Calcolatori Elettronici - Ingegneria Informatica Appello del 14 marzo 2022 C1

Per svolgere i quesiti può essere usata una qualsiasi applicazione. I file relativi agli esercizi devono essere inviati tramite studium

Tempo a disposizione 1h 45 min per quesiti da 1 a 5, altri 20 minuti per l'eventuale quesito 6

1. Data la funzione booleana $f(a,b,c,d,e) = \Sigma(4, 5, 7, 15, 17, 20, 21, 23)$ scrivere l'espressione logica minima utilizzando il metodo di Quine-McCluskey.

abcde	
00100	4
00101	5
00111	7
01111	15
10001	17
10100	20
10101	21
10111	23

2. Data la seguente tabella degli stati relativa ad una rete sequenziale con un solo ingresso x:

Stato	x=0	x=1	
A	C/0	B/0	
В	A/0	B/0	
С	A/0	E/1	
D	C/0	E/0	
E	D/0	E/0	

- Eseguire la minimizzazione degli stati e realizzare la tabella degli stati della macchina minima equivalente.
- Costruire la tabella delle transizioni e delle eccitazioni usando come elemento di memoria i FF T.
- Scrivere l'espressione logica minima delle funzioni booleane che rappresentano lo stato prossimo e l'uscita.

. Data l'entity

Entity CU is

Port(stato: in std logic vector(2 downto 0);

Sel, WEn, Exe, Ready: out std logic);

End CU;

Architecture beh of CU is

begin

UC

end beh;

descrivere in VHDL il comportamento descritto dalla seguente tabella

stato	Sel	WEn	Exe	Ready
000	0	0	0	1
001	0	0	0	0
010	0	1	0	0
011	0	0	0	0
100	1	0	1	0
101	1	0	0	0
110	0	1	1	0
111	0	0	0	0

4. Scrivere un programma in linguaggio Assembly MIPS che traduce il seguente programma C (cognome.nome.s):

```
int elabora(char *vet, int d)
{ int i,pari;
    pari=0;
    for(i=0;i<d;i++)
       if(vet[i]%2==0)
           pari++;
   return pari;
}
main() {
  char VAL[32];
  int i, ris, numero;
  for(i=0;i<3;i++) {
   printf("Inserisci una stringa con almeno 4 caratteri\n");
   scanf("%s", VAL);
   if(strlen(VAL)<4)
      { printf("Inserisci un numero maggiore di %d\n", strlen(VAL));
          scanf("%d",&ris);
      }
   else
    ris=elabora(VAL, strlen(VAL));
  printf(" Ris[%d] = %d \n",i,ris);
 }
```

- 5) Valutare il CPI di un processore pipeline con una gerarchia di memoria con cache separata istruzioni e dati sapendo che
- -frequenza Load= 20%,
- -frequenza Store= 20%
- -numero di Fetch Misses è 40
- -numero di istruzioni è 1000
- -MissPenalty_{Istruzioni}= 40 cicli,
- -MissRate_{Dati}= 5%
- -MissPenalty_{Dati}= 50 cicli,
- -CPI_{execution}=1,5

Quesito 6 (Solo in alternativa all'orale) Descrivere le politiche di scrittura nella cache