Computer-aided Tools in Engineering ENG-A2001

Exercise/Demo session

Tomi Kankkunen @aalto.fi

Software setup

Install Matlab (https://download.aalto.fi/)
Install add-on PDE-Toolbox (or Modeler) on Matlab

Installing PDE Modeler

PDE problem forms

Types of PDEs supported:

Types of TBEs supported.		
<u>Type</u>	Description	Example Applications
Elliptic	$-\nabla\cdot(\mathbf{c}\otimes\nabla u)+\mathbf{a}u=\mathbf{f}$	electrostatic, magnetostatic, heat conduction, piezoelectric
Parabolic	$\mathbf{d}\frac{\partial u}{\partial t} - \nabla \cdot (\mathbf{c} \otimes \nabla u) + \mathbf{a}u = \mathbf{f}$	heat transfer (diffusion), reaction- diffusion
Hyperbolic	$\mathbf{d} \frac{\partial^2 u}{\partial^2 t} - \nabla \cdot (\mathbf{c} \otimes \nabla u) + \mathbf{a} u = \mathbf{f}$	wave, structural dynamics
Eigenvalue	$-\nabla \cdot (\mathbf{c} \otimes \nabla u) + \mathbf{a}u = \lambda \mathbf{d}u$	structural mode shapes

,Today

Computer exercise 3.1

2D heat conduction/diffusion

Strong form. The partial differential equation and boundary conditions for stationary isotropic heat diffusion/conduction read as follows: Find T = T(x, y) such that

$$(1) \quad -\nabla \cdot (k(x,y)\nabla T(x,y)) = f(x,y), \quad (x,y) \in \underline{\Omega}$$

(2a)
$$T(x,y) = T_0(x,y), \quad (x,y) \in \underline{\Gamma}_T$$

(2b)
$$q(x,y) \cdot \mathbf{n} = q_0(x,y), \quad (x,y) \in \Gamma_{\underline{q}}$$

- temperature (unknown function)
- thermal conductivity (given material data)
- heat supply (given loading data), Ω domain (given geometrical data)
- Γ_{τ} boundary part for given temperature (given boundary data)
- Γ_a boundary part for given heat flux (given boundary data)
- T_0 temperature on the boundary (given essential, Dirichlet, boundary data)
- q_0 heat flux on the boundary (given natural, Neumann, boundary data).

Beneath the surface – Weak form

Weak form. Find T=T(x,y) such that it satisfies $T_{|\Gamma_T}=T_0$

$$\int_{\Omega} (k\nabla T) \cdot \nabla \hat{T} \, dA = \int_{\Omega} f \, \hat{T} \, dA - \int_{\Gamma_q} q_0 \hat{T} \, ds$$

for all
$$\hat{T} = \hat{T}(x, y)$$
 satisfying $\hat{T}_{|\Gamma_T} = 0$.

Computer exercise 3.1 – Matlab PDE Modeler

Let us consider isotropic and homogeneous heat diffusion in a circle with radius R and the following problem data:

$$k = 0.1 \text{ W/(m}^{\circ}\text{C}), R = 1 \text{ m}$$

 $f = 10 \text{ W/m}^{3}, T_{0} = 0 ^{\circ}\text{C}$

$$-\nabla \cdot (k(x, y)\nabla T(x, y)) = f(x, y),$$

$$T = T_0 = 0 \qquad k, f$$

- (i) Solve the temperature distribution approximately via the finite element method by applying Matlab PDE Modeler with three different mesh sizes.
- (ii) Plot the corresponding triangular meshes, temperature distributions (T) and heat flux fields (q) for each finite element solution.
- (iii) List three, perhaps simplified, engineering problems which you can be seen as applications of this model problem.

Hint: Take part in the guided tour in the exercise session.

Computer exercise 3.1 – Matlab PDE Modeler

Let us consider isotropic and homogeneous heat diffusion in a circle with radius *R* and the following problem data:

$$k = 0.1 \text{ W/(m}^{\circ}\text{C}), R = 1 \text{ m}$$

 $f = 10 \text{ W/m}^{3}, T_{0} = 0 ^{\circ}\text{C}$ $T = T_{0} = 0$ k, f

$$-\nabla \cdot (k(x,y)\nabla T) = f(x,y) = \text{In Matlab} = Q(x,y) + h(x,y)(T_{ext}(x,y) - T)$$

Simplifies in this case:
$$-k\nabla \cdot \nabla T = k\frac{\partial^2 T}{\partial x^2} + k\frac{\partial^2 T}{\partial y^2} = f$$
 , $T = T(x,y)$ $k,f = Q$ are constants

+ Boundary conditions: $T = T_0$: at boundary

Computer exercise 3.2

Computer exercise 3.2 – Matlab PDE Modeler

Let us consider a 2D/3D beam bending problem as a 2D plane stress elasticity problem with displacements u = u(x,y) and v = v(x,y) in the x- and y-directions, correspondingly, as primary variables (i.e., displacement vector is $\mathbf{u} = (\mathbf{u}, \mathbf{v})$) and self-weight as a body load $\mathbf{f} = (f_x, f_y)$:

$$B = 4 \text{ cm}, H = 2 \text{ cm}, L = 1 \text{ m}$$

$$E = 200 \text{ GPa}, \rho = 8 \text{ kg/m}^3$$

$$B, H, L, E, \rho$$

$$x = 0 \qquad x = L$$

Solve the 2D deformation and stress state of the beam (meaning displacement components *u* and *v* and stress components by utilizing Matlab *PDE Modeler* relying on the finite element method (with triangular elements of linear basis functions).

Hint: Take part in the guided tour in the exercise session.

Beneath the surface – Strong form

For given loadings **b** and **t** and displacement u_0 , find u such that

$$\begin{aligned}
-\operatorname{div} \sigma(u) &= b & \text{in } \Omega, \\
u &= u_0 & \text{on } S_u \subset \partial \Omega, \\
\sigma n &= t & \text{on } S_t \subset \partial \Omega,
\end{aligned}$$

$$\varepsilon(\mathbf{u}) = \nabla \mathbf{u} = (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)/2,$$

$$\sigma(\mathbf{u}) = \mathbf{D}\varepsilon(\mathbf{u}) = 2\mu \varepsilon(\mathbf{u}) + \lambda \operatorname{tr}(\varepsilon(\mathbf{u}))\mathbf{I}$$

$$= 2\mu \varepsilon(\mathbf{u}) + \lambda \operatorname{div} \mathbf{u} \mathbf{I}$$

Beneath the surface – Weak form

Weak form of the linear elasticity problem: Let a three-dimensional body be under the loading $b \in [L^2(\Omega)]^3$, $\Omega \subset R^3$. Find $u \in U$ such that

$$a(\mathbf{u}, \hat{\mathbf{u}}) = l(\hat{\mathbf{u}}) \quad \forall \hat{\mathbf{u}} \in \mathbf{U},$$

with the bilinear form, load functional and variational space

$$a(\mathbf{u}, \hat{\mathbf{u}}) = \int_{\Omega} (\mathbf{D}\varepsilon(\mathbf{u})) : \varepsilon(\hat{\mathbf{u}}) d\Omega,$$

$$l(\hat{\boldsymbol{u}}) = \int_{\Omega} \boldsymbol{b} \cdot \hat{\boldsymbol{u}} \, d\Omega + \int_{S_t} \boldsymbol{t} \cdot \hat{\boldsymbol{u}} \, dS,$$

$$U = \{ v \in [H^1(\Omega)]^3 \mid v_{|S_n} = \theta \}.$$

Remark. The bilinear form can be written in the form

$$a(\mathbf{u}, \hat{\mathbf{u}}) = \int_{\Omega} (2\mu \, \varepsilon(\mathbf{u}) : \varepsilon(\hat{\mathbf{u}}) + \lambda \, \text{div } \mathbf{u} \, \text{div } \hat{\mathbf{u}}) d\Omega,$$

$$\boldsymbol{\tau}:\boldsymbol{\theta}=\sum_{i,j=1}^n\tau_{ij}\boldsymbol{\theta}_{ij}=\sum_{i=1}^n\sum_{j=1}^n\tau_{ij}\boldsymbol{\theta}_{ij}.$$

Recommendations

- Describe shortly each step
 - Formulas if available
 - Making the domain = geometry
 - Boundary conditions
 - Mesh size (at least approximation)
 - Etc.
- Label axes (x,y,z) and titles of figures

