21-640 Intro to Functional Analysis Assignment 1

Spring 2013

Due on Wednesday January 23

Solutions to problems marked with an astersik should be written up and handed in.

1. Let $X = \mathbb{R}$ and put

$$\rho(x,y) = |\arctan x - \arctan y|$$
 for all $x, y \in X$.

- (a) Determine whether or not ρ is a metric on X.
- (b) If ρ is a metric determine whether or not (X, ρ) is complete?
- (c) If ρ is a metric determine whether or not (X, ρ) is separable?
- 2*. Prove or Disprove: Let (X, ρ) be a complete metric space and let $x \in X$ and $\delta > 0$ be given. Then

$$cl(B_{\delta}(x)) = \{ y \in X : \rho(y, x) \le \delta \}.$$

- 3. Let (X, ρ) be a metric space and let $\{S_n\}_{n=1}^{\infty}$ be a sequence of subsets of X.
 - (a) Show that $cl(S_1 \cup S_2) = [cl(S_1)] \cup [cl(S_2)].$
 - (b) What can you conclude about

$$\bigcup_{n=1}^{\infty} S_n ?$$

- 4. Prove or Disprove: Let (X, ρ) be a metric space and $S \subset X$. Then S is nowhere dense if and only if $\operatorname{int}(U \setminus S) \neq \emptyset$ for every nonempty open set U.
- 5*. Prove or Disprove: Let (X, ρ) be a complete metric space. If $S \subset X$ is meager then S^c is dense.
- 6*. Two metric spaces (X, ρ) and (Y, σ) are said to be
 - (i) homeomeorphic provided there exists a bijection $f: X \to Y$ such that f and f^{-1} are continuous.
 - (ii) uniformly homeomorphic provided there exists a bijection $f: X \to Y$ such that f and f^{-1} are uniformly continuous.
 - (a) Give an example of two metric spaces that are not homeomorphic.
 - (b) Give an example of two metric spaces that are homeomorphic, but not uniformly homeomorphic, or prove that no such example exists.

- (c) Give an example of two metric spaces that are uniformly homeomorphic, but not isometric, or prove that no such example exists.
- 7. Let $X = C(\mathbb{R})$, the set of all continuous real-valued functions on \mathbb{R} . For every $n \in \mathbb{N}$, $f, g \in X$, define

$$P_n(f,g) = \max\{|f(x) - g(x)| : x \in [-n,n]\}.$$

Consider the function $\rho: X \times X \to \mathbb{R}$ defined by

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{2^{-n} P_n(f,g)}{1 + P_n(f,g)} \quad \text{for all } f,g \in X.$$

- (a) Verify that ρ is a metric on X.
- (b) Is (X, ρ) complete?
- (c) Is (X, ρ) separable?
- 8*. (Contraction Mapping Principle (also called Banach's Fixed-Point Theorem)) Let (X, ρ) be a complete metric space with $X \neq \emptyset$. Let $f: X \to X$ be given and assume that there exists $\alpha \in (0, 1)$ such that

$$\rho(f(x), f(y)) \le \alpha \rho(x, y)$$
 for all $x, y \in X$.

(Such a mapping is said to be *strictly contractive*.) Show that f has exactly one fixed point, i.e. show that there is exactly one $x^* \in X$ such that $x^* = f(x^*)$.

Suggestion: Choose any point $x_0 \in X$ and for each $n = 0, 1, 2, \dots$ put $x_{n+1} = f(x_n)$. Show that

$$\rho(x_{m+1}, x_m) \le \alpha^m \rho(x_1, x_0).$$

Use this estimate together with the triangle inequality to show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. Finally, show that the limit of this sequence has the required properties.

9. Let $f:[0,1] \to \mathbb{R}$ and $k:[0,1] \times [0,1] \to \mathbb{R}$ be given continuous functions and assume that |k(x,y)| < 1 for all $x,y \in [0,1]$. Show that there is exactly one continuous function $u:[0,1] \to \mathbb{R}$ satisfying

$$u(x) + \int_0^1 k(x, y)u(y)dy = f(x)$$
 for all $x \in [0, 1]$.

10*. Let X = C[0,1] the set of all continuous real-valued functions on [0,1] and define $\rho: X \times X \to \mathbb{R}$ by

$$\rho(f,g) = \max\{|f(x) - g(x)| : x \in [0,1]\} \text{ for all } f,g \in X.$$

You may take it for granted that (X, ρ) is a complete metric space. Let S be the set of all functions in X having at least one point of differentiability in (0, 1). Show that $S^c \neq \emptyset$.