FORCE: A Framework Of Rule-based Conversational REcommender System

Speaker: Qiang Gan

(qigan@microsoft.com)

Jun Quan^{1,2}, Ze Wei¹, Qiang Gan^{1*}, Jingqi Yao^{1,3}, Jingyi Lu¹, Yuchen Dong¹, Yiming Liu¹, Yi Zeng¹, Chao Zhang¹, Yongzhi Li¹, Huang Hu¹, Yingying He¹, Yang Yang¹ and Daxin Jiang¹

¹ STCA, Microsoft

² School of Computer Science and Technology, Soochow University, China ³ Donald Bren School of Information and Computer Sciences, University of California, Irvine

System Demo

System introduction

Dataset and Experiment

Background

- Why Conversational ?
 - Capture users' real-time feedback through interaction and then make better recommendation.

- Why FORCE ?
 - 1. Deep learning methods require plenty of annotated data for each domain.
 - 2. Unbearable time and financial cost for industrial products.
 - Imagine building a shopping guider bot in e-commerce field.
 - 3. Need a low-cost and interpretable approach.
 - Data + Configuration = CRS Bot

- FORCE: a low-cost and interpretable approach.
 - Data + Configuration = CRS Bot

System Demo

System introduction

Dataset and Experiment

A Please enter text here

System Demo

System introduction

Dataset and Experiment

System Overview

Knowledge Graph Reasoning

Query Understanding

"no"

Entity Ranking

Positive score to an entity:

- 1. Attributes preferred by user
- 2. Share attributes with mentioned entity

Negative score to an entity:

- 1. Attributes denied by user
- 2. Entity already mentioned by user
- 3. Entity already mentioned by bot

Bot Intent Prediction

Dialogue Act Generation

Response Generation

Response Generation Configuration ③

"queryTemplates": {

```
"director": [

"Which director's movies do you like ? E.g. {attributes}"
],

"genre": [

"What kind of movie do you like ? Such as {attributes}"
],

"actor": [

"Are there any actors or actresses that you like ? E.g. {attributes}"
],

"subject": [

"Do you have preference on the movie subject ? E.g. {attributes}"
],

"time": [

"What's the release time of movies do you prefer ? E.g. {attributes}"
],

"recommendTemplates": [

"You can try {entity}, it's a {genre} movie starred by {actor} and directed by {director}."
```

System Demo

System introduction

Dataset and Experiment

Dataset and Experiment

Dataset	Domain	Language	Dialogues	Turns	Knowledge Graph		
					Nodes	Edges	Entities
M-RD	Movie	English	54	324	2667	8908	246
DX	Medical	Chinese	527	1408	47	109	5

Movie domain

- We sample dialogues from ReDial dataset [1] to form the M-RD (Mini-ReDial)
- Sampling rule: 5-7 turn conversations with all Chat/Query/Recommend intent.

Medical domain

We reprocess a dataset on medical diagnosis named DX [2].

^[1] Li, Raymond, et al. "Towards deep conversational recommendations."

^[2] Xu, Lin, et al. "End-to-end knowledge-routed relational dialogue system for automatic diagnosis."

Dataset and Experiment

Movie Medical

Method	Bot Intent Prediction	Entity Recommendation			
11201130	Accuracy (%)	R@1 (%)	R@10 (%)	R@50 (%)	
Random (cold-start)	33.33	0.41	4.1	20.3	
Ours	67.28	4.37	16.50	50.97	

Method	Bot Intent Prediction	Entity Recommendation			
1/20/11/0	Accuracy (%)	R@1 (%)	R@2 (%)	R@3 (%)	
Random (cold-start) Ours	33.33 66.34	20.0 79.51	40.0 92.98	60.0 97.15	

Table 2: Results on the movie dataset M-RD.

Table 3: Results on the medical diagnosis dataset DX.

^[1] Ma, Wenchang, et al. "Bridging the Gap between Conversational Reasoning and Interactive Recommendation."

[•] CR-Walker on ReDial Precision: 67.8%, Entity Recall: 3.1%(R@1) / 15.5%(R@10) / 36.5%(R@50)

System Demo

System introduction

Dataset and Experiment

Summary

• We introduce FORCE, a framework to support developers in constructing cold-start CRS bots with good interpretability.

 We evaluate FORCE on two datasets in different languages and domains, which verified its effectiveness and usability.

CRS bots by FORCE can be used as a conversation collection tool.
 Developers can fine-tune each module later with deep learning models.

How to bridge the gap between academic research and industrial applications?

Integrating Pre-trained Model into Rule-based Dialogue Management (AAAI-2021 DEMO)

国际人工智能会议 AAAI 2022 论文北京预讲会

THANKS

2022.01.08

may the FORCE be with you