S 3

AP2: Deuxième Année Cycle Préparatoire Analyse 3: Fonctions de Plusieurs Variables

Série n° 5

- Théorème d'inversion - Fonctions implicites -

Exercice 1

1°) Montrer que

$$\varphi: \mathbb{R}^2 \xrightarrow{(x,y) \longmapsto (e^x - e^y, x + y)} \mathbb{R}^2$$

est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur lui-même.

correction

1°) Soit $(x, y, z, t) \in \mathbb{R}^4$

$$\begin{split} \varphi(x,y) &= (z,t) \Leftrightarrow \left\{ \begin{array}{l} e^x - e^y = z \\ x + y = t \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} y = t - x \\ e^x - e^{t-x} = z \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} y = t - x \\ (e^x)^2 - ze^x - e^t = 0 \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} y = t - x \\ e^x = \frac{z - \sqrt{z^2 + 4e^t}}{2} \quad \text{ou} \quad e^x = \frac{z + \sqrt{z^2 + 4e^t}}{2} \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} y = t - x \\ e^x = \frac{z + \sqrt{z^2 + 4e^t}}{2} \quad \text{car} \quad (z - \sqrt{z^2 + 4e^t} < z - \sqrt{z^2} = z - |z| \le 0) \right. \\ \Leftrightarrow \left\{ \begin{array}{l} x = \ln(\frac{z + \sqrt{z^2 + 4e^t}}{2}) \\ y = t - \ln(\frac{z + \sqrt{z^2 + 4e^t}}{2}) \end{array} \right. \end{aligned} \right. \\ (z + \sqrt{z^2 + 4e^t} > z + \sqrt{z^2} = z + |z| \ge 0) \end{split}$$

Alors tout élément $(z,t) \in \mathbb{R}^2$ a un antécédent et un seul dans \mathbb{R}^2 par φ . Donc φ est une bijection de \mathbb{R}^2 sur lui même. On a

$$j_{\varphi}(x,y) = \left(\begin{array}{cc} e^x & -e^y \\ 1 & 1 \end{array}\right)$$

donc le Jacobien de $\varphi(x,y)$

$$det(j_{\varphi(x,y)}) = \begin{vmatrix} e^x & -e^y \\ 1 & 1 \end{vmatrix} = e^x + e^y \neq 0$$

Alors La fonction φ est de classe \mathcal{C}^1 sur \mathbb{R}^2

Donc en déduire que φ est une bijection de \mathbb{R}^2 sur lui-même, de classe \mathcal{C}^1 sur \mathbb{R}^2 et le jacobien de φ ne s'annule pas sur \mathbb{R}^2 .

On sait alors que φ est un \mathcal{C}^1 - difféomorphisme de \mathbb{R}^2 sur lui-même.

2°) On note
$$U=(]0,+\infty[)^2$$
 et $f:(x,y)\longmapsto (x^3y^2,\frac{1}{x^2y})$

Montrer que f est un C^1 -difféomorphisme de U sur lui-même. .

correction

2°)

- On a $U = ([0, +\infty[)]^2$ est un ouvert de \mathbb{R}^2 et, d'après les théorèmes généraux f est de classe \mathcal{C}^1 sur U.
- Montrons que f est une bijection de U sur U et explicitons f^{-1} . Il est d'abord clair que $\forall (x,y) \in U, \quad f(x,y) \in U$

Soit $(u, v) \in U$. On a, pour tout $(x, y) \in U$:

$$f(x,y) = (u,v) \Leftrightarrow (u,v) = (x^3y^2, \frac{1}{x^2y}) \Leftrightarrow \begin{cases} x^3y^2 = u \\ \frac{1}{x^2y} = v \end{cases}$$
$$\Leftrightarrow \begin{cases} x^3y^2 = u \\ x^2y = \frac{1}{v} \end{cases}$$
$$\Leftrightarrow \begin{cases} x = \frac{1}{uv^2} \\ y = u^2v^3 \end{cases}$$

Alors f est bijective et $f^-(x,y) = (\frac{1}{xy^2}, x^2y^3)$.

 f^{-1} est de classe \mathcal{C}^1 sur U.

On conclut que f est un C^1 -diffeomorphisme de U sur U.

Exercice 2

Soit f la fonction définie sur \nvDash par :

$$f(x, y, z) = (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y)$$

- 1. Déterminer l'image $f(\mathbb{R}^3)$
- 2. montrer que f est un \mathcal{C}^{∞} difféomorphisme de \mathbb{R}^3 sur $f(\mathbb{R}^3)$

CORRECTION.2

1°)

On a

$$f(x, y, z) = (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y)$$

Posons f(x, y, z) = (a, b, c) Alors a > 0 et $a + b = e^{2y} + e^{2x} > 0$ et $c = x - y \in \mathbb{R}$ Donc $f(\mathbb{R}^3) \subset \{(a, b, c) \in \mathbb{R}^3 : a > 0; a + b > 0, c \in \mathbb{R}\} := \vartheta$ c'est un ouvert de \mathbb{R}^3 .

Soit $(a,b,c) \in \vartheta$, $f(x,y,z) = (a,b,c) \Rightarrow x = c + y$ comme $a+b=e^{2y}+e^{2x}=e^{2y}+e^{2(c+y)} \Rightarrow e^{2y}=\frac{a+b}{1+e^{2c}}$

et comme a+b>0 alors l'équation $e^{2y}=\frac{a+b}{1+e^{2c}}$ admet l'unique solution

$$y = \ln \sqrt{\frac{a+b}{1+e^{2c}}}$$

on a

$$e^{2z} = a - e^{2y} = a - \frac{a+b}{1+e^{2c}} = \frac{ae^{2c} - b}{1+e^{2c}}$$

il est donc nécessaire que $ae^{2c}>b$ et sous cette hypothèse on a

$$z = \ln \sqrt{\frac{ae^{2c} - b}{1 + e^{2c}}}$$

et on a

$$x = y + c = c + \ln \sqrt{\frac{a+b}{1+e^{2c}}}$$

Alors l'image $f(\mathbb{R}^3)$ est donc l'ouvert

$$\vartheta := \{(a, b, c) \in \mathbb{R}^3 : \langle a > 0, a + b > 0, ae^{2c} > b, c \in \mathbb{R}\}\$$

2°

Soit $(x, y, z) \in \mathbb{R}^3$ on a f est de classe \mathcal{C}^1 alors la matrice jacobienne de f est

$$Jf(x,y,z) = \begin{pmatrix} 0 & 2e^{2y} & 2e^{2z} \\ 2e^{2x} & 0 & -2e^{2z} \\ 1 & -1 & 0 \end{pmatrix}$$

donc , le déterminant de la matrice jacobienne de f vaut

$$det(Jf(x,y,z)) = \begin{vmatrix} 0 & 2e^{2y} & 2e^{2z} \\ 2e^{2x} & 0 & -2e^{2z} \\ 1 & -1 & 0 \end{vmatrix} = 4e^{2z}(e^{2x} + e^{2y}) \neq 0$$

f étant en outre bijective de \mathbb{R}^3 sur $f(\mathbb{R}^3)$ le théorème d'inversion globale assure que c'est bien un \mathcal{C}^{∞} difféomorphisme.

Exercice 3 Soit $f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}^2$ définie par:

$$f(x,y) = (\frac{-x}{x^2 + y^2}, \frac{y}{x^2 + y^2})$$

- 1°) Déterminer l'image de f.
- 2°) Montrer que $det(J_f(x,y)) > 0$ en tout point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$
- 3°) Montrer que f est un difféomorphisme de $\mathbb{R}^2 \setminus \{(0,0)\}$ sur son image et que $f^{-1} = f$

CORRECTION.3

On a $f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}^2$ définie par:

$$f(x,y) = (\frac{-x}{x^2 + y^2}, \frac{y}{x^2 + y^2})$$

1°) Soit $(u, v) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ tel que:

$$f(x,y) = (u,v) \Leftrightarrow (u,v) = \left(\frac{-x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right) \Leftrightarrow \begin{cases} \frac{-x}{x^2 + y^2} = u \\ \frac{y}{x^2 + y^2} = v \end{cases}$$
$$\Leftrightarrow \begin{cases} x = \frac{-u}{u^2 + v^2} \\ y = \frac{v}{u^2 + v^2} \end{cases}$$

Donc pour tout $(u, v) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, il existe $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ Donc l'image de f est $\mathbb{R}^2 \setminus \{(0, 0)\}$

2°) On a f est de classe \mathcal{C}^1 et différentiable sur $\mathbb{R}^2 \setminus \{(0,0)\}$ alors

$$J_f(x,y) = \begin{pmatrix} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \frac{2xy}{(x^2 + y^2)^2} \\ \frac{-2xy}{(x^2 + y^2)^2} & \frac{x^2 - y^2}{(x^2 + y^2)^2} \end{pmatrix}$$

alors

$$det(J_f(x,y)) = \begin{vmatrix} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \frac{2xy}{(x^2 + y^2)^2} \\ \frac{-2xy}{(x^2 + y^2)^2} & \frac{x^2 - y^2}{(x^2 + y^2)^2} \end{vmatrix} = \frac{1}{(x^2 + y^2)^2} > 0$$

3°) De la relation

$$(u,v) = (\frac{-x}{x^2 + y^2}, \frac{y}{x^2 + y^2}) \Leftrightarrow (x,y) = (\frac{-u}{u^2 + v^2}, \frac{v}{u^2 + v^2})$$

et

$$f(\mathbb{R}^2 \setminus \{(0,0)\}) = \mathbb{R}^2 \setminus \{(0,0)\}$$

on en déduit que f est bijective et $f^{-1} = f$ Donc f est un difféomorphisme de classe \mathcal{C}^{∞}

Exercice 4 Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par:

$$f(x, y, z) = (x + y^2, y + z^2, z + x^2)$$

- 1°) Montrons que f est de \mathcal{C}^1
- 2°) Calculer le rang de Jf(x,y,z).
- 3°) Quels sont les points au voisinage desquels f est localement inversible?

CORRECTION.4

1°) Montrons que f est de classe \mathcal{C}^1

La fonction f est \mathcal{C}^1 car toutes ses dérivées partielles sont définies et continues sur \mathbb{R}^3 On a de plus :

$$J_f(x, y, z) = \begin{pmatrix} 1 & 2y & 0 \\ 0 & 1 & 2z \\ 2x & 0 & 1 \end{pmatrix}$$

 2°) Calculons le rang de $J_f(x,y,z)$

$$det(J_f(x,y,z)) = \begin{vmatrix} 1 & 2y & 0 \\ 0 & 1 & 2z \\ 2x & 0 & 1 \end{vmatrix} = 1 + 8xyz$$

Il est clair que $J_f(x, y, z)$ est de rang au moins 2 (les deux premières colonnes sont linéairement indépendantes). De plus $det(J_f(x, y, z)) = 1 + 8xyz$

Donc $J_f(x,y,z)$ est de rang 3 si $xyz \neq \frac{-1}{8}$ et de rang 2 si $xyz = \frac{-1}{8}$.

 3°) Trouvons maintenant quels sont les points au voisinage desquels f est localement inversible : Le théorème d'inversion locale s'applique au voisinage de tout point (x, y, z) tel que $J_f(x, y, z)$ soit inversible. On en déduit que f est localement inversible près de tout point $(x, y, z) \in \mathbb{R}^3$ tel que :

$$det(J_f(x,y,z)) \neq 0 \Leftrightarrow xyz \neq \frac{-1}{8}$$

Exercice 5 On considère la courbe plane d'équation

$$xe^y + e^x \sin(2y) = 0 \tag{1}$$

- 1°) Vérifier que l'équation (1) définie une et une seule fonction $y = \varphi(x)$ au voisinage de (0,0).
- 2°) Calculer $\varphi'(0)$ et écrire l'équation de la droite tangente au graphe de la fonction φ en le point $(0, \varphi(0))$.
- 3°) En déduire la limite de $\frac{y}{x}$ quand (x,y) tend vers (0,0) en étant sur la courbe.

CORRECTION.5

1°) On pose $f(x) = xe^y + e^x \sin(2y)$ On a f(0,0) = 0 et $\frac{\partial f}{\partial x}(x,y) = e^y + e^x \sin(2y)$ alors $\partial_x f(0,0) = 1$ et $\frac{\partial f}{\partial y}(x,y) = xe^y + 2e^x \cos(2y)$ alors $\partial_y f(0,0) = 2$ Puisque $\partial_y f(0,0) \neq 0$ il existe une et une seule fonction $y = \varphi(x)$ définie au voisinage de 0 tel que $f(x,\varphi(x)) = 0$

 2°) On a

$$\varphi'(0) = -\frac{\partial_x f(0,0)}{\partial_y f(0,0)} = -\frac{1}{2}$$

donc l'équation de la droite tangente à φ en x=0 est $y=-\frac{1}{2}x$

 3°) On a

$$\lim_{\substack{(x,y)\to(0,0)\\f(x,y)=0}}\frac{y}{x} = \lim_{x\to 0}\frac{\varphi(x)}{x} = \lim_{x\to 0}\frac{\varphi(x)-\varphi(0)}{x-0} = \varphi'(0) = -\frac{1}{2}$$

Exercice 6 Montrer que l'équation $xy^4 - x^3 + y = 0$ définit implicitement au voisinage de 0 une fonction réelle de la variable réelle $y = \varphi(x)$ et calculer la tangente au graphe de φ au point (0,0).

CORRECTION.6

Soit $g(x,y) = xy^4 - x^3 + y$ elle est de classe \mathcal{C}^1 De plus g(0,0) = 0 et $g_y(0,0) = 1$ Elle définie alors une et une seule fonction $y = \varphi(x)$ dans un intervalle qui contient 0. De plus, on sait que $\varphi(0) = 0$ et

$$\varphi'(x) = -\frac{g_x(x,\varphi(x))}{g_y(x,\varphi(x))} = -\frac{y^4 - 3x^2}{4xy^3 + 1}$$

alors

$$\varphi'(0) = 0$$

La droite tangente à $y = \varphi(x)$ en (0,0) a équation

$$y = \varphi'(0)(x - 0) + \varphi(0) = 0$$

Exercice 7

Soit l'équation

$$x\ln(1+y^2) - ye^x = 0 (2)$$

- 1°) Montrer que l'équation (2) définit implicitement $y = \varphi(x)$ en fonction de x au voisinage de (1,0).
- 2°) Calculer $\varphi'(x)$ au voisinage de 1.

CORRECTION.7

1°) Soit

$$f(x,y) = x\ln(1+y^2) - ye^x$$

elle est de classe C^1 De plus f(1,0) = 0 et on a

$$\frac{\partial f}{\partial y}(x,y) = \frac{2xy}{1+y^2} - e^x \quad \Rightarrow \quad \partial_y f(1,0) = -e \neq 0$$

donc d'aprés le théorème des fonctions implicites il existe un voisinage V_1 de 1 et un voisinage V_0 de 0 et une fonction

$$\varphi: V_1 \xrightarrow[x \mapsto y = \varphi(x)]{} V_0$$

tels que

- $\bullet \quad \varphi(1) = 0$
- $\forall x \in V_1: f(x, \varphi(x)) = 0$
 - 2°) Calcul de $\varphi'(x)$ au voisinage de 1.

$$\varphi'(x) = -\frac{\frac{\partial f(x,y)}{\partial x}}{\frac{\partial f(x,y)}{\partial y}}$$

Comme $\frac{\partial f(x,y)}{\partial x} = \ln(1+y^2) - ye^x$ alors

$$\varphi'(x) = -\frac{\ln(1 + \varphi(x)^2) - \varphi(x)e^x}{\frac{2x\varphi(x)}{1 + \varphi(x)^2} - e^x}$$

Exercice 8

On considère l'équation

$$xe^y + ye^x = 0 (3)$$

- 1°) Vérifier qu'elle définie une et une seule fonction $y = \varphi(x)$ au voisinage de (0,0).
- 2°) Calculer le développement de Taylor de φ à l'ordre 2 centré en x=0.

CORRECTION.8

1°) Soit

$$f(x,y) = xe^y + ye^x$$

elle est de classe C^1 De plus f(0,0) = 0 et on a

$$\frac{\partial f}{\partial y}(x,y) = xe^y + e^x \quad \Rightarrow \quad \partial_y f(0,0) = 1 \neq 0$$

Elle définie alors une et une seule fonction $y = \varphi(x)$ dans un intervalle qui contient 0. De plus, on sait que $\varphi(0) = 0$ et

$$\varphi'(x) = -\frac{\frac{\partial f(x,y)}{\partial x}}{\frac{\partial f(x,y)}{\partial y}} = -\frac{e^{\varphi(x)} + \varphi(x)e^x}{xe^{\varphi(x)} + e^x}$$

Donc

$$\varphi'(0) = -1$$

 2°) Comme φ est de classe \mathcal{C}^1 , alors φ' est de classe \mathcal{C}^1 car composition de fonctions de classe \mathcal{C}^1 , alors que φ est de classe \mathcal{C}^2 , Donc

$$\varphi(x) = \varphi(0) + x\varphi'(0) + \frac{x^2}{2}\varphi''(0) + \circ(x^2)$$

Pour calculer φ " on peut soit dériver l'expression de φ' soit dériver l'équation qui la défini implicitement : comme

$$xe^{\varphi(x)} + \varphi(x)e^x = 0$$

en dérivant cette expression on obtient

$$e^{\varphi(x)} + x\varphi'(x)e^{\varphi(x)} + \varphi'(x)e^{x} + \varphi(x)e^{x} = 0$$

et en la dérivant à nouveau (ce que l'on peut faire car φ est de classe \mathcal{C}^2) on obtient

$$\varphi^{'}(x)e^{\varphi(x)} + [\varphi^{'}(x)e^{\varphi(x)} + x\varphi^{''}(x)e^{\varphi(x)} + xe^{\varphi(x)}(\varphi^{'}(x))^{2}] + [\varphi^{'}(x)e^{x} + \varphi^{''}(x)e^{x}] + [\varphi^{'}(x)e^{x} + \varphi(x)e^{x}] = 0$$

Donc On obtient $\varphi''(0) = 4$ et le développement de Taylor s'écrit

$$\varphi(x) = -x + 2x^2 + \circ(x^2)$$