NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lee Yung Hei

MA1100 Basics of Mathematics

AY 2004/2005 Sem 1

Question 1

(a) We have,

$$2057 = 209(9) + 176$$

$$209 = 176(1) + 33$$

$$176 = 33(5) + 11$$

$$33 = 11(3).$$

So gcd(2057, 209) = 11.

(b) We have,

$$11 = 176 - 33(5)$$

$$176 - 33(5) = 176 - (209 - 176)(5) = 176(6) - 209(5)$$

$$176(6) - 209(5) = [2057 - 209(9)](6) - 209(5) = 2057(6) + 209(-59).$$

So a possible solution is a = 6 and b = -59.

Note: The general solution would be $a=6+\frac{209}{11}k=6+19k$ and $b=-59-\frac{2057}{11}k=-59-187k,\ k\in\mathbb{Z}.$

(c) From (b), we have 2057(6) + 209(-59) = 11. So,

$$2057(12) + 209(-118) = 22$$
$$2057(12 + \frac{209}{11}m) + 209(-118 - \frac{2057}{11}m) = 22.$$

Thus, $(x, y) = (12 + 19n, -118 - 187n), n \in \mathbb{Z}$.

Question 2

- (a) False. Let a = 3, b = 1 and c = 2. Since 3|1 + 2, $3 \nmid 1$ and $3 \nmid 2$, we have a counter-eg.
- (b) False. Let $R = \emptyset$. (ie. all the elements have no relation) Then $\forall a, b \in A, (a, b) \notin R$.
- (c) False. Let a=4, b=2 and c=6. Since $4|2\times 6$, $4\nmid 2$ and $4\nmid 6$, we have a counter-eg.

(d) True.

If $f \circ g = \mathrm{id}_A$, then $\forall x_1, x_2 \in A$ such that $g(x_1) = g(x_2)$, we have $x_1 = f(g(x_1)) = f(g(x_2)) = x_2$. This give us g to be injective. As $g: A \to A$ and A is finite, we have g to be bijective. Therefore, g^{-1} exists, and so $g \circ f = (g \circ f) \circ (g \circ g^{-1}) = g \circ (f \circ g) \circ g^{-1} = g \circ \mathrm{id}_A \circ g^{-1} = \mathrm{id}_A$. Thus, $g \circ f$ is also an identity mapping on A.

(e) True.

We have $A \cup B = (A \cap B^c) \cup (A^c \cap B) \cup (A \cap B)$ and $((A \cap B^c) \cup (A^c \cap B)) \cap (A \cap B) = \emptyset$. Therefore $(A \cap B) = \emptyset$ iff $A \cup B = (A \cap B^c) \cup (A^c \cap B) \cup \emptyset = (A \cap B^c) \cup (A^c \cap B)$.

(f) True.

Let $k = \gcd(r, s)$. Then k|r and k|s. So, kd|rd and kd|sd. Since kd|a and kd|b, $kd|\gcd(a,b) \Rightarrow kd|d$. Since $k \in \mathbb{Z}^+$, k=1.

(g) False.

Let x = 2 and y = -2. gcd(x, y) = 2 and lcm(x, y) = 2. $gcd(x, y)lcm(x, y) = 4 \neq 2 \times (-2)$.

(h) False.

Let a = 2 and b = -2. $gcd(a, b) = 2 \Rightarrow d = 2$, x = 1 and y = -1. $lcm(2, -2) = 2 \neq 1 \times (-1) \times 2$.

Question 3

- (a) We have $x^2 + 1^2 + z^2 > 2 \Rightarrow x^2 + z^2 > 1$. Thus truth set of P(x, 1, z) is $\{(-2,1,-2),(-2,1,-1),(-2,1,0),(-2,1,1),(-2,1,2),(-1,1,-2),$ (-1, 1, -1), (-1, 1, 1), (-1, 1, 2), (0, 1, -2), (0, 1, 2), (1, 1, -2), (1, 1, -1),(1,1,1),(1,1,2),(2,1,-2),(2,1,-1),(2,1,0),(2,1,1),(2,1,2).
- (b) For P(x, 1, z): $\begin{vmatrix} x = | -2 \\ z \in | \{-2, -1, 0, 1, 2\} \end{vmatrix}$ + $\{-2, -1, 1, 2\}$ $\{-2,2\}$ $\{-2, -1, 1, 2\}$ -2, -1, 0, 1, 2We have truth set of $Q(z) = \{-2, 2\}$.
- (c) From the table in (3b), we see that when x = -2, we have P(x, 1, z) for all $z \in D$. Therefore R is true.

Question 4

- (a) Let $m = \sqrt{2}$ and $c = \sqrt{2}$. (x, y) = (-1, 0) is an integer solution.
- (b) Let $m = 2\sqrt{2}$ and $c = \sqrt{2}$. Then $y = 2\sqrt{2}x + \sqrt{2} \Rightarrow y = (2x + 1)\sqrt{2}$. For all $x \in \mathbb{Z}$, we have $(2x+1) \in \mathbb{Z} - \{0\}$, and so $y = (2x+1)\sqrt{2} \notin \mathbb{Z}$.
- (c) No.

Assume on the contrary a such line passes through two distinct integer points (x_1, y_1) and (x_2, y_2) . Since $m \notin \mathbb{Q}$, we have $m \neq 0$, and so $x_1 = x_2$ implies $y_1 = mx_1 + c = mx_2 + c = y_2$, a contradiction. Therefore $x_1 \neq x_2$. This give us $y_1 - y_2 = m(x_1 - x_2)$, i.e. $m = \frac{y_1 - y_2}{x_1 - x_2}$ Since $y_1, y_2, x_1, x_2 \in \mathbb{Z}$, and $x_1 - x_2 \neq 0$, we have $m \in \mathbb{Q}$, a contradiction.

Page: 2 of 4

MA1100

Question 5

(a) Since $p \vee \neg p$ is a tautology, we have,

$$(p \lor (p \to q)) \land \neg p \equiv (p \lor (\neg p \lor q)) \land \neg p$$

$$\equiv (p \lor \neg p \lor q) \land \neg p$$

$$\equiv (T \lor q) \land \neg p$$

$$\equiv \neg p.$$

(b) We have,

$$\begin{array}{rcl} (p \to \neg p) \wedge p & \equiv & (\neg p \vee \neg p) \wedge p \\ & \equiv & \neg p \wedge p \\ & \equiv & F. \end{array}$$

(c) We have,

$$(p \to q) \land (\neg p \to \neg q) \equiv (p \to q) \land (q \to p)$$

 $\equiv p \leftrightarrow q \equiv p \land q.$

Question 6

(a) ((1,2),(4,5)),((1,2),(7,8)),((4,5),(7,8)).

(b) a + b = a + b + 3(0). So, (a, b)R(a, b), i.e. R is reflexive.

If (a,b)R(c,d), then there exists $k \in \mathbb{Z}$ such that a+b=c+d+3k. This give us c+d=a+b+3(-k). Since $-k \in \mathbb{Z}$, we have (c,d)R(a,b), i.e. R is symmetric.

Let (a,b)R(c,d) and (c,d)R(e,f).

Then $\exists k_1, k_2 \in \mathbb{Z}$ such that $a + b = c + d + 3k_1$ and $c + d = e + f + 3k_2$.

This give us $a + b = e + f + 3k_2 + 3k_1 = e + f + 3(k_1 + k_2)$, and since $k_1, k_2 \in \mathbb{Z}$, $k_1 + k_2 \in \mathbb{Z}$.

Therefore (a,b)R(e,f), i.e. R is transitive.

So, R is an equivalence relation.

(c) There are 3 equivalence classes of R.

They are $\{(a,b) \mid a+b \equiv 0 \mod 3\}$, $\{(a,b) \mid a+b \equiv 1 \mod 3\}$ and $\{(a,b) \mid a+b \equiv 2 \mod 3\}$.

Page: 3 of 4

Question 7

(a) True.

Suppose $A, B \in \mathcal{P}(X)$ such that F(A) = F(B).

Let $a \in A$, then we have $a \in F(A)$, which give us $a \in F(B)$.

Thus, there exists $b \in B$ such that f(a) = f(b).

As f is injective, we have $a = b \in F(B)$, i.e. $A \subseteq B$.

Using similar argument as above, we get $B \subseteq A$, i.e. A = B. So, F is injective.

(b) False.

Let
$$X = \{0,1\}$$
 and $Y = \{0\}$. $f: X \to Y$ where $f(x) = 0$ for all $x \in X$. f is surjective. Since 0 has a pre-image. $\mathcal{P}(Y) = \{\emptyset, \{0\}\}$ and $\mathcal{P}(X) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$. $G(\emptyset) = \emptyset$ and $G(\{0\}) = \{0,1\}$.

Since $\{0\}$ and $\{1\}$ do not have pre-images, G is not surjective.

Question 8

(a) We have,

Number of integers divisible by 7
$$= \lfloor \frac{500}{7} \rfloor = 71;$$

Number of integers divisible by 11 $= \lfloor \frac{500}{11} \rfloor = 45;$
Number of integers divisible by both 7 and 11 $= \lfloor \frac{500}{7 \times 11} \rfloor = 6.$
Since 6 numbers are counted twice, answer is $71 + 45 - 6 = 110.$

(b) We have,

$$\begin{aligned}
\{2k_1 + 1 | k_1 \in \mathbb{Z}\} * \{2k_2 + 1 | k_2 \in \mathbb{Z}\} &= \{(2k_1 + 1) + (2k_2 + 1) | k_1, k_2 \in \mathbb{Z}\} \\
&= \{2(k_1 + k_2 + 1) | k_1, k_2 \in \mathbb{Z}\} \\
&= \{2(m) | m \in \mathbb{Z}\}
\end{aligned}$$

Therefore, $\{2k_1+1|k_1\in\mathbb{Z}\} * \{2k_2+1|k_2\in\mathbb{Z}\}$ is the set of all even integers.

(c) Assume on the contrary that $\sqrt[3]{2}$ is rational, i.e. $\sqrt[3]{2} = \frac{m}{n}$, where $m, n \in \mathbb{Z}$, $n \neq 0$ and $\gcd(m, n) = 1$.

Page: 4 of 4

Then,
$$2 = \frac{m^3}{3} \Rightarrow 2n^3 = m^3$$
. Therefore, m is even

Then,
$$2 = \frac{m^3}{n^3} \Rightarrow 2n^3 = m^3$$
. Therefore, m is even.
Let $m = 2p$. $2n^3 = (2p)^3 = 8p^3 \Rightarrow n^3 = 4p^3$. Since $4p^3$ is even, n^3 is even.

However, that would mean that both m and n are even.

Therefore, 2|m and 2|n implying $gcd(m,n) \neq 1$, a contradiction.

So, $\sqrt[3]{2}$ cannot be rational.