02000CST202052104

Pages; 2

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech Degree Supplementary Examination June 2023 (2019 scheme

Course Code: CST 202

Course Name: Computer Organization and Architecture

Max. Marks: 100 Duration: 3 Hours

PART A

			(Answer all questions; each question carries 3 marks)	Marks
	1		Define three, two and one-address instructions with one example for each.	3
	2		Why is the Wait-for-Memory-Function-Completed step required when	3
			performing memory transfer operations?	
	3		What are the basic components of Register-Transfer Logic method?	3
	4		Draw the hardware implementation of a 4-bit combinational shifter.	3
	5		Design 3 X 2 array multiplier.	3
	6		Explain the logic used behind booth multiplication algorithm	3
	7		Give the advantages and disadvantages of hardwired control over	3
			microprogrammed control.	
	8		What is a control word? With an example, show how a control word can be	3
			defined.	
)	9		Differentiate between program-controlled I/O and interrupt-driven I/O.	3
	10		Compare temporal locality of reference and spatial locality of reference.	3
			PART B	
			(Answer one full question from each module, each question carries 14 marks)	
	4		Module -1	
	11	a)	With a neat diagram, explain the basic operational concepts in transferring data	7
			between the processor and the main memory.	
		b)	What are addressing modes? Explain the different types of addressing modes	7
			with examples	
	12	a)	Draw the diagram of a single-bus organization of the datapath inside a	10
			processor. Give the control sequence for executing the instruction	
			Add [R1], R2 ie, [R1] \leftarrow [R1] + R2 in a single-bus organization.	

02000CST202052104

	b)	Give the control sequence for implementing the conditional branch instruction	4
		Branch-on-Negative in a single bus processor organization.	
		Module -2	
13	a)	Show the hardware implementation of the following conditional control	7
		statements $T1: C \leftarrow A$	
		T2: $C \leftarrow B$, where A, B, C are registers	
	b)	What is a scratchpad memory? Draw the block diagram of a processor	7
	0)	employing scratchpad memory.	,
14	a)	Design an adder/subtractor circuit with one selection variable s and two inputs	7
		A and B. When $s=0$, the circuit performs $F=A+B$. When $s=1$, the circuit	
		performs $F = A - B$.	
	b)	Give the hardware design for generating status bits for an 8-bit ALU.	7
		Module -3	
15	a)	Draw the hardware arrangement for restoring integer division. Show how the	10
		division of 1000 by 11 is performed by restoring integer division.*	
	b)	Show how the multiplication of 1101 and 1011 is performed by a sequential	4
		circuit multiplier.	
16	a)	Explain the classification of pipeline processors.	10
	b)	Write a note on data hazard detection resolution.	4
		Module -4	
17	a)	With a block diagram, explain how control signals are generated using	10
		hardwired control.	
	b)	Differentiate vertical and horizontal microinstructions.	4
18		List the address-sequencing capabilities of a microprogram sequencer. With a	14
*		suitable block diagram and function table, explain the organization of a typical *	
		microprogram sequencer.	
		Module -5	
19	a)	Explain how interrupts can be used for coordinating I/O transfers.	7
	b)	Explain how Direct Memory Access technique is used for transferring large	7
•		blocks of data at high speed.	
20	a)	Compare Asynchronous DRAMs and Synchronous DRAMs.	5
	b)	Explain the different cache mapping functions with an example for each.	9

Page 2 of 2