

Evaluation eines modellbasierten Managements in verschiedenen Systemumgebungen

Forschungskolloquium 29.07.2021

PROBLEMSTELLUNG

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Ausgangssituation

Konfiguration einer heterogenen Infrastruktur

Bsp.: Datencenter

Probleme

- Gerätespezifische Anpassungen notwendig
- Unterschiedliche Schnittstellen
- Hohes Fehlerpotential
- Kenntnis für jedes Gerät erforderlich

PROBLEMSTELLUNG

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Ausgangssituation

Konfiguration einer heterogenen Infrastruktur Bsp.: Datencenter

| Lösung Part 1: YANG

hes Datenmodell
YANG Model
Modell
ietf-interfaces
ietf-dhcp

Probleme

- Gerätespezifische Anpassungen notwendig
- Unterschiedliche Schnittstellen
- Hohes Fehlerpotential
- Kenntnis für jedes Gerät erforderlich

PROBLEMSTELLUNG

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Ausgangssituation Konfiguration einer betergenen Infrastruktu

Konfiguration einer heterogenen Infrastruktur Bsp.: Datencenter

Probleme

- Gerätespezifische Anpassungen notwendig
- Unterschiedliche Schnittstellen
- Hohes Fehlerpotential
- Kenntnis für jedes Gerät erforderlich

Lösung Part 2: NETCONF

PROBLEMSTELLUNG

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Ausgangssituation

Konfiguration einer heterogenen Infrastruktur Bsp.: Datencenter

Probleme

- Gerätespezifische Anpassungen notwendig
- Unterschiedliche Schnittstellen
- Hohes Fehlerpotential
- Kenntnis für jedes Gerät erforderlich

| Lösung Part 2: NETCONF

Lösungsansatz

Modellbasiertes Management einer heterogenen Infrastruktur mit YANG & NETCONF

Lösung

- Einheitliches Datenmodell → YANG Modelle
- Einheitliche Schnittstelle → NETCONF
- → erleichtert Automatisierung auch bei heterogener Infrastruktur

YANG (Yet Another Next Generation)

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Lösung Part 1: YANG

- Modulare Datenmodellierungssprache
- Einheitliche + standardisierte Datenmodelle
- Zustands- und Konfigurationsdaten
- Protokollunabhängig

YANG (Yet Another Next Generation)

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Module module ietf-tcp@2020-11-16 {

YANG (Yet Another Next Generation)

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

```
Module module ietf-tcp@2020-11-16 {

yang-version "1.1";
namespace "urn:ietf:params:xml:ns:yang:ietf-tcp";
prefix "tcp";

Metadaten

revision "2020-11-16" {
 description "Initial Version";
}
```

Simon Bauer, Martin Mager Forschungskolloquium - 29.07.2021

YANG (Yet Another Next Generation)

```
Module
                                            module ietf-tcp@2020-11-16 {
                                               yang-version "1.1";
                                              namespace "urn:ietf:params:xml:ns:yang:ietf-tcp";
                                              prefix "tcp";
 Metadaten
                                              revision "2020-11-16" {
                                                description "Initial Version";
                                               import ietf-inet-types {
                                                prefix "inet";
 Import Modules
```

YANG (Yet Another Next Generation)

```
Module
                                             module ietf-tcp@2020-11-16 {
                                               yang-version "1.1";
                                               namespace "urn:ietf:params:xml:ns:yang:ietf-tcp";
                                               prefix "tcp";
 Metadaten
                                               revision "2020-11-16" {
                                                 description "Initial Version";
                                               import ietf-inet-types {
 Import Modules
                                                 prefix "inet";
                                               container connections {
 Container
```

YANG (Yet Another Next Generation)

```
Module
                                             module ietf-tcp@2020-11-16 {
                                               yang-version "1.1";
                                               namespace "urn:ietf:params:xml:ns:yang:ietf-tcp";
                                               prefix "tcp";
 Metadaten
                                               revision "2020-11-16" {
                                                 description "Initial Version";
                                               import ietf-inet-types {
 Import Modules
                                                 prefix "inet";
                                               container connections {
 Container
                                                 list connection {
   List
                                                   key "local-address remote-address";
```

YANG (Yet Another Next Generation)

```
Module
                                              module ietf-tcp@2020-11-16 {
                                                yang-version "1.1";
                                                namespace "urn:ietf:params:xml:ns:yang:ietf-tcp";
                                                prefix "tcp";
 Metadaten
                                                revision "2020-11-16" {
                                                  description "Initial Version";
                                                import ietf-inet-types {
 Import Modules
                                                  prefix "inet";
                                                container connections {
 Container
                                                 list connection {
   List
                                                    key "local-address remote-address";
                                                    leaf local-address {
     Leaf
                                                      type inet:ip-address;
                                                      description "Local address that forms the connection identifier.";
     Key Value Pair
                                                    leaf remote-address {
     Leaf
                                                      type inet:ip-address;
                                                      description "Remote address that forms the connection identifier.";
     Key Value Pair
```

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Lösung Part 1: YANG

- Modulare Datenmodellierungssprache
- Einheitliche + standardisierte Datenmodelle
- Zustands- und Konfigurationsdaten
- Protokollunabhängig

Lösung Part 2: NETCONF

- Netzwerkmanagementprotokoll
- Zustands- und Konfigurationsdaten lesen und ggf. modifizieren
- XML-kodierte Nachrichten als RPC bspw. über SSH

IETF DRAFT TCP

IETF DRAFT TCP

INFORMATIONEN

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

RFC Entwurf der TCPM Working Group (IETF) Application Layer
Transport Layer
Internet Layer
Link Layer

Zustands- und Konfigurationsdaten des TCP/IP-Stacks

Globale Sicht auf TCP-Verbindungen aus Sicht des Betriebssystems

Mitarbeit der HS Esslingen unter der Leitung von Prof. Scharf

Prototyp

VORGEHENSWEISE

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

1. Einarbeitungsphase

- Einarbeitung in relevante RFCs
- Anforderungen an System- und Testumgebung

2. Marktuntersuchung

- Analyse bestehender NETCONF / YANG Frameworks
- Fokus auf:
 - Portierbarkeit
 - OpenSource
 - Wenig Abhängigkeiten / Systemanforderungen

3. Prototypische Implementierung

- Clixon Best Fit für Use Case
- Wenig Abhängigkeiten
- Hohe Testabdeckung + Codequalität

10

PROTOTYP - CLIXON CLIXON

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

"Clixon is a YANG-based configuration manager, with interactive CLI, NETCONF and RESTCONF interfaces, an embedded database and transaction mechanism."

- Clixon Github

SYSTEMARCHITEKTUR

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Backend

- Core-Funktionalität
- Privilege Management

SYSTEMARCHITEKTUR

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Backend

- Core-Funktionalität
- Privilege Management

CLI, RESTCONF, NETCONF

- Separate Prozesse
- Inter-process communication (IPC) mit Backend

SYSTEMARCHITEKTUR

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Backend

- Core-Funktionalität
- Privilege Management

CLI, RESTCONF, NETCONF

- Separate Prozesse
- Inter-process communication (IPC) mit Backend

SYSTEMARCHITEKTUR

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Backend

- Core-Funktionalität
- Privilege Management

CLI, RESTCONF, NETCONF

- Separate Prozesse
- Inter-process communication (IPC) mit Backend

Plugins

- Dynamisch geladene Shared-Objects
- Registrierung von Callbacks
- Alternative Architektur: Plugin außerhalb von Clixon

SYSTEMARCHITEKTUR

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Backend

- Core-Funktionalität
- Privilege Management

CLI, RESTCONF, NETCONF

- Separate Prozesse
- Inter-process communication (IPC) mit Backend

Plugins

- Dynamisch geladene Shared-Objects
- Registrierung von Callbacks
- Alternative Architektur: Plugin außerhalb von Clixon

SYSTEMARCHITEKTUR

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Backend

- Core-Funktionalität
- Privilege Management

CLI, RESTCONF, NETCONF

- Separate Prozesse
- Inter-process communication (IPC) mit Backend

Plugins

- Dynamisch geladene Shared-Objects
- Registrierung von Callbacks
- Alternative Architektur: Plugin außerhalb von Clixon

Datastores

- Speichert die Konfigurationsdaten des Systems
- Zugriff via Clixon-API

SYSTEMARCHITEKTUR

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

TCP Plugin

- Läuft als Teil des Clixon-Backend-Prozess
- Plugin implementiert Schnittstelle zu Network-Stack
- Buildsystem: CMake
- Programmiersprache: C++

DEV ENVIRONMENT

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | **PROTOTYP - CLIXON** | PORTIERUNG - QNX | FAZIT

Vorteile

- Reproduzierbare Entwicklungsumgebung
- Einfaches Deployment

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Vorteile

- Reproduzierbare Entwicklungsumgebung
- Einfaches Deployment

Vorteile

- Entwicklung auf Windows Host mit Linux Target
- Remote Debugging

DEV ENVIRONMENT

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Docker Container Clixon Backend + Plugins

Symbols

CLion Remote Development

Vorteile

- Reproduzierbare Entwicklungsumgebung
- Einfaches Deployment

Vorteile

- Entwicklung auf Windows Host mit Linux Target
- Remote Debugging

Vorteile

- Übersichtliches UI
- Optimal für manuelles Testen der Plugins

ERWEITERUNGEN

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Netconf Chunks (RFC6242 - Section 4.2) #217

S-bauer wants to merge 15 commits into clicon:master from s-bauer:feature/netconf-chunks

15

BUG FIXES

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Bug in Example Code

https://github.com/clicon/clixon/pull/161

| XML Namespace Issue

https://github.com/clicon/clixon/pull/162

| Build Script Improvements

https://github.com/clicon/clixon/pull/197

| Memory Corruption

https://github.com/clicon/clixon/pull/238

FINDINGS

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | **PROTOTYP - CLIXON** | PORTIERUNG - QNX | FAZIT

Schreibzugriff auf TCP-Verbindungsliste

Client/Server Imports

| Zurücksetzen TCP Statistiken

IETF DRAFT TCP

AUFBAU $v01 \rightarrow v02$

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Simon Bauer, Martin Mager Forschungskolloquium - 29.07.2021

Portierung - QNX

PORTIERUNG – QNX

QNX – EMBEDDED SYSTEME

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Zwischenstand

- TCP Plugin für Ubuntu OS lauffähig
- Nicht für Ubuntu gedacht sondern Embedded Geräte (Switches, Router, AP, Firewalls, ...)

Einsatzgebiete für NETCONF / YANG

- Modellbasiertes Management auch in anderen Branchen relevant bspw. Medical, Robotics, Automotive
- Anderen Anforderungen -> Real Time OS bspw. QNX
 - **Microkernel Reliability**
 - **Real-Time Availability**
 - **Comprehensive, Layered Security**

| Portierung auf QNX

Portierung von Clixon inkl. TCP Plugin auf QNX RTOS

PORTIERUNG – QNX

QNX vs. LINUX/GNU

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

POSIX

Bare Minimum

Näher an der Hardware (Netzwerkstack, Explizite Aktionen)

Eingeschränktes Programmierinterface (im Vergleich zu UNIX/Linux)

POSIX-Konform

VORGEHENSWEISE

VORGEHENSWEISE

VORGEHENSWEISE

FINDINGS, BUGS, IMPROVEMENTS

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Speicherkorruption beim Lesen der Yang-Modelle von der Festplatte POSIX-Dokumentation von struct dirent ino_t d_ino char d_name[] Name of entry. Besonderheit The array of char d_name is not a fixed size.

FINDINGS, BUGS, IMPROVEMENTS

struct dirent - Memory Corruption

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Speicherkorruption beim Lesen der Yang-Modelle von der Festplatte POSIX-Dokumentation von struct dirent

ino_t d_ino File serial number.
char d_name[] Name of entry.

Besonderheit

The array of **char d_name** is not a fixed size.

Lösung

■ Fixed: Memory Allocation -> Pull Request

setresuid

- setresuid nicht auf QNX Neutrino unterstützt
- setresuid jetzt über Featureflag de/aktivierbar

Include header

- Header teilweise unter anderen Verzeichnisstrukturen
- Bsp.: statt <time.h> → <sys/time.h>

/proc/net Verzeichnis

- /proc/net-Verzeichnis auf QNX Neutrino nicht verfügbar
- Entweder via Sys-Calls oder netstat output parsen

Neutrino-Klon [wird ausgeführt] - Oracle VM VirtualBox										_		×
Datei	Maschine A	nzeige l	Eingabe	Geräte	Hilfe							
#												
# #												
#												
#												
# netstat -n												
Active Internet connections												
Proto	Recv-Q S						Foreign			Stat		
tcp	0	0		.2.15.			10.0.2.				ABLISH	_
tcp	0	0		.2.15.			10.0.2.				ABLISH	
tcp	0	0		.2.15.			10.0.2.				ABLISH	
tcp	0	0		.2.15.			10.0.2.				ABLISH	
tcp	0	0		.2.15.			10.0.2.				ABLISH	_
tcp	0	0		.2.15.			10.0.2.				ABLISH	_
tcp	0	0		.2.15.			10.0.2.				ABL ISH	
tcp	0 0	0 0	*.800	.2.15.	44		10.0.2.	2.5572	0	LIS'	ABLISH Pem	עמו
tcp	0	0	*.22	90			*.* *.*			LIS'		
tcp udp	0	0	*.22 *.*				*.*			LIO	LLII	
udp	0	0	*.68				*.*					
_	e UNIX do			S			•					
Addre			-Q Ser		Inod	le	Conn	Refs	Nextref	Addr		
	358 strea		Ō	_	821747		0	0	0	/usr/	/var/e	examp
le/example.sock #												
							9 (o 📜 🗗 🛭	🤊 🔳 🖳 🕞 🖁	3 (9)	STRG +	ALT .::

YANGSUITE

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Received message from host

Client Request

```
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:00a55c7c-077c-4b2d-8ebf-b1bc64dd59ea" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"</pre>
   <tcp xmlns="urn:ietf:params:xml:ns:yang:ietf-tcp">
      <connections>
       <connection>
         <local-address>10.0.2.15</local-address>
         <remote-address>10.0.2.2</remote-address>
         <local-port>22</local-port>
         <remote-port>55728</remote-port>
       </connection>
        <connection>
         <local-address>10.0.2.15</local-address>
         <remote-address>10.0.2.2</remote-address>
         <local-port>22</local-port>
         <remote-port>62034</remote-port>
       </connection>
       <connection>
         <local-address>10.0.2.15</local-address>
         <remote-address>10.0.2.2</remote-address>
```

Server Response

<local-port>8000</local-port>
<remote-port>49605</remote-port>

</connection>

Fazit

FAZIT

FAZIT + LEARNINGS

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

| Step 1 IETF Draft

- Einarbeitung viele RFCs gelesen etc.
- Mitwirkung an einem neuen Internetstandard
- Findings aus Prototyp ins Modell geflossen

Learnings

- Umfangreich, aber sehr gut verständlich
- Mitarbeit an (neuen) Internetstandards für jeden möglich
- Aktive Community

FAZIT + LEARNINGS

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Step 1 IETF Draft

- Einarbeitung viele RFCs gelesen etc.
- Mitwirkung an einem neuen Internetstandard
- Findings aus Prototyp ins Modell geflossen

| Step 2 Clixon

- Einarbeitung in umfangreiche Softwarelösung
- Prototypische Implementierung
- Contributing to OpenSource

Learnings

- Umfangreich, aber sehr gut verständlich
- Mitarbeit an (neuen) Internetstandards für jeden möglich
- Aktive Community

Learnings

- OpenSource auch für Nischenprodukte
- Leichte Mitarbeit möglich
- Sind über jede Hilfe froh

FAZIT + LEARNINGS

MODELLBASIERTES MANAGEMENT | IETF DRAFT TCP | PROTOTYP - CLIXON | PORTIERUNG - QNX | FAZIT

Step 1 IETF Draft

- Einarbeitung viele RFCs gelesen etc.
- Mitwirkung an einem neuen Internetstandard
- Findings aus Prototyp ins Modell geflossen

| Step 2 Clixon

- Einarbeitung in umfangreiche Softwarelösung
- Prototypische Implementierung
- Contributing to OpenSource

Step 3 QNX

- Einarbeitung in QNX viel Dokumentation
- Entwicklungsumgebung aufgesetzt
- Clixon auf QNX portiert
- TCP Plugin an QNX angepasst

Learnings

- Umfangreich, aber sehr gut verständlich
- Mitarbeit an (neuen) Internetstandards für jeden möglich
- Aktive Community

Learnings

- OpenSource auch für Nischenprodukte
- Leichte Mitarbeit möglich
- Sind über jede Hilfe froh

Learnings

- Bare Minimum OS
- POSIX-Standard erleichtert die Portierung
- Online wenig Hilfestellung → Dokumentation

HOCHSCHULE ESSLINGEN

Bildquellen

| Folie 5

In Anlehnung an A. Bierman, Network Configuration Protocol. [Online]. Verfügbar unter: http://www.netconfcentral.org/netconf_docs. Zugriff am 28. Juli 2021

|Folie 7

Prof. Scharf Porträt: Hochschule Esslingen. [Online]. Verfügbar unter: https://www.hs-esslingen.de/personen/michael-scharf/. Zugriff am 28. Juli 2021

|Folie 12 + 13

In Anlehnung an: O. Hagsand, clixon-docs. [Online]. Verfügbar unter: https://clixon-docs.readthedocs.io/en/latest/overview.html#system-architecture. Zugriff am 28. Juli 2021

| Logos:

- IETF: IETF. [Online]. Verfügbar unter: https://upload.wikimedia.org/wikipedia/commons/9/98/IETF Logo.svg. Zugriff am 28. Juli 2021
- Hochschule Esslingen: Hochschule Esslingen. [Online]. Verfügbar unter: https://www.hs-esslingen.de/. Zugriff am 28. Juli 2021
- docker: docker, Docker Logos. [Online]. Verfügbar unter: https://www.docker.com/company/newsroom/media-resources. Zugriff am 28. Juli 2021
- CLion: Jetbrains, CLion. [Online]. Verfügbar unter: https://www.jetbrains.com/company/brand/logos/. Zugriff am 28. Juli 2021. Copyright © 2021 JetBrains s.r.o. CLion and the CLion Logo are registered trademarks of JetBrains s.r.o.
- Chrome Logo: Google, Google Chrome. [Online]. Verfügbar unter: https://upload.wikimedia.org/wikipedia/commons/a/a5/Google_Chrome_icon_%28September_2014%29.svg. Zugriff am 28. Juli 2021
- Cisco Logo: Cisco, cisco-logo. [Online]. Verfügbar unter: https://upload.wikimedia.org/wikipedia/commons/6/64/Cisco logo.svg. Zugriff am 28. Juli 2021
- VirtualBox: Oracle Corporation, VirtualBox 4.2. for Windows hosts. [Online]. Verfügbar unter: https://upload.wikimedia.org/wikipedia/commons/d/d5/Virtualbox_logo.png. Zugriff am 28. Juli 2021
- Clixon: O. Hagsand, Clixon. [Online]. Verfügbar unter: https://clixon-docs.readthedocs.io/en/latest/. Zugriff am 28. Juli 2021