$Z \rightarrow \tau \tau$ cross—section measurement at 13TeV

Students:

Redwan Md Habibullah, S. Consuegra Rodríguez, Daniel Alejandro Perez Navarro, Jay Vora, Danyer Pérez Adán, Sergey Uzunyan, Abhishek Das and Leonidas Augusto Fernandes do Prado

Facilitators:

Abdollah Mohammadi, Indara Suarez, Isabel Ojalvo and Saswati Nandan

CMS Data Analysis School, 2018/01/12

Introduction

- Goal of the analysis: Measure the Z $\to \tau\tau$ cross-section at 13 TeV (Important background for H $\to \tau\tau$ analysis)
- Signal: Drell Yan decaying into two taus, one tau decays into an electron or muon and neutrinos, the second one decays into hadrons and neutrino

Tau Reconstruction

- HPS (Hadron+Strips Algorithm to reconstruct hadronic decay of taus)
- It is reconstructed in 3 different modes

[Decay Mode	Resonance	B[%
leptonic decays	$\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$		17.8
	$\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau}$		17.4
1 - prong decays	$\tau^- \rightarrow \pi^- \nu_{\tau}$	π(140)	11.6
	$ au^- ightarrow \pi^- \pi^0 \nu_ au$	ρ(770)	26.0
	$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$	a ₁ (1260)	10.8
3 - prongs decays	$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$	a ₁ (1260)	9.8
	$\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}$		4.8
	Other hadronic modes		1.7
All hadronic modes		64.8	

Analysis anatomy

- Final state with muon, hadronic tau and missing transverse momentum
- The full background model consists of:
- reducible with leptons from b/c quarks and/or W decays:
 - ttbar
 - diboson production WW, WZ, ZZ (small)
 - single top tW (very small, neglected)
- reducible with fake leptons:
 - W+jets, QCD
- All backgrounds are measured in control regions where their contributions are enhanced and extrapolated using samples of same-sign (SS) and opposite-sign (OS) events from data, for which the electron or muon isolation requirement is inverted
- Veto events with more than 1 good identified and isolated muon or electron in the event
- Veto events with 2 good electrons and muons since $Z \to \mu\mu$ in particular can contaminate the signal phase space
- Require events with 0 b-tagged jets

Event selection

ullet μ au channel

- Find a good muon in event (apply p_T , η , muon Identification, Muon Isolation and impact parameter cut)
- Find a good tau in the event (apply p_T , η , decay Mode Finding, Isolation, Anti-Muon discriminator and Anti-Electron discriminator)
- Check distance ΔR between muon and tau to greater than 0.5.
- Make sure the Z $ightarrow \mu\mu$ process is not contaminating the mu-tau yield.

\bullet e au channel

- Find a good electron in event (apply p_T , η , muon Identification, Muon Isolation and impact parameter cut)
- Find a good tau in the event (apply p_T , η , decay Mode Finding, Isolation, Anti-Muon discriminator and Anti-Electron discriminator)
- Check distance ΔR between electron and tau to greater than 0.5.
- Make sure the $Z \rightarrow ee$ process is not contaminating the e-tau yield. Reject events with extra electron and jets.

QCD Background Estimation. ABCD Method

 If search region is defined by sequential cuts, e.g. on var₁ and var₂ (with discriminative power, e.g. isolation and charge)

- If variables are uncorrelated (has to be verified): $N_D = \frac{N_C N_A}{N_B}$
 - shape of var₁ distribution independent of choice of var₂
 - background in signal region predicted by scaling of control sample
 - Modification for correlated variables possible, however challenging
 - For the analysis OS/SS=1.06

Control Plots mutau channel

$$m_T(l, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}) = \sqrt{(E_l + \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})^2 + (\vec{p_l} + \vec{\mathbf{E}}_{\mathrm{T}}^{\mathrm{miss}})}$$

Control Plots etau channel

Final plots. Mutau channel and etau channel

Systematic uncertainties

- Muon ID efficiency: 2%
- Muon trigger eff.: 2%
- Electron trigger eff.: 2%
- Electron ID eff.: 2%
- Tau ID eff.: 5%
- W+Jets cross-section: 10%
- Ttbar cross-section: 10%
- QCD background estimation: 30%
- Integrated luminosity: 2.5%

Fit

Combine tool

- Fit is performed using Higgs Combined Tool
- Combine provides a command line interface to many different statistical techniques available inside RooFit/RooStats used widely inside CMS
- The input to combine, which defines the details of the experiment, is a datacard file
- This plain ASCII file contains:
 - the number of independent sources of systematic uncertainties
 - the number of observables
 - the number of independent sources of systematic uncertainties
 - the number of events expected, for each bin and process
 - the systematic uncertainties with columns reporting the relative effect on the rate of each process in each channel

Cross Section Measurement

- Theoretical cross section is: 5765 pb
- The cross section is obtained for each final state with the following formula:

•
$$\sigma(pp \to ZX)$$
· B $(Z \to \tau^+\tau^-) = \frac{N}{A \epsilon B' L}$

where \mathcal{N} is the number of extracted signal events, \mathcal{A} is the acceptance of signal events, ϵ is the signal selection efficiency, \mathcal{B}' is the branching fraction of the decay mode considered, and \mathcal{L} is the integrated luminosity $(35.9fb^{-1})$

Summary

- A measurement of the cross section for the process $pp \to ZX$ with $Z \to \tau^+ \tau^-$) has been performed based on the $\tau_e \tau$ and $\tau_\mu \tau$ final state
- A clear signal is established in the visible mass distributions for both channels.
- QCD multijet process was obtained from data and the rest of the background through dedicated MC simulations.
- The cross section calculated using a maximum likelihood fit is consistent with theoretical expectations with a ratio of 1.08 ± 0.09 .