УТВЕРЖДАЮ

Генеральный директор

AO «Светмана-Рост»

🞾 В.П. Чалый

«**Д8**» <u>03</u> 2022 г

Справочник

Библиотека стандартных элементов pHEMT025D СВБШ.431418.020 Д42

Главный конструктор направления

О.Р. Фазылханов

«<u>28</u>» <u>марта</u> 2022 г.

Версия 1.0 г. Санкт-Петербург

Содержание

Лист регистрации изменений	3
Общие правила	4
1. Перечень библиотеки стандартных элементов по технологии рНЕМТ025D	5
2. Активные компоненты	9
2.1. Транзисторы для разработки усилителей	12
2.1.1. Транзисторы CPW	12
2.1.1.1. Измеренные и смоделированные характеристики транзисторов	13
2.1.2. Транзисторы CSFET, CGFET	16
2.1.3. Транзисторы Microstrip Power	17
2.2. Транзисторы для ключевого применения	18
2.2.1. Измеренные и смоделированные характеристики транзисторов	19
2.3. Элементы для формирования логической ячейки	20
2.3.1. Транзистор с одним затвором	20
2.3.2. Транзистор с двумя затворами	21
2.3.3. Диод с одним электродом	22
2.4. Диоды	23
3. Пассивные компоненты	24
3.1. Конденсаторы	24
3.1.1. МДМ-конденсатор 1 типа	24
3.1.2. МДМ-конденсатор 2 типа	25
3.1.3. МДМ-конденсатор 3 типа	26
3.1.4. МДМДМ-конденсатор	27
3.1.5. Измеренные и смоделированные характеристики	28
3.2. Резисторы	29
3.2.1. Объёмный резистор MSR	29
3.2.2. Тонкопленочный резистор TFR1 (TFR2, TFR3)	30
3.2.3. Измеренные и смоделированные характеристики	31
3.3. Катушки индуктивности	33
3.3.1. Катушка индуктивности квадратная масштабируемая	33
3.3.2. Катушки индуктивности квадратные	35
3.3.3. Катушки индуктивности квадратные (катушка в катушке)	37
3.3.4. Измеренные и смоделированные характеристики	39

3.4.	Трансформаторы	40
3.4.1	. Трансформаторы 1-го типа	40
3.4.2	. Трансформаторы 2-го типа	41
3.4.3	. Трансформаторы 3-го типа	42
3.5.	Контактные площадки	43
3.5.1	. Контактная площадка	43
3.5.2	. Контактная площадка GSG	44
3.5.3	. Т-образная контактная площадка	45
3.6.	Переходное отверстие	46
3.6.1	. Переходное отверстие 1 типа	46
3.6.2	. Переходное отверстие 2 типа	47
3.7.	Микрополосковые линии	48
3.7.1	. Линия передачи	48
3.7.2	. Микрополосковое пересечение типа мост	50
3.7.3	. Микрополосковое пересечение типа мост модификация 1	51
3.7.4	. Направленный ответвитель типа Ланге	52
4. Bc	помогательные элементы	53
4.1.	GaAs подложка	53
4.2.	Элемент EXTRACT	54
4.3.	Граница кристалла	55
5. Пр	редварительные неверифицированые модели	56
5.1.	Конденсаторы	56
5 1 1	МЛМ-конленсатор 4 типа	56

Лист регистрации изменений

Версия документа	Описание	Дата изменения
0.1	1. Новый документ	15.10.2020
0.2	1. Раздел Scalable Inductors. Изменена топологическая модель катушки индуктивности. 2. Раздел Switch. Изменены топологические модели транзисторов для ключевого применения. 3. Раздел Capacitors. Изменены топологические модели конденсаторов MIMCAP1, MIMCAP2, MIMCAP3. 4. Раздел Substrates. Изменена топологическая модель элемента Border. 5. Изменены служебные файлы SVR_pHEMT025D_SPP_Rules.txt, SVR_pHEMT025D.lpf, SVR_pHEMT025D.emt.	22.12.2020
1.0	1. Верификация (коррекция) моделей элементов PDK. 2. Раздел Preliminary/Capacitors. Введен предварительный элемент МІМСАР4. 3. Изменены служебные файлы SVR_pHEMT025D_SPP_Rules.txt, SVR_pHEMT025D.lpf, SVR_pHEMT025D.emt. 4. Изменена структура SVR_pHEMT025D_STACKUP.	28.03.2022

Разработчик:

Ведущий инженер-конструктор

И.С. Пушница

» марга 2022 г

Общие правила

Настоящий справочник содержит описание моделей стандартных элементов библиотеки, изготавливаемых ПО технологическому процессу pHEMT025D СВБШ.020200.00068 и выполнен в соответствии с документом «Стандартный процесс технологический СтТП GaAs pHEMT025D. Правила топологического проектирования» СВБШ.431418.020 Д41. Описание моделей производится среднестатистическим экспериментальным характеристикам элементов. Библиотека стандартных элементов оптимизирована под программное обеспечение Microwave Office версии 11.05 64-х битное.

Модели стандартных элементов библиотеки верифицированы в частотном диапазоне от 0 до 50 $\Gamma\Gamma$ ц.

Обновление проектов, созданных в предыдущих версиях БСЭ не поддерживается. Потребуется перерисовка проектов в новой версии БСЭ.

Правильность конечных результатов моделирования не гарантируется при несоблюдении режимов эксплуатации по электрическим параметрам и рекомендаций к правилам использования, описанных в данном справочнике.

На рисунках представлены условно-графические и топологические обозначения элементов, а также сопоставлены смоделированные и измеренные характеристики.

На графиках линии, указанные:

- непрерывной линией и синим цветом, являются результатами измерений;
- точечной линией и красным цветом, являются результатами моделирования.

Все геометрические размеры топологических элементов библиотеки округляются до целых значений.

Таблица А

Группа элементов	Минимальный шаг изменения
	размера, мкм
FETs (транзисторы), Passives (пассивные элементы), Preliminary (предварительные модели)	1
Shortcuts (Общие) подгруппа Lines элементы BRIDGE, BRIDGEM1, MLANGE	1
Shortcuts (Общие) подгруппа Lines, кроме элементов BRIDGE, BRIDGEM1, MLANGE	0,5

1. Перечень библиотеки стандартных элементов по технологии рНЕМТ025D

Сводный перечень БСЭ приведен в таблице 1.

Таблица 1 – Структура и основные элементы библиотеки.

Группа элементов	Подгруппа	Модель	Тип элемента	Пояснение
		VT2	Транзистор с двумя затворами шириной от 15 до 125 мкм.	Нелинейная
	CPW	VT4	Транзистор с четырьмя затворами шириной от 15 до 125 мкм.	модель транзистора для
	Cr w	VT6	Транзистор с шестью затворами шириной от 15 до 125 мкм.	разработки усилителей.
		VT8	Транзистор с восемью затворами шириной от 15 до 125 мкм.	3
		VT2_CG	Транзистор с двумя затворами шириной от 10 до 50 мкм.	Нелинейная модель
	CSFET, CGFET	VT4_CG	Транзистор с четырьмя затворами шириной от 10 до 50 мкм.	транзистора для разработки широкополосны
		VT2_C2S	Транзистор с двумя затворами шириной от 10 до 50 мкм.	х усилителей DCTWA
		TKB1G2	Транзистор с двумя затворами шириной от 15 до 125 мкм.	
	Switches	TKB1G4	Транзистор с четырьмя затворами шириной от 15 до 125 мкм.	Нелинейная модель транзистора для ключевого применения. Нелинейные модели для
		TKB1G6	Транзистор с шестью затворами шириной от 15 до 125 мкм.	
Actives (транзисто		TKB1G8	Транзистор с восемью затворами шириной от 15 до 125 мкм.	
ры, диоды)	Digital	VT1_D	Транзистор с одним затвором шириной от 8 до 35 мкм.	
		VT2_D	Транзистор с двумя затворами шириной от 16 до 50 мкм.	разработки преобразователя уровня,
		VD_1NFD	Диод с одним электродом шириной от 7 до 35 мкм.	логической ячейки.
	Diodes (D-mode)	VD_2NF	Диод с двумя электродами шириной от 7 до 75 мкм.	
		VD_4NF	Диод с четырьмя электродами шириной от 7 до 75 мкм.	
		VD_6NF	Диод с шестью электродами шириной от 7 до 75 мкм.	Нелинейная модель диода
		VD_8NF	Диод с восемью электродами шириной от 7 до 75 мкм.	
			VD_12NF	Диод с восемью электродами шириной от 7 до 75 мкм.
		VT2x3	Транзистор секционный с шестью затворами шириной от 60 до 125 мкм.	

Группа элементов	Подгруппа	Модель	Тип элемента	Пояснение
		VT2x4	Транзистор секционный с восемью затворами шириной от 60 до 125 мкм.	
	Microstrip Power	VT2x5	Транзистор секционный с десятью затворами шириной от 60 до 125 мкм.	Нелинейная модель транзистора для
		VT4x2	Транзистор секционный с восемью затворами шириной от 60 до 125 мкм.	разработки усилителей.
		VT4x3	Транзистор секционный с двенадцатью затворами шириной от 60 до 125 мкм.	
		VT4x4	Транзистор секционный с шестнадцатью затворами шириной от 60 до 125 мкм.	
		BACKVIA1P	Сквозное металлизированное отверстие однопортовое. 1 тип.	
	BackSideVia	BACKVIA1PM	Сквозное металлизированное отверстие однопортовое. 2 тип.	
		BACKVIA4P	Сквозное металлизированное отверстие 4-х портовое.	
	Capacitors	MIMCAP1	МДМ-конденсатор с размерами от 20 до 450 мкм.	$C_{\rm уд} = 310 \; {\rm п} \Phi / {\rm m} {\rm M}^2$
		MIMCAP2	МДМ-конденсатор с размерами от 20 до 150 мкм.	$C_{\rm уд} = 310 \; {\rm п}\Phi/{\rm m}{\rm m}^2$
		MIMCAP3	МДМ-конденсатор с размерами от 20 до 450 мкм.	$C_{\rm уд} = 155 \; {\rm п}\Phi/{\rm m}{\rm m}^2$
		MIMIMCAP	МДМДМ-конденсатор с размерами от 30 до 450 мкм.	$C_{\rm уд} = 620 \ {\rm п}\Phi/{\rm m}{\rm m}^2$
Passives		Square Scalable	Масштабируемая квадратная катушка индуктивности.	
(пассивные элементы)	Inductors	Square	Набор квадратных индуктивностей от 0,21 нГн до 7,70 нГн.	Катушки индуктивности
		Square W	Набор квадратных индуктивностей от 0,38 нГн до 28,55 нГн. Двойная катушка.	спиральные.
		PAD	Контактная площадка.	
	Pads	PADGSGVIA	Контактные площадки с переходными металлизированными отверстиями GSG (земля-источникземля).	
		PADTEE	Контактная площадка в виде тройника.	
	Resistors	MSR	Объёмный резистор.	На основе GaAs- активного слоя.
	1703131013	TFR1	Тонкопленочный резистор с низким удельным сопротивлением.	$R_{\rm yg} = 50 \; {\rm Om/kB}.$

Группа элементов	Подгруппа	Модель	Тип элемента	Пояснение
		TFR2	Тонкопленочный резистор с средним удельным сопротивлением.	R _{уд} =600 Ом/кв.
		TFR3	Тонкопленочный резистор с высоким удельным сопротивлением.	$R_{\rm yg} = 1700 \; {\rm Om/kB}.$
		T1	Трансформаторы 1-го типа.	
	Trans	T2	Трансформаторы 2-го типа.	
		Т3	Трансформаторы 3-го типа.	
Preliminary* (предварит ельные неверифиц ированые модели)	Capacitors	MIMCAP4	МДМ-конденсатор с размерами от 30 до 450 мкм с сквозным металлизированным отверстием.	$C_{\rm уд} = 310 \; {\rm п}\Phi/{\rm MM}2$
		MLIN	Отрезок линии передачи.	
		MTRACE2	Отрезок линии передачи с изгибом в виде среза.	
		MCTRACE	Отрезок линии передачи с круглым изгибом.	
		MTAPER\$	Отрезок линии передачи для согласования линий с разной шириной.	
		MTEEX	Тройник.	
		MCROSSX	Перекрестное соединение.	
GI		MBEND90X\$	Изгиб линии 90°.	Неоднородности
Shortcuts (Общие)	Lines	MBEND90RWX	Изгиб линии 90°.	микрополосковой линии.
		MSTEPX\$	Переход для согласования линий с разной шириной.	
		MCURVEN	Связанная линия с изгибом.	
		M2CLIN	2-х секционная связанная линия.	
		M3CLIN	3-х секционная связанная линия.	
		BRIDGE	Микрополосковое пересечение типа мост.	
		BRIDGEM1	Микрополосковое пересечение типа мост модификация 1.	
		MLANGE	Направленный ответвитель типа Ланге.	

Группа элементов	Подгруппа	Модель	Тип элемента	Пояснение
		MSUB_ PHEMT025D	Подложка.	Настройки подложки.
	Substrates	STACKUP_ PHEMT025D	Подложка.	Настройки подложки для ЭМ- анализа.
		BORDER	Граница кристалла.	Обозначает границы одного кристалла.
		EXTRACT_ PHEMT025D	Блок управления экстракцией электромагнитной структуры с предварительными настройками.	Элемент для создания электромагнитн ой структуры из элементов (топологии) схемы.

^{* —} В разделе Preliminary расположены предварительные неверифицированные модели. Сходимость расчётных данных и результатов изготовления не гарантируется. Ответственность за использование данных элементов несёт Заказчик. К микросхеме, спроектированной с использованием данных элементов, требования по визуальному контролю и электрическим параметрам предъявляться не будут.

2. Активные компоненты

Активные компоненты представлены транзисторами и диодами, описанными нелинейными моделями. Верифицированные типы транзисторов, представленные в данной технологической линейке, указаны в таблицах 2.1 - 2.6.

При проектировании топологии микросхемы необходимо учитывать, что затворы транзисторов и электроды диодов должны быть ориентированы в одном направлении.

Таблица 2.1 – Перечень транзисторов для усилительного применения (CPW).

Модель	Тип транзистора			
VT2	Транзистор с двумя затворами шириной от 15 до 125 мкм.			
VT4	Гранзистор с четырьмя затворами шириной от 15 до 125 мкм			
VT6	Транзистор с шестью затворами шириной от 15 до 125 мкм			
VT8	Транзистор с восемью затворами шириной от 15 до 125 мкм			

Таблица 2.2 – Перечень транзисторов для разработки широкополосных усилителей (CSFET, CGFET for Cascode DCTWA).

Модель	Тип транзистора			
VT2_CG	ранзистор с двумя затворами шириной от 10 до 50 мкм.			
VT4_CG	Транзистор с четырьмя затворами шириной от 10 до 50 мкм.			
VT2_C2S	Транзистор с двумя затворами шириной от 10 до 50 мкм.			

Таблица 2.3 – Перечень элементов для формирования логической ячейки (Digital).

Модель	Тип транзистора			
VT1_D	анзистор с одним затвором шириной от 8 до 35 мкм.			
VT2_D	ранзистор с двумя затворами шириной от 16 до 50 мкм.			
VD_1NFD	Диод с одним затвором шириной от 7 до 35 мкм.			

Таблица 2.4 – Перечень диодов (Diodes).

Модель	Тип транзистора	
VD_2NF	Диод с двумя электродами шириной от 7 до 75 мкм.	
VD_4NF	од с четырьмя электродами шириной от 7 до 75 мкм.	
VD_6NF	иод с шестью электродами шириной от 7 до 75 мкм.	
VD_8NF	Диод с восемью электродами шириной от 7 до 75 мкм.	
VD_12NF	Диод с восемью электродами шириной от 7 до 75 мкм.	

Таблица 2.5 – Перечень транзисторов для разработки мощных усилителей (Microstrip Power).

Модель	Тип транзистора
VT2x3	Транзистор секционный с шестью затворами шириной от 60 до 125 мкм.
VT2x4	Транзистор секционный с восемью затворами шириной от 60 до 125 мкм.
VT2x6	Транзистор секционный с двенадцатью затворами шириной от 60 до 125 мкм.
VT4x2	Транзистор секционный с восемью затворами шириной от 60 до 125 мкм.
VT4x3	Транзистор секционный с двенадцатью затворами шириной от 60 до 125 мкм.
VT4x4	Транзистор секционный с шестнадцатью затворами шириной от 60 до 125 мкм.

Таблица 2.6 – Перечень транзисторов для ключевого применения (Switches).

Модель	Тип транзистора
TKB1G2	Транзистор с двумя затворами шириной от 15 до 125 мкм.
TKB1G4	Транзистор с четырьмя затворами шириной от 15 до 125 мкм.
TKB1G6	Транзистор с шестью затворами шириной от 15 до 125 мкм.
TKB1G8	Транзистор с восемью затворами шириной от 15 до 125 мкм.

В таблице 2.7 указаны значения параметров при эксплуатации.

Таблица 2.7 – Значения эксплуатационных параметров.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
Иотс	Напряжение отсечки	В	-1,0	-1,2/-0,8
U си ус	Напряжение сток-исток транзистора для усилительного применения	В	3,0	0,0/5,0
Uупр	Напряжение управления на затворе относительно земли транзистора для ключевого применения	В	-4,0/0,0	-6,0/0,5
Ucи л	Напряжение сток-исток транзистора для формирования логической ячейки	В	4,5	0/6,0
Іси л	Ток сток-исток транзистора для формирования логической ячейки	А/мм	0,05	0/0,2
Рвх макс ус	Максимальная входная мощность в усилительном режиме	Вт/мм	_	-/0,02
Рвх пред ус	Предельная входная мощность в усилительном режиме	Вт/мм	-	-/0,05
Рпотр макс	Максимальная потребляемая мощность без подачи высокочастотного сигнала	Вт/мм	-	-/0,60
Ррасс макс ус	Максимальная рассеиваемая мощность в усилительном режиме	Вт/мм	-	-/0,40
Рвх макс кл	Максимальная входная мощность в ключевом режиме	Вт/мм	-	-/0,8
ft	Граничная частота транзистора	ГГц	78	75/-

Uпрс	Пробивное напряжение МДМ-			
	конденсаторов 1 типа, 2 типа, 4 типа и	В	60	40/–
	МДМДМ-конденсатора			
U _{ПРС1}	Пробивное напряжение	D	100	80/-
	МДМ-конденсатора 3 типа	Б	100	80/-
TEMP	Рабочий диапазон температур среды при	°C	25	-60/+85
	эксплуатации	C	23	-00/+03

2.1. Транзисторы для разработки усилителей

2.1.1. Транзисторы СРW

Рисунок 2.1 – Условно-графическое и топологическое отображения усилительного транзистора с двумя затворами шириной 50 мкм.

Таблица 2.8 - Перечень параметров усилительного транзистора.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		VT1	
NET	Тип транзистора		DFET_2NFB	
NF	Количество затворов		2 (4, 6, 8)	фикс.
W	Единичная ширина затвора	МКМ	50	15/125
TEMP	Диапазон температур модели элемента	°C	25	-

2.1.1.1. Измеренные и смоделированные характеристики транзисторов.

Для примера рассматривается модель транзистора с четырьмя затворами шириной 50 мкм (VT4x50). Далее приводится сравнение измеренных и смоделированных характеристик выбранного усилительного транзистора.

Рисунок 2.2 - Проходная вольт-амперная характеристика при напряжении сток-исток Ucu=3 B и выходная вольт-амперная характеристика при напряжении затвор-исток Usu=0 B.

Рисунок 2.3 - Амплитудно-частотная характеристика транзистора VT4x50 при напряжении затвор-исток Uзи= -0,6 В и напряжении сток-исток Ucu=3 В.

Рисунок 2.4 - MSG транзисторов VT2x50 и VT4x50 при напряжении затвор-исток Uзи= -0,6 В и напряжении сток-исток Ucu=3 В.

Рисунок 2.5 - Зависимость выходной мощности и коэффициента усиления от входной мощности транзистора VT4x50 при Uзи= -0.5 B, Ucu=4 B на f=12 ГГц.

Рисунок 2.6 – Зависимость минимального коэффициента шума* от частоты для транзистора VT4x50.

^{* –} измерение минимального коэффициента шума производилось по методике и на оборудовании ф. Keysight и ф. Maury.

Рисунок 2.7 – Зависимость выходной мощности, коэффициента усиления и КПД от входной мощности в согласованном режиме на частоте 12 ГГц* транзистора VT4x50 при напряжении затвор-исток Uзи= -0,4 В и напряжении сток-исток Ucu=4 В.

Рисунок 2.8 – Контуры выходной мощности, коэффициента усиления и КПД при 3 дБ компрессии от максимальной выходной мощности на частоте 12 ГГц* транзистора VT4x50 при напряжении затвор-исток Uзи= -0,4 В и напряжении сток-исток Uси=4 В.

^{* –} измерение Load Pull производилось по методике и на оборудовании ф. Keysight и ф. Maury.

2.1.2. Транзисторы CSFET, CGFET

Рисунок 2.9 – Условно-графическое и топологическое отображения усилительного транзистора с двумя затворами шириной 20 мкм.

Таблица 2.9 - Перечень параметров усилительного транзистора.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
			значение	значение
ID	Позиционное обозначение		VT1	
NET	Тип транзистора		CGFET_2NFB	
NF	Количество затворов	_	2 (4)	фикс.
W	Единичная ширина затвора	МКМ	20	10/50
TEMP	Диапазон температур модели элемента	°C	25	_

2.1.3. Транзисторы Microstrip Power

Символ

Топологическое отображение

Рисунок 2.10 – Условно-графическое и топологическое отображения усилительного транзистора с восемью затворами шириной 60 мкм.

Таблица 2.10 - Перечень параметров усилительного транзистора.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
			значение	значение
ID	Позиционное обозначение		VT1	
NET	Тип транзистора		DFET_4NF8BP	
NF	Количество затворов	_	6 (8, 12, 16)	фикс.
W	Единичная ширина затвора	МКМ	60	60/125
TEMP	Диапазон температур модели элемента	°C	25	_

2.2. Транзисторы для ключевого применения

При использовании ключевых транзисторов необходимо ставить резистор типа TFR2 последовательно в цепь по затвору с минимальным сопротивлением не менее 4,2 кОм (L=60 мкм, W=8 мкм).

Рисунок 2.11 - Условно-графическое и топологическое отображения ключевого транзистора с двумя затворами шириной 50 мкм.

Таблица 2.11 - Перечень параметров ключевого транзистора.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. Значение
ID	Позиционное обозначение		VT1	
NET	Тип транзистора		DTKB1G2	
NF	Количество затворов	_	2 (4, 6, 8)	фикс.
W	Единичная ширина затвора	МКМ	50	15/125
TEMP	Диапазон температур модели элемента	°C	25	-

2.2.1. Измеренные и смоделированные характеристики транзисторов.

Для примера рассматриваются модели транзисторов с четырьмя затворами и шириной затвора 50 мкм (TKB1G4x50). Далее приводится сравнение измеренных и смоделированных характеристик выбранного ключевого транзистора.

Рисунок 2.12 - Амплитудно-частотная характеристика ключевого транзистора с четырьмя затворами шириной 50 мкм (TKB1G4x50) в открытом и закрытом состоянии.

2.3. Элементы для формирования логической ячейки

В данном разделе указаны элементы для формирования логических ячеек, преобразователя уровня напряжений, драйвер управления.

2.3.1. Транзистор с одним затвором

Рисунок 2.13 - Условно-графическое и топологическое отображения транзистора с одним затвором шириной 15 мкм.

Таблица 2.12 - Перечень параметров транзистора с одним затвором.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
1111111			значение	Значение
ID	Позиционное обозначение		VT1	
NET	Тип транзистора		DFET_1NFD	
NF	Количество затворов	_	1	фикс.
W	Единичная ширина затвора	МКМ	15	8/35
TEMP	Температура модели элемента	°C	25	_

2.3.2. Транзистор с двумя затворами

Символ Топологическое отображение SUBCKT ID=VT1 NET="DFET_2NFD" NF=2 W=20 TEMP=25 G S S S W

Рисунок 2.14 - Условно-графическое и топологическое отображения транзистора с двумя затворами шириной 20 мкм.

Таблица 2.13 - Перечень параметров транзистора с двумя затворами.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. Значение
ID	Позиционное обозначение		VT1	
NET	Тип транзистора		DFET_2NFD	
NF	Количество затворов	_	2	фикс.
W	Единичная ширина затвора	МКМ	20	16/50
TEMP	Температура модели элемента	°C	25	_

2.3.3. Диод с одним электродом

Символ Топологическое отображение

SUBCKT ID=VD1
NET="DVD_1NFD"
NF=1
W=15

1
2

Рисунок 2.15 - Условно-графическое и топологическое отображения диода шириной 15 мкм.

W

Таблица 2.14 - Перечень параметров диода.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. Значение
ID	Позиционное обозначение		VD1	
NET	Тип транзистора		VD_1NFD	
NF	Количество электродов		1	фикс.
W	Единичная ширина электрода	МКМ	15	7/35
TEMP	Температура модели элемента	°C	25	_

2.4. Диоды

Символ Топологическое отображение SUBCKT ID=VD1 NET="VD_2NF" NF=2 W=7 TEMP=25 1 2

Рисунок 2.16 - Условно-графическое и топологическое отображения диода шириной 7 мкм.

Таблица 2.15 - Перечень параметров диода.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
			значение	Значение
ID	Позиционное обозначение		VD1	-
NET	Тип диода		VD_2NF	-
NF	Количество электродов (набор)	_	2 (4, 6, 8, 12)	фикс.
W	Единичная ширина электрода	МКМ	7	7/75
TEMP	Диапазон температур модели элемента	°C	25	_

3. Пассивные компоненты

3.1. Конденсаторы

Символ

3.1.1. МДМ-конденсатор 1 типа

SUBCKT ID=C1 NET="MIMCAP1" W=30 L=30 W1=12

Топологическое отображение

Рисунок 3.1 - Условно-графическое и топологическое отображения МДМ-конденсатора 1-го типа с размерами 30x30 мкм.

Таблица 3.1 - Перечень параметров МДМ-конденсатора 1-го типа.

Има	Имя Наименование параметра Единица	Епинина	Типовое	Мин./Макс.
TIMA		Lдиница	значение	Значение
ID	Позиционное обозначение		C1	
NET	Тип конденсатора		MIMCAP1	
W	Ширина конденсатора	МКМ	30	20/450
L	Длина конденсатора	МКМ	30	20/450
W1	Ширина подводящего проводника	МКМ	12	12/150
	Максимальное допустимое соотношение		20	_
	размеров W/L (L/W)		20	
$C_{ m yg}$	Удельная ёмкость	$\Pi\Phi/MM^2$	310±35	_

Расчёт ёмкости конденсатора, пФ, производится по следующей формуле:

$$C = C_{v\pi} \cdot (W \cdot L),$$

где $C_{\rm yg}$ — удельная ёмкость, $310 \pm 35~{\rm n}\Phi/{\rm m}{\rm m}^2$.

рНЕМТ025D Страница 24

.

^{*} При размерах конденсатора 50х50 мкм и меньше, увеличивается допустимое отклонение ёмкости от номинала до 30%. Для получения меньших значений ёмкости конденсатора рекомендуется использовать последовательное соединение конденсаторов, либо МДМ-конденсатор 3 типа.

3.1.2. МДМ-конденсатор 2 типа

Символ

Топологическое отображение

Рисунок 3.2 - Условно-графическое и топологическое отображения МДМ-конденсатора 2-го типа с размерами 20x20 мкм.

Таблица 3.2 - Перечень параметров МДМ-конденсатора 2-го типа.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
TIMA	типменование параметра	Бдиница	значение	Значение
ID	Позиционное обозначение		C1	
NET	Тип конденсатора		MIMCAP2	
W	Ширина конденсатора	MKM	20	20/150
L	Длина конденсатора	МКМ	20	20/150
W1	Ширина подводящего проводника	MKM	12	12/50
	Максимальное допустимое соотношение		20	_
	размеров W/L (L/W)			
$C_{ m yg}$	Удельная ёмкость	$\Pi\Phi/MM^2$	310±35	_

Расчёт ёмкости конденсатора, пФ, производится по следующей формуле:

$$C = C_{VA} \cdot (W \cdot L),$$

где $C_{\rm yg}$ — удельная ёмкость, $310 \pm 35 \; {\rm n}\Phi/{\rm m}{\rm m}^2$.

^{*} При размерах конденсатора 50х50 мкм и меньше, увеличивается допустимое отклонение ёмкости от номинала до 30%. Для получения меньших значений ёмкости конденсатора рекомендуется использовать последовательное соединение конденсаторов, либо МДМ-конденсатор 3 типа.

Топологическое отображение

3.1.3. МДМ-конденсатор 3 типа

Символ

SUBCKT ID=C1 NET="MIMCAP3" W=30 L=30 W1=12

Рисунок 3.3 - Условно-графическое и топологическое отображения МДМ конденсатора 3-го типа.

Таблица 3.3 - Перечень параметров МДМ конденсатора 3-го типа*.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
			значение	Значение
ID	Позиционное обозначение		C1	
NET	Тип конденсатора		MIMCAP4	
W	Ширина конденсатора	MKM	30	20/450
L	Длина конденсатора	MKM	30	20/450
W1	Ширина подводящего проводника	MKM	12	12/75
	Максимальное допустимое соотношение размеров W/L (L/W)		20	-
$C_{yд}$	Удельная ёмкость	$п\Phi/мм^2$	155±15	_

Расчёт ёмкости конденсатора, пФ, производится по следующей формуле:

$$C = C_{yA} \cdot (W \cdot L),$$

где $C_{\rm yg}$ — удельная ёмкость, $155 \pm 15 \; {\rm n}\Phi/{\rm m}{\rm m}^2$.

- * При размерах конденсатора 50х50 мкм и меньше, увеличивается допустимое отклонение ёмкости от номинала до 30%. Для получения меньших значений ёмкости конденсатора рекомендуется использовать последовательное соединение конденсаторов.
- ** Рекомендуется использовать данный тип конденсатора взамен МДМконденсатора 1 и 2 типа при размерах меньше 50х50 мкм.

3.1.4. МДМДМ-конденсатор

Символ Топологическое отображение

Рисунок 3.4 - Условно-графическое и топологическое отображения МДМДМ-конденсатора с размерами 30x30 мкм.

Таблица 3.4 - Перечень параметров МДМДМ-конденсатора.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. Значение
ID	Позиционное обозначение		C1	
NET	Тип конденсатора		MIMCAP3	
W	Ширина конденсатора	MKM	30	30/450
L	Длина конденсатора	MKM	30	30/450
W1	Ширина подводящего проводника	MKM	14	14/150
	Максимальное допустимое соотношение размеров W/L (L/W)		20	-
$C_{y_{\mathcal{I}}}$	Удельная ёмкость	$п\Phi/мм^2$	620±62	_

Расчёт ёмкости конденсатора, пФ, производится по следующей формуле:

$$C = C_{VA} \cdot (W \cdot L),$$

где $\mathcal{C}_{\text{уд}}$ — удельная ёмкость, $620 \pm 62 \; \text{п}\Phi/\text{мм}^2$.

^{*} При уменьшении размеров конденсатора, увеличивается допустимое отклонение ёмкости от номинала до 30%.

3.1.5. Измеренные и смоделированные характеристики

Для примера, рассматривается модель МДМ-конденсатора размерами (WxL): 20x20 мкм, 50x50 мкм. Далее приведены экспериментальные и измеренные характеристики.

0.9 Измерение (pF) Модель (рF) 8.0 Эквивалентная ёмкость, пФ EM-расчет (AXIEM) (pF) 0.7 0.6 0.5 0.4 8 10 20 12 14 16 Частота, ГГц

Рисунок 3.5 – Зависимость эквивалентной ёмкости от частоты МДМ-конденсатора с размерами (WxL) 20x20 мкм.

Рисунок 3.6 – Зависимость эквивалентной ёмкости от частоты МДМ-конденсатора с размерами (WxL) 50x50 мкм.

Рисунок 3.7 – Зависимость тока утечки от напряжения при температурных воздействиях.

3.2. Резисторы

3.2.1. Объёмный резистор MSR

Символ Топологическое отображение

Рисунок 3.8 - Условно-графическое и топологическое отображения объёмного резистора с размерами (WxL) 10x10 мкм.

Таблица 3.5 - Перечень параметров объёмного резистора.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		R1	
NET	Тип резистора		MSR	
W	Ширина резистора	МКМ	10	10/300
L	Длина резистора	МКМ	10	10/300
TEMP	Диапазон температур модели элемента	°C	25	_

Расчёт сопротивления, Ом, производится по следующей формуле:

$$R = R_{\rm yd} \cdot \left[\frac{L}{W}\right] + 2 \cdot \frac{R_{\rm koht}}{W}$$

где $R_{\rm VJ}$ – удельное сопротивление, 150 ± 30 Ом/кв.

 $R_{\rm конт}$ – контактное сопротивление 0,25 Ом·мм

Резистор может считаться линейным, если значение напряжения на его выводах не превышает величины:

$$U(B) \approx 0.1 \cdot L \text{ (мкм)}$$

2

3.2.2. Тонкопленочный резистор TFR1 (TFR2, TFR3)

Символ

Топологическое отображение

Рисунок 3.9 - Условно-графическое и топологическое отображения тонкопленочного резистора с размерами (WxL) 6x8 мкм.

Таблица 3.6 - Перечень параметров низкоомного тонкопленочного резистора.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		R1	
NET	Тип резистора		TFR1 (TFR2, TFR3)	
W	Ширина резистора	МКМ	6	6/300
L	Длина резистора	МКМ	8	8/300
Ip1	Плотность тока на единицу ширины TFR1	мА/мкм	1,5	-/3,0
Ip2	Плотность тока на единицу ширины TFR2	мА/мкм	0,2	-/0,5
Ip3	Плотность тока на единицу ширины TFR3	мА/мкм	0,1	-/0,2

Расчёт сопротивления, Ом, производится по следующей формуле:

$$R = R_{yA} \cdot \left[\frac{L}{W}\right]$$

где для TFR1 — $R_{\rm yg}$ — удельное сопротивление, 50 Ом·кв.; для TFR2 — $R_{\rm yg}$ — удельное сопротивление, 600 Ом·кв.; для TFR3 — $R_{\rm yg}$ — удельное сопротивление, 170 Ом·кв.

Заданная точность $\pm 10\%$ ($\pm 20\%$, $\pm 25\%$) для TFR1 (TFR2, TFR3) обеспечивается для резисторов размерами более 25x25 мкм, при меньших размерах точность не обеспечивается.

3.2.3. Измеренные и смоделированные характеристики

Для примера, рассматриваются модели резисторов TFR1 и TFR2 с удельным сопротивлением 50 Ом \cdot кв и 600 Ом \cdot кв соответственно и размерами (WxL): 10x50 мкм, 50x50 мкм, 50x10 мкм. Далее приведены экспериментальные и измеренные характеристики.

Рисунок 3.10 - Вольт-амперная характеристика и амплитудно-частотная характеристика тонкопленочного резистора TFR1 с размерами (WxL) 10x50 мкм.

Рисунок 3.11 - Вольт-амперная характеристика и амплитудно-частотная характеристика тонкопленочного резистора TFR1 с размерами (WxL) 50x50 мкм.

Рисунок 3.12 - Вольт-амперная характеристика и амплитудно-частотная характеристика тонкопленочного резистора TFR1 с размерами (WxL) 50x10 мкм.

Рисунок 3.13 - Вольт-амперная характеристика тонкопленочного резистора TFR2 с размерами (WxL) 50x10 мкм и 50x50 мкм.

Рисунок 3.14 - Вольт-амперная характеристика тонкопленочного резистора TFR2 с размерами (WxL) 50x10 мкм.

3.3. Катушки индуктивности

3.3.1. Катушка индуктивности квадратная масштабируемая

Катушка индуктивности квадратная масштабируемая служит для оценочного расчёта. При использовании данной катушки индуктивности точность расчёта может достигать 10% от номинальных значений. Для повышения точности расчёта необходимо топологию полученной катушки индуктивности рассчитать в EM-structures используя элемент EXTRACT pHEMT025D.

При первом выборе элемента топология будет отображаться некорректно. Для исправления достаточно перезадать количество витков Nt.

Рисунок 3.15 - Условно-графическое и топологическое отображения катушки индуктивности.

Таблица 3.7 - Перечень параметров катушки индуктивности.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		L1	
NET	Тип катушки индуктивности		L_sq_scal	масштабируемая
Rd	Внутреннее расстояние между противоположными сторонами	МКМ	40	25/150
W	Ширина линии	МКМ	7	7/40
S	Зазор между витками	MKM	7	7/40
Nt	Количество витков	_	2,5	1,5/19,5, шаг изменения 0,25
Lout	Длина первого сегмента вывода 1	MKM	28	Шаг изменения 1 мкм
Ln	Длина выходного сегмента вывода 2	MKM	16	Шаг изменения 1 мкм
L1m	Сдвиг вывода, относительно Rd	MKM	4	Шаг изменения 1 мкм
Lbx	Сдвиг 2 вывода	MKM	0	Шаг изменения 1 мкм
Lin	Сдвиг 1 вывода	MKM	0	Шаг изменения 1 мкм
Ip	Плотность тока на единицу ширины линии	мА/мкм	-	-/10

3.3.2. Катушки индуктивности квадратные

Рисунок 3.16 - Условно-графическое и топологическое отображения катушки индуктивности.

Таблица 3.8 - Перечень параметров катушки индуктивности.

Имя	Наименование параметра	Единица Типовое значение		Мин./Макс. значение
ID	Позиционное обозначение		L1	
NET	Тип катушки индуктивности		L1_sq	
Ip	Плотность тока на единицу ширины линии	мА/мкм	_	-/10

Таблица 3.9 - Перечень используемых катушек индуктивностей.

Имя	Индуктивность, нГн	Ширина линии W, мкм	Зазор между витками S, мкм	Количество витков N
L1	0,21	7	7	1,5
L2	0,51	7	7	2,5
L3	1,04	7	7	3,5
L4	1,86	7	7	4,5
L5	3,04	7	7	5,5
L6	4,62	7	7	6,5
L7	0,25	10	10	1,5
L8	0,64	10	10	2,5
L9	1,33	10	10	3,5
L10	2,42	10	10	4,5
L11	3,96	10	10	5,5
L12	6,01	10	10	6,5
L13	0,28	15	15	1,5
L14	0,77	15	15	2,5
L15	1,67	15	15	3,5
L16	3,09	15	15	4,5
L17	5,06	15	15	5,5
L18	7,70	15	15	6,5

^{*} катушки индуктивности рассчитаны посредством ЭМ-анализа до частоты 50 ГГц и приведены в виде S-параметров.

3.3.3. Катушки индуктивности квадратные (катушка в катушке)

Рисунок 3.17 - Условно-графическое и топологическое отображения катушки индуктивности.

Таблица 3.10 - Перечень параметров катушки индуктивности.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		L1	
NET	Тип катушки индуктивности		LW1_sq	
Ip	Плотность тока на единицу ширины линии	мА/мкм	_	-/10

Таблица 3.11 - Перечень используемых катушек индуктивностей.

Имя	Индуктивность, нГн	Ширина линии W, мкм	Зазор между витками S, мкм	Количество витков N
L1	0,38	7	7	1,5
L2	1,24	7	7	2,5
L3	2,93	7	7	3,5
L4	5,61	7	7	4,5
L5	9,70	7	7	5,5
L6	15,28	7	7	6,5
L7	0,60	10	10	1,5
L8	1,97	10	10	2,5
L9	4,50	10	10	3,5
L10	8,66	10	10	4,5
L11	14,49	10	10	5,5
L12	22,64	10	10	6,5
L13	0,63	15	15	1,5
L14	2,31	15	15	2,5
L15	5,43	15	15	3,5
L16	10,81	15	15	4,5
L17	17,97	15	15	5,5
L18	28,55	15	15	6,5

^{*} катушки индуктивности рассчитаны посредством ЭМ-анализа до частоты 50 ГГц и приведены в виде S-параметров.

3.3.4. Измеренные и смоделированные характеристики

Для примера, рассматриваются модели катушек индуктивностей типоразмера L3 и LW3. Далее приведены экспериментальные и измеренные характеристики.

Рисунок 3.18 - Зависимость коэффициента передачи и эквивалентной индуктивности от частоты элемента L3.

Рисунок 3.19 - Зависимость коэффициента передачи и эквивалентной индуктивности от частоты элемента LW3.

3.4. Трансформаторы

3.4.1. Трансформаторы 1-го типа

Символ

Топологическое отображение

Рисунок 3.20 - Условно-графическое и топологическое отображения трансформатора.

Таблица 3.12 - Перечень параметров трансформатора 1-го типа.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		T1	
NET	Тип трансформатора		T1_v1	
Ip	Плотность тока на единицу ширины линии	мА/мкм	_	-/ 10

Таблица 3.13 - Перечень используемых трансформаторов 1-го типа.

Имя	Ширина линии W, мкм	Зазор между витками S, мкм	Количество витков N
T1_v1	8	8	1,5
T2_v1	8	8	2,5
T3_v1	8	8	3,5
T4_v1	8	8	4,5
T5_v1	8	8	5,5
T6_v1	8	8	6,5
T7_v1	8	8	7,5
T8_v1	8	8	8,5
T9_v1	8	8	9,5

^{*} трансформаторы рассчитаны посредством ЭМ-анализа до частоты 30 ГГц и приведены в виде S-параметров.

3.4.2. Трансформаторы 2-го типа

Символ

Топологическое отображение

Рисунок 3.21 - Условно-графическое и топологическое отображения трансформатора.

Таблица 3.14 - Перечень параметров трансформатора 2-го типа.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
PIMM	ттаимснование параметра	Единица	значение	значение
ID	Позиционное обозначение		T1	
NET	Тип трансформатора		T1_v2	
Tea	П	3 5 Å /3 5733 5		/10
lp	Плотность тока на единицу ширины линии	мА/мкм	_	-/ 10

Таблица 3.15 - Перечень используемых трансформаторов 2-го типа.

Имя	Ширина линии W, мкм	Зазор между витками S, мкм	Количество витков N
T1_v2	8	8	5,5
T2_v2	8	8	6,5
T3_v2	8	8	7,5
T4_v2	8	8	8,5
T5_v2	8	8	9,5

^{*} трансформаторы рассчитаны посредством ЭМ-анализа до частоты 30 ГГц и приведены в виде S-параметров.

Символ

3.4.3. Трансформаторы 3-го типа

SUBCKT ID=T1 NET="T1_v3" L1=175 L2=20 L3=100

Топологическое отображение

Рисунок 3.22 - Условно-графическое и топологическое отображения трансформатора.

Таблица 3.16 - Перечень параметров трансформатора 3-го типа.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		T1	
NET	Тип трансформатора		T1_v3	
Ip	Плотность тока на единицу ширины линии	мА/мкм	_	-/ 10

Таблица 3.17 - Перечень используемых трансформаторов 3-го типа.

Имя	Ширина линии W, мкм	Зазор между витками S, мкм	Количество секций N
T1_v3	10	6	3
T2_v3	10	6	4

^{*} трансформатор представлен в виде модели.

3.5. Контактные площадки

3.5.1. Контактная площадка

Символ

SUBCKT ID=X1 NET="PAD" W=100 L=100

Топологическое отображение

Рисунок 3.23 - Условно-графическое и топологическое отображения контактной площадки.

Таблица 3.18 - Перечень параметров отображения контактной площадки.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. Значение
ID	Позиционное обозначение		X1	
NET	Тип контактной площадки		PAD	
W	Ширина контактной площадки	МКМ	100	75/250
L	Длина контактной площадки	МКМ	100	75/250

3.5.2. Контактная площадка GSG

Контактные площадки с переходными металлизированными отверстиями GSG (земля-источник-земля) фиксированного значения применяется для СВЧ пробника типа GSG, с типовым межцентровым расстоянием 150 мкм.

Рисунок 3.24 - Условно-графическое и топологическое отображения контактных площадок GSG.

Таблица 3.19 - Перечень параметров контактных площадок GSG.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
KIMIY			значение	Значение
ID	Позиционное обозначение		X1	
NET	Тип контактной площадки		"Pad_GSG_with	
TVL1	Тип контактной площадки		_BackVia"	
W	Ширина контактной площадки	МКМ	100	75/250
L	Длина контактной площадки	МКМ	100	фикс.
Р	Расстояние между контактными	мкм	50	50/200
	площадками	WIKWI	50	30,200

3.5.3. Т-образная контактная площадка

Рисунок 3.25 - Условно-графическое и топологическое отображения Т-образной контактной площадки.

Таблица 3.20 - Перечень параметров Т-образной контактной площадки.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. Значение
ID	Позиционное обозначение		X1	
NET	Тип контактной площадки		PadTee	
W	Ширина контактной площадки	МКМ	100	75/250
L	Длина контактной площадки	МКМ	100	75/250

3.6. Переходное отверстие

3.6.1. Переходное отверстие 1 типа

Переходное металлизированное отверстие с одним портом.

Рисунок 3.26 - Условно-графическое и топологическое отображения переходного отверстия 1 типа.

Таблица 3.21 - Перечень параметров переходного отверстия 1 типа.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		S1	
NET	Hole		1	фикс.
W	Ширина линии	МКМ	82	фикс.
L	Длина линии	MKM	102	фикс.

3.6.2. Переходное отверстие 2 типа

Переходное металлизированное отверстие с четырьмя портами.

Рисунок 3.27 - Условно-графическое и топологическое отображения переходного отверстия 2 типа.

Таблица 3.22 - Перечень параметров переходного отверстия 2 типа.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
ID	Позиционное обозначение		S1	
NET	Hole4p		4	фикс.
W	Ширина линии	МКМ	82	фикс.
L	Длина линии	МКМ	102	фикс.

3.7. Микрополосковые линии

3.7.1. Линия передачи

Рисунок 3.28 - Условно-графическое и топологическое отображения линии передачи.

Таблица 3.23 - Перечень параметров линии передачи.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
KMIY		Единица	значение	Значение
ID	Позиционное обозначение		TL1	
W	Ширина линии (по умолчанию)	МКМ	20	8/-
W	Ширина линии при формировании Met0	МКМ	20	6/-
W	Ширина линии при формировании Met1	МКМ	20	6/-
W	Ширина линии при формировании Met2	МКМ	20	8/-
L	Длина линии	МКМ	100	3/-
T	Толщина металлизации линии	МКМ	5	фикс.
Ip	Плотность тока на единицу ширины линии	мА/мкм	-	-/25
ıp	(по умолчанию)			
	Плотность тока на единицу ширины линии			
Ip0	при использовании одного слоя	мА/мкм	_	-/10
	металлизации Met0			
	Плотность тока на единицу ширины линии			
Ip1	при использовании одного слоя	мА/мкм	_	-/10
	металлизации Met1			
	Плотность тока на единицу ширины линии			
Ip2	при использовании одного слоя	мА/мкм	_	-/20
	металлизации Met2			

^{*}По умолчанию линия сформирована из двух слоев металлизации – Met1 и Met2.

Расстояние между двумя линиями одного типа:

- при использовании Met0 должно быть не менее 6 мкм;
- при использовании Met1 должно быть не менее 6 мкм;
- при использовании Met2 должно быть не менее 7 мкм.

При использовании линии сформированной двумя слоями (по умолчанию линия состоит из Met1 и Met2) расстояние между двумя линиями одного типа должно быть не менее 8 мкм.

При несоблюдении данных требований уменьшается выход годных микросхем.

3.7.2. Микрополосковое пересечение типа мост

Мост применяется для разводки двух пересекающихся линий без взаимного соединения. Может использоваться как при пересечении СВЧ сигналов, так и низкочастотных цепей.

Рисунок 3.29 - Условно-графическое и топологическое отображения мост.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. Значение
ID	Позиционное обозначение		S1	
NET	Тип моста		Bridge	
W13	Ширина линии между портами 1 и 3	МКМ	10	10/100
W24	Ширина линии между портами 2 и 4	МКМ	10	10/100
Ip	Плотность тока на единицу ширины линии	мА/мкм	_	-/10

Таблица 3.24 - Перечень параметров мост.

Диэлектрик между линией 13 и 24 позволяет сделать пересечение, но при этом образуется паразитная ёмкость моста. Расчет паразитной ёмкости моста, п Φ , производится по следующей формуле:

$$C = C_a \cdot (W13 \cdot W24)$$

где C_a – удельная ёмкость, $19 \pm 3 \text{ п}\Phi/\text{мм}^2$.

3.7.3. Микрополосковое пересечение типа мост модификация 1

Мост применяется для разводки двух пересекающихся линий без взаимного соединения. Микрополосковая линия 1-3 образована Met1, микрополосковая линия 2-4 образована Met2. Подводящие линии без переходов на микрополосковую линию, сформированную двумя сломи металлизации (по умолчанию, см. п. 3.7.1). Может использоваться как при пересечении СВЧ сигналов, так и низкочастотных цепей.

Рисунок 3.30 - Условно-графическое и топологическое отображения мост.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
			значение	Значение
ID	Позиционное обозначение		S1	
NET	Тип моста		Bridge	
W13	Ширина линии между портами 1 и 3	МКМ	7	фикс.
W24	Ширина линии между портами 2 и 4	МКМ	6	фикс.
Ip	Плотность тока на единицу ширины линии	мА/мкм	_	-/10

Таблица 3.25 - Перечень параметров мост модификация 1.

Диэлектрик между линией 13 и 24 позволяет сделать пересечение, но при этом образуется паразитная ёмкость моста. Расчёт паразитной ёмкости моста, п Φ , производится по следующей формуле:

$$C = C_a \cdot (W13 \cdot W24)$$

где C_a – удельная ёмкость, $19 \pm 10 \text{ п}\Phi/\text{мм}^2$.

3.7.4. Направленный ответвитель типа Ланге

Мост применяется для разводки двух пересекающихся линий без взаимного соединения.

Рисунок 3.31 - Условно-графическое и топологическое отображения НО типа Ланге.

Таблица 3.26 - Перечень параметров НО типа Ланге.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
			значение	Значение
ID	Позиционное обозначение		S1	
NET	Тип		MLANGE	
L	Длина линии*	МКМ	100	100/3000
W	Ширина линии (Met2)	МКМ	10	фикс.
S	Зазор между линиями	МКМ	8	фикс.
Ip	Плотность тока на единицу ширины линии	мА/мкм	_	-/10

^{*} для уменьшения габаритов проводники линии рекомендуется сворачивать в меандр. Новый элемент необходимо будет формировать и рассчитывать в EM Structures.

4. Вспомогательные элементы

4.1. GaAs подложка

Рисунок 4.1 - Условно-графическое и топологическое отображения GaAs подложки.

Таблица4.1 - Перечень параметров GaAs подложки.

Имя	Наименование параметра	Единица	Типовое значение	Мин./Макс. значение
Er	Диэлектрическая проницаемость GaAs		12,9	
Н	Толщина GaAs подложки*	МКМ	100	фикс.
T	Толщина металлизации	МКМ	6	фикс.
Rho	Нормированное удельное сопротивление металла (относительно удельного сопротивления золота ρ =2,44·10 ⁻⁸ Ом/м)		1	фикс.
Tand	Тангенс угла диэлектрических потерь		0,001	фикс.
ErNom	Эффективная диэлектрическая проницаемость GaAs на частоте 1 ГГц		12,9	
Name	Имя подложки		pHEMT025D	

4.2. Элемент **EXTRACT**

Символ

EXTRACT
ID=EX1
EM_Doc="EM_Extract_Doc"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=2 um
Y_Cell_Size=2 um
STACKUP="SVR_pHEMT025D_STACKUP"
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""

Рисунок 4.2 - Условно-графическое элемента EXTRACT.

Таблица 4.2 - Перечень параметров элемента EXTRACT.

Имя	Наименование параметра	Единица	Типовое значение
Simulator	Выбор типа симулятора		AXIEM
X_Cell_Size	Шаг сетки по оси X	МКМ	2
Y_Cell_Size	Шаг сетки по оси Ү	МКМ	2
STACKUP	Выбор типа многослойной подложки		SVR_pHEMT025D_
STREKET	STACKUP		STACKUP

4.3. Граница кристалла

Символ

Топологическое отображение

Рисунок 4.3 - Условно-графическое и топологическое отображения границ кристалла.

Таблица 4.3 - Перечень параметров отображения границ кристалла.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
			значение	значение
ID	Позиционное обозначение		S1	
W	Ширина области кристалла	МКМ	1000	500/10000
L	Длина области кристалла	МКМ	1000	500/10000

Минимальное расстояние от любой топологии библиотечного элемента до внутреннего контура элемента Border должно быть не менее 60 мкм.

Размер кристалла считать по внутреннему контуру элемента Border с допуском плюс 70 мкм. Внешний контур элемента Border показывает центр дорожки реза.

Не использовать данный элемент при проведении расчётов.

5. Предварительные неверифицированые модели

5.1. Конденсаторы

5.1.1. МДМ-конденсатор 4 типа

Рисунок 5.2 - Условно-графическое и топологическое отображения МДМ-конденсатора с сквозным металлизированным отверстием с размерами 30x30 мкм.

Таблица 5.2 - Перечень параметров МДМ-конденсатора 4-го типа.

Имя	Наименование параметра	Единица	Типовое	Мин./Макс.
TIMM			значение	Значение
ID	Позиционное обозначение		C1	
NET	Тип конденсатора		MIMCAP_GND	
W	Ширина конденсатора	МКМ	30	20/450*
L	Длина конденсатора	МКМ	30	20/450*
W1	Ширина подводящего проводника	МКМ	12	12/75
	Максимальное допустимое соотношение размеров W/L (L/W)		20	_
$C_{ m y_{ m J}}$	Удельная ёмкость	$\pi\Phi/мм^2$	310±35	_

Расчёт ёмкости конденсатора, пФ, производится по следующей формуле:

$$C = C_{y_{\mathcal{I}}} \cdot (W \cdot L),$$

где $C_{yд}$ — удельная ёмкость, $310 \pm 35 \text{ п}\Phi/\text{мм}^2$.

* При размерах конденсатора 50х50 мкм и меньше, увеличивается допустимое отклонение ёмкости от номинала до 30%.