TIGHTER PROOFS OF CCA SECURITY IN THE QUANTUM RANDOM ORACL MODEL

TCC'19

Nurmberg, Germany 03/12/2019

Nina Bindel

Mike Hamburg
Kathrin Hövelmanns
Andreas Hülsing
Edoardo Persichetti

QUANTUM COMPUTING — STATE OF THE ART AND ESTIMATIONS

FUJISAKI-OKAMOTO TRANSFORM

$$\operatorname{Enc}_{\operatorname{d}}(\operatorname{pk}, \operatorname{m}) = \operatorname{Enc}_{\operatorname{r}}(\operatorname{pk}, \operatorname{m}; \mathbf{G}(\operatorname{\mathbf{m}}))$$

$c \leftarrow Enc$ $k \leftarrow H(m, c')$	$c_{d}(pk, m)$ $k \leftarrow H(m)$	+ Re-encryption return
$\Pi_{ op}$	U _m	⊥ - ''explicit''
U ^{\$}	U _m \$	\$ - ''implicit''

FORMER BOUNDS IN QROM

[HHK17]: original modular proofs in QROM; very non-tight

[SXY18]: tighter bounds using implicit rejection

[JZCWM18,JZM19]: further improvements

RELATED WORK

 δ -correct IND-CPA rPKE rP

$$dP = T[rP, G]$$

dPKE dP

IND-CCA KEM K

[HHK1*7*]

$$q_G\sqrt{\varepsilon_{rP}} \geq \varepsilon_{dP}$$

$$(q_H, +q_H)\sqrt{\epsilon_{dP}} \geq \epsilon_K$$

$$\epsilon_{rP} \geq \epsilon_{K}^{4}/q_{RO}^{6}$$
 F

For
$$K = \$$$
 or \bot

[SXY18, JZCWM18]:

$$q_G\sqrt{\epsilon_{rP}} \ge \epsilon_{dP}$$

$$\epsilon_{dP} \ge \epsilon_{K}$$

$$\epsilon_{\mathrm{rP}} \geq \epsilon_{\mathrm{K}}^2/q_{\mathrm{RO}}^2$$

For
$$K =$$
\$

[JZM19,HKSU18]:

$$\sqrt{q_G \epsilon_{rP}} \ge \epsilon_{dP}$$

$$\epsilon_{\mathrm{dP}} \geq \epsilon_{\mathrm{K}}$$

$$\varepsilon_{rP} \geq \varepsilon_K^2/q_{RO}$$

For
$$K = 333$$

This paper:

$$d\epsilon_{rP} \ge \epsilon_{dP}$$

$$\sqrt{\epsilon_{\mathrm{dP}}} \ge \epsilon_{\mathrm{K}}$$

$$\epsilon_{\rm rP} \ge \epsilon_{\rm K}^2/{\rm d}^2$$

For
$$K = \$$$
 or \bot

d= the max number of sequential invocations of the oracle $d\leq q$

$\textbf{CONTRIBUTION-IND-CCA SECURITY OF } \textbf{U}^{\$} \textbf{ IN QROM}$

RANDOM ORACLE VS. QUANTUM RANDOM ORACLE

Classical queries

- Queries and responses can be easily recorded
- Random oracle can be reprogrammed

• Queries in superposition

- Queries and responses are much harder to record [Zha19]
- Much harder to respond adaptevely/reprogramm oracle

Possible but leads to less tight bounds

UNRUH'S ONE-WAY TO HIDING (02H) LEMMA

 $S = G^{-1}(\square)$, A^H quantum oracle algorithm, q queries of depth $d \le q$ If $|\Pr[Ev: A^H(z)] - \Pr[Ev: A^G(z)]| = \delta > 0$, A asked some $x \in S$

Behavior can be observed by B

 $B \rightarrow x$ with probability ϵ

O2H variant	#S	Sim. must know	Bound
Original [Unr15]	Arbitrary	H or G	$\delta \le 2d\sqrt{\epsilon}$
Semi-classical [AHU19]	Arbitrary	(G or H) and S	$\delta \le 2\sqrt{d\epsilon}$
Double-sided [this work]	1	H and G	$\delta \le 2\sqrt{\epsilon}$

OW-CPA DETERMINISTIC PKE TO OW-CCA KEM

CONTRIBUTION — IND-CCA SECURITY OF U\$

CONTRIBUTION — RELATION OF U CONSTRUCTIONS

FUTURE WORK

CONCLUSION

- new **O2H** Lemma
- Modular proof showing KEMs almost as secure as PKE in QROM (explicit + implicit)

ACKNOWLEDGMENTS

- This work comes from Oxford 2019 PQC workshop
- Thanks to Dan Bernstein, Edward Eaton, and Mark Zhandry for helpful discussions and feedback.

REFERENCES

FUJISAKI-OKAMOTO TRANSFORM

- def
- in ROM
- to be quantum: in QROM

IND-CPA rPKE rP"De-randomization"

OW-CPA dPKE dP

IND-CCA KEM

$$rP = (Gen_r, Enc_r, Dec_r)$$

$$dP = (Gen_d, Enc_d, Dec_d)$$

$$Gen_d() = Gen_r()$$

$$Enc_d(pk, m) = Enc_r(pk, m; G(m))$$

$$Dec_d(sk, c) = Dec_r(sk, c)$$