

Unidad 1: Introducción

BBDD01, Sesión 1: Introducción a las bases de datos.

Rosalía Peña
Daniel Rodríguez García
J.A. Gutiérrez de Mesa
Josefa Gómez
Dept. Ciencias de la Computación
Universidad de Alcalá

Planificación y evaluación

Inscripción

- Grupo de teoría
- Grupo prácticas
- Las transparencias no son... "lo que hay que estudiar"
 - Recomendable que tengas a mano un buen libro de BDR
- Foros de trabajo, foto
 - Rosalía Peña N235 rpr@uah.es
 - Gutiérrez de Mesa jantonio.gutierrez@uah.es

Evaluación

- 3 PEC semanas 5,10,15
- 3 PECL (posible descomposición)
- No suspender mas de dos de las 6

Rendimiento BD 2015-16

		Nº Alumnos	Nº Alumnos 1ª matrícula*	Aprobados	Suspensos	No presentados	%aprobados/ presentados
GSI	ord	54	39 (72,2%)	33 (61,1%)	13 (24,1%)	8 (14,8%)	71,7
	extraord	20	12 (60,0%)	8 (40,0%)	1 (5,0%)	11 (55,0%)	88,9
	total	54	39 (72,2%)	41 (75,9%)	1 (1,9%)	11 (20,4%)	95,3
II M		37	32 (86,5%)	30 (81,1%)	4 (10,8%)	3 (8,1%)	88,2
		7	6 (85,7%)	0 (0,0%)	1 (14,3%)	6 (85,7%)	0
		37	32 (86,5%)	30 (81,1%)	1 (2,7%)	6 (16,2%)	88,2
II Tarde		11	9 (81,8%)	8 (72,7%)	2 (18,2%)	1 (9,1%)	80
		3	2 (66,7%)	0 (0,0%)	0 (0,0%)	3 (100,0%)	0 (0%)
		11	9 (81,8%)	8 (72,7%)	0 (0,0%)	3 (27,3%)	80
10		43	30 (69,8%)	26 (60,5%)	9 (20,9%)	8 (18,6%)	74,3
IC				, ,			
		13	8 (61,5%)	1 (7,7%)	2 (15,4%)	10 (76,9%)	33,3
		43	30 (69,8%)	27 (62,8%)	2 (4,7%)	10 (23,3%)	81,8
4º Polit		5	5 (100%)	4 (80%)	0 (0%)	1 (18,6%)	100%
		1	1(100%)	1 (0%)	0 (0%)	1 (100,9%)	
		5	5 (100%)	4 (80%)	2 (4,7%)	10 (23,3%)	100%

INDICE

- Problemas con gestión de datos en ficheros
- Instancias y esquemas

Clasificación de BD

- Según el modelo de datos
 - MER
 - De registros: jerárquico, red, relacional
 - No relacionales: OO, clave-valor, documentales,...
- Según la organización geográfica y distribución de tareas

Modelo relacional

- Niveles de abstracción
- Esquema de un SGBD
 - Usuarios de un BD
 - Procesadores de I/O: LDD,LMD
 - Gestor de almacén: Memoria intermedia, gestor archivos, transacciones, autorización

4

Introducción

- BD: Colección de datos interrelacionados con el objetivo de <u>integrar</u> y <u>compartir</u>
- I SGBD (Sistema Gestor de Base de Datos): Conjunto de programas que acceden a los datos
- SGBD + BD contienen información sobre una parcela de la realidad
- SGBD proporciona un entorno conveniente y eficiente para gestión de datos
- Aplicaciones Bases de Datos:
 - Banca. Transacciones
 - Líneas Aéreas: reserva de billetes
 - Universidades: matrículas, calificaciones, nóminas, biblioteca
 - Ventas: productos, clientes, proveedores, etc.
 - Fabricación: inventario, producción, etc.
 - Recursos Humanos: salarios, registros empleados, etc.
- → Bases de Datos toca todos aspectos de nuestras vidas.

Problemas de la organización en ficheros

Características:

- Redundancia de programas: altas, bajas, modificaciones y consultas
- Redundancia e Inconsistencias de los datos: Múltiples formatos y duplicidad de información
- Dificultad para acceder a los datos: escribir un nuevo programa para una nueva tarea
- Aislamiento de Datos: múltiples formatos y ficheros
- Problemas de integridad (reglas contenidas en el programa) :
 - Restricciones de integridad (balance de una cuenta > 0)
 - Difícil añadir restricciones o cambiarlas
- Atomicidad de las modificaciones: fallos pueden producir inconsistencias
- Concurrencia de múltiples usuarios: necesario para incrementar rendimiento y controlar el acceso
- Problemas de seguridad: Derechos de acceso
- Solución 🖫 Utilización de Sistemas de Bases de Datos

Problemas de la organización en ficheros

La gestión de la información (casi siempre) requiere 100 % eficacia

REDUNDANCIA

INCONSISTENCIA

Objetivo del diseño:

Un sitio para cada cosa y cada cosa en un sitio

Organización es un sistema ... por tanto... continuos cambios

Base de datos, esquema e instancia

- BD 🖾 contenedor de información, al igual que una variable
 - Es deseable la (una) BD de la empresa, pero un economista que realiza la nómina de distintas empresas tendría una BD para cada una de ellas
- Esquema Estructura lógica de una base de datos (recoge restricciones y semántica en el mundo real)
 - Equivalente al tipo de una variable en un programa
 - Esquema físico ☒ cómo almacenar los datos en el disco
- Instancia 🖫 el contenido de una base de datos en un instante determinado (conjunto de datos concretos que almacena)
 - Análogo al valor de una variable
 - También llamada ocurrencia, ejemplar, estado (de la BD) o instantánea
 - Una copia de seguridad (back-up) contiene una instancia de una BD
 - El Universo Discurso (UD) evoluciona en el tiempo, y con él la BD, generando instancias distintas
 - Virtualmente el número de instancias puede ser infinito.

Esquema: Diccionario de datos

- Permite al SGBD saber qué reglas debe aplicar
- La validación de las instancias se lleva a cabo mediante el esquema, almacenado en el diccionario de datos
- Llamado también Meta-Base de Datos, o Base de Datos del Sistema, o Catálogo del Sistema
- Instancia Extensión de la Base de Datos.

Esquema (papel del..)

- Creación de base de datos: sólo se define su esquema, aún no tiene datos, por lo que se dice que tiene un estado vacío o es instancia vacía
- Los estados pueden ser infinitos debido a la evolución del sistema, pero siempre satisfaciendo las restricciones del UD
- El SGBD se encarga de que sólo se almacenen instancias válidas, ajustados a las reglas del esquema proporcionado
- Si las reglas son erróneas ☒ Base de Datos contendrá estados o instancias imposibles en el mundo real (por fallos en el diseño). Ejemplo: (Sexo: Varón, nº embarazos=2).

Clasificación sistemas de Bases de Datos

Por el nº de usuarios: monousuario, multiusuario

Campo de aplicación:

- Propósito general
- Propósito específico: reserva de billetes de líneas aéreas (OLTP)
- Coste
- Por modelo de datos: relacional, objeto-relacional, jerárquico, red...
- Nº de sitios en los que está dividido: centralizado, distribuido

Modelo de datos (definición y clasificación)

- Datos
- Relaciones entre datos
- La semántica de los datos
- Restricciones de los datos
- Modelado conceptual: Entidad-Relación
- Modelos para informatizar:
 - Modelos basados en registros: (jerárquico, red ya superados, pero nivel físico),
 relacional
 - Modelo orientado a objetos
 - Modelos clave-valor
 - Modelos documentales.

Modelo entidad relación (MER)

- Entidades (objetos): clientes, cuentas
- Atributos (características): nombre, apellidos, DNI
- Relaciones entre entidades: cuenta pertenece a cliente
- Es un lenguaje gráfico
 - Sencillo, fácil de entender, usado incluso para hablar con nuestro cliente
 - Objetivo: tener una visión global compacta del UD
 - Estándar para diseño conceptual de bases de datos
- El diagrama E-R se convierte al modelo usado para procesamiento. En nuestro caso modelo relacional.

Modelo entidad relación (MER)

Ejemplo de esquema en el modelo entidad relación.

Modelo de datos jerárquico

Modelo basado en registros para procesamiento

Los registros se organizan como colecciones de árboles

Establece relaciones de 1 a n

- Asimetría: ¿Qué compró cli2?/¿Quién compró prod2?
- Problemas: ¿dónde almaceno un producto aun no comprado? ¹⁵

Modelo de datos red

Se establecen grafos dirigidos, o más bien diversos árboles Establece relaciones de n a m, mediante un nexo (pedido en el ej)

- Simétrico
- Cada pedido 1 y sólo 1 "padre" de cada tipo
- El programador usa los punteros físicos

Modelo relacional

Ocurrencia

id-cliente	nombre-cliente	calle-cliente	ciudad-cliente
19.283.746	González	Arenal	La Granja
01.928.374	Gómez	Carretas	Cerceda
67.789.901	López	Mayor	Peguerinos
18.273.609	Abril	Preciados	Valsaín
32.112.312	Santos	Mayor	Peguerinos
33.666.999	Rupérez	Ramblas	León
01.928.374	Gómez	Carretas	Cerceda

Ejemplo de Base de datos relacional

La relación entre tablas se establece por el valor contenido

	id-cliente	nombre-cliente	calle-cliente	ciudad-cliente
	19.283.746	González	Arenal	La Granja
	01.928.374	Gómez	Carretas	Cerceda
	67.789.901	López	Mayor	Peguerinos
	18.273.609	Abril	Preciados	Valsaín
<	32.112.312	Santos	Mayor	Peguerinos
	33.666.999	Rupérez	Ramblas	León
	01.928.374	Gómez	Carretas	Cerceda

(a) La tabla cliente

Si hay punteros físicamente, son transparentes al programador

número-cuenta	saldo
C-101	500
C-215	700
C-102	400
C-305	350
C-201	900
C-217 C	750
C-222	700

(b) La tabla cuenta

		id-cliente	número-cuenta
		19.283.746	C-101
		19.283.746	C-201
		01.928.374	C-215
		67.789.901	C-102
		18.273.609	C-305
_	\triangleright	32.112.312	C-217
		33.666.999	C-222
	•	01.928.374	C-201

(b) La tabla impositor

Modelos de registros

A nivel físico una BD relacional puede tener subyacente uno de los anteriores

Modelo de datos Orientado a Objetos

Colección de Objetos 👿 valores almacenados en variables + métodos que operan sobre ellos

Objetos que tienen iguales valores y métodos 🖼 Se agrupan en clases

Se accede a los valores por medio de métodos de la clase

Cada objeto tiene identidad única independiente de los datos dos objetos pueden tener valores iguales.

Modelo Clave-Valor

- Problema a resolver: Escalabilidad (capacidad de crecer)

 → potenciadas por la web
- Almacenamiento por clave/valor; orientado a documento
- Asegurar la integridad de datos es responsabilidad de la aplicación
- No hay un estándar, cada SG su propio lenguaje y restricciones
- Usados por grandes empresas: Facebook, Amazon, Google

Referencias

- http://rafinguer.blogspot.com.es/2009/12/estan-condenadas-las-bases-de-datos.html
- http://rafinguer.blogspot.com.es/2009/12/la-nueva-generacion.html
- http://rafinguer.blogspot.com.es/2009/12/contendientes-en-servicios-de-nube.html
- https://www.acens.com/wp-content/images/2014/02/bbdd-nosql-wp-acens.pdf

Modelo de BD documentales

- Almacenamiento no estructurado
- Claves + pesos
- Tesauro = estructuración de claves
- Búsquedas por "semejanza" = producto escalar de vectores peso
- Ejemplo de uso: Buscadores de internet, acceso al documento en bibliotecas
- Bibliografía: Introduction to Modern information retrieval. Salton, McGill McGraw Hill 1983 ISBN 0-07-054484-0

Clasificación BD por organización geográfica (Centralizado)

- El sistema de la Base de Datos se ejecuta en un único sistema informático, sin interactuar con ningún otro sistema
- Estos sistemas abarcan a los equipos monopuesto, y a los sistemas multipuesto, donde la base de datos está centralizada en un equipo
- No suelen ofrecer soluciones avanzadas en la gestión de la base de datos.

(Centralizado)

Clasificación por organización geográfica (Cliente-Servidor)

- Muy extendidos en la actualidad
- La base de datos se sitúa en un ordenador, el cuál realiza toda la gestión y almacenamiento de datos. Es el **servidor**
- Desde otros ordenadores (quizá menos potentes) mantienen y consultan los datos del servidor ☑ proporcionando una interface amigable de acceso a datos al usuario, descargando de esta tarea al servidor. Son los clientes
- Sistema cliente-servidor típico: Servidores de páginas Web con conexión a base de datos.

(Cliente-Servidor)

Clasificación por organización geográfica (Paralelos)

La BD distribuida en varios discos, gestionados por diferentes CPU en paralelo, para optimizar el rendimiento

Rendimiento:

- Productividad : nº de tareas completadas en un intervalo de tiempo
- Tiempo de respuesta : tiempo en completar una tarea.

Clasificación por organización geográfica (Distribuidos)

La información se almacena en varios ordenadores

Los ordenadores están conectado entre sí por redes de comunicación.

Modelo relacional

Arquitectura de tres niveles: Abstracción de datos (surge en BD relacionales)

Nivel lógico M describe qué datos almacena la base de datos y las relaciones entre ellos. Esquema global de BD

- Nivel vistas o externo 🖾 oculta detalles de implementación
 - Programas de aplicación se escriben a este nivel
 - Cada usuario o grupos de usuarios tiene su propia vista
 - Vista solo ofrece los datos relevantes para sus usuarios (ej: matrícula no ve salarios, nóminas no ve estudiantes)

- Los niveles proporcionan <u>independencia</u> <u>de datos y</u> <u>programas</u>: No cambia el esquema sino el mapa entre dos niveles
- Ejemplos prácticos:
 - 1. Migrar una BD de Oracle a SQL Server.
 - No cambian: vistas, modelo lógico ni aplicaciones desarrolladas en ellas.
 - Cambia: modelo físico (de Oracle), regenerándolo para cumplir las reglas y peculiaridades del nuevo SGBD
 - 2. Una aplicación requiere un nuevo campo
 - La vista de esa aplicación contiene el nuevo campo
 - El modelo lógico y físico tienen un atributo mas
 - El resto de aplicaciones no se ven afectadas ya que sus esquemas externos no han cambiado.

- Lógica: es la capacidad de modificar el esquema lógico sin alterar los esquemas externos (solo el mapa)
- Los programas de aplicación dependen del esquema externo
 → no cambian
- Física: es la capacidad de modificar el esquema interno sin tener que alterar el esquema lógico
- La interfaz (o mapa) entre niveles esta definida para que cambios en una parte, no influyan en las superiores
- Ojo: La independencia es sólo de arriba abajo (si hay que incluir un campo en una vista, afecta al global y al físico. No afecta al resto de las vistas).

Esquema de un SGBD

Tipos de usuarios de la BD

- Programadores de aplicaciones a través de llamadas al LMD sobre otro lenguaje (anfitrión)
- Usuarios especializados I realizan peticiones usando un lenguaje de consultas
- Usuarios normales 🖾 a través de aplicaciones permanentes:
 - Oficinistas, clientes que acceden a través de web o puestos de consulta. Ej: reservas aéreas, banca.
- - Definición del esquema
 - Definición de la estructura y métodos de acceso
 - Modificación del esquema y de la organización física
 - Concesión de la autorización para el acceso a los datos
 - Mantenimiento: Back-up, espacio en disco, supervisión, etc.

Lenguajes de un SGBD: LDD

- LDA (Lenguaje de definición de Almacenamiento): utilizado sólo para crear el esquema
- LDV (Lenguaje de definición de vistas)

```
create table cuenta
(número-cuenta char(10),
saldo integer)
```

- Genera el esquema de la BD M Metadatos (datos sobre los datos)
- El esquema se guarda en el catálogo de la Base de Datos.

Lenguajes de un SGBD: LMD

- De Alto Nivel o no procedimental:
 - Típico lenguaje de consulta orientado a conjuntos
 - Qué obtener pero no cómo obtenerlo
 - Son declarativos
- De Bajo Nivel o procedimental:
 - Trabajan registro a registro
 - Están integrados en un lenguaje de programación de propósito general (Lenguaje anfitrión).
- Los LMD utilizados de forma independiente se llaman lenguajes de consulta: 4GL
- SQL (Select Query Language) es el lenguaje de consultas más utilizado. No precedimental. Es un estándar.

37

Lenguajes de un SGBD: LMD SQL

Encontrar el nombre del cliente cuyo identificador es 19.283.746

SELECT cliente.nombre_cliente
FROM cliente
WHERE cliente.id_cliente= '19.238.746'

id-cliente	nombre-cliente	calle-cliente	ciudad-cliente
19.283.746	González	Arenal	La Granja
01.928.374	Gómez	Carretas	Cerceda
67.789.901	López	Mayor	Peguerinos
18.273.609	Abril	Preciados	Valsaín
32.112.312	Santos	Mayor	Peguerinos
33.666.999	Rupérez	Ramblas	León
01.928.374	Gómez	Carretas	Cerceda

(a) La tabla cliente

Encontrar el saldo del cliente anterior

SELECT cuenta.saldo

FROM impositor, cuenta

WHERE impositor.id cliente= '19 238 746'

т -			\ La tabla arranta
3 3 3 7 5		\tag{k}) La tabla <i>cuenta</i>
AND	impositor.numero	cuenta=cuenta.numer	o cuenta

mero-cuenta	saldo	id-cliente	número
C-101	500	19.283.746	C-
C-215	700	19.283.746	C-:
C-102	400	01.928.374	C-:
C-305	350	67.789.901	C-
C-201	900	18.273.609	C-
C-217	750	32.112.312	C-:
C-222	700	33.666.999	C-
		01.928.374	C-

(b) La tabla impositor

- Los programas de aplicación acceden a la base de datos por:
 - Extensiones de un lenguaje de programación convencional (COBOL, PL1..) que permiten embeber SQL
 - Interfaces de aplicación (ODBC/JDBC) que permiten enviar consultas SQL a la base de datos

Esquema de un SGBD: Procesadores de I/O

- Intérprete del LDD 🗑 interpreta las instrucciones LDD y las registra en el catálogo
- Compilador del LMD 🖫 traduce instrucciones del LMD a instrucciones de bajo nivel que entiende el motor de evaluación de consultas
- Precompilador del LMD ☑ convierte las instrucciones del LMD en llamadas a procedimientos de un lenguaje de programación (anfitrión)
- Motor de evaluación de consultas ☒ ejecuta las instrucciones de bajo nivel generadas por el compilador del LMD. Incluye **Optimizador de consultas** ☒ obtiene la consulta más eficiente equivalente a la original para ser 39 procesada posteriormente.

Esquema de un SGBD: Gestor de almacenamiento

Responsable del almacenamiento, recuperación y actualización de la base de datos

Componentes:

- Gestor autorización e integridad
 Is satisface las ligaduras de integridad y la autorización de usuarios para acceder a datos
- Gestor de transacciones

 asegura que la BD quede en estado consistente (correcto) a pesar de fallos en el sistema y transacciones concurrentes (ACID)
- Gestor de archivos M gestiona la reserva de espacio en disco y las estructuras de archivos empleadas para la representación de la información almacenada
- Gestor de memoria intermedia trae los datos del disco a la memoria principal y decide qué datos tratar en la memoria cache.

Esquema de un SGBD: Herramientas de Administración

- Carga de datos de ficheros existentes
- Herramientas de conversión (importar/exportar)
- Copia de seguridad (Back-up)
- Reorganización de ficheros
- Control del rendimiento para la supervisión de la BD
- Compresión de datos

41

Cintomo do comunicacionos

Esquema de un SGBD: Almacenamiento

Datos del UD

Índices y mecanismos de acceso

Datos estadísticos para optimización

Catálogo o diccionario de datos.

El **Diccionario de datos** de un SGBD R

- Nombre de las relaciones
- Nombre de atributos
- Restricciones:
 - Dominio de datos
 - Claves candidatas y primarias
 - Claves extranjeras o foráneas
 - Valores NULL/NOT NULL
- Vistas
- Estructura de almacenamiento
- Descripción de métodos de acceso (índices/hash/punteros)
- Autorización: Usuarios/Permisos/Datos
- En sistemas avanzados también almacena:
 - Recuperación: políticas de copias de seguridad
 - Estadísticas para la optimización del SGBD
 - Funciones de usuario
 - Disparadores (triggers)

El Diccionario de datos de un SGBD R

Es una BD sobre la BD

Ejemplo: relación de catálogo que describe esquemas de relación.

REL_AND ATTR CATALOG

REL_NAME	ATTR NAME	ATTR_TYPE	MEMBER_OF_PK	MEMBER_OF_FK	FK_RELATION
EMPLEADO	NOMBRE	VSTR15	no	no	· -
EMPLEADO	INIC	CHAR	no	no	
EMPLEADO	APELLIDO	VSTR15	no	no	
EMPLEADO	NSS	STR9	sí	no	
EMPLEADO	FECHA_NCTO	STR9	no	no	
EMPLEADO	DIRECCIÓN	VSTR30	no	no	
EMPLEADO	SEXO	CHAR	no	no	
EMPLEADO	SALARIO	INTEGER	no	no	
EMPLEADO	NSS_SUPERV	STR9	no	SÍ	
EMPLEADÓ	ND	INTEGER	no	SÍ	EMPLEADO
DEPARTAMENTO	NOMBRED	VSTR10	no	no	DEPARTAMENTO
DEPARTAMENTO	NÚMEROD	INTEGER	sí	no	D-1101000000000000000000000000000000000
DEPARTAMENTO	MGRSSN	STR9	no	sí	
DEPARTAMENTO	FECHA_INIC_JEFE	STR10	no	no	EMPLEADO
LOCALIZACIONES_DEPT		INTEGER	sí	sí	
LOCALIZACIONES_DEPT	LOCALIZACIÓND	VSTR15	sí	no	DEPARTAMENTO
PROYECTO	NOMBREP	VSTR10	no	no	
PROYECTO	NÚMEROP	INTEGER	sí	no	
PROYECTO	LOCALIZACIÓNP	VSTR15	no	no	
PROYECTO	NUMD	INTEGER	no	SÍ	
TRABAJA_EN	NSSE	STR9	SÍ	sí	DEPARTAMENT(
TRABAJA_EN	NP	INTEGER	sí	SÍ	EMPLEADO
TRABAJA_EN	HORAS	REAL	no	no	PROYECTO
DEPENDIENTE	NSSE	STR9	sí	sí	20.0
DEPENDIENTE	NOMBRE DEPENDIENTE	VSTR15	SÍ	no	EMPLEADO
DEPENDIENTE	SEXO	CHAR	no	no	2.11 (2.10)
DEPENDIENTE	FECHA_NCTO	STR9	no	no	

El Diccionario de datos de un SGBD R

Ej. acceso de usuario mediante herramienta gráfica:

Bibliografia

Silverchatz

Date

Navate

Concepción y diseño de bases de datos. Adoración de Miguel