Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) Escola Politécnica - Curso de Bacharelado em Engenharia de Computação Disciplina: Programação Orientada a Objetos - ECo – Professor: Roland Teodorowitsch 1 de março de 2023

Lista de Exercícios 1 (2023/1)

Este trabalho consiste em resolver a lista de exercícios das páginas a seguir, em C. Para a resolução e entrega devem ser seguidas as seguintes regras:

- criar uma pasta com o nome do aluno no formato *camelHump* (por exemplo, para João Pedro da Silva, usar JoaoPedroDaSilva);
- dentro dessa pasta criar programas em C para resolver cada um dos exercícios, salvando o código-fonte em um arquivo com o nome Exercicio seguido do número do exercício com três dígitos (por exemplo, Exercicio001.c, Exercicio002.c, ..., Exercicio100.c);
- no início de cada arquivo em C, incluir um comentário informando o nome do arquivo, o nome do autor, a finalidade do programa e a versão (ou data) de criação (ou atualização);
- se houver dados para serem lidos, eles devem ser lidos na mesma ordem em que eles são citados no enunciado, escolhendo os tipos numéricos adequadamente;
- escrever os resultados sempre na mesma ordem em que eles são citados no enunciado, escolhendo os tipos numéricos adequadamente (números reais devem ser apresentados sempre com 4 casas decimais, salvo se indicado de outra forma);
- na versão final, tomar o cuidado de não imprimir nada diferente da saída esperada (não devem aparecer, por exemplo, mensagens pedindo que o usuário forneça ou digite determinado valor no terminal);
- a entrega deverá ser feita no dia e horário informado pelo professor em sala de aula e/ou definida na opção de entrega da plataforma moodle da PUCRS;
- cada aluno deverá submeter os códigos-fontes compactados no formato ZIP, usando o mesmo nome da pasta (por exemplo, para João Pedro da Silva, o arquivo compactado deverá chamar-se JoaoPedroDaSilva.zip).

6. Escreva uma função em C, chamada inverte_int, que recebe um número inteiro positivo (por exemplo, 73483) e devolve outro inteiro que é este número revertido (ou seja, 38437). Você não sabe quantos dígitos o número terá e não pode receber um dígito de cada vez.

Acrescente a sua função ao código a seguir:

```
#include <stdio.h>
int main() {
  int n;
  scanf("%d",&n);
  printf("%d\n",inverte_int(n));
  return 0;
}
```

O código acima lê da entrada padrão um valor inteiro e mostra o resultado retornado pela função inverte_int para este valor.

Adaptado de uma questão da disciplina de Introducao a Programação - ECo (do curso de Bacharelado em Engenharia de Computação, da PUCRS), elaborada pelo professor João Batista Olivera (agosto de 2022).

Exemplos:

Entrada	Saída
12345	54321
54321	12345
43210	1234
1020304	4030201
10203040	4030201
111222	222111
12121212	21212121
11110000	1111
79385	58397
12344321	12344321

7. Escreva um programa em C que lê 50 palavras da entrada padrão, de até 20 caracteres, determinando quantas palavras tem exatamente 7 caracteres.

Adaptado de uma questão da disciplina de Introducao a Programação - ECo (do curso de Bacharelado em Engenharia de Computação, da PUCRS), elaborada pelo professor João Batista Olivera (agosto de 2022).

Exemplos:

Entrada	Saída
Alligator Anteater Armadillo Bat Bear Butterfly Camel Cat Chameleon Chicken	10
Cow Dog Donkey Dolphin Elephant Fish Fox Frog Giraffe Goat	
Hen Hippopotamus Horse Kangaroo Lion Monkey Moose Mouse Ostrich Owl	
Ox Panther Peacock Pelican Penguin Pig Rhino Rooster Rabbit Shark	
Sheep Sloth Spider Squirrel Tiger Toucan Turtle Vulture Whale Zebra	
Abelia Amaranthus Angelica Anthurium Bauhinia Begonia Buttonbush Calendula Camellia Celosia	5
Cinquefoil Cornflower Cosmos Daffodil Dahlia Daisy Forsythia Foxglove Gardenia Geranium	
Gerbera Gladiola Gladiolus Graceland Gypsophila Hibiscus Hollyhocks Iris Jasmine Larkspur	
Lavender Lilac Lily Lotus Mallow Marigold Orchid Pansy Petunia Primrose	
Rhododendron Rose Snapdragon Speedwell Spirea Summersweet Sunflower Vinca Violet Zinnia	
Ackee Apple Apricot Atemoya Avocados Banana Blackcurrant Blueberry Cantaloupe Cherry	6
Coconut Cranberry Dates Dragonrfruit Durian Feijoa Fig Gooseberries Grapefruit Guava	
Hazelnut Honeyberries Jackfruit Jenipapo Kiwi Langsat Lime Lychee Mango Mangosteen	
Melon Mulberry Muskmelon Nance Nectarine Olive Oranges Papaya Peach Pear	
Physalis Pineapple Pomegranate Raspberries Soursop Starfruit Strawberries Sweetsop Tangerine Watermelon	
Accordion Banjo Bassoon Bell Bugle Celesta Cello Clarinet Comet Cornet	9
Cymbal Damru Dholak Drums Ektara Euphonium Flute Gong Gramophone Guitar	
Gu-zheng Harmonica Harmonium Harp Keyboard Lute Maracas Marimba Mridangam Oboe	
Oud Piano Piccolo Pungi Sarangi Sarod Saxophone Shehnai Sitar Spinet	
Tabla Tambourine Triangle Trombone Trumpet Tuba Ukulele Veena Violin Xylophone	
us most day give these any want new even way	0
well first work our how two use after back also	
think over its come only look now then than other	
see them could some good your year into people take	
know him just no time like can make when me	
prolixo sublime empatia recesso refutar inferir cordial exortar emergir sucinto	50
excesso conciso incauto parcial austero imputar trivial aspecto auferir estirpe	
excerto candura salutar padecer sensato alegria preciso fomento certeza mitigar	
diferir hesitar escasso vigente incitar intuito oriundo deleite definir exilado	
modesto sentido indagar almejar abrange deferir ademais arcaico mancebo virtude	

8. Para esta questão, suponha que você tem as seguintes structs definidas em C:

```
struct motor {
  int cc, potencia, cilindros;
};

struct carro {
  char modelo[45];
  int ano;
  char transmissao; // M = manual, A = automatica
  int km;
  char combustivel; // F = flex, G = gasolina, D = diesel
  int numportas;
  struct motor m;
  double preco;
};
```

E também o seguinte vetor de carros:

E escreva um programa em C que leia, respectivamente, o tipo de combustível, o número de cilindros e o valor máximo de um carro e conte quantos carros da revenda funcionam com esse combustível, tem esse número de cilindros e tem preço menor ou igual ao valor máximo fornecido.

Adaptado de uma questão da disciplina de Introducao a Programação - ECo (do curso de Bacharelado em Engenharia de Computação, da PUCRS), elaborada pelo professor João Batista Olivera (agosto de 2022).

Exemplos:

Entrada	Saída
F 4 30000.0	1
F 4 34900.0	2
F 4 36900.0	3
F 4 40000.0	4
G 6 100000.0	0
G 6 156900.0	1
G 6 157000.0	1
F 4 100000.0	13
D 4 200000.0	1
F 3 80000.0	2

9. Escreva um programa em C que recebe um inteiro positivo e diz quantos "33" existem no inteiro. Por exemplo 331, 33533 e 333 tem 1, 2 e 2 ocorrências de "33", respectivamente.

Adaptado de uma questão da disciplina de Introducao a Programacao - ECo (do curso de Bacharelado em Engenharia de Computação, da PUCRS), elaborada pelo professor João Batista Olivera (agosto de 2022).

Exemplos:

Entrada	Saída
331	1
33533	2
333	2

10. Escreva um programa em C que leia da entrada padrão um vetor A com 50 valores inteiros e determine o tamanho da maior sequência de valores ímpares que estão lado a lado dentro desse vetors.

Adaptado de uma questão da disciplina de Introducao a Programacao - ECo (do curso de Bacharelado em Engenharia de Computação, da PUCRS), elaborada pelo professor João Batista Olivera (agosto de 2022).

Exemplos:

Entrada	Saída
2 2 3 5 7 2 2 2 3 9 11 13 15 21 33 2 2 2 2 2 4 1 3 5 7 4 4 4 4 4 11 13 15 11 13 15 11 13 15 1 3 5 7 9 1 3 5 7 9 1	20
8 4 2 2 10 8 2 2 2 10 4 2 8 10 10 4 8 6 2 2 4 8 8 4 10 6 10 6 8 10 8 8 2 6 6 4 4 4 2 8 4 4 10 6 10 6 2 8 8 10	0
8 4 2 1 10 8 2 2 2 10 4 3 8 10 10 5 8 6 2 2 4 8 8 7 10 6 10 6 8 10 8 9 2 6 6 4 4 4 1 8 4 4 10 7 10 6 2 8 9 10	1
8 4 2 1 10 8 2 2 2 10 1 1 8 10 10 1 8 6 2 2 4 8 8 7 10 6 10 6 8 10 8 9 2 6 6 4 4 1 1 8 4 4 10 7 10 6 2 8 9 1	2
8 4 2 1 1 1 2 2 2 10 1 1 1 10 10 1 1 6 2 2 4 8 8 7 10 6 10 6 8 10 8 9 2 6 6 4 4 1 1 8 4 4 10 7 10 6 2 1 9 1	3
8 4 1 1 1 1 2 2 2 10 1 1 1 10 10 1 1 6 2 2 4 8 8 7 10 6 10 6 8 10 8 9 2 6 6 4 1 1 1 8 4 4 10 7 10 6 1 1 9 1	4
8 1 1 1 1 1 2 2 2 10 1 1 1 1 1 0 1 1 6 2 2 4 8 8 7 10 6 10 6 8 10 8 9 2 6 6 1 1 1 1 1 8 4 4 10 6 1 1 1 1 9 2	5
1 1 1 1 1 1 2 2 2 10 1 1 1 1 1 2 1 6 2 2 4 8 8 7 10 6 10 6 8 10 8 9 2 6 6 1 1 1 1 8 4 4 10 1 1 1 1 1 9 2	6
1 1 1 1 1 1 3 2 2 10 1 1 1 1 1 5 1 6 2 2 4 8 8 7 10 6 10 6 8 10 8 9 2 6 6 1 1 1 1 1 8 4 4 5 1 1 1 1 1 9 2	7
11 3 9 5 5 3 3 7 3 3 5 7 7 7 3 11 9 9 7 7 3 7 9 7 7 3 11 5 9 5 9 9 7 7 5 9 5 9 9 7 11 7 3 3 3 5 11 5 9 3	50