EXPERIMENT NO. 2

NAME: ADITYA B. KULKARNI REGISTRATION NO: 241070908

SUBJECT: DAA (LAB)

SY BTECH COMPUTER ENGINEERING

AIM: Write a program for Linear search and Binary search.

Theory:

Linear search, also known as sequential search, is one of the most straightforward searching algorithms used in computer science. It operates by examining each element in a list or array one by one until the desired value is found or the end of the list is reached.

Characteristics

- 1. Simplicity: The linear search algorithm is simple to understand and easy to implement. It does not require any complex data structures or sorting of the data.
- 2. Versatility: It can be applied to both sorted and unsorted lists, making it a flexible choice for various searching scenarios.
- 3. Sequential Access: The algorithm accesses elements in a sequential manner. It starts from the first element and moves through to the last, which can lead to inefficiencies for large datasets.

Process

The process of linear search involves the following steps:

- 1. Initialization: Start from the first element of the array or list.
- 2. Comparison: Compare the current element with the target value.
- 3. Element Found: If a match is found, return the index of that element.
- 4. Next Element: If no match is found, move to the next element and repeat the comparison.
- 5. End of List: If the end of the list is reached without finding the target, return an indication that the target is not present (often -1).

Binary search is an efficient algorithm for finding a target value within a sorted array or list. It operates by repeatedly dividing the search interval in half. If the target value is less than the middle element, the search continues in the lower half; otherwise, it continues in the upper half. This halving process significantly reduces the number of comparisons needed to find the target.

Characteristics

- 1. **Efficiency**: Binary search has a time complexity of $O(\log n)$, which makes it significantly faster than linear search, especially for large datasets, provided the data is sorted.
- 2. **Requirement for Sorted Data**: Binary search can only be applied to sorted lists or arrays, which means the data must be organized in a specific order (either ascending or descending).
- 3. **Divide and Conquer**: The algorithm utilizes a divide-and-conquer approach by eliminating half of the remaining elements with each comparison, leading to faster search times.

Process

The process of binary search involves the following steps:

- 1. **Initialization**: Set two pointers, one at the beginning (low) and one at the end (high) of the array.
- 2. **Middle Element**: Calculate the middle index of the current search range (using the formula **middle=low+high / 2**) and retrieve the middle element.
- 3. **Comparison**: Compare the middle element with the target value.
 - \circ If Equal: If the middle element matches the target, return its index.
 - \circ If Less: If the middle element is less than the target, adjust the low pointer to search the upper half (i.e., set low to middle + 1).
 - o **If Greater**: If the middle element is greater than the target, adjust the high pointer to search the lower half (i.e., set high to middle 1).
- 4. **Repeat**: Continue the process until the low pointer exceeds the high pointer.
- 5. **End of Search**: If the low pointer exceeds the high pointer, return an indication that the target is not present (often -1)

ALGORITHM AND PSEUDOCODE FOR LINEAR SEARCH:

ILGOR	THE AND I SECOCODE FOR ENGLAR SEARCH.
	Ampre month red processors will
	Algorithm Linear Learth
	(1) - (1) -
Ctep1	Start at oth index of array & compare the key value with the element at current index
	the key value with the element at
	current indes
elter 2	If matched return the current index
134	and the same of th
Step 3	If not matched, move to the next index 8 repeat exter!
14.7	& supert sitep!
	ONE STORD PROPER SOLDER CONTRACTOR OF THE
Step 4	continue until a match is found or the
	continue until a match is found or the
Step 5	If no match is found, print a mag indicating that the element is not fredent in the averay.
	indicating that the element is not present
	in the average.
	Alle the thousand them
	Pseudocode
	procedure linear-Learch (list, value)
	for each item in the list
	for each item in the list if match item == value
	return the item's location
	end if
	end for 0
	end procedure.

ALGORITHM AND PSEUDOCODE FOR BINARY SEARCH:

WHY 4: SHY 5: 8	Actest middle item of the array & company it with the key value. If matched, return the index of middle item of matched determine if key is greater or less than middle value. if greater search right sub array if less search left sub-array. Refeat until sub array size is I array indicate unsuccessfull search. Pseudocode A A corted array n Key of array x value to be searched Set Jowerbound = 1
WHQ 3.	He not matched determine if key is greater or less than middle value. if greater search night sub array. if less search left sub-array. Reflect until sub array size is I no match, indicate unsuccessfull search. Pseudocode A < sorted array n < size of array n < value to be searched set lowerbound = 1
2 de 4 · 2 de 5 · 2 de 2	if greater search suight seut array if less search left seut array. Reflect until seut array size is I I ne match, indicate unsulusifull search. Pseudocode A < sarted array n < size of array x < value to be searched set lowerbound = 1
2 de 4 · 2 de 5 · 2 de 2	if greater search suight seut array if less search left seut array. Reflect until seut array size is I I ne match, indicate unsulusifull search. Pseudocode A < sarted array n < size of array x < value to be searched set lowerbound = 1
	Reflect until & we array size is I I no match, indicate unxucusfull xearch. Pseudocode A < xarted array n < xize of array x < value to be xearched Ket lowerbound = 1
	Pseudocode A < dorted array n < directly of array x < value to be exarched set lowerbound = 1
	Pseudocode A < dorted array n < directly of array x < value to be exarched set lowerbound = 1
	A = dorted array n = xize of array x = value to be exarched set lowerbound = 1
	A = dorted array n = xize of array x = value to be exarched set lowerbound = 1
20.1 1.1	x + value to be examined set lowerbound = 1
20.1 1.1	set lowerbound = 1
20.1 1.1	set lowerbound = 1
- Au	
	et upperbound = n
	while a not found
-	if upperbound < lowerbound
	EXIT: 21 does not exists.
9	set midpoint = lowerbound + Cufferbound -
	lowerbound) /2
J	if A [midpoint] < x
119 2 (1	set lowerbound = midpoint +1
i	A [midpoint] > 2
	set upperbound = midpoint -1
l il	A[midpoint] = 2c
1 0	EXIT: 2 found at location mideoin
er	

TIME COMPLEXITY FOR LINEAR SEARCH:

	Time complexity for linear search
	Amon unad material
1.	Best case : O(1)
->	Target value is located at very fixet index
	of array.
	of array. $T(n) = 1 \rightarrow O(1)$
2.	Average case: O(n)
->	we assume target value is equally likely
1,01	to be at any position in the array.
	we need to examine half of the elements
	(n/2 comparison) since constants are
	ugnored in Big-0 notation as time
	conflictly is O(n)
	$T(n) = n/2 \rightarrow O(n)$
	were a former bound or datom on 18 12 years
3.	worst case : O(n)
->	either target value is present in last or
	not present at all.
	$T(n) = n \rightarrow o(n)$

TIME COMPLEXITY FOR BINARY SEARCH:

	Time complexity for Binary Search.
1.4	Best case · T(n) = O(1)
->	target value is located at middle inden
	of array on first comparison.
-4041	of array on first comparison. $T(n) = 1 \rightarrow O(1)$
2.	Average case T(n) = 0 (logn)
->	will have to perform several iterations
	to find the target companion
	eliminates half of the remaining elements
	if array has n elements, man
	comparisons serguired can be
	comparisons seignired can be $T(n) = \log_2 n$
	In Big O notation we drag the lease &
	constant factors so
	O Clogn)
0	n & xing of annous
3.	Wordt cas I(n) = O(log n)
->	The target value is not fredent in the array
	algorithm will continue until only one
	selmen semains.
	mon no. of comparisons logan
	FXII OR CHARLE CONTRACTOR
-	T(n) = 10g2 n -> 0(logn)
	USING CORSION II
	Using master theorem
	a=1 (1 subgrablem) $b=2$ (subgrablem $n/2$) $d=0$ $d=0$
	d=0 (cost of dividing comple)
	$d=0$ (cost of aimiding combining $o(1)$) $T(n) = o(n^{\circ} \log n)$ $= 0$
	$b = 2^{a} = 1$ $a = 1 b b^{a} = 1$ $= 0 (10g n)$
	$a = b^d$

CODE LINEAR SEARCH:

```
def linear_search(a, n, key):
    count = 0
    for i in range(n):
        if(a[i] == key):
            print("The element is found at position", (i+1))
            count = count + 1
    if(count == 0):
        print("The element is not present in the array")

a = [14, 56, 77, 32, 84, 9, 10]
n = len(a)
key = 32
linear_search(a, n, key)
key = 3
linear_search(a, n, key)
```

CODE BINARY SEARCH:

```
def binary_search(a, low, high, key):
   mid = (low + high) // 2
   if (low <= high):</pre>
      if(a[mid] == key):
         print("The element is present at index:", mid)
      elif(key < a[mid]):</pre>
         binary_search(a, low, mid-1, key)
      elif (a[mid] < key):</pre>
         binary_search(a, mid+1, high, key)
   if(low > high):
      print("Unsuccessful Search")
a = [6, 12, 14, 18, 22, 39, 55, 182]
n = len(a)
low = 0
high = n-1
key = 22
binary_search(a, low, high, key)
key = 54
binary_search(a, low, high, key)
```

POSITIVE TEST CASES LINEAR SEARCH:

```
OUTPUT TERMINAL DEBUG CONSOLE PROBLEMS PORTS

PS C:\Users\adity\OneDrive\Desktop\DAA lab> & "c:/Users/adir
Users/adity/OneDrive/Desktop/DAA lab/.venv/linear_2.py"

The element is found at position 4

The element is found at position 3

The element is found at position 2

The element is found at position 7

The element is found at position 1

PS C:\Users\adity\OneDrive\Desktop\DAA lab>
```

NEGATIVE TEST CASES LINEAR SEARCH:

```
OUTPUT TERMINAL DEBUG CONSOLE PROBLEMS PORTS

PS C:\Users\adity\OneDrive\Desktop\DAA lab> ^C

PS C:\Users\adity\OneDrive\Desktop\DAA lab> & "c:/Users/a
Users/adity/OneDrive/Desktop/DAA lab/.venv/linear_2.py"

The element is not present in the array

PS C:\Users\adity\OneDrive\Desktop\DAA lab> []
```

POSITVE TEST CASES BINARY SEARCH:

```
OUTPUT TERMINAL DEBUG CONSOLE PROBLEMS PORTS

PS C:\Users\adity\OneDrive\Desktop\DAA lab> ^C

PS C:\Users\adity\OneDrive\Desktop\DAA lab> & "c:/Users/adity/OreUsers/adity/OneDrive/Desktop/DAA lab/.venv/binary_2.py"

The element is present at index: 4

The element is present at index: 2

The element is present at index: 5

The element is present at index: 7

The element is present at index: 0

PS C:\Users\adity\OneDrive\Desktop\DAA lab>
```

NEGATIVE TEST CASES BINARY SEARCH:

CONCLUSION – Hence we have learnt and implemented LINEAR AND BINARY SEARCH Algorithms