MAST20009 Vector Calculus

Practice Class 7 Questions

Path Integrals

Let f(x, y, z) be a continuous scalar function and c(t) = (x(t), y(t), z(t)) be a C^1 path.

The path integral of f along c from t = a to t = b is:

$$\int_{\mathbf{c}} f \, ds = \int_{a}^{b} f\left[\mathbf{c}(t)\right] |\mathbf{c}'(t)| \, dt.$$

If f is the mass per unit length of a cable c, then $\int_{c} f ds$ is the total mass of the cable.

- 1. Let c be a thin straight cable joining (2,1,6) to (3,0,1). (a) $\vec{c} : (\vec{n}\vec{o}) + t(\vec{u} \vec{n}\vec{o}) = (2,1,6) + t((3,0,1) (2,1,6))$
 - (a) Write down a parametrisation for c in terms of an increasing parameter t. = (2,1,6)+t(1,-1,-5)
 - (b) If the mass per unit length of c is $\mu(x,y,z) = x + yz$ grams, determine the total e^{-c} mass of the cable. $\int_{0}^{1} (2tt) + (1-t)(6-5t) \cdot \sqrt{30} dt = \sqrt{3} \left(2tt \right) + (5t^{2} - 11t + 6) dt$

12/tt) [= ((,-(,-5)

2 525

Line Integrals $= \sqrt{5} \left(\frac{(st^2 - (ot + 8)) dt}{(st^2 - (ot + 8)) dt} \right)$ $= \sqrt{5} \left(\frac{5}{3}t^3 - st^4 + 8t \right) \frac{t-1}{t-0} = \sqrt{5} \left(\frac{5}{3} + \frac{5}{3} + \frac{5}{3} \right)$ Let $\mathbf{F}(x, y, z)$ be a continuous vector field and $\mathbf{c}(t) = (x(t), y(t), z(t))$ be a C^1 path.

The line integral of F along c from t = a to t = b is:

$$\int_{c} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F} \left[\mathbf{c}(t) \right] \cdot \mathbf{c}'(t) dt.$$

If F is a force, then $\int_{c} F \cdot ds$ is the work done by F to move a particle along c.

2. Let c be the path consisting of the circle $x^2+y^2=9$ traversed in a clockwise direction, starting at (3,0) and finishing at (-3,0), followed by the parabola $y=-(x+3)^2$ starting at (-3,0) and finishing at (-5,-4).

Calculate the work done by the force $F(x,y) = (x-2)i - y^2j$ to move a particle along c.

Tangents and Normals to Surfaces

Let S be a differentiable surface. Consider curves on S given by:

 $\mathbf{c}_1 = \Phi(u_0, v)$ — u is constant

 $\mathbf{c}_2 = \Phi(u, v_0)$ — v is constant

• T_v is the tangent vector to c_1 at $\Phi(u_0, v_0)$

$$T_v = \left. \frac{dc_1}{dv} \right|_{v=v_0} = \left. \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \right) \right|_{(u_0, v_0)}$$

• T_u is the tangent vector to c_2 at $\Phi(u_0, v_0)$

$$T_u = \frac{d\mathbf{c}_2}{du}\Big|_{u=u_0} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)\Big|_{(u_0, v_0)}$$

• There are 2 normal vectors to surface at (x_0, y_0, z_0) .

$$\boldsymbol{n} = \boldsymbol{T}_u \times \boldsymbol{T}_v$$
 OR $\boldsymbol{n}' = -\boldsymbol{n} = \boldsymbol{T}_v \times \boldsymbol{T}_u$

• If $n \neq 0$, the surface is *smooth*.

If S is a smooth surface, then the tangent plane to S at (x_0, y_0, z_0) is

$$(x-x_0,y-y_0,z-z_0)\cdot \boldsymbol{n}\big|_{(u_0,v_0)} = 0.$$

3. Let S be the surface of the paraboloid $z = 3x^2 + 3y^2 - 4$ for $z \le 5$.

(a) Write down a parametrisation for S in terms of u and v, based on cylindrical coordinates.

(b) Find the point (u, v) that corresponds to the point $(x, y, z) = \left(\frac{1}{4}, \frac{\sqrt{3}}{4}, -\frac{13}{4}\right)$.

(c) Find the tangent vectors T_u and T_v to the surface.

(d) Find the outward normal vector to the surface in terms of u and v.

(e) Find the equation of the tangent plane to S at $\left(\frac{1}{4}, \frac{\sqrt{3}}{4}, -\frac{13}{4}\right)$.

When you have finished the above questions, continue working on the questions in the Vector Calculus Problem Sheet Booklet.

2