

LOW POWER DUAL VOLTAGE COMPARATORS

- WIDE SINGLE SUPPLY VOLTAGE RANGE OR DUAL SUPPLIES: +2V TO +36V OR ±1V TO ±18V
- VERY LOW SUPPLY CURRENT (0.4mA) INDEPENDENT OF SUPPLY VOLTAGE (1mW/comparator at +5V)
- LOW INPUT BIAS CURRENT : 25nA TYP
- LOW INPUT OFFSET CURRENT : ±5nA TYP
- LOW INPUT OFFSET VOLTAGE: ±1mV TYP
- INPUT COMMON-MODE VOLTAGE RANGE **INCLUDES GROUND**
- LOW OUTPUT SATURATION VOLTAGE: 250mV TYP. (Io = 4mA)
- DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE SUPPLY VOLTAGE
- TTL, DTL, ECL, MOS, CMOS COMPATIBLE **OUTPUTS**

DESCRIPTION

These devices consist of two independent low voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

These comparators also have a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

DIP8 (Plastic Package)

SO8 (Plastic Micropackage)

TSSOP8 (Thin Shrink Small Outline Package)

Mini SO8 (Plastic Micropackage)

ORDER CODE

Part	Temperature	Package					
Number	Range	N	D	Р	S		
LM193	-55°C, +125°C	•	•	•	•		
LM293	-40°C, +105°C	•	•	•	•		
LM393	0°C, +70°C	•	•	•	•		
Example: LM393D							

N = Dual in Line Package (DIP)
 D = Small Outline Package (SO) - also available in Tape & Reel (DT)
 P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT)

S = MiniSO Package (MiniSO) only available in Tape & Reel (ST)

- 1 Output 1
- 2 Inverting input 1
- 3 Non-inverting input 1
- 4 V_{CC}
- 5 Non-inverting input 2
- 6 Inverting input 2
- 7 Output 2
- 8 V_{CC}⁺

1/11 July 2002

SCHEMATIC DIAGRAM (1/2 LM193)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	±18 or 36	V
V _{id}	Differential Input Voltage	±36	V
Vi	Input Voltage	-0.3 to +36	V
	Output Short-circuit to Ground - note 1)	Infinite	
P _d	Power Dissipation ²⁾ DIP8 SO8 TSSOP8 Mini SO8	1250 710 625 580	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{icm}	Common Mode Input Voltage Range	0 to V _{CC} ⁺ -1.5	V
T _{oper}	Operating Free-Air Temperature range LM193 LM293 LM393	-55 to +125 -40 to +125 0 to +70	°C

Short-circuits from the output to V_{CC}⁺ can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA independent of the magnitude of V_{CC}⁺.

Pd is calculated with T_{amb} = +25°C, T_j = +150°C and R_{thja} = 100°C/W for DIP8 package = 175°C/W for SO8 package = 200°C/W for TSSOP8 package = 200°C/W for TSSOP8 package = 215°C/W for Mini SO8 package

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = +5V, V_{CC}^- = 0V, T_{amb} = +25°C (unless otherwise specified)

Symbol	Parameter	Min	Тур.	Max.	Unit
V _{io}	Input Offset Voltage - note $^{1)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1	5 9	mV
l _{ib}	Input Bias Current - note $^{2)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		25	250 400	nA
I _{io}	Input Offset Current $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		5	50 150	nA
A _{vd}	Large Signal Voltage Gain $V_{CC} = 15V$, $R_L = 15k\Omega$, $V_0 = 1V$ to 11V	50	200		V/mV
I _{CC}	Supply Current (all comparators) $V_{CC} = 5V, \text{ no load}$ $V_{CC} = 30V, \text{ no load}$		0.4 1	1 2.5	mA
V _{icm}	Input Common Mode Voltage Range - note $^{3)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	V
V _{id}	Differential Input Voltage -note 4)			V _{CC} ⁺	V
Isink	Output Sink Current V_{id} = 1V, V_o = 1.5V	6	16		mA
V _{OL}	Low Level Output Voltage $V_{id} = \text{-1V, I}_{sink} = \text{4mA}$ $T_{amb} = \text{+25°C}$ $T_{min} \leq T_{amb} \leq T_{max}$		250	400 700	mV
I _{OH}	High Level Output Current (V_{id} = 1V) V_{id} = 1V, V_{CC} = V_{o} = 30V T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		0.1	1	nA μA
t _{re}	Response Time - note $^{5)}$ R _L = $5.1k\Omega$ to V_{CC}^+		1.3		μs
t _{rel}	Large Signal Response Time $V_i = TTL$, $V_{(ref)} = +1.4V$, $R_L = 5.1k\Omega$ to V_{CC}^+		300		ns

^{1.} At output switch point, $V_0 \approx 1.4V$, $R_s = 0$ with V_{CC}^+ from 5V to 30V, and over the full common-mode range (0V to V_{CC}^+ -1.5V).

5. The response time specified is for a 100mV input step with 5mV overdrive. For larger overdrive signals 300ns can be obtained

The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference of input lines.

The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC}⁺-1.5V, but either or both inputs can go to +30V without damage

^{4.} Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3V (or 0.3V bellow the negative power supply, if used).

SUPPLY CURRENT versus SUPPLY VOLTAGE

OUTPUT SATURATION VOLTAGE versus OUTPUT CURRENT

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - POSITIVE TRANSITION

INPUT CURRENT versus SUPPLY VOLTAGE

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - NEGATIVE TRANSITION

TYPICAL APPICATIONS

BASIC COMPARATOR

DRIVING CMOS

DRIVING TTL

LOW FREQUENCY OP AMP

LOW FREQUENCY OP AMP

TRANSDUCER AMPLIFIER

LOW FREQUENCY OP AMP WITH OFFSET ADJUST

ZERO CROSSING DETECTOR (single power supply)

TWO-DECADE HIGH-FREQUENCY VCO

LIMIT COMPARATOR

CRYSTAL CONTROLLED OSCILLATOR

SPLIT-SUPPLY APPLICATIONS

ZERO CROSSING DETECTOR

COMPARATOR WITH A NEGATIVE REFERENCE

8 PINS - PLASTIC DIP

Dimensions -	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0260	
i			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions -	Millimeters			Inches			
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45°	(typ.)			
D	4.8		5.0	0.189		0.197	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE

D :		Millimeters Inches		Inches		
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.05
A1	0.05		0.15	0.01		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.15
С	0.09		0.20	0.003		0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.025	
k	0°		8°	0°		8°
I	0.50	0.60	0.75	0.09	0.0236	0.030
L	0.45	0.600	0.75	0.018	0.024	0.030
L1		1.000			0.039	

8 PINS - PLASTIC MICROPACKAGE (miniSO)

Dimensions	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.100			0.043
A1	0.050	0.100	0.150	0.002	0.004	0.006
A2	0.780	0.860	0.940	0.031	0.034	0.037
b	0.250	0.330	0.400	0.010	0.013	0.016
С	0.130	0.180	0.230	0.005	0.007	0.009
D	2.900	3.000	3.100	0.114	0.118	0.122
E	4.750	4.900	5.050	0.187	0.193	0.199
E1	2.900	3.000	3.100	0.114	0.118	0.122
е		0.650			0.026	
L	0.400	0.550	0.700	0.016	0.022	0.028
L1		0.950			0.037	
k	0d	3d	6d	0d	3d	6d
aaa			0.100			0.004

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.