Fourier Series of CT signals

Ibrahim Abou Elenein

June 5, 2021

Fourier series states that, any periodic signal can be expressed as summation of sines and cosines with one fundamental frequency and infinite number

1 Fourier Series Representation of CT Periodic Signals

The exponential form of Fourier series (complex representation of continuous time periodic signals)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t}$$

Whrere:

 a_k Fourier coefficients.

x(t) is periodic with Period T where $\omega_o = \frac{2\pi}{T}$

$$x(t) = \dots + a_{-2}e^{-j2\omega_o t} + a_{-1}e^{-j\omega_o t} + a_o + a_1e^{+j\omega_o t} + \dots$$

1.1 Notes

- The term a_o is constant (Dc coefficient)
- The terms a_1 & a_{-1} both have the fundemental frequency as ω_o and called **first harmonic component**
- The terms a_2 & a_0 both have the fundemental frequency as ω_o and called **seconed harmonic component**
- Generalally, The components for k = -N & N are called **Nth order** Component.

2 Obtaining the Fourier Series Coefficients a_k

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t}$$

$$x(t)e^{-jn\omega_o t} = \sum_{k=-\infty}^{\infty} a_k e^{j(k-n)\omega_o t}$$
 integrating over the period

$$\int_0^T x(t)e^{-jn\omega_o t}dt = \int_0^T \sum_{k=-\infty}^\infty a_k e^{j(k-n)\omega_o t}dt \ a_k \text{ are time-independent}$$

$$\int_0^T x(t)e^{-jn\omega_o t}dt = \sum_{k=-\infty}^\infty a_k \int_0^T e^{j(k-n)\omega_o t}dt$$

$$\int_0^T e^{j(k-n)\omega_o t} dt = \begin{cases} T, & k=n \\ 0, & k \neq n \end{cases}$$
 Integration over one period of cos and sin

$$\underbrace{a_n = \frac{1}{T} \int_0^T x(t) e^{-jn\omega_o t} dt}_{\text{Fourier Series Coefficients}}$$

3 Fourier series of Periodic CT signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t}$$

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jk\omega_o t} dt , \ \omega_o = \frac{2\pi}{T}$$

3.1 Constant Value

This the average of x(t) over one period.

$$a_o = \frac{1}{T} \int_T x(t)dt \Rightarrow$$
 The area under the curve over one period

$$a_o = \frac{\text{Area of one period}}{T}$$

4 Famous Signals

4.1 DC Signal

$$x(t) = A$$

$$x(t) = \dots + a_{-2}e^{-j2\omega_o t} + a_{-1}e^{-j\omega_o t} + a_o + a_1e^{+j\omega_o t} + \dots$$

So by comparing

$$a_o = A \& a_k = 0 \text{ for } k \neq 0$$

4.2 Complex Exponential

$$x(t) = e^{j\omega_o t}$$

$$x(t) = \dots + a_{-2}e^{-j2\omega_o t} + a_{-1}e^{-j\omega_o t} + a_o + a_1e^{+j\omega_o t} + \dots$$

So by comparing

$$\boxed{a_1 = 1 \& a_k = 0 \text{ for } k \neq 1}$$

Note if

$$x(t) = 2e^{-3j\omega_o t} \Rightarrow a_{-3} = 2 \& a_k = 0 \text{ for } k \neq -3$$

4.3 Sinusoidals

4.3.1 Cosine

$$x(t) = \cos(\omega_o t) = \underbrace{\frac{1}{2}e^{j\omega_o t} + \frac{1}{2}e^{-j\omega_o t}}_{\text{Euler's rule}}$$

$$x(t) = \dots + a_{-2}e^{-j2\omega_o t} + a_{-1}e^{-j\omega_o t} + a_o + a_1e^{+j\omega_o t} + \dots$$

So by comparing

$$a_1 = a_{-1} = \frac{1}{2} \& a_k = 0 \text{ for } k \neq 1, -1$$

4.3.2 Sine

$$x(t) = \sin(\omega_o t) = \underbrace{\frac{1}{2j}e^{j\omega_o t} + \frac{-1}{2j}e^{-j\omega_o t}}_{\text{Euler's rule}}$$

$$x(t) = \dots + a_{-2}e^{-j2\omega_o t} + a_{-1}e^{-j\omega_o t} + a_o + a_1e^{+j\omega_o t} + \dots$$

So by comparing

$$a_1 = \frac{1}{2j}, a_{-1} = \frac{-1}{2j}$$
 & $a_k = 0$ for $k \neq 1, -1$

4.3.3 Example

Find Fourier Series representation of the following Signal

$$x(t) = 1 + \sin(\omega_o t) + 2\cos(\omega_o t) + \cos(2\omega_o t + \frac{\pi}{4})$$
$$x(t) = 1 + \frac{1}{2j} \left[e^{j\omega_o t} - e^{-j\omega_o t} \right] + \left[e^{j\omega_o t} + e^{-j\omega_o t} \right] + \frac{1}{2} \left[e^{j(2\omega_o t + \frac{\pi}{4})} + e^{-j((2\omega_o t + \frac{\pi}{4}))} \right] = 0$$

Collecting like terms

$$x(t) = 1 + (1 + \frac{1}{2j})e^{j\omega_o t} + (1 - \frac{1}{2j})e^{-j\omega_o t} + (\frac{1}{2}e^{j\frac{\pi}{4}})e^{j2\omega_o t} + (\frac{1}{2}e^{-j\frac{\pi}{4}})e^{-j2\omega_o t}$$

$$x(t) = \underbrace{1}_{a_0} + \underbrace{(1 + \frac{1}{2j})}_{a_0} e^{j\omega_o t} + \underbrace{(1 - \frac{1}{2j})}_{a_{-1}} e^{-j\omega_o t} + \underbrace{(\frac{1}{2}e^{j\frac{\pi}{4}})}_{a_{-2}} e^{j2\omega_o t} + \underbrace{(\frac{1}{2}e^{-j\frac{\pi}{4}})}_{a_{-2}} e^{-j2\omega_o t}$$

$$a_0 = 1, \ a_1 = (1 + \frac{1}{2j}), \ a_{-1} = (1 - \frac{1}{2j}), \ a_2 = \frac{1}{2}e^{j\frac{\pi}{4}}, \ a_2 = \frac{1}{2}e^{-j\frac{\pi}{4}}, \ a_k = 0 \text{ for } |k| > 2$$

4.4 Periodic Impulse Train

Unit Impulse $(\delta(t))$ repating itself every period T

$$a_k = \frac{1}{T}$$

Note The periodic impulse train must be centered at 0 and has amplitude = 1 Otherwise, it will be a shifted and scaled periodic impulse train.

4.5 Periodic Rectangle Wave

The poof is letf to the reader.

$$a_o = \frac{\text{Area of one period}}{T} = \frac{2T_1}{T}.$$

$$a_k = \begin{cases} \frac{2T_1}{T} & , k = 0\\ \frac{\sin(k\omega_o t T_1)}{k\pi} & , k \neq 0 \end{cases}$$

Note The periodic rectangle wave must be centered at 0 and has amplitude = 1 Otherwise, it will be a shifted and scaled periodic rectangle wave.

5 Convergence of The Fourier Series

The conditions for a periodic signal x(t) to have a Fourier Series as follows:

5.1 Condition one

Over any period x(t) must be absolutely integrable

$$\int_{T} |x(t)|dt < \infty$$

and this guarantees that

$$|a_k| \le \frac{1}{T} \int_T |x(t)e^{-j\omega_o t}| dt = \frac{1}{T} \int_T |x(t)| dt \Rightarrow |a_k| < \infty$$

5.2 Condition two

In any finite interval of time, x(t) is of bounded variation; that is, there are no more than a finite number of maxima and minima during any single period of the signal.

5.3 Condition three

In any finite interval of time, there are only a finite number of discontinuous