

3

$$y = mx + c$$
) we know $m = \frac{dy}{dx}$

$$y = y - c = \frac{dy}{dx} \cdot (x)$$

$$3 \frac{dy}{dx} - \frac{dx}{dx} + \frac{dx}{dx} \cdot c = 0$$

$$7eps \rightarrow A$$

$$So, A = \frac{dy}{dx}$$

$$A = \frac{dy}{dx}$$

$$A = \frac{dy}{dx}$$

$$A = \frac{dy}{dx}$$

$$\begin{array}{ccc}
(x_{1},y+1_{2}) & O & (x_{1}z,y+1_{2}) \\
& & & & & & & \\
& & & & & & \\
(x,y) & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
(x_{1},y+1_{2}) & O & (x_{1}z,y+1_{2}) \\
& & & & & & \\
& & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
(x,y) & & & & & \\
& & & & & & \\
\end{array}$$

desiration at
$$M_1$$
) $\longrightarrow \Delta E$

at $M_1 \longrightarrow A(\pi + 2) + B(y + \frac{1}{2}) + C = d_1$

at $M_1 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_2 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_2 \longrightarrow A(\pi + 2) + B(y + \frac{3}{2}) + C = d_2$

at $M_2 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_2 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_2 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_2 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_3 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_2$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

at $M_4 \longrightarrow A(\pi + 1) + B(y + \frac{1}{2}) + C = d_1$

he've sowed for DE, DNE, but we still held me initial deviation, which is represented using dinit.

Delongs to me line.

D= Style A no prize

$$\frac{\int or \ dy = 0.8}{d \cdot init} = dy - dx/2$$
= 0.8 - 1/2 = +0.3

$$\frac{\int \sigma \, dy = 0.3}{\int dinit = dy - \frac{dx}{2}} = -0.2$$

of if d is + ve, then the next pixel is upper pixel.

So,
$$\Delta E = dy$$
 $\Delta NE = dy - dx$
 $d = dy - dx/2$
 $\Rightarrow bot we don't wan't fraction so will multiply by 2

 $d = 2dy - dx$
 $\Delta NE = 2dy - 2dx$
 $\Rightarrow \Delta E = 2dy$
 $\Rightarrow \Delta E = 2dy$$

(tucket eno3)

	-			7/10	4							
	Exam	ple: ((30,50)	to (40,5	(4) z	to a sept 18 1						
) f	irst colo		x & dy,	2) seconally, calculate the initial							
		d		-30 = 10	deviation > dinit							
				50 =14 16	(don't) X+d=dy-dx/2='4-19							
	So, dx 8dy is tre											
	& lax 1 >lay1 -> Hence 2000 (2)											
	(3) AR = 2dy = 2(4) = 8 0 410 s											
(2												
	ANE = 2dy - 2dx = 2(4) - 2(10) = -12, =) d = 2(4) - 10											
	- OVESTORIA DE A											
4	lets	colculate	, to ph	ANE (+1,+1)	if d -ve → ΔRE							
	ス	3	d	ΔE (+1,+0)		pixel						
	30	50	-2	AE Ib.	d+ DE = -2+8=6.	(30,50)						
	31	50	96	ANE	d+ANE =6-12=-6	(31,50)						
	32	51	-6	DE (3) H	2	(32,51)						
	33	51	2	VME	-10	(33,51)						
	34	52	-10	ΔΕ	-2	(34,52)						
	35	52	-2	ΔE	6	(35,52)						
	36	52	6	ANE	- 6	(36,52)						
	37	53	-6	DE	2	(37,53)						
	38	53	2	DHE	-10	(38,53)						
	39	54	-10	ΔE	-2	(39,54)						
	40	54	-2	- doug	e here :	. Arter						
						1						

(Zone Layout) G(N)OH) of (00,00) : 29 most 19 xb abolished ten 1dy 1 > 1dx1 ldy 1> ldxl dx -> +ve - OH dy +tvera - 12 10 dy + +ve ldx > ldy1 16 dxl > ldyl dx -ve Conces some dx -> tve zone 1 dy -> +ve 2 one 0 (075 - (4)5 - Idal > Idy) 71/6 Idx1> Idy1 6 6 dx -> tve Ada > - ve by dy -> - veolo to dy -> -ve- 6,41 129K 16P / |dyl > |dxl dx > +ve dx - -ve CE dy - - ve ANE 18. (32,51) AF (S) 4-2 (12,88) MIL (13 PS) (25, 52) 413 940 (113, PE)

(100, 150) -> (0,0)

6) What we have, d = dx - dy/2 \Rightarrow can't have foraction d = dx - dy/2 \Rightarrow meed to multiply by 2 d = 2dx - dy

DS = 2dx 3 → has also been multiplied by 2 DSW = 2dx - 2dy 3 → " " " " "

dinit = 2dx -dy = @2(-100) - (-150) = -50 → 50 initially ∆SW

 $\Delta S = -200$ $\Delta SW = -200 + 300 = 100$

Pots only draw 12 pixels, a little mossed up sorry!! AS /ASW d (Pixel) No. X (100,150) -50 DSW 1 150 100 (99,149) 50 DS 2 149 99 -150 (99,148) 3 99 148 15W 4 -50 (48,147) 98 147 DSW 5 50 (97,146) 97 146 DS -150 (97,145) 97 145 DSW 7 -50 (96,144) 976 144 DSW (95,143) 50 8 143 **DS** 95 -150 (95, 142) 9 DSW 95 142 -50 (94,141) ASW 10 141 94 50 (93,140) 45 11 140 93 (93,139) -> done 12 NA N/A 93 139

-	_				,	44	
11	Try .	at home for the	2 oth	er zones)	e trave,	ri Lorial.	(.i)
		the familia of	7				
				Lp-	xhs = h		
		spillipping Lys	nuad	other and en	3 . 860	45	
		1.7					
			,,	11 11-810	2dx-2	SMSD	
		of the to	(i-)	· (02(100) -	pb - xh	mb : 2.	b
		med pur um	de 6	- O(',			
						EA	
	1 priva	97 652200 114D	E 6-	001 = 0	02+002-	- = M2A:	
		The forest states (1910)	1	A (3/2×1)	ورن الک	or Mice	SANG.
		the same is an order our company or the same of the same of the same of	1	Prince of the second		- K . 1	. ())
		(031,001)	C2-	11.21	0.51	col	Ł, .
		(99,149)			PIN	PP	2
		(311,01)			Rhl	blo	C.
		(PPI,SP)	66-	1157		49	1'
		(311,14)			9F1	4.13	
		(44,145)			341	FP	
		(HULLET)			15 1/1	24.1	
		(see , er)			* / ·	> [1	
				1. < A	SHI	375	1
					1 101	13 1	
	. t. r-	(P=1, 11)	1		011)	4 1	11
		• • • • •	1111	· ON	103.1	(. 1)	