Kommutatormotor mit einem zylinderförmigen Motorgehäuse

Patent number:

DE10133767

Publication date:

2003-01-30

Inventor:

GETTA UDO (DE); STAHR HEIKO (DE)

Applicant:

TEMIC AUTO ELECTR MOTORS GMBH (DE)

Classification:

- international:

H02K5/14

- european:

H02K5/14C3, H02K11/02A1B, H02K23/66

Application number:

DE20011033767 20010711

Priority number(s):

DE20011033767 20010711

Abstract of DE10133767

The invention relates to a collector motor (1) comprising a cylindrical housing (3), which is easy to mount and easily adapted to different outer supply connection configurations and/or to different components of the brush plate, said brush plate (41) having otherwise identical components. The inventive collector motor is created by arranging a holding plate (43) for control elements, power switches and/or other electrical or electronic components for at least one motor, in the hollow cylindrical construction chamber (4) which is defined by the collector (35), the rotor winding (45), the motor housing (3), and the end plate (17) which closes the open front side (13) of the motor housing (3). The inventive collector motor (1) can be universally used by integrating the electronic control and power unit for at least one collector motor in an already existing motor housing (3), without necessitating more significant construction changes. A rapid adaptation of the collector motor (1) to different power requirements and conditions of use, such as in the automobile industry, as a drive motor for cooling ventilators and/or heating fans, is ensured at any time. The heat produced by means of the rotor (11) and the electronic components can be carried off without especially additional components in a reliable manner.

Data supplied from the esp@cenet database - Worldwide

Also published as:

WO03007458 (A3) WO03007458 (A2) THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ® DE 101 33 767 A 1

(5) Int. Cl.⁷: H 02 K 5/14

DEUTSCHES PATENT- UND **MARKENAMT**

(21) Aktenzeichen: 101 33 767.1 (2) Anmeldetag: 11. 7.2001 (3) Offenlegungstag: 30. 1. 2003

(7) Anmelder:

Temic Automotive Electric Motors GmbH, 10553 Berlin, DE

(72) Erfinder:

Getta, Udo, Dipl.-Ing., 12681 Berlin, DE; Stahr, Heiko, Dipl.-Ing., 13357 Berlin, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> 39 22 514 A1 DE 36 36 539 A1 US 44 18 295 A ΕP 04 89 940 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Kommutatormotor mit einem zylinderförmigen Motorgehäuse
- Ein Kommutatormotor (1) mit einem zylinderförmigen Motorgehäuse (3) der leicht montierbar und bei sonst gleichen Bauteilen der Bürstentragplatte (41) an unterschiedliche äußere Versorgungsanschluß-Figurationen und/oder an unterschiedliche Bestückungen der Bürstentragplatte (41) leicht anpassbar ist, wird erfindungsgemäß dadurch geschaffen, dass eine Halteplatine (43) für Steuerungselemente, Leistungsschalter und/oder sonstige elektrische bzw. elektronische Bauelemente für einen oder mehrere Motoren in dem hohlzylinderförmigen Bauraum (4) angeordnet ist, welcher durch den Kommutator (35), die Rotorwicklung (45), das Motorgehäuse (3) und durch das die offene Stirnseite (13) des Motorgehäuses (3) verschließende Lagerschild (17) begrenzt wird.

Der universelle Einsatz des erfindungsgemäßen Kommutatormotors (1) wird durch die Integration der Steuerungs- und Leistungselektronik für einen oder mehrere Kommutatormotoren in ein bereits bestehendes Motorgehäuse (3) ermöglicht, ohne dass dazu größere Konstruktionsänderungen erforderlich sind. Insbesondere ist eine schnelle Anpassung des Kommutatormotors (1) an unterschiedliche Leistungsanforderungen und Einsatzbedingungen wie im Kfz-Bereich als Antriebsmotor für Kühlerlüfter und/oder Heizungsgebläse jederzeit gewährleistet, wobei der durch den Rotor (11) und durch die elektronischen Bauelement erzeugte Wärme ohne besondere zusätzlich Bauteile sicher abführbar ist.

1012276741 | -

Beschreibung

[0001] Die Erfindung betrifft einen Kommutatormotor mit einem zylinderförmigen Motorgehäuse der im Oberbegriff des Patentanspruchs 1 angegebenen Art.

[0002] Elektromotoren der angesprochenen Art sind allgemein bekannt. Sie umfassen üblicherweise ein topf oder zylinderförmiges Gehäuse, dessen offene Stirnseiten durch ein Lagerschild verschließbar sind. Zuvor werden in das Innere des Motorgehäuses die notwendigen elektrischen Bau- 10 teile eingesetzt, wozu hierzu bei einem Kommutatormotor ein Kommutator und diesen kontaktierende Bürsten gehö-

[0003] Durch die DE 41 29 651 A1 ist eine elektromotorische Antriebseinheit mit einem Elektromotor und einer Vor- 15 richtung zur Steuerung bzw. Regelung des Elektromotors bekannt. Hierdurch wird eine kompakte Baueinheit geschaffen, aber diese Antriebseinheit ist für Kommutatormotoren weniger geeignet.

[0004] Weiterhin ist durch die Patentschrift US-3,924,147 20 ein Kommutatormotor bekannt, bei dem eine gedruckte Leiterplatte vorgesehen ist, welche auf der einen Seite die gedruckten Leiterbahnen und auf der anderen Seite die Kohlebürsten und andere elektrische Bauelemente aufweist. Ein durch eine auf der Leiterplatte angeordnete Steuerungs- und Leistungselektronik ist diesem Stand der Technik nicht zu entnehmen. Auch dürfte die Abfuhr der durch die elektrischen Bauelemente erzeugten Wärme Probleme bereiten.

[0005] Weiterhin werden bei derartigen Schaltungsanordnungen elektronische Bauteile über ihre Anschlussdrähte elektrisch mit der Leiterplatte verbunden, wodurch in den meisten Fällen auch gleichzeitig die (alleinige) mechanische Halterung der Bauteile an der Leiterplatte gewährleistet ist, so dass keine gesonderten Haltemittel vorgesehen sind. Vor allem bei solchen Bauteilen, die nicht in unmittelbarer Nähe der Leiterplatte angeordnet sind oder sogar auf ihr aufliegen, sondern über längere Anschlussdrähte in einem bestimmten Abstand von der Leiterplatte angeordnet sind, kann dies zu Problemen, wie z. B. zu vibrationsbedingten Störungen und/ 40 oder zu Lageveränderungen durch Verbiegungen der Anschlussdrähte, führen. Dies ist beispielsweise bei Sensoren problematisch, wenn sie zur Erfassung von bestimmten physikalischen Zustandsgrößen relativ zu bestimmten Komponenten genau platziert werden müssen.

[0006] Weiterhin ist durch die DE 197 36 300 A1 ein Elektromotor mit integrierter elektronischer Steuerung bekannt, bei der ein Wärmeschutz als Hindernis für Wärmeaustausch zwischen dem Rotor und der Steuerungsvorrichtung angeordnet ist. Dieser Wärmeschutz fängt die durch 50 den Rotor und die Steuervorrichtung erzeugte Wärme auf und leitet sie ab. Dieser Wärmeschutz bildet ein zusätzliches Bauteil und ist in bereits bestehenden Motoren nicht ohne konstruktive Anderungen einsetzbar. Auch sind die auf den Kommutator schleifenden Kohlebürsten und die elektroni- 55 schen Steuerungselemente zusammen auf der Bürstentragplatte angeordnet, wodurch die durch die Kohlebürsten verursachten und nicht zu vermeidenden Erschütterungen sich negativ auf die elektronischen Bauelemente bzw. auf deren Halterungen auswirken. Auch ist diesem Stand der Technik 60 kein Hinweis auf die Ansteuerung von mehreren Motoren zu entnehmen.

[0007] Schließlich offenbart die EP 0489940 A1 ein Bürstensystem für einen Kommutatormotor mit einem in dessen Motorgehäuse axial einfügbaren hülsenförmigen Isolierkör- 65 per und daran gehaltener axial einfügbarer Bürstentragplatte mit Kontaktverbindungen zwischen den Bürstenanschlüssen und äußeren elektrischen Versorgungsanschlüssen. Hierbei

sind sowohl eine Bürstentragplatte mit einem eingegossenen Stanzgitter als auch eine Elektronikplatte vorgesehen, welche aber zwischen der Bürstentragplatte und dem Lagerschild angeordnet ist. Hierdurch ist die Schaffung eines Kommutatormotors mit kurzer axialer Ausdehnung nicht möglich. Auch ist diesem Stand der Technik nicht zu entnehmen, dass die Elektronik-Anschlußplatte Steuerungselemente oder Leistungsschalter bzw. -halbleiter zur Steuerung von einem oder mehreren Motoren aufweist. Auch sind hierbei die Bürstentragplatte und die Elektronikplatte getrennt

[0008] Der Erfindung liegt nun die Aufgabe zugrunde, einen Kommutatormotor mit einem zylinderförmigen Motorgehäuse zu schaffen, der bei kurzer axialer Baulänge und kompaktem Aufbau universell mit einer schnellen Anpassung an unterschiedliche Leistungsanforderungen und Einsatzbedingungen insbesondere als Antriebsmotor im Kfz-Bereich für z. B. Kühlerlüfter, Heizgebläse oder sonstige Aggregate ohne größere Konstruktionsänderung ermöglicht. Hierbei sollen wenig unterschiedliche Bauteile und insbesondere bereits bestehende Motorgehäuse Verwendung finden, wobei ein Mehrbedarf an Bauraum vermieden werden soll. Auch soll die durch den Rotor und die elektrischen bzw. elektronischen Bauelemente erzeugte Wärme ohne zu-Hinweis auf eine Steuerung von ein oder mehreren Motoren 25 sätzliche Bauteile sicher abführbar sein. Diese Aufgabe wird durch die im Patentanspruch 1 gekennzeichneten Merkmale

[0009] Der besondere Vorteil des erfindungsgemäßen Kommutatormotors besteht darin, dass die Steuerungs- und Leistungselektronik innerhalb des Motorgehäuses in dem hohlzylinderförmigen Bauraum angeordnet ist, welcher durch den Kommutator, die Rotorwicklung, das Motorgehäuse und das Lagerschild begrenzt wird. Vorteilhaft ist au-Berdem, daß die Ansteuerung von einem oder mehreren Motoren möglich ist. Durch Einbau der Steuerung innerhalb des Motorgehäuses entfallen externe Bauteile wie zusätzliche Gehäuse, Kabel und/oder Befestigungselemente. Der erfindungsgemäße Kommutatormotor benötigt für die Steuerungs- und Leistungselektronik keinen zusätzlichen Bauraum, was sich günstig z. B. bei einem Einsatz in einem Kfz-Lüfter auswirkt. Die erfindungsgemäße Bürstenbrücke ist auch in bereits vorhandene Motorgehäuse einbaubar, so dass der Einsatz baugleicher Teile möglich ist.

[0010] So ist der erfindungsgemäße Kommutatormotor mit einfachen Mitteln und mit weniger unterschiedlichen Bauteilen an unterschiedliche äußere Versorgungsanschlusskonfigurationen und/oder die unterschiedliche Bestückungen der Bürstenbrücke z. B. mit Entstörmitteln oder Detektoren für die Drehzahlerfassung einfach anpaßbar.

[0011] Durch die vorteilhafte Ausgestaltung des Erfindungsgegenstandes nach Patentanspruch 4 wird eine Bündelung des durch den Innenraum des Motorgehäuses geleiteten Kühlluftstromes erzielt, wobei durch den Tragkragen ein Hauptkühlluftstrom entlang der Oberfläche des Kollektors erzielt wird. Die axiale Luftgeschwindigkeit des Hauptluftstromes wird durch die kaminartige Wirkung des Tragkragens derart erhöht, dass unterhalb der Bürstentragplatte der Unterdruck noch weiter erhöht wird. Hierdurch wird der zwischen dem Rand der Bürstentragplatte und der Innenoberfläche des Motorgehäuses streichende Nebenkühlluftstrom noch weiter verstärkt, was eine sichere Abfuhr der durch die elektronischen Bauelemente wie z. B. durch die Leistungshalbleiterschalter erzeugten Wärme gewährleistet. Erfindungsgemäß wird der durch den Innenraum von der Kollektorseite zur Abtriebsseite streichende Kühlluftstrom in einen Hauptluftstrom 6 und einen Nebenkühlluftstrom 93 unterteilt.

[0012] Auch wird durch die vorteilhafte Ausgestaltung

4

des Erfindungsgegenstandes nach Anspruch 19 der Einsatz des Kommutatormotors auch in Aggregaten wie z.B. in Kraftfahrzeugen ermöglicht, wobei Erschütterungen nicht zu einem frühen Ausfall der elektronischen Bauelemente führen können

[0013] Erfindungsgemäß werden die auf der Halteplatine gelagerten elektronischen Bauelemente an ihren freien Enden durch Arretierausnehmungen in der Bürstentragplatte arretiert.

[0014] Schließlich werden durch die weiteren Ausgestaltungen des Erfindungsgegenstandes nach den Patentansprüchen 8 bis 10 eine reibungsarme Führung der Kohlebürsten
und eine gute Abfuhr der an der Reibungsstelle zwischen
den Kohlebürsten und dem Kommutator entstehenden
Wärme gewährleistet.

[0015] Weitere vorteilhafte Ausgestaltungen des Erfindungsgegenstandes sind den weiteren Unteransprüchen und der folgenden Beschreibung zu entnehmen:

[0016] Es zeigen:

[0017] Fig. 1 einen Längsschnitt durch einen Kommuta- 20 tormotor,

[0018] Fig. 2 einen Längsschnitt durch den Kommutator nach Fig. 1 um 180° versetzt.

[0019] Fig. 3 eine Draufsicht auf die Bürstenbrücke mit oben angeordneter Halteplatine,

[0020] Fig. 4 eine Ansicht auf die Bürstenbrücke mit unten angeordneter Halteplatine,

[0021] Fig. 5 eine Draufsicht auf die Bürstentragplatte von unten.

[0022] Fig. 6 eine Ansicht auf die Bürstentragplatte von 30 oben und

[0023] Fig. 7 eine Seitenansicht auf die Bürstentragplatte. [0024] In Fig. 1 ist ein Kommutatormotor 1 insbesondere als Antriebsmotor im Kfz- Bereich z. B. für Kühlerlüfter oder Heizgebläse mit einem zylinderförmigen Motorge- 35 häuse 3 dargestellt. Die Innenumfangsfläche 5 des Motorgehäuses 3 weist Permanentmagnete 7 auf, welche das Rotorblechpaket 9 des Rotors 11 umgeben. Die beiden offenen Stirnseiten 13, 15 des Motorgehäuses 3 sind durch je ein Lagerschild 17, 19 verschließbar. Die Rotorwelle 21 des Ro- 40 tors 11 ist in Lagerstellen 23, 25 mit nichtdargestellten Kugellagern in den Lagerschilden 17, 19 drehbar gelagert. Die in Bürstenführungsschächten 27, 29 geführten und mit nicht dargestellten Anschlussleitungen kontaktierten Kohlebürsten 31, 33 schleifen auf dem Kommutator 35. Die Kohle- 45 bürsten 31, 33 werden in bekannter Weise durch Bürstendruckfedern 37, 39 beaufschlagt.

[0025] Die Bürstenführungsschächte 27, 29 bestehen mit einer diese halternden Bürstentragplatte 41 aus einem einstückigen Spritzteil, welches aus einem elektrisch isolieren- 50 dem Kunststoff besteht.

[0026] Die Bürstenführungsschächte 27, 29 weisen auf ihren insbesondere einen quadratischen Querschnitt bildenden Innenumfangsflächen 28, 30 prismenartige, radial vorstehende Führungsstege 32, 34 auf, welche senkrecht zu der 55 Außenumfangsfläche 36 des Kommutators 35 angeordnet sind. Diese Führungsstege 32, 34 ermöglichen eine reibungsarme Führung für die Kohlebürsten 31, 33.

[0027] Weiterhin ist eine Halteplatine 43 für Steuerungselemente wie Controller, Leistungshalbleiterschalter 90 60 und/oder sonstige elektrische bzw. elektronische Bauelemente wie Kondensatoren, Dreherkennungsdetektoren usw. in dem Bauraum (2), welcher durch den Kommutator 35, das Motorgehäuse 3, die Bürstentragplatte 41 bzw. das Lagerschild 17 und durch die Rotorwicklung 45 des Rotors 11 65 begrenzt wird, angeordnet.

[0028] Die Kontaktgabe der elektrischen Bauteile bzw. der elektrischen Anschlüsse untereinander erfolgt über ein

Stanzgitter 47, das an der Bürstentragplatte 41 gehaltert ist. Gemäß den Fig. 1, 2, und 4 ist das Stanzgitter 47 lösbar insbesondere über eine Rastverbindung an der Bürstentragplatte 41 gehaltert. Zu diesem Zweck weist das Stanzgitter

Rastausnehmungen auf, in welche an der Bürstentragplatte 41 fest angeordnete Rastzapfen einrastbar sind.

[0029] Im Rahmen der Erfindung ist es selbstverständlich auch möglich, dass das Stanzgitter in der aus elektrisch isolierendem Material bestehenden Bürstentragplatte 41 bei deren Herstellung gleich mit eingegossen wird.

[0030] Das Stanzgitter 47 weist zur Erzeugung mehrerer getrennter Kontaktbahnen 49, 51, 53, 55, 56, 58 Trennungsstege 57, 59, 61, 63, 65, 67, 69 auf, die nach der örtlichen Vorpositionierung des Stanzgitters 47 nach der Montage freigestanzt werden. Das Stanzgitter zum Eingießen weist ebenfalls Trennstege auf, die nach dem Einguß freigestanzt werden.

[0031] Die durch den Kommutatormotor 1 in bekannter Weise z. B. bei dessem Einsatz als Kühlerluftantriebsmotor in einem Kraftfahrzeug durchströmende Kühlluft wird in einen Hauptluftkühlstrom 6, der durch den Ringluftspalt 75 fließt, und in einen Nebenkühlluftstrom 93, der zwischen dem äußeren Umfang der Bürstentragplatte 41 und der Innenumfangsfläche 5 des Motorgehäuses 3 fließt und für die Wärmezufuhr der elektrischen und elektronischen Bauelemente auf der Bürstentragplatte 41 sorgt, unterteilt. Der Hauptkühlluftstrom 6 ist für die Wärmeabfuhr der durch die auf dem Kommutator 35 schleifenden Kohlebürsten 31, 33 bestimmt. Der Nebenkühlluftstrom 93 wird noch weiter dadurch verstärkt, dass der Hauptkühlluftstrom 6 beim Austritt aus dem Ringluftspalt 75 zusätzlich einen erhöhten Unterdruck unterhalb der Halteplatine 43 erzeugt.

[0032] Durch diese Maßnahmen wird eine derartige Motorkühlung erzielt, dass zusätzliche Bauelemente für die Abfuhr der Wärme aus dem Innenraum des Kommutatormotors nicht erforderlich sind.

[0033] Die Halteplatine 43 ist mit Abstand zu der Bürstentragplatte 41 an dieser gehaltert und bildet zusammen mit dieser Bürstentragplatte 41 die Bürstenbrücke 69, welche als ein Montageteil in das Motorgehäuse 3 von der Stirnseite 13 axial einschiebbar ist. Danach wird das Lagerschild 17 montiert.

[0034] Im Rahmen der Erfindung können das Lagerschild 17 und die Bürstentragplatte 41 auch aus einem Montagebauteil bestehen, wobei die Bürstentragplatte 41 dann eine Lagerstelle für ein Lager der Rotorwelle 21 aufweisen muß. [0035] In der Bürstentragplatte 41 ist eine Durchtrittsöffnung 71 für den Kommutator 35 vorgesehen, die von einem zylinderförmigen Tragkragen 73 umgeben ist. Dieser Tragkragen 73 ist zu der Halteplatine 43 hin aufrecht angeordnet und umgibt den Kommutator 35 mit einem Ringluftspalt 75, wodurch eine Bündelung von Kühlluft längs des Kommutators 35 erzielt wird. Außerdem dient der Tragkragen 73 als Wärmeschutzelement, das die Übertragung der an dem Kommutator 35 erzeugten Wärme auf die elektronischen Bauelemente auf der Bürstentragplatte 41 verhindert. Weiterhin wird der Kohleabrieb über den kaminartig wirkenden Ringluftspalt 75 abgeführt.

[0036] Zur Aufnahme der Halteplatine 43 weist der Tragkragen 73 an seinem freien Ende 72 einen Aufnahmebund 74 auf, welcher an seiner Außenumfangsfläche 77 mit radial nach außen vorstehender Anschlagflächen 79 versehen ist. Die axiale Verrastung der Halteplatine 43 auf den Anlageflächen 79 erfolgt dadurch, dass der Tragkragen 73 federnde Rasthaken 81, 83 aufweist. Die Anschlagflächen 79 sind gegenüber der Stirnfläche 76 des Tragkragens 73 zu der Bürstentragplatte 41 hin axial versetzt angeordnet.

[0037] Die einstückig an der Bürstentragplatte 41 ange-

besondere einen quadratischen Querschnitt bildenden Seitenwänden 10, 12, 14, 16 senkrecht an dem Tragkragen 73 angeordnet, wobei die eine Seitenwand 16 auf der Innenoberfläche 18 der Bürstentragplatte 41 integriert angeordnet ist und mittig einen durch die Bürstentragplatte 41 erstrekkenden Lüftungsschlitz 50 aufweist. Die Abfuhr von der durch die Kohlebürsten 31, 33 erzeugten Wärme wird weiterhin dadurch begünstigt, dass die seitlich angeordneten Seitenwände 12, 14 der Bürstenführungsschächte 27, 29 zu 10

schlitze 24. 26 zum Durchtritt von Kühlluft aufweisen.

[0038] Die Halteplatine 43 ist scheibenförmig ausgebildet und besteht aus Leiterplattenmaterial. Die elektrische Verbindung zwischen den Kontaktbahnen in der Bürstentragplatte 41 und den Kontaktbahnen in der Halteplatine 43 erfolgt über Stehbolzen 85, deren Enden über Lötverbindungen mit den Kontaktstellen fest gehaltert werden.

deren freien Stirnfläche 20, 22 hin verlaufende Lüftungs-

[0039] Um eine gute Durchlüftung des Kommutatormotors 1 z. B. als Antriebsmotor für Kühlerlüfter zu erzielen, 20 weisen die beiden Lagerschilde 17, 19, die die offenen Stirnseiten 13, 15 des Motorgehäuses 3 verschließen, Durchtrittsöffnungen 87, 89 zum Durchtritt von Kühlluft von der Kollektorseite zur Antriebsseite auf. Die Durchtrittsöffnungen 87, 89 sind so angeordnet, dass die Kühllust an den wärme- 25 kritischen Stellen innerhalb des Kommutatormotors 1 vorbei geführt wird. Die Richtung des Kühlluftstromes 6 ist in der Fig. 2 dargestellt. Die Führung des Kühlluftstromes in den Ringluftspalt 75 wird dadurch erleichtert, dass die zylindrische Durchtrittsöffnung in der Bürstentragplatte 41 eine 30 angefaste Leitfläche 88 aufweist. Die bekannte vorhandene Motorkühlung mit einem Kühlluftstrom 100 von der Kollektorseite zur Antriebsseite ist erfindungsgemäß auch für die Elektronikbürstenbrücke ausreichend.

[0040] Eine lange Lebensdauer der elektrischen und elektronischen Bauelemente, die auf der Halteplatine 43 befestigt sind, wird erfindungsgemäß dadurch erzielt, dass die freien Enden 80, 82, 84 der Bauelemente wie z. B. Leitungshalbleiterschalter 90, Kondensatoren 92 durch die Bürstentragplatte 41 formschlüssig arretierbar werden. Zu diesem 40 Zweck weist die Bürstentragplatte 41 Arretierausnehmungen 94, 86, 88 auf, in welche die freien Enden 80, 82, 84 der elektrischen und/oder elektronischen Bauelemente formschlüssig arretiert werden.

[0041] Da die elektrischen bzw. elektronischen Bauteile 45 wie Leistungshalbleiterschalter 90. Kondensatoren 92 usw. auf der Halteplatine 43 angeordnet sind, findet dadurch eine mechanische Entkopplung von den mechanisch belasteten Stellen auf der Bürstentragplatte 41 statt. Der Kabelanschluß 102 einschließlich Zugentlastung sind ebenfalls der 50 Bürstentragplatte 41 angeordnet. Hierdurch wird die Halteplatine 43 ebenfalls mechanisch weniger belastet.

[0042] Die Bürstenbrücke 69 ist als Montagebaustein in das Motorgehäuse 3 dadurch leicht einsetzbar, dass die Bürstentragplatte 41 eine scheibenförmig ausgebildete Grundplatte 66 aufweist, welche an ihrer äußeren Umfangsfläche 46 mit zwei Haltelaschen 38, 40 versehen ist, welche in der Stirnfläche 13 des Motorgehäuses 3 angeordnete Rastausnehmungen 96, 98 formschlüssig einrastbar sind. Die radiale Zentrierung der Bürstenbrücke 69 ist dadurch gegeben, 60 dass die Bürstentragplatte 41 seitlich neben den Haltelaschen 38, 40 angeordneten kreisförmigen Anschlagsflächen 42, 44 radial abgestufte Ausnehmungen 46, 48 auf, welche die Luftdurchtrittsschlitze für den Nebenkühlluftstrom 93 zwischen der Bürstentragplatte 41 und der Innenumfangsfläche 5 des Motorgehäuses 3 bilden.

Patentansprüche

- 1. Kommutatormotor mit einem zylinderförmigen Motorgehäuse mit an dessen Innenseite gehaltenen Permanentmagneten und mit einer in Lagern gelagerten Rotorwelle mit darauf befestigtem Rotorblechpaket, das eine an einen Kommutator angeschlossene Rotorwicklung aufnimmt, wobei auf dem Kommutator schleifende Kohlebürsten in Bürstenführungsschächten einer Bürstentragplatte verschiebbar gelagert sind, die Bürstentragplatte mit Kontaktverbindungen mindestens zwischen den Bürstenanschlüssen und äußeren elektrischen Versorgungsanschlüssen versehen ist und wobei der Kollektor durch eine Durchtrittsöffnung in der in das Motorgehäuse axial einschiebbaren Bürstentragplatte hindurchgeht, dadurch gekennzeichnet. dass eine Halteplatine (43) für Steuerungselemente, Leistungsschalter und/oder sonstige elektrische bzw. elektronische Bauelemente für einen oder mehrere Motoren in dem hohlzylinderförmigen Bauraum (2), welcher durch den Kommutator (35), die Rotorwicklung (45), das Motorgehäuse (3) und durch das die offene Stirnseite (13) des Motorgehäuses (3) verschließende Lagerschild (17) begrenzt wird, derart angeordnet ist, dass der durch den Rotor (11) und durch die elektronischen Bauelemente erzeugte Wärme ohne besondere zusätzliche Bauteile sicher abführbar ist.
- 2. Kommutatormotor nach Anspruch 1. dadurch gekennzeichnet, daß die Halteplatine (43) zwischen der Bürstentragplatte (41) und der Rotorwicklung (45) angeordnet ist.
- 3. Kommutatormotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Halteplatine (43) mit Abstand zu der Bürstentragplatte (41) an dieser gehaltert ist und zusammen mit der Bürstentragplatte (41) eine aus zwei Bauteilen bestehende Bürstenbrücke (69) bildet, welche in das Motorgehäuse (3) axial einfügbar ist.
- 4. Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Durchtrittsöffnung (71) für den Kommutator (35) in der Bürstentragplatte (41) von einem zylinderförmigen Tragkragen (73) umgeben ist, welcher zu der Halteplatine (43) hin aufrecht angeordnet ist und mit seiner Innenumfangsfläche (70) die Außenumfangsfläche (36) des Kommutators (35) in Längsrichtung mit einem Ringluftspalt (75) konzentrisch umgibt, wodurch eine Bündelung der Kühlluft und eine erhöhte axiale Luftgeschwindigkeit der Kühlluft zur besseren Motorkühlung erzielt werden.
- 5. Kommutatormotor nach Anspruch 4, dadurch gekennzeichnet, dass der Tragkragen (73) an seinem freien Ende (72) einen Aufnahmebund (74) für die Halteplatine (43) aufweist und dass der Aufnahmebund (74) an seiner Außenumfangsfläche (77) mit radial nach außen vorstehenden Anschlagflächen (79) zur Auflage der Halteplatine (43) versehen ist, wobei die Anschlagflächen (79) gegenüber der Stirnfläche (76) des Tragkragens (73) zu der Bürstentragplatte (41) hin axial versetzt angeordnet sind.
- Kommutatormotor nach Anspruch 5, dadurch gekennzeichnet, dass der zylinderförmige Tragkragen (73) an seinem freien Ende (72) federnde Rasthaken (81, 83) zum Verrasten der Halteplatine (43) bei deren Anlage an den Anschlagflächen (79) aufweist.
- 7. Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bürstentragplatte (41) und die Bürstenführungsschächte (27,

- 29) aus einem einstückigen Kunststoffspritzteil bestehen.
- 8. Kommutatormotor nach Anspruch 7, dadurch gekennzeichnet, dass die Bürstenführungsschächte (27, 29) auf ihren einen quadratischen Querschnitt bildenden Innenumfangsflächen (28, 30) prismenartige, radial vorstehende Führungsstege (32, 34) aufweisen, welche senkrecht zu der Außenumfangsfläche (36) des Kommutators (35) angeordnet sind.
- 9. Kommutatormotor nach Anspruch 8, dadurch gekennzeichnet, dass die Bürstenführungsschächte (27, 29) mit vier einen quadratischen Querschnitt bildenden Seitenwänden (10, 12, 14, 16) senkrecht an dem Tragkragen (73) angeordnet sind, wobei die eine Seitenwand (16) auf der Innenoberfläche (18) der Bürstentragplatte (41) integriert angeordnet ist und mittig einen durch die Bürstentragplatte (41) erstreckenden Lüftungsschlitz (50) aufweist.
- 10. Kommutatormotor nach Anspruch 9. dadurch gekennzeichnet, dass die seitlich angeordneten Seitenwänden (12, 14) der Bürstenführungsschächte (27, 29) zu deren freien Stirnflächen (20, 22) hin verlaufende Lüftungslängsschlitze (24, 26) zum Durchtritt von Kühlluft aufweisen.
- 11. Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktgabe elektrischer Bauteile bzw. elektrischer Anschlüsse untereinander durch mindestens ein Stanzgitter (47) erfolgt, das an der Bürstentragplatte (41) gehaltert ist.
- 12. Kommutatormotor nach Anspruch 11, dadurch gekennzeichnet, dass das Stanzgitter (47) lösbar, insbesondere über eine Rastverbindung an der Bürstentragplatte (41) gehaltert ist.
- 13. Kommutatormotor nach einem der Ansprüche 35 1-11, dadurch gekennzeichnet, dass die Kontaktgabe elektrischer Bauteile bzw. elektrischer Anschlüsse untereinander durch mindestens ein Stanzgitter erfolgt, das in der aus elektrisch isolierendem Material bestehenden Bürstentragplatte (41) eingegossen ist.
- 14. Kommutatormotor nach Anspruch 11, 12 oder 13, dadurch gekennzeichnet, dass das Stanzgitter (47) vor dem Verrasten mit der Bürstentragplatte (41) bzw. vor dem Eingießen in die Bürstentragplatte (41) Trennungsstege (57, 59, 61, 63, 65, 67) zwischen den Kontaktbahnen (49, 51, 53, 55) zu deren örtlicher Vorpositionierung aufweist, die nach der Montage bzw. nach dem Eingießen freistanzbar sind.
- 15. Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Halteplatine (43) scheibenförmig geformt ist und aus Leiterplattenmaterial besteht.
- 16. Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Stehbolzen (85) die elektrische Verbindung zwischen dem 55 Stanzgitter (47) in der Bürstentragplatte (41) und der Kontaktbahnen in der Halteplatine (43) bilden.
- 17. Kommutatormotor nach einem der vorhergehenden Ansprüche, wobei die offenen Stirnseiten des zylinderförmigen Motorgehäuses beidseitig durch je ein 60 Lagerschild verschließbar sind, dadurch gekennzeichnet, dass die beiden Lagerschilde (17, 19) Durchtrittsöffnungen (87, 89) zum Durchtritt von Kühlluft von der Kollektorseite zur Antriebsseite aufweisen, wobei die Durchtrittsöffnungen (87, 89) an den wärmekritischen Stellen angeordnet sind.
- Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zy-

- lindrische Durchtrittsöffnung (71) in der Bürstentragplatte (41) eine angefaste Leitfläche (88) zur besseren Bündelung der Kühlluft in den Ringluftspalt (75) aufweist, wohei der auf der unteren Seite (91) des Ringluftspaltes (75) austretende Kühlluftstrom einen erhöhten Unterdruck unterhalb der Halteplatine (43) derart erzeugt, dass ein Nebenkühlluftstrom (93) durch. Schlitze zwischen der Innenumfangsfläche (5) des Motorgehäuses (3) und der Außenumfangsfläche (42) der Bürstenbrücke (69) fließt.
- 19. Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die auf de Halteplatine (43) einseitig befestigten elektronischen und/oder elektrischen Bauelemente wie Kondensatoren (92), Leistungshalbleiterschalter (90) etc. an ihren freien Enden (80, 82, 84) durch die Bürstentragplatte (41) formschlüssig arretierbar sind.
- 20. Kommutatormotor nach Anspruch 19, dadurch gekennzeichnet, dass die Bürstentragplatte (41) Arretierausnehmungen 94, 86, 88 aufweist, in welche die freien Enden (80, 82, 84) der elektrischen und/oder elektronischen Bauelemente formschlüssig arretierbar sind.
- 21. Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bürstentragplatte (41) eine scheibenförmig ausgebildete Grundplatte (66) aufweist, welche an ihrer äußeren Umfangsfläche (46) mit zwei Haltelaschen (38, 40) versehen ist, welche in in der Stimfläche (13) des Motorgehäuses (3) angeordnete Rastausnehmungen (96, 98) formschlüssig einrastbar sind.
- 22. Kommutatormotor nach Anspruch 21, dadurch gekennzeichnet, dass die Bürstentragplatte (41) seitlich der Haltelaschen (38, 40) kreisförmige Anschlagflächen (42, 44) aufweist, die an der zylindrischen Innenumfangsfläche (5) des Motorgehäuses (3) formschlüssig anliegen.
- 23. Kommutatormotor nach Anspruch 22, dadurch gekennzeichnet, dass die Bürstentragplatte (41) zwischen den seitlich neben den Haltelaschen (38, 40) angeordneten kreisförmigen Anschlagflächen (42, 44) radial abgestufte Ausnehmungen (46, 48) aufweist, welche die Luftdurchtrittsschlitze zwischen der Bürstentragplatte (41) und der Innenumfangsfläche (5) des Motorgehäuses (35) für den Nebenkühlluftstrom bilden.

Hierzu 6 Seite(n) Zeichnungen

- Leerseite -

FIG.6

