10/6/23, 12:01 AM Random Forest Technical

```
In [2]: #import the Libraries
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt

In [3]: df = pd.read_csv("C:/Users/HP/Desktop/RL_DAILY_DATASET (1).csv")
df = df.dropna()

#Look at the data
df

Out[3]: Date Open High Low Close Adj Close Volume
```

Out[3]:		Date	Open	High	Low	Close	Adj Close	Volume
	0	2013-01-01	418.037415	419.325226	415.610443	416.402924	387.885101	3152667.0
	1	2013-01-02	418.037415	423.981079	417.319244	419.993866	391.230164	6203434.0
	2	2013-01-03	420.315826	426.952911	418.334595	426.333771	397.135895	7968629.0
	3	2013-01-04	426.903381	428.240692	422.767578	426.878632	397.643463	6140890.0
	4	2013-01-07	428.785553	431.410645	421.900787	424.278259	395.221130	7064261.0
	•••							
	2597	2023-07-10	2688.899902	2756.000000	2675.000000	2735.050049	2735.050049	15340262.0
	2598	2023-07-11	2752.899902	2770.000000	2737.600098	2764.699951	2764.699951	9262001.0
	2599	2023-07-12	2766.300049	2802.000000	2761.649902	2767.750000	2767.750000	8645662.0
	2600	2023-07-13	2783.899902	2799.000000	2737.250000	2743.000000	2743.000000	6776172.0
	2601	2023-07-14	2750.000000	2760.899902	2725.100098	2740.699951	2740.699951	6979790.0

2600 rows × 7 columns

```
In [4]: #show the data visually
    df.plot(x="Date", y = "Close")
    plt.xticks(rotation = 45)
```

10/6/23, 12:01 AM Random Forest Technical

```
(array([-500., 0., 500., 1000., 1500., 2000., 2500., 3000.]),
Out[4]:
         [Text(-500.0, 0, '2021-07-09'),
          Text(0.0, 0, '2013-01-01'),
          Text(500.0, 0, '2015-01-13'),
          Text(1000.0, 0, '2017-01-24'),
          Text(1500.0, 0, '2019-01-31'),
          Text(2000.0, 0, '2021-02-11'),
          Text(2500.0, 0, '2023-02-16'),
          Text(3000.0, 0, '')])
                  Close
         2500
         2000
         1500
         1000
          500
In [5]: #create the model
         model = RandomForestRegressor()
In [6]: #Train the model
         X = df[['Open', 'High', 'Low', 'Volume']]
        X = X[:int(len(df)-1)]
         y = df['Close']
         y = y[:int(len(df)-1)]
         model.fit(X,y)
        RandomForestRegressor()
Out[6]:
        predictions = model.predict(X)
In [7]:
         print('Model score is: ', model.score(X,y))
```

Model score is: 0.9999719308976864 In [8]: #Test the model predictions = model.predict(X) print('The model score is: ', model.score(X,y)) The model score is: 0.9999719308976864 In [10]: # Get the first 12 rows of data for prediction last 12 days data = df[['Open', 'High', 'Low', 'Volume']].tail(12) # Make predictions for the first 12 days predictions = model.predict(last 12 days data) print('The model predicts the last 12 rows (or days) to be: ', predictions) # Print actual values for comparison actual values = df['Close'].tail(12).values print('Actual values for the last 12 days:') print(actual values) The model predicts the last 12 rows (or days) to be: [2494.12649657 2549.6525147 2608.92797354 2591.26951911 2587.01802989 2631.28349363 2635.42156027 2727.34553479 2759.52348873 2770.7750049 2751.44550784 2741.21303969] Actual values for the last 12 days: 2615.699951 2588.75 [2496.449951 2550.25 2584.5 2638.75 2633.600098 2735.050049 2764.699951 2767.75 2743. 2740.699951] In [26]: import matplotlib.pyplot as plt from sklearn.metrics import mean squared error, r2 score # Assuming 'predictions' and 'actual values' are available from the previous code snippet # Calculate Mean Squared Error (MSE) mse = mean squared error(actual values, predictions) print('Mean Squared Error (MSE):', mse) # Calculate R-squared (R2) r2 = r2 score(actual values, predictions) print('R-squared (R2):', r2) # Plot actual vs predicted values plt.figure(figsize=(10, 6)) plt.plot(actual values, label='Actual')

10/6/23, 12:01 AM Random Forest Technical

```
plt.plot(predictions, label='Predicted')
plt.xlabel('Day')
plt.ylabel('Close Price')
plt.title('Actual vs Predicted Close Price')
plt.legend()
plt.grid(True)
plt.show()
```

Mean Squared Error (MSE): 17.63773935566531 R-squared (R2): 0.9977478845961321

Actual vs Predicted Close Price

In []: