Lectures on Natural Language Processing

2. Classification

Karl Stratos

The Classification Problem

- ▶ Input space \mathcal{X} , label space $\mathcal{Y} = \{1 \dots K\}$
- ▶ Given input $x \in \mathcal{X}$, predict corresponding label/class $y \in \mathcal{Y}$

- ightharpoonup This is an abstraction: nature of x, y depends on the task
 - In NLP, x is often text.
 - In vision, x is an image; in speech, x is a signal. In robotics, x is a sensory value.

Examples in NLP Sentiment analysis (e.g., K = 2)

Topic classification (e.g., K = 4) Politics Sports Article Business Science/Tech

(what's the article about?)

Natural language inference (e.g., K = 3)

entailment Hypothesis, contradiction premise neutral

(does premise follow from hypothesis?)

Language modeling (e.g., K = 120,000) Past text (given past text, what's the next word?)

Old Days: Expert Systems

- Human experts/engineers come up with a bunch of if-then rules ("knowledge base")
- ► An "inference engine" applies logical rules to answer questions
- ► No data, no learning

First practical Al applications (e.g., translation, ELIZA), but obvious limitations ⇒ Al winter (early 1990s)

- Never enough rules, hard to go beyond "shallow" behavior
- Heavy dependence on human expertise
- Can't handle truly complex tasks (e.g., autonomous driving)
- ▶ No generalization between tasks: one-trick ponies

Principles of Machine Learning

- ▶ **No explicit rule construction**: relationship between input *x* and output *y* inferred from training data
- ► Task-agnostic: no matter what the task is, the principles stay the same

Basic ML Concepts: Model and Parameter

- ▶ A **model** with **parameter** θ is a mapping f_{θ} ("computational recipe") whose behavior is controlled by the choice of $\theta \in \Theta$.
- ► This defines a **model class** (or **hypothesis class**):

$$\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \}$$

ightharpoonup Example: linear models $f_{ heta}: \mathbb{R}^3 o \mathbb{R}^2$

$$\Theta := \left\{ (W, b) \in \mathbb{R}^{3 \times 2} \times \mathbb{R}^2 \right\}$$
 (parameter space) $f_{\theta}(x) := W^{\top} x + b$ (model definition)

Every choice of (W, b) yields a particular (linear) mapping

$$W = \begin{bmatrix} 3.14 & -9 \\ -2 & 7 \\ 1.1 & 5 \end{bmatrix} \quad b = \begin{bmatrix} 10 \\ -3 \end{bmatrix} \quad \Longrightarrow \quad f_{\theta} \left(\begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \right) = \begin{bmatrix} 3.14z_1 - 2z_2 + 1.1z_3 + 10 \\ -9z_1 + 7z_2 + 5z_3 - 3 \end{bmatrix}$$

The Classification Model

General classifier with parameter θ

$$\mathsf{score}_{ heta}: \mathcal{X} imes \mathcal{Y} o \mathbb{R}$$

Given any $x \in \mathcal{X}$, the model predicts

$$\hat{y}_{\theta}(x) = \underset{\boldsymbol{y} \in \mathcal{Y}}{\operatorname{arg \, max}} \ \mathbf{score}_{\theta}(x, \boldsymbol{y})$$

 $\mathbf{score}_{\theta}(x,y)$ (also called **logit**) represents how likely x has label y.

No matter how complicated the model becomes, it will always take this form!

Example: Topic Classification with Linear Classifiers

- Input document represented as a d-dimensional vector $x \in \mathbb{R}^d$
 - ▶ E.g., "bag-of-words" $x = (1, 0, 0, 1, \dots, 0) \in \{0, 1\}^d$ indicating the presence/absence of words
- $lackbox{ Model parameter: for each topic } y=1\dots K$, have a vector w_y and a scalar b_y

$$\theta = \left\{ w_{\mathbf{y}} \in \mathbb{R}^d, \ b_{\mathbf{y}} \in \mathbb{R} : \mathbf{y} = 1 \dots K \right\}$$

▶ Model definition. Score of document x and topic y computed as

$$score_{\theta}(x, y) = w_{y}^{\top} x + b_{y} \in \mathbb{R}$$

▶ Model prediction. Given any $x_{\text{new}} \in \mathbb{R}^d$, predict

$$\hat{y}_{\theta}(x_{\text{new}}) = \underset{\boldsymbol{y}=1...K}{\operatorname{arg max}} \ w_{\boldsymbol{y}}^{\top} x_{\text{new}} + b_{\boldsymbol{y}} \in \{1...K\}$$

Naively Fitting the Training Data

Input.

- Functional definition of \mathbf{score}_{θ} with parameter space $\theta \in \Theta$ defining $\hat{y}_{\theta}(x) = \arg\max_{y \in \mathcal{Y}} \mathbf{score}_{\theta}(x, y)$
- ▶ Input-label pairs $(x_1, y_1) \dots (x_N, y_N) \in \mathcal{X} \times \mathcal{Y}$

Training. Find a model that makes the smallest number of classification mistakes

$$\tilde{\theta} = \underset{\theta \in \Theta}{\operatorname{arg \, min}} \sum_{i=1}^{N} \underbrace{\mathbb{1}(\hat{y}_{\theta}(x_i) \neq y_i)}_{\text{"0-1 loss": 1 if incorrect. 0 if correct.}}$$

What is $\tilde{\theta}$? Is it a "good model"?

Memorization vs Generalization

Memorization: Any $\tilde{\boldsymbol{\theta}}$ such that

$$\hat{y}_{\tilde{\theta}}(x_i) = y_i \quad \forall i = 1 \dots N$$

has zero training loss, but that alone does not imply generalization.

Generalization: accurately classify future data

$$x_{\text{\tiny new}} \mapsto ?$$

- ► This is our goal, but is it even feasible? (E.g., consider an adversarial setting)
- ▶ What sort of assumptions do we need?

Review: Probability Distribution

A distribution p_X over random variable $X \in \{\bullet, \uparrow, \star\}$ satisfies

2.
$$p_X(\bullet) + p_X(\dagger) + p_X(\star) = 1$$

Independently and identically distributed (iid) samples

Population Distribution

Foundational assumption in ML: data comes randomly from a **population distribution pop**_{XY} over $(X,Y) \in \mathcal{X} \times \mathcal{Y}$

(Implies marginal $\mathbf{pop}_X, \mathbf{pop}_Y$ and conditional $\mathbf{pop}_{Y|X}, \mathbf{pop}_{X|Y}$ distributions.) Generalization of any classifier $f: \mathcal{X} \to \mathcal{Y}$ now measured by the *expected* loss (aka. "risk")

$$\Pr_{(x,y)\sim\mathbf{pop}_{XY}}\left(\mathbf{f}(x)\neq y\right)$$

Optimal Classification by Density Estimation

Goal. Estimate the (Bayes) optimal classifier

$$f^{\star} := \underset{f: \mathcal{X} \to \mathcal{Y}}{\operatorname{arg \, min}} \quad \underset{(x,y) \sim \mathbf{pop}_{XY}}{\operatorname{Pr}} \left(f(x) \neq y \right)$$

Optimal Classification by Density Estimation

Goal. Estimate the (Bayes) optimal classifier

$$f^{\star} := \underset{f: \mathcal{X} \to \mathcal{Y}}{\operatorname{arg \, min}} \Pr_{(x,y) \sim \mathbf{pop}_{XY}} (f(x) \neq y)$$

Claim. For any $x \in \mathcal{X}$

$$f^{\star}(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \ \mathbf{pop}_{Y|X}(y|x)$$

Optimal Classification by Density Estimation

Goal. Estimate the (Bayes) optimal classifier

$$f^{\star} := \underset{f: \mathcal{X} \to \mathcal{Y}}{\operatorname{arg \, min}} \quad \underset{(x,y) \sim \mathbf{pop}_{XY}}{\operatorname{Pr}} (f(x) \neq y)$$

Claim. For any $x \in \mathcal{X}$

$$f^{\star}(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \ \mathbf{pop}_{Y|X}(y|x)$$

New goal. Estimate $\mathbf{pop}_{Y|X}$

- lacktriangle Optimal classifier implied by the possession of $\mathbf{pop}_{Y|X}$
- ► Training = conditional density estimation

Density Estimation by Cross-Entropy Minimization

Cross-entropy between distributions p,q over set S

$$H(p,q) := -\sum_{x \in S} p(x) \times \log q(x) \ge 0$$

Expected number of bits to encode the behavior of p using q

Consistency of cross-entropy

$$\mathbf{q}^* = \underset{q}{\operatorname{arg \, min}} \ H(p,q) \quad \Leftrightarrow \quad \mathbf{q}^*(x) = p(x) \quad \forall x \in S$$

Game plan: convert model scores into a distribution, then estimate $\mathbf{pop}_{Y|X}$ by minimizing cross-entropy

The Softmax Function

Any K values can be converted into a distribution over $\{1 \dots K\}$ by the **softmax function** $\operatorname{softmax}: \mathbb{R}^K \to [0,1]^K$:

$$\underbrace{\operatorname{softmax}_k(u)}_{\text{prob. of k-th item given }u\in\mathbb{R}^K}:=\frac{\exp(u_k)}{\sum_{l=1}^K\exp(u_l)}$$

Examples

$$softmax(-0.23, 1.51, -2.11) = (0.15, 0.83, 0.02)$$
$$softmax(-1000, -1000, 1.00, 2.00) = (0.00, 0.00, 0.27, 0.73)$$

Shift-invariant: for any $c \in \mathbb{R}$ (elementwise addition)

$$softmax(u + c) = softmax(u)$$

The Probabilistic Classification Model

Any model scoring (X,Y) has the corresponding **conditional** distribution over Y given X

$$p_{\theta}(\mathbf{y}|x) := \underbrace{\frac{\exp(\mathbf{score}_{\theta}(x, \mathbf{y}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{score}_{\theta}(x, y'))}}_{\text{softmax}_{y}(\mathbf{score}_{\theta}(x, 1), \dots, \mathbf{score}_{\theta}(x, K))}$$

Probabilities only needed for training, prediction unchanged

$$\underset{y \in \mathcal{Y}}{\arg\max} \ p_{\theta}(y|x) \equiv \underset{y \in \mathcal{Y}}{\arg\max} \ \mathbf{score}_{\theta}(x, \underline{y})$$

The Cross-Entropy Loss

Estimate $p_{\theta}(y|x) \approx \mathbf{pop}_{Y|X}(y|x)$ by minimizing cross-entropy

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{arg \, min}} \quad \mathbf{E}_{(x,y) \sim \mathbf{pop}_{XY}} \left[-\log p_{\theta}(y|x) \right]$$

("fundamental equation of deep learning" –David McAllester)

In practice, minimize the empirical objective (empirical risk minimization)

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} -\frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(y_i|x_i)$$

based on iid samples $(x_1, y_1) \dots (x_N, y_N) \sim \mathbf{pop}_{XY}$

Aside: Maximum Likelihood Estimation (MLE)

MLE: use θ that makes the data most likely

$$\hat{\theta} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,max}} \ \frac{1}{N} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(y_i | x_i)$$

The most important estimator in statistics

- As $N \to \infty$, unbiased and efficient (i.e., minimum variance)
- Cross-entropy minimization is MLE!
- We will say "cross-entropy minimizer" and "maximum-likelihood estimator" interchangeably.

Approximation vs Estimation Error

- Approximation error: due to limited model expressiveness, remains no matter how much data we have
- Estimation error: due to limited data, can reduce by getting more data

Minimizing the Empirical Cross-Entropy Loss

Training data: $(x_1, y_1) \dots (x_N, y_N) \stackrel{\text{iid}}{\sim} \mathbf{pop}_{XY}$

$$\widehat{J}_N(\theta) = -\frac{1}{N} \sum_{i=1}^N \log p_{\theta}(y_i|x_i)$$

- ▶ Goal: find θ with small $\widehat{J}_N(\theta)$
- Universal approach: gradient descent

Gradient of a Function

- ▶ Let $f: \mathbb{R}^d \to \mathbb{R}$ be any differentiable function.
- ► The *i*-th **partial derivative** of f is the derivative of f when viewed as a function of the *i*-th variable only: $\frac{\partial f(\theta)}{\partial \theta_i} \in \mathbb{R}$.
- ▶ The **gradient** of f at $\theta \in \mathbb{R}^d$ is the vector

$$\nabla f(\theta) = \left(\frac{\partial f(\theta)}{\partial \theta_1}, \dots, \frac{\partial f(\theta)}{\partial \theta_d}\right) \in \mathbb{R}^d$$

- Points to the direction of increase of f at location $\theta \in \mathbb{R}^d$
 - ▶ Magnitude $||\nabla f(\theta)||$: rate of change
 - $ightharpoonup
 abla f(\theta) = 0_d$ if θ is a stationary point
- ightharpoonup d=1 example $f(\theta)=(\theta-3)^2$, $f'(\theta)=2\theta-6$
 - At $\theta = 5$: Increasing to the right at a rate of 4
 - Stationary point $\theta = 3$

Minimizing a Local Approximation

Taylor's theorem: First-order approximation of $f: \mathbb{R}^d \to \mathbb{R}$ around $\theta_0 \in \mathbb{R}^d$

$$f(\theta) \approx \underbrace{f(\theta_0)}_{\text{Current value}} + \underbrace{\nabla f(\theta_0)^\top (\theta - \theta_0)}_{\text{Change in value as we move away}}$$

The approximation is only good for a local neighborhood. Add an l_2 distance penalty, for some $\eta > 0$:

$$f_{\boldsymbol{\theta_0},\eta}(\boldsymbol{\theta}) := f(\boldsymbol{\theta_0}) + \nabla f(\boldsymbol{\theta_0})^{\top} (\boldsymbol{\theta} - \boldsymbol{\theta_0}) + \frac{1}{2\eta} ||\boldsymbol{\theta} - \boldsymbol{\theta_0}||^2$$

(Also a second-order approximation with $\nabla^2 f(\theta) \approx (1/\eta) I_{d \times d}$). The unique minimizer of $f_{\theta_0,\eta}$ is

$$\theta = \theta_0 - \eta \nabla f(\theta_0)$$

Gradient Descent

Start from some $\theta_0 \in \mathbb{R}^d$, repeatedly minimize local approx. $f_{\theta_t,\eta_t}(\theta)$ around θ_t by

$$\theta_{t+1} = \theta_t - \underbrace{\eta_t}_{\text{"step size" or "learning rate"}} \nabla f(\theta_t)$$

until $\nabla f(\theta_t) \approx 0_d$

Properties of Gradient Descent

Universal: Can minimize any differentiable $f: \mathbb{R}^d \to \mathbb{R}$

lackbox Only need the ability to calculate gradient $abla f: \mathbb{R}^d o \mathbb{R}^d$

Local search: Only use local information around current location

- Initialization matters, small random values usually okay (e.g., $[\theta_0]_i \sim \mathrm{Unif}(-\alpha, \alpha)$ for $\alpha = 0.01$)
- lacktriangle Convergence at *some* stationary/critical point $ar{ heta}$ (i.e., $abla f(ar{ heta}) = 0_d$)
 - 1. Global minimum: $f(\bar{\theta}) = \min_{\theta \in \mathbb{R}^d} f(\theta)$
 - 2. Local minimum: $f(\bar{\theta}) \leq f(\bar{\theta} + u)$ for all small nonzero $u \in \mathbb{R}^d$
 - 3. Saddle point: Not a local minimum

(Global minimum is also local minimum.) Depends on initialization & function shape. If f is convex, global convergence guaranteed for appropriate step sizes:

Quick Gradient Estimation by Sampling

Often $f: \mathbb{R}^d \to \mathbb{R}$ averages "component" functions $f_i: \mathbb{R}^d \to \mathbb{R}$

$$f(\theta) = \frac{1}{N} \sum_{i=1}^{N} f_i(\theta)$$
 (1)

Given a partition $\mathcal{I}_1 \dots \mathcal{I}_M$ of $\{1 \dots N\}$ (mini-batches) where $|\mathcal{I}_j| \ll N$ (batch size)

$$\nabla f(\theta) \approx \frac{1}{|\mathcal{I}_j|} \sum_{i \in \mathcal{I}_j} \nabla f_i(\theta)$$
 $j \sim \text{Unif}(\{1 \dots M\})$

This allows us to estimate $\nabla f(\theta)$ quickly by averaging $\nabla f_i(\theta)$ in a single mini-batch, without considering all N components.

► Consistent estimation (take expectation over *j*). This assumes the form (1). Not consistent for general *f*!

Summary

No matter what the task is, the principles will (largely) stay the same.