

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

B7

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C07K 14/00		A2	(11) International Publication Number: WO 00/21985 (43) International Publication Date: 20 April 2000 (20.04.00)
<p>(21) International Application Number: PCT/IB99/01729 (22) International Filing Date: 13 October 1999 (13.10.99) (30) Priority Data: 60/104,299 14 October 1998 (14.10.98) US</p> <p>(71) Applicant (for all designated States except US): GENSET [FR/FR]; 24, rue Royale, F-75008 Paris (FR). (72) Inventors; and (75) Inventors/Applicants (for US only): BOUGUELERET, Lydie [FR/FR]; 108, avenue Victor Hugo, F-92170 Vanves (FR). MALEKZADEH, Kattayoun [IR/FR]; 41, rue des Laitieres, F-94300 Vincennes (FR). (74) Common Representative: GENSET; 24, rue Royale, F-75008 Paris (FR).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>	
<p>(54) Title: GENES ENCODING OLFACTORY RECEPTORS AND BIALLELIC MARKERS THEREOF</p> <p>(57) Abstract</p> <p>The invention concerns the genomic sequence and coding regions of a new olfactory receptor gene cluster. The invention also concerns polypeptides encoded by the olfactory receptor genes as well as to methods and kits for detecting these polynucleotides and screening substances interacting with these polypeptides. The invention also deals with antibodies directed specifically against such polypeptides that are useful as diagnostic reagents. The invention further encompasses biallelic markers of the olfactory receptor gene useful in genetic analysis.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

**GENES ENCODING OLFACTORY RECEPTORS AND BIALLELIC MARKERS
THEREOF**

FIELD OF THE INVENTION

The present invention pertains to a purified or isolated nucleic acid comprising ten open reading Frames (ORFs) encoding ten different olfactory receptor-like proteins, non-coding regions flanking the ORFs as well as fragments thereof. The invention also provides recombinant expression vectors and recombinant cell hosts containing a nucleic acid encoding said olfactory receptor proteins. The invention also concerns the olfactory receptor proteins encoded by these ORFs as well as polypeptides that are homologous to said olfactory receptor proteins and the peptide fragments of both the olfactory receptor proteins and their homologous polypeptide counterparts. The invention also deals with antibodies directed specifically against such polypeptides that are useful as diagnostic reagents. The invention further encompasses biallelic markers of the olfactory receptor gene useful in genetic analysis. The invention also deals with methods and kits for the detection of the olfactory receptor proteins and with methods and kits for screening ligand molecules binding to these proteins.

BACKGROUND OF THE INVENTION

Throughout this application, various bibliographic publications are cited. Full bibliographic references for these publications may be found at the end of this application, preceding the sequence listing and the claims.

20 OLFACTORY SYSTEM

The olfactory receptor cells, the first cells in the pathway that give rise to the sense of smell, lie in a small patch of membrane, the olfactory epithelium, in the upper part of the nasal cavity. These cells are specialized afferent neurons that have an enlarged extension analogous to a dendrite. Several long hairlike processes extend out from this extension along the surface of the olfactory epithelium where they are bathed in mucus. The hairlike processes contain the receptor proteins for olfactory stimuli. The axons of these neurons form the olfactory nerve.

For the detection of an odorous substance which is called an odorant, molecules of the substance must first diffuse into the air and pass into the nose to the region of the olfactory epithelium. Once there, they dissolve in the mucus that covers the epithelium and then bind to specific receptor proteins on the cilia.

Although there are many thousands of olfactory neurons, each contains one, or at most a few, of the 1,000 or so different receptor types, each of which responds only to a specific chemically related group of odorant molecules. Each odorant has characteristic chemical groups that distinguish it from other odorants, and each of these groups activates a different receptor type. Thus the identity

of a particular odorant is determined by the activation of a precise combination of receptors, each of which is contained in a distinct group of olfactory neurons.

The axons of the olfactory neurons synapse in the brain structures known as olfactory bulbs, which lie on the undersurface of the frontal lobes. Axons from olfactory neurons sharing a common receptor specificity synapse together on certain olfactory-bulb neurons, thereby maintaining the specificity of the original stimuli.

OLFACtORY RECEPTORS

In contrast with the immunoglobulin system, the diversity of olfactory receptors is encoded by a large germ-line repertoire of olfactory receptor genes. The size of the olfactory receptor gene family in the human genome is unknown but it has been estimated to encompass 200 to 1,000 genes.

The locations of only a few human genes have been determined to date. The picture that has emerged so far is that several large clusters of olfactory genes and pseudogenes span hundreds of kilobases on several chromosomes. Using FISH analyses, more than 25 distinct locations of olfactory receptors gene have been identified in the human genome.

In mammals, the olfactory epithelium appears to be organized into distinct topographic regions or zones in which expression of a particular receptor gene appears to be restricted to one of the four zones in the epithelium. Within the zone, the distribution of neurons expressing a given receptor is random. Chromosomal mapping studies have revealed clusters of odorant receptor genes at a single locus, and numerous such loci have been mapped to different chromosomes. However, receptors expressed in the same zone map to different loci, and a single locus can contain genes expressed in different zones. A putative odorant receptor promoter, consisting of the 6.7 kb DNA fragment upstream of the receptor coding region, has been shown to be sufficient to direct olfactory receptor expression in a tissue-specific, zonal-specific manner.

Olfactory receptors share a seven-transmembrane domain structure (TM1 to TM7) with many neurotransmitter and hormone receptors. They show a high degree of sequence similarity in some conserved domains (TM2 and TM7) as well as regions of diversity (TM3, TM4, TM5, and TM6). They are responsible for the recognition and G protein-mediated transduction of odorant signals. The genes encoding these receptors are devoid of introns within their coding regions.

Olfactory receptors display all hallmarks of the G-protein coupled receptor superfamily but have also some unique motifs. Most notably they appear to be minimal in structure with very short cytoplasmic and extracellular loops. In addition, they display a striking structural diversity in the third, fourth and fifth transmembrane domains which are supposed to form the hydrophobic core of these proteins, and may form the ligand binding site of the receptors.

An understanding of the genetic basis of olfaction and a knowledge of olfactory receptors are important to enable the design of fragrance, the identification of compounds which control appetite, or the detection of compounds which can be harmful or dangerous.

SUMMARY OF THE INVENTION

This invention provides a nucleic acid molecule encoding ten different olfactory receptor-like proteins (OLF).

The invention also deals with a nucleic acid molecule comprising a nucleotide sequence 5 encoding an olfactory receptor-like protein, which nucleotide sequence is selected from the group consisting of SEQ ID Nos 2-11, as well as with the corresponding polypeptide encoded by this nucleotide sequence and with antibodies directed against the corresponding polypeptide.

Oligonucleotide probes or primers hybridizing specifically with an olfactory receptor genomic sequence are also part of the present invention, as well as DNA amplification and detection 10 methods using said primers and probes.

The invention also concerns a purified and/or isolated biallelic marker located in the sequence of the olfactory receptor gene cluster of the invention, wherein said biallelic marker is useful as a diagnostic tool in order to detect an allele associated with a specific phenotype as regards to the olfaction system, including an alteration of the olfactory perception of substances or 15 molecules.

A further object of the invention consists of recombinant vectors comprising any of the nucleic acid sequences described above, and in particular of recombinant vectors comprising a sequence encoding an olfactory receptor protein, as well as of cell hosts and transgenic non human animals comprising said nucleic acid sequences or recombinant vectors.

20 A further object of the invention consists of methods for screening substances or molecules interacting with an olfactory receptor encoded by any of the nucleic acid molecule described above.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 : Alignment of the amino acid sequences of the olfactory polypeptides encoded by 25 the Open Reading Frames of the olfactory receptor gene cluster of the invention. The lower line represents the consensus sequence. The locations of the seven transmembrane domains TM1 to TM7 are boxed.

BRIEF DESCRIPTION OF THE SEQUENCES PROVIDED IN THE SEQUENCE

LISTING

30 SEQ ID No 1 contains the olfactory receptor genomic sequence.

SEQ ID Nos 2-11 contains the nucleotide sequences of the open reading frame sequences of SEQ ID No 1 encoding the OLF1 to OLF10 polypeptides.

SEQ ID No 12-21 contain the amino acid sequence of OLF1 to OLF10 polypeptides encoded by the open reading frames of SEQ ID Nos 2-11.

SEQ ID Nos 22-25 contain the amplification primers used for FISH experiments described in Example 1.

SEQ ID No 26 contains a primer containing the additional PU 5' sequence described further in Example 3.

5 SEQ ID No 27 contains a primer containing the additional RP 5' sequence described further in Example 3.

In accordance with the regulations relating to Sequence Listings, the following codes have been used in the Sequence Listing to indicate the locations of biallelic markers within the sequences and to identify each of the alleles present at the polymorphic base. The code "r" in the sequences 10 indicates that one allele of the polymorphic base is a guanine, while the other allele is an adenine. The code "y" in the sequences indicates that one allele of the polymorphic base is a thymine, while the other allele is a cytosine. The code "m" in the sequences indicates that one allele of the polymorphic base is an adenine, while the other allele is an cytosine. The code "k" in the sequences indicates that one allele of the polymorphic base is a guanine, while the other allele is a thymine. 15 The code "s" in the sequences indicates that one allele of the polymorphic base is a guanine, while the other allele is a cytosine. The code "w" in the sequences indicates that one allele of the polymorphic base is an adenine, while the other allele is an thymine.

The nucleotide code of the original allele for each biallelic marker is the following:

	Biallelic marker	Original allele
20	99-13670-305	G
	99-13669-471	G
	99-13666-275	A
	99-13664-221	T
	99-13663-218	G
25	99-13660-277	C
	99-13652-407	G
	99-13652-357	A
	99-13652-308	A
	99-13671-396	A
30	99-13649-286	C
	99-13648-259	G
	99-13647-278	G

DETAILED DESCRIPTION OF THE INVENTION

35 The aim of the present invention is to provide polynucleotides and polypeptides related to novel olfactory receptors, notably useful in order to design suitable means for detecting specific odorant molecules in a material sample, particularly in a material sample suspected to contain an odorant molecule that consists of one of the specific ligands for the olfactory receptors of the invention.

DEFINITIONS

Before describing the invention in greater detail, the following definitions are set forth to illustrate and define the meaning and scope of the terms used to describe the invention herein.

General definitions

5 The terms "olfactory receptor gene" or "OLF1 to OLF10" genes, when used herein, encompasses genomic, mRNA and cDNA sequences encoding the OLF1 to OLF10 olfactory receptor proteins.

The term "heterologous protein", when used herein, is intended to designate any protein or polypeptide other than the OLF1 to OLF10 proteins.

10 The term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or DNA or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotide could be part of a vector and/or such polynucleotide or polypeptide

15 could be part of a composition, and still be isolated in that the vector or composition is not part of its natural environment.

The term "purified" does not require absolute purity; rather, it is intended as a relative definition. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated. As an example, purification from 0.1 % concentration to 10 % concentration is two orders of magnitude. The term "purified polynucleotide" is used herein to describe a polynucleotide or polynucleotide vector of the invention which has been separated from other compounds including, but not limited to other nucleic acids, carbohydrates, lipids and proteins (such as the enzymes used in the synthesis of the polynucleotide), or the separation of covalently closed polynucleotides from linear polynucleotides. A polynucleotide is substantially pure when at least about 50%, preferably 60 to 75% of a sample exhibits a single polynucleotide sequence and conformation (linear versus covalently close). A substantially pure polynucleotide typically comprises about 50%, preferably 60 to 90% weight/weight of a nucleic acid sample, more usually about 95%, and preferably is over about 99% pure. Polynucleotide purity or homogeneity is indicated by a number of means well known in the art, such as agarose or polyacrylamide gel electrophoresis of a sample, followed by visualizing a single polynucleotide band upon staining the gel. For certain purposes higher resolution can be provided by using HPLC or other means well known in the art.

The term "polypeptide" refers to a polymer of amino acids without regard to the length of the polymer; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not specify or exclude post-expression modifications of polypeptides, for example, polypeptides which include the covalent attachment of glycosyl groups, acetyl groups, phosphate groups, lipid groups and the like are expressly encompassed by the term

polypeptide. Also included within the definition are polypeptides which contain one or more analogs of an amino acid (including, for example, non-naturally occurring amino acids, amino acids which only occur naturally in an unrelated biological system, modified amino acids from mammalian systems etc.), polypeptides with substituted linkages, as well as other modifications

5 known in the art, both naturally occurring and non-naturally occurring.

The term "recombinant polypeptide" is used herein to refer to polypeptides that have been artificially designed and which comprise at least two polypeptide sequences that are not found as contiguous polypeptide sequences in their initial natural environment, or to refer to polypeptides which have been expressed from a recombinant polynucleotide.

10 The term "purified polypeptide" is used herein to describe a polypeptide of the invention which has been separated from other compounds including, but not limited to nucleic acids, lipids, carbohydrates and other proteins. A polypeptide is substantially pure when at least about 50%, preferably 60 to 75% of a sample exhibits a single polypeptide sequence. A substantially pure polypeptide typically comprises about 50%, preferably 60 to 90% weight/weight of a protein sample,

15 more usually about 95%, and preferably is over about 99% pure. Polypeptide purity or homogeneity is indicated by a number of means well known in the art, such as polyacrylamide gel electrophoresis of a sample, followed by visualizing a single polypeptide band upon staining the gel. For certain purposes higher resolution can be provided by using HPLC or other means well known in the art.

As used herein, the term "non-human animal" refers to any non-human vertebrate, birds and
20 more usually mammals, preferably primates, farm animals such as swine, goats, sheep, donkeys, and horses, rabbits or rodents, more preferably rats or mice. As used herein, the term "animal" is used to refer to any vertebrate, preferable a mammal. Both the terms "animal" and "mammal" expressly embrace human subjects unless preceded with the term "non-human".

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides which
25 are comprised of at least one binding domain, where an antibody binding domain is formed from the folding of variable domains of an antibody molecule to form three-dimensional binding spaces with an internal surface shape and charge distribution complementary to the features of an antigenic determinant of an antigen, which allows an immunological reaction with the antigen. Antibodies include recombinant proteins comprising the binding domains, as wells as fragments, including Fab,
30 Fab', F(ab)₂, and F(ab')₂ fragments.

As used herein, an "antigenic determinant" is the portion of an antigen molecule, in this case a OLF1 to OLF10 polypeptide, that determines the specificity of the antigen-antibody reaction. An "epitope" refers to an antigenic determinant of a polypeptide. An epitope can comprise as few as 3 amino acids in a spatial conformation which is unique to the epitope. Generally an epitope
35 comprises at least 6 such amino acids, and more usually at least 8-10 such amino acids. Methods for determining the amino acids which make up an epitope include x-ray crystallography, 2-dimensional

nuclear magnetic resonance, and epitope mapping e.g. the Pepscan method described by Geysen et al. 1984; PCT Publication No. WO 84/03564; and PCT Publication No. WO 84/03506.

Throughout the present specification, the expression "nucleotide sequence" may be employed to designate indifferently a polynucleotide or a nucleic acid. More precisely, the 5 expression "nucleotide sequence" encompasses the nucleic material itself and is thus not restricted to the sequence information (i.e. the succession of letters chosen among the four base letters) that biochemically characterizes a specific DNA or RNA molecule.

As used interchangeably herein, the terms "nucleic acids", "oligonucleotides", and "polynucleotides" include RNA, DNA, or RNA/DNA hybrid sequences of more than one nucleotide 10 in either single chain or duplex form. The term "nucleotide" as used herein as an adjective to describe molecules comprising RNA, DNA, or RNA/DNA hybrid sequences of any length in single-stranded or duplex form. The term "nucleotide" is also used herein as a noun to refer to individual nucleotides or varieties of nucleotides, meaning a molecule, or individual unit in a larger nucleic acid molecule, comprising a purine or pyrimidine, a ribose or deoxyribose sugar moiety, and a 15 phosphate group, or phosphodiester linkage in the case of nucleotides within an oligonucleotide or polynucleotide. The term "nucleotide" is also used herein to encompass "modified nucleotides" which comprise at least one modifications (a) an alternative linking group, (b) an analogous form of purine, (c) an analogous form of pyrimidine, or (d) an analogous sugar, for examples of analogous linking groups, purine, pyrimidines, and sugars see for example PCT publication No. WO 95/04064. 20 The polynucleotide sequences of the invention may be prepared by any known method, including synthetic, recombinant, *ex vivo* generation, or a combination thereof, as well as utilizing any purification methods known in the art.

A "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell required to initiate the specific transcription of a gene.

25 A sequence which is "operably linked" to a regulatory sequence such as a promoter means that said regulatory element is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the nucleic acid of interest. As used herein, the term "operably linked" refers to a linkage of polynucleotide elements in a functional relationship. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the 30 transcription of the coding sequence. More precisely, two DNA molecules (such as a polynucleotide containing a promoter region and a polynucleotide encoding a desired polypeptide or polynucleotide) are said to be "operably linked" if the nature of the linkage between the two polynucleotides does not (1) result in the introduction of a frame-shift mutation or (2) interfere with the ability of the polynucleotide containing the promoter to direct the transcription of the coding 35 polynucleotide.

The term "vector" is used herein to designate either a circular or a linear DNA or RNA molecule, which is either double-stranded or single-stranded, and which comprise at least one

polynucleotide of interest that is sought to be transferred in a cell host or in a unicellular or multicellular host organism.

The term "primer" denotes a specific oligonucleotide sequence which is complementary to a target nucleotide sequence and used to hybridize to the target nucleotide sequence. A primer serves 5 as an initiation point for nucleotide polymerization catalyzed by either DNA polymerase, RNA polymerase or reverse transcriptase.

The term "probe" denotes a defined nucleic acid segment (or nucleotide analog segment, e.g., polynucleotide as defined hereinbelow) which can be used to identify a specific polynucleotide sequence present in samples, said nucleic acid segment comprising a nucleotide sequence

10 complementary of the specific polynucleotide sequence to be identified.

The terms "trait" and "phenotype" are used interchangeably herein and refer to any visible, detectable or otherwise measurable property of an organism such as symptoms of, or susceptibility to a disease for example.

The term "allele" is used herein to refer to variants of a nucleotide sequence. A biallelic 15 polymorphism has two forms. Diploid organisms may be homozygous or heterozygous for an allelic form.

The term "genotype" as used herein refers the identity of the alleles present in an individual or a sample. In the context of the present invention, a genotype preferably refers to the description of the biallelic marker alleles present in an individual or a sample. The term "genotyping" a sample 20 or an individual for a biallelic marker involves determining the specific allele or the specific nucleotide carried by an individual at a biallelic marker.

The term "mutation" as used herein refers to a difference in DNA sequence between or among different genomes or individuals which has a frequency below 1%.

The term "polymorphism" as used herein refers to the occurrence of two or more alternative 25 genomic sequences or alleles between or among different genomes or individuals. "Polymorphic" refers to the condition in which two or more variants of a specific genomic sequence can be found in a population. A "polymorphic site" is the locus at which the variation occurs. A single nucleotide polymorphism is the replacement of one nucleotide by another nucleotide at the polymorphic site. Deletion of a single nucleotide or insertion of a single nucleotide also gives rise to single nucleotide 30 polymorphisms. In the context of the present invention, "single nucleotide polymorphism" preferably refers to a single nucleotide substitution. Typically, between different individuals, the polymorphic site may be occupied by two different nucleotides.

The term "biallelic polymorphism" and "biallelic marker" are used interchangeably herein to refer to a single nucleotide polymorphism having two alleles at a fairly high frequency in the 35 population. A "biallelic marker allele" refers to the nucleotide variants present at a biallelic marker site.

The location of nucleotides in a polynucleotide with respect to the center of the polynucleotide are described herein in the following manner. When a polynucleotide has an odd number of nucleotides, the nucleotide at an equal distance from the 3' and 5' ends of the polynucleotide is considered to be "at the center" of the polynucleotide, and any nucleotide 5 immediately adjacent to the nucleotide at the center, or the nucleotide at the center itself is considered to be "within 1 nucleotide of the center." With an odd number of nucleotides in a polynucleotide any of the five nucleotides positions in the middle of the polynucleotide would be considered to be within 2 nucleotides of the center, and so on. When a polynucleotide has an even number of nucleotides, there would be a bond and not a nucleotide at the center of the 10 polynucleotide. Thus, either of the two central nucleotides would be considered to be "within 1 nucleotide of the center" and any of the four nucleotides in the middle of the polynucleotide would be considered to be "within 2 nucleotides of the center", and so on.

Biallelic markers can be defined as genome-derived polynucleotides having between 2 and 100, preferably between 20, 30, or 40 and 60, and more preferably about 47 nucleotides in length, 15 which exhibit biallelic polymorphism at one single base position. Each biallelic marker therefore corresponds to two forms of a polynucleotide sequence included in a gene which, when compared with one another, present a nucleotide modification at one position.

The term "upstream" is used herein to refer to a location which is toward the 5' end of the polynucleotide from a specific reference point.

20 The terms "base paired" and "Watson & Crick base paired" are used interchangeably herein to refer to nucleotides which can be hydrogen bonded to one another by virtue of their sequence identities in a manner like that found in double-helical DNA with thymine or uracil residues linked to adenine residues by two hydrogen bonds and cytosine and guanine residues linked by three hydrogen bonds (See Stryer, L., *Biochemistry*, 4th edition, 1995).

25 The terms "complementary" or "complement thereof" are used herein to refer to the sequences of polynucleotides which is capable of forming Watson & Crick base pairing with another specified polynucleotide throughout the entirety of the complementary region. For the purpose of the present invention, a first polynucleotide is deemed to be complementary to a second polynucleotide when each base in the first polynucleotide is paired with its complementary base. Complementary 30 bases are, generally, A and T (or A and U), or C and G. "Complement" is used herein as a synonym from "complementary polynucleotide", "complementary nucleic acid" and "complementary nucleotide sequence". These terms are applied to pairs of polynucleotides based solely upon their sequences and not any particular set of conditions under which the two polynucleotides would actually bind.

Variants and fragments**1- Polynucleotides**

The invention also relates to variants and fragments of the polynucleotides described herein, particularly of an olfactory receptor gene containing one or more biallelic markers according to the 5 invention.

Variants of polynucleotides, as the term is used herein, are polynucleotides that differ from a reference polynucleotide. A variant of a polynucleotide may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally. Such non-naturally occurring variants of the polynucleotide may be made by mutagenesis techniques, 10 including those applied to polynucleotides, cells or organisms. Generally, differences are limited so that the nucleotide sequences of the reference and the variant are closely similar overall and, in many regions, identical.

Variants of polynucleotides according to the invention include, without being limited to, nucleotide sequences at least 95% identical to a nucleic acid selected from the group consisting of 15 SEQ ID Nos 1-11, or to any polynucleotide fragment of at least 12 consecutive nucleotides from a nucleic acid selected from the group consisting of SEQ ID Nos 1-11, and preferably at least 99% identical, more particularly at least 99.5% identical, and most preferably at least 99.8% identical to a nucleic acid selected from the group consisting of SEQ ID Nos 1-11, or to any polynucleotide fragment of at least 12 consecutive nucleotides from a nucleic acid selected from the group 20 consisting of SEQ ID Nos 1-11.

Changes in the nucleotide of a variant may be silent, which means that they do not alter the amino acids encoded by the polynucleotide. However, nucleotide changes may also result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence. The substitutions, deletions or additions may involve one or more nucleotides. 25 The variants may be altered in coding or non-coding regions or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions.

In the context of the present invention, particularly preferred embodiments are those in which the polynucleotides encode polypeptides which retain substantially the same biological 30 function or activity as the mature olfactory receptor protein, or those in which the polynucleotides encode polypeptides which maintain or increase a particular biological activity, while reducing a second biological activity.

A polynucleotide fragment is a polynucleotide which sequence is fully comprised within part of a given nucleotide sequence, preferably the nucleotide sequence of an olfactory receptor gene 35 of the invention, and variants thereof. The fragment can be a portion of a coding or non-coding region of the olfactory receptor gene cluster. Preferably, such fragments comprise at least one of the biallelic markers A1 to A13 or the complements thereto or a biallelic marker in linkage

disequilibrium with one or more of the biallelic markers A1 to A13, for which the respective locations in the sequence listing are provided in Table 2.

Such fragments may be "free-standing", i.e. not part of or fused to other polynucleotides, or they may be comprised within a single larger polynucleotide of which they form a part or region.

5 However, several fragments may be comprised within a single larger polynucleotide.

As representative examples of polynucleotide fragments of the invention, there may be mentioned those which have from about 4, 6, 8, 15, 20, 25, 40, 10 to 30, 30 to 55, 50 to 100, 75 to 100 or 100 to 200 nucleotides in length. Preferred are those fragments having about 47 nucleotides in length, such as those comprising at least one of the biallelic markers A1 to A13 of the olfactory receptor gene. Optionally, such fragments may consist of, or consist essentially of a contiguous span of at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500 or 1000 nucleotides in length. A set of preferred fragments contain at least one of the biallelic markers A1 to A13 of the olfactory receptor gene which are described herein or the complements thereto.

2- Polypeptides

15 The invention also relates to variants, fragments, analogs and derivatives of the polypeptides described herein, including mutated olfactory receptor proteins.

The variant may be 1) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue and such substituted amino acid residue may or may not be one encoded by the genetic code, or 2) one in which one or more of the amino acid residues includes a substituent group, or 3) one in which the mutated olfactory receptor is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or 4) one in which the additional amino acids are fused to the mutated olfactory receptor, such as a leader or secretory sequence or a sequence which is employed for purification of the mutated olfactory receptor or a preprotein sequence. Such variants are deemed to 25 be within the scope of those skilled in the art.

In the case of an amino acid substitution in the amino acid sequence of a polypeptide according to the invention, one or several amino acids can be replaced by "equivalent" amino acids. The expression "equivalent" amino acid is used herein to designate any amino acid that may be substituted for one of the amino acids having similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to 30 be substantially unchanged. Generally, the following groups of amino acids represent equivalent changes: (1) Ala, Pro, Gly, Glu, Asp, Gln, Asn, Ser, Thr; (2) Cys, Ser, Tyr, Thr; (3) Val, Ile, Leu, Met, Ala, Phe; (4) Lys, Arg, His; (5) Phe, Tyr, Trp, His.

More particularly, a variant olfactory receptor polypeptide comprises amino acid changes 35 ranging from 1, 2, 3, 4, 5, 10 to 20 substitutions, additions or deletions of one aminoacid, preferably from 1 to 10, more preferably from 1 to 5 and most preferably from 1 to 3 substitutions, additions or deletions of one amino acid. The preferred amino acid changes are those which have little or no

influence on the biological activity or the capacity of the variant olfactory receptor polypeptide to bind to antibodies raised against a native olfactory receptor protein.

A specific, but not restrictive, embodiment of a modified peptide molecule of interest according to the present invention, which consists in a peptide molecule which is resistant to 5 proteolysis, is a peptide in which the -CONH- peptide bond is modified and replaced by a (CH₂NH) reduced bond, a (NHCO) retro inverso bond, a (CH₂-O) methylene-oxy bond, a (CH₂-S) thiomethylene bond, a (CH₂CH₂) carba bond, a (CO-CH₂) cetomethylene bond, a (CHOH-CH₂) hydroxyethylene bond), a (N-N) bound, a E-alcene bond or also a -CH=CH- bond.

The polypeptide according to the invention could have post-translational modifications. For 10 example, it can present the following modifications: acylation, disulfide bond formation, prenylation, carboxymethylation and phosphorylation.

A polypeptide fragment is a polypeptide which sequence is fully comprised within part of a given polypeptide sequence, preferably a polypeptide encoded by an olfactory receptor gene and variants thereof.

15 Such fragments may be "free-standing", i.e. not part of or fused to other polypeptides, or they may be comprised within a single larger polypeptide of which they form a part or region. However, several fragments may be comprised within a single larger polypeptide.

As representative examples of polypeptide fragments of the invention, there may be mentioned those which have from about 5, 6, 7, 8, 9 or 10 to 15, 10 to 20, 15 to 40, or 30 to 55 20 amino acids long. Preferred polypeptide fragments according to the invention comprise a contiguous span of at least 6 amino acids, preferably at least 8 or amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of one amino acid sequence. Preferred are those fragments containing at least one amino acid mutation in the olfactory receptor protein under consideration.

Identity between nucleic acids or polypeptides

25 The terms "percentage of sequence identity" and "percentage homology" are used interchangeably herein to refer to comparisons among polynucleotides and polypeptides, and are determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise 30 additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. Homology is evaluated using either any of the 35 variety of sequence comparison algorithms and programs known in the art, or by eye inspection. Such algorithms and programs include, but are by no means limited to, TBLASTN, BLASTP, FASTA, TFASTA, and CLUSTALW (Pearson and Lipman, 1988; Altschul et al., 1990; Thompson

et al., 1994; Higgins et al., 1996; Altschul et al., 1990; Altschul et al., 1993). In a particularly preferred embodiment, protein and nucleic acid sequence homologies are evaluated using the Basic Local Alignment Search Tool ("BLAST") which is well known in the art (see, e.g., Karlin and Altschul, 1990; Altschul et al., 1990, 1993, 1997). In particular, five specific BLAST programs are used to perform the following task:

- (1) BLASTP and BLAST3 compare an amino acid query sequence against a protein sequence database;
- (2) BLASTN compares a nucleotide query sequence against a nucleotide sequence database;
- 10 (3) BLASTX compares the six-frame conceptual translation products of a query nucleotide sequence (both strands) against a protein sequence database;
- (4) TBLASTN compares a query protein sequence against a nucleotide sequence database translated in all six reading frames (both strands); and
- 15 (5) TBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.

The BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as "high-scoring segment pairs," between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database. High-scoring segment pairs are preferably identified (i.e., aligned) by means of a scoring matrix, many of which are known in the art. Preferably, the scoring matrix used is the BLOSUM62 matrix (Gonnet et al., 1992; Henikoff and Henikoff, 1993). Less preferably, the PAM or PAM250 matrices may also be used (see, e.g., Schwartz and Dayhoff, eds., 1978). The BLAST programs evaluate the statistical significance of all high-scoring segment pairs identified, and preferably selects those segments which satisfy a user-specified threshold of significance, such as a user-specified percent homology. Preferably, the statistical significance of a high-scoring segment pair is evaluated using the statistical significance formula of Karlin (see, e.g., Karlin and Altschul, 1990). The BLAST programs may be used with the default parameters or with modified parameters provided by the user.

Stringent Hybridization Conditions

30 By way of example and not limitation, procedures using conditions of high stringency are as follows: Prehybridization of filters containing DNA is carried out for 8 h to overnight at 65°C in buffer composed of 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 µg/ml denatured salmon sperm DNA. Filters are hybridized for 48 h at 65°C, the preferred hybridization temperature, in prehybridization mixture containing 100 µg/ml denatured 35 salmon sperm DNA and 5-20 X 10⁶ cpm of ³²P-labeled probe. Alternatively, the hybridization step can be performed at 65°C in the presence of SSC buffer, 1 x SSC corresponding to 0.15M NaCl and 0.05 M Na citrate. Subsequently, filter washes can be done at 37°C for 1 h in a solution containing 2

x SSC, 0.01% PVP, 0.01% Ficoll, and 0.01% BSA, followed by a wash in 0.1 X SSC at 50°C for 45 min. Alternatively, filter washes can be performed in a solution containing 2 x SSC and 0.1% SDS, or 0.5 x SSC and 0.1% SDS, or 0.1 x SSC and 0.1% SDS at 68°C for 15 minute intervals.

Following the wash steps, the hybridized probes are detectable by autoradiography. Other 5 conditions of high stringency which may be used are well known in the art and as cited in Sambrook et al., 1989; and Ausubel et al., 1989. These hybridization conditions are suitable for a nucleic acid molecule of about 20 nucleotides in length. There is no need to say that the hybridization conditions described above are to be adapted according to the length of the desired nucleic acid, following techniques well known to the one skilled in the art. The suitable hybridization conditions may for 10 example be adapted according to the teachings disclosed in the book of Hames and Higgins (1985) or in Sambrook et al.(1989).

HOMOLOGIES OF THE NOVEL OLFACTORY RECEPTOR GENE WITH KNOWN OLFACTORY RECEPTORS

A comparison analysis of various olfactory receptor amino acid sequences, including the 15 novel sequences of the invention, has been performed with the alignment program Pileup and the translation program MAP (Winsconsin Package version 8, GCG). The protein sequences were sorted into different families and subfamilies, taking into account their Amino acid Sequence Identity (ASI). It was observed the Open Reading Frames of the OLF1 to OLF10 genes are genetically clearly distinguished from the already known olfactory receptor sequences. For example, the 20 olfactory receptor OLF2 presents respectively 39.9 %, 43.1 % and 44.2 % of identity with prior art olfactory receptors referred in Genbank as L35475, U58675_1 and Y10530. In addition, the nucleotide sequences of Orf-2 to Orf-10 according to the invention are all grouped together, whereas the nucleotide Orf-1 of the invention forms a new family by itself. These amino acid sequence comparison data clearly indicate that the novel olfactory receptor sequences of the invention share 25 common genetic characteristics (Orf-2 to Orf-10) or have specific characteristics (Orf-1) that are not found in the prior art olfactory receptor sequences.

A. OLF1 TO OLF10 GENE POLYNUCLEOTIDES.

The cluster of ten olfactory receptor genes has been found by the inventors to be located on the human chromosome 11, more precisely within the 11q12-q13 locus of said chromosome as 30 described in Example 1.

1. Genomic sequences of the olfactory receptor gene

The present invention concerns the genomic sequence of an olfactory receptor cluster. The present invention encompasses the olfactory receptor gene, or olfactory receptor genomic sequences consisting of, consisting essentially of, or comprising the sequence of SEQ ID No 1, a sequence

complementary thereto, as well as fragments and variants thereof. These polynucleotides may be purified, isolated, or recombinant.

The invention also encompasses a purified, isolated, or recombinant polynucleotide comprising a nucleotide sequence having at least 70, 75, 80, 85, 90, or 95% nucleotide identity with 5 a nucleotide sequence of SEQ ID No 1 or a complementary sequence thereto or a fragment thereof. The nucleotide differences as regards to the nucleotide sequence of SEQ ID No 1 may be generally randomly distributed throughout the entire nucleic acid. Nevertheless, preferred nucleic acids are those wherein the nucleotide differences as regards to the nucleotide sequence of SEQ ID No 1 are predominantly located outside the coding sequences contained in the exons. These nucleic acids, as 10 well as their fragments and variants, may be used as oligonucleotide primers or probes in order to detect the presence of a copy of the olfactory receptor gene in a test sample, or alternatively in order to amplify a target nucleotide sequence within the olfactory receptor sequences.

Another object of the invention consists of a purified, isolated, or recombinant nucleic acid that hybridizes with the nucleotide sequence of SEQ ID No 1 or a complementary sequence thereto, 15 under stringent hybridization conditions as defined above.

Particularly preferred nucleic acids of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of SEQ ID No 1 or the complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide 20 positions of SEQ ID No 1: 1-113643, 114064-127488, 127855-144460. Additional preferred nucleic acids of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of SEQ ID No 1 or the complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of SEQ ID No 1: 1-10000, 25 10001-20000, 20001-30000, 30001-40000, 40001-50000, 50001-60000, 60001-70000, 70001-80000, 80001-90000, 90001-100000, 100001-110000, 110001-120000, 120001-130000, 130001-140000, and 140001-144460. Further preferred nucleic acids of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of SEQ ID No 1 or the 30 complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of SEQ ID No 1: 1-5000, 5001-10000, 10001-15000, 15001-20000, 20001-25000, 25001-30000, 30001-35000, 35001-40000, 40001-45000, 45001-50000, 50001-55000, 55001-60000, 60001-65000, 65001-70000, 70001-75000, 75001-80000, 80001-85000, 85001-90000, 90001-95000, 95001-100000, 100001-105000, 105001-110000, 110001-115000, 35 115001-120000, 120001-125000, 125001-130000, 130001-135000, 135001-140000, and 140001-144460.

The olfactory receptor genomic nucleic acid comprises 10 open reading frames, each carried by a single exon and encoding a polypeptide designated OLF1 to OLF10. The open reading frames positions of OLF1 to OLF10 in SEQ ID No 1 are given as features in the sequence listing and are also detailed below in Table A.

5 Two truncated ubiquitin polypeptides Ubi1 and Ubi2, unrelated to olfactory receptor coding sequences, are encoded on the complementary strand of the olfactory receptor gene. The complementary sequence of the Ubi1 ORF is located between the nucleotide in position 114063 and the nucleotide in position 113644 of the nucleotide sequence of SEQ ID No 1. The complementary sequence of the Ubi2 ORF is located between the nucleotide in position 127854 and the nucleotide
10 in position 127489 of the nucleotide sequence of SEQ ID No 1.

Table A

Coding regions			Non-coding regions		
Name	Position in SEQ ID No 1		Name	Position in SEQ ID No 1	
	Beginning	End		Beginning	End
OLF1	2406	2600	NC1	1	2405
OLF2	9711	10658	NC2	2601	9710
OLF3	24851	25369	NC3	10659	24850
OLF4	45714	46661	NC4	25370	45713
OLF5	80198	81115	NC5	46662	80197
OLF6	96291	96902	NC6	81116	96290
OLF7	110758	111564	NC7	96903	110757
OLF8	122525	122887	NC8	111565	122524
OLF9	132454	133389	NC9	122888	132453
OLF10	143398	143577	NC10	133390	143397
			NC11	143578	144460

Thus, the invention embodies purified, isolated, or recombinant polynucleotides comprising a nucleotide sequence selected from the group consisting of the 10 open reading frames of the
15 olfactory receptor gene, or a sequence complementary thereto.

The nucleic acid of SEQ ID No 1 also comprises non coding portions flanking each of the ten olfactory receptor open reading frames of the sense DNA strand.

The invention also embodies purified, isolated, or recombinant polynucleotides comprising a nucleotide sequence selected from the group consisting of the non-coding regions contained in the
20 olfactory receptor gene cluster of SEQ ID No 1, or a sequence complementary thereto as well as their fragments or variants. The term "non-coding" sequence refers to any nucleotide sequence which does not encode an amino acid. The non-coding sequences encompass upstream and downstream regions of the olfactory receptor ORFs of the invention, as well as regions located

between two successive olfactory receptor ORFs, as indicated in Table A which lists the 11 non-coding regions named from NC1 to NC11.

The nucleic acids defining the non-coding sequences of the polynucleotide of SEQ ID No 1 described above, as well as their fragments and variants, may be used as oligonucleotide primers or 5 probes in order to detect the presence of a copy of one of the olfactory receptor genes of the invention in a test sample, or alternatively in order to amplify a target nucleotide sequence within the cluster of olfactory receptor encoding sequences according to the invention.

While this section is entitled "Genomic Sequences of the olfactory receptor gene," it should be noted that nucleic acid fragments of any size and sequence may also be comprised by the 10 polynucleotides described in this section, flanking the genomic sequences of olfactory receptor on either side or between two or more such genomic sequences.

2. Coding regions of the olfactory receptor gene

The 10 olfactory receptor open reading frames are presented individually as SEQ ID Nos 2-11 in the appended sequence listing.

15 Thus, another object of the invention is a purified, isolated, or recombinant nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID Nos 2-11, complementary sequences thereto, as well as allelic variants, and fragments thereof. Moreover, preferred polynucleotides of the invention include purified, isolated, or recombinant olfactory receptor cDNAs consisting of, consisting essentially of, or comprising a sequence selected from the 20 group consisting of SEQ ID Nos 2-11.

The invention also pertains to a purified or isolated nucleic acid comprising a polynucleotide having at least 95% nucleotide identity with a polynucleotide selected from the group consisting of SEQ ID Nos 2-11, advantageously 99 % nucleotide identity, preferably 99.5% nucleotide identity and most preferably 99.8% nucleotide identity with a polynucleotide selected from the group 25 consisting of SEQ ID Nos 2-11, or a sequence complementary thereto or a biologically active fragment thereof.

Another object of the invention relates to purified, isolated or recombinant nucleic acids comprising a polynucleotide that hybridizes, under the stringent hybridization conditions defined herein, with a polynucleotide selected from the group consisting of SEQ ID Nos 2-11, or a sequence 30 complementary thereto or a biologically active fragment thereof.

Particularly preferred nucleic acids of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of a sequence selected from the group 35 consisting of SEQ ID Nos 2-11 or the complements thereof. Additional preferred embodiments of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of a sequence selected from the group consisting of SEQ ID Nos 2-11 or the

complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of said selected sequence : 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 601-650, 651-700, 701-750, 751-800, 801-850, 851-900, 901- the terminal nucleotide of the olfactory receptor coding regions, to the extent that such nucleotide positions are consistent with the lengths of the particular olfactory receptor coding region being referred to. Further preferred embodiments of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of a sequence selected from the group consisting of SEQ ID Nos 2, 4, 7, 9 and 11, or the complements thereof,

wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of said selected sequence: 1-25, 26-50, 51-75, 76-100, 101-125, 126-150, 151-175, 176-200, 201-225, 226-250, 251-275, 276-300, 301-325, 326-350, 351-375, 376-400, 401-425, 426-450, 451-475, 476-500, 501-525, 526-550, 551-575, 576-the terminal nucleotide of the olfactory receptor coding regions, to the extent that such nucleotide positions are consistent with the lengths of the particular olfactory receptor coding region being referred to.

The present invention also embodies isolated, purified, and recombinant polynucleotides encoding olfactory receptor polypeptides, wherein olfactory receptor polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID Nos 12-21, a nucleotide sequence complementary thereto, a fragment or a variant thereof. The present invention also embodies isolated, purified, and recombinant polynucleotides which encode polypeptides comprising a contiguous span of at least 6 amino acids, preferably at least 8 to 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of a sequence selected from the group consisting of SEQ ID Nos 12-21. In a preferred embodiment, the present invention embodies isolated, purified, and recombinant polynucleotides which encode polypeptides comprising a contiguous span of at least 6 amino acids, preferably at least 8 to 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of a sequence selected from the group consisting of SEQ ID Nos 12-21 wherein said contiguous span includes at least 1, 2, 3, 5 or 10 of the following amino acid positions in said selected sequence: 1-20, 21-40, 41-60, 61-80, 81-100, 101-120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301-the terminal amino acid of the olfactory receptor proteins, to the extent that such amino acid positions are consistent with the lengths of the particular olfactory receptor protein being referred to. In another preferred embodiment, the present invention embodies isolated, purified, and recombinant polynucleotides which encode polypeptides comprising a contiguous span of at least 6 amino acids, preferably at least 8 to 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of a sequence selected from the group consisting of SEQ ID Nos 12, 14, 17, 19 or 21 wherein said contiguous span includes at least 1, 2, 3, 5 or 7 of the following amino acid positions in said selected sequence: 1-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91-100, 101-

110, 111-120, 121-130, 131-140, 141-150, 151-160, 161-170, 171-180, 181-190, 191-the terminal amino acid of the olfactory receptor proteins, to the extent that such amino acid positions are consistent with the lengths of the particular olfactory receptor protein being referred to.

In further preferred embodiments, the present invention embodies isolated, purified, and 5 recombinant polynucleotides which encode olfactory receptor polypeptides comprising a contiguous span of at least 6 amino acids, preferably at least 8 to 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of a sequence selected from the group consisting of SEQ ID No 12-21, wherein said contiguous span includes at least one amino acid at the following positions of said selected sequence:

10 i) 1-3, 10, 16, 21, 28, 33, 34, 36, 42-44, 46, 49, 53, 54, 57, 59, 63, and 64 for SEQ ID No 12;

ii) 2, 4, 6, 8, 18, 25, 34, 37, 44, 52, 56, 80, 83, 89, 98, 101, 102, 113, 114, 117, 120, 139, 148, 158, 186, 195, 212, 219, 247, 266, 270, 280, 295, 298, 299, 301, 311, and 313-315 for SEQ ID No 13;

15 iii) 2-4, 6, 18, 21, 25, 34, 37, 98, 99, 102, 113, 114, 133, 143, 148, 158-163, 166, 167, 169, and 170 for SEQ ID No 14;

iv) 2, 4, 6, 8, 18, 25, 34, 37, 44, 52, 54, 56, 80, 83, 89, 98, 101, 102, 113, 114, 117, 120, 139, 148, 158, 186, 195, 212, 219, 247, 266, 270, 280, 298, 299, 311, and 313-315 for SEQ ID No 15;

20 v) 3, 18, 20, 25, 34, 47, 49, 67, 97, 100, 107, 108, 112, 113, 126, 135, 142, 146, 147, 157, 159-160, 194, 196, 228, 245, 264, 265, 269, 279, 298, and 302 for SEQ ID No 16;

vi) 2, 6, 18, 20, 33, 34, 37, 65, 68, 69, 72, 86, 88, 101, 107, 113, 114, 148, 158, 161, 164, 195, and 198 for SEQ ID No 17;

25 vii) 2, 6, 7, 52, 56, 67, 88, 94, 97, 110, 113, 116, 119, 120, 127, 135, 150, 153, 164, 174, 175, 180, 184, 217, 221, 259, 261, and 268 for SEQ ID No 18;

viii) 17, 18, 20, 28, 33, 35, 49-52, 105, 111, and 112 for SEQ ID No 19;

ix) 17, 20, 33, 35, 49-53, 56, 111, 112, 132, 138, 141, 147, 154, 157, 160, 163, 164, 194, 197, 204, 211, 214, 218, 219, 252, 265, 286, 295, 301, 303, 305, 306 and 309 for SEQ ID No 20; and

x) 9, 18, 26-28, 34, 47 and 50 for SEQ ID No 21, to the extent that such amino acid lengths are consistent with the lengths of the particular olfactory receptor protein being referred to.

Additional preferred fragments of the nucleotide sequences of SEQ ID Nos 2-11 are those 35 encoding olfactory receptor polypeptide fragments located outside the transmembrane domains of the corresponding protein as located in boxes in Figure 1.

The above disclosed polynucleotides that contain only coding sequences derived from the olfactory receptor ORFs may be expressed in a desired host cell or a desired host organism, when said polynucleotides are placed under the control of suitable expression signals. Such a polynucleotide, when placed under suitable expression signals, may be inserted in a vector for its
5 expression.

While this section is entitled "Coding regions of the olfactory receptor gene," it should be noted that nucleic acid fragments of any size and sequence may also be comprised by the polynucleotides described in this section, flanking the genomic sequences of olfactory receptor on either side or between two or more such genomic sequences.

10 3. Polynucleotide Constructs

The terms "polynucleotide construct" and "recombinant polynucleotide" are used interchangeably herein to refer to linear or circular, purified or isolated polynucleotides that have been artificially designed and which comprise at least two nucleotide sequences that are not found as contiguous nucleotide sequences in their initial natural environment.

15 DNA Construct That Enables Directing Temporal And Spatial olfactory receptor Gene Expression In Recombinant Cell Hosts And In Transgenic Animals.

In order to study the physiological and phenotypic consequences of a lack of synthesis of the olfactory receptor protein, both at the cell level and at the multi cellular organism level, the invention also encompasses DNA constructs and recombinant vectors enabling a conditional
20 expression of a specific allele of the olfactory receptor genomic sequence or cDNA and also of a copy of this genomic sequence or cDNA harboring substitutions, deletions, or additions of one or more bases as regards to the olfactory receptor nucleotide sequence of SEQ ID Nos 1-11, or a fragment thereof, these base substitutions, deletions or additions being located in the coding regions of the olfactory receptor genomic sequence or within the olfactory receptor open reading frames of
25 SEQ ID Nos 2-11. In a preferred embodiment, the olfactory receptor sequence comprises a biallelic marker of the present invention. In a preferred embodiment, the olfactory receptor sequence comprises a biallelic marker of the present invention, preferably one of the biallelic markers A1 to A13.

The present invention embodies recombinant vectors comprising any one of the
30 polynucleotides described in the present invention. More particularly, the polynucleotide constructs according to the present invention can comprise any of the polynucleotides described in the "Genomic sequences of the olfactory receptor gene" section, the "Coding regions of the olfactory receptor Gene" section, and the "Oligonucleotide probes and primers" section.

DNA Constructs Allowing Homologous Recombination: Replacement Vectors

A first preferred DNA construct will comprise, from 5'-end to 3'-end: (a) a first nucleotide sequence that is comprised in the olfactory receptor genomic sequence; (b) a nucleotide sequence comprising a positive selection marker, such as the marker for neomycin resistance (*neo*); and (c) a second nucleotide sequence that is comprised in the olfactory receptor genomic sequence, and is located on the genome downstream the first olfactory receptor nucleotide sequence (a).

In a preferred embodiment, this DNA construct also comprises a negative selection marker located upstream the nucleotide sequence (a) or downstream the nucleotide sequence (c).

Preferably, the negative selection marker comprises the thymidine kinase (*tk*) gene (Thomas et al., 1986), the hygromycin beta gene (Te Riele et al., 1990), the *hprt* gene (Van der Lugt et al., 1991; Reid et al., 1990) or the Diphtheria toxin A fragment (*Dt-A*) gene (Nada et al., 1993; Yagi et al. 1990). Preferably, the positive selection marker is located within an olfactory receptor open reading frame sequence so as to interrupt the sequence encoding an olfactory receptor protein. These replacement vectors are described, for example, by Thomas et al.(1986; 1987), Mansour et al.(1988) and Koller et al.(1992).

The first and second nucleotide sequences (a) and (c) may be indifferently located within an olfactory receptor regulatory sequence, an intronic sequence, an exon sequence or a sequence containing both regulatory and/or intronic and/or exon sequences. The size of the nucleotide sequences (a) and (c) ranges from 1 to 50 kb, preferably from 1 to 10 kb, more preferably from 2 to 20 kb and most preferably from 2 to 4 kb.

DNA Constructs Allowing Homologous Recombination: Cre-LoxP System.

These new DNA constructs make use of the site specific recombination system of the P1 phage. The P1 phage possesses a recombinase called Cre which interacts specifically with a 34 base pairs *loxP* site. The *loxP* site is composed of two palindromic sequences of 13 bp separated by a 8 bp conserved sequence (Hoess et al., 1986). The recombination by the Cre enzyme between two *loxP* sites having an identical orientation leads to the deletion of the DNA fragment.

The Cre-*loxP* system used in combination with a homologous recombination technique has been first described by Gu et al.(1993, 1994). Briefly, a nucleotide sequence of interest to be inserted in a targeted location of the genome harbors at least two *loxP* sites in the same orientation and located at the respective ends of a nucleotide sequence to be excised from the recombinant genome. The excision event requires the presence of the recombinase (Cre) enzyme within the nucleus of the recombinant cell host. The recombinase enzyme may be brought at the desired time either by (a) incubating the recombinant cell hosts in a culture medium containing this enzyme, by injecting the Cre enzyme directly into the desired cell, such as described by Araki et al.(1995), or by 35 lipofection of the enzyme into the cells, such as described by Baubonis et al.(1993); (b) transfecting the cell host with a vector comprising the *Cre* coding sequence operably linked to a promoter functional in the recombinant cell host, which promoter being optionally inducible, said vector being

introduced in the recombinant cell host, such as described by Gu et al.(1993) and Sauer et al.(1988); (c) introducing in the genome of the cell host a polynucleotide comprising the *Cre* coding sequence operably linked to a promoter functional in the recombinant cell host, which promoter is optionally inducible, and said polynucleotide being inserted in the genome of the cell host either by a random 5 insertion event or an homologous recombination event, such as described by Gu et al.(1994).

In a specific embodiment, the vector containing the sequence to be inserted in the olfactory receptor gene by homologous recombination is constructed in such a way that selectable markers are flanked by *loxP* sites of the same orientation, it is possible, by treatment by the *Cre* enzyme, to eliminate the selectable markers while leaving the olfactory receptor sequences of interest that have 10 been inserted by an homologous recombination event. Again, two selectable markers are needed: a positive selection marker to select for the recombination event and a negative selection marker to select for the homologous recombination event. Vectors and methods using the *Cre-loxP* system are described by Zou et al.(1994).

Thus, a second preferred DNA construct of the invention comprises, from 5'-end to 3'-end: 15 (a) a first nucleotide sequence that is comprised in the olfactory receptor genomic sequence; (b) a nucleotide sequence comprising a polynucleotide encoding a positive selection marker, said nucleotide sequence comprising additionally two sequences defining a site recognized by a recombinase, such as a *loxP* site, the two sites being placed in the same orientation; and (c) a second nucleotide sequence that is comprised in the olfactory receptor genomic sequence, and is located on 20 the genome downstream of the first olfactory receptor nucleotide sequence (a).

The sequences defining a site recognized by a recombinase, such as a *loxP* site, are preferably located within the nucleotide sequence (b) at suitable locations bordering the nucleotide sequence for which the conditional excision is sought. In one specific embodiment, two *loxP* sites are located at each side of the positive selection marker sequence, in order to allow its excision at a 25 desired time after the occurrence of the homologous recombination event.

In a preferred embodiment of a method using the third DNA construct described above, the excision of the polynucleotide fragment bordered by the two sites recognized by a recombinase, preferably two *loxP* sites, is performed at a desired time, due to the presence within the genome of the recombinant host cell of a sequence encoding the *Cre* enzyme operably linked to a promoter 30 sequence, preferably an inducible promoter, more preferably a tissue-specific promoter sequence and most preferably a promoter sequence which is both inducible and tissue-specific, such as described by Gu et al.(1994).

The presence of the *Cre* enzyme within the genome of the recombinant cell host may result from the breeding of two transgenic animals, the first transgenic animal bearing the olfactory 35 receptor-derived sequence of interest containing the *loxP* sites as described above and the second transgenic animal bearing the *Cre* coding sequence operably linked to a suitable promoter sequence, such as described by Gu et al.(1994).

Spatio-temporal control of the Cre enzyme expression may also be achieved with an adenovirus based vector that contains the Cre gene thus allowing infection of cells, or *in vivo* infection of organs, for delivery of the Cre enzyme, such as described by Anton and Graham (1995) and Kanegae et al.(1995).

5 The DNA constructs described above may be used to introduce a desired nucleotide sequence of the invention, preferably an olfactory receptor genomic sequence or an olfactory receptor coding region sequences, and most preferably an altered copy of an olfactory receptor genomic or coding region sequences, within a predetermined location of the targeted genome, leading either to the generation of an altered copy of a targeted gene (knock-out homologous recombination) or to the replacement of a copy of the targeted gene by another copy sufficiently homologous to allow an homologous recombination event to occur (knock-in homologous recombination). In a specific embodiment, the DNA constructs described above may be used to introduce an olfactory receptor genomic sequence or an olfactory receptor coding region sequence comprising at least one biallelic marker of the present invention, preferably at least one biallelic 10 marker selected from the group consisting of A1 to A13.

15

Nuclear Antisense DNA Constructs

Other compositions containing a vector of the invention comprising an oligonucleotide fragment of the nucleic sequence SEQ ID Nos 2-11, preferably a fragment including the start codon of the olfactory receptor gene, as an antisense tool that inhibits the expression of the corresponding 20 olfactory receptor gene. Preferred methods using antisense polynucleotide according to the present invention are the procedures described by Sczakiel et al.(1995) or those described in PCT Application No WO 95/24223.

Preferred antisense polynucleotides according to the present invention are complementary to a sequence of the mRNAs of olfactory receptor that contains the translation initiation codon ATG.

25 Preferably, the antisense polynucleotides of the invention have a 3' polyadenylation signal that has been replaced with a self-cleaving ribozyme sequence, such that RNA polymerase II transcripts are produced without poly(A) at their 3' ends, these antisense polynucleotides being incapable of export from the nucleus, such as described by Liu et al.(1994). In a preferred embodiment, these olfactory receptor antisense polynucleotides also comprise, within the ribozyme 30 cassette, a histone stem-loop structure to stabilize cleaved transcripts against 3'-5' exonuclease degradation, such as the structure described by Eckner et al.(1991).

4. Oligonucleotide probes and primers

Polynucleotides derived from the olfactory receptor gene are useful in order to detect the presence of at least a copy of a nucleotide sequence of SEQ ID Nos 1-11, or a fragment, 35 complement, or variant thereof in a test sample, preferably a human olfactory epithelium tissue or isolated human olfactory epithelium cells.

Particularly preferred probes and primers of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of SEQ ID No 1 or the complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of SEQ ID No 1: 1-113643, 114064-127488, 127855-144460. Additional preferred probes and primers of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of SEQ ID No 1 or the complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of SEQ ID No 1: 1-10000, 10001-20000, 20001-30000, 30001-40000, 40001-50000, 50001-60000, 60001-70000, 70001-80000, 80001-90000, 90001-100000, 100001-110000, 110001-120000, 120001-130000, 130001-140000, and 140001-144460. Further preferred probes and primers of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 500, or 1000 nucleotides of SEQ ID No 1 or the complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of SEQ ID No 1: 1-5000, 5001-10000, 10001-15000, 15001-20000, 20001-25000, 25001-30000, 30001-35000, 35001-40000, 40001-45000, 45001-50000, 50001-55000, 55001-60000, 60001-65000, 65001-70000, 70001-75000, 75001-80000, 80001-85000, 85001-90000, 90001-95000, 95001-100000, 100001-105000, 105001-110000, 110001-115000, 115001-120000, 120001-125000, 125001-130000, 130001-135000, 135001-140000, and 140001-144460.

Other particularly preferred probes and primers of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 45 or 50 nucleotides of a sequence selected from the group consisting of SEQ ID Nos 2-11 or the complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of said selected sequence : 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 601-650, 651-700, 701-750, 751-800, 801-850, 851-900, 901- the terminal nucleotide of the olfactory receptor coding regions, to the extent that such nucleotide positions are consistent with the lengths of the particular olfactory receptor coding region being referred to. Further preferred probes and primers of the invention include isolated, purified, or recombinant polynucleotides comprising a contiguous span of at least 12, 15, 18, 20, 22 or 25 nucleotides of a sequence selected from the group consisting of SEQ ID Nos 2, 4, 7, 9 and 11, or the complements thereof, wherein said contiguous span comprises at least 1, 2, 3, 5, or 10 of the following nucleotide positions of said selected sequence: 1-25, 26-50, 51-75, 76-100, 101-125, 126-150, 151-175, 176-200, 201-225, 226-250, 251-275, 276-300, 301-325, 326-350, 351-375, 376-400, 401-425, 426-450, 451-475, 476-500, 501-525, 526-550, 551-575, 576-the terminal nucleotide of the olfactory receptor coding regions, to the extent that such nucleotide

positions are consistent with the lengths of the particular olfactory receptor coding region being referred to.

Thus, the invention also relates to nucleic acid probes characterized in that they hybridize specifically, under the stringent hybridization conditions defined above, with a nucleic acid selected 5 from the group consisting of SEQ ID Nos 1-11, a variant thereof and a sequence complementary thereto.

In one embodiment the invention encompasses isolated, purified, and recombinant polynucleotides consisting of, or consisting essentially of a contiguous span of 8 to 50 nucleotides of SEQ ID No 1 and the complement thereof, wherein said span includes an olfactory receptor-related 10 biallelic marker in said sequence; optionally, wherein said olfactory receptor-related biallelic marker is selected from the group consisting of A1 to A13, and the complements thereof; optionally, wherein said contiguous span is 18 to 47 nucleotides in length and said biallelic marker is within 4 nucleotides of the center of said polynucleotide; optionally, wherein said polynucleotide consists of said contiguous span and said contiguous span is 25 nucleotides in length and said biallelic marker is 15 at the center of said polynucleotide; optionally, wherein the 3' end of said contiguous span is present at the 3' end of said polynucleotide; and optionally, wherein the 3' end of said contiguous span is located at the 3' end of said polynucleotide and said biallelic marker is present at the 3' end of said polynucleotide. In a preferred embodiment, said probes comprises, consists of, or consists 20 essentially of a sequence selected from the following sequences: P1 to P13 and the complementary sequences thereto, for which the respective locations in the sequence listing are provided in Table 3.

In another embodiment the invention encompasses isolated, purified and recombinant polynucleotides comprising, consisting of, or consisting essentially of a contiguous span of 8 to 50 nucleotides of SEQ ID No 1, or the complements thereof, wherein the 3' end of said contiguous span is located at the 3' end of said polynucleotide, and wherein the 3' end of said polynucleotide is 25 located within 20 nucleotides upstream of an olfactory receptor-related biallelic marker in said sequence; optionally, wherein said olfactory receptor-related biallelic marker is selected from the group consisting of A1 to A13, and the complements thereof; optionally, wherein the 3' end of said polynucleotide is located 1 nucleotide upstream of said olfactory receptor-related biallelic marker in said sequence; and optionally, wherein said polynucleotide consists essentially of a sequence 30 selected from the following sequences: D1 to D13 and E1 to E13, for which the respective locations in the sequence listing are provided in Table 4.

In a further embodiment, the invention encompasses isolated, purified, or recombinant polynucleotides comprising, consisting of, or consisting essentially of a sequence selected from the following sequences: B1 to B11 and C1 to C11, for which the respective locations in the sequence 35 listing are provided in Table 1.

In an additional embodiment, the invention encompasses polynucleotides for use in hybridization assays, sequencing assays, and enzyme-based mismatch detection assays for

determining the identity of the nucleotide at an olfactory receptor-related biallelic marker in SEQ ID No 1, or the complements thereof, as well as polynucleotides for use in amplifying segments of nucleotides comprising an olfactory receptor-related biallelic marker in SEQ ID No 1, or the complements thereof; optionally, wherein said olfactory receptor-related biallelic marker is selected from the group consisting of A1 to A13, and the complements thereof.

A probe or a primer according to the invention has between 8 and 1000 nucleotides in length, or is specified to be at least 12, 15, 18, 20, 25, 35, 40, 50, 60, 70, 80, 100, 250, 500 or 1000 nucleotides in length. More particularly, the length of these probes and primers can range from 8, 10, 15, 20, or 30 to 100 nucleotides, preferably from 10 to 50, more preferably from 15 to 30 nucleotides. Shorter probes and primers tend to lack specificity for a target nucleic acid sequence and generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. Longer probes and primers are expensive to produce and can sometimes self-hybridize to form hairpin structures. The appropriate length for primers and probes under a particular set of assay conditions may be empirically determined by one of skill in the art. A preferred probe or primer consists of a nucleic acid comprising a polynucleotide selected from the group of the nucleotide sequences of P1 to P13 and the complementary sequence thereto, B1 to B11, C1 to C11, D1 to D13, and E1 to E13.

Primers and other oligonucleotides according to the invention are synthesized to be "substantially" complementary to a strand of the olfactory receptor gene of the invention to be amplified. The primer sequence does not need to reflect the exact sequence of the DNA template. Minor mismatches can be accommodated by reducing the stringency of the hybridization conditions. Among the various methods available to design useful primers, the OSP computer software can be used by the skilled person (see Hillier & Green, 1991). All primers contained a common upstream oligonucleotide tail enabling the easy systematic sequencing of the resulting amplification fragments.

The formation of stable hybrids depends on the melting temperature (Tm) of the DNA. The Tm depends on the length of the primer or probe, the ionic strength of the solution and the G+C content. The higher the G+C content of the primer or probe, the higher is the melting temperature because G:C pairs are held by three H bonds whereas A:T pairs have only two. The GC content in the probes of the invention usually ranges between 10 and 75 %, preferably between 35 and 60 %, and more preferably between 40 and 55 %.

The primers and probes can be prepared by any suitable method, including, for example, cloning and restriction of appropriate sequences and direct chemical synthesis by a method such as the phosphodiester method of Narang et al.(1979), the phosphodiester method of Brown et al.(1979), the diethylphosphoramidite method of Beaucage et al.(1981) and the solid support method described in EP 0 707 592.

Detection probes are generally nucleic acid sequences or uncharged nucleic acid analogs such as, for example peptide nucleic acids which are disclosed in International Patent Application WO 92/20702, morpholino analogs which are described in U.S. Patents Numbered 5,185,444; 5,034,506 and 5,142,047. The probe may have to be rendered "non-extendable" in that additional 5 dNTPs cannot be added to the probe. In and of themselves analogs usually are non-extendable and nucleic acid probes can be rendered non-extendable by modifying the 3' end of the probe such that the hydroxyl group is no longer capable of participating in elongation. For example, the 3' end of the probe can be functionalized with the capture or detection label to thereby consume or otherwise block the hydroxyl group. Alternatively, the 3' hydroxyl group simply can be cleaved, replaced or 10 modified, U.S. Patent Application Serial No. 07/049,061 filed April 19, 1993 describes modifications, which can be used to render a probe non-extendable.

Any of the polynucleotides of the present invention can be labeled, if desired, by incorporating any label known in the art to be detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive 15 substances (including, ^{32}P , ^{35}S , ^3H , ^{125}I), fluorescent dyes (including, 5-bromodesoxyuridin, fluorescein, acetylaminofluorene, digoxigenin) or biotin. Preferably, polynucleotides are labeled at their 3' and 5' ends. Examples of non-radioactive labeling of nucleic acid fragments are described in the French patent No. FR-7810975 or by Urdea et al (1988) or Sanchez-Pescador et al (1988). In addition, the probes according to the present invention may have structural characteristics such that 20 they allow the signal amplification, such structural characteristics being, for example, branched DNA probes as those described by Urdea et al. in 1991 or in the European patent No. EP 0 225 807 (Chiron).

A label can also be used to capture the primer, so as to facilitate the immobilization of either the primer or a primer extension product, such as amplified DNA, on a solid support. A capture 25 label is attached to the primers or probes and can be a specific binding member which forms a binding pair with the solid's phase reagent's specific binding member (e.g. biotin and streptavidin). Therefore depending upon the type of label carried by a polynucleotide or a probe, it may be employed to capture or to detect the target DNA. Further, it will be understood that the polynucleotides, primers or probes provided herein, may, themselves, serve as the capture label. For 30 example, in the case where a solid phase reagent's binding member is a nucleic acid sequence, it may be selected such that it binds a complementary portion of a primer or probe to thereby immobilize the primer or probe to the solid phase. In cases where a polynucleotide probe itself serves as the binding member, those skilled in the art will recognize that the probe will contain a sequence or "tail" that is not complementary to the target. In the case where a polynucleotide primer 35 itself serves as the capture label, at least a portion of the primer will be free to hybridize with a nucleic acid on a solid phase. DNA Labeling techniques are well known to the skilled technician.

The probes of the present invention are useful for a number of purposes. They can be notably used in Southern hybridization to genomic DNA or Northern hybridization to mRNA. The probes can also be used to detect PCR amplification products. They may also be used to detect mismatches in the OLF1 to OLF10 genes or mRNA using other techniques. Generally, the probes 5 are complementary to the OLF1 to OLF10 gene coding sequences, although probes complementary to non-coding sequences are also contemplated. The probes of the present invention can also be useful for genotyping the biallelic markers of the cluster of olfactory receptor genes of the present invention.

Any of the polynucleotides, primers and probes of the present invention can be conveniently 10 immobilized on a solid support. Solid supports are known to those skilled in the art and include the walls of wells of a reaction tray, test tubes, polystyrene beads, magnetic beads, nitrocellulose strips, membranes, microparticles such as latex particles, sheep (or other animal) red blood cells, duracytes and others. The solid support is not critical and can be selected by one skilled in the art. Thus, latex particles, microparticles, magnetic or non-magnetic beads, membranes, plastic tubes, walls of 15 microtiter wells, glass or silicon chips, sheep (or other suitable animal's) red blood cells and duracytes are all suitable examples. Suitable methods for immobilizing nucleic acids on solid phases include ionic, hydrophobic, covalent interactions and the like. A solid support, as used herein, refers to any material which is insoluble, or can be made insoluble by a subsequent reaction. The solid support can be chosen for its intrinsic ability to attract and immobilize the capture reagent.

20 Alternatively, the solid phase can retain an additional receptor which has the ability to attract and immobilize the capture reagent. The additional receptor can include a charged substance that is oppositely charged with respect to the capture reagent itself or to a charged substance conjugated to the capture reagent. As yet another alternative, the receptor molecule can be any specific binding member which is immobilized upon (attached to) the solid support and which has the ability to 25 immobilize the capture reagent through a specific binding reaction. The receptor molecule enables the indirect binding of the capture reagent to a solid support material before the performance of the assay or during the performance of the assay. The solid phase thus can be a plastic, derivatized plastic, magnetic or non-magnetic metal, glass or silicon surface of a test tube, microtiter well, sheet, bead, microparticle, chip, sheep (or other suitable animal's) red blood cells, duracytes® and other 30 configurations known to those of ordinary skill in the art. The polynucleotides of the invention can be attached to or immobilized on a solid support individually or in groups of at least 2, 5, 8, 10, 12, 15, 20, or 25 distinct polynucleotides of the invention to a single solid support. In addition, polynucleotides other than those of the invention may be attached to the same solid support as one or 35 more polynucleotides of the invention.

Consequently, the invention also comprises a method for detecting the presence of a nucleic acid comprising a nucleotide sequence selected from a group consisting of SEQ ID Nos 1-11, a

fragment or a variant thereof and a complementary sequence thereto in a sample. said method comprising the following steps of:

a) bringing into contact a nucleic acid probe or a plurality of nucleic acid probes which can hybridize with a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID Nos 1-11, a fragment or a variant thereof and a complementary sequence thereto and the sample to be assayed; and

b) detecting the hybrid complex formed between the probe and a nucleic acid in the sample.

The invention further concerns a kit for detecting the presence of a nucleic acid comprising a nucleotide sequence selected from a group consisting of SEQ ID Nos 1-11, a fragment or a variant thereof and a complementary sequence thereto in a sample, said kit comprising:

a) a nucleic acid probe or a plurality of nucleic acid probes which can hybridize with a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID Nos 1-11, a fragment or a variant thereof and a complementary sequence thereto; and

b) optionally, the reagents necessary for performing the hybridization reaction.

15 In a first preferred embodiment of this detection method and kit, said nucleic acid probe or
the plurality of nucleic acid probes are labeled with a detectable molecule. In a second preferred
embodiment of said method and kit, said nucleic acid probe or the plurality of nucleic acid probes
has been immobilized on a substrate. In a third preferred embodiment, the nucleic acid probe or the
plurality of nucleic acid probes comprise either a sequence which is selected from the group
20 consisting of the nucleotide sequences of P1 to P13 and the complementary sequence thereto, B1 to
B11, C1 to C11, D1 to D13, E1 to E13 or a biallelic marker selected from the group consisting of A1
to A13 and the complements thereto.

Oligonucleotide arrays

A substrate comprising a plurality of oligonucleotide primers or probes of the invention may
25 be used either for detecting or amplifying targeted sequences in the olfactory receptor gene and may
also be used for detecting mutations in the coding or in the non-coding sequences of the olfactory
receptor gene.

Any polynucleotide provided herein may be attached in overlapping areas or at random locations on the solid support. Alternatively the polynucleotides of the invention may be attached in an ordered array wherein each polynucleotide is attached to a distinct region of the solid support which does not overlap with the attachment site of any other polynucleotide. Preferably, such an ordered array of polynucleotides is designed to be "addressable" where the distinct locations are recorded and can be accessed as part of an assay procedure. Addressable polynucleotide arrays typically comprise a plurality of different oligonucleotide probes that are coupled to a surface of a substrate in different known locations. The knowledge of the precise location of each polynucleotides location makes these "addressable" arrays particularly useful in hybridization assays. Any addressable array technology known in the art can be employed with the

polynucleotides of the invention. One particular embodiment of these polynucleotide arrays is known as the Genechips™, and has been generally described in US Patent 5,143,854; PCT publications WO 90/15070 and 92/10092. These arrays may generally be produced using mechanical synthesis methods or light directed synthesis methods which incorporate a combination 5 of photolithographic methods and solid phase oligonucleotide synthesis (Fodor et al., 1991). The immobilization of arrays of oligonucleotides on solid supports has been rendered possible by the development of a technology generally identified as "Very Large Scale Immobilized Polymer Synthesis" (VLSIPS™) in which, typically, probes are immobilized in a high density array on a solid surface of a chip. Examples of VLSIPS™ technologies are provided in US Patents 5,143,854; 10 and 5,412,087 and in PCT Publications WO 90/15070, WO 92/10092 and WO 95/11995, which describe methods for forming oligonucleotide arrays through techniques such as light-directed synthesis techniques. In designing strategies aimed at providing arrays of nucleotides immobilized on solid supports, further presentation strategies were developed to order and display the oligonucleotide arrays on the chips in an attempt to maximize hybridization patterns and sequence 15 information. Examples of such presentation strategies are disclosed in PCT Publications WO 94/12305, WO 94/11530, WO 97/29212 and WO 97/31256.

In another embodiment of the oligonucleotide arrays of the invention, an oligonucleotide probe matrix may advantageously be used to detect mutations occurring in the olfactory receptor gene. For this particular purpose, probes are specifically designed to have a nucleotide sequence 20 allowing their hybridization to the genes that carry known mutations (either by deletion, insertion or substitution of one or several nucleotides). By known mutations, it is meant, mutations on the olfactory receptor gene that have been identified according to, for example, the technique used by Huang et al.(1996) or Samson et al.(1996).

Another technique that is used to detect mutations in the olfactory receptor gene is the use of 25 a high-density DNA array. Each oligonucleotide probe constituting a unit element of the high density DNA array is designed to match a specific subsequence of the olfactory receptor genomic DNA or cDNA. Thus, an array consisting of oligonucleotides complementary to subsequences of the target gene sequence is used to determine the identity of the target sequence with the wild gene sequence, measure its amount, and detect differences between the target sequence and the reference 30 wild gene sequence of the olfactory receptor gene. In one such design, termed 4L tiled array, is implemented a set of four probes (A, C, G, T), preferably 15-nucleotide oligomers. In each set of four probes, the perfect complement will hybridize more strongly than mismatched probes. Consequently, a nucleic acid target of length L is scanned for mutations with a tiled array containing 4L probes, the whole probe set containing all the possible mutations in the known wild reference 35 sequence. The hybridization signals of the 15-mer probe set tiled array are perturbed by a single base change in the target sequence. As a consequence, there is a characteristic loss of signal or a

"footprint" for the probes flanking a mutation position. This technique was described by Chee et al. in 1996.

Consequently, the invention concerns an array of nucleic acid molecules comprising at least one polynucleotide described above as probes and primers. Preferably, the invention concerns an 5 array of nucleic acid comprising at least two polynucleotides described above as probes and primers.

A further object of the invention consists of an array of nucleic acid sequences comprising either at least one of the sequences selected from the group consisting of P1 to P13, B1 to B11, C1 to C11, D1 to D13, E1 to E13, the sequences complementary thereto, a fragment thereof of at least 8, 10, 12, 15, 18, 20, 25, 30, or 40 consecutive nucleotides thereof, and at least one sequence 10 comprising a biallelic marker selected from the group consisting of A1 to A13 and the complements thereto.

The invention also pertains to an array of nucleic acid sequences comprising either at least two of the sequences selected from the group consisting of P1 to P13, B1 to B11, C1 to C11, D1 to D13, E1 to E13, the sequences complementary thereto, a fragment thereof of at least 8 consecutive 15 nucleotides thereof, and at least two sequences comprising a biallelic marker selected from the group consisting of A1 to A13 and the complements thereof.

B. OLF1 TO OFL10 PROTEINS AND POLYPEPTIDE FRAGMENTS

The proteins encoded by the Open Reading Frames of the OLF1 to OLF10 genes are listed individually in the sequence listing as SEQ ID Nos 12-21.

20 The term "olfactory receptor polypeptides" is used herein to embrace all of the proteins and polypeptides of the present invention. Also forming part of the invention are polypeptides encoded by the polynucleotides of the invention, as well as fusion polypeptides comprising such polypeptides. The invention embodies olfactory receptor proteins from humans, including isolated or purified olfactory receptor proteins consisting of, consisting essentially of, or comprising the 25 sequences of SEQ ID Nos 12-21 or naturally-occurring variants or fragments thereof.

The present invention embodies isolated, purified, and recombinant polypeptides comprising a contiguous span of at least 6 amino acids, preferably at least 8 or 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of SEQ ID Nos 12-21. In a preferred embodiment, the present invention embodies isolated, purified, and recombinant polypeptides 30 comprising a contiguous span of at least 6 amino acids, preferably at least 8 or 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of SEQ ID Nos 12-21 wherein said contiguous span includes at least 1, 2, 3, 5 or 10 of the following amino acid positions in SEQ ID Nos 12-21: 1-20, 21-40, 41-60, 61-80, 81-100, 101-120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301-the terminal amino acid of the olfactory receptor 35 proteins, to the extent that such amino acid positions are consistent with the lengths of the particular olfactory receptor protein being referred to. In another preferred embodiment, the present invention embodies isolated, purified, and recombinant polypeptides comprising a contiguous span of at least 6

amino acids, preferably at least 8 to 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of a sequence selected from the group consisting of SEQ ID Nos 12, 14, 17, 19 and 21 wherein said contiguous span includes at least 1, 2, 3, 5 or 10 of the following amino acid positions of said selected sequence: 1-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90,

5 91-100, 101-110, 111-120, 121-130, 131-140, 141-150, 151-160, 161-170, 171-180, 181-190, 191-the terminal amino acid of the olfactory receptor proteins, to the extent that such amino acid positions are consistent with the lengths of the particular olfactory receptor protein being referred to.

In further preferred embodiments, the present invention embodies isolated, purified, and recombinant polypeptides comprising a contiguous span of at least 6 amino acids, preferably at least

10 8 or 10 amino acids, more preferably at least 12, 15, 20, 25, 30, 40, 50, or 100 amino acids of a sequence selected from the group consisting of SEQ ID Nos 12-21, wherein said contiguous span includes at least one amino acid at the following positions of said selected sequence

i) 1-3, 10, 16, 21, 28, 33, 34, 36, 42-44, 46, 49, 53, 54, 57, 59, 63, and 64 for SEQ ID No 12;

15 ii) 2, 4, 6, 8, 18, 25, 34, 37, 44, 52, 56, 80, 83, 89, 98, 101, 102, 113, 114, 117, 120, 139, 148, 158, 186, 195, 212, 219, 247, 266, 270, 280, 295, 298, 299, 301, 311, and 313-315 for SEQ ID No 13;

iii) 2-4, 6, 18, 21, 25, 34, 37, 98, 99, 102, 113, 114, 133, 143, 148, 158-163, 166, 167, 169, and 170 for SEQ ID No 14;

20 iv) 2, 4, 6, 8, 18, 25, 34, 37, 44, 52, 54, 56, 80, 83, 89, 98, 101, 102, 113, 114, 117, 120, 139, 148, 158, 186, 195, 212, 219, 247, 266, 270, 280, 298, 299, 311, and 313-315 for SEQ ID No 15;

v) 3, 18, 20, 25, 34, 47, 49, 67, 97, 100, 107, 108, 112, 113, 126, 135, 142, 146, 147, 157, 159-160, 194, 196, 228, 245, 264, 265, 269, 279, 298, and 302 for SEQ ID No

25 16;

vi) 2, 6, 18, 20, 33, 34, 37, 65, 68, 69, 72, 86, 88, 101, 107, 113, 114, 148, 158, 161, 164, 195, and 198 for SEQ ID No 17;

vii) 2, 6, 7, 52, 56, 67, 88, 94, 97, 110, 113, 116, 119, 120, 127, 135, 150, 153, 164, 174, 175, 180, 184, 217, 221, 259, 261, and 268 for SEQ ID No 18;

30 viii) 17, 18, 20, 28, 33, 35, 49-52, 105, 111, and 112 for SEQ ID No 19;

ix) 17, 20, 33, 35, 49-53, 56, 111, 112, 132, 138, 141, 147, 154, 157, 160, 163, 164, 194, 197, 204, 211, 214, 218, 219, 252, 265, 286, 295, 301, 303, 305, 306 and 309 for SEQ ID No 20; and

x) 9, 18, 26-28, 34, 47 and 50 for SEQ ID No 21, to the extent that such amino acid lengths are consistent with the lengths of the particular olfactory receptor protein being referred to.

Other preferred OLF1 to OLF10 polypeptide fragments are those located outside the transmembrane domains, most preferably peptide fragments naturally exposed on the cell membrane, particularly those that are available for binding to ligand molecules, either odorant substances or molecules or antibodies directed to the olfactory receptor polypeptides of the invention. Such transmembrane domains TM1 to TM7 are boxed in Figure 1. In other preferred embodiments the contiguous stretch of amino acids comprises the site of a mutation or functional mutation, including a deletion, addition, swap or truncation of the amino acids in the olfactory receptor protein sequence.

The invention also encompasses a purified, isolated, or recombinant polypeptides comprising an amino acid sequence having at least 70, 75, 80, 85, 90, 95, 98 or 99% amino acid identity with the amino acid sequence of SEQ ID Nos 12-21 or a fragment thereof.

The invention also encompasses an olfactory receptor polypeptide or a fragment or a variant thereof in which at least one peptide bond has been modified as defined in the "Definitions" section.

A further object of the invention concerns a purified or isolated polypeptide which is encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID Nos 1-11 or fragment or variants thereof.

Such mutated olfactory receptor proteins may be the target of diagnostic tools, such as specific monoclonal or polyclonal antibodies, useful for the detecting the mutated olfactory receptor proteins in a sample.

Olfactory receptor proteins are preferably isolated from human or mammalian tissue samples or expressed from human or mammalian genes.

The olfactory receptor polypeptides of the invention is extracted from cells or tissues of humans or non-human animals. Methods for purifying proteins are known in the art, and include the use of detergents or chaotropic agents to disrupt particles followed by differential extraction and separation of the polypeptides by ion exchange chromatography, affinity chromatography, sedimentation according to density, and gel electrophoresis.

In addition, shorter protein fragments may also be prepared by the conventional methods of chemical synthesis, either in a homogenous solution or in solid phase. As an illustrative embodiment of such chemical polypeptide synthesis techniques, it may be cited the homogenous solution technique described by Houbenweyl in 1974. For solid phase synthesis the technique described by Merrifield (1965) may be used in particular.

Alternatively, the proteins of the invention can be made using routine expression methods known in the art as described below and in the section "Expression of a OLF1 to OLF10 coding polynucleotide". Briefly, the polynucleotide encoding the desired polypeptide, is ligated into an expression vector suitable for any convenient host. Both eukaryotic and prokaryotic host systems is used in forming recombinant polypeptides. The polypeptide is then isolated from lysed cells or from

the culture medium and purified to the extent needed for its intended use. Purification is by any technique known in the art, for example, differential extraction, salt fractionation, chromatography, centrifugation, and the like. See, for example, Methods in Enzymology for a variety of methods for purifying proteins.

5 Any olfactory receptor cDNA, including SEQ ID Nos 12-21, may be used to express olfactory receptor proteins and polypeptides. The nucleic acid encoding the olfactory receptor protein or polypeptide to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The olfactory receptor insert in the expression vector may comprise the full coding sequence for the olfactory receptor protein or a portion thereof. For example, the olfactory receptor
10 derived insert may encode a polypeptide comprising at least 10 consecutive amino acids of the olfactory receptor protein of SEQ ID Nos 12-21, including any of the polypeptide fragment defined in this section.

The expression vector is any of the mammalian, yeast, insect or bacterial expression systems known in the art. Commercially available vectors and expression systems are available from a variety
15 of suppliers including Genetics Institute (Cambridge, MA), Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence is optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Patent No. 5,082,767.

20 In one embodiment, the entire coding sequence of the olfactory receptor cDNA through the poly A signal of the cDNA are operably linked to a promoter in the expression vector. Alternatively, if the nucleic acid encoding a portion of the olfactory receptor protein lacks a methionine to serve as the initiation site, an initiating methionine can be introduced next to the first codon of the nucleic acid using conventional techniques. Similarly, if the insert from the olfactory receptor cDNA lacks a poly A
25 signal, this sequence can be added to the construct by, for example, splicing out the Poly A signal from pSG5 (Stratagene) using BglII and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene).

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification.
30 Positive transfectants are selected after growing the transfected cells in 600ug/ml G418 (Sigma, St. Louis, Missouri).

The above procedures may also be used to express a mutant olfactory receptor protein responsible for a detectable phenotype or a portion thereof.

Purification of the recombinant protein or peptide according to the present invention may be
35 realized by passage onto a Nickel or Copper affinity chromatography column. The Nickel chromatography column may contain the Ni-NTA resin (Porath et al., 1975). The polypeptides or peptides thus obtained may be purified, for example by high performance liquid chromatography,

such as reverse phase and/or cationic exchange HPLC, as described by Rougeot et al. (1994). The reason to prefer this kind of peptide or protein purification is the lack of side products found in the elution samples which renders the resultant purified protein or peptide more suitable for a therapeutic use.

5 The expressed protein may also be purified using other conventional purification techniques such as ammonium sulfate precipitation or chromatographic separation based on size or charge. The protein encoded by the nucleic acid insert may also be purified using standard immunochromatography techniques. In such procedures, polyclonal or monoclonal antibodies capable of specifically binding to the expressed olfactory receptor protein sof SEQ ID Nos 12-21, or a fragment or a variant thereof, have
10 been previously immobilized onto a chromatography matrix. Such antibodies are described in the section "Antibodies that bind olfactory receptor polypeptides" below. Then, a solution containing the expressed olfactory receptor protein or portion thereof, such as a cell extract, is applied to the chromatography column in conditions allowing the expressed protein to bind to the antibodies in the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound
15 proteins. The specifically bound expressed protein is then released from the column and recovered using standard techniques.

If antibody production is not possible, the nucleic acids encoding the olfactory receptor protein or a portion thereof is incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such strategies the nucleic acid encoding the olfactory receptor
20 protein or a portion thereof is inserted in frame with the gene encoding the other half of the chimera. The other half of the chimera is β-globin or a nickel binding polypeptide encoding sequence. A chromatography matrix having antibody to β-globin or nickel attached thereto is then used to purify the chimERIC protein. Protease cleavage sites is engineered between the β-globin gene or the nickel binding polypeptide and the olfactory receptor protein or portion thereof. Thus, the two polypeptides of the
25 chimera is separated from one another by protease digestion.

One useful expression vector for generating β-globin chimeric proteins is pSG5 (Stratagene), which encodes rabbit β-globin. Intron II of the rabbit β-globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard
30 methods are published in methods texts such as Davis et al., (1986) and many of the methods are available from Stratagene, Life Technologies, Inc., or Promega. Polypeptide may additionally be produced from the construct using in vitro translation systems such as the In vitro Express™ Translation Kit (Stratagene).

To confirm expression of the olfactory receptor protein or a portion thereof, the proteins
35 expressed from host cells containing an expression vector containing an insert encoding the olfactory receptor protein or a portion thereof can be compared to the proteins expressed in host cells containing the expression vector without an insert. The presence of a band in samples from cells containing the

expression vector with an insert which is absent in samples from cells containing the expression vector without an insert indicates that the olfactory receptor protein or a portion thereof is being expressed. Generally, the band will have the mobility expected for the olfactory receptor protein or portion thereof. However, the band may have a mobility different than that expected as a result of modifications such as 5 glycosylation, ubiquitination, or enzymatic cleavage.

Other suitable techniques for producing and purifying the olfactory receptor proteins of the invention or their fragments or variants are also described under the heading "Methods for screening substances or molecules interacting with an olfactory receptor protein".

Thus, the present invention also concerns a method for the producing a polypeptide of the 10 invention, and especially a polypeptide selected from the group of SEQ ID Nos 12-21 or a fragment or a variant thereof, wherein said methods comprises the steps of :

- a) culturing, in an appropriate culture medium, a cell host previously transformed or transfected with the recombinant vector comprising a nucleic acid encoding an olfactory receptor polypeptide of the invention, or a fragment or a variant thereof;
- 15 b) harvesting the culture medium thus conditioned or lyze the cell host, for example by sonication or by an osmotic shock;
- c) separating or purifying, from the said culture medium, or from the pellet of the resultant host cell lysate the thus produced polypeptide of interest.
- d) optionally characterizing the produced polypeptide of interest.

20 In a specific embodiment of the above method, step a) is preceded by a step wherein the nucleic acid coding for an olfactory receptor polypeptide, or a fragment or a variant thereof, is inserted in an appropriate vector, optionally after an appropriate cleavage of this amplified nucleic acid with one or several restriction endonucleases. The nucleic acid coding for an olfactory receptor polypeptide or a fragment or a variant thereof may be the resulting product of an amplification

25 reaction using a pair of primers according to the invention (by PCR, SDA, TAS, 3SR NASBA, TMA etc.).

C. ANTIBODIES THAT BIND OLFACTORY RECEPTOR POLYPEPTIDES

Any olfactory receptor polypeptide or whole protein may be used to generate antibodies capable of specifically binding to an expressed olfactory receptor protein or fragments thereof as 30 described.

One antibody composition of the invention is capable of specifically binding or specifically bind to the variant of the olfactory receptor protein of SEQ ID Nos 12-21. For an antibody composition to specifically bind to a first variant of olfactory receptor protein, it must demonstrate at least a 5%, 10%, 15%, 20%, 25%, 50%, or 100% greater binding affinity for a first variant of the 35 olfactory receptor protein than for a second variant of the olfactory receptor protein in an ELISA, RIA, or other antibody-based binding assay.

In a preferred embodiment, the invention concerns antibody compositions, either polyclonal or monoclonal, capable of selectively binding, or that selectively bind to an epitope-containing a polypeptide comprising any of the fragments described in the section "OLF1 to OLF10 proteins and polypeptide fragments". Preferred peptide fragments are portions of OLF1 to OLF10 polypeptides 5 that are located outside the transmembrane domains, most preferably peptide fragments naturally exposed on the cell membrane, particularly those that are available for binding to ligand molecules, either odorant substances or molecules or antibodies directed to the olfactory receptor polypeptides of the invention.

The invention also concerns a purified or isolated antibody capable of specifically binding to 10 a mutated olfactory receptor protein or to a fragment or variant thereof comprising an epitope of the mutated olfactory receptor protein. In another preferred embodiment, the present invention concerns an antibody capable of binding to a polypeptide comprising at least 10 consecutive amino acids of an olfactory receptor protein.

In a preferred embodiment, the invention concerns the use in the manufacture of antibodies 15 of a polypeptide comprising any of the fragments described in the section "OLF1 to OLF10 proteins and polypeptide fragments". Preferred peptide fragments are portions of OLF1 to OLF10 polypeptides that are located outside the transmembrane domains, most preferably peptide fragments naturally exposed on the cell membrane, particularly those that are available for recognition of ligand molecules, either odorant substances or molecules or antibodies directed to the olfactory 20 receptor polypeptides of the invention.

The olfactory receptor expressed from a DNA comprising at least one of the nucleic sequences of SEQ ID Nos 1-11 or a fragment or a variant thereof may also be used to generate antibodies capable of specifically binding to the expressed olfactory receptor or fragments or variants thereof. In a preferred embodiment, any of the polynucleotide fragment encoding a 25 polypeptide described in the section "Coding regions of the olfactory receptor gene" may be used to generate such antibodies.

Substantially pure protein or polypeptide is isolated from transfected or transformed cells containing an expression vector encoding the olfactory receptor protein or a portion thereof. The concentration of protein in the final preparation is adjusted, for example, by concentration on an 30 Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibodies to the protein can then be prepared as follows:

1. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes in the olfactory receptor of the present invention or a portion thereof can be prepared from murine hybridomas according to the classical method of Kohler and 35 Milstein, (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the considered olfactory receptor or a portion thereof over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are

fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of 5 antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al.

2. Polyclonal Antibody Production by Immunization

10 Polyclonal antiserum containing antibodies to heterogeneous epitopes in the olfactory receptor of the present invention or a portion thereof can be prepared by immunizing suitable animals with the considered olfactory receptor or a portion thereof, which can be unmodified or modified to enhance immunogenicity. A suitable non-human animal, preferably a non-human mammal, is selected, usually a mouse, rat, rabbit, goat, or horse. Alternatively, a crude preparation which has been 15 enriched for olfactory receptor concentration can be used to generate antibodies. Such proteins, fragments or preparations are introduced into the non-human mammal in the presence of an appropriate adjuvant (e.g. aluminum hydroxide, RIBI, etc.) which is known in the art. In addition the protein, fragment or preparation can be pretreated with an agent which will increase antigenicity, such agents are known in the art and include, for example, methylated bovine serum albumin 20 (mBSA), bovine serum albumin (BSA), Hepatitis B surface antigen, and keyhole limpet hemocyanin (KLH). Serum from the immunized animal is collected, treated and tested according to known procedures. If the serum contains polyclonal antibodies to undesired epitopes, the polyclonal antibodies can be purified by immunoaffinity chromatography.

Effective polyclonal antibody production is affected by many factors related both to the antigen 25 and the host species. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. Techniques for producing and processing polyclonal antisera are known in the art, see for example, Mayer and Walker (1987). An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. (1971).

30 Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony et al., (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum. Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for 35 example, by Fisher, (1980).

Antibody preparations prepared according to either the monoclonal or the polyclonal protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances

in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. The antibodies may also be used in therapeutic compositions for killing cells expressing the protein or reducing the levels of the protein in the body.

Non-human animals or mammals, whether wild-type or transgenic, which express a different species of olfactory receptor than the one to which antibody binding is desired, and animals which do not express olfactory receptor (i.e. an olfactory receptor knock out animal as described herein) are particularly useful for preparing antibodies. Olfactory receptor knock out animals will recognize all or most of the exposed regions of an olfactory receptor protein as foreign antigens, and therefore produce antibodies with a wider array of olfactory receptor epitopes. Moreover, smaller polypeptides with only 10 to 30 amino acids may be useful in obtaining specific binding to any one of the olfactory receptor proteins. In addition, the humoral immune system of animals which produce a species of olfactory receptor that resembles the antigenic sequence will preferentially recognize the differences between the animal's native olfactory receptor species and the antigen sequence, and produce antibodies to these unique sites in the antigen sequence. Such a technique will be particularly useful in obtaining antibodies that specifically bind to any one of the olfactory receptor proteins.

The present invention also includes, chimeric single chain Fv antibody fragments (Martineau et al., 1998), antibody fragments obtained through phage display libraries (Ridder et al., 1995; Vaughan et al., 1995) and humanized antibodies (Reinmann et al., 1997; Leger et al., 1997).

The antibodies of the invention may be labeled by any one of the radioactive, fluorescent or enzymatic labels known in the art.

Consequently, the invention is also directed to a method for detecting specifically the presence of a polypeptide according to the invention in a biological sample, said method comprising the following steps :

- 25 a) bringing into contact the biological sample with an antibody according to the invention;
- b) detecting the antigen-antibody complex formed.

Is also part of the invention a diagnostic kit for in vitro detecting the presence of a polypeptide according to the present invention in a biological sample, wherein said kit comprises:

- 30 a) a polyclonal or monoclonal antibody as described above, optionally labeled;
- b) a reagent allowing the detection of the antigen-antibody complexes formed, said reagent carrying optionally a label, or being able to be recognized itself by a labeled reagent, more particularly in the case when the above-mentioned monoclonal or polyclonal antibody is not labeled by itself.

35 D. OLFACTORY RECEPTOR-RELATED BIALLELIC MARKERS

The invention also concerns olfactory receptor-related biallelic markers. As used herein the term "olfactory receptor-related biallelic marker" relates to a set of biallelic markers in linkage

disequilibrium with the olfactory receptor gene. The term olfactory receptor-related biallelic marker includes the biallelic markers designated A1 to A13.

The biallelic markers of the present invention, namely A1 to A13, are disclosed in Table 2 of Example 4. The 13 olfactory receptor-related biallelic markers, A1 to A13, are all located in the 5 genomic non coding regions of the olfactory gene cluster of the invention. Their precise location on the olfactory receptor genomic sequence and their single base polymorphism are indicated in Table 2 and also as features in the sequence listing for SEQ ID No 1. Appropriate pairs of primers allowing the amplification of a nucleic acid containing the polymorphic base of the disclosed olfactory receptor biallelic marker are also listed in Table 1 of Example 3 and in features of SEQ ID No 1.

10 In the present invention, the biallelic markers can be defined by nucleotide sequences corresponding to oligonucleotides of 47 bases in length comprising at the middle one of the polymorphic base. More particularly, the biallelic markers can be defined by the polynucleotides P1 to P13.

The biallelic markers contained in the olfactory gene cluster of the present invention, or a 15 busset of such biallelic markers, are useful tools to perform association studies, preferably to perform association studies between the statistically significant occurrence of an allele of said biallelic marker in the genome of an individual and a specific phenotype, including a phenotype consisting of an alteration of the olfactory perception of odorant substances or molecules by said individual. The biallelic markers of the invention can also be used, for example, in linkage analysis 20 in which evidence is sought for cosegregation between a locus and a putative trait locus using family studies, such as an alteration of olfactory perception. In addition, the biallelic markers of the invention may be included in the generation of any complete or partial genetic map of the human genome. These different uses are specifically contemplated in the present invention and claims.

1. Identification of biallelic markers

25 Any of a variety of methods can be used to screen a genomic fragment for single nucleotide polymorphisms such as differential hybridization with oligonucleotide probes, detection of changes in the mobility measured by gel electrophoresis or direct sequencing of the amplified nucleic acid. A preferred method for identifying biallelic markers involves comparative sequencing of genomic DNA fragments from an appropriate number of unrelated individuals.

30 In a first embodiment, DNA samples from unrelated individuals are pooled together, following which the genomic DNA of interest is amplified and sequenced. The nucleotide sequences thus obtained are then analyzed to identify significant polymorphisms. One of the major advantages of this method resides in the fact that the pooling of the DNA samples substantially reduces the number of DNA amplification reactions and sequencing reactions, which must be carried 35 out. Moreover, this method is sufficiently sensitive so that a biallelic marker obtained thereby usually shows a sufficient degree of informativeness to be useful in conducting association studies.

In a second embodiment, the DNA samples are not pooled and are therefore amplified and sequenced individually. This method is usually preferred when biallelic markers need to be identified in order to perform association studies within candidate genes. Preferably, highly relevant gene regions such as promoter regions or exon regions may be screened for biallelic markers. A biallelic marker obtained using this method may show a lower degree of informativeness for conducting association studies, e.g. if the frequency of its less frequent allele may be less than about 10%. Such a biallelic marker will, however, be sufficiently informative to conduct association studies and it will further be appreciated that including less informative biallelic markers in the genetic analysis studies of the present invention, may allow in some cases the direct identification of causal mutations, which may, depending on their penetrance, be rare mutations.

The following is a description of the various parameters of a preferred method used by the inventors for the identification of the biallelic markers of the present invention.

Genomic DNA Samples

The genomic DNA samples from which the biallelic markers of the present invention are generated are preferably obtained from unrelated individuals corresponding to a heterogeneous population of known ethnic background. The number of individuals from whom DNA samples are obtained can vary substantially, preferably from about 10 to about 1000, preferably from about 50 to about 200 individuals. It is usually preferred to collect DNA samples from at least about 100 individuals in order to have sufficient polymorphic diversity in a given population to identify as many markers as possible and to generate statistically significant results.

As for the source of the genomic DNA to be subjected to analysis, any test sample can be foreseen without any particular limitation. These test samples include biological samples, which can be tested by the methods of the present invention described herein, and include human and animal body fluids such as whole blood, serum, plasma, cerebrospinal fluid, urine, lymph fluids, and various external secretions of the respiratory, intestinal and genitourinary tracts, tears, saliva, milk, white blood cells, myelomas and the like; biological fluids such as cell culture supernatants; fixed tissue specimens including tumor and non-tumor tissue and lymph node tissues; bone marrow aspirates and fixed cell specimens. The preferred source of genomic DNA used in the present invention is from peripheral venous blood of each donor. Techniques to prepare genomic DNA from biological samples are well known to the skilled technician. Details of a preferred embodiment are provided in Example 2. The person skilled in the art can choose to amplify pooled or unpooled DNA samples.

DNA Amplification

The identification of biallelic markers in a sample of genomic DNA may be facilitated through the use of DNA amplification methods. DNA samples can be pooled or unpooled for the amplification step. DNA amplification techniques are well known to those skilled in the art.

Amplification techniques that can be used in the context of the present invention include, but are not limited to, the ligase chain reaction (LCR) described in EP-A- 320 308, WO 9320227 and EP-A-439 182, the polymerase chain reaction (PCR, RT-PCR) and techniques such as the nucleic acid sequence based amplification (NASBA) described in Guatelli J.C., et al.(1990) and in Compton 5 J.(1991), Q-beta amplification as described in European Patent Application No 4544610, strand displacement amplification as described in Walker et al.(1996) and EP A 684 315 and, target mediated amplification as described in PCT Publication WO 9322461.

LCR and Gap LCR are exponential amplification techniques, both depend on DNA ligase to join adjacent primers annealed to a DNA molecule. In Ligase Chain Reaction (LCR), probe pairs 10 are used which include two primary (first and second) and two secondary (third and fourth) probes, all of which are employed in molar excess to target. The first probe hybridizes to a first segment of the target strand and the second probe hybridizes to a second segment of the target strand, the first and second segments being contiguous so that the primary probes abut one another in 5' phosphate-3'hydroxyl relationship, and so that a ligase can covalently fuse or ligate the two probes into a fused 15 product. In addition, a third (secondary) probe can hybridize to a portion of the first probe and a fourth (secondary) probe can hybridize to a portion of the second probe in a similar abutting fashion. Of course, if the target is initially double stranded, the secondary probes also will hybridize to the target complement in the first instance. Once the ligated strand of primary probes is separated from the target strand, it will hybridize with the third and fourth probes, which can be ligated to form a 20 complementary, secondary ligated product. It is important to realize that the ligated products are functionally equivalent to either the target or its complement. By repeated cycles of hybridization and ligation, amplification of the target sequence is achieved. A method for multiplex LCR has also been described (WO 9320227). Gap LCR (GLCR) is a version of LCR where the probes are not adjacent but are separated by 2 to 3 bases.

25 For amplification of mRNAs, it is within the scope of the present invention to reverse transcribe mRNA into cDNA followed by polymerase chain reaction (RT-PCR); or, to use a single enzyme for both steps as described in U.S. Patent No. 5,322,770 or, to use Asymmetric Gap LCR (RT-AGLCR) as described by Marshall et al.(1994). AGLCR is a modification of GLCR that allows the amplification of RNA.

30 The PCR technology is the preferred amplification technique used in the present invention. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see White (1997) and the publication entitled "PCR Methods and Applications" (1991, Cold Spring Harbor Laboratory Press). In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along 35 with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are

extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites. PCR has further been described in several patents including US Patents 4,683,195; 4,683,202; and 4,965,188.

5 The PCR technology is the preferred amplification technique used to identify new biallelic markers. A typical example of a PCR reaction suitable for the purposes of the present invention is provided in Example 3.

One of the aspects of the present invention is a method for the amplification of the human olfactory receptor gene, particularly of a fragment of the genomic sequence of SEQ ID No 1 or of 10 the coding region sequences of SEQ ID Nos 2-11, or a fragment or a variant thereof in a test sample, preferably using the PCR technology. This method comprises the steps of:

- a) contacting a test sample with amplification reaction reagents comprising a pair of amplification primers as described above and located on either side of the polynucleotide region to be amplified, and
- 15 b) optionally, detecting the amplification products.

The invention also concerns a kit for the amplification of an olfactory receptor gene sequence, particularly of a portion of the genomic sequence of SEQ ID No 1 or of the coding region sequences of SEQ ID Nos 2-11, or a variant thereof in a test sample, wherein said kit comprises:

- 20 a) a pair of oligonucleotide primers located on either side of the olfactory receptor region to be amplified;
- b) optionally, the reagents necessary for performing the amplification reaction.

In one embodiment of the above amplification method and kit, the amplification product is detected by hybridization with a labeled probe having a sequence which is complementary to the amplified region. In another embodiment of the above amplification method and kit, primers 25 comprise a sequence which is selected from the group consisting of the nucleotide sequences of B1 to B11, C1 to C11, D1 to D13, and E1 to E13.

In a first embodiment of the present invention, biallelic markers are identified using genomic sequence information generated by the inventors. Sequenced genomic DNA fragments are used to design primers for the amplification of 500 bp fragments. These 500 bp fragments are amplified 30 from genomic DNA and are scanned for biallelic markers. Primers may be designed using the OSP software (Hillier L. and Green P., 1991). All primers may contain, upstream of the specific target bases, a common oligonucleotide tail that serves as a sequencing primer. Those skilled in the art are familiar with primer extensions, which can be used for these purposes.

Sequencing Of Amplified Genomic DNA And Identification Of Single Nucleotide Polymorphisms

35 The amplification products generated as described above, are then sequenced using any method known and available to the skilled technician. Methods for sequencing DNA using either the dideoxy-mediated method (Sanger method) or the Maxam-Gilbert method are widely known to

those of ordinary skill in the art. Such methods are for example disclosed in Sambrook et al.(1989). Alternative approaches include hybridization to high-density DNA probe arrays as described in Chee et al.(1996).

Preferably, the amplified DNA is subjected to automated dideoxy terminator sequencing reactions using a dye-primer cycle sequencing protocol. Following gel image analysis and DNA sequence extraction, sequence data are automatically processed with adequate software to assess sequence quality.

A polymorphism analysis software is used that detects the presence of biallelic sites among individual or pooled amplified fragment sequences. Polymorphism search is based on the presence of superimposed peaks in the electrophoresis pattern. These peaks which present distinct colors correspond to two different nucleotides at the same position on the sequence. The polymorphism has to be detected on both strands for validation.

Validation Of The Biallelic Markers Of The Present Invention

The polymorphisms are evaluated for their usefulness as genetic markers by validating that both alleles are present in a population. Validation of the biallelic markers is accomplished by genotyping a group of individuals by a method of the invention and demonstrating that both alleles are present. Microsequencing is a preferred method of genotyping alleles. The validation by genotyping step may be performed on individual samples derived from each individual in the group or by genotyping a pooled sample derived from more than one individual. The group can be as small as one individual if that individual is heterozygous for the allele in question. Preferably the group contains at least three individuals, more preferably the group contains five or six individuals, so that a single validation test will be more likely to result in the validation of more of the biallelic markers that are being tested. It should be noted, however, that when the validation test is performed on a small group it may result in a false negative result if as a result of sampling error none of the individuals tested carries one of the two alleles. Thus, the validation process is less useful in demonstrating that a particular initial result is an artifact, than it is at demonstrating that there is a *bona fide* biallelic marker at a particular position in a sequence. All of the genotyping, haplotyping, association, and interaction study methods of the invention may optionally be performed solely with validated biallelic markers.

30 2. Genotyping of biallelic markers

The polymorphisms identified above can be further confirmed and their respective frequencies can be determined through various methods using the previously described primers and probes. These methods can also be useful for genotyping either new populations in association studies or individuals in the context of detection of alleles of biallelic markers which are known to be associated with a given trait. Those skilled in the art should note that the methods described below can be equally performed on individual or pooled DNA samples.

Once a given polymorphic site has been found and characterized as a biallelic marker as described above, several methods can be used in order to determine the specific allele carried by an individual at the given polymorphic base.

The identification of biallelic markers described previously allows the design of appropriate 5 primers to amplify a region of the olfactory receptor gene cluster containing the polymorphic site of interest and for the detection of such polymorphisms.

Genotyping can be performed using similar methods as those described above for the identification of the biallelic markers, or using other genotyping methods such as those further described below. In preferred embodiments, the comparison of sequences of amplified genomic 10 fragments from different individuals is used to identify new biallelic markers whereas microsequencing is used for genotyping known biallelic markers in diagnostic and genetic analysis applications.

In one embodiment the invention encompasses methods of genotyping comprising determining the identity of a nucleotide at an olfactory receptor-related biallelic marker or the 15 complement thereof in a biological sample; optionally, wherein said olfactory receptor-related biallelic marker is selected from the group consisting of A1 to A13, and the complements thereof; optionally, wherein said biological sample is derived from a single subject; optionally, wherein the identity of the nucleotides at said biallelic marker is determined for both copies of said biallelic marker present in said individual's genome; optionally, wherein said biological sample is derived 20 from multiple subjects; Optionally, the genotyping methods of the invention encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination; Optionally, said method is performed *in vitro*; optionally, further comprising amplifying a portion of said sequence comprising the biallelic marker prior to said determining step; Optionally, wherein said amplifying is performed by PCR, LCR, or replication of a recombinant 25 vector comprising an origin of replication and said fragment in a host cell; optionally, wherein said determining is performed by a hybridization assay, a sequencing assay, a microsequencing assay, or an enzyme-based mismatch detection assay.

Source of Nucleic Acids for genotyping

Any source of nucleic acids, in purified or non-purified form, can be utilized as the starting 30 nucleic acid, provided it contains or is suspected of containing the specific nucleic acid sequence desired. DNA or RNA may be extracted from cells, tissues, body fluids and the like as described above. While nucleic acids for use in the genotyping methods of the invention can be derived from any mammalian source, the test subjects and individuals from which nucleic acid samples are taken are generally understood to be human.

Amplification Of DNA Fragments Comprising Biallelic Markers

Methods and polynucleotides are provided to amplify a segment of nucleotides comprising one or more biallelic marker of the present invention. It will be appreciated that amplification of DNA fragments comprising biallelic markers may be used in various methods and for various purposes and is not restricted to genotyping. Nevertheless, many genotyping methods, although not all, require the previous amplification of the DNA region carrying the biallelic marker of interest. Such methods specifically increase the concentration or total number of sequences that span the biallelic marker or include that site and sequences located either distal or proximal to it. Diagnostic assays may also rely on amplification of DNA segments carrying a biallelic marker of the present invention. Amplification of DNA may be achieved by any method known in the art. Amplification techniques are described above in the section entitled, "DNA amplification."

Some of these amplification methods are particularly suited for the detection of single nucleotide polymorphisms and allow the simultaneous amplification of a target sequence and the identification of the polymorphic nucleotide as it is further described below.

15 The identification of biallelic markers as described above allows the design of appropriate oligonucleotides, which can be used as primers to amplify DNA fragments comprising the biallelic markers of the present invention. Amplification can be performed using the primers initially used to discover new biallelic markers which are described herein or any set of primers allowing the amplification of a DNA fragment comprising a biallelic marker of the present invention.

20 In some embodiments the present invention provides primers for amplifying a DNA fragment containing one or more biallelic markers of the present invention. Preferred amplification primers are listed in Example 3. It will be appreciated that the primers listed are merely exemplary and that any other set of primers which produce amplification products containing one or more biallelic markers of the present invention are also of use.

25 The spacing of the primers determines the length of the segment to be amplified. In the context of the present invention, amplified segments carrying biallelic markers can range in size from at least about 25 bp to 35 kbp. Amplification fragments from 25-3000 bp are typical, fragments from 50-1000 bp are preferred and fragments from 100-600 bp are highly preferred. It will be appreciated that amplification primers for the biallelic markers may be any sequence which 30 allow the specific amplification of any DNA fragment carrying the markers. Amplification primers may be labeled or immobilized on a solid support as described in "Oligonucleotide probes and primers".

Methods of Genotyping DNA samples for Biallelic Markers

Any method known in the art can be used to identify the nucleotide present at a biallelic marker site. Since the biallelic marker allele to be detected has been identified and specified in the present invention, detection will prove simple for one of ordinary skill in the art by employing any of a number of techniques. Many genotyping methods require the previous amplification of the

DNA region carrying the biallelic marker of interest. While the amplification of target or signal is often preferred at present, ultrasensitive detection methods which do not require amplification are also encompassed by the present genotyping methods. Methods well-known to those skilled in the art that can be used to detect biallelic polymorphisms include methods such as, conventional dot blot 5 analyzes, single strand conformational polymorphism analysis (SSCP) described by Orita et al.(1989), denaturing gradient gel electrophoresis (DGGE), heteroduplex analysis, mismatch cleavage detection, and other conventional techniques as described in Sheffield et al.(1991), White et al.(1992), Grompe et al.(1989 and 1993). Another method for determining the identity of the nucleotide present at a particular polymorphic site employs a specialized exonuclease-resistant 10 nucleotide derivative as described in US patent 4,656,127.

Preferred methods involve directly determining the identity of the nucleotide present at a biallelic marker site by sequencing assay, enzyme-based mismatch detection assay, or hybridization assay. The following is a description of some preferred methods. A highly preferred method is the microsequencing technique. The term "sequencing" is generally used herein to refer to polymerase 15 extension of duplex primer/template complexes and includes both traditional sequencing and microsequencing.

1) Sequencing Assays

The nucleotide present at a polymorphic site can be determined by sequencing methods. In a preferred embodiment, DNA samples are subjected to PCR amplification before sequencing as 20 described above. DNA sequencing methods are described in "Sequencing Of Amplified Genomic DNA And Identification Of Single Nucleotide Polymorphisms".

Preferably, the amplified DNA is subjected to automated dideoxy terminator sequencing reactions using a dye-primer cycle sequencing protocol. Sequence analysis allows the identification of the base present at the biallelic marker site.

25 2) Microsequencing Assays

In microsequencing methods, the nucleotide at a polymorphic site in a target DNA is detected by a single nucleotide primer extension reaction. This method involves appropriate microsequencing primers which, hybridize just upstream of the polymorphic base of interest in the target nucleic acid. A polymerase is used to specifically extend the 3' end of the primer with one 30 single ddNTP (chain terminator) complementary to the nucleotide at the polymorphic site. Next the identity of the incorporated nucleotide is determined in any suitable way.

Typically, microsequencing reactions are carried out using fluorescent ddNTPs and the extended microsequencing primers are analyzed by electrophoresis on ABI 377 sequencing machines to determine the identity of the incorporated nucleotide as described in EP 412 883.

35 Alternatively capillary electrophoresis can be used in order to process a higher number of assays simultaneously. An example of a typical microsequencing procedure that can be used in the context of the present invention is provided in Example 5.

Different approaches can be used for the labeling and detection of ddNTPs. A homogeneous phase detection method based on fluorescence resonance energy transfer has been described by Chen and Kwok (1997) and Chen et al.(1997). In this method, amplified genomic DNA fragments containing polymorphic sites are incubated with a 5'-fluorescein-labeled primer in the presence of 5 allelic dye-labeled dideoxyribonucleoside triphosphates and a modified Taq polymerase. The dye-labeled primer is extended one base by the dye-terminator specific for the allele present on the template. At the end of the genotyping reaction, the fluorescence intensities of the two dyes in the reaction mixture are analyzed directly without separation or purification. All these steps can be performed in the same tube and the fluorescence changes can be monitored in real time.

10 Alternatively, the extended primer may be analyzed by MALDI-TOF Mass Spectrometry. The base at the polymorphic site is identified by the mass added onto the microsequencing primer (see Haff and Smirnov, 1997).

Microsequencing may be achieved by the established microsequencing method or by developments or derivatives thereof. Alternative methods include several solid-phase 15 microsequencing techniques. The basic microsequencing protocol is the same as described previously, except that the method is conducted as a heterogeneous phase assay, in which the primer or the target molecule is immobilized or captured onto a solid support. To simplify the primer separation and the terminal nucleotide addition analysis, oligonucleotides are attached to solid supports or are modified in such ways that permit affinity separation as well as polymerase 20 extension. The 5' ends and internal nucleotides of synthetic oligonucleotides can be modified in a number of different ways to permit different affinity separation approaches, e.g., biotinylation. If a single affinity group is used on the oligonucleotides, the oligonucleotides can be separated from the incorporated terminator reagent. This eliminates the need of physical or size separation. More than one oligonucleotide can be separated from the terminator reagent and analyzed simultaneously if 25 more than one affinity group is used. This permits the analysis of several nucleic acid species or more nucleic acid sequence information per extension reaction. The affinity group need not be on the priming oligonucleotide but could alternatively be present on the template. For example, immobilization can be carried out via an interaction between biotinylated DNA and streptavidin-coated microtitration wells or avidin-coated polystyrene particles. In the same manner, 30 oligonucleotides or templates may be attached to a solid support in a high-density format. In such solid phase microsequencing reactions, incorporated ddNTPs can be radiolabeled (Sylvänen, 1994) or linked to fluorescein (Livak and Hainer, 1994). The detection of radiolabeled ddNTPs can be achieved through scintillation-based techniques. The detection of fluorescein-linked ddNTPs can be based on the binding of antifluorescein antibody conjugated with alkaline phosphatase, followed by 35 incubation with a chromogenic substrate (such as *p*-nitrophenyl phosphate). Other possible reporter-detection pairs include: ddNTP linked to dinitrophenyl (DNP) and anti-DNP alkaline phosphatase conjugate (Harju et al., 1993) or biotinylated ddNTP and horseradish peroxidase-conjugated

streptavidin with *o*-phenylenediamine as a substrate (WO 92/15712). As yet another alternative solid-phase microsequencing procedure, Nyren et al.(1993) described a method relying on the detection of DNA polymerase activity by an enzymatic luminometric inorganic pyrophosphate detection assay (ELIDA).

5 Pastinen et al.(1997) describe a method for multiplex detection of single nucleotide polymorphism in which the solid phase minisequencing principle is applied to an oligonucleotide array format. High-density arrays of DNA probes attached to a solid support (DNA chips) are further described below.

In one aspect the present invention provides polynucleotides and methods to genotype one or 10 more biallelic markers of the present invention by performing a microsequencing assay. Preferred microsequencing primers include the nucleotide sequences D1 to Dn and E1 to En. It will be appreciated that the microsequencing primers listed in Example 5 are merely exemplary and that, any primer having a 3' end immediately adjacent to the polymorphic nucleotide may be used. Similarly, it will be appreciated that microsequencing analysis may be performed for any biallelic 15 marker or any combination of biallelic markers of the present invention. One aspect of the present invention is a solid support which includes one or more microsequencing primers listed in Example 5, or fragments comprising at least 8, 12, 15, 20, 25, 30, 40, or 50 consecutive nucleotides thereof, to the extent that such lengths are consistent with the primer described, and having a 3' terminus immediately upstream of the corresponding biallelic marker, for determining the identity of a 20 nucleotide at a biallelic marker site.

3) Mismatch detection assays based on polymerases and ligases

In one aspect the present invention provides polynucleotides and methods to determine the allele of one or more biallelic markers of the present invention in a biological sample, by mismatch detection assays based on polymerases and/or ligases. These assays are based on the specificity of 25 polymerases and ligases. Polymerization reactions places particularly stringent requirements on correct base pairing of the 3' end of the amplification primer and the joining of two oligonucleotides hybridized to a target DNA sequence is quite sensitive to mismatches close to the ligation site, especially at the 3' end. Methods, primers and various parameters to amplify DNA fragments comprising biallelic markers of the present invention are further described above in "Amplification 30 Of DNA Fragments Comprising Biallelic Markers".

Allele Specific Amplification Primers

Discrimination between the two alleles of a biallelic marker can also be achieved by allele specific amplification, a selective strategy, whereby one of the alleles is amplified without amplification of the other allele. For allele specific amplification, at least one member of the pair of 35 primers is sufficiently complementary with a region of an olfactory receptor gene comprising the polymorphic base of a biallelic marker of the present invention to hybridize therewith and to initiate

the amplification. Such primers are able to discriminate between the two alleles of a biallelic marker.

This is accomplished by placing the polymorphic base at the 3' end of one of the amplification primers. Because the extension forms from the 3'end of the primer, a mismatch at or 5 near this position has an inhibitory effect on amplification. Therefore, under appropriate amplification conditions, these primers only direct amplification on their complementary allele. Determining the precise location of the mismatch and the corresponding assay conditions are well within the ordinary skill in the art.

Ligation/Amplification Based Methods

10 The "Oligonucleotide Ligation Assay" (OLA) uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target molecules. One of the oligonucleotides is biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate that can be captured and detected. OLA is capable 15 of detecting single nucleotide polymorphisms and may be advantageously combined with PCR as described by Nickerson et al.(1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.

Other amplification methods which are particularly suited for the detection of single nucleotide polymorphism include LCR (ligase chain reaction), Gap LCR (GLCR) which are 20 described above in "DNA Amplification". LCR uses two pairs of probes to exponentially amplify a specific target. The sequences of each pair of oligonucleotides, is selected to permit the pair to hybridize to abutting sequences of the same strand of the target. Such hybridization forms a substrate for a template-dependant ligase. In accordance with the present invention, LCR can be performed with oligonucleotides having the proximal and distal sequences of the same strand of a 25 biallelic marker site. In one embodiment, either oligonucleotide will be designed to include the biallelic marker site. In such an embodiment, the reaction conditions are selected such that the oligonucleotides can be ligated together only if the target molecule either contains or lacks the specific nucleotide that is complementary to the biallelic marker on the oligonucleotide. In an alternative embodiment, the oligonucleotides will not include the biallelic marker, such that when 30 they hybridize to the target molecule, a "gap" is created as described in WO 90/01069. This gap is then "filled" with complementary dNTPs (as mediated by DNA polymerase), or by an additional pair of oligonucleotides. Thus at the end of each cycle, each single strand has a complement capable of serving as a target during the next cycle and exponential allele-specific amplification of the desired sequence is obtained.

35 Ligase/Polymerase-mediated Genetic Bit AnalysisTM is another method for determining the identity of a nucleotide at a preselected site in a nucleic acid molecule (WO 95/21271). This method involves the incorporation of a nucleoside triphosphate that is complementary to the nucleotide

present at the preselected site onto the terminus of a primer molecule, and their subsequent ligation to a second oligonucleotide. The reaction is monitored by detecting a specific label attached to the reaction's solid phase or by detection in solution.

4) Hybridization Assay Methods

5 A preferred method of determining the identity of the nucleotide present at a biallelic marker site involves nucleic acid hybridization. The hybridization probes, which can be conveniently used in such reactions, preferably include the probes defined herein. Any hybridization assay may be used including Southern hybridization, Northern hybridization, dot blot hybridization and solid-phase hybridization (see Sambrook et al., 1989).

10 Hybridization refers to the formation of a duplex structure by two single stranded nucleic acids due to complementary base pairing. Hybridization can occur between exactly complementary nucleic acid strands or between nucleic acid strands that contain minor regions of mismatch.

Specific probes can be designed that hybridize to one form of a biallelic marker and not to the other and therefore are able to discriminate between different allelic forms. Allele-specific probes are
15 often used in pairs, one member of a pair showing perfect match to a target sequence containing the original allele and the other showing a perfect match to the target sequence containing the alternative allele. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles. Stringent, sequence specific hybridization conditions,

20 under which a probe will hybridize only to the exactly complementary target sequence are well known in the art (Sambrook et al., 1989). Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. Although such hybridization can be performed in solution, it is preferred to employ a solid-

25 phase hybridization assay. The target DNA comprising a biallelic marker of the present invention may be amplified prior to the hybridization reaction. The presence of a specific allele in the sample is determined by detecting the presence or the absence of stable hybrid duplexes formed between the probe and the target DNA. The detection of hybrid duplexes can be carried out by a number of methods. Various detection assay formats are well known which utilize detectable labels bound to

30 either the target or the probe to enable detection of the hybrid duplexes. Typically, hybridization duplexes are separated from unhybridized nucleic acids and the labels bound to the duplexes are then detected. Those skilled in the art will recognize that wash steps may be employed to wash away excess target DNA or probe as well as unbound conjugate. Further, standard heterogeneous assay formats are suitable for detecting the hybrids using the labels present on the primers and probes.

35 Two recently developed assays allow hybridization-based allele discrimination with no need for separations or washes (see Landegren U. et al., 1998). The TaqMan assay takes advantage of the 5' nuclease activity of Taq DNA polymerase to digest a DNA probe annealed specifically to the

accumulating amplification product. TaqMan probes are labeled with a donor-acceptor dye pair that interacts via fluorescence energy transfer. Cleavage of the TaqMan probe by the advancing polymerase during amplification dissociates the donor dye from the quenching acceptor dye, greatly increasing the donor fluorescence. All reagents necessary to detect two allelic variants can be

5 assembled at the beginning of the reaction and the results are monitored in real time (see Livak et al., 1995). In an alternative homogeneous hybridization based procedure, molecular beacons are used for allele discriminations. Molecular beacons are hairpin-shaped oligonucleotide probes that report the presence of specific nucleic acids in homogeneous solutions. When they bind to their targets they undergo a conformational reorganization that restores the fluorescence of an internally

10 quenched fluorophore (Tyagi et al., 1998).

The polynucleotides provided herein can be used to produce probes which can be used in hybridization assays for the detection of biallelic marker alleles in biological samples. These probes are characterized in that they preferably comprise between 8 and 50 nucleotides, and in that they are sufficiently complementary to a sequence comprising a biallelic marker of the present invention to

15 hybridize thereto and preferably sufficiently specific to be able to discriminate the targeted sequence for only one nucleotide variation. A particularly preferred probe is 25 nucleotides in length. Preferably the biallelic marker is within 4 nucleotides of the center of the polynucleotide probe. In particularly preferred probes, the biallelic marker is at the center of said polynucleotide. Preferred probes comprise a nucleotide sequence selected from the group consisting of amplicons listed in

20 Table 1 and the sequences complementary thereto, or a fragment thereof, said fragment comprising at least about 8 consecutive nucleotides, preferably 10, 15, 20, more preferably 25, 30, 40, 47, or 50 consecutive nucleotides and containing a polymorphic base. Preferred probes comprise a nucleotide sequence selected from the group consisting of P1 to P13 and the sequences complementary thereto. In preferred embodiments the polymorphic base(s) are within 5, 4, 3, 2, 1, nucleotides of the center

25 of the said polynucleotide, more preferably at the center of said polynucleotide.

Preferably the probes of the present invention are labeled or immobilized on a solid support. Labels and solid supports are further described in "Oligonucleotide Probes and Primers". The probes can be non-extendable as described in "Oligonucleotide Probes and Primers".

By assaying the hybridization to an allele specific probe, one can detect the presence or

30 absence of a biallelic marker allele in a given sample. High-Throughput parallel hybridization in array format is specifically encompassed within "hybridization assays" and are described below.

5) Hybridization To Addressable Arrays Of Oligonucleotides

Hybridization assays based on oligonucleotide arrays rely on the differences in hybridization stability of short oligonucleotides to perfectly matched and mismatched target sequence variants.

35 Efficient access to polymorphism information is obtained through a basic structure comprising high-density arrays of oligonucleotide probes attached to a solid support (e.g., the chip) at selected

positions. Each DNA chip can contain thousands to millions of individual synthetic DNA probes arranged in a grid-like pattern and miniaturized to the size of a dime.

The chip technology has already been applied with success in numerous cases. For example, the screening of mutations has been undertaken in the BRCA1 gene, in *S. cerevisiae* mutant strains, 5 and in the protease gene of HIV-1 virus (Hacia et al., 1996; Shoemaker et al., 1996; Kozal et al., 1996). Chips of various formats for use in detecting biallelic polymorphisms can be produced on a customized basis by Affymetrix (GeneChip™), Hyseq (HyChip and HyGnostics), and Protogene Laboratories.

In general, these methods employ arrays of oligonucleotide probes that are complementary 10 to target nucleic acid sequence segments from an individual which, target sequences include a polymorphic marker. EP 785280 describes a tiling strategy for the detection of single nucleotide polymorphisms. Briefly, arrays may generally be "tiled" for a large number of specific polymorphisms. By "tiling" is generally meant the synthesis of a defined set of oligonucleotide probes which is made up of a sequence complementary to the target sequence of interest, as well as 15 preselected variations of that sequence, e.g., substitution of one or more given positions with one or more members of the basis set of nucleotides. Tiling strategies are further described in PCT application No. WO 95/11995. In a particular aspect, arrays are tiled for a number of specific, identified biallelic marker sequences. In particular, the array is tiled to include a number of detection blocks, each detection block being specific for a specific biallelic marker or a set of 20 biallelic markers. For example, a detection block may be tiled to include a number of probes, which span the sequence segment that includes a specific polymorphism. To ensure probes that are complementary to each allele, the probes are synthesized in pairs differing at the biallelic marker. In addition to the probes differing at the polymorphic base, monosubstituted probes are also generally tiled within the detection block. These monosubstituted probes have bases at and up to a certain 25 number of bases in either direction from the polymorphism, substituted with the remaining nucleotides (selected from A, T, G, C and U). Typically the probes in a tiled detection block will include substitutions of the sequence positions up to and including those that are 5 bases away from the biallelic marker. The monosubstituted probes provide internal controls for the tiled array, to distinguish actual hybridization from artefactual cross-hybridization. Upon completion of 30 hybridization with the target sequence and washing of the array, the array is scanned to determine the position on the array to which the target sequence hybridizes. The hybridization data from the scanned array is then analyzed to identify which allele or alleles of the biallelic marker are present in the sample. Hybridization and scanning may be carried out as described in PCT application No. WO 92/10092 and WO 95/11995 and US patent No. 5,424,186.

35 Thus, in some embodiments, the chips may comprise an array of nucleic acid sequences of fragments of about 15 nucleotides in length. In further embodiments, the chip may comprise an array including at least one of the sequences selected from the group consisting of amplicons listed

in table 1 and the sequences complementary thereto, or a fragment thereof, said fragment comprising at least about 8 consecutive nucleotides, preferably 10, 15, 20, more preferably 25, 30, 40, 47, or 50 consecutive nucleotides and containing a polymorphic base. In preferred embodiments the polymorphic base is within 5, 4, 3, 2, 1, nucleotides of the center of the said polynucleotide, more preferably at the center of said polynucleotide. In some embodiments, the chip may comprise an array of at least 2, 3, 4, 5, 6, 7, 8 or more of these polynucleotides of the invention. Solid supports and polynucleotides of the present invention attached to solid supports are further described in "Oligonucleotide Probes And Primers".

6) Integrated Systems

10 Another technique, which may be used to analyze polymorphisms, includes multicomponent integrated systems, which miniaturize and compartmentalize processes such as PCR and capillary electrophoresis reactions in a single functional device. An example of such technique is disclosed in US patent 5,589,136 which describes the integration of PCR amplification and capillary electrophoresis in chips.

15 Integrated systems can be envisaged mainly when microfluidic systems are used. These systems comprise a pattern of microchannels designed onto a glass, silicon, quartz, or plastic wafer included on a microchip. The movements of the samples are controlled by electric, electroosmotic or hydrostatic forces applied across different areas of the microchip to create functional microscopic valves and pumps with no moving parts.

20 For genotyping biallelic markers, the microfluidic system may integrate nucleic acid amplification, microsequencing, capillary electrophoresis and a detection method such as laser-induced fluorescence detection.

E. EXPRESSION OF AN OL1 TO OLF10 CODING POLYNUCLEOTIDE

Any of the coding polynucleotides of the invention may be inserted into recombinant vectors 25 for expression in a recombinant host cell or a recombinant host organism.

Thus, the present invention also encompasses a family of recombinant vectors that contains a coding polynucleotide from the group of coding polynucleotides OLF1 to OLF10 genes. Consequently, the present invention further deals with a recombinant vector comprising a polynucleotide comprising any of the coding sequence of SEQ ID No 1, preferably those selected 30 from the group consisting of SEQ ID Nos 2-11.

In a first preferred embodiment, the present invention relates to expression vectors which include nucleic acids encoding an olfactory receptor protein described herein under the control of an exogenous regulatory sequence.

In a second preferred embodiment, a recombinant vector of the invention is used to amplify 35 the inserted polynucleotide derived from an olfactory receptor genomic sequence selected from the group consisting of the nucleic acids of SEQ ID No 1 and of olfactory receptor cDNAs, for example

the open reading frames of SEQ ID Nos 2-11, in a suitable cell host, this polynucleotide being amplified at every time that the recombinant vector replicates.

More particularly, the present invention relates to expression vectors which include nucleic acids encoding an olfactory receptor protein, preferably the olfactory receptor proteins of the amino acid sequence of SEQ ID Nos 12-21 or variants or fragments thereof, under the control of an exogenous regulatory sequence.

Generally, a recombinant vector of the invention may comprise any of the polynucleotides described herein, including regulatory sequences, and coding sequences, as well as any olfactory receptor primer or probe as defined above. More particularly, the recombinant vectors of the present invention can comprise any of the polynucleotides described in the "Coding Regions of the olfactory receptor gene" section, "Genomic sequence of the olfactory receptor gene" section, the "Oligonucleotide Probes And Primers" section and the "Polynucleotide constructs" section.

Some of the elements which can be found in the vectors of the present invention are described in further detail in the following sections.

15 Vectors

A recombinant vector according to the invention comprises, but is not limited to, a YAC (Yeast Artificial Chromosome), a BAC (Bacterial Artificial Chromosome), a phage, a phagemid, a cosmid, a plasmid or even a linear DNA molecule which may consist of a chromosomal, non-chromosomal and synthetic DNA. Such a recombinant vector can comprise a transcriptional unit comprising an assembly of

- (1) a genetic element or elements having a regulatory role in gene expression, for example promoters or enhancers. Enhancers are cis-acting elements of DNA, usually from about 10 to 300 bp that act on the promoter to increase the transcription.
- (2) a structural or coding sequence which is transcribed into mRNA and eventually translated into a polypeptide, and
- (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

Generally, recombinant expression vectors will include origins of replication, selectable markers permitting transformation of the host cell, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium.

The selectable marker genes for selection of transformed host cells are preferably dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, TRP1 for *S. cerevisiae* or tetracycline, rifampicin or ampicillin resistance in *E. coli*, or levan saccharase for mycobacteria.

For facilitating the purification of the expressed protein and increasing its stability, the 5 coding sequence of an olfactory receptor according to the invention can be fused in its N- or C- terminus with protein such as MBP (maltose binding protein) and GST (Glutathione S transferase) or with tag such as poly-histidine tag, Strep tag, Bio tag, and flag peptide epitope tag, those being detailed below. Thioredoxin can be eventually inserted between the olfactory receptor and the tag.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA 10 sequence encoding a desired polypeptide with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host.

As a representative but non-limiting example, useful expression vectors for bacterial use can 15 comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia, Uppsala, Sweden), and GEM1 (Promega Biotec, Madison, WI, USA).

Large numbers of suitable vectors and promoters are known to those of skill in the art, and 20 commercially available, such as bacterial vectors : pQE70, pQE60, pQE-9 (Qiagen), pbs, pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); or eukaryotic vectors : pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene); pSVK3, pBPV, pMSG, pSVL (Pharmacia); baculovirus transfer vector pVL1392/1393 (Pharmingen); pQE-30 (QIAexpress).

25 A suitable vector for the expression of the olfactory receptor above-defined or their peptide fragments is baculovirus vector that can be propagated in insect cells and in insect cell lines. A specific suitable host vector system is the pVL1392/1393 baculovirus transfer vector (Pharmingen) that is used to transfect the SF9 cell line (ATCC N°CRL 1711) which is derived from *Spodoptera frugiperda*.

30 Other suitable vectors for the expression of an olfactory receptor or their peptide fragments or variants in a baculovirus expression system include those described by Chai et al. (1993), Vlasak et al. (1983) and Lenhard et al. (1996).

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and 35 acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences.

DNA sequences derived from the SV40 viral genome, for example SV40 origin, early promoter,

enhancer, splice and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Promoters

The suitable promoter regions used in the expression vectors according to the present invention are chosen taking into account of the cell host in which the heterologous gene has to be expressed.

A suitable promoter may be heterologous with respect to the nucleic acid for which it controls the expression or alternatively can be endogenous to the native polynucleotide containing the coding sequence to be expressed. Additionally, the promoter is generally heterologous with respect to the recombinant vector sequences within which the construct promoter/coding sequence has been inserted.

Thus, the promoter is selected among the group comprising :

- an internal or an endogenous promoter, such as the natural promoter associated with the structural gene coding for the desired olfactory receptor polypeptide or the fragment or variant thereof; such a promoter may be completed by a regulatory element derived from the vertebrate host, in particular an activator element;
- a promoter derived from a cytoskeletal protein gene such as the desmin promoter (Bolmont et al., 1990; Zhenlin et al., 1989) or a promoter derived from a gene specifically expressed in epithelial cells and most preferably in olfactory epithelial cells.

Preferred bacterial promoters are the LacI, LacZ, the T3 or T7 bacteriophage RNA polymerase promoters, the polyhedrin promoter, or the p10 protein promoter from baculovirus (Kit Novagen) (Smith et al., 1983.; O'Reilly et al., 1992), the lambda P_R promoter or also the trc promoter.

Promoter regions can be selected from any desired gene using, for example, CAT (chloramphenicol transferase) vectors and more preferably pKK232-8 and pCM7 vectors. Particularly preferred bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, PL and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-L. Selection of a convenient vector and promoter is well within the level of ordinary skill in the art.

The choice of a determined promoter, among the above-described promoters is well in the ability of one skill in the art, guided by his knowledge in the genetic engineering technical field, and by being also guided by the book of Sambrook et al. in 1989 or also by the procedures described by Fuller et al. in 1996 (Fuller S.A. et al., 1996).

A preferred constitutive promoter that is used is one of the internal promoters that are active in the resting fibroblasts such the promoter of the phosphoglycerate kinase gene (PGK-1). The PGK-1 promoter is either the mouse promoter or the human promoter such as described by Adra et al.(

1987). Other constitutive promoters may also be used such that the beta-actin promoter (Kort et al., 1983) or the vimentin promoter (Rettlez and Basenga, 1987).

The vector containing the appropriate DNA sequence as described above, more preferably a OLF1 to OLF10 coding polynucleotide, can be utilized to transform an appropriate host to allow the 5 expression of the desired polypeptide or polynucleotide.

Other types of vectors

The *in vivo* expression of an olfactory receptor polypeptide encompassed by the invention or a fragment or a variant thereof may be useful in order to correct a genetic defect related to the expression of the native gene in a host organism or to the production of biologically active olfactory 10 receptor proteins.

Consequently, the present invention also deals with recombinant expression vectors mainly designed for the *in vivo* production of a therapeutic peptide fragment by the introduction of the genetic information in the organism of the patient to be treated. This genetic information may be introduced *in vitro* in a cell that has been previously extracted from the organism, the modified cell 15 being subsequently reintroduced in the said organism, directly *in vivo* into the appropriate tissue, and preferably in the olfactory epithelium.

One specific embodiment for a method for delivering the corresponding protein or peptide to the interior of a cell of a vertebrate *in vivo* comprises the step of introducing a preparation comprising a physiologically acceptable carrier and a naked polynucleotide operatively coding for 20 the polypeptide into the interstitial space of a tissue comprising the cell, whereby the naked polynucleotide is taken up into the interior of the cell and has a physiological effect.

In a specific embodiment, the invention provides a composition for the *in vivo* production of an olfactory receptor polypeptide described therein containing a naked polynucleotide operatively coding for an olfactory receptor selected from the group of OLF1 to OLF10 or a fragment or a 25 variant thereof, in solution in a physiologically acceptable carrier and suitable for introduction into a tissue to cause cells of the tissue to express the said protein or polypeptide.

Advantageously, the composition described above is administered locally, near the site in which the expression of the olfactory receptor polypeptide under consideration or a fragment or a variant thereof is sought.

30 The polynucleotide operatively coding for an olfactory receptor polypeptide or a fragment or variant thereof may be a vector comprising the genomic DNA or the complementary DNA (cDNA) coding for the corresponding protein and a promoter sequence allowing the expression of the genomic DNA or the complementary DNA in the desired eukaryotic cells, such as vertebrate cells, specifically mammalian cells.

35 This vector may also contain one origin of replication that allows it to replicate in the eukaryotic host cell such as an origin of replication from a bovine papillomavirus. Alternatively, the vector can contain several, for example two, origins of replication of different origins in order to

allow said vector to replicate in different host cells, typically both in a prokaryotic cell such as *E. coli* and in an eukaryotic cell such as a mammalian epithelial cell, preferably a mammalian olfactory epithelial cell.

Compositions comprising a polynucleotide are described in the PCT application N° WO 5 90/11092 (Vical Inc.) and also in the PCT application N° WO 95/11307 (Institut Pasteur, INSERM, Université d'Ottawa) as well as in the articles of Tacson et al. (1996) and of Huygen et al. (1996).

In another embodiment, the DNA to be introduced is complexed with DEAE-dextran (Pagano et al., 1967) or with nuclear proteins (Kaneda et al., 1989), with lipids (Felgner et al., 1987) or encapsulated within liposomes (Fraley et al., 1980).

10 In another embodiment, the polynucleotide encoding an olfactory receptor polypeptide of the invention or a fragment or a variant thereof may be included in a transfection system comprising polypeptides that promote its penetration within the host cells as it is described in the PCT application WO 95/10534 (Seikagaku Corporation). They can also be encapsulated in polymer microparticles as it is described in the PCT Application No WO 94/27238.

15 The vector according to the present invention may advantageously be administered in the form of a gel that facilitates their transfection into the cells. Such a gel composition may be a complex of poly-L-lysine and lactose, as described by Midoux (1993) or also poloxamer 407 as described by Pastore (1994). Said vector may also be suspended in a buffer solution or be associated with liposomes.

20 The amount of the vector to be injected to the desired host organism vary according to the site of injection. As an indicative dose, it will be injected between 0,1 and 100 µg of the vector in an animal body, preferably a mammal body, for example a mouse body.

25 In another embodiment of the vector according to the invention, said vector may be introduced in vitro in a host cell, preferably in a host cell previously harvested from the animal to be treated and more preferably a somatic cell such as a muscle cell. In a subsequent step, the cell that has been transformed with the vector coding for the desired olfactory receptor polypeptide or the desired fragment or variant thereof is implanted back into the animal body in order to deliver the recombinant protein within the body either locally or systemically.

Suitable vectors for the *in vivo* expression of an olfactory receptor polypeptide of the 30 invention or a fragment or a variant thereof are described hereunder.

In one specific embodiment, the vector is derived from an adenovirus. Preferred adenoviruses vectors according to the invention are those described by Feldman and Steg (1996) or Ohno et al. (1994). Another preferred recombinant adenovirus according to this specific embodiment of the present invention is the adenovirus described by Ohwada et al. (1996) or the human 35 adenovirus type 2 or 5 (Ad 2 or Ad 5) or an adenovirus of animal origin (French patent application N° FR-93.05954).

Among the adenoviruses of animal origin it can be cited the adenoviruses of canine (CAV2, strain Manhattan or A26/61[ATCC VR-800]), bovine, murine (Mav1, Beard et al., 1980) or simian (SAV).

Preferably, the inventors are using recombinant defective adenoviruses that may be prepared
5 following a technique well-known by one skill in the art, for example as described by Levrero et al.
(1991) or by Graham (1984) or in the European patent application N° EP-185.573. Another
defective recombinant adenovirus that may be used according to the present invention, as well as a
composition of matter containing such a defective recombinant adenovirus, is described in the PCT
application N° WO 95/14785.

10 Retrovirus vectors and adeno-associated virus vectors are generally understood to be the
recombinant gene delivery system of choice for the transfer of exogenous polynucleotides *in vivo*,
particularly to mammals, including humans. These vectors provide efficient delivery of genes into
cells, and the transferred nucleic acids are stably integrated into the chromosomal DNA of the host.

The use of recombinant retrovirus vectors containing a nucleic acid according to the
15 invention is also encompassed within the scope of the invention. A major prerequisite for the use of
retroviruses is to ensure the safety of their use, particularly with regard to the possibility of the
spread of wild-type virus in the cell population. The development of specialized cell lines (termed
“packaging cells”) which produce only replication defective retroviruses has increased the utility of
retroviruses for *in vivo* gene delivery, and defective retroviruses are well characterized for use in
20 gene transfer. Thus, recombinant retroviruses can be constructed in which a part of the retroviral
coding sequence (*gag*, *pol*, *env*) has been replaced by nucleic acid encoding an olfactory receptor
rendering the retrovirus defective. Protocols for producing recombinant retroviruses and for
infecting cells *in vitro* and *in vivo* with such viruses can be found in “Current Protocols in Molecular
Biology” (1989).

25 Furthermore, it has been shown that it is possible to limit the infection spectrum of
retroviruses and consequently of retroviral-based vectors, by modifying the viral packaging proteins
on the surface of the viral particle, as described for example in the PCT Application No WO
93/25234 or in the PCT Application No WO 94/ 06920. For instance, strategies for the modification
of the infection spectrum of retroviral vectors include : coupling antibodies specific for cell surface
30 antigens to the viral *env* protein (Julan et al., 1992) or coupling cell surface receptor ligands to the
viral *env* protein (Neda et al., 1991). Coupling can be in the form of the chemical cross-linking with
a protein or other variety (e.g. lactose to convert the *env* protein to an asialoglycoprotein), as well by
generating fusion proteins (e.g. single-chain antibody/*env* fusion proteins). This technique, while
useful to limit or otherwise direct the infection to certain tissue types, can also be used to convert an
35 ecotropic vector into an amphotropic vector.

Particularly preferred retroviruses for the preparation or construction of retroviral *in vitro* or
in vitro gene delivery vehicles of the present invention include retroviruses selected from the group

consisting of Mink-Cell Focus Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis virus and Rous Sarcoma virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley et al., 1976), Abelson (ATCC No VR-999), Friend (ATCC No VR-245), Gross (ATCC No VR-590), Rauscher (ATCC No VR-998) and Moloney Murine Leukemia Virus (ATCC No VR-190; 5 PCT Application No WO 94/24298). Particularly preferred Rous Sarcoma Viruses include Bryan high titer (ATCC Nos VR-334, VR-657, VR-726, VR-659 and VR-728). Another preferred retroviral vector is that described by Roth et al. (Roth J.A. et al., 1996).

Yet another viral vector system that is contemplated by the invention consists in the adeno-associated virus (AAV). Adeno-associated virus is a naturally occurring defective virus that requires 10 another virus, such as an adenovirus or a herpes virus, as a helper virus for efficient replication and a productive life cycle (Muzyczka et al., 1992). It is also one of the few viruses that may integrate its DNA into non-dividing cells, and exhibits a high frequency of stable integration (Flotte et al., 1992; Samulski et al., 1989; McLaughlin et al., 1989). One advantageous feature of AAV derives from its reduced efficacy for transducing primary cells relative to transformed cells.

15 Cell hosts

Another object of the invention consists in host cell that have been transformed or transfected with one of the polynucleotides described therein, and more precisely a polynucleotide comprising the coding sequence of any of the olfactory receptor polypeptide having the amino acid sequence of SEQ ID Nos 12-21 or fragments or variants thereof. Are included host cells that are 20 transformed (prokaryotic cells) or that are transfected (eukaryotic cells) with a recombinant vector such as one of those described above.

A recombinant host cell of the invention comprises any one of the polynucleotides or the recombinant vectors described therein. More particularly, the cell hosts of the present invention can comprise any of the polynucleotides described in the "Coding regions of the olfactory receptor gene" 25 section, "Genomic sequence of olfactory receptor gene" section, the "Oligonucleotide Probes And Primers" section, the "Polynucleotide constructs" section and the "Expression of an OLF1 to OLF10 coding polypeptide" section.

Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, as well as various species within the genera of *Streptomyces* or *Mycobacterium*. Suitable eukaryotic hosts 30 comprise yeast, insect cells, such as *Drosophila* and Sf9. Various mammalian cell hosts can also be employed to express recombinant protein. Examples of mammalian cell hosts include the COS-7 lines of monkey kidney fibroblasts (Guzman, 1981), and other cell lines capable of expressing a compatible vector, for example the C127, 3T3, CHO, HeLa and BHK cell lines. The selection of an host is within the scope of the one skilled in the art.

35 Preferred cell hosts used as recipients for the expression vectors of the invention are the followings :

a) Prokaryotic host cells : *Escherichia coli* strains (I.E. DH5- α strain) or *Bacillus subtilis*.

b) Eukaryotic host cells : HeLa cells (ATCC N°CCL2; N°CCL2.1; N°CCL2.2), Cv 1 cells (ATCC N°CCL70), COS cells (ATCC N°CRL1650; N°CRL1651), Sf-9 cells (ATCC N°CRL1711).

The constructs in the host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence.

5 Following transformation of a suitable host and growth of the host to an appropriate cell density, the selected promoter is induced by appropriate means, such as temperature shift or chemical induction, and cells are cultivated for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

10 Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known by the skill artisan.

Transgenic animals

The terms "transgenic animals" or "host animals" are used herein designate animals that 15 have their genome genetically and artificially manipulated so as to include one of the nucleic acids according to the invention. Preferred animals are non-human mammals and include those belonging to a genus selected from *Mus* (e.g. mice), *Rattus* (e.g. rats) and *Oryctogalrus* (e.g. rabbits) which have their genome artificially and genetically altered by the insertion of a nucleic acid according to the invention.

20 The transgenic animals of the invention all include within a plurality of their cells a cloned recombinant or synthetic DNA sequence, more specifically one of the purified or isolated nucleic acids comprising an olfactory receptor coding sequence selected from the group OLF1 to OLF10 an olfactory receptor regulatory polynucleotide or a DNA sequence encoding an antisense polynucleotide such as described in the present specification.

25 More particularly, transgenic animals according to the invention contain in their somatic cells and/or in their germ line cells any of the polynucleotides described in the "Coding regions of the olfactory receptor gene" section, "Genomic sequence of olfactory receptor gene" section, the "Oligonucleotide Probes And Primers" section, the "Polynucleotide constructs" section and the "Expression of an OLF1 to OLF10 coding polypeptide" section.

30 The replacement of the native genomic olfactory receptor sequence by a defective copy of said sequence may be performed by techniques of gene targeting. Such techniques are notably described by Burright et al. (1997), Bates et al. (1997), Mangiarini et al. (1997), Davies et al. (1997).

Second preferred transgenic animals of the invention have the murine olfactory receptor gene replaced either by a defective copy of the murine olfactory receptor gene or by an interrupted 35 copy of the human olfactory receptor gene. A "defective copy" of a murine or a human olfactory receptor gene, is intended to designate a modified copy of these genes that is not or poorly transcribed in the resulting recombinant host animal or a modified copy of these genes leading to the

absence of synthesis of the corresponding translation product or alternatively leading to a modified and/or truncated translation product lacking the biological activity of the wild type olfactory receptor protein. The altered translation product thus contains amino acid modifications, deletions and substitutions. Modifications and deletions may render the naturally occurring gene nonfunctional, 5 thus leading to a "knockout animal". These transgenic animals are critical for the creation of animal models of human diseases, and for eventual treatment of disorders related to alteration of the olfactory perception of odorant substances or molecules. Examples of such knockout mice are described in the PCT Applications Nos WO 97/34641, WO 96/12792 and WO 98/02354.

The endogenous murine olfactory receptor gene can be interrupted by the insertion, between 10 two contiguous nucleotide of said gene, of a part of all of a marker gene placed under the control of the appropriate promoter, for example the endogenous promoter of the endogenous murine olfactory receptor gene. The marker gene may be the neomycin resistance gene (*neo*) that may be operably linked to the phosphoglycerate kinase-1 (PGK-1) promoter, as described in the PCT Application No WO 98/02534.

15 Thus, the invention is also directed to a transgenic animal contain in their somatic cells and/or in their germ line cells a polynucleotide selected from the following group of polynucleotides:

- a) a defective copy of the human olfactory receptor gene;
- b) a defective copy of the endogenous olfactory receptor gene, wherein the expression 20 "endogenous olfactory receptor gene" designates an olfactory receptor gene that is naturally present within the genome of the animal host to be genetically modified.

The invention also concerns a method for obtaining transgenic animals, wherein said methods comprise the steps of :

- a) replacing the endogenous copy of the animal olfactory receptor gene by a nucleic acid 25 selected from the group consisting of a defective copy of the human olfactory receptor gene and a defective copy of the endogenous olfactory receptor gene in animal cells, preferably embryonic stem cells (ES);
- b) introducing the recombinant animal cells obtained at step a) in embryos, notably blastocysts of the animal;
- c) selecting the resulting transgenic animals, for example by detecting the defective copy of 30 an olfactory receptor gene with one or several primers or probes according to the invention.

Optionally, the transgenic animals may be bred together in order to obtain homozygous transgenic animals for the defective copy of the olfactory receptor gene introduced.

The transgenic animals of the invention thus contain specific sequences of exogenous 35 genetic material such as the nucleotide sequences described above in detail.

In a preferred embodiment, these transgenic animals may be good experimental models in order to study the diverse pathologies related to disorders associated to alteration of the olfactory

perception of odorant substances or molecules, in particular concerning the transgenic animals within the genome of which has been inserted one or several copies of a polynucleotide encoding a native olfactory receptor protein, or alternatively a mutant olfactory receptor protein.

Third preferred transgenic animals according to the invention contains in their somatic cells 5 and/or in their germ line cells a polynucleotide selected from the following group of polynucleotides :

- a) purified or isolated nucleic acid encoding an olfactory receptor polypeptide selected from OLF1 to OLF10, or a polypeptide fragment or variant thereof.
- b) a purified or isolated nucleic comprising at least 8 consecutive nucleotides of the 10 nucleotide sequence SEQ ID No 1, a nucleotide sequence complementary thereto or a fragment or a variant thereof;
- c) a purified or isolated nucleic acid comprising a nucleotide sequence selected from the group of SEQ ID 2-11, a sequence complementary thereto or a fragment or a variant thereof.

The transgenic animals of the invention thus contain specific sequences of exogenous 15 genetic material such as the nucleotide sequences described above in detail.

In a first preferred embodiment, these transgenic animals may be good experimental models in order to screen the candidate substance of interest interacting with the olfactory receptor under consideration.

Since it is possible to produce transgenic animals of the invention using a variety of different 20 sequences, a general description will be given of the production of transgenic animals by referring generally to exogenous genetic material. This general description can be adapted by those skilled in the art in order to incorporate the DNA sequences into animals. For more details regarding the production of transgenic animals, and specifically transgenic mice, it may be referred to Sandou et al. (1994) and also to US Patents Nos 4,873,191, issued Oct. 10, 1989, 5,968,766, issued Dec. 16, 25 1997 and 5,387,742, issued Feb. 28, 1995.

Transgenic animals of the present invention are produced by the application of procedures which result in an animal with a genome that incorporates exogenous genetic material which is integrated into the genome. The procedure involves obtaining the genetic material, or a portion thereof, which encodes either a coding sequence, a non-coding polynucleotide or a DNA sequence 30 encoding an antisense polynucleotide of an olfactory receptor selected from the group OLF1 to OLF10 such as described in the present specification.

A recombinant polynucleotide of the invention is inserted into an embryonic or ES stem cell line. The insertion is made using electroporation. The cells subjected to electroporation are screened (e.g. Southern blot analysis) to find positive cells which have integrated the exogenous recombinant 35 polynucleotide into their genome. An illustrative positive-negative selection procedure that may be used according to the invention is described by Mansour et al. (1988). Then, the positive cells are isolated, cloned and injected into 3.5 days old blastocysts from mice. The blastocysts are then

inserted into a female host animal and allowed to grow to term. The offsprings of the female host are tested to determine which animals are transgenic e.g. include the inserted exogenous DNA sequence and which are wild-type.

Thus, the present invention also concerns a transgenic animal containing a nucleic acid, a recombinant expression vector or a recombinant host cell according to the invention.

Recombinant Cell Lines Derived From The Transgenic Animals Of The Invention.

A further object of the invention comprises recombinant host cells obtained from a transgenic animal described herein. In one embodiment the invention encompasses cells derived from non-human host mammals and animals comprising a recombinant vector of the invention or an olfactory receptor gene disrupted by homologous recombination with a knock out vector.

Recombinant cell lines may be established *in vitro* from cells obtained from any tissue of a transgenic animal according to the invention, for example by transfection of primary cell cultures with vectors expressing *onc*-genes such as SV40 large T antigen, as described by Chou (1989) and Shay et al.(1991).

15 F. METHODS FOR SCREENING SUBSTANCES OR MOLECULES INTERACTING WITH AN OLFACTORY RECEPTOR PROTEIN

The present invention pertains to methods for screening substances of interest, in particular odorant substances or molecules that interact with an olfactory receptor protein selected from the group consisting of OLF1 to OLF10, or one peptide fragment or variant thereof. In one embodiment, the candidate substance is devoid of odorant propriety but it is able to bind the olfactory receptor and to trigger the transduction of signals.

For the purpose of the present invention, a ligand means a molecule, such as a protein, a peptide, an antibody or any synthetic chemical compound capable of binding to the olfactory receptor protein or one of its fragments or variants or to modulate the expression of the polynucleotide coding for olfactory receptor or a fragment or variant thereof.

In the ligand screening method according to the present invention, a biological sample or a defined molecule to be tested as a putative ligand of the olfactory receptor protein is brought into contact with the corresponding purified olfactory receptor protein, for example the corresponding purified recombinant olfactory receptor protein produced by a recombinant cell host as described herein, in order to form a complex between this protein and the putative ligand molecule to be tested.

As an illustrative example, to study the interaction of the olfactory receptor protein, or a fragment comprising comprising any of the fragments described in the section "OLF1 to OLF10 proteins and polypeptide fragments" with drugs or small molecules, such as molecules generated through combinatorial chemistry approaches, the microdialysis coupled to HPLC method described by Wang et al. (1997) or the affinity capillary electrophoresis method described by Bush et al. (1997) can be used.

In further methods, peptides, drugs, fatty acids, lipoproteins, or small molecules which interact with the olfactory receptor protein, or a fragment comprising any of the fragments described in the section "OLF1 to OLF10 proteins and polypeptide fragments" may be identified using assays such as the following. The molecule to be tested for binding is labeled with a detectable label, such 5 as a fluorescent, radioactive, or enzymatic tag and placed in contact with immobilized olfactory receptor protein, or a fragment thereof under conditions which permit specific binding to occur, such as affinity columns. In some embodiments, chimeric proteins containing the olfactory receptor protein fused to proteins facilitating purification, such as glutathion S transferase (GST) are used. After removal of non-specifically bound molecules, bound molecules are detected using appropriate 10 means.

In one embodiment, proteins, peptides, carbohydrates, lipids, or small molecules generated by combinatorial chemistry interacting with the olfactory receptor protein, or a fragment or a variant thereof can also be screened by using an Optical Biosensor as described in Edwards and Leatherbarrow (1997) and also in Szabo et al. (1995). The main advantage of the method is that it 15 allows the determination of the association rate between the olfactory receptor protein and molecules interacting with the olfactory receptor protein. It is thus possible to select specifically ligand molecules interacting with the olfactory receptor protein, or a fragment thereof, through strong or conversely weak association constants.

Another object of the present invention comprises methods and kits for the screening of 20 candidate substances that interact with olfactory receptor polypeptide.

The present invention pertains to methods for screening substances of interest that interact with an olfactory receptor protein or one fragment or variant thereof. By their capacity to bind covalently or non-covalently to an olfactory receptor protein or to a fragment or variant thereof, these substances or molecules may be advantageously used both *in vitro* and *in vivo*. *In vitro*, said 25 interacting molecules may be used as detection means in order to identify the presence of an olfactory receptor protein in a sample, preferably a biological sample.

A first method for the screening of a candidate substance interacting with an olfactory receptor polypeptide selected from the group consisting of SEQ ID Nos 12-21, or fragments or variants thereof, comprises the following steps :

- 30 a) providing a polypeptide selected from the group consisting of the polypeptides comprising, consisting essentially of, or consisting of the amino acid sequences of SEQ ID Nos 12-21, or a peptide fragment or a variant thereof;
- b) obtaining a candidate substance;
- c) bringing into contact said polypeptide with said candidate substance; and
- 35 d) detecting the complexes formed between said polypeptide and said candidate substance.

Various candidate substances or molecules can be assayed for interaction with an olfactory receptor polypeptide. These substances or molecules include, without being limited to, natural or synthetic organic compounds or molecules of biological origin such as polypeptides. When the candidate substance or molecule comprises a polypeptide, this polypeptide may be the resulting expression product of either a phage clone belonging to a phage-based random peptide library, or of a cDNA library cloned in a vector suitable for performing a two-hybrid screening assay.

In one embodiment of the screening method defined above, the complexes formed between the polypeptide and the candidate substance are further incubated in the presence of a polyclonal or a monoclonal antibody that specifically binds to the olfactory receptor protein of the invention under consideration or to said peptide fragment or variant thereof.

In another embodiment of the present screening method, increasing concentrations of a substance competing for binding to the olfactory receptor with the considered candidate substance is added, simultaneously or prior to the addition of the candidate substance or molecule, when performing step c) of said method. By this technique, the detection and optionally the quantification of the complexes formed between the olfactory receptor protein or the peptide fragment or variant thereof and the candidate substance or molecule to be screened allows the one skilled in the art to determine the affinity value of said substance or molecule for said olfactory receptor protein or the peptide fragment or variant thereof.

The olfactory receptor selected from the group consisting of OLF1 to OLF10, or a peptide fragment or a variant thereof, can be overexpressed and purified in a bacterial system such as E coli as described in Kiefer et al. (1996) and Tucker et al. (1996). The olfactory receptor coding sequence can be fused to its N-terminus with GST (Glutathione S transferase) or MBP (Maltose Binding Protein) and to its C-terminus with poly-histidine tag, Bio tag or Strep tag for facilitating the purification of the expressed protein. The Bio tag is 13 amino acid residues long, is biotinylated *in vivo* in E. coli, and will therefore bind to both avidin and streptavidin. The Strep tag is 9 amino acid residues long and binds specifically to streptavidin, but not to avidin. Therewith, a purification step by affinity can be carried out based on the interaction of a poly-histidine tail with immobilized metal ions, of the biotinylated Bio tag with monomeric avidin, of the Strep tag with streptavidin, of the GST segment with the glutathione, or of the MBP segment with the maltose. Thioredoxin can be eventually inserted between the receptor C-terminus and the tag and could increase the expression level. The fusion protein is solubilized in 1% N-lauroyl sarcosine, and 0.2 % digitonin is added. It is purified by affinity chromatography. The MBP, GST or tag segment can be then removed. After the olfactory receptor protein purification, sarcosyl can be replaced with digitonin which is a detergent widely used to stabilize the G protein-coupled receptors. The purified receptor is reconstituted into lipid vesicles preferably composed of phosphatidylcholine: phosphatidylglycerol (4:1) by adding the lipid dissolved in dodecyl maltoside and removing the detergent.

The olfactory receptor selected from the group consisting of OLF1 to OLF10, or a peptide fragment or a variant thereof, can also be overexpressed and purified in a baculovirus/Sf9 system as described in Nekrasova et al. (1996). The olfactory receptor gene, or a fragment thereof, is preferably expressed with a "flag" peptide epitope tag and/or a poly-histidine tag to either its N- or 5 C-terminus for facilitating the purification of the expressed protein. Therefore, the olfactory receptor gene, or a fragment or a variant thereof, is preferably subcloned into the baculovirus transfer vector pAcSGHisNT to create constructs that encoded olfactory receptor with amino-terminal poly-histidine tag. The resulting transfer vector is transfected preferably with BaculoGold DNA into Sf9 cells. The expressed olfactory receptors are then solubilized either in 1 % N-lauryl sarcosine or 1.5 10 % lysophosphatidylcholine, but preferably in lysophosphatidylcholine. After solubilization, the olfactory receptors are purified by affinity chromatography on nickel nitrilotriacetic acid resin and by cation-exchange chromatography with carboxymethyl sepharose cation-exchange column. The tag segment can be then removed. The purified receptor is reconstituted into lipid vesicles preferably composed of dimyristoylglycerophosphocholine, cholesterol, dialmitoylglycerophosphoserine and 15 dipalmitoylglycerophosphoethanolamine (in molecular ratio 54:35:10:1).

Once the olfactory receptor protein or one of its peptide fragments or variants has been obtained as described above, candidate substances or molecules can then be assayed for their capacity to bind thereto.

The candidate substance or molecule to be assayed for interacting with an olfactory receptor 20 of the invention may be of diverse nature, including, without being limited to, natural or synthetic organic compounds or molecules of biological origin such as peptide. It can comprise aromatic or aliphatic compounds with various functional groups such as alcohol, aldehyde, ester, ether, ketone, carboxylic, amine. An example of a substance panel which can be used is provided by Zhao et al. (1998).

25 The screening of substances or molecules interacting with an olfactory receptor, or a fragment thereof, is carried out by photoaffinity labeling experiments described in Kiefer et al. (1996). The odorant is labeled, preferably radiolabeled, and incubated with lipid vesicles including the purified olfactory receptor. The odorants bound to the olfactory receptors are crosslinked by exposure to ultraviolet light. Then, the samples are subjected to SDS polyacrylamide gel 30 electrophoresis. Proteins are visualized by Coomassie-blue staining and the odorants are revealed, preferably by autoradiography. In another embodiment, the proteins can be visualized by Western Blot with a polyclonal or monoclonal antibody that specifically binds to the olfactory receptor under consideration. Once a substance binding to the considered olfactory receptor is identified, the binding specificity of this substance is confirmed with competition experiments demonstrating that 35 increasing concentrations of unlabeled ligand accomplish a dose-dependent displacement of the radioactive ligand.

The identification of a first substance specific to one of the olfactory receptors of the present invention facilitates the screening of other substances. Indeed, the binding capacity of the screened substances to this olfactory receptor can be carried out through a competition experiments against the first identified substance which is labeled.

5 The invention also pertains to kits useful for performing the hereinbefore described screening method. Preferably, such kits comprise a polypeptide selected from the group consisting of the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21 or a peptide fragment or a variant thereof, and optionally means useful to detect the complex formed between the considered olfactory receptor polypeptide or its peptide fragment or variant and the candidate substance. In a 10 preferred embodiment, the kit can comprise an already identified substance specific of the olfactory receptor under consideration which is labeled, preferably radiolabeled, and a monoclonal or polyclonal antibody directed against the considered olfactory receptor.

A second screening method embodiment consists of a method for the screening of ligand molecules interacting with an olfactory receptor polypeptide selected from the group consisting of 15 SEQ ID Nos 12-21, wherein said method comprises :

- a) providing a recombinant eukaryotic host cell containing a nucleic acid encoding a polypeptide selected from the group comprising, consisting essentially of, or consisting the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21, or variants or fragments thereof;
- 20 b) preparing membrane extracts of said recombinant eukaryotic host cell;
- c) bringing into contact the membrane extracts prepared at step b) with a selected ligand molecule; and
- d) detecting the production level of second messengers metabolites.

The baculovirus-Sf9 cell system enables a foreign DNA encoding an olfactory receptor 25 selected from the group consisting of OLF1 to OLF10, or a peptide fragment or a variant thereof, to be expressed with high efficiency. Moreover, it can be used to couple a heterologous expressed olfactory receptor to the second messenger cascades. Therefore, the binding specificity of an olfactory receptor can be assessed through an assay of odorant-induced generation of cAMP or inositol triphosphate (InsP3) described in Raming et al. (1993).

30 Briefly, a cell line derived from Sf9 is infected by baculovirus, such as baculovirus transfer vector pVL1393, harboring DNA encoding the olfactory receptor or a fragment thereof downstream from a strong promoter, preferably the polyhedrin promoter. Recombinant virus are purified and used to infect 1.5×10^8 Sf9 cells in 100 ml spinner cultures at high multiplicity of infection. Cells are collected after a postinfection delay, preferably 48 h, and membrane fractions are isolated as follow.

35 Cells are pelleted (at 250g for 10 min at 4°C), washed with Ringer solution (120 mM NaCl, 5 mM KCl, 1.6 mM K₂HPO₄, 1.2 mM MgSO₄, 25 mM NaHCO₃, 5 mM glucose, pH7.4) and disrupted using a glass homogenizer in homogenization buffer (10 mM Tris-HCl, pH 8.0, 2 mM

EGTA, 3 mM MgCl₂) containing antiproteases. The homogenate is centrifuged and the pellet is washed. Supernatants are centrifuged at 33,000g for 20 min. The final pellet is resuspended in homogenization buffer and the protein concentration is determined.

Assay of odorant substance-induced generation of second messengers cAMP and InsP3 is performed as follow. Suspensions of Sf9 cell membrane preparations (300 µg protein) are rapidly mixed with a stimulation buffer (200 mM NaCl, 10 mM EGTA, 50 mM MOPS, 2.5 mM MgCl₂, 1 mM DTT, 0.05 % Na-cholate, 1 mM ATP, 1 µM GTP, and 0.02 µM free Ca²⁺) containing the candidate substances at the appropriate concentrations. The reaction is stopped after a short time, preferably 1 sec, by injecting 10 % Perchloric acid. Quenched samples are assayed for second messenger concentrations. The quenched and cooled samples are vortexed and centrifuged for 5 min at 2500g at 4°C. 400 µl of the supernatants are transferred to a separate tube containing 100 µl of 10 mM EDTA (pH 7). The sample are neutralized by adding 500 µl of a 1:1 (v/v) mixture of 1,1,2 trichlorofluoroethane, followed by thorough mixing. After centrifugation for 2 min at 500g, three phases are obtained. The upper phase, which contains all water soluble components, is used for carrying out the concentration measurements. cAMP and InsP3 concentrations are determined according the procedure of Steiner et al. (1972) and Palmer et al. (1989), respectively.

The invention also concerns a kit for the screening of odorant ligand molecules interacting with an olfactory receptor polypeptide selected from the group consisting of the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21, wherein said kit comprises :

20 a) a recombinant eukaryotic host cell containing a nucleic acid encoding a polypeptide selected from the group comprising, consisting essentially of, or consisting of the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21 or variants or fragments thereof; and

25 b) optionally, reagents necessary for the measurement of second messenger metabolites in a sample.

The screening of substances or molecules interacting with an olfactory receptor, or a fragment thereof, can also be carried out through the measurement of the increase of the response to odorants in an olfactory epithelium overexpressing an olfactory receptor selected from the group consisting of OLF1 to OLF10, or a peptide fragment or a variant thereof, as described in Zhao et al. (1998). The response is assessed by electro-olfactogram which measures a transepithelial potential resulting from the summed activity of many olfactory neurons. In order to overexpress the olfactory receptor, or a fragment thereof, in an olfactory epithelium, an adenovirus containing the olfactory receptor gene is generated. To aid in electro-olfactogram electrode placements, the olfactory receptor coding sequence is preferably combined in the adenovirus with the physiological marker green fluorescent protein (GFP) in such manner that the two proteins are simultaneously expressed. The olfactory epithelium of an animal, preferably of a rat, is infected by the adenovirus. Animals are killed 3 to 8 days after infection and the nasal cavity is opened, exposing the medial surface of the

nasal turbinates. Under fluorescent illumination, the GFP clearly marked the pattern of viral infection and olfactory receptor expression. Odorant substance are applied to the olfactory epithelium in the vapor phase by injecting a pressurized pulse of odorant vapor into a continuous stream of humidified clean air. Electro-olfactogram recordings are obtained with a glass capillary 5 electrode placed on the surface of the epithelium and connected to a differential amplifier. The olfactory receptor specificity is assessed from the increase of response in infected animals compared to uninfected animals. To account for the variability between animals, a standard odorant to which all other odorant responses are normalized is used.

A third screening method embodiment consists of a method for the screening of ligand 10 molecules interacting with an olfactory receptor polypeptide selected from the group consisting of the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21, wherein said method comprises :

- a) providing an adenovirus containing a nucleic acid encoding a polypeptide selected from the group comprising, consisting essentially of, or consisting of the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21, or variants or fragments thereof;
- 15 b) infecting an olfactory epithelium with said adenovirus;
- c) bringing into contact the olfactory epithelium b) with a selected ligand molecule;
- and
- d) detecting the increase of the response to said ligand molecule.

20 G. METHODS FOR INHIBITING THE EXPRESSION OF AN OLFACTORY RECEPTOR GENE

Other therapeutic compositions according to the present invention comprise advantageously an oligonucleotide fragment of the nucleic sequence of olfactory receptor as an antisense tool or a triple helix tool that inhibits the expression of the corresponding olfactory receptor gene. A 25 preferred fragment of the nucleic sequence of olfactory receptor comprises an allele of at least one of the biallelic markers A1 to A13.

Antisense Approach

Preferred methods using antisense polynucleotide according to the present invention are the procedures described by Szakiel et al.(1995).

30 Preferred antisense polynucleotides are described in the section entitled "Nuclear Antisense DNA Constructs".

The antisense nucleic acids should have a length and melting temperature sufficient to permit formation of an intracellular duplex having sufficient stability to inhibit the expression of the olfactory receptor mRNA in the duplex. Strategies for designing antisense nucleic acids suitable for 35 use in gene therapy are disclosed in Green et al., (1986) and Izant and Weintraub, (1984).

In some strategies, antisense molecules are obtained by reversing the orientation of the olfactory receptor coding region with respect to a promoter so as to transcribe the opposite strand from that which is normally transcribed in the cell. The antisense molecules may be transcribed using *in vitro* transcription systems such as those which employ T7 or SP6 polymerase to generate 5 the transcript. Another approach involves transcription of olfactory receptor antisense nucleic acids *in vivo* by operably linking DNA containing the antisense sequence to a promoter in a suitable expression vector.

Alternatively, suitable antisense strategies are those described by Rossi et al.(1991), in the International Applications Nos. WO 94/23026, WO 95/04141, WO 92/18522 and in the European 10 Patent Application No. EP 0 572 287 A2

An alternative to the antisense technology that is used according to the present invention comprises using ribozymes that will bind to a target sequence via their complementary polynucleotide tail and that will cleave the corresponding RNA by hydrolyzing its target site (namely "hammerhead ribozymes"). Briefly, the simplified cycle of a hammerhead ribozyme 15 comprises (1) sequence specific binding to the target RNA via complementary antisense sequences; (2) site-specific hydrolysis of the cleavable motif of the target strand; and (3) release of cleavage products, which gives rise to another catalytic cycle. Indeed, the use of long-chain antisense polynucleotide (at least 30 bases long) or ribozymes with long antisense arms are advantageous. A preferred delivery system for antisense ribozyme is achieved by covalently linking these antisense 20 ribozymes to lipophilic groups or to use liposomes as a convenient vector. Preferred antisense ribozymes according to the present invention are prepared as described by Szakiel et al.(1995), the specific preparation procedures being referred to in said article.

Triple Helix Approach

The olfactory receptor genomic DNA may also be used to inhibit the expression of the 25 olfactory receptor gene based on intracellular triple helix formation.

Triple helix oligonucleotides are used to inhibit transcription from a genome. They are particularly useful for studying alterations in cell activity when it is associated with a particular gene.

Similarly, a portion of the olfactory receptor genomic DNA can be used to study the effect 30 of inhibiting olfactory receptor transcription within a cell. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences from the olfactory receptor genomic DNA are contemplated within the scope of this invention.

35 To carry out gene therapy strategies using the triple helix approach, the sequences of the olfactory receptor genomic DNA are first scanned to identify 10-mer to 20-mer homopyrimidine or homopurine stretches which could be used in triple-helix based strategies for inhibiting olfactory

receptor expression. Following identification of candidate homopyrimidine or homopurine stretches, their efficiency in inhibiting olfactory receptor expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into tissue culture cells which express the olfactory receptor gene.

5 The oligonucleotides can be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.

Treated cells are monitored for altered cell function or reduced olfactory receptor expression using techniques such as Northern blotting, RNase protection assays, or PCR based strategies to
10 monitor the transcription levels of the olfactory receptor gene in cells which have been treated with the oligonucleotide.

The oligonucleotides which are effective in inhibiting gene expression in tissue culture cells may then be introduced in vivo using the techniques described above in the antisense approach at a dosage calculated based on the in vitro results, as described in antisense approach.

15 In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3' end of the alpha oligonucleotide to stabilize the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al.(1989).

20 H. COMPUTER-RELATED EMBODIMENTS

As used herein the term "nucleic acid codes of the invention" encompass the nucleotide sequences comprising, consisting essentially of, or consisting of any of the polynucleotides described in the "Coding Regions of the olfactory receptor gene" section, "Genomic sequence of the olfactory receptor gene" section and the "Oligonucleotide Probes And Primers" section, or variants 25 thereof, or complementary sequences thereto. Homologous sequences refer to a sequence having at least 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, or 75% homology to these contiguous spans. Homology may be determined using any method described herein, including BLAST2N with the default parameters or with any modified parameters. Homologous sequences also may include RNA sequences in which uridines replace the thymines in the nucleic acid codes of the invention.

30 As used herein the term "polypeptide codes of the invention" encompass the polypeptide sequences comprising any of the polypeptides described in the "OLF1 to OFL10 proteins and polypeptide fragments".

It will be appreciated that the nucleic acid and polypeptide codes of the invention can be represented in the traditional single character format or three letter format respectively (See the inside
35 back cover of Stryer, Lubert. *Biochemistry*, 3rd edition. W. H Freeman & Co., New York.) or in any

other format or code which records the identity of the nucleotides or the amino acid respectively in a sequence.

It will be appreciated by those skilled in the art that the nucleic acid codes of the invention and polypeptide codes of the invention can be stored, recorded, and manipulated on any medium which can 5 be read and accessed by a computer. As used herein, the words "recorded" and "stored" refer to a process for storing information on a computer medium. A skilled artisan can readily adopt any of the presently known methods for recording information on a computer readable medium to generate manufactures comprising one or more of the nucleic acid codes of the invention, or one or more of the 10 polypeptide codes of the invention. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, 20, 25, 30, or 50 nucleic acid codes of the invention. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, 20, 25, 30, or 50 polypeptide codes of the invention.

Computer readable media include magnetically readable media, optically readable media, electronically readable media and magnetic/optical media. For example, the computer readable media 15 may be a hard disc, a floppy disc, a magnetic tape, CD-ROM, DVD, RAM, or ROM as well as other types of other media known to those skilled in the art.

Embodiments of the present invention include systems, particularly computer systems which contain the sequence information described herein. As used herein, "a computer system" refers to the hardware components, software components, and data storage components used to store and/or analyze 20 the nucleotide sequences of the nucleic acid codes of the invention, the amino acid sequences of the polypeptide codes of the invention, or other sequences. The computer system preferably includes the computer readable media described above, and a processor for accessing and manipulating the sequence data.

In some embodiments, the computer system may further comprise a sequence comparer for 25 comparing the nucleic acid codes or polypeptide codes of the invention stored on a computer readable medium to reference nucleotide sequences stored on a computer readable medium. A "sequence comparer" refers to one or more programs which are implemented on the computer system to compare a nucleotide or polypeptide sequence with other nucleotide or polypeptide sequences and/or compounds including but not limited to peptides, peptidomimetics, and chemicals the sequences or structures of 30 which are stored within the data storage means. For example, the sequence comparer may compare the nucleotide sequences of the nucleic acid codes of the invention or the amino acid sequences of the polypeptide codes of the invention stored on a computer readable medium to reference sequences stored on a computer readable medium to identify homologies, motifs implicated in biological function, or structural motifs. The various sequence comparer programs identified elsewhere in this patent 35 specification are particularly contemplated for use in this aspect of the invention.

Accordingly, one aspect of the present invention is a computer system comprising a processor, a data storage device having stored thereon a nucleic acid code of the invention or a

polypeptide code of the invention, a data storage device having retrievably stored thereon reference nucleotide sequences or polypeptide sequences to be compared to the nucleic acid code of the invention or polypeptide code of the invention and a sequence comparer for conducting the comparison. The sequence comparer may indicate a homology level between the sequences

5 compared or identify structural motifs in the nucleic acid code of the invention and polypeptide codes of the invention or it may identify structural motifs in sequences which are compared to these nucleic acid codes and polypeptide codes. In some embodiments, the data storage device may have stored thereon the sequences of at least 2, 5, 10, 15, 20, 25, 30, or 50 of the nucleic acid codes of the invention or polypeptide codes of the invention.

10 Another aspect of the present invention is a method for determining the level of homology between a nucleic acid code of the invention and a reference nucleotide sequence, comprising the steps of reading the nucleic acid code and the reference nucleotide sequence through the use of a computer program which determines homology levels and determining homology between the nucleic acid code and the reference nucleotide sequence with the computer program. The computer program
15 may be any of a number of computer programs for determining homology levels, including those specifically enumerated herein, including BLAST2N with the default parameters or with any modified parameters. The method may be implemented using the computer systems described above. The method may also be performed by reading 2, 5, 10, 15, 20, 25, 30, or 50 of the above described nucleic acid codes of the invention through the use of the computer program and determining homology
20 between the nucleic acid codes and reference nucleotide sequences.

Alternatively, the computer program may be a computer program which compares the nucleotide sequences of the nucleic acid codes of the present invention, to reference nucleotide sequences in order to determine whether the nucleic acid code of the invention differs from a reference nucleic acid sequence at one or more positions. Optionally such a program records the length and
25 identity of inserted, deleted or substituted nucleotides with respect to the sequence of either the reference polynucleotide or the nucleic acid code of the invention. In one embodiment, the computer program may be a program which determines whether the nucleotide sequences of the nucleic acid codes of the invention contain one or more single nucleotide polymorphisms (SNP) with respect to a reference nucleotide sequence. These single nucleotide polymorphisms may each comprise a single
30 base substitution, insertion, or deletion.

Another aspect of the present invention is a method for determining the level of homology between a polypeptide code of the invention and a reference polypeptide sequence, comprising the steps of reading the polypeptide code of the invention and the reference polypeptide sequence through use of a computer program which determines homology levels and determining homology between the
35 polypeptide code and the reference polypeptide sequence using the computer program.

Accordingly, another aspect of the present invention is a method for determining whether a nucleic acid code of the invention differs at one or more nucleotides from a reference nucleotide

sequence comprising the steps of reading the nucleic acid code and the reference nucleotide sequence through use of a computer program which identifies differences between nucleic acid sequences and identifying differences between the nucleic acid code and the reference nucleotide sequence with the computer program. In some embodiments, the computer program is a program 5 which identifies single nucleotide polymorphisms. The method may be implemented by the computer systems described above. The method may also be performed by reading at least 2, 5, 10, 15, 20, 25, 30, or 50 of the nucleic acid codes of the invention and the reference nucleotide sequences through the use of the computer program and identifying differences between the nucleic acid codes and the reference nucleotide sequences with the computer program.

10 An "identifier" refers to one or more programs which identifies certain features within the above-described nucleotide sequences of the nucleic acid codes of the invention or the amino acid sequences of the polypeptide codes of the invention.

In one embodiment, the identifier may comprise a molecular modeling program which determines the 3-dimensional structure of the polypeptides codes of the invention. In some 15 embodiments, the molecular modeling program identifies target sequences that are most compatible with profiles representing the structural environments of the residues in known three-dimensional protein structures. (See, e.g., Eisenberg et al., U.S. Patent No. 5,436,850 issued July 25, 1995). In another technique, the known three-dimensional structures of proteins in a given family are superimposed to define the structurally conserved regions in that family. This protein modeling 20 technique also uses the known three-dimensional structure of a homologous protein to approximate the structure of the polypeptide codes of the invention. (See e.g., Srinivasan, et al., U.S. Patent No. 5,557,535 issued September 17, 1996). Conventional homology modeling techniques have been used routinely to build models of proteases and antibodies. (Sowdhamini et al., (1997)). Comparative approaches can also be used to develop three-dimensional protein models when the 25 protein of interest has poor sequence identity to template proteins. In some cases, proteins fold into similar three-dimensional structures despite having very weak sequence identities. For example, the three-dimensional structures of a number of helical cytokines fold in similar three-dimensional topology in spite of weak sequence homology.

The recent development of threading methods now enables the identification of likely 30 folding patterns in a number of situations where the structural relatedness between target and template(s) is not detectable at the sequence level. Hybrid methods, in which fold recognition is performed using Multiple Sequence Threading (MST), structural equivalencies are deduced from the threading output using a distance geometry program DRAGON to construct a low resolution model, and a full-atom representation is constructed using a molecular modeling package such as 35 QUANTA. According to this 3-step approach, candidate templates are first identified by using the novel fold recognition algorithm MST, which is capable of performing simultaneous threading of multiple aligned sequences onto one or more 3-D structures. In a second step, the structural

equivalencies obtained from the MST output are converted into interresidue distance restraints and fed into the distance geometry program DRAGON, together with auxiliary information obtained from secondary structure predictions. The program combines the restraints in an unbiased manner and rapidly generates a large number of low resolution model confirmations. In a third step, these 5 low resolution model confirmations are converted into full-atom models and subjected to energy minimization using the molecular modeling package QUANTA. (See e.g., Aszódi et al., (1997)).

The results of the molecular modeling analysis may then be used in rational drug design techniques to identify agents which modulate the activity of the polypeptide codes of the invention.

Accordingly, another aspect of the present invention is a method of identifying a feature 10 within the nucleic acid codes of the invention or the polypeptide codes of the invention comprising reading the nucleic acid code(s) or the polypeptide code(s) through the use of a computer program which identifies features therein and identifying features within the nucleic acid code(s) or polypeptide code(s) with the computer program. In one embodiment, computer program comprises a computer program which identifies open reading frames. In a further embodiment, the computer 15 program identifies structural motifs in a polypeptide sequence. In another embodiment, the computer program comprises a molecular modeling program. The method may be performed by reading a single sequence or at least 2, 5, 10, 15, 20, 25, 30, or 50 of the nucleic acid codes of the invention or the polypeptide codes of the invention through the use of the computer program and identifying features within the nucleic acid codes or polypeptide codes with the computer program.

20 The nucleic acid codes of the invention or the polypeptide codes of the invention may be stored and manipulated in a variety of data processor programs in a variety of formats. For example, they may be stored as text in a word processing file, such as MicrosoftWORD or WORDPERFECT or as an ASCII file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE. In addition, many computer programs and databases may be used as sequence 25 comparers, identifiers, or sources of reference nucleotide or polypeptide sequences to be compared to the nucleic acid codes of the invention or the polypeptide codes of the invention. The following list is intended not to limit the invention but to provide guidance to programs and databases which are useful with the nucleic acid codes of the invention or the polypeptide codes of the invention. The programs and databases which may be used include, but are not limited to: MacPattern (EMBL), DiscoveryBase 30 (Molecular Applications Group), GeneMine (Molecular Applications Group), Look (Molecular Applications Group), MacLook (Molecular Applications Group), BLAST and BLAST2 (NCBI), BLASTN and BLASTX (Altschul et al, 1990), FASTA (Pearson and Lipman, 1988), FASTDB (Brutlag et al., 1990), Catalyst (Molecular Simulations Inc.), Catalyst/SHAPE (Molecular Simulations Inc.), Cerius².DBAccess (Molecular Simulations Inc.), HypoGen (Molecular Simulations Inc.), Insight 35 II, (Molecular Simulations Inc.), Discover (Molecular Simulations Inc.), CHARMM (Molecular Simulations Inc.), Felix (Molecular Simulations Inc.), DelPhi, (Molecular Simulations Inc.), QuanteMM, (Molecular Simulations Inc.), Homology (Molecular Simulations Inc.), Modeler

(Molecular Simulations Inc.), ISIS (Molecular Simulations Inc.), Quanta/Protein Design (Molecular Simulations Inc.), WebLab (Molecular Simulations Inc.), WebLab Diversity Explorer (Molecular Simulations Inc.), Gene Explorer (Molecular Simulations Inc.), SeqFold (Molecular Simulations Inc.), the EMBL/Swissprotein database, the MDL Available Chemicals Directory database, the MDL Drug

5 Data Report data base, the Comprehensive Medicinal Chemistry database, Derwents's World Drug Index database, the BioByteMasterFile database, the Genbank database, and the Genseqn database. Many other programs and data bases would be apparent to one of skill in the art given the present disclosure.

Motifs which may be detected using the above programs include sequences encoding

10 leucine zippers, helix-turn-helix motifs, glycosylation sites, ubiquitination sites, alpha helices, and beta sheets, signal sequences encoding signal peptides which direct the secretion of the encoded proteins, sequences implicated in transcription regulation such as homeoboxes, acidic stretches, enzymatic active sites, substrate binding sites, and enzymatic cleavage sites.

15 Throughout this application, various publications, patents and published patent applications are cited. The disclosures of these publications, patents and published patent specification referenced in this application are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

EXAMPLES

20 **EXAMPLE 1: LOCALIZATION OF THE OLFACTORY RECEPTOR GENE OLF3 AND OLF5 ON THE HUMAN CHROMOSOMES.**

Metaphase chromosome preparation

Metaphase chromosomes were prepared from phytohemagglutinin (PHA)-stimulated blood cell donors. PHA stimulated lymphocytes from healthy males were cultured for 72 h in RPMI-1640 medium. For synchronization, methotrexate (10 µM) was added for 17 h, followed by addition of 5-bromodeoxyuridine (5-BrdU, 0.1 mM) for 6 h. Colcemid (1 mg/ml) was added for the last 15 min before harvesting the cells. Cells were collected, washed in RPMI, incubated with a hypotonic solution of KCl (75 mM) at 37°C for 15 min and fixed in three changes of methanol:acid acetic (3:1). The cell suspension was dropped onto a glass slide, air-dried and kept in darkness at -20°C until use.

Probes:

- The BAC H0526H04 containing Olf3 and Olf5 genes was used to generate probe by Alu-PCR. PCR amplification of BAC recombinant DNA (50 ng) was carried out as described by Romana et al. (1993).

- Two DNA fragments carrying respectively Olf3 and Olf5 sequences were generated by long range PCR with specific primers (SEQ ID 96-99) and used as probes to confirm the localization of each genes. Olf3 and Olf5 amplicons are respectively 2.8 kb and 3.2 kb fragments.

Probes were labeled by nick translation with bio-16-dUTP (Boehringer Mannheim), and
5 purified over a Sephadex G50 column.

Fluorescence In Situ Hybridization

To determine the chromosomal localization of both genes, the BAC probe was initially hybridized to human metaphase cells. When biotinylated PCR products of BAC DNA were used in hybridization experiment, 75 ng of probe was precipitated with 75 µg of competitor DNA (human
10 Cot1 DNA, GIBCO-BRL) and resuspended in 10 µl of hybridization buffer (50% formamide, 2 X SSC, 10% dextran sulfate, 1 mg/ml sonicated herring DNA, pH 7). When long range PCR products of Olf3 or Olf5 genes were used as probe, 5 ng of biotinylated probe were mixed with 5 µg of human Cot1 DNA. Prior to hybridization, the probe was denatured at 70°C for 10 min and preannealed at 37°C for 2 h.

15 Slides were treated for 1 h at 37°C with Rnase A (100 µg/ml), rinsed three times in 2 X SSC and dehydrated in an ethanol serie. Chromosome preparations were denatured in 70% formamide, 2 X SSC (pH 7), for 2 min at 70°C, then dehydrated at 4°C. The slides were treated with proteinase K (10 µg/ml in 20 mM Tris-HCl, 2 mM CaCl₂) at 37°C for 8-10 min and dehydrated. After
20 preannealing, the hybridization mixture containing the probe was placed on the slide, covered with a coverslip, sealed with rubber cement and incubated overnight in a humid chamber at 37°C. After hybridization and post hybridization washes, the biotinylated probe was detected by avidin-FITC (5 µg/ml, Vector Laboratories) and amplified once with additional layers of biotinylated goat anti-avidin (5 µg/ml, Vector Laboratories) and avidin-FITC. For chromosomal localization, fluorescent R-Bands were obtained as described by Cherif et al. (1990). The slides were observed under a
25 LEICA fluorescent microscope (DMRXA). Chromosomes were counterstained with propidium iodide and the fluorescent signal of the probe appeared as two symmetrical yellow-green spots on both chromatids of the fluorescent R-band chromosome.

Localization

A specific signal (a double yellow-green spot) was observed on band 11q12-q13 on at least
30 on chromosome 11 in >80% of the metaphases with all the probes.

EXAMPLE 2 : IDENTIFICATION OF BIALLELIC MARKERS: DNA EXTRACTION

Donors were unrelated and healthy. They presented a sufficient diversity for being representative of a French heterogeneous population. The DNA from 100 individuals was extracted and tested for the
35 detection of the biallelic markers.

30 ml of peripheral venous blood were taken from each donor in the presence of EDTA. Cells (pellet) were collected after centrifugation for 10 minutes at 2000 rpm. Red cells were lysed by a lysis solution (50 ml final volume : 10 mM Tris pH7.6; 5 mM MgCl₂; 10 mM NaCl). The solution was centrifuged (10 minutes, 2000 rpm) as many times as necessary to eliminate the residual red 5 cells present in the supernatant, after resuspension of the pellet in the lysis solution.

The pellet of white cells was lysed overnight at 42°C with 3.7 ml of lysis solution composed of:

- 3 ml TE 10-2 (Tris-HCl 10 mM, EDTA 2 mM) / NaCl 0.4 M
- 200 µl SDS 10%
- 10 - 500 µl K-proteinase (2 mg K-proteinase in TE 10-2 / NaCl 0.4 M).

For the extraction of proteins, 1 ml saturated NaCl (6M) (1/3.5 v/v) was added. After vigorous agitation, the solution was centrifuged for 20 minutes at 10000 rpm.

For the precipitation of DNA, 2 to 3 volumes of 100% ethanol were added to the previous supernatant, and the solution was centrifuged for 30 minutes at 2000 rpm. The DNA solution was 15 rinsed three times with 70% ethanol to eliminate salts, and centrifuged for 20 minutes at 2000 rpm. The pellet was dried at 37°C, and resuspended in 1 ml TE 10-1 or 1 ml water. The DNA concentration was evaluated by measuring the OD at 260 nm (1 unit OD = 50 µg/ml DNA).

To determine the presence of proteins in the DNA solution, the OD 260 / OD 280 ratio was determined. Only DNA preparations having a OD 260 / OD 280 ratio between 1.8 and 2 were used 20 in the subsequent examples described below.

The pool was constituted by mixing equivalent quantities of DNA from each individual.

EXAMPLE 3 : IDENTIFICATION OF BIALLELIC MARKERS: AMPLIFICATION OF GENOMIC DNA BY PCR

The amplification of specific genomic sequences of the DNA samples of example 2 was 25 carried out on the pool of DNA obtained previously. In addition, 50 individual samples were similarly amplified.

PCR assays were performed using the following protocol:

	Final volume	25 µl
	DNA	2 ng/µl
30	MgCl ₂	2 mM
	dNTP (each)	200 µM
	primer (each)	2.9 ng/µl
	Ampli Taq Gold DNA polymerase	0.05 unit/µl
	PCR buffer (10x = 0.1 M TrisHCl pH8.3 0.5M KCl)	1x

35 Each pair of first primers was designed using the sequence information of the olfactory receptor gene cluster disclosed herein and the OSP software (Hillier & Green, 1991). This first pair

of primers was about 20 nucleotides in length and had the sequences disclosed in Table 1 in the columns labeled PU and RP.

Table 1

Amplicon	Position range of the amplicon in SEQ ID 1		Primer name RP	Position range of amplification primer in SEQ ID No 1		Primer name PU	Complementary position range of amplification primer in SEQ ID No 1	
99-13670	7362	7824	B1	7362	7380	C1	7805	7824
99-13669	8120	8662	B2	8120	8140	C2	8643	8662
99-13666	14308	14757	B3	14308	14328	C3	14740	14757
99-13664	19346	19845	B4	19346	19366	C4	19826	19845
99-13663	20298	20800	B5	20298	20318	C5	20781	20800
99-13660	76752	77223	B6	76752	76772	C6	77205	77223
99-13652	90967	91494	B7	90967	90987	C7	91474	91494
99-13671	133925	134393	B8	133925	133945	C8	134375	134393
99-13649	139807	140351	B9	139807	139826	C9	140331	140351
99-13648	140912	141434	B10	140912	140932	C10	141416	141434
99-13647	143828	144309	B11	143828	143847	C11	144292	144309

5 Preferably, the primers contained a common oligonucleotide tail upstream of the specific bases targeted for amplification which was useful for sequencing.

Primers PU contain the following additional PU 5' sequence :

TGTAAAACGACGGCCAGT; primers RP contain the following RP 5' sequence :

CAGGAAACAGCTATGACC. The primer containing the additional PU 5' sequence is listed in

10 SEQ ID No 26. The primer containing the additional RP 5' sequence is listed in SEQ ID No 27.

The synthesis of these primers was performed following the phosphoramidite method, on a GENSET UFPS 24.1 synthesizer.

DNA amplification was performed on a Genius II thermocycler. After heating at 95°C for 10 min, 40 cycles were performed. Each cycle comprised: 30 sec at 95°C, 54°C for 1 min, and 30 sec at 15 72°C. For final elongation, 10 min at 72°C ended the amplification. The quantities of the amplification products obtained were determined on 96-well microtiter plates, using a fluorometer and Picogreen as intercalant agent (Molecular Probes).

EXAMPLE 4 : IDENTIFICATION OF BIALLELIC MARKERS: SEQUENCING OF AMPLIFIED GENOMIC DNA AND IDENTIFICATION OF POLYMORPHISMS.

20 The sequencing of the amplified DNA obtained in example 3 was carried out on ABI 377 sequencers. The sequences of the amplification products were determined using automated dideoxy terminator sequencing reactions with a dye terminator cycle sequencing protocol. The products of the sequencing reactions were run on sequencing gels and the sequences were determined using gel image analysis (ABI Prism DNA Sequencing Analysis software (2.1.2 version)).

The sequence data were further evaluated using the above mentioned polymorphism analysis software designed to detect the presence of biallelic markers among the pooled amplified fragments. The polymorphism search was based on the presence of superimposed peaks in the electrophoresis pattern resulting from different bases occurring at the same position as described previously.

5 11 fragments of amplification were analyzed. In these segments, 13 biallelic markers referred to as A1 to A13 in the BM column were detected. The localization of these biallelic markers is as shown in Table 2.

Table 2

Amplicon	BM	Marker Name	Localization in <i>OLF</i> gene cluster	Polymorphism	BM position in SEQ ID No 1
99-13670	A1	99-13670-305	Between Orf1 and Orf2	A/C	7521
99-13669	A2	99-13669-471	Between Orf1 and Orf2	A/C	8192
99-13666	A3	99-13666-275	Between Orf2 and Orf3	A/T	14483
99-13664	A4	99-13664-221	Between Orf2 and Orf3	A/G	19625
99-13663	A5	99-13663-218	Between Orf2 and Orf3	C/T	20583
99-13660	A6	99-13660-277	Between Orf4 and Orf5	G/T	76947
99-13652	A7	99-13652-407	Between Orf5 and Orf6	G/C	91088
99-13652	A8	99-13652-357	Between Orf5 and Orf6	C/T	91138
99-13652	A9	99-13652-308	Between Orf5 and Orf6	C/T	91187
99-13671	A10	99-13671-396	Between Orf9 and Orf10	C/T	133998
99-13649	A11	99-13649-286	Between Orf9 and Orf10	A/G	140066
99-13648	A12	99-13648-259	Between Orf9 and Orf10	C/T	141176
99-13647	A13	99-13647-278	After Orf10	C/T	144033

10

Table 3

BM	Marker Name	Position range of probes in SEQ ID No 1		Probes
A1	99-13670-305	7498	7544	P1
A2	99-13669-471	8169	8215	P2
A3	99-13666-275	14460	14506	P3
A4	99-13664-221	19602	19648	P4
A5	99-13663-218	20560	20606	P5
A6	99-13660-277	76924	76970	P6
A7	99-13652-407	91065	91111	P7
A8	99-13652-357	91115	91161	P8
A9	99-13652-308	91164	91210	P9
A10	99-13671-396	133975	134021	P10
A11	99-13649-286	140043	140089	P11
A12	99-13648-259	141153	141199	P12
A13	99-13647-278	144010	144056	P13

EXAMPLE 5 : VALIDATION OF THE POLYMORPHISMS THROUGH MICROSEQUENCING

The biallelic markers identified in example 4 were further confirmed and their respective frequencies were determined through microsequencing. Microsequencing was carried out for each 5 individual DNA sample described in Example 2.

Amplification from genomic DNA of individuals was performed by PCR as described above for the detection of the biallelic markers with the same set of PCR primers (Table 1).

The preferred primers used in microsequencing were about 19 nucleotides in length and hybridized just upstream of the considered polymorphic base. According to the invention, the 10 primers used in microsequencing are detailed in Table 4.

Table 4

Marker Name	BM	Mis. 1	Position range of microsequencing primer mis 1 in SEQ ID No 1	Mis. 2	Complementary position range of microsequencing primer mis. 2 in SEQ ID No 1
99-13670-305	A1	D1	7502	7520	E1
99-13669-471	A2	D2	8173	8191	E2
99-13666-275	A3	D3	14464	14482	E3
99-13664-221	A4	D4	19606	19624	E4
99-13663-218	A5	D5	20564	20582	E5
99-13660-277	A6	D6	76928	76946	E6
99-13652-407	A7	D7	91069	91087	E7
99-13652-357	A8	D8	91119	91137	E8
99-13652-308	A9	D9	91168	91186	E9
99-13671-396	A10	D10	133979	133997	E10
99-13649-286	A11	D11	140047	140065	E11
99-13648-259	A12	D12	141157	141175	E12
99-13647-278	A13	D13	144014	144032	E13

Mis 1 and Mis 2 respectively refer to microsequencing primers which hybridized with the non-coding strand of the olfactory receptor gene or with the coding strand of the olfactory receptor 15 gene.

The microsequencing reaction was performed as follows :

After purification of the amplification products, the microsequencing reaction mixture was prepared by adding, in a 20 µl final volume: 10 pmol microsequencing oligonucleotide, 1 U Thermosequenase (Amersham E79000G), 1.25 µl Thermosequenase buffer (260 mM Tris HCl pH 20 9.5, 65 mM MgCl₂), and the two appropriate fluorescent ddNTPs (Perkin Elmer, Dye Terminator Set 401095) complementary to the nucleotides at the polymorphic site of each biallelic marker tested, following the manufacturer's recommendations. After 4 minutes at 94°C, 20 PCR cycles of 15 sec at 55°C, 5 sec at 72°C, and 10 sec at 94°C were carried out in a Tetrad PTC-225 thermocycler (MJ Research). The unincorporated dye terminators were then removed by ethanol precipitation. Samples 25 were finally resuspended in formamide-EDTA loading buffer and heated for 2 min at 95°C before

being loaded on a polyacrylamide sequencing gel. The data were collected by an ABI PRISM 377 DNA sequencer and processed using the GENESCAN software (Perkin Elmer).

Following gel analysis, data were automatically processed with software that allows the determination of the alleles of biallelic markers present in each amplified fragment.

5 The software evaluates such factors as whether the intensities of the signals resulting from the above microsequencing procedures are weak, normal, or saturated, or whether the signals are ambiguous. In addition, the software identifies significant peaks (according to shape and height criteria). Among the significant peaks, peaks corresponding to the targeted site are identified based on their position. When two significant peaks are detected for the same position, each sample is
10 categorized classification as homozygous or heterozygous type based on the height ratio.

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein by the one skilled in the art without departing from the spirit and scope of the invention.

15

REFERENCES :

Adra et al., 1987, Gene, 60:65-74

Beard et al., 1980, Virology, Vol. 75:81

Beaucage et al., Tetrahedron Lett 1981, 22: 1859-1862

Bolmont et al., J. of Submicroscopic cytology and pathology, 1990, 22:117-122

20 Brown EL, Belagaje R, Ryan MJ, Khorana HG, *Methods Enzymol* 1979;68:109-151

Chai H. et al., 1993, Biotechnol. Appl. Biochem., 18:259-273

Cherif D, Julier C, Delattre O, Derré J, Lathrop GM and Berger R, *P.N.A.S. USA* (1990) 87: 6639-6643

Compton J. *Nature*. 1991 Mar 7; 350(6313): 91-92.

25 Current Protocols in Molecular Biology, 1989, Ausubel FM et al. (eds), Greene Publishing Associates, Sections 9.10-9.14.

Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2

Engvall E, 1980, *Methods Enzymol*, 70(A):419-439

Feldman and Steg, 1996, Medecine/Sciences, synthese, 12:47-55

30 Felgner et al., 1987, Proc. Natl. Acad. Sci., 84:7413

Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980).

Flotte et al., 1992, Am. J. Respir. Cell Mol. Biol., 7 : 349-356.

Fraley et al., 1980, J. Biol. Chem., 255:10431).

35 Fuller S.A. et al., 1996, Immunology in Current Protocols in Molecular Biology, Ausubel et al. Eds, John Wiley & Sons, Inc., USA

Graham, 1984, EMBO J., 3:2917

Guatelli JC et al., 1990, Proc. Natl. Acad. Sci. USA, 87 : 1874-1878.

Guzman, 1981, Cell, 23 : 175

Hames BD and Higgins SJ, 1985, "Nucleic acid hybridization : a practical approach", Hames and Higgins Ed., IRL Press, Oxford.

Harju L, et al., *Clin Chem* 1993;39(11Pt 1):2282-2287

Hartley JW, Rowe WP, *J Virol* 1976;19(1):19-25

Hillier L. and Green P. *Methods Appl.*, 1991, 1: 124-8.

Houbenweyl, 1974, in Meuthode der Organischen Chemie, E. Wunsch Ed., Volume 15-I et 15-II,

10 Thieme, Stuttgart

Huygen et al., 1996, Nature Medicine, 2(8):893-898

Julan et al., 1992, J. Gen. Virol., 73 : 3251 – 3255.

Kaneda et al., 1989, Science, 243:375

Kiefer H et al., 1996, Biochemistry, 35(50):16077-16084.

15 Koch Y., 1977, Biochem. Biophys. Res. Commun., 74:488-491

Kohler G. and Milstein C., 1975, Nature, 256 : 495.

Kort et al., 1983, Nucleic Acids Research, 11:8287-8301

Lenhard T. et al., 1996, Gene, 169:187-190

Levrero et al., 1991, Gene, 101:195

20 Lin Z, Floros J, 1998, Biotechniques, 24(6):937-940

Livak KJ, and Hainer JW., 1994, Hum Mutat., 3(4): 379-385.

Mackey K, Steinkamp A, Chomczynski P, 1998, Mol Biotechnol, 9(1):1-5

Mansour SL, Thomas KR, Capecchi MR, *Nature* 1988;336(6197):348-52

McLaughlin et al., 1989, J. Virol., 62 : 1963 – 1973.

25 Merrifield RB 1965 *Nature*. 207: 522-523.

Merrifield RB 1965 *Science*. 150: 178-185.

Midoux, 1993, Nucleic Acids Research, 21:871-878

Muzyczka et al., 1992, Curr. Topics in Micro. and Immunol., 158 : 97-129.

Narang SA, Hsiung HM, Brousseau R, *Methods Enzymol* 1979;68:90-98

30 Neda et al., 1991, J. Biol. Chem., 266 : 14143 – 14146.

Nekrasova E, Sosinskaya A, Natochin M, Lancet D, Gat U, *Eur J Biochem* 1996;238(1):28-37

O'Reilly et al., 1992, Baculovirus expression vectors : a Laboratory Manual. W.H. Freeman and Co., New York

Adra et al., 1987, Gene, 60:65-74

Ohno et al., 1994, Sciences, 265:781-784

35 Ohwada A, Hirschowitz EA, Crystal RG, *Hum Gene Ther* 1996;7:1567-76

Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973)

Pagano et al., 1967, J. Virol., 1:891

Palmer S et al., 1989, Biochim Biophys Acta, 1014(3):239-246.

Pastore, 1994, Circulation, 90:1-517

PCR Methods and Applications" (1991, Cold Spring Harbor Laboratory Press

5 Pearson WR, Lipman DJ, *Proc Natl Acad Sci U S A* 1988;85(8):2444-8

Porath J et al., 1975, Nature, 258(5536) : 598-599.

Raming K et al., 1993, Nature, 361(6410):353-356

Rettlez and Basenga, 1987, Mol. Cell. Biol., 7:1676-1685

Romana SP, Tachdjian G, Druart L, Cohen D, Berger R, Cherif D *Eur J Hum Genet* (1993) 1: 245-251.

10 Roth J.A. et al., 1996, Nature Medicine, 2(9):985-991

Rougeot, C. et al., *Eur. J. Biochem.* 219 (3): 765-773, 1994

Sambrook, J. Fritsch, E. F., and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2ed. Cold Spring Harbor Laboratory, Cold spring Harbor, New York

15 Samulski et al., 1989, J. Virol., 63 : 3822-3828.

Sanchez-Pescador R., 1988, J. Clin. Microbiol., 26(10):1934-1938

Sczakiel G. et al., 1995, Trends Microbiol., 1995, 3(6):213-217

Smith et al., 1983, Mol. Cell. Biol., 3:2156-2165.

Steiner AL et al., 1972, J Biol Chem, 247(4):1106-1113

20 Syvanen AC, et al., 1994, Hum Mutat., 3(3): 172-179.

Tacson et al., 1996, Nature Medicine, 2(8):888-892

Tucker J, Grisshammer R, *Biochem J* 1996;317(Pt 3):891-899

Urdea M.S., 1988, Nucleic Acids Research, 11: 4937-4957

Urdea MS et al., 1991, Nucleic Acids Symp Ser., 24: 197-200.

25 Vaitukaitis J. et al., 1971, J. Clin. Endocrinol. Metab., 33 : 988-991

Vlasak R. et al., 1983, Eur. J. Biochem., 135:123-126

White, B.A. Molecular Cloning to Genetic Engineering Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997

Zhao H et al., 1998, Science, 279(5348):237-242

30 Zhenlin et al., Gene, 1989, 78:243-254.

SEQUENCE LISTING FREE TEXT

The following free text appears in the accompanying Sequence Listing :

open reading frame
ubiquitin 1 pseudogene complement
5 ubiquitin 2 pseudogene complement
polymorphic base
or
complement
probe
10 sequencing oligonucleotide PrimerPU
sequencing oligonucleotide PrimerRP

What is claimed:

1. An isolated, purified, or recombinant polynucleotide comprising a contiguous span of at least 12 nucleotides of SEQ ID No 1 or the complements thereof, wherein said contiguous span comprises at least 1 of the following nucleotide positions of SEQ ID No 1: 1-113643, 114064-5 127488, 127855-144460.
2. An isolated, purified, or recombinant polynucleotide comprising a contiguous span of at least 12 nucleotides of a sequence selected from the group consisting of SEQ ID Nos 2-11 or the complements thereof.
- 10 3. An isolated, purified, or recombinant polynucleotide consisting essentially of a contiguous span of 8 to 50 nucleotides of SEQ ID No 1 or the complement thereof, wherein said span includes an olfactory receptor-related biallelic marker in said sequence.
- 15 4. A polynucleotide according to claim 3, wherein said olfactory receptor-related biallelic marker is selected from the group consisting of A1 to A13, and the complements thereof.
5. A polynucleotide according to claims 3 or 4, wherein said contiguous span is 18 to 47 nucleotides in length and said biallelic marker is within 4 nucleotides of the center of said 20 polynucleotide.
6. A polynucleotide according to claim 5, wherein said polynucleotide consists essentially of a sequence selected from the following sequences: P1 to P13, and the complementary sequences thereto.
- 25 7. A polynucleotide according to any one of claims 1, 2 or 3, wherein the 3' end of said contiguous span is present at the 3' end of said polynucleotide.
8. A polynucleotide according to claims 3 or 4, wherein the 3' end of said contiguous span is 30 located at the 3' end of said polynucleotide and said biallelic marker is present at the 3' end of said polynucleotide.
9. An isolated, purified, or recombinant polynucleotide consisting essentially of a contiguous span of 8 to 50 nucleotides of SEQ ID No 1 or the complement thereof, wherein the 3' end of said 35 contiguous span is located at the 3' end of said polynucleotide, and wherein the 3' end of said

polynucleotide is located within 20 nucleotides upstream of an olfactory receptor-related biallelic marker in said sequence.

10. A polynucleotide according to claim 9, wherein the 3' end of said polynucleotide is
5 located 1 nucleotide upstream of said olfactory receptor-related biallelic marker in said sequence.

11. A polynucleotide according to claim 10, wherein said polynucleotide consists
essentially of a sequence selected from the following sequences: D1 to D13, and E1 to E13.

10 12. A polynucleotide according to claim 7 consisting essentially of a sequence selected from
the following sequences: B1 to B11 and C1 to C11.

13. An isolated, purified, or recombinant polynucleotide which encodes a polypeptide
comprising a contiguous span of at least 6 amino acids of a sequence selected from the group
15 consisting of SEQ ID Nos 12-21.

14. A polynucleotide for use in a genotyping assay for determining the identity of the
nucleotide at an olfactory receptor-related biallelic marker or the complement thereof.

20 15. A polynucleotide according to claim 14, wherein the polynucleotide is used in an assay
selected from the group consisting of: a hybridization assay, a sequencing assay, an enzyme-based
mismatch detection assay, and an amplification of a segment of nucleotides comprising said biallelic
marker.

25 16. A polynucleotide according to any one of claims 1-15 attached to a solid support.

17. An array of polynucleotides comprising at least one polynucleotide according to claim
16.

30 18. An array according to claim 17, wherein said array is addressable.

19. A polynucleotide according to any one of claims 1-15, further comprising a label.

20. A recombinant vector comprising a polynucleotide according to any one of claims 1-15.

35

21. A host cell comprising a recombinant vector according to claim 20.

22. A non-human host animal or mammal comprising a recombinant vector according to claim 20.

23. A mammalian host cell comprising an olfactory receptor gene disrupted by homologous recombination with a knock out vector, comprising a polynucleotide according to any one of claims 5 1-15.

24. A non-human host mammal comprising an olfactory receptor gene disrupted by homologous recombination with a knock out vector, comprising a polynucleotide according to any 10 one of claims 1-15.

25. An isolated, purified, or recombinant polypeptide comprising a contiguous span of at least 6 amino acids of a sequence selected from the group consisting of SEQ ID Nos 12-21.

15 26. An isolated or purified antibody composition are capable of selectively binding to an epitope-containing fragment of a polypeptide according to claim 25.

27. A method of genotyping comprising determining the identity of a nucleotide at an olfactory receptor-related biallelic marker or the complement thereof in a biological sample.

20 28. A method according to claim 27, wherein said biological sample is derived from a single subject.

29. A method according to claim 28, wherein the identity of the nucleotides at said biallelic 25 marker is determined for both copies of said biallelic marker present in said individual's genome.

30 30. A method according to claim 27, wherein said biological sample is derived from multiple subjects.

31. A method according to claim 27, further comprising amplifying a portion of said sequence comprising the biallelic marker prior to said determining step.

32. A method according to claim 31, wherein said amplifying step is performed by PCR.

35 33. A method according to claim 27, wherein said determining is performed by an assay selected from the group consisting of: a hybridization assay, a sequencing assay, a microsequencing assay, and an enzyme-based mismatch detection assay.

34. A method according to claim 27 wherein said olfactory receptor-related biallelic marker is selected from the group consisting of A1 to A13 and the complements thereof.

5 35. A method for the screening of a candidate substance interacting with an olfactory receptor polypeptide selected from the group consisting of SEQ ID Nos 12-21, or fragments or variants thereof, comprises the following steps :

- a) providing a polypeptide selected from the group consisting of the sequences of SEQ ID Nos 12-21 , or a peptide fragment or a variant thereof;
- 10 b) obtaining a candidate substance;
- c) bringing into contact said polypeptide with said candidate substance; and
- d) detecting the complexes formed between said polypeptide and said candidate substance.

36. A method for the screening of ligand molecules interacting with an olfactory receptor 15 polypeptide selected from the group consisting of SEQ ID Nos 12-21, wherein said method comprises :

- a) providing a recombinant eukaryotic host cell containing a nucleic acid encoding a polypeptide selected from the group consisting of the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21;
- 20 b) preparing membrane extracts of said recombinant eukaryotic host cell;
- c) bringing into contact the membrane extracts prepared at step b) with a selected ligand molecule; and
- d) detecting the production level of second messengers metabolites.

25 37. A method for the screening of ligand molecules interacting with an olfactory receptor polypeptide selected from the group consisting of SEQ ID Nos 12-21, wherein said method comprises :

- a) providing an adenovirus containing a nucleic acid encoding a polypeptide selected from the group consisting of the polypeptides comprising the amino acid sequences SEQ ID Nos 12-21;
- 30 b) infecting an olfactory epithelium with said adenovirus;
- c) bringing into contact the olfactory epithelium b) with a selected ligand molecule; and
- d) detecting the increase of the response to said ligand molecule.

FIGURE 1

TM1

	1	50
list1.msf{orf-8}	-MRRNFTLVT EFILLGLTNH	QELQILLFML FLAIYMTVA GNLSMIALIQ
list1.msf{orf-9}	-MRRNCTLVT EFILLGLTSR	RELQILLFTL FLAIYMTVA GNLMGIVLIO
list1.msf{orf-7}	-----	----- LPSSR
list1.msf{orf-2}	MFSPNHTIVT EFILLGLTDD	PVLEKILFGV FLAIYLITLA GNLCMILLIR
list1.msf{orf-4}	MSPNHTIVT EFILLGLTDD	PVLEKILFGV FLAIYLITLA GNLCMILLIR
list1.msf{orf-5}	MSNTNGSAIT EFILLGLTDC	PELQSLLFVL FLVYVLVTLL GNLMGIMILMR
list1.msf{orf-6}	MVRGNSTLVT EFILLGLKDL	PELQPILFVL FLLIYLITVG GNLMGLVLR
list1.msf{orf-10}	MSRRNYTELT EFVLLGLTSR	PEL RVAFLAL FLFVYIATVV GNLMGIILIK
list1.msf{orf-3}	MLKKNHTAVT EFVLLGLTDR	AELQSLLFVV FLVIYLITVI GNVSMILLIR
list1.msf{orf-1}	-----	----- MSFLIR
Consensus	M-R-N-T-VT EFILLGLTD-	PELQ-LLF-L FLAIYLITVA GNLMGI-LIR

TM2

	51	100
list1.msf{orf-8}	ANARLHTPMY FFLSHLSFLD	LCFSSNVTPK MLEIFLSEKK SISYPACLVQ
list1.msf{orf-9}	ANAWLHMPMY FFLSHLSFVD	LCFSSNVTPK MLEIFLSEKK SISYPACLVQ
list1.msf{orf-7}	PTPRLHTPMY FFLSNLSFVD	LCFSSNVTPR MLEIFLSEKK SISYPARLVQ
list1.msf{orf-2}	TNSHLQTTPMY FFLGHLSFVD	ICYSSNVTPN MLHNFLSEQK TISYAGCFTQ
list1.msf{orf-4}	TNSQLQTTPMY FFLGHLSFLD	ICYSSNVTXN MLHNFLSEQK TISYAGCFTQ
list1.msf{orf-5}	LDSRLHTPMY FFLTNLAFVD	LCYTSNATPQ MSTNIVSE.K TISFAGCFTQ
list1.msf{orf-6}	IDSR LHTPMY FFLASLSCLD	LYYSTNVTPK MLVNFFSDKK AISYAACLVQ
list1.msf{orf-10}	VDSRLHTPM-----	-----
list1.msf{orf-3}	SDSTLHTPMY FFLSHLSFVD	LCYTTNVTPQ MLVNFLSKRK TISFIGCFIQ
list1.msf{orf-1}	SDSTLHTPMC LFLSHLSFVD	LYYATNATP P MLVNFFFPRE KPFPLLVALS
Consensus	-DSRLHTPMY FFLSHLSFVD	LCYSSNVTP- ML-NFLSEKK TISYA-C-VQ

TM3

	101	150
list1.msf{orf-8}	CYLYIILVHV EIYILAVMAF	D-----
list1.msf{orf-9}	CYLFIALVHV EIYILAVMAF	DRYMAICNPL LYGSRMSKSV CSFLITVPYV
list1.msf{orf-7}	CYLFITLVHV ELYILAVMAF	DRYMAICNPL LYGSRMSKSV CSFLITVLYV
list1.msf{orf-2}	CLLFIALVIT EFYFLASMA	DRYVAICSPY HYSSRMSKNI CISLVTVPYM
list1.msf{orf-4}	CLLFIALVIT EFYFLASMA	DRYVAICSPY HYSSRMSKNI CISLVTVPYM
list1.msf{orf-5}	CYIFIALLLT EFYMLAAMAY	DRYVAIYDPL RYSVKTTSRRV CICLATFPYV
list1.msf{orf-6}	CYFFIAVVI T EYYMLAVMAY	DRYVAICNPL LYSSKMSKGL CIRLIAGPYV
list1.msf{orf-10}	-----	-----
list1.msf{orf-3}	FHFFIALVIT DYYMLTVMAY	DRYMAICKPL LYGSKMTRQV CLCLAAAPYI
list1.msf{orf-1}	NFTFSLHW-----	-----
Consensus	CYLFIALVIT E-Y-LAVMA-	DRYVAIC-PL LYSSRMSK-V CI-L-TV PYV

TM4

	151	200
list1.msf{orf-8}	-----	-----
list1.msf{orf-9}	YGALTGLMET MWIYNLAFCG	PNEINHFYCA DPPLIKLACS DTYNKELSMF
list1.msf{orf-7}	YGALTGLMET MWIYNLAFCG	PSEINHFYCV DPPLIKLACS DTYNKEVSMF
list1.msf{orf-2}	YGFLNGLSQT LLTFHLSFCG	SLEINHFYCA DPPLIMLACS DTRVKKMAMF
list1.msf{orf-4}	YGXLNGLSQT LLTFHLSFCG	SLEINHFYCA DPPLIMLACS DTRVKKMAMF
list1.msf{orf-5}	YGFSDGLFOA ILTFRLTFCR	SNVINHFYCA DPPLIKLSCS DTYYVKBHAMF
list1.msf{orf-6}	YGFLSGLMET MWIYHLTFCG	SNIINHFYCA DPPLIRLSCS DTFIKETSMSF
list1.msf{orf-10}	-----	-----
list1.msf{orf-3}	YGFANGLSTD HPDASSVLLW	TQ-----
list1.msf{orf-1}	-----	-----
Consensus	YGFL-GL--T --T -L-FCG	S-EINHFYCA DPPLI-LACS DT--KE-MF

2/2

FIGURE 1 (continued)

	TM5	TM6
	201	250
list1.msf{orf-8}	IVAGWNLSFS	LFIICISYLY
list1.msf{orf-9}	IFPAILKIRS	TEGROKAFST
list1.msf{orf-7}	VVAGFNFTYP	CGSHLTAVTI
list1.msf{orf-2}	LLIIILISYLY	IFPATLRICS
list1.msf{orf-4}	VVAGFTLSSS	TEGRHKAFST
list1.msf{orf-5}	LFIIILSYLF	CGSHLTAVTI
list1.msf{orf-6}	VVAGFTLSSS	IFAAIFRIRS
list1.msf{orf-10}	LFIIILSYLF	AEGRHKAFT
list1.msf{orf-3}	ISAGFNLSSS	CASHLTIVTL
list1.msf{orf-1}	LTIVLVSYAF	IFAAIFRIRS
Consensus	VVA-----	AEGRHKAFT
	VVAGF-LS-S	CGSHMMMAVT
	L-IIL-SYL	C-SHLT-VT-

	TM6	TM7	300
	251		
list1.msf{orf-8}	---	---	---
list1.msf{orf-9}	FYATLFFFML	RPPSKESVEQ	GKMVAVFYTT
list1.msf{orf-7}	FYSALFFFML	RRPSEESMEQ	VIPMLNLIY
list1.msf{orf-2}	FYGTLCFCMV	RPPSEKSVEE	SLRNKNVKEA
list1.msf{orf-4}	FYGTLCFCMV	RPPSEKSVEE	VIPMLNPMLY
list1.msf{orf-5}	FYGTLCFCMYI	RPPTDKTVEE	SLRNKDVKEA
list1.msf{orf-6}	-----	-----	SLRNKDVKEA
list1.msf{orf-10}	-----	-----	-----
list1.msf{orf-3}	-----	-----	-----
list1.msf{orf-1}	-----	-----	-----
Consensus	FY-TLF-MY-	RPPS--SVE-	-K--AVFYTT--PMLNP-IY SLRN-DV--A

	301	315
list1.msf{orf-8}	-----	-----
list1.msf{orf-9}	LIKELSMKIIY	FS---
list1.msf{orf-7}	LCKELFKRKL	FSK--
list1.msf{orf-2}	MQQMIRGKSF	HKIAV
list1.msf{orf-4}	IQQMIRGKSF	CKIAV
list1.msf{orf-5}	LKNVLR-----	-----
list1.msf{orf-6}	-----	-----
list1.msf{orf-10}	-----	-----
list1.msf{orf-3}	-----	-----
list1.msf{orf-1}	-----	-----
Consensus	-----	-----

<110> Genset SA
<120> Genes encoding olfactory receptors and biallelic markers thereof.
<150> US 60/104,299
<151> 1999-10-13
<160> 27
<170> Patent.pm

<210> 1
<211> 144460
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> 2406..2600
<223> open reading frame 1

<220>
<221> CDS
<222> 9711..10658
<223> open reading frame 2

<220>
<221> CDS
<222> 24851..25369
<223> open reading frame 3

<220>
<221> CDS
<222> 45714..46661
<223> open reading frame 4

<220>
<221> CDS
<222> 80198..81115
<223> open reading frame 5

<220>
<221> CDS
<222> 96291..96902
<223> open reading frame 6

<220>
<221> CDS
<222> 110758..111564
<223> open reading frame 7

<220>
<221> CDS
<222> 122525..122887
<223> open reading frame 8

<220>
<221> CDS
<222> 132454..133389
<223> open reading frame 9

<220>

```
<221> CDS
<222> 143398..143577
<223> open reading frame 10

<220>
<221> misc_feature
<222> 113644..114063
<223> ubiquitin 1 pseudogene complement

<220>
<221> misc_feature
<222> 127489..127854
<223> ubiquitin 2 pseudogene complement

<220>
<221> allele
<222> 7521
<223> 99-13670-305 : polymorphic base G or T

<220>
<221> allele
<222> 8192
<223> 99-13669-471 : polymorphic base G or T

<220>
<221> allele
<222> 14483
<223> 99-13666-275 : polymorphic base A or T

<220>
<221> allele
<222> 19625
<223> 99-13664-221 : polymorphic base C or T

<220>
<221> allele
<222> 20583
<223> 99-13663-218 : polymorphic base A or G

<220>
<221> allele
<222> 76947
<223> 99-13660-277 : polymorphic base A or C

<220>
<221> allele
<222> 91088
<223> 99-13652-407 : polymorphic base G or C

<220>
<221> allele
<222> 91138
<223> 99-13652-357 : polymorphic base A or G

<220>
<221> allele
<222> 91187
<223> 99-13652-308 : polymorphic base A or G

<220>
<221> allele
<222> 133998
<223> 99-13671-396 : polymorphic base A or G
```

```
<220>
<221> allele
<222> 140066
<223> 99-13649-286 : polymorphic base C or T

<220>
<221> allele
<222> 141176
<223> 99-13648-259 : polymorphic base A or G

<220>
<221> allele
<222> 144033
<223> 99-13647-278 : polymorphic base A or G

<220>
<221> primer_bind
<222> 7362..7380
<223> 99-13670.rp

<220>
<221> primer_bind
<222> 7805..7824
<223> 99-13670.pu complement

<220>
<221> primer_bind
<222> 8120..8140
<223> 99-13669.rp

<220>
<221> primer_bind
<222> 8643..8662
<223> 99-13669.pu complement

<220>
<221> primer_bind
<222> 14308..14328
<223> 99-13666.rp

<220>
<221> primer_bind
<222> 14740..14757
<223> 99-13666.pu complement

<220>
<221> primer_bind
<222> 19346..19366
<223> 99-13664.rp

<220>
<221> primer_bind
<222> 19826..19845
<223> 99-13664.pu complement

<220>
<221> primer_bind
<222> 20298..20318
<223> 99-13663.rp

<220>
<221> primer_bind
```

```
<222> 20781..20800
<223> 99-13663.pu complement

<220>
<221> primer_bind
<222> 76752..76772
<223> 99-13660.rp

<220>
<221> primer_bind
<222> 77205..77223
<223> 99-13660.pu complement

<220>
<221> primer_bind
<222> 90967..90987
<223> 99-13652.rp

<220>
<221> primer_bind
<222> 91474..91494
<223> 99-13652.pu complement

<220>
<221> primer_bind
<222> 133925..133945
<223> 99-13671.rp

<220>
<221> primer_bind
<222> 134375..134393
<223> 99-13671.pu complement

<220>
<221> primer_bind
<222> 139807..139826
<223> 99-13649.rp

<220>
<221> primer_bind
<222> 140331..140351
<223> 99-13649.pu complement

<220>
<221> primer_bind
<222> 140912..140932
<223> 99-13648.rp

<220>
<221> primer_bind
<222> 141416..141434
<223> 99-13648.pu complement

<220>
<221> primer_bind
<222> 143828..143847
<223> 99-13647.rp

<220>
<221> primer_bind
<222> 144292..144309
<223> 99-13647.pu complement
```

```
<220>
<221> misc_binding
<222> 7498..7544
<223> 99-13670-305.probe

<220>
<221> misc_binding
<222> 8169..8215
<223> 99-13669-471.probe

<220>
<221> misc_binding
<222> 14460..14506
<223> 99-13666-275.probe

<220>
<221> misc_binding
<222> 19602..19648
<223> 99-13664-221.probe

<220>
<221> misc_binding
<222> 20560..20606
<223> 99-13663-218.probe

<220>
<221> misc_binding
<222> 76924..76970
<223> 99-13660-277.probe

<220>
<221> misc_binding
<222> 91065..91111
<223> 99-13652-407.probe

<220>
<221> misc_binding
<222> 91115..91161
<223> 99-13652-357.probe

<220>
<221> misc_binding
<222> 91164..91210
<223> 99-13652-308.probe

<220>
<221> misc_binding
<222> 133975..134021
<223> 99-13671-396.probe

<220>
<221> misc_binding
<222> 140043..140089
<223> 99-13649-286.probe

<220>
<221> misc_binding
<222> 141153..141199
<223> 99-13648-259.probe

<220>
<221> misc_binding
<222> 144010..144056
```

```
<223> 99-13647-278.probe

<220>
<221> primer_bind
<222> 7502..7520
<223> 99-13670-305.mis

<220>
<221> primer_bind
<222> 7522..7540
<223> 99-13670-305.mis complement

<220>
<221> primer_bind
<222> 8173..8191
<223> 99-13669-471.mis

<220>
<221> primer_bind
<222> 8193..8211
<223> 99-13669-471.mis complement

<220>
<221> primer_bind
<222> 14464..14482
<223> 99-13666-275.mis

<220>
<221> primer_bind
<222> 14484..14502
<223> 99-13666-275.mis complement

<220>
<221> primer_bind
<222> 19606..19624
<223> 99-13664-221.mis

<220>
<221> primer_bind
<222> 19626..19644
<223> 99-13664-221.mis complement

<220>
<221> primer_bind
<222> 20564..20582
<223> 99-13663-218.mis

<220>
<221> primer_bind
<222> 20584..20602
<223> 99-13663-218.mis complement

<220>
<221> primer_bind
<222> 76928..76946
<223> 99-13660-277.mis

<220>
<221> primer_bind
<222> 76948..76966
<223> 99-13660-277.mis complement

<220>
```

```
<221> primer_bind
<222> 91069..91087
<223> 99-13652-407.mis

<220>
<221> primer_bind
<222> 91089..91107
<223> 99-13652-407.mis complement

<220>
<221> primer_bind
<222> 91119..91137
<223> 99-13652-357.mis

<220>
<221> primer_bind
<222> 91139..91157
<223> 99-13652-357.mis complement

<220>
<221> primer_bind
<222> 91168..91186
<223> 99-13652-308.mis

<220>
<221> primer_bind
<222> 91188..91206
<223> 99-13652-308.mis complement

<220>
<221> primer_bind
<222> 133979..133997
<223> 99-13671-396.mis

<220>
<221> primer_bind
<222> 133999..134017
<223> 99-13671-396.mis complement

<220>
<221> primer_bind
<222> 140047..140065
<223> 99-13649-286.mis

<220>
<221> primer_bind
<222> 140067..140085
<223> 99-13649-286.mis complement

<220>
<221> primer_bind
<222> 141157..141175
<223> 99-13648-259.mis

<220>
<221> primer_bind
<222> 141177..141195
<223> 99-13648-259.mis complement

<220>
<221> primer_bind
<222> 144014..144032
<223> 99-13647-278.mis
```

```

<220>
<221> primer_bind
<222> 144034..144052
<223> 99-13647-278.mis complement

<400> 1
caattaaagt tttgttcaact ataagtcctt tttggaaaag agagagaaaac attcaaatta      60
tttacatacc agtttccatt agcatgtgaa gaacaaacag aaacacttt cagggtgaac      120
aaaattcctg ctacagttat aaaatcctgc atatactctt tactttgtga ttctgaaaaa      180
caccgttcta cctggtttat taaaatgtgt gaaagctcta atgcaatgtt attttttaca      240
ttttgttaaca cttaagtcat aaagccaagc tattctcaaa ctttgatgaa acatgttgg      300
agaaaattatg ttttagtgtt tggtgaaaac attatgttcc gtcacttaag gtgataaatt      360
gtactcatta aagaactttg aaagttcaca catagccaat gttttaaaat gcactaattt      420
agattccaa ttttcacaaa ggccagttac tctggaccat tcaatcgcc aagaggaaaa      480
ctgggggcat tcccatccccg ggatatgggaa agtccccgag cttccagct ggtccttgg      540
gccgaaaaat ggcatgtttt gttttgtt ttggatctg ttcgtgccg caaaaatgtt      600
ctgtgtgggg aaagtgcgag gggagagaaa agacacggac atgatacgtt taagggtaaa      660
caacgtttat cccatgtaa tggccatgca gatatagtaa gcaaatgata taataataag      720
caaatgatat aataaggcaga ttgatataat aagtagattt caatggAACG gggaaaaggg      780
aaaatacatac tacattcacc agactatggg ggttcaaca acagactggg acgcaacagc      840
ctgggctcca gagtcagata ggttaggaaa gagatcctag ttctatacag atacgtacca      900
tggagcagtt ccactttcct aagcacattc agttgtgata aaaatagatg agtttcaagg      960
gctgatacat tacatgccac actcaaagtt gtgttgttta acaatttcaa ttgttgttac      1020
aatttcaaataa aaaaagcaatg ttacaacca tgggttcaag agaagtctaa gtgaacacat      1080
ataataaaaga cttgcaaaat aataaaagat aaggctctt aactatcaaa agacttgcag      1140
aaaagaacca cagaaaacca ttttaaatat aactgcctt gtagttaaga aattctacat      1200
tatTTTGTAT gttaaaacat caatctcatg cttaacttagg tattttttaa tgacacatgt      1260
atTTTCAAAT ttgagagaag aggaagaaaat atcaggtgac accactggg taatgcataa      1320
atgacaaacc taaatgcatt ttaatttccct ttcttttaaa tcgagctgag cttcagcccc      1380
ttcttttgcgtt ggtgttctt gtcatctacc ttatcacagt aatcacaatg taagcatgat      1440
tttctttttt ttttttaagt gcacaatatt tttaactgtt aacaatatac ctattgttac      1500
ctatggcac aatgatatac agcatatctc tagaattttat tcttgcaaaa ctataacttt      1560
atacctgtg aacagcaaca ccccatttccctt ccctttccctc cagccgctgc aaccaccttc      1620
tattctctgt ttctatgagt ttgactattt tgattccctc atataaaattt aatcatgcag      1680
tatttgcctt tccgtgcctt gtttattca cttaacataa tgtcctccag gttcatcata      1740
tgacaggatt tcttctttt cttaatgtg aataatattt cattacatgt gtgtactaca      1800
ttttcttcat ttttcaatgg acatTTTGTGT tttttctata tctggactat tgtaaataat      1860
ggtgcaatga acataagagt acctatgtct ctcaagagc ttgattttaa ttcttttggg      1920
tatATGCCCA gaagtgcata tgcgtgtttt tatgataattt cgattttaa ttatTTGAAG      1980
actcatata ctgttttttta tagtggctgc acaattttat attccacca atgttgcata      2040
agggttccaa ttttccata tgcaccaat attgttgc ttttggattt tttttaaaata      2100
aagaacacg catcataaca aatgtgatattt catgttttgc tttcatatgc attttcttgc      2160
tgatttagtgt gttgagcacc ttttcatttt tattttattt ttttattata ctctaaagtcc      2220
tgggatacat ctgcagaaca cgcaggTTTGC ttacataggat atacatgtgc catgggttt      2280
tgctgcgccc attaacctgt catctacattt aggttatttgc gtaatacta tccctcccc      2340
agccccccgac cccctgacag gtcctgggtgt gtgatgtttc ctttccctgtg tccatgtgtg      2400
tgagcatgag ctctttaata agaagtgtt caacactaca cactccaaatg tgcttggcc      2460
tcagtcatct ctcccttgcata gatcttattt atgcccacca tgccactctt cccatgtgtg      2520
ttaactttt ttttcaaga gaaaaaccgt ttcccttattt gtttgcattt tccaatttca      2580
cttttcattt gcaactggta tcacagatta tcatatgttc acagtgtatgg tttatgacca      2640
ctacatggcc atctgcacgc ttgttataa tggaaagccaa atgtccaggat gtttgcct      2700
ctgtctact gtcgtccctt atattttatgg ctctgcataat ggttgcattt aggttgcatt      2760
gtatgtttgt ctgttcttgcgtt gtaacccaa tggatcaac cactttttt ttttttggg      2820
aaaatgcattt atatgcacat ttaattttccat taaaatttt tgaatggacg gtttggagagg      2880
aaggggagaaa tacatattaa cggagagaat accacccaga aagttatatac aatggggagaa      2940
aggaacctgt tggatccaaatg ttccatattt ttattatggc atataaggatc atgattttt      3000
tctcagttatg aaggcatctcc cagggtgtac tctgtatgtt aattggagat caaccacttt      3060
tattatgtcgtt aaccacccctt cttagtccctt gcctgttgg atactttagt caaagaaaact      3120
gccatgttca tgggtggctgg ttccaaacccctt atctgccttc tcaatcatat ctttatttcc      3180
tacacttca ttttccatcaga cattctgtat atctgcactg ctggggaaatg tttcaatgtcc      3240
ttctccacccctt gggggccctt tggactgccc gtcactgtt tttcaagggac gtcgtttcac      3300
atgtgcctga gggcccccctt tggggatctt gtagaaacagg ggaaaattgt agctgtttt      3360

```


aacctggcta	agttttgtat	tttttagtaga	gacagggttt	cgcctatgttgc	gccaggctgg	7200
cctcaaactc	ttgacctcg	gtgatctagc	ggccttggcc	tcccaaaagtgc	ctgggatttat	7260
aggcaagagc	caccgtcccc	ggcttccaaa	atatttaagc	aatatttatttgc	cattttacaa	7320
tttttagtaat	gcaaggaacc	aaaataaaaac	agaataatttgc	agatagagaa	gactttacac	7380
atcaatttgc	aataaacata	taggaatgcc	ctatattctc	aaatttcatgc	ggatgtacaa	7440
aatctacatt	ttgatttgtat	tatatagtctt	tattttatttgc	aatgatttcttgc	cagagtataa	7500
cccaccaccc	gcaactctaa	kaaaattttagg	gatgattctc	cgtcttggtc	agactgtact	7560
ttgatccatt	tgtgcttaacc	tggaactata	tgtgcactgg	aagatacaga	ctaatgaacg	7620
catctcttagg	tccctttgtc	ctccaacaaa	tacagtgtcttgc	cacaattttc	aatatttgc	7680
attctatttgc	caattcccttgc	tctaaatcaa	caattttatgc	catcatcaat	tttataaaata	7740
gccctgggtc	ttagaccccttgc	gatgatttgc	atgttaatata	taaccttgc	agtgcagact	7800
agttccaaaa	taaatccata	acgcccgtcc	tccaaaggat	cctggcccttgc	gaccaataact	7860
tctgccttgc	tctactgttgc	atgcccacttgc	tctgtctca	cagttttgc	aatctttcat	7920
cttctcaat	gtctcacctgc	ccacaacttgc	ctacccctca	ctcattagat	gacctcacttgc	7980
cagtgtttat	aggcaaaagc	tgaagagttc	tgatgagaat	tccttgc	catcataact	8040
aaaaggcaga	agtatctac	ccatgtttc	ctcttccatgc	ttatttgc	gatggctaa	8100
tttctctgttgc	tgtactaagg	atctcatgc	cacttgttacc	gaaactctac	ataaatgtaa	8160
aataggaatttgc	ttatcctcgc	aggagagtcttgc	akctccaggat	agcatcaat	gaagggttat	8220
ctcttgaggat	acaaagcata	ttttaatttgc	ctcttgc	tttagttaaa	aataactctag	8280
ggaagatacc	taataaaat	attgttaatc	ttgtctaccttgc	gttttgcataa	gatatggtcc	8340
attaacatta	acaggttaggt	cattttctac	atttgc	taaaaataca	atttgcgtgt	8400
gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgttagag	ataagtatttgc	catcaatggg	8460
gaaaacaat	attttctca	atttgc	acttttctat	ccatatgttgc	gtattgcatt	8520
gactctctac	aatcaatttgc	atgtaaatc	tttgc	tttgc	tacatgagaa	8580
aatggcttgc	agggttgc	tttggatgttgc	aaatttttac	aatcttatgt	tactttcaaa	8640
gagaacttgc	aggaggatggc	tttggatgttgc	agctaaagacc	ccttttac	attatctgt	8700
catacctaaa	caatatttgc	atgatgggt	tagtggcaca	aaaatggaa	caaaaaaaaaat	8760
ccacacttgc	cccaaataatgt	agaatttgc	atctgtgttgc	taaatgttgc	attccttagaa	8820
agatcttgc	tgagtggc	tctaaaagca	tcctacatttgc	atgttttgc	cacagaaa	8880
ttgtttgccttgc	gaaatttgc	gtacttttgc	ctgtgtgttgc	aatctctgttgc	ccctctat	8940
taatgtgtgc	tctgtcccttgc	ctattataat	gtgtgtcc	tgagctgggat	gacttgc	9000
ctgttagtaac	cgcaggaaatttgc	ggaacagaaa	gaaatgttgc	tatacgtat	acatgagtaa	9060
acaggcagtgc	acattacaaa	gtggaaaaaa	acaagtcttgc	attttgttacc	ctcttagcc	9120
tatatcagat	agaaatttgc	ttctctagttgc	taatcg	tgaataaagg	taaggcacac	9180
aactatgggttgc	cttaatttgc	aatgttttgc	tttttttgc	tcattttgttgc	tctgaaacaa	9240
tacaatatca	gagctggaggat	tataataaag	atcagacttgc	cttttatttgc	ccatttgc	9300
gatgcaaaata	acctagggttgc	tttgc	atttttatttgc	ctttgcatttgc	tttgcatttgc	9360
cacgaagtttgc	gataaaaatttgc	accaaatgttgc	gagtacacca	agaagacagg	tataaatgttgc	9420
ggaatgaata	aacttatgttgc	tgtatcatgc	tatggcagag	agaaatagag	aatatgtat	9480
tttgcgttgc	ttatgtgggttgc	tttgcgttgc	gaaagatata	gattaaaaca	gacatataagg	9540
gagacaatgttgc	tatgtaaaat	ttccgcgttgc	attatttgc	caagagaatgttgc	atttgc	9600
tagataaata	gatgaatgttgc	cgaaatgttgc	atggatgttgc	caaataatgttgc	atctgtat	9660
gagagaaatc	ctcacatttgc	tttgcatttgc	cagtttgc	agataagaatgttgc	atgttgc	9720
caaaccacac	catagtgttgc	gaatttgc	tcttggact	gacagacgttgc	ccagtgttgc	9780
agaagatcttgc	gtttgggttgc	ttccttgc	tctaccta	cacactggc	ggcaacctgt	9840
gcatgatcttgc	gtgtgttgc	accatccc	acctgcaaa	accatgttgc	tttttgc	9900
gccaccttc	ctttgttgc	atttgc	tttgc	tttgc	tttgc	9960
atttccttc	agaacagaatgttgc	accatcttgc	acgctggat	tttcacacag	tgttgc	10020
tcatgccttgc	agtatgttgc	gagtttacttgc	ttcttgc	aatggcatttgc	gatgttgc	10080
tagccatttgc	cagcccttgc	cattacagtgc	ccaggatgttgc	caagaacatttgc	tgcatcttc	10140
tggtcacttgc	gccttacatgc	tatggc	tttgc	ttaatgggcttgc	ctctc	10200
ttcacttgc	ctttgttgc	ttcccttgc	tcaatcatttgc	ctactgttgc	gatccttc	10260
ttatcatgttgc	ggcttgc	gacaccgttgc	tcaaaaagat	ggcaatgttgc	tttgc	10320
gttttacttgc	ctcaagatgttgc	cttttgc	ctatcttgc	tttttgc	tttgc	10380
cgatcttc	cgatcttc	gctgaaggc	ggcaca	tttttgc	tgttgc	10440
acctgacaatgttgc	gttgc	ttttatgttgc	cccttgc	catgttgc	aggccttc	10500
cagagaatgttgc	tgttagaggat	tccaaaataa	ctgcgttgc	ttatacttttgc	ttgacccaa	10560
tgctgaaccc	attgatctat	agcctacgg	acacagatgttgc	aatccttgc	atgcaacaa	10620
tgatttaggg	aaaatccttgc	cataaaatttgc	cagtttgc	tttgc	tttgc	10680
gaattgttgc	tggatgttgc	aactggc	ttttatgttgc	tttgc	tttgc	10740
ttatataaata	tcatgttgc	tcagtaacca	ctttacttgc	ttatccaa	gaaaaccttgc	10800
aagattgttgc	tcttagaaat	aaaagccttgc	atgttgc	gatgttgc	tttgc	10860
cagaatttgc	atgaaaataa	attttttagt	atctaataat	tctat	atactatgttgc	10920

ttacttactt	gggggtggg	taaatttta	actaacttag	cctgagagaa	attctgaaaa	10980
ttcatctcct	ttgaatatga	tggccacag	agccataatg	aggccaaga	tagggtggat	11040
aattttacac	tttttaaaaa	atgaaaattat	ttctacttca	atatgggtgc	ttgaacaata	11100
gctcagctac	cttgtgttt	attgtaatca	atgtgcaaaa	aatataaata	tatgggtcac	11160
tgatacgta	aatttgcgt	aagtgtccc	caaaccatc	ttgttaaatat	tttgagaagc	11220
ttctttttt	ttcatgtgat	aatactgggt	atcgtcctt	attctgaaaa	tcaactctca	11280
acacctttt	atgagtttc	aagtgtatgg	atccaattct	atcatcaaac	tactttaact	11340
gcattccagt	tatgtttcc	agtgcgtac	ctctgactta	ggactaattc	agttaggagtc	11400
aatagggtct	attaactgcc	ctgtgcatac	ccataaaatgt	cttgaacacag	tatacaaata	11460
aatagggtg	tatatatgtt	tctggaggaa	atactcagtg	tttattttgc	ttcatgaagc	11520
tttctgtggc	ccattatttt	taaaataagg	gtgttctagt	agttcttgaa	gctgctatag	11580
agaaaatcaa	tctcagagag	gctacctaag	gagacacatt	aatccatgca	ttattagtca	11640
accagatgac	tgcatattga	tacatatgt	tttagcccta	ataaaattgcc	tcatatgttt	11700
ggcattttaa	tatTTGcac	tctgatatta	actaacacca	tacagaatat	gctacagaaa	11760
atgtctgtat	gatatact	actatactca	ctataaaatgt	ttcaaatgg	tttccagaat	11820
attaagcaga	tgacttgcag	ttttgtaaa	atgggggcatt	attcttgagt	ctcattttgat	11880
taagtctggt	tctagccaaa	tcctcttca	gaaacagtt	ctgaaaaaga	aggaaggcaa	11940
atTCGGTGA	caagaattta	acaattacat	tttagcactg	tttgggggtt	tatTTGCTG	12000
gttttggcaa	tgtgggtggg	acaacagagg	aaggcattct	gcagagacaa	caatgaagca	12060
gaaaagctgg	gaattgagtg	acacagagtc	ctcacttcc	tttgagggc	cagcatcatt	12120
tcatcggtgg	ggtattttctt	tatTTATGA	gaaatttcca	tctatttagc	aaagcattgt	12180
attccatttc	tggcaagcag	aatggctca	tatccagatt	tgaaccccta	tttggaaaatt	12240
ggatTTTGA	atgagtgc	aaaatactct	atatttggcc	taaataactg	tacgattcca	12300
tttattttct	agttatgaga	attgctctgg	tttgcagcaa	ccattttaa	actttgacat	12360
ccttttagtc	aaaatgactg	acctgtttct	aattgatttt	taataaaata	tttttatttat	12420
ttctattttgt	gatttaattt	tttctcttg	catgtcttt	ggtaaaagtc	acctcagaaa	12480
ttctttggag	ataggataga	acataaaatcg	acatgaataa	aagtaattat	aagagttgca	12540
gtcacagtgt	agtgcgtatt	tttaggaacac	tttattttaa	tcttcataaa	tgaaaataatg	12600
agagaattat	tatctccatt	tacaacattg	gagcctgagg	cacggagaga	ttaaatttct	12660
tgcccaaagt	catttggcca	ctcagtagga	caaaggcagg	tttctgggtt	tcaaattctc	12720
tctctttcta	attcatactg	tagttttat	taaagaattt	ctcaaaacac	tgcaaattgt	12780
ttgtggaatg	ttggagatta	tgaatttgc	agattattgc	tatagatgaa	atagtggta	12840
ttatgtgata	gttatatgt	tcctaaagat	agctaatgag	aattttcc	gaaaattccg	12900
gttaacataa	tttataggca	ttataattaa	aattgtctt	acgtccatgt	gaagggagaa	12960
aattttgata	tacagaagac	atatatgct	tttaggctgc	atTTTATTAA	tatTTTCC	13020
cagtcgcaaa	ggcatacata	ttcattattaa	ttaattacca	ggtacagaca	aatatgaggg	13080
agtaaaattt	atgagggatc	tgtcctgtga	caaaggatac	atTTTCTTA	tatTTTGTtA	13140
catttcttct	caataagttt	atatgcgtac	atgttactaa	aatgcataaa	gcaaattgt	13200
aatcacttat	catatacaaa	tttgaacact	gattttcact	tgtatataatg	tatgcacctt	13260
tatatagatt	aaatatttct	gatgaacatc	atgttgaatg	tcatataata	tttagatcat	13320
atgaccttaa	tacaataata	atacatatca	attgttagaa	actgactgaa	ccatatttgac	13380
atacataaga	catagaagca	acatttactt	ataatcacct	acctgaagag	agctgaactc	13440
agcattca	tgtgttttat	tccatttgat	tatcttgc	accatgattc	catcatatca	13500
atgtatctt	gtgttttat	gactgatgt	tctgtgc	tctatTTGTT	ctttttgtgt	13560
atgttcccg	aagtggact	gctgaattaa	atgtttca	tgctttgaa	actcctgcta	13620
aattttctt	tggtaaaatt	tttctccaga	aaagtcttag	caactaaac	ctgtactaga	13680
aatattttgag	aataatcatt	tcactataac	tctatcaga	gttaggagctc	ttgtttatgg	13740
ttatTTGCTT	cttgcattgtc	tcaagggaag	tcttagaaaa	taattctgtt	ctaataagca	13800
cagaataaaa	attgaagcat	atattgaaca	aatgaaggct	acacataagg	ttgataattt	13860
catTTTGT	ctgtgttgta	atattttttt	ttatTTTCTT	tttctttt	ttaaccaatt	14100
tcctccact	atttattaa	caatgtttt	ttttcaact	gatttgcatt	gtcaccttta	14160
ttatatacc	agtgaatcta	tttctgcctt	tttgcatttt	atgtttggcc	acaatataca	14220
tatTTTCTT	actaaattcg	tatgattat	gtacacttta	aatatgtttt	atttctgtat	14280
ggaaaaatgt	tatTTTCTT	tttctcttag	gagactgcaa	atcatctgtat	gatttgcattt	14340
agatatccag	tatTTTCTT	ccataaatta	tgacataat	tgtcaattt	agaaactata	14400
tgcatactt	atataatgt	atataatgtt	caatgtggct	atacatgaaa	tactttaaaca	14460
ctgtaaattt	tttggaaaaac	aawgaaaaact	attttcctt	ctatggggc	cataggaaaa	14520
ctgcttattt	ttaatTTTGT	tttccagaaa	ggcagggaaa	cggtgggtgc	ctgtgagtaa	14580
ggagaaaaaca	cttaaccttg	gtatattaa	tctatcgatt	cattaacaac	tttatacataa	14640
catttatttt	tataccatac	cgcggttcat	aataaaacac	ttttttca	caaataatctc	14700

taaatacaga ttctttctc	taactatgct gacttttgc	caacaactcc acccaaaga	14760
gttgacatgc ccacatat	tcttctgcta ggaatcattt	caaacactga aaaaacccta	14820
ttaattagaa taaaataaa	tattaacat taaaataatc	agagaaaaat tactctgtgc	14880
tccctaagaa tggaaatact	tcacagataat actgttgctt	taatttgaca ataaaactat	14940
ttaaaaataa gacccaccct	acagtctggc aatgtatTT	tcacaaataa gacaaagtgg	15000
cacaattact gaaatatgTT	atgttaatTT aatcatTTT	aagcactaaa acatgaccat	15060
ataaataaaat gtgaaatact	atacgttagaa aattgattaa	aatacaaaaat gctaaaatta	15120
acgcagaaaa tagtggcagc	taaaaacatg aagtacaata	ctgtttatgt gtctatattt	15180
aagacagctg aaaaagtcta	gcacgttcat acattggTT	attaatggta taaaatttt	15240
cttagaaataa atacaatatt	attaatTT taaggagtca	aatgtttcta taattttatt	15300
cagctattcc aaatttaga	atctactgaa ggccataatTT	gaaacttgtg tgaagagTT	15360
catggtgttc attttataat	caagaaaaag caacaaaatg	atgttcgaaa tacaagtgc	15420
tcccacttag caccgtacca	tgtAACAGAA acctttctat	atggcaaACG tgcTTgttt	15480
tgcatggttc ttacttagat	attacaaaat ctcaaaagtga	ggactgcctg cttggataa	15540
ctggtaaagc acaggcatct	accagatggg gtagaagggt	tttctaaata actagaatgt	15600
catcagcctt gatcatgaag	gaaagtgtaa agtacagTT	aatttttt tcttagaATG	15660
ttatacagct attaaagtga	ggatgttctt agttaagaaa	aaggtaaATC attttGTgtA	15720
atataattatg tgcaaaagaca	tatccaatgc tacatatggA	tatcttgtAA aatATCAGGG	15780
ataaaagagaa acaaaaacttA	ttaatagcta tgccaaattt	ttccatgata agcaattgtt	15840
gttattacat tgagaaaaata	agtaacaaa aactttgtat	gcccagttt attcagatct	15900
caggatataat aattacagga	tgcttattta taatagtGA	atTTAAAAT AAAAGTAGGA	15960
aaaagcaagg agttaaaaac	ttgtttaga gcgtgatggc	agaagaggag gtgcTCAGTT	16020
ctggtttcca gaacagaatg	accagttAGC aacttctcac	agataagaat gcctaggtaa	16080
aaattccata acccaagggt	gaggtgggc acacttctgg	agcacagaaa ctggaaaag	16140
tcatattaga agtgtaaGGG	gagcaggTTT acTTTactg	tgttgcTTt ttcccgacca	16200
aacagtgtca cactgaaagg	gatttcttgg gcctcgcttc	tctagtggag aaaagagagc	16260
ccacggcaga catccaaCTT	ccctgtgttc cagggcactt	ccccaggggc ctagttctgt	16320
ctaattttgt gggaaataat	ggaggaattt gcaagggttT	accCCTTATG gtcagttcat	16380
aactacetcc ttctacaacc	cattctgtat tccctttacc	ttcagcaAGC accttagcag	16440
gacacggtt ttaccttgg	ggagtgacac aaatcttcat	tcctgatggg tctgggccc	16500
tttgtagttt gcctggattt	ggttgttga gtttctcact	gaccttaatc acaggacatg	16560
gtaatactgt gacgtcctat	gggatctcct gtattccaca	aataacttcc cttAACCTCC	16620
attgtggagt agtagtttga	tttcatcttT atagtctggg	tcagtccaccc cagccaacac	16680
tgtacctccc ttcttagcct	gttgacttag aggcaGGAAG	agctcaaagt ggccaggTgg	16740
caaacttata ttccagttt	atggaaatcat cttctgtct	tctggTggca aagttcctcc	16800
ctccggaaacg aagacctcta	ggcccacaga acataatgtc	acagaaacag gaaggaaaat	16860
tttgcTagt ggtcagtaga	ggtgatggta agtggcacca	cttccacttc caccccttga	16920
ttcctgcatt ctggatcct	ggctatggaa gaaacagtac	cacatattgg atgcctactc	16980
agagcataca aagacttctg	gagaaatttT ccccaggcct	gcattttttt ttttttttt	17040
tgtaaaatga agtccTgt	tgtcttccag aggctataag	tgcagtgtca cgatcttggg	17100
tcactgcaac ctctgeetcc	caggttcatg cgattcttct	gtctcagcct cccgaatagc	17160
tgggattaca ggcattgtcc	accacggctg gctaactttt	gtatttttag tatggatgag	17220
gttccaccaT gttggctagg	ctggTctcga actcctgacc	tcaagtgtac cacccgcttc	17280
agcctccaa agtgcTgggA	ttacaggcat gagccaccgt	gcccaGCCCC tgaataaaag	17340
tatcacctag ttgttgaac	tgTTacttca aaaggctttt	ccacccTTt atcaatccat	17400
ctgctttagg ataatggaa	acatggtaag acaagtataat	cccatgagca tgagcccact	17460
gtcttattct ttagctgtaa	aatgagtgcC ttggTcagag	gcaatggTct gtggaaatacc	17520
atgacagtgg ataaggcatt	ctgggagtcc acgaatggta	atcttggcag aagcattgca	17580
tgagagatag gtaaacctat	atccagagga agtgtctaat	tgactaATC cactctagaa	17640
ttctaatcac ccaaagctt	tggattcctc cctctacatt	aaaccaggga agatctggca	17700
tttcaaggTC gctcacagta	ggccatcctt tcatccatTT	ttcagctaat aaactattag	17760
aacattttt aactccctga	tttgtacat tgagtgcaga	atctctgtt agtggggccc	17820
tatcaataca tttagcctga	tccaaCTTta tattcctccc	accattatcc cacacccttA	17880
atatccattc ctacacctgt	tctccagaat tctgcttata	taaactagaa aactcaagca	17940
gctcttttag ggtgtagcac	acctccttgc agacttttgg	cttacaccaa ctagcaccag	18000
atcttggaaag gagaaaagggt	attaaagtct gaatgttattt	cctaaagaag aagaccaacc	18060
aaaataggTT attaaataat	ttggcttattc taagtccaaa	gctactctt aaaaggaaAGC	18120
cataatttaac cactccatgt	aatatgtaat tatgtcttga	catacagaac taggtaatgc	18180
aataataaa ggtttaggtt	caccataatt ttttctaaa	aacggagaaa tgcCAAATT	18240
atttacctac cagtttacac	aaacaggcaa agcaaaaaca	aaagcacttg tcaaggTggA	18300
caaaaatgct gctacagttA	aaaatctgca tatactttt	actttgtcat tcttttttt	18360
gtgtttctgg gtagttggTT	tactgaaata ggtgaaagct	gtactgtaat gtcatttttca	18420
aattttgtaa cacttttgc	aacattttgtt	gaagaaatTA tgTTTCTTCA	18480

cttaaggaga taaaattgtgt	tcattataga actttgaaag tgaacgacca aaccggaaatgt	18540
gcaaaaatttgc actgaatatgc	aattactta cacttatgtg tgaaaataat cttcaacatt	18600
atgtattcca tacacatgtt	tttgggttt taaaattatct ccgggcttc ctaaattcaa	18660
gttggagaag cagaatttagt	tagatttata gcacactcac tatagaaaac atatttgaa	18720
aactgtttt accacatctc	tgttcagctg gatggggctc ctgtgaaaga acaaagcaat	18780
tacatagaat tttcacaga	attgtaaaac ctgcaaattt ttttaacat tttcttacc	18840
ttatctgata gcacagcaca	tacgttcaa ctcttactct gaaaactact atcacttctg	18900
aatgtttatt aaataaacagc	cataggtgt cgaaggatt acaaatggat agccacatt	18960
actgccaatg aaaaacaag	tttattaac atgtgcagta tctttgtat atatataat	19020
ctccttattt ggtacagatg	aaaacgtga agtcagaag aatgaaataa tggtttccag	19080
gaacacagca agagcttagt	ttcaataaa atattattct cgtactact tctgggttga	19140
ctctagaaac accccaagcc	acatgggtt gtaagatgt ttaactgggt aattatttt	19200
atgggttaatt atgttgcaga	cagtttaca attttacaga tataaaaata tatatgaaaa	19260
agatataat atgttgcata	gcataatat atattcatat ttcatatgaa gaaggcaca	19320
gaggaacact cagtgcctag	gtaaaaagaa tgagttgaa tagtagtta atagtggtg	19380
atgagataag aagtagtcat	ggtcataact tactttctg gtgtcatgca atttctatt	19440
acagcattc ttcaaagttg	taattttat tgagaataaa ttaataaaac tctgttaagat	19500
tttaagataa aagatctccc	aatatttca aagcatcatt acaacatttct taaagttc	19560
tagcaattgt atcaatttct	ttattcttac ttcatatgtt gaaaaaaatt gatttttgag	19620
gtatyttaaa agtcatagag	aaaatatttgc catatggaaa gggtccaaaa tgggaggagg	19680
aaattaaaaa ggactgagat	ttctgaaaca catacattgt tccaaggag taccaggat	19740
gctacaagg aggccagagga	ttgaatgact gaagaaaaga ttttgaagga cactttgagg	19800
tgttcttcc acacccatca	tcatccatc tcaggagggt gaatggattt gaggattat	19860
aaaaagagtt attgtgtatgg	ccttgatgtt agtccaaaac atcctttct agtctatgt	19920
attgataagg atgtgtatgc	tgttcatggc tggaaagg gaaggggaga ggagagttat	19980
cccatgtg tactgtatct	gagtacttc acctcagagg aaaggaacag agaagcatct	20040
ctaaaccaca ttctcaaattc	caaattcacc agcaataatg ctatgttca ttcatatctg	20100
ctccccatgtg tagactctaa	ttgagtcagg atccaaaagg agggcaattt aatggctcc	20160
ttaagttcta acatgtatgaa	tgtagaagta ttccaaattt ttagctaaaa taatattt	20220
cataatagtt attattactg	ctactaactc actgcaagac ttatgaaata actactat	20280
gatgctctgg ccaggatctg	agatgtccac aattctactc atatgttta gctaaagaga	20340
attnaatgaa aagacagaga	ataaaaaggt aaagttaaag gaatcagcca aagggtttaa	20400
aaaagtcag gctactgtt	gaaaaccatt tccatcttta ggtctgaagg accaaggaca	20460
gtggcttctg tcacagagct	cagttagagc tgaagccagg aagaaatccc ttgccaacat	20520
cttcccaaga cacacatccc	aagacattct ccaggagggt atgcagccaa tttagcaca	20580
ttrtaatgaa gcaggaagg	aatgagaaag aaattgaggt aattccctat cttcccaact	20640
tctgacatcc tagagactct	tctcaaaagc caaggtcagg tggaaaccag acaccatagg	20700
tgccttgc accaggtcca	taggagccca actccaggtg aacaatgca ggcacagaag	20760
agaagacaat agatgtgaat	gggagtaggg tgaaaagga gaatcaccag cacacctata	20820
ttatctataa atccaaaatg	ttccacactt acacattact atccctatta aaaagataaa	20880
tgtacaaaac tcaaattgt	tatatcacta gttcaagttt aacaaaagtt agtttatctt	20940
ccaatgggt tccagactct	gaaaccttcc cccgatacca tccactatac ttgtgttaag	21000
caggaactt atatttccca	aagtcttaca tattaaattt tttgggagta aagttaaaata	21060
aataatgaaat cccatttctt	catcactt gggggatgctg attccttgc gacagtgtgg	21120
agttggccaa actcatgtgc	tccgttagt taggattttc agaagaatcg aatattgtg	21180
gttggttata attgtatgt	ctttttgttca gaaataattt acctgcaggg atttggtctc	21240
cacacagtaa ttgcattata	aactctacag gttctcaata cccattctgt aatcatgaaa	21300
tcatgcttct ttctcaggta	ggatttagata tattttttaa aaagttaaa atccggcagt	21360
aaatatttttta attgtatgaa	ataaaatggag ctgaaacata ttctgtatgaa ttgaaaatg	21420
tttataattaa agtgttgcta	ttctttttagt agtactgtt gtttacagagt gtttgcataa	21480
tgaaaagaaa ataggccaaa	agaattttta ttcatcaat aattatttgc tgcctccaat	21540
tcaggaggca caaatctagg	tgctgttagt ctatataacta gatcagataa aaatccttgc	21600
ccctaaagga gctcatgtt	tgatgttgc gttcgatgttca gactagacct ggatcattca	21660
ccaaataataa ctatgtatct	caattttgttca agatgttagt acatgacaga tatattttaa	21720
aaacttttac tgaattact	ttctcatcaa gagagaatgg ctatataca aattttatgg	21780
ataagaaaac tgaggcacac	agaaattataa aacttgcggcc agggccacaca ggttaggaact	21840
agaggcactg ggttttccac	ccaggaagtgc tggactgc aatccctgttca ctgtcccact	21900
ctgctggctt tcaatgtaa	actatgttca ctgtttatac ttgatttgc acaatcaaga	21960
tctggatata aatcatctt	ctgatttccatt ttgtgttaac aatgcactc ttacttatt	22020
taagagctgt atcatgtat	atttatagc cttttcataa agaatggct acttttaggt	22080
ttatagcttata tattactttaa	aaataataa aatatgtttt gtgaagctgc cttctctaga	22140
tttcttttcc cactccaaat	tgaaccatga ccaatttcca aggagacacc actcttgc	22200
aagacaaga ccaacatttct	agactcttgc taggacagaa tagaagaagc aagcattc	22260

atggaatgt ctcagtgtag ggtcatgtc aggagagcac aggtcagat gcctccaaag 22320
ccatttctgt ccaattgcag aagttctcc ctgagatttc ttgtctaaa gcagtaggat 22380
attgtttct ttttttca gaagaaagac tatttccaca aaattctcg ttaaattatt 22440
tggactattt atgttttca ttacttcaac ttccaaataga aaaaaaaaaa gactcataaa 22500
aaaacagatg aatttgcgaa ttattttgaa gggtattaa tatttcaata aaaaaaggcca 22560
ttaaaaatgt aatttgcgaa ggcacggtgg ctccccctg ttatcccagt actttggag 22620
gctgaagcgg gtggattgcc tgaggacagg agttcaagac cagttggcc aacatagtga 22680
aaccccggtt ctactaaaaa tacaaaaaaa ttagctgaac gtgggttg gcacctgtaa 22740
tcccagctac tcgggaggtt gaggcagcag tatttgcgtt acctggaga cagaggttgc 22800
agtgagctga gattgcacca ttgcactcca gcctggcga caagagtga actccgcac 22860
acacacacac acaaattgaaa tccagcacca aacacgtatt tgcctattt gcaattaaat 22920
gtaccatcaa acagagggat agagaatgtg gtatattata tatatatcat acattataat 22980
gtgatataat atataataca ccacagttt tttatccact ttttttttga tggatataata 23040
catatatatt atatgtatata tataaaaaaa atgtatatga tggatataacta ctcagccata 23100
aaaaggatg aagtaatggc attcacagca acttggatgg gattggagac taatattcta 23160
agtgaagtaa ttccagaatata aaatacaaa tataatgtgt tctcaactcat aagtggaaac 23220
taagctgtca ggtgcggaa gctataagaat gacacaaagg acttcgggga cttggggaa 23280
acggtgagg aggtgaggga taaaaggcta cacattgggt tcattgtata ctgtttggat 23340
gatgggtgca cccaaatctc acaaattcacc actaaagaac ttactcatgt aaccaaatac 23400
cacctttcc cccaaacacct atggaaatata aaaataaaaaa taaaacccaa aagaaatca 23460
attggaccctt gtgagctta acaagtaat tatgattcta ttgatttagg tgacttatct 23520
tctaacttat tacccttaggc agaagccaa tggcttttgc ttgatataacta gataatacgg 23580
tggacaagtt ttgaacattt aatttacaga gtgctttatt tatgaatgtt cctgtttcca 23640
gtgttgcatt ggtatgtt aaaaaaaaaaagt tagtataaca ttgtcaagtc tggatatgtg 23700
tcatagaaga aacacgtcga ttgttccatc atgatctca tggtcacttt tatcttgc 23760
aaatgtttag agattcagggt caggatattt taatgtatgtt ctgcgtcatg ttgttaatata 23820
gattatgatt tcaacttgc tgcatacatg tttaacaaa ttcatattga acttgcgttc 23880
caatgtttt tcttagttt tcaagtgtt aatggaggtt gaggtaaaac aacgcattt 23940
tagttttagg ataagttct tcatcatttt atccttattt cccccctccc caggagccct 24000
ttgatacact attgtttct ttatatccct atcaacattt aataccatca atacagggtgc 24060
acttgcgtat ctatatacca tgcataatgtt tatgttttattt gtattatgtt catatgtatt 24120
ataaaatacaat atatgtatata tctacttca ttcccccaaga accaattttt gcccccttgg 24180
acaaaaatatac acaaattgaa gaaatgttgc ttggctttt aagttaaaaa agatttgg 24240
ataagaggcgc cagctgagggt agaataaaagt gaagaaaaatg ggcacacatt agagggtgag 24300
ggaagatctg gaaaatgatc tccaggcgtc agggggcaggc aaagcgattt ttgttctaca 24360
gggatgtata ccaggcatca gtccttccatc ctaagcactg ttcagttgtt ataaacctgg 24420
agggttccaa aggctgatac ttttagatccc acattcaaaatg gtgttggttt aaacaaagaa 24480
ttacagtttca aagaaaaaagc aatgttaca accatgggtt caagaaaaagt ctaagtgaac 24540
acatataaca aagacttgc aaaaagataaa agataaggtt cttaactat caaaagactt 24600
gcagaaaaaga accacagaaaa accattttaa atattattgc ctttgatata taaaaaactc 24660
tatatttagtt tagatgttta aagcatcaat cactatgtca cttagcttatt tcttaatgtc 24720
acatgtattt acatgtttag agaagaggaa gaaatagcag atgacaccac tgggttaatg 24780
cataaaatgac aaacctaaat gcattttat ttccctttat ttagatgtca ttgttggcca 24840
agcaaaacaca atgtttaaaga aaaaccatac agccgttact gagggttgc ttctggact 24900
gacagatcgg gctgagctgc agtcccttct ttttggta tttcttagtca tctacctt 24960
cacagtaatc ggcataatgtt gcatgatctt gttatcaga agtgcactgc cactacacac 25020
tccaaatgtac ttcttccatc gtcacccctc ctttggtagat ctctgttata ccaccaatgt 25080
tactcctcag atgttggta actttttatc caagagaaaa accatttccatc tcatcggtc 25140
ctttatccaa ttctactttt tcatttgcact ggttggata gatttata tgctcacagt 25200
gatggcttat gaccgttaca tggccatctg caagccctt gttatggaa gcaaaatgac 25260
cagggtgttc tgctctgtc tggctgtc tccctatatt tatggctttt gaaatggct 25320
aagcacagac caccctgtat ctgcgtctgt cttctgtgg acccaatgac atcaaccact 25380
tttactgtgc ggaccacccc ctcttagtcc tgcctgtc agataactt gtcggaaagaga 25440
ccgcatgtt ggtggggct ggttccaaacc tcatttgc ttcacccgtc atcctcattt 25500
cctacactt catcttcaat gccattctgc gtatccacac tgctgagggg aggcgcagg 25560
cttctccac ctgggggtct catgtgaccg ctgtcaactgt ctctatggg acactgttct 25620
gcatgtaccc gaggccccct tctgagacat ctatacaaca gggggaaaatt gtagctgtt 25680
tttataatctt tggatgtccg atgtttaaacc cattgtatcta cagcctgtt gaaaagacg 25740
ttaaaaagaag tataaggaaa gttattcaaa agaaactgtt tgctaaatgaa ggttagatatt 25800
ttggtcatag gctgtggaaat ctgttccat tttctatggg attaatgttac attaaaaatt 25860
aacaatcaa tctgttccat ggtttttt gtccttgcattt gttatgttactt gggactt 25920
agtgtatgtc aaatttattt ctagagctt cactgcacc tcagtaaaatt gaaaatgaaa 25980
gcatagaaat tcaaataat tcaatgttac gactgttac gtttgcactt gctctgtt 26040

gtacagatga ttccattatt agtactcata gtactaatat atcatagtagc tatatatcat 26100
taataatata tcatagtact atatcatagt actaataatata catagacta tatcatagta 26160
ctaataatatc atagtaactat atcatagtagc taataatataca tagtactata tcatagtagt 26220
aatataatcat agtactata catagacta atataatataca gtactataatc atagtaactaa 26280
tatatacatag tactataatca tagtactgta tcatagtagt aataatatacat agtactgtat 26340
catagacta atataatatac gtactgtatc atagtaactaa tataatatacat tagtactata tcatagtagt 26400
tagtactata tatcatagta ctataatataca tagtactata tatcatagta ctataatataca 26460
tagtactata tatcatacta aaataatatac aaagacagaa ttatcaattg ctgagaaaat 26520
gacagctcat tacatffff taaatgttt tgffffgtccc tttgaatgaa tggaggat 26580
ctacctaact tctatgtatt cagaatctca catgaggcag cacatttgc acacttggat 26640
agttgtatac ttctatgtct atcttcgtga gtctgtttga aaagttggat aaatggcaat 26700
gagtgactac atttgctaat tacatffff aatacttaat aagcctccaa gctatttcc 26760
agaaaacttgc caaccatagt agatgagggt tctgttttc ttttatacat attatataga 26820
aatgaagatc ctttaggtgt actttggatt attactttaa gttatatact tagaatgata 26880
tcatagatcc aatgaaaccc tatttcataa ggctttcat ggaatgcca aatttcctt 26940
agaaaagagtt tttattgtt tgtatgtt accagtaagg attccatca acatgtgaac 27000
tcaatttttc actctttat taccattgcc tgffffctt gaataaataa attgaattga 27060
atgttttatac cacgaatgca tggatatt tggattttt atgtgtgtat gtaggtgtgt 27120
gtgtgtatTT tgattacaat ataacatTT ctttttttta attgttttatt caaattttt 27180
tggtgagaat caaggctgta tgcctttttt tttttttttt ttttttttga cagagtattg 27240
ctctgttgct caggctggag tacagtggcg cgatctcgcc tcactgaaag ctccgcctcc 27300
cggggttcacg ccatttcct gcctcagcc ccegagtagc tggactaca ggcggccccc 27360
accacgcccc gctaattttt tgtatTTta gttagagacgg ggtttcaccc tgtagccag 27420
gatggctttg atctctcgac ctctgtatcc gcccgcctcg gcctcccaa gtaactggat 27480
tacaggcatg agccaccgcg cccagctgct tacccgttt taaaattgtg gtgtttat 27540
gttttcttatt ttatTTcaga tatttctcaa tgatataaac atgttttgtt tttatataca 27600
ggtagtagcaa ttgtatataat atacacatga attccattt atctcttcta ttgtgtctt 27660
tccaaagatTA atattttatc attttaaatt ttctcaatat ttttttattt cactttattt 27720
tgtcttttt tacttttagg aagttaaatggtt ttttccatgt atgtatcatgt ggatttttac 27780
atataattttt aaattttttt catggtttcg cttgttaatt ttttctttagt aactattttt 27840
aatataatc taaaatagaa aataatataa agactcctt gtaagcacaa ctaatacta 27900
ttaaattttc acagaatgcc ccatttgc tatttttgc tatttttgc agaaattttt aacttacaaa 27960
gatacatctc tcctgactga ttctgtctc tgffffctt cttgtgtaa actctattac 28020
aaattttatg ttctttatcc ttctgttagag ttacatcattt ggataggtgt ttatatttc 28080
atagaaatat gttagtactga ttgtatcat taaaacttggaa aataatatgc atccactcta 28140
tgtatcttc tgcattttat ttatTTcga ctaatatttgc ttggatgtat ctgtggtaa 28200
tcatgcacca gcaatttttgc gttttatgtt ctatgcattt atataatattt gcctcaatatt 28260
gtgttattttt ttcacgatt tttttttttt tgagacaga gtcctactt tgtagccctt 28320
gtctgggtgc aatggcacga ttcgtctca ccgcaaaactc cggccccccag ggtcaaggcga 28380
tttctctgtc tagcctctta gtagctggga ttacaggtagt ccaccatcat gccaggctaa 28440
ttttgttattt ttaatagaga cgggatttca ccatgttagc caggatggtc ttgtacacct 28500
gaccctgtga tcccccgc tcagcctccc aaatttttgc ttatttctac tgtaggtgtaa 28560
gagttacatt tccagtttgc ttgataatat gaaaatccat taataatgt tttgtgtgt 28620
attatgaatg tgtagccatgt aaggagttcc tctcaggtagt gttggtaatt tcttggtcatt 28680
aagatataag tatctttaaa ttactatattt attgccaatt gttttactga ttatatttc 28740
tatcaacatgt ttgtgagtgt taccttaca tcactttattt ctggccaaaa ctaggtgttgc 28800
tcagacttta aatgttttgc aatctgtatgg gtaaaacatg aatttcatt tgggtttaa 28860
gggtgaattt tgattacaatg tgaaactaag tatttttaag tatattgtat ctaatctcat 28920
atttctcttt cacttatatac tccatataact ttgttaactt ttcaggtagg gtgatttgc 28980
tttatttcat acatttataa tagttctta tgtagccaaat gtcacatatac aatcttttgc 29040
tgttatatac catttaaccc taaaaccta gggtaataat gccaggcagt gtggctcaca 29100
catgtatcc cagtaacttgc ggaggcttagt gcaggaggat tgcttgatcc caggagttt 29160
aggccaaact acacaagata gagactctgt ctttacaaaa aaataaaaaaa aaatttagcca 29220
gttgggttgg gatggccctt tggtccaggc tacatggaa gctgaggcag gaggatcact 29280
tgagcctggg aggttagaggc ttctcgtac catgttgc ccacgcact ccagctggaa 29340
tgacagagga tggatgacag agcctggatg actccagctt ggtgaccct gtctcaataa 29400
aacaaaaacaa accccaaaaaa accttaggggt agatgaacag atgaacgtt tttcttgaat 29460
gcctcagcaa atagccatag gtatcttattt ttctggtagc tgcaatttga ttgggacaaag 29520
tttggaaattt cagctcattt gacaagtattt tcataatag atattttccc agtaggattt 29580
gattttttt tccacatag tgaatgttta tatgtgagca taaaatgtt cccacagatt 29640
gggattttggat aaattatatac aagtgtgatc ctgtatattt gcttgcatt taaaatactg 29700
gttattaccc aaatagaaaaa ttaacatttta aaagagccaa caggctgggc aaagtggctt 29760
aqqcctgtaa tccacgcctt ttgggaggcc aaggcccaca gatcacttga gttcaggagt 29820

tcgagactaa cctgggcaac atgagggaaac cctgtctcta aaaaaaccac aaaaattagt	29880
taggtcttgtt ggcaagtgtc ttagtccaa gctactcagg aggctgatgt gggaggatgg	29940
cttcagcctg ggaggcaaag gttcgagtga gctgagatca tgccagtgc ctccagcctg	30000
ggtaacagag taagatctg tctaaaaaa ataataaaaat aggccaggtg cagtagttca	30060
tgcctgtaat cccagcactt tgggaggccg aggcaggtga atcacaaggt caggagttcg	30120
agaccagcct ggccaagatg gcgaaacccc gtctctacta aaaataaaaa aattagccgg	30180
gtgcagtgtt gggtgccctgt aattccagct acttgggagg ctgaggcagg agaatcgctt	30240
gaacccgggg ggcagaggtt gccatgagcc aagatcgtgc cactgtactc tagccttgg	30300
gacagagcca gactccaact caaaaataaa taaataaata aataaaaaataa taaaatataa	30360
tataataaga atgccaacag aataattctg atttcagcta cagtttatgc ttttttatga	30420
gaaattcaac tccaatctt taattttatt ctcctttatt ctgttgcata gacattgcatt	30480
attaaaaagg cattttttt cttAACCAAT agttttatcc ttattgtgtt cttattctg	30540
gagagaactt catattcaa ggcacagccc aaatatcaac tccctgtcc tttcatgagc	30600
aaacagggtc acataccat tcctgtgatt gtgttagatat tgcaactcta tttgtctgtt	30660
agtcacacag aaaattcata ataatacaat gccatgtttc ctaatataatt ctgagagttc	30720
tgtgagaaat gaaaccttatt gtatcggtt agtactgaag atggccgaat aggaacagct	30780
ccagtcata gctcccagcg tgagcagcgc agaagatggg tgatttctgc atttccatct	30840
gaggtaccgg gttcatctca cttagggagtg gcagacagtg ggccgaggc agtgggtcg	30900
cgcacctgc gcgagccgaa gcagggtag gcattgcctc actctggaaag cacaaggggt	30960
cagggagttc ctttccttag tcaaAGAAAG gggtagacaga tggcacctgg aaaatcggtt	31020
cactcccacc ccaatactgt getttccaa cgggcttaaa aaatggcaca ccaggagatt	31080
atatccgcac cctggctcag agagtctat gcccacggag tctcaactgat tgctagcaca	31140
gcagtcgttgc atcaaactgc aaggcggcag cgaggctggg ggaggggtgc ccaccattgc	31200
ccaggcatgc ttaggtaaac aaagcagcca ggaagctcga actgggtgga gcccaccaca	31260
gctcaaggag gcctgcctgc ctctgttaggc tccacccctg gggcaggac acagacaaac	31320
aaaagacagc agtaacctct gggacttaa atgtccctga cagcttggaa gagagcagtg	31380
gttctccag cacgcagctg gagatctgag aaagggcaga cttcctcctc aagtgggtcc	31440
ctgaccctgc acccccggc agcataactg ggaggcaccc cccagcatgg gcagactgac	31500
acctcacacg gccccgtact ccaacagacc tgcaactaag ggtctgtct gttagaagga	31560
aaactaacaac acagaaaagga catccacacc gaaaacccat ctgtacatca ccatcatcaa	31620
agacaaaag cagataaaac cacaaagata gggaaaaaac agagcagaaa aactggaaac	31680
tctaaaaagc agacacccctc tccctccca aaggaaagca gttcctcacc agcaacggaa	31740
caaagctgga tggagaacga ctttgacgag atgagagaag aaggcttcag atgatcaaatt	31800
tactccaaac tacgggaggt cattcaaacc aaaggcaag aagttaaaaa ctttgaaaaa	31860
aatttagaag aatgtataac tagaataaca aatagagaga agtgcattaa ggagctgtat	31920
gagctgaaaa ccaaggctcg agaactacgt gaagaatgaa gaagcctcag gagccgtatgc	31980
gatcaactgg aagaaagggt atcagcaatg gaagatgaat tgaatgaaat gaagcaagaa	32040
gggaagttt gagaAAAAG aataaaaaga aatgagcaaa gcctccaaga aatatgggac	32100
tatgtgaaaa gaccaaattct atgtctgatt ggtgtacctg aaagtgcacag ggagaatgga	32160
accaaggttg aaaacactct gcaggatatt atccaaagaga acttccccca ttagcaagg	32220
caggccaaaca tccagattca gggaaatacag agcacaccac aaagataactc ctcgagaaga	32280
gcaactccaa gacacataat tgcagatacc accaaagatg aaatgagga aaaaatgtt	32340
agggcagcca gagagaaaagg tcgggttacc ttcaaAGGGG agccccatcg actaacagcg	32400
gatctctcg cagaaactct acaagccaga agagagtggg ggcataattt caacattatt	32460
aaagaaaaga atttcaacc cagaatttca tatccagcca aactaagctt cataagtggaa	32520
ggagaataa aatactttac agacaaccaa atgctgagag attttgcac caccaggct	32580
accctaaaag agctccctgaa ggaagcacta aacatggaaa ggaacaaccc gtaccagccg	32640
ctgcaaaatc atgccaaaat gtaaagacca tcaagactag gaagaaactg catcaactaa	32700
cgagaaaaat aaccagtttca catcataattt acaggatgaa attcacat aacaatatta	32760
actttaaaca caaatggact aatgtcttca attaaaagac atagactggc aatttggata	32820
aagagtcaag acccatcagt gtactgtatt cagggaaaccc atctcacatg cagagacaca	32880
cataggctca aaataaaaagg atggagggaaat atcttaccaag caaatggaaa aaaaaaaaaag	32940
gaaggggtt gaaatgttgc ctctgtatcaaa acagacttta aaacaacaaa gatcaaaaaga	33000
gacaaagaag gcattacat aatggtaaaag ggatcaattt aacaagaaga gctaactatc	33060
ctaaatcat atgcacccaa tacaggagca cccagattca taaAGCAAGT cctgagtgc	33120
ctacaaaagag acttagactc ccacacatttataa ataatgggag actttaacac cccactgtca	33180
acatttagaca gatcaacccg acagaaaatgc aacaaggata cccagaaattt gactcagct	33240
ctgcaccaag catacataat agacatctac agaactctcc accccaaatc aacagaatatt	33300
acattttttt cagcaccaca ccacacccctgc tccaaaattt accacataact tggaaatggaa	33360
gtctttctca gcaaaatgtaa aagaacagaa attataacaa actatctctc agaccacagt	33420
gcaatcaaacc tagaacttag gattaagaat ctcactcaaa accactcaac tacatggaaa	33480
ctgaacaacc tactctgaa tgactactgg gtacataacg aaatgaaggc agaaataaaag	33540
atgttctttt gaaaccaacga gacaaagac acaacatacc agaatctctg ggacacattc	33600

aaagcagtgt gtagagggaa atttatacgca ctgaatgccc acaagagaaa gcagggaaaga 33660
tccaaaattg acaccctaac atcacaatta aaagaactag aaaagcaaga gcaaacacat 33720
tcaaaagcta gcagaaggca agaaataact gaaatcagag cagaactgaa gggaaatggag 33780
acacaaaaaa cccttcaaaa aattaatgaa tccaggagct ggtttttgaa aaggatcaac 33840
aaaattgata aaccgctagc aagactaata aaaaaaaaaa gagagaagaa tcaaatacgaa 33900
gcaataaaaa atgataaaagg ggatattacc accgatccca cagaaataca aactaccatc 33960
agaggatact acaaacacct ctatgcaaat agactagaaa atctagaaga aatggataaa 34020
ttcctcaaca catacactct cccaaactaa accaggaaga agttgaatct ctgaataggc 34080
caataacagg atctgaaaatt gtggcaataa tcaatagctt accaacgaaa aagagttcag 34140
gaccagatgg attcacagcc gaattccacc agaggtacaa ggaggaactg gtaccattcc 34200
ttctgaaaactt attccaatca atagaaaaag aggaaatcct ccctatctca ttttatgagg 34260
ccagcatcat cccgataccca aagcctggca gagacacaac caaaaaaaaaag aatttttagac 34320
caatatcctt gatgaacatt gatgcaaaaa tcctcagtaa aatactggca aaccgaatcc 34380
agcagcacat caaaaaaaaa atccaccatg atcaagtggc cttcatccct ggatgcaag 34440
gctggttcaa tatatgcaaa tcaataatg taatccagca tataaacaga accaaagaca 34500
aaaaccacat gattatctca atagatgcag aaaaggcctt tgacaaaaatt caacaacact 34560
tcatgctaaa aactctcaat aaatttagta ttgatggac gtatccaaa ataataagag 34620
ctatctatga caaaccacca gccaatatca tactgaatgg gcaaaaaactg gaagcattcc 34680
ctttgaaaac tggcacaagg cagggatgcc ctctctcacc actcctattc aatatagtgt 34740
tggaaaggctt ggcaggcga attaggcagg agaaggaaat aaagggtatt caatttaggaa 34800
aagaggaagt caaattgtcc ctgtttgcag atgacatgat tgtatatactca gaaaacccca 34860
tcatctcagc cccaaatctc cttaaagctga taagcaactt cagcaaaatgc tcagaataca 34920
aaatcaatgt gcaaaaaatca caagcattct tatacaccaaa caacagacaa acagagagcc 34980
aaatcatgag tggaaatccca ttccacagttt ctccaaagag aataaaatac cttagaatcc 35040
aacttacaag ggtatgtgaag gacctttca aggagaacta caaaccactg ctcaaggaaa 35100
taaaagagga tacaacaaaa tggagaaca ttccatgctc atgggttagga agaattaata 35160
tcttggaaat gtccatactg cccaaaggtaa ttacagatt caatgccatc cccatcaagc 35220
taccaaggc ttcttcaca gaattggaaa aaactacttt aaagttcata tggaaaccgaa 35280
aaagagcccc catgcaccaag tcaatcttaa gccaaaagaa caagctgga ggcacacac 35340
tacctgactt caaactatac tacaaggcta cagtaaccaa aacagcatgg tactggtagc 35400
aaaacagaga tatagatgaa tggaaacagaa cagagccctt agaaataacg ccgcataatct 35460
acaactatct gatctttgac aaacctggggaaaacaaagca atggggaaag gattccctat 35520
ttaataatg gtgcaggaa aactggctag ccatatgttag aaagctgaaa ctggatccct 35580
tccttacacc ttatacaaaa atcaatcaa gatggattaa agacttaat gttagaccta 35640
aaaccataaa aacccttagaa gaaaacctag gcattaccat tcaggacata ggcacatgggca 35700
aggactttat gtctaaaaca cccaaagcaa tggcaacaaa agccaaaaatt tacaatggg 35760
atctaattaa actaaagagc ttctgcacag caaaagaaaa taccatcaga tggaaacaggc 35820
aacctacaaa atgggagaaa attttcacca cttactcatc tgacaaaggg ctaatatacc 35880
gaatctacaa tgaactcaaa caaatttaca agaaaaacaa acaaccctgt caaaaagtgg 35940
gtgaaggaca tgaacacaga ctttcacaaa gaagacattt atgcacccaa aagacacatg 36000
aaaaaaatgct catcatcaat ggcacatcaga gaaatgcaaa tcaaaagcac aatgagatac 36060
catctcacac cagcttagaat ggcaatcattt aaaaagtctg gaaactacag gtgctggaga 36120
ggatgtggag aaattaggaac acttttacac tggatgggg actgttaact agttcaacca 36180
tttgtggaaat cagtgtggcg attcctcagg gatctagaac tagaaaaacc atttgacccca 36240
gccatcccat tactgggtat atacccaaag gactataat catgctgcta taaagacacaca 36300
tgcacacgta tggatttgc ggcattattc acaatagcaa agacttggaa ccaacggaaa 36360
tgtccaacaa tgatagactg gattaagaaa atgtggcaca tatacaccat ggaataactat 36420
gcagccataa aaaatgatga gttcatgtcc ttgttaggaa tatggatgaa attggaaatc 36480
atcattctca gtaaaactatc gcaagaacaa aaaacccaaac actgcataatc ctcactcata 36540
gatggaaatt gaacaatgag aacacatggc cacaggaagg ggaacatcac actctgggg 36600
cggttgggg gggggggggg ttgcattggg agatataacct aatgttagat 36660
gacgagttttag tgggtgcagg gcacccacaa ggcacatgta tacatatgta actaacctgc 36720
acattgtaca catgttaccct aaaactaaa gtataataat agtaataata ataaattaaa 36780
aaacagaaaac attatatcta tctccttgc ttcatagcaa gtcataata catgtttctca 36840
aattgagaaa gaataattac aattgaaggc acatagtgtat gaaagaaaaa ttgttgattc 36900
tgacatttgg agctgaaaat atttaatagc tacaatctt aaaagtcagt attgtggaaat 36960
aaaagttctt ttatataatgg ttgggtgatc ttgtggataa tggtttattc ttcttaaagc 37020
aaggtgtcct ttgttttgg acatatttc agtggatgtga ttgttcttc ctgttctctg 37080
tctcttctc tctgttgcctt tctctgtatc actgccttcc tctcaattcc tatttcataa 37140
tttggtttag ctatattgt gtcttacaga ctcttcacat gttggcctca gccttacata 37200
ctttcaggac aatctcagta cagacaaggc tgcgtctgtt ttttggaaat gactcctctt 37260
gcctgaaatg gtcacagtgc acagcagggtg tatgtgtgtt ttgttgggtg tattgtattgt 37320
gtatgttcat gtatgttcat ggtggaggtg caatcataca acgagaataa ttttgcct 37380

acaatagcta ctaccattta ttttactttt tgcaaaaaaaaaa tttttttctt acccaactgct	37440
ctgttcatta acaaacttct agtttagtaa gaagggttta ttaactaaga gtttgtaat	37500
gatagtttat cctgttcaga tgtgagaaag aatgttaaaa ctatgtctt ctcttattagg	37560
agatacatta gatgatctca catgcacaat tcctatgtcc attttgc当地 cataattact	37620
gcactgc当地 ttataatgca tagaattctg ttgggtggaaa aataacaagtg tgtccagaca	37680
tttgc当地 ggtttgctat gctaataattt gttatgttg aaagtgc当地 atttgagatt	37740
gactgatgca ttgtcatttt ccccataact tgccatatta gatcactaca ttaatttatt	37800
ttgcttgc当地 actgtctatt tggcttaaca ttattttta aaacaatcg aaacttctt	37860
gtatgtatg atactcgac local ataattgttt ggactaaatt agcaggttga cc当地 cttt	37920
gaggatcaga acaaaatcgat atcataagac atgacagaac acatatacg ttgagactaa	37980
aaccttaaaa atgtgactgt tttccctctc ttttttgagg cttcttagag ttgaaagctt	38040
catgtgtttt ctctttctg tttctgttact gtc当地 ctgac agaaacatca ctttacttac	38100
catgcttattt cagtgtaacct gctttcaag gaaaatgtaa tttgtgtt ggaaaggaat	38160
ttgaaaagtc actggtcaca tcagccccaca tggtactctt ggatttctt ctccatagag	38220
aaggccaata accatttgcc ttgaccacac ccaatttctt cttaaaactc tttatctaac	38280
atctaagttt ctcttcttct tctctcttcc ttcttatttt ttttttctt ttaaccagg	38340
cttccatgat actggggaca aaaaaagaga agataagaga tgaacttagt gctttctgga	38400
ctctcaactt gaattattttt ttttaaaaaa gtataggggaa aatggggtt gaggAACACC	38460
ttagcttcg atgcttaagc ttttgacttgg ttgtaatcctt gggatggaa agaactctga	38520
taactttgt gctctgtttt ctatttgggtt ttgtttttaa tgatttctt gatgttaac	38580
atctagcaag taatttgatt tgcttaattt tgaggaaaga aaaaatttcc tttgagttaa	38640
atttatgggg taaatttact tacattaaat ttaggaaactt taatgtgtca gttc当地 taaa	38700
gtttgacaaa tggtagcagc catgttatca caatttccat tttcaaggct actgtgc当地	38760
tgggaagtgt gagaataggg caagtaaaga tgccacaaag ttcaactgtcc ttaccaagat	38820
tcaggaattt ttcttgaat aaatactcac ggaatttggtaa caagctttt attactttct	38880
agatatccaga aacagttgac ttttgactttt tttttagtgt tctcatgggtt ttcatggagg	38940
gacagttttt ggaagggtcat tactatgtca atcagaaagt tgatttcttag atagatagat	39000
agatagatag atgatagatt catcaagattt gtatgaacag tttgttcattt tttatttgc当地	39060
agagtagtaa cccattatag ggatatacta taatttggtaatcatttgc当地 ctgctgatac	39120
atgtttgaga ctctgtatgg atatgtcttcc ttttgc当地t gataaataact gaagagcaaa	39180
atttctgtgt catagttttt tgatgaacta taaatttata taaaatttta taaaggccca	39240
ccagtttttcc acagccccattt gaattttttt cattattata tcttgc当地 ttttataaga	39300
gtttcagttt cttcacatta tcatttttaa tcttgc当地t gtc当地 atttttcttcc	39360
ccatttgaagt gagttgtgaag tggtaaaaaaag ccagcttcca gttttaaggtag	39420
taaggacaga ttttatttgc taatatacta ttgcaatggaa caggttaggtt cactgtttaac	39480
tgaactctaa ttttttttcc acagagataa ctgtgttattt taaaggtaga atgaggaaat	39540
aggaagaggc atgagcaggc ctcaagagag tcaagagaat aaaaaattttaa aaaaagggt	39600
gaaaggagtg ttgatccatg tggaaaccac ccaggccatc caactggctc ctaccctccc	39660
ttgggagctt gtagacaaga gcttcttcttcc cacatatttttgc ctgaaacaga cagtttctt	39720
tgttggcagc ttggatgtttt ctcaggccagg ttcttccagg agtactacag tcatcccagg	39780
gatatggct ttagctgtta gccactgtgt ttgttttttgc ttcaagtctt tttaggccaa	39840
ggttgaggcc tagtcaagaa agtgc当地t ggttcttcc tagattttgg tccaggaggaa	39900
aatctttgtt atgcgggtttt tcataatggg cataatttttac atttttcttga caaatgc当地	39960
tgttgaattt cttttcatgtt gatcggttgc ttttcatgttca tcttcttta tgaagtgtct	40020
gctcacaact tagactttctt tttttttttt aatttgc当地t tttatatttgc gaccaggtaa	40080
ttgtgggaga tattttatgc ttcttaataac caatcatttgc tcaaggatttac ttactatgaa	40140
tagtcttccctt agtctatgtt ttgc当地t attatcttag cattatttttgc aagaatgc当地	40200
gttttaaaaat ttgtgacac acacacactt tatattatata tattttatata tatatttttgc	40260
attcacaattt agtgc当地t ttttcttccctt aagaaatctt tgcttccctt aagatcataa	40320
agctatttttcc cc当地t ttttttcttgc gaggacttgc agatttagtca ttacatatttgc	40380
gaatttttat ttccaccaat ttgttttgc ttgttgc当地t ttgttttgc当地t ataggaagtt	40440
aaatatttttta atgaacatattt cc当地t atttttgc当地t cagtagc当地t ctccattaaa ataccttgc	40500
acctttgttcc aaaaatccat tggctacata tacgagttggaa tcttatttgc当地t atcttcttgc	40560
tctgtacact taaccttccat atcatcttca gatccacaca ctgcttgc当地t tgctataactt	40620
cttagtaact tttaggttgc当地t tgatatttac ttaaggccaca gtttttccata tacttttattt	40680
ttttcaagaa agccttc当地t aacccttgc当地t caacttgc当地t ttgaagacat taaatgttta	40740
gttaacccatgaa ttttacttca attacaatga tcaatttgc当地t gatgtctgct agaagtgc当地	40800
ctattaattt agttagtgc当地t atactacaat ggtc当地t gatggacacat ggtactgacc	40860
atggacattt aagtagtgc当地t aatttgc当地t caatatttttgc当地t tcactttccaa aagggggtttt	40920
tgttgc当地t tgacagcattt tatttttagaa tcagatcatttgc当地t aagttttgc当地t aacatcatcc	40980
tgctgaaattt tgatagaatgtt ggctttaaaa ttatttgc当地t attttttttgc当地t aattaacaca	41040
ttgactatattt tgaatatttctt aatgc当地t gtagacgttgc当地t gtcttatttgc当地t tttaggttctt	41100
ctttaatttcc gctctgc当地t cggttgc当地t tatcttgc当地t acacttttttgc当地t	41160

tttttggtttc tgtagtagctt atgattttat gtgatatttt taagttttat attctactgt 41220
gttattgcctt tatgttaactg tatgagtggtt tttgggtttt tttatttgt ttgttttgt 41280
tttttagac agagtccgc tctgtcaccc agattggagt gaagtggat aatctggct 41340
ctatgcaatg tctgcctccc aggttcaacg gattctcctg cctctgcctc ccaagtagct 41400
ggggctacag gcacggttgc atcacaccgg tttcaactatg ttggctaggc tagtctcaa 41460
ctccctacct caaaaatct gcccacctea ggctcccaa gtgctggat tacagttgtg 41520
agccatcgca cctggctgt atgagtggtt tttgtgtatt gaatttgtaa ttgtaatcat 41580
atcatctcc aaaatataca cttatttcc cattgtata tttaaaata actttataa 41640
taaaggcatca tgcatctgt gaataacaca gattgttgc tttcaattt gtatacttt 41700
tatttagtag gtaggacttt cagtaccata ttgaaccgac tacaacttt aaataaaaaaa 41760
tagccaattt agtaatcaca aacacacaag taaaatctta agggccaata ggatgtatcc 41820
aactgtctga acatgggtc attgtatag ctaaatccat taggtgttcc actagcagac 41880
atacatcaat tggccttcc agcagaagca aagtgcacatc gactaaataa actaatgtgt 41940
tcagtaatat agatagataa tataaaactt tctgaaggct ttctatgaaa cataaaataa 42000
gcatgtgtaa aactcatctt tgagttgta taatatacat agctaatact gtattcccta 42060
acccaaatcta taagtaaatt aatgtcacct tctaatgtgt ggacatctga tcatgtgatc 42120
ccatattaaa attttgaga ctttgcttcc cctcatcaaa aataaccaat ccattacttt 42180
ttgtctatcc attcagttt tattgagcca gaatcatttg tagtcagaag agtcattttg 42240
taactctt ttttattga aatgttattt catattaaca tatgtaaagaa aacaataaaa 42300
tgaatataca tatacataca cacatactat agggcatatt gccttcaaat tgaaagctgc 42360
cattctgttt aacaaagagc caaattgtca attagttta tgcatthaagg gatgaggaaa 42420
tgagagacac cagttattata gtcctatag acctttattt ctatagaaaat attaagaaa 42480
taccattttt ttttattttt ttatttttattt ttatttttattt ttatttttattt 42540
tattataactt taagtttttag ggtacatgtg cacaatgtgc aggtttgtta catatgtata 42600
catgtccat gttgggtgtc taatgtatc cccccccctt ccccccactc cacaacagtc tgactcatt aactcgatcat 42660
ttcctatgtc catgtgttctt cattgttcaa ttccaaaccta tagttgtctt aactcgatcat 42720
ttggttttct gtccttgcgaa tagttgtctt agaatttgctt tttaggttcatgatg 42780
catccatgtc cctacaaagg acaagaactc ttcatttttt atggctgcat agtattccat 42900
ggtgtatag tgccacattt tcttaatcca gtctatcggtt gttggacatt taggtttgggtt 42960
tcaagtctt gctattgtga atagtgcccc aataaaacaca cgtgtgcatt tgctttata 43020
gcagcatgtat ttataatctt ttgggttatat actcagtaat gggatggctg ggtcaaaaga 43080
aataccattt tacttttaaa ttagtgcagaa gaatcaaaac catacagataaaaactgaga 43140
taaggcttta aactcaattt gggaaaaaaa atagctatgc tcaaattctt caaatttcat 43200
gggatgtaaac aaatctacat tttgattttt atatataatgc atattgtgtt gactgtttc 43260
tcaaagaata accaccattt gtgatctaag agaatttaggg atgccttcc tgccttggtc 43320
agagcccat ttgatttattt tgcataacc tggaaacttca agtgcactgg aaaaatacaga 43380
ctaatgaaca catgtctagc ttcccttattt atctaacaatc tgcaigtgtaa acaagttta 43440
aatatttttcc ctttattttt cagccctatt cctaagtcaaa caattttatg actcatcaat 43500
tttataaaacg gtcctgggtt cagacctgtc tttgattttt agcttgttaa tgactttcaa 43560
tagggcagac tagttccagc ataaatccag aacgtccgtc ctccaaagga cctggccct 43620
gaccataact tctgtttctt tctactgatt atgttgcac tctgtgtct tcacatctt 43680
tacaaatctt tccttccctc aagtcttca gtcgccacac ctttcttaccc ctcaccctca 43740
gttaaaggacc tcacccctgt gtctatagac aaaactggag agttctgtat aaaaacttct 43800
ttgaaaaattt atattaaaat tacaaaactt atctatctt attttccctc ttccatattt 43860
ttgaaagtga tggctagtt ctctgtttgt gctaaagctc tgatgaacac atgtacaaa 43920
actgtacata aatgttgat aggatttca tcttcaaaagg agaatcttagc tggtaaact 43980
atcaaataaa tgtaaagccc ttgaggaaca aatgatattt taattgttca tttagaatta 44040
ctttaaaaat actctaggaa atatagctaa gaaatataaa tcttgcacc ttgtttaca 44100
aactatggtg agttaacatt aacaggtagg tcatgttca catttggtca cttaaaatac 44160
aacttttctt gtgtgtggag attgtatcc aatcaataga ggaaaccat attttcatca 44220
atttcactgg actttctat tcatatgttca acatttattt gactctaaaa tcaatttat 44280
gcaagctctt ctgtatgtata tgcagatgttca aaaaagcaaa ttctttagg gtgcaaaattt 44340
ttgagcaata atttttacag tcatagctt ttttcatgaa gaactcgag agagtggctt 44400
gagttggcag caaagactgc ttttacaat gttctgtat gtccttacaa tattttataa 44460
agtagtttag tggcatataa atggagacaa aaaaacttca ctcttccct tcaggtgtca 44520
taattgttta ttactgttca aaatgttca ttctcagaaaa aggctacttt gaatagtcat 44580
ctaaaagaat ctacattca ttgttcttca cagaccggc ttttacttga aattataata 44640
tgtatcttc tctgtgggtt taaccattat ttctcatatt ataatgttag ctccatgaaa 44700
ctggaaaatt tggtaactcc aataacccca ggaattgtaa tacacacaaa aaaaatcaagc 44760
tatgcagtca gtgtacatga ataaacaggc aggtaaaaatt tcaaagtgaa aaaaacagttc 44820
ttggttttgtt atattcttag ccatatataca agcactaagt ttaactaatt taatgttca 44880
tgacaatcat aggttctgtt ttgtttgtt gttgtttgtt ttgagacgga gtcctgct 44940

gtcgccccaga	ctggagtgcc	ctgggtgtat	ctcggctcac	tgcaagctcc	gcctcccccgg	45000
ttcacccat	tctcctgcct	cagcctcccg	gtagcttgg	ctacaggcac	ccgcccactac	45060
gcctggctac	tttttgttat	tttgagtgga	gatggggttt	cacagtgtta	gccaggatgg	45120
tcttgatctc	ctgacctcgt	gatctgccc	cctcggccctc	ccaaagtgt	aggattacag	45180
gcgttaagcca	ccgcgccccgg	ccgacagtc	taggtttaa	gtgaaaatgc	tacctaatt	45240
tttttcttct	gttttgtatc	tgaataata	agatatcaga	catggaggg	aactgaagat	45300
tggacttcct	acatttattt	atthaatga	tgctaataatt	aatatctgt	attcatttct	45360
ttgtttttt	tgtccctca	caaaccgt	aaataattac	caaatgtaga	attcaccaag	45420
aagacaagta	taaatgcatt	aatgtataaa	tttataaatt	tatataatata	agagacagaa	45480
atagagaatg	tgcctgtgt	tgtgtgggtt	tgagatac	aaagagacag	aaaacacaca	45540
catataaaga	gaaaacgtt	tgcagaaatt	ctgatgtgtt	tattgaaaaa	agtaatttgt	45600
gccttagatga	ataagatgaat	gagtgaatga	taaatggatg	aaacaaatgc	caaatctgga	45660
tcagagagaa	tcctcacatt	cttgcact	ttcagtttc	aagaataaag	aagatgttgt	45720
ccccaaacca	caccatagt	acagaattca	ttctctttag	actgacagac	gacccagtgc	45780
tagagaagat	cctgtttggg	gtgttctgg	cgatctac	aatcacactg	gcaggcaacc	45840
tgtgcatgt	cctgctgatc	aggaccaatt	cccaactgca	aacacccatg	tatttcttcc	45900
ttggtcacct	ctcctttta	gacatttgc	attcttccaa	tgttactcca	aatatgtgc	45960
acaatttcct	ctcagaacag	aagaccatct	cctacgctgg	atgcttcaca	cagtgtctc	46020
tcttcatcgc	cctagtgtatc	actgagttt	acttccttgc	ttcaatggca	ttggatcgct	46080
atgtagccat	ttgcagccct	ttacattaca	gttccaggat	gtccaagaac	atttgcatct	46140
ctctggtcac	tgtgccttac	atgtatggct	tccttaatgg	gctctctcag	acactgtga	46200
ccttcactt	atccttctgt	ggctcccttg	aatcaatca	tttctactgc	gctgatectc	46260
ctcttatacat	gctggcctgc	tctgacaccc	gtgtcaaaaa	gatggcaatg	ttttagttg	46320
caggcttac	tctctcaagc	tctctttca	tcatttctt	gtcctatctt	ttcatttttg	46380
cagcgatctt	caggatccgt	tctgctgaag	gcaggcacaa	agcctttct	acgtgtgctt	46440
cccacctgac	aatagtact	ttgtttatg	gaacccttct	ctgcatgtac	gtaaggcctc	46500
catcagagaa	gtctgttag	gagtccaaaa	taattgcagt	cttttatact	tttttgagcc	46560
caatgctgaa	cccattgtatc	tatagcctac	ggaacagaga	tgtaaatcctt	gccatataac	46620
aaatgattag	gggaaaatcc	ttttgtaaaa	ttgcagttt	ggcctgtgtt	tatgttaat	46680
ccctaagtgc	ctgtgggtt	acaaaactgaa	atggaaaaac	ctagtgtat	tattattnaa	46740
cagtatgggc	tcttagtaac	cacttagtt	tcttctcaaa	attaacactt	tgaagattt	46800
gtttttaaaaa	ataaaaagct	taatgtgaa	attaataatg	tttattttgt	cagagattt	46860
atgaatataa	attgttttgt	ttctataat	tctgtatgaa	aatactgggc	ttacttactt	46920
gggggttaaac	ttttaactaa	cttagctga	gagaaactct	gaaaatccaa	cccctttgaa	46980
tattactatc	catagagcca	tagtgaggct	ccagataggg	tggctaaattt	tacattttt	47040
aaaaaatgtat	gccgggcatg	gtggctcaca	tctgtatcc	cagcactttg	ggagccagag	47100
ataggtggat	cacctgaggt	caggagttt	agaccagctt	ggccaacatg	gtgaaacccc	47160
gtctctccta	aaattacaaa	attagctgt	tgtggtggca	catgctgt	atcccagcta	47220
ctcaggaggc	tgaggcttgg	gaatagctt	aacctgggg	gcccgggtt	cagtgtgt	47280
agatcacgccc	attgtactt	ctccacttgg	gdcgacaaagag	cgaaactcca	tctccaaaaa	47340
aataaataaa	taaataaataa	aaaagaaaaac	gaaaaaaagaa	aaaattgtt	tctacttcaa	47400
tgtgtgtct	tgaacaatag	ttctgaaacc	tgtgaactt	ttgtataatc	tgtgaaaaaa	47460
atgtaaatat	atgaatacc	tataagttaa	atttctgt	agtattctca	aaacccacac	47520
tgtaaacatc	gtgagaagct	tcttattttgt	tcatgtggta	ataccagtta	ttgttcttcaa	47580
ttctgaaaat	caactctcaa	caccctttt	ttttttttgt	gtttcaagt	gatggatcc	47640
atttctatca	tcaaaatact	tcaatttgc	tccacgtat	ttttccagtg	agttacctt	47700
gacttaggaa	taattttgt	ggaatcaata	ggttttatca	attgatattt	gcatatgtat	47760
aaatgactt	gttagtgaa	aaagggtct	tgttccagat	cccagcagg	gtttcttgg	47820
tctacagagg	aaaaatttca	agataagctg	caaagtgcag	tgagaagaga	tagttcatta	47880
aatgtactt	caaagagatc	atttattaaa	ggctatttgc	ttacagagta	aggtgttccc	47940
agaaagcaag	tggaggaat	caccctttt	aagtttttt	aatggcttt	tatctacgt	48000
cagactaaag	taagttgtgg	ctacatgtgg	gtaggctgac	ggcatgacaa	attttatcat	48060
tgtgttgatt	taaagaaaaaa	gatcctgtat	attttgtgt	gtgcataact	attattatca	48120
tgataaaagc	ataatacttt	atgagaattt	ggacacctag	gttcttgc	tgcatttata	48180
gcgtgttctt	gtaggtattt	ttaggctgtt	tcttaaacta	taagcatctt	atgaacatgg	48240
gtcatgaccg	gccaggactg	tgccttggta	acctcaagac	agagttgatt	taaaatgtt	48300
gtcacccctgg	atcccttaga	tccctgttc	ttaacaccc	tgaaacagta	taaaaattaa	48360
tagggcgta	cgtatctttt	tggagggaaat	agtgtttatt	ttgcttccaca	caactgtctg	48420
tggcacattt	tttttttaca	ttagggtatt	ctagttctca	aagctactac	aggaaaaatc	48480
aatcacaaag	aggctaaata	aagatacaca	ttaatcaatg	tattattnag	tcaaccagat	48540
gactgcataat	taatacatac	atatttagcc	ctattaaatt	gcctcttgc	tttgacatt	48600
taatatttttgc	cactctgtctt	ttaactaaca	ctatacagaa	aatgtacag	aaaatgttca	48660
tatgatatac	actactgtat	ctactataaa	atgttcaagt	ggtttccag	aatattaaac	48720

atagactaa cagttttgt aaaattgggt tatattctta agtgcagtt gggtgaataaa 48780
gtctggttct atccaaatct gcttttagaa acagaactg aaaaagaaaag aaggcaattt 48840
tggcagcaa caatttaata ttaccccttt agcactattt gtgtatggc ctgggtttgg 48900
caatggcagt ggcacaacag aagcagggtga tctgttagaga caagagtcaa gcagaagagc 48960
tgggaactga gtgacacagc gtccttactt ccttttagag gcccagcatc atttcattctg 49020
tggatattt ctttatctta tgacaacatc atttaatctg tggatagct ctttatatta 49080
ttctttatc ttccctttt gtttaggcaa agcattgtgt tcaatttcta gcaaggtagag 49140
tggctgata ctctatttga aaactgtatt ttagaatttg tacaaaacaca ctctatattt 49200
tgcctaaata actgtatact tcctttatt ttcttagttt gagaattgct gtggcttgca 49260
gcaaccacaa ttaaactttg acaccccttgc aacccaaatg cttgacactgt ttgtaatctc 49320
tttttttaa aatatgtatt tatttattct atttgtattt taattttta attgtgcag 49380
ccctggta aaagttatct cagaaattct ttggagatag aatagaacat aaatggacat 49440
gaatagaataat agtgacaatt gatgtatca tagtgtattt ctaatttttag gattactgtt 49500
tttcttac ttaaataatgaaa atgaagtagt gagagaattt ttatcttcat ttacaatatt 49560
tggagtctta gacacagaga gatgaaatga cttgcctaac gtcatttggc cactcagtag 49620
cacaaaagca gatttcttgg ttttaaattt tctcttcttca taattcatac tgaagtgtt 49680
attaagccat tcttcaacac acttcaaattt ctggggggaa tatttgagac tatgaattaa 49740
taagagtgtt actatagatt aaatagtgtt tattatgtt tagtgagatg tattcttaca 49800
acagctaattt tgaattttcc ctgacagtca ggctaattgtt atcatttata tgcatactt 49860
ttaaaattgt ctaatatcc atgtgaaagg agaaaaattttt gatatatggg aaacctttat 49920
gcttcttagg ctgcattttta ttaatattttt tccccatata taaaagcaca catattttata 49980
ttaatttattt tccaggta gacaaatata aaaaataaaattt atttattaag gacctgctt 50040
gacaaggaaat aagttttgtt tatattttgtt tatattttctt ctcaataat gtatatgact 50100
acatgttact ataatgcaca aaacaaatata aagtttactc accatataat aatatgaata 50160
cagattttca tttgataacta taatgtatgc acctttacat agattaaata ttttatgaac 50220
attttaatg tcatatttttta attagctgtt gtgatcttaa tacaatattt atacatgtca 50280
aatgtagaaa accaatgaac catattggca tacataagaa atagaagca tgcttacttg 50340
taatcaacta cctgaaaaga gttgcctca gcattcacat gtgttttattt ccattttgatt 50400
atcttgcattt tcatgattcc atcatatcaa tttatcttag tattttgtt accgacgtat 50460
ctgtacgtct ctctcttaattt gttccctttt tttatgttccc agaagtgtt ttgcgtatt 50520
aaatgttttgc aacattttta aaggcttgc taaacattt tttatgttccc 50580
gaaagcttgc aacaaacactg taccactaat gttgaaaac aatcatatttta ctataactt 50640
atcagcagta ggagcttgc tttatgttta tttatgttcc tttatgttcc tttatgttccc 50700
tagaaacaaa ttctgtttta atttgcacag atttagaaattt gaagaatata tttatgttccc 50760
aaaggctaca tataataattt ttctttcatg tttatgttcc tttatgttccc 50820
gtatattttt gggaaaaat tttatgttcc tttatgttccc tttatgttccc 50880
cacaatttgc taaacaagca cttatatggg gtttgcattt tttatgttcc tttatgttccc 50940
gaatattcatg aatttgcattt gatataattt tttatgttcc tttatgttccc tttatgttccc 51000
ttgtgccttc acatttttaa ccaacttcc tttatgttcc tttatgttccc tttatgttccc 51060
gattttgtat gtacccctta ttatacctta agtcaatctt tttatgttcc tttatgttccc 51120
ttttttgtc tgaatttataa atatattttta aactaaattt tttatgttcc tttatgttccc 51180
tatttttaattt tctggtaag atattttgtt tttatgttcc tttatgttccc tttatgttccc 51240
agatactttt agtcatccaa attttaact cagaattat aatattatga tttatgttccc 51300
aaactgtatg tataattttgc tttatgttcc tttatgttccc tttatgttccc 51360
taaagcaattt aaaaaataatg gaaaattttt tttatgttcc tttatgttccc tttatgttccc 51420
gcttaaggat gaaatattttt tttatgttcc tttatgttccc tttatgttccc tttatgttccc 51480
gtgtctggta agtgaggaga aaacacccaa ctttgcattt tttatgttcc tttatgttccc 51540
acactgttac acaaataactt atgttttcc tttatgttccc tttatgttccc tttatgttccc 51600
acattttttt tcaacaaata tttatgttcc tttatgttccc tttatgttccc tttatgttccc 51660
tcccagcaat tccccccaaa agaactgaga gggccacata tttatgttccc tttatgttccc 51720
cttcaacac tgaacaaaaaa aggattaaatc agaaaagaaaaaa tttatgttccc tttatgttccc 51780
atcagagaat aatattatctg tttatgttcc tttatgttccc tttatgttccc tttatgttccc 51840
agcaaattgc tttatgttcc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 51900
gcaatgtatt tttatgttcc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 51960
aaaaataattt tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52020
ttgattaaaa tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52080
tgcataat tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52140
acattgttac tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52200
gtacaaaatg tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52260
caacctaata tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52320
ttcaattttt tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52380
ttttatattt tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52440
tttggcatgg tttatgttccc tttatgttccc tttatgttccc tttatgttccc tttatgttccc 52500

gagaaaatgg aatccttata cacttttgtt gggaatgtaa attagttcat ccactgtgga	56340
agcagtttgg aaatttctca aagaacttaa aacacaagta ccatttgacc cagcaatct	56400
attactgggt ataaacccaa aggaaagtaa ataattttac caaaaaccaca tgcacttg	56460
caatcattgc agcactatac actgttagcaa agacatggaa tcaacgtaga taaccatcaa	56520
tgtgaacgg gataaaagaaa atatgataca tacacactat tgaatactat gaagccatga	56580
aatgaaatc atgtctttt cagcaacata gatgcagctg aaggccatta tcctaagtga	56640
attaatgttag gaacagaaaa ccaaatgtgc ccatgttctt attaaaggta tgagagaaac	56700
attgaataca catgaaaaat aaaggagaac aagcaacact gggggtaat agaaggggaa	56760
gagctgggaa gtgcagactg aaaaatgatc agaccaatgg aacagaatag agagcccaga	56820
aataagacca cacatctatg accatctgat cttaacaaa gctgacaaaa acaggcaatg	56880
ggaaaaggac tccctattta ataaatggtg ctggataac tggctagcca tatgcggaaag	56940
attgaagctg gaccccttc cctataccac acacaacaat caactcaaga tggatttagag	57000
acttaatgc aaaacccaa actgtgaaaa ccttaggaga aaatgtcgcc agtattatcc	57060
tagaaaaaga aatgggcaat gatttcatga caaagacaca aaaagcaatt gcaaaaagaa	57120
aaaagcaaaa attgacaagt aggatctaat taaacttaag agtttcttca cagcaaaaca	57180
aactgttaac agagaaaaaa gacagctat ggaatagaag aaaatatttc caaactatgt	57240
atctgacaaa ggcttaatat tcagcatgtt taagaaactt aaatttacaa gagaaaagca	57300
aacaacacat taaaagtgg gctaagatgc tgcaacagt ggctcatgcc agtaatccca	57360
gcactttggg aggagggc aggtggatta tctgaggtca ggagtcaag accagcctgg	57420
ccaacatggc aaaacctgt ttctactaaa aataaaaaaa ataactggc atgggtgtgc	57480
gtgcctgtaa tccagctac tctagaggct gaggctggag aatcacttga actcaggagg	57540
tagaggtgc agtgagccg gattgcacca ctgcactcca gcctggcga cagagtgaga	57600
ttctgtctca taaaataata aataaataaa taataaaaat acataataaa agtgggcaaa	57660
gaacataaac acttctcaaa agaagacata catgcagcca acaattatata gaaaaaagg	57720
caatatcact gattattaga gaaatgcaaa tcaaaaccac aatgagatgc catcttacac	57780
cagtcagaat gacttattt aaaaagtaaa aaaataacag atgctggta gggtgcääaa	57840
aaaaaggaac atttttatac tggtagtggg agtgtaaact cgttcagcca ctgtggaaag	57900
cagtatggc attcctcaaa gagctaaaag cagaactacc atttgcattca acaatccat	57960
tacttaggtt atacccacag aattataaaat cattctacca taaagataca ttcatgtgac	58020
tgttcatattt ggtactattc acaatagcaa aggcatggaa tcaacttaaa tgcccatcaa	58080
tgacagttt gataaaagaaa atgtggtgca tacacaccat gtaatactac atagccataa	58140
agaagaagaa gatcgtgtct ttgcaggaa catggatgga tctggaggct attatcttta	58200
acaaaactaat gctgaagcag aaaaccaagt accgtatgtt cttatttata agtgggagct	58260
aatatgattag aacttacaaa cacaagaag gaaacaacag acactgggt cttcttgagg	58320
ggggaggggt ggaggagggg taggagcaga aaagataatt atgggtacaa ggcttaatac	58380
tctggtgatg aaataatctg tgcaacaaac tcccatcaca catgttacc tatgtaaaca	58440
acccacat gtatccccaa aactaaaata aaagttttt ttttaaagg aaaactgttg	58500
ggtactatgc tcactacctg ggtgatggg tcatttgtat accaaatatac agtgacattc	58560
aatttaccta tgaacaaac ttgcacatat acccctgaaa ctaaaaatag aaaaattat	58620
taaaatacaa caaaaaagaa aaaagatgaa aaagagatata ctataatcat ttgcacattt	58680
caatcagatt tttaaaaatt tattttttt gaaatttgagt tggtaaatt tccatgtaa	58740
cctgaatatt agtccctgt cagatgaatg atttgcattt atttctccc attgtgtagg	58800
ttgtctttc actctataga ttacttttt tgcgtgtcag agatttcttt tgggtgtatga	58860
aatcctgttt atctatattt ggtttgttg cctgtgtttt agaggccta tccaaaaact	58920
ctttacctag accaatgtct aaaagtattt tccagagg tttttttagt agatttataag	58980
tttcaggcatac tttacttgc tttaaaacat ttgtttaga tttttgtata gtgtctatag	59040
atagtctttt atatgtctga ggaatttgcattt gtaatgtcacttgcatt tctgtatgtt	59100
ctgatggatc tttttttttt tttttttttt gtaatcttag ctgcgttctt atccattttt	59160
tgtatccctt caaaataact tttttttttt ttgttgcattt gatgtttttt ggggtctca	59220
tttcatttcag tttacttgc attttttttt ttatttttttt ttatgttgcattt tgaggtagt	59280
ttgttgcattt atatgtcttc taggtgagat gtttagatcat taatttgcattt acatttctaa	59340
ttttttttttt aagtgtttttt cgctgtacac tttttttttt acactgtattt tgctgcattc	59400
cagagatcc ggtaaatgtt gtctctgttt ttatttttttt caaatatata tttttttttt	59460
ttctgggtt gttttttttt caaaatgttcat tcagtagcaa attgtttatata tccatataa	59520
ttttgtgtttt ttgagagatc ttggtagttaa tttttttttt tattttttttt tttttttttt	59580
gggaggttga catgattttt tttttttttt gattttttttt ggtttttttt cctttttttt	59640
gatcaaccc ccagttttttt ccaggtgcag aggacaagaa cgtatattt tttttttttt	59700
gtggagttact ccgcagatgtt ctatttagtca caattatca agtgcattt tttttttttt	59760
aattttttttt ttttcagacc ttgtatgtttt aaggctgtaa ttgggtgtt gaattttttttt	59820
actgtttttt tttttttttt taggtttttttt tttttttttt tttttttttt tttttttttt	59880
ttgggtgttc caatgtgggg tttttttttt tttttttttt tttttttttt tttttttttt	59940
gaaccctatg tcattaggca gttttttttt tttttttttt tttttttttt tttttttttt	60000
ttttttttttt tgacataaca atagcaaccc ctgtgtttt ttatttttca tttttttttt	60060

agattatttt	tcatcctttt	actttgagcc	tatgttagat	agatctcttg	aaaattgcag	60120
atggatggat	cttatttttt	atctaacttg	ctactctagt	atatgcctgt	ctttataggt	60180
aaatttcttg	aagacagcac	atacttgagt	attgattttt	gtttgttgt	ttttcttttg	60240
ttttactttt	tttccattg	agcagtca	cagcgtctt	taattgtaga	atttgtcta	60300
ttaacattga	agagtattat	tgtaggtaa	gagtttacta	ctgccatttt	gttatttctt	60360
tgcttggat	tttctaaatc	cttattttct	tgtgttctat	cttactgtat	tactctgtag	60420
ttaagtaatt	ttcttttagaa	gtatgtttt	attccatgt	atgttttgt	gtatctgtca	60480
taggttttg	tttgggggt	accgtgaggt	ttacaaaaaa	aatctatagt	ataacagttc	60540
gttttgaaca	gataatgact	taattttgtat	tgcaaataaa	agcatcaaaa	accaactcta	60600
cactttaat	atgccttaca	cacattttga	cttttgggt	ttcaatgtac	atgtttttat	60660
attgcctact	tctaaactgt	agttattgtat	ggttttataa	gttttgtatt	ttattcttca	60720
tacttatgat	acaagtggtt	tatattaccac	aattatagta	tgacagtatt	ctgattttga	60780
atgttctttt	acgagggaat	tttatacatt	ccaatgtttt	cctgttacat	gttagtaccc	60840
atttcttca	gactgaagaa	ctctctttag	catttcttga	aaaacaggc	tggtgttgat	60900
gaatttcctc	agctttgtt	tttctgcgaa	aaaaaaaaatct	ttatttcacc	ttcatgttcg	60960
aagaataact	ttaatgcaca	taatattctt	ccttgaaga	tttttctct	tatcatcttgc	61020
agtatagcat	accatttcct	cttgacactgc	tagttctgt	gagaaatctg	ctgaaagcca	61080
tattcaagct	ctgttctcac	attgctaaac	aaaattacct	tagcctgagt		61140
agtttataaa	gtgaagaggt	ttaattgaca	cacagttcca	caggctgtac	aggaggcatg	61200
gctgggaggc	ttcaggaaac	ttacaatcat	gatggaggt	gaaggggaag	caagcacatc	61260
ttcacatggc	gacagaggag	agagggtaaa	ggggaaagt	ctacacactt	ttaaaca	61320
agatctcatg	agaactctat	cataagatag	cactagggga	atggattaa	accattagaa	61380
aacaccgg	tgtatccattc	accccacc	aggccccacc	tccaaaactg	ggggattaca	61440
attcaatata	aggcttaggt	gggaacacag	agtcaaaacc	tatcattctg	ttcccggtccc	61500
tcccaaattt	catgttcttc	tcacattca	aaacgcaatc	atgttctccc	aatagttccc	61560
caaagttta	actcattcca	gcacaaactt	aaatgtccaa	ttcctcatgt	ccaaatgtcc	61620
aaatgtccaa	aatctcatct	gagacaaggt	coacaggtaa	gcctgtaaaa	ctaaaaacaa	61680
gttattttat	tctaagatac	aagggagtt	caggcagtgg	ataaaatgctt	ctgttccaa	61740
aggaagaaat	tggccaaat	aaaggagcta	catatgccat	gcaagtccaa	aatccagaag	61800
ggcagtcatt	aaatcttaaa	gtccaaaat	aatctcttt	gactccatgt	ttcacatcca	61860
ggccacacta	atgcaagggt	tgctctctca	aggcctgggg	caactccacc	ctcatggctc	61920
tgcagggtgc	agccctgtt	gctgcttca	caggctgatt	ttgagtgtt	gtggctttc	61980
cagatgcatg	gcacaagctg	tgagtggac	taccattctg	gtttctgaaa	gatagtgtcc	62040
cttttcttac	agatccatta	cgcaggaccc	agtgggaact	cggtgtgggg	gttccaaaccc	62100
cacattttcc	ctctgcattt	cactatgaa	ggctctctgt	gaggattctg	cccctgcagc	62160
agacttctgc	ctggatatacc	aggcatttgc	atacaaccc	taaaacttag	gaaaaagtcc	62220
ccaaggctta	attcatgtct	tctgcacacc	cacaggccag	acactatgtg	gaacttgc	62280
aagcttgggg	cttgcaccct	ctgaagcaat	ggcccaagct	gtaccttggc	actttttat	62340
cctgacttgg	gttggagtgg	ctaggacgc	ggtcatcatg	ttctgaggct	acacagagca	62400
ctgcagacat	gggtctggcc	cccgacatca	tttttccct	tttgcctct	gaggctgtga	62460
tgggagttggc	tgtataaaag	gtctctgaaa	tttcttggag	gcattttccc	cactgtcttgc	62520
gctattaaaca	tgtagcttct	ctttattttat	gcaaacttct	gcagccttga	attcctccct	62580
ataaaaatggg	tttttctttt	ctaccacatg	ttcaggctgc	aaattttca	aactttcatg	62640
ctctgctttc	ctttttaata	taaattccaa	tttcagacca	tctcttggaa	aatagagaag	62700
aagccaggct	aattcttggaa	tgcttgc	cttagaaatt	tctccacca	gataacctgaa	62760
ttcatctctc	tcaaatttcaa	agttccacag	ctctcttagag	caggggcaca	atgcccaccag	62820
tctttttgtt	aaagcatagc	aagagtacc	tttactccac	ttcctaataa	gttctacatc	62880
tccatcttgc	accacccatc	cctggacttc	actctccata	ttactattag	tatgttgc	62940
accaccactc	aacaagtctc	taggaagtcc	caaacttct	cctcttcttgc	tcttcttcttgc	63000
agccctccaa	actgttccaa	cctctgttgc	ttacccaaat	acaaagtctg	ttccacattt	63060
ttgggtatct	ataggaatgc	cccacttctc	tgttaccaat	ttatgttatt	agtccatttct	63120
cacatca	taaagaacta	actgagattt	agtaattttat	gaagaaaaga	gtttaatctg	63180
attcaccgtt	ccttaggtct	tataggtac	atggttgaga	aggcctcaga	aaactaacaa	63240
tcatgggtgg	agggcaaagg	gaaaacaagc	acatggcaag	aggagaaaaa	cagagcgaag	63300
ggggaaagtgc	tacacactt	taaataacag	atattgtgag	aactctaaca	caaggcaaca	63360
ctagggaaat	ggtgcataaac	cattagaaat	caccccccatt	atccaatcac	ttcccaccag	63420
gtcccaccc	cagcgttgg	agacggcaaa	tttagatgaa	atttgggtgg	agacacagag	63480
ccaaaccata	tcaatcttca	ttaaatgttga	tattttctc	ttgctgat	aatattatt	63540
tctttgttctt	tgatttttcc	taatttgcatt	acagtgttac	ctgagatatt	actgtttgtt	63600
ttgaatttgc	tttgttgc	atggctttt	ctaccttagat	gctattgtgt	ttctccagaa	63660
ctgagaaatt	ttaatgttatt	atttcaataa	gtatgttttgc	tagccctttt	tatctcttcat	63720
tccattttgg	tatttcaattt	atgcaaaatgt	taatgtactt	gattgtgtcc	cataatttcc	63780
ataggcctgc	tttactttttt	tttttttgc	ctccctcttgc	aagttat	tttcaatgttct	63840

atcttcgaagg ttactgttcc tttccctctgt catcaaaaact atgggcacgg tggctcaacg 63900
ctataatccc agcactttgg gaggccgaga agggtggatc atctgaggtc aggagtttg 63960
gaccagtctg gccaacatgg tgaaacccca tctctactaa aaaaatacaa agaatttagt 64020
gtttgtatg atgggcacct gtaatcccag ctacttgta ggctgaggca ggagaatccc 64080
ttgaacccgg gggcagagt ttgcagttag ccaagatcg tccatcgacg tctagcttgg 64140
gcaacaagag cgaaactctg tctaaaaaaa agaaaaagga tagaggaggt tggaaagagg 64200
gaggcaggga gtcagctca tagaatggg tgagaaagat gaaagatgt tggccattgc 64260
tggcttggg ggtagaatgc gggcagcctc caaaacctgg aaaaagcaag aaagttagatt 64320
ttccctgaga acctccaaaaa agaaagcagt cctgccgaca ccttgattct agcccagtaa 64380
gaagcattt gggcttggg catccagaaaa tgcaagacaa aatttgttgg ttttaaggg 64440
attaaatctg tgatagttt ttatggcagc aacagaaaaa gaatataacct gtcaaaactg 64500
gttcccattc ttcaaaggct tccccctgc ttgcctgtca gtccacagct ccacttgcag 64560
gtgcagtaca gttggcttgc gagcaggct tggattggaa attcagcatg taaggaagaa 64620
gtctaaagtc cagacgaacc ttgaacacccc ctaattgcc cctccctcg agagcaggga 64680
ccaggatcca ctgagtgttag agcagagcaa cattcctcaa ggtgcctca cccccaggca 64740
ccctcccaaca gggctcaacc agctaaccctc tttccaccct ttgaattgtc tctctctccc 64800
ttcaggcata taattaaatt tgcataaattt caaagagcat atgcgtcaat cccattgtaa 64860
tttcagattt gtttttattt cctgagttt ctaagggaaat aataaaaaca aaacctcctt 64920
aaaaaaaaaa aagatttcta atgagttttt aagttcagtt ttttatttctt ttatcttgg 64980
gattaatatt tttaaacatt gtttttattt ctctttccaa ttttatttctt tcttcctgaa 65040
ttatcttctt ttttttttag tttctgttt tcttataatt tctttttta acattttctt 65100
ttctttaaat atttttttaa attccttattt tcctcagaga tcttgttctt gacctgtaaat 65160
ttcttgaact tcttaagag gcttatgtc aattcattgtt cagacattta atagatcttt 65220
aattgttcag ggtccattgt tgagctctg ttgatttctt ttgggtgtt catatcccc 65280
ttggtttta taatcttcgc atattatgt cgatgcctgt gcatttgaag agagagacac 65340
ttccagttt cgagggtgtt ctttgggtt ctagatctt tagtcttag tattctttt 65400
tttttttta agacagagtc ttgctctgtt acccatgaat gcagttgtt gatcttgggt 65460
tactgcagcc tctggctccc aggttctcc agcgattctc ctgcctcagc cttccaaagta 65520
gctgggatta cccgcataca gcactacgccc tggcttaattt ttgtattttt agtagagtg 65580
aggttttacc atggtgccca ggctgtctc gaactcctgg cctcagggtga tccacccgccc 65640
ttggccaccc aaagtgttagt gattacaggt gtgagccact gtgcctggcc agtattcaact 65700
cttaaatgtt gacttgttgc tgctctgt gggtaggtt tatagtgacc actgcaacta 65760
aatttcttctt ctgtcattgt ttctctgtt ggggaagttt tatttgc actgaagctt 65820
aaatactgtg ttgggactat attgtgtgc tgcattgtt tccaaattccg gaaagttatt 65880
aattccagtc tttaatttgt tttggggcca ggctggggga ggcttcatga aagaaccttg 65940
ggtttggga aaatccggct aagaatttctt gttgtactgc caactgtgt tctgtattt 66000
ctatgacact aatcggtctg ttaaatgtgg catctctact aattacagtg ctgagtagcc 66060
accaggctcc atgcattcagg tactgttccat tcttgttctt cagttcacct 66120
cagatgttca aattcttcata gcactccaa aggttttat gagagaggac cagatgtgat 66180
tactgtgaa gatctctaag ctggggggaa gactgaacat ccaattccat tttccccctt 66240
cctctttagc agacatagggtt cttagggaaat tcttgcatttgg tggcattata ctatcttggg 66300
aaaggggta gtcaaccgg aatgaccgt ttctttaca ctccacaact ttcttggatt 66360
ctgcacttctt cctctgagtt ctgttgcattt tacaatggag ctccatctt tgaatagctt 66420
ctagtttat tttatgggg acagtgtgc taggggatt tctattccat catcttctt 66480
ctttctgact ttaccctcca aaagtgtat cctcaaaaatt tcaagattttt ttttgcattt 66540
ccttccatgg agtcataca acaaacaatg atacatttg aattatgaca atatgactga 66600
agcataatta gttcctaattt cccagacttcc ttaattaaa cacaagaggg atgattccag 66660
aagtaacact catcaactgtt attccttagt ccctctgaga ttgcattttaa gagcaggctt 66720
ccacctctca catcttgcata taaatatgac tgcattttaa agcttagaga agcacctaaa 66780
aacctttta atcaaataatc aaggaatga gtatataatca gaaccagaat taatgcctt 66840
cattttatg ttctttattt ttggtaaaag gggaaatata ttaatgttatt aactgaatct 66900
cacaatgttgcattttt attattaaaa atcattttt tctttactt tgcataatcat 66960
tggggggcat gaatcgttt ctccctgtaa aattctcag tgccttctt cagaggctgt 67020
gagcaaaagaa gtagggaaagg aggttagcta tgaaaagtgt taactccatt tgtaacaata 67080
ctcattacat gtttactata tgcaaatcat ttttctaagc actttaaatg agtaaactat 67140
attattctc ctaaaaactc catttctcat ttatagctg ggaacactaa cgtaagacag 67200
tttagataat ttgacactgtt ggtgggttca cgatttgcatttgc tgcatttgc tgcatttgc 67260
atcactaatg gggatttagat tcataaaaattt gttactttt gaatactaaa atatttactc 67320
agacattcag tatatttagag taggcccagt atcatgtat ctaattttt ttgcaaaaat 67380
tgcaaatgag cgagatatta accaagttca attagaaagt tagttgggg cagagctgag 67440
cataggttcc agagccaccc agaacttttgg tttgcatttgg agaattctcg agcacactt 67500
gatagcttag ggaattgctg cttttgggttca tcaactggtca tttgcatttgc atcataggtt 67560
ctagactgtc gacaagttgg ccatttagtgg acaggttatat tgaggttgc ttttgcatttgc 67620

gcatctgtca	aggtaaacac	gaaacattct	gttggccctg	agtctcacat	ttcaatctag	67680
aatccatctg	tgtactttac	tttccttgca	aataaatgtat	ctagtgaatt	tatataaaaa	67740
ttccacttag	ctcctagcac	acatcatttgc	tatccaatc	atttattttt	cttcaccata	67800
ttagaacatt	tccaaatcca	ttaaaaagaaga	aggaaggcaa	tggaaaaggag	acggagatag	67860
cctcatacat	tctccttgc	ctgaaaagtaa	tatcattttgc	aaaacagact	acgggtcccc	67920
tcttcttgc	ctctagtttgc	caacagcata	aagcttgc	tgtctctgag	gacaagatag	67980
aaaactacat	tagcaaataat	tttccttgc	atctccctat	ttcaagtaaa	tgagggactt	68040
atatttcaaa	atattttaag	tcaccttgc	ggttgcttct	taaaaaataaa	ctgtttatta	68100
tgcttctact	tttcatttgc	aaaatttgc	ttgtttccac	cttacaaaac	aaaaatggac	68160
aaaatcgat	tttacatctgc	agtctctgc	gacaaattta	actttgggg	actctgtttc	68220
ctaaaaatgc	atatatgtaa	tcttctatttgc	ctagtagcag	agttgaact	caattaattt	68280
ccctaacaac	agactcaacta	aaatcgctg	tgatatttttgc	caaatagtat	tttatggaat	68340
tatcaactgtat	gaaataaaaaa	acaaaacaag	aaagacaggg	gaggagccaa	gatggccgaa	68400
taggaagagc	tcgggtctac	agtcctccag	gtgagcaaca	cagaagacag	gtgatttctg	68460
catttccatc	tgaggtactg	ggttcttctc	actaggag	gccagacagt	ggcacaggt	68520
cagtgggtgc	gcacaccctg	cgcgagcgaa	agcaggcga	ggcattgcct	cactcaggaa	68580
gcgcagggg	tcagggagtt	cccccttctca	gtcaaaagaaa	ggggtgacag	atggcacctg	68640
gaaaatcagg	tcactccac	cccaatactg	cactttctg	acgggattaa	aaaacggcgt	68700
gccagattat	atcccacacc	tggcttggag	ggtcctacac	ccacggagtc	tcactgatttgc	68760
ctagcacagc	agtctgagat	caaactgca	ggtggcagcg	agcttagggg	agggcgcgcc	68820
gcattgtccc	aggcttgc	aggtaaaacaa	agcagccctg	aagctggaaac	tgggtggagc	68880
ccaccacagc	tcaaggaggc	ctgcctgcct	ctgtagctc	cacctctggg	ggcaggcgcac	68940
agacaaacaa	aaagacagca	gtAACCTCTG	cagactaaa	tgtccctgtc	tgacagctt	69000
gaagagagc	atgggtctcc	cagcacacag	ctggagatct	gcctcctcaa	gtgggtccct	69060
gacccctgac	ccctgagcag	cttaacttggg	aggcaacccc	cagcgggggc	agactgacac	69120
ctcacacggc	cgggtactcc	aacagacactg	cagctgaggg	tcctgtctgt	tagaagaaaa	69180
actaacaacaa	agaaaaggaca	tccacaccga	aaacccatct	gtacatcacc	atcatcaaag	69240
acccaaagta	gataaaaacca	caaagatagg	gaaaaaacag	agcagaaaaaa	ctggaaaccc	69300
taaaaagcag	agcgcctctc	ctcttccaaa	ggaacgcaat	tcctcaccag	caatggaaca	69360
aagctggacg	gagaatgact	ttgacgagct	gagagaaggc	ttcagacgat	caaactactc	69420
caagctacgg	gaggacattc	aaacccaaagg	taaagaactt	gaaaacttttgc	aaaaaaattt	69480
agaagaatgt	ataactagaa	taaccaatag	agagaagtgc	ttaaggagc	tgatggagct	69540
gaaaaccaag	ctcgagaact	acatgaagaa	tgcagaagcc	tcaggagccg	atgcgatcaa	69600
ctgaaagaaa	gggtatcagc	aatggaaagat	gaattgaatg	aatgaagtgc	agaagggaaag	69660
tttagagaaa	aaagaataaa	aagaaatgag	caaagctcc	aagaaatatg	ggactatgtg	69720
aaaagaccaa	atctacgtct	gattgggtgt	cctgaaagtg	atggggagaa	tggacccaag	69780
ttgaaaaca	ctctgcagga	tattatccaa	gagaacttcc	ccaatcttagc	aaggcaggcc	69840
aacatccaga	ttcagggaaat	acagagaacg	ccacaaagac	actcctccag	aagagcaact	69900
ccaaagacaca	taattgtcag	attcaccaaa	gttgaatga	aggaaaaaaat	gttaagggca	69960
gccagagaga	aaggtegggt	taccctcaa	gggaaggccca	tcagactaac	agcggatctc	70020
tcggcagaaa	ctctacaagc	cagaagatag	tggggccaa	cattcaacat	tcttaaagaa	70080
aagaattttc	aacccagaat	ttcatatcca	gccaaactaa	gcttcataag	tgaaggagaa	70140
ataaaaatact	ttacagacaa	gcaatgtct	agagattttg	tcaccaccag	gcctgcctta	70200
aaagagctcc	tgaaggaagc	gctaaacatg	gaaaggaaca	accggatcca	gccactgaaa	70260
aatcataccaa	aaatgtaaaag	accatcgaga	cttaggaagaa	actgcataaa	ctgacgagca	70320
aaataaccag	ctaacatcat	aatgacaggg	tcaaatttcc	acataacaat	attaaacttta	70380
aaagtaaatg	gactaaacac	tccaaattaaa	agacacagac	tggcaaatttgc	gataccaaga	70440
gtcaagacccc	atcgtgtgc	tgtattcagg	agacccatct	cacgtgcaga	gacacacata	70500
ggctcaaaat	aaaaggatgg	aggaagatct	accaagaaaa	tggaaaacaa	aaaaaggcag	70560
gggttgcata	cctagtctct	gataaaaacag	actttaaaac	aacaaagatc	aaaagagaca	70620
aagaaggcca	ttacataatg	gtaaaggat	caattcaaca	agaagagcta	actatctaa	70680
atatatatgc	acccaataca	ggagcacccca	gattcataaa	gcaagtctgt	agtgcacctac	70740
aaagagactt	agactccac	acattaataa	tgggagactt	taacaaaacac	cccactgtca	70800
acattagaca	gatcaacgag	acagaaagtc	aacaaggata	cccaggaaatt	gaactcagct	70860
ctgcaccaag	cgtaccta	agacatctac	agaactctcc	accccaaatac	aacagaataat	70920
atattttttgc	cagcaccaca	ccacacccatc	tccaaaacttgc	accacatact	tggaaagtaaa	70980
cctctactca	gcaatgtaa	aagaacagaa	attataacaa	actatctctc	agaccacagt	71040
gcaatcaaac	tagaactcag	gattaagaat	ctaactcaa	accactcaac	tatgtagaaaa	71100
ctgaacaacc	tgctcctgaa	tgactgctgg	gtacataacg	aatgaaggc	agaaataaaag	71160
atgttcttgc	aaaccaacga	gaacaaagac	acaacatacc	agaatctctg	ggacacattc	71220
aaagcagtgt	gtagagggaa	atttatacgca	ctaaatgcct	acaagagaaa	gcaggaaaga	71280
tccaaaatttgc	acacccttaac	atcacaatttgc	aaagaacttag	aaaagcaaga	gcaaaacacat	71340
tcaaaaagcta	gcagaaggca	agaaataact	aaaatcgag	cagaactgaa	ggaaatagag	71400

acacaaaaaa	cccttcaaaa	aattaatgaa	tccaggagct	gttttttga	aaagatcaac	71460
aaaattgata	aaccagttagc	aagactaata	aagaaaataa	gagagaagaa	tcaaataaggc	71520
gtgataaaaa	atgataaagg	ggatatcacc	accgatccc	cagaataaca	aactaccatc	71580
agagaatact	acaaacacct	ctatgcaat	agactagaaa	atctagaaga	aatggataaa	71640
ttcctggaca	catacactt	cccaaactaa	accaggaaga	agttgaatct	ctgactagac	71700
caataacagg	atctgaaatt	gtggcaataa	tcaatagctt	accaaccaa	aagagtccag	71760
gaccagatgg	attcacagcc	gaattctacc	agaggtacaa	ggaggagctg	gtaccattcc	71820
ttctgaaact	attccaacca	atagaaaaag	agggaatcct	ccctaactca	ttttatgagg	71880
tcagcatcat	cctgataccca	aaggccggca	gagacacaac	caaaaaagga	attttagacc	71940
aatatccctg	atgaacattt	atgaaaaat	cctcagtaaa	atactggcaa	accgaatcca	72000
gcagcacatc	aaaaagctt	tccaccatga	tcaagtggc	ttcatccctg	ggatgcaagg	72060
ctgggtcaat	atatgcaat	caataatgt	aatccagcat	ataaacagaa	ccaaagacaa	72120
aaaccacatg	attatctcaa	tagatgcaga	aaaggcctt	gacaaaattc	aacaacactt	72180
catgctaaaa	actctcaata	aattaggtat	tgtatggacg	tatttcaaaa	taataagagc	72240
tatctatgac	aaacccacag	ccaatatcat	actgaatggg	caaaaactgg	aagcattccc	72300
tttggaaatct	ggcacaagac	aggatgtcc	tctctcacc	ctcctattca	acatagtgtt	72360
ggaagttctg	gccaggccaa	ttaggcagga	gaaggaaata	aatggatttc	aatttaggaaa	72420
agaggaagtc	aaattgtccc	tgttgcaga	cgacatgatt	gtatatctag	aaaaccccat	72480
catctcagcc	ccaaatctcc	ttaagctgat	aagcaacttc	agcaaagtct	caggatacaa	72540
aatcaatgt	caaaatcaca	agtattctt	tacaccaaca	acagacaaac	agagagccaa	72600
atcatgagtg	aactccatt	cacaattgt	tcaaagagaa	taaaatacct	aggaatccaa	72660
cttacaaggg	acgtgaagga	ccttctcaag	gagaactaca	aaccactgct	caatgaaata	72720
aaagaggata	caaaccatg	gaagaacatt	ccatgctcat	ggtaggaag	aatcaatatc	72780
gtgaaaatgg	ccatactgcc	caaggtatt	tacagattca	atgcateccc	catcaagcta	72840
ccaatgactt	tcttcacaga	attgaaaaaa	actacttta	agttcatata	gaaccaaaaa	72900
agagcccgca	tcgccaagtc	aatcctaagc	caaaagaaca	aagctggagg	catcatggta	72960
cctgacttca	atctatacta	caaggctaca	gtaaccaaaa	cagcatggta	ctggtagcaa	73020
aacagagata	tagatgaatg	gaacagaaca	gagccctcag	aaatatcgcc	gcatatctac	73080
aactatctga	tctttgacaa	acctgaggaa	aacaagcaat	ggggaaagga	ttcccttattt	73140
aataaaatgg	gcagggaaaa	ctgcttagcc	atatgtagaa	agctgaaact	ggatcccttc	73200
cttacacctt	atacaaaaat	caattcaaga	tggattaaag	actttaacgt	tagacctaaa	73260
accataaaaa	ctctagaaga	aaaccttaggc	tttaccttc	aggacatagg	catgggcaag	73320
gactttatgt	ctaaaacacc	aaaagcaatg	gcaacaaaag	ccaaaattga	caaatgggat	73380
ctagttaaac	taaagagctt	ctgcacagca	aaagaaacta	ccatcagagt	gaacaggcaa	73440
cctacaaaaat	gggagaaaaat	tttcacaacc	tactcatctg	acaaagggct	aatatccaga	73500
atctacaatg	aacttaaaca	aatgtacaag	aaaatcaaac	aaccccatca	aaaagtggc	73560
gaaggacatg	aacagacact	tctaaaaaga	agacatttat	gcagccaaaa	aacacatgaa	73620
aaaatgctca	ccatcaactgg	ccatcagaga	aatgcaatc	aaaaccacaa	tgagatacca	73680
tctcacacca	gttagaatgg	caatcattaa	aaagtctagga	aaaaacaggt	gctggagagg	73740
atgtggagaa	ataggaacac	tttacactg	ttggtagggac	tgtaaactag	ttcaaccatt	73800
gtgaaagtca	gtgtgggtat	tcctcaggga	tctagaacta	gaaataccat	ttgaccacagc	73860
catccccatta	ctgggtatata	acccaaagga	ctataatca	tgtgtata	aagacacatg	73920
cacaagtatg	tttattgtgg	cattattcac	aatagcaaag	acttggaaacc	aacccaaatg	73980
tccaacaatg	ttagacttgg	ttcagaaaaat	gtggcacata	tacaccatgg	aatactatgc	74040
agccataaaa	atgatgagtt	catgtcctt	gtagggacat	ggatgaaatt	gaaaatcatc	74100
attctcagta	aactatcgca	agacaaaaaa	accaaacact	gcataccctc	actcataggt	74160
gggaattgaa	caatgagaac	actggacaca	ggaaggggaa	catcacactc	tggggagtgt	74220
tgtgggggtgg	gggagggggg	agggatagca	ttgggagata	aacctaattgc	tagatgacga	74280
gttagtgggt	gcagcacacc	agcatggcac	atgtatacat	atgttacaaa	cctgcatgtt	74340
gtgcacatgt	accctaaaaac	ttaaagtata	ataataataa	agaaaatgggt	tttcttacc	74400
caagaacaca	cacacacaca	cacaaaaaaa	aaaaaaaaaa	aaaacaagaa	agacaaacag	74460
tatgctcatc	acacaaaaat	gcaaggtcat	ttttaggcat	tagatggggc	ttaatttaat	74520
ctaagtttt	catgtacttt	gtatcttcta	acctgcatac	ctctatttcc	tcttcttagcc	74580
ctctacctct	ggtaaccact	gttttatttt	tatcaactgta	tatthaattt	tttaatattt	74640
ccccatataa	gtgagatcat	tcaagtattt	tcttctgtg	tctgggttat	ttcacttaga	74700
ataatgtct	ccaggcttgt	acgtgttga	tcaaataaca	cgatcttcct	tttcaggat	74760
gaataatatt	ctattgtaaa	tatataccac	catttcattt	tctatttgc	tttcattgagg	74820
cactgggtt	gtttcaatac	cttagctgt	atgaataata	ctgaaaaaac	atggaaagtac	74880
agatgctta	agaggtggtg	aattcacagg	ataaacaagt	ctagagatct	aatgaacaac	74940
atgaggacta	gggtaataaa	aattataccg	tatttggat	tctgtctaaa	tgaatataatc	75000
ttagctgatc	ttgcacacag	acacacaaaa	aggtaacta	tatgttaatg	tttggtttaa	75060
tttgetttac	tatagtaaga	tttactcta	tgtatcacat	gacattatgt	tgtgaacac	75120
aaatagatgc	attaaaattt	atttttaaa	agggttcatt	aactgcgggt	caggcaatct	75180

agcctgtaat	aaaaatttca	agtatgaaag	aatgggcaaa	aattaaaaac	ttctcgaaaag	79020
aaaggaaaat	gtgaattgc	aaagattctg	atgtgaagag	aggtaaaaag	ccaaaaggat	79080
ttgtataacc	tcttggtaga	tacaagttgt	gattaaaaga	ttaaaaaca	actctgaaaa	79140
tattaatttta	ttttcttctt	aaacacatta	agtcatgtct	ctaaacatcc	tcaagatact	79200
atatgaaaat	ttatTTTATT	tcacagtct	ttgttcattt	atttggcata	tgtttattga	79260
gccattctga	ctgtgcattt	tgagctatga	tcttggaaaca	cttgcatcgt	aatcctacag	79320
ataatcatta	gagatgaaga	ttccagtacc	ccacataaga	atttctgcaa	aaacctgtga	79380
tatgggctaa	taaacaagct	tcccagaat	tgcttctaca	ctaagttca	ataatcaatt	79440
aattctcctg	agaacatgac	atcacgcaag	gctacatgga	gataaaatctg	tgagtaaaaa	79500
ttgcaagtca	ttcattctta	catgtctcc	ttttgcattt	ttaagaaaat	tttagtataaa	79560
aatatgtgtt	gagaagtata	attaaaaaat	gaacttcact	ttgtccctgc	tctcaacacc	79620
attatgtgtat	gagaaagtat	atacttata	atgatacaat	gggggctaaa	taataaaatta	79680
gagaaatata	gaatactctg	gaaaataaga	agagagaatt	cagtgacacg	tattaggaga	79740
aatggatgag	aaatgcttca	caaagaagtg	gcctttaaag	tgggtcatgt	agcatgaata	79800
gaatttaggtt	ttaaaaagaa	caggaaatgt	gaagagatgt	agctcagtca	tatagataga	79860
tagatagata	gatagataga	tagatagata	gatagataga	tagatgatgg	atagataat	79920
acaggtgttag	gtatagatat	atctataggt	gtagagaaag	aatatattag	taatgtaatg	79980
cctaggcaaa	tgatataatg	acattgtaga	cttacaaaat	tatagtaatg	ctaccataat	80040
tacaaaacc	aaagtttatg	gtagtaccca	gaaatagata	acttgcgtg	atatatgaag	80100
atgtggagaa	aaactaattc	aaatgaacat	taacatgta	tgtcatttg	tttatattgg	80160
ctttatttcc	atagcttggaa	gagcaaactg	tcagggaaatg	tccaacacaa	atggcagtgc	80220
aatcacagaa	ttcattttac	ttgggtctac	agattgcccc	gaactccagt	ctctgcttt	80280
tgtgtgttt	ctgggtgtt	acctcgatc	cctgctaggc	aacctgggca	tgataatgtt	80340
aatgagactg	gactctcgcc	ttcacacgccc	catgtacttc	ttcctctacta	acttagcctt	80400
tgtggatttg	tgctatacat	caaatgcaac	cccgccagatg	tcgactaata	tctgtatctga	80460
gaagaccatt	tcctttctg	gttgctttac	acagtgcatac	atttgcattt	cccttctact	80520
cactgagttt	tacatgctgg	cagcaatggc	ctatgaccgc	tatgtggcca	tatatgaccc	80580
tctgcgctac	agtgtaaaaa	cgtccaggag	agtttgcatac	tgcttggcca	catttcctta	80640
tgtctatggc	ttctcagatg	gactttcca	ggccatcctg	acccctccgccc	tgaccttctg	80700
tagatccaat	gtcatcaacc	acttctactg	tgctgaccgg	ccgctcatta	agctttcttg	80760
ttctgtatact	tatgtcaaaag	agcatgccc	tttcataatct	gtctggctca	acccctccag	80820
ctccctcacc	atcgtcttgg	tgtctatgc	tttcatttctt	gtctccatcc	tccggatcaa	80880
atcagcagag	ggaaggcaca	aggcattctc	cacctgttgtt	tcccatatga	tggctgtcac	80940
cctgttttat	gggactctct	tttgcata	tataagacca	ccaaacagata	agactgttga	81000
ggaatctaaa	ataatagctg	tcttttacac	cttgcgtact	ccggacttta	atccattgtat	81060
ctacagtctg	aggaataaaag	atgtgaagca	ggccttgcag	aatgtcctga	gatgaaatata	81120
tgtcatgacc	atggtgatgc	ctttgtttcc	taataaaacat	taatcgaaa	tctttggctc	81180
acatgtctta	gcgttctgat	ggtgagttt	aatattctct	gtgagttctat	tttgagttgc	81240
tcagctaaaa	agctcatgct	gggtaaaaat	gagatttttc	taggtttgc	tcctccacat	81300
atattccatg	aatcagcagc	atgagcttt	ccttggaggt	tgttacacgt	acagaatcaa	81360
agtctgcacc	tcaggtgcac	tgtattttaa	tatgtgtttt	atccaaactc	ctagatgatt	81420
gataagcaca	ctgaattttg	aggagcactg	ctgtgggtga	aacgtggcat	gccctggAAC	81480
actgttgc	tctttttgtt	tacaacggca	aacaaaataa	atgtgcctcc	agccccaaattt	81540
cttgaatgta	ttcttattt	atttcgcct	gtcttcgcgt	cagagatgtc	tttaagaaac	81600
ccattcttct	gcactccaa	aaatccattc	ttctgtactc	ctttcctgac	ttgctgtgg	81660
agaccagaaa	ctaggggcca	ttggatggc	ttctgggttt	tataagtgtc	cttacatagt	81720
gaagagtggc	aatggaaaaaa	gaggggaaaga	gaatgattgt	actttctta	aacttgagtt	81780
tatggatcca	gctctctgag	ttacataaaac	ccaccttccc	attctgagcc	tccagtgat	81840
ggaggtca	ttctgtttcg	cctgatttt	aaaaattttaa	gcaggctgat	ctgagaataaa	81900
ggactaaaaat	taaaatggaa	aatgaaagaa	ccgagtaaac	aataggtcat	acgatagagt	81960
atccaccttg	ctttgaatat	tccttctatt	tgtatattaa	tttaggttaag	taatgttaat	82020
ttttgtttt	ccttagca	ggccgttta	tatgtgttca	aggaagtaag	gatttcttcc	82080
acaggaagag	aagacattgc	tctggcatct	tcaagaaact	ttagaaagta	gaaagaattc	82140
ctcttagac	attatgtctaa	aaagaattat	ttaaggaaca	agtaaaaaat	atattttttt	82200
aagatagagt	ttcactctgt	tgcccaggtt	ggagaacagt	ggcatgatca	tattaataac	82260
ttcccttcaac	tccttaggttc	aagtgcacc	ccgcctcgag	cctccctagt	agctgggacc	82320
acaggtgtgt	gctaccacac	tgcgttatt	tttaaatttt	ttttagatc	tgtatctgt	82380
ctatattgcc	caggcaggtc	ttaaactctt	gggctcaagt	ggctctctg	cctcagcc	82440
ccaaagtct	gggattatag	gcataaaatta	ctgtgcctgg	tcaagattct	tctactctcc	82500
aaactttcta	cttattgcct	caaaaacta	aatattttct	aaatatcttt	atttggaaaggc	82560
aaattctgcc	attacgcct	tagaaaataa	aaagataaaa	tatTTTGTG	atatattaag	82620
ttgtacatta	agtaactgt	tttataaggc	ttctgcattt	tgttccctgtt	tttggttggg	82680
tttgcgttta	gtttacaag	gaaaaaagag	ccccaaagcta	tctaaagtcaa	caacggcaat	82740

ttatgacaaa	tatatggta	tatttcacag	cttctaaaga	caagagtaca	gctgaatctc	82800
ggtaatcaac	caaaatgtcg	aactctaagg	ccaagagaaa	ccgtatgtct	cattgtatat	82860
ttcatatcca	tttgttacta	ggatacataa	taattgagct	taattatgac	ccttgcattc	82920
agcaaccctg	ctcatttgc	ttaatttagag	tagaattttt	gtttgttct	tctataaatt	82980
ctctaaaatt	tacttcattt	cattgc当地	ttaacagatt	tttccctt	ccaatattta	83040
tgagtttat	ttattttcc	ttcatcattt	cagactttaga	ctgatattat	aatgtcaaatt	83100
agaggtagtg	aaaacaata	tcaaggccct	gttcccttatt	tcatttgc当地	tttgc当地	83160
tgttgc当地	gagacagagc	cttgc当地	tcgccc当地	ttggagtgca	ttggcacaatc	83220
ttggctact	gcaacccctg	cctccgggt	tcaagtgatt	ctcccttctt	agcctc当地	83280
gtagctggg	ttacaggcac	ccaccacat	gcctgactaa	tttttgc当地	tttaatagag	83340
atgggttcc	gccccatgtgg	tcaggctggt	tcgaaactcc	tgacctcatg	atccaccac	83400
ctcagccctcc	caaaggcttgc	ggattatagg	cgtgaggccac	cataccccagc	cttgc当地	83460
attttagggg	gaacatattt	aatgtatcat	caggttgc当地	atcatttagtt	tgatttttt	83520
tgtggcatta	ttaagattcc	attaaaaat	ttgacatattt	tgttcacgca	tctgttgc当地	83580
gaagtgggat	tgttttattt	agtatcaaatt	tatcttaatgt	ttcaggctt	atgacagtgt	83640
aatttcaggg	gcataaggaa	gattttccca	ctcatccaa	atagacttat	actgagagag	83700
atgttaattac	aattaacaac	catgttattt	taatttcaca	tgtgc当地	gctttgttct	83760
cttttctca	tctgatcaag	gcaccatggc	tccaaacatcc	tcatctatgg	gatatcttgc	83820
tgtatcccttgc	aggtagaaat	aagcattttc	tgcatgttgc当地	ccataatcta	ctttttaatt	83880
agaaaattttt	cttaatttca	cactatattt	atttctgtgg	tcaaaaaat	caaataaaaat	83940
tgtgaatttgg	gggtggggct	gaaggatagt	aataatatgt	ttaggcaattt	ttggtaaattc	84000
atggaggattt	ttttttttaa	tgaagaaata	tgctgttctg	cttcatccat	ttatttgc当地	84060
tccaaaaaggc	aaactaacta	tagtcagatt	atttggattt	tatgagaattt	tcataatattt	84120
ataattatttgc	caaaaattat	taattttaaa	aaatcacgtg	aacccaaaact	aaacacttgt	84180
ggatataatc	aagatttcttgc	ttttcaatatt	atttactcaa	aaaacattta	tggataactt	84240
agcatgttcc	aggcagtgta	ctgagtttgc当地	tgtatacagt	gaatataaaa	tacagtttct	84300
tcttcttgc当地	gataacaggc	ttggagggaa	gatatactt	aaacaaaacaa	aataaaactgc	84360
acttaaaatttgc	aagattgtga	caagtgtcat	aaataagtag	aataaggca	caggagagag	84420
aacaattatgc	atggtgacca	gattttactg	tagttagaag	atgtcttctc	ttagggttga	84480
tatthaagct	ggcatcttag	agatgatttag	ggaataacta	gaagaagttt	gggagaaata	84540
gaattcaaaag	cagtaatttgc当地	aactaaggcac	cacatcgaaa	tgatagaaag	atctcaacaa	84600
cttaacataa	caactaaata	atataaggag	gctgctagct	agactaatat	gaagaaaaga	84660
gagatggccc	aaaaaaacaaa	attataaaatg	accaaggaga	tgttaccact	gaacccttag	84720
aaatacaaaat	aaccatcaga	gactattatg	agcacccctt	tgcacacaaa	cgacaaaatc	84780
tagaaggggat	ggataaatttgc当地	ctggacacat	acccttccata	agactaaggc	aggaagaaat	84840
tgtatcccttgc当地	aacagaccaa	taatgagctc	caacatttgc当地	tcagtagtagt	gtagcctacc	84900
aacccaaaaga	aatcccttgc当地	ccagatggat	tctcttgc当地	attctaccag	atgtacaaag	84960
aagagatagt	accatttgc当地	ttgaaaccttgc当地	gcaaaaaatttgc当地	taggaagaat	gatttttccc	85020
cagtcgttcc	ttaaggccag	catcatttgc当地	atatcaaaaatc	ctggcaaaaa	cacaacaaaata	85080
aatgaaaatttgc当地	ttaggc当地	atccttgc当地	aatattaatgc当地	caaaaatctt	caacaaaata	85140
gttgc当地	taatccatgc当地	gaacatcaaaatc	agcctaatttgc当地	atcacaatca	atgaggctt	85200
atcccttgggat	tgtgagtttgc当地	tttcaatcata	cataaaatgtt	aatgtgatttgc当地	atcacaacaga	85260
cagaactaga	ggccaaaacttgc当地	atgtgttatttgc当地	tcaacagata	cagaaaaggc	tttttatttgc当地	85320
attcaacatc	ctttcatgtt	aaaaacttgc当地	agttagcttgc当地	gtatttgc当地	aacatactc	85380
aaaataataatc	gagccatcttgc当地	tgacaaaaccc	acagccaaaca	tcacacagaa	ttggggaaaag	85440
tttggaaatgc当地	tcccccttgc当地	aaacttgc当地	aggcaaggat	gctgttcttgc当地	accacttcttgc当地	85500
tttaacatgg	tatttggaaatgc当地	ttttagccata	acaatttaggc当地	aaagagaaaga	aataaaaggc	85560
atccaaatag	gaagagagga	attcaagcttgc当地	tgccttgc当地	cagtttgc当地	atattttat	85620
ctagaaaacc	caaaaacttgc当地	ttagcttgc当地	aaacaacttgc当地	agcaaaatgtt	cagggttacag	85680
aatcaatgttgc当地	caaaaatcac	tttgc当地	atacacaat	aactgtc当地	caaacagtca	85740
aatcaggaat	gcaatccaaatgc当地	tcacaatttgc当地	tagaagaaaa	ataaaaatact	taggaatata	85800
actaactaga	aagatgaaatgc当地	agcactacaa	tgagaatttgc当地	aaaatcttgc当地	caaaaaaaatc	85860
agagatgaca	caaacaaaatgc当地	ggaaaacatttgc当地	ctgtgtatgtt	taataatgc当地	tgagtgtcaa	85920
cttgc当地	tttgc当地	caaagtatttgc当地	atccttgc当地	tgtcttgc当地	ggtgttgc当地	85980
aaggagatgc当地	acatttgc当地	cagttaggttgc当地	ggaaaaggc	acataccctt	aatcttgc当地	86040
ggcacaatcttgc当地	aatcagcttgc当地	cagtgttgc当地	agaatataaa	gtaggcagaa	aaacatgaaa	86100
aggtagacttgc当地	ggcttagcttgc当地	cccaatcttgc当地	atcttgc当地	cgtgttgc当地	gcttcccttgc当地	86160
ctcaaacatc	gaactccatc	tttccatgttgc当地	tttgc当地	gactggcttgc当地	cttgc当地	86220
agcttgc当地	ttggc当地	taggacccat	ccttgc当地	atgtgatgttgc当地	ataatacttgc当地	86280
acaaaacttgc当地	atataatataatgc当地	atatacacaat	acacacacat	atataatataat	atataatataat	86340
atataatataatgc当地	gtatataatgc当地	tttagttcttgc当地	ccctcttgc当地	aacccttataat	cacattacat	86400
gctcatatgc当地	aaggaaaatttgc当地	aatatttataatgc当地	caatggccat	actacccaaa	gcaatttaca	86460
gattcaatgc当地	tatttgc当地	aaacttgc当地	tgacatttgc当地	catagaatca	gaaaaaaaaagc	86520

tatttaaaaa	tttataggga	accttgaacc	caaatagcca	aagcaatcct	aagcaaaaag	86580
aacaaacctg	gagcatcag	ttacctgact	tcaaactata	ctataaggct	acaggaagca	86640
aaacagcatg	gtactggtgc	aaaaacagac	aaataaaaaca	atgaaaacaga	attgaaaggc	86700
cataaataag	accacacacc	tacaaccatc	tgatTTTGA	caaagctgac	aaaagaacag	86760
ggggaaagga	caccctattc	aataaatggt	gcttaggtcg	ctggctagcc	atatacagaa	86820
gattgaaacc	ggacctgttt	cttacaccat	acacaaaaat	caactaaaga	tgaattaaag	86880
acttaaatat	aaaacccctga	actgtcaaaa	ccctgaaaga	caacataggc	aacaccattc	86940
tggacatagg	aactggcaga	gattcataa	tgaagacacc	aaaaacaatt	gcaataaaag	87000
caaaaattga	caaattttg	gatataaata	aacttaaaag	cttctgtgaa	agaaaacttc	87060
aacagagtaa	acagacaacc	tacagaatgg	aataaaat	ttgcaaacta	tccatctgac	87120
aaaggtataa	tccagcatct	ataaggaact	taaacgaatt	tacaagaaaa	aatatgtccc	87180
attaaaaagt	gagaaaagga	catgaataga	tactttcaa	aagaagacgt	aatgggagc	87240
taaataatga	aaacacatgg	acacaaaggg	gagaacaaca	gacactgggg	cctacttgaa	87300
gatggaagat	gggagtaggg	aaaggatcg	aaaaaataac	tgttggtag	taggcttagt	87360
atgtgggtga	tgaataatc	tgtacaacaa	ccccccatga	cgtgagttt	actgtatcaa	87420
aaacccttcac	atataccct	gaacctaataa	aaaaaaaaaa	aaaaaaaaagg	ttaaaaaacg	87480
gctctgtgaa	ggttctgagt	ttgaaaaggg	cttgacccaa	gaccagtatg	gctataccag	87540
ggaatgaggg	agacagtgc	agataatgt	gatttaggtg	tagactata	taaaagttt	87600
ttttttttt	ttttttttt	tttttgagg	cgagtttgc	ctctgtcgcc	caggctggag	87660
tgcaagtggcg	cgcgcctcg	tcactgcaag	ctccgcctcc	cggtttacg	ccatttcct	87720
gcctcagect	cccgtgttagc	tggactaca	ggcgcgegcc	accatgccc	gctaattttt	87780
gtatTTTGTAG	tagagacggg	gtttcacgt	gttagccagg	atggctcga	tctcctgacc	87840
tcgtgatccg	ccgcgcctcg	cctcccaaag	tgctggatt	acaggcgtga	gccaccgcgc	87900
ctggcctata	gtaaaagttt	ttatTCGt	atatcattgg	aaaaatgtgc	ttccaatgaa	87960
gcattcatgt	atctctttt	ccttcataat	tagggcaaat	acatgtacta	tttgatcaca	88020
tgtacaggtt	acatcttata	ttcatatgtc	ctagctaagt	gaggattgga	tacttggtaa	88080
aaggaaaaaa	aaaggttaggc	aaaatatttt	gatctttatt	ctgtttgtt	tcataggtt	88140
gcaaataaaat	aacatttgc	taagttacac	attcaccagg	tttccataa	aatattactt	88200
cccaacacct	ggattaaata	ccgtgaacta	actcaactac	aacaattttt	aggtccaaat	88260
tatTTTACCC	agtagatttt	acaatttaac	ttctttattc	taaccatttt	gtgaaaggta	88320
gtgtccaaca	cacaattcag	gctgaaagag	aatcacagaa	acatcaacgc	ttatgaatta	88380
tgtcattatt	tttttacctt	tattaatcat	tccatttc	tgattggat	aatgaaccat	88440
aatgcaaaac	cccatgtgaa	taaactcctg	atccccaaag	caatcatctc	gtagtgatta	88500
caaattgtt	caatcaagtt	gcttaagtcc	caagtttcta	ttgagcacat	gagtctgtac	88560
caattactac	atttccctg	gagttgtgtt	tttttagtaac	attgcaattt	tttcttcaga	88620
gtgtattaaa	aaatacttt	gtgataagag	ctccaaatta	caagatgggt	ataactatt	88680
cttggtaact	catttttgg	agcaactagt	tctgtggag	tacctttctt	ggcatcaggt	88740
aggaataaaa	attctgactt	ctgacttgt	actttctt	cttgcctca	ttttggattt	88800
ttatcagtag	gagtcaagt	acaataaaaag	tagcttcaa	tgttagttt	gattctcagc	88860
ctattaaaat	gagtttgat	acatttctt	tctagacggg	tgatgagaaa	gtattacact	88920
ttaattgaaa	ttattcaca	caactgtttc	actttacaaa	tatcattctc	accatttatt	88980
caaataattga	acccacttga	ataactattt	gagtaacat	taatatgaca	ataaaattcaa	89040
gtgttgaaca	cacccttgaat	aaccaacttgg	gtaaaatatta	ataagacaat	caattcaagt	89100
gttactaga	ataatatctg	ttgaaaagac	cccttataaa	gaaaacgcctt	tatcaaaaagt	89160
tcaaaaagaga	tcttattttt	ttatggctga	atagtattt	attgtatcat	agatggacac	89220
aatgaaatat	catagacatt	ttacattaag	taaaataaagc	caggaaaaga	atattaaata	89280
ctctatgtt	tcactcgat	gtggaaacta	aaaaatgttt	atgtcagaga	agaaaaaagt	89340
agaaaagagg	atactagagg	tttccttagag	gctaggaagg	gtagagagaa	ggaaggatag	89400
gcagaaaattt	gttaaaaggat	acaaattata	gcaaggttaag	aggataagt	tctactgttc	89460
tatggctctg	taggattact	gtatgtcata	atataatgtt	tcaaataagct	agaaaaaagga	89520
tagtgaatgt	tcccataata	aagaaatgtat	aaatattga	cataaggat	atgctaatta	89580
cccttatctg	atcaatatac	atcatatgca	tcaaaacatc	actgtgtacc	cactaaagat	89640
gaacaagtt	tatatgtcat	ttaaaaataa	agtaaaataa	agggaaaaaa	tttgaaagag	89700
ggacagatca	attcattaga	aattgtactt	tttctagaaa	acataaaaaca	cttataagaac	89760
tttacatatc	tttctttaaa	ttatcagaga	aaatTTGAG	caaatttaat	attaactaag	89820
aagtagatga	ctagtgtat	gtttagataa	gaaaaatcta	tgaatgc	aaatcataatgt	89880
tagaaatgt	gggcacttta	gaaactattt	tgtcaaagtc	tgacattata	tagatttagaa	89940
ttctaaagct	cataggaaaa	aatcaccata	tcgaggtaaa	gagactgc	tctaaatgaa	90000
gacttaaatg	agtttttatt	gacatatcat	aggcaagaat	aaagccacaa	catataacat	90060
gccctagaac	ttaggttcat	gcaactgtgc	tagataatgt	gccctgttat	tttattttgt	90120
agacactaga	atggaaaaca	aagagaaaagg	gatgggtcg	aagtccattt	tgactgtgt	90180
gacaaggaag	gtgctctgg	ctgagaaaact	gatattcaca	ggagttgc	ggctccacca	90240
actactagac	ttatctac	ctgttttaat	tgaagatcgt	aaaatatcat	tatTTGCCA	90300

gcagttcttg cagacttac tatgtcttat tgctcaagg aggtcggtcc tgggctcaat	90360
aactgaaaat aagcttcagt aatctttacc tctgttttct atggctttt ctttggcttc	90420
aatttctcct agtctcccac acaattcatt ttataggatg acataatggt gacctgatgt	90480
atacagaatg tttagtaact atgaaagcag ttccgtgcta tcttattttt ctatctaaa	90540
tatttgtatt ctattttatt tcattttt ttatgagaca ggatctact gtgtcaccca	90600
ggctaaaatg cagtggtgca atcatggcat actggggcca aggagccctc tcaccccaac	90660
ctccccagta gctgagacca caggcatgca ccaccacacc tggagatggg ttttttttt	90720
aatattttttt ttttagaga tggagtctcc ctatgttgc cagttttgtc ttgaactctt	90780
aggctcaagc ctcagccat caaagtgcata ggagtaaagg catagccac attgcctgac	90840
cttgcatttt aactggagcc tgaagaagcc aaacttattc ccaaataaagc atttccacaa	90900
gtaactcaga tatacgttac atttttagaa atttactttt cacttttattt gaatcaatgt	90960
aattttttttt ttagttgggaa ggatgggaaa atcttggAAC tccgaatttc acccaaatat	91020
ttaccatgtt taccaattt ccataaatga cacctcttagt ttctgttca acaataatatt	91080
caaacagsct actaaatgac aaataatgtt acttgaaaaa tatcttcattg taataaarat	91140
aaacatatgg atataagat cctgtgaatc aaaatttacc aacatgraaa atatgtgttgc	91200
actttgttat ctagtttac tttagtaatt ccaatacagt gcaagcaag ttaacattat	91260
tgaagcagtg aaacatttgg agttttattt tggttatatt tcttgcata agaaaacatag	91320
actttaaaaaa actcactgtat gtctacactg attccttaattt acccagaaaat ttcagactga	91380
acaccaatgt catggaaaaa ccccttgca gaaggacatc tggtttattt catcatttag	91440
gcttaattat ttttctgtgt gttagtttctc acacagagaa caatgtatgt atagctatta	91500
caaaactgtat tcagcactct ttctaatgtt ttaatgtgaa ttacttggca atctatattt	91560
gaatacaagt tagaaaataa gagtcatgaa agataaattt tgcactttt tacacaaata	91620
ttaaataagt gtgcactttt tcttaagcaca gggcacactg cgcatggtaa acattaaata	91680
agttatcaaa ggcaatttcc acaggcatta aacatcacct ttgatacatt tcagcaaccc	91740
agtttaacca ttggcaaata aataacattt tgctaaatgtt cacattcacc aggctttcca	91800
taaaatatta ctccccagca cctggattaa ataccatgaa ctaactctac tacaagaatt	91860
ttgaggtcca aattttttt cccagtagaa gtttaataa agaactagaa atgatcttca	91920
gatgacgtgt tattaaacat ttccacaatca ttcaacttattt tattttcattt agactaaagg	91980
cttttagctt gatgcagaaa atttgaatat atcatgggat ttatcaaaat tattttaaat	92040
ttaccaatag tatttgtcat atgcattgtt ttagtaatct cagttgagca tattttttttt	92100
caacatataat atacacatac atgaatataat atagagggtgc ttgtatgttca cactgaggcc	92160
ctctagaagt gaaacttggaa tggtttataa tgactaattt cataatctcc tgcccaggaa	92220
attataaattt aaaaacattt cagatctcaaa agagctttt tttactgaaa tatttggaaa	92280
gacatttccc aagtacttta gcctttaaaaa tatgattcat gcaagcaact aaatttagaga	92340
gttcttggga agagggctgt ggataacaag agaaaaatgtgaa gaagagaaga aactaaggat	92400
gtgtgatcaa agaacagggtt aacatgtaaa aaattcaaaa gggaaaaaaa atgcttgc当地	92460
gttatatgg agtattttaa atatttggac gttgtctcat ggattacatc tattttatcta	92520
tctatctata tctatcttac tatttttttca tctgtcttac tatttttttca tctatcttac	92580
atctatctgt ctgtcttata gtttgactt tgccttacca ccaataaaaca cttataaagc	92640
aaccatgattt attttttttt tatttttttca tgaataaaaca aatgttgcattt ttttaggattt	92700
cacaatacag atttttttgcattt agttagatgg atttgcatttcc accttgcattt gatacgc当地	92760
gctgtgatattt catttttttca ttttttttca ttttttttca ttttttttca ttttttttca	92820
tatttttttca catttttttca ttttttttca ttttttttca ttttttttca ttttttttca	92880
tttttttttca ttttttttca ttttttttca ttttttttca ttttttttca ttttttttca	92940
aatttttttca ttttttttca ttttttttca ttttttttca ttttttttca ttttttttca	93000
acagcatttcc ctgtgttca gtgtgaaattt agggattttt gctttaaaagag aaaatttttgc当地	93060
agtgttttttgc当地 ggttttttgc当地 taaggaagggt tgggacatgc tgaaaggccctt tgcccacttt	93120
ctggagctttt acttttacaca ttttttttca ttttttttca ttttttttca ttttttttca	93180
acotttttttca ctttttttca ttttttttca ttttttttca ttttttttca ttttttttca	93240
ctatttttttca gctttaatattt ctttttttca ttttttttca ttttttttca ttttttttca	93300
aaaactcaga ctttttttca ttttttttca ttttttttca ttttttttca ttttttttca	93360
acttgcatttca catcatttttca ttttttttca ttttttttca ttttttttca ttttttttca	93420
tttttttttca gacctttaatattt ctttttttca ttttttttca ttttttttca ttttttttca	93480
gttttttttca taagctgttagt agggtaggtt gcttgcattata ttttttttca ttttttttca	93540
atagaaaattt aaatttttttca ttttttttca ttttttttca ttttttttca ttttttttca	93600
atttttttttca aagtataata ttttttttca ttttttttca ttttttttca ttttttttca	93660
aaatgtttaaa atttttttttca ttttttttca ttttttttca ttttttttca ttttttttca	93720
ggtttaatattt ttccaaaatgtt atgcatttcc ctggagatgtt agggaaaggcc acttttttactt	93780
tttttttttca ttttttttca ttttttttca ttttttttca ttttttttca ttttttttca	93840
tttttttttca ttttttttca ttttttttca ttttttttca ttttttttca ttttttttca	93900
ccatcatttca ggttccatata acacgcacag gtttgcatttca ttttttttca ttttttttca	93960
acaaaatttca agatgttca ttttttttca ttttttttca ttttttttca ttttttttca	94020
gttttttttca ttttttttca ttttttttca ttttttttca ttttttttca ttttttttca	94080

caatagaaaa	gtcatccctg	cacatcatgtg	aaatatgtt	aatttctttt	gaaagttgcc	94140
taagacaatt	ttctgcatgt	actgttcata	ctagctaaaa	ctgctccccca	ctcttattcc	94200
tcttagaaat	tccttagttat	tttcaagcc	ccagtttagat	tattgtcctt	tgatgcttac	94260
cctgattcct	gaaacaatta	gttattttgt	ttgtatTTT	attattgaac	taatcatatt	94320
taactttaat	tttcatgtc	cttaccatga	aatcaacca	gctcttcaa	ggcaagcact	94380
gtgatcagtt	gtcttcaatt	ccccagcaaa	gcaacttgca	tgcatggagt	gttcagtgtc	94440
gtttgtcac	aaatgtaac	atattacaat	gtttaaatca	ttagcatcc	tgaaagacatc	94500
acagagtcaa	agtagcta	tttgtgtgaac	ccttaattca	attccggga	agaggtttaga	94560
cactgaagta	tgttagttgaa	gacactggtg	ttgcaaggaa	ttgtatccc	ctagctcaag	94620
cctacagact	tctgttttgc	gcccggatt	aagataaatt	taaaaatcg	atgaattgcc	94680
aacactatct	tttgttagatt	tcccataaaa	acaatgaatt	ctgatattt	aatgtaaag	94740
ctcttaagac	cttacaacac	aaggccctg	ctaacataaa	gaaaattct	attggcctga	94800
gtgacttctg	agtctacact	gggaaccact	ctatgttca	cttcagtgg	ctcttaaacc	94860
caacccactt	cactcattt	tattagctaa	agggctccca	tagacattt	agttttgatc	94920
tcttatctcc	tttagtgttt	tacttataaa	ataacacaag	gcaacattgg	gaatttataa	94980
taaaaaattta	ttgtatagaa	tcccagcacc	ataattttcc	attgtctcat	ttcattacaa	95040
ttgatattat	ctgaatttaat	attatctgaa	agtataatct	tttcattata	atttgttattg	95100
tttgaactct	aggaataatt	ctatctct	tgattactt	tcattttatt	attctggaca	95160
ttataatatt	ataaaagaat	ttgaactaat	gtgtctagaa	acctgaaaca	aatttgtgtt	95220
ccactagcag	aacaaatttg	tcacattctg	ttatatgtct	taaaccctt	aatgcattc	95280
aggattaaat	taaaacataa	atggaccagt	agataaaatc	tatgaaataa	catttggcaa	95340
cttcttgc	tttactccta	caaactcctt	cgactgaaaa	ttccttcatt	agtaattcat	95400
ataggccctt	gttattccaa	atttagaaac	cttacatttt	gttatttcac	aaagaaatga	95460
attgcttttgc	attttgttgg	tatagcagta	agaaaaaaaa	agtgaagaaa	aaaaaccag	95520
aatttccttc	aaacccttat	gattctggac	tctctaatac	agcacatagc	cagtgaaatt	95580
ctcaaagggt	gagacactaa	agcaggggtc	ccctaacc	cagggcatga	actggatgg	95640
tccatgtcct	gttagcaact	gggcccacaca	gcaggaggca	agccaccagc	aagtgagcat	95700
tcctgcctga	gctccgcctc	ccgtcagatt	agtcttggca	ttagattctc	atgggagcac	95760
ccaccctatt	gtgaactgca	tgcgcattgc	agctatctag	tttgtgtgt	cottacgaga	95820
atctaattgt	tgattatccc	caacaacccc	accctccaac	cccatccat	ggaaaaattt	95880
tcttccacaa	aactggcgt	tgggtctaa	aagggttgggg	actgttgtt	taaaggaaagc	95940
ccatgattgt	atagtcaact	gaaaaaggca	gttagtggct	taatccattt	ttcgacaaac	96000
tttaggacac	tattccctca	ttccaaaaca	cgttggtaac	acagaaacca	ttcttttag	96060
gaatcatctg	catatgatac	accaggtaa	ttggggcctt	tgttttttta	agaccaccag	96120
gccctatatt	cttgagtcct	gctgactgg	ctgtgtgagg	gagaacaaga	gagaagaaaa	96180
aagagagaga	gcaaataaga	gaaagagaaa	aaaggttaaca	tgtatggac	ttctcattca	96240
ccttgattta	ttttcatcca	tttaagtggaa	aatgctgtt	acctaagaaa	atggtagag	96300
gaaattctac	tttggtgacg	gaatttttc	tcttgggatt	aaaggatctt	ccagagcttc	96360
agcccatctt	ctttgtactg	ttcctgctaa	tctacctgt	cactgtcggg	gggaaccttg	96420
ggatgttgg	gttgatcagg	atagattcac	gcctccacac	cccatgtat	ttctttctt	96480
ctagttgtc	ctgtttgtat	ttgttattac	ccactaatgt	gactcccaag	atgtgtgt	96540
acttttttc	agacaagaaa	gccccatcc	atgctgtt	tttagtccag	tgctatTTT	96600
tcattgtgt	ggtgattact	gaatattata	tgctagctgt	aatggctat	gataggatgt	96660
tggccatctg	taacccttt	ctttacagca	gcaagatgtc	caaagggttc	tgtattcgcc	96720
tgattgtctg	tccatatgtc	tatgggtt	tttagtggact	gatggaaacc	atgtggacat	96780
accatttgac	cttctgtggc	tccaaatatac	ttaatcaactt	ctactgtgt	gaccaccccc	96840
tcatccgact	ttcctgtct	gacactttca	ttaagggaaac	atccatgtt	gtggtagcat	96900
gatttaacct	ctccagctcc	ctcatcataa	tcctcatctc	ctacatctt	attctcattt	96960
ccatccttag	gatgcgtt	gctgaaagta	ggcacaaagc	gttctccacc	tgccgggtccc	97020
acctgggtgc	agtactgtg	ttttatggaa	ccctgttctg	catgtacgtt	agacccccca	97080
cggacagggtc	agtggaaacag	tccaaagtca	ttgctttt	ctacactttt	gtaagcccta	97140
tgttgaaccc	catcatctat	agtttgagga	acaaggatgt	gaaacaagct	ttttggaaac	97200
tgatcagaag	aaacgtgtt	ttgaagtaaa	atcagtgtat	cttatttagt	caaataaaaa	97260
aatctttcta	tttatgagaa	ctgtatTTT	ctttagtage	tttacagtaa	agtcaatTTT	97320
agatccccaa	tgaaaaacta	taatctaaca	acaacacata	gacatagata	gagaaaattt	97380
atggttttac	atgttacata	tgagtggaaat	atgtgtgt	gaagggtagg	gaggtgtata	97440
tgcattgtat	aggaataatt	attttttat	tcataacatg	catacattt	catgtatgaa	97500
tttacatgtg	taacaattt	catgtaaatt	tacatgtaaa	ttacatttt	aacaacatat	97560
tttttacatt	ataaaaaatt	atacattgtt	gtaataaaac	attaggtctc	tatggaaagg	97620
taaaaaagtaa	gagattaaaa	tatTTTattt	tctttccac	accctgattt	tttatttctca	97680
cttccttagag	ttacaacgt	taacagttt	tttagtttt	ttttttat	ttcttctgtat	97740
ctacaaacaa	atgtgtggtt	atatgtacac	acatataac	acgattgtt	aaacacaag	97800
tgactgtcat	ggttgtttt	tagtggttt	caattctgt	gcaattacta	ccaagaaact	97860

tcagtctcat ggtttagagg aatgtcacaa ctgctggta gacttgcgt ccctctaggc 97920
 tggttctcta ggagagaaaa cttacgataa cacctctgtg tccatgcctg acacccactt 97980
 atgtctctcc acttgtgaga gtcaacttca ataagacacc ttcttccttc tgccacgaca 98040
 ggacatgagg ccagcccagc agttatTTT caaatattaa ctctggaaagc agacaaagaa 98100
 tggctectat aagggttat gactggctgc aaataactgt gacttctgca gaacttatca 98160
 attcaattct acacttctgg ggactagagt ccttcatgt ttctctcacc tctgctttt 98220
 taatcttatt ttcaggatag atcatatatt ttattagta gcatcattca aattttactc 98280
 acagtggtaC tttgtcacag ttagttatta tatacctaata tttagaatga catatgtcg 98340
 ctgtttgt agtatTTT tagtcaaaggaa agcaaaggac aagttgatata tttaaggatg 98400
 tgacaaatct ggtgacttg cagttgataa cataagcaaa attgatgaat gtgtgctgag 98460
 tatttacaat aagtcaact tcttcataaca ccaaggactt ttcaaggagc tcgacaatgg 98520
 catagttta caggggtcat gaaactgtaa acagaaagat caatacaatt tgtaaatgc 98580
 tgaagacta tggagggtct aacgaaagag agggaaagaaa aaattatctc tggcaaaatt 98640
 gaagctagcc ctgtgatgt ccaagactag aacttggta tgctttatgc accttcctca 98700
 gcctccat agtcctagt atgacgtaat gtcagggtgg gtctgagcaa aataattaag 98760
 aaccatTTG tgatcaataa tgtagatgtt agttcaatg aaaaagaaaa aaccataaaa 98820
 ctataacaag tcacaactca aaaagacatg atatTTTtc tcagttgtat ttcaaagctt 98880
 tcttgtacc ttcgagttaa tctctgttta gtatTTTctc agaaatTTTc agactcattc 98940
 attttatatt attgcatata attatTTTaa accttgcattt actacatgtt cctatTTTaa 99000
 taccttgatt ttgaaagtca gattgcccac aaattctgtt aaaacacaca tataaataaa 99060
 aaagctatTTt ttactaattt ttacatTTt attaacaatt gttgaattcc gcttagacac 99120
 ataccttagat gtatTTTgtt ttaataacac atatgtttt agttatgtga aaccagctt 99180
 ttaatttat aaaaatTTTt gatcctaggg cccatgttcc tatctgtaca gcctagctt 99240
 gcacccaaga aagggtcaat gactgcagca tgaaagagta cacatcatac acaatTTTt 99300
 taaaagttaa tgaatgtcca ctttcaaagt aaacaaagtg cctcaatTTt agaatttata 99360
 agaaaaagtgt ctttgaacag accagcagat gactctgagg gaatatgtta ttagtcataa 99420
 gccaacttac ttttcagaaa tacaagtaac cataatgtca ttgatgttta tgactgactt 99480
 tagcaataca aaaccaatag ttacgcccattt atacacaaaa gttcaagata gaaaggaaatt 99540
 acaccaagtg ctttcatgaa ttgactggct cgctggaaatc acgtctatca gcctgttaag 99600
 actatctaag tccatatcat attgttattt acataaaaata aatatgtgt gatgaaaatt 99660
 ttttgttattt atatgttattt ttagtaggcc ctggattttt gctaaaaagt aaagaataac 99720
 tttcttattt atgacattaa aatcccattt ttaaaagtctg tcataagaga tttcaagaag 99780
 agtctccat ttcatgttcc ttatTTTca aagttaattt tgctgaattt ttatTTTttt 99840
 ggacaaattt ggtatcacaa tgaagaaata atcagaaaaata aatagaataa ttactgtac 99900
 ttttggaaag aacaataat atgatattttt attttcttcc caccatcataa aaagatcatc 99960
 actctgatat tcccttcagg aaaatTTTt catgtgtata aatactaaa ttttataagg 100020
 agtagtgcgt ttatgagcct aatgttttca ctcataatac agatgtttt gggacaatg 100080
 aataagtgaa aaatTTTttagt acactcacaac tcacacatac acacaaaaat aagacagagt 100140
 aataactttt attatTTTttagt acactcacaac tcacacatac acacaaaaat aagacagagt 100140
 atcaacacta tgcattcagt actataatct ccactttaaa gaaaagacaa cagatttaca 100260
 agttgttaac ctAAAAGCAC ataggttagat tagaaggggaa gctcaaatat gcctggctt 100320
 aaagtttatt tggTTTGTt tggTTTGTt atacttttgc cactataactt cattgaaggc 100380
 aaaatcatac aatggaaaaataaattttt tctatcttcc agaagtattt ctgatcatgt 100440
 atttgacagc tgcattcaca ctgaggata taatgcacta taaaaatttcc ttttataat 100500
 gtatagataa atttaacttgc ttccataaga caaatTTTt cagtcagatc ctaactccat 100560
 catttatttgc taaatgtgtt agttatgtgc atgaacttgc gaatctgatt tactgagcaa 100620
 gttatataac ctctctcgcc ctcaagtggcc tcttcttataa agtgaagaca tagtggatTTT 100680
 tcataaggat gctgtctca cagaagatata taaaatTTTt cttttataat 100740
 tactggatAC atagttatTA ctcaataaaaa ggtacctttt ttaatttata actggaaagt 100800
 tacTTTACt atcttagact tagtttgc ttcaataaccc tcatgtttt ttttataataca 100860
 ttttatttgc tttggatata attaatgttgc tgTTTGTt taatattgtt agtgcacatga 100920
 ggtcagaaac aatgtatTTTt tgagagcaat ttttcttcc ttttgcctt ggtatgtatgt 100980
 atgtgatccc taaaaatgtt tagatagatg attgtatgggt agatgcacaga tagatgtatgt 101040
 atagatagat agatagaaaaaa aaaaataat ggagattata atattatTTTt 101100
 tggtaaggtaa tgggattttc ctgaaaaca aaacactgtat ggttaacttta atgtgtatata 101160
 ttttatttgc tataatgttgc ctgttttgc ttccatcatac agaatttgc tggaaatgtt 101220
 cagaataat caaaccagag agaagaaattt ttttgc ttttgc ttttgc ttttgc 101280
 gttgcatttgc gtcttcttgc tcttggtttca attaatttttgc ttttgc ttttgc 101340
 cttggcccta aatctgcaca tcacatcatac acactgttcc cttggccatc ttttgc ttttgc 101400
 acaaatttgc gtttaactttt tatttggca gttcaatcc atagccatc ttttgc ttttgc 101460
 gcataacatg gtcacatcc cgttaacccca gtttttgc cttggccatc ttttgc ttttgc 101520
 tcacatccatc atggtcatct gccttccatc tagtcaataat attgggttca aagtgccttca 101580
 cgTTTATATG gctgtccatc tttatgttgc ctttgc ttttgc ttttgc ttttgc 101640

tatccccaga gctgacgaca tggaatagca tcatacctg ccacccgtg gctactccga 101700
 ccaaataaaa ccaaatttc ccacacgcca tggatctact ccataatgtg atgaaagtgt 101760
 atgagagttc taactttata ttttccaaac aaatttgaa tctttctact ctttgcata 101820
 cagaaaaact tctctgttt tgaatttcac ctatgaata tgtctagata atgttaccc 101880
 cttgaaggaa tcaataaacac aaaacagtag ctggccctata tggttgcac tcttttgaa 101940
 caaccaaaa aatagaaa gaaagaacgt aacggttcaa aatagtagca tgatggtaa 102000
 ttttatgtgt caacttgact gggcgacagg gtgcacaaat acttggtaa atgttatttc 102060
 tgggtgtgtc tgtgaatgtg tgctggaa agatttacc attgaattt gaagactgag 102120
 taaaggagag tggtctcacc aatgtgggtc ggcatcatgc aatctgctga gggcctgaa 102180
 agaatagaaa ggcaaaagaa gagcagattt gtttctcg ggtgagttgg gacatcaatc 102240
 ttccgctgtc ttggacaat gttgtgtc ttggacctcg gacctgcaga ctctgaccag 102300
 gacttaaact atttgttccc ctaccagggtc ttcaaaactt gactgaatta aaccaccagc 102360
 ttccctgggt ttccagcctg caggcggcaa atcacaggac ttttggctt ttatagttgc 102420
 atgagccagt ttccattgtg tggtgcgtg tggtgtgtg taatcatgtt atgttataata 102480
 tatatatata tatatatata tatgtaaaat cttcattcta tatatagaat gcttccttt 102540
 ctctggagaa ccctgtgaa tacagattt ggtattgaga gtgttcttag agcaacataa 102600
 ttttaaggat atattttttt atctgtttctt gagggttctg gaattggctc ttaatttca 102660
 ttagatttaa agatgctaat gactatttag agtagtcgaa aaagcattga tagtccatga 102720
 cataaactgt ttatacatat atgcaaaagta tccacatgg attatcctca tcagacactt 102780
 ataagatata aggaactatg tgactctcta tatactttt tacttctta gaaaactaag 102840
 gattataacg atattgattt gttactctt atgtcactgg acaaagtgtc gaaagataag 102900
 gatgagctt gggattttaa ttccagtc tccatgtt gcttcctgtt atgtctggaa 102960
 ggagatcctt gtctcctgtt gcttcattt aacccatgtt aacccatgtt acccaagttac 103020
 cgttgggggt ttgtggaaag atccgtatgtt agctggaaag actgagcccc taaattctga 103080
 taagtgcstat ctgacagtgaa aagaggtttcc cctactccta tactcctagt ggaattggcc 103140
 tccccgttcc cagtggtatac agcttttcca cctatgtt gggtaattaa ctccatattt 103200
 ccagaataaaa tggtaaaagac ttcccttgag gcagtttcca tacaagacaa tacagattct 103260
 ttttggggcc cacctttacc acccttctt gcttctaaac ttataactaa acccaagttac 103320
 caacagcccc tggaaagaaga ggtaccaagc aagaccatgtt ggtgtgcac taaaaaagta 103380
 gatgagtttt ctaatttata caaacagaaa tccagggaaac atgtgttagga atggataacta 103440
 agcatatggt aaaagagtagt aatgaagata tagttggatc aggtctaatt tgcataatgt 103500
 agctcattaa acagagatcc tccatttaat gttgcacactt ggggagtttag aaaaagctct 103560
 aagtttgggtt gtttggctgtt aacatgtatc aaaagatgtt ccactgtgtt gaaacttggaa 103620
 atgtttaact tcccttggtt taatgttagag gaaggaatttcc aaaaaggcttag agaaattttaa 103680
 attcaagagt ggacttgcca ttgaagaccc actcaccat actggaaggg ttccagaagac 103740
 aagctttca ccaatacatt gataaataaaa ctttgaggg gaaactgtca ccacacaattt 103800
 ggaaaatcaa aatgcagttaa tagtaacttag atcatgggtt ggcagaggcc aggtggggc 103860
 tttcaatggc ccaaggcaag gtggcctatc ttaccataat gaacagcagg taaaagcattc 103920
 aaatagaata gtctgaccca cacgtatcta tgacattggc tagcacaggc tagttaattt 103980
 tgggtttccc agttgtataa gtaaataagaa agcccactaa attcttactt gatctgataa 104040
 tgcaaaaaca tttttaggtca agtgaacaaa agtctatttctt gaatttataat aactgtatgt 104100
 tacagtccct caatcaattt ttagactgtt ggcagtttac agacccagaa ctcccttaaat 104160
 gaaggggaga caaggttcc tcaaggaaga tttccatata ttgtctaggtc ccacagagag 104220
 ggaccttttta tctgggttaac tgcattggag aaaaggagat aatcgactt ttgagttacta 104280
 ctgtacactg gctctgtact gacaatttca ggctcacaac atcattatag ccccttcagt 104340
 cagtaggggc ttatgtatgtt tagattatca gtgaatttcca tctcaaaatgtt ggcggcgtgg 104400
 gtcctgtac tcaaggctgtt gttatttctt tgggtctaaa atgcataat agaatagaca 104460
 tactggcaga atccccatgt tgggtctctt acttggatc cttgggtaaa agaaatagtt 104520
 gaaataattt atttaaaatgt ttttgtgagc acaaagaaag aaaaaaattt tcttgacaaa 104580
 aagcttttggt ggttaatttcc ccagagaagg taaccactgtt gatgggtttt gaaagttgag 104640
 taggaatttcc aaaaaggtaga ggatgtattt gaaagacttt tcctaaagag tgaaccaact 104700
 gatcaagaag aatagcttgg ttgtgtttt gacacaaaata atagatagga aagtagtaaa 104760
 taataaaatgtt gatgtatgtt ctagatcaga taaggcaaga atgaaatgtt tttttaacaa 104820
 attttagactt aattggatct acatgtatgtt gtgttttgc cgtatccctca aaaataatgt 104880
 gttggaaagt taatccccac cgtaacagtg taaaaatgtt gggcctaaatg ggatgtgtt 104940
 aggtcacaaa agttacaacc ttgtgggatt gataaaaaagg ctaaataaaag gattactttt 105000
 tttaaaaaaa caatttataaa tgggtctgtt gctgcacgtt ctctaaacttgc ctgtccctt 105060
 ttcttgcctt ctgccttccctt ccattggctt gacacagcatg aaggccctta gatagatgtc 105120
 agcaccatgc attttgcattt ctgggttacc agaactataa aacaggtaca tttctattt 105180
 ctataaaatgtt ctttgtctgtt gttatttgc ttttgtctgtt gtagcagca taaaacagac taagagaaat 105240
 ttggtaactca gaagtgtggc tgggtctatata cagctgaaca tggtaaaatgtt gccttagaaac 105300
 tgagtaatgtt gtagaggccaa aaagaatttttggt gaggacactgtt cttagaaaaag ccttagaatgc 105360
 catgagtgaa ggtttaaagggtt tgattatgtt gaggccagg aaatgttaggg aaagtcgtt 105420

acttcttaaa gactacatgt gtggctatca tcaaagtgc ggtagaaaata gggtagcaa 105480
 aggccattct gaaaagatct caggtgaaac tgagaaacaa tgtactggaa actagagtaa 105540
 aggcacatctt ttttatacag tggcaaataa attggcagaa ttgtgtccat gtagcaggc 105600
 tctgtggaat acagaactta agagtggta gctagactat ctggaagaag aaatatctgc 105660
 gaagcaaaaa attaaaggta gtcacagct tatTTGGT gcttacagta aaatgagaga 105720
 agaaaagaaaa aaaagataga atttgaatg aaaaggaagc agcatgaagc gatttagaaa 105780
 actcttagcc tggccatgt aataataaaa aagcatgtt gggacagaat actaagaag 105840
 tggcatgt a ggatacagta aattcctctt caaagtttag cctgttaact tcaagaagga 105900
 gaaaattgt taagtacaaa gagttctgag ttccactca aagaaccaat caatatgtca 105960
 gtatgttag ctcccgtt cttgttctc catTTAAAG tttaacctcc tcgttctta 106020
 catctccttg cccctagtt cagtaaacaa cccccctcta gcctctatca cctgttctgt 106080
 ccttagtcat ctcagtcac ctgctctgtc cttagttatc tagtcatcta cactgtacc 106140
 gtcctcccg ccgaaactac tcacccgtcc actctggc atacccctgc tctctttaaa 106200
 atagccagtc agaattagct tagactgtgt ggtccaaccc cagccaatag gggaaagaca 106260
 gcagtaggga ctagctgtt taggataagc acctctccc cttccctgtc cggtgtgctc 106320
 tcgccatcgc tccatcctt agatgcaccc ttctatagaa gtaaattgcc ttggtgagaa 106380
 aactttgcc tgagtgttag tttcaactttg tagcacccaa catttacttc caacaatcat 106440
 ttgctacaga gatgaacata aatagaagga atccaggtt gatttatcaa gacaatggaa 106500
 ggtatgaccct gaaagcattt caaagatctt gtggaaaagc tggattttt agggcaaaaga 106560
 atccagagag atacataaat atatgttag tttttaactg gaagttagct gggatgtact 106620
 gtatgttagta caatcatata tttaacgtat gtggaaactg aaatagggtg actagctaa 106680
 aactaatggc ctagctgtg aaaacaggat ttctcgctc aaaaaaaaaa aaaaaaaaaa 106740
 aaacagggtt ttcagtaga actaaactgc cttccctgg ttttatttct agttaaatgt 106800
 cgtaataaat ttaccagata ttgcttccgt gtacctggaa agcatagaca ttttGattca 106860
 ttgtaatcaa tgTTTAATCA tgaaattaga tgaataaca gcaagtgaag catgttagt 106920
 catgttagt gctagagaga ggagattcat agtcaaagct gcttcttct ctcagtggc 106980
 tcactcaaca gtttttggaa tttgagaaaa ttgaattttc ttcttaaggc tcagttctt 107040
 caatatataa tgggtctaattt aatattttt tcataattttt aatatttaca taaaattata 107100
 cataaaaaagt tctgtacattt gaatttataa aaactttttt ttttaagtat acttaattac 107160
 cccaaattttt aacatctgt a tgggtacat catggcttag gaaaataaaag aataaaaaa 107220
 attatcctaa tcatttgcac tctagatttc ttcaatttata ttcatattttt cttggacttt 107280
 tctacaaaca aagcaacaca aaataaaacaa agaaaaagaa ggggagcaaa aataccctat 107340
 gactttttt ttttttcaa atgaatgtat gtcaccgtat gatataccgt gtggtagaac 107400
 atgttttgc tgcatttagt gccaagtga aagagttagt aaggttgc ttttgagtg 107460
 cagttcttc tggcaagtaa tggagggagt gaggttagaac gatgcccagt gatacacgat 107520
 aagaataaag taaagtctt accaagagat gtggaaaagaa ggacacagaa gagatgtaa 107580
 gccattttaa aatccatgtt caacatcaact gagctgtctt cagggaacat ttaattggca 107640
 gaaatgactg ctttttggt atttctttt aatgcaacag gggaaaggag tcaactttat 107700
 aaacacaaggc aaaccttcc ttatttataa tctctgaagg cccattgggtt ttctgttctc 107760
 ttataggtt gggctgtcta tttgtgtgt tttgttagga actagacaaa gtgtgtctat 107820
 ttatatttag aagccaaata ctatttcaat agaaaatgtat catgatttata aatagttaaa 107880
 taacttcata ggagtatggg tggttatata ggtatcaatg cacacaatct gagaatttgt 107940
 atttggctca actactgaac aaatggact aagaaagtaa aatttcttgc aatggcttta 108000
 tttgcctcac atgttgcag atctttacat agattataac tttaatctt caaaagatat 108060
 tccttcacaca acattttgaa gtgagaaaac taaagctcaa aaaagttatg taagctgtct 108120
 acaatttgtat agctaacatg cagcatagtt gtaattttt aagtcaataa aggcaagttc 108180
 caaaaactttt gagttgttt tggagatga ataccagtac taaggatgtt gggaaacattt 108240
 tagcacaaaa taattttat gttttggaaa gtacaaatgt acatggcaga ctatttctaa 108300
 ggaagggtggg atgtaaaggta aggacatgaa tatatagaag agtgcagat gatgtccag 108360
 ttttctccag aaaaaaagat gaagaaaaga ttgcaaaagca tctaactacc caatccat 108420
 gaaaacatata gcatgcacac tggaaataatt aaaaactaca tttgttatgca tgcattgc 108480
 tacacatgtg ttttattat atgtctatgt gtatacatac aatatacata gtcaggggaga 108540
 ctttatatac atagtcaaggga gaagagagag agaggtaaa tcaccatct tctaaagata 108600
 atagttctta ttacatgtt acgcttttag ttcgtcaaag caccttaatg ttttactag 108660
 gcaaagggtgg agctagatgtt gatTTGAGA ttaggagacc cccaaagggtg aagaacttag 108720
 aataaaaaata tagaaaaaaa tacagttttt gaggtcattt tagaagagaa ggaaggagag 108780
 gtgagaaaata ggaggggagt agaattaaga gaaaccaggg aggtatcatg aattgggtta 108840
 agtgctgtaa aataaccgtt gacaaatctt ctatgattag gcaacaggta gaaaattgt 108900
 gaaatataat agatttaatg ttttattttt aatttttattt ctcttttgc acaaataatct 108960
 atcttctact tgccttccac agatgtgca tttatctgt gtctgtgtt ttgcataactt 109020
 gtaaaacatta cagatttcta aatggcgtgg aatagatagg agtttaaga tgattttgaa 109080
 agtctcaag ttgctgacat caggattatc taagcattat ctttacattt tataagtcat 109140
 accatagtc accatagtc ttgaatataa tctctcacag attaatttaa ttctactaa taacaatcac 109200

ttcatatgtt ttcatcttat atagcagtca agtttacaat aatcttatta agcacccaacc 109260
 ttaagagtat ttatattatg tagataacgg attaaattcc tatgagaaca aaacaaaata 109320
 acagttaaac aaattagaag tttatctc attatgtaa aattctgagc tagtatgtca 109380
 tatcagctct gccaagggtt taggagctcc aactaattt ctcttcctt tctgccttct 109440
 ataaagagtt actctcatct atatgattca ggatggctca gcactatac cacattacag 109500
 ccagttagag gcagaaaaga agaagggaag ggc当地ctg tttatcaat ggatggataa 109560
 aagtagctt atttctttt attacattct cttggccaga agtaccctt ttgc当地tagc 109620
 aaatctaatt ttagaattttt aaaaaaagga aattctggtc attttgc当地 tggttctt 109680
 ggctttgttt tttaaaattt attaactta ttatatttta agagctgtcc cataattatc 109740
 agtctggct ctgaggagca aatacttac ctggtaagg gaaaggtaact agtcttagt 109800
 gcaggctcg gctctgtcaa atctgtctgt tgtctgatg tctggatgat cacttagcca 109860
 tctaatcaact tcgctatgca tgctcgtat gcacaaaatat agacagacat gttggacaaa 109920
 gtcatttcca tgc当地taattt caggctgtc gtc当地aaaaa attacctact ctgaagttta 109980
 tgaatttac tagaaggcatg ttagtagaca ttttggaaaat ttttctgtaa aattttcaat 110040
 tggatccctc ctcaaattttt tatctttt tttccccaa aagtagcagc tagtctaaat 110100
 tagcatattt tggatgtc当地 ataaagaatg agctaaaatg ttttttagt tttttactac 110160
 ctatccttat aacaggaacc taagggattt tatctgacat ggc当地ggaa aattaactgt 110220
 aatcagaaaa agaatgtcag gtaccagggtt ctcaacttac agttaagtt gataacttat 110280
 agctaagttt tctaaacaat taatttacaa aagtctgag tatttcttgc当地 tttattagca 110340
 ctatgtggcaa aatctgagca ataaagatgt gagataaaaa agcaaaaatgt aaaaaaaaaat 110400
 agacacagta gaaatgaata tgtagtaagaa attaagtgac ataaaccgaa aagatttagac 110460
 cctgtttcaa ttaatctact atctctgtc ttc当地tgc当地 caaaaacaaaat ttagaaaaac 110520
 tgc当地aggag caatgc当地 caatgttca agaaaaatata aaaatgtttt ccctttagaa 110580
 aatatctact aatccaaacat tctc当地ttcc cactgaagga aattatgaga agaaactgt 110640
 cattggtgac tgagttcatt ctctgggac tggccatca cgggaaatca cagatttcc 110700
 tcttcacgct gtttctc当地 attacatgg tcaagggtgc agaaaaatctt ggc当地tattg 110760
 ccctcatcca ggccaaacgcc cc当地tccac acgccc当地tgtt accttttcc gagcaactta 110820
 tc当地ttgtgg atctgtctt ctcttccat gtgactccaa ggtatgtggat gatttccctt 110880
 tcaagagaaga aaagcatttc ctatcctgac cgtcttgc当地 agtggatcctt tttatcacc 110940
 ttggccacg ttgagctcta catcctggcgt gtatgtggc ttgaccggta catggccatc 111000
 tgc当地accctc tgctttatgg cagc当地atg tccaaggagcg tttatgtttt cctcatcaca 111060
 gtgctttatg tttatgtggc actctactggc ctatgtggat cttatgtggac ctacaaccta 111120
 gc当地tctgtg gccccagtgaa aattaatcac ttctactgtg tggacccacc actgattaag 111180
 ctggcttggc ctgacaccta caacaaggag gtgtcaatgt ttgttgc当地 tggatc当地 111240
 ttcaatttac ctctc当地tattt catccttatttccat acatatttcc tggccacccta 111300
 agatctgtt ctacagaagg caggcacaaa gtttttctt cctgtggc当地 cc当地tgc当地 111360
 gccgatcttatttcc agtcttttcc ttcatgttcc tcaagatgtcc atcagaagag 111420
 tccatgggagc agggggaaaat ggtatgttca tttataccat cttatgttccat catgttgaat 111480
 cccatgtatc acagtctgag gaacaaaatgtt gtttttgc当地 cccataccctt aaagtaagaa 111540
 aaaagaaaaat ttttttctt当地 ataaacatca ctactgtt tttatgttccat tttatgtt 111600
 ttaccctatg attttccat gacatgttcc tttatgttccat tttatgttccat tttatgtt 111660
 tc当地ttagt gtttttgc当地 tttatgttccat tttatgttccat tttatgttccat tttatgtt 111720
 tcaatttaca ggaatttttca attcaatata gtttttgc当地 cccataccctt aaagtaagaa 111780
 gctctatagt gaagaatcaa tttatgttccat tttatgttccat tttatgttccat tttatgtt 111840
 aaatcctt当地 aaccagaccc gtttttctt当地 tttatgttccat tttatgttccat tttatgtt 111900
 ctgttccat aacatatttcc agtcttttcc tttatgttccat tttatgttccat tttatgttccat tttatgtt 111960
 caaaaagaaaaat acagcatctc actccatcac ccaggatgttcc tttatgttcc tttatgttcc tttatgtt 112020
 cacagcttac tgcaatctt当地 atctctgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112080
 cctctgccat agtagttggg actacagggtt tacaccatgttcc tttatgttcc tttatgttcc tttatgtt 112140
 ttttttgc当地 agagacgggat tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112200
 cc当地ttagt acctgttcc gtttttgc当地 tttatgttcc tttatgttcc tttatgttcc tttatgtt 112260
 cccagctt当地 tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112320
 tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112380
 catccctt当地 acactcagct gtc当地tgc当地 ctgttcc tttatgttcc tttatgttcc tttatgtt 112440
 cc当地ttagt acctgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112500
 catacctt当地 tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112560
 ttgatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112620
 gcatgtctt当地 aaccacatca accaaaaagg tttatgttcc tttatgttcc tttatgttcc tttatgtt 112680
 cacagatccatgatca ctgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112740
 ggc当地ttagt tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112800
 agagactaat gatgaggtgtt gtc当地tgc当地 agaaaatttgc当地 acacagatgc cctcatgaaa 112860
 ttccgattat tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112920
 agatgaaac tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgttcc tttatgtt 112980

aattttatgac aataattaat gctcatgtta agtcagcatt tatatttata ctgctttgat 113040
gggcttatcaa atctcaagct aaataatgaa gaacataaaag aggcccagg tagaagaagc 113100
ttcatgacac tggaaaataagc aaacataaaac ataagtccaga gaatgggtta tcaaccactg 113160
agacttcaaa gataggccac tgaaaaagtt ctaattcaca gaaattttcc aggaaaataa 113220
gaaataaaaa gcacaaatga atatctttaa ttatatttcag atattaggat tacttgatgc 113280
aaattgtaaa ataaagatata ttaatcattg aaaataaaatg tgaaaattta aactctaaga 113340
ccatgttatat atgtgtgtac atatgtatgt gtacatataat atatgcaaag actgattata 113400
gaaaccataa attatatata atatgttagag ttccaagcat atctgcaggc tgaaggagag 113460
tctctgttt ttataggcat tgaaggcattt ttagagtgga taggcaggta tataaatttt 113520
cacattgaaa ggaagaggaa gaaacagcta agtccctctc atgaggctt aagtggctt 113580
ggagagtcag ctttcttctt ctttcttctt agtaaatttc atgcagaccc tggcagccta 113640
atcaactacaa tcctgcatca gtgagtctc tgaactggca ccatagttca ctaggaaagg 113700
cactcatcca ccaagttcag agaggtggcc atccgcattt gacattggcc ttgtctataag 113760
attcaactttg tcatctgcct aggattttgt gctgtcttca atagcctcat aaactgcctg 113820
aaaggcccta ttctttcaaa attgacctgc ctcaaatttt agtgcatttt ttctccatgt 113880
cagaaataaa atatttcagg ttgtgtgaca gaagtttccg gtctcttcag ttcttcaatc 113940
cattgcatgt ataagtctaa ccctttagga ctatctcctt agtaggcagg tgctggcatc 114000
tgtgaggctc tgatacaag cagcccttagc acatccttac 114060
ttcagcatct acagggttaac ggaaaacagc tttcaaatat ctttcacaaa tcacaagaga 114120
aaccacaaca cagagtacag ttaagatata accctgtctt ggtttaatag gagttggtag 114180
ggccagatct tccaataactg gtcactttc aaagggatg ttccagctt ttgcccattt 114240
tttgtcataa atagctctt agtttcagc atgaagggggt gataatcatg tggattttgt 114300
gataatcatg tggattttgt ggttatgtt agtgcattttt ttttttgcc tgattgcct 114360
gggtatgtta agttagcctt ttathtttagt atacattcca tcaataccta gtttatttag 114420
ctttttgtatg tgctgttggc gttgaatttc atagaacgcc cattcgctt gtttatgtga 114480
tttcacttccaa agctttagga tttttttttt gttttttttt catctattga 114540
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 114600
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 114660
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 114720
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 114780
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 114840
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 114900
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 114960
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115020
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115080
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115140
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115200
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115260
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115320
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115380
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115440
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115500
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115560
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115620
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115680
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115740
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115800
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115860
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115920
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 115980
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116040
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116100
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116160
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116220
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116280
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116340
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116400
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116460
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116520
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116580
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116640
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116700
tttgcatttccaa atgatgtttt gttttttttt tttttttttt tttttttttt 116760

tgttctcaact tataagtggg tggtaacaat gagaacacat ggacacagga agggaaatat 116820
cacaccaccag ggcttgcag gggttcgggg gctaggaaag ggatagcact aggagaaaata 116880
cttaatgttag attacagggtt gatgggtgca gcaaaccacc atagcacata tatacctatg 116940
taacaaacacct gcagggtctg cacatgtatc ccagaactta aagtgtataa aaacaaatgt 117000
atgtcacccctt gttaaaaaac agatagtaga aaaaccagca aatgagaac ttggctata 117060
taaaaatgtta ttcaaaagaac caagtaacat atgactttgt gctaacttt aataatcatt 117120
agggaaagtac acattacaat tacaagatat ttgtgtttt atataatctgt accttatatgt 117180
tgcttaaatga caaaaagaaa aaaatgatat tgcttaagtac ttggggact atggaacaat 117240
tgaatctctc acataatgtt agtgagaata caaatggata caaccagttt gaaaaactat 117300
taggcagcat aaatthaagc tggacatatt tatactccat aagccagcac ttctactcat 117360
agttacagca gtcagacatg catgaatatg ttcatgaaga gatatgcaca agactgaatt 117420
ttgttaatagc cacatcttga aataacctat atataaagtt ttgtgtactt attatacagc 117480
agtgcagatg aaggaattat ttacatattc attcacactca tcatacatgaa taaaatcac 117540
caacataataa tttagcacca atgtgtt cattggagac tagacctaacc aaaaatatgca 117600
ctgtataatt tctattacag aaaattcaaa accagacaca attaactac agtgttaaaa 117660
gc当地agat agttaatttg aggttactga cttaggaaagg gcatgaagac agatggtgaa 117720
gtactggtaa tcttctattt gagaatttag aagcaagtaa tacaagtatg ttcaactttgt 117780
aaaaattcat gaagcaggcc gggcacggtg gtcgtgcct gtaatcccag gactttggga 117840
ggccgaggca ggtgaatcac gaggtcagga gtttagagacc atccctggcca gcacagtgaa 117900
accctgtctc tactaaaaat acaaaaaatt agccaggcgt ttggccggc acccgttagtc 117960
ccagctacta gggaggctga ggcaggagaa tggcatgaa ccggaggcgg agcttgcagt 118020
gagccgagat cccaccactg cactccagcc tggcaacag agcgacactc tgactcaaaa 118080
aaaaaaaaaaa aatcataatt catgaagctg tacacttacg ttttgcattt attatttgc 118140
tgtaaatttag acttcaatatt aagcttact aaaaacgaat aaaaatagta cttagtctca 118200
agcaagcaaa gcttcattcc aatatcaaag cattctattt acctatcagt acacagaggg 118260
tattagtttgc ttagggctgc cacaataaag taccatgaa ttgggtactt aacatgcag 118320
atttatttcc tcacagtctt agaggctaga agtccaagat caagggtgtt gaaaaattgg 118380
tttcattctg agttctctt ctggctgtg gatgatcattt ttatccgc ctctttacac 118440
tttatttttc tgggtgtatc tggattctaa tctcttctta taaggatgca agttatattt 118500
gattaggcga cagctcaccc attaggtttt attttactaa atgttctt tagatattgt 118560
gtctccaaaca gtcatgctct gtgggtctt gaggtagaaat ttcagcatat gaaaaatttgg 118620
gagggaggga aggggcacaa tccagttccat aacacagat aagaaacgtg aaggctaat 118680
agaagttga cacaagttt gtgacactag tacgagagaa actgtatcag aaaaatggaa 118740
ttaagttgaa agtaacatgg taaacctaag gcaatgtgaa aatccatggc agacatgaat 118800
gttatcttat ggattttcca atgtaagaag gaaaatactg agaataaac ataaaggcaga 118860
gaaggaccag aggtgttga gttccattt taaaatttgc ttgtgccaaa tgtcatatct 118920
cttagagaaat tattcagtga gaaaaaaat ctgacagagttt aattgttca ttttgcata 118980
tctgtgaat cccttaggga aataaaatgtca tcatacaaat attataaattt attcctgtat 119040
ttgtcaccag aaaagccatt tgatattctt tgaaggata gctctccct tattcataaa 119100
taagttctg catgttttgc taatcttgc acacttgc tacaatcata tggatatttca 119160
gagtttaga tatgattttgc atgattaaat gacttaggtat aatgttca ttttgcata 119220
agaaaaaatgt agacacttag catttaaggt acttttattt gttaaagtct tgaataatg 119280
ggatggaaatgtaatggcata aaaatataag aggcatgctc taggatctt cactcaat 119340
aaatgaaagc taatattttat taagggtttg ccacacattt ggcacagtgc tatgcataat 119400
acataccccca ttttgcataa tccgaaaaat agtgcattttg tatttgcata ttttgcata 119460
aatagaaaaaa aattatagtc cagaattatt aagaaacatg acccagacta cttagatcag 119520
aagttctgac atcagaatgt gaactcaacc agtcgactcc caaacgtatg tttctaccag 119580
tacagtatgc ttatgggtt gtagtggaaat ttctttctgt actaaccatg agggaaatat 119640
gttattatcc atatcttata taggaaaaat gtcatagaat ttgtttgagg gttgaatgt 119700
ttaaaaacttataaaatagat tagtgtttgg cttataagaa acaccatgtta agtgcgtgg 119760
aaatttagtgg taaaactaaa acacagaata aggaacatgt caaaagaaca gggcggcatt 119820
tcagaatataat ctaactccat atcctgtgaa ttgatttat gctaaggcta tcataat 119880
atcaaggcat tcatacttgc gttggctca gtcctaaaac ttaagaatgt caaccggatg 119940
tgtgcatttgc tcaaatacac aaagttggc actttaaata tatgaatttc actgtatata 120000
aattatgtca taaaacaat taaacattaa acaaagaaac aaaggtgaaa tctgacaga 120060
gcttgatataat taaaatgaa tgaaggatg tagggaaaag aaagagagat cagactgtt 120120
ctgtgtctgt gtagaaagga aagacataag agactccattt ttgaaaaaga cctgtactt 120180
aaacaattgc ttgtctgaga ttgtgttaat ttgttagctt gccccagcca ctttgacc 120240
accacttgc cccaaacctgg agtcacaaa aacatgtt gtagtggaaatc aaggtttaag 120300
tgatctaggg ctgtgcagga catgccttgc taacaaaat tttacaagca gtatacat 120360
gtaaaagtca tcgcattct ctgtcttgc taaaaccaggaa gcacaatgca ctgtggaaag 120420
ccgcaggggac ctctggccctt gaaagcggag tattgtccaa gttttctccc catgtgatag 120480
tctgaaatat ggtctgaaac caggggcaca ttgcactgc gaaagccgta gggacactctg 120540

cccttggaaag cggggatttg tccaaagggtt ctccccatgt gatagtctga aatatggcct 120600
tgtggcatga gaaagacctg accatcccc agcccacac ccgtaaaggg tctgtatga 120660
ggaggattag taaaagagga aagcctttg cagttgagat agaggaaggc cactgtctcc 120720
tgcctgcccc tggggactga atgtctcggt ataaaacccg atagtacatt tgtaaattc 120780
ttagatcaga taaaactgc cctatggtgg gaggtgagac acgtttgcag caatgctgcc 120840
ttgttattct ttactccact gagatgtttg ggttggagaga aacataaaatc tggcttatgt 120900
gcatgtccag tcatagtacc ttcccttga cttattatg acatagattc tattgctcac 120960
atgttttttgc ctgacccctt tattatcacc ctggccctct actacattcc ttttgcgtga 121020
aataatgaag ataataatta ataaaaactg agggaaactca gaggctggtg caggctcttg 121080
atatgcttag tgccggccccat ctggggccat tggttttct ctgtactttg tctctgtgtc 121140
ttatccctt tctcagtctt tcattccacc caactagaaa taccacagg tggggagggg 121200
caggccaccc cttcaaaaggc acatcaactac tatgattgaa tagatgtaga cacagcttt 121260
actcgatgtt gtataaatca caaataaaat ctttgcgttca gatattcaaa aataaccccttc 121320
tataagatgt tcttgcgtat atagatgatt tttatataaga aaaatagaag gtacatttca 121380
ttaatatccat gtttaacagt ttttgcgtt gtttgcgtat acagaacaca gctctggta 121440
tgctaagcaa aaccggaaaca ttctgaaagg atgttagggc tccttaaatca atgtgcgggt 121500
aaaagaccag gcttagagaa cagatagcag ccttaggcagg tcttgcacac atcagcctga 121560
aaccacacag aatcagtgtt gaatttagat aacttgcgttcaact tgtagtcttta 121620
gagaggctag catctgaccc ctgcttaaagc ttgttgcgttcaact tgtagtcttta 121680
ggaaaactaga agtggaaatggc caagaggaca gaatttccat gactctcaac ttgacacatt 121740
ggaaaatttc ctccaaaaaa ttcaagtgga gtgttataatggc ttcaagtgga gtgttataatgg 121800
aaccctcgaa acgcaaatat gtagatatt ttcaaaataaa ggggaacaaa tcataccctg 121860
cctggaaaat ctctatttgc ttgagtctgg aggaagaaga aagcaacaag tgagccccgc 121920
ttgtttgcctc aggcttctcc agatcattca gtcaatatttgc aagaggggat tgaactggtg 121980
tctgcagaa ttataatccat ttctttgata tcttgcgttcaataatggc ttcaatgtt atgttttggg 122040
gcaagtccac ctataaaagta aaagaagaga agaagaatag aatcttgcgttcaataatggc 122100
agggacataa aacaagaaaa tatccctact ttagttacc gaataaaagaa atttgcgttcaataatggc 122160
aaaaagaggg gaaaactttt catttctcaaaatataaaagag aagcagaagc tgaatttagaa 122220
tcatgttgcatttgc atttgcgttcaataatggc taaaaggca gttcaatggc ttcaatgtt atgttttggg 122280
aattatgaga aggaacttca ccaggaatttca agatcatttgc tggtaaaag ttcatttagaa 122340
ccatccatttca agatttgcgttcaataatggc tggtaaaag ttcatttagaa 122400
agggaaatctt agcatgatttgc ccttgcgttcaataatggc ggttaaaag ttcatttagaa 122460
cttttccgtt accacttat gatgttgcatttgc tggtaaaag ttcatttagaa 122520
gatgttgcatttgc atttgcgttcaataatggc ccttgcgttcaataatggc tggtaaaag ttcatttagaa 122580
gtgttacctt tatacatct tggtaaaag ttcatttagaa 122640
tgacttagac atgcccatttgc ctttgcgttcaataatggc tggtaaaag ttcatttagaa 122700
gtgttccctt ctatcaacgg catgttggacc tacaaccttag ctttgcgttcaataatggc tggtaaaag ttcatttagaa 122760
agaccctcca ctgatcaacgg tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 122820
tggcttgcgttcaataatggc tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 122880
catttttctt gctatcttgc tggtaaaag ttcatttagaa 122940
ctgtggctcc catctgacag ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123000
cagacccatcca tcagaagagt tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 123060
tgtgtatcccc atgtaatcc tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 123120
ttatccaaag aactgttcaaa tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 123180
gtcatgttgtt cattttattt ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123240
tatccaaat tatacatctt ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123300
gaaatatcg tatttacatc ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123360
cataccccaat agtaaaaattt ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123420
ttgttatttgc gaaaataaaaa ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123480
aggcatatag tttttaactgc ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123540
agcatctcac tccatcaccc ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123600
caacccatcca ctcaagggtt ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123660
tagctggac tacaggtgtg ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123720
cggggtttca tcatgttgc ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123780
cctggccctc caaaagaggtt ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123840
ggtttaaaaa agagcacttc tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 123900
aagtcaagcat tccactttac ctttgcgttcaataatggc tggtaaaag ttcatttagaa 123960
cagttgtcat ctcaagctgtt ctttgcgttcaataatggc tggtaaaag ttcatttagaa 124020
ccatgttgcgttcaataatggc tggtaaaag ttcatttagaa 124080
cgttgcgttcaataatggc tggtaaaag ttcatttagaa 124140
ttttgcgttcaataatggc tggtaaaag ttcatttagaa 124200
catctccacgc cttaaaacatcca tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 124260
catctccacgc cttaaaacatcca tggcttgcgttcaataatggc tggtaaaag ttcatttagaa 124320

ccaatgcctt ggtccacagt gaggcacact tatgtttcca cagtcacatat ctggtttatt 124380
 tcttggctt tttaggaaaa aataaatgac cagtaggatt ctaaattgaa tggttacctaa 124440
 aagtctgtct aaggagaccc aaggctaaca gataatctgt tcaatgcac tctaaaacca 124500
 catcaaccca aaaggtataa catgtggttg taatgtatctt gaagatgtgt gttttgggt 124560
 gtggaggcct atagttcccc tagaggtaac cttagaactt agatataatc acataacaagg 124620
 aagacgagag actaatgtg aggtgtgtgc aaggtgagaa attagaacag agatgccctc 124680
 aggaaattcg gattattgaa gggctgcaac ctctagagta ggacagatc aacaacagca 124740
 acaacaagga tgaaactagt ccgttttaggc ttgtttcat ggaggagttt aaaagtctta 124800
 tttaagaatt tatgacaata gattaacggt catattaatt cagcgtttat atttacactg 124860
 ctttgatggg ctatcaaattc tgaagctaaa aaaacatgaa ataggcccgg cgtggggct 124920
 cacacctgaa atcccagcac ttggggaggc ccaggcggtt ggatcacgag gtcaggagat 124980
 tgagaccatc tgcctaacac ggtgaaaccc cgtctctact aagagtacaa aaaatcagca 125040
 gggcgtggg gcgccgcgcg gtatgttttag tggagatga gccactgcac tccagcctgg 125100
 ctgaacttgg gaggcgcagc ttgcagttagt gtagactctgt ctcaaaacaa acataaaacaa 125160
 gtgacagaag gagactctgt ctcaaaacaa cataaaagagg cccaggttag aagaaacctc 125220
 aaaacaaaaaa caagcaaaca aaaacaaaaaa agtcagagaa tgaatttatca actactcaga 125280
 atgacactgg aataagcaaataaaacata attgacagac attttccagg aaaataagaa 125340
 cttcaaagat atcccgcaga taagttcta ataaacaaacaa attacagata ttaggattac ttgatgcaaa 125400
 ataaacaaacaa caaatgaata atcattgaaa taagtgtgaa aattaaaatt cgaagaccat 125520
 ttataaaaata aagatattt atcattgaaa atatatatgc aaagactgtat tatataaaagc 125580
 atatatgtgt gtatataatgt agagttccga gcatatctgc agggcgaagg agagactctg 125640
 aataattata tataatatgtt gcatggatcattttttatg ttctcagcac ctttatttat 125700
 tgttttatag gcattgaagc attttacatt ttatgttattt tattgatcat tcttgggtgt ttctcgaaga gggggatttg 125760
 ttatgttattt ttatgttattt tattgatcat gtcagcagat aaacatgtga acaagggtct 125820
 gcagggtcat aggacaatag tggagggaaag cttccgcgtt gtttgttcc ctgggtactt 125880
 ctgggttcc taggcagagg accctgcggc gagatgggg agtgggtatg actcttaacg agcatgtc cttcaagcat ctgtttaaca 125940
 ttatgttattt ttatgttattt tattgatcat aagcacatct tgcacccgccc ttaatccatt taaccctgag tggacacagc acatgttca 126000
 gagagcacgg ggttgggggt aaggttataag attaacagca tcccaaggca gaagaatttt 126060
 tcttagtaca gaacaaaatg gagtctccta caatctgatt tctctttctt ttccccacat tttttttatg tcttacacaca gacacagtaa 126120
 tcgtcatcat gggccatttc caatgagctg ttgggtacac ctcccagacg ggggtggcggc 126180
 cggcagagg ggctcctcac ttcccagacg gggggccgg gcagaggcgc ccccccacctc 126240
 ccggcgggggg tggctgctgg gcgggggctg gggctgcccc ccacccccc ttggccgggc aggggtctgac ccccacctcc 126300
 gggccgggtag gggctgcccc ccacccccc tggcccccac ccacccccc gacggggcag cctcaacttcc cggatggggc ggctgcagg 126360
 tggacagggc ggctgctggg tggagacacg cggaggggct cctcaacttcc cggagggggct cctcaacttcc 126420
 cggaggggct cctcaacttcc cagacgtggc cagatgtggc ggcggccatg cggaggagct ggtcgggcag agacactctt cacttccatg 126480
 cagatgtggc ggcggccatg cggaggagct agacggctct cacctccatg acgggtggc cacttccatg actgggtggc cgacagagg 126540
 agacggctct cacctccatg acgggtggc acgggttcac ggctgcccgg cggaggggct cctcaacttcc 126600
 acggggtcgc ggccaagcag agggcgtctt ggctgcccgg cctcaacttcc cggaggggct cacttccatg getctcact tcccagacag 126660
 ggctcctcac atcccagacg atggggggcc ggttggggct gcaactttggg agggcaaggc aggcagctgg 126720
 ggtggcggt gggcagggc tgcaatctgg gaggtggagg ttgttagcaag ccgagatgac ggtcgggcag agacactctt cacttccatg 126780
 gcaactgagtg agtgagactc cgtctgcaat ggctgcccgg cggggccatc cggggggctg aggcggcag 126840
 atcactcgcg gtcaggagct ggagaccagg ggctcaatcc cggcactctg gcaacttggg agggcaaggc aggcagctgg 126900
 tacaaaaacc agtcagggtg gggggggcatg gcaacttggg ggttacagca gagaggctgc gcaacttggg gcaacttggg 126960
 gcaggagaat caggcaggga ggttgcgtt gggggccatc cggggccatc cggggggctg aggcggcag 127020
 cggctgggca tcagaggat accgtggaga gggggccatc cggggccatc cggggccatc cggggccatc cggggccatc 127080
 gtggagggag agggagggg agaccgtgg aacttggc tggggccatc cggggccatc cggggccatc cggggccatc cggggccatc 127140
 ttttagtgg attagtggat ataaaaattt tcacattgaa aggaagagga aacttggc tggggccatc cggggccatc cggggccatc 127200
 aagtccctct catgagactg tcttggagag ggttacagca gagaggctgc gcaacttggg gcaacttggg 127260
 ttccctctca gtaaaatttc tacagaccc tggggccatc cggggccatc cggggccatc cggggccatc cggggccatc 127320
 tgatgttctt gaaactggc catagttcac tggggccatc cggggccatc cggggccatc cggggccatc cggggccatc 127380
 gaggtggccca tccatgttc taaaacagaat aacttggc tggggccatc cggggccatc cggggccatc cggggccatc 127440
 acattggccct tgctatgca tagcatcata aacttggc tggggccatc cggggccatc cggggccatc cggggccatc 127500
 ggattttgtg ctgtctacaa gtggatattt tctccaccc tggggccatc cggggccatc cggggccatc cggggccatc 127560
 ttgaccacc tcaaaattcg gtttgcgtt gttatggcc actgcttata tggggccatc cggggccatc cggggccatc 127620
 tgggtgacag aagtcccaa tgctctgctt catgaagtttac cttttaggac tacctttgt 127680
 ctcttcagtt cttcaatcaa ctttttctgt aagttctgt gtggggatct gatataaaaca 127740
 gtaggcagct gctggcatcc agcccagagc cacccttcc agggccagga cacccttcc 127780
 gcacctctga ccagcaacct caatctggcc aacactttt tcagcatata caggtaaatc 127840
 tccatgggct tgatcagcac cttcacaaat cagaaaagaa accacaaccc agagtaaaga 128100

aaaaacaacc tttcaaggtt agtaaggcta ttgggtgggtg taaaatatac cccgggttaaa 128160
aaacaaacaa actgatagca gaaaaaaaaatg gaaaaaatatg aactggtgct atataaaaac 128220
atatttaaag accaagttaa ctatgtactt tggtctcaac ctgataata attagggaaag 128280
tgtacattac aagatatctg tatctttata tattctgtacc tatataatctg tgtctgtatg 128340
ttgcagaatg acagaaaaac tgatattgtt aagcattgga gagactgtgg aacaactgac 128400
cctctcatat aatgcttagt ggaatgcaaa tggatataaa cagtatggaa aactactagg 128460
cagcataaaat ttaagctgca catatttata ctccataaac caacactact gcccaaagta 128520
ctaacaggca gaaatacatg aatatgttcg tgaagagata tgcacaagat tgaattttgt 128580
aacagccaca cctgaaagta tcctatatgt gtatcaatag taggaaggat ttattaattt 128640
ttgtgtactt actatacagc cgtggagatg aaggaattat ttacatattc atgacactcc 128700
tcatttgaa taaaatcac caacataata ttagcacca atgtatgtt catttggaaagg 128760
ctagacctaa cagaatatgc actgtataat ttctattatg gaaaactcaa aagcagacac 128820
aattaatgtt cagtgttaaa agtgaagatg tagttaattt gaggtagtg actaggaaag 128880
ggcaagcaga gagatagtgc agtactgtt atgttctact tgaggattt gaggcaagta 128940
atacaagttat gttcactttt taaaattca tgaagctgta cgcc tacatttca ttgtcacac 129000
tttctgtgtg taaatttagac ttcaatataa aggttactaa aaacgaataa aaatagtact 129060
agacttcaag caagtaaagc ttcatccaa tataaagca ttctatttac ccatcagttac 129120
acagagggtt ttagttgtt agggctgcca caaaataagta ccatgaactt ggtacttaa 129180
acatgcagat ttatccctc acagttctag aggctagaag tccaagatca aggtgtggc 129240
aaaactggtt tcattcttag gtttttttct atcttggta tgatcatctt atccccac 129300
ctttacactt tcttttctg tcatatttga ttagggcaca gtcacccgc tagaccttat tcttcttata aggtgcaag 129360
cgatatctgt tcttcaacag aattttggag agtgaggggaa gaggcacaat ccagtccata tcttcttata aggtgcaag 129420
aatgctaata gaattttgac aaagttgaat taagttgaaa gtttcttata tcttcttata aggtgcaag 129480
gtcaggaatg ttattgtatg taaggcagag aaggaccaga gtttcttata tcttcttata aggtgcaag 129540
gtcatctctc tagagaaatt ttttgcataat ctgtgaaatc ctttagggaa ataaagtcat catacaaaata ttataaattt 129900
ttcctgtatt tgcaccaga aaagccattt atattcttt taaaatgttata taaaatgttata 129960
ttcataggtt agttctgca atgtatttc agagtttagat atatgattgt gatgattaaa taaaatgttata 130020
tgccaatttac cagaaaaatg ttgattaatg aggtgaaag taaaatgttata taaaatgttata 130080
tcactcaata taaatgaaag ctacatctcc attttggaa atcttttttata taaaatgttata 130140
ctacgcataat taaaatgttata taaaatgttata taaaatgttata 130200
atttcatcag taatagaaaa actcagatca gaatttctga gtttcttacca gtacagtatg gggcacatg 130260
ttgattaatg aggtgaaag taaaatgttata taaaatgttata taaaatgttata 130320
tcaaccatg taaaatgttata taaaatgttata taaaatgttata 130380
gagggaaata tgcattttat ggttgaatgt gtttttttata taaaatgttata taaaatgttata 130440
aagtgtgtt gtttttttata taaaatgttata taaaatgttata 130500
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130560
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130620
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130680
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130740
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130800
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130860
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130920
ttttttttata taaaatgttata taaaatgttata taaaatgttata 130980
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131040
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131100
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131160
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131220
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131280
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131340
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131400
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131460
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131520
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131580
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131640
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131700
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131760
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131820
ttttttttata taaaatgttata taaaatgttata taaaatgttata 131880

gagctggag gaataagaaa gcaacaaatg agcccaaccc gtttgctcag gcttctccag 131940
 gaaggatcg gattggtaaa aacttccac aaagaacaag atcctcgccc aaatattgt 132000
 ttttatact tgccctttc tctcttacg cgcattctc gcccagtatt ataatcgga 132060
 aaaagaaat tgcttagttc tgaatgttat gtttggggc aagtcaccc ataaagatca 132120
 tttctaaat aaaaggagag gcagaataag gggaggagaa acgagagaag aagaatagaa 132180
 aaacagaagc tgaatttgc gggagtgaaa agaaagaaaa tggaaagaaaa acaagaaaa 132240
 taaaggcag ttcataaaaa ggttagagac tgcttgcatt atccctaatt tagttaccc 132300
 gaaacaaat tcagtagaaa tagatgagg aaaactgcca aaaagagggg acgttttgg 132360
 taaaagatca ttactgtat agtataatc atgttgcatt tgatgttgcatt tccaatata 132420
 atgtaaatgt ccttcttcc accgaaggaa attatgagaa gaaactgcac gtttgtact 132480
 gagtcattc tcctggact gaccagtcg cgggaattac aaattctcct cttcacgctg 132540
 tttctggcca ttacatgtt cacgggtggca gggacccctg gcatgattgt cctcatccag 132600
 gccaacgcct ggctccacat gccccatgtac ttttccgtt gcaacttatac cttcggtt 132660
 ctgtgttct cttccatgt gactccaaag atgctggaga ttttcttcc agagaagaaa 132720
 agcatttctt atccctgcctg tcttgcgc tggttacccctt ttatcgccctt ggtccatgtt 132780
 gagatctaca tcctggctgt gatggccctt gaccggatca tggccatctg caaccctctg 132840
 ctttatggca gcagaatgtc caagagtgtg tgctccttcc tcatcacggc gccttatgtg 132900
 tatggagcgc tcactggct gatggagacc atgtggaccc acaacccatgc cttctgtggc 132960
 cccaatgaaa ttaatcattt ctactgtgcg gacccaccac tgattaaagct ggcttgcct 133020
 gacacccatca acaaggagtt gtcaatgttt attgtggctg gctggaccc ttcttttct 133080
 ctctcatca tatgtatttcc ctacccatc attttccctg ctatttaaa gattcgctct 133140
 acagagggca ggcaaaaagc ttttctacc tgggttccctt atctgacaggc tgcactata 133200
 ttctatgcctt cccttttctt catgtatctc agaccccccct caaaggaatc tggtaacag 133260
 ggtaaaatgg tagctgtatt ttataccaca gtaatccctt tgctgaacct tataatttt 133320
 agccttagaa ataaaaatgt aaaagaagca ttaatcaaag agctgtcaat gaagatatac 133380
 ttttctaaa aatcgttattt ctttggttt ctaaaggccctt tcctagactt ttttctttag 133440
 ctgagaaata tagtgcattca atggagaaca ttgcagttt caaaaacttta ttttatttt 133500
 ttttattttt atattttgcg atggagttt tctctgtctt aggctggagt gcagtgggt 133560
 gatctggct cactgcaacc tttccctcc ggggtcaagc aattctcctg cctcagccctc 133620
 ccgagtagct gggaaacacaa ggcacacca ccatggccga ctcattttt gtatttttagt 133680
 agagacaggg tttcaccatg ctggccaggc tcggccctcc aaagtgtctgg gattacacgc 133740
 atgaaacacc ggcggccatc taaaactttt attttctaaa attcaaatac gtacaatttt 133800
 gttcacaaaa gttttatgt tttaagttgt cattcatctt gttcagcgt tatttttagt 133860
 tctttgtctt cctgtgcacag aatggctttg tacctccatg cccttaggtt tagtaagat 133920
 catgtggcta tttctggaaatg atgagattaa aattcacata tgcacttct cagttgaata 133980
 cttaattgtat tgtagarca ttttgcgtt gatctgttgc ttttattttt tccatgggt 134040
 ccagcaagac ttaatatagt ggctgcccag tcaggagaca tggAACACTG ttctcatccg 134100
 actcacaatg gcaataaaaa acggctgata aataacgttt tcaatagctt ctatgatatg 134160
 tggagtttgc ttgtttccctt agcacaaaaat agcattttt gattgtatcc atattaatta 134220
 tacaaaattca cacaggctga attataat atagaatgag aacatcacaa accttgaaga 134280
 aatcacattt gagattttgt ttttgcgttgc tgtagtattt tttaatgtt ttacatatac 134340
 atgtgtgttc agttaaaattt atttattata attaccattt gaaacctactc atgatata 134400
 tatgtatgtt taaatgtcaa ataaatattac aagccatata taaaactctg tctcacttct 134460
 accttaccac taactccccca tagataatc tttctgttta tttcccttgg aaattaaccc 134520
 attttaattt atatgtttt attccctgtt actgattttt caaatatgca cataatttt 134580
 tgacatctgt ttataaaaga taaggtggca tcattttcc accaatactc tcatttttac 134640
 cctacaatga tcacttcc tcttcatttgc tcacagtagg atcacatttgc aatttttggc 134700
 ttaatcgat tctactgttta aaatttactat gaatgtatca ttaataatc ctgaaatgt 134760
 ctataatact ttgagcatca ctaacacttag tattaattt taataatatg aataactacta 134820
 tgattgtat tcttttttttgcgtt cagttactt ggttttcat aaagttgaca atggccctca 134880
 gttttgtctt tcttttttttgcgtt tagtagcttgc ttttcccttccaa actgtacta aactgtaaag 134940
 caccccttata gggtaaaaaa caatagatga tctatagttt ccatattttt ttctcagacg 135000
 ttctctgtcc tcccttgcgtt ttctcatttgc tttgcagacg tggttatttgc agataatgt 135060
 tccaaatccat ggttttgcgtt attccattca ttcaacttgc ttacatgaca atatgcaaca 135120
 aactggagat tcaacaaaaaa taagacagaa aaaagtttca aagagagttt tatggaaacag 135180
 ttaatgtact tttctgttgcgtt tatttttttgcgtt ggcacaaatgtt cagagataac taggtccatg 135240
 catgtttgtt ttttgcgttgc atgtcagaat tttcttgcgtt ctatttcaat cataaaatcc 135300
 atgagctaca tggggttccc gaggaggca ttctccattt aacttccctgt tcactcgt 135360
 gtcagagcca tggggcaaaaaa ggctcaagtc attcaacaaag tcagtcgtt ttgcagtc 135420
 tgaatttacat ttttgcgttgcgtt tatttttttgcgtt ggttatttgcgtt agataatgt 135480
 aaagtaacat ttatcatcaaa gaataaaaggg actggaaatgtt ggttatttgcgtt ccagtc 135540
 gagagtgaca tgaacaaaaaa gaatagccctt ctcaggccctt ggttatttgcgtt ccagtc 135600
 gtaaagaaga gttttcgttgcgtt tggccaaagc ttgcgttgcgtt aaatgcaaga tgcttgcgtt 135660

aagtgataac aagatgggt ctttaagggt ggctgttca agctgctgaa atcctgctct 135720
 tttatggaca cagagtccctc tagtaagaac tgatagtgga agagtgcattt tggttatgtcc 135780
 ttatctgggtt ggatgcagtc tttcttgatt aggcaaaaaca tctggccctt gttggcatga 135840
 tgcctttaaa aatgtaaat gaagtcattt tctaagatgg agtaacttat atcaatgggg 135900
 ctctatacta cgattcagcc ccagggttccc ttctacactt tcctttaccc ttaccatssc 135960
 agccttagct gaagagctgg gtgcagttgc tcatgtttgt aatcccagca ctttgggagg 136020
 ctgagggtggg tgaatcccca gaggtcgagg gttcgccact agcctggcca acatggtaaa 136080
 accctgtttc tactaaaaat acaaaaatta gctgagcatg ctgttgacca cctgtaatcc 136140
 cagctatttg ggaggctgg gcaggagcat tgcttgacca caggagacag aggttgcatg 136200
 gagccgagac cgcactgttgc ccctccagcc tgggcaacaa gagtgaattt cstatctcaag 136260
 aaaatagact tagtgaaga attatctt cctgcaaggt ttctttaaca cattcagat 136320
 gtgttagtgc aactgagaa tgatgagatt cataaaattt gaaaggtgga ctttctcata 136380
 aagggttggta gctgttaggg tgaccgttct gacaggctgt gaagcatatc ctccagctag 136440
 aagttggaaa gagacactt gacagtatga agagtaagac agggatttt gctgaatggg 136500
 atgaccaaattt atattacaca tatataaaaa tacatattca acaggctata gaaaaaaacta 136560
 tgaatattca caaagaagag gcacaggcat gaatagtagg ctaatataag caacatgcat 136620
 cccatgttcc ctttggatgt gggacttaac atttaatgt gtcattgatta gactctatgc 136680
 accaaaaagggt gaatcagaag acaccaagac cctctgtgca cagcctctgt tgactggcaa 136740
 gagccactag gttattgttgc gtctcttata aagaaggaat gctggtaat tgctgtttg 136800
 aaaccgcaaa aagagaagtc cagtgtcagg tgggttgcag atatcagtgg tggtgcgagt 136860
 ctcacaagggg cagggttctt ttaaccctt attgttagaa gcctaattgt gtttagcaag 136920
 ggaggggaga taacgaggca tgcgtatct cccatctgtc atggcaggaa ctcagattt 136980
 aaagtttttc tgaggttcc ttgaccaaga ggcagtctgt tcaattgatt caggggttag 137040
 gattttatcc ttatccatca tttaggtacca catgtatgatt caccacaga ttcacaatta 137100
 tattattgca ttccataacat ggttctataa ttatatgcat gtaatctgt tccttccact 137160
 atttttagcaa gttctcaaaag gaaaggacca catcttttg ttttatatt ttaccacct 137220
 taagatagtg ttctataaaag ggaggatgcc cattttttt ttgaaaactgt gagaacaatc 137280
 ccttccactt tctaccttgc tctgtatatt tggcaatta cagatttctc tccatgatac 137340
 tcgcttctcc catcctaaca tatattcaag gcagaacaat agatcattt gtttaagaaa 137400
 accatgttca agttctttt catabaatggc ccaactgaaag cccagcaacg tgaatcataa 137460
 ctgagcaaga attggagaaa gtaatttcat tggcagcaga caggaaagat cacatactac 137520
 atcctattct tcatagcaga gagacagata acaataatg ctgaaactaca gtaaaagatg 137580
 ttaagggaaa tatttgcgtt gaaataatct ttgttagcaat gtatttctt tgatatgca 137640
 tcataattat ccatagcatt tggaaaacaa ctgacaattt ttatccaccc tataatgtt 137700
 agttttgatc ttatagcaaa ggttataatg gaaaatcaa ccactgtgtt ataaaattat 137760
 tttaaaatga acagaattac actaggctgt ctgggacaga ggcaaggaa gggctgagtc 137820
 atgatattaa gtgcaggaaa caaaaggggac ctcatgttgc ctcagacaga aaagaggttt 137880
 ggtggaaatc agacaacagg tatatttgc gacaacgaaa tatccatcc ttgaaaagtt 137940
 acattcttgt gcatcactt ttcatagcc accgtctaa gatttgcctt atgtgataag 138000
 ctgatgataa aacatttct tcaagttgaa acagaataca gtttgcggaa aatatttgc 138060
 tttgtatcc ttccagaactt agcctgaaatc ctatgtttt tactattttt ttagctgggt 138120
 aaacttagag aagttccctc tccatatcag ttattcaaa tgcaaaaccc catttcatgg 138180
 agttattgtt aatatcaat attattttt atatacattt tcctcaattt cattttgagg 138240
 caagtatgtt gaggccatg gtggactcaa ttcatgaaa gtttttaac atgggaaaca 138300
 tgatcaaaatc aataagttt atatgttagt tattcatta tttaacatattt gattattgtc 138360
 cctgtcagtc acatttcatca ttggcagtc ccagtcttctt ctacctgtt cattgttct 138420
 tcatcagtct ttccctgtt tatttttca tctatctgtt tctaaaacat ttcatgtttt 138480
 ttccagaaat tatttgcattt tagtattttt tgtttacata tcttaggcattt cccatcaaaa 138540
 tgcaaattccc ttgttgcagg aaatcccttta aaaatatttt tattattcag attaaatagt 138600
 attgaagttt gtacttagt catattcttgc tgtaacttgc ataaaggaca aacaatggag 138660
 gaaatatggt agtgccttgc agatggaaag gacaattacc tgaattcagg ttcatgaga 138720
 agttaagtgtt cctcagacta tttaaaattt gtttttcaatg attgtataaa gtgcctaccc 138780
 cgtggataa cagggtatttgc ctttgagctc tactgaagta taaaatataag attttttctt 138840
 aacatcttgc ttcaagatataa aatgtacaa ccaatttagt ttcccttgc gatgttctc 138900
 cactgtgatt tcacttcttgc ttacacattt gggattctc ctgagatata 138960
 tgcgtatgcc agtgatgtgg gtatataatct tccagactg gccagaattt gaccttgg 139020
 gtcatggaaa agacaccctt atttcacag gtaagaaagg aaatgtttttt gcatattatt 139080
 tttcagtatcc taataatgttgc tgcatttgcattt ttgtttaattt gtcgttattt tagacagca 139140
 tgcgtttaaa taggtatgtt tgaggcaat ttgcacagac aatgcattttt ccatgaaaga 139200
 aaatctgttag ggagcttact tagtgcattt ttgcatttgcattt catttgcattt 139260
 gaaacatccc ggtggaaatccatgtatgg ctatccatgc agatgttttc actgttattt 139320
 gttcaagtttca atattatccc ttgttttgcattt gtcatttgcattt gtcactgtca 139380
 ccaatcgcca caagaaaaag gcaagttgaa aataattaa gtcatttgcattt cttatattat 139440

cacataaaaat tttctgacg tctaagtaaa ataaatgctc aaacaggcctt ttattgtga 139500
ccattaaaca tgtgtgaaag tggtccatta gcttcagtat gtggagctaa cgaacttggg 139560
tgtagtagatc ttaagttctc ttgggttctc trattttata agattctgg ttctttcca 139620
atgccctatt tttgtctaga gacctagtt tttacaagc aataacttgt cctcagttag 139680
acttttagtt tcagaatatt attttacttt ttcaacaaa atacttgaaa cataaatcag 139740
cctgattata atcaaattcag tctgattata atcaaattcag tctgattcta atcaaataac 139800
taacttgtgt caaggacctt aaacagtaag ttgatgaatg aaatttctcat acctatttt 139860
ctaggctgca caagtagtca cagaatcatt ctgggtcat tatcaaattc atcatcatca 139920
aagttattga ctgcattga atgttttt tgagtgttc ttgcctctca gcagcagtgg 139980
acagatttct catgggtctt atatctgtat attagctgtc tctgattgccc attgtcccg 140040
aatgctagaa taaaatatg gtaaygata atggctcaca ctaaaagtgc atgtccagat 140100
gaccagtgaa acctgagcaa atttgcacag ctcccttagag actaagttag gactaaaacc 140160
aagaccctgg attgaagaag ttgctcacca ccagagagtt aaaagaagcc ttgtgcctt 140220
ccttcttgcc aattaagttt caattcatag gcattattct agattctgg cccagatttt 140280
tcatatttt tacagtttcg gcactgatac ctgggtggc tcgcttctt ctccctcatc 140340
catctcttat cttgtttaga gtgcttgtca ctatcatctg taactcaaag acaactctaa 140400
ctcaaagtcc tcatttattc atattttttt cctgggacag gataaggagg caataatatt 140460
agataaattt aatttttaca ctttggaaac aatttctgtc attacccaac cagtcaatgg 140520
aaccaaagga agagatagac ctttctgggaa aagtaaaata ttacagaagg agagcaccgt 140580
tctgagaatt ataatatatg atttgcatttc tgattcttct gcttagttagt tgtaagctgg 140640
gaccagaatg tcaaattttc tgaccctgg tactcaccta actaaattta ttctactat 140700
attgtccact gctctatttc tagcatccag caccatgtct ggaacttggaa aaatgctcaa 140760
taattatctg ctataagcac gcatgcatac acaaattgcat ggctgacaac atattacaaa 140820
gtaaaatttagt gttttttaa ctataaaattt tcacttttaat aagagtttag caattgtt 140880
aagatctcat acaatttaat agaaaatatg tgcgtgatata tcttagatta ggtaaaaat 140940
aaagtgtac tcgtattgac ttccctgagac tgctcagaag agataagtttt tatcagctt 141000
tgacaagttc tccactaatg acatttgc tgcgtcttgcattt tgccccatgg aaaaaaattt 141060
gatgtaaattt tcattttacg caattgttag tatactgaaa ttgtttttaa caaaaatttt 141120
gagacagatt aacacatatg atatttttac ttaattttgat attttataat ttaarataaa 141180
tttgcataaa attcagtaaa tgcataatgt ctatataaaat tgtaagctac aaaaatataat 141240
gaatacacat taaaccactc cctagaatta taagtaattt ctgtgcattt tttaaagttt 141300
atgcacaattt taataattttt cccattttaa taatctataaa tccattaagg caatagtaaa 141360
tactaaaata gtcctctttt ccaaccctga tctggaaatgt catcttgcattt atatgccaca 141420
tcacctatat acatgttagct gtcctggac ttcttattctt ggaacatttag ttaaagtgt 141480
tatttttttcaatttcatg tcaataaacac actgtcctga atactggttt tacagcaaat 141540
cttgatatact aataagtaac tctgttattt gcccgtggag atatttgatc ttacggttat 141600
tttatacttc cgatataata tttagatcag ctattccaca agaattgtgt tgaaatttt 141660
attggaaattt atttgactct atgggtcact tagggaaagac tgacctttt atgctattgt 141720
atccctccct tagtgaacaa agaattcttc tccattttta gttcttctt tctctcttt 141780
ttctttctt tccttctt cctttctt cttttctt cttttctt cttttctt cttttctt 141840
ctttttctt ctttctt cttttctt cttttctt cttttctt cttttctt cttttctt 141900
ttctttctt ctggagacgaa ctctcgctc ttcttgcac ccaggctggat gtcagtgcc 141960
atgatctcag tgcactacaa cctctgcctc ctgtgttcaa gtgattctcc tgcctcagtc 142020
tcctgatgtat ctgggttac aggtgcacac ctccatcacct ggctgattttt ttttattttt 142080
agtagagaca gggtttcacc atgttggcca ggctggctc gaactcatga ccagaagtga 142140
tcaaccgtc ttggcctccc aaaatgctgg gattataggc ataaggccacc acatccaggg 142200
cattttaag gcttttaat gttgtgtggc aatggcatca aagtgtacatc ataattttt 142260
ctgggtatata tagcagggag taagtataga ttgagaacct gaaaacattt ttttaatcat 142320
cttagggta ttgagttat tccttttata ctaatggcta aactacacat cagggttaac 142380
ataatggagg aataggaaat tctttgatata aggacttctt tatacagaga tataaaagag 142440
catgtgagcc aagcagggga ctataatgtt ggttctatgc agcatgaatg ttgtaaaata 142500
gcaagaaattt aaaaatatgg aacaaattaa aacatagatt gataacctaa agataataca 142560
tatgaaattt catatagaat tgagatattg atgaaggagc ataaatacac ttgttttaacc 142620
caacagacag acaggctaaa ttggatgtg ccaaattggaa aaaatgctta taaacacgtg 142680
atatactatgt ttaagactca aacgaaaggc ttattttaca taagttccca aaaactaact 142740
tataaacaat gaaaccatatacataatcaca atgaaaagca ctactactaa aaacaacaaa 142800
atataaaaat acaccgagac agtaagttga actcgggttag atataatgtat tattagcaga 142860
tcaccgaatg gggatgtatg agataagcat ctcagtggga tttagtcaattt catctctctt 142920
ggattcagtc ttcagttctt cagaatgaag agctttgcctt gcattatctt ctaaagtccctt 142980
tctacccatc catgttagctt tgcgttata tgcgttgcattt tgcattttttt tttttttttt 143040
ttcaaaatctt ctattacaat ttaatcttta acatataatgtt tattttttttt tttttttttt 143100
atccctccaca gataaggat actttcgtttt ataaatttgc attaaggctc caacttaattt 143160
gcacactgtg attacaaattt cagcctcactt ggaaaccact tttttttttt tttttttttt 143220

gcttcatagt ataaactgttc atcttcagtt acagaactgc tactgagata acataactaa 143280
agccttttgg ctcttttat acaaaggcatg atatttaact agggtttttag tgatTTTaa 143340
aaagtttctc ttcttcctta gatattcaga ccaatgcgtc tcataatgaga tgaagaaatg 143400
tccagaagaa actatactga actgacagaaa tttttctct tgggtctaac aagccgtcca 143460
gagctgcgag ttgtttctt ggcactgttc cttttgtct acatagccac tgggttagga 143520
aacttgggg a tgattatTTT aatcaaagtt gattctcgac ttcacactcc catgtatTTT 143580
tttctctcca gtttgcatt tctagatctg ttttctcca caaatttac tccaaaaatg 143640
ctagaaaatt tcttatcaga gaagaagacc atttcctatg cagggtgtt gatgcagtgc 143700
tatgttgca ttgtgttgt cttgcagag cactgcgtt ggcagtcat ggcataatgac 143760
cgctatatgg ccattgtaa tccattgtct tacagtagca aaatgtccc aggtgtttgt 143820
gtccacctgg tcattgtccc ttatgtctat ggctttcttc tcagtgatgat gaaacacctt 143880
aggacctaca acctctcctt ctgtggaaaca aatgaaatca accatttcta ctgtgctgat 143940
ccttccttta tcaaactggc atgctctgac acgtacagca aggagctgtc catgtacata 144000
gtagccggtt acagcaacgt ccagtctttt ctratcattc tcacatctta catgttcatc 144060
cttgcgcta tcctcagaag ccattctgca gagggaaagga aaaaagcttt ttccacatgt 144120
ggttccccacc tgacagttgt cacaatctt tatggAACCC tcttctgcat gcatttgaga 144180
cgccccacag acgagtccgt ggagcagggg aaaaatggtg ctgtgtttt caccacagtg 144240
atactcatgc tgaactccat gatctatggc ctcaggaaca aggtgtgaa agaggcgttg 144300
aaaaaagcaa tagaaaaaca aacattggga aaataaaaat gctaagctat cattaaaaat 144360
ttgtgaagta atgagatata atatcattgg gttagatgtc acattttagg ctacatttgc 144420
acaattcatt tctaattttc tgtaggttag ctgactgagt 144460

<210> 2
<211> 195
<212> DNA
<213> *Homo sapiens*

```

<400> 2
atg agc ttc tta ata aga agt gat tca aca cta cac act cca atg tgc      48
Met Ser Phe Leu Ile Arg Ser Asp Ser Thr Leu His Thr Pro Met Cys
1          5           10          15
ttg ttc ctc agt cat ctc tcc ttt gta gat ctc tat tat gcc acc aat      96
Leu Phe Leu Ser His Leu Ser Phe Val Asp Leu Tyr Tyr Ala Thr Asn
20         25          30
gcc act cct ccg atg ctg gtt aac ttt ttt ttt cca aga gaa aaa ccg      144
Ala Thr Pro Pro Met Leu Val Asn Phe Phe Phe Pro Arg Glu Lys Pro
35         40          45
ttt cct tta ttg gct tta tcc aat ttc acc ttt tca ttg cac tgg      192
Phe Pro Leu Leu Val Ala Leu Ser Asn Phe Thr Phe Ser Leu His Trp
50         55          60
tga
*
65

```

<210> 3
<211> 948
<212> DNA
<213> *Homo sapiens*

```

<400> 3
atg ttc tcc cca aac cac acc ata gtg aca gaa ttc att ctc ttg gga      48
Met Phe Ser Pro Asn His Thr Ile Val Thr Glu Phe Ile Leu Leu Gly
1          5                  10                  15
ctg aca gac gac cca gtg cta gag aag atc ctg ttt ggg gta ttc ctt      96
Leu Thr Asp Asp Pro Val Leu Glu Lys Ile Leu Phe Gly Val Phe Leu
20         25                  30
gcg atc tac cta atc aca ctg gca ggc aac ctg tgc atg atc ctg ctg     144
Ala Ile Tyr Leu Ile Thr Leu Ala Gly Asn Leu Cys Met Ile Leu Leu
35         40                  45
atc agg acc aat tcc cac ctgcaa aca ccc atg tat ttc ttc ctt ggc     192
Ile Arg Thr Asn Ser His Leu Gln Thr Pro Met Tyr Phe Phe Leu Gly
50         55                  60
cac ctc tcc ttt gta gac att tgc tat tct tcc aat gtt act cca aat     240

```

His Leu Ser Phe Val Asp Ile Cys Tyr Ser Ser Asn Val Thr Pro Asn			
65	70	75	80
atg ctg cac aat ttc ctc tca gaa cag aac atc tcc tac gct gga			288
Met Leu His Asn Phe Leu Ser Glu Gln Lys Thr Ile Ser Tyr Ala Gly			
85	90	95	
tgc ttc aca cag tgt ctt ctc ttc atc gcc cta gtg atc act gag ttt			336
Cys Phe Thr Gln Cys Leu Leu Phe Ile Ala Leu Val Ile Thr Glu Phe			
100	105	110	
tac ttc ctt gct tca atg gca ttg gat cgc tat gta gcc att tgc agc			384
Tyr Phe Leu Ala Ser Met Ala Leu Asp Arg Tyr Val Ala Ile Cys Ser			
115	120	125	
cct tta cat tac agt tcc agg atg tcc aag aac att tgc atc tct ctg			432
Pro Leu His Tyr Ser Ser Arg Met Ser Lys Asn Ile Cys Ile Ser Leu			
130	135	140	
gtc act gtg cct tac atg tat ggc ttc ctt aat ggg ctc tct cag aca			480
Val Thr Val Pro Tyr Gly Phe Leu Asn Gly Leu Ser Gln Thr			
145	150	155	160
ctg ctg acc ttt cac tta tcc ttc tgt ggc tcc ctt gaa atc aat cat			528
Leu Leu Thr Phe His Leu Ser Phe Cys Gly Ser Leu Glu Ile Asn His			
165	170	175	
ttc tac tgc gct gat cct ctt atc atg ctg gcc tgc tct gac acc			576
Phe Tyr Cys Ala Asp Pro Pro Leu Ile Met Leu Ala Cys Ser Asp Thr			
180	185	190	
cgt gtc aaa aag atg gca atg ttt gta gtt gca ggc ttt act ctc tca			624
Arg Val Lys Lys Met Ala Met Phe Val Val Ala Gly Phe Thr Leu Ser			
195	200	205	
agc tct ctc ttc atc att ctt ctg tcc tat ctt ttc att ttt gca gcg			672
Ser Ser Leu Phe Ile Ile Leu Leu Ser Tyr Leu Phe Ile Phe Ala Ala			
210	215	220	
atc ttc agg atc cgt tct gct gaa ggc agg cac aaa gcc ttt tct acg			720
Ile Phe Arg Ile Arg Ser Ala Glu Gly Arg His Lys Ala Phe Ser Thr			
225	230	235	240
tgt gct tcc cac ctg aca ata gtc act ttg ttt tat gga acc ctc ttc			768
Cys Ala Ser His Leu Thr Ile Val Thr Leu Phe Tyr Gly Thr Leu Phe			
245	250	255	
tgc atg tac gta agg cct cca tca gag aag tct gta gag gag tcc aaa			816
Cys Met Tyr Val Arg Pro Pro Ser Glu Lys Ser Val Glu Ser Lys			
260	265	270	
ata act gca gtc ttt tat act ttt ttg acc cca atg ctg aac cca ttg			864
Ile Thr Ala Val Phe Tyr Thr Phe Leu Thr Pro Met Leu Asn Pro Leu			
275	280	285	
atc tat agc cta cgg aac aca gat gta atc ctt gcc atg caa caa atg			912
Ile Tyr Ser Leu Arg Asn Thr Asp Val Ile Leu Ala Met Gln Gln Met			
290	295	300	
att agg gga aaa tcc ttt cat aaa att gca gtt tag			948
Ile Arg Gly Lys Ser Phe His Lys Ile Ala Val *			
305	310	315	

<210> 4

<211> 519

<212> DNA

<213> Homo sapiens

<400> 4

atg tta aag aaa aac cat aca gcc gtg act gag ttt gtt ctc ctg gga			
Met Leu Lys Lys Asn His Thr Ala Val Thr Glu Phe Val Leu Leu Gly			
1	5	10	15

48

ctg aca gat cgg gct gag ctg cag tcc ctt ttt gtg gta ttt cta			
Leu Thr Asp Arg Ala Glu Leu Gln Ser Leu Leu Phe Val Val Phe Leu			
20	25	30	

96

gtc atc tac ctt atc aca gta atc ggc aat gtg agc atg atc ttg tta			
Val Ile Tyr Leu Ile Thr Val Ile Gly Asn Val Ser Met Ile Leu Leu			
35	40	45	

144

atc aga agt gac tcg aca cta cac act cca atg tac ttc ttc ctc agt Ile Arg Ser Asp Ser Thr Leu His Thr Pro Met Tyr Phe Phe Leu Ser	192
50 55 60	
cac ctc tcc ttt gta gat ctc tgt tat acc acc aat gtt act cct cag His Leu Ser Phe Val Asp Leu Cys Tyr Thr Asn Val Thr Pro Gln	240
65 70 75 80	
atg ctg gtt aac ttt tca tcc aag aga aaa acc att tcc ttc atc ggc Met Leu Val Asn Phe Leu Ser Lys Arg Lys Thr Ile Ser Phe Ile Gly	288
85 90 95	
tgc ttt atc caa ttt cac ttt ttc att gca ctg gtg att aca gat tat Cys Phe Ile Gln Phe His Phe Phe Ala Leu Val Ile Thr Asp Tyr	336
100 105 110	
tat atg ctc aca gtg atg gct tat gac cgc tac atg gcc atc tgc aag Tyr Met Leu Thr Val Met Ala Tyr Asp Arg Tyr Met Ala Ile Cys Lys	384
115 120 125	
ccc ttg tta tat gga agc aaa atg acc agg tgt gtc tgc ctc tgt ctg Pro Leu Leu Tyr Gly Ser Lys Met Thr Arg Cys Val Cys Leu Cys Leu	432
130 135 140	
gct gct gct ccc tat att tat ggc ttt gca aat ggt cta agc aca gac Ala Ala Ala Pro Tyr Ile Tyr Gly Phe Ala Asn Gly Leu Ser Thr Asp	480
145 150 155 160	
cac cct gat gct tcg tct gtc ctt ctg tgg acc caa tga His Pro Asp Ala Ser Ser Val Leu Leu Trp Thr Gln *	519
165 170	

<210> 5

<211> 948

<212> DNA

<213> Homo sapiens

<400> 5	
atg ttg tcc cca aac cac acc ata gtg aca gaa ttc att ctc tta gga Met Leu Ser Pro Asn His Thr Ile Val Thr Glu Phe Ile Leu Leu Gly	48
1 5 10 15	
ctg aca gac gac cca gtg cta gag aag atc ctg ttt ggg gtg ttc ctg Leu Thr Asp Asp Pro Val Leu Glu Lys Ile Leu Phe Gly Val Phe Leu	96
20 25 30	
gcg atc tac cta atc aca ctg gca ggc aac ctg tgc atg atc ctg ctg Ala Ile Tyr Leu Ile Thr Leu Ala Gly Asn Leu Cys Met Ile Leu Leu	144
35 40 45	
atc agg acc aat tcccaa ctg caa aca ccc atg tat ttc ttc ctt ggt Ile Arg Thr Asn Ser Gln Leu Gln Thr Pro Met Tyr Phe Leu Gly	192
50 55 60	
cac ctc tcc ttt tta gac att tgc tat tct tcc aat gtt act cca aat His Leu Ser Phe Leu Asp Ile Cys Tyr Ser Asn Val Thr Pro Asn	240
65 70 75 80	
atg ctg cac aat ttc ctc tca gaa cag aag acc atc tcc tac gct gga Met Leu His Asn Phe Leu Ser Glu Gln Lys Thr Ile Ser Tyr Ala Gly	288
85 90 95	
tgc ttc aca cag tgt ctt ctc atc gcc cta gtg atc act gag ttt Cys Phe Thr Gln Cys Leu Phe Ile Ala Leu Val Ile Thr Glu Phe	336
100 105 110	
tac ttc ctt gct tca atg gca ttg gat cgc tat gta gcc att tgc agc Tyr Phe Leu Ala Ser Met Ala Leu Asp Arg Tyr Val Ala Ile Cys Ser	384
115 120 125	
cct tta cat tac agt tcc agg atg tcc aag aac att tgc atc tct ctg Pro Leu His Tyr Ser Ser Arg Met Ser Lys Asn Ile Cys Ile Ser Leu	432
130 135 140	
gtc act gtg cct tac atg tat ggc ttc ctt aat ggg ctc tct cag aca Val Thr Val Pro Tyr Met Tyr Gly Phe Leu Asn Gly Leu Ser Gln Thr	480
145 150 155 160	
ctg ctg acc ttt cac tta tcc ttc tgt ggc tcc ctt gaa atc aat cat Leu Leu Thr Phe His Leu Ser Phe Cys Gly Ser Leu Glu Ile Asn His	528

49

165	170	175	
ttc tac tgc gct gat cct cct atc atg ctg gcc tgc tct gac acc	Phe Tyr Cys Ala Asp Pro Pro Leu Ile Met Leu Ala Cys Ser Asp Thr		576
180	185	190	
cgt gtc aaa aag atg gca atg ttt gta gtt gca ggc ttt act ctc tca	Arg Val Lys Lys Met Ala Met Phe Val Val Ala Gly Phe Thr Leu Ser		624
195	200	205	
agc tct ctc atc att ctt ctg tat ctt ttc att ttt gca gcg	Ser Ser Leu Phe Ile Ile Leu Leu Ser Tyr Leu Phe Ile Phe Ala Ala		672
210	215	220	
atc ttc agg atc cgt tct gct gaa ggc agg cac aaa gcc ttt tct acg	Ile Phe Arg Ile Arg Ser Ala Glu Gly Arg His Lys Ala Phe Ser Thr		720
225	230	235	240
tgt gct tcc cac ctg aca ata gtc act ttg ttt tat gga acc ctc ttc	Cys Ala Ser His Leu Thr Ile Val Thr Leu Phe Tyr Gly Thr Leu Phe		768
245	250	255	
tgc atg tac gta agg cct cca tca gag aag tct gta gag gag tcc aaa	Cys Met Tyr Val Arg Pro Pro Ser Glu Lys Ser Val Glu Glu Ser Lys		816
260	265	270	
ata att gca gtc ttt tat act ttt ttg agc cca atg ctg aac cca ttg	Ile Ile Ala Val Phe Tyr Thr Phe Leu Ser Pro Met Leu Asn Pro Leu		864
275	280	285	
atc tat agc cta cgg aac aga gat gta atc ctt gcc ata caa caa atg	Ile Tyr Ser Leu Arg Asn Arg Asp Val Ile Leu Ala Ile Gln Gln Met		912
290	295	300	
att agg gga aaa tcc ttt tgt aaa att gca gtt tag	Ile Arg Gly Lys Ser Phe Cys Lys Ile Ala Val *		948
305	310	315	

<210> 6

<211> 918

<212> DNA

<213> Homo sapiens

<400> 6

atg tcc aac aca aat ggc agt gca atc aca gaa ttc att tta ctt ggg	Met Ser Asn Thr Asn Gly Ser Ala Ile Thr Glu Phe Ile Leu Leu Gly		48
1	5	10	15
ctc aca gat tgc ccg gaa ctc cag tct ctg ctt ttt gtg ctg ttt ctg	Leu Thr Asp Cys Pro Glu Leu Gln Ser Leu Leu Phe Val Leu Phe Leu		96
20	25	30	
gtt gtt tac ctc gtc acc ctg cta ggc aac ctg ggc atg ata atg tta	Val Val Tyr Leu Val Thr Leu Gly Asn Leu Gly Met Ile Met Leu		144
35	40	45	
atg aga ctg gac tct cgc ctt cac acg ccc atg tac ttc ttc ctc act	Met Arg Leu Asp Ser Arg Leu His Thr Pro Met Tyr Phe Phe Leu Thr		192
50	55	60	
aac tta gcc ttt gtg gat ttg tgc tat aca tca aat gca acc ccg cag	Asn Leu Ala Phe Val Asp Leu Cys Tyr Thr Ser Asn Ala Thr Pro Gln		240
65	70	75	80
atg tcg act aat atc gta tct gag aag acc att tcc ttt gct ggt tgc	Met Ser Thr Asn Ile Val Ser Glu Lys Thr Ile Ser Phe Ala Gly Cys		288
85	90	95	
ttt aca cag tgc tac att ttc att gcc ctt cta ctc act gag ttt tac	Phe Thr Gln Cys Tyr Ile Phe Ile Ala Leu Leu Thr Glu Phe Tyr		336
100	105	110	
atg ctg gca gca atg gcc tat gac cgc tat gtg gcc ata tat gac cct	Met Leu Ala Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Tyr Asp Pro		384
115	120	125	
ctg cgc tac agt gtg aaa acg tcc agg aga gtt tgc atc tgc ttg gcc	Leu Arg Tyr Ser Val Lys Thr Ser Arg Arg Val Cys Ile Cys Leu Ala		432
130	135	140	
aca ttt ccc tat gtc tat ggc ttc tca gat gga ctc ttc cag gcc atc			480

50

Thr Phe Pro Tyr Val Tyr Gly Phe Ser Asp Gly Leu Phe Gln Ala Ile			
145	150	155	160
ctg acc ttc cgc ctg acc ttc tgt aga tcc aat gtc atc aac cac ttc			528
Leu Thr Phe Arg Leu Thr Phe Cys Arg Ser Asn Val Ile Asn His Phe			
165	170	175	
tac tgt gct gac ccg ccc att aag ctt tct tgt tct gat act tat			576
Tyr Cys Ala Asp Pro Pro Leu Ile Lys Leu Ser Cys Ser Asp Thr Tyr			
180	185	190	
gtc aaa gag cat gcc atg ttc ata tct gct ggc ttc aac ctc tcc agc			624
Val Lys Glu His Ala Met Phe Ile Ser Ala Gly Phe Asn Leu Ser Ser			
195	200	205	
tcc ctc acc atc gtc ttg gtg tcc tat gcc ttc att ctt gct gcc atc			672
Ser Leu Thr Ile Val Leu Val Ser Tyr Ala Phe Ile Leu Ala Ala Ile			
210	215	220	
ctc cgg atc aaa tca gca gag gga agg cac aag gca ttc tcc acc tgt			720
Leu Arg Ile Lys Ser Ala Glu Gly Arg His Lys Ala Phe Ser Thr Cys			
225	230	235	240
ggt tcc cat atg atg gtc acc ctg ttt tat ggg act ctc ttt tgc			768
Gly Ser His Met Met Ala Val Thr Leu Phe Tyr Gly Thr Leu Phe Cys			
245	250	255	
atg tat ata aga cca cca aca gat aag act gtt gag gaa tct aaa ata			816
Met Tyr Ile Arg Pro Pro Thr Asp Lys Thr Val Glu Glu Ser Lys Ile			
260	265	270	
ata gct gtc ttt tac acc ttt gtg agt ccg gta ctt aat cca ttg atc			864
Ile Ala Val Phe Tyr Thr Phe Val Ser Pro Val Leu Asn Pro Leu Ile			
275	280	285	
tac agt ctg agg aat aaa gat gtg aag cag gcc ttg aag aat gtc ctg			912
Tyr Ser Leu Arg Asn Lys Asp Val Lys Gln Ala Leu Lys Asn Val Leu			
290	295	300	
aga tga			918
Arg *			
305			
<210> 7			
<211> 612			
<212> DNA			
<213> Homo sapiens			
<400> 7			
atg gtt aga gga aat tct act ttg gtg acg gaa ttt att ctc ttg gga			48
Met Val Arg Gly Asn Ser Thr Leu Val Thr Glu Phe Ile Leu Leu Gly			
1	5	10	15
tta aag gat ctt cca gag ctt cag ccc atc ctc ttt gta ctg ttc ctg			96
Leu Lys Asp Leu Pro Glu Leu Gln Pro Ile Leu Phe Val Leu Phe Leu			
20	25	30	
cta atc tac ctg atc act gtc ggg ggg aac ctt ggg atg ttg gtg ttg			144
Leu Ile Tyr Leu Ile Thr Val Gly Gly Asn Leu Gly Met Leu Val Leu			
35	40	45	
atc agg ata gat tca cgc ctc cac acc ccc atg tat ttc ttt ctt gct			192
Ile Arg Ile Asp Ser Arg Leu His Thr Pro Met Tyr Phe Leu Ala			
50	55	60	
agt ttg tcc tgc ttg gat ttg tat tac tcc act aat gtg act ccc aag			240
Ser Leu Ser Cys Leu Asp Leu Tyr Tyr Ser Thr Asn Val Thr Pro Lys			
65	70	75	80
atg ttg gtg aac ttc ttc tca gac aag aaa gcc att tcc tat gct gct			288
Met Leu Val Asn Phe Phe Ser Asp Lys Lys Ala Ile Ser Tyr Ala Ala			
85	90	95	
tgt tta gtc cag tgc tat ttt ttc att gct gtg gtg att act gaa tat			336
Cys Leu Val Gln Cys Tyr Phe Phe Ile Ala Val Val Ile Thr Glu Tyr			
100	105	110	
tat atg cta gct gta atg gcc tat gat agg tat gtg gcc atc tgt aac			384
Tyr Met Leu Ala Val Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Asn			
115	120	125	

51

cct ttg ctt tac agc agc aag atg tcc aaa ggg ctc tgt att cgc ctg Pro Leu Leu Tyr Ser Ser Lys Met Ser Lys Gly Leu Cys Ile Arg Leu	432
130 135 140	
att gct ggt cca tat gtc tat ggg ttt ctt agt gga ctg atg gaa acc Ile Ala Gly Pro Tyr Val Tyr Gly Phe Leu Ser Gly Leu Met Glu Thr	480
145 150 155 160	
atg tgg aca tac cac ttg acc ttc tgt ggc tcc aat atc att aat cac Met Trp Thr Tyr His Leu Thr Phe Cys Gly Ser Asn Ile Ile Asn His	528
165 170 175	
ttc tac tgt gct gac cca ccc ctc atc cga ctt tcc tgc tct gac act Phe Tyr Cys Ala Asp Pro Pro Leu Ile Arg Leu Ser Cys Ser Asp Thr	576
180 185 190	
ttc att aag gaa aca tcc atg ttt gtg gta gca tga Phe Ile Lys Glu Thr Ser Met Phe Val Val Ala *	612
195 200	

<210> 8
<211> 807
<212> DNA
<213> Homo sapiens

<400> 8	
ttg ccc tca tcc agg cca acg ccc cg ^g ctc cac acg ccc atg tac ttt Leu Pro Ser Ser Arg Pro Thr Pro Arg Leu His Thr Pro Met Tyr Phe	48
1 5 10 15	
ttc ctg agc aac tta tcc ttt gtg gat ctg tgc ttc tct tcc aat gtg Phe Leu Ser Asn Leu Ser Phe Val Asp Leu Cys Phe Ser Ser Asn Val	96
20 25 30	
act cca agg atg ctg gag att ttc ctt tca gag aag aaa acg att tcc Thr Pro Arg Met Leu Glu Ile Phe Leu Ser Glu Lys Lys Ser Ile Ser	144
35 40 45	
tat cct gcc cgt ctt gtg cag tgt tac ctt ttt atc acc ttg gtc cac Tyr Pro Ala Arg Leu Val Gln Cys Tyr Leu Phe Ile Thr Leu Val His	192
50 55 60	
gtt gag ctc tac atc ctg gct gtg atg gcc ttt gac cg ^g tac atg gcc Val Glu Leu Tyr Ile Leu Ala Val Met Ala Phe Asp Arg Tyr Met Ala	240
65 70 75 80	
atc tgc aac cct ctg ctt tat ggc agc aga atg tcc aag acg gtg tgc Ile Cys Asn Pro Leu Leu Tyr Gly Ser Arg Met Ser Lys Ser Val Cys	288
85 90 95	
tct ttc ctc atc aca gtg ctt tat gtg tat gga gca ctc act ggc ctg Ser Phe Leu Ile Thr Val Leu Tyr Val Tyr Gly Ala Leu Thr Gly Leu	336
100 105 110	
atg gag act atg tgg acc tac aac cta gcc ttc tgt ggc ccc agt gaa Met Glu Thr Met Trp Thr Tyr Asn Leu Ala Phe Cys Gly Pro Ser Glu	384
115 120 125	
att aat cac ttc tac tgt gtg gac cca cca ctg att aag ctg gct tgt Ile Asn His Phe Tyr Cys Val Asp Pro Pro Leu Ile Lys Leu Ala Cys	432
130 135 140	
tct gac acc tac aac aag gag gtg tca atg ttt gtt gtg gct ggt ttc Ser Asp Thr Tyr Asn Lys Glu Val Ser Met Phe Val Val Ala Gly Phe	480
145 150 155 160	
aac ttc act tat cct ctc ctt atc atc ctc att tcc tat ctc tac ata Asn Phe Thr Tyr Pro Leu Leu Ile Ile Leu Ile Ser Tyr Leu Tyr Ile	528
165 170 175	
ttt cct gcc acc cta agg atc tgc tct aca gaa ggc agg cac aaa gct Phe Pro Ala Thr Leu Arg Ile Cys Ser Thr Glu Gly Arg His Lys Ala	576
180 185 190	
ttt tct acc tgt ggc tcc cat ctg aca gcc gtt act att ttc tat tca Phe Ser Thr Cys Gly Ser His Leu Thr Ala Val Thr Ile Phe Tyr Ser	624
195 200 205	
gct ctt ttc ttc atg tat ctc aga cgt cca tca gaa gag tcc atg gag Ala Leu Phe Phe Met Tyr Leu Arg Arg Pro Ser Glu Glu Ser Met Glu	672

210	215	220	
cag ggg aaa atg gta gct gta ttt tat acc act gta atc ccc atg ttg			720
Gln Gly Lys Met Val Ala Val Phe Tyr Thr Thr Val Ile Pro Met Leu			
225	230	235	240
aat ccc atg atc tac agt ctg agg aac aaa gat gtg aaa gag gca tta			
Asn Pro Met Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Glu Ala Leu			768
245	250	255	
tgc aaa gaa ctg ttc aaa aga aaa ttg ttt tct aaa taa			807
Cys Lys Glu Leu Phe Lys Arg Lys Leu Phe Ser Lys *			
260	265		

<210> 9
<211> 363
<212> DNA
<213> Homo sapiens

<400> 9			
atg aga agg aac ttc acg ttg gtg act gag ttc att ctc ctg gga ctg			48
Met Arg Arg Asn Phe Thr Leu Val Thr Glu Phe Ile Leu Leu Gly Leu			
1	5	10	15
acg aat cac cac gaa tta cag att ctc ctc ttc atg ctg ttt ctg gcc			96
Thr Asn His Gln Glu Leu Gln Ile Leu Leu Phe Met Leu Phe Leu Ala			
20	25	30	
att tac atg gtc aca gtg gca ggg aat ctt agc atg att gcc ctc atc			144
Ile Tyr Met Val Thr Val Ala Gly Asn Leu Ser Met Ile Ala Leu Ile			
35	40	45	
cag gcc aat gcc cgg ctc cac acg ccc atg tac ttt ttc ctg agc cac			192
Gln Ala Asn Ala Arg Leu His Thr Pro Met Tyr Phe Leu Ser His			
50	55	60	
tta tcc ttc ctg gat ctg tgc ttc tct tcc aat gtg acc cca aag atg			240
Leu Ser Phe Leu Asp Leu Cys Phe Ser Ser Asn Val Thr Pro Lys Met			
65	70	75	80
ctg gag att ttc ctt tca gag aag aaa agc att tcc tat cct gcc tgt			288
Leu Glu Ile Phe Leu Ser Glu Lys Lys Ser Ile Ser Tyr Pro Ala Cys			
85	90	95	
ctt gtt cag tgt tac ctt tat atc atc ttg gta cac gtt gag atc tac			336
Leu Val Gln Cys Tyr Leu Tyr Ile Ile Leu Val His Val Glu Ile Tyr			
100	105	110	
atc ctg gct gtg atg gcc ttt gac tag			363
Ile Leu Ala Val Met Ala Phe Asp *			
115	120		

<210> 10
<211> 936
<212> DNA
<213> Homo sapiens

<400> 10			
atg aga aga aac tgc acg ttg gtg act gag ttc att ctc ctg gga ctg			48
Met Arg Arg Asn Cys Thr Leu Val Thr Glu Phe Ile Leu Leu Gly Leu			
1	5	10	15
acc agt cgc cgg gaa tta caa att ctc ctc ttc acg ctg ttt ctg gcc			96
Thr Ser Arg Arg Glu Leu Gln Ile Leu Leu Phe Thr Leu Phe Leu Ala			
20	25	30	
att tac atg gtc acg gtg gca ggg aac ctt ggc atg att gtc ctc atc			144
Ile Tyr Met Val Thr Val Ala Gly Asn Leu Gly Met Ile Val Leu Ile			
35	40	45	
cag gcc aac gcc tgg ctc cac atg ccc atg tac ttt ttc ctg agc cac			192
Gln Ala Asn Ala Trp Leu His Met Pro Met Tyr Phe Phe Leu Ser His			
50	55	60	
tta tcc ttc gtg gat ctg tgc ttc tct tcc aat gtg act cca aag atg			240
Leu Ser Phe Val Asp Leu Cys Phe Ser Ser Asn Val Thr Pro Lys Met			
65	70	75	80

53

ctg gag att ttc ctt tca gag aag aaa agc att tcc tat cct gcc tgt Leu Glu Ile Phe Leu Ser Glu Lys Lys Ser Ile Ser Tyr Pro Ala Cys 85 90 95	288
ctt gtg cag tgt tac ctt ttt atc gcc ttg gtc cat gtt gag atc tac Leu Val Gln Cys Tyr Leu Phe Ile Ala Leu Val His Val Glu Ile Tyr 100 105 110	336
atc ctg gct gtg atg gcc ttt gac cgg tac atg gcc atc tgc aac cct Ile Leu Ala Val Met Ala Phe Asp Arg Tyr Met Ala Ile Cys Asn Pro 115 120 125	384
ctg ctt tat ggc agc aga atg tcc aag agt gtg tgc tcc ttc ctc atc Leu Leu Tyr Gly Ser Arg Met Ser Lys Ser Val Cys Ser Phe Leu Ile 130 135 140	432
acg gtg cct tat gtg tat gga gcg ctc act ggc ctg atg gag acc atg Thr Val Pro Tyr Val Tyr Gly Ala Leu Thr Gly Leu Met Glu Thr Met 145 150 155 160	480
tgg acc tac aac cta gcc ttc tgt ggc ccc aat gaa att aat cac ttc Trp Thr Tyr Asn Leu Ala Phe Cys Gly Pro Asn Glu Ile Asn His Phe 165 170 175	528
tac tgt gcg gac cca cca ctg att aag ctg gct tgt tct gac acc tac Tyr Cys Ala Asp Pro Pro Leu Ile Lys Leu Ala Cys Ser Asp Thr Tyr 180 185 190	576
aac aag gag ttg tca atg ttt att gtg gct ggc tgg aac ctt tct ttt Asn Lys Glu Leu Ser Met Phe Ile Val Ala Gly Trp Asn Leu Ser Phe 195 200 205	624
tct ctc ttc atc ata tgt att tcc tac ctt tac att ttc cct gct att Ser Leu Phe Ile Ile Cys Ile Ser Tyr Leu Tyr Ile Phe Pro Ala Ile 210 215 220	672
tta aag att cgc tct aca gag ggc agg caa aaa gct ttt tct acc tgt Leu Lys Ile Arg Ser Thr Glu Gly Arg Gln Lys Ala Phe Ser Thr Cys 225 230 235 240	720
ggc tcc cat ctg aca gct gtc act ata ttc tat gca acc ctt ttc ttc Gly Ser His Leu Thr Ala Val Thr Ile Phe Tyr Ala Thr Leu Phe Phe 245 250 255	768
atg tat ctc aga ccc ccc tca aag gaa tct gtt gaa cag ggt aaa atg Met Tyr Leu Arg Pro Pro Ser Lys Glu Ser Val Glu Gln Gly Lys Met 260 265 270	816
gta gct gta ttt tat acc aca gta atc cct atg ctg aac ctt ata att Val Ala Val Phe Tyr Thr Val Ile Pro Met Leu Asn Leu Ile Ile 275 280 285	864
tat agc ctt aga aat aaa aat gta aaa gaa gca tta atc aaa gag ctg Tyr Ser Leu Arg Asn Lys Asn Val Lys Glu Ala Leu Ile Lys Glu Leu 290 295 300	912
tca atg aag ata tac ttt tct taa Ser Met Lys Ile Tyr Phe Ser *	936
305 310	

<210> 11

<211> 180

<212> DNA

<213> Homo sapiens

<400> 11

atg tcc aga aga aac tat act gaa ctg aca gaa ttt gtt ctc ttg ggt Met Ser Arg Arg Asn Tyr Thr Glu Leu Thr Glu Phe Val Leu Leu Gly 1 5 10 15	48
cta aca agc cgt cca gag ctg cga gtt gct ttc ttg gca ctg ttc ctt Leu Thr Ser Arg Pro Glu Leu Arg Val Ala Phe Leu Ala Leu Phe Leu 20 25 30	96
ttt gtc tac ata gcc act gtg gta gga aac ttg ggg atg att att tta Phe Val Tyr Ile Ala Thr Val Val Gly Asn Leu Gly Met Ile Ile Leu 35 40 45	144
atc aaa gtt gat tct cga ctt cac act ccc atg taa Ile Lys Val Asp Ser Arg Leu His Thr Pro Met *	180

54

50

55

60

<210> 12
<211> 64
<212> PRT
<213> Homo sapiens

<400> 12
Met Ser Phe Leu Ile Arg Ser Asp Ser Thr Leu His Thr Pro Met Cys
1 5 10 15
Leu Phe Leu Ser His Leu Ser Phe Val Asp Leu Tyr Tyr Ala Thr Asn
20 25 30
Ala Thr Pro Pro Met Leu Val Asn Phe Phe Pro Arg Glu Lys Pro
35 40 45
Phe Pro Leu Leu Val Ala Leu Ser Asn Phe Thr Phe Ser Leu His Trp
50 55 60

<210> 13
<211> 315
<212> PRT
<213> Homo sapiens

<400> 13
Met Phe Ser Pro Asn His Thr Ile Val Thr Glu Phe Ile Leu Leu Gly
1 5 10 15
Leu Thr Asp Asp Pro Val Leu Glu Lys Ile Leu Phe Gly Val Phe Leu
20 25 30
Ala Ile Tyr Leu Ile Thr Leu Ala Gly Asn Leu Cys Met Ile Leu Leu
35 40 45
Ile Arg Thr Asn Ser His Leu Gln Thr Pro Met Tyr Phe Phe Leu Gly
50 55 60
His Leu Ser Phe Val Asp Ile Cys Tyr Ser Ser Asn Val Thr Pro Asn
65 70 75 80
Met Leu His Asn Phe Leu Ser Glu Gln Lys Thr Ile Ser Tyr Ala Gly
85 90 95
Cys Phe Thr Gln Cys Leu Leu Phe Ile Ala Leu Val Ile Thr Glu Phe
100 105 110
Tyr Phe Leu Ala Ser Met Ala Leu Asp Arg Tyr Val Ala Ile Cys Ser
115 120 125
Pro Leu His Tyr Ser Ser Arg Met Ser Lys Asn Ile Cys Ile Ser Leu
130 135 140
Val Thr Val Pro Tyr Met Tyr Gly Phe Leu Asn Gly Leu Ser Gln Thr
145 150 155 160
Leu Leu Thr Phe His Leu Ser Phe Cys Gly Ser Leu Glu Ile Asn His
165 170 175
Phe Tyr Cys Ala Asp Pro Pro Leu Ile Met Leu Ala Cys Ser Asp Thr
180 185 190
Arg Val Lys Lys Met Ala Met Phe Val Val Ala Gly Phe Thr Leu Ser
195 200 205
Ser Ser Leu Phe Ile Ile Leu Leu Ser Tyr Leu Phe Ile Phe Ala Ala
210 215 220
Ile Phe Arg Ile Arg Ser Ala Glu Gly Arg His Lys Ala Phe Ser Thr
225 230 235 240
Cys Ala Ser His Leu Thr Ile Val Thr Leu Phe Tyr Gly Thr Leu Phe
245 250 255
Cys Met Tyr Val Arg Pro Pro Ser Glu Lys Ser Val Glu Glu Ser Lys
260 265 270
Ile Thr Ala Val Phe Tyr Thr Phe Leu Thr Pro Met Leu Asn Pro Leu
275 280 285
Ile Tyr Ser Leu Arg Asn Thr Asp Val Ile Leu Ala Met Gln Gln Met
290 295 300
Ile Arg Gly Lys Ser Phe His Lys Ile Ala Val
305 310 315

<210> 14
<211> 172
<212> PRT
<213> Homo sapiens

<400> 14
Met Leu Lys Lys Asn His Thr Ala Val Thr Glu Phe Val Leu Leu Gly
1 5 10 15
Leu Thr Asp Arg Ala Glu Leu Gln Ser Leu Leu Phe Val Val Phe Leu
20 25 30
Val Ile Tyr Leu Ile Thr Val Ile Gly Asn Val Ser Met Ile Leu Leu
35 40 45
Ile Arg Ser Asp Ser Thr Leu His Thr Pro Met Tyr Phe Phe Leu Ser
50 55 60
His Leu Ser Phe Val Asp Leu Cys Tyr Thr Asn Val Thr Pro Gln
65 70 75 80
Met Leu Val Asn Phe Leu Ser Lys Arg Lys Thr Ile Ser Phe Ile Gly
85 90 95
Cys Phe Ile Gln Phe His Phe Ile Ala Leu Val Ile Thr Asp Tyr
100 105 110
Tyr Met Leu Thr Val Met Ala Tyr Asp Arg Tyr Met Ala Ile Cys Lys
115 120 125
Pro Leu Leu Tyr Gly Ser Lys Met Thr Arg Cys Val Cys Leu Cys Leu
130 135 140
Ala Ala Ala Pro Tyr Ile Tyr Gly Phe Ala Asn Gly Leu Ser Thr Asp
145 150 155 160
His Pro Asp Ala Ser Ser Val Leu Leu Trp Thr Gln
165 170

<210> 15
<211> 315
<212> PRT
<213> Homo sapiens

<400> 15
Met Leu Ser Pro Asn His Thr Ile Val Thr Glu Phe Ile Leu Leu Gly
1 5 10 15
Leu Thr Asp Asp Pro Val Leu Glu Lys Ile Leu Phe Gly Val Phe Leu
20 25 30
Ala Ile Tyr Leu Ile Thr Leu Ala Gly Asn Leu Cys Met Ile Leu Leu
35 40 45
Ile Arg Thr Asn Ser Gln Leu Gln Thr Pro Met Tyr Phe Phe Leu Gly
50 55 60
His Leu Ser Phe Leu Asp Ile Cys Tyr Ser Ser Asn Val Thr Pro Asn
65 70 75 80
Met Leu His Asn Phe Leu Ser Glu Gln Lys Thr Ile Ser Tyr Ala Gly
85 90 95
Cys Phe Thr Gln Cys Leu Leu Phe Ile Ala Leu Val Ile Thr Glu Phe
100 105 110
Tyr Phe Leu Ala Ser Met Ala Leu Asp Arg Tyr Val Ala Ile Cys Ser
115 120 125
Pro Leu His Tyr Ser Ser Arg Met Ser Lys Asn Ile Cys Ile Ser Leu
130 135 140
Val Thr Val Pro Tyr Met Tyr Gly Phe Leu Asn Gly Leu Ser Gln Thr
145 150 155 160
Leu Leu Thr Phe His Leu Ser Phe Cys Gly Ser Leu Glu Ile Asn His
165 170 175
Phe Tyr Cys Ala Asp Pro Pro Leu Ile Met Leu Ala Cys Ser Asp Thr
180 185 190
Arg Val Lys Lys Met Ala Met Phe Val Val Ala Gly Phe Thr Leu Ser
195 200 205
Ser Ser Leu Phe Ile Ile Leu Leu Ser Tyr Leu Phe Ile Phe Ala Ala

210	215	220
Ile Phe Arg Ile Arg Ser Ala Glu Gly Arg His Lys Ala Phe Ser Thr		
225	230	235
Cys Ala Ser His Leu Thr Ile Val Thr Leu Phe Tyr Gly Thr Leu Phe		
245	250	255
Cys Met Tyr Val Arg Pro Pro Ser Glu Lys Ser Val Glu Glu Ser Lys		
260	265	270
Ile Ile Ala Val Phe Tyr Thr Phe Leu Ser Pro Met Leu Asn Pro Leu		
275	280	285
Ile Tyr Ser Leu Arg Asn Arg Asp Val Ile Leu Ala Ile Gln Gln Met		
290	295	300
Ile Arg Gly Lys Ser Phe Cys Lys Ile Ala Val		
305	310	315

<210> 16
<211> 305
<212> PRT
<213> Homo sapiens

<400> 16

Met Ser Asn Thr Asn Gly Ser Ala Ile Thr Glu Phe Ile Leu Leu Gly		
1	5	10
Leu Thr Asp Cys Pro Glu Leu Gln Ser Leu Leu Phe Val Leu Phe Leu		
20	25	30
Val Val Tyr Leu Val Thr Leu Leu Gly Asn Leu Gly Met Ile Met Leu		
35	40	45
Met Arg Leu Asp Ser Arg Leu His Thr Pro Met Tyr Phe Phe Leu Thr		
50	55	60
Asn Leu Ala Phe Val Asp Leu Cys Tyr Thr Ser Asn Ala Thr Pro Gln		
65	70	75
Met Ser Thr Asn Ile Val Ser Glu Lys Thr Ile Ser Phe Ala Gly Cys		
85	90	95
Phe Thr Gln Cys Tyr Ile Phe Ala Leu Leu Leu Thr Glu Phe Tyr		
100	105	110
Met Leu Ala Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Tyr Asp Pro		
115	120	125
Leu Arg Tyr Ser Val Lys Thr Ser Arg Arg Val Cys Ile Cys Leu Ala		
130	135	140
Thr Phe Pro Tyr Val Tyr Gly Phe Ser Asp Gly Leu Phe Gln Ala Ile		
145	150	155
Leu Thr Phe Arg Leu Thr Phe Cys Arg Ser Asn Val Ile Asn His Phe		
165	170	175
Tyr Cys Ala Asp Pro Pro Leu Ile Lys Leu Ser Cys Ser Asp Thr Tyr		
180	185	190
Val Lys Glu His Ala Met Phe Ile Ser Ala Gly Phe Asn Leu Ser Ser		
195	200	205
Ser Leu Thr Ile Val Leu Val Ser Tyr Ala Phe Ile Leu Ala Ala Ile		
210	215	220
Leu Arg Ile Lys Ser Ala Glu Gly Arg His Lys Ala Phe Ser Thr Cys		
225	230	235
Gly Ser His Met Met Ala Val Thr Leu Phe Tyr Gly Thr Leu Phe Cys		
245	250	255
Met Tyr Ile Arg Pro Pro Thr Asp Lys Thr Val Glu Glu Ser Lys Ile		
260	265	270
Ile Ala Val Phe Tyr Thr Phe Val Ser Pro Val Leu Asn Pro Leu Ile		
275	280	285
Tyr Ser Leu Arg Asn Lys Asp Val Lys Gln Ala Leu Lys Asn Val Leu		
290	295	300

Arg
305

<210> 17
<211> 203

<212> PRT

<213> Homo sapiens

<400> 17

Met	Val	Arg	Gly	Asn	Ser	Thr	Leu	Val	Thr	Glu	Phe	Ile	Leu	Leu	Gly
1							5		10					15	
Leu	Lys	Asp	Leu	Pro	Glu	Leu	Gln	Pro	Ile	Leu	Phe	Val	Leu	Phe	Leu
							20		25					30	
Leu	Ile	Tyr	Leu	Ile	Thr	Val	Gly	Gly	Asn	Leu	Gly	Met	Leu	Val	Leu
							35		40					45	
Ile	Arg	Ile	Asp	Ser	Arg	Leu	His	Thr	Pro	Met	Tyr	Phe	Phe	Leu	Ala
							50		55					60	
Ser	Leu	Ser	Cys	Leu	Asp	Leu	Tyr	Tyr	Ser	Thr	Asn	Val	Thr	Pro	Lys
							65		70					80	
Met	Leu	Val	Asn	Phe	Phe	Ser	Asp	Lys	Lys	Ala	Ile	Ser	Tyr	Ala	Ala
							85		90					95	
Cys	Leu	Val	Gln	Cys	Tyr	Phe	Phe	Ile	Ala	Val	Val	Ile	Thr	Glu	Tyr
							100		105					110	
Tyr	Met	Leu	Ala	Val	Met	Ala	Tyr	Asp	Arg	Tyr	Val	Ala	Ile	Cys	Asn
							115		120					125	
Pro	Leu	Leu	Tyr	Ser	Ser	Lys	Met	Ser	Lys	Gly	Leu	Cys	Ile	Arg	Leu
							130		135					140	
Ile	Ala	Gly	Pro	Tyr	Val	Tyr	Gly	Phe	Leu	Ser	Gly	Leu	Met	Glu	Thr
							145		150					160	
Met	Trp	Thr	Tyr	His	Leu	Thr	Phe	Cys	Gly	Ser	Asn	Ile	Ile	Asn	His
							165		170					175	
Phe	Tyr	Cys	Ala	Asp	Pro	Pro	Leu	Ile	Arg	Leu	Ser	Cys	Ser	Asp	Thr
							180		185					190	
Phe	Ile	Lys	Glu	Thr	Ser	Met	Phe	Val	Val	Ala					
							195		200						

<210> 18

<211> 268

<212> PRT

<213> Homo sapiens

<400> 18

Leu	Pro	Ser	Ser	Arg	Pro	Thr	Pro	Arg	Leu	His	Thr	Pro	Met	Tyr	Phe
1							5			10				15	
Phe	Leu	Ser	Asn	Leu	Ser	Phe	Val	Asp	Leu	Cys	Phe	Ser	Ser	Asn	Val
							20		25					30	
Thr	Pro	Arg	Met	Leu	Glu	Ile	Phe	Leu	Ser	Glu	Lys	Lys	Ser	Ile	Ser
							35		40					45	
Tyr	Pro	Ala	Arg	Leu	Val	Gln	Cys	Tyr	Leu	Phe	Ile	Thr	Leu	Val	His
							50		55					60	
Val	Glu	Leu	Tyr	Ile	Leu	Ala	Val	Met	Ala	Phe	Asp	Arg	Tyr	Met	Ala
							65		70					80	
Ile	Cys	Asn	Pro	Leu	Leu	Tyr	Gly	Ser	Arg	Met	Ser	Lys	Ser	Val	Cys
							85		90					95	
Ser	Phe	Leu	Ile	Thr	Val	Leu	Tyr	Val	Tyr	Gly	Ala	Leu	Thr	Gly	Leu
							100		105					110	
Met	Glu	Thr	Met	Trp	Thr	Tyr	Asn	Leu	Ala	Phe	Cys	Gly	Pro	Ser	Glu
							115		120					125	
Ile	Asn	His	Phe	Tyr	Cys	Val	Asp	Pro	Pro	Leu	Ile	Lys	Leu	Ala	Cys
							130		135					140	
Ser	Asp	Thr	Tyr	Asn	Lys	Glu	Val	Ser	Met	Phe	Val	Val	Ala	Gly	Phe
							145		150					160	
Asn	Phe	Thr	Tyr	Pro	Leu	Leu	Ile	Ile	Leu	Ile	Ser	Tyr	Leu	Tyr	Ile
							165		170					175	
Phe	Pro	Ala	Thr	Leu	Arg	Ile	Cys	Ser	Thr	Glu	Gly	Arg	His	Lys	Ala
							180		185					190	
Phe	Ser	Thr	Cys	Gly	Ser	His	Leu	Thr	Ala	Val	Thr	Ile	Phe	Tyr	Ser
							195		200					205	

Ala Leu Phe Phe Met Tyr Leu Arg Arg Pro Ser Glu Glu Ser Met Glu
 210 215 220
 Gln Gly Lys Met Val Ala Val Phe Tyr Thr Thr Val Ile Pro Met Leu
 225 230 235 240
 Asn Pro Met Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Glu Ala Leu
 245 250 255
 Cys Lys Glu Leu Phe Lys Arg Lys Leu Phe Ser Lys
 260 265

<210> 19

<211> 120

<212> PRT

<213> Homo sapiens

<400> 19

Met Arg Arg Asn Phe Thr Leu Val Thr Glu Phe Ile Leu Leu Gly Leu
 1 5 10 15
 Thr Asn His Gln Glu Leu Gln Ile Leu Leu Phe Met Leu Phe Leu Ala
 20 25 30
 Ile Tyr Met Val Thr Val Ala Gly Asn Leu Ser Met Ile Ala Leu Ile
 35 40 45
 Gln Ala Asn Ala Arg Leu His Thr Pro Met Tyr Phe Phe Leu Ser His
 50 55 60
 Leu Ser Phe Leu Asp Leu Cys Phe Ser Ser Asn Val Thr Pro Lys Met
 65 70 75 80
 Leu Glu Ile Phe Leu Ser Glu Lys Lys Ser Ile Ser Tyr Pro Ala Cys
 85 90 95
 Leu Val Gln Cys Tyr Leu Tyr Ile Ile Leu Val His Val Glu Ile Tyr
 100 105 110
 Ile Leu Ala Val Met Ala Phe Asp
 115 120

<210> 20

<211> 311

<212> PRT

<213> Homo sapiens

<400> 20

Met Arg Arg Asn Cys Thr Leu Val Thr Glu Phe Ile Leu Leu Gly Leu
 1 5 10 15
 Thr Ser Arg Arg Glu Leu Gln Ile Leu Leu Phe Thr Leu Phe Leu Ala
 20 25 30
 Ile Tyr Met Val Thr Val Ala Gly Asn Leu Gly Met Ile Val Leu Ile
 35 40 45
 Gln Ala Asn Ala Trp Leu His Met Pro Met Tyr Phe Phe Leu Ser His
 50 55 60
 Leu Ser Phe Val Asp Leu Cys Phe Ser Ser Asn Val Thr Pro Lys Met
 65 70 75 80
 Leu Glu Ile Phe Leu Ser Glu Lys Lys Ser Ile Ser Tyr Pro Ala Cys
 85 90 95
 Leu Val Gln Cys Tyr Leu Phe Ile Ala Leu Val His Val Glu Ile Tyr
 100 105 110
 Ile Leu Ala Val Met Ala Phe Asp Arg Tyr Met Ala Ile Cys Asn Pro
 115 120 125
 Leu Leu Tyr Gly Ser Arg Met Ser Lys Ser Val Cys Ser Phe Leu Ile
 130 135 140
 Thr Val Pro Tyr Val Tyr Gly Ala Leu Thr Gly Leu Met Glu Thr Met
 145 150 155 160
 Trp Thr Tyr Asn Leu Ala Phe Cys Gly Pro Asn Glu Ile Asn His Phe
 165 170 175
 Tyr Cys Ala Asp Pro Pro Leu Ile Lys Leu Ala Cys Ser Asp Thr Tyr
 180 185 190
 Asn Lys Glu Leu Ser Met Phe Ile Val Ala Gly Trp Asn Leu Ser Phe

59

195	200	205
Ser Leu Phe Ile Ile Cys Ile Ser Tyr Leu Tyr Ile Phe Pro Ala Ile		
210	215	220
Leu Lys Ile Arg Ser Thr Glu Gly Arg Gln Lys Ala Phe Ser Thr Cys		
225	230	235
Gly Ser His Leu Thr Ala Val Thr Ile Phe Tyr Ala Thr Leu Phe Phe		
245	250	255
Met Tyr Leu Arg Pro Pro Ser Lys Glu Ser Val Glu Gln Gly Lys Met		
260	265	270
Val Ala Val Phe Tyr Thr Thr Val Ile Pro Met Leu Asn Leu Ile Ile		
275	280	285
Tyr Ser Leu Arg Asn Lys Asn Val Lys Glu Ala Leu Ile Lys Glu Leu		
290	295	300
Ser Met Lys Ile Tyr Phe Ser		
305	310	

<210> 21

<211> 59

<212> PRT

<213> Homo sapiens

<400> 21

Met Ser Arg Arg Asn Tyr Thr Glu Leu Thr Glu Phe Val Leu Leu Gly			
1	5	10	15
Leu Thr Ser Arg Pro Glu Leu Arg Val Ala Phe Leu Ala Leu Phe Leu			
20	25	30	
Phe Val Tyr Ile Ala Thr Val Val Gly Asn Leu Gly Met Ile Ile Leu			
35	40	45	
Ile Lys Val Asp Ser Arg Leu His Thr Pro Met			
50	55		

<210> 22

<211> 30

<212> DNA

<213> Artificial Sequence

<400> 22

cctggagggt ttcaaaggct gatactttag

30

<210> 23

<211> 26

<212> DNA

<213> Artificial Sequence

<400> 23

ctccagcctg agcaacagag caatac

26

<210> 24

<211> 30

<212> DNA

<213> Artificial Sequence

<400> 24

ctcacattca ttgttcttca cagaccgc

30

<210> 25

<211> 24

<212> DNA

<213> Artificial Sequence

<400> 25

ccctgctggg atctggatca agac

24

60

<210> 26
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing oligonucleotide PrimerPU

<400> 26
tgtaaaacga cggccagt

18

<210> 27
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing oligonucleotide PrimerRP

<400> 27
cagggaaacag ctatgacc

18

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/705, G01N 33/566		A3	(11) International Publication Number: WO 00/21985 (43) International Publication Date: 20 April 2000 (20.04.00)																																																																																																																																																																														
<p>(21) International Application Number: PCT/IB99/01729</p> <p>(22) International Filing Date: 13 October 1999 (13.10.99)</p> <p>(30) Priority Data: 60/104,299 14 October 1998 (14.10.98) US</p> <p>(71) Applicant (<i>for all designated States except US</i>): GENSET [FR/FR]; 24, rue Royale, F-75008 Paris (FR).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): BOUGUELERET, Lydie [FR/FR]; 108, avenue Victor Hugo, F-92170 Vanves (FR). MALEKZADEH, Kattayoun [IR/FR]; 41, rue des Laitieres, F-94300 Vincennes (FR).</p> <p>(74) Common Representative: GENSET, 24, rue Royale, F-75008 Paris (FR).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i></p> <p>(88) Date of publication of the international search report: 3 August 2000 (03.08.00)</p>																																																																																																																																																																															
<p>(54) Title: GENES ENCODING OLFACTORY RECEPTORS AND BIALLELIC MARKERS THEREOF</p> <p>(57) Abstract</p> <p>The invention concerns the genomic sequence and coding regions of a new olfactory receptor gene cluster. The invention also concerns polypeptides encoded by the olfactory receptor genes as well as to methods and kits for detecting these polynucleotides and screening substances interacting with these polypeptides. The invention also deals with antibodies directed specifically against such polypeptides that are useful as diagnostic reagents. The invention further encompasses biallelic markers of the olfactory receptor gene useful in genetic analysis.</p>																																																																																																																																																																																	
<p style="text-align: center;">TM1</p> <table border="1"> <tr> <td>list1.msf{orf-8}</td> <td>MRRNFTLVLT EPILLGLTDE QELQILLFPL FLAIYVNTVA GNLSHIALID</td> <td>50</td> </tr> <tr> <td>list1.msf{orf-9}</td> <td>MARNFTLVLT EPILLGLTDE RSLQILLFPL FLAIYVNTVA GNLGHVLLJD</td> <td></td> </tr> <tr> <td>list1.msf{orf-7}</td> <td>-----</td> <td>LPSK</td> </tr> <tr> <td>list1.msf{orf-2}</td> <td>MFSRPHITIVT EPILLGLTDE PFLXKILPOV FLAIYVLTILA GNLCHILLIK</td> <td></td> </tr> <tr> <td>list1.msf{orf-4}</td> <td>MLSRPHITIVT EPILLGLTDE PFLXKILPOV FLAIYVLTILA GNLCHILLIK</td> <td></td> </tr> <tr> <td>list1.msf{orf-5}</td> <td>MGNTRNGSALT EPILLGLTDE PEGQSLILPV FLVIVYLTVL GNLGHVLLK</td> <td></td> </tr> <tr> <td>list1.msf{orf-6}</td> <td>MVRONESTLVT EPILLGLTDE PEGQLPVPL FLVXYLTVL GNLGHVLLK</td> <td></td> </tr> <tr> <td>list1.msf{orf-10}</td> <td>MSRRNFTVLT EPILLGLTDE PERVAVFLAL FLVYVIAVVV GNLGMVLLK</td> <td></td> </tr> <tr> <td>list1.msf{orf-3}</td> <td>MLXGQHTIAVT EPILLGLTDE AELQSLLPPV FLVIVYLTVI GNVSMVLLK</td> <td></td> </tr> <tr> <td>list1.msf{orf-1}</td> <td>-----</td> <td>--MSPLK</td> </tr> <tr> <td>Consensus</td> <td>M-R-H-T-VT EPILLGLTDE PEGQ-LLP-L FLAIYVNTVA GNLGHVLLK</td> <td></td> </tr> </table> <p style="text-align: center;">TM2</p> <table border="1"> <tr> <td>51</td> <td>ANARLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ</td> <td>100</td> </tr> <tr> <td>list1.msf{orf-8}</td> <td>ANANLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-9}</td> <td>-----</td> <td></td> </tr> <tr> <td>list1.msf{orf-7}</td> <td>PTPRLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-2}</td> <td>TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-4}</td> <td>TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-5}</td> <td>TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK TISYACGCFQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-6}</td> <td>LDERLHPTWY PFLSHLSPFDLCPSGWVTPK MTSNIVSE.K TISYACGCFQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-10}</td> <td>VDSPRLHPTWY PFLSHLSPFDLCPSGWVTPK MTSNIVSE.K TISYACGCFQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-3}</td> <td>SDSTLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK TISPTFCFQ</td> <td></td> </tr> <tr> <td>list1.msf{orf-1}</td> <td>SDSTLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK KPFDFLLVALS</td> <td></td> </tr> <tr> <td>Consensus</td> <td>-DSRSLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK TISPTFCFQ</td> <td></td> </tr> </table> <p style="text-align: center;">TM3</p> <table border="1"> <tr> <td>101</td> <td>CYLYKILVNBV EYVILAVHAF D-----</td> <td>150</td> </tr> <tr> <td>list1.msf{orf-8}</td> <td>CYLYKILVNBV EYVILAVHAF DRYMAICNPQ LYGSRMRSKV CSFLIIVPVV</td> <td></td> </tr> <tr> <td>list1.msf{orf-9}</td> <td>-----</td> <td></td> </tr> <tr> <td>list1.msf{orf-7}</td> <td>CYLFILAVNBV EYVILAVHAF DRYMAICNPQ LYGSRMRSKV CSFLIIVPVV</td> <td></td> </tr> <tr> <td>list1.msf{orf-2}</td> <td>CYLFILAVNBV EYVILAVHAF DRYVAICSPQ HYSSRMRSKV CISLIVPVV</td> <td></td> </tr> <tr> <td>list1.msf{orf-4}</td> <td>CYLFILAVNBV EYVILAVHAF DRYVAICSPQ HYSSRMRSKV CISLIVPVV</td> <td></td> </tr> <tr> <td>list1.msf{orf-5}</td> <td>CYFLIAVLLT EYVILAVHAF DRYVAICDPD RYGVTKBSRV CICLATPPPV</td> <td></td> </tr> <tr> <td>list1.msf{orf-6}</td> <td>CYFLIAVLLT EYVILAVHAF DRYVAICDPD RYGVTKBSRV CICLATPPPV</td> <td></td> </tr> <tr> <td>list1.msf{orf-10}</td> <td>FHFILALVIT DYYMLTUNAY DRYMAICKPL LYGSRMRSKV CICLAAAPYY</td> <td></td> </tr> <tr> <td>list1.msf{orf-3}</td> <td>-----</td> <td></td> </tr> <tr> <td>list1.msf{orf-1}</td> <td>HTFPSLW-- DRYMAICKPL LYGSRMRSKV CICLAAAPYY</td> <td></td> </tr> <tr> <td>Consensus</td> <td>CYFLIAVLLT E-Y-LAVHAF DRYVAIC-PL LYSSRMRSKV CICLAAAPYY</td> <td></td> </tr> </table> <p style="text-align: center;">TM4</p> <table border="1"> <tr> <td>101</td> <td>CYLYKILVNBV EYVILAVHAF D-----</td> <td>150</td> </tr> <tr> <td>list1.msf{orf-8}</td> <td>CYLYKILVNBV EYVILAVHAF DRYMAICKPL LYGSRMRSKV CSFLIIVPVV</td> <td></td> </tr> <tr> <td>list1.msf{orf-9}</td> <td>-----</td> <td></td> </tr> <tr> <td>list1.msf{orf-7}</td> <td>YQALTOLMET MMTFLALFCO PHEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-5}</td> <td>YQALTOLMET MMTFLALFCO DSBNHNPYCQ DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-1}</td> <td>YQALTOLMET MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-4}</td> <td>YQALNGLSQT LFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-6}</td> <td>KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-10}</td> <td>KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-3}</td> <td>-----</td> <td></td> </tr> <tr> <td>list1.msf{orf-1}</td> <td>-----</td> <td></td> </tr> <tr> <td>Consensus</td> <td>YQFLSGLMEE MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> </table> <p style="text-align: center;">TM5</p> <table border="1"> <tr> <td>151</td> <td>-----</td> <td>200</td> </tr> <tr> <td>list1.msf{orf-8}</td> <td>YQALTOLMET MMTFLALFCO PHEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-9}</td> <td>-----</td> <td></td> </tr> <tr> <td>list1.msf{orf-7}</td> <td>YQALTOLMET MMTFLALFCO DSBNHNPYCQ DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-5}</td> <td>YQALTOLMET MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-4}</td> <td>YQALNGLSQT LFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-6}</td> <td>KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-10}</td> <td>KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> <tr> <td>list1.msf{orf-3}</td> <td>-----</td> <td></td> </tr> <tr> <td>list1.msf{orf-1}</td> <td>-----</td> <td></td> </tr> <tr> <td>Consensus</td> <td>YQFLSGLMEE MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP</td> <td></td> </tr> </table>				list1.msf{orf-8}	MRRNFTLVLT EPILLGLTDE QELQILLFPL FLAIYVNTVA GNLSHIALID	50	list1.msf{orf-9}	MARNFTLVLT EPILLGLTDE RSLQILLFPL FLAIYVNTVA GNLGHVLLJD		list1.msf{orf-7}	-----	LPSK	list1.msf{orf-2}	MFSRPHITIVT EPILLGLTDE PFLXKILPOV FLAIYVLTILA GNLCHILLIK		list1.msf{orf-4}	MLSRPHITIVT EPILLGLTDE PFLXKILPOV FLAIYVLTILA GNLCHILLIK		list1.msf{orf-5}	MGNTRNGSALT EPILLGLTDE PEGQSLILPV FLVIVYLTVL GNLGHVLLK		list1.msf{orf-6}	MVRONESTLVT EPILLGLTDE PEGQLPVPL FLVXYLTVL GNLGHVLLK		list1.msf{orf-10}	MSRRNFTVLT EPILLGLTDE PERVAVFLAL FLVYVIAVVV GNLGMVLLK		list1.msf{orf-3}	MLXGQHTIAVT EPILLGLTDE AELQSLLPPV FLVIVYLTVI GNVSMVLLK		list1.msf{orf-1}	-----	--MSPLK	Consensus	M-R-H-T-VT EPILLGLTDE PEGQ-LLP-L FLAIYVNTVA GNLGHVLLK		51	ANARLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ	100	list1.msf{orf-8}	ANANLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ		list1.msf{orf-9}	-----		list1.msf{orf-7}	PTPRLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ		list1.msf{orf-2}	TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ		list1.msf{orf-4}	TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ		list1.msf{orf-5}	TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK TISYACGCFQ		list1.msf{orf-6}	LDERLHPTWY PFLSHLSPFDLCPSGWVTPK MTSNIVSE.K TISYACGCFQ		list1.msf{orf-10}	VDSPRLHPTWY PFLSHLSPFDLCPSGWVTPK MTSNIVSE.K TISYACGCFQ		list1.msf{orf-3}	SDSTLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK TISPTFCFQ		list1.msf{orf-1}	SDSTLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK KPFDFLLVALS		Consensus	-DSRSLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK TISPTFCFQ		101	CYLYKILVNBV EYVILAVHAF D-----	150	list1.msf{orf-8}	CYLYKILVNBV EYVILAVHAF DRYMAICNPQ LYGSRMRSKV CSFLIIVPVV		list1.msf{orf-9}	-----		list1.msf{orf-7}	CYLFILAVNBV EYVILAVHAF DRYMAICNPQ LYGSRMRSKV CSFLIIVPVV		list1.msf{orf-2}	CYLFILAVNBV EYVILAVHAF DRYVAICSPQ HYSSRMRSKV CISLIVPVV		list1.msf{orf-4}	CYLFILAVNBV EYVILAVHAF DRYVAICSPQ HYSSRMRSKV CISLIVPVV		list1.msf{orf-5}	CYFLIAVLLT EYVILAVHAF DRYVAICDPD RYGVTKBSRV CICLATPPPV		list1.msf{orf-6}	CYFLIAVLLT EYVILAVHAF DRYVAICDPD RYGVTKBSRV CICLATPPPV		list1.msf{orf-10}	FHFILALVIT DYYMLTUNAY DRYMAICKPL LYGSRMRSKV CICLAAAPYY		list1.msf{orf-3}	-----		list1.msf{orf-1}	HTFPSLW-- DRYMAICKPL LYGSRMRSKV CICLAAAPYY		Consensus	CYFLIAVLLT E-Y-LAVHAF DRYVAIC-PL LYSSRMRSKV CICLAAAPYY		101	CYLYKILVNBV EYVILAVHAF D-----	150	list1.msf{orf-8}	CYLYKILVNBV EYVILAVHAF DRYMAICKPL LYGSRMRSKV CSFLIIVPVV		list1.msf{orf-9}	-----		list1.msf{orf-7}	YQALTOLMET MMTFLALFCO PHEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-5}	YQALTOLMET MMTFLALFCO DSBNHNPYCQ DPPLILKACG DTVKVKHAMP		list1.msf{orf-1}	YQALTOLMET MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-4}	YQALNGLSQT LFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-6}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-10}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-3}	-----		list1.msf{orf-1}	-----		Consensus	YQFLSGLMEE MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		151	-----	200	list1.msf{orf-8}	YQALTOLMET MMTFLALFCO PHEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-9}	-----		list1.msf{orf-7}	YQALTOLMET MMTFLALFCO DSBNHNPYCQ DPPLILKACG DTVKVKHAMP		list1.msf{orf-5}	YQALTOLMET MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-4}	YQALNGLSQT LFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-6}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-10}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP		list1.msf{orf-3}	-----		list1.msf{orf-1}	-----		Consensus	YQFLSGLMEE MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP	
list1.msf{orf-8}	MRRNFTLVLT EPILLGLTDE QELQILLFPL FLAIYVNTVA GNLSHIALID	50																																																																																																																																																																															
list1.msf{orf-9}	MARNFTLVLT EPILLGLTDE RSLQILLFPL FLAIYVNTVA GNLGHVLLJD																																																																																																																																																																																
list1.msf{orf-7}	-----	LPSK																																																																																																																																																																															
list1.msf{orf-2}	MFSRPHITIVT EPILLGLTDE PFLXKILPOV FLAIYVLTILA GNLCHILLIK																																																																																																																																																																																
list1.msf{orf-4}	MLSRPHITIVT EPILLGLTDE PFLXKILPOV FLAIYVLTILA GNLCHILLIK																																																																																																																																																																																
list1.msf{orf-5}	MGNTRNGSALT EPILLGLTDE PEGQSLILPV FLVIVYLTVL GNLGHVLLK																																																																																																																																																																																
list1.msf{orf-6}	MVRONESTLVT EPILLGLTDE PEGQLPVPL FLVXYLTVL GNLGHVLLK																																																																																																																																																																																
list1.msf{orf-10}	MSRRNFTVLT EPILLGLTDE PERVAVFLAL FLVYVIAVVV GNLGMVLLK																																																																																																																																																																																
list1.msf{orf-3}	MLXGQHTIAVT EPILLGLTDE AELQSLLPPV FLVIVYLTVI GNVSMVLLK																																																																																																																																																																																
list1.msf{orf-1}	-----	--MSPLK																																																																																																																																																																															
Consensus	M-R-H-T-VT EPILLGLTDE PEGQ-LLP-L FLAIYVNTVA GNLGHVLLK																																																																																																																																																																																
51	ANARLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ	100																																																																																																																																																																															
list1.msf{orf-8}	ANANLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ																																																																																																																																																																																
list1.msf{orf-9}	-----																																																																																																																																																																																
list1.msf{orf-7}	PTPRLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ																																																																																																																																																																																
list1.msf{orf-2}	TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ																																																																																																																																																																																
list1.msf{orf-4}	TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK SISYPACLVQ																																																																																																																																																																																
list1.msf{orf-5}	TNSHLHPTWY PFLSHLSPFDLCPSGWVTPK MLBIFLSERK TISYACGCFQ																																																																																																																																																																																
list1.msf{orf-6}	LDERLHPTWY PFLSHLSPFDLCPSGWVTPK MTSNIVSE.K TISYACGCFQ																																																																																																																																																																																
list1.msf{orf-10}	VDSPRLHPTWY PFLSHLSPFDLCPSGWVTPK MTSNIVSE.K TISYACGCFQ																																																																																																																																																																																
list1.msf{orf-3}	SDSTLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK TISPTFCFQ																																																																																																																																																																																
list1.msf{orf-1}	SDSTLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK KPFDFLLVALS																																																																																																																																																																																
Consensus	-DSRSLHPTWY PFLSHLSPFDLCPSGWVTPK MLYWFFPSRK TISPTFCFQ																																																																																																																																																																																
101	CYLYKILVNBV EYVILAVHAF D-----	150																																																																																																																																																																															
list1.msf{orf-8}	CYLYKILVNBV EYVILAVHAF DRYMAICNPQ LYGSRMRSKV CSFLIIVPVV																																																																																																																																																																																
list1.msf{orf-9}	-----																																																																																																																																																																																
list1.msf{orf-7}	CYLFILAVNBV EYVILAVHAF DRYMAICNPQ LYGSRMRSKV CSFLIIVPVV																																																																																																																																																																																
list1.msf{orf-2}	CYLFILAVNBV EYVILAVHAF DRYVAICSPQ HYSSRMRSKV CISLIVPVV																																																																																																																																																																																
list1.msf{orf-4}	CYLFILAVNBV EYVILAVHAF DRYVAICSPQ HYSSRMRSKV CISLIVPVV																																																																																																																																																																																
list1.msf{orf-5}	CYFLIAVLLT EYVILAVHAF DRYVAICDPD RYGVTKBSRV CICLATPPPV																																																																																																																																																																																
list1.msf{orf-6}	CYFLIAVLLT EYVILAVHAF DRYVAICDPD RYGVTKBSRV CICLATPPPV																																																																																																																																																																																
list1.msf{orf-10}	FHFILALVIT DYYMLTUNAY DRYMAICKPL LYGSRMRSKV CICLAAAPYY																																																																																																																																																																																
list1.msf{orf-3}	-----																																																																																																																																																																																
list1.msf{orf-1}	HTFPSLW-- DRYMAICKPL LYGSRMRSKV CICLAAAPYY																																																																																																																																																																																
Consensus	CYFLIAVLLT E-Y-LAVHAF DRYVAIC-PL LYSSRMRSKV CICLAAAPYY																																																																																																																																																																																
101	CYLYKILVNBV EYVILAVHAF D-----	150																																																																																																																																																																															
list1.msf{orf-8}	CYLYKILVNBV EYVILAVHAF DRYMAICKPL LYGSRMRSKV CSFLIIVPVV																																																																																																																																																																																
list1.msf{orf-9}	-----																																																																																																																																																																																
list1.msf{orf-7}	YQALTOLMET MMTFLALFCO PHEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-5}	YQALTOLMET MMTFLALFCO DSBNHNPYCQ DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-1}	YQALTOLMET MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-4}	YQALNGLSQT LFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-6}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-10}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-3}	-----																																																																																																																																																																																
list1.msf{orf-1}	-----																																																																																																																																																																																
Consensus	YQFLSGLMEE MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
151	-----	200																																																																																																																																																																															
list1.msf{orf-8}	YQALTOLMET MMTFLALFCO PHEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-9}	-----																																																																																																																																																																																
list1.msf{orf-7}	YQALTOLMET MMTFLALFCO DSBNHNPYCQ DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-5}	YQALTOLMET MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-4}	YQALNGLSQT LFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-6}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-10}	KQFEDGLPQA IFLPFLSPCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																
list1.msf{orf-3}	-----																																																																																																																																																																																
list1.msf{orf-1}	-----																																																																																																																																																																																
Consensus	YQFLSGLMEE MMTFLALFCO SLEINHPYCA DPPLILKACG DTVKVKHAMP																																																																																																																																																																																

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International Application No

PCT/IB 99/01729

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/12 C07K14/705 G01N33/566

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N C07K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BUETTNER J A ET AL: "Organization and evolution of olfactory receptor genes on human chromosome 11." GENOMICS, (1998 OCT 1) 53 (1) 56-68., XP002135640 the whole document ---	1-37
X	WO 95 18140 A (YEDA RES & DEV ; RYCUS AVIGAIL (IL); BEN ARIE NISSIM (IL); LANCET D) 6 July 1995 (1995-07-06) page 4, line 19 - line 21 page 6, line 9 -page 8, line 5 ---	1-37 -/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

13 April 2000

31.05.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Chakravarty, A

INTERNATIONAL SEARCH REPORT

International Application No
PCT/IB 99/01729

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>TRASK BARBARA J ET AL: "Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes."</p> <p>HUMAN MOLECULAR GENETICS JAN., 1998, vol. 7, no. 1, January 1998 (1998-01), pages 13-26, XP002135641</p> <p>ISSN: 0964-6906</p> <p>figure 2</p> <p>---</p>	1-37
X	<p>ROUQUIER S ET AL: "Distribution of olfactory receptor genes in the human genome"</p> <p>NATURE GENETICS, vol. 18, no. 3, 18 March 1998 (1998-03-18), pages 243-250, XP002111208</p> <p>page 244, column 1, paragraph 2; figure 1</p> <p>---</p>	1-37
X	<p>DATABASE EMBL [Online]</p> <p>EBI</p> <p>acceession no. AC004474,</p> <p>30 March 1998 (1998-03-30)</p> <p>BIRREN B. ET AL.: "Homo sapiens chromosome Y, clone 475I1, complete sequence"</p> <p>XP002135642</p> <p>compare with present SEQ ID 1</p> <p>abstract</p> <p>-----</p>	1-15, 19-21

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB 99/01729

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

SEE ADDITIONAL SHEET

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1,2,7,13,16-24 (all part)

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 1-37 relate to an extremely large number of possible compounds/apparatus/methods. In fact, the claims contain so many possible permutations that a lack of clarity (and/or conciseness) within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear (and/or concise), namely SEQ ID 1.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA 210

1. Claims: 1, 2, 7, 13, 16-24 (all part)

Olfactory receptor genomic sequence SEQ ID 1

2. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 2 and 12)

3. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 3 and 13)

4. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 4 and 14)

5. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 5 and 15)

6. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 6 and 16)

7. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 7 and 17)

8. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 8 and 18)

9. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 9 and 19)

10. Claims: 1, 2, 7, 13-26, 35-37 (all part)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 10 and 20)

11. Claims: 1, 2, 7, 13-26, 35-37 (all part)

OLF1 polypeptide and encoding polynucleotide (SEQ IDs 11 and 21)

~~12-24~~

12. Claims: claims 1-3, 5-10, 13-24 (all part)

Groups 12-24:

Polynucleotides of 8-50 bp in length from SEQ ID 1, including an olfactory related biallelic marker selected from A1-A13

~~25~~

13. Claims: 1-3, 5, 7-10, 13-24 (all part)

Group 25:

Polynucleotides of 8-50 bp in length from SEQ ID 1 including an olfactory related biallelic marker other than A1-A13. Note that in this group further non-unity is present, since each group of fragments not linked to other by a common structural feature is regarded as a separate invention. Moreover, this group is not searchable since the markers are not defined.

~~26-29~~

14. Claims: 11,12

Groups 26-29: Oligonucleotide primers D1-D13 (group 26), E1-E13 (group 27) and B1-B11 (group 28) and C1-C11 (group 29)

~~30~~

15. Claim : 1 (part)

Polynucleotides encoding of at least 12 nucleotides of SEQ ID 1 as defined in claim 1 and not falling into another group- Note that in this group further non-unity is present, since each group of fragments not linked to other by a common structural feature is regarded as a separate invention. e.g. the claims define 114448 separate 12mer oligonucleotide fragments which each may be a separate group.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/IB 99/01729

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9518140	A 06-07-1995	NONE	

Form PCT/ISA/210 (patent family annex) (July 1992)

