

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第一章 复数与复变函数

1 复数及其代数运算

第一节 复数及其代数运算

- 复数的产生
- 复数的概念
- 复数的代数运算
- 共轭复数

复数起源于多项式方程的求根问题.

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式
$$x = \frac{-b \pm \sqrt{\Delta}}{2}$$
, 其中 $\Delta = b^2 - 4c$.

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式
$$x = \frac{-b \pm \sqrt{\Delta}}{2}$$
, 其中 $\Delta = b^2 - 4c$.

(1) 当 $\Delta > 0$ 时, 有两个不同的实根;

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式 $x = \frac{-b \pm \sqrt{\Delta}}{2}$, 其中 $\Delta = b^2 - 4c$.

- (1) 当 $\Delta > 0$ 时, 有两个不同的实根;
- (2) 当 $\Delta = 0$ 时, 有一个二重的实根;

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式 $x = \frac{-b \pm \sqrt{\Delta}}{2}$, 其中 $\Delta = b^2 - 4c$.

- (1) 当 $\Delta > 0$ 时, 有两个不同的实根;
- (2) 当 $\Delta = 0$ 时, 有一个二重的实根;
- (3) 当 $\Delta < 0$ 时, 无实根.

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式 $x = \frac{-b \pm \sqrt{\Delta}}{2}$, 其中 $\Delta = b^2 - 4c$.

- (1) 当 $\Delta > 0$ 时, 有两个不同的实根;
- (2) 当 $\Delta = 0$ 时, 有一个二重的实根;
- (3) 当 $\Delta < 0$ 时, 无实根.

可以看出,在一元二次方程中,我们可以舍去包含负数开方的解.

$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}.$$

于是得到求根公式 $x = \frac{-b \pm \sqrt{\Delta}}{2}$, 其中 $\Delta = b^2 - 4c$.

- (1) 当 $\Delta > 0$ 时, 有两个不同的实根;
- (2) 当 $\Delta = 0$ 时, 有一个二重的实根;
- (3) 当 $\Delta < 0$ 时, 无实根.

可以看出,在一元二次方程中,我们可以舍去包含负数开方的解.然而在一元三次方程中,即便只考虑实数根也会不可避免地引入负数开方.

解方程 $x^3 + 6x - 20 = 0$.

例题: 三次方程求解 (一个实根) 非考试内容 例。解方程
$$x^3+6x-20=0$$
.

 $u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$

2/18

非考试内容

例. 解方程 $x^3 + 6x - 20 = 0$.

解答. 设 x = u + v. 那么

 $u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$

非考试内容

我们希望

例. 解方程 $x^3 + 6x - 20 = 0$. 解答. 设 x = u + v. 那么

 $u^3 + v^3 = 20, \qquad uv = -2.$

例. 解方程 $x^3 + 6x - 20 = 0$.

解答. 设
$$x = u + v$$
, 那么

 $u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$

我们希望

 $u^3 + v^3 = 20, \qquad uv = -2.$

那么 $u^3.v^3$ 满足一元二次方程

 $X^2 - 20X - 8 = 0$

复数与复变函数 ▶1 复数及其代数运算 ▶A 复数的产生

解答. 设
$$x = u + v$$
, 那么

$$u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$$

$$+3uv(u \dashv$$

$$y^* + \mathbf{3}uv(u -$$

例。解方程 $x^3 + 6x - 20 = 0$

$$u^3 + v^3 = 20.$$
 $uv = -2.$

$$X^2 - 20X - 8 = 0$$

$$X^2 - 20X -$$

$$A = 20A =$$

$$X^{2} - 2$$

那么 $u^3.v^3$ 满足一元二次方程

解得
$$u^3 = 10 \pm \sqrt{108} = (1 \pm \sqrt{3})^3.$$

例。解方程 $x^3 + 6x - 20 = 0$

解答. 设
$$x = u + v$$
, 那么

$$u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$$

$$+ 3uv(u +$$

$$u^3 + v^3 = 20.$$
 $uv = -2.$

$$v' + v'' = 20,$$

那么
$$u^3, v^3$$
 满足一元二次方程 $V^2 = 20 V$

$$X^2$$
 –

$$X^2$$

所以 $u = 1 \pm \sqrt{3}$, $v = 1 \mp \sqrt{3}$.

#**=**nnn#000#000#0000

我们希望

解得

$$X^2$$
 –

$$X^2-2$$

$$X^2 - 20X - 8 = 0.$$

$$A = 20A$$

$$u^3 = 10 \pm \sqrt{108} = (1 \pm \sqrt{3})^3.$$

$$(\bar{3})^3$$
.

复数与复变函数 ▶1 复数及其代数运算 ▶A 复数的产生

例. 解方程 $x^3 + 6x - 20 = 0$.

解答。 设 x = u + v 那么 $u^{3} + v^{3} + 3uv(u+v) + 6(u+v) - 20 = 0.$

我们希望 $u^3 + v^3 = 20$, uv = -2.

那么 $u^3.v^3$ 满足一元二次方程 $X^2 - 20X - 8 - 0$

解得

 $u^3 = 10 \pm \sqrt{108} = (1 \pm \sqrt{3})^3$.

所以 $u = 1 \pm \sqrt{3}$. $v = 1 \mp \sqrt{3}$. x = u + v = 2.

解答. 设
$$x = u + v$$
, 那么
$$u^3 + v^3 + 3uv(u + v) + 6(u + v) - 20 = 0.$$
 我们希望
$$u^3 + v^3 - 20 \qquad uv = -2$$

 $u^3 + v^3 = 20, \qquad uv = -2.$ 那么 $u^3.v^3$ 满足一元二次方程 $X^2 - 20X - 8 - 0$

解得 $u^3 = 10 \pm \sqrt{108} = (1 \pm \sqrt{3})^3$. 所以 $u = 1 \pm \sqrt{3}$. $v = 1 \mp \sqrt{3}$. x = u + v = 2.

复数与复变函数 ▶1 复数及其代数运算 ▶A 复数的产生

解方程 $x^3 - 7x + 6 = 0$. 例.

₩□■□□₩□□□₩□□□□

例题: 三次方程求解 (三个实根)

#□■□□#□□□#□□□□

非考试内容

3 / 18

例题: 三次方程求解 (三个实根)

解答. 类似地 x = u + v. 其中

非考试内容

 $u^3 + v^3 = -6, \qquad uv = \frac{7}{3}.$ 于是 u^3, v^3 满足一元二次方程 $X^2 + 6X + 343/27 = 0$.

3 / 18

非考试内容

解答. 类似地
$$x = u + v$$
, 其中 $y^3 + v^3 - v$

$$u^3 + v^3 = -$$

$$u^3 + v^3 = -6,$$
 $uv = \frac{7}{3}.$ 于是 u^3, v^3 满足一元二次方程 $X^2 + 6X + 343/27 = 0.$ 该方程无实数解, 我们可以强行解得 $u^3 = -3 + \frac{10}{9}\sqrt{-3}.$

$$u^3 + v^3 = -6$$

$$u^3 + v^3 = -6$$

$$+v^3 = -6$$

$$= -6,$$

与复变函数 ▶1 复数及其代数运算 ▶A 复数的产生

6.
$$uv = \frac{7}{2}$$

$$uv = \frac{7}{2}$$

$$M = M + M + M = 0$$

解答. 类似地
$$x = u + v$$
, 其中

$$u^3 + v^3 = -6, \qquad uv = \frac{7}{3}.$$

$$u^{3}+v^{3}=-$$

干是 $u^{3}.v^{3}$ 满足一元二次方程

于是
$$u^3, v^3$$
 满足一元二次方程 u^3

于是
$$u^3, v^3$$
 满足一元二次方程 $X^2 + 6X + 343/27 = 0$.

$$ac = \frac{1}{5}$$

子程 $X^2 + 6X + 3$

$$\vec{E} X^2 + 6X + \frac{3}{343}/2$$

"定
$$u^3, v^3$$
 满足一元一次为程 $X^2 + 6X + 343/27 = 0$.
该方程无实数解, 我们可以强行解得 $u^3 = -3 + \frac{10}{9}\sqrt{-3}$. 于是

得
$$u^3 = -3$$
 -

$$a = -3 + \frac{1}{9}$$

$$\frac{3-5\sqrt{-3}}{6}$$
,

$$u = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$

例. 解方程 $x^3 - 7x + 6 = 0$

解答. 类似地
$$x = u + v$$
, 其中

$$u^3 + v^3 = -6, \qquad uv = \frac{7}{3}.$$

$$u^3+v^3=-$$

于是 u^3 v^3 满足 一元 二次 方程

于是
$$u^3, v^3$$
 满足一元二次方程 $X^2 + 6X + 343/27 = 0$.

于是
$$u^3, v^3$$
 满足一元二次方程 X^2 -

该方程无实数解, 我们可以强行解得
$$u^3 = -3 + \frac{10}{9}\sqrt{-3}$$
. 于是

$$u = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6}, \frac{3 -$$

$$\frac{3}{3}$$
, $\frac{3}{6}$, $\frac{3}{6}$, $\frac{3}{6}$

$$v = \frac{3 - 2\sqrt{-3}}{3}, \frac{-9 - \sqrt{-3}}{6}, \frac{3 + 5\sqrt{-3}}{6},$$

例. 解方程 $x^3 - 7x + 6 = 0$

解答. 类似地
$$x = u + v$$
, 其中

$$u^3 + v^3 = -6, \qquad uv = \frac{7}{3}.$$

于是
$$u^3, v^3$$
 满足一元二次方程 u^3

于是
$$u^3, v^3$$
 满足一元二次方程 $X^2 + 6X + 343/27 = 0$.

F是
$$u^3,v^3$$
 满足一元二次方程 2
该方程无实数解, 我们可以强 $^{\circ}$

该方程无实数解, 我们可以强行解得
$$u^3 = -3 + \frac{10}{9}\sqrt{-3}$$
. 于是

$$u = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$

$$v = \frac{3 - 2\sqrt{-3}}{3}, \frac{-9 - \sqrt{-3}}{6}, \frac{3 + 5\sqrt{-3}}{6},$$

$$x = u + v = 2, -3, 1.$$

例. 解方程 $x^3 - 7x + 6 = 0$.

解答。 类似地
$$x = u + v$$
. 其中

于是
$$u^3, v^3$$
 满足一元二次方程 $X^2 + 6X + 343/27 = 0$. 该方程无实数解, 我们可以强行解得 $u^3 = -3 + \frac{10}{9}\sqrt{-3}$. 于是

$$u = \frac{3 + 2\sqrt{-3}}{3}, \frac{-9 + \sqrt{-3}}{6}, \frac{3 - 5\sqrt{-3}}{6},$$
$$v = \frac{3 - 2\sqrt{-3}}{3}, \frac{-9 - \sqrt{-3}}{6}, \frac{3 + 5\sqrt{-3}}{6},$$

x = u + v = 2, -3, 1

一般地, 方程 $x^3 + px + q = 0$ 的解为 (p = 0 情形较简单, 这里不考虑)

$$x = u - \frac{p}{3u}$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

一般地, 方程 $x^3 + px + q = 0$ 的解为 (p = 0) 情形较简单, 这里不考虑)

$$x = u - \frac{p}{3u}$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

通过分析函数图像的极值点可以知道:

一般地, 方程 $x^3 + px + q = 0$ 的解为 (p = 0 情形较简单, 这里不考虑)

$$x = u - \frac{p}{3u}$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

通过分析函数图像的极值点可以知道:

一般地, 方程 $x^3 + px + q = 0$ 的解为 (p = 0) 情形较简单, 这里不考虑)

$$x = u - \frac{p}{3u}$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

通过分析函数图像的极值点可以知道:

$$\Delta = 0$$
, 有 2 个根 $x = -\sqrt[3]{4q}$, $\frac{1}{2}\sqrt[3]{4q}$ (2 重).

一般地, 方程 $x^3 + px + q = 0$ 的解为 (p = 0 情形较简单, 这里不考虑)

$$x = u - \frac{p}{3u}$$
, $u^3 = -\frac{q}{2} + \sqrt{\Delta}$, $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$.

通过分析函数图像的极值点可以知道:

 $\Delta < 0$,有3个根

由此可见, 若想使用求根公式, 就必须接受负数开方.

由此可见, 若想使用求根公式, 就必须接受负数开方. 那么为什么当 $\Delta < 0$ 时, 从 求根公式一定能得到 3 个实根呢?

尽管在十六世纪, 人们已经得到了三次方程的求根公式, 然而对其中出现的虚数, 却是难以接受.

尽管在十六世纪, 人们已经得到了三次方程的求根公式, 然而对其中出现的虚数, 却是难以接受. 莱布尼兹曾说: 圣灵在分析的奇观中找到了超凡的显示, 这就是那个理想世界的端兆, 那个介于存在与不存在之间的两栖物, 那个我们称之为虚的 —1 的平方根。

尽管在十六世纪, 人们已经得到了三次方程的求根公式, 然而对其中出现的虚数, 却是难以接受. 莱布尼兹曾说: 圣灵在分析的奇观中找到了超凡的显示, 这就是那个理想世界的端兆, 那个介于存在与不存在之间的两栖物, 那个我们称之为虚的 —1 的平方根。 不过, 现在我们可以用更为现代和严格的语言来引入复数.

现在我们来正式介绍复数的概念.

现在我们来正式介绍复数的概念. 为了避免记号 $\sqrt{-1}$ 带来的歧义, 我们先引入抽象符号 i. 再通过定义它的运算来构造复数.

现在我们来正式介绍复数的概念. 为了避免记号 $\sqrt{-1}$ 带来的歧义, 我们先引入抽象符号 i, 再通过定义它的运算来构造复数.

定义. 固定一个记号 i, 复数就是形如 z = x + yi 的元素, 其中 x, y 均是实数, 且不同的 (x, y) 对应不同的复数.

现在我们来正式介绍复数的概念. 为了避免记号 $\sqrt{-1}$ 带来的歧义, 我们先引入抽象符号 i, 再通过定义它的运算来构造复数.

定义. 固定一个记号 i, 复数就是形如 z=x+yi 的元素, 其中 x,y 均是实数, 且不同的 (x,y) 对应不同的复数.

回忆全体实数、有理数、整数、自然数构成的集合分别记作 $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$.

现在我们来正式介绍复数的概念. 为了避免记号 $\sqrt{-1}$ 带来的歧义, 我们先引入抽象符号 i, 再通过定义它的运算来构造复数.

定义. 固定一个记号 i, 复数就是形如 z=x+yi 的元素, 其中 x,y 均是实数, 且不同的 (x,y) 对应不同的复数.

回忆全体实数、有理数、整数、自然数构成的集合分别记作 $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$. 将全体复数记作 \mathbb{C} .

现在我们来正式介绍复数的概念. 为了避免记号 $\sqrt{-1}$ 带来的歧义, 我们先引入抽象符号 i, 再通过定义它的运算来构造复数.

定义. 固定一个记号 i, 复数就是形如 z=x+yi 的元素, 其中 x,y 均是实数, 且不同的 (x,y) 对应不同的复数.

回忆全体实数、有理数、整数、自然数构成的集合分别记作 $\mathbb{R},\mathbb{Q},\mathbb{Z},\mathbb{N}$. 将全体复数记作 \mathbb{C} .

实数 x 可以自然地看成复数 x + 0i.

现在我们来正式介绍复数的概念. 为了避免记号 $\sqrt{-1}$ 带来的歧义, 我们先引入抽象符号 i, 再通过定义它的运算来构造复数.

定义. 固定一个记号 i, 复数就是形如 z=x+yi 的元素, 其中 x,y 均是实数, 且不同的 (x,y) 对应不同的复数.

回忆全体实数、有理数、整数、自然数构成的集合分别记作 $\mathbb{R},\mathbb{Q},\mathbb{Z},\mathbb{N}$. 将全体复数记作 \mathbb{C} .

实数 x 可以自然地看成复数 x + 0i. 于是我们有 $\mathbb{R} \subseteq \mathbb{C}$.

 \mathbb{C} 自然构成一个二维实线性空间,且 $\{1,i\}$ 是一组基.

复平面

 \mathbb{C} 自然构成一个二维实线性空间,且 $\{1,i\}$ 是一组基. 因此它和平面上的点可以建立一一对应,并将建立起这种对应的平面称为 $\mathbf{5}$ 平面.

 \mathbb{C} 自然构成一个二维实线性空间, 且 $\{1,i\}$ 是一组基. 因此它和平面上的点可以建立一一对应, 并将建立起这种对应的平面称为 $\mathbf{5}$ 平面.

• x, y 轴分别对应复平面的实轴和虚轴.

- x, y 轴分别对应复平面的实轴和虚轴.
- $\Re z = x + yi + x = \operatorname{Re} z + yi + x = \operatorname{Re} z + z = \operatorname{Sup} z = \operatorname{Sup} z + yi + z = \operatorname{Sup} z = \operatorname$

- x, y 轴分别对应复平面的实轴和虚轴.
- $\Re z = x + yi$ 中 $x = \operatorname{Re} z$ 为 z 的实部; $y = \operatorname{Im} z$ 为 z 的虚部.
- 当虚部 Im z = 0 时, z 为实数, 它落在实轴上.

- *x*, *y* 轴分别对应复平面的实轴和虚轴.
- $\Re z = x + yi$ 中 $x = \operatorname{Re} z$ 为 z 的实部; $y = \operatorname{Im} z$ 为 z 的虚部.
- 当虚部 Im z = 0 时, z 为实数, 它落在实轴上.
 - 不是实数的复数是虚数.

- x, y 轴分别对应复平面的实轴和虚轴.
- $\Re z = x + yi$ 中 $x = \operatorname{Re} z$ 为 z 的实部; $y = \operatorname{Im} z$ 为 z 的虚部.
- 当虚部 Im z = 0 时, z 为实数, 它落在实轴上.
 - 不是实数的复数是虚数.
- 当实部 $\operatorname{Re} z = 0$ 且 $z \neq 0$ 时, z 为纯虚数, 它落在虚轴上.

例. 实数 x 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是:

例. 实数 x 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是: (1) 实数; (2) 纯虚数.

例. 实数
$$x$$
 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是: (1) 实数; (2) 纯虚数.

例. 实数
$$x$$
 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)i$ 是: (1) 实数; (2) 纯虚数.

(1) Im
$$z = x^2 + 5x - 6 = 0$$
, $\mathbb{P} x = 1$ $\mathbf{A} - 6$.

例. 实数
$$x$$
 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是: (1) 实数; (2) 纯虚数.

(1) Im
$$z = x^2 + 5x - 6 = 0$$
, $\mathbb{P} x = 1$ $\mathbb{A} -6$.

(2) Re
$$z = x^2 + 3x - 4 = 0$$
, $\mathbb{P} x = 1$ $\mathbf{x} = -4$.

例. 实数
$$x$$
 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是: (1) 实数; (2) 纯虚数.

(1) Im
$$z = x^2 + 5x - 6 = 0$$
, $px = 1 \neq -6$.

(2) Re
$$z=x^2+3x-4=0$$
, 即 $x=1$ 或 -4 . 但同时要求 Im $z=x^2+5x-6\neq 0$, 因此 $x\neq 1$.

例. 实数
$$x$$
 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是: (1) 实数; (2) 纯虚数.

(1) Im
$$z = x^2 + 5x - 6 = 0$$
, $\mathbb{P} \ x = 1 \ \text{\'a} \ -6$.

(2) Re
$$z=x^2+3x-4=0$$
, 即 $x=1$ 或 -4 . 但同时要求 Im $z=x^2+5x-6\neq 0$, 因此 $x\neq 1$. 故 $x=-4$.

例. 实数
$$x$$
 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是: (1) 实数; (2) 纯虚数.

(1) Im
$$z = x^2 + 5x - 6 = 0$$
, $\mathbb{P} x = 1 \leq -6$.

(2) Re
$$z = x^2 + 3x - 4 = 0$$
, 即 $x = 1$ 或 -4 . 但同时要求 Im $z = x^2 + 5x - 6 \neq 0$, 因此 $x \neq 1$. 故 $x = -4$.

练习. 若
$$x^2(1+i) - x(5+4i) + 4 + 3i$$
 是纯虚数, 则实数 $x =$ _____.

例. 实数
$$x$$
 取何值时, $z = (x^2 + 3x - 4) + (x^2 + 5x - 6)$ i 是: (1) 实数; (2) 纯虚数.

(1) Im
$$z = x^2 + 5x - 6 = 0$$
, $\mathbb{P} x = 1 \leq -6$.

(2) Re
$$z=x^2+3x-4=0$$
, 即 $x=1$ 或 -4 . 但同时要求 Im $z=x^2+5x-6\neq 0$, 因此 $x\neq 1$. 故 $x=-4$.

练习. 若
$$x^2(1+i) - x(5+4i) + 4 + 3i$$
 是纯虚数, 则实数 $x = 4$.

设 $z_1 = x_1 + y_1 \mathbf{i}, z_2 = x_2 + y_2 \mathbf{i}.$

设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$. 定义复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i, \quad z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$$

设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$. 定义复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i, \quad z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$$

复数的加减法与其对应的向量 \overrightarrow{OZ} 的加减法是一致的.

设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$. 定义复数的加法和减法:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i, \quad z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$$

复数的加减法与其对应的向量 \overrightarrow{OZ} 的加减法是一致的.

复数的乘法、除法和乘幂

规定 $i \cdot i = -1$.

复数的乘法、除法和乘幂

规定 $i \cdot i = -1$. 定义复数的乘法:

$$z_1 \cdot z_2 = (x_1 + y_1 \mathbf{i})(x_2 + y_2 \mathbf{i}) = x_1 \cdot x_2 + x_1 \cdot y_2 \mathbf{i} + y_1 \mathbf{i} \cdot x_2 + y_1 \mathbf{i} \cdot y_2 \mathbf{i}$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) \mathbf{i}$.

复数的乘法、除法和乘幂

规定 $i \cdot i = -1$. 定义复数的乘法:

$$z_1 \cdot z_2 = (x_1 + y_1 \mathbf{i})(x_2 + y_2 \mathbf{i}) = x_1 \cdot x_2 + x_1 \cdot y_2 \mathbf{i} + y_1 \mathbf{i} \cdot x_2 + y_1 \mathbf{i} \cdot y_2 \mathbf{i}$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) \mathbf{i}$.

此时加法/乘法交换律,结合律以及乘法分配律均成立.

复数的乘法、除法和乘幂

规定 $i \cdot i = -1$. 定义复数的乘法:

$$z_1 \cdot z_2 = (x_1 + y_1 \mathbf{i})(x_2 + y_2 \mathbf{i}) = x_1 \cdot x_2 + x_1 \cdot y_2 \mathbf{i} + y_1 \mathbf{i} \cdot x_2 + y_1 \mathbf{i} \cdot y_2 \mathbf{i}$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) \mathbf{i}$.

此时加法/乘法交换律, 结合律以及乘法分配律均成立.

待定系数可得复数的除法:

$$\frac{z_1}{z_2} = \frac{(x_1 + y_1 \mathbf{i})(x_2 - y_2 \mathbf{i})}{x_2^2 + y_2^2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \mathbf{i}.$$

复数的乘法、除法和乘幂

规定 $i \cdot i = -1$. 定义复数的乘法:

$$z_1 \cdot z_2 = (x_1 + y_1 \mathbf{i})(x_2 + y_2 \mathbf{i}) = x_1 \cdot x_2 + x_1 \cdot y_2 \mathbf{i} + y_1 \mathbf{i} \cdot x_2 + y_1 \mathbf{i} \cdot y_2 \mathbf{i}$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) \mathbf{i}$.

此时加法/乘法交换律, 结合律以及乘法分配律均成立.

待定系数可得复数的除法:

$$\frac{z_1}{z_2} = \frac{(x_1 + y_1 \mathbf{i})(x_2 - y_2 \mathbf{i})}{x_2^2 + y_2^2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \mathbf{i}.$$

对于正整数 n, 定义 z 的 n 次幂为 n 个 z 相乘.

复数的乘法、除法和乘幂

规定 $i \cdot i = -1$. 定义复数的乘法:

$$z_1 \cdot z_2 = (x_1 + y_1 \mathbf{i})(x_2 + y_2 \mathbf{i}) = x_1 \cdot x_2 + x_1 \cdot y_2 \mathbf{i} + y_1 \mathbf{i} \cdot x_2 + y_1 \mathbf{i} \cdot y_2 \mathbf{i}$$

= $(x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) \mathbf{i}$.

此时加法/乘法交换律,结合律以及乘法分配律均成立.

待定系数可得复数的除法:

$$\frac{z_1}{z_2} = \frac{(x_1 + y_1 \mathbf{i})(x_2 - y_2 \mathbf{i})}{x_2^2 + y_2^2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \mathbf{i}.$$

对于正整数 n, 定义 z 的 n 次幂为 n 个 z 相乘. 当 $z \neq 0$ 时, 还可以定义 $z^0 = 1, z^{-n} = \frac{1}{z^n}$.

₩0000₩000₩0■0₩0000

例.

12 / 18

(1)
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$.

(1)
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$. 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(1)
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$. 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{N} \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

例.

(1)
$$i^2 = -1, i^3 = -i, i^4 = 1$$
. 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{N} \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

(3)
$$\diamondsuit z = 1 + i$$
,

(1)
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$. 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{N} \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

(3) 令
$$z = 1 + i$$
, 则

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

例.

(1)
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$. -8 , -8 , -8 , -8 , -8 , -1 , -8 , -8 , -1 , $-$

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{N} \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

(3) 令
$$z = 1 + i$$
, 则

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

将满足 $z^n = 1$ 的复数 z 称为 n 次单位根.

例.

(1)
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$. 一般地, 对于整数 n ,

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

(2)
$$\Leftrightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$$
, $\mathbb{N} \omega^2 = \frac{-1 - \sqrt{3}i}{2}$, $\omega^3 = 1$.

(3) 令
$$z = 1 + i$$
, 则

$$z^2 = 2i$$
, $z^3 = -2 + 2i$, $z^4 = -4$, $z^8 = 16 = 2^4$.

将满足 $z^n=1$ 的复数 z 称为 n 次单位根. 那么 1,i,-1,-i 是 4 次单位根, $1,\omega,\omega^2$ 是 3 次单位根, $-\omega$ 是 6 次单位根.

实数情形的等差数列求和公式、等比数列求和公式、二项式展开、平方差公式等 代数恒等式在复数情形也成立.

实数情形的等差数列求和公式、等比数列求和公式、二项式展开、平方差公式等代数恒等式在复数情形也成立.

例. 化简 $1 + i + i^2 + \cdots + i^{1000}$.

实数情形的等差数列求和公式、等比数列求和公式、二项式展开、平方差公式等代数恒等式在复数情形也成立.

例. 化简 $1 + i + i^2 + \cdots + i^{1000}$.

解答. 根据等比数列求和公式,

$$1 + i + i^2 + \dots + i^{1000} = \frac{i^{1001} - 1}{i - 1}$$

实数情形的等差数列求和公式、等比数列求和公式、二项式展开、平方差公式等代数恒等式在复数情形也成立.

例. 化简 $1 + i + i^2 + \cdots + i^{1000}$.

解答。 根据等比数列求和公式,

$$1 + i + i^2 + \dots + i^{1000} = \frac{i^{1001} - 1}{i - 1} = \frac{i - 1}{i - 1} = 1.$$

实数情形的等差数列求和公式、等比数列求和公式、二项式展开、平方差公式等 代数恒等式在复数情形也成立.

例. 化简 1+i+i²+···+i¹⁰⁰⁰.

解答. 根据等比数列求和公式,

$$1 + i + i^2 + \dots + i^{1000} = \frac{i^{1001} - 1}{i - 1} = \frac{i - 1}{i - 1} = 1.$$

练习. 化简
$$\left(\frac{1+i}{1-i}\right)^{2026} =$$
_____.

实数情形的等差数列求和公式、等比数列求和公式、二项式展开、平方差公式等 代数恒等式在复数情形也成立.

解答. 根据等比数列求和公式,

$$1 + i + i^2 + \dots + i^{1000} = \frac{i^{1001} - 1}{i - 1} = \frac{i - 1}{i - 1} = 1.$$

练习. 化简
$$\left(\frac{1+i}{1-i}\right)^{2026} = -1$$
.

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+y\mathbf{i}}=x-y\mathbf{i}$.

从定义出发, 不难验证共轭复数满足如下性质:

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

从定义出发, 不难验证共轭复数满足如下性质:

(1) z 是 \overline{z} 的共轭复数.

共轭是一种对合

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

从定义出发,不难验证共轭复数满足如下性质:

(1) z 是 \overline{z} 的共轭复数.

共轭是一种对合

(2)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{\overline{z_1}}{\overline{z_2}}}.$$

共轭复数和四则运算交换

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

从定义出发, 不难验证共轭复数满足如下性质:

(1) z 是 \overline{z} 的共轭复数.

共轭是一种对合

(2)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}.$$

共轭复数和四则运算交换

(3) $z\overline{z} = (\text{Re } z)^2 + (\text{Im } z)^2$.

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

从定义出发, 不难验证共轭复数满足如下性质:

(1) z 是 \overline{z} 的共轭复数.

共轭是一种对合

(2)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}.$$

共轭复数和四则运算交换

- (3) $z\overline{z} = (\text{Re } z)^2 + (\text{Im } z)^2$.
- (4) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2 \operatorname{i} \operatorname{Im} z$.

x, y 和 z, \overline{z} 可相互表示

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+u}=x-u$ i.

从定义出发,不难验证共轭复数满足如下性质:

(1) z 是 \overline{z} 的共轭复数.

共轭是一种对合

(2)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}.$$

共轭复数和四则运算交换

- (3) $z\overline{z} = (\text{Re } z)^2 + (\text{Im } z)^2$.
- (4) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2 \operatorname{i} \operatorname{Im} z$.

x, y 和 z, \overline{z} 可相互表示

(5) $z = \overline{z} \iff z$ 是实数; $z = -\overline{z} \iff z$ 是纯虚数或 z = 0. 判断实数和纯虚数

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

从定义出发, 不难验证共轭复数满足如下性质:

(1) z 是 \overline{z} 的共轭复数.

共轭是一种对合

(2)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{\overline{z_2}}}.$$

共轭复数和四则运算交换

- (3) $z\overline{z} = (\text{Re } z)^2 + (\text{Im } z)^2$.
- (4) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2 \operatorname{i} \operatorname{Im} z$.

x,y 和 z,\overline{z} 可相互表示

(5) $z=\overline{z}\iff z$ 是实数; $z=-\overline{z}\iff z$ 是纯虚数或 z=0. 判断实数和纯虚数

使用共轭复数进行计算和证明,往往比直接使用x,y表达的形式更简单.

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

从定义出发, 不难验证共轭复数满足如下性质:

$$(1)$$
 z 是 \overline{z} 的共轭复数.

共轭是一种对合

(2)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}.$$
 共轭复数和四则运算交换

- (3) $z\overline{z} = (\text{Re } z)^2 + (\text{Im } z)^2$.
- (4) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2 \operatorname{i} \operatorname{Im} z$.

x,y 和 z,\overline{z} 可相互表示

(5) $z = \overline{z} \iff z$ 是实数; $z = -\overline{z} \iff z$ 是纯虚数或 z = 0. 判断实数和纯虚数 使用共轭复数进行计算和证明,往往比直接使用 x, y 表达的形式更简单.

练习. z 关于虚轴的对称点是 .

定义. 称 z 在复平面关于实轴的对称点为它的共轭复数 \overline{z} . 换言之, $\overline{x+yi}=x-yi$.

从定义出发, 不难验证共轭复数满足如下性质:

(1) z 是 \overline{z} 的共轭复数.

共轭是一种对合

(2)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}.$$
 共轭复数和四则运算交换

- (3) $z\overline{z} = (\text{Re } z)^2 + (\text{Im } z)^2$.
- (4) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2 \operatorname{i} \operatorname{Im} z$.

x,y 和 z,\overline{z} 可相互表示

(5) $z = \overline{z} \iff z$ 是实数; $z = -\overline{z} \iff z$ 是纯虚数或 z = 0. 判断实数和纯虚数 使用共轭复数进行计算和证明,往往比直接使用 x, y 表达的形式更简单.

练习. z 关于虚轴的对称点是 $-\overline{z}$.

例. 证明 $z_1 \cdot \overline{z_2} - \overline{z_1} \cdot z_2 = 2i \operatorname{Im}(z_1 \cdot \overline{z_2})$.

例. 证明 $z_1 \cdot \overline{z_2} - \overline{z_1} \cdot z_2 = 2i \operatorname{Im}(z_1 \cdot \overline{z_2})$.

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i,$ 然后代入等式两边化简并比较实部和虚部得到.

例. 证明 $z_1 \cdot \overline{z_2} - \overline{z_1} \cdot z_2 = 2i \operatorname{Im}(z_1 \cdot \overline{z_2})$.

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i,$ 然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它.

例. 证明 $z_1 \cdot \overline{z_2} - \overline{z_1} \cdot z_2 = 2i \operatorname{Im}(z_1 \cdot \overline{z_2})$.

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i,$ 然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它.

证明. 由于 $\overline{z_1 \cdot \overline{z_2}} = \overline{z_1} \cdot \overline{\overline{z_2}} = \overline{z_1} \cdot z_2$,

例. 证明 $z_1 \cdot \overline{z_2} - \overline{z_1} \cdot z_2 = 2i \operatorname{Im}(z_1 \cdot \overline{z_2})$.

我们可以设 $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i,$ 然后代入等式两边化简并比较实部和虚部得到. 但我们利用共轭复数可以更简单地证明它.

证明. 由于
$$\overline{z_1 \cdot \overline{z_2}} = \overline{z_1} \cdot \overline{\overline{z_2}} = \overline{z_1} \cdot z_2$$
, 因此

$$z_1 \cdot \overline{z_2} - \overline{z_1} \cdot z_2 = z_1 \cdot \overline{z_2} - \overline{z_1 \cdot \overline{z_2}} = 2i \operatorname{Im}(z_1 \cdot \overline{z_2}).$$

例. 设
$$z = x + yi$$
 是虚数. 证明: $x^2 + y^2 = 1$ 当且仅当 $z + \frac{1}{z}$ 是实数.

例. 设
$$z = x + yi$$
 是虚数. 证明: $x^2 + y^2 = 1$ 当且仅当 $z + \frac{1}{z}$ 是实数.

证明.
$$z + \frac{1}{z}$$
 是实数等价于

$$z + \frac{1}{z} = \overline{\left(z + \frac{1}{z}\right)} = \overline{z} + \frac{1}{\overline{z}},$$

例. 设
$$z = x + yi$$
 是虚数. 证明: $x^2 + y^2 = 1$ 当且仅当 $z + \frac{1}{z}$ 是实数.

证明.
$$z + \frac{1}{z}$$
 是实数等价于

$$z + \frac{1}{z} = \overline{\left(z + \frac{1}{z}\right)} = \overline{z} + \frac{1}{\overline{z}},$$

等价于

$$z - \overline{z} = \frac{1}{\overline{z}} - \frac{1}{z} = \frac{z - \overline{z}}{z\overline{z}}, \qquad (z - \overline{z})(z\overline{z} - 1) = 0.$$

例. 设
$$z = x + yi$$
 是虚数. 证明: $x^2 + y^2 = 1$ 当且仅当 $z + \frac{1}{z}$ 是实数.

证明.
$$z + \frac{1}{z}$$
 是实数等价于

$$z + \frac{1}{z} = \overline{\left(z + \frac{1}{z}\right)} = \overline{z} + \frac{1}{\overline{z}},$$

等价于

$$z-\overline{z}=\frac{1}{\overline{z}}-\frac{1}{z}=\frac{z-\overline{z}}{z\overline{z}}, \qquad (z-\overline{z})(z\overline{z}-1)=0.$$
由 z 是虚数可知 $z\neq\overline{z}$.

一章 复数与复变函数 ▶1 复数及其代数运算 ▶D 共轭复数

例题: 共轭复数判断实数

例. 设
$$z = x + yi$$
 是虚数. 证明: $x^2 + y^2 = 1$ 当且仅当 $z + \frac{1}{z}$ 是实数.

证明.
$$z + \frac{1}{z}$$
 是实数等价于

$$z + \frac{1}{z} = \overline{\left(z + \frac{1}{z}\right)} = \overline{z} + \frac{1}{\overline{z}},$$

等价于
$$z-\overline{z}=\frac{1}{\overline{z}}-\frac{1}{z}=\frac{z-\overline{z}}{z\overline{z}}, \qquad (z-\overline{z})(z\overline{z}-1)=0.$$

由 z 是虚数可知 $z \neq \overline{z}$. 故上述等式等价于 $z\overline{z} = 1$. 即 $x^2 + u^2 = 1$.

由于 $z\overline{z}$ 是一个实数,

由于 zz 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{x_2^2 + y_2^2}.$$

由于 zz 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{z_1\overline{z_2}}{x_2^2 + y_2^2}$$

例.
$$z = -\frac{1}{i} - \frac{3i}{1-i}$$
, 求 Re z, Im z 以及 z \overline{z} .

由于 $z\overline{z}$ 是一个实数,因此在做复数的除法运算时,可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{x_2^2 + y_2^2}.$$

例.
$$z=-\frac{1}{i}-\frac{3i}{1-i}$$
, 求 Re z , Im z 以及 $z\overline{z}$.

$$z = -\frac{1}{\mathbf{i}} - \frac{3\mathbf{i}}{1 - \mathbf{i}}$$

由于 zz 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{x_2^2 + y_2^2}.$$

例.
$$z = -\frac{1}{i} - \frac{3i}{1-i}$$
, 求 Re z, Im z 以及 z \overline{z} .

$$z = -\frac{1}{i} - \frac{3i}{1-i} = i - \frac{3i-3}{2} = \frac{3}{2} - \frac{1}{2}i,$$

由于 zz 是一个实数, 因此在做复数的除法运算时, 可以利用下式将其转化为乘法:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{x_2^2 + y_2^2}.$$

例.
$$z=-\frac{1}{\mathbf{i}}-\frac{3\mathbf{i}}{1-\mathbf{i}}$$
, 求 $\operatorname{Re} z, \operatorname{Im} z$ 以及 $z\overline{z}$.

$$z = -\frac{1}{i} - \frac{3i}{1-i} = i - \frac{3i-3}{2} = \frac{3}{2} - \frac{1}{2}i,$$

$$\operatorname{Re} z = \frac{3}{2}, \quad \operatorname{Im} z = -\frac{1}{2}, \quad z\overline{z} = \left(\frac{3}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{5}{2}.$$

例. 谈
$$z_1 = 5 - 5i, z_2 = -3 + 4i, \, \, \, \, \, \, \overline{\left(\frac{z_1}{z_2}\right)}.$$

例. 设
$$z_1 = 5 - 5i$$
, $z_2 = -3 + 4i$, 求 $\overline{\left(\frac{z_1}{z_2}\right)}$.

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i}$$

例. 设
$$z_1 = 5 - 5i$$
, $z_2 = -3 + 4i$, 求 $\left(\frac{z_1}{z_2}\right)$.

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$

例. 设
$$z_1 = 5 - 5i, z_2 = -3 + 4i, 求 (\frac{z_1}{z_2}).$$

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25}$$

例. 设
$$z_1 = 5 - 5i$$
, $z_2 = -3 + 4i$, 求 $\overline{\left(\frac{z_1}{z_2}\right)}$.

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

例. 设
$$z_1 = 5 - 5i, z_2 = -3 + 4i, \, \, \, \, \, \overline{\left(\frac{z_1}{z_2}\right)}.$$

解答.

$$\frac{z_1}{z_2} = \frac{5 - 5i}{-3 + 4i} = \frac{(5 - 5i)(-3 - 4i)}{(-3)^2 + 4^2}$$
$$= \frac{(-15 - 20) + (-20 + 15)i}{25} = -\frac{7}{5} - \frac{1}{5}i,$$

因此 $\overline{\left(\frac{z_1}{z_2}\right)} = -\frac{7}{5} + \frac{1}{5}i$.