Transactions

Outline

- Transaction Concept
- Transaction State
- Concurrent Executions
- Serializability
- Recoverability
- Implementation of Isolation
- Transaction Definition in SQL
- Testing for Serializability.

Transaction Concept

- A transaction is a unit of program execution that accesses and possibly updates various data items.
- E.g., transaction to transfer \$50 from account A to account B:
 - 1. read(A)
 - 2. A := A 50
 - 3. **write**(*A*)
 - 4. read(B)
 - 5. B := B + 50
 - 6. **write**(*B*)
- Two main issues to deal with:
 - Failures of various kinds, such as hardware failures and system crashes
 - Concurrent execution of multiple transactions

Required Properties of a Transaction

- Consider a transaction to transfer \$50 from account A to account B:
 - 1. read(A)
 - 2. A := A 50
 - 3. **write**(*A*)
 - 4. read(B)
 - 5. B := B + 50
 - 6. **write**(*B*)

Atomicity requirement

- If the transaction fails after step 3 and before step 6, money will be "lost" leading to an inconsistent database state
 - Failure could be due to software or hardware
- The system should ensure that updates of a partially executed transaction are not reflected in the database
- **Durability requirement** once the user has been notified that the transaction has completed (i.e., the transfer of the \$50 has taken place), the updates to the database by the transaction must persist even if there are software or hardware failures.

Required Properties of a Transaction (Cont.)

- Consistency requirement in above example:
 - The sum of A and B is unchanged by the execution of the transaction
- A transaction, when starting to execute, must see a consistent database.
- During transaction execution the database may be temporarily inconsistent.
- When the transaction completes successfully the database must be consistent
 - Erroneous transaction logic can lead to inconsistency

Required Properties of a Transaction (Cont.)

Isolation requirement — if between steps 3 and 6 (of the fund transfer transaction), another transaction T2 is allowed to access the partially updated database, it will see an inconsistent database (the sum A + B will be less than it should be).

```
T1 T2

1. read(A)

2. A := A - 50

3. write(A)

read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B
```

- Isolation can be ensured trivially by running transactions serially
 - That is, one after the other.
- However, executing multiple transactions concurrently has significant benefits, as we will see later.

ACID Properties

A **transaction** is a unit of program execution that accesses and possibly updates various data items. To preserve the integrity of data the database system must ensure:

- **Atomicity.** Either all operations of the transaction are properly reflected in the database or none are.
- Consistency. Execution of a transaction in isolation preserves the consistency
 of the database.
- Isolation. Although multiple transactions may execute concurrently, each transaction must be unaware of other concurrently executing transactions. Intermediate transaction results must be hidden from other concurrently executed transactions.
 - That is, for every pair of transactions T_i and T_j , it appears to T_i that either T_j , finished execution before T_i started, or T_j started execution after T_i finished.
- **Durability.** After a transaction completes successfully, the changes it has made to the database persist, even if there are system failures.

Transaction State

- Active the initial state; the transaction stays in this state while it is executing
- Partially committed after the final statement has been executed.
- **Failed** -- after the discovery that normal execution can no longer proceed.
- Aborted after the transaction has been rolled back and the database restored to its state prior to the start of the transaction. Two options after it has been aborted:
 - Restart the transaction
 - can be done only if no internal logical error
 - Kill the transaction
- Committed after successful completion.

Transaction State (Cont.)

Concurrent Executions

- Multiple transactions are allowed to run concurrently in the system.
 Advantages are:
 - Increased processor and disk utilization, leading to better transaction throughput
 - E.g. one transaction can be using the CPU while another is reading from or writing to the disk
 - Reduced average response time for transactions: short transactions need not wait behind long ones.
- Concurrency control schemes mechanisms to achieve isolation
 - That is, to control the interaction among the concurrent transactions in order to prevent them from destroying the consistency of the database

- Schedule a sequences of instructions that specify the chronological order in which instructions of concurrent transactions are executed
 - A schedule for a set of transactions must consist of all instructions of those transactions
 - Must preserve the order in which the instructions appear in each individual transaction.
- A transaction that successfully completes its execution will have a commit instructions as the last statement
 - By default transaction assumed to execute commit instruction as its last step
- A transaction that fails to successfully complete its execution will have an abort instruction as the last statement

- Let T_1 transfer \$50 from A to B, and T_2 transfer 10% of the balance from A to B.
- An example of a **serial** schedule in which T_1 is followed by T_2 :

T_1	T_2
read (A) $A := A - 50$ write (A) read (B) $B := B + 50$ write (B) commit	read (<i>A</i>) temp := <i>A</i> * 0.1 <i>A</i> := <i>A</i> - temp write (<i>A</i>) read (<i>B</i>) <i>B</i> := <i>B</i> + temp write (<i>B</i>) commit

• A **serial** schedule in which T_2 is followed by T_1 :

T_1	T_2
read (<i>A</i>) <i>A</i> := <i>A</i> - 50 write (<i>A</i>) read (<i>B</i>) <i>B</i> := <i>B</i> + 50 write (<i>B</i>) commit	read (<i>A</i>) temp := <i>A</i> * 0.1 <i>A</i> := <i>A</i> - temp write (<i>A</i>) read (<i>B</i>) <i>B</i> := <i>B</i> + temp write (<i>B</i>) commit

• Let T_1 and T_2 be the transactions defined previously. The following schedule is not a serial schedule, but it is **equivalent** to Schedule 1.

T_1	T_2
read (A)	
A := A - 50	
write (A)	
	read (A)
	temp := A * 0.1
	A := A - temp
1 (7)	write (A)
read (B)	
B := B + 50	
write (B)	
commit	1 (7)
	read (B)
	B := B + temp
	write (B)
	commit

Note -- In schedules 1, 2 and 3, the sum "A + B" is preserved.

The following concurrent schedule does not preserve the sum of "A + B"

T_1	T_2
read (A) $A := A - 50$	read (<i>A</i>) temp := <i>A</i> * 0.1 <i>A</i> := <i>A</i> - temp write (<i>A</i>)
write (<i>A</i>) read (<i>B</i>) <i>B</i> := <i>B</i> + 50 write (<i>B</i>) commit	read (<i>B</i>) $B := B + temp$ write (<i>B</i>) commit

Serializability

- Basic Assumption Each transaction preserves database consistency.
- Thus, serial execution of a set of transactions preserves database consistency.
- A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different forms of schedule equivalence give rise to the notions of:
 - 1. conflict serializability
 - 2. view serializability

Simplified view of transactions

- We ignore operations other than **read** and **write** instructions
- We assume that transactions may perform arbitrary computations on data in local buffers in between reads and writes.
- Our simplified schedules consist of only read and write instructions.

Conflicting Instructions

Let I_i and I_j be two Instructions of transactions T_i and T_j respectively.
 Instructions I_i and I_j conflict if and only if there exists some item Q accessed by both I_j and I_j, and at least one of these instructions wrote Q.

```
1. I_i = \text{read}(Q), I_j = \text{read}(Q). I_i and I_j don't conflict.

2. I_i = \text{read}(Q), I_j = \text{write}(Q). They conflict.

3. I_i = \text{write}(Q), I_j = \text{read}(Q). They conflict

4. I_i = \text{write}(Q), I_j = \text{write}(Q). They conflict
```

- Intuitively, a conflict between I_i and I_j forces a (logical) temporal order between them.
 - If I_i and I_j are consecutive in a schedule and they do not conflict, their results would remain the same even if they had been interchanged in the schedule.

Conflict Serializability

- If a schedule S can be transformed into a schedule S' by a series of swaps of non-conflicting instructions, we say that S and S' are conflict equivalent.
- We say that a schedule *S* is **conflict serializable** if it is conflict equivalent to a serial schedule

Conflict Serializability (Cont.)

• Schedule 3 can be transformed into Schedule 6 -- a serial schedule where T_2 follows T_1 , by a series of swaps of non-conflicting instructions. Therefore, Schedule 3 is conflict serializable.

T_1	T_2	T_1	T_2
read (<i>A</i>) write (<i>A</i>)	read (<i>A</i>) write (<i>A</i>)	read (A) write (A) read (B) write (B)	
read (B) write (B)	read (<i>B</i>) write (<i>B</i>)		read (A) write (A) read (B) write (B)

Schedule 3

Schedule 6

Conflict Serializability (Cont.)

• Example of a schedule that is not conflict serializable:

T_3	T_4
read (Q)	write (Q)
write (Q)	write (Q)

• We are unable to swap instructions in the above schedule to obtain either the serial schedule $< T_3, T_4 >$, or the serial schedule $< T_4, T_3 >$.

Precedence Graph

- Consider some schedule of a set of transactions $T_1, T_2, ..., T_n$
- Precedence graph a direct graph where the vertices are the transactions (names).
- We draw an arc from T_i to T_j if the two transaction conflict, and T_i accessed the data item on which the conflict arose earlier.
- We may label the arc by the item that was accessed.
- Example

Testing for Conflict Serializability

- A schedule is conflict serializable if and only if its precedence graph is acyclic.
- Cycle-detection algorithms exist which take order n^2 time, where n is the number of vertices in the graph.
 - (Better algorithms take order n + e where e is the number of edges.)
- If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of the graph.
 - That is, a linear order consistent with the partial order of the graph.
 - For example, a serializability order for the schedule (a) would be one of either (b) or (c)

(b)

(c)

Recoverable Schedules

- Recoverable schedule if a transaction T_j reads a data item previously written by a transaction T_i , then the commit operation of T_i must appear before the commit operation of T_i .
- The following schedule is not recoverable if T_g commits immediately after the read(A) operation.

T_8	T_{9}
read (A) write (A)	
(-)	read (<i>A</i>) commit
read (B)	commit

• If T_8 should abort, T_9 would have read (and possibly shown to the user) an inconsistent database state. Hence, database must ensure that schedules are recoverable.

Cascading Rollbacks

• Cascading rollback – a single transaction failure leads to a series of transaction rollbacks. Consider the following schedule where none of the transactions has yet committed (so the schedule is recoverable)

T_{10}	T_{11}	T_{12}
read (<i>A</i>) read (<i>B</i>) write (<i>A</i>)	read (A) write (A)	(A) b com
abort		read (A)

If T_{10} fails, T_{11} and T_{12} must also be rolled back.

Can lead to the undoing of a significant amount of work

Cascadeless Schedules

- Cascadeless schedules for each pair of transactions T_i and T_j such that T_j reads a data item previously written by T_i , the commit operation of T_i appears before the read operation of T_j .
- Every cascadeless schedule is also recoverable
- It is desirable to restrict the schedules to those that are cascadeless
- Example of a schedule that is NOT cascadeless

T_{10}	T_{11}	T_{12}
read (<i>A</i>) read (<i>B</i>) write (<i>A</i>)	read (A) write (A)	read (<i>A</i>)
abort		1000 (11)

Concurrency Control

- A database must provide a mechanism that will ensure that all possible schedules are both:
 - Conflict serializable.
 - Recoverable and preferably cascadeless
- A policy in which only one transaction can execute at a time generates serial schedules, but provides a poor degree of concurrency
- Concurrency-control schemes tradeoff between the amount of concurrency they allow and the amount of overhead that they incur
- Testing a schedule for serializability after it has executed is a little too late!
 - Tests for serializability help us understand why a concurrency control protocol is correct
- Goal to develop concurrency control protocols that will assure serializability.

Weak Levels of Consistency

- Some applications are willing to live with weak levels of consistency, allowing schedules that are not serializable
 - E.g., a read-only transaction that wants to get an approximate total balance of all accounts
 - E.g., database statistics computed for query optimization can be approximate (why?)
 - Such transactions need not be serializable with respect to other transactions
- Tradeoff accuracy for performance