Spatial Statistics Point Process Data Unit 3

PM569 Spatial Statistics

Lecture 10: November 6, 2015

Review of point processes

- Testing for CSR:
 - Adjusting for edge effect
 - Testing for CSR with Ripley's K.
 - ► Testing for CSR based on inter-event distances, H(h).
 - ► Testing for CSR based on nearest-neighbour distances, G(h).
- ► Spatial processes, Poisson processes are the building block:
 - ► Homogeneous Poisson process (constant intensity).
 - Inhomogeneous Poisson process (intensity varies across domain).
 - Poisson Cluster process (intensity varies for parents and/or children forming clusters), Cox process when the cluster intensity is spatially varying.
 - Simple inhibition processes, Markovian processes (Strauss and pairwise interaction) for regular patterns.
- ▶ In this lecture we will focus on fitting point process models and on methods for detecting clusters.

Fitting point process models

- ▶ Given our set of observed point events $\{x_1, ...x_n\}$ in region A we wish to fit a model (which is stationary and isotropic)
- Model fitting is approached by estimating the parameters of the particular process
 - ▶ Example: fitting the parameters ρ , μ and σ^2 of a clustered process
 - ► Example: fitting a parametric form of the intensity of an inhomogeneous poisson process
- We use familiar fitting methods: Least squares, Maximum Likelihood and non-parametric methods.

Fitting point process models: Least Squares

- ▶ We start with K(h) and the estimator $\hat{K}(h)$ (or L, or G, or H) for parameter fitting
- ▶ This is useful when the mathematical form of K(h) is known either explicitly or as an integral (which is true for some point processes)
- ▶ If K(h) is not known we use the simulated realizations
- ▶ Example, to fit a homogeneous poisson cluster process we have parameters $\theta = (\rho, \sigma)$ and the Ripley's K function is:

$$K(h,\theta) = \pi h^2 + \frac{1}{\rho} (1 - \exp(-h^2/(4\sigma^2)))$$

▶ And we estimate $\hat{K}(h)$ from the data

Fitting point process models: Least Squares

▶ Given the theoretical K-function and the estimator $\hat{K}(h)$ we minimize the deviance:

$$D(\theta) = \int_0^{h_0} [(\hat{K}(h))^c - (K(h,\theta))^c]^2 dh$$

- ▶ Where h_0 is the maximum distance which is typically chosen as 1/3 to 1/2 of the width of a rectangular region, and c is the power transformation
- ▶ The power transformation controls the sampling fluctuations in $\hat{K}(h)$ which can increase with h and have influence on $\hat{\theta}$ (i.e. it is a variance stabilizer)
- ► Examples of c are c=0.5 for a pattern that is not too different from CSR, c=0.25 for cluster patters. However, choose a variety of c values in practice in order to see how sensitive the results are

Fitting point process models: Least Squares Estimation Steps

1. Compute the edge corrected $\hat{K}(h)$

$$\hat{K}(h) = \frac{|A|}{n^2} \sum_{i=1}^n \sum_{j \neq i} I(h_{i,j} \leq h)$$

- 2. Choose a theoretical model for $K(h, \theta)$ where θ are the parameters of the model
- 3. Find $\hat{\theta}$ that minimizes the deviance for a given c

$$D(\theta) = \int_0^{h_0} [(\hat{K}(h))^c - (K(h,\theta))^c]^2 dh$$

Fitting point process models: Least Squares Estimation

▶ When $K(h, \theta)$ is unknown because there is no closed form, use the simulated method (for s simulations):

$$\bar{K}_s(h,\theta) = \frac{1}{n} \sum_{i=1}^s \hat{K}_i(h,\theta)$$

- ▶ Finding $\bar{K}_s(h,\theta)$ for each value of θ can be prohibitive computationally
 - 1. Start with a small number of simulations, s
 - 2. Find a first approximation of $\hat{\theta}$
 - 3. Repeat with a larger value for s

Fitting point process models: Least Squares Estimation Steps

A weighted version of the deviance, shown to have asymptotic properties (consistency and asymptotic normality), is often used:

$$D(\theta) = \int_0^{h_0} w(h) [(\hat{K}(h))^c - (K(h,\theta))^c]^2 dh$$

- ▶ The weight w(h) is a weight on the distance also controls the variance
- ▶ When c = 0.5 and w(h) = 1 we have the Poisson cluster process
- See Guam and Sherman, J R Stat Soc (2007) for asymptotic properties

Fitting point process models: Least Squares Estimation

- ▶ In R spatstat, cluster or Cox point process models are fit with least squares estimation through the kppm function with the method="mincontrast" option
- ► To fit a log-Gaussian Cox point process, use the function lgcp.estK
- ► To fit the Matern cluster process (type I or II), use the function matclust.estK

Fitting point process models: Maximum Likelihood

- ► To fit inhomogeneous Poisson, Strauss and pairwise interaction processes we need to rely on likelihood methods
- Recall for the inhomogeneous Poisson process:
 - ▶ N(A) is Poisson with mean $\int_A \lambda(x) dx$
 - ▶ Conditional on N(A) = n, the n events in A form an independent random sample from A with a probability distribution function proportional to $\lambda(x)$
- We can define the process based on its conditional intensity
- Namely, the conditional probability of finding a point of the process inside an infinitesimal neighbourhood du of the location u given the complete point pattern \mathbf{x} is $\lambda(u,\mathbf{x})du$

Fitting point process models: Conditional Intensity

- ▶ For example, CSR has conditional intensity $\lambda(u, \mathbf{x}) = \lambda$
- ▶ The IPP has conditional intensity $\lambda(u, \mathbf{x}) = \lambda(u)$
- ▶ Sometimes the IPP trend is denoted as $\beta(u)$ and indicates "spatial trend"
- ▶ The Strauss process has conditional intensity $\lambda(u, \mathbf{x}) = \beta^n \gamma^p$ where β is the intensity, γ is the interaction parameter, and p is the number of points of \mathbf{x} that lie within a distance δ of u (i.e. pairs of neighbours)
- For example, the Strauss process with $\gamma < 1$ dependence between points is reflected in the fact that the conditional probability of finding a point of the process at the location u is reduced if other points of the process are present within a distance δ . And when $\gamma = 0$, the conditional probability of finding a point at u is zero if there are any other points of the process within a distance δ of this location.

Fitting point process models: Pseudolikelihood

- Because maximum likelihood is difficult for point process models, the log of the pseudolikelihood is maximized, using the conditional intensity
- For a point process governed by parameter θ the pseudolikelihood is:

$$PL(\theta; x) = \prod_{i=1}^{n} \lambda_{\theta}(x_i; x) \exp(\int_{A} \lambda_{\theta}(u; x) du)$$

 \blacktriangleright The maximum pseudolikelihood estimate of θ minimizes the above equation

Fitting point process models: Pseudolikelihood

▶ We need to take the log of the pseudolikelihood equation and approximate the integral using a "quadrature" scheme (see Berman and Turner, 1992)

$$\int_A \lambda_{\theta}(u;x) du \approx \sum_{j=1}^m \lambda_{\theta}(u_j,x) w_j$$

▶ Where u_j are "quadrature points" in A and $w_j \ge 0$ are the "quadrature weights"

Fitting point process models: Pseudolikelihood

- ▶ The quadrature points can be chosen as all data points, x_i and the addition of some dummy points u_j , i.e. $\{x_1,...,x_n\} \subset \{u_1,...,u_m\}$
- ▶ Then the log pseudolikelihood can be written:

$$\log PL(\theta; x) = \sum_{j=1}^{m} z_j \log \lambda_{\theta}(u_j; x) - w_j \lambda_{\theta}(u_j; x)$$

• Where $z_j = 1$ if u_j is a data point, and $z_j = 0$ if u_j is a dummy point

Fitting point process models in R

- ▶ In R spatstat the function ppm fits models by pseudolikelihood based on the conditional intensity $\lambda_{\theta}(u,x)$
- ightharpoonup The model must be loglinear in the parameters heta
- ► For example, the Strauss process can be written:

$$\log \lambda(u, x) = \log \beta + \log \gamma p$$

▶ So $\theta = (\log \beta, \log \gamma)$ are the "regular parameters" and the parameter driving the interaction, p is the "irregular parameter"

Fitting point process models in R

► Thus in spatstat ppm the conditional intensity is split into first and higher order terms:

$$\log \lambda_{\theta}(u, x) = \eta S(u) + \phi V(u, x)$$

▶ The first order term S(u) describes the spatial inhomogeneity of the intensity (including covariate effects) and the higher order term V(u,x) describes the interactions between points

Fitting point process models in R

- ► The general form of ppm is ppm(X, trend, interaction,...)
- ► The trend argument specifies any spatial trend or covariate effects and is written as an R formula
- The default trend formula is ~ 1 , which indicates $\lambda(u)=1$, corresponding to a process without spatial trend or covariate effects. The formula $\sim x$ indicates the vector statistic $\lambda(x,y)=(1,x)$ corresponding to a spatial trend of the form $\exp(\alpha+\beta x)$, where α,β are coefficient parameters to be estimated, while $\sim x+y$ indicates $\lambda(x,y)=(1,x,y)$ corresponding to $\exp(\alpha+\beta x+\gamma y)$

Fitting point process models in R

- ► The general form of ppm is ppm(X, trend, interaction,...)
- ▶ The interaction term represents the interaction function V(u,x)
- For example, the Strauss function with interaction distance $\delta = 0.1$ is fit with ppm(X, 1, Strauss(r=0.1))
- ▶ Note that the ppm with a specified higher order term calls the first order term for the intensity β rather than λ
- spatstat automatically creates a quadrature scheme but it can be controlled by the user through the function quadscheme

Point Pattern Data: Detecting Clusters

- So far we have simulated point processes, found statistics that indicate a global measure of what pattern there may be, and fit models to specific types of point patterns.
- ▶ If we want to find where clusters of observations are located, we need a different set of tools called scan statistics.
- Goals of scan statistics:
 - ► To determine areas where the number of events is inconsistent with the number observed over the rest of the study area.
 - Compare local rates of events (or case/control ratios) to detect clusters.

Point Pattern Data: Detecting Clusters

- ► First attempts at cluster detection methods were developed in the 1980s: geographical analysis machine and the cluster evaluation permutation procedure.
- Early cluster detection methods:
 - Graphical in nature
 - Divides the region up into a fine grid
 - Uses a search window, which is a circle of predefined radius, larger than the grid spacing in order for circles to overlap
 - Centers the circle over each grid cell, then moves across the region
 - The number of cases occurring within the search window are counted
 - ► The circle is drawn on the map if the count observed within the circle exceeds some tolerance level
 - ► The tolerance level may be defined as the observed count exceeding all of the counts associated with that circle under random selection (N=499)

Point Pattern Data: Detecting Clusters

- ▶ The circle in these cases is considered a circular uniform kernel
- ► In kernel estimation, the kernel is centered on the data locations, in scan statistics, the circle is centered on the grid

FIG. 6.8 Equivalence between the case/control ratio within circles surrounding grid points (left-hand plot) and the ratio of intensity (density) functions based on circular uniform kernels (right-hand plot). Case locations appear as filled small circles, control locations as open small circles, and grid points as "x" symbols. In the left-hand plot, large circles represent radii of 300 units around each grid point. In the right-hand plot, dark circles represent control kernel radii, and lighter circles represent control kernel radii (both 300 units).

Point Pattern Data: Spatial Scan Statistics

- A scan statistics involves the definition of a moving window and a statistical comparison measurement (count or rate) within the window to the same measurement outside the window.
- Kulldorff (1995, 1997) defines a spatial scan statistic that is similar to the geographical analysis machine, but with an inferential framework.
- Scan statistics tend to consider circular windows with variable radii ranging from the smallest distance between a pair of cases to the user-defined upper bound.
- ► The circles can be centered on either grid locations (like earlier methods)or the set of locations. Different results will be seen depending on what is chosen.

Point Pattern Data: Spatial Scan Statistics

Setup:

Let $N_{1,in}$ represent the number of case locations and $N_{in} = N_{0,in} + N_{1,in}$ be the total number of people at risk (or number of case and control locations) inside a particular window. Let $N_{1,out}$ represent the number of case locations and $N_{out} = N_{0,out} + N_{1,out}$ be the total number of people at risk (or number of case and control locations) outside the window. The test statistic is:

$$T_{scan} = \max(\frac{N_{1,in}}{N_{in}})^{N_{1,in}}(\frac{N_{1,out}}{N_{out}})^{N_{1,out}}I(\frac{N_{1,in}}{N_{in}} > \frac{N_{1,out}}{N_{out}})$$

I(.) is the indicator function (i.e. we only maximize over windows where the observed rate inside the window exceeds that outside the window)

Point Pattern Data: Spatial Scan Statistics

- ► The maximum observed likelihood ration statistic provides a test of overall general clustering and an indication of the most likely clusters with significance determined by Monte Carlo testing of the constant risk hypothesis.
- ► SaTScan is a software package that enables this, and we can access it through R satscan (both must be downloaded).