Set Theory & Combinations

J. Alexander Branham

Fall 2015

What is it? Subsets Set universes Graphical representation Properties of Unions, Intersections

Intro to Set Theory

• What is set theory?

What is it?
Subsets
Set universes
Graphical representation
Properties of Unions, Intersections

Intro to Set Theory

- What is set theory?
- A branch of mathematics

Intro to Set Theory

- What is set theory?
- A branch of mathematics
- Collects objects into sets and studies the properties

What's a set?

• A **set** is a collection of objects

$$S = \{s_1, s_2, s_3, ...s_n\}$$

What's a set?

• A **set** is a collection of objects

$$S = \{s_1, s_2, s_3, ...s_n\}$$

The objects can be anything

What's a set?

• A **set** is a collection of objects

$$S = \{s_1, s_2, s_3, ...s_n\}$$

- The objects can be anything
- We usually use variables or units of observation

What is it? Subsets Set universes Graphical representation Properties of Unions, Intersections

Elements in or not

• We can say whether an object is in a set or not:

$$s_{13} \in S$$

Elements in or not

• We can say whether an object is in a set or not:

$$s_{13} \in S$$

Or not:

$$q_1 \notin S$$

What is it?
Subsets
Set universes
Graphical representation
Properties of Unions, Intersections

Subsets

• We can divide sets into subsets

 $M \subset S$

Subsets

• We can divide sets into subsets

$$M \subset S$$

• *M* is a *proper subset* of *S* iff all elements of *M* are in *S* but not all elements of *S* are in *M*.

Subsets

• We can divide sets into subsets

$$M \subset S$$

- *M* is a *proper subset* of *S* iff all elements of *M* are in *S* but not all elements of *S* are in *M*.
- We can also define non-proper subsets:

$$L \subseteq S$$

What is it? Subsets Set universes

Set universes
Graphical representation

Properties of Unions, Intersections

Empty sets

Some sets contain no elements

What is it?
Subsets
Set universes
Graphical representation
Properties of Unions, Intersections

Empty sets

- Some sets contain no elements
- For example, cities on Earth with average temperatures of greater than 1000 degrees

What is it? Subsets

Set universes

Graphical representation Properties of Unions, Intersections

Empty sets

- Some sets contain no elements
- For example, cities on Earth with average temperatures of greater than 1000 degrees
- Though Austin might be close...

$$Z = {\emptyset}$$

What is it?
Subsets
Set universes
Graphical representation
Properties of Unions, Intersections

Set Universes

 We can talk about how subsets fill a certain universe of possibilities

What is it? Subsets

Set universes

Graphical representation Properties of Unions, Intersections

Set Universes

- We can talk about how subsets fill a certain universe of possibilities
- For example:

$$R = 1, 2, 3, 4, 5, 6$$

What is it? Subsets

Set universes

Set Universes

- We can talk about how subsets fill a certain universe of possibilities
- For example:

$$R = 1, 2, 3, 4, 5, 6$$

• R represents all the possibilities of a (single) roll of a die

Set Universes

- We can talk about how subsets fill a certain universe of possibilities
- For example:

$$R = 1, 2, 3, 4, 5, 6$$

- R represents all the possibilities of a (single) roll of a die
- We can define sets for the even possibilities and the odd possibilities

$$E = \{2, 4, 6\}$$
 $O = \{1, 3, 5\}$

What is it? Subsets

Set universes

Compliments

• A *compliment* is that together, they contain all the elements of the relevant universe

$$E = O^C$$
 ; $O = E^C$

What is it? Subsets Set universes **Graphical representation** Properties of Unions, Intersections

Universe

Board examples of how to draw sets

What is it? Subsets Set universes

Graphical representation Properties of Unions, Intersections

•
$$A \cup B = B \cup A$$

What is it? Subsets Set universes

Graphical representation

Properties of Unions, Intersections

•
$$A \cup B = B \cup A$$

•
$$A \cap B = B \cap A$$

•
$$A \cup B = B \cup A$$

•
$$A \cap B = B \cap A$$

$$\bullet \ (A \cup B) \cup C = A \cup (B \cup C)$$

•
$$A \cup B = B \cup A$$

•
$$A \cap B = B \cap A$$

$$\bullet \ (A \cup B) \cup C = A \cup (B \cup C)$$

$$\bullet \ (A \cap B) \cap C = A \cap (B \cap C)$$

$$\bullet$$
 $A \cup B = B \cup A$

•
$$A \cap B = B \cap A$$

$$\bullet \ (A \cup B) \cup C = A \cup (B \cup C)$$

•
$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$\bullet A \cup B = B \cup A$$

•
$$A \cap B = B \cap A$$

$$\bullet \ (A \cup B) \cup C = A \cup (B \cup C)$$

•
$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$\bullet \ A \cup (C \cap C) = (A \cup B) \cap (A \cup C)$$