Technion Institute of technology Israel Amit Levi

Morphology

Erosion(count), Dilation(edge), Opening(insulate), Closing(closed), Thin (skeleton), Thickening (convex) Opening(I) = Dilation(Erosion(I))

> Closing(I) = Erosion(Dilation(I)) Thinning(I, SEs) = I - Hit&Miss(I, SEs)

Thickening(I, SEs) = I + Hit&Miss(I, SEs)

Texture

<u>Co-occurrence matrix</u>: $C_d(i,j)$ is number of p s.t. I(p) = i and I(p+d) = j.

Alg. Histogram of Textons:

- 1. L: Characterize neigherhood by vector.
- 2. L: Run K-means clustering. Every cluster is a textone.
- 3. T: Characterize neigherhood by vector.
- 4. T: Assign to the nearest cluster.
- 5. T: Calculate hist, of textons.

Efros & Leung for synthesis:

- 1. Search the input image for all similar neighborhoods.
- 2. pick one match at random.

Segmentation

<u>Alg. 1 – Thresholding</u>: maybe local thresholding.

Alg. 2 – K-means: to find local min m_k :

- 1. Randomly initialize $m_k = \{x_{i_k}\}$.
- 2. Assign $k(x_i) = \arg\min_{k} ||x_i m_k||$.
- 3. Assign $m_k = \frac{\sum_{x_i \in S_k} x_i}{|S_k|}$ (cluster center).
- 4. Repeat 2+3 until convergence.
- 5. $m_k = \arg\min_{x} \sum_{x_i \in S_k} ||x_i x||^2$

Alg. 3 - EM:

$$P(x) = \sum_{k} \alpha_{k} P_{k}(x) = \sum_{k} \alpha_{k} \frac{1}{(2\pi)^{d/2} |\sum_{k}|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_{k})^{T} \sum_{k} (x - \mu_{k}) \right]$$

E:
$$\gamma_k(X_i) = \frac{\alpha_k P_k(X_i)}{\sum_j \alpha_j P_j(X_i)}$$
, M: $\mu_k = \frac{\sum_i \gamma_k(X_i) X_i}{\sum_i \gamma_k(X_i)}$

<u>Alg. 4 – </u>

- 1. Specify a weighted graph.
- 2. Initialize clusters as single elements
- 3. Merge closest clusters until #clus. = K if clus. dist = d(U,V) this Kruskal for MST.

Perspective projection

$$\begin{pmatrix} x_{im} \\ y_{im} \\ 1 \end{pmatrix} \sim \begin{pmatrix} -f/s_x & 0 & o_x \\ 0 & -f/s_y & o_y \\ 0 & 0 & 1 \end{pmatrix} (I_3|0_{3\times 1})_{3\times 4} \cdot \begin{pmatrix} R^T & -R^TO \\ 0 & 1 \end{pmatrix}_{4\times 4} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Hough Transformation

- 1. For each point p, define $H(\theta)$ as distance from the line which pass in p in angle θ .
- 2. Draw the respective curves.
- 3. Seek for intersection of curves.

Edge Detection

Matched filter: $N \sim \mathcal{N}(0, \sigma^2)$, $X = [S_e \mid S_b] + N$. We max $C^T(S_e - S_b)$ with $C = \frac{S_e - S_b}{\|S_e - S_b\|}$ and we look linear map $R = C^T X$.

Gradient approach: big gradient = edge. We take 3x3 neighborhood $[I_1, I_2, I_3; I_4, I_5, I_6; I_7, I_8, I_9]$. and $H\theta \approx I(:)$ when $\theta^* = (W^TW)^{-1}WI(:)$. Smoothing: By convolution with gaussian G and then we use gradient (for find edges). 1^{st} der. is max when 2^{nd} der. is zero, i.e. Laplacian is zero. Discrete Laplacian: $[0\ 1\ 0\ ;\ 1\ -4\ 1\ ;\ 0\ 1\ 0\]$

Canny Edge Detector:

- 1. Apply Gaussian smoothing
- 2. Calculate Gradient magnitude\direction
- 3. Init: a point s.t. GradMag > Th_high
- 4. Thin: check neighbors in Grad direction and choose maximum
- 5. Next: pixel neighbor in tangent direct.
- 6. If (GradMag > Th_low) continue to (4), Else continue to (3)

Pyramids

Smoothing:
$$L(p_i, t+1) = \frac{1}{|N_i|} \sum_{p_j \in N_i} L(p_j, t)$$

Gaussian Pyramid:
$$g_{\sigma} = \frac{1}{2\pi\sigma} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$DoG = g_{k\sigma}(p) - g_{\sigma}(p) \approx \sigma^{2} \nabla g_{\sigma}$$

$$I^{(n+1)} = (g * I^{(n)}) \downarrow, LoG^{(n)} \approx I^{(n)} - g * I^{(n)}$$

Pyramid Blending: Calculation in point p: $L_{c}^{(k)} = G_{M}^{(k)} \cdot L_{A}^{(k)} + (1 - G_{M}^{(k)}) \cdot L_{B}^{(k)}$

Learning

<u>Ideal Risk</u>: $R(\phi) = \mathbb{E}\{L(\phi(x), y)\}$ Emp. Risk:

$$R_{emp}(\phi) = \frac{1}{m} \sum_{i=1}^{m} L_i(\phi(x_i), y_i)$$

Softmax Loss:

$$\Pr[Y = k_0 | X = x] = \frac{e^{s_{k_0}}}{\sum_{k=1}^{m} e^{s_k}}$$

Cross-Entropy Loss:

$$L_i = -\log \Pr[Y = y_i | X = x_i]$$

<u>General Loss + Regularization:</u>

$$L(W) = \frac{1}{m} \sum_{i=1}^{m} L_i(\phi(x_i), y_i) + \lambda R(W)$$

Gradient Descent: to find local min of f: $x^{(k+1)} = x^{(k)} - t_{k+1} \nabla f(x^{(k)})$

Gradient of Loss function (or SGD) is to use GD to find local min of L(W).

Activations:

GANs

 $V(D,G) = \mathbb{E}_{x \sim p(x)}[\log D(x)] + \left[\mathbb{E}_{z \sim q(z)}[\log(1 - D(G(z))]\right]$

Photometry

<u>Irradiance</u>: I per area $[Wm^{-2}]$ <u>Radiance</u>: I per area, s. angle $[Wm^{-2}sr^{-1}]$

Solid Angle:

BRDF(
$$\theta_i, \varphi_i, \theta_e, \varphi_e$$
) = $\frac{\delta L(\theta_e, \varphi_e)}{\delta E(\theta_i, \varphi_i)}$

<u>Lambert</u>: $BRDF = \frac{\rho_0}{\pi}$, $E(\theta_i, \varphi_i) = E_0 \cos \theta_i$

 $\frac{\frac{\partial}{\partial \underline{x}} (\underline{a}^T \underline{x}) = \frac{\partial}{\partial \underline{x}} (\underline{x}^T \underline{a}) = \underline{a}}{\frac{\partial}{\partial \underline{x}} (\underline{x}^T \underline{A}\underline{x}) = (\underline{A}^T + \underline{A})\underline{x}} = \frac{\partial \underline{z}}{\partial \underline{x}} = \frac{\partial \underline{y}}{\partial x} \frac{\partial \underline{z}}{\partial y}$

CNN

Convolution (Image, filter sizes, num filters, padding, stride)

Pooling (in [m,n,k]) -> out [m/2,n/2,k] <u>LeNet5 Architecture</u>:

Technion Institute of technology Israel Amit Levi

Alg. 1 – Intensity subspaces

Alg. NN: for every subimage find: SSD(model, image) and choose which has the smallest. Alg. PCA: we find (\bar{x} is mean):

$$var(v) = \sum_{x} \|(x - \bar{x})^{T} v\|^{2}$$
$$= v^{T} cov(x) v$$

and $cov(x) = \sum_{x} (x - \bar{x})(x - \bar{x})^{T}$. max var(v) means large e. value. min var(v) means small e. value. W - m high e. vec, $y = W^{T}x + \bar{x}$: Alg. low dim: u is e. vector of TT^{T} iff Tu is e. vector of $T^{T}T$.

Alg. with SVD:
$$cov(x) = \frac{1}{n}XX^T$$
 so:
 $[e. value]_{XX^T,i} = \frac{1}{n}[s. value]_{X,i}$

Alg. Fisherfaces: $\max \frac{|W^T s_B w|}{|W^T s_W w|}$ where

 $S_W = \sum_{k=1}^K \sum_{x \in c_k} (x - \mu_k) (x - \mu_k)^T$ $S_B = \sum_{k=1}^K |N_k| (\mu_k - \mu) (\mu_k - \mu)^T$ We need find $S_B W = S_W W D$. We can find e. vectors of $(S_W)^{-1} S_B$.

Alg. 2 – Invariants (for binary)

<u>Alg.</u>: Use some features as area, #holes and moment [m] in general:

$$m_{pq} = \sum_{(x,y)} x^p y^q I_{xy}$$

which invariant to isometrics. <u>invr. Translation</u> – center of mass $\bar{x} = \frac{m_{10}}{m_{00}}, \bar{y} = \frac{m_{01}}{m_{00}}$ and cent. [m]:

$$\mu_{pq} = \sum_{(x,y)} (x - \bar{x})^p (y - \bar{y})^q I_{xy}$$

invr. Rotation – e. values of matrix $[\mu_{20} \mu_{11}; \mu_{11} \mu_{02}]$ as in Harris.

Alg. 7 – deformable part

combinate tree based spatial model, HoG in 2-scales and whole object + Parts. Locate in start model, score is appearance – deformation. Training by SVM.

Alg. 3 – Geometric alignment

Alg. RANSAC: if there are W% inliers:

- 1. Randomly select subset in size n.
- 2. Calculate the model parameters p.
- 3. Assign a score (e.g. #inliers) to p.
- 4. Re-iterate *k* times.
- 5. Choose p with best score.

success of q need $k > \frac{\log(1-q)}{\log(1-W^n)}$

Alg. 4 - Hist. of Gradients (HoG)

In each 8x8 block calculate a histogram of gradient orientations, overlapping blocks, different

Alg. 6 – Viola Jones

Strong classifier as (~200) weak classifiers with adaboost:

$$h(x) = \begin{cases} 1 & \frac{\sum a_k h_k(x)}{\sum a_k} > \frac{1}{2} \\ 0 & else \end{cases}$$

Optical Flow

Assumptions: const brightness, motion is small, const flow field.

Alg. Lucas-Kanade: Solve by LS:

$$\overline{\begin{bmatrix} I_{x_1} & I_{y_1} \\ I_{x_2} & I_{y_2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}} = - \begin{bmatrix} I_{t_1} \\ I_{t_2} \\ \vdots \end{bmatrix}$$

<u>Improvements</u>. Asmp1 – use other property, in homogenic regions (it's not work) the flow is smooth, combine segmentation, Asmp2 – multiscale.

Normal (sensitive illumination):

$$U_{ac} = \left(\frac{1}{N(p)} \sum_{p' \in N(p)} U(p')\right) \cdot \overline{1}$$

$$\widehat{U}(p) = \frac{U(p) - U_{ac}}{\|U(p) - U_{ac}\|}$$

$$NCC(U, V) = \sum_{p} \widehat{U}(p) \widehat{V}(p)$$

Gradient. Orientation [0]:

$$\theta_{U}(p) = \angle \nabla U(p):$$

$$O - SSD =$$

$$\sum_{p} (\theta_{U}(p) - \theta_{V}(p) \mod \pi)^{2}$$

$$\chi^{2}(h_{i}, h_{j}) = \frac{1}{2} \sum_{i} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{i}(m)}$$

Alg. 5 - Bag of features

Alg. Basic:

- 1. Extract features extract to windows and represent each one (HoG or PCA).
- 2. Learn visual words (=VWs) K-means.
- 3. Quantize features by VWs.
- 4. Represent image as a hist. of VWs.
- 5. Train a classifier e.g. SVM.

Alg. with Spatial Considerations: Training:

- 1. Quantize to words
- 2. For every example:
 - a. divide ROI into spatial pyramid.
 - b. find histogram for every cell.
- 3. Train a learning algorithm.

In test we build representation and classify.

Feature Points

$$SelfDS(x_0, u) = \sum_{x_i \in N(x_0)} w_i (I(x_i) - I(x_i + u))^2$$

$$= u^T A u = \lambda_1 \cos^2 \theta + \lambda_2 \sin^2 \theta$$
where $A = \begin{pmatrix} \sum w_i I_x^2(x_i) & \sum w_i I_x(x_i) I_y(x_i) \\ \sum w_i I_x(x_i) I_y(x_i) & \sum w_i I_y^2(x_i) \end{pmatrix}.$

<u>Harris Alg.</u>: for each point find (*) and then threshold and local max. (*): V1 λ_2 , V2 $\lambda_1\lambda_2 - \alpha(\lambda_1 + \lambda_2)^2$.

$\underline{\mathrm{SSD}(\mathrm{U},\mathrm{V})}: \sum_{p \in neigh} (U(p) - V(p))^2$

Alg. SIFT:

- 1. Find local maxima of DoG
- 2. For every detected point, correct for pose. Find dominant orientation by:
 - a. Find gradients at a neighborhood
 - b. Calculate weighted orientation histogram
 - c. Choose the highest value as orientation
- 3. Calculate the descriptor:
 - a. divide patch into 4x4 = 16 cells
 - b. For each cell, compute weighted 8-bin histogram of g. orientation.
 - c. Put into a 4x4x8 = 128 dim descriptor.
 - d. Make high values uniform and normalize.

Epipolar Geometry

<u>Prop.</u>: $Z = f \frac{T}{x_l - x_r}$ where $x_l - x_r$ is disparity.

Camera Calibration. We have:

$$0 = (M_1 - x_{im}M_3)P_w = (M_2 - y_{im}M_3)P_w$$

$$\begin{bmatrix} X_w & Y_w & Z_w & 1 & 0 & 0 & 0 & -x_{im}X_w & -x_{im}Y_w & -x_{im}Z_w & -x_{im}\\ 0 & 0 & 0 & 0 & X_w & Y_w & Z_w & 1 & -y_{im}X_w & -y_{im}Y_w & -y_{im}Z_w & -y_{im}\\ \end{bmatrix}_{\substack{m_{11}\\ m_{21}\\ m_{21}\\ m_{31}\\ m_{32}\\ m_{33}\\ m_{34}\\ m_{3$$

Every point gives two constraints on M

finding by SVD (e. vector for min e. value).

X' = RX + T so $X' \cdot (T \times RX) = 0$.

Essential Matrix: $E = T_{\times}R$, rank=2, free=5. Epipolar constrain: $p'^{T}Ep = 0$ or $X'^{T}EX = 0$.

Fundamental Matrix: $F = K^{-T}EK^{-1}$, rank=2,

free=7 and we have $\bar{p}'^T F \bar{p} = 0$.

Alg. for finding F: collect 8+ constrains, normalize, solve using SVD, rearrange and find a rank 2 approximation. A constrain is:

$$[u' \ v' \ 1]F[u \ v \ 1]^T = 0$$