```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn import preprocessing
from sklearn import model_selection
from sklearn import metrics
from sklearn import linear_model
from sklearn import ensemble
from sklearn import tree
from sklearn import svm
import xgboost
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
```

df=pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Rainfall weather.csv")

analyse the data

df.head()

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	Wind
0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	
1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	
2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	
3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	
4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	
5 rows × 23 columns									

Handling missing values

df.isnull().sum()*100/len(df)

Date	0.000000
Location	0.000000
MinTemp	1.020899
MaxTemp	0.866905
Rainfall	2.241853
Evaporation	43.166506
Sunshine	48.009762
WindGustDir	7.098859
WindGustSpeed	7.055548
WindDir9am	7.263853
WindDir3pm	2.906641
WindSpeed9am	1.214767
WindSpeed3pm	2.105046
Humidity9am	1.824557
Humidity3pm	3.098446
Pressure9am	10.356799
Pressure3pm	10.331363
Cloud9am	38.421559
Cloud3pm	40.807095
Temp9am	1.214767
Temp3pm	2.481094
RainToday	2.241853
RainTomorrow	2.245978
dtvpe: float64	

dtype: float64

df.isnull().sum()

Date	0
Location	0
MinTemp	1485
MaxTemp	1261
Rainfall	3261
Evaporation	62790
Sunshine	69835
WindGustDir	10326
WindGustSpeed	10263
WindDir9am	10566
WindDir3pm	4228
WindSpeed9am	1767
WindSpeed3pm	3062
Humidity9am	2654
Humidity3pm	4507
Pressure9am	15065
Pressure3pm	15028
Cloud9am	55888
Cloud3pm	59358
Temp9am	1767
Temp3pm	3609
RainToday	3261
RainTomorrow	3267
dtype: int64	

msno.matrix(df, color= (0.55, 0.255, 0.225), fontsize=16)

<matplotlib.axes._subplots.AxesSubplot at 0x7fea09d33210>


```
df_cat = df[['RainToday', 'WindGustDir', 'WindDir9am', 'WindDir3pm']]
df.drop(columns=['Evaporation', 'Sunshine', 'Cloud9am', 'Cloud3pm'], axis=1, inplace=True)
df.drop(columns=['RainToday', 'WindGustDir', 'WindDir9am', 'WindDir3pm'], axis=1, inplace=Tru

df['MinTemp'].fillna (df['MinTemp'].mean(), inplace=True)
df['MaxTemp'].fillna(df['MaxTemp'].mean(), inplace=True)
df['Rainfall'].fillna (df['Rainfall'].mean(), inplace=True)
df['WindGustSpeed'].fillna (df['WindGustSpeed'].mean(), inplace=True)
df['WindSpeed9am'].fillna (df['WindSpeed9am'].mean(), inplace=True)
df['WindSpeed3pm'].fillna (df['WindSpeed3pm'].mean(), inplace=True)
```

```
df['Humidity9am'].fillna (df['Humidity9am'].mean(), inplace=True)
df['Humidity3pm'].fillna (df['Humidity3pm'].mean(), inplace=True)
df['Pressure9am'].fillna (df['Pressure9am'].mean(), inplace=True)
df['Pressure3pm'].fillna (df[ 'Pressure3pm'].mean(), inplace=True)
df['Temp9am'].fillna (df['Temp9am']. mean(), inplace=True)
df['Temp3pm'].fillna(df['Temp3pm'].mean(), inplace=True)
#Loading the names of categorical columns
cat_names=df_cat.columns
# intializing the simple imputer for missing categorical values
import numpy as np
from sklearn.impute import SimpleImputer
imp_mode= SimpleImputer(missing_values=np.nan, strategy='most_frequent')
# fitting and transforming the missing data
df_cat=imp_mode.fit_transform(df_cat)
# converting array to dataframe
df cat= pd.DataFrame(df cat, columns=cat names)
# concatinating the categorical and numeric
df = pd.concat([df, df_cat], axis=1)
```

Data visulization

df.corr()

	MinTemp	MaxTemp	Rainfall	WindGustSpeed
MinTemp	1.000000	0.733400	0.102706	0.172553
MaxTemp	0.733400	1.000000	-0.074040	0.065895
Rainfall	0.102706	-0.074040	1.000000	0.126446
WindGustSpeed	0.172553	0.065895	0.126446	1.000000
WindSpeed9am	0.173404	0.014294	0.085925	0.577319
WindSpeed3pm	0.173058	0.049717	0.056527	0.657243
Humidity9am	-0.230970	-0.497927	0.221380	-0.207964
Humidity3pm	0.005995	-0.498760	0.248905	-0.025355
Dracciira0am	_0 /2358/	_บ รบชรบด	_೧ 150055	_∩ 12576N ▶

cor = df.corr()

sns.heatmap(data=cor,xticklabels=cor.columns,yticklabels=cor.columns.values)

df.boxplot()

<matplotlib.axes._subplots.AxesSubplot at 0x7fea08a71310>

sns.jointplot(df["MinTemp"],df['Rainfall'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py
FutureWarning

<seaborn.axisgrid.JointGrid at 0x7fea05d6cfd0>

sns.jointplot(df["MaxTemp"],df['Rainfall'],hue=df['RainTomorrow'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py
FutureWarning

<seaborn.axisgrid.JointGrid at 0x7fea01574150>

sns.histplot(df['RainTomorrow'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fea01115890>

sns.scatterplot(df['MaxTemp'],df['Rainfall'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py
FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fea011787d0>

sns.displot(df['MinTemp'])

```
<seaborn.axisgrid.FacetGrid at 0x7fea06de4750>
        4000
Spliting the dataset into Dependent and independent variable
                           JUHUMI.
y=df['RainTomorrow']
x=df.drop('RainTomorrow',axis=1)
Feature Scaling
from sklearn.preprocessing import StandardScaler
y=df['RainTomorrow']
x=df.drop('RainTomorrow',axis=1)
names=x.columns
names
     Index(['Date', 'Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed',
            'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
            'Pressure9am', 'Pressure3pm', 'Temp9am', 'Temp3pm', 'RainToday',
            'WindGustDir', 'WindDir9am', 'WindDir3pm'],
           dtype='object')
sc=StandardScaler()
splitting the data into train and test
```

https://colab.research.google.com/drive/1hJx0rkHMnCYTE8vmyFQ2ETHLhu81m85i#printMode=true

x train,x test,y_train,y_test=model_selection.train_test_split(x,y,test_size=0.2,random_state

from sklearn import model_selection

Colab paid products - Cancel contracts here

