

McStas: Liquids and Powders Dynamics

E. Farhi, ILL

Isotropic density samples in McStas

Outline

- Scattering law, a bit of theory
- •The *Isotropic_Sqw* component and input data files
- •How to get S(q,w) data sets:
 - From MD
 - From lattice dynamics
 - From experiments
- •Exercise: a "liquid" TOF spectrometer
- •Exercise: separate contributions

Disclaimer: in case of errors and uncertainties, please correct me...

IDANSE2018

Neutron-matter interaction

Selections rules

$$K_f = K_i + Q$$

$$E_f = E_i + \omega$$

Bragg's law (diffraction on structure – atoms separated by distance d)

$$n\lambda = 2\pi/K_i = 2d\sin\theta$$

Scattering law (intensity per solid angle and energy, dynamics)

Holy Book (Squires)
$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{K_f}{K_i} \left[\frac{\sigma}{4\pi} S(Q, \omega) \right]$$

Dynamical structure factor $S(Q, \omega)$ is characteristic of each material Reflects ordering of matter (atom/molecule positions – movements - domains)

Scattering law

The double differential scattering cross section gives the probability for a neutron to scatter for a given solid angle and energy

The total intensity is the full integral over all scattering possibilities.

Effective total scattering cross section

$$\hat{\sigma}=\iint rac{d^2\sigma}{d\Omega dE_f} d\Omega dE_f$$
 V.F. Sears. Adv. Phys., 24, 1, 1975.

Computing the total scattering probability

The total scattering cross section is given in (Ω, E_f) space, but S is given in (q, ω) A variable change must be done for the integration (Jacobian).

We like to play games in (q,ω) space

$$\frac{d\Omega}{d\theta} = -2\pi sin\theta$$

$$\frac{dq}{d\theta} = -\frac{k_i k_f sin\theta}{q}$$

Effective cross section in (q,ω) space

$$\hat{\sigma} = \sigma \int \int \frac{S(q,\omega)q}{2k_i^2} dq d\omega$$

Probability to transmit

$$p=e^{-\rho \hat{\sigma} x}$$

n

Scattering distribution

$$S(q,\omega)$$

with importance sampling to scatter preferably where S is large

MDANSE2018

How to get S(q,w) data sets

MD step is done prior to the virtual experiment (NAMD, VASP, GROMACS, ...). Computationally intensive (e.g. use clusters). Then use FFT(r,t)

McStas provides a few sample S(Q,w): Rb, Ge, H2O, D2O, D2, ...

Isotropic_Sqw: Handles **elastic** and **inelastic** for both **coherent** and **incoherent** channels

Isotropic_Sqw syntax

- Isotropic_Sqw(
 Sqw_coh=FILE_COH,
 Sqw_inc=FILE_INC,
 radius=R,
 height=H)
- More component parameters can specify geometry, physical properties, ...
- The data files specify the $S(Q, \omega)$ or S(Q) values as a matrix with Q, ω extent. Additional fields can be included as meta data (# lines).

Isotropic_Sqw data format

- Open McStas, select Help / Comp Ref, then Data files. Select a .sqw file, e.g. не4_liq_coh.sqw
- Look at format: Header and meta data, axes, matrix
- Used # fields:
 - density, weight, sigma, Temperature
- Meta data can be given as component parameters.

Isotropic_Sqw data format

```
# Sgw data file for Isotropic Sgw
# liquid He4: coherent part, no incoherent, atomic number 2
# Elementary Excitation Data by R.J. Donnelly et al., J. Low Temp. Phys., 44 (1981) 471
 WARNING: line width is constant, intensity is not right
# Physical parameters:
# V rho
             0.072
                      atom density per Angs^3
# weight
             4.002
                      in [q/mol]
# density 0.4784 in [g/cm<sup>3</sup>]
# sigma abs 0.00747 absorption scattering cross section in [barn]
# sigma coh 1.34
                      coherent scattering cross section in [barn]
# sigma inc
                      incoherent scattering cross section in [barn]
# Temperature 2
                      in [K]
# classical
                      experimental, contains Bose factor
# q axis values
# vector of m values in Angstroem-1
                                                       He4 liq coh.sqw
0.001000 0.011000 0.02 ...
# w axis values
# vector of n values in meV
0.001391 0.011391 0.021391 0.0313 ...
# sqw values (one line per q axis value)
# matrix of S(q,w) values (m rows x n values), one line per q value
9.721422 10.599145 11.344954 ...
```

Such files can be written from an iFit iData_Sqw2D object:

- $sqw2d = iData_Sqw2D(...);$
- saveas(sqw2d, 'filename.sqw', 'mcstas')

Sqw file from experiments

- Reduce the experimental data, correct it for e.g. empty cell, parallax, detector efficiency, ...
- Correct for absorption, incoherent scattering, multiple-scattering, ...
- Integrate over |Q| as *Isotropic_Sqw* is isotropic.
- Write a text file with $[Q,\omega]$ and $S(Q,\omega)$ vectors/matrices. Add meta-data.

MDANSE2018

Sqw file from MD

- Set the system box, (pseudo) potential/FF
- Equilibrate, and couple to thermostat (NVT)
- Run calculator in MD mode (NVE)
- Convert trajectory (\mathbf{R} ,t) into $S(|Q|,\omega)$ [MDANSE]
 - Analysis/Scattering/DCSF and DISF → .nc file
- Export into .sqw text files.
 - sqw2d = iData_Sqw2D('DCSF.nc');
 - saveas(sqw2d, 'DCSF.sqw', 'mcstas');

Sqw file from Lattice Dynamics

- Create a crystal, calculate displacements or so.
- Assemble the 'phonon' representation
- Evaluate S(Q,w) on powder average
- Export to McStas Sqw

Sqw: Exercise 1: a liquid TOF

Aim: A simple spectrometer (and diffractometer)

- Create a new instrument from 'template (test);
- Call it Liquid_simple and define input parameters (lambda=2.36, string coh="Rb_liq_coh.sqw", string inc="Rb_liq_inc.sqw")
- Insert a Source_simple ϕ 1cm sending λ =lambda with $d\lambda/\lambda$ =1%. Focus onto a 1x1cm² area.
- Insert an Isotropic_Sqw 3m away, using σ_{coh} = coh, σ_{inc} = inc with ϕ 1cm x 5cm.

Sqw: Exercise 1: a liquid TOF

• Add a Monitor_nD cylindrical detector $\phi 1$ m x 30cm, sensitive to (θ,y) for diffraction, centred on the sample, with 100 bins.

Add the same, but sensitive to (angle,energy)
with automatic energy limits.

Save, run in *Trace 3D* to check geometry.

Sqw: Exercise 1: a liquid TOF

• Run in Simulation/PGPLOT mode with 1e8 neutron events.

• Plot results!

Comment on the diffraction pattern and the

inelastic one.

Sqw: Exercise 2: contributions

• Insert an instrument variable in the DECLARE block, as 'flag_scat'.

```
DECLARE %{
int flag_scat=0;
%}
```

 After the AT token of the 'sample', insert an EXTEND block that sets flag_scat to the number of SCATTERED events.

```
EXTEND %{
flag_scat=SCATTERED; // nb of scattered events
%}
```


Sqw: Exercise 2: contributions

 Duplicate the 2 monitors, and make them sensitive to multiple-scattering only. Add a WHEN(flag_scat) between the COMPONENT

and the AT keywords:

```
COMPONENT ...
WHEN(flag_scat > 1)
AT ...
```

- Save and Run!
- How much multiple scattering ratio at λ =2.36 Å
- Make the sample ϕ 5cm and repeat.

Sqw: Exercise 3: from iFit: build

- McStas can be controlled from within iFit.
- Open Matlab/iFit
- Create the Liquid_simple model with:
 - model = mccode('Liquid_simple')
- Plot the geometry with:
 - plot(model) % has contextual menus
- Then run it with (default 1e6 event and pars)
 - data = iData(model, [], nan);
 - subplot(model)

Sqw: Exercise 3: from iFit: eval

- Specify parameters
 - data = iData(model, 'lambda=2.36; coh=Cu.laz')
- Do a scan:
 - data = iData(model, 'lambda= $[1.2 \ 2.4 \ 3.6]$ ')
- Change neutron events #
 - model.UserData.options.ncount = 1e7;

Sqw: Exercise 3: from iFit: optim

- Fix all parameters but lambda, Maximize model value:
 - mlock(model, 'all'); munlock(model, 'lambda')
 - xlim(model, 'lambda', [1 3]); % bounds
 - fmax(model, 'lambda=2.36', '', nan)
 - fmax(model, 'lambda=2.36', 'OutputFcn=fminplot', nan)

Sqw: Exercise 3: from iFit: crazy

- You can add two McStas models:
 - model=mccode('instr1')+mccode('instr2')
- Edit the instrument and re-compile
 - edit(model)

•

