1. Objectif

L'objectif de ces exercices est d'écrire des programmes en Python créant des drapeaux sous la forme d'image numérique.

2. Contexte

Il est possible de placer un drapeau de définition $largeur \times hauteur$ dans un repère orthonomé, où l'axe des abscisses représente la largeur du drapeau, l'axe des ordonnées, sa hauteur.

Chaque pixel du drapeau a une coordonnée (x, y) où $x \in [0; largeur[$ et $y \in [0; hauteur[$.

La couleur d'un pixel du drapeau s'exprime alors en fonction des valeurs de x et/ou y.

Exemple : Pour le drapeau de Monaco, il est possible de définir une fonction $f_{monaco}(y)$ qui associe à l'ordonnée y du pixel, sa couleur en codage RGB.

$$f_{monaco}(y) = \begin{cases} (255, 0, 0) & si \ y < \frac{hauteur}{2} \\ (255, 255, 255) & sinon. \end{cases} \forall y \in [0; hauteur[$$

Pour rappel, en RGB (255, 0, 0) correspond à la couleur Rouge et (255, 255, 255) correspond à la couleur Blanc.

Cours SNT

Thème : Photographie numérique Activité 3. Exercices complémentaires

Date	•	Date
------	---	------

3. Exercices

Exercice 1. Drapeau de Monaco

```
from PIL import Image

LARGEUR = 600
HAUTEUR = 400

img = Image.new('RGB',(LARGEUR, HAUTEUR))

for y in range(HAUTEUR):
    for x in range(LARGEUR):
        if y < HAUTEUR // 2:
             img.putpixel((x, y), (255, 0, 0))
        else:
             img.putpixel((x, y), (255, 255, 255))

img.show()</pre>
```

- 1. Copier le code Python dans Thonny
- 2. Enregistrer le fichier avec le nom monaco.py et exécuter le programme
- 3. Répondre aux questions :
 - 1. Quelles lignes permettent de définir les valeurs de la définition de l'image ?
 - 2. En analysant les lignes 8 et 9, il est possible de dire que le drapeau est créé ...
 - Ligne par ligne et pour chaque ligne, colonne par colonne
 - \square Colonne par colonne et pour chaque colonne, ligne par ligne
 - 3. Quelle est l'utilité de la ligne 10?

Exercice 2. Drapeau de Pologne

1. Compléter la fonction $f_{pologne}(y)$ qui associe à l'ordonnée y du pixel, sa couleur en codage RGB du drapeau de Pologne

2. Créer un programme pologne.py qui créé un drapeau de la Pologne de définition 800 x 600.

Date:

Exercice 3. Drapeau des Pays-Bas

1. Compléter la fonction $f_{pays-bas}(y)$ qui associe à l'ordonnée y du pixel, sa couleur en codage RGB du drapeau de Pologne

2. Créer un programme pays_bas.py qui créé un drapeau de la Pologne de définition 800 x 600.

Exercice 4. Drapeau de la France

1. Compléter la fonction $f_{france}(x)$ qui associe à l'abscisse x du pixel, sa couleur en codage RGB du drapeau de Pologne

$$f_{france}(x) = \begin{cases} (0, 0, 255) & si \\ & sinon \ si \\ & sinon. \end{cases}$$

$$\forall x \in [0; largeur[$$

2. Créer un programme france.py qui créé un drapeau de la France de définition 800 x 600.

Exercice 5. Drapeau de la Suède

La bande jaune verticale a les caractéristiques suivantes :

- sa largeur est de 40 pixels,
- son centre est au tiers de la largeur du drapeau.

La bande jaune horizontale a les caractéristiques suivantes :

- sa largeur est de 40 pixels,
- son centre est au tiers de la largeur du drapeau.

Thème : Photographie numérique Activité 3. Exercices complémentaires

Date:

1. Compléter la fonction $f_{su\`{e}de}(x,y)$ qui associe aux coordonnées x et y du pixel, sa couleur en codage RGB du drapeau de Su\`{e}de.

$$f_{su\`{e}de}(x,y) = \begin{cases} si \ x \in \left[\frac{largeur}{3} - 20; \left[\frac{largeur}{3} + 20\right] \\ ou \ y \in \left[\frac{hauteur}{2} - 20; \left[\frac{hauteur}{2} + 20\right] \\ sinon. \end{cases}$$

$$\forall x \in [0; largeur[\ et \ \forall y \in [0; hauteur[\ et \]]$$

2. Compléter le programme dans un fichier **suede.py** et exécuter le pour créer un drapeau de la Suède de définition 900 x 600.

Exercice 6. Drapeau du Japon

Le cercle rouge du drapeau du Japon a les caractéristiques suivantes :

- son centre c est au centre du drapeau,
- son rayon r est de $\frac{3}{10}$ ème de la hauteur du drapeau.

Soit le pixel c, le centre du cercle, de coordonnées (x_c, y_c) , tout pixel p, dont la distance à c est inférieure ou égale à r, a la couleur rouge, sinon il a la couleur blanc.

Cours SNT

Thème : Photographie numérique Activité 3. Exercices complémentaires

1. Compléter la fonction $f_{japon}(x,y)$ qui associe aux coordonnées x et y du pixel, sa couleur en codage RGB du drapeau du Japon.

On suppose qu'il existe une fonction $distance(p_1, p_2)$ qui calcule la <u>distance euclidienne</u> entre 2 points p_1 et p_2 de coordonnées (x_1, y_1) et (x_2, y_2) .

2. Compléter le programme dans un fichier **japon.py** et exécuter le pour créer un drapeau du Japon de définition 900 x 600.

Enseignant: M. BODDAERT

Date:

Exercice 7. Drapeau de la République du Congo

Soient 2 fonctions:

- $f_1(x) = -x + hauteur 1$
- $f_2(x) = -x + largeur 1$

Il est possible de déterminer la couleur d'un pixel du drapeau de coordonnées x et y (Vert, Jaune ou Rouge) en fonction de $f_1(x)$ et/ou $f_2(x)$.

1. Compléter la fonction $f_{republique\ congo}(x,y)$ qui associe aux coordonnées x et y du pixel, sa couleur en codage RGB du drapeau de la République du Congo.

$$f_{republique\ congo}(x,y) = \begin{cases} (0,150,67) & si\ y \\ (255,255,0) & sinon\ si\ y \\ (255,0,0) & sinon. \end{cases}$$

 $\forall x \in [0; largeur[\ et\ \forall y \in [0; hauteur[$

2. Compléter le programme dans un fichier **republique_congo.py** et exécuter le pour créer un drapeau de la République du Congo de définition 900 x 600.

```
from PIL import Image
LARGEUR = 600
HAUTEUR = 400
img = Image.new('RGB',(LARGEUR, HAUTEUR))
def f1(x):
  return - x + HAUTEUR - 1
def f2(x):
  return - x + LARGEUR - 1
for y in range(HAUTEUR):
  for x in range(LARGEUR):
     if y \le f1(x):
       img.putpixel((x, y), (....., .....))
     elif y \le f2(x):
       img.putpixel((x, y), (...., ....))
       img.putpixel((x, y), (....., .....))
img.show()
```