### **Plan**

- Eigenvalues and Eigenvectors
- Similar Matrix
- Diagonalizable Matrix

• Just like the space  $\mathbb{R}^n$ , we also define the space  $\mathbb{C}^n$ .

- Just like the space  $\mathbb{R}^n$ , we also define the space  $\mathbb{C}^n$ .
- Indeed,

$$\mathbb{C}^n = \{ [x_1, x_2, \dots, x_n]^t : x_1, x_2, \dots, x_n \in \mathbb{C} \}.$$

- Just like the space  $\mathbb{R}^n$ , we also define the space  $\mathbb{C}^n$ .
- Indeed,

$$\mathbb{C}^n = \{ [x_1, x_2, \dots, x_n]^t : x_1, x_2, \dots, x_n \in \mathbb{C} \}.$$

The definitions of vector addition and scalar multiplication *etc.*, and most of the results that we have studied so far in case of  $\mathbb{R}^n$ , can also be accomplished for the space  $\mathbb{C}^n$ , in a similar manner.

Let A be an  $n \times n$  matrix.

• A complex number  $\lambda$  is called an eigenvalue of A if there is  $\mathbf{x} \in \mathbb{C}^n$ ,  $\mathbf{x} \neq \mathbf{0}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ .

Let A be an  $n \times n$  matrix.

- A complex number  $\lambda$  is called an eigenvalue of A if there is  $\mathbf{x} \in \mathbb{C}^n$ ,  $\mathbf{x} \neq \mathbf{0}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ .
- We call **x** an eigenvector of A corresponding to  $\lambda$ .

Let A be an  $n \times n$  matrix.

- A complex number  $\lambda$  is called an eigenvalue of A if there is  $\mathbf{x} \in \mathbb{C}^n$ ,  $\mathbf{x} \neq \mathbf{0}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ .
- We call **x** an eigenvector of A corresponding to  $\lambda$ .

For 
$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
, eigenvalues: 4, -2; resp. eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

Let A be an  $n \times n$  matrix.

- A complex number  $\lambda$  is called an eigenvalue of A if there is  $\mathbf{x} \in \mathbb{C}^n$ ,  $\mathbf{x} \neq \mathbf{0}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ .
- We call **x** an eigenvector of A corresponding to  $\lambda$ .

### Example

For 
$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
, eigenvalues: 4, -2; resp. eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

#### Result

Let A be an  $n \times n$  matrix and let  $\lambda$  be an eigenvalue of A. Then

•  $\lambda$  is an eigenvalue of A iff  $det(A - \lambda I) = 0$ .

Let A be an  $n \times n$  matrix.

- A complex number  $\lambda$  is called an eigenvalue of A if there is  $\mathbf{x} \in \mathbb{C}^n$ ,  $\mathbf{x} \neq \mathbf{0}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ .
- We call **x** an eigenvector of A corresponding to  $\lambda$ .

## Example

For 
$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
, eigenvalues: 4, -2; resp. eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

#### Result

- $\lambda$  is an eigenvalue of A iff  $det(A \lambda I) = 0$ .
- 0 is an eigenvalue of A iff A is not invertible.

Let A be an  $n \times n$  matrix.

- A complex number  $\lambda$  is called an eigenvalue of A if there is  $\mathbf{x} \in \mathbb{C}^n$ ,  $\mathbf{x} \neq \mathbf{0}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ .
- We call **x** an eigenvector of A corresponding to  $\lambda$ .

## Example

For 
$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
, eigenvalues: 4, -2; resp. eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

#### Result

- $\lambda$  is an eigenvalue of A iff  $det(A \lambda I) = 0$ .
- 0 is an eigenvalue of A iff A is not invertible.
- ★ The eigenvalues can be directly computed for 2 × 2 matrices.

Let A be an  $n \times n$  matrix.

- A complex number  $\lambda$  is called an eigenvalue of A if there is  $\mathbf{x} \in \mathbb{C}^n$ ,  $\mathbf{x} \neq \mathbf{0}$  such that  $A\mathbf{x} = \lambda \mathbf{x}$ .
- We call **x** an eigenvector of A corresponding to  $\lambda$ .

### Example

For 
$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
, eigenvalues: 4, -2; resp. eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ .

#### Result

- $\lambda$  is an eigenvalue of A iff  $det(A \lambda I) = 0$ .
- 0 is an eigenvalue of A iff A is not invertible.
- ★ The eigenvalues can be directly computed for 2 × 2 matrices.
- ★ Use Gauss Jordan Elimination on  $[A \lambda I]$  to find all possible eigenvectors for  $\lambda$  of A.

Let  $\lambda$  be an eigenvalue of a matrix A. The collection of all eigenvectors of A corresponding to  $\lambda$ , together with the zero vector, is called the eigenspace of  $\lambda$ , and is denoted by  $E_{\lambda}$ .

Let  $\lambda$  be an eigenvalue of a matrix A. The collection of all eigenvectors of A corresponding to  $\lambda$ , together with the zero vector, is called the eigenspace of  $\lambda$ , and is denoted by  $E_{\lambda}$ .

#### Result

Let A be an  $n \times n$  matrix and let  $\lambda$  be an eigenvalue of A. Then

•  $E_{\lambda} = null(A - \lambda I)$ , that is,  $E_{\lambda}$  is a subspace of  $\mathbb{C}^n$ .

Let  $\lambda$  be an eigenvalue of a matrix A. The collection of all eigenvectors of A corresponding to  $\lambda$ , together with the zero vector, is called the eigenspace of  $\lambda$ , and is denoted by  $E_{\lambda}$ .

#### Result

- $E_{\lambda} = null(A \lambda I)$ , that is,  $E_{\lambda}$  is a subspace of  $\mathbb{C}^n$ .
- Let  $\mathbf{v}_1, \dots, \mathbf{v}_k$  be eigenvectors of A corresponding to  $\lambda$  and  $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k \neq \mathbf{0}$ . Then  $\mathbf{v}$  is an eigenvector of A.

Let  $\lambda$  be an eigenvalue of a matrix A. The collection of all eigenvectors of A corresponding to  $\lambda$ , together with the zero vector, is called the eigenspace of  $\lambda$ , and is denoted by  $E_{\lambda}$ .

#### Result

- $E_{\lambda} = null(A \lambda I)$ , that is,  $E_{\lambda}$  is a subspace of  $\mathbb{C}^n$ .
- Let  $\mathbf{v}_1, \dots, \mathbf{v}_k$  be eigenvectors of A corresponding to  $\lambda$  and  $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k \neq \mathbf{0}$ . Then  $\mathbf{v}$  is an eigenvector of A.
- Eigenvalues of a triangular matrix are its diagonal entries.

Let  $\lambda$  be an eigenvalue of a matrix A. The collection of all eigenvectors of A corresponding to  $\lambda$ , together with the zero vector, is called the eigenspace of  $\lambda$ , and is denoted by  $E_{\lambda}$ .

#### Result

- $E_{\lambda} = null(A \lambda I)$ , that is,  $E_{\lambda}$  is a subspace of  $\mathbb{C}^n$ .
- Let  $\mathbf{v}_1, \dots, \mathbf{v}_k$  be eigenvectors of A corresponding to  $\lambda$  and  $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k \neq \mathbf{0}$ . Then  $\mathbf{v}$  is an eigenvector of A.
- Eigenvalues of a triangular matrix are its diagonal entries.
- Eigenvaules of  $\begin{bmatrix} A_p & C \\ O & B_q \end{bmatrix}$  are the eigenvalues of A and B.

Let A be an  $n \times n$  matrix. Then

•  $P_A(x) = |A - xI|$  is called characteristic polynomial of A.

Let A be an  $n \times n$  matrix. Then

- $P_A(x) = |A xI|$  is called characteristic polynomial of A.
- $P_A(x) = 0$  is called characteristic equation of A.

Let A be an  $n \times n$  matrix. Then

- $P_A(x) = |A xI|$  is called characteristic polynomial of A.
- $P_A(x) = 0$  is called characteristic equation of A.

Take 
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}$ .

Let A be an  $n \times n$  matrix. Then

- $P_A(x) = |A xI|$  is called characteristic polynomial of A.
- $P_A(x) = 0$  is called characteristic equation of A.

Take 
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}$ .

$$\bullet P_A(x) = -(x-1)^2(x-2); \quad E_1 = \operatorname{span}(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}), E_2 = \operatorname{span}(\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}).$$

Let A be an  $n \times n$  matrix. Then

- $P_A(x) = |A xI|$  is called characteristic polynomial of A.
- $P_A(x) = 0$  is called characteristic equation of A.

Take 
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}$ .

• 
$$P_A(x) = -(x-1)^2(x-2)$$
;  $E_1 = \text{span}(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}), E_2 = \text{span}(\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix})$ .

$$\bullet \ P_B(x) = -x^2(x+2); \ E_0 = \operatorname{span}(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}), E_{-2} = \operatorname{span}(\begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}).$$

# Result (Fundamental Theorem of Invertible Matrices: Version III)

# Result (Fundamental Theorem of Invertible Matrices: Version III)

Let A be an  $n \times n$  matrix. Then the following statements are equivalent.

# Result (Fundamental Theorem of Invertible Matrices: Version III)

Let A be an  $n \times n$  matrix. Then the following statements are equivalent.

- 1. A is invertible.
- 2. At is invertible.
- **3**.  $A\mathbf{x} = \mathbf{b}$  has a solution for every  $\mathbf{b}$  in  $\mathbb{R}^n$ .
- **4**.  $A\mathbf{x} = \mathbf{b}$  has a unique solution for every  $\mathbf{b}$  in  $\mathbb{R}^n$ .
- 5. Ax = 0 has only the trivial solution.
- 6. The reduced row echelon form of A is  $I_n$ .
- 7. The rows of A are linearly independent.
- 8. The columns of A are linearly independent.

- **9**. rank(A) = n.
- 10. A is a product of elementary matrices.
- **11.** nullity(A) = 0.
- 12. The column vectors of A span  $\mathbb{R}^n$ .
- **13**. The column vectors of *A* form a basis for  $\mathbb{R}^n$ .
- **14**. The row vectors of *A* span  $\mathbb{R}^n$ .
- **15**. The row vectors of A form a basis for  $\mathbb{R}^n$

- **9**. rank(A) = n.
- 10. A is a product of elementary matrices.
- **11.** nullity(A) = 0.
- 12. The column vectors of A span  $\mathbb{R}^n$ .
- **13**. The column vectors of *A* form a basis for  $\mathbb{R}^n$ .
- **14**. The row vectors of *A* span  $\mathbb{R}^n$ .
- **15**. The row vectors of A form a basis for  $\mathbb{R}^n$
- 16. det  $A \neq 0$ .

- **9**. rank(A) = n.
- 10. A is a product of elementary matrices.
- **11**. nullity(A) = 0.
- 12. The column vectors of A span  $\mathbb{R}^n$ .
- **13**. The column vectors of *A* form a basis for  $\mathbb{R}^n$ .
- **14**. The row vectors of *A* span  $\mathbb{R}^n$ .
- 15. The row vectors of A form a basis for  $\mathbb{R}^n$
- 16. det  $A \neq 0$ .
- 17. 0 is not an eigenvalue of A.

Let A be a matrix with eigenvalue  $\lambda$  and corresponding eigenvector  $\mathbf{x}$ .

Let A be a matrix with eigenvalue  $\lambda$  and corresponding eigenvector  $\mathbf{x}$ .

**1** For any positive integer n,  $\lambda^n$  is an eigenvalue of  $A^n$  with corresponding eigenvector  $\mathbf{x}$ .

Let A be a matrix with eigenvalue  $\lambda$  and corresponding eigenvector **x**.

- **1** For any positive integer n,  $\lambda^n$  is an eigenvalue of  $A^n$  with corresponding eigenvector  $\mathbf{x}$ .
- 2 If A is invertible, then  $\frac{1}{\lambda}$  is an eigenvalue of  $A^{-1}$  with corresponding eigenvector **x**.

Let A be a matrix with eigenvalue  $\lambda$  and corresponding eigenvector **x**.

- **1** For any positive integer n,  $\lambda^n$  is an eigenvalue of  $A^n$  with corresponding eigenvector  $\mathbf{x}$ .
- 2 If A is invertible, then  $\frac{1}{\lambda}$  is an eigenvalue of  $A^{-1}$  with corresponding eigenvector **x**.
- If A is invertible then for any integer n,  $\lambda^n$  is an eigenvalue of  $A^n$  with corresponding eigenvector  $\mathbf{x}$ .

Let  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$  be eigenvectors of a matrix A with corresponding eigenvalues  $\lambda_1, \lambda_2, \ldots, \lambda_m$ , respectively. Let  $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_m \mathbf{v}_m$ . Then for any positive integer k,

$$A^{k}\mathbf{x}=c_{1}\lambda_{1}^{k}\mathbf{v}_{1}+c_{2}\lambda_{2}^{k}\mathbf{v}_{2}+\ldots+c_{m}\lambda_{m}^{k}\mathbf{v}_{m}.$$

Let  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$  be eigenvectors of a matrix A with corresponding eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_m$ , respectively. Let  $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_m \mathbf{v}_m$ . Then for any positive integer k,

$$A^{k}\mathbf{x}=c_{1}\lambda_{1}^{k}\mathbf{v}_{1}+c_{2}\lambda_{2}^{k}\mathbf{v}_{2}+\ldots+c_{m}\lambda_{m}^{k}\mathbf{v}_{m}.$$

#### Result

Let  $\lambda_1, \lambda_2, \dots, \lambda_m$  be distinct eigenvalues of a matrix A with corresponding eigenvectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ , respectively. Then the set  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$  is linearly independent.



## Similar Matrix

### Similar Matrix

Let *A* and *B* be two  $n \times n$  matrices. Then *A* is said to be similar to *B* if there is an  $n \times n$  invertible matrix *T* such that  $T^{-1}AT = B$ .

### Similar Matrix

Let A and B be two  $n \times n$  matrices. Then A is said to be similar to B if there is an  $n \times n$  invertible matrix T such that  $T^{-1}AT = B$ .

• If A is similar to B, we write  $A \approx B$ .

### Similar Matrix

Let A and B be two  $n \times n$  matrices. Then A is said to be similar to B if there is an  $n \times n$  invertible matrix T such that  $T^{-1}AT = B$ .

- If A is similar to B, we write  $A \approx B$ .
- If  $A \approx B$ , we can equivalently write that  $A = TBT^{-1}$  or AT = TB.

Let 
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$  and  $T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ .  
Then  $A \approx B$  since  $AT = TB$ .

Let 
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$  and  $T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ .  
Then  $A \approx B$  since  $AT = TB$ .

### Result

Let A, B and C be  $n \times n$  matrices. Then

Let 
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$  and  $T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ .  
Then  $A \approx B$  since  $AT = TB$ .

### Result

Let A, B and C be  $n \times n$  matrices. Then

- ② If  $A \approx B$  then  $B \approx A$ .

Let 
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$  and  $T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ .  
Then  $A \approx B$  since  $AT = TB$ .

### Result

Let A, B and C be  $n \times n$  matrices. Then

- 2 If  $A \approx B$  then  $B \approx A$ .
- **3** If  $A \approx B$  and  $B \approx C$  then  $A \approx C$ .

Let A, B, T be matrices such that T is invertible and  $B = T^{-1}AT$ . Then

 $\bigcirc$  det  $A = \det B$ .

- $\mathbf{0}$  det  $A = \det B$ .
- 2 A is invertible iff B is invertible.

- $\mathbf{0}$  det  $A = \det B$ .
- 2 A is invertible iff B is invertible.
- A and B have the same rank.

- $\bullet$  det  $A = \det B$ .
- 2 A is invertible iff B is invertible.
- A and B have the same rank.
- A and B have the same characteristic polynomial.

- $\bullet$  det  $A = \det B$ .
- A is invertible iff B is invertible.
- A and B have the same rank.
- A and B have the same characteristic polynomial.
- A and B have the same set of eigenvalues.

- $\mathbf{0}$  det  $A = \det B$ .
- 2 A is invertible iff B is invertible.
- A and B have the same rank.
- A and B have the same characteristic polynomial.
- A and B have the same set of eigenvalues.
- $\star$   $\lambda$  is an eigenvalue of B with an eigenvector  $\mathbf{v}$  iff  $\lambda$  is an eigenvalue of A with an eigenvector  $T\mathbf{v}$ .

- $\mathbf{0}$  det  $A = \det B$ .
- 2 A is invertible iff B is invertible.
- A and B have the same rank.
- A and B have the same characteristic polynomial.
- A and B have the same set of eigenvalues.
- $\star$   $\lambda$  is an eigenvalue of B with an eigenvector  $\mathbf{v}$  iff  $\lambda$  is an eigenvalue of A with an eigenvector  $\mathbf{T}\mathbf{v}$ .
- **1** The dim( $E_{\lambda}$ ) for A is same as dim( $E_{\lambda}$ ) for B.

A matrix A is said to be diagonalizable if there is a diagonal matrix D such that  $A \approx D$ .

A matrix A is said to be diagonalizable if there is a diagonal matrix D such that  $A \approx D$ .

### Example

The matrix 
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
 is diagonalizable, since if

$$D = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$$
 and  $T = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$  then  $AT = TD$ .

A matrix A is said to be diagonalizable if there is a diagonal matrix D such that  $A \approx D$ .

### Example

The matrix 
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
 is diagonalizable, since if

$$D = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$$
 and  $T = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$  then  $AT = TD$ .

### Result

Let A be an  $n \times n$  matrix. Then A is diagonalizable iff A has n linearly independent eigenvectors.



• Let A be a diagonalizable matrix.

- Let A be a diagonalizable matrix.
- Suppose  $T^{-1}AT = D$ , where T is an invertible matrix and D is a diagonal matrix.

- Let A be a diagonalizable matrix.
- Suppose  $T^{-1}AT = D$ , where T is an invertible matrix and D is a diagonal matrix.
- Then the columns of T are the linearly independent eigenvectors of A.

- Let A be a diagonalizable matrix.
- Suppose  $T^{-1}AT = D$ , where T is an invertible matrix and D is a diagonal matrix.
- Then the columns of T are the linearly independent eigenvectors of A.
- The diagonal entries of D are the eigenvalues of A corresponding to the columns (eigenvectors of A) of T in the same order.

Check for the diagonalizablity. If diagonalizable, find a T that diagonalizes it. [Use GJE]

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

Check for the diagonalizablity. If diagonalizable, find a T that diagonalizes it. [Use GJE]

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

• For 
$$A$$
,  $E_1 = \text{span}(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix})$ ,  $E_2 = \text{span}(\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix})$ .

• For 
$$B$$
,  $E_0 = \operatorname{span}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, E_{-2} = \operatorname{span}\begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ .

Check for the diagonalizablity. If diagonalizable, find a T that diagonalizes it. [Use GJE]

$$A = \left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{array} \right] \ \ \text{and} \ \ B = \left[ \begin{array}{ccc} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{array} \right].$$

• For 
$$A$$
,  $E_1 = \operatorname{span}\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ ,  $E_2 = \operatorname{span}\begin{pmatrix} 1\\2\\4 \end{pmatrix}$ ).

• For 
$$B$$
,  $E_0 = \operatorname{span}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, E_{-2} = \operatorname{span}\begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ .

A is not diagonalizable.

Check for the diagonalizablity. If diagonalizable, find a T that diagonalizes it. [Use GJE]

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

• For 
$$A$$
,  $E_1 = \text{span}(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix})$ ,  $E_2 = \text{span}(\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix})$ .

• For 
$$B$$
,  $E_0 = \operatorname{span}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, E_{-2} = \operatorname{span}\begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ .

• A is not diagonalizable. B is diagonalizable,  $T = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ .

If A is an  $n \times n$  matrix with n distinct eigenvalues then A is diagonalizable.

If A is an  $n \times n$  matrix with n distinct eigenvalues then A is diagonalizable.

### Result

Let  $\lambda_1, \lambda_2, \dots, \lambda_k$  be distinct eigenvalues of a matrix A. If  $\mathcal{B}_i$  is a basis for the eigenspace  $E_{\lambda_i}$ , then  $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \dots \cup \mathcal{B}_k$  is a linearly independent set.

If A is an  $n \times n$  matrix with n distinct eigenvalues then A is diagonalizable.

### Result

Let  $\lambda_1, \lambda_2, \dots, \lambda_k$  be distinct eigenvalues of a matrix A. If  $\mathcal{B}_i$  is a basis for the eigenspace  $\mathcal{E}_{\lambda_i}$ , then  $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \dots \cup \mathcal{B}_k$  is a linearly independent set.

### Definition

Let  $\lambda$  be an eigenvalue of a matrix A.

• The algebraic multiplicity of  $\lambda$  is the multiplicity of  $\lambda$  as a root of the characteristic polynomial of A.

If A is an  $n \times n$  matrix with n distinct eigenvalues then A is diagonalizable.

### Result

Let  $\lambda_1, \lambda_2, \dots, \lambda_k$  be distinct eigenvalues of a matrix A. If  $\mathcal{B}_i$  is a basis for the eigenspace  $\mathcal{E}_{\lambda_i}$ , then  $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \dots \cup \mathcal{B}_k$  is a linearly independent set.

### Definition

Let  $\lambda$  be an eigenvalue of a matrix A.

- The algebraic multiplicity of  $\lambda$  is the multiplicity of  $\lambda$  as a root of the characteristic polynomial of A.
- The geometric multiplicity of  $\lambda$  is the dimension of  $E_{\lambda}$ .

#### Result

The geometric multiplicity of each eigenvalue of a matrix is less than or equal to its algebraic multiplicity.

### Result

The geometric multiplicity of each eigenvalue of a matrix is less than or equal to its algebraic multiplicity.

## Result (The Diagonalization Theorem)

Let A be an  $n \times n$  matrix whose distinct eigenvalues are  $\lambda_1, \lambda_2, \dots, \lambda_k$ . Then the following statements are equivalent:

### Result

The geometric multiplicity of each eigenvalue of a matrix is less than or equal to its algebraic multiplicity.

## Result (The Diagonalization Theorem)

Let A be an  $n \times n$  matrix whose distinct eigenvalues are  $\lambda_1, \lambda_2, \dots, \lambda_k$ . Then the following statements are equivalent:

- A is diagonalizable.
- 2 The union B of the bases of the eigenspaces of A contains n vectors.
- The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.

