Bias, MSE, Consistency

• Squishing things together into the mean squared error

Bias: For estimator θ , $Bias = E(\hat{\theta}) - \theta$

If $Bias = 0, \hat{\theta}$ is unbiased for θ

• IMPORTANT: Use θ whatever that is. On HW that's np(1-p). Keep that in mind for work! Wooo

 $MSE(\hat{\theta}) = V(\hat{\theta}) + (Bias(\hat{\theta}))^2$

Recall: $V(x) = E(x^2) - (E(x))^2$

- Note: If you need $E(x^2)$ and have E(x), V(x), use the above!
- Defn:

Let X_1, \ldots, X_n be a sample. The ordered sample is written $X_{(1)}, \ldots, X_{(n)}$

Known as order statistics

- If you estimate you gotta put a haaaaaaaat on it Beyonce, probably
- Ex:

Let X_1, \ldots, X_n be IID, $U(0, \theta)$. Previously we picked estimators for θ to be either:

- $-\max_{(x_1,\ldots,x_n)} = X_n$
- $-2\bar{x}$
- 1. Find Bias, MSE for $X_{(n)}$.

Find CDF, PDF of $X_{(n)}$.

 $CDF: P(X_{(n)} \le x) = P(X_1 \le x \cap X_2 \le x \cap \ldots \cap X_n \le x)$

$$\prod_{i=1}^{n} P(X_i \le x)$$

$$= \prod_{i=1}^{n} \frac{x}{\theta}$$

$$=\frac{x^n}{\theta^n}$$

Therefore, $\frac{x^n}{\theta^n}$ is the CDF of $X_{(n)}$. Now for PDF via derivative:

$$fx_{(n)}(x) = \frac{nx^{n-1}}{\theta^n}I_{(0,\theta)}(x)$$

Now we can find the bias!

$$Bias(X_{(n)}) = E(X_{(n)}) - \theta$$

$$E(X_{(n)}) = \int_{0}^{\theta} x \frac{nx^{n-1}}{\theta^{n}} dx$$

$$= \int_{0}^{\theta} \frac{nx^{n}}{\theta^{n}} dx$$

$$= \frac{nx^{n+1}}{(n+1)\theta^{n}} \Big|_{0}^{\theta}$$

$$= \frac{n\theta}{n+1}$$

$$\Rightarrow Bias = \frac{n}{n+1}\theta - \theta = \theta \left(\frac{n}{n+1} - \frac{n+1}{n+1}\right)$$

$$\Rightarrow Bias = -\frac{\theta}{n+1}$$

Does that make sense? Yeah. We expected underestimation \Rightarrow negative bias. That seems about right so yay.

Now for MSE:

$$V(X_{(n)}) = E\left(X_{(n)}^{2}\right) - E(X_{(n)})^{2}$$
$$E(X_{(n)}^{2}) = \int_{0}^{\theta} x^{2} \frac{nx^{n-1}}{\theta^{n}} dx$$

Some calculus later:

$$E(X_{(n)}^2) = \frac{n}{n+2}\theta^2$$

And the rest is algebra So:

$$\begin{split} V(X_{(n)}) &= \frac{n}{n+2}\theta^2 - \left(\frac{n}{n+1}\theta\right)^2 \\ \Rightarrow MSE(X_{(n)}) &= \left(\frac{-\theta}{n+1}\right)^2 + \frac{n}{n+2}\theta^2 - \frac{n^2\theta^2}{(n+1)^2} \end{split}$$

That's bias squared - variance

... Algebra occurs ...

$$=\frac{2\theta^2}{(n+1)(n+2)}$$

2. Example yall: Find MSE for $2\bar{x}$ estimating θ for X_1, \ldots, X_n , IID $U(0,\theta)$ (done by hand)

You get
$$\frac{\theta^2}{3n}$$

So what's better? max or double \bar{x} ? The max actually, because it has n^2 in the denominator. Even though \bar{x} is unbiased.

- So what makes one estimator dood uniformly better than another?
- Defn:

Let
$$T_1, T_2$$
 be estimators for θ . If $\forall_{\theta}, MSE(T_1) \leq MSE(T_2)$, and $\exists_{\theta}, MSE(T_1) \leq MSE(T_2), T_1$ is uniformly better than T_2 .

- if T is uniformly best estimator of θ then $\forall_{\theta} MSE(T) = 0$.
- Ex: Uniform between $\theta, \theta + 1$
- Next time: Uniformly minimum variance unbiased estimators