Алгоритмы и структуры данных

Лекция 3. Амортизационный анализ. Линейные контейнеры

Артур Кулапин

вшпи мфти

24 сентября 2023 г.

- О чем разговор?
- 1 Динамически расширяющийся массив
- Амортизационный анализ
 - Метод монеток
 - Метод потенциалов
- ③ Линейные контейнеры
 - Списки
 - Адаптеры
- Очередь с минимумом

Динамически расширяющийся массив

Def. Динамически расширяющийся массив — массивоподобная структура, предлагающая следующий интерфейс.

- push n добавить значение n в конец.
- рор удалить значение из конца массива.
- ullet get i получить i-й элемент массива.

Что делать, когда память, выделенная под массив, заканчивается?

А как надо перевыделять память?

В чем проблема выделения массива каждый раз на 1 больше?

Как вообще оценивать время работы таких алгоритмов?

Амортизационный анализ

Def. Пусть имеется последовательность операций, каждая из которых выполняется за время t_i , тогда *амортизированная стоимость* операции $t^* = \frac{1}{n} \sum_{i=1}^n t_i$.

Note. Далее будем записывать амортизированную стоимость операции как $\mathcal{O}^*(f(n))$

Метод монеток

- Допустим, что каждая операция стоит определенной количество монет C_i учетная стоимость.
- Учетная стоимость не менее реальной. Тогда резерв уйдет на покрытие остальных операций.

• Пусть каждый push, не требующий перевыделения памяти стоит 3 монетки. Одна монетка на запись элемента и две монетки в резерве (будем их класть на элементы массива с номерами i и $i-\frac{n}{2}$).

- Пусть каждый push, не требующий перевыделения памяти стоит 3 монетки. Одна монетка на запись элемента и две монетки в резерве (будем их класть на элементы массива с номерами i и $i-\frac{n}{2}$).
- Инвариант. Перед каждой реаллокацией на каждом элементе есть по монете.

- Пусть каждый push, не требующий перевыделения памяти стоит 3 монетки. Одна монетка на запись элемента и две монетки в резерве (будем их класть на элементы массива с номерами i и $i-\frac{n}{2}$).
- Инвариант. Перед каждой реаллокацией на каждом элементе есть по монете.
- Этими монетами оплачиваем перекопирование.

- Пусть каждый push, не требующий перевыделения памяти стоит 3 монетки. Одна монетка на запись элемента и две монетки в резерве (будем их класть на элементы массива с номерами i и $i-\frac{n}{2}$).
- Инвариант. Перед каждой реаллокацией на каждом элементе есть по монете.
- Этими монетами оплачиваем перекопирование.
- ullet То есть амортизированная сложность push равна $\mathcal{O}(1)$.

Метод потенциалов

Def. Потенциалом от структуры S назовем такую функцию $\varphi(S)$, что:

- **2** $\varphi(S) \ge 0$ в любой момент времени.

Метод потенциалов

Def. Потенциалом от структуры S назовем такую функцию $\varphi(S)$, что:

- $oldsymbol{\circ} \varphi(S_0) = 0$, где S_0 изначальное состояние структуры;
- **2** $\varphi(S) \ge 0$ в любой момент времени.

Def. Пусть t_i — реальное время i-й операции, тогда $t_i^* = t_i + \varphi(S_i) - \varphi(S_{i-1})$ — учетное время.

Утверждение. $\frac{1}{n}\sum_{i=1}^{n}t_{i}^{*}\geq t^{*}$.

Пусть c — вместимость массива, а s — его размер.

Введем $\varphi(S) = 2s - c$. Так как реаллокация в два раза, все требования выполняются. Посчитаем t_i^* .

Пусть c — вместимость массива, а s — его размер.

Введем $\varphi(S) = 2s - c$. Так как реаллокация в два раза, все требования выполняются. Посчитаем t_i^* .

- ullet Реаллокация не нужна. $arphi(S_i) arphi(S_{i-1}) = 2$, то есть $t_i^* = 3$
- $oldsymbol{2}$ Реаллокация нужна, то есть (s,c) o (s+1,2c) и c=s.

$$\varphi(S_i) - \varphi(S_{i-1}) = 2(s+1) - 2s - (2s-s) = 2-s$$

Откуда
$$t_i^* = s + 2 - s = 2$$

Линейные контейнеры

Def. Контейнер — некоторая структура, позволяющая хранить некоторые данные. Например, массив.

Def. Контейнер линейный, если на нем однозначно определено отношение «следующий элемент».

Списки

Список — последовательный набор узлов, предоставляющий следующий интерфейс.

Операция	Время	Примечание
Вставка в начало	$\mathcal{O}(1)$	
Удаление из начала	$\mathcal{O}(1)$	
Вставка в конец	$\mathcal{O}(1)$	Если двусвязный
Удаление из конца	$\mathcal{O}(1)$	Если двусвязный
Вставка в произвольное место	$\mathcal{O}(1)$	Если известно место
Удаление из произвольного места	$\mathcal{O}(1)$	Если известно место
Поиск	$\mathcal{O}(N)$	
Обращение по индексу	$\mathcal{O}(N)$	

Односвязный список

Def. Односвязный список — последовательный набор из узлов с данными, где каждый узел знает, где лежит следующий за ним.

Односвязный список

Def. Односвязный список — последовательный набор из узлов с данными, где каждый узел знает, где лежит следующий за ним.

Двусвязный список

Def. Двусвязный список — последовательный набор из узлов с данными, где каждый узел знает, где лежат следующий и предыдущий узлы.

Стек и очередь

Def. Стек stack — структура данных, которая хранит элементы и предоставляет к ним доступ в рамках парадигмы LIFO (Last in, First Out).

Можно реализовать на массиве и на односвязном списке.

Стек и очередь

Def. Стек stack — структура данных, которая хранит элементы и предоставляет к ним доступ в рамках парадигмы LIFO (Last in, First Out).

Можно реализовать на массиве и на односвязном списке.

Def. Очередь queue — структура данных, которая хранит элементы и предоставляет к ним доступ в рамках парадигмы FIFO (First in, First Out).

Можно реализовать на двусвязном списке.

Дек

Def. Дек deque — структура, представляющая из себя двустороннюю очередь, то есть можно вставлять/удалять в начало/конец.

Можно реализовать на двусвязном списке.

Стек с минимумом

Давайте добавим к API стека еще возможность возвращать минимум в нем. Как это сделать?

Будем хранить в узле стека не только сам элемент, но еще и минимум в стеке. Как это поддерживать?

При добавлении нового элемента в стек S для получения стека S' будем в голову S' добавлять минимум как минимум из значения элемента и значения минимума в голове S'.

Очередь на двух стеках

Задача. Дан стек в виде черного ящика. Надо соорудить очередь.

Очередь на двух стеках

Задача. Дан стек в виде черного ящика. Надо соорудить очередь.

Одного стека не хватит, воспользуемся двумя.

Сделаем один стек на вход stack_in и второй на выход stack_out. В первый будем добавлять, а из второго — извлекать.

Очередь на двух стеках

Задача. Дан стек в виде черного ящика. Надо соорудить очередь.

Одного стека не хватит, воспользуемся двумя.

Сделаем один стек на вход stack_in и второй на выход stack_out. В первый будем добавлять, а из второго — извлекать.

Eсли при извлечении stack_out пуст, то перекидываем все элементы из stack_in в stack_out.

Соединяем

Задача. Сделать очередь с поддержкой операции получения минимума в ней.

Заведем очередь на двух стеках, поддерживающих минимум.

Соединяем

Задача. Сделать очередь с поддержкой операции получения минимума в ней.

Заведем очередь на двух стеках, поддерживающих минимум.

Запрос минимума сводится к минимуму из минимумов в двух стеках.

Обобщаем

Def. Операция f ассоциативна, если f(a, f(b, c)) = f(f(a, b), c).

Def. Операция f коммутативна, если f(a,b) = f(b,a).

Охарактеризуйте с точки зрения ассоциативности, коммутативности и обратимости операции сложения и получения минимума.

Обобщаем

Def. Операция f ассоциативна, если f(a, f(b, c)) = f(f(a, b), c).

Def. Операция f коммутативна, если f(a,b) = f(b,a).

Охарактеризуйте с точки зрения ассоциативности, коммутативности и обратимости операции сложения и получения минимума.

Какие требования накладываются на операцию для ее подсчета в очереди?

Обобщаем

Def. Операция f ассоциативна, если f(a, f(b, c)) = f(f(a, b), c).

Def. Операция f коммутативна, если f(a,b) = f(b,a).

Охарактеризуйте с точки зрения ассоциативности, коммутативности и обратимости операции сложения и получения минимума.

Какие требования накладываются на операцию для ее подсчета в очереди?

Можно ли посчитать по аналогии с префиксными суммами минимум на подотрезке?