

Observation Synthesis for Games with Imperfect Information

Nathan Lhote

Joint work with Paulin Fournier

Finite arena: $V = \{v_1, v_2, v_3, v_4, v_5\}$

- Finite arena: $V = \{v_1, v_2, v_3, v_4, v_5\}$
- Players: $V = V_1 \uplus V_2 \uplus \dots V_n$

- Finite arena: $V = \{v_1, v_2, v_3, v_4, v_5\}$
- Players: $V = V_1 \uplus V_2 \uplus \dots V_n$
- ▶ Histories: V^* , Plays: V^{ω}

- Finite arena: $V = \{v_1, v_2, v_3, v_4, v_5\}$
- Players: $V = V_1 \uplus V_2 \uplus \dots V_n$
- ▶ Histories: V^* , Plays: V^{ω}
- Winning condition: $W: V^{\omega} \to \mathcal{S}$ $(\{0,1\}, \mathbb{N}, \mathbb{R}^d, etc)$

- Finite arena: $V = \{v_1, v_2, v_3, v_4, v_5\}$
- Players: $V = V_1 \uplus V_2 \uplus \dots V_n$
- ▶ Histories: V^* , Plays: V^{ω}
- Winning condition: $W: V^{\omega} \to \mathcal{S}$ $(\{0,1\}, \mathbb{N}, \mathbb{R}^d, etc)$

Indistinguishable histories (for Player 1):

- Finite arena: $V = \{v_1, v_2, v_3, v_4, v_5\}$
- Players: $V = V_1 \uplus V_2 \uplus \dots V_n$
- ▶ Histories: V^* , Plays: V^{ω}
- Winning condition: $W: V^{\omega} \to \mathcal{S}$ $(\{0,1\}, \mathbb{N}, \mathbb{R}^d, etc)$

Indistinguishable histories (for Player 1):

Equivalence relation $R \subseteq V^* \times V^*$

- Finite arena: $V = \{v_1, v_2, v_3, v_4, v_5\}$
- Players: $V = V_1 \uplus V_2 \uplus \dots V_n$
- ▶ Histories: V^* , Plays: V^{ω}
- Winning condition: $W: V^{\omega} \to \mathcal{S}$ $(\{0,1\}, \mathbb{N}, \mathbb{R}^d, etc)$

Indistinguishable histories (for Player 1):

Equivalence relation $R \subseteq V^* \times V^*$ Given as a transducer

Imperfect information

Imperfect information

ightharpoonup Finite arena V

Imperfect information

- ightharpoonup Finite arena V
- $f: V^* \to O^*$, from histories to observations

Imperfect information

- ▶ Finite arena V
- ▶ $f: V^* \to O^*$, from histories to observations Given as a transducer

Imperfect information

- ightharpoonup Finite arena V
- ▶ $f: V^* \to O^*$, from histories to observations Given as a transducer

Remark

$$\ker f := \{(u, v) \in (V^*)^2 \mid f(u) = f(v)\} = f^{-1} \circ f$$

 \rightarrow in distinguishability relation

Imperfect information

- ightharpoonup Finite arena V
- ▶ $f: V^* \to O^*$, from histories to observations Given as a transducer

Remark

$$\ker f := \{(u, v) \in (V^*)^2 \mid f(u) = f(v)\} = f^{-1} \circ f$$

$$\to \text{ indistinguishability relation}$$

Ex:

Arena:

Observation function:

Arena:

Observation function:

Arena:

Observation function:

Problem:

▶ Input: Arena V, equivalence relation $R \subseteq V^* \times V^*$

Problem:

- ▶ Input: Arena V, equivalence relation $R \subseteq V^* \times V^*$
- ▶ Question: Can one compute an observation function $f: V^* \to O^*$ such that $\ker f = R$

Problem:

- ▶ Input: Arena V, equivalence relation $R \subseteq V^* \times V^*$
- \blacktriangleright Question: Can one compute an observation function $f:V^*\to O^*$ such that $\ker f=R$

$R \setminus f$	Functional	Sequential	Mealy
Arbitrary	?		X
Deterministic	Yes		X
Letter-to-letter	Yes		

Arena V, indistinguishability relation R. Is there f given by a sequential and letter-to-letter transducer, such that $\ker f = R$?

Arena V, indistinguishability relation R. Is there f given by a sequential and letter-to-letter transducer, such that $\ker f = R$?

Necessary conditions

Arena V, indistinguishability relation R. Is there f given by a sequential and letter-to-letter transducer, such that $\ker f = R$?

Necessary conditions

ightharpoonup 1) R is letter-to-letter

Arena V, indistinguishability relation R. Is there f given by a sequential and letter-to-letter transducer, such that ker f = R?

Necessary conditions

- \triangleright 1) R is letter-to-letter
- ▶ 2) R is prefix closed If uRv then $\forall w \leq_{\text{pref}} u, z \leq_{\text{pref}} v$ with |w| = |z|, wRz

Arena V, indistinguishability relation R. Is there f given by a sequential and letter-to-letter transducer, such that $\ker f = R$?

Necessary conditions

- \triangleright 1) R is letter-to-letter
- ▶ 2) R is prefix closed If uRv then $\forall w \leq_{\text{pref}} u, z \leq_{\text{pref}} v$ with |w| = |z|, wRz
- ▶ 3) R satisfies condition 3)

Syntactic congruence of R

uSv if $\forall w \ uwRvw$

Syntactic congruence of R

uSv if $\forall w \ uwRvw$

Condition 3):

ightharpoonup S has finite index with respect to R

Syntactic congruence of R

uSv if $\forall w \ uwRvw$

Condition 3):

ightharpoonup S has finite index with respect to R

First result:

Syntactic congruence of R

uSv if $\forall w \ uwRvw$

Condition 3):

ightharpoonup S has finite index with respect to R

First result:

▶ 1)-3) are decidable

Syntactic congruence of R

uSv if $\forall w \ uwRvw$

Condition 3):

 \triangleright S has finite index with respect to R

First result:

- ▶ 1)-3) are decidable
- ▶ 1)-3) are sufficient

Arena V, indistinguishability relation R letter-to-letter. Is there f given by a sequential transducer, such that $\ker f = R$?

Arena V, indistinguishability relation R letter-to-letter. Is there f given by a sequential transducer, such that $\ker f = R$?

Necessary conditions

Arena V, indistinguishability relation R letter-to-letter. Is there f given by a sequential transducer, such that $\ker f = R$?

Necessary conditions

 \triangleright 1) R is letter-to-letter

Arena V, indistinguishability relation R letter-to-letter. Is there f given by a sequential transducer, such that $\ker f = R$?

Necessary conditions

- \triangleright 1) R is letter-to-letter
- ▶ 2) S has finite index with respect to TC(PC(R)) (hard to show)

Arena V, indistinguishability relation R letter-to-letter. Is there f given by a sequential transducer, such that $\ker f = R$?

Necessary conditions

- \triangleright 1) R is letter-to-letter
- ▶ 2) S has finite index with respect to TC(PC(R)) (hard to show)

Second result

Arena V, indistinguishability relation R letter-to-letter. Is there f given by a sequential transducer, such that ker f = R?

Necessary conditions

- \triangleright 1) R is letter-to-letter
- ▶ 2) S has finite index with respect to TC(PC(R)) (hard to show)

Second result

▶ 1)-2) are sufficient (same kind of proof)

Arena V, indistinguishability relation R letter-to-letter. Is there f given by a sequential transducer, such that ker f = R?

Necessary conditions

- \triangleright 1) R is letter-to-letter
- ▶ 2) S has finite index with respect to TC(PC(R)) (hard to show)

Second result

- ▶ 1)-2) are sufficient (same kind of proof)
- ▶ 2) is undecidable (thanks Bruno Guillon)

$R \setminus f$	Functional	Sequential	Mealy
Arbitrary	?	U	X
Deterministic	Yes	U	X
Letter-to-letter	Yes	U	D

$R \setminus f$	Functional	Sequential	Mealy
Arbitrary	?	U	X
Deterministic	Yes	U	X
Letter-to-letter	Yes	U	D

Qs

$R \setminus f$	Functional	Sequential	Mealy
Arbitrary	?	U	X
Deterministic	Yes	U	X
Letter-to-letter	Yes	U	D

Qs

► Find interesting classes of observation functions (i.e. deterministic, increasing)

$R \setminus f$	Functional	Sequential	Mealy
Arbitrary	?	U	X
Deterministic	Yes	U	X
Letter-to-letter	Yes	U	D

Qs

- ► Find interesting classes of observation functions (*i.e.* deterministic, increasing)
- ► Solve games!

Thanks!

