Whale Optimziation Algorithm aplicado al problema de clustering

Yábir García Benchakhtir

24 de junio de 2020

${\rm \acute{I}ndice}$

1.	Introducción al problema	3
2.	Whale Optimziation Algorithm	4
	2.1. Descripción de la metaheurística	4
	2.2. Adaptación de la metaheurística al problema	6
3.	Implementación y desarrollo del experimento	10
4.	Análisis de los resultados	11
5.	Modificación I: Búsqueda local	13
	5.1. Descripción de los cambios	13
	5.2. Experimentación	15
	5.3. Análisis	17
6.	Modificación II: Sistema elitista	18
	6.1. Experimentación	19
	6.2. Análisis	21
7.	Modificación III: Operadores de cruces	22
	7.1. Experimentación	25
	7.2. Resultados	26
8.	Conclusiones	26
Re	eferencias	26

1. Introducción al problema

Consideramos el problema del agrupamiento con restricciones. En este problema contamos con un conjunto no vacio $P \subset \mathbb{R}^n$ de puntos y nos planteamos cómo podríamos agruparlos de manera que exista una relación entre los puntos de un mismo grupo. A cada grupo lo denominaremos *cluster* y notaremos \mathcal{C} al conjunto de todos los clusters.

Sobre esta base imponemos restricciones en la manera en la que se realizan las agrupaciones. En primer lugar existe un subconjunto de pares de puntos ML definido como

$$ML = \{(a, b) \in P \times P \mid a \in K \iff b \in K \text{ para } K \in \mathcal{C}\}$$

es decir, el conjunto de puntos que han de estar en el mismo cluster. De manera similar existe otro conjunto CL de pares de puntos que no pueden pertenecer al mismo conjunto.

$$CL = \{(a, b) \in P \times P \mid a \in K \iff b \notin K \text{ para } K \in \mathcal{C}\}$$

Notaremos por $R = ML \cup CL$ al conjunto de restricciones del problema.

Nos concentraremos en encontrar soluciones bajo restricciones $d\acute{e}biles$ a este problema donde intentaremos encontrar soluciones que minimicen el conjunto restricciones incumplidas.

En nuestros algoritmos intentaremos minimizar la distancia que haya entre los puntos de cada cluster sujeto a que se violen el menor número de restricciones. Vamos a formalizar pues esta idea, definimos el centroide de un cluster como el punto promedio de los puntos del cluster

$$\mu_i = \frac{1}{|c_i|} \sum_{x \in c_i} x \quad \text{con } c_i \in \mathcal{C} \text{ para todo } i \in \{1, ...k\}$$

Definimos la distancia *intra-cluster* como la media de las distancias de cada punto del cluster al centroide. En este caso consideramos la distancia euclidea.

$$\bar{c}_i = \frac{1}{|c_i|} \sum_{x \in c_i} ||x - \mu_i||_2 \quad \text{con } c_i \in \mathcal{C} \text{ para todo } i \in \{1, ...k\}$$

La desviación general del problema será por tanto

$$\bar{C} = \frac{1}{k} \sum_{c_i \in \mathcal{C}} \bar{c}_i$$

Nuestro objetivo cuanto busquemos una solución con restricciones débiles será minimizar la desviación general sujeto a que "no incumplamos demasiadas restricciones". Para obtener un valor que le de mayor o menor relevancia a la cantidad de restricciones que incumplamos usaremos la siguiente proporción

$$\lambda = \frac{\lceil d \rceil}{|R|}$$

donde d es la mayor distancia entre puntos del conjunto de puntos P. Así nuestro objetivo, cuando busquemos una solución con restricciones débiles, será minimizar

$$f = \bar{C} + \lambda * infeasibility$$

donde infeasibility es la cantidad de restricciones incumplidas.

2. Whale Optimziation Algorithm

La metaheurística elegida para resolver el problema ha sido Whale Optimziation Algorithm (WOA) propuesta por Seyedali Mirjalili y Andrew Lewis en 2016 [1]. Esta metaheurística basa su comportamiento en las técnicas depredadoras de la ballena jorobada y su comportamiento social.

Utilizando el especial comportamiento que tiene este animal cuando colabora con otros de su misma especia se pretende conseguir una metaheurística que proporcione buenos resultados en problemas de optimización de funciones reales intentando preservar un equilibrio entre exploración y explotación.

Más concretamente la técnica de caza consiste en crear una espiral entorno a la presa y levantar un muro de burbujas de aire, haciendo que esta se desoriente para posteriormente acercarse y atacar.

2.1. Descripción de la metaheurística

Para modelar el problema los autores de la metaheurística proponen un modelado matemático del comportamiento de la ballena jorobada que se pueda adaptar adaptar a la optimización de una función real.

Los agentes X que participan en nuestro algoritmo (y que representan a las ballenas) se van a representar como N vectores de dimensión d donde cada componente del vector del agente representa el centroide de un cluster

$$X_i(t) = \langle X_{i1}(t), X_{i2}(t), \dots, X_{id}(t) \rangle$$

Como deja entrever esta notación, el estado de la ballena depende de una variable temporal t que representa el instante de tiempo en el que nos encontramos y que está limitado por una constante T que fijamos nosotros. En cada instante t la mejor solución vendrá representada por X^* .

Procedemos en primer lugar a definir el operador distancia entre dos ballenas

$$||\cdot||: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

 $(\langle x_1, x_2, \dots, x_n \rangle, \langle y_1, y_2, \dots, y_n \rangle) \mapsto \langle |x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n| \rangle$

que es la distancia coordenada a coordenada.

El movimiento de caza se representa por la modificación del vector agente mediante la expresión

$$X_i(t+1) = X^*(t) - A \cdot D_i^1 \tag{1}$$

donde \cdot representa el producto componente a componente de \mathbb{R}^n , D viene dado por la expresión

$$D_i^1 = ||CX^*(t) - X_i(t)||$$

y A y C se obtienen como

$$A = 2a \cdot r - a$$
$$C = 2r$$

con $r \in [0, 1]^d$ un vector aleatorio y $a \in [0, 2]^d$ constante que se hace decrecer de manera lineal a lo largo de los distintos pasos del algoritmo mediante la ecuación

$$a(t) = 2 - 2 \frac{t}{\text{max_evaluaciones}}$$

La técnica de *caza* se basa en combinar este movimiento que nos proporciona un componente de exploración junto a la creación de una espiral mediante la actualización del agente de acuerdo a la expresión

$$\begin{cases} X_i(t+1) &= e^{bl}cos(2\pi l)D_2 + X^* \\ D_i^2 &= ||X^*(t) - X_i(t)|| \end{cases}$$
 (2)

siendo $b \in \mathbb{R}$ constante y $l \in [-1,1]$ aleatorio de manera que nos definen un radio para la espiral en cada instante.

El movimiento de caza natural mezcla tanto los desplazamientos en linea recta como el comportamiento en espiral por lo que se introduce un factor aleatorio $p \in [0, 1]$ que decide que tipo de movimiento se va a realizar

$$X_i(t+1) = \begin{cases} X^*(t) - A \cdot D_i^1 & p < \frac{1}{2} \\ e^{bl}cos(2\pi l)D_i^2 + X^* & p \ge \frac{1}{2} \end{cases}$$

2.2. Adaptación de la metaheurística al problema

Durante el desarrollo de la asignatura hemos trabajado con una representación de la solución que se centraba en la asignación de cada punto a un cluster y se re-calculaba en cada caso los centros de cada cluster. El espacio de búsqueda era

$$\{\langle x_1, x_2, \dots x_n \rangle : x_i \in [0, k] \cap \mathbb{N}, k > 0\}$$

donde n representa el número de puntos que intervienen en el problema y k el número de clusters que consideramos.

Para adaptar la metaheurística he decidido variar mi enfoque del problema y, en lugar de modificar las asignaciones que hago de los puntos, pensar que cada agente representa las coordenadas de los centroiedes del problema.

Así cada agente (ballena) queda definido como

$$X_i = << c_{01}, c_{02}, \dots c_{0d} >, \stackrel{(k)}{\dots}, < c_{k1}, c_{k2}, \dots c_{kd} >>$$

una lista de k vectores con dimensión d, la dimensión de los puntos del problema. No obstante esto no es suficiente ya que nuestro objetivo final es proporcionar una asignación de los puntos a cada cluster.

El algoritmo WOA se encargará de minimizar la componente real y continua de la métrica que estamos evaluando (que además tiene más peso en la misma), la distancia de los centroides respecto a los puntos de cada cluster. La segunda componente de la métrica es el factor de *infeasibility* que minimizaremos asignando a cada punto el cluster que menos incremento en infeasibility produzca y, en caso de empate, el cluster más cercano.

El comportamiento del algoritmo, como se muestra a continuación, es sencillo

Algorithm 1 Whale optimization Algorithm

```
1: procedure WOA(max_evaluaciones)
       whales: Inicializar un conjunto de ballenas con k centroides aleatorios
       Evaluamos las diferentes ballenas usando nuestra métrica
3:
       Selecccionamos X^* la mejor ballena
4:
       Guardamos la mejor solución encontrada al problema
5:
       evaluaciones \leftarrow 0
6:
       while evaluaciones < max_evaluaciones do
7:
          actualizamos el parametro a
8:
          for agente en la lista de ballenas do
9:
              Determianr p y calcular A y C.
10:
              if p < 0.5 then
11:
                 if |A| < 1 then
12:
                     Movemos la ballena usando el movimeinto rectilineo (1)
13:
                 else if |A| > 1 then
14:
                     Movimiento rectilineo usando una ballena eleatoria (1)
15:
                 end if
16:
17:
              else
                 Movimiento en espiral utilizando (2)
18:
              end if
19:
          end for
20:
          Comprobar si alguna solución se ha salido de los limites del problema
21:
22:
          Incrementar evaluaciones en el número de evaluaciones correspondiente
          Evaluar las soluciones encontradas y actualizar la mejor ballena
23:
          if la mejor ballena es la mejor solución encontrada then
24:
              Actualizar la mejor solución encontrada hasta el momento
25:
          end if
26:
       end while
27:
28:
       return Construir la solución asociada a la mejor ballena encontrada
29: end procedure
```

El algoritmo que, a partir de una ballena, nos permite crear una solución en el formato que hemos descrito es

Algorithm 2 Generar una solución a partir de un conjunto de centroides

```
1: procedure Generar solución(datos, restricciones, centroides)
       clusters \leftarrow [[]... []] Lista con los puntos asociados a cada cluster
       for cada punto p del conjunto de datos do
3:
          Calcular el coste de infeasibility que supone asignar el punto a los diferentes clusters
4:
          elegir K = [k_0, \dots, k_s] los clusters que menor incremento de infeasibility suponen
5:
          if K.size() == 1 then
6:
              Asignar p al cluster K[0]
7:
          else
8:
              Calcular la distancia del punto p al centro de cada cluster k_i \in K
9:
              Asignar p al cluster más cercano
10:
          end if
11:
12:
       end for
       return Construir la asignación a partir de la lista de puntos en cada cluster
13:
14: end procedure
```

Por último describimos en pseudocódigo las funciones que nos permiten evaluar las soluciones que obtengamos en los distintos experimentos que se han realizado

Algorithm 3 Calcular el valor de infeasibility para una solución

```
1: procedure CALC_INFEASIBILITY(SOLUCION, RESTRICCIONES)
       \inf = 0
2:
       for c_i \in \text{sol do}
3:
          R = Comprobar las relaciones de <math>c_i con el resto de elementos c_j de su cluster
4:
5:
          for relacion en R do
              if deberían estar juntos y no lo están o están en el mismo cluster sin deberlo then
6:
7:
                  \inf += 1
              end if
8:
          end for
9:
       end for
10:
       return inf
11:
12: end procedure
```

para calcular el valor de desviación instracluster

Algorithm 4 Calcular la desviación intracluster

```
1: procedure CALC_C(SOLUCION, PUNTOS, K)
      centros = [centros para cada cluster 0...k]
      num = [número de elementos de cada cluster 0...k]
3:
      inner = [distancia intra cluster 0...k] inicializado a 0
4:
      for i,c \in enumerate(solucion) do
5:
          inner[c] += norma_12(puntos[i]-centros[c])
6:
      end for
7:
      inner = inner/num
8:
      return sum(inner)/k
9:
10: end procedure
```

también nos hará falta un método para calcular lo que en la descripción del problema hemos llamado λ .

Algorithm 5 Calcular el valor de λ para el problema

```
1: procedure CALC_LAMBDA(DATA: CONJUNTO DE PUNTOS, REST: MATRIZ DE RESTRICCIONES)
       \max_{dist} \leftarrow 0
       for u \in data do
3:
4:
           for v \in data do
               d \leftarrow norm \ 2 \ of \ u - v
5:
               if d > \max_{d} dist then
6:
                   \max_{dist} = d
7:
               end if
8:
           end for
9:
       end for
10:
       n \leftarrow contar el número de restricciones no cero
11:
       // Eliminamos la diagonal y los puntos duplicados
12:
       n \leftarrow (n\text{-rest.size})/2
13:
       return max_dist/k
14:
15: end procedure
```

La función score que nos permite evaluar una solución sería

Algorithm 6 Calcular el score de una solución

```
    procedure CALC_SCORE(SOL: SOLUTION, DATA: CONJUNTO DE PUNTOS, REST: MATRIZ DE RESTRICCIONES)
    return calc_c(sol, puntos, k) + calc_lambda(data, rest) * calc_infeasibility(sol, rest)
    end procedure
```

3. Implementación y desarrollo del experimento

La implementación del código ha sido realizada en el lenguaje de programación *Rust* ya que ha sido el el usado durante el desarrollo de las anteriores prácticas, por lo que se ha podido reutilizar código y las ejecuciones han sido realizadas bajo las mismas optimizaciones en el lenguaje.

Los experimentos han sido ejecutados en un ordenador con las siguientes características

■ CPU: Ryzen 5 2600 3.4GHz

■ RAM: 24GB

• SO: Solus OS

Cada experimento consistente en la ejecución del algoritmo bajo 5 semillas distintas (37,42,440,699,752) de las que se han recopilado datos y se han agregado tomando medias. También se proporcionan en detalle los resultados para cada ejecución.

El tamaño de la población como hemos estudiado para este tipo de problemas se recomienda entre 20 y 50 individuos. En mi caso he optado por fijar este valor a 30 individuos a fin de obtener una primera idea del funcionamiento del algoritmo. El parámetro b de la espiral lo he fijado a 1 ya que es el valor que se fija en la versión implementada en MATLAB [4]. Tras haber ejecutado el algoritmo los resultados son los siguientes.

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.670304	13.046238	0.715599	14.013687
Semilla 42	0.671846	13.140929	0.715599	13.500604
Semilla 440	0.656589	13.058654	0.715599	13.295182
Semilla 699	0.668911	13.050045	0.715599	13.647765
Semilla 752	0.666602	13.026891	0.715599	13.790620
Media	0.666851	13.064551	0.715599	13.649572

	Iris	Ecoli	Rand	Tyroid
Semilla 37	42.000000	1273.000000	0.000000	185.000000
Semilla 42	32.000000	1285.000000	0.000000	204.000000
Semilla 440	39.000000	1298.000000	0.000000	203.000000
Semilla 699	48.000000	1288.000000	0.000000	206.000000
Semilla 752	40.000000	1304.000000	0.000000	191.000000
Media	40.200000	1289.600000	0.000000	197.800000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.936712	47.200253	0.715599	20.779371
Semilla 42	0.874824	47.616898	0.715599	20.961143
Semilla 440	0.903969	47.883408	0.715599	20.719147
Semilla 699	0.973378	47.606503	0.715599	21.181446
Semilla 752	0.920325	48.012620	0.715599	20.775734
Media	0.921842	47.663936	0.715599	20.883368

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	24.114498	249.527510	24.124850	45.735350
Semilla 42	24.452518	243.258400	23.513433	44.398865
Semilla 440	23.470268	241.543440	23.613468	44.316753
Semilla 699	23.512020	241.600170	23.420820	44.240932
Semilla 752	23.493227	241.310170	23.466751	44.134445
Media	23.808506	243.447938	23.627864	44.565269

(c) Función objetivo

(d) Tiempo de ejecución

Figura 1: Resultados para woa con 10 % de restricciones

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.684892	12.979752	0.715599	13.340351
Semilla 42	0.663448	13.042139	0.715599	13.592555
Semilla 440	0.662933	13.033968	0.715599	13.620830
Semilla 699	0.660625	13.035360	0.715599	13.909627
Semilla 752	0.658393	13.160732	0.715599	13.623517
Media	0.666058	13.050390	0.715599	13.617376

	Iris	Ecoli	Rand	Tyroid
Semilla 37	77.000000	2637.000000	0.000000	371.000000
Semilla 42	55.000000	2553.000000	0.000000	294.000000
Semilla 440	81.000000	2663.000000	0.000000	426.000000
Semilla 699	76.000000	2512.000000	0.000000	337.000000
Semilla 752	90.000000	2625.000000	0.000000	348.000000
Media	75.800000	2598.000000	0.000000	355.200000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.928991	48.354507	0.715599	20.122843
Semilla 42	0.837804	47.290054	0.715599	18.967363
Semilla 440	0.919712	48.757507	0.715599	21.408813
Semilla 699	0.901553	46.733270	0.715599	20.070543
Semilla 752	0.943702	48.374510	0.715599	19.985538
Media	0.906353	47.901970	0.715599	20.111020

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	28.139378	293.534940	28.877132	53.587063
Semilla 42	28.537369	284.490780	27.549004	52.060455
Semilla 440	27.767319	283.893800	27.526875	52.108093
Semilla 699	27.650816	283.500640	27.543203	52.094227
Semilla 752	27.724705	282.832120	27.512619	51.931313
Media	27.963917	285.650456	27.801767	52.356230

(c) Función objetivo

(d) Tiempo de ejecución

Figura 2: Resultados para woa con $20\,\%$ de restricciones

4. Análisis de los resultados

En primer lugar vamos a proceder a comparar los resultados obtenidos con los resultados usando otros algoritmos desarrollados durante el curso. La lista de algoritmos con la que vamos a comparar es

- greedy: Versión greedy
- ls: Busqueda local
- age-fs: Algoritmo genético estacionario con cruce de segmento fijo
- age-u: Algoritmo genético estacionario con cruce uniforme
- agg-fs: Algoritmo genético generacional con cruce de segmento fijo
- agg-u: Algoritmo genético generacional con cruce uniforme
- am-*: Algoritmo memético en diferentes variantes de los paráemtros
- es: Enfriamiento simulado
- bmb: Busqueda multiarranque básica
- ils: Búsqueda local iterativa
- ils-es: Búsqueda local iterativa con enfriamiento simulado

		Iris			Ecoli			Rand		ľ	Newthyroid	i
	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score
greedy	1.800	355.8	4.057	44.613	1500.4	84.868	2.227	299.4	4.383	13.160	958.2	48.203
ls	0.669	0.000	0.669	21.604	92.200	24.078	0.716	0.000	0.716	13.246	24.4	14.138
age-fs	0.669	0.000	0.669	21.291	94.000	23.813	0.716	0.000	0.716	12.043	63.600	14.369
age-u	0.669	0.000	0.669	21.622	97.800	24.246	0.716	0.000	0.716	12.038	67.000	14.488
agg-fs	0.671	4.000	0.696	22.855	146.60	26.788	0.723	4.200	0.753	13.835	6.000	14.054
agg-u	0.669	0.000	0.669	22.617	141.80	26.422	0.716	0.000	0.716	12.645	51.800	14.539
am-01	0.669	0.000	0.669	23.726	98.200	26.360	0.716	0.000	0.716	12.037	68.200	14.531
am-all	0.671	1.800	0.682	22.759	97.600	25.377	0.719	1.000	0.727	12.036	61.200	14.275
am-top-01	0.669	0.000	0.669	21.929	125.00	25.283	0.716	0.000	0.716	12.070	65.800	14.476
es	0.669	0.000	0.669	21.679	83.800	23.927	0.716	0.000	0.716	12.628	47.400	14.362
bmb	0.669	0.000	0.669	21.997	156.000	26.183	0.716	0.000	0.716	13.835	6.000	14.054
ils	0.669	0.000	0.669	21.781	75.800	23.815	0.716	0.000	0.716	13.835	6.000	14.054
ils-es	0.669	0.000	0.669	28.198	332.800	37.127	0.716	0.000	0.716	13.835	6.000	14.054
woa	0.667	40.200	0.922	13.065	1289.600	47.664	0.716	0.000	0.716	13.650	197.800	20.883

Cuadro 1: Resultados medios obtenidos para el problema del PAR con restricciones del $10\,\%$

		Iris			Ecoli			Rand		1	Newthyroid	d
	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score
greedy	1.686	690.4	3.874	44.953	3166.6	87.433	2.332	667.8	4.735	13.200	2056.4	50.795
ls	0.669	0.000	0.669	21.828	167.6	24.076	0.716	0.000	0.716	12.215	152.0	14.994
age-fs	0.669	0.000	0.669	22.000	158.200	24.122	0.716	0.000	0.716	12.896	95.80	14.647
age-u	0.669	0.000	0.669	21.346	194.400	23.954	0.716	0.000	0.716	12.911	97.00	14.684
agg-fs	0.675	8.600	0.702	22.330	192.800	24.916	0.737	13.00	0.783	12.908	98.0	14.699
agg-u	0.669	0.000	0.669	22.607	209.400	25.416	0.716	0.000	0.716	12.744	151.20	15.508
am-01	0.669	0.000	0.669	22.186	211.400	25.021	0.716	0.000	0.716	13.026	152.00	15.805
am-all	0.676	5.000	0.692	21.965	160.400	24.116	0.720	4.800	0.738	12.893	91.80	14.572
am-top-01	0.669	0.000	0.669	22.986	201.200	25.685	0.716	0.000	0.716	12.453	156.8	15.320
es	0.669	0.000	0.669	21.849	179.000	24.250	0.716	0.000	0.716	12.206	159.000	15.112
bmb	0.669	0.000	0.669	22.428	224.400	25.439	0.716	0.000	0.716	14.287	0.000	14.287
ils	0.669	0.000	0.669	21.826	182.400	24.273	0.716	0.000	0.716	14.287	0.000	14.287
ils-es	0.669	0.000	0.669	28.232	646.400	36.903	0.716	0.000	0.716	14.287	0.000	14.287
woa	0.666	75.800	0.906	13.050	2598.000	47.902	0.716	0.000	0.716	13.617	355.200	20.111

Cuadro 2: Resultados medios obtenidos para el problema del PAR con restricciones del $20\,\%$

Viendo estos resultados comprobamos como el algoritmo efectivamente hace un buen trabajo reduciendo la distancia intracluster que era la parte que optimizaba el algoritmo pero sin embargo la solución empeora de manera considerable ya que la asignación que se hace de los puntos provoca que se incumplan muchas restricciones.

También como se muestra en este histórico de datos generado para el problema de ecoli con un 10% de restricciones se encuentran de manera sucesiva mejores soluciones en etapas tempranas de la ejecución pero después la calidad de las soluciones no mejora de manera considerable aún estando lejos del óptimo conocido.

Figura 3: Evolución de la función objetivo en función del número de evaluaciones

Este comportamiento se explica ya que los agentes de la búsqueda comienzan a desplazarse en entornos cercanos a ellos y no exploran realmente el espacio de búsqueda de manera eficiente.

Una primera solución que planteo al problema es la hibridación con una búsqueda local. El motivo es que los centroides creados ya optimizan bien la distancia de los centros a los puntos pero no el valor de infeasibility. Con una búsqueda local podemos modificar las soluciones de manera que se mejore el factor de infeasibility y se mantengan buenos resultados en lo que a las distancias se refiere.

5. Modificación I: Búsqueda local

5.1. Descripción de los cambios

Como se ha comentado anteriormente he decidido hibridar el algoritmo con una búsqueda local para mejorar el factor de infeasibility en las soluciones. He decidido reutilizar la búsqueda local que hemos utilizado en otras prácticas y que queda descrita en el siguiente código.

Algorithm 7 Aplicación de la búsqueda local al problema de clustering con restricciones

```
1: procedure LS
       clusters = \{1, 2, \dots k\}
       solucion = \langle s_1, s_2, \dots, s_n \rangle
 3:
 4:
       l = computeLambda(points, restrictions)
 5:
       cambiosPosibles = \langle (id, nuevo\_c) \rangle
 6:
       for i \in \mathbb{Z}^+ : i \leq \text{max\_iters} do
 7:
           if size(cambiosPosibles) = 0 then
 8:
               return solucion, infeasibility, tasac, puntuacion
 9:
           end if
10:
           j,c = Pop(cambiosPosibles)
11:
           newSol = solucion where solucion[j] \rightarrow c
12:
           Comprobar que la solución no deja ningun cluster vacio
13:
           if score(newSol) < score actual then
14:
               solucion = newSol
15:
               actualizar score actual
16:
               crear nueva permutacion de cambios
17:
               saltos +=1
18:
           end if
19:
       end for
20:
       Calcular centroides a partir de la solución
21:
22:
       return centroides, solución, puntuación
23: end procedure
```

En nuestro algoritmo introduciremos al final de cada iteración del mismo una pequeña búsqueda local al mejor de los agentes. La idea con esto es que la ballena guía mejore y arrastre al resto con ellas. La actualización del pseudocódigo sería la siguiente

Algorithm 8 Whale optimization Algorithm + LS

```
1: procedure WOA-LS(max_evaluaciones)
       whales: Inicializar un conjunto de ballenas con k centroides aleatorios
       Evaluamos las diferentes ballenas usando nuestra métrica
3:
       Seleccionamos X^* la mejor ballena
4:
       Guardamos la mejor solución encontrada al problema
5:
       evaluaciones \leftarrow 0
6:
       \mathbf{while} evaluaciones < \max_{\mathbf{c}} \mathbf{valuaciones} \mathbf{do}
7:
           actualizamos el parámetro a
8:
           for agente en la lista de ballenas do
9:
              Determinar p y calcular A y C.
10:
              if p < 0.5 then
11:
                  if |A| < 1 then
12:
                     Movemos la ballena usando el movimiento rectilíneo (1)
13:
                  else if |A| > 1 then
14:
                     Movimiento rectilíneo usando una ballena aleatoria (1)
15:
                  end if
16:
17:
              else
                  Movimiento en espiral utilizando (2)
18:
              end if
19:
           end for
20:
           Comprobar si alguna solución se ha salido de los limites del problema
21:
22:
           Incremenetar evaluaciones en el número de evaluaciones correspondiente
           Evaluar las soluciones encontradas y actualizar la mejor ballena
23:
           Aplicar busqueda local a la mejor ballena encontrada
24:
           if la mejor ballena es la mejor solución encontrada then
25:
              Actualizar la mejor solución encontrada hasta el momento
26:
           end if
27:
28:
       end while
       return Construir la solución asociada a la mejor ballena encontrada
29:
30: end procedure
```

5.2. Experimentación

Volviendo a ejecutar el conjunto de tests con la nueva implementación obtenemos los siguientes resultados

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	18.316225	0.715599	13.834984
Semilla 42	0.669305	22.455173	0.715599	13.834984
Semilla 440	0.669305	18.724802	0.715599	13.834984
Semilla 699	0.669305	19.889406	0.715599	13.834984
Semilla 752	0.669305	18.931786	0.715599	13.834984
Media	0.669305	19.663478	0.715599	13.834984

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.000000	314.000000	0.000000	6.000000
Semilla 42	0.000000	246.000000	0.000000	6.000000
Semilla 440	0.000000	412.000000	0.000000	6.000000
Semilla 699	0.000000	362.000000	0.000000	6.000000
Semilla 752	0.000000	446.000000	0.000000	6.000000
Media	0.000000	356.000000	0.000000	6.000000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	26.740704	0.715599	14.054409
Semilla 42	0.669305	29.055243	0.715599	14.054409
Semilla 440	0.669305	29.778576	0.715599	14.054409
Semilla 699	0.669305	29.601702	0.715599	14.054409
Semilla 752	0.669305	30.897762	0.715599	14.054409
Media	0.669305	29.214797	0.715599	14.054409

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	1.130866	13.205993	0.730077	3.700471
Semilla 42	1.112652	13.307362	0.775028	3.672802
Semilla 440	1.134597	13.307977	0.740447	3.554318
Semilla 699	1.109715	13.379734	0.736017	3.714991
Semilla 752	1.071018	13.714466	0.808268	3.690543
Media	1.111769	13.383106	0.757967	3.666625

(c) Función objetivo

(d) Tiempo de ejecución

Figura 4: Resultados para woa-l
s con $10\,\%$ de restricciones

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	19.030159	0.715599	14.287071
Semilla 42	0.669305	21.108610	0.715599	14.287071
Semilla 440	0.669305	14.186336	0.715599	14.287071
Semilla 699	0.669305	18.974272	0.715599	14.287071
Semilla 752	0.669305	25.243597	0.715599	14.287071
Media	0.669305	19.708595	0.715599	14.287071

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.000000	961.000000	0.000000	0.000000
Semilla 42	0.000000	635.000000	0.000000	0.000000
Semilla 440	0.000000	1315.000000	0.000000	0.000000
Semilla 699	0.000000	872.000000	0.000000	0.000000
Semilla 752	0.000000	430.000000	0.000000	0.000000
Media	0.000000	842.600000	0.000000	0.000000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	31.921757	0.715599	14.287070
Semilla 42	0.669305	29.626990	0.715599	14.287070
Semilla 440	0.669305	31.826760	0.715599	14.287070
Semilla 699	0.669305	30.671955	0.715599	14.287070
Semilla 752	0.669305	31.011951	0.715599	14.287070
Media	0.669305	31.011883	0.715599	14.287070

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	1.354837	17.762445	0.877928	5.598342
Semilla 42	1.373990	17.955004	0.887015	5.543451
Semilla 440	1.488169	17.845692	0.901323	5.174853
Semilla 699	1.408770	17.817894	0.935871	5.476333
Semilla 752	1.363122	18.403723	0.971957	5.329753
Media	1.397778	17.956952	0.914819	5.424546

(c) Función objetivo

(d) Tiempo de ejecución

Figura 5: Resultados para woa-l
s con $20\,\%$ de restricciones

5.3. Análisis

		Iris			Ecoli			Rand		l	Newthyroid	1
	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score
greedy	1.800	355.8	4.057	44.613	1500.4	84.868	2.227	299.4	4.383	13.160	958.2	48.203
ls	0.669	0.000	0.669	21.604	92.200	24.078	0.716	0.000	0.716	13.246	24.4	14.138
age-fs	0.669	0.000	0.669	21.291	94.000	23.813	0.716	0.000	0.716	12.043	63.600	14.369
age-u	0.669	0.000	0.669	21.622	97.800	24.246	0.716	0.000	0.716	12.038	67.000	14.488
agg-fs	0.671	4.000	0.696	22.855	146.60	26.788	0.723	4.200	0.753	13.835	6.000	14.054
agg-u	0.669	0.000	0.669	22.617	141.80	26.422	0.716	0.000	0.716	12.645	51.800	14.539
am-01	0.669	0.000	0.669	23.726	98.200	26.360	0.716	0.000	0.716	12.037	68.200	14.531
am-all	0.671	1.800	0.682	22.759	97.600	25.377	0.719	1.000	0.727	12.036	61.200	14.275
am-top-01	0.669	0.000	0.669	21.929	125.00	25.283	0.716	0.000	0.716	12.070	65.800	14.476
es	0.669	0.000	0.669	21.679	83.800	23.927	0.716	0.000	0.716	12.628	47.400	14.362
bmb	0.669	0.000	0.669	21.997	156.000	26.183	0.716	0.000	0.716	13.835	6.000	14.054
ils	0.669	0.000	0.669	21.781	75.800	23.815	0.716	0.000	0.716	13.835	6.000	14.054
ils-es	0.669	0.000	0.669	28.198	332.800	37.127	0.716	0.000	0.716	13.835	6.000	14.054
woa	0.667	40.200	0.922	13.065	1289.600	47.664	0.716	0.000	0.716	13.650	197.800	20.883
woa-ls	0.669	0.000	0.669	19.663	356.000	29.215	0.716	0.000	0.716	13.835	6.000	14.054

Cuadro 3: Resultados medios obtenidos para el problema del PAR con restricciones del $10\,\%$

		Iris			Ecoli			Rand		1	Newthyroid	i
	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score
greedy	1.686	690.4	3.874	44.953	3166.6	87.433	2.332	667.8	4.735	13.200	2056.4	50.795
ls	0.669	0.000	0.669	21.828	167.6	24.076	0.716	0.000	0.716	12.215	152.0	14.994
age-fs	0.669	0.000	0.669	22.000	158.200	24.122	0.716	0.000	0.716	12.896	95.80	14.647
age-u	0.669	0.000	0.669	21.346	194.400	23.954	0.716	0.000	0.716	12.911	97.00	14.684
agg-fs	0.675	8.600	0.702	22.330	192.800	24.916	0.737	13.00	0.783	12.908	98.0	14.699
agg-u	0.669	0.000	0.669	22.607	209.400	25.416	0.716	0.000	0.716	12.744	151.20	15.508
am-01	0.669	0.000	0.669	22.186	211.400	25.021	0.716	0.000	0.716	13.026	152.00	15.805
am-all	0.676	5.000	0.692	21.965	160.400	24.116	0.720	4.800	0.738	12.893	91.80	14.572
am-top-01	0.669	0.000	0.669	22.986	201.200	25.685	0.716	0.000	0.716	12.453	156.8	15.320
es	0.669	0.000	0.669	21.849	179.000	24.250	0.716	0.000	0.716	12.206	159.000	15.112
bmb	0.669	0.000	0.669	22.428	224.400	25.439	0.716	0.000	0.716	14.287	0.000	14.287
ils	0.669	0.000	0.669	21.826	182.400	24.273	0.716	0.000	0.716	14.287	0.000	14.287
ils-es	0.669	0.000	0.669	28.232	646.400	36.903	0.716	0.000	0.716	14.287	0.000	14.287
woa	0.666	75.800	0.906	13.050	2598.000	47.902	0.716	0.000	0.716	13.617	355.200	20.111
woa-ls	0.669	0.000	0.669	19.709	842.600	31.012	0.716	0.000	0.716	14.287	0.000	14.287

Cuadro 4: Resultados medios obtenidos para el problema del PAR con restricciones del $20\,\%$

Con esta modificación que hemos hecho se puede comprobar que los resultados mejoran de manera considerable sobre todo en el aspecto de reducir el factor de infeasibility que ha sido uno de los lastres en la puntuación del algoritmo base.

No obstante pese a que los resultados han mejorado en ambos problemas y se alcanzan los óptimos en 3 de los 4 datasets, el problema para el dataset *ecoli* sigue sin ser óptimo.

Si analizamos un poco más el comportamiento del algoritmo aunque hemos aumentado la componente

de explotación de la solución, la exploración del espacio todavía queda en duda ya que aunque el agente guía del problema mejora y arrastra las soluciones hasta óptimos, estas no se mueven lo suficiente para explorar de manera eficiente el espacio de búsqueda y esto justifica que los resultados mejoren pero se queden en óptimos locales. El siguiente paso en la mejora del algoritmo es intentar solucionar este problema.

6. Modificación II: Sistema elitista

Una vez mejorada la calidad de las soluciones por la explotación que hace la búsqueda local creía necesario un sistema para mejorar la exploración del espacio de soluciones. Para ello he pensado en aumentar el número de ballenas guía que intervienen en la ejecución del algoritmo, en lugar de utilizar solo la mejor.

Creamos una lista de ballenas élite en cada iteración y hacemos que los movimientos dependan de una ballena aleatoria de este subconjunto en lugar de usar siempre la mejor ballena o una aleatoria, como hace el algoritmo base. Esto no afecta a las soluciones en el sentido de que se introduzca un sesgo ya que, por el propio diseño del algoritmo, las ballenas cambian, con un factor aleatorio, su movimiento lo que permite cierta movilidad por el espacio de soluciones.

Además buscando un equilibrio entre exploración y explotación he decidido aplicar al igual que antes una búsqueda local, ya que como se vio, era algo de lo que el algoritmo se beneficiaba de manera importante. Para no romper el equilibrio que buscamos entre exploración y explotación me he decantado por tomar varias decisiones.

En primer lugar la lista de soluciones de élite esta limitada a 5 elementos ya que tras haber probado distintos parámetros, este es el valor que aprovecha mejor el número de evaluaciones disponibles. En segundo lugar la búsqueda local no la voy a aplicar al final de cada iteración del algoritmo ya que, como se vió en la primera versión, las soluciones tienden a encontrar mínimos locales. En su lugar he fijado un parametro tal que si no se producen mejoras durante un intervalo de evaluaciones concreto, se procede a aplicar una búsqueda local sobre las soluciones en la lista de soluciones élite.

Con esta decisión se mejora la exploración del espacio de soluciones y aumenta la explotación de soluciones concretas.

Algorithm 9 Whale optimization Algorithm + LS + Elite

```
1: procedure WOA-POOL(max_evaluaciones)
       whales: Inicializar un conjunto de ballenas con k centroides aleatorios
       Evaluamos las diferentes ballenas usando nuestra métrica
3:
4:
       Seleccionamos un conjunto de ballenas de elite, las \alpha mejores
       Guardamos la mejor solución encontrada al problema
5:
       evaluaciones \leftarrow 0
6:
       \mathbf{while} evaluaciones < \max_{\mathbf{c}} \mathbf{valuaciones} \mathbf{do}
7:
           actualizamos el parámetro a
8:
           for agente en la lista de ballenas do
9:
              Determinar p y calcular A y C.
10:
11:
              if p < 0.5 then
                  if |A| < 1 then
12:
                     Movemos la ballena usando el movimiento rectilineo (1) con una ballena del con-
13:
   junto de élite
14:
                  else if |A| > 1 then
                     Movimiento rectilíneo usando una ballena aleatoria (1)
15:
16:
              else
17:
                  Movimiento en espiral utilizando (2)
18:
              end if
19:
           end for
20:
           Comprobar si alguna solución se ha salido de los limites del problema
21:
           Incrementar evaluaciones en el número de evaluaciones correspondiente
22:
           Evaluar las soluciones encontradas y actualizar la mejor ballena
23:
           if no se ha producido mejora en las ultimas \lambda evaluaciones then
24:
              Aplicar búsqueda local en el conjunto de ballenas de elite
25:
           end if
26:
27:
       end while
       return Construir la solución asociada a la mejor ballena encontrada
28:
29: end procedure
```

6.1. Experimentación

Al igual que antes se ha procedido a ejectuar el algoritmo con una población de ballenas de 30 individuos y con un tamaño para la lista de ballenas élite de 5 individuos. El número de evaluaciones para la búsqueda local se ha fijado en un máximo 5000 y estas se producirán si no se mejora la solución en un intervalo de 1000 evaluaciones.

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	22.045382	0.715599	13.834984
Semilla 42	0.669305	24.495527	0.715599	13.834984
Semilla 440	0.669305	24.550121	0.715599	13.834984
Semilla 699	0.669305	19.543894	0.715599	13.834984
Semilla 752	0.669305	22.401370	0.715599	13.834984
Media	0.669305	22.607259	0.715599	13.834984

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.000000	150.000000	0.000000	6.000000
Semilla 42	0.000000	136.000000	0.000000	6.000000
Semilla 440	0.000000	108.000000	0.000000	6.000000
Semilla 699	0.000000	188.000000	0.000000	6.000000
Semilla 752	0.000000	149.000000	0.000000	6.000000
Media	0.000000	146.200000	0.000000	6.000000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	26.069817	0.715599	14.054409
Semilla 42	0.669305	28.144346	0.715599	14.054409
Semilla 440	0.669305	27.447712	0.715599	14.054409
Semilla 699	0.669305	24.587849	0.715599	14.054409
Semilla 752	0.669305	26.398973	0.715599	14.054409
Media	0.669305	26.529739	0.715599	14.054409

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.479367	11.985802	0.354646	1.774805
Semilla 42	0.506040	12.065917	0.370925	1.759036
Semilla 440	0.465806	11.580924	0.328337	1.682147
Semilla 699	0.475540	11.646997	0.349586	1.694336
Semilla 752	0.489841	11.782360	0.360229	1.744990
Media	0.483319	11.812400	0.352744	1.731063

(c) Función objetivo

(d) Tiempo de ejecución

Figura 6: Resultados para woa-pool con $10\,\%$ de restricciones

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	23.650331	0.715599	14.287071
Semilla 42	0.669305	21.638744	0.715599	14.287071
Semilla 440	0.669305	21.274830	0.715599	14.287071
Semilla 699	0.669305	22.834612	0.715599	14.287071
Semilla 752	0.669305	22.183153	0.715599	14.287071
Media	0.669305	22.316334	0.715599	14.287071

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.000000	297.000000	0.000000	0.000000
Semilla 42	0.000000	397.000000	0.000000	0.000000
Semilla 440	0.000000	328.000000	0.000000	0.000000
Semilla 699	0.000000	309.000000	0.000000	0.000000
Semilla 752	0.000000	270.000000	0.000000	0.000000
Media	0.000000	320.200000	0.000000	0.000000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.669305	27.634520	0.715599	14.287070
Semilla 42	0.669305	26.964409	0.715599	14.287070
Semilla 440	0.669305	25.674875	0.715599	14.287070
Semilla 699	0.669305	26.979778	0.715599	14.287070
Semilla 752	0.669305	25.805143	0.715599	14.287070
Media	0.669305	26.611745	0.715599	14.287070

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.606534	16.330107	0.476352	2.520073
Semilla 42	0.613895	16.431150	0.421808	2.299897
Semilla 440	0.591661	16.323292	0.403973	2.278146
Semilla 699	0.584764	16.196812	0.425877	2.485777
Semilla 752	0.612522	16.417053	0.430296	2.455457
Media	0.601875	16.339683	0.431661	2.407870

(c) Función objetivo

(d) Tiempo de ejecución

Figura 7: Resultados para woa-pool con $20\,\%$ de restricciones

6.2. Análisis

		Iris			Ecoli			Rand		l	Newthyroid	1
	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score
greedy	1.800	355.8	4.057	44.613	1500.4	84.868	2.227	299.4	4.383	13.160	958.2	48.203
ls	0.669	0.000	0.669	21.604	92.200	24.078	0.716	0.000	0.716	13.246	24.4	14.138
age-fs	0.669	0.000	0.669	21.291	94.000	23.813	0.716	0.000	0.716	12.043	63.600	14.369
age-u	0.669	0.000	0.669	21.622	97.800	24.246	0.716	0.000	0.716	12.038	67.000	14.488
agg-fs	0.671	4.000	0.696	22.855	146.60	26.788	0.723	4.200	0.753	13.835	6.000	14.054
agg-u	0.669	0.000	0.669	22.617	141.80	26.422	0.716	0.000	0.716	12.645	51.800	14.539
am-01	0.669	0.000	0.669	23.726	98.200	26.360	0.716	0.000	0.716	12.037	68.200	14.531
am-all	0.671	1.800	0.682	22.759	97.600	25.377	0.719	1.000	0.727	12.036	61.200	14.275
am-top-01	0.669	0.000	0.669	21.929	125.00	25.283	0.716	0.000	0.716	12.070	65.800	14.476
es	0.669	0.000	0.669	21.679	83.800	23.927	0.716	0.000	0.716	12.628	47.400	14.362
bmb	0.669	0.000	0.669	21.997	156.000	26.183	0.716	0.000	0.716	13.835	6.000	14.054
ils	0.669	0.000	0.669	21.781	75.800	23.815	0.716	0.000	0.716	13.835	6.000	14.054
ils-es	0.669	0.000	0.669	28.198	332.800	37.127	0.716	0.000	0.716	13.835	6.000	14.054
woa	0.667	40.200	0.922	13.065	1289.600	47.664	0.716	0.000	0.716	13.650	197.800	20.883
woa-ls	0.669	0.000	0.669	19.663	356.000	29.215	0.716	0.000	0.716	13.835	6.000	14.054
woa-pool	0.669	0.000	0.669	22.607	146.200	26.530	0.716	0.000	0.716	13.835	6.000	14.054

Cuadro 5: Resultados medios obtenidos para el problema del PAR con restricciones del $10\,\%$

		Iris			Ecoli			Rand		l l	Newthyroid	d
	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score	tasa C	inf	score
greedy	1.686	690.4	3.874	44.953	3166.6	87.433	2.332	667.8	4.735	13.200	2056.4	50.795
ls	0.669	0.000	0.669	21.828	167.6	24.076	0.716	0.000	0.716	12.215	152.0	14.994
age-fs	0.669	0.000	0.669	22.000	158.200	24.122	0.716	0.000	0.716	12.896	95.80	14.647
age-u	0.669	0.000	0.669	21.346	194.400	23.954	0.716	0.000	0.716	12.911	97.00	14.684
agg-fs	0.675	8.600	0.702	22.330	192.800	24.916	0.737	13.00	0.783	12.908	98.0	14.699
agg-u	0.669	0.000	0.669	22.607	209.400	25.416	0.716	0.000	0.716	12.744	151.20	15.508
am-01	0.669	0.000	0.669	22.186	211.400	25.021	0.716	0.000	0.716	13.026	152.00	15.805
am-all	0.676	5.000	0.692	21.965	160.400	24.116	0.720	4.800	0.738	12.893	91.80	14.572
am-top-01	0.669	0.000	0.669	22.986	201.200	25.685	0.716	0.000	0.716	12.453	156.8	15.320
es	0.669	0.000	0.669	21.849	179.000	24.250	0.716	0.000	0.716	12.206	159.000	15.112
bmb	0.669	0.000	0.669	22.428	224.400	25.439	0.716	0.000	0.716	14.287	0.000	14.287
ils	0.669	0.000	0.669	21.826	182.400	24.273	0.716	0.000	0.716	14.287	0.000	14.287
ils-es	0.669	0.000	0.669	28.232	646.400	36.903	0.716	0.000	0.716	14.287	0.000	14.287
woa	0.666	75.800	0.906	13.050	2598.000	47.902	0.716	0.000	0.716	13.617	355.200	20.111
woa-ls	0.669	0.000	0.669	19.709	842.600	31.012	0.716	0.000	0.716	14.287	0.000	14.287
woa-pool	0.669	0.000	0.669	22.316	320.200	26.612	0.716	0.000	0.716	14.287	0.000	14.287

Cuadro 6: Resultados medios obtenidos para el problema del PAR con restricciones del $20\,\%$

En esta última tabla de resultados donde comparamos la segunda versión con el resto de algoritmos desarrollados nos muestra resultados interesantes.

En primer lugar se confirma que la modificación ha tenido un efecto positivo en la metaheurística ya que se alcanzan resultados iguales en los datasets iris, rand y Newthyroid donde teníamos ya los óptimos y en el caso del dataset Ecoli, para los dos problemas, llegamos a soluciones que empiezan a ser satisfactorias.

Figura 8: Resultados medios obtenidos para el problema ecoli-10

En este cuadro podemos ver de manera visual la diferencia entre los resultados medios obtenidos para cada algoritmo en el conjunto más complejo, ecoli-10. Como se puede apreciar ha habido una evolución positiva entre las distintas mejores que hemos implementado, siendo el uso de la búsqueda local la versión que más a mejorado los resultados. Como muestran los datos en crudo si hemos encontrado soluciones muy buenas con esta versión como por ejemplo la que encuentra la semilla 699 pero la tendencia es a encontrar soluciones en general de peor calidad que otras técnicas que hemos visto en la asignatura.

7. Modificación III: Operadores de cruces

Tras pensar posibles soluciones para mejorar más la metaheurística me decanté por buscar en la literatura sobre modificaciones de otros autores a la misma. En concreto encontré [3] donde se proponen dos operadores de cruce para mejorar las características de explotación-diversificación del algoritmo. Me decanté por implementar esta versión ya que tenía algunas ideas que yo había considerado como mantener una lista de mejores soluciones y pensé que podría aportar algo interesante al estudio.

En el algoritmo al final de cada iteración se decide con una probabilidad del cincuenta por ciento entre una de los dos operadores siguientes

Algorithm 10 Intensificación por cruce

```
1: procedure INTENSIFICACIÓN
2: for i \in 0 \dots \eta do
3: Seleccionamos una ballena aleatoria X_i
4: seleccionamos una ballena X^* aleatoria del conjunto de mejores ballenas
5: for j \in 0 \dots \alpha centroides aleatorios do
6: Replazar el centroide C_j de X_i por el centroide -C_j de X^*
7: end for
8: end for
9: end procedure
```

Algorithm 11 diversificación por cruce

```
1: procedure Diversificación
      for i \in 0 \dots \eta do
2:
          Seleccionamos una ballena aleatoria X_i
3:
          seleccionamos otra ballena X_{rand} aleatoria del conjunto de ballenas
4:
          for j \in 0 \dots \alpha centroides aleatorios do
5:
             Remplazar el centroide C_j de X_i por el centroide -C_j de X_{rand}
6:
          end for
7:
      end for
8:
9: end procedure
```

La versión del algoritmo introduciendo estos cambios sería

Algorithm 12 Whale optimization Algorithm + LS + Cruces

```
1: procedure WOA-SHAKE(max_evaluaciones)
       whales: Inicializar un conjunto de ballenas con k centroides aleatorios
       Evaluamos las diferentes ballenas usando nuestra métrica
3:
       Seleccionamos X^* la mejor ballena
4:
       Guardamos la mejor solución encontrada al problema
5:
       evaluaciones \leftarrow 0
6:
       \mathbf{while} evaluaciones < \max_{\mathbf{c}} \mathbf{valuaciones} \mathbf{do}
7:
           actualizamos el parámetro a
8:
           for agente en la lista de ballenas do
9:
              Determinar p y calcular A y C.
10:
              if p < 0.5 then
11:
                  if |A| < 1 then
12:
                     Movemos la ballena usando el movimiento rectilíneo (1)
13:
                  else if |A| > 1 then
14:
                      Movimiento rectilíneo usando una ballena aleatorio
15:
                  end if
16:
17:
              else
                  Movimiento en espiral utilizando (2)
18:
              end if
19:
           end for
20:
           Comprobar si alguna solución se ha salido de los limites del problema
21:
22:
           Incrementar evaluaciones en el número de evaluaciones correspondiente
           Evaluar las soluciones encontradas y actualizar la mejor ballena
23:
           if no se ha producido mejora en las ultimas \lambda evaluaciones then
24:
              if numero aleatorio < 0.5 then
25:
                  Aplicar Intensificación 10
26:
              else
27:
28:
                  Aplicar Diversificación 11
              end if
29:
30:
           end if
           if la mejor ballena es la mejor solución encontrada then
31:
              Actualizar la mejor solución encontrada hasta el momento
32:
           end if
33:
       end while
34:
       return Construir la solución asociada a la mejor ballena encontrada
35:
36: end procedure
```

7.1. Experimentación

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.702643	13.131901	0.753491	13.674530
Semilla 42	0.694527	13.163324	0.753899	13.822516
Semilla 440	0.667115	13.557816	0.730190	14.170967
Semilla 699	0.691813	13.159453	0.724393	12.865167
Semilla 752	0.684174	13.110302	0.745357	13.140634
Media	0.688055	13.224559	0.741466	13.534763

	Iris	Ecoli	Rand	Tyroid
Semilla 37	65.000000	1365.000000	34.000000	343.000000
Semilla 42	74.000000	1346.000000	23.000000	307.000000
Semilla 440	77.000000	1361.000000	35.000000	324.000000
Semilla 699	58.000000	1334.000000	27.000000	349.000000
Semilla 752	77.000000	1364.000000	28.000000	415.000000
Media	70.200000	1354.000000	29.400000	347.600000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	1.114942	49.754234	0.998346	26.218475
Semilla 42	1.163914	49.275894	0.919536	25.049892
Semilla 440	1.155531	50.072826	0.982247	26.020058
Semilla 699	1.059711	48.950070	0.918836	25.628540
Semilla 752	1.172589	49.705803	0.947003	28.317707
Media	1.133337	49.551765	0.953193	26.246934

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	29.325428	304.140080	29.168410	55.371357
Semilla 42	29.487904	303.823600	29.225350	55.270283
Semilla 440	29.358913	303.625240	29.203613	55.790195
Semilla 699	29.360378	306.017030	29.815077	56.276577
Semilla 752	29.720865	308.547450	29.524380	56.064520
Media	29.450698	305.230680	29.387366	55.754586

(c) Función objetivo

(d) Tiempo de ejecución

Figura 9: Resultados para woa-shake con 10 % de restricciones

	Iris	Ecoli	Rand	Tyroid
Semilla 37	0.660507	13.302370	0.753491	13.367699
Semilla 42	0.661468	13.161186	0.770779	13.754254
Semilla 440	0.667115	13.557816	0.738453	12.729817
Semilla 699	0.682628	13.386394	0.736281	12.865167
Semilla 752	0.684174	13.110512	0.712756	12.891692
Media	0.671178	13.303656	0.742352	13.121726

	Iris	Ecoli	Rand	Tyroid
Semilla 37	168.000000	2769.000000	75.000000	552.000000
Semilla 42	143.000000	2836.000000	29.000000	621.000000
Semilla 440	126.000000	2769.000000	73.000000	707.000000
Semilla 699	133.000000	2830.000000	47.000000	682.000000
Semilla 752	153.000000	2708.000000	38.000000	790.000000
Media	144.600000	2782.400000	52.400000	670.400000

(a) Distancia intracluster

	Iris	Ecoli	Rand	Tyroid
Semilla 37	1.193085	50.447876	1.023431	23.459171
Semilla 42	1.114793	51.205482	0.875156	25.107164
Semilla 440	1.066549	50.703323	1.001194	25.654950
Semilla 699	1.104252	51.350200	0.905444	25.333258
Semilla 752	1.169201	49.437720	0.849526	27.334202
Media	1.129576	50.628920	0.930950	25.377749

(b) Infeasibility

	Iris	Ecoli	Rand	Tyroid
Semilla 37	34.639317	355.852940	34.618073	65.185326
Semilla 42	34.879158	356.064600	34.605022	65.144990
Semilla 440	34.592080	357.348900	34.459778	65.300385
Semilla 699	34.590010	360.112240	35.237167	65.788895
Semilla 752	34.918400	357.927300	34.806717	66.101330
Media	34.723793	357.461196	34.745351	65.504185

(c) Función objetivo

(d) Tiempo de ejecución

Figura 10: Resultados para woa-shake con 20 % de restricciones

7.2. Resultados

En general como muestran las tablas anteriores los resultados que proporcionan esta nueva implementación no mejoran los resultados con los que partíamos del algoritmo base. El comportamiento que muestran los algoritmos de la modificación III y el algoritmo base son muy similares y todo apunta a que hay un problema en el equilibrio entre exploración y explotación, en este caso, por una falta de explotación de las soluciones.

No obstante la idea que se presentaba en este artículo era interesante por lo que como trabajo futuro podría ser interesante sustituir el operador de intensificación por otro tipo de algoritmo que produzca mejores resultados.

También podría ser interesante para trabajo futuro modificar el modo en el que se explora el espacio de soluciones ya que este artículo propone una especia de simetría de los centroides respecto a los ejes cartesianos y es muy probable que esta sea la razón de que no funcione como se espera.

8. Conclusiones

En el desarrollo de esta práctica hemos introducido una metaheurística de tipo PSO para solucionar el problema de clustering con restricciones. Tras solventar el problema de adaptar la metaheurística al problema hemos visto que las soluciones no eran buenas pese a que las ideas que se introducen en el algoritmo resultaban interesantes teóricamente.

Con las modificaciones introducidas tomadas de ideas que hemos visto a lo largo del cuatrimestre han permitido que lleguemos a una implementación que mejora las características de explotación-exploración de la metaheurística para el problema y que han permitido encontrar resultados óptimos en 3/4 de los problemas y resultados que podemos considerar bastante buenos para el dataset ecoli.

La implementación de los operadores de cruce, pese a que parecía una idea alternativa buena para solventar las carencias que hemos analizado en la metaheurística para este problema, han demostrado no ser tan eficaces.

Se ha demostrado en esta práctica como es importante encontrar un equilibrio entre explotación y exploración ya que tiene un impacto directo en el comportamiento de las metaheurísticas y cómo distintas técnicas son más eficaces que otras en determinados problemas.

Referencias

- [1] Seyedali Mirjalili *The Whale Optimization Algorithm* https://doi.org/10.1016/j.advengsoft. 2016.01.008
- [2] Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations https://arxiv.org/abs/2002.08136

- [3] Kareem Kamal A. Ghany, Amr Mohamed AbdelAziz, Taysir Hassan A. Soliman, Adel Abu El-Magd Sewisy A hybrid modified step Whale Optimization Algorithm with Tabu Search for data clustering. https://doi.org/10.1016/j.jksuci.2020.01.015
- [4] Whale Optimization Algorithm Implementation in MATLAB https://github.com/AdrikaMukherjee/Whale-Optimization-Algorithm/blob/master/WOA.m