Q.5 Prove that $p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$ (Lahore Board 2005) Solution:

p	q	~ p	~ q	~ p ^ ~ q	$p \lor (\sim p \land \sim q)$	$P \wedge q$	$p \ v \ (\sim p \land \sim q) \lor (p \land q)$
Т	Т	F	F	F	T	T	F
Т	F	F	F	F	T	F	Т
F	Т	Т	Т	F	F	F	Т
F	F	Т	Т	T	T	F	T

As entries in the columns of $p \vee (\sim p \wedge \sim q) \vee (p \wedge q)$ and $p \vee (\sim p \wedge \sim q)$ are same.

$$\Rightarrow \qquad p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$$

Hence proved.

EXERCISE 2.5

Convert the following theorems to logical and prove them by constructing truth tables.

Q.1
$$(A \cap B)' = A' \cup B'$$

(Lahore Board 2004)

Solution:

Its logical form is $\sim (p \land q) = \sim p \lor \sim q$ its truth table is given below

p	q	$p \wedge q$	~ (p ∧ q)	~ p	~ q	~ p ∨ ~ q
T	T	Т	F	F	F	F
T	F	F	T	F	T	Т
F	T	F	T	T	F	Т
F	F	F	T	T	T	Т

As entries in the columns of $\sim (p \wedge q)$ and $\sim p \vee \sim q$ are same.

$$\Rightarrow$$
 $\sim (p \land q) = \sim p \lor \sim q$

$$\Rightarrow$$
 $(A \cap B)' = A' \cup B'$

Solution:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

Its logical form is $(p \lor q) \lor r = p \lor (q \lor r)$

Its truth table is given below

p	q	r	$p \vee q$	$(p\vee q)\vee r$	$\mathbf{q}\vee\mathbf{r}$	$p \lor (q \lor r)$
Т	T	T	T	T	T	Т
T	T	F	Т	T	T	T
T	F	T	Т	T	T	T
F	T	T	T	T	T	Т
F	F	T	F	T	T	T
F	T	F	T	T	T	T
T	F	F	Т	T	F	T
F	F	F	F	F	F	F

61

As the entries in columns of $(p \lor q) \lor r$ and $p \lor (q \lor r)$ are same.

- \Rightarrow $(p \lor q) \lor r = p \lor (q \lor r)$
- \Rightarrow $(A \cup B) \cup C = A \cup (B \cup C)$

Hence proved.

Q.3
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Solution:

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Its logical form is $(p \wedge q) \wedge r = p \wedge (q \wedge r)$.

Its truth table is given below.

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$(q \wedge r)$	$p \wedge (q \wedge r)$
T	Т	T	T	T	T	T
T	Т	F	T	F	F	F
T	F	T	F	F	F	F
F	T	T	F	F	T	F
F	F	T	F	F	F	F
F	T	F	F	F	F	F
T	F	F	F	F	F	F
F	F	F	F	F	F	F

As entries in the columns of $(p \wedge q) \wedge r$ and $p \wedge (q \wedge r)$ are same.

- \Rightarrow $(p \land q) \land r = p \land (q \land r)$
- \Rightarrow $(A \cap B) \cap C = A \cap (B \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Solution:

Q.4

Its logical form is $p \lor (q \land r) = (p \lor q) \land (p \lor r)$. Its truth table is given below.

62

p	q	r	$q \wedge r$	$p \lor (q \lor r)$	$p \vee q$	$p \vee r$	$(p \lor q) \land (p \lor r)$
Т	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
Т	F	T	F	T	Т	T	T
F	Т	T	Т	Т	T	T	T
F	F	T	F	F	F	T	F
F	T	F	F	F	T	F	F
Т	F	F	F	T	T	T	T
F	F	F	F	F	F	F	F

As entries in the columns of $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are same. So

$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

or

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Hence proved.

EXERCISE 2.6

Binary Relation

Let A and B be two non-empty sets, then any subset of Cartesian product $A \times B$ is called a binary relation, or simply a relation from A to B.

- Q.1 For $A = \{1, 2, 3, 4\}$, find the following relation in A. State the domain and range of each relation. Also draw the graph of each.
 - (i) $\{(x, y) \mid y = x\}$

(Lahore Board 2010)

(ii) $\{(x, y) \mid y + x = 5\}$

(iii) $\{(x, y) \mid x + y < 5\}$

(Lahore Board 2011)

(iv) $\{(x, y) | x + y > 5\}$ (Gujranwala Board 2003, Lahore Board 2003)

Solution:

Given that

$$A = \{1, 2, 3, 4\}$$

Then

$$A \times A = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$$

$$= \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2),$$

$$(2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}$$