Analízis 4

Gyakorlati feladatok

Tartalomjegyzék

1.		korlat 3		
		Emlékeztető		
	1.2.	Feladatok		
		1.2.1. Feladat		
		1.2.2. Feladat		
2.	Gyakorlat			
	•	Emlékeztető		
	2.2.	Feladatok		
		2.2.1. Feladat		
		2.2.2. Feladat		
3	Gva	ıkorlat 12		
٠.		Emlékeztető		
	0.1.	Elinekezioto		
4.		korlat 13		
		Emlékeztető		
	4.2.	Feladatok		
		4.2.1. Feladat		
	4.3.	Feladat		
5.	Gyakorlat 17			
		Emlékeztető		
	5.2.	Feladatok		
	5.3.	Feladat		
6	Cva	ıkorlat 20		
υ.	•	Emlékeztető		
	0.1.	6.1.1. Közönséges differenciálegyenletek		
		6.1.2. Szeparábilis differenciálegyenlet		
		6.1.3. Egzakt differenciálegyenlet		
		6.1.4. Lineáris differenciálegyenlet		
7.	Gyakorlat 29			
	7.1.	Emlékeztető		

7.1.	1. Lineáris differenciálegyenlet-rendszer 29
7.1.	2. Állandó együtthatós lineáris differenciálegyenlet-rendszer,
	diagonalizálható mátrix
7.1.	3. Állandó együtthatós lineáris differenciálegyenlet-rendszer,
	általános eset
8. Gyakor	at 37
8.1. Em	lékeztető
8.1.	1. Weierstrass-kritérium
8.1.	2. Folytonossági tétel
8.1.	3. Integrálhatósági tétel

1.1. Emlékeztető

Definíció. Legyen $1 \leq s \in \mathbb{N}$, $A \subset \mathbb{R}^s$. Azt mondjuk, hogy az A halmaz nullmértékű, ha tetszőleges $\varepsilon > 0$ számhoz megadható $I_k \subset \mathbb{R}^s$ $(k \in \mathbb{N})$ intervallumoknak egy olyan sorozata, hogy

$$A \subset \bigcup_{k=0}^{\infty} I_k \text{ és } \sum_{k=0}^{\infty} |I_k| < \varepsilon.$$

Tekintsük pl. az $I \subset \mathbf{R}^n$ (1 $\leq n \in \mathbf{N}$) intervallum esetén az $f \in R(I)$ függvényt, és legyen

$$\operatorname{graf} f := \{(x, f(x)) \in \mathbf{R}^{n+1} : x \in I\}.$$

Ekkor a graf $f\subset {\bf R}^{n+1}$ halmaz nullmértékű.

Ha az $f \in \mathbf{R}^n \to \mathbf{R}$ függvény $\mathcal{D}_f \subset \mathbf{R}^n$ értelmezési tartománya korlátos, akkor van olyan $I \subset \mathbf{R}^n$ intervallum, amellyel $\mathcal{D}_f \subset I$. Legyen ekkor

$$F_I(x) := \begin{cases} f(x) & (x \in \mathcal{D}_f) \\ 0 & (x \in I \setminus \mathcal{D}_f). \end{cases}$$

Nem nehéz meggondolni, hogy ha $F_I \in R(I)$, akkor $F_J \in R(J)$ minden olyan $J \subset \mathbf{R}^n$ intervallumra, amelyre $\mathcal{D}_f \subset J$ és

$$\int_{I} F_{I} = \int_{I} F_{J}.$$

Ez ad értelmet a következő definíciónak:

Definíció. A fenti f függvény Riemann-integrálható, ha egy alkalmas $I \subset \mathbf{R}^n$ intervallummal $\mathcal{D}_f \subset I$ és $F_I \in R(I)$. Az utóbbi esetben

$$\int_{\mathbf{R}^n} f := \int_{\mathcal{D}_f} f := \int_I F_I.$$

Az előző definició olyan függvényekre is kiterjeszthető, amik értelmezési tartománya nem korlátos, viszont a

$$\operatorname{supp} f := \overline{\{x \in \mathcal{D}_f : f(x) \neq 0\}}$$

tartója igen.

Definíció. Legyen az $A \subset \mathbf{R}^n$ halmaz korlátos,

$$\chi_A(x) := \begin{cases} 1 & (x \in A) \\ 0 & (x \in \mathbf{R}^n \setminus A) \end{cases}$$

az A karakterisztikus függvénye. Azt mondjuk, hogy az A halmaz Jordan-mérhető, ha a χ_A függvény integrálható, amikor is a

$$\mu(A) := \int_{\mathbf{R}^n} \chi_A$$

nemnegatív szám az A halmaz Jordan-mértéke.

Tétel. Tekintsük a nyílt halmazon értelmezett és folytonosan differenciálható

$$g \in \mathbf{R}^n \to \mathbf{R}^n$$

függvényt. Tegyük fel, hogy az $I\subset\mathcal{D}_g$ halmaz kompakt intervallum, továbbá az I belsejére való $g_{|_{\mathrm{int}\,I}}$ leszűkítés injektív függvény. Ekkor az

$$f:g(I)\to\mathbf{R}$$

korlátos függvény akkor és csak akkor integrálható, ha az

$$I \ni x \mapsto f(g(x)) \cdot |\det g'(x)|$$

függvény is integrálható. Az utóbbi esetben

$$\int_{I} f(g(x)) \cdot |\det g'(x)| \, dx = \int_{g[I]} f.$$

Speciális esetek.

1. Síkbeli polárkoordináta-transzformáció. Legyen $g: \mathbf{R}^2 \to \mathbf{R}^2$ leképezés, amire

$$g(r, \varphi) := \begin{pmatrix} r \cdot \cos \varphi, \\ r \cdot \sin \varphi \end{pmatrix} \quad ((r, \varphi) \in \mathbf{R}^2).$$

Ekkor $g \in C^1$, és

$$\det g'(r, \varphi) = r \quad ((r, \varphi) \in \mathbf{R}^2).$$

2. Módosított síkbeli polárkoordináta-transzformáció. Legyen $a, b \in \mathbb{R}, g: \mathbb{R}^2 \to \mathbb{R}^2$ leképezés, amire

$$g(r, \varphi) := \begin{pmatrix} ar \cdot \cos \varphi, \\ br \cdot \sin \varphi \end{pmatrix} \quad ((r, \varphi) \in \mathbf{R}^2).$$

Ekkor $g \in C^1$, és

$$\det g'(r, \varphi) = abr \quad ((r, \varphi) \in \mathbf{R}^2).$$

3. Térbeli polárkoordináta-transzformáció. Legyen $g: \mathbf{R}^3 \to \mathbf{R}^3$ leképezés, amire

$$g(r, \varphi, \psi) := \begin{pmatrix} r \cdot \cos \varphi \sin \psi \\ r \cdot \sin \varphi \sin \psi \\ r \cdot \cos \psi \end{pmatrix} \quad ((r, \varphi, \psi) \in \mathbf{R}^3).$$

Ekkor $g \in C^1$, és

$$\det g'(r, \varphi, \psi) = -r^2 \cdot \sin \psi \quad ((r, \varphi, \psi) \in \mathbf{R}^3).$$

4. Módosított térbeli polárkoordináta-transzformáció (elliptikus koordináták). Legyen $a,b,c\in\mathbf{R},\,g:\mathbf{R}^3\to\mathbf{R}^3$ leképezés, amire

$$g(r, \varphi, \psi) := \begin{pmatrix} ar \cdot \cos \varphi \sin \psi \\ br \cdot \sin \varphi \sin \psi \\ cr \cdot \cos \psi \end{pmatrix} \quad ((r, \varphi, \psi) \in \mathbf{R}^3).$$

Ekkor $g \in C^1$, és

$$\det g'(r, \varphi, \psi) = -abcr^2 \cdot \sin \psi \quad ((r, \varphi, \psi) \in \mathbf{R}^3).$$

5. Hengerkoordináta-transzformáció. Legyen $g: \mathbf{R}^3 \to \mathbf{R}^3$ leképezés, amire

$$g(r, \varphi, z) := \begin{pmatrix} r \cdot \cos \varphi \\ r \cdot \sin \varphi \\ z \end{pmatrix} \quad ((r, \varphi, z) \in \mathbf{R}^3).$$

Ekkor $g \in C^1$, és

$$\det g'(r, \varphi, z) = r \quad ((r, \varphi, z) \in \mathbf{R}^3).$$

6. Módosított hengerkoordináta-transzformáció. Legyen $a,\,b,\,c\in{\bf R},\,g:{\bf R}^3\to{\bf R}^3$ leképezés, amire

$$g(r, \varphi, z) := \begin{pmatrix} ar \cdot \cos \varphi \\ br \cdot \sin \varphi \\ cz \end{pmatrix} \quad ((r, \varphi, z) \in \mathbf{R}^3).$$

Ekkor $g \in C^1$, és

$$\det g'(r, \varphi, z) = abcr \quad ((r, \varphi, z) \in \mathbf{R}^3).$$

Tétel. Tegyük fel, hogy valamely $\emptyset \neq \Omega \subset \mathbf{R}^3$ Jordan-mérhető ponthalmazzal jellemzett test sűrűsége a Riemann-integrálható $\rho: \Omega \to [0, +\infty)$ függvénnyel írható le. Ekkor Ω -nak valamely $0 \neq e \in \mathbf{R}^3$ irányvektorú, ill. $a \in \mathbf{R}^3$ pontra illeszkedő tengelyére vonatkozó tehetetlenségi nyomatéka a

$$\mathbf{\Theta}_t = \int_{\Omega} \ell^2(r) \rho(r) \, dr$$

valós szám, ahol $\ell(r)$ jelöli az $r \in \Omega$ pontnak a t tengelytől mért távolságát:

$$\ell(r) := \inf \{ ||r - (a + \tau e)|| \in \mathbf{R} : \tau \in \mathbf{R} \}.$$

Világos, hogy ha a=0 és $e\in\{e_x,\,e_y,\,e_z\}$, akkor Ω -nak a koordináta-tengelyekre vonatkoztatott tehetetlenségi nyomatéka:

$$\Theta_{t_x} = \int_{\Omega} (y^2 + z^2) \rho(x, y, z) dx dy dz$$

$$\Theta_{t_y} = \int_{\Omega} (x^2 + z^2) \rho(x, y, z) \, dx \, dy \, dz$$

$$\Theta_{t_z} = \int_{\Omega} (x^2 + y^2) \rho(x, y, z) \, dx \, dy \, dz$$

Definíció. Tegyük fel, hogy valamely $\emptyset \neq \Omega \subset \mathbf{R}^3$ Jordan-mérhető ponthalmazzal jellemzett test (tömeg)sűrűsége a Riemann-integrálható $\rho: \Omega \to [0, +\infty)$ függvénnyel írható le. (Ha ρ állandó, akkor a testet homogénnek nevezzük.) Ekkor az

$$m(\Omega) := \int_{\Omega} \rho$$

számot az Ω test tömegének nevezzük. Az Ω tömegközéppontjának koordinátái:

$$\overline{x} := \frac{1}{m(\Omega)} \int_{\Omega} x \cdot \rho(x, y, z) \, dx \, dy \, dz,$$

$$\overline{y} := \frac{1}{m(\Omega)} \int_{\Omega} y \cdot \rho(x, \, y, \, z) \, dx \, dy \, dz,$$

$$\overline{z} := \frac{1}{m(\Omega)} \int_{\Omega} z \cdot \rho(x, y, z) \, dx \, dy \, dz.$$

1.2. Feladatok

1.2.1. Feladat

Számítsuk ki annak a korlátos és zárt térbeli testnek a *térfogatát*, amelyet az alábbi egyenletű felületek fognak közre:

$$z = x^2 + y^2 - 1$$
 és $z = 2 - x^2 - y^2$.

Az egyenletekből kapunk két paraboloidot. Ezek metszetét kell paraméterezni. Válasszuk két részre a ponthalmazt. Nézzük meg az y=0 síkban lévő pontokat:

$$z = x^2 - 1$$
 és $z = 2 - x^2$.

Ez két ellentétes irányba néző parabola, amik metszete

$$x^2 - 1 = 2 - x^2 \iff x_1 := -\sqrt{\frac{3}{2}}, x_2 := \sqrt{\frac{3}{2}}.$$

Azaz az alábbi térbeli pontokban metszi egymást a két paraboloid:

$$p_1 := \left(-\sqrt{\frac{3}{2}}, 0, \frac{1}{2}\right), p_2 := \left(\sqrt{\frac{3}{2}}, 0, \frac{1}{2}\right).$$

Szimmetriai okok miatt, be tudjuk vezetni a következő hengerkoordináta-transzformációt:

$$\Phi(r,\,\varphi,\,z) := \begin{pmatrix} r \cdot \cos \varphi \\ r \cdot \sin \varphi \\ z \end{pmatrix} \quad \big((r,\,\varphi,\,z) \in \mathbf{R}^3 \big).$$

Legyen

$$H_1 := [0, \sqrt{3/2}] \times [0, 2\pi] \times [1/2, 2 - r^2] \subset \mathbf{R}^3,$$

$$H_2 := [0, \sqrt{3/2}] \times [0, 2\pi] \times [r^2 - 1, 1/2] \subset \mathbf{R}^3,$$

Mivel ezek kompakt intervallumok, igaz lesz, hogy

$$\int_{\mathcal{H}} 1 = \int_{H_1} 1 \cdot |r| \, dr \, d\varphi \, dz + \int_{H_2} 1 \cdot |r| \, dr \, d\varphi \, dz,$$

ahol

$$\mathcal{H} := \Phi[H_1] \cup \Phi[H_2].$$

1.2.2. Feladat

Számítsuk ki annak a korlátos és zárt térbeli T testnek a $t\acute{e}rfogat\acute{a}t$, $t\"{o}meg\acute{e}t$ és a z-tengelyre vonatkozó $tehetetlens\acute{e}gi$ $nyomat\acute{e}k\acute{a}t$, amelyet az alábbi egyenlőtlenségek definiálnak:

$$\sqrt{x^2 + y^2} \le z \text{ és } x^2 + y^2 + z^2 \le 1,$$

illetve a kitöltő anyag pontonkénti sűrűsége egyenesen arányos az origótól mért távolsággal.

Tehát a sűrűségfüggvény adott $\alpha > 0$ mellett

$$\rho(x, y, z) := \alpha \cdot \sqrt{x^2 + y^2 + z^2} \quad ((x, y, z) \in \mathbf{R}^3).$$

Alkalmazzuk az alábbi térbeli polárkoordináta-transzformációt:

$$\Phi(r,\,\varphi,\,\psi) := \begin{pmatrix} r \cdot \cos\varphi \sin\psi \\ r \cdot \sin\varphi \sin\psi \\ r \cdot \cos\psi \end{pmatrix} \quad \big((r,\,\varphi,\,\psi) \in \mathbf{R}^3\big).$$

Legyen

$$H := [0, 1] \times [0, 2\pi] \times [0, \pi/4] \subset \mathbf{R}^3,$$

ekkor H kompakt intervallum és

$$\Phi(H) = T.$$

Térfogat:

$$\int_{\mathcal{U}} 1 \cdot |-r^2 \sin \psi| \, dr \, d\varphi \, d\psi,$$

tömeg:

$$\int_{H} \rho(r\cos\varphi\sin\psi, \, r\sin\varphi\sin\psi, \, r\cos\psi) \cdot |-r^{2}\sin\psi| \, dr \, d\varphi \, d\psi,$$

tehetetlenségi nyomaték:

$$\int_{H} (r^2 \cos^2 \varphi + r^2 \sin^2 \psi) \cdot \rho(r \cos \varphi \sin \psi, \, r \sin \varphi \sin \psi, \, r \cos \psi) \cdot |-r^2 \sin \psi| \, dr \, d\varphi \, d\psi.$$

Számoljuk ki a tehetetlenségi nyomatékot. Először írjuk fel tetszőleges $(r, \varphi, \psi) \in H$ esetén az integrandust (α -val történő osztás után)

$$r^{2} \left(\cos^{2}\varphi\sin^{2}\psi + \sin^{2}\varphi\sin^{2}\psi\right) \cdot r \sqrt{\cos^{2}\varphi\sin^{2}\psi + \sin^{2}\varphi\sin^{2}\psi + \cos^{2}\psi} \cdot r^{2}\sin\psi =$$

$$r^{5}\sin^{2}\psi \cdot \sqrt{\cos^{2}\varphi\sin^{2}\psi + \sin^{2}\varphi\sin^{2}\psi + 1 - \sin^{2}\psi} \cdot \sin\psi =$$

$$r^{5}\sin^{3}\psi \cdot \sqrt{\sin^{2}\psi\left(\cos^{2}\varphi + \sin^{2}\varphi - 1\right) + 1} =$$

$$r^{5}\sin^{3}\psi.$$

Tehát

$$\frac{\Theta_{t_x}}{\alpha} = \int_H r^5 \sin^3 \psi \, dr \, d\varphi \, d\psi =$$

$$\int_0^{\pi/4} \int_0^{2\pi} \int_0^1 r^5 \sin^3 \psi \, dr \, d\varphi \, d\psi = \int_0^{\pi/4} \int_0^{2\pi} \left[\frac{r^6}{6} \sin^3 \psi \right]_{r=0}^{r=1} d\varphi \, d\psi = \frac{1}{6} \int_0^{\pi/4} \int_0^{2\pi} \sin^3 \psi \, d\varphi \, d\psi =$$

$$\frac{1}{6} \int_0^{\pi/4} [\varphi \sin^3 \psi]_{\varphi=0}^{\varphi=2\pi} d\psi = \frac{2\pi}{6} \int_0^{\pi/4} \sin^3 \psi \, d\psi$$

2.1. Emlékeztető

Megjegyezzük, hogy ha a

$$\Psi = (\Psi_1, \, \Psi_2, \, \Psi_3) \in \mathbf{R}^2 \to \mathbf{R}^3$$

függvény differenciálható, akkor a

$$\partial_k \Psi := (\partial_k \Psi_1, \, \partial_k \Psi_2, \, \partial_k \Psi_3) \quad (k \in \{1, \, 2\})$$

jelöléssel

$$\Psi' = \begin{bmatrix} \partial_1 \Psi & \partial_2 \Psi \end{bmatrix} = \begin{bmatrix} \partial_1 \Psi_1 & \partial_2 \Psi_1 \\ \partial_1 \Psi_2 & \partial_2 \Psi_2 \\ \partial_1 \Psi_3 & \partial_2 \Psi_3 \end{bmatrix}.$$

Definíció. Valamely $\mathcal{F} \subset \mathbf{R}^3$ halmazt *felületdarabnak* nevezünk, ha alkalmas $\emptyset \neq K \subset \mathbf{R}^2$ kompakt és Jordan-mérhető halmaz, ill.

$$\Psi = (\Psi_1, \, \Psi_2, \, \Psi_3) : K \to \mathbf{R}^3, \, \Psi \in C^1, \, \text{rang}(\Psi') = 2$$

függvény esetén

$$\mathcal{F} = \mathcal{R}_{\Psi} = \{ \Psi(u, v) \in \mathbf{R}^3 : (u, v) \in K \}.$$

A Ψ leképezést az adott \mathcal{F} felületdarab paraméterezésének nevezzük.

1. A fenti definícióban a Ψ leképezés folytonos differenciálhatóságán azt értjük, hogy van olyan $K \subset U \subset \mathbf{R}^2$ nyílt halmaz, ill.

$$\hat{\Psi}: U \to \mathbf{R}^3, \, \hat{\Psi} \in C^1$$

függvény, amelyre $\hat{\Psi}_{|_{K}} = \Psi$.

2. Ha a $\Psi = (\Psi_1, \Psi_2, \Psi_3) : K \to \mathbf{R}^3$ függvényre $\Psi \in C^1$, akkor a rang $(\Psi') = 2$ feltétel azt jelenti, hogy a $\partial_1 \Psi$, $\partial_2 \Psi$ vektorok lineárisan függetlenek, azaz

$$\partial_1 \Psi \times \partial_2 \Psi \neq 0.$$

Ha a $\Psi:K\to\mathbf{R}^3$ leképezés valamely felületdarab paraméterezése, akkor az

$$n_{\Psi}(u, v) := \partial_1 \Psi(u, v) \times \partial_2 \Psi(u, v) \quad ((u, v) \in K)$$

vektor az adott felület $\Psi(u,\,v)$ pontjához tartozó érintősíkjának normálvektora.

Definíció. Tegyük fel, hogy az $\mathcal{F} \subset \mathbf{R}^3$ felületdarab paraméterezése az

$$\Psi = (\Psi_1, \, \Psi_2, \, \Psi_3) : K \to \mathbf{R}^3$$

függvény: $\mathcal{R}_{\Psi} = \mathcal{F}$. Ekkor az \mathcal{F} felület felszínén az

$$\mathcal{A}(\mathcal{F}) := \int_{K} \|n_{\Psi}\|$$

valós számot értjük.

1. Ha $\mathcal{F}_1:=\mathcal{R}_{\Psi_1}$, ill. $\mathcal{F}_2:=\mathcal{R}_{\Psi_2}$ nullmértékű halmazban (pl. élekben) csatlakozó felületdarabok, akkor

$$\mathcal{A}(\mathcal{F}_1 \cup \mathcal{F}_2) = \mathcal{A}(\mathcal{F}_1) + \mathcal{A}(\mathcal{F}_2) = \int_{K_1} \|n_{\Psi_1}\| + \int_{K_2} \|n_{\Psi_2}\|.$$

2.2. Feladatok

2.2.1. Feladat

Legyen $0 < R \in \mathbf{R}$. Számítsuk ki az

$$x^2 + y^2 + z^2 = R^2, z \ge 0$$

félgömbfelületnek az

$$x^2 + y^2 = Rx$$

egyenletű hengerfelület által kimetszett részének (Viviani-féle levél) a felszínét!

A $z \ge 0$ féltérben lévő félgömbfelület paraméterezése:

$$\Psi(u, v) := (u, v, \sqrt{R^2 - u^2 - v^2}) \quad ((u, v) \in \mathbf{R}^2 : u^2 + v^2 \le R^2).$$

Ekkor $\Psi \in C^1,\, \mathrm{rang}(\Psi') = 2,\, \mathrm{tov\'abb\'a}\; (u^2 + v^2 < R$ esetén)

$$\partial_1 \Psi(u, v) = \left(1, 0, -\frac{u}{\sqrt{R^2 - u^2 - v^2}}\right),$$

$$\partial_2 \Psi(u, v) = \left(1, 0, -\frac{v}{\sqrt{R^2 - u^2 - v^2}}\right).$$

$$n_{\Psi}(u, v) = \begin{pmatrix} -\partial_1 g(u, v) \\ -\partial_2 g(u, v) \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{u}{\sqrt{R^2 - u^2 - v^2}} \\ \frac{v}{\sqrt{R^2 - u^2 - v^2}} \\ 1 \end{pmatrix},$$

Azaz

$$||n_{\Psi}(u, v)|| = \sqrt{\frac{u^2}{R^2 - u^2 - v^2} + \frac{v^2}{R^2 - u^2 - v^2} + 1} =$$

$$\frac{R}{\sqrt{R^2 - u^2 - v^2}}.$$

Ha most

$$\Phi(r,\,\varphi) := \begin{pmatrix} r\cos\varphi\\ r\sin\varphi \end{pmatrix} \quad \left(\varphi\in[0,\,\pi/2],\,r\in[0,\,R\cos(\varphi)]\right)$$

Akkor a felszínt így kapjuk meg:

$$2R \cdot \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\pi/2} \int_{0}^{R \cos(\varphi)} \left\| n_{\Psi} (\Phi(r, \varphi)) \right\| \cdot r \, dr \, d\varphi.$$

2.2.2. Feladat

Határozzuk meg az alábbi feltételekkel megadott felület felszínét:

$$z = \sqrt{x^2 + y^2}$$
 és $x^2 + y^2 \le 2ax$ $(a > 0)$.

Legyen

$$f(x, y) := (x, y, \sqrt{x^2 + y^2}) \quad ((x, y) \in \Omega),$$

ahol $\Omega := \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 \le 2ax\}$, f egy Euler-Monge módon megadott paraméterezése a z-tengely irányába felfelé néző körkúp palástjának, leszűkítve annak a hengernek a belsejére, aminek alapját az Ω halmaz adja. Egyből írjuk is át az f függvényt a megfelelő polár-transzformációval

$$\Phi(r,\varphi) := (r\cos(\varphi), r\sin(\varphi)) \quad (\varphi \in [-\pi/2, \pi/2], r \in [0, 2a\cos(\varphi)]).$$

A Φ transzformáció-függvény értelmezési tartományát a Thálész-tétel alkalmazásával könnyedén megkaptuk. Tehát ha $\mathcal{F} \subset \mathbf{R}^3$ a feladatban definiált felület, akkor

$$\Psi(r,\,\varphi) := f \circ \Phi = (r\cos(\varphi),\,r\sin(\varphi),\,r) \quad ((r,\,\varphi) \in \mathcal{D}_{\Phi}).$$

A felület kiszámításához szükségünk lesz a következőkre:

$$\partial_{1}\Psi(r,\varphi) = (\cos(\varphi), \sin(\varphi), 1) \quad ((r,\varphi) \in \mathcal{D}_{\Phi}),$$

$$\partial_{1}\Psi(r,\varphi) = (-r\sin(\varphi), r\cos(\varphi), 0) \quad ((r,\varphi) \in \mathcal{D}_{\Phi}),$$

$$n_{\Psi}(r,\varphi) = \begin{vmatrix} i & j & k \\ \cos(\varphi) & \sin(\varphi) & 1 \\ -r\sin(\varphi) & r\cos(\varphi) & 0 \end{vmatrix} = \begin{pmatrix} r\cos(\varphi) \\ r\sin(\varphi) \\ r \end{pmatrix} \quad ((r,\varphi) \in \mathcal{D}_{\Phi}),$$

$$\|n_{\Psi}(r,\varphi)\| = \sqrt{2r^{2}} = \sqrt{2}r \quad ((r,\varphi) \in \mathcal{D}_{\Phi}).$$

Tehát a keresett felszín

$$\mathcal{A}(\mathcal{F}) = \int_{\mathcal{D}_{\Phi}} \|n_{\Psi}\| = \sqrt{2} \int_{-\pi/2}^{\pi/2} \int_{0}^{2a \cos(\varphi)} r \, dr \, d\varphi.$$

3.1. Emlékeztető

Definíció. Legyen $K \subset \mathbf{R}^2$ kompakt, Jordan-mérhető halmaz,

$$\Psi = (\Psi_1, \, \Psi_2, \, \Psi_3) : K \to \mathbf{R}^3, \, \Psi \in C^1, \, \operatorname{rang}(\Psi') = 2,$$

továbbá tegyük fel, hogy $\Psi_{|_{\mathrm{int}(K)}}$ injektív. Ekkor

1. ha $f: \Psi[K] \to \mathbf{R}, f \in C$, akkor az f függvény Ψ -re vonatkozó elsőfajú felületi integráljának (vagy felszíni integráljának) nevezzük az

$$\int_{\Psi} f := \int_{K} (f \circ \Psi) \cdot \|n_{\Psi}\|$$

valós számot,

2. ha $f: \Psi[K] \to \mathbf{R}^3, \, f \in C$, akkor az f függvény Ψ -re vonatkozó (*másodfajú*) felületi integráljának nevezzük az

$$\int_{\Psi} f := \langle f \circ \Psi, \, n_{\Psi} \rangle$$

valós számot.

4.1. Emlékeztető

Valamilyen kompakt [a, b] intervallum $(a, b \in \mathbf{R}, a < b)$ és $(\emptyset \neq U \subset \mathbf{R}^n)$ $(1 \leq n \in \mathbb{N})$ nyílt halmaz esetén tekintsük az

$$f: U \times [a, b] \to \mathbf{R}$$

függvényt. Ha $x \in U$, akkor legyen $f_x : [a, b] \to \mathbf{R}$ az a függvény, amire

$$f_x(t) := f(x, t) \quad (t \in [a, b]).$$

Tegyük fel, hogy minden $x \in U$ esetén az f_x függvény Riemann-integrálható: $f_x \in R[a,b]$, legyen ekkor

$$F(x) := \int_{a}^{b} f(x, t) dt := \int_{a}^{b} f_{x} \quad (x \in U).$$

Az így definiált $F:U\to {\bf R}$ függvényt az fáltal meghatározott paraméteres integrálnaknevezzük.

Világos, hogy

$$\mathcal{D}_f = U \times [a, b] \subset \mathbf{R}^{n+1}.$$

Vezessük be \mathbf{R}^n -en is és \mathbf{R}^{n+1} -en is a $\|.\| := \|.\|_{\infty}$ normát. Nem fog félreértést okozni, ha $\xi \in \mathbf{R}^n$ és $\eta \in \mathbf{R}^{n+1}$ esetén egyaránt a $\|\xi\|$, $\|\eta\|$ jelölést használjuk. Így pl. nyilványaló, hogy az

$$(x, t) \in U \times [a, b]$$

vektorra

$$||(x, t)|| = \max\{||x||, |t|\}.$$

Továbbá, ha az

$$f: U \times [a, b] \to \mathbf{R}$$

függvény folytonos, akkor tetszőleges $x \in U$ mellett az $f_x : [a, b] \to \mathbf{R}$ függvény is folytonos. Ui., ha $s \in [a, b]$ és $\xi := (x, s)$, akkor $f \in \mathcal{C}\{\xi\}$ miatt bármilyen $\varepsilon > 0$ esetén van olyan $\delta > 0$, amellyel

$$|f(\omega) - f(\xi)| < \varepsilon \quad (\omega \in U \times [a, b], \|\omega - \xi\| < \delta),$$

azaz

$$|f(y, t) - f(x, s)| < \varepsilon \quad ((y, t) \in U \times [a, b], ||(y, t) - (x, s)|| < \delta).$$

Ha itt y := x, akkor

$$||(x, t) - (x, s)|| = ||(0, t - s)|| = |t - s|,$$

ezért

$$|f(x, t) - f(x, s)| = |f_x(t) - f_x(s)| < \varepsilon(t \in [a, b], |t - s| < \delta),$$

más szóval $f_x \in \mathcal{C}\{s\}$. Következésképpen $f_x \in C[a, b]$, így $f_x \in R[a, b]$, létezik tehát a fenti F paraméteres integrál.

Tétel. Tegyük fel, hogy adott az [a, b] $(a, b \in \mathbf{R}, a < b)$ kompakt intervallum, $1 \le n \in \mathbf{N}$, és $\emptyset \ne U \subset \mathbf{R}^n$ nyílt halmaz. Ekkor tetszőleges folytonos

$$f: U \times [a, b] \to \mathbf{R}$$

függvény esetén az

$$F(x) := \int_a^b f(x, t) dt \quad (x \in U)$$

paraméteres integrálra az alábbiak igazak:

- 1. az F függvény folytonos;
- 2. ha valamilyen i = 1, ..., n indexre létezik és folytonos a $\partial_i f$ parciális deriváltfüggvény, akkor létezik a $\partial_i F$ parciális deriváltfüggvény is, és

$$\partial_i F(x) = \int_a^b \partial_i f(x, t) dt \quad (x \in U);$$

3. amennyiben az f folytonosan differenciálható, akkor F is.

4.2. Feladatok

4.2.1. Feladat

Igazoljuk, hogy

$$\int_0^{\pi/2} \frac{\arctan(y \cdot \operatorname{tg}(x))}{\operatorname{tg}(x)} \, dx = \frac{\pi}{2} \ln(y+1) \quad (y \ge 0).$$

Legyen

$$f(y, x) := \begin{cases} y & x = 0, y \in [0, +\infty) \\ 0 & x = \pi/2, y \in [0, +\infty) \\ \frac{\arctan(y \cdot \operatorname{tg}(x))}{\operatorname{tg}(x)} & ((y, x) \in [0, +\infty) \times (0, \pi/2)). \end{cases}$$

Ekkor $f \in C$, ezért a paraméteres integrál is folytonos. Mivel

$$\partial_1 f(y, x) := \begin{cases} 0 & x = \pi/2, y \in [0, +\infty) \\ \frac{1}{1 + y^2 \operatorname{tg}^2(x)} & ((y, x) \in [0, +\infty) \times [0, \pi/2)) \end{cases}$$

 $\partial_1 f \in C$, tehát a paraméteres integrál deriválható.

4.3. Feladat

Indokoljuk meg, hogy tetszőleges $0<\alpha\in\mathbf{R}$ esetén

$$F(\alpha) := \int_{0}^{1} \frac{\arctan(\alpha \sqrt{x})}{\sqrt{x}} dx \in \mathbf{R},$$

majd mutassuk meg, hogy fennáll az

$$F(\alpha) = 2\operatorname{arctg}(\alpha) - \frac{\ln(1+\alpha^2)}{\alpha} \quad (0 < \alpha \in \mathbf{R})$$

egyenlőség!

Legyen

$$f(\alpha, x) := \begin{cases} \alpha & \alpha \in (0, +\infty), x = 0; \\ \frac{\arctan(\alpha\sqrt{x})}{\sqrt{x}} & \alpha \in (0, +\infty), x \in (0, 1]; \end{cases}$$

akkor $f \in C$, hiszen (Bernoulli-L'Hospital-szabály felhasználásával)

$$\lim_{x \to 0+0} \frac{\arctan(\alpha \sqrt{x})}{\sqrt{x}} = \lim_{x \to 0+0} \frac{\frac{1}{1+\alpha^2 x} \cdot \frac{1}{2\sqrt{x}} \cdot \alpha}{\frac{1}{2\sqrt{x}}} = \alpha.$$

Tehát $F \in C$ is teljesül. Mivel

$$\partial_1 f(\alpha, x) = \frac{1}{1 + \alpha^2 x} \quad ((\alpha, x) \in (0, +\infty) \times [0, 1]),$$

és $\partial_1 f \in C$, ezért $F \in D$.

$$F'(\alpha) = \int_0^1 \partial_\alpha \left(\frac{\arctan(\alpha\sqrt{x})}{\sqrt{x}} dx \right) = \int_0^1 \frac{1}{1 + \alpha^2 x} dx = \left[\frac{\ln(1 + \alpha^2 x)}{\alpha^2} \right]_0^1 = \frac{\ln(1 + \alpha^2)}{\alpha^2}.$$

Tehát

$$F'(\alpha) = \frac{\ln(1+\alpha^2)}{\alpha^2}.$$

Számoljuk kiF' határozatlan integrálját:

$$\int F' = \int \frac{\ln(1+\alpha^2)}{\alpha^2} d\alpha = -\frac{\ln(1+\alpha^2)}{\alpha} - \int \left(-\frac{1}{\alpha}\right) \cdot \frac{2\alpha}{1+\alpha^2} d\alpha =$$

$$2\operatorname{arctg}(\alpha) - \frac{\ln(1+\alpha^2)}{\alpha} + c \quad (c \in \mathbf{R}).$$

Azaz, mivel

$$F \in \int F'$$
,

ezért létezik egy $c \in \mathbf{R}$ konstans, amivel

$$F(\alpha) = 2\arctan(\alpha) - \frac{\ln(1 + \alpha^2)}{\alpha} + c.$$

Számoljuk kiF(1)-et:

$$F(1) = \int_{0}^{1} \frac{\arctan(\sqrt{x})}{\sqrt{x}} dx = \frac{\pi}{2} - \ln(2).$$

Ebből

$$F(1) = 2\operatorname{arctg}(1) - \ln(2) = \frac{\pi}{2} - \ln(2),$$

ahonnan c=0, tehát

$$F(\alpha) = 2\text{arctg}(\alpha) - \frac{\ln(1 + \alpha^2)}{\alpha}$$

következik.

5.1. Emlékeztető

Legyenek $n,\,m \in \mathbf{N}$ természetes számok, ahol $2 \leq n$ és $1 \leq m < n.$ Ha

$$\xi = (\xi_1, \ldots, \xi_n) \in \mathbf{R}^n,$$

akkor legyen

$$x := (\xi_1, \ldots, \xi_{n-m}) \in \mathbf{R}^{n-m}, y := (\xi_{n-m+1}, \ldots, \xi_n) \in \mathbf{R}^m,$$

és ezt következésképpen fogjuk jelölni:

$$\xi = (x, y).$$

Röviden:

$$\mathbf{R}^n \equiv \mathbf{R}^{n-m} \times \mathbf{R}^m.$$

Ha tehát

$$f = (f_1, \ldots, f_m) \in \mathbf{R}^n \to \mathbf{R}^m,$$

azaz

$$f \in \mathbf{R}^{n-m} \times \mathbf{R}^m \to \mathbf{R}^m$$
,

akkor f-et olyan kétváltozós vetkorfüggvényként tekintjük, ahol az f(x, y) helyettesítési értékekben az argumentum első változójára $x \in \mathbf{R}^{n-m}$, a második változójára pedig $y \in \mathbf{R}^m$ teljesül.

Tegyük fel, hogy ebben az értelmemben valamilyen $(a, b) \in \text{int } \mathcal{D}_f$ zérushelye az f-nek:

$$f(a, b) = 0.$$

Tételezzük fel továbbá, hogy van az a-nak olyan $K(a) \subset \mathbf{R}^{n-m}$ környezete, a b-nek pedig olyan $K(b) \subset \mathbf{R}^m$ környezete, hogy tetszőleges $x \in K(a)$ esetén egyértelműen létezik olyan $y \in K(b)$, amellyel

$$f(x, y) = 0.$$

Definiáljuk ekkor a $\varphi(x) := y$ hozzárendeléssel a

$$\varphi: K(a) \to K(b)$$

függvényt, amikor is

$$f(x, \varphi(x)) = 0 \quad (x \in K(a)).$$

Az előbbi φ függvényt az f által (az (a, b) körül) meghatározott implicitfüggvénynek nevezzük. Nyilván $\varphi(a) = b$.

Tétel (implicitfüggvény-tétel). Adott $n, m \in \mathbb{N}, 2 \leq n$, valamint $1 \leq m < n$ mellett az

$$f \in \mathbf{R}^{n-m} \times \mathbf{R}^m \to \mathbf{R}^m$$

függvényről tételezzük fel az alábbiakat: $f \in C^1$ és az $(a, b) \in \operatorname{int} \mathcal{D}_f$ helyen

$$f(a, b) = 0$$
, $\det \partial_2 f(a, b) \neq 0$.

Ekkor alkalmas $K(a),\,K(b)$ környezetekkel létezik az f által az $(a,\,b)$ körül meghatározott

$$\varphi: K(a) \to K(b)$$

implicitfüggvény, ami folytonosan differenciálható, és

$$\varphi'(x) = -\partial_2 f(x, \varphi(x))^{-1} \cdot \partial_1 f(x, \varphi(x)) \quad (x \in K(a)).$$

5.2. Feladatok

5.3. Feladat

Bizonyítsuk be, hogy az

$$x^2 + 2xy - y^2 = 7$$

egyenletből y kifejezhető x implicitfüggvényeként a 2 egy környezetében, majd határozzuk meg így adódó implicitfüggvénynek deriváltját az x=2 helyen, továbbá írjuk fel az érintőegyenesek egyenleteit!

Legyen

$$f(x, y) := x^2 + 2xy - y^2 - 7((x, y) \in \mathbf{R}^2).$$

Ekkor

$$f(2, y) = 0 \quad \Longleftrightarrow \quad y \in \{1, 3\}.$$

Mivel $f \in C^1$, és

$$\partial_2 f(2, 1) = 2 \neq 0,$$

$$\partial_2 f(2, 3) = -2 \neq 0,$$

így teljesülnek az implicitfüggvényre vonatkozó tétel feltételei. Legyen

$$H := \{(x, y) \in \mathbf{R}^2 : x^2 + 2xy - y^2 = 7\}.$$

Így valóban léteznek olyan $U=:K(2),\,V_1:=K(1),\,V_2:=K(3)$ környezetek, hogy $\varphi_1:U\to V_1$ és $\varphi_2:U\to V_2$ folytonosan differenciálható függvények grafikonjai rendre megegyeznek a H halmaz $(2,1),\,(2,3)$ pontban vett környezetével.

$$f(x, \varphi_i(x)) = 0 \quad (x \in U, i = 1, 2).$$

Mivel

$$\partial_1 f(2, 1) = 6$$
, ill. $\partial_1 f(2, 3) = 10$,

ezért

$$\varphi_1(2) = 1$$
, ill. a $\varphi_2(2) = 3$

egyenlőségek felhasználásával azt kapjuk, hogy

$$\varphi_1'(2) = -3, \ \varphi_2(2) = 5.$$

A megfelelő érintők egyenlete:

$$y = \varphi_1(2) + \varphi'_1(2)(x - 2) = 7 - 3x \quad (x \in \mathbf{R}),$$

$$y = \varphi_2(2) + \varphi_2'(2)(x-2) = 5x - 7 \quad (x \in \mathbf{R}).$$

6.1. Emlékeztető

6.1.1. Közönséges differenciálegyenletek

Legyen $0 < n \in \mathbb{N}, \, I \subset \mathbb{R}, \, \Omega \subset \mathbb{R}^n$ egy-egy nyílt intervallum. Tegyük fel, hogy az

$$f: I \times \Omega \to \mathbf{R}^n$$

függvény folytonos, és tűzzük ki az alábbi feladat megoldását:

határozzunk meg olyan $\varphi\in I\to \Omega$ függvény, amelyre igazak a következő állítások:

- 1. \mathcal{D}_{φ} nyílt intervallum;
- $2. \varphi \in D;$
- 3. $\varphi'(x) = f(x, \varphi(x)) \quad (x \in \mathcal{D}_{\varphi}).$

A most megfogalmazott feladatot explicit elsőrendű közönséges differenciálegyenletnek (röviden differenciálegyenletnek) fogjuk nevezni, és a d.e. rövidítéssel idézni.

Ha adottak a $\tau\in I,\,\xi\in\Omega$ elemek, akkor a fenti φ függvény 1., 2. és 3. mellett tegyen eleget a

4.
$$\tau \in \mathcal{D}_{\varphi}$$
 és $\varphi(\tau) = \xi$

kikötésnek is. Az így "kibővített" feladatot *kezdetiérték-problémának* (vagy *Cauchy-feladatnak*) nevezzük, és a továbbiakban minderre a *k.é.p.* rövidítést fogjuk használni.

Azt mondjuk, hogy a szóban forgó k.é.p. egyértelműen oldható meg, ha tetszőleges $\varphi,\,\psi$ megoldásai esetén

$$\varphi(x) = \psi(x) \quad (x \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Legyen ekkor $\mathcal M$ a szóban forgó k.é.p. megoldásainak a halmaza és

$$J:=\bigcap_{\varphi\in\mathcal{M}}\mathcal{D}_{\varphi}.$$

Ez egy τ -t tartalmazó nyílt intervallum és $J\subset I$. Az egyértelmű megoldhatóság értelmezése miatt definiálhatjuk a

$$\Phi: J \to \Omega$$

függvényt az alábbiak szerint:

$$\Phi(x) := \varphi(x) \quad (\varphi \in \mathcal{M}, x \in \mathcal{D}_{\varphi}).$$

Nyilván, $\Phi(\tau) = \xi$, $\Phi \in D$ és

$$\Phi'(x) = f(x, Phi(x)) \quad (x \in J).$$

Ez azt jelenti, hogy $\Phi \in \mathcal{M}$, és bármelyik $\varphi \in \mathcal{M}$ esetén $\varphi = \Phi_{|_{\mathcal{D}_{\varphi}}}$.

A Φ függvényt a k.é.p. teljes megoldásának nevezzük.

6.1.2. Szeparábilis differenciálegyenlet

Legyen n:=1, továbbá az $I,\,J\subset\mathbf{R}$ nyílt intervallumokkal és a

$$g: I \to \mathbf{R}, h: J \to \mathbf{R} \setminus \{0\}$$

folytonos függvényekkel

$$f(x, y) := g(x) \cdot h(y) \quad ((x, y) \in I \times J).$$

A $\varphi \in I \to J$ megoldásra tehát

$$\varphi'(t) = g(t) \cdot h(\varphi(t)) \quad (t \in \mathcal{D}_{\omega}).$$

(Szeparábilis (vagy más szóval szétválasztható változójú) differenciálegyenlet.) Legyenek még adottak a $\tau \in I, \, \xi \in J$ számok, amikor is

$$\tau \in \mathcal{D}_{\varphi}, \ \varphi(\tau) = \xi.$$

Tétel. Tetszőleges szeparábilis differenciálegyenletre vonatkozó kezdetiértékprobléma megoldható, és bármilyen φ , ψ megoldásaira

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Bizonyítás. Mivel a h függvény sehol sem nulla, ezért egy φ megoldásra (ha az létezik)

$$\frac{\varphi'(t)}{h(\varphi(t))} = g(t) \quad (t \in \mathcal{D}_{\varphi}).$$

A $g:I\to {\bf R}$ is, és az $1/h:J\to {\bf R}$ is egy-egy nyílt intervallumon értelmezett folytonos függvények, így léteznek a

$$G \in \int g, H \in \int \frac{1}{h},$$

$$G: I \to \mathbf{R}, H: J \to \mathbf{R}$$

primitív függvényeik. Az összetett függvény deriválásával kapcsolatos tétel szerint

$$\frac{\varphi'(t)}{h(\varphi(t))} = (H \circ \varphi - G)'(t) = 0 \quad (t \in \mathcal{D}_{\varphi}).$$

Tehát (mivel a \mathcal{D}_{φ} is nyílt intervallum) van olyan $c \in \mathbf{R}$, hogy

$$H(\varphi(t)) - G(t) = c \quad (t \in \mathcal{D}_{\varphi}).$$

Az 1/h függvény nyilván nem vesz fel 0-t a J intervallum egyetlen pontjában sem, így ugyanez igaz a H' függvényre is. A deriváltfüggvény Darbouxtulajdonsága miatt tehát a H' állandó előjelű. Következésképpen H szigorúan monoton, amiért invertálható. A H^{-1} inverzzel

$$\varphi(t) = H^{-1}(G(t) + c) \quad (t \in \mathcal{D}_{\varphi}).$$

Ha $\tau\in I,\,\xi\in J,$ és a φ megoldás eleget tesz a $\varphi(\tau)=\xi$ kezdeti feltételnek is, akkor

$$\xi = H^{-1}(G(\tau) + c),$$

azaz $H(\xi) = G(\tau) + c$, ill.

$$c = H(\xi) - G(\tau).$$

Így

$$\varphi(t) = H^{-1}(G(t) + H(\xi) - G(\tau)) \quad (t \in \mathcal{D}_{\varphi}).$$

Ha $G,\,H$ helyett más primitív függvényeket választunk, akkor ugyanezt az egyenlőséget kapjuk.

Elegendő már csak azt belátni, hogy létezik megoldás. Ld. előadás (implicitfüggvénytétel megfelelő alkalmazása). ■

A tétel bizonyításával egyúttal egy módszert ("képletet") is adtunk a

$$\varphi'(t) = g(t) \cdot h(\varphi(t)) \quad (t \in \mathcal{D}_{\varphi})$$

szeparábilis egyenletre vonatkozó $\varphi(\tau) = \xi$ k.é.p. megoldására. Ennek a kulcsmozzanata a G, H primitív függvények meghatározása:

$$G(x) = \int_{\tau}^{x} g(t) dt, H(y) = \int_{\xi}^{y} \frac{dt}{h(t)} \quad (x \in I, y \in J),$$

amiből aztán a φ -re vonatkozó

$$H(\varphi(x)) = \int_{\xi}^{\varphi(x)} \frac{dt}{h(t)} = G(x) = \int_{\tau}^{x} g(t) dt \quad (x \in \mathcal{D}_{\varphi}),$$

azaz az

$$\int_{\xi}^{\varphi(x)} \frac{dt}{h(t)} = \int_{\tau}^{x} g(t) dt \quad (x \in \mathcal{D}_{\varphi})$$

implicit egyenlet adódott.

6.1.3. Egzakt differenciálegyenlet

Speciálisan legyen n:=1, és az $I, J \subset$ nyílt intervallumok, valamint a

$$g: I \times J \to \mathbf{R} \text{ és } h: I \times J \to \mathbf{R} \setminus \{0\}$$

folytonos függvényekkel

$$f(x, y) := -\frac{g(x, y)}{h(x, y)} \quad ((x, y) \in I \times J).$$

Ekkor a fenti minden φ megoldásra

$$\varphi'(x) = -\frac{g(x, \varphi(x))}{h(x, \varphi(x))} \quad (x \in \mathcal{D}_{\varphi}).$$

Azt mondjuk, hogy az így kapott d.e. egzakt differenciálegyenlet, ha az

$$I \times J \ni (x, y) \mapsto (g(x, y), h(x, y)) \in \mathbf{R}^2$$

leképezésnek van primitív függvénye. Ez utóbbi követelmény azt jelenti, hogy egy alkalmas differenciálható

$$G: I \times J \to \mathbf{R}$$

függvénnyel

$$\operatorname{grad} G = (\partial_1 G, \, \partial_2 G) = (q, \, h).$$

Ha $\tau \in I$, $\xi \in J$ és a φ függvénytől azt is elvárjuk, hogy

$$\tau \in \mathcal{D}_{\varphi}, \ \varphi(\tau) = \xi,$$

akkor igaz az

Tétel. Tetszőleges egzakt differenciálegyenletre vonatkozó minden kezdetiértékprobléma megoldható, és ennek bármilyen φ , ψ megoldásaira

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Bizonyítás. Valóban, $0 \notin \mathcal{R}_h$ miatt a feltételezett φ megoldásra

$$g(x, \varphi(x)) + h(x, \varphi(x)) \cdot \varphi'(x) = 0 \quad (x \in \mathcal{D}_{\omega}).$$

Ha van ilyen φ függvény, akkor az

$$F(x) := G(x, \varphi(x)) \quad (x \in \mathcal{D}_{\varphi})$$

egyváltozós valós függvény differenciálható, és tetszőleges $x \in \mathcal{D}_{\varphi}$ helyen

$$F'(x) = \langle \operatorname{grad} G(x, \varphi(x)), (1, \varphi'(x)) \rangle =$$

$$g(x, \varphi(x)) + h(x, \varphi(x)) \cdot \varphi'(x) = 0.$$

A $\mathcal{D}_F=\mathcal{D}_{\varphi}$ halmaz nyílt intervallum, ezért az F konstans függvény, azaz létezik olyan $c\in\mathbf{R}$, amellyel

$$G(x, \varphi(x)) = c \quad (x \in \mathcal{D}_{\varphi}).$$

Mivel $\varphi(\tau) = \xi$, ezért

$$c = G(\tau, \xi).$$

A G-ről feltehetjük, hogy $G(\tau,\,\xi)=0$, ezért a szóban forgó kezdetiérték-probléma φ megoldása eleget tesz a

$$G(x, \varphi(x)) = 0 \quad (x \in \mathcal{D}_{\varphi})$$

egyenletnek.

Világos, hogy a φ nem más, mint egy, a G által meghatározott implicitfüggvény. Más szóval a szóban forgó kezdetiérték-probléma minden megoldása (ha létezik) a fenti implicitfüggvény-egyenletből határozható meg.

Ugyanakkor a feltételek alapján $G \in C^1$, $G(\tau, \xi) = 0$, továbbá

$$\partial_2 G(\tau, \xi) = h(\tau, \xi) \neq 0,$$

ezért G-re (a (τ, ξ) helyen) teljesülnek az implicitfüggvény-tétel feltételei. Következésképpen van olyan differenciálható

$$\psi \in I \to J$$

(implicit)függvény, amelyre $\mathcal{D}_{\psi} \subset I$ nyílt intervallum,

$$\tau \in \mathcal{D}_{\psi}$$
, $G(x, \psi(x)) = 0$ $(x \in \mathcal{D}_{\psi})$, $\psi(\tau) = \xi$,

és

$$\psi'(x) = -\frac{\partial_1 G(x, \psi(x))}{\partial_2 G(x, \psi(x))} = -\frac{g(x, \psi(x))}{h(x, \psi(x))} \quad (x \in \mathcal{D}_{\psi}).$$

6.1.4. Lineáris differenciálegyenlet

Legyen most n=:1 és az $I\subset \mathbf{R}$ egy nyílt intervallum, valamint a

$$g, h: I \to \mathbf{R}$$

folytonos függvények segítségével

$$f(x, y) := g(x) \cdot y + h(x) \quad ((x, y) \in I \times \mathbf{R}).$$

Ekkor

$$\varphi'(t) = g(t) \cdot \varphi(t) + h(t) \quad (t \in \mathcal{D}_{\varphi}).$$

Ezt a feladatot lineáris differenciálegyenletnek nevezzük.

Ha valamilyen $\tau \in I$, $\xi \in \mathbf{R}$ mellett

$$\tau \in \mathcal{D}_{\varphi}, \, \varphi(\tau) = \xi,$$

akkor az illető lineáris differenciálegyenletre vonatkozó kezdetiérték-problémáról beszélünk.

Tegyük fel, hogy a θ függvény is és a ψ függvény is megoldása a lineáris d.e.-nek és $\mathcal{D}_{\theta} \cap \mathcal{D}_{\psi} \neq \emptyset$. Ekkor

$$(\theta - \psi)'(t) = g(t) \cdot (\theta(t) - \psi(t)) \quad (t \in \mathcal{D}_{\theta} \cap \mathcal{D}_{\psi}).$$

Így a $\theta - \psi$ függvény megoldása annak a lineáris d.e.-nek, amelyben $h \equiv 0$:

$$\varphi'(t) = g(t) \cdot \varphi(t) \quad (t \in \mathcal{D}_{\varphi}).$$

Ez utóbbi feladatot homogén lineáris differenciálegyenletnek fogjuk nevezni. (Ennek megfelelően a szóban forgó lineáris differenciálegyenlet inhomogén, ha a benne szereplő h függvény vesz fel 0-tól különböző értéket is.)

Tétel. Minden lineáris differenciálegyenletre vonatkozó kezdetiérték-probléma megoldható, és tetszőleges φ , ψ megoldásaira

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

Bizonyítás. Legyen a

$$G:I\to\mathbf{R}$$

olyan függvény, amelyik differenciálható és G'=g (a g-re tett feltételek miatt ilyen G primitív függvény van). Ekkor a

$$\varphi_0(t) := e^{G(t)} \quad (t \in I)$$

(csak pozitív értékeket felvevő) függvény megoldása az előbb említett homogén lineáris differenciálegyenletnek:

$$\varphi_0'(t) = G'(t) \cdot e^{G(t)} = g(t) \cdot \varphi_0(t) \quad (t \in I).$$

Tegyük fel most azt, hogy a

$$\chi \in I \to \mathbf{R}$$

függvény is megoldása a szóban forgó homogén lineáris differenciálegyenletnek:

$$\chi'(t) = g(t) \cdot \chi(t) \quad (t \in \mathcal{D}_{\chi}).$$

Ekkor a differenciálható

$$\frac{\chi}{\varphi_0}: \mathcal{D}_{\chi} \to \mathbf{R}$$

függvényre azt kapjuk, hogy bármelyik $t \in \mathcal{D}_\chi$ helyen

$$\left(\frac{\chi}{\varphi_0}\right)'(t) = \frac{\chi'(t) \cdot \varphi_0(t) - \chi(t) \cdot \varphi_0'(t)}{\varphi_0^2(t)} =$$

$$\frac{g(t) \cdot \chi(t) \cdot \varphi_0(t) - \chi(t) \cdot g(t) \cdot \varphi_0(t)}{\varphi_0^2(t)} = 0,$$

azaz (lévén a \mathcal{D}_{χ} nyílt intervallum) egy alkalmas $c \in \mathbf{R}$ számmal

$$\frac{\chi(t)}{\varphi_0(t)} = c \quad (t \in \mathcal{D}_{\chi}).$$

Más szóval, az illető homogén lineáris differenciálegyenlet bármelyik

$$\chi \in I \to \mathbf{R}$$

megoldása a következő alakú:

$$\chi(t) = c \cdot \varphi_0(t) \quad (t \in \mathcal{D}_{\chi}),$$

ahol $c \in \mathbf{R}$. Nyilván minden ilyen χ függvény – könnyen ellenőrizhető módon – megoldása a mondott homogén lineáris differenciálegyenletnek.

Ha tehát a fenti (inhomogén) lineáris differenciálegyenletnek a θ függvény is és a ψ függvény is megoldása és $\mathcal{D}_{\theta} \cap \mathcal{D}_{\psi} \neq \emptyset$, akkor egy alkalmas $c \in \mathbf{R}$ együtthatóval

$$\theta(t) - \psi(t) = c \cdot \varphi_0(t) \quad (t \in \mathcal{D}_{\theta} \cap \mathcal{D}_{\psi}).$$

Mutassuk meg, hogy van olyan differenciálható

$$m:I\to\mathbf{R}$$

függvény, hogy az $m \cdot \varphi_0$ függvény megoldása a most vizsgált (inhomogén) lineáris differenciálegyenletnek (az állandók variálásának módszere). Ehhez azt kell "biztosítani", hogy

$$(m \cdot \varphi_0)' = g \cdot m \cdot \varphi_0 + h,$$

azaz

$$m' \cdot \varphi_0 + m \cdot \varphi_0' = m' \cdot \varphi_0 + m \cdot g \cdot \varphi_0 = g \cdot m \cdot \varphi_0 + h.$$

Innen szükséges feltételként az adódik az m-re, hogy

$$m' = \frac{h}{\varphi_0}.$$

Ilyen m függvény valóban létezik, mivel a

$$\frac{h}{\varphi_0}:I\to\mathbf{R}$$

folytonos leképezésnek van primitív függvénye. Továbbá – az előbbi rövid számolás "megfordításából" – azt is beláthatjuk, hogy a h/φ_0 függvény bármelyik m primitív függvényét is véve, az $m\cdot\varphi_0$ függvény megoldása a lineáris differenciálegyenletünknek.

Összefoglalva az eddigieket azt mondhatjuk, hogy a fenti lineáris differenciálegyenletnek van megoldása, és tetszőleges $\varphi \in I \to \mathbf{R}$ megoldása

$$\varphi(t) = m(t) \cdot \varphi_0(t) + c \cdot \varphi_0(t) \quad (t \in \mathcal{D}_{\varphi})$$

alakú, ahol m egy tetszőleges primitív függvénye a h/φ_0 függvénynek. Sőt, az is kiderül, hogy akármilyen $c \in \mathbf{R}$ és $J \subset I$ nyílt intervallum esetén a

$$\varphi(t) := m(t) \cdot \varphi_0(t) + c \cdot \varphi_0(t) \quad (t \in J)$$

függvény megoldás. Ezt megint csak egyszerű behelyettesítéssel ellenőrizhető:

$$\varphi'(t) = m'(t) \cdot \varphi_0(t) + (c + m(t)) \cdot \varphi'_0(t) =$$

$$\frac{h(t)}{\varphi_0(t)} \cdot \varphi_0(t) + (c + m(t)) \cdot g(t) \cdot \varphi_0(t) = g(t) \cdot \varphi(t) + h(t) \quad (t \in J).$$

Speciálisan az "egész" I intervallumon értelmezett

$$\psi_c(t) := m(t) \cdot \varphi_0(t) + c \cdot \varphi_0(t) \quad (c \in \mathbf{R}, t \in I)$$

megoldások olyanok, hogy bármelyik φ megoldásra egy alkalmas $c \in \mathbf{R}$ mellett

$$\varphi(t) = \psi_c(t) \quad (t \in \mathcal{D}_{\omega}),$$

azaz a $J := \mathcal{D}_{\varphi}$ jelöléssel $\varphi = \psi_{c_{||}}$.

Ha $\tau\in I,\,\xi\in\mathbf{R},$ és a $\varphi(\tau)=\xi$ kezdetiérték-feladatot kell megoldanunk, akkor a

$$c := \frac{\xi - m(\tau) \cdot \varphi_0(\tau)}{\varphi_0(\tau)}$$

választással a szóban forgó kezdetiérték-probléma

$$\psi_c: I \to \mathbf{R}$$

megoldását kapjuk. Mivel a fentiek alapján a szóban forgó k.é.p. minden φ , ψ megoldására $\varphi=\psi_{c_{|_{\mathcal{D}_{s_0}}}}$ és $\psi=\psi_{c_{|_{\mathcal{D}_{s_0}}}}$, ezért egyúttal az is teljesül, hogy

$$\varphi(t) = \psi(t) \quad (t \in \mathcal{D}_{\varphi} \cap \mathcal{D}_{\psi}).$$

A

$$\varphi'(t) = g(t) \cdot \varphi(t) + h(t) \quad (t \in \mathcal{D}_{\varphi})$$

lineáris d.e.-re vonatkozó k.é.p. megoldására "megoldóképletet" is felírhatunk. Legyen ui.

$$G(x) := \int_{\tau}^{x} g(t) dt, \ m(x) := \int_{\tau}^{x} \frac{h(t)}{\varphi_0(t)} dt \quad (x \in I),$$

ekkor

$$\varphi_0(\tau) = e^{G(\tau)} = 1, m(\tau) = 0,$$

és a szóban forgó k.é.p. "teljes" megoldását jelentő

$$\psi(x) := m(x) \cdot \varphi_0(x) + c \cdot \varphi_0(x) \quad (x \in I)$$

függvényben

$$c := \frac{\xi - m(\tau) \cdot \varphi_0(\tau)}{\varphi_0(\tau)} = \xi.$$

7.1. Emlékeztető

7.1.1. Lineáris differenciálegyenlet-rendszer

Valamilyen $1 \le n \in N$ és egy nyílt $I \subset \mathbf{R}$ intervallum esetén adottak a folytonos

$$a_{ik}: I \to \mathbf{R} \quad (i, k = 1, ..., n), b = (b_1, ..., b_n): I \to \mathbf{R}^n$$

függvények, és tekintsük az

$$I \ni x \mapsto A(x) := (a_{ik}(x))_{i,k=1}^n \in \mathbf{R}^{n \times n}$$

mátrixfüggvényt. Ha

$$f(x, y) := A(x) \cdot y + b(x) \quad ((x, y) \in I \times \mathbf{K}^n),$$

akkor az f függvény, mint jobb oldal által meghatározott

$$\varphi'(x) = A(x) \cdot \varphi(x) + b(x) \quad (x \in \mathcal{D}_{\varphi})$$

differenciálegyenletet lineáris differenciálegyenletnek (n>1 esetén lineáris differenciálegyenletrendszernek) nevezzük.

Legyenek a fentieken túl adottak még a $\tau \in I$, $\xi \in \mathbf{K}^n$ értékek, és vizsgáljuk a $\varphi(\tau) = \xi$ k.é.p.-t. Ha $I_* \subset I$, $\tau \in \operatorname{int} I_*$, kompakt intervallum, akkor

$$\sup\{|a_{ik}(x)|: x \in I_*\} \in \mathbf{R} \quad (i, k = 1, ..., n),$$

ezért

$$q := \sup\{||A(x)||_{(\infty)} : x \in I_*\} \in \mathbf{R}.$$

Következésképpen

$$||f(x, y) - f(x, z)||_{\infty} = ||A(x) \cdot (y - z)||_{\infty} \le$$

$$||A(x)||_{(\infty)} \cdot ||y-z||_{\infty} \le q \cdot ||y-z||_{\infty} \quad (x \in I_*, y, z \in \mathbf{K}^n).$$

Továbbá a

$$\beta := \sup\{\|b(x)\| : x \in I_*\} (\in \mathbf{R})$$

jelöléssel

$$||f(x, y)||_{\infty} = ||A(x) \cdot y + b(x)||_{\infty} < ||A(x) \cdot y||_{\infty} + ||b(x)||_{\infty} <$$

$$||A(x)||_{(\infty)} \cdot ||y||_{\infty} + ||b(x)||_{\infty} \le q \cdot ||y||_{\infty} + \beta \quad (x \in I_*, y \in \mathbf{K}^n),$$

ezért minden k.é.p. teljes megoldása az I intervallumon van értelmezve. Azt mondjuk, hogy a szóban forgó d.e. homogén, ha $b\equiv 0,\ inhomogén$, ha létezik $x\in I,$ hogy $b(x)\neq 0.$ Legyenek

$$\mathcal{M}_h := \{ \psi : I \to \mathbf{K}^n : \psi \in D, \ \psi' = A \cdot \psi \},$$

$$\mathcal{M} := \{ \psi : I \to \mathbf{K}^n : \psi \in D, \ \psi' = A \cdot \psi + b \}.$$

A lineáris d.e.-ek "alaptétele" a következő

Tétel. A bevezetésben mondott feltételek mellett

- 1. az \mathcal{M}_h halmaz n dimenziós lineáris tér a **K**-ra vonatkozóan;
- 2. tetszőleges $\psi \in \mathcal{M}$ esetén

$$\mathcal{M} = \psi + \mathcal{M}_h := \{ \psi + \chi : \chi \in \mathcal{M}_h \};$$

3. ha a $\phi_k = (\phi_{k1}, \ldots, \phi_{kn})$ $(k = 1, \ldots, n)$ függvények bázist alkotnak az \mathcal{M}_h -ban, akkor léteznek olyan $g_k : I \to \mathbf{K}$ $(k = 1, \ldots, n)$ differenciálható függvények, amelyekkel

$$\psi := \sum_{k=1}^{n} g_k \cdot \phi_k \in \mathcal{M}.$$

Bizonyítás. Az 1. állítás bizonyításához mutassuk meg először is azt, hogy bármilyen ψ , $\varphi \in \mathcal{M}_h$ és $c \in \mathbf{K}$ esetén $\psi + c \cdot \varphi \in \mathcal{M}_h$:

$$(\psi + c \cdot \varphi)' = \psi' + c \cdot \varphi' = A \cdot \psi + c \cdot A \cdot \varphi = A \cdot (\psi + c \cdot \varphi),$$

amiből a mondott állítás az \mathcal{M}_h definíciója alapján nyilvánvaló. Tehát az \mathcal{M}_h lineáris tér a \mathbf{K} felett.

Most megmutatjuk, hogy ha $m \in \mathbb{N}$, és $\chi_1, \ldots, \chi_m \in \mathcal{M}_h$ tetszőleges függvények, akkor az alábbi ekvivalencia igaz:

a χ_1, \ldots, χ_m függvények akkor és csak akkor alkotnak lineárisan független rendszert az \mathcal{M}_h vektortérben, ha bármilyen $\tau \in I$ esetén a $\chi_1(\tau), \ldots, \chi_m(\tau)$ vektorok lineárisan függetlenek a \mathbf{K}^n -ben.

Az ekvivalencia egyik fele nyilvánvaló: ha a χ_1,\ldots,χ_m -ek lineárisan összefüggnek, akkor alkalmas $c_1,\ldots,c_m\in \mathbf{K},\,|c_1|+\cdots+|c_m|>0$ együtthatókkal

$$\sum_{k=1}^{m} c_k \cdot \chi_k \equiv 0.$$

Speciálisan minden $\tau \in I$ helyen is

$$\sum_{k=1}^{m} c_k \cdot \chi_k(\tau) = 0.$$

Így a $\chi_1(\tau), \ldots, \chi_m(\tau)$ vektorok összefüggő rendszert alkotnak \mathbf{K}^n -ben.

Fordítva, legyen $\tau \in I$, és tegyük fel, hogy a $\chi_1(\tau), \ldots, \chi_m(\tau)$ vektorok összefüggnek. Ekkor az előbbi (nem csupa nulla) $c_1, \ldots, c_m \in K$ együtthatókkal

$$\sum_{k=1}^{m} c_k \cdot \chi_k(\tau) = 0.$$

Már tudjuk. hogy

$$\phi := \sum_{k=1}^{m} c_k \cdot \chi_k \in \mathcal{M}_h,$$

ezért az így definiált $\phi:I\to \mathbf{K}^n$ függvény megoldása a

$$\varphi' = A \cdot \varphi, \ \varphi(\tau) = 0$$

homogén lineáris differenciálegyenletre vonatkozó kezdetiérték-problémának. Világos ugyanakkor, hogy a $\Psi \equiv 0$ függvény is a most mondott k.é.p. megoldása az I-n. Azt is tudjuk azonban, hogy ez a k.é.p. (is) egyértelműen oldható meg, ezért $\phi \equiv \Psi \equiv 0$. Tehát a χ_1, \ldots, χ_m függvények is összefüggnek.

Ezzel egyúttal azt is beláttuk, hogy az \mathcal{M}_h vektortér véges dimenziós, és a dim \mathcal{M}_h dimenziója legfeljebb n.

Tekintsük most a

$$\varphi' = A \cdot \varphi, \ \varphi(\tau) = e_i \quad (i = 1, \dots, n)$$

kezdetiérték-problémákat, ahol az $e_i \in \mathbf{K}^n$ (i = 1, ..., n) vektorok az \mathbf{K}^n tér "szokásos" (kanonikus) bázisvektorait jelölik. Ha

$$\chi_i:I\to\mathbf{K}^n$$

jelöli az említett k.é.p. teljes megoldását, akkor a

$$\chi_i(\tau) = e_i \quad (i = 1, \dots, n)$$

vektorok lineárisan függetlenek. Így az előbbiek alapján χ_1, \ldots, χ_m függvények is azok. Tehát az \mathcal{M}_h dimenziója legalább n, azaz a fentiekre tekintettel dim $\mathcal{M}_h = n$.

A 2. állítás igazolásához legyen $\chi \in \mathcal{M}_h$. Ekkor $\psi + \chi \in D$, és

$$(\psi + \chi)' = \psi' + \chi' = A \cdot \psi + b + A \cdot \chi = A \cdot (\psi + \chi) + b,$$

amiből $\psi+\chi\in\mathcal{M}$ következik. Ha most egy $\varphi\in\mathcal{M}$ függvényből indulunk ki és $\chi:=\varphi-\psi$, akkor $\chi\in D$, és

$$\chi' = \varphi' - \psi' = A \cdot \varphi + b - (A \cdot \psi + b) = A \cdot \chi,$$

amiből $\chi \in \mathcal{M}_h$ adódik. Tehát $\varphi = \psi + \chi$.

A tétel. 3. részének a bizonyítása érdekében vezessük be az alábbi jelöléseket, ill, fogalmakat. A

$$\phi_k = (\phi_{k1}, \dots, \phi_{kn}) \quad (k = 1, \dots, n)$$

bázisfüggvények mint oszlopvektor-függvények segítségével tekintsük a

$$\Phi:I\to\mathbf{K}^{n\times n}$$

mátrixfüggvényt:

$$\Phi := [\phi_1 \cdots \phi_n] = \begin{bmatrix} \phi_{11} & \phi_{21} & \cdots & \phi_{n1} \\ \phi_{12} & \phi_{22} & \cdots & \phi_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{1n} & \phi_{2n} & \cdots & \phi_{nn} \end{bmatrix}.$$

Legyen

$$\Phi' := [\phi'_1 \cdots \phi'_n] = \begin{bmatrix} \phi'_{11} & \phi'_{21} & \cdots & \phi'_{n1} \\ \phi'_{12} & \phi'_{22} & \cdots & \phi'_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ \phi'_{1n} & \phi'_{2n} & \cdots & \phi'_{nn} \end{bmatrix}$$

a Φ deriváltja. Ekkor könnyen belátható, hogy

$$\Phi' = A \cdot \Phi.$$

Továbbá tetszőleges $g_1,\,\ldots,\,g_n:I\to\mathbf{K}$ differenciálható függvényekkel a

$$q := (q_1, \ldots, q_n) : I \to \mathbf{K}^n$$

vektorfüggvény differenciálható,

$$\psi := \sum_{k=1}^{n} g_k \cdot \phi_k = \Phi \cdot g,$$

és

$$\psi' = \Phi' \cdot g + \Phi \cdot g' = (A \cdot \Phi) \cdot g + \Phi \cdot g'.$$

A $\psi \in \mathcal{M}$ tartalmazás nyilván azzal ekvivalens, hogy

$$\psi' = (A \cdot \Phi) \cdot g + \Phi \cdot g' = A \cdot \psi + b = A \cdot (\Phi \cdot g) + b = (A \cdot \Phi) \cdot g + b,$$

következésképpen azzal, hogy

$$\Phi \cdot g' = b.$$

A 2. pont alapján tetszőleges $x \in I$ helyen a $\phi_1(x), \ldots, \phi_n(x)$ vektorok lineárisan függetlenek, azaz a $\Phi(x)$ mátrix nem szinguláris. A mátrixok inverzének a kiszámítása alapján egyszerűen adódik, hogy a

$$\Phi^{-1}(x) := (\Phi(x))^{-1} \quad (x \in I)$$

definícióval értelmezett

$$\Phi^{-1}: I \to \mathbf{K}^{n \times n}$$

mátrixfüggvény komponens-függvényei folytonosak. Ezért a

$$(h_1,\ldots,h_b):=\Phi^{-1}\cdot b:I\to\mathbf{K}^n$$

függvény is folytonos. Olyan folytonosan differenciálható

$$g:I\to \mathbf{K}^n$$

függvényt keresünk tehát, amelyikre $g' = \Phi^{-1} \cdot b,$ azaz

$$g_i' = h_i \quad (i = 1, \ldots, n).$$

Ilyen g_i létezik, nevezetesen a (folytonos) h_i $(i=1,\ldots,n)$ függvény bármely primitív függvénye ilyen.

Ezt összefoglalva, egy lineáris differenciálegyenlet-rendszer megoldása a követ-kezőképpen történik:

- 1. Meghatározzuk a ϕ_1, \ldots, ϕ_n bázist (alaprendszert). (Ez általában lehetetlen, nincs rá "képlet", viszont bizonyos feltételek mellett működik.) Ezzel a bázissal definiáljuk a Φ mátrixot (alapmátrix).
- 2. A tétel 3. pontja szerint keresnünk kell egy $g:I\to \mathbf{K}^n$ differenciálható függvényt, amellyel

$$\psi := \Phi \cdot g \in \mathcal{M}.$$

 $(Az \ {\it alland\'ok} \ vari\'al\'as\'anak \ m\'odszere. \ \psi$ az ún. partikuláris megoldás). Azaz olyan g-t, ami eleget tesz a

$$q' = \Phi^{-1} \cdot b$$

egyenlőségnek. Mivel $\Phi^{-1}\cdot b$ folytonos (és Inyílt intervallum), ilyen glétezik:

$$(h_1, \ldots, h_n) := \Phi^{-1} \cdot b : I \to \mathbf{K}^n,$$

 $g_i \in \int h_i.$

7.1.2. Állandó együtthatós lineáris differenciálegyenlet-rendszer, diagonalizálható mátrix

Legyen most

$$f(x, y) := A \cdot y + b(x) \quad ((x, y) \in I \times \mathbf{K}^n),$$

ahol $1 \leq n \in \mathbb{N}, I \subset \mathbb{R}$ nyílt intervallum mellett

$$A \in \mathbf{R}^{n \times n}, b : I \to \mathbf{R}^n, b \in C.$$

Tegyük fel, hogy A diagonalizálható, azaz létezik $T \in \mathbf{K}^{n \times n}$, det $T \neq 0$, hogy $T^{-1}AT$ mátrix diagonális: alkalmas $\lambda_1, \ldots, \lambda_n \in \mathbf{K}$ számokkal

$$\Lambda := T^{-1}AT = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

 ${\cal T}$ invertálhatósága miatt a

$$T = [t_1 \cdots t_n]$$

 $t_i \ (i=1,\,\ldots,\,n)$ oszlopvektorok lineárisan függetlenek, azaz

$$AT = [At_1 \cdots At_n] = T\Lambda = [\lambda_1 \cdot t_1 \cdots \lambda_n \cdots t_n]$$

miatt

$$A \cdot t_i = \lambda_i \cdot t_i \quad (i = 1, \dots, n).$$

Mivel

$$t_i \neq 0 \quad (i = 1, \ldots, n),$$

ezért mindez röviden azt jelenti, hogy a $\lambda_1, \ldots, \lambda_n$ számok az A mátrix sajátértékei, a t_1, \ldots, t_n vektorok pedig rendre a megfelelő sajátvektorok. Lévén, a t_i -k lineárisan függetlenek, az A-ra vonatkozó feltételünk úgy fogalmazható, hogy van a \mathbf{K}^n -ben (az A sajátvektoraiból álló) sajátvektorbázis.

A homogén egyenlet tehát a következőképpen írható fel:

$$\varphi' = A \cdot \varphi = T\Lambda T^{-1} \cdot \varphi,$$

amiből

$$(T^{-1}\varphi)' = \Lambda \cdot (T^{-1}\varphi)$$

következik. Vegyük észre, hogy ha $\varphi \in \mathcal{M}_h$, akkor a $\psi := T^{-1}\varphi$ függvény megoldása a Λ diagonális mátrix által meghatározott állandó együtthatós homogén lineáris egyenletnek. Ez utóbbit ez előző tétel alapján nem nehéz megoldani. Legyenek iu. a

$$\psi_i: I \to \mathbf{K}^n \quad (i = 1, \ldots, n)$$

függvények a következők:

$$\psi_i(x) := e^{\lambda_i \cdot x} \cdot e_i \quad (x \in I, i = 1, \dots, n).$$

Világos, hogy $\psi_i \in D$ és

$$\psi_i'(x) = \lambda_i \cdot e^{\lambda_i \cdot x} \cdot e_i = e^{\lambda_i \cdot x} \cdot (\Lambda \cdot e_i) =$$

$$\Lambda \cdot (e^{\lambda_i \cdot x} \cdot e_i) = \Lambda \cdot \psi_i(x) \quad (x \in I, i = 1, \dots, n).$$

Más szóval a ψ_i -k valóban megoldásai a Λ által meghatározott homogén lineáris differenciálegyenletnek. Mivel bármely $\tau \in I$ esetén a

$$\psi_i(\tau) = e^{\lambda_i \cdot \tau} \cdot e_i \quad (i = 1, \dots, n)$$

vektorok nyilván lineárisan függetlenek, ezért az előző tétel bizonyításában mondottak szerint a ψ_i ($i=1,\ldots,n$) függvények lineárisan függetlenek. Ha

$$\phi_i := T \cdot \psi_i \quad (i = 1, \dots, n),$$

akkor nyilván a ϕ_i -k is lineárisan függetlenek,

$$\phi_i(x) = e^{\lambda_i \cdot x} \cdot t_i \quad (x \in I, i = 1, \dots, n),$$

és minden $i = 1, \ldots, n$ indexre

$$\phi_i' = A \cdot \phi_i$$
.

Tehát $\phi_i \in \mathcal{M}_h$ (i = 1, ..., n) egy bázis. Ezzel beláttuk az alábbi tételt:

Tétel. Tegyük fel, hogy az $A \in \mathbf{R}^{n \times n}$ mátrix diagonalizálható. Legyenek a sajátértékei $\lambda_1, \ldots, \lambda_n \in \mathbf{K}$, egy-egy megfelelő sajátvektora pedig $t_1, \ldots, t_n \in \mathbf{K}^n$. Ekkor a

$$\varphi' = A \cdot \varphi$$

homogén lineáris differenciálegyenletnek a

$$\phi_i(x) := e^{\lambda_i \cdot x} \cdot t_i \quad (x \in \mathbf{R}, i = 1, \dots, n)$$

függvények lineárisan független megoldásai.

7.1.3. Állandó együtthatós lineáris differenciálegyenlet-rendszer, általános eset

Csak az n=2 esettel foglalkozunk. Legyen $I\subset \mathbf{R}$ nyílt intervallum, $b:I\to \mathbf{R}^2$ folytonos függvény, $A\in \mathbf{R}^{2\times 2}$ és vizsgáljuk a

$$\varphi'(x) = A \cdot \varphi(x) + b(x) \quad (x \in \mathcal{D}_{\omega})$$

lineáris differenciálegyenletet. Valamilyen $a, b, c, d \in \mathbf{R}$ számokkal

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{R}^{2 \times 2}.$$

Könnyű meggyőződni arról, hogy ez a mátrix pontosan akkor nem diagonalizálható, ha

$$(a-d)^2 + 4bc = 0$$
 és $|b| + |c| > 0$.

Ekkor egyetlen sajátértéke van az A-nak, nevezetesen

$$\lambda := \frac{a+d}{2},$$

legyen a t_1 egy hozzá tartozó sajátvektor:

$$0 \neq t_1 \in \mathbf{R}^2$$
, $At_1 = \lambda t_1$.

Egyszerű számolással igazolható, hogy létezik $t_2\in {\bf R}^2$ vektor, amelyik lineárisan független a t_1 -től és

$$At_2 = t_1 + \lambda t_2.$$

Ekkor

$$\phi_1(x) := e^{\lambda x} \cdot t_1, \, \phi_2(x) := e^{\lambda x} \cdot (t_2 + xt_1)$$
 $(x \in \mathbf{R})$

függvénypár egy alaprendszer.

8.1. Emlékeztető

8.1.1. Weierstrass-kritérium

Tétel. Tegyük fel, hogy valamilyen $\emptyset \neq X$ mellett $\emptyset \neq \mathcal{D} \subset X$, és adott az

$$f_n: X \to \mathbf{K} \quad (n \in \mathbf{N})$$

függvények által meghatározott $\sum (f_n)$ függvénysor. Legyen továbbá egy $\emptyset \neq A \subset \mathcal{D}$ halmazzal és egy (a_n) számsorozattal

$$\sup\{|f_n(x)|: x \in A\} \le a_n \quad (n \in \mathbf{N}),$$

ahol $\sum_{n=0}^{\infty}a_n<+\infty.$ Ekkor a $\sum(f_n)$ függvénysor az Ahalmazon egyenletesen konvergens.

Például, a

$$h_n(x) := x^n \quad (x \in \mathbf{R}, \, n \in \mathbf{N})$$

függvénysorozattal legyen $0 < \delta < 1$ és $A := [-\delta, \, \delta]$, amikor

$$\sum_{n=0}^{\infty} \sup\{|h_n(x)| : x \in A\} = \sum_{n=0}^{\infty} \sup\{|x^n| : x \in [-\delta, \, \delta]\} = \sum_{n=0}^{\infty} \delta^n < +\infty.$$

Tehát a szóban forgó $\sum (h_n)$ függvénysor a $[-\delta, \delta]$ intervallumon egyenletesen konvergens.

A Weierstrass-kritérium nyilvánvaló következményeként kapjuk az alábbi állítást is: ha az (a_n) , (b_n) számsorozatokra

$$\sum_{n=0}^{\infty} (|a_n| + |b_n|) < +\infty,$$

akkor az általuk meghatározott $\sum (a_n \cos(nx) + b_n \sin(nx))$ trigonometrikus sor egyenletesen konvergens.

8.1.2. Folytonossági tétel

Tétel. Tegyük fel, hogy az

$$f_n \in \mathbf{K} \to \mathbf{K} \quad (n \in \mathbf{N})$$

függvények által meghatározott (f_n) függvénysorozat egyenletesen konvergens az $\emptyset \neq X \subset \mathbf{K}$ halmazon. Legyen a határfüggvénye az

$$f: X \to \mathbf{K}$$

függvény. Ha $a \in X$ és $f_n \in \mathcal{C}\{a\} \quad (n \in \mathbf{N})$, akkor $f \in \mathcal{C}\{a\}$.

Tétel. Legyen adott a

$$g_n: X \to \mathbf{K} \quad (n \in \mathbf{N})$$

függvények által meghatározott $\sum (g_n)$ függvénysor, ami egyenletesen konvergens, az összegfüggvénye pedig a

$$G:X\to \mathbf{K}$$

függvény. Ha $a \in X$ és $g_n \in \mathcal{C}\{a\} \quad (n \in \mathbb{N})$, akkor $G \in \mathcal{C}\{a\}$.

8.1.3. Integrálhatósági tétel

Tétel. Tekintsük az [a, b] $(a, b \in \mathbf{R}, a < b)$ intervallumon értelmezett f_n : $[a, b] \to \mathbf{R}$ $(n \in \mathbf{N})$ függvényekből álló (f_n) függvénysorozatot, amelyikről tegyük fel, hogy egyenletesen konvergens. Ha $f_n \in R[a, b]$ $(n \in \mathbf{N})$ és f jelöli az (f_n) sorozat határfüggvényét, akkor $f \in R[a, b]$, az integrálok $(\int\limits_a^b f_n)$ sorozata konvergens, és

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}.$$

Tétel. Tegyük fel, hogy az [a, b] $(a, b \in \mathbf{R}, a < b)$ intervallumon értelmezett

$$g_n:[a,\,b]\to\mathbf{R}\quad(n\in\mathbf{N})$$

függvényekből álló $\sum(g_n)$ függvénysor egyenletesen konvergens. Ha $g_n \in R[a, b]$ $(n \in \mathbf{N})$ és G jelöli a $\sum(g_n)$ sor összegfüggvényét, akkor $G \in R[a, b]$, az integrálok alkotta $\sum(\int\limits_a^b g_n)$ sor konvergens, valamint

$$\int_{a}^{b} G = \sum_{n=0}^{\infty} \int_{a}^{b} g_{n}.$$

Legyen adott (g_n) a fentebb említett sorozat. Ekkor

$$G_n(x) := \sum_{k=0}^n g_k(x) = g_0(x) + g_1(x) + \dots + g_n(x) \quad (x \in [a, b]).$$

 $G_n \equiv \sum (g_n)$. Legyen

$$G(x) := \lim_{n \to \infty} G_n(x) \quad (x \in [a, b]).$$

Adott $x \in [a, b]$ mellett

$$\int_{a}^{b} G_{n}(x) dx = \int_{a}^{b} \left(\sum_{k=0}^{n} g_{k}(x) \right) dx = \sum_{k=0}^{n} \int_{a}^{b} g_{k}(x) dx = \int_{a}^{b} g_{0}(x) dx + \dots + \int_{a}^{b} g_{n}(x) dx.$$

Ekkor

$$\int_{a}^{b} G(x) dx = \sum_{n=0}^{\infty} \int_{a}^{b} g_n(x) dx,$$

azaz

$$\int_{a}^{b} \lim_{n \to \infty} G_n(x) dx = \lim_{n \to \infty} \sum_{k=0}^{n} \int_{a}^{b} g_k(x) dx = \lim_{n \to \infty} \int_{a}^{b} G_n(x) dx.$$

Részletesebben kiírva:

$$\int_{a}^{b} (g_0(x) + g_1(x) + \cdots) dx = \int_{a}^{b} g_0(x) dx + \int_{a}^{b} g_1(x) dx + \cdots$$