

Data Sheet

MS1656, BLE chip

32 位基于 ARM Cortex M0+核心的蓝牙低功耗芯片

Revision History:

Rev. No.	History	Issue Date	Remark
1.0	Initial Release	May 16, 2019	Release
1.1	Update ADC & VC	June 16, 2019	Release
	277		

Important Notice:

Revision: 1.1

MACROGIGA reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice. MACROGIGA integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use in such applications is done at the sole discretion of the customer. MACROGIGA will not warrant the use of its devices in such applications.

ShangHai MacroGiga Electronics Ltd. Co.

目录

1.	总介	4
	1.1 特性	4
	1.2 功能结构图	6
2.	规格说明	7
	2.1 ARM®的 Cortex®-M0+核心	7
	2.2 存储器(Memory)	7
	2.3 时钟系统	7
	2.4 工作模式	
	2.5 中断控制器	8
	2.6 复位控制器	
	2.7 通用 IO 端口(GPIO)	
	2.8 定时器和看门狗	8
	2.8.1 高级控制定时器(TIM1)	
	2.8.2 通用定时器(TIM2)	
	2.8.3 可编程计数器阵列(PCA)	
	2.8.4 低功耗定时器(LPTIM)	9
	2.8.5 基础定时器(TIM10/11)	9
	2.8.6 独立看门狗(IWDG)	
	2.8.7 系统窗口看门狗 (WWDG)	
	2.8.8 SysTick 定时器	.10
	2.9 RTC(实时时钟)	
	2.10 通用异步收发器(UART)	
	2.11 串行同步接口(SPI)	
	2.12 I2C 总线	
	2.13 One-Wire 总线	
	2.14 蜂鸣器 (BEEP)	
	2.15 自动唤醒(AWK)	
	2.16 时钟校准电路	
	2.17 唯一ID 号	
	2.18 CRC16 硬件循环冗余校验码	. 11
	2.19 12 Bit SAR 型 ADC	
	2.20 低电压检测器(LVD)	
	2.21 电压比较器(VC)	
	2.22 嵌入式调试系统	
	2.23 高安全性	
	2.24 蓝牙低功耗广播	
3.	引脚定义	.12

4.	存储器映射	16
5.	典型应用电路	19
6.	电器特性	19
	6.1 测试条件	19
	6.1.1 最小和最大数值	20
	6.1.2 典型数值	20
	6.2 最大绝对额定值	
	6.3 RF 一般特性	20
	6.3.1 RF 发射机特性	
	6.3.2 RF 接收机特性	21
	6.4 直流特性	21
	6.4.1 工作电流特性	
	6.4.2 Power On Reset/Brown Out Reset	
	6.4.3 RF 工作电流特性	
	6.5 交流特性	
	6.5.1 输出特性-端口 PA, PB, PC, PD	
	6.5.2 输入特性-端口 PA, PB, PC, PD	
	6.5.3 端口漏电特性-PA, PB, PC, PD	23
	6.5.4 定时器/计数器输入采样要求	
	6.5.5 内部 HIRC 振荡器	
	6.5.6 内部 LIRC 振荡器	
	6.5.7 外部 32.768KHz 晶振	
	6.6 12 位 ADC 特性	
	6.7 模拟电压比较器特性	
	6.8 低电压检测特性	27
	6.9 存储器特性	
	6.10 低功耗模式返回时间	
7.	PCB 设计建议	28
	7.1 电源设计建议	28
	7.2 PCB 注意事项	
	7.3 2.4G 射频天线设计	29
8.	封装特性	30
9.	回流焊曲线	32

4

ShangHai MacroGiga Electronics Ltd. Co.

1. 总介

MS1656 是单模超低功耗蓝牙芯片,射频采用 2.4GHz ISM 频段的频率,2MHz 信道间隔,符合蓝牙规范。MS1656 使用高性能的 ARM®Cortex®-M0+为内核的 32 位微控制器,最高工作频率可达 24MHz,内置高速存储器,丰富的增强型 I/O 端口和外设连接到外部总线。

MS1656 产品系列工作电压为 2.4V ~ 3.6V,工作温度范围包含-40℃~ +85℃常规型。具有低电压、低功耗、低待机电流、快速唤醒等特点。

MS1656 产品提供 QFN20 封装形式,提供低成本解决方案,适合于多种应用场合:

- Beacon
- 电机驱动和应用控制
- 充电器、温控器、记录仪
- 警报系统、门禁系统、数据采集和传输系统

1.1 特性

- 内核与系统:
- 32 位 ARM®Cortex-M0+处理器内核,最高工作频率可达 24MHz
- 一个 24 位系统定时器
- 支持低功耗睡眠模式
- 单周期 32 位硬件乘法器
- 存储器
- 64K 字节的嵌入式 Flash, 具有擦写保护功能
- 4K 字节的 SRAM
- 单模 BLE 射频收发机
- 数据包处理引擎
- GFSK 编码方式
- 内部电压调节器保证 PSRR
- 可编程输出功率范围: -28dBm ~ +3dBm
- 1Mbps 空气数据传输
- 优秀的射频链路预算: 高达-85dBm
- 时钟、复位和电源管理
- 2.4V~3.6V 供电
- 外部 16MHz 高速晶体振荡器
- 内嵌 4MHz 24MHz 高速振荡器
- 内嵌 38. 4KHz 低速振荡器
- 低功耗

- 两种低功耗工作模式: Sleep、Deep Sleep
- 低电压检测,可配置为中断或者复位
- 1 个 12 位 1Msps 采样速率, SAR 型 ADC

- 电压比较器 (VC) /低电压检测器 (LVD)
- 11 个 I/O 端口
- 调试模式
- 串行单线调试 (SWD)
- 定时器
- 1 个 16 位高级定时器: 4 通道 PWM 输出/输入捕获,支持 3 路互补输出,以及死区生成和紧急停止功能
- 1 个 16 位通用定时器,支持 4 路比较输出/输入捕获,PWM 输出
- 1 个 16 位可编程定时器阵列,支持 5 路输入捕获/比较输出,PWM 输出
- 2 个 16/32 位基础定时器/计数器
- 1 个 16 位低功耗定时器
- -2个看门狗定时器(独立的和窗口型的)
- 自动唤醒定时器
- RTC
- 支持 RTC 计数 (秒/分/时) 及万年历功能 (日/月/年)
- 支持闹铃功能寄存器(秒/分/时/日/月/年)
- 支持 RTC 从 Deep Sleep 模式唤醒系统
- 通信接口

- UART0-UART1 标准通讯接口
- I2C 标准通讯接口,最高达 1Mbit/s
- SPI 标准通讯接口,最高达 8Mbit/s
- 16字节的芯片唯一 ID (CID)

1.2 功能结构图

图 1.2.1 主控功能结构

2. 规格说明

2.1 ARM®的 Cortex®-M0+核心

ARM 的 Cortex®-M0+处理器是最新一代的嵌入式 32 位 RISC 处理器,该处理器引脚数少、功耗低,能够提供满足 MCU 实现需要的低成本平台,同时提供卓越的计算性能和先进的中断系统响应。Cortex®-M0+处理器全面支持 Keil & IAR 调试器,包含了一个硬件调试电路,支持 2 线式的 SWD 调试接口。Cortex®-M0+特性:

Contex into 13 Ex	
指令集	Thumb/Thumb-2
流水线	2级流水线
CoreMark/MHz	2.46
DMIPS/MHz	0.95
中断	32 个中断源
中断优先级	可配置4级中断优先级
增强指令	单周期 32 位乘法器
调试接口	支持 SWD 2 线式调试接口,支持 4 个 break point 以及 2 个 watch point

2.2 存储器 (Memory)

64K字节的嵌入式闪存存储器,用于存放程序和数据。内建全集成的 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程,支持 ISP、IAP 功能。 4K字节的内置 SRAM。

2.3 时钟系统

- 一个频率为 4M~24MHz 的可配置高精度内部时钟 HIRC。在配置为 16MHz 时,从低功耗模式到工作模式的唤醒时间为 3us,全电压全温度范围内的频率偏差<±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4M~24MHz 的外部高速晶振 HXT。
- 一个频率为 32.768kHz/38.4kHz 的内部低速时钟 LIRC。

2.4 工作模式

Revision: 1.1

- 1) 运行模式 Active: CPU 运行,周边功能模块运行。
- 2) 休眠模式 Sleep: CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式 Deep Sleep: CPU 停止运行,高速时钟停止运行,低功耗功能模块运行。

可以通过软件来选择运行在哪种工作模式。休眠模式时 CPU 时钟关闭,其他部分依然可以工作,可以通过中断来唤醒 CPU。深度休眠模式下,系统主时钟关闭,绝大部分模块停止工作,系统工作在内置的38.4KHz/32.768KHz 内置低速时钟上,可以通过 RTC 中断或外部的唤醒引脚来唤醒芯片。在正常工作模式下,可以选择分频方式工作或停止一些不需要使用的模块的时钟来实现功耗和性能之间的灵活切换。

2.5 中断控制器

Cortex®-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入,有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

详情请参考"ARM®Cortex®-M0+ Technical Reference Manual"与"ARM®v6-M Architecture Reference Manual"。

2.6 复位控制器

本芯片具有 9 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 0x00000000。

编号	中断源	
0	上电/掉电复位	
1	外部 Reset Pin 复位	
2	IWDG 复位	
3	WWDG 复位	
4	系统软件复位	
5	欠电压 (LVD) 复位	
6	LOCKUP 复位	
7	寄存器 CPURST 复位	
8	寄存器 MCURST 复位	

2.7 通用 IO 端口 (GPIO)

最多可提供 11 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。 支持边沿触发中断和电平触发中断,可从各种功耗模式下把 MCU 唤醒到工作模式。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能 力可配置,最大支持 12mA 的电流驱动能力。11 个通用 IO 可支持外部异步中断。

2.8 定时器和看门狗

Revision: 1.1

本芯片包含 1 个高级控制定时器、1 个通用定时器、1 个可编程计数器阵列、2 个基础定时器、1 个低功耗基础定时器,以及 2 个看门狗定时器和 1 个系统嘀嗒定时器。

下表比较了高级控制定时器、通用定时器和基础定时器的功能:

			四八 四 五 四 元 1 四 7 四 1 四 1 四 1 四 1 四 1 四 1 四 1 四 1 四		Dun to ili	411/25/44	도커
定时器类型	名称	计数器位宽	预分频系数	计数方向	PWM 输出	捕获/比	互补
						较通道	输出
高级	TIM1	16 位	1/2/4/8/16/64/256/1024	递增、递减、递增/递减	有	4	3 对
通用	TIM2	16 位	1/2/4/8/16/64/256/1024	递增、递减、递增/递减	有	4	无
可编程计数	PCA	16 位	1/2/4/8/16/32	递增	有	5	无
器阵列							
低功耗	LPTIM	16 位	1/2/4/8/16/64/256/1024	递增	无	无	无
基础	TIM10	16/32 位	1/2/4/8/16/64/256/1024	递增	无	无	无
李仙							

TIM11	16/32 位	1/2/4/8/16/64/256/1024	递增	无	无	无

2.8.1 高级控制定时器(TIM1)

高级控制定时器可以看成是分配到 6 个通道的三相 PWM 发生器,它具有带死区插入的互补 PWM 输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生 PWM(边缘或中心对齐模式)
- 单脉冲输出

配置为 16 位通用定时器时,它与 TIMx 定时器具有相同的功能。配置为 16 位 PWM 发生器时,它具有全调制能力($0 \sim 100\%$)。

在调试模式下,计数器可以被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。 很多功能都与通用的 TIM 定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与 TIM 定时器协同操作,提供同步或事件链接功能。

2.8.2 通用定时器 (TIM2)

通用定时器有一个 16 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个独立的通道,每个通道都可以用于输入捕获、输出比较、PWM 和单脉冲模式输出。

它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一通用定时器都能用于产生 PWM 输出。

2.8.3 可编程计数器阵列 (PCA)

可编程计数器阵列(Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时器可以用作一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,提供输入捕捉比较或脉冲宽度调制。

2.8.4 低功耗定时器 (LPTIM)

该定时器为一个异步的 16 位可选定时器。在系统时钟关闭后仍然可以通过内部低速 LIRC 或者外部低速晶体振荡器计时/计数。通过中断可以在低功耗模式下唤醒系统。

2.8.5 基础定时器(TIM10/11)

Revision: 1.1

基础定时器包含 2 个 16/32 位可选定时器 TIM10/TIM11。TIM10/TIM11 功能完全相同,都是是同步定时/计数器,可以选择工作在重载模式和非重载模式。TIM10/TIM11 可以对外部脉冲进行计数或者实现系统定时。

2.8.6 独立看门狗 (IWDG)

独立的看门狗是一个 **20** 位的递减计数器。它由内部独立的 LIRC 提供时钟;因为这个振荡器独立于主时钟,所以它可运行于低功耗模式。它可以用在系统发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,看门狗被关闭。

2.8.7 系统窗口看门狗 (WWDG)

系统窗口看门狗基于一个 8 位的递减计数器,支持 20 位的预分频,由 APB 时钟提供时钟。它可以被当成看门狗用于在发生问题时复位整个系统,具有早期预警中断功能;在调试模式下,看门狗被关闭。

2.8.8 SysTick 定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24 位的递减计数器
- 自动重加载功能
- 当计数器为0时能产生一个可屏蔽系统中断
- 可编程时钟源

2.9 RTC (实时时钟)

实时时钟是一个独立的定时器。RTC模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。RTC模块和时钟配置系统处于后备区域,即在系统复位或待机模式唤醒后,RTC的设置和时间维持不变。

2.10 通用异步收发器(UART)

- 1路通用异步收发器
- 1路低功耗模式下可以工作的异步收发器

2.11 串行同步接口 (SPI)

1路 SPI 接口,支持主从模式。

2.12 I2C 总线

I2C 总线接口,能够工作于主模式或从模式,支持标准和快速模式。

2.13 One-Wire 总线

支持 One-Wire 总线协议。

2.14 蜂鸣器 (BEEP)

蜂鸣器模块可以在 BEEP 引脚上产生一个 1KHz, 2KHz, 4KHz 的蜂鸣信号, 用来驱动外部的蜂鸣器。 2 个基础定时器 TIM10/TIM11 与 1 个 LPTIM 可以功能复用输出, 为 Buzzer 提供可编程驱动频率。可以支持互补输出, 不需要额外的三极管。

2.15 自动唤醒(AWK)

AWK 是用于当 MCU 进入低功耗模式时提供一个内部的唤醒时间基准。该时间基准的时钟是由内部的低速 RC 振荡器时钟(LIRC)或者通过预分频的 HXT 晶振时钟来提供的。

2.16 时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟来校准内部 RC 时钟,亦可使用内部 RC 时钟去检测外部晶振时钟是否工作正常。

2.17 唯一 ID 号

每颗芯片出厂时都具备唯一的 16 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。ID 地址 0X1800 00F0-0X1800 00FF

2.18 CRC16 硬件循环冗余校验码

符合 ISO/IEC13239 中给出的多项式 F(x) = X16 + X12 + X5 + 1。

2.19 12 Bit SAR 型 ADC

单调不失码的 12 位逐次逼近型模数转换器,在 16M ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择电源电压。

4个外部通道,可以实现单次、扫描、循环转换。在扫描/循环模式下,自动进行在选定的一组模拟输入上的转换。

- 输入电压范围: 0 to VDDA
- 转换周期: 16/20 clock cycles
- 可以从外部端子,内部 TIM1、TIM2、TIM10/TIM11、VC 等模块来触发 ADC 采样
- 采样完成(EOC)中断

Revision: 1.1

2.20 低电压检测器(LVD)

对芯片电源电压或芯片引脚电压进行检测。8档电压监测值(2.5-4.4V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

2.21 电压比较器(VC)

芯片引脚电压监测/比较电路。1个可配置的正/负外部输入通道;1个内部BGR 2.5V 参考电压。VC 输出可供定时器 TIM1、TIM10/TIM11、LPTimer 与可编程计数阵列 PCA 捕获、门控、外部计数使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置软件防抖。

2.22 嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil 调试开发软件。支持 4 个硬断点以及多个软断点。

2.23 高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2.24 蓝牙低功耗广播

本芯片集成了蓝牙规范和射频收发器,兼容国际通信联盟无线电通信局定义的无需授权许可的 2.4GHz 的 ISM 频段。

为本芯片供电后,射频收发外围只需搭建简单的外围元件即可实现无线收发功能。它提供高达-85dBm 的优秀的射频链路预算,待机电流低于 2uA。

3. 引脚定义

Pin#	Symbol	I/O	Pin Type	Description
			PC3	PC3 通用数字输入/输出引脚
			TIM1_CH3	TIM1 PWM 输出 3
			TIM1_CH1N	TIM1 PWM 输出 1 反相
			I2C_SDA	I2C 数据
1	PC3		UART1_TX	UART1 TXD
			PCA_CH1	PCA 捕获输入/比较输出 1
			1-WIRE	1-WIRE 输入输出
			TIM2_CH3	TIM2 捕获输入/比较输出 3
			AIN1	ADC 模拟输入通道 1
			SWDIO	SWD IO,调试接口
2	PC7		PC7	PC7 通用数字输入/输出引脚
			TIM1_CH2	TIM1 PWM 输出 2

SPI_MISO SPI MISO UART1_RX	
LIRC_OUT 内部低频 RC 时钟 38.4KHz 输出 X32K_OUT 外部低频晶振输出 SWCLK SWD 时钟,调试接口 PD1 PD1 通用数字输入/输出引脚 PCA_ECI PCA 外部时钟 PCA 外部时钟 PCA_ECI PCA_ECI	
X32K_OUT 外部低频晶振输出 SWCLK SWD 时钟,调试接口 PD1 PD1 通用数字输入/输出引脚 PCA_ECI PCA 外部时钟	
SWCLK SWD 时钟,调试接口 PD1 PD1 通用数字输入/输出引脚 PCA_ECI PCA 外部时钟	
PD1 PD1 通用数字输入/输出引脚 PCA_ECI PCA 外部时钟 3 PD1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
PCA_ECI PCA 外部时钟	
3 PD1	
JARTI TX UARTI TXD	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	-
HIRC_OUT 内部高频 RC 时钟 24MHz 输出	
VC0_OUT 电压比较器 0 输出	
PD3 PD3 通用数字输入/输出引脚	
TIM1_CH3N TIM1 PWM 输出 3 反相	
PCA_CH1 PCA 捕获输入/比较输出 1	
SPI_MOSI SPI MOSI	
4 PD3 HXTL_OUT 外接高频晶振输出	
UART0_RX UART0 RXD	
LPTIM_TOGN LPTIM 翻转反相输出	
TIM2_CH2 TIM2 捕获输入/比较输出 2	
AIN4 ADC 模拟输入通道 4	
5 DVDD_LDO A 接 10uF 电容 BLE 数字电源输出	
PD4	
TIM1_CH1 TIM1 PWM 输出 1	
PCA_CH0 PCA 捕获输入/比较输出 0	
RTC_1Hz RTC 1HZ 输出	
TIM10_TOG TIM10 翻转输出	
UARTO_TX UARTO TX	
TIM10_EXT TIM10 外部脉冲输入	
BEEP BEEP 输出	
TIM2_CH1 TIM2 捕获输入/比较输出 1	
VCIN2 电压比较器输入通道 2	

			PD5	PD5 通用数字输入/输出引脚
			TIM1_CH1N	TIM1 PWM 输出 1 反相
			PCA CH4	PCA 捕获输入/比较输出 4
			SPI_MISO	SPI MISO
			I2C_SCL	I2C 时钟
7	PD5			UART1 TXD
			UART1_TX	
			TIM10_GATE	TIM10 门控 UART0 TXD
			UART0_TX	
			TIM2_CH4	TIM2 捕获输入/比较输出 4
			AIN5	ADC 模拟输入通道 5
			PD6	PD6 通用数字输入/输出引脚
			TIM1_CH2	TIM1 PWM 输出 2
			PCA_CH3	PCA 捕获输入/比较输出 3
			SPI_MOSI	SPI MOSI
8	PD6		I2C_SDA	I2C 数据
			UART1_RX	UART1 RXD
			LPTIM_EXT	LPTIM 外部脉冲输入
			UART0_RX	UART0 RXD
			TIM2_CH2	TIM2 捕获输入/比较输出 2
			AIN6	ADC 模拟输入通道 6
9	XO16M	A	Crystal Pin	16MHz 晶体
10	XI16M	Α	Crystal Pin	16MHz 晶体
11	NRST	DI	Reset pin	复位输入端口,低有效,芯片复位
			PA1	PA1 通用数字输入输出引脚
		9	OSC_IN	外部晶振输入
			TIM1_CH2N	TIM1 PWM 输出 2 反相
4.5	DA 1		SPI_CLK	SPI 时钟
12	PA1		I2C_SDA	I2C 数据
			UART0_RX	UART0 RXD
			TIM10_TOG	TIM10 反转输出
			UART1_RX	UART1 RXD

			PA2	PA2 通用数字输入输出引脚
			OSC_IN	外部晶振输出
			TIM1_CH3	TIM1 PWM 输出 3
			SPI_NSS	SPI 从机片选信号
13	PA2		I2C_SCL	I2C 时钟
			UART0_TX	UART0 TXD
			TIM10_TOGN	TIM10 翻转反相输出
			UART1_TX	UART1 TXD
			TIM2_CH2	TIM2 捕获输入/比较输出 2
14	VCAP	A	接 1uF 电容	LDO 内核供电
15	ANT	A	Antenna	射频天线
16	VBAT	Power	Power Supply	芯片电源
			PA3	PA3 通用数字输入/输出引脚
			TIM1_CH3N	TIM1 PWM 输出 3 反相
			PCA_CH2	PCA 捕获输入/比较输出 2
			SPI_NSS	SPI 从机片选信号
17	PA3		RTC_1Hz	RTC 1Hz 输出
			LPUART_RX	LPUART RXD
			PCA_ECI	PCA 外部时钟
			VC0_OUT	电压比较器 0 输出
			TIM2_CH3	TIM2 捕获输入/比较输出 3
		AC	PB5	PB5 通用数字输入/输出引脚
			TIM1_BKIN	TIM1 刹车信号输入
			PCA_CH4	PCA 捕获输入/比较输出 4
		9	SPI_CLK	SPI 时钟
18	PB5		I2C_SDA	I2C 数据
			UART0_RX	UART0 RXD
			TIM11_TOG	TIM11 翻转输出
			LVD_OUT	低压检测比较器输出
			TIM2_CH1	TIM2 捕获输入/比较输出 1
19	VDD	Power	Power Supply	芯片电源

20 PB4-IRQ DIO	芯片内部 BLE 中断指示	
----------------	---------------	--

Table3.1 Pin Description

端口功能复用

引脚名	1	2	3	4	5	6	7	8	F
PA1	TIM1_CH2N	-	SPI_CLK	I2C_SDA	UART0_RX	TIM10_TOG	UART1_RX	(-)	-
PA2	TIM1_CH3		SPI_NSS	I2C_SCL	UART0_TX	TIM10_TOGN	UART1_TX	TIM2_CH2	-
PA3	TIM1_CH3N	PCA_CH2	SPI_NSS	RTC_1Hz	LPUART_RX	PCA_ECI	VC0_OUT	TIM2_CH3	-
PB4	LPTIM_GATE	PCA_ECI	SPI_NSS	I2C_SCL	UART0_TX	ITM11_TOGN		-	-
PB5	TIM1_BKIN	PCA_CH4	SPI_CLK	I2C_SDA	UART0_RX	TIM11_TOG	LVD_OUT	TIM2_CH1	-
PC3	TIM1_CH3	TIM1_CH1N	-	I2C_SDA	UART1_TX	PCA_CH1	1-WIRE	TIM2_CH3	AIN1
PC7	TIM1_CH2	PCA_CH4	SPI_MISO	-	UART1_RX	LIRC_OUT	LXT_OUT	-	-
PD1	-	PCA_ECI	-	-	UART1_TX	HIRC_OUT	VC0_OUT	-	-
PD3	TIM1_CH3N	PCA_CH1	SPI_MOSI	HXT_OUT	UART0_RX	LPTIM_TOGN	-	TIM2_CH2	AIN4
PD4	TIM1_CH1	PCA_CH0	RTC_1Hz	TIM10_TO G	UART0_TX	TIM10_EXT	BEEP	TIM2_CH1	VCIN 2
PD5	TIM1_CH1N	PCA_CH4	SPI_MISO	I2C_SCL	UART1_TX	TIM10_GATE	UART0_TX	TIM2_CH4	AIN5
PD6	TIM1_CH2	PCA_CH3	SPI_MOSI	I2C_SDA	UART1_RX	LPTIM_EXT	UART0_RX	TIM2_CH2	AIN6

4. 存储器映射

Revision: 1.1

系统的地址空间总共有 4GB,包含程序存储空间、数据存储空间、周边模块寄存器、I/O 端口等。数据使用小端对齐格式,就是数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中。整个系统地址空间的划分如下图所示:

总线	编址范围	大小	外设
	0xE000_0000 - 0xE00F_FFFF		Cortex-M0 internal peripheral
7	0x4003_0000 - 0xDFFF_FFFF		Reserved
	0x4002_1C00 - 0x4002_1FFF	1 KB	GPIOD
AHB2	0x4002_1800 - 0x4002_1BFF	1 KB	GPIOC
	0x4002_1400 - 0x4002_17FF	1 KB	GPIOB

	0x4002_1000 - 0x4002_13FF	1 KB	GPIOA
	0x4002_0C00 - 0x4002_0FFF	1 KB	Reserved
	0x4002_0800 - 0x4002_0BFF	1 KB	CRC16
	0x4002_0400 - 0x4002_07FF	1KB	FMC
	0x4002_0000 - 0x4002_03FF	1 KB	RCC
	0x4000_5400 - 0x4001 FFFF		Reserved
	0x4000_5000 - 0x4000_53FF	1KB	LPUART
	0x4000_4C00 - 0x4000_4FFF	1KB	DEBUG
	0x4000_4800 - 0x4000_4BFF	1KB	BEEP
	0x4000_4400 - 0x4000_47FF	1KB	LPTIM
	0x4000_4000 - 0x4000_43FF	1 KB	LVD/VC
	0x4000_3C00 - 0x4000_3FFF	1 KB	TIM2
	0x4000_3800 - 0x4000_3BFF	1KB	1-WIRE
	0x4000_3400 - 0x4000_37FF	1 KB	CLKTRIM
	0x4000_3000 - 0x4000_33FF	1 KB	RTC
	0x4000_2C00 - 0x4000_2FFF	1 KB	ADC
APB	0x4000_2800 - 0x4000_2BFF	1 KB	AWK
	0x4000_2400 - 0x4000_27FF	1KB	IWDT
	0x4000_2000 - 0x4000_23FF	1 KB	WWDT
	0x4000_1C00 - 0x4000_1FFF	1 KB	SYSCTRL
	0x4000_1800 - 0x4000_1BFF	1 KB	TIM10/11
	0x4000_1400 - 0x4000_17FF	1 KB	PCA
	0x4000_1000 - 0x4000_13FF	1 KB	TIM1
	0x4000_0C00 - 0x4000_0FFF	1 KB	I2C
	0x4000_0800 - 0x4000_0BFF	1 KB	SPI
	0x4000_0400 - 0x4000_07FF	1 KB	UART1
	0x4000_0000 - 0x4000_03FF	1KB	UART0
7	0x2000_1000 - 0x3FFF FFFF		Reserved
AHB	0x2000_0000 - 0x2000_0FFF	4KB	SRAM
74110	0x1800_0100 - 0x1FFF_FFFF		Reserved
	0x1800_0000 - 0x1800_00FF	256B	Factory information

MacroGiga Electronics Ltd. Co. Confidential

0x0800_0200 - 0x17FF_FFFF		Reserved
0x0800_0000 - 0x0800_01FF	512B	Option Bytes
0x0001_0000 - 0x07FF_FFFF		Reserved
0x0000_0000 - 0x0000_FFFF	64KB	FLASH

5. 典型应用电路

图 5.1 Example Application Schematic

6. 电器特性

6.1 测试条件

除非特别说明, 所有电压的都以 VSS 为基准。所有性能均在 50Ω天线连接器下测得。

6.1.1 最小和最大数值

除非特别说明,最小和最大数值是在环境温度 T_A=25℃, VDD=3.3V 下执行的测试。

6.1.2 典型数值

除非特别说明,典型数据是基于 T_A=25℃, VDD=3.3V。这些数据仅用于设计指导。

6.2 最大绝对额定值

加在器件上的载荷如果超过'绝对最大额定值'列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	典型值	最大值	单位
Vpower	电源电压	0		3. 6	V
Viopin	IO上的电压	-0.3		3. 6	V
Vop	工作电压	2. 4	3. 3	3. 6	V
$T_{ ext{STG}}$	储存温度	-40	25	150	$^{\circ}$
Тор	工作温度	-40	25	85	$^{\circ}$
Fcpu	CPU 工作频率	8		24	MHz
V _{ESD (HBM)}	ESD 静电放电电压(人体模型)			4000	V
V _{ESD (CDM)}	ESD 静电放电电压 (CDM)			1500	V
V _{ESD (MM)}	ESD 静电放电电压 (MM)			400	V

表 6.2.1 工作和储藏条件

6.3 RF 一般特性

标注	参数	测试条件	Min.	Тур	Max.	Unit
FREQ	频率变化	化 VDD=3.0V, TA=25°C			2480	MHz
FC	信道间隔	VDD=3.0V, TA=25°C		2		MHz
RFch	RF 通道中心	VDD=3.0V, TA=25°C	2400		2480	MHz

6.3.1 RF 发射机特性

标注	参数	测试条件	最小	典型	最大	单位
MOD	调制方式			GFSK		
BT	带宽			0.5		
M _{index}	调制指数		0.45	0.5	0.55	
DR	空气传输速率			1 Mbps		
P _{MAX}	最大输出功率				+4	dBm
P _{BW1M}	6dB 带宽调制载波 (1Mbps)		500			KHz
PSPUR	杂散发射				-41	dBm
CF _{dev}	中心频率偏移				±150	KHz
Freq _{drift}	频率漂移				±50	KHz
IFreq _{drift}	初始载波频率漂移				±20	KHz

6.3.2 RF 接收机特性

标注	参数	测试条件	最小	典型	最大	单位
RXsens	接收灵敏度	BER<0.1%		-85		dBm

6.4 直流特性

Revision: 1.1

6.4.1 工作电流特性

符号	参数	条件		典型值	最大值	单位
I_{DD}	All peripheral clock ON, run while(1) in Flash	HIRC clock source,	4M	480		uA
(Run Mode)		VDD=2.4 ~ 3.6V	8M	960		uA
Wiode)			16M	1920		uA
			24M	2880		uA
	All peripheral clock OFF, run while(1) in Flash	HIRC clock source,	4M	400		uA
		VDD=2.4 ~ 3.6V	8M	800		uA
			16M	1600		uA
			24M	2400		uA

I_{DD}	All peripheral clock OFF, except RTC, IWDG,		1.25	uA
(Deep	LPTIM, AWK			
Sleep	All peripheral clock OFF, except RTC		1.05	uA
Mode)				
	All peripheral clock OFF, except IWDG		1.1	uA
	All peripheral clock OFF, except LPTIM		1.1	uA
	All peripheral clock OFF, except AWK		1.0	uA
	All peripheral clock OFF		0.8	uA

6.4.2 Power On Reset/Brown Out Reset

符号	参数	条件	最小值	典型值	最大值	单位
V_{por}	POR 释放电压(上电过程)		2.2	2.25	2.3	V
V _{bor}	BOR 检测电压(掉电过程)		2.2	2.25	2.3	V

6.4.3 RF 工作电流特性

符号	参数		条件	最小值	典型值	最大值	单位
I_{STDBY}		STANDBY	待机		2		uA
I_{RX}		RX	持续接收		18		mA
I_{TX3}		+3 dBm	载波发射		26		mA
I_{TX0}	TX	0 dBm	载波发射		20		mA
I _{TX-3}		-3 dBm	载波发射		18		mA

6.5 交流特性

Revision: 1.1

6.5.1 输出特性-端口 PA, PB, PC, PD

符号	参数	条件	最小值	最大值	单位
V	高电平输出电压	VDD=3.3V, 拉电流=4mA (1)	VDD-0.25		V
V _{OH}	尚电于制出电压	VDD=3.3V, 拉电流=6mA (2)	VDD-0.6		V
W	低电平输出电压	VDD=3.3V,灌电流=4mA (1)		VSS+0.25	V
V_{OL}		VDD=3.3V, 灌电流=6mA (2)		VSS+0.6	V
W	高电平输出电压(双倍拉电流)	VDD=3.3V, 拉电流=8mA (1)	VDD-0.25		V
V_{OHD}		VDD=3.3V, 拉电流=12mA (2)	VDD-0.6		V
V _{OLD}	低电平输出电压(双倍灌电流)	VDD=3.3V, 灌电流=8mA (1)		VSS+0.25	V
		VDD=3.3V,灌电流=12mA (2)		VSS+0.6	V

表 6.5.1.1 端口输出特性

- (1). 所有输出端口的总电流最大不应超过 40mA。
- (2). 所有输出端口的总电流最大不应超过 100mA。

6.5.2 输入特性-端口 PA, PB, PC, PD

符号	参数	条件	最小值	典型值	最大值	单位
V	正向输入阈值电压	VDD=2.4V				V
V_{IT+}		VDD=3.3V	1.8	2	2.2	V
V_{IT-}	反向输入阈值电压	VDD=2.4V		/		V
		VDD=3.3V	1.8	2	2. 2	V
W	输入电压迟滞 (V _{IT+} ~ V _{IT-})	VDD=2.4V				V
$V_{\rm hys}$		VDD=3.3V	0.7	0.7	0.7	V
R_{pullhigh}	上拉电阻	Pullup Enable		80		Kohm
Cinput	输入电容		IA. /	5		pF

6.5.3 端口漏电特性-PA, PB, PC, PD

符号	参数	条件	最大值	单位
I_{lkg}	漏电流	2.5V / 3.6V	50	nA

6.5.4 定时器/计数器输入采样要求

符号	参数	条件	最小值	最大值	单位
T (int)	外部中断时序	外部触发信号	30		ns
T (cap)	定时器捕获时序	TIM1/TIM2 捕获脉宽,系统时钟 4MHz	0. 5		us
f_{EXT}	定时器时钟频率	TIM1/TIM2/TIM10/TIM11 外部时钟输入,系统时钟 4MHz	0	$f_{\scriptscriptstyle \text{TIMxCLK}}/2$	MHz
T(PCA)	PCA 时钟频率	PCA 外部时钟输入,系统时钟 4MHz	0	$f_{\scriptscriptstyle PCACLK}/2$	MHz

6.5.5 内部 HIRC 振荡器

	符号	参数	条件	最小值	典型值	最大值	单位
	F _{MCLK}	频率		4		24	MHz
		启动时间(不包括软 件校准)	F _{MCLK} =4MHz		6.0		
			F _{MCLK} =8MHz		4.0		
	T_{Mstart}		F _{MCLK} =16MHz		3.0		μs
			F _{MCLK} =24MHz		2.5		
	I _{MCLK}	电流消耗	F _{MCLK} =4MHz		80		μΑ

		F _{MCLK} =8MHz		100		
		F _{MCLK} =16MHz		120		
		F _{MCLK} =24MHz		140		
DC _{MCLK}	占空比		45	50	55	%
DevM	频偏		-2.5		+2.5	%

6.5.6 内部 LIRC 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
F _{ACLK}	频率			38. 4 32. 768		KHz
T _{Astart}	启动时间			30		μs
I _{ACLK}	电流消耗			0.25		μΑ
DC _{ACLK}	占空比		45	50	55	%
DevA	频偏		-2.0		+2.0	%

6.5.7 外部 32.768KHz 晶振

符号	参数	条件	最小值	典型值	最大值	单位
F _{SCLK}	频率	. 0 5		38. 4 32. 768		KHz
ESR _{SCLK}	晶振 ESR			65	85	Kohm
C _{SCLK}	晶振外部负载电容			12		pF
Idd	电流消耗	ESR=65Kohm, C _{SCLK} =12pF		200	1000	nA
DC _{SCLK}	占空比		40	50	60	%
Tstart	启动时间	ESR=65Kohm, C _{SCLK} =12pF		500		ms

6.6 12 位 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	供电电压		0		VDD	V
$V_{ m REF}$	ADC 参考电压			VDD		V
I _{ADC}	ADC 时钟频率	1.5MSPS		0.9		mA
Cadc	内部采样和保持电容			4		pF
FADCCLK	ADC 时钟频率				24	MHz
TADCSTART	ADC 偏置电流 startup 时间			3		uS
TADCCONV	转换时间			16	20	cycles

表 6.6.1 ADC 特性

使用 ADC 典型的连接图如下:

25

 $C_{parasitic}$ 表示 PCB 与焊盘上的寄生电容(大约 7pF)。较大的 $C_{parasitic}$ 数值将降低转换的精度,解决的办法是减小 f_{ADC} 。

6.7 模拟电压比较器特性

符号	参数	条件	最小值	典型值	最大值	单位

Vin	输入电压	0		3.6	V
Vincom	输入 common mode	0		3.6	mV
V _{offset}	输入偏置	-10		+10	mV
Icomp	比较器电流		12		uA
$T_{response}$	比较器响应时间		5	• 6	us

表 6.7.1 比较器特性

6.8 低电压检测特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{level}	VDD 检测阈值	LVD_CR[2:0]=011 LVD_CR[2:0]=100 LVD_CR[2:0]=101 LVD_CR[2:0]=110 LVD_CR[2:0]=111	Тур-0. 1	3. 33 3. 08 2. 86 2. 67 2. 50	Тур+0. 1	V
Icomp	检测器电流消耗			1		uA
T_{response}	检测器响应时间			10		μs
T_{setup}	检测器 setup 时间			10		us

表 6.8.1 低电压检测特性

6.9 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
N _{END}	寿命(擦写次数)	T _A =-40~85°C T _A =-40~105°C	20			千次
t _{RET}	数据保存期限	T _A =55°C,1万次擦写之后	20			年
t _{prog}	8 位的编程时间	T _A =-40~125°C	5	10	20	μs
t _{ERASE}	页(512K 字节)擦除时间	T _A =-40~125°C	2		4	ms
t _{ME}	整片擦除时间	T _A =-40~125°C	20		40	ms

表 6.9.1 内存擦写特性

6.10 低功耗模式返回时间

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Twakeup	从 Deep Sleep 返回运行模	4M		4.0		
	式的时间	8M		3.1		us
		16M		2.8		
		24M		2.7		

表 6.10.1 低功耗模式返回时间

7. PCB 设计建议

7.1 电源设计建议

Revision: 1.1

电源的去耦必须按照下图连接。图中的 10nF 电容必须是瓷介电容(好的质量),它们应该尽可能地靠近芯片。

图 7.1 供电电源和参考电源去耦线路

7.2 PCB 注意事项

蓝牙工作在 2.4G 无线频段,应尽量避免各种因素对无线收发的影响,注意以下几点:

- 包围蓝牙模块的产品外壳避免使用金属。使用部分金属外壳时,应尽量让模块天线部分远离金属部分。
- 产品内部金属连接线或者金属螺钉,应尽量远离模块天线部分。
- 模块天线部分应靠载板 PCB 四围放置,不允许放置于板中,且天线下方载板铣空,与天线平行的方向,不允许铺铜或走线。直接把天线部分直接露出载板,也是比较好的选择。
- 模块下方尽量铺大片 GND, 走线尽量往外围延伸。
- 建议在基板上的模块贴装位置使用绝缘材料进行隔离,例如在该位置放一个整块的丝印(TopOverLay)。
- 电源电源线、地线的布线直接关系到产品的性能,把噪声干扰降到最低。布线时要尽量加宽地线、电源线宽度,地线>电源线>信号线,通常信号线宽 0.2~0.3mm,电源线宽 1.2~2.5mm,用大面积铜层做地线用,在 PCB 上把没有用的空间都铺成地。
- 电源加两个去耦滤波电容:如果使用 LDO 供电,分别取值 1uF 和 0.1uF 用来滤波;如果使用纽扣电池供电,分别取值 10uF 和 10uF 用来稳压。
- 芯片 ANT 到天线之间的走线不能太长,线宽要考虑阻抗匹配要求。

7.3 2.4G 射频天线设计

Revision: 1.1

小型天线尺寸可能会因为性能的影响而导致产生比较大的变化。因此,强烈建议做一个准确的参考设计以达到最佳性能。绘制 PCB 天线时,可参考下图给出的尺寸来绘制天线。

图 7.2 天线尺寸

L1	3.94mm
L2	2.70mm
L3	5.00mm
L4	2.64mm
L5	2.00mm
L6	4.90mm
W1	0.90mm
W2	0.50mm
D1	0.50mm
D2	0.30mm
D3	0.30mm
D4	0.50mm
D5	1.40mm
D6	1.70mm

8. 封装特性

QFNWB4x4-20L

Side View

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0.153	0.253	0.006	0.010
D	3.900	4.100	0.154	0.161
Е	3.900	4.100	0.154	0.161
D1	1.900	2.100	0.075	0.083
E1	1.900	2.100	0.075	0.083

k	0.200MIN		0.008MIN	
b	0.180	0.300	0.007	0.012
е	0.500	TYP	0.020TYP	
L	0.350	0.450	0.014	0.018

9. 回流焊曲线

Follow: IPC/JEDEC J-STD-020D

温度分布特点	锡铅共晶焊料	无铅焊料
预热/渗浸		
最低温度(T _{Smin})	100 ℃	150 °C
最高温度(T _{Smax})	150 ℃	200 ℃
时间ts(t _{Smin} 到t _{Smax})	60 - 120 秒	60 - 180秒
斜升速率(T _{Smax} 到 T _P)	最大值 3 ℃/秒	最大值 3 ℃/秒

液相温度	183 ℃	217 °C
温度维持在 T _L 以上的时间	60 - 150 秒	60 - 150 秒
封装体峰值温度	235 ℃	260 ℃
指定5℃内温度(Tc)的时间(tp)	20 秒	30 秒
斜降速率(Tp到TL)	最大值 6℃/秒	最大值 6℃/秒
25℃到峰值温度的时间	最大值 6 分钟	最大值8分钟