Concours EAMAC

Exercice S-MI3-1: (5 points)

On considère le système (S) suivant

```
\begin{cases} mx + y + z + t = 1 \\ x + my + z + t = 1 \\ x + y + mz + t = 1 \\ x + v + z + mt = 1 \end{cases}
```

- 1. Pour quelles valeurs de m le système (S) est-il de Cramer ? Compatible ? Incompatible ?
- 2. Lorsqu'il est de Cramer, résoudre (S).

Exercice S-MI3-2: (5 points)

On considère la fonction numérique f telle que : $f(x) = (x^2 - 1) Arctan(\frac{1}{2x-1})$; et on appelle (C) sa courbe représentative dans un repère orthonormé.

- 1. Quel est l'ensemble de définition D de f?
- 2. Exprimer, sur $D\setminus\{0\}$, la dérivée de f sous la forme : f'(x) = 2xg(x).
- 3. Montrer que : $\forall x \in R$; $2x^4 4x^3 + 9x^2 4x + 1 > 0$ et en déduire le tableau de variation de g.
- 4. Dresser le tableau de variation de f.

Exercice S-MI3-3: (5 points)

Pour $\alpha, \beta \in \mathbb{R}$, on souhaite déterminer la nature de $\int_e^{+\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}$.

- 1. On suppose $\alpha>1$. En comparant avec une intégrale de Riemann, démontrer que l'intégrale étudiée est convergente.
- 2. On suppose $\alpha=1$. Calculer, pour X>e, $\int_e^X \frac{dx}{x(\ln x)^\beta}$. En déduire les valeurs de β pour lesquelles l'intégrale converge.
- 3. On suppose $\alpha < 1$. En comparant à $\frac{1}{x}$, démontrer que l'intégrale étudiée diverge.

Exercice S-MI3-4: (5 points):

On considère la matrice

$$A = \begin{pmatrix} 5 & 3 & -3 \\ 1 & 3 & -1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Diagonaliser la matrice A et calculer A^n pour tout $n \in N$.