МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КубГУ»)

Факультет компьютерных технологий и прикладной математики Кафедра информационных технологий

ЛАБОРАТОРНАЯ РАБОТА №5

Работу выполнил	А. А. Иванов
(подпи	ись)
Направление подготовки <u>02.03.03 Мадминистрирование информационни</u>	
Направленность <u>Технология проект</u> обеспечения	ирования программного
Руководитель(подпи	H.Ю. Добровольская

Краснодар 2024 Тема: проектирования функциональной структуры программного продукта; объектно-ориентированный подход.

Цель: изучение объектно-ориентированного подхода программной инженерии для разработки и описания функциональности разрабатываемого программного обеспечения.

Задание

- Проанализировать описание функционирования программной системы, разработанного при выполнении <u>лабораторной</u> работы №4, на предмет выявления набора абстракций предметной области проектируемой ПС. В качестве предварительных кандидатов в абстракции принять <u>подлежащее</u>, выделенные из текста анализируемого потока событий.
- 2. Разделить выделенные абстракции на 3 типа: абстракции сущности, абстракции поведения, абстракции интерфейсы. Результат представить в виде таблицы. Для каждой абстракции указать её класс согласно следующей классификации: Люди; Места; Предметы; Инструменты; Организации; Концепции; События; Показатели.
- 3. Проанализировать поведение выделенных абстракций. Выделить возможное поведение каждой абстракции в пределах функциональности проектируемой ПС, представленной моделью требований UML. Заполнить таблицу.
- 4. Построить диаграмму классов UML, указывая при этом лишь имена классов без указания свойств класса.
- На основе анализа описания предметной области, разработанного при выполнении лабораторной работы №1,

- выявить атрибуты и операции классов. Заполнить секции атрибутов и операций классов.
- 6. Выбрать в модели классов такой класс, который характеризуется наиболее частой сменой состояний, и построить для него диаграмму состояния.
- 7. На основе анализа функциональных моделей, разработанных при выполнение <u>лабораторной работы №4</u>, для каждого из базовых вариантов использования построить диаграмму деятельности. Для вариантов использования, с которыми связаны несколько действующих лиц, диаграмму деятельности построить в виде дорожек с привязкой к исполнителям конкретных операций алгоритма.
- 8. Для каждого варианта использования выделить список объектов участвующих во взаимодействии в этом прецеденте, заполнить таблицу.
- 9. Создать диаграммы последовательностей для перечисленных прецедентов (одну диаграмму для всех объектов).
- 10. Для наиболее сложных диаграмм последовательности создать кооперативные диаграммы и доработать их, если это необходимо.

1 Описание абстракций и их представление

Проектируемая программная система направлена на создание веб-портала, на котором пользователи могут ознакомиться с каталогом и записаться на курс(ы). Таким образом, основными абстракциями могут являться "Пользователь", "Курс", "Заявка записи на курс(ы)", "Преподаватель", "Уведомление о записи на курс(ы)". Абстракция "Пользователь" является основной, так как все остальные (кроме "Преподавателя") появляются в результате её действий.

Данные абстракции можно разбить на 3 группы и представить в виде таблицы 1.

No॒	Абстракция	Тип	Класс	Описание
1	Пользователь	Абстракция	Люди	Основная
		сущности		абстракция,
				приводит к
				формированию
				остальных
2	Курс	Абстракция	Предметы	Абстракция(и), из
		сущности		которой(ых)
				формируется
				абстракция "Заявка
				записи на курс(ы)"
3	Заявка записи на	Абстракция	События	Абстракция,
	курс(ы)	поведения		которая приводит к
				изменению базы
				данных
4	Преподаватель	Абстракция	Люди	Абстракция,
		сущности		которая получает
				"Уведомление о

				записи на курс(ы)"
5	Уведомление о	Абстракция	Концепции	Абстракция,
	записи на	интерфейса		которая нужна для
	курс(ы)			информирования
				абстракции
				"Преподаватель"

Таблица 1 – абстракции подсистемы

Так же можно сформировать возможное поведение каждой абстракции в проектируемой ПС и представить в виде таблицы 2.

No॒	Абстракция	Требование согласно	Описание поведения
		модели UML	
1	Пользователь	Наличие персональных	Регистрация, внесение
		данных	персональных данных,
			вход в систему, просмотр и
			запись на курсы
2	Курс	Наличие цены (плана	Добавление/удаление
		обучения)	курсов
3	Заявка записи	Содержит данные	Создаётся автоматически,
	на курс(ы)	пользователя и	изменяет информацию в
		выбранный(ые) курс(ы)	базе данных
4	Преподаватель	Наличие списка	Просмотр списка курсов,
		преподаваемых курсов	оценивание
			слушателей(пользователей)
5	Уведомление о	Содержит данные	Создаётся автоматически и
	записи на	пользователя и	отправляется
	курс(ы)	выбранный(ые) курс(ы)	преподавателю

Таблица 2 – абстракции подсистемы и их поведение

2 Диаграмма классов UML

Рисунок 1 – диаграмма классов UML

Теперь можно попробовать выявить атрибуты и операции соответствующих классов, которые можно представить в виде таблицы 3.

Имя класса	Список атрибутов	Список операций
Курс	Название	Создать()
	Стоимость	Удалить()
	Описание	
Заявка записи на курс(ы)	Данные пользователя	Создать()
	Статус	Отправить()
Уведомление записи на	Данные пользователя	Создать()

курс(ы)	Адрес получателя	Отправить()

Таблица 3 – атрибуты и операции классов

Класс "Заявка записи на курс(ы)" является классом с наиболее частой сменой состояний, потому что на этот класс оказывает влияния наибольшее число внешних факторов, так что для него нужно построить диаграмму состояний.

Рисунок 2 – диаграмма состояний класса "Заявка записи на курс(ы)"

3 Диаграмма деятельности

Рисунок 3 – диаграмма деятельности

В таблице 4 представлены объекты, участвующие в данном прецеденте, и их описание.

No॒	Прецедент	Объект	Описание объекта
1	Оформление и отправка заявки	Пользователь	Инициатор данного прецедента
	записи на курс(ы)	Преподаватель	Участник прецедента, который не принимает активных действий

ат
ат
-

Таблица 4 – описание прецедента

Для рассмотрения жизненного цикла всего прецедента нужно составить диаграмму последовательности.

Рисунок 4 — диаграмма последовательности