Inventor: Mikio SUGIMOTO

U.S. Serial No.: 10/567 707

Filing Date: February 7, 2006

日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されてる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed this Office.

出願年月日 Pate of Application:

2003年10月29日

願番号 oplication Number:

特願2003-368416

)条約による外国への出願 聞いる優先権の主張の基礎 憲る出願の国コードと出願

ē 1

JP2003-368416

country code and number ur priority application, used for filing abroad the Paris Convention, is

願 人 cant(s):

城戸 敏弘 杉本 幹生 杉本 慧子

CERTIFIED COPY OF PRIORITY DOCUMENT

特許庁長官 Commissioner, Japan Patent Office 2006年 5月 2日

【書類名】特許願【整理番号】KSP03-03【あて先】特許庁長官殿【国際特許分類】C01F 1/00

【発明者】

【住所又は居所】 山口県宇部市際波103番地の74

【氏名】 杉本 幹生

【特許出願人】

【識別番号】 399036202 【氏名又は名称】 城戸 敏弘

【特許出願人】

【識別番号】 593035696 【氏名又は名称】 杉本 幹生

【特許出願人】

【識別番号】 303056140 【氏名又は名称】 杉本 至健

【特許出願人】

【識別番号】303056151【氏名又は名称】杉本 慧子

【先の出願に基づく優先権主張】

【出願番号】 特願2003-298218 【出願日】 平成15年 8月22日

【手数料の表示】

【予納台帳番号】 194332 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 要約書 1

 【物件名】
 図面 1

【請求項1】

イオン化傾向(電位)の異なる2種類の異種金属を互いに密着させた状態で処理すべき 水中に没する状態とすることにより、前記2種類の異種金属のうちイオン化傾向の小さい 電位の高い方の金属の腐蝕を防止しようとして電位の低い方の金属から高い方の金属へ電 子を移動させるイオン化傾向の大きい電位の低い方の金属の犠牲腐蝕作用により該イオン 化傾向の大きい電位の低い方の金属から金属イオンを永続的に溶出させ、この金属イオン で所定の水処理を行うようにしたことを特徴とする水処理方法。

【請求項2】

処理すべき水中に没する状態で使用される水処理装置であって、イオン化傾向(電位)の異なる2種類の異種金属が互いに密着した状態で備えられた構成とすることにより、前記2種類の異種金属のうちイオン化傾向の小さい電位の高い方の金属の腐蝕を防止しようとして電位の低い方の金属から高い方の金属へ電子を移動させるイオン化傾向の大きい電位の低い方の金属の犠牲腐蝕作用により該イオン化傾向の大きい電位の低い方の金属から金属イオンを永続的に溶出させ、この金属イオンで所定の水処理が行われるように構成されていることを特徴とする水処理装置。

【請求項3】

前記2種類の異種金属のうちのいずれか一方の金属に対しもう一方の金属がメッキされることによって互いに密着されていることを特徴とする請求項1に記載の水処理方法または請求項2に記載の水処理装置。

【請求項4】

前記2種類の異種金属のうちイオン化傾向の大きい電位の低い方の金属に対しイオン化傾向の小さい電位の高い方の金属がメッキされることによって互いに密着されていることを特徴とする請求項3に記載の水処理方法または水処理装置。

【請求項5】

前記2種類の異種金属のうちのいずれか一方の金属に対しもう一方の金属がクラッド法によって互いに密着されていることを特徴とする請求項1に記載の水処理方法または請求項2に記載の水処理装置。

【請求項6】

前記メッキされた金属またはクラッド法で密着された一方の金属をケガキや溝切り等で多数個所切削除去してもう一方の金属を露出させることにより、前記2種類の異種金属の接触境界部分が多数形成されていることを特徴とする請求項3~5のいずれか1項に記載の水処理方法または水処理装置。

【請求項7】

前記2種類の異種金属を貫く多数の貫通孔を切削しもしくは打ち抜くことにより、前記多数の貫通孔の開口縁部に2種類の異種金属の接触境界部分が多数形成されていることを特徴とする請求項3~5のいずれか1項に記載の水処理方法または水処理装置。

【請求項8】

前記2種類の異種金属からなる板材に千鳥状に切れ目を入れて押し広げて略菱形網目状に加工することにより、各切れ目部分に2種類の異種金属の接触境界部分が多数形成されていることを特徴とする請求項3~5のいずれか1項に記載の水処理方法または水処理装置

【請求項9】

前記2種類の異種金属の接触面と略直交する方向に切断して針金状に形成することにより、長手方向に沿った両側切断面に前記2種類の異種金属の接触境界部分が形成されていることを特徴とする請求項3~5のいずれか1項に記載の水処理方法または水処理装置。

【請求項10】

前記2種類の異種金属のいずれか一方の金属が糸状に形成され、該糸状金属の表面の一部にもう一方の金属がメッキされていることを特徴とする請求項3~5のいずれか1項に記載の水処理方法または水処理装置。

【請求項11】

前記2種類の異種金属のうちイオン化傾向の大きい電位の低い方の金属がパイプで構成され、イオン化傾向の小さい電位の高い方の金属が前記イオン化傾向の大きい電位の低い方の金属で構成されるパイプの外面側にメッキされることによって互いに密着されていることを特徴とする請求項3または4に記載の水処理方法または水処理装置。

【請求項12】

前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が銅で構成されていることを特徴とする請求項1~11のいずれか1項に記載の水処理方法または水処理装置。

【請求項13】

前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が銀で構成されていることを特徴とする請求項1~11のいずれか1項に記載の水処理方法または水処理装置。

【請求項14】

前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が錫で構成されていることを特徴とする請求項1~11のいずれか1項に記載の水処理方法または水処理装置。

【請求項15】

前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属がアルミニウムで構成されていることを特徴とする請求項1~11のいずれか1項に記載の水処理方法または水処理装置。

【請求項16】

前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属がマグネシウムで構成されていることを特徴とする請求項1~11のいずれか1項に記載の水処理方法または水処理装置。

【請求項17】

前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が鉄で構成されていることを特徴とする請求項1~11のいずれか1項に記載の水処理方法または水処理装置。

1/

【書類名】明細書

【発明の名称】水処理方法および水処理装置

【技術分野】

[0001]

本発明は、花瓶や花器、水槽、池、湖、プール、冷却塔、クーリングタワー、風呂、トイレのロータンクおよび循環水管路等に収容される全ての水の他に、例えば、医科や医療器具等の殺菌洗浄処理に用いられる洗浄水の製造に適用される水処理方法、および、水を収容した花瓶や花器、水槽、池、湖、プール、冷却塔、クーリングタワー、風呂の浴槽内、トイレのロータンク内、循環水管路等の水中に没した状態で使用される他に、例えば、取水口等のスクリーンや、医科や医療器具等の殺菌洗浄処理に用いられる洗浄水の製造に使用される水処理装置に関する。

【背景技術】

[0002]

水処理の内容としては以下に列挙するように種々のものがあり、従来それぞれに対応策が取られていた。

1. 切り花の延命を目的とした水処理

従来のこの種の水処理としては、例えば、界面活性剤および解膠剤から選ばれる少なくとも1種のコロイド保護剤と金属銀コロイドとからなる延命剤を用いる方法ある(例えば、特許文献1参照)。

[0003]

2. 池、湖、閉鎖期間中のプールの水等のように流れや入れ替わりのない水に発生するあおこの発生防止を目的とした水処理

従来のこの種の水処理としては、例えば、水中に強磁場を作ることによりあおこ発生を 防止するようにしたものがある(例えば、特許文献2参照)。

[0004]

3. プールや風呂におけるレジネオラ菌等の菌類の殺菌を目的とした水処理

従来のこの種の水処理としては、例えば、塩素剤、オゾンガス、紫外線により殺菌処理 するようにしたもの(例えば、特許文献3参照)や、無隔膜電解槽の電極に直流電圧を印 加して電解殺菌するようにしたものがある(例えば、特許文献4参照)。

[0005]

4. 透明水槽等の壁面につく藻類の発生防止を目的とした水処理

従来のこの種の水処理としては、例えば、光り触媒反応器やイオン交換処理器を用いるようにしたものがある(例えば、特許文献5参照)。

[0006]

5. 濁水等における不純物の凝集沈殿を目的とした水処理

従来のこの種の水処理としては、例えば、濁水中に複数の電極を挿入して電圧を印加し、浮遊微粒子を凝集沈殿させるようにしたものがある(例えば、特許文献6参照)。

[0007]

【特許文献1】特開平11-158003号公報

【特許文献2】特開2001-137860号公報

【特許文献3】特開2002-86168号公報

【特許文献4】特開2002-219463号公報

【特許文献5】特開2003-23917号公報

【特許文献6】特開2002-282861号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

1. 切り花の延命を目的とした水処理

従来例 (例えば、特許文献 1 参照) の界面活性剤および解膠剤からなる延命剤による方法では、水を変える度に延命剤を注入させる必要があるため、コストが高くつくという問

出証特2006-3032391

題がある。

[0009]

2. 池、湖、閉鎖期間中のプールの水等のように流れや入れ替わりのない水に発生するあ おこの発生防止を目的とした水処理

従来例(例えば、特許文献2参照)の水中に強磁場を作る方法では、強磁場を発生させ るための装置にコストがかかるという問題がある。

[0010]

3.プールや風呂におけるレジネオラ菌等の菌類の殺菌を目的とした水処理

従来例(例えば、特許文献3参照)の塩素剤、オゾンガス、紫外線により殺菌処理する ものにあっては、オゾンガス発生装置にコストかかると共に、該装置の稼働に電源を必要 とし、かつ大量の塩素剤を消費するため、ランニングコストが高くつくという問題がある

また、従来例(例えば、特許文献4参照)の無隔膜電解槽の電極に直流電圧を印加して 電解殺菌する方法にあっても、装置にコストがかかると共に、該装置の稼働に電源を必要 とするためランニングコストが高くつくという問題がある。

[0011]

4. 透明水槽等の壁面につく藻類の発生防止を目的とした水処理

従来例(例えば、特許文献5参照)の光り触媒反応器やイオン交換処理器を用いるもの にあっては、コストが高くつくという問題がある。

$[0\ 0\ 1\ 2\]$

5. 濁水等における不純物の凝集沈殿を目的とした水処理

従来例(例えば、特許文献6参照)の濁水中に複数の電極を挿入して電圧を印加する方 法にあっては、電源を必要とするため、ランニングコストが高くつくという問題がある。

$[0\ 0\ 1\ 3\]$

本発明は、かかる従来の問題点を解決するためになされたものであって、その目的とす るところは、上述のような各種の処理を目的とした水処理を、低コストにて効率的に行う ことができる水処理方法および水処理装置を提供することにある。

【課題を解決するための手段】

$[0\ 0\ 1\ 4\]$

前記目的を達成するための手段として、請求項1記載の水処理方法は、イオン化傾向(電位)の異なる2種類の異種金属を互いに密着させた状態で処理すべき水中に没する状態 とすることにより、前記2種類の異種金属のうちイオン化傾向の小さい電位の高い方の金 属の腐蝕を防止しようとして電位の低い方の金属から高い方の金属へ電子を移動させるイ オン化傾向の大きい電位の低い方の金属の犠牲腐蝕作用により該イオン化傾向の大きい電 位の低い方の金属から金属イオンを永続的に溶出させ、この金属イオンで所定の水処理を 行うようにしたことを特徴とする手段とした。

$[0\ 0\ 1\ 5]$

請求項2記載の水処理装置は、処理すべき水中に没する状態で使用される水処理装置で あって、イオン化傾向(電位)の異なる2種類の異種金属が互いに密着した状態で備えら れた構成とすることにより、前記2種類の異種金属のうちイオン化傾向の小さい電位の高 い方の金属の腐蝕を防止しようとして電位の低い方の金属から高い方の金属へ電子を移動 させるイオン化傾向の大きい電位の低い方の金属の犠牲腐蝕作用により該イオン化傾向の 大きい電位の低い方の金属から金属イオンを永続的に溶出させ、この金属イオンで所定の 水処理が行われるように構成されていることを特徴とする手段とした。

[0016]

請求項3記載の水処理方法または水処理装置は、請求項1に記載の水処理方法または請 求項2に記載の水処理装置において、前記2種類の異種金属のうちのいずれか一方の金属 に対しもう一方の金属がメッキされることによって互いに密着されていることを特徴とす る手段とした。

[0017]

請求項4記載の水処理方法または水処理装置は、請求項3に記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向の大きい電位の低い方の金属に対しイオン化傾向の小さい電位の高い方の金属がメッキされることによって互いに密着されていることを特徴とする手段とした。

[0018]

請求項5記載の水処理方法または水処理装置は、請求項1に記載の水処理方法または請求項2に記載の水処理装置において、前記2種類の異種金属のうちのいずれか一方の金属に対しもう一方の金属がクラッド法によって互いに密着されていることを特徴とする手段とした。

[0019]

請求項6記載の水処理方法または水処理装置は、請求項3~5のいずれか1項に記載の水処理方法または水処理装置において、前記メッキされた金属またはクラッド法で密着された一方の金属をケガキや溝切り等で多数個所切削除去してもう一方の金属を露出させることにより、前記2種類の異種金属の接触境界部分が多数形成されていることを特徴とする手段とした。

[0020]

請求項7記載の水処理方法または水処理装置は、請求項3~5のいずれか1項記載の水処理方法または水処理装置において、前記2種類の異種金属を貫く多数の貫通孔を切削しもしくは打ち抜くことにより、前記多数の貫通孔の開口縁部に2種類の異種金属の接触境界部分が多数形成されていることを特徴とする手段とした。

[0021]

請求項8記載の水処理方法または水処理装置は、請求項3~5のいずれか1項に記載の水処理方法または水処理装置において、前記2種類の異種金属からなる板材に千鳥状に切れ目を入れて押し広げて略菱形網目状に加工することにより、各切れ目部分に2種類の異種金属の接触境界部分が多数形成されていることを特徴とする手段とした。

[0022]

請求項9記載の水処理方法または水処理装置は、請求項3~5のいずれか1項に記載の水処理方法または水処理装置において、前記2種類の異種金属の接触面と略直交する方向に切断して針金状に形成することにより、長手方向に沿った両側切断面に前記2種類の異種金属の接触境界部分が形成されていることを特徴とする手段とした。

[0023]

請求項10記載の水処理方法または水処理装置は、請求項3~5のいずれか1項に記載の水処理方法または水処理装置において、前記2種類の異種金属のいずれか一方の金属が糸状に形成され、該糸状金属の表面の一部にもう一方の金属がメッキされていることを特徴とする手段とした。

[0024]

請求項11記載の水処理方法または水処理装置は、請求項3または4に記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向の大きい電位の低い方の金属がパイプで構成され、イオン化傾向の小さい電位の高い方の金属が前記イオン化傾向の大きい電位の低い方の金属で構成されるパイプの外面側にメッキされることによって互いに密着されていることを特徴とする手段とした。

[0025]

請求項12記載の水処理方法または水処理装置は、請求項1~11のいずれかに記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が銅で構成されていることを特徴とする手段とした。

[0026]

請求項13記載の水処理方法または水処理装置は、請求項1~11のいずれかに記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が銀で構成されていることを特徴とする手段とした。

[0027]

請求項14記載の水処理方法または水処理装置は、請求項1~11のいずれかに記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が錫で構成されていることを特徴とする手段とした。

[0028]

請求項15記載の水処理方法または水処理装置は、請求項1~11のいずれかに記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属がアルミニウムで構成されていることを特徴とする手段とした。

[0029]

請求項16記載の水処理方法または水処理装置は、請求項1~11のいずれかに記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属がマグネシウムで構成されていることを特徴とする手段とした。

[0030]

請求項17記載の水処理方法または水処理装置は、請求項1~11のいずれかに記載の水処理方法または水処理装置において、前記2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属が鉄で構成されていることを特徴とする手段とした。

【発明の効果】

[0031]

本発明請求項1記載の水処理方法では、上述のように、イオン化傾向(電位)の異なる 2種類の異種金属を互いに密着させた状態で処理すべき水中に没する状態とすることにより、2種類の異種金属のうちイオン化傾向の小さい電位の高い方の金属の腐蝕を防止しようとして電位の低い方の金属から高い方の金属へ電子を移動させるイオン化傾向の大きい電位の低い方の金属の犠牲腐蝕作用により該イオン化傾向の大きい電位の低い方の金属から金属イオンを永続かつ効率的に溶出させることができ、この水中に溶出した金属イオンが持つ所定の機能により所定の水処理を効率的に行うことができる。

以上のように、この水処理方法にあっては、異種金属を互いに密着させただけの極めて 簡単な構造のものを用いるだけであり、かつ、ランニングコストもかからないため、所定 の水処理を低コストにて効率的に行うことができるようになるという効果が得られる。

[0032]

請求項2記載の水処理装置では、上述のように、イオン化傾向(電位)の異なる2種類の異種金属が互いに密着した状態で備えられた構成とすることにより、これを処理すべき水中に単に没した状態としておくだけで、2種類の異種金属のうちイオン化傾向の小さい電位の高い方の金属の腐蝕を防止しようとして電位の低い方の金属から高い方の金属へ電子を移動させるイオン化傾向の大きい電位の低い方の金属の犠牲腐蝕作用により該イオン化傾向の大きい電位の低い方の金属の様性腐蝕作用により該イオン化傾向の大きい電位の低い方の金属から金属イオンを永続かつ効率的に溶出させ、水中に溶出した金属イオンが持つ所定の機能により所定の水処理を効率的に行うことができる。

以上のように、この水処理装置にあっては、異種金属を互いに密着させただけの極めて 簡単な構造であり、かつ、ランニングコストもかからないため、所定の水処理を低コスト にて効率的に行うことができるようになるという効果が得られる。

[0033]

請求項3記載の水処理方法または水処理装置では、上述のように、2種類の異種金属のうちのいずれか一方の金属に対しもう一方の金属をメッキすることによって互いに密着させるようにすることにより、容易かつ確実に密着状態とすることができるようになると共に、造作性、取扱い作業性にも優れる。

また、以上のように、2種類の異種金属の全面が確実に密着された状態になるため、イオン化傾向の大きい電位の低い方の金属から金属イオンが溶出されることにより該金属が減少しても、両金属が分離されることがなく、従って、イオン化傾向の大きい電位の低い方の金属が完全になくなるまで金属イオンを永続的に溶出させることができるようになる

[0034]

請求項4記載の水処理方法または水処理装置では、上述のように、前記2種類の異種金 出証特2006-3032391

5/

属のうちイオン化傾向の大きい電位の低い方の金属に対しイオン化傾向の小さい電位の高 い方の金属がメッキされることによって互いに密着されている構成とすることにより、金 属イオンが溶出して減少するのはイオン化傾向が大きい電位の低い方の金属であるため、 特にメッキされるイオン化傾向の小さい電位の高い方の金属が銀等のように高価である場 合においては、原価コストの大幅な低減が可能となる。

[0035]

請求項5記載の水処理方法または水処理装置では、上述のように、2種類の異種金属の うちのいずれか一方の金属に対しもう一方の金属をクラッド法によって互いに密着させる ようにすることで、容易かつ確実に密着状態とすることができるようになる。

また、以上のように、2種類の異種金属の全面が確実に密着された状態になるため、イ オン化傾向の大きい電位の低い方の金属から金属イオンが溶出されることにより該金属が 減少しても、両金属が分離されることがなく、従って、イオン化傾向の大きい電位の低い 方の金属が完全になくなるまで金属イオンを永続的に溶出させることができるようになる

[0036]

請求項5記載の水処理方法または水処理装置では、上述のように、前記メッキされた金 属またはクラッド法で密着された一方の金属をケガキや溝切り等で多数個所切削除去して もう一方の金属を露出させることにより、2種類の異種金属の接触境界部分が多数形成さ れた構成とすることにより、金属イオンの溶出量を多くすることができるようになる。即 ち、異種金属の境界部分が最も電子が移動して犠牲腐触作用が激しくおこる部分で金属イ オンの溶出量が多いため、単位面積当たりの金属イオンの溶出量を多くすることができる ようになる。

[0037]

請求項6記載の水処理方法または水処理装置では、上述のように、前記2種類の異種金 属を貫く多数の貫通孔を切削しもしくは打ち抜くことにより、多数の貫通孔の開口縁部に 2種類の異種金属の接触境界部分が多数形成されている構成とすることにより、2種類の 異種金属の接触境界部分が多数形成された構成とすることにより、単位面積当たりの金属 イオンの溶出量を多くすることができるようになる。

[0038]

請求項7記載の水処理方法または水処理装置では、前記2種類の異種金属からなる板材 に千鳥状に切れ目を入れて押し広げて略菱形網目状に加工することにより、各切れ目部分 に2種類の異種金属の接触境界部分が多数形成されている構成とすることにより、材料を 無駄にすることなしに、単位面積当たりの金属イオンの溶出量を多くすることができるよ うになる。

また、金属を押し広げることにより金属が脆弱化して腐触し易くなり、これにより、金 属イオンの溶出量を増やすことができるようになる。

また、切れ目部分が多数形成されることで、通水性が確保されるため、流れがある部分 において特に威力を発揮させることができるようになる。

[0039]

請求項8記載の水処理方法または水処理装置では、上述のように、前記2種類の異種金 属の接触面と略直交する方向に切断して針金状に形成することにより、長手方向に沿った 両側切断面に前記2種類の異種金属の接触境界部分が形成されている構成とすることによ り、単位面積当たりの金属イオンの溶出量を多くすることができるようになる。

また、針金状に形成することにより、例えば、水処理が必要な花束を結束する針金等と して利用することが可能になる。また、水処理すべき水中の任意の物体に巻つけることに より、固定手段を用いることなしに、水中で所定の位置に安定させることができるように なる。

[0040]

請求項9記載の水処理方法または水処理装置では、上述のように、前記2種類の異種金 属のいずれか一方の金属が糸状に形成され、該糸状金属の表面の一部にもう一方の金属が メッキされた構成とすることにより、単位面積当たりの金属イオンの溶出量を多くすることができるようになる。

また、この糸状に形成することにより、これをより糸やロープに編み込み、または、布 地等に織り込み、さらに、この糸状に形成されたものを多数編み込み、もしくは不織布状 に形成することが可能となり、これにより、その用途を大幅に広げることができるように なる。

[0041]

請求項10記載の水処理方法または水処理装置では、2種類の異種金属のうちイオン化傾向の大きい電位の低い方の金属をパイプで構成し、イオン化傾向の小さい電位の高い方の金属をパイプの外面側にメッキすることによって互いに密着させるようにすることにより、パイプの両端開口部に栓をした状態でメッキすれば、パイプの外面側にのみ容易にメッキを施すことができるようになる。そして、犠牲腐蝕作用により腐蝕するのは、イオン化傾向の大きい電位の低い方の金属で構成されるパイプの内面側のみであるため、外見を綺麗な状態に維持させることができるようになる。

[0042]

請求項12記載の水処理方法または水処理装置では、上述のように、2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属を銅で構成することにより、処理すべき水中に銅イオンが永続かつ効率的に溶出され、この銅イオンによる殺菌作用および殺薬作用が得られる。

[0043]

従って、この発明を花瓶や花器等に収容された水に適用することにより、花瓶や花器内 等の水中における雑菌の繁殖を防止し、水中に没した切り花の茎の腐敗が抑制されると共 に、雑菌その他の不純物が切り花等の導管に詰まることで水の吸い上げを悪くして切り花 等を早期に枯らすことが抑制され、その結果、切り花等を長期間に亙り生きの良い状態に 維持させるという延命機能が発揮される。

[0044]

また、この発明を風呂の浴槽やプール等に収容される水に適用することにより、レジネオラ菌等の菌類の発生を防止することができるようになるし、循環水管路やトイレのロータンク内等に適用することにより、雑菌の繁殖を防止できるようになる。

[0045]

また、この発明を水槽に適用することにより、透明な水槽壁面につく藻類の発生を防止することができるようになるし、冷却塔やクーリングタワー等に適用することにより、藻の付着による定期的な清掃を回避できるようになる。

[0046]

また、この発明を池、湖、閉鎖期間中のプール等のように流れや入れ替わりのない水に 適用することで、殺薬作用により、あおこの発生を防止することができるようになる。

[0047]

請求項13記載の水処理方法または水処理装置では、上述のように、2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属を銀で構成することにより、処理すべき水中に銀イオンが永続かつ効率的に溶出され、この銀イオンによる殺菌作用が得られる。

[0048]

請求項14記載の水処理方法または水処理装置では、上述のように、2種類の異種金属のうちイオン化傾向が大きい電位の低い方の金属を錫で構成することにより、処理すべき水中に錫イオンが永続かつ効率的に溶出され、この錫イオンによる防腐作用および清浄作用が得られる。

[0049]

従って、この発明を花瓶や花器等に収容された水に適用することにより、花瓶や花器内 等に収容された水の腐敗が大幅に遅延され、水中に没した切り花の茎の腐敗が抑制される と共に、腐敗による不純物が切り花等の導管に詰まることで水の吸い上げを悪くして切り 花等を早期に枯らすことが抑制され、その結果、切り花等を長期間に亙り生きの良い状態 に維持させるという延命機能が発揮される。

また、水槽に適用することにより、長期に亙って水をきれいな状態に維持させることが できるようになる。

[0050]

請求項15記載の水処理方法または水処理装置では、上述のように、2種類の異種金属 のうちイオン化傾向が大きい電位の低い方の金属をアルミニウムで構成することにより、 処理すべき水中にアルミニウムイオンが永続かつ効率的に溶出され、このアルミニウムイ オンによる凝集沈殿作用により、不純物を沈殿させ、水を澄んだ状態にすることができる

[0051]

従って、例えば、この発明と前記請求項9記載の発明とを併用することにより、銅イオ ンにより殺藻されたあおこをアルミニウムイオンにより凝集させて底部に沈殿させること ができるようになる。

[0052]

請求項16記載の水処理方法または水処理装置では、2種類の異種金属のうちイオン化 傾向が大きい電位の低い方の金属をマグネシウムで構成することにより、処理すべき処理 水にマグネシウムイオンを永続かつ効率的に溶出することができる。

従って、例えば、この発明を飲料水に適用することにより、マグネシウムを容易に摂取 することができるようになる。

[0053]

請求項17記載の水処理方法または水処理装置では、前記2種類の異種金属のうちイオ ン化傾向が大きい電位の低い方の金属を鉄で構成することにより、処理すべき処理水に鉄 イオンを永続かつ効率的に溶出することができる。

従って、例えば、川、湖、海水等に適用することにより、溶出された鉄イオンにより、 水性植物を活性化させることができるようになる。

【発明を実施するための最良の形態】

[0054]

以下、本発明の実施例を詳細に説明する。

(実施例1)

この実施例1の水処理装置は、図1(平面図)および図2(図1のII-II線における拡 大断面図) に示すように、イオン化傾向 (電位) の異なる 2 種類の異種金属 1 、 2 のうち の一方の金属1の一部にもう一方の金属2をメッキすることにより、両金属1、2を互い に密着させた構造としたものである。

[0055]

さらに詳述すると、この実施例1の水処理装置は、イオン化傾向(電位)の異なる2種 類の異種金属1、2として、イオン化傾向が大きい電位の低い方の金属1である銅(С u) の板の片面に、銅よりはイオン化傾向の小さい電位の高い金属 2 である銀 (Ag) をメ ッキすることにより、銅と銀を互いに密着させた構成としたものである。

[0056]

この実施例1の水処理装置は、以上のように構成されるため、この水処理装置を、処理 すべき水中に単に没した状態としておくだけで、銅(Cu)単独でも水中で酸化腐触して 金属イオンを溶出するが、それと同時に2種類の異種金属1、2のうちイオン化傾向の小 さい電位の高い方の金属2である銀(Ag)の腐蝕を防止しようとして電位の低い方の金 属から高い方の金属へ電子を移動させるイオン化傾向の大きい電位の低い方の金属1であ る銅(Cu)の犠牲腐蝕作用により該イオン化傾向の大きい電位の低い方の金属1である 銅(Cu)から銅イオンが永続かつ効率的に溶出されるもので、この水中に溶出した銅イ オンが持つ殺菌作用および殺薬作用により、殺菌および殺薬効果が得られる。

[0057]

従って、この発明を花瓶や花器等に収容された水に適用することにより、花瓶や花器内

等の水中における雑菌の繁殖を防止し、水中に没した切り花の茎の腐敗が抑制されると共に、雑菌その他の不純物が切り花等の導管に詰まることで水の吸い上げを悪くして切り花等を早期に枯らすことが抑制され、その結果、切り花等を長期間に亙り生きの良い状態に維持させるという延命機能が発揮される。

[0058]

また、この発明を風呂の浴槽やプール等に収容される水に適用することにより、レジネオラ菌等の菌類の増殖を防止することができるようになるし、循環水管路やトイレのロータンク内等に適用することにより、雑菌の繁殖を防止できるようになる。

[0059]

また、この発明を水槽に適用することにより、透明な水槽壁面につく藻類の発生を防止することができるようになるし、冷却塔やクーリングタワー等に適用することにより、藻の付着による定期的な清掃を回避できるようになる。

[0060]

また、この発明を池、湖、閉鎖期間中のプール等のように流れや入れ替わりのない水に 適用することにより、殺薬作用により、あおこの発生を防止することができるようになる

[0061]

以上のように、この水処理装置にあっては、異種金属1、2を互いに密着させただけの極めて簡単な構造であり、かつ、ランニングコストもかからないため、所定の水処理(殺菌および殺薬処理)を低コストにて効率的に行うことができるようになるという効果が得られる。

[0062]

また、2種類の異種金属1、2のうちのいずれか一方の金属に対しもう一方の金属をメッキすることによって互いに密着させた構成とすることにより、容易かつ確実に密着状態とすることができるようになると共に、造作性、取扱い作業性にも優れる。

また、銅に対し銀をメッキするようにしたことで、高価な銀の使用量を少なくすることができ、これにより全体としてコストを低減化することができるようになる。

[0 0 6 3]

次に、この発明の他の実施例について説明する。なお、この他の実施例の説明にあたっては、前記実施例1と同様の構成部分についてはその図示を省略し、相違点についてのみ説明する。

(実施例2)

この実施例2の水処理装置は、2種類の異種金属1、2のうちイオン化傾向が大きい電位の低い方の金属が銀(Ag)で構成され、この銀(Ag)よりはイオン化傾向の小さい電位の高い金属が金(Au)で構成され、一方の金属に対しもう一方の金属をメッキすることにより、銀と金を互いに密着させた構成としたものである。

[0064]

この実施例2の水処理装置は、以上のように構成されるため、この水処理装置を、処理すべき水中に単に没した状態としておくだけで、2種類の異種金属1、2のうちイオン化傾向の小さい電位の高い方の金属である金(Au)の腐蝕を防止しようとして電位の低い方の金属から高い方の金属へ電子を移動させるイオン化傾向の大きい電位の低い方の金属である銀(Ag)の犠牲腐蝕作用により該イオン化傾向の大きい電位の低い方の金属である銀(Ag)から銀イオンが永続かつ効率的に溶出されるもので、この水中に溶出した銀イオンが持つ殺菌作用により、殺菌効果が得られる。

[0065]

(実施例3)

この実施例3の水処理装置は、2種類の異種金属1、2のうちイオン化傾向が大きい電位の低い方の金属が錫(Sn)で構成され、この錫(Sn)よりはイオン化傾向の小さい電位の高い金属が銅(Cu)または銀(Ag)で構成され、一方の金属に対しもう一方の金属をメッキすることにより、錫と銅または銀を互いに密着させた構成としたものである

9/

[0066]

この実施例3の水処理装置は、以上のように構成されるため、この水処理装置を、処理 すべき水中に単に没した状態としておくだけで、2種類の異種金属1、2のうちイオン化 傾向の小さい電位の高い方の金属である銅(Cu)または銀(Ag)の腐蝕を防止しよう として電位の低い方の金属から高い方の金属へ電子を移動させるイオン化傾向の大きい電 位の低い方の金属である錫(Sn)の犠牲腐蝕作用により該イオン化傾向の大きい電位の 低い方の金属である錫(Sn)から錫イオンが永続かつ効率的に溶出されるもので、この 水中に溶出した錫イオンが持つ防腐作用および清浄作用により、防腐および清浄効果が得 られる。

[0067]

従って、この発明を花瓶や花器等に収容された水に適用することにより、花瓶や花器内 等に収容された水の腐敗が大幅に遅延され、水中に没した切り花の茎の腐敗が抑制される と共に、腐敗による不純物が切り花等の導管に詰まることで水の吸い上げを悪くして切り 花等を早期に枯らすことが抑制され、その結果、切り花等を長期間に亙り生きの良い状態 に維持させるという延命機能が発揮される。

また、水槽に適用することにより、長期に亙って水をきれいな状態に維持させることが できるようになる。

[0068]

(実施例4)

この実施例4の水処理装置は、2種類の異種金属1、2のうちイオン化傾向が大きい電 位の低い方の金属がアルミニウム(Al)で構成され、このアルミニウム(Al)よりは イオン化傾向の小さい電位の高い金属が錫(Sn)、銅(Cu)、銀(Ag)等で構成さ れ、一方の金属に対しもう一方の金属をメッキすることにより、アルミニウムと錫、銅、 銀等を互いに密着させた構成としたものである。

$[0\ 0\ 6\ 9\]$

この実施例4の水処理装置は、以上のように構成されるため、この水処理装置を、処理 すべき水中に単に没した状態としておくだけで、2種類の異種金属1、2のうちイオン化 傾向の小さい電位の高い方の金属である錫(Sn)、銅(Cu)、銀(Ag)等の腐蝕を 防止しようとして電位の低い方の金属から高い方の金属へ電子を移動させるイオン化傾向 の大きい電位の低い方の金属であるアルミニウム(Al)の犠牲腐蝕作用により該イオン 化傾向の大きい電位の低い方の金属1であるアルミニウム(A1)からアルミニウムイオ ンが永続かつ効率的に溶出されるもので、この水中に溶出したアルミニウムイオンが持つ 凝集沈殿作用により、凝集沈殿効果が得られる。

[0070]

従って、例えば、この実施例4と前記実施例1とを併用することにより、銅イオンによ り殺藻されたあおこをアルミニウムイオンにより凝集させて底部に沈殿させることができ るようになる。

[0071]

(実施例5)

この実施例5の水処理装置は、2種類の異種金属1、2のうちイオン化傾向が大きい電 位の低い方の金属がマグネシウム(Mg)で構成され、このマグネシウム(Mg)よりは イオン化傾向の小さい電位の高い金属が錫(Sn)、銅(Cu)、銀(Ag)等で構成さ れ、一方の金属に対しもう一方の金属をクラッド法により密着させることにより、マグネ シウムと錫、銅、銀等を互いに密着させた構成としたものである。

[0072]

この実施例5の水処理装置は、以上のように構成されるため、この水処理装置を、処理 すべき水中に単に没した状態としておくだけで、2種類の異種金属1、2のうちイオン化 傾向の小さい電位の高い方の金属である錫(Sn)、銅(Cu)、銀(Ag)等の腐蝕を 防止しようとして電位の低い方の金属から高い方の金属へ電子を移動させるイオン化傾向 の大きい電位の低い方の金属であるマグネシウム(Mg)の犠牲腐蝕作用により該イオン 化傾向の大きい電位の低い方の金属 1 であるマグネシウム(Mg) からマグネシウムイオ ンが永続かつ効率的に溶出される。

従って、例えば、この実施例 5 を飲料水に適用することにより、マグネシウムを容易に 摂取することができるようになる。

[0073]

(実施例6)

この実施例6の水処理装置は、2種類の異種金属1、2のうちイオン化傾向が大きい電 位の低い方の金属が鉄(Fe)で構成され、この鉄(Fe)よりはイオン化傾向の小さい 電位の高い金属が錫(Sn)で構成され、一方の金属に対しもう一方の金属をメッキする ことにより、鉄と錫を互いに密着させた構成としたものである。

[0074]

この実施例6の水処理装置は、以上のように構成されるため、この水処理装置を、処理 すべき水中に単に没した状態としておくだけで、2種類の異種金属1、2のうちイオン化 傾向の小さい電位の高い方の金属である錫(Sn)の腐蝕を防止しようとして電位の低い 方の金属から高い方の金属へ電子を移動させるイオン化傾向の大きい電位の低い方の金属 である鉄(Fe)の犠牲腐蝕作用により該イオン化傾向の大きい電位の低い方の金属1で ある鉄(Fe)から鉄イオンが永続かつ効率的に溶出される。

従って、例えば、この実施例6を川や湖の水、または海水等に適用することにより、水 性植物を活性化させることができるようになる。

[0075]

(実施例7)

この実施例7の水処理装置は、図3(平面図)および図4(図3のIV-IV線における拡 大断面図) に示すように、イオン化傾向(電位)の異なる2種類の異種金属1、2のうち の一方の薄板状金属 1 の表裏全面にもう一方の金属 2 をメッキすることにより、両金属 1 、2を互いに密着させると共に、前記メッキされた金属2をケガキや溝切り等で多数個所 切削除去してもう一方の金属1を露出させることにより、前記切削除去部分3に沿って2 種類の異種金属1、2の接触境界部分が多数形成された構成とした点が前記実施例1~6 とは相違したものである。

[0076]

この実施例7の水処理装置は、以上のように構成されることにより、金属イオンの溶出 量を多くすることができるようになる。即ち、異種金属1、2の境界部分が最も電子が移 動して犠牲腐触作用が激しくおこる部分で金属イオンの溶出量が多いため、単位面積当た りの金属イオンの溶出量を多くすることができるようになる。

[0077]

(実施例8)

この実施例8の水処理装置は、図5(平面図)および図6(図5のVI-VI線における拡 大断面図) に示すように、イオン化傾向(電位)の異なる2種類の異種金属1、2のうち の一方の薄板状金属1の表裏全面にもう一方の金属2をメッキすることにより、両金属1 2 を互いに密着させると共に、前記 2 種類の異種金属 1 、 2 を貫く多数の貫通孔 4 を切 削しもしくは打ち抜くことにより、多数の貫通孔4の開口縁部側内周面に2種類の異種金 属1、2の接触境界部分が多数形成されている構成とした点が、前記実施例1~7とは相 違したものである。

[0078]

この実施例8の水処理装置は、以上のように構成されることにより、金属イオンの溶出 量を多くすることができるようになる。即ち、異種金属1、2の境界部分が最も金属イオ ンの溶出量が多いため、内周面が金属イオンの溶出部となる貫通孔4を多数形成すること により、単位面積当たりの金属イオンの溶出量を多くすることができるようになる。

また、水中の底面等に片方の面が密着したとしても、貫通孔4の一方の開口部は常に開 放状態になるため、金属イオンの溶出効率を低下させることがなく、これにより、水中に 単に投入するだけで最大の効果をあげることができるようになる。

[0079]

(実施例9)

この実施例9の水処理装置は、図7(平面図)および図8(図7のVIII-VIII線における拡大断面図)に示すように、イオン化傾向(電位)の異なる2種類の異種金属1、2のうちの一方の薄板状金属1の表裏全面にもう一方の金属2をメッキすることにより、両金属1、2を互いに密着させると共に、前記2種類の異種金属1、2の接触面と略直交する方向に切断して針金状に形成することにより、長手方向に沿った両側切断面に前記2種類の異種金属1、2の接触境界部分が形成されている構成とした点が、前記実施例1~8とは相違したものである。

[0080]

この実施例9の水処理装置は、以上のように構成されることにより、金属イオンの溶出量を多くすることができるようになる。即ち、異種金属1、2の境界部分が最も金属イオンの溶出量が多いため、単位面積当たりの金属イオンの溶出量を多くすることができるようになる。

また、針金状に形成することにより、例えば、水処理が必要な花束を結束する針金等として利用することが可能になる。また、水処理すべき水中の任意の物体に巻つけることにより、固定手段を用いることなしに、水中で所定の位置に安定させることができるようになる。

[0081]

(実施例10)

この実施例10の水処理装置は、図9(平面図)および図10(図9のX-X線における拡大断面図)に示すように、2種類の異種金属のうちイオン化傾向の大きい電位の低い方の金属1をパイプで構成し、イオン化傾向の小さい電位の高い方の金属2をパイプの外面側にメッキすることによって互いに密着させるようにした点が、前記実施例1~9とは相違したものである。

従って、パイプの両端開口部に栓をした状態でメッキすれば、パイプの外面側にのみ容易にメッキを施すことができるようになる。そして、犠牲腐蝕作用により腐蝕するのは、イオン化傾向の大きい電位の低い方の金属1で構成されるパイプの内面側のみであるため、外見を綺麗な状態に維持させることができるようになるという追加の効果が得られる。

[0082]

(実施例11)

この実施例11の水処理装置は、図11 (平面図) および図12 (図11のXI-XI線における拡大断面図) に示すように、イオン化傾向(電位)の異なる2種類の異種金属1、2のうちの一方の薄板状金属1の表裏全面にもう一方の金属2をメッキすることにより、両金属1、2を互いに密着させた板材をに、千鳥状に切れ目を入れて押し広げて略菱形網目状に加工することにより、押し広げられた各切れ目部分5に2種類の異種金属1、2の接触境界部分が多数形成されている構成とした点が、前記実施例1~10とは相違したものである。

[0083]

この実施例11の水処理装置は、以上のように構成されることにより、金属イオンの溶出量を多くすることができるようになる。即ち、異種金属1、2の境界部分が最も金属イオンの溶出量が多いため、金属イオンの溶出部となる切れ目部分5が多数形成されることにより、単位面積当たりの金属イオンの溶出量を多くすることができるようになる。

また、材料を無駄にすることなしに、単位面積当たりの金属イオンの溶出量を多くすることができるようになる。

また、各切れ目を押し広げることにより金属が脆弱化して腐触し易くなり、これにより、金属イオンの溶出量を増やすことができるようになる。

また、切れ目部分5が多数形成されることで、通水性が確保されるため、流れがある部分において特に威力を発揮することができるようになる。

[0084]

(実施例12)

この実施例12の水処理装置は、図13 (拡大平面図) および図14 (図13の XIV-XIV 線における拡大断面図)に示すように、イオン化傾向(電位)の異なる2種類の異種 金属1、2のうちの一方の金属が極細の糸状に形成され、該糸状金属1の表面の一部にも う一方の金属2がメッキされた構成とすることにより、細い糸状金属1の表面に異種金属 1、2の接触境界部分が多数形成されている構成とした点が、前記実施例1~11とは相 違したものである。

即ち、この実施例12では、糸状金属1の表面にもう一方の金属2がその長手方向に沿 って線状に、かつ、周方向等間隔のもとに複数メッキされている。

[0085]

この実施例12の水処理装置は、以上のように構成されることにより、これを糸やロー プに編み込み、または、布地等に織り込み、さらに、この糸状に形成されたものを多数編 み込み、もしくは不織布状に形成することが可能となり、これにより、その用途を大幅に 広げることができるようになる。

例えば、糸状金属1を銅、メッキ金属2を銀で構成し、これを不織布状に形成したもの を血液ろ過経路の途中に介装させておくことにより、銅より溶出された銅イオンによって 、血液を殺菌処理することができるようになる。また、カテーテルパイプの内壁に組み付 けておくようにしてもよい。

[0086]

以上本発明の実施例を説明してきたが、本発明は上述の実施例に限られるものではなく 、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。

[0087]

例えば、実施例では、イオン化傾向の大きい電位の低い金属として、アルミニウム(A 1)、銅 (Cu)、マグネシウム (Mg)、錫 (Sn)、銀 (Ag)、鉄 (Fe)を用い たが、それらの合金を用いることもできる。また、イオン化傾向の小さい電位の高い金属 としては実施例に例示した金属以外の任意の金属を用いることができる。

[0088]

また、実施例1では、イオン化傾向(電位)の異なる2種類の異種金属1、2として、 イオン化傾向が大きい電位の低い方の金属1の板の片面に、イオン化傾向の小さい電位の 高い方の金属2をメッキしたが、片面の全面にメッキする必要はなく、部分的でも一部で あってもよい。

[0089]

また、実施例では、一方の金属にもう一方の金属をメッキすることによって互いに密着 させるようにしたが、2種類の異種金属1、2のうちのいずれか一方の金属に対しもう一 方の金属をクラッド法によって互いに密着させるようにすることで、容易かつ確実に密着 状態とすることができるようになる。なお、このクラッド法には、圧延法、押し出し法、 引き抜き法、拡散法等がある。

[0090]

また、実施例では、2種類の異種金属1、2のうちのいずれか一方の金属を板状とし、 その片面に、もう一方の金属をメッキし、もしくは、一方の金属をパイプ状にし、該パイ プの外面にもう一方の金属をメッキするようにしたが、その形状は任意であり、あらゆる 形状にすることができる。

[0091]

また、実施例では、2種類の異種金属1、2のうちイオン化傾向の大きい電位の低い方 の金属を基材とし、イオン化傾向の小さい電位の高い方の金属をメッキするようにしたが 、逆であってもよい。

また、実施例7~11では、一方の金属の両面にもう一方の金属メッキしたが、片面の みであってもよい。

[0092]

また、実施例12では、糸状金属1の表面にもう一方の金属2をその長手方向に沿って 線状に、かつ、周方向等間隔のもとに複数メッキした例を示したが、その本数は任意であ り、また、その他に、螺旋状にメッキしたり、長手方向所定間隔のもとに環状にメッキす るようにしてもよい。また、糸状金属1の表面全体にもう一方の金属2をメッキした後、 けがき、切削、その他の方法にによりメッキを部分的に剥ぐようにしてもよい。

[0093]

また、実施例では、主に淡水の水処理について説明したが、淡水の他に、海水、血液そ の他全ての適用可能な液状体の処理に用いることができる。

[0094]

また、鉄(Fe)の板材をベースとし、その外表面全体にまずイオン化傾向の小さい電 位の高い方の金属(例えば、銅(Cu))をメッキした後、その片面または任意の一部分 にイオン化傾向の大きい電位の低い方の金属(例えば、錫(Sn))をメッキした構造と してもよい。このように構成することにより、材料コストを低減できるようになる。

【図面の簡単な説明】

[0095]

- 【図1】本発明実施例1の水処理装置を示す平面図である。
- 【図2】図1のII−II線における拡大断面図である。
- 【図3】本発明実施例7の水処理装置を示す平面図である。
- 【図4】 図3のIV−IV線における拡大断面図である。
- 【図5】本発明実施例8の水処理装置を示す平面図である。
- 【図6】図5のVI−VI線における拡大断面図である。
- 【図7】本発明実施例9の水処理装置を示す平面図である。
- 【図8】図7のVIII-VIII線における拡大断面図である。
- 【図9】本発明実施例10の水処理装置を示す平面図である。
- 【図10】図9のX-X線における拡大断面図である。
- 【図11】本発明実施例11の水処理装置を示す平面図である。
- 【図12】図11のXI-XI線における拡大端面図である。
- 【図13】本発明実施例12の水処理装置を示す拡大平面図である。
- 【図14】図13の XIV-XIV 線における拡大断面図である。

【符号の説明】

[0096]

- イオン化傾向の大きい電位の低い方の金属
- イオン化傾向の小さい電位の高い方の金属
- 3 切削除去部分
- 貫通孔 4
- 5 切れ目部分

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

[図12]

【図13】

6/E

【図14】

1/E

【書類名】要約書

【要約】

【課題】各種の処理を目的とした水処理を、低コストにて効率的に行うことができる水処 理方法および水処理装置の提供。

【解決手段】イオン化傾向(電位)の異なる2種類の異種金属1、2のうちの一方の金属 (銅 (Cu)) 1の片面にもう一方の金属(銀 (Ag)) 2をメッキすることにより、両 金属1、2を互いに密着させた構造とした水処理装置を、処理すべき水中に没した状態と することにより、2種類の異種金属のうちイオン化傾向の小さい電位の高い方の金属(銀 (Ag)) 2の腐蝕を防止しようとして電位の低い方の金属(銅(Cu)) 1から高い方 の金属(銀(Ag)) 2へ電子を移動させるイオン化傾向の大きい電位の低い方の金属(銅 (Cu)) 1の犠牲腐蝕作用によって、イオン化傾向の大きい電位の低い方の金属(銅 (Cu)) 1から金属(銅)イオンを溶出させ、この金属(銅)イオンで所定の水処理(殺菌、殺藻処理)が行われるように構成されている。

【選択図】

図 2

1/E

認定・付加情報

特許出願の番号 特願2003-368416

受付番号 50301791110

書類名 特許願

担当官 植田 晴穂 6992

作成日 平成15年12月 2日

<認定情報・付加情報>

【提出日】 平成15年10月29日

【特許出願人】 申請人

【識別番号】 399036202

【住所又は居所】 福岡県福岡市南区長住5丁目9番10号 コーポ

長住602号

【氏名又は名称】 城戸 敏弘

【特許出願人】

【識別番号】 593035696

【住所又は居所】 山口県宇部市大字際波103番地の74

【氏名又は名称】 杉本 幹生

【特許出願人】

【識別番号】 303056140

【住所又は居所】 山口県宇部市大字際波616番地

【氏名又は名称】 杉本 至健

【特許出願人】

【識別番号】 303056151

【住所又は居所】 山口県宇部市大字際波616番地

【氏名又は名称】 杉本 慧子

出願人履歴情報

識別番号

[399036202]

1. 変更年月日

1999年 6月 8日

[変更理由]

新規登録

住 所

福岡県福岡市南区長住5丁目9番10号 コーポ長住602号

氏 名 城戸 敏弘

出願人履歴情報

識別番号

[593035696]

1. 変更年月日

1993年 1月27日

[変更理由]

新規登録

住 所

山口県宇部市大字際波103番地の74

氏 名 杉本 幹生

2. 変更年月日

2004年 6月 4日

[変更理由]

住所変更

住 所

山口県宇部市大字際波616番地

氏 名

杉本 幹生

出願人履歴情報

識別番号

[303056140]

1. 変更年月日 [変更理由]

2003年10月 3日

住 所

新規登録 山口県宇部市大字際波616番地

氏 名

杉本 至健

出願人履歴情報

識別番号

[303056151]

1. 変更年月日

2003年10月 3日

[変更理由]

新規登録

住 所

山口県宇部市大字際波616番地

氏 名

杉本 慧子