

SiRF Binary Protocol Reference Manual

SiRF Technology, Inc. 148 East Brokaw Road San Jose, CA 95112 U.S.A. Phone: +1 (408) 467-0410

Fax: +1 (408) 467-0420 www.SiRF.com

1050-0041 April 2005, Revision 1.6

SiRF, SiRFstar, SiRF plus orbit design are registered in the U.S. Patent and Trademark Office. This document contains information on a product under development at SiRF. The information is intended to help you evaluate this product. SiRF reserves the right to change or discontinue work on this product without notice.

SiRF Binary Protocol Reference Manual

Copyright © 1996-2005 SiRF Technology, Inc. All rights reserved.

No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without the prior written permission of SiRF Technology, Inc. unless such copying is expressly permitted by United States copyright law. Address inquiries to Legal Department, SiRF Technology, Inc., 148 East Brokaw Road, San Jose, California 95112, United States of America.

About This Document

This document contains information on SiRF products. SiRF Technology, Inc. reserves the right to make changes in its products, specifications and other information at any time without notice. SiRF assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. SiRF makes no warranties, either express or implied with respect to the information and specifications contained in this document. Performance characteristics listed in this data sheet do not constitute a warranty or guarantee of product performance. All terms and conditions of sale are governed by the SiRF Terms and Conditions of Sale, a copy of which you may obtain from your authorized SiRF sales representative.

Getting Help

If you have any problems, contact your SiRF representative or call or send an e-mail to the SiRF Technology support group:

phone +1 (408) 467-0410

e-mail support@sirf.com

Contents

Preface	xiii
1. Protocol Layers	1-1
Transport Message	1-1
Transport	1-1
Message Validation	1-1
Payload Length	1-2
Payload Data	1-2
Checksum	1-2
2. Input Messages	2-1
Advanced Power Management - Message ID 53	2-3
Initialize Data Source - Message ID 128	2-5
Switch To NMEA Protocol - Message ID 129	2-6
Set Almanac - Message ID 130	2-7
Handle Formatted Dump Data - Message ID 131	2-8
Poll Software Version - Message ID 132	2-9
DGPS Source - Message ID 133	2-9
Set Main Serial Port - Message ID 134	2-11
Switch Protocol - Message ID 135	2-11
Mode Control - Message ID 136	2-11
DOP Mask Control - Message ID 137	2-12
DGPS Control - Message ID 138	2-13
Elevation Mask - Message ID 139	2-14

	Power Mask - Message ID 140	2-14
	Editing Residual - Message ID 141	2-15
	Steady State Detection - Message ID 142	2-15
	Static Navigation - Message ID 143	2-15
	Poll Clock Status - Message ID 144	2-16
	Set DGPS Serial Port - Message ID 145	2-16
	Poll Almanac - Message ID 146	2-17
	Poll Ephemeris - Message ID 147	2-17
	Flash Update - Message ID 148	2-18
	Set Ephemeris - Message ID 149	2-18
	Switch Operating Modes - Message ID 150	2-18
	Set TricklePower Parameters - Message ID 151	2-19
	Poll Navigation Parameters - Message ID 152	2-21
	Set UART Configuration - Message ID 165	2-21
	Set Message Rate - Message ID 166	2-22
	Set Low Power Acquisition Parameters - Message ID 167	2-23
	Poll Command Parameters - Message ID 168	2-24
	Set SBAS Parameters - Message ID 170	2-24
	Initialize GPS/DR Navigation - Message ID 172 (Sub ID 1)	2-25
	Set GPS/DR Navigation Mode - Message ID 172 (Sub ID 2)	2-26
	Set DR Gyro Factory Calibration - Message ID 172 (Sub ID 3)	2-26
	Set DR Sensors' Parameters - Message ID 172 (Sub ID 4)	2-26
	Poll DR Gyro Factory Calibration - Message ID 172 (Sub ID 6)	2-26
	Poll DR Sensors' Parameters - Message ID 172 (Sub ID 7)	2-27
	Reserved - Message ID 228	2-27
3	Output Messages	3-1
	Reference Navigation Data - Message ID 1	3-3
	Measure Navigation Data Out - Message ID 2	3-3
	True Tracker Data - Message ID 3	3-6
	Measured Tracker Data Out - Message ID 4	3-6
	Raw Tracker Data Out - Message ID 5	3-7

Software Version String (Response to Poll) - Message ID 6	3-8
Response: Clock Status Data - Message ID 7	3-8
50 BPS Data - Message ID 8	3-9
CPU Throughput - Message ID 9	3-10
Error ID Data - Message ID 10	3-10
Command Acknowledgment - Message ID 11	3-21
Command NAcknowledgment - Message ID 12	3-21
Visible List – Message ID 13	3-21
Almanac Data - Message ID 14	3-22
Ephemeris Data (Response to Poll) – Message ID 15	3-23
Test Mode 1 - Message ID 16	3-24
Differential Corrections - Message ID 17	3-25
OkToSend - Message ID 18	3-25
Navigation Parameters (Response to Poll) - Message ID 19	3-26
Test Mode 2/3/4 - Message ID 20, 46, 48 (SiRFLoc v2.x), 49, and 55	3-28
Test Mode 2/3/4 - Message ID 20	3-28
Test Mode 2	3-28
Test Mode 3	3-30
Test Mode 4	3-31
Navigation Library Measurement Data - Message ID 28	3-32
Navigation Library DGPS Data - Message ID 29	3-35
Navigation Library SV State Data - Message ID 30	3-36
Navigation Library Initialization Data - Message ID 31	3-37
Geodetic Navigation Data - Message ID 41	3-38
Queue Command Parameters - Message ID 43	3-41
DR Raw Data - Message ID 45	3-41
Test Mode 3/4 - Message ID 46	3-42
Test Mode 4 - Message ID 48 (SiRFLoc v2.x only)	3-44
DR Navigation Status - Message ID 48 (Sub ID 1)	3-45
DR Navigation State - Message ID 48 (Sub ID 2)	3-47
Navigation Subsystem - Message ID 48 (Sub ID 3)	3-48

Contents

	DR Gyro Factory Calibration - Message ID 48 (Sub ID 6)	3-49
	DR Sensors' Parameters - Message ID 48 (Sub ID 7)	3-49
	DR Data Block - Message ID 48 (Sub ID 8)	3-49
	Test Mode 4 - Message ID 49	3-50
	SBAS Parameters - Message ID 50	3-51
	PPS Time - Message ID 52	3-52
	Test Mode 4 Track Data - Message ID 55	3-53
	Reserved - Message ID 225	3-53
	Statistic Channel - Message ID 225 (Sub ID 6)	3-53
	Development Data - Message ID 255	3-56
4	. Additional Information	4-1
	TricklePower Operation in DGPS Mode	4-1
	GPS Week Reporting	4-1

Tables

Table 2-1	SiRF Messages - Input Message List	2-1
Table 2-3	Supported Input Messages	2-2
Table 2-2	Sub IDs for SiRFDRive input MID 172 (0xAC)	2-2
Table 2-4	Advanced Power Management Parameters	2-4
Table 2-5	Horizontal/Vertical Error	2-4
Table 2-6	Initialize data source.	2-5
Table 2-7	Reset Configuration Bit Map	2-5
Table 2-8	Switch To NMEA Protocol	2-6
Table 2-10	Set Almanac Message	2-7
Table 2-9	Mode Values.	2-7
Table 2-11	Set Send Command String Parameters	2-8
Table 2-12	Member Size Data Type.	2-9
Table 2-13	Software Version	2-9
Table 2-14	DGPS Source Selection (Example 1)	2-10
Table 2-15	DGPS Source Selection (Example 2)	2-10
Table 2-16	DGPS Source Selections	2-10

Table 2-18	Set Main Serial Port		
Table 2-17	Internal Beacon Search Settings.	2-11	
Table 2-19	Mode Control		
Table 2-20	Degraded Mode	2-12	
Table 2-21	Altitude Hold Mode	2-12	
Table 2-22	DOP Mask Control	2-13	
Table 2-23	DOP Selection	2-13	
Table 2-24	DGPS Control.	2-13	
Table 2-26	Elevation Mask	2-14	
Table 2-25	DGPS Selection	2-14	
Table 2-27	Power Mask	2-15	
Table 2-28	Static Navigation	2-15	
Table 2-29	Clock Status	2-16	
Table 2-30	Set DGPS Serial Port	2-16	
Table 2-31	Almanac	2-17	
Table 2-32	Ephemeris	2-17	
Table 2-33	Flash Update	2-18	
Table 2-34	Ephemeris	2-18	
Table 2-35	Switch Operating Modes	2-19	
Table 2-36	Set Trickle Power Parameters	2-19	
Table 2-37	Example of Selections for TricklePower Mode of Operation	2-20	
Table 2-38	Duty Cycles for Supported TricklePower Settings	2-20	
Table 2-39	Poll Receiver for Navigation Parameters	2-21	
Table 2-40	Set UART Configuration	2-21	
Table 2-41	Set Message Rate	2-23	
Table 2-42	Set Low Power Acquisition Parameters	2-23	
Table 2-43	Poll Command Parameters	2-24	
Table 2-44	Set SBAS Parameters	2-24	
Table 3-1	SiRF Binary Messages - Output Message List	3-1	
Table 3-3	Supported output messages	3-2	
Table 3-2	Sub IDs for SiRFDRive output MID 48 (0x30)	3-2	
Table 3-4	Measured Navigation Data Out - Message Data Format	3-3	

Table 3-5	Mode 1	3-4
Table 3-6	Mode 2	3-5
Table 3-7	Measured Tracker Data Out	3-7
Table 3-8	State Values for Each Channel	3-7
Table 3-9	Software Version String	3-8
Table 3-11	50 BPS Data	3-9
Table 3-10	Clock Status Data Message	3-9
Table 3-12	CPU Throughput	3-10
Table 3-13	Message ID 10 Overall Format	3-10
Table 3-16	Error ID 9 Message	3-11
Table 3-17	Error ID 9 Message Description	3-11
Table 3-14	Error ID 2 Message	3-11
Table 3-15	Error ID 2 Message Description	3-11
Table 3-18	Error ID 10 Message	3-12
Table 3-19	Error ID 10 Message Description.	3-12
Table 3-20	Error ID 11 Message	3-12
Table 3-22	Error ID 12 Message	3-13
Table 3-23	Error ID 12 Message Description.	3-13
Table 3-21	Error ID 11 Message Description.	3-13
Table 3-26	Error ID 4097 Message	3-14
Table 3-27	Error ID 4097 Message Description	3-14
Table 3-24	Error ID 13 Message	3-14
Table 3-25	Error ID 13 Message Description.	3-14
Table 3-28	Error ID 4099 Message	3-15
Table 3-29	Error ID 4099 Message Description	3-15
Table 3-31	Error ID 4104 Message Description	3-16
Table 3-30	Error ID 4104 Message	3-16
Table 3-32	Error ID 4105 Message	3-17
Table 3-33	Error ID 4105 Message Description.	3-17
Table 3-34	Error ID 4106 Message	3-18
Table 3-35	Error ID 4106 Message Description.	3-18
Table 3-36	Error ID 4107 Message	3-18

Tables ix

Table 3-38	Error ID 8193 Message	3-19
Table 3-39	Error ID 8193 Message Description.	3-19
Table 3-37	Error ID 4107 Message Description.	3-19
Table 3-42	Error ID 8195 Message	3-20
Table 3-43	Error ID 8195 Message Description	3-20
Table 3-40	Error ID 8194 Message	3-20
Table 3-41	Error ID 8194 Message Description	3-20
Table 3-44	Command Acknowledgment	3-21
Table 3-45	Command N'Acknowledgment	3-21
Table 3-46	Visible List	3-22
Table 3-47	Contents of Message ID 14	3-22
Table 3-49	Contents of Message ID 14	3-23
Table 3-48	Byte Positions Between Navigation Message and Data Array	3-23
Table 3-51	Test Mode 1 Data	3-24
Table 3-50	Byte Positions Between Navigation Message and Data Array	3-24
Table 3-53	RTCM message	3-25
Table 3-52	Detailed Description of Test Mode 1 Data	3-25
Table 3-54	Almanac Data	3-26
Table 3-55	Navigation Parameters	3-26
Table 3-56	Horizontal/Vertical Error	3-27
Table 3-57	SiRF Software and Test Mode in relation with Message ID 20, 46, 46 and 55	8, 49, 3-28
Table 3-58	Test Mode 2 Message ID 20.	3-28
Table 3-59	Detailed Description of Test Mode 2 Message ID 20	3-29
Table 3-60	Test Mode 3 Message ID 20.	3-30
Table 3-61	Detailed Description of Test Mode 3 Message ID 20	3-30
Table 3-62	Test Mode 4 Message ID 20.	3-31
Table 3-64	Measurement Data	3-32
Table 3-63	Detailed Description of Test Mode 4 Message ID 20	3-32
Table 3-65	Sync Flag Fields	3-34
Table 3-66	Detailed Description of the Measurement Data	3-34
Table 3-67	Measurement Data	3-35
Table 3-68	SV State Data	3-36

Table 3-69	Measurement Data	3-37
Table 3-70	Geodetic Navigation Data	3-38
Table 3-71	Test Mode 3/4 Message ID 46	3-42
Table 3-72	Detailed Description of Test Mode 3/4 Message ID 46	3-43
Table 3-73	Test Mode 4 Message ID 48	3-44
Table 3-74	Detailed Description of Test Mode 4 Message ID 48	3-44
Table 3-75	Test Mode 4 Message ID 49	3-50
Table 3-76	Test Mode 4 Message ID 49	3-50
Table 3-78	SBAS Parameters Message	3-51
Table 3-79	Detailed Description of SBAS Parameters	3-51
Table 3-77	Detailed Description of Test Mode 4 Message ID 49	3-51
Table 3-80	Timing Message Data	3-52
Table 3-82	Test Mode 4 Message ID 55	3-53
Table 3-81	Status Byte Field in Timing Message	3-53
Table 3-83	Statistic Channel Parameters Message	3-54
Table 3-84	Description of the Navigation Mode Parameters	3-55
Table 3-85	Description of the Position Mode Parameters	3-55
Table 3-86	Description of the Status for Navigation LSQ fix Mode	3-55
Table 3-87	Description of the Status for Navigation KF Mode	3-55
Table 3-88	Description of the Start Mode	3-56
Table 3-89	Development Data	3-56

Tables xi

Preface

The SiRF Binary Protocol Reference Manual provides detailed information about the SiRF Binary protocol - the standard protocol used by all SiRF architectures.

Who Should Use This Guide

This manual was written assuming the user is familiar with interface protocols, including their definitions and use.

How This Guide Is Organized

Chapter 1, "Protocol Layers" information about SiRF Binary protocol layers.

Chapter 2, "Input Messages" definitions and examples of each available SiRF Binary input messages.

Chapter 3, "Output Messages" definitions and examples of each available SiRF Binary output messages.

Chapter 4, "Additional Information" Other useful information pertaining to the SiRF Binary protocol.

Troubleshooting/Contacting SiRF Technical Support

Address:

SiRF Technology Inc. 148 East Brokaw Road San Jose, CA 95112 U.S.A.

SiRF Technical Support:

Phone: +1 (408) 467-0410 (9 am to 5 pm Pacific Standard Time)

Email: support@sirf.com

General enquiries:

Phone: +1 (408) 467-0410 (9 am to 5 pm Pacific Standard Time)

Email: gps@sirf.com

Helpful Information When Contacting SiRF Technical Support

Receiver Serial Number:	
Receiver Software Version:	
SiRFdemo Version:	

Protocol Layers

The SiRF Binary protocol is the standard interface protocol used by all SiRF-based products.

This serial communication protocol is designed to include:

- Reliable transport of messages
- Ease of implementation
- Efficient implementation
- Independence from payload.

Transport Message

Start Sequence	Payload Length	Payload	Message Checksum	End Sequence
$0xA0^{1}$,	Two-bytes	Up to 2 ¹⁰ -1	Two-bytes	0xB0,
0xA2	(15-bits)	(<1023)	(15-bits)	0xB3

^{1.} Characters preceded by "0x" denotes a hexadecimal value. 0xA0 equals 160.

Transport

The transport layer of the protocol encapsulates a GPS message in two start characters and two stop characters. The values are chosen to be easily identifiable and unlikely to occur frequently in the data. In addition, the transport layer prefixes the message with a two-byte (15-bit) message length and a two-byte (15-bit) checksum. The values of the start and stop characters and the choice of a 15-bit value for length and checksum ensure message length and checksum can not alias with either the stop or start code.

Message Validation

The validation layer is of part of the transport, but operates independently. The byte count refers to the payload byte length. The checksum is a sum on the payload.

Payload Length

The payload length is transmitted high order byte first followed by the low byte.

High Byte	Low Byte
< 0x7F	Any value

Even though the protocol has a maximum length of (2¹⁵-1) bytes, practical considerations require the SiRF GPS module implementation to limit this value to a smaller number. The SiRF receiving programs (e.g., SiRFdemo) may limit the actual size to something less than this maximum.

Payload Data

The payload data follows the payload length. It contains the number of bytes specified by the payload length. The payload data may contain any 8-bit value.

Where multi-byte values are in the payload data neither the alignment nor the byte order are defined as part of the transport although SiRF payloads will use the bigendian order.

Checksum

The checksum is transmitted high order byte first followed by the low byte. This is the so-called big-endian order.

High Byte	Low Byte
< 0x7F	Any value

The checksum is 15-bit checksum of the bytes in the payload data. The following pseudo code defines the algorithm used.

Let message to be the array of bytes to be sent by the transport.

Let msgLen be the number of bytes in the message array to be transmitted.

```
Index = first

checkSum = 0

while index < msgLen

checkSum = checkSum + message[index]

checkSum = checkSum AND (2<sup>15</sup>-1).
```

Input Messages

The following chapter provides full information about available SiRF Binary input messages. For each message, a full definition and example is provided.

Table 2-1 lists the message list for the SiRF Binary input messages.

Table 2-1 SiRF Messages - Input Message List

Hex	Decimal	Name	Description
35	53	Advanced Power Management	Power management scheme for SiRFLoc and SiRFXTrac
80	128	Initialize Data Source	Receiver initialization and associated parameters
81	129	Switch to NMEA Protocol	Enable NMEA messages, output rate and baud rate
82	130	Set Almanac (upload)	Sends an existing almanac file to the receiver
83	131	Handle Formatted Dump Data	Outputs formatted data
84	132	Poll Software Version	Polls for the loaded software version
85	133	DGPS Source Control	DGPS correction source and beacon receiver information
86	134	Set Main Serial Port	Baud rate, data bits, stop bits, and parity
87	135	Switch Protocol	Obsolete
88	136	Mode Control	Navigation mode configuration
89	137	DOP Mask Control	DOP mask selection and parameters
8A	138	DGPS Mode	DGPS mode selection and timeout value
8B	139	Elevation Mask	Elevation tracking and navigation masks
8C	140	Power Mask	Power tracking and navigation masks
8D	141	Editing Residual	Not implemented
8E	142	Steady-State Detection (Not Used)	Not implemented
8F	143	Static Navigation	Configuration for static operation
90	144	Poll Clock Status	Polls the clock status
91	145	Set DGPS Serial Port	DGPS port baud rate, data bits, stop bits, and parity
92	146	Poll Almanac	Polls for almanac data
93	147	Poll Ephemeris	Polls for ephemeris data
94	148	Flash Update	On the fly software update
95	149	Set Ephemeris (upload)	Sends an existing ephemeris to the receiver
96	150	Switch Operating Mode	Test mode selection, SV ID, and period.

Table 2-1 SiRF Messages - Input Message List (Continued)

Hex	Decimal	Name	Description
97	151	Set TricklePower Parameters	Push to fix mode, duty cycle, and on time
98	152	Poll Navigation Parameters	Polls for the current navigation parameters
A5	165	Set UART Configuration	Protocol selection, baud rate, data bits, stop bits, and parity
A6	166	Set Message Rate	SiRF Binary message output rate
A7	167	Set Low Power Acquisition Parameters	Low power configuration parameters
A8	168	Poll Command Parameters	Poll for parameters:
			0x80: Receiver initialized & associated params
			0x85: DGPS source and beacon receiver info
			0x88: Navigation mode configuration
			0x89: DOP mask selection and parameters
			0x8A: DGPS mode selection and timeout values
			0x8B: Elevation tracking and navigation masks
			0x8C: Power tracking and navigation masks
			0x8F: Static navigation configuration
			0x97: Low power parameters
AA	170	Set SBAS Parameters	SBAS configuration parameters
AC	172	SiRFDRive-specific Class of	The MID is partitioned into messages identified
		Input Messages	by Sub IDs. Refer to Table 2-2.
В6	182	Set UART Configuration	Obsolete
E4	228	SiRF internal message	Reserved

Table 2-2 Sub IDs for SiRFDRive input MID 172 (0xAC)

Sub ID	Message
1	Initialize GPS/DR Navigation
2	Set GPS/DR Navigation Mode
3	Set DR Gyro Factory Calibration
4	Set DR Sensors' Parameters
5	Poll DR Validity (not implemented)
6	Poll DR Gyro Factory Calibration
7	Poll DR Sensors' Parameters

As the SiRF Binary protocol is evolving standard along with continued development of SiRF software and GPS solutions, not all SiRF Binary messages are supported by all SiRF GPS solutions.

Table 2-3 identifies the supported input messages for each SiRF architecture.

Table 2-3 Supported Input Messages

		SiRF Software Options									
Message ID	GSW2	SiRFDRive	SiRFXTrac	SiRFLoc	GSW3						
53	No	No	Yes	No	No						
128	Yes	Yes	Yes	Yes	Yes						
129	Yes	Yes	Yes	No	Yes						
130	Yes	Yes	No	No	Yes						
131	No	No	No	No	Yes						
132	Yes	Yes	Yes	Yes	No						
133	Yes	Yes	No	No	No						

Table 2-3 Supported Input Messages (Continued)

	SiRF Software Options										
Message ID	GSW2	SiRFDRive	SiRFXTrac	SiRFLoc	GSW3						
134	Yes	Yes	Yes	Yes	Yes						
135	No	No	No	No	Yes						
136	Yes	Yes	Yes	Yes	Yes						
137	Yes	Yes	Yes	Yes	Yes						
138	Yes	Yes	Yes	Yes	No						
139	Yes	Yes	Yes	Yes	Yes						
140	Yes	Yes	Yes	Yes	Yes						
141	No	No	No	No	No						
142	No	No	No	No	No						
143	Yes	Yes	Yes	Yes	Yes						
144	Yes	Yes	Yes	Yes	Yes						
145	Yes	Yes	No	No	No						
146	Yes	Yes	No	Yes	Yes						
147	Yes	Yes	No	Yes	Yes						
148	Yes	Yes	Yes	No	No						
149	Yes	Yes	No	Yes	Yes						
150	Yes	Yes	Yes	Yes	Yes						
151	Yes	Yes	Yes	No	No						
152	Yes	Yes	Yes	Yes	Yes						
165	Yes	Yes	Yes	No	Yes						
166	Yes	Yes	Yes	Yes	Yes						
167	Yes	Yes	Yes	No	Yes						
168	Yes	Yes	Yes	Yes	Yes						
170	2.3 or above	Yes	No	No	Yes						
172	No	Yes	No	No	Yes						
175	No	No	No	No	Yes						
182	No	No	No	No	No						
228	No	No	No	No	Yes (reserved)						

Advanced Power Management - Message ID 53

Used to implement Advanced Power Management (APM). APM will not engage until all information is received.

Example:

The following example sets the receiver to operate in APM mode with 0 cycles before sleep (continuous operation), 20 seconds between fixes, 50% duty cycle, a time between fixes priority, and no preference for accuracy.

A0A2000C-Start Sequence and Payload Length

3501001400030700000A0100—Payload

005FB0B3—Message Checksum and End Sequence

Table 2-4 Advanced Power Management Parameters

		Binary (Hex)				
Name	Bytes	Scale	Example	Units	Description	
Message ID	1		35		decimal 53	
APM Enabled	1		01		1=True, 0=False	
Number Fixes	1		00		Number of requested APM cycles. Range 0-255 ¹	
Time Between Fixes	1	1	14	Sec	Requested time between fixes. Range 0-255 ²	
Spare Byte 1	1		00		Reserved	
Maximum Horizontal Error	1		03		Maximum requested horizontal error (See).	
Maximum Vertical Error	1		07		Maximum requested vertical error (See).	
Maximum Response Time	1	1	00	Sec	Maximum response time. Not currently used.	
Time Acc Priority	1		00		0x00=No priority, 0x01=Response Time Max has higher priority, 0x02=Horizontal Error Max has higher priority. Not currently used.	
Power Duty Cycle	1	5	0A	%	Power Duty Cycle, defined as the time in full power to total operation time. 1->20; duty cycle (%) is this value *5.3	
Time Duty Cycle	1		01		Time/Power Duty cycle priority. $0x01 = \text{Time}$ between two consecutive fixes has priority $0x02 = \text{Power Duty cycle has higher priority.}$ Bits 27 reserved for expansion.	
Spare Byte 2	1		00		Reserved.	
Payload length: 12	bytes	1	1	l .	1	

 $^{1.\} A\ value\ of\ zero\ indicates\ that\ continuous\ APM\ cycles\ is\ requested.$

Table 2-5 Horizontal/Vertical Error

Value	Position Error
0x00	< 1 meter
0x01	< 5 meter
0x02	< 10 meter
0x03	< 20 meter
0x04	< 40 meter
0x05	< 80 meter
0x06	< 160 meter
0x07	No Maximum
0x08 - 0xFF	Reserved

^{2.} It is bound from 10 - 180 s.

^{3.} If a duty-cycle of 0 is entered, it will be rejected as out of range. If a duty cycle value of 20 is entered, the APM module will be disabled and continuous power operation will resume.

Initialize Data Source - Message ID 128

Table 2-6 contains the input values for the following example:

Command a Warm Start with the following initialization data: ECEF XYZ (-2686727 m, -4304282 m, 3851642 m), Clock Offset (75,000 Hz), Time of Week (86,400 sec), Week Number (924), and Channels (12). Raw track data enabled, Debug data enabled.

Example:

A0A20019—Start Sequence and Payload Length

 $80FFD700F9FFBE5266003AC57A000124F80083D600039C0C33\\ --Payload$

0A91B0B3—Message Checksum and End Sequence

Table 2-6 Initialize data source

		Bin	Binary (Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		80		Decimal 128
ECEF X	4		FFD700F	meters	
ECEF Y	4		FFBE5266	meters	
ECEF Z	4		003AC57A	meters	
Clock Offset	4		000124F8	Hz	
Time of Week	4	*100	0083D600	seconds	
Week Number	2		51F		Extended week number (0 - no limit)
Channels	1		0C		Range 1-12
Reset Configuration Bit Map.	1		33		See Table 2-7
Payload length: 25 bytes					,

Table 2-7 Reset Configuration Bit Map

Bit	Description
0	Data valid flag 1=Use data in ECEF X, Y, Z, Clock Offset, Time of Week and Week number to initialize the receiver; 0=Ignore data fields.
1	Clear ephemeris from memory blocks Snap or Hot Start from occurring.
2	Clear all history (except clock drift) from memory blocks Snap, Hot, and Warm Starts.
3	Factory Reset clears all GPS memory including clock drift. Also clears almanac stored
	in flash memory.
4	Enable Nav Lib data (YES=1, NO=0). ¹
5	Enable debug data (YES=1, NO=0).
6	Indicate that RTC is bad blocks Snap Start.
7	Clear user data in memory.

^{1.} If Nav Lib data are enabled, then the resulting messages are enabled: Clock Status (MID 7), 50BPS (MID 8), Raw DGPS (MID 17), NL Measurement Data (MID 28), DGPS Data (MID 29), SV State Data (MID 30), and NL Initialized Data (MID 31). All messages are sent at 1 Hz. If SiRFdemo is used to enable Nav Lib data, the baud rate will be automatically set to 57600 by SiRFdemo.

Switch To NMEA Protocol - Message ID 129

Table 2-8 contains the input values for the following example:

Request the following NMEA data at 9600 baud: GGA – ON at 1 sec, GLL – OFF, GSA - ON at 1 sec, GSV – ON at 5 sec, RMC – ON at 1 sec, VTG-OFF, MSS – OFF, ZDA-OFF.

Example:

013AB0B3—Message Checksum and End Sequence

Table 2-8 Switch To NMEA Protocol

Name	Bytes	Example	Units	Description
Message ID	1	0x81		Decimal 129
Mode	1	0x02		See Table 2-9
GGA Message ¹	1	0x01	sec	See NMEA Protocol Reference Manual for format.
Checksum ²	1	0x01		Send checksum with GGA message
GLL Message	1	0x00	sec	See NMEA Protocol Reference Manual for format.
Checksum	1	0x01		
GSA Message	1	0x01	sec	See NMEA Protocol Reference Manual for format.
Checksum	1	0x01		
GSV Message	1	0x05	sec	See NMEA Protocol Reference Manual for format.
Checksum	1	0x01		
RMC Message	1	0x01	sec	See NMEA Protocol Reference Manual for format.
Checksum	1	0x01		
VTG Message	1	0x00	sec	See NMEA Protocol Reference Manual for format.
Checksum	1	0x01		
MSS Message	1	0x00	sec	Output rate for MSS message
Checksum	1	0x01		
Unused Field ³	1	0x00		
Unused Field ³	1	0x00		
ZDA Message	1	0x00	sec	See NMEA Protocol Reference Manual for format.
Checksum	1	0x01		
Unused Field ³	1	0x00		
Unused Field ³	1	0x00		
Baud Rate	2	0x2580		38400, 19200, 9600, 4800, or 2400

Payload length: 24 bytes

^{1.} A value of 0x00 implies NOT to send message, otherwise data is sent at 1 message every X seconds requested (e.g., to request a message to be sent every 5 seconds, request the message using a value of 0x05). Maximum rate is 1/255 sec.

 $^{2. \} A \ value \ of \ 0x00 \ implies \ the \ checksum \ NOT \ transmitted \ with \ the \ message \ (not \ recommended). \ A \ value \ of \ 0x01 \ will have a \ checksum \ calculated \ and \ transmitted \ as part \ of \ the \ message \ (recommended).$

 $^{3. \} These \ fields \ are \ available \ if \ additional \ messages \ have \ been \ implemented \ in \ the \ NMEA \ protocol.$

Table 2-9 Mode Values

Value	Meaning
0	Enable NMEA debug messages
1	Disable NMEA debug messages
2	Do not change last-set value for NMEA debug messages

In TricklePower mode, update rate is specified by the user. When you switch to NMEA protocol, message update rate is also required. The resulting update rate is the product of the TricklePower update rate and the NMEA update rate (e.g., TricklePower update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds, ($2 \times 5 = 10$)).

Note – To switch back to the SiRF Binary protocol, you must send a SiRF NMEA message to revert to SiRF binary mode. (See SiRF NMEA Reference Manual for more information).

Set Almanac - Message ID 130

This command enables the user to upload an almanac file to the receiver.

Example:

A0A20380 - Start Sequence and Payload Length

82xx..... – Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 2-10 Set Almanac Message

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		82		Decimal 130
Almanac	896		00		Reserved
Payload length: 897 bytes					

The almanac data is stored in the code as a 448-element array of **INT16** values. These elements are partitioned as a 32 x 14 two-dimensional array where the row represents the satellite ID minus 1 and the column represents the number of **INT16** values associated with this satellite. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-200 document. The ICD-GPS-200 document describes the data format of each GPS navigation subframe and is available on the web at http://www.arinc.com/gps

Handle Formatted Dump Data - Message ID 131

This command outputs formatted data. It is designed to handle complex data type up to an array of structures.

Table 2-11 contains the input values for the following example. This example shows how to output an array of elements. Each element structure appears as follows:

```
Typedef structure // structure size = 9 bytes
{
    UINT8 Element 1
    UINT16 Element 2
    UINT8 Element 3

UINT8 Element 4
    UINT32 Element 5
} tmy_struct
tmy_struct
tmy_struc my_struct [3]

Example:
    A0A2002F—Start Sequence and Payload Length
    8331E5151B81A—Payload

1F19B0B3—Message Checksum and End Sequence
```

Table 2-11 Set Send Command String Parameters

		Bina	ry (Hex)		
Name	Bytes	Example		Units	Description
Message ID	1	83			Decimal 131.
Elements	1	3			Number of elements in array to dump (minimum 1).
Data address	4	0x60x	x xxxx		Address of the data to be dumped.
Members	1		5		Number of items in the structure to be dumped.
Member Size	Elements	01 02 01 01 04		Bytes	List of element sizes in the structure. See Table 2-12 for definition of member size (total of 5 for this example).
Header	string length + 1	"Hello"0			String to print out before data dump (total of 8 bytes in this example).
Format	string length + 1	"%2d %2d %2d %2d %10.11f''0			Format string for one line of output (total of 26 bytes in this example) with 0 termination.
Trailer	string length + 1		0		Not used.
Payload lengt	h: Variable	•	•	•	

Table 2-12 defines the values associated with the member size data type.

Table 2-12 Member Size Data Type

Data Type	Value for Member Size (Bytes)
char, INT8, UINT8	1
short int, INT16, UINT16, SINT16, BOOL16	2
long int, float, INT32, UINT32, SINT32, BOOL32, FLOAT32	4
long long, double INT64, DOUBLE64	8

Poll Software Version - Message ID 132

Table 2-13 contains the input values for the following example:

Poll the software version

Example:

A0A20002—Start Sequence and Payload Length

8400—Payload

0084B0B3—Message Checksum and End Sequence

Table 2-13 Software Version

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		84		Decimal 132
Control	1		00		Not used
Payload length: 2 bytes			•		

DGPS Source - Message ID 133

This command allows the user to select the source for DGPS corrections. Options available are:

External RTCM Data (any serial port)

SBAS (subject to SBAS satellite availability)

Internal DGPS beacon receiver

Example 1: Set the DGPS source to External RTCM Data

A0A200007—Start Sequence and Payload Length

850200000000000—Payload

0087B0B3—Checksum and End Sequence

Table 2-14 DGPS Source Selection (Example 1)

Name	Bytes	Scale	Hex	Units	Decimal	Description
Message ID	1		85		133	Message Identification
DGPS Source	1		00		0	See Table 2-16.
Internal Beacon Frequency	4		00000000	Hz	0	See Table 2-17.
Internal Beacon Bit Rate	1		0	BPS	0	See Table 2-17.
Payload length: 7 bytes						

Example 2: Set the DGPS source to Internal DGPS Beacon Receiver

Search Frequency 310000, Bit Rate 200

A0A200007—Start Sequence and Payload Length

85030004BAF0C802—Payload

02FEB0B3—Checksum and End Sequence

Table 2-15 DGPS Source Selection (Example 2)

Name	Bytes	Scale	Hex	Units	Decimal	Description
Message ID	1		85		133	Message Identification.
DGPS Source	1		03		3	See Table 2-16.
Internal Beacon Frequency	4		0004BAF0	Hz	310000	See Table 2-17.
Internal Beacon Bit Rate	1		C8	BPS	200	See Table 2-17.
Payload length: 7 bytes						

Table 2-16 DGPS Source Selections

DGPS Source	Hex	Decimal	Description
None	00	0	DGPS corrections are not used (even if
			available).
SBAS	01	1	Uses SBAS Satellite (subject to availability).
External RTCM Data	02	2	External RTCM input source (i.e., Coast
			Guard Beacon).
Internal DGPS Beacon Receiver	03	3	Internal DGPS beacon receiver.
User Software	04	4	Corrections provided using a module interface
			routine in a custom user application.

Search Type	Frequency ¹	Bit Rate ²	Description
Auto Scan	0	0	Auto scanning of all frequencies and bit rates are performed.
Full Frequency scan	0	Non-zero	Auto scanning of all frequencies and specified bit rate are performed.
Full Bit Rate Scan	Non-zero	0	Auto scanning of all bit rates and specified frequency are performed.

Only the specified frequency and bit rate

search are performed.

Non-zero

Table 2-17 Internal Beacon Search Settings

Specific Search

Set Main Serial Port - Message ID 134

Table 2-18 contains the input values for the following example:

Set Main Serial port to 9600,n,8,1.

Example:

A0A20009—Start Sequence and Payload Length

Non-zero

860000258008010000—Payload

0134B0B3—Message Checksum and End Sequence

Table 2-18 Set Main Serial Port

		Bina	Binary (Hex)						
Name	Bytes	Scale	Example	Units	Description				
Message ID	1		86		Decimal 134				
Baud	4		00002580		115.2k, 57.6k, 38.4k, 19.2k, 9600, 4800, 2400, 1200				
Data Bits	1		08		8				
Stop Bit	1		01		1=1 Stop Bit				
Parity	1		00		None=0, Odd=1, Even=2				
Pad	1		00		Reserved				
Payload ler	igth: 9	bytes							

Switch Protocol - Message ID 135

This message is obsolete and is no longer used or supported.

Mode Control - Message ID 136

Table 2-19 contains the input values for the following example:

3D Mode = Always, Alt Constraining = Yes, Degraded Mode = clock then direction, TBD=1, DR Mode = Yes, Altitude = 0, Alt Hold Mode = Auto, Alt Source =Last Computed, Coast Time Out = 20, Degraded Time Out=5, DR Time Out = 2, Track Smoothing = Yes

^{1.} Frequency Range is 283500 to 325000 Hz.

^{2.} Bit Rate selection is 25, 50, 100, and 200 BPS.

Example:

A0A2000E—Start Sequence and Payload Length

 $880000010000000000000050201 \\ -- Payload$

0091B0B3-Message Checksum and End Sequence

Table 2-19 Mode Control

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		88		Decimal 136		
TBD	2		0000		Reserved		
Degraded Mode	1		01		See Table 2-20		
TBD	2		0000		Reserved		
Altitude	2		0000	meters	User specified altitude, range -1,000 to +10,000		
Alt Hold Mode	1		00		See Table 2-21		
Alt Hold Source	1		00		0=Use last computed altitude, 1=Use user-input altitude		
TBD	1		00		Reserved		
Degraded Time Out	1		05	seconds	0=disable degraded mode, 1-120 seconds degraded mode time limit		
DR Time Out	1		02	seconds	0=disable dead reckoning, 1-120 seconds dead reckoning mode time limit		
Track Smoothing	1		01		0=disable, 1=enable		
Payload length: 14 b	ytes		•	•			

Table 2-20 Degraded Mode

Byte Value	Description
0	Allow 1 SV navigation, freeze direction for 2 SV fix, then freeze clock drift for 1
	SV fix
1	Allow 1 SV navigation, freeze clock drift for 2 SV fix, then freeze direction for 1
	SV fix
2	Allow 2 SV navigation, freeze direction
3	Allow 2 SV navigation, freeze clock drift
4	Do not allow Degraded Modes (2 SV and 1 SV navigation)

Table 2-21 Altitude Hold Mode

Byte Value	Description
0	Automatically determine best available altitude to use
1	Always use input altitude
2	Do not use altitude hold

DOP Mask Control - Message ID 137

Table 2-22 contains the input values for the following example:

Auto PDOP/HDOP, GDOP=8 (default), PDOP=8,HDOP=8

Example:

A0A20005—Start Sequence and Payload Length

8900080808—Payload

00A1B0B3—Message Checksum and End Sequence

Table 2-22 DOP Mask Control

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		89		Decimal 137		
DOP Selection	1		00		See Table 2-23		
GDOP Value	1		08		Range 1 to 50		
PDOP Value	1		08		Range 1 to 50		
HDOP Value	1		08		Range 1 to 50		
Payload length: 5 bytes							

Table 2-23 DOP Selection

Byte Value	Description
0	Auto: PDOP for 3-D fix; HDOP for 2-D fix
1	PDOP
2	HDOP
3	GDOP
4	Do Not Use

DGPS Control - Message ID 138

Table 2-24 contains the input values for the following example:

Set DGPS to exclusive with a time out of 30 seconds.

Example:

A0A20003—Start Sequence and Payload Length

8A011E—Payload

00A9B0B3—Message Checksum and End Sequence

Table 2-24 DGPS Control

		Bina	ry (Hex)				
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		8A		Decimal 138		
DGPS Selection	1		01		See Table 2-25		
DGPS Time Out:	1		1E	seconds	Range 0 to 255		
Payload length: 3 bytes							

Table 2-25 DGPS Selection

Byte Value	Description
0	Auto = use corrections when available
1	Exclusive = include into navigation solution only SVs with corrections
2	Never Use = ignore corrections

Note – DGPS Timeout interpretation varies with DGPS correction source. For internal beacon receiver or RTCM SC-104 external source, a value of 0 means infinite timeout (use corrections until another one is available). A value of 1-255 means use the corrections for a maximum of this many seconds. For DGPS corrections from an SBAS source, the timeout value is ignored unless Message ID 170, Flag bit 0 is set to 1 (User Timeout). If MID 170 specifies User Timeout, a value of 1 to 255 here means that SBAS corrections may be used for the number of seconds specified. A value of 0 means to use the timeout specified in the SBAS satellite message (usually 18 seconds).

Elevation Mask - Message ID 139

Table 2-26 contains the input values for the following example:

Set Navigation Mask to 15.5 degrees (Tracking Mask is defaulted to 5 degrees).

Example:

A0A20005—Start Sequence and Payload Length

8B0032009B—Payload

0158B0B3—Message Checksum and End Sequence

Table 2-26 Elevation Mask

		Binary (Hex)						
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		8B		Decimal 139			
Tracking Mask	2	*10	0032	degrees	Not implemented			
Navigation Mask	2	*10	009B	degrees	Range -20.0 to 90.0			
Payload length: 5 bytes								

Note – Satellite with elevation angle relative to the local horizon that is below the specified navigation mask angle will not be used in the navigation solution.

Power Mask - Message ID 140

Table 2-27 contains the input values for the following example:

Navigation mask to 33 dB-Hz (tracking default value of 28)

Example:

A0A20003—Start Sequence and Payload Length

8C1C21—Payload

00C9B0B3-Message Checksum and End Sequence

Table 2-27 Power Mask

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		8C		Decimal 140		
Tracking Mask	1		1C	dBHz	Not implemented		
Navigation Mask	1		21	dBHz	Range 20 to 50		
Payload length: 3 bytes							

Note – Satellite with received signal strength below the specified navigation mask signal level will not used in the navigation solution.

Editing Residual - Message ID 141

This message has not been implemented.

Steady State Detection - Message ID 142

This message has not been implemented.

Static Navigation - Message ID 143

This command allows the user to enable or disable static navigation to the receiver.

Example:

A0A20002 - Start Sequence and Payload Length

8F01 - Payload

0090B0B3 - Message Checksum and End Sequence

Table 2-28 Static Navigation

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		8F		Decimal 143		
Static Navigation Flag	1		01		1 = enable; 0 = disable		
Payload length: 2 bytes							

Note – Static navigation is a position filter designed to be used with motor vehicles. When the vehicle's velocity falls below a threshold, the position and heading are frozen, and velocity is set to zero. This condition will continue until the computed velocity rises above 1.2 times the threshold or until the computed position is at least a set distance from the frozen place. The threshold velocity and set distance may vary with software versions.

Poll Clock Status - Message ID 144

Table 2-29 contains the input values for the following example:

Poll the clock status.

Example:

A0A20002—Start Sequence and Payload Length

9000-Payload

0090B0B3—Message Checksum and End Sequence

Table 2-29 Clock Status

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		90		Decimal 144		
Control	1		00		Not used		
Payload length: 2 bytes							

Note – Returned message will be MID 7. See "Response: Clock Status Data - Message ID 7" on page 3-8.

Set DGPS Serial Port - Message ID 145

Table 2-30 contains the input values for the following example:

Set DGPS Serial port to 9600,n,8,1.

Example:

A0A20009—Start Sequence and Payload Length

910000258008010000—Payload

013FB0B3—Message Checksum and End Sequence

Table 2-30 Set DGPS Serial Port

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		91		Decimal 145		
Baud	4		00002580		57.6k, 38.4k, 19.2k, 9600, 4800, 2400, 1200		
Data Bits	1		08		8,7		
Stop Bit	1		01		0,1		
Parity	1		00		None=0, Odd=1, Even=2		
Pad	1		00		Reserved		
Payload length: 9 bytes							

Note – Setting the DGPS serial port using MID 145 will affect Com B only regardless of the port being used to communicate with the Evaluation Receiver.

Poll Almanac - Message ID 146

Table 2-31 contains the input values for the following example:

Poll for the almanac.

Example:

A0A20002—Start Sequence and Payload Length

9200-Payload

0092B0B3—Message Checksum and End Sequence

Table 2-31 Almanac

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		92		Decimal 146		
Control	1		00		Not used		
Payload length: 2 bytes							

Note – Returned message will be MID 14. See "Almanac Data - Message ID 14" on page 3-22.

Poll Ephemeris - Message ID 147

Table 2-32 contains the input values for the following example:

Poll for Ephemeris Data for all satellites.

Example:

A0A20003—Start Sequence and Payload Length

930000—Payload

0092B0B3—Message Checksum and End Sequence

Table 2-32 Ephemeris

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		93		Decimal 147
Sv ID ¹	1		00		Range 0 to 32
Control	1		00		Not used

Payload length: 3 bytes

Note – Returned message will be MID 15. See "Ephemeris Data (Response to Poll) – Message ID 15" on page 3-23.

^{1.} A value of zero requests all available ephemeris records. This will result in a maximum of twelve output messages. A value of 1 - 32 will request only the ephemeris of that SV.

Flash Update - Message ID 148

This command allows the user to command the receiver to go into internal boot mode without setting the boot switch. Internal boot mode allows the user to re-flash the embedded code in the receiver.

Note – It is highly recommended that all hardware designs should still provide access to the boot pin in the event of a failed flash upload.

Example:

A0A20001 - Start Sequence and Payload Length

94 - Payload

0094B0B3 - Message Checksum and End Sequence

Table 2-33 Flash Update

		Binary (Hex)					
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		94		Decimal 148		
Payload length: 1 bytes							

Set Ephemeris - Message ID 149

This command enables the user to upload an ephemeris file to the receiver.

Example:

A0A2005B - Start Sequence and Payload Length

95..... – Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 2-34 Ephemeris

		Bina	ry (Hex)				
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		95		Decimal 149		
Ephemeris Data	90		00		Reserved		
Payload length: 91 bytes							

The ephemeris data for each satellite is stored as a two dimensional array of [3][15] **UNIT16** elements. The row represents three separate sub-frames. See MID 15 ("Ephemeris Data (Response to Poll) – Message ID 15" on page 3-23) for a detailed description of this data format. See

Switch Operating Modes - Message ID 150

This command sets the receiver into either production test or normal operating mode.

Table 2-35 contains the input values for the following example:

Sets the receiver to track SV ID 6 on all channels and to collect test mode performance statistics for 30 seconds.

Example:

A0A20007—Start Sequence and Payload Length

961E510006001E-Payload

0129B0B3-Message Checksum and End Sequence

Table 2-35 Switch Operating Modes

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		96		Decimal 150
Mode	2		1E51		0=normal, 1E51=Testmode1, 1E52=Testmode2, 1E53=Testmode3, 1E54=Testmode4
SvID	2		0006		Satellite to Track
Period	2		001E	seconds	Duration of Track

Payload length: 7 bytes

Set TricklePower Parameters - Message ID 151

Table 2-36 contains the input values for the following example:

Sets the receiver into low power modes.

Example: Set receiver into TricklePower at 1 Hz update and 200 ms on-time.

A0A20009—Start Sequence and Payload Length

9700000C8000000C8—Payload

0227B0B3—Message Checksum and End Sequence

Table 2-36 Set Trickle Power Parameters

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		97		Decimal 151
Push-to-Fix Mode	2		0000		ON = 1, $OFF = 0$
Duty Cycle	2	*10	00C8	%	% Time ON. A duty cycle of 1000 (100%) means continuous operation.
On-Time ¹	4		000000C8	msec	range 200 - 900 msec

Payload length: 9 bytes

Computation of Duty Cycle and On-Time

The Duty Cycle is the desired time to be spent tracking. The On-Time is the duration of each tracking period (range is 200 - 900 msec). To calculate the TricklePower update rate as a function of Duty Cycle and On Time, use the following formula:

 $^{1. \} On-time\ of\ 700,\ 800,\ or\ 900\ ms\ is\ invalid\ if\ an\ update\ rate\ of\ 1\ second\ is\ selected.$

Update Rate = <u>On-Time (in sec)</u> Duty Cycle

Note – It is not possible to enter an on-time > 900 msec.

Following are some examples of selections:

Table 2-37 Example of Selections for TricklePower Mode of Operation

Mode	On Time (ms)	Duty Cycle (%)	Interval Between Updates (sec)
Continuous ¹	1000	100	1
TricklePower	200	20	1
TricklePower	200	10	2
TricklePower	300	10	3
TricklePower	500	5	10

^{1.} Continuous duty cycle is activated by setting Duty Cycle to 0 or 100%.

Table 2-38 Duty Cycles for Supported TricklePower Settings

	Update Rates (sec)									
On-Time (ms)	1	2	3	4	5	6	7	8	9	10
200	200	100	67	50	40	33	29	25	22	20
300	300	150	100	75	60	50	43	37	33	30
400	400	200	133	100	80	67	57	50	44	40
500	500	250	167	125	100	83	71	62	56	50
600	600	300	200	150	120	100	86	75	67	60
700	*	350	233	175	140	117	100	88	78	70
800	*	400	267	200	160	133	114	100	89	80
900	*	450	300	225	180	150	129	112	100	90

Note – Values are in% times 10 as needed for the duty cycle field. For 1 second update rate, on-times greater than 600 ms are not allowed.

Push-to-Fix

In this mode the receiver will turn on every cycle period to perform a system update consisting of an RTC calibration and satellite ephemeris data collection if required (i.e., a new satellite has become visible) as well as all software tasks to support Snap Start in the event of an NMI (Non-Maskable Interrupt). Ephemeris collection time in general takes 18 to 36 seconds. If ephemeris data is not required then the system will re-calibrate and shut down. In either case, the amount of time the receiver remains off will be in proportion to how long it stayed on:

The off period has a possible range between 10 and 7200 seconds. The default is 1800 seconds. Push-to-Fix cycle period is set using message MID 167.

Poll Navigation Parameters - Message ID 152

Table 2-39 contains the input values for the following example:

Example: Poll receiver for current navigation parameters.

A0A20002—Start Sequence and Payload Length

9800—Payload

0098B0B3-Message Checksum and End Sequence

Table 2-39 Poll Receiver for Navigation Parameters

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		98		Decimal 152
Reserved	1		00		Reserved

Payload length: 2 bytes

Note – Returned message will be MID 19. See "Navigation Parameters (Response to Poll) - Message ID 19" on page 3-26.

Set UART Configuration - Message ID 165

Table 2-40 contains the input values for the following example:

Example: Set port 0 to NMEA with 9600 baud, 8 data bits, 1 stop bit, no parity. Set port 1 to SiRF binary with 57600 baud, 8 data bits, 1 stop bit, no parity. Do not configure ports 2 and 3.

Example:

A0A20031—Start Sequence and Payload Length

0452B0B3—Message Checksum and End Sequence

Table 2-40 Set UART Configuration

		Bina	Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description	
Message ID	1		A5		Decimal 165	
Port ¹	1		00		For UART 0	
In Protocol ²	1		01		For UART 0	
Out Protocol	1		01		For UART 0 (Set to in protocol)	
Baud Rate ³	4		00002580		For UART 0	
Data Bits ⁴	1		08		For UART 0	
Stop Bits ⁵	1		01		For UART 0	
Parity ⁶	1		00		For UART 0	
Reserved	1		00		For UART 0	
Reserved	1		00		For UART 0	

Input Messages 2-21

Table 2-40 Set UART Configuration (Continued)

		Bina	Binary (Hex)		
Name	Bytes	Scale	Example	Units	Description
Port	1		01		For UART 1
In Protocol	1		00		For UART 1
Out Protocol	1		00		For UART 1
Baud Rate	4		0000E100		For UART 1
Data Bits	1		08		For UART 1
Stop Bits	1		01		For UART 1
Parity	1		00		For UART 1
Reserved	1		00		For UART 1
Reserved	1		00		For UART 1
Port	1		FF		For UART 2
In Protocol	1		05		For UART 2
Out Protocol	1		05		For UART 2
Baud Rate	4		00000000		For UART 2
Data Bits	1		00		For UART 2
Stop Bits	1		00		For UART 2
Parity	1		00		For UART 2
Reserved	1		00		For UART 2
Reserved	1		00		For UART 2
Port	1		FF		For UART 3
In Protocol	1		05		For UART 3
Out Protocol	1		05		For UART 3
Baud Rate	4		00000000		For UART 3
Data Bits	1		00		For UART 3
Stop Bits	1		00		For UART 3
Parity	1		00		For UART 3
Reserved	1		00		For UART 3
Reserved	1		00		For UART 3

Payload length: 49 bytes

Note – While this message supports four UARTs, the specific baseband chip in use may contain fewer.

Set Message Rate - Message ID 166

Table 2-41 contains the input values for the following example:

Set MID 2 to output every 5 seconds starting immediately.

^{1.0}xFF means to ignore this port; otherwise, put the port number in this field (e.g., 0 or 1).

 $^{2.\ 0 =} SiRF\ Binary, 1 = NMEA, 2 = ASCII, 3 = RTCM, 4 = User1, 5 = No\ Protocol.$

^{3.} Valid values are 1200, 2400, 4800, 9600, 19200, 38400, and 57600.

^{4.} Valid values are 7 and 8.

^{5.} Valid values are 1 and 2.

^{6.} 0 = None, 1 = Odd, 2 = Even.

Example:

A0A20008-Start Sequence and Payload Length

A6000205000000000-Payload

00ADB0B3—Message Checksum and End Sequence

Table 2-41 Set Message Rate

		Binary (Hex)				
Name	Bytes	Scale	Example	Units	Description	
Message ID	1		A6		decimal 166	
Send Now ¹	1		00		Poll message; 0 = No, 1 = Yes	
MID to be set	1		02			
Update Rate ²	1		05	sec	Range = 0 - 30	
Reserved	1		00		Not used, set to zero	
Reserved	1		00		No used, set to zero	
Reserved	1		00		Not used, set to zero	
Reserved	1		00		Not used, set to zero	

Payload Length: 8 bytes

Set Low Power Acquisition Parameters - Message ID 167

Table 2-42 contains the input values for the following example:

Set maximum time for sleep mode and maximum satellite search time to default values. Also set Push-to-Fix cycle time to 60 seconds and disable Adaptive TricklePower.

Example:

A0A2000F-Start Sequence and Payload Length

A7000075300001D4C00000003C0000—Payload

031DB0B3-Message Checksum and End Sequence

Table 2-42 Set Low Power Acquisition Parameters

		Bina	Binary (Hex)				
Name	Bytes	Scale	Example	Units	Description		
Message ID	1		A7		decimal 167		
Max Off Time	4		00007530	msec	Maximum time for sleep mode.		
					Default value: 30 seconds.		
Max Search Time	4		0001D4C0	msec	Max. satellite search time. Default value: 120 seconds.		
Push-to-Fix Period	4		0000003C	sec	Push-to-Fix cycle period		
Adaptive TricklePower	2		0001		To enable Adaptive TricklePower 0 = off; 1 = on		
Payload length: 15 by	Payload length: 15 bytes						

Input Messages 2-23

^{1. 0 =} No, set update rate; 1 = Yes, poll message now and ignore update rate.

^{2.} A value of 0 means to stop sending the message. A value in the range of 1 - 30 specifies the cycle period.

Poll Command Parameters - Message ID 168

This command queries the receiver to send specific response messages for one of the following messages: 0x80, 0x85, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8F, 0x97 and 0xAA (see Table 2-1 message ID 168).

Table 2-43 contains the input values for the following example:

Query the receiver for current settings of low power parameters set by MID 0x97.

Example:

A0A20002-Start Sequence and Payload Length

A897-Payload

013FB0B3-Message Checksum and End Sequence

Table 2-43 Poll Command Parameters

		Binary (Hex)						
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		A8		Decimal 168			
Poll Msg ID	1		97		Requesting Msg ID 0x97 ¹			
Payload length: 2 bytes								

^{1.} Valid message IDs are 0x80, 0x85, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8F, 0x97, and 0xAA.

Set SBAS Parameters - Message ID 170

This command allows the user to set the SBAS parameters.

Table 2-44 contains the input values for the following example:

Set automatic SBAS search and testing operating mode.

Example:

A0A20006—Start Sequence and Payload Length

AA0000010000—Payload

01B8B0B3—Message Checksum and End Sequence

Table 2-44 Set SBAS Parameters

		Bina	ry (Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		AA		decimal 170
SBAS PRN	1		00		0=Auto mode PRN 120-138= Exclusive
SBAS Mode	1		00		0=Testing, 1=Integrity Integrity mode will reject SBAS corrections if the SBAS satellite is transmitting in a test mode. Testing mode will accept/use SBAS corrections even if satellite is transmitting in a test mode.

Table 2-44 Set SBAS Parameters

		Bina	ry (Hex)				
Name	Bytes	Scale	Example	Units	Description		
Flag Bits ¹	1		01		Bit 0: Timeout; 0=Default 1=User		
					Bit 1: Health; Reserved		
					Bit 2: Correction; Reserved		
					Bit 3: SBAS PRN; 0=Default 1=User		
Spare	2		0000				
Payload length: 6 bytes							

^{1.} If Bit 0 = 1, user-specified timeout from message ID 138 is used. If Bit 0 = 0, timeout specified by the SBAS satellite will be used (this is usually 18 seconds). If Bit 3 = 1, the SBAS PRN specified in the SBAS PRN field will be used. If Bit 3 = 0, the system will search for any SBAS PRN.

Initialize GPS/DR Navigation - Message ID 172 (Sub ID 1)

Set the navigation initialization parameters and command a software reset based on those parameters.

Name	Bytes	Scale	Units	Description
MID	1			=0xAC
Sub ID	1			=0x01
Latitude	4		deg	for Warm Start with user input
Longitude	4		deg	for Warm Start with user input
Altitude (ellipsoid)	4		m	for Warm Start with user input
True heading	2		deg	for Warm Start with user input
Clock drift	4		Hz	for Warm Start with user input
GPS time of week	4	100	sec	for Warm Start with user input
GPS week number	2			for Warm Start with user input
Channel count	1			for Warm Start with user input
Reset configuration bits ¹	1			Bit 0: use initial data provided in this message for start-up.
				Bit 1: clear ephemeris in memory.
				Bit 2: clear all memory.
				Bit 3: perform Factory Reset.
				Bit 4: enable SiRF Binary output messages for raw track data, navigation library, 50-bps info,
				RTCM data, clock status, and DR status.
				Bit 5: enable debug output messages.
				Bit 6: Reserved.
				Bit 7: Reserved.
Payload length: 28 bytes				

 $^{1.\} Bits\ 0\ -\ 3\ determine\ the\ reset\ mode:\ 0000=Hot;\ 0010=Warm;\ 0011=Warm\ with\ user\ input;\ 0100=Cold;\ 1000=Factory.$

Input Messages 2-25

Set GPS/DR Navigation Mode - Message ID 172 (Sub ID 2)

Set the GPS/DR navigation mode control parameters.

Name	Bytes	Description
MID	1	=AC
Sub ID	1	=0x02
Mode	1	Bit 0 : GPS-only navigation. Bit 1 : DR nav acceptable with stored/default calibration. Bit 2 : DR nav acceptable with current GPS calibration. Bit 3 : DR-only navigation.
Reserved	1	

Set DR Gyro Factory Calibration - Message ID 172 (Sub ID 3)

Set DR gyro's factory calibration parameters.

Name	Bytes	Scale	Units	Description		
MID	1			=0xAC		
Sub ID	1			=0x03		
Calibration	1			Bit 0 : Start gyro bias calibration. Bit 1 : Start gyro scale factor calibration. Bits 2 - 7 : Reserved.		
Reserved	1					
Payload length: 4 bytes						

Set DR Sensors' Parameters - Message ID 172 (Sub ID 4)

Set DR sensors' parameters.

Name	Bytes	Scale	Units	Description		
MID	1			=0xAC		
Sub ID	1			=0x04		
Base speed scale factor	1		ticks/m			
Base gyro bias	2	10 ⁴	mV			
Base gyro scale factor	2	10 ³	mV/deg/s			
Payload length: 7 bytes						

Poll DR Gyro Factory Calibration - Message ID 172 (Sub ID 6)

Poll the DR gyro's factory calibration status.

Name	Bytes	Description
MID	1	=AC
Sub ID	1	=0x06
Payload length: 2 bytes	•	

Poll DR Sensors' Parameters - Message ID 172 (Sub ID 7)

Poll the DR sensors' parameters.

Name	Bytes	Description
MID	1	=AC
Sub ID	1	=0x07
Payload length: 2 bytes	•	

Reserved - Message ID 228

This input message is SiRF proprietary.

Input Messages 2-27

Output Messages

The following chapter provides full information about available SiRF Binary output messages. For each message, a full definition and example is provided.

Table 3-1 SiRF Binary Messages - Output Message List

Hex	Decimal	Name	Description
01	1	Reference Navigation Data	Not Implemented
02	2	Measured Navigation Data	Position, velocity, and time
03	3	True Tracker Data	Not Implemented
04	4	Measured Tracking Data	Satellite and C/No information
05	5	Raw Track Data	Not supported by SiRFstarII
06	6	SW Version	Receiver software
07	7	Clock Status	Current clock status
08	8	50 BPS Subframe Data	Standard ICD format
09	9	Throughput	Navigation complete data
0A	10	Error ID	Error coding for message failure
0B	11	Command Acknowledgment	Successful request
0C	12	Command NAcknowledgment	Unsuccessful request
0D	13	Visible List	Auto Output
0E	14	Almanac Data	Response to poll
0F	15	Ephemeris Data	Response to poll
10	16	Test Mode 1	For use with SiRFtest (Test Mode 1)
11	17	Differential Corrections	Received from DGPS broadcast
12	18	OkToSend	CPU ON / OFF (TricklePower)
13	19	Navigation Parameters	Response to Poll
14	20	Test Mode 2/3/4	Test Mode 2, 3, or 4 test data
1C	28	Nav. Lib. Measurement Data	Measurement data
1D	29	Nav. Lib. DGPS Data	Differential GPS data
1E	30	Nav. Lib. SV State Data	Satellite state data
1F	31	Nav. Lib. Initialization Data	Initialization data
29	41	Geodetic Navigation Data	Geodetic navigation information
2D	45	Raw DR Data	Raw DR data from ADC
2E	46	Test Mode 3	Additional test data (Test Mode 3)
30	48 ¹	Test Mode 4 for SiRFLoc v2.x only	Additional test data (Test Mode 4)
30	48	SiRFDRive-specific Class of Output	The MID is partitioned into messages
		Messages	identified by Sub IDs. Refer to Table 3-2
31	49	Test Mode 4 for SiRFLoc v2.x only	Additional test data (Test Mode 4)
32	50	SBAS Parameters	SBAS operating parameters
34	52	PPS Time Message	Time message for PPS

Table 3-1 SiRF Binary Messages - Output Message List (Continued)

Hex	Decimal	Name	Description
37	55	Test Mode 4	Track Data
E1	225	SiRF internal message	Reserved
FF	255	Development Data	Various status messages

^{1.} This message ID 48 for Test Mode 4 is not to be confused with message ID 48 for DR Navigation. SiRFLoc Message ID 48 will be transferred to a different message ID in a near future.

Table 3-2 Sub IDs for SiRFDRive output MID 48 (0x30)

Sub ID	Message
1	DR Navigation Status
2	DR Navigation State
3	Navigation Subsystem
4	Raw DR Data
5	DR Validity (not implemented)
6	DR Gyro Factory Calibration
7	DR Sensors' Parameters
8	DR Data Block

As the SiRF Binary protocol is evolving along with continued development of SiRF software and GPS solutions, not all SiRF Binary messages are supported by all SiRF GPS solutions.

Table 3-3 identifies the supported output messages for each SiRF architecture.

Table 3-3 Supported output messages

	SiRF Software Options								
Message ID	GSW2	SiRFDRive	SiRFXTrac	SiRFLoc	GSW3				
1	Yes	Yes	No	No	No				
2	Yes	Yes	Yes	Yes	Yes				
3	No	No	No	No	No				
4	Yes	Yes	Yes	Yes	Yes				
5	No	No	No	No	No				
6	Yes	Yes	Yes	Yes	Yes				
7	Yes	Yes	Yes	Yes	Yes				
8	Yes	Yes	Yes	Yes	Yes				
9	Yes	Yes	Yes	Yes	Yes				
10	Yes	Yes	Yes	Yes	Yes				
11	Yes	Yes	Yes	Yes	Yes				
12	Yes	Yes	Yes	Yes	Yes				
13	Yes	Yes	Yes	Yes	Yes				
14	Yes	Yes	No	Yes	Yes				
15	Yes	Yes	No	Yes	Yes				
16	Yes	Yes	No	No	No				
17	Yes	Yes	No	No	No				
18	Yes	Yes	Yes	Yes	Yes				
19	Yes	Yes	Yes	Yes	Yes				
20	Test Mode 2 only	Test Mode 2 only	Test Mode 2/3/4	Test Mode 4 (2.x only)	No				
28	Yes	Yes	No	No	Yes				
29	Yes	Yes	No	No	No				

	SiRF Software Options								
Message ID	GSW2	SiRFDRive	SiRFXTrac	SiRFLoc	GSW3				
30	Yes	Yes	No	No	Yes				
31	Yes	Yes	No	No	Yes				
41	2.3 or above	Yes	2.0 or above	No	Yes				
43	No	No	No	No	Yes				
45	No	Yes	No	No	No				
46	Yes	Yes	No	Yes	Yes				
				(3.x and above)					
48 ¹	No	No	No	Yes	No				
(TestMode4)				(2.x only)					
48	No	Yes	No	No	No				
(DR)									
50	2.3 or above	Yes	No	No	No				
52	2.3.2 or above	No	No	No	No				
55	No	No	No	Yes	Yes				
				(3.x and above)					
225	No	No	No	No	Yes				
					(reserved				
255	Yes	Yes	Yes	Yes	Yes				

Table 3-3 Supported output messages (Continued)

Reference Navigation Data - Message ID 1

This message is defined as Reference Navigation data but has not been implemented.

Measure Navigation Data Out - Message ID 2

Output Rate: 1 Hz

Table 3-4 lists the message data format for the measured navigation data.

Example:

A0A20029—Start Sequence and Payload Length

09BBB0B3—Message Checksum and End Sequence

Table 3-4 Measured Navigation Data Out - Message Data Format

		Bi	Binary (Hex)		ASC	II (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		02			2
X-position	4		FFD6F78C	m		-2689140
Y-position	4		FFBE536E	m		-4304018
Z-position	4		003AC004	m		3850244
X-velocity	2	*8	0000	m/sec	Vx÷8	0
Y-velocity	2	*8	0003	m/sec	Vy÷8	0.375

This message ID 48 for Test Mode 4 is not to be confused with message ID 48 for DR Navigation. Message ID
48 for SiRFLoc will be transferred to a different message ID in a near future.

Table 3-4 Measured Navigation Data Out - Message Data Format (Continued)

		Bi	Binary (Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Z-velocity	2	*8	0001	m/sec	Vz÷8	0.125	
Mode 1	1		04	Bitmap ¹		4	
HDOP ²	1	*5	0A		÷5	2.0	
Mode 2	1		00	Bitmap ³		0	
GPS Week ⁴	2		036B			875	
GPS TOW	4	*100	039780E3	seconds	÷100	602605.79	
SVs in Fix	1		06			6	
CH 1 PRN ⁵	1		12			18	
CH 2 PRN ⁵	1		19			25	
CH 3 PRN ⁵	1		0E			14	
CH 4 PRN ⁵	1		16			22	
CH 5 PRN ⁵	1		0F			15	
CH 6 PRN ⁵	1		04			4	
CH 7 PRN ⁵	1		00			0	
CH 8 PRN ⁵	1		00			0	
CH 9 PRN ⁵	1		00			0	
CH 10 PRN ⁵	1		00			0	
CH 11 PRN ⁵	1		00			0	
CH 12 PRN ⁵	1		00			0	

Payload length: 41 bytes

- 1. For further information, go to Table 3-5.
- $2. \ HDOP\ value\ reported\ has\ a\ maximum\ value\ of\ 50.$
- 3. For further information, go to Table 3-6.
- 4. GPS week reports only the ten LSBs of the actual week number.
- $5.\ PRN\ values\ are\ reported\ only\ for\ satellites\ used\ in\ the\ navigation\ solution.$

Note – Binary units scaled to integer values need to be divided by the scale value to receive true decimal value (i.e., decimal X_{vel} = binary $X_{vel} \div 8$).

Table 3-5 Mode 1

Bit	7	6	5	4	3	2	1	0
Bit(s) Name	DGPS	DOP-Mask	ALTM	1ODE	TPMODE		PMODE	

Bit(s) Name	Name	Value	Description
PMODE	Position mode	0	No navigation solution
		1	1-SV solution (Kalman filter)
		2	2-SV solution (Kalman filter)
		3	3-SV solution (Kalman filter)
		4	> 3-SV solution (Kalman filter)
		5	2-D point solution (least squares)
	6 3-D point solution (least square		3-D point solution (least squares)
		7	Dead-Reckoning ¹ solution (no satellites)
TPMODE	TricklePower mode	0	Full power position
		1	TricklePower position
ALTMODE	Altitude mode	0	No altitude hold applied
		1	Holding of altitude from KF
		2	Holding of altitude from user input
		3	Always hold altitude (from user input)
DOPMASK	DOP mask status	0	DOP mask not exceeded
		1	DOP mask exceeded
DGPS	DGPS status	0	No differential corrections applied
		1	Differential corrections applied

^{1.} In standard software, Dead Reckoning solution is computed by taking the last valid position and velocity and projecting the position using the velocity and elapsed time

Note – Mode 1 of Message ID 2 is a bit-mapped byte with five sub-values in it. The first table above shows the location of the sub-values while the table directly above shows the interpretation of each sub-value.

Table 3-6 Mode 2

Bit	Description
0	1 = sensor DR in use
	0 = velocity DR if PMODE sub-value in Mode 1 = 7;
	else check Bits 6 and 7 for DR error status
1	If set, solution is validated (5 or more SVs used) ¹
2	If set, velocity DR timeout
3	If set, solution edited by UI (e.g., DOP Mask exceeded)
4	If set, velocity is invalid
5	Altitude hold mode:
	0 = enabled
	1 = disabled (3-D fix only)
7,6	Sensor DR error status:
	00 = GPS-only navigation
	01 = DR in calibration
	10 = DR sensor errors
	11 = DR in test mode

^{1.} From an unvalidated state, a 5-SV fix must be achieved to become a validated position. If the receiver continues to navigate in a degraded mode (less than 4 SVs), the validated status will remain. If navigation is lost completely, an unvalidated status will result.

Note – Mode 2 of MID 2 is used to define the Fix field of the Measured Navigation Message View. It should be used only as an indication of the current fix status of the navigation solution and not as a measurement of TTFF.

True Tracker Data - Message ID 3

This message is defined as True Tracker data but has not been implemented.

Measured Tracker Data Out - Message ID 4

Output Rate: 1 Hz

Table 3-7 lists the message data format for the measured tracker data.

Example:

A0A200BC-Start Sequence and Payload Length

04036C0000937F0C0EAB46003F1A1E1D1D191D1A1A1D1F1D59423F1A1A...—Payload

....B0B3-Message Checksum and End Sequence

Table 3-7 Measured Tracker Data Out

		Bina	ary (Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		04			4	
GPS Week ¹	2		036C			876	
GPS TOW	4	s*100	0000937F	sec	s÷100	37759	
Chans	1		0C			12	
1st SVid	1		0E			14	
Azimuth	1	Az*[2/3]	AB	deg	÷[2/3]	256.5	
Elev	1	E1*2	46	deg	÷2	35	
State	2		003F	Bitmap ²		0 x 3F	
C/No 1	1		1A	dB-Hz		26	
C/No 2	1		1E	dB-Hz		30	
C/No 3	1		1D	dB-Hz		29	
C/No 4	1		1D	dB-Hz		29	
C/No 5	1		19	dB-Hz		25	
C/No 6	1		1D	dB-Hz		29	
C/No 7	1		1A	dB-Hz		26	
C/No 8	1		1A	dB-Hz		26	
C/No 9	1		1D	dB-Hz		29	
C/No 10	1		1F	dB-Hz		31	
2nd SVid	1		1D			29	
Azimuth	1	Az*[2/3]	59	deg	÷[2/3]	89	
Elev	1	E1*2	42	deg	÷2	66	
State	2		3F	Bitmap ²		63	
C/No 1	1		1A	dB-Hz		26	
C/No 2	1		1A	dB-Hz		63	

SVid, Azimuth, Elevation, State, and C/No 1-10 values are repeated for each of the 12 channels

Payload length: 188 bytes

Table 3-8 State Values for Each Channel

Bit	Description When Bit is Set to 1
0x0001	Acquisition/re-acquisition has been completed successfully
0x0002	The integrated carrier phase is valid
0x0004	Bit synchronization has been completed
0x0008	Subframe synchronization has been completed
0x0010	Carrier pullin has been completed
0x0020	Code has been locked
0x0040	Satellite acquisition has failed
0x0080	Ephemeris data is available

Raw Tracker Data Out - Message ID 5

This message is not supported by the SiRFstarII architecture.

^{1.} GPS week number is reported modulo 1024 (ten LSBs only).

^{2.} For further information, see Table 3-8 for state values for each channel.

Software Version String (Response to Poll) - Message ID 6

Output Rate: Response to polling message

Example:

A0A20015—Start Sequence and Payload Length

0631B0B3—Message Checksum and End Sequence

Table 3-9 Software Version String

		Binary (Hex)		Binary (Hex)			ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example		
Message ID	1		06			6		
Character	80		1			2		

Payload Length: 81 bytes

Note – Convert ASCII to symbol to assemble message (i.e., 0x4E is 'N'). This is a low priority task and is not necessarily outputted at constant intervals. Effective with version GSW 2.3.2, message length was increased from 21 to 81 bytes to allow for up to 80-character version string.

Response: Clock Status Data - Message ID 7

Output Rate: 1 Hz or response to polling message

Example:

A0A20014—Start Sequence and Payload Length

0703BD0215492408000122310000472814D4DAEF—Payload

0598B0B3—Message Checksum and End Sequence

^{1.} Repeat the payload sequence above minus the starting 0x06 byte.

^{2. 2.3.2-}GSW2-2.05.024-C1FLEX1.2

Table 3-10 Clock Status Data Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		07			7
Extended GPS Week ¹	2		03BD			957
GPS TOW	4	*100	02154924	sec	÷100	349494.12
SVs ²	1		08			8
Clock Drift	4		00012231	Hz		74289
Clock Bias	4		00004728	ns		18216
Estimated GPS Time	4		14D4DAEF	ms		349493999
Payload length: 20 bytes	S					•

^{1.} GPS week has been resolved to the full week number (1024-week ambiguity has been resolved).

50 BPS Data - Message ID 8

Output Rate: Approximately every 6 seconds for each channel

Example:

A0A2002B—Start Sequence and Payload Length

08001900C0342A9B688AB0113FDE2D714FA0A7FFFACC5540157EFFEEDFFF A80365A867FC67708BEB5860F4—Payload

15AAB0B3—Message Checksum and End Sequence

Table 3-11 50 BPS Data

		Bina	ry (Hex)		ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		08			8
Channel	1		00			0
SV ID	1		19			25
Word[10]	40					
Payload length: 43 by	ytes per sub-	frame (5	subframes p	er page)		

Note – Data is logged in ICD-GPS-200C format (available from www.navcen.uscg.mil). The 10 words together comprise a complete subframe of navigation message data. Within the word, the 30 bits of the navigation message word are right justified, complete with 24 data bits and 6 parity bits. Any inversion of the data has been removed. The 2 MSBs of the word contain parity bits 29 and 30 from the previous navigation message word.

^{2.} Number of satellites used in the solution for clock drift, clock bias, and estimated GPS time.

CPU Throughput - Message ID 9

Output Rate: 1 Hz

Example:

A0A20009-Start Sequence and Payload Length

09003B0011001601E5-Payload

0151B0B3—Message Checksum and End Sequence

Table 3-12 CPU Throughput

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		09			9
SegStatMax	2	*186	003B	ms	÷186	0.3172
SegStatLat	2	*186	0011	ms	÷186	0.0914
AveTrkTime	2	*186	0016	ms	÷186	0.1183
Last Millisecond	2		01E5	ms		485
Payload length: 9 bytes						

Error ID Data - Message ID 10

Output Rate: As errors occur

MID 10 messages have a different format from other messages. Rather than one fixed format, there are several formats, each designated by an error ID. However, the format is standardize as indicated in Table 3-13. The specific format of each error ID message follows.

Table 3-13 Message ID 10 Overall Format

Name	Bytes	Description
Message ID	1	Message ID number - 10.
Error ID	2	Sub-message type.
Count	2	Count of number of 4-byte values that follow.
Data[n]	4 * n	Actual data for the message, <i>n</i> is equal to Count.

Error ID: 2

Code Define Name: ErrId_CS_SVParity

Error ID Description: Satellite subframe # failed parity check.

Example:

A0A2000D - Start Sequence and Payload Length

0A00020002000000100000002-Payload

0011B0B3 - Message Checksum and End Sequence

Table 3-14 Error ID 2 Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		0002			2
Count	2		0002			2
Satellite ID	4		00000001			1
Subframe No	4		00000002			2
Payload Length: 13 by	ytes	·			·	

Table 3-15 Error ID 2 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
Satellite ID	Satellite Pseudo-random Noise (PRN) number.
Subframe No	The associated subframe number that failed the parity check. Valid subframe number is 1 through 5.

Error ID: 9

Code Define Name: ErrId_RMC_GettingPosition

Error ID Description: Failed to obtain a position for acquired satellite ID.

Example:

A0A20009 - Start Sequence and Payload Length

0 A 0 0 0 9 0 0 0 1 0 0 0 0 0 0 0 1 - Payload

0015B0B3 - Message Checksum and End Sequence

Table 3-16 Error ID 9 Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		0009			9
Count	2		0002			2
Satellite ID	4		00000001			1
Payload Length: 9 bytes			-			*

Table 3-17 Error ID 9 Message Description

Name	Description	
Message ID	Message ID number.	
Error ID	Error ID (see Error ID description above).	
Count	Number of 32 bit data in message.	
Satellite ID	Satellite Pseudo-random Noise (PRN) number.	

Error ID: 10

Code Define Name: ErrId_RXM_TimeExceeded

Error ID Description: Conversion of Nav Pseudo Range to Time of Week (TOW)

for tracker exceeds limits: Nav Pseudo Range > 6.912e5 (1 week in seconds) || Nav Pseudo Range < -8.64e4.

Example:

A0A20009 - Start Sequence and Payload Length

0A000A000100001234 - Payload

005BB0B3 - Message Checksum and End Sequence

Table 3-18 Error ID 10 Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		000A			10
Count	2		0001			1
Pseudorange	4		00001234			4660
Payload length: 9 by	ytes					

Table 3-19 Error ID 10 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
Pseudorange	Pseudo Range

Error ID: 11

Code Define Name: ErrId_RXM_TDOPOverflow

Error ID Description: Convert pseudorange rate to Doppler frequency exceeds limit.

Example:

A0A20009 - Start Sequence and Payload Length

0A000B0001xxxxxxxx - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-20 Error ID 11 Message

		Binary (Hex)			ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		0A			10	
Error ID	2		000B			11	
Count	2		0001			1	
Doppler Frequency	4		xxxxxxx			xxxxxxx	
Payload length: 9 bytes							

Table 3-21 Error ID 11 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
Doppler Frequency	Doppler Frequency

Error ID: 12

Code Define Name: ErrId_RXM_ValidDurationExceeded

Error ID Description: Satellite's ephemeris age has exceeded 2 hours (7200 s).

Example:

A0A2000D - Start Sequence and Payload Length

0A000C0002xxxxxxxxaaaaaaaa - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-22 Error ID 12 Message

		Binary (Hex)			ASCII	(Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		0A			10	
Error ID	2		000C			12	
Count	2		0002			2	
Satellite ID	4		xxxxxxx			xxxxxxx	
Age Of Ephemeris	4		aaaaaaaa	seconds		aaaaaaaa	
Payload Length: 13 bytes							

Table 3-23 Error ID 12 Message Description

Name	Description				
Message ID	Message ID number.				
Error ID	Error ID (see Error ID description above).				
Count	Number of 32 bit data in message.				
Satellite ID	Satellite Pseudo-random Noise (PRN) number				
Age of Ephemeris	The Satellite's Ephemeris Age in seconds.				

Error ID: 13

Code Define Name: ErrId_STRTP_BadPostion

Error ID Description: SRAM position is bad during a cold start.

Example:

A0A20011 - Start Sequence and Payload Length

xxxxB0B3 - Message Checksum and End Sequence

Table 3-24 Error ID 13 Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		000D			13
Count	2		0003			3
X	4		xxxxxxx			xxxxxxx
Y	4		aaaaaaaa			aaaaaaaa
Z	4		bbbbbbbb			bbbbbbbb
Payload length: 17	bytes					

Table 3-25 Error ID 13 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
X	X position in ECEF.
Y	Y position in ECEF.
Z	Z position in ECEF.

Error ID: 4097 (0x1001)

Code Define Name: ErrId_MI_VCOClockLost

Error ID Description: VCO lost lock indicator.

Example:

A0A20009 - Start Sequence and Payload Length

0A1001000100000001-Payload

001DB0B3 - Message Checksum and End Sequence

Table 3-26 Error ID 4097 Message

	Binary (Hex)			ASCII (Decimal)	
Bytes	Scale	Example	Units	Scale	Example
1		0A			10
2		1001			4097
2		0001			1
4		00000001			1
	1 2 2	Bytes Scale 1 2 2	Bytes Scale Example 1 0A 2 1001 2 0001	Bytes Scale Example Units 1 0A 2 1001 2 0001	Bytes Scale Example Units Scale 1 0A 0A

Table 3-27 Error ID 4097 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
VCOLost	VCO lock lost indicator. If VCOLost != 0, then send failure message.

Error ID: 4099 (0x1003)

Code Define Name: ErrId_MI_FalseAcqReceiverReset

Error ID Description: Nav detect false acquisition, reset receiver by calling

NavForceReset routine.

Example:

A0A20009 - Start Sequence and Payload Length

0A1003000100000001 - Payload

001FB0B3 - Message Checksum and End Sequence

Table 3-28 Error ID 4099 Message

			ary (Hex)		ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		1003			4099
Count	2		0001			1
InTrkCount	4		00000001			1
Payload Length: 9 byte	es		1			1

Table 3-29 Error ID 4099 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
InTrkCount	False acquisition indicator. If InTrkCount <= 1, then send failure
	message and reset receiver.

Error ID: 4104 (0x1008)

Code Define Name: ErrId_STRTP_SRAMCksum

Error ID Description: Failed SRAM checksum during startup.

- Four field message indicates receiver control flags had checksum failures.
- Three field message indicates clock offset's checksum failure or clock offset value is out of range.
- Two field message indicates position and time checksum failure forces a cold start.

Example:

A0A2xxxx - Start Sequence and Payload Length

0A10080004xxxxxxaaaaaaaa00000000ccccccc - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-30 Error ID 4104 Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		1008			4104
Count	2		0004 or 0003 or 0002			4 or 3 or 2
Computed Receiver Control Checksum	4		xxxxxxx			xxxx
Battery-Backed Receiver Control Checksum	4		aaaaaaaa			aaaa
Battery-Backed Receiver Control OpMode	4		00000000			0
Battery-Backed Receiver Control Channel Count Compute Clock Offset	4		cccccc			cccc
Checksum Battery-Backed Clock Offset Checksum	4		aaaaaaaa			aaaa
Battery-Backed Clock Offset	4		bbbbbbbb			bbbb
Computed Position Time Checksum	4		xxxxxxxx			xxxx
Battery-Backed Position Time Checksum	4		aaaaaaaa			aaaa
Payload length: 21, 17, or	11 bytes					

Table 3-31 Error ID 4104 Message Description

Name	Description				
Message ID	Message ID number.				
Error ID	rror ID (see Error ID description above).				
Count	Number of 32 bit data in message.				
Computed Receiver	Computed receiver control checksum of SRAM.Data.Control				
Control Checksum	structure.				
Battery-Backed Receiver	Battery-backed receiver control checksum stored in				
Control Checksum	SRAM.Data.DataBuffer. CntrlChkSum.				
Battery-Backed Receiver	Battery-backed receiver control checksum stored in				
Control OpMode	SRAM.Data.Control.OpMode. Valid OpMode values are as follows:				
	$OP_MODE_NORMAL = 0,$				
	$OP_MODE_TESTING = 0x1E51,$				
	$OP_MODE_TESTING2 = 0x1E52,$				
	$OP_MODE_TESTING3 = 0x1E53.$				
Battery-Backed Receiver	Battery-backed receiver control channel count in				
Control Channel Count	SRAM.Data.Control.ChannelCnt.				
	Valid channel count values are 0-12.				
Compute Clock Offset	Computed clock offset checksum of				
Checksum	SRAM.Data.DataBuffer.clkOffset.				
Battery-Backed Clock	Battery-backed clock offset checksum of				
Offset Checksum	SRAM.Data.DataBuffer.clkChkSum.				

Table 3-31 Error ID 4104 Message Description (Continued)

Name	Description			
Battery-Backed Clock Offset	Battery-backed clock offset value stored in SRAM.Data.DataBuffer,clkOffset.			
Computed Position Time	Computed position time checksum of			
Checksum Battery-Backed	SRAM.Data.DataBuffer.postime[1]. Battery-backed position time checksum of			
•	SRAM.Data.DataBuffer.postimeChkSum[1].			

Error ID: 4105 (0x1009)

Code Define Name: ErrId_STRTP_RTCTimeInvalid

Error ID Description: Failed RTC SRAM checksum during startup. If one of the

double buffered SRAM.Data.LastRTC elements is valid and RTC days is not 255 days, then GPS time and week number computed from the RTC is valid. If not, this RTC time is

invalid.

Example:

A0A2000D - Start Sequence and Payload Length

0A10090002xxxxxxxaaaaaaaa - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 3-32 Error ID 4105 Message

		Binary (Hex)			ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		1009			4105
Count	2		0002			2
TOW	4		xxxxxxx	seconds		xxxx
Week Number	4		aaaaaaaa			aaaa
Payload length: 13 bytes						

Table 3-33 Error ID 4105 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
TOW	GPS time of week in seconds. Range 0 to 604800 seconds.
Week Number	GPS week number.

Error ID: 4106 (0x100A)

Code Define Name: ErrId_KFC_BackupFailed_Velocity

Error ID Description: Failed battery-backing position because of ECEF velocity sum

was greater than equal to 3600.

Example:

A0A20005 - Start Sequence and Payload Length

0A100A0000 - Payload

0024B0B3 - Message Checksum and End Sequence

Table 3-34 Error ID 4106 Message

		Binary (Hex)			ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		100A			4106
Count	2		0000			0
Payload length: 5 bytes						

Table 3-35 Error ID 4106 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.

Error ID: 4107 (0x100B)

Code Define Name: ErrId_KFC_BackupFailed_NumSV

Error ID Description: Failed battery-backing position because current navigation

mode is not KFNav and not LSQFix.

Example:

A0A20005 - Start Sequence and Payload Length

0A100B0000 - Payload

0025B0B3 - Message Checksum and End Sequence

Table 3-36 Error ID 4107 Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		100B			4107
Count	2		0000			0
Payload length: 5 by	tes		-1	•		

Table 3-37 Error ID 4107 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.

Error ID: 8193 (0x2001)

Code Define Name: ErrId_MI_BufferAllocFailure

Error ID Description: Buffer allocation error occurred. Does not appear to be active

because uartAllocError variable never gets set to a non-zero

value in the code.

Example:

A0A20009 - Start Sequence and Payload Length

0A2001000100000001 - Payload

002DB0B3 - Message Checksum and End Sequence

Table 3-38 Error ID 8193 Message

		Binary (Hex)			ASCII (De	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		2001			8193
Count	2		0001			1
uartAllocError	4		00000001			1
Payload length: 9 bytes	S		*			

Table 3-39 Error ID 8193 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
uartAllocError	Contents of variable used to signal UART buffer allocation error.

Error ID: 8194 (0x2002)

Code Define Name: ErrId MI UpdateTimeFailure

Error ID Description: PROCESS_1SEC task was unable to complete upon entry.

Overruns are occurring.

Example:

A0A2000D - Start Sequence and Payload Length

0A20020002000000100000064 - Payload

0093B0B3 - Message Checksum and End Sequence

Table 3-40 Error ID 8194 Message

		Binary (Hex)			ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		2002			8194
Count	2		0002			2
Number of in process errors.	4		00000001			1
Millisecond errors	4		00000064			100
Payload length: 13 bytes						

Table 3-41 Error ID 8194 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.
Number of in process	Number of one second updates not complete on entry.
errors	
Millisecond errors	Millisecond errors caused by overruns.

Error ID: 8195 (0x2003)

Code Define Name: ErrId_MI_MemoryTestFailed

Error ID Description: Failure of hardware memory test. Does not appear to be active

because MemStatus variable never gets set to a non-zero value

in the code.

Example:

A0A20005 - Start Sequence and Payload Length

0A20030000 - Payload

002DB0B3 - Message Checksum and End Sequence

Table 3-42 Error ID 8195 Message

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0A			10
Error ID	2		2003			8195
Count	2		0000			0
Payload length: 5 bytes						

Table 3-43 Error ID 8195 Message Description

Name	Description
Message ID	Message ID number.
Error ID	Error ID (see Error ID description above).
Count	Number of 32 bit data in message.

Command Acknowledgment - Message ID 11

Output Rate: Response to successful input message

This is a successful almanac request (message ID 0x92) example:

A0A20002—Start Sequence and Payload Length

0B92—Payload

009DB0B3-Message Checksum and End Sequence

Table 3-44 Command Acknowledgment

		Binary	(Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		0x0B			11	
ACK ID 1 0x92 146						146	
Payload length: 2 bytes							

Command NAcknowledgment - Message ID 12

Output Rate: Response to rejected input message

This is an unsuccessful almanac request (message ID 0x92) example:

A0A20002—Start Sequence and Payload Length

0C92—Payload

009EB0B3—Message Checksum and End Sequence

Table 3-45 Command N'Acknowledgment

		Binary (Hex)			ASCII (Decimal)			
Name	Bytes	Scale Exampl		Units	Scale	Example		
Message ID	1		0x0C			12		
N'Ack ID	1	0x92				146		
Payload length: 2 bytes								

Note – Commands can be Nack'd for several reasons including: failed checksum, invalid arguments, unknown command, or failure to execute command.

Visible List – Message ID 13

Output Rate: Updated approximately every 2 minutes

Note – This is a variable length message. Only the number of visible satellites are reported (as defined by Visible SVs in Table 3-46).

Example:

A0A2002A—Start Sequence and Payload Length

0D081D002A00320F009C0032....-Payload

....B0B3—Message Checksum and End Sequence

Table 3-46 Visible List

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0D			13
Visible SVs	1		08			8
Ch 1 - SV ID	1		10			16
Ch 1 - SV Azimuth	2		002A	degrees		42
Ch 1 - SV Elevation	2		0032	degrees		50
Ch 2 - SV ID	1		0F			15
Ch 2 - SV Azimuth	2		009C	degrees		156
Ch 2 - SV Elevation	2		0032	degrees		50

Almanac Data - Message ID 14

Output Rate: Response to poll

Table 3-47 Contents of Message ID 14

Name	Bytes	Description
Message ID	1	Hex 0x0E (decimal 14)
SV ID	1	SV PRN code, hex 0x010x02, decimal 132
Almanac Week & Status	2	10-bit week number in 10 MSBs, status in 6 LSBs (1 = good; 0 = bad)
Data ¹	24	UINT16[12] array with sub-frame data.
Checksum	2	
Payload length: 30 bytes		

^{1.} The data area consists of an array of 12 16-bit words consisting of the data bytes from the navigation message sub-frame. Table 3-48 shows how the actual bytes in the navigation message corresponds to the bytes in this data array. Note that these are the raw navigation message data bits with any inversion removed and the parity bits removed.

Navigat	Navigation Message I		Array	Navigat	ion Message	Data Array	
Word	Byte	Word	Byte	Word	Byte	Word	Byte
3	MSB	[0]	LSB	7	MSB	[6]	MSB
3	Middle	[0]	MSB	7	Middle	[6]	LSB
3	LSB	[1]	LSB	7	LSB	[7]	MSB
4	MSB	[1]	MSB	8	MSB	[7]	LSB
4	Middle	[2]	LSB	8	Middle	[8]	MSB
4	LSB	[2]	MSB	8	LSB	[8]	LSB
5	MSB	[3]	LSB	9	MSB	[9]	MSB
5	Middle	[3]	MSB	9	Middle	[9]	LSB
5	LSB	[4]	LSB	9	LSB	[10]	MSB
6	MSB	[4]	MSB	10	MSB	[10]	LSB
6	Middle	[5]	LSB	10	Middle	[11]	MSB
6	LSB	[5]	MSB	10	LSB	[11]	LSB

Table 3-48 Byte Positions Between Navigation Message and Data Array

Note – Message ID 130 uses a similar format but sends an array of 14 16-bit words for each SV and a total of 32 SVs in the message (almanac for SVs 1..32, in ascending order). For that message, a total of 448 words constitutes the data area. For each of 32 SVs, that corresponds to 14 words per SV. Those 14 words consist of one word containing the week number and status bit (described in Table 3-47 above as Almanac Week & Status), 12 words of the same data as described for the data area above, then a single 16-bit checksum of the previous 13 words. The SV PRN code is not included in the message 130 since the SV ID is inferred from the location in the array.

Ephemeris Data (Response to Poll) – Message ID 15

The ephemeris data that is polled from the receiver is in a special SiRF format based on the ICD-GPS-200 format for ephemeris data.

Output Rate: Response to poll

Table 3-49 Contents of Message ID 14

Name	Bytes	Description
Message ID	1	Hex 0x0E (decimal 14)
SV ID	1	SV PRN code, hex 0x010x02, decimal 132
Data ¹	90	UINT16 [3][15] array with sub-frames 13 data.
Payload length: 92 bytes		

^{1.} The data area consists of a 3x15 array of unsigned integers, 16 bits long. The first word of each row in the array ([0][0], [1][0], and [2][0]) will contain the SV ID. The remaining words in the row will contain the data from the navigation message sub-frame, with row [0] containing sub-frame 1, row [1] containing sub-frame 2, and row [2] containing sub-frame 3. Data from the sub-frame is stored in a packed format, meaning that the 6 parity bits of each 30-bit navigation message word have been removed, and the remaining 3 bytes are stored in 1.5 16-bit words. Since the first word of the sub-frame, the telemetry word (TLM), does not contain any data needed by the receiver, it is not saved. Thus, there are 9 remaining words, with 3 bytes in each sub-frame. This total of 27 bytes is stored in 14 16-bit words. The second word of the sub-frame, the handover word (HOW), has its high byte (MSB) stored as the low byte (LSB) of the first of the 16-bit words. Each following byte is stored in the next available byte of the array. Table 3-50 shows where each byte of the sub-frame is stored in the row of 16-bit words.

Navigation Message Data Array Navigation Message Data Array Word Byte Word **B**vte Word Word Byte **Byte** 2 (HOW) MSB MSB [][1] LSB 7 **MSB** [][9] Middle MSB 7 Middle LSB [][2] [][9] LSB LSB 2 LSB 7 MSB [][2] [][10] MSB MSB LSB 3 [][3] MSB [][10] 3 Middle LSB Middle MSB 8 [][11] [][3] 3 LSB **MSB** 8 LSB LSB [][4] [][11] 4 MSB LSB 9 MSB [][12] MSB [][4] 4 Middle [][5] MSB 9 Middle [][12] LSB 4 LSB LSB 9 LSB MSB [][13] [][5] 5 **MSB** [][6] MSB 10 MSB [][13] LSB 5 Middle LSB 10 Middle MSB [][6] [][14] 5 LSB [][7] **MSB** 10 LSB [][14] LSB MSB LSB 6 [][7] 6 Middle [][8] **MSB**

Table 3-50 Byte Positions Between Navigation Message and Data Array

Note – Message ID 149 uses the same format, except the SV ID (the second byte in Message ID 15) is omitted. Message ID 149 is thus a 91-byte message. The SV ID is still embedded in elements [0][0], [1][0], and [2][0] of the data array.

LSB

Test Mode 1 - Message ID 16

Output Rate: Variable - set by the period as specified in message ID 150

Example:

6

LSB

A0A20011—Start Sequence and Payload Length

100015001E000588B800C81B5800040001—Payload

[][8]

02D8B0B3-Message Checksum and End Sequence

Table 3-51 Test Mode 1 Data

		Bin	ary (Hex)		ASCII (Decimal)				
Name	Bytes	Scale	Example	Units	Scale	Example			
Message ID	1		10			16			
SV ID	2		0015			21			
Period	2		001E	sec		30			
Bit Sync Time	2		0005	sec		5			
Bit Count	2		88B8			35000			
Poor Status	2		00C8			200			
Good Status	2		1B58			7000			
Parity Error Count	2		0004			4			
Lost VCO Count	2		0001			1			
Payload length: 17 bytes	Payload length: 17 bytes								

Table 3-52 Detailed Description of Test Mode 1 Data

Name	Description
Message ID	Message ID number.
SV ID	The number of the satellite being tracked.
Period	The total duration of time (in seconds) that the satellite is tracked.
Bit Sync Time	The time it takes for channel 0 to achieve the status of 37.
Bit Count	The total number of data bits that the receiver is able to demodulate during the test period. As an example, for a 20 second test period, the total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20sec x 12 channels).
Poor Status	This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of loss of phase lock equates to 1 poor status count. As an example, the total number of status counts for a 60 second period is 7200 (12 channels x 60 sec x $10 / \text{sec}$).
Good Status	This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of phase lock equates to 1 good status count.
Parity Error Count	The number of word parity errors. This occurs when the parity of the transmitted word does not match the receiver's computed parity.
Lost VCO Count	The number of 1 msec VCO lost lock was detected. This occurs when the PLL in the RFIC loses lock. A significant jump in crystal frequency and/or phase causes a VCO lost lock.

Differential Corrections - Message ID 17

Message ID 17 provides the RTCM data received from a DGPS source. The data is sent as a SiRF Binary message and is based on the RTCM SC-104 format. To interpret the data, see *RTCM Recommended Standards for Differential GNSS* by the Radio *Technical Commission for Maritime Services*. Data length and message output rate will vary based on received data.

Table 3-53 RTCM message

Name	Bytes	Example (Hex)	Example (Decimal)				
Message ID	1	11	17				
Data length	2	002D	45				
Data ¹ variable							
Payload length: variable							

^{1.} Data length and message output rate will vary based on received data.

OkToSend - Message ID 18

Output Rate: Two messages per power-saving cycle

Example:

A0A20002—Start Sequence and Payload Length

1200-Payload

0012B0B3-Message Checksum and End Sequence

Table 3-54 Almanac Data

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		12			18
Send Indicator ¹	1		00			00

Payload length: 2 bytes

Note – This message is sent when the receiver is in a power-saving mode. One message is sent just before the receiver's power is turned off (with Send Indicator set to 0), and one is sent once the power has been restored (with Send Indicator set to 1).

Navigation Parameters (Response to Poll) - Message ID 19

Output Rate: Response to Poll (See Message ID 152)

Example:

A0 A2 00 41 —Start Sequence and Payload Length

02 A4 B0 B3—Message Checksum and End Sequence

Table 3-55 Navigation Parameters

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		13			19
Sub ID ¹	1		00			
Reserved	3		00			
Altitude Hold Mode ²	1		00			
Altitude Hold Source ²	1		00			
Altitude Source Input ²	2		0000	m		
Degraded Mode ²	1		00			
Degraded Timeout ²	1		00	sec		
DR Timeout ²	1		01	sec		
Track Smooth Mode ²	1		1E			
Static Navigation ³	1		0F			
3SV Least Squares ⁴	1		01			
Reserved	4		00000000			
DOP Mask Mode ⁵	1		04			
Navigation Elevation Mask ⁶	2		004B			
Navigation Power Mask ⁷	1		1C			
Reserved	4		00000000			
DGPS Source ⁸	1		02			
DGPS Mode ⁹	1		00			

^{1. 0} implies that CPU is about to go OFF, OkToSend==NO, 1 implies CPU has just come ON, OkToSend==YES

Table 3-55 Navigation Parameters (Continued)

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
DGPS Timeout ⁹	1		1E	sec		
Reserved	4		00000000			
LP Push-to-Fix ¹⁰	1		00			
LP On-time ¹⁰	4		000003E8			
LP Interval ¹⁰	4		000003E8			
User Tasks Enabled ⁴	1		00			
User Task Interval ⁴	4		00000000			
LP Power Cycling Enabled ¹¹	1		00			
LP Max. Acq. Search Time ¹²	4		00000000	sec		
LP Max. Off Time ¹²	4		00000000	sec		
APM Enabled/Power Duty Cycle 13,14	1		00			
Number of Fixes ¹⁴	2		0000			
Time Between Fixes ¹⁴	2		0000	sec		
Horizontal/Vertical Error Max ¹⁵	1		00	m		
Response Time Max ¹⁴	1		00	sec		
Time/Accu & Time/Duty Cycle Priority ¹⁶	1		00			

Payload length: 65 bytes

- 1. 00 = GSW2 definition; 01 = SiRF Binary APM definition; other values reserved.
- 2. These values are set by message ID 136. See description of values in Table 2-19.
- 3. These values are set by message ID 143. See description of values in Table 2-28.
- 4. These parameters are set in the software and are not modifiable via the User Interface.
- 5. These values are set by message ID 137. See description of values in Table 2-22.
- 6. These values are set by message ID 139. See description of values in Table 2-26.
- 7. These values are set by message ID 140. See description of values in Table 2-27.
- $8.\ These\ values\ are\ set\ by\ message\ ID\ 133.\ See\ description\ of\ values\ in\ Table\ 2-14.$
- $9. \ These \ values \ are set \ by \ message \ ID \ 138. \ See \ description \ of \ values \ in \ Table \ 2-24.$
- $10.\ These\ values\ are\ set\ by\ message\ ID\ 151.\ See\ description\ of\ values\ in\ Table\ 2-36.$
- 11. This setting is derived from the LP on-time and LP interval.
- 12. These values are set by message ID 167. See description of values in Table 2-42.
- 13. Bit 7: APM Enabled, 1=enabled, 0=disabled; Bits 0-4: Power Duty Cycle, range: 1-20 scaled to 5%, 1=5%, 2=10%...
- 14. Only used in SiRFLoc software.
- 15. See .

16. Bits 2-3: Time Accuracy, 0x00=no priority imposed, 0x01=RESP_TIME_MAX has higher priority, 0x02=HORI_ERR_MAX has higher priority, Bits 0-1: Time Duty Cycle, 0x00=no priority imposed, 0x01=time between two consecutive fixes has priority, 0x02=power duty cycle has higher priority.

Table 3-56 Horizontal/Vertical Error

Value	Position Error		
0x00	< 1 meter		
0x01	< 5 meter		
0x02	< 10 meter		
0x03	< 20 meter		
0x04	< 40 meter		
0x05	< 80 meter		
0x06	< 160 meter		
0x07	No Maximum (disabled)		
0x08 - 0xFF	Reserved		

Test Mode 2/3/4 - Message ID 20, 46, 48 (SiRFLoc v2.x), 49, and 55

Table 3-57 describes the SiRF software and test mode 2/3/4 with respect to their respective message ID.

Table 3-57 SiRF Software and Test Mode in relation with Message ID 20, 46, 48, 49, and 55

Software	Test Mode	Message ID
GSW2	2	20
	3/4	46
SiRFDRive	2	20
	3/4	46
SiRFXTrac	2/3/4	20
SiRFLoc (version 2.x)	4	20, 48 ¹ , and 49
SiRFLoc	3	46
(version 3.x)	4	46, 55
GSW3	3	46
	4	46, 55

^{1.} This message ID 48 for Test Mode 4 is not to be confused with message ID 48 for DR Navigation. Message ID 48 for SiRFLoc will be transferred to a different message ID in a near future.

Please refer to each specific message ID for more details.

Test Mode 2/3/4 - Message ID 20

Test Mode 2

This is supported by either GSW2, SiRFDRive, and SiRFXTrac. Test Mode 2 requires approximately 1.5 minutes of data collection before sufficient data is available.

The definition of MID 20 is different depending on the version and type of software being used.

Example:

A0A20033—Start Sequence and Payload Length

0316B0B3—Message Checksum and End Sequence

Table 3-58 Test Mode 2 Message ID 20

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		14			20
SV ID	2		0001			1
Period	2		001E	sec		30
Bit Sync Time	2		0002	sec		2
Bit Count	2		3F70			13680

Table 3-58 Test Mode 2 Message (Continued)ID 20

		Bin	nary (Hex)		ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Poor Status	2		001F			31
Good Status	2		0D29			3369
Parity Error Count	2		0000			0
Lost VCO Count	2		0000			0
Frame Sync Time	2		0006	sec		6
C/No Mean	2	*10	01C6		÷10	45.4
C/No Sigma	2	*10	0005		÷10	0.5
Clock Drift Change	2	*10	1B0E	Hz	÷10	692.6
Clock Drift	4	*10	000EB41A	Hz	÷10	96361.0
Reserved	2		0000			
Reserved	4		00000000			
Reserved	4		00000000			
Reserved	4		00000000			
Reserved	4		00000000			
Reserved	4		00000000			
Payload length: 51 by	tes	1	1	1	1	1

Table 3-59 Detailed Description of Test Mode 2 Message ID 20

Name	Description
Message ID	Message ID number.
SV ID	The number of the satellite being tracked.
Period	The total duration of time (in seconds) that the satellite is tracked.
Bit Sync Time	The time it takes for channel 0 to achieve the status of 37.
Bit Count	The total number of data bits that the receiver is able to demodulate
	during the test period. As an example, for a 20 second test period, the
	total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20 sec x 12 channels).
Poor Status	This value is derived from phase accumulation time. Phase
	accumulation is the amount of time a receiver maintains phase lock.
	Every 100msec of loss of phase lock equates to 1 poor status count. As
	an example, the total number of status counts for a 60 second period is
	7200 (12 channels x 60 sec x 10 sec)
Good Status	This value is derived from phase accumulation time. Phase
	accumulation is the amount of time a receiver maintains phase lock.
	Every 100msec of phase lock equates to 1 good status count.
Parity Error Count	The number of word parity errors. This occurs when the transmitted
	parity word does not match the receivers parity check.
Lost VCO Count	The number of 1 msec VCO lost lock was detected. This occurs when
	the PLL in the RFIC loses lock. A significant jump in crystal
	frequency and / or phase will cause a VCO lost lock.
Frame Sync	The time it takes for channel 0 to reach a 3F status.
C/No Mean	Calculated average of reported C/No by all 12 channels during the test
	period.
C/No Sigma	Calculated sigma of reported C/No by all 12 channels during the test
	period.
Clock Drift Change	Difference in clock frequency from start and end of the test period.
Clock Drift	Rate of change in clock bias.

Test Mode 3

This is supported by SiRFXTrac only as MID 20. Test Mode 3 requires approximately 10 seconds of data collection before sufficient data is available.

Example:

A0A20033—Start Sequence and Payload Length

0316B0B3—Message Checksum and End Sequence

Table 3-60 Test Mode 3 Message ID 20

		Bin	ary (Hex)		ASCI	I (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		14			20
SV ID	2		0001			1
Period	2		001E	sec		30
Bit Sync Time	2		0002	sec		2
Bit Count	2		3F70			13680
Poor Status	2		001F			31
Good Status	2		0D29			3369
Parity Error Count	2		0000			0
Lost VCO Count	2		0000			0
Frame Sync Time	2		0006	sec		6
C/No Mean	2	*10	01C6		÷10	45.4
C/No Sigma	2	*10	0005		÷10	0.5
Clock Drift Change	2	*10	1B0E	Hz	÷10	692.6
Clock Drift	4	*10	000EB41A	Hz	÷10	96361.0
Bad 1Khz Bit Count	2		0000			
Abs I20ms	4		00000000			
Abs Q1ms	4		00000000			
Reserved	4		00000000			
Reserved	4		00000000			
Reserved	4		00000000			
Payload length: 51 by	tes	•	•	•	•	•

Table 3-61 Detailed Description of Test Mode 3 Message ID 20

Name	Description
Message ID	Message ID number.
SV ID	The number of the satellite being tracked.
Period	The total duration of time (in seconds) that the satellite is tracked.
Bit Sync Time	The time it takes for channel 0 to achieve the status of 37.
Bit Count	The total number of data bits that the receiver is able to demodulate during the test period. As an example, for a 20 second test period, the total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20sec x 12 channels).

Table 3-61 Detailed Description of Test Mode 3 Message ID 20

Name	Description
Poor Status	This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of loss of phase lock equates to 1 poor status count. As an example, the total number of status counts for a 60 second period is 7200 (12 channels x 60 sec x 10 sec)
Good Status	This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of phase lock equates to 1 good status count.
Parity Error Count	The number of word parity errors. This occurs when the transmitted parity word does not match the receivers parity check.
Lost VCO Count	The number of 1 msec VCO lost lock was detected. This occurs when the PLL in the RFIC loses lock. A significant jump in crystal frequency and / or phase will cause a VCO lost lock.
Frame Sync	The time it takes for channel 0 to reach a 3F status.
C/No Mean	Calculated average of reported C/No by all 12 channels during the test period.
C/No Sigma	Calculated sigma of reported C/No by all 12 channels during the test period.
Clock Drift Change	Difference in clock frequency from start and end of the test period.
Clock Drift	Rate of change of clock bias.
Bad 1Khz Bit Count	Errors in 1ms post correlation I count values.
Abs I20ms	Absolute value of the 20ms coherent sums of the I count over the duration of the test period.
Abs Q1ms	Absolute value of the 1ms Q count over the duration of the test period.

Test Mode 4

This is supported by SiRFXTrac only.

Table 3-62 Test Mode 4 Message ID 20

		Bin	ary (Hex)		ASCI	I (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		14			20
Test Mode	1		04			4
Message Variant	1		01			1
SV ID	2		0001			1
Period	2		001E	sec		30
Bit Sync Time	2		0002	sec		2
C/No Mean	2	*10	01C6		÷10	45.4
C/No Sigma	2	*10	0005		÷10	0.5
Clock Drift Change	2	*10	1B0E	Hz	÷10	692.6
Clock Drift	4	*10	000EB41A	Hz	÷10	96361.0
I Count Errors	2		0003			3
Abs I20ms	4		0003AB88			240520
Abs Q1ms	4		0000AFF0			45040
Payload length: 29 byte	es					•

Table 3-63 Detailed Description of Test Mode 4 Message ID 20

Name	Description
Message ID	Message ID number.
Test Mode	3=Testmode 3, 4=Testmode 4
Message Variant	The variant # of the message (variant change indicates possible change in number of fields or field description).
SV ID	The number of the satellite being tracked.
Period	The total duration of time (in seconds) that the satellite is tracked.
Bit Sync Time	The time it takes for channel 0 to achieve the status of 37.
C/No Mean	Calculated average of reported C/No by all 12 channels during the test period.
C/No Sigma	Calculated sigma of reported C/No by all 12 channels during the test period.
Clock Drift	Difference in clock frequency from start and end of the test period.
Clock Offset	The internal clock offset.
I Count Errors	Errors in 1ms post correlation I count values.
Abs I20ms	Absolute value of the 20ms coherent sums of the I count over the duration of the test period.
Q 1ms	Absolute value of the 1ms Q count over the duration of the test period.

Navigation Library Measurement Data - Message ID 28

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

A0A20038—Start Sequence and Payload Length

 $1C00000660D015F143F62C4113F42F417B235CF3FBE95E468C6964B8FBC582415\\ CF1C375301734.....03E801F400000000\\ -Payload$

1533B0B3—Message Checksum and End Sequence

Table 3-64 Measurement Data

		Binary (Hex)			ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		1C			28	
Channel	1		00			0	
Time Tag	4		000660D0	ms		135000	
Satellite ID	1		15			20	
GPS Software Time	8		41740B0B48353F7D	sec		2.4921113696e+005	
Pseudorange	8		7D3F354A0B0B7441	m		2.1016756638e+007	
Carrier Frequency	4		89E98246	m/s		1.6756767578e+004	
Carrier Phase ¹	8		A4703D4A0B0B7441	m		2.1016756640e+007	
Time in Track	2		7530	ms		10600	
Sync Flags	1		17			23	
C/No 1	1		34	dB-Hz		43	
C/No 2	1			dB-Hz		43	
C/No 3	1			dB-Hz		43	
C/No 4	1			dB-Hz		43	
C/No 5	1			dB-Hz		43	

Table 3-64 Measurement Data

			Binary (Hex)		A	SCII (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
C/No 6	1			dB-Hz		43
C/No 7	1			dB-Hz		43
C/No 8	1			dB-Hz		43
C/No 9	1			dB-Hz		43
C/No 10	1			dB-Hz		43
Delta Range Interval	2		03E801F4	ms		1000
Mean Delta Range	2		01F4	ms		500
Time						
Extrapolation Time	2		0000	ms		
Phase Error Count	1		00			0
Low Power Count	1		00			0

Payload length: 56 bytes

Note – For GPS Software Time, Pseudorange, Carrier Frequency, and Carrier Phase, the fields are either floating point (4-byte fields) or double-precision floating point (8-byte fields), per IEEE-754 format. The byte order may have to be changed to be interpreted properly on some computers. Also, the byte order differs between GPS software versions 2.2.0 and earlier, and versions 2.3.0 and later.

To convert the data to be properly interpreted on a PC-compatible computer, do the following: For double-precision (8-byte) values: Assume the bytes are transmitted in the order of B0, B1, ..., B7. For version 2.2.0 and earlier software, rearrange them to B3, B2, B1, B0, B7, B6, B5. B4 For version 2.3.0 and later software, rearrange them to B7, B6, B5, ..., B0 For single-precision (4-byte) values: Assume bytes are transmitted in the order of B0, B1, B2, B3 Rearrange them to B3, B2, B1, B0 (that is, byte B3 goes into the lowest memory address, B0 into the highest).

With these remappings, the values should be correct. To verify, compare the same field from several satellites tracked at the same time. The reported exponent should be similar (within 1 power of 10) among all satellites. The reported Time of measurement, Pseudorange and Carrier Phase are all uncorrected values.

Message ID 7 contains the clock bias which must be considered. Adjust the GPS Software time by subtracting clock bias, adjust pseudorange by subtracting clock bias times the speed of light, and adjust carrier phase by subtracting clock bias times speed of light/GPS L1 frequency. To adjust the reported carrier frequency do the following: Corrected Carrier Frequency (m/s) = Reported Carrier Frequency (m/s) - Clock Drift (Hz) / 1575420000 Hz For a nominal clock drift value of 96.25 kHz (equal to a GPS Clock frequency of 24.5535 MHz), the correction value is 18315.766 m/s.

^{1.} GSW3 software does not report the Carrier Phase.

Table 3-65 Sync Flag Fields

Bit Fields	Description
[0]	Coherent Integration Time
	0 = 2 ms
	1 = 10 ms
[2:1]	Synch State
	00 = Not aligned
	01 = Consistent code epoch alignment
	10 = Consistent data bit alignment
	11 = No millisecond errors
[4:3]	Autocorrelation Detection State
	00 = Verified not an autocorrelation
	01 = Testing in progress
	10 = Strong signal, autocorrelation detection not run
	11 = Not used

Table 3-66 Detailed Description of the Measurement Data

Name	Description
Message ID	Message ID number.
Channel	Receiver channel number for a given satellite being searched or tracked. Range of 0-11 for channels 1-12, respectively.
Time Tag	This is the Time Tag in milliseconds of the measurement block in the receiver software time. Time tag is an internal millisecond counter which has no direct relationship to GPS time, but is started as the receiver is turned on or reset.
Satellite ID	Pseudo-random Noise (PRN) number.
GPS Software Time	This is GPS Time of Week (TOW) estimated by the software in milliseconds.
Pseudorange	This is the generated pseudorange measurement for a particular SV. When carrier phase is locked, this data is smoothed by carrier phase.
Carrier Frequency	This is can be interpreted in two ways: 1) The delta pseudorange normalized by the reciprocal of the delta pseudorange measurement interval. 2) The frequency from the AFC loop. If, for example, the delta pseudorange interval computation for a particular channel is zero, then it can be the AFC measurement, otherwise it is a delta pseudorange computation. In the delta pseudorange interval computation for a particular channel is zero, then it can be the AFC measurement, otherwise it is a delta pseudorange computation.
Carrier Phase	The integrated carrier phase (meters), which initially is made equal to pseudorange, is integrated as long as carrier lock is retained. Discontinuity in this value generally means a cycle slip and renormalization to pseudorange.
Time in Track	The Time in Track counts how long a particular SV has been in track. For any count greater than zero (0), a generated pseudo range is present for a particular channel. The length of time in track is a measure of how large the pull-in error may be.
Sync Flags	This byte contains two 2-bit fields and 1-bit field that describe the Autocorrelation Detection State, Synch State and Coherent Integration Time. Refer to Table 3-65 for more details.

Table 3-66 Detailed Description of the Measurement Data (Continued)

Name	Description
C/No 1	This array of Carrier To Noise Ratios is the average signal power in dB-Hz for each of the 100-millisecond intervals in the previous second or last epoch for each particular SV being track in a channel.
	First 100 millisecond measurement
C/No 2	Second 100 millisecond measurement
C/No 3	Third 100 millisecond measurement
C/No 4	Fourth 100 millisecond measurement
C/No 5	Fifth 100 millisecond measurement
C/No 6	Sixth 100 millisecond measurement
C/No 7	Seventh 100 millisecond measurement
C/No 8	Eighth 100 millisecond measurement
C/No 9	Ninth 100 millisecond measurement
C/No 10	Tenth 100 millisecond measurement
Delta Range Interval	This is the delta-pseudo range measurement interval for the preceding second. A value of zero indicated that the receiver has an AFC measurement or no measurement in the Carrier Frequency field for a particular channel.
Mean Delta Range Time	This is the mean calculated time of the delta-pseudo range interval in milliseconds measured from the end of the interval backwards
Extrapolation Time	This is the pseudo range extrapolation time in milliseconds, to reach the common Time tag value.
Phase Error Count	This is the count of the phase errors greater than 60 Degrees measured in the preceding second as defined for a particular channel.
Low Power Count	This is the low power measurements for signals less than 28 dB-Hz in the preceding second as defined for a particular channel

^{1.} Carrier frequency may be interpreted as the measured Doppler on the received signal. The value is reported in metres per second but can be converted to hertz using the Doppler equation:

 $Doppler\ frequency\ -\ Carrier\ frequency\ =\ Velocity\ /\ Speed\ of\ light,\ where\ Doppler\ frequency\ is\ in\ Hz;\ Carrier\ frequency\ =\ 1,575,420,000\ Hz;\ Velocity\ is\ in\ m/s;\ Speed\ of\ light\ =\ 299,792,458\ m/s.$

Note that the computed Doppler frequency will contain a bias equal to the current clock drift as reported in message ID 7. This bias, nominally $96.250\,\text{kHz}$, is equivalent to over $18\,\text{km/s}$.

Navigation Library DGPS Data - Message ID 29

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

A0A2001A—Start Sequence and Payload Length

1D000F00B501BFC97C673CAAAAAB3FBFFE1240A0000040A00000—Payload

0956B0B3-Message Checksum and End Sequence

Table 3-67 Measurement Data

		Binary (Hex)			ASCII (Decima	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		1D			29
Satellite ID	2		000F			15
IOD	2		00B5			181

Table 3-67 Measurement Data

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Source ¹	1		01			1
Pseudorange Correction	4		BFC97C67	m		-1.574109
Pseudorange rate Correction	4		3CAAAAAB	m/sec		0.020833
Correction Age	4		3FBFFE12	sec		1.499941
Reserved	4					
Reserved	4					

Payload length: 26 bytes

Note – The fields Pseudorange Correction, Pseudorange Rate Correction, and Correction Age are floating point values per IEEE-754. To properly interpret these in a PC, the bytes need to be rearranged into reverse order.

Navigation Library SV State Data - Message ID 30

The data in Message ID 30 reports the computed satellite position and velocity at the specified GPS time.

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

A0A20053—Start Sequence and Payload Length

1E15....2C64E99D01....408906C8—Payload

2360B0B3—Message Checksum and End Sequence

Table 3-68 SV State Data

		Binary (Hex)			ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		1E			30
Satellite ID	1		15			21
GPS Time	8			sec		
Position X	8			m		
Position Y	8			m		
Position Z	8			m		
Velocity X	8			m/sec		
Velocity Y	8			m/sec		
Velocity Z	8			m/sec		
Clock Bias	8			sec		
Clock Drift	4		2C64E99D	s/s		744810909
Ephemeris Flag ¹	1		01			1
Reserved	4					
Reserved	4					
Ionospheric Delay	4		408906C8	m		1082721992

Payload length: 83 bytes

^{1. 0 =} Use no corrections, 1 = SBAS channel, 2 = External source, 3 = Internal Beacon, 4 = Set Corrections via software

1. 0 = no valid SV state, 1 = SV state calculated from ephemeris, 2 = Satellite state calculated from almanac

Note – Each of the 8 byte fields as well as Clock Drift and Ionospheric Delay fields are floating point values per IEEE-754. To properly interpret these in a PC, the bytes need to be rearranged. See Note in MID 28 for byte orders.

Navigation Library Initialization Data - Message ID 31

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

A0A20054—Start Sequence and Payload Length

1F....0000000000001001E000F....00....000000000F....00....02....043402....

....02—Payload

0E27B0B3—Message Checksum and End Sequence

Table 3-69 Measurement Data

		Bina	ry (Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		1F			31	
Reserved	1						
Altitude Mode ¹	1		00			0	
Altitude Source	1		00			0	
Altitude	4		00000000	m		0	
Degraded Mode ²	1		01			1	
Degraded Timeout	2		001E	sec		30	
Dead-reckoning Timeout	2		000F	sec		15	
Reserved	2						
Track Smoothing Mode ³	1		00			0	
Reserved	1						
Reserved	2						
Reserved	2						
Reserved	2						
DGPS Selection ⁴	1		00			0	
DGPS Timeout	2		0000	sec		0	
Elevation Nav. Mask	2	2	000F	deg		15	
Reserved	2						
Reserved	1						
Reserved	2						
Reserved	1						
Reserved	2						
Static Nav. Mode ⁵	1		00			0	
Reserved	2						
Position X	8			m			
Position Y	8			m			
Position Z	8			m			

Table 3-69 Measurement Data (Continued)

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Position Init. Source ⁶	1		02			2
GPS Time	8			sec		
GPS Week	2		0434			1076
Time Init. Source ⁷	1		02	sec		2
Drift	8			Hz		
Drift Init. Source ⁸	1		02	sec		2
Payload length: 84 bytes				•		•

^{1. 0 =} Use last know altitude 1 = Use user input altitude 2 = Use dynamic input from external source

Note – Altitude is a single-precision floating point value while position XYZ, GPS time, and drift are double-precision floating point values per IEEE-754. To properly interpret these values in a PC, the bytes need to be rearranged. See Note in MID 28 for byte orders.

Geodetic Navigation Data - Message ID 41

Output Rate:Every measurement cycle (full power / continuous: 1Hz)

Example:

A0 A2 00 5B-Start Sequence and Payload Length

11 03 B0 B3—Message Checksum and End Sequence

Table 3-70 Geodetic Navigation Data

Name	Bytes	Description
Message ID	1	Hex 0x29 (decimal 41)

^{2. 0 =} Use direction hold and then time hold 1 = Use time hold and then direction hold 2 = Only use direction hold 3 = Only use time hold 4 = Degraded mode is disabled

^{3.} 0 = True, 1 = False

^{4. 0 =} Use DGPS if available 1 = Only navigate if DGPS corrections are available 2 = Never use DGPS corrections

^{5.} 0 = True, 1 = False

^{6. 0 =} ROM position 1 = User position 2 = SRAM position 3 = Network assisted position

^{7. 0 =} ROM time 1 = User time 2 = SRAM time 3 = RTC time 4 = Network assisted time

^{8. 0 =} ROM clock 1 = User clock 2 = SRAM clock 3 = Calibration clock 4 = Network assisted clock

Table 3-70 Geodetic Navigation Data (Continued)

Name	Bytes	Description
Nav Valid	2	0x0000 = valid navigation (any bit set implies navigation solution is
		not optimal);
		Bit 0 ON: solution not yet overdetermined ¹ (< 5 SVs),
		OFF: solution overdetermined ¹ (>= 5 SV)
		Bits 1 - 2 : Reserved
		Bits 8 - 14 : Reserved
		(The following are for SiRFDRive only)
		Bit 3 ON: invalid DR sensor data
		Bit 4 ON: invalid DR calibration
		Bit 5 ON: unavailable DR GPS-based calibration
		Bit 6 ON: invalid DR position fix
		Bit 7 ON: invalid heading
		(The following is for SiRFNav only)
		Bit 15 ON: no tracker data available
NAV Type	2	Bits 0 - 2 : GPS position fix type
		000 = no navigation fix
		001 = 1-SV KF solution
		010 = 2-SV KF solution
		011 = 3-SV KF solution
		100 = 4 or more SV KF solution
		101 = 2-D least-squares solution
		110 = 3-D least-squares solution
		111 = DR solution (see bits 8, 14-15)
		Bit 3 : TricklePower in use
		Bits 4 - 5 : altitude hold status
		00 = no altitude hold applied
		01 = holding of altitude from KF
		10 = holding of altitude from user input
		11 = always hold altitude (from user input)
		Bit 6 ON: DOP limits exceeded
		Bit 7 ON: DGPS corrections applied
		Bit 8 : Sensor DR solution type (SiRFDRive only)
		1 = sensor DR
		$0 = \text{velocity } DR^2 \text{ if Bits } 0 - 2 = 111;$
		else check Bits 14-15 for DR error status
		Bit 9 ON: navigation solution overdetermined ¹
		Bit 10 ON: velocity DR ² timeout exceeded
		Bit 11 ON: fix has been edited by MI functions
		Bit 12 ON: invalid velocity
		Bit 13 ON: altitude hold disabled
		Bits 14 - 15 : sensor DR error status (SiRFDRive only)
		00 = GPS-only navigation
		01 = DR calibration from GPS
		10 = DR sensor error
		11 = DR in test
Extended Week Number	2	GPS week number; week 0 started January 6 1980. This value is
	-	extended beyond the 10-bit value reported by the SVs.
TOW	4	GPS time of week in seconds x 10 ³ .
10 11	7	OF D THE OF WOOK III SCOUNGS A TO .

Table 3-70 Geodetic Navigation Data (Continued)

Name	Bytes	Description
UTC Year	2	UTC time and date. Seconds reported as integer milliseconds only.
UTC Month	1	, ,
UTC Day	1	
UTC Hour	1	
UTC Minute	1	
UTC Second	2	
Satellite ID List	4	Bit map of SVs used in solution. Bit 0 = SV 1, Bit 31 = SV 32. A bit set ON means the corresponding SV was used in the solution.
Latitude	4	In degrees $(+ = North) \times 10^7$.
Longitude	4	In degrees $(+ = East) \times 10^7$.
Altitude from Ellipsoid	4	In meters $\times 10^2$.
Altitude from MSL	4	In meters $\times 10^2$.
Map Datum ³	1	See footnote.
Speed Over Ground (SOG)	2	In m/s x 10 ² .
Course Over Ground (COG, True)	2	In degrees clockwise from true north x 10^2 .
Magnetic Variation	2	Not implemented.
Climb Rate	2	In m/s x 10 ² .
Heading Rate	2	deg/s x 10^2 (SiRFDRive only).
Estimated Horizontal Position	4	EHPE in meters $\times 10^2$.
Error	7	ETT E III IIICCIS A TO .
Estimated Vertical Position Error	4	EVPE in meters x 10 ² (SiRFDRive only).
Estimated Time Error	4	ETE in seconds x 10 ² (SiRFDRive only).
Estimated Horizontal Velocity	2	EHVE in m/s x 10 ² (SiRFDRive only).
Error	_	ENTY E III III/S X TO (SIRT BRIVE SIRY).
Clock Bias	4	In m x 10^2 .
Clock Bias Error	4	In meters x 10 ² (SiRFDRive only).
Clock Drift	4	In m/s x 10^2 .
Clock Drift Error	4	In m/s x 10 ² (SiRFDRive only).
Distance	4	Distance traveled since reset in meters (SiRFDRive only).
Distance error	2	In meters (SiRFDRive only).
Heading Error	2	In degrees x 10 ² (SiRFDRive only).
Number of SVs in Fix	1	Count of SVs indicated by SV ID list.
HDOP	1	Horizontal Dilution of Precision x 5 (0.2 resolution).
AdditionalModeInfo	1	Additional mode information:
Additionalwodelino	1	Bit 0: map matching mode for Map Matching only
		0 = map matching feedback input is disabled
		1 = map matching feedback input is enabled
		Bit 1: map matching feedback received for Map Matching only
		0 = map matching feedback was not received
		1 = map matching feedback was received
		Bit 2: map matching in use for Map Matching only
		0 = map matching feedback was not used to calculate position
		1 = map matching feedback was used to calculate position
		Bit 3-6: reserved
		Bit 7: DR direction for SiRFDRive only 0 = forward
		1 = reserve
		1 1000110

Payload length: 91 bytes

- 1. An overdetermined solution (see bit 0 from Nav Valid and bit 9 of Nav Type) is one where at least one additional satellite has been used to confirm the 4-satellite position solution. Once a solution has been overdetermined, it remains so even if several satellites are lost, until the system drops to no-navigation status (Nav Type bits 0-2 = 000).
- 2. Velocity Dead Reckoning (DR) is a method by which the last solution computed from satellite measurements is updated using the last computed velocity and time elapsed to project the position forward in time. It assumes heading and speed are unchanged, and is thus reliable for only a limited time. Sensor DR is a position update method based on external sensors (e.g., rate gyroscope, vehicle speed pulses, accelerometers) to supplement the GPS measurements. Sensor DR is only applicable to SiRF's SiRFDRive products.
- 3. Map Datum indicates the datum to which latitude, longitude, and altitude relate. 21 = WGS-84, by default. Other values will be defined as other datums are implemented. Available datums include: 21 = WGS-84, 178 = Tokyo Mean, 179 = Tokyo Japan, 180 = Tokyo Korea, 181 = Tokyo Okinawa.

Note – Values are transmitted as integer values. When scaling is indicated in the Description, the decimal value has been multiplied by the indicated amount and then converted to an integer. Example: Value transmitted: 2345; indicated scaling: 10²; actual value: 23.45.

Queue Command Parameters - Message ID 43

Output Rate: Response to poll

This message outputs Packet/Send command parameters under SiRF Binary Protocol.

Example with MID_SET_STAT_NAV message:

A0A20003—Start Sequence and Payload Length

438F00—Payload

00D2B0B3-Message Checksum and End Sequence

Name	Bytes	Scale	Units	Description			
MID	1			=0x2B			
Polled Msg ID	1			=0x8F (example)			
Data Variable Depends on the polled message ID length							
Payload length: Variable length bytes (3 bytes in the example))							

DR Raw Data - Message ID 45

1-Hz DR raw data from ADC (output after collection of data).

Name	Bytes	Scale	Units	Description
MID	1			=0x30
1st 100-ms time-tag	4		ms	
1st 100-ms ADC2 average measurement	2			
Reserved	2			
1st 100-ms odometer count	2			
1st 100-ms GPIO input states	1			Bit 0: reverse
2nd 100-ms time-tag	4		ms	
2nd 100-ms ADC2 average measurement	2			

Name	Bytes	Scale	Units	Description
Reserved	2			
2nd 100-ms odometer count	2			
2nd 100-ms GPIO input states	1			Bit 0: reverse
10th 100-ms time-tag	4		ms	
10th 100-ms ADC2 average measurement	2			
Reserved	2			
10th 100-ms odometer count	2			
10th 100-ms GPIO input states	1			Bit 0: reverse
Payload length: 111 bytes	•	•	•	

Test Mode 3/4 - Message ID 46

Message ID 46 is used by GSW2, SiRFDRive, SiRFLoc v3.x, and GSW3 software.

Output Rate: Variable - set by the period as defined in message ID 150.

Example:

A0A20033--Start Sequence and Payload Length

0316B0B3--Message Checksum and End Sequence

Table 3-71 Test Mode 3/4 Message ID 46

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		2E			46
SV ID	2		0001			1
Period	2		001E	sec		30
Bit Sync Time ¹	2		0002	sec		2
Bit Count ¹	2		3F70			16420
Poor Status ¹	2		001F			31
Good Status ¹	2		0D29			3369
Parity Error Count ¹	2		0000			0
Lost VCO Count ¹	2		0000			0
Frame Sync Time ¹	2		0006	sec		6
C/No Mean	2	*10	01C6	dB/Hz	÷10	45.4
C/No Sigma	2	*10	0005	dB/Hz	÷10	0.5
Clock Drift	2	*10	1B0E	Hz	÷10	692.6
Clock Offset	4	*10	000EB41A	Hz	÷10	96361.0
Bad 1Khz Bit Count ¹	2		0000			0
Abs I20ms ²	4		000202D5	Counts		131797
Abs Q1ms ²	4		000049E1	Counts		18913
Phase Lock Indicator	4		00000000		0.001	0

Table 3-71 Test Mode 3/4 Message ID 46

		Binary (Hex)			ASCII	ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example	
Reserved	4		00000000				
Reserved	4		00000000				
Payload length: 51 byt	es						

^{1.} Field not filled for GSW3 software in Test Mode 3/4.

Table 3-72 Detailed Description of Test Mode 3/4 Message ID 46

Name	Description							
Message ID	Message ID number.							
SV ID	The number of the satellite being tracked.							
Period	The total duration of time (in seconds) that the satellite is tracked. This field							
	is not filled for GSW3 software in Test Mode 3/4.							
Bit Sync Time	The time it takes for channel 0 to achieve the status of 0x37. This field is not filled for GSW3 software in Test Mode 3/4.							
Bit Count	The total number of data bits that the receiver is able to demodulate during the test period. As an example, for a 20 second test period, the total number of bits that can be demodulated by the receiver is 12000 (50BPS x 20sec x 12 channels). This field is not filled for GSW3 software in Test Mode 3/4.							
Poor Status	This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of loss of phase lock equates to 1 poor status count. As an example, the total number of status counts for a 60 second period is 7200 (12 channels x 60 sec x 10 100-ms intervals). This field is not filled for GSW3 software in Test Mode 3/4.							
Good Status	This value is derived from phase accumulation time. Phase accumulation is the amount of time a receiver maintains phase lock. Every 100msec of phase lock equates to 1 good status count. This field is not filled for GSW3 software in Test Mode 3/4.							
Parity Error Count	The number of word parity errors. This occurs when the transmitted parity word does not match the receivers parity check. This field is not filled for GSW3 software in Test Mode 3/4.							
Lost VCO Count	The number of 1 msec VCO lost lock was detected. This occurs when the PLL in the RFIC loses lock. A significant jump in crystal frequency and / or phase will cause a VCO lost lock. This field is not filled for GSW3 software in Test Mode 3/4.							
Frame Sync	The time it takes for channel 0 to reach a 0x3F status. This field is not filled for GSW3 software in Test Mode 3/4.							
C/No Mean	Calculated average of reported C/No by all 12 channels during the test period.							
C/No Sigma	Calculated sigma of reported C/No by all 12 channels during the test period.							
Clock Drift	Difference in clock drift from start and end of the test period.							
Clock Offset	The measured internal clock drift.							
Bad 1Khz Bit Count	Errors in 1ms post correlation I count values. This field is not filled for GSW3 software in Test Mode 3/4.							
Abs I20ms	Absolute value of the 20ms coherent sums of the I count over the duration of the test period.							
Abs Q1ms	Absolute value of the 1ms Q count over the duration of the test period.							

^{2.} Phase error = (Q20ms)/(I20ms).

Table 3-72 Detailed Description of Test Mode 3/4 Message ID 46

Name	Description							
Phase Lock	Quality of the phase lock loop.							
Indicator								

Test Mode 4 - Message ID 48 (SiRFLoc v2.x only)

SiRFLoc results from Test Mode 4 are being output by message ID 48 and 49. Message ID 48 for Test Mode 4 used by SiRFLoc version 2.x only is not to be confused with SiRFDRive message ID 48.

Table 3-73 Test Mode 4 Message ID 48

		Bin	ary (Hex)		ASCI	I (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		30			48
nChannel	1		01			1
Reserved	4		00000000			0
Channel	1		00			0
Satellite ID	1		18			24
Receiver Time Tag	4		000660D0	ms		30995
Pseudo-range	4	A	0	m	10	0
Carrier Frequency	4	64	174ADC	m/sec	100	1526492
Payload length: 20 by	tes			`	•	•

Table 3-74 Detailed Description of Test Mode 4 Message ID 48

Name	Description
Message ID	Message ID number.
nChannel	Number of channels reporting.
Reserved	
Channel	Receiver channel number for a given satellite being searched or tracked
Satellite ID	Satellite or Space Vehicle (SV ID number or Pseudo-random Noise (PRN) number.
Receiver Time Tag	Count of ms interrupts from the start of the receiver (power on) until measurement sample is taken. Millisecond interrupts are generated by the receiver clock.
Pseudo-range	Generated pseudo range measurement for a particular SV.
Carrier Frequency	Can be interpreted in two ways: 1) delta-pseudo range normalized by the reciprocal of the delta pseudo range measurement interval; 2) Frequency from the AFC loop. If, for example, the delta pseudo range interval computation for a particular channel is zero, then it can be the AFC measurement, otherwise it is a delta-pseudo range computation.

DR Navigation Status - Message ID 48 (Sub ID 1)

DR navigation status information (output on every navigation cycle).

Name	Bytes	Description
MID	1	=0x30
Sub ID	1	=0x01
DR navigation	1	0x00 = valid DR navigation; else Bit 0 ON: GPS-only navigation required Bit 1 ON: speed not zero at start-up Bit 2 ON: invalid DR position Bit 3 ON: invalid DR heading Bit 4 ON: invalid DR calibration Bit 5 ON: invalid DR data Bit 6 ON: system in Cold Start Bit 7: Reserved.
DR data	2	0x0000 = valid DR data; else Bit 0 ON: DR gyro subsystem not operational Bit 1 ON: DR speed subsystem not operational Bit 2 ON: DR measurement time < 80 ms Bit 3 ON: invalid serial DR message checksum Bit 4 ON: no DR data for > 2 sec Bit 5 ON: DR data timestamp did not advance Bit 6 ON: DR data byte stream all 0x00 or 0xFF Bit 7 ON: composite wheel-tick count jumped > 255 between successive DR messages Bit 8 ON: input gyro data bits (15) of 0x0000 or 0x3FFF Bit 9 ON: > 10 DR messages received in 1 sec Bit 10 ON: time difference between two consecutive measurements is <= 0 Bits 11 - 15: Reserved.
DR calibration & DR gyro bias calibration	1	Bits 0 - 3 : 0000 = valid DR calibration; else Bit 0 ON : invalid DR gyro bias calibration Bit 1 ON : invalid DR scale factor calibration Bit 2 ON : invalid DR speed scale factor calibration Bit 3 ON : GPS calibration required but not ready. Bits 4 - 6 : 000 = valid DR gyro bias calibration; else Bit 4 ON : invalid DR data Bit 5 ON : zero-speed gyro bias cal not updated Bit 6 ON : heading rate scale factor <= -1. Bit 7 : Reserved.
DR gyro scale factor calibration & DR speed scale factor calibration	1	Bits 0 - 3 : 0000 = valid DR gyro scale factor calibration; else Bit 0 ON : invalid DR heading Bit 1 ON : invalid DR data Bit 2 ON : invalid DR position Bit 3 ON : heading rate scale factor <= -1. Bits 4 - 7 : 0000 = valid DR speed scale factor calibration; else Bit 4 ON : invalid DR data Bit 5 ON : invalid DR position Bit 6 ON : invalid GPS velocity for DR Bit 7 ON : DR speed scale factor <= -1.

Name	Bytes	Description
DR Nav across reset & DR position	1	Bits 0 - 1 : 00 = valid DR nav across reset; else Bit 0 ON : invalid DR navigation Bit 1 ON : speed > 0.01 m/s. Bit 2 : Reserved. Bits 3 - 6 : 0000 = valid DR position; else Bit 3 ON : speed not zero at start-up Bit 4 ON : invalid GPS position Bit 5 ON : system in Cold Start Bit 6 ON : invalid DR data. Bit 7 : Reserved.
DR heading	1	Bits 0 - 6:0000000 = valid DR heading; else Bit 0 ON: speed not zero at start-up Bit 1 ON: invalid GPS position Bit 2 ON: invalid GPS speed Bit 3 ON: GPS did not update heading Bit 4 ON: delta GPS time < 0 and > 2 Bit 5 ON: system in Cold Start Bit 6 ON: invalid DR data. Bit 7: Reserved.
DR gyro subsystem & DR speed subsystem	1	Bits 0 - 3 : 0000 = updated DR gyro bias & scale factor calibration; else Bit 0 ON : invalid DR data Bit 1 ON : invalid DR position Bit 2 ON : invalid GPS velocity for DR Bit 3 ON : GPS did not update heading. Bits 4 - 6 : 000 = updated DR speed calibration; else Bit 4 ON : invalid DR data Bit 5 ON : invalid DR position Bit 6 ON : invalid GPS velocity for DR. Bit 7 : 0 = updated DR navigation state.
DR Nav state integration ran & zero-speed gyro bias calibration updated	1	Bits 0 - 7:00000000 = GPS updated position; else Bit 0 ON: update mode!= KF Bit 1 ON: EHPE > 50 Bit 2 ON: no previous GPS KF update Bit 3 ON: GPS EHPE < DR EHPE Bit 4 ON: DR EHPE < 50 Bit 5 ON: less than 4 SVs in GPS navigation Bit 6 ON: no SVs in GPS navigation Bit 7 ON: DR-only navigation required.
Updated DR gyro bias/scale factor calibration, updated DR speed calibration, & updated DR Nav state	1	Bits 0 - 3: 0000 = updated DR gyro bias & scale factor calibration; else Bit 0 ON: invalid DR data Bit 1 ON: invalid DR position Bit 2 ON: invalid GPS velocity for DR Bit 3 ON: GPS did not update heading. Bits 4 - 6: 000 = updated DR speed calibration; else Bit 4 ON: invalid DR data Bit 5 ON: invalid DR position Bit 6 ON: invalid GPS velocity for DR. Bit 7: 0 = updated DR navigation state.

Name	Bytes	Description
GPS updated position	1	Bits 0 - 7 : 00000000 = GPS updated position; else Bit 0 ON : update mode != KF Bit 1 ON : EHPE > 50 Bit 2 ON : no previous GPS KF update Bit 3 ON : GPS EHPE < DR EHPE Bit 4 ON : DR EHPE < 50 Bit 5 ON : less than 4 SVs in GPS navigation Bit 6 ON : no SVs in GPS navigation Bit 7 ON : DR-only navigation required.
GPS updated heading	1	Bits 0 - 6:0000000 = GPS updated heading; else Bit 0 ON: update mode != KF Bit 1 ON: GPS speed <= 5 m/s Bit 2 ON: less than 4 SVs in GPS navigation Bit 3 ON: horizontal velocity variance > 1 m ² /s ² Bit 4 ON: GPS heading error >= DR heading error Bit 5 ON: GPS KF not updated Bit 6 ON: incomplete initial speed transient. Bit 7: Reserved.
GPS position & GPS velocity	1	Bits 0 - 2:000 = valid GPS position for DR; else Bit 0 ON: less than 4 SVs in GPS navigation Bit 1 ON: EHPE > 30 Bit 2 ON: GPS KF not updated. Bit 3: Reserved. Bits 4 - 7:0000 = valid GPS velocity for DR; else Bit 4 ON: invalid GPS position for DR Bit 5 ON: EHVE > 3 Bit 6 ON: GPS speed < 2 m/s Bit 7 ON: GPS did not update heading.
Reserved	2	
Payload length: 17 byte	es	

DR Navigation State - Message ID 48 (Sub ID 2)

DR speed, gyro bias, navigation mode, direction, and heading (output on every navigation cycle).

Name	Bytes	Scale	Units	Description
MID	1			=0x30
Sub ID	1			=0x02
DR speed	2	10 ²	m/s	
DR speed error	2	10 ⁴	m/s	
DR speed scale factor	2	10 ⁴		
DR speed scale factor error	2	104		
DR heading rate	2	10 ²	deg/s	
DR heading rate error	2	10 ²	deg/s	
DR gyro bias	2	10 ²	deg/s	

Name	Bytes	Scale	Units	Description			
DR gyro bias error	2	10 ²	deg/s				
DR gyro scale factor	2	10 ⁴					
DR gyro scale factor error	2	104					
Total DR position error	4	10 ²	m				
Total DR heading error	2	10 ²	deg				
DR Nav mode control	1			1=GPS-only nav required (no DR nav allowed); 2=GPS + DR nav using default/stored calibration; 3=GPS + DR nav using current GPS calibration; 4=DR-only nav (no GPS nav allowed).			
Reverse	1			DR direction: 0 = forward; 1 = reverse.			
DR heading	2	10 ²	deg/s				
Payload length: 32 bytes							

Navigation Subsystem - Message ID 48 (Sub ID 3)

Heading, heading rate, speed, and position of both GPS and DR (output on every navigation cycle).

Name	Bytes	Scale	Units	Description			
MID	1			=0x30			
Sub ID	1			=0x03			
GPS heading rate	2	10 ²	deg/s				
GPS heading rate error	2	10 ²	deg/s				
GPS heading	2	10 ²	deg				
GPS heading error	2	10 ²	deg				
GPS speed	2	10 ²	m/s				
GPS speed error	2	10 ²	m/s				
GPS position error	4	10 ²	m				
DR heading rate	2	10 ²	deg/s				
DR heading rate error	2	10 ²	deg/s				
DR heading	2	10 ²	deg				
DR heading error	2	10 ²	deg				
DR speed	2	10 ²	m/s				
DR speed error	2	10 ²	m/s				
DR position error	4	10 ²	m				
Reserved	2						
Payload length: 36 bytes							

DR Gyro Factory Calibration - Message ID 48 (Sub ID 6)

DR gyro's factory calibration parameters (response to poll).

Name	Bytes	Scale	Units	Description
MID	1			=0x30
Sub ID	1			=0x06
Calibration	1			Bit 0 : Start gyro bias calibration. Bit 1 : Start gyro scale factor calibration. Bits 2 - 7 : Reserved.
Reserved	1			
Payload length: 4 bytes		•		

DR Sensors' Parameters - Message ID 48 (Sub ID 7)

DR sensors' parameters (response to poll).

Name	Bytes	Scale	Units	Description	
MID	1			=0x30	
Sub ID	1			=0x07	
Base speed scale factor	1		ticks/m		
Base gyro bias	2	10 ⁴	mV		
Base gyro scale factor	2	10 ³	mV/deg/s		
Payload length: 7 bytes					

DR Data Block - Message ID 48 (Sub ID 8)

1-Hz DR data block (output on every navigation cycle).

Name	Bytes	Scale	Units	Description
MID	1			=0x30
Sub ID	1			=0x08
Measurement type	1			0 = odometer and gyroscope (always); 1 255 = Reserved.
Valid count	1			Count (1 10) of valid DR measurements.
Reverse indicator	1			Bits 0 9, each bit: ON = reverse, OFF = forward.
1st 100-ms time-tag	1		ms	
1st 100-ms DR speed	1	10 ²	m/s	
1st 100-ms gyro heading rate	1	10 ²	deg/s	
2 nd 100-ms time-tag	1		ms	
2 nd 100-ms DR speed	1	10 ²	m/s	

Name	Bytes	Scale	Units	Description
2 nd 100-ms gyro heading rate	1	10 ²	deg/s	
10 th 100-ms time-tag	1		ms	
10 th 100-ms DR speed	1	10 ²	m/s	
10 th 100-ms gyro heading rate	1	10 ²	deg/s	
Payload length: 86 bytes				

Test Mode 4 - Message ID 49

SiRFLoc results from Test Mode 4 are being output by message ID 48 and 49. Message ID 48 for Test Mode 4 used by SiRFLoc version 2.x only is not to be confused with SiRFDRive message ID 48.

Table 3-75 Test Mode 4 Message ID 49

		Bin	ary (Hex)		ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		31			49
nChannel	1		01			1
Reserved	4		00000000			0
Channel	1		00			0
Satellite ID	1		18			24
Receiver Time Tag	4		000660D0	ms		31085
Carrier Doppler Rate	4	100000	796D	carrier cycles/2ms/10ms	1048576	271
Carrier Doppler	4	100000	10F	carrier cycles/2ms	1048576	16822957 8
Carrier Phase	4	400		carrier cycles	1024	94319770
Code Offset	4	181000	FFFFFFFF FFC925C	chip	1576960	-224676
Payload length: 28 b	ytes	•		•	•	

Table 3-76 Test Mode 4 Message ID 49

		Bina	ary (Hex)		ASCII ((Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		31			49
nChannel	1		01			1
Reserved	4		00000000			0
Channel	1		00			0
Satellite ID	1		18			24
Receiver Time Tag	4		000660D0	ms		31085
Carrier Doppler Rate	4	100000	796D	carrier cycles/2ms/10ms	1048576	271
Carrier Doppler	4	100000	10F	carrier cycles/2ms	1048576	16822957 8
Carrier Phase	4	400		carrier cycles	1024	94319770
Code Offset	4	181000	FFFFFFFF FFC925C	chip	1576960	-224676

Table 3-76 Test Mode 4 Message ID 49

		Binary (Hex)			ASCII ((Decimal)
Name	Bytes	Scale Example		Units	Scale	Example
Payload length: 28 by	ytes					

Table 3-77 Detailed Description of Test Mode 4 Message ID 49

Name	Description
Message ID	Message ID number.
nChannel	Number of channels reporting.
Channel	Receiver channel number for a given satellite being searched or tracked
Satellite ID	Satellite or Space Vehicle (SV ID number or Pseudo-random Noise (PRN) number.
Receiver Time Tag	Count of ms interrupts from the start of the receiver (power on) until measurement sample is taken. Millisecond interrupts are generated by the receiver clock.
Carrier Doppler	Carrier Doppler Rate value from the Costas tracking loop for the satellite
Rate	ID on channel 0.
Carrier Doppler	Frequency from the Costas tracking loop for the satellite ID on channel 0.
Carrier Phase	Carrier phase value from the Costas tracking loop for the satellite ID on channel 0.
Code Offset	Code offset from the Code tracking loop for the satellite ID on channel 0.

SBAS Parameters - Message ID 50

Outputs SBAS operating parameter information including SBAS PRN, mode, timeout, timeout source, and SBAS health status.

Output Rate: Every measurement cycle (full power / continuous: 1Hz)

Example:

A0A2000D-Start Sequence and Payload Length

BEBEB0B3—Message Checksum and End Sequence

Table 3-78 SBAS Parameters Message

			Binary (Hex)		ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		32			50
SBAS PRN	1		7A			122
SBAS Mode	1		00			0
DGPS Timeout	1		12			18
Flag bits	1		00			0
Spare	8		0000000000000000			00000000
Payload length: 13 bytes						

Table 3-79 Detailed Description of SBAS Parameters

Name	Description
Message ID	Message ID number.

Table 3-79 Detailed Description of SBAS Parameters

Name	Description
SBAS PRN	0=Auto mode
	SBAS PRN 120-138= Exclusive
SBAS Mode	0=Testing, 1=Integrity
	Integrity mode will not accept SBAS corrections if the SBAS satellite is
	transmitting in a test mode.
	Testing mode will accept and use SBAS corrections even if the SBAS satellite
	is transmitting in a test mode.
DGPS Timeout	Range 1-250 seconds. 0 returns to default timeout.
	The last received corrections will continue to be applied to the navigation
	solution for the timeout period. If the timeout period is exceeded before a new
	correction is received, no corrections will be applied.
Flag bits	Bit 0: Timeout; 0=Default 1=User
	Bit 1: Health; Reserved
	Bit 2: Correction; Reserved
	Bit 3: SBAS PRN; 0=Default 1=User
Spare	Spare

PPS Time - Message ID 52

Output time associated with current 1 PPS pulse. Each message will be output within a few hundred ms after the 1 PPS pulse is output and will tell the time of the pulse that just occurred. The MID 52 will report the UTC time of the 1 PPS pulse when it has a current status message from the satellites. If it does not have a valid status message, it will report time in GPS time, and will so indicate by means of the status field.

Output Rate: 1 Hz (Synchronized to PPS)

Example:

A0A20013—Start Sequence and Payload Length

3415122A0E0A07D3000D000000050700000000—Payload

0190B0B3—Message Checksum and End Sequence

Table 3-80 Timing Message Data

		Bin	ary (Hex)		ASCI	I (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		34			52
Hour	1		15			21
Minute	1		12			18
Second	1		2A			42
Day	1		0E			15
Month	1		0A			10
Year	2		07D3			2003
UTCOffsetInt	2		000D			13
UTCOffsetFrac	4	10 ⁹	00000005	sec	10 ⁹	0.000000005
Status (see Table 3-81)	1		7			7
Reserved	4		00000000			00000000
Payload length: 19 bytes	•		•		•	

Table 3-81 Status Byte Field in Timing Message

Bit Fields	Meaning
0	When set, bit indicates that time is valid
1	When set, bit indicates that UTC time is reported in this message. Otherwise it is GPS time.
2	When set, bit indicates that UTC to GPS time information is current, i.e. IONO/UTC time is less than 2 weeks old.
3-7	Reserved

Test Mode 4 Track Data - Message ID 55

Message ID 55 is used by GSW3 and SiRFLoc (v3.0 and above) software.

Table 3-82 Test Mode 4 Message ID 55

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		37			55
SV ID	2		0001			1
Acqclk Lsq	4		12345678			12345678
Code Phase	4	2-11	0000	Chips		0
Carrier Phase	4	2-32	0000	Cycles		0
Carrier Frequency	4	0.000476	0000	Hz	0.00047	0
					6	
Carrier Acceleration	2	0.476	0000	Hz/sec	0.476	0
Code Corrections	4		0000			0
Code Offset	4	2-11	0000	Chips	2-11	0
MSec Number ¹	2	ms	0006	ms	0.001	0.006
Bit Number ¹	4	20 ms	01C6	20 ms	0.02	9.08
Reserved	4		0000			
Reserved	4		0000			
Reserved	4		0000			
Reserved	4		0000			
Payload length: 51 by	/tes					

^{1.} SiRFLocDemo combines MSec Number and Bit Number for this message output which gives the GPS time stamp.

Reserved - Message ID 225

This output message is SiRF proprietary except for sub ID 6.

Statistic Channel - Message ID 225 (Sub ID 6)

The message is only used by GSW3 and SiRFLoc v3.x software and outputs the TTFF, aiding accuracy information and navigation status.

Output Rate: Once on every reset

Note – Message ID 225 (sub ID 6) may not be output when the system is not able to compute a navigation solution. This message is not supported by APM.

Example:

A0A20027—Start Sequence and Payload Length

E161—Message ID and Sub ID

0011B0B3—Message Checksum and End Sequence

Table 3-83 Statistic Channel Parameters Message

			Binary (Hex)				ASCII (Decimal)	
Name	Sub Field	Bytes	Scale	Example	Units	Scale	Example	
Message ID		1		E1			225	
Message Sub ID		1		06			6	
TTFF	since reset	2			second	0.1	range from 0 to 65535	
	since all aiding received ¹	2					0	
	first nav since reset ¹	2					0	
Position Aiding	North ¹	4					0	
Error	East ¹	4					0	
	Down ¹	4					0	
Time Aiding Error ¹		4					0	
Frequency Aiding Error ¹		2					0	
Position	Horizontal ¹	1					0	
Uncertainty	Vertical ¹	2					0	
Time Uncertainty ¹		1					0	
Frequency Uncertainty ¹		1					0	
Number of Aided Ephemeris ¹		1					0	
Number of Aided Acquisition Assistance ¹		1					0	
Navigation and Position Status	Navigation Mode	1					see Table 3-84	
	Position Mode	1					see Table 3-85	
	Status	2					see Table 3-86 and Table 3-87	
Start Mode		1					see Table 3-88	
Reserved ¹		1						

^{1.} Field not available for GSW3.

Table 3-84 Description of the Navigation Mode Parameters

Bit Fields	Description
0	No Nav
1	Approximate from SV records.
2	Time transfer.
3	Stationary mode
4	LSQ fix
5	KF nav
6	SiRFDRive
7	DGPS base

Table 3-85 Description of the Position Mode Parameters

Bit Fields	Description
0	Least Square (LSQ) mode 0 - no bit sync, approximate GPS time
1	LSQ mode 1 - no bit sync, accurate GPS time
2	LSQ mode 2 - bit sync, no frame sync, approximate GPS time
3	LSQ mode 3 - bit sync, no frame sync, accurate GPS time
4	LSQ mode 4 - bit and frame sync, user time (without aiding) - see also Table 3-86
5	KF mode - Kalman Filtering
6	No position
7	Not used

Table 3-86 Description of the Status for Navigation LSQ fix Mode

Value	Status
0x00	Good solution
0x01	Uncertainty exceeded maximum (UNCER_EXCEED)
0x02	Input information to navigation had error (INPUT_ERR)
0x04	Not sufficient information to have a fix position (UNDER_DETERM)
0x08	Matrix inversion failed (MATR_INVT)
0x010	LSQ iteration exceeds predefined maximum (ITER_OUT)
0x020	Altitude check failed (ALT_OUT)
0x040	GPS time check failed (TIME_OFF)
0x080	Failure found in measurements (FDI_FAIL)
0x100	DOP exceeded threshold (DOP_FAIL)
0x200	Velocity check failed (VEL_FAIL)

Table 3-87 Description of the Status for Navigation KF Mode

Value	Status				
0	Solution is good				
1	No solution				
2	Altitude is out of range				

Table 3-87 Description of the Status for Navigation KF Mode

Value	Status
3	Velocity is out of range

Table 3-88 Description of the Start Mode

Value	Description
0x00	Cold
0x01	Warm
0x02	Hot
0x03	Fast

Development Data - Message ID 255

Output Rate: Receiver generated.

Example:

A0A2....-Start Sequence and Payload Length

FF....-Payload

....B0B3—Message Checksum and End Sequence

Table 3-89 Development Data

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		FF			255
Data ¹	variable					
Payload length: variable			•			•

1. Data area consists of at least 1 byte of ASCII text information.

Note – MID 255 is output when SiRF Binary is selected and development data is enabled. The data output using MID 255 is essential for SiRF-assisted troubleshooting support.

Additional Information

TricklePower Operation in DGPS Mode

When in TricklePower mode, serial port DGPS corrections are supported. The CPU goes into sleep mode but will wake up in response to any interrupt. This includes UARTs. Messages received during the TricklePower 'off' period are buffered and processed when the receiver awakens for the next TricklePower cycle.

GPS Week Reporting

The GPS week number represents the number of weeks that have elapsed since the week of January 6, 1980. Per ICD-GPS-200, the satellites only transmit the 10 LSBs of the week number. On August 22, 1999, the week number became 1024, which was reported by the satellites as week 0. SiRF receivers resolve the reported week number internally. When messages report the week number, that value will either be truncated to the 10 LSBs or will be called an extended week number (see messages 7 and 41 for examples).

ADDITIONAL PRODUCT INFORMATION

Part Number	Description
1050-0042	NMEA Reference Manual
1050-0041	SiRF Binary Protocol Reference Manual
1065-0136	Product Inserts
1050-0056	SiRFstarIII System Development Kit User Guide
1050-0053	GSW3 Software System Development Kit Reference Manual
1050-0054	S3SDK Board System Development Kit Reference Manual
1050-0055	GSP3 Chip System Development Kit Reference Manual
1055-1034	GSP3f Data Sheet
1055-1035	GRF3w Data Sheet
	Available on the Developer Web Site
APNT3001	SSIII System Guidelines and Considerations
APNT3002	PCB Design Guidelines for SSIII Implementations
APNT3003	Back-Up Power Operation for SSIII Architectures
APNT3004	Troubleshooting Notes for SSIII Board Development
APNT3005	Co-Location and Jamming Considerations for SSIII Integration
APNT3006	GPIO Pin Functionality for SSIII
APNT3007	I/O Message Definitions for SSIII
APNT3008	Implementing User Tasks in the SSIII Architecture
APNT3009	Effects of User Tasks on GPS Performance for SSIII
APNT3010	Advanced Power Management (APM) Considerations for SSIII
APNT3011	Multi-ICE Testing Issues for SSIII
APNT3012	Production Testing of SSIII Modules
APNT3014	Automotive Design Considerations for SSIII

SiRF Technology Inc.

148 East Brokaw San Jose, CA 95112 Tel: +1-408-467-0410 Fax: +1-408-467-0420 Email: qps@sirf.com Website: http://www.sirf.com

SiRF France

Tel: +33-6-0717-7862 Fax: +44-1344-668157 Email: SalesFrance@sirf.com

SiRF Texas

Tel: +1-972-239-6988 Fax: +1-972-239-0372 Email: SalesAmericas@sirf.com

SiRF United Kingdom Tel: +44-1344-668390 Fax: +44-1344-668157 Email: SalesUK@sirf.com

SiRF Japan

Tel: +81 44829-2186 Fax: +81 44829-2187 Email: SalesJapan@sirf.com

SiRF Germany

Tel: +49-81-529932-90 Fax: +49-81-529931-70 Email: SalesGermany@sirf.com

SiRF Taiwan

Tel: +886-2-2723-7853 Fax: +886-2-2723-7854

Email: SalesAsiaPacific@sirf.com

SiRF India

Tel: +91-120-251-0256 Fax: +91-120-251-0584 Email: SalesIndia@sirf.com

SiRF Binary Protocol Reference Manual © 2005 SiRF Technology Inc. All rights reserved.

Products made, sold or licensed by SiRF Technology, Inc. are protected by one or more of the following United States patents: 5,488,378; 5,504,482; 5,552,794; 5,592,382; 5,638,077; 5,883,595; 5,897,605; 5,901,171; 5,917,383; 5,920,283; 6,018,704; 6,037,900; 6,041,280; 6,044,105; 6,047,017; 6,081,228; 6,114,992; 6,125,325; 6,198,765; 6,236,937; 6,249,542; 6,278,403; 6,282,231, 6,292,749; 6,297,771; 6,301,545; 6,304,216; 6,351,486; 6,351,711; 6,366,250; 6,389,291; 6,393,046; 6,400,753; 6,421,609; 6,427,120; 6,427,121; 6,453,238; and AU729,697.

Other United States and foreign patents are issued or pending. SiRF, SiRFStar, SiRF plus Orbit design are registered in the U.S. Patent and Trademark office. SnapLock, SnapStart, SingleSat, Foliage Lock, TricklePower, Push-to-Fix, WinSiRF, SiRFLoc, SiRFDRive, SiRFNav, SiRFXTrac, SiRFSoft, SoftGPS, UrbanGPS, and Multimode Location Engine are trademarks of SiRF Technology, Inc. Other trademarks are property of their respective companies.

This document contains information on SiRF products. SiRF reserves the right to make changes in its products, specifications and other information at any time without notice. SiRF assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this data sheet, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. No license, either expressed or implied, is granted to any intellectual property rights of SiRF. SiRF makes no warranties, either express or implied with respect to the information and specification contained in this document. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance. SIRF products are not intended for use in life support systems or for life saving applications. All terms and conditions of sale are governed by the SIRF Terms and Conditions of Sale, a copy of which may obtain from your authorized SiRF sales representative. April 2005

