TARGET BUSINESS CASE STUDY

- 1. Basic Analysis
 - 1. Time period for which the data is given

Query:

2. Cities and States of customers ordered during the given period

Query:

```
SELECT
  DISTINCT customer_city,
  customer_state
FROM
  `scaler_project1.customers` c
JOIN
  `scaler_project1.orders` o
ON
  o.customer_id=c.customer_id
```

Result:

- 2. In-depth Exploration:
 - 1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query:

```
with cte as (select distinct
extract(month from order_purchase_timestamp) as mon, extract(year from
order_purchase_timestamp) as year,
count(order_id) over(partition by extract(month from
order_purchase_timestamp), extract(year from order_purchase_timestamp))
as count_order from `scaler_projectl.orders`
)
select * from cte
order by year, count_order desc
limit 10
```


2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
WITH
  cte AS(
  SELECT
    CASE
      WHEN EXTRACT(hour FROM order_purchase_timestamp)<12 THEN 'morni</pre>
ng'
      WHEN EXTRACT(hour
      order_purchase_timestamp)<17 THEN 'afternoon'</pre>
    ELSE
    'night'
  END
    AS day_time
    `scaler_project1.orders` )
SELECT
  DISTINCT *,
  COUNT(*)OVER(PARTITION BY day_time)
  cte
```

- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by states

Query:

```
WITH
  cte AS(
  SELECT
    DISTINCT c.customer state,
    FORMAT_DATETIME("%B", DATETIME(order_purchase_timestamp)) AS mont
h,
    COUNT(*) AS orders count
    `scaler_project1.orders` o
  JOIN
    `scaler_project1.customers` c
    c.customer_id=o.customer_id
  GROUP BY
    c.customer_state,
    FORMAT_DATETIME("%B", DATETIME(order_purchase_timestamp)) )
SELECT
FROM
  cte
ORDER BY
  orders_count DESC,
  customer_state,
  month
```

Result:

2. Distribution of customers across the states in Brazil

```
WITH
  cte AS(
  SELECT
    DISTINCT c.customer_state,
```

```
COUNT(c.customer_id) OVER(PARTITION BY c.customer_state) AS custo
mer_count
FROM
    `scaler_project1.orders` o
JOIN
    `scaler_project1.customers` c
ON
    c.customer_id=o.customer_id)
SELECT
    *
FROM
    cte
ORDER BY
    customer_count DESC,
    customer_state
LIMIT
    10
```

Result:

Row	customer_state	customer_count
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	ВА	3380
8	DF	2140
9	ES	2033
10	GO	2020

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
WITH
   cte AS(
   SELECT
   CASE
      WHEN EXTRACT(month FROM order_purchase_timestamp)<9 THEN EXTRAC
T(year FROM order_purchase_timestamp)
END
   AS year,
   payment_value
FROM
   `scaler_project1.orders` o
JOIN
   `scaler_project1.payments` p</pre>
```

```
ON
           o.order_id=p.order_id),
          cte2 AS(
         SELECT
           DISTINCT year,
           SUM(payment_value) OVER(PARTITION BY year) AS sell_amount
            cte
         WHERE
           year=2017
           OR year=2018)
       SELECT
         DISTINCT CONCAT(ROUND(((
                SELECT
                  sell_amount
                FROM
                  cte2
                WHERE
                  year=2018)-(
                SELECT
                  sell_amount
                FROM
                  cte2
                WHERE
                  year=2017))/(
              SELECT
                sell_amount
              FROM
                cte2
              WHERE
                year=2017)*100,0),'%')
       FROM
         cte2
Results:
        Row / f0_
        1 137%
```

2. Mean & Sum of price and freight value by customer state

```
ON
    o.customer_id=c.customer_id
JOIN
    `scaler_project1.payments` p
ON
    p.order_id=o.order_id
JOIN
    `scaler_project1.order_items` oi
ON
    oi.order_id=o.order_id
```

Result:

Row	customer_state //	state_order_cou	state_mean //	state_sum_price	state_freight_val
1	MA	844	235.27	198566.27	32290.33
2	ES	2338	173.57	405805.34	51392.57
3	ВА	4048	196.99	797410.36	106538.62
4	AM	171	203.24	34753.3	5656.54
5	MS	843	194.94	164337.28	19739.44
6	PA	1116	234.58	261788.35	39881.05
7	PE	1889	199.25	376377.27	61923.56
8	CE	1551	221.69	343847.83	50350.54
9	RS	6486	176.89	1147277.0	141579.69

- 5. Analysis on sales, freight and delivery time
 - 1. Calculate days between purchasing, delivering and estimated delivery

Query:

```
SELECT
   DATE(order_purchase_timestamp) AS order_purchase_date,
   DATE(order_delivered_customer_date) AS order_delivered_date,
   DATE(order_estimated_delivery_date) AS order_estimated_delivery_date,
   DATE_DIFF(DATE(order_delivered_customer_date), DATE(order_purchase_timestam
p),day) AS delivery_purchase_diff,
   DATE_DIFF(DATE(order_estimated_delivery_date), DATE(order_purchase_timestam
p),day) AS estimated_purchase_diff
FROM
   `scaler_project1.orders`
WHERE
   order_status= 'delivered'
```

Results:

Row	order_purchase_	order_delivered_	order_estimated	delivery_purchas	estimated_purch
1	2017-03-17	2017-04-07	2017-05-18	21	62
2	2017-03-20	2017-03-30	2017-05-18	10	59
3	2017-03-21	2017-04-18	2017-05-18	28	58
4	2018-08-20	2018-08-29	2018-10-04	9	4 5
5	2018-08-12	2018-08-23	2018-10-04	11	53
6	2018-08-16	2018-08-23	2018-10-04	7	49
7	2018-08-22	2018-08-29	2018-10-04	7	43
8	2018-08-20	2018-08-29	2018-10-04	9	45
9	2018-08-09	2018-08-22	2018-10-04	13	56
10	2018-08-13	2018-08-29	2018-10-04	16	52
11	2018-08-20	2018-08-30	2018-10-04	10	45

- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamporder_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

Query:

SELECT

DATE(order_purchase_timestamp) AS order_purchase_date,
DATE(order_delivered_customer_date) AS order_delivered_date,

```
DATE(order_estimated_delivery_date) AS order_estimated_delivery_date,

pate_DIFF(DATE(order_delivered_customer_date),DATE(order_purchase_timestamp),day) AS time_to_delivery,

DATE_DIFF(DATE(order_estimated_delivery_date),DATE(order_delivered_customer_date),day) AS diff_estimated_delivery

FROM
   `scaler_project1.orders`
WHERE
   order_status= 'delivered'
```

Row	order_purchase_	order_delivered_	order_estimated	delivery_purchas	estimated_purch
1	2017-03-17	2017-04-07	2017-05-18	21	62
2	2017-03-20	2017-03-30	2017-05-18	10	59
3	2017-03-21	2017-04-18	2017-05-18	28	58
4	2018-08-20	2018-08-29	2018-10-04	9	45
5	2018-08-12	2018-08-23	2018-10-04	11	53
6	2018-08-16	2018-08-23	2018-10-04	7	49
7	2018-08-22	2018-08-29	2018-10-04	7	43
8	2018-08-20	2018-08-29	2018-10-04	9	45
9	2018-08-09	2018-08-22	2018-10-04	13	56
10	2018-08-13	2018-08-29	2018-10-04	16	52
11	2018-08-20	2018-08-30	2018-10-04	10	45

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT
  customer_state,
  ROUND(AVG(DATE_DIFF(DATE(order_delivered_customer_date),DATE(order_purchas
e_timesta mp),day)),2) AS mean_time_to_delivery,
  ROUND(AVG(DATE_DIFF(DATE(order_estimated_delivery_date),DATE(order_deliver
ed_custome r_date),day)),2) AS mean_diff_estimated_delivery,
  ROUND(AVG(freight_value),2) AS mean_freight_value
  `scaler_project1.orders` o
JOIN
  `scaler project1.order items` oi
ON
  oi.order_id=o.order_id
JOIN
  `scaler_project1.customers` c
  c.customer_id=o.customer_id
WHERE
  o.order_status= 'delivered'
GROUP BY
  customer state
```

JOB IN	IFORMATION	RESULTS JSON	EXECUTION DETAILS	EXECUTION GRA
w	customer_state	mean_time_to_delivery	mean_diff_estimated_delivery	mean_freight_va
1	GO	15.34	12.29	22.56
2	SP	8.66	11.21	15.12
3	RS	15.13	14.13	21.61
4	BA	19.19	10.98	26.49
5	MG	11.92	13.34	20.63
6	MΤ	17.91	14.57	28.0
7	RJ	15.07	12.01	20.91
8	sc	14.95	11.57	21.51
9	SE	21.42	10.0	36.57
10	PE	18.22	13.45	32.69

4. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5 Query:

```
WITH
  cte AS(
  SELECT
    customer state,
    ROUND(AVG(DATE_DIFF(DATE(order_delivered_customer_date),DATE(order_purch
ase_timestamp),day)),2) AS mean_time_to_delivery,
    ROUND(AVG(DATE_DIFF(DATE(order_estimated_delivery_date),DATE(order_deliv
ered_customer_date),day)),2) AS mean_diff_estimated_delivery,
    ROUND(AVG(freight_value),2) AS mean_freight_value
  FROM
    `scaler_project1.orders` o
  JOIN
     scaler_project1.order_items` oi
  ON
    oi.order_id=o.order_id
  JOIN
     'scaler_project1.customers' c
    c.customer_id=o.customer_id
    o.order_status= 'delivered'
  GROUP BY
    customer_state)
SELECT
  *
FROM
  cte
ORDER BY
  mean_freight_value DESC
LIMIT
  5
```

Row /	customer_state //	mean_time_to_d	mean_diff_estim	mean_freight_va
1	RR	28.17	18.33	43.09
2	PB	20.55	13.04	43.09
3	RO	19.66	20.04	41.33
4	AC	20.68	20.98	40.05
5	PI	19.32	11.53	39.12

5. Top 5 states with highest/lowest average time to delivery Query:

5

```
WITH
  cte AS(
  SELECT
    customer_state,
    ROUND(AVG(DATE_DIFF(DATE(order_delivered_customer_date),DATE(order_purch
ase_timestamp),day)),2) AS mean_time_to_delivery,
    ROUND(AVG(DATE_DIFF(DATE(order_estimated_delivery_date),DATE(order_deliv
ered_customer_date),day)),2) AS mean_diff_estimated_delivery,
    ROUND(AVG(freight_value),2) AS mean_freight_value
  FROM
    `scaler_project1.orders` o
  JOIN
     scaler_project1.order_items` oi
  ON
    oi.order_id=o.order_id
  JOIN
     scaler_project1.customers` c
  ON
    c.customer_id=o.customer_id
  WHERE
    o.order_status= 'delivered'
  GROUP BY
    customer_state)
SELECT
FROM
  cte
ORDER BY
  mean_time_to_delivery DESC
LIMIT
```

Row	customer_state //	mean_time_to_d	mean_diff_estim	mean_freight_va
1	AP	28.22	18.4	34.16
2	RR	28.17	18.33	43.09
3	AM	26.34	19.93	33.31
4	AL	24.45	8.74	35.87
5	PA	23.7	14.25	35.63

6. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
WITH
            cte AS(
            SELECT
                        customer_state,
                       {\tt ROUND}({\tt AVG}({\tt DATE\_DIFF}({\tt DATE}({\tt order\_delivered\_customer\_date}), {\tt DATE}({\tt order\_purch}), {\tt DATE}({\tt order\_purch
ase_timestamp),day)),2) AS mean_time_to_delivery,
                        ROUND(AVG(DATE_DIFF(DATE(order_estimated_delivery_date),DATE(order_deliv
ered_customer_date),day)),2) AS mean_diff_estimated_delivery,
                       ROUND(AVG(freight_value),2) AS mean_freight_value
            FROM
                         `scaler_project1.orders` o
            JOIN
                           `scaler_project1.order_items` oi
            ON
                       oi.order_id=o.order_id
            JOIN
                             scaler_project1.customers` c
                       c.customer_id=o.customer_id
```

Result:

Row	customer_state //	mean_time_to_d	mean_diff_estim	mean_freight_va
1	AL	24.45	8.74	35.87
2	MA	21.59	9.91	38.49
3	SE	21.42	10.0	36.57
4	ES	15.59	10.65	22.03
5	BA	19.19	10.98	26.49

6. Payment type analysis:

1. Month over Month count of orders for different payment types

```
Query:
WITH
cte AS(
SELECT
```

```
DISTINCT FORMAT_DATETIME("%B", DATETIME(order_purchase_timestamp)) AS mo
nth,
   payment_type,
   COUNT(o.order_id)OVER(PARTITION BY EXTRACT(month FROM order_purchase_tim
     payment_type) AS count_order_based_paytype
 FROM
    `scaler_project1.orders` o
  JOIN
    `scaler_project1.payments` p
 ON
   o.order_id=p.order_id
 WHERE
   o.order_status= 'delivered')
SELECT
FROM
 cte
```

Results:

Row	month //	payment_type	count_order_bas
1	November	voucher	367
2	March	voucher	578
3	August	credit_card	8090
4	February	voucher	408
5	April	debit_card	119
6	December	credit_card	4246
7	June	UPI	1778
8	June	credit_card	7133
9	December	voucher	288
10	August	debit_card	303
11	.lanuary	credit card	5910

2. Count of orders based on the no. of payment instalments

Query:

```
WITH
  cte AS(
  SELECT
    DISTINCT payment_installments,
    COUNT(o.order_id)OVER(PARTITION BY payment_installments) AS count_order_
based_payment_installments
  FROM
    `scaler_project1.orders` o
    `scaler_project1.payments` p
  ON
    o.order_id=p.order_id
  WHERE
    o.order_status= 'delivered')
SELECT
FROM
  cte
ORDER BY
  count_order_based_payment_installments DESC
```

Results:

Row	payment_installr	count_order_bas
1	1	50929
2	2	12075
3	3	10164
4	4	6891
5	10	5150
6	5	5095
7	8	4136
8	6	3804
0	7	1560

