

Presenting:

The Value of Streamgage Information: A case study on culvert design and operations by Emily Pindilli

DAAG Conference 2003

DAAG is the annual conference of the SDP. To find out more about SDP or to become a member, visit www.decisionprofessionals.com

The Value of Streamgage Information: A case study on culvert design and operations

Emily Pindilli
Science and Decisions Center
U.S. Geological Survey

March 16, 2017

BACKGROUND: Streamgages and their Benefits CASE STUDY: Culvert Design and Operations VALUE OF INFORMATION: Economic Methods APPLICATION: Analysis of Limited Dataset 4 5 **CONCLUSIONS: Lessons Learned and Next Steps**

BACKGROUND: Streamgages and their Benefits CASE STUDY: Culvert Design and Operations VALUE OF INFORMATION: Economic Methods APPLICATION: Analysis of Limited Dataset CONCLUSIONS: Lessons Learned and Next Steps

Streamgages Provide Critical Information

USGS Streamgage Network

- USGS network in operation since 1889
- National network of 7,600 gages
- Provides real-time and historical data on stream stage (height) and flow
- Information is readily and freely available

Predicting Droughts

Map of below normal 7-day average streamflow compared to historical streamflow for the day of year (United States)

State

Choose a data retrieval option and select a state on the map State DroughtWatch,
 State map

Explanation - Percentile classes					
Low	<=5	6-9	10-24	Insufficient data for a hydrologic	
Extreme hydrologic drought	Severe hydrologic drought	Moderate hydrologic drought	Below normal	region	

Forecasting Floods

State

Map of flood and high flow condition (United States)

▼ or Water-Resources Regions ▼

Explanation - Percentile classes

95-98 >= 99 River above flood stage

\$\Delta\$ Streamgage with of flood stage flood stage

Detecting Trends

USGS Streamflow Duration Hydrograph Builder

For some streams, flow statistics may have been computed from mixed regulated and unregulated flows; this can affect depictions of flow conditions.

The Value of Benefits is Being Assessed

Application-by-Application Approach

- Benefits are being analyzed by application
- Monetization is focused on high magnitude impacts
- Values are aggregated to provide Total Economic Value*

*aggregated value will not capture 100% of benefits

Identify Benefit Categories

(E.g., hazards, infrastructure)

Assess Benefit Outcomes

(E.g., lives saved, costs reduced)

Value (Monetize) Benefit Outcomes

(E.g., \$ of statistical life, \$ value of cost savings)

Culverts are Engineered to Protect Infrastructure

- A culvert is an engineered structure, i.e., a pipe, which is partially buried to allow surface water to flow underneath a roadway
- Engineering design relies on hydrology and hydraulics
 - Area precipitation
 - Over- and through-flow of surface water
 - Fluctuations in flow of river
 - Mechanics of water impact on structure

Information is Needed to Design Culvert Capacity

- Water flow under various conditions must be derived to estimate capacity
 - Flow varies seasonally and annually
- Stream physical characteristics indicate 'normal' conditions;
 not flow for events which occur less frequently
- **Research Hypothesis:** increase in information (streamgage observations, in particular peak streamflow) will lead to optimization of culvert hydraulic capacity

Not all Information is Equivalent

Increasing Information

Bankfull Information

- Early approaches relied heavily on bankfull measures and coefficients¹
- Study found bankfull data provides
 ~1.77 year storm recurrence;
 standard error of 51 percent for 100 year storm²
- Another study estimated bankfull data only provides meaningful estimates of five-year storm or less³

Regression Equations

- Relying on streamgages on similar stream segments with similar watershed characteristics
- Availability varies with availability of similar watershed
- Confidence varies with likeness of watershed

Onsite Streamgage Data

- Actual observations provides "best" (highest confidence) information
- Confidence in accuracy flow during different recurrence events varies with streamgage history length

- 1. McEnroe, Bruce M. (2007). Sizing of Highway Culverts and Bridges: A Historical Review of Methods and Criteria. The University of Kansas, Report No. K-TRAN: KU-5-4.
- 2. U.S. Geological Survey (USGS). (2005). USGS. Bankfull Characteristics of Ohio Streams and Their Relation to Peak Streamflows: Scientific Investigations Report # 2005-5153. Available at: http://pubs.usgs.gov/sir/2005/5153/pdf/Bankfull book.pdf
- 3. Wharton, G., N.W. Arnell, K.J. Gregory, and A.M Gurnell. (1989). River Discharge Estimated from Channel Dimensions. Journal of Hydrology. Volume 106 (3-4). 365–376 p.

There are Risks Associated with Design Flaws

- Culverts are oversized
 - Excess material, labor costs
- Culverts are undersized
 - Blowout events*
 - Overtopping events

*There are additional design factors such as material, shape, and length of the culvert, as well as degradation of the pipe or embankment that can cause or contribute to this risk, the analysis focused on overtopping events to be conservative.

Deriving the Value of Streamgage Information: Bayesian Decision Trees

"Any one can make a culvert large enough, but it is the province of the engineer to design one of sufficient but not extravagant size" 1

The Value of Information (VOI) can be derived from the decision tree as follows:

$$|(P* x M*) - [(P1 x M1) + (P2 x M2) + (P3 x M3)]| = VOI$$

Analysis is Grounded in Research, Previously Collected Data

- Extensive Literature Review
 - Use of streamgage data for infrastructure
 - Culvert design, engineering, and operations
 - Incidence of blowouts, overtopping events, and other failures
- Outreach to Transportation Engineering Community
 - Department of Transportation Federal Highway Administration (Office of Bridges and Structures, Culvert Hydraulics Resource Center, Climate Adaptation Program)
 - Army Corp of Engineers
 - Academia (University of South Alabama, Colorado State University)
 - State Department of Transportations (Utah, Nebraska, Virginia, Vermont, Ohio, Connecticut)
 - Transportation Research Board
 - American Society of Civil Engineers
 - Engineering Consultants
- Outreach to Disaster Response Entities
 - Federal Emergency Management Agency (midwest region and national office)
 - Fish and Wildlife Service National Fish Passage Coordinator

Outcomes of Decision Paths are Quantified

Overbuilt

- Cost of construction and installation will outweigh benefits of risk reduction
- Ohio DOT reported that new USGS regressions showed some culverts are oversized¹

Right sized

Construction and installation costs will equal damages avoided

Underbuilt

- Damages incurred due to insufficient hydraulic capacity on a periodic basis
- Damage categories:

Direct Impacts	Costs	Variables
Flooding of adjacent	Property damage (crops)	Types of crops, value of crops
property	Property damage (buildings)	Types of buildings, value of buildings and contents
Roadway flooding	Damage to pavement	Material costs, labor costs
damage	Damage to embankment	Material costs, labor costs
Interruption of traffic	Increased travel time	Duration of disruption
	Increased travel distance	Distance to avoid disruption
		Average daily traffic
Hazard to human life	Injury	Magnitude of injury
	Value of a statistical life	Average daily traffic
Damage to stream and	Water quality impacts	Damage extent, secondary impacts
floodplain	Loss of floodplain services	Types of services being impacted

^{1.} Ohio Department of Transportation . (2013). Personal communication with Jeffrey Syar, PE, Administrator for the Office of Hydraulic Engineering in Ohio DOT.

Outcomes of Underbuilt Scenario are Monetized

- Damage costs are specified using multiple approaches:
 - Traditional cost estimation (property damage, cost of replacing pavement, embankment repairs)
 - Non-market costs use average estimated costs from authoritative sources (DOT rulemaking values) for travel time savings, travel distances, injuries and deaths
 - Values of water quality and floodplain services are highly dependent on location, not monetized in current analysis
- Economic Model is specified:

```
Annual Cost Risk = (DamageCosts_{100-YearEvent} * AnnualRisk_{100YearEvent}) + (DamageCosts_{50-YearEvent} * AnnualRisk_{50YearEvent}) + (DamageCosts_{25-YearEvent} * AnnualRisk_{25YearEvent}) + (DamageCosts_{10-YearEvent} * AnnualRisk_{10YearEvent}) + (DamageCosts_{5-YearEvent} * AnnualRisk_{5YearEvent})
```


Application of Approach

Underbuilt Only

- Utilized a dataset by the Department of Transportation¹ on the cost of damages associated with overtopping events
 - Direct measures of 21 culvert overtopping events including actual peak flow and damage costs associated with roadway and embankment (low estimate of total cost)
 - Was possible to associate 2 of the incidents with streamgages (Castor River at Zalma State Highway 51, Bolilnger County, Missouri and San Francisco River at U.S. Highway 666 at Clifton, Arizona)
 - Downloaded historical peak flows and estimated exceedence values for 100, 50, 25, 10, and 5 year storm frequencies
 - Assumed cost of damages observed for the given streamflow could be applied as the unit cost for each cubic foot per second of volume above the 2-year storm hydraulic capacity

Lessons Learned

- Data, data, data data may not be available where one might assume records are kept
- Lots of people love streamgages, but it is challenging to quantify value
- The use of data for culvert design and operations was evident in the literature and in talking with federal and state DOTs; however, it was difficult to assess the number that used actual streamgage data (onsite) versus regression equations or other alternatives

Ongoing Challenges

Culvert Design and Operation Alternatives Monetized Cost **Outcomes Probability Decision Point** M_1 Over Built, High Cost, Low Risk \$ Larger **Engineering:** A₂ Without Data M_2 Right Sized, Less Cost, Low Risk Right Sized Hydraulic Capacity M_3 Under Built, Less Cost, High Risk **Smaller** With Data (M^*) Right Sized Right Sized, Less Cost, Low Risk

The Value of Information (VOI) can be derived from the decision tree as follows:

$$|(P^* \times M^*) - [(P1 \times M1) + (P2 \times M2) + (P3 \times M3)]| = VOI$$

Ongoing Challenges

Ongoing Challenges

- Rigorous VOI studies are labor and resource intensive
- Non-market valuation

SOURCE: Environmental Protection Agency

AΡ

Next Steps

 Additional case studies are being conducted with the focus on water use and hydropower in the near-term

Assess approach and scope and adapt for further analyses Phase III - Moderate Phase IV - Complex Phase II - High Final Phase -Pilot Phase Phase I -**Impact Benefits Impact Benefits** Benefits Aggregation * Identify test area **Foundational** * Use reservoir design as a Develop Bayesian decision Develop Bayesian decision Develop Bayesian decision * Aggregate benefit * Evaluate the Baseline trees and conduct costtrees and conduct choice pilot trees and conduct costcategories * Conduct Representative based derivation and/or based derivation and/or * Evaluate use of streamgage experiment, cost-based * Estimate Total Economic Streamgage Analysis efficiency gains valuation efficiency gains valuation derivation and/or data in reservoir design Value of NSIP streamgage efficiency gains valuation: * Develop Bayesian decision Initiate Marginal network Streamgage Data -* Hazards * Water Quality * Recreation * Estimate marginal benefit Confidence Analysis Estimate economic value * Navigation * Infrastructure * Water Allocation of single streamgage

For More Information Contact:

Dr. Emily Pindilli epindilli@usgs.gov 703-648-5732