Exercises Week 13

DSP

- 1. Design two filters of order 2 of the following types, and write their equation:
 - a low-pass filter
 - a band-pass filter with central frequency around the frequency $\omega = \frac{3\pi}{4}$
- 2. Which of the following filters has a linear-phase?

a.
$$H(z) = 7 + 3z^{-1} + z^{-2} + 7z^{-3} + 3z^{-4} + z^{-5}$$

b. $H(z) = \frac{1+2z^{-1}+z^{-2}}{1-2z^{-1}+z^{-2}}$
c. $H(z) = 1 + 2z^{-1} + z^{-2}$

b.
$$H(z) = \frac{1+2z^{-1}+z^{-2}}{1+2z^{-1}+z^{-2}}$$

c.
$$H(z) = 1 + 2z^{-1} + z^{-2}$$

d.
$$H(z) = 1 - 2z^{-1} + z^{-2}$$

e.
$$H(z) = 1 - 2z^{-1} - 2z^{-2} + z^{-3}$$

f.
$$H(z) = 1 + 2z^{-1} + 7z^{-2} - 2z^{-2} - z^{-3}$$

g.
$$H(z) = 1 - z^{-1}$$

h.
$$H(z) = 1 - z^{-2}$$

3. Consider the causal system with the following equation:

$$y[n] - 0.7y[n-1] + 0.2y[n-2] = 2x[n] - x[n-2]$$

- a. Draw the pole-zero diagram and indicate the Region Of Convergence
- b. Find the system function H(z) and characterize the system with respect to:
 - stability
 - length of impulse response
 - implementation (recursive or not)
- c. Find the impulse response
- d. Find the output signal y[n] if the input signal is the unit step
- 4. Draw the implementation structure of one of the filters of exercise 1 in the form:

Direct-Form I / Direct-Form II / Direct-Form I Transposed / Direct-Form II Transposed