptotic covariance matrix $\mathcal{I}(\theta^*)^{-1}$.

Standardize the statement of asymptotic normality above. Answer by finding the power a of the Fisher information $\mathcal{I}(\theta^*)$ such that the following is true:

$$\sqrt{n}\mathcal{I}(heta^*)^a\left(\hat{ heta}_n^{MLE} - heta^*
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(0, I_{d imes d}
ight)$$

where $I_{d \times d}$ denotes the $d \times d$ identity matrix.

Hint: Use the result of the previous problem.

$$a = \begin{bmatrix} 1/2 \\ \end{bmatrix}$$
 Answer: 1/2

STANDARD NOTATION

Solution:

By the result of the previous problem, if $\mathbf{X} \sim \mathcal{N}\left(\mathbf{0}, \mathcal{I}(\theta^*)^{-1}\right)$, then $\mathcal{I}(\theta^*)^{1/2}\mathbf{X}$ is mean 0 and has covariance matrix

$$\mathcal{I}(heta^*)^{1/2}\mathcal{I}(heta^*)^{-1} \Big(\mathcal{I}(heta^*)^{1/2}\Big)^T = \mathcal{I}(heta^*)^{1/2}\mathcal{I}(heta^*)^{-1}\mathcal{I}(heta^*)^{1/2} = I_{d imes d}.$$

Indeed, $\mathcal{I}(heta^*)^{1/2}\mathbf{X} \sim \mathcal{N}\left(\mathbf{0}, I_{d imes d}
ight)$.

By the asymptotic normality of the MLE,

$$\sqrt{n} \, (\hat{ heta}_n^{MLE} - heta^*) \stackrel{(d)}{\longrightarrow} \mathcal{N} \, (\mathbf{0}, \mathcal{I}(heta^*)^{-1})$$

so that, by continuity,

$$\sqrt{n}\,\mathcal{I}(heta^*)^{1/2}\,(\hat{ heta}_n^{MLE}- heta^*) \stackrel{(d)}{\longrightarrow} \mathcal{I}(heta^*)^{1/2} \mathbf{N}\,(\mathbf{0},\mathcal{I}(heta^*)^{-1}) = \mathbf{N}\,(0,I_{d imes d})\,.$$

提交

你已经尝试了1次(总共可以尝试3次)

□ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 4 Hypothesis testing:Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hypothesis Test / 5. Introduction to Wald's Test