Math 237 Notes

Syed Mustafa Raza Rizvi

May 26, 2020

These are my 2nd year Calculus 3 notes at the University of Waterloo (MATH 237). They are pretty similar to the content you may see in the course notes by J. Wainwright, J. West, D. Wolczuk.

You will find that these aren't very useful as notes, in the sense that they are not significantly shorter than the content in the course notes, they're really just a way for me to type down the content I am learning and absorb it.

Thanks to Prof. Dan Wolczuk for providing me with the macros to typeset this LaTeX document.

Week 1

Unit 1: Graphs of Scalar Functions

Scalar Functions

A review of basic vocabulary about functions in general

- A function $f: A \to B$ associates with each element $a \in A$ a unique element in $f(a) \in B$ called the **image** of a under f
- The set A is called the **domain** of f and is denoted by D(f)
- The set B is called the **codomain** of f
- The subset of B consisting of all f(a) is called the **range** of f and is denoted by R(f)

We will usually look at functions whose domain is a subset of \mathbb{R}^2 and whose codomain is \mathbb{R} . I.e. we consider functions f which map points $(x,y) \in \mathbb{R}^2$ to a real scalar $f(x,y) \in \mathbb{R}$. We write z = f(x,y). We will also consider more general functions $f(x_1,...,x_n)$ which maps subsets of \mathbb{R}^n to \mathbb{R}

A scalar function $f(x_1,...,x_n)$ of n variables is a functions whose domain is a subset of \mathbb{R}^n and whose range is a subset of \mathbb{R}

Definition Scalar

May also be denoted by $f(\mathbf{x})$ or $f(\vec{x})$

Function

Geometric Interpretation of z = f(x, y)

When we graph a function y = f(x), we plot points (a, f(a)) in the xy-plane. Observe that we can think of f(a) as representing the height of the graph y = f(x) above (or below if negative) the x-axis at x = a

We define the **graph** of a function f(x,y) as the set of all points $(a,b,f(a,b)) \in \mathbb{R}^3 : (a,b) \in D(f)$. We think of f(a,b) as representing the height of the graph z = f(x,y) above (or below if negative) the xy-plane at the point (x,y) = (a,b)

• When f is defined as $f(x,y) = c_1x + c_2y + c_3$, where $c_1, c_2, c_3 \in \mathbb{R}$, the graph of z = f(x,y) is a **plane**. (Note: it is of the form $z - c_1x + c_2y = c_3$)

Level curves are 2-dimensional slices of a surface, sort of like a top-down view of what the curve looks like for a fixed z value.

The level curves of a function f(x, y) are the curves

Definition Level Curves

$$f(x,y) = k$$

where $k \in R(f)$

The level curve of f(x,y) = k is the intersection of z = f(x,y) and the horizontal plane z = k. In our family of curves, each value of k represents a height above the xy-plane. Thus, the family of level curves is often called a **contour map** or a **topographic map**

(A little general info: Weather maps which show regions of constant temperatures are called **isotherms**, in barometric pressure charts curves of constant pressure are called **isobars**. Another example would be an MRI scan)

o A level curve with a single point is called an exceptional level curve

A **cross section** of a surface z = f(x, y) is the intersection of z = f(x, y) with a plane

Definition

Cross Sections

For sketching purposes, it is useful to consider cross sections formed by intersection z = f(x, y) with the *vertical* planes x = c and y = d, where c, d can take on multiple values as k did in level

 $\circ f(x,y) = x^2 + y^2$ gives a **paraboloid** surface (level curves are circles; cross sections are parabolas)

o $f(x,y) = x^2 - y^2$ gives a **saddle surface** (level curves are hyperbolae, about x-axis above/below a certain k value, about y-axis below/above a cetain k value; cross sections are parabolas (if im not wrong))

o $f(x,y) = x^2$ gives a **parabolic cylinder** (level curves are straight lines, $x = \pm \sqrt{k}$; cross section is a parabola. Since it has the same cross section for all planes y = d, it is called a cylinder by definition)

A level surface of a scalar function f(x, y, z) is defined by

Definition

Level

A level surface, is the analogy case of a surface having a level curve, but one-dimension up. So, we have a 4-dimensional shape (instead of a surface), which is made up of (layers of) surfaces, level surfaces. Each level surface can be found by parametering f(x, y, z)

 $f(x, y, z) = k, \ k \in R(f)$

A **level set** of a scalar function $f(\vec{x}), \vec{x} \in \mathbb{R}^n$ is defined by

Definition

Level Sets

$$\{\vec{x} \in \mathbb{R}^n | f(\vec{x}) = k, \text{ for } k \in R(f)\}$$

So a level set is a generalisation of what we learned for level curves (case of $f: \mathbb{R}^2 \to \mathbb{R}$) and level surfaces (case of $f: \mathbb{R}^3 \to \mathbb{R}$) for $f: \mathbb{R}^n \to \mathbb{R}$

o For an f defined by: $f(x_1,...,x_n) = x_1^2 + ... + x_n^2$, the level sets for $f(\vec{x}) = k, k > 0 \in \mathbb{R}^n$ are called $(\mathbf{n} - \mathbf{1})$ -spheres, denoted by S^{n-1} (e.g. for n = 3 we get a 2-sphere denoted by S^2)

Week 2

Unit 2: Limits

Definition of a Limit for One Variable

For a real-valued function f(x) we defined $\lim_{x\to a} f(x) = L$ to mean that the values of f(x) can be made arbitrarily close to L by taking x sufficiently close to a.

More precisely,

For every $\epsilon > 0$ there exists a $\delta > 0$:

$$|f(x) - L| < \epsilon \text{ whenever } 0 < |x - a| < \delta$$
 (*)

and
$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

This means no matter what $\epsilon > 0$ value we choose, we can always find a corresponding $\delta > 0$ value that would satisfy the condition (*)

Definition of a Limit for Functions of Two Variables

We define the limit for functions of two variables in a very similar way to the limit of functions of a single variable. For a scalar function f(x,y), we want $\lim_{(x,y)\to(a,b)} f(x,y) = L$, to mean that the values of f(x,y) can be made arbitrarily close to L by taking (x,y) sufficiently close to (a,b)

For a single variable we could approach the limit from either the left or the right.

For multivariable scalar functions our domain is multidimensional and so we can approach it from infinitely many directions, moreover, we aren't even restricted to straight lines either; we can approach (a, b) along any smooth curve.

An **open interval** is defined as

$$(-r, r) = \{x : |x| < r\}$$

where $r \in \mathbb{R}$

Euclidian distance in \mathbb{R}^2 is defined as

$$||(x,y) - (a,b)|| = \sqrt{(x-a)^2 + (y-b)^2}$$

Definition Single

Variable definition of

a Limit

Definition

Open

Interval

Definition

Euclidian

Distance

Neighbourhood

$$N_r(a,b) = \{(x,y) \in \mathbb{R}^2 | ||(x,y) - (a,b)|| < r, r \in \mathbb{R} \}$$

You may notice that the r-neighbourhood of (a, b) is simply a locus of distance r or less from the point (a, b)

Assume f(x,y) is defined in a neighbourhood of (a,b), except possibly at (a,b). If, for every Definition $\epsilon > 0$ there exists a $\delta > 0$ such that

$$0 < ||(x,y) - (a,b)|| < \delta \implies |f(x,y) - L| < \epsilon$$

Then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

Although we said that the we can approach the limits from infinitely many directions, note that the limit definition does not refer to any direction at all, and refers only to the distance between (x, y) and (a, b)

Limit Theorems

If $\lim_{(x,y)\to(a,b)} f(x,y)$ and $\lim_{(x,y)\to(a,b)} g(x,y)$ both exist, then

1.

(w,y) / (w,e)

$$\lim_{(x,y)\to(a,b)} [f(x,y)+g(x,y)] = \lim_{(x,y)\to(a,b)} f(x,y) + \lim_{(x,y)\to(a,b)} g(x,y)$$

2.

$$\lim_{(x,y)\to(a,b)}[f(x,y)g(x,y)] = \left[\lim_{(x,y)\to(a,b)}f(x,y)\right] \left[\lim_{(x,y)\to(a,b)}g(x,y)\right]$$

3.

$$\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{\lim_{(x,y)\to(a,b)} f(x,y)}{\lim_{(x,y)\to(a,b)} g(x,y)}, \text{ provided } \lim_{(x,y)\to(a,b)} g(x,y) \neq 0$$

If $\lim_{(x,y)\to(a,b)} f(x,y)$ exists, then the limit is unique

Theorem Limit

Theorem Limit

Theorem 1

Theorem 2

Proving a Limit Does Not Exist

For a single variable function, we often showed a limit did not exist by showing the left-hand and right-hand limit did not equal each other, and used the fact that the limit is supposed to be unique. For multivariable functions, we will essentially do the same thing, only now we have to remember that we can approach (a, b) along any smooth curve.

One can approach a question like this by taking the equation y = mx or x = my (for any real coefficient m) and if the limit turns out to be dependent on m, then we know that the limit is not unique.

Though, this approach does not always work, as y = mx does not describe all the lines, (it cannot represent vertical lines).

Sometimes trying out several straight lines will give the same limit, but using a continuous curve will show that the limit in-fact does not exist. The trick to use here would be to choose a curve in such a way that (if the function is a fraction) the numerator and denominator cancel out. (e.g of forms $y = mx^k$ or $y = mx^{p/q}$ etc)

Caution: Be sure to use lines or curves that actually approach the limit point in question.

Note: Finding two paths that show that a limit does not exist does indeed mean that it doesn't exist. But being unable to find a contradictory value for a limit does not necessarily mean that a limit exists. We then use other methods such as the Squeeze theorem to test if this consistently occurring value of L is the actual limit or not.

Proving a Limit Exists

If there exists a function B(x, y) such that

$$|f(x,y) - L| \le B(x,y), \text{ for all } (x,y) \ne (a,b)$$

in some neighbourhood of (a,b) and $\lim_{(x,y)\to(a,b)}B(x,y)=0$ then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

Proof:

(Our hypothesis says that
$$B(x,y) \ge 0$$
 for all $(x,y) \ne (a,b)$)
Let $\epsilon > 0$

Theorem
Squeeze
Theorem

Since $\lim_{(x,y)\to(a,b)} B(x,y) = 0$, by definition of limit, there exists $\delta > 0$ such that

$$0 < ||(x,y) - (a,b)|| < \delta \Longrightarrow |B(x,y) - 0| < \epsilon$$

Hence, if $0 < ||(x,y) - (a,b)|| < \delta$, then we have

$$|f(x,y) - L| \le B(x,y) = |B(x,y)| < \epsilon$$

as our hypothesis requires that $B(x,y) \ge 0$ for all $(x,y) \ne (a,b)$ i the neighbourhood of (a,b). Therefore, by definition of a limit, we have

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

Generalisations

The concept of neighbourhood, the definition of a limit, the Squeeze Theorm and limit theorems are all valid for scalar functions $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$. In fact, to generalise these concepts, one only needs to know that $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{a} = (a_1, ..., a_n)$ are in \mathbb{R}^n , then the Euclidean distance from \mathbf{x} and \mathbf{a} is

$$||\mathbf{x} - \mathbf{a}|| = \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2}$$

With this adjustment and some more rephrasing, the previous section can be generalised for \mathbb{R}^n

Appendix: Inequalities

Trichotomy Property: For any real numbers a and b, one and only one of the follow holds

$$a = b$$
, $a < b$, $b < a$

Transitivity Property: If a < b and b < c, then a < c

Addition Property: If a < b then for all c, a + c < b + c

Multiplication Property: If a < b and c < 0, then bc < ac

Absolute value of a real number a is defined by

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

A few useful results

1.
$$|a| = \sqrt{a^2}$$

$$2. |a| < b \iff -b < a < b$$

3. The Triangle Inequality: $|a+b| \leq |a| + |b|$, $\forall a, b\mathbb{R}$

When using the Squeeze Theorem, the most commonly used inequalities are:

- 1. Triangle Inequality
- 2. If c > 0, then a < a + c
- 3. The cosine inequality $2|x||y| \le x^2 + y^2$

Unit 3: Continuous Functions

Definition of a Continuous Function

A quick review of the definition of a continuous function in one variable

A function of a single variable f(x) is continuous at x = a if and only if

- 1. f is defined at x = a
- 2. $\lim_{x\to a} f(x)$ exists, which means that
 - (a) $\lim_{x \to a^{-}} f(x)$ exists; and
 - (b) $\lim_{x\to a^+} f(x)$ exists and;
 - (c) $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$
- $3. \lim_{x \to a} f(x) = f(a)$

A function f(x,y) is **continuous** at (a,b) if and only if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Additionally, if f is continuous at every point in a set $D \subset \mathbb{R}^2$, then we say that f is continuous on D

Remark: Just like in single variable calculus, there are three requirements in this definition:

- 1. $\lim_{(x,y)\to(a,b)} f(x,y)$ exists
- 2. f is defined at (a, b), and
- 3. $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

Basic functions

To make the process of verifying if a function is continuous, we will employ the use of simpler or "basic" functions, which we know are continuous and view functions we inspect as being made up of these basic functions

In this course, we can take the continuity of these functions on their domain as a given

Definition

Continuity

Single

Variable

Function

Definition

Continuous

- 1. the constant function f(x,y) = k
- 2. the power functions $f(x,y) = x^n$, $f(x,y) = y^n$
- 3. the logarithm function $ln(\cdot)$
- 4. the exponential function $e^{(\cdot)}$
- 5. the trignometric functions, $\sin(\cdot)$, $\cos(\cdot)$, etc.
- 6. the inverse trigonometric functions, $\arcsin(\cdot)$, etc.
- 7. the absolute value function $|\cdot|$

if f(x,y) and g(x,y) are scalar functions and $(x,y) \in D(f) \cap D(g)$, then:

Definition
Operations
on Functions

1. the **sum** f + g is defined by

$$(f+g)(x,y) = f(x,y) + g(x,y)$$

2. the **product** fg is defined by

$$(fg)(x,y) = f(x,y)g(x,y)$$

3. the **quotient** $\frac{f}{g}$ is defined by

$$\left(\frac{f}{g}\right)(x,y) = \frac{f(x,y)}{g(x,y)}, \text{ if } g(x,y) \neq 0$$

For scalar functions g(t) and f(x,y) the **composite function** $g \circ f$ is defined by

Composite Functions

$$(g \circ f)(x, y) = g(f(x, y))$$

for all $(x, y) \in D(f)$ for which $f(x, y) \in D(g)$

Remark: When composing multivariable functions, it is very important to make sure that the range of the inner function is a subset of the domain of the outer function.

Continuity Theorems

With basic functions and operations on functions discussed, we now state some thorems that will be of use. (Most proofs in course notes)

If f and g are both continuous at (a,b), then f+g and fg are continuous at (a,b)

Theorem Continuity

Theorem 1

If f and g are both continuous at (a,b) and $g(a,b) \neq 0$, then the quotient $\frac{f}{g}$ is continuous at Theorem (a, b)

Continuity Theorem 2

If f(x,y) is continuous at (a,b) and g(t) is continuous at f(a,b), then the composition $g \circ f$ is continuous at (a, b)

Continuity

Theorem

Theorem 3