Notas em matemática

Análise

Douglas Santos douglass@ufrj.br

Conteúdo

Sequências	
Sequências infinitas	
Sequências infinitas unilaterais	
Sequências bi-infinitas	
Sequências monótonas	
Sequências monotonicamente crescentes	
Sequências monotonicamente decrescentes	
Sequências limitadas	
Limite de uma sequência	
Propriedades de limites de sequências	
Subsequências	
Sequência de Cauchy	
Convergência de seguências	

Sequências

Sequências infinitas

Sequências são um tipo de especial de função. Considere uma função de variável inteira, ou seja

$$a_n := a(n) : \mathbb{Z} \to A; n \mapsto a_n.$$

O domínio de uma sequência é sempre o conjunto dos inteiros. A imagem da sequência depende do contexto, pois o contradomínio pode ser um subconjunto do conjunto \mathbb{R} , \mathbb{C} ou um espaço topológico. De qualquer forma, a imagem é geralmente denotada por \mathfrak{a}_n .

Sequências infinitas unilaterais

São sequências onde o domínio pode ser sempre o conjunto \mathbb{N} . Considere a aplicação $f: \mathbb{N} \to A$; $\mathfrak{n} \mapsto f(\mathfrak{n})$. Uma sequência infinita unilateral seria algo do tipo

$$\left\{\mathfrak{a}_{n}\right\}_{n\in\mathbb{N}}^{\infty}$$
.

Exemplo 1

Considere a sequência $\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$. Então, a imagem é $\left\{1,\frac{\sqrt{3}}{2},\frac{1}{2},...\right\}$.

Sequências bi-infinitas

Sequências bi-infinitas são sequências do tipo

$$\{a_n\}_{n=-\infty}^{\infty}$$
.

Exemplo 2

Considere $\{4n\}_{n=-\infty}^{\infty}$. Então, temos

$$(..., -16, -12, -8, -4, 0, 4, 8, 12, 16, ...)$$

Sequências monótonas

Sequências monótonas são sempre crescentes ou decrescentes.

Sequências monotonicamente crescentes

A sequência $\{a_n\}_{n=1}^{\infty}$ é monotonicamente crescente se e somente se $a_{n+1} \ge a_n$, para todo $n \in \mathbb{N}$. Se cada termo consecutivo é estritamente maior que o anterior, então a sequência é estritamente monotonicamente crescente.

Sequências monotonicamente decrescentes

Analogamente, uma sequência é monotonicamente decrescente se a cada termo consecutivo for menor que o anterior. A sequência será *estritamente monotonicamente decrescente* se cada termo for estritamente menor que o anterior.

Sequências limitadas

Definição 1

Uma sequência $\{a_n\}_{n\in A}^{\infty}$ é limitada quando o conjunto de seus termos é limitado, ou seja, existem K e M contidos em A tais que $K \leq a_n \leq M$, $\forall n \in A$.

i. Se $\{a_n\}$ é limitada superiormente temos

$$a_n \leq M, \forall n \in A.$$

ii. Se $\{a_n\}$ é limitada inferiormente temos

$$K \leq a_n, \forall n \in A$$
.

iii. Se $\{a_n\}$ é inferiormente e superiormente limitada então $\{a_n\}$ é uma sequência limitada. Isto é, a_n é limitada se existir um L > 0, $L \subseteq A$, tal que $|a_n| \le L$, $\forall n \in A$.

Limite de uma sequência

Sequências são tipos especiais de funções e com isso podemos investigar seus limites. No entanto, temos uma restrição: a_n está definida para valores inteiros de n. O único limite que usado será de $a_n \to +\infty$.

Definição 2 (Intuitiva)

Dada uma sequência a_n dizemos que o limite de uma sequência é L se, equanto n se torna grande, a_n comeca a estar arbitrariamente perto de L. Se enquanto $n \to +\infty$ a_n nao se aproxima de L, então dizemos que o limite nao existe.

Definição 3

Dada uma sequência a_n dizemos que $\lim_{n\to\infty}a_n=L$ se para todo $\varepsilon>0$ existir um inteiro k, tal que $|a_n-L|<\varepsilon$ para todo $n\geqslant k$.

Teorema 1

Seja $a_{n n = n_0}$ uma sequência e suponha que f(x) é uma função real para a qual $f(n) = a_n$ para todos os inteiros $n \ge k$, onde $k \ge n_0$. Se

$$\lim_{x\to\infty} f(x) = L, \quad \lim_{n\to\infty} a_n = L.$$

Exemplo 3

Seja $a_n = \frac{5n+1}{6n+7}$. Determine se a sequência $a_{nn=1}$ tem um limite.

Demonstração. Como

$$\lim_{x \to \infty} \frac{5x + 1}{6x + 7} = \frac{5}{6}, \quad \text{então } \lim_{x \to \infty} \frac{5n + 1}{6n + 7} = \frac{5}{6}.$$

Propriedades de limites de sequências

Subsequências

Sequência de Cauchy

Convergência de sequências