Фамилия:	 	 	
Имя:	 	 	
Группа:	 •••••	 	 •••••

Задача №1

У вас имеются следующие данные:

Наблюдение i	1	2	3	4	5	6
$\overline{Y_i}$	9	1	6	7	7	6
$\overline{X_{1i}}$	0	0.125	-0.375	0	0.175	-0.125
$\overline{X_{2i}}$	0.25	-0.75	0.5	-0.25	0	0
T_i	1	0	0	1	1	0
Разбиение выборки	I		II			

- 1. Для прогнозирования целевой переменной Y_i с помощью нормализованных в предыдущем пункте признаков X_{1i} и X_{2i} вы используете метод ближайших соседей с метрикой расстояния Манхэттэн. Используя двухчастную кросс-валидацию (разбиение указано в таблице), ориентируясь на значение МАЕ, сделайте выбор между 1 и 2 соседями.
- 2. Считайте, что признак X_{2i} более не доступен в данных и в качестве контрольной переменной вы рассматриваете лишь X_{1i} . Используя метод ближайших соседей с оптимальным числом соседей (выбранным исходя из результатов предыдущего пункта) оцените с помощью T-learner условный средний эффект воздействия переменной воздействия T_i на целевую переменную Y_i для 2-го наблюдения в выборке.

Подсказка: При внутривыборочном прогнозировании методом ближайших соседей само наблюдение рассматривается в качестве ближайшего соседа самого себя.

вариант κ 1

Задача №2

Имеется нейросеть, включающая всего одно наблюдение по одному признаку x=1. Значение целевой переменной равняется y=10. Имеется лишь один скрытый слой с двумя нейронами. В качестве функции активации в скрытом и выходном слоях используется ReLU. Применяется квадратичная функция потерь. В нейросети нет смещений (констант) и все ее параметры равняются 2.

- 1. Изобразите графически описанную нейросеть.
- 2. Рассчитайте значение функции потерь данной нейросети при заданных значениях весов.
- 3. Рассмотрим вес, с которым признак входного слоя входит в первый нейрон. Найдите значение данного веса после одной итерации алгоритма градиентного спуска со скоростью обучения $\alpha=0.125$.
- 4. Вы добавили в скрытый слой исключение (dropout). Нейроны отключаются независимо друг от друга с вероятностью 0.5. Повторите предыдущий пункт, определяя математическое ожидание обновленного веса, с которым признак входит в первый нейрон..

вариант κ 2

Задача №3

У вас имеются следующие данные:

Наблюдение i	1	2	3	4
$\overline{Y_i}$	0	12	24	36
$\overline{X_{1i}}$	1	1	0	1
$\overline{X_{2i}}$	1	1	1	0

Дана квадратичная функция потерь $L\left(Y_i,\hat{Y}_i\right) = \left(Y_i-\hat{Y}_i\right)^2$. Для прогнозирования вы используете градиентный бустинг со скоростью обучения 0.5 и одной итерацией. В качестве базовой модели используется метод наименьших квадратов лишь с константой. Для прогнозирования градиентов используется регрессионное дерево глубины 1, в качестве критерия разбиения использующего средневзвешенную дисперсию (среднеквадратическая ошибка).

- 1. Запишите прогнозы базовой модели.
- 2. С помощью одной итерации градиентного бустинга спрогнозируйте значения целевой переменной для всех наблюдений в выборке.
- 3. Вы решили рассмотреть скорость обучения $\alpha \in R$ обученного в предыдущем пункте градиентного бустинга в качестве гиперпараметра. Подберите оптимальное значение скорости обучения (тюнинг), ориентируясь на критерий MSE, рассчитанный на следующей валидационной выборке:

Наблюдение i	1	2
Y_i	18	58
X_{1i}	1	1
X_{2i}	1	0

вариант κ 3