







## Gyrogroup Batch Normalization

Ziheng Chen, Yue Song, Xiao-Jun Wu, Nicu Sebe

Examples

Pseudo-reductive Gyrogroups

if it satisfies axioms (G1), (G2), (G3) and the following pseudo-reductive law:









#### Motivation

#### Manifold-valued Measurements in Applications



(Brooks, 2020)











NLP, Graph... (Ganea et al., 2018)



Action Recognition (Vemulapalli et al.,











Vision-Language Models (Huang et al., 2018)

#### Euclidean Normalization: controlling mean and variance

$$\forall i \le N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$

- Centering

#### Existing Riemannian Normalization:

#### Fails to normalize statistics in a general manner

| Method                                      | Controllable Statistics | Applied Geometries                                                                             | Incorporated by GyroBN |
|---------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|------------------------|
| SPDBN (Brooks et al., 2019)                 | M                       | SPD manifolds under AIM                                                                        |                        |
| SPDBN<br>(Kobler et al., 2022b)             | M+V                     | SPD manifolds under AIM                                                                        |                        |
| SPDDSMBN<br>(Kobler et al., 2022a)          | M+V                     | SPD manifolds under AIM                                                                        |                        |
| ManifoldNorm (Chakraborty, 2020, Algs. 1-2) | N/A                     | Riemannian homogeneous space                                                                   | ×                      |
| ManifoldNorm (Chakraborty, 2020, Algs. 3-4) | M+V                     | Matrix Lie groups under the distance $d(X,Y) = \left\  \operatorname{mlog} (X^{-1}Y) \right\ $ |                        |
| RBN (Lou et al., 2020, Alg. 2)              | N/A                     | Geodesically complete manifolds                                                                | X                      |
| LieBN<br>(Chen et al., 2024b)               | M+V                     | General Lie groups                                                                             |                        |
| GyroBN                                      | M+V                     | Pseudo-reductive gyrogroups with gyro isometric gyrations                                      | N/A                    |

### Gyro Structures

**Definition 2.1** (Gyrogroups (Ungar, 2009)). Given a nonempty set G with a binary operation  $\oplus:G imes G imes G,\{G,\oplus\}$  forms a gyrogroup if its binary operation satisfies the following axioms for any  $a, b, c \in G$ :

- (G1) There is at least one element  $e \in G$  called a left identity (or neutral element) such that  $e \oplus a = a$ . Gyro inner product:  $\langle P, Q \rangle_{\mathrm{gr}} = \langle \mathrm{Log}_E(P), \mathrm{Log}_E(Q) \rangle_E$ ,
- (G3) There is an automorphism  $gyr[a,b]:G\to G$  for each  $a,b\in G$  such that

(G2) There is an element  $\ominus a \in G$  called a left inverse of a such that  $\ominus a \oplus a = e$ .

 $a \oplus (b \oplus c) = (a \oplus b) \oplus \text{gyr}[a, b]c$  (Left Gyroassociative Law).

The automorphism gyr[a, b] is called the gyroautomorphism, or the gyration of G generated by a, b. (G4) Left reduction law:  $gyr[a, b] = gyr[a \oplus b, b]$ .

Gyro addition:  $P \oplus Q = \operatorname{Exp}_P(\operatorname{PT}_{E \to P}(\operatorname{Log}_E(Q)))$ , Gyro scalar product:  $t \odot P = \operatorname{Exp}_E(t \operatorname{Log}_E(P))$ ,

Gyro norm:  $||P||_{gr} = \langle P, P \rangle_{gr}$ , Gyrodistance:  $d_{gry}(P,Q) = \|\ominus P \oplus Q\|_{gr}$ ,

 $M = \text{FM}(\{P_i\}) = \underset{Q \in \mathcal{M}}{\operatorname{argmin}} \frac{1}{N} \sum\nolimits_{i=1}^{N} d_{\text{gry}}^{2} \left(P_i, Q\right)$ 

where 1 is the identity map.

# gyration and left gyrotranslation

**Theorem D.1** (First Pseudo-reductive Gyrogroups Properties). Let  $\{G, \oplus\}$  be a pseudo-reductive gyrogroup. For any elements  $P, Q, R, X \in G$ , we have: 1. If  $P \oplus Q = P \oplus R$ , then Q = R (General Left Cancellation law; see (9) below). 2. gyr[E, P] = 1 for any left identity E in G. 3. gyr[X, P] = 1 for any left inverse X of P in G. 4. There is P left identity which is P right identity. 5. There is only one left identity. 6. Every left inverse is P right inverse. 7. There is only one left inverse,  $\ominus P$ , of P, and  $\ominus (\ominus P) = P$ . 8. The left cancellation law:  $\ominus P \oplus (P \oplus Q) = Q$ . 9. The gyrator identity:  $gyr[P,Q]X = \ominus(P \oplus Q) \oplus \{P \oplus (Q \oplus X)\}.$ 10. gyr[P, Q]E = E. 11.  $gyr[P,Q](\ominus X) = \ominus gyr[P,Q]X$ . 12. gyr[P, E] = 1.

13. The gyrosum inversion law:  $\ominus(P \oplus Q) = \text{gyr}[P,Q](\ominus Q \ominus P)$ 



\_\_\_\_\_\_

1-----

Axiom (G1-3)

Axiom (G1-3)
Left reduction (G4)

Invariance of gyronorm under any gyration

Gyrocommutativity

**Proposition 3.2.** [ $\downarrow$ ] Gr(p,n) and Gr(p,n) form pseudo-reductive and gyrocommutative gyrogroups. **Proposition 3.6.** [ $\downarrow$ ] For every (pseudo-reductive) gyrogroup in <u>Tab. 2</u>, the gyrodistance is identical to the geodesic distance (therefore symmetric). The gyroinverse, any gyration and any left gyrotranslation are gyroisometries.

 $\times$ ( $\sqrt{\text{for } K=0}$ )

**Definition 3.1** (Pseudo-reductive Gyrogroups). A groupoid  $\{G, \oplus\}$  is a pseudo-reductive gyrogroup

gyr[X, P] = 1, for any left inverse X of P in G,

### GyroBN

$$\forall i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$
  $\forall i \leq N, \tilde{P}_i = \widehat{B} \oplus \left( \underbrace{\frac{Scaling}{s}}_{\text{Scaling}} \left( \underbrace{\frac{Scaling}{s}}_{\text{OM} \oplus P_i} \right) \right)$ 

**Theorem 4.1** (Homogeneity). [ $\downarrow$ ] Supposing  $\{\mathcal{M},\oplus\}$  is a pseudo-reductive gyrogroup with any gyration gyr $[\cdot,\cdot]$  as a gyroisometry, for N samples  $\{P_{i...N} \in \mathcal{M}\}$ , we have the following properties:

### Properties

Homogeneity of gyromean:  $FM(\{B \oplus P_i\}) = B \oplus FM(\{P_i\}), \forall B \in \mathcal{M},$ 

Homogeneity of dispersion from  $E: \frac{1}{N} \sum_{i=1}^{N} d_{gry}^2(t \odot P_i, E) = \frac{t^2}{N} \sum_{i=1}^{N} d_{gry}^2(P_i, E),$  (17)

#### Algorithm 1: Gyrogroup Batch Normalization (GyroBN)

: batch of activations  $\{P_{1...N} \in \mathcal{M}\}$ , small positive constant  $\epsilon$ , and momentum  $\in [0,1]$ , running mean  $M_r$ , running variance  $v_r^2$ , biasing parameter  $B \in \mathcal{M}$ , scaling parameter  $s \in \mathbb{R}$ .

Recovers Euc. BN

Algorithm

# LieBN

#### : normalized batch $\{P_{1...N} \in \mathcal{M}\}$ 1 if training then Compute batch mean $M_b$ and variance $v_b^2$ of $\{P_{1...N}\}$ ; Update running statistics $M_r = \text{Bar}_{\gamma}(M_b, M_r), v_r^2 = \gamma v_b^2 + (1 - \gamma)v_r^2;$

 $M_b(M,v^2)=(M_b,v_b^2)$  if training else  $(M_r,v_r^2)$ 6  $\forall i \leq N, ilde{P}_i = B \oplus \left( \frac{s}{\sqrt{v^2 + \epsilon}} \odot (\ominus M \oplus P_i) \right)$ 

## Manifestations

| Operator                                                                                       | $\mathrm{Gr}(p,n)$                                                                                                            | $\mathbb{P}^n_K$                                                                                                                      |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Identity element                                                                               | $I_{p,n}$                                                                                                                     | $0 \in \mathbb{R}^n$                                                                                                                  |
| $P\oplus^{\operatorname{Gr}}Q	ext{ or }x\oplus_K y$                                            | $\operatorname{mexp}(\Omega)V$                                                                                                | $\frac{\left(1{-}2K\langle x,y\rangle{-}K\ y\ ^2\right)x{+}\left(1{+}K\ x\ ^2\right)y}{1{-}2K\langle x,y\rangle{+}K^2\ x\ ^2\ y\ ^2}$ |
| $\ominus^{\operatorname{Gr}} P 	ext{ or } \ominus_K x$                                         | $\operatorname{mexp}(-\Omega)I_{p,n}$                                                                                         | -x                                                                                                                                    |
| $t\odot^{\operatorname{Gr}} P 	ext{ or } t\odot_K x$                                           | $\mathrm{mexp}(t\Omega)I_{p,n}$                                                                                               | $\frac{1}{\sqrt{ K }}\tanh\left(t\tanh^{-1}(\sqrt{ K }\ x\ )\right)\frac{x}{\ x\ }$                                                   |
| $\mathrm{Bar}_{\gamma}^{\mathrm{Gr}}(Q,P)$ or $\mathrm{Bar}_{\gamma}^{K}(y,x)$<br>Fréchet Mean | $\operatorname{Exp}_P^{\operatorname{Gr}}(\gamma\operatorname{Log}_P^{\operatorname{Gr}}(Q))$<br>Karcher Flow (Karcher, 1977) | $x \oplus_K (-x \oplus_K y) \odot_K t$<br>(Lou et al., 2020, Alg. 1)                                                                  |



GyroBN on the Grassmannian





## Experiments

Table 3: Comparison of GyroBN against other Grassmannian BNs under GyroGr backbone.

|   | BN None |          | ManifoldNorm-Gr |          | RBN-Gr |                          | GyroBN-Gr |          |                |
|---|---------|----------|-----------------|----------|--------|--------------------------|-----------|----------|----------------|
|   | Acc.    | Mean±std | Max             | Mean±std | Max    | Mean±std                 | Max       | Mean±std | Max            |
| _ | HDM05   |          |                 |          |        | 48.64±0.77               |           |          | 52.43          |
|   | I       |          |                 |          |        | 67.77±0.52<br>50.56±0.22 |           |          | 72.65<br>55.59 |



Table 4: Ablation of Grassmannian GyroBN under various network architectures.

|              |        | HD     | M05    |        |        | NT     | U60    |        |        | NTU    | J120   |        |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Architecture | 1Block | 2Block | 3Block | 4Block | 1Block | 2Block | 3Block | 4Block | 1Block | 2Block | 3Block | 4Block |
| GyroGr       | 49.23  | 49.09  | 47.02  | 27.36  | 70.32  | 70.14  | 70.23  | 65.03  | 53.96  | 54.1   | 54.59  | 47.59  |
| GyroGrBN     | 52.43  | 50.62  | 51.56  | 30.29  | 72.65  | 71.93  | 72.25  | 66.67  | 55.59  | 56.15  | 54.63  | 48.9   |



Table 5: Comparison of HNN with or without GyroBN-H or RBN-H on the link prediction task.

| Dataset | HNN            | HNN-KBN-H      | HNN-GyroBN-H   |
|---------|----------------|----------------|----------------|
| Cora    | $89.0 \pm 0.1$ | $93.5 \pm 0.5$ | 94.3 ± 0.2     |
| Disease | $75.1 \pm 0.3$ | $76.6 \pm 2.2$ | $81.2 \pm 0.9$ |
| Airport | $90.8 \pm 0.2$ | $94.2 \pm 0.4$ | $95.4 \pm 0.2$ |
| Pubmed  | $94.9 \pm 0.1$ | $93.4 \pm 0.2$ | $95.8 \pm 0.1$ |
|         |                |                |                |



| Methods             | $ \begin{array}{c} \text{HDM05} \\ (47 \times 10) \end{array}$ | $\begin{array}{c} \text{NTU60} \\ (75 \times 10) \end{array}$ | $\begin{array}{c} \text{NTU120} \\ (75 \times 10) \end{array}$ |
|---------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|
| GyroGr              | 2.19                                                           | 50.92                                                         | 80.72                                                          |
| GyroGr-ManifoldNorm | 4.98                                                           | 242.12                                                        | 409.48                                                         |
| GyroGr-RBN          | 5.16                                                           | 242.63                                                        | 410.08                                                         |
| GyroGr-GyroBN       | 3.10                                                           | 59.55                                                         | 108.92                                                         |

0.0905 0.0883 0.1215 0.3416 HNN-GyroBN-H 0.0757 0.0842 0.119 0.3351