Lecture 22-2 Graph-cut Segmentation

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building 2 302-F

min cut

Graph-cut segmentation

$$G = \{V, E\}$$

V: Graph nodes

E: edges connection nodes

Pixel similarity

Segmentation = Graph partition

Right partition cost function?

Efficient optimization algorithm?

Min cut 9-20-9 h-5-t

Max flow

Graph Cut and Flow

Foreground Source

Doeb ground Sink

- 1) Given a source (s) and a sink node (t)
- 2) Define Capacity on each edge, $C_{ij} = W_{ij}$
- 3) Find the maximum flow from s→t, satisfying the capacity constraints:

Min Cut

Min Cut

The miminum cut: i.e. C that minimizes

min out man flow

$$C = \sum_{(i,j) \in C} w_{ij}$$

• N-links: between adjacent pixels, we could use

$$w_{ij} = e^{-\frac{\left\|I_i - I_j\right\|^2}{2\delta^2}}$$

forms probability distributions F_B , F_F .

forms probability distributions
$$F_B$$
, F_F .

The foreground \Rightarrow With $w_{iF} = \langle F_F(I_i); w_{iB} = F_B(I_i) \rangle$

With $w_{iF} = \langle F_F(I_i); w_{iB} = F_B(I_i) \rangle$

With $w_{iF} = \langle F_F(I_i); w_{iB} = F_B(I_i) \rangle$

With $w_{iF} = \langle F_F(I_i); w_{iB} = F_B(I_i) \rangle$

With $w_{iF} = \langle F_F(I_i); w_{iB} = F_B(I_i) \rangle$

With $w_{iF} = \langle F_F(I_i); w_{iB} = F_B(I_i) \rangle$

$$= \langle F_F(I_i); w_{iB} = F_B(I_i) \rangle$$

$$argmin \ aR(L) + E(L)$$

Resource

- https://vision.cs.uwaterloo.ca/code/
- http://www.cs.cornell.edu/~rdz/graphcuts.html
- http://pub.ist.ac.at/~vnk/software.html

