Copyright © 2024 Songbingzhi628 Email: 13012057210@163.com

This work is licensed under the terms of the CC BY-NC-SA 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0). This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only. If others modify or adapt the material, they must license the modified material under identical terms. *All images except for `by-nc-sa.png' in this manual are licensed under CCO*.

简介

这是我个人用于复习的「Linear Algebra Done Right 3E/4E, by Sheldon Axler」笔记,一本习题选答与课文补注。因为使用中文会给我编撰这份笔记带来额外的中英文输入法切换的工作成本,况且对于专业学习者,直接使用英文不会造成任何困扰。但英文词句的冗长性拖慢我复习的效率,所以我对许多常用术语作了简写。这份笔记的内容范围和标识说明,我已经在自述中写得很清楚,不再赘述。这份笔记尚处于缓慢的编撰进度中。

我目前还没有能力和资格评论原书好坏以及线性代数课程教材选用的问题。但作为原书的学习者,我可以说,这本书作为初学线性代数的第一教材,虽然不需要其他辅助教材,但要求学习者有足够的耐心和毅力:课文一次看不懂就多看几遍,一天看不懂就分三天看;习题一个小时做不出来,隔六个小时再尝试,一天做不出来,就隔天再尝试。我虽然没有学过除此以外的其他任何线性代数教材,但我认为这样钻研原书是值得的。

Gото									
1	2	3	4	5	6	7	8	9	10
A	A	A		A	A	A	A	A	Α
В	В	В		B^{I}	В	В	В	В	В
				\mathbf{B}^{II}					
C	C	C		C	C	C	C		
		D			D	D	D		
		E		E*					

ABBREVIATION TABLE

	T		
def	definition	vec	vector
vecsp	vector space	subsp	subspace
add	addition/additive	multi	multiplication/multiplicative/multiple
assoc	associative/associativity	distr	distributive properties/property
inv	inverse	existns	existence
uniqnes	uniqueness	linely inde	linearly independent/independence
linely dep	linearly dependent/dependence	dim	dimension(al)
coeff	coefficient	degree	deg
req	require(d)/requiring	B_V	basis of V
inje	injective	surj	surjective
col	column	with resp	with respect
standard basis	std basis	iso	isomorphism/isomorphic
correspd	correspond(ing)	poly	polynomial
eigval	eigenvalue	eigvec	eigenvector
mini poly	minimal polynomial	char poly	characteristic polynomial

1 Prove that $\forall v \in V, -(-v) = v$.

SOLUTION: $-(-v) = (-1)((-1)v) = ((-1)(-1))v = 1 \cdot v = v$.

2 Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION: Suppose $a \neq 0$, $\exists a^{-1} \in F$, $a^{-1}a = 1$, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$.

3 Suppose $v, w \in V$. Explain why $\exists ! x \in V, v + 3x = w$.

SOLUTION:
$$v + 3x = w \Leftrightarrow 3x = w - v \Leftrightarrow x = \frac{1}{3}(w - v)$$
.

Or. [Existns] Let $x = \frac{1}{3}(w - v)$.

[*Uniques*] If $v + 3x_1 = w$,(I) $v + 3x_2 = w$ (II). Then (I) - (II) $: 3(x_1 - x_2) = 0 \Rightarrow x_1 = x_2$.

5 Show that in the def of a vecsp, the add inv condition can be replaced by [1.29].

Hint: Suppose V satisfies all conds in the def, except we've replaced the add inv cond with [1.29]. Prove that the add inv is true.

Using [1.31].
$$0v = 0$$
 for all $v \in V \iff (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in R.

Define an add and scalar multi on $R \cup \{\infty, -\infty\}$ as you could guess.

The operations of real numbers is as usual. While for $t \in R$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

(I) $t + \infty = \infty + t = \infty + \infty = \infty$,

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of add and scalar multi, is $R \cup \{\infty, -\infty\}$ a vecsp over R? Explain.

SOLUTION: Not a vecpsp, since the add and scalar mult is not assoc and distr.

By Assoc:
$$(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$$
.

Or. By Distr: $\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$.

• Tips: About the Field **F**: Many choices.

Example: $\mathbf{F} = \mathbf{Z}_m = \{K_0, K_1, \dots, K_{m-1}\}, \forall m-1 \in \mathbf{N}^+$. [Using Euler's Theorem.]

ENDED

1.C 7 8 9 11 12 13 15 16 17 18 21 23 24

• Note For [1.45]: If $\mathbf{F} = \{0, 1\}$. Prove that if U + W is a direct sum, then $U \cap W = \{0\}$.

Because $\forall v \in U \cap W, \exists ! (u, w) \in U \times W, v = u + w$.

If $U \cap W \neq \{0\}$, then (u, w) can be (v, 0) or (0, v), contradicts the uniques.

• Tips: Suppose $U, W \subseteq V$. And U, W, V are vecsps $\Rightarrow U, W$ are subsps of V . Then $U + W$ is also a subsp of V . Because $\forall u \in U, w \in U, u + w \in V$ since $u, w \in V$.	
7 Give a nonempty $U \subseteq \mathbb{R}^2$, U is closed under taking add invs and under add, but is not a subsp of \mathbb{R}^2 . Solution: $(0 \in U; v \in U \Rightarrow -v \in U)$. And operations on U are the same as \mathbb{R}^2 . U Let \mathbb{Z}^2 , \mathbb{Q}^2 .	
8 Give a nonempty $U \subseteq \mathbb{R}^2$, U is closed under scalar multi, but is not a subsp of \mathbb{R}^2 . SOLUTION : Let $U = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}$.	
9 A function $f: \mathbb{R} \to \mathbb{R}$ is called periodic if $\exists p \in \mathbb{N}^+$, $f(x) = f(x+p)$ for all $x \in \mathbb{R}$. Is the set of periodic functions $\mathbb{R} \to \mathbb{R}$ a subsp of $\mathbb{R}^\mathbb{R}$? Explain. Solution: Denote the set by S . Suppose $h(x) = \cos x + \sin \sqrt{2}x \in S$, since $\cos x$, $\sin \sqrt{2}x \in S$. Assume $\exists p \in \mathbb{N}^+$ such that $h(x) = h(x+p)$, $\forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$. Thus $1 = \cos p + \sin \sqrt{2}p = \cos p - \sin \sqrt{2}p$	
$\Rightarrow \sin \sqrt{2}p = 0, \ \cos p = 1 \Rightarrow p = 2k\pi, k \in \mathbb{Z}, \text{ while } p = \frac{m\pi}{\sqrt{2}}, m \in \mathbb{Z}.$ Hence $2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$. Contradiction! OR. Because $[I] : \cos x + \sin \sqrt{2}x = \cos (x+p) + \sin (\sqrt{2}x + \sqrt{2}p)$. By differentiating twice, $[II] : \cos x + 2\sin \sqrt{2}x = \cos (x+p) + 2\sin (\sqrt{2}x + \sqrt{2}p).$	
$[II] - [I] : \sin \sqrt{2}x = \sin \left(\sqrt{2}x + \sqrt{2}p\right)$ $2[I] - [II] : \cos x = \cos (x+p)$ $\Rightarrow \text{Let } x = 0, \ p = \frac{m\pi}{\sqrt{2}} = 2k\pi. \text{ Contradicts.}$	
• Suppose U, W, V_1, V_2, V_3 are subsps of V . 15 $U + U \ni u + w \in U$. 16 $U + W \ni u + w = w + u \in W + U$. 17 $(V_1 + V_2) + V_3 \ni (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3) \in V_1 + (V_2 + V_3)$. • $(U + W)_C \ni (u_1 + w_1) + i(u_2 + w_2) = (u_1 + iu_2) + (w_1 + iw_2) \in U_C + W_C$.	
18 Does the add on the subsps of V have an add identity? Which subsps have add invs? SOLUTION: Suppose Ω is the unique add identity. (a) For any subsp U of V . $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$. (b) Now suppose W is an add inv of $U \Rightarrow U + W = \Omega$. Note that $U + W \supseteq U$, $W \Rightarrow \Omega \supseteq U$, W . Thus $U = W = \Omega = \{0\}$.	
11 Prove that the intersection of every collection of subsps of V is a subsp of V . SOLUTION: Suppose $\{U_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of subsps of V ; here Γ is an index set. We show that $\bigcap_{\alpha\in\Gamma}U_{\alpha}$, which equals the set of vecs that are in U_{α} for each $\alpha\in\Gamma$, is a subsp of V . ($-$) $0\in\bigcap_{\alpha\in\Gamma}U_{\alpha}$. Nonempty. ($-$) $u,v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}$ $v\in U_{\alpha}$, $v\in U_{\alpha}$, $v\in V_{\alpha}$ $v\in V_{\alpha}$. Closed under add. ($-$) $v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}$, $v\in V_{\alpha}$ is nonempty subset of $v\in V_{\alpha}$ that is closed under add and scalar multi.	

12 Suppose U, W are subsps of V. Prove that $U \cup W$ is a subsp of $V \iff U \subseteq W$ or $W \subseteq U$. **SOLUTION**: (a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subsp of V. (b) Suppose $U \cup W$ is a subsp of V. Assume that $U \subseteq W$, $U \supseteq W$ ($U \cup W \neq U$ and W). Then $\forall a \in U \land a \notin W$, $\forall b \in W \land b \notin U$, we have $a + b \in U \cup W$. $a + b \in U \Rightarrow b = (a + b) + (-a) \in U$, contradicts $\Rightarrow W \subseteq U$. Contradicts the $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts $\Rightarrow U \subseteq W$. assumption. **13** *Prove that the union of three subsps of V is a subsp of V* if and only if one of the subsps contains the other two. This exercise is not true if we replace **F** with a field containing only two elements. **SOLUTION:** Suppose U_1 , U_2 , U_3 are subsps of V. Denote $U_1 \cup U_2 \cup U_3$ by \mathcal{U} . (a) Suppose that one of the subsps contains the other two. Then $\mathcal{U} = U_1, U_2$ or U_3 is a subsp of V. (b) Suppose that $U_1 \cup U_2 \cup U_3$ is a subsp of V. Distinctively notice that $A \cup B \cup C = (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C)$. Also note that, if $U \cup W = V$ is a vecsp, then in general U and W are not subsps of V. Hence this literal trick is invalid. (I) If any U_i is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $\mathcal{U} = U_2 \cup U_3$. By applying Problem (12) we conclude that one U_i contains the other two. Thus we are done. (II) Assume that no U_i is contained in the union of the other two, and no U_j contains the union of the other two. Say $U_1 \not\subseteq U_2 \cup U_3$ and $U_1 \not\supseteq U_2 \cup U_3$. $\exists\,u\in U_1\wedge u\notin U_2\cup U_3;\ v\in U_2\cup U_3\wedge v\notin U_1.\,\mathrm{Let}\,W=\big\{v+\lambda u:\lambda\in\mathbf{F}\big\}\subseteq\mathcal{U}.$ Note that $W \cap U_1 = \emptyset$, for if any $v + \lambda u \in W \cap U_1$ then $v + \lambda u - \lambda u = v \in U_1$. Now $W \subseteq U_1 \cup U_2 \cup U_3 \Rightarrow W \subseteq U_2 \cup U_3$. $\forall v + \lambda u \in W, v + \lambda u \in U_i, i = 2,3$. If $U_2 \subseteq U_3$ or $U_2 \supseteq U_3$, then $\mathcal{U} = U_1 \cup U_i$, i = 2, 3. By Problem (12) we are done. Otherwise, both U_2 , $U_3 \neq \{0\}$. Because $W \subseteq U_2 \cup U_3$ has at least three elements. There must be some U_i that contains at least two elements of W. \exists distinct $\lambda_1, \lambda_2 \in \mathbf{F}, v + \lambda_1 u, v + \lambda_2 u \in U_i, i \in \{2,3\}.$ Then $u \in U_i$ while $u \notin U_2 \cup U_3$. Contradicts. **EXAMPLE:** Let $\mathbf{F} = \mathbf{Z}_2$. $U_1 = \{u, 0\}$, $U_2 = \{v, 0\}$, $U_3 = \{v + u, 0\}$. While $\mathcal{U} = \{0, u, v, v + u\}$ is a subsp. • Example: Suppose $U = \{(x, x, y, y) \in \mathbb{F}^4\}, W = \{(x, x, x, y) \in \mathbb{F}^4\}.$ Prove that $U + W = \{(x, x, y, z) \in \mathbb{F}^4\}.$

21 Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbf{F}^5\}$. Find a W such that $\mathbf{F}^5 = U \oplus W$. Solution: Let $W = \{(0, 0, z, w, u) \in \mathbf{F}^5\}$. Then $U \cap W = \{0\}$. And $\mathbf{F}^5 \ni (x, y, z, w, u) \Rightarrow (x, y, x + y, x - y, 2x) + (0, 0, z - x - y, w - x - y, u - 2x) \in U + W$.

And $T \ni (x, x, y, z) \Rightarrow (0, 0, y - x, y - x) + (x, x, x, -y + x + z) \in U + W$. Hence $T \subseteq U + W$.

Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}$. By def, $U + W \subseteq T$.

Solution: $V = \mathbf{F}^2$, $U = \{(x, x) \in \mathbf{F}^2\}$, $V_1 = \{(x, 0) \in \mathbf{F}^2\}$, $V_2 = \{(0, x) \in \mathbf{F}^2\}$.	
• Tips: Suppose $V_1 \subseteq V_2$ in Exercise (23). Prove or give a counterexample: $V_1 = V_2$. Solution: Because the subset V_1 of vecsp V_2 is closed under add and scalar multi, V_1 is a subspace of V_2 . Suppose W is such that $V_2 = V_1 \oplus W$. Now $V_2 \oplus U = (V_1 \oplus W) \oplus U = (V_1 \oplus U) \oplus W = V_1 \oplus W$. If $W \neq \{0\}$, then $V_1 \oplus U \subsetneq (V_1 \oplus U) \oplus W$, contradicts. Hence $W = \{0\}$, $V_1 = V_2$.	
• Suppose V_1, V_2, U_1, U_2 are vecsps, $V_1 \oplus U_1 = V_2 \oplus U_2, V_1 \subseteq V_2, U_2 \subseteq U_1$. Prove or give a counterexample: $V_1 = V_2, U_1 = U_2$. Solution: A counterexample: $V_1 = V_2, U_1 = U_2$. Let $V = F^3, B_V = (e_1, e_2, e_3), V_1 = \operatorname{span}(e_1), U_1 = \operatorname{span}(e_2, e_3), V_2 = \operatorname{span}(e_1, e_2), U_2 = \operatorname{span}(e_1, e_2), U_2 = \operatorname{span}(e_2, e_3)$. Now $V_1 \subseteq V_2, U_2 \subseteq U_1$ and $V_1 \oplus U_1 = V_2 \oplus U_2$. But $V_1 \neq V_2, U_1 \neq U_2$.	[<i>e</i> ₃). □
24 Let $V_E = \{ f \in \mathbb{R}^R : f \text{ is even} \}, V_O = \{ f \in \mathbb{R}^R : f \text{ is odd} \}. \text{ Show that } V_E \oplus V_O = \mathbb{R}^R \}$ Solution: (a) $V_E \cap V_O = \{ f \in \mathbb{R}^R : f(x) = f(-x) = -f(-x) \} = \{ 0 \}.$	
(b) Let $f_e(x) = \frac{1}{2} [g(x) + g(-x)] \Longrightarrow f_e \in V_E$ Let $f_o(x) = \frac{1}{2} [g(x) - g(-x)] \Longrightarrow f_o \in V_O$ $\Rightarrow \forall g \in \mathbb{R}^R, \ g(x) = f_e(x) + f_o(x)$).
F	ENDED
2·A 1 2 6 10 11 14 16 17 4E: 3,14	
2 (a) $[P]$ A list (v) of length 1 in V is linely inde $\iff v \neq 0$. (b) $[P]$ A list (v,w) of length 2 in V is linely inde $\iff \forall \lambda, \mu \in \mathbf{F}, v \neq \lambda w, w \neq \mu v$. Solution:	[Q] [Q]
(a) $Q \stackrel{1}{\Rightarrow} P : v \neq 0 \Rightarrow \text{if } av = 0 \text{ then } a = 0 \Rightarrow (v) \text{ linely inde.}$ $P \stackrel{2}{\Rightarrow} Q : (v) \text{ linely inde} \Rightarrow v \neq 0 \text{, for if } v = 0 \text{, then } av = 0 \Rightarrow a = 0.$	
OR.	
COMMENT: (1) with (3) and (2) with (4) will do as well.	
(b) $P \stackrel{1}{\Rightarrow} Q : (v, w)$ linely inde \Rightarrow if $av + bw = 0$, then $a = b = 0 \Rightarrow$ no scalar multi.	
$Q \stackrel{?}{\Rightarrow} P$: no scalar multi \Rightarrow if $av + bw = 0$, then $a = b = 0 \Rightarrow (v, w)$ linely inde.	
OR.	
$Q \Rightarrow P$: Scalar multi \Rightarrow if $uv + vw = 0$, then u or $v \neq 0 \Rightarrow$ linely dep. Comment: (1) with (3) and (2) with (4) will do as well.	

1 Prove that $[P](v_1, v_2, v_3, v_4)$ spans $V \iff (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V[Q]. **SOLUTION:** Notice that $V = \text{span}(v_1, \dots, v_n) \iff \forall v \in V, \exists a_1, \dots, a_n \in F, v = a_1v_1 + \dots + a_nv_n$. Assume that $\forall v \in V, \exists a_1, \dots, a_4, b_1, \dots, b_4 \in F$, (that is, if $\exists a_i$, then we are to find b_i , vice versa) $v = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4$ $= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4$ $= b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4.$ Now we can let $b_i = \sum_{r=1}^{i} a_r$ if we are to prove Q with P already assumed; or let $a_i = b_i - b_{i-1}$ with $b_0 = 0$, if we are to prove P with Q already assumed. **6** Prove that [P] (v_1, v_2, v_3, v_4) is linely inde $\Leftrightarrow (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is linely inde. [Q] **SOLUTION:** $P \Rightarrow Q: a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0$ $\Rightarrow a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0 \Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0$ $Q \Rightarrow P : a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$ $\Rightarrow a_1(v_1-v_2)+(a_1+a_2)(v_2-v_3)+(a_1+a_2+a_3)(v_3-v_4)+(a_1+\cdots+a_4)v_4=0$ $\Rightarrow a_1 = a_1 + a_2 = a_1 + a_2 + a_3 = a_1 + \dots + a_4 = 0.$ • Suppose $(v_1, ..., v_m)$ is a list of vecs in V. For each k, let $w_k = v_1 + \cdots + v_k$. (a) Show that span $(v_1, ..., v_m) = \text{span}(w_1, ..., w_m)$. (b) Show that $[P](v_1,...,v_m)$ is linely inde $\iff (w_1,...,w_m)$ is linely inde [Q]. **SOLUTION:** (a) Assume $a_1v_1 + \dots + a_mv_m = b_1w_1 + \dots + b_mw_m = b_1v_1 + \dots + b_k(v_1 + \dots + v_k) + \dots + b_m(v_1 + \dots + v_m)$. Then $a_k = b_k + \dots + b_m$; $a_{k+1} = b_{k+1} + \dots + b_m \Rightarrow b_k = a_k - a_{k+1}$; $b_m = a_m$. Similar to Problem (1). (b) $P \Rightarrow Q: b_1 w_1 + \dots + b_m w_m = 0 = a_1 v_1 + \dots + a_m v_m$, where $0 = a_k = b_k + \dots + b_m$. $Q \Rightarrow P: a_1v_1 + \dots + a_mv_m = 0 = b_1w_1 + \dots + b_mw_m = 0$, where $0 = b_m = a_m$, $0 = b_k = a_k - a_{k+1}$. Or. Because $W = \operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(w_1, \dots, w_m)$. By [2.21](b), a list of length (m-1) spans W, then by [2.23], (w_1, \dots, w_m) linely dep $\Longrightarrow (v_1, \dots, v_m)$ linely dep. Conversely it is true as well. **10** Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. *Prove that if* $(v_1 + w, ..., v_m + w)$ *is linely depe, then* $w \in \text{span}(v_1, ..., v_m)$. **SOLUTION:** Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0$, $\exists a_i \neq 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = -(a_1 + \cdots + a_m)w$. Then $a_1 + \cdots + a_m \neq 0$, for if not, $a_1v_1 + \cdots + a_mv_m = 0$ while $a_i \neq 0$ for some i, contradicts. OR. By contrapositive: Prove that $w \notin \text{span}(v_1, \dots, v_m) \Longrightarrow (v_1 + w, \dots, v_m + w)$ is linely inde. Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = -(a_1 + \cdots + a_m)w$. Now by assumption, $a_1 + \cdots + a_m = 0$. Then $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow a_1 = \cdots = a_m = 0$. Or. $\exists j \in \{1, ..., m\}, v_i + w \in \text{span}(v_1 + w, ..., v_{i-1} + w)$. If j = 1 then $v_1 + w = 0$ and we are done. If $j \ge 2$, then $\exists a_i \in \mathbf{F}, v_i + w = a_1(v_1 + w) + \dots + a_{i-1}(v_{i-1} + w) \iff v_i + \lambda w = a_1v_1 + \dots + a_{i-1}v_{i-1}$. Where $\lambda = 1 - (a_1 + \dots + a_{i-1})$. Note that $\lambda \neq 0$, for if not, $v_i + \lambda w = v_i \in \text{span}(v_1, \dots, v_{i-1})$, contradicts. Now $w = \lambda^{-1} (a_1 v_1 + \dots + a_{j-1} v_{j-1} - v_j) \Rightarrow w \in \operatorname{span}(v_1, \dots, v_m).$

Show that $[P](v_1, ..., v_m, w)$ is linely inde $\iff w \notin \text{span}(v_1, ..., v_m)[Q]$. **14** Prove that [P] V is infinite-dim \iff [Q] there is a sequence (v_1, v_2, \dots) in V such that (v_1, \dots, v_m) is linely inde for each $m \in \mathbb{N}^+$. **SOLUTION:** $P \Rightarrow Q$: Suppose *V* is infinite-dim, so that no list spans *V*. Step 1 Pick a $v_1 \neq 0$, (v_1) linely inde. Step m Pick a $v_m \notin \text{span}(v_1, ..., v_{m-1})$, by Problem (11), $(v_1, ..., v_m)$ is linely inde. This process recursively defines the desired sequence $(v_1, v_2, ...)$. $\neg P \Rightarrow \neg Q$: Suppose *V* is finite-dim and $V = \text{span}(w_1, ..., w_m)$. Let $(v_1, v_2, ...)$ be a sequence in V, then $(v_1, v_2, ..., v_{m+1})$ must be linely dep. Or. $Q \Rightarrow P$: Suppose there is such a sequence. Choose an m. Suppose a linely inde list $(v_1, ..., v_m)$ spans V. Similar to [2.16]. $\exists v_{m+1} \in V \setminus \text{span}(v_1, \dots, v_m)$. Hence no list spans V. **16** Prove that the vecsp of all continuous functions in $\mathbf{R}^{[0,1]}$ is infinite-dim. **SOLUTION**: Denote the vecsp by U. Choose one $m \in \mathbb{N}^+$. Suppose $a_0, \dots, a_m \in \mathbb{R}$ are such that $p(x) = a_0 + a_1 x + \dots + a_m x^m = 0$, $\forall x \in [0, 1]$. Then *p* has infinitely many roots and hence each $a_k = 0$, otherwise deg $p \ge 0$, contradicts [4.12]. Thus $(1, x, ..., x^m)$ is linely inde in $\mathbb{R}^{[0,1]}$. Similar to [2.16], U is infinite-dim. Or. Note that $\frac{1}{1} > \frac{1}{2} > \dots > \frac{1}{m}$, $\forall m \in \mathbb{N}^+$. Suppose $f_m = \begin{cases} x - \frac{1}{m}, & x \in \left(\frac{1}{m}, 1\right) \\ 0, & x \in \left[0, \frac{1}{m}\right] \end{cases}$ Then $f_1\left(\frac{1}{m}\right) = \dots = f_m\left(\frac{1}{m}\right) = 0 \neq f_{m+1}\left(\frac{1}{m}\right)$. Hence $f_{m+1} \notin \operatorname{span}(f_1, \dots, f_m)$. By Problem (14). \square **17** Suppose $p_0, p_1, \dots, p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, \dots, m\}$. *Prove that* $(p_0, p_1, ..., p_m)$ *is not linely inde in* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Suppose $(p_0, p_1, ..., p_m)$ is linely inde. Define $p \in \mathcal{P}_m(\mathbf{F})$ by p(z) = z. NOTICE that $\forall a_i \in \mathbb{F}, z \neq a_0 p_0(z) + \dots + a_m p_m(z)$, for if not, let z = 2. Thus $z \notin \text{span}(p_0, p_1, \dots, p_m)$. Then span $(p_0, p_1, ..., p_m) \subseteq \mathcal{P}_m(\mathbf{F})$ while the list $(p_0, p_1, ..., p_m)$ has length (m + 1). Hence (p_0, p_1, \dots, p_m) is linely depe in $\mathcal{P}_m(\mathbf{F})$. For if not, then because $(1, z, ..., z^m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$, by the steps in [2.23] trivially, $(p_0, p_1, ..., p_m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$. Contradicts. OR. Note that $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(\underbrace{1, z, \dots, z^m}_{\text{of length }(m+1)})$. Then $(p_0, p_1, \dots, p_m, z)$ of length (m+2) is linely dep. As shown above, $z \notin \text{span}(p_0, p_1, \dots, p_m)$. And hence by [2.21](a), (p_0, p_1, \dots, p_m) is linely dep.

11 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$.

7 Prove or give a counterexample: If (v_1, v_2, v_3, v_4) is a basis of V and U is a subsp of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then (v_1, v_2) is a basis of U. **SOLUTION**: A counterexample: Let $V = \mathbb{R}^4$ and $B_V = (e_1, e_2, e_3, e_4)$ be std basis. Let $v_1 = e_1, v_2 = e_2, v_3 = e_3 + e_4, v_4 = e_4$. Then (v_1, \dots, v_4) is a basis of \mathbb{R}^4 . Let $U = \operatorname{span}(e_1, e_2, e_3) = \operatorname{span}(v_1, v_2, v_3 - v_4)$. Then $v_3 \notin U$ and (v_1, v_2) is not a basis of U. • Note For " $C_V U \cup \{0\}$ ": " $C_V U \cup \{0\}$ " is supposed to be a subsp W such that $V = U \oplus W$. But if we let $u \in U \setminus \{0\}$ and $w \in W \setminus \{0\}$, then $\begin{cases} w \in C_V U \cup \{0\} \\ u \pm w \in C_V U \cup \{0\} \end{cases} \} \Rightarrow u \in C_V U \cup \{0\}$. Contradicts. To fix this, denote the set $\{W_1, W_2, \dots\}$ by $S_V U$, where for each W_i , $V = U \oplus W_i$. See also in (1.C.23). • Tips: Suppose V is finite-dim with dim V = n and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \dots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geqslant 1$. We will construct B_V via the following process. **Step 1.** $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. **Step k.** Suppose $(v_1, ..., v_{k-1})$ is linely inde in V, each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), because $\operatorname{span}(v_1, \dots, v_{k-1}) \not\subseteq U$, $U \subseteq \operatorname{span}(v_1, \dots, v_{k-1}) \Rightarrow \operatorname{span}(v_1, \dots, v_{k-1}) = V$. Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}(v_1, \dots, v_{k-1})$. By (2.A.11), (v_1, \dots, v_k) is linely inde in V. If span $(v_1, \dots, v_k) = V$, then we stop. Because *V* is finite-dim, this process will stop after *n* steps. OR. Suppose $U \neq \{0\}$. Let $B_U = (u_1, \dots, u_m)$. Extend to a basis (u_1, \dots, u_n) of V. Then let $B_V = (u_1 - u_k, ..., u_m - u_k, u_{m+1}, ..., u_k, ..., u_n)$. **1** Find all vecsps on whatever **F** that have exactly one basis. **SOLUTION:** The trivial vecsp $\{0\}$ will do. Indeed, the only basis of $\{0\}$ is the empty list (). Now consider the field $\{0,1\}$ containing only the add identity and multi identity, with 1 + 1 = 0. Then the list (1) is the unique basis. Now the vecsp $\{0, 1\}$ will do. **COMMENT:** All vecsp on such **F** of dim 1 will do. And more generally, consider $\mathbf{F} = \mathbf{Z}_m$, $\forall m - 1 \in \mathbf{N}^+$. For each $s, t \in \{1, ..., m\}$, $\mathbf{F} = \operatorname{span}(K_s) = \operatorname{span}(K_t)$. More than one basis. So are \mathbf{Q} , \mathbf{R} , \mathbf{C} and all vecsps on such \mathbf{F} . Consider other F. Note that this F contains at least and strictly more than 0 and 1. Failed. \Box • (4E9) Suppose (v_1, \ldots, v_m) is a list of vecs in V. For $k \in \{1, \ldots, m\}$, let $w_k = v_1 + \cdots + v_k$. Show that $[P] B_V = (v_1, \dots, v_m) \iff B_W = (w_1, \dots, w_m). [Q]$ **SOLUTION:** NOTICE that $B_U = (u_1, \dots, u_n) \iff \forall u \in U, \exists ! a_i \in F, u = a_1u_1 + \dots + a_nu_n$.

 $P\Rightarrow Q: \forall v\in V, \exists !\, a_i\in \mathbf{F},\ v=a_1v_1+\cdots+a_mv_m\Rightarrow v=b_1w_1+\cdots+b_mw_m, \exists !\, b_k=a_k-a_{k+1}, b_m=a_m.$

 $Q \Rightarrow P: \forall v \in V, \exists ! b_i \in \mathbf{F}, \ v = b_1 w_1 + \dots + b_m w_m \Rightarrow v = a_1 v_1 + \dots + a_m v_m, \exists ! a_k = \sum_{j=k}^m b_j.$

COMMENT: See also ??? in (3.F).

• (4E 5) Suppose U, W are finite-dim, V = U + W, $B_U = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. *Prove that* $\exists B_V$ *consisting of vecs in* $U \cup W$. SOLUTION: $V = \operatorname{span}(u_1, \dots, u_m) + \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(\overline{u_1, \dots, u_m, w_1, \dots, w_n})$. By [2.31]. **8** Suppose $V = U \oplus W$, $B_U = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. *Prove that* $B_V = (u_1, ..., u_m, w_1, ..., w_n).$ **SOLUTION:** $\forall v \in V, \exists ! u \in U, w \in W \Rightarrow \exists ! a_i, b_i \in F, v = u + w = \sum_{i=1}^m a_i u_i + \sum_{i=1}^n b_i w_i$. Or. $V = \operatorname{span}(u_1, \dots, u_m) \oplus \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(u_1, \dots, u_m, w_1, \dots, w_n)$. Note that $\sum_{i=1}^{m} a_i u_i + \sum_{i=1}^{n} b_i w_i = 0 \Rightarrow \sum_{i=1}^{m} a_i u_i = -\sum_{i=1}^{n} b_i w_i \in U \cap W = \{0\}.$ • (9.A.3,4 Or 4E 11) Suppose V is on \mathbb{R} , and $v_1, ..., v_n \in V$. Let $B = (v_1, ..., v_n)$. (a) Show that [P] B is linely inde in $V \iff B$ is linely inde in V_C . [Q](b) Show that [P] B spans $V \iff B$ spans V_C . [Q] $\text{(a) } P \Rightarrow Q: \text{ Note that each } v_k \in V_{\mathbf{C}}. \quad Q \Rightarrow P: \text{ If } \lambda_k \in \mathbf{R} \text{ with } \lambda_1 v_1 + \dots + \lambda_n v_n = 0 \text{, then each } \mathrm{Re} \, \lambda_k = \lambda_k = 0.$ $\neg P \Rightarrow \neg Q : \exists v_i = a_{i-1}v_{i-1} + \dots + a_1v_1 \in V_C.$ $\neg Q \Rightarrow \neg P: \ \exists \ v_j = \lambda_{j-1} v_{j-1} + \dots + \lambda_1 v_1 \Rightarrow v_j = \big(\operatorname{Re} \lambda_{j-1} \big) v_{j-1} + \dots + \big(\operatorname{Re} \lambda_1 \big) v_1 \in V.$ (b) $P \Rightarrow Q$: $\forall u + iv \in V_C$, $u, v \in V \Rightarrow \exists a_i, b_i \in \mathbb{R}, u + iv = \sum_{i=1}^n (a_i + ib_i)v_i$. $Q \Rightarrow P: \ \forall v \in V, \exists a_i + \mathrm{i} b_i \in \mathbf{C}, \ v + \mathrm{i} 0 = \left(\sum_{i=1}^n a_i v_i\right) + \mathrm{i} \left(\sum_{i=1}^n b_i v_i\right) \Rightarrow v \in \mathrm{span}(v_1, \dots, v_m).$ $\neg Q \Rightarrow \neg P : \exists v \in V, v \notin \operatorname{span}(B) \Rightarrow v + i0 \notin \operatorname{span}(B) \text{ while } v + i0 \in V_{\mathbb{C}}.$ $\neg Q \Rightarrow \neg P : \exists u + iv \in V_C, u + iv \notin \operatorname{span}(B) \Rightarrow u \text{ or } v \notin \operatorname{span}(B). \text{ Note that } u, v \in V.$ • Note For *linely inde sequence and* [2.34]: " $V = \text{span}(v_1, ..., v_n, ...)$ " is an invalid expression. If we allow using "infinite list", then we must guarantee that (v_1, \dots, v_n, \dots) is a spanning "list" such that $\forall v \in V$, \exists smallest $n \in \mathbb{N}^+$, $v = a_1v_1 + \cdots + a_nv_n$. Moreover, given a list $(w_1, \cdots, w_n, \cdots)$ in W, we can prove that $\exists ! T \in \mathcal{L}(V, W)$ with each $Tv_k = w_k$, which has less restrictions than [3.5]. But the key point is, how can we guarantee that such a "list" exists. TODO: More details. **ENDED** 2·C 1 7 9 10 14,16 15 17 | 4E: 10 14,15 16 **15** Suppose V is finite-dim and dim $V = n \ge 1$. *Prove that* \exists *one-dim subsps* V_1, \ldots, V_n *of* V *such that* $V = V_1 \oplus \cdots \oplus V_n$. **SOLUTION**: Suppose $B_V = (v_1, ..., v_n)$. Define V_i by $V_i = \text{span}(v_i)$ for each $i \in \{1, ..., n\}$. Then $\forall v \in V, \exists ! a_i \in F, v = a_1 v_1 + \dots + a_n v_n \Rightarrow \exists ! u_i \in V_i, v = u_1 + \dots + u_n$ • NOTE FOR Problem (15): Suppose $v \in V \setminus \{0\}$, and dim $V = n \ge 1$. Prove that $\exists B_V = (v_1, \dots, v_n), v = v_1 + \dots + v_n$. **SOLUTION:** If n = 1 then let $v_1 = v$ and we are done. Suppose n > 1. Extend (v) to a basis (v, v_1, \dots, v_{n-1}) of V. Let $v_n = v - v_1 - \dots - v_{n-1}$. \mathbb{X} span $(v, v_1, \dots, v_{n-1}) = \text{span}(v_1, \dots, v_n)$. Hence (v_1, \dots, v_n) is also a basis of V. **COMMENT:** Let $B_V = (v_1, ..., v_n)$ and suppose $v = u_1 + ... + u_n$, where each $u_i = a_i v_i \in V_i$. But $(u_1, ..., u_n)$ might not be a basis, because there might be some $u_i = 0$.

```
1 [Corollary for [2.38,39]] Suppose U is a subsp of V such that \dim V = \dim U. Then V = U.
   Let B_U = (u_1, ..., u_m). Then m = \dim V. \mathbb{Z} u_i \in V. By [2.39], B_V = (u_1, ..., u_m).
                                                                                                                                                         • Let v_1, \ldots, v_n \in V and dim span(v_1, \ldots, v_n) = n. Then (v_1, \ldots, v_n) is a basis of span(v_1, \ldots, v_n).
  Notice that (v_1, ..., v_n) is a spanning list of \operatorname{span}(v_1, ..., v_n) of length n = \dim \operatorname{span}(v_1, ..., v_n).
7 (a) Let U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}. Find a basis of U.
   (b) Extend the basis in (b) to a basis of \mathcal{P}_{4}(\mathbf{F}).
   (c) Find a subsp W of \mathcal{P}_4(\mathbf{F}) such that \mathcal{P}_4(\mathbf{F}) = U \oplus W.
SOLUTION: Using Problem (10).
   NOTICE that \nexists p \in \mathcal{P}(\mathbf{F}) of deg 1 and 2, while p \in U. Thus dim U \leq \dim \mathcal{P}_4(\mathbf{F}) - 2 = 3.
   (a) Consider B = (1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)).
         Let a_0 + a_3(z-2)(z-5)(z-6) + a_4z(z-2)(z-5)(z-6) = 0 \Rightarrow a_0 = a_3 = a_4 = 0.
         Thus the list B is linely inde in U. Now dim U \ge 3 \Rightarrow \dim U = 3. Thus B_U = B.
   (b) Extend to a basis of \mathcal{P}_4(\mathbf{F}) as (1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)).
   (c) Let W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbb{F}\}, so that \mathcal{P}_4(\mathbb{F}) = U \oplus W.
                                                                                                                                                          9 Suppose (v_1, \ldots, v_m) is linely inde in V and w \in V.
   Prove that dim span(v_1 + w, ..., v_m + w) \ge m - 1.
SOLUTION: Using the result of (2.A.10, 11).
   Note that v_i - v_1 = (v_i + w) - (v_1 + w) \in \text{span}(v_1 + w, ..., v_n + w), for each i = 1, ..., m.
    \left(v_1,\ldots,v_m\right) \text{ linely inde} \Rightarrow \left(v_1,v_2-v_1,\ldots,v_m-v_1\right) \text{ linely inde} \Rightarrow \left(v_2-v_1,\ldots,v_m-v_1\right) \text{ linely inde}. 
   \mathbb{Z} If w \notin \text{span}(v_1, \dots, v_m). Then (v_1 + w, \dots, v_m + w) is linely inde. of length (m-1)
   Hence m \ge \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1.
                                                                                                                                                          • (4E 16) Suppose V is finite-dim, U is a subsp of V with U \neq V. Let n = \dim V, m = \dim U.
  Prove that \exists (n-m) subsps U_1, \ldots, U_{n-m}, each of dim (n-1), such that \bigcap_{i=1}^{n} U_i = U.
SOLUTION: Let B_{IJ} = (v_1, ..., v_m), B_V = (v_1, ..., v_m, u_1, ..., v_{n-m}).
                  Define U_i = \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_{n-m}) for each i. Then U \subseteq U_i for each i.
                 And because \forall v \in \bigcap_{i=1}^{n-m} U_i, v = v_0 + b_1 u_1 + \dots + b_{n-m} u_{n-m} \in U_i \Rightarrow \text{each } b_i = 0 \Rightarrow v \in U.
Hence \bigcap_{i=1}^{n-m} U_i \subseteq U.
                                                                                                                                                          • Note For Problem 10: For each nonconst p \in \text{span}(1, z, ..., z^m), \exists \text{ smallest } m \in \mathbb{N}^+, which is \deg p.
  (a) If p_0, p_1, \dots, p_m are such that all a_{k,k} \neq 0, and
       If p_0, p_1, \dots, p_m are such that p_0 = a_{0,0}, each p_k = a_{0,k} + a_{1,k}z + \dots + a_{k,k}z^k.

Then the upper-trig \mathcal{M}\left(I, (p_0, p_1, \dots, p_m), (1, z, \dots, z^m)\right) = \begin{pmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,m} \\ 0 & a_{1,1} & \dots & a_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{m,m} \end{pmatrix}
  (b) If p_0, p_1, \dots, p_m are such that all a_{k,k} \neq 0, and
        p_{0} = a_{0,0} + \dots + a_{m,0}x^{m}, \text{ each } p_{k} = a_{k,k}x^{k} + \dots + a_{m,k}x^{m}.
Then the lower-trig \mathcal{M}\left(I, (p_{0}, p_{1}, \dots, p_{m}), (1, z, \dots, z^{m})\right) = \begin{pmatrix} a_{0,0} & 0 & \dots & 0 \\ a_{1,0} & a_{1,1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}
  COMMENT: Define \xi_k(p) by the coeff of z^k in p \in \mathcal{P}_m(\mathbf{F}).
                    Then \mathcal{M}(\xi_k, (1, z, ..., z^m), (1)) = \mathcal{E}^{(1,k)} \in \mathbf{F}^{1,m+1}.
```

10 Suppose $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. *Prove that* $(p_0, p_1, ..., p_m)$ *is a basis of* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Using mathematical induction on m. (i) k = 1. $\deg p_0 = 0$; $\deg p_1 = 1 \Rightarrow \operatorname{span}(p_0, p_1) = \operatorname{span}(1, x)$. (ii) $1 \le k \le m - 1$. Assume that span $(p_0, p_1, ..., p_k) = \text{span}(1, x, ..., x^k)$. Then span $(p_0, p_1, ..., p_k, p_{k+1}) \subseteq \text{span}(1, x, ..., x^k, x^{k+1}).$ $\mathbb{Z} \operatorname{deg} p_{k+1} = k+1, \ p_{k+1}(x) = a_{k+1}x^{k+1} + r_{k+1}(x); \ a_{k+1} \neq 0, \ \operatorname{deg} r_{k+1} \leqslant k.$ $\Rightarrow x^{k+1} = \frac{1}{a_{k+1}} \Big(p_{k+1}(x) - r_{k+1}(x) \Big) \in \text{span}(1, x, \dots, x^k, p_{k+1}) = \text{span}(p_0, p_1, \dots, p_k, p_{k+1}).$ $\therefore x^{k+1} \in \text{span}(p_0, p_1, ..., p_k, p_{k+1}) \Rightarrow \text{span}(1, x, ..., x^k, x^{k+1}) \subseteq \text{span}(p_0, p_1, ..., p_k, p_{k+1}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$ Or. 用比较系数法. Denote the coeff of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show that $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is linely inde. **Step 1.** For k = m, $\xi_m(L) = a_m \xi_m(p_m) = \xi_m(R) = 0 \ \, \text{\mathbb{Z} deg $p_m = m$, $\xi_m(p_m) \neq 0 \Rightarrow a_m = 0$.}$ Now $L = a_{m-1}p_{m-1}(x) + \dots + a_0p_0(x)$. **Step k.** For $0 \le k \le m$, we have $a_m = \cdots = a_{k+1} = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \mathbb{Z} \deg p_k = k$, $\xi_k(p_k) \neq 0 \Rightarrow a_k = 0$. Now if k = 0, then we are done. Otherwise, we have $L = a_{k-1}p_{k-1}(x) + \cdots + a_0p_0(x)$. • Tips: Suppose $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}_m(\mathbb{F})$ are such that the lowest term of each p_k is of deg k. Prove that $(p_0, p_1, ..., p_m)$ is a basis of $\mathcal{P}_m(\mathbf{F})$. **SOLUTION**: Using mathematical induction on *m*. Let each p_k be defined by $p_k(x) = a_{k,k}x^k + \cdots + a_{m,k}x^m$, where $a_{k,k} \neq 0$. (i) k = 1. $p_m(x) = a_{m,m}x^m$; $p_{m-1}(x) = a_{m-1,m-1}x^{m-1} + a_{m,m-1}x^m \Longrightarrow \operatorname{span}(x^m, x^{m-1}) = \operatorname{span}(p_m, p_{m-1})$. (ii) $1 \le k \le m-1$. Assume that span $(x^m, \dots, x^{m-k}) = \text{span}(p_m, \dots, p_{m-k})$. Then span $(p_m, \dots, p_{m-(k+1)}) \subseteq \operatorname{span}(x^m, \dots, x^{m-(k+1)})$. $\mathbb{Z} p_{m-(k+1)}$ has the form $a_{m-(k+1),m-(k+1)} x^{m-(k+1)} + r_{m-(k+1)}(x)$; where the lowest term of $r_{m-(k+1)} \in \mathcal{P}_m(\mathbf{F})$ is of deg (m-k). $\Rightarrow x^{m-(k+1)} = \frac{1}{a_{m-(k+1),m-(k+1)}} \Big(p_{m-(k+1)}(x) - r_{m-(k+1)}(x) \Big) \in \operatorname{span}(x^m, \dots, x^{m-k}, p_{m-(k+1)}) \\ = \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ $\therefore x^{m-(k+1)} \in \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)})$ $\Rightarrow \operatorname{span}(x^m, \dots, x^{m-k}, x^{m-(k+1)}) \subseteq \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(x^m, \dots, x, 1) = \operatorname{span}(p_m, \dots, p_1, p_0).$ Or. 用比较系数法. Denote the coeff of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show that $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is linely inde. **Step 1.** For k = 0, $\xi_0(L) = a_0 \xi_0(p_0) = \xi_0(R) = 0$ $\mathbb{Z} \deg p_0 = 0$, $\xi_0(p_0) \neq 0 \Rightarrow a_0 = 0$. Now $L = a_1 p_1(x) + \dots + a_m p_m(x)$. **Step k.** For $0 \le k \le m$, we have $a_{k-1} = \cdots = a_0 = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \mathbb{Z} \deg p_k = k$, $\xi_k(p_k) \neq 0 \Rightarrow a_k = 0$. Now if k = m, then we are done. Otherwise, we have $L = a_{k+1}p_{k+1}(x) + \cdots + a_mp_m(x)$.

- Note For [2.11]: Good definition for a general term always aviods undefined behaviours. If deg p=0, then $p(z)=a_0\neq 0$, but not literally a_0z^0 , by which if p is defined, then it comes to 0^0 . To make it clear, we specify that in $\mathcal{P}(\mathbf{F})$, $a_0z^0=a_0$, where z^0 appears just for notational convenience. Because by definition, the term a_0z^0 in a poly only represents the const term of the poly, which is a_0 . For convenience, we assume that $z^0=1$ in formula deduction and poly def. Absolutely without 0^0 .
- (4E 10) Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k (1-x)^{m-k}$. Show that (p_0, \ldots, p_m) is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION: We may see $p_0 = 1$ and $p_m(x) = x^m$, from the expansion below, by the Note For [2.11] above.

Note that each
$$p_k(x) = \sum_{j=0}^{m-k} C_{m-k}^j (-1)^j \cdot x^{j+k} \cdot 1^j = \underbrace{(-1)^0 \cdot x^k \cdot 1^0}_{\text{of deg k}} + \underbrace{\sum_{j=1}^{m-k} C_{m-k}^j (-1)^j \cdot x^{j+k} \cdot 1^j}_{\text{of deg m; denote it by } q_k(x)}$$

OR. Similar to the TIPS above. We will recursively prove that each $x^{m-k} \in \text{span}(p_m, ..., p_{m-k})$.

- (i) k = 1. $p_m(x) = x^m \in \text{span}(p_m)$; $p_{m-1}(x) = x^{m-1} x^m \Rightarrow x^{m-1} \in \text{span}(p_{m-1}, p_m)$.
- (ii) $k \in \{1, \dots, m-1\}$. Suppose for each $k \in \{0, \dots, k\}$, we have $x^{m-k} \in \text{span}(p_{m-k}, \dots, p_m)$, $\exists ! a_m \in \mathbb{F}$. Note that $x^{m-(k+1)} = p_{m-(k+1)}(x) + \sum_{j=1}^{k+1} C_{k+1}^j (-1)^{j+1} x^{m-(k+1)+j} \in \text{span}(p_{m-(k+1)}, x^{m-k}, \dots, x^m)$. Thus $x^{m-(k+1)} \in \text{span}(p_{m-(k+1)}, p_{m-k}, \dots, p_m)$.

COMMENT: The base step and the inductive step can be independent.

OR. For any $m, k \in \mathbb{N}^+$ such that $k \leq m$. Define $p_{k,m}$ by $p_{k,m}(x) = x^k (1-x)^{m-k}$. Define the statement S(m) by $S(m): (p_{0,m}, \dots, p_{m,m})$ is linely inde (and therefore is a basis). We use induction on to show that S(m) holds for all $m \in \mathbb{N}^+$.

- (i) m = 0. $p_{0,0} = 1$, and $ap_{0,0} = 0 \Rightarrow a = 0$. m = 1. Let $a_0(1-x) + a_1x = 0$, $\forall x \in \mathbf{F}$. Then take x = 1, $x = 0 \Rightarrow a_1 = a_0 = 0$.
- (ii) $1 \le m$. Assume that S(m) and S(m-1) holds. Now we show that S(m+1) holds. Suppose $\sum_{k=0}^{m+1} a_k p_{k,m+1}(x) = \sum_{k=0}^{m+1} a_k [x^k (1-x)^{m+1-k}] = 0, \forall x \in \mathbb{F}$.

Now
$$a_0(1-x)^{m+1} + \sum_{k=1}^m a_k x^k (1-x)^{m+1-k} + a_{m+1} x^{m+1} = 0, \forall x \in \mathbf{F}.$$

While
$$x = 0 \Rightarrow a_0 = 0$$
; and $x = 1 \Rightarrow a_{m+1} = 0$.

Then
$$0 = \sum_{k=1}^{m} a_k x^k (1-x)^{m+1-k}$$

 $= x(1-x) \sum_{k=1}^{m} a_k x^{k-1} (1-x)^{m-k}$, note that $m-k = (m-1) - (k-1)$
 $= x(1-x) \sum_{k=0}^{m-1} a_{k+1} x^k (1-x)^{m-1-k} = x(1-x) \sum_{k=0}^{m-1} a_{k+1} p_{k,m-1}(x)$.

Hence $\sum_{k=0}^{m-1} a_{k+1} p_{k,m-1}(x) = 0, \forall x \in \mathbb{F} \setminus \{0,1\}$. Which has infinitely many zeros.

Moreover, $\sum_{k=0}^{m-1} a_{k+1} p_{k,m-1}(x) = 0$. By assumption, $a_1 = \dots = a_{m-1} = a_m = 0$.

Thus $(p_{0,m+1},...,p_{m+1,m+1})$ is linely inde and S(m+1) holds.

14 Suppose V_1, \ldots, V_m are finite-dim. Prove that $\dim(V_1 + \cdots + V_m) \leqslant \dim V_1 + \cdots + \dim V_m$. Solution: For each V_i , let $B_{V_i} = \mathcal{E}_i$. Then $V_1 + \cdots + V_m = \mathrm{span}\big(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m\big)$; $\dim V_i = \mathrm{card}\,\mathcal{E}_i$. Now $\dim(V_1 + \cdots + V_m) = \dim \mathrm{span}\big(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m\big) \leqslant \mathrm{card}\,\big(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m\big) \leqslant \mathrm{card}\,\mathcal{E}_1 + \cdots + \mathrm{card}\,\mathcal{E}_m$. Corollary: $V_1 + \cdots + V_m$ is direct

$$\iff \text{For each } k \in \{1, \dots, m-1\}, \left(V_1 \oplus \dots \oplus V_k\right) \cap V_{k+1} = \{0\}, \left(\mathcal{E}_1 \cap \dots \cap \mathcal{E}_{k-1}\right) \cap \mathcal{E}_k = \emptyset$$

$$\iff \dim \operatorname{span} \left(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m\right) = \operatorname{card} \left(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m\right) = \operatorname{card} \mathcal{E}_1 + \dots + \operatorname{card} \mathcal{E}_m$$

$$\iff \dim(V_1 \oplus \cdots \oplus V_m) = \dim V_1 + \cdots + \dim V_m.$$

17 Suppose V_1 , V_2 , V_3 are subsps of a finite-dim vecsp, then

$$\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$$

$$-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$$

Explain why you might think and prove the formula above or give a counterexample.

SOLUTION:

[*Similar to*] Given three sets A, B and C.

Because
$$|X \cup Y| = |X| + |Y| - |X \cap Y|$$
; $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$.

Now
$$|(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$$
.

And
$$|(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|.$$

Hence
$$|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$$
.

Note that
$$(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$$
.

$$\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$$
 (1)

$$= \dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1)$$
 (2)

$$= \dim(V_1 + V_3) + \dim(V_2) - \dim((V_1 + V_3) \cap V_2)$$
 (3).

Notice that in general, $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$.

For example,
$$X = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}, Y = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}, Z = \{(z,z) \in \mathbb{R}^2 : z \in \mathbb{R}\}.$$

COMMENT: If $X \subseteq Y$, then $(X + Y) \cap Z = Y \cap Z$; $\dim(X + Y + Z) = \dim(Y) + \dim(Z) - \dim(Y \cap Z)$, and the wrong formual holds. Similar for $Y \subseteq Z$, $X \subseteq Z$, and $X, Y \subseteq Z$.

However,
$$(X + Y) \cap Z \supseteq (X \cap Z) + (Y \cap Z)$$
 holds. Because $\forall v \in (X \cap Z) + (Y \cap Z)$,

$$\exists \, u = x_1 = z_1 \in X \cap Z, \, w = y_2 = z_2 \in Y \cap Z, \, \, v = u + w = x_1 + y_2 = z_1 + z_2 \in (X + Y) \cap Z.$$

Comment:
$$\dim((X + Y) \cap Z) \ge \dim(X \cap Z) + \dim(Y \cap Z) - \dim(X \cap Y \cap Z)$$
.

• Corollary: Suppose V_1 , V_2 , V_3 are finite-dim, then $\frac{(1)+(2)+(3)}{3}$:

$$\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$$

$$-\frac{\dim(V_1 \cap V_2) + \dim(V_1 \cap V_3) + \dim(V_2 \cap V_3)}{3} - \frac{\dim((V_1 + V_2) \cap V_3) + \dim((V_1 + V_3) \cap V_2) + \dim((V_2 + V_3) \cap V_1)}{3}.$$

• TIPS: Because dim $(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim(V_2 \cap V_3) - \dim(V_1 + (V_2 \cap V_3))$.

And dim $(V_2 \cap V_3) = \dim V_2 + \dim V_3 - \dim(V_2 + V_3)$. We have (1), and (2), (3) similarly.

- $(1) \dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_2 + V_3) \dim(V_1 + (V_2 \cap V_3)).$
- (2) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_3) \dim(V_2 + (V_1 \cap V_3)).$
- (3) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_2) \dim(V_3 + (V_1 \cap V_2)).$
- Suppose V_1 , V_2 , V_3 are subsps of V with
 - (a) dim V = 10, dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By Tips, dim $(V_1 \cap V_2 \cap V_3) \ge \dim V_1 + \dim V_2 + \dim V_3 2\dim V > 0$.
 - (b) dim V_1 + dim V_2 + dim V_3 > 2 dim V. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By Tips, dim $(V_1 \cap V_2 \cap V_3) \ge 2 \dim V - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)) \ge 0$.

• TIPS 1:
$$T: V \to W$$
 is linear $\iff \begin{vmatrix} (-) \ \forall v, u \in V, T(v+u) = Tv + Tu; \\ (-) \ \forall v, u \in V, \lambda \in F, T(\lambda v) = \lambda(Tv). \end{vmatrix} \iff T(v+\lambda u) = Tv + \lambda Tu.$

• (9.A.2,6 Or 4E 3.B.33) Suppose that V, W are on R, and $T \in \mathcal{L}(V, W)$. Show that

(a)
$$T_{\rm C} \in \mathcal{L}(V_{\rm C}, W_{\rm C})$$
. (b) $\operatorname{null}(T_{\rm C}) = (\operatorname{null} T)_{\rm C}$, $\operatorname{range}(T_{\rm C}) = (\operatorname{range} T)_{\rm C}$. (c) $T_{\rm C}$ is $\operatorname{inv} \iff T$ is inv .

SOLUTION: (a)
$$T_{\rm C}((u_1+{\rm i}v_1)+(x+{\rm i}y)(u_2+{\rm i}v_2))=T(u_1+xu_2-yv_2)+{\rm i}T(v_1+xv_2+yu_2)$$

= $T_{\rm C}(u_1+{\rm i}v_1)+(x+{\rm i}y)T_{\rm C}(u_2+{\rm i}v_2).$

(b)
$$u + iv \in \text{null } (T_{\mathbf{C}}) \iff u, v \in \text{null } T \iff u + iv \in (\text{null } T)_{\mathbf{C}}.$$

 $w + ix \in \text{range } (T_{\mathbf{C}}) \iff w, x \in \text{range } T \iff w + ix \in (\text{range } T)_{\mathbf{C}}.$

(c)
$$\forall w, x \in W, \exists ! u, v \in V, T_{\mathcal{C}}(u + iv) = w + ix \iff Tu = w, Tv = x$$
. Or. By (b).

• (9.A.5) Suppose V is on R, and S, $T \in \mathcal{L}(V, W)$. Prove that $(S + \lambda T)_C = S_C + \lambda T_C$.

SOLUTION:
$$(S + \lambda T)_{\mathbf{C}}(u + iv) = (S + \lambda T)(u) + i(S + \lambda T)(v)$$

= $Su + iSv + \lambda(Tu + iTv) = (S_{\mathbf{C}} + \lambda T_{\mathbf{C}})(u + iv)$.

• Suppose U, V, W are on $R, S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. Prove that $(ST)_C = S_C T_C$.

SOLUTION:
$$\forall u + ix \in U_C$$
, $(ST)_C(u + ix) = STu + iSTx = S_C(Tu + iTx) = (S_CT_C)(u + ix)$.

- Note For Restriction: U is a subsp of V.
 - (a) $\forall S, T \in \mathcal{L}(V, W), \lambda \in \mathbf{F}, (T + \lambda S)|_{U} = T|_{U} + \lambda S|_{U}.$

(b)
$$\forall S \in \mathcal{L}(W, X), T \in \mathcal{L}(V, W), (ST)|_{U} = ST|_{U}.$$

- (4E 1.B.7) Suppose $V \neq \emptyset$ and W is a vecsp. Let $W^V = \{f : V \rightarrow W\}$.
 - (a) Define a natural add and scalar multi on W^V .
 - (b) Prove that W^V is a vecsp with these definitions.

SOLUTION:

(a)
$$W^V \ni f + g : x \to f(x) + g(x)$$
; where $f(x) + g(x)$ is the vec add on W . $W^V \ni \lambda f : x \to \lambda f(x)$; where $\lambda f(x)$ is the scalar multi on W .

(b) Commutativity:
$$(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)$$
.

Associativity:
$$((f+g)+h)(x) = (f(x)+g(x))+h(x)$$

= $f(x)+(g(x)+h(x)) = (f+(g+h))(x)$.

Additive Identity: (f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).

Additive Inverse: (f + g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x).

Distributive Properties:

$$(a(f+g))(x) = a(f+g)(x) = a(f(x) + g(x))$$

= $af(x) + ag(x) = (af)(x) + (ag)(x) = (af + ag)(x).$

Similarly,
$$((a+b)f)(x) = (af+bf)(x)$$
.

So far, we have used the same properties in W.

Which means that *if* W^V *is a vecsp, then* W *must be a vecsp.*

Multiplication Identity:
$$(1f)(x) = 1f(x) = f(x)$$
. (NOTICE that the smallest F is $\{0,1\}$.)

```
• TIPS 2: T \in \mathcal{L}(V, W) \iff T \in \mathcal{L}(V, \text{range } T) \iff T \in \mathcal{L}(V, U), if range T is a subsp of U.
             COROLLARY: \{T \in \mathcal{L}(V, W) : \text{range } T \subseteq U\} = \{T \in \mathcal{L}(V, U)\} = \mathcal{L}(V, U).
5 Because \mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear}\}\ is a subsp of W^V, \mathcal{L}(V, W) is a vecsp.
3 Suppose T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m). Prove that \exists A_{j,k} \in \mathbf{F} such that for any (x_1, \dots, x_n) \in \mathbf{F}^n,
                                 T(x_1, \dots, x_n) = \begin{pmatrix} A_{1,1}x_1 + \dots + A_{1,n}x_n, \\ \vdots & \ddots & \vdots \\ A_{m,1}x_1 + \dots + A_{m,n}x_n \end{pmatrix}
SOLUTION:
   Let T(1,0,0,\ldots,0,0)=(A_{1,1},\ldots,A_{m,1}), Note that (1,0,\ldots,0,0),\cdots,(0,0,\ldots,0,1) is a basis of \mathbf{F}^n.
        T(0,1,0,\dots,0,0)=\big(A_{1,2},\dots,A_{m,2}\big),
                                                         Then by [3.5], we are done.
                                                                                                                                      T(0,0,0,\dots,0,1) = (A_{1,n},\dots,A_{m,n}).
4 Suppose T \in \mathcal{L}(V, W), and v_1, \dots, v_m \in V such that (Tv_1, \dots, Tv_m) is linely inde in W.
   Prove that (v_1, ..., v_m) is linely inde.
SOLUTION: Suppose a_1v_1 + \cdots + a_mv_m = 0. Then a_1Tv_1 + \cdots + a_mTv_m = 0. Thus a_1 = \cdots = a_m = 0.
                                                                                                                                      7 Show that every linear map from a one-dim vecsp to itself is a multi by some scalar.
   More precisely, prove that if dim V = 1 and T \in \mathcal{L}(V), then \exists \lambda \in \mathbf{F}, Tv = \lambda v, \forall v \in V.
SOLUTION: Let u be a nonzero vec in V \Rightarrow V = \operatorname{span}(u). Because Tu \in V \Rightarrow Tu = \lambda u for some \lambda.
                Suppose v \in V \Rightarrow v = au, \exists ! a \in F. Then Tv = T(au) = \lambda au = \lambda v.
                                                                                                                                      8 Give a map \varphi: \mathbb{R}^2 \to \mathbb{R} such that \forall a \in \mathbb{R}, v \in \mathbb{R}^2, \varphi(av) = a\varphi(v) but \varphi is not linear.
SOLUTION: Define T(x,y) = \begin{cases} x+y, & \text{if } (x,y) \in \text{span}(3,1), \\ 0, & \text{otherwise.} \end{cases}
                                                                                   Or. Define T(x,y) = \sqrt[3]{(x^3 + y^3)}.
                                                                                                                                      9 Give a map \varphi: \mathbb{C} \to \mathbb{C} such that \forall w, z \in \mathbb{C}, \varphi(w+z) = \varphi(w) + \varphi(z) but \varphi is not linear.
SOLUTION: Define \varphi(u+iv) = u = \text{Re}(u+iv) OR. Define \varphi(u+iv) = v = \text{Im}(u+iv).
                                                                                                                                      • Prove that if q \in \mathcal{P}(R) and T : \mathcal{P}(R) \to \mathcal{P}(R) is defined by Tp = q \circ p, then T is not linear.
                                                                                            composition
SOLUTION: Composition and product are not the same in \mathcal{P}(F).
   NOTICE that (p \circ q)(x) = p(q(x)), while (pq)(x) = p(x)q(x) = q(x)p(x).
   Because in general, \left[q\circ (p_1+\lambda p_2)\right](x)=q\left(p_1(x)+\lambda p_2(x)\right)\neq (qp_1)(x)+\lambda (qp_2)(x).
   EXAMPLE: Let q be defined by q(x) = x^2, then q \circ (1 + (-1)) = 0 \neq q(1) + q(-1) = 2.
                                                                                                                                      10 Suppose U is a subsp of V with U \neq V. Suppose S \in \mathcal{L}(U, W) with S \neq 0
     (which means that \exists u \in U, Su \neq 0). Define T: V \to W by Tv = \begin{cases} Sv, \text{ if } v \in U, \\ 0, \text{ if } v \in V \setminus U. \end{cases}
    Prove that T is not a linear map on V.
SOLUTION: Suppose T is a linear map. And v \in V \setminus U, u \in U such that Su \neq 0.
                Then v + u \in V \setminus U, for if not, v = (v + u) - u \in U;
                while T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0. Contradicts.
```

11 Suppose U is a subsp of V and $S \in \mathcal{L}(U, W)$. Prove that $\exists T \in \mathcal{L}(V, W)$, $Tu = Su$, $\forall u \in U$. (Or. $\exists T \in \mathcal{L}(V, W)$, $T _{U} = S$.) In other words, every linear map on a subsp of V can be extended to a linear map on the entire V . SOLUTION: Suppose W is such that $V = U \oplus W$. Then $\forall v \in V$, $\exists ! u_v \in U$, $w_v \in W$, $v = u_v + w_v$ Define $T \in \mathcal{L}(V, W)$ by $T(u_v + w_v) = Su_v$. Or. [Finite-dim Req] Define by $T\left(\sum_{i=1}^m a_i u_i\right) = \sum_{i=1}^n a_i Su_i$. Let $B_V = \left(\overline{u_1, \dots, u_n}, \dots\right)$	
12 Suppose nonzero V is finite-dim and W is infinite-dim. Prove that $\mathcal{L}(V,W)$ is infinite-dim.	ite-dim.
SOLUTION: Using (2.A.14).	
Let $B_V = (v_1,, v_n)$ be a basis of V . Let $(w_1,, w_m)$ be linely inde in W for any $m \in \mathbb{N}^+$.	- /
Define $T_{x,y}: V \to W$ by $T_{x,y}(v_z) = \delta_{z,x} w_y$, $\forall x \in \{1,, n\}, y \in \{1,, m\}$, where $\delta_{z,x} = \{0, 1,, n\}$ by $V = \sum_{i=1}^{n} a_i v_i$, $V = \sum_{i=1}^{n} b_i v_i$	$z \neq x,$ $z = x.$
Then $(a_1T_{x,1} + \cdots + a_mT_{x,m})(v_x) = 0 = a_1w_1 + \cdots + a_mw_m \Rightarrow a_1 = \cdots = a_m = 0$. \mathbb{Z} m arbitrary. Thus $(T_{x,1}, \dots, T_{x,m})$ is a linely inde list in $\mathcal{L}(V, W)$ for any x and length m . Hence by (2.A.14)	
13 Suppose $(v_1,, v_m)$ is linely depe in V and $W \neq \{0\}$. Prove that $\exists w_1,, w_m \in W, \nexists T \in \mathcal{L}(V, W)$ such that $Tv_k = w_k, \forall k = 1,, m$.	
SOLUTION:	
We prove by contradiction. By linear dependence lemma, $\exists j \in \{1,, m\}, v_j \in \text{span}(v_1,, v_j)$ Fix j . Let $w_j \neq 0$, while $w_1 = \cdots = w_{j-1} = w_{j+1} = w_m = 0$. Define $T \in \mathcal{L}(V, W)$ by $Tv_k = w_k$ fo Suppose $a_1v_1 + \cdots + a_mv_m = 0$, where $a_j \neq 0$.	*
Then $T(a_1v_1 + \cdots + a_mv_m) = 0 = a_1w_1 + \cdots + a_mw_m = a_jw_j$ while $a_j \neq 0$ and $w_j \neq 0$. Contradic	cts.
OR. We prove the contrapositive: Suppose $\forall w_1, \dots, w_m \in W, \exists T \in \mathcal{L}(V, W), Tv_k = w_k$ for ea Now we show that (v_1, \dots, v_n) is linely inde. Suppose $\exists a_i \in F, a_1v_1 + \dots + a_nv_n = 0$.	
Choose one $w \in W \setminus \{0\}$. By assumption, for $(\overline{a_1}w,, \overline{a_m}w)$, $\exists T \in \mathcal{L}(V, W)$, $Tv_k = \overline{a_k}w$ for each $\overline{a_k}w$	$\operatorname{ach} v_k$.
Now we have $0 = T\left(\sum_{k=1}^{m} a_k v_k\right) = \sum_{k=1}^{m} a_k T v_k = \sum_{k=1}^{m} a_k \overline{a_k} w = \left(\sum_{k=1}^{m} a_k ^2\right) w$.	
Then $\sum_{k=1}^{m} a_k ^2 = 0 \Longrightarrow \text{each } a_k = 0$. Hence (v_1, \dots, v_n) is linely inde.	
• (4E 3.A.17) Suppose V is finite-dim. Show that all two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in \mathcal{E}$,	$\mathcal{L}(V)$.
SOLUTION : Let $B_V = (v_1,, v_n)$. If $\mathcal{E} = 0$, then we are done.	
Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$.	
Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \dots + a_nv_n$, where $a_k \neq 0$.	
Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}: v_x \mapsto v_y, v_z \mapsto 0 \ (z \neq x)$. Or, $R_{x,y}v_z = \delta_{z,x}v_y$.	
Then $(R_{1,1} + \dots + R_{n,n})v_j = v_j \Rightarrow \sum_{r=1}^n R_{r,r} = I$. Assume that each $R_{x,y} \in \mathcal{E}$.	
Hence $\forall T \in \mathcal{L}(V), I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$. Now we prove the assumption $\mathcal{L}(V) = \mathcal{L}(V)$.	ion.
Notice that $\forall x, y \in \mathbf{N}^+$, $(R_{k,y}S)(v_i) = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})(v_z) = \delta_{z,x}(a_k v_y)$.	
Thus $R_{k,y}SR_{x,i}=a_kR_{x,y}$. Now $S\in\mathcal{E}\Rightarrow R_{k,y}S\in\mathcal{E}\Rightarrow R_{x,y}\in\mathcal{E}$.	

Show that if $\varphi : \mathcal{L}(V) \to \mathbf{F}$ is linear and $\forall S, T \in \mathcal{L}(V), \varphi(ST) = \varphi(S) \cdot \varphi(T)$, then $\varphi = 0$. **SOLUTION:** Using notations in (4E 3.A.17). Using the result in NOTE FOR [3.60]. Suppose $\varphi \neq 0 \Rightarrow \exists i, j \in \{1, ..., n\}, \ \varphi(R_{i,j}) \neq 0$. Because $R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, ..., n$ $\Rightarrow \varphi(R_{i,i}) = \varphi(R_{x,i}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,i}) \neq 0 \text{ and } \varphi(R_{i,x}) \neq 0.$ Again, because $R_{i,x} = R_{y,x} \circ R_{i,y}$, $\forall y = 1, ..., n$. Thus $\varphi(R_{y,x}) \neq 0$, $\forall x, y = 1, ..., n$. Let $k \neq i, j \neq l$ and then $\varphi(R_{i,j} \circ R_{l,k}) = \varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$ $\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,i}) = 0.$ Contradicts. Or. Note that by (4E 3.A.17), $\exists S, T \in \mathcal{L}(V), ST - TS \neq 0$. Then $\varphi(ST - TS) = \varphi(S)\varphi(T) - \varphi(T)\varphi(S) = 0 \Rightarrow ST - TS \in \text{null } \varphi \neq \{0\}.$ Note that $\forall E \in \operatorname{null} \varphi, T \in \mathcal{L}(V), \varphi(ET) = \varphi(TE) = 0 \Rightarrow ET, TE \in \operatorname{null} \varphi$. Hence null φ is a nonzero two-sided ideal of $\mathcal{L}(V)$. • Suppose V is finite-dim. $T \in \mathcal{L}(V)$ is such that $\forall S \in \mathcal{L}(V), ST = TS$. *Prove that* $\exists \lambda \in \mathbf{F}$, $T = \lambda I$. **SOLUTION**: If $V = \{0\}$, then we are done. Now suppose $V \neq \{0\}$. Assume that $\forall v \in V, (v, Tv)$ is linely depe, then by (2.A.2.(b)), $\exists \lambda_v \in F, Tv = \lambda_v v$. To prove that λ_v is independent of v, we discuss in two cases: $(-) \text{ If } (v,w) \text{ is linely inde, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \\ \Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0 \\ \Rightarrow \lambda_w = \lambda_v.$ (=) Otherwise, suppose w=cv, $\lambda_w w=Tw=cTv=c\lambda_v v=\lambda_v w\Rightarrow (\lambda_w-\lambda_v)w$ Now we prove the assumption. Assume that $\exists v \in V, (v, Tv)$ is linely inde. Let $B_V = (v, Tv, u_1, \dots, u_n)$. Define $S \in \mathcal{L}(V)$ by $S(av + bTv + c_1u_1 + \cdots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Contradicts. \square Or. Let $B_V = (v_1, ..., v_m)$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_1) = \cdots = \varphi(v_m) = 1$. Let $\lambda = \varphi(Tv_1) \in \mathbf{F}$. For any $v \in V$, define $S_v \in \mathcal{L}(V)$ by $S_v u = \varphi(u)v$. Then $Tv = T(\varphi(v_1)v) = T(S_v v_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v$. Or. For each $k \in \{1, \dots, n\}$, define $S_k \in \mathcal{L}(V)$ by $S_k v_j = \left\{ \begin{array}{l} v_k, \, j = k, \\ 0, \, \, j \neq k. \end{array} \right.$ Or. $S_k v_j = \delta_{j,k} v_k$ Note that $S_k\left(\sum_{i=1}^n a_i v_i\right) = a_k v_k$. Then $S_k v = v \iff \exists ! a_k \in \mathbf{F}, v = a_k v_k$. Hence $S_k(Tv_k) = T(S_kv_k) = Tv_k \Rightarrow Tv_k = a_kv_k$. Define $A^{(j,k)} \in \mathcal{L}(V)$ by $A^{(j,k)}v_j = v_k$, $A^{(j,k)}v_k = v_j$, $A^{(j,k)}v_x = 0$, $x \neq j$, k. Then $\begin{vmatrix} A^{(j,k)}Tv_j = TA^{(j,k)}v_j = Tv_k = a_kv_k \\ A^{(j,k)}Tv_j = A^{(j,k)}a_jv_j = a_jA^{(j,k)}v_j = a_jv_k \end{vmatrix} \Rightarrow a_k = a_j. \text{ Hence } a_k \text{ is inde of } v_k.$ • Tips 3: Suppose $T \in \mathcal{L}(V, W)$. Prove that $Tv \neq 0 \Rightarrow v \neq 0$.

SOLUTION: Assume that v = 0. Then $Tv = T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$.

Or. $T(0) = T(0+0) = T(0) + T(0) \Rightarrow T(0) = 0$. Contradicts.

• (4E 3.B.32) Suppose V is finite-dim with $n = \dim V > 1$.

• Given the fact that $\mathcal{L}(V, W)$ is a vecsp. Prove or give a counterexample: V, W are vecsps. *We can guarantee that* $\{0\} \subseteq \mathcal{L}(V,W), \{0\} \subseteq V, \{0\} \subseteq W$. And by [3.2], the additivity and homogeneity imply that V is closed under add and scalar multi. (We cannot even guarantee that W^V is a vecsp.) SOLUTION: TODO: Too tricky to be answered by AI. (I) If $W^V = \{0\}$. Then $\mathcal{L}(V, W) = \{0\}$. And $W = \{0\}$, for if not, $\exists w \in W \setminus \{0\}$, define a map f by f(x) = w, $\forall x \in V$. And *V* might not be a vecsp. Example: ??? (II) If W^V is a nonzero vecsp. Then W is a vecsp. (a) If $\mathcal{L}(V, W) = \{0\}$, then we cannot guarantee that V is a vecsp. Example: ??? (b) If not, then $\exists T \in \mathcal{L}(V, W)$, $T \neq 0$. Which means $\exists v \in V, Tv \neq 0 \Rightarrow v \neq 0$. Then both *W* and *V* have a nonzero element. (i) If \exists inje $T \in \mathcal{L}(V, W)$, then $T(u + v) = T(v + u) \Rightarrow u + v = v + u$. etc. Hence V is a vecsp. (ii) If not, then we cannot guarantee that *V* is a vecsp. Example: ??? (III) If W^V is not a vecsp, then W is not a vecsp. Example: ??? **ENDED** 3.B 3 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 25 26 28 29 30 | 4E: 21 24 27 31 32 33 **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$. (a) The surj of T correspds to $(v_1, ..., v_m)$ spanning V. (b) The inje of T correspds to $(v_1, ..., v_m)$ being linely inde. **COMMENT:** Let $(e_1, ..., e_m)$ be the std basis of \mathbf{F}^m . Then $Te_k = v_k$. (a) range $T = \text{span}(v_1, ..., v_m) = V$; (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje. **7** Suppose V is finite-dim with $2 \le \dim V$. And $\dim V \le \dim W = m$, if W is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{null } T \neq \{0\} \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION**: The set of all inje $T \in \mathcal{L}(V, W)$ is a not subsp either. Let (v_1, \ldots, v_n) be a basis of V, (w_1, \ldots, w_m) be linely inde in W. $[2 \le n \le m]$ Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$.

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1$, $v_2 \mapsto 0$, $v_i \mapsto w_i$, i = 3, ..., n.

Thus $T_1 + T_2 \notin U$. \square **COMMENT:** If dim V = 0, then $V = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T \text{ is inje. Hence } U = \emptyset$. If dim V = 1, then $V = \text{span}(v_0)$. Thus $U = \text{span}(T_0)$, where $\forall v \in V, T_0 v = 0 \Rightarrow T_0 = 0$. **8** Suppose W is finite-dim with dim $W \ge 2$. And $n = \dim V \ge \dim W$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{range } T \neq W \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION**: The set of all surj $T \in \mathcal{L}(V, W)$ is not a subsp either. **Using the generalized version of** [3.5]. Let (v_1, \ldots, v_n) be linely inde in V, (w_1, \ldots, w_m) be a basis of W. $n \in \{m, m+1, \ldots\}$; $2 \le m \le n$. Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$, $v_{m+i} \mapsto 0$. Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1, v_2 \mapsto 0, v_i \mapsto w_i, v_{m+i} \mapsto 0.$ (For each $j=2,\ldots,m;\ i=1,\ldots,n-m,$ if V is finite, otherwise let $i\in\mathbb{N}^+$.) Thus $T_1+T_2\notin U$. **COMMENT:** If dim W = 0, then $W = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T \text{ is surj. Hence } U = \emptyset$. If dim W = 1, then $W = \text{span}(w_0)$. Thus $U = \text{span}(T_0)$, where each $T_0v_i = 0 \Rightarrow T_0 = 0$.

```
9 Suppose (v_1, ..., v_n) is linely inde. Prove that \forall inje T, (Tv_1, ..., Tv_n) is linely inde.
SOLUTION: a_1Tv_1 + \cdots + a_nTv_n = 0 = T\left(\sum_{i=1}^n a_iv_i\right) \iff \sum_{i=1}^n a_iv_i = 0 \iff a_1 = \cdots = a_n = 0.
                                                                                                                                                  10 Suppose span(v_1, ..., v_n) = V. Show that span(Tv_1, ..., Tv_n) = \text{range } T.
SOLUTION: (a) range T = \{Tv : v \in \text{span}(v_1, ..., v_n)\} \Rightarrow Tv_1, ..., Tv_n \in \text{range } T. By [2.7].
                      Or. span(Tv_1, \dots, Tv_n) \ni a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n) \in \text{range } T.
                 (b) \forall w \in \text{range } T, w = Tv, \exists v \in V \Rightarrow \exists a_i \in F, v = \sum_{i=1}^n a_i v_i, w = a_1 T v_1 + \dots + a_n T v_n.
11 Suppose S_1, ..., S_n \in \mathcal{L}(V) and S = S_1 S_2 ... S_n makes sense. Then using induction:
     (a) range S_1 \supseteq \text{range } (S_1 S_2) \supseteq \cdots \supseteq \text{range } (S); (b) null S_n \subseteq \text{null } (S_{n-1} S_n) \subseteq \cdots \subseteq \text{null } (S).
• Define X_p = \{T \in \mathcal{L}(V) : p(T) \text{ holds}\}; P_p : X_p \text{ is closed under vec multi; } Q_p : X_p \text{ is a group.}
  (1) S \operatorname{surj} \iff \operatorname{each} S_k \operatorname{surj}. P_{surj} holds. (2) S \operatorname{inje} \iff \operatorname{each} S_k \operatorname{inje}. P_{inje} holds.
  (3) P_{inv} and Q_{inv} hold. Q_p in (1) and (2) holds \iff V is finite-dim.
  (4) P_{inje\ or\ surj} holds \iff V is finite-dim \iff Q_{inje\ or\ surj} holds.
• Suppose S, T \in \mathcal{L}(V). Prove or give a counterexample:
  (a) \operatorname{null} S \subseteq \operatorname{null} T \Rightarrow \operatorname{range} T \subseteq \operatorname{range} S; (b) \operatorname{range} T \subseteq \operatorname{range} S \Rightarrow \operatorname{null} S \subseteq \operatorname{null} T.
SOLUTION: Let B_V = (v_1, v_2, v_3). Counterexamples:
 (a) Let S: v_1 \mapsto 0; v_2 \mapsto 0; v_3 \mapsto v_2. Then null S = \text{null } T, but
              T: v_1 \mapsto 0; \ v_2 \mapsto 0; \ v_3 \mapsto v_3. \ | \operatorname{range} T = \operatorname{span}(v_3) \not\subseteq \operatorname{span}(v_2) = \operatorname{null} T.
 (b) Let S: v_1 \mapsto v_2; v_2 \mapsto v_2; v_3 \mapsto v_2. Then range T = \operatorname{range} S, but
              T: v_1 \mapsto 0; \ v_2 \mapsto 0; \ v_3 \mapsto v_2. \quad | \text{null } S = \text{span}(v_1 - v_2, v_2 - v_3, v_3 - v_1) \not\subseteq \text{span}(v_1, v_2) = \text{null } T.
16 Suppose T \in \mathcal{L}(V) such that null T, range T are finite-dim. Prove that V is finite-dim.
SOLUTION: Let B_{\text{range }T} = (Tv_1, \dots, Tv_n), B_{\text{null }T} = (u_1, \dots, u_m).
                 \forall v \in V, \exists ! a_i \in \mathbf{F}, T(v - a_1v_1 - \dots - a_nv_n) = 0 \Rightarrow \exists ! b_i \in \mathbf{F}, v - \sum_{i=1}^n a_iv_i = \sum_{i=1}^m b_iu_i.
                                                                                                                                                 17 Suppose V, W are finite-dim. Prove that \exists inje T \in \mathcal{L}(V, W) \iff \dim V \leqslant \dim W.
SOLUTION: (a) Suppose \exists inje T. Then dim V = \dim \operatorname{range} T \leqslant \dim W.
                 (b) Suppose dim V \leq \dim W. Let B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).
                       Define T \in \mathcal{L}(V, W) by Tv_i = w_i, i = 1, ..., n ( = dim V ).
                                                                                                                                                  18 Suppose V, W are finite-dim. Prove that \exists surj T \in \mathcal{L}(V, W) \iff \dim V \geqslant \dim W.
SOLUTION: (a) Suppose \exists surj T. Then dim V = \dim W + \dim \operatorname{null} T \Rightarrow \dim W \leq \dim V.
                 (b) Suppose dim V \ge \dim W. Let B_V = (v_1, \dots, v_n), B_W = (w_1, \dots, w_m).
                      Define T \in \mathcal{L}(V, W) by T(a_1v_1 + \dots + a_mv_m + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m.
                                                                                                                                                 19 Suppose V, W are finite-dim, U is a subsp of V.
     Prove that \exists T \in \mathcal{L}(V, W), \text{null } T = U \iff \underline{\dim U} \geqslant \underline{\dim V} - \underline{\dim W}.
SOLUTION:
   (a) Suppose \exists T \in \mathcal{L}(V, W), null T = U. Then dim U + \dim \operatorname{range} T = \dim V \leq \dim U + \dim W.
   (b) Let B_U = (u_1, ..., u_m), B_V = (u_1, ..., u_m, v_1, ..., v_n), B_W = (w_1, ..., w_p). Suppose that p \ge n.
```

Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n$.

```
• Tips 1: Suppose U is a subsp of V. Then \forall T \in \mathcal{L}(V, W), U \cap \text{null } T = \text{null } T|_{U}.
• Tips 2: Suppose T \in \mathcal{L}(V, W) and T|_{U} is inje. Let V = M + N, U = X + Y.
             Then range T = \operatorname{range} T|_{M} + \operatorname{range} T|_{N} = \operatorname{range} T|_{X} + \operatorname{range} T|_{Y}.
             (a) Show that if U = X \oplus Y, then range T = \text{range } T|_X \oplus \text{range } T|_Y.
             (b) Give an example such that V = M \oplus N, range T \neq \text{range } T|_M \oplus \text{range } T|_N.
SOLUTION: Assume that for some v \in V, there exist two distinct pairs (x_1, y_1), (x_2, y_2) in X \times Y
                 such that Tv = Tx_1 + Ty_1 = Tx_2 + Ty_2. Because \forall v \in X \oplus Y, \exists ! (x,y) \in X \times Y, v = x + y.
                Now T(x_1 + y_1) = T(x_2 + y_2) \Longrightarrow x_1 + y_1 = x_2 + y_2 \Longrightarrow x_1 = x_2, y_1 = y_2. Contradicts.
                 Thus \forall Tv \in \text{range } T, \exists ! Tx \in \text{range } T|_X, Ty \in \text{range } T|_Y, Tv = Tx + Ty.
                                                                                                                                               EXAMPLE: Let B_V = (v_1, v_2, v_3), B_W = (w_1, w_2), T : v_1 \mapsto 0, v_2 \mapsto w_1, v_3 \mapsto w_2.
              Let B_M = (v_1 - v_2, v_3), B_N = (v_2). Then range T|_M = \text{span}(w_1, w_2), range T|_N = \text{span}(w_1)
COMMENT: Also null T|_{M} = \text{null } T|_{N} = \{0\}. Hence null T \neq \text{null } T|_{M} \oplus \text{null } T|_{N}.
12 Prove that \forall T \in \mathcal{L}(V, W), \exists subsp U of V such that
     U \cap \operatorname{null} T = \operatorname{null} T|_U = \{0\}, \operatorname{range} T = \{Tu : u \in U\} = \operatorname{range} T|_U.
     Which is equivalent to T|_U : U \rightarrow \text{range } T \text{ being an iso.}
SOLUTION: By [2.34] ( note that V can be infinite-dim ), \exists subsp U of V such that V = U \oplus \text{null } T.
                 \forall v \in V, \exists ! w \in \text{null } T, u \in U, v = w + u. \text{ Then } Tv = T(w + u) = Tu \in \{Tu : u \in U\}.
                                                                                                                                               T|_{U}: U \rightarrow \text{range } T \text{ is an iso} \iff U \oplus \text{null } T = V. \quad [Q]
Corollary: |P|
                  We have shown Q \Rightarrow P. Now we show that P \Rightarrow Q to complete the proof.
                  \forall v \in V, Tv \in \text{range } T = \text{range } T|_U \Rightarrow \exists ! u \in U, Tv = Tu \Rightarrow v - u \in \text{null } T.
                   Thus v = (v - u) + u \in U + \text{null } T. X \in U \cap \text{null } T \iff T|_U(u) = 0 \iff u = 0.
                                                                                                                                               Or. \neg Q \Rightarrow \neg P: Because U \oplus \text{null } T \subsetneq V. We show range T \neq \text{range } T|_U by contradiction.
                  Let X \oplus (U \oplus \text{null } T) = V. Now range T = \text{range } T|_X \oplus \text{range } T|_U. And X is nonzero.
                  Assume that range T = \text{range } T|_U. Then range T|_X = \{0\}. While T|_X is inje. Contradicts.
                  OR. range T|_{X} \subseteq \text{range } T|_{U} \Rightarrow \forall x \in X, Tx \in \text{range } T|_{U}, \exists u \in U, Tu = Tx \Rightarrow x = 0.
                  Also, \neg P \Rightarrow \neg Q: (a) range T|_U \subsetneq \text{range } T; Or (b) U \cap \text{null } T \neq \{0\}.
                  For (a), \exists x \in V \setminus U, Tx \neq 0 \iff x \notin \text{null } T. Thus U + \text{null } T \subsetneq V. For (b), immediately. \Box
COMMENT: If T|_{U}: U \to \text{range } T is an iso. Let R \oplus U = V. Then R might not be null T.
                OR. Extend B_U to B_V = (u_1, \dots, u_n, r_1, \dots, r_m), then (r_1, \dots, r_m) might not be a B_{\text{null }T}.
• Tips 3: Suppose T \in \mathcal{L}(V, W) and U is a subsp such that V = U \oplus \text{null } T. Let \text{null } T = X \oplus Y.
  Now \forall v \in V, \exists ! u_v \in U, (x_v, y_v) \in X \times Y, v = u_v + x_v + y_v. Define i \in \mathcal{L}(V, U) by i(v) = u_v + x_v.
  Then T = T \circ i. Because \forall v \in V, T(v) = T(u_v + x_v + y_v) = T(u_v) = T(u_v + x_v) = T(i(v)) = (T \circ i)(v).
• TIPS 4: Suppose T \in \mathcal{L}(V, W), T \neq 0. Let B_{\text{range }T} = (Tv_1, \dots, Tv_n).
  By (3.A.4), R = (v_1, ..., v_n) is linely inde in V. Let span R = U. We will prove that U \oplus \text{null } T = V.
  (a) T\left(\sum_{i=1}^{n} a_i v_i\right) = 0 \Longrightarrow \sum_{i=1}^{n} a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Longrightarrow U \cap \text{null } T = \{0\}.
  (b) Tv = \sum_{i=1}^{n} a_i Tv_i \Rightarrow v - \sum_{i=1}^{n} a_i v_i \in \text{null } T \Longrightarrow v = \left(v - \sum_{i=1}^{n} a_i v_i\right) + \left(\sum_{i=1}^{n} a_i v_i\right) \Rightarrow U + \text{null } T = V.
       Or. range T = \{Tu : u \in U\} = \text{range } T|_{U}. Then by the Corollary in Problem (12).
                                                                                                                                               COROLLARY: Conversely, if U \oplus \text{null } T = V \text{ and } B_U = (v_1, \dots, v_n), then B_{\text{range } T} = (Tv_1, \dots, Tv_n).
                  Because range T = \text{range } T|_U = \text{span}(Tv_1, ..., Tv_n), \ \ \ \ \ \ T is inje.
```

• (4E 21) Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, Y is a subsp of W. Let $\{v \in V : Tv \in Y\}$. (a) Prove that $\{v \in V : Tv \in Y\}$ is a subsp of V. (b) Prove that $\dim\{v \in V : Tv \in Y\} = \dim \operatorname{null} T + \dim(Y \cap \operatorname{range} T)$. **SOLUTION**: Let $\mathcal{K}_Y = \{v \in V : Tv \in Y\}$. (a) $\forall u, w \in \mathcal{K}_Y$, $[Tu, Tw \in Y], \lambda \in F, T(u + \lambda w) = Tu + \lambda Tw \in Y \Longrightarrow \mathcal{K}_Y$ is a subsp of V. (b) Define the range-restricted map R of T by $R = T|_{\mathcal{K}_Y} \in \mathcal{L}(\mathcal{K}_Y, Y)$. Now range $R = Y \cap \text{range } T$. And $v \in \text{null } T \iff Tv = 0 \in Y \iff Rv = 0 \in \text{range } T \iff v \in \text{null } R$. By [3.22]. **COMMENT:** Now span $(v_1, ..., v_m) \oplus \text{null } T = \mathcal{K}_Y$. Where $B_{Y \cap \text{range } T} = (Tv_1, ..., Tv_m)$. In particular, $\dim \mathcal{K}_{\text{range }T} = \dim \text{null } T + \dim \text{range } T \Longrightarrow \mathcal{K}_{\text{range }T} = V$. **28** Suppose $T \in \mathcal{L}(V, W)$. Let $B_{\text{range } T} = (w_1, \dots, w_m)$. Prove that $\exists \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbf{F})$ such that $\forall v \in V, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$. **SOLUTION**: Suppose $v_1, \ldots, v_m \in V$ such that $Tv_i = w_i$ for each v_i . Then (v_1, \ldots, v_m) is linely inde. And span $(v_1, ..., v_m) \oplus \text{null } T = V$. Now $\forall v \in V, \exists ! a_i \in F, u \in \text{null } T, v = \sum_{i=1}^m a_i v_i + u$. Define $\varphi_i \in \mathcal{L}(V, \mathbf{F})$ by $\varphi_i(v_i) = \delta_{i,i}$, $\varphi_i(u) = 0$ for all $u \in \text{null } T$. Linearity: $\forall v, w \in V \ [\exists ! a_i, b_i \in F], \lambda \in F, \varphi_i(v + \lambda w) = a_i + \lambda b_i = \varphi(v) + \lambda \varphi(w).$ **29** Suppose $\varphi \in \mathcal{L}(V, \mathbf{F})$. Suppose $\varphi(u) \neq 0$. Prove that $V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}$. **SOLUTION:** Let $B_{\text{range }\varphi} = (\varphi(u))$. Then by TIPS (4), span $(u) \oplus \text{null } \varphi = V$. Or. (a) $v = cu \in \text{null } \varphi \cap \text{span}(u) \Rightarrow c\varphi(u) = 0 \Rightarrow v = 0$. Now $\text{null } \varphi \cap \text{span}(u) = \{0\}$. (b) $\forall v \in V, v = \underbrace{\left(v - \frac{\varphi(v)}{\varphi(u)}u\right)}_{v \in V} + \frac{\varphi(v)}{\varphi(u)}u \Longrightarrow V = \text{null } \varphi + \text{span}(u).$ **30** Suppose $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ and $\text{null } \varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. Prove that $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$ **SOLUTION:** If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $\varphi(u) \neq 0 \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$. By Problem (29), $V = \text{null } \varphi \oplus \text{span}(u)$. Hence $\forall v \in V, \exists ! w \in \text{null } \varphi, a \in F, v = w + a_v u$. Now $\varphi_1(v) = a\varphi_1(u)$, $\varphi_2(v) = a\varphi_2(u) \Rightarrow a = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Longrightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbf{F}.$ • (4E 31) Suppose V is finite-dim, X is a subsp of V, and Y is a finite-dim subsp of W. *Prove that if* dim X + dim Y = dim V, then $\exists T \in \mathcal{L}(V, W)$, null T = X, range T = Y. **SOLUTION:** Let $V = U \oplus X$, $B_U = (v_1, ..., v_m)$, $B_Y = (w_1, ..., w_m)$. Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i, Tx = 0$ for each v_i and all $x \in X$. Because $\forall v \in V, \exists ! a_i \in F, x \in X, v = \sum_{i=1}^m a_i v_i + x$. Now $v \in \operatorname{null} T \iff Tv = a_1w_1 + \dots + a_mw_m = 0 \iff v = x \in X$. Hence $\operatorname{null} T = X$. And $Y \ni w = a_1 w_1 + \dots + a_m w_m = a_1 T v_1 + \dots + a_m T v_m \in \text{range } T$. Hence range T = Y. OR. NOTICE that $V = U \oplus \text{null } T$. By the COROLLARY in Problem (12), range $T = \text{range } T|_{U}$. \mathbb{Z} dim range $T|_U = \dim U = \dim Y$; range $T \subseteq Y$. Or. Let $B_X = (x_1, \dots, x_n)$. Now range $T = \operatorname{span}(Tv_1, \dots, Tv_m, Tx_1, \dots, Tx_n) = \operatorname{span}(w_1, \dots, w_m) = Y$. \square

```
20, 21 (a) Prove that if ST = I \in \mathcal{L}(V), then T is inje and S is surj.
            (b) Suppose T \in \mathcal{L}(V, W). Prove that if T is inje, then \exists S \in \mathcal{L}(W, V), ST = I.
           (c) Suppose S \in \mathcal{L}(W, V). Prove that if S is surj, then \exists T \in \mathcal{L}(V, W), ST = I.
SOLUTION:
   (a) Tv = 0 \Rightarrow S(Tv) = 0 = v. Or. null T \subseteq \text{null } ST = \{0\}.
         \forall v \in V, ST(v) = v \in \text{range } S. \text{ Or. } V = \text{range } ST \subseteq \text{range } S.
   (b) Define S \in \mathcal{L}(\text{range } T, V) by Sw = T^{-1}w, where T^{-1} is the inv of T \in \mathcal{L}(V, \text{range } T).
         Then extend to S \in \mathcal{L}(W, V) by (3.A.11). Now \forall v \in V, STv = T^{-1}Tv = v.
         Or. \lceil Req \ V \ Finite-dim \rceil Let B_{\text{range } T} = (Tv_1, \dots, Tv_n) \Rightarrow B_V = (v_1, \dots, v_n). Let U \oplus \text{range } T = W.
         Define S \in \mathcal{L}(W, V) by S(Tv_i) = v_i, Su = 0 for each v_i and all u \in U. Thus ST = I.
   (c) By Problem (12), \exists subsp U of W, W = U \oplus \text{null } S, range S = \text{range } S|_U = V.
         Note that S|_{U}: U \to V is an iso. Define T = (S|_{U})^{-1}, where (S|_{U})^{-1}: V \to U.
         Then ST = S \circ (S|_U)^{-1} = S|_U \circ (S|_U)^{-1} = I_V.
         Or. \lceil Req \ V \ Finite-dim \rceil Let B_{\text{range } S} = B_V = (Sw_1, \dots, Sw_n) \Rightarrow \operatorname{span}(w_1, \dots, w_n) \oplus \operatorname{null} S = W.
         Define T \in \mathcal{L}(V, W) by T(Sw_i) = w_i. Now ST(a_1Sw_1 + \cdots + a_nSw_n) = (a_1Sw_1 + \cdots + a_nSw_n). \square
COROLLARY: For (b), if T is inje and \exists S, ST = I, then by (a), this S is surj. Similar for (c).
22 Suppose U, V are finite-dim, S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V).
     Prove that dim null ST \leq \dim \text{null } S + \dim \text{null } T.
SOLUTION: We show that dim null ST = \dim \text{null } S|_{\text{range } T} + \dim \text{null } T.
                  Because (a) range T|_{\text{null }ST} = \text{range } T \cap \text{null } S = \text{null } S|_{\text{range }T},
                                (b) \operatorname{null} T|_{\operatorname{null} ST} = \operatorname{null} T \cap \operatorname{null} ST = \operatorname{null} T. By [3.22]
                                                                                                                                                          OR. NOTICE that u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S.
                        Thus \operatorname{null} ST = \{ u \in U : Tu \in \operatorname{null} S \} = \mathcal{K}_{\operatorname{null} S \cap \operatorname{range} T} = \operatorname{null} ST.
                        By Problem (4E 21), dim null ST = \dim \text{null } T + \dim (\text{null } S \cap \text{range } T).
                                                                                                                                                           COROLLARY: (1) T \operatorname{surj} \Rightarrow \dim \operatorname{null} ST = \dim \operatorname{null} S + \dim \operatorname{null} T.
                    (2) T \text{ inv} \Rightarrow \dim \text{null } ST = \dim \text{null } S, \text{null } ST = \text{null } T.
                    (3) S inje \Rightarrow dim null ST = dim null T.
23 Suppose U, V are finite-dim, S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V).
     Prove that dim range ST \leq \min \{ \dim \text{ range } S, \dim \text{ range } T \}.
SOLUTION: NOTICE that range ST = \{Sv : v \in \text{range } T\} = \text{range } S|_{\text{range } T}.
                  Let range ST = \text{span}(Su_1, ..., Su_{\dim \text{range } T}), where B_{\text{range } T} = (u_1, ..., u_{\dim \text{range } T}).
                  \dim \operatorname{range} ST \leq \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leq \dim \operatorname{range} S.
                                                                                                                                                          OR. \underline{\dim \operatorname{range} ST} = \dim \operatorname{range} S|_{\operatorname{range} T} = \dim \operatorname{range} T - \dim \operatorname{null} S|_{\operatorname{range} T} \leqslant \operatorname{range} T.
                                                                                                                                                          COMMENT: dim range ST = \dim U - \dim \operatorname{null} ST = \dim \operatorname{range} T|_{U} - \dim \operatorname{range} T|_{\operatorname{null} ST}.
COROLLARY: (1) S|_{\text{range }T} inje \iff dim range ST = \dim \text{range }T.
                    (2) Let X \oplus \text{null } S = V. Then X \subseteq \text{range } T \iff \text{range } S = \text{range } S.
                          And T is surj \Rightarrow range ST = \text{range } S.
• TIPS 5: Suppose S \in \mathcal{L}(U, V) is surj. Define \mathcal{B} \in \mathcal{L}(\mathcal{L}(V, W), \mathcal{L}(U, W)) by \mathcal{B}(T) = TS.
```

Then \mathcal{B} is inje. Because $\mathcal{B}(T) = TS = 0 \iff T|_{\text{range }S} = 0$. Or. range $TS = \text{range }T = \{0\}$.

24 *Suppose* $S, T \in \mathcal{L}(V, W)$, and null $S \subseteq \text{null } T$. *Prove that* $\exists E \in \mathcal{L}(W), T = ES$.

SOLUTION:

Let
$$V = U \oplus \text{null } S$$
 range $T \xleftarrow{\sup T} U$ $\Rightarrow S|_U : U \rightarrow \text{range } S \text{ is an iso.}$ Extend $T(S|_U)^{-1}$ to $E \in \mathcal{L}(W)$. range $S \mapsto S(W)$ for $E : \text{range } S \mapsto W \text{ by } S(W) \text{ inv } S(W)$ $S \mapsto S(W)$ range $S \mapsto W \text{ inv } S(W)$ $S \mapsto S(W)$ for $E \in \mathcal{L}(W)$.

Comment: Let $\Delta \oplus \operatorname{null} S = \operatorname{null} T$, $U_{\Delta} \oplus (\Delta \oplus \operatorname{null} S) = V = U_{\Delta} \oplus \operatorname{null} T$. Redefine $U = U_{\Delta} \oplus \Delta$.

q		11.0		Because $\Delta = \text{null } T _U = \text{null } T \cap \text{range } (S _U)^{-1}$.
	U	nullS	$U_{\Lambda} \stackrel{T}{\longrightarrow} \operatorname{range} T$	Thus $E = T(S _U)^{-1}$ is not inje $\iff \Delta \neq \{0\}$.
	U_{Δ}	$\operatorname{null} T$	range $S \leftarrow \oplus$	
		Δ nullS	$\Delta \xrightarrow{T} \{0\}$	In other words, range $S _{\Delta} = \text{null } E$,
	•			while $E _{\text{range }S _{U_{\Delta}}}$: range $S _{U_{\Delta}} \to \text{range }T$ is an iso.
			!	μ_{Δ}

COROLLARY: If null S = null T. Then $\Delta = \{0\}$, $U_{\Delta} = U$. By (3.D.3), we can extend inje $T(S|_{U})^{-1} \in \mathcal{L}(\text{range } S, W)$ to inv $E \in \mathcal{L}(W)$.

OR. $[Req \text{ range } S \text{ } Finite\text{-}dim\]$ Let $B_{\text{range } S} = (Sv_1, \dots, Sv_n)$. Then $\underline{V} = \text{span}(v_1, \dots, v_n) \oplus \text{null } S$. Let $U \oplus \text{range } S = W$. Define $E \in \mathcal{L}(W)$ by $E(Sv_i) = Tv_i$, Eu = 0 for all $u \in U$ and each v_i . Hence $\forall v \in V$, $\underline{(\exists ! a_i \in \mathbf{F}, u \in \text{null } S \subseteq \text{null } T)}$, $\underline{Tv} = a_1 \underline{Tv_1} + \dots + a_n \underline{Tv_n} = E(a_1 Sv_1 + \dots + a_n Sv_n) \Box$

Corollary: $[Req\ W\ Finite-dim\]$ Suppose null $S=\operatorname{null} T.$ We show that $\exists \operatorname{inv} E\in\mathcal{L}(W), T=ES.$

Redefine $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each Tv_i and w_i . Where:

Let $B_{\text{range }T} = (Tv_1, ..., Tv_m), B_W = (Tv_1, ..., Tv_m, w_1, ..., w_n), B_U = (v_1, ..., v_m).$

Now $V = U \oplus \operatorname{null} T = U \oplus \operatorname{null} S \Rightarrow B_{\operatorname{range} S} = (Sv_1, \dots, Sv_m)$. Let $B'_W = (Sv_1, \dots, Sv_m, x_1, \dots, x_n)$. \square

25 Suppose $S, T \in \mathcal{L}(V, W)$, and range $T \subseteq \text{range } S$. Prove that $\exists E \in \mathcal{L}(V), T = SE$. Solution:

Let
$$V = U \oplus \operatorname{null} S \Rightarrow S|_U : U \to \operatorname{range} S$$
 is an iso. Because $(S|_U)^{-1} : \operatorname{range} S \to U$.
Define $E = (S|_U)^{-1}T = (S|_U)^{-1}|_{\operatorname{range} T}T \in \mathcal{L}(V, U) \subseteq \mathcal{L}(V)$.

$$\begin{array}{lll} \text{Comment: Let } U_1 = U. \text{ Let } U_2 \oplus \text{ null } T = V = U_1 \oplus \text{ null } S. & U_1 \xrightarrow{inv} \text{ range } S \\ \text{Let } U_{1\Delta} = \text{range } \left(S|_{U_1} \right)|_{\text{range } T} \subseteq U_1 = \Delta \oplus U_{1\Delta}. & & U_1 \xrightarrow{inv} \text{ range } S \\ \text{Or. Let } U_{1\Delta} = \text{range } E|_{U_2}. \text{ Let } \Delta \oplus \text{ range } E|_{U_2} = U_1. & & \oplus & \oplus \\ \text{Thus } U_1 \oplus \text{ null } S = U_{1\Delta} \oplus \underbrace{\left(\Delta \oplus \text{ null } S \right)}_{\text{iso, by (3.D.Tirs)}} = U_2 \oplus \underbrace{\text{null } T}_2. & & \underbrace{U_1 \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{T} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{S} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{inv}_{S} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{U_{1\Delta} \xrightarrow{inv}}_{S} U_2 \\ & \underbrace{U_{1\Delta} \xrightarrow{inv}}_{S} \text{ range } T \xrightarrow{U_{1\Delta} \xrightarrow{inv}}_{S} U_2 \\$$

If $\Delta \neq \{0\}$, assume \exists inv $E \in \mathcal{L}(V)$ re-extended from $E|_{U_2}$ still satisfying T = SE, then let $\Delta \xrightarrow{E^{-1}} \Theta$; null $S \xrightarrow{E^{-1}}$ null T_{Θ} . Now $\Theta \oplus$ null $T_{\Theta} =$ null T.

Then $\Theta \xrightarrow{E} \Delta \neq \{0\}$, while null $S \cap \Delta = \{0\}$. Thus $T|_{\Theta} = SE|_{\Theta} \neq 0$, contradicts.

COROLLARY: If $\Delta = \{0\}$, then $U_1 = U_{1\Delta} \Rightarrow \operatorname{range} S = \operatorname{range} T$. \mathbb{X} null S, null T are iso. By (3.D.3), we can re-extend inje $E|_{U_2} \in \mathcal{L}(U_2, U_1 \oplus \operatorname{null} S)$ to inv $E \in \mathcal{L}(U_2 \oplus \operatorname{null} T, U_1 \oplus \operatorname{null} S)$.

Thus we have $\Delta \neq \{0\} \iff E|_{U_2} \in \mathcal{L}(U_2, V)$ cannot be re-extended to inv $E \in \mathcal{L}(V)$ freely.

OR. [Req range T Finite-dim] Let $B_{\text{range }T} = (Tv_1, \dots, Tv_n)$. Then $\underline{V} = \text{span}(v_1, \dots, v_n) \oplus \text{null } T$. Let $S(u_i) = Tv_i$ for each Tv_i . Define E by $Ev_i = u_i$, Ex = 0 for all $x \in \text{null } T$ and each v_i .

Comment: $[Req\ V\ Finite-dim\]$ Note that $\dim U_2 \leqslant \dim U_1 \Longrightarrow \dim \operatorname{null} T = p \geqslant q = \dim \operatorname{null} S$. Let $B_{\operatorname{null} T} = (x_1, \dots, x_p)$, $B_{\operatorname{null} S} = (y_1, \dots, y_q)$. Redefine $E: v_i \mapsto u_i, \ x_k \mapsto y_k, \ x_j \mapsto 0$, for each $i \in \{1, \dots, \dim U_2\}$, $k \in \{1, \dots, \dim \operatorname{null} S\}$, $j \in \{\dim \operatorname{null} S + 1, \dots, \dim \operatorname{null} T\}$. Note that (u_1, \dots, u_n) is linely inde. Let $X = \operatorname{span}(x_1, \dots, x_q) \oplus \operatorname{span}(v_1, \dots, v_n)$.

Redefine *E* by $Ev_i = u_i$, $Ex_j = y_j$ for each v_i and x_j . Then $E \in \mathcal{L}(V)$ is inv. • OR (5.B.4) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$. **SOLUTION:** (a) If $v \in \text{null } P \cap \text{range } P \Rightarrow Pv = 0$ and $\exists u \in V, v = Pu$. Then $v = Pu = P^2u = Pv = 0$. (b) Note that $\forall v \in V, v = Pv + (v - Pv)$ and $P(v - Pv) = 0 \Rightarrow v - Pv \in \text{null } P$. Or. [Only in Finite-dim] Let $B_{\text{range }P^2}=(P^2v_1,\ldots,P^2v_n)$. Then (Pv_1,\ldots,Pv_n) is linely inde. Let $U = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = U \oplus \operatorname{null} P^2$. While $U = \operatorname{range} P = \operatorname{range} P^2$; $\operatorname{null} P = \operatorname{null} P^2$. \square • (a) Suppose dim V = n, ST = 0 where $S, T \in \mathcal{L}(V)$. Prove that dim range $TS \leqslant \left\lfloor \frac{n}{2} \right\rfloor$. (b) Give an example of such S, T with n = 5 and dim range TS = 2. **SOLUTION:** Using Problem (23). dim range $TS \leq \min \{ \dim \text{ range } S, \dim \text{ range } T \}$. We prove by contradiction. Assume that dim range $TS \geqslant \left\lfloor \frac{n}{2} \right\rfloor + 1$. Then $\min \left\{ n - \dim \operatorname{null} T, n - \dim \operatorname{null} S \right\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor + 1$ \mathbb{X} dim $\operatorname{null} ST = n \leqslant \dim \operatorname{null} S + \dim \operatorname{null} T \mid \Rightarrow \max \left\{ \dim \operatorname{null} T, \dim \operatorname{null} S \right\} \leqslant n - \left\lfloor \frac{n}{2} \right\rfloor - 1$. Thus $n \le 2\left(n - \left|\frac{n}{2}\right| - 1\right) \Rightarrow \left|\frac{n}{2}\right| + 1 \le \frac{n}{2}$. Contradicts. OR. dim null $S = n - \dim \operatorname{range} S \leq n - \dim \operatorname{range} TS$. $\not \subseteq ST = 0 \Rightarrow \operatorname{range} T \subseteq \operatorname{null} S$. dim range $TS \leq \dim \operatorname{range} T \leq \dim \operatorname{null} S \leq n - \dim \operatorname{range} TS$. Thus $2 \dim \operatorname{range} TS \leq n$. **EXAMPLE:** Let $B_V = (v_1, \dots, v_5)$. Define $T: v_1 \mapsto 0, v_2 \mapsto 0, v_i \mapsto v_i$; $S: v_1 \mapsto v_4, v_2 \mapsto v_5, v_i \mapsto 0; i = 3,4,5.$ **26** Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ and $\forall p, \deg(Dp) = (\deg p) - 1$. Prove that $D \in \mathcal{P}(\mathbf{R})$ is surj. **SOLUTION:** $[D \text{ might not be } D: p \mapsto p'.]$ NOTICE that the following proof is wrong: Because span $(Dx, Dx^2, Dx^3, \dots) \subseteq \text{range } D$, and $\deg Dx^n = n - 1$. ∇ By (2.C.10), span(Dx, Dx^2 , Dx^3 , ...) = span(1, x, x^2 , ...) = $\mathcal{P}(\mathbf{R})$. Let D(C) = 0, $Dx^k = p_k$ of deg (k-1), for all $C \in \mathbf{R} = \mathcal{P}_0(\mathbf{R})$ and for each $k \in \mathbf{N}^+$. Because $B_{\mathcal{P}_m(\mathbf{R})}=(p_1,\ldots,p_m,p_{m+1})$. And for all $p\in\mathcal{P}(\mathbf{R})$, $\exists \,!\, m=\deg p\in\mathbf{N}^+$. So that $\exists\,!\, a_i\in\mathbf{R}, p=\sum_{i=1}^{m+1}a_ip_i\Rightarrow\exists\, q=\sum_{i=1}^{m+1}a_ix^i$, Dq=p. OR. We will recursively define a sequence of polys $(p_k)_{k=0}^{\infty}$ where $Dp_0 = 1$, $Dp_k = x^k$ for each $k \in \mathbb{N}^+$. So that $\forall p = \sum_{k=0}^{\deg p} a_k x^k \in \mathcal{P}(\mathbf{R}), Dq = p, \exists q = \sum_{k=0}^{\deg p} a_k p_k.$ (i) Because $\deg Dx = (\deg x) - 1 = 0$, $Dx = C \in \mathbb{F} \setminus \{0\}$. Let $p_0 = C^{-1}x \Rightarrow Dp_0 = C^{-1}Dx = 1$. (ii) Suppose we have defined $Dp_0 = 1$, $Dp_k = x^k$ for each $k \in \{1, ..., n\}$. Because deg $D(x^{n+2}) = n + 1$. Let $D(x^{n+2}) = a_{n+1}x^{n+1} + a_nx^n + \dots + a_1x + a_0$, with $a_{n+1} \neq 0$. Then $a_{n+1}^{-1}D(x^{n+2}) = x^{n+1} + a_{n+1}^{-1}(a_nDp_n + \dots + a_1Dp_1 + a_0Dp_0)$ $\Rightarrow x^{n+1} = D\left[\underline{a_{n+1}^{-1}(x^{n+2} - a_n p_n - \dots - a_1 p_1 - a_0 p_0)}\right]. \text{ Thus defining } p_{n+1}, \text{ so that } Dp_{n+1} = x^{n+1}. \quad \Box$

Now $E|_X$ is inje, but cannot be re-extend to inv $E \in \mathcal{L}(V)$ without loss of functionality.

COROLLARY: $[Req\ V\ Finite-dim\]$ If range $T=\operatorname{range} S$, then $\dim\operatorname{null} T=\dim\operatorname{null} S=p$.

• Note For Transpose: [3.F.33] Define $\mathcal{T}:A\to A^t$. By [3.111], \mathcal{T} is linear. Because $(A^t)^t=A$. $\mathcal{T}^2=I$, $\mathcal{T}=\mathcal{T}^{-1}\Rightarrow\mathcal{T}$ is an iso of $\mathbf{F}^{m,n}$ onto $\mathbf{F}^{n,m}$. Define $\mathcal{C}_k:A\to A_{\cdot,k}$, $\mathcal{R}_j:A\to A_{j,\cdot}$, $\mathcal{E}_{j,k}:A\to A_{j,k}$. Now we show that (a) $\underline{\mathcal{T}\mathcal{R}_j=\mathcal{C}_j\mathcal{T}_i}$ (b) $\underline{\mathcal{T}\mathcal{C}_k=\mathcal{R}_k\mathcal{T}_i}$ and (c) $\underline{\mathcal{T}\mathcal{E}_{j,k}=\mathcal{E}_{k,j}\mathcal{T}_i}$. So that furthermore, $\mathcal{T}\mathcal{C}_k\mathcal{T}=\mathcal{R}_k$, $\mathcal{T}\mathcal{R}_j\mathcal{T}=\mathcal{C}_j$, and $\mathcal{T}\mathcal{E}_{j,k}\mathcal{T}=\mathcal{E}_{k,j}$.

$$\operatorname{Let} A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \Rightarrow A^t = \begin{pmatrix} A_{1,1} & \cdots & A_{m,1} \\ \vdots & \ddots & \vdots \\ A_{1,n} & \cdots & A_{m,n} \end{pmatrix}. \quad \begin{array}{|l} \operatorname{Note that} \ (A_{j,k})^t = A_{j,k} = (A^t)_{k,j}. \ \operatorname{Thus} \ (c) \ \operatorname{holds}. \\ \operatorname{And} \ (A_{\cdot,k})^t = (A_{1,k} & \cdots & A_{m,k}) = (A^t_{k,1} & \cdots & A^t_{k,m}) = (A^t)_{k,i}. \\ \Longrightarrow \ (b) \ \operatorname{holds}. \ \operatorname{Similar for} \ (a). \end{array}$$

- Note For [3.48]: $\underbrace{\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix}}_{B} = \begin{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 8 \end{pmatrix} & \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} & \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 10 \end{pmatrix} \\ \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ 8 \end{pmatrix} & \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} & \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 10 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 21 & 24 & 27 \\ 47 & 54 & 61 \end{pmatrix}$
- Note For [3.47]: $(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,\cdot} C_{\cdot,k})_{1,1} = A_{j,\cdot} C_{\cdot,k}$
- Note For [3.49]: $[(AC)_{\cdot,k}]_{i,1} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} A_{j,r} (C_{\cdot,k})_{r,1} = (AC_{\cdot,k})_{i,1}$
- Exercise 10: $[(AC)_{j,\cdot}]_{1,k} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} C_{r,k} = (A_{j,\cdot}C)_{1,k}$
- Comment: For [3.49], let $B_U = (u_1, ..., u_p)$, $B_V = (v_1, ..., v_n)$, $B_W = (w_1, ..., w_m)$.

And $C = \mathcal{M}(T, B_U, B_V) \in \mathbf{F}^{n,p}, A = \mathcal{M}(S, B_V, B_W) \in \mathbf{F}^{m,n}$.

Then $\mathcal{M}(Tu_k, B_V) = C_{\cdot,k} \Rightarrow \mathcal{M}(S(Tu_k), B_W) = AC_{\cdot,k}, \ \not\boxtimes \mathcal{M}((ST)(u_k), B_W) = (AC)_{\cdot,k} \ \Box$

By Note For Transpose, $(AC)_{i,\cdot} = \left[\left((AC)^t \right)_{\cdot,i} \right]^t = \left(C^t (A^t)_{\cdot,i} \right)^t = \left((A^t)_{\cdot,i} \right)^t C = A_{i,\cdot} C \square$

• Note For [3.52]: $A \in \mathbf{F}^{m,n}, c \in \mathbf{F}^{n,1} \Rightarrow Ac \in \mathbf{F}^{m,1}$. By [4E 3.51(a)], $(Ac)_{\cdot,1} = c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n} \square$

OR. : $(Ac)_{j,1} = \sum_{r=1}^{n} A_{j,r} c_{r,1} = \left[\sum_{r=1}^{n} (A_{\cdot,r} c_{r,1}) \right]_{j,1} = \left(c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n} \right)_{j,1}$: $Ac = A_{\cdot,\cdot} c_{\cdot,1} = \sum_{r=1}^{n} A_{\cdot,r} c_{r,1} = c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n} \text{ OR. } (Ac)_{j,1} = (Ac)_{j,\cdot} = A_{j,\cdot} c \in \mathbf{F}.$

OR. Let $B_V = (v_1, \dots, v_n)$. Now $Ac = \mathcal{M}(Tv, B_W) = \mathcal{M}(T(c_1v_1 + \dots + c_nv_n)) = c_1A_{\cdot,1} + \dots + c_nA_{\cdot,n}$. \square

• EXERCISE 11: $a \in \mathbf{F}^{1,n}, C \in \mathbf{F}^{n,p} \Rightarrow aC \in \mathbf{F}^{1,p}$. By [4E 3.51(b)], $(aC)_{1,n} = a_1C_{1,n} + \dots + a_nC_{n,n}$

OR. $: (aC)_{1,k} = \sum_{r=1}^{n} a_{1,r} C_{r,k} = \left[\sum_{r=1}^{n} a_{1,r} (C_{r,\cdot}) \right]_{1,k} = \left(a_1 C_{1,\cdot} + \dots + a_n C_{n,\cdot} \right)_{1,k}$ $: aC = a_{1,\cdot} C_{\cdot,\cdot} = \sum_{r=1}^{n} a_{1,r} C_{r,\cdot} = a_1 C_{1,\cdot} + \dots + a_n C_{n,\cdot} \text{ OR. } (aC)_{1,k} = (aC)_{\cdot,k} = aC_{\cdot,k} \in \mathbf{F}.$

OR. $aC = ((aC)^t)^t = (C^t a^t)^t = [a_1^t (C^t)_{\cdot,1} + \dots + a_n^t (C^t)_{\cdot,n}]^t = a_1 C_{1,\cdot} + \dots + a_n C_{n,\cdot}.$

- [4E 3.51] Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$. [See also NOTE FOR [3.49] and Problem (10).]
 - (a) For k = 1, ..., p, $(CR)_{.,k} = CR_{.,k} = C_{.,.}R_{.,k} = \sum_{r=1}^{c} C_{.,r}R_{r,k} = R_{1,k}C_{.,1} + \cdots + R_{c,k}C_{.,c}$
 - (b) For j = 1, ..., m, $(CR)_{j,\cdot} = C_{j,\cdot}R = C_{j,\cdot}R_{\cdot,\cdot} = \sum_{r=1}^{c} C_{j,r}R_{r,\cdot} = C_{j,1}R_{1,\cdot} + \cdots + C_{j,c}R_{c,\cdot}$
- **EXAMPLE**: m = 2, c = 2, p = 3.

 $(AB)_{\cdot,2} = AB_{\cdot,2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} = A_{\cdot,1}B_{1,2} + A_{\cdot,2}B_{2,2} = 6 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 9 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 24 \\ 54 \end{pmatrix};$

 $(AB)_{1,\cdot} = A_{1,\cdot}B = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = A_{1,1}B_{1,\cdot} + A_{1,2}B_{2,\cdot} = 1 \begin{pmatrix} 5 & 6 & 7 \end{pmatrix} + 2 \begin{pmatrix} 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 21 & 24 & 27 \end{pmatrix};$

• Column-Row Factorization (CR Factorization) Suppose $A \in \mathbf{F}^{m,n}$, $A \neq 0$. *Prove, with p specified below, that* $\exists C \in \mathbb{F}^{m,p}$, $R \in \mathbb{F}^{p,n}$, A = CR.

(a) Suppose $S_c = \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}$, dim $S_c = c$, the col rank. Let p = c.

(b) Suppose $S_r = \operatorname{span}(A_{1,r}, \dots, A_{m,r}) \subseteq \mathbf{F}^{1,n}$, dim $S_r = r$, the row rank. Let p = r.

SOLUTION: Using [4E 3.51]. Notice that $A \neq 0 \Rightarrow c, r \geq 1$.

(a) Reduce to basis $B_C = (C_{\cdot,1}, \dots, C_{\cdot,c})$, forming $C \in \mathbb{F}^{m,c}$. Then $\forall k \in \{1, \dots, n\}$, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$, $\exists ! R_{1,k}, \cdots, R_{c,k} \in \mathbf{F}$, forming $R \in \mathbf{F}^{c,n}$. Thus A = CR.

(b) Reduce to basis $B_R = (R_{1,r}, \dots, R_{r,r})$, forming $R \in \mathbb{F}^{r,n}$. Then $\forall j \in \{1, \dots, m\}$, $A_{i,\cdot} = C_{i,1}R_{1,\cdot} + \dots + C_{i,r}R_{r,\cdot} = (CR)_{i,\cdot}, \exists ! C_{i,1}, \dots, C_{i,r} \in \mathbf{F}, \text{ forming } C \in \mathbf{F}^{m,r}. \text{ Thus } A = CR.$

EXAMPLE: $A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \xrightarrow{\text{(I)}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \xrightarrow{\text{(II)}} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}$

(I) $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix} = 2\begin{pmatrix} 10 & 7 & 4 & 1 \end{pmatrix} + \begin{pmatrix} 26 & 19 & 12 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix}$, using [4E 3.51(b)]. $(46\ 33\ 20\ 7) \in \text{span}(A_{1,\cdot}, A_{2,\cdot}), \text{ and } (A_{1,\cdot}, A_{2,\cdot}) \text{ is linely inde. Thus } B_R = (A_{1,\cdot}, A_{2,\cdot}).$

(II)
$$\begin{pmatrix} 10\\26\\46 \end{pmatrix} = 2 \begin{pmatrix} 7\\19\\33 \end{pmatrix} - \begin{pmatrix} 4\\12\\20 \end{pmatrix}; \quad \begin{pmatrix} 1\\5\\7 \end{pmatrix} = -\begin{pmatrix} 7\\19\\33 \end{pmatrix} + 2 \begin{pmatrix} 4\\12\\20 \end{pmatrix}. \text{ Thus } B_C = (A_{\cdot,2}, A_{\cdot,3}).$$

• COLUMN RANK EQUALS ROW RANK Using notation and result above.

For each $A_{i,.} \in S_r$, $A_{i,.} = (CR)_{i,.} = C_{i,.}R = C_{i,1}R_{1,.} + \cdots + C_{i,c}R_{c,.}$

For each $A_{.k} \in S_{c'}$, $A_{.k} = (CR)_{.k} = CR_{.k} = R_{1,k}C_{.1} + \cdots + R_{c,k}C_{.c}$

 \Rightarrow span $(A_{1,r}, \dots, A_{n,r}) = S_r = \text{span}(R_{1,r}, \dots, R_{c,r}) \Rightarrow \dim S_r = r \leqslant c = \dim S_c$.

 $\Rightarrow \operatorname{span}(A_{\cdot,1},\cdots,A_{\cdot,m}) = S_c = \operatorname{span}(C_{\cdot,1},\cdots,C_{\cdot,r}) \Rightarrow \dim S_c = c \leqslant r = \dim S_r.$

OR. Apply the result to $A^t \in \mathbf{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \leqslant r = \dim S_r = \dim S_c^t$.

• Suppose $A \in \mathbb{F}^{m,n} \setminus \{0\}$. Prove that [P] rank $A = 1 \iff \exists c_j, d_k \in \mathbb{F}$, each $A_{j,k} = c_j \cdot d_k$. [Q]**SOLUTION:**

Using CR Factorization

 $P \Rightarrow Q : \text{ Immediately.}$ $Q \Rightarrow P : \text{ Because } A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 \cdots d_n \end{pmatrix} = \begin{pmatrix} c_1 d_1 \cdots c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 \cdots c_m d_n \end{pmatrix} \Longrightarrow S_r = \text{span} \left\{ \begin{pmatrix} \underline{c_1} d_1 \cdots \underline{c_1} d_n \end{pmatrix}, \\ \underline{(\underline{c_m}} d_1 \cdots \underline{c_m} d_n \end{pmatrix} \right\}.$ OR. $S_c = \operatorname{span}\left\{ \begin{pmatrix} c_1 \underline{d_1} \\ \vdots \\ c_n \underline{d_n} \end{pmatrix}, \dots, \begin{pmatrix} c_1 \underline{d_n} \\ \vdots \\ c_n \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \right\}.$

Not Using CR Factorization

 $P \Rightarrow Q$: Because dim $S_c = \dim S_r = 1$.

Let $c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \quad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,k}}.$

 $\Rightarrow A_{i,k} = d'_k A_{i,1} = c_i A_{1,k} = c_i d'_k A_{1,1} = c_i d_k$, where $d_k = d'_k A_{1,1}$.

• Tips 1: Suppose $T \in \mathcal{L}(V,W)$, $B_V = (v_1,\ldots,v_n)$, $B_W = (w_1,\ldots,w_m)$. Let $L = (Tv_{\alpha_1},\ldots,Tv_{\alpha_k})$, $M = (A_{\cdot,\alpha_1},\cdots,A_{\cdot,\alpha_k})$, where each $\alpha_i \in \{1,\ldots,n\}$.

- (a) Show that [P] L is linely inde \iff M is linely inde. [Q]
- (b) Show that $[P] \operatorname{span} L = W \iff \operatorname{span} M = \mathbf{F}^{m,1}. [Q] \quad [Let A = \mathcal{M}(T, B_V, B_W).]$

SOLUTION:

(a) Note that $\mathcal{M}: Tv_k \to A_{\cdot,k}$ is an iso of W onto $\mathbf{F}^{m,1}$. (b) Reduce L to B'_W , M to $B_{\mathbf{F}^{m,1}}$. Similarly. \square

$$\begin{aligned} \text{Or. } c_1 T v_{\alpha_1} + \cdots + c_k T v_{\alpha_k} &= c_1 \left(A_{1,\alpha_1} w_1 + \cdots + A_{m,\alpha_1} w_m \right) + \cdots + c_k \left(A_{1,\alpha_k} w_1 + \cdots + A_{m,\alpha_k} w_m \right) \\ &= \left(c_1 A_{1,\alpha_1} + \cdots + c_k A_{1,\alpha_k} \right) w_1 + \cdots + \left(c_1 A_{m,\alpha_1} + \cdots + c_k A_{m,\alpha_k} \right) w_m. \end{aligned}$$

And
$$c_1 A_{\cdot,\alpha_1} + \dots + c_k A_{\cdot,\alpha_k} = c_1 \begin{pmatrix} A_{1,\alpha_1} \\ \vdots \\ A_{m,\alpha_1} \end{pmatrix} + \dots + c_k \begin{pmatrix} A_{1,\alpha_k} \\ \vdots \\ A_{m,\alpha_k} \end{pmatrix} = \begin{pmatrix} c_1 A_{1,\alpha_1} + \dots + c_k A_{1,\alpha_k} \\ \vdots \\ c_1 A_{m,\alpha_1} + \dots + c_k A_{m,\alpha_k} \end{pmatrix}.$$

- (a) $P\Rightarrow Q$: Suppose $c_1A_{\cdot,\alpha_1}+\cdots+c_kA_{\cdot,\alpha_k}=0$. Let $v=c_1v_{\alpha_1}+\cdots+c_kv_{\alpha_k}$. Then $Tv=\left(c_1A_{1,\alpha_1}+\cdots+c_kA_{1,\alpha_k}\right)w_1+\cdots+\left(c_1A_{m,\alpha_1}+\cdots+c_kA_{m,\alpha_k}\right)w_m=0w_1+\cdots+0w_m$. Now $c_1Tv_{\alpha_1}+\cdots+c_kTv_{\alpha_k}=0$. Then each $c_i=0\Rightarrow M$ linely inde.
 - $Q\Rightarrow P$: Because $c_1Tv_{\alpha_1}+\cdots+c_kTv_{\alpha_k}=0$. For each $i\in\{1,\ldots,m\}$, $c_1A_{i,\alpha_1}+\cdots+c_kA_{i,\alpha_k}=0$. Which is equi to $c_1A_{\cdot,\alpha_1}+\cdots+c_kA_{\cdot,\alpha_k}=0$. Thus each $c_i=0\Rightarrow L$ linely inde.

$$\begin{split} \text{Or.} & \exists A_{\cdot,\alpha_{j}} = c_{1}A_{\cdot,\alpha_{1}} + \dots + c_{j-1}A_{\cdot,\alpha_{j-1}} \\ & \iff \text{For each } i \in \left\{1,\dots,m\right\}, \ A_{i,\alpha_{j}} = c_{1}A_{i,\alpha_{1}} + \dots + c_{j-1}A_{i,\alpha_{j-1}} \\ & \iff Tv_{\alpha_{j}} = A_{1,\alpha_{j}}w_{1} + \dots + A_{m,\alpha_{j}}w_{m} \\ & = \left(c_{1}A_{1,\alpha_{1}} + \dots + c_{j-1}A_{1,\alpha_{j-1}}\right)w_{1} + \dots + \left(c_{1}A_{m,\alpha_{1}} + \dots + c_{j-1}A_{m,\alpha_{j-1}}\right)w_{m} \\ & \iff \exists \ Tv_{\alpha_{j}} = c_{1}Tv_{\alpha_{1}} + \dots + c_{j-1}Tv_{\alpha_{j-1}}. \end{split}$$

(b) Note that each $\mathcal{M}(Tv_{\alpha_i}) = A_{\cdot,\alpha_i}$

$$P \Rightarrow Q: \text{ Suppose each } w_i = Iw_i = J_{1,i}Tv_{\alpha_1} + \dots + J_{k,i}Tv_{\alpha_k}.$$

$$\forall a \in \mathbf{F}^{m,1}, \exists w = a_1w_1 + \dots + a_mw_m \in W, \ a = \mathcal{M}(w, B_W).$$
 Because $w = a_1(J_{1,1}Tv_{\alpha_1} + \dots + J_{k,1}Tv_{\alpha_k}) + \dots + a_m(J_{1,m}Tv_{\alpha_1} + \dots + J_{k,m}Tv_{\alpha_k})$
$$= (a_1J_{1,1} + \dots + a_mJ_{1,m})Tv_{\alpha_1} + \dots + (a_1J_{k,1} + \dots + a_mJ_{k,m})Tv_{\alpha_k}.$$

Apply \mathcal{M} to both sides, $a = c_1 A_{\cdot,\alpha_1} + \cdots + c_k A_{\cdot,\alpha_k}$, where each $c_i = a_1 J_{i,1} + \cdots + a_m J_{i,m}$.

$$\begin{split} Q \Rightarrow P: \ \forall w \in W, \exists \, a = c_1 A_{\cdot,\alpha_1} + \dots + c_k A_{\cdot,\alpha_k} \in \mathbf{F}^{m,1}, \ \mathcal{M}(w,B_W) = a \\ \Rightarrow w = \left(c_1 A_{1,\alpha_1} + \dots + c_k A_{1,\alpha_k}\right) w_1 + \dots + \left(c_1 A_{m,\alpha_1} + \dots + c_k A_{m,\alpha_k}\right) w_m = c_1 T v_{\alpha_1} + \dots + c_k T v_{\alpha_k}. \end{split}$$

$$\neg Q \Rightarrow \neg P : \exists w \in W, \exists a \in \mathbf{F}^{m,1}, \mathcal{M}(w, B_W) = a, \text{ but } \nexists c_i \in \mathbf{F}, a = c_1 A_{\cdot, \alpha_1} + \dots + c_k A_{\cdot, \alpha_k} \\
 \Rightarrow \nexists c_i \in \mathbf{F}, \ w = c_1 T v_{\alpha_1} + \dots + c_k T v_{\alpha_k}.$$

COROLLARY: Let $L = (Tv_1, ..., Tv_n)$, $M = (A_{\cdot,1}, ..., A_{\cdot,n})$.

Then (a*) By [3.B.9, Tips (4)], T is inje \iff L is linely inde, so is M.

And (b*) T is surj \iff span $L = W \iff$ span $M = \mathbf{F}^{m,1}$.

COROLLARY: $B_{\mathbf{F}^{n,1}} = (A_{\cdot,1}, \cdots, A_{\cdot,n}) \iff T \text{ is inje and surj} \iff B_{\mathbf{F}^{1,n}} = (A_{\cdot,1}, \cdots, A_{\cdot,n}).$

COMMENT: If T is inv. Then by (a^*, c) or (b^*, d) , we have another proof of COROLLARY. Or. If m = n. Then by [3.118] and one of (a^*, b^*, c, d) . Yet another proof.

(c) $T \operatorname{surj} \iff T' \operatorname{inje} \iff \left(T'(\psi_1), \dots, T'(\psi_m)\right)$ linely inde $\overset{\text{(a)}}{\iff} \left((A^t)_{\cdot,1}, \cdots, (A^t)_{\cdot,m}\right)$ linely inde in $\mathbf{F}^{n,1}$, so is $\left(A_{1,\cdot}, \cdots, A_{m,\cdot}\right)$ in $\mathbf{F}^{1,n}$.

(d)
$$T$$
 inje \iff T' surj \iff $V' = \operatorname{span}(T'(\psi_1), \dots, T'(\psi_m))$ \iff $\mathbf{F}^{n,1} = \operatorname{span}((A^t)_{\cdot,1}, \dots, (A^t)_{\cdot,m}) \iff$ $\mathbf{F}^{1,n} = \operatorname{span}(A_{1,\cdot}, \dots, A_{m,\cdot}).$

• Tips 2: Suppose p is a poly of n variables in \mathbf{F} . Prove that $\mathcal{M}(p(T_1,, T_n)) = p(\mathcal{M}(T_1),, \mathcal{M}(T_n))$. Where the linear maps $T_1,, T_n$ are such that $p(T_1,, T_n)$ makes sense. See [5.16,17,20].
SOLUTION: Suppose the poly p is defined by $p(x_1,, x_n) = \sum_{k_1,, k_n} \alpha_{k_1,, k_n} \prod_{i=1}^n x_i^{k_i}$.
Note that $\mathcal{M}(T^xS^y) = \mathcal{M}(T)^x\mathcal{M}(S)^y$; $\mathcal{M}(T^x + S^y) = \mathcal{M}(T)^x + \mathcal{M}(S)^y$.
Then $\mathcal{M}(p(T_1,\ldots,T_n)) = \mathcal{M}\left(\sum_{k_1,\ldots,k_n} \alpha_{k_1,\ldots,k_n} \prod_{i=1}^n T_i^{k_i}\right)$
$= \sum_{k_1,\ldots,k_n} \alpha_{k_1,\ldots,k_n} \prod_{i=1}^n \mathcal{M}(T_i^{k_i}) = p(\mathcal{M}(T_1),\ldots,\mathcal{M}(T_n)). \qquad \Box$
• COROLLARY: Suppose τ is an algebraic property. Then τ holds for linear maps $\Leftrightarrow \tau$ holds for matrices.
Each $\alpha_k \in \{1,, n\}$. Now $p(T_1,, T_n) = p(T_{\alpha_1},, T_{\alpha_n})$ $\iff p(\mathcal{M}(T_1),, \mathcal{M}(T_n)) = p(\mathcal{M}(T_{\alpha_1}),, \mathcal{M}(T_{\alpha_n})).$
13 Prove that the distr holds for matrix add and matrix multi.
Suppose A, B, C are matrices such that $A(B+C)$ make sense, we prove the left distr.
SOLUTION: Suppose $A \in \mathbb{F}^{m,n}$ and $B, C \in \mathbb{F}^{n,p}$.
Note that $[A(B+C)]_{j,k} = \sum_{r=1}^{n} A_{j,r}(B+C)_{r,k} = \sum_{r=1}^{n} (A_{j,r}B_{r,k} + A_{j,r}C_{r,k}) = (AB+AC)_{j,k}$.
OR. Define T, S, R such that $\mathcal{M}(T) = A, \mathcal{M}(S) = B, \mathcal{M}(R) = C$.
$A(B+C) = \mathcal{M}(T(S+R)) \xrightarrow{[3.9]} \mathcal{M}(TS+TR) = AB+AC.$
OR. $T(S+R) = TS + TR \Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR) \Rightarrow A(B+C) = AB + AC$.
1 Suppose $T \in \mathcal{L}(V, W)$. Show that for each pair of B_V and B_W , $A = \mathcal{M}(T, B_V, B_W)$ has at least $n = \dim \operatorname{range} T$ nonzero entries. Solution:
Using $[3.B \text{ TIPS } (4)]$. Let $U \oplus \text{null } T = V$; $B_U = (v_1, \dots, v_n)$, $B_V = (v_1, \dots, v_m)$. For each $k \in \{1, \dots, n\}$, $Tv_k \neq 0 \iff A_{\cdot,k} \neq 0$. Hence every such $A_{\cdot,k}$ has at least one nonzero entry. \square
OR. We prove by contradiction. Suppose A has at most $(n-1)$ nonzero entries. Then by Pigeon Hole Principle, at least one of $A_{\cdot,1},\ldots,A_{\cdot,n}$ equals 0.
Thus there are at most $(n-1)$ nonzero vecs in $Tv_1,, Tv_n$. $\forall \text{ range } T = \text{span}(Tv_1,, Tv_n) \Rightarrow \text{dim range } T = \text{dim span}(Tv_1,, Tv_n) \leq n-1$. Contradicts. \Box
6 Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that dim range $T = 1 \iff \exists B_V, B_W$, all entries of $A = \mathcal{M}(T, B_V, B_W)$ equal 1.
SOLUTION:
(a) Suppose $B_V = (v_1, \dots, v_n)$, $B_W = (w_1, \dots, w_m)$ are the bases such that all entries of A equal 1. Then $Tv_i = w_1 + \dots + w_m$ for all $i = 1, \dots, n$. Because w_1, \dots, w_n is linely inde, $w_1 + \dots + w_n \neq 0$.
(b) Suppose dim range $T=1$. Then dim null $T=\dim V-1$. Let $B_{\operatorname{null} T}=(u_2,\ldots,u_n)$. Extend to a basis (u_1,u_2,\ldots,u_n) of V . Let $w_1=Tv_1-w_2-\cdots-w_m$. Extend to B_W . Let $v_1=u_1,\ v_i=u_1+u_i$. Extend to B_V .
OR. Suppose $B_{\text{range }T} = (w)$. By $[2.\text{C Note For } (15)]$, $\exists B_W = (w_1, \dots, w_m)$, $w = w_1 + \dots + w_m$. By $[2.\text{C Tips}]$, \exists a basis (u_1, \dots, u_n) of V such that each $u_k \notin \text{null } T$. Now each $Tu_k \in \text{range } T = \text{span}(w) \Rightarrow Tu_k = \lambda_k w$, $\exists \lambda_k \in F \setminus \{0\}$.
Let $v_k = \lambda_k^{-1} u_k \neq 0$, so that each $Tv_k = w = w_1 + \dots + w_m$. Thus $B_V = (v_1, \dots, v_n)$ will do.

```
3 Suppose V and W are finite-dim and T \in \mathcal{L}(V, W). Prove that \exists B_V, B_W such that
   [ letting A = \mathcal{M}(T, B_V, B_W) ] A_{k,k} = 1, A_{i,j} = 0, where 1 \le k \le \dim \operatorname{range} T, i \ne j.
SOLUTION: Using [3.B TIPS (4)]. Let B_{\text{range }T} = (Tv_1, ..., Tv_n), B_V = (v_1, ..., v_n, u_1, ..., u_m).
                                                                                                                                     COMMENT: Let each Tv_k = w_k. Extend B_{\text{range }T} to B_W = (w_1, ..., w_n, ..., w_p). See [3.D Note for [3.60]].
4 Suppose B_V = (v_1, ..., v_m) and W is finite-dim. Suppose T \in \mathcal{L}(V, W).
   Prove that \exists B_W = (w_1, ..., w_n), \ \mathcal{M}(T, B_V, B_W)_{:,1} = (1 \ 0 \ ... \ 0)^t \ or \ (0 \ ... \ 0)^t.
SOLUTION: If Tv_1 = 0, then we are done. If not then extend (Tv_1) to B_W.
                                                                                                                                     5 Suppose B_W = (w_1, ..., w_n) and V is finite-dim. Suppose T \in \mathcal{L}(V, W).
   Prove that \exists B_V = (v_1, ..., v_m), \ \mathcal{M}(T, B_V, B_W)_{1, \cdot} = (0 \ ... \ 0) \ or \ (1 \ 0 \ ... \ 0).
SOLUTION:
   Let (u_1, ..., u_n) be a basis of V. Denote \mathcal{M}(T, (u_1, ..., u_n), B_W) by A.
   If A_{1,.} = 0, then B_V = (u_1, ..., u_n) and we are done. Otherwise, suppose A_{1,k} \neq 0.
  Let v_1 = \frac{u_k}{A_{1,k}}, so that Tv_1 = 1w_1 + \frac{A_{2,k}}{A_{1,k}}w_2 + \dots + \frac{A_{n,k}}{A_{1,k}}w_n.
   Let v_j = u_{j-1} - A_{1,j-1}v_1 for each j \in \{2, ..., k\}. Let v_i = u_i - A_{1,i}v_1 for i \in \{k+1, ..., n\}.
   NOTICE that Tu_i = A_{1,i}w_1 + \dots + A_{n,i}w_n. \mathbb{X} Each u_i \in \text{span}(v_1, \dots, v_n) = V. Let B_V = (v_1, \dots, v_n).
                                                                                                                                     Or. Using Problem (4). Let B_W, be the B_V.
   Now \exists B_{V}, such that \mathcal{M}(T', B_{W'}, B_{V'})_{\cdot,1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}^t or \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}^t.
   Which is equiv to \exists B_V \text{ [Using (3.F.31)]} such that \mathcal{M}(T, B_V, B_W)_{1,\cdot} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} or \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}.
                                                                                                                             ENDED
3.D
              1 2 3 4 5 6 8 9 10 11 12 13 15 16 17 18 19 | 4E: 3 10 15 17 19 20 22 23 24
2 Suppose V is finite-dim and dim V > 1.
   Prove that the set U of non-inv operators on V is not a subsp of \mathcal{L}(V).
   The set of inv operators is not either. Although multi identity/inv, and commutativity for vec multi hold.
SOLUTION: Let B_V = (v_1, ..., v_n). [ If dim V = 1, then U = \{0\} is a subsp of \mathcal{L}(V).]
               Define S, T \in \mathcal{L}(V) by S(a_1v_1 + \dots + a_nv_n) = a_1v_1, T(a_1v_1 + \dots + a_nv_n) = a_2v_1 + \dots + a_nv_n.
               Hence S, T \in U while S + T \notin U.
• Tips: Suppose U \oplus X = W \oplus Y, and X, Y are iso. Prove that U, W are iso.
SOLUTION: Let \xi be an iso of X onto Y. That is, \forall y \in Y, \exists ! x \in X, \xi(x) = y.
                \forall u \in U, \exists ! w \in W, y \in Y, u = w + y \Rightarrow \exists ! x \in X, u = w + \xi(x). Define \pi : u \mapsto w.
               Now suppose u_1, u_2 \in U, then each u_i = w_i + \xi(x_i), \exists ! w_i \in W, x_i \in X.
               Linearity: \forall \lambda \in \mathbf{F}, \pi(u_1 + \lambda u_2) = w_1 + \lambda w_2 = \pi(u_1) + \lambda \pi(u_2).
               Injectivity: \pi(u_1) = \pi(u_2) \Rightarrow w_1 = w_2 \Rightarrow \xi(x_1) = \xi(x_2) \Rightarrow x_1 = x_2 \Rightarrow u_1 = u_2.
```

Surjectivity: $\forall w \in W, \pi(w) = w \in \text{range } \pi$. Thus π is an iso of U onto W.

```
3 Suppose V and W are iso, U is a subsp of V, and S \in \mathcal{L}(U, W).
   Prove that \exists inv T \in \mathcal{L}(V, W), Tu = Su, \forall u \in U \iff S is inje.
                                                                                                                [ See also (3.A.11). ]
SOLUTION: (a) \forall u \in U, u = T^{-1}Su \Rightarrow T^{-1}S = I \in \mathcal{L}(U) \Longrightarrow S is inje, by (3.B.20).
                     Or. \operatorname{null} S = \operatorname{null} T|_{U} = \operatorname{null} T \cap U = \{0\}.
                (b) Let X \oplus U = V. Because S: U \to V is inje. By (3.B.12), S: U \to \text{range } S is an iso.
                     Let Y \oplus \text{range } S = V. Then by TIPS, X and Y are iso. Let E : X \to Y be an iso.
                     Define T \in \mathcal{L}(V, W) by Tu = Su, Tw = Ew for all u \in U, w \in X.
                     Or. [ Req V Finite-dim ] Let B_U = (u_1, ..., u_m). Then S inje \Rightarrow (Su_1, ..., Su_m) linely inde.
                     Extend to B_V = (u_1, ..., u_m, v_1, ..., v_n), B_W = (Su_1, ..., Su_m, w_1, ..., w_n).
                     Define T \in \mathcal{L}(V, W) by T(u_i) = Su_i; Tv_i = w_i, for each u_i and v_i.
                                                                                                                                         8 Suppose T \in \mathcal{L}(V, W) is surj. Prove that \exists subsp U of V, T|_{U}: U \to W is an iso.
SOLUTION: [Req \text{ range } T \text{ Finite-dim}] Let B_{\text{range } T} = B_W = (Tv_1, ..., Tv_m), B_U = (v_1, ..., v_m).
                                                                                                                                         Or. By (3.B.12). Note that range T = W.
                                                                                                                                         18 Show that V and \mathcal{L}(\mathbf{F}, V) are iso vecsps.
SOLUTION:
   Define \Psi \in \mathcal{L}(V, \mathcal{L}(F, V)) by \Psi(v) = \Psi_v; where \Psi_v \in \mathcal{L}(F, V) and \Psi_v(\lambda) = \lambda v.
   (a) \Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbb{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0. Hence \Psi is inje.
   (b) \forall T \in \mathcal{L}(\mathbf{F}, V), let v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda), \forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1)). Hence \Psi is surj. \square
   Or. Define \Phi \in \mathcal{L}(\mathcal{L}(\mathbf{F}, V), V) by \Phi(T) = T(1).
   (a) Suppose \Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda), \forall \lambda \in \mathbb{F} \Rightarrow T = 0. Thus \Phi is inje.
   (b) For any v \in V, define T \in \mathcal{L}(\mathbf{F}, V) by T(\lambda) = \lambda v. Then \Phi(T) = T(1) = v. Thus \Phi is surj.
                                                                                                                                         Comment: \Phi = \Psi^{-1}.
• Suppose S, T \in \mathcal{L}(V, W).
                                                          For Problem (4) and (5), see the COROLLARY in (3.B.24, 25).
6 Suppose V and W are finite-dim. dim null S = \dim \text{null } T = n.
  Prove that S = E_2TE_1, \exists inv E_1 \in \mathcal{L}(V), E_2 \in \mathcal{L}(W).
SOLUTION: Define E_1: v_i \mapsto r_i; u_j \mapsto s_j; for each i \in \{1, ..., m\}, j \in \{1, ..., n\}.
                Define E_2: Tv_i \mapsto Sr_i; x_i \mapsto y_i; for each i \in \{1, ..., m\}, j \in \{1, ..., n\}. Where:
                  Let B_{\text{range }T} = (Tv_1, \dots, Tv_m); B_{\text{range }S} = (Sr_1, \dots, Sr_m).
                  Let B_W = (Tv_1, ..., Tv_m, x_1, ..., x_p); \ B'_W = (Sr_1, ..., Sr_m, y_1, ..., y_p). \ | ::E_1, E_2 \text{ are inv}
                  Let B_{\text{null }T}=\left(u_{1},\ldots,u_{n}\right);\ B_{\text{null }S}=\left(s_{1},\ldots,s_{n}\right).
                                                                                                             and S = E_2 T E_1.
                                                                                                                                         Thus B_V = (v_1, \dots, v_m, u_1, \dots, u_n); B'_V = (r_1, \dots, r_m, s_1, \dots, s_n).
• (a) Suppose T = ES and E \in \mathcal{L}(W) is inv. Prove that \text{null } S = \text{null } T.
  (b) Suppose T = SE and E \in \mathcal{L}(V) is inv. Prove that range S = \text{range } T.
  (c) Suppose T = E_2SE_1 and E_1 \in \mathcal{L}(V), E_2 \in \mathcal{L}(W) are inv.
       Prove that dim null S = \dim \text{null } T.
SOLUTION: (a) v \in \text{null } T \iff Tv = 0 = E(Sv) \iff Sv = 0 \iff v \in \text{null } S.
```

(b) $w \in \operatorname{range} T \iff \exists v \in V, Tv = S(Ev) \iff \exists u \in V, w = Su \iff w \in \operatorname{range} S.$

(c) Using (3.B.22). dim null $E_2SE_1 = \frac{E_2}{\inf_{\text{inv}}} \dim \text{null } SE_1 = \frac{E_1}{\inf_{\text{inv}}} \dim \text{null } S = \dim \text{null } T$.

• Note For [3.69]: Suppose V, W are finite-dim and iso, $T \in \mathcal{L}(V, W)$. Then T inv \iff inje \iff surj.				
9 [Or 1] Suppose U, V, W are iso and finite-dim, $S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. Prove that ST is inv $\iff S, T$ are inv. Comment : If any two of U, V, W are not iso or finite-dim, then S, T are inv $\implies ST$ is inv.				
SOLUTION: Suppose S, T are inv. Then $(ST)(T^{-1}S^{-1}) = I_W, (T^{-1}S^{-1})(ST) = I_U$. Hence ST is inv. Suppose ST is inv. Let $R = (ST)^{-1} \Rightarrow R(ST) = I_U, (ST)R = I_W$.				
$Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0.$ T is inje, S is surj. $\forall v \in V, v = (ST)Rv = S(TRv) \in \text{range } S.$ $Z \dim U = \dim V = \dim W.$				
OR. By (3.B.23), dim $W = \dim \operatorname{range} ST \leqslant \min \{\operatorname{range} S, \operatorname{range} T\} \Rightarrow S, T \text{ are surj.}$				
13 Suppose U, V, W, X are iso and finite-dim, $R \in \mathcal{L}(W, X), S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. Suppose RST is surj. Prove that S is inje.				
SOLUTION: Using Problem (9). Notice that U, X are finite-dim, so that RST is inv.				
Let $X = (RST)^{-1} \mid Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.}$ $\forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} $ $\Rightarrow S = R^{-1}(RST)T^{-1}.$				
Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$.				
10 Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$. SOLUTION: (a) Suppose $ST = I$. By $(3.B\ 20, 21)(a)$, $ST = I \Rightarrow T$ is inje and S is surj. $\mathbb{X}\ V$ is finite-dim. S, T are inv. OR. By Problem (9) , V is finite-dim and $ST = I$ is inv $\Rightarrow S, T$ are inv. Then $\forall v \in V, S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow TS = I$. OR. $S^{-1} = T \ \mathbb{X}\ S = S \Rightarrow TS = S^{-1}S = I$. (b) Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$.				
11 Suppose V is finite-dim, S , T , $U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$ Solution : Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = I \Rightarrow T^{-1} = US$. Or. $(ST)U = S(TU) = I \Rightarrow U$, S are inv $\Rightarrow TU = S^{-1}$. X Y	5.			
• (4E 3) $T \in \mathcal{L}(V) \mid (Tv_1,, Tv_n)$ is a basis of V for some basis $(v_1,, v_n)$ of $V \Longleftrightarrow T$ is surj V is finite-dim V is finite-dim V is a basis of V for every basis V for every V for ever				
• (4E 15) Suppose $T \in \mathcal{L}(V)$ and $V = \operatorname{span}(Tv_1, \ldots, Tv_m)$. Prove that $V = \operatorname{span}(v_1, \ldots, v_m)$ Solution: Because $V = \operatorname{span}(Tv_1, \ldots, Tv_m) \Rightarrow T$ is surj, and therefore is inv $\Rightarrow T^{-1}$ is inv. $\forall v \in V, \exists a_i \in F, v = \sum_{i=1}^m a_i Tv_i \Rightarrow T^{-1}v = \sum_{i=1}^m a_i v_i \Rightarrow \operatorname{range} T^{-1} \subseteq \operatorname{span}(v_1, \ldots, v_m)$. Or. Reduce the spanning list (Tv_1, \ldots, Tv_m) of V to a basis $(Tv_{\alpha_1}, \ldots, Tv_{\alpha_k})$ of V .).			
Where $k = \dim V$ and each $\alpha_i \in \{1,, k\}$. Then by Problem (4E 3), $(v_{\alpha_1},, v_{\alpha_k})$ is also a basis of V , contained in the list $(v_1,, v_m)$.				

In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}$. **SOLUTION:** Let $B_1 = (E_1, \dots, E_n)$, $B_2 = (R_1, \dots, R_m)$ be the std bases of $\mathbf{F}^{n,1}$, $\mathbf{F}^{m,1}$. $\forall k = 1, ..., n, T(E_k) = A_{1,k}R_1 + \cdots + A_{m,k}R_m, \exists A_{j,k} \in \mathbb{F}$, forming A =OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(Tx, B_2) = Tx$. Hence $Tx = \mathcal{M}(Tx, B_2) = \mathcal{M}(T, B_1, B_2)\mathcal{M}(x, B_1) = Ax$, by [3.65]. • Note For [3.62]: $\mathcal{M}(v) = \mathcal{M}(I, (v), B_V)$. Where *I* is the identity operator restricted to span(*v*). • Note For [3.65]: $\mathcal{M}(Tv) = \mathcal{M}(I, (Tv), B_W) = \mathcal{M}(T, B_V, B_W) \mathcal{M}(I, (v), B_V) = \mathcal{M}(T, (v), B_W).$ If v = 0, then span(v) = span(), we replace (v) by B = (); similar for Tv = 0. • (4E 23, Or 10.A.4) Suppose that $(\beta_1, \ldots, \beta_n)$ and $(\alpha_1, \ldots, \alpha_n)$ are bases of V. Let $T \in \mathcal{L}(V)$ be such that each $T\alpha_k = \beta_k$. Prove that $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha)$. For ease of notation, let $\mathcal{M}(T, \alpha \to \beta) = \mathcal{M}(T, (\alpha_1, ..., \alpha_n), (\beta_1, ..., \beta_n))$. **SOLUTION:** Denote $\mathcal{M}(T, \alpha \to \alpha)$ by A and $\mathcal{M}(I, \beta \to \alpha)$ by B. $\forall k \in \{1, \dots, n\}, I\beta_k = \beta_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = Tv_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B.$ OR. Note that $\mathcal{M}(T, \alpha \to \beta) = I$. Hence $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha)$ $\underbrace{\mathcal{M}(T, \alpha \to \beta)}_{=\mathcal{M}(I, \beta \to \beta)} = \mathcal{M}(I, \beta \to \alpha)$. Or. Note that $\mathcal{M}(T, \beta \to \beta)\mathcal{M}(I, \alpha \to \beta) = \mathcal{M}(T, \alpha \to \beta) = I$. $\mathcal{M}(T,\alpha \to \alpha) = \mathcal{M}(I,\alpha \to \beta)^{-1} \Big(\underbrace{\mathcal{M}(T,\beta \to \beta)\mathcal{M}(I,\alpha \to \beta)}_{=\mathcal{M}(T,\alpha \to \beta)} \Big) = \mathcal{M}(I,\beta \to \alpha).$ **C**OMMENT: Let $A' = \mathcal{M}(T, \beta \to \beta)$. $\beta_k = I\beta_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n, \ \forall \ k \in \{1, \dots, n\}.$ $\nabla T\beta_k = T(B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n) = A'_{1,k}\beta_1 + \dots + A'_{n,k}\beta_n \Rightarrow A' = B.$ Or. $\mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta)\mathcal{M}(I, \beta \to \alpha) = B$. • TIPS: When using \mathcal{M}^{-1} , you must first declare bases and the purpose for using \mathcal{M}^{-1} . That is, to declare $B_U, B_V, B_W, \mathcal{M} : \mathcal{L}(V, W) \mapsto \mathbf{F}^{m,n}$, or $\mathcal{M} : v \mapsto \mathbf{F}^{n,1}$. So that $\mathcal{M}^{-1}(AC, B_{II}, B_{W}) = \mathcal{M}^{-1}(A, B_{V}, B_{W}) \mathcal{M}^{-1}(C, B_{II}, B_{V});$ Or $\mathcal{M}^{-1}(Ax, B_W) = \mathcal{M}^{-1}(A, B_V, B_W) \mathcal{M}^{-1}(x, B_V)$. Where everything is well-defined. • (4E 22, OR 10.A.1) Suppose $T \in \mathcal{L}(V)$. Prove that $\mathcal{M}(T, B_V)$ is inv $\iff T$ itself is inv. **SOLUTION**: Notice that $\mathcal{M}: T \mapsto \mathcal{M}(T, B_V)$ is an iso. And that $\mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(TS)$. (a) $T^{-1}T = TT^{-1} = I \Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T) = \mathcal{M}(I) = \mathcal{M}(T)\mathcal{M}(T^{-1}) \Rightarrow \mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}$. (b) $\mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I$, $\exists ! S \in \mathcal{L}(V)$ such that $\mathcal{M}(T)^{-1} = \mathcal{M}(S)$ $\Rightarrow \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = I = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST)$ $\Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}.$ • (4E 24, OR 10.A.2) Suppose $A, B \in \mathbf{F}^{n,n}$. Prove that $AB = I \iff BA = I$. [*Using Problem* (10, 15).]

SOLUTION: Define $T, S \in \mathcal{L}(\mathbf{F}^{n,1})$ by Tx = Ax, Sx = Bx for all $x \in \mathbf{F}^{n,1}$. Now $\mathcal{M}(T) = A$, $\mathcal{M}(S) = B$.

 $AB = I \Leftrightarrow A(Bx) = x \Leftrightarrow T(Sx) = x \Leftrightarrow TS = I \Leftrightarrow ST = I \Leftrightarrow \mathcal{M}(S)\mathcal{M}(T) = BA = I.$ Or. Because $\mathcal{M}: \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{n,1}) \to \mathbf{F}^{n,n}$ is an iso. $\mathcal{M}^{-1}(AB) = TS = ST = \mathcal{M}^{-1}(BA) = I.$

15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi.

• Note For [3.60]: Suppose $B_V = (v_1, ..., v_n)$, $B_W = (w_1, ..., w_m)$.

Define $E_{i,j} \in \mathcal{L}(V,W)$ by $E_{i,j}(v_x) = \delta_{i,x}w_j$. Corollary: $E_{l,k}E_{i,j} = \delta_{j,l}E_{i,k}$.

Denote
$$\mathcal{M}(E_{i,j})$$
 by $\mathcal{E}^{(j,i)}$. And $(\mathcal{E}^{(j,i)})_{l,k} = \begin{cases} 1, & \text{if } (i,j) = (l,k); \\ 0, & \text{otherwise.} \end{cases}$

NOTICE that $\mathcal{M}: \mathcal{L}(V, W) \to \mathbf{F}^{m,n}$ is an iso. And $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$.

$$\text{Thus } A = \begin{pmatrix} A_{1,1} \mathcal{E}^{(1,1)} \ + \ \cdots \ + \ A_{1,n} \mathcal{E}^{(1,n)} \\ + \ \cdots \ + \\ \vdots \ \ddots \ \vdots \\ + \ \cdots \ + \\ A_{m,1} \mathcal{E}^{(m,1)} \ + \cdots + A_{m,n} \mathcal{E}^{(m,n)} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} A_{1,1} E_{1,1} \ + \ \cdots \ + \ A_{1,n} E_{n,1} \\ + \ \cdots \ + \\ A_{m,1} E_{1,m} \ + \cdots \ + A_{m,n} E_{n,m} \end{pmatrix} = T.$$

By [2.42] and [3.61],
$$B_{\mathcal{L}(V,W)} = \begin{pmatrix} E_{1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots, E_{n,m} \end{pmatrix}; B_{\mathbf{F}^{m,n}} = \begin{pmatrix} \mathcal{E}^{(1,1)}, & \cdots, \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots, \mathcal{E}^{(m,n)} \end{pmatrix}.$$

- Tips: Let $B_{\text{range }T} = (Tv_1, \dots, Tv_p), B_V = (v_1, \dots, v_p, \dots, v_n)$. Let each $w_k = Tv_k; \ B_W = (w_1, \dots, w_p, \dots, w_m)$. Then $T = E_{1,1} + \dots + E_{p,p}, \ \mathcal{M}(T, B_V, B_W) = \mathcal{E}^{(1,1)} + \dots + \mathcal{E}^{(p,p)}$.
- **17** Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in \mathcal{$

SOLUTION: [See also in (3.A).] Using NOTE FOR [3.60].

Let $B_V = (v_1, ..., v_n)$. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$.

Then $\forall E_{i,j} \in \mathcal{E}$, by assumption, $\forall x,y \in \{1,\ldots,n\}, E_{j,x}E_{i,j} = E_{i,x} \in \mathcal{E}, E_{i,j}E_{y,i} = E_{y,j} \in \mathcal{E}$. Again, $\forall x,x',y,y' \in \{1,\ldots,n\}, E_{y,x'}, E_{y',x} \in \mathcal{E}$. Thus $\mathcal{E} = \mathcal{L}(V)$.

• (4E 10) Suppose V, W are finite-dim, U is a subsp of V.

$$Let \ \mathcal{E} = \big\{ T \in \mathcal{L}(V,W) : U \subseteq \operatorname{null} T \big\} = \big\{ T \in \mathcal{L}(V,W) : T|_U = 0 \big\}.$$

- (a) Show that \mathcal{E} is a subsp of $\mathcal{L}(V, W)$.
- (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U.

Hint: Define $\Phi : \mathcal{L}(V, W) \to \mathcal{L}(U, W)$ by $\Phi(T) = T|_U$. What is null Φ ? What is range Φ ?

SOLUTION:

- (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbf{F}, \forall u \in U, Su = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$
- (b) Define Φ as in the hint. Φ is linear, by [3.A NOTE FOR Restriction].

$$\forall T \in \text{null } \Phi, \Phi(T) = 0 \iff \forall u \in U, Tu = 0 \iff T \in \mathcal{E}. \text{ Thus null } \Phi = \mathcal{E}.$$

$$\forall S \in \mathcal{L}(U, W)$$
, extend to $T \in \mathcal{L}(V, W)$, then $\Phi(T) = S \in \text{range } \Phi$. Thus range $\Phi = \mathcal{L}(U, W)$.

Thus dim null
$$\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W.$$

Or. Let
$$B_U = (u_1, ..., u_m)$$
, $B_V = (u_1, ..., u_m, v_1, ..., v_n)$. Let $p = \dim W$. [See Note for [3.60].]

$$\forall T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{array}{l} E_{1,1}, \cdots, E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, \cdots, E_{m,p} \end{array} \right\} \cap \mathcal{E} = \{0\}.$$

$$\not\boxtimes W = \operatorname{span} \left\{ \begin{array}{l} E_{m+1,1}, \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, \cdots, E_{n,p} \end{array} \right\} \subseteq \mathcal{E}. \quad \overrightarrow{Denote it by R}$$

$$\text{Where } \mathcal{L}(V, W) = R \oplus W \Rightarrow \mathcal{L}(V, W) = R + \mathcal{E}.$$

Then $\dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W$. \square

```
SOLUTION: (a) \forall T \in \mathcal{L}(V), ST = 0 \iff \text{range } T \subseteq \text{null } S.
                                         Thus null \mathcal{A} = \{ T \in \mathcal{L}(V) : \text{range } T \subseteq \text{null } S \} = \mathcal{L}(V, \text{null } S).
                                (b) \forall R \in \mathcal{L}(V), range R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(V), R = ST, by (3.B 25).
                                          Thus range \mathcal{A} = \{R \in \mathcal{L}(V) : \text{range } R \subseteq \text{range } S\} = \mathcal{L}(V, \text{range } S).
                                                                                                                                                                                                                                                                          OR. Using NOTE FOR [3.60]. Let B_{\text{range }S} = (\overline{w_1, \dots, w_m}), B_U = (v_1, \dots, v_m).
      Let (w_1, \dots, w_n), (v_1, \dots, v_n) be bases of V. Now S = E_{1,1} + \dots + E_{m,m}. \mathcal{M}(S, v \to w) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
      Define R_{i,j} \in \mathcal{L}(V) by R_{i,j} : w_x \mapsto \delta_{i,x} v_i. Let E_{j,k} R_{i,j} = Q_{i,k}, R_{j,k} E_{i,j} = G_{i,k}.
     Where E_{i,k}: v_x \mapsto \delta_{i,x}w_k, Q_{i,k}: w_x \mapsto \delta_{i,x}w_k, and G_{i,k}: v_x \mapsto \delta_{i,x}v_k.

For any T \in \mathcal{L}(V), \exists ! A_{i,j} \in \mathbf{F}, T = \sum_{i=1}^n \sum_{j=1}^n A_{i,j}R_{j,i} \Longrightarrow \mathcal{M}(T, w \to v) = \begin{pmatrix} A_{1,1} & \cdots & A_{1,m} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,m} & \cdots & A_{m,n} \end{pmatrix}.

\Longrightarrow \mathcal{A}(T) = ST = \left(\sum_{r=1}^m E_{r,r}\right) \left(\sum_{i=1}^n \sum_{j=1}^n A_{i,j}R_{j,i}\right) = \sum_{i=1}^m \sum_{j=1}^n A_{i,j}Q_{j,i}.
     \mathcal{M}(S,v\to w)\mathcal{M}(T,w\to v) = \mathcal{M}(ST,w) = \begin{pmatrix} A_{1,1} & \cdots & A_{1,m} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,m} & \cdots & A_{m,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \quad \mathcal{X}\mathcal{M}(T,R) = \mathcal{M}(T,w\to v). Let T=I, we have \mathcal{M}(A,R\to Q)\mathcal{M}(T,R) = \mathcal{M}(S,v\to w).
     \operatorname{range} \mathcal{A} = \operatorname{span} \left\{ \begin{matrix} Q_{1,1}, \cdots, Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}, \cdots, Q_{n,m} \end{matrix} \right\}, \ \operatorname{null} \mathcal{A} = \operatorname{span} \left\{ \begin{matrix} R_{1,m+1}, \cdots, R_{n,m+1}, \\ \vdots & \ddots & \vdots \\ R_{1,n}, & \cdots, R_{n,n} \end{matrix} \right\}. \quad \text{(a) dim null } \mathcal{A} = n \times (n-m);
\left\{ \begin{matrix} \vdots & \ddots & \vdots \\ R_{1,n}, & \cdots, R_{n,n} \end{matrix} \right\}. \quad \text{(b) dim range } \mathcal{A} = n \times m.
• Note For Problem (4E 17): Define \mathcal{B} \in \mathcal{L}(\mathcal{L}(V)) by \mathcal{B}(T) = TS.
    (a) Show that dim null \mathcal{B} = (\dim V)(\dim \operatorname{null} S).
    (b) Show that dim range \mathcal{B} = (\dim V)(\dim \operatorname{range} S).
SOLUTION: (a) \forall T \in \mathcal{L}(V), TS = 0 \iff \operatorname{range} S \subseteq \operatorname{null} T.
                                         Thus null \mathcal{B} = \{ T \in \mathcal{L}(V) : \text{range } S \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V) : T|_{\text{range } S} = 0 \}.
                                (b) \forall R \in \mathcal{L}(V), null S \subseteq \text{null } R \iff \exists T \in \mathcal{L}(V), R = TS, by (3.B.24).
                                         Thus range \mathcal{B} = \{R \in \mathcal{L}(V) : \operatorname{null} S \subseteq \operatorname{null} R\} = \{R \in \mathcal{L}(V) : R|_{\operatorname{null} S} = 0\}.
                               Using [3.22] and Problem (4E 10).
     OR. Using Note For [3.60] and notation in Problem (4E 17). \mathcal{B}(T) = TS = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i}\right) \left(\sum_{r=1}^{m} E_{r,r}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{i,j} G_{j,i} \Longrightarrow \mathcal{M}(TS, v) = \begin{pmatrix} A_{1,1} & \cdots & A_{1,m} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,m} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,m} & \cdots & 0 \end{pmatrix}. range \mathcal{B} = \operatorname{span} \begin{Bmatrix} G_{1,1}, & \cdots & G_{m,1}, \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ G_{1,n}, & \cdots & G_{m,n} \end{Bmatrix}, null \mathcal{B} = \operatorname{span} \begin{Bmatrix} R_{m+1,1}, & \cdots & R_{n,1}, \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ R_{m+1,n}, & \cdots & R_{n,n} \end{Bmatrix}. (a) dim null \mathcal{B} = n \times (n-m); (b) dim range \mathcal{B} = n \times m.
• (4E 20) Suppose q \in \mathcal{P}(\mathbf{R}). Prove that \exists p \in \mathcal{P}(\mathbf{R}), q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3).
SOLUTION: Note that \deg[(x^2 + x)p''(x) + 2xp'(x) + p(3)] = \deg p.
                               Define T_n \in \mathcal{L}(\mathcal{P}_n(\mathbf{R})) by T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3).
                               And note that T_n(p) = 0 \Rightarrow \deg T_n(p) = -\infty = \deg p \Rightarrow p = 0. Thus T_n is inv.
                                \forall q \in \mathcal{P}(\mathbf{R}), if q = 0, let n = 0; if q \neq 0, let n = \deg q, we have q \in \mathcal{P}_n(\mathbf{R}).
                               Now \exists p \in \mathcal{P}_n(\mathbf{R}), q(x) = T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3) for all x \in \mathbf{R}.
```

• (4E 17) Suppose V is finite-dim and $S \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(T) = ST$.

(a) Show that dim null $A = (\dim V)(\dim \operatorname{null} S)$.

(b) *Show that* dim range $A = (\dim V)(\dim \operatorname{range} S)$.

```
19 Suppose T \in \mathcal{L}(\mathcal{P}(\mathbf{R})) is inje. And deg Tp \leq \deg p for every nonzero p \in \mathcal{P}(\mathbf{R}).
     (a) Prove that T is surj; (b) Prove that for every nonzero p, \deg Tp = \deg p.
SOLUTION: (a) T is inje \iff \forall n \in \mathbb{N}^+, T|_{\mathcal{P}_n(\mathbb{R})} \in \mathcal{L}(\mathcal{P}_n(\mathbb{R})) is inje, so is inv \iff T is surj.
   (b) Using mathematical induction.
   (i) \deg p = -\infty \geqslant \deg Tp \iff p = 0 = Tp. And \deg p = 0 \geqslant \deg Tp \iff p = C \neq 0.
   (ii) Assume \forall s \in \mathcal{P}_n(\mathbf{R}), \deg s = \deg Ts. We show \forall p \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tp = \deg p by contradiction.
         Suppose \exists r \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tr \leq n < n+1 = \deg r. Then by (a), \exists s \in \mathcal{P}_n(\mathbf{R}), T(s) = (Tr).
         \not T is inje \Rightarrow s = r. While \deg s = \deg Ts = \deg Tr < \deg r. Contradicts.
                                                                                                                                                16 Suppose V is finite-dim and S \in \mathcal{L}(V) such that \forall T \in \mathcal{L}(V), ST = TS.
     Prove that \exists \lambda \in \mathbf{F}, S = \lambda I.
                                                                        [Using notation in Problem (4E 17). See also in (3.A).]
SOLUTION: If S = 0, we are done. Now suppose S \neq 0.
   Let S = E_{1,1} + \cdots + E_{m,m} \Rightarrow \mathcal{M}(S, B_U) = \mathcal{M}(I, B_{\text{range } S}, B_U). Note that R_{k,1} : w_x \mapsto \delta_{k,x} v_1.
   Then \forall k \in \{1, ..., n\}, 0 \neq SR_{k,1} = R_{k,1}S. Hence dim null S = 0, dim range S = m = n.
   Notice that G_{i,j} = R_{i,j}S = SR_{i,j} = Q_{i,j}. Where G_{i,j} : v_x \mapsto \delta_{i,x}v_j; Q_{i,j} : w_x \mapsto \delta_{i,x}w_j.
   For each w_i, \exists ! a_{k,i} \in F, w_i = a_{1,i}v_1 + \dots + a_{n,i}v_n. Where a_{k,i} = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))_{k,i}.
   Then fix one i. Now for each j \in \{1, ..., n\}, Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(\sum_{k=1}^n a_{k,i}v_k).
   Let \lambda = a_{i,i}. Hence each w_j = \lambda v_j. Now fix one j, we have a_{1,1}v_j = \cdots = a_{n,n}v_j, then all a_{i,i} are equal.
   Thus each w_i = \lambda v_i \Longrightarrow \mathcal{M}(S, B_U) = \mathcal{M}(\lambda I).
                                                                                                                                                • (10.A.3, Or 4E 19) Suppose V is finite-dim and T \in \mathcal{L}(V).
                                                                                                                         See also in (3.A).
  Prove that \forall B_V \neq B_V', \mathcal{M}(T, B_V) = \mathcal{M}(T, B_V') \Longrightarrow T = \lambda I, \exists \lambda \in \mathbf{F}.
SOLUTION: Suppose \forall B_V \neq B_V', \mathcal{M}(T, B_V) = \mathcal{M}(T, B_V'). If T = 0, then we are done.
                 Suppose T \neq 0, and v \in V \setminus \{0\}. Assume that (v, Tv) is linely inde.
                 Extend (v, Tv) to B_V = (v, Tv, u_3, ..., u_n). Let B = \mathcal{M}(T, B_V).
                 \Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.
                 By assumption, A = \mathcal{M}(T, B'_V) = B, \forall B'_V = (v, w_2, ..., w_n). Then A_{2,1} = 1, A_{i,1} = 0, \forall i \neq 2.
                 \Rightarrow Tv = w_2, which is not true if w_2 = u_3, w_3 = Tv, w_i = u_i, \forall j \in \{4, ..., n\}. Contradicts.
                 Hence (v, Tv) is linely depe \Rightarrow \forall v \in V, \exists \lambda_v \in F, Tv = \lambda_v v.
                 Now we show that \lambda_v is independent of v, that is, for all distinct v, w \in V \setminus \{0\}, \lambda_v = \lambda_w.
                (v, w) linely inde \Rightarrow T(v+w) = \lambda_{v+w}(v+w) = \lambda_v v + \lambda_w w = Tv + Tw \Rightarrow T = \lambda I.
                (v, w) linely depe, w = cv \Rightarrow Tw = \lambda_w w = \lambda_w cv = c\lambda_v v = T(cv)
   Or. Let A = \mathcal{M}(T, B_V), where B_V = (u_1, ..., u_m) is arbitrary.
   Fix one B_V = (v_1, \dots, v_m) and then (v_1, \dots, \frac{1}{2}v_k, \dots, v_m) is also a basis for any given k \in \{1, \dots, m\}.
   Fix one k. Now we have T(\frac{1}{2}v_k) = A_{1,k}v_1 + \dots + A_{k,k}(\frac{1}{2}v_k) + \dots + A_{m,k}v_m
   \Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.
   Then A_{j,k}=2A_{j,k}\Rightarrow A_{j,k}=0 for all j\neq k. Thus Tv_k=A_{k,k}v_k, \forall k\in\{1,\ldots,m\}.
   Now we show that A_{k,k} = A_{j,j} for all j \neq k. Choose j,k such that j \neq k.
   Consider B'_{V} = (v'_{1}, ..., v'_{i}, ..., v'_{m}), where v'_{i} = v_{k}, v'_{k} = v_{i} and v'_{i} = v_{i} for all i \in \{1, ..., m\} \setminus \{j, k\}.
   Now T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_i, while T(v'_k) = T(v_i) = A_{i,i}v_i. \square
```

1 A function $T: V \to W$ is linear \iff The graph of T is a subspace of $V \times W$.

2 Suppose $V_1 \times \cdots \times V_m$ is finite-dim. Prove that each V_i is finite-dim.

SOLUTION:

For any $k \in \{1, ..., m\}$, define $S_k \in \mathcal{L}(V_1 \times \cdots \times V_m, V_k)$ by $S_k(v_1, ..., v_m) = v_k$.

Then S_k is linear map. By [3.22], range $S_k = V_k$ is finite-dim.

Or. Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i .

We show that each U_i is iso to V_i . Then U is finite-dim \Longrightarrow its subsp U_i is finite-dim, so is V_i .

$$\operatorname{Let} B_U = (v_1, \dots, v_M) \mid \operatorname{Define} R_i \in \mathcal{L}(V_i, U_i) \text{ by } R_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0) \\ \operatorname{Define} S_i \in \mathcal{L}(U, V_i) \text{ by } S_i(u_1, \dots, u_i, \dots, u_m) = u_i \end{cases} \Rightarrow \begin{cases} R_i S_j|_{U_j} = \delta_{i,j} I_{U_j'} \\ S_i R_j = \delta_{i,j} I_{V_j'} \\ \end{array}$$

4 Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are iso.

SOLUTION: Using notation in Problem (2): $R_i : u_i \mapsto (0, ..., u_i, ..., 0)$; $S_i : (u_1, ..., u_m) \mapsto u_i$.

Note that $T(u_1, ..., u_m) = T(u_1, 0, ..., 0) + ... + T(0, ..., u_m)$.

Define $\varphi: T \mapsto (T_1, \dots, T_m)$ by $\varphi(T) = (TR_1, \dots, TR_m)$. Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

5 Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are iso.

SOLUTION: Using notation in Problem (2): $R_i : u_i \mapsto (0, ..., u_i, ..., 0)$; $S_i : (u_1, ..., u_m) \mapsto u_i$. Note that $T_i: v \mapsto w_i$, Define $\varphi: T \mapsto (T_1, \dots, T_m)$ by $\varphi(T) = (S_1 T, \dots, S_m T)$. $T: v \mapsto (w_1, \dots, w_m)$. Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = R_1 T_1 + \dots + R_m T_m$.

6 For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are iso.

SOLUTION:

Define $T:(v_1,\ldots,v_m)\to \varphi$, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$.

- (a) Suppose $T(v_1, ..., v_m) = 0$. Then $\forall (a_1, ..., a_n) \in \mathbb{F}^m$, $\varphi(a_1, ..., a_m) = a_1 v_1 + ... + a_m v_m = 0$ For each k, let $a_k = 1$, $a_j = 0$ for all $j \neq k$. Then each $v_k = 0 \Rightarrow (v_1, \dots, v_m) = 0$. Thus T is inje.
- (b) Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $\left[T \left(\psi(e_1), \dots, \psi(e_m) \right) \right] (b_1, \dots, b_m) = b_1 \psi(e_1) + \dots + b_m \psi(e_m) = \psi(b_1 e_1 + \dots + b_m e_m) = \psi(b_1, \dots, b_m).$ Thus $T(\psi(e_1), \dots, \psi(e_m)) = \psi$. Hence T is surj.

3 Give an example of a vecsp V and its two subsps U_1 , U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are iso but $U_1 + U_2$ is not a direct sum. [V must be infinite-dim.]

SOLUTION: NOTE that at least one of U_1 , U_2 must be infinite-dim. And at least one must be finite-dim??

Let $V = \mathbb{F}^{\infty} = U_1$, $U_2 = \{(x, 0, \dots) \in \mathbb{F}^{\infty} : x \in \mathbb{F}\}$. Then $V = U_1 + U_2$ is not a direct sum.

 $\begin{array}{l} \text{Define } T \in \mathcal{L}\big(U_1 \times U_2, U_1 + U_2\big) \text{ by } T\big(\big(x_1, x_2, \cdots\big), \big(x, 0, \cdots\big)\big) = \big(x, x_1, x_2, \cdots\big) \\ \text{Define } S \in \mathcal{L}\big(U_1 + U_2, U_1 \times U_2\big) \text{ by } S\big(x, x_1, x_2, \cdots\big) = \big(\big(x_1, x_2, \cdots\big), \big(x, 0, \cdots\big)\big) \end{array} \right\} \Rightarrow S = T^{-1}.$

• Note For [3.79, 3.83]: If $U = \{0\}$, then $v + U = v + \{0\} = \{v\}$, $V/U = V/\{0\} = \{\{v\} : v \in V\}$ If $U = \emptyset$, then $v + U = v + \emptyset = \emptyset$, $V/U = V/\emptyset = \{\emptyset\}$.	} .
• Comment: If U is merely a subset of V , then $[3.85, 3.86]$ do not hold, and V/U is not a vecsp. Because $((v-w)+u)\in U$ or $u-u'\in U$ needs that U is closed under add. And because $(v-\hat{v})+(w-\hat{w})\in U$ and $\lambda(v-\hat{v})\in U$ assume that U is a subsp.	
• Note For [3.85]: $v + U = w + U \iff v \in w + U, \ w \in v + U \\ \iff v - w \in U \iff (v + U) \cap (w + U) \neq \emptyset.$	
• (4E8) Suppose $T \in \mathcal{L}(V, W)$, $w \in \text{range } T$. Prove that $\{u \in V : Tu = w\} = u + \text{null } T$ Solution: Let $\mathcal{K}_u = \{u \in V : Tu = w\}$. [Not a vecsp.] Suppose $u \in \mathcal{K}_u$. Then $u + \text{null } T \subseteq \mathcal{K}_u$. And $\forall u' \in \mathcal{K}_u$, $u' - u \in \text{null } T \Rightarrow u' \in u + \text{null } T$. Now $\mathcal{K}_u \subseteq u + \text{null } T$.	
7 Suppose $v, x \in V$, and U, W are subsps of V . Prove that $v + U = x + W \Rightarrow U = W$. Solution: (a) $\forall u_1 \in U, \exists w_1 \in W, v + u_1 = x + w_1$. Let $u_1 = 0$, then $v = x + w_1' \Rightarrow v - x \in W$. (b) $\forall w_2 \in W, \exists u_2 \in U, v + u_2 = x + w_2$. Let $w_2 = 0$, then $x = v + u_2' \Rightarrow x - v \in U$. Now $x + U = v + U = x + W = v + W$. Thus $\{v + u : u \in U\} = \{v + w : w \in W\} \Rightarrow U \in W\}$. Or. $\pm (v - x) \in U \cap W \Rightarrow \{u_1 = (x - v) + w_1 \in W \Rightarrow U \subseteq W\} \Rightarrow U = W$.	= <i>W</i> . □
8 Suppose A is a nonempty subset of V . Prove that A is a translate of some subsp of $V \iff \lambda v + (1-\lambda)w \in A$, $\forall v, w \in A, \lambda \in SOLUTION$: (a) Suppose $A = a + U$. Then $\lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + (\lambda(u_1 - u_2) + u_2) \in A$. (b) Suppose $\lambda v + (1 - \lambda)w \in A, \forall v, w \in A, \lambda \in F$. Suppose $\underline{a \in A}$ and let $A' = \{x - a : x \in A\}$. Then $0 \in A'$ and $\forall (v - a), (w - a) \in A', \lambda \in F$, (I) $\lambda(v - a) = [\lambda v + (1 - \lambda)a] - a \in A'$. (II) Because $\lambda(v - a) + (1 - \lambda)(w - a) = [\lambda v + (1 - \lambda)w] - a \in A'$. Let $\lambda = \frac{1}{2}$ here and use (I) above by $\lambda = 2$, we have $(v - a) + (w - a) \in A'$. Or. Note that $v, a \in A \Rightarrow \lambda v + (1 - \lambda)a = 2v - a \in A$. Similarly $2w - a \in A$. Now $(v - \frac{1}{2}a) + (w - \frac{1}{2}a) = v + w - a \in A \Rightarrow v + w - 2a = (v - a) + (w - a) \in A'$. Thus $A' = -a + A$ is a subsp of V . Hence $a + A' = a + \{x - a : x \in A\} = A$ is a translate.	
9 Suppose $A = v + U$ and $B = x + W$ for some $v, x \in V$ and some subsps U, W of V . Prove that $A \cap B$ is either a translate of some subsp of V or is \emptyset . Solution: $\forall v + u, x + w \in A \cap B \neq \emptyset, \lambda \in F, \lambda(v + u) + (1 - \lambda)(x + w) \in A \cap B$. By Problem (8 Or. Let $A = v + U$, $B = x + W$. Suppose $\alpha \in (v + U) \cap (x + W) \neq \emptyset$. Then $\alpha - v \in U \Rightarrow \alpha + U = v + U = A$, and $\alpha - x \in W \Rightarrow \alpha + W = x + W = B$. We show that $A \cap B = \alpha + (U \cap W)$. Note that $\alpha + (U \cap W) \subseteq A \cap B$. And $\forall \beta = \alpha + u = \alpha + w \in A \cap B \Rightarrow u = w \in U \cap W \Rightarrow \beta \in \alpha + (U \cap W)$.). 🗆

10 *Prove that the intersection of any collection of translates of subsps* is either a translate of some subsps or \emptyset .

SOLUTION: Suppose $\{A_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of translates of subsps of V, where Γ is an index set.

$$\forall x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset, \lambda \in \mathbf{F}, \lambda x + (1 - \lambda)y \in A_{\alpha} \text{ for each } \alpha. \text{ By Problem (8)}.$$

Or. Let each $A_{\alpha} = w_{\alpha} + V_{\alpha}$. Suppose $x \in \bigcap_{\alpha \in \Gamma} (w_{\alpha} + V_{\alpha}) \neq \emptyset$.

Then $x - w_{\alpha} \in V_{\alpha} \Longrightarrow x + V_{\alpha} = w_{\alpha} + V_{\alpha} = A_{\alpha}$, for each α .

We show that $\bigcap_{\alpha \in \Gamma} A_{\alpha} = \bigcap_{\alpha \in \Gamma} (x + V_{\alpha}) = x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$.

$$y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \iff \text{for each } \alpha, \ y = x + v_{\alpha} \in A_{\alpha}$$

$$\Leftrightarrow$$
 each $v_{\alpha} = y - x \in \bigcap_{\alpha \in \Gamma} V_{\alpha} \Leftrightarrow y \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$.

- **11** Suppose $A = \{\lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1\}$, where each $v_i \in V, \lambda_i \in F$.
 - (a) Prove that A is a translate of some subsp of V
 - (b) Prove that if B is a translate of some subsp of V and $\{v_1, ..., v_m\} \subseteq B$, then $A \subseteq B$.
 - (c) Prove that A is a translate of some subsp of V of dim less than m.

SOLUTION:

(a) By Problem (8),
$$\forall u, w \in A, \lambda \in \mathbb{F}, \lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^{m} a_i + (1 - \lambda) \sum_{i=1}^{m} b_i\right)v_i \in A.$$

(b) Suppose B = v + U, where $v \in V$ and U is a subsp of V. Let each $v_k = v + u_k \in B$, $\exists ! u_k \in U$. $\forall w \in A$, $w = \sum_{i=1}^m \lambda_i v_i = \sum_{i=1}^m \lambda_i (v + u_i) = \sum_{i=1}^m \lambda_i v + \sum_{i=1}^m \lambda_i u_i = v + \sum_{i=1}^m \lambda_i u_i \in v + U = B$. \square

$$\forall w \in A, \ w = \sum_{i=1}^{m} \lambda_i v_i = \sum_{i=1}^{m} \lambda_i (v + u_i) = \underbrace{\sum_{i=1}^{m} \lambda_i v} + \sum_{i=1}^{m} \lambda_i u_i = v + \sum_{i=1}^{m} \lambda_i u_i \in v + U = B. \ \Box$$

Or. Let $v = \lambda_1 v_1 + \dots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k.

(i) $k = 1, v = \lambda_1 v_1 \Rightarrow \lambda_1 = 1$. \mathbb{Z} $v_1 \in B$. Hence $v \in B$.

(ii) $2 \le k < m$. Assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^k \lambda_i = 1)$

For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. Fix one $\mu_i \neq 1$.

Then
$$\sum_{i=1}^{k+1} \mu_i - \mu_i = 1 - \mu_i \Longrightarrow \left(\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_i}\right) - \frac{\mu_i}{1 - \mu_i} = 1.$$

Let
$$w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{k \ terms}.$$

Let
$$\lambda_i = \frac{\mu_i}{1 - \mu_i}$$
 for $i \in \{1, ..., i - 1\}$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j \in \{i, ..., k\}$. Then,

$$\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B$$
$$v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda)v_i \in B$$
 \Rightarrow Let \lambda = 1 - \mu_i. Thus \(u' = u \in B \Rightarrow A \subseteq B.\)

(c) If m = 1, then let $A = v_1 + \{0\}$ and we are done. Now suppose $m \ge 2$. Fix one $k \in \{1, ..., m\}$.

$$A \ni \lambda_1 v_1 + \dots + \lambda_{k-1} v_{k-1} + (1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m) v_k + \lambda_{k+1} v_{k+1} + \dots + \lambda_m v_m$$

$$= v_k + \lambda_1 (v_1 - v_k) + \dots + \lambda_{k-1} (v_{k-1} - v_k) + \lambda_{k+1} (v_{k+1} - v_k) + \dots + \lambda_m (v_m - v_k)$$

$$\in v_k + \operatorname{span}(v_1 - v_k, \dots, v_m - v_k).$$

- **14** Suppose $U = \{(x_1, x_2, \dots) \in \mathbb{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$
 - (a) Show that U is a subsp of \mathbf{F}^{∞} . [Do it in your mind]
 - (b) Prove that \mathbf{F}^{∞}/U is infinite-dim.

SOLUTION: For ease of notation, denote the p^{th} term of $u = (x_1, \dots, x_p, \dots) \in \mathbf{F}^{\infty}$ by u[p].

$$\text{For each } r \in \mathbf{N}^+, \text{ let } e_r\big[k\big] = \left\{ \begin{array}{l} 1 \text{, } (k-1) \equiv 0 \text{ } (\text{mod } r) \\ 0 \text{, otherwise} \end{array} \right| \text{ simply } e_r = \big(1, \underbrace{0, \cdots, 0}_{(r-1)}, 1, \underbrace{0, \cdots, 0}_{(r-1)}, 1, \cdots \big).$$

For $m \in \mathbb{N}^+$. Let $a_1(e_1 + U) + \dots + a_m(e_m + U) = 0 + U \Rightarrow \exists u \in U, a_1e_1 + \dots + a_me_m = u$.

Suppose $u = (x_1, \dots, x_L, 0, \dots)$, where L is the largest such that $u[L] \neq 0$.

Let $s \in \mathbb{N}^+$ be such that $h = s \cdot m! + 1 > L$, and $e_1[h] = \cdots = e_m[h] = 1$.

Notice that for any $p, r \in \{1, ..., m\}$, $e_r[s \cdot m! + 1 + p] = e_r[p + 1] = 1 \iff p \equiv 0 \pmod{r} \iff r \mid p$.

Let $1 = p_1 \leqslant \cdots \leqslant p_{\tau(p)} = p$ be the distinct factors of p. Moreover, $r \mid p \iff r = p_k$ for some k.

Now
$$u[h+p] = 0 = \left(\sum_{r=1}^{m} a_r e_r\right)[p+1] = \sum_{k=1}^{\tau(p)} a_{p_k}$$
.

Let
$$q = p_{\tau(p)-1}$$
. Then $\tau(q) = \tau(p) - 1$, and each $q_k = p_k$. Again, $\left(\sum_{r=1}^m a_r e_r\right) [h + q] = 0 = \sum_{k=1}^{\tau(p)-1} a_{p_k}$.

Thus $a_{p_{\tau(p)}} = a_p = 0$ for all $p \in \{1, \dots, m\} \Rightarrow (e_1, \dots, e_m)$ is linely inde in \mathbf{F}^{∞} .

So is
$$(e_1 + U, ..., e_m + U)$$
 in \mathbf{F}^{∞}/U . Because m is arbitrary. By (2.A.14).

Or. For each
$$r \in \mathbb{N}^+$$
, let $e_r[p] = \begin{cases} 1, & \text{if } 2^r \mid p \\ 0, & \text{otherwise} \end{cases}$

Similarly, let $m \in \mathbb{N}^+$ and $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 \Rightarrow a_1e_1 + \cdots + a_me_m = u \in U$.

Suppose *L* is the largest such that $u[L] \neq 0$. And *l* is such that $2^{ml} > L$.

Then for each
$$k \in \{1, ..., m\}$$
, $u[2^{ml} + 2^k] = 0 = \left(\sum_{r=1}^m a_r e_r\right)[2^k] = a_1 + \cdots + a_k$.

Thus $a_1 = \cdots = a_m = 0$ and (e_1, \dots, e_m) is linely inde. Similarly.

• **Note For** [3.88, 3.90, 3.91]: Suppose $W \in S_V U$. Then V/U is iso to W.

Because $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $T \in \mathcal{L}(V)$ by $T(v) = w_v$.

Hence $\operatorname{null} T = U$, $\operatorname{range} T = W$, $\operatorname{range} T \oplus \operatorname{null} T = V$.

Then $\tilde{T} \in \mathcal{L}(V/\text{null } T, V)$ is defined by $\tilde{T}(v + U) = \tilde{T}(w'_v + U) = Tw'_v = w_v$. [See TIPS below]

Now $\pi \circ \tilde{T} = I_{V/U}$, $\tilde{T} \circ \pi|_W = I_W = T|_W$. Hence \tilde{T} is an iso of V/U onto W.

• Tips: Suppose U is a subsp of V. Define $S \in \mathcal{L}(V/U,V)$ by S(v+U)=v.

Then range *S* is the *purest* in $S_V U$. Now null $S = \{0\}$, $U \oplus \text{range } S = V$.

<u>Let $E = S \circ \pi$.</u> Because S is inje and π is surj, null $E = \text{null } \pi = U$, range E = range S.

Then range $E \oplus \text{null } E = V$. Notice that $E: V \to W$ is the *purest eraser*. Now we explain why:

Example: Let
$$V = \mathbb{F}^2$$
, $B_U = (e_1)$, $B_W = (e_2 - e_1) \Rightarrow U \oplus W = V$.

Notice that $T(e_2 - e_1) = (e_2 - e_1)$, while $(e_2 - e_1) + U = e_2 + U$, but

because $e_2 = e_1 + (e_2 - e_1)$, now still, $\tilde{T}((e_2 - e_1) + U) = e_2 - e_1 = Te_2$.

In contrast, $S((e_2 - e_1) + U) = S(e_2 + U) = e_2$, $E(e_2 - e_1) = e_2$.

And range $E = \text{range } S = \text{span}(e_2)$ is the *purest* in $S_V U$.

```
12 Suppose U is a subsp of V. Prove that is V is iso to U \times (V/U).
SOLUTION:
  [ Req V/U Finite-dim ] Let B_{V/U} = (v_1 + U, ..., v_n + U).
   Note that \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^n a_i (v_i + U) = \left(\sum_{i=1}^n a_i v_i\right) + U
   \Rightarrow (v - a_1 v_1 - \dots - a_n v_n) \in U \Rightarrow \exists ! u \in U, v = \sum_{i=1}^n a_i v_i + u.
   Thus define \varphi \in \mathcal{L}(V, U \times (V/U)) and \psi \in \mathcal{L}(U \times (V/U), V)
                by \varphi(v) = (u, v + U)
                                                   and \psi(u, v + U) = v + u. Then \psi = \varphi^{-1}.
                                                                                                                                          Or. Define S \in \mathcal{L}(V/U, V) by S(v + U) = v.
   By Note For [3.88, 90, 91], range S \oplus U = V. Thus \forall v \in V, \exists ! u \in U, w \in \text{range } S, v = u + w.
   Define T \in \mathcal{L}(U \times (V/U), V) by T(u, v + U) = u + S(v + U) = u + w = v. Then T is surj.
   And T(u, v + U) = u + S(v + U) = 0 \Longrightarrow \pi(T(u, v + U)) = v + U = 0, and u = -S(v + U) = 0.
   Or. Define R \in \mathcal{L}(V, U \times (V/U)) by R(v) = (u, (w + U)). Now R \circ T = I_{U \times (V/U)}, T \circ R = I_V.
• (4E 14) Suppose V = U \oplus W, B_W = (w_1, ..., w_m). Prove that B_{V/U} = (w_1 + U, ..., w_m + U).
SOLUTION: \forall v \in V, \exists ! u \in U, w \in W, v = u + w. \ \ \exists ! c_i \in F, w = \sum_{i=1}^m c_i w_i \Rightarrow v = \sum_{i=1}^m c_i w_i + u.
                Hence \forall v + U \in V/U, \exists ! c_i \in F, v + U = \sum_{i=1}^m c_i w_i + U.
                                                                                                                                          13 Prove that B_{V/U} = (v_1 + U, ..., v_m + U), B_U = (u_1, ..., u_n) \Rightarrow B_V = (v_1, ..., v_m, u_1, ..., u_n).
SOLUTION:
  Note that \forall v \in V, \exists ! a_i \in \mathbf{F}, v + U = \sum_{i=1}^m a_i v_i + U \Rightarrow \exists ! b_i \in \mathbf{F}, v - \sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i u_i \in U
 \Rightarrow \forall v \in V, \exists ! a_i, b_j \in \mathbf{F}, v = \sum_{i=1}^m a_i v_i + \sum_{j=1}^m b_j u_j.
                                                                                                                                          Or. Note that B = (v_1, \dots, v_m) is linely inde. Now we show that span B \cap U = \{0\}.
   v \in \operatorname{span} B \cap U \iff v + U = \sum_{i=1}^{m} a_i (v_i + U) = 0 + U \iff a_1 = \dots = a_m = 0 \iff v = 0.
   Then by Problem (12) and [3.76], dim V = \dim(U \times (V/U)) = n + m.
   While dim \lceil \operatorname{span}(v_1, \dots, v_m) \oplus U \rceil = m + n and \lceil \operatorname{span}(v_1, \dots, v_m) \oplus U \rceil \subseteq V. Hence by (2.B.8).
                                                                                                                                          • Note For Problem (13) and (4E 14): Let U \oplus W = V. Define S(w + U) = w. See also the Tips.
  (a) Let B_W = (w_1, ..., w_m) \Rightarrow B_{V/U} = (w_1 + U, ..., w_m + U). Then S(w_k + U) might not equal w_k.
  (b) Let B_{V/U} = (w_1 + U, ..., w_m + U), then let B_W = (w_1, ..., w_m). Now each S(w_k + U) = w_k.
15 Suppose \varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}. Prove that dim V/(\text{null }\varphi) = 1.
SOLUTION: By [3.91] (d), dim range \varphi = 1 = \dim V / (\operatorname{null} \varphi).
                OR. By (3.B.29), \exists u, span(u) \oplus \text{null } \varphi = V. Then B_{V/\text{null } \varphi} = (u + \text{null } \varphi).
                                                                                                                                          16 Suppose dim V/U=1. Prove that \exists \varphi \in \mathcal{L}(V, \mathbf{F}), null \varphi=U.
SOLUTION: Suppose V_0 \oplus U = V. Then V_0 is iso to V/U. dim V_0 = 1.
                Define \varphi \in \mathcal{L}(V, \mathbf{F}) by \varphi(v_0) = 1, \varphi(u) = 0, where v_0 \in V_0, u \in U.
                                                                                                                                          Or. Let B_{V/U} = (w + U). Then \forall v \in V, \exists ! a \in F, v + U = aw + U.
                Define \varphi: V \to \mathbf{F} by \varphi(v) = a. Then \varphi(v_1 + \lambda v_2) = a_1 + \lambda a_2 = \varphi(v_1) + \lambda \varphi(v_2).
                Now u \in U \iff u + U = 0w + U \iff \varphi(u) = 0.
```

- **17** Suppose V/U is finite-dim, W is a subsp of V.
 - (a) Show that if V = U + W, then dim $W \ge \dim V/U$.
 - (b) Show that $\exists W \in S_V U$, dim $W = \dim V/U$.

SOLUTION: Let $B_W = (w_1, \dots, w_n)$.

- (a) $\forall v \in V, \exists u \in U, w \in W, v = u + w \Longrightarrow v + U = w + U = (a_1w_1 + \dots + a_nw_n) + U, \exists ! a_i \in F.$ Then $V/U \subseteq \operatorname{span}(w_1 + U, \dots, w_n + U)$. Hence $\dim V/U \leqslant \dim \operatorname{span}(w_1 + U, \dots, w_n + U)$.
- (b) Reduce $(w_1 + U, \dots, w_n + U)$ to $B_{V/U} = (w_1 + U, \dots, w_m + U)$, and let $W = \operatorname{span}(w_1, \dots, w_m)$. \square OR. Let $B_{V/U} = (v_1 + U, \dots, v_m + U)$ and define $\widetilde{T} \in \mathcal{L}(V/U, V)$ by $\widetilde{T}(v_k + U) = v_k$. Note that $\pi \circ \widetilde{T} = I$. By (3.B.20), \widetilde{T} is inje. And (v_1, \dots, v_m) is linely inde. Let $W = \operatorname{range} \widetilde{T} = \operatorname{span}(v_1, \dots, v_m)$. Then $\widetilde{T} \in \mathcal{L}(V/U, W)$ is an iso. Thus dim $W = \dim V/U$. And $\forall v \in V, \exists ! a_i \in \mathbf{F}, v + U = a_1v_1 + \dots + a_mv_m + U \Rightarrow \exists ! w \in W, u \in U, v = w + u$. \square
- **18** Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp of V. Let $\pi : V \to V/U$ be the quotient map. Prove that $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi \iff U \subseteq \text{null } T$.

SOLUTION:

- (a) Suppose $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi$. Then $U = \text{null } \pi \subseteq \text{null } (S \circ \pi) = \text{null } T$.
- (b) Suppose $U=\operatorname{null} \pi\subseteq\operatorname{null} T$. By (3.B.24), we are done. Or. Define $S:(v+U)\mapsto Tv$. $v_1+U=v_2+U \Longleftrightarrow v_1-v_2\in\operatorname{null} T \Longleftrightarrow Tv_1=Tv_2$. Thus S is well-defined. Hence $S\circ\pi=T$. \square

COROLLARY: Define $\Gamma: S \mapsto S \circ \pi$. Then Γ is inje, range $\Gamma = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}$.

ENDED

- **3.F**4 5 6 7 8 9 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 | 4E: 5 6 8 17 23 24 25
- **20, 21** Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$. Solution:
 - (a) Suppose $U \subseteq W$. Then $\forall \varphi \in W^0, u \in U \subseteq W, \varphi(w) = 0 \Rightarrow \varphi \in U^0$. Thus $W^0 \subseteq U^0$.
 - (b) Suppose $W^0 \subseteq U^0$. Then $\varphi \in W^0 \Rightarrow \varphi \in U^0$. Hence $\operatorname{null} \varphi \supseteq W \Rightarrow \operatorname{null} \varphi \supseteq U$. Thus $W \supseteq U$. Or. For a subsp U of V, let $A_U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = U$, by Problem (25). Suppose $W^0 \subseteq U^0$. Then $\forall \varphi \in W^0, v \in A_U, \varphi(v) = 0 \Rightarrow v \in A_W$. Thus $A_U \subseteq A_W$.

Corollary: $W^0 = U^0 \iff U = W$.

22 Suppose U and W are subsps of V. Prove that $(U + W)^0 = U^0 \cap W^0$. **SOLUTION:** (a) $U \subseteq U + W \ W \subseteq U + W$ $\Rightarrow (U + W)^0 \subseteq U^0 \ (U + W)^0 \subseteq W^0$ $\Rightarrow (U + W)^0 \subseteq U^0 \cap W^0.$ Or. Suppose $\varphi \in (U+W)^0$. Then $\forall u \in U, w \in W, \varphi(u) = \varphi(w) = 0 \Rightarrow \varphi \in U^0 \cap W^0$. (b) Suppose $\varphi \in U^0 \cap W^0 \subseteq V'$. Then $\forall u \in U, w \in W, \varphi(u+w) = 0 \Rightarrow \varphi \in (U+W)^0$. **23** Suppose U and W are subsets of V. Prove that $(U \cap W)^0 = U^0 + W^0$. **SOLUTION:** $\begin{array}{c} U \cap W \subseteq U \\ U \cap W \subseteq W \end{array} \right\} \Rightarrow \begin{array}{c} (U \cap W)^0 \supseteq U^0 \\ (U \cap W)^0 \supseteq W^0 \end{array} \right\} \Rightarrow (U \cap W)^0 \supseteq U^0 + W^0 \left[\supseteq U^0 \cap W^0 = (U + W)^0. \right]$ Or. Suppose $\varphi = \psi + \beta \in U^0 + W^0$. Then $\forall v \in U \cap W$, $\varphi(v) = (\psi + \beta)(v) = 0 \Rightarrow \varphi \in (U \cap W)^0$. (b) [*Only in Finite-dim; Req U, W are subsps*] Using Problem (22). $\dim(U^0 + W^0) = \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$ $= 2\dim V - \dim U - \dim W - (\dim V - \dim(U+W)) = \dim V - \dim(U\cap W).$ Or. Suppose $\varphi \in (U \cap W)^0$. Let X, Y be such that $V = U \oplus X = W \oplus Y$. Define $\psi \in U^0$, $\beta \in W^0$ by $\psi(u+x) = \frac{1}{2}\varphi(x)$, $\beta(w+y) = \frac{1}{2}\varphi(y)$. $\forall v=u+x=w+y\in V, \varphi(v)=\varphi(x)=\varphi(y). \ \text{Now} \ \varphi(v)=\tfrac{1}{2}\varphi(x)+\tfrac{1}{2}\varphi(y)=\psi(v)+\beta(v).$ Hence $\varphi \in U^0 + W^0$. Now $(U \cap W)^0 \subseteq U^0 + W^0$. • COROLLARY: (a) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsets of V. Then $(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \sum_{\alpha_i \in \Gamma} (V_{\alpha_i}^0)$. (b) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsps of V. Then $(\sum_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \bigcap_{\alpha_i \in \Gamma} (V_{\alpha_i}^0)$. (c) Suppose $V=U\oplus W$. Then $V'=U^0\oplus W^0$. And $U_V^{'}=W^0$, $W_V^{'}=U^0$. Where $U_V' = \{ \varphi \in V' : \varphi = \varphi \circ \iota \}$. And $\iota \in \mathcal{L}(V, U)$ is defined by $\iota(u_v + w_v) = u_v$. • (4E 3.F.23) Suppose $\varphi_1, \ldots, \varphi_m \in V'$. Prove that the following sets are the same. (a) span($\varphi_1, \dots, \varphi_m$) (b) $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0 \stackrel{(c)}{=} \{ \varphi \in V' : (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \subseteq \operatorname{null} \varphi \}$ **SOLUTION:** By Problem (17), (c) holds. By Problem (26) [May req Finite-dim] and the COROLLARY in Problem (23), Or. Note that by Corollary in Problem (4E 6), for each φ_i , we have $\forall c \in \mathbb{F} \setminus \{0\}, \psi = c\varphi_i \in \operatorname{span}(\varphi_i) \iff \operatorname{null} \psi = \operatorname{null} \varphi_i \iff \psi \in (\operatorname{null} \psi)^0 = (\operatorname{null} \varphi_i)^0.$ And $0 \in \text{span}(\varphi_i)$, $0 \in (\text{null } \varphi_i)^0$. Hence $\text{span}(\varphi_i) = (\text{null } \varphi_i)^0$. Similarly.

OR. [Only in Finite-dim] Suppose $\varphi \in V'$. Note that dim(null φ)⁰ = dim range φ = dim span(φ).

And because $\forall c \in \mathbf{F}, v \in \text{null } \varphi, c\varphi(v) = 0 \Rightarrow \text{span}(\varphi) \subseteq (\text{null } \varphi)^0$. Similarly.

Then $\dim((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)) = (\dim V) - m$.

Corollary: 30 Suppose *V* is finite-dim and $\varphi_1, \dots, \varphi_m$ is a linely inde list in *V'*.

31 Suppose V is finite-dim and $B_{V'} = (\varphi_1, ..., \varphi_n)$. Show that the correspond B_V exists. **SOLUTION:** Using (3.B.29). Let $\varphi_i(u_i) = 1$ and then $V = \text{null } \varphi_i \oplus \text{span}(u_i)$ for each φ_i . Suppose $a_1u_1 + \cdots + a_nu_n = 0$. Then $0 = \varphi_i(a_1u_1 + \cdots + a_nu_n) = a_i$ for each i. Thus $B_V = (\varphi_1, \dots, \varphi_n)$. And $\varphi_i(u_x) = \delta_{i,x}$. Or. For each $k \in \{1, ..., n\}$, define $\Gamma_k = \{1, ..., k-1, k+1, ..., n\}$ and $U_k = \bigcap_{j \in \Gamma_k} \operatorname{null} \varphi_j$. By Problem (30) OR (4E 2.C.16), dim $U_k = 1$. Thus $\exists u_k \in V, U_k = \operatorname{span}(u_k) \neq 0$. \mathbb{X} By Problem (30), (null φ_1) $\cap \cdots \cap$ (null φ_n) = $\{0\} = U \cap \text{null } \varphi_k$. Then if $\varphi_k(u_k) = 0 \Rightarrow u_k \in \text{null } \varphi_k \text{ while } u_k \in U \Rightarrow u_k \in \{0\}, \text{ contradicts.}$ Thus $\varphi_k(u_k) \neq 0$. Let $v_k = (\varphi_k(u_k))^{-1}u_k \Rightarrow \varphi_k(v_k) = 1$. Now for $j \neq k$, $u_k \in \text{null } \varphi_j \Rightarrow \varphi_j(v_k) = 0$. Similarly, suppose $a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow a_1 = \cdots = a_n = 0$. $B_V = (v_1, \dots, v_n)$. And $\varphi_i(v_k) = \delta_{i,k}$. **25** Suppose U is a subsp of V. Explain why $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}$. **SOLUTION**: Note that $U = \{v \in V : v \in U\}$ is a subsp of V; And $v \in U \iff \varphi(v) = 0, \forall \varphi \in U^0$. COROLLARY: $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. **COMMENT:** $\{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = ((\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) \cap \cdots), \text{ where } \varphi_k \in U^0,$ always remains a subsp, whether the subset *U* is a subsp or not. **26** Suppose Ω is a subsp of V'. Prove that $\Omega = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. **SOLUTION:** Suppose $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}$, which is the set of vecs that each $\varphi \in \Omega$ sends to zero in common. Then $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. $X U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. Immediately by the Corollary in Problem (20,21), we may conclude that $\Omega = U^0$. Or. $\lceil Req \Omega \text{ finite-dim} \rceil$ Let $(\varphi_1, \dots, \varphi_m)$ be a basis of Ω . Then by def, $U \subseteq (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m)$. $\forall \varphi \in \Omega, \exists ! a_i \in \mathbb{F}, \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m \Rightarrow \forall v \in (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m), \varphi(v) = 0 \Rightarrow v \in U.$ Hence $(\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = U$. $\mathbb{X} \operatorname{span}(\varphi_1, \dots, \varphi_m) = \Omega$. By Problem (23), we are done. **Corollary:** For every subsp Ω of V', \exists ! subsp U of V such that $\Omega = U^0$. **COMMENT**: [Only in Finite-dim] Using Problem (31) and the COROLLARY(c) in Problem (22, 23). Let $B_{\Omega} = (\varphi_1, ..., \varphi_m), B_{V'} = (\varphi_1, ..., \varphi_m, ..., \varphi_n), B_{V} = (v_1, ..., v_m, ..., v_n).$ $V' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \stackrel{\text{(I)}}{=\!\!\!=} \operatorname{span}(v_{m+1}, \dots, v_n)^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0.$ $\Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m) \xrightarrow{\text{(II)}} \operatorname{span}(v_{m+1}, \dots, v_n)^0 = U^0; \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \xrightarrow{\text{(III)}} \operatorname{span}(v_1, \dots, v_m)^0.$ $\iff U = \operatorname{span} \big(v_{m+1}, \dots, v_n \big) = \big(\operatorname{null} \varphi_1 \big) \cap \dots \cap \big(\operatorname{null} \varphi_m \big). \ \big[\ \textit{Another proof of } [\textbf{3.106}] \ \text{Or. Problem (24)} \ \big]$ (I) Using the COROLLARY(c), immediately. (II) Notice that each null $\varphi_k = \operatorname{span}(v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n) = U_k$; dim $U_k = \dim V - 1$. By (4E 2.C.16), $U = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = \bigcap_{k=1}^m U_k = \operatorname{span}(v_{m+1}, \dots, v_n).$ Hence span $(v_{m+1}, \dots, v_n)^0 = U^0 = \Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m)$. (III) Notice that $V' = \Omega \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) = U^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0$. And that span($\varphi_{m+1}, \dots, \varphi_n$) \subseteq span(v_1, \dots, v_m)⁰. By (1.C TIPS), span($\varphi_{m+1}, \dots, \varphi_n$) = span(v_1, \dots, v_m). OR. Similar to (II), let $\Omega = \text{span}(\varphi_{m+1}, ..., \varphi_n)$, immediately.

```
• Suppose T \in \mathcal{L}(V, W), \varphi_k \in V', \psi_k \in W'.
28 Prove that null T' = \text{span}(\psi_1, \dots, \psi_m) \iff \text{range } T = (\text{null } \psi_1) \cap \dots \cap (\text{null } \psi_m).
29 Prove that range T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m).
SOLUTION: Using [3.107], [3.109], Problem (23) and the COROLLARY in Problem (20, 21).
    (28) (range T)^0 = \operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) = ((\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m))^0.
    (29) (\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) = ((\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m))^0.
                                                                                                                                                                                      COROLLARY: Using the COMMENT in Problem (26).
    \operatorname{null} T = \operatorname{span}(v_1, \dots, v_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_{m+1}) \cap \dots \cap (\operatorname{null} \varphi_n) \iff \operatorname{range} T' = \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n).
           -Where B_V = (v_1, \dots, v_m, \dots, v_n) \iff B_{V'} = (\varphi_1, \dots, \varphi_m, \dots, \varphi_n).
    \operatorname{range} T = \operatorname{span}(w_1, \dots, w_m) \Longleftrightarrow \operatorname{range} T = (\operatorname{null} \psi_{m+1}) \cap \dots \cap (\operatorname{null} \psi_n) \Longleftrightarrow \operatorname{null} T' = \operatorname{span}(\psi_{m+1}, \dots, \psi_n).
            -Where B_W = (w_1, \dots, w_m, \dots, w_n) \iff B_{W_i} = (\psi_1, \dots, \psi_m, \dots, \psi_n).
9 Let B_V = (v_1, ..., v_n), B_{V'} = (\varphi_1, ..., \varphi_n). Then \forall \psi \in V', \psi = \psi(v_1)\varphi_1 + ... + \psi(v_n)\varphi_n.
    COROLLARY: For other B'_V = (u_1, \dots, u_n), B'_{V'} = (\rho_1, \dots, \rho_n), \forall \psi \in V', \psi = \psi(u_1)\rho_1 + \dots + \psi(u_n)\rho_n.
SOLUTION:
    \psi(v) = \psi\left(\sum_{i=1}^{n} a_{i} v_{i}\right) = \sum_{i=1}^{n} a_{i} \psi(v_{i}) = \sum_{i=1}^{n} \psi(v_{i}) \varphi_{i}(v) = \left[\psi(v_{1}) \varphi_{1} + \dots + \psi(v_{n}) \varphi_{n}\right](v).
    Or. \left[\psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n\right]\left(\sum_{i=1}^n a_i v_i\right) = \psi(v_1)\varphi_1\left(\sum_{i=1}^n a_i v_i\right) + \dots + \psi(v_n)\varphi_n\left(\sum_{i=1}^n a_i v_i\right).
13 Define T: \mathbb{R}^3 \to \mathbb{R}^2 by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z).
      Let (\varphi_1, \varphi_2), (\psi_1, \psi_2, \psi_3) denote the dual basis of the std basis of \mathbb{R}^2 and \mathbb{R}^3.
      (a) Describe the linear functionals T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})
             For any (x, y, z) \in \mathbb{R}^3, (T'(\varphi_1))(x, y, z) = 4x + 5y + 6z, (T'(\varphi_2))(x, y, z) = 7x + 8y + 9z.
      (b) Write T'(\varphi_1) and T'(\varphi_2) as linear combinations of \psi_1, \psi_2, \psi_3.
             T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \ T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.
      (c) What is null T'? What is range T'?
            T(x,y,z) = 0 \Longleftrightarrow \begin{cases} 4x + 5y + 6z = 0 \\ 7x + 8y + 9z = 0 \end{cases} \Longleftrightarrow \begin{cases} x + y + z = 0 \\ y = 2z = 0 \end{cases} \Longleftrightarrow (x,y,z) \in \operatorname{span}(e_1 - 2e_2 + e_3).
             Where (e_1, e_2, e_3) is std basis of \mathbb{R}^3.
             Let (e_1 - 2e_2 + e_3, -2e_2, e_3) be a basis, with the correspd dual basis (\varepsilon_1, \varepsilon_2, \varepsilon_3).
             Thus span(e_1 - 2e_2 + e_3) = \text{null } T \Rightarrow \text{span}(e_1 - 2e_2 + e_3)^0 = \text{span}(\varepsilon_2, \varepsilon_3) = \text{range } T'.
             Note that \varepsilon_k = \varepsilon_k(e_1)\psi_1 + \varepsilon_k(e_2)\psi_2 + \varepsilon_k(e_3)\psi_3.
             And \varepsilon_{2}(e_{2}) = -\frac{1}{2}, \varepsilon_{2}(e_{1}) = \varepsilon_{2}(e_{1} - 2e_{2} + e_{3}) + \varepsilon_{2}(2e_{2}) - \varepsilon_{2}(e_{3}) = 1, \varepsilon_{3}(e_{2}) = 0, \varepsilon_{3}(e_{3}) = \varepsilon_{3}(e_{1} - 2e_{2} + e_{3}) + \varepsilon_{3}(2e_{2}) - \varepsilon_{3}(e_{3}) = -1.
             Hence \varepsilon_2 = \psi_1 - \frac{1}{2}\psi_2, \varepsilon_3 = -\psi_1 + \psi_3. Now range T' = \text{span}(\psi_1 - \frac{1}{2}\psi_2, -\psi_1 + \psi_3).
            Or. range T' = \text{span}(T'(\varphi_1), T'(\varphi_2)) = \text{span}(4\psi_1 + 5\psi_2 + 6\psi_3, 7\psi_1 + 8\psi_2 + 9\psi_3).
             Suppose T'(x\varphi_1 + y\varphi_2) = (4x + 7y)\varphi_1 + (5x + 8y)\varphi_2 + (6x + 9y)\varphi_3 = 0.
             Then x + y = 4x + 7y = x = y = 0. Hence null T' = \{0\}.
             OR. null T = \operatorname{span}(e_1 - 2e_2 + e_3) \Rightarrow V = \operatorname{span}(-2e_2, e_3) \oplus \operatorname{null} T.
             \Rightarrow range T = \{Tx : x \in \text{span}(-2e_2, e_3)\} = \text{span}(T(-2e_2), T(e_3))
             = \operatorname{span}(-10f_1 - 16f_2, 6f_1 + 9f_2) = \operatorname{span}(f_1, f_2) = \mathbb{R}^2. Now null T' = (\operatorname{range} T)^0 = \{0\}.
```

24 Suppose V is finite-dim and U is a subsp of V . Prove, using the pattern of $[3.104]$, that $\dim U + \dim U^0 = \dim V$. Solution: By Problem (31) and the Comment in Problem (26), $B_U = (v_1, \dots, v_m) \iff B_{U^0} = (\varphi_{m+1}, \dots, \varphi_n)$.	
37 Suppose U is a subsp of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$. (a) Show that π' is inje: Because π is surj. Use [3.108]. (b) Show that range $\pi' = U^0$: By [3.109](b), range $\pi' = (\text{null } \pi)^0 = U^0$. (c) Conclude that π' is an iso from $(V/U)'$ onto U^0 : Immediately. SOLUTION: Or. Using (3.E.18), also see (3.E.20).	
(a) $\pi'(\varphi) = 0 \iff \forall v \in V \ (\forall v + U \in V), \varphi(\pi(v)) = \varphi(v + U) = 0 \iff \varphi = 0.$ (b) $\psi \in \text{range } \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \text{null } \psi \supseteq U \iff \psi \in U^0. \text{ Hence range } \pi' = U^0.$	
• Suppose U is a subsp of V . Prove that $(V/U)'$ is iso to U^0 . [Another proof of [3.106] Solution: Define $\xi:U^0\to (V/U)'$ by $\xi(\varphi)=\widetilde{\varphi}$, where $\widetilde{\varphi}\in (V/U)'$ is defined by $\widetilde{\varphi}(v+U)=\varphi(v)$. We show that ξ is inje and surj.]
Inje: $\xi(\varphi) = 0 = \widetilde{\varphi} \Rightarrow \forall v \in V \ (\forall v + U \in V/U), \widetilde{\varphi}(v + U) = \varphi(v) = 0 \Rightarrow \varphi = 0.$ Surj: $\Phi \in (V/U)' \Rightarrow \forall u \in U, \Phi(u + U) = \Phi(0 + U) = 0 \Rightarrow U \subseteq \text{null} \ (\Phi \circ \pi) \Rightarrow \xi(\Phi \circ \pi) = \Phi.$	
Or. Define $\nu: (V/U)' \to U^0$ by $\nu(\Phi) = \Phi \circ \pi$. Now $\nu \circ \xi = I_{U^0}$, $\xi \circ \nu = I_{(V/U)'} \Rightarrow \xi = \nu^{-1}$.	
4 Suppose U is a subsp of V and $U \neq V$. Prove that $\exists \varphi \in V' \setminus \{0\}, \varphi(u) = 0$ for all $u \in U$	[.
SOLUTION: $\Leftrightarrow U_V^0 \neq \{0\}.$ Let X be such that $V = U \oplus X$. Then $X \neq \{0\}$. Suppose $s \in X$ and $x \neq 0$. Let Y be such that $X = \operatorname{span}(s) \oplus Y$. Now $V = U \oplus (\operatorname{span}(s) \oplus Y)$. Define $\varphi \in V'$ by $\varphi(u + \lambda s + y) = \lambda$. Hence $\varphi \neq 0$ and $\varphi(u) = 0$ for all $u \in U$.	
OR. [Req V Finite-dim] By [3.106], dim $U^0 = \dim V - \dim U > 0$. Then $U^0 \neq \{0\}$. OR. Let $B_V = (\underbrace{u_1, \dots, u_m, v_1, \dots, v_n})$ with $n \geqslant 1$. Let $B_{V'} = (\psi_1, \dots, \psi_m, \varphi_1, \dots, \varphi_n)$. Let $\varphi = \varphi_i$.	
OR. Define $\varphi \in V'$ by $\varphi(u_1) = \cdots = \varphi(u_m) = 0$ and $\varphi(v_1) = \cdots = \varphi(v_n) = 1$. COMMENT: Another proof of [3.108]: T is surj $\iff T'$ is inje. (a) Suppose T' is inje. Note that $T'(\psi) = 0 \Rightarrow \psi = 0$. Then $\nexists \psi \in W' \setminus \{0\}, (T'(\psi))(v) = \psi(Tv) = 0$ for all $w \in \operatorname{range} T \ (\forall v \in V)$. Thus if we assume that range $T \neq W$ then contradicts. Hence range $T = W$. (b) Suppose T is surj. Then $(\operatorname{range} T)^0 = W_W^0 = \{0\} = \operatorname{null} T'$.	
(b) suppose T is suff. Then (tange T) $= vv_W = \{0\} = \text{tan } T$.	

19 $U_V^0 = \{0\} = V_V^0 \iff U = V$. By the inverse and contrapositive of Problem (4). Or. By [3.106].

• Suppose $V = U \oplus W$. Define $\iota : V \to U$ by $\iota(u+w) = u$. Thus $\iota' \in \mathcal{L}(U',V')$. (a) Show that $\operatorname{null} \iota' = U_U^0 = \{0\}$: $\operatorname{null} \iota' = (\operatorname{range} \iota)_U^0 = U_U^0 = \{0\}$. (b) Prove that $\operatorname{range} \iota' = W_V^0$: $\operatorname{range} \iota' = (\operatorname{null} \iota)_V^0 = W_V^0$. (c) Prove that $\widetilde{\iota}'$ is an iso from $U'/\{0\}$ onto W^0 : By (a), (b) and [3.91](d). Solution: (a) $\iota'(\psi) = \psi \circ \iota = 0 \iff U \subseteq \operatorname{null} \psi$. (b) Note that $W = \operatorname{null} (\iota) \subseteq \operatorname{null} (\psi \circ \iota)$. Then $\psi \circ \iota \in W^0 \Rightarrow \operatorname{range} \iota' \in W^0$. Suppose $\varphi \in W^0$. Because $\operatorname{null} \iota = W \subseteq \operatorname{null} \varphi$. By $[3.8 \text{ Tips}(3)]$, $\varphi = \varphi \circ \iota = \iota'(\varphi)$.	
36 Suppose U is a subsp of V . Define $i:U \to V$ by $i(u) = u$. Thus $i' \in \mathcal{L}(V', U')$. (a) Show that $\operatorname{null} i' = U^0$: $\operatorname{null} i' = (\operatorname{range} i)^0 = U^0 \Leftarrow \operatorname{range} i = U$. (b) Prove that $\operatorname{range} i' = U'$: $\operatorname{range} i' = (\operatorname{null} i)_U^0 = \{0\}_U^0 = U'$. (c) Prove that $\widetilde{i'}$ is an iso from V'/U^0 onto U' : By (a), (b) and [3.91](d). Solution: (a) $\forall \varphi \in V', i'(\varphi) = \varphi \circ i = \varphi _U$. Thus $i'(\varphi) = 0 \Leftrightarrow \forall u \in U, \varphi(u) = 0 \Leftrightarrow \varphi \in U^0$. (b) Suppose $\psi \in U'$. By (3.A.11), $\exists \varphi \in V', \varphi _U = \psi$. Then $i'(\varphi) = \psi$.	
• Suppose $T \in \mathcal{L}(V,W)$. Prove that range $T' = (\operatorname{null} T)^0$. $[Another proof of [3.109](I)]$ Solution: Suppose $\Phi \in (\operatorname{null} T)^0$. Because by $(3.B.12)$, $T _U : U \to \operatorname{range} T$ is an iso; $V = U \oplus \operatorname{null} T$. And $\forall v \in V, \exists ! u_v \in U, w_v \in \operatorname{null} T, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V,U)$ by $\iota(v) = u_v$. Let $\psi = \Phi \circ (T^{-1} _{\operatorname{range} T})$. Then $T'(\psi) = \psi \circ T = \Phi \circ (T^{-1} _{\operatorname{range} T} \circ T _V)$. Where $T^{-1} _{\operatorname{range} T} : \operatorname{range} T \to U$; $T : V \to \operatorname{range} T$. Note that $T^{-1} _{\operatorname{range} T} \circ T _V = \iota$. By $[3.B \text{ Tips } (3)]$, $\Phi = \Phi \circ \iota$. Thus $T'(\psi) = \psi \circ T = \Phi \circ \iota = \Phi$.	b)]
• Suppose $T \in \mathcal{L}(V, W)$. Using [3.108], [3.110]. Now T is inv \iff $\begin{vmatrix} \text{null } T = \{0\} \iff (\text{null } T)^0 = V' = \text{range } T' \\ \text{range } T = W \iff (\text{range } T)^0 = \{0\} = \text{null } T' \end{vmatrix} \iff T'$ is inv.	
15 Suppose $T \in \mathcal{L}(V,W)$. Prove that $T' = 0 \Longleftrightarrow T = 0$. Solution: Suppose $T = 0$. Then $\forall \varphi \in W', T'(\varphi) = \varphi \circ T = 0$. Hence $T' = 0$. Suppose $T' = 0$. Then null $T' = W' = (\operatorname{range} T)^0$, by $[3.107](a)$. [W can be infinite-dim] By Problem (25), range $T = \{w \in W : \varphi(w) = 0, \forall \varphi \in (\operatorname{range} T)^0\} = \{w \in W : \varphi(w) = 0, \forall \varphi \in W'\}$. Now we prove that if $\forall \varphi \in W', \varphi(w) = 0$, then $w = 0$. So that range $T = \{0\}$ and we are done. Assume that $w \neq 0$. Then let U be such that $W = U \oplus \operatorname{span}(w)$. Define $\psi \in W'$ by $\psi(u + \lambda w) = \lambda$. So that $\psi(w) = 1 \neq 0$. Or. [Only if W is finite-dim] By $[3.106]$, dim range $T = \dim W - \dim(\operatorname{range} T)^0 = 0$.	
12 Notice that $I_{V'}: V' \to V'$. Now $\forall \varphi \in V'$, $I_{V'}(\varphi) = \varphi = \varphi \circ I_V = I_{V'}(\varphi)$. Thus $I_{V'} = I_{V'}(\varphi)$	•

```
16 Suppose V, W are finite-dim. Define \Gamma by \Gamma(T) = T' for any T \in \mathcal{L}(V, W).
      Prove that \Gamma is an iso of \mathcal{L}(V, W) onto \mathcal{L}(W', V').
SOLUTION: By [3.101], \Gamma is linear.
    Suppose \Gamma(T) = T' = 0. By Problem (15), T = 0. Thus \Gamma is inje.
    Because V, W are finite-dim. dim \mathcal{L}(V, W) = \dim \mathcal{L}(W', V'). Now \Gamma inje \Rightarrow inv.
                                                                                                                                                                              COMMENT: Let X = \{T \in \mathcal{L}(V, W) : \text{range } T \text{ is finite-dim} \}.
                   Let Y = \{ \mathcal{T} \in \mathcal{L}(W', V') : \text{range } \mathcal{T} \text{ is finite-dim} \}.
                   Then \Gamma|_X is an iso of X onto Y, even if V and W are infinite-dim.
    The inje of \Gamma|_X is equiv to the inje of \Gamma, as shown before.
    Now we show that \Gamma|_X is surj without the cond that V or W is finite-dim.
   Suppose \mathcal{T} \in \mathcal{Y}. Let B_{\text{range }\mathcal{T}} = (\varphi_1, \dots, \varphi_m), with the correspond (v_1, \dots, v_m). Let \varphi_k = \mathcal{T}(\psi_k).
   Let \mathcal{K} be such that W' = \mathcal{K} \oplus \text{null } \mathcal{T}. Let B_{\mathcal{K}} = (\psi_1, \dots, \psi_m), with the correspond (w_1, \dots, w_m).
   Define T \in \mathcal{L}(V, W) by Tv_k = w_k, Tu = 0; k \in \{1, ..., m\}, u \in U.
    \forall \psi \in \operatorname{null} \mathcal{T}, \left[ T'(\psi) \right](v) = \psi(Tv) = \psi(a_1 w_1 + \dots + a_n w_n) = 0 = \left[ \mathcal{T}(\psi) \right](v).
    \forall k \in \{1, \dots, m\}, \lceil T'(\psi_k) \rceil(v) = \psi_k(Tv) = \psi_k(a_1w_1 + \dots + a_mw_m) = a_k = \varphi_k(v) = \lceil \mathcal{T}(\psi) \rceil(v).
                                                                                                                                                                              COMMENT: This is another proof of [3.109(a)]: dim range T = \dim \operatorname{range} T'.
• (4E 3.F.6) Suppose \varphi, \beta \in V'. Prove that \text{null } \varphi \subseteq \text{null } \beta \Longleftrightarrow \beta = c\varphi, \exists c \in \mathbf{F}.
  COROLLARY: null \varphi = null \beta \iff \beta = c\varphi, \exists c \in F \setminus \{0\}.
SOLUTION:
    Using (3.B.29, 30).
    (a) Suppose \operatorname{null} \varphi \subseteq \operatorname{null} \beta. Suppose u \notin \operatorname{null} \beta, then u \notin \operatorname{null} \varphi.
          Now V = \text{null } \beta \oplus \text{span}(u) = \text{null } \varphi \oplus \text{span}(u). By (1.C Tips), \text{null } \beta = \text{null } \varphi. Let c = \frac{\beta(u)}{\varphi(u)}.
          OR. We discuss in two cases. If \operatorname{null} \varphi = \operatorname{null} \beta, then we are done.
          Otherwise, \operatorname{null} \beta \neq \operatorname{null} \varphi. Then \exists u' \in \operatorname{null} \beta \setminus \operatorname{null} \varphi.
          Now V = \operatorname{null} \varphi \oplus \operatorname{span}(u') = \operatorname{null} \varphi \oplus \operatorname{span}(u). \forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \operatorname{null} \varphi.
          Thus \beta(v) = a\beta(u), \varphi(v) = b\varphi(u'). Let c = \frac{a\beta(u)}{b\varphi(u')}. We are done.
          Notice that by (b) below, we have null \beta \subseteq \text{null } \varphi, u = u'. Thus contradicts the assumption.
    (b) Suppose \beta = c\varphi for some c \in \mathbb{F}. If c = 0, then null \beta = V \supseteq \text{null } \varphi, we are done.
          Otherwise,  \begin{cases} \forall v \in \operatorname{null} \varphi, \varphi(v) = 0 = \beta(v) \Rightarrow \operatorname{null} \varphi \subseteq \operatorname{null} \beta \\ \forall v \in \operatorname{null} \beta, \beta(v) = 0 = \varphi(v) \Rightarrow \operatorname{null} \beta \subseteq \operatorname{null} \varphi \end{cases} \Rightarrow \operatorname{null} \varphi = \operatorname{null} \beta. 
                                                                                                                                                                              OR. By (3.B.24), null \varphi \subseteq \text{null } \beta \iff \exists E \in \mathcal{L}(\mathbf{F}), \beta = E \circ \varphi. ( if E is inv, then null \varphi = \text{null } \beta)
    Now we show that [P] \exists E \in \mathcal{L}(F), \beta = E \circ \varphi \iff \exists c \in F, \beta = c\varphi. [Q].
   [P] \Rightarrow [Q]: Let c = E(1). Then \forall v \in V, \beta(v) = E(\varphi(v)) = \varphi(v)E(1) = c\varphi(v). (E(1) \neq 0)
    [Q] \Rightarrow [P]: Define E \in \mathcal{L}(\mathbf{F}) by E(x) = cx. Then \forall v \in V, \beta(v) = c\varphi(v) = E(\varphi(v)). (c \neq 0)
                                                                                                                                                                             5 Prove that (V_1 \times \cdots \times V_m)' and {V'}_1 \times \cdots \times {V'}_m are iso.
                                                                                                                              Using notations in (3.E.2).
  Define \varphi: (V_1 \times \cdots \times V_m)' \to V'_1 \times \cdots \times V'_m
          by \varphi(T) = (T \circ R_1, ..., T \circ R_m) = (R'_1(T), ..., R'_m(T)).
  Define \psi: {V'}_1 \times \cdots \times {V'}_m \to (V_1 \times \cdots \times V_m)'
          by \psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m = S'_1(T_1) + \dots + S'_m(T_m)
```

$$\begin{array}{l} \bullet \text{ (4E 3.F.8) } \textit{Suppose } B_V = (v_1, \ldots, v_n), \, B_{V'} = (\varphi_1, \ldots, \varphi_n). \\ \textit{Define } \Gamma : V \to \mathbf{F}^n \text{ by } \Gamma(v) = (\varphi_1(v), \ldots, \varphi_n(v)). \\ \textit{Define } \Lambda : \mathbf{F}^n \to V \text{ by } \Lambda(a_1, \ldots, a_n) = a_1v_1 + \cdots + a_nv_n. \end{array} \right\} \Rightarrow \Lambda = \Gamma^{-1}.$$

• (4E 3.F.5) Suppose
$$T \in \mathcal{L}(V, W)$$
. $B_{\text{range }T} = (w_1, \dots, w_m)$.
Hence $\forall v \in V$, $Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$, $\exists ! \varphi_1(v), \dots, \varphi_m(v)$, thus defining $\varphi_i : V \to \mathbf{F}$ for each $i \in \{1, \dots, m\}$. Show that each $\varphi_i \in V'$.

SOLUTION:

$$\forall u,v \in V, \lambda \in \mathbf{F}, T(u+\lambda v) = \sum_{i=1}^m \varphi_i(u+\lambda v) w_i$$

$$= Tu + \lambda Tv = \left(\sum_{i=1}^m \varphi_i(u) w_i\right) + \lambda \left(\sum_{i=1}^m \varphi_i(v) w_i\right) = \sum_{i=1}^m \left(\varphi_i(u) + \lambda \varphi_i(v)\right) w_i. \quad \Box$$
OR. For each w_i , $\exists v_i \in V$, $Tv_i = w_i$, then (v_1, \dots, v_m) is linely inde.

Now we have $Tv = a_1 Tv_1 + \dots + a_m Tv_m$, $\forall v \in V, \exists ! a_i \in \mathbf{F}$. Let $B_{(\mathrm{range}\,T)}, = (\psi_1, \dots, \psi_m)$.

Then $\left(T'(\psi_i)\right)(v) = \psi_i \circ T(v) = a_i$. Where $T: V \to \mathrm{range}\,T$; $T': (\mathrm{range}\,T)' \to V'$.

Thus for each $i \in \{1, \dots, m\}$, $\varphi_i = \psi_i \circ T = T'(\psi_i) \in V'$.

6 Define $\Gamma: V' \to \mathbf{F}^m$ by $\Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m))$, where $v_1, \dots, v_m \in V$. (a) Show that span $(v_1, ..., v_m) = V \iff \Gamma$ is inje. (b) Show that $(v_1, ..., v_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (a) Notice that $\Gamma(\varphi) = 0 \iff \varphi(v_1) = \dots = \varphi(v_m) = 0 \iff \text{null } \varphi = \text{span}(v_1, \dots, v_m).$ If Γ is inje, then $\Gamma(\varphi) = 0 \iff V = \text{null } \varphi = \text{span}(v_1, \dots, v_m)$. If $V = \operatorname{span}(v_1, \dots, v_m)$, then $\Gamma(\varphi) = 0 \iff \operatorname{null} \varphi = \operatorname{span}(v_1, \dots, v_m)$, thus Γ is inje. (b) Suppose Γ is surj. Then let $\Gamma(\varphi_i) = e_i$ for each i, where $(e_1, ..., e_m)$ is the std basis of \mathbf{F}^m . Then by (3.A.4), $(\varphi_1, \dots, \varphi_m)$ is linely inde. Now $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow 0 = \varphi_i(a_1v_1 + \cdots + a_mv_m) = a_i$ for each i. Suppose $(v_1, ..., v_m)$ is linely inde. Let $U = \text{span}(\varphi_1, ..., \varphi_m)$, $B_{U'} = (\varphi_1, ..., \varphi_m)$. Thus $\forall (a_1, \dots, a_m) \in \mathbf{F}^m, \exists ! \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m$. Let W be such that $V = U \oplus W$. Now $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V, U)$ by $\iota(v) = u_v$. So that $\Gamma(\varphi \circ i -) = (a_1, \dots, a_m)$. OR. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m and let (ψ_1, \dots, ψ_m) be the corresponding basis. Define $\Psi : \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Psi(e_k) = \psi_k$. Then Ψ is an iso. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $Te_k = v_k$. Now $T(x_1, \dots, x_m) = T(x_1e_1 + \dots + x_me_m) = x_1v_1 + \dots + x_mv_m$. $\forall \varphi \in V', k \in \{1, \dots, m\}, \lceil T'(\varphi) \rceil(e_k) = \varphi(Te_k) = \varphi(v_k) = \lceil \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m \rceil(e_k)$ Now $T'(\varphi) = \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m = \Psi(\varphi(v_1), \dots, \varphi(v_m)) = \Psi(\Gamma(\varphi))$. Hence $T' = \Psi \circ \Gamma$. By (3.B.3), (a) range $T = \operatorname{span}(v_1, \dots, v_m) = V \iff T' = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje. (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje $\iff T' = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj. • (4E 3.F.25) Define $\Gamma: V \to \mathbf{F}^m$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v))$, where $\varphi_1, \dots, \varphi_m \in V'$. (c) Show that span($\varphi_1, ..., \varphi_m$) = $V' \iff \Gamma$ is inje. (d) Show that $(\varphi_1, ..., \varphi_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (c) Notice that $\Gamma(v) = 0 \Longleftrightarrow \varphi_1(v) = \cdots = \varphi_m(v) = 0 \Longleftrightarrow v \in (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. By Problem (4E 23) and (18), $\operatorname{span}(\varphi_1, \dots, \varphi_m) = V' \iff (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m) = \{0\}.$ And $\operatorname{null} \Gamma = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. Hence Γ inje \iff $\operatorname{null} \Gamma = \{0\} \iff \operatorname{span}(\varphi_1, \dots, \varphi_m) = V'$. (d) Suppose $(\varphi_1, ..., \varphi_m)$ is linely inde. Then by Problem (31), $(v_1, ..., v_m)$ is linely inde. Thus $\forall (a_1, \dots, a_m) \in \mathbf{F}, \exists ! v = \sum_{i=1}^m a_i v_i \in V \Rightarrow \varphi_i(v) = a_i, \Gamma(v) = (a_1, \dots, a_m)$. Hence Γ is surj. Suppose Γ is surj. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m . Suppose $v_i \in V$ such that $\Gamma(v_i) = (\varphi_1(v_i), \dots, \varphi_m(v_i)) = e_i$, for each i. Then $(v_1, ..., v_m)$ is linely inde. And $\varphi_i(v_k) = \delta_{i,k}$. Now $a_1 \varphi_1 + \dots + a_m \varphi_m = 0 \Rightarrow 0(v_i) = a_i$ for each i. Hence $(\varphi_1, \dots, \varphi_m)$ is linely inde. Or. Let $\operatorname{span}(v_1,\ldots,v_m)=U$. Then $B_{U'}=(\varphi_1|_U,\ldots,\varphi_m|_U)$. Hence $(\varphi_1,\ldots,\varphi_m)$ is linely inde. OR. Similar to Problem (6), we get (e_1, \dots, e_m) , (ψ_1, \dots, ψ_m) and the iso Ψ . $\forall (x_1,\ldots,x_m) \in \mathbf{F}^m, \Gamma'(\Psi(x_1,\ldots,x_m)) = \Gamma'(\Psi(x_1e_1+\cdots+x_me_m)) = (x_1\psi_1+\cdots+x_m\psi_m) \circ \Gamma.$ $\forall v \in V, \left[\Gamma'\big(\Psi\big(x_1,\ldots,x_m\big)\big)\right]\big(v\big) = \left[x_1\psi_1 + \cdots + x_m\psi_m\right]\big(\Gamma(v)\big) = \left[x_1\varphi_1 + \cdots + x_m\varphi_m\right]\big(v\big).$ Now $\Gamma'(\Psi(x_1,\ldots,x_m)) = x_1\varphi_1 + \cdots + x_m\varphi_m$. Define $\Phi: \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Phi = \Psi \circ \Gamma$. $\Phi(x_1, \dots, x_m) = x_1 \varphi_1 + \dots + x_m \varphi_m$. Thus by (4E 3.B.3), (c) the inje of Φ correspds to $(\varphi_1, \dots, \varphi_m)$ spanning V'; $\nabla \Phi = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje. (d) the surj of Φ corresponds to $(\varphi_1, \dots, \varphi_m)$ being linely inde; $\chi \Phi = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj.

35 *Prove that* $(\mathcal{P}(\mathbf{F}))'$ *is iso to* \mathbf{F}^{∞} .

SOLUTION:

Define
$$\theta \in \mathcal{L}((\mathcal{P}(\mathbf{F}))', \mathbf{F}^{\infty})$$
 by $\theta(\varphi) = (\varphi(1), \varphi(z), \dots, \varphi(z^n), \dots)$.

Inje:
$$\theta(\varphi) = 0 \Rightarrow \forall z^k$$
 in the basis $(1, z, ..., z^n)$ of $\mathcal{P}_n(\mathbf{F})$ $(\forall n)$, $\varphi(z^k) = 0 \Rightarrow \varphi = 0$.

[Notice that
$$\forall p \in \mathcal{P}(\mathbf{R}), \exists ! a_i \in \mathbf{F}, m = \deg p, \ p = a_0 z + a_1 z + \dots + a_m z^m \in \mathcal{P}_m(\mathbf{F}).$$
]

Surj:
$$\forall (a_k)_{k=1}^{\infty} \in \mathbf{F}^{\infty}$$
, let ψ be such that $\forall k, \psi(z^k) = a_k$ [by [3.5]] and thus $\theta(\psi) = (a_k)_{k=1}^{\infty}$.

Comment: Notice that $\mathcal{P}(\mathbf{F})$ is not iso to \mathbf{F}^{∞} , so is $\mathcal{P}(\mathbf{F})$ to $(\mathcal{P}(\mathbf{F}))'$

But if we let
$$\mathbf{F}^{\infty} = \{(a_1, \dots, a_n, \underbrace{0, \dots, 0, \dots}_{\text{all zero}}) \in \mathbf{F}^{\infty} \mid \exists ! n \in \mathbf{N}^+ \}$$
. Then $\mathcal{P}(\mathbf{F})$ is iso to \mathbf{F}^{∞} .

7 Show that the dual basis of $(1, x, ..., x^m)$ of $\mathcal{P}_m(\mathbf{R})$ is $(\varphi_0, \varphi_1, ..., \varphi_m)$, where $\varphi_k(p) = \frac{p^{(k)}(0)}{k!}$. Here $p^{(k)}$ denotes the k^{th} derivative of p, with the understanding that the 0^{th} derivative of p is p.

SOLUTION:

$$\forall j, k \in \mathbf{N}, \ (x^{j})^{(k)} = \begin{cases} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \ge k. \\ j(j-1) \dots (j-j+1) = j! & j = k. \\ 0, & j \le k. \end{cases}$$
Then $(x^{j})^{(k)}(0) = \begin{cases} 0, \ j \ne k. \\ k!, \ j = k. \end{cases}$

OR. Because
$$\forall j, k \in \{1, ..., m\}$$
 such that $j \neq k$, $\varphi_k(x^j) = \frac{(x^j)^{(k)}(0)}{k!} = \frac{0}{k!} = 0$; $\varphi_k(x^k) = \frac{(x^k)^{(k)}(0)}{k!} = 1$.

Thus $\frac{p^{(k)}(0)}{k!}$ act exactly the same as φ_k on the same basis $(1,\ldots,x^m)$, hence is just another def of φ_k .

EXAMPLE: Suppose $m \in \mathbb{N}^+$. By [2.C.10], $B = (1, x - 5, ..., (x - 5)^m)$ is a basis of $\mathcal{P}_m(\mathbb{R})$.

Let
$$\varphi_k = \frac{p^{(k)}(5)}{k!}$$
 for each $k = 0, 1, ..., m$. Then $(\varphi_0, \varphi_1, ..., \varphi_m)$ is the dual basis of B .

- **34** The double dual space of V, denoted by V'', is defined to be the dual space of V'. In other words, $V'' = \mathcal{L}(V', \mathbf{F})$. Define $\Lambda : V \to V''$ by $(\Lambda v)(\varphi) = \varphi(v)$.
 - (a) Show that Λ is a linear map from V to V''.
 - (b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where T'' = (T')'.
 - (c) Show that if V is finite-dim, then Λ is an iso from V onto V''.

Suppose V is finite-dim. Then V and V' are iso, and finding an iso from V onto V' generally requires choosing a basis of V. In contrast, the iso Λ from V onto V'' does not require a choice of basis and thus is considered more natural.

SOLUTION:

- (a) $\forall \varphi \in V', v, w \in V, a \in F, (\Lambda(v+aw))(\varphi) = \varphi(v+aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)(\varphi).$ Thus $\Lambda(v+aw) = \Lambda v + a\Lambda w$. Hence Λ is linear.
- (b) $(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ T')(\varphi) = (\Lambda v)(T'(\varphi))$ = $(T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv) = (\Lambda(Tv))(\varphi).$

Hence $T''(\Lambda v) = (\Lambda(Tv)) \Rightarrow T'' \circ \Lambda = \Lambda \circ T$.

(c) Suppose $\Lambda v = 0$. Then $\forall \varphi \in V'$, $(\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is inje. \mathbb{X} Because V is finite-dim. dim $V = \dim V' = \dim V''$. Hence Λ is an iso.

• TIPS: Suppose $p \in \mathcal{P}(\mathbf{F})$, $\deg p \leqslant m$ and p has at least (m+1) distinct zeros. Then by the contrapositive of [4.12], $\chi \deg p = m$, we conclude that m < 0. Hence p = 0.

OR. We show that if p has at least m distinct zeros, then either p = 0 or $\deg p \ge m$.

If p = 0 then we are done. If not, then suppose p has exactly n distinct zeros $\lambda_1, \dots, \lambda_n$.

Because $\exists ! \alpha_i \ge 1, q \in \mathcal{P}(\mathbf{F})$, and $q \ne 0$, such that $p(z) = [(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_n)^{\alpha_n}] q(z)$.

- **COMMENT**: NOTICE that by [4.17], some term of the poly factorization might not be in the form $(x \lambda_k)^{\alpha_k}$.
- Note For [4.7]: the uniquess of coeffs of polys

[Another proof]

If a poly had two different sets of coeffs, then subtracting the two representations would give a poly with some nonzero coeffs but infinitely many zeros. By TIPS.

• **Note For [4.8]:** division algorithm for polys

[Another proof]

Suppose $\deg p \geqslant \deg s$. Then $\left(\underbrace{1,z,\ldots,z^{\deg s-1}}_{\text{of length }\deg s},\underbrace{s,zs,\cdots,z^{\deg p-\deg s}s}_{\text{of length }\left(\deg p-\deg s+1\right)}\right)$ is a basis of $\mathcal{P}_{\deg p}(\mathbf{F})$.

Because $q \in \mathcal{P}(\mathbf{F})$, $\exists ! a_i, b_j \in \mathbf{F}$,

$$q = a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1} + b_0 s + b_1 z s + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s} s$$

$$= \underbrace{a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1}}_{r} + s \underbrace{\left(b_0 + b_1 z + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s}\right)}_{q}. \text{ Note that } r, q \text{ are unique.}$$

• Note For [4.11]: each zero of a poly corresponds to a degree-one factor;

[Another proof]

First suppose $p(\lambda) = 0$. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbf{F}$ for all $z \in \mathbf{F}$.

Then $p(z) = p(z) - p(\lambda) = a_1(z - \lambda) + \dots + a_m(z^m - \lambda^m)$ for all $z \in F$.

Hence $\forall k \in \{1, ..., m\}, z^k - \lambda^k = (z - \lambda)(z^{k-1}\lambda^0 + z^{k-2}\lambda^1 + ... + z^{k-(j+1)}\lambda^j + ... + z\lambda^{k-2} + z^0\lambda^{k-1}).$

Thus
$$p(z) = \sum_{j=1}^{m} a_j(z-\lambda) \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) \sum_{j=1}^{m} a_j \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) q(z).$$

• Note For [4.13]: Every nonconst poly with complex coeffs has a zero in C.

[Another proof]

For any $w \in C$, $k \in \mathbb{N}^+$, by polar coordinates, $\exists r \ge 0, \theta \in \mathbb{R}$, $r(\cos \theta + i \sin \theta) = w$.

By De Moivre' theorem, $w^k = [r(\cos \theta + i \sin \theta)]^k = r^k(\cos k\theta + i \sin k\theta)$.

Hence $\left(r^{1/k}\left(\cos\frac{\theta}{k} + i\sin\frac{\theta}{k}\right)\right)^k = w$. Thus every complex number has a k^{th} root.

Suppose a nonconst $p \in \mathcal{P}(\mathbf{C})$ with highest-order nonzero term $c_m z_m$.

Then
$$|p(z)| \to \infty$$
 as $|z| \to \infty$ (because $\frac{|p(z)|}{|z_m|} \to |c_m|$ as $|z| \to \infty$).

Thus the continuous function $z \to |p(z)|$ has a global minimum at some point $\zeta \in \mathbb{C}$.

To show that $p(\zeta) = 0$, assume $p(\zeta) \neq 0$. Define $q \in \mathcal{P}(C)$ by $q(z) = \frac{p(z + \zeta)}{p(\zeta)}$.

The function $z \to |q(z)|$ has a global minimum value of 1 at z = 0.

Write $q(z) = 1 + a_k z^k + \dots + a_m z^m$, where $k \in \mathbb{N}^+$ is the smallest such that $a_k \neq 0$.

Let $\beta \in \mathbb{C}$ be such that $\beta^k = -\frac{1}{a_k}$.

There is a const c > 1 so that if $t \in (0,1)$, then $|q(t\beta)| \le |1 + a_k t^k \beta^k| + t^{k+1} c = 1 - t^k (1 - tc)$.

Now letting t = 1/(2c), we get $|q(t\beta)| < 1$. Contradicts. Hence $p(\zeta) = 0$, as desired.

• (4E 4.2) Prove that if $w, z \in \mathbb{C}$, then $||w| - |z|| \leq |w - z|$.

SOLUTION:

$$|w-z|^2 = (w-z)(\overline{w}-\overline{z})$$

$$= |w|^2 + |z|^2 - (w\overline{z} + \overline{w}z)$$

$$= |w|^2 + |z|^2 - (\overline{w}z + \overline{w}z)$$

$$= |w|^2 + |z|^2 - 2Re(\overline{w}z)$$

$$\geqslant |w|^2 + |z|^2 - 2|\overline{w}z|$$

Or.
$$|w| = |w - z + z| \le |w - z| + |z| \Rightarrow |w| - |z| \le |w - z|$$

 $|z| = |z - w + w| \le |z - w| + |w| \Rightarrow |z| - |w| \le |w - z|$

Geometric interpretation: The length of each side of a triangle is greater than or equal to the difference of the lengths of the two other sides.

$$= |w|^2 + |z|^2 - 2|w||z| = ||w| - |z||^2.$$

• (4E 4.3) Suppose $\mathbf{F} = \mathbf{C}$, $\varphi \in V'$. Define $\sigma : V \to \mathbf{R}$ by $\sigma(v) = \mathrm{Re} \, \varphi(v)$ for each $v \in V$. Show that $\varphi(v) = \sigma(v) - \mathrm{i}\sigma(\mathrm{i}v)$ for all $v \in V$.

Solution: Notice that $\varphi(v) = \operatorname{Re} \varphi(v) + i \operatorname{\mathfrak{Im}} \varphi(v) = \sigma(v) + i \operatorname{\mathfrak{Im}} \varphi(v)$.

$$\mathbb{Z} \operatorname{Re} \varphi(\mathrm{i} v) = \operatorname{Re} (\mathrm{i} \varphi(v)) = -\mathfrak{Im} \varphi(v) = \sigma(\mathrm{i} v). \operatorname{Hence} \varphi(v) = \sigma(v) - \mathrm{i} \sigma(\mathrm{i} v).$$

4 Suppose $m, n \in \mathbb{N}^+$ with $m \le n, \lambda_1, ..., \lambda_m \in \mathbb{F}$. Prove that $\exists p \in \mathcal{P}(\mathbb{F})$, $\deg p = n$, the zeros of p are $\lambda_1, ..., \lambda_m$.

SOLUTION: Let
$$p(z) = (z - \lambda_1)^{n - (m-1)} (z - \lambda_2) \cdots (z - \lambda_m)$$
.

5 Suppose $m \in \mathbb{N}$, and z_1, \ldots, z_{m+1} are distinct in \mathbb{F} , and $w_1, \ldots, w_{m+1} \in \mathbb{F}$. Prove that $\exists ! p \in \mathcal{P}_m(\mathbb{F}), p(z_k) = w_k$ for each $k \in \{1, \ldots, m+1\}$.

SOLUTION:

Define $T: \mathcal{P}_m(\mathbf{F}) \to \mathbf{F}^{m+1}$ by $Tq = (q(z_1), \dots, q(z_m), q(z_{m+1}))$. Moreover, T is linear.

We now show that T is surj, so that such p exists; and that T is inje, so that such p is unique.

Inje: $Tq = 0 \iff q(z_1) = \dots = q(z_m) = q(z_{m+1}) = 0 \iff q = 0$, by Tips.

Surj: $\dim \operatorname{range} T = \dim \mathcal{P}_m(\mathbf{F}) - \dim \operatorname{null} T = m+1 = \dim \mathbf{F}^{m+1} \not \subset \mathbf{F}^{m+1} \Rightarrow T \text{ is surj.} \quad \Box$

Or. Let $p_1 = 1$, $p_k(z) = \prod_{i=1}^{k-1} (z - z_i) = (z - z_1) \cdots (z - z_{k-1})$ for each $k \in \{2, \dots, m+1\}$.

By (2.C.10), $B_p = (p_1, \dots, p_{m+1})$ is a basis of $\mathcal{P}_m(\mathbf{F})$. Let $B_e = (e_1, \dots, e_{m+1})$ be the std basis of \mathbf{F}^{m+1} .

Notice that
$$Tp_1 = (1, ..., 1)$$
, $Tp_k = \left(\prod_{i=1}^{k-1} (z_1 - z_i), ..., \underbrace{\prod_{i=1}^{k-1} (z_j - z_i)}_{j^{th} \text{ entry}}, ..., \prod_{i=1}^{k-1} (z_{m+1} - z_i)\right)$.

And that $\prod_{i=1}^{k-1} (z_i - z_i) = 0 \iff j \leqslant k-1$, because z_1, \dots, z_{m+1} are distinct.

Thus
$$\mathcal{M}(T, B_p, B_e) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & A_{2,2} & 0 & \cdots & 0 \\ 1 & A_{3,2} & A_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & A_{m+1,2} & A_{m+1,3} & \cdots & A_{m+1,m+1} \end{pmatrix}.$$

Where $A_{j,k} = \prod_{i=1}^{k-1} (z_j - z_i) \neq 0$ for all $j > k-1 \ge 1$. The rows of $\mathcal{M}(T)$ is linely inde.

By (4E 3.C.17)
$$\mathbb X$$
 dim $\mathcal P_m(\mathbf F)=\dim \mathbf F^{m+1}$; Or By (3.F.32); T is inv.

2 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbf{F}) : \deg p = m\}$ a subsp of $\mathcal{P}(\mathbf{F})$?

SOLUTION: $x^m, x^m + x^{m-1} \in U$ but $\deg[(x^m + x^{m-1}) - (x^m)] \neq m \Rightarrow (x^m + x^{m-1}) - (x^m) \notin U$.

3 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) : 2 \mid \deg p\}$ a subsp of $\mathcal{P}(\mathbb{F})$? **SOLUTION**: $x^2, x^2 + x \in U$ but $deg[(x^2 + x) - (x^2)]$ is odd and hence $(x^2 + x) - (x^2) \notin U$. **6** Suppose nonzero $p \in \mathcal{P}_m(\mathbf{F})$ has degree m. Prove that [P] p has m distinct zeros \iff p and its derivative p' have no zeros in common [Q]. **SOLUTION:** (a) Suppose p has m distinct zeros. And deg p=m. By [4.14], $\exists ! c, \lambda_i \in \mathbb{R}, p(z) = c(z-\lambda_1) \cdots (z-\lambda_m)$. If m = 0, then $p = c \neq 0 \Rightarrow p$ has no zeros, and p' = 0, we are done. If m = 1, then $p(z) = c(z - \lambda_1)$, and p' = c has no zeros, we are done. For each $j \in \{1, ..., m\}$, let $q_j \in \mathcal{P}_{m-1}(\mathbf{F})$ be such that $p(z) = (z - \lambda_j)q_j \Rightarrow q_j(\lambda_j) \neq 0$. Now $p'(z) = (z - \lambda_i)q_i'(z) + q_i(z) \Rightarrow p'(\lambda_i) = q_i(\lambda_i) \neq 0$, as desired. Or. To prove $[P] \Rightarrow [Q]$, we prove $\neg [Q] \Rightarrow \neg [P]$: Now $p'(\lambda) = q(\lambda) = 0 \Rightarrow q(z) = (z - \lambda)s(z), p(z) = (z - \lambda)^2s(z).$ Hence *p* has strictly less than *m* distinct zeros. (b) To prove $[Q] \Rightarrow [P]$, we prove $\neg [P] \Rightarrow \neg [Q]$: Because nonzero $p \in \mathcal{P}_m(\mathbf{F})$, we suppose $\lambda_1, \dots, \lambda_M$ are all the distinct zeros of p, where M < m. By Pigeon Hole Principle, $\exists \lambda_k$ such that $p(z) = (z - \lambda_k)^2 q(z)$ for some $q \in \mathcal{P}(\mathbf{F})$. Hence $p'(z) = 2(z - \lambda_k)q(z) + (z - \lambda_k)^2q'(z) \Rightarrow p'(\lambda_k) = 0 = p(\lambda_k)$. **7** Prove that every $p \in \mathcal{P}(\mathbf{R})$ of odd degree has a zero. **SOLUTION:** Using the notation and proof of [4.17]. $\deg p = 2M + m$ is odd $\Rightarrow m$ is odd. Hence λ_1 exists. Or. Using calculus only. Suppose $p \in \mathcal{P}_m(\mathbf{F})$, $\deg p = m$, m is odd. Let $p(x) = a_0 + a_1 x + \dots + a_m x^m$. Then $a_m \neq 0$. Denote $|a_m|^{-1} a_m$ by δ . Write $p(x) = x^m \left(\frac{a_0}{x^m} + \frac{a_1}{x^{m-1}} + \dots + \frac{a_{m-1}}{x} + a_m \right)$. Thus p(x) is continuous, and $\lim_{x \to -\infty} p(x) = -\delta \infty$; $\lim_{x \to \infty} p(x) = \delta \infty$. Hence we conclude that p has at least one real zero. **9** Suppose $p \in \mathcal{P}(C)$. Define $q: C \to C$ by $q(z) = p(z)\overline{p(\overline{z})}$. Prove that $q \in \mathcal{P}(R)$. **SOLUTION:** NOTICE that by [4.5], $\overline{z}^n = \overline{z^n}$. Suppose $q(z) = a_n z^n + \dots + a_1 z + a_0 \Rightarrow q(\overline{z}) = a_n \overline{z}^n + \dots + a_1 \overline{z} + a_0 \Rightarrow \overline{q(\overline{z})} = \overline{a_n} z^n + \dots + \overline{a_1} z + \overline{a_0}.$ Note that $q(z) = p(z)\overline{p(\overline{z})} = \overline{p(\overline{z})}p(z) = p(\overline{z})\overline{\overline{p(\overline{z})}} = \overline{q(\overline{z})}$. Hence for each $a_k, \overline{a_k} = a_k \Rightarrow a_k \in \mathbb{R}$. Or. Suppose $p(z) = a_m z^m + \dots + a_1 z + a_0$. Now $\overline{p(\overline{z})} = \overline{a_m} z^m + \dots + \overline{a_1} z + \overline{a_0}$. Notice that $q(z) = p(z)\overline{p(\overline{z})} = \sum_{k=0}^{2} m\left(\sum_{i+j=k} a_i \overline{a_j}\right) z^k$. Notice that by [4.5], $z - \overline{z} = 2(\Im m z) \Rightarrow z = \overline{z} + 2(\Im m z)$. So that $z = \overline{z} \iff \Im m z = 0 \iff z \in \mathbb{R}$. Now for each $k \in \{0, ..., 2m\}$, $\overline{\sum_{i+j=k} a_i \overline{a_j}} = \sum_{i+j=k} \overline{a_i \overline{a_j}} = \sum_{i+j=k} a_j \overline{a_i} = \sum_{i+j=k} a_i \overline{a_j} \in \mathbb{R}$.

8 For
$$p \in \mathcal{P}(\mathbf{R})$$
, define $Tp : \mathbf{R} \to \mathbf{R}$ by $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3. \end{cases}$

Show that (a) $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$ and that (b) $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is linear.

SOLUTION:

(a) For
$$x \neq 3$$
, $T(x^n) = \frac{x^n - 3^n}{x - 3} = \sum_{i=1}^n 3^{i-1} x^{n-i}$. For $x = 3$, $T(x^n) = 3^{n-1} \cdot n$.

Note that if x = 3, then $\sum_{i=1}^{n} 3^{i-1} x^{n-i} = \sum_{i=1}^{n} 3^{n-1} = 3^{n-1} \cdot n$.

Hence
$$T(x^n) = \sum_{i=1}^n 3^{i-1} x^{n-i} \Rightarrow T(x^n) \in \mathcal{P}(\mathbf{R}).$$

(b) Now we show that *T* is linear: $\forall p, q \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}$,

$$T(p+\lambda q)(x) = \begin{cases} \frac{(p+\lambda q)(x) - (p+\lambda q)(3)}{x-3}, & \text{if } x \neq 3, \\ (p+\lambda q)'(3), & \text{if } x = 3 \end{cases} = [T(p) + \lambda T(q)](x) \text{ for all } x \in \mathbb{R}.$$

OR. (a) Note that
$$\exists ! q \in \mathcal{P}(\mathbf{R}), p(x) - p(3) = (x - 3)q(z) \Rightarrow q(x) = \frac{p(x) - p(3)}{x - 3}.$$

 $p'(x) = (p(x) - p(3))' = ((x - 3)q(x))' = q(x) + (x - 3)q'(x).$
Hence $p'(3) = q(3)$. Now $Tp = q \in \mathcal{P}(\mathbf{R})$.

(b)
$$\forall p_1, p_2 \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}, \exists ! q_1, q_2 \in \mathcal{P}(\mathbf{R}),$$

 $p_1(x) - p_1(3) = (x - 3)q_1(x) \text{ and } p_2(x) - p_2(3) = (x - 3)q_2(x).$
By (a), $Tp_1 = q_1, Tp_2 = q_2$. Note that $(p_1 + \lambda p_2)(x) - (p_1 + \lambda p_2)(3) = (x - 3)(q_1 + \lambda q_2)(x).$

Hence by the uniques of
$$a + \lambda a$$
 for $a + \lambda a$ was must have $T(a + \lambda a) = a + \lambda a$.

Hence by the uniques of $q_1 + \lambda q_2$ for $p_1 + \lambda p_2$, we must have $T(p_1 + \lambda p_2) = q_1 + \lambda q_2$.

11 Suppose $p \in \mathcal{P}(\mathbf{F})$ with $p \neq 0$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$.

- (a) Show that dim $\mathcal{P}(\mathbf{F})/U = \deg p$.
- (b) Find a basis of $\mathcal{P}(\mathbf{F})/U$.

SOLUTION: NOTICE that $pq \neq p \circ q$, see (4E 3.A.10).

U is a subsp of $\mathcal{P}(\mathbf{F})$ because $\forall s_1, s_2 \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, ps_1 + \lambda ps_2 = p(s_1 + \lambda s_2) \in U$.

If deg p=0, then $U=\mathcal{P}(\mathbf{F})$, $\mathcal{P}(\mathbf{F})/U=\left\{0\right\}$, with the unique basis (). Suppose deg $p\geqslant 1$.

(a) By [4.8],
$$\forall s \in \mathcal{P}(\mathbf{F}), \exists ! r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q \in \mathcal{P}(\mathbf{F}) \ [\exists ! pq \in U \], s = (p)q + (r).$$

Thus $\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{\deg p-1}(\mathbf{F})$. By the Note for [3.91] in (3.E), $\mathcal{P}(\mathbf{F})/U$ and $\mathcal{P}_{\deg p-1}(\mathbf{F})$ are iso.

Or. Define $R: \mathcal{P}(\mathbf{F}) \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ by R(s) = r for all $s \in \mathcal{P}(\mathbf{F})$ We show that R is linear.

$$\forall s_1, s_2 \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, \exists ! r_1, r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q_1, q_2 \in \mathcal{P}(\mathbf{F}), s_1 = (p)q_1 + (r_1); \ s_2 = (p)q_2 + (r_2).$$

$$\mathbb{Z} \exists ! r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q \in \mathcal{P}(\mathbf{F}), (s_1 + \lambda s_2) = (p)q + (r) = (p)(q_1 + \lambda q_2) + (r_1 + \lambda r_2).$$

Note that $r_1, r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F}) \Rightarrow r_1 + \lambda r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F})$.

Or Note that $\deg(r_1 + \lambda r_2) \leqslant \max\{\deg r_1, \deg(\lambda r_2)\} \leqslant \max\{\deg r_1, \deg r_2\} < \deg p$.

By the uniques part of [4.8], $s = s_1 + \lambda s_2$; $r = r_1 + \lambda r_2$. Thus $R(s_1 + \lambda s_2) = R(s_1) + \lambda R(s_2)$.

Because $Rs = 0 \iff s = pq$, $\exists ! q \in \mathcal{P}(\mathbf{F}) \iff s \in U$. And $\forall r \in \mathcal{P}_{\deg p-1}(\mathbf{F})$, Rr = r.

Now null R = U, range $R = \mathcal{P}_{\deg p-1}(\mathbf{F})$.

Hence $\tilde{R}: \mathcal{P}(\mathbf{F})/U \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ is defined by $\tilde{R}(s+U) = Rs$. By [3.91(d)], \tilde{R} is an iso.

(b) For each
$$k \in \{0, 1, ..., \deg p - 1\}$$
, $\tilde{R}(z^k + U) = R(z^k) = z^k \Rightarrow \tilde{R}^{-1}(z^k) = z^k + U$.
Thus $(1 + U, z + U, ..., z^{\deg p - 1} + U)$ can be a basis of $\mathcal{P}(\mathbf{F})/U$.

10 Suppose $m \in \mathbb{N}$, $p \in \mathcal{P}_m(\mathbb{C})$ is such that $p(x_k) \in \mathbb{R}$ for each of distinct $x_0, x_1, \dots, x_m \in \mathbb{R}$. Prove that $p \in \mathcal{P}(\mathbb{R})$.

SOLUTION:

By Tips and Problem (5),
$$\exists ! q \in \mathcal{P}_m(\mathbf{R})$$
 such that $q(x_k) = p(x_k)$. Hence $p = q$.

OR. Using the Lagrange Interpolating Polynomial.

Define
$$q(x) = \sum_{j=0}^{m} \frac{(x-x_0)(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_m)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_m)} p(x_j).$$

$$\mathbb{X}$$
 Each x_j , $p(x_j) \in \mathbb{R} \Rightarrow q \in \mathcal{P}_m(\mathbb{R})$. Notice that $q(x_k) = 1 \cdot p(x_k) \Rightarrow (q - p)(x_k) = 0$ for each x_k .
Then $(q - p)$ has $(m + 1)$ zeros, while $(q - p) \in \mathcal{P}_m(\mathbb{C})$. By Tips, $q - p = 0 \Rightarrow p = q \in \mathcal{P}(\mathbb{R})$.

• (4E 4 13) Suppose nonconst $p, q \in \mathcal{P}(\mathbf{C})$ have no zeros in common. Let $m = \deg p$, $n = \deg q$. Define $T : \mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C}) \to \mathcal{P}_{m+n-1}(\mathbf{C})$ by T(r,s) = rp + sq. Prove that T is an iso. Corollary: $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1.

SOLUTION:

T is linear because $\forall r_1, r_2 \in \mathcal{P}_{n-1}(\mathbf{C}), s_1, s_2 \in \mathcal{P}_{m-1}(\mathbf{C}), \lambda \in \mathbf{F}$,

$$T((r_1, s_1) + \lambda(r_2, s_2)) = T(r_1 + \lambda r_2, s_1 + \lambda s_2) = (r_1 + \lambda r_2)p + (s_1 + \lambda s_2)q = T(r_1, s_1) + \lambda T(r_2, s_2).$$

Let $\lambda_1, \dots, \lambda_M$ and μ_1, \dots, μ_N be the distinct zeros of p and q respectively. Notice that $M \leq m, N \leq n$.

Note that the contrapositive of [4.13], $M = 0 \iff m = 0 \Rightarrow s = 0 \iff r = 0 \iff n = 0 \iff N = 0$.

Now suppose $M, N \ge 1$. We show that s = 0. Showing r = 0 is almost the same.

Write
$$p(z) = a(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M}$$
. $(\exists! \alpha_i \ge 1, a \in \mathbf{F}.)$ Let $\max\{\alpha_1, \ldots, \alpha_M\} = A$.

For each
$$D \in \{0,1,\ldots,A-1\}$$
, let $I_{D,\alpha} = \{\gamma_{D,1},\ldots,\gamma_{D,J}\}$ be such that each $\alpha_{\gamma_{D,J}} \geqslant D+1$.

Note that
$$I_{A-1,\alpha} \subseteq \cdots \subseteq I_{0,\alpha} = \{1,\ldots,M\}$$
. Because $rp + sq = 0 \Rightarrow (rp + sq)^{(k)} = 0$ for all $k \in \mathbb{N}^+$.

We use induction by D to show that $s^{(D)}(\lambda_{\gamma_{D,i}}) = 0$ for each $D \in \{0, ..., A-1\}$.

Notice that
$$p^{(D)}(\lambda_{\gamma}) = 0$$
 for each $D \in \{0, ..., A - 1\}$ and each $\lambda_{\gamma} \in I_{D,\alpha}$. (Δ)

(i)
$$D = 0$$
. $(rp + sq)(\lambda_{\gamma_{0,i}}) = (sq)(\lambda_{\gamma_{0,i}}) = s(\lambda_{\gamma_{0,i}}) = 0$.

$$D = 1. \; (rp + sq)'(\lambda_{\gamma_{1,j}}) = \big(r'p + rp'\big)(\lambda_{\gamma_{1,j}}\big) + \big(s'q + sq'\big)\big(\lambda_{\gamma_{1,j}}\big) = \big(s'q\big)(\lambda_{\gamma_{1,j}}\big) = s'(\lambda_{\gamma_{1,j}}) = 0.$$

(ii)
$$2 \leqslant D \leqslant A-1$$
. Assume that $s^{(d)}(\lambda_{\gamma_{d,i}})=0$ for each $d \in \{1,\ldots,D-1\}$ and each $\lambda_{\gamma_{d,i}} \in I_{d,\alpha}$.

(Because
$$\forall p, q \in \mathcal{P}(\mathbf{F}), k \in \mathbf{N}^+, (pq)^{(k)} = C_k^k p^{(k)} q^{(0)} + \dots + C_k^j p^{(j)} q^{(k-j)} + \dots + C_k^0 p^{(0)} q^{(k)}.$$
) (Δ)

$$\begin{split} \text{Now} \ \big[rp + sq \big]^{(D)} \big(\lambda_{\gamma_{D,j}} \big) &= \big[C_D^D r^{(D)} p^{(0)} + \dots + C_D^d r^{(d)} p^{(D-d)} + \dots + C_D^0 r^{(0)} p^{(D)} \big] \big(\lambda_{\gamma_{D,j}} \big) \\ &+ \big[C_D^D s^{(D)} q^{(0)} + \dots + C_D^d s^{(d)} q^{(D-d)} + \dots + C_D^0 s^{(0)} q^{(D)} \big] \big(\lambda_{\gamma_{D,j}} \big) \\ &= \big[C_D^D s^{(D)} q^{(0)} \big] \big(\lambda_{\gamma_{D,j}} \big). \ \ \text{Where each} \ \lambda_{\gamma_{D,j}} \in I_{D,\alpha} \subseteq I_{D-1,\alpha}. \end{split}$$

Hence $s^{(D)}(\lambda_{\gamma_{D,i}}) = 0$. The assumption holds for all $D \in \{0, \dots, A-1\}$.

Notice that $\forall k = \{0, \dots, A-2\}, s^{(k)} \text{ and } s^{(k+1)} \text{ have zeros } \{\lambda_{\gamma_{k+1,1}}, \dots, \lambda_{\gamma_{k+1,l}}\} \text{ in common.}$

Now $\forall D \in \{1, A-1\}, s = s^{(0)}, \dots, s^{(D)}$ have zeros $\{\lambda_{\gamma_{D,1}}, \dots, \lambda_{\gamma_{D,l}}\}$ in common.

Thus
$$\forall D \in \{0, A-1\}$$
, $s(z)$ is divisible by $(z-\lambda_{\gamma_{D,1}})^{\alpha_{\gamma_{D,1}}} \cdots (z-\lambda_{\gamma_{D,J}})^{\alpha_{\gamma_{D,J}}}$.

Hence we write $s(z) = \left((z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M} \right) s_0(z)$, while $\deg s \leqslant m - 1 < m = \alpha_1 + \cdots + \alpha_M$.

Thus by Tips, s=0. Following the same pattern, we conclude that r=0.

Hence
$$T$$
 is inje. And $\dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) = \dim \mathcal{P}_{m+n-1}(\mathbf{C}) \Rightarrow T$ is surj. Thus T is an iso. \square

COMMENT: We now prove the statement that marked by (Δ) above.

L1: Prove that $\forall p, q \in \mathcal{P}(\mathbf{F}), k \in \mathbf{N}^+, (pq)^{(k)} = C_k^k p^{(k)} q^{(0)} + \dots + C_k^j p^{(j)} q^{(k-j)} + \dots + C_k^0 p^{(0)} q^{(k)}.$ Solution:

We use induction by $k \in \mathbb{N}^+$.

(i)
$$k = 1$$
. $(pq)^{(1)} = pq = C_1^1 p^{(1)} q^{(0)} + C_1^0 p^{(0)} q^{(1)}$.

(ii)
$$k \ge 2$$
. Assume that for $(pq)^{(k-1)} = C_{k-1}^{k-1} p^{(k-1)} q^{(0)} + \dots + C_{k-1}^{j} p^{(j)} q^{(k-1-j)} + \dots + C_{k-1}^{0} p^{(0)} q^{(k-1)}$.
Now $(pq)^{(k)} = ((pq)^{(k-1)})' = \left(\sum_{j=0}^{k-1} C_{k-1}^{j} p^{(j)} q^{(k-j-1)}\right)' = \sum_{j=0}^{k-1} \left[C_{k-1}^{j} \left(p^{(j+1)} q^{(k-j-1)} + p^{(j)} q^{(k-j)}\right)\right]$.

$$= \left[C_{k-1}^{0} \left(p^{(1)} q^{(k-1)} + p^{(0)} q^{(k)}\right)\right] + \left[C_{k-1}^{1} \left(p^{(2)} q^{(k-2)} + p^{(1)} q^{(k-1)}\right)\right]$$

$$+ \dots + \left[C_{k-1}^{j-2} \left(p^{(j-1)} q^{(k-j+1)} + p^{(j-2)} q^{(k-j+2)}\right)\right] + \left[C_{k-1}^{j-1} \left(p^{(j)} q^{(k-j)} + p^{(j-1)} q^{(k-j+1)}\right)\right]$$

$$+ \left[C_{k-1}^{j} \left(p^{(j+1)} q^{(k-j-1)} + p^{(j)} q^{(k-j)}\right)\right] + \left[C_{k-1}^{j-1} \left(p^{(j+2)} q^{(k-j-2)} + p^{(j+1)} q^{(k-j-1)}\right)\right]$$

$$+ \dots + \left[C_{k-1}^{k-2} \left(p^{(k-1)} q^{(1)} + p^{(k-2)} q^{(2)}\right)\right] + \left[C_{k-1}^{k-1} \left(p^{(k)} q^{(0)} + p^{(k-1)} q^{(1)}\right)\right].$$
Hence $(pq)^{(k)} = C_k^0 p^{(0)} q^{(k)} + \dots + \left[C_{k-1}^{j} + C_{k-1}^{j-1} \left(p^{(j)} q^{(k-j)}\right) + \dots + C_k^k p^{(k)} q^{(0)}\right].$

L2: Suppose $p(z) = (z - \lambda)^{\alpha} q(z)$ and $\alpha \in \mathbb{N}^+$. Prove that $p^{(\alpha - 1)}(\lambda) = 0$.

SOLUTION:

Suppose $p \in \mathcal{P}(\mathbf{F})$. Write $p(z) = (z - \lambda)^A q(z)$, where $A \in \mathbf{N}^+, q(\lambda) \neq 0$.

We use induction to show that for all $\alpha \in \{1, ..., A\}$, $p^{(\alpha-1)}(\lambda) = 0$.

(i)
$$\alpha = 1$$
. $p^{(0)}(\lambda) = 0$.

(ii) $2 \le \alpha \le A$. Assume that $p^{(a-2)}(\lambda) = 0$ for all $a \in \{1, ..., \alpha\}$.

Notice that $p(z)=(z-\lambda)^{\alpha-1}q_{\alpha-1}(z)=(z-\lambda)^{\alpha}q_{\alpha}(z)$, where $q_{\alpha}(z)=(z-\lambda)q_{\alpha-1}(z)$.

Because
$$p^{(\alpha-1)}(z) = \left[C_{\alpha-1}^{\alpha-1}(z-\lambda)^0 q_{\alpha-1}(z) + \dots + C_{\alpha-1}^k(z-\lambda)^{\alpha-1-k} q_{\alpha-1-k}(z) + \dots + C_{\alpha-1}^0(z-\lambda)^{\alpha-1} q_{\alpha-1}^{(\alpha-1)}(z) \right]$$
. Now $p^{(\alpha-1)}(\lambda) = C_{\alpha-1}^{\alpha-1} q_{\alpha-1}(\lambda) = 0$.

ENDED

5.A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | 2E: Ch5.20 | 4E: 8 11 15 16 17 36 37 38 39

• Note For [5.6]:

More generally, suppose we do not know whether V is finite-dim. We show that $(a) \iff (b)$.

Suppose (a) λ is an eigval of T with an eigvec v. Then $(T - \lambda I)v = 0$.

Hence we get (b), $(T - \lambda I)$ is not inje. And then (d), $(T - \lambda I)$ is not inv.

But $(d) \Rightarrow (b)$ fails, because S is not inv $\iff S$ is not inje Or S is not surj.

- Tips: For $T_1, \ldots, T_m \in \mathcal{L}(V)$:
 - (a) Suppose T_1, \dots, T_m are all inje. Then $(T_1 \circ \dots \circ T_m)$ is inje.
 - (b) Suppose $(T_1 \circ \cdots \circ T_m)$ is not inje. Then at least one of T_1, \ldots, T_m is not inje.
 - (c) At least one of T_1, \dots, T_m is not inje $\Rightarrow (T_1 \circ \dots \circ T_m)$ is not inje.

EXAMPLE: In infinite-dim only. Let $V = \mathbf{F}^{\infty}$.

Let S be the backward shift (surj but not inje) Let T be the forward shift (inje but not surj) \Rightarrow Then ST = I.

- Note For [5.2]: Suppose $T \in \mathcal{L}(V)$. Then U is an invar subsp of V under $T \iff \text{range } T|_U \subseteq U$.
- Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Prove that there exists an invar subsp W of dimension $\dim V \dim U$.

SOLUTION:

```
Using the Note For [3.88,90,91]. Define the eraser S. Now V = \operatorname{range} S \oplus U.
```

Define
$$E_1$$
 by $E_1(u+w)=u$. Define E_2 by $E_2(u+w)=w$. ($E_2=S\circ\pi$.)

Note that
$$T - TE_1 = T(I - E_1) = TE_2$$
. And null $TE_2 = \text{null } T \oplus U$, range $T = \text{range } TE_2 \oplus U$.

Because dim null $TE_2 \geqslant \dim U \iff \dim \operatorname{range} TE_2 \leqslant \dim V - \dim U$.

Let
$$B_U = (u_1, ..., u_n)$$
, $B_{\text{range } TE_2} = (v_1, ..., v_m) \Rightarrow B_V = (v_1, ..., v_m, u_1, ..., u_n, ..., u_p)$.

Let
$$X = \operatorname{span}(v_1, \dots, v_m, u_{\alpha_1}, \dots, u_{\alpha_{p-\dim U}})$$
. Where $\alpha_1, \dots, \alpha_{p-\dim U} \in \{1, \dots, p\}$ are distinct.

Then dim $X = \dim V - \dim U$. [range $TE_2 \subseteq X$] X is invar under TE_2 , by Problem (1)(b).

We have
$$x \in X \Rightarrow TE_2(x) \in X \Rightarrow Tx - TE_1(x) \in X \Rightarrow Tx \in X$$
. Hence X is invar under T .

(Note that
$$E_1(x) \in \text{span}(u_{\beta_1}, \dots, u_{\beta_t})$$
, where $\beta_1, \dots, \beta_t \in \{\alpha_1, \dots, \alpha_{p-\dim U}\}$ and each $u_{\beta_t} \in U$.)

COMMENT: Conversely, by reversing the roles of *U* and *W*, we conclude that it is true as well.

- Suppose $T \in \mathcal{L}(V)$ and U is an invar subsp of V under T. Suppose $\lambda_1, \ldots, \lambda_m$ are the distinct eigenst of T correspt eigens v_1, \ldots, v_m .
- Tips 1: Prove that $v_1 + \cdots + v_m \in U \iff each \ v_k \in U$.

SOLUTION:

Suppose each $v_k \in U$. Then because U is a subsp, $v_1 + \cdots + v_m \in U$.

Define the statement P(k): if $v_1 + \cdots + v_k \in U$, then each $v_j \in U$. We use induction on m.

- (i) For $k = 1, v_1 \in U$.
- (ii) For $2 \le k \le m$. Assume that P(k-1) holds. Suppose $v = v_1 + \dots + v_k \in U$. Then $Tv = \lambda_1 v_1 + \dots + \lambda_k v_k \in U \Longrightarrow Tv \lambda_k v = (\lambda_1 \lambda_k)v_1 + \dots + (\lambda_{k-1} \lambda_k)v_{k-1} \in U$. For each $j \in \{1, \dots, k-1\}$, $\lambda_j \lambda_k \neq 0 \Rightarrow (\lambda_j \lambda_k)v_j = v_j'$ is an eigerc of T correspond λ_j . By assumption, each $v_i' \in U$. Thus $v_1, \dots, v_{k-1} \in U$. So that $v_k = v v_1 \dots v_{k-1} \in U$.
- Tips 2: If dim V = m. Prove that $U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m)$, where $E_k = \operatorname{span}(v_k)$.

SOLUTION:

Because
$$V = E_1 \oplus \cdots \oplus E_m$$
. $\forall u \in U, \exists ! e_j \in E_j, u = e_1 + \cdots + e_m$.

If
$$e_j \neq 0$$
, then e_j is an eigvec correspond λ_j . Otherwise $e_j = 0 \in U$. By Tips (1), each nonzero $e_j \in U$.

Thus $u \in (U \cap E_1) + \cdots + (U \cap E_m) = U$. Because each $(U \cap E_j) \subseteq E_j$.

For each
$$k \in \{2, ..., n\}$$
, $((U \cap E_1) + ... + (U \cap E_{k-1})) \cap (U \cap E_k) \subseteq (E_1 + ... + E_{k-1}) \cap E_k = \{0\}$.

• Tips 3: Suppose W is a nonzero invar subsp of V under T. If $\dim V = m \geqslant 1$. Prove that $W = \operatorname{span}(v_{\alpha_1}, \dots, v_{\alpha_A})$ for some distinct $\alpha_1, \dots, \alpha_A \in \{1, \dots, m\}$.

SOLUTION:

Each span $(v_{\alpha_1}, \dots, v_{\alpha_A})$ is invar under T.

By Tips (2),
$$U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m)$$
. Because each dim $E_k = 1$, $U \cap E_k = \{0\}$ or E_k .

There must be at least one k such that $E_k = U \cap E_k$, for if not, $U = \{0\}$ since $V = E_1 \oplus \cdots \oplus E_m$.

Let $\alpha_1, ..., \alpha_A \in \{1, ..., m\}$ be all the distinct indices for which $E_k = U \cap E_k$.

Thus
$$U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m) = E_{\alpha_1} \oplus \cdots E_{\alpha_A} = \operatorname{span}(v_{\alpha_1}, \dots, v_{\alpha_A}).$$

1 Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V . (a) If $U \subseteq \operatorname{null} T$, then U is invar under T . $\forall u \in U \subseteq \operatorname{null} T$, $Tu = 0 \in U$. (b) If range $T \subseteq U$, then U is invar under T . $\forall u \in U$, $Tu \in \operatorname{range} T \subseteq U$.	
• Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$. (a) Prove that $\operatorname{null}(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. (b) Prove that $\operatorname{range}(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. Solution: Note that $ST = TS \Rightarrow (T - \lambda I)S = S(T - \lambda I)$. (a) $(T - \lambda I)(v) = 0 \Rightarrow (T - \lambda I)(Sv) = (S(T - \lambda I))(v) = 0$.	
(b) $(T - \lambda I)(u) = v \in \text{range}(T - \lambda I) \Rightarrow Sv = (S(T - \lambda I))(u) = (T - \lambda I)(Su) \in \text{range}(T - \lambda I)$	- λI). □
• Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$.	
2 Show that $W = \text{null } T$ is invar under S . $\forall u \in W, Tu = 0 \Rightarrow STu = 0 = TSu \Rightarrow Su \in W$ 3 Show that $U = \text{range } T$ is invar under S . $\forall w \in U, \exists v \in V, Tv = w, TSv = STv = Sw \in W$	
• Suppose $T \in \mathcal{L}(V)$ and V_1, \ldots, V_m are invar subsps of V under T . 4 $\forall v_i \in V_i, Tv_i \in V_i \Rightarrow \forall v = v_1 + \cdots + v_m \in V_1 + \cdots + V_m, Tv = Tv_1 + \cdots + Tv_m \in V_1 + \cdots + V_m$. 5 $\forall v \in \bigcap_{i=1}^m V_i, Tv \in V_i, \forall i \in \{1, \ldots, m\} \Rightarrow Tv \in \bigcap_{i=1}^m V_i$. Thus $\bigcap_{i=1}^m V_i$ is invar under T .	
6 Suppose U is an invar subsp of V under each $T \in \mathcal{L}(V)$. Show that $U = \{0\}$ or U solution: If $V = \{0\}$. Then we are done. Suppose $V \neq \{0\}$. We show the contrapositive: Suppose $U \neq \{0\}$ and $U \neq V$. Prove that $\exists T \in \mathcal{L}(V)$ such that U is not invar under T . Let W be such that $V = U \oplus W$. Define $T \in \mathcal{L}(V)$ by $T(u + w) = w$.	=V.
• Tips: Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is the counterclockwise rotation by the angle $\theta \in \mathbf{R}$. Define $\mathcal{C} \in \mathcal{L}(\mathbf{R}^2, \mathbf{C})$ by $\mathcal{C}(a, b) = a + ib = r(\cos \alpha + i\sin \alpha) \Rightarrow a = r\cos \alpha, b = r\sin \alpha$, where $r = T$ then $(\cos \theta + i\sin \theta)(a + ib) = r(\cos(\alpha + \theta) + i\sin(\alpha + \theta)) = \mathcal{C}^{-1}T(a, b)$. Hence $T(a, b) = (a\cos \theta - b\sin \theta, a\sin \theta + b\cos \theta)$. Now $\mathcal{M}(T) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Example: Or 7 Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is defined by $T(x, y) = (-3y, x)$. Find all eigvals of T . Notice that $\mathcal{M}(T) = \begin{pmatrix} \cos 90^\circ & -3\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{pmatrix}$. By $[5.8](a)$, we conclude that T has no eigvals. Or. Suppose λ is an eigval with an eigvec (x, y) . Then $(\lambda x, \lambda y) = (-3y, x) \Rightarrow -3y = \lambda^2 y \Rightarrow \lambda$ $[$ Ignoring the possibility of $y = 0$, because $x = 0 \Leftrightarrow y = 0$. $]$	
8 Define $T \in \mathcal{L}(\mathbf{F}^2)$ by $T(w,z) = (z,w)$. Find all eigenstand eigenstances.	
SOLUTION: Suppose λ is an eigval with an eigvec (w,z) . Then $z=\lambda w$ and $w=\lambda z$. Thus $z=\lambda^2 z\Rightarrow \lambda^2=1$, ignoring the possibility of $z=0$ ($z=0 \Longleftrightarrow w=0$). Hence $\lambda_1=-1$ and $\lambda_2=1$ are all the eigvals of T . And $T(z,z)=(z,z)$, $T(z,-z)=(z,z)$, $T(z,-z)=(z,z)$. \mathbb{Z} dim \mathbb{Z} dim \mathbb{Z} = 2. Thus the set of all eigvecs is $\{(z,z),(z,-z):z\neq 0\}$.	(-z,z).

The set of all eigvecs is $\{(0,0,w), (w,0,0) : w \neq 0\}$. **10** Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, ..., x_n) = (x_1, 2x_2, 3x_3, ..., nx_n)$ (a) Find all eigvals and eigvecs; (b) Find all invar subsps of V under T. **SOLUTION:** (a) Suppose $x = (x_1, x_2, x_3, ..., x_n)$ is an eigeec with an eigeal λ . Then $Tx = \lambda v = (x_1, 2x_2, 3x_3, ..., nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, ..., \lambda x_n)$. Hence 1, ..., n of length dim \mathbf{F}^n are all the eigvals. And $\{(0, ..., 0, x_k, 0, ..., 0) \in \mathbf{F}^n : x_k \neq 0, k = 1, ..., n\}$ is the set of all eigences. (b) Let $(e_1, ..., e_n)$ be the std basis of \mathbf{F}^n . Let $V_k = \operatorname{span}(e_k)$. Then $V_1, ..., V_n$ are invar under T. Hence by Tips (3), every sum of V_1, \dots, V_n is a invar subsp of V under T. **18** Define the forward shift operator $T \in \mathcal{L}(\mathbf{F}^{\infty})$ by $T(z_1, z_2, ...) = (0, z_1, z_2, ...)$. Show that T has no eigvals. **SOLUTION:** Suppose λ is an eigval of T with an eigvec $(z_1, z_2, ...)$. Then $T(z_1, z_2, ...) = (\lambda z_1, \lambda z_2, ...) = (0, z_1, z_2, ...)$. Thus $\lambda z_1 = 0, \lambda z_k = z_{k-1}$. If $\lambda = 0$, then $\lambda z_2 = z_1 = 0 = \dots = z_k \Rightarrow (z_1, z_2, \dots) = 0 \Longrightarrow 0$ is not an eigval. If $\lambda \neq 0$, then $\lambda z_1 = 0 \Rightarrow z_1 = \dots = z_k = 0 \Longrightarrow \lambda$ is not an eigval. Now no $\lambda \in \mathbf{F}$ is an eigval. **19** Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(x_1, ..., x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n)$. *In other words, the entries of* $\mathcal{M}(T)$ *with resp to the std basis are all* 1's. *Find all eigvals and eigvecs of T.* **SOLUTION:** Suppose λ is an eigval of T with an eigvec (x_1, \dots, x_n) . Then $T(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n) = (x_1 + ... + x_n,...,x_1 + ... + x_n).$ Thus $\lambda x_1 = \dots = \lambda x_n = x_1 + \dots + x_n$. For $\lambda = 0$, $x_1 + \dots + x_n = 0$ For $\lambda \neq 0$, $x_1 = \dots = x_n \Longrightarrow \lambda x_k = nx_k$ $\} \Rightarrow 0$, n are the eigvals of T. And the set of all eigences of T is $\{(x_1, \dots, x_n) \in \mathbb{F}^n \setminus \{0\} : x_1 + \dots + x_n = 0 \lor x_1 = \dots = x_n\}$. **20** Define the backward shift operator $S \in \mathcal{L}(\mathbf{F}^{\infty})$ by $S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$. (a) Show that every element of F is an eigval of S; (b) Find all eigvecs of S. **SOLUTION:** Suppose λ is an eigval of S with an eigvec $(z_1, z_2, ...)$. Then $S(z_1, z_2, ...) = (\lambda z_1, \lambda z_2, ...) = (z_2, z_3, ...)$. Thus for each $k \in \mathbb{N}^+, \lambda z_k = z_{k+1}$. If $\lambda=0$, then $\lambda z_1=z_2=\cdots=z_k=0$ for all k, while z_1 can be nonzero. Thus 0 is an eigval. If $\lambda \neq 0$, then $\lambda^k z_1 = \lambda^{k-1} z_2 = \cdots = \lambda z_k = z_{k+1}$, let $z_1 \neq 0 \Longrightarrow (1, \lambda, \lambda^2, \dots, \lambda^k, \dots)$ is an eigvec. Now each $\lambda \in \mathbf{F}$ is an eigval of T, with the correspd eigvecs in span $((1, \lambda, \lambda^2, ..., \lambda^k, ...))$.

9 Define $T \in \mathcal{L}(\mathbf{F}^3)$ by $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$. Find all eigenst and eigenst.

For $\lambda \neq 0$, $z_2 = 0 = z_1$, and z_3 can be arbitrary ($z_3 \neq 0$), then $\lambda = 5$.

Then $(2z_2, 0, 5z_3) = \lambda(z_1, z_2, z_3)$. We discuss in two cases: For $\lambda = 0$, $z_2 = z_3 = 0$ and z_1 can be arbitrary $(z_1 \neq 0)$.

SOLUTION: Suppose λ is an eigval with an eigvec (z_1, z_2, z_3) .

11 Define $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $Tp = p'$. Find all eigenstand eigenstands.	
Solution: Note that $\forall p \in \mathcal{P}(\mathbf{R}) \setminus \{0\}$, $\deg p' < \deg p$. And $\deg 0 = -\infty$. Suppose λ is an eigval with an eigvec p . Assume that $\lambda \neq 0$. Then $\deg \lambda p > \deg p'$ while $\lambda p = p'$. Contradicts. Thus $\lambda = 0$. Therefore $\deg \lambda p = -\infty = \deg p' \Rightarrow p \in \mathcal{P}_0(\mathbf{R})$. Hence the eigvecs are all the nonzero consts. \square	
12 Define $T \in \mathcal{L}(\mathcal{P}_n(\mathbf{R}))$ by $(Tp)(x) = xp'(x)$ for all $x \in \mathbf{R}$. Find all eigens and eigens.	
SOLUTION:	
Suppose λ is an eigval of T with an eigvec p , then $(Tp)(x) = xp'(x) = \lambda p(x)$. Let $p = a_0 + a_1x + \dots + a_nx^n$. Then $xp'(x) = a_1x + 2a_2x^2 + \dots + na_nx^n = \lambda a_0 + \lambda a_1x + \lambda a_2x^2 + \dots + \lambda a_nx^n$.	
Define $S \in \mathcal{L}(\mathbf{F}^{n+1}, \mathcal{P}_n(\mathbf{R}))$ by $S(a_0, a_1,, a_n) = a_0 + a_1 x + \cdots + a_n x^n$.	
Then $(S^{-1}TS)(a_0, a_1, \dots, a_n) = (0 \cdot a_0, 1 \cdot a_1, 2 \cdot a_2, \dots, n \cdot a_n)$. Thus $0, 1, \dots, n$ are the eigvals of $S^{-1}TS$. By Problem (15), $0, 1, \dots, n$ are the eigvals of T . The set of all eigvecs is $\{cx^{\lambda} : c \neq 0, \lambda = 0, 1, \dots, n\}$. \square	
• Suppose V is finite-dim, $T \in \mathcal{L}(V), \lambda \in \mathbf{F}$.	
13 Prove that $\forall \lambda \in \mathbf{F}, \exists \alpha \in \mathbf{F}, \alpha - \lambda < \frac{1}{1000}, (T - \alpha I)$ is inv. Solution:	
Let $\alpha_k \in \mathbf{F}$ be such that $ \alpha_k - \lambda = \frac{1}{1000+k}$ for each $k = 1,, \dim V + 1$.	
Note that each $T \in \mathcal{L}(V)$ has at most dim V distinct eigensly.	
Hence $\exists k = 1,, \dim V + 1$ such that α_k is not an eigval of T and therefore $(T - \alpha_k I)$ is inv.	
• (4E 5.A.11) Prove that $\exists \delta > 0$ such that $(T - \alpha I)$ is inv for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$.	
SOLUTION: If T has no eigvals, then $(T - \alpha I)$ is inje for all $\alpha \in F$ and we are done.	
Suppose $\lambda_1, \dots, \lambda_m$ are all the distinct eigvals of T .	
Let $\delta > 0$ be such that, for each eigval $\lambda_k, \lambda_k \notin (\lambda - \delta, \lambda) \cup (\lambda, \lambda + \delta)$.	
So that for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$, $(T - \alpha I)$ is not inje.	
OR. Let $\delta = \min\{ \lambda - \lambda_k : k \in \{1,, m\}, \lambda_k \neq \lambda\}$. Then $\delta > 0$ and each $\lambda_k \neq \alpha$ [\iff ($T - \alpha I$) is inv] for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$.	
• (5.B.4 OR 4E 3.B.27) Suppose λ is an eigral with an eigral of $P \in \mathcal{L}(V)$, $P^2 = P$. Prove that $\lambda = 0$ or $\lambda = 1$.	
SOLUTION : Suppose λ is an eigval with an eigvec v . Then $P(Pv) = Pv \Rightarrow \lambda^2 v = \lambda v$. Thus $\lambda = 1$ or 0 . \square	
14 Suppose $V = U \oplus W$, where U and W are nonzero subsps of V . Define $P \in \mathcal{L}(V)$ by $P(u + w) = u$ for each $u \in U$ and each $w \in W$. Find all eigens and eigens of P .	
SOLUTION:	
Suppose λ is an eigval of P with an eigvec $(u+w)$. Then $P(u+w) = u = \lambda u + \lambda w \Rightarrow (\lambda - 1)u + \lambda w = 0$.	
OR. Note that $P _{\text{range }P} = I _{\text{range }P} \iff P^2 = P$. By (4E 5.A.8), 1 and 0 are the eigenst.	
By [1.44], $(\lambda - 1)u = \lambda w = 0$, hence $\lambda = 0 \iff u = 0$, and $\lambda = 1 \iff w = 0$.	
Thus $Pu = u$, $Pw = 0$. Hence the eigvals are 0 and 1, the set of all eigvecs of P is $U \cup W$.	

15 Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is inv.

- (a) Prove that T and $S^{-1}TS$ have the same eigvals.
- (b) What is the relationship between the eigvecs of T and the eigvecs of $S^{-1}TS$?

SOLUTION:

(a) λ is an eigval of T with an eigvec $v \Rightarrow S^{-1}TS(\underline{S^{-1}v}) = S^{-1}Tv = S^{-1}(\lambda v) = \underline{\lambda S^{-1}v}$. λ is an eigval of $S^{-1}TS$ with an eigvec $v \Rightarrow S(S^{-1}TS)v = TSv = \lambda Sv$.

OR. Note that $S(S^{-1}TS)S^{-1} = T$. Hence every eigval of $S^{-1}TS$ is an eigval of $S(S^{-1}TS)S^{-1} = T$.

Or.
$$Tv = \lambda v \iff (TS)(u) = \lambda Su \iff (S^{-1}TS)(u) = \lambda u$$
. Where $v = Su$.
$$(S^{-1}TS)(u) = \lambda u \iff (S^{-1}T)(v) = \lambda S^{-1}v \iff Tv = \lambda v$$
. Where $u = S^{-1}v$.

(b) Because λ is an eigval of $T \iff \lambda$ is an eigval of $S^{-1}TS$.

(See [5.36].) Now
$$E(\lambda, T) = \{Su : u \in E(\lambda, S^{-1}TS)\}; E(\lambda, S^{-1}TS) = \{S^{-1}v : v \in E(\lambda, T)\}.$$

17 Give an example of an operator on \mathbb{R}^4 that has no real eigenls.

SOLUTION:

Let (e_1, e_2, e_3, e_4) be the std basis of \mathbb{R}^4 .

Let
$$(e_1, e_2, e_3, e_4)$$
 be the std basis of \mathbb{R}^4 .

Define $T \in \mathcal{L}(\mathbb{R}^4)$ by $\mathcal{M}(T, (e_1, e_2, e_3, e_4)) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 3 & 8 & 11 & 5 \\ 3 & -8 & -11 & 5 \end{pmatrix}$.

Suppose λ is an eigval of T with an eigvec (x, y, z, w) . Then we get
$$\begin{cases} (1 - \lambda)x + y + z + w = 0, \\ -x + (1 - \lambda)y - z - w = 0, \\ 3x + 8y + (11 - \lambda)z + 5w = 0, \\ 3x - 8y - 11z + (5 - \lambda)w = 0. \end{cases}$$

$$(1 - \lambda)x + y + z + w = 0,$$

-x + (1 - \lambda)y - z - w = 0,
$$3x + 8y + (11 - \lambda)z + 5w = 0,$$

$$3x - 8y - 11z + (5 - \lambda)w = 0.$$

This set of linear equations has no solutions.

[You can type it on https://zh.numberempire.com/equationsolver.php to check.]

Or. Define
$$T \in \mathcal{L}(\mathbb{R}^4)$$
 by $T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$.

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x, y, z, w) = (\lambda x, \lambda y, \lambda z, \lambda w) = (-y, x, -w, z) \implies \begin{cases} -y = \lambda x, x = \lambda y \implies -xy = \lambda^2 xy \\ -w = \lambda z, z = \lambda w \implies -zw = \lambda^2 zw \end{cases}$$

If $xy \neq 0$ or $zw \neq 0$, then $\lambda^2 = -1$, we fail.

Otherwise, $xy = 0 \Rightarrow x = y = 0$, for if $x \neq 0$, then $\lambda = 0 \Rightarrow x = 0$, contradicts.

Similarly,
$$y = z = w = 0$$
. Then we fail. Thus T has no eigvals.

• (4E 5.A.16) Suppose $B_V = (v_1, ..., v_n), T \in \mathcal{L}(V), \mathcal{M}(T, (v_1, ..., v_n)) = A.$ *Prove that if* λ *is an eigval of* T*, then* $|\lambda| \leq n \max\{|A_{j,k}| : 1 \leq j, k \leq n\}$.

SOLUTION:

Suppose v is an eigval of T correspd to λ . Let $v = c_1v_1 + \cdots + c_nv_n$.

Because
$$\lambda c_1 v_1 + \dots + \lambda c_n v_n = c_1 T v_1 + \dots + c_n T v_n = \sum_{k=0}^n c_k \left(\sum_{i=1}^n A_{i,k} v_i \right)$$
.

We have
$$\lambda c_j = \sum_{k=1}^n c_k A_{j,k} \Longrightarrow |\lambda| |c_j| = \sum_{k=1}^n |c_k| |A_{j,k}|$$
 for each $j \in \{1, \dots, n\}$

Let
$$|c_1| = \max\{|c_1|, \dots, |c_n|\}$$
. Note that $|c_1| \neq 0$, for if not, $c_1 = \dots = c_n = 0 \Rightarrow v = 0$, contradicts.

Let
$$M = \max\{|A_{j,k}| : 1 \le j, k \le n\}$$
. Note that for each j , $\sum_{k=1}^{n} |A_{j,k}| \le \sum_{k=1}^{n} M = nM$.

Thus
$$|\lambda||c_j| = \sum_{k=1}^n |c_k||A_{j,k}| \Longrightarrow |\lambda| \leqslant \sum_{k=1}^n |A_{j,k}| \frac{|c_k|}{|c_j|} \leqslant \sum_{k=1}^n |A_{j,k}| \leqslant nM.$$

• (4E 5.A.15) Suppose $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$. Show that λ is an eigval of $T \iff \lambda$ is an eigval of the dual operator $T' \in \mathcal{L}(V')$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

Let *U* be invar such that $V = \text{span}(v) \oplus U$ [by (4E 5.A.39)].

Define $\psi \in V'$ by $\psi(cv + u) = c$.

Now $[T'(\psi)](cv + u) = \psi(cv + Tu) = \lambda cv = \lambda \psi(cv + u)$. Hence $T'(\psi) = \lambda \psi$.

(b) Suppose λ is an eigval T' with an eigvec ψ . Then $T'(\psi) = \psi \circ T = \lambda \psi$.

Note that
$$\psi \neq 0$$
, $\psi(Tv) = \lambda \psi(v)$ Thus $\exists v \in V \setminus \{0\}$, $Tv = \frac{\psi(Tv)}{\psi(v)}v = \lambda v$.

OR. [Only in Finite-dim] Using [5.6], (4E 3.F.17), [3.101] and (3.F.12).

 λ is an eigval of $T \iff (T - \lambda I_V)$ is not inv

$$\iff$$
 $(T - \lambda I_V)' = T' - \lambda I_{V'}$ is not inv \iff λ is an eigval of T' .

24 Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^{n,1})$ by Tx = Ax.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.
- (b) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

Suppose
$$\lambda$$
 is an eigval of T with an eigvec x . Then $Tx = Ax = \begin{pmatrix} \sum_{k=1}^{n} A_{1,k} x_k \\ \vdots \\ \sum_{k=1}^{n} A_{n,k} x_k \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

(a) Suppose $\sum_{r=1}^{n} A_{R,c} = 1$ for each $R \in \{1, ..., n\}$.

Then if we let $x_1 = \cdots = x_n$, then $\lambda = 1$, and hence is an eigval of T.

(b) Suppose $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C \in \{1, ..., n\}$.

Then
$$\sum_{r=1}^{n} (Ax)_{r,r} = \sum_{r=1}^{n} (Ax)_{r,1} = \sum_{c=1}^{n} (A_{1,c} + \dots + A_{n,c}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence $\lambda = 1$ for all $x \in \mathbb{F}^{n,1}$ such that $\sum_{c=1}^{n} x_{c,1} \neq 0$.

OR. We show that (T - I) is not inv, so that $\lambda = 1$ is an eigval.

Because
$$(T-I)x = (A-I)x = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r}x_r - x_1 \\ \vdots \\ \sum_{r=1}^{n} A_{n,r}x_r - x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Then
$$y_1 + \dots + y_n = \sum_{r=1}^n \sum_{c=1}^n (A_{r,c} x_c - x_r) = \sum_{c=1}^n x_c \sum_{r=1}^n A_{r,c} - \sum_{r=1}^n x_r = 0.$$

Thus range
$$(T-I)\subseteq \{(y_1 \quad \cdots \quad y_n)^t\in \mathbb{F}^{n,1}: y_1+\cdots+y_n=0\}$$
. Hence $(T-I)$ is not surj. \square

Or. Let (e_1, \dots, e_n) be the std basis of $\mathbf{F}^{n,1}$. Define $\psi \in (\mathbf{F}^{n,1})'$ by $\psi(e_k) = 1$.

Thus
$$(\psi \circ (T-I))(e_k) = \psi((\sum_{j=1}^n A_{j,k}e_j) - e_k) = (\sum_{j=1}^n A_{j,k}) - 1 = 0.$$

Which means that
$$\psi \circ (T - I) = 0$$
. $\mathbb{Z} \psi \neq 0$. Hence $(T - I)$ is not inje.

OR. Define $S \in \mathcal{L}(\mathbf{F}^{n,1})$ by $Sx = A^tx$. Because the rows of A^t are the cols of A.

Now by (a), 1 is an eigval of *S*. Let $(\varphi_1, ..., \varphi_n)$ be the dual basis of $(e_1, ..., e_n)$.

Define
$$\Phi \in \mathcal{L}(\mathbf{F}^{n,1}, (\mathbf{F}^{1,n})')$$
 by $\Phi(e_k) = \varphi_k$. Note that $\mathcal{M}(T') = A^t$.

Now
$$(\Phi^{-1}T'\Phi)(e_k) = (\Phi^{-1}T')(\varphi_k) = \Phi^{-1}(\sum_{j=1}^n A_{k,j}\varphi_j) = \sum_{j=1}^n A_{k,j}e_j = A^te_k = Se_k.$$

Thus 1 is an eigval of
$$S = \Phi^{-1}T'\Phi$$
, so of T' , [by Problem (15)], so of T , [by (4E 5.A.15)].

- Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^{1,n})$ by Tx = xA.
 - (a) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.
 - (b) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

Suppose λ is an eigval with an eigvec x. Then $\left(\sum_{r=1}^{n} x_r A_{r,1} \cdots \sum_{r=1}^{n} x_r A_{r,n}\right) = \lambda \left(x_1 \cdots x_n\right)$.

(a) Suppose $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C \in \{1, \dots, n\}$.

Thus if $x_1 = \cdots = x_n$, then $\lambda = 1$, hence is an eigval of T.

(b) Suppose $\sum_{c=1}^{n} A_{R,c} = 1$ for each $R \in \{1, ..., n\}$.

Thus
$$\sum_{c=1}^{n} (xA)_{.,c} = \sum_{c=1}^{n} (A_{c,1} + \dots + A_{c,n}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence $\lambda = 1$, for all x such that $\sum_{r=1}^{n} x_{1,r} \neq 0$.

OR. We show that (T - I) is not inv, so that $\lambda = 1$ is an eigval.

Because
$$(T-I)x = x(A-\mathcal{M}(I)) = (\sum_{c=1}^{n} x_c A_{c,1} - x_1 \cdots \sum_{c=1}^{n} x_c A_{c,n} - x_n) = (y_1 \cdots y_n).$$

Then
$$y_1 + \dots + y_n = \sum_{c=1}^n \sum_{r=1}^n (x_r A_{r,c} - x_c) = \sum_{r=1}^n x_r \sum_{c=1}^n A_{r,c} - \sum_{c=1}^n x_c = 0.$$

Thus range
$$(T-I) \subseteq \{ (y_1 \quad \cdots \quad y_n) \in \mathbf{F}^{1,n} : y_1 + \cdots + y_n = 0 \}$$
. Hence $(T-I)$ is not surj. \square

OR. Let (e_1, \dots, e_n) be the std basis of $\mathbf{F}^{1,n}$. Define $\psi \in (\mathbf{F}^{n,1})'$ by $\psi(e_k) = 1$.

Because
$$Te_k = e_k A = \begin{pmatrix} A_{k,1} & \cdots & A_{k,n} \end{pmatrix} = \sum_{i=1}^n A_{k,i} e_i$$
. Corollary: $\mathcal{M}(T) = A^t$.

$$(\psi \circ (T-I))(e_k) = (\sum_{i=1}^n A_{k,i}) - 1 = 0$$
. Then $\psi \circ (T-I) = 0$. $\not \subset \psi \neq 0$. $(T-I)$ is not inje. \Box

OR. Define $S \in \mathcal{L}(\mathbf{F}^{1,n})$ by $Sx = xA^t$. Because the rows of A are the cols of A^t .

Now by (a), 1 is an eigval of *S*. Let $(\varphi_1, ..., \varphi_n)$ be the dual basis of $(e_1, ..., e_n)$.

Define
$$\Phi \in \mathcal{L}\left(\mathbf{F}^{1,n}, (\mathbf{F}^{1,n})'\right)$$
 by $\Phi(e_k) = \varphi_k$. Because $\left[T'(\varphi_k)\right](e_j) = \varphi_k\left(\sum_{i=1}^n A_{j,i}e_i\right) = A_{j,k}$.

By (3.F.9),
$$T'(\varphi_k) = \sum_{j=1}^n A_{j,k} \varphi_j$$
. Corollary: $\mathcal{M}(T') = A = \mathcal{M}(T)^t$. FIXME: $\mathcal{M}(T)e_k = A^t e_k = e_k A$

Now
$$(\Phi^{-1}T'\Phi)(e_k) = (\Phi^{-1}T')(\varphi_k) = \Phi^{-1}(\sum_{j=1}^n A_{j,k}\varphi_j) = \sum_{j=1}^n A_{j,k}e_j = e_kA^t = Se_k.$$

Thus 1 is an eigval of $S = \Phi^{-1}T'\Phi$, so of T', [by Problem (15)], so of T, [by (4E 5.A.15)]. \square

- Suppose F = R, $T \in \mathcal{L}(V)$.
 - (a) [OR (9.11)] $\lambda \in \mathbf{R}$. Prove that λ is an eigval of $T \iff \lambda$ is an eigval of $T_{\mathbf{C}}$.
 - (b) [Or **16** Or [9.16]] $\lambda \in \mathbb{C}$. Prove that λ is an eigenl of $T_{\mathbb{C}} \iff \overline{\lambda}$ is an eigenl of $T_{\mathbb{C}}$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

Then
$$Tv = \lambda v \Longrightarrow T_{\rm C}(v + i0) = Tv + iT0 = \lambda v$$
. Thus λ is an eigval of $T_{\rm C}$.

Suppose λ is an eigval of $T_{\rm C}$ with an eigvec v + iu.

Then $T_{\rm C}(v+{\rm i}u)=\lambda v+{\rm i}\lambda u\Longrightarrow Tv=\lambda v$, $Tu=\lambda u$. Thus λ is an eigval of T.

(Note that v + iu is nonzero \iff at least one of v, u is nonzero).

(b) Suppose λ is an eigval of T_C with an eigvec v + iu. Then $T_C(v + iu) = Tv + iTu = \lambda(v + iu)$.

Note that
$$\overline{T_{\rm C}(v+{\rm i}u)}=\overline{Tv+{\rm i}Tu}=Tv-{\rm i}Tu=T_{\rm C}(v-{\rm i}u)=T_{\rm C}(\overline{v+{\rm i}u}).$$

And that
$$\overline{\lambda(v+iu)} = \overline{\lambda}v - i\overline{\lambda}u = \overline{\lambda}(v-iu) = \overline{\lambda}(\overline{v+iu}).$$

Hence
$$\overline{\lambda}$$
 is an eigval of $T_{\rm C}$. To prove the other direction, notice that $\overline{\overline{\lambda}} = \lambda$.

Or. Suppose $\lambda = a + ib$ is an eigval of $T_{\rm C}$ with an eigvec v + iu.

Because
$$T_{\mathbf{C}}(v+\mathrm{i}u) = \lambda(v+\mathrm{i}u) = (av-bu)+\mathrm{i}(au+bv) = Tv+\mathrm{i}Tu \Longrightarrow Tv = av-bu$$
, $Tu = au+bv$.

Now
$$T_{\rm C}(\overline{v+{\rm i}u})=Tv-{\rm i}Tu=(av-bu)-{\rm i}(au+bv)=(a-{\rm i}b)(v-{\rm i}u)=\overline{\lambda}(\overline{v-{\rm i}u})$$
. Similarly.

(a) <i>Su</i>	se $T \in \mathcal{L}(V)$ is inv. ppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigval of $T \iff \lambda^{-1}$ is an eigval of T^{-1} . ove that T and T^{-1} have the same eigvecs.	
SOLUTION:	(a) $Tv = \lambda v \iff v = \lambda T^{-1}v \iff \lambda^{-1}v = T^{-1}v$. Where $v \neq 0$.	
	(b) Notice that T is inv \Longrightarrow 0 is not an eigval of T or T^{-1} . By (a), immediately.	
	se $T \in \mathcal{L}(V)$ and \exists nonzero vecs u, w in V such that $Tu = 3w$, $Tw = 3u$. that 3 or -3 is an eigval of T .	
SOLUTION:	$T(u+w) = 3(u+w)$, $T(u-w) = 3(w-u) = -3(u-w)$. Note that $u-w \ne 0$ or $u+w \ne 0$ OR. $T(Tu) = 9u \Rightarrow T^2 - 9 = (T-3I)(T+3I)$ is not injective $\Rightarrow 3$ or -3 is an eigval.). □
23 Suppo	se $S,T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigvals.	
SOLUTION:	Suppose λ is an eigval of ST with an eigvec v . Then $T(STv) = \lambda Tv = TS(Tv)$. If $Tv = 0$ (while $v \neq 0$), then T is not inje $\Rightarrow (TS - 0I)$ and $(ST - 0I)$ are not inje. Thus $\lambda = 0$ is an eigval of ST and TS with the same eigvec v .	
	Otherwise, $Tv \neq 0$, then λ is an eigval of TS . Reversing the roles of T and S .	
,	Suppose $T \in \mathcal{L}(V)$ has dim V distinct eigvals and $S \in \mathcal{L}(V)$ has the same eigvecs ight not with the same eigvals). Prove that $ST = TS$.	
SOLUTION:	Let $n = \dim V$. For each $j \in \{1,, n\}$, let v_j be an eigence with eigenal λ_j of T and α_j of S . Then $B_V = (v_1,, v_n)$. Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$.	
Define A	Suppose V is finite-dim and $T \in \mathcal{L}(V)$. $A \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Let the set of eigvals of T equals the set of eigvals of A .	
SOLUTION:		
(a) Supp Note Or. I	pose λ is an eigval of T with an eigvec $v=v_1$. Let $B_V=(v_1,\ldots,v_m,\ldots,v_n)$. Let that $\mathrm{span}(v)\subseteq\mathrm{null}(T-\lambda I)$. Define $S\in\mathcal{L}(V)$ by $S(v_j)=v$ for each $j\in\{1,\ldots,n\}$. Define $S\in\mathcal{L}(V)$ by $Sv_1=v_1$, $Sv_j=0$ for $j\geqslant 2$. Then $(T-\lambda I)Sv_1=0=(T-\lambda I)Sv_k=0$. In $(T-\lambda I)S=0$. Thus $\mathcal{A}(S)=TS=\lambda S$ while $S\neq 0$. Hence λ is an eigval of \mathcal{A} .	
Ther	pose λ is an eigval of \mathcal{A} with an eigvec S . In $\exists v \in V, 0 \neq u = S(v) \in V \Rightarrow Tu = (TS)v = (\lambda S)v = \lambda u$. Thus λ is an eigval T . Because $TS - \lambda S = (T - \lambda I)S = 0 \Rightarrow \{0\} \subsetneq \text{range } S \subseteq \text{null } (T - \lambda I)$. $(T - \lambda I)$ is not inje.	
COMMENT:	If $\mathcal{A}(S) = ST, \forall S \in \mathcal{L}(V)$. Then the eigvals of \mathcal{A} are not the eigvals of T .	
	se $T \in \mathcal{L}(V)$ and u , w are eigvecs of T such that $u + w$ is also an eigvec of T . that u and w correspd to the same eigval.	
	Suppose $\lambda_1, \lambda_2, \lambda_0$ are eigvals of T with eigvecs to $u, w, u + w$ respectively. Then $T(u+w) = \lambda_0(u+w) = Tu + Tw = \lambda_1 u + \lambda_2 w \Rightarrow (\lambda_0 - \lambda_1)u = (\lambda_2 - \lambda_0)w$. If (u,w) is linely depe, then let $w = cu$, therefore $\lambda_2 cu = Tw = cTu = \lambda_1 cu \Rightarrow \lambda_2 = \lambda_1$.	

26 Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vec in V is an eigvec of T. *Prove that T is a scalar multi of the identity operator.* **SOLUTION**: If dim V = 0, 1 then we are done. Suppose dim $V \ge 2$. Because $\forall v \in V, \exists ! \lambda_v \in \mathbf{F}, Tv = \lambda_v v$. For any two distinct nonzero vecs $v, w \in V$, $T(v+w) = \lambda_{v+w}(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \Rightarrow (\lambda_{v+w} - \lambda_v)v = (\lambda_w - \lambda_{v+w})w.$ Or. For any two nonzero vecs $u, v \in V$, u, v are eigvecs. If $u + v \neq 0$, then u + v is also an eigvec. Otherwise, u + v = 0, then $Tu = -Tv = \lambda u = -\lambda v$. Thus by Problem (25), $\forall u, v \in V$, $Tu = \lambda u$, $Tv = \lambda v \Rightarrow \forall v \in V$, $Tv = \lambda v$. **27, 28** *Suppose V is finite-dim and* $k \in \{1, ..., \dim V - 1\}$. Suppose $T \in \mathcal{L}(V)$ is such that every subsp of V of dim k is invar under T. *Prove that T is a scalar multi of the identity operator.* **SOLUTION**: If dim $V \le 1$ then we are done. Suppose dim $V \ge 2$. We prove the contrapositive: If T is not a scalar multi of I. Then \exists subsp U of dim k not invar under T. By Problem (26), $\exists v \in V$ and $v \neq 0$ such that v is not an eigeec of T. Thus (v, Tv) is linely inde. Extend to $B_V = (v, Tv, u_1, \dots, u_n)$. Let $U = \operatorname{span}(v, u_1, \dots, u_{k-1}) \Rightarrow U$ is not an invar subsp of V under T. OR. Suppose $0 \neq v = v_1 \in V$. Extend to $B_V = (v_1, \dots, v_n)$. Suppose $Tv_1 = c_1v_1 + \dots + c_nv_n$, $\exists ! c_i \in F$. Consider a k-dim subsp $U = \operatorname{span}(v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}})$. Where $\alpha_1, \dots, \alpha_{k-1} \in \{2, \dots, n\}$ are distinct. Because every subsp such U is invar. $Tv_1=c_1v_1+\cdots+c_nv_n\in U\Longrightarrow c_2=\cdots=c_n=0.$ For if not, $\exists c_i \neq 0$, let $W = \text{span}(v_1, v_{\beta_1}, ..., v_{\beta_{k-1}})$, where each $\beta_i \in \{2, ..., i-1, i+1, ..., n\}$. Hence $Tv_1 = c_1v_1$. Because $v_1 = v \in V$ is arbitrary. We conclude that $T = \lambda I$ for some $\lambda \in F$. Or. For each $k \in \{1, ..., \dim V - 1\}$, define P(k): if every subsported dim k is invar, then $T = \lambda I$. (i) If every subsp of dim 1 is invar, then by Problem (26), $T = \lambda I$. Thus P(1) holds. (ii) Assume that P(k) holds for $k \in \{1, ..., \dim V - 1\}$. And every subsp of dim k + 1 is invar. Let *U* be a subsp of dim *k*. If dim $U = \dim V - 1$ then extend B_U to B_V and we are done. Suppose dim *U* ∈ $\{1, ..., \dim V - 2\}$. Choose two linely inde vecs $v, w \notin U$. Because $U \oplus \text{span}(v)$ and $U \oplus \text{span}(w)$ of dim k + 1 are invar. Suppose $u \in U$. Let $Tu = a_1u_1 + bv = a_2u_2 + cw$, $\exists ! u_1, u_2 \in U$, $a_1, a_2, b, c \in F$. Now $a_1u_1 - a_2u_2 = cw - bv \in U \cap \text{span}(v) = \{0\} \Rightarrow b = c = 0$. Thus $Tu \in U$. Because P(k) holds, we conclude that $T = \lambda I$. Thus P(k + 1) holds. **29** Suppose $T \in \mathcal{L}(V)$ and range T is finite-dim. *Prove that T has at most* $1 + \dim range T$ *distinct eigvals.* **SOLUTION:** Let $\lambda_1, \dots, \lambda_m$ be the distinct eigvals of T with corresponding eigvecs v_1, \dots, v_m . (Because range T is finite-dim. The correspd eigvals are finite.) Then $(v_1, ..., v_m)$ linely inde $\Longrightarrow (\lambda_1 v_1, ..., \lambda_m v_m)$ linely inde, if each $\lambda_k \neq 0$. Otherwise, $\exists ! \lambda_k = 0$. Now $(\lambda_1 v_1, \dots, \lambda_{k-1} v_{k-1}, \lambda_{k+1} v_{k+1}, \dots, \lambda_m v_m)$ is linely inde. Hence, by [2.23], $m-1 \leq \dim \operatorname{range} T$. **30** Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ and $-4, 5, \sqrt{7}$ are eigvals. Prove that $\exists x, Tx - 9x = (-4, 5, \sqrt{7})$.

SOLUTION: *T* has dim R³ eigvals not including $9 \Rightarrow (T - 9I)$ is inv. $x = (T - 9I)^{-1}(-4, 5, \sqrt{7})$.

31 Suppose V is finite-dim, and $v_1, \ldots, v_m \in V$. Prove that (v_1, \ldots, v_m) is linely inde $\iff v_1, \ldots, v_m$ are eigences of some T correspond to distinct eigensless. **SOLUTION:** Suppose $(v_1, ..., v_m)$ is linely inde. Let $B_V = (v_1, ..., v_m, ..., v_n)$. Define $T \in \mathcal{L}(V)$ by $Tv_k = k \cdot v_k$ for each $k \in \{1, ..., m, ..., n\}$. Conversely by [5.10]. • Suppose $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ are distinct. (a) **32** Prove that $(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$ is linely inde in \mathbb{R}^R . **HINT**: Let $V = \text{span}(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$. Define $D \in \mathcal{L}(V)$ by Df = f'. Find eigenstand eigenstands of D. (b) [4E 36] Show that $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in \mathbb{R}^R . **SOLUTION:** (a) Define V and $D \in \mathcal{L}(V)$ as in HINT. Then because for each k, $D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$. Thus $\lambda_1, \dots, \lambda_n$ are distinct eigvals of D. By [5.10], $(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$ is linely inde in \mathbb{R}^R . (b) Let $V = \text{span}(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$. Define $D \in \mathcal{L}(V)$ by Df = f'. Then because $D(\cos(\lambda_k x)) = -\lambda_k \sin(\lambda_k x)$. $\not \subset D(\sin(\lambda_k x)) = \lambda_k \cos(\lambda_k x)$. Thus $D^2(\cos(\lambda_k x)) = -\lambda_k^2 \cos(\lambda_k x)$. Notice that $\lambda_1, \dots, \lambda_n$ are distinct $\Longrightarrow -\lambda_1^2, \dots, -\lambda_n^2$ are distinct. And dim V = n. Hence $-\lambda_1^2, \ldots, -\lambda_n^2$ are all the eigvals of D^2 with correspd eigvecs $\cos(\lambda_1 x), \ldots, \cos(\lambda_n x)$. And then $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in $\mathbb{R}^{\mathbb{R}}$. **33** Suppose $T \in \mathcal{L}(V)$. Prove that T/(range T) = 0. **SOLUTION**: $v + \text{range } T \in V/\text{range } T \Longrightarrow v + \text{range } T \in \text{null } (T/(\text{range } T))$. Hence T/(range T) = 0. \square **34** Suppose $T \in \mathcal{L}(V)$. Prove that T/(null T) is inje \iff $(\text{null } T) \cap (\text{range } T) = \{0\}$. **SOLUTION:** NOTICE that $(T/(\text{null }T))(u + \text{null }T) = Tu + \text{null }T = 0 \iff Tu \in (\text{null }T) \cap (\text{range }T)$. Now $T/(\operatorname{null} T)$ is inje $\iff u + \operatorname{null} T = 0 \iff Tu = 0 \iff (\operatorname{null} T) \cap (\operatorname{range} T) = \{0\}.$ • Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Define $T/U: V/U \rightarrow V/U$ by (T/U)(v+U) = Tv + U for each $v \in V$. (a) Show that T/U is well-defined and is linear. Requires that U is invarunder T. (b) [Or **35**] Show that each eigral of T/U is an eigral of T. **SOLUTION:** (a) $v + U = w + U \iff v - w \in U \implies T(v - w) \in U \iff Tv + U = Tw + U$. Hence T/U is well-defined. Now we show that T/U is linear. $(T/U)((v+U) + \lambda(w+U)) = T(v+\lambda w) + U = (T/U)(v+U) + \lambda(T/U)(w)$. Checked. (b) Suppose λ is an eigval of T/U with an eigvec v+U. Then $Tv+U=\lambda v+U\Rightarrow (T-\lambda I)v=u\in U$. If $u = 0 \Rightarrow Tv = \lambda v$, then we are done. Otherwise, we discuss in two cases. If $(T - \lambda I)|_U$ is inv. Then $\exists ! w \in U$, $(T - \lambda I)(w) = u = (T - \lambda I)v \Rightarrow T(v + w) = \lambda(v + w)$. Note that $v + w \neq 0$, for if not, $v \in U \Rightarrow v + U = 0$, contradicts. Thus λ is an eigval of T. If $(T - \lambda I)|_U$ is not inv. Then because V is finite-dim, $(T - \lambda I)|_U$ is not inje, so that $\exists w \in \text{null } (T - \lambda I)|_{U}, w \neq 0, (T - \lambda I)w = 0 \Rightarrow Tw = \lambda w.$ Or. Let $B_U = (u_1, ..., u_m)$. Then $((T - \lambda I)v, (T - \lambda I)u_1, ..., (T - \lambda I)u_m)$ is linely inde in U. So that $a_0(T - \lambda I)v + a_1(T - \lambda I)u_1 + \dots + a_m(T - \lambda I)u_m = 0, \exists a_0, a_1, \dots, a_m \in \mathbf{F}$ with some $a_i \neq 0$. Let $w = a_0v + a_1u_1 + \cdots + a_mu_m \Longrightarrow Tw = \lambda w$. Note that $w \neq 0$, for if not, $a_0v \in U$, each $a_i = 0$. \square

36 Prove or give a counterexample: The result in Exercise 35 is still true if V is infinite-dim.

SOLUTION: A counterexample:

5.B: I [See 5.B: II below.]

COMMENT: 下面,为了照顾原书 5.B 节两版过大的差距,特别将此节补注分成 I 和 II 两部分。 又考虑到第 4 版中 5.B 节的「本征值与极小多项式」与「奇维度实向量空间的本征值」 (相当一部分是从原第 3 版 8.C 节挪过来的)是对原第 3 版「多项式作用于算子」与 「本征值的存在性」(也即第 3 版 5.B 前半部分)的极大扩充,这一扩充也大大改变了 原第 3 版后半部分的「上三角矩阵」这一小节,故而将第 4 版 5.B 节放在第 3 版前面。

I 部分除了覆盖第 4 版 5.B 节全部和第 3 版 5.B 节前半部分与之相关的所有习题,还会覆盖第 4 版 5.A 节末。

II 部分除了覆盖第 3 版 5.B 节后半部分 [上三角矩阵] 这一小节,还会覆盖第 4 版 5.C 节;并且,下面 5.C 还会覆盖第 4 版 5.D 节。

```
「注:[8.40] OR (4E 5.22) — mini poly; [8.44,8.45] OR (4E 5.25,5.26) — how to find the mini poly; [8.49] OR (4E 5.27) — eigvals are the zeros of the mini poly; [8.46] OR (4E 5.29) — q(T) = 0 \Leftrightarrow q is a poly multi of the mini poly.]
```

1 2 3 5 6 7 8 10 11 12 13 18 19 | 2E: Ch5.24 4E: 5.A.32 5.A.33 3 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

- (4E 5.A.33) Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.
 - (a) Prove that T is inje \iff T^m is inje.
 - (b) Prove that T is surj \iff T^m is surj.

SOLUTION:

- (a) Suppose T^m is inje. Then $Tv=0 \Rightarrow T^{m-1}Tv=T^mv=0 \Rightarrow v=0$. Suppose T is inje. Then $T^mv=T^{m-1}v=\cdots=T^2v=Tv=v=0$.
- (b) Suppose T^m is surj. $\forall u \in V, \exists v \in V, T^m v = u = Tw$, let $w = T^{m-1}v$. Suppose T is surj. Then $\forall u \in V, \exists v_1, \dots, v_m \in V, T(v_1) = T^2v_2 = \dots = T^mv_m = u$.

• Note For [5.17]:

Suppose $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbf{F})$. Prove that $\operatorname{null} p(T)$ and range p(T) are invar under T. Solution: Using the commutativity in [5.10].

(a) Suppose $u \in \text{null } p(T)$. Then p(T)u = 0.

Thus
$$p(T)(Tu) = (p(T)T)u(Tp(T))u = T(p(T)u) = 0$$
. Hence $Tu \in \text{null } p(T)$.

(b) Suppose $u \in \text{range } p(T)$. Then $\exists v \in V$ such that u = p(T)v.

Thus
$$Tu = T(p(T)v) = p(T)(Tv) \in \text{range } p(T)$$
.

• Note For [5.21]: Every operator on a finite-dim nonzero complex vecsp has an eigval.

Suppose *V* is a finite-dim complex vecsp of dim n > 0 and $T \in \mathcal{L}(V)$.

Choose a nonzero $v \in V$. $(v, Tv, T^2v, ..., T^nv)$ of length n+1 is linely depe.

Suppose $a_0I + a_1T + \cdots + a_nT^n = 0$. Then $\exists a_i \neq 0$.

Thus \exists nonconst p of smallest degree ($\deg p > 0$) such that p(T)v = 0.

Because $\exists \lambda \in \mathbb{C}$ such that $p(\lambda) = 0 \Rightarrow \exists q \in \mathcal{P}(\mathbb{C}), p(z) = (z - \lambda)q(z), \forall z \in \mathbb{C}$.

Thus $0 = p(T)v = (T - \lambda I)(q(T)v)$. By the minimality of deg p and deg $q < \deg p$, $q(T)v \neq 0$.

Then $(T - \lambda I)$ is not inje. Thus λ is an eigval of T with eigvec q(T)v.

• **EXAMPLE**: an operator on a complex vecsp with no eigvals Define $T \in \mathcal{L}(\mathcal{P}(\mathbf{C}))$ by (Tp)(z) = zp(z).

Suppose $p \in \mathcal{P}(\mathbf{C})$ is a nonzero poly. Then deg $Tp = \deg p + 1$, and thus $Tp \neq \lambda p$, $\forall \lambda \in \mathbf{C}$. Hence *T* has no eigvals. **13** Suppose V is a complex vecsp and $T \in \mathcal{L}(V)$ has no eigvals. *Prove that every subsp of V invar under T is either* $\{0\}$ *or infinite-dim.* **SOLUTION**: Suppose *U* is a finite-dim nonzero invar subsp on C. Then by [5.21], $T|_U$ has an eigval. \Box **16** Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{\dim V}(\mathbf{C}), V)$ by S(p) = p(T)v. Prove [5.21]. **SOLUTION:** Because dim $\mathcal{P}_{\dim V}(\mathbf{C}) = \dim V + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{\dim V}(\mathbf{C}), p(T)v = 0$. Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Apply T to both sides: $p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$. Thus at least one of $(T - \lambda_i I)$ is not inje (because p(T) is not inje). **17** Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{(\dim V)^2}(\mathbf{C}), \mathcal{L}(V))$ by S(p) = p(T). Prove [5.21]. **SOLUTION:** Because dim $\mathcal{P}_{(\dim V)^2}(\mathbf{C}) = (\dim V)^2 + 1$. Then *S* is not inje. Hence $\exists p \in \mathcal{P}_{(\dim V)^2}(\mathbf{C}) \setminus \{0\}, 0 = S(p) = p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$, where $c \neq 0$. Thus $(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0 \Longrightarrow \exists j, (T - \lambda_j)$ is not inje. **COMMENT:** \exists monic $q \in \text{null } S \neq \{0\}$ of smallest degree, S(q) = q(T) = 0, then q is the *mini poly*. • **Note For** [8.40]: *def for mini poly* Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Suppose $M_T^0 = \{p_i\}_{i \in \Gamma}$ is the set of all monic poly that give 0 whenever T is applied. Prove that $\exists ! p_k \in M_T^0$, $\deg p_k = \min \{ \deg p_i \}_{i \in \Gamma} \leqslant \dim V$. **SOLUTION:** OR. Another Proof: $\mid Existns \ Part \mid We \ use induction on dim \ V.$ (i) If dim V = 0, then $I = 0 \in \mathcal{L}(V)$ and let p = 1, we are done. (ii) Suppose dim $V \ge 1$. Assume that dim V > 0 and that the desired result is true for all operators on all vecsps of smaller dim. Let $u \in V$, $u \neq 0$. The list $(u, Tu, ..., T^{\dim V}u)$ of length $(1 + \dim V)$ is linely depe. Then $\exists ! T^m$ of smallest degree such that $T^m u \in \text{span}(u, Tu, ..., T^{m-1}u)$. Thus $\exists c_i \in \mathbf{F}, c_0 u + c_1 T u + \dots + c_{m-1} T^{m-1} u + T^m u = 0.$ Define q by $q(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m$. Then $0 = T^k(q(T)u) = q(T)(T^ku), \forall k \in \{1, ..., m-1\} \subseteq \mathbb{N}.$ Because $(u, Tu, ..., T^{m-1}u)$ is linely inde. Thus dim null $q(T) \ge m \Rightarrow \dim \operatorname{range} q(T) = \dim V - \dim \operatorname{null} q(T) \le \dim V - m$. Let $W = \operatorname{range} q(T)$. By assumption, $\exists s \in M_T^0$ of smallest degree (and deg $s \leq \dim W$,) so that $s(T|_W) = 0$. Hence $\forall v \in V$, ((sq)(T))(v) = s(T)(q(T)v) = 0. Thus $sq \in M_T^0$ and $\deg sq \leqslant \dim V$. | Uniques Part | Suppose $p, q \in M_T^0$ are of the smallest degree. Then (p-q)(T) = 0. $\mathbb{Z} \deg(p-q) = m < \min\{\deg p_i\}_{i \in \Gamma}$. Hence p - q = 0, for if not, $\exists ! c \in \mathbf{F}, c(p - q) \in M_T^0$. Contradicts.

 (4E 5.51, 4E 5.5.25 and 26) multi poly of restriction operator and multi poly of quotient operator. Suppose V is finite-dim, T ∈ L(V), and U is an invar subsp of V under T. Let p be the mini poly of T. (a) Prove that p is a poly multi of the mini poly of T _U. (b) Prove that p is a poly multi of the mini poly of T/U. (c) Prove that (mini poly of T _U) × (mini poly of T/U) is a poly multi of p. (d) Prove that the set of eigvals of T equals the union of the set of eigvals of T _U and the set of eigvals of T/U. 	
Solution: (a) $p(T) = 0 \Rightarrow \forall u \in U, p(T)u = 0 \Rightarrow p(T _{U}) = 0 \Rightarrow \text{By } [8.46].$ (b) $p(T) = 0 \Rightarrow \forall v \in V, p(T)v = 0 \Rightarrow p(T/U)(v + U) = p(T)v + U = 0.$ (c) Suppose r is the mini poly of $T _{U}$, s is the mini poly of T/U . Because $\forall v \in V, s(T/U)(v + U) = s(T)v + U = 0$. So that $\forall v \in V$ but $v \notin U, s(T)v \in U$. $\forall u \in U, r(T _{U})u = r(T)u = 0.$ Thus $\forall v \in V$ but $v \notin U, (rs)(T)v = r(s(T)v) = 0.$	
And $\forall u \in U$, $(rs)(T)u = r(s(T)u) = 0$ (because $s(T)u = s(T _U)u \in U$). Hence $\forall v \in V$, $(rs)(T)v = 0 \Rightarrow (rs)(T) = 0$. (d) By [8.49], immediately.	
• (4E 5.B.27) Suppose $\mathbf{F} = \mathbf{R}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T_{\mathbf{C}}$ equals the mini poly q of T . SOLUTION: (a) $\forall u + \mathrm{i}0 \in V_{\mathbf{C}}$, $p(T_{\mathbf{C}})(u) = p(T)u = 0 \Rightarrow \forall u \in V$, $p(T)u = 0 \Rightarrow p$ is a poly multi of q . (b) $q(T) = 0 \Rightarrow \forall u + \mathrm{i}v \in V_{\mathbf{C}}$, $q(T_{\mathbf{C}})(u + \mathrm{i}v) = q(T)u + \mathrm{i}q(T)v = 0 \Rightarrow q$ is a poly multi of p .	
• (4E 5.B.28) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T' \in \mathcal{L}(V')$ equals the mini poly q of T . SOLUTION: (a) $\forall \varphi \in V', p(T')\varphi = \varphi \circ (p(T)) = 0 \Rightarrow \forall \varphi \in V', p(T) \in \text{null } \varphi \Rightarrow p(T) = 0, p \text{ is a poly multiple} p(T) = 0 \Rightarrow \forall \varphi \in V', \varphi \circ (q(T)) = q(T')\varphi = 0 \Rightarrow q(T) = 0, q \text{ is a poly multiple} p(T) = 0$.	i of q .
• (4E 5.32) Suppose $T \in \mathcal{L}(V)$ and p is the mini poly. Prove that T is not inje \iff the const term of p is 0 .	
Solution: T is not inje \iff 0 is an eigval of T \iff 0 is a zero of p \iff the const term of p is 0. Or. Because $p(0) = (z-0)(z-\lambda_1)\cdots(z-\lambda_m) = 0 \Rightarrow T(T-\lambda_1 I)\cdots(T-\lambda_m I) = 0$ $\not \subset p$ is the mini poly $\Rightarrow q$ define by $q(z) = (z-\lambda_1)\cdots(z-\lambda_m)$ is such that $q(T) \neq 0$. Hence $0 = p(T) = Tq(T) \Rightarrow T$ is not inje. Conversely, suppose $(T-0I)$ is not inje, then 0 is a zero of p , so that the const term is 0.	
• (4E 5.B.22) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Prove that T is inv $\iff I \in \operatorname{span}(T, T^2,, T^{\dim})$	$^{V}).$

SOLUTION: Denote the mini poly by p, where for all $z \in \mathbf{F}$, $p(z) = a_0 + a_1 z + \cdots + z^m$.

Notice that V is finite-dim. T is inv \iff T is inje \iff $p(0) \neq 0$.

Hence $p(T) = 0 = a_0I + a_1T + \dots + T^m$, where $a_0 \neq 0$ and $m \leq \dim V$.	
Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V invar under T . Prove that U is invar under $p(T)$ for every poly $p \in \mathcal{P}(\mathbf{F})$. Solution:	
$\forall u \in U, Tu \in U \Rightarrow Iu, Tu, T(Tu), \dots, T^m u \in U \Longrightarrow \forall a_k \in \mathbb{F}, (a_0I + a_1T + \dots + a_mT^m)u \in U.$	
Suppose V is finite-dim, $T \in \mathcal{L}(V)$ and p is the mini poly with degree Suppose $v \in V$. (a) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{j-1}v)$ for some $j \leqslant m$. (b) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{m-1}v, \dots, T^nv)$. Solution: Comment: By Note For[8.40], j has an upper bound $m-1$, m has an upper bound dim V . Write $p(z) = a_0 + a_1z + \dots + z^m$ ($m \leqslant \dim V$). If $v = 0$, then we are done. Suppose $v \neq 0$. (a) Suppose $j \in \mathbb{N}^+$ is the smallest such that $T^jv \in \operatorname{span}(v, Tv, \dots, T^{j-1}v) = U_0$. Then $j \leqslant m$. Write $T^jv = c_0v + c_1Tv + \dots + c_{j-1}T^{j-1}v$. And because $T(T^kv) = T^{k+1} \in U_0$. U_0 is invar under By Problem (6), $\forall k \in \mathbb{N}$, $T^{j+k}v = T^k(T^jv) \in U_0$. Thus $U_0 = \operatorname{span}(v, Tv, \dots, T^{j-1}v, \dots, T^nv)$ for all $n \geqslant j-1$. Let $n = m-1$ and we are done. (b) Let $U = \operatorname{span}(v, Tv, \dots, T^{m-1}v)$.	
By (a), $U = U_0 = \text{span}(v, Tv,, T^{j-1},, T^{m-1},, T^n)$ for all $n \ge m-1$.	
O (4E 5.B.21) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly p has degree at most $1 + \dim \operatorname{range} T$. If $\dim \operatorname{range} T < \dim V - 1$, then this result gives a better upper bound for the degree of mini poly. SOLUTION: If T is inje, then $\operatorname{range} T = V$ and we are done. Now choose $0 \neq v \in \operatorname{null} T$, then $Tv + 0 \cdot v = 0$. 1 is the smallest positive integer such that $T^1v \in \operatorname{span}(v, \dots, T^0v)$. Define q by $q(z) = z \Rightarrow q(T)v$. Let $W = \operatorname{range} q(T) = \operatorname{range} T$. \exists monic $s \in \mathcal{P}(\mathbf{F})$ of smallest degree $(\deg s \leqslant \dim W)$, $s(T _W) = (\deg s)$. Hence sq is the mini poly $(\operatorname{see} \operatorname{NOTE} \operatorname{FOR}[8.40])$ and $\deg(sq) = \deg s + \deg q \leqslant \dim \operatorname{range} T + 1$.	= 0.
19 Suppose V is finite-dim, dim $V > 1$, $T \in \mathcal{L}(V)$. Prove that $\{p(T) : p \in \mathcal{P}(\mathbf{F})\} \neq \mathcal{L}(V)$. Solution: If $\forall S \in \mathcal{L}(V)$, $\exists p \in \mathcal{P}(F)$, $S = p(T)$. Then by $[5.20]$, $\forall S_1, S_2 \in \mathcal{L}(V)$, $S_1S_2 = S_2S_1$. Note that dim \geqslant 2. By $(3.A.14)$, $\exists S_1, S_2 \in \mathcal{L}(V)$, $S_1S_2 \neq S_2S_1$. Contradicts.	V).
Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $\mathcal{E} = \left\{q(T) : q \in \mathcal{P}(\mathbf{F})\right\}$. Prove that $\dim \mathcal{E}$ equals the degree of the mini poly of T . Solution: Because the list $(I, T, \dots, T^{\left(\dim V\right)^2})$ of length $\dim \mathcal{L}(V) + 1$ is linely depe in $\dim \mathcal{L}(V)$. Suppose $m \in \mathbb{N}^+$ is the smallest such that $T^m = a_0I + \dots + a_{m-1}T^{m-1}$. Then q defined by $q(z) = z^m - a_{m-1}z^{m-1} - \dots - a_0$ is the mini poly (see [8.40]). For any $k \in \mathbb{N}^+$, $T^{m+k} = T^k(T^m) \in \operatorname{span}(I, T, \dots, T^{m-1}) = U$. Hence $\operatorname{span}(I, T, \dots, T^{\left(\dim V\right)^2}) = \operatorname{span}(I, T, \dots, T^{\left(\dim V\right)^2}) = U$. Note that by the minimality of m , (I, T, \dots, T^{m-1}) is linely inde.	

Define $\varphi \in \mathcal{L}(\mathcal{P}_{m-1}(\mathbf{F}), \mathcal{E})$ by $\varphi(p) = p(T)$. (a) Suppose p(T) = 0. $\mathbb{Z} \deg p \leq m - 1 \Rightarrow p = 0$. Then φ is inje. (b) $\forall S = a_0 I + a_1 T + \dots + a_{m-1} T^{m-1} \in \mathcal{E}$, define $p \in \mathcal{P}_{m-1}(\mathbf{F})$ by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} \Rightarrow \varphi(p) = S$. Then φ is surj. Hence \mathcal{E} and $\mathcal{P}_{m-1}(\mathbf{F})$ are iso. \mathbb{Z} dim $\mathcal{P}_{m-1}(\mathbf{F}) = m = \dim U$. • (4E 5.B.13) Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbf{F})$ is defined by $q(z) = a_0 + a_1 z + \dots + a_n z^n$, where $a_n \neq 0$, for all $z \in \mathbf{F}$. *Denote the mini poly of T by p defined by* $p(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m \text{ for all } z \in \mathbf{F}.$ *Prove that* $\exists ! r \in \mathcal{P}(\mathbf{F})$ *such that* q(T) = r(T), $\deg r < \deg p$. **SOLUTION:** If $\deg q < \deg p$, then we are done. If deg $q = \deg p$, notice that $p(T) = 0 = c_0 I + c_1 T + \dots + c_{m-1} T^{m-1} + T^m$ $\Rightarrow T^m = -c_0 I - c_1 T - \dots - c_{m-1} T^{m-1}$ define r by $r(z) = q(z) + [-a_m z^m + a_m (-c_0 - c_1 z - \dots - c_{m-1} z^{m-1})]$ $= (a_0 - a_m c_0) + (a_1 - a_m c_1)z + \dots + (a_{m-1} - a_m c_{m-1})z^{m-1},$ hence r(T) = 0, deg r < m and we are done. Now suppose $\deg q \geqslant \deg p$. We use induction on $\deg q$. (i) $\deg q = \deg p$, then the desired result is true, as shown above. (ii) $\deg q > \deg p$, assume that the desired result is true for $\deg q = n$. Suppose $f \in \mathcal{P}(\mathbf{F})$ such that $f(z) = b_0 + b_1 z + \dots + b_n z^n + b_{n+1} z^{n+1}$. Apply the assumption to g defined by $g(z) = b_0 + b_1 z + \cdots + b_n z^n$, getting *s* defined by $s(z) = d_0 + d_1 z + \cdots + d_{m-1} z^{m-1}$. Thus $g(T) = s(T) \Rightarrow f(T) = g(T) + b_{n+1}T^{n+1} = s(T) + b_{n+1}T^{n+1}$. Apply the assumption to t defined by $t(z) = z^n$, getting δ defined by $\delta(z) = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1}$. Thus $t(T) = T^n = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1} = \delta(T)$. \mathbb{X} span $(v, Tv, \dots, T^{m-1}v)$ is invar under T. Hence $\exists ! k_j \in \mathbf{F}, T^{n+1} = T(T^n) = k_0 + k_1 z + \dots + k_{m-1} z^{m-1}$. And $f(T) = s(T) + b_{n+1}(k_0 + k_1T + \dots + k_{m-1}T^{m-1})$

Thus dim $U = m = \dim \operatorname{span}(I, T, \dots, T^{\left(\dim V\right)^2 - 1}) = \dim \operatorname{span}(I, T, \dots, T^n)$ for all $m < n \in \mathbb{N}^+$.

• (4E 5.B.14) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has mini poly p defined by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m$, $a_0 \neq 0$. Find the mini poly of T^{-1} .

SOLUTION:

Notice that V is finite-dim. Then $p(0)=a_0\neq 0\Rightarrow 0$ is not a zero of $p\Rightarrow T-0I=T$ is inv. Then $p(T)=a_0I+a_1T+\cdots+T^m=0$. Apply T^{-m} to both sides, $a_0\big(T^{-1}\big)^m+a_1\big(T^{-1}\big)^{m-1}+\cdots+a_{m-1}T^{-1}+I=0$. Define q by $q(z)=z^m+\frac{a_1}{a_0}z^{m-1}+\cdots+\frac{a_{m-1}}{a_0}z+\frac{1}{a_0}$ for all $z\in \mathbb{F}$.

 $\Rightarrow f(T) = (d_0 + k_0) + (d_1 + k_1)z + \dots + (d_{m-1} + k_{m-1})z^{m-1} = h(T)$, thus defining h.

We now show that $(T^{-1})^k \notin \operatorname{span}(I, T^{-1}, \dots, (T^{-1})^{k-1})$

```
for every k \in \{1, ..., m-1\} by contradiction, so that q is exactly the mini poly of T^{-1}.
  Suppose (T^{-1})^k \in \text{span}(I, T^{-1}, ..., (T^{-1})^{k-1}).
  Then let (T^{-1})^k = b_0 I + b_1 T^{-1} + \dots + b_{k-1} T^{k-1}. Apply T^k to both sides,
           getting I = b_0 T^k + b_1 T^{k-1} + \dots + b_{k-1} T, hence T^k \in \text{span}(I, T, \dots, T^{k-1}).
  Thus f defined by f(z) = z^k + \frac{b_1}{h_0} z^{k-1} + \dots + \frac{b_{k-1}}{h_0} z - \frac{1}{h_0} is a poly multi of p.
  While \deg f < \deg p. Contradicts.
                                                                                                                                   • Note For [8.49]:
  Suppose V is a finite-dim complex vecsp and T \in \mathcal{L}(V).
  By [4.14], the mini poly has the form (z - \lambda_1) \cdots (z - \lambda_m),
  where \lambda_1, \dots, \lambda_m are all the eigenst of T, possibly with repetitions.
• COMMENT:
  A nonzero poly has at most as many distinct zeros as its degree (see [4.12]).
  Thus by the upper bound for the deg of mini poly given in Note For [8.40], and by [8.49,]
  we can give an alternative proof of [5.13].
• NOTICE ( See also 4E 5.B.20,24 )
  Suppose \alpha_1, \dots, \alpha_n are all the distinct eigvals of T,
  and therefore are all the distinct zeros of the mini poly.
  Also, the mini poly of T is a poly multi of, but not equal to, (z - \alpha_1) \cdots (z - \alpha_n).
  If we define q by q(z) = (z - \alpha_1)^{\dim V - (n-1)} \cdots (z - \alpha_n)^{\dim V - (n-1)},
  then q is a poly multi of the char poly (see [8.34] and [8.26])
  (Because dim V > n and n - 1 > 0, n \lceil \dim V - (n - 1) \rceil > \dim V.)
  The char poly has the form (z - \alpha_1)^{\gamma_1} \cdots (z - \alpha_n)^{\gamma_n}, where \gamma_1 + \cdots + \gamma_n = \dim V.
  The mini poly has the form (z - \alpha_1)^{\delta_1} \cdots (z - \alpha_n)^{\delta_n}, where 0 \le \delta_1 + \cdots + \delta_n \le \dim V.
10 Suppose T \in \mathcal{L}(V), \lambda is an eigral of T with an eigrec v.
    Prove that for any p \in \mathcal{P}(\mathbf{F}), p(T)v = p(\lambda)v.
SOLUTION:
  Suppose p is defined by p(z) = a_0 + a_1 z + \dots + a_m z^m for all z \in \mathbb{F}. Because for any n \in \mathbb{N}^+, T^n v = \lambda^n v.
  Thus p(T)v = a_0v + a_1Tv + \dots + a_mT^mv = a_0v + a_1\lambda v + \dots + a_m\lambda^mv = p(\lambda)v.
                                                                                                                                   COMMENT: For any p \in \mathcal{P}(\mathbf{F}) such that p(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m}, the result is true as well.
  Now we prove that (T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v = (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v.
  Define q_i by q_i(z) = (z - \lambda_i)^{\alpha_i} for all z \in \mathbf{F}.
  Because (a + b)^n = a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n.
   Let a = z, b = \lambda_i, n = \alpha_i, so we can write q_i(z) in the form a_0 + a_1 z + \cdots + a_m z^m.
  Hence q_i(T)v = q_i(\lambda)v \Rightarrow (T - \lambda_i I)^{\alpha_i}v = (\lambda - \lambda_i)^{\alpha_i}v.
  Then for each k \in \{2, ..., m\}, (T - \lambda_{k-1}I)^{\alpha_{k-1}} (T - \lambda_k I)^{\alpha_k} v
                                     = q_{k-1}(T)(q_k(T)v)
                                     = q_{k-1}(T)(q_k(\lambda)v)
                                     = q_{k-1}(\lambda)(q_k(\lambda)v)
```

 $= (\lambda - \lambda_{k-1})^{\alpha_{k-1}} (\lambda - \lambda_k)^{\alpha_k} v.$

So that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v$

$$= q_1(T) \left(q_2(T) \left(\dots \left(q_m(T) v \right) \dots \right) \right)$$

$$= q_1(\lambda) \left(q_2(\lambda) \left(\dots \left(q_m(\lambda) v \right) \dots \right) \right)$$

$$= \left(\lambda - \lambda_1 \right)^{\alpha_1} \dots \left(\lambda - \lambda_m \right)^{\alpha_m} v.$$

8 [OR (4E 5.A.31)] Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

SOLUTION:

Define $i \in \mathcal{L}(\mathbb{R}^2)$ by i(x,y) = (-y,x). Just like $i : \mathbb{C} \to \mathbb{C}$ defined by i(x+iy) = -y + ix.

Define
$$i^n \in \mathcal{L}(\mathbb{R}^2)$$
 by $i(x,y) = \left(\operatorname{Re}(i^n x + i^{n+1} y), \Im m(i^n x + i^{n+1} y) \right)$.

$$T^4 + I = (T^2 + iI)(T^2 - iI) = (T + i^{1/2}I)(T - i^{1/2}I)(T - (-i)^{1/2}I)(T + (-i)^{1/2}I).$$

Note that
$$i^{1/2} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
, $(-i)^{1/2} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$. Hence $T = \pm (\pm i)^{1/2}I$.

Let
$$T = i^{1/2}I$$
 defined by $i^{1/2}(x,y) = \left(\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)$.

Or. Because
$$\mathcal{M}\big(T^4\big) = \begin{pmatrix} \cos{(-\pi)} & \sin{(-\pi)} \\ -\sin{(-\pi)} & \cos{(-\pi)} \end{pmatrix}$$
. Using $\begin{pmatrix} \cos{\alpha} & \sin{\alpha} \\ -\sin{\alpha} & \cos{\alpha} \end{pmatrix}^n = \begin{pmatrix} \cos{n\alpha} & \sin{n\alpha} \\ -\sin{n\alpha} & \cos{n\alpha} \end{pmatrix}$. We define $T \in \mathcal{L}\big(\mathbf{R}^2\big)$ such that $\mathcal{M}\big(T\big) = \begin{pmatrix} \cos{(-\pi/4)} & \sin{(-\pi/4)} \\ -\sin{(-\pi/4)} & \cos{(-\pi/4)} \end{pmatrix}$.

We define
$$T \in \mathcal{L}(\mathbb{R}^2)$$
 such that $\mathcal{M}(T) = \begin{pmatrix} \cos(-\pi/4) & \sin(-\pi/4) \\ -\sin(-\pi/4) & \cos(-\pi/4) \end{pmatrix}$.

• (4E 5.B.12) Find the mini poly of T defined in (5.A.10).

SOLUTION: By (5.A.9) and [8.40, 8.49], 1, 2, ...,
$$n$$
 are all the zeros of the mini poly of T .

• (4E 5.B.3) Find the mini poly of T defined in (5.A.19).

SOLUTION:

If n = 1 then 1 is the only eigval of T, and (z - 1) is the mini poly.

Because n and 0 are all the eigvals of T, X $\forall k \in \{1, ..., n\}$, $Te_k = e_1 + \cdots + e_n$; $T^2e_k = n(e_1 + \cdots + e_n)$.

Hence
$$T^2e_k = n(Te_k) \Rightarrow T^2 = nT \Rightarrow T^2 - nT = T(T-n) = 0$$
. Thus $(z(z-n))$ is the mini poly.

• (4E 5.B.8) Find the mini poly of T. Where $T \in \mathcal{L}(\mathbf{R}^2)$ is the operator of counterclockwise rotation by θ , where $\theta \in \mathbb{R}^+$.

SOLUTION:

If $\theta = \pi + 2k\pi$, then T(w,z) = (-w,-z), $T^2 = I$ and the mini poly is z + 1.

If $\theta = 2k\pi$, then T = I and the mini poly is z - 1.

Otherwise (v, Tv) is linely inde. Then span $(v, Tv) = \mathbb{R}^2$. Note that $\nexists b \in \mathbb{F}, T - bI = 0$.

Thus suppose the mini poly p is defined by $p(z) = z^2 + bz + c$ for all $z \in \mathbb{R}$.

Hence
$$p(T) = T^2 - 2\cos\theta T + I = 0$$
 and $z^2 - 2\cos\theta z + 1$ is the mini poly of T .

OR. Let (e_1, e_2) be the std basis of \mathbb{R}^2 . We use the pattern shown in [8.44].

Because $Te_1 = \cos\theta \ e_1 + \sin\theta \ e_2$, $T^2e_1 = \cos2\theta \ e_1 + \sin2\theta \ e_2$.

Thus
$$ce_1 + bTe_1 = -T^2e_1 \iff \begin{pmatrix} 1 & \cos\theta \\ 0 & \sin\theta \end{pmatrix} \begin{pmatrix} c \\ b \end{pmatrix} = \begin{pmatrix} -\cos 2\theta \\ -\sin 2\theta \end{pmatrix}$$
. Now $\det = \sin\theta \neq 0, c = 1, b = 2\cos\theta$.

Or.
$$\mathcal{M}\left(T,\left(e_{1},e_{2}\right)\right)=\begin{pmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{pmatrix}$$
. By (4E 5.B.11), the mini poly is $\left(z\pm1\right)$ or $\left(z^{2}-2\cos\theta\,z+1\right)$. \square

- (4E 5.B.11) Suppose V is a two-dim vecsp, $T \in \mathcal{L}(V)$, and the matrix of T with resp to some basis of V is $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$.
 - (a) Show that $T^2 (a + d)T + (ad bc)I = 0$.
 - (b) Show that the mini poly of T equals

$$\begin{cases} z - a & \text{if } b = c = 0 \text{ and } a = d, \\ z^2 - (a + d)z + (ad - bc) & \text{otherwise.} \end{cases}$$

SOLUTION:

- (a) Suppose the basis is (v, w). Because $\begin{cases} Tv = av + bw \Rightarrow (T aI)v = bw, \text{ then apply } (T dI) \text{ to both sides} \\ Tw = cv + dw \Rightarrow (T dI)w = cv, \text{ then apply } (T aI) \text{ to both sides} \end{cases}$ Hence $(T aI)(T dI) = bcI \Rightarrow T^2 (a + d)T + (ad bc)I = 0.$
- (b) If b = c = 0 and a = d. Then $\mathcal{M}(T) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = a\mathcal{M}(I)$. Thus T = aI. Hence the mini poly is z a. Otherwise, by (a), $z^2 (a + d)z + (ad bc)$ is a poly multi of the mini poly. Now we prove that $T \notin \operatorname{span}(I)$, so that then the mini poly of T has exactly degree 2. (At least one of the assumption of (I),(II) below is true.)
 - (I) Suppose a = d, then $Tv = av + bw \notin \text{span}(v)$, $Tw = cv + aw \notin \text{span}(w)$.
 - (II) Suppose at most one of b, c is not 0. If b = 0, then $Tw \notin \text{span}(w)$; If c = 0, then $Tv \notin \text{span}(v)$
- Suppose $S, T \in \mathcal{L}(V)$, S is inv, and $p \in \mathcal{P}(\mathbf{F})$. Prove that Sp(TS) = p(ST)S.

SOLUTION:

We prove $S(TS)^m = (ST)^m S$ for each $m \in \mathbb{N}$ by induction.

- (i) If m = 0, 1. Then $S(TS)^0 = I = (ST)^0 S$; $S(TS)^1 = (ST) S$.
- (ii) If m > 1. Assume that $S(TS)^m = (ST)^m S$.

Then $S(TS)^{m+1} = S(TS)^m(TS) = (ST)^m STS = (ST)^{m+1} S$.

Hence $\forall p \in \mathcal{P}(\mathbf{F}), Sp(TS) = \sum_{k=1}^{m} a_k S(TS)^k = \sum_{k=1}^{m} a_k p(ST)^k S = \left[\sum_{k=1}^{m} a_k (TS)^k\right] S.$

COMMENT: $p(TS) = S^{-1}p(ST)S$, $p(ST) = Sp(TS)S^{-1}$.

COROLLARY: 5 Because S is inv, $T \in \mathcal{L}(V)$ is arbitrary $\iff R = ST$ is arbitrary.

Hence $\forall R \in \mathcal{L}(V)$, inv $S \in \mathcal{L}(V)$, $p(S^{-1}RS) = S^{-1}p(R)S$.

- (4E 5.B.7) Suppose $S, T \in \mathcal{L}(V)$. Let p, q be the mini polys of ST, TS respectively.
 - (a) If $V = \mathbf{F}^2$. Give an example such that $p \neq q$; (b) If S or T is inv. Prove that p = q.

SOLUTION:

(a) Define S by S(x,y)=(x,x). Define T by T(x,y)=(0,y). Then ST(x,y)=0, TS(x,y)=(0,x) for all $(x,y)\in \mathbb{F}^2$. Thus $ST=0\neq TS$ and $(TS)^2=0$. Hence the mini poly of ST does not equal to the mini poly of TS.

(b) Suppose S is inv. Because p,q are monic.

$$p(ST) = 0 = Sp(TS)S^{-1} \Rightarrow p(TS) = 0, p \text{ is a poly multi of } q$$

$$q(TS) = 0 = S^{-1}q(ST)S \Rightarrow q(ST) = 0, q \text{ is a poly multi of } p$$

$$\Rightarrow p = q.$$

Reversing the roles of *S* and *T*, we conclude that if *T* is inv, then p = q as well.

11 Suppose F = C, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(C)$, and $\alpha \in C$.

Prove that α *is an eigral of* $p(T) \iff \alpha = p(\lambda)$ *for some eigral* λ *of* T.

SOLUTION:

(a) Suppose α is an eigval of $p(T) \Leftrightarrow (p(T) - \alpha I)$ is not inje.

```
Write p(z) - \alpha = c(z - \lambda_1) \cdots (z - \lambda_m) \Rightarrow p(T) - \alpha I = c(T - \lambda_1 I) \cdots (T - \lambda_m I).
        By Tips, \exists (T - \lambda_i I) not inje. Thus p(\lambda_i) - \alpha = 0.
   (b) Suppose \alpha = p(\lambda) and \lambda is an eigval of T with an eigvec v. Then p(T)v = p(\lambda)v = \alpha v.
                                                                                                                                       Or. Define q by q(z) = p(z) - \alpha. \lambda is a zero of q.
        Because q(T)v = (p(T) - \alpha I)v = q(\lambda)v = (p(\lambda) - \alpha)v = 0.
        Hence q(T) is not inje \Rightarrow (p(T) - \alpha I) is not inje.
                                                                                                                                       12 [OR (4E.5.B.6)] Give an example of an operator on \mathbb{R}^2
    that shows the result above does not hold if C is replaced with R.
SOLUTION:
   Define T \in \mathcal{L}(\mathbb{R}^2) by T(w,z) = (-z,w).
   By Problem (4E 5.B.11), \mathcal{M}(T, ((1,0), (0,1))) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow the mini poly of T is z^2 + 1.
   Define p by p(z) = z^2. Then p(T) = T^2 = -I. Thus p(T) has eigval -1.
   While \nexists \lambda \in \mathbf{R} such that -1 = p(\lambda) = \lambda^2.
                                                                                                                                       • (4E 5.B.17) Suppose V is finite-dim, T \in \mathcal{L}(V), \lambda \in \mathbf{F}, and p is the mini poly of T.
  Show that the mini poly of (T - \lambda I) is the poly q defined by q(z) = p(z + \lambda).
SOLUTION:
   q(T - \lambda I) = 0 \Rightarrow q is poly multi of the mini poly of (T - \lambda I).
   Suppose the degree of the mini poly of (T - \lambda I) is n, and the degree of the mini poly of T is m.
   By definition of mini poly,
   n is the smallest such that (T - \lambda I)^n \in \text{span}(I, (T - \lambda I), ..., (T - \lambda I)^{n-1});
   m is the smallest such that T^m \in \text{span}(I, T, ..., T^{m-1}).
   \not\subset T^k \in \operatorname{span}(I, T, \dots, T^{k-1}) \iff (T - \lambda)^k \in \operatorname{span}(I, (T - \lambda I), \dots, (T - \lambda I)^{k-1}).
   Thus n = m. \mathbb{Z} q is monic. By the uniques of mini poly.
                                                                                                                                       • (4E 5.B.18) Suppose V is finite-dim, T \in \mathcal{L}(V), \lambda \in \mathbb{F} \setminus \{0\}, and p is the mini poly of T.
  Show that the mini poly of \lambda T is the poly q defined by q(z) = \lambda^{\deg p} p(\frac{z}{\lambda}).
SOLUTION:
   q(\lambda T) = \lambda^{\deg p} p(T) = 0 \Rightarrow q is a poly multi of the mini poly of \lambda T.
   Suppose the degree of the mini poly of \lambda T is n, and the degree of the mini poly of T is m.
   By definition of mini poly,
   n is the smallest such that (\lambda T)^n \in \text{span}(\lambda I, \lambda T, ..., (\lambda T)^{n-1});
   m is the smallest such that T^m \in \text{span}(I, T, ..., T^{m-1}).
   \mathbb{Z}(\lambda T)^k \in \operatorname{span}(\lambda I, \lambda T, \dots, (\lambda T)^{k-1}) \iff T^k \in \operatorname{span}(I, T, \dots, T^{k-1}).
   Thus n = m. \mathbb{Z} q is monic. By the uniques of mini poly.
                                                                                                                                       18 [OR (4E 5.B.15)] Suppose V is a finite-dim complex vecsp with dim V > 0 and T \in \mathcal{L}(V).
    Define f: \mathbb{C} \to \mathbb{R} by f(\lambda) = \dim \operatorname{range} (T - \lambda I).
    Prove that f is not a continuous function.
```

Let λ_0 be an eigval of T. Then $(T - \lambda_0 I)$ is not surj. Hence dim range $(T - \lambda_0 I) < \dim V$.

Because T has finitely many eigvals. There exist a sequence of number $\{\lambda_n\}$ such that $\lim_{n\to\infty}\lambda_n=\lambda_0$.

SOLUTION: Note that V is finite-dim.

And λ_n is not an eigval of T for each $n \Rightarrow \dim \operatorname{range}(T - \lambda_n I) = \dim V \neq \dim \operatorname{range}(T - \lambda_0 I)$. Thus $f(\lambda_0) \neq \lim_{n \to \infty} f(\lambda_n)$.

• (4E 5.B.9) Suppose $T \in \mathcal{L}(V)$ is such that with resp to some basis of V, all entries of the matrix of T are rational numbers. Explain why all coeffs of the mini poly of T are rational numbers.

SOLUTION:

Let (v_1, \ldots, v_n) denote the basis such that $\mathcal{M}(T, (v_1, \ldots, v_n))_{j,k} = A_{j,k} \in \mathbf{Q}$ for all $j, k = 1, \ldots, n$. Denote $\mathcal{M}(v_i, (v_1, ..., v_n))$ by x_i for each v_i .

Suppose p is the mini poly of T and $p(z) = z^m + \cdots + c_1 z + c_0$. Now we show that each $c_j \in \mathbb{Q}$.

Note that $\forall s \in \mathbf{N}^+$, $\mathcal{M}(T^s) = \mathcal{M}(T)^s = A^s \in \mathbf{Q}^{n,n}$ and $T^s v_k = A^s_{1,k} v_1 + \dots + A^s_{n,k} v_n$ for all $k \in \{1,\dots,n\}$.

Thus
$$\begin{cases} \mathcal{M}(p(T)v_1) = (A^m + \dots + c_1 A + c_0 I)x_1 = \sum_{j=1}^n \left(A^m + \dots + c_1 A + c_0 I\right)_{j,1} x_j = 0; \\ \vdots \\ \mathcal{M}(p(T)v_n) = (A^m + \dots + c_1 A + c_0 I)x_n = \sum_{j=1}^n \left(A^m + \dots + c_1 A + c_0 I\right)_{j,n} x_j = 0; \\ \end{bmatrix} \\ \text{More clearly,} \\ \begin{cases} \left(A^m + \dots + c_1 A + c_0 I\right)_{1,1} = \dots = \left(A^m + \dots + c_1 A + c_0 I\right)_{n,1} = 0; \\ \vdots & \ddots & \vdots \\ \left(A^m + \dots + c_1 A + c_0 I\right)_{1,n} = \dots = \left(A^m + \dots + c_1 A + c_0 I\right)_{n,n} = 0; \\ \text{Hence we get a system of } n^2 \text{ linear equations in } m \text{ unknowns } c_0, c_1, \dots, c_{m-1}. \end{cases}$$

We conclude that $c_0, c_1, \dots, c_{m-1} \in \mathbb{Q}$.

• [OR (4E 5.B.16), OR (8.C.18)] Suppose $a_0, \ldots, a_{n-1} \in \mathbf{F}$. Let T be the operator on \mathbf{F}^n such that

$$\mathcal{M}(T) = \begin{pmatrix} 0 & & & -a_0 \\ 1 & 0 & & & -a_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & -a_{n-2} \\ 0 & & & 1 & -a_{n-1} \end{pmatrix}, \text{ with resp to the std basis } (e_1, \dots, e_n).$$

Show that the mini poly of T is p defined by $p(z) = a_0 + a_1 z + \cdots + a_{n-1} z^{n-1} + z^n$.

 $\mathcal{M}(T)$ is called the **companion matrix** of the poly above. This exercise shows that every monic poly is the mini poly of some operator. Hence a formula or an algorithm that could produce exact eigvals for each operator on each \mathbf{F}^n could then produce exact zeros for each poly [by 8.36(b)]. Thus there is no such formula or algorithm. However, efficient numeric methods exist for obtaining very good approximations for the eigvals of an operator.

SOLUTION: Note that $(e_1, Te_1, ..., T^{n-1}e_1)$ is linely inde. \mathbb{X} The deg of mini poly is at most n.

$$T^{n}e_{1} = \dots = T^{n-k}e_{1+k} = \dots = Te_{n} = -a_{0}e_{1} - a_{1}e_{2} - a_{2}e_{3} - \dots - a_{n-1}e_{n}$$

$$= (-a_{0}I - a_{1}T - a_{2}T^{2} - \dots - a_{n-1}T^{n-1})e_{1}. \text{ Thus } p(T)e_{1} = 0 = p(T)e_{j} \text{ for each } e_{j} = T^{j-1}e_{1}.$$

- EIGENVALUES ON ODD-DIMENSIONAL REAL VECTOR SPACES
- Even-Dimensional Null Space Suppose F = R, V is finite-dim, $T \in \mathcal{L}(V)$ and $b, c \in R$ with $b^2 < 4c$. *Prove that* dim null $(T^2 + bT + cI)$ *is an even number.*

SOLUTION:

Denote null $(T^2 + bT + cI)$ by R. Then $T|_R + bT|_R + cI_R = (T + bT + cI)|_R = 0 \in \mathcal{L}(R)$. Suppose λ is an eigval of T_R with an eigvec $v \in R$.

Then
$$0 = (T|_R^2 + bT|_R + cI_R)(v) = (\lambda^2 + \lambda b + c)v = ((\lambda + b)^2 + c - \frac{b^2}{4})v$$
.

Because $c - \frac{b^2}{4} > 0$ and we have v = 0. Thus T_R has no eigvals. Let *U* be an invar subsp of *R* that has the largest, even dim among all invar subsps. Assume that $U \neq R$. Then $\exists w \in R$ but $w \notin U$. Let W be such that $(w, T|_R w)$ is a basis of W. Because $T|_R^2 w = -bT|_R w - cw \in W$. Hence W is an invar subsp of dim 2. Thus dim $(U + W) = \dim U + 2 - \dim(U \cap W)$, where $U \cap W = \{0\}$, for if not, because $w \notin U$, $T|_R w \in U$, $U \cap W$ is invar under $T|_R$ of one dim (impossible because $T|_R$ has no eigences). Hence U + W is even-dim invar subsp under $T|_R$, contradicting the maximality of dim U. Thus the assumption was incorrect. Hence $R = \text{null}(T^2 + bT + cI) = U$ has even dim. • OPERATORS ON ODD-DIMENSIONAL VECTOR SPACES HAVE EIGENVALUES (a) Suppose $\mathbf{F} = \mathbf{C}$. Then by [5.21], we are done. (b) Suppose F = R, V is finite-dim, and dim V = n is an odd number. Let $T \in \mathcal{L}(V)$ and the mini poly is p. Prove that T has an eigval. **SOLUTION:** (i) If n = 1, then we are done. (ii) Suppose $n \ge 3$. Assume that every operator, on odd-dim vecsps of dim less than n, has an eigval. If *p* is a poly multi of $(x - \lambda)$ for some $\lambda \in \mathbb{R}$, then by [8.49] λ is an eigval of *T* and we are done. Now suppose $b, c \in \mathbb{R}$ such that $b^2 < 4c$ and p is a poly multi of $x^2 + bx + c$ (see [4.17]). Then $\exists q \in \mathcal{P}(\mathbf{R})$ such that $p(x) = q(x)(x^2 + bx + c)$ for all $x \in \mathbf{R}$. Now $0 = p(T) = (q(T))(T^2 + bT + cI)$, which means that $q(T)|_{\text{range}(T^2 + bT + cI)} = 0$. Because deg $q < \deg p$ and p is the mini poly of T, hence range $(T^2 + bT + cI) \neq V$. \mathbb{X} dim V is odd and dim null $(T^2 + bT + cI)$ is even (by our previous result). Thus dim V – dim null $(T^2 + bT + cI)$ = dim range $(T^2 + bT + cI)$ is odd. By [5.18], range $(T^2 + bT + cI)$ is an invar subsp of V under T that has odd dim less than n. Our induction hypothesis now implies that $T|_{\text{range}(T^2+bT+cI)}$ has an eigval. By mathematical induction. • (2E Ch5.24) Suppose $\mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V)$ has no eigvals. *Prove that every invar subsp of V under T is even-dim.* **SOLUTION:** Suppose *U* is such a subsp. Then $T|_U \in \mathcal{L}(U)$. We prove by contradiction. If dim *U* is odd, then $T|_U$ has an eigval and so is *T*, so that \exists invar subsp of 1 dim, contradicts. • (4E 5.B.29) Show that every operator on a finite-dim vecsp of dim ≥ 2 has a 2-dim invar subsp. **SOLUTION:** Using induction on dim *V*. (i) dim V = 2, we are done. (ii) dim V > 2. Assume that the desired result is true for vecsp of smaller dim. Suppose p is the mini poly of degree m and $p(z) = (z - \lambda_1) \cdots (z - \lambda_m)$. If $T = \lambda I$ ($\Leftrightarrow m = 1 \lor m = -\infty$), then we are done. ($m \ne 0$ because dim $V \ne 0$.) Now define a q by $q(z) = (z - \lambda_1)(z - \lambda_2)$. By assumption, $T|_{\text{null }q(T)}$ has an invar subsp of dim 2.

5.B: II 9 14 15 20 | 4E: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14

• (4E 5.C.1) Prove or give a counterexample: If $T \in \mathcal{L}(V)$ and T^2 has an upper-trig matrix, then T has an upper-trig matrix.

SOLUTION:

- (4E 5.C.2) Suppose A and B are upper-trig matrices of the same size, with $\alpha_1, \ldots, \alpha_n$ on the diag of A and β_1, \ldots, β_n on the diag of B.
 - (a) Show that A + B is an upper-trig matrix with $\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n$ on the diag.
 - (b) Show that AB is an upper-trig matrix with $\alpha_1\beta_1, \dots, \alpha_n\beta_n$ on the diag.

SOLUTION:

• (4E 5.C.3)

Suppose $T \in \mathcal{L}(V)$ is inv and $B = (v_1, ..., v_n)$ is a basis of V such that $\mathcal{M}(T,B) = A$ is upper trig, with $\lambda_1, ..., \lambda_n$ on the diag. Show that the matrix of $\mathcal{M}(T^{-1},B) = A^{-1}$ is also upper trig, with $\frac{1}{\lambda_1}, ..., \frac{1}{\lambda_n}$ on the diag.

SOLUTION:

- **9** [4E 5.C.7] Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.
 - (a) Prove that \exists ! monic poly p_v of smallest degree such that $p_v(T)v = 0$.
 - (b) Prove that the mini poly of T is a poly multi of p_v .

SOLUTION:

14 [OR (4E 5.C.4)] Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} = 0$ for each k, while T is inv.

SOLUTION:

15 [OR (4E 5.C.5)] Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} \neq 0$ for each k, while T is not inv.

SOLUTION:

20 [OR (OR 4E 5.C.6)]

Suppose $\mathbf{F} = \mathbf{C}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that if $k \in \{1, ..., \dim V\}$, then V has a k dim subsp invar under T.

SOLUTION:

- (4E 5.C.8) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\exists v \in V \setminus \{0\}$ such that $T^2v + 2Tv = -2v$.
 - (a) Prove that if F = R, then $\not\exists$ a basis of V with resp to which T has an upper-trig matrix.
 - (b) Prove that if $\mathbf{F} = \mathbf{C}$ and A is an upper-trig matrix that equals the matrix of T with resp to some basis of V, then -1 + i or -1 i appears on the diag of A.

SOLUTION:

• (4E 5.C.9) Suppose $B \in \mathbf{F}^{n,n}$ with complex entries.

Prove that \exists inv $A \in \mathbf{F}^{n,n}$ with complex entries such that $A^{-1}BA$ is an upper-trig matrix. Solution:
• (4E 5.C.10) Suppose $T \in \mathcal{L}(V)$ and $(v_1,, v_n)$ is a basis of V . Show that the following are equi. (a) The matrix of T with resp to $(v_1,, v_n)$ is lower trig. (b) $\operatorname{span}(v_k,, v_n)$ is invar under T for each $k = 1,, n$. (c) $Tv_k \in \operatorname{span}(v_k,, v_n)$ for each $k = 1,, n$.
• (4E 5.C.11) Suppose $\mathbf{F}=\mathbf{C}$ and V is finite-dim. Prove that if $T\in\mathcal{L}(V)$, then T has a lower-trig matrix with resp to some basis. SOLUTION:
• (4E 5.C.12) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has an upper-trig matrix with resp to some basis, and U is a subsp of V that is invar under T . (a) Prove that $T _{U}$ has an upper-trig matrix with resp to some basis of U . (b) Prove that T/U has an upper-trig matrix with resp to some basis of V/U . Solution:
• (4E 5.C.13) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Suppose U is an invar subsp of V under T such that $T _U$ has an upper-trig matrix and also T/U has an upper-trig matrix. Prove that T has an upper-trig matrix. Solution:
• (4E 5.C.14) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that T has an upper-trig matrix $\iff T'$ has an upper-trig matrix. SOLUTION:
FNDED

ENDED

5.C

XXXX

ENDED

5.E* (4E) 1 2 3 4 5 6 7 8 9 10

1 Give an example of two commuting operators $S, T \in \mathbf{F}^4$ such that there is an invar subsp of \mathbf{F}^4 under S but not under T and an invar subsp of \mathbf{F}^4 under T but not under S.

SOLUTION:

2 Suppose \mathcal{E} is a subset of $\mathcal{L}(V)$ and every element of \mathcal{E} is diagable. Prove that \exists a basis of V with resp to which

every element of \mathcal{E} has a diag matrix \iff every pair of elements of \mathcal{E} commutes.

This exercise extends [5.76], *which considers the case in which* \mathcal{E} *contains only two elements.*

For this exercise, \mathcal{E} may contain any number of elements, and \mathcal{E} may even be an infinite set.

SOLUTION:

- **3** Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Suppose $p \in \mathcal{P}(\mathbf{F})$.
 - (a) Prove that null p(S) is invar under T.
 - (b) Prove that range p(S) is invar under T.

See Note For [5.17] for the special case S = T.

SOLUTION:

4 *Prove or give a counterexample*:

A diag matrix A and an upper-trig matrix B of the same size commute.

SOLUTION:

5 *Prove that a pair of operators on a finite-dim vecsp commute* \iff *their dual operators commute.*

SOLUTION:

6 Suppose V is a finite-dim complex vecsp and $S, T \in \mathcal{L}(V)$ commute. Prove that $\exists \alpha, \lambda \in \mathbb{C}$ such that range $(S - \alpha I) + \text{range}(T - \lambda I) \neq V$.

SOLUTION:

7 Suppose V is a complex vecsp, $S \in \mathcal{L}(V)$ is diagable, and T commutes with S. Prove that \exists basis B of V such that S has a diag matrix with resp to B and T has an upper-trig matrix with resp to B.

SOLUTION:

8 Suppose m = 3 in Example [5.72] and D_x , D_y are the commuting partial differentiation operators on $\mathcal{P}_3(\mathbb{R}^2)$ from that example. Find a basis of $\mathcal{P}_3(\mathbb{R}^2)$ with resp to which D_x and D_y each have an upper-trig matrix.

SOLUTION:

9 Suppose V is a finite-dim nonzero complex vecsp.

Suppose that $\mathcal{E} \subseteq \mathcal{L}(V)$ is such that S and T commute for all $S, T \in \mathcal{E}$.

- (a) Prove that $\exists v \in V$ is an eigrec for every element of \mathcal{E} .
- (b) Prove that \exists a basis of V with resp to which every element of \mathcal{E} has an upper-trig matrix.

SOLUTION:

10 Give an example of two commuting operators S, T on a finite-dim real vecsp such that S+T has a eigval that does not equal an eigval of S plus an eigval of T and ST has a eigval that does not equal an eigval of S times an eigval of S.

SOLUTION: