Aufgabenblatt 06

14. November 2019

Aufgabe 06.1

Ein Auto (Masse $M=1300\,\mathrm{kg}$, maximal verfügbare Motorleistung $P_M=77,0\,\mathrm{kW}$) beschleunigt auf ebener Strecke mit haftenden Reifen (ohne Durchdrehen) von 0 auf $100\,\mathrm{km/h}$. Wie lange muss das mindestens dauern?

Haftreibung: $\mu_G = 0,650$; Luftreibung vernachlässigen.

Aufgabe 06.2

Ein $m=75,0\,\mathrm{kg}$ schwerer Mensch springt an einem elastischen, "masselosen" Bungee-Seil von einer hohen Brücke. Am tiefsten Punkt ist das Seil auf die Länge $L_2=64,0\,\mathrm{m}$ gedehnt. Die Person pendelt eine Zeit lang auf und ab und bleibt schließlich so hängen, dass das gespannte Seil $L_1=36,5\,\mathrm{m}$ lang ist. Wie lang ist das Seil im entspannten Zustand? Welche Maximalgeschwindigkeit und -beschleunigung erreicht der fallende Mensch? Skizze erforderlich!

Aufgabe 06.3

Ein Kugelstoßer beschleunigt die $m=7,25\,\mathrm{kg}$ schwere Kugel entlang eines geraden Weges von $s_B=1,80\,\mathrm{m}$ Länge. Die Kugel fliegt in der Höhe $y_0=2,00\,\mathrm{m}$ (Unterkante der Kugel über dem Boden) im Winkel $\alpha=42,0^\circ$ zur Waagrechten weg und schlägt nach $x_1=21,5\,\mathrm{m}$ auf dem Boden auf. Wie groß sind die mittlere und die maximale Leistung, die auf die Kugel übertragen werden (Annahme: konstante Beschleunigung)? Skizze erforderlich!

Aufgabe 06.4

Eine Person auf dem Fahrrad (Gesamtmasse $m=80\,\mathrm{kg}$) fährt auf ebener Strecke und ohne Wind mit $v_1=20\,\mathrm{km/h}=\mathrm{const}$, muss aber gegen die Rollreibung ($\mu_R=0,0045$) und den Luftwiderstand arbeiten (Dichte von Luft: $\rho_L=1,20\,\mathrm{kg/m^3}$, $c_W=1,1$, Querschnittsfläche $A=0,45\,\mathrm{m^2}$). Um welchen Faktor steigen die benötigte Kraft und die benötigte Leistung, wenn

- (a) Gegenwind herrscht mit $v_W = 15 \,\mathrm{km/h}$ (bei unverändertem Tempo des Fahrrads),
- (b) mit gleichem Tempo eine Steigung von 7,0% bewältigt wird (windstill),
- (c) das Tempo in 30 s auf $v_2 = 30 \text{ km/h}$ gesteigert wird (flach, windstill, a = const). (Rechnen Sie zum Zeitpunkt 15 s nach Beginn der Beschleunigung)