Homework 3

Emmet Allen

January 30, 2021

Question 1

7.1 Exercise 3.1.1

- a) True.
- b) False.
- c) True.
- d) False.
- e) True.
- f) False.
- g) False.

7.2 Exercise 3.1.2

- a) False.
- b) True.
- c) True.
- d) True.
- e) False.

7.3 Exercise 3.1.5

b) $\{3, 6, 9, 12, ...\} = \{x \in \mathbb{N} : x \ge 3 \text{ and } x \text{ is an integer multiple of } 3\}$

The cardinality is infinite.

d) $\{0, 10, 20, 30, ..., 1000\} = \{x \in \mathbb{N} : 0 \le x \le 1000 \text{ and } x \text{ is an integer multiple of } 10\}$

The cardinality is 101.

7.4 Exercise 3.2.1

- a) True.
- b) True.
- c) False.
- d) False.
- e) True.
- f) True.
- g) True.
- h) False.
- i) False.
- j) False.
- k) False.

8.1 Exercise 3.2.4

b) $\{X \in P(A) : 2 \in X\} = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$

9.1 Exercise 3.3.1

- c) $A \cap C = \{-3, 1, 17\}$
- d) $A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$
- e) $A \cap B \cap C = \{1\}$

Exercise 3.3.3 9.2

- a) $\bigcap_{i=1}^{5} A\{i\} = \{1\}$
- b) $\bigcup_{i=1}^{5} = 2 = A\{i\} = \{1, 2, 3, 4, 9, 16, 25\}$
- e) $\bigcap_{i=1}^{5} = 1 = C\{i\} = \{X \in \mathbb{R} : -1/100 \le X \le 1/100\}$ f) $\bigcup_{i=1}^{5} = 1 = C\{i\} = \{X \in \mathbb{R} : -1 \le X \le 1\}$

9.3 Exercise 3.3.4

- b) $P(A \cap B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$
- d) $P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$

10.1 Exercise 3.5.1

```
b) BxAxC = \{ \text{ foam, tall, whole } \} c) \{ (\text{foam,non-fat}), (\text{foam,whole}), (\text{no-foam, non-fat}), (\text{no-foam, whole}) \},
```

10.2 Exercise 3.5.3

```
b)True. \mathbb{Z}^2\subseteq R^2 c)False \mathbb{Z}^2\cap Z^3\neq\emptyset e)True. For any three sets, A, B, and C, if A\subseteq B, then AxC\subseteq BxC
```

10.3 Exercise 3.5.6

```
d) xy where \in \{0\} \cup \{0\}^2 and y \in \{1\} \cup \{1\}^2
Answer: xy = \{01, 011, 001, 0011\}
e) xy where \in \{aa, ab\} and y \in \{a\} \cup \{a\}^2
Answer: xy = \{aaa, aaaa, aab, aaab\}
```

10.4 Exercise 3.5.7

```
f) P(AxB) = \{\emptyset, \{ab\}, \{ac\}, \{ab, ac\}\}
```

```
g) P(A)xP(B) = \{(\{\emptyset\}, \{\emptyset\}), (\{\emptyset\}, \{b, c\}), (\{\emptyset\}, \{b\}), (\{\emptyset\}, \{c\}), (\{a\}, \{\emptyset\}), (\{a\}, \{b, c\}), (\{a\}, \{b\}), (\{a\}, \{c\})\}\}\}\}
```

11.1 Exercise 3.6.2

b)
$$(B \cup A) \cup (\overline{B} \cup A) = A$$

Set Identity Table		
Expressions	Set Identities	
$(B \cup A) \cup (\overline{B} \cup A)$		
$A \cup (B \cap \overline{B})$	Distributive Laws	
$A \cup \emptyset$	Complement Laws	
A	Identity Law	

c)
$$\overline{A \cap \overline{B}} = \overline{A} \cup B$$

Set Identity Table		
Expressions	Set Identities	
$A \cap \overline{\overline{B}}$		
$\overline{A} \cup \overline{\overline{B}}$	DeMorgan's Laws	
$\overline{A} \cup B$	Double Complement Law	

11.2 Exercise 3.6.3

b)
$$A - (B \cap A) = A$$

Answer: If $A = \{1\}$ and $B = \{1, 2\}$ by taking the difference of A away from the intersection of B and A, we are removing the A = $\{1\}$, leaving only elements found in B = $\{2\}$.

d)
$$(B-A) \cup A = A$$

Answer: If $B = \{1, 2\}$ and $A = \{1\}$ by taking the difference of B from A, you are left with $B - A = \{2\}$. This is then unionized with A to get a set $\{1, 2\}$ which is not equal to A.

11.3 Exercise 3.6.4

b)
$$A \cap (B - A) = \emptyset$$

Set Identity Table	
Expressions	Set Identities
$A \cap (B-A)$	
$A \cap (B \cap \overline{A})$	Subtraction Law
$A \cap (\overline{A}) \cap B$	Commutative Law
$(A \cap \overline{A}) \cap B$	Associative Law
$\emptyset \cap B$	Complement Law
Ø	Domination Law

c)
$$A \cup (B - A) = A \cup B$$

Set Identity Table		
Expressions	Set Identities	
$A \cup (B - A)$		
$A \cup (B \cap \overline{A})$	Subtraction Law	
$(A \cup B) \cap (A \cup \overline{A})$	Distributive Law	
$(A \cup B) \cap U$	Complement Law	
$A \cup B$	Identity Law	