Name: Izaan Mohtashim

Roll NO: P200613

Sec: 5A

Computer Networks

Part 1: Design an IP Addressing Scheme

Part 2: Assign IP Addresses to Network Devices and Verify Connectivity

Topology A:

Part 1: Design an IP Addressing Scheme

Questions:

1. Based on the topology, how many subnets are needed?

Ans: 5 Four for the LANs, and one for the link between the routers

- 2. How many bits must be borrowed to support the number of subnets in the topology?

 Ans: 3
- 3. How many subnets does this create?

<u>Ans:</u> 8

4. How many usable hosts does this create per subnet?

Ans: 30

5. Calculate the binary value for the first five subnets. The first two subnets have been done for you.

Subnet	Network Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	192.168.100.	0	0	0	0	0	0	0	0
1	192.168.100.	0	0	1	0	0	0	0	0
2	192.168.100.	0	1	0	0	0	0	0	0
3	192.168.100.	0	1	1	0	0	0	0	0
4	192.168.100.	1	0	0	0	0	0	0	0

6. Calculate the binary and decimal value of the new subnet mask

First	Second	Third	Mask	Mask	Mask	Mask	Mask	Mask	Mask	Mask
Octet	Octet	Octet	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
11111111	11111111	11111111	1	1	1	0	0	0	0	0
First	Second	Third	Fourth Decimal Octet							
Decimal	Decimal	Decimal								
Octet	Octet	Octet								
255.	255.	255.	224							

7. Fill in the Subnet Table, listing the decimal value of all available subnets, the first and last usable host address, and the broadcast address. Repeat until all addresses are listed.

Subnet Number	Subnet Address	First Usable Host Address	Last Usable Host Address	Broadcast Address
0	192.168.100.0	192.168.100.1	192.168.100.30	192.168.100.31
1	192.168.100.32	192.168.100.33	192.168.100.62	192.168.100.63
2	192.168.100.64	192.168.100.65	192.168.100.94	192.168.100.95
3	192.168.100.96	192.168.100.97	192.168.100.126	192.168.100.127
4	192.168.100.128	192.168.100.129	192.168.100.158	192.168.100.159
5	192.168.100.160	192.168.100.161	192.168.100.190	192.168.100.191
6	192.168.100.192	192.168.100.193	192.168.100.222	192.168.100.223
7	192.168.100.224	192.168.100.225	192.168.100.254	192.168.100.255

Step 2: Assign the subnets to the network shown in the topology.

a) Assign Subnet 0 to the LAN connected to the GigabitEthernet 0/0 interface of R1:

192.168.100.0 /27

b) Assign Subnet 1 to the LAN connected to the GigabitEthernet 0/1 interface of R1:

192.168.100.32 /27

c) Assign Subnet 2 to the LAN connected to the GigabitEthernet 0/0 interface of R2:

192.168.100.64 /27

d) Assign Subnet 3 to the LAN connected to the GigabitEthernet 0/1 interface of R2:

192.168.100.96 /27

e) Assign Subnet 4 to the WAN link between R1 to R2:

192.168.100.128 /27

Step 3: Document the addressing scheme.

Fill in the Addressing Table using the following guidelines:

- Assign the first usable IP addresses in each subnet to R1 for the two LAN links and the WAN link.
- Assign the first usable IP addresses in each subnet to R2 for the LAN links. Assign the last usable IP address for the WAN link.
- Assign the second usable IP address in the attached subnets to the switches.
- Assign the last usable IP addresses to the PCs in each subnet.

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	G0/0	192.168.100.1	255.255.255.224	N/A
	G0/1	192.168.100.33	255.255.255.224	N/A
	S0/0/0	192.168.100.129	255.255.255.224	N/A
R2	G0/0	192.168.100.65	255.255.255.224	N/A
	G0/1	192.168.100.97	255.255.255.224	N/A
	S0/0/0	192.168.100.158	255.255.255.224	N/A
S1	VLAN 1	192.168.100.2	255.255.255.224	192.168.100.1
S2	VLAN 1	192.168.100.34	255.255.255.224	192.168.100.33
S3	VLAN 1	192.168.100.66	255.255.255.224	192.168.100.65
S4	VLAN 1	192.168.100.98	255.255.255.224	192.168.100.97
PC1	NIC	192.168.100.30	255.255.255.224	192.168.100.1
PC2	NIC	192.168.100.62	255.255.255.224	192.168.100.33
PC3	NIC	192.168.100.94	255.255.255.224	192.168.100.65
PC4	NIC	192.168.100.126	255.255.255.224	192.168.100.97

Part 2: Implement given topology in Packet Tracer and Assign IP Addresses to Network Devices and Verify Connectivity.

Then we will onfigure the ip addresses of pc

And then we will configure the ip address in vlan 1 in switches

And simmilarly we will give vlan 1 ip address to another 2 switches.

Now we will Configure both LAN interfaces with the addresses from the Addressing Table. Configure the interfaces so that the hosts on the LANs have connectivity to the default gateway

Router(config) #interface GigabitEthernet0/2

For router 2:

Now You can only verify connectivity from Router1, Switch3, and PC4. However, you should be able to ping every IP address listed in the Addressing Table.

Topology B:

Implement Task 4 (Lab 10) in Packet Tracer and Assign IP Addresses to Network

Devices and Verify Connectivity.

→ Addressing Scheme

Device	Interface	IP Address	Subnet Mask	Default Gateway
R-1	G0/0	192.168.1.1	255.255.255.224	Not Applicable
	G0/1	192.168.1.97	255.255.255.224	192.168.1.98
	G0/2	192.168.1.66	255.255.255.224	Not Applicable
R-2	G0/0	192.168.1.2	255.255.255.224	Not Applicable
	G0/1	192.168.1.161	255.255.255.224	192.168.1.162

	G0/2	192.168.1.33	255.255.255.224	Not Applicable
R-3	G0/0	192.168.1.34	255.255.255.224	Not Applicable
	G0/1	192.168.1.129	255.255.255.224	192.168.1.130
	G0/2	192.168.1.65	255.255.255.224	Not Applicable
PC1	NIC	192.168.1.99	255.255.255.224	192.168.1.98
PC2	NIC	192.168.1.100	255.255.255.224	192.168.1.98
PC3	NIC	192.168.1.131	255.255.255.224	192.168.1.130
PC4	NIC	192.168.1.132	255.255.255.224	192.168.1.130
PC5	NIC	192.168.1.163	255.255.255.224	192.168.1.162
PC6	NIC	192.168.1.164	255.255.255.224	192.168.1.162

