RS-Übung 2

Arne Beer (MN 6489196), Rafael Epplee (MN 6269560), Julian Polatynski (MN 6424884)

November 28, 2012

1 Time Stamp Counter

1.1 Überlauf

Bei einer Größe von 64 Bit hat das Register Zahlen bis zu 2⁶⁴-1 aufnehmen.

Um herauszufinden, wie lange es dauern würde, bis diese Zahl überschritten ist, teilen wir zunächst durch die Anzahl der Takte pro Sekunde, dann durch Sekunden pro Minute, Minuten pro Stunde, Stunden pro Tag, Tage pro Jahr.

$$\frac{2^{64} - 1}{3.2 \cdot 10^9} \cdot s = 5,76461 \cdot 10^9 s$$

Es würde also erst nach ungefähr 182,6695 Jahren zum Überlauf des Registers kommen.

1.2 Eventuelle Nachteile

Die Taktzahl eines Prozessors bleibt nicht immer gleich. Sie wird beispielsweise heruntergefahren, um Energie zu sparen, oder auch durch den Benutzer über den Standardwert hinaus gesteigert. Bei einer Änderung der Taktrate wäre dann auch die gemessene Zeit ungültig, da sich das Verhältnis der Takte zu den Sekunden verändert hätte. Ein weiteres Problem bei dieser Zeitmessung ist, dass die Zeit bei unterschiedlich getakten Prozessoren unterschiedlich schnell vergeht. D.h. Bei einem Prozessor der beispielsweise mit 1,4 GHZ getaktet ist (z.B Galaxy S Plus) vergeht die Zeit etwa doppelt so langsam.

2 Umwandlung von Dezimalzahlen

2.1 53

35	hexadezimal
65	oktal
110101	binär
53	dezimal

$2.2 \quad 2012$

7DC	hexadezimal		
3734	oktal		
11111011100	binär		
2012	dezimal		

2.3 5,5625

5,9	hexadezimal
5,44	oktal
101,1001	binär
5,5625	dezimal

2.3.1 Beispielrechnung für 5,5625

Umwandlung in Binärsystem

```
375: 2 = 187 \text{ Rest: } 1

187: 2 = 93 \text{ Rest: } 1

93: 2 = 46 \text{ Rest: } 1

46: 2 = 23 \text{ Rest: } 0

23: 2 = 11 \text{ Rest: } 1

11: 2 = 5 \text{ Rest: } 1

5: 2 = 2 \text{ Rest: } 1

2: 2 = 1 \text{ Rest: } 0

1: 2 = 0 \text{ Rest: } 1

= 101110111_2 = 375_{10}

0, 375 \cdot 2 = 0, 75 \text{ Ziffer: } 0

0, 75 \cdot 2 = 1, 5 \text{ Ziffer: } 1

0, 5 \cdot 2 = 1 \text{ Ziffer: } 1
```

Umwandlung in Oktalsystem

375: 8 = 46 Rest: 7 46: 8 = 5 Rest: 6 5: 8 = 0 Rest: 5 $= 567_8$ $0,375\cdot 8 = 3 \text{ Ziffer: } 3$ $= 0,3_8$

Daraus folgt: $375, 375_{10} = 567_8 + 0, 3_8 = 567, 3_8$

Umwandlung in Hexadezimalsystem

375: 16 = 23 Rest: 7 23: 16 = 1 Rest: 7 1: 16 = 0 Rest: 1 $= 177_{16}$ $0,375 \cdot 16 = 6 \text{ Ziffer: } 6$ $= 0,6_{16}$ $375,375_{10} = 177_{16} + 0,6_{16} = 177,6_{16}$

2.4 375,375

177,6	hexadezimal
567,3	oktal
101110111,011	binär
375,375	dezimal

3 Umwandlung in Dezimalzahlen

$$1110, 1001 = 2^{3} + 2^{2} + 2^{1} + 2^{-1} + 2^{-4} = 14,5625$$
$$10101, 10011 = 2^{4} + 2^{2} + 2^{0} + 2^{-1} + 2^{-4} + 2^{-5} = 21,59375$$

4 Addition im Dualsystem

$$25487_{10} + 15190_{10} = 40677$$

$$25487_{10} = 110001110001111_2 = 61617_8 = 638F_{16}$$

$$15190_{10} = 11101101010110_2 = 35526_8 = 3B56_{16}$$

```
0110001110001111 \\ +001110110101010 \\ \hline 1001111011100101 \\ = 117345_8 = 9EE5_{16}
```

5 Multiplikation im Dualsystem

```
\begin{array}{r}
10010011 \cdot 111001 \\
10010011 \\
10010011 \\
10010011 \\
00000000 \\
00000000 \\
10010011 \\
\hline
111111111 \\
10000010111011
\end{array}
```

6 Komplemente

$$K_{10}(4,582)_{10} = 10^2 - 4,582 = 95,4180$$

 $K_{10-1}(0,1274)_{10} = 10^2 - 10^{-4} - 0,1274 = 99,8725$
 $K_2(1,011)_2 = 2^{2-1} - 1,011 = 4 - 1,375 = 2,625 = 10,101$
 $K_{2-1}(100,01)_2 = 16 - 0,125 - 4,25 = 11,625 = 1011,101$

7 Darstellung negativer Zahlen

1 = Ganzzahl im Dualsystem 2 = Betrag und Vorzeichen 3 = Exzess-127 Kodierung 4 = Einerkomplement 5 = Zweierkomplement

Binär	1	2	3	4	5
0000 1001	9	9	-118	246	247
0110 0101	101	101	-26	154	155
1000 0001	129	-1	2	-126	-127
1111 1011	251	-123	124	-4	-5