Machine Learning Review

M. Soleymani
Sharif University of Technology
Fall 2017

Some slides have been adapted from Fei Fei Li lectures, cs231n, Stanford 2017

Types of ML problems

- Supervised learning (regression, classification)
 - predicting a target variable for which we get to see examples.
- Unsupervised learning
 - revealing structure in the observed data
- Reinforcement learning
 - partial (indirect) feedback, no explicit guidance
 - Given rewards for a sequence of moves to learn a policy and utility functions

Components of (Supervised) Learning

- Unknown target function: $f: \mathcal{X} \to \mathcal{Y}$
 - Input space: ${\mathcal X}$
 - Output space: \mathcal{Y}
- Training data: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- We use training set to find the function that can also predict output on the test set

Training data: Example

Training data

x_1	x_2	у	
0.9	2.3	1	
3.5	2.6	1	
2.6	3.3	1	
2.7	4.1	1	
1.8	3.9	1	
6.5	6.8	-1	×
7.2	7.5	-1	×
7.9	8.3	-1	×
6.9	8.3	-1	×
8.8	7.9	-1	×
9.1	6.2	-1	×

Supervised Learning: Regression vs. Classification

- Supervised Learning
 - Regression: predict a <u>continuous</u> target variable
 - E.g., $y \in [0,1]$
 - Classification: predict a <u>discrete</u> target variable
 - E.g., $y \in \{1, 2, ..., C\}$

Regression Example

Housing price prediction

Figure adopted from slides of Andrew Ng, Machine Learning course, Stanford.

Supervised Learning vs. Unsupervised Learning

- Supervised learning
 - Given: Training set
 - labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - Goal: learning a mapping from x to y
- Unsupervised learning
 - Given: Training set
 - $\bullet \ \left\{ \boldsymbol{x}^{(i)} \right\}_{i=1}^{N}$
 - Goal: find groups or structures in the data
 - Discover the intrinsic structure in the data

Supervised Learning: Samples

Unsupervised Learning: Samples

Reinforcement Learning

Provides only an indication as to whether an action is correct or not

Reinforcement Learning

- Typically, we need to get a sequence of decisions
 - it is usually assumed that reward signals refer to the entire sequence

Components of (Supervised) Learning

- Unknown target function: $f: \mathcal{X} \to \mathcal{Y}$
 - Input space: \mathcal{X}
 - Output space: \mathcal{Y}
- Training data: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- We use training set to find the function that can also predict output on the test set

Generalization

• We don't intend to memorize data but need to figure out the pattern.

- A core objective of learning is to generalize from the experience.
 - Generalization: ability of a learning algorithm to perform accurately on new, unseen examples after having experienced.

(Typical) Steps of solving supervised learning problem

- Select the hypothesis space
 - A class of parametric models that map each input vector, x, into a predicted output y.
- Define a **loss function** that quantifies how much undesirable is each parameter vector across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)
- Evaluate the obtained model

Linear regression: square error loss function

Cost function:

$$J(\mathbf{w}) = \sum_{i=1}^{n} (y^{(i)} - (w_0 + w_1 x^{(i)}))^2$$

Cost function: example

Cost function: example

Review: Iterative optimization of cost function

- Cost function: J(w)
- Optimization problem: $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argm}} in J(\mathbf{w})$
- Steps:
 - Start from w^0
 - Repeat
 - Update w^t to w^{t+1} in order to reduce J
 - $t \leftarrow t + 1$
 - until we hopefully end up at a minimum

How to optimize parameters?

Follow up the slope

How to compute the slope?

• In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- the slope of the error surface can be calculated by taking the derivative of the error function at that point
- In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension
- The direction of steepest descent is the negative gradient

Gradient descent (or steepest descent)

• In each step, takes steps proportional to the negative of the gradient vector of the function at the current point \mathbf{w}^t :

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_t \, \nabla J(\mathbf{w}^t)$$

- -J(w) decreases fastest if one goes from w^t in the direction of $-\nabla J(w^t)$
- Assumption: J(w) is defined and differentiable in a neighborhood of a point w^t

Learning rate: The amount of time he travels before taking another measurement is the learning rate of the algorithm.

Gradient descent

• Minimize J(w)

Step size (Learning rate parameter)
$$oldsymbol{w}^{t+1} = oldsymbol{w}^t - \eta oldsymbol{V_w} J(oldsymbol{w}^t)$$

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \left[\frac{\partial J(\mathbf{w})}{\partial w_0}, \frac{\partial J(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial J(\mathbf{w})}{\partial w_d}\right]$$

- If η is small enough, then $J(\mathbf{w}^{t+1}) \leq J(\mathbf{w}^t)$.
- η can be allowed to change at every iteration as η_t .

Gradient descent disadvantages

• Local minima problem

• However, when J is convex, all local minima are also global minima \Rightarrow gradient descent can converge to the global solution.

Stochastic gradient descent

- Batch techniques process the entire training set in one go
 - thus they can be computationally costly for large data sets.
- Stochastic gradient descent: when the cost function can comprise a sum over data points:

$$J(\mathbf{w}) = \sum_{i=1}^{n} J^{(i)}(\mathbf{w})$$

Update after presentation of a mini-batch S of data:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \sum_{j \in S} \nabla_{\mathbf{w}} J^{(j)}(\mathbf{w})$$

Linear model: multi-dimensional inputs

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$
$$= \mathbf{w}^T \mathbf{x}$$

$$\boldsymbol{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \quad \boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Generalized linear regression

Linear combination of fixed non-linear function of the input vector

$$f(x; w) = w_0 + w_1 \phi_1(x) + \dots + w_m \phi_m(x)$$

 $\{\phi_1(x),\ldots,\phi_m(x)\}$: set of basis functions (or features)

$$\phi_i(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}$$

Polynomial (univariate)

If
$$\phi_i(x) = x^i$$
, $i = 1, ..., m$, then
$$f(x; \mathbf{w}) = w_0 + w_1 x + ... + w_{m-1} x^{m-1} + w_m x^m$$

Model complexity and overfitting

• With limited training data, models may achieve zero training error but a large test error.

- Over-fitting: when the training loss no longer bears any relation to the test (generalization) loss.
 - Fails to generalize to unseen examples.

Over-fitting causes

- Model complexity
 - E.g., Model with a large number of parameters (degrees of freedom)

- Low number of training data
 - Small data size compared to the complexity of the model

Model complexity

• Example:

- Polynomials with larger m are becoming increasingly tuned to the random noise on the target values.

Number of training data & overfitting

Over-fitting problem becomes less severe as the size of training data increases.

[Bishop]

Avoiding over-fitting

- Determine a suitable value for model complexity
 - Simple hold-out method
 - Cross-validation
- Regularization (Occam's Razor)
 - Explicit preference towards simpler models
 - Penalize for the model complexity in the objective function

Simple hold out: training, validation, and test sets

• Simple hold-out chooses the model (hyperparameters) that minimizes error on validation set.

Training

Validation

Test

run on the test set once at the very end!

Cross-Validation (CV): Evaluation

- *k*-fold cross-validation steps:
 - Shuffle the dataset and randomly partition training data into k groups of approximately equal size
 - for i = 1 to k
 - Choose the *i*-th group as the held-out validation group
 - Train the model on all but the i-th group of data
 - Evaluate the model on the held-out group
 - Performance scores of the model from k runs are **averaged**.

Regularization

- Adding a penalty term in the cost function to discourage the coefficients from reaching large values.
- Ridge regression (weight decay):

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}^{(i)}) \right)^{2} + \lambda R(\mathbf{w})$$

Approximation:
How much model predictions
match training data

Generalization: prefer simple ones; Control the variance of the models

e.g.
$$R(w) = ||w||^2 = w^T w$$

 λ : regularization strength (hyperparameter)

Regularization

Choosing the regularization parameter

Classification problem

- Given: Training set
 - labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - $-y \in \{1, ..., K\}$
- Goal: Given an input x, assign it to one of K classes
- Examples:
 - Image classification
 - Speech recognition

— ...

Linear Classifier example

• Two class example:

$$-\frac{3}{4}x_1 - x_2 + 3 = 0$$

if
$$\mathbf{w}^T \mathbf{x} + w_0 \ge 0$$
 then \mathcal{C}_1 else \mathcal{C}_2

$$\mathbf{w} = \begin{bmatrix} -\frac{3}{4} & -1 \end{bmatrix}$$
$$\mathbf{w}_0 = 3$$

Square error loss function for classification!

K=2

Square error loss is not suitable for classification:

- Least square loss penalizes 'too correct' predictions (that they lie a long way on the correct side of the decision)
- Least square loss also lack robustness to noise

Parametric classifier: Multiclass

•
$$f(x; W) = [f_1(x, W), ..., f_K(x, W)]^T$$

• $W = [w_1 \quad \cdots \quad w_K]$ contains one vector of parameters for each class

Parametric classifier: Linear

•
$$f(x; W) = [f_1(x, W), ..., f_K(x, W)]$$

- $W = [w_1 \quad \cdots \quad w_K]$ contains one vector of parameters for each class
 - In linear classifiers, W is $d \times K$ where d shows number of features
 - $-\mathbf{W}^T\mathbf{x}$ provides us a vector
- f(x; W) contains K numbers giving class scores for the input x

Linear classifier

• Output obtained from $W^T x + b$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_{784} \end{bmatrix}$$

$$28 \times 28$$

$$\mathbf{W}^T = \begin{bmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_{10} \end{bmatrix}_{10 \times 784}$$

$$b = \begin{vmatrix} b_1 \\ \vdots \\ b_{10} \end{vmatrix}$$

Example

How can we tell whether this W and b is good or bad?

Bias can also be included in the W matrix

Multi-class SVM

$$J(\mathbf{W}) = \frac{1}{N} \sum_{i=1}^{N} L^{(i)} + \lambda R(\mathbf{W})$$

Hinge loss:

$$L^{(i)} = \sum_{j \neq y^{(i)}} \max \left(0, 1 + s_j - s_{y^{(i)}}\right)$$

$$= \sum_{i \neq v^{(i)}} \max \left(0, 1 + \boldsymbol{w}_j^T \boldsymbol{x}^{(i)} - \boldsymbol{w}_{y^{(i)}}^T \boldsymbol{x}^{(i)}\right)$$

L2 regularization:

$$R(\mathbf{W}) = \sum_{k=1}^{K} \sum_{l=1}^{d} w_{lk}^2$$

$$s_j \equiv f_j(\boldsymbol{x}^{(i)}; \boldsymbol{W})$$

= $\boldsymbol{w}_i^T \boldsymbol{x}^{(i)}$

Multi-class SVM loss: Example

3 training examples, 3 classes. With some W the scores are $W^T x$

$$s_j = \boldsymbol{w}_j^T \boldsymbol{x}^{(i)}$$

cat

3.2

1.3

2.2

 $L^{(i)} = \sum_{j \neq y^{(i)}} \max \left(0, 1 + s_j - s_{y^{(i)}} \right)$

car

5.1

4.9

2.5

Cai

frog

-1.7

2.0

-3.1

$$\frac{1}{N} \sum_{i=1}^{N} L^{(i)} = \frac{1}{3} (2.9 + 0 + 12.9) = 5.7$$

$$L^{(1)} = \max(0.1 + 5.1 - 3.2) + \max(0.1 - 1.7 - 3.2)$$
$$= \max(0.2.9) + \max(0.3.9)$$
$$= 2.9 + 0$$

$$L^{(2)} = \max(0,1 + 1.3 - 4.9)$$

$$+ \max(0,1 + 2 - 4.9)$$

$$= \max(0,-2.6) + \max(0,-1.9)$$

$$= 0 + 0$$

$$L^{(3)} = \max(0, 2.2 - (-3.1) + 1)$$

+\text{max}(0, 2.5 - (-3.1) + 1)
= \text{max}(0, 6.3) + \text{max}(0, 6.6)
= 6.3 + 6.6 = 12.9

Some questions?

$$L^{(i)} = \sum_{j \neq y^{(i)}} \max \left(0, 1 + s_j - s_{y^{(i)}} \right)$$

- Q1: What if the sum was over all classes? (including $j = y_i$)
- Q2: What if we used mean instead of sum?
- Q3: What if we used $L^{(i)} = \sum_{j \neq y^{(i)}} \max \left(0, 1 + s_j s_{y^{(i)}}\right)^2$?
- Q4: what is the min/max possible?
- Q5: why do we use regularization term?

Other regularization terms

- L2 regularization
- L1 regularization
- Elastic net (L1 + L2)

$$\begin{split} & \sum_{k=1}^{K} \sum_{l=1}^{d} w_{lk}^{2} \\ & \sum_{k=1}^{K} \sum_{l=1}^{d} \left| w_{lk} \right| \\ & \beta \sum_{k=1}^{K} \sum_{l=1}^{d} w_{lk}^{2} + \sum_{k=1}^{K} \sum_{l=1}^{d} \left| w_{lk} \right| \end{split}$$

Softmax Classifier (Multinomial Logistic Regression)

softmax function
$$P(Y = k | X = \mathbf{x}^{(i)}) = \frac{e^{sk}}{\sum_{j=1}^{K} e^{sj}}$$
 $s_k = f_k(\mathbf{x}^{(i)}; W) = w_k^T \mathbf{x}^{(i)}$

 Maximum log likelihood is equivalent to minimize the negative of log likelihood of the correct class:

$$L^{(i)} = -\log P(Y = y_K^{(i)} | X = x^{(i)})$$

$$= -s_{y^{(i)}} + \log \sum_{i=1}^{K} e^{s_i}$$
Cross-entropy loss

Softmax classifier loss: example

$$L^{(i)} = -\log \frac{e^{s_{y^{(i)}}}}{\sum_{j=1}^{K} e^{s_j}}$$

unnormalized probabilities

cat car frog 3.25.1-1.7

24.5
exp
164.0

0.18

0.13 0.87 $\int_{L^{(1)} = -\log 0.13}^{L^{(1)} = -\log 0.13}$ 0.00

Cross entropy

$$H(q,p) = -\sum_{x} q(x) \log p(x)$$

- For the loss of the softmax classifier:
 - p: estimated class probabilities $\frac{e^{s_k}}{\sum_{j=1}^{K} e^{s_j}}$
 - q: the true distribution
 - all probability mass is on the correct class $q(Y = y^{(i)}) = 1$ ($q(Y \neq y^{(i)}) = 0$).

Relation to KL divergence

$$H(q,p) = H(q) + D_{KL}(q||p)$$

- Since H(q) for the loss of softmax classifier is zero:
 - Minimizing cross entropy is equivalent to minimizing the KL divergence between the two distributions (a measure of distance).
 - cross-entropy loss wants the predicted distribution to have all of its mass on the correct answer.

Recap

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

We need $\nabla_W L$ to update weights

Resources

- Deep Learning Book, Chapter 5.
- Please see the following notes:
 - http://cs231n.github.io/linear-classify/
 - http://cs231n.github.io/optimization-1/