Homework 2

1. p.76-77 Ex.24(a)(b)

a. V is the vector space, and W_1 , and W_2 are subspaces of V, such that $V = W_1 \oplus W_2$ For $T: V \to V$, we have T(a,b),

meaning that [y-axis] $W_1 = \{(a, 0) : a \in \mathbb{R}\}$ and [x-axis] $W_2 = \{(0, b) : b \in \mathbb{R}\}$, as $= W_1 \oplus W_2$ and (a, b) = (a, 0) + (0, b).

T(a,b) = T(0,b) [projection on W_1 , along W_2].

b. V is the vector space, and W_1 , and W_2 are subspaces of V, such that $V=W_1\oplus W_2$ For $T\colon V\to V$, we have T(a,b).

We are given that, $W_2 = \{(s, s) : s \in \mathbb{R}\}$ which is $W_2 = \{(a, a) : a \in \mathbb{R}\}$, meaning that [y-axis] $W_1 = \{(0, b - a) : a, b \in \mathbb{R}\}$ and [L] $W_2 = \{(a, a) : a \in \mathbb{R}\}$, as $= W_1 \oplus W_2$ and (a, b) = (0, b - a) + (a, a).

T(a,b) = T(0,b-a) [projection on W_1 , along W_2].

2. <u>p.77 Ex.28</u>

subspace W of V is said to be T-invariant if $T(x) \in W$ for every $x \in W$, that is $T(W) \subseteq W$.

- 1. $T(0) = 0 \in \{0\}$: $\{0\}$ is T-invariant
- 2. $T: V \rightarrow V : \mathbb{V}$ is T-invariant
- 3. If, $x \in R(T) \subseteq V$, then $x \in V$. Therefore, we have that, $T(x) \in R(T)$, hence it follows that $T(R(T)) \subseteq R(T) :: R(T)$ is T-invariant
- 4. If, $T: V \to V$, then $N(T) = \{0\}$. Then if, $x \in N(T)$, then T(x) = 0. Also, T(0) = 0, and hence, $0 \in N(T)$ Therefore, $T(x) = 0 \in N(T), \forall x \in N(T) \rightarrow T(N(T)) \subseteq N(T), \therefore N(T)$ is Tinvariant

3. p.85 Ex.11

 $\dim(W) = k$, $\dim(V) = n$, and W is T-invariant (i.e., $T(x) \in W$ for every $x \in W$, that is $T(W) \subseteq W$).

We have vector space V, and its T-invariant subspace W, we take $\{v_1, v_2 \dots v_k\}$ to be the basis of W, we know we can extend it to be $\beta = \{v_1, v_2, ... v_n\}$, the basis of V. Since $T(W) \subseteq W$, $T(v_i) \in W$, $\forall 1 \le j \le k$, that is $T(v_i) = \sum_{i=1}^k a_{ij} v_i$ for unique scalars a_{ii} .

Let $A := [T]_{\nu}$, $k \times k$ matrix and 0 is the $(n - k) \times k$ zero matrix.

Then,
$$[T]_{\beta} = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$$
.

4. p.97 Ex.9

We take $[U]_{\alpha} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $[T]_{\alpha} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, we then define:

 $U: F^2 \to F^2$ by $(a, b) \to (b, b)$ and $T: F^2 \to F^2$ by $(a, b) \to (a + b, 0)$

If we say that, $x \in F^2$, then $UT(x) = U(a,b) = U(a+b,0) = (0,0), \forall a,b \in F$, which then gives us that $UT = T_0$.

We then take, $TU(x) = TU(a,b) = T(b,b) \neq T_o(a,b)$ $TU \neq T_0$

$$0.07 \pm 10$$
 e then use the above example

We then use the above example...

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$,
then we have $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = T_0$ and $BA = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq T_0$.

5. p.97 Ex.11

Let $x \in V$ such that T(x) = 0. We can assume that $T^2 = T$. We then know that as T(x) = T. 0, then T(T(x)) = 0. Hence, $x \in N(T)$.

Since we know that $V \to V$ is linear, then we know $x \in R(T)$. Finally, since T(x) consists of R(T) and N(T).

$R(T) \subseteq N(T)$, when $T^2 = 0 = T_0$

6. p.97 Ex.13

We have,
$$tr(AB)_{ii} = \sum_{k=1}^{n} A_{ik} B_{ki} = \sum_{k=1}^{n} B_{ki} A_{ik} = \sum_{k=1}^{n} (BA)_{kk} = tr(BA)_{kk} = tr(BA)$$

Let: $A = \begin{pmatrix} 3 & 7 & 9 \\ 5 & 2 & 4 \\ 1 & 6 & 8 \end{pmatrix}$, $B = \begin{pmatrix} 9 & 1 & 8 \\ 2 & 7 & 3 \\ 6 & 4 & 5 \end{pmatrix}$

$$AB = \begin{pmatrix} 3 & 7 & 9 \\ 5 & 2 & 4 \\ 1 & 6 & 8 \end{pmatrix} \times \begin{pmatrix} 9 & 1 & 8 \\ 2 & 7 & 3 \\ 6 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 95 & 88 & 90 \\ 73 & 35 & 66 \\ 69 & 75 & 66 \end{pmatrix}$$

$$Tr(AB) = 95 + 35 + 66 = 196$$

$$BA = \begin{pmatrix} 9 & 1 & 8 \\ 2 & 7 & 3 \\ 6 & 4 & 5 \end{pmatrix} \times \begin{pmatrix} 3 & 7 & 9 \\ 5 & 2 & 4 \\ 1 & 6 & 8 \end{pmatrix} = \begin{pmatrix} 40 & 113 & 149 \\ 44 & 46 & 70 \\ 43 & 80 & 110 \end{pmatrix}$$

$$Tr(BA) = 40 + 46 + 110$$

$$tr(AB) = tr(BA)$$

Since we know that $A_{ij}^T = A_{ii}$, it can be easily seen in the examples below...

$$A = \begin{pmatrix} 2 & 5 & 7 \\ 3 & 2 & 4 \\ 9 & 7 & 5 \end{pmatrix}, A^{T} = \begin{pmatrix} 2 & 3 & 9 \\ 5 & 2 & 7 \\ 7 & 4 & 5 \end{pmatrix}$$

$$Tr(A) = 2 + 2 + 5 = 9$$

$$Tr(A^{T}) = 2 + 2 + 5 = 9$$

$$tr(A) = tr(A^{T})$$

7. p.116 Ex.2(d)

$$\beta = \{(-4,3), (2,-1)\} \text{ and } \beta' = \{(2,1), (-4,1)\}$$

$$(2,1) = 2(-4,3) + 5(2,-1) \text{ and } (-4,1) = -1(-4,3) - 4(2,-1)$$

$$\therefore [I]_{\beta'}^{\beta} \begin{pmatrix} 2 & -1 \\ 5 & -4 \end{pmatrix}$$

8. p.116 Ex.4

$$[T]_{\beta'} = [T]_{\beta'}^{\beta'}[T]_{\beta}[T]_{\beta'}^{\beta} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -2 & -5 \end{pmatrix} = \begin{pmatrix} 8 & 13 \\ -5 & -9 \end{pmatrix} = [T]_{\beta'}$$

9. p.141 Ex.3(a)
$$y'' + 2y' + y = 0$$
 gives $t^2 + 2t + 1 = (t+1)(t+1)$ which gives $us \to \{e^{-t}, te^{-t}\}$ $y(0) = 3, y'(0) = 2$

10. p.141 Ex.3(b)
$$y''' - y' = 0$$
 gives $t^3 - t = t(t - 1)(t + 1)$ which give us $\rightarrow \{1, e^t, e^{-t}\}$ $y(0) = 9, y'(0) = 1, y''(0) = 5$