Bulk RNA-Seq Data Processing Pipeline

Justin Shim¹, Lipei Shao¹, Alex Pelayo¹, Jinxia Ma¹, Ping Jin¹, David Stroncek¹

 1 Center for Cellular Engineering, National Institute of Health Clinical Center

Introduction

- RNA-Seq is a powerful technique used to study gene expression patterns at the transcriptome level
- However, the data sets that are generated from these studies are very large by nature and typically require expertise in computational analysis
- Additionally, new sequencing techniques and advancements in statistical strategies pose a stiff challenge for researchers lacking in-depth coding knowledge to analyze RNA-data effectively
- We have developed a data processing pipeline using bash scripting that is comprehensive and accessible.
- In this poster presentation, we outline the key steps of the pipeline and demonstrate its application using a sample dataset

Tools

- Quality Control (fastQC)
- Read Alignment (STAR)
- Gene Level Expression Quantification (Subread > featureCounts)

Main Procedures

Measure	Value	36 34 32
Filename	CD22#32.fq1	30 28
File type	Conventional base calls	26 24
Encoding	Sanger / Illumina 1.9	22
Total Sequences	43676996	18 16
Sequences flagged as poor quality	0	14
Sequence length	35-76	10
%GC	48	6
Figure 1. (Above) FastQc Report: Basic Statistics for sample #32.fq1		2
Figure 2. (Right) FastQC quality gra	ph for sample #32.fq1	

Started job on	Jun 26 14
Started mapping on	Jun 26 14
Finished on	Jun 26 14
Mapping speed, Million of reads per hour	304.13
Number of input reads	43676996
Average input read length	151
UNIQUE READS:	
Uniquely mapped reads number	38415840
Uniquely mapped reads %	87.95%
Average mapped length	150.52
Number of splices: Total	13806696
Number of splices: Annotated (sjdb)	13574227
Number of splices: GT/AG	13668426
Number of splices: GC/AG	104919
Number of splices: AT/AC	11530
Number of splices: Non-canonical	21821
Mismatch rate per base, %	0.24%
Deletion rate per base	0.01%
Deletion average length	1.56
Insertion rate per base	0.01%

Figure 3. Alignment BAM output for sample #32

Figure 4. Subread > featureCount output (.txt) for sample #19

Github

GeneID	Gene Symbol		
ENSG00000227232.5	WASH7P		
ENSG00000279457.3	FO538757.2		
ENSG00000225630.1	MTND2P28		
ENSG00000276171.1	AC114498.1		
ENSG00000237973.1	MTCO1P12		
ENSG00000248527.1	MTATP6P1		
ENSG00000198744.5	MTCO3P12		
ENSG00000228327.3	RP11-206L10.2		
ENSG00000237491.8	RP11-206L10.9		
ENSG00000230092.7	RP11-206L10.8		
ENSG00000177757.2	FAM87B		

Figure 5. Bulk conversion of GeneID to GeneSymbol identifier

Gene Symbol	CD22#19	CD22#21	CD22#32	CD22#33	Extra-CD-22-7	Extra-CD-22-11
LINC00115	60	75	114	69	171	87
FAM41C	0	0	0	0	0	0
TUBB8P11	0	0	0	0	0	0
FAM166AP3	0	0	0	0	0	0
RP11-5407.16	0	0	0	0	0	0
RP11-5407.1	0	0	0	0	0	1
RP11-5407.2	0	0	0	0	0	0
RP11-5407.3	0	0	0	0	0	2
SAMD11	6	9	7	6	21	3
NOC2L	4614	2510	3555	2647	4131	2962
KLHL17	614	479	703	433	928	586
AL645608.1	0	0	0	0	0	0
PLEKHN1	58	60	78	47	111	63
PERM1	2	2	10	6	20	7
RP11-5407.17	0	0	2	0	2	0
HES4	4	0	0	0	0	0

Figure 6. Bulk trimming of low read data (<15)

Conclusion

- Simplifies and automates the analysis of RNA-Seq data
- Assess data quality, align reads to the reference genome, and quantify gene expression levels accurately and seamlessly
- Gain valuable insights into gene expression profiles in various biological contexts
- Output data is organized and straightforward

Future Direction

- Understanding the transcriptional landscape of CAR Tcells before infusion (pre-infusion products)
- Identifying transcriptomic signatures from the data that are responsible for driving different clinical outcomes

Acknowledgments

- FastQC was developed by <u>Simon Andrews, Babraham</u>
 Bioinformatics
- Alexander Dobin et al. STAR: ultrafast universal RNAseq aligner
- Subread on Biowulf was developed by Yang Liao,
 Gordon K Smyth, Wei Shi

