Regression

Examples

- Dependent variable is employment income independent variables might be hours of work, education, occupation, sex, age, region, years of experience, unionization status, etc.
- Price of a product and quantity produced or sold:
 - Quantity sold affected by price. Dependent variable is quantity of product sold – independent variable is price.
 - Price affected by quantity offered for sale. Dependent variable is price – independent variable is quantity sold.

Univariate and multivariate models

Simple regression model

Multivariate or multiple regression model

(Education)
$$X_1$$
(Sex) X_2
 \longrightarrow y (Income)
(Experience) X_3
(Age) X_4

Simple Regression

- Is example of Supervised Learning
- One input variable (feature), also called univariate regression
- Univariate linear regression is used when you want to predict a single output value y from a single input value x
- Input variable/feature values: x_i (*Height*)
- Output variable/target variable values : y_i (Weight)
- A pair (x_i, y_i) is **ith** training example
- Observation pairs: (x_i, y_i) ; i = 1, 2, ..., m
- A list of training examples $\{(x_i, y_i) | i = 1, 2, ..., m \}$ is called **training set**
- X = space of input values and Y = space of output values, $(X = Y = \mathcal{R})$
- m = number of observations (number of training examples)

Simple Regression Statement

- Given correct values of output variable y_i for the training data set having m values of input variable $x_i \forall i = 1,2,...,m$
- Regression problem is to predict real valued output for a given value of feature/input
- Given a training set, to learn a function h: X → Y so that h(x) is a "good" predictor for the corresponding value of y. For historical reasons, this function h is called a hypothesis

Training Set

- Quiz: Suppose there are 35 pair of (height, weight) = (x_i, y_i)
- m = ?
- What is x_2 ?
- What is target variable?
- What is input variable?
- What is feature?
- What is output variable?
- What is y_3 ?
- What is (x_5, y_5) ?
- What is training example for i = 4?
- What is training set?
- Why is it supervised learning?
- Does target variable take continuous or discrete values?
- Describe hypothesis h function

Height

Weight

Sr No

Hypothesis function Linear Regression

Sr No	Height (cms) = x	Weight (Kg)= y
1	135	57
2	165	70
3	155	63
4	160	65
5	150	62

•
$$y = h(x) = a_0 + a_1 x$$

- a_0 , a_1 are parameters
- How to choose the parameters? (Many concepts)
- Just say h(x) = 2 + 0.5 x
- Weight = 0.5 * height + 2

Quiz: Predict weight for height as 162 cm

Predict weight for height as 160 cm Same for height 165 cm, 150 cm? What are the errors in above two predictions?

Draw scatter diagram, and h(x)

Linear Regression

Linear Equations

Univariate or simple linear regression

- x is the independent variable
- y is the dependent variable
- The regression model is

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- The model has two variables, the independent or explanatory variable, x, and the dependent variable y, the variable whose variation is to be explained.
- The relationship between *x* and *y* is a linear or straight line relationship.
- Two parameters to estimate the slope of the line β_1 and the *y*-intercept β_0 (where the line crosses the vertical axis).
- ε is the unexplained, random, or error component.
 Much more on this later.

Linear Regression Model

Relationship Between Variables Is a Linear Function

Population

Population

August 2020

Population Linear Regression Model

Sample Linear Regression Model

Estimating Parameters: Least Squares Method

Scatter plot

- 1. Plot of All (X_i, Y_i) Pairs
- 2. Suggests How Well Model Will Fit

Regression line

- The regression model is $y = \beta_0 + \beta_1 x + \varepsilon$
- Data about x and y are obtained from a sample.
- From the sample of values of x and y, estimates b_0 of β_0 and b_1 of β_1 are obtained using the least squares or another method.
- The resulting estimate of the model is

$$\hat{y} = b_0 + b_1 x$$

• The symbol \hat{y} is termed "y hat" and refers to the predicted values of the dependent variable y that are associated with values of x, given the linear model.

Least Squares

 1. 'Best Fit' Means Difference Between Actual Y Values & Predicted Y Values Are a Minimum. But Positive Differences Off-Set Negative ones

Least Squares

 1. 'Best Fit' Means Difference Between Actual Y Values & Predicted Y Values is a Minimum. But Positive Differences Off-Set Negative ones. So square errors!

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\mathcal{E}}_i^2$$

Least Squares

 1. 'Best Fit' Means Difference Between Actual Y Values & Predicted Y Values Are a Minimum. But Positive Differences Off-Set Negative. So square errors!

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

 2. LS Minimizes the Sum of the Squared Differences (errors) (SSE)

Least Squares Graphically

LS minimizes
$$\sum_{j=1}^{n} \hat{\varepsilon}_{j}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

Objective Function/Cost/Loss Function

- Our objective is to get the best possible line. The best possible line will be such so that the total/average squared vertical distances of the scattered points from the line will be the least.
- Ideally, the line should pass through all the points of our training data set. (Zero Error)
- Consider that the data points (training set) $\{(x_i, y_i); i = 1, 2, ..., m\}$; are given. We would like to fit a straight line $h(x) = a_0 + a_1 x$ to this data.
- For that we have to find values of a_0 and a_1 which minimize the total square error:

Cost Function/Sum of square of errors

Hence, the sum of the squares of the errors,

$$S = \sum_{i=1}^{m} [y_i - (a_0 + a_1 x_i)]^2.$$

For S to be minimum, we have

$$\frac{\partial S}{\partial a_0} = -2\sum_{i=1}^m [y_i - (a_0 + a_1x_i)]$$

and

$$\frac{\partial S}{\partial a_1} = -2\sum_{i=1}^m x_i[y_i - (a_0 + a_1x_i)].$$

Normal Equations

The above equations are simplified to

$$ma_0 + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$

and

$$ma_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i.$$

Since the x_i and y_i are known quantities, the above two equations (called the **normal equations**), can be solved for the two unknown a_0 and a_1 . Differentiating $\frac{\partial S}{\partial a_0}$ and $\frac{\partial S}{\partial a_1}$ with respect to a_0 to a_1 respectively, we find

$$\frac{\partial^2 S}{\partial a_0^2}$$
 and $\frac{\partial^2 S}{\partial a_1^2}$

and both will be positive at the points. Hence these values provide a minimum of S.

Computation Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
X.	Y.	×, ²	W.j ²	X, Y,
<u> </u>	¥2	×2 ²	W2 ²	<u> </u>
7 .	7	٦ ٢	٦ ٢	Г
$\mathbb{X}_{\mathbf{n}}$	Y	X, 2	Y 2	X _u Y _u
$\sum_{i} X_{j}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ΣX_j^2	$\Sigma \mathbb{V}_{j}^{2}$	S'X _j Y _j

Parameter Estimation Example

 Obstetrics: What is the relationship between Mother's Estriol level & Birthweight using the following data?

Estriol	Birthweight	
(mg/24h)	(g/1000)	
1	1	
2	1	
3	2	
4	2	
5	4	

Scatterplot Birthweight vs. Estriol level

Parameter Estimation Solution Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
1	1	1	1	1
2	-[]	4	-]	2
3	2	3)	<u> </u>	රි
<u>√</u>	2	13	<u> </u>	3
5	4	25	15	20
15	10	55	26	37

Sr	Height	Weight	VV	
iii	(cms) = x	(Kg)= y	ху	
1	135	57	7695	18225
2	165	70	11550	27225
3	155	63	9765	24025
4	160	65	10400	25600
5	150	62	9300	22500
m= 5	$\sum x_i 765$	317	48710	117575