FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY 2110327 ALGORITHM DESIGN

Year II, Second Semester, Midterm Examination, March 6, 2020 13:00-16:00

ชื่อ-นามสกุล	เลขประจำตัว	ตอนเรียนที่	เลขที่ใน CR58
หมายเหตุ			

- 1. ข้อสอบมีทั้งหมด 9 ข้อ ในกระดาษคำถามคำตอบ 7 หน้า
- 2. ไม่อนุญาตให้น้ำตำราและเอกสารใดๆ เข้าในห้องสอบ
- 3. ไม่อนุญาตให้ใช้เครื่องคำนวณใดๆ
- 4. ห้ามการหยิบยืมสิ่งใดๆ ทั้งสิ้น จากผู้สอบอื่นๆ เว้นแต่เจ้าหน้าที่ควบคุมการสอบจะหยิบยืมให้
- 5. ห้ามนำส่วนใดส่วนหนึ่งของข้อสอบและสมุดคำตอบออกจากห้องสอบ
- 6. ผู้เข้าสอบสามารถออกจากห้องสอบได้ หลังจากผ่านการสอบไปแล้ว 45 นาที
- 7. เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใดๆ ทั้งสิ้น
- 8. นิสิตกระทำผิดเกี่ยวกับการสอบ ตามข้อบังคับจุฬาลงกรณ์มหาวิทยาลัย มีโทษ คือ พ้นสภาพการเป็นนิสิต หรือ ได้รับ สัญลักษณ์ F ในรายวิชาที่กระทำผิด และอาจพิจารณาให้ถอนรายวิชาอื่นทั้งหมดที่ลงทะเบียน ไว้ในภาคการศึกษานี้

ห้ามนิสิตพกโทรศัพท์และอุปกรณ์สื่อสารไว้กับตัวระหว่างสอบ หากตรวจพบจะถือว่า นิสิตกระทำผิดเกี่ยวกับการสอบ อาจต้องพ้นสภาพการเป็นนิสิต หรือ ให้ได้รับ F และ อาจพิจารณาให้ถอนรายวิชาอื่นทั้งหมดที่ลงทะเบียนไว้ในภาคการศึกษานี้

* ร่วมรณรงค์การไม่กระทำผิดและไม่ทุจริตการสอบที่คณะวิศวกรรมศาสตร์ *

ข้าพเจ้ายอมรับในข้อกำหนดที่กล่าวมานี้ ข้าพเจ้าเป็นผู้ทำข้อสอบนี้ด้วยตนเองโดยมิได้รับการช่วยเหลือ หรือให้ความช่วยเหลือ ในการทำข้อสอบนี้

ลงชื่อนิสิต	
วันที่	

(10 คะแนน) จงวิเคราะห์ประสิทธิภาพเชิงเวลาของขั้นตอนวิธีแต่ละข้อดังต่อไปนี้
สำหรับบางข้อที่สามารถใช้ Mater Theorem ได้ กำหนดให้ Master Theorem มีนิยามคือ
สำหรับ Recurrence relation T(n) = aT (n/b) + f (n) เมื่อ a ≥ 1 และ b > 1 เป็นค่างคงที่ และ f(n) เป็นค่ฟังก์ชันที่มีค่าเป็นบวกเสมอ
เราสามารถคำนวณ T(n) ได้ตามกรณีต่าง ๆ ดังต่อไปนี้

$T(n) = \Theta(n^{\log_b(a)})$	ຄ້າ $f(n) = O(n^{\log b}(a-\epsilon))$
$T(n) = \Theta(n^{\log_b(a)} \log^{k+1} n)$	ถ้า $f(n) = \Theta(n^{\textstyle log}b(a)\log^k(n))$ และ $k \geq 0$
$T(n) = \Theta(f(n))$	ถ้า $f(n) = \Omega(n^{\textstyle \log b}(a+\epsilon))$ และ $\epsilon > 0$ และ
	$af(n/b) \leq kf(n)$ เมื่อมีค่าคงที่ k < 1 และ n ขนาดใหญ่มาก

และให้ถือว่า T(1) = 1 เสมอ

ข้อ		Big O หรือ 0 ()
1.	<pre>sum = 0 for(int i=n; i>0; i/=2) { for(int j=1; j<n; for(int="" h="" j*="2)" k="0;" k+="2)" k<n;="" lohinh="" pre="" sum++;="" {="" }="" }<=""></n;></pre>	() () () ()
2.	<pre>void c2110327() { for (int i=1; i<=n; i++)</pre>	0(loshy) 0 (nlo, n)
3.	A(n) { if(n<=1) return 1; else return A(√n); // √n is square root of n }	O(Th) 9
4.	<pre>for(i = 0; i < n; i++) { for(j = 0; j < n; j++) a[j] = randomValue(i); // randomValue is O(1) goodSort(a); // goodSort is O(n log n) }</pre>	O (ntonn)
5.	การเรียงลำดับข้อมูลของ Quicksort เมื่อใช้ pivot เป็นค่า mean ที่ใช้เวลา หา O(n)	(n 2 (n n)
6.	T(n) = T(n-1) + O(1)	Ocn)
7.	T(n)=3T(n/2) + n	0 (n (0) 13)
8.	$T(n) = 64T(n/8) + n^2 \log n$	O(n' lon n)
9.	$T(n) = T(n/2) + n^{(2 - \cos n)} \log_{1} (1)$	0(n 2-(0) n
10.	T(n) = 16T(n/4)+n!	O (nj)

เลขบร	ะจาตว [หองส	อบ ///////		เลขทเ 	มเบเซน ///////	ชอเขาส ///////	อบ [หนาท	3
2. (5	คะแนน	เ) สำหร	ับปัญห <i>า</i>	n Matri:	x Chain	Multip	olicatio	n กำห _ั	นดให้เร	ากำลังห	าจำนวเ	เครั้งใน	าารคูณ	น้อยสุดเ	าารหาผ	เลการคู	ณของ r	matrix
จำ	เนวน 6	matrix	คือ A1	, A2,	A6 เข้า	ด้วยกัน	โดยที่มี	ตารางค	า่าคำตอ	บ M ดัง	เต่อไปนี้	(กำหน	ดให้ M[i][j] คือ	จำนวน	เครั้งการ	ัคูณน้อ	ยสุด
ଏ ଚ	งการคูเ	น mat	rix Ai ถึ	१ matri	x Aj จง'	ระบุวิธีก	ารใส่วง	เล็บที่ท์	าให้ได้จ	ำนวนค	รั้งการคูเ	ณน้อยสุ	ด					
		j=1	j=2	j=3	j=4	j=5	j=6		ก <u>°</u>	าหนดให้	, ขนาดข	อง แต่ล	ະ matr	ix เป็นดั	ทั้งนี้			
i	= 1	0	750	200	230	370	720		_	Matrix		A1	A2	A3	A4			46
i	= 2		0	50	70	170	470			จำนวนแ จำนวนค		15 10	10	5	2	2		20
i	= 3			0	10	70	320		L 300	4 4		10						
i	= 4				0	20	220		ก′	ารคูณ n	าatrix เา							ยสุด
i	= 5					0	400		ด้า	วยการใส	ช่วงเล็บต่	กังนี <u>"</u>	1 (A _L /k ₁)) ((A y A szi) A _b)	-	
i	= 6						0		(],	ห้ตอบโด	ายการใส	่วงเล็บ	ตัวอย่าง	มช่น ((<i>A</i>	\1A2)((A3(A4A	(5))))	
แใ =	คะแนน บบ แต่ล: [1,3,4,6 น b บาเ	ะแบบมี 5] เราจะ	่เค่าแตก ะใช้สาม	ต่างกันศิ เหรียญใ	เื่อ ∨[1! นการจ่า	k] โดยเร ายเงิน 1	รามีเหรีย 1 บาท	ยญแต่ล (คือเหรื	ะเหรียเ ยญ 4 +	บูไม่จำกั + 4 + 3)	ัด และรั) กำหนด	ับประกั จให้ C(a	ันว่า v[í a, b) คือ	ไ] = 1 เ	สมอ เช	่น ถ้า n	= 11	•
	a, b) =				5	-				b == 0					10	. 14	4 //	
	a, b) =			1						b < \					1.1	. 7 4	(1	
	a, b) = เติมตาร																	
a\b	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1	2	27	Ч	5	G	7	V	9	w	١(12	(3	(4	15	۱۲	17	1 4
2	1	2	1	2	2	2	3	¥	3	q	5	Ч	5	٦	5	6	7	6
3	1	l	1	1	2	2	2	2	3	3	3	3	4	Ч	4	4	5	5
4	1	2	1	1	ζ	L	1	ζ	3	2	2	3	3	2	3	4	3	3
5	1	່ງ	۲-	١	2	2	l	2	3	2	2	1	7	2	2	2	3	3

4. (5 คะแนน) จาก Recurrence Relation ต่อไปนี้ จงระบุว่า หากเราเขียนโปรแกรมเพื่อคำนวณ Relation ดังกล่าวด้วยวิธีการแบบ Dynamic Programming แล้ว เราจะต้องใช้ตารางขนาดกี่มิติในการเก็บข้อมูล และ การคำนวณนั้นทำได้เร็วสุดมีประสิทธิภาพเชิงเวลาเป็นเท่าไร

Recurrence Relation	ขนาดของตาราง	ประสิทธิภาพเชิงเวลา
	(มิติ)	(ตอบเป็น () หรือ $oldsymbol{ heta}$)
(ตัวอย่าง) F(n) = F(n-1) + F(n-2)	1	O(n)
B(n, k) = k * B(n-1, k) + B(n-1,k-1)	2	9 cn)
C(n) = max(C(1), C(2),, C(n-1))	1	0 (y)
D(n,b,c) = D(n-1,b-1,c-1) + D(n-1,b-1,c+1) + D(n-1,b+1,c+1) + D(n-1,b+1,c-1)	3	Ocloqun)
E(n) = E(n/2) + a[n] // ให้ a[n] เป็นอาเรย์ 1 มิติ		
G(n, k) = max(G(n-1, 1) + a[1], G(n-1, 2) + a[2],, G(n-1,k-1) + a[k-1])	2	p (n)

$$B(n, k) = k * B(n-1, k) + B(n-1, k-1)$$

$$B(n-1, k)$$

$$B(n-1, k)$$

$$B(n-1, k-1)$$

$$B(n-1, k)$$

$$B(n-1, k)$$

$$B(n-1, k-1)$$

D(n,b,c) = D(n-1,b-1,c-1) + D(n-1,b-1,c+1) + D(n-1,b+1,c+1) + D(n-1,b+1,c-1)

 $G(n, k) = \max(G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1])$ $G(n, k) = \max(G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1])$ G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1]) G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1]) G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1]) G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1]) G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1]) G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1,k-1) + a[k-1]) G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1, 2) + a[2], ..., G(n-1, 2) G(n-1, 1) + a[1], G(n-1, 2) + a[2], ..., G(n-1, 2) + a[2], ..., G(n-1, 2) G(n-1, 1) + a[1], G(n-1, 2) + a[2], G(n-1, 2) + a[2], G(n-1, 2) + a[2], G(n-1, 2) G(n-1, 1) + a[2], G(n-1, 2) +

- 5. (10 คะแนน) ปัญหาเชิญคนมางานปาร์ตี้ เป็นดังนี้ มีแขกทั้งหมด n คน กำกับด้วยหมายเลข 1 ถึง n เราต้องการเชิญคนเหล่านี้มางานปาร์ตี้ อย่างไรก็ตาม แขกบางคนไม่ถูกกัน ให้ dislike(a, b) เป็นฟังก์ชันที่คืนค่า true เมื่อแขก a และ b นั้นเกลียดกัน แขกที่เราเชิญมา จะต้องไม่มี คู่ใหนเลยที่เกลียดกัน
 - 5.1. จงเขียน Recurrence relation สำหรับการคำนวณหาจำนวนคนมากที่สุดที่เราสามารถเชิญมางานปาร์ตี้ได้ กำหนดให้ MaxGuest(i, S) คือ จำนวนคนที่สามารถเชิญมาร่วมงานได้มากที่สุด เมื่อเราพิจารณาเฉพาะคนหมายเลขที่ 1 ถึง i โดยที่ S คือคนหมายเลย i+1 ถึง n ที่ เราเลือกเชิญมาก่อนแล้ว และ S ไม่มีคนที่เกลียดกันเลย ซึ่งคำตอบที่เราต้องการคือ MaxGuest(n, {})

// กรณีพื้นฐาน (trivial case)

MaxGuest(0, S) = S size ();

// ทั่วไป (trivial case)

MaxGuest(i, S) = m xx (กระหน่าเร) / M xx G v (st (i - l) (S - H) บ (i)))

H = { l / dislikeci, b = t v e }

5.2. กำหนดให้ prefer(a) คือค่าที่บอกว่าแขก a นั้นเป็นที่ชื่นชอบขนาดไหน เราต้องการให้ผลรวมของค่า prefer ของแขกที่เชิญทั้งหมดนั้น มากที่สุด กำหนดให้ Best(i, S) คือค่ามากสุดของผลรวมของค่า prefer เมื่อเราพิจารณาเฉพาะคนหมายเลขที่ 1 ถึง i โดยที่ S คือคน หมายเลย i+1 ถึง n ที่เราเลือกเชิญมาก่อนแล้ว และ S ไม่มีคนที่เกลียดกันเลย ซึ่งคำตอบที่เราต้องการคือ Best(n, {}) จงเขียน Recurrence relation นี้

สำหรับข้อ 6 – 9 นั้น จะเป็นการออกแบบอัลกอริทึม ในแต่ละข้อนั้นสามารถอธิบายอัลกอริทึมที่ออกแบบด้วย รหัสเทียม (pseudo code) หรือว่า programming language ภาษาใดที่เคยเรียนมาก็ได้ แต่<u>ทุกข้อให้ระบุประสิทธิภาพเชิงเวลาด้วย</u>

6. (10 คะแนน) มีอาเรย์ A[1..5][1..n] ซึ่งเป็นอาเรย์ 2 มิติขนาด 5 แถว n คอลัมน์ เราต้องเลือกข้อมูลบางตัวมาจากอาเรย์นี้ โดยต้องเลือกข้อมูล 1 ตัวมาจากแต่ละคอลัมน์ โดยมีกฎดังนี้ 1) ต้องเลือกทีละตัว จาก คอลัมน์ 1 ไปยังคอลัมน์ n 2) ในคอลัมน์ที่ 1 จะเลือกข้อมูลตัวใดก็ได้ 3) ถ้า คอลัมน์ที่ i เลือกข้อมูลจากแถวที่ j แล้วในคอลัมน์ที่ i+1 สามารถเลือกได้เฉพาะแถวที่ j-1, j, j+1 (เมื่อมีแถวดังกล่าวอยู่) เท่านั้น เราต้องการ เลือกให้ได้ผลรวมมากที่สุด จากกฎดังกล่าว หากเรากำหนดให้ B(r, c) คือผลรวมมากสุดของข้อมูลที่เลือก เมื่อเราได้ทำการเลือกจนถึงการ เลือกข้อมูลแถวที่ r จากคอลัมน์ที่ c เราจะได้ Recurrence relation ของ B(r,c) ดังนี้

จงเขียนรหัสเทียมในการคำนวณค่า B ใด ๆ โดยใช้วิธี Dynamic Programming แบบ bottom up และให้เก็บผลลัพธ์ลงในตัวแปร B

ประจำตัว		ห้องสอบ	เลขที่ในใบเซ็นชื่อเข้าสอบ	หน้าที่ 5
Solve(n, A[15][1n])		ยกตัวอย่างประกอบ	
		'		
return B; //	ต้องคืนค่า B ซึ่งเป็นตาราง 2 มิติกลัง	บมา		
return B; // ประสิทธิภาพในการทำง		บมา		

7. (10 คะแนน) กำหนดให้มีอาเรย์ A[1..n] โดยที่ค่าใน a มีเฉพาะตัวเลข 0, 1, 2 เท่านั้น และ a ถูกเรียงจาก<u>น้อยไปมาก</u>แล้ว เราต้องการทราบ ว่าในอาเรย์ a มีตัวเลข 1 อยู่กี่ตัว (รับประกันว่า a มีขนาดมากกว่า 3 ช่อง และมีตัวเลข 0, 1, 2 อย่างน้อยเลขละ 1 ตัวแน่นอน) ตัวอย่างเช่น A = [0, 1, 1, 2, 2, 2] จะต้องตอบว่า 2 เพราะมี 1 อยู่ 2 ตัว จงออกแบบอัลกอริทีมสำหรับแก้ปัญหาดังกล่าว

```
Count(A, n)
                                                                                 ยกตัวอย่างประกอบ
   * input of binary sensety is start, stop, value, ACI. ... h]
     if c stop < stret) .
         mil = (strut +sfor)/2; 12 3 15
         it c acmil] 2 value)
            return bs ( kake, as sturt, mil);
         alse
            between be ( unlie, m, miles, cond);
      elseit Hop = = strot)
         if (v[stort]) = unleg) return stort
          retorn stant of;
  int n = 6 5 C 1 , A 1 1 h) ;
  int n2= 6 1 (2, A, 1, n);
   return Wz - Mij
ประสิทธิภาพในการทำงานของอัลกอริทึมนี้คือ
```

12	7/	7	7	7	7	7	7	7	7	7	7	2	7	7	7	7	7	2	7	Z	7	7	7	7	2	2	Z	7	7	7	7	7	7	2	2	7	7	7	7	7	2	7	7	7	7	7	7	7	7	7	7	7	7	7	2	7	//	77	7	7	7	7	7	7	//	7	7	7	7	7	7	77	7	7	7		7	72	2	7	72	2	7	7	7	7	0	90	90	90	90	11	77	95	Z	Ø,	1
	0	Ιí	ล	ข	٩	٦	i e	, ۱۹	ຳ	ı	ัว	Ī			I			I			I			Ī						Γ											1		,	ห้	, le) {	ાટ	10	าใ	J.										ີ່ເຄີ	19	เชิ	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	น	1,	U	ู่ค็	เ	ູເຈົ້	je) ل	์ ข้	าส	ส์	อา	J	1										I		ห	น้	์ ำ	ที่	6	6			
12	D.	d	Ż	9	2	1	0		0	d	1	Ź	7		//	11	7	d	7		'n	7		1	7	7			11	7	9			7	0	11		1	7		d	0	0	Ź	2	Ż	Ø	7	Ø,	1	0	11	9	1	7		7	9	Ø,	Ø	1	7	10	11	7	Ø,	0		7		10	9	Ø		7	11	0			0			1		9	9	~	//	11	11	//	22	7	//	·	2	ĺ

8. (10 คะแนน) เราต้องการ<u>นับจำนวน</u> string ความยาว n ที่ประกอบด้วยตัวเลข 0 หรือ 1 เท่านั้นที่มีเงื่อนไขคือ string นั้นจะต้องไม่มีเลข 1 ติดกัน เช่น เมื่อ n เป็น 3 จะมี string ที่ตรงกับเงื่อนไขคือ "000", "001", "010", "100" และ "101" เท่านั้น รวมทั้งหมด 5 แบบ จง ออกแบบอัลกอริทึมที่นับจำนวน string ดังกล่าวเมื่อระบุค่า n เป็น input ด้วยวิธี Divide & Conquer หรือ Dynamic Programming 8.1. จงกำหนดนิยามของ Recurrence relation ของปัญหานี้ โดยให้นิยาม function ที่ใช้ พร้อมทั้ง parameter ที่เกี่ยวข้อง

```
(n° 5 cm) an bit st.ing 210 n n leit i anann
```

8.2. จงเขียนสมการของ Recurrence relation ในข้อ 8.1

$$S(h) = \begin{cases} 2 & \text{i. } h = 1 \\ 3 & \text{i. } h = 2 \end{cases}$$

$$S(h-1) + S(h-1) & \text{i. } P = 3$$

8.3. จงออกแบบอัลกอริทีมสำหรับปัญหานี้ (ไม่จำเป็นต้องทำตามข้อ 8.1 หรือ 8.2 ก็ได้ ขอให้ทำงานได้ถูกต้อง)

```
g C h);

in+ tmp En);

tmp to 3 = 2

tmp [1] = 3

for (inti=2; i < n; i+t)

tmp ti] = tmpti-1] +tmpti-2];

vet-in tmp [n-1];
```

ยกตัวอย่างประกอบ		

7							77777777						
0	เลขประจำตัว					ห้องสะ	อบบ	 .เลขที่ใ	นใบเซ็	นชื่อเข้	้าสอบ		หน้าที่ 7
0							90000			1111111			

9. (10 คะแนน) เกมตำรวจจับโจรเป็นดังนี้ มีโจรและตำรวจเข้าแถวเป็นเส้นตรงอยู่ เราสามารถแทนตำแหน่งของโจรและตำรวจด้วย อาเรย์ A[1..n] โดยที่ A[i] มีค่าเป็น 0 หมายความว่าตำแหน่งที่ i มีโจรอยู่ แต่ถ้า A[i] มีค่าเป็น 1 แสดงว่าตำแหน่ง i มีตำรวจยืนอยู่ ตำรวจแต่ละคน สามารถจับโจรได้คนเดียวเท่านั้น และตำรวจ ที่อยู่ ณ ตำแหน่ง i สามารถจับโจรที่อยู่ที่ตำแหน่งตั้งแต่ i-k ถึง i+k ได้เท่านั้น เราอยากทราบว่า จาก A ที่กำหนดให้ มีโจรโดนจับมากสุดกี่คน ตัวอย่างเช่น A = (0,), 1, (1, 0, 0, 0] และ k = 1 จะจับโจรได้สองคน คือ โจรที่ตำแหน่ง 1 และ 5 (ตำรวจ ณ ตำแหน่ง 3 ไม่สามารถจับโจรได้เลย) หรือให้ A = (1, 0, 0, 1, 1, 1, 0) 0) และ k = 2 จะสามารถจับโจรได้มากสุด 4 คน จงออกแบบอัลกอริทึมสำหรับแก้ไขปัญหานี้

```
Catch(A[1..n], k)
                                                                      ยกตัวอย่างประกอบ
      Lool arrest [n] ; ans = 0;
      for cinti=1; is n; itt)
            1+c ACIT == 1 )
              for int j = max(1, i-h) to min (n, i+h);
                   1 + Cu[i]==0 m & nurest [i] == fnlse)
                       novest Enj = fort
          return
```