KRIPTOGRAFI SIMETRIS

KULIAH KRIPTOGRAFI DAN KEAMANAN JARINGAN

DIMENSI KRIPTOGRAFI

Tipe operasi untuk transformasi plaintext menjadi ciphertext

- Substitusi: elemen pada plaintext dipetakan ke elemen lain.
- Transposisi: elemen pada plaintext disusun ulang.

Jumlah key:

- Simetris
- Asimetris

Cara pemrosesan plaintext

- Block cipher: memproses 1 blok dalam satu waktu.
- Stream cipher: memproses elemen input secara kontinyu.

PENYANDIAN SIMETRIS

- Disebut juga penyandian konvensional atau kunci rahasia atau kunci tunggal.
- Pengirim dan penerima berbagi kunci yang sama
- Paling banyak digunakan
 - Semua algoritma enkripsi klasik merupakan penyandian simetris
 - Merupakan satu-satunya model penyandian yang digunakan sebelum penemuan penyandian asimetris pada sekitar tahun 1970an

KOMPONEN PENYANDIAN SIMETRIS

Lima komponen:

- Plaintext
- Algoritma enkripsi: substitusi dan transformasi terhadap plaintext.
- Secret key: input untuk algoritma enkripsi.
- Ciphertext
- Algoritma dekripsi.
- Dua kebutuhan untuk keamanan dengan enkripsi konvensional:
 - Algoritma enkripsi yang kuat.
 - Intruder tidak bisa mendekripsi ciphertext atau mengetahui key meskipun dia mempunyai beberapa pasangan ciphertext dan plaintext.
 - Pengirim dan penerima mendapatkan secret key dengan cara yang aman dan tetap mengamankannya.

SKEMA KRIPTOGRAFI SIMETRIS

Simbol-simbol:

- Plaintext: $X = [X_1, X_2, ..., X_M]$
- Key: $K = [K_1, K_2, ..., K_J]$
- Ciphertext: $Y = [Y_1, Y_2, ..., Y_N]$
- Algoritma enkripsi: E
- Algoritma dekripsi: D
- Y = E(K, X)
- X = D(K, Y)

PEMECAHAN KODE

Dua pendekatan:

- Cryptanalisis/kriptoanalisis: mencari karakteristik algoritma
- Brute-force attack: intruder mencoba setiap key pada ciphertext sampai didapatkan pesan yang dapat dibaca/dimengerti.

BRUTE-FORCE ATTACK

- Mencoba semua kunci yang mungkin sampai didapatkan text yang dapat dibaca.
- Secara rata-rata, setengah dari semua key yang mungkin harus dicoba.

Ukuran key (bit)	Jumlah alternatif key	Waktu (1 dekripsi/ mikro dtk)	Waktu (10 ⁶ dekripsi/ mikro dtk)
32	$2^{32} = 4.3 \times 10^9$	35.8 menit	2.15 mili dtk
56	7.2×10^{16}	1142 tahun	10.01 dtk
128	3.4×10^{38}	$5.4 \times 10^{24} $ tahun	5.4 x 10 ¹⁸ tahun
168	3.7x 10 ⁵⁰	$5.9 \times 10^{36} $ tahun	5.9 x 10 ³⁰ tahun
26 karakter (permutasi)	$26! = 4 \times 10^{26}$	6.4 x 10 ¹² tahun	6.4 x 10 ⁶ tahun

KRIPTOANALISIS

- Terdiri dari beberapa level.
- Kerkhoff's principle: intruder mengetahui semua detil cryptosystem kecuali kunci rahasia.
- Paling sulit: hanya ciphertext yang diketahui.
- Paling mudah: algoritma, ciphertext, plaintext dan ciphertext pasangannya, ciphertext dan hasil dekripsinya.

Beberapa tipe serangan kriptoanalisis

Type of Attack	Known to Cryptanalyst	
Ciphertext only	Encryption algorithm	
	Ciphertext to be decoded	
Known plaintext	Encryption algorithm	
	Ciphertext to be decoded	
	One or more plaintext-ciphertext pairs formed with the secret key	
Chosen plaintext	Encryption algorithm	
	Ciphertext to be decoded	
	Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key	
Chosen ciphertext	Encryption algorithm	
	Ciphertext to be decoded	
	Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key	
Chosen text	Encryption algorithm	
	Ciphertext to be decoded	
	Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key	
	Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key	

SERANGAN CIPHERTEXT-ONLY

- Diberikan: suatu ciphertext c
- Q: apakah plaintext m?
- Suatu skema enkripsi betul-betul tidak aman jika skema tersebut tidak aman terhadap serangan ciphertext-only.

SERANGAN KNOWN-PLAINTEXT

- Diberikan: (m₁,c₁), (m₂,c₂), ..., (m_k,c_k) dan suatu ciphertext lain c.
- Q: apakah plaintext dari c?
- Q: apakah kunci yang digunakan?

CHOSEN-PLAINTEXT ATTACK

- Diberikan: (m_1,c_1) , (m_2,c_2) , ..., (m_k,c_k) , di mana $m_1,m_2,...,m_k$ dipilih oleh attacker; dan suatu ciphertext lain c.
- Q: apakah plaintext dari c, atau apakah kunci rahasianya?

CHOSEN-CIPHERTEXT ATTACK

- Diberikan: (m_1,c_1) , (m_2,c_2) , ..., (m_k,c_k) , di mana c_1,c_2 , ..., c_k dipilih oleh attacker; dan ciphertext lain c.
- Q: apakah plaintext dari c, atau apakah kunci rahasianya?

KRITERIA ALGORITMA ENKRIPSI

- Skema enkripsi yang 'unconditionally secure': ciphertext yang diperoleh dari algoritma enkripsi tidak memiliki cukup informasi yang dapat digunakan untuk menentukan plaintext-nya secara unik, meski terdapat jumlah ciphertext yang tidak terbatas dan sumber daya tidak terbatas.
- Algoritma enkripsi harus memenuhi salah satu di antara 2 syarat:
 - Biaya untuk memecahkan kode melebihi nilai informasi.
 - Waktu untuk memecahkan kode melebihi masa pemanfaatan informasi.
- Skema enkripsi yang 'computationally secure': memenuhi 1 di antara 2 kriteria di atas.