EEL7030 - Microprocessadores

Laboratório de Comunicações e Sistemas Embarcados

Prof. Raimes Moraes
EEL - UFSC

Manipulação de Flip-Flops

1) Setar bits

(Exemplo – bit 6 e bit 3):

MOV A,00h

ORL A,#01001000b

MOV 00h,A

3) Complementar bits

(Exemplo – bit 7 e bit 3):

MOV A,07h

XRL A,#10001000b

MOV 07h,A

2) Limpar bits

(Exemplo – bit 5 e bit 4):

MOV A,1Fh

ANL A,#11001111b

MOV 1Fh,A

4) Testar bits

(Exemplo – bit 2):

MOV A,03

ANL A,#00000100b

JZ LABEL

PSW - Program Status Word - Bit Addressable

7	6	5	4	3	2	1	0	_
CY	AC	F0	RS1	RS0	OV	F 1	P	D0H

Nome	Localização	Descrição
CY	PSW.7	Carry flag
AC	PSW.6	Auxiliary carry flag
F0	PSW.5	Definido pelo usuário
RS1	PSW.4	Bit 1 do seletor de Register Bank
RS0	PSW.3	Bit 0 do seletor de Register Bank
OV	PSW.2	Overflow flag
F1	PSW.1	Definido pelo usuário
Р	PSW.0	Flag de paridade. 1 = ímpar.

Instruções que afetam os flags C, OV e AC

	C	OV	AC
ADD	X	X	X
ADDC	X	X	X
SUBB	X	X	X
MUL	0	X	
DIV	0	X	
DA	X		
RRC	X		
RLC	X		
CJNE	X		

OBS: Flag de paridade reflete qualquer alteração de conteúdo do acumulador; se o acumulador contém nro ímpar de 1's, P='1'.

Tomando Decisões – 1

Com dados previamente carregados nos registradores A e B:

- somar o conteúdo de ambos se [A]=[B];
- subtrair se $[A] \neq [B]$;

CJNE A,B,SUBTRAI

ADD A,B

JMP \$

SUBTRAI: CLR C ; Cy = 0

SUBB $A,B; [A] \leftarrow [A] - [Cy] - [B]$

Tomando Decisões – 2

Com dados previamente carregados nos registradores A e B:

- somar o conteúdo de ambos se [A]<[B];
- subtrair se $[A] \ge [B]$;

CJNE A,B,SOMA

SUBTRAI: SUBB A,B

JMP \$

SOMA: JNC SUBTRAI

ADD A,B

Tomando Decisões – 3

Com dados previamente carregados nos registradores A e B:

- somar o conteúdo de ambos se [A] ≥[B];
- subtrair se [A]<[B];

SOMA:

CJNE A,B, SUBTRAI

ADD A,B

JMP \$

SUBTRAI: JNC SOMA

 $\mathbf{CLR} \qquad \qquad \mathbf{C} \qquad \mathbf{;} \ \mathbf{Cy} = \mathbf{0}$

SUBB $A,B; [A] \leftarrow [A] - [Cy] - [B]$

Tomando Decisões – 4a

Com dados previamente carregados nos registradores A e B:

- somar o conteúdo de ambos se [A]≤[B];
- subtrair se [A]>[B];

CJNE A,B, SUBTRAI

SOMA: ADD A,B

JMP \$

SUBTRAI: JC SOMA

SUBB A,B

Tomando Decisões – 4b

Com dados previamente carregados nos registradores A e B:

- somar o conteúdo de ambos se [A]≤[B];
- subtrair se [A]>[B];

PUSH	AC	C
CLR	\mathbf{C}	
SUBB	A,B	
JZ	SOI	MA
JC	SO	MA
POP	\mathbf{B}	;decrementa SP
JMP	\$	
POP	AC	C
ADD	A,B	
JMP	\$	

SOMA:

Tomando Decisões – 5a

Com dados previamente carregados nos registradores A e B, sendo que $[A]\neq [B] =>$

- somar o conteúdo de ambos se [A]>[B];
- caso [A]<[B], somar 6 a [A]

PUSH	ACC
CLR	\mathbf{C}
SUBB	A,B
POP	ACC
JC	SOMA6
ADD	\mathbf{A} , \mathbf{B}
JMP	\$
ADD	A, #6
JMP	\$

SOMA6:

Tomando Decisões – 5b

Com dados previamente carregados nos registradores A e B, sendo que $[A]\neq [B] =>$

- somar o conteúdo de ambos se [A]>[B];
- caso [A]<[B], somar 6 a [A]

	CJNE	A,B SALTA
SALTA:	JC	SOMA6
	ADD	A,B
	JMP	\$
SOMA6:	ADD	A,#6
	JMP	\$

Multiplicação no 8051

MOV A,#dado

MOV B,#10

MUL AB

OBS:

- Multiplica valores inteiros de 8 bits sem sinal
- LSB do resultado de 16-bit vai para o acumulador
- MSB do resultado de 16-bit vai para B
- Se o produto for maior que 255 (0FFH), o flag de *overflow* é setado.
- Excetuando caso acima, flag de overflow é colocado em zero.
- Flag de *carry* é colocado em zero

Divisão no 8051

MOV A,#dado

MOV B,#8

DIV AB

OBS:

- Divide valores inteiros de 8 bits sem sinal
- Se divisor B=0, DIV AB seta o flag de overflow; caso contrário, OV=0
- Acumulador recebe quociente do resultado
- B recebe o resto da divisão
- Flag de *carry* é colocado em zero

Representação de nros negativos em formato binário

- n bits => 2ⁿ valores sem sinal: 0 a (2ⁿ-1)
 - Ex: 8 bits \Rightarrow 28 valores sem sinal: 0 a 255
- Complemento de 1: nro. negativo é o complemento da representação binária do nro. positivo: -((2ⁿ⁻¹)-1) a ((2ⁿ⁻¹)-1)
 - Ex: 8 bits => - (2^7-1) a (2^7-1) => -127 (80H) a 127 (7FH)
 - Duas representações para o valor 0 (00H e FFH)
- Complemento de 2: nro. negativo é o complemento da representação binária do nro. positivo somado a 1 : -(2ⁿ⁻¹) a ((2ⁿ⁻¹)- 1).
 - Ex: 8 bits => - (2^7) a (2^7-1) => -128 (80H) a 127 (7FH)

Complemento de 1 para n=3

Nros. P	Nros. Positivos		Nros. Negativos		
0	000	0	111		
1	001	-1	110		
2	010	-2	101		
3	011	-3	100		

Ex: 3 bits => $-(2^2 - 1)$ a $(2^2 - 1)$: -3 a 3

Aritmética em Complemento de 1

- Possui duas representações para 0.
 - 1) Somar bit a bit, inclusive o bit de sinal.
 - 2) Avaliar "vai-um":
 - a) Ausente para o bit de sinal ou carry: fim;
 - b) "vai-um" apenas para o bit de sinal: resultado excede capacidade de representação
 - c) "vai-um" para *carry*: soma-se o "vai-um" ao resultado da soma;
 - c.1) se ocorrer "vai-um" após c: nro de "vaiuns" total for par (para bit de sinal e carry), correto, de outra forma, *overflow*;

Complemento de 1

D	Н
-3	100
+2	010
-1	110

D	Н
-2	101
-1	110
	1011
	1
-3	100

Complemento de 2 para n=4

Complemento de 2 para n=3

Nros. P	Nros. Positivos		Nros. Negativos		
0	000	-1	111		
1	001	-2	110		
2	010	-3	101		
3	011	-4	100		

Ex: 3 bits => $-(2^2)$ a $(2^2 - 1)$: -4 a 3

Complemento de 2

D	Н
-3	101
+2	010
-1	111

D	Н
-2	110
-1	111
	ı 101
-3	101

OBS: Se houver *carry* sem "vai-um" para o bit de sinal: *overflow*

Somar os operandos 1897 a 2905 em BCD

$$+ 0001 1000 + 0010 1001$$

+0110 (6)

$$1897_{BCD} + 2905_{BCD} = 4802_{BCD}$$

ASCII American Standard Code for Information Interchange (ASCII)

ASCII contém 128 caracteres; 33 são caracteres de controle; 94 caracteres e espaço.

HEX	DEC	CHR	HEX	DEC	CHR	HEX	DEC	CHR	HEX	DEC	CHR
00	0	NUL	20	32	SPC	40	64	@	60	96	`
01	1	SOH	21	33	JF C	41	65	@ A	61	97	_
02	2	STX	22	34	!	42	66	В	62	98	a b
03	3	ETX	23	35	#	43	67	С	63	99	
03	4	EOT	24	36	\$	43	68	D	64	100	d d
05	5	ENQ	25	37	» %	45	69	E	65	101	
06	6	ACK	26	38	-/o &	46	70	F	66	102	e f
07	7	BEL	27	39	· ·	47	71	G	67	103	
08	8	BS	28	40	- /	48	72	Н	68	103	g h
09	9	HT	29	41	(49	73		69	104	
		LF			*		74	J			i
0A	10	VT	2A	42		4A			6A 6B	106 107	J
0B 0C		FF	2B	43	+	4B	75	K	6C		k
	12		2C	44	,	4C	76	L		108	<u> </u>
0D	13	CR	2D	45	-	4D	77	M	6D	109	m
0E	14	SO	2E	46		4E	78	N	6E	110	n
0F	15	SI	2F	47	/	4F	79	0	6F	111	0
10	16	DLE	30	48	0	50	80	P	70	112	р
11	17	DC1	31	49	1	51	81	Q	71	113	q
12	18	DC2	32	50	2	52	82	R	72	114	r
13	19	DC3	33	51	3	53	83	S	73	115	S
14	20	DC4	34	52	4	54	84	T	74	116	t
15	21	NAK	35	53	5	55	85	U	75	117	u
16	22	SYN	36	54	6	56	86	V	76	118	V
17	23	ETB	37	55	7	57	87	W	77	119	W
18	24	CAN	38	56	8	58	88	Х	78	120	Х
19	25	EM	39	57	9	59	89	Υ	79	121	У
1A	26	-	3A	58	:	5A	90	Z	7A	122	Z
1B	27	ESC	3B	59	,	5B	91	[7B	123	{
1C	28	FS	3C	60	<	5C	92	\	7C	124	
1D	29	GS	3D	61	=	5D	93]	7D	125	}
1E	20	RS	3E	62	>	5E	94	٨	7E	126	~
1F	31	US	3F	63	?	5F	95		7F	127	DEL

ASCII