

Odessa: Enabling Interactive Perception Applications on Mobile Devices

Moo-Ryong Ra*, Anmol Sheth+, Lily Mummertx, Padmanabhan Pillai', David Wetherallo, Ramesh Govindan*

*USC ENL, *Technicolor, *Google, 'Intel, Ouniversity of Washington

Emerging Mobile Perception Applications

GPS Accelerometer

Sensing

Dual-Core CPU

Computation

Cloud Infrastructure

Communication

Activity Recognition

Health, Traffic Monitoring

Location-Based Service Participatory Sensing

Sensing Applications

Vision-based Interactive Mobile Perception Applications

Face Recognition Object and Pose Recognition

Gesture Recognition

Measurement

Common Characteristics

Interactive

Crisp response time (10 ms ~ 200 ms)

High Data-Rate

Processing video data of 30 fps

Compute Intensive

Computer Vision based algorithms

Enabling Mobile Interactive Perception

Performance

Throughput

Makespan

Application	Throughput	Makespan
Face Recognition	2.50 fps	2.09 s
Object and Pose Recognition	0.09 fps	15.8 s
Gesture Recognition	0.42 fps	2.54

All running locally on mobile device

Video of 1 fps

Two Speed-up Techniques

Main Focus

Data Flow Structure

Offloading

Parallelism

System Support

Enable Mobile Interactive Perception Application

Evaluation

Contributions

What factors impact offloading and parallelism?

Measurement

How do we improve throughput and makespan simultaneously?

Odessa Design

How much benefits can we get?

Evaluation

Measurement

Input Data Variability

Varying Capabilities of Mobile Platform

Network Performance

Effects of Parallelism

Measurement

Design

Lesson I: Input Variability

The system should adapt to the variability at runtime

Impact of input variability

lotivation

Measurement

Design

Evaluation

Lesson II: Effects of Data Parallelism

Object and Pose Recognition

of Threads Thread 1 Thread 2 Thread 3

The level of data parallelism affects accuracy and performance.

Input Complexity

Segmentation Method

Summary: Major Lessons

Offloading decisions must be made in an adaptive way.

The level of data parallelism cannot be determined a priori.

A static choice of pipeline parallelism can cause sub-optimal performance.

Odessa

Offloading DEcision System for Streaming Applications

Incremental Decision Making Process

Evaluation Methodology

Implementation

Linux / C++

Experiments

Odessa Adaptation

Resulting Partitions

Performance Comparison

1-core Netbook

2-core Laptop

8-core Server

Canned Input Data

Motivation

Problem

Approach

Desig

Evaluation

Data-Flow Graph

otivation

Odessa Adaptation

Resulting Partitions in Different Devices

Face Recognition Degree of Client Device Stage Offloaded and Instances Pipeline Parallelism

Resulting partitions are often very different for different client devices.

Face detection (2)

Client Device	Stage Offloaded and Instances	Degree of Pipeline Parallelism
Mobile Device	Face Detection (1) Motion-SIFT Feature (4)	3.06
Dual Core Notebook	Face Detection (1) Motion-SIFT Feature (9)	5.14

Mobile Device

Problem

Evaluation

3.39

Performance Comparison with Other Strategy

Object and Pose Recognition Application

Strategy Throughput (FPS) Makespan (Latency)

Odessa performs 4x better than the partition suggested by domain expert, close to the offline optimal strategy.

Offline-Optimal	6.49	430 ms
Odessa	6.27	807 ms

Mobile Device

Motivation Problem Approach Design Evaluation

Related Work

ILP solver for saving energy: [MAUI] [CloneCloud]
 Graph-based partitioning: [Gu'04] [Li'02] [Pillai'09] [Coign]
 Static Partitioning: [Wishbone] [Coign]
 A set of pre-specified partitions: [CloneCloud] [Chroma] [Spectra]

Migration

Motivation Problem Approach Design Evalua

Summary of Odessa

Adaptive & Incremental runtime for mobile perception applications

- Odessa system design using novel workloads.
- Understanding of the factors which contribute to the offloading and par allelism decisions.
- Extensive evaluation on prototype implementation.

Thank you

"Any questions?"