pre-assignment

Jakub Skrajny

27 04 2021

Libraries

```
library(openxlsx)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##
     method
     as.zoo.data.frame zoo
library(forecast)
library(EnvStats)
## Attaching package: 'EnvStats'
## The following objects are masked from 'package:stats':
##
##
       predict, predict.lm
## The following object is masked from 'package:base':
##
##
       print.default
library(lmtest)
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
```

Read data

```
data <- read.xlsx("Lions_Den_data.xlsx")
ts <- ts(unlist(data[2]), start=c(1994, 7), frequency=12)
plot(ts)</pre>
```


Decomposition

```
decompose <- decompose(ts, "multiplicative")
plot(decompose)</pre>
```

Decomposition of multiplicative time series

Outliers

Rosner's test suggest that there is only one outlier, but on the plot we can see that entire winter 2006 is does not match.

plot(ts, type="o", ylab="coal usage")


```
##
## Results of Outlier Test
## Test Method:
                                    Rosner's Test for Outliers
##
## Hypothesized Distribution:
                                    Normal
## Data:
                                    ts
##
## Sample Size:
                                    318
##
## Test Statistics:
                                    R.1 = 3.782021
##
                                    R.2 = 3.487550
##
                                    R.3 = 3.445420
##
## Test Statistic Parameter:
## Alternative Hypothesis:
                                    Up to 3 observations are not
                                    from the same Distribution.
##
##
## Type I Error:
                                    5%
## Number of Outliers Detected:
##
                      SD.i Value Obs.Num
                                            R.i+1 lambda.i+1 Outlier
##
          Mean.i
## 1 0 0.1170692 0.1155284 0.554
                                    140 3.782021
                                                     3.739949
                                                                 TRUE
## 2 1 0.1156909 0.1130619 0.510
                                     139 3.487550
                                                     3.739067
                                                                FALSE
## 3 2 0.1144430 0.1110335 0.497
                                       7 3.445420
                                                     3.738181
                                                                FALSE
```

rosnerTest(ts, k = 3)

Autocorrelation and stationarity analysis

We can see that time-series is already stationary and is slightly correlated with itself 12 month earlier.

```
#autocorrelation
acf(ts, lag.max = 12)
```

Series ts


```
#stationary test
adf.test(ts)
```

```
## Warning in adf.test(ts): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: ts
## Dickey-Fuller = -4.9571, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
```

Prediction

Delete outlier. Lower data from winter 2006.

```
ts_ <- ts
plot(window(ts_, 2003, 2008), type="l", ylab="coal usage")
ts_[137:145] = ts_[137:145] * 0.6
lines(window(ts_, 2003, 2008), type="l", col="blue")</pre>
```


form new decomposition.

```
decompose_ <- decompose(ts_, "multiplicative")
plot(decompose_)</pre>
```

Decomposition of multiplicative time series

dict trend.

Pre-

```
tsTrend <- ts(decompose_$trend, start=c(1994, 7), frequency=12)
fitARIMA <- arima(tsTrend, order=c(1,1,1),seasonal = list(order = c(1,0,0), period = 12),method="ML")
coeftest(fitARIMA)
##
## z test of coefficients:
##
          Estimate Std. Error z value Pr(>|z|)
##
## ar1
         0.9188844 0.0221422 41.4992 < 2.2e-16 ***
         0.9999989 0.0085314 117.2143 < 2.2e-16 ***
## ma1
## sar1 -0.3092937  0.0551587  -5.6073  2.055e-08 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
yTrend <- predict(fitARIMA, n. ahead = 12) $pred
cTrend <- ts(
  c(tsTrend, yTrend),
  start=start(tsTrend),
  frequency=12
plot(cTrend, type="s", ylab="coal usage trend")
```


tract seasonal.

```
ySeasonal <- window(decompose$seasonal, start=2020, end=c(2020,12))
```

Ex-

Predict coal usage.

history and prediction

Jan Feb Mar May Jun Apr **##** 2021 0.23280717 0.27324848 0.25892658 0.17668279 0.08510665 0.05707731 ## Jul Oct Dec Aug Sep Nov ## 2021 0.01999459 0.01580785 0.02552822 0.05100531 0.11110908 0.17305109