Trabajo práctico 4

Métodos de aprendizaje no supervisados Julian Neuss, Davor Vindis y Reurison Silva

Contenido

- 1. Ejercicio 1 Kohonen
- 2. Ejercicio 2 Hopfield
- 3. Conclusiones

Ejercicio 1 - Kohonen

1a - Red de Kohonen

$K=10/Iter = 700 / \eta(0) = 0.1 / R(0) = K$

Greece					UK	Finland		Germany Sweden
							Italy	Spain
Ukraine		Poland						
				Portugal				Norway
Bulgaria								
Estonia								
Latvia		Hungary				Denmark		Holanda
					Belgium			Swiss
Lithuania						Austria		Luxem
Croatia	Slovakia		Slovenia	Czech Repu				Iceland Ireland

$k=8 / Iter = 900 / \eta(0) = 0.05 / R(0) = k$

Ireland	Luxem Swiss			Norway		Spain	Germany Italy Sweden
Holanda			Iceland	Hungary			UK
							Finland
Austria Belgium Denmark							
							Poland
Czech Rep							Ukraine
Slovenia		Iceland		Hungary			
	Croatia Greece Portugal			Lithuania	Bulgaria Estonia Latvia		

Calcular la primer componente principal

 $\eta = 0.0001 / \text{épocas} = 1000$

```
W 0ja = 0ja(0.0001, 1000, X std)
W_Oja_norm = W_Oja/np.linalg.norm(W_Oja) #/W_oja_norm/ = 1
W Pca = pca.components [0,:] # |W| Pca |=1|
print('W_Oja:', W_Oja.T)
print('W Pca : ', W Pca)
W Oja : [[ 0.13287485 -0.49920776  0.41036008 -0.48212269  0.18698564 -0.4750181
   0.26825696]]
W Pca : [ 0.1248739 -0.50050586 0.40651815 -0.48287333 0.18811162 -0.47570355
  0.27165582]
```

Comparación entre librería y regla de Oja.

	Librería : Sklearn	Regla de Oja
Area	0.1248739	0.13287485
GDP	-0.50050586	-0.49920776
Inflation	0.40651815	0.41036008
Life Expect.	-0.48287333	-0.48212269
Military	0.18811162	0.18698564
Pop. Growth	-0.47570355	-0.4750181
Unemployment	0.27165582	0.26825696

El método de Oja, converge al primer autovector corresponde al mayor autovalor.

Ejercicio 2 - Hopfield

Conjunto de letras

-1	1	1	-1	-1
-1	1	-1	1	-1
-1	1	1	-1	-1
-1	1	-1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	1	1	1	-1

Por qué esas?

- Producto vectorial interno entre todas más cercano a 0.
- El método alcanza su pico de efectividad con vectores ortogonales

$$J.P = 5$$
 $J.T = 7$ $J.W = 7$ $P.T = 7$ $P.W = 7$

Steps W poco ruido

Steps T poco ruido

Steps P mucho ruido

Steps J mucho ruido

Estado espúreo

Cuando llega un mínimo que no es un patrón de la lista, notamos que se repite un patrón

Cortamos cuando se repite un patrón

Estado espúreo llegado en 3 pasos a partir de W con 0.15 de mutación

Conjunto de letras más ortogonal

$$J.T = 3$$

$$J.O = 1$$

$$J.F = 1$$

$$O.T = 1$$

$$O.F = 3$$

$$T.F = 3$$

20%	100% de aciertos (acertó los 20)
25%	 85% de aciertos (erró 3) 1 vez encontró una T 2 veces por estado espúreo
30%	75% de aciertos (erró 4)4 veces a estados espurios
40%	25% aciertos (erró 15)encontró 4T's y 1J

Conclusiones

- → Mientras más cercano sea a 0 los productos vectoriales de los patrones, más preciso será el método
- Si existe un estado espúreo parecido al patrón, puede bajar la precisión teniendo patrones con poco ruido
- → A mayor ruido se suele requerir mas iteraciones
- La regla de Oja permite hacer el cálculo de las componentes principales en forma iterativa (ventajas computacionales).
- → Red Kohonen : Al final del entrenamiento de la red es posible descubrir y exhibir una estructura subyacente de los datos, que mismo que sean observaciones de alta dimensionalidad, pueden ser representados en 2D.