Comparing forecast performance on different synthetic pandemics

Sous-titre du Rapport

Grégoire Béchade

Rapport de stage effectué chez Nom de l'Entreprise

Under the direction of Philipp Gerlee

Nom de l'Université Nom de la Faculté Nom du Département

Table des matières

In	atroduction	3
1	The data	4
2	Models	5
	2.1 SIRH model	5
	2.1.1 Computing confidence intervals with delta-method	5
	2.1.2 Titre de la Sous-section 1	6
3	Titre du Chapitre 2	7
	3.1 Titre de la Section 2	7
Co	onclusion	8
Bi	ibliographie	9
Α	Titre de l'Annexe	10

Introduction

1 The data

2 Models

[?]

2.1 SIRH model

The SIRH model is a compartemental model used in epidemiology to model the spread a pandemic. This model splits the population in different compartments which represent the health conditions of the individuals. The evolution of the pandemic is modelled by a system of differential equations.

Let S_t , I_t , R_t and H_t be the number of susceptible, infected, recovered and hospitalized individuals at time t.

The SIRH model is defined by this system of differential equations:

$$\begin{cases} \frac{dS}{dt} &= -\beta \frac{SI}{N} \\ \frac{dI}{dt} &= \beta \frac{SI}{N} - (\gamma_i + h)I \\ \frac{dR}{dt} &= \gamma_i I + \gamma_h H \\ \frac{dH}{dt} &= hI - \gamma_h H \end{cases}$$
(2.1)

where β is the transmission rate, γ_i is the recovery rate, γ_h is the hospitalization rate and h is the hospitalization rate. This model is useful for policymakers because of its explanatory power and its simplicity. Moreover, the parameters of the model have a physical interpretation.

2.1.1 Computing confidence intervals with delta-method

For many models, we did not have an explici way to compute the confidence interval of the prediction. We used the delta-method, which enables to output a confidence interval based on the error of estimation of the model associated with the estimation of the noise of the data.

We suppose that the number of hospitalized at day i follows the mode $h_{\theta^*}: Y_i = h_{\theta^*}(i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

FIGURE 2.1 – Scheme of the compartments of the SIRH model

Let $h_{\theta}(i)$ be the prediction of the model h, with parameters θ at time i, we have : $\hat{\theta} = argmin_{\theta} \sum_{i=1}^{n} (Y_i - h_{\theta}(i))^2$ be the least-squares estimator of θ^*

if we note :
$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$

and
$$h_{\theta} = \begin{pmatrix} h_{\theta}(1) \\ h_{\theta}(2) \\ \vdots \\ h_{\theta}(n) \end{pmatrix}$$

we have:

$$\hat{\theta} = argmin_{\theta}||Y - h_{\theta}||^2$$

We linearize around $\theta^* : h_{\theta}(i) \simeq h_{\theta^*}(i) + (\theta - \theta^*)^T \nabla_{\theta} h_{\theta^*}(i)$

We have:

$$\hat{\theta} = argmin_{\theta}||Y - h_{\theta^*} + (\theta - \theta^*)^T \nabla_{\theta} h_{\theta^*}||^2$$

2.1.2 Titre de la Sous-section 1

Contenu de votre rapport...

3 Titre du Chapitre 2

3.1 Titre de la Section 2

Contenu de votre rapport...

FIGURE 3.1 – Description de l'image

Conclusion

Conclusion de votre rapport...

Bibliographie

A Titre de l'Annexe

Contenu de l'annexe...