1

Assignment 15

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment15

1 **Problem**

(hoffman/page213/3):

Find a projection **E** which projects \mathbb{R}^2 onto the subspace spanned by (1,-1) along the subspace spanned by (1,2).

2 Solution

Given	Let $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$	
		(2.0.1)
	where $\begin{pmatrix} a \\ b \end{pmatrix}$ is representation of $\begin{pmatrix} x \\ y \end{pmatrix}$ in new basis.	
To find	$\langle x \rangle = \langle 1 \rangle$	
	$\mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = a \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	(2.0.2)
Finding a Projection E	We know in standard order basis ;	
	$ \begin{pmatrix} x \\ y \end{pmatrix} : \begin{pmatrix} 1 \\ 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} y $	(2.0.3)
	Express $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ in the basis $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = p \begin{pmatrix} 1 \\ -1 \end{pmatrix} + q \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{2.0.4}$$

where $\begin{pmatrix} p \\ q \end{pmatrix}$ is representation of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ in the new basis.

$$\implies \binom{p}{q} = \binom{\frac{2}{3}}{\frac{1}{3}} \tag{2.0.5}$$

similarly;

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = r \begin{pmatrix} 1 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{2.0.6}$$

$$\implies \binom{r}{s} = \binom{\frac{-1}{3}}{\frac{1}{3}} \tag{2.0.7}$$

Substitute (2.0.5) and (2.0.7) in (2.0.3) we get;

From (2.0.1) and (2.0.8);

From (2.0.2) and (2.0.9);

$$\mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = \left(\frac{2}{3}x - \frac{1}{3}y\right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{2.0.10}$$

$$\implies \mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{-2}{3} \end{pmatrix} x + \begin{pmatrix} \frac{-1}{3} \\ \frac{1}{3} \end{pmatrix} y \tag{2.0.11}$$

$$\mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{2.0.12}$$

	Hence,	
	$\implies \mathbf{E} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$	(2.0.13)
Verification	If $n \times n$ matrix E is projection matrix, then	
	$\mathbf{E}^2 = \mathbf{E}$	
	$\mathbf{E}^{2} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \implies \mathbf{E} = \mathbf{E}^{2} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$	(2.0.14)
	Hence, Verified.	

TABLE 1: Finding Projection Matrix