1.

- (a) Escreva as expressões que descrevem os campos eléctrico e magnético associados a uma onda plana de frequência ω e fase δ =0, que se propaga no vazio ao longo da direcção $\hat{k}=\frac{1}{\sqrt{3}}(\hat{x}+\hat{y}+\hat{z})$ com uma polarização paralela ao plano xz.
- (b) Admita que a referida onda tem uma intensidade de 1000 W/m². Se incidir perpendicularmente num perfeito reflector qual a pressão que nele vai exercer? Explique convenientemente.

(4 valores)

2.

- (a) Imagine que para impedir a saída de radiação $(10^{10} Hz)$ através da janela de um forno de micro-ondas quer revestir o vidro com um filme de prata. Qual a espessura que esse filme deve ter para que detenha 90% da intensidade da radiação?
- (b) Estime o comprimento de onda da radiação e a velocidade de fase no interior do filme de prata.

Observações: os campos de uma onda plana no interior de um meio condutor podem ser descritos como $\tilde{\vec{E}}=\widetilde{\overline{E_0}}e^{i(\tilde{k}x-\omega t)}$, $\tilde{\vec{B}}=\widetilde{\overline{B_0}}e^{i(\tilde{k}x-\omega t)}$ sendo $\tilde{k}=k+i\eta$, $k=\omega\sqrt{\frac{\varepsilon\mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\varepsilon\omega}\right)^2}+1\right]^{1/2}$), e $\eta=\omega\sqrt{\frac{\varepsilon\mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\varepsilon\omega}\right)^2}-1\right]^{1/2}$). Admita para a prata $\sigma=10^7~(\Omega m)^{-1}$ e $\varepsilon=8.85\times10^{-12}~\frac{F}{m}$. Observe que, para a frequência indicada, $\frac{\sigma}{\varepsilon\omega}\gg1$. (4 valores)

3.

Considere um guia de ondas formado por um tubo rectangular oco, de paredes perfeitamente condutoras e com uma secção transversal de 2×1 cm². Para uma frequência de excitação de 1.2×10^{11} Hz que modos TE se podem nele propagar?

Observação: recorde que para um tubo condutor rectangular de secção transversal $a \times b$ o número de onda do modo TE mn é $k_{mn} = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2\right]}$. (3 valores)

4.

- (a) Mostre como as equações de Maxwell homogéneas ($\nabla \cdot \vec{B} = 0$ e $\nabla \times \vec{E} + \dot{\vec{B}} = 0$) permitem definir os potenciais \vec{A} e φ .
- (b) Exprima as equações de Maxwell que relacionam campos e fontes ($\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \, \text{e} \, \nabla \times \vec{B} \frac{1}{\varepsilon^2} \vec{E} = \mu_0 \vec{J}$) em termos dos referidos potenciais.
- (c) O que entende por liberdade de gauge?

(4.5 valores)

5.

Uma corrente constante I_0 é abruptamente injectada num fio rectilíneo de comprimento infinito (orientado segundo zz') no instante t=0 (isto é: $I=I_0$ se t>0 e I=0 se $t\leq 0$). O fio permanece electricamente neutro.

(a) Mostre que o potencial vector magnético retardado sentido num ponto a uma distância s do fio é:

$$\vec{A}(s,t) = \frac{\mu_0 I_0}{2\pi} \hat{z} \cdot ln \left[\frac{ct + \sqrt{(ct)^2 - s^2}}{s} \right]$$

Explique convenientemente o seu raciocínio.

(Nota:
$$\int \frac{dz}{\sqrt{s^2 + z^2}} = ln[z + \sqrt{s^2 + z^2}] + C$$
).

(b) Obtenha os campos eléctrico e magnético correspondentes. Verifique que obtém o resultado magnetostático no limite em que $t \to \infty$?

(4.5 valores)