Importer les packages et les données

In [5]:

```
import pyforest
from sklearn import metrics
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
# Hide warnings
import warnings
warnings.filterwarnings('ignore')
```

In [1]:

```
data = pd.read_csv('data/concat_data/Data_Agriculture_Urbanization.csv')
# data = data.drop('Unnamed: 0', axis = 1)
```

In [2]:

```
data.head()
```

Out[2]:

	region	Date	Ménages exploitant moins de 3 parcelles (%)	Ménages exploitant 3 à 5 parcelles (%)	Ménages exploitant plus de 6 parcelles (%)	Nombre moyen de parcelles par ménage	Superficie moyenne des parcelles par ménage (Ha)	Taille moyenne des ménages	Effectif de la population	Population rurale	Population urbaine	Taux d'urbanisation
0	Dakar	2017	96.799999	40.360239	9.933108	1.208000	0.462637	4.904000	3529300.0	127054.0	3402246.0	96.400023
1	Dakar	2018	100.000000	0.000000	0.000000	1.041970	0.465369	5.363169	3630324.0	130693.0	3499631.0	96.399963
2	Diourbel	2017	12.540621	64.680761	22.778620	4.337563	3.078930	9.519451	1692967.0	1418707.0	274260.0	16.199961
3	Diourbel	2018	25.740260	57.751203	16.508539	3.816028	4.645847	10.407418	1746496.0	1463564.0	282932.0	16.199980
4	Fatick	2017	37.248814	52.979088	9.772102	3.295946	2.884257	7.974183	813542.0	676053.0	137489.0	16.900049

Variable cible

In [3]:

```
risque_deforestation = [1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1] data['risque_deforestation'] = risque_deforestation
```

- 1 : signifie que la région est fortement menacée par la déforestation
- 0 : signifie que la région est faiblement menacée par la déforestation

Jeu de donnée final avec la variable cible

In [4]:

```
data.head()
```

Out[4]:

	region	Date	Ménages exploitant moins de 3 parcelles (%)	Ménages exploitant 3 à 5 parcelles (%)	Ménages exploitant plus de 6 parcelles (%)	Nombre moyen de parcelles par ménage	Superficie moyenne des parcelles par ménage (Ha)	Taille moyenne des ménages	Effectif de la population	Population rurale	Population urbaine	Taux d'urbanisation
0	Dakar	2017	96.799999	40.360239	9.933108	1.208000	0.462637	4.904000	3529300.0	127054.0	3402246.0	96.400023
1	Dakar	2018	100.000000	0.000000	0.000000	1.041970	0.465369	5.363169	3630324.0	130693.0	3499631.0	96.399963
2	Diourbel	2017	12.540621	64.680761	22.778620	4.337563	3.078930	9.519451	1692967.0	1418707.0	274260.0	16.199961
3	Diourbel	2018	25.740260	57.751203	16.508539	3.816028	4.645847	10.407418	1746496.0	1463564.0	282932.0	16.199980
4	Fatick	2017	37.248814	52.979088	9.772102	3.295946	2.884257	7.974183	813542.0	676053.0	137489.0	16.900049

In [12]:

```
pd.set_option("display.float", "{:.2f}".format)
data.describe()
```

Out[12]:

	Date	Ménages exploitant moins de 3 parcelles (%)	Ménages exploitant 3 à 5 parcelles (%)	Ménages exploitant plus de 6 parcelles (%)	Nombre moyen de parcelles par ménage	Superficie moyenne des parcelles par ménage (Ha)	Taille moyenne des ménages	Effectif de la population	Population rurale	Population urbaine	Taux d'urbanisation	risq
count	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	
mean	2017.50	53.93	40.36	9.93	2.77	2.69	9.31	1106515.00	591002.61	515512.39	34.54	
std	0.51	28.58	19.57	7.18	1.06	1.76	1.95	837422.52	330100.12	863920.63	21.04	
min	2017.00	12.54	0.00	0.00	1.04	0.46	4.90	172482.00	126257.00	46225.00	16.20	
25%	2017.00	29.62	34.40	5.13	2.16	1.03	8.53	655086.00	412117.25	142268.00	22.27	
50%	2017.50	54.40	41.40	9.85	2.67	2.87	9.25	812808.50	546967.50	222464.00	26.35	
75%	2018.00	71.80	56.79	11.67	3.55	3.76	10.54	1094949.00	698138.00	407346.25	47.87	
max	2018.00	100.00	67.12	24.93	4.49	8.03	12.34	3630324.00	1463564.00	3499631.00	96.40	
4												Þ

In [13]:

data.risque_deforestation.value_counts().plot(kind="bar", color=["salmon", "lightblue"])

Out[13]:

<AxesSubplot:>

In [14]:

data.isna().sum()

Out[14]:

Matrice de corrélation

In [15]:

Out[15]:

(12.5, -0.5)

In [16]:

Out[16]:

<AxesSubplot:title={'center':'Correlation avec la variable risque_deforestation'}>

• On constate que les variable 'Population rurale', 'Nombre moyen de parcelles par ménage (%)', 'Superficie moyenne des parcelles par ménage (Ha)', 'Taux d'urbanisation' et 'Zone Perdue' sont les plus correlée avec la variavle risque_deforestation. Ainsi ces variables sont considèrées comme étant de bons prédicteurs de la variable risque deforestation.

Sélectionner que les variables les plus ou moins correlées à la variable cible

In [29]:

Transformation des données

In [30]:

```
X = data.drop(['risque_deforestation'], axis = 1 )
y = data.risque_deforestation
```

```
In [31]:
# # categorical_val.remove('target')
# # dataset = pd.get_dummies(df, columns = categorical_val)
# from sklearn.preprocessing import StandardScaler
# s sc = StandardScaler()
```

Fractionner les données

 $\# X = s \ sc. fit \ transform(X)$

```
In [32]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
```

Application de la méthode RandomForest

col_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
dataset[col_to_scale] = s_sc.fit_transform(dataset[col_to_scale])

In [33]:

```
from sklearn.metrics import accuracy score, confusion matrix, classification report
def print_score(clf, X_train, y_train, X_test, y_test, train=True):
   if train:
       pred = clf.predict(X train)
       clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True))
       print("Train Result:\n=========")
       print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%")
       print("
       print(f"CLASSIFICATION REPORT:\n{clf report}")
       print("
       print(f"Confusion Matrix: \n {confusion matrix(y train, pred)}\n")
   elif train==False:
       pred = clf.predict(X test)
       clf_report = pd.DataFrame(classification_report(y_test, pred, output_dict=True))
       print("Test Result:\n========"")
       print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%")
       print("
       print(f"CLASSIFICATION REPORT:\n{clf_report}")
       print("
       print(f"Confusion Matrix: \n {confusion_matrix(y_test, pred)}\n")
```

Trouver les paramètres optimaux

In [34]:

```
rfc=RandomForestClassifier(random_state=42)
```

In [35]:

```
param_grid = {
    'n_estimators': [200, 500],
    'max_features': ['auto', 'sqrt', 'log2'],
    'max_depth' : [4,5,6,7,8],
    'criterion' :['gini', 'entropy']
}
```

```
In [36]:
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
CV_rfc.fit(X_train, y_train)
Out[361:
GridSearchCV(cv=5, error score=nan,
             estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                               class weight=None,
                                               criterion='gini', max depth=None,
                                               max features='auto',
                                               max_leaf_nodes=None,
                                               max samples=None,
                                               min_impurity_decrease=0.0,
                                               min impurity split=None,
                                               min_samples_leaf=1,
                                               min_samples_split=2,
                                               min_weight_fraction_leaf=0.0,
                                               n_estimators=100, n_jobs=None,
                                               oob_score=False, random_state=42,
                                               verbose=0, warm start=False),
             iid='deprecated', n jobs=None,
             param grid={'criterion': ['gini', 'entropy'],
                          'max_depth': [4, 5, 6, 7, 8],
                          'max features': ['auto', 'sqrt', 'log2'],
                          'n_estimators': [200, 500]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)
In [37]:
CV_rfc.best_params_
Out[37]:
{'criterion': 'gini',
 'max_depth': 4,
 'max features': 'auto',
 'n_estimators': 200}
Application de la méthode avec les paramètres optimaux
In [38]:
rfc1=RandomForestClassifier(random_state=42, max_features='auto', n_estimators= 200,
                             max_depth=4, criterion='gini')
rfc1.fit(X_train, y_train)
Out[38]:
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                        criterion='gini', max depth=4, max features='auto',
                       max_leaf_nodes=None, max_samples=None,
                       min impurity decrease=0.0, min impurity split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=200,
                       n_jobs=None, oob_score=False, random_state=42, verbose=0,
                       warm start=False)
```

```
In [39]:
```

```
print_score(rfc1, X_train, y_train, X_test, y_test, train=True)
print_score(rfc1, X_train, y_train, X_test, y_test, train=False)
```

Train Result:

Accuracy Score: 100.00%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	weighted avg
precision	1.00	1.00	1.00	1.00	1.00
recall	1.00	1.00	1.00	1.00	1.00
f1-score	1.00	1.00	1.00	1.00	1.00
support	10.00	9.00	1.00	19.00	19.00

Confusion Matrix:

[[10 0] [0 9]]

Test Result:

Accuracy Score: 77.78%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	weighted avg
precision	0.83	0.67	0.78	0.75	0.78
recall	0.83	0.67	0.78	0.75	0.78
f1-score	0.83	0.67	0.78	0.75	0.78
support	6.00	3.00	0.78	9.00	9.00

Confusion Matrix:

[[5 1] [1 2]]

• Le modèle est performant à environ 100 % sur les données d'entrainement et à environ 77.78 % sur les données de test.

Prédiction

In [40]:

```
def Prédiction(Value):
    if Value == [1]:
        print('PREDICTION : \n La région est fortement menacée par la déforestation')
    else:
        print('PREDICTION : \n La région est faiblement menacée par la déforestation')
```

In [41]:

```
Value = rfc1.predict([[65.99, 2.32, 1.03, 48.20]])
Prédiction(Value)
```

PREDICTION :

La région est fortement menacée par la déforestation

In []: