Surjections and Injections

Restriction and Extension

Restriction

Definition 1

Let f be a function and let $C \subseteq \text{Dom}(f)$. Then the restriction of f to C is the function, denoted $f \upharpoonright C$, defined by $(f \upharpoonright C)(x) = f(x)$ for all $x \in C$.

• Note that $Dom(f \upharpoonright C) = C$.

Examples.

- Let $f(x)=x^{1/3}$ for all $x\in\mathbb{R}$ and let $g(x)=x^{1/3}$ for all $x\in[1,5)$. Then $g=f\upharpoonright[1,5)$.
- Let $f(x)=\sqrt{x}$ for all $x\in[0,\infty)$, $g(x)=1-x^2$ for all $x\in\mathbb{R}$, and h(x)=1-x for all $x\in\mathbb{R}$. Then $g\circ f=h\!\upharpoonright\![0,\infty)$.

Extension

Definition 2

Let f and g be functions. To say that f is an extension of g means that $\mathrm{Dom}(f) \supseteq \mathrm{Dom}(g)$ and for each $x \in \mathrm{Dom}(g)$, f(x) = g(x).

• Note f is an extension of g iff $Dom(f) \supseteq Dom(g)$ and $f \upharpoonright Dom(g) = g$.

Surjections and Injections

Surjections

Definition 3

Let A and B be sets. To say that f is a surjection from A to B means that f is a function from A to B and for each $y \in B$, there exists $x \in A$ such that f(x) = y.

Notes.

- A surjection from A to B is also said to be a function from A onto B.
- Any function is a surjection from its domain to its range.
- f is a surjection from A to B
 iff f is a function, Dom(f) = A, and Rng(f) = B
 iff for each y ∈ B, the equation f(x) = y has at least one solution x in A.

Surjections (cont')

Example 4

- Let $f(x) = \sin(x)$ for all $x \in \mathbb{R}$. Then f is a surjection from \mathbb{R} to [-1,1], but f is not a surjection from \mathbb{R} to \mathbb{R} .
- Let $g(x) = \arctan(x)$ for all $x \in \mathbb{R}$. Then f is a surjection from \mathbb{R} to $(-\pi/2, \pi/2)$.

Injections

Definition 5

To say that f is an injection means that f is a function and for all $x_1, x_2 \in \text{Dom}(f)$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Note.

- To say that f is an injection from A to B means that f is a function from A
 to B and f is an injection.
- An injection is also said to be a one-to-one function.
- f is an injection from A to B
 iff for all x₁, x₂ ∈ A, if x₁ ≠ x₂, then f(x₁) ≠ f(x₂)
 iff for each y ∈ B, the equation f(x) = y has at most one solution x in A.

Injections (cont')

Example 6

Let $f(x) = x^2$ for all $x \in \mathbb{R}$ and let $g(x) = \sqrt{x}$ for all $x \in [0, \infty)$. Then:

• f is not an injection from \mathbb{R} to $[0,\infty)$ because

• g is an injection from $[0, \infty)$ to $[0, \infty)$ because

9/11

Composition of Surjections

Theorem 7

Let A, B, and C be sets. Suppose that f is a surjection from A to B and g is a surjection from B to C. Then $g \circ f$ is a surjection from A to C.

Proof. Let $c \in C$. Since g is a surjection from B to C, there exists $b \in B$ such that g(b) = c. Since f is a surjection from A to B, there exists $a \in A$ such that f(a) = b. It follows that

$$(g \circ f)(a) = g(f(a)) = g(b) = c.$$

We have shown that for any $c \in C$, there exists $a \in A$ such that $(g \circ f)(a) = c$. In other words, $g \circ f$ is a surjection from A to C.

Composition of Injections

Theorem 8

Let f and g be injections. Then $g\circ f$ is an injection and $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$.

See Theorem 11.72.