#### Entropie, KL, MV, Familles exponentielles

2010/2011

Cours 5 — 27 octobre

Enseignant: Francis Bach Scribe: Vincent Adam, Samy Blusseau

# 5.1 Entropie

**Définition 5.1** Soit X une variable aléatoire dans  $\mathcal{X}$  fini. On note p(x) = P(X = x). L'entropie de X est définie par

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x) = E_{p(x)} \frac{1}{\log p(x)}$$

Proposition 5.2 On a les inégalités suivantes :

- 1.  $H(X) \ge 0$  avec égalité si X est constant presque surement
- 2.  $H(X) \leq \log(Card(\mathcal{X}))$

#### $\hookrightarrow$ Preuve :

- 1. En prolongeant  $p \to p \log p$  en 0 par 0, on a  $\forall x \in \mathcal{X}, p(x) \log p(x) \ge 0$  d'ou  $H(X) \ge 0$ . Et si  $\exists x_i \in \mathcal{X}$  tel que  $p(x_i) = 1$  alors H(X) = 0
- 2. Par concavité de la fonction logarithme, l'inégalité de Jensen donne le résultat.

$$H(X) = E_{p(x)} \frac{1}{\log p(x)} \le \log \left( E_{p(x)} \frac{1}{p(x)} \right) (Jensen)$$

$$\le \log \left( \sum_{x \in \mathcal{X}} \frac{p(x)}{p(x)} \right)$$

$$\le \log(Card(\mathcal{X}))$$

# 5.2 Divergence de Kullback-Leibler

Définition 5.3 Divergence de Kullback Leibler

Soient p et q deux distributions sur  $\mathcal{X}$  finies. La divergence de Kullback Leibler entre p et q est définie par

$$D(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = E_{p(x)} \log \left(\frac{p(x)}{q(x)}\right)$$



La divergence n'est pas symétrique, ce n'est pas une distance

**Proposition 5.4**  $D(p \parallel q) \ge 0$  avec égalité ssi p = q

→ **Preuve** : Par concavité de la fonction logarithme, l'inégalité de Jensen donne le résultat.

$$D(p \parallel q) = E_{p(x)} \left[ -\log \left( \frac{q(x)}{p(x)} \right) \right] \ge -\log \left( E_{p(x)} q(x) \right) \ge 0$$

**Définition 5.5** Soit X, Y deux variables aléatoires de loi jointe p(x, y) = P(X = x, Y = y), l'information mutuelle de X et Y est

$$I(X,Y) = D(p(x,y) \parallel p(x)p(y))$$

**Proposition 5.6**  $I(X,Y) \ge 0$  avec égalité ssi  $X \perp Y$ 

 $\hookrightarrow$  **Preuve :** Par positivité de la divergence KL et définition de l'indépendance entre X et Y: p(x,y) = p(x)p(y)

Indépendance  $\Rightarrow$  décorrélation **mais** décorrélation  $\Rightarrow$  Indépendance En effet, si  $X \perp Y$  alors E(X,Y) = E(X)E(Y) et donc Cov(X,Y) = 0. Contre-exemple : si C le carré défini par  $\mid x-y \mid \leq 1$  et p la densité uniforme sur ce carré  $p((x,y) \in C) = 1/2$  On a Cov(X,Y) = 0, mais  $p(x,y) \neq p(x)p(y)$ 

Remarque: La réciproque n'est vraie que dans le cas des variables aléatoires gaussiennes.

# 5.3 Lien entre la divergence de Kullback et le maximum de vraisemblance

**Définition 5.7** Soient  $x_1, ..., x_N \in \mathcal{X}$  N observations i.i.d d'une variable aléatoire X. La loi empirique de X construite à partir de ces observations est

$$\hat{p}(x) = \frac{1}{N} \sum_{n=1}^{N} \delta(x - x_n)$$

 $Où \delta$  est la fonction dirac, nulle partout sauf en 0 où elle vaut 1 (cas discret)

**Proposition 5.8** Soit  $p_{\theta}$  une distribution paramétrique sur  $\mathcal{X}$ . Maximiser la vraisemblance  $p_{\theta}(x)$  revient à minimiser la divergence  $D(\hat{p}||p_{\theta})$ 

 $\hookrightarrow$  Preuve :

$$D(\hat{p}||p_{\theta}) = \sum_{x \in \mathcal{X}} \hat{p}(x) \log \frac{\hat{p}(x)}{p_{\theta}(x)}$$

$$= H(\hat{p}) - \sum_{x \in \mathcal{X}} \hat{p}(x) \log p_{\theta}(x)$$

$$= H(\hat{p}) - \sum_{x \in \mathcal{X}} \sum_{n=1}^{N} \delta(x - x_n) \log p_{\theta}(x)$$

$$= H(\hat{p}) - \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(x_i)$$

Le second terme est égal à l'opposé de la vraisemblance  $p_{\theta}(x)$ . D'où la conclusion.

# 5.4 Lien entre entropie et divergence de Kullback-Leibler

**Proposition 5.9** Soit X une variable aléatoire sur X de distribution p et unif la distribution uniforme sur X, alors

$$D(p||unif) = -H(X) + \log(Card(\mathcal{X}))$$

.

$$\hookrightarrow$$
 Preuve :  $unif(x) = \frac{1}{Card(\mathcal{X})}$ , d'où  $D(p||unif) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{\frac{1}{Card(\mathcal{X})}}$ 

Remarque : Dans le cas discret, la distribution uniforme maximise l'entropie. La divergence donne ici l'écart entre l'entropie de p et l'entropie maximale réalisable.

**Définition 5.10** Entropie différentielle Soit  $X \in \mathbb{R}^p$  une variable aléatoire de densité p(x) par rapport à la mesure de Lebesgue. L'entropie différentielle de X est définie par

$$H(X) = \int_{\mathbb{D}} p(x) \log p(x) dx$$

Remarque: L'entropie n'est pas invariante par changement de mesure.

## 5.5 Familles exponentielles

**Définition 5.11** Famille exponentielle : Soit X une variable aléatoire sur  $\mathcal{X}$ . Une famille exponentielle est définie par :

- Une mesure de référence h(x)dx
- Des descripteurs  $\varphi(x) \in \mathbb{R}^p$ , encore appelés "features" ou plus communément "sufficient statistics"
- Un paramètre naturel  $\eta \in \mathbb{R}^p$
- Une fonction de log-partition  $A(\eta)$

tels que la densité de X s'écrit

$$p(x|\eta) = h(x) \exp\left\{\eta^T \varphi(x) - A(\eta)\right\}$$

Proposition 5.12

$$A(\eta) = \log \int_{\mathcal{X}} h(x) \exp\left\{\eta^T \varphi(x)\right\} dx$$

 $\hookrightarrow$  Preuve :

$$1 = \int_{\mathcal{X}} p(x|\eta) dx = e^{-A(\eta)} \int_{\mathcal{X}} h(x) \exp\left\{\eta^{T} \varphi(x)\right\} dx$$

**Définition 5.13** On définit le Domaine par :

$$Domaine = \{ \eta \in \mathbb{R}^p, A(\eta) < \infty \}$$

**Exemple 5.5.1** Loi de Bernouilli :  $\mathcal{X} = \{0, 1\}, p(x = 1) = \pi$ 

$$p(x) = \pi^x (1 - \pi)^{1-x}$$

$$= \left(\frac{\pi}{1 - \pi}\right)^x (1 - \pi)$$

$$= \exp\left\{x \log \frac{\pi}{1 - \pi}\right\} \exp\left\{\log(1 - \pi)\right\}$$

On retrouve bien une famille exponentielle en posant  $\eta = \log \frac{\pi}{1-\pi}$  (log odd ratio) et  $A(\eta) = -\log(1-\pi) = \log(1+e^{\eta})$ :

$$p(x) = e^{x\eta - A(\eta)}$$

Et le domaine est  $\mathbb{R}$ .

**Exemple 5.5.2** Loi Gaussienne( $\mu, \sigma$ ) sur  $\mathbb{R}$ :

$$p(x) = \frac{1}{\sqrt{2\pi}|\sigma|} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\log\sigma^2 - \frac{x^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} + \frac{x\mu}{\sigma^2}\right\}$$

On reconnait une famille exponentielle avec  $\varphi(x) = (x, x^2)^T$ ,  $\eta = (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2})^T = (\eta_1, \eta_2)^T$  et  $A(\eta) = \frac{1}{2} \log \sigma^2 + \frac{\mu^2}{2\sigma^2} = \frac{1}{2} \log \left(-\frac{1}{2\eta_2}\right) - \frac{\eta_1^2}{4\eta_2}$ :

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{\varphi(x)^T \eta - A(\eta)\right\}$$

avec pour domaine :  $\{\eta \in \mathbb{R}^2, \eta_2 < 0\}$ 

**Exemple 5.5.3** Autres lois qui sont des familles exponentielles : Loi multinomiale, loi de Poisson  $(\mathcal{X} = \mathbb{N})$ , loi de Dirichlet, loi Gamma, loi exponentielle.

## 5.5.1 Liens entre moments et $A(\eta)$

Il existe des liens entre les dérivées de  $A(\eta)$  et les moments des familles exponentielles. En effet

$$\nabla A(\eta) = \frac{\int_{\mathcal{X}} h(x)\varphi(x)e^{\eta^{T}\varphi(x)}dx}{\int_{\mathcal{X}} h(x)e^{\eta^{T}\varphi(x)}dx}$$

$$= \frac{\int_{\mathcal{X}} h(x)\varphi(x)e^{\eta^{T}\varphi(x)}dx}{e^{A(\eta)}}$$

$$= \int_{\mathcal{X}} h(x)e^{\eta^{T}\varphi(x)-A(\eta)}\varphi(x)dx$$

$$= \int_{\mathcal{X}} p(x|\eta)\varphi(x)dx$$

$$= \mathbb{E}_{X|\eta} \varphi(X)$$

et (en utilisant le fait que  $\nabla(e^{-A}) = -e^{-A}\nabla A$ )

$$\nabla^{2} A(\eta) = e^{-A(\eta)} \int_{\mathcal{X}} h(x) e^{\eta^{T} \varphi(x)} \varphi(x) \varphi(x)^{T} dx + \int_{\mathcal{X}} h(x) e^{\eta^{T} \varphi(x)} \varphi(x) \left( -e^{-A(\eta)} \right) \nabla A(\eta)^{T} dx$$

$$= \mathbb{E}_{X|\eta} \varphi(X) \varphi(X)^{T} - \left( \mathbb{E}_{X|\eta} \varphi(X) \right) \left( \mathbb{E}_{X|\eta} \varphi(X) \right)^{T}$$

$$= var_{X|\eta} \varphi(X)$$

 $\nabla^2 A(\eta)$  est donc une matrice semi-définie positive et A est convexe. Dans le cas où A est strictement convexe, la fonction :

$$\eta \longmapsto \nabla A(\eta) \\
\mathbb{R}^p \longrightarrow \mathbb{R}^p$$

est injective. On peut alors définir le paramètre de moment  $\mu$  à partir du paramètre naturel  $\eta$ .

Définition 5.14 Paramètre de moment

$$\mu = \nabla A(\eta) = \mathbb{E}_{X|\eta} \varphi(X) = \mu(\eta)$$

Exemple 5.5.4 Loi de Bernouilli( $\pi$ ):

$$\frac{dA}{d\eta} = \frac{e^{\eta}}{1 + e^{\eta}} = \sigma(\eta) = \pi = \mathbb{E}_{X|\eta} X$$

**Exemple 5.5.5** *Loi gaussienne*( $\mu$ , $\sigma$ ) *dans*  $\mathbb{R}$  :

$$\eta = \left(\frac{\mu}{\sigma^2}, -\frac{1}{\sigma^2}\right)^T, \quad \mu = \left(x, x^2\right)^T, \quad A(\eta) = \frac{1}{2}\log\left(-2\eta_2\right) - \frac{\eta_1^2}{4\eta_2}$$
$$\frac{\partial A}{\partial \eta_1} = \mu$$
$$\frac{\partial A}{\partial \eta_2} = \sigma^2 + \mu^2 = \mathbb{E}\left[X^2\right]$$

#### 5.5.2 Liens avec le Maximum de Vraisemblance

Soient  $x_1, \ldots, x_N$  des données IID dont la loi est une famille exponentielle. Alors la log-vraisemblance s'écrit :

$$\sum_{n=1}^{N} \log p(x_n | \eta) = \sum_{n=1}^{N} \left[ \log h(x_n) + \eta^T \varphi(x_n) - A(\eta) \right]$$
$$\propto N \left[ \left( \frac{1}{N} \sum_{n=1}^{N} \varphi(x_n) \right)^T \eta - A(\eta) \right]$$

D'où son gradient :

$$\nabla(\log -v raisemblance(\eta)) = N\left(\frac{1}{N}\sum_{n=1}^{N}\varphi(x_n) - \nabla A(\eta)\right) = N\left(\frac{1}{N}\sum_{n=1}^{N}\varphi(x_n) - \mu(\eta)\right)$$

et la maximum de vraisemblance atteint pour

$$\mu = \frac{1}{N} \sum_{n=1}^{N} \varphi(x_n) = \langle \varphi(x) \rangle$$

ce qui nous donne un estimateur de  $\mathbb{E}_{X|\eta} \varphi(X)$ .

#### 5.5.3 Liens avec le maximum d'entropie

On cherche a déterminer le paramètre naturel  $\eta$  qui maximise l'entropie de la distribution associée p sur le domaine  $\{\eta, A(\eta) < \infty\}$ , sous la contrainte d'une moyenne fixée  $E_{p(x)} \varphi(x) = \mu$ . Autrement dit, on cherche la v.a X de distribution p telle que :

$$\max_{X} H(X) \mid E_{p(x)} \varphi(x) = \mu$$

ou encore

$$\max_{p(x)} - \sum_{x \in \mathcal{X}} p(x) \, \log \, p(x) \mid \ \sum_{x \in \mathcal{X}} p(x) \, \varphi(x) = \mu$$

Il s'agit d'un problème d'optimisation convexe sous contrainte.

**Proposition 5.15** Etant donnés les réalisations  $x = (x_1, ..., x_N)$  d'une v.a X,  $\varphi$  une statistique suffisante, h une mesure, et la contrainte sur la moyenne  $\mu = \hat{\mu}$  (moyenne empirique),

$$p \ maximise \ l'entropie \Leftrightarrow \exists \eta, \ p(u) = \frac{1}{Z} e^{\eta^T \varphi(u) - A(\eta)} \ / \ E_{p(u)} \varphi(u) = \hat{\mu} \Leftrightarrow \eta \ maximise \ la \ vraisemblance \ p(x|\eta)$$

## 5.5.4 Liens avec les modèles graphiques non orientés

#### Un cas particulier : le modèle d'Ising

Ici on s'intéresse à des variables aléatoires binaires  $X_i \in \{0,1\}, i = 1,...,N$ , telles que :

$$p(x) = p(x_1, ..., x_N) = \frac{1}{Z} \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)$$

avec

$$\psi_{ij}(x_i, x_j) = V_{ij}^{11} x_i x_j + V_{ij}^{10} x_i (1 - x_j) + V_{ij}^{01} (1 - x_i) x_j + V_{ij}^{00} (1 - x_i) (1 - x_j)$$

Alors p peut s'écrire :

$$p(x) = \frac{1}{Z} \prod_{(i,j) \in E} e^{\theta_{ij} x_i x_j} \prod_{i \in V} e^{\theta_i x_i}$$

ce qui correspond à une famille exponentielle.



FIGURE 5.1. Modèle d'Ising.

### Cas général

On fait l'hypothèse que p est strictement positive. Alors p s'écrit sous la forme d'une famille exponentielle :

$$p(x) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)$$

$$= \frac{1}{Z} \prod_{c \in C} \exp(\log \psi_c(x_c))$$

$$= \frac{1}{Z} \exp\left(\sum_{c \in C} \sum_{y_c \in \mathcal{X}_c} \delta(y_c = x_c) \log \psi_c(x_c)\right)$$