Claims

5

10

15

25

1. A process for the catalytic asymmetric synthesis of an optically active compound of the formula (1a) or (1b)

$$\begin{array}{c}
X \\
R \\
R
\end{array}$$

$$\begin{array}{c}
X \\
R$$

$$\begin{array}{c}
X \\
R
\end{array}$$

$$\begin{array}{c}
X \\
R$$

wherein R is an organic group; X is halogen; R_1 and R_2 which may be the same or different represents H, or an organic group or R_1 and R_2 may be bridged together forming part of a ring system; R and R_2 may be bridged together forming part of a ring system; with the provisio that R and R_1 are different and R_2 when different from H is attached through a carbon-carbon bond, comprising the step of reacting a compound of the formula (2)

$$\begin{array}{c|c}
H & O \\
R & R_1 & R_2
\end{array}$$
(2)

with a halogenating agent in the presence of a catalytic amount of a chiral nitrogen containing organic compound.

- 2. The process according to claim 1 wherein R_2 is H or an optionally substituted C_{1-10} alkyl group or R and R_2 are bridged together forming part of a ring system.
- 3. The process according to claim 1 or 2 wherein R₁ is H or an optionally substituted C₁₋₁₀ alkyl group.
 - 4. The process according to any of the preceding claims wherein R is an optionally substituted C_{1-10} alkyl group, an optionally substituted C_{2-8} alkylene group or a C_{1-3} -alkylaryl group.
 - 5. The process according to claim 4 wherein R is an optionally substituted C_{1-6} alkyl group, an optionally substituted C_{2-4} alkylene group or a C_{1-2} -alkylaryl group.

- 6. The process according to claim 4 or 5 wherein R_1 and R_2 are H.
- 7. The process according to claim 1 wherein the chiral nitrogen containing organic compound is selected among compounds having a primary or secondary nitrogen atom or when appropriate in one of its salt forms.

- 34 -

8. The process according to claim 7 wherein the chiral nitrogen containing organic compound is selected among compounds of the formula (3)

$$R_{5}$$
 R_{6}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{10}
 R_{10}
 R_{10}
 R_{2}
 R_{20}
 R_{30}

wherein q is 0 or 1;

5

10

15

20

25

R₅, R₆, R₇, R₈, which may be the same or different represents H, alkyl, haloalkyl, alkoxyl, OH, amino, amide, silyl, silyl ether, COR₁₁, optionally substituted aryl, an optionally substituted heterocycle, alkyl substituted with at least one OH group, an optionally substituted amino group or optionally substituted arryl or heterocycle or R₅ and R₆ together or R₇ and R₈ together may represent a carbonyl group or when q is 1, R₅ with either R₇ or bridged forming of R_8 may be together part ring system; a R₁₁ represents an optionally substituted amino group or OR₁₂ wherein R₁₂ represents H, alkyl or phenyl;

 R_9 and R_{10} , which may the same or different represents H, alkyl, OH, or alkoxy; or R_9 and R_{10} may be bridged together forming part of a ring system;

Z is S, O, C=O, $C(R_{14})_2$, N-R₁₄ wherein R₁₄ is R₅;

with the provisio that the groups R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₄, and Z are selected so that the compound (3) is a chiral compound.

9. The process according to claim 8 wherein q is 1; R₅, R₆, R₇, R₈ which may the same or different represents H, COR₁₁, optionally substituted aryl or methyl substituted with at least one of the following, an OH group, an optionally substituted amino group or an optionally substituted aryl or heterocycle group; or R₅ and R₇ together represents a C₃₋₅

alkylene bridge;

R₁₁ represents OH, NH₂ or NH-alkyl;

R₉ and R₁₀ are H or R₉ and R₁₀ together represents a methylene bridge optionally substituted with phenyl, benzyl, COOH or CO–alkoxy;

Z is CH- R_{14} or N- R_{14} wherein R_{14} represents H or alkyl.

- 10. The process according to claim 9 wherein either R₅ or R₆ represents H; R₇ and R₈ represents H; R₉ and R₁₀ together represents a methylene bridge and Z is CH₂.
- 11. The process according to claim 3 wherein R₁ is H and R and R₂ each represents an optionally substituted C₁₋₁₀ alkyl group or R₂ together with R forms an optionally substituted C₃₋₅-alkylene bridge optionally with one or more of the carbon atoms being replaced by a heteroatom.
- 15 12. The process according to claim 1 wherein one or more acids are added to the reaction media.
 - 13. The process according to claim 8, wherein the compound of formula (3) is a compound of formula (4)

$$Y_3$$
 Y_4
 Y_5
 Y_6
 Y_2
 Y_1
 Y_1
 Y_2
 Q_2

20

25

5

wherein Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 which may be the same or different represents H, an alkyl, haloalkyl, an aryl, an alkylaryl, a heterocycle, a halogen, a hydroxyl, a carbonyl, an alkoxyl, an ester, an amine, an amide, a silyl, a silyl ether, or Y_2 and Y_3 or Y_4 and Y_5 may be bridged together forming part of a ring system one of Q_1 and Q_2 represent H, alkyl, haloalkyl, alkylaryl and the other the group $CY_7Y_8(OY_9)$ wherein Y_7 and Y_8 which may be the same or different represents alkyl, haloalkyl, an alkylaryl, a heterocycle, or optionally substituted aryl and Y_9 represents a silyl group.

WO 2005/080298

14. A compound of the formula (4) as disclosed in claim 13.

5

10

15. The compound according to claim 14, wherein Y₁, Y₂, Y₃, Y₄, Y₅, Y₆ each represents H; one of Q₁ and Q₂ represents H; Y₇ and Y₈ each represents an optionally substituted aryl group, wherein the substituents are selected among alkyl and haloalkyl; Y₉ represents trialkyl silyl.

- 36 -

PCT/DK2005/000094

- 16. The compound according to claim 15, wherein Y_7 and Y_8 each represents 3,5-ditrifluoromethyl phenyl and Y_9 represents trimethyl silyl.
- 17. The compound according to claim 15, wherein Y_7 and Y_8 each represents 3,5-di-methyl phenyl and Y_9 represents trimethyl silyl.