← Все модули ← The case of roots with multiplicities

Triangulations of a polygon →

Баллы 5,00/5,00

Оценка 10,00 из 10,00 (**100**%)

Вопрос **1** Верно

Баллов: 1,00 из 1,00 Which of the following is a Fibonacci sequence?

- a. the number
- \blacksquare a. the number of partitions, i.e. presentations of a natural number as a sum of positive non-increasing summands (i. e., 3=2+1=1+1+1)
- \blacksquare b. the number of sequences of 0's and 1's with n digits that contain no two consecutive zeroes digits that contain no two consecutive zeroes
- lacksquare c. the number of partitions of a rectangle 2 imes n into rectangles 2 imes 1
- lacksquare d. the number of subsets of $\{1,2,\ldots,n\}$ that contain no consecutive integers
- $\ensuremath{ | |}$ e. the number of compositions of a natural number into positive odd summands (i.e., 4=1+1+1+1=1+3=3+1)

Ваш ответ верный.

Вопрос 2

Верно Баллов: 1,00 из 1,00 The Fibonacci sequence can be continued "backwards" using the same rule: $F_n=F_{n-1}+F_{n-2}$ For example $F_0=0$ $F_{-1}=1$ Find F_{-10}

Ответ: -55

Вопрос **3** Верно

Баллов: 1,00 из 1,00 Find the maximal common ratio of a geometric progression a_n satisfying the following equation:

$$a_{n+2} = 3a_{n+1} - 2a_n.$$

2

Ответ:

The characteristic polinomial is $x^2 - 3x + 2 = (x - 1)(x - 2)$

Вопрос **4**

Верно

Баллов: 1,00 из 1,00 The sequence a_n is defined by the recurrence relation $a_{n+3}=3a_{n+2}-3a_{n+1}+a_n$ with initial values $a_0=a_1=0; a_2=1$. Find a_{100}

Ответ: 4950

The sequence is in fact $a_n = \frac{n(n-1)}{2}$

Вопрос 5

Верно Баллов: 1,00 из 1,00 The sequence a_n is defined by the recurrence relation

$$a_{n+4} = a_{n+3} - a_{n+2} + a_{n+1} - a_n$$

with initial values

$$a_0 = 1607; a_1 = 1707; a_2 = 1814; a_3 = 1914$$

Find a_{100}

Ответ: 1607

The characteristic polinomial is $x^4-x^3+x^2-x+1$. It divides x_5+1 , hence, $a_{n+5}=-a_n$