RNN

Cadmus Yuan

2022.03.20

Content

• What is the characteristics in RNN

- What is the difference in ML point of new
 - Different types of inputs
 - Different learning sequence
- Examples

Continous with LSTM

What's for dinner?

What's for dinner?

A vector is a list of values

e2eml.school

A vector is a list of values

Unrolled predictions

The structure of RNN

What is the difference of RNN: the inputs

If this is the core NN, what are the inputs??

V and x_{t-1} . There are 3 different kind of inputs:

- Constant through all time
- Known varible through time
- The outputs from previous time

What is the learning technique (1)

• I use eligible trace to accelerate the computation

$$w_{new} = w_{old} - \eta \delta h^n h^{n-1}$$
, if I use $\delta h = \frac{\delta h_{t-1}}{\delta h_{t-2}} \cdot \delta h$

Sounds if in each cycle, the δh is increasing, then increasing.

What is the learning technique (2)

• I also can use the δx from the previous step to modify this step

$$o_t = o_t + \delta x_{t-1}$$

the delta from the previous should be included by output of this step

Excel demo

Overview of all sheets

db

Parameter

- i1: it is fixed for all time
- i2: it will change by time
- i3: it is taken from the previous step
- I generate more datasets than I use for training
- I use CAYMAL to obtain the first set

- In the beginning, O1 is taken to i3
- But in CAYMAL, the recurrent para should be at last parameter
- So I swap O1 and O2 for CAYMAL input

Training technique

The rnn way

- The dw values are computed at each cycle, it is an average of the datapairs
- Different time has different weighting, t=1 has the highest weighting (why)??

Rnn+et

•
$$dw_{1,t=3} = (dw_{1,t=3}) * (\frac{dw_{1,t=2}}{dw_{1,t=1}})$$

• If there is a fixed trend that found in previous 2 steps, the next step will be accelerated.

Rnn+et+dx

		о2	о1									
neto1	neto2	outo1	outo2	do1	do2	dh1	dh2	dh3	dh4	di1	di2	di3
-3.2	0.1	0	0.5	-0	0.1	0	-0.1	-0	0.1	0	0	0
-2.2	0.2	0.1	0.6	-0	0.1	0	-0.1	-0	0.1	0	0	0
-1.8	0.4	0.1	0.6	0	0.1	0	-0.1	-0	0.1	0	0	0
-1.4	0.5	0.2	0.6	0	0.1	0	-0.1	-0	0	0	0	0
-1.1	0.7	0.3	0.7	0	0.1	0	-0.1	-0	0	0	0	0
-2.9	0.1	0.1	0.5	-0	0.1	0	-0.1	-0	0.1	0	0	0

During our calculation, we have propagate the error through the network. But how about the dx?

In RNN, the dx is actually the output from the previous computation.