Introduction to Data Analytics

Xin Gao
Xin.gao@kaust.edu.sa
July 29, 2022
SDU

An Example

- Let's learn classifiers by learning P(Y|X)
- Y = grades, X = <attend lectures, work hard>

Attend Lectures	Work Hard	P(A AL, WH)	P(B AL, WH)
Υ	Υ	0.86	0.14
Υ	N	0.72	0.28
N	Υ	0.58	0.42
N	N	0.13	0.87

We need 4 parameters because of sum-to-one rule

An Example

• Suppose $X = \langle X_1, X_2, ..., X_n \rangle$, where X_i and Y are random variables

To estimate P(Y|X), we'll need 2ⁿ parameters,
 even if we use the sum-to-one rule

• If we have 30 X_i 's, we will need $2^{30} > 1$ billion parameters!

Reduce Parameters

From Bayes rule, we know

$$P(Y|X) = P(X|Y) P(Y) / P(X)$$

For the classification rule, we know

$$1 \ge \frac{P(Y = A|X)}{P(Y = B|X)} = \frac{P(X|Y = A)P(Y = A)}{P(X|Y = B)P(Y = B)}$$

- Now, how many parameters do we need?
 - 2ⁿ⁺¹-2 for conditional probability and 1 for prior, even more!!

Bayes Rule

•
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

This is shorthand for

$$P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i)P(Y = y_i)}{P(X)}$$

$$= \frac{P(X = x_j | Y = y_i)P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k)P(Y = y_k)}$$

Naive Bayes assumes

$$P(X_1, X_2, ..., X_n | Y) = \prod_i P(X_i | Y)$$

• That is, X_i and X_j are conditionally independent given Y, for all $i \neq j$

Recall Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

- We can often write P(X|Y, Z) = P(X|Z)
 - E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

- Naive Bayes uses assumption that X_i are conditionally independent given Y
- Thus, $P(X_1, X_2|Y) = P(X_1|Y)P(X_2|Y)$
- In general, $P(X_1, X_2, ..., X_n | Y) = \prod_i P(X_n | Y)$

- Now, how many parameters do we need?
 - -2n!!
 - Without conditional independence, 2ⁿ⁺¹-2

Bayes rule:

$$P(Y = y_i | X_1, X_2, ..., X_n) = \frac{P(X_1, X_2, ..., X_n | Y = y_i) P(Y = y_i)}{\sum_k P(X_1, X_2, ..., X_n | Y = y_k) P(Y = y_k)}$$

By conditional independence:

$$P(Y = y_i | X_1, X_2, ..., X_n) = \frac{P(Y = y_i) \prod_j P(X_j | Y = y_i)}{\sum_k P(Y = y_k) \prod_j P(X_j | Y = y_k)}$$

The classification rule is:

$$Y^{\text{new}} \leftarrow \text{argmax}_{y_i} P(Y = y_i) \prod_{j} P(X_j^{\text{new}} | Y = y_i)$$

- Define two parameters:
 - For each value y_k

$$\pi_k = P(Y = y_k)$$

– For each value x_{ij} of each attribute X_i $\theta_{ijk} = P(X_i = x_{ij} | Y = y_k)$

• The classification rule is:

$$Y^{\text{new}} \leftarrow \text{argmax}_{y_k} \pi_k \prod_i \theta_{ijk}$$

Naive Bayes – Discrete X and Y

Maximum likelihood estimation (MLE)

$$-\widehat{\pi_{k}} = P(Y = y_{k}) = \frac{\#D\{Y = y_{k}\}}{|D|}$$

$$-\widehat{\theta_{ijk}} = P(X_{i} = x_{ij}|Y = y_{k}) = \frac{\#D\{X_{i} = x_{ij} \land Y = y_{k}\}}{\#D\{Y = y_{ik}\}}$$

Example

A new student? P(M|P, Q, K)

```
-M = 1 iff a new student P = 1 iff working on DM/ML
```

```
-Q = 1 iff prepare for qual K = 1 iff a Saudi citizen
```

How many parameters do we need to estimate?

Example

A new student? P(M|P, Q, K)

```
-M = 1 iff a new student P = 1 iff working on DM/ML
```

$$-Q = 1$$
 iff prepare for qual $K = 1$ iff a Saudi citizen

How many parameters do we need to estimate?

```
P(M=1):
                                             P(M=0):
P(P=1|M=1):
                                            P(P=0 | M=1):
                                             P(P=0 | M=0):
P(P=1 | M=0):
P(Q=1 | M=1):
                                             P(Q=0|M=1):
                                            P(Q=0|M=0):
P(Q=1|M=0):
P(K=1|M=1):
                                             P(K=0 | M=1):
P(K=1 | M=0):
                                             P(K=0 | M=0):
               P(M = 1)P(P = 1|M = 1)P(Q = 1|M = 1)P(K = 1|M = 1)
               P(M = 0)P(P = 1|M = 0)P(Q = 1|M = 0)P(K = 1|M = 0)
```

An Issue

- If unlucky, our MLE for P(X_i|Y) might be zero
 - One zero causes the entire probability to be zero!
 - Overfitting!

- How to avoid such issue?
 - Maximum a posteriori (MAP) estimation

MAP for Naive Bayes

MLE

$$\begin{split} & - \widehat{\pi_k} = P(Y = y_k) = \frac{^{\#D\{Y = y_k\}}}{|D|} \\ & - \widehat{\theta_{ijk}} = P(X_i = x_{ij} | Y = y_k) = \frac{^{\#D\{X_i = x_{ij} \land Y = y_k\}}}{^{\#D\{Y = y_k\}}} \end{split}$$

MAP

$$-\widehat{\pi_k} = P(Y = y_k) = \frac{\#D\{Y = y_k\} + \alpha_k}{|D| + \sum_m \alpha_m}$$

Only difference: imaginary examples

$$-\widehat{\theta_{ijk}} = P(X_i = x_{ij} | Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\} + \alpha_k}{\#D\{Y = y_k\} + \sum_m \alpha_m}$$

MAP for Naive Bayes

- How to get α 's?
 - $-\alpha$'s are just priors of the parameters
 - Recall from Beta distribution...

- If N is big enough, prior is "forgotten"
- If N is small, prior is important

Another Issue

- X_i's are usually not really conditionally independent
 - We still use naive Bayes in many cases, and it usually works well
 - Often the right classification, even when not the right probability
 - What is the effect on estimated P(Y|X)?
 - Special case, what if we only have two X_i 's, and $X_1 = X_2$?