Package 'KRNMA'

July 9, 2022

KRNMA-package	The 'KRNMA' package.	
Index		
data.edit . dstr	ckage	
R topics docu	nented:	
RoxygenNote 7.1.1		
LazyData true		
Encoding UTF-8		
License GPL-3		
Imports stats		
Depends R (>= 3.5.0)	
Description Kenwar	d-Roger-type inferences for network meta-analysis.	
Maintainer Hisashi	Noma <noma@ism.ac.jp></noma@ism.ac.jp>	
Author Hisashi Non	a	
Date 2022-07-09		
Version 1.1-1		
Title Kenward-Roge	-Type Inferences for Network Meta-Analysis	
Type Package		

Description

Kenward-Roger-type inferences for network meta-analysis.

References

Noma, H., Hamura, Y., Gosho, M. and Furukawa, T. A. (2022). Kenward-Roger-type corrections for inference methods of network meta-analysis and meta-regression. In Preparation.

2 dstr

-I -	ta.		•	
വാ	† 2	മറ	17	+
ua	La.	. – –	1	·

Transforming arm-level data to contrast-based summary statistics

Description

Transforming arm-level data to contrast-based summary statistics.

Usage

```
data.edit(study,trt,d,n)
```

Arguments

study	Study ID
trt	Numbered treatment (=1,2,)
d	Number of events
n	Sample size

Value

Contrast-based summary statistics are generated.

- y: Contrast-based summary estimates.
- S: Vectored within-study covariance matrix.

Examples

```
data(dstr)
attach(dstr)
edat <- data.edit(study,trt,d,n) # transforming the arm-level data to the contrast-based summaryies</pre>
```

dstr

Siontis et al. (2018)'s network meta-analysis data

Description

- study: Study ID
- treat: Treatment
- trt: Numbered treatment (1:CCTA, 2:CMR, 3:exercise ECG, 4:SPECT-MPI, 5:standard care, 6:Stress Echo)
- n: Sample size
- d: Number of events

Usage

```
data(dstr)
```

KR 3

Format

A arm-based dataset with 29 rows and 5 variables

References

Siontis, G. C., Mavridis, D., Greenwood, J. P., et al. (2018). Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials. *BMJ*. **360**: k504.

KR

Kenward-Roger-type inferences for network meta-analysis

Description

Implementing the Kenward-Roger-type inferences for network meta-analysis.

Usage

```
KR(y, S)
```

Arguments

- y Contrast-based summary data of the outcome measure
- S Covariance estimates of y

Value

Results of the standard and Kenward-Roger-type inferences for network meta-analysis.

- ML: Maximum likelihood (ML) estimates and Wald-type confidence intervals.
- REML: Restricted maximum likelihood (REML) estimates and Wald-type confidence intervals.
- KR_E: Kenward-Roger-type estimates using expected information and Wald-type confidence intervals.
- KR_0: Kenward-Roger-type estimates using observed information and Wald-type confidence intervals.

References

Noma, H., Hamura, Y., Gosho, M. and Furukawa, T. A. (2022). Kenward-Roger-type corrections for inference methods of network meta-analysis and meta-regression. In Preparation.

Examples

```
data(dstr)
attach(dstr)

edat <- data.edit(study,trt,d,n) # transforming the arm-level data to the contrast-based summaryies

y <- edat$y
S <- edat$S</pre>
```

4 KR

```
\label{eq:KR_out} KR_{\text{out}} = \text{KR}(y,S) \text{ $\#$ implementing the Kenward-Roger-type inferences} \\ \text{ML} &\leftarrow \text{KR}_{\text{out}}[\text{"ML"}]] \\ \text{REML} &\leftarrow \text{KR}_{\text{out}}[\text{"REML"}]] \\ \text{KR}_{\text{E}} &\leftarrow \text{KR}_{\text{out}}[\text{"KR}_{\text{E}}]] \\ \text{KR}_{\text{O}} &\leftarrow \text{KR}_{\text{out}}[\text{"KR}_{\text{O}}]] \\ \text{$\#$ Results of the NMA analysis; comparative odds-ratio estimates and their 95% confidence intervals} \\ \exp(\text{ML}[[1]]) \text{$\#$ ordinary ML estimation} \\ \exp(\text{REML}[[1]]) \text{$\#$ ordinary REML estimation} \\ \exp(\text{KR}_{\text{E}}[[1]]) \text{$\#$ KR}(E) \text{ method} \\ \exp(\text{KR}_{\text{O}}[[1]]) \text{$\#$ KR}(O) \text{ method} \\ \end{aligned}
```

Index