- 1. Escreva uma expressão Booleana que seja O apenas quando todas as suas variáveis (A, B, C e D) forem Os.
- 2. Escreva uma expressão Booleana que seja 1 quando uma ou mais de suas variáveis (A, B, C, D e E) forem 0s.
- 3. Escreva uma expressão Booleana que seja 0 quando uma ou mais de suas variáveis (A, B, C, D e E) forem 0s.
- 4. Considerando os diagramas esquemático abaixo, pede-se: equação booleana e tabela verdade.

	Α	В	С	F1	F2	Υ
F1	0	0	0			
A	0	0	1			
v	0	1	0			
	0	1	1			
B	1	0	0			
F2	1	0	1			
C F2	1	1	0			
	1	1	1			

Y = _____

Y =

5. Considerando o diagrama esquemático abaixo, pede-se: equação booleana.

Y = _____

- 6. Desenhar as expressões Booleanas
 - a) $f1 = \overline{A} \cdot B + \overline{A} \cdot \overline{B}$
 - b) f2 = A.B + C
 - c) $f2 = A.\overline{B} + A.B.\overline{C}$
 - d) $f4 = Z.(X + \overline{X}.\overline{Y})$
 - e) $\mathbf{f5} = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \cdot (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \mathbf{C})$
 - f) $\mathbf{f6} = \mathbf{A} \odot (\overline{\mathbf{B}} + (\overline{(\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}) + (\mathbf{C} \oplus \mathbf{D})}))$

- 7. Fazer a tabela verdade para as seguintes funções e desenhar o circuito equivalente:
 - a. $F1 = \overline{A} \cdot B + A \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{C} + A \cdot \overline{B} \cdot C$

11. D. V	•		
Α	В	С	F1
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

b. $F2 = \overline{A} + B.\overline{C} + C.D + A.\overline{B}.C$

. <u>D. C</u>				
Α	В	С	D	F2
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

8. Determine as formas de onda para os sinais Y2 a Y4, assim para a saída X:

- 9. Mostre o resultado das seguintes operações bit a bit (os valores estão representados em hexadecimal):
 - a) not 99
 - b) not 01
 - c) 99 and 99
 - d) 99 and FF
 - e) 99 or 99
 - f) 99 or ff
 - g) not (99 or 99)
- 10. Qual o resultado das seguintes operações bit a bit? Assuma que os valores (em decimal) estejam representados em complemento de 2 (8 bits)
 - a) 22 and 5
 - b) not -1
 - c) -5 or 7
 - d) -10 xor 8
 - e) 66 and 59
 - f) 98 or -12
- 11. Apresente máscaras binárias e a respectiva operação para os seguintes casos (valores de 8 bits)
 - a) Limpar (forçar para 0) os quatro bits mais significativos
 - b) Marcar (forçar para 1) os quatro bits menos significativos
 - c) Inverter os três bits menos significativos e os dois mais significativos
 - d) Marcar o terceiro bit menos significativo e limpar o bit mais significativo
- 12. Considerando as características funcionais dos circuitos digitais dados abaixo, e o fato de você só dispor das portas lógicas indicadas. Apresente um circuito digital equivalente do ponto de vista funcional:

a) (NAND)

b) (NOR)

c) (NAND)

