ALEVEL P3 MARKING SCHEME T1 TRIG RSIN/ RCOS

- 5 (i) State or imply $R = \sqrt{10}$ B1

 Use trig formulae to find α M1

 Obtain $\alpha = 71.57^{\circ}$ with no errors seen

 [Do not allow radians in this part. If the only trig error is a sign error in $\cos(x \alpha)$ give M1A0]
 - (ii) Evaluate $\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. $(50.7684...^{\circ})$ (Allow 50.7° here)

 Carry out an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 180^{\circ}$ M1

 Obtain an answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ Use an appropriate method to find another value of 2θ in the above range

 Obtain second angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range

 [Ignore answers outside the given range.]

[Treat answers in radians as a misread and deduct A1 from the answers for the angles.] [SR: The use of correct trig formulae to obtain a 3-term quadratic in $\tan \theta$, $\sin 2\theta$, $\cos 2\theta$, or $\tan 2\theta$ earns M1; then A1 for a correct quadratic, M1 for obtaining a value of θ in the given range, and A1 + A1 for the two correct answers (candidates who square must reject the spurious roots to get the final A1).]

6	(i)	State or imply $R = 17$	B1	
		Use correct trigonometric formula to find α	M1	
		Obtain 61.93° with no errors seen	A1	[3]
	(ii)	Evaluate $\cos^{-1} \frac{12}{R}$ (= 45.099)	M1	
		Obtain answer 107.0°	A1	
		Carry out correct method for second answer	M1	
		Obtain answer 16.8° and no others between 0° and 360°	A1	[4]

- 7 (i) State or imply R=25 B1
 Use correct trigonometric formula to find α M1
 Obtain 16.26° with no errors seen A1 [3]
 - (ii) Evaluate of $\sin^{-1} \frac{17}{R}$ (= 42.84...°) M1

 Obtain answer 59.1° A1 [2]

8	(i)	Use	$\sec \theta = \frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$	B1	
			$\sin 2\theta = 2 \sin \theta \cos \theta$ and to form a horizontal equation in $\sin \theta$ and $\cos \theta$ or		
			ions with common denominators	M1	507
		Obta	in given equation $2 \sin \theta + 4 \cos \theta = 3$ correctly	A1	[3]
	(ii)	State	or imply $R = \sqrt{20}$ or 4.47 or equivalent	B1	
			correct trigonometry to find α	M1	
		Obta	in 63.43 or 63.44 with no errors seen	A1	[3]
	(iii)		y out a correct method to find one value in given range	M1	
			in 74.4° (or 338.7°)	A1	
			y out a correct method to find second value in given range in 338.7° (or 74.4°) and no others between 0° and 360°	M1 A1	[4]
		Oota	in 338.7 (or 74.4) and no others between 0° and 300°	AI	[ד]
9	(i)	Stat	te $R = \sqrt{13}$	B1	
	(-)		α trig formula to find α	M1	
			tain $\alpha = 33.69^{\circ}$ with no errors seen	A1	[3]
	(ii)		aluate $\sin^{-1}(1/\sqrt{13})$ to at least 1 d.p. (16.10° to 2 d.p.)	B1⊀	
			rry out an appropriate method to find a value of θ in the interval $0^{\circ} < \theta < 180^{\circ}$	M1	701
			tain answer $\theta = 130.2^{\circ}$ and no other in the given interval more answers outside the given interval.]	A1	[3]
			eat answers in radians as a misread and deduct A1 from the marks for the angles.]		
		-			
1	0 (_	tate answer $R=3$		B 1
			e trig formula to find		M1
		Obt	tain $\alpha = 41.81^{\circ}$ with no errors seen		A1 [3]
	(ii)	Eva	aluate $\cos^{-1}(0.4)$ to at least 1 d.p. (66.42° to 2 d.p.)		B1√
			rry out an appropriate method to find a value of x in the given range		M1
			tain answer 216.5° only nore answers outside the given interval.		A1
		[1gi	iore answers outside the given intervar.		[3]
			Ţ		
	11(i)	Use $sin(A - B)$ formula and obtain an expression in terms of $sin x$ and $cos x$		M1
			Collect terms and reach $\sqrt{3} \sin x - 2 \cos x$, or equivalent		A1
			Obtain $R = \sqrt{7}$		A1
			Use trig formula to find α		M1
			Obtain $\alpha = 49.11^{\circ}$ with no errors seen		A1

Total:

5

11(ii)	Evaluate $\sin^{-1}(1/\sqrt{7})$ to at least 1 d.p. (22.21° to 2 d.p.)	B1 FT
	Use a correct method to find a value of x in the interval $0^{\circ} < x < 180^{\circ}$	M1
	Obtain answer 71.3°	A1
	[ignore answers outside given range.]	
	Total:	3

12(i)	Rearrange in the form $\sqrt{3} \sin x - \cos x = \sqrt{2}$	B1
	State $R = 2$	B1
	Use trig formulae to obtain α	M1
	Obtain $\alpha = 30^{\circ}$ with no errors seen	A1
		4
12(ii)	Evaluate $\sin^{-1}\left(\frac{\sqrt{2}}{}\right)$	B1ft
	Carry out a correct method to find a value of x in the given interval	M1
	Obtain answer $x = 75^{\circ}$	A1
	Obtain a second answer e.g. $x = 165^{\circ}$ and no others [Treat answers in radians as a misread. Ignore answers outside the given interval.]	A1ft
		4

13(i)	State $R = \sqrt{7}$	B1
	Use correct trig formulae to find α	M1
	Obtain $\alpha = 22.208^{\circ}$	A1
		3

13(ii)	Evaluate $\sin^{-1}\left(\frac{2}{\sqrt{7}}\right)$	B1FT
	Use correct method to find a value of θ in the interval	M1
	Obtain answer, e.g. 13.4°	A1
	Obtain second answer, e.g. 54.3° and no extras in the given interval	A1
		4