Theorem 7.6. For every $n \geq 1$, for every $D \in \mathcal{D}_n$, for every matrix $A \in M_n(K)$, we have

$$D(A) = \sum_{\pi \in \mathfrak{S}_n} \epsilon(\pi) a_{\pi(1) \, 1} \cdots a_{\pi(n) \, n},$$

where the sum ranges over all permutations π on $\{1, \ldots, n\}$. As a consequence, \mathcal{D}_n consists of a single map for every $n \geq 1$, and this map is given by the above explicit formula.

Proof. Consider the standard basis (e_1, \ldots, e_n) of K^n , where $(e_i)_i = 1$ and $(e_i)_j = 0$, for $j \neq i$. Then each column A^j of A corresponds to a vector v_j whose coordinates over the basis (e_1, \ldots, e_n) are the components of A^j , that is, we can write

$$v_1 = a_{11}e_1 + \dots + a_{n1}e_n,$$

$$\dots$$

$$v_n = a_{1n}e_1 + \dots + a_{nn}e_n.$$

Since by Lemma 7.5, each D is a multilinear alternating map, by applying Lemma 7.4, we get

$$D(A) = D(v_1, \dots, v_n) = \left(\sum_{\pi \in \mathfrak{S}_n} \epsilon(\pi) a_{\pi(1) 1} \cdots a_{\pi(n) n}\right) D(e_1, \dots, e_n),$$

where the sum ranges over all permutations π on $\{1, \ldots, n\}$. But $D(e_1, \ldots, e_n) = D(I_n)$, and by Lemma 7.5, we have $D(I_n) = 1$. Thus,

$$D(A) = \sum_{\pi \in \mathfrak{S}_n} \epsilon(\pi) a_{\pi(1) \, 1} \cdots a_{\pi(n) \, n},$$

where the sum ranges over all permutations π on $\{1, \ldots, n\}$.

From now on we will favor the notation det(A) over D(A) for the determinant of a square matrix.

Remark: There is a geometric interpretation of determinants which we find quite illuminating. Given n linearly independent vectors (u_1, \ldots, u_n) in \mathbb{R}^n , the set

$$P_n = \{\lambda_1 u_1 + \dots + \lambda_n u_n \mid 0 \le \lambda_i \le 1, \ 1 \le i \le n\}$$

is called a parallelotope. If n = 2, then P_2 is a parallelogram and if n = 3, then P_3 is a parallelepiped, a skew box having u_1, u_2, u_3 as three of its corner sides. See Figures 7.1 and 7.2.

Then it turns out that $det(u_1, \ldots, u_n)$ is the *signed volume* of the parallelotope P_n (where volume means *n*-dimensional volume). The sign of this volume accounts for the orientation of P_n in \mathbb{R}^n .

We can now prove some properties of determinants.