

Simple Real-Time Pattern Recognition for Industrial Automation

Vikram Voleti, Prakhar Mohan, Javed Igbal, Saket Gupta

GreyOrange India

2017 International Conference on Industrial Design Engineering (ICIDE 2017)

Context

- Sortation of goods in automated warehouses
- Industry 4.0, multiple distributed nodes
- Sorting requires identification of objects on conveyor at each node

Aim of the Research

Detection of Objects on Conveyor

Variable Size Objects

Indefinite Shape

Time Constraint Processing Power

Accuracy

Robustness

Aim of the Research

Example Cases

Approaches to Solve the Problem *GREYORANGE

- Feature Detecators and Descriptors e.g. HOG, SIFT, Gabor coefficients
- Convolutional Neural Networks
- Depth Camera
- Sensor based approaches
- Boosting of Weak Classifiers

Our Approach

- Camera facing the caskets
- LED lights on the caskets
- Embedded module to compute presence/absence of packets on caskets
- Connection to server and other systems

Computer Vision Unit - Algorithm

Aim: To decide whether a casket is empty or not (instead of detecting object)

Record images

Record
multiple
images of
each casket
at high fps

Extract features

Extract simple features

Compare with model

 Compare features with model to decide if image is of empty casket

Aggregate decisions

 Aggregate decisions on multiple images to ensure robustness

Empty Casket Model

- Observe: Histogram of feature at each pixel across images follows a Gaussian distribution
- Assume: Empty Casket image is sampled from a Gaussian Process
- Train: Fit the parameters of Gaussian Process (mean, covariance) to empty casket images

Value of edge at Pixel (100, 200)

Results

Approach	Mean Time (ms)	Maximum Time (ms)	Accuracy (%)
Entropy	0.2	1	70
Power	0.2	1	64
Global	0.8	2	61
Edges	0.4	2	~100
Blobs	4	15	~100

Computer Vision Unit – Problems Solved

Detect empty casket (instead of object)

Record images at high fps

Extract simple features

Aggregate multiple decisions

Real time

Robust to variation in packet

High accuracy

Future Scope

- Making algorithm resistant to conveyor wear and tear
- Detecting very small size objects
- Incorporating depth information
- Using GPU for computational optimizations to incorporate complex algorithms

GreyOrange India Pvt. Ltd.

- Srijib Maiti
- Gaurav Kejriwal

Questions?

Thank you