HARDWARE E SOFTWARE

Algoritmo

Algoritmo é uma sequência finita de instruções bem definidas e não ambíguas, cada uma das quais devendo ser executadas mecânica ou eletronicamente em um intervalo de tempo finito e com uma quantidade de esforço finita. (Wikipédia)

Computador

- Um computador recebe, manipula e armazena dados;
- □ É formado pelo **hardware** e pelo **software**:
 - Hardware: parte física, componentes eletrônicos;
 - Software: parte lógica, programas.
- Sua principal função é realizar o processamento de dados.

Computador

Processamento de dados: consiste em receber dados pelo dispositivo de entrada, realizar operações com estes dados e gerar um resultado que será exibido em um dispositivo de saída.

Computador

- Entrada: periféricos (teclado, mouse, câmera),
 armazenamentos, etc.
- Processamento: sequência de operações lógicas e aritméticas (softwares).
- Saída: dados devolvidos aos periféricos (monitores, atuadores), comunicação de dados.

- Hardware em computação especifica <u>unidades de</u> <u>processamento, memórias e dispositivos de entrada</u> <u>e saída</u>.
- Não se refere apenas aos computadores pessoais mas também aos <u>equipamentos embarcados</u>.

□ Sistemas embarcados:

□ Sistemas embarcados:

□ Sistemas embarcados:

- Os computadores trabalham com o sistema binário, que utiliza dois dígitos (0 e 1).
- Cada dígito de um número na base binária é denominado bit.
- □ Bit é a menor unidade de representação de um dado, e <u>pode assumir somente os valores 0 ou 1</u>.

- A informação binária é representada fisicamente por sinais elétricos.
- □ De acordo com o nível de intensidade de tensão (volts) é determinado como 0 ou 1.

- Todos os <u>caracteres</u> derivam de uma representação binária.
- O padrão **ASCII** determina que o agrupamento de 8 bits gera um caractere.

- □ O Byte (Binary term) é um conjunto de 8 bits.
- □ Cada combinação de 8 bits forma um caractere diferente:
 - Dígitos numéricos (0 a 9);
 - Letras maiúsculas e minúsculas do alfabeto (A...Z, a...z);
 - Sinais de pontuação e símbolos (., % \$);
 - Caracteres de controle (enter, backspace, espaço).
- São possíveis 256 combinações diferentes, que compõem a Tabela ASCII.

	Tabela ASCII -I							Tabela ASCII -II															
Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Нек	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Нех	Cha
0	.00	Null	32	20	Space	64	40	8	96	60	2	128	80	Ç	160	AO	á	192	CO	Ly	224	EO	a
1	01	Start of heading	33	21	1	65	41	A	97	61	a	129	81	ü	161	Ai	1	193	Ci	L	225	E1	B
2	02	Start of text	34	22	**	66	42	В	98	62	b	130	82	ė	162	AZ	ó	194	CZ	TS.	226	EZ	P
3	03	End of text	35	23	#	67	43	c	99	63	c	131	83	á	163	A3	ú	195	CS	H:	227	ES	it
4	04	End of transmit	36	24	ş	68	44	D	100	64	d	132	84	a	169	A4	ň	196	C4	<u>-</u> 22	228	E4	Σ
5	05	Enquiry	37	2.5	*	69	45	E	101	65	e	133	85	a	165	A5	Ň	197	C5	+	229	E5	σ
6	06	Acknowledge	38	26	ε	70	46	F	102	66	ť	134	86	å	166	A.6		198	C6	F	230	E6	u
7	07	Audible bell	39	27	*	71	47	G	103	67	g.	135	87	ç	167	A7	0	199	C7	F	231	E7.	1
B	08	Backspace	40	28	(72	48	н	104	68	n	136	88	ė	168	A8	č	200	C8	L	232	E8	4
9	09	Horizontal tab	41	29)	73	49	I	105	69	i	137	89	#	169	A9	-	201	C9	r	233	E9	e
10	OA	Line feed	42	ZA	2	79	4A	J	106	6A	5	138	8.8	é	170	AA	70	202	CA	1	234	EA	Ω
11	OB	Vertical tab	49	2 B	+	75	4B	K	107	6B	k	139	8B	Y	171	AB	145	203	CB	T	235	EB	ď
12	OC	Form feed	44	2C	W.	76	4C	L	108	6C	1	140	8C	1	172	AC	L ₆	204	CC	F	236	EC	00
13	OD	Carriage return	45	2 D	2	77	40	м	109	6D	m	141	8 D	i	173	AD	10	205	CD	-	237	ED	63
14	OZ	Shift out	46	2 E	30	78	4E	N	110	6E	n	142	θE	A	174	AE	44	206	CE	÷	238	EE	t
15	OF	Shift in	47	2 F	1	79	47	0	111	67	0	143	8F	Å	175	AT	30-	207	CF	1	239	EF	п
16	10	Data link escape	48	30	0	80	50	P	112	70	р	144	90	É	176	BO	200	208	DO	1	240	FO	=
17	11	Device control 1	49	31	1	81	51	a	113	71	q	145	91	æ	177	B1	505 505	209	D1	T	241	F1	±
1.8	12	Device control 2	50	32	2	82	52	R	114	72	r	146	92	Æ	178	B2	=	210	D2	т	242	F2	2
19	13	Device control 3	51	33	3	83	53	S	115	73	s	147	93	٥	179	B3	1	211	D3	L	243	FS	≤ .
20	14	Device control 4	52	34	4	84	54	T	116	74	t	148	94	Ö	180	B4	4	212	D4	L	244	F4	1
21	15	Neg. scknowledge	53	3.5	5	85	55	U	117	75	u	149	95	٥	181	B5	4	213	D.5	E.	245	F5	J
22	16	Synchronous idle	54	36	6	86	56	V	118	76	ν	150	96	ù	182	B6	1	214	D6	r	246	r6	+
23	17	End trans, block	55	37	7	87	57	10	119	77	¥	151	97	ù	183	B7	T	215	D7	+	247	F7	10
24	18	Cancel	56	38	8	88	58	X	120	78	×	152	98	7	184	B8	7	216	D8	+	248	F8	
25	19	End of medium	57	39	9	89	59	Y	121	79	У	153	99	Ö	185	B9	4	217	D9	1	249	F9	•0
26	18	Substitution	58	3A	1	90	5A	z	122	7A	2	154	9A	Ü	186	BA	1	218	DA	TO.	250	FA	7.15
27	18	Escape	59	3 B		91	5B	1	123	78	(155	9B	6	187	BB	4	219	DB		251	FB	1
28	10	File separator	60	3 C	<	92	5C	Y	124	70	É	156	9C	£	188	BC	4	220	DC		252	FC	
29	10	Group separator	61	3 D	-	93	5D	1	125	70	}	157	9D	¥	189	BD	1	221	DD	1	253	FD	e
30	12	Record separator	62	3 E	>	94	5E	A	126	7E	*	158	9E	B.	190	BE	3	222	DE	T I	254	FE	
31	17	Unit separator	63	37	2	95	SF	100	127	78	0	159	91	f	191	BY	1	223	DF		255	FF	

- Partes relevantes de um computador para o entendimento de programação:
 - Disco rígido.
 - Memória RAM.
 - Processador.
 - Memória cache.

- Partes relevantes de um computador para o entendimento de programação:
 - Disco rígido: onde são instalados os programas e armazenados dados permanentemente.

- Partes relevantes de um computador para o entendimento de programação:
 - Memória RAM: onde os programas são armazenados em tempo de execução.

- Partes relevantes de um computador para o entendimento de programação:
 - Processador: responsável pela manipulação dos dados.

 Partes relevantes de um computador para o entendimento de programação:

 Memória cache: memória localizada dentro do processador, para aumentar velocidade no acesso aos

dados.

- Memória principal (RAM): um tipo de memória de leitura e escrita.
- Constituída por células de armazenamento para dados manipulados pelo software.
- Cada célula possui um endereço.

- □ Memória: armazena **bytes** em tempo de execução.
- □ Esses bytes compõem os programas e os dados.

Célula de memória (endereço sequencial) – local de armazenamento

 Representação esquemática das células de memória de um computador.

Endereço	Conteúdo
0022FF74	1
0022FF76	2
0022FF78	3
0022FF80	4
0022FF82	5

= célula = um byte = um caractere (letra, dígito, símbolo)

· localização da célula de memória

Exemplo do armazenamento da palavra 'aluno':

Endereço	Conteúdo (representação		código ASCII		Caractere
	binária)] '!	;
0040280E	0110 0001	≯	97		a
0040180F	0110 1100	≯	108		I
00401810	0111 0101		117		U
00401811	0110 1110		110	+	n
00401812	0110 1111		111		0

célula de memória, armazenamento → de um b*yte* (um caractere)

Endereço de memória

- □ Unidade Central de Processamento (CPU).
- Realiza as instruções de um programa de computador (aritmética, lógica e entrada/saída).

- Existem outros componentes que fazem parte de computadores e sistemas embarcados, para tornalos mais robustos e de aplicações específicas.
 - □ Placas gráficas;
 - Memórias secundárias;
 - Sensores de posicionamento.

A Arquitetura de Computadores é a área responsável pelo estudo do projeto de sistemas computacionais.

Unidade Central de Processamento

 Instruções organizadas em uma sequência lógica predefinida, executadas em um dispositivo eletrônico.

 Denominado também de programa, aplicativo e sistema operacional.

- □ A criação de um software passa pelas seguintes fases:
 - Análise.
 - Algoritmo.
 - Codificação.

- A criação de um software passa pelas seguintes fases:
 - Análise:
 - Estudo do enunciado do problema para definir os dados de entrada, o processamento e a saída.

- A criação de um software passa pelas seguintes fases:
 - Algoritmo:
 - Utilização de ferramentas para descrever os passos para o processamento de dados.

Descrição narrativa

Fluxograma

```
Programa Aprovação;
var Nota1, Nota2, Nota3, Média: real;
início
leia(Nota1, Nota2, Nota3);
Média ← (Nota1 + Nota2 + Nota3) / 3;
Se Média >= 7
Então Escreva("Aprovado")
Senão Escreva("Reprovado");
fim.
```

Pseudocódigo

- A criação de um software passa pelas seguintes fases:
 - Codificação:

■ Transcrição do algoritmo em uma **linguagem de**

programação.

```
media.c

#include <stdio.h>
int main(void)
{
    float nota1, nota2, media;
    scanf("%f", &nota1);
    scanf("%f", &nota2);
    media = (nota1 + nota2)/2;
    printf("%f", media);
    return 0;
}
```

Tease ()

1 // Programa que calcula as raízes
2 // de uma equação de 20 grau
3 a = input("Entre com o valor de a: ")
4 b = input("b = ")
5 c = input("c = ")
6 delta = b^2 - 4*a*c
7 rl = (-b+sqrt(delta))/(2*a)
8 r2 = (-b- sqrt(delta))/(2 * a)
9

Linguagem C

Scilab

- Entrada:
 - Dados utilizados no processamento;
- Processamento:
 - Manipulação de variáveis e constantes; resolução de expressões matemáticas; estruturas de decisão e de repetição de comandos.
- □ Saída:
 - Resultados de processamento.

 Em geral o software é abstraído diretamente ao algoritmo.

Algoritmo é uma sequência finita de instruções bem definidas e não ambíguas, cada uma das quais devendo ser executadas mecânica ou eletronicamente em um intervalo de tempo finito e com uma quantidade de esforço finita. (Wikipédia)

- Exemplo de algoritmo para troca de lâmpada:
 - Passo 1 Pegar uma lâmpada nova;
 - Passo 2 Pegar uma escada;
 - □ Passo 3 Posicionar a escada embaixo da lâmpada queimada;
 - Passo 4 Subir na escada com a lâmpada nova na mão;
 - □ Passo 5 Retirar a lâmpada queimada;
 - □ Passo 6 Colocar a lâmpada nova;
 - Passo 7 Descer da escada com a lâmpada queimada;
 - Passo 8 Testar o interruptor;
 - Passo 9 Guardar a escada;
 - Passo 10 Jogar a lâmpada velha no lixo.

- □ Construção de um algoritmo:
 - Entender o problema;
 - Definir os dados de entrada;
 - Definir como a entrada será utilizada (processamento);
 - Definir os dados de saída;
 - Utilizar representação ou linguagem para descrever o procedimento.

- □ Construção de um algoritmo:
 - Entender o problema;
 - Definir os dados de entrada;
 - Definir como a entrada será utilizada (processamento);
 - Definir os dados de saída;
 - Utilizar representação ou linguagem para descrever o procedimento.
- Cálculo do IMC baseado na fórmula:

$$IMC = \frac{peso}{altura^2}$$

Resumo - Parte 1

- □ Computador: recebe, manipula e armazena dados.
- Hardware: parte física do computador.
 - Utiliza bits e bytes par representar dados.
 - Tabela ASCII converte bytes em caracteres.
 - Memória: células que armazenam bytes organizadas em endereços.
 - CPU: responsável pelo processamento lógico e aritmético dos dados.

Resumo – Parte 1

- Software: parte lógica, programas.
 - Subdividido em entrada, processamento e saída.
 - Algoritmo: sequência bem definida de passos.
 - Implementado em diferentes linguagens de programação, dependendo do objetivo.

Algoritmo

- □ Formas de representação de algoritmos:
 - Descrição narrativa:
 - Palavras em linguagem natural, lista de passos.
 - Fluxograma:
 - Diagrama de blocos conectados em sequencia.
 - Pseudocódigo:
 - Intermediário entre a linguagem natural e uma linguagem de programação.
 - Linguagem de programação:
 - Linguagem C, Matlab, Scilab, Java.

Algoritmo: Descrição Narrativa

- Descrição narrativa: consiste no uso de frases para expressar ações a serem realizadas.
- Apresenta a facilidade da linguagem ser conhecida e o inconveniente da ambiguidade de termos.
- Procedimento para elaborar um algoritmo em descrição narrativa:
 - Definição dos dados de entrada
 - Processamento (instruções a serem realizadas)
 - Definição dos dados de saída

Algoritmo: Descrição Narrativa

- □ Problema:
 - Calcular a média de duas notas.
- □ Solução:
 - Somar as duas notas e dividir a soma por dois.
- □ Dados de entrada:
 - Duas notas.
- Processamento (instruções realizadas):
 - Somar as duas notas.
 - Dividir a soma das notas por 2.
- □ Dados de saída:
 - Média.

Algoritmo: Fluxograma

- □ Fluxograma: diagrama de fluxo ou diagrama de blocos.
- Representação gráfica que utiliza formas geométricas ligadas por setas para indicar sequencia de instruções.
- □ Facilita a visualização da sequencia de instruções.
- Segue-se a norma ISO 5807 para os símbolos utilizados.

Algoritmo: Fluxograma

Símbolo	Descrição
	Terminal: indica o início e fim do algoritmo.
	Entrada e saída. Receber e mostrar informações. Ler dados para armazenar em variáveis e mostrar dados contidos em variáveis. Escrever texto.
	Processamento: realizar operações com variáveis e constantes; executar as instruções contidas em estruturas de decisão e de repetição.
	Representação de decisão, divisão do fluxo em caminhos diferentes.
	Conector para agrupar fluxos.
	Indica o sentido do fluxo de dados.

Algoritmo: Fluxograma

Algoritmo: Pseudocódigo

- Pseudocódigo: também conhecido por português estruturado, é uma forma genérica de expressar um código utilizando termos da língua natural.
- Semelhante ao formato dos códigos em linguagem de programação.
- Formato geral:

Algoritmo: Pseudocódigo

```
Algoritmo media;
Declare N1,N2: inteiro;
       media: real;
Inicio
       Ler (N1);
       Ler (N2);
       media \leftarrow (N1+N2) / 2;
       SE (media >= 60) ENTÃO
       Escrever ("Aluno aprovado com média: ", media)
       SENÃO
       Escrever ("Aluno reprovado com média: ", media)
       FIMSE
Fim.
```

Algoritmo: Linguagem de Programação

- Linguagem de programação: define o conjunto de símbolos e as regras para expressar instruções computacionais.
 - Léxico: conjunto de palavras especiais.
 - Sintaxe: concordância e ordem das palavras.
 - Semântica: significado da sequência de palavras.
- O conjunto de palavras, seguindo as regras, constitui o código fonte, que será traduzido e executado pelo processador.

Algoritmo: Linguagem de Programação

```
media c
#include <stdio.h>
int main (void)
    float nota1, nota2, media;
    scanf("%f", &notal);
    scanf("%f", &nota2);
    media = (nota1 + nota2)/2;
    printf("%f", media);
    return 0:
```

Resumo – Parte 2

- □ Formas de representação de algoritmos:
 - Descrição narrativa:
 - Palavras em linguagem natural, lista de passos.
 - Fluxograma:
 - Diagrama de blocos conectados em sequência.
 - Pseudocódigo:
 - Intermediário entre a linguagem natural e uma linguagem de programação.
 - Linguagem de programação:
 - Linguagem C, Matlab, Scilab, Java.

Memória, meu registrador **Program Counter** me diz que a próxima
instrução que eu devo executar tem
endereço 0x90907070 **Me diga qual é a instrução!**

Processador

Processador

Visão lúdica da execução de uma instrução

Sem problemas! A instrução é 0x1564897654 Memoria

Obrigado!
Vou guardar no meu
registrador de instruções

Processador

Pelo que eu entendi, devo somar dois números, que estão nos endereços 0x50506060 e 0x80809090

Processador

Nossa, como você é lerda memória, enquanto eu trabalho em Gigahertz você trabalha em Megahertz, eu penso algumas milhares de vezes mais rápido que você!!!

É exatamente por isso que você tem memória cache!!! Enfim, já busquei os valores nesses endereços, que são 3 e 4.

Certo, o resultado é 7, a instrução diz que é pra guardar esse resultado no endereço **0x45647981**

Falando em cache, meu algoritmo de escalonamento me diz que existe alta probabilidade de eu usar o que tem guardado desde o endereço 0x10101010 até o endereço 0x101010FF, me dê esses valores para eu guardar na minha memória cache, dessa forma não preciso de você por um tempo.

Processador

