

COMP SCI 1400 AI Technologies

> Computer Vision Intro Dr. Kamal Mammadov

> >]

What is CV

Supervised Learning

Labelled Data

Digital images

Three Categories of Tasks in CV

Computer Vision: Stages

- Image formation
- Low-level
 - Single image processing
 - Multiple views
- Mid-level
 - Estimation, segmentation (main topic of Image Analysis and Foundations of Image Analysis and will only be covered briefly here)
- High-level
 - Recognition
 - Classification

Low level CV --- Denoising

Low level CV --- Super-Resolution

Low level CV --- Dehaze

Three Categories of Tasks in CV

History of CV

Data --- images

Image is CCO 1.0 public domain

Image by NASA is licensed under CC BY 2.0 Image is CCO 1.0 public domain

Image is public domain

Image is licensed under CC-BY 2.0; changes made

Emerging of Computer Vision

Stages of Visual Representation, David Marr, 1970s

Canny Edge Detector

By John F. Canny in 1986

Image Recognition

Object Detection

Semantic Segmentation

Instance Segmentation

Image is public domain

Image is public domain

"SIFT" & Object Recognition, David Lowe, 1999

Image is CCO 1:0 public domain

Histogram of Gradients (HoG)
Dalal & Triggs, 2005

Deformable Part Model Felzenswalb, McAllester, Ramanan, 2009

PASCAL Visual Object Challenge (20 object categories)

[Everingham et al. 2006-2012]

Image is CC0 1.0 public domain

Image is CCO 1.0 public domain

CV Tasks

This image is licensed under CC BY-NC-SA 2.0; changes made

- Object detection
- Action classification
- Image captioning
- ...

This image is licensed under CC BY-SA 2.0; changes made

This image is licensed under CC BY-SA 3.0; changes made

Johnson et al., "Image Retrieval using Scene Graphs", CVPR 2015

Deep Dream

Style Transfer

Image Classification with KNN

Problems

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

→ cat

Problems

Challenges: Viewpoint variation

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Illumination

This image is CC0 1.0 public domain

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

Example training set

```
def train(images, labels):
    # Machine learning!
    return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```


KNN

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Test images and nearest neighbors

KNN classifier implementation

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original image is CC0 public domain

(all 3 images have same L2 distance to the one on the left)

Reference

Cs231n Stanford University Tutorial

http://cs231n.stanford.edu/

https://www.youtube.com/watch?v=vT1JzLTH4G4

Canny edge detector

https://en.wikipedia.org/wiki/Canny_edge_detector