Utility Theory and the Representation of Preference

Nathaniel Forde

September 20, 2020

This article continues the investigation of the expected utility model of rational choice. We begin by examining the useful properties of utility functions, before continuing to the representation theorems which formalise the connection. Will we see that the nature of these theorems, coupled with the indeterminacy of statistical inference is a brittle foundation for predictive economic models of consumer choice.

From Utility to Indifference

Too much of a good thing often tends to the bad. So we dabble, sample and share. In pursuit of variety we swap our goods, shunning stale options in favour of the novel exchange. For a given good we can differ in our appetites but it's relatively straightforward to find the point where one more donut is one too many. While it can be a bit unclear how we should measure utility, once we've decided on a metric the mathematical characteristics are meaningful. We can infer aspects of your attitudes towards acquisition and enthusiasm for donuts. In most cases we're interested not just in your pursuit of pastries, but how you'd be willing to trade for those pastries.

The possibility of coordinated compromise lies at the core of maximising subjective utility. We seek competitive advantage for our own produce to balance the cost owed to the skills of others. At the limit some trades do not admit any mixture of goods. Not all babies can be cut in half. On the other side of the spectrum, there are some things which we'd give everything. In most cases though a consumer will try to optimise their bundle of goods over an entire marketplace, preserving enough on one key good; money, to remain liquid.

$$u(\mathbf{g}) = f(g_0, g_1...g_n)$$

There are number of ways we can specify a utility function, but a typical example is the Cobb-Douglas function.

$$u(\mathbf{g}) = g_0^{\alpha_0} g_1^{\alpha_1} ... g_n^{\alpha_n}$$

Then taking the case of two goods g1, g2 we can in this particular case determine an indifference curve where you would be willing to exchange quantities of g1 for an agreeable amount of g2. The task it to express the value of a given good as priced in terms of the other goods. Set

$$u(\mathbf{g}) = \lambda = g_1^{\frac{1}{2}} g_2^{\frac{1}{2}} = (g_1 g_2)^{\frac{1}{2}} = \sqrt{g_1 g_2}$$

Figure 1: Consumer attitudes with differently satisfied appetites for a good

Figure 2: The Rates of Change of personal Utility

Cobb Douglas Utility Curve for two goods

Figure 3: A consumers utility curve for combinations of two goods

$$\Rightarrow \lambda^2 = g_1 g_2 \Rightarrow \frac{\lambda^2}{g_2} = g_1$$

Using this formula we can express how the quantities of fair exchange vary based on a fixed utility value. This is not to say that these curves represent an actual or objective fair price, just that when measured in terms of utility these are mappings of quantities of good we would be happy to exchange. Your view of a fair price is encoded in your utility theory. It's at this point when utility theory can be said to verge on empirical science. If we can model your preferences as a utility function characteristic of some general attitude toward acquisition, we might also hope to able to predict future trades.

Optimising Utility

A further complication arises when we try to factor for a consumer's budget. The shape of the Cobb-Douglas function shows that the utility surface is constantly increasing with our rate acquisition. So without any constraints the consumer would not achieve satisfaction, but continue like glutton. But add a budget constraint and we need to find the maximum point at which an indifference curve insects with our budgetary line. Instead of solving the equation:

Find
$$g_1, g_2$$
 such that $u(g_1, g_2) = \lambda$

we need to solve a constrained optimisation problem:

maximise
$$u(g_1, g_2)$$
 subject to $cost(g_1, g_2) = \lambda$

This style of problem can be approached with the method of Lagrange multipliers. If we let:

$$L = g_1^{\frac{1}{2}} g_2^{\frac{1}{2}} - \lambda (2g_1 + 3g_2 - 40)$$

where 2 and 3 are the unit cost of the respective goods, and 40 is our total budget. While λ is our Lagrangian multiplier. This term will be used to re-express the algebra of our equation as a function of the consumer's capacity to spend. As usual we can discover where utility is maximised when the gradient of the curve can be set to zero. As before we first want to express the implicit function of g_1 in terms of g_2 , but this time including the constraints.

Figure 4: A range of indifference curves without budget constraints.

Figure 5: A range of indifference curves with budget constraints.

Box .1: Lagrangian Multiplier

$$\nabla L = dL/d\mathbf{g} = \left(\frac{\partial u(\mathbf{g})}{\partial g_1}, \frac{\partial u(\mathbf{g})}{\partial g_2}\right) = \left(\frac{1}{2}g_1^{-\frac{1}{2}}g_2^{\frac{1}{2}} - 2\lambda, \frac{1}{2}g_2^{-\frac{1}{2}}g_1^{\frac{1}{2}} - 3\lambda\right) = \mathbf{0}$$

$$\Rightarrow \lambda = \frac{1}{4}g_1^{-\frac{1}{2}}\sqrt{g_2} = \frac{4}{25}g_2^{-\frac{1}{2}}\sqrt{g_1}$$

$$\Rightarrow (\frac{1}{4})^2 \frac{1}{g_1}g_2 = (\frac{4}{25})^2 \frac{1}{g_2}g_1 \Rightarrow (\frac{1}{4})^2 g_2 = (\frac{4}{25})^2 \frac{1}{g_2}g_1^2 \Rightarrow (\frac{1}{4})^2 g_2^2 = (\frac{4}{25})^2 g_1^2$$

$$\Rightarrow g_2 = \frac{16}{25}g_1$$

The same pattern holds for cases with more than two goods. We can express the value of given good g_n in terms of a function $f(g_1,...g_{n-1})$. Then substituting this value into our constraint we get:

$$2g_1 + 3(\frac{16}{25})g_1 = 40 \Rightarrow 2g_1 + 1.92g_1 = 40 \Rightarrow 3.92g_1 = 40$$

Proving the optimial settings are $g_1^* = 10.20$ and $g_2^* = 6.52$ and $\lambda^* = 0.20$

This proof shows how we triangulate a consumer's view of any good as expressed through the medium of their utility function. But the method of Lagrangian multipliers is more than a mere algebraic trick. We can interpret the λ term as the rate of change of the consumer's utility as a function of the cost. The proof is a little more involved, but the significance of this interpretation should be obvious. If we knew our consumer's adhered to a particular style of utility function we could model how price-changes would impact their returns to utility.

From Indifference to Utility

If we can elicit preference statements from our consumer we construct a utility curve as follows. First observe the preferences expressed by consumer decisions and then map the maximal and least preferred options to convenient polarities. For instance:

$$g_1 \succ g_2 \succ g_3 \succ g_4 \succ g_5$$

where:

$$u(g_1) = 0$$
 and $u(g_5) = 1$

then each of the intermediary options can be measured in the interval between o and 1. However there are an infinite number of simple ordinal mappings that would work, and a strict ordering does nothing to convey the degree of feeling associated with each option. But we can calibrate utility scales based on decisions made about offered bets. Each individual good can be assessed against a simple win-loss lottery between the two most extreme outcomes. If the consumer is indifferent between the sure prospect of the good and a fixed odds

lottery on their most preferred outcome, they've implicitly weighed their utility of the good.

$$\forall i \exists p : g_i \sim [p \cdot g_1, (1-p) \cdot g_5] \rightarrow u(g_i) = p$$

So whenever we are indifferent between a sure thing and a winloss lottery over the best and worst outcomes we have implicitly chosen the utility of the of good on a 0-1 scale. In this manner we can construct a utility curve across the entire range of options.

Representation: Decision Under Risk

The most famous result in decision theory is von Neumann and Morgenstern's Representation theorem. It shows (using the technique discussed above) how expressed preferences which adhere to certain axioms of rationality track a utility measure and can be interpreted as an agent's attempt to maximise their expected utility. But the theorem is limited to decisions over well-defined lotteries, and as such makes a poor model for general choice under uncertainty where the odds are approximate.

Theorem 1 (vNM's Representation Theorem) *If an individual i's* preference relation \succeq is transitive, complete and satisfies:

- 1. (Continuity): $\forall g_1, g_2, g_3 : (g_1 \succeq g_2 \succeq g_3) \to \exists v \in [0, 1] \land g_2 \sim_i$ $[vg_1, (1-v)g_3]_{Lot}$
- 2. (Monotonicity): If $v_1, v_2 \in [0,1]$ and $g_1 \succ g_2$ then $(v_1g_1, (1-v_2))$ $[v_1)g_2]_{Lot} \succeq [v_2g_1, (1-v_2)g_2]_{Lot}) \Leftrightarrow v_1 \ge v_2$
- 3. (Reduction of Compound lotteries): Each compound lottery $[q_1Lot_{p_1},...,q_nLot_{p_n}]$ reduces to a simple lottery where each good (1,..k) is weighted across all branches of the nested decision tree $[(q_1p_1^k + q_2p_2^k... + q_np_n^k)g_k..., (q_1p_1^{k-1},...)g_{k-1} + ...(q_1p_1^1,...)g_1]_{Lot}$ by the usual rules of probability for branching compound events such that $Lot \sim Lot$
- 4. (Independence) If $\widehat{Lot} = [q_1Lot_1, ..., q_jLot_j...q_nLot_n]$ and $L_j \sim M$, then $\widehat{Lot} \sim \widehat{Lot}' = [q_1 Lot_1, ..., q_i M...q_n Lot_n]$

then $\exists u_p : [g_1,...g_n] \mapsto Val \text{ where } u_p(Lot) = p_1u(g_1) + ... +$ $p_k u(g_k) = E(u_p(Lot))$ and $u(g_1) \ge u(g_2) \Leftrightarrow g_1 \ge g_2$ so that u represents \succeq unique up to a positive linear transformation.

For a well defined and fixed probability function *p* over the goods g_1 g_n the above constraints are sufficient to define a sensible util¹ We follow the example in:

ity function based on an agent's expressed preferences. The thought gives hope to the idea that you would be able to predict an individual's actions in any environment where you knew both their preferences and the objective probabilities at play.