Tipos y términos

Las expresiones de tipos (o simplemente tipos) son

$$\sigma ::= \mathsf{Bool} \mid \mathsf{Nat} \mid \sigma \to \sigma$$

Sea \mathcal{X} un conjunto infinito enumerable de variables y $x \in \mathcal{X}$. Los términos están dados por

$$M := x$$
 $| \lambda x : \sigma.M |$
 $| M M |$
 $| \text{true} |$
 $| \text{false} |$
 $| \text{if } M \text{ then } M \text{ else } M |$
 $| \text{zero} |$
 $| \text{succ}(M) |$
 $| \text{pred}(M) |$
 $| \text{isZero}(M) |$

Axiomas y reglas de tipado

$$\frac{}{\Gamma \vdash \mathsf{zero} : \mathsf{Nat}} \ \mathit{T-Zero}$$

$$\frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{succ}(M) : \mathsf{Nat}} \ \ T\text{-}\mathit{Succ} \qquad \frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{pred}(M) : \mathsf{Nat}} \ \ T\text{-}\mathit{Pred}$$

$$\frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{isZero}(M) : \mathsf{Bool}} \ T\text{-} \mathit{IsZero}$$

Semántica operacional

$$V ::= \mathsf{true} \mid \mathsf{false} \mid \lambda x : \sigma.M \mid \mathsf{zero} \mid \mathsf{succ}(V)$$
 (Los valores de tipo Nat pueden escribirse como \underline{n} , lo cual abrevia $\mathsf{succ}^n(\mathsf{zero})$).

Reglas de evaluacion en un paso

Si
$$M_1 o M_1'$$
, entonces $M_1 M_2 o M_1' M_2$ $(E ext{-}App_1 o \mu)$

Si
$$M_2 \rightarrow M_2'$$
, entonces $VM_2 \rightarrow VM_2'$ (E-App₂ o ν)

$$(\lambda x : \sigma.M)$$
 \checkmark $\rightarrow M\{x := \checkmark\}$ (E-AppAbs o β)

if true then
$$M_2$$
 else $M_3 o M_2$ (E-IfTrue)

if false then
$$M_2$$
 else $M_3 o M_3$ (*E-IfFalse*)

Si
$$M_1 o M_1'$$
, entonces

if
$$M_1$$
 then M_2 else $M_3 o$ if M_1' then M_2 else M_3 (E-If)

$$\operatorname{\mathsf{pred}}(\operatorname{\mathsf{succ}}(\underline{n})) o \underline{n}$$
 (E-PredSucc)

 $\operatorname{\mathsf{Opcional*:}} \operatorname{\mathsf{pred}}(\operatorname{\mathsf{zero}}) o \operatorname{\mathsf{zero}}$ (E-Pred $_0$)

 $\operatorname{\mathsf{isZero}}(\operatorname{\mathsf{zero}}) o \operatorname{\mathsf{true}}$ (E-IsZero $_0$)

 $\operatorname{\mathsf{isZero}}(\operatorname{\mathsf{succ}}(\underline{n})) o \operatorname{\mathsf{false}}$ (E-IsZero $_n$)

 $\operatorname{\mathsf{Si}} M o N$, entonces $\operatorname{\mathsf{succ}}(M) o \operatorname{\mathsf{succ}}(N)$ (E-Succ)

 $\operatorname{\mathsf{Si}} M o N$, entonces $\operatorname{\mathsf{pred}}(M) o \operatorname{\mathsf{pred}}(N)$ (E-Pred)

 $\operatorname{\mathsf{Si}} M o N$, entonces $\operatorname{\mathsf{isZero}}(M) o \operatorname{\mathsf{isZero}}(N)$ (E-IsZero)