Pertemuan6

November 6, 2018

1 Pemodelan Matematika dari Sistem Kontrol

Setelah menyelesaikan materi anda diharapkan bisa: 1. Memahami bahwa persamaan differensial bisa digunakan untuk mendeskripsikan perilaku dinamis dari sistem 2. Mengetahui jens-jenis representasi pemodelan sistem 3. Mengetahui pentingnya peran pemodelan dalam proses desain sistem kontrol

- 4. Memahami peran blok diagram (dan diagram aliran sinyal) dalam analisa sistem kontrol
- 5. Mengerti peran transformasi Laplace untuk mendapatkan fungsi alih (transfer function)
- 6. Memahami peran fungsi alih pemodelan sistem
- 7. Bisa menggunakan pendekatan linearisasi menggunakan ekspansi Taylor

1.1 Pengantar

- Untuk analisa dan desain sistem kontrol, sistem fisis (bentuk sistem real) harus dibuat model.
- Model tersebut harus bisa menggambarkan sistem dinamis dan bisa digunakan untuk menganalisa karakteristik dinamisnya secara matematis.
- Model matematika dari sistem dinamis didefinisikan sebagai sejumlah formula matematika yang merepresentasikan sifat dinamik dari sistem secara akurat, atau setidaknya cukup memadai.
- Sistem bisa digambarkan dalam model matematika yang berbeda-beda, tergantung dari sudut pandang kita terhadap sistem.
- Sistem dengan bentuk fisik berbeda, bisa mempunyai model matematika yang sama, jika mempunyai karakter yang sama

1.2 Transformasi Model Fisik ke Model Matematika

- Sifat dinamis dari banyak sistem bisa digambarkan ke dalam model matematika berupa persamaan differensial
- Model matematika ini diturunkan dari hukum-hukum fisik yang berlaku pada sistem sesaui pada domainnya, misal:
 - Sistem mekanik, dimodelkan dengan hukum-hukum Newton
 - Sistem elektrik dimodelkan dengan hukum-hukum Kirchoff, Ohm
 - Fluida dimoelkan dengan hukum-hukum mekanika fluida
 - Thermal dengan rumus-rumus thermal
 - Sistem ekonomi dengan hukum-hukum perekonomian

proses desain

1.2.1 Akurasi vs Kesederhanaan

- Model yang sederhana memudahkan untuk memahami sistem secara keseluruhan
 - Membuat asumsi-asumsi dengan mengabaikan beberapa faktor
- Model yang akurat lebih bisa menggambarkan sistem mendekati sistem real
 - perlu pemodelan lebih matematika lebih lengkap
 - meminimalisir pengabaian
 - membuat pemodelan lebih kompleks
- Perlu kompromi antara membuat model sederhana dan membuat model yang akurat
- Representasi Sistem dalam model matematika
 - Persamaan differensial
 - Representasi Domain Frequensi (Fungsi Alih/Transfer Function)
 - Representasi State-Space
- Pendekatan untuk analisa sistem dilakukan dengan menggambarkan sistem dalam persamaan differensial, lalu memilih representasi sistem:
 - Fungsi Alih, merupakan pendekatan analisis klasik untuk sistem Single Input Single Output (SISO)
 - State space, merupakan pendekatan sistem modern, untuk sistem Multiple Input Multiple Output (MIMO)

1.3 Klasifikasi Sistem

- Linear vs NonLinear
- Time-invariant vs Time-varying
- Continous-Time vs Discrete-Time
- Deterministic vs Stochastic
- Lumped-Parameters vs Distributed-Parameters

1.3.1 Linear vs Non-Linear

- Sistem dianggap linear jika berlaku hukum superposisi:
 - hukum superposisi: respons yang dihasilkan input berbeda yang terjadi secara bersamaan adalah sama dengan jumlah masing-masing respon terhadap setiap input jika terjadi secara sendiri-sendiri
 - Sistem linear akan memungkinkan untuk menghitung respon, dengan menghitung setiap input dan menjumlahkan hasilnya.
 - Hal ini akan memudahkan penyederhanaan sistem, sehingga bisa dilakukan linearisasi terhadap sistem dengan piece-wise linearisation (linearisasi sebagian)
- Sistem fisis umumnya bersifat nonlinear dalam tingkat tertentu

Untuk daerah kerja yang kecil, sistem nonlinear dapat dianggap linear (linearisasi sebagian)

1.3.2 Sistem Time-invariant vs Time-Varying

- Sistem time-invariant memiliki parameter-parameter yang konstan, tidak tergantung terhadap waktu
 - Respon sistem tidak tergantung pada saat kapan input diberikan
- Sistem time-varying memiliki satu atau lebih parameter yang berubah terhadap waktu
 - respon sistem tergantung pada waktu diberikan input
 - Contoh: sistem kendali ruang angkasa: bobot berkurang akibat konsumsi bahan bakar

1.3.3 Sistem Continuous vs Sistem Discrete

- Sistem kontinyu: memiliki semua variabel / sinyal yang kontinyu terhadap waktu
- Sistim diskrit: memiliki satu atau lebih variabel / sinyal yang diskret terhadap waktu

1.3.4 Sistem deterministic vs Sistem Stochastic

- Sistem deterministik memiliki respons yang dapat ditebak dan konsisten terhadap input yang sama
- Sistem stochastik: sistem menghasilkan respons yang berbeda terhadap input yang sama

1.3.5 Sistem Lumped-Parameters vs Distributed-Parameters

- Lumped-parameters: parameter-parameter komponen bisa dimodelkan secara terkumpul dalam satu titik
 - dicirikan dengan persamaan differensial biasa
- Terdistribusi: Parameter -arameter tiak terkumpul pada satu titik
 - dicirikan dengan persamaan differensial parsial
 - pemodelan parameter terdistribusi misalnya cocok pada sistem transmisi

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C} \int_0^t i(\tau)d\tau = v(t)$$

$$i(t) = dq(t)/dt$$

$$L\frac{d^2q(t)}{dt^2} + R\frac{dq(t)}{dt} + \frac{1}{C}q(t) = v(t)$$

$$q(t) = Cv_C(t)$$
Maka persamaan diferrensial akhir =
$$LC\frac{d^2v_C(t)}{dt^2} + RC\frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

Contoh Pembentukan Persamaan Diferensial dari Rangkaian Elektronik

System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Integrated Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y ₂₁
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, Q	Volume, V	Pressure difference, P_{21}	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	

Variabel

1.3.6 Representasi Domain Frekuensi (Transfer Function / Fungsi Alih) vs State-space

- Analisis sistem sederhana, SISO yang bersifat linear, kontinyu, time-invarieant, lumpedparameters, deterministik dapat dilakukan melalui pendekatan tradisional (klasik) dengan fungsi alih yang merupakan representasi sistem pada domain frekuensi.
- Untuk sistem yang kompleks (MIMO, non-linear, time-varying) dan pemodelan dengan akurasi yang tinggi digunakan pendekatan analisis representasi state-space yang merupakan representasi pada domain waktu

1.4 Persamaan Diferensial dari Sistem Fisis

 Persamaan differensial dari sistem fisis diturunkan dari hukum-hukum fisik yang berlaku pada sistem

Type of Element		Physical Element	Governing Equation	Energy <i>E</i> or Power <i>P</i>	Symbol
Inductive storage	ſ	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	$v_2 \circ \overbrace{\qquad \qquad }^L i \circ v_1$
		Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ f$
		Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \bigcap^k \circ T$
		Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E=\frac{1}{2}IQ^2$	$p_2 \circ \bigcap_{i=0}^{l} Q_i$

Rumus Persamaan Diferensial pada Beberapa Tipe Elemen

1.4.1 Variabel pada sistem fisik

1.4.2 Persamaan Diferensial Pada Elemen Fisik ideal

Type of Element	Physical Element	Governing Equation	Energy E or Power P	Symbol
ſ	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^2$	$v_2 \circ \longrightarrow \qquad \qquad \downarrow C \qquad \qquad \downarrow v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}Mv_2^2$	$F \longrightarrow 0 \qquad \qquad 0 \qquad v_1 = constant$
Capacitive storage	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E=\frac{1}{2}J\omega_2^2$	$T \longrightarrow \omega_1$ $\omega_1 = constant$
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}^2$	$Q \xrightarrow{P_2} C_f \longrightarrow P_1$
	Thermal capacitance	$q = C_t \frac{d\mathcal{I}_2}{dt}$	$E=C_r\mathcal{I}_2$	$q \xrightarrow{\mathcal{T}_2} C_t \xrightarrow{\mathcal{T}_1} = constant$

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i>P</i>	Symbol
	Electrical resistance	$i = \frac{1}{R}v_{21}$	$\mathcal{P} = \frac{1}{R} v_{21}^2$	$v_2 \circ \xrightarrow{R} i \circ v_1$
	Translational damper	$F=bv_{21}$	$\mathcal{P}=bv_{21}^2$	$F \longrightarrow v_2 \qquad b \circ v_1$
Energy dissipators	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}^{2}$	$T \longrightarrow 0$ ω_2 b 0
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P_1$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathscr{P} = \frac{1}{R_t} \mathscr{T}_{21}$	$\mathcal{F}_2 \circ \longrightarrow \stackrel{R_t}{\longrightarrow} \circ \mathcal{F}_1$