Predicate Logic

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

October 7, 2017

- The need for a richer language
- 2 Predicate logic as a formal language
- Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
- 6 Undecidability of predicate logic
- Expressiveness of predicate logic

- 1 The need for a richer language
- 2 Predicate logic as a formal language
- 3 Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
- 6 Undecidability of predicate logic
- Expressiveness of predicate logic

Limitation of Propositional Logic

Consider the following sentence:

Every student is younger than some instructor.

- How do we express it in propositional logic?
 - What are propositional atoms?
- To express the sentence, let us define some predicates.
 - Informally, a predicate is a function from objects to truth values.
- For example, S(andy) denotes that Andy is a student; I(paul) denotes that Paul is an instructor; Y(andy, paul) denotes that Andy is younger than Paul.
- We also use variables to denote an object.
 - S(x) means x is a student; I(x) means x is an instructor; Y(x,y) means x is younger than y.
- Here is a predicate logic formula expressing the sentence:

$$\forall x (S(x) \implies (\exists y (I(y) \land Y(x,y)))).$$

More Examples

- "Not all birds can fly."
 - Let B(x) denote x is a bird, and F(x) denote x can fly.
 - $\neg (\forall x (B(x) \Longrightarrow F(x))).$
- "Some bird cannot fly."

$$\exists x (B(x) \land \neg F(x)).$$

- Do "not all birds can fly" and "some bird cannot fly" have the same meaning?
 - What are the "meaning" of these sentences?
 - What is the "same"?

More Examples

- "Andy and Paul have the same biological maternal grandmother."
 - Let M(x, y) denote that x is y's mother.
 - Consider

$$\forall x \forall y \forall u \forall v (M(x,y) \land M(y,andy) \land M(u,v) \land M(v,paul) \implies x = u).$$

- Let m(x) denote x's biological mother.
- Consider

$$m(m(andy)) = m(m(paul)).$$

- Since everyone has exactly one biological mother, we introduce a function m(x) to denote this fact.
- In this chaper, we will consider these questions formally.

- The need for a richer language
- Predicate logic as a formal language
 - Terms
 - Formulae
 - Free and bound variables
 - Substitution
- Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
- ① Undecidability of predicate logic

Syntax

- In our examples, there are two sorts of things:
 - ▶ B(x), M(x,y), $B(x) \land \neg F(x)$ are formulae. They denote truth values;
 - y, paul, m(x) are terms. They denote objects.
- Hence a predicate vocabulary has three sets.
- \mathcal{P} is a set of predicate symbols (B(x), M(x, y)) etc).
- \mathcal{F} is a set of function symbols (m(x)) etc).
- C is a set of constant symbols (andy, paul etc).
- A function symbol $f \in \mathcal{F}$ with arity n (or n-arity) takes n arguments.
- Observe that a 0-arity (or <u>nullary</u>) function is in fact a constant.
- Hence $C \subseteq \mathcal{F}$. We can ignore C for convenience.

- The need for a richer language
- Predicate logic as a formal language
 - Terms
 - Formulae
 - Free and bound variables
 - Substitution
- 3 Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
- Output
 Undecidability of predicate logic

Terms

Definition

Terms are defined as follows.

- Any variable is a term;
- If $c \in \mathcal{F}$ is a nullary function symbol, c is a term;
- If $t_1, t_2, ..., t_n$ are terms and $f \in \mathcal{F}$ has arity n > 0, then $f(t_1, t_2, ..., t_n)$ is a term;
- Nothing else is a term.
- In Backus Naur form, we have

$$t := x \mid c \mid f(t, \ldots, t)$$

where $x \in \text{var}$ is a variable, $c \in \mathcal{F}$ a nullary function symbol, and $f \in \mathcal{F}$ a function symbol with arity > 0.

Terms

- Let $n, f, g \in \mathcal{F}$ be function symbols with arity 0, 1, and 2 respectively.
- g(f(n), n), f(f(n)), f(g(n, g(f(n), n))) are terms.
- g(n), f(n,n), n(g) are not terms.
- Let $0,1,\ldots$ be nullary function symbols, and $+,-,\times$ binary function symbols.
- $+(\times(3,x),1)$, $+(\times(x,x),+(\times(2,\times(x,y))),\times(y,y))$ are terms.
- In infix notation, they are $(3 \times x) + 1$, $(x \times x) + ((2 \times (x \times y)) + (y \times y))$.

- The need for a richer language
- Predicate logic as a formal language
 - Terms
 - Formulae
 - Free and bound variables
 - Substitution
- Proof theory of predicate logic
- Quantifier equivalences
- Semantics of predicate logic
- Undecidability of predicate logic

Formulae

Definition

Formulae are defined as follows.

- If $P \in \mathcal{P}$ is a predicate symbol with arity $n \ge 1$, and $t_1, t_2, \dots t_n$ are terms over \mathcal{F} , then $P(t_1, t_2, \dots, t_n)$ is a formula;
- If ϕ is a formula, so is $(\neg \phi)$;
- If ϕ and ψ are formulae, so are $(\phi \land \psi)$, $(\phi \lor \psi)$, and $(\phi \Longrightarrow \psi)$.
- If ϕ is a formula and x is a variable, then $(\forall x\phi)$ and $(\exists x\phi)$ are formulae:
- Nothing else is a formula.
- In Backus Naur form, we have

$$\phi ::= P(t_1, \ldots, t_n) | (\neg \phi) | (\phi \land \phi) | (\phi \lor \phi) | (\phi \Longrightarrow \phi) | (\forall x \phi) | (\exists x \phi)$$

where $P \in \mathcal{P}$ is a predicate symbol of arity n, t_1, \ldots, t_n terms over \mathcal{F} , and $x \in \text{var}$ a variable.

Convention

- It is very tedious to write parentheses.
- We will assume the following binding priorities.
 - \rightarrow ¬, $\forall x$ and $\exists x$ (tightest)
 - V, ∧
 - ▶ ⇒ (right-associative and loosest)

Parse Tree

- A predicate logic formula can be represented as a parse tree.
 - $\lor \forall x$, $\exists y$ are nodes;
 - arguments of function symbols are also nodes.
- The above figure gives the parse tree of $\forall x ((P(x) \Longrightarrow Q(x)) \land S(x,y)).$

Example

Example

Write "every son of my father is my brother" in predicate logic.

Proof.

Let *me* denote 'me', S(x,y) (x is a son of y), F(x,y) (x is the father of y), and B(x,y) (x is a brother of y) be predicate symbols of arity 2. Consider

$$\forall x \forall y (F(x, me) \land S(y, x) \implies B(y, me)).$$

Alternatively, let f(f(x)) is the father of x) be a unary function symbol. Consider

$$\forall x(S(x, f(me)) \implies B(x, me)).$$

• Can you identify problem(s) in the example?

- The need for a richer language
- Predicate logic as a formal language
 - Terms
 - Formulae
 - Free and bound variables
 - Substitution
- Proof theory of predicate logic
- Quantifier equivalences
- Semantics of predicate logic
- Undecidability of predicate logic

Constants and Variables

- Let c, d be constants (nullary functions).
- Consider $\forall x (P(x) \Longrightarrow Q(x)) \land P(c) \Longrightarrow Q(c)$.
 - If P(x) implies Q(x) for all x and P(c) is true, then Q(c) is true.
- Intuitively, $\forall y (P(y) \Longrightarrow Q(y)) \land P(c) \Longrightarrow Q(c)$ should have the same meaning.
- $\forall y (P(y) \Longrightarrow Q(y)) \land P(d) \Longrightarrow Q(d)$ is different.
 - We do not know if Q(c) is true.
- Things can get very complicated when there are several variables.
 - $\rightarrow \forall x((P(x) \Longrightarrow Q(x)) \land S(x,y))$
 - $\forall z((P(z) \Longrightarrow Q(z)) \land S(z,y))$
 - $\forall y ((P(y) \Longrightarrow Q(y)) \land S(y,x))$

Free and Bound Variables

Definition

Let ϕ be a predicate logic formula. An occurrence of x in ϕ is <u>free</u> in ϕ if it is a leaf node without ancestor nodes $\forall x$ or $\exists x$ in the parse tree of ϕ . Otherwise, the occurrence of x is <u>bound</u>. The <u>scope</u> of $\forall x$ in $\forall x \phi$ is the formula ϕ minus any subformula in ϕ of the form $\forall x \psi$ or $\exists x \psi$.

$$(\forall x (P(x) \land Q(x))) \implies (\neg P(x) \lor Q(y))$$

- The need for a richer language
- Predicate logic as a formal language
 - Terms
 - Formulae
 - Free and bound variables
 - Substitution
- Proof theory of predicate logic
- Quantifier equivalences
- Semantics of predicate logic
- Undecidability of predicate logic

Subsitution

- Variables denote objects in predicate logic.
- Hence variables can be replaced by terms (but not formulae).
 - Replace x in $x \neq x + 1$ by 2 to get $2 \neq 2 + 1$.
 - What if we replace x by 2 = 2?
- However, bound variables should not be replaced.
- The variables x and y in $\forall x\phi$ and $\exists y\psi$ denote <u>all</u> or <u>some</u> objects respectively.
 - ▶ What if we replace x in $\exists x(x=0)$ by 1?

Definition

Given a variable x, a term t and a formula ϕ , define $\phi[t/x]$ to be the formula obtained by replacing each free occurrence of x in ϕ with t.

Example

• Let $\phi = (\forall x (P(x) \land Q(x))) \implies (\neg P(x) \lor Q(y))$. Consider $\phi[f(x,y)/x].$

$$(\forall x (P(x) \land Q(x))) \implies (\neg P(x) \lor Q(y))[f(x,y)/x]$$

Variable Capture in Substitution

- Let $\phi = \exists y(y < x)$ and $\psi = \exists z(z < x)$.
 - Since ϕ and ψ only differ in <u>bound variables</u>, they should have the same meaning.
- Consider $\phi[(y-1)/x] = \exists y(y < y-1).$
- The variable y in y-1 is caught by the bound variable in ϕ .
- Consider $\psi[(y-1)/x] = \exists z(z < y-1).$
- The variable y in y-1 is not caught in the substitution $\psi[(y-1)/x]$.

Definition

Let t be a term, x a variable, and ϕ a formula. t is free for x in ϕ if no free x leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

• Examples: y - 1 is free for x in $\exists z(z < x)$; y - 1 is not free for x in $\exists y(y < x)$.

October 7, 2017

Example

- Consider $\phi = S(x) \land \forall y (P(x) \implies Q(y))$ and t = f(y, y).
- ullet The two occurrences of x in ϕ are free.
- The right occurrence of x in ϕ is in the scope of $\forall y$ and y occurs in t.
- t is not free for x in ϕ .

Substitution and Variable Capture

- When t is not free for x in ϕ , the substitution $\phi[t/x]$ is not desirable.
- However, we can always rename bound variables for substitution.
- When we write $\phi[t/x]$, we mean all bound variables in ϕ are renamed so that t is free for x in ϕ .
- Examples.
 - $\phi = \exists y (y < x)$ and t = y 1. t is not free for x in ϕ . Rename the bound variable y to z and obtain $\psi = \exists z (z < x)$. t is free for x in ψ .
 - $\phi = S(x) \land \forall y (P(x) \Longrightarrow Q(y))$ and t = f(y,y). t is not free for x in ϕ . Rename the bound variable y to z and obtain $\psi = S(x) \land \forall z (P(x) \Longrightarrow Q(z))$. t is free for x in ψ .

- Proof theory of predicate logic
- Semantics of predicate logic
- 6 Undecidability of predicate logic

Natural Deduction for Predicate Logic

- Similar to propositional logic, predicate logic has its natural deduction proof system.
- Naturally, the natural deduction proof rules for contradiction (⊥), negation (¬), and Boolean connectives (∨, ∧, ⇒) are the same as those in propositional logic.
- Additionally, there are proof rules for equality (=) and quantification (\forall and \exists).
- Again, these additional rules have two types: introduction and elimination rules.

Equality

- Let s and t be terms.
- What do we mean by s = t?
- Shall we say 2 + 1 = 2 + 1?
- What about $2^{61} 1 = 2305843009213693951$?
- Apparently, if two terms are syntactically equal, they are equal.
 - This is called intensional equality.
- In practice, if two terms denote the same object, they are equal.
 - This is called <u>extensional equality</u>.

Natural Deduction Proof Rules for Equality

The introduction rule for equality is as follows.

$$\frac{1}{t=t}=i$$

The elimination rule for equality is as follows.

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

 $(t_1 \text{ and } t_2 \text{ are free for } x \text{ in } \phi).$

- The requirement " t_1 and t_2 are free for x in ϕ " is called the side condition of the proof rule.
- By convention, we assume the side condition holds in all substitutions.

Example

Example

Show

$$x+1=1+x, (x+1)>1 \implies (x+1)>0 \vdash (1+x)>1 \implies (1+x)>0.$$

Proof.

1
$$x + 1 = 1 + x$$
 premise

2
$$(x+1) > 1 \implies (x+1) > 0$$
 premise

$$3 (1+x) > 1 \implies (1+x) > 0 = 1, 2$$

In step 3, take
$$\phi = x > 1 \Longrightarrow x > 0$$
, $t_1 = x + 1$, and $t_2 = 1 + x$. Then $\phi[t_1/x] = (x+1) > 1 \Longrightarrow (x+1) > 0$, $\phi[t_2/x] = (1+x) > 0 \Longrightarrow (1+x) > 0$.

Reflexivity of Equality

Example

Show $t_1 = t_2 \vdash t_2 = t_1$.

Proof.

- 1 $t_1 = t_2$ premise
- 2 $t_1 = t_1 = i$
- 3 $t_2 = t_1 = e, 1, 2$

Take
$$\phi = (x = t_1)$$
. $\phi[t_1/x] = (t_1 = t_1)$ and $\phi[t_2/x] = (t_2 = t_1)$.

Transitivity of Equality

Example

Show $t_1 = t_2$, $t_2 = t_3 \vdash t_1 = t_3$.

Proof.

1
$$t_2 = t_3$$
 premise

2
$$t_1 = t_2$$
 premise

3
$$t_1 = t_3 = e, 1, 2$$

Take
$$\phi = (t_1 = x)$$
. $\phi[t_2/x] = (t_1 = t_2)$ and $\phi[t_3/x] = (t_1 = t_3)$.

 Thus, the rules =i and =e give us the reflexity, symmetry, and transitivity of equality.

Natural Deduction Proof Rules for Universal Quantification

• The elimination rule for universal quantification is the following:

$$\frac{\forall x \phi}{\phi[t/x]} \ \forall x e$$

when t is free for x in ϕ .

- To see why t must be free for x in ϕ , let ϕ be $\exists y(x < y)$. For natural numbers, $\forall x \exists y(x < y)$ is clearly true ("for any number, there is a larger number"). But if we take t = y, $\phi[t/x] = \exists y(y < y)$. This is wrong. Hence t must be free for x in ϕ .
 - If we really need to replace x by y in this case, we should rewrite $\exists y(x < y)$ to $\exists z(x < z)$ and obtain $\exists z(x < z)[x/y] = \exists z(y < z)$.

Natural Deduction Proof Rules for Universal Quantification

• The introduction rule for universal quantification opens a new box for a fresh variable x_0 :

$$\begin{array}{c|c}
x_0 \\ \vdots \\ \phi[x_0/x] \\ \hline
 \forall x \phi
\end{array}
\forall x i$$

(By "fresh," we mean x_0 does not occur outside of the box.)

- Informally, the rule $\forall x$ i says "if we can establish $\phi[x_0/x]$ for a fresh x_0 , then we can derive $\forall x \phi$."
 - Intuitively, x_0 can be an arbitrary term since it is fresh and assumes nothing. If we can show $\phi[x_0/x]$, we have $\forall x \phi$.
 - Another way to see this is to replace x_0 by a term t in the box. We would have a proof for $\phi[t/x]$. That is, we have shown $\forall x \phi$.

Example

Example

Show $\forall x (P(x) \implies Q(x)), \forall x P(x) \vdash \forall x Q(x).$

Proof.

```
 \begin{array}{cccc} 1 & \forall x(P(x) \Longrightarrow Q(x)) & \text{premise} \\ 2 & \forall xP(x) & \text{premise} \\ 3 & x_0 & P(x_0) \Longrightarrow Q(x_0) & \forall x \in 1 \\ 4 & P(x_0) & \forall x \in 2 \\ 5 & Q(x_0) & \Longrightarrow \text{e 4, 3} \\ 6 & \forall xQ(x) & \forall x \text{i 3-5} \end{array}
```

Example

Example

Show $P(t), \forall x (P(x) \Longrightarrow \neg Q(x)) \vdash \neg Q(t)$ for any term t.

Proof.

- 1 P(t) premise 2 $\forall x(P(x) \Longrightarrow \neg Q(x))$ premise 3 $P(t) \Longrightarrow \neg Q(t)$ $\forall x \in 2$
- $\begin{array}{ccc}
 4 & \neg Q(t) & \Longrightarrow e \ 1. \ 3
 \end{array}$
 - In step 3, we apply $\forall x$ e by replacing x with t. We could apply the same rule with a different term, say, a. Hence the rule $\forall x$ e is in fact a scheme of rules; one for each term t (free of x in ϕ).
 - Also, we have different introduction and elimination rule. for different variables. That is, we have $\forall x i$, $\forall x e$, $\forall y i$, $\forall y e$, and so on. We will simply write $\forall i$ and \forall e when bound variables are clear.

Universal Quantification and Conjunction

- It is helpful to compare proof rules for universal quantification and conjunction.
- Introduction rules:
 - ▶ To establish $\forall x \phi$, we need to show $\phi[t/x]$ for any term t. This is accomplished by proving $\phi[x_0/x]$ with the box for a fresh variable x_0 ;
 - ▶ To establish $\phi \land \psi$, we need to show ϕ and ψ .
- Elimination rules:
 - ▶ To eliminate $\forall x \phi$, we pick a term (free for x in ϕ) and deduce $\phi[t/x]$;
 - ▶ To eliminate $\phi \wedge \psi$, we deduce ϕ (or ψ).

Natural Deduction Proof Rule for Existential Quantification

• The introduction rule for existential quantification is as follows.

$$\frac{\phi[t/x]}{\exists x \phi} \ \exists x i$$

when t is free for x in ϕ .

- To see why t must be free for x in ϕ , consider $\exists x \forall y (x = y)$. This is clearly wrong for, say, natural numbers. Let $\phi = \forall y (x = y)$ and t = y. Since $\phi[t/x] = \forall y (y = y)$ is deducible (=i, $\forall y$ i), we would have $\exists x \forall y (x = y)$.
- Recall the elimination rule for universal quantification:

$$\frac{\forall x \phi}{\phi[t/x]} \ \forall x e$$

when *t* is free for x in ϕ .

- $\forall x$ e is the "dual" of $\exists x$ i.
 - Recall the duality of ∧e and ∨i.

Natural Deduction Proof Rule for Existential Quantification

The elimination rule for existential quantification is as follows.

- Informally, the rule $\exists x$ e says: to show χ from $\exists x \phi$, we show χ by assuming $\phi[x_0/x]$ for a fresh variable x_0 .
 - Intuitively, x_0 stands for an unknown term t such that $\phi[t/x]$ holds. If we can deduce χ by assuming $\phi[t/x]$, then χ is deducible from $\exists x \phi$.
- Note that x_0 must not occur in χ .

Existential Quantification and Disjunction

- It is helpful to compare the elimination rules for existential quantification and disjunction.
- Recall

- To eliminate $\phi \lor \psi$, we show that χ is deducible by assuming ϕ or assuming ψ .
- To eliminate $\exists x \phi$, we show that χ is deducible by assuming $\phi[x_0/x]$.

Subformula Property I

- An elimination rule has <u>subformula property</u> if it must conclude with a subformula of the eliminated formula.
- For example, both $\wedge e_1$ and $\neg e$ have the subformula property.

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \quad \frac{\neg \neg \phi}{\phi} \neg \neg e$$

• Since the conclusion of $\forall xe$ has the same logical structure as the eliminated formula, we also say $\forall xe$ has the subformula property.

$$\frac{\forall x \phi}{\phi[t/x]} \ \forall x e$$

• Strictly speaking, $\phi[t/x]$ may not be a subformula of $\forall x \phi$.

Subformula Property II

- The subformula property helps proof search.
 - We need not invent a formula for rules with the property.
 - Such rules are good for automated proof search.
- \vee e and $\exists x$ e however do not have the subformula property.

• The conclusion χ must be chosen carefully.

Examples I

Example

Show $\forall x \phi \vdash \exists x \phi$.

Proof.

```
\begin{array}{ccc} 1 & \forall x\phi & \text{premise} \\ 2 & \phi[x/x] & \forall x \in 1 \\ 3 & \exists x\phi & \exists x \text{i} \ 2 \\ \text{(Is $x$ free for $x$ in $\phi[x/x]$?)} \end{array}
```

Is it correct?

Examples II

Example

Show
$$\forall x (P(x) \Longrightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x).$$

Proof.

```
\forall x (P(x) \Longrightarrow Q(x))
                                     premise
          \exists x P(x)
                                   premise
 3
    x_0 P(x_0)
                                assumption
 4
    P(x_0) \Longrightarrow Q(x_0) \quad \forall x \in 1
 5 Q(x_0)
                     ⇒ e 3, 4
 6
   \exists x Q(x)
                                    ∃xi 5
          \exists x Q(x)
                                    \exists xe 2, 3-6
(Can we close the box at line 5 instead of 6? Why not?)
```

4□ > 4□ > 4 = > 4 = > = 90

Examples III

Example

Show $\exists x P(x), \forall x \forall y (P(x) \implies Q(y)) \vdash \forall y Q(y).$

Proof.

```
\forall x \forall y (P(x) \implies Q(y))
                                               premise
3
   y<sub>0</sub>
    x_0 P(x_0)
                                               assumption
5
           \forall y (P(x_0) \implies Q(y))
                                            ∀xe 2
6
           P(x_0) \Longrightarrow Q(y_0)
                                            ∀ye 5
           Q(y_0)
                                                \implies e 4. 6
8
           Q(y_0)
                                               \exists xe 1, 4-7
9
           \forall y Q(y)
                                               ∀vi 3–8
```

 $\exists x P(x)$

premise

Box Box Box I

- Fresh variables in box must not appear outside!
- If not, we could show $\exists x P(x), \forall x (P(x) \Longrightarrow Q(x)) \vdash \forall y Q(y)!$

```
\exists x P(x)
                          premise
        \forall x (P(x) \Longrightarrow Q(x)) premise
3
   x_0
   x_0 P(x_0)
                                  assumption ]
        P(x_0) \Longrightarrow Q(x_0) \quad \forall x \in 2
5
                     ⇒ e 4, 5 |
6
    Q(x_0)
       Q(x_0)
                                ∃xe 1. 4–6
        \forall vQ(v)
                                   ∀yi 3–7
```

Outline

- Proof theory of predicate logic
- Quantifier equivalences
- Semantics of predicate logic
- 6 Undecidability of predicate logic

Equivalent Predicate Logic Formulae I

- Let ϕ and ψ be predicate logic formulae.
- $\phi \dashv \vdash \psi$ denotes tha $\phi \vdash \psi$ and $\psi \vdash \phi$.

Equivalent Predicate Logic Formulae II

Theorem

Let ϕ and ψ be predicate logic formulae. We have

- **2** When x is not free in ψ :
 - (a) $\forall x \phi \land \psi \dashv \vdash \forall x (\phi \land \psi);$ (b) $\forall x \phi \lor \psi \dashv \vdash \forall x (\phi \lor \psi);$
 - (c) $\exists x \phi \land \psi \dashv \vdash \exists x (\phi \land \psi);$ (d) $\exists x \phi \lor \psi \dashv \vdash \exists x (\phi \lor \psi);$
 - (e) $\forall x(\psi \Longrightarrow \phi) \dashv \vdash \psi \Longrightarrow \forall x \phi;$
 - (f) $\exists x(\phi \Longrightarrow \psi) \dashv \vdash \forall x\phi \Longrightarrow \psi;$
 - (g) $\forall x(\phi \Longrightarrow \psi) \dashv \exists x\phi \Longrightarrow \psi$;
 - $(h) \quad \exists x(\psi \Longrightarrow \phi) \dashv \vdash \psi \Longrightarrow \exists x \phi$

$\neg \forall x \phi \vdash \exists x \neg \phi$

• The proof structure is similar to $\neg(p_1 \land p_2) \vdash \neg p_1 \lor \neg p_2$.

$\neg(p_1 \land p_2) \vdash \neg p_1 \lor \neg p_2$

$\exists x \neg \phi \vdash \neg \forall x \phi$

1		$\exists x \neg \phi$	premise		
2		$\forall x \phi$	assumption		1
3	<i>x</i> ₀	$\neg \phi[x_0/x]$	assumption]	
4		$\phi[x_0/x]$	∀e 2	ĺ	
5		Τ	¬e 4, 3	j	
6		1	∃ <i>x</i> e 1, 3–5		
7		$\neg \forall x \phi$	¬i 2 − 6		

$\forall x \phi \land \psi \vdash \forall x (\phi \land \psi)$ and $\forall x (\phi \land \psi) \vdash \forall x \phi \land \psi$ (x not free in ψ)

1		$(\forall x \phi) \wedge \psi$	premise	
2		$\forall x \phi$	$\wedge e_1 1$	
3		ψ	∧e ₂ 2	
4	<i>x</i> ₀			1
5		$\phi[x_0/x]$	∀ <i>x</i> e 2	j
6		$\phi[x_0/x] \wedge \psi$	∧i 5, 3	
7		$(\phi \wedge \psi)[x_0/x]$	${\it x}$ not free in ψ	
8		$\forall x (\phi \wedge \psi)$	∀ <i>x</i> i 4–7	
1		$\forall x (\phi \wedge \psi)$	premise	
1 2	<i>x</i> ₀	$\forall x (\phi \wedge \psi)$	premise	1
	<i>x</i> ₀	$\forall x (\phi \wedge \psi)$ $(\phi \wedge \psi)[x_0/x]$	premise ∀xe 1]
2	<i>x</i> ₀	(, , ,	•]
2	<i>x</i> ₀	$(\phi \wedge \psi)[x_0/x]$	∀ <i>x</i> e 1]
2 3 4	<i>x</i> ₀	$(\phi \wedge \psi)[x_0/x]$ $\phi[x_0/x] \wedge \psi$	$\forall x \in 1$ $x \text{ not free in } \psi$]
2 3 4 5	<i>x</i> ₀	$(\phi \wedge \psi)[x_0/x]$ $\phi[x_0/x] \wedge \psi$ ψ	$\forall x \in 1$ $x \text{ not free in } \psi$ $\land e_2 \notin 4$]

$(\exists x \phi) \lor (\exists x \psi) \vdash \exists x (\phi \lor \psi)$

1		$(\exists x \phi) \lor (\exists x \psi)$	premise		
2		$\exists x \phi$	assumption]
3	<i>x</i> ₀	$\phi[x_0/x]$	assumption]	
4		$\phi[x_0/x] \vee \psi[x_0/x]$	∨i ₁ 3		
5		$(\phi \lor \psi)[x_0/x]$	same as 4		
6		$\exists x (\phi \lor \psi)$	∃ <i>x</i> i 5		
7		$\exists x (\phi \lor \psi)$	∃xe 2, 3–6		
2'		$\exists x \psi$	assumption]
3'	<i>y</i> ₀	$\psi[y_0/x]$	assumption]	
4'		$\phi[y_0/x] \vee \psi[y_0/x]$	√i ₂ 3′		
5'		$(\phi \lor \psi)[y_0/x]$	same as 4'		
6'		$\exists x (\phi \lor \psi)$	∃ <i>x</i> i 5'		
7'		$\exists x (\phi \lor \psi)$	∃xe 2', 3'-6'		
8		$\exists x (\phi \lor \psi)$	∨e 1, 2–7, 2'–7'		

$\exists x \exists y \phi \vdash \exists y \exists x \phi$

1		$\exists x \exists y \phi$	premise		
2	<i>x</i> ₀	$(\exists y\phi)[x_0/x]$	assumption		1
3		$\exists y(\phi[x_0/x])$	x and y different		ĺ
4	<i>y</i> ₀	$\phi[x_0/x][y_0/y]$	assumption	1	
5		$\phi[y_0/y][x_0/x]$	x , y , x_0 , y_0 different		
6		$\exists x \phi[y_0/y]$	∃ <i>x</i> i 5		
7		$\exists y \exists x \phi$	∃ <i>y</i> i 6		
8		$\exists y \exists x \phi$	∃ <i>y</i> e 3, 4–7		
9		$\exists y \exists x \phi$	∃ <i>x</i> e 1, 2–8		

Outline

- Semantics of predicate logic
 - Models
 - Semantic entailment
 - Semantics of equality

Deduction and Satisfaction

- Let Γ be a set of predicate logic formulae and ψ a predicate logic formula.
- We know how to show $\Gamma \vdash \psi$.
 - Intuitively, ψ "holds" when every formulae in Γ hold.
- What if we want to show $\Gamma \not\vdash \psi$?
 - How do we show "there is no such deduction?"
- Intuitively, we want to argue that ψ does not hold even when every formulae in Γ hold.
- Hence we will discuss when predicate logic formulae "hold."

Outline

- The need for a richer language
- Predicate logic as a formal language
- 3 Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
 - Models
 - Semantic entailment
 - Semantics of equality

Models

- Recall that we have constant, function, and predicate symbols in predicate logic.
- The semantics of terms and atomic predicates are defined in models.

Definition

Let $\mathcal F$ and $\mathcal P$ be a set of function and predicate symbols respectively. A model $\mathcal M$ of $(\mathcal F,\mathcal P)$ consists of

- A non-empty set A called the universe;
- For function symbol $f \in \mathcal{F}$ with arity $n \ge 0$, a function $f^{\mathcal{M}} : A^n \to A$; • Particularly, a constant symbol $c \in \mathcal{F}$ is an element $c^{\mathcal{M}} \in A$.
- For predicate symbol $P \in \mathcal{P}$ with arity n > 0, a set $P^{\mathcal{M}} \subseteq A^n$.

Example of Models

- Let $\mathcal{F} = \{e, \cdot\}$ and $\mathcal{P} = \{\leq\}$ where e is a constant, \cdot a binary function, and \leq a binary predicate symbol respectively. We use infix notation for \cdot and \leq .
- Consider the model M:
 - the universe A is the set of all binary finite strings;
 - $e^{\mathcal{M}}$ is the empty string ϵ ;
 - $ightharpoonup \mathcal{M}$ is string concatenation;
 - $\leq^{\mathcal{M}}$ is the string prefix relation.
- For instance, 00 $\cdot^{\mathcal{M}}$ 111 = 00111 and 01 $\leq^{\mathcal{M}}$ 011.
- In this model,
 - $\forall x((x \le x \cdot e) \land (x \cdot e \le x))$ is true.
 - ▶ $\exists y \forall x (y \le x)$ is true.
 - $\forall x \forall y \forall z ((x \le y) \implies (x \cdot z \le y \cdot z)) \text{ is false.}$

Environment

- For the semantics of $\forall x \phi$ and $\exists x \phi$, we need to check whether ϕ is true when x is assigned to an element of the universe.
- A model $(\mathcal{F}, \mathcal{P})$ however does not give semantics to variables.

Definition

An environment for a universe A is a function $I : \text{var} \to A$. If I is an environment, $x \in \text{var}$, and $a \in A$, the environment $I[x \mapsto a]$ is defined as follows.

$$I[x \mapsto a](y) = \begin{cases} a & \text{if } x = y \\ I(y) & \text{if } x \neq y \end{cases}$$

Semantics of Predicate Logic Formulae

Definition

Let \mathcal{M} be a model of $(\mathcal{F}, \mathcal{P})$, I an environment, and ϕ a predicate logic formula. $\mathcal{M} \models_I \phi$ holds is defined as follows.

- $\mathcal{M} \models_I P(t_1, t_2, \dots, t_n)$ holds if $(a_1, a_2, \dots, a_n) \in P^{\mathcal{M}}$ where $a_1, a_2, \ldots, a_n \in A$ are computed for t_1, t_2, \ldots, t_n by \mathcal{F} and I;
- $\mathcal{M} \models_I \forall x \psi$ holds if $\mathcal{M} \models_{I[x \mapsto a]} \psi$ for every $a \in A$;
- $\mathcal{M} \models_I \exists x \psi$ holds if $\mathcal{M} \models_{I[x \mapsto a]} \psi$ for some $a \in A$;
- $\mathcal{M} \models_{I} \neg \psi$ holds if it is not the case $\mathcal{M} \models_{I} \psi$;
- $\mathcal{M} \models_I \psi_0 \lor \psi_1$ holds if $\mathcal{M} \models_I \psi_0$ holds or $\mathcal{M} \models_I \psi_1$ holds;
- $\mathcal{M} \models_{l} \psi_{0} \land \psi_{1}$ holds if $\mathcal{M} \models_{l} \psi_{0}$ holds and $\mathcal{M} \models_{l} \psi_{1}$ holds;
- $\mathcal{M} \vDash_{l} \psi_{0} \implies \psi_{1}$ holds if $\mathcal{M} \vDash_{l} \psi_{1}$ holds whenever $\mathcal{M} \vDash_{l} \psi_{0}$ holds.

If $\mathcal{M} \models_I \phi$ holds, we say ϕ computes to T in \mathcal{M} with respect to I. Also, we write $\mathcal{M} \not\models_I \phi$ when it is not the case $\mathcal{M} \models_I \phi$.

Sentences

- Let ϕ be a predicate logic formula, I and I' two environments that agree on free variables of ϕ .
 - ▶ That is, I(x) = I'(x) for every free variable x in ϕ .
- By induction on ϕ , it is straightforward to show $\mathcal{M} \models_I \phi$ holds if and only if $\mathcal{M} \models_{I'} \phi$.
- A sentence is a predicate logic formula without free variables.
- ullet Let ϕ be a sentence. Either
 - $\mathcal{M} \models_I \phi$ holds for every environment *I*; or
 - $\mathcal{M} \vDash_I \phi$ does not hold for every environment I.
- Hence we write $\mathcal{M} \models \phi$ (or $\mathcal{M} \not\models \phi$) for a sentence ϕ since the choice of l does not matter.

Example

- Consider $(\mathcal{F}, \mathcal{P}) = (\{alma\}, \{loves\})$ where alma is a constant and loves is a binary predicate.
- Let \mathcal{M} be a model of $(\mathcal{F}, \mathcal{P})$ with the universe $A = \{a, b, c\}$, alma $^{\mathcal{M}} = a$, and loves $^{\mathcal{M}} = \{(a, a), (b, a), (c, a)\}$.
- Consider the statement:

None of Alma's lovers' lovers love her.

• We first translate the statement into a predicate logic formula ϕ :

$$\forall x \forall y (\mathsf{loves}(x, \mathsf{alma}) \land \mathsf{loves}(y, x) \implies \neg \mathsf{loves}(y, \mathsf{alma})).$$

- We have $\mathcal{M} \not\models \phi$.
 - Choose a for x and b for y. We have $(a, a) \in \mathsf{loves}^{\mathcal{M}}$ and $(b, a) \in \mathsf{loves}^{\mathcal{M}}$ but it is not the case $(b, a) \notin \mathsf{loves}^{\mathcal{M}}$.

Outline

- The need for a richer language
- Predicate logic as a formal language
- Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
 - Models
 - Semantic entailment
 - Semantics of equality

Semantic Entailment

Definition

Let Γ be a (possibly infinite) set of predicate logic formulae and ψ a predicate logic formula.

- $\Gamma \vDash \psi$ holds (or Γ semantically entails ψ) if for every model \mathcal{M} and environment I, $\mathcal{M} \vDash_I \psi$ holds whenever $\mathcal{M} \vDash_I \phi$ holds for every $\phi \in \Gamma$;
- ψ is <u>satisfiable</u> if there is a model \mathcal{M} and an environment I such that $\mathcal{M} \vDash_I \psi$ holds;
- ψ is <u>valid</u> if $\mathcal{M} \models_I \psi$ holds for every model \mathcal{M} and environment I where we can compute ψ ;
- Γ is <u>consistent</u> or <u>satisfiable</u> if there is a model \mathcal{M} and an environment I such that $\mathcal{M} \models_I \phi$ for every $\phi \in \Gamma$.
- Note that "⊨" has two different meanings:
 - $\mathcal{M} \models \psi$ means " ψ computes to T in \mathcal{M} ;"
 - $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ means " ψ is semantically entailed by $\phi_1, \phi_2, \dots, \phi_n$."

Checking $\mathcal{M} \vDash \psi$ and $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$

- Let $\psi, \phi_1, \phi_2, \dots, \phi_n$ be sentences.
- To check if $\mathcal{M} \vDash \psi$ holds, we need to enumerate all elements in the universe if ψ contains \forall or \exists .
- To check if $\phi_1, \phi_2, \dots, \phi_n \models \psi$ holds, we need to consider all possible models satisfying $\phi_1, \phi_2, \dots, \phi_n$.
- Both sound difficult since a model may contain an <u>infinite</u> number of elements in its universe.
- However, we may still prove semantic entailments.

Examples I

Example

Show $\forall x (P(x) \Longrightarrow Q(x)) \models \forall x P(x) \Longrightarrow \forall x Q(x)$.

Proof.

Let \mathcal{M} be a model that $\mathcal{M} \models \forall x (P(x) \Longrightarrow Q(x))$. There are two cases:

- $\mathcal{M} \not\models \forall x P(x)$. Then $\mathcal{M} \models \forall x P(x) \implies \forall x Q(x)$.
- $\mathcal{M} \vDash \forall x P(x)$. Let a be an element in the universe of \mathcal{M} . We have $a \in P^{\mathcal{M}}$ since $\mathcal{M} \vDash \forall x P(x)$ and hence $a \in Q^{\mathcal{M}}$ since $\mathcal{M} \vDash \forall x (P(x) \Longrightarrow Q(x))$. That is, $\mathcal{M} \vDash \forall x Q(x)$. We conclude $\mathcal{M} \vDash \forall x P(x) \Longrightarrow \forall x Q(x)$.

Examples II

Example

Show $\forall x P(x) \implies \forall x Q(x) \notin \forall x (P(x) \implies Q(x)).$

Proof.

Let \mathcal{M}' be a model where $A' = \{a, b\}$, $P^{\mathcal{M}'} = \{a\}$, and $Q^{\mathcal{M}'} = \{b\}$. Since $\mathcal{M}' \notin \forall x P(x)$, $\mathcal{M}' \vDash \forall x P(x) \implies \forall x Q(x)$. Since $a \in P^{\mathcal{M}'}$ but $a \notin Q^{\mathcal{M}'}$, $\mathcal{M}' \notin \forall x (P(x) \implies Q(x))$.

Outline

- The need for a richer language
- 2 Predicate logic as a formal language
- Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
 - Models
 - Semantic entailment
 - Semantics of equality

Semantics of Equality

- Observe that = is also a binary predicate.
- But the symbol "=" is somewhat special.
 - We did not say $= \in \mathcal{P}$.
 - Rather, we explicitly say that = denotes the equality.
- This is because we do not want to interpret the equality arbitrarily.
 - It sounds absurd if a = b means a is not b.
- In all model \mathcal{M} , we always have $=^{\mathcal{M}} = \{(a, a) : a \in A\}$.

Outline

- The need for a richer language
- Predicate logic as a formal language
 - Terms
 - Formulae
 - Free and bound variables
 - Substitution
- 3 Proof theory of predicate logic
- Quantifier equivalences
- Semantics of predicate logic
 - Models
 - Semantic entailment
 - Semantics of equality
- 6 Undecidability of predicate logic
- Expressiveness of predicate logic
 - Existential second-order logic
 - Universal second-order logic
- Bow-Yaw Wang (Academia Sinica)

Validity Problem for Predicate Logic

Definition

Given a predicate logic formula ϕ , the <u>validity problem</u> for predicate logic is to check whether $\models \phi$ holds or not.

- For a propositional logic formula ϕ , it is decidable to check whether $\models \phi$ holds.
 - ► The validity problem for propositional logic is coNP-complete.
- ullet For a predicate logic formula ϕ , it is unclear how to design an algorithm.
- We will show the validity problem for predicate logic is undecidable.

Post Correspondence Problem

Definition

Given $C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$ where s_i , t_i are non-empty binary strings for every $1 \le i \le k$. The Post correspondence problem (PCP) is to check whether there are $1 \le i_1, i_2, \dots, i_n \le k$ such that $s_{i_1}s_{i_2}\cdots s_{i_n} = t_{i_1}t_{i_2}\cdots t_{i_n}$.

• For example, consider C = ((1, 101), (10, 00), (011, 11)). We have

$$\underline{101110011} = \underline{101110011}.$$

- The Post correspondence problem is undecidable.
 - For details, study computational complexity.

Undecidability of Validity Problem I

Theorem

The validity problem for predicate logic is undecidable.

Proof.

Let $C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$ be an instance of PCP. We build a predicate logic formula ϕ so that C has a solution iff $\models \phi$ holds. Let $\mathcal{F} = \{e, f_0, f_1\}$ and $\mathcal{P} = \{P\}$. The function symbols $e, f_0(), f_1()$ encode binary strings. The binary predicate symbol P(s, t) means "there are i_1, i_2, \dots, i_m so that $s = s_{i_1} s_{i_2} \cdots s_{i_m}$ and $t = t_{i_1} t_{i_2} \cdots t_{i_m}$." For instance, $1011 = f_1(f_1(f_0(f_1(e)))) = f_{1011}(e)$. Moreover, we write $f_{b_1 b_2 \cdots b_h}(v)$ for $f_{b_h}(f_{b_{h-1}} \cdots f_{b_1}(v))$ where $b_1 b_2 \cdots b_h$ is a binary string.

Undecidability of Validity Problem II

Proof (cont'd).

Define

$$\phi_{1} \stackrel{\triangle}{=} \bigwedge_{i=1}^{k} P(f_{s_{i}}(e), f_{t_{i}}(e))$$

$$\phi_{2} \stackrel{\triangle}{=} \forall v \forall w (P(v, w) \Longrightarrow \bigwedge_{i=1}^{k} P(f_{s_{i}}(v), f_{t_{i}}(w))$$

$$\phi_{3} \stackrel{\triangle}{=} \exists z P(z, z)$$

We claim $\models \phi_1 \land \phi_2 \implies \phi_3$ iff C has a solution.

Suppose $\vDash \phi_1 \land \phi_2 \Longrightarrow \phi_3$. Consider the model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ as follows. The universe A is the set of all finite binary strings. $e^{\mathcal{M}} \stackrel{\triangle}{=} \epsilon$, $f_0^{\mathcal{M}}(s) \stackrel{\triangle}{=} s0$, and $f_1^{\mathcal{M}}(s) \stackrel{\triangle}{=} s1$. Finally, $P^{\mathcal{M}} = \{(s,t): \text{ there are } i_1,i_2,\ldots,i_m \text{ so that } s = s_{i_1}s_{i_2}\cdots s_{i_m} \text{ and } t = t_{i_1}t_{i_2}\cdots t_{i_m}\}$. We have $\mathcal{M} \vDash \phi_1 \land \phi_2 \Longrightarrow \phi_3$. Moreover, since $\mathcal{M} \vDash \phi_1$ and $\mathcal{M} \vDash \phi_2$ (why?), $\mathcal{M} \vDash \phi_3$. That is, there is a binary string z and i_1,i_2,\ldots,i_n such that $z = s_{i_1}s_{i_2}\cdots s_{i_n} = t_{i_1}t_{i_2}\cdots t_{i_n}$.

Undecidability of Validity Problem III

Proof (cont'd).

Conversely, suppose C has a solution i_1, i_2, \ldots, i_n that $s_{i_1}s_{i_2}\cdots s_{i_n} = t_{i_1}t_{i_2}\cdots t_{i_n}$. We need to show $\mathcal{M}' \vDash \phi_1 \land \phi_2 \Longrightarrow \phi_3$ for every model \mathcal{M}' defining $e^{\mathcal{M}'}$, $f_0^{\mathcal{M}'}$, $f_1^{\mathcal{M}'}$, and $P^{\mathcal{M}'}$. Clearly, $\mathcal{M}' \vDash \phi_1 \land \phi_2 \Longrightarrow \phi_3$ when $\mathcal{M}' \not\models \phi_1 \land \phi_2$. It suffices to consider $\mathcal{M}' \vDash \phi_1 \land \phi_2$, and show $\mathcal{M}' \vDash \phi_3$ as well. Let A' be the universe of \mathcal{M}' . We interpret finite binary strings in A' as follows.

$$\begin{array}{lll} \operatorname{interpret}(\epsilon) & \stackrel{\triangle}{=} & e^{\mathcal{M}'} \\ \operatorname{interpret}(s0) & \stackrel{\triangle}{=} & f_0^{\mathcal{M}'}(\operatorname{interpret}(s)) \\ \operatorname{interpret}(s1) & \stackrel{\triangle}{=} & f_1^{\mathcal{M}'}(\operatorname{interpret}(s)). \end{array}$$

Hence, for instance, the string 1011 is interpreted as the element $f_1^{\mathcal{M}'}(f_1^{\mathcal{M}'}(f_0^{\mathcal{M}'}(f_1^{\mathcal{M}'}(e^{\mathcal{M}'}))))$. Generally, a finite binary string s is interpreted as $f_s^{\mathcal{M}'}(e^{\mathcal{M}'})$ in A'.

Undecidability of Validity Problem IV

Proof (cont'd).

Since $\mathcal{M}' \vDash \phi_1$, we have

$$(\text{interpret}(s_i), \text{interpret}(t_i)) \in P^{\mathcal{M}'} \text{ for } 1 \leq i \leq k.$$

Since $\mathcal{M}' \models \phi_2$, we have for every (interpret(s), interpret(t)) $\in P^{\mathcal{M}'}$,

$$(\text{interpret}(ss_i), \text{interpret}(tt_i)) \in P^{\mathcal{M}'} \text{ for } 1 \leq i \leq k.$$

Thus,

$$(\text{interpret}(s_{i_1}s_{i_2}\cdots s_{i_n}), \text{interpret}(t_{i_1}t_{i_2}\cdots t_{i_n})) \in P^{\mathcal{M}'}.$$

Moreover, $s_{i_1}s_{i_2}\cdots s_{i_n}=t_{i_1}t_{i_2}\cdots t_{i_n}$ since i_1,i_2,\ldots,i_n is a solution to C. Hence interpret $(s_{i_1}s_{i_2}\cdots s_{i_n})=$ interpret $(t_{i_1}t_{i_2}\cdots t_{i_n})$. In other words, $\mathcal{M}'\models\phi_3$.

Undecidability of Validity Problem V

Corollary

The satisfiability problem for predicate logic is undecidable.

Proof.

Observe $\vDash \phi$ holds iff $\neg \phi$ is not satisfiable.

Theorem

For any predicate logic sentence ϕ , $\vdash \phi$ iff $\vDash \phi$.

Corollary

It is undecideable to check whether $\vdash \phi$ for any predicate logic sentence ϕ .

- The undecidability of provability problem for predicate logic means it is impossible to build a perfect automatic theorem prover.
- Just like art, human creativity is still important in mathematics!

A Glimpse into Completeness I

- Similar to propositional logic, the natural deduction proof system for prediate logic is both sound and complete.
- Proving completeness however is much harder for predicate logic.
 - ▶ There is no truth table for predicate logic.
- We will give the first step to establish completeness.

A Glimpse into Completeness II

Lemma

Let Γ be a set of predicate logic formulae. The following are equivalent:

- **1** $\Gamma \vDash \phi$ implies $\Gamma \vdash \phi$;

Proof.

- (1) to (2). Suppose $\Gamma \vDash \bot$. Then $\Gamma \vdash \bot$ by (1).
- (2) to (1). Suppose $\Gamma \vDash \phi$. Then $\Gamma \cup \{\neg \phi\} \vDash \bot$. Hence $\Gamma \cup \{\neg \phi\} \vdash \bot$.

Therefore $\Gamma \vdash \phi$ using PBC.

Completeness and Undecidability

- We have two facts about predicate logic formulae.
 - $\blacktriangleright \models \phi \text{ implies } \vdash \phi; \text{ and }$
 - it is undecidable to check if $\vdash \phi$.
- If a predicate logic formula is valid, then there is a natural deduction proof.
- On the other hand, it is impossible to have a program which checks whether there is a natural deduction proof.

Outline

- Expressiveness of predicate logic
 - Existential second-order logic
 - Universal second-order logic Bow-Yaw Wang (Academia Sinica)

Reachability

Example

Let $A = \{s_0, s_1, s_2, s_3\}$ and $R^{\mathcal{M}} = \{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$. We write $s \to s'$ if $(s, s') \in R^{\mathcal{M}}$, and say there is a <u>transition</u> from s to s'.

Definition

Given a directed graph G and nodes n, n' in G, the <u>reachability problem</u> for G is to check whether there is a path of transition from n to n'.

Reachability in Predicate Logic

- Let $(\mathcal{F}, \mathcal{P}) = (\emptyset, \{R\})$ with a binary predicate R.
- A model of $(\mathcal{F}, \mathcal{P})$ denotes a directed graph.
- Can we write a predicate logic formula ϕ with free variables u and v to express $u \to \cdots \to v$?
- Consider

$$u = v \lor R(u, v) \lor \exists x_0 (R(u, x_0) \land R(x_0, v)) \lor \exists x_0 \exists x_1 (R(u, x_0) \land R(x_0, x_1) \land R(x_1, v)) \lor \cdots$$

- But this is not a predicate logic formula since it is infinite.
- We will show it is impossible to express reachability in predicate logic.

Compactness Theorem

Theorem

Let Γ be a set of predicate logic sentences. If all finite subset of Γ is satisfiable, Γ is satisfiable.

Proof.

Assume Γ is not satisfiable. Then $\Gamma \vDash \bot$. By the completeness theorem for predicate logic, $\Gamma \vdash \bot$. Since deductions are finite, we have $\Delta \vdash \bot$ for some finite subset Δ of Γ . By the soundness theorem for predicate logic, $\Delta \vDash \bot$. Δ is not satisfiable, a contraction.

Löwenhein-Skolem Theorem

Theorem

Let ψ be a predicate logic sentence. If ψ has a model with at least n elements for every $n \ge 1$, ψ has a model with infinitely many elements.

Proof.

Define $\phi_n \stackrel{\triangle}{=} \exists x_1 \exists x_2 \cdots \exists x_n \bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j)$. Let $\Gamma = \{\psi\} \cup \{\phi_n : n > 1\}$. For every finite subset Δ of Γ , Δ is satisfiable. By the compactness theorem, Γ is satisfiable by some model \mathcal{M} . Particularly, $\mathcal{M} \vDash \psi$ holds. Since $\mathcal{M} \vDash \phi_n$ for every $n \geq 1$, \mathcal{M} has infinitely many elements. \square

Reachability in Predicate Logic

Theorem

There is no predicate logic formula ϕ with exactly two free variables u, v and exactly one binary predicate R such that ϕ holds in directed graphs iff there is a path in the graph from the node associated with u to the node associated with v.

Proof.

Suppose ϕ is a predicate logic formula expressing a path from u to v. Let c and c' be constants. Define $\phi_0 \stackrel{\triangle}{=} c = c'$ and

$$\phi_n \stackrel{\triangle}{=} \exists x_1 \exists x_2 \cdots \exists x_{n-1} (R(c, x_1) \land R(x_1, x_2) \land \cdots \land R(x_{n-1}, c')).$$

Then ϕ_n expresses that there is a path of length n from c to c'. Let $\Gamma = \{\phi[c/u][c'/v]\} \cup \{\neg \phi_i : i \ge 0\}$. For every finite subset Δ of Γ , Δ is satisfiable since there is always a path of an arbitrary finite length from c to c'. By the compactness theorem, Γ is satisfiable. A contradiction.

Outline

- The need for a richer language
- Predicate logic as a formal language
- Proof theory of predicate logic
- Quantifier equivalences
- Semantics of predicate logic
- 6 Undecidability of predicate logic
- Expressiveness of predicate logic
 - Existential second-order logic
 - Universal second-order logic Bow-Yaw Wang (Academia Sinica)

Existential Second-Order Logic

- In predicate logic, we can ask if there is an element with a certain property.
 - Predicate logic is also called first-order logic.
- We can generalize the concept and ask if there is a predicate with a certain property in existential second-order logic.
- Let P be an n-ary predicate symbol.
- $\exists P\phi$ is an existential second-order logic formula.
- Let \mathcal{M} be a model for all function and predicate symbols except P and $\mathcal{M}_{\mathcal{T}}$ the same model with an additional n-ary relation $T(=P^{\mathcal{M}_{\mathcal{T}}})\subseteq A^n$. Define

 $\mathcal{M} \vDash_{I} \exists P \phi \text{ if } \mathcal{M}_{T} \vDash_{I} \phi \text{ for some } T(=P^{\mathcal{M}_{T}}) \subseteq A^{n}.$

Unreachability in Existential Second-Order Logic I

• Consider the existential second-order logic formula $\exists P \forall x \forall y \forall z (C_1 \land C_2 \land C_3 \land C_4)$ where

$$C_{1} \stackrel{\triangle}{=} P(x,x)$$

$$C_{2} \stackrel{\triangle}{=} P(x,y) \land P(y,z) \Longrightarrow P(x,z)$$

$$C_{3} \stackrel{\triangle}{=} P(u,v) \Longrightarrow \bot$$

$$C_{4} \stackrel{\triangle}{=} R(x,y) \Longrightarrow P(x,y).$$

C_i's are Horn clauses.

Unreachability in Existential Second-Order Logic II

- ullet Consider the directed graph ${\mathcal M}$ in the previous slide.
- Let $I(u) = s_0$ and $I(v) = s_3$.
- Does $\mathcal{M} \models_I \exists P \forall x \forall y \forall z (C_1 \land C_2 \land C_3 \land C_4)$ hold?
 - ► Take $T \stackrel{\triangle}{=} \{(s, s') \in A \times A : s' \neq s_3\} \cup \{(s_3, s_3)\}.$

Outline

- The need for a richer language
- Predicate logic as a formal language
- Proof theory of predicate logic
- Quantifier equivalences
- Semantics of predicate logic
- 6 Undecidability of predicate logic
- Expressiveness of predicate logic
 - Existential second-order logic
 - Universal second-order logic Bow-Yaw Wang (Academia Sinica)

Universal Second-Order Logic

- Let P be an n-ary predicate symbol.
- $\forall P\phi$ is a universal second-order logic formula.
- Let $\mathcal M$ be a model for all function and predicate symbols except P. Define

$$\mathcal{M} \vDash_I \forall P \phi \text{ if } \mathcal{M}_T \vDash_I \phi \text{ for every } T(=P^{\mathcal{M}_T}) \subseteq A^n.$$

Reachability in Universal Second-Order Logic I

Theorem

Let \mathcal{M} be a model of $(\emptyset, \{R\})$ with a binary predicate symbol R. $\mathcal{M} \vDash_I \forall P \exists x \exists y \exists z (\neg C_1 \lor \neg C_2 \lor \neg C_3 \lor \neg C_4)$ holds iff I(v) is R-reachable from I(u) in \mathcal{M} , where $C_1 \stackrel{\triangle}{=} P(x,x)$, $C_2 \stackrel{\triangle}{=} P(x,y) \land P(y,z) \Longrightarrow P(x,z)$, $C_3 \stackrel{\triangle}{=} P(u,v) \Longrightarrow \bot$, and $C_4 \stackrel{\triangle}{=} R(x,y) \Longrightarrow P(x,y)$.

Proof.

Assume $\mathcal{M}_T \vDash_I \exists x \exists y \exists z (\neg C_1 \lor \neg C_2 \lor \neg C_3 \lor \neg C_4)$ for every $T \subseteq A \times A$. Consider the reflexive and transitive closure T^* of $R^{\mathcal{M}}$. Then $\mathcal{M}_{T^*} \vDash_{l'} C_1 \land C_2 \land C_4$ where $l' = I[x,y,z \mapsto a,b,c]$ for some $a,b,c \in A^{\mathcal{M}_T}$. Hence $\mathcal{M}_{T^*} \vDash_{l'} \neg C_3$ and so $\mathcal{M}_{T^*} \vDash_{l'} P(u,v)$. In other words, $(l'(u),l'(v)) = (l(u),l(v)) \in T^*$. There is a finite path from l(u) to l(v).

Reachability in Universal Second-Order Logic II

Proof (cont'd).

Conversely, assume there is a finite path from I(u) to I(v). Let $T \subseteq A \times A$. There are two cases.

- T is not reflexive, not transitive, or does not contain $R^{\mathcal{M}}$. Then $\mathcal{M}_T \vDash_{l'} \neg C_1$, $\mathcal{M}_T \vDash_{l'} \neg C_2$, or $\mathcal{M}_T \vDash_{l'} \neg C_4$ for some $l' = l[x, y, z \mapsto a, b, c]$ for some $a, b, c \in A^{\mathcal{M}_T}$.
- T is reflexive, transitive, and contains $R^{\mathcal{M}}$. Then T contains the reflexive, transitive closure of $R^{\mathcal{M}}$. Note that (I(u), I(v)) is in the reflexive, transitive closure of $R^{\mathcal{M}}$. Hence $\mathcal{M}_T \models_{l'} \neg C_3$.

In all cases, we have $\mathcal{M}_T \models_I \exists x \exists y \exists z (\neg C_1 \lor \neg C_2 \lor \neg C_3 \lor \neg C_4)$.

Reachability is in fact expressible in existential second-order logic.

Reachability in Universal Second-Order Logic III

• Given an existential second-order logic formula ϕ , whether there is an existential second-order logic formula ψ such that ψ and $\neg \phi$ are equivalent is an open problem.

Second- and Higher-Order Logic

- If we allow both quantifiers in a formula, we get second-order logic.
 - For instance, $\exists P \forall Q(\forall x \forall y (Q(x,y) \Longrightarrow Q(y,x)) \Longrightarrow \forall u \forall v (Q(u,v) \Longrightarrow P(u,v)))$ is a second-order logic sentence.
- Furthermore, if we allow quantifiers over relations of relations, we get third-order logic.
- Designing higher-order logic need be careful.
 - Nice properties such as compactness and completeness often fail.
 - Soundness theorem can also fail!
 - **★** Consider $A \stackrel{\triangle}{=} \{x : x \notin x\}$.
- Many theorem provers (Coq, Isabelle, HOL etc) are in fact based on higher-order logics.

Outline

- The need for a richer language
- 2 Predicate logic as a formal language
- 3 Proof theory of predicate logic
- Quantifier equivalences
- 5 Semantics of predicate logic
- 6 Undecidability of predicate logic
- Expressiveness of predicate logic

Predicate Logic

The Coq Proof Assistant

- Coq is a proof assistant which checks every proof steps.
- It has been developed by *Institut national de recherche en informatique et en automatique* (INRIA) at France since 1984.
- It is used to check the proofs of the four color theorem (September 2004) and Feit-Thompson theorem (September 2012).
- It is also used in the CompCert project to formally verify an optimizing C compiler for PowerPC, ARM, and 32-bit x86 processors (2005).
- CoQ is available on various platforms.
- The contents of this lecture are borrowed from CoQ Tutorial.

Using CoQ

ullet We start up and exit Coq as follows.

```
$ coqtop
Welcome to Coq 8.3pl4 (April 2012)
Coq < Quit .
$</pre>
```

Prop, Set, and Type

- A sort classifies specifications.
 - a logical proposition has the sort Prop;
 - a mathematical collection has the sort Set; and
 - an abstract type has the sort Type.
- Every CoQ expression has a sort.

Basic Proof Tactics I

- Let us do some simple proofs.
- We first set up our context .

- In this code, we start a section called Simple.
- ullet We also make two hypotheses. Both P and Q are logical propositions.

Basic Proof Tactics II

• We first show $P \Longrightarrow P$.

- We declare a lemma called one_line.
- Coq asks us to show $P \implies P$ from the hypotheses P and Q.

Basic Proof Tactics III

• The tactic intros introduces new hypotheses with the given name.

• How does intros compare to the $\implies i$ rule?

Basic Proof Tactics IV

• The tactic exact uses the named hypothesis.

```
one_line < exact HP .
Proof completed.</pre>
```

The command Qed finishes up the lemma.

```
one_line < Qed .
intros HP.
exact HP.
one_line is defined</pre>
```

Basic Proof Tactics V

• We can check our new lemma and print its proof.

```
Coq < Check one_line .
one_line
    : P -> P

Coq < Print one_line .
one_line = fun HP : P => HP
    : P -> P
```

• Observe how our proof is represented in Coq.

Basic Proof Tactics VI

- Tactics start with lowercase letters such as intros and exact.
 - We use tactics to construct formal proofs.
- Commands on the other hand start with uppercase letters such as Quit, Section, Lemma, Qed, Print.
 - ▶ We use commands to operate Coq.

Basic Proof Tactics VII

• Let us prove $P \Longrightarrow (P \Longrightarrow Q) \Longrightarrow Q$. $Coq < Lemma MP : P \rightarrow (P \rightarrow Q) \rightarrow Q$. 1 subgoal P : Prop Q : Prop P -> (P -> Q) -> QMP < intros HP HI . 1 subgoal P : Prop Q : Prop HP : P HI : P -> Q _______ Q

Basic Proof Tactics VIII

 The tactic apply matches the conclusion with the named hypothesis and lists unresolved conditions.

• How does apply compare to $\implies e$?

Basic Proof Tactics IX

• Let us finish up the lemma and see the proof term.

Basic Proof Tactics X

• Let us prove $P \wedge Q \implies Q \wedge P$.

```
Coq < Lemma conj\_comm : P / Q -> Q / P .
  1 subgoal
  P : Prop
  Q : Prop
  P / Q \rightarrow Q / P
conj_comm < intros conj .</pre>
  1 subgoal
  P : Prop
  Q : Prop
  conj : P /\ Q
  Q /\ P
```

Basic Proof Tactics XI

The tactic elim eliminates a named hypothesis.

- Observe that $P \wedge Q$ is decomposed into P and Q.
- How does elim compare to $\wedge e_1$ and $\wedge e_2$?

Basic Proof Tactics XII

• We introduce two more hypotheses *HP* and *HQ*.

Now we can use the hypotheses HP and HQ.

Basic Proof Tactics XIII

• The tactic split splits a conjunction into two.

```
conj_comm < split .</pre>
2 subgoals
P : Prop
Q : Prop
conj : P /\ Q
HP : P
HQ : Q
Q
subgoal 2 is:
```

• How does split compare to $\wedge i$?

Basic Proof Tactics XIV

• We use hypotheses to prove the lemma.

```
conj\_comm < exact HQ .
1 subgoal
P : Prop
Q : Prop
conj : P /\ Q
HP : P
HQ: Q
P
conj_comm < exact HP .
Proof completed.
```

Basic Proof Tactics XV

Let us finish up the lemma and see its proof term.

```
conj_comm < Qed .
intros conj.
elim conj.
intros HP HQ.
split.
 exact HQ.
 exact HP.
conj_comm is defined
Coq < Print conj_comm .
conj_comm =
fun conj0 : P / Q \Rightarrow
    and_ind (fun (HP : P) (HQ : Q) \Rightarrow
                   conj HQ HP) conj0
     : P /\ Q -> Q /\ P
```

Basic Proof Tactics XVI

• Let us try to prove $P \lor Q \implies Q \lor P$.

```
Coq < Lemma disj_comm : P \setminus Q \rightarrow Q \setminus P.
1 subgoal
P : Prop
Q : Prop
P \/ Q -> Q \/ P
disj_comm < intros disj .</pre>
1 subgoal
P : Prop
Q : Prop
disj : P \setminus / Q
Q \/ P
```

Basic Proof Tactics XVII

We eliminate the hypothesis disj.

• How does elim compare to $\vee e$?

Basic Proof Tactics XVIII

• We next introduce a new hypothesis *P*.

Basic Proof Tactics XIX

• The tactic right selects the left operand in a disjunction.

• How does right compare to $\vee i_2$?

Basic Proof Tactics XX

 The tactic assumption searches an exact hypothesis for the conclusion.

```
disj_comm < assumption .
1 subgoal

P : Prop
Q : Prop
disj : P \/ Q
======Q -> Q \/ P
```

We can combine a sequence of tactics by semicolon (;).

```
\begin{array}{ll} \mbox{disj\_comm} \ < \ \mbox{intros} \ \ \mbox{HQ} \, ; \ \ \mbox{left}; \ \ \mbox{assumption} \ \ . \\ \mbox{Proof completed} \, . \end{array}
```

Basic Proof Tactics XXI

We finish up the lemma and print our proof.

```
disj_comm < Qed .
intros disj.
elim disj.
 intros HP.
 right.
 assumption.
 intros HQ; left; assumption.
disj_comm is defined
Coq < Print disj_comm .
disj_comm =
fun disj : P \setminus Q =>
    or_ind (fun HP : P => or_intror Q HP)
           (fun HQ : Q => or_introl P HQ) disj
     : P \/ Q -> Q \/ P
```

Basic Proof Tactics XXII

• Let us prove a lemma about double negation: $P \Longrightarrow \neg \neg P$.

```
Coq < Lemma PNNP : P -> ~~P .
1 subgoal
P : Prop
Q : Prop
P -> ~ ~ P
PNNP < intros HP .
1 subgoal
P : Prop
Q : Prop
HP · P
```

Basic Proof Tactics XXIII

- In Coq, $\neg P$ is a shorthand for $P \Longrightarrow \bot$.
- We use red to expand a toplevel shorthand.

Basic Proof Tactics XXIV

• We introduce another hypothesis $\neg P$.

• How does this intros compare to $\neg i$?

Basic Proof Tactics XXV

• We have P and $\neg P$. The tactic absurd P exploits the contraction.

• How does absurd compare to $\neg e$?

Basic Proof Tactics XXVI

• The tactic trivial performs a simple proof search.

Basic Proof Tactics XXVII

• Let us finish up the lemma, conclude the section, and check it.

```
PNNP < Qed.
intros HP.
red.
intros HNP.
absurd P.
 trivial.
 trivial.
PNNP is defined
Coq < End Simple .
Coq < Check PNNP .
PNNP
     : forall P : Prop, P -> ~ ~ P
```

• Note the hypothesis *P* is generalized after closing the section.

Basic Proof Tactics XXVIII

• Coq actually provides a complete tactic tauto.

```
Coq < Hypotheses P Q R S : Prop .
P is assumed
Q is assumed
R is assumed
S is assumed
Coq < Hypothesis H0 : (P /\ Q) \rightarrow R .
HO is assumed
Coq < Hypothesis H1 : R -> S .
H1 is assumed
Coq < Hypothesis H2 : Q / \ ^S .
H2 is assumed
Cog < Lemma homework : "P .
1 subgoal
P : Prop
Q : Prop
R : Prop
S : Prop
HO : P /\ Q -> R
H1 : R -> S
H2 : Q /\ ~ S
~ P
homework < tauto .
Proof completed.
```

Basic Proof Tactics XXIX

Coq in fact uses intuitionistic logic.

```
Coq < Goal forall P : Prop, P \/ ~P .

1 subgoal

------

forall P : Prop, P \/ ~ P

Unnamed_thm < tauto .

Toplevel input, characters 0-5:
> tauto .
> ~~~~

Error: tauto failed.
```

- Goal declares an unnamed lemma.
- To do classical logic, add

More Proof Tactics I

Let us set up a section for predicate logic.

```
Coq < Section Easy .
Coq < Hypothesis D : Set .
D is assumed
Coq < Hypothesis R : D -> D -> Prop .
R is assumed
```

- In a new section, we declare a set *D* and a binary predicate symbol *R*.
- Let us set up a subsection where *R* is symmetric and transitive.

```
Coq < Section R_sym_trans .  

Coq < Hypothesis R_symmetric : forall x y : D, R x y -> R y x .  

R_symmetric is assumed  

Coq < Hypothesis R_transitive : forall x y z : D, R x y -> R y z -> R x z .  

R_transitive is assumed
```

More Proof Tactics II

• Let us prove $\forall x \in D(\exists y \in D, (Rxy) \implies Rxx)$.

- Our predicate logic formula is written as forall x : D, (exists y, R x y) -> R x x .
- Observe that we did not specify $y \in D$ but Coq infers it anyway.

More Proof Tactics III

• The tactic intros again introduces a new hypothesis.

• How does it compare to $\forall i$?

More Proof Tactics IV

• We introduce another hypothesis $\exists y \in D(Rxy)$.

• This is simply $\implies i$.

More Proof Tactics V

• Let us eliminate $\exists y \in D(Rxy)$.

• How does elim compare to $\exists e$?

More Proof Tactics VI

• We get the instance of $\exists y \in D(Rxy)$ by intros.

• Now elim and intros look really like $\exists e$.

More Proof Tactics VII

We apply the hypothesis R_transitive.

```
refl_if < apply R_transitive with y.
2 subgoals
D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
x : D
Ey : exists y : D, R x y
v : D
Rxy: Rxy
R x v
subgoal 2 is:
R v x
```

- Note that we need to give the hint y.
- How does apply compare to $\forall e$?

More Proof Tactics VIII

The first subgoal is trivial.

More Proof Tactics IX

• For the other subgoal, we apply $\forall xy \in D(Rxy \implies Ryx)$.

• Now the goal is trivial.

```
refl_if < trivial .
Proof completed.</pre>
```

More Proof Tactics X

• Let us finish up the lemma and see the proof term.

```
refl if < Qed .
intros x.
intros Ey.
elim Ey.
intros y Rxy.
apply R_transitive with y.
trivial.
apply R_symmetric.
trivial.
refl if is defined
Coq < Print refl_if .
refl if =
fun (x : D) (Ey : exists y : D, R x y) =>
ex ind
(fun (y : D) (Rxy : R x y) =>
     R_transitive x y x Rxy (R_symmetric x y Rxy)) Ey
   : forall x : D, (exists y : D, R \times y) \rightarrow R \times x
```

Smullyan's Drinkers' Paradox I

- We will prove Smullyan's drinkers' paradox:
 "in any non-empty bar, there is a person such that she drinks then everyone drinks."
- Let us set up the context.

```
Coq < Section DrinkersParadox .

Coq < Require Import Classical .

Coq < Hypothesis bar : Set .
bar is assumed

Coq < Hypothesis Joe : bar .
Joe is assumed

Coq < Hypothesis drinks : bar -> Prop .
drinks is assumed
```

Note that Joe is in the bar.

Smullyan's Drinkers' Paradox II

Here is what we want to prove.

Smullyan's Drinkers' Paradox III

- By LEM, we have $(\exists x \in bar(\neg drinks \ x)) \lor \neg(\exists x \in bar(\neg drinks \ x))$.
- We consider the two cases.

```
drinker < Check (classic (exists x : bar, ~ drinks x)) .</pre>
classic (exists x : bar, ~ drinks x)
     : (exists x : bar, ~ drinks x) \/
       ~ (exists x : bar, ~ drinks x)
drinker < elim (classic (exists x : bar, ~ drinks x)) .
2 subgoals
bar : Set
.Ioe : bar
drinks : bar -> Prop
(exists x : bar, ~ drinks x) ->
exists x : bar, drinks x -> forall y : bar, drinks y
subgoal 2 is:
~ (exists x : bar, ~ drinks x) ->
exists x : bar, drinks x -> forall y : bar, drinks y
```

Smullyan's Drinkers' Paradox IV

We introduce the hypothesis non_drinker.

Smullyan's Drinkers' Paradox V

We eliminate non_drinker and obtain an instance.

```
drinker < elim non drinker: intros Jane Jane non drinker .
2 subgoals
bar : Set
Joe : bar
drinks : bar -> Prop
non_drinker : exists x : bar, ~ drinks x
Jane : bar
Jane non drinker : ~ drinks Jane
exists x : bar, drinks x -> forall y : bar, drinks y
subgoal 2 is:
~ (exists x : bar, ~ drinks x) ->
exists x : bar, drinks x -> forall y : bar, drinks y
```

Smullyan's Drinkers' Paradox VI

The tactic exists uses a term as a witness to an existential formula.

```
drinker < exists Jane .
2 subgoals
bar : Set
Joe : bar
drinks : bar -> Prop
non_drinker : exists x : bar, ~ drinks x
Jane : bar
Jane_non_drinker : ~ drinks Jane
drinks Jane -> forall y : bar, drinks y
subgoal 2 is:
~ (exists x : bar, ~ drinks x) ->
exists x : bar, drinks x -> forall y : bar, drinks y
```

• How does exists compare to $\exists i$?

Smullyan's Drinkers' Paradox VII

- Observe that we have a contradiction.
- The tactic tauto will do.

Smullyan's Drinkers' Paradox VIII

• We introduce a hypothesis for the other subgoal.

Smullyan's Drinkers' Paradox IX

Joe is our witness.

We introduce more hypotheses.

Smullyan's Drinkers' Paradox X

• For $y \in bar$, we have drinks $y \lor \neg drinks y$ by LEM.

Smullyan's Drinkers' Paradox XI

The first subgoal is easy.

Smullyan's Drinkers' Paradox XII

• We introduce a hypothesis that y does not drink.

Smullyan's Drinkers' Paradox XIII

This is contradictory to no_non_drinker.

```
drinker < absurd (exists x. ~ drinks x) .
2 subgoals
bar : Set
Joe : bar
drinks : bar -> Prop
no_non_drinker : ~ (exists x : bar, ~ drinks x)
Joe_drinker : drinks Joe
y : bar
y_non_drinker : ~ drinks y
~ (exists x : bar, ~ drinks x)
subgoal 2 is:
exists x : bar, ~ drinks x
```

Smullyan's Drinkers' Paradox XIV

- Again, the first subgoal is trivial.
- The second subgoal has a witness y.

```
drinker < trivial .
1 subgoal
bar : Set
Joe : bar
drinks : bar -> Prop
no_non_drinker : ~ (exists x : bar, ~ drinks x)
Joe drinker : drinks Joe
v : bar
v_non_drinker : ~ drinks v
exists x : bar, ~ drinks x
drinker < exists y; trivial .
Proof completed.
```

Smullyan's Drinkers' Paradox XV

Let us finish up the lemma and see its proof term.

```
drinker < Qed .
(* proof script skipped *)
Coq < Print drinker .
drinker =
or ind
  (fun non_drinker : exists x : bar, ~ drinks x =>
   ex ind
     (fun (Jane : bar) (Jane non drinker : ~ drinks Jane) =>
      ex_intro (fun x : bar => drinks x -> forall y : bar, drinks y) Jane
        (fun H : drinks Jane =>
        let HO := Jane non drinker H in
         False_ind (forall y : bar, drinks y) H0)) non_drinker)
  (fun no_non_drinker : " (exists x : bar, " drinks x) =>
   ex intro (fun x : bar => drinks x -> forall v : bar. drinks v) Joe
     (fun ( : drinks Joe) (v : bar) =>
      or_ind (fun H : drinks y => H)
        (fun v non drinker : ~ drinks v =>
         False_ind (drinks y)
           (let H := ex_intro (fun x : bar => ~ drinks x) y y_non_drinker in
            (let HO := no_non_drinker in
             fun H1 : exists x : bar. ~ drinks x => H0 H1) H))
        (classic (drinks y)))) (classic (exists x : bar, ~ drinks x))
     : exists x : bar, drinks x -> forall y : bar, drinks y
```

Where to go?

- Proof assistants are used to check long proofs in mathematics and logic.
 - Four color theorem, Feit-Thompson theorem, incompleteness theorem.
- We only discuss elements of predicate logic.
- Lots of interesting topics are missing. For instance,
 - Soundness and competeness theorems of natural deduction for predicate logic;
 - Gödel's incompleteness theorem;
 - Number theory, real analysis Cog libraries.
- Many resources are available for learning Coq.
 - Short NTU summer courses (FLOLAC).
 - "Interactive Theorem Proving and Program Development Cog'Art: The Calculus of Inductive Constructions". Bertot and Castéran.