import pandas as pd
iris = pd.read_csv('https://gist.githubusercontent.com/curran/a08a1080b88344b0c8
iris.head()

0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

iris.shape

(150, 5)

iris.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

iris.info()

```
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
     Column
                   Non-Null Count
                                   Dtype
 0
     sepal_length 150 non-null
                                    float64
 1
     sepal_width
                   150 non-null
                                    float64
 2
                                   float64
     petal_length 150 non-null
 3
     petal_width
                  150 non-null
                                   float64
 4
     species
                   150 non-null
                                   object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

<class 'pandas.core.frame.DataFrame'>

Checking Missing Values

iris.isnull().sum()

sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

Checking duplicates
iris_duplicates = iris.drop_duplicates(subset = "species",)
iris_duplicates

0 5.1 3.5 1.4 0.2 setosa 50 7.0 3.2 4.7 1.4 versicolor 100 6.3 3.3 6.0 2.5 virginica		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
100 6.3 3.3 6.0 2.5 virginica	50	7.0	3.2	4.7	1.4	versicolor
	100	6.3	3.3	6.0	2.5	virginica

Chekc balance iris.value_counts("species")

species
setosa 50
versicolor 50
virginica 50
dtype: int64

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.countplot(x = 'species', data=iris)
plt.show()
```


from matplotlib.transforms import BboxTransform
Scatterplot the length and with of sepal.
import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(x='sepal_length', y='sepal_width', hue="species", data=iris,)
plt.show()

Boxplot for seeing median, quantilez and max and min values
iris['sepal_length'].plot(kind='box')

iris['sepal_width'].plot(kind='box')

iris['petal_length'].plot(kind='box')

iris['petal_width'].plot(kind='box')

149

```
# New feature
iris['petal_width_x_length'] = iris['petal_width'] * iris['petal_width']
iris['petal_width_x_length']
    0
            0.04
    1
            0.04
    2
            0.04
    3
            0.04
    4
            0.04
            5.29
    145
    146
            3.61
    147
            4.00
    148
            5.29
```

3.24 Name: petal_width_x_length, Length: 150, dtype: float64

Colab paid products - Cancel contracts here

×