# 50.007 Machine Learning

Lu, Wei



#### Bayesian Networks (II)



$$p(x_1, x_2, x_3, x_4, x_5, x_6)$$

 $=p(x_1)p(x_2|x_1)p(x_4|x_1)p(x_3|x_2,x_4)p(x_6|x_2,x_3)p(x_5|x_4)$ 



The set of parent nodes for  $x_i$ .

$$p(x_1,\ldots,x_d) = \prod_{i=1}^d p(x_i|\mathbf{x}_{pa_i})$$



 $=p(x_1)p(x_2|x_1)p(x_4|x_1)p(x_3|x_2,x_4)p(x_6|x_2,x_3)p(x_5|x_4)$ 





$$egin{align} p(x_1=1,x_2=2,x_3=1,x_4=3,x_5=5,x_6=2) \ = p(x_1=1) imes p(x_2=2|x_1=1) imes p(x_4=3|x_1=1) \ \end{array}$$

 $imes p(x_3=1|x_2=2,x_4=3) imes p(x_6=2|x_2=2,x_3=1) imes p(x_5=5|x_4=3)$ 

$$\begin{array}{ll} P(B=b,A=T) \\ = & \sum_{e \in \{T,F\}} \sum_{r \in \{T,F\}} P(E=e) P(B=b) P(A=T|E=e,B=b) P(R=r|E=e) \\ = & \sum_{e \in \{T,F\}} P(E=e) P(B=b) P(A=T|E=e,B=b) \sum_{r \in \{T,F\}} P(R=r|E=e) \\ = & \sum_{e \in \{T,F\}} P(E=e) P(B=b) P(A=T|E=e,B=b) \\ = & P(B=b) \sum_{e \in \{T,F\}} P(E=e) P(A=T|E=e,B=b) \end{array}$$

$$P(B=T|A=T) = rac{P(B=T,A=T)}{\sum_{b\in IT} P(B=b,A=T)} = 0.5025\dots$$

$$\begin{array}{ll} P(B=b,A=T,E=T) \\ = & \sum_{r \in \{T,F\}} P(E=T) P(B=b) P(A=T|E=e,B=b) P(R=r|E=T) \\ = & P(E=T) P(B=b) P(A=T|E=T,B=b) \sum_{r \in \{T,F\}} P(R=r|E=T) \\ = & P(E=T) P(B=b) P(A=T|E=T,B=b) \end{array}$$

$$P(B=T|A=T,E=T) = rac{P(B=T,A=T,E=T)}{\sum_{b \in \{T,F\}} P(B=b,A=T,E=T)} = 0.01$$



$$\begin{array}{ll} P(B=b,A=T,E=T) \\ = & \sum_{r \in \{T,F\}} P(E=T) P(B=b) P(A=T|E=e,B=b) P(R=r|E=T) \\ = & P(E=T) P(B=b) P(A=T|E=T,B=b) \sum_{r \in \{T,F\}} P(R=r|E=T) \\ = & P(E=T) P(B=b) P(A=T|E=T,B=b) \end{array}$$

E and B are not conditionally independent given A





E and B are not conditionally independent given A



E and B are not conditionally independent given A



In which case X and Z are independent?





$$P(X,Y,Z) = P(X)P(Y|X)P(Z|Y)$$

$$P(Z|X,Y) = rac{P(X,Y,Z)}{P(X,Y)} = rac{P(X)P(Y|X)P(Z|Y)}{P(X)P(Y|X)} = P(Z|Y)$$



$$P(Z|X,Y)=rac{P(X,Y,Z)}{P(X,Y)}=rac{P(X)P(Y|X)P(Z|Y)}{P(X)P(Y|X)}=P(Z|Y)$$



#### Common Cause

In which case X and Z are independent?





$$P(Z|X,Y) = rac{P(X,Y,Z)}{P(X,Y)} = rac{P(Y)P(X|Y)P(Z|Y)}{P(Y)P(X|Y)} = P(Z|Y)$$



$$P(Z|X,Y) = rac{P(X,Y,Z)}{P(X,Y)} = rac{P(Y)P(X|Y)P(Z|Y)}{P(Y)P(X|Y)} = P(Z|Y)$$



Explaining Away

In which case X and Z are independent?





$$P(X,Z) = \sum_{Y} P(X)P(Z)P(Y|X,Z) = P(X)P(Z)\sum_{Y} P(Y|X,Z) = P(X)P(Z)$$





1.25











1.27

Can the ball reach the other node from one node (passing through various gates along the path)? If there is such a path where all gates are open, then they are not independent. Otherwise they are independent.



















































#### Bayes Net - HMM



Given  $y_{j+1} = u$ , now we can see the two portions of the network are independent of each other.

#### Markov Blanket



#### Markov Blanket



# Approximate Inference



$$p(y_1 = 1, y_2 = 2 | x_1 = 1, x_2 = 3) = ?$$

## Approximate Inference



#### What if we have a large collection of samples:

| X1 | X2      | <br>Y1 | Y2      | ••• |
|----|---------|--------|---------|-----|
| 1  | 3       | 1      | 1       |     |
| 1  | 3       | 1      | 2       |     |
| 1  | 3       | 2      | 2       |     |
| 1  | 3       | 2      | 2       |     |
|    |         | <br>   |         |     |
|    | $(x_2)$ |        | $(y_2)$ |     |

$$p(y_1 = 1, y_2 = 2 | x_1 = 1, x_2 = 3) = ?$$

## Approximate Inference



We need a way to generate samples from:

$$p(\mathbf{y}|\mathbf{x})$$
 all other evidence variables (what's given)



$$p(y_1 = 1, y_2 = 2 | x_1 = 1, x_2 = 3) = ?$$

## tional

## Gibbs Sampling

- 1. Randomly initialize  $\mathbf{y}^{(0)} = \langle y_1^{(0)}, y_2^{(0)}, \dots, y_n^{(0)} \rangle$
- 2. For t = 1, ..., T do
  - $y_k^{(t)} \sim P(y_k|y_1^{(t)},\dots,y_{k-1}^{(t)},y_{k+1}^{(t-1)},y_{k+2}^{(t-1)},\dots,y_n^{(t-1)},\mathbf{x})$
  - (b) Collect the t-th sample as  $\langle y_1^{(t)}, y_2^{(t)}, \dots, y_n^{(t)} \rangle$
- 3. Return the collection of samples



These samples are from  $p(\mathbf{y}|\mathbf{x})$ 

#### kional

# Gibbs Sampling

- 1. Randomly initialize  $\mathbf{y}^{(0)} = \langle y_1^{(0)} \rangle$  conditional probability
- 2. For t = 1, ..., T do
  - (a) For  $k = 1, \ldots, n$  do

$$y_k^{(t)} \sim P(y_k|y_1^{(t)}, \dots, y_{k-1}^{(t)}, y_{k+1}^{(t-1)}, y_{k+2}^{(t-1)}, \dots, y_n^{(t-1)}, \mathbf{x})$$

with Markov blanket

- (b) Collect the t-th sample as  $\langle y_1^{(t)}, y_2^{(t)}, \dots, y_n^{(t)} \rangle$
- 3. Return the collection of samples



You may use then to perform approximate inference



#### How do we learn such probability values?

$$egin{align} p(x_1=1,x_2=2,x_3=1,x_4=3,x_5=5,x_6=2)\ &=p(x_1=1) imes p(x_2=2|x_1=1) imes p(x_4=3|x_1=1)\ & imes p(x_3=1|x_2=2,x_4=3) imes p(x_6=2|x_2=2,x_3=1) imes p(x_5=5|x_4=3) \end{aligned}$$



$$egin{aligned} x_1 &\in \{1,2,\ldots,r_1\} \ x_2 &\in \{1,2,\ldots,r_2\} \ x_3 &\in \{1,2,\ldots,r_3\} \ x_4 &\in \{1,2,\ldots,r_4\} \ x_5 &\in \{1,2,\ldots,r_5\} \end{aligned}$$

$$egin{aligned} p(x_1,x_2,x_3,x_4,x_5) \ &= p(x_1)p(x_2)p(x_3|x_1,x_2)p(x_4|x_2,x_3)p(x_5|x_1) \end{aligned}$$













| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_4$ | $\mathbf{X}_5$ |
|----------------|----------------|----------------|----------------|----------------|
| 1              | 1              | 2              | 2              | 2              |
| 1              | 2              | 1              | 1              | 2              |
| 2              | 2              | 2              | 1              | 2              |
| 2              | 2              | 1              | 2              | 1              |
| 2              | 1              | 2              | 2              | 1              |
| 1              | 1              | 2              | 1              | 2              |
| 1              | 2              | 1              | 1              | 1              |
| 2              | 2              | 2              | 1              | 2              |
| 1              | 1              | 1              | 1              | 2              |

$$p(x_1, x_2, x_3, x_4, x_5)$$

$$=p(x_1)p(x_2)p(x_3|x_1,x_2)p(x_4|x_2,x_3)p(x_5|x_1)$$

How do we learn the values for each of these model parameters?



| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_4$ | $\mathbf{X}_5$ |
|----------------|----------------|----------------|----------------|----------------|
| 1              | 1              | 2              | 2              | 2              |
| 1              | 2              | 1              | 1              | 2              |
| 2              | 2              | 2              | 1              | 2              |
| 2              | 2              | 1              | 2              | 1              |
| 2              | 1              | 2              | 2              | 1              |
| 1              | 1              | 2              | 1              | 2              |
| 1              | 2              | 1              | 1              | 1              |
| 2              | 2              | 2              | 1              | 2              |
| 1              | 1              | 1              | 1              | 2              |
|                |                |                |                |                |

$$l(D; heta; G) = \sum_{t=1}^m \log \left[ \prod_{i=1}^d heta_i(x_i^{(t)} | \mathbf{x}_{pa_i}^{(t)}) 
ight]$$

This is what we would like to maximize!



| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_4$ | $\mathbf{X}_5$ |
|----------------|----------------|----------------|----------------|----------------|
| 1              | 1              | 2              | 2              | 2              |
| 1              | 2              | 1              | 1              | 2              |
| 2              | 2              | 2              | 1              | 2              |
| 2              | 2              | 1              | 2              | 1              |
| 2              | 1              | 2              | 2              | 1              |
| 1              | 1              | 2              | 1              | 2              |
| 1              | 2              | 1              | 1              | 1              |
| 2              | 2              | 2              | 1              | 2              |
| 1              | 1              | 1              | 1              | 2              |

$$egin{aligned} l(D; heta;G) &= \sum_{t=1}^m \log\left[\prod_{i=1}^d heta_i(x_i^{(t)}|\mathbf{x}_{pa_i}^{(t)})
ight] \ &= \sum_{t=1}^m \sum_{i=1}^d \log heta_i(x_i^{(t)}|\mathbf{x}_{pa_i}^{(t)}) \end{aligned}$$



| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_4$ | $\mathbf{X}_5$ |
|----------------|----------------|----------------|----------------|----------------|
| 1              | 1              | 2              | 2              | 2              |
| 1              | 2              | 1              | 1              | 2              |
| 2              | 2              | 2              | 1              | 2              |
| 2              | 2              | 1              | 2              | 1              |
| 2              | 1              | 2              | 2              | 1              |
| 1              | 1              | 2              | 1              | 2              |
| 1              | 2              | 1              | 1              | 1              |
| 2              | 2              | 2              | 1              | 2              |
| 1              | 1              | 1              | 1              | 2              |
|                |                |                |                |                |

$$egin{aligned} l(D; heta;G) &= \sum_{t=1}^m \log\left[\prod_{i=1}^d heta_i(x_i^{(t)}|\mathbf{x}_{pa_i}^{(t)})
ight] \ &= \sum_{t=1}^m \sum_{i=1}^d \log heta_i(x_i^{(t)}|\mathbf{x}_{pa_i}^{(t)}) \ &= \sum_{i=1}^d \left[\sum_{t=1}^m \log heta_i(x_i^{(t)}|\mathbf{x}_{pa_i}^{(t)})
ight] \end{aligned}$$



| $\mathbf{X}_1$ | $\mathbf{X}_2$ | $\mathbf{X}_3$ | $\mathbf{X}_4$ | $\mathbf{X}_5$ |
|----------------|----------------|----------------|----------------|----------------|
| 1              | 1              | 2              | 2              | 2              |
| 1              | 2              | 1              | 1              | 2              |
| 2              | 2              | 2              | 1              | 2              |
| 2              | 2              | 1              | 2              | 1              |
| 2              | 1              | 2              | 2              | 1              |
| 1              | 1              | 2              | 1              | 2              |
| 1              | 2              | 1              | 1              | 1              |
| 2              | 2              | 2              | 1              | 2              |
| 1              | 1              | 1              | 1              | 2              |

$$\sum_{t=1}^m \log heta_i(x_i^{(t)}|\mathbf{x}_{pa_i}^{(t)})$$

$$=\sum_{x_i,\mathbf{x}_{pa_i}} ext{Count}ig((x_i,\mathbf{x}_{pa_i}) ext{ in } Dig) \log heta_i(x_i|\mathbf{x}_{pa_i})$$



 $egin{aligned} ext{The number of observations in data $I$} \ ext{for which } X_i = x_i, \mathbf{X}_{pa_i} = \mathbf{x}_{pa_i} \end{aligned}$ 



The number of times we see the pattern  $\mathbf{x}_{pa_i} o x_i$  in D

$$\hat{ heta}_i(x_i|\mathbf{x}_{pa_i}) = rac{ ext{Count}ig((x_i,\mathbf{x}_{pa_i}) ext{ in }Dig)}{ ext{Count}ig((\mathbf{x}_{pa_i}) ext{ in }Dig)}, x_i \in \{1,\dots,r_1\}$$