Ljetni ispitni rok iz Numeričke matematike

6. srpnja 2015.

1. (15 bodova)

- (i) (5 bodova) Izvedite formulu centralne diferencije za aproksimaciju funkcije f'(x) te odredite pripadni red točnosti.
- (ii) (5 bodova) Uzmimo da vrijednosti funkcije chx u točki $x_0 = 0$ aproksimiramo Taylorovim polinomom $T_n(x)$. Odredite koji najmanji stupanj Taylorovog polinoma treba uzeti da bismo vrijednost chx na nekoj okolini od x_0 izračunali s točnošću od 10^{-3} .
- (iii) (5 bodova) Rubni problem

$$-u''(x) = f(x), x \in (0,1), u(0) = 0, u(1) = 0$$

diskretizirajte centralnim diferencijama na ekvidistantnoj mreži $x_i = ih$, $i = 1, \ldots, n$, pri čemu je $x_0 = 0$ i $x_{n+1} = 1$ za n = 4, a f je zadana realna funkcija. Diskretizaciju zapišite u matričnom obliku.

2. (15 bodova)

- (i) **(5 bodova)** Odredite LU rastav matrice $A = \begin{bmatrix} -1 & 1 & -3 & 0 \\ 1 & 1 & 3 & 8 \\ -2 & 2 & -5 & -1 \\ 3 & 1 & 8 & 13 \end{bmatrix}$.
- (ii) (5 bodova) Za $b = \begin{bmatrix} 0 & 2 & -1 & 5 \end{bmatrix}^T$ riješite sustavAx = b.
- (iii) (5 bodova) Bez računanja matrice A^2 nađite rješenje sustava $A^2x = b$.

3. (15 bodova)

- (i) (1 bod) Neka je $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$. Rezultat izraza $x^T A x$ je: realni broj, vektor iz \mathbb{R}^n , matrica iz $\mathbb{R}^{n \times n}$?
- (ii) **(4 boda)** Napišite definiciju pozitivno definitne matrice. Jesu li sve pozitivno definitne matrice regularne? Objasnite svoju tvrdnju!
- (iii) (3 boda) Neka je $A \in \mathbb{R}^{n \times n}$ regularna matrica. Pokažite da je matrica $A^T A$ simetrična, pozitivno definitna.
- (iv) (2 boda) Navedite dva kriterija pomoću kojih možemo utvrditi da je simetrična matrica pozitivno definitna.
- (v) (5 bodova) Matricu $A = \begin{bmatrix} 2 & 6 & -8 \\ 6 & 25 & -10 \\ -8 & -10 & 55 \end{bmatrix}$ zapišite u obliku LDL^T . Izračunajte $\det(A)$.

Postoji li rastav Choleskog matrice A? Objasnite tvrdnju.

Okrenite!

4. (15 bodova)

(i) (5 bodova) Pomoću jednostavne Simpsonove formule

$$S(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

izračunajte integral

$$I = \int_1^3 \frac{1}{1+x} dx.$$

Odredite stupanj egzaktnosti jednostave Simpsonove formule.

- (ii) (5 bodova) Objasnite zbog čega se uvode kompozitne formule. Izvedite kompozitnu pravokutnu formulu te ocijenite pripadnu grešku integracije. (Za $f \in C^2(a,b)$ postoji $\tau \in [a,b]$ td $I(f) M(f) = \frac{h^3}{24} f''(\tau), \ h = b a.$)
- (iii) (5 bodova) Odredite koliko čvorova mreže je potrebno da bismo izračunali integral I iz (i) kompozitnom pravokutnom formulom s točnošću manjom od $\varepsilon = 10^{-2}$, te za dobiveni broj čvorova izračunajte aproksimaciju integrala.

5. (10 bodova)

- (i) (1 bod) Objasnite u čemu je prednost interpolacije splajnovima u odnosu na polinomijalnu interpolaciju.
- (ii) (2 boda) Za zadane podatke $\{(x_i, y_i), i = 0, \dots, n\}$ definirajte prirodni kubni splajn.
- (iii) (1 bod) Napišite definiciju strogo dijagonalno dominantne matrice.
- (iv) (1 bod) Da li za proizvoljnu mrežu $x_0 < x_1 < \ldots < x_n$ postoji prirodni kubni spline? Objasnite odgovor.
- (v) (5 bodova) Provjerite da li je funkcija

$$s(x) = \begin{cases} 2(x+1) + (x+1)^3, & x \in [-1,0] \\ 3 + 5x + 3x^2, & x \in [0,1] \\ 11 + 11(x-1) + 3(x-1)^2 - (x-1)^3, & x \in [1,2] \end{cases}$$

kubni splajn na intervalu [-1, 2]. Je li s(x) prirodni kubni spline?

6. (10 bodova)

- (i) (2 boda) Pokažite da ortogonalna transformacija "čuva" euklidsku normu.
- (ii) (2 boda) Definirajte QR rastav matrice $A \in \mathbb{R}^{n \times k}$, k < n, r(A) = k.
- (iii) (5 bodova) Objasnite kako se QR rastav matrice A iz (ii) koristi za rješavanje problema najmanjih kvadrata $\min_{x \in \mathbb{R}^k} \|Ax b\|_2$, $b \in \mathbb{R}^n$.
- (iv) (1 bod) Navedite primjer jedne ortogonalne matrice $Q \in \mathbb{R}^{2\times 2}$.

7. (5 bodova)

- (ii) (3 boda) Izračunajte prvu iteraciju Newtonove metode za rješavanje sustava

$$2x^3 - y^2 = 1,$$
$$xy^3 - y = 4,$$

pri čemu je početna iteracija $[1,\,1.5]^T.$

Napomena: Vrijeme pisanja je **150 minuta**. Dozvoljena je upotreba džepnog kalkulatora. Radi lakšeg ispravljanja svaki zadatak treba rješavati na posebnom listu papira.