- **2.** В результате сильного прокаливания 12.00 г смеси карбонатов кальция и магния получили такое количество CO_2 , в котором содержится $1.63 \cdot 20^{24}$ протонов. Вычислите состав исследуемой смеси в массовых процентах.
- 1) Обозначим число моль $CaCO_3$ в смеси через X, а число моль $MgCO_3$ Y. Тогда, с учетом молярных масс карбонатов: 100X + 84Y = 12

тогда, с учетом молярных масс кароонатов. 100A + 641 = 12

Рассчитаем количество моль протонов: $n(p) = 1.63 \cdot 20^{24} / (6.02 \cdot 10^{23}) = 2.71$ моль

Но в 1 моле CO_2 содержится 22 протона, следовательно, $n(CO_2) = n(p)/22 = 0.123$ моль

2) Разложение карбонатов происходит по реакциям:

 $CaCO_3 = CaO + CO_2$

 $MgCO_3 = MgO + CO_2$

3) Число моль выделяющегося CO₂ соответствует числу моль карбоната, т.е. второе уравнение, необходимое для расчета состава смеси:

X + Y = 0.123

100X + 84Y = 12

Откуда X = 0.104 Y = 0.019

4) Macca CaCO₃ = $10.4 \, \Gamma$ MgCO₃ = $1.6 \, \Gamma$

 $w(CaCO_3) = 86.7 \% w(MgCO_3) = 13.3 \%$

1) Обозначим число моль $CaCO_3$ в смеси через X, а число моль $MgCO_3$ — Y. Тогда, с учетом молярных масс карбонатов: 100X + 84Y = 12

Рекомендации к оцениванию:

Определено количество моль CO₂

1 балл

2. Уравнения реакции по 0.5 балла

1 балл

Рассчитаны массовые доли CaCO₃ и MgCO₃

3 балла

ИТОГО: 5 баллов