What Do Consumers Want In A Boardgame?

GameStat Visionaries

Andrew Kulp, Talisa Manker, and Garrett Zimmerman

Problem Statement

Context

- Boardgames are expensive to produce
- To make a profit, we need to produce
 games consumers want to own

Questions to Answer

- Can we use consumer game ratings to predict ownership?
- What features do games with high consumer ratings have?
- Can we predict if a game will be highly rated based on its features?

Objectives and Goals

Project Objective

 Determine the features that will make a newly designed board game highly rated and increase ownership by using data on existing board games

Expected Outcomes

- Determine the features of a Board Game that will make the game popular and increase ownership
- Determine a highly rated value which correlates with high ownership
- Use Linear Regression to relate higher ratings with number owned
- Use Logistic Regression to classify if the newly designed board game will be highly rated based on already existing board games

Data Sources

Data Overview

- 9 Data Sources
 - All Data sources are linked by variable BGGId; the Board game ID
- Information Contained in Data Sources
 - Reviews(User Ratings, Bayes Ratings, Rankings)
 - · Number Owned, Wanted, or Wished
 - · Categories and Themes of Games
 - Artists and Publishers of Games

Data Relevance

- Prediction: Data will help predict which features of a board game will lead to higher ownership of a newly designed board game
- Design: Categories and themes will guide the design of a board game which tend to have higher user ratings

Methodology

- Determine threshold for high rating
 - What minimum rating would be considered "highly rated" based on business goals?
 - Explore if there is a rating threshold with an observable spike in ownership
- Variable selection
 - Several datasets are exclusively binary variables with as few as 11 variables to over 1,000
 - Use regularization techniques, such as LASSO regression, to select which game features to use in final model
- Predict probability of being highly rated
 - Use logistic regression to measure each feature's impact on the likelihood of a board game being highly rated

Project Plan and Timeline

Milestones

• Progress Update: November 4, 2024

Mid Semester Update: November 25, 2024

• Final Presentation: December 8, 2024

Key				
Andrew				
Talisa				
Garrett				
Team				

Task	Oct 6- Oct 12	Oct 13 - Oct 19	Oct 20 - Oct 26	Oct 27 - Nov 2	Nov 3 - Nov 9	Nov 10 - Nov 16	Nov 17 - Nov 23	Nov 24 - Nov 30	Dec 1 - Dec 7	8-Dec
EDA										
Potential Threshold										
Adress Challenges										
Linear Regression Model										
Log Model Threshold										
Variable Selection										
Choose Rating Thresholds										
Write Progress Update										
Edit Progress Update										
Submit Progress Update					Due Nov 4					
Mid Semester Update							Due Nov 25			
Final Variable Selection										
Final Log Model Threshold										
Final Linear Model										
Work on Slides for Final Pres										
Final Pres Submission										

Expected Challenges

Potential Obstacles

- 1. Selecting binary variables to use
- 2. Deciding on which rating variable to use
- 3. Choosing a probability threshold cut off for highly rated games
- 4. Using multiple features when relating rating and number owned could decrease the correlation

Mitigation Strategies

- 1. Robust variable selection using multiple methods
- 2. Checking correlation of rating variables with number owned
- 3. Make multiple logistic regressions with different thresholds and look at evaluation metrics (sensitivity, specificity, etc.)
- 4. Using validation methods like k-fold validation

Value Proposition

Business Value

- Intelligence on which features make a board game highly rated
- A blueprint of what the next manufactured board game should include to drive ownership
- A reputation for taking customer trends into account when designing games

Consumer Value

- Confidence in their purchase when buying our games
- In the future, can adjust our model to create a recommender system based on customer preferences

Team Roles and Responsibilities

Andrew

- Determine Log Thresholds
- Midsemester Update Slides
- Create Final Log Model
- Work on Final Presentation Slides

Talisa

- Variable Selection
- Write and Submit Progress Update
- Midterm Update Slides
- Select Variables for final logistic and linear regression
- Work on Final Presentation Slides

Garrett

- Linear Regression Model
- Edit Progress Update
- Midterm Update Slides
- Create Final Linear Model
- Work on Final Presentation Slides
- Submit Final Presentation

