ASSIGNMENT 6

1

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ JAN 20, SHIFT 1

b) 24

in $(\frac{3}{2}, \infty)$. Then $x = \frac{3}{2}$ is a) a point of local maxima b) a point of local minima

a) 16

1) Let $y=mx+c,\ m>0$ be the focal chord of $y^2=-64x$ which is tangent to $\left(x+10\right)^2+y^2=4.$ Then the value of $4\sqrt{2}\left(m+c\right)$ is equal to

2) A continuous differentiable function f(x) is increasing in $\left(-\infty, \frac{3}{2}\right)$ and decreasing

c) 34

d) 40

c) a point of infled) None of these	ection			
3) If z and w are confind $\arg\left(\frac{1-2z\omega}{1+3z\omega}\right)$		th that $ z\omega =1$, a	$\arg(z) - \arg(w) = \frac{3\pi}{2}$, then	
a) $\frac{\pi}{4}$	b) $-\frac{\pi}{4}$	c) $\frac{3\pi}{4}$	d) $-\frac{3\pi}{4}$	
4) If an invertible function $f\left(x\right)$ is defined as $f\left(x\right)=3x-2$, and $g\left(x\right)$ is also an invertible function such that $f^{-1}\left(g^{-1}\left(x\right)\right)=x-2$, then $g\left(x\right)$ is				
a) $\frac{x-8}{3}$	b) $\frac{x+8}{3}$	c) $\frac{x-3}{8}$	d) $\frac{x+3}{8}$	
5) The probability of selecting integers $a \in [-5, 30]$, such that $x^2 + 2(a+4)x - 5a + 64 > 0$ for all $x \in \mathbb{R}$ is:				
a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{1}{4}$	d) $\frac{1}{5}$	
6) If $\int_0^a e^{x-[x]} dx = 10e - 9$, then the value of a is				
a) $9 + \ln 2$	b) $10 + \ln 2$	c) 10	d) 9	
$\mathbf{r_1} = \alpha \hat{i} + 2\hat{j} + 2\hat$				

a) 2	b) 4		c) 6
8) Let $a_{ij} = c$	(1,	i = j	
8) Let $a_{ij} = \epsilon$	$\begin{cases} -x, \end{cases}$	i-j =1	
	1 2 m ± 1	othomyica	

2x+1, otherwise , $A=[a_{ij}]_{3\times 3}=\det{(A)}$. Then find the sum of local maximum and minimum values

- b) $-\frac{20}{27}$ c) $\frac{88}{27}$

d) $-\frac{88}{27}$

d) $\sqrt{6}$

- 9) Find the coefficient of $a^3b^4c^5$ in $(ab+bc+ca)^6$.
 - a) 60

- b) 45
- c) 40

- d) 90
- 10) $x\left(\frac{dy}{dx}\right)\tan\left(\frac{y}{x}\right)=y\tan\left(\frac{y}{x}\right)+x,\ y\left(\frac{1}{2}\right)=\frac{\pi}{6}.$ The area bounded by $x=0,\ x=\frac{1}{\sqrt{2}},$ and $y=y\left(x\right)$ is:

 - a) $\frac{\pi-1}{8}$ b) $\frac{\pi-2}{16}$ c) $\frac{\pi-3}{32}$
- d) $\frac{\pi 4}{64}$