

JOHANNES KEPLER UNIVERSITY LINZ

MAXIMALITY OF REVERSIBLE GATE SETS

Various closures

Tim Boykett 10 July 2020 Algebra

PREREQUISITES

Background

Let A be a finite set. $Sym(A)=S_A$ is the set of permutations or bijections of A, Alt(A) the set of permutations of even parity. Let $B_n(A)=Sym(A^n)$ and $B(A)=\bigcup_{n\in\mathbb{N}}B_n(A)$. We call $B_n(A)$ the set of n-ary reversible gates on A, B(A) the set of reversible gates.

For $\alpha\in S_n$, let $\pi_\alpha\in B_n(A)$ be defined by $\pi_\alpha(x_1,\dots,x_n)=(x_{\alpha^{-1}(1)},\dots,x_{\alpha^{-1}(n)}).$ We call this a wire permutation.

Let $\Pi = \{\pi_{\alpha} | \alpha \in S_n, n \in \mathbb{N}\}$. In the case that α is the identity, we write $i_n = \pi_{\alpha}$, the n-ary identity.

Let $f \in B_n(A)$, $g \in B_m(A)$. Define the parallel composition as $f \oplus g \in B_{n+m}(A)$ with

$$(f \oplus g)(x_1, \dots, x_{n+m}) = (f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n), g_1(x_{n+1}, \dots, x_{n+m}), \dots, g_m(x_{n+1}, \dots, x_{n+m}))$$

For $f,g \in B_n(A)$ we can compose $f \bullet g$ in $Sym(A^n)$. If they have distinct arities we "pad" them with identity, for instance $f \in B_n(A)$ and $g \in B_m(A)$, n < m, then define $f \bullet g = (f \oplus i_{m-n}) \bullet g$ and we can thus serially compose all elements of B(A).

Definition

We call a subset $C \subseteq B(A)$ that includes Π and is closed under \oplus and \bullet a reversible Toffoli algebra (RTA).

Let C be an RTA. We write $C^{[n]}=C\cap B_n(A)$ for the elements of C of arity n.

Example

Let q be a prime power, GF(q) the field of order q, $AGL_n(q)$ the collection of affine invertible maps of $GF(q)^n$ to itself. We note that for all $m \in \mathbb{N}$, $AGL_n(q^m) \leq AGL_{nm}(q)$. For a prime p, let $Aff(p^m) = \bigcup_{n \in \mathbb{N}} AGL_{nm}(p)$ be the RTA of affine maps over $A = GF(p)^m$.

Definition

We say that an RTA $C \leq B(A)$ is borrow closed if for all $f \in B(A)$, $f \oplus i_1 \in C$ implies that $f \in C$.

Definition

We say that an RTA $C \leq B(A)$ is ancilla closed if for all $f \in B_n(A)$, $g \in C^{[n+1]}$ with some $a \in A$ such that for all $x_1, \ldots, x_n \in A$, for all $i \in \{1, \ldots, n\}$, $f_i(x_1, \ldots, x_n) = g_i(x_1, \ldots, x_n, a)$ and $g_{n+1}(x_1, \ldots, x_n, a) = a$ implies that $f \in C$.

If an RTA is ancilla closed then it is borrow closed.

For any prime power q, Aff(q) is borrow and ancilla closed.

|A|=2 ancilla closure (AGS 2015)

Theorem (Liebeck, Praeger, Saxl 1987)

Let $n \in \mathbb{N}$. Then the maximal subgroups of S_n are conjugate to one of the following G.

- 1. (alternating) $G = A_n$
- 2. (intransitive) $G = S_k \times S_m$ where k + m = n and $k \neq m$
- 3. (imprimitive) $G = S_m wr S_k$ where n = mk, m, k > 1
- 4. (affine) $G = AGL_k(p)$ where $n = p^k$, p a prime
- 5. (diagonal) $G = T^k.(Out(T) \times S_k)$ where T is a nonabelian simple group, k > 1 and $n = |T|^{(k-1)}$
- 6. (wreath) $G = S_m wr S_k$ with $n = m^k$, $m \ge 5$, k > 1
- 7. (almost simple) $T \triangleleft G \leq Aut(T)$, $T \neq A_n$ a nonabelian simple group, G acting primitively on A

Moreover, all subgroups of these types are maximal when they do not lie in A_n , except for a list of known exceptions.

Clones

Let A be a finite set. $\mathcal{O}(A)$ is the full clone of all mappings $f:A^n\to A$ for all $n\in\mathbb{N}.$

A clone of A is a set of mappings $f:A^n\to A$ closed under some natural operations.

Theorem (Rosenberg)

Let A be a finite set. Then the maximal subclones of $\mathcal{O}(A)$ are one of the following.

- 1. monotone mappings, that is respecting a bounded partial order on *A*
- 2. respecting a graph of prime length loops
- 3. respecting a nontrivial equivalence relation
- 4. affine mappings for a prime p: that is, respecting the relation $\{(a,b,c,d) \mid a+b=c+d\}$ where (A,+) is an elementary abelian group
- 5. respecting a central relation
- 6. respecting a h-generated relation

If $R\subseteq A^k$ is a k-ary relation, we write Pol(R) as the polymorphisms respecting R.

Example: $A = \{1, 2, 3\}$ with $1 \le 2 \le 3$. Then $Pol(\le)$ are the monotone functions on A.

RTA Duality

Let (M,+) be a commutative monoid. Let $w:A^k\to M$ be a mapping called a weight function. Let $f\in B_n(A)$. We say f respects $w, f\triangleright w$, if for every $a\in A^{k\times n}$,

$$\sum_{i} w(a_{1i}, \dots, a_{ki}) = \sum_{i} w(f_i(a_{11}, \dots, a_{1n}), \dots, f_i(a_{k1}, \dots, a_{kn})).$$

Then $Pol(w) = \{ f \in B(A) \mid f \triangleright w \}$ are the mappings that conserve w.

Theorem (Jerabek)

Let A be a finite set. Then the sub RTAs of B(A) are defined by a suitably closed collection of weight functions.

Example: (\mathbb{B}, \wedge) is a monoid, let $R \subset A^k$ be a relation $w_R(a_1, \ldots, a_k)$ is true iff $(a_1, \ldots, a_k) \in R$. Then $Pol(w_R)$ are those mappings where each index is in Pol(R).

Example: $(\mathbb{N}_0, +)$ is a monoid, select $a \in A$, then $w : A \to \mathbb{N}$ with w(x) = 1 if x = a and zero otherwise. Then Pol(w) is the collection of a-conservative mappings.

MAXIMAL RTA

Unique index

Lemma

Let A be a finite set. Let M be a maximal sub RTA of B(A). Then $M^{[i]} \neq B_i(A)$ for exactly one i and $M^{[i]}$ is a maximal subgroup of $B_i(A) = Sym(A^i)$.

Maximality

Theorem

Let A be a finite set. Let M be a maximal sub RTA of B(A). Then $M^{[i]} \neq B_i(A)$ for exactly one i and $M^{[i]}$ belongs to one of the following classes:

- 1. i = 1 and $M^{[1]}$ is one of the classes in Theorem 2.
- 2. i = 2, |A| = 3, and $M^{[2]} = AGL_2(3)$ (up to conjugacy)
- 3. i = 2, $|A| \ge 5$ is odd and $M^{[2]} = S_A wr S_2$
- **4.** i = 2, $|A| \equiv 2 \mod 4$ and $M^{[2]} = S_A wr S_2$
- 5. i = 2, $|A| \equiv 0 \mod 4$ and $M^{[2]} = Alt(A^2)$
- 6. $i \geq 3$, |A| is even and $M^{[i]} = Alt(A^i)$

BORROW AND ANCILLA CLOSURE

Lemma

Let $M \leq B(A)$ be a maximal borrow or ancilla closed RTA. Then there exists some $k \in \mathbb{N}$ such that for all i < k, $M^{[i]} = B_i(A)$ and for all $i \geq k$, $M^{[i]} \neq B_i(A)$.

Lemma

Let |A| be odd. Then M maximal with index k=1,2 are the only options.

Lemma

Let |A|=2. Then M maximal with index k=1,2,3 are the only options and for i>k, $M^{[i]}\neq Alt(A^i)$.

Lemma

Let $|A| \ge 4$ be even. Then M maximal with index k = 1, 2 are the only options and for i > k, $M^{[i]} \ne Alt(A^i)$.

Lemma

For $|A| \ge 5$, the degenerate RTA Deg(A) generated by $B_1(A)$ is a maximal borrow closed RTA and maximal ancilla closed RTA of index 2.

Lemma

Let A be of prime power order. Then $\mathrm{Aff}(A)$ is a maximal borrow closed RTA and a maximal ancilla closed RTA of index 3 for |A|=2, index 2 for |A|=3,4 otherwise index 1.

Definition

Let $D \subset A$. Define $Stab_D(A) = \{ f \in B_n(A) \mid f(D^n) = D^n \}$ the set-wise stabilizer of D.

Lemma

Let $D \subset A$ nontrivial. Then $Stab_D(A)$ is a maximal borrow closed RTA of index 1.

Definition

Let $a \in A$, $n \in N$, define $w_a : A \to \mathbb{Z}_n$ by $w_a(x) = 1$ if x = a otherwise $w_a(x) = 0$. Define $Cons_{a,n}(A) = Pol(w_a)$, the modn a-conserving mappings.

Conjecture

Let p be prime, then $Cons_{a,p}(A)$ is an index 1 maximal borrow closed and a maximal ancilla closed RTA, except when |A|=2 and p=2.

END

JOHANNES KEPLER UNIVERSITY LINZ