

# 3. Messung elektrischer Größen: Vorlesungsinhalte

| 3.1 | Messung von | Stromstärke und | <b>Spannung</b> |
|-----|-------------|-----------------|-----------------|
|     |             |                 |                 |

- 3.2 Messung von Wirkwiderständen
- 3.3 Messung von Blindwiderständen

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

94



## 3. Messung elektrischer Größen:

## 3.1 Messung von Stromstärke und Spannung: Vorlesungsinhalte

| sung |
|------|
|      |

- 3.1.1.1 Gleichstrommessung
- 3.1.1.2
- 3.2 Messung von Wirkwiderständen
- 3.3 Messung von Blindwiderständen



#### 3.1 Messung von Stromstärke und Spannung:

3.1.1 Gleichstrom- und Gleichspannungsmessung



Magnetische Kraftwirkungen zwischen zwei parallel liegenden Leitern mit elektrischem Strom

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

96



## 3. Messung elektrischer Größen:

## 3.1 Messung von Stromstärke und Spannung:

3.1.1 Gleichstrom- und Gleichspannungsmessung



Kraftwirkung auf stromführenden Leiter



- 3.1 Messung von Stromstärke und Spannung:
- 3.1.1 Gleichstrom- und Gleichspannungsmessung



Rechte-Hand-Regel Rechte-Hand-Regel

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

TECHNISCHE TT-

98

## 3. Messung elektrischer Größen:

- 3.1 Messung von Stromstärke und Spannung:
- 3.1.1 Gleichstrom- und Gleichspannungsmessung



- Geschlossene, von der Stromstärke i durchflossene Leiterschleife.
- Magnetfeld in x-Richtung.
- Drehachse in y-Richtung.
- Gemäss Rechte-Hand-Regel (Folie 179) wirken die Kräfte in z-Richtung.
- · Kräfte auf die beiden Leiter:

$$\vec{F}_{1} = i_{1} \cdot (\vec{\ell}_{1} \times \vec{B}) = i \cdot (-h\vec{e}_{y} \times B\vec{e}_{x})$$

$$= i \cdot h \cdot B \cdot \vec{e}_{z}$$

$$\vec{F}_{2} = i_{2} \cdot (\vec{\ell}_{2} \times \vec{B}) = i \cdot (+h\vec{e}_{y} \times B\vec{e}_{x})$$

$$= -i \cdot h \cdot B \cdot \vec{e}_{z}$$

Drehmoment an einer Leiterschleife im Magnetfeld



- 3.1 Messung von Stromstärke und Spannung:
- 3.1.1 Gleichstrom- und Gleichspannungsmessung



· Drehmoment auf die Leiterschleife:

$$\begin{split} \vec{T} &= \vec{T}_1 + \vec{T}_2 = - \, a \cdot \vec{e}_x \times \vec{F}_1 + a \cdot \vec{e}_x \times \vec{F}_2 = \, a \cdot i \cdot h \cdot B \cdot \left( -\vec{e}_x \times \vec{e}_z + \vec{e}_x \times \left( -\vec{e}_z \right) \right) \\ &= \left( \underline{2 \cdot a \cdot i \cdot h \cdot B} \right) \cdot \vec{e}_y = T_y \cdot \vec{e}_y \end{split}$$

• <u>Hebelarme</u> zur Erzeugung des Drehmoments:  $\vec{s}_1 = -a \cdot \vec{e}_x$   $\vec{s}_2 = +a \cdot \vec{e}_x$ 

$$\vec{s}_1 = -a \cdot \vec{e}_x \qquad \vec{s}_2 = +a \cdot \vec{e}_x$$

Drehmoment an einer Leiterschleife im Magnetfeld

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

100



## 3. Messung elektrischer Größen:

- 3.1 Messung von Stromstärke und Spannung:
- 3.1.1 Gleichstrom- und Gleichspannungsmessung



Prinzipbild eines Drehspulmesswerks



#### Aufbau eines Drehspulmessgeräts

- 1: Permanentmagnet
- 2: Weicheisenkern
- 3: Polschuhe
- 4: Drehspule
- 5: Spiralfeder, Stromzuführung
- 6: Nullpunkteinstellung
- 7: Äquilibrierarm

(aus: J. Niebuhr, G. Lindner: Physikalische Messtechnik mit Sensoren)

## 3.1 Messung von Stromstärke und Spannung:

#### 3.1.1 Gleichstrom- und Gleichspannungsmessung



$$\vec{M}_{el} = 2 \cdot N \cdot \vec{r} \times \vec{F} = 2 \cdot N \cdot i \cdot \vec{r} \times (\vec{l} \times \vec{B})$$

$$M_{mech} = -D \cdot \alpha$$

$$M_d = (2 \cdot N \cdot r \cdot l \cdot B)^2 \cdot \frac{1}{R_K} \cdot \dot{\alpha} = \eta \cdot \dot{\alpha}$$

Differenzialgleichung:

$$\Theta \cdot \ddot{\alpha} + \eta \cdot \dot{\alpha} + D \cdot \alpha = M_{el}$$

Statische Ruhelage für konstante Stromstärke i=I:

$$\ddot{\alpha} = 0$$
,  $\dot{\alpha} = 0$ 

$$D \cdot \alpha = M_{el} \rightarrow \alpha = \frac{M_{el}}{D}$$

$$\alpha = \frac{2 \cdot N \cdot l \cdot B \cdot r}{D} \cdot I = S_i \cdot I$$

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

102



## 3. Messung elektrischer Größen:

## 3.1 Messung von Stromstärke und Spannung:

#### 3.1.1 Gleichstrom- und Gleichspannungsmessung



Darstellung des Drehspulmesswerks in stationäre Ruhelage :

$$\alpha = \frac{2 \cdot N \cdot l \cdot B \cdot r}{D} \cdot I = S_i \cdot I$$

$$U_M = R_M \cdot I$$

Innerer Widerstand R<sub>M</sub>!





#### 3.1 Messung von Stromstärke und Spannung:

3.1.1 Gleichstrom- und Gleichspannungsmessung



Feldstärke H, Induktion im Luftspalt B:

$$\begin{split} I_{1} & \oint \vec{H} \cdot d\vec{s} = N_{1} \cdot i_{1} \\ & 2 \cdot l_{Luft} \cdot H_{Luft} + l_{FE} \cdot H_{FE} = N_{1} \cdot i_{1} \\ & \mu_{FE} >> \mu_{0} \rightarrow 2 l_{Luft} \cdot H_{Luft} = N_{1} \cdot i_{1} \\ & B_{Luft} = \mu_{0} \cdot H_{Luft} = \frac{\mu_{0} \cdot N_{1}}{2 \cdot l_{Luft}} \cdot i_{1} \end{split}$$

**Drehmoment** 

$$\begin{split} & \overline{M}_{el} = 2 \cdot \overline{N}_2 \cdot \vec{r} \times \vec{F} = 2 \cdot \overline{N}_2 \cdot \vec{r} \times \left( i_2 \left( \vec{l} \times \overline{B}_{Luft} \right) \right) \\ & \overline{M}_{el} = 2 \cdot \overline{N}_2 \cdot r \cdot l \cdot \overline{B}_{Luft} \cdot \vec{e}_a = \frac{\mu_0 \cdot \overline{N}_1 \cdot \overline{N}_2 \cdot r \cdot l}{l_{Luft}} \cdot i_1 \cdot i_2 \cdot \vec{e}_a \end{split}$$

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

104



## 3. Messung elektrischer Größen:

3.1 Messung von Stromstärke und Spannung:

3.1.1 Gleichstrom- und Gleichspannungsmessung



Stationärer Endwert

$$\alpha = \frac{\mu_0 \cdot N_1 \cdot N_2 \cdot r \cdot l}{D \cdot l_{\textit{Luft}}} \cdot i_1 \cdot i_2$$

Bei Anregung mit Wechselströmen

$$i_1 = \hat{i}_1 \sin \omega t$$

$$i_2 = \hat{i}_2 \sin(\omega t + \varphi)$$

wirc

$$\alpha = k \frac{\hat{i}_1}{\sqrt{2}} \frac{\hat{i}_2}{\sqrt{2}} \cos \varphi$$

→ Wirkleistungsmessung



## 3.1 Messung von Stromstärke und Spannung:

#### 3.1.1 Gleichstrom- und Gleichspannungsmessung





#### Gleichstrommessung

R<sub>i</sub>: Innenwiderstand

 $R_{\rm M}$ : Widerstand d. Strommessgeräts

 $R_{\rm b}^{\rm m}$ : Lastwiderstand

(aus: E. Schrüfer: Elektrische Messtechnik)





Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

106



## Literatur für Kap 3.1.1

| Autor                                | Titel                                                                                                    | Verlag             |
|--------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|
| R. Lerch                             | Elektrische Messtechnik<br>Kapitel 6.1.1, 6.1.3, 6.1.8,<br>6.2                                           | Springer<br>Verlag |
| E. Schrüfer<br>L. Reindl<br>B. Zagar | Elektrische Messtechnik<br>Kapitel 2.1.1, 2.1.2                                                          | Hanser Verlag      |
| T. Mühl                              | Einführung in die elektrische<br>Messtechnik<br>Kapitel 4.1.1, 4.1.3, 4.1.5,<br>5.1 (Ganze Unterkapitel) | Hanser Verlag      |