TREDNet PARNARs

This document outlines the process of training the PAR/NAR model using ChIP-seq peaks and utilizing the trained model to scan enhancer sequences.

Step 0: Train the TREDNet Model with Enhancer Coordinates

0.1 Navigate to the Training Directory

Go to the path:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/TREDNet

0.2 Submit the Training Job

Run the following script to start the training:

sh submit_local_jobs.sh H1

This trains the model using data from **H1 enhancers**. Replace H1 with any available biosample from the input files directory.

0.3 Input Files

The input data is located at:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/input_training_trednet

The complete input file can be found at:

/data/Dcode/common/CenTRED/hg38/green_celllines/CenTRED_training_files

For simplicity, a pre-processed dataset for **HepG2** is available in HDF5 format:

/data/Dcode/common/CenTRED/hg38/green_celllines/CenTRED_models/BioS11/phase_two_dataset.hdf5

0.4 Output

The trained model will be saved in:

 $/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/CenTRED_models/part1$

Step 1: Training the PAR/NAR Model

1.1 Define Positive TF Binding Sites

FIMO-predicted motif positions serve as true TF binding sites and are stored in:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/PARNNAR_model/FIMO_identified_Chipseq_TFBS

- The file total_final_chip2fimo_HepG2.pvaluee_04.merged contains motif locations scanned by FIMO across all HepG2 TF ChIP-seq peaks.
- For example, HNF4A motif positions are identified within HNF4A ChIP-seq peaks.
- These motif locations will be used as **positive training sets** for the PAR/NAR model. **ToDo**: Make sure you have the file __merged in the given folder. Therefore, add a new file for a different cell-line.

1.2 Generate Input Positive and Control Sets

Go to the directory:

 $/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/PARNNAR_model/step1_input_PARNNAR$

1.2.1: Create Positive and Control Sets

Run:

```
sh submit_step0_inputfile.sh
```

This script will:

- Overlap HepG2 enhancers with motif locations from Step 1.1 to create positive sets (FIMO across all HepG2 TF ChIP-seq peaks).
- Generate control sets from HepG2 enhancer regions that exclude motif locations.

Output Files:

- list_control_in_enhancer.bed (control sets)
- list_motif_in_enhancer.bed (positive sets)

*in the same folder.

1.2.2: Extract Features for Each Nucleotide

Run:

```
sh submit_step1_genebasepair_bychrom.sh
```

This generates 220 features per nucleotide in the positive and control sets (separately for peak/dip regions).

Required Input: Precomputed normalized delta scores per nucleotide.

/data/Dcode/common/CenTRED_for_Mehari_94biosamples/gene_mutagenesis/output_deltascore/BioS11_1kb/output.txt.total.BioS11.fpr5.normscore.newformat

Output Files (for chromosome 1 as an example):

- list_control_in_enhancer.bed.withenh.feature.chr1
- list_motif_in_enhancer.bed.withenh.dip.feature.chr1
- list_motif_in_enhancer.bed.withenh.peak.feature.chr1

1.2.3: Split Data into Training and Testing Sets

Run:

```
sh submit_step2_split.sh
```

This script will:

- Merge feature files containing 220 features.
- Split data into training and testing sets:
 - Training set: Excludes chromosomes 8 and 9
 - Testing set: Includes chromosomes 8 and 9

Output Files:

- input_peak.train, input_peak.test
- input_dip.train, input_dip.test

1.3 Train the PAR/NAR Model

Directory:

```
/data/Dcode/common/CenTRED_for_Mehari_94biosamples/PARNNAR_model/step2_train_PARNNAR
```

Using the training and testing sets from Step 1.2, train the PAR/NAR model.

- input_peak.train, input_peak.test
- input_dip.train, input_dip.test

Output File:

BioS11_HepG2hg38_peak

Step 2: Using a Pre-trained PAR/NAR Model to Scan DNA Sequences (e.g., HepG2 or Other Tissue Enhancers)

2.1. Generate In-Silico Mutagenesis for Enhancers

- Directory:
 - = /data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/gene_mutagenesis/step1_gene_mutagenesis/
- This step is also required for PAR/NAR model training (see Section 1.2).
- For PAR/NAR model training, only consider enhancers with FPR > 0.05.

Steps to Process Enhancers Using the Pre-trained Model

- 1. Extract Fasta Sequences for Enhancers
 - Script: submit_step1_fasta_allenh.sh
 - Retrieves the fasta sequences for enhancers.
 - Output in folder: \${EID}_\${length}
- 2. Generate Raw Delta Score Using TREDNet
 - Script: submit_step2_run_trednet.sh
 - Uses a pre-trained TREDNet enhancer model (e.g., HepG2, trained in Section 0.2).
 - Model Path:
 - /data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/CenTRED_models/part1/BioS11.phase_two.hg38.
- 3. Normalize Delta Scores
 - Script: submit_step3_calculate_deltascore.sh

· Computes the normalized delta scores.

2.2. again generate 220 features for each nucleotide in the enhancers or the DNA sequence you want

The script submit_step1_220feature.sh (located at:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/gene_mutagenesis/step2_gene_220feature/) automates the generation of 220 features for enhancers in different tissues.

How It Works:

- It copies the contents of ./original_code to create a separate directory for each tissue.
- It then **generates 220 features only** for enhancers in that tissue.

Example Output Directory:

Example feature file:

list_allenh_in_enhancer.bed.withenh.feature.1

△ Important Note:

- This step generates a large amount of data.
- Make sure to delete unnecessary files after predicting PAR/NAR to free up storage.