Reading Quiz Section 8.1

- 1. A set *A* is *countably infinite* (or *denumerable*) if _____. Select all that apply.
 - (a) There exists a surjection from \mathbb{N} onto A.
 - (b) There exists an injection from \mathbb{N} into A.
 - (c) There exists a bijection between A and \mathbb{Q} .
 - (d) There exists an injection from A into \mathbb{N} and no injection from A into any finite set.
- 2. True or False: if *A* is a proper subset of *B*, then *A* has strictly smaller cardinality than *B*.

Practice Problems Section 8.1

- 1. Show that the set of *perfect squares* $A = \{n^2 : n \in \mathbb{N}\}$ is countably infinite.
- 2. Find an injective function $f : \mathbb{N} \to (0,1)$.
- 3. Let $a,b \in \mathbb{R}$ with a < b. Find a bijective function $g : (0,1) \to (a,b)$ and show that your function is bijective. Hence conclude that any two finite-length open intervals in \mathbb{R} have the same cardinality.
- 4. Let *B* be a subset of *A*. Suppose *B* is countably infinite and let $a \in A \setminus B$. Show that $B \cup \{a\}$ is countably infinite.

(Hint: let $h: B \to \mathbb{N}$ be bijective: how might you construct $k: B \cup \{a\} \to \mathbb{N}$ bijective?)

- 5. Let *A* be a countably infinite set.
 - (a) Prove that the Cartesian product $A \times A$ is countably infinite.
 - (b) By induction, prove that $\underbrace{A \times \cdots \times A}_{n \text{ times}}$ is countably infinite, for all $n \in \mathbb{N}$.