## Worksheet #18 Solution

(From Lecture #18 given on 03/25/2019)

**Worksheet problem:** Find a spill-free register allocation for symbolic registers  $s_A$ ,  $s_B$ ,  $s_C$  in the program shown below, assuming that there are k = 2 physical registers available.

**Worksheet problem:** Find a spill-free register allocation for symbolic registers  $s_A, s_B, s_C$  in the program shown below, assuming that there are k = 2 physical registers available.

switch ( ... ) { case 0: case 1: case 2:  $i_1$ :  $s_A := \dots$   $i_2$ :  $s_B := \dots$   $i_3$ :  $\dots := s_A \ op \ s_B$  $i_4$ :  $s_B := \dots$   $i_5$ :  $s_C := \dots$   $i_6$ :  $\dots := s_B \ op \ s_C$  $i_7$ :  $s_A := \dots$   $i_8$ :  $s_C := \dots$   $i_9$ :  $\dots := s_A \ op \ s_C$ break; break: break:  $s_A$  and  $s_B$  have  $s_A$  and  $s_C$  have  $s_B$  and  $s_C$  have conflicting live conflicting live conflicting live ranges. ranges. ranges.



Interference graph needs 3 colors **Worksheet problem:** Find a spill-free register allocation for symbolic registers  $s_A, s_B, s_C$  in the program shown below, assuming that there are k = 2 physical registers available.

switch ( ... ) { case 0: case 1: case 2:  $i_1$ :  $s_A := \dots$   $i_2$ :  $s_B := \dots$   $i_3$ :  $\dots := s_A \ op \ s_B$  $i_4$ :  $s_B := \dots$  $i_5$ :  $s_C := \dots$  $i_7$ :  $s_A := \dots$  $i_8$ :  $s_C := \dots$  $i_6$ : ...:=  $s_B op s_C$  $i_9$ : ...:=  $s_A op s_C$ break; break: break:  $s_{R}:R0$ s<sub>c</sub>: R1 However, it is possible to do  $\mathsf{S}_\mathsf{A}$ a spill-free register allocation with just 2 registers

S<sub>C</sub>

(no register copy statements

needed in this case)