# Machine Learning for Industry

Lecture 3 - Classification and Learning Principles

#### Mattias Villani

Department of Computer and Information Science Linköping University

> Department of Statistics Stockholm University





#### **Outline**

- Intro to classification
- **■** *k*-nearest neighbor
- Classification trees and forests
- Logistic regression
- Maximum likelihood
- Naive Bayes
- Bayesian learning and regularization

## Classifying handwritten digits



## Classifying handwritten digits

- Raw data: gray intensity (0-255) in the  $28 \times 28 = 784$  pixels.
- Training data: 60000 images. Test data: 10000 images.
- **Simple features**: 784 pixel intensity covariates.
- Multi-class problem: predict class  $k \in \{0, 1, ..., 9\}$ .
- Multinomial regression

$$\Pr(\mathsf{Digit} = k | \mathsf{features}) = \frac{\exp\left(w_{0,k} + w_{1,k}x_1 + \ldots + w_{784,k}x_{784}\right)}{\sum_{j=0}^9 \exp\left(w_{0,j} + w_{1,j}x_1 + \ldots + w_{784,j}x_{784}\right)}$$



## Classifying handwritten digits



## Handwritten digits 10000 training examples

|          |   |     |      |     |     | Tru | ıth |     |     |     |     |
|----------|---|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
|          |   | 0   | 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|          | 0 | 958 | 0    | 8   | 3   | 1   | 7   | 10  | 0   | 7   | 9   |
|          | 1 | 0   | 1116 | 3   | 1   | 1   | 5   | 3   | 23  | 9   | 9   |
|          | 2 | 1   | 2    | 920 | 21  | 5   | 5   | 9   | 22  | 7   | 2   |
|          | 3 | 0   | 2    | 10  | 915 | 0   | 34  | 1   | 1   | 14  | 10  |
| Decision | 4 | 1   | 0    | 16  | 0   | 908 | 9   | 10  | 12  | 11  | 46  |
| Decision | 5 | 11  | 3    | 3   | 31  | 2   | 795 | 15  | 1   | 31  | 12  |
|          | 6 | 6   | 4    | 20  | 2   | 11  | 16  | 909 | 0   | 13  | 1   |
|          | 7 | 1   | 0    | 15  | 13  | 4   | 5   | 0   | 938 | 9   | 22  |
|          | 8 | 2   | 8    | 34  | 16  | 2   | 12  | 1   | 5   | 859 | 5   |
|          | 9 | 0   | 0    | 3   | 8   | 48  | 4   | 0   | 26  | 14  | 893 |

## Handwritten digits 60000 training examples

|          |   |     |      |     |     | Tri | uth |     |     |     |     |
|----------|---|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
|          |   | 0   | 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|          | 0 | 966 | 0    | 8   | 1   | 1   | 7   | 9   | 2   | 4   | 6   |
|          | 1 | 0   | 1121 | 1   | 1   | 0   | 2   | 3   | 13  | 7   | 7   |
|          | 2 | 2   | 2    | 957 | 13  | 5   | 4   | 4   | 21  | 7   | 0   |
|          | 3 | 0   | 2    | 9   | 947 | 0   | 29  | 1   | 3   | 12  | 10  |
| Decision | 4 | 0   | 0    | 12  | 1   | 940 | 5   | 5   | 9   | 8   | 32  |
| Decision | 5 | 6   | 1    | 3   | 19  | 1   | 816 | 9   | 1   | 24  | 9   |
|          | 6 | 4   | 4    | 13  | 1   | 7   | 12  | 926 | 0   | 10  | 1   |
|          | 7 | 1   | 0    | 9   | 10  | 2   | 2   | 0   | 954 | 5   | 13  |
|          | 8 | 1   | 4    | 17  | 11  | 2   | 10  | 1   | 3   | 892 | 4   |
|          | 9 | 0   | 1    | 3   | 6   | 24  | 5   | 0   | 22  | 5   | 927 |

## Al is getting better over time - handwritten digits

| i iiie.     | 1990     |           |      | —— <del>—</del> | Today   |
|-------------|----------|-----------|------|-----------------|---------|
|             | Logistic | K-nearest | SVM  | 3-layer NN      | ConvNet |
| Error rate: | 12%      | 5%        | 1.4% | 1.53%           | 0.4%    |

1000

Taday

## **Detecting fraudulent banknotes**

- Dataset with 1372 photographed banknotes. 610 fake.
- Raw data:  $400 \times 400 = 160000$  gray-scale pixels.
- The 160000 pixel variables are condensed to four features:
  - variance of Wavelet Transformed image
  - skewness of Wavelet Transformed image
  - k'urtosis of Wavelet Transformed image
  - entropy of image
- Deep learning on raw images?



## **Detecting fraudulent banknotes**

- 1000 images for training. Predictions on 372 test images.
- Logistic regression

$$\Pr(\text{Fraud} = \text{True}|\text{features}) = \frac{\exp(w_0 + w_1 x_1 + \dots + w_4 x_4)}{1 + \exp(w_0 + w_1 x_1 + \dots + w_4 x_4)}$$

- **Decision**: signal fraud if Pr(Fraud = True|Features) > 0.5.
- Confusion matrix

|          |          | Truth    |       |  |
|----------|----------|----------|-------|--|
|          |          | No fraud | Fraud |  |
| Decision | No Fraud | 208      | 1     |  |
| Decision | Fraud    | 3        | 160   |  |

## k-nearest neighbor

**k**-nearest classifier: classify to the local majority vote:

$$\hat{y}(\mathbf{x}) = \begin{cases} 0 & \text{if } f(\mathbf{x}) \le 0.5\\ 1 & \text{if } f(\mathbf{x}) > 0.5 \end{cases}$$

where

$$f(\mathbf{x}) = \frac{\# \text{class 1 among the } k \text{ nearest neighbors}}{k}$$





#### Classification trees

Multi-class classification trees. Probability of class k in rectangle  $R_m$  with  $N_m$  observations

$$\hat{\rho}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k), \quad k = 1, ..., K.$$

Predicted class in rectangle  $R_m$ : majority vote

$$\hat{k}(m) = \arg\max_{k} \hat{p}_{mk}$$









#### Classification trees

Prune the tree by collapsing non-terminal nodes to minimize

$$\sum_{i=1}^{n} \ell\left(y_{i}, \hat{k}(m_{i})\right) + \eta |T|$$

Mis-classification rate as loss function:

$$\sum_{i=1}^{n} \ell\left(y_{i}, \hat{k}(m_{i})\right) = \sum_{m=1}^{|T|} \sum_{x_{i} \in R_{m}} I\left(y_{i} \neq \hat{k}(m_{i})\right) = \sum_{m=1}^{|T|} N_{m}\left(1 - \hat{\rho}_{m,\hat{k}(m)}\right)$$

Cross-entropy as loss function:

$$\sum_{i=1}^{n} \ell\left(y_{i}, \hat{k}(m_{i})\right) = \sum_{m=1}^{|T|} N_{m} \left(-\sum_{k=1}^{K} \hat{p}_{m\hat{k}} \log \hat{p}_{m\hat{k}}\right)$$









#### Random forest and XGBoost classification

- Random Forest can be directly used for classification.
- XGBoost
  - ▶ second approximation of a general loss function  $\sum_{i=1}^{n} \ell(y_i, \hat{y})$
  - loss function must be differentiable (e.g. cross-entropy).

# Single tree

#### Random forest



## Classification - logistic regression

Logistic classification

$$\Pr(Y_i = 1 | \mathbf{x}) = \frac{\exp(\mathbf{x}_i^T \mathbf{w})}{1 + \exp(\mathbf{x}_i^T \mathbf{w})}$$

- **Discriminative** model direct modeling of Pr(Y = 1|x)
- Multi-class logistic classification:  $c \in \{1, 2, ..., C\}$

$$\Pr(Y_i = c | \mathbf{x}) = \frac{\exp(\mathbf{x}_i^T \mathbf{w}_c)}{\sum_{k=1}^C \exp(\mathbf{x}_i^T \mathbf{w}_k)} \text{ with } \mathbf{w}_1 = 0.$$

- How to learn the weights, w?
  - ▶ Quadratic fitting function:  $n^{-1} \sum_{i=1}^{n} (y_i x_i^T \mathbf{w})^2$ ?
  - Fit weights to maximize accuracy on training data?
- Maximum likelihood!

## Classification - logistic regression

Logistic regression is a linear model:

$$\log \frac{\Pr(Y_i = 1 | \boldsymbol{x})}{\Pr(Y_i = 0 | \boldsymbol{x})} = \boldsymbol{x}_i^T \boldsymbol{w}$$

and so has linear decision boundary.



- Get non-linear boundaries by including polynomials in x.
- General non-linear logistic regression

$$\Pr(Y_i = 1 | \mathbf{x}) = \frac{\exp(f(\mathbf{x}_i))}{1 + \exp(f(\mathbf{x}_i))}$$

where  $f(\mathbf{x})$  is some potentially non-linear function, e.g.

- Deep neural nets
- Gaussian Processes

## Predicting firm bankruptcy

- Data from  $\sim$  250, 000 Swedish firms (aktiebolag).
- Features: profits, liquidity, debt + macro variables.
- "Big data" ⇒ non-linearities are visible by the eye.
- Model: logistic regression with additive splines.
- Substantially improved predictive performance with splines.





#### Bias-variance trade-off revisited



#### The likelihood function

Let  $Y_1, ..., Y_n$  be binary variables (e.g. coin flips) with

$$Pr(Y = 0) = 1 - \theta$$
 and  $Pr(Y = 1) = \theta$ .

- **Data summary**: s successes (y = 1) and f failures (y = 0).
- Likelihood function

$$L(\theta) = p(y_1, ..., y_n | \theta) = p(y_1 | \theta) \cdot \cdot \cdot p(y_n | \theta) = \theta^s (1 - \theta)^f$$

- The likelihood,  $L(\theta)$ , is:
  - ▶ the probability of the observed data
  - considered as a function of the parameter.
- Plot  $p(y_1, ..., y_n | \theta)$  as a function of  $\theta$  for a given dataset.



#### Maximum likelihood estimation

Maximum likelihood estimator (MLE) - max the likelihood

$$\hat{\theta}_{\mathit{ML}} = \arg\max_{\theta} L(\theta).$$

- General fitting method. Applies to all probabilistic models.
- Example: binary independent data. Easier on log-scale

$$\log L(\theta) = s \log \theta + f \log(1 - \theta)$$

Compute derivative, set it equal to zero and solve:

$$\frac{\partial}{\partial \theta} \log L(\theta) = \frac{s}{\theta} - \frac{f}{1 - \theta} = 0$$

gives  $\hat{\theta}_{ML} = s/n$ , the proportion of successes.

- Regression with Gaussian errors: ML = Least squares.
- MLE minimizes the cross-entropy between data and model.

## **Exponential distribution**

- **Exponential random variable**  $Y \sim \text{Exp}(\lambda)$ .
- **Continuous** variable with **positive support**  $Y \in (0, \infty)$ .
- Probability density function (pdf)

$$f(y) = \lambda \exp(-\lambda y).$$



Mean  $\mathbb{E}(Y) = \frac{1}{\lambda}$  and variance  $\mathbb{V}(Y) = \frac{1}{\lambda^2}$ .

## ML for exponential data

Likelihood function based on pdfs:

$$f(y_1, ..., y_n) = \prod_{i=1}^n f(y_i) = \prod_{i=1}^n \lambda \exp(-\lambda y_i) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n y_i\right)$$

Log-likelihood

$$\log f(y_1, ..., y_n) = n \log \lambda - \lambda \sum_{i=1}^n y_i$$

ML estimator

$$\frac{\partial}{\partial \lambda} \log f(y_1, ..., y_n) = \frac{n}{\lambda} - \sum_{i=1}^n y_i = 0$$

gives

$$\hat{\lambda}_{ML} = \frac{n}{\sum_{i=1}^{n} y_i} = \frac{1}{\bar{y}}.$$

#### Normal distribution

- Normal random variable  $Y \sim N(\mu, \sigma^2)$  for  $Y \in (-\infty, \infty)$
- Probability density function

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y-\mu)^2\right).$$



- Mean  $\mathbb{E}(Y) = \mu$  and variance  $\mathbb{V}(Y) = \sigma^2$ .
- ML estimates:  $\hat{\mu}_{ML} = \bar{y}$  and  $\hat{\sigma}_{ML}^2 = \sum_{i=1}^n (y_i \bar{y})^2 / n$ .

## ML for truncated exponential data

**Truncated exponential data**:  $Y^* \sim \text{Exp}(\lambda)$ , but we observe

$$Y = \begin{cases} Y^* & \text{if } Y^* < c \\ c & \text{if } Y^* \ge c \end{cases}$$

- If  $Y \sim \text{Exp}(\lambda)$ , then  $\Pr(Y_i > c) = 1 \Pr(Y_i < c) = e^{-\lambda c}$ .
- Likelihood function based on pdfs:

$$f(y_1,...,y_n) = \prod_{i \in \mathcal{U}} f(y_i) \prod_{i \notin \mathcal{U}} \Pr(Y_i > c) = \lambda^{n_u} \exp\left(-\lambda \sum_{i \in \mathcal{U}} y_i\right) e^{-\lambda(n-n_u)c}$$

Maximum likelihood estimator

$$\frac{\partial}{\partial \lambda} \log f(y_1, ..., y_n) = \frac{n_u}{\lambda} - \sum_{i \in \mathcal{U}} y_i - (n - n_u)c = 0$$

which gives

$$\frac{1}{\hat{\lambda}_{MI}} = \frac{\sum_{i \in \mathcal{U}} y_i}{n_u} + \frac{n - n_u}{n_u} c.$$

## Maximum likelihood for logistic regression

Logistic regression

$$\Pr(Y_i = y_i | \boldsymbol{x}) = \frac{\exp(\boldsymbol{x}_i^T \boldsymbol{w})^{y_i}}{1 + \exp(\boldsymbol{x}_i^T \boldsymbol{w})}$$

Likelihood

$$p(y_1,\ldots,y_n|\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{w}) = \prod_{i=1}^n \frac{\exp\left(\mathbf{x}_i^T\mathbf{w}\right)^{y_i}}{1 + \exp\left(\mathbf{x}_i^T\mathbf{w}\right)}$$

- No closed form solution. Iteratively reweighted least squares.
- MLbyOptimization.ipynb for numerically computing  $\hat{\boldsymbol{w}}_{ML}$ .
- Gradient  $\nabla_{\mathbf{w}} \log p(y_1, \dots, y_n | \mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{w})$  easily computed and speeds up optimization (gradient descent).
- Big data: **Stochastic gradient descent** for large *n*.
- Automatic differentiation.

#### Bias-Variance trade-off revisited

































## **Naive Bayes**

- Aim: p(k|x) probability of class k given features x.
- Bayes' theorem

$$p(k|\mathbf{x}) \propto p(\mathbf{x}|k)p(k)$$

- p(k) estimated from training data by relative frequencies.
- p(x|k) can high-dimensional. Hard to estimate.
- Naive Bayes: features are assumed independent

$$p(\mathbf{x}|k) = \prod_{j=1}^{p} p(x_j|k)$$

Predicting text. Binary features: existence of specific words.

$$\hat{\rho} \, (\mathsf{has}(\mathsf{ball}) | \mathsf{news}) = \frac{\mathsf{Number of news articles containing the word 'ball'}}{\mathsf{Number of news articles}}$$

## Naive Bayes for continuous features

Fit Gaussian (normal) distribution to each feature separately.



- More flexible:
  - kernel density estimate
  - mixture of Gaussians (see Lecture Block 4).
- Alternative: make features discrete by binning

$$y = k$$
 if  $m_k \le x < m_{k+1}$ 

## Bayesian learning

- Subjective probability. Subjective degree of belief.
- The statement  $\Pr(10\mathsf{th}\,\mathsf{decimal}\,\mathsf{of}\,\pi=9)=0.1$  makes sense.
- Example: Binary data  $\Pr(Y_i = 1) = \theta$ .
- Prior distribution:  $p(\theta) = \text{Beta}(\alpha, \beta)$ .
- Likelihood

$$p(y_1,...,y_n|\theta) = \theta^s(1-\theta)^f.$$

Posterior distribution by Bayes' theorem:

$$p(\theta|y_1,\ldots,y_n) \propto \underbrace{p(y_1,\ldots,y_n|\theta)p(\theta)}_{\text{likelihood}}$$
 prior

Posterior for Bernoulli data

$$\theta|y_1,\ldots,y_n\sim \operatorname{Beta}(\alpha+s,\beta+f)$$



## Bayesian regression

Regularization prior

$$w_i | \sigma^2 \stackrel{iid}{\sim} N\left(0, \frac{\sigma^2}{\lambda}\right)$$

 Posterior distribution is Gaussian with ridge regression as mean

$$\tilde{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X} + \lambda I\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Shrinkage toward zero

As 
$$\lambda \to \infty$$
,  $\tilde{\mathbf{w}} \to 0$ 

Lasso is equivalent to posterior mode under Laplace prior

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} \text{Laplace} \left( 0, \frac{\sigma^2}{\lambda} \right)$$



## Evaluating a classifier - confusion matrix

#### Confusion matrix:

|          |          | Truth    |          |  |
|----------|----------|----------|----------|--|
|          |          | Positive | Negative |  |
| Decision | Positive | tp       | fp       |  |
| Decision | Negative | fn       | tn       |  |

- tp = true positive, fp = false positive fn = false negative, tn = true negative.
- Example:

|          |          | Truth |          |  |
|----------|----------|-------|----------|--|
|          |          | Fraud | No Fraud |  |
| Decision | Fraud    | tp    | fp       |  |
| Decision | No Fraud | fn    | tn       |  |

## **Evaluating a classifier - Accuracy**

Accuracy is the proportion of correctly classified items

$$\mathsf{Accuracy} = \frac{\mathit{tp} + \mathit{tn}}{\mathit{tp} + \mathit{tn} + \mathit{fn} + \mathit{fp}}$$

|          |          | Truth    |          |  |
|----------|----------|----------|----------|--|
|          |          | Positive | Negative |  |
| Decision | Positive | tp       | fp       |  |
| Decision | Negative | fn       | tn       |  |

## **Evaluating a classifier - Precision**

Precision is the proportion of truly positive items among those signaled as positive:

$$Precision = \frac{tp}{tp + fp}$$

|          |          | Truth    |          |  |
|----------|----------|----------|----------|--|
|          |          | Positive | Negative |  |
| Decision | Positive | tp       | fp       |  |
| Decision | Negative | fn       | tn       |  |

- High precision:
  - trustworthy positives
  - people pointed out as fraudulent are almost always frauds.

## **Evaluating a classifier - Recall**

Recall is the proportion of signaled positive items among those that are truly positive:

$$Recall = \frac{tp}{tp + fn}$$

|          |          | Truth    |          |  |  |
|----------|----------|----------|----------|--|--|
|          |          | Positive | Negative |  |  |
| Decision | Positive | tp       | fp       |  |  |
| Decision | Negative | fn       | tn       |  |  |

- High recall:
  - will find the positive items.
  - fraudulents will be caught.
- Recall is also called the True Positive Rate (TPR)
- There is a trade-off between Precision and Recall.

## Evaluating a classifier - False Positive Rate

False Positive Rate (FPR) is the proportion of signaled positive items among those that are truly negative:

$$FPR = \frac{fp}{fp + tn}$$

|          |          | Truth    |          |  |  |
|----------|----------|----------|----------|--|--|
|          |          | Positive | Negative |  |  |
| Decision | Positive | tp       | fp       |  |  |
| Decision | Negative | fn       | tn       |  |  |

- Low FPR:
  - will very rarely signal a positive for a negative item.
  - people will not be falsely accused of fraud.

## Evaluating a classifier - ROC curve

- Precision and recall depends on the decision threshold.
- Pr(Spam|text in an email) = 0.9. Do we send it to the spam-box?
- Is Pr(Fraud|features) > 0.5 a good decision threshold?
- Optimal decisions depend on the consequences.

  Decision theory.
- **ROC-curve**: Receiver Operating Characteristic.
- ROC: Plots the true positive rate (TPR) against the false positive rate (FPR) at various thresholds.
- **AUC** = Area Under Curve. Area under the ROC curve.

## Evaluating a classifier - ROC

