Ch 8.2.1, 8.2.2: Bagging and Random Forests

Lecture 24 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Mon. Nov 14, 2022

Announcements

Last time:

• 8.1 Decision Trees

This lecture:

- 8.2.1 Bagging
- 8.2.2 Random forest.

Announcements:

• Some rearranging:

			carranging.		
20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	M	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	M	Nov 14	Random Forests	8.2.1, 8.2.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	M	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Extended virtual office hours		
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Single layer NN	10.1	HW #9 Due
30	W	Nov 30	Multi Layer NN	10.2	
31	F	Dec 2	CNN	10.3	
32	M	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	non-interr	neat sheet and a let-connected culator

2/26

Dr. Munch (MSU-CMSE) Mon, Nov 14, 2022

Section 1

Last time

Dr. Munch (MSU-CMSE)

First decision tree example

	Hits	Years	LogSalary
1	81	14	6.163315
2	130	3	6.173786
3	141	11	6.214608
4	87	2	4.516339
5	169	11	6.620073
317	127	5	6.551080
318	136	12	6.774224
319	126	6	5.953243
320	144	8	6.866933
321	170	11	6.907755

Viewing Regions Defined by Tree

5/26

r. Munch (MSU-CMSE) Mon, Nov 14, 2022

How do we actually get the tree? Two steps

- We divide the predictor space that is, the set of possible values for X_1, X_2, \cdots, X_p — into J distinct and non-overlapping regions, R_1, R_2, \cdots, R_L
- For every observation that falls into the region R_i , we make the same prediction = the mean of the response values for the training observations in R_i .

Recursive binary splitting

Goal:

Find boxes R_1, \dots, R_J that minimize

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

 \hat{y}_{R_j} = mean response for training observations in *j*th box

Pick s so that splitting into $\{X \mid X_j < s\}$ and $\{X \mid X_j \geq s\}$ results in largest possible reduction in RSS:

$$R_1(j,s) = \{X \mid X_j < s\}$$

 $R_2(j,s) = \{X \mid X_j \ge s\}$

$$\sum_{i|x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i|x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Pruning

Dr. Munch (MSU-CMSE)

Classification version

Evaluating the splits:

- \hat{p}_{mk} = proportion of training observations in R_m from the kth class
- Error: $E = 1 \max_k(\hat{p}_{mk})$
- Gini index:

$$G = \sum_{k=1}^K \hat{
ho}_{mk} (1-\hat{
ho}_{mk})$$

Linear models vs trees

10 / 26

. Munch (MSU-CMSE) Mon, Nov 14, 2022

$\mathsf{Pros}/\mathsf{Cons}$

Pros: Cons:

Section 2

8.2.1 Bagging

Recall: The bootstrap

Want to do (but can't):

Build separate models from independent training sets, and average resulting predictions:

- $\hat{f}^1(x), \dots, \hat{f}^B(x)$ for B separate training sets
- Return the average

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$

Boostrap modification:

- Work with fixed data set
- Take B samples from this data set (with replacement)
- Train method on *b*th sample to get $\hat{f}^{*b}(x)$
- Return average of predictions (regression)

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

or majority vote (classification)

Tree version

Dr. Munch (MSU-CMSE)

Prediction on new data point

Dr. Munch (MSU-CMSE) Mon, Nov 14, 2022

Bagging vs Bootstrap

Bootstrap

Bagging

Example: Heart classification data

Out of Bag Error Estimation

- On average, bootstrap sample uses about 2/3 of the data
- Remaining observations not used are called out-of-bag (OOB) observations
- For each observation, run through all the trees where it wasn't used for building
- Return the average (or majority vote) of those as test prediction

18 / 26

Or. Munch (MSU-CMSE) Mon, Nov 14, 2022

Error using OOB

Bagging code example

Dr. Munch (MSU-CMSE) Mon, Nov 14, 2022

Section 3

Random Forests

The idea

- Goal is to decorrelate the bagged trees:
 - If there is a strong predictor, the first split of most trees will be the same
 - Most or all trees will be highly correlated
 - Averaging highly correlated quantities doesn't decrease variance as much as uncorrelated

- The random forrest fix:
 - Each time a split is considered, only use a random subset of m the predictors
 - Fresh sample taken every time
 - ▶ Typically $m \approx \sqrt{p}$
 - ▶ On average, (p m)/p of splits won't consider strong predictor
 - ightharpoonup m = p gives back bagging

Example on gene expression

Coding example for random forests

r. Munch (MSU-CMSE) Mon, Nov 14, 2022

TL:DR

Dr. Munch (MSU-CMSE)

Next time

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2		
21	М	Nov 7	Step Functions	7.2		
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4		
23	F	Nov 11	Decision Trees	8.1	HW #7 Due	
24	М	Nov 14	Random Forests	8.2.1, 8.2.2		
25	W	Nov 16	Maximal Margin Classifier	9.1		
26	F	Nov 18	SVC	9.2	HW #8 Due	
27	М	Nov 21	SVM	9.3, 9.4, 9.5		
28	W	Nov 23	Extended virtual office hours			
	F	Nov 25	No class - Thanksgiving			
29	M	Nov 28	Single layer NN	10.1	HW #9 Due	
30	W	Nov 30	Multi Layer NN	10.2		
31	F	Dec 2	CNN	10.3		
32	М	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due	
	W	Dec 7	Review			
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator		

Dr. Munch (MSU-CMSE) Mon, Nov 14, 2022