Pell's equation and units in $\mathbb{Z}[\sqrt{D}]$

DEFINITION: The equation $x^2 - Dy^2 = 1$ for some fixed positive integer D that is not a perfect square, where the variables x, y range through integers is called a **Pell's equation**. We say that a solution (x_0, y_0) is a **positive solution** if x_0, y_0 are both positive integers. We say that one positive solution (x_0, y_0) is **smaller** than another positive solution (x_1, y_1) if $x_0 < x_1$; equivalently, $y_0 < y_1$.

- (1) Warmup with Pell's equation:
 - (a) Verify that (9,4) is a solution to Pell's equation with D=5.
 - (b) Fix some D. Show that if (x_0, y_0) is a solution to Pell's equation, then $(\pm x_0, \pm y_0)$ are solutions to Pell's equation with the same D.
 - (c) What two trivial solutions does every Pell's equation have?
 - (d) Explain how to recover all solutions from just the positive solutions.
 - (a) $9^2 5 \cdot 4^2 = 81 5 \cdot 16 = 1 \checkmark$.
 - (b) $(\pm x_0)^2 D(\pm y_0)^2 = x_0^2 Dy_0^2 = 1$.
 - (c) $(\pm 1, 0)$.
 - (d) By throwing in $(\pm 1,0)$ and taking \pm each coordinate.
- (2) By trial and error find the smallest positive solutions to Pell's equation with $D=2,\,D=3,$ and D=5.

For D = 2 we find (3, 2). For D = 3 we find (2, 1), For D = 5 we find (9, 4).

(3) Suppose that D is a perfect square. Show that the equation $x^2 - Dy^2 = 1$ has no positive solutions.

If $D=d^2$ with d>0, then $x^2-Dy^2=(x-dy)(x+dy)$. For any positive integers x,y, we have x+dy>1, and $x-dy\in\mathbb{Z}$, so the product cannot be 1.

DEFINITION: Let D be a positive integer that is not a perfect square. We define the **quadratic** ring of D to be

$$\mathbb{Z}[\sqrt{D}] := \{a + b\sqrt{D} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}.$$

DEFINITION: For the quadratic ring $\mathbb{Z}[\sqrt{D}]$ we define the **norm** function

$$N: \mathbb{Z}[\sqrt{D}] \to \mathbb{Z}$$
 $N(a+b\sqrt{D}) = a^2 - b^2 D.$

Note that $N(a + b\sqrt{D}) = (a + b\sqrt{D})(a - b\sqrt{D})$.

LEMMA: For the quadratic ring $\mathbb{Z}[\sqrt{D}]$ the norm function satisfies the multiplicative property $N(\alpha\beta) = N(\alpha)N(\beta)$.

- (4) Warmup with $\mathbb{Z}[\sqrt{D}]$:
 - (a) Show¹ that $\mathbb{Z}[\sqrt{D}]$ is a ring.
 - (b) Show that every element in $\mathbb{Z}[\sqrt{D}]$ has a unique expression in the form $a + b\sqrt{D}$.
 - (a) We check the conditions for a subring: Let $a + b\sqrt{D}$, $c + d\sqrt{D} \in \mathbb{Z}[\sqrt{D}]$. Then,
 - $1 = 1 + 0\sqrt{D} \in \mathbb{Z}[\sqrt{D}]$
 - $(a+b\sqrt{D})-(c+d\sqrt{D})=(a-c)+(b-d)\sqrt{D}\in\mathbb{Z}[\sqrt{D}]$, and
 - $(a + b\sqrt{D})(c + d\sqrt{D}) = (ac + bdD) + (ad + bc)\sqrt{D} \in \mathbb{Z}[\sqrt{D}].$
 - (b) If $a+b\sqrt{D}=c+d\sqrt{D}$ and $(a,b)\neq(c,d)$, then $a-c=(d-b)\sqrt{D}$. If $a\neq c$, then we must have $b\neq d$, so either way, $b\neq d$. Then $\sqrt{D}=\frac{a-c}{d-b}$, which contradicts that \sqrt{D} is irrational. Thus, $a+b\sqrt{D}=c+d\sqrt{D}$ implies (a,b)=(c,d).
- (5) Norms, units, and Pell's equation:
 - (a) Prove the Lemma above.
 - (b) Show that an element of $\mathbb{Z}[\sqrt{D}]$ is a unit (has a multiplicative inverse) if and only if its norm is ± 1 .
 - (c) Show that the set of units of $\mathbb{Z}[\sqrt{D}]$ forms a group under multiplication.
 - (d) Show that the set of elements $a + b\sqrt{D} \in \mathbb{Z}[\sqrt{D}]$ such that (a, b) is a solution to the Pell's equation $x^2 Dy^2 = 1$ forms a group under multiplication.

(a) Set
$$\alpha = a + b\sqrt{D}$$
, $\beta = c + d\sqrt{D}$. Then $\alpha\beta = (ac + bdD) + (ad + bc)\sqrt{D}$ so $N(\alpha\beta) = (ac + bdD)^2 - (ad + bc)^2D$
 $= a^2c^2 + 2abcdD + b^2d^2D^2 - a^2 + d^2D - 2abcdD - b^2c^2D$
 $= a^2c^2 + b^2d^2D^2 - a^2d^2D - b^2c^2D$.

On the other hand,

$$N(\alpha)N(\beta) = (a^2 - b^2D)(c^2 - d^2D) = a^2c^2 - a^2d^2D - b^2c^2D + b^2d^2D^2.$$

(b) If α is a unit so $\alpha\beta = 1$ for some β , then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta),$$

so $N(\alpha)$ is a unit in \mathbb{Z} , hence is ± 1 . Conversely, if $\alpha = a + b\sqrt{D}$ and $N(\alpha) = \pm 1$, then $(a + b\sqrt{D})(a - b\sqrt{D}) = \pm 1$, so $(a + b\sqrt{D})(\pm (a - b\sqrt{D})) = 1$, and α is a unit.

(c) The product of two elements of norm 1 has norm 1, by the lemma. The element 1 has norm 1, which serves as the identity. By the previous part, an element of norm 1 has an inverse, which must have norm 1 by the lemma.

THEOREM: Let D be a positive integer that is not a perfect square. Consider the Pell's equation $x^2 - Dy^2 = 1$. Let (a,b) be the smallest positive solution (assuming that some positive solution exists). Then every positive solution (c,d) can be obtained by the rule

$$c + d\sqrt{D} = (a + b\sqrt{D})^k$$

¹Recall: to check that a subset of a ring is a subring, it suffices to show that it contains the multiplicative identity and is closed under subtraction and multiplication.