JEE ASSIGNMENT 1

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Yellanki Siddhanth (EE24BTECH11059)

2020 Sep 6 Shift 2 1 to 15

1) If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies:

(2020 - 4 Marks)

1

a)
$$e^4 + 2e^2 - 1 = 0$$

b) $e^2 + 2e - 1 = 0$
c) $e^4 + e^2 - 1 = 0$
d) $e^2 + e^2 - 1 = 0$

2) The set of all real values of λ for which the function $f(x) = (1 - \cos^2 x)(\lambda + \sin x), x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, has exactly one maxima and exactly one minima, is: (2020 - 4 Marks)

a)
$$\left(-\frac{3}{2}, \frac{3}{2}\right) - \{0\}$$

b) $\left(-\frac{1}{2}, \frac{1}{2}\right) - \{0\}$
c) $\left(-\frac{3}{2}, \frac{3}{2}\right)$
d) $\left(-\frac{1}{2}, \frac{1}{2}\right)$

3) The probabilities of three events A, B and C are given by P(A) = 0.6, P(B) = 0.4 and P(C) = 0.5. If $P(A \cup B) = 0.8$, $P(A \cap C) = 0.3$, $P(A \cap B \cap C) = 0.2$, $P(B \cap C) = \beta$ and $P(A \cup B \cup C) = \alpha$, where $0.85 \le \alpha \le 0.95$, then β lies in the interval. (2020 - 4 Marks)

a)
$$[0.36, 0.40]$$
 b) $[0.25, 0.35]$ c) $[0.35, 0.36]$ d) $[0.20, 0.25]$

4) The common difference of the A.P. b_1, b_2, \ldots, b_m is 2 more than the common difference of A.P. a_1, a_2, \ldots, a_n . If $a_{40} = -159$, $a_{100} = -399$ and $b_{100} = a_{70}$, then b_1 is equal to: (2020 - 4 Marks)

5) The integral $\int_1^2 e^x . x^x (2 + \log_e x) dx$ equals (2020 - 4 Marks)

a)
$$e(4e-1)$$

b) $e(4e+1)$
c) $4e^2-1$
d) $e(2e-1)$

6) If the tangent to the curve, $y = f(x) = x \log_e x$, (x > 0) at a point (c, f(c)) is parallel to the line-segment joining the points (1,0) and (e,e), then c is equal to:

(2020 - 4 Marks)

d) $e^{(\frac{1}{e-1})}$

d) $\sec x$

(2020 - 4 Marks)

(2020 - 4 Marks)

9) For all twice dif	ferentiable functions f :	$\mathbb{R} \to \mathbb{R}$, with $f(0) = \frac{1}{2}$	f(1) = f'(0) = 0, (2020 - 4 Marks)
a) $f''(x) = 0$, at b) $f''(x) \neq 0$, at	every point $x \in (0, 1)$ every point $x \in (0, 1)$	c) $f''(x) = 0$, for so d) $f''(0) = 0$	ome $x \in (0, 1)$
10) The area (in sq.units) of the region enclosed by the curves $y = x^2 - 1$ and $y = 1 - x^2$ is equal to: (2020 - 4 Marks)			
a) $\frac{4}{3}$	b) $\frac{7}{2}$	c) $\frac{16}{3}$	d) $\frac{8}{3}$
11) For a suitably chosen real constant a , let a function, $f: \mathbb{R} - \{-a\} \to \mathbb{R}$ be defined by $f(x) = \frac{a-x}{a+x}$. Further suppose that for any real number $x \neq -a$ and $f(x) \neq -a$, $(f \circ f)(x) = x$. Then $f\left(\frac{-1}{2}\right)$ is equal to: (2020 - 4 Marks)			
a) -3	b) 3	c) $\frac{1}{3}$	d) $-\frac{1}{3}$
12) Let $\theta = \frac{\pi}{5}$ and $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. If $B = A + A^4$, then $\det(B)$: (2020 - 4 Marks)			
a) is oneb) lies in (1,2)		c) lies in (2,3) d) is zero	
13) The center of the circle passing through the point $(0,1)$ and touching the parabola $y = x^2$ at the point $(2,4)$ is : $(2020 - 4 \text{ Marks})$			
a) $\left(\frac{3}{10}, \frac{16}{5}\right)$	b) $\left(\frac{6}{5}, \frac{53}{10}\right)$	c) $\left(-\frac{16}{5}, \frac{53}{10}\right)$	d) $\left(-\frac{53}{10}, \frac{16}{5}\right)$
14) A plane <i>P</i> meets the coordinate axes at <i>A</i> , <i>B</i> and <i>C</i> respectively. The centroid of a triangle <i>ABC</i> is given to be (1, 1, 2). Then the equation of the line through this centroid and perpendicular to the plane <i>P</i> is: (2020 - 4 Marks)			

a) $e^{(\frac{1}{1-e})}$

a) $\csc x$

a) $2\alpha(\alpha-1)$

b) $-2\alpha(\alpha+1)$

b) $\frac{(e-1)}{e}$

b) $\cot x$

 $\left(\frac{2}{\pi}-1\right)\csc x$, $0 < x < \frac{\pi}{2}$, then the function p(x) is equal to:

c) $\frac{1}{(e-1)}$

c) tan x

c) $2\alpha^2$

d) $2\alpha (\alpha + 1)$

7) If $y = \left(\frac{2}{\pi}x - 1\right)\csc x$ is the solution of the differential equation, $\left(\frac{dy}{dx}\right) + p(x)y =$

8) If α and β are the roots of the equation 2x(2x+1)=1, then β is equal to:

a)
$$\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{1}$$

b) $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$

c)
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$$

d) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$

- 15) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \max\{x, x^2\}$. Let S denote the set of all points in \mathbb{R} , where f is not differentiable. Then (2020 4 Marks)
 - a) $\{0, 1\}$

c) {1}

b) an empty set

d) {0}