Lecture 7: The limit laws

Jonathan Holland

Rochester Institute of Technology*

September 12, 2018

Jonathan Holland Lecture 7: The limit laws

 $^{^{*}}$ These slides may incorporate material from Hughes-Hallet, et al, "Calculus", Wiley

- Terms: limit
- Concepts:
 - The (informal) definition of a limit: the *limit* of the function f(x) as x approaches c, written $\lim_{x\to c} f(x)$, to be a number L such that f(x) is as close to L as we want whenever x is sufficiently close to c. If L exists, we write

$$\lim_{x\to c} f(x) = L.$$

- Skills:
 - Use the **limit laws** to evaluate limits
 - Evaluate limits by considering the one-sided limits
 - Use the squeeze theorem to evaluate limits

Limits of rational functions (last time)

• If f(x) is a rational function, then the notation

$$\lim_{x\to a} f(x)$$

is like a recipe that says "First, simplify f(x) as much as possible, and then plug in x = a."

Numerical meaning of limit.

The idea of a limit

- Not every function is a rational function, but we can make sense of the idea of a limit for other kinds of functions as well.
- We will write $\lim_{x\to c} f(x) = L$ if the values of f(x) approach L as x approaches c.
- How should we find L, or even know whether such a number exists? Look for trends in values in f(x) as x gets closer to c, but $x \neq c$. A graph or table of values is helpful.
- $\bullet \ \, \mathsf{Example:} \lim_{\theta \to 0} \frac{\sin \theta}{\theta}$

Definition of a limit

Definition

A function f is defined on an interval around c, except perhaps at the point x = c. We define the *limit* of the function f(x) as x approaches c, written $\lim_{x\to c} f(x)$, to be a number L (if one exists) such that f(x) is as close to L as we want whenever x is sufficiently close to c (but $x \neq c$). If L exists, we write

$$L=\lim_{x\to c}f(x)=L.$$

• Example: Graph $\sin \theta/\theta$ to find out how close θ needs to be to 0 so that $\sin \theta/\theta$ is within 0.01 of 1.

Lecture 7. The limit laws

Examples

$$\lim_{x \to 3} \frac{x^2 + 5x}{x + 9} = \frac{\lim_{x \to 3} (x^2 + 5x)}{\lim_{x \to 3} (x + 9)} = \frac{(\lim_{x \to 3} x)^2 + 5\lim_{x \to 3} x}{\lim_{x \to 3} x + 9} = \frac{3^2 + 5(3)}{3 + 9}$$

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 2x} = \lim_{x \to 2} \frac{x - 2}{(x - 2)x} = \lim_{x \to 2} \frac{1}{x} = \frac{1}{2}$$

Theorem

If f(x) is a rational function (or polynomial) and x = c is a regular point, then

$$\lim_{x\to c}f(x)=f(c).$$

Note: When x = c is a *removable singularity*, it is not in the domain of f. That means we need to cancel a common factor before we are able to apply this theorem.

A trick for radicals

- Example: $\lim_{x\to 1} \frac{\sqrt{x+8}-3}{x-1}$.
- "Rationalize the numerator"!

$$\dots = \lim_{x \to 1} \frac{\sqrt{x+8} - 3}{x-1} \cdot \frac{\sqrt{x+8} + 3}{\sqrt{x+8} + 3}$$

$$= \lim_{x \to 1} \frac{(\sqrt{x+8})^2 - 3^2}{(x-1)(\sqrt{x+8} + 3)}$$

$$= \lim_{x \to 1} \frac{x+8-9}{(x-1)(\sqrt{x+8} + 3)}$$

$$= \lim_{x \to 1} \frac{x-1}{(x-1)(\sqrt{x+8} + 3)} \frac{x-1}{(x-1)(\sqrt{x+8} + 3)}$$

$$= \lim_{x \to 1} \frac{1}{\sqrt{x+8} + 3} = \frac{1}{\sqrt{1+8} + 3}$$

The last step ("direct substitution") follows from a combination of the limit laws

When limits do not exist

- Explain why $\lim_{x\to 2} \frac{|x-2|}{x-2}$ doesn't exist. Answer: The one-sided limits are $\lim_{x\to 2^-} \frac{|x-2|}{x-2} = -1$ and $\lim_{x\to 2^+} \frac{|x-2|}{x-2} = +1$, which are not the same.
- Explain why $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ doesn't exist. Answer: The function oscillates wildly as x approaches zero, without ever settling down to converge to any particular y value.

Jonathan Holland

Lecture 7: The limit laws

One-sided and two-sided limits

Theorem

A limit exists if and only if the left and right hand limits are equal:

Example

Compute $\lim_{x\to 0} |x|$. Recall that

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}.$$

So $\lim_{x\to 0^+}|x|=\lim_{x\to 0^+}x=0$ (direct substitution)and $\lim_{x\to 0^-}|x|=\lim_{x\to 0^-}(-x)=0$. These are both equal to zero, and so by the theorem $\lim_{x\to 0}|x|=0$.

Jonathan Holland Lecture 7: The limit laws

An example

- It is tempting to apply the "limit laws" to this:

$$\lim_{x \to 0} x \sin(1/x) = (\lim_{x \to 0} x)(\lim_{x \to 0} \sin(1/x)) = 0.$$

- This is wrong, because the second factor $\lim_{x\to 0} \sin(1/x)$ doesn't exist, so the limit laws do not apply. However, it does suggest a valid line of reasoning.
- Look at the graph of the function $f(x) = x \sin(1/x)$
- Notice that the graph is "squeezed" between the graphs of |x| and -|x|, which do tend to a limit as $x \to 0$.

The squeeze theorem

Theorem

lf

- 0 $f(x) \le g(x) \le h(x)$ when x is near a, and
- $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$

then

$$\lim_{x\to a}g(x)=L.$$

Example

We have

$$-|x| \le x \sin(1/x) \le |x|.$$

Let
$$f(x) = -|x|$$
, $g(x) = x \sin(1/x)$, and $h(x) = |x|$. Then (1) $f(x) \le g(x) \le h(x)$ and (2) $\lim_{x \to 0} f(x) = \lim_{x \to 0} h(x) = 0$, so $\lim_{x \to 0} g(x) = 0$.