Relatório 3º projeto ASA 2024/2025

Grupo: AL059

Aluno(s): Filipe Oliveira (110633) e Francisco Andrade (110720)

Descrição do Problema e da Solução

Variáveis utilizadas:

Utilizámos apenas uma variável de decisão do problema:

 $x_{k,i}$: variável binária que indica se o brinquedo é entreque para a criança k pela fábrica i.

 $x_{k,i} = 1$, se a criança k recebeu um brinquedo da fábrica i.

 $x_{k,i} = 0$, se a criança k não recebeu um brinquedo da fábrica i.

Função objetivo:

O objetivo é maximizar o número de crianças atendidas:
$$\max \sum_{k \in Crianças} \sum_{i \in Fabricas_k} x_{k,i}$$

Onde Crianças representa o conjunto total de crianças e Fábricas, representa o conjunto total de fábricas capazes de atender a criança k.

Restrições do problema:

1. Cada criança recebe no máximo um brinquedo: Para cada criança k, a soma de brinquedos entregues pelas fábricas que podem atendê-la não pode exceder 1:

s pelas labricas que podem alende
$$\sum_{i \in F \land bricas_k} x_{k,i} \le 1, \quad \forall k \in Crianças$$

2. Limite do stock das fábricas: Para cada fábrica i, o total de brinquedos distribuídos não pode exceder fmaxi:

$$\sum_{k \in Crianças_i} x_{k,i} \le f_{max i}, \quad \forall i \in F\'{a}bricas$$

3. Distribuição mínima por países: Cada país j deve receber brinquedos para pelo menos p_{min i} crianças:

$$\sum_{k \in Crian \in as_j} \sum_{i \in F \land bricas_k} x_{k,i} \ge p_{min\ j}, \quad \forall j \in Pa \land ses$$

4. Exportações máximas entre países: Cada país j pode exportar, das suas fábricas i, brinquedos para crianças de outros países (p_k) no máximo para p_{max_i} crianças:

$$\sum_{k \in Crianças} \sum_{i \in F\'abricas_k} x_{k,i} \leq p_{max\,j}, \quad \forall j \in Pa\'ises, j \neq p_k \wedge j = p_i$$

Programa Linear:

ear:
$$\max \sum_{k \in Crianças} \sum_{i \in F\acute{a}bricas_k} x_{k,i}$$

$$\sum_{i \in F\acute{a}bricas_k} x_{k,i} \leq 1, \ \forall k \in Crianças$$

$$\sum_{i \in F\acute{a}bricas_k} x_{k,i} \leq f_{max\,i}, \ \forall i \in F\acute{a}bricas$$

$$\sum_{k \in Crianças_j} \sum_{i \in F\acute{a}bricas_k} x_{k,i} \geq p_{min\,j}, \ \forall j \in Pa\acute{i}ses$$

$$\sum_{k \in Crianças} \sum_{i \in F\acute{a}bricas_k} x_{k,i} \leq p_{max\,j}, \ \forall j \in Pa\acute{i}ses, j \neq p_k \land j = p_i$$

$$x_{k,i} \geq 0$$

Análise Teórica

Sendo os parâmetros do problema o número de fábricas (n), o número de países (m), e o número de crianças (t), a complexidade da codificação é:

- O número de variáveis do programa linear é O(t * n). As variáveis de decisão x_{k,i} representam se um brinquedo da fábrica *i* é enviado para a criança *k*. Cada criança *k* pode receber brinquedos de um subconjunto das fábricas. No pior caso, todas as crianças podem estar associadas a todas as fábricas, logo O(t * n).
- O número de restrições do programa linear é O(t + n + m).
 - <u>Crianças</u> (t): Cada criança k pode receber no máximo um brinquedo. Logo o número de restrições é O(t);
 - <u>Fábricas</u> (n): Cada fábrica i possui um limite máximo de brinquedos que pode produzir. Logo, o número de restrições é O(n)
 - <u>Países</u> (m): Cada país possui limites máximos e mínimos de distribuição de brinquedos, ou seja, duas restrições por país. Logo, o número de restrições é O(2m) = O(m).

A complexidade do programa linear é O(t * n) + O(t + n + m) = O(t * n)

Avaliação Experimental dos Resultados

De modo a fazer a avaliação experimental, foram testados 30 casos. Para obter o tempo de execução foi utilizado o valor real do comando time. Foram utilizados os valores:

- n = 500 + 100k, o número de fábricas cresce linearmente, começando em 500 no primeiro teste e atingindo 800 no último;
- m = 40, o número de países foi mantido constante em todos os testes:
- t = 500 + 125k, o número de crianças cresce linearmente, começando em 500 no primeiro teste e atingindo 1375 no último;

Com a representação do eixo dos XX com o número de variáveis, observamos uma relação aproximadamente linear entre a complexidade teórica prevista e os tempos registados.

Nº de variáveis	Tempo (ms)
250000	333.6706
312500	400.3732
375000	786.9525
437500	944.4370
500000	1150.0804
562500	1264.3058
625000	1506.9289
687500	1821.2595
300000	509.0902
375000	614.5210
450000	713.4125
525000	1000.5078
600000	1240.5174
675000	2335.7038
750000	1677.6657

Nº de variáveis	Tempo (<u>ms</u>)
825000	1956.7404
350000	449.6775
437500	593.8764
525000	715.1744
612500	855.6046
700000	1511.1823
787500	1254.7045
875000	3768.3241
962500	2453.3801
400000	518.6219
500000	668.4251
600000	844.6982
700000	1021.6737
800000	1204.9389
900000	1419.8225