

VPN and **IPsec** Concepts

Ursprünglicher Autor der Folien: Michael Krüger Carl-Benz-Schule BBS Technik Koblenz mich@elkrueger.de

Andreas Grupp

Andreas.Grupp@fbu-rpt.de

Carina Haag

haag.c@lanz.schule

Tobias Heine

tobias.heine@springer-schule.de

Uwe Thiessat

uwe.thiessat@gbs-sha.de

Ziel des Kapitels

Ziel: Site-To-Site und Remote-Access-Verbindungen mit VPNs und IPSEC absichern.

VPN Technology

→ Vorteile, die VPNs bieten (Tobi)

Types of VPNs

→ Verschiedene VPN-Arten (Tobi)

IPsec

→ Verwendung von IPsec, um Netzwerkverkehr abzusichern (Carina)

VPN-Technnologie

Virtual Private Network (VPN)

Virtual ...

... weil die Daten über ein öffentliches Netzwerk geleitet werden, aber so aussehen, als ob sie von einem internen Netzwerk kommen

Private ...

... weil die Daten verschlüsselt übertragen werden

VPN-Technnologie – Vorteile von VPNs

Kosteneinsparung

Günstige private Breitbandverbindung kann mit genutzt werden. Keine eigenen Leitungen notwendig.

Sicherheit

Fortgeschrittene Kryptographie- (in IPsec und SSL) und Authentifizierung-Protokolle werden genutzt um die Daten zu schützen.

Skalierbarkeit

Nutzung des Internets: dadurch können z. B. neue Nutzer implementiert werden ohne dass zusätzliche Infrastruktur benötigt wird

Kompatibilität

VPNs funktionieren über alle WAN-Verbindungen (DSL, Kabel, Mobilfunk, ...)

VPN-Technnologie

Site-to-Site-VPN

- Router baut Verbindung auf
- Clients bekommen nichts vom VPN mit, sondern senden Daten an Router

Remote-Access-VPN

- Client baut VPN-Verbindung auf
- Entweder durch VPN-Software oder auf Betriebssystem-Ebene konfiguriert

VPN-Technnologie – Enterprise und Provider

- Enterprise-VPNs für weltweit agierende Großunternehmen
 - Site-to-site
 - IPsec VPN
 - GRE over IPsec
 - Cisco Dynamic Multipoint Virtual Private Network (DMVPN)
 - IPsec Virtual Tunnel Interface (VTI)
 - [auch OpenVPN, Wireguard, ...aber nicht im Material genannt]
 - Remote Access VPNs
 - Client-based IPsec VPN
 - * Clientless SSL connection (z.B. im Browser)
- Service-Provider-Managed VPNs für ISPs
 - Multiprotocol Label Switching (MPLS) auf Layer 2 oder 3
 - Früher (Legacy): Frame Relay, Asynchronous Transfer Mode ATM

Arten von VPNs – Remote-Access via IPsec oder SSL

- * "Clientless VPN connection" über Browser mit HTTPS
 - Nutzt SSL (bzw. Nachfolge-Technologie TLS bzw. SSL/TLS)
 - Browserbasiert
 - Wird genutzt wenn schnelle Implementierung im Fokus
- Client-based VPN connection über VPN-Software / OS
 - i. d. R wird ein eigener Client benötigt z.B. Cisco AnyConnect Secure Mobility Client
 - Wird benutzt wenn höchste
 Sicherheit im Fokus

* Anmerkung: Cisco betrachtet hier SSL als VPN-Technologie, auch wenn der Vergleich etwas hinkt. Es wird kein Netzwerk aufgebaut.

VPN and IPsec Concepts

Arten von VPNs – Remote-Access via IPsec oder SSL

Gegenüberstellung

Feature	IPsec	SSL
Applications supported	Extensive - All IP-based applications are supported.	Limited - Only web-based applications and file sharing are supported.
Authentication strength	Strong - Uses two-way authentication with shared keys or digital certificates.	Moderate - Using one-way or two- way authentication.
Encryption strength	Strong - Uses key lengths from 56 bits to 256 bits.	Moderate to strong - With key lengths from 40 bits to 256 bits.
Connection complexity	Medium - Because it requires a VPN client pre-installed on a host.	Low - It only requires a web browser on a host.
Connection option	Limited - Only specific devices with specific configurations can connect.	Extensive - Any device with a web browser can connect.

Arten von VPNs – Site-to-site IPsec

Seite 9

- Site-to-site VPNs werden oft über IPsec aufgebaut
- VPN-Gateway bei Zweigstelle baut Verbindung "nach Hause" auf
 - "Nach Hause" kann Cisco ASA in der Zentrale sein
- Client merkt nicht, dass ein VPN aufgebaut ist
 - Client sight sigh nativ im Firmennetz

VPN and IPsec Concepts

Arten von VPNs – GRE over IPsec

- Site-to-site VPNs mit IPsec können nur Unicast-Traffic übertragen
- Problem für Routingprotokolle → Kommunikation via Multicast!
- Abhilfe: Carrier-Protokoll Generic Routing Encapsulation (GRE)
 - Beliebige Protokolle werden als Daten innerhalb von GRE weitergeleitet (Beispiel: IP-Multicast)
 - GRE kann über beliebige Protokolle transportiert werden (z.B. IP)
 - Demzufolge mit GRE ein IP-Multicast-in-IP-Unicast-Tunnel möglich

Arten von VPNs – GRE over IPsec


```
Frame 10: 104 bytes on wire (832 bits), 104 bytes captured (832 bits)
  Raw packet data
                                                                                 Transport-Protocol
 Internet Protocol Version 4, Src: 209.165.201.6, Dst: 209.165.201.2
Generic Routing Encapsulation (IP)
                                                                                 Carrier-Protocol
   >-Flags and Version: 0x0000
    Protocol Type: IP (0x0800)
  Internet Protocol Version 4, Src: 192.168.2.2, Dst: 224.0.0.5
    0100 .... = Version: 4
   -... 0101 = Header Length: 20 bytes (5)
   >-Differentiated Services Field: 0xc0 (DSCP: CS6, ECN: Not-ECT)
   — Total Length: 80
   Identification: 0x0192 (402)
   >-Flags: 0x00
                                                                                 Transport-Protocol
    Fragment Offset: 0
   -Time to Live: 1
    Protocol: OSPF IGP (89)
    Header Checksum: 0x1454 [validation disabled]
   - [Header checksum status: Unverified]
    Source Address: 192.168.2.2
    Destination Address: 224.0.0.5
 Open Shortest Path First
```

Arten von VPNs – GRE over IPsec

- GRE unterstützt keine Verschlüsselung → IPsec muss her
 - "Sandwich": IP(Multicast) in GRE in IPsec(Unicast)

Über den Tellerrand geschaut:

- Im CCNAv7-Curriculum sind keinerlei Konfigurationsbefehle enthalten, auch wenn diese fürs Verständnis hilfreich sind.
- Auf den folgenden Folien wird beispielhaft eine zusätzliche GRE-Konfiguration (ohne IPsec) dargestellt.
- Packettracer-Umgebung als Ausgangssituation im Moodle-Kurs

Seite 14

R2 ebenfalls entsprechend konfigurieren

Zantrum für Schulqualität
und Lehrerbildung
Baden-Württemberg

VPN and IPsec Concepts

R2 ebenfalls entsprechend konfigurieren

R2 ebenfalls entsprechend konfigurieren

Konfig prüfen auf R1:

R1#sh ip interf brief
R1#sh ip route
R1#sh ip protocols
R1#sh ip ospf neighbor
R1#ping 192.168.2.2
R1#traceroute 209.165.201.6 → Anzahl Hops?
R1#traceroute 192.168.2.2 → Anzahl Hops?

Arten von VPNs – Cisco DMVPN

- Cisco Dynamic Multipoint VPN (DMVPN) unterstützt Verbindungen zwischen Zweigstellen
- Baut auf IPsec auf bzw. nutzt IPsec

 Nicht nur "Hub (Nabe) to Spoke (Speiche)", sondern auch "Spoke to Spoke"

 Verbindungsaufbau zwischen Branches dynamisch mit mGRE

mGRE = Multipoint GRE

- Ein mGRE-Interface untertützt mehrere IPsec-Tunnel
- Keine zusätzliche Konfiguration nötig

Arten von VPNs – IPsec Virtual Tunnel Interface

- IPsec alleine erzeugt kein neues Interface → Policy-based VPN
 - Was über den Tunnel geht, entscheidet die Policy
- IPsec VTI
 - > Es wird ein neues Interface erzeugt (mit IP, Subnetz, ...)
 - Pakete werden in dieses virtuelle Tunnelinterface geroutet
 - Die Pakete werden dann verschlüsselt über das konfigurierte physische Interface weitergeleitet
 - Vorteil: das VTI kann in ACLs / Firewallregeln genutzt werden

Arten von VPNs – MPLS auf Providerebene

- Frühere WAN-Lösungen wie Leased Lines, Frame Relay und ATM wurden durch Multiprotocol Label Switching (MPLS) ersetzt
- Provider gibt jedem Paket ein Label, sobald es ankommt
- Gelabelte Pakete gehen entlang von Label Switched Paths (LSP)
- Zwei Arten von MPLS-VPNs
 - Layer 3 MPLS VPN: Der Provider weiß von den Standorten und IP-Routen des Kunden; er routet dessen Pakete durch sein eigenes MPLS-Netzwerk
 - Layer 2 MPLS VPN: Der Provider bietet dem Kunden einen "Virtual Private LAN Service" (VPLS); der Kunde sieht ein Ethernet-LAN, das technisch über MPLS realisiert wird. Es gibt kein Routing, sondern die Router sind alle im gleichen "LAN" – ein Ethernet multiaccess LAN mit allen Remote-Standorten.

IPSec | "Security Architecture for the Internet Protocol"

- Offener IETF-Standard (RFC 2401-2412) | Schützt von Layer 4 bis Layer 7
- IPSec ist ein Framework bzw. eine Protokoll-Suite und ist damit flexibel und lässt sich mit unterschiedlichen Sicherheitstechnologien kombinieren:

Und jetzt im Detail ...

IPSec Protocol Encapsulation

Für die Encapsulation stehen drei Protokolle zur Verfügung:

Authentication Header (AH) bietet Authentifizierung und Integrität, jedoch keine Verschlüsselung der Daten und damit <u>keine</u> Vertraulichkeit → *IP Protocol 51*

Encapsulation Security Payload (ESP) stellt neben Authentifizierung und Integrität auch Vertraulichkeit bereit und verschlüsselt die Nutzdaten (Klassiker) → IP Protocol 50

Verwendung von beiden Protokollen hintereinander ist sehr selten.

IPSec - Transportmodus

Für ESP oder AH stehen zwei Modi zur Verfügung:

(1) Transportmodus

- Original IP-Header bleibt erhalten, nur Nutzdaten werden verschlüsselt
- Nutzung bei Host-to-Host-Verbindungen
- Nachteil: Nicht NAT/PAT-fähig, da kein Layer 4 / keine Portnummern Abhilfe bspw. NAT Traversal (NAT-T)
- Vorteil: Geringerer Overhead als bei Tunnelmodus

Beispiel Transportmodus mit ESP

IPSec - Tunnelmodus

(2) Tunnelmodus

- Gesamtes IP-Paket ist als Nutzlast eingepackt
- Übliche Nutzung Site-to-Site
- Vorteil: Nur Router müssen IPSec implementieren, nicht Endgeräte
- Nachteil: Mehr Overhead als Transportmode

Beispiel Tunnelmodus mit ESP

Confidentiality / Vertraulichkeit

- Symmetrische Verschlüsselung (ESP)
- Mittels des IKE (Internet Key Exchange) wird u.a. der symmetrische Algorithmus ausgehandelt und weitere Verb.parameter
- SEAL ist eine Stromverschlüsselung (Bit für Bit)

Bildquelle: Odom, W. (2020) CCNA 200-301 Official Cert Guide, Volume 2. Cisco Press

Integrität

- Mittels Hashing + symm. Schlüssel wird eine Art Prüfsumme erzeugt
- Hashed Message Authentication Code (HMAC) mit mind. SHA-256 wird empfohlen
- Kann bei ESP optional über ein zusätzliches Header-Feld hinzugefügt werden

Quelle: https://tools.ietf.org/html/rfc4303

Authentifizierung - Pre-Shared-Secret Key (PSK)

Authentifizierung der Kommunikationspartner über Pre-Shared-Secret Key (PSK) oder RSA Authentifizierung

PSK:

vorher vereinbarter Schlüssel (Zeichenfolge) wird mit weiteren Informationen kombiniert, gehasht und anschließend gesendet; für jeden IPSec-Peer muss ein PSK konfiguriert werden

Authentifizierung - RSA

RSA: Zertifikat und Digitale Signatur werden übertragen. Digitale Signatur (verschlüsselter Hashwert) wird mittels Public Key entschlüsselt und überprüft.

Secure Key Exchange mit Diffie-Hellman

- Ermöglicht Kommunikationspartnern ...
 - über eine unverschlüsselte Verbindung
 - durch Austausch einiger Informationen
 - getrennt voneinander einen gemeinsamen und geheimen Schlüssel zu erzeugen
 - der aber nie über das Netz übertragen wurde
- Grunds. je höher die DH-Gruppennr. desto höher die Schlüsselstärke

Modulabschluss

- 8.1.5 Quiz VPN Technology
- 8.2.8 Quiz Types of VPN
- 8.3.9 Qiz IPsec
- Module Quiz VPN and IPsec Concepts 8.4.2

Fragen ...

