ADATSZERKEZETEK ÉS ALGORITMUSOK

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

- Alap: két rendezett sorozat összefuttatása
- Legyen A[1..k] és B[1..m] két rendezett vektor, ekkor:

$ai \leftarrow 1, bi \leftarrow 1, ci \leftarrow 1$			
$ai \leq k \wedge bi \leq m$			
A[ai] < B[bi]	A[ai] = B[bi]	A[ai] > B[bi]	
$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$ $ci \leftarrow ci + 1$ $C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	$C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	
$ci \leftarrow ci + 1$			
C tömbbe tegyük a maradékot			

$ai \leftarrow 1, bi \leftarrow 1, ci \leftarrow 1$			
	$ai \leq k \wedge bi \leq m$		
	A[ai] < B[bi]	A[ai] = B[bi]	A[ai] > B[bi]
	C[ci] ← A[ai] ai ← ai + 1	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$ $ci \leftarrow ci + 1$ $C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	$C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$
	$ci \leftarrow ci + 1$		
C tömbbe tegyük a maradékot			

$ai \leftarrow 1, bi \leftarrow 1, ci \leftarrow 1$			
	$ai \le k \land bi \le m$		
	A[ai] < B[bi]	A[ai] = B[bi]	A[ai] > B[bi]
	C[ci] ← A[ai] ai ← ai + 1	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$ $ci \leftarrow ci + 1$ $C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	$C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$
	$ci \leftarrow ci + 1$		
C tömbbe tegyük a maradékot			

$ai \leftarrow 1, bi \leftarrow 1, ci \leftarrow 1$			
$ai \le k \land bi \le m$			
A[ai] < B[bi]	A[ai] = B[bi]	A[ai] > B[bi]	
$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$ $ci \leftarrow ci + 1$ $C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	$C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	
$ci \leftarrow ci + 1$			
C tömbbe tegyük a maradékot			

$ai \leftarrow 1, bi \leftarrow 1, ci \leftarrow 1$			
$ai \le k \land bi \le m$			
A[ai] < B[bi]	A[ai] = B[bi]	A[ai] > B[bi]	
$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$ $ci \leftarrow ci + 1$ $C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	$C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	
$ci \leftarrow ci + 1$			
C tömbbe tegyük a maradékot			

$ai \leftarrow 1, bi \leftarrow 1, ci \leftarrow 1$				
	$ai \leq k \wedge bi \leq m$			
	A[ai] < B[bi]	A[ai] = B[bi]	A[ai] > B[bi]	
	C[ci] ← A[ai] ai ← ai + 1	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$ $ci \leftarrow ci + 1$ $C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	$C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	
	$ci \leftarrow ci + 1$			
C tömbbe tegyük a maradékot				

Összefuttat(A, B, C)

$ai \leftarrow 1, bi \leftarrow 1, ci \leftarrow 1$				
_	$ai \le k \wedge bi \le m$			
	A[ai] < B[bi]	A[ai] = B[bi]	A[ai] > B[bi]	
	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$	$C[ci] \leftarrow A[ai]$ $ai \leftarrow ai + 1$ $ci \leftarrow ci + 1$ $C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	$C[ci] \leftarrow B[bi]$ $bi \leftarrow bi + 1$	
	$ci \leftarrow ci + 1$			
C tömbbe tegyük a maradékot				

Ez egy külön ciklus

- Összefuttatásnál
 - összehasonlítások száma: k + m 1
- RENDEZÉS:
 - Az üres és az egyelemű sorozat biztosan rendezett.
 - S[1..n] (n > 1) tömböt ha rendezni szeretnénk:
 - szétvágjuk két részre (S_1, S_2) elfelezzük
 - ezeket külön-külön rendezzük
 - összefuttatjuk
 - MergeSort-nak is hívják

• MergeSort(*S*)

Length(S) > 1
Szétvág (S, S_1, S_2)	
$MergeSort(S_1)$ $MergeSort(S_2)$	SKIP
Összefuttat (S_1, S_2, S)	

Összefuttatásos rendezés – tömbre

• MergeSort(A, k, v)

k < v	
$h \leftarrow \frac{k+v}{2}$	
MergeSort(A, k, h) MergeSort($A, h + 1, v$)	SKIP
Összefuttat($A[k,h]$, $A[h+1,v]$, $A[k,v]$)	

- A külső hívás
 - MergeSort(*A*, 1, *n*)
- Az összefuttatásnál szükséges egy segédtömb használata

- Tömbökre szokás egy másik, iteratív stratégiát is követni:
 - Minden lépésben végigmegyünk rajta egyre növekvő $h=1,2,2^2,2^3,...$ $2^{[\log_2 n]-1}$ lépésközzel, és az ilyen hosszú szomszédos tömbrészleteket fésüljük össze, egy segédtömböt használva
- Példa ...

- Hatékonyságelemzés:
 - Az összehasonlítások számát becsüljük a legrosszabb esetben
 - Az összefuttatás k és m hosszú sorozatok összefésülésekor k+m-1 összehasonlítást végez
 - $M\ddot{O}_{\ddot{o}sszefuttat}(k, m) = k + m 1$
 - ha n a két sorozat együttes hossza
 - $M\ddot{O}_{\ddot{o}sszefuttat}(n) = n 1$
 - A MergeSort eljárásnál a közel egyenlő szétvágást alapul véve: milyen hosszú részekre vágja az eljárás a (rész)sorozatokat a rekurzív hívások szintjein.

- Az egyenlő szétvágások bináris fája majdnem teljes.
- A fa magassága: $4 = \lceil \log_2 11 \rceil$
 - Általában is: $h = \lceil \log_2 n \rceil$
- \bullet A fa leveleihez nem tartozik összehasonlítás, így éppen h szinten kell összegezni az összehasonlítások számát
 - Ezek összege szintenként egyre csökken
 - mindenütt $\leq n-1$
- Így $M\ddot{O}_{MS}(n) \le (n-1) * \lceil \log_2 n \rceil = \Theta(n * \log_2 n)$

Batcher-féle rendező

Következő téma