

AN ANALYSIS OF FIXED WING TACTICAL AIRLIFTER CHARACTERISTICS USING AN INTRA-THEATER AIRLIFT COMPUTER MODEL

THESIS

Paul Pappas, Flight Lieutenant, RAAF

AFIT/GLM/ENS/91S-50

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

92-04836

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

92 2 25 106

AN ANALYSIS OF FIXED WING TACTICAL AIRLIFTER CHARACTERISTICS USING AN INTRA-THEATER AIRLIFT COMPUTER MODEL

THESIS

Paul Pappas, Flight Lieutenant, RAAF

AFIT/GLM/ENS/91S-50

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Acces	sion For			
NTIS	GNA&I	P		
DTIC	TAB			
1	: ೯ಬ್ ಎಂಗೆ			
Justi	fication_			
Ву	Bv			
Distribution/				
Avai	Availability Codes			
	Aveal and	/or		
Dist	Special			
	i i	. [
W/	1 1			
1 '	1			

AN ANALYSIS OF FIXED WING TACTICAL AIRLIFTER CHARACTERISTICS USING AN INTRA-THEATER AIRLIFT COMPUTER MODEL

THESIS

Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Logistics Management

Paul Pappas, B.Sc., Grad. Dip. Mil. Av. Flight Lieutenant, RAAF

September 1991

Approved for public release; distribution unlimited

Preface

The purpose of this study was to identify specific tactical airlifter characteristics that, when improved, produce the greatest improvement in tactical airlift capability. This was done by carrying out an experiment using the Generalized Air Mobility Model, a computer simulation of a tactical airlift system. This model allowed the effectiveness of the tactical airlift system to be measured as airlifter characteristics were changed. Characteristics that produced significant changes to the measures of effectiveness were then identified.

I became interested in this topic primarily because the Royal Australian Air Force has been considering a number of different aircraft as possible replacement tactical airlifters. This research was an attempt to identify the most important tactical airlifter characteristics, and so provide some insight for a future aircraft selection process. For this reason, the scenario chosen for the experiment was Central America. Of the three scenarios available to use with the model, the Central American scenario most closely matched the environment within which the Australian Defence Force might possibly be operating in a future conflict.

I wish to express my appreciation to my advisor, Maj Paul Auclair, for his continued support throughout this effort. His expertise, knowledge, and experience in operations research helped me many times in progressing from an initial formless idea to the final product. I would also like to thank Steven J. Wourms of the Directorate of Advanced

Systems Analysis, DCS for Development Planning, Aeronautical Systems

Division at Wright-Patterson AFB, for all his efforts in assisting my

research. Start's knowledge of GAMM and his expertise in aircraft

analysis were invaluable to the completion of this research project.

Finally, I'd like to thank my wife, Janine, and my children,
Alissa and Christopher, for their patience and understanding during the
many days and nights when I was tied to my desk with work.

Paul Pappas

Table of Contents

			Page
Preface	•		. ii
List of Figures			. vii
List of Tables	•		. viii
Abstract	•		. xi
To the advantion			•
I. Introduction	•	•	. 1
Tactical Airlift in the USAF			
The Airland Battle		•	
General Issue			. 3
Problem Statement			
Research Question			
Research Objective			
-			
Scope	-		-
Summary	•	•	. 6
II. Background	•	•	. 8
Measures of Effectiveness	•	•	. 8
Mission Analysis (ATTMA)			. 1ø
Summary			
Summary	•	•	. 13
III. Generalized Air Mobility Model Overview	•	•	. 14
Introduction			. 14
The Generalized Air Mobility Model (GAMM) .	•	•	
GAMM Simulation Elements			
GAMM Simulation Overview	•	•	
	•	•	. 18
GAMM Scenario Definition	•	•	. 2Ø
Selection of Scenario	•	•	. 21
The Central American Scenario		•	. 22
- Summary	•	•	. 27
IV. Methodology			. 28
Introduction			. 28
Weakness of One-Variable-at-a-Time Strategy	,	•	
Selection of an Experimental Design	•	•	
Selection of Variables			. 34
Defining Measures of Effectiveness	•		
Specification of Variables			38

	Page
Standard GAMM Initializing Parameters	42
Stochastic Modeling	43
Determining the Required Number of Replications .	44
Modification of Scenario Files	46
Analysis of the Main Effects of a Two Level	40
Factorial Design	48
Analysis of the Interaction Effects of a Two	
Level Factorial Design	49
Yate's Algorithm	5Ø
Analysis of the Results of a Two Level	
Factorial Experiment	51
Development of a Regression Model	53
Development of a Parsimonious Model	55
Identification of Significant Aircraft	33
	56
Characteristics	
Summary	57
V. Verification and Validation	58
Introduction	58
Verification of GAMM	58
Validation of GAMM	6Ø
Event Validation of GAMM	61
Summary	64
VI. Experimental Findings and Analysis	66
Calculation of the Required Number of Replications	66
The Required Number of Replications -	
Interpretation of Results	68
Experimental Results	71
Transformation of Data	74
Identification of Significant Terms	75
Identification of Relevant Terms	78
Comparison of Transformed Results	81
Interpretation of Results	82
Analysis of the Interaction Term	88
Summary	89
•	
VII. Conclusions and Recommendation	9Ø
Summary of Experiment	9ø
	91
Implications of these Results	92
Recommendations for Further Research	92
Appendix A: GAMM Airlifter Characteristics - Baseline C-130H	95
Appendix B: Airlift Jobs for Central American Scenario	96

	Page
Appendix C: GAMM Initialization Sequence - Baseline Parameters	97
Appendix D: Design Matrices for Interaction Terms	1ØØ
Appendix E: Results and Calculations for the Number of Required Replications	1Ø8
Appendix F: Random Number Seeds used for Experimental Runs .	112
Appendix G: Yate's Algorithm - Calculations for Estimate of Effect	113
Appendix H: Difference Between Two Averages - Calculations for Estimate of Effect and Standard Error	125
Appendix I: Yate's Algorithm - Calculations for Estimate of Effect for Transformed Results	128
Appendix J: Difference Between Two Averages - Calculations for Estimate of Effect and Standard Error for Transformed Results	14Ø
Appendix K: Experimental Results Transformed to Natural Logarithms	143
Appendix L: Analysis of Initial Regression Equations	145
Appendix M: Analysis of Reduced Regression Equations	153
Bibliography	168
Vita	171

List of Figures

Figure		
1.	GAMM's Transportation System	17
2.	Offensive Operations in the Central American Scenario .	23
3.	Central American Flot Locations	24
4.	Central American Job Occurrences by Delivery Time	25
5.	Tonnage Required by Day	26
6.	Cumulative Required Tonnage	26
7.	Results of a One-at-a-Time Experiment	3Ø
8.	Yate's Algorithm - 2 ³ Factorial Experiment	51
9.	Initial Regression Equations	77
lØ.	Parsimonious Regression Equations	8Ø
11.	Interaction Effect - Ratio On Time	84
12.	Interaction Effect - Ratio Delivered	84
13.	Interaction Effect - Total Sorties Flown	85
14.	Interaction Effect - Productive Sorties Flown	86
15.	Interaction Effect - Total Flight Hours	87
16.	Interaction Effect - Productive Flight Hours	87

List of Tables

Table		Page
1.	GAMM Airlifter Functional Parameter Sets	36
2.	Definition of Variables - Two Level Factorial Design .	4Ø
3.	2^6 Two Level Full Factorial Design Matrix	41
4.	GAMM Event Validation - Expected Sorties Generated	63
5.	GAMM Event Validation - Actual Sorties Generated	63
6.	GAMM Model Replications - Results of Ten Independent Runs	67
7.	Extract of Calculations for Determining the Required Number of Replications	69
8.	Experimental Results: GAMM Cental American Scenario .	72-73
9.	Summary of ANOVA Tables for Initial Regression Equations	76
1Ø.	Summary of ANOVA Tables for Parsimonious Regression Equations	79
11.	Comparison of Results for Ratio On Time	82
12.	Summary of Significant Airlifter Characteristics - Central American Scenario	91
13.	Two-Factor Interaction Design Matrix	100-101
14.	Three-Factor Interaction Design Matrix	1Ø2-1Ø3
15.	Four-Factor Interaction Design Matrix	1Ø4-1Ø5
16.	Five-Factor and Six-Factor Interaction Design Matrices	1Ø6-1Ø7
17.	Calculation of Number of Runs Required - One Percent Accuracy	1 ø 8
18.	Calculation of Number of Runs Required - Two Percent Accuracy	1ø9
19.	Calculation of Number of Runs Required - Three Percent Accuracy	11Ø

Table		Page
2Ø.	Calculation of Number of Runs Required - Four Percent Accuracy	111
21.	Yate's algorithm, Results for Ratio On Time	113-114
22.	Yate's algorithm, Results for Ratio Delivered	115-116
23.	Yate's algorithm, Results for Total Flight Hours	117-118
24.	Yate's algorithm, Results for Total Sorties Flown	119-120
25.	Yate's algorithm, Results for Productive Flight Hours .	121-122
26.	Yate's algorithm, Results for Productive Sorties Flown	123-124
27.	Summary of Estimated Effects of Conditions on the Ratio of Cargo Delivered	125
28.	Summary of Estimated Effects of Conditions on the Number of Hours Flown	126
29.	Summary of Estimated Effects of Conditions on the Number of Sorties Flown	127
3Ø.	Yate's algorithm, Results for Ratio On Time - Transformed to Natural Logarithms	128-129
31.	Yate's algorithm, Results for Ratio Delivered - Transformed to Natural Logarithms	13Ø-131
32.	Yate's algorithm, Results for Total Flight Hours - Transformed to Natural Logarithms	132-133
33.	Yate's algorithm, Results for Total Sorties Flown - Transformed to Natural Logarithms	134-135
34.	Yate's algorithm, Results for Productive Flight Hours - Transformed to Natural Logarithms	136-137
35.	Yate's algorithm, Results for Productive Sorties Flown - Transformed to Natural Logarithms	138-139
36.	Summary of Estimated Effects of Conditions on the Ratio of Cargo Delivered - Results Transformed to Natural Logarithms	140
37.	Summary of Estimated Effects of Conditions on the Number of Hours Flown - Results Transformed to Natural Logarithms	141

rabre		raye
38.	Summary of Estimated Effects of Conditions on the Number of Sorties Flown - Results Transformed to Natural Logarithms	142
39.	Experimental Results Transformed to Natural Logarithms: GAMM Central American Scenario	143-144

Abstract

This study used computer simulation to identify which tactical airlifter characteristics most significantly affected tactical airlift capability in a given scenario. The Generalized Air Mobility Model was used to simulate a tactical airlift system. Aircraft characteristics within the model were grouped into six variables. A 26 two level full factorial experimental design was used to assess the effect of changes in aircraft characteristics on the effectiveness of the tactical airlift system. Yate's algorithm was used to identify significant terms based upon the results of the factorial experiment. These significant terms were used to develop a parsimonious regression model that represented the response function of the experimental variables. The variables remaining in the regression model represented the tactical airlifter characteristics that most significantly affected the capability of the tactical airlift system. Only one scenario was used in the experiment: Central America. This scenario was characterized by a tropical mountainous environment, poor infrastructure, a limited number of major airfields, and many short unprepared airfields. Two groups of tactical airlifter characteristics were found to significantly affect capability of the tactical airlift system in this scenario: the size of the aircraft's cargo bay, and the aircraft's ability to operate on unprepared surfaces.

AN ANALYSIS OF FIXED WING TACTICAL AIRLIFTER CHARACTERISTICS USING AN INTRA-THEATER AIRLIFT COMPUTER MODEL

I. Introduction

In the Johnson-McConnell Agreement of 1966, the responsibility for all fixed wing airlift in the U.S. Armed Forces was given to the U.S. Air Force (USAF), and so the Military Airlift Command (MAC) became the primary provider of airlift for the Armed Forces (19:8). MAC has two major roles: strategic or inter-theater airlift, and tactical or intratheater airlift.

Tactical Airlift in the USAF

Strategic airlift involves the movement of personnel, supplies and equipment, to, from, or between theaters of operations. Tactical airlift involves such movements within a designated theater of operations. Tactical airlift usually involves movement over much shorter distances than strategic airlift (11:8).

For tactical airlift, the USAF defines five general mission categories:

- Deployment. Deployment is the movement of forces to their initial area of operation in theater.
- 2. <u>Employment</u>. Employment is the movement of forces around a theater after of their initial deployment.
- 3. <u>Sustainment</u>. Sustainment is the movement of replacement personnel and supplies in support of deployed forces.

- 4. <u>Retrograde</u>. Retrograde is the use of aircraft on the return leg of a deployment mission, such as for evacuees or enemy prisoners of war.
- 5. <u>Air Evacuation</u>. Air Evacuation usually requires a specially configured aircraft (18:8-9).

In MAC, tactical airlift is currently carried out by Lockheed C-13Ø Hercules aircraft. The C-13Øs will soon be augmented by the introduction of the McDonnell Douglas C-17. While the C-17 will have short field performance similar to the C-13Ø, it is not intended to replace the C-13Ø. The C-17 was designed as a long range, heavy lift cargo transport. It is intended primarily to provide inter-theater airlift of outsize loads, such as tanks and infantry fighting vehicles, directly into airfields in potential conflict areas (12:467).

The Airland Battle

The primary objective of tactical airlift is to provide the user, which is usually the Army, with the capability to carry out a mission when there are no other means available to do the job. One of the most important reasons for the use of tactical airlift is speed of response. Tactical airlift also provides the Army with increased mobility without reliance upon Ground Lines Of Communication (GLOC). It affords a degree of manoeuver that may otherwise be impossible due to the lack of roads, rail lines or major airfields within a theater of operations (1:161; 18:5-6).

Since the U.S. Army formalized the Airland Battle doctrine, the concept of the battlefield has changed. Instead of a single line on the map designating the Forward Line Of Troops (FLOT), the Airland Battle

will consist of nonlinear battlefields with some Army units carrying out deep attacks on second echelon units while others simultaneously engage first echelon units (7:3,8). Those units carrying out the deep attacks will be heavily dependent on tactical airlift for the initial assault and for continued resupply because the Ground Lines Of Communication will be either nonexistent or uncertain (11:6).

The Airland Battle will require tactical airlift to operate up to and beyond the FLOT in the support of ground forces. This environment will present a significantly greater threat to tactical airlift operations than has previously existed. The increased threat highlights the vulnerability of the C-13Ø, which was designed with a wet wing and has no provision for radar warning receivers, electronic countermeasure pods or flare/chaff dispensers. (13:43-44)

General Issue

The C-13Ø aircraft is the backbone of intra-theater tactical airlift for the U.S. Armed Forces and the military forces of 57 countries around the world. Over 18ØØ C-13Ø aircraft have been produced (12:446).

The original C-13Ø was designed to a specification issued by the U.S. Tactical Air Command (TAC) in 1951 (12:446). With the exception of a number of C-13Øs that have undergone a stretch modification of their fuselages to increase the size of the cargo bay, most C-13Øs flying today have essentially the same tactical airlift capabilities as the original C-13ØA aircraft.

Even though it is still an effective tactical airlifter, the C-13Ø is based on a 4Ø year old design that did not anticipate recently

developed requirements. The adoption of the Airland Battle doctrine by the U.S. Army has significantly changed the environment within which tactical airlift will be operating. A tactical airlifter suited to the demands of the new battlefield environment should be considered to replace the C-13Ø. It should incorporate survivability and vulnerability improvements to successfully operate in the modern tactical environment, and use new technology to improve upon the C-13Ø's tactical airlift capabilities. However, while the development of a replacement for the C-13Ø was discussed by the National Military Airlift Subcommittee of the U.S. House Armed Services Committee as long ago as 197Ø, no replacement for the C-13Ø is currently available (13:44).

Before a new aircraft can be designed, an assessment of tactical airlift requirements and capabilities is required. "Looking back at the state of mobility analysis in 1983, there was a glaring imbalance between our ability to evaluate strategic mobility systems and our ability to assess tactical mobility requirements and capabilities" (6:2-2).

The 1981 Congressionally Mandated Mobility Study (CMMS) was able to define strategic deployment requirements and set a mandated minimum strategic airlift capability of 66 million ton miles per day. However, no similar target was defined for tactical airlift. In order to better define tactical airlift requirements, two major studies were begun in 1983: the Qualitative Intra-theater Airlift Requirements Study (QITARS) and the Worldwide Intra-theater Mobility Study (WIMS) (11:7).

QITARS, completed in 1985, defines wartime missions that support AFM 1-1, the basic airlift doctrine of deployment, employment and sustainment of combat forces. WIMS, completed in 1988, defines

the requirements for all modes of transportation within a theater that includes airlift. (11:7)

Both studies concluded that there was a significant shortfall in existing intra-theater airlift capability (11:7).

To better define tactical airlift capabilities, the USAF

Aeronautical Systems Division (ASD) initiated the Advanced Transport

Technology Mission Analysis (ATTMA) project in 1986. The primary aim of
the ATTMA project was to investigate the relative merits of new tactical
airlifter concepts. The evaluation was based upon a number of different
aircraft options including "short takeoff and landing (STOL), very short
takeoff and landing (VSTOL), and low observable systems including large,
medium, and small cargo compartments (relative to the current C-13Ø
aircraft)" (20:8).

A number of new system concepts have been developed and continue to be evaluated as a result of the ATTMA project. In addition, a deficiency analysis of the C-13Ø was carried out as part of the ATTMA project to determine how changes to individual C-13Ø characteristics affected tactical airlift capability (24).

Problem Statement

Although the ATTMA deficiency analysis looked at a number of individual characteristics and combinations of characteristics, a full analysis of tactical airlift aircraft characteristics has never been carried out. Such an analysis would determine which specific characteristics or combination of characteristics of the C-130 most significantly affect its tactical airlift capability.

Research Question

What specific set of tactical airlifter characteristics result in the greatest improvement in tactical airlift capability?

Research Objective

The primary objective of this research will be to use computer simulation to investigate how changes to specific aircraft characteristics affect tactical airlift capability, given a specific theater of operations and a specified set of tactical airlift requirements. Answers to the following questions will be sought:

- 1. How is the tactical airlift capability of fixed wing aircraft measured?
- 2. What individual aircraft characteristics significantly affect tactical airlift capability when changed?
- 3. What combination of aircraft characteristics, when changed, results in the greatest improvement in tactical airlift capability?

Scope

The scope of this research will be limited to a study of the capabilities of the tactical airlift assets using the scenario described in Chapter III. Although changes from the original scenario will be discussed, no analysis or validation of the scenario is intended.

Summary

This chapter has defined the role of tactical airlift in the USAF and the importance of the C-13Ø to that role. It highlighted the fundamental reason for a C-13Ø replacement: its 4Ø years old design did

not anticipate the demands of the modern tactical operating environment associated with the U.S. Army's Airland Battle concept.

This chapter also listed previous studies related to tactical airlift capabilities and requirements. It noted that no previous study had undertaken a full analysis of aircraft characteristics and their effect on tactical airlift capability. The research objectives outlined will assist in identifying which characteristics significantly affect tactical airlift capability.

II. Background

A variety of measures of effectiveness have been used by MAC and by previous tactical airlift studies to assess the capability of tactical airlifters. In this chapter, these measures of effectiveness will be reviewed. In addition, a summary of the most recent USAF study of tactical airlift capability, the ATTMA project, will be presented.

Measures of Effectiveness

The current measures that MAC uses to determine the capability and effectiveness of its tactical airlifters are the same measures used to measure the capability and effectiveness of its strategic airlift aircraft. Specifically, the MAC measures are:

- 1. Tons of cargo moved within a certain period, such as tons per day,
- Average aircraft flying time per day, which is also called utilization rate (UTE Rate),
- Departure reliability, that is, being able to depart on a scheduled departure time, and
- 4. The number of hours flown to hours scheduled to be flown (5:4).

Many previous studies have indicated that these measures are not very useful in measuring either the capability or effectiveness of tactical airlift (5:3-5; 15:22; 18:22; 24:Sec 3.1 1-2).

Of the five general missions of tactical airlift, only sustainment involves the movement of bulk cargo. The other missions are primarily concerned with the movement of personnel and rolling stock (18:9). Tons per day is not a very useful indicator of the effectiveness of tactical

airlift. Operational limitations often require missions to be flown with half empty aircraft (18:22). In fact, the WIMS study found that for tactical transport in general, "tons per day was not an adequate measure of requirements or capabilities for any mode" (15:22).

UTE rates are also a poor measure of tactical airlift effectiveness because tactical airlift missions are "characterized by multiple sorties of short range and duration, leading to low daily aircraft utilization rates" (11:7).

The current measures of tactical airlift capability used by MAC are primarily efficiency measures that do not take into consideration the ability of tactical airlift to meet the user's needs. "The fact that tactical requirements are often determined by the user as a result of changing combat situations makes response to these requests more important than the need to efficiently use the aircraft" (5:5).

A number of studies have tried to produce a better set of measures of tactical airlift capability. WIMS divided the requirements of the intra-theater workload into three categories, according to the items being carried, with each category having its own measure:

- 1. Dry Cargo: tons; ton-miles,
- 2. Petrol, Oil and Lubricants (POL): barrels; barrel-miles, and
- Passengers: passenger-miles (15:19).

Wargaming simulations carried out by LTV's Mission Analysis Center and the McDonnell Douglas Aircraft Company considered that the effectiveness of tactical airlift could only be measured by assessing the overall force effectiveness in a given scenario (14:1). Some of the measures that were used to assess force effectiveness included:

- 1. the size of the surviving and attrited forces,
- the relative combat power between the two opposing forces,
- 3. the depth of penetration and ground lost or taken, as measured by the Forward Line of Troops (FLOT), or
- 4. a record of objectives achieved (14:17).

This type of study required that a specific scenario be simulated, and the results recorded. Subsequent simulations of the same scenario using different tactical airlift forces would produce different results (14:18-27). The differences in the results could then be attributed to changes in the composition of the tactical airlift forces.

The ATTMA project also used a computer simulation to "analyze the effectiveness of airlifters in representative theater airlift wartime scenarios" (24:Sec 3.1 1). The ATTMA analysts determined that tons per day and ton-miles per day were not suitable measures of effectiveness for intra-theater airlift, and that "theater effectiveness is much more a function of timeliness, quantity, and survivability of cargo" (24:Sec 3.1 2). A number of measures were used in the ATTMA project to assess the effectiveness of tactical airlift, including UTE Rate, tons delivered, tons delivered on time, delivery time, productivity, and aircraft attrition (24:Sec 3.1 3).

The Advanced Transport Technology Mission Analysis (ATTMA)

The ATTMA project was the most comprehensive analysis of tactical airlift capability ever carried out by the USAF. Its purpose was to "support Headquarters, Military Airlift Command (MAC) in developing data to support the preparation of a Statement of Operational Need for its next generation tactical airlifter" (20:1). The project developed

a comprehensive database highlighting system needs, technology opportunities, and potential solution concepts; an evaluation of those solution concepts which were developed; and a technology development plan capable of allowing the timely development of the identified concepts. (20:2)

The project began with "an extensive needs analysis that evaluated the baseline force of intra-theater airlift performing representative jobs in likely environments containing projected threat and defined infrastructure" (20:4). The likely environments were developed into three descriptive scenarios, Europe, Southwest Asia and Central America, with each scenario representing significantly different threat levels, infrastructure, airlift tasks and geographical regions.

As mentioned previously, the main tool used to carry out the required analysis was a computer simulation. Prior to ATTMA, there were two main computer models that represented intra-theater airlift: the Tactical Airlift System Comparitive Analysis Model (TASCAM) and the Scenario Unrestricted Mobility Model for Intra-theater Simulation (SUMMITS). TASCAM was designed to represent the intra-theater airlift logistics system and considered "maintenance problems, available ramp space, on/offload times, and scheduled airlift based on priorities" (5:9). SUMMITS is an intra-theater scheduling model that was used extensively in WIMS to determine intra-theater airlift requirements (15:13).

Neither of these models were suitable for the analysis required to be carried out in ATTMA and so a new model was developed: the Generalized Air Mobility Model (GAMM). GAMM was designed to model a tactical airlift system, and focuses on the movement of tactical airlift loads from source to destination. By contrast, in wargaming simulations

such as those carried out by the LTV Mission Analysis Center, the tactical airlift system is one of many factors influencing the overall outcome. GAMM measures the effectiveness of a tactical airlift system to meet the operational requirements of a given scenario. It does not purport to assess the outcome of a campaign based on tactical airlift or any other factor (17:1).

The initial analysis carried out using GAMM was the assessment of a baseline tactical airlift force, consisting of a mixed fleet of C-130s and C-17s, in each of the three theaters. Once the baseline force had been evaluated, a deficiency analysis was carried out. The deficiency analysis was intended to identify specific C-130H airlifter-related problems that prevented the tactical airlift system from achieving the required level of throughput (24:Sec 3.4 1). The majority of the runs for the deficiency analysis were carried out by changing either one or two characteristics of the C-130H at a time and then assessing how these changes affected the throughput of the airlift system. In addition, a small number of runs were carried out where six to eight C-130H characteristics were dramatically and simultaneously improved.

The deficiency analysis concluded that, for the Central American scenario, a single significant problem existed with the C-13ØH: its poor landing gear performance limited the aircraft's ability to use the many unprepared airfields available in that region (24:Sec 3.4 49). For the European and Southwest Asian scenarios, the conclusions were that "no single deficiency exists for the C-13ØH, which if corrected, would make a dramatic improvement in the ... airlift system's effectiveness" (24:Sec 3.4 18,33).

In all three scenarios, the greatest improvements in system effectiveness were achieved by the "super planes" which had six to eight characteristics dramatically improved (24:Sec 3.4 18,33,49).

Summary

This chapter reviewed the measures of effectiveness that have been used to assess the capability of tactical airlift. While most of the tactical airlift studies carried out agree that the measures used by MAC are not suitable, there is no consensus as to which measures are more useful.

In addition, this chapter briefly reviewed the ATTMA project, and the deficiency analysis that was carried out as part of ATTMA. The conclusions of the deficiency analysis were that, with the exception of the landing gear limitation in Central America, there was no single deficient characteristic of the C-13Ø, which, if corrected, could significantly improve the airlist system's effectiveness. However, by dramatically improving six to eight characteristics at the same time, a significant improvement could be achieved.

III. Generalized Air Mobility Model Overview

Introduction

The purpose of this research is to identify which characteristics of tactical airlift aircraft are of greatest importance in determining tactical airlift capability.

This cannot be done by an analysis of past campligns because each campaign had distinctly different tactical airlift requirements that were determined by the geographical location of the campaign and the intensity of the combat during the campaign. In addition, the significant differences in aircraft performance between tactical airlifters used in past campaigns confound any attempt to isolate the effect of individual aircraft characteristics on the efficacy of tactical airlift during any particular campaign.

Similarly, the capabilities of individual tactical airlift aircraft cannot be used to determine how effective those aircraft will be as part of a tactical airlift system in a given situation.

Performance measures, such as the amount of cargo or the number of fully equipped troops that can be carried, only define the limits of an aircraft's capabilities. Tactical airlift requirements and the operational limitations of a given scenario are not taken into account by aircraft characteristics.

However, by using computer simulation to model a tactical airlift system with a given set of tactical airlift requirements, it may be possible to identify how changes in aircraft characteristics can affect tactical airlift capability for a particular scenario or setting. Three

major tactical airlift models have already been mentioned: TASCAM,

SUMMITS and GAMM. Of these, only GAMM has sufficient fidelity to

evaluate the effects of changes in tactical airlifter characteristics.

The Generalized Air Mobility Model (GAMM)

GAMM was developed by the General Research Corporation (GRC) for the Directorate of Advanced Systems Analysis, ASD/XRM, Aeronautical Systems Division at Wright-Patterson Air Force Base.

The GAMM program operates on Digital Equipment Corporation (DEC) MicroVAX II computers that have at least 6 Megabytes of RAM and 50 Megabytes of disk storage capacity. The program was written using Simscript II.5 and FORTRAN 77 (DEC Version 4.4) (9:Sec 1-5).

GAMM is a "Monte-Carlo simulation of an airlift transportation system" (9:Sec 1-3) that

simulates the movement of cargo by an intratheater airlift system. It requires information concerning the cargo to be moved, the transportation system network, and the characteristics of the airlifters to be used ...In addition to airlifter flights, GAMM simulates airlifter ground operations, airdrops, movement of cargo by Army trucks and the survivability/vulnerability of the cargo in its various modes of transportation. (17:1)

As part of the ATTMA project, GAMM has been used for the deficiency analysis of the C-13ØH airlifter mentioned previously, and is currently being used by ASD/XRM, MAC and three airlifter airframe contractors for the evaluation of "conceptual airlifter designs" (17:1).

GAMM Simulation Elements

There are four major elements to the GAMM simulation: the airlifters, the airlift jobs, the airbases, and cargo entry/delivery (E/D) sites. Each of these elements is discussed below.

Airlifter Definition. The airlifters used in the simulation are defined by 69 parameters. These parameters include takeoff and landing performance, cargo compartment size, reliability and maintainability, ground operation factors and attrition factors (9:Sec 2-5 to 2-8). An example of the baseline C-13ØH model parameters is contained in Appendix A.

Airlift Jobs. Each airlift job defines the type and amount of cargo that is required to be moved by the transportation system. The specifications for the jobs carried out within the Central American scenario are contained in Appendix B (22:Sec 4-8). In addition to a description of the individual movement items, the airlift job contains the details of the E/D sites, entry and delivery times and the job priority (9:Sec 2-9).

<u>Airbases</u>. Airbases in GAMM are defined by their geographic and physical characteristics such as latitude and longitude, elevation, and runway length, and also by airbase attack characteristics such as the number of attacks on the airbase per day (9:Sec 2-9 to 2-12).

Entry/Delivery (E/D) Sites. Airlift jobs originate or terminate at an E/D site. E/D sites are typically linked to a number of airfields. The links define the transhipment time and order of preference between the E/D site and each of the associated airfields (9:Sec 2-12).

The information about these elements is contained in two input files that are required by GAMM in order to run a simulation. Airlifter characteristics, airbase characteristics and the E/D site information is

contained in a scenario file. All the airlift jobs are contained in a jobs file.

Cargo Movement Within GAMM. GAMM represents the movement of cargo from an airlift job in the following manner. Cargo enters the simulation at an entry site and is then moved along a transshipment arc to an originating airbase. If no aircraft are available, the cargo awaits the arrival of an aircraft. When an aircraft is available, the cargo is transported to a receiving airbase. The cargo is then transshipped to the delivery site. This is represented in Figure 1.

Figure 1. GAMM's Transportation System (9:Sec 3-1)

The movement of cargo along transhipment arcs is not modeled with great accuracy in GAMM (9:Sec 3-7). For each link, the transport mode used for cargo transhipment is defined by specifying the travel time that it takes the cargo to move along the transhipment link. As well as

the actual movement time, the travel time also includes the time it takes to prepare cargo for transhipment, and the time to load and unload the cargo using the predetermined transport mode (9:Sec 3-8). If transhipment is carried out primarily by helicopters, then the travel time will reflect the total transit time required to move the cargo by helicopter. If transhipment is primarily by trucks, then the travel time will be set accordingly.

GAMM assumes that there is always a sufficient supply of transport equipment available to move the cargo along the transhipment links. Any blockages or significant delays that occur in delivering cargo will be due to bottlenecks or limitations of the air transport system, and will not be caused by limitations in the transhipment phase.

GAMM Simulation Overview

The GAMM simulation begins with all airlifters at their home bases. As airlift jobs enter the simulation, a scheduling algorithm begins to schedule airlifters for missions, initially scheduling airlift jobs from originating airbases that have airlifters available. Once all these jobs have been scheduled, the scheduler relocates remaining airlifters to airbases that have a backlog of jobs and either insufficient or no airlift capacity available (9:Sec 3-2).

For each originating airbase, airlift jobs can be scheduled to depart either according to the highest priority or according to the largest weight of cargo. There are nine priority levels, 1 to 9, with priority level 1 being the highest. If a priority scheduling factor is set during the initialization of the simulation run, all jobs with a priority level higher than this factor will be scheduled in order of

their priority. All other jobs will be considered of equal priority, and will be scheduled according to their weight. If no priority scheduling factor is set, all jobs will be scheduled according to their weight (9:Sec 3-2).

In a similar manner, if a priority scheduling factor has been set, aircraft are relocated to originating airbases with the highest priority jobs. If all available airlift jobs have a priority less than or equal to the priority scheduling factor, or if no factor is set, aircraft are relocated to the airbase that has the largest backlog, by weight, of cargo (9:Sec 3-2).

Before an aircraft is loaded, the program checks the airfields associated with the delivery site of the job, in order to determine which airfield can be used by the airlifter, and how much cargo can be carried into that airfield. The airfields are checked in the order of preference specified in the links for each E/D site. The program will select the first suitable airfield to use as the receiving airbase. If no suitable airbase can be chosen, that job is blocked from further progress because it cannot be delivered. In a similar manner, prior to an aircraft being relocated to or otherwise being loaded at an originating base, a calculation is done to determine the useful payload that can be carried by the aircraft taking off from that base. If no useful payload can be carried, that cargo is blocked because it cannot be picked up (9:Sec 3-2 to 3-3).

Once the program has determined that the load can be delivered, the aircraft is loaded. Two loading methods are available: weight-andvolume loading or weight-only loading. Either one of these methods can be selected during the initialization of the program (9:Sec 3-3).

At the receiving base, the cargo is unloaded for transshipment to the delivery site, and the aircraft is serviced. Once the servicing has been completed, the aircraft is ready to be scheduled for another airlift job (9:Sec 3-4).

Attrition. One important aspect of GAMM is its ability to simulate losses due to combat. Cargo can be destroyed during transshipment. Airbases can be attacked and runways damaged. Aircraft can be damaged or destroyed during flight or while on the ground. In addition, aircraft may break down and require maintenance. Within the program, cargo that is destroyed is reordered and damaged runways are repaired, although both of these take some time and may result in a job not being completed on time. However, aircraft that are destroyed during the simulation are not replaced.

GAMM Scenario Definition

The scenarios used in GAMM are based on the following assumptions:

- 1. The scenarios could occur between 1995 and 2010.
- 2. No nuclear, chemical or biological weapons are used in the war.
- 3. The airlift jobs were defined irrespective of airlift resources available to accomplish the job, but are representative of the types of jobs that airlifters will be required to perform.
- 4. The Army AirLand Battle Doctrine and Army 21 concepts were used (24:Sec 3.1 2). (Army 21 is a concept document that attempts to define the Army's future war fighting concepts (11:4).)

Descriptive scenarios for Europe, Southwest Asia and Central America were chosen to provide a "spectrum of logistics infrastructure" and a "spectrum of operational conditions" (23:10). Each scenario was initially developed as a qualitative description of the pre-hostility situation and the notional conflict that takes place (22:Sec 2-1 to 2-3). This qualitative description provided the background from which the scenario environment and tactical airlift requirements were established. Once these had been established, a quantitative description of the scenario was developed, including specific airlift jobs (24:Sec 3.2 5; 22:Sec 4-1 to 4-42).

Each scenario represents a conflict that lasts 30 days, and the airlift jobs have been defined irrespective of the threat environment, mode of delivery, or resources available (24:Sec 3.2 1).

Selection of Scenario

Of the three scenarios available, the Central American scenario was selected. One reason for selecting this scenario was that the deficiency analysis had been able to identify the landing gear performance of the C-13Ø as being a significant deficiency in this scenario. By using Central America, the findings from this experimental analysis should support the results of the deficiency analysis.

In addition, the Central American scenario has many similarities to the type of conflict that the Australian Defence Forces might have to face within Australia's Region of Direct Military Interest (RDMI).

Specifically, one of the likely contingencies that could require the involvement of the Australian Defence Forces in the future is an escalated low level conflict. "Escalated low level conflict could

spring full-blown onto Australia with little or no warning, bringing attacks of a more conventional nature ... against Australia" (1:63).

The terrain and infrastructure of the Central American theater is very similar to the type of terrain and infrastructure in Northern Australia and the other countries within Australia's RDMI. These regions have very few roads, almost no railway systems, only a limited number of major airfields, but many short, unprepared, grass or dirt airfields. The climate is tropical, and the countries to the north and parts of Northwest Australia are rugged and mountainous.

Clearly, some details of the Central American scenario that pertain to U.S. military forces used and the strategies and tactics employed may not be directly applicable to an Australian theater. However, the results of the airlifter analysis may provide some useful insights for tactical airlift in the Australian Defence Force.

Finally, one practical reason also determined the selection of Central America: execution time of the model. The baseline Central American scenario is the smallest scenario of the three and in batch mode takes five CPU minutes to run. By comparison, the next smallest scenario, Southwest Asia, requires 40 CPU minutes to run in batch mode. Given that the analysis would be carried out in the same manner for all scenarios, a shorter execution time will allow the runs to be made more expeditiously.

The Central American Scenario

The conflict in the notional Central American scenario is based upon a growing insurgency threat to El Salvador. This insurgency spills over into Honduras and cannot be contained by the local military. The

governments of both countries request military assistance from the U.S. in order to repel the insurgents (22:Sec 2-1 to 2-4).

The U.S. government responds by sending a Joint Task Force to Honduras. The task force is made up of three components: an Army, Air Force, and Naval component. The Army component consists of an airborne corps, whose main combat elements are a light infantry division and an airborne division. The Air Force component contains an air division from MAC, and a Tactical Air Wing. The Naval component is made up of a Naval Support Group and a Marine Amphibious Brigade (22:Sec 2-5).

The first ten days of the scenario are devoted to the strategic deployment of the ground and air forces into Honduras. Offensive operations begin on any 10 and last until day 30. Figure 2 shows a graphical summary of the operations carried out by the ground forces.

Figure 2. Offensive Operations in the Central American Scenario (22:Sec 2-10)

The locations of the various cities, airbases and E/D sites in the area of concern are shown in Figure 3, but the many small airfields that are available are not shown. Figure 3 also compares the position of the FLOT at day 10 when offensive operations began, to the position of the FLOT at day 21.

Figure 3. Central American FLOT Locations (22:Sec 3-2)

The Tactical Airlift System. In the baseline scenario, the tactical airlift system consisted of 16 C-130H and 2 C-17 aircraft. For the duration of the conflict, these aircraft are based out of a single

airbase in the north of Honduras. For the Central American theater, 16 representative airlift jobs were identified. The details of those jobs are presented in Appendix B and their occurrence is presented in Figure 4. These jobs were combined in Figures 5 and 6 to show the tonnage required to be airlifted by day and the cumulative tonnage required to be airlifted. The total tonnage required to be moved over the 30 day period is approximately 10,000 tons (22:Sec 5-2).

Figure 4. Central American Job Occurrences by Delivery Time (22:Sec 4-9)

Figure 5. Tonnage Required By Day (22:Sec 5-2)

Figure 6. Cumulative Required Tonnage (22:5-2)

Summary

This chapter presented an overview of the Generalized Air Mobility Model (GAMM), the computer simulation model that will be used in this research. It identified the major elements of the simulation, and explained how these elements interact during the simulation.

A brief background was provided concerning the development of the scenarios used within GAMM, and the reasons why the Central American scenario was selected were outlined. Finally, a brief description of the Central American scenario was provided.

IV. Methodology

Introduction

This research will utilize GAMM as the basis for an experiment. The results from this experiment will be used to identify specific airlifter characteristics that produce the greatest improvement in tactical airlift capability. In this chapter, the following topics will be covered: the selection of an appropriate experimental design, the definition of experimental variables, and the selection of measures of effectiveness for the experiment. In addition, the methods used to analyze the experimental results and identify significant airlifter characteristics will be discussed.

Weakness of One-Variable-at-a-Time Strategy (4:510-513)

The deficiency analysis of the C-13ØH, carried out as part of the ATTMA project, was primarily intended to "identify specific airlifter-related problems which prevent the accomplishment of the required throughput on future battlefields" (24:Sec 3.4 1). This study found that no single deficiency significantly affected the C-13Ø's airlift capability in Europe or Southwest Asia. In contrast, one deficiency that significantly affected the C-13Ø's capability in Central America was the undercarriage's inability to operate on the many unprepared airfields in the region.

A previous study, carried out by ASD/XRM using response surface methodology techniques, attempted to screen the airlifter parameters

used within GAMM for significant effects. However, this study proved inconclusive and was never published (25).

While it was not intended as a screening analysis, the deficiency analysis was the only available study that used GAMM to identify significant tactical airlifter characteristics. For the majority of the runs, this was done by changing only one or two aircraft parameters at a time. The limitation of this method is highlighted in the example below, which is drawn from Chapter 15 of Statistics for Experimenters, by Eox, Hunter and Hunter.

Suppose a chemist is trying to determine the maximum yield of certain chemical reaction that is dependent upon only two variables, the temperature of the reaction and the reaction time. The relationship of these two variables to the yield of the reaction is not known so the following experiment is set up.

For the first set of runs, the chemist fixes the temperature of the reaction at 225°C and varies the reaction time of the experiment. The results may look like the first graph of Figure 7. Having found a maximum yield at a reaction time of 130 minutes, the next set of runs locks the reaction time at 130 minutes and the reaction temperature is varied. The results may look like the second graph of Figure 7, showing a maximum yield at a temperature of 225°C. The chemist may then conclude that the maximum yield for this reaction occurs with a reaction temperature of 225°C and a reaction time of 130 minutes.

The chemist has assumed that the effect of each variable on the yield of the reaction is independent of the other variable. However,

Figure 7. Results of a One-at-a-Time Experiment (4:511-521)

because the relationship of these variables on the yield is not known, this assumption may be incorrect.

The third graph of Figure 7 shows a contour diagram that could represent the "joint functional dependence of mean yield on time and temperature" for this reaction (4:512). It also shows the series of experiments that the chemist actually carried out using the one-at-atime method. The graph clearly shows that the chemist was only able to determine a marginal optima for this reaction and that the values of the two variables at the true maximum yield for this reaction were significantly different from the values the chemist determined.

The limitation of the one-variable-at-a-time method is that it assumes the variables are independent. If the variables are not independent, this approach will lead to optimal settings for each variable, conditioned on the fixed levels of the other variables. This one-variable-at-a-time solution may be significantly different from the optimum solution. The deficiency analysis of the C-13ØH, by varying only one or two aircraft parameters at a time, assumed that the effect of these parameters on tactical airlift capability was independent. However, because the relationship between aircraft parameters and tactical airlift capability is not known, this assumption may not be correct.

Selection of an Experimental Design

In the situation where no theory is available to represent the relationship of variables to an output, an experimental design based on an empirical approach should be followed. One recommended empirical approach is the factorial design. Factorial designs allow each variable

to be assessed using a variety of different levels of all the other variables in the experiment (4:298-303). In addition, factorial designs "can also provide estimates of the 'effects' of the changes, which are infected as little as possible by experimental error" (4:302).

Factorial designs can be either full factorial, where all variables are compared at all levels, or fractional factorial, where a selected fraction of all the possible combinations is used. The individual experimenter chooses the number of levels at which each variable is tested and the type of factorial design that is to be used. For this analysis, a two level full factorial design was selected. That is, for each aircraft characteristic being assessed, two values were chosen. The two values represent the high and low levels of the two level factorial design. At each value, each characteristic is compared with every possible combination of the other characteristics. The strengths of this design are:

- Fewer runs are required per variable studied because of greater precision. A one-variable-at-a-time method with k variables would generally require k times as many runs to achieve the same level of precision (4:312-313).
- 2. Major trends can be identified for further research.
- 3. Additional experiments can be easily added to the experiment to allow more thorough analysis.
- 4. The interpretation of the results "can proceed largely by common sense and elementary arithmetic" (4:306-307).

Factorial designs make the assumption that the output that is being modeled represents a smooth response surface without any

discontinuities, at least within the range of the characteristics selected.

With any reasonable number of experimental runs, mapping a surface resembling a nest of stalagmites or the back of a porcupine would be impossible. Furthermore, for such a surface, sequential experimentation would be useless, since characteristics of the surface at one point would not be related to characteristics elsewhere. (4:300)

Given that most relationships do have some degree of continuity and smoothness, the experimenter must then select appropriate values for high and low levels of the variables being assessed. One shortcoming of the factorial design is that these values are selected without the experimenter knowing the shape of the response surface. The chosen values of the high and low levels of each variable must be wide enough apart to identify major trends in the response surface, such as the slope. However, these values cannot be so wide apart that the major features of the response surface, such as maxima, minima, or ridges, cannot be identified.

Another limitation of the two level factorial design is that it can only assess first order terms and their associated interaction terms. The two level factorial design essentially maps a plane, representing the first order and interaction terms, onto the response surface being assessed. The plane can identify major trends such as the slope of the surface, but it cannot provide information about the curvature of the surface, which is due to second and higher order terms. Additional experimental data points would be required to assess the curvature of the response surface within the region being examined by the two level factorial design (4:516).

Selection of Variables

For a two level full factorial design assessing k variables, the number of experiments required are 2^k . Testing all the aircraft parameters in GAMM using this design would require 2^{69} experiments. Since this was not practical, the number of parameters had to be rationalized. Two different methods were used to do this.

First, the scope of this analysis was reduced to only consider parameters related to airframes. All parameters related to reliability or vulnerability were set so that they would not affect the performance of the airlifter (see Appendix A). The Vulnerability Exponent was set to 1.00. This made the aircraft impervious to ground attack. All parameters related to Mean Time Between Failure were set to very large values so that reliability factors did not prevent aircraft from undertaking or completing a mission. In addition, all parameters in the scenario file that dealt with attrition were reset so that there was no attrition in the model. This included parameters for airbases, other airfields and drop zones, and also the transhipment links between E/D sites and the linked airfields.

By doing this, the analysis was assessing a system that was at its optimum performance. As other parameters were changed, the optimum performance of the tactical airlift system changed. The analysis could then be used to determine what combination of parameters resulted in the ultimate performance of the system.

A number of other parameters remained constant throughout and were not assessed. This included all parameters that concerned the stochastic nature of the model. Other parameters that remained the same

included Taxi, Takeoff and Landing time; Reserve Fuel; Payload Margin Next Flight; Loading and Unloading Factor for Rolling Stock; Mean Time to Repair; VTOL Max Useful Load; and Airfield Temperatures at Sea Level and at 5000 ft.

Having removed all these parameters from consideration, 43 parameters still remained. All the remaining parameters were considered to be significant to the experiment.

To reduce the number of variables in the experiment to more manageable numbers, the 43 parameters were then grouped into five functional sets. The five functional sets were: Field Performance (F), Cargo Cabin (C), Inflight Performance (I), Ground Flotation/Wheel Loading (G), and Servicing and Aircraft Loading/Unloading (S). The parameters contained in these sets are listed in Table 1.

The groupings were determined by combining parameters that were closely related in aircraft function or purpose. For example, cargo cabin size is related to the parameters for cargo bay width, height and length, and the size of the cabin directly affects the size of the aircraft (Aircraft Spot Factor). Generally, as aircraft increase in size, all cabin dimensions will increase and the aircraft's Maximum Cabin Payload will also tend to increase. Similarly, the Time to Unload, Service, and Load the aircraft directly affects aircraft turnaround times.

However, grouping the parameters confounds any analysis concerning individual parameters, because the effect of any single parameter would be combined with the effects of the other parameters within any one set. This limitation was accepted because the primary purpose of this

Table 1: GAMM Airlifter Functional Parameter Sets

Field Performance (F): for sea level and at 5000 ft, for hot and cold conditions

CTOL TO AT MAX USEFUL LOAD (FT)
CTOL LD AT MAX USEFUL LOAD (FT)
CTOL TO AT MID USEFUL LOAD (FT)
CTOL LD AT MID USEFUL LOAD (FT)
CTOL TO AT ZERO USEFUL LOAD (FT)
CTOL LD AT ZERO USEFUL LOAD (FT)

Cargo Cabin (C)

CARGO BAY WIDTH (INCH)
CARGO BAY HEIGHT (INCH)
CARGO BAY LENGTH (INCH)
CARGO BAY DOOR WIDTH (INCH)
CARGO BAY DOOR HEIGHT (INCH)
CTOL MAX USEFUL LOAD (LBS)
CTOL MID USEFUL LOAD (LBS)
MAXIMUM CABIN PAYLOAD (LBS)
AIRCRAFT SPOT FACTOR (NO)
CARGO THRESHOLD FOR RELOCATION (LBS)

Inflight Performance (I)

MAXIMUM FERRY FUEL (LBS)

CRUISE FUEL (LBS/HR)

CRUISE SPEED (KNOTS)

TAKEOFF/LANDING FUEL BIAS (LBS)

Ground Flotation/Wheel Loading (G)

LCN - MAX USEFUL LOAD (NO)
LCN - AT ZERO USEFUL LOAD (NO)

Servicing and Aircraft Loading/Unloading (S)

MEAN TIME TO SERVICE (HRS)
MEAN TIME TO LOAD (HRS)
MEAN TIME TO UNLOAD (HRS)

experiment was to screen the chosen variables to determine which were significant. If significant variables were found, the next step in the analysis might be to carry out a more detailed analysis of the individual parameters that comprised the significant sets. The parameters in the sets that were not significant could be disregarded with some level of confidence.

Defining Measures of Effectiveness

Before defining the value of the variables that will be used in the experiment, it is necessary to define the measures that will be used to determine the effectiveness of the tactical airlift system in GAMM. The deficiency analysis used two primary measures of effectiveness: Tons Delivered On Time, and Total Tons Delivered. For this experiment, however, because only one scenario is being used, the actual amount of cargo delivered is not as important as knowing what proportion of the total available cargo arrived on time and what proportion was actually delivered. Thus the primary measures of effectiveness will be Ratio on Time and Ratio Delivered.

In addition, four secondary measures of effectiveness were selected. These secondary measures were intended to assess how hard the tactical airlift system was being worked in order to achieve a given level of effectiveness. The four secondary measures were: Total Flight Hours, Total Sorties, Productive Flight Hours, and Productive Sorties. These four measures would also provide an indication of the efficiency of the tactical airlift system.

Specification of Variables

For the two level factorial experiment, high and low levels of the variables were required. To achieve this, the individual parameters within the variables were set to high and low levels. In selecting the values for these parameters, the following points were considered:

- 1. For the factorial design, the values had to be sufficiently far apart to ensure identification of a trend in the response surface.
- 2. The selected values could not be so far apart that they fail to identify significant features of the response surface.
- 3. Values should be selected around the C-13Ø baseline so that any significant findings can be directly related to the C-13Ø deficiency analysis previously carried out, and may also be directly applicable to the aircraft that becomes the C-13Ø replacement.

Suitable values were determined by the following procedure. The baseline C-130H parameters were multiplied by 2/3 to produce an aircraft that was two thirds the size of a C-130. The values for the cabin dimensions were then modified slightly to allow the cabin to hold three ammunition (AMMO) pallets (a single AMMO pallet has a base of 104 x 84 inches and in GAMM is 96 inches high). Similarly, the baseline C-130H parameters were multiplied by 4/3 to produce an aircraft that was four thirds the size of a C-130. Again, the cabin dimensions were modified slightly to enable the cabin to carry 7 AMMO pallets. For the majority of the parameters, the smaller values were half the larger values.

However, to define the high and low levels of each variable, the primary measure of Ratio On Time needed to be considered. Variables

were defined as high level if they were expected to increase the Ratio On Time value. Otherwise, they were defined as low level. Therefore, high and low levels do not always correspond to high and low values of the parameters. For Field Performance, the highest value of Ratio On Time is expected when aircraft can make use of shorter airfields. The high level of this variable corresponds to the smaller values of takeoff and landing distances. For Cargo Cabin and Inflight Performance, the high levels correspond to the larger parameter values. For the Ground Flotation/Wheel Loading and Servicing/Loading variables, increased throughput is expected when the values of the parameters are smaller. The high and low levels of the variables are defined in Table 2.

One other important operational aspect that might influence the efficacy of the tactical airlift system was the number of available aircraft. In the baseline analysis and the deficiency analysis previously mentioned, two aircraft types were used in each scenario: the C-17, and the C-13Ø or C-13Ø variants. However, for this analysis, the C-17 was not used because having more than one aircraft type in the scenario would make the interpretation of the results more difficult. For the single aircraft type used in the scenario, the number of aircraft was varied from a low level to a high level. The high level was set at 32 aircraft, and the low level was 16 aircraft.

These six variables, Aircraft Numbers (A), Field Performance (F), Cargo Cabin (C), Inflight Performance (I), Ground Flotation/Wheel Loading (G), and Servicing and Aircraft Loading/Unloading (S), form the basis of the experiment. Table 3 shows the design matrix of this 2⁶ two level full factorial design. For convention, the high level of the

Table 2. Definition of Variables - Two Level Factorial Design

Field Performance (F)	- SEA LEVEL -		- 5ØØØ E	- 5000 FEET -				
	HOT	COLD	HOT	COLD				
High Level (+)	1Ø3 F	59 F	84 F	41 F				
CTOL TO AT MAX USEFUL LOAD (FT)	2387	1787	z/13	2293				
CTOL LD AT MAX USEFUL LOAD (FT)	152Ø	1433	1713	162Ø				
CTOL TO AT MID USEFUL LOAD (FT)	132Ø	1Ø8Ø	156Ø	134Ø				
CTOL LD AT MID USEFUL LOAD (FT)								
CTOL TO AT ZERO USEFUL LOAD (FT)		633		74Ø				
CTOL LD AT ZERO USEFUL LOAD (FT)		947	1Ø93	1Ø2Ø				
Total ()								
Low Level (-)	4770	2572	E 4 3 7	4507				
CTOL TO AT MAX USEFUL LOAD (FT)			5427					
CTOL LD AT MAX USEFUL LOAD (FT)								
CTOL TO AT MID USEFUL LOAD (FT)			312Ø					
CTOL LD AT MID USEFUL LOAD (FT)			28ØØ					
CTOL TO AT ZERO USEFUL LOAD (FT)			1653					
CTOL LD AT ZERO USEFUL LOAD (FT)	2ØØØ	1893	2187	2Ø4Ø				
Cargo Cabin (C)	High Leve	el (+)	Low Le	evel (-)				
Cargo Cabin (C) CARGO BAY WIDTH (INCH)	131			95				
CARGO BAY HEIGHT (INCH)								
CARGO BAY LENGTH (INCH)	656		35Ø					
CARGO BAY DOOR WIDTH (INCH)	140		1ØØ					
CARGO BAY HEIGHT (INCH) CARGO BAY LENGTH (INCH) CARGO BAY DOOR WIDTH (INCH) CARGO BAY DOOR HEIGHT (INCH) CTOL MAX USEFUL LOAD (LBS) CTOL MID USEFUL LOAD (LBS) MAXIMUM CABIN PAYLOAD (LBS) AIRCRAFT SPOT FACTOR (NO)	130		100					
CTOI MAY HEFFIT LOAD (1861)	130		AS	48ØØØ				
CTOL MEN USERUL LOAD (LES)	40222		40000 24667					
MAYIMIN CARIN DAYLOAD (IBC)	49332		24667					
MAXIMUM CABIN PAYLOAD (LBS) AIRCRAFT SPOT FACTOR (NO)	6//33		33867					
CARGO THRESHOLD FOR RELOCATION	2ØØØØ	,	18	ØØØØ				
Inflight Performance (I)	High Level	(+)	Low Lev	vel (-)				
MAXIMUM FERRY FUEL (LBS)	High Level	<u></u>	3998Ø					
MAXIMUM FERRY FUEL (LBS) CRUISE FUEL (LBS/HR)	7 Ø67		3533					
CRUISE SPEED (KNOTS)	36Ø		18Ø					
TAKEOFF/LANDING FUEL BIAS	2000			1ØØØ				
Ground Flotation/Wheel Loading (
	High Level	(+)	Low Lev	<u>vel (-)</u>				
LCN - MAX USEFUL LOAD (NO)	26	5		52				
LCN - AT ZERO USEFUL LOAD (NO)	12	2		24				
Commissing and Airgraft Loading/U	mlooding (s	• 1						
Servicing and Aircraft Loading/Unloading (S) High Level (+) Low Level (-)								
		'	<u> </u>					
MEAN TIME TO SERVICE (HRS)	Ø.35			Ø.7				
MEAN TIME TO LOAD (HRS)	Ø.e	5		1.4				
MEAN TIME TO UNLOAD (HRS)	Ø.2	2		Ø.4				
Aircraft Numbers (A)	32	2		16				

Table 3. 26 Two Level Full Factorial Design Matrix

Test Condition Number	Design Matrix Variables	Identi- fication	Test Condition Number	Design Matrix Variables	Identi- fication
011111111111111111111111111111111111111	AFCIGS		1102.0502	AFCIGS	110001011
1			33	710100	S
2	+	Α	34	+ +	AS
3	-+	F	35	_ + +	FS
4	++	ĀĒ	36	+++	AFS
5	+	C	37	+ +	CS
6	+ - +	AC	38	+-++	ACS
7	-++	FC	39	-+++	FCS
8	+++	AFC	4Ø	++++	AFCS
9	+	I	41	+ - +	IS
1Ø	+ +	ΑĪ	42	+ + - +	AIS
11	- + - +	FI	43	-+-+-+	FIS
12	+ + - +	ATI	44	++-+-+	AFIS
13	+ +	CI	45	++-+	CIS
14	+ - + +	ACI	46	+ - + + - +	ACIS
15	- + + +	FCI	47	-+++-+	FCIS
16	+ + + +	AFCI	48	+ + + + - +	AFCIS
17	+ -	G	49	+ +	GS
18	+ + -	AG	5Ø	+ + +	AGS
19	- + + -	FG	51	- + + +	FGS
2Ø	+ + + -	AFG	52	+ + + +	AFGS
21	+ - + -	CG	53	+ - + +	CGS
22	+ - + - + -	ACG	54	+ - + - + +	ACGS
23	- + + - + -	FCG	55	- + + - + +	FCGS
24	+ + + - + -	AFCG	56	+ + + - + +	AFCGS
25	+ + -	IG	57	+ + +	IGS
26	+ + + -	AIG	58	+ + + +	AIGS
27	- + - + + -	FIG	59	- + - + + +	FIGS
28	+ + - + + -	AFIG	6Ø	+ + - + + +	AFIGS
29	+ + + -	CIG	61	+ + + +	CIGS
3Ø	+ - + + + -	ACIG	62	+ - + + + +	ACIGS
31	- + + + + -	FCIG	63	- + + + + +	FCIGS
32	+ + + + + -	AFCIG	64	+++++	AFCIGS

variables is coded by a plus sign and the low level by a minus sign (4:308).

Standard GAMM Initializing Parameters

When initializing a scenario using GAMM, the user is presented with a series of questions that he must answer to run the program. Some of the questions relate to the airlift job and scenario files that are about to be used in GAMM. A large proportion simply require the user to respond Yes or No to the questions.

In addition to these, a number of the questions ask for values to be specified for parameters that are used within the whole model. Some of the parameters that can be specified here include the Priority Scheduling Factor, the user determined method for aircraft loading, and the length of the crew duty day for aircrew. Variation in these parameters can cause a dramatic change in the results of the simulation without changing any other aspect of the scenario.

An example of the questions presented in the initialization of GAMM is contained in Appendix C. The questions and the responses in Appendix C are based on the use of an existing scenario and jobs file, multiple repetitions of the scenario, and the model being run in batch mode rather than in interactive mode. The order and number of questions will vary if the user responds differently to the questions, but the questions that define the parameters initializing GAMM will always be asked. A more extensive listing of these initial questions can be found in the GAMM User's Manual (10:Sec 3-1 to 3-249).

To standardize the experiments in GAMM, the initializing parameters were set at the same values used in the baseline analysis for

all the simulation runs. These values were also used for the majority of the runs carried out in the deficiency analysis. By using the same initializing parameter values, the results of this analysis could be directly compared to the results of the previous studies. The parameter values can be found in Appendix C.

Stochastic Modeling

A discrete event simulation is in fact a statistical experiment. The output variables are estimates that contain random error, and therefore a proper statistical analysis is required. Such a philosophy is in contrast to the analyst who makes a single run and draws an inference from that single data point. (3:15)

The stochastic nature of a simulation is the result of two factors: a random number generator, and parameters within the model that are described by a statistical distribution. Within GAMM, a number of parameters are defined with a mean value and a standard deviation.

These parameters are shown in Appendix A. The random number generator within GAMM uses these values to generate a random value within the possible distribution of values, for any single event. For modeling purposes, this technique is used to model the range of variation that occurs in the real world.

A user defined random number seed determines the sequence of random numbers produced by the random number generator. Therefore, runs of a simulation using the same random number seed will always result in the same output. To achieve the real world variation in simulation output, genuine replications are required. That is, the random number streams used for multiple replications must be different for each replication.

As mentioned earlier, a number of parameters were held constant for all experimental runs. This included all standard deviation parameters (see Appendix A). However, for this experiment, the parameters in the input files that represent standard deviations were set to very small numbers. Since the algorithms for calculating parameter values within GAMM would not accept standard deviations of zero, values of Ø.ØØ1 or Ø.Ø1 were used. Such an approach rendered the model more deterministic. An additional advantage of restricting the variation in the simulation was a reduction in the minimum number of replications needed for statistical analysis.

To ensure that each run was randomized as much as possible, a different random number seed was used for each batch of runs. Because different random numbers are being used for calculations within the model, the results of different runs should be completely independent from one another.

Determining the Required Number of Replications (3:421-429)

It is not possible to estimate the accuracy of the output of a simulation from a single run. Multiple replications under identical conditions are required to establish a confidence interval about a statistic. However, carrying out a large number of replications is time consuming. A method is needed to determine the minimum number of replications required to achieve a specific level of accuracy for the output. One method is outlined below.

A number of simulation runs are carried out, each repeated a total of R times, with each run using a different random number stream (3:421). The accuracy of the output measure can be defined by the half-

length of a 100(1- α)% confidence interval for a mean θ , based on the t distribution, as follows:

$$h.l. = t_{\alpha/2, R-1} \hat{\sigma}(\hat{\theta})$$
 (1)

where

$$\widehat{\sigma}(\widehat{\boldsymbol{\theta}}) = \frac{S}{\sqrt{R}}$$

and

S = the sample standard deviation

R = the number of replications

From an initial sample of R_0 independent replications, an estimate, S_0^2 , of the population variance, σ^2 can be obtained. For a given level of accuracy, ϵ , to meet the half-length criteria, a sample size R must be chosen such that $R \geq R_0$ and

$$h.1. = \frac{t_{\alpha/2, r-1}S_0}{\sqrt{R}} \le \varepsilon \tag{2}$$

Solving the inequality for R gives:

$$R \ge \left(\frac{t_{\alpha/2,R-1}S_0}{\varepsilon}\right)^2 \tag{3}$$

From a series of independent single simulation runs, each using different random number seeds, the values of the six output measures that are going to be used in the analysis are recorded. A sample standard deviation can be calculated by selecting $R_{\scriptscriptstyle 0}$ number of values for each of the output measures. By choosing appropriate values for the

probability α and the accuracy ε , the right hand side of Equation 3 can be determined. If the value calculated for the right hand side of Equation 3 is greater than R_0 , then the sample needs to be increased. Additional values are added to the sample and the calculations are repeated. When the right hand side of the equation is calculated to be less than R_0 , the value of R_0 represents the minimum number of replications required to achieve the specified accuracy with the specified probability.

Because six output measures are being considered in this analysis, the value selected as the minimum number of replications must result in all six measures achieving the specified accuracy and probability.

Modification of Scenario Files

One of the assumptions of the factorial design is that the functions being modeled are smooth and continuous. If the functions are not smooth and continuous, a factorial experiment would not be able to determine the true characteristics of the surface being mapped.

This assumption is significant in the Central American scenario because of the importance of one set of parameters in the model: the aircraft's Load Classification Numbers (LCN). LCN values are used to determine the maximum cargo that can be carried by an aircraft to a destination airfield.

For each aircraft type, two parameters are required: LCN at empty weight and LCN at maximum payload. Also, each airfield has an LCN value which determines the largest and heaviest aircraft that can safely operate into that field. If the destination airfield's LCN value is small, less cargo can be flown in per aircraft. However, the more

critical situation occurs when the LCN value of the destination airfield is so small that the aircraft cannot operate into that airfield at any weight.

Of the 33 airfields in the Central American scenario, 13 airfields cannot be used by any airlifter in the experiment because their LCN values are less than 12. This value is the LCN at aircraft empty weight for the high level of the Ground Flotation variable, that is, the variable that allows the aircraft to land on the softest airfields. Another 11 airfields have an LCN value that is less than 24, which is the LCN value at aircraft empty weight for the low level of the Ground Flotation variable.

Only 9 airfields remain. Given that one of the airfields is used as the home base of the aircraft, only 8 airfields are available as intheater destinations that allow operations at both levels of the Ground Flotation variable. The impact of this on the likely performance of the airlift system can be determined by examining both the scenario file and the jobs file. Airlift jobs that originate or are destined for E/D sites that are not linked to one of the nine major airfields would be blocked at the low level of the Ground Flotation variable, resulting in a discontinuity. 14 such sites were identified in the scenario file.

To prevent any discontinuity, the scenario file needed to be modified so that these 14 locations were linked to the 9 major airfields. To do this, the location of the 9 airfields were mapped onto graph paper, along with the network that represented the links of the 14 locations. This identified the nearest major airfield to each of these locations. The scenario file was then used to identify E/D sites that

linked the major airfields to the airfields that were linked to the 14 sites. For all 14 sites, it was possible to identify a path, consisting of existing links, that linked each of the 14 sites to at least one major airfield.

The scenario file used in the experiment was modified to include these new paths as additional links. The transhipment time for each of the new links was the sum of the transhipment times of each of the existing links along the new path.

Analysis of the Main Effects of a Two Level Factorial Design (4:309-313)

Two methods for analyzing the results of a two level factorial experiment are outlined by Box: a difference between two averages to determine the mean value for each effect, and Yate's Algorithm. The first method will be discussed initially.

Each variable in the experiment was tested at two levels, a high level and a low level. In the design matrix, the high levels of each variable were identified by a '+' sign and the low levels by a '-' sign. Using the difference between two averages method, the average effect of a variable was calculated by subtracting the average value of all the experimental results for which the particular variable was '-' from the average value of all the experimental results for which the variable was '+'. The result is a value that represents the main effect of that variable on the output measure.

While a detailed explanation of the analysis of results will be discussed in following sections, in simple terms, the further away the value of the effect is from zero, the more significant is the effect of that variable.

Analysis of the Interaction Effects of a Two Level Factorial

Design (4:313)

Interactions between variables occur when the effect of one variable is not completely independent of other variables. That is, when the effect of one variable on the outcome of the experiment is a function of the level of the other variables. Factorial designs are able to estimate the effect of these interactions.

For this 2^6 experiment, interactions can occur as a result of two, three, four, five, or six variables interacting. The number of possible combinations of n factor interactions in this experiment is given by the combination formula:

$$\binom{6}{n} = \frac{6!}{n! (6-n)!} \tag{4}$$

where

n = the number of interacting variables

The level for each interaction term can be determined by multiplying the signs of the individual interacting variables for each experiment. For example, for a two factor interaction where both variables are at a low level, that is, '-' and '-', the two factor interaction term is at the '+' or high level. The columns for all the interaction terms in the 2⁶ factorial experiment are contained in Appendix D.

The calculation of the average effect of an interaction term is the same as for the main effects except that the column of '+' and '-' signs from design matrix corresponds to the appropriate interaction term rather than a main effect. The average effect of an interaction term is

found by subtracting the average of all the results where the interaction level was low (-) from the average of all the results where the interactive term was high (+).

Again, an interaction term is significant when the effect is significantly different from zero.

Yate's Algorithm (4:323-324)

Yate's algorithm is an alternative method for calculating the effects of a two level factorial design. Before Yate's algorithm can be applied, the results of the experiment need to be arranged in a standard order. The standard order for a 2^k factorial design is where:

the first column of the design matrix consists of successive minus and plus signs, the second column of successive pairs of minus and plus signs, the third column of four minus signs followed by four plus signs, and so forth. In general, the kth column consists of 2^{k-1} minus signs followed by 2^{k-1} plus signs. (4:323)

The design matrix in Table 3 is laid out in this standard order. Results from the experiments are aligned in the order given by this matrix. An example of the calculations involved in the Yate's algorithm is given in Figure 8. This example, taken from Box, Hunter and Hunter, is a 2³ factorial experiment, with the three variables identified by T, C, and K.

The values for the top half of the first column of Yate's algorithm are obtained by adding successive pairs of results together. For the bottom half of this column, values are calculated by subtracting successive pairs of results, with the top number of each pair being subtracted from the bottom number of that pair.

Each successive column of the algorithm is calculated in the same manner, using the values of the preceding column. For a 2^k factorial

Figure 8. Yate's Algorithm - 2³ Factorial Experiment (4:342)

design, k columns need to be generated in this manner. The column of estimates is calculated using the kth column. The topmost number is divided by 2^k to produce an estimate of the average value of the output measure across all the experimental runs. The remaining numbers are divided by 2^{k-1} to produce estimates for the effect of the terms represented by the plus signs on the same row of the design matrix. These terms are identified in the right hand column of the Yate's algorithm. The terms for this experiment are shown in Table 3 alongside their corresponding row of the design matrix.

Analysis of the Results of a Two Level Factorial Experiment

To determine which values are significant, a standard error needs to be calculated. However, because each output measure only produces a single value for each run, no direct calculation of σ^2 can be made. An estimate of the standard error can be made using the results from higher

order interactions, if certain assumptions can be made. Specifically, if the response function is smooth and continuous, as was assumed in the selection of the factorial design for this analysis, then higher order interactions should be small. The higher order interactions would then "measure differences arising principally from experimental error" (4:327).

The variance of the results can then be calculated as the mean of the sum of squares of the higher order interactions, and the standard error is the square root of this value. For this experiment, all three, four, five, and six factor interaction terms will be assumed to be negligible, and the results from all these terms will be used to determine an initial estimate of the standard error for each output measure (4:327-328). Once the standard error has been calculated, the significant terms can be identified.

If a term is not significant, the value of the output will remain the same irrespective of the level of that particular term. Because the estimate of the effect of a term is the difference between the average effect of the term at a high level and the average effect of the term at a low level, for terms that are not significant, this estimate will be close to zero. If all terms are negligible, the estimates would all represent experimental error, and for a large enough sample of results, would be normally distributed about zero. Therefore, 99.74% of all the estimates would lie within three standard deviations of zero.

An estimate which lies outside three standard deviations from zero is most likely to be a significant term. For the analysis of results for this experiment, all terms with estimates that have an absolute

value greater than three standard deviations from zero will be considered significant.

Development of a Regression Model

All the significant terms identified by the previous method will be used to develop an initial regression model that represents the underlying response function. This regression model takes the form:

$$\hat{y} = \overline{y} + \left(\frac{\beta_1}{2}\right) x_1 + \left(\frac{\beta_2}{2}\right) x_2 + \ldots + \left(\frac{\beta_n}{2}\right) x_n$$
 (5)

where

 \hat{y} = the estimate of the output

 \overline{y} = the estimate of the average output across all experimental runs

 β_n = the estimate of the effect of the nth term calculated by Yate's algorithm x_n = the nth term

In the factorial design, the actual estimate of the effect, B_i , measures the change in the estimated result when the variable, x_i , changes from -1 to +1, which is a change of two units. The coefficients of each significant term in the regression equation represent the change in the estimated result when the variable, x_i , is changed by one unit. Therefore, the coefficients used in the regression equation are half the estimated effects calculated using Yate's algorithm (4:514).

The regression equation can be used to calculate estimates of the output for each experimental run by substituting +1 or -1 for variables,

based upon the level of each variable in each row of the design matrix.

These estimates of the output can then be used to determine the closeness of fit of the estimated regression function to the actual response function. The value of the residual is given by:

$$Y_{i} - \hat{Y}_{i} = Y_{i} - \overline{Y} - (\hat{Y}_{i} - \overline{Y})$$
 (6)

where, for the ith observation,

Y,= the actual result

 \hat{Y}_i = the estimated result

 \overline{Y} = the overall mean

 $Y_i - \hat{Y}_i = the residual$

Equation 6 states that the residual is the difference between the deviation of the actual results from the overall mean and the deviation of the estimated results from the overall mean. Equation 6 can be rewritten as follows:

$$(Y_i - \overline{Y}) = (\hat{Y}_i - \overline{Y}) + (Y_i - \hat{Y}_i)$$
 (7)

By squaring both sides of Equation 7 and simplifying the resulting expression, the following equation is obtained (8:17-18):

$$\sum (Y_i - \overline{Y})^2 = \sum (\hat{Y}_i - \overline{Y})^2 + \sum (Y_i - \hat{Y}_i)^2$$
 (8)

In simpler terms, Equation 8 states that the sum of the squares about the mean is equal to the sum of the squares due to the regression plus the sum of the squares of the residuals.

Equation 8 will be used to construct an Analysis Of Variance (ANOVA) table which will provide information about the accuracy of fit of the regression equation. However, in addition to using the ANOVA table, an analysis of the residuals will need to be carried out. Two different methods will be used to analyze the residuals: a plot of the residuals against the predicted responses and a normal probability plot of residuals.

The plot of residuals against the predicted responses will allow an assessment of nonlinearity and of non-constant variance. If the plot of the residuals indicates that there may be nonlinearity, this would indicate that higher order terms are required in the regression equation. (As has been mentioned previously, a two level factorial experiment cannot assess curvature.) Non-constant variance may indicate that some transformation is required to produce a better fitting regression equation. The normal probability plot of the residuals is used to check that the residuals are normally distributed.

By combining the analysis of the ANOVA table with the analysis of the two plots of the residuals, an assessment as to the usefulness of the regression equation can be made. This procedure will be carried out for each of the six measures of effectiveness used in this experiment.

Development of a Parsimonious Model

In the development of the initial regression emations for each of the measures of effectiveness, all the statistically significant terms would be included. Even though higher order interactions were not expected to be significant, there may still be a large number of terms contained in the regression equations. However, while these terms may

be statistically significant by comparison to the higher order interactions, they may not significantly contribute to the regression model being developed. For the final analysis, a parsimonious model is required, that is, a model that uses the smallest possible number of terms but still provides an adequate representation of the function being modeled.

A parsimonious model will be developed for each of the output measures using a stepwise regression methodology. For each of the parsimonious models developed, an ANOVA table and the plots of the residuals will be used to assess the goodness of fit of the model.

<u>Identification of Significant Aircraft Characteristics</u>

The result of the analysis should be six parsimonious regression functions. The variables in these six regression functions represent the set of aircraft characteristics that are most significant to each of the measures of effectiveness.

However, the explanation of the significance of each variable depends upon the presence of that variable in any interaction terms. If a variable is not in an interaction term, then that particular aircraft characteristic directly affects the result of the given output measure, and so can be considered significant. If a variable is contained in an interaction term, irrespective of whether or not it also appears as a single term, that aircraft characteristic can only be explained in terms of the interaction of that characteristic with the other characteristics in that interaction term.

Summary

The experimental design chosen for this research was a two level full factorial design. Forty three aircraft parameters in GAMM were grouped into five experimental variables: Flight Performance, Cargo Cabin, Inflight Performance, Ground Flotation/Wheel Loading, and Servicing and Aircraft Loading/Unloading. An additional variable, Aircraft Numbers, was also included. The experimental design used for this research was therefore a 2⁶ factorial design.

Six measures of effectiveness were selected. Ratio On Time and Ratio Delivered were the primary measures of the throughput of the tactical airlift system. Four secondary measures, Total Flight Hours, Total Sorties, Productive Flight Hours, and Productive Sorties, were selected to assess the efficiency of the tactical airlift system.

Two methods for analyzing the results were presented: the difference between two averages and Yate's algorithm. Both methods would identify terms that had a statistically significant effect upon the measure of effectiveness when the level of that term changed from high (+) to low (-). For each measure of effectiveness, all statistically significant terms would be used to develop an initial regression model. From this, parsimonious models could then be developed.

The parsimonious models would contain the smallest possible number of terms that still adequately represented the underlying response functions. The variables contained in the terms of the parsimonious models would represent the set of aircraft characteristics that had the most significant effect on the tactical airlift system.

V. <u>Verification</u> and Validation

Introduction

Before GAMM was used for this experiment, it was necessary to determine the extent to which the model had been verified and validated. Verification of a computer simulation is concerned with ensuring that the computer program is performing the way that it was intended to perform. "If the input parameters and the logical structure of the model are correctly represented in the code, verification has been completed" (3:14). Validation of a simulation is the process of determining that the simulation is "an accurate representation of the real system" (3:14). In simpler terms, "validation deals with building the right model, verification deals with building the model right" (21:559).

Verification of GAMM

Verification of a simulation model is the responsibility of the modeler who defines the model specification and the software engineers who program the model (21:567-568). It is an essential step during the development of a simulation model.

No documentation about the initial development and verification of GAMM was available. Also, because the author was a representative of a foreign military service, the source code for GAMM was not available for analysis. As a result, the extent of the initial verification effort for GAMM could not be determined.

However, a number of documents provided some insight about the

extent of verification of GAMM. The GAMM Programmer/Analyst's Manual provided extensive detail about the logic used within the model. In particular, Section 4 describes the most significant software events and routines, and supplemented these descriptions with flow charts that represented the way the actual coding of the event or routine had been carried out (9:Sec 4). Section Two of the GAMM User's Manual used a simple example of a tactical airlift scenario to step through the GAMM flight scheduling algorithm. The example used four airbases, seven E/D sites and ten aircraft to show the sequence of movement of 18 jobs through the tactical airlift system to their final destinations (10:Sec 2-16 to 2-30).

GAMM has evolved from a simplistic tactical airlift model to a more elaborate and more realistic model of a future tactical airlift system (16:1). The first version of GAMM to be developed was identified as Version Ø.5. With each major change to the model a new version was released. The current version of GAMM is Version 3.5. In 199Ø, a System Concept Evaluation Baseline analysis was undertaken by the developers of GAMM, the General Research Corporation (GRC). The purpose of this study was to highlight "the enhancements to GAMM in evolving from GAMM Ø.5 to GAMM 3.4" and to provide "comparative assessments to illustrate the ramifications of current algorithms" (16:1).

GRC is to review results from similar runs made with each of the two versions of GAMM, to identify significant differences between the two sets of results, to determine and explain the cause of these differences, and to implement corrective action to resolve software problems. (16:1)

This baseline analysis and comparative assessment was used to verify the performance of Version 3.4. In addition, the baseline

analysis contains a list of all the modifications made to GAMM since the original version (16:3-6).

Version 3.5 differed from Version 3.4 in that one parameter was added to the model. The new parameter, the logistical pipeline delay, represented the time it would take a Maintenance Repair Team to reach an aircraft that had broken down (25). This parameter was significant where an aircraft had broken down away from a major airbase, and had the effect of increasing the total time required to repair the aircraft. In all other aspects, Version 3.5 is identical to Version 3.4.

Validation of GAMM (25; 26)

No formal validation of GAMM has been carried out (25). However, in 1989, ASD/XRM tasked GRC to carry out a specific series of tests of GAMM. The purpose of these tests was to both validate and verify GAMM, Version 3.Ø. Eighteen specific categories within GAMM were tested. These categories included:

- 1. Airbase preferences.
- Airlifter scheduling and relocation. This category included the selection of cargo for airlift, calculation of reduced payloads due to runway conditions, and movement item priority selections.
- 3. Airdrops.
- 4. Fuel/payload calculations.
- 5. Crew day expiration.
- 6. Airlifter performance, including fuel usage (26).

The results of these tests were presented as a series of five tutorials to ASD/XRM. The conclusion drawn from these tests was that, as far as the eighteen categories were concerned, GAMM was operating as

expected (26). No formal report of these test results was published. In addition, the continued use of GAMM by ASD/XRM, MAC, Lockheed Aeronautical Systems Company, Boeing Military Aircraft Company, and Douglas Aircraft Company has resulted in an ongoing process of face validation and improvement of the model.

Event Validation of GAMM

The lack of formal validation made it necessary to confirm that GAMM performed correctly before the actual experiment was carried out. The technique used to assess GAMM's performance was event validation. Event validation "employs identifiable events or event patterns as criteria against which to compare model and system behaviors" (2:67).

Rather than attempting to validate all aspects of the model, the purpose of the event validation was to ensure that the airlift aspects of GAMM operated as expected. To do this, a number of simple airlift jobs were created. These jobs are described below.

<u>Cargo Description</u>. GAMM contains a number of standard cargo items that have predefined dimensions (9:Sec 2-9). Two of these standard items were used to make up a standard aircraft load:

- 1. <u>Bulk Cargo Pallets</u>. Bulk cargo 463L pallets in GAMM weigh 4600 lbs and are 104" wide, 84" long, and 96" high. Two bulk cargo pallets were included in the standard aircraft load.
- Passenger Pallets. Passenger pallets are a notional pallet for the purposes of the GAMM model and are defined as having 23 passengers in a box that is 104" wide, 120" long, and 96" high. The weight of a passenger pallet is 5520 lbs. A single passenger pallet was included in the standard aircraft load.

The total weight of a standard load was 14,720 lbs, and its length was 288 inches. This standard load was considerably less than the maximum load carrying capacity of the C-130 and only used about 60% of the cargo cabin. However, the intent of the standard load was not to test GAMM's handling of aircraft loads near the maximum capacity of the aircraft, but rather to see how a more typical small tactical load was handled.

Scenario Description. For the purpose of this event validation, the aircraft characteristics used were those of the C-13ØH. The Central American scenario was used, making available 16 aircraft to carry out the airlift jobs. Two major airbases, both suitable for C-13Ø operations at maximum aircraft weight, were selected as the E/D sites for the airlift jobs. Neither of these airbases were the Central American bed-down base for the C-13Ø aircraft.

<u>Job Description</u>. A number of simple jobs were developed using the standard aircraft load:

- 1. Job 1: One standard load moved from one E/D site to another.
- Job 2: Two standard loads, one at each E/D site to be moved to the other.
- 3. Job 3: Four standard loads, two at each E/D site to be moved to the other.
- 4. Job 4: 40 standard loads, 20 at each E/D site to be moved to the other.

Expected Results. The primary output measures for the event validation were the number of total and productive sorties generated by each job. Assuming that one standard load would generate one productive sortie, for each job, the maximum number of productive sorties generated

were expected to equal the number of available standard loads. This was the expected result for Jobs 1 and 2. However, for Jobs 3 and 4, it was anticipated that the actual productive sorties flown would be fewer than the number of standard loads available. This was because a standard load did not fully utilize a C-130, and it was expected that the GAMM loading algorithm would make more effective use of the available capacity. The total number of sorties generated was determined by adding the expected number of relocation flights to the expected number of productive sorties. Table 4 summarizes the expected results.

Table 4. GAMM Event Validation - Expected Sorties Generated

	Productive Sorties	Total Sorties
Job 1	1	3
Job 2	2	6
Job 3	4	12
Job 4	4Ø	72

Actual Results. For each job, a separate job file was created.

GAMM was then run with each respective job file using the baseline scenario file. Each run lasted for five days and only one repetition was carried out. All other initializing parameters were as given in Appendix C. The results of these runs are contained in Table 5.

Table 5. GAMM Event Validation - Actual Sorties Generated

	Productive Sorties	Total Sorties
Job 1	1	3
Job 2	2	6
Job 3	4	8
Job 4	43	74

Analysis of Results. The results for Jobs 1 and 2 were as expected. For Job 3, the total number of sorties were less than expected. The output report for this run indicated that only two aircraft had been used, rather than the expected four aircraft. For this job, GAMM was optimizing the number of airlifters being relocated. Because the loads at each base were less than two full aircraft loads, only a single aircraft was sent to each base. After delivering the first load to the other base, the remaining load was uplifted and delivered. By using only two aircraft, the number of unproductive sorties flown to complete this job was four. Had four aircraft been used, eight unproductive sorties that would have been generated. Finally, for Job 4, the number of sorties flown was slightly higher than expected. The output report indicated that it had taken two days to completely deliver all loads. The extra sorties resulted from a number of aircraft returning to their home base because the crew had reached the end of their crew duty period before they could deliver the load.

Summary

No documentation was available concerning the initial verification or validation of GAMM. However, as GAMM was modified and new versions of GAMM were released, a series of tests and, later, a baseline analysis were carried out to ensure that the newest version of GAMM was operating as expected. Both studies concluded that GAMM was performing correctly. No unexpected results or problems were identified by either study. Also, the continued use of GAMM by ASD/XRM, MAC, and three major airframe companies indicates that GAMM has a certain amount of face validity. In addition, event validation techniques were used to confirm

that the airlift aspects of GAMM were operating as expected. The results achieved from the four jobs used in the event validation were either as expected or, if not as expected, could be easily explained.

In conclusion, while no formal verification or validation of GAMM has occurred, all assessments of GAMM have shown that the model is operating as expected.

VI. Experimental Findings and Analysis

Calculation of The Required Number of Replications

The purpose of this section of the experiment was to calculate the minimum number of replications required to ensure that the measures used in this analysis were within a specified level of accuracy.

To do this, ten independent, single simulation runs were carried out. To ensure independence, each simulation run was required to use a different random number stream (3:421). This was achieved by changing the random number seed for each run. The same scenario file was used for all runs. This scenario file was identified as EXPØØ.DØ.

The six measures of effectiveness that were selected for the experiment were used to produce the data for the calculation of the minimum number of replications. However, rather than using ratio on time and ratio delivered, the actual values, in tons, were used for these calculations. The results of the ten runs, together with the random number seeds used in each run, are shown in Table 6.

For each measure of effectiveness, the following calculations were carried out. Beginning with the results from Runs 1 and 2, a sample mean and a sample standard deviation were calculated. Then, the results from Runs 1, 2 and 3 were used to calculate another sample mean and 'sample standard deviation. Next, the results from Runs 1, 2, 3 and 4 were used. This process continued, with the sample size increasing by one run, until all ten results had been included.

For each measure of effectiveness, the mean over all ten runs was used to set the required level of accuracy. Not knowing how accuracy

Table 6. GAMM Model Replications - Results of Ten Independent Runs

Input file used for all replications was EXPØØ.DØ

	TONS ON TIME	TONS DELIVERED	TOTAL FLT HRS	TOTAL SORTIES	PRODUCTIVE FLT HRS	PRODUCTIVE SORTIES
RUN 1	2124	5759	4Ø49	7291	46Ø	845
RUN 2	2158	59Ø7	4Ø21	7294	467	865
RUN 3	2175	5723	4Ø73	7426	447	831
RUN 4	2152	58Ø1	4Ø4Ø	73Ø5	454	847
RUN 5	2167	5785	3993	7226	467	863
RUN 6	21Ø4	5792	41Ø7	7431	449	835
RUN 7	2183	583Ø	3999	7184	462	851
RUN 8	2159	5888	4Ø61	7289	472	872
RUN 9	2158	5794	4Ø83	729Ø	467	865
RUN 1Ø	2142	5828	4Ø66	7312	467	862

RANDOM NUMBER SEEDS:

PK=2Ø164293Ø2	OTHER=613743814
PK=2Ø264293Ø2	OTHER=623743814
PK=2Ø364293Ø2	OTHER=633743814
PK=2Ø464293Ø2	OTHER=643743814
PK=2Ø564293Ø2	OTHER=653743814
PK=2Ø664293Ø2	OTHER=663743814
PK=2Ø764293Ø2	OTHER=673743814
PK=2Ø864293Ø2	OTHER=683743814
PK=2Ø964293Ø2	OTHER=693743814
PK=21Ø64293Ø2	OTHER=6Ø3743814
	PK=2Ø264293Ø2 PK=2Ø364293Ø2 PK=2Ø464293Ø2 PK=2Ø564293Ø2 PK=2Ø664293Ø2 PK=2Ø764293Ø2 PK=2Ø864293Ø2 PK=2Ø964293Ø2

would affect the number of replications required, a number of different levels of accuracy were selected. For the accuracy level to be consistent across all the measures of effectiveness, it was initially specified as a percentage, ranging from 1% to 5% of the mean. The actual value was then calculated for each measure of effectiveness and used as the value for ϵ in Equation 3 reproduced below.

$$R \ge \left(\frac{t_{\alpha/2,R-1}S_0}{\varepsilon}\right)^2 \tag{3}$$

The value calculated for the sample standard deviation was used as the value for $S_{\cdot\cdot}$.

The last variable needed was the value of α , which represented the probability of achieving the desired level of accuracy. For all calculations, α was selected as $(1 - \emptyset.95)$. That is, for a given number of replications, there was a probability of $\emptyset.95$ that the results were within the specified accuracy of the 'true' values. Using this value of α , values for t could be determined.

Table 7 shows an extract of the calculations for two output measures, Tons On Time and Tons Delivered. The calculations have used an accuracy value of 2%. The t values used are listed at the bottom of the table. A complete listing of the results of all the calculations carried out is contained in Appendix E.

The Required Number of Replications - Interpretation of Results

Using the results from Table 7, it can be seen that for four cumulative runs, the number of runs required for Tons On Time is 2.45,

Table 7. Extract of Calculations for Determining the Required Number of Replications

	ER OF LATIVE	TONS ON TIME	NUMBER OF RUNS REQUIRED	TONS DELIVERED	NUMBER OF RUNS REQUIRED
2	MEAN	2141.00		5833.ØØ	
2	STDS	24.Ø4	5Ø.36	104.65	130.91
3	MEAN	2152.33		5796.33	
3	STDS	25.96	6.73	97.51	13.Ø3
4	MEAN	2152.25		5797.5Ø	
4	STDS	21.2Ø	2.45	79.65	4.75
5	MEAN	2155.2Ø		5795.ØØ	
5	STDS	19.51	1.58	69.2Ø	2.73
6	MEAN	2146.66		5794.5Ø	
6	STDS	27.22	2.64	61.91	1.87
7	MEAN	2151.85		5799.57	
7	STDS	28. 39	2.6Ø	58.Ø9	1.49
8	MEAN	2152.75		581Ø.62	
8	STDS	26.41	2.1Ø	62.2Ø	1.6Ø
9	MEAN	2153.33		58Ø8.77	
9	STDS	24.76	1.76	58.45	1.34
1Ø	MEAN	2152.20		581Ø.7Ø	
1Ø	STDS	23.62	1.54	55.44	1.16
	ε = 2% α = 95%	43.Ø44		116.214	
	n =	2	3	4	5
		12.7Ø6	4.3Ø3	3.182	2.776
	6	7	8	9	1Ø
	2.571	2.447	2.365	2.3Ø6	2.262

and for Tons Delivered is 4.75. This indicates that four replications are sufficient to achieve an accuracy for Tons On Time within 2% of the actual value with a probability of Ø.95. However, for Tons Delivered, the value of 4.75 indicates that more than four replications are required to achieve this level of accuracy. Table 7 indicates that at least five replications would be required.

In general, if the value for the number of runs required is larger than the number of runs used in the sample, then more replications are needed to achieve the indicated level of accuracy. If the value for the number of runs required is smaller than the number of runs used in the sample, then the required level of accuracy will be achieved by carrying out as many replications as there were number of runs in the sample.

Table 7 also shows that the number of runs needed to achieve a specified level of accuracy changes for each measure of effectiveness. Said in another way, for a given number of replications, the accuracy of each measure of effectiveness is different. This is evident when comparing the calculations for different levels of accuracy. These calculations are contained in Appendix E.

Because no level of accuracy had been specified for the experiment, the aim was to select the smallest number of replications that would result in acceptably high accuracy for most of the measures of effectiveness. From the results in Appendix E:

- 1. Nine replications would be required to achieve an accuracy of 1% for four of the six measures of effectiveness.
- 2. Five replications would be required to achieve an accuracy of 2% for four of the six measures of effectiveness.
- 3. Four replications would be required to achieve an accuracy of 3% for all six measures of effectiveness.

Based on these results, each design point in the experiment would be replicated five times. Using five replications rather than nine would increase the half length, ϵ , from 1% to 2%, but it would also reduce total run time by 44%. The slight loss of accuracy was

considered a reasonable price to achieve a considerable reduction in total runtime. The four replication option was not selected because the slight reduction in run time, from 5 to 4 replications, was not considered to be worth the cost of an additional loss of accuracy.

With five replications, four output measures would be accurate to within 2% at a 95% confidence level: Tons On Time, Tons Delivered, Total Flight Hours, and Total Sorties. The other two measures, Productive Flight Hours and Productive Sorties, would be accurate to within 3%.

Experimental Results

To ensure genuinely replicated runs in the experiment, different random number seeds were used for each run. These are listed in Appendix F. The actual results from the 64 runs are shown in Table 8.

Each measure of effectiveness shows considerable variation in range across the 64 mins:

- Ratio on Time varies from a low value of Ø.12 to a high value of Ø.49.
- Ratio Delivered varies from a low value of Ø.26 to a high value of Ø.98.
- Total Flight Hours vary from 594 to 5824.
- Total Sorties vary from 1980 to 11015.
- 5. Productive Flight Hours vary from 55 to 618.
- 6. Productive Sorties vary from 321 to 1132

For the two main measures of effectiveness, Ratio on Time and Ratio Delivered, the higher values were consistent with the results achieved in the ATTMA C-13Ø deficiency analysis for the modified C-13Ø airlifter (24:Sec 3.4 44-48).

Table 8A. Experimental Regults: GAMM Central American Scenario

		ומחוב חשי ביא	בן ווויבוונמו ואכ	MINES . COLDE	יכווני מו שווזכיו	מון הכוומו ומ		
Test								
Condition		MAIN EFFECTS			Total		Productive	
Number	Run No	AFCIGS	Ratio	Ratio	Flight	Total	Flight	Productive
			On Time	Delivered	Hours	Sorties	Hours	Sorties
-	EXP 19		0.12	0.28	1106	2494	111	331
8	EXP 51	1 1 1 +	0.12	0.28	1579	3209	120	352
8	EXP 03	1 1 + 1	0.12	0.28	1127	2544	109	327
4	EXP 35	1 + + +	0.12	0.28	1548	3423	122	358
\$		+ + +	0.19	0.52	960	2032	295	596
9	EXP 59	1 + + +	0.22	0.55	1324	2712	381	208
٧		1 + + 1	0.19	0.51	838	1980	290	269
80	EXP 43	1 + + + +	0.25	0.55	1289	2827	389	710
63			0.12	0.28	594	2850	55	324
10	EXP 55	1 1 + 1 1 +	0.12	0.28	679	2994	55	321
11	EXP 07	+ +	0.12	0.28	591	2618	55	324
12	EXP 39	+-++	0.12	0.28	628	2908	55	323
13	EXP 31	1 + + 1 1	0.19	0.52	636	2495	222	870
14		1 1 + + 1 +	0.22	0.54	888	3208	288	863
15		1 + + + 1	0.19	0.51	632	2484	218	860
16	EXP 47	1 + + + +	0.22	0.54	867	3198	294	1004
17	EXP 17	1 + 1 1 1	0.19	0.48	3128	5800	448	816
18	EXP 49	! + ! ! ! +	0.20	0.50	4831	9211	511	918
19	EXP 01	1 + 1 + 1	0.19	0.50	3210	2885	415	758
20	EXP 33	+ + + + +	0.21	0.53	4808	9140	499	901
21	EXP 25	1 + ! + 1 1	0.38	0.00	1484	2881	804	1097
22		1+1+1+	0.45	0.91	1837	3120	618	1132
23	EXP 09	! + ! + + !	0.38	0.92	1424	2742	584	1052
24	EXP 41	1 + 1 + + +	0.44	0.95	1635	3088	815	1111
25		! + + ! i !	0.19	0.47	1551	5390	186	670
92	EXP 53	1 + + 1 + +	0.19	0.51	1982	7189	215	786
23	EXP 05	1 + + 1 + 1	0.19	0.52	1534	5275	203	738
28		+ + + + +	0.20	0.58	1867	6717	223	820
59	EXP 29	+ + + !	0.38	0.92	742	2977	287	1028
30		1 + + + 1 +	0.42	0.92	813	3244	288	1049
31	EXP 13	1 + + + + 1	0.39	0.92	969	2801	265	941
32		1 + + + + +	0.44	. 96.0	805	3143	279	066

Table 6B Experimental Results: GAMM Central American Scenario

		5	lable on	00	3	experimental n	RESUITS OVER	Central American	וכמוו אבוומו וה	5 .	
Test		MAIN EFFECTS	9	5	S						
Condition								Total		Productive	
Number	Run No	∀	ပ	_	S	Ratio	Ratio	Flight	Total	Flight	Productive
						On Time	Delivered	Hours	Sorties	Hours	Sorties
33	EXP 18	1	1	i	+	0.12	0.26	1328	3142	109	330
34	EXP 50	+	1	ŧ	+	0 12	0.26	1769	4003	117	346
35	EXP 02	+	1	i	+	0.12	0.28	1282	2878	118	349
36	EXP 34	+	1	1	+	0.12	0.26	1496	3303	120	355
37	EXP 28	1	+	ì	+	0.21	99:0	1078	2282	333	691
38		+	+	1	+	0.23	0.58	1278	2618	401	757
39	EXP 10	+	+	,	+	0.21	0.58	1067	2245	337	680
0#	EXP 42	+	+	1	+	0.23	0.58	1370	2804	400	756
4	EXP 22	!	1	+	+	0.12	0.26	688	3054	55	327
42	EXP 54	+	ŀ	+	+	0.12	0.26	779	3489	56	328
4 3	EXP 08	+	ı	+	+	0.12	0.26	695	3075	58	328
44	EXP 38	+	1	+	+	0.12	0.26	785	3508	58	328
45	EXP 30	ŧ	+	+	+	0.20	0.52	682	2619	227	888
46	EXF 62	+	+	+	+	0.22	0.55	903	3290	306	1040
47	EXP 14	+	+	+	+	0.20	0.52	674	2587	228	881
4 8	EXP 46	+	+	+	+	0.22	0.55	873	3178	303	1038
49	EXP 16	i	1	1	+	0.20	0.53	3958	7222	482	897
20	EXP 48	+	1	1	+	0.22	0.57	5824	11015	929	1051
51	EXP 00	+	ı	Ť	+	0.21	0.58	4049	7287	458	848
52	EXP 32	+		1	+	0.23	0.61	5719	10732	553	1020
53	EXP 24	1	+	1	+	0.41	0.93	1488	2868	601	1091
54	EXP 56	+	+	1	+	0.44	0.92	1569	2996	265	1087
55	EXP 08	+	+	1	+	0.42	0.93	1430	2757	559	1024
58	EXP 40	+	+	ī	+	0.48	0.97	1615	3003	594	1082
57	EXP 20	ŀ	1	+	+	0.20	0.52	1890	6586	204	748
58	EXP 52	; +	ı	+	+	0.20	0.54	2245	8179	220	808
29	EXP 04	+	1	+	+	0.21	0.58	1902	6530	224	818
90	EXP 38	+	,	+	+	0.21	0.61	1890	6786	240	892
6.1	EXP 28	1	+	+	+	0.42	0.94	758	3063	285	1025
82	EXP 60	+	+	+	+	0.45	0.93	805	3169	286	1035
63	EXP 12	+	+	+	++	0.43	0.94	687	2731	261	935
64	EXP 44	+	+	+	+	0.49	96.0	486	3075	282	991

The results for each measure of effectiveness were used to calculate estimates of the main and interaction effects of the variables. As described in Chapter IV, two methods were used: Yate's Algorithm and the Difference between Two Averages. The calculations for the Yate's Algorithm are contained in Appendix G. The results of the Difference between Two Averages method are contained in Appendix H. Each method should produce the same estimates for the main and interaction effects of the variables. However, both methods were used to ensure the accuracy of the results.

Transformation of Data

When " $Y_{\text{Max}}/Y_{\text{Min}}$ is large", it is possible that some form of transformation may produce a "simplified and more efficient representation" (4:334). The results of the experimental runs had very large differences between the largest and the smallest values. In addition, the initial analysis of residuals, using a plot of the residuals against the predicted results, indicated that the residuals were heteroscedastic. That is, the residuals displayed non-constant variance, with the standard deviation of the residuals increasing as the value of the predicted result increased.

To correct the possible problems that this would cause in the analysis, it was decided to transform the data using the natural logarithm transformation. All the results from the experiment were converted to their values in natural logarithms. These values are contained in Appendix K. The transformed results were then used to calculate new estimates for the main and interactive effects of the variables. Again, both Yate's Algorithm and the Difference between Two

Averages methods were used. For the transformed results, the calculations for the Yate's Algorithm are contained in Appendix I, and the results for the Difference between Two Averages are contained in Appendix J.

Identification of Significant Terms

Appendix J also lists the estimate of the standard error for each output measure. This was calculated from the sum of squares of the estimates of all the three, four, five and six factor interaction effects.

As mentioned in Chapter IV, all terms whose estimates had an absolute value greater than three times the standard error were considered to have a statistically significant effect on the value of the output. These terms and their estimates were used to develop a regression model for each measure of effectiveness. The regression model, previously discussed in Chapter IV, is shown below.

$$\hat{y} = \bar{y} + \left(\frac{\beta_1}{2}\right) x_1 + \left(\frac{\beta_2}{2}\right) x_2 + \dots + \left(\frac{\beta_n}{2}\right) x_n$$
 (5)

where

 \hat{y} = the estimate of the output

 \overline{y} = the estimate of the average output across all experimental runs

 β_n = the estimate of the effect of the nth term calculated by Yate's algorithm

 $x_n = the nth term$

Regression equations for all six measures of effectiveness were developed using the estimates produced from the transformed results. However, to compare the effect of the transformation on the analysis, an additional regression equation was developed for one measure, Ratio on Time, using the original, untransformed results of the experiment. The seven initial regression equations are listed in Figure 9 below.

Using these seven equations, ANOVA tables were constructed and an analysis of residuals was carried out. The full ANOVA tables and the residual plots are contained in Appendix L. However, the important values from the ANOVA table, the F value and the Adjusted R^2 value, for the seven equations are summarized in Table 9 below.

Table 9. Summary of ANOVA Tables for Initial Regression Equations

MEASURE OF EFFECTIVENESS	F VALUE	adjusted R2
Ratio On Time Eqn 1	1443.848	Ø.995653
Ratio On Time (Ln) - Eqn 2	2331.128	Ø.9973 Ø4
Ratio Delivered - Eqn 1	2446.741	Ø.997146
Total Flight Hours - Eqn 1	456.495	Ø.984856
Total Sorties - Eqn 1	284.491	Ø.972987
Productive Flight Hours - Eqn 1	1524.693	Ø.995427
Productive Sorties - Eqn 1	757.536	Ø.9897ØØ

The results from the ANOVA table indicate that all seven of the regression equations provide an extremely good fit of the actual results. In addition, the plots of residuals for the seven equations, shown in Appendix L, indicate that the residuals are randomly scattered about zero, and the normal probability plots of the residuals for the seven equations closely approximate a straight line, indicating that the residuals are approximately normally distributed about zero. Overall,

Ratio On Time Function - Equation 1

Ŷ=Ø.239219+(Ø.Ø2Ø313/2)A+(Ø.ØØ6562/2)F+(Ø.155938/2)C+(Ø.148437/2)G +(Ø.Ø15312/2)S+(Ø.Ø65938/2)CG+(Ø.Ø15313/2)AC+(Ø.ØØ7812/2)AG +(Ø.ØØ7812/2)CS+(Ø.Ø1Ø312/2)GS

Ratio On Time Function - Equation 2

 $Ln(\hat{Y}) = -1.535428 + (\emptyset.\emptyset69347/2)A + (\emptyset.\emptyset19679/2)F + (\emptyset.647986/2)C + (\emptyset.612359/2)G + (\emptyset.\emptyset52\emptyset23/2)S + (\emptyset.\emptyset90673/2)CG + (\emptyset.045037/2)AC + (\emptyset.019679/2)FG + (\emptyset.027544/2)GS + (0.018423)CIG$

Ratio Delivered Function - Equation 1

 $Ln(\hat{\mathbf{y}}) = -\emptyset.664\emptyset18 + (\emptyset.\emptyset3274/2)A + (\emptyset.\emptyset25351/2)F + (\emptyset.643881/2)C + (\emptyset.633737/2)G + (\emptyset.\emptyset41477/2)S + (\emptyset.\emptyset27778/2)FG + (-\emptyset.\emptyset88493/2)CG + (-\emptyset.\emptyset24146/2)ACG + (-\emptyset.\emptyset31459/2)CGS$

Total Flight Hours Function - Equation 1

 $Ln(\hat{y}) = 7.163 + (\emptyset.214/2)A + (-\emptyset.501/2)C + (-\emptyset.671/2)I + (\emptyset.607/2)G + (\emptyset.087/2)S + (\emptyset.112/2)CI + (-\emptyset.462/2)CG + (-\emptyset.106/2)IG + (\emptyset.054/2)ACI$

Total Sorties Function - Equation 1

 $Ln(\hat{y}) = 8.197 + (\emptyset.205/2)A + (-\emptyset.526/2)C + (\emptyset.493/2)G + (\emptyset.084/2)S + (\emptyset.114/2)CI + (-\emptyset.082/2)IG + (-\emptyset.365/2)CG + (-\emptyset.068/2)ACG$

Productive Flight Hours Function - Equation 1

 $Ln(\hat{Y}) = 5.469 + (\emptyset.115/2)A + (\emptyset.778/2)C + (-\emptyset.657/2)I + (\emptyset.851/2)G + (\emptyset.124/2)CI + (-\emptyset.547/2)CG + (-\emptyset.136/2)IG + (-\emptyset.080/2)ACG + (-\emptyset.089/2)CIG$

<u>Productive Sorties Function - Equation 1</u>

 $Ln(\vec{Y})=6.544+(\emptyset.\emptyset85/2)A+(\emptyset.547/2)C+(\emptyset.589/2)G+(\emptyset.1\emptyset7/2)CG +(-\emptyset.122/2)IG+(-\emptyset.33/2)CG+(-\emptyset.\emptyset55/2)ACG+(-\emptyset.\emptyset8/2)CIG$

Legend:

A. Aircraft Numbers

F. Field Performance

C. Cargo Cabin

- I. Inflight Performance
- G. Ground Flotation/Wheel Loading
- S. Servicing and Aircraft Loading/Unloading

Figure 9. Initial Regression Equations

these regression equations proved to be extremely accurate statistical models for representing the results of each measure of effectiveness.

Identification of Relevant Terms

Although the models were very accurate, they were not very useful. As can be seen from Figure 9, each of the regression equations contained between eight and ten terms and, except for one equation, these terms used five or more of the six variables in the experiment. Four or five terms of each equation were interaction terms and all but one equation contained a three factor interaction term.

The initial regression equations had included all the statistically significant terms. However, while these terms may have been significant by comparison to the higher order interactions used to calculate the standard error, they may not all be significant to the response function being modeled.

For the purpose of this analysis, parsimonious models were required. Rather than developing extremely accurate models, this analysis was attempting to identify the smallest number of significant terms that would still provide an adequate representation of the response function for each measure of effectiveness.

The parsimonious models were developed in the following manner:

- Beginning with the initial regression equation for each measure of effectiveness, three or four terms, whose coefficients had the smallest absolute values, would be removed from the equation.
- 2. New ANOVA tables and new residual plots would be constructed from these reduced equations.

The results from the reduced equations were then compared with the initial regression equations to determine whether any significant terms had been removed. If the results showed that no significant terms had been removed, this process was repeated. The ANOVA tables and the residual plots for all the reduced equations that were developed in this manner are contained in Appendix M.

A final set of parsimonious regression equations was eventually developed and is presented in Figure 10 below. The F values and the Adjusted R^2 values from the ANOVA tables for these seven equations are summarized in Table 10 below.

Table 10. Summary of ANOVA Tables for Parsimonious Regression Equations

MEASURE OF EFFECTIVENESS	F VALUE	ADJUSTED R^2
Ratio On Time - Eqn 5	754.795	Ø.972896
Ratio On Time (Ln) - Eqn 3	1210.546	Ø.982935
Ratio Delivered - Eqn 3 Total Flight Hours - Eqn 3	21Ø9.Ø84 192.756	Ø.99Ø137 Ø.924Ø42
Productive Flight Hours - Eqn 3	434.984	Ø.964977
Total Sorties - Eqn 4	143.802	Ø.871897
Productive Sorties - Eqn 3	3 ØØ.Ø5 6	Ø.934363

These results indicate that all seven of the parsimonious equations provided a good fit of the actual results. The plots of residuals for the seven equations, shown in Appendix M, clearly show the effect of the reduced number of terms. As the number of terms were reduced, the number of values that were possible for the estimated result decreased. Five of the equations contain only two variables, allowing only four possible values for the estimated result. The residuals were still reasonably well scattered about zero, even though the plots were distinctly bunching together, as expected, around the

Ratio On Time Function - Equation 5

V=Ø.239219+(Ø.155938/2)C+(Ø.148437/2)G+(Ø.065938/2)CG

Ratio On Time Function - Equation 6 $Ln(\hat{y}) = -1.535428 + (\emptyset.647986/2)C + (\emptyset.612359/2)G + (\emptyset.\emptyset9\emptyset673/2)CG$

Ratio Delivered Function - Equation 3 $Ln(\hat{y}) = -\emptyset.664\emptyset18 + (\emptyset.643881/2)C + (\emptyset.633737/2)G + (\emptyset.\emptyset88493/2)CG$

Total Flight Hours Function - Equation 3 $Ln(\hat{y}) = 7.163 + (-\emptyset.501/2)C + (-\emptyset.671/2)I + (\emptyset.607/2)G + (-\emptyset.462/2)CG$

<u>Productive Flight Hours Function - Equation 3</u> $Ln(\hat{y}) = 5.469 + (\emptyset.778/2)C + (-\emptyset.657/2)I + (\emptyset.851/2)G + (-\emptyset.547/2)CG$

Total Sorties Function - Equation 4 $Ln(\hat{y}) = 8.197 + (-.526/2)C + (.493/2)G + (-.365/2)CG$

Productive Sorties Function - Equation 3 $Ln(\hat{y})=6.544+(\emptyset.547/2)C+(\emptyset.589/2)G+(-\emptyset.33/2)CG$

- Legend: A. Aircraft Numbers
 - C. Cargo Cabin
 - F. Field Performance
 - I. Inflight Performance
 - G. Ground Flotation/Wheel Loading
 - S. Servicing and Aircraft Loading/Unloading

Figure 10. Parsimonious Regression Equations

fewer estimated response values. The normal probability plots also lost their extremely close approximation to straight lines as the number of terms in the equations decreased, but the plots were still reasonably straight. This indicated that the values of the residuals could not be completely attributed to random noise, and that some factor existed that was statistically significant. Since all the terms removed from the equation had been statistically significant, this result was not surprising.

All the coefficients in the equations for Ratio on Time and Ratio Delivered are positive. This means that when either variable is changed from a low level to a high level, the value of the result will increase. If both variables are changed, the value will increase by an even greater amount because then the interaction term will be positive as well.

For the other measures of effectiveness, the results are not as clear because of the significant interaction term, CG. The results are more clearly shown in following sections.

Comparison of the Transformed Results

As mentioned earlier in this chapter, the calculations for the regression analysis of Ratio On Time were carried out using both the original results from the experiment and the transformed results. The purpose of this comparison is to confirm that the transformation used did provide a better representation of the response function.

The two initial regression equations for Ratio On Time, listed in Figure 9, contain 8 common terms. Only two interaction terms in each were different. These different terms were also the first terms removed

from the equations as the parsimonious models were being developed, and as Figure 10 shows, the final equations contained the same terms.

To determine whether the transformed model was a better model, it was necessary to compare the results from the ANOVA tables and the residual analysis for each equation. The main results from the ANOVA tables are reproduced in Table 11 below. As can be seen in Table 11, for each set of comparable equations, the model developed from the transformed results proved to be a better model than the model developed from the untransformed results. By comparing the residual plots in Appendices L and M, it is evident that the problem of non-constant variance that existed with the untransformed residuals has been largely

Table 11. Comparison of Results for Ratio On Time

	F VALUE	ADJUSTED R ²
INITIAL REGRESSION EQUATION		
Ratio On Time - Eqn 1	1443.848	Ø.995653
Ratio On Time (Ln) - Eqn 2	2331.128	Ø.9973Ø4
FIRST REDUCTION		
Ratio On Time - Eqn 3	1061.041	Ø.99Ø192
Ratio On Time (Ln) - Eqn 4	2072.789	Ø.994958
FINAL EQUATION		
Ratio On Time - Eqn 5	754.795	Ø.972896
Ratio On Time (Ln) - Eqn 6	121Ø.546	Ø.982935

solved by the transformation, further confirming that the transformation has produced a better model.

Interpretation of Results

For four of the six measures of effectiveness, the parsimonious models that were developed contained only three terms. These three terms contained only two of the six variables used in the experiment.

The two variables were C, the cargo cabin size, and G, the aircraft's ground flotation/wheel loading. The models for the other two measures of effectiveness both contained a single additional term, containing the variable I, the inflight performance of the aircraft.

All six equations contained the interaction term CG. When interpreting the results for each measure of effectiveness, the effects c' the variables in the interaction term must be considered jointly (4:328).

The high and low levels of C and G result in four possible combinations of these two variables within the interaction term, CG. From the 64 runs carried out, 16 results were available for each of the four combinations. The 16 results were used to calculate an average value for each combination of C and G in the interaction term. For each of the measures of effectiveness, these results have been plotted in the figures below. The top line in each of the figures represents the high level of the variable C. This line can be considered to represent a large tactical airlifter. The lower line therefore represents a small tactical airlifter.

Ratio On Time. The effects of the two variables, C and G, on the results for the Ratio On Time are shown in Figure 11 below. The effect of the interaction is clearly seen. Increasing the size of the cargo cabin results in a much greater increase in the ratio of cargo delivered on time when the flotation variable, G, is at a high level rather than a low level.

Ratio Delivered. A similar result is shown in Figure 12 for Ratio Delivered. While there are still indications of the effect of the

Figure 11. Interaction Effect - Ratio On Time

interaction, it is not as pronounced as in Figure 11. However, the figure does show that significant increases in the ratio of cargo delivered occur when either variable is increased from its low level to its high level, and the greatest increase occurs when both variables are set to their high levels.

Figure 12. Interaction Effect - Ratio Delivered

Total Sorties Flown. Figure 13 shows the results for this measure of effectiveness. The impact of the interaction term on the results of this measure of effectiveness is extremely large. Looking at Figure 13 in isolation might imply that a large aircraft with a low level of G will fly thousands of additional sorties trying to carry out all the required airlift tasks. By changing the value of G to the high level, the larger aircraft reduces the number of sorties to nearly one third of the previous amount. The change of G for the smaller aircraft also results in a reduction in the total number of sorties flown, but the reduction is small compared to that for the larger aircraft.

Figure 13. Interaction Effect - Total Sorties Flown

Comparing Figure 13 to the results for the previous two figures reveals the true effect of the changes. For the larger aircraft, the change in the level of G to the higher level not only reduced the total sorties flown to one third, but also doubled the total cargo delivered and the total cargo delivered on time, resulting in a six fold increase

in productivity. For the smaller aircraft, the smaller reduction in total sorties together with the doubling of the total cargo delivered and total cargo delivered on time resulted in an almost three fold increase in productivity.

<u>Productive Sorties</u>. The effects of the variables C and G on the number of productive sorties is shown in Figure 14. In this case, the interaction effect appears to affect the smaller aircraft much more than the larger aircraft.

Figure 14. Interaction Effect - Productive Sorties Flown

Total Flight Hours. From the regression equation in Figure 10, it can be seen that as the variable I changes from low level to high level, that is, as the inflight performance of the aircraft improves, the total flight hours decrease. This was not an unexpected result. The effect of the variables C and G is shown in Figure 15. As expected, these results closely match the results for Total Sorties Flown, and similar comments can be made about these results.

Figure 15. Interaction Effect - Total Flight Hours

Productive Flight Hours. The regression equation for Productive Flight Hours also contains a negative coefficient for the variable I. Hence as the inflight performance improves, the number of productive flight hours will decrease. Figure 16 shows the effects of the other

Figure 16. Interaction Effect - Productive Flight Hours

two variables. The results for Productive Flight Hours also closely matches the result for Productive Sorties Flown.

Analysis of the Interaction Term

The presence of significant interaction terms in the final models was not anticipated. That the same interaction term should occur in every model was completely unexpected. The only reason that this could have occurred would be due to some significant link between the two variables C and G.

When the aircraft parameters that made up these two variables were initially selected, no links appeared to exist. However, on closer examination, a possible connection was identified. The variable G contains just two parameters, both LCN values that GAMM uses to determine whether an aircraft can operate onto a given airfield. In addition to this, GAMM uses the LCN values to determine the largest useful load that can be supported by the given airfield (9:Sec 3-1). One value of LCN is given at the maximum useful load and the other value of LCN is given at zero useful load. The variable C contains the value of maximum useful load. Using this value, GAMM interpolates between the high and low values of an aircraft's LCN to determine the maximum load that can be supported by a given airfield. For a scenario such as Central America where the majority of the airfields are restricted by LCN rather than by runway length, the aircraft's LCN values and its maximum useful load become very important.

This link between maximum useful load and the aircraft's LCN results in the very significant interaction between the C and G variables.

Summary

In choosing a value for the minimum number of replications for each design point in the experiment, a trade off was required between the desired level of accuracy of the results and the total run time required to achieve a given level of accuracy. For this experiment, five replications were selected. For four of the measures of effectiveness, five replications would result in an accuracy of better than 2% with 95% confidence. For the other two measures, an accuracy of better than 3% could be achieved.

The analysis of the experimental results produced a parsimonious model for each of the six measures of effectiveness. Surprisingly, all the models contained the same two variables: the Cargo Cabin variable C, and the Ground Flotation/Wheel Loading variable G. These were the only variables in the models for four of the measures of effectiveness. The models for the other two measures, Total Flight Hours and Productive Flight Hours, also contained one other variable, Inflight Performance.

The effect of Inflight Performance on Flight Hours was as expected. An increase in the Inflight Performance reduced the number of hours flown. The effect of the variables C and G on each of the measures of effectiveness could not be as easily explained because all the models contained these variables in an interaction term.

However, for the two primary measures of effectiveness, Ratio On
Time and Ratio Delivered, it was clear that a significant improvement in
the throughput of the tactical airlift system could be achieved by using
aircraft with a high level of C and a high level of G.

VII. Conclusions and Recommendations

Summary of Experiment

The purpose of this study was to identify a specific set of tactical airlifter characteristics that would result in the greatest improvement in tactical airlift capability. The Generalized Air Mobility Model (GAMM) was used to simulate a tactical airlift system operating within a predetermined scenario in Central America.

Because the response of the airlifter characteristics on tactical airlift capability was not known, a two level full factorial experimental design was chosen to carry out the screening experiment. A large number of significant aircraft parameters were available in GAMM. Because it was not possible to test each individual parameter using a two level full factorial experiment, it was decided that the existing parameters would be grouped in five functional sets, identified as Field Performance, Cargo Cabin, Inflight Performance, Ground Flotation/Wheel Loading, and Servicing and Aircraft Loading/Unloading. These five sets became five of the six variables used in the experiment. The sixth variable used in the experiment was Aircraft Numbers.

After the experimental runs had been carried out, the results were transformed and, for each of the measures of effectiveness that had initially been selected, a parsimonious model was developed. The variables remaining in these models identified the set of aircraft parameters that were found to be significant.

Results

Two variables appeared in all six of the models developed. For four of the six models, only these two variables were present in the terms of the model. In the other two models, only one additional variable was present. The variables, and the aircraft parameters that made up those variables are listed in Table 12 below.

<u>Table 12.</u> Summary of Significant Airlifter Characteristics - Central American Scenario

EXPERIMENTAL VARIABLE	AIRCRAFT PARAMETER
Cargo Cabin (C)	Cargo Bay Width Cargo Bay Height Cargo Bay Length Cargo Bay Door Width Cargo Bay Door Height CTOL Max Useful Load CTOL Mid Useful Load Maximum Cabin Payload Aircraft Spot Factor Cargo Threshold for Relocation
Ground Flotation/Wheel Loading (G)	LCN - Max Useful Load LCN - At Zero Useful Load
Inflight Performance (I)	Maximum Ferry Fuel Cruise Fuel Cruise Speed Takeoff/Landing Fuel Bias

The variables C and G were the only variables in the models that represented Ratio On Time, Ratio Delivered, Total Sorties Flown and Productive Sorties. All three variables appeared in the models for Total Flight Hours and Productive Flight Hours.

While the three variables were significant to the models that were developed, all the parameters identified in Table 12 may not necessarily be significant to tactical airlift capability. The design of the

variables for the experiment resulted in the grouping of these parameters, so it was not possible to distinguish between the effects of parameters within a group. To identify individual parameters that are significant, another experiment would be required.

Implications of these Results

For a tactical airlift scenario similar to Central America, where there are many small unprepared strips available, these results indicate that a significant increase in throughput can be achieved for a tactical airlift system by increasing the size of the aircraft's cargo cabin and at the same time improving the aircraft's ability to operate on unprepared airfields. A significant increase in throughput will result in a greater number of tactical airlift jobs being completed on time, and a greater number of airlift jobs being delivered overall.

More importantly, these results show that improving other aircraft characteristics, such as cruise speed or a very short take-off and landing capability, would not significantly improve the throughput of the tactical airlift system in the scenario studied.

Thus, this research identified the areas of tactical airlifter development that will result in significant benefits, as well as those that would be marginally useful for this type of scenario.

Recommendations for Further Research

This study conducted an initial screening of tactical airlifter characteristics. A number of areas are recommended for further research.

- 1. Twelve parameters were identified as belonging to the two main variables identified in this research. Given that this study found that higher order interaction terms were not significant, it should be possible to design a fractional factorial experiment such as a 2¹²⁻⁶ design that would be able to identify which of these twelve parameters are significant.
- 2. On a more general level, this study made a number of initial assumptions that meant important aspects of the tactical airlift model, such as attrition and maintainability/reliability, were not considered at all. These parameters could be grouped into a number of variable sets as was done in this study. The parameters in the three variables that were found to be insignificant in this study could be ignored. The significant variables identified in this research and the new variables would then be the basis for further research to determine how attrition and maintainability and reliability issues affect the tactical airlift system.
- 3. One major limitation of the research was that it only used a single scenario. The results from this research therefore have tended to optimize the performance of the tactical airlifter for just this scenario. Since it seems improbable that a new airlifter will be designed just for this environment, it is recommended that further research be carried out using the other available scenarios of Southwest Asia or Europe. Once additional scenarios have been assessed, it may be possible to identify tactical airlifter characteristics that result in an increase in throughput across all the scenarios. It may also be possible to

- identify which particular characteristics are scenario dependent and are more important in one scenario than another. It may then be possible to identify a set of characteristics for a tactical airlifter that, if put together in one aircraft, would result in a tactical airlifter that performs well in all scenarios.
- 4. One additional area for further research is the GAMM model itself. The GAMM model is a very powerful tool for analyzing tactical airlifters. However, during this research, it was only possible to use a small fraction of its capability. In particular, very little experimentation was done with the parameters used in the initialization of the model. Changes to some of these parameters, such as the priority scheduling factor may have significant effects on the outcome of the model. Further research is needed in this area to better define how GAMM responds to changes in these parameters.

Appendix A: GAMM Airlifter Characteristics - Baseline C-130H

AIRLIFTER TYPE			C13ØH	
	- SEA	LEVEL -		FEET -
	HOT	COLD	HOT	COLD
	1Ø3 F	59 F	84 F	41 F
CTOL MAX USEFUL LOAD (LBS)	72ØØØ	72ØØØ	72ØØØ	72ØØØ
CTOL TO AT MAX USEFUL LOAD (FT)	358Ø	268Ø	4Ø7Ø	344Ø
CTOL LD AT MAX USEFUL LOAD (FT)	228Ø	215Ø	257Ø	243Ø
CTOL MID USEFUL LOAD (LBS)	37ØØØ	37ØØØ		37ØØØ
CTOL TO AT MID USEFUL LOAD (FT)	198Ø	162Ø		2Ø1Ø
CTOL LD AT MID USEFUL LOAD (FT)		1800	21ØØ	2ØØØ
CTOL TO AT ZERO USEFUL LOAD (FT)		95Ø		111Ø
CTOL LD AT ZERO USEFUL LOAD (FT)		142Ø		153Ø
VTOL MAX USEFUL LOAD (LBS)	Ø	Ø	Ø	Ø
LCN - MAX USEFUL LOAD (NO)			39	
LCN - AT ZERO USEFUL LOAD (NO)			18	
MAXIMUM FERRY FUEL (LBS)			5997Ø	
MAXIMUM CABIN PAYLOAD (LBS)			5Ø8ØØ	
CRUISE FUEL (LBS/HR)			53ØØ.	
CRUISE SPEED (KNOTS)			236	
CARGO BAY WIDTH (INCH)			1Ø7	
CARGO BAY HEIGHT (INCH)			1Ø2	
CARGO BAY LENGTH (INCH)			5Ø3	
CARGO BAY DOOR WIDTH (INCH)			12Ø	
CARGO BAY DOOR HEIGHT (INCH)			1Ø9	
MISSION ESSENTIAL FHBF (HRS)			2.34	
NON MISN ESSENTIAL FHBF (HRS)			999.ØØ	
MEAN TIME TO REPAIR (HRS)			2.40	
MITR STANDARD DEVIATION (NO)			Ø.83	
MEAN TIME TO SERVICE (HRS)			Ø.5Ø	
MITS STANDARD DEVIATION (NO)			Ø.Ø5	
MEAN TIME TO LOAD (HRS)			1.ØØ	
MTTL STANDARD DEVIATION (NO)			Ø.1Ø	
LOAD FAC FOR ROLLING STOCK (NO)			Ø.5Ø	
MEAN TIME TO UNLOAD (HRS)			Ø.25	
MITU STANDARD DEVIATION (NO)			ø.ø3	
UNLD FAC FOR ROLLING STOCK (NO)			Ø.5Ø	
MEAN TIME TO REPAIR BATTLE DAMAGE	(HRS)		92.5Ø	
MTTRBD STANDARD DEVIATION (NO)			1Ø2.8Ø	
AIRCRAFT SPOT FACTOR (NO)			1.00	
VULNERABILITY EXPONENT (NO)			1.ØØ	
RESERVE FUEL (HRS)			1.ØØ	
TAKEOFF/LANDING FUEL BIAS(LBS)			15ØØ.Ø	
PAYLOAD MARGIN NEXT FLT (LBS)			1ØØØ.	
TAXI, TAKEOFF & LANDING TIME (HRS	5)		Ø.25	
CARGO THRSHLD FOR RELOCATION (LBS	5)		15ØØØ.	
PALLET ROTATION FLAG			NO	

Appendix B: Airlift Jobs for Central American Scenario (22:Sec 4-8)

Job No.	C)	Closure Pr'ty Time 1-Hi	Pr'ty 1-81	Freq	-Tot	-Total Tons- Pax/Bulk/Veh	ls-	Average Tons/Job		V	Largest Dimensions L V H Vt	nsion		Threat (Km) Close/Farthest
-	UNIT HOVE, LIGHT INF BN (LIB)	24.0	3	2	172/	12/ 352	152	268.0	355	66	105	17t	3.0	3.8
7	UNIT HOVE, TRANS CO	24.0	9	-	727	0/1331	131	1353.0	368	66	105	17t	48.4	48.4
٣	UNIT HOVE, SPT GP HAC	24.0	9	-	11/	6	54	72.0	320	6	134	7.	48.4	48.4
4	UNIT HOVE, JTF/ALF HQ	24.0	S	-	28/	6	157	185.0	361	66	138	13t	87.3	87.3
S	EHERG RESUPPLY, POL	4.0	9	16	0/1	0/1056/	0	0.99	84	108	96	3t	-18.7	81.9
9	EHERG RESUPPLY TO ARTY UNIT	6.0	6	œ	0/1	0/1584/	0	198.0	84	108	96	34	-19.0	32.8
7	EHERG RESUPPLY, AIRDROP RATIONS	5 12.0	9	23	6	23/	0	1.0	84	108	96	2 t	-25.4	54.4
8	LEAFLET DROP	24.0	7	4	6	0/ 120/	0	30.0	84	108	96	2t	-26.9	-8.5
6	PERSONNEL HOVE, REPLACEMENTS	18.0	2	6	783/	6	0	87.0	24	24	72	i	-18.7	87.2
10	EHERG RESUPPLY, CRITICAL EQUIP	12.0	е	19	6	6	247	13.0	264	95	88	7.	-18.7	84.5
11	EHERG RESUPPLY TO BDE	12.0	5	18	0/1	0/1800/	0	100.0	84	108	96	3t	-18.7	65.1
12	SCHEDULED COURIER SREVICE	24.0	9	242	726/ 484/	/88/	0	5.0	84	108	96	21	2.6	221.3
13	RTN RESUPPLY, PAX/REPAIR PARTS	24.0	9	32	64/ 480/	480/	0	17.0	84	108	96	2t	48.2	54.4
14	EVACUATE KIA PERSONNEL	24.0	8	20	0	707	0	2.0	84	108	96	2t	-18.7	118.1
15	MEDICAL EVACUATION	4.0	7	20	/96	6	0	4.8	24	24	72		-18.8	118.1
16	RETROGRADE EQUIPHENT	24.0	9	14	6	6	280	20.0	440	96	84	8 t	-18.7	119.6

Appendix C: GAMM Initialization Sequence - Baseline Parameters

GENERALIZED AIR MOBILITY MODEL (GAMM)

RELEASE 3 VERSION 5

DATE OF LAST REVISION Ø9/Ø4/9Ø

ENTER CARRIAGE RETURN(CR) TO CONTINUE

INTERACTIVE GRAPHICS (Y/N)? N

CURRENT DEFAULT DISK = DEFAULT:.DAT CHANGES(Y/N)? N

IS A NEW CHAIN OF SCENARIO INPUTS TO BE CREATED(Y/N)? N

ARE INPUTS TO BE FROM AN EXISTING SCENARIO FILE(Y/N)? Y

IS FILE A CHAIN OF SCENARIOS OR A SINGLE SCENARIO(C/S)? S

ENTER ID OF THE SINGLE SCENARIO > CAMRUNØ3.DØ

THIS SCENARIO HAS A PREDETERMINED NUMBER OF AIRLIFTER TYPES, AIRBASES, E/D SITES, AIRLIFTERS, AND FLIGHT PLANNING TIMES.

DO YOU NEED TO CHANGE THESE (Y/N) ? N

INCREMENTAL CHANGES DURING SIMULATION(Y/N)? N

JOBS FILE (Y/N)? Y

ENTER JOBS FILE ID > CAMJOBS.XRM

CURRENT NUMBER OF JOB TYPES = 16 ADD MORE (Y/N)? N

STANDBY - READING DATA

INPUT DATA MENUS:

- 1 FOR ENTRY/DELIVERY SITE DATA
- 2 FOR AIRFIELD CHARACTERISTICS
- 3 FOR AIRLIFTER CHARACTERISTICS

- 4 FOR AIRLIFTER PERFORMANCE CHECK
- 5 FOR AIRLIFTER PS DATA
- 6 FOR TRANSPORTATION ARC DATA
- 7 FOR SURVIVABILITY JOB SCHEDULER
- 8 FOR FLIGHT SCHEDULE
- 9 FOR JOB DESCRIPTIONS
- 10 FOR MOVEMENT REQUESTS
- 11 FOR JOB DELETION CONDITIONS
- 12 FOR INITIAL CONDITIONS
- 13 FOR SAVING DATA
- 14 TO CONTINUE
- 15 TO STOP/END/EXIT

ENTER RESPONSE > 14

ENTER LENGTH OF SIMULATION IN DAYS (XX.) > 30.

ENTER NUMBER OF REPETITIONS (1) > 5

ENTER CREW DAY IN HOURS (XX.X) > 12.

ENTER TIME OF DAY FOR AVERAGE AIRBASE TEMPERATURE (HH:MM) > 13:00

LOWER PS BOUND FOR TAKEOFF ASAP. NOTE THAT LOADING AND TAKEOFF WILL ALWAYS OCCUR ASAP IF A VALUE OF 1.0 IS ENTERED. ALSO NOTE THAT AN AIRBASE CAN NOT BE A HOME BASE IF ITS 24 HOUR AIRCRAFT GROUND SURVIVABILITY IS LESS THAN THE VALUE ENTERED HERE (OR IT DOES NOT HAVE FUEL).

ENTER VALUE(.XX) > .998

WHEN TAKEOFF IS ASAP, A FACTOR CAN BE ENTERED TO DECREASE NORMAL SERVICE, LOAD AND UNLOAD TIMES.

ENTER FACTOR $(.XX) > 1.\emptyset$

WHEN TAKEOFF IS ASAP, A FACTOR CAN ALSO BE ENTERED TO DECREASE MISSION ESSENTIAL MAINTENANCE TIME.

ENTER FACTOR (.XX) > .5

AIRCRAFT SCHEDULING BY HIGH PS OR HIGH INPUT(P/I)? I

C13ØH FLIGHT SCHEDULE PRIORITY(X.X) > 2.

NORMALLY FLIGHTS TO DESTINATION AIRBASES ARE SELECTED AS A FUNCTION OF BACKLOGGED CARGO WEIGHT. ONCE SELECTED, AIRCRAFT ARE LOADED AS A FUNCTION OF JOB PRIORITY.

IS THIS SCHEDULING APPROACH SATISFACTORY(Y/N)? N

NORMAL SCHEDULING AND RELOCATION WILL BE BYPASSED FOR JOBS HAVING A PRIORITY HIGHER THAN OR EQUAL TO THE NUMBER SELECTED (SMALLER OR EQUAL IN NUMERICAL VALUE). ENTER PRIORITY NUMBER (XX) > 4

PS RESTRICTED SCHEDULING(Y/N)? N

INDIVIDUAL AIRLIFT JOBS PRINTOUT(Y/N)? N

SCENARIO STRUCTURE PRINTOUT(Y/N)? N

PROGRAM MODIFIED SCENARIO STRUCTURE PRINTOUT(Y/N)? N

AIRBASE CHARACTERISTICS PRINTOUT(Y/N)? N

AIRLIFTER CHARACTERISTICS PRINTOUT(Y/N)? N

OPERATIONAL PARAMETERS PRINTOUT(Y/N)? N

USE WT & VOL LOAD MODULE(Y/N)? Y

NOTE! ALL NON-STANDARD JOBS MUST BE DIMENSIONED FOR THIS MODE. SINCE THE WT AND VOL LOADING MODULE REQUIRES SOME CPU TIME TO ACCOMPLISH AIRLIFTER LOADING, SLIGHTLY MORE CPU TIME WILL BE REQUIRED TO RUN IN THIS MODE.

THE PROGRAM COMPARES THE BELOW INPUT VALUE (TONS) TIMES AIRBASE MOG TO THE TOTAL IN-BOUND PLUS BACKLOGGED JOBS AT AN AIRBASE AND STEP-WISE SCHEDULES MOVEMENTS TO AIRBASES IN ORDER TO UNIFORMLY DISTRIBUTE JOBS AS A FUNCTION OF AIRBASE MOG (THE SMALLER THE INPUT VALUE, THE MORE UNIFORM THE DISTRIBUTION). A VALUE LESS THAN 3 TONS IS SET TO 3 TONS.

ENTER VALUE IN TONS (XXXXX) > 25

MEAN TIME (DAYS) TO ELIMINATE BLOCKED AIRCRAFT(XX.X) > 2.

ENTER MINIMUM SPOTS FOR TRANSIT AIRCRAFT(XX.) > 2.2

SEED FOR PK CALCULATIONS (DEFAULT)? <CR>

SEED FOR OTHER CALCULATIONS (DEFAULT)? <CR>

IMMEDIATE TAKEOFF WITH RELOCATION AUTHORIZED(Y/N)? Y

GENERALIZED SUMMARY DATA IS ALWAYS SAVED ENTER ID OF FILE > RUNØ3OUT.LIS

STANDBY - INITIALIZING SIMULATION PARAMETERS

SIMULATION TIME = DAY 1

Appendix D: Design Matrices for Interaction Terms

	Table	13A.	Two	o−Fe	actor	· In	tera	ctio	n De	siør	Ma	trix				
Test													-			
Condition		AF	AC	ΑI	AG	AS	FC	FI	FG	FS	CI	CG	CS	IG	IS	GS
Number	Run										-					
1	EXP	19 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
2	EXP 8	51 -	_	_	_		+	+	+	+	+	+	+	+	+	+
3	EXP (03 -	+	+	+	+	_	_	_	_	+	+	+	+	+	+
4	EXP (35 +	_	_	_	_	_	_	_	_	+	+	+	+	+	+
5	EXP 2		_	+	+	+	_	+	+	+	_	_	_	+	+	+
6	EXP 5	59 –	+	_	_	_	_	+	+	+	_	_	_	+	+	+
7	EXP	11 -	_	+	+	+	+	_	_	_	_	_	_	+	+	+
8	EXP 4	43 +	+	_	_	_	+	_	_	_	_	_	_	+	+	+
9	EXP 2	23 +	+	_	+	+	+	_	+	+	_	+	+	_	-	+
10	EXP 8	55 -	_	+	_	_	+	_	+	+	_	+	+	_	_	+
11	EXP (07 -	+	_	+	+		+	_	_	_	+	+	_	_	+
12	EXP 3	39 +	_	+	_	_	_	+	_	_	_	+	+	_	_	+
13	EXP (31 +	-	_	+	+	_	_	+	+	+	_	_	_	_	+
14	EXP (63 –	+	+	_	_	_	_	+	+.	+	_	_		_	+
15	EXP	15 -	_	_	+	+	+	+	_	_	+	_	_	_	_	+
16	EXP 4	47 +	+	+	_	_	+	+	_	_	+	_	_	_	_	+
17	EXP	17 +	+	+	-	+	+	+	_	+	+	_	+	_	+	-
18	EXP 4	49 -	-	_	+	_	+	+	-	+	+	_	+	_	+	-
19	EXP (01 -	+	+	-	+	_	_	+	-	+	_	+	-	+	-
20	EXP 3	33 +	_	_	+	-	_	_	+	_	+	_	+.	_	+	-
21	EXP 2	25 +	-	+	_	+		+	_	+	_	+	-	_	+	-
55	EXP (57 -	+	_	+	-	_	+	_	+	_	+	_	_	+	_
23	EXP (09 -	-	+	-	+	+	_	+	-	_	+	_	_	+	-
24	EXP 4	41 +	+	_	+	-	+	_	+	_	-	+	_	_	+	~
25	EXP 2	21 +	+	_	_	+	+	-	-	+	_	_	+	+	_	
26	EXP (53 -	-	+	+	_	+	_	_	+	-	-	+	+	_	~
27	EXP (05 -	+	_	-	+	-	+	+	_	-	-	+	+	-	-
28	EXP (-	+	+	-	-	+	+	_	-	_	+	+	_	~
29	EXP :	29 +	-	-		+	-	_	-	+	+	+	_	+	_	-
30	EXP (+	+	+	_	-	-	_	+	+	+	_	+	-	-
31	EXP		-	-	_	+	+	+	+	-	+	+	-	+	_	-
32	EXP	45 +	+	+	+	_	+	+	+	-	+	+	-	+	_	-

	Table 13	B	Two	o–Fe	ctor	· In	tera	ctio	n De	sigr	ı Me	trix				
Test					•								-			
Condition		AF	AC	ΑI	AG	AS	FC	FI	FG	FS	CI	CG	CS	IG	IS	GS
Number	Run No															
33	EXP 18	+	+	+	+	_	+	+	+	_	+	+	_	+	_	_
34	EXP 50	-	_	-	_	+	+	+	+	_	+	+	_	+	_	_
35	EXP 02	_	+	+	+	_	-	-	_	+	+	+	_	+	_	
36	EXP 34	+	_	_	-	+	_	_	-	+	+	+	_	+	_	_
37	EXP 26	+	_	+	+	_	_	+	+	_	_	_	+	+	_	_
38	EXP 58	-	+	_	_	+	_	+	+	_	_	_	+	+	_	_
39	EXP 10	-	_	+	+	_	+	_	_	+	-	_	+	+	_	_
40	EXP 42	+	+	-	_	+	+	_	_	+	_	_	+	+	_	_
41	EXP 22	+	+	_	+	_	+	_	+	-	_	+	_	_	+	_
42	EXP 54	_	_	+	_	+	+		+	_	_	+	_	_	+	_
43	EXP 06	_	+	_	+	_	_	+		+	_	+	_	-	+	_
44	EXP 38	+	_	+	_	+	-	+	_	+	_	+	_	_	+	_
45	EXP 30	+	_	_	+		_	_	+	_	+	_	+	_	+	_
46	EXP 62	-	+	+		+	_	· _	+	_	+	_	+	_	+	_
47	EXP 14		_	_	+	-	+	+		+	+	_	+	_	+	_
48	EXP 46	+	+	+	-	+	+	+	_	+	+	_	+	_	+	_
49	EXP 16	+	+	+	_	_	+	+	_	_	+	_	_	_	_	+
50	EXP 48	-	_	_	+	+	+	+	-	_	+	_	_	_	_	+
51	EXP 00	_	+	+	-	_	_	_	+	+	+	_	_	_		+
52	EXP 32	+	_	-	+	+	_	_	+	+	+	_	_	_	_	+
53	EXP 24	+	_	+	_	_		+	_	_		+	+	_	_	+
54	EXP 56	-	+	_	+	+	-	+		_	_	+	+	_	_	+
55	EXP 08	_	_	+	-	_	+	_	+	+	_	+	+	_	_	+
56	EXP 40	+	+	-	+	+	+	-	+	+	_	+	+	_	_	+
57	EXP 20	+	+	-	-	_	+	_	_	_	_	_	_	+	+	+
58	EXP 52	-	_	+	+	+	+	_	_	_	_	_	_	+	+	+
59	EXP 04	_	+	_	-	-	_	+	+	+	_	_	_	+	+	+
60	EXP 36	+	_	+	+	+	_	+	+	+	_	_	_	+	+	+
61	EXP 28	+	_	_	_	_	_	_	_	_	+	+	+	+	+	+
62	EXP 60	_	+	+	+	+	_	_	_	_	+	+	+	+	+	+
63	EXP 12	_	_	_	_	_	+	+	+	+	+	+	+	+	+	+
64	EXP 44	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

				Table	Table 14A.		Thre	Three-Factor	i	Interaction	ction	Design	- 1	Matrix						
Test																				
Condition	C.	AFC	AFI	AFG	AFS	VCI	VCC	ACS /	AIG /	AIS A	AGS F	F.	55	<u>က</u>	FIG.	FIS	FGS	<u> </u>	CIS	SSS
Number																				
		1	į	ł	1	١	1	ı	I	ı	1	ı	į	ı	t	i	i	ı	i	i
0	EXP 51	+	+	+	+	+	+	+	+	+	+	1	1	ı	ı	į	ı	ı	Į	ı
က	EXP 03	+	+	+	+	ı	ı	ı	ı	ţ	ı	+	+	+	+	+	+	ì	ı	ı
4		1	į	ł	ı	+	+	+	+	+	+	+	+	+	+	+	+	ı	ı	ı
ς,		+	١	1	ı	+	+	+	1	1	1	+	+	+	ı	i	1	+	+	+
90		I	+	+	+	ı	į	ŀ	+	+	+	+	+	+	ı	1	ı	,+	+	+
~		I	+	+	+	+	+	+	ı	1	ŧ	1	ı	ı	+	+	+	+	+	+
œ		+	ì	ı	ì	ı	ı	ı	+	+	+	ı	1	t	+	+	+	+	+	+
6		I	+	ı	ı	+	ı	ı	+	+	ı	+	ı	t	+	+	ı	+	+	ŧ
10		+	ı	+	+	ı	+	+	ı	t	+	+	ı	ŧ	+	+	1	+	+	ı
11		+	1	+	+	+	ı	1	+	+	1	1	+	+	ŧ	ì	+	+	+	ı
12		•	+	١	1	1	+	+	1	ı	+	ı	+	+	ı	1	+	+	+	t
13	EXP 31	+	+	ı	ı	ı	+	+	+	+	,	ı	+	+	+	+	1	1	ł	+
14		1	1	+	+	+	ì	1	1	1	+	1	+	+	+	+	ı	ı	ı	+
15		١	1	+	+	i	+	+	+	+	1	+	ı	ı	ı	i	+	ı	1	+
16		+	+	ı	ı	+	I	i	ı	1	+	+	i	i	,	1	+	ł	1	+
17		1	ı	+	1	t	+	ı	+	í	+	ı	+	1	+	i	+	+	ı	+
18		+	+	ı	+	+	ı	+	ı	+	ı	1	+	ı	+	i	+	+	ı	+
19	EXP 01	+	+	ı	+	1	+	ı	+	ł	+	+	ı	+	ı	+	ı	+	ı	+
20		1	1	+	ı	+	1	+	ı	+	ŧ	+	t	+	,	+	ı	+	ı	+
21		+	1	+	ı	+	ı	+	+	1	+	+	ı	+	+	i	+	1	+	ı
22		ı	+	1	+	ı	+	1	ı	+	ı	+	t	+	+	ł	+	1	+	1
23		1	+	ı	+	+	ı	+	+	1	+	ţ	+	ı	ļ	+	ı	ı	+	ı
24		+	ı	+	1	1	+	t	ı	+	,	1	+	ŧ	ı	+	1	í	+	ı
25		1	+	+	ı	+	+	ı	ı	+	+	+	+	ι	ı	+	+	ı	+	+
5 8		+	ı	1	+	i	ı	+	+	ı	ı	+	+	1	J	+	+	ı	+	+
27	EXP 05	+	ı	1	+	+	+	ı	1	+	+	ı	1	+	+	ı	ı	í	+	+
28		ı	+	+	1	l	1	+	+	ŧ	ı	4	1	+	+	ı	ı	ı	+	+
58		+	+	+	ļ	ı	ι	+	i	+	+	i	ı	+	ı	+	+	+	i	ı
30		ş	1	ı	+	+	+	ı	+	ţ	1	ı	ı	+	j	+	+	+	1	ı
31	EXP 13	1	ı	1	+	ı	ı	+	1	+	+	+	+	ı	+	i	ı	+	ì	ı
32	EXP 45	+	+	+	ı	+	+	t	+	ţ	ŧ	+	+	1	+	1	ı	+	ı	1

SDI

					Table 14B.	14B.		Thre	e-Fa	ctor	Three-Factor Interaction Design Matrix	action	Des	iign	Matri	×					
Test																					
Condition	-	¥	AFC .	AFI	AF G	AFS	ACI	ACC	V S	AIG	AIS	AGS	2	ည	ર્ડે	FIG	FIS	PGS	CIC	CIS	SSS
Number Run		N _o																			
33		18	ı	1	i	+	ì	ı	+	1	+	+	t	1	+	ł	+	+	1	+	+
34	EXP 5	20	+	+	+	ł	+	+	1	+	ı	i	ı	ŀ	+	ł	+	+	ı	+	+
35		05	+	+	+	ı	•	1	+	1	+	+	+	+	I	+	ı	ı	1	+	+
36		34	ı	ı	ı	+	+	+	1	+	ı	ì	+	+	i	+	1	ł	ı	+	+
37		58	+	ı	i	+	+	+	ı	i	+	+	+	+	i	Í	+	+	+	1	1
38		58	1	+	+	ı	1	1	+	+	ş	ı	+	+	ı	ł	+	+	+	1	ı
39	EXP 1	0	ı	+	+	ı	+	+	ı	i	+	+	ı	ı	+	+	ı	1	+	ŀ	1
40	EXP 4	٠	+	1	1	+	1	1	+	+	1	ţ	1	1	+	+	1	ı	+	ı	ı
41		22	i	+	1	+	+	ı	+	+	ı	+	+	ı	+	+	ı	+	+	1	+
45		54	+	1	+	ı	ı	+	ı	i	+	ţ	+	,	+	+	ı	+	+	ı	+
43		90	+	į	+	ı	+	i	+	+	ı	+	ŧ	+	i	ı	+	ł	+	ı	+
44		38	ı	+	ı	+	1	+	ı	1	+	ı	i	+	,	1	+	ı	+	ł	+
45		30	+	+	ı	+	1	+	1	+	ı	+	ı	+	í	+	į	+	ı	+	1
46	EXP 6	62	ı	ı	+	1	+	i	+	ı	+	ŀ	ı	+	ı	+	ı	+	ı	+	ı
47	EXP 1	4	ı	i	+	ŧ	i	+	1	+	ı	+	+	į	+	ı	+	ı	1	+	1
48		46	+	+	i	+	+	ı	+	ł	+	ı	+	į	+	ł	+	1	ı	+	i
48		16	i	ı	+	+	t	+	+	+	+	ł	ı	+	+	+	+	I	+	+	1
20		48	+	+	ı	ı	+	ı	ı	1	I	+	i	+	+	+	+	1	+	+	l
51		00	+	+	ı	ı	1	+	+	+	+	,	+	ı	1	1	ı	+	+	+	ı
25	EXP 3	35	ı	ŀ	+	+	+	ı	1	ı	1	+	+	ŧ	ı	1	1	+	+	+	1
53		4	+	ı	+	+	+	1	I	+	+	ı	+	ŧ	t	+	+	1	ı	1	+
54		28	ı	+	ı	ì	į	+	+	ı	ı	+	+	ł	ı	+	+	ŧ	ł	ı	+
22		. 80	i	+	ļ	ı	+	ı	1	+	+	ı	ı	+	+	1	1	+	ı	ı	+
28		40	+	1	+	+	i	+	+	ı	í	+	1	+	+	ı	ł	+	I	1	+
22		50	ı	+	+	+	+	+	+	ŀ	1	1	+	+	+	ı	1	1	i	ł	1
28		. 29	+	ı	ı	ı	t	ı	1	+	+	+	+	+	+	1	1	ı	1	1	ı
28		•	+	ı	1	ı	+	+	+	ı	1	ı	ı	ł	1	+	+	+	ł	١	١
9		36	ı	+	+	+	1	ı	ı	+	+	+	1	1	ı	+	+	+	i	4	ł
61	EXP 2	58	+	+	+	+	1	ı	1	ı	ł	ı	ı	ı	t	1	1	ŀ	+	+	+
62		. 09	ı	ı	1	1	+	+	+	+	+	+	ł	ı	ł	ı	ì	ı	+	+	+
63	EXP 1	12	1	ı	1	1	1	i	1	1	ı	ı	+	+	+	+	+	+	+	+	+
64		7	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

			Table 15A	15A	Fou	Four-Factor Interaction	or Int	eractio	j	Design Me	Matrix	1				
Test																
Condition		AF CI	AFCC	AFCS	AFIG	AFIS	AFGS	ACIG	ACIS	ACCS	AIGS	FCIG	FCIS	Fccs	FIGS	Sic
Number	Run No															
	EXP 19	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•
8	EXP 51	ŧ	ı	1	i	ı	1	ı	ı	ı	1	+	+	+	+	•
8	EXP 03	1	1	ŧ	1	i	ı	+	+	+	+	ì	1	ı	i	
4		+	+	+	+	+	+	ŧ	ı	ı	1	1	1	1	1	_
2	EXP 27	ı	١	ı	+	+	+	1	1	i	+	i	ı	1	+	•
9		+	+	+	ı	I	ı	+	+	+	ı	1	1	1	+	•
2		+	+	+	1	I	ı	ı	ı	ı	+	+	+	+	1	•
60		ŀ	ł	ł	+	+	+	+	+	+	i	+	+	+	1	,
6		1	+	+	ı	i	+	1	ı	+	1	ŀ	ı	+	ı	,
10		+	ı	1	+	+	ı	+	+	ŀ	+	1	1	+	i	,
11	EXP 07	+	ı	1	+	+	1	ı	i	+	1	+	+	1	+	'
12		ŀ	+	+	1	t	+	+	+	ı	+	+	+	1	+	•
13		+	1	ŀ	ŀ	١	+	+	+	ì	ı	+	+	ı	1	
14		,	+	+	+	+	i	1	1	+	+	+	+	1	١	_
15	EXP 15	ı	+	+	+	+	1	+	+	ì	1	j	ı	+	+	т
18	EXP 47	+	ı	t	ł	1	+	1	1	+	+	ţ	i	+	+	•
17	EXP 17	+	ı	+	ł	+	1	1	+	t	1	ı	+	ł	1	•
18	EXP 49	1	+	ŀ	+	١	+	+	I	+	+	1	+	1	ı	,
19	EXP 01	ı	+	ı	+	t	+	1	+	1	i	+	1	+	+	•
20		+	ŀ	+	i	+	i	+	Í	+	+	+	i	+	+	•
21	EXP 25	1	+	ı	1	+	I	+	ł	+	1	+	I	+	ı	_
22		+	1	+	+	1	+	1	+	1	+	+	1	+	1	7
83		+	ł	+	+	ı	+	+	ı	+	i	ı	+	ı	+	7
24	EXP 41	ı	+	1	ı	+	ı	1	+	1	+	i	+	ł	+	_
25	EXP 21	ı	ı	+	+	ı	1	+	ŀ	ı	+	+	ı	1	+	T.
88	EXP 53	+	+	ł	l	+	+	1	+	+	ŀ	+	i	ı	+	7
27		+	+	1	ı	+	+	+	ı	1	+	1	+	+	1	_
28	EXP 37	1	ı	+	+	ı	ı	ŧ	+	+	ı	i	+	+	1	7
62		+	+	1	+	ł	ı	1	+	+	+	1	+	+	+	•
30		ŧ	ı	+	ı	+	+	+	ı	ı	i	1	+	+	+	'
31	EXP 13	ı	1	+	1	+	+	i	+	+	+	+	ŧ	ŧ	1	•
35	EXP 45	+	+	ı	+	ł	1	+	ı	1	ì	+	ı	1	ı	•

FIGS FCGS FCIS FCIG AIGS Four-Factor Interaction Design Matrix ACGS ACIS ACIG AFGS AFIS AFIG AFCS Table 15B. AFCG AFCI Run No EXP 18 EXP 50 EXP 50 EXP 02 EXP 02 EXP 02 EXP 24 EXP 24 EXP 25 EXP 30 EXP 30 EXP 46 EXP 30 EXP 46 EXP 46 EXP 46 EXP 46 EXP 46 EXP 46 EXP 24 EXP 26 EX Condition Number 35 36 37 38 38

1 | + + + + + + + + | | | | | + + + + | | | | | | | | | | + + + + |

CICS

			Table 16A	6A.	Five-Fe	actor an	Five-Factor and Six-Factor Interaction Design Matrices	Interaction	Design Mat	rices	
Test									Test		
Condition		AFCIG	AFCIS	AFCGS	AFIGS	ACIGS	FCIGS		Condition		AFCIGS
Number	Run No								Number	Run No	
1	EXP 19	١	1	ſ	1	ŀ	ì			EXP 19	+
8	EXP 51	+	+	+	+	+	ı		N	EXP 51	ı
က	EXP 03	+	+	+	+	ı	+		ဇ	EXP 03	i
4	EXP 35	ı	ŧ	ı	ı	+	+		4	EXP 35	+
જ	EXP 27	+	+	+	1	+	+		ď	EXP 27	ŀ
9	EXP 59	1	I	ı	+	1	+		89	EXP 59	+
7	EXP 11	1	I	ı	+	+	ı		۲	EXP 11	+
8	EXP 43	+	+	+	ı	ı	1		60		ı
6	EXP 23	+	+	1	+	+	+		O.	EXP 23	ı
10	EXP 55	ı	i	+	1	ł	+		10	EXP 55	+
11	EXP 07	ı	1	+	ı	+	I		11		+
12	EXP 39	+	+	ł	+	i	ı		12	EXP 39	ı
13	EXP 31	ı	ı	+	+	1	ı		13		+
14	EXP 6 3	+	+	ı	1	+	1		14		1
15	EXP 15	+	+	1	ı	ı	+		15		1
16	EXP 47	ı	ŀ	+	+	+	+		16	EXP 47	+
17	EXP 17	+	ì	+	+	+	+		17		1
18	EXP 49	1	+	1	1	ı	+		18		+
19		i	+	1	ì	+	•		19		+
20		+	ı	+	+	ì	1		20	EXP 33	ı
21		ſ	+	1	+	1	ı		21		+
22		+	1	+	ı	+	ĺ		22	EXP 57	1
23		+	ì	+	ı	i	+		23	EXP 09	ì
24		1	+	ŀ	+	+	+		24	EXP 41	+
25	EXP 21	1	+	+	ł	ı	1		25		+
58		+	1	1	+	+	ı		26	EXP 53	ì
27		+	t	ı	+	i	+		22		1
82		i	+	+	i	+	+		28		+
5 8		+	i	ı	ı	+	+		59	EXP 29	ı
30		ı	+	+	+	1	+		30	EXP 61	+
31	EXP 13	ŧ	+	+	+	+	ı		31		+
32		+	ì	ŧ	í	I	į		32	EXP 45	1

			Table 16B.	6B .	Five-F	actor an	Five-Factor and Six-Factor Interaction Design Matrices	Interaction	Design Mate	rices	
Test									Test	}	
Condition		AFCIG	AFCIS	AFCGS	AFIGS	ACIGS	FCIGS		Condition		AFCIGS
Number	Run No								Number	Run No	
33		ı	+	+	+	+	+		33	EXP 18	1
34	EXP 50	+	ł	ì	ı	1	+		34	EXP 50	+
35	EXP 02	+	ŀ	ı	1	+	ı		35	EXP 02	+
36	EXP 34	ı	+	+	+	1	1		36	EXP 34	1
37	EXP 26	+	ţ	1	+	ı	ı		37	EXP 26	+
38	EXP 58	ı	+	+	1	+	i		38	EXP 58	ł
39	EXP 10	ı	+	+	ı	ı	+		38	EXP 10	1
40	EXP 42	+	t	ı	+	+	+		40		+
41	EXP 22	+	1	+	ı	ı	1		41	EXP 22	+
42	EXP 54	ł	+	ł	+	+	1		42	EXP 54	ı
43	EXP 06	t	+	ı	+	1	+		43	EXP 08	f
44	EXP 38	+	ı	+	1	+	+		44		+
45	EXP 30	ı	+	ı	1	+	+		45		ł
46	EXP 62	+	ı	+	+	ŀ	+		46	EXP 62	+
47	EXP 14	+	ı	+	+	+	1		47	EXP 14	+
48	EXP 48	ı	+	1	ì	ı	ı		48	EXP 48	1
49	EXP 18	+	+	ı	ı	ł	ł		49	EXP 16	+
90	EXP 48	ı	ı	+	+	+	ł		20	EXP 48	1
51	EXP 00	ı	. 1	+	+	1	+		51	EXP 00	1
52	EXP 32	+	+	ı	ı	+	+		52	EXP 32	+
53	EXP 24	ı	t	+	ı	+	+		53	EXP 24	ı
54		+	+	1	+	1	+		54		+
55	EXP 08	+	+	I	+	+	ı		55		+
99	EXP 40	1	1	+	ı	i	ı		56		i
24		1	ĺ	1	+	+	+		22		į
58	EXP 52	+	+	+	1	į	+		58	EXP 52	÷
59	EXP 04	+	+	+	ı	+	1		59	EXP 04	+
9	EXP 36	ı	ı	1	+	i	ŧ		9	EXP 36	í
61	EXP 28	+	+	+	+	ı	ı		61		+
82	EXP 60	ı	•	1	ı	+	1		62		1
63	EXP 12	I	1	1	1	ı	+		63	EXP 12	1
64	EXP 44	+	+	+	+	+	+		64	EXP 44	+

Appendix E: Results and Calculations for the Number of Required Replications

Table 17. Calculation of Number of Runs Required - One Percent Accuracy

NUMB	ER OF	TONS	NUMBER OF	TONS	NUMBER OF	TOTAL	NUMBER OF
сими	LATIVE	ON TIME	RUNS	DELIVERED	RUNS	FLIGHT	RUNS
RUNS			REQUIRED		REQUIRED	HOURS	REQUIRED
2	MEAN	2141.00		5833.00		4035.00	
S	STDS	24.04	201.46	104.65	523.67	19.80	38.60
3	MEAN	2152.33		5796.33		4047.67	1
3	STDS	25.97	26.96	97.52	52.15	26.03	7.65
4	MEAN	2152.25		5797.50		4045.75	
4	STDS	21.20	9.83	79.66	19.03	21.59	2.88
5	MEAN	2155.20		5795.00		4035.20	j
5	STDS	19.51	6.33	69.21	10.93	30.10	4.26
8	MEAN	2146.67		5794.50	1	4047.17	1
6	STDS	27.23	10.58	6192	7.50	39.80	6.39
7	MEAN	215186		5799.57		4040.29	ļ
7	STDS	28.40	10.43	58.09	5.98	4064	6.03
8	MEAN	215275		5810.63	[4042.88	ĺ
8	STDS	26.41	8.42	62.21	6.41	38.33	5 0 1
9	MEAN	2153.33		5808.78		4047.33	
9	STDS	24.77	7.04	58.45	5.38	38.27	4.75
10	MEAN	2152.20	1	5810.70		4049.20	
10	STDS	23.53	6.17	55.45	4.66	36.56	4.17

e = 1% 21 522 58.107 40.492

NUMB	ER CF	TOTAL	NUMBER OF	PRODUCTIVE	NUMBER OF	PRODUCTIVE	NUMBER OF
CUMU	LATIVE	SORTIES	RUNS	FLIGHT	RUNS	SORTIES	RUNS
RUNS			REQUIRED	HOURS	REQUIRED		REQUIRED
S	MEAN	7292.50		463.50		855.00	
5	STDS	2 1 2	0.14	4.95	185.95	14.14	443.14
3	MEAN	7337.00	!	458.00	i	847.00	1
3	STDS	77.09	20.62	10.15	89.66	17.09	74.20
4	MEAN	7329.00		457 00		847.00	[
4	STDS	64.95	8.00	8.52	34.59	13.95	27.05
5	MEAN	7308.40		459.00		850.20	i .
5	STDS	72.70	7.63	8.63	26.99	14.04	20.86
6	MEAN	7328.83	i	457.33		847.67	
6	STDS	82.06	8.34	8.73	23.70	14.01	17.80
7	MEAN	7308 14		458.00		848 14	
7	STDS	92.78	9.66	8 16	18.77	12.85	13.57
8	MEAN	7305.75	İ	459 75		851.13	
8	STDS	86 16	7 78	9.04	21,47	14.58	18 33
9	MEAN	730400	1	460.56	į	852.67	į ,
9	STDS	80.77	6 5 0	8.79	19.32	14.40	15.14
10	MEAN	7304.80		46120		853.60	
10	STDS	76.19	5 5 7	8.53	17.52	13.90	13 56

e = 1% 73 048 4.612 8.536 a = (1-0.95)3 n = 2 3 12 706 4.303 2 t(a/2, n-1)=3.182 2.776 8 10 2.571 2 447 2.365 2.306 2.262

Table 18. Calculation of Number of Runs Required - Two Percent Accuracy

NUME	ER OF	TONS	NUMBER OF	TONS	NUMBER OF	TOTAL	NUMBER OF
CUMU	LATIVE	ON TIME	RUNS	DELIVERED	RUNS	FLIGHT	RUNS
RUNS			REQUIRED		REQUIRED	HOURS	REQUIRED
2	MEAN	2141.00		5833.00		4035.00	
2	STDS	24.04	50.36	104.65	130.92	19.80	9.65
3	MEAN	2152.33		5796.33		4047.67	
3	STDS	25.97	6.74	97.52	13.04	26.03	1.91
4	MEAN	2152.25		5797.50		4045.75	
4	STDS	21.20	2.46	79.66	4.76	21.59	0.72
5	MEAN	2155.20		5795.00		4035.20	
5	STDS	19.51	1.58	69.21	2.73	30.10	1.06
В	MEAN	2146.67		5794.50		4047.17	
6	STDS	27.23	2.65	61.92	1.88	39.80	1.60
7	MEAN	2151.86		5799.57		4040.29	
7	STDS	28.40	2.61	58.09	1.50	40.64	1.51
8	MEAN	2152.75		5810.63		4042.88	
8	STDS	26.41	2.11	62.21	1.60	38.33	1.25
9	MEAN	2153.33	}	5808.78		4047.33	
9	STDS	24.77	1.76	58.45	1.35	38.27	1.19
10	MEAN	2152.20		5810.70		4049.20	
10	STDS	23.63	1.54	55.45	1.16	36.56	1.04

e = 2% 43.044

116.214 80.984

NUME	ER OF	TOTAL	NUMBER OF	PRODUCTIVE	NUMBER OF	PRODUCTIVE	NUMBER OF
UMU	LATIVE	SORTIES	RUNS	FLIGHT	RUNS	SORTIES	RUNS
RÚNS			REQUIRED	HOURS	REQUIRED		REQUIRED
2	MEAN	7292.50		463.50		855.00	
2	STDS	2.12	0.03	4.95	46.49	14.14	110.78
3	MEAN	7337.00		458.00		847.00	
3	STDS	77.09	5.16	10.15	22.42	17.09	18.55
4	MEAN	7329.00		457.00		847.00	
4	STDS	64.95	2.00	8.52	8.65	13.95	6.76
5	MEAN	7308.40		459.00		850.20	
5	STDS	72.70	1.91	8.63	6.75	14.04	5.21
6	MEAN	7328.83		457.33		847.67	1
6	STDS	82.06	2.09	8.73	5.93	14.01	4.45
7	MEAN	7308.14		458.00	İ	848.14	
7	STDS	92.78	2.41	8.16	4.69	12.85	3.39
8	MEAN	7305.75		459.75		851.13	
8	STDS	86.16	1.95	9.04	5.37	14.58	4.08
9	MEAN	7304.00	1	460.56		852.67	
9	STDS	80.77	1.63	8.79	4.83	14.40	3.79
10	MEAN	7304.80		461.20		853.60	!
10	STDS	76.19	1.39	8.53	4.38	13.90	3.39

e = 2% 146.096 9.224 17.072 a = (1-0.95)n -2 t(a/2, n-1)=12.706 4.303 3.182 2.776 7 8 9 10 2.571 2.447 2.365 2.306 2.262

Table 19. Calculation of Number of Runs Required - Three Percent Accuracy

NUME	ER OF	TONS	NUMBER OF	TONS	NUMBER OF	TOTAL	NUMBER OF
CUMU	LATIVE	ON TIME	RUNS	DELIVERED	RUNS	FLIGHT	RUNS
RUNS			REQUIRED		REQUIRED	HOURS	REQUIRED
2	MEAN	2141.00		5833.00		4035.00	
2	STDS	24.04	22.38	104.65	58.19	19.80	4.29
3	MEAN	2152.33		5798.33		4047.67	
3	STDS	25.97	3.00	97.52	5.79	26.03	0.85
4	MEAN	2152.25		5797.50	j ,	4045.75	
4	STDS	21.20	1.09	79.66	2.11	21.59	0.32
5	MEAN	2155.20		5795.00		4035.20	
5	STDS	19.51	0.70	69.21	1.21	30.10	0.47
6	MEAN	2146.67	İ	5794.50		4047.17	
6	STDS	27.23	1.18	61.92	0.83	39.80	0.71
7	MEAN	2151.86		5799.57		4040.29	
7	STDS	28.40	1.16	58.09	0.66	40.64	0.67
8	MEAN	2152.75		5810.63	İ	4042.88	
8	STDS	26.41	0.94	62.21	0.71	38.33	0.56
9	MEAN	2153.33		5808.78		4047.33	
9	STDS	24.77	0.78	58.45	0.60	38.27	0.53
10	MEAN	2152.20		5810.70		4049.20	
10	STDS	23.63	0.69	55.45	0.52	36.56	0.46

e = 3% 64.566

174.321

121.476

NUMB	ER OF	TOTAL	NUMBER OF	PRODUCTIVE	NUMBER OF	PRODUCTIVE	NUMBER OF
UMU:	LATIVE	SORTIES	RUNS	FLIGHT	RUNS	SORTIES	RUNS
<u>RU</u> NS			REQUIRED	HOURS	REQUIRED		REQUIRED
2	MEAN	7292.50		463.50		855.00	
2	STDS	2.12	0.02	4.95	20.66	14.14	49.24
3	MEAN	7337.00		458.00	Ì	847.00	
3	STDS	77.09	2.29	10.15	9.96	17.09	8.24
4	MEAN	7329.00		457.00		847.00	
4	STDS	64.95	0.89	8.52	3.84	13.95	3.01
5	MEAN	7308.40	j	459.00		850.20	
5	STDS	72.70	0.85	8.63	3.00	14.04	2.32
6	MEAN	7328.83	1	457.33		847.67	
6	STDS	82.06	0.93	8.73	2.63	14.01	1.98
7	MEAN	7308.14		458.00	1	848.14	
7	STDS	92.78	1.07	8.16	2.09	12.85	1.51
8	MEAN	7305.75		459.75		851.13	
8	STDS	86.16	0.86	9.04	2.39	14.58	1.81
9	MEAN	7304.00		460.56		852.67	
9	STDS	80.77	0.72	8.79	2.15	14.40	1.68
10	MEAN	7304.80		461.20		853.60	
10	STDS	_ 76.19	0.62	8.53	1.95	13.90	1.51

e = 3% 219.144 13.836 25.608 a = (1-0.95)n = 2 3 t(a/2, n-1)=12.706 4.303 3.182 2.776 7 8 10 2.571 2.447 2.365 2.306 2.262

Table 20. Calculation of Number of Runs Required - Four Percent Accuracy

NUMB	ER OF	TONS	NUMBER OF	TONS	NUMBER OF	TOTAL	NUMBER OF
CUMU	LATIVE	ON TIME	RUNS	DELIVERED	RUNS	FLIGHT	RUNS
RUNS			REQUIRED		REQUIRED	HOURS	REQUIRED
2	MEAN	2141.00		5833.00		4035.00	
2	STDS	24.04	12.59	104.65	32.73	19.80	2.41
3	MEAN	2152.33		5796.33	[4047.67	
3	STDS	25.97	1.68	97.52	3.26	26.03	0.48
4	MEAN	2152.25		5797.50		4045.75	
4	STDS	21.20	0.61	79.66	1.19	21.59	0.18
5	MEAN	2155.20		5795.00		4035.20	1
5	STDS	19.51	0.40	69.21	0.68	30.10	0.27
6	MEAN	2146.67		5794.50		4047.17	į į
6	STDS	27.23	0.66	61.92	0.47	39.80	0.40
7	MEAN	2151.86	!	5799.57		4040.29	
" 7	STDS	28.40	0.65	58.09	0.37	40.64	0.38
8	MEAN	2152.75		5810.63	ļ	4042.88	
8	STDS	26.41	0.53	62.21	0.40	38.33	0.31
9	MEAN	2153.33	ī j	5808.78		4047.33	
9	STDS	24.77	0.44	58.45	0.34	38.27	0.30
10	MEAN	2152.20		5810.70	i	4049.20	
10	STDS	23.63	0.39	55.45	0.29	36.56	0.26

e = 4% 86.088

232.428

161.968

NIIMB	ER OF	TOTAL	NUMBER OF	PRODUCTIVE	NUMBER OF	PRODUCTIVE	NUMBER OF
31	LATIVE	SORTIES	RUNS	FLIGHT	RUNS	SORTIES	RUNS
11		BORTIES				SORTIES	
RUNS			REQUIRED	HOURS	REQUIRED		REQUIRED
2	MEAN	7292.50	ļ	463.50		855.00	
2	STDS	2.12	0.01	4.95	11.62	14.14	27.70
3	MEAN	7337.00		458.00		847.00	
3	STDS	77.09	1.29	10.15	5.60	17.09	4.64
4	MEAN	7329.00	1	457.00		847.00	
4	STDS	64.95	0.50	8.52	2.16	13.95	1.69
5	MEAN	7308.40		459.00		850.20	
5	STDS	72.70	0.48	8.63	1.69	14.04	1.30
8	MEAN	7328.83		457.33		847.67	
6	STDS	82.06	0.52	8.73	1.48	14.01	1.11
7	MEAN	7308.14		458.00		848.14	
7	STDS	92.78	0.60	8.16	1.17	12.85	0.85
8	MEAN	7305.75		459.75		851.13	
8	STDS	86.16	0.49	9.04	1.34	14.58	1.02
9	MEAN	7304.00	ļ.	460.56)	852.67	
9	STDS	80.77	0.41	8.79	1.21	14.40	0.95
10	MEAN	7304.80		481.20	[853.60	
10	STDS	76.19	0.35	8.53	1.10	13.90	0.85

e = 4% 292.192 18.448 34.144 a = (1 - 0.95)3 5 12.706 4.303 3.182 2.776 t(a/2, n-1)=8 10 2.571 2.447 2.365 2.306 2.262

Appendix F: Random Number Seeds Used For Experimental Runs

		Random Numb	er Seeds		Random Num	nber Seeds
Run				Run		
Numbe	er	PK	OTHER	Number	PK	OTHER
EXP		2006429302	6ØØ743814	EXP 32	2Ø324293Ø2	632743814
EXP	-	2Ø164293Ø2	6Ø1743814	EXP 33	2Ø334293Ø2	633743814
EXP		2Ø264293Ø2	6Ø2743814	EXP 34	2Ø344293Ø2	634743814
EXP		2Ø364293Ø2	6Ø3743814	EXP 35	2Ø354293Ø2	635743814
EXP	Ø4	2Ø464293Ø2	6 Ø4 743814	EXP 36	2ø364293ø2	636743814
EXP	Ø5	2Ø564293Ø2	6Ø5743814	EXP 37	2Ø374293Ø2	637743814
EXP	Ø6	2Ø664293Ø2	6Ø6743814	EXP 38	2Ø384293Ø2	638743814
EXP	Ø7	2Ø764293Ø2	6Ø7743814	EXP 39	2Ø394293Ø2	639743814
EXP	Ø8	2Ø864293Ø2	6Ø8743814	EXP 4Ø	2Ø4Ø4293Ø2	64Ø743814
EXP	Ø9	2Ø964293Ø2	6Ø9743814	EXP 41	2041429302	641743814
EXP	1Ø	21Ø64293Ø2	61Ø743814	EXP 42	2Ø424293Ø2	642743814
EXP	11	21 1642 93Ø2	611743814	EXP 43	2Ø434293Ø2	643743814
EXP	12	21264293Ø2	612743814	EXP 44	2Ø444293Ø2	644743814
EXP	13	21364293Ø2	613743814	EXP 45	2Ø454293Ø2	645743814
EXP	14	. 21464293Ø2	614743814	EXP 46	2Ø464293Ø2	646743814
EXP	15	21154293Ø2	615743814	EXP 47	2047429302	647743814
EXP	16	2Ø164293Ø2	616743814	EXP 48	2Ø484293Ø2	648743814
EXP	17	2Ø174293Ø2	617743814	EXP 49	2Ø494293Ø2	649743814
EXP	18	2Ø184293Ø2	618743814	EXP 5Ø	2Ø5Ø4293Ø2	65Ø743814
EXP	19	2Ø194293Ø2	619743814	EXP 51	2Ø514293Ø2	651743814
EXP	2Ø	2Ø2Ø4293Ø2	62Ø743814	EXP 52	2052429302	652743814
EXP	21	2021429302	621743814	EXP 53	2Ø534293Ø2	653743814
EXP	22	2022429302	622743814	EXP 54	2054429302	654743814
EXP	23	2Ø234293Ø2	623743814	EXP 55	2Ø554293Ø2	655743814
EXP	24	2024429302	624743814	EXP 56	2056429302	656743814
EXP	25	2Ø254293Ø2	625743814	EXP 57	2Ø574293Ø2	657743814
EXP	26	2026429302	626743814	EXP 58	2Ø584293Ø2	658743814
EXP	27	2Ø274293Ø2	627743814	EXP 59	2059429302	659743814
EXP	28	2028429302	628743814	EXP 6Ø	2060429302	66Ø743814
EXP	29	2029429302	629743814	EXP 61	2061429302	661743814
EXP	3Ø	2Ø3Ø4293Ø2	63Ø743814	EXP 62	2062429302	662743814
EXP	31	2Ø314293Ø2	631743814	EXP 63	2Ø634293Ø2	663743814

Appendix G: Yate's Algorithm - Calculations for Estimate of Effect

Identification average 0.020313 0.002187 -0.002188 -0.000313 0.002188 0.001562 -0.000313 0.148438 0.007813 0.003438 0.000313 0.239219 0.006563 0.003438 0.155938 0.015313 0.002813 -0.001562 0.000313 0.000313 0.006563 0.065938 0.002812 0.002813 0.002187 0.000938 0.002187 0.000313 0.000313 0.004688 Estimate Divisor 0.49 0.09 -0.05 70.0 0.05 0.01 4.75 0.25 0.21 2.11 0.09 0.09 0.03 4.99 0.07 -0.07 0.01 -0.01 0.11 0.07 -0.07 -0.0 0.01 -0.01 9 90.0 0.27 0.22 90.0 -0.03 -0.04 0.05 90.0 2.62 0.03 0.01 0.01 -0.04 0.01 0.00 -0.00 0.03 Table 21A. Yate's algorithm, Results for Ratio On Time 0.07 2.37 0.01 0.0 0.01 3 Algorithm 0.00 0.00 90.0 99.0 1.69 0.76 0.08 0.00 0.00 0.00 0.05 1.86 0.03 90.0 70.0 3 0.00 0.02 90.0 0.13 0.10 0.04 0.04 0.13 60.0 0.00 0.00 0.03 000 0.07 70.0 0.00 0.03 2.61 90.0 0.04 0.00 0.00 0.00 2.41 2.61 3 1.79 000 0.00 0.00 0.77 0.88 0.48 0.84 98.0 1.75 0.82 90.0 90.0 0.03 0.01 60.0 0.00 0.04 0.04 1.62 1.63 3 0.80 0.24 0.24 0.24 0.42 0.85 06.0 0.87 0.39 0.40 0.80 0.82 0.38 0.39 0.83 0.24 0.44 0.44 0.42 0.42 0.44 0.40 0.41 0.41 0.24 0.24 0.41 0.41 0.19 0.12 0.19 0.22 0.19 0.12 0.12 0.12 0.12 0.19 61.0 0.19 0.21 0.38 0.42 0.38 0.19 0.22 0.22 0.38 On Time 0.2 2 Design Matrix Ö Variables _ ၁ A F Number Run 35 27 59 = 43 23 55 25 53 90 5 03 39 31 63 5 33 57 60 2 37 EXP 15 47 49 4 61 13 EXP 17 EXP Condition Number Test

Table 21B Yate's algorithm, Results for Ratio On Time

Test		Design Matrix				Algorithm						
Condition	Run		Ratio									Identi-
Number	Number	AF	On Time	Ξ	(2)	(3)	€	(5)	(9)	Divisor	Estimate	fication
33	EXP 18	+	0.12	0.00	00.0	0.34	00.0	2.21	0.49	32	0.015313	S
34	EXP 50	+ + + +	0.12	0.00	0.00	0.34	-0.01	2.54	-0.05	35	-7.001562	AS
35	EXP 02	+ 1 + 1 + 1	0.12	0.03	00.0	0.83	-0.04	0.11	0.07	35	0.002187	FS
36	EXP 34	+ ! ! ! + +	0.12	0.03	0.00	98.0	00.0	0.14	0.01	35	0.000312	AFS
37	EXP 26	+ + + + + + + + + + + + + + + + + + + +	0.21	0.00	0.01	0.40	0.00	0.07	0.25	35	0.007812	S
38	EXP 58	+ 1 + 1 +	0.23	0.00	0.02	0.38	-0.03	0.14	-0.05	35	-0.001562	ACS
39	EXP 10	+ + + + + +	0.21	0.03	0.01	0.89	-0.00	90.0	0.03	35	0.000938	FCS
40	EXP 42	+ + + +	0.23	0.03	0.03	0.97	-0.04	90.0	0.05	35	0.001562	AFCS
7	EXP 22	+ + + + + + + + + + + + + + + + + + + +	0.12	0.01	0.00	90.0	0.00	1.0.1	-0.03	35	-0.000938	SI.
42	EXP 54	+ 1 ! +	0.12	0.02	0.00	90.0	0.01	1.10	-0.01	35	-0.000313	A IS
43	EXP 06	+ + + + + +	0.12	0.04	0.00	20.0	00.0	0.03	-0.01	35	-0.000313	FIS
44	EXP 38	+ + + + +	0.12	90.0	0.00	90.0	0.00	90.0	0.01	32	0.000312	AFIS
45	EXP 30	+ + + +	0.2	00.0	0.02	0.04	00.0	0.03	0.01	32	0.000313	CIS
46	EXP 62	+ 1 + + 1 +	0.22	0.01	90.0	0.04	-0.01	90.0	0.03	32	0.000937	ACIS
47	EXP 14	+ + +	0.2	0.04	0.05	0.05	00.0	0.01	-0.01	35	-0.000313	FCIS
48	EXP 46	+ + + + +	0.22	0.05	0.05	60.0	-0.00	90.0	0.01	35	0.000313	AFCIS
6*	EXP 16	+ + !	0.5	0.00	0.00	00.0	00.0	-0.01	0.33	35	0.010313	CS
90	EXP 48	+ + + +	0.22	00.0	0.00	0.00	0.03	0.04	0.03	35	0.000938	AGS
51	EXP 00	+ + 1 + 1	0.21	0.02	0.00	0.01	+ 0.0 +	-0.03	0.07	35	0.002187	FGS
52	EXP 32	+++	0.23	0.02	0.00	0.02	0.08	-0.04	0.01	32	0.000312	AFGS
53	EXP 24	+ + + + + + 1	0.41	0.00	0.01	0.00	0.00	001	0.09	35	0.002812	SDO
54	EXP 56	+ + : + : +	0.44	0.00	0.02	0.00	0.01	0.00	0.03	35	0.000938	ACGS
55	EXP 08	+ + + +	0.42	0.02	0.01	0.03	-0.00	-0.01	0.03	32	0.000938	FCGS
28	EXP 40	+++++	0.48	0.02	0.01	0.03	0.04	-0.00	0.05	32	0.001562	AFCGS
57	EXP 20	+ + + ! ! !	0.2	0.02	00.0	0.00	0.00	0.03	0.05	35	0.001562	SOI
58	EXP 52	+ + + 1 : +	0.2	0.02	00.0	0.00	0.01	0.12	-0.01	35	-0.000312	AIGS
69	EXP 04	+ + + +	0.21	0.03	0.00	0.01	0.00	0.01	-0.01	32	-0.000313	FIGS
90	EXP 36	+ + + - + +	0.21	90.0	0.00	0.00	0.00	0.04	0.01	32	0.000312	AFIGS
6.1	EXP 28	+ + + + - :	0 42	0.00	0.00	00.0	0.00	0.01	60.0	35	0.002812	CIGS
62	EXP 60	+ + + + +	0.45	00'0	0.03	0.00	-0.01	0.00	0.03	35	0.000938	ACIGS
63	EXP 12	+ + + + -	0.43	0.03	0.00	0.03	00.0	-0.01	-0.01	32	-0.000313	FCIGS
64	EXP 44	+ + + + + +	0.49	90.0	0.03	0.03	00.0	000	0.01	32	0.000313	AFCIGS

Table 22A Yate's algorithm, Results for Ratio Delivered

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Ratio									Identi-
Number	Number	AFCIGS	Delivered	Ξ	(2)	(3)	€	(\$)	(9)	Divisor	Estimate	fication
-	EXP 19		0.26	0.52	1.04	3.17	6.32	17.78	36.34	64	0.567813	average
02	EXP 51	1 1 1 +	0 26	0.52	2.13	3.15	11.48	18.58	0.62	32	0.019375	<
6	EXP 03	1 1 + 1	0.26	1.07	1.04	69.9	6.50	0.32	0.52	35	0.016250	îa.
•	EXP 35	1 1 1 + +	0.26	1.08	2.11	5.77	12.08	0.30	0.20	32	0.006250	AF
'n	EXP 27	1 1 1	0.52	0.52	2.01	3.32	0.12	0.22	10.84	35	0.338750	ບ
9	EXP 59	1 1 + 1 +	0.55	0.52	3 68	3.18	0.20	0.30	0.08	35	0.002500	V C
7	EXP 11	1 1 + + 1	0.51	1.06	5.06	6.02	0.10	0.08	-0.18	32	-0.005625	ည့
60	EXP 43	1 1 1 + + +	0.55	1.05	371	8.04	0.20	0.12	0.14	35	0.004375	AFC
6	EXP 23	+ + + + + + + + + + + + + + + + + + + +	0.26	0.98	1.04	0.07	-0.02	5.48	-0.06	35	-0.001875	_
10	EXP 55	1 + 1 + +	0.26	1.03	2.28	0.05	0.24	5.38	-0.05	35	-0.000625	ΙV
11	EXP 07	1 + 1 + 1	0.26	1.8.1	1.04	60.0	0.00	90.0	0.08	32	0.002500	I
12	EXP 39	!!+!++	0.26	1.87	2.14	0.11	0.30	0.02	00.0	35	0.00000.0	AFI
13	EXP 31	+++1	0.52	0.98	2.27	0.04	0.02	-0.08	-0.12	35	-0.003750	ភ
*:	EXP 63	1 + + + +	0.54	1.08	3.75	90.0	90.0	-0.10	00.0	32	0.00000.0	V CI
15	EXP 15	1 + + + 1	0.51	1.84	2.25	0.12	0.00	90.0	-0.14	35	-0.004375	ភ្ជ
91	EXP 47	1 + + + +	0.54	1.87	3.79	0.08	0.12	0.08	0.05	38	0.000625	AFCI
17	EXP 17	+ 1 1 1	0.48	0.52	0.00	-0.01	2.18	90.0	10.70	35	0.334375	r
18	EXP 49	+ + + + +	9.0	0.52	0.07	-0.01	3.32	-0.12	0.18	35	0.005625	A G
61	EXP 01	+ + + + +	9.0	1.14	0.00	0.11	2.34	0.00	95.0	35	0.017500	2
20	EXP 33	+ + + +	0.53	1.14	0.05	0.13	3.02	-0.02	0.18	35	0.005000	AFG
21	EXP 25	1 + 1 + 1 1	6.0	0.52	90.0	0.00	0.12	0.02	1.84	32	0.057500	ខ
22	EXP 57	1 + : + : +	0.91	0.52	0.04	0.00	90.0-	90.0	~0.36	32	-0.011250	V CC
23	EXP 09	1 + 1 + + 1	0.92	1.07	0.08	0.12	0.10	0.00	-0.14	32	-0.004375	55
72	EXP 41	1+1+++	0.95	1.07	0.03	0.18	-0.08	0.00	0.10	35	0.003125	AFCC
25	EXP 21	1 + + 1 1 1	0.47	1.10	0.00	0.01	-0.02	-0.04	0.26	32	0.008125	ភ
98	EXP 53	1 + + 1 + +	0.51	1.17	0.04	0.01	-0.06	-0.08	-0.02	32	-0.000625	AIG
27	EXP 05	1 + + 1 + 1	0.52	1.85	0.00	0.03	0.00	-0.06	0.08	35	0.002500	FIG
28	EXP 37	1++1++	0.56	1.90	90.0	0.03	-0.10	90.0	0.00	32	0.00000.0	AFIG
62	EXP 29	1 + + + 1 1	0.92	1.08	60.0	0.00	0.02	-0.08	0.20	32	0.006250	cic
30	EXP 61	1+++1+	0.92	1.19	0.03	0.00	0.04	-0.08	-0.00	32	-0.000000	ACIG
31	EXP 13	1 + + + + 1	0.92	1.87	0.05	90.0	0.00	0.02	-0.14	35	-0.004375	FCIG
32	EXP 45	! + + + + +	0.95	1.92	0.03	0.08	90.0	000	0.02	32	0.000625	AFCIG

Table 22B Yate's algorithm, Results for Ratio Delivered

Test		Design Matrix				Algorithm						
Condition	Rup	Variables	Ratio									Identi-
Number	Number	A F C I G S		Ξ	(2)	(3)	€	(§)	(9)	Divisor	Estimate	fication
33	EXP 18	+ 1 1 1 1	0.26	000	0.00	1.09	-0.02	5.14	0.78	32	0.024375	S
34	EXP 50	+ 1 1 1 + +	0.26	0.00	-0.01	1.07	0.08	5.56	-0.02	35	-0.000625	A S
35	EXP 02	+ +	0.26	0.03	00.0	1.67	-0.14	0.08	0.08	32	0.002500	P.S
36	EXP 34	+ + +	0.28	0.04	-0.01	1.65	0.02	01.0	0.04	32	0.001250	AFS
37	EXP 26	+ 1 + 1	95.0	0.00	0.05	1.24	-0.02	0.26	-0.12	32	-0.003750	S
38	EXP 58	+ 1 + : +	0.58	0.00	90.0	1.10	0.05	0.30	~0.04	32	-0.001250	VCS
39	EXP 10	+ 1 1 + + 1	95.0	0.02	0.10	1.48	0.05	0.04	-0.02	35	-0.000625	SCS
40	EXP 42	+ ! + + +	0.58	0.03	0.03	1.54	-0.04	0.12	0.02	32	0.000625	V ECS
7	EXP 22	+ +	0.28	0.02	0.00	0.07	00.0	1.16	-0.18	32	-0.005625	য়
42	EXP 54	+ 1 + 1 : +	0.28	0.03	0.00	0.05	0.05	0.68	-0.02	35	-0.000625	AIS
43	EXP 06	+ 1 + 1 + 1	0.26	0.01	0.00	-0.01	00.0	-0.18	0.04	35	0.001250	FIS
;	EXP 38	+ + + +	0.28	0.03	0.00	-0.05	90.0	-0.18	0.00	32	0.00000.0	AFIS
45	EXP 30	+ + + !	0.52	0.04	0.07	0.04	00.0	+ 0.0 +	~0.04	35	-0.001250	CIS
48	EXP 62	+ + + + + +	99.0	0.04	90.0	90.0	00.0	-0.10	0.12	38	0.003750	ACIS
4.7	EXP 14	+ ! + + + 1	0.52	0.00	0.13	-0.08	0.00	0.02	0.05	32	0.000625	FCIS
48	EXP 46	+ + + + +	0.55	0.03	0.05	-0.02	00.0	0.08	-0.02	35	-0.000625	AFCIS
49	EXP 16	+ + 1 ! ! !	. 0.53	00.0	0.00	-0.01	-0.02	0.10	0.42	32	0.013125	cs
20	EXP 48	+ + 1 +	. 0.57	0.00	0.01	-0.01	-0.02	0.18	0.02	32	0.000625	AGS
51	EXP 00	+ + 1 +	95.0	0.02	0.00	0.01	-0.14	0.04	0.04	35	0.001250	FGS
25	EXP 32	+ + + +	. 0.61	0.02	0.01	-0.07	90.0	-0.06	0.08	35	0.002500	AFGS
53	EXP 24	+ + 1 + 1 1	. 0.93	0.00	0.01	00.0	-0.02	0.02	-0.48	32	-0.015000	SDO
54	EXP 58	+ + + + + +	26.0	0.00	0.02	00.0	-0.04	90.0	0.00	35	0.000000	ACGS
55	EXP 08	++++1	0.93	0.03	0.00	-0.02	0.02	0.00	90.0-	38	-0.001875	FCGS
58	EXP 40	+++++	. 0.97	0.03	0.03	-0.08	0.04	0.00	90.0	35	0.001875	AFCGS
57	EXP 20	+++111	0.52	0.04	0.00	0.01	00.0	0.00	90.0	38	0.001875	IGS
58	EXP 52	+++ +	. 0.54	0.05	0.00	0.01	-0.08	0.20	-0.10	32	-0.003125	AIGS
69	EXP 04	+++++	. 0.58	-0.01	0.00	0.01	0.00	-0.02	0.04	35	0.001250	FIGS
60	EXP 36	+++++	. 0.61	0.04	0.00	0.03	-0.06	0.02	0.00	32	0.00000.0	AFIGS
61	EXP 28	++++	0.94	0.02	0.01	0.00	0.00	-0.08	0.50	35	0.006250	CIGS
29	EXP 60	++++++	. 0.93	0.03	0.05	00'0	0.02	-0.08	0.04	35	0.001250	ACIGS
63	EXP 12	++++	. 0.94	-0.01	0.01	0.04	0.00	0.05	0.02	32	0.000625	FCIGS
94	EXP 44	+ + + + +	0.98	0.04	0.05	0.04	0.00	0.00	-0.03	32	-0.000625	AFCIGS

Table 23A. Yate's agorithm, Results for Total Pight Hours

Test		Design Matrix				Algorithm	o					
Condition	Run	Variables	Total									Identi-
Number	Number	AFCIGS	Flight	Ξ	(2)	(3)	€	(9)	(8)	Divisor	Estimate	fication
			Hours									
-	EXP 19	1 1 1	1106	2685	5360	9872	15396	47540	100913	84	1576.768	average
01	EXP 51	1 1 1 1	1579	2675	4512	5524	32144	53373	12897	35	403.031	∢
е	EXP 03	1 1 1 + 1	11127	2284	2523	22157	18745	6832	-991	32	-30.969	Ca.
~	EXP 35		1548	2228	3001	9987	36628	6065	-731	38	-22.844	AF
so.	EXP 27	1 1 + 1	960	1273	15977	10666	2228	-284	-33273	32	-1039.781	ပ
90	EXP 59	1	1324	1250	6180	6019	4608	-707	-6757	35	-211.158	VC
۸	EXP 11	1 1 + + 1	939	1502	8934	25852	1781	-188	547	32	17.094	5
60	EXP 43	1 1 + + +	1289	1499	3053	10976	4304	-543	1395	32	43.594	AFC
œ.	EXP 23	1 + 1 : 1	594	7959	5875	1608	~	-14048	-35781	32	-1118.156	head
01	EXP 55	i	679	8018	4791	618	-192	-19225	-7573	32	-236.656	J¥
	EXP 07	1 + + + + +	591	3121	2947	3665	-261	-3392	-329	35	-10.281	<u>.</u>
12	EXP 39	1 1 + 1 + +	629	3059	3132	941	-446	-3365	69-	32	-2.156	AFI
13	EXP 31) : + + L L	836	3533	19550	1160	-78	-72	17081	35	533.781	<u>5</u>
7.	EXP 83	1 + + + +	888	3401	6102	601	-110	619	6317	32	197.408	V CI
15	EXP 15	1 + + + 1	632	1555	7927	3802	-149	356	73	32	2.281	FCI
16	EXP 47	1 1 + + + +	867	1498	3049	205	-384	1039	-263	32	-8.219	AFCI
17	EXP 17	1 1 1	3128	3097	894	-68	-370	-16518	36631	32	1144.719	U
18	EXP 49	1 + 1 1 + +	4831	2778	714	- 58	-13678	-19263	4923	35	153.844	V G
61	EXP 01	1 + 1 1 + 1	3210	2354	153	-3	668-	-3714	-285	32	-8.908	5
20	EXP 33	1 + 1 1 + +	4808	2437	485	-189	-18326	-3859	-277	32	-8.656	AFG
21	EXP 25	+ +	1484	1467	3301	-236	132	-148	-30735	32	-960.489	8
22	EXP 57	1 + 1 + 1 +	1637	1480	364	-25	-3524	-183	-7199	32	-224.989	VCG
23	EXP 09	1 + 1 + + 1	1424	1585	764	-28	89	38	-103	32	-3.219	502
54	EXP 41	1+1+++	1635	1547	177	-450	-3454	-107	661	32	20.656	AFCC
25	EXP 21	1 + + 1 1	1551	9782	655	-66	-28	7242	-17911	32	-559.719	2
92	EXP 53	1 + + 1 1 +	1982	9768	505	-12	-46	9839	-4475	32	-139.844	A IG
27	EXP 05	1++1+1	1534	3057	181	-47	351	2842	-831	32	-25.969	FIG
28	EXP 37	1 + + 1 + +	1867	3045	420	-63	268	3475	-383	32	-11.969	AFIG
53	EXP 29	1+++1	742	4135	3536	-126	90	282	11891	32	371.594	SIC
30	EXP 61	1 + + + 1 +	813	3792	266	-23	296	-189	4555	32	142.344	ACIG
31	EXP 13	1 + + + + 1	969	1563	343	-95	307	-48	847	32	26.469	FCIG
32	EXP 45	1 + + + +	802	1486	159	-305	732	-217	467	32	14.594	AFCIG

Table 23B Yate's algorithm, Results for Total Flight Hours

Test		Design Matrix			ļ	Algorithm		 	 			
Condition	Run	Variables	Total									Identi-
Number	Number	AFCIGS	Flight	Ξ	(2)	(3)	€	(2)	(9)	Divisor	Estimate	fication
			Hours						!			
33	EXP 18	+ 1 1 1 1	1328	473	-10	-848	-4348	16748	5833	32	182.281	S
34	EXP 50	+ +	1789	421	-58	478	-12170	19883	-767	32	-23.989	V S
35	EXP 02	+ 1 1 + 1	1282	364	-23	-9797	-4587	2380	-423	32	-13.219	FS
36	EXP 34	+ + + +	1498	350	-3	-3881	-14676	2543	-355	32	-11.094	AFS
37	EXP 26	+ 1 + 1	1078	85	29	-1084	066-	-100	-5177	32	-161.731	S
38	EXP 58	+ 1 1 + : +	1278	88	-82	185	-2724	-185	27	32	0.844	ACS
39	EXP 10	+ 1 1 + + 1	1067	230	-132	-13448	-559	-35	691	32	21.594	FCS
0	EXP 42	+ + + +	1370	235	-57	-4878	-3300	-245	683	32	21.344	AFCS
Ţ	EXP 22	+ + + + + + + + + + + + + + + + + + + +	688	1703	-319	-180	Q	-13308	-2745	32	-85.781	য়
45	EXP 54	+ + + + + + + + + + + + + + + + + + + +	119	1598	83	312	186	-17427	-145	32	-4.531	AĽS
43	EXP 06	+ 1 + 1 + 1	695	153	13	-2937	211	-3656	.37	32	-1.158	FIS
7	EXP 38	+ + + + + +	785	211	-38	-587	-394	-3543	-145	35	-4.531	AFES
45	EXP 30	+ ! + + ! !	682	431	-14	-150	94	-20	2597	32	81.158	CES
4 6	EXP 62	+ + + +	903	333	-12	239	. 18	83	633	38	19.781	ACIS
47	EXP 14	+ + + + + +	674	71	-343	-3270	103	236	-451	32	-14.094	FCIS
4 8	EXP 48	+ + + + + +	873	106	-77	-184	-210	425	-171	32	-5.344	AFCIS
6*	EXP 16	+ + : : : : :	3958	141	-52	-48	1326	-7822	3135	35	97,969	cs
20	EXP 48	+ + 1 - 1 +	5824	214	-14	20	5918	-10089	163	32	5.094	A GS
5.1	EXP 00	+ + : : + :	4049	202	-17	-121	1269	-1734	-85	32	-2.656	FGS
25	EXP 32	+ + + + +	5719	303	\$	75	8570	-2741	-213	32	-6.656	AFGS
53	EXP 24	+ + + + + + + + + + + + + + + + + + + +	1488	6	-105	405	492	-226	-4119	32	-128.719	SSS
24	EXP 56	+ + - + - +	1589	06	28	-51	2350	-605	113	38	3.531	ACGS
22	EXP 08	+++++1	1430	221	-98	≈	389	-70	-63	32	-1.969	FCGS
26	EXP 40	+++++	1815	199	35	288	3086	-313	189	38	5.908	AFCGS
57	EXP 20	+ + + 1 1	1890	1866	-227	38	99	4590	-2267	32	-70.844	IGS
28	EXP 52	+ + + +	2245	1670	101	22	196	7301	-1007	32	-31.489	AIGS
29	EXP 04	+ + + + + 1	1902	81	7	163	-453	1858	-379	35	-11.844	FIGS
9	EXP 38	+++!++	1890	185	-22	133	264	2697	-243	38	-7.594	AFIGS
6.1	EXP 28	++++1	758	355	-196	328	- 16	130	2711	32	84.719	CIGS
82	EXP 80	+ + + + + + + + + + + + + + + + + + + +	805	-12	104	-21	-30	717	839	32	26.219	ACIGS
63	EXP 12	+++++	687	4.7	-367	300	-349	-14	587	32	18.344	FCIGS
84	EXP 44	+ + + + +	486	112	85	432	132	481	495	32	15.469	AFCIGS

Table 24A. Yate's algorithm, Results for Total Sorties Flown

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Total									Identi-
Number	Number	AFCIGS	Sorties	Ξ	(S)	(3)	€	(2)	(9)	Divisor	Estimate	fication
			Flown									
-	EXP 19	1 1 1	2494	6003	11970	21321	43872	122482	258554	84	4039.908	average
83	EXP 51	1 1 1 1	3509	5967	9351	22551	78610	136072	30596	35	956.125	4
6	EXP 03	1 1 1 + 1	2544	4744	11168	41874	48073	16372	-4444	35	-138.875	G.
+	EXP 35	i i i + +	3423	4607	11383	36736	87999	14224	-2185	35	-68.188	AF
s	EXP 27		2032	5644	30043	23213	5278	-1326	-78524	32	-2453.875	ပ
89	EXP 59	1 1 + 1 +	2712	5524	11831	24800	11094	-3118	-18742	35	-523,188	V C
7	EXP 11	1 + + +	1980	5701	24571	47880	4313	-580	2186	35	68.313	ည
80	EXP 43	1 1 + + +	2827	5882	12165	40119	9911	-1622	3484	35	108.875	AF C
63	EXP 23	1 + 1 t 1	2650	15011	13324	3221	-312	-33022	-10142	35	-316.938	_
01	EXP 55	1 + + +	2994	15032	9949	2057	-1014	-45502	-9924	35	-310.125	¥Ι
=	EXP 07	! ! + ! + !	2818	8001	13126	7244	-921	-8480	-1520	35	-47.500	Ξ
12	EXP 39	1 + + + +	2908	5830	11874	3850	-2197	-8282	-850	35	-26.583	AFI
13	EXP 31		2495	12579	36256	2183	-225	118	19152	35	598.500	ಶ
*	EXP 63	1 + + + + + + + + + + + + + + + + + + +	3206	11992	11824	2130	-338	2068	11054	32	345.438	V CI
15	EXP 15	++-	2484	6221	28081	7612	-293	864	314	35	9.813	<u>r</u> c
16	EXP 47	!!++++	3198	5944	12038	2299	-1329	2620	492	32	15.375	AFCI
17	EXP 17	1 + 1 1 1	5800	7145	1894	-173	-2404	-3908	74664	35	2333.250	ა
18	EXP 49	1 + 1 1 1 +	9211	6118	1327	~139	-30618	-6234	11414	32	356.688	V C
19	EXP 01	1 + 1 + 1	5892	4900	632	-150	-4827	-4558	-1978	35	-61.813	ည
20	EXP 33	+ + + +	9140	5049	1425	-884	-40675	-5366	-1152	35	-36.000	AF G
12	EXP 25	1 + 1 + 1	2881	6543	6699	-817	226	-680	-64082	35	-2001.938	පු
22	EXP 57	1 + 1 + 1 +	3120	6583	585	-104	-8708	-840	-17198	35	-537.375	VCG
23	EXP 09	1 + 1 + + 1	2742	2909	3241	-325	-	-110	324	35	10.125	1 CC
72	EXP 41	1 + 1 + + +	3088	5765	609	-1875	-8283	-740	2002	35	62.563	AFCG
25	EXP 21	1 + + 1 1 1	5390	18237	1288	-169	0	8640	-15656	35	-489.250	2
26	EXP 53	1++1++	7189	18019	895	-53	118	10512	-7490	32	-234.063	A IG
27	EXP 05	1++1+1	5275	5884	888	-56	931	4802	-3014	35	-94.188	FIG
28	EXP 37	1 + + 1 + +	6717	5760	1262	-282	1137	6252	-1340	35	-41.875	AFIG
59	EXP 29	1 + + 1	2977	14785	7238	-211	162	704	9638	35	301.188	SIC.
30	EXP 61	1 + + + 1 +	3244	13316	374	-82	702	-390	6760	35	211.250	ACIG
31	EXP 13	1++++	2801	6232	1849	-230	579	118	2508	32	78.375	FCIG
32	EXP 45	i + + + + +	3143	5808	450	-1099	2041	374	2050	32	64 063	AFCIG

Table 24B. Yate's algorithm, Results for Total Sorties Flown

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Total									Identi-
Number	Number	AFCIGS	Sorties	Ξ	(8)	(3)	€	(2)	(8)	Divisor	Estimate	fication
			Flown									
33	EXP 18	+ 1 1 1 1	3142	1015	-36	-2619	1230	34738	13590	32	424.688	S
34	EXP 50	+ 1 1 1 + +	4003	879	-137	215	-5138	39926	-2148	35	-67.125	V S
35	EXP 02	+ + + + + +	2876	880	-120	-18212	1527	5818	-1792	32	-58.000	FS
36	EXP 34	+ + + +	3303	647	-19	-12406	-7761	5598	-1062	32	-33.188	AFS
37	EXP 26	+ + + + + +	2282	344	21	-3375	-1164	-702	-12480	35	-390.000	S
38	EXP 58	+ + + + + +	2618	288	-171	-1452	-3394	-1276	218	35	6.813	ACS
39	EXP 10	+ + +	2245	711	-587	-24632	53	-116	1950	35	80.938	FCS
40	EXP 42	+ + + +	2804	714	-277	-16043	-5313	-1036	1758	35	54.875	AFCS
7	EXP 22	+ + + + + +	3054	3411	-966	-567	34	-28214	-2328	32	-72.688	য়
42	EXP 54	+ 1 + 1 + +	3489	3248	149	793	-714	-35848	-808	35	-25.250	V [S
43	EXP 06	+ + + + + + + + + + + + + + + + + + + +	3075	239	0	-6074	713	-8932	-160	35	-5.000	FIS
44	EXP 38	+ + + + +	3508	348	-144	-2632	-1553	-8264	-630	35	-19.688	AFIS
45	EXP 30	+ + + + + + + + + + + + + + + + + + + +	2619	1799	-218	-393	116	118	1872	35	58.500	CIS
48	EXP 62	+ + + + + +	3290	1442	-104	394	-226	206	1450	35	45.313	ACES
47	EXP 14	+ + + + + 1	2587	267	-1449	-6864	129	540	-1094	35	-34.188	FCIS
48	EXP 48	+ + + + + +	3178	342	-426	-1399	699-	1462	256	35	8.000	AFCIS
6*	EXP 16	+ + : : : : :	7222	198	-138	-101	2834	-6368	5188	35	162.125	CS
20	EXP 48	+ + +	11015	427	-33	101	5806	-9288	-218	32	-6.813	A GS
51	EXP 00	+ + 1 1 + 1	7287	338	-58	-192	1923	-2230	-574	35	-17.938	FGS
52	EXP 32	+ + + +	10732	559	6	310	8289	-5260	-920	35	-28.750	AFGS
53	EXP 24	+ + + + + + + + + + + + + + + + + + + +	2868	435	-163	1115	1360	-748	-7634	32	-238.563	SDO
54	EXP 56	++++++	2996	433	107	-184	3448	-2266	899	35	20.875	ACGS
99	EXP 08	+ + + + + 1	2757	671	-357	114	787	-345	88	32	2.750	FCGS
56	EXP 40	+ + + + +	3003	591	75	1023	5465	-998	922	35	28.813	AFCGS
57	EXP 20	+++!!	6586	3793	-434	103	202	2972	-2920	38	-91.250	IGS
58	EXP 52	+ + + 1 1 +	8179	3445	223	29	505	8666	-3030	32	-94.688	AIGS
59	EXP 04	+++1+1	6530	128	۲	270	-1299	2082	-1518	35	-47.438	FIGS
60	EXP 36	+ + + + + +	8786	246	-80	432	606	4678	959-	35	-20.500	AFIGS
6.1	EXP 28	+ + + +	3063	1593	-348	657	77-	300	3694	35	115.438	CIGS
62	EXP 60	+ + + + + + +	3169	256	118	-78	162	2208	2596	35	81.125	ACIGS
63	EXP 12	+++++	2731	106	-1337	466	-735	206	1908	35	59.625	FCIGS
64	EXP 44	+ + + + + +	3075	344	238	1575	1109	1844	1638	32	51.188	AFCIGS

Table 25A. Yate's algorithm, Results for Productive Flight Hours

Test		Design Matrix				Algorithm						
Condition	Run	les	Productive									Identi-
Number	Number	AFCIGS	Flight	Ξ	(8)	(3)	€	(2)	(9)	Divisor	Estimate	fication
			Hours									
-	EXP 19	1 1 1 1	111	231	462	1817	3059	9299	18928	84	295.7.188	average
ο	EXP 51	1 1 +	120	231	1355	1242	6240	9627	1170	38	36.5625	<
6	EXP 03	1 1 1 + 1	109	676	220	4594	3218	605	-130	32	-4.0625	<u>`</u>
*	EXP 35	1 1 + +	122	878	1022	1946	6408	599	130	35	4.0625	AF
20	EXP 27		295	110	1873	1933	349	69-	4894	32	152.9375	ບ
90	EXP 59	1 + 1 +	381	110	2421	1285	258	-61	274	32	8.5625	V C
~	EXP 11	1 1 + + 1	290	510	827	4407	300	69	-106	32	-3.3125	<u>ي</u>
60	EXP 43	1 1 + + +	389	512	1119	2002	265	61	06	32	2.8125	AFC
œ	EXP 23	 	55	959	462	207	\$	2535	-5976	32	-186.7500	_
10	EXP 55	1 + 1 + +	55	914	1471	142	-74	2359	-336	32	-10.5000	IA
11	EXP 07	1 + 1 + 1	55	1222	223	192	10	169	140	35	4.3750	E
12	EXP 39	+ + + +	55	1199	1062	9	-71	105	-68	35	-2.1250	AFI
13	EXP 31	1 + + + 1 1	222	4 01	2061	143	27	-29	-576	32	-18.0000	บ
1.4	EXP 63	1 + + +	288	428	2343	157	45	-77	232	32	7.2500	ACI
15	EXP 15	1 + + + 1	218	575	888	211	-12	37	-148	35	-4.6250	FCI
18	EXP 47	1 1 + + + +	294	544	1114	24	73	53	12	32	0.3750	AFCI
17	EXP 17	1 + 1 1 1	448	226	22	6)	1695	-2923	6372	32	199.1250	ၒ
18	EXP 49	1 + 1 1 +	511	236	185	ο,	840	-3053	-128	32	-4.0000	V G
61	EXP 01	1 + 1 + 1	415	734	0	-68	1848	-193	-160	32	-5.0000	2
20	EXP 33	1 + 1 1 + +	499	737	142	9	511	-143	100	32	3.1250	AFG
21	EXP 25	+ + + + + +	604	111	147	13	305	61	-2192	32	-68.5000	8
22	EXP 57	1 + 1 + 1 +	618	112	45	£-	-136	79	-884	32	-27.6250	V CC
23	EXP 09	1 + 1 + + 1	584	533	67	-83	274	-41	-92	35	-2.8750	FCG
54	EXP 41	1 + 1 + + +	815	529	15	15	-169	-27	99	38	1.7500	AF CG
25	EXP 21	1 + + 1 1 1	186	1052	12	14	2	-347	-3530	38	-110.3125	5
28	EXP 53	+ + ! + +	215	1009	131	01	-34	-229	-234	32	-7.3125	AIG
27	EXP 05	+ + +	203	1193	_	38	-12	47	174	32	5.4375	FIG
28	EXP 37	1 + + 1 + +	223	1153	156	→	-85	185	99-	32	-2.0625	AFIG
59	EXP 29	1 + + + 1 1	287	454	185	6,	19	-79	-54	32	-1.8875	SIC
30	EXP 61	1 + + + 1 +	288	484	58	-3	18	69-	202	32	6.3125	ACIG
31	EXP 13	1 + + + 1	265	571	32	53	လူ	27	-150	32	-4.6875	FCIG
32	EXP 45	- + + + + +	279	543	22	20	55	-15	10	32	0.3125	AFCIG

Table 25B Yate's algorithm, Results for Productive Flight Hours

Test		Design Matrix				Algorithm						
Condition	Run	ı	Productive									Identi-
Number	Number	AFCIGS	Flight	Ξ	(2)	(3)	€	(2)	(8)	Divisor	Estimate	fication
			Hours									
33	EXP 18	+ 1 1	109	6	0	893	-575	3181	328	32	10.2500	S
34	EXP 50	+ + +	117	13	က	802	-2348	3191	-40	32	-1.2500	Y S
35	EXP 02	+ ! ! ! + !	116	98	0	548	-648	-93	80	32	0.2500	FS
36	EXP 34	+ ! + +	120	66	8	262	-2405	-35	8-	32	-0.2500	AFS
37	EXP 28	+ + + + + + + + + + + + + + + + + + + +	333	0	-45	1009	-65	-79	-178	32	-5.5000	S
38	EXP 58	+ 1 3 + 1 +	401	0	-23	839	-128	-81	-64	32	-2.0000	ACS
39	EXP 10	+ 1 + + 1	337	99	52	285	1.	15	-48	32	-1.5000	FCS
40	EXP 42	+ + + +	400	9,	-31	228	-157	82	16	32	0.5000	AF CS
14	EXP 22	+ + +	55	63	10	163	-1	-855	-130	32	-4.0625	S
45	EXP 54	+ - + +	56	84	က	142	62	-1337	20	32	1.5625	AIS
4 3	EXP 06	+ : + :	99	<u> </u>	-	-102	-18	-441	18	32	0.5625	FIS
44	EXP 33	+ - + - + +	56	31	4-	÷34	96	-443	14	35	0.4375	AFIS
45	EXP 30	+ - + +	227	59	-43	119	7-	-39	118	32	3.6875	CIS
46	EXP 62	+ + + + +	306	50	-40	155	-34	-53	138	32	4.3125	ACLS
47	EXP 14	+ + + + +	226	-	•	-159	9	-	10	32	0.3125	FCIS
48	EXP 46	+ - + + + +	303	±	-28	-10	£0-	57	-42	35	-1.3125	AFCIS
49	EXP 16	+ + :	482	60	→	က	-91	-1773	10	35	0.3125	cs
20	EXP 48	+ + +	573	4	13	α.	-258	-1757	28	32	1.8125	AGS
51	EXP 30	+ + ! ! + !	458	88	0	22	-170	-63	-5	32	-0.0625	FGS
52	EXP 32	+ + ! + +	553	63	10	-56	-29	-171	20	32	2.1875	AFGS
53	EXP 24	+ + + +	501	-	21	<u>-</u> -7	-21	63	-482	32	-15.0625	SSS
54	EXP 56	+++++++	592	٥	17	9 -	68	111	ય	32	-0.0625	A CGS
55	EXP 08	+ + - + + -	559	79	6-	3	36	-27	-14	32	-0.4375	FCGS
90	EXP 40	++:++	594	77	13	-68	149	-35	28	32	1.8125	AFCGS
57	EXP 20	+ + + 1 1	204	88	7	6	-	-165	16	32	0.5000	IGS
58	EXP 52	+ + + ! 1 +	220	46	ç -	10	-78	111	-108	32	-3.3750	AIGS
59	EXP 04	+++++	224	6-	-	-4	∾	68	48	32	1.5000	FIGS
9	EXP 36	+ + + + +	240	35	2-	22	1.2-	113	-18	35	-0.3750	AFIGS
6.1	EXP 28	+ + + +	285	16	6	7	-	-17	276	32	8.6250	CIGS
85	EXP 60	+ + + + + + + + + + + + + + + + + + + +	286	16	44	-1	56	-73	24	32	0.7500	ACIGS
63	EXP 12	+ + + + + 1	261	-	0	35	0	52	*	32	0.1250	PCIGS
64	EXP 44	+ + + + + +	282	21	20	20	-15	-15	-40	35	-1.2500	AFCIGS

Table 26A. Yate's algorithm, Results for Productive Sorties Flown

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Productive									-identi
Number	Number	AFCIGS	Sorties	Ξ	(8)	(E)	€	(2)	(9)	Divisor	Estimate	fication
			Flown									
-	EXP 19		331	683	1366	3972	8991	23798	48585	64	758.8281	average
۵.	EXP 51	1 1 1 +	352	683	2608	5019	14807	24767	2211	32	69.0938	∢
၈	EXP 03	+ + +	327	1304	1292	7785	9422	1150	-311	35	-9.7188	Œ.
4	EXP 35	1 1 + +	356	1302	3727	7022	15345	1081	243	35	7.5938	AF
s	EXP 27	+	969	645	3393	4264	543	-184	10897	32	340.5313	ပ
90	EXP 59	1 + + + +	708	847	4392	5158	607	-127	259	32	8.0938	A C
7	EXP 11	1 1 + + 1	269	1863	3014	8100	474	96	-575	32	-17.9888	.
6	EXP 43	1 1 1 + + +	710	1864	4008	7245	587	147	167	32	5.2188	AFC.
65	EXP 23	; ; + ;	324	1734	1380	280	-	5668	323	32	10.0938	_
10	EXP 55		321	1659	2884	263	-185	5229	-115	32	-3.5938	ΑÍ
	EXP 07	1 + 1 + 1	324	2229	1311	339	∞	172	247	32	7.7188	14
12	EXP 39	1 1 + 1 + +	323	2163	3847	268	-135	87	-75	32	-2.3438	AFI
13	EXP 31	+++	870	1458	3818	164	37	-245	2475	32	77.3438	ច
1	EXP 63	1 ! + + +	883	1558	4284	310	28	-333	505	35	15.7813	V CI
15	EXP 15	1 + + + 1	880	2077	3262	380	4	62	-525	32	-16.4063	FCI
16	EXP 47	1 - + + + +	1004	1931	3983	202	143	105	77	32	2.4063	AFCI
17	EXP 17	 	816	876	20	2	3675	284	11739	32	366.8438	IJ
18	EXP 49	1 + 1 1 + +	918	704	230	က	1993	39	177	32	5.5313	A G
19	EXP 01	1 + 1 + 1	758	1448	+ -	-141	4040	-98	-329	32	-10.2813	Ę.
50	EXP 33	i + 1 1 + +	901	1438	267	77-	1189	-27	161	32	5.0313	AFG
21	EXP 25	1 + 1 + 1	1097	855	245	16	451	102	-4533	32	-141.6583	8
22	EXP 57	+ + + + + +	1132	658	7 6	6	-279	145	-1499	32	-46.8438	V CG
23	EXP 09	1 + 1 + 1	1052	1928	198	-152	428	-62	-469	32	-14.6563	5 52
84	EXP 41	+ + + + +	1111	1919	70	17	-341	-13	81	32	2.5313	AF CG
25	EXP 21	1 + + 1 1	670	1948	22	±	-3	1190	-3559	32	-111.2188	ភ
92	EXP 53	1 + + 1 + +	788	1868	142	23	-239	1285	-373	32	-11.6563	AIG
27	EXP 05	1 + + 1 + 1	738	2178		85	-20	114	285	32	8.9063	FIG
88	EXP 37	+ + ! + +	820	2106	309	9	-283	391	-101	32	-3.1563	AFIG
88	EXP 29	1 + + + ! !	1028	1554	326	0	17	-256	-1979	35	-61.8438	SIC
30	EXP 61	 + + + 	1049	1708	54	4	45	-269	-53	32	-1.6583	ACIG
31	EXP 13	1 + + + + 1	941	2060	138	80	56	100	-587	32	-18.3438	FCIG
32	EXP 45	- + + + + +	066	1923	69	63	79	-23	63	32	1.9688	AFCIG

Table 26B. Yate's algorithm, Results for Productive Sorties Flown

Test		Design Matrix				Algorithm		}				
Condition	Run	Variables	Productive									identi-
Number	Number	AFCIGS	Sorties	Ξ	(3)	(3)	€	(5)	(9)	Divisor	Estimate	fication
33	EXP 18	+	330	21	0	1240	1047	5816	696	32	30.2813	S
34	EXP 50	+ ! ! ! +	346	83	ç _i	2435	-783	5923	-89	32	-2.7813	AS
32	EXP 02	+ 1 1 + 1	343	112	٥	666	894	99	57	38	1.7813	r.
36	EXP 34	+ + +	355	118	-	984	-855	113	51	32	1.5938	AFS
37	EXP 28	+!!+!!	691	-3	-75	1504	-17	-186	-439	35	-13.7188	S
38	EXP 58	+ 1 1 + 1 +	757	7	-86	2536	-71	-143	-85	32	-2.6563	ACS
39	EXP 10	+ + +	680	123	102	468	146	22	-91	35	-2.8438	FCS
07	EXP 42	+ + - + + +	758	144	-148	721	-173	139	43	32	1.3438	AFCS
7	EXP 22	+ 1 + 1 1	327	102	82	180	\$	-1682	-245	32	-7.6563	SI
42	EXP 54	+ + + + + +	328	143	-15	27.1	6	-2851	61	32	1.9063	AIS
43	EXP 08	+ + +	328	35	-	-151	-24	-730	43	35	1.3438	SI
;	EXP 38	+!+!++	328	28	6-	-128	169	-769	49	32	1.5313	AFIS
45	EXP 30	+ + + + + + + + + + + + + + + + + + + +	888	116	-80	120	63	-236	92	32	2.9688	CIS
46	EXP 62	+ + + + + +	1040	85	-72	308	-71	-233	277	32	8.6563	ACIS
47	EXP 14	+ + + + +	881	21	154	-272	₹	28	-13	32	-0.4063	FCIS
48	EXP 46	+ + + + +	1038	49	-137	69-	-17	53	-123	32	-3.8438	AFCES
49	EXP 16	+ + 1	897	16	80	27	1195	-1810	107	32	3.3438	cs
20	EXP 48	+ + ! ! ! +	1051	90	90	7	-Ş	-1749	67	32	1.5313	AGS
51	EXP 00	+ + +	848	99	٥ì	6	1032	-54	43	35	1.3438	FGS
25	EXP 32	+ + 1 1 + +	1020	9,6	21	-248	253	-319	117	32	3.6563	AFGS
53	EXP 24	+ + + + + + + + + + + + + + + + + + + +	1091	-	41	-40	91	86	-1169	32	-36.5313	CCS
54	EXP 56	+ + 1 + 1 +	1087	0	7 2	-10	23	193	-39	32	-1.2188	ACGS
55	EXP 08	++ + + + +	1024	152	-34	&	188	-80	ဇ	32	0.0938	FCGS
56	EXP 40	+++++	1082	157	28	-291	203	-21	52	32	0.7813	AFCGS
57	EXP 20	+ + +	746	154	-10	လူ		-1200	61	32	1.9063	IGS
58	EXP 52	+ + + 1 1 +	808	172	10	61	-257	-779	-265	32	-8.2813	AIGS
59	EXP 04	+ + + 1 + 1	818	+	-	-17	30	-68	101	32	3.1563	FIGS
9	EXP 36	+ + + 1 + +	892	28	S	8 9	-299	15	65	38	1.8438	AFIGS
6.1	EXP 28	+ + + + 1 1	1025	82	18	20	21	-258	12,	38	13.1563	clGS
62	EXP 80	+ + + + + + +	1035	7.8	82	89	48	-329	33	32	2.5938	ACIGS
63	EXP 12	+ + + + +	932	10	*	7	-14	28	-71	32	-2.2188	FCIGS
64	EXP 44	+ + + + + +	166	59	49	3\$	6-	2	-53	32	-1.6583	AFCIGS

Appendix H: Difference Between Two Averages - Calculations for Estimate of Effect and Standard Error

Table 27. Summary of Estimated Effects of Conditions on the Ratio of Cargo Delivered

	RATIO	RATIO		RATIO	RATIO
	ON TIME	DELIVERED		ON TIME	DELIVERED
Average:			Main Effect	S:	
	0.239219	0.567813	A	0.020313	0.019375
			F	0.006562	0.016250
Two Fact	or Interaction	Effects:	С	0.155938	0.338750
AF	0.003438	0.006250	I	-0.001562	-0.001875
AC	0.015313	0.002500	G	0.148437	0.334375
AI	-0.002188	-0.000625	S	0.015312	0.024375
AG	0.007812	0.005625			
AS	-0.001563	-0.000625	Four Factor	Interaction	Effects:
FC	0.002813	-0.005625	AFCI	-0.000313	0.000625
FI	0.000313	0.002500	AFCG	0.002187	0.003125
FG	0.006562	0.017500	AFCS	0.001562	0.000625
FS	0.002187	0.002500	AFIG	-0.000313	0.000000
CI	0.002188	-0.003750	AFIS	0.000312	-0.000000
CG	0.065938	0.057500	AFGS	0.000312	0.002500
CS	0.007812	-0.003750	ACIG	0.001562	-0.000000
IG	0.000937	0.008125	ACIS	0.000937	0.003750
IS	-0.000938	-0.005625	ACGS	0.000937	0.000000
GS	0.010312	0.013125	AIGS	-0.000313	-0.003125
	•		FCIG	0.000313	-0.004375
Three Fa	ctor Interactio	n Effects:	FCIS	-0.000313	0.000825
AFC	0.002187	0.004375	FCGS	0.000937	-0.001875
AFI	-0.000313	0.000000	FIGS	-0.000313	0.001250
AFG	0.003437	0.005000	CIGS	0.002812	0.006250
AFS	0.000312	0.001250	•		
ACI	0.001562	0.000000		Interaction	Effects:
ACG	0.002812	-0.011250	AFCIG	-0.000313	0.000625
ACS	-0.001562	-0.001250	AFCIS	0.000312	-0.000625
AIG	-0.00218B	-0.000625	AFCGS	0.001562	0.001875
ZIA	-0.000313	-0.000625	AFIGS	0.000312	0.000000
AGS	0.000937	0.000625	ACIGS	0.000937	0.001250
FCI	0.000313	-0.004375	FCIGS	-0.000313	0.000625
FCG	0.002812	-0.004375			
FCS	0.000937	-0.000825	Six Factor	Interaction E	ffect:
FIG	0.000312	0.002500	AFCGIS	0.000312	-0.000625
FIS	-0.000313	0.001250			
FGS	0.002187	0.001250	Calculation of Stand		
CIG	0.004687	0.006250	using 3, 4, 5 and	B factor inter	ractions:
CIS	0.000312	-0.001250			
CGS	0.002812	-0.015000	Sum of squares:	0.000106	0.000603
IGS	0.001562	0.001875	Variance:	0.000003	0.000014
			Est of Std Dev:	0.001592	0.003789

Table 28. Summary of Estimated Effects of Conditions
on the Number of Hours Flown

	TOTAL	PRODUCTIVE		TOTAL	PRODUCTIVE
	FLIGHT	FLIGHT		FLIGHT	FLIGHT
	HOURS	HOURS		HOURS	HOURS
Average:			Main Effec	eta:	
	1576.766	295.719	A	403.031	36.563
			F	-30.969	-4.063
Two Factor	Interaction Effe	ects:	С	-1039.781	152.938
AF	-22.844	4.063	Ī	-1118.156	-186.750
AC	-211.156	8.563	G .	1144.719	199.125
AI	-236.656	-10.500	S	182.281	10.250
AG	153.844	-4.000			
AS	-23.969	-1.250	Four Fact	or Interaction Eff	lects:
FC	17.094	-3.313	AFCI	-8.219	0.375
FI	-10.281	4.375	AFCG	20.656	1.750
FG	-8.906	-5.000	AFCS	21.344	0.500
FS	-13.219	0.250	AFIG	-11.969	-2.063
CĪ	533.781	-18.000	AFIS	-4.531	0.438
CG	-960.469	-68.500	AFGS	− €.656	2.188
cs	-161.781	-5.500	ACIG	142.344	6.313
IG	-559.719	-110.313	ACIS	19.781	4.313
IS	-85.781	-4.063	ACGS	3.531	-0.063
GS	97.969	0.313	AIGS	-31.469	-3.375
			FCIG	26.469	-4.688
Three Facto	or Interaction E	ffects:	FCIS	-14.094	0.313
AFC	43.594	2.813	FCGS	-1.969	-0.438
AFI	-2.156	-2.125	FIGS	-11.844	1.500
AFG	-8.656	3.125	CIGS	84.719	8.625
AFS	-11.094	-0.250			
ACI	197.406	7.250	Five Facto	or Interaction Eff	ects:
ACG	-224.969	-27.625	AFCIG	14.594	0.313
ACS	0.844	-2.000	AFCIS	-5.344	-1.313
AIG	-139.844	-7.313	AFCGS	5.906	1.813
AIS	-4.531	1.563	AFIGS	-7.594	-0.375
AGS	5.094	1.813	ACIGS	26.219	0.750
FCI	2.281	-4.625	FCIGS	18.344	0.125
FCG	-3.219	-2.875			
FCS	21.594	-1.500	Six Factor	Interaction Effe	ct:
FIG	-25.969	5.438	AFCGIS	15.469	-1.250
FIS	-1.156	0.563			
FGS	-2.656	-0.063	Calculation of Stands	ard Error for Effe	ects
CIG	371.594	-1.688	using 3, 4, 5 and 6	3 factor interacti	ons:
cis	81.156	3.688			
CGS	-128.719	-15.063	Sum of squares:	311338.518	1395.336
IGS	-70.844	0.500	Variance:	7412.822	33.222
			Est of Std Dev:	86.098	5.764

Table 29. Summary of Estimated Effects of Conditions
on the Number of Sorties Flown

	TOTAL	PRODUCTIVE		TOTAL	PRODUCTIVE
	SORTIES	SORTIES		SORTIES	SORTIES
Average:			Main Effects:		
	4039.906	758.828	A	956.125	69.094
			F	-138.875	-9.719
Two Factor	Interaction Eff	ects:	С	-2453.875	340.531
AF	-68.188	7.594	I	-316.938	10.094
AC	-523.188	8.094	G	2333.250	366.844
AI	-310.125	-3.594	S	424.688	30.281
AG	356.688	5.531			
AS	-67.125	-2.781	Four Factor	Interaction Effe	ets:
FC	68.313	-17.969	AFCI	15.375	2.406
FI	-47.500	7.719	AFCG	62.563	2.531
FG	-61.813	-10.281	AFCS	54.875	1.344
FS	-56.000	1.781	AFIG	-41.875	-3.156
CI	598.500	77.344	AFIS	-19.688	1.531
CG	-2001.938	-141.656	AFGS	-28.750	3.656
CS	-390.000	-13.719	ACIG	211.250	-1.656
IG	-489.250	-111.219	ACIS	45.313	8.656
IS	-72.688	-7.656	ACGS	20.875	-1.219
GS	162.125	3.344	AIGS	-94.688	-8.281
•			FCIG	78.375	-18.344
Three Fact	or interaction E	offects:	FCIS	-34.188	-0.406
AFC	108.875	5.219	FCGS	2.750	0.094
AFI	-26.563	-2.344	FIGS	-47.438	3.156
AFG	-36.000	5.031	CIGS	115.438	13.156
AFS	-33.188	1.594			
ACI	345.438	15.781	Five Factor	Interaction Effe	cts:
ACG	-537.375	-46.844	AFCIG	64.063	1.969
ACS	6.813	-2.656	AFCIS	8.000	-3.844
AIG	-234.063	-11.656	AFCGS	28.813	0.781
AIS	-25.250	1.906	AFIGS	-20.500	1.844
AGS	-6.813	1.531	ACIGS	81.125	2.594
FCI	9.813	-16.406	FCIGS	59.625	-2.219
FCG	10.125	-14.656			
FCS	60.938	-2.844	Six Factor In	teraction Effect	L :
FIG	-94.188	8.906	AFCGIS	51.188	-1.656
FIS	-5.000	1.344			
FGS	-17.938	1.344	Calculation of Standard	Error for Effec	ts
CIG	301.188	-61.844	using 3. 4. 5 and 6 fe	actor interaction	DS:
CIS	58.500	2.969			
CGS	-238.563	-36.531	Sum of squares	758357.117	9143.674
IGS	-91.250	1.906	Variance:	18056.122	217.707
			Est of Std Dev:	134.373,	14.755

Appendix I: Yate's Algorithm - Calculations for Estimate of Effect for Transformed Results

Test		Design Matrix	i				Algorithm					
Condition	Run	Variables	Ratio									[denti-
Number	Number	AFCIGS	On Time	Ξ	(2)	(3)	€	(2)	9)	Divisor	Estimate	fication
-	EXP 19	:	-2.120264	-424	-8.48	-14.83	-29.66	-49.97	-98.27	64	-1.535428	average
82	EXP 51	1 1 1 +	-2.120264	-4.24	-6.35	-14.83	-20.30	-48.30	2.22	35	0.069347	۷
ဇ	EXP 03	1 1 1 + 1	-2120264	-3.17	-8.48	-10.12	-29.27	1.28	0.83	32	0.019679	<u>د.</u>
4	EXP 35	1 1 1 + +	-2120264	-3.17	-6.35	-10.19	-19.03	96.0	0.29	35	0.008980	AF
νΩ	EXP 27	1 1 + 1	-1.660731	-4.24	-6.49	-14.54	0.59	0.22	20.74	35	0.647986	ပ
99	EXP 59	1 + 1 + 1 +	-1514128	-4.24	-3.62	-14.73	0.67	0.41	1.44	32	0.045037	V C
۲-	EXP 11	1 + + +	-1.660731	-3.17	-6.59	-9.47	0.37	0.17	0.05	32	0.001497	ည
80	EXP 43	F 1 1 + + +	-1514128	-3.17	-3.80	-9.58	0.59	0.12	0.10	32	0.002996	AFC
on.	EXP 23	1 + 1 1	-2.120264	-3.27	-8.48	0.29	00.0	10.12	~0.36	32	-0.011130	-
01	EXP 55	+ + + +	-2.120264	-3.22	90.9-	0.29	0.22	10.61	-0.31	35	-0.009631	Į¥
1.1	EXP 07	1 + 1 + 1	-2.120264	-1.84	-8.48	0.40	00.0	0.85	0.03	32	0.000950	1
12	EXP 39	1 + 1 + +	-2120264	-179	-6 25	0.27	0.41	0.59	-0.02	32	-0.000638	AFI
13	EXP 31	1 + + 1 1	-1.660731	-3.32	-6.15	0.18	0.00	0.02	0.22	32	0.006768	៊
1.	EXP 63	1 + + + + +	-1.514128	-3.27	-3.31	0.19	0.17	0.03	0.26	32	0.008267	VCI
15	EXP 15	1 + + + 1	-1660731	-1.84	-6.34	0.39	0.00	-0.03	0.05	32	0.000522	FCI
16	EXP 47	1 + + + +	-1.514128	-1.76	-3.22	0.20	0.12	0.43	~0.03	32	-0.001068	AFCI
17	EXP 17	1 1 1	-1.660731	-4.24	0.00	0.00	4.26	-0.07	19.60	32	0.612359	v
18	EXP 49	+ + +	-1.609438	-4.24	0.29	0.00	5.86	-0.28	0.30	38	0.009410	A G
19	EXP 01	1 1 + 1	1.660731	-3.03	0.00	0.10	4.65	-0.13	0.63	35	0.019679	Ę.
20	EXP 33	; + ; ; + + +	-1.5806+8	-303	0.29	0.12	5.96	-0.18	0.29	35	0.008980	AFG
21	EXP 25	i + 1 + 1	-0.967564	-4.24	0.15	0.00	0.59	0.03	2.90	32	0.090673	පි
22	EXP 57	1 + 1 + 1 +	-0.867501	- 4.24	0.25	0.00	0.28	0.00	-0.48	38	-0.014899	V CC
23	EXP 09	1 + 1 + + 1	-0.967584	-3.12	0.05	0.50	0.37	-0.02	0.05	32	0.001497	55
54	EXP 41	+ + + +	-0.820981	-3.12	0.22	0.21	0.22	0.00	0.10	38	0.002996	AFCG
25	EXP 21	1 + + 1 1 1	-1.660731	-3.12	0.00	0.00	00.0	0.13	0.05	32	0.000525	2
92	EXP 53	+ + i +	-1.660731	-3.03	0.18	0.00	0.02	60.0	-0.33	35	~0.010174	A fG
27	EXP 05	1 + + 1 + 1	-1.660731	-1.71	0.00	0.10	00.0	0.07	0.03	32	0.000950	FIG
88	EXP 37	ı + + ı + +	-1.609438	1.60	0.19	0.07	0.03	0.19	~0.02	35	-0.000638	AFIG
59	EXP 29	+ + +	-0.967584	-3.22	0.19	0.00	0.00	0.02	0.59	32	0.018423	CIC
30	EXP 61	: + + + - +	-0.867501	.3.12	0.20	0.00	-0.03	-0.01	0.25	32	0.007724	ACIG
31	EXP 13	1 + + + + 1	-0941609	1.67	00.0	90.0	0.00	-0.03	0.05	32	0.000522	FCIG
32	EXP 45	-++++	-0.820981	1.56	0.20	90.0	0.13	-0.01	-0.03	32	-0.001086	AFCIG

Table 30A. Yate's algorithm, Results for Ratio On Time - Transformed to Natural Logarithms

Table 30B. Yate's algorithm, Results for Ratio On Time - Transformed to Natural Logarithms

Test		Design Matrix	,		*	Algorithm						
Condition	Rup	Variables	Ratio									Identi-
Number	Number	A F C I G S	On Time	Ξ	(8)	(3)	3	(2)	<u>@</u>	Divisor	Estimate	fication
33	EXP 18	+ 1 - 1 - 1	-2.120264	0.00	00.0	2.13	000	9.36	1.66	32	0.052023	S
34	EXP 50	+ 1 1 1 +	-2.120264	0.00	0.00	2.13	-0.07	10.24	-0.29	35	-0.009184	VS
35	EXP 02	+ +	-2.120284	0.15	000	2.87	-0.19	90.0	0.19	35	0.005985	S.
38	EXP 34	+ + + + +	-2.120284	0.15	0.00	5.99	-0.10	0.22	-0.05	35	-0.001467	AFS
37	EXP 26	+ 1 + 1 + 1	-1.580648	000	0.05	2.42	0.00	0.22	0.49	35	0.015203	8
38	EXP 58	+ + - +	-1.469676	0.00	90.0	2.23	-0.13	0.41	-0.28	35	-0.008159	V CS
39	EXP 10	+ + + -	-1.560648	0.15	0.05	2.84	0.01	0.17	0.01	35	0.000314	S
07	EXP 42	+ 1 1 + + +	-1.469676	0.15	20.0	3.12	-0.19	0.12	0.16	35	0.005059	AFCS
7	EXP 22	+ 1 + 1 1 1	-2.120284	0.05	00.0	0.29	0.00	1.60	-0.21	35	-0.006498	SI
42	EXP 54	+ - + +	-2.120264	0.10	0.00	0.29	0.03	1.30	-0.08	35	-0.001753	AES
43	EXP 06	+ + +	-2.120264	0.10	0.00	0 10	00.0	-0.32	-0.03	38	-0.000830	SIS
;	EXP 38	+ 1 + 1 + +	-2.120264	0.15	0.00	0.17	0.00	-0.18	0.03	35	0.000829	AFIS
45	EXP 30	+ + +	-1.609438	0.00	60.0	0.18	00.0	0.02	-0.04	35	-0.001111	SES
46	EXP 62	+ + + +	-1.514128	0.05	0.11	0.19	-0.02	0.03	0.12	35	0.003635	ACIS
47	EXP 14	+ + + +	-1.609438	0.10	0.10	0.02	000	-0.03	-0.03	35	-0.000945	FCIS
48	EXP 46	+ + + + +	-1.514128	0.12	0.11	0.50	0.00	0.13	0.02	35	0.000714	AFCIS
67	EXP 16	+ + 1 1 1	-1.609438	00'0	0.00	00.0	00.0	-0.07	0.88	35	0.027544	SS
20	EXP 48	+ + 1 + 1 +	-1.514128	000	0.00	0.00	0.13	60'0	0.13	32	0.004182	AGS
5.1	EXP 00	+ + +	-1.560648	60.0	0.00	-0.00	-0.19	-0.13	0.19	35	0.005985	FGS
52	EXP 32	+ + + + + +	-1.469676	60.0	0.00	0.05	0.28	-0.20	-0.05	32	-0.001467	AFGS
53	EXP 24	++++	-0.891598	0.00	0.05	0.00	00.0	0.03	-0.30	35	-0.009278	SGS.
54	EXP 58	++1+1+	-0.820981	0.00	0.05	0.00	0.07	00.0	0.17	35	0.005208	ACGS
55	EXP 08	+ + + + + +	-0.867501	0.10	0.05	0.02	0.01	-0.02	0.01	35	0.000314	FCGS
99	EXP 40	++ + + + +	-0.733969	0.10	0.02	0.01	0.18	00.0	0.18	32	0.005059	AFCGS
57	EXP 20	+ + + 1 1 1	-1.609438	0.10	0.00	00.0	000	0.13	0.17	32	0.005157	SDI
58	EXP 52	+++11+	-1.609438	60.0	0.00	0.00	0.02	0.48	-0.07	35	-0.002295	AICS
59	EXP 04	+++++	-1.560648	0.07	0.00	-0.00	0.00	70.0	-0.03	32	-0.000830	FIGS
80	EXP 36	+++1++	-1.560648	0.13	0.00	-0.03	-0.01	0.17	0.03	35	0.000829	AFIGS
6.1	EXP 28	+ + + + :	-0.867501	00.0	-0.00	0.00	0.00	0.02	0.34	32	0.010545	CIGS
82	EXP 60	++++++	-0.798508	0.00	90.0	0.00	-0.03	-0.01	0.10	35	0.003093	ACIGS
63	EXP 12	+ + + + +	-0.843970	0.07	0.00	0.07	0.00	-0.03	-0.03	35	-0.000945	FCIGS
84	EXP 44	+ + + + +	-0.713350	0.13	90.0	90.0	-0.01	-0.01	0.02	32	0.000714	AFCIGS

Table 31A Yate's algorithm, Results for Ratio Delivered - Transformed to Natural Land of thems

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Ratio									Identi-
Number	Number	AFCIGS	Delivered	Ξ	(2)	(3)	€	(S)	(8)	Divisor	Estimate	fication
-	EXP 19	1 1 1 1	-1.347074	-2.69	-5.39	-7.91	-1586	-2191	-42 50	64	-0.664018	average
8	EXP 51	1 1 1 1	-1.347074	-2 69	-2.52	-7.95	-805	-20.58	1.05	35	0.032740	<
6	EXP 03	! ! ! +	-1.347074	-1.25	-5.39	-309	-15.53	0 56	0.81	32	0.025351	ía.
*	EXP 35	i i i +	-1.347074	-1.27	-2.58	-2.98	-5 06	0 49	0.23	32	0.007268	AF
s	EXP 27	1 + 1	-0.653926	-2.69	-2.76	-7.84	0 23	0.35	20 60	35	0.643881	ပ
8	EXP 59	! ! + !	-0.597837	-2.69	-0.33	-7.89	0 33	0.48	0 0 0	35	0.001407	V C
7	EXP 11	1 1 + + 1	-0.673345	-1.27	-2.66	-2.53	0.18	0.10	-0 48	32	-0.015130	5
6 0	EXP 43	1 1 + + +	-0.597837	-1.29	-0.30	-2.53	031	0.13	0.18	35	0.005060	AFC
6	EXP 23	! ! !	-1.347074	-1.43	-5.39	0.13	-0.04	10.48	-0.16	32	-0.005024	_
01	EXP 55	1 + 1 + +	-1.347074	-1.33	-2.25	0.09	0 39	10.13	-0.05	32	-0.000609	IV
11	EXP 07	1 + 1 + 1	-1.347074	-0.20	-5.39	0.14	000	0 0	0.17	32	0.005321	ī
12	EXP 39	1 + 1 + +	-1.347074	-0 13	-2.50	0.19	0.46	-0.00	-0.01	32	-0.000456	AFI
13	EXP 31		-0.653926	-1.43	-2.27	0.07	0.04	-0.24	-0.27	35	-0.008462	ರ
<u>-</u>	EXP 63	1 + + + + + + + + + + + + + + + + + + +	-0616186	-1.23	-0.28	0.11	900	-0.25	0.01	35	0.000229	VCI
15	EXP 15	11+++1	-0.673345	-0.17	-2.31	0.19	00.0	0.08	-0.24	35	-0.007413	I.C.I
18	EXP 47	:	-0.616186	-0.13	-0.22	0.12	0.13	0.08	0.04	35	0.001112	AFCI
17	EXP 17	1 1 1 1	-0.733969	-2.89	0.00	-0.02	5.69	60.0	20.28	35	0.633737	v
81	EXP 49	1 + 1 + +	-0.693147	-2.69	0.13	-0.02	4.78	-0.25	0.23	35	0.007187	A G
61	EXP 01	1 + 1 + 1	-0.693147	-1.12	0.00	0.18	6.02	0.01	0.89	35	0.027778	FG
20	EXP 33	1 + 1 1 + +	-0.634878	-1.12	60:0	0.23	4.10	-0.03	0.15	35	0.004841	AFG
12	EXP 25	1 + 1 + 1	-0.105361	-2.69	0.10	0.00	0.23	90.0	-2.83	35	-0.088493	ខ
22	EXP 57	1+1+1+	-0.094311	-2.69	0.04	00.0	-0.18	0.11	-0.77	35	-0.024146	V CC
23	EXP 09	1+1++1	-0.083382	-1.25	0.16	0.18	0.18	-0.01	-0.41	32	-0.012702	PCG.
54	EXP 41	1 + 1 + + +	-0.051293	-1.25	0.03	0.28	-0.18	-0.00	0.08	32	0.002633	AF CG
52	EXP 21	+ +	-0.755023	-1.20	0.00	0.02	-0.04	-0.10	0.42	35	0.013172	2
5.6	EXP 53	1 + + 1 1 +	-0.673345	-1.07	0.07	0.02	-0.20	-0.17	-0.03	35	-0.000940	AIG
27	EXP 05	1++1+1	-0.653926	-0.18	0.00	0.04	000	-0.10	0.17	32	0.005321	FIG
28	EXP 37	1++1++	-0.579818	-0.10	0.11	0.05	-0.25	0.11	-0.01	35	-0.000456	AFIG
59	EXP 29	i + + + : :	-0.083382	-1.27	91.0	0.00	0.04	-0.13	0.31	32	0.009734	CIG
30	EXP 61	1 + + + 1 +	-0.083382	-1.04	0.03	00.0	0.04	-0.11	-0.00	32	-0.000102	ACIG
31	EXP 13	1++++	-0.083382	-0.13	60.0	0.07	0.00	0.04	-0.24	32	-0.007413	FCIG
32	EXP 45	- + + + +	-0.051293	-0.08	0.03	0.07	0.08	-0.00	0.04	32	0.001112	AFCIG

Table 31B. Yate's algorithm, Results for Ratio Delivered - Transformed to Natural Logarithms

Test		Design Matrix				Agorithm						
Condition	Run	Variables	Ratio									Identi-
Number	Number	AFCIGS	Delivered	Ξ	(2)	(3)	€	(2)	(8)	Divisor	Estimate	fication
33	EXP 18	+	-1.347074	000	0.00	2.87	-0.04	9.81	1.33	32	0.041477	S
34	EXP 50	+ 1 1 1 + +	-1.347074	000	-0.02	2.83	0.13	10.47	-0.07	32	-0.002047	VS
35	EXP 02	+ 1 1 + 1	-1347074	90.0	00.0	2.42	-0.25	0.10	0.11	32	0 003353	Š
36	EXP 34	+ ! : ! + +	-1.347074	90.0	-0.02	2.36	00.0	0.13	0.03	32	0 000903	AFS
37	EXP 26	+ 1 1 + 1 1	-0.579818	00.0	0.10	3.14	-0.04	0.43	-0.35	35	-0010836	છ
38	EXP 58	+ 1 + + + +	-0.544727	00.0	90.0	2.88	0.05	0.48	-0.05	32	-0 001521	V CS
39	EXP 10	+ 1 1 + + 1	-0.579818	0.04	0.19	2.01	0.04	0.02	-0.01	32	-0.000413	S
0,	EXP 42	+ + + + + +	-0.544727	90.0	0.03	5.09	-0.07	0.13	-0.00	32	-0.000070	AFCS
7	EXP 22	+ + + 1 - 1	-1.347074	0.04	00.0	0.13	00.0-	-0.91	-0.34	32	-0.010601	ম
42	EXP 54	+ 1 + 1 1 +	-1.347074	90.0	000	60:0	90.0	-1.92	-0.04	32	-0.001168	AES
4 3	EXP 08	+ + +	-1347074	0.01	00.0	90.0-	00.0	-0.41	0.05	35	0.001407	FIS
;	EXP 38	+ + + + + +	-1.347074	0.03	00.0	-0.12	0 11	-0.37	0.0	35	0.000417	AFIS
45	EXP 30	+ + +	-0.653926	0.08	0.12	0.07	0.00	-0.16	-0.08	32	-0.002410	CIS
48	EXP 62	+ + + +	-0.597837	0 07	0.05	0.11	-0.01	-0 25	0.22	35	0.006757	ACIS
47	EXP 14	+ + + +	-0.853926	000	0.23	-0.13	00.0	00.0	0.02	35	0.000615	FCIS
48	EXP 46	+ + + + +	-0.597837	0.03	0.05	-0.08	-0.00	90.0	-0.04	35	-0.001142	AFCES
6*	EXP 16	+ +	-0.834878	000	00.0	-0.02	-0.04	91.0	0.67	35	0.020854	cs
20	EXP 48	+ + + + + + + +	-0.562119	000	0.05	-0.02	90.0-	0.28	0.02	32	0.000711	AGS
5.1	EXP 00	+ + + - + -	-0579818	0.04	00.0	-0.03	-0.25	90.0	0.03	35	0.000926	FGS
25	EXP 32	++11++	-0.494296	0.04	0.02	-0.16	0.08	-0.11	0.11	32	0.003331	AFGS
53	EXP 24	+ + 1 + 1 1	-0.072571	00:0	0.02	0.00	-0.04	90.0	-1.01	32	-0.031459	SDO
24	EXP 58	++1+1+	-0.083382	00.0	0.02	0.00	-0.07	0.11	0.04	32	0.001238	ACGS
55	EXP 08	+ + 1 + + 1	-0.072571	90.0	-0.01	-0.07	0.04	-0.01	60.0-	32	-0.002840	PCGS
58	EXP 40	+++++	-0.030459	90.0	0.03	-0.18	0.07	-0.00	0.08	35	0.002357	AFCGS
57	EXP 20	+ + +	-0.653926	0.07	00.0	0.02	-0.00	-0.02	0.10	32	0.003007	IGS
58	EXP 52	+ + + 1 1 +	-0.616186	60.0	00.0	0.02	-0.13	0.33	-0.19	32	-0.006087	AIGS
59	EXP 04	+ + + + + + + + + + + + + + + + + + + +	-0.544727	-0.01	0.00	00.0	0.00	-0.03	0.05	32	0.001407	FIGS
09	EXP 38	+ + + - + +	-0.494296	0.04	00.0	0.04	-0.11	0.03	0.01	35	0.000417	AFIGS
61	EXP 28	+ + + + 1 1	-0.061875	0.04	0.01	0.00	0.00	-0.13	0.36	32	0.011198	CICS
82	EXP 80	+ + + + + + + + + + + + + + + + + + + +	-0.072571	0.05	0.05	0.00	0.04	-0.11	0.08	32	0.001839	ACIGS
63	EXP 12	++++	-0.061875	-0.01	0.01	0.04	0.00	0.04	0.02	32	0.000615	PCIGS
84	EXP 44	+ + + + + + +	-0.020203	0.04	0.05	\$0.0	-0.00	-0.00	-0.04	32	-0.001142	AFCIGS

Table 32A. Yate's algorithm, Results for Total Flight Hours - Transformed To Natural Logarithms

Test		Design Matrix				Algorithm	,					
Condition	Run	Variables	Total									Identi-
Number	Number	AFCIGS	Flight	Ξ	(2)	(c)	€	(2)	(9)	Divisor	Estimate	fication
-	EXP 19	1 1 1 1	7.008505	14.37	28.75	56.81	109.02	227.82	458.42	84	7.163	average
N	EXP 51	1 1 1 +	7.364547	14.37	28.06	52.21	118.80	230.60	98.9	32	0.214	4
n	EXP 03	1 1 1 + 1	7.027315	1406	25.78	62.45	110.48	3.93	-0.71	32	-0.022	<u>fa</u> ,
4	EXP 35	1 1 + +	7344719	14.01	26.43	56.35	120.12	2.93	-0.19	35	900.0-	AF
S	EXP 27	; ; ; + ;	6.888933	12.91	33.08	57.47	2.18	-0.28	-16.02	32	-0.501	<u> </u>
9	EXP 59	1 + + +	7.188413	12.87	29.36	53.02	1.75	-0.45	-0.70	38	-0 022	V C
۷	EXP 11	1 1 + + 1	6.844815	13.22	29.81	63.23	1.65	-0.05	0.18	32	0.005	٤
œ	EXP 43	1 1 + + +	7.181622	13.21	26.54	56.89	1.28	-0.14	0.81	32	0.025	AF C
ō	EXP 23	1 + 1 1	6386879	16.53	29 14	1.31	60.0-	-7.01	-21.47	32	-0.671	_
01	EXP 55	1 + 1 + +	6.520621	16.55	28.33	0.87	-0.17	-9.01	-1.45	35	-0.045	7
11	EXP 07	1 + 1 + 1	6.381818	14.70	26.40	1.07	-0.17	-0.48	-027	32	-0.008	Z
12	EXP 39	1 + + + +	8.490724	14.86	26.62	0.67	-0.28	-0.24	-0.07	35	-0 005	AFI
13	EXP 31	+ +	6.455199	14.94	33.91	98.0	-0.08	-0.09	3.59	32	0.112	5
* 1	EXP 63	! ! + + +	6.783885	14.87	29.32	0.79	0.01	0.25	1.73	35	0.054	V CI
15	EXP 15	1 + + + -	6.448889	13.31	30.36	0.91	-0.08	0.24	-0.12	32	+ 00.0-	FCI
18	EXP 47	11++++	6.765039	13.23	26.54	0.38	-0.08	0.57	-0.04	32	-0.001	AFCI
17	EXP 17	1 + 1 1 1	8.048149	14.67	79.0	-0.05	-0.03	-10.69	19.41	35	0.607	υ
18	EXP 49	+ + + + +	8.482809	14.47	9.0	-0.04	-6.98	-10.78	-0.79	32	-0.025	A G
19	EXP 01	1+11+1	8.074028	14.13	0.24	-0.02	-0.59	-0.84	-0.19	35	-0.008	PG
20	EXP 33	1 + 1 - + +	8.478036	14.20	0.62	-0.15	-8.41	-0.61	60.0	32	0.003	AFG
21	EXP 25	1 + 1 + 1 +	7.302496	13.19	0.84	-0.14	0.35	-0.12	-14.77	32	-0.462	ප
22	EXP 57	1 + 1 + 1 +	7.400621	1321	0.24	-0.03	-0.81	-0.15	-1.94	32	-0.061	V CG
23	EXP 09	1 + 1 + + 1	7.281225	13.33	0.44	-0.01	0.27	0.02	-0.21	35	-0.007	ည့
24	EXP 41	1 + 1 + + +	7.399398	13.29	0.23	-0.27	-0.51	60.0-	0.29	32	600.0	A PCG
25	EXP 21	1 + + 1 1	7.348655	16.95	0.44	₽ 0.0−	-0.05	1.79	-3.39	35	-0.106	2
58	EXP 53	+ + +	7.591882	16.96	0.42	-0.02	-0.07	1.80	-0.41	35	-0.013	AIG
27	EXP 05	++++	7.335634	14.66	0.25	0.01	0.20	0.81	-0.52	35	-0.018	FIG
28	EXP 37	1 + + 1 + +	7,532088	14.65	0.54	00.0	0.04	0.91	-0.18	32	9000-	AFIG
62	EXP 29	+ + + ; ;	8.609349	15.28	0.73	-0.05	0.07	0.13	-1.13	35	-0.035	OIC CIC
30	EXP 61	: + + + +	8.700731	15.09	0.17	-0.02	0.17	-0.25	0.27	35	0.008	ACIG
31	EXP 13	1 + + + + 1	6.545350	13.32	0.17	0.03	0.19	0.03	0.38	32	0.012	PCIG
32	EXP 45	1 + + + + +	8 887109	13.22	0.21	-0.09	0.38	-0.07	0.42	32	0.013	AFCIG

Table 32B. Yate's algorithm, Results for Total Flight Hours - Transformed To Natural Logarithms

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Total									ldenti-
Number	Number	AFCIGS	Flight	Ξ	(2)	(3)	€	(2)	(8)	Divisor	Estimate	fication
33	EXP 18	+ 1 1 1 1	7.191429	0.36	-0.00	-0.68	-4.59	97.6	2.79	32	0.087	S
34	EXP 50	+ +	7.478170	0.32	-0.05	0.65	-6.10	9.64	-1.00	32	-0.031	ΥS
35	EXP 02	+ +	7 158177	0.32	-0.03	-3.72	-4.45	-0.43	~0.19	35	9000-	S.
38	EXP 34	+ 1 1 + +	7.310550	0.32	-0.01	-3.26	-6.33	-0.37	60.0-	. 32	-0.003	AFS
37	EXP 28	+ 1 + 1 1	8.981006	0.13	0 05	-0.81	-0.44	-0.08	-1.99	32	-0.082	S
38	EXP 58	+ 1 1 + 1 +	7.153052	0.11	-0.04	0.21	-0.40	-0.11	0.23	32	0.007	ACS
39	EXP 10	+ + + -	8.972608	0.31	-0.07	-4.60	-0.08	0.07	0.33	32	0.010	FCS
40	EXP 42	+ i + + +	7.222586	0.32	-0.08	-3.82	-0.53	0.02	0.33	32	0.010	AFCS
7	EXP 22	+ + + 1 + 1	6.533789	0.43	-0.20	-0.04	0.01	-6.95	60:0-	32	-0.003	នា
42	EXP 54	+ + + +	8.858011	0.40	90.0	0.38	-0.13	-7.82	0.24	32	0.007	AľS
43	EXP 08	+ + + + + +	8.543912	0.10	0.02	-0.60	0.11	-1.16	~0.03	32	-0.001	FIS
44	EXP 38	+ + + + +	6.885684	0.14	-0.05	-0.21	-0.27	-0.79	-0.10	32	-0.003	AFIS
45	EXP 30	+ - + +	6.525030	0.25	0.00	-0.02	0.03	-0.05	0.01	32	0000	CIS
48	EXP 62	+ - + + - +	6.805723	0.20	-0.01	0.29	-0.01	-0.16	0.10	32	0.003	ACIS
47	EXP 14	+ + + + + +	6.513230	60.0	-0.17	-0.56	0.03	0.10	-0.39	32	-0.012	PCIS
48	EXP 46	+ + + + +	6.771936	0.14	-0.11	0.05	-0.12	0.19	-0.10	38	-0.003	AFCIS
6#	EXP 16	++111	8.283494	0.29	-0.04	-0.05	1.34	-1.50	-0.14	38	+ 00.0-	cs
20	EXP 48	+ + 1 + +	8.669743	0.15	-0.00	0.03	0.48	-1.89	90.0	32	0.005	AGS
51	EXP 00	++ + -	8.306225	0.17	-0.02	90:0-	1.02	0.04	-0.03	35	-0.001	FGS
52	EXP 32	++11++	8.851549	0.25	0.01	-0.01	0.78	-0.45	-0.05	32	-0.002	AFGS
53	EXP 24	+ + + + + + + + + + + + + + + + + + + +	7.305188	0.12	-0.03	0.26	0.42	-0.14	-0.87	32	-0.027	SDO
54	EXP 58	+ + 1 + 1 +	7.358194	0.12	0.04	-0.08	0.39	-0.38	0.37	32	0.012	ACGS
55	EXP 08	++ + + + +	7.265430	0.28	-0.05	-0.02	0.31	-0.03	-0.10	32	-0.003	FCGS
56	EXP 40	++;++	7.387090	0.28	0.05	90.0	0.80	-0.15	0.08	32	0.003	AF CGS
57	EXP 20	+ + + ! ! !	7.544332	0.39	-0.13	0.03	0.08	-0.88	-0.38	32	-0.012	IGS
58	EXP 52	+++1++	7.716461	0.35	0.08	0.03	90.0	-0.25	-0.50	32	-0.015	AIGS
29	EXP 04	+++++	7.550661	0.05	-0.00	0.07	-0.33	-0.02	-0.24	32	-0.008	FIGS
90	EXP 36	++++++	7.544332	0.12	-0.02	0.10	0.08	0.29	-0.11	35	-0.003	AFIGS
19	EXP 28	+ + + +	6.630683	0.17	-0.04	0.21	-0.00	-0.02	0.84	35	0.020	CIGS
62	EXP 60	+ + + + 1 +	8.690842	-0.01	0.07	-0.02	0.03	0.40	0.31	38	0.010	ACIGS
63	EXP 12	+++++	6.532334	90.0	-0.18	0.11	-0.23	0.03	0.45	35	0.013	FCIGS
84	EXP 44	+ + + + + +	6.683361	0.15	60.0	0.27	0.16	0.39	0.38	32	0.011	AFCIGS

Table 33A. Yate's algorithm, Results for Total Sorties Flown - Transformed to Natural Logarithms

Test		Design Matrix				Algorithm	-					
Condition	Run	Variables	Total									-ituapi
Number	Number	AFCIGS	Sorties	Ξ	(8)	(3)	•	(2)	(9)	Divisor	Estimate	fication
-	EXP 19	1 1	7.821643	15.98	31.98	62.95	126.47	260.95	524.60	84	8.197	average
۸,	EXP 51	!!!!+	8.163086	15.98	30.99	63.51	134.49	263.64	6.58	32	0.205	< <
6	EXP 03	1 1 1 + 1	7.841493	15.52	31.73	67.58	127.94	3.77	-1.00	35	-0.031	6. ,
•	EXP 35	1 1 + +	8.138273	15.48	31.78	66.93	135.70	2.79	-0.20	35	9000-	AF
s	EXP 27	1 + 1	7.616776	15.89	35.60	63.67	1.94	-0.35	-16.83	35	-0.528	ບ
9	EXP 59	1 + + + +	7.905442	15.84	31.96	64.27	1.83	-0.88	-1.46	35	-0.048	V C
٨	EXP 11	1 1 1 + + 1	7.590852	15.89	34.86	68.26	1.44	-0.07	0.22	35	0.007	ည
60	EXP 43	1 1 1 + + +	7.873598	15.89	32.07	67.44	1.35	-0.13	0.70	35	0.022	A FC
o.	EXP 23	 	7.882315	17.79	32.41	1.2.1	-0.11	-7.34	-0.29	35	600'0-	_
01	EXP 55	1 + 1 + +	8.004366	17.80	31.26	0.73	-0.23	-9.49	-1.42	35	-0.044	IV
11	EXP 07	1 + + + 1	7.870166	16.01	32.38	1.10	-0.26	-0.82	-0.21	32	-0.007	E
12	EXP 39	1 1 + 1 + +	7.974533	15.95	31.89	0.73	-0.39	-0.63	-0.10	35	-0.003	AFI
13	EXP 31	1 + + 1	7.822044	17.47	36.37	0.74	-0.07	-0.09	3.65	32	0.114	ប
*1	EXP 63	1 + + + + +	8.072779	17.38	31.90	0.70	-0.00	0.30	1.49	35	0.048	V CI
15	EXP 15	1 1 + + + 1	7.817625	16.08	35.41	0.94	-0.04	0.20	-0.17	32	-0.005	Ē
18	EXP 47	1 + + + +	8.070281	15.99	32.03	0.41	-0.09	0.51	-0.03	35	-0.001	AFCI
17	EXP 17	+	8.865613	16.35	9.0	90.0-	-0.93	-0.07	15.79	35	0.493	U
18	EXP 49	1 + 1 1 1 +	9.128154	16.07	0.57	-0.05	-6.41	-0.23	-0.20	32	9000-	ΑG
19	EXP 01	+ + + + +	8.681351	15.60	0.23	-0.05	-1.64	-0.85	-0.25	35	-0.008	5
50	EXP 33	1+11++	9.120416	15.66	0.50	-0.18	-7.85	-0.57	0.02	32	0.001	AFG
21	EXP 25	1 + 1 + 1 1	7.965893	16.18	06.0	-0.23	0.21	-0.12	-11.70	35	-0.385	ខ
22	EXP 57	1 + 1 + 1 +	8.045588	16.19	0.20	-0.03	-1.03	60.0-	-2.17	32	-0.088	A CG
23	EXP 09	1+1++1	7.916443	15.97	0.53	-0.05	0.15	000	-0.30	32	600.0-	L CG
54	EXP 41	:+ + + + +	8.035279	15.92	0.20	-0.34	-0.78	-0.11	0.25	32	0.008	AFCG
25	EXP 21	; + + ; ; ; ;	8.592301	18.19	0.38	-0.05	-0.02	1.88	-2.61	32	-0.082	2
92	EXP 53	1++1+	8.880307	18.17	0.36	-0.02	-0.07	1.77	-0.38	32	-0.012	AIG
27	EXP 05	1 + + 1 + 1	8.570734	15.97	0.28	0.02	0.27	0.72	-0.62	35	-0.019	FIG
28	EXP 37	1++++	8.812397	15.93	0.43	-0.02	0.03	0.77	-0.16	32	-0.005	AFIG
53	EXP 29	1 + + + 1 1	7.998671	17.80	0.81	-0.05	90.0	0.15	0.24	32	0.008	CIC
30	EXP 61	1+++1+	8.084562	17.61	0.13	-0.02	0.14	-0.32	0.42	35	0.013	ACIG
31	EXP 13	1 + + + + 1	7.937732	16.09	0.28	0.01	0.17	-0.01	0.44	35	0.014	FCIG
32	EXP 45	-++++	8.052933	15.94	0.15	60.0-	0.34	-0.02	0.43	32	0.013	AFCIG

Table 33B Yate's algorithm, Results for Total Sorties Flown - Transformed to Natural Logarithms

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Total									Identi-
Number	Number	AFCIGS	Sorties	Ξ	(2)	(3)	€	(\$)	(8)	Divisor	Estimate	fication
33	EXP 18	+ 1 : 1 : 1	8.052615	0.34	-0.00	-0.98	0.58	8.02	2.69	32	0.084	S
34	EXP 50	+ 1 1 + +	8.294799	0.30	-0.08	90.0	-0.63	7.78	-0.99	32	-0.031	V
35	EXP 02	+ 1 1 + 1	7.964156	0.29	-0.04	-3.63	0.59	-0.11	-0.31	32	-0.010	FS
38	EXP 34	+ + + +	8.102538	0.28	-0.01	- 2.78	-0.92	-0.09	-0.06	32	-0.002	AFS
37	EXP 28	+ + + + + + + + + + + + + + + + + + + +	7.732808	0.12	0.01	-1.16	-0.48	-0.12	-2.15	32	-0.067	S
38	EXP 58	+ + + + + + +	7870188	0.10	-0.08	-0.48	-0.37	-0.13	0.19	32	900.0	V CS
39	EXP 10	+ + + -	7.716461	0.25	60'0-	-4.47	-0.04	90.0	0.39	32	0.012	S
0,	EXF 42	+ + + +	7.938802	0.25	60 0-	-3.38	-0 53	-0.04	0.31	32	0.010	AFCS
7	EXP 22	+ +	8.024207	0.46	-0.28	-0.07	0.01	-5.49	-0.16	32	-0.005	S
45	EXP 54	+ + + + + + +	8.157370	0.44	90.0	0.28	-0.13	-6.21	0.28	32	600.0	AIS
43	EXP 08	+ + + + + +	8.031080	0.08	0.01	-0.70	0.19	-1.24	0.02	32	0.001	FIS
*	EXP 38	+ + + + +	8.1625.01	0.12	-0.05	-0.33	-0.29	-0.93	-0.11	32	-0.003	AFIS
4 5	EXP 30	+ + + + + +	7.870548	0.29	-0.02	-0.02	0.03	-0.05	-0.11	32	-0.004	CIS
48	EXP 62	+ + + + + +	8.098643	0.24	-0.04	0.17	-0.03	-0.24	0.05	32	0.005	ACES
4.7	EXP 14	+ + + + +	7.858254	60.0	-0.20	-0.68	-0.00	0.08	-0.47	32	-0.015	FCIS
48	EXP 46	+ - + + + +	8.084007	0.12	-0.14	-0.10	-0.10	0.17	-0.02	32	-0.001	AFCIS
67	EXP 16	+ +	8.884887	0.24	-0.04	-0.05	1.03	-1.19	-0.26	32	-0.008	cs
20	EXP 48	+++	9.307013	0.14	-0.01	0.04	0.85	-1.42	0.02	32	0000	AGS
51	EXP 00	+ + 1 1 + 1	8.893847	0.14	-0.02	-0.07	0.67	0.11	-0.01	32	-0.000	FGS
52	EXP 32	++1 ++	9.280985	0.22	00.0	-0.00	1.09	-0.49	-0.11	32	-0.003	AFGS
53	EXP 24	++::::::	7.981370	0.13	-0.02	0.33	0.34	-0.14	-0.72	35	-0.023	SSS
54	EXP 58	+ + : + : +	8.005033	0.13	0.04	-0.06	0.37	-0.48	0.31	32	0.010	ACGS
55	EXP 08	++ + + + +	7.921898	0.23	-0.05	-0.02	0.19	-0.07	-0.19	38	-0.006	FCGS
56	EXP 40	+++++	8.007367	0.21	0.03	0.05	0.58	-0.10	60.0	32	0.003	AFCGS
57	EXP 20	+++111	8.792701	0.42	-0.10	0.04	60.0	-0.18	-0.25	32	-0.007	SSI
58	EXP 52	+++1++	9.009325	0.39	0.08	0.02	90.0	0.42	-0.80	32	-0.019	AIGS
59	EXP 04	+++++	8.784162	0.04	-0.00	90.0	-0.39	0.03	-0.34	38	-0.010	FIGS
90	EXP 36	++++++	8.822817	60.0	-0.02	0.08	70.0	0.39	-0.03	32	-0.001	AFIGS
61	EXP 28	+ + + + 1	8.027150	0.22	-0.03	0.19	-0.02	-0.02	0.60	32	0.019	CIGS
62	EXP 60	++++++	8.061171	0.04	0.04	-0.02	0.01	0.48	0.36	32	0.011	ACIGS
63	EXP 12	+++++	7.912423	0.03	-0.18	0.08	-0.21	0.03	0.49	38	0.015	FCIGS
84	EXP 44	+ + + + + +	8.031060	0.12	0.08	0.26	0.19	0.40	0.36	32	0.011	AFCIGS

Table 34A Yate's algorithm. Results for Productive Flight Hours - Transformed to Natural Logarithms

Test	-	Design Matrix				Algorithm						
Condition	Run	Variables	Prod active									Identi-
Number	Number	A F C I G S	FI ght	Ξ	(2)	(E)	€	(2)	(8)	Divisor	Estimate	ficetion
			Hours									
-	EXP 19	1 1 1	4 709530	9.50	18.99	42.26	80 42	174.47	350.02	84	5.4691	average
ο.	EXP 51	1 : : +	4.787492	9.50	23.26	38.18	94.05	175.55	3.69	32	0.1152	∢
9	EXP 03	1 1 + 1	4 691348	11.63	16.03	50.20	80.97	1.98	-0.10	32	-0.0030	<u>[</u>
4	EXP 35	1 1 + +	4.804021	11.63	22.13	43.85	94.58	1.70	0 28	35	0.0089	AF
<u>د</u>	EXP 27	1 1 + 1	5 686975	8.01	24.58	42.61	1.30	-0.12	24.89	32	0.7780	ပ
9	EXP 59	· (+ · · +	5.942799	8.01	25.62	38.37	0.68	0.02	96.0	35	0.0294	V C
~	EXP 11	1 + +	5.669881	11.07	21.32	50.46	1.07	0.19	-0.54	32	-0.0169	FC
8	EXP 43	1 1 + + +	5.963579	11.07	22.53	44.12	0.63	60.0	0.28	35	0.0088	AFC
6	EXP 23	+ + + +	4 007333	12.34	18.99	0.74	0.00	12.83	-21.03	32	-0.6571	-
10	EXP 55	1 + + +	4.0073 33	12.24	23.61	95.0	-0.13	12.28	-0.31	32	1600.0-	I
=	EXP 07	t + +	4 007333	12.83	16.08	0.39	0.10	0.49	0.29	32	0.0091	E.
12	EXP 39	1 + 1 + +	4 007333	12.79	22.28	0.29	-0 08	0.45	-0.12	35	-0.0039	AFI
13	EXP 31	1 + + 1	5 402677	10.60	24.96	0.48	0.11	-0.17	3.97	32	0.1240	ច
1.	EXP 63	1 + + · · +	5.682960	10.72	25.50	0.61	0.08	-0.38	0.83	38	0.0260	ACI
15	EXP 15	1 + + + 1	5.384495	11.32	21.60	0.41	-0.07	0.12	-0.55	35	-0.0173	FCI
18	ENP 47	: 1 + + + +	5 683580	11.21	22.51	0.23	0.17	0.17	0.18	35	9500.0	AFCI
17	EX. 17	+	6.104793	9.45	0.19	0.00	10.38	-10.45	27.24	32	0.8511	ပ
18	EXP 49	1 + f f f + +	6.236370	9.54	0.55	00:0	2.26	-10.58	-1.08	38	-0.0330	V G
19	EXP 01	1 + + -	8.028279	1180	00.0	-0.14	10.82	-0.28	-0.31	32	96000-	P.C
20	EXP 33	1 + + +	8.212608	11.81	99.0	0.01	1.44	-0.03	0.21	32	99000	AFG
31	EXP 25	1 + : + : 1	6 403574	8.03	0.32	0.10	0.92	0.15	-17.49	35	-0.5467	ప్ర
33	EXP 57	1 + 1 + 1 +	6.426488	8.05	0.07	0.00	-0.43	0.14	-2.55	32	9670.0-	V CG
23	EXP 09	1 + 1 + 1	6.389901	11.15	0.24	-0.15	0.83	-0.12	-0.34	32	-0.0105	FCG.
\$2	EXP 41	1 + 1 + + +	6.421622	11.13	0.05	0.08	-0.38	-0.01	0.13	32	0.0040	AFCG
52	EXP 21	1 + + 1 - 1	5.225747	12.52	010	0.07	001	2.01	-4.38	32	-0.1361	10
58	EXP 53	1 + + 1 1 +	5.370838	12.44	0.36	0.04	-0.17	1.96	-0.24	32	-0.0076	AIG
27	EXP 05	1 + + 1 + 1	5.313208	12.78	0.02	0.08	-0.11	0.28	0.48	38	0.0149	FIG
88	EXP 37	1 + + + + + +	5.407172	12.71	0.59	-0.00	-0.27	0.57	-0.11	32	-0.0035	AFIG
53	EXP 29	1 + + + 1	5.659482	10.71	0.38	-0.05	0.04	-0.30	-2.88	32	-0.0894	OIC
30	EXP 61	+ + + + +	5.862960	10.89	0.05	-0.02	0 0 7	-0.25	21	32	7900.0-	ACIG
31	EXF 13	1 + + + 1	5.579730	11.31	0.14	0.10	0.04	0.18	-0.64	32	-0.0200	FCIG
3.	EXP 45	- + + + - +	5.631212	11.21	0.08	0.07	0.13	0.02	0.13	32	0.0040	AFCIG

Table 34B Yate's algorithm, Results for Productive Flight Hours - Transformed to Natural Logarithms

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Productive									Identi-
Number	Number	AFCIGS	Flight	Ξ	(8)	(3)	€	(5)	(8)	Divisor	Estimate	fication
33	EXP 18	+ ! ! ! ! !	4.691348	0.08	-0.00	4.27	-4.09	13.64	1.08	32	0.0337	S
34	EXP 50	+ ! ! ! +	4.782174	0.11	0.00	8.10	-6.35	13.60	-0.28	32	-0.0088	ΥS
35	EXP 02	+ 1 1 + 1	4.753590	0.26	0.00	1.04	-4.24	-0.62	0.15	32	0.0046	FS
36	EXP 34	+ 1 1 + +	4.787492	0.29	0.00	1.22	-6.34	-0.44	-0.10	38	-0.0030	AFS
37	EXP 26	+ 1 1 + 1 1	5.808142	0.00	-0.10	4.62	-0.18	-0.13	-0.37	32	-0.0115	S
38	EXP 58	+ 1 1 + 1 +	5.993961	0.00	-0.04	6.20	-0.10	-0.18	-0.05	32	-0.0014	ACS
39	EXP 10	+ : : + + :	5.820083	0.28	0.12	0.53	0.15	-0.03	-0.21	32	9900'0-	FCS
40	EXP 42	+ + + +	5.991465	0.30	-0.11	0.91	-0.18	0.24	0.05	32	0.0015	AFCS
4.1	EXP 22	+ 1 + 1 1 1	4.007333	0.13	0.09	0.36	00.0	-8.12	-0.13	32	-0.0042	S
42	EXP 54	+ ! + ! ! +	4.025352	0.18	0.01	0.58	0.15	-9.37	0.24	32	92000	ALS
4 3	EXP 06	+ : + : + :	4.025352	0.02	0.02	-0.24	-0.09	-1.34	-0.01	32	-0.0004	FLS
*	EXP 38	+ 1 + 1 + +	4.025352	0.05	-0.01	-0.18	0.23	-1.20	0.11	32	0.0035	AFIS
45	EXP 30	+ [+ + 1]	5.424950	0.14	-0.09	0.25	-0.03	-0.18	-0.05	38	-0.0017	CIS
46	EXP 62	+ ! + + ! +	5.723585	60.0	-0.07	0.57	-0.08	-0.18	0.31	35	0.0098	ACIS
47	EXP 14	+ + + + +	5.420535	0.00	0.18	-0.31	0.03	0.03	0.05	35	0.0015	FCIS
48	EXP 46	+ - + + + +	5.713733	0.05	-U.10	-0.08	-0.03	01.0	-0.14	32	-0.0043	AFCIS
49	EXP 16	+ +	6.177944	0.07	0.03	10.0	1.83	-2.28	-0.03	32	-0.0011	SS
20	EXP 48	+ + 1 1 1 +	6.345636	0.03	0.04	0.63	0.18	-2.10	0.17	32	0.0055	AGS
51	EXP 00	+ + + + + 1	6.122493	0.19	0.00	90.0	1.58	0.08	-0.05	32	-0.0014	FGS
52	EXP 32	+ + 1 1 + +	6.315358	0.17	0.04	-0.24	0.38	-0.33	0.28	35	0.0086	AFGS
53	EXP 24	++ + + +	6.398595	0.02	0.05	-0.08	0.20	0.15	-1.25	38	-0.0392	SDO
54	EXP 58	++ + + + + +	6.383507	0.00	0.03	-0.03	90.0	0.33	0.14	32	0.0043	ACGS
99	EXP 08	+ + + + +	6.326149	0.30	-0.05	0.08	0.32	-0.05	0.03	35	0.0008	FCGS
58	EXP 40	+ + + + + +	6.386879	0.29	0.05	-0.28	0.25	-0.08	0.08	32	0 00 50	AFCGS
57	EXP 20	+ + +	5.318120	0.17	-0.04	0.00	-0.00	-1.68	0.17	35	0.0052	IGS
58	EXP 52	+ + + + + + + + + + + + + + + + + + +	5.393628	0.19	-0.01	0.04	-0.30	-1.20	-0.41	38	-0.0129	AIGS
69	EXP 04	+ + + + 1	5.411648	-0.02	-0.02	-0.02	0.05	-0.14	0.18	35	0.0055	FIGS
9	EXP 38	++++++	5.480639	90.0	-0.01	0.10	-0.30	-0.07	-0.01	35	-0.0003	AFIGS
6.1	EXP 28	+ + + +	5.652489	0.08	0.03	0.02	0.04	-0.29	0.45	32	0.0142	CIGS
82	EXP 60	+ + + + + + + + + + + + + + + + + + + +	5.655992	0.07	0.08	0.01	0.12	-0.35	0.07	35	0.0023	ACIGS
63	EXP 12	+ + + + + !	5.584520	0.00	-0.01	90.0	-0.01	60.0	-0.05	32	-0.0016	FCIGS
84	EXP 44	+ + + + + +	5.641907	0.08	20.0	0.08	0.03	0.04	-0.05	32	-0.0015	AFCIGS

Table 35A. Yate's algorithm, Results for Productive Sorties Flown - Transformed to Natural Logarithms

Test		Design Matrix				Algorithm	1					
Condition	Run	Variables	Productive									Identi-
Number Nu	Number	V F C I G S	Sorties	Ξ	(8)	(3)	€	(2)	(9)	Divisor	Estimate	fication
			Flown									
EXP	P 19	! ! !	5.802118	11.67	23.33	49.23	99.68	208.77	418.84	84	6.5443	average
EXP	P 51	1 1 1 +	5.863631	11.66	25.90	50.45	109.09	210.07	2.71	38	0.0847	<
EXP	P 03	1 1 + 1	5.789980	12.95	23.11	54.96	100.32	1.49	-0.21	32	-0.0064	Ca. ,
EXP	P 35	1 1 1 + +	5.874931	12.95	27.34	54.12	109.75	1.22	0.25	38	0.0078	AF
EXP	P 27	1 + 1	6.390241	11.55	56.98	49.69	0.78	-0.18	17.51	32	0.5471	ပ
EXP	P 59	1 1 + 1 +	6.582444	11.56	28.00	50.63	0.71	-0.05	0.17	32	0.0053	V C
EXP	11	1 + + 1	6.383507	13.67	26.49	55.33	0.59	0.12	~0.68	32	-0.0214	ည့
EXP	P 43	1 : 1 + + +	6.565265	13.67	27.64	54.42	0.63	0.13	0.18	32	0.0058	AFC
EXF	EXP 23	1 + 1 1 1	5.780744	13.53	23.37	0.50	00.0	8.99	0.40	32	0.0126	-
EXP	52	i + i +	5.771441	13.43	26.32	0.27	-0.16	8.52	-0.36	32	-0.0112	IA
EXP	70 d	1 + + + 1	5.780744	14.03	23.17	0.38	90.0	0.11	0.29	32	0600'0	ī
EXP	99	1 1 + 1 + +	5.777652	13.97	27.46	0.34	-0.10	90.0	-0.11	32	-0.0035	AFI
EXP	9 31	+++	6.768493	13.17	27.43	0.28	90.0	-0.28	3.44	32	0.1074	ឆ
EXP	P 63	1 + + + +	6.900731	13.31	27.90	0.33	0.05	-0.42	0.48	35	0.0151	V CI
EXF	EXP 15	- + + + -	6.756932	13.89	26.81	0.39	-0.01	0.08	-0.58	38	-0.0181	FCI
EXP	P 47	1 1 + + + +	6.911747	13.74	27.61	0.24	0.15	0.13	0.12	32	0.0038	AFCI
EXP	71 6	1 + 1 + 1 +	6.704414	11.65	0.15	-0.00	6.80	0.38	18.83	32	0.5886	v
EXP	64	1 + 1 1 + +	8.822197	11.73	0.35	0.01	2.19	0.03	-0.01	38	-0.0005	A G
EXF	EXP 01	+ + + +	6.630683	13.17	-0.01	-0.15	7.24	-0.27	-0.32	38	-0.0101	ည့
EXF	EXP 33	1 + 1 1 + +	6.803505	13.15	0.29	-0.01	1.28	-0.09	0.15	32	0.0047	A FG
EXF	EXP 25	+ + + + + + + + + + + + + + + + + + + +	7.000334	11.58	0.29	90.0	0.51	0.18	-10.58	32	-0.3301	ខ
EXF	EXP 57	1 + ; + ! +	7.031741	11.59	60.0	-0.01	-0.40	0.13	-1.75	35	-0.0546	V CG
EXF	EXP 09	1+1++1	6.958448	13.74	0.27	-0.15	0.45	-0.11	-0.44	32	-0.0138	5 00
EXF	EXP 41	1+1+++	7.013018	13.73	0.07	0.05	-0.39	-0.01	0.07	32	0.0022	AFCG
EXF	EXP 21	+++	6.507278	13.76	90.0	0.03	-0.01	1.78	-3.91	38	-0.1222	2
EXF	EXP 53	-+++	6.888957	13.67	0.20	0.03	-0.25	1.67	~0.03	32	-0.0010	AIG
EXF	EXP 05	1 + + 1 + 1	6.603944	13.99	0.00	0.08	-0.11	0.10	0.41	32	0.0128	FIG
EXP	P 37	1 + + 1 + +	6.709304	13.92	0.32	-0.02	-0.31	0.38	-0.14	35	-0.0044	AFIG
EXF	EXP 29	1 + + + + + + + + + + + + + + + + + + +	6.935370	13.31	0.34	-0.05	0.00	-0.32	-2.57	32	-0.0804	51 2
EXP	19	+ + + +	6.955593	13.50	0.05	0.00	0.05	-0.28	-0.07	32	-0.0023	ACIG
EXF	EXP 13	1 + + + + 1	6.846943	13.87	0.17	60.0	0.05	0.15	-0.74	35	-0.0233	PCIG
EXP	P 45	1 + + + +	6.897705	13.74	0.07	0.08	0.07	-0.03	0.13	32	0.0041	AFCIG

Table 35B. Yate's algorithm, Results for Productive Sorties Flown - Transformed to Natural Logarithms

Test		Design Matrix				Algorithm						
Condition	Run	Variables	Productive									[denti-
Number	Number	AFCIGS	Sorties	Ξ	(2)	(3)	€	(2)	(8)	Divisor	Estimate	fication
33	EXP 18	+ : : : : : : : : : : : : : : : : : : :	5,799093	90.0	-0.00	2.57	1.22	9.41	1.30	32	0.0407	S
34		+ 1 : 1 +	5.846439	0.08	-0.00	4.23	-0.84	9.43	-0.27	32	-0.0083	AS
35	EXP 02	+ 1 + 1	5.855072	0.17	0.01	1.04	0.94	-0.08	0.11	32	0.0035	FS
36	EXP 34	+ + +	5.872118	0.18	-0.00	1.15	-0.91	0.05	0.02	32	0.0005	AFS
37	EXP 28	+ + + + + + + + + + + + + + + + + + + +	6.538140	-0.01	60'0-	2.94	-0.23	~0.18	-0.47	32	-0.0147	S
38	EXP 58	+ ! ! + ! +	6.629363	-0.00	90.0-	4.29	-0.04	-0.18	-0.05	32	-0.0014	ACS
39	EXP 10	+ + +	6.522093	0.13	0.14	0.48	90.0	-0.01	-0.16	32	-0.0049	FCS
40	EXP 42	+ 1 1 + + +	6.628041	0.15	-0.15	0.80	-0.15	0.18	0.07	32	0.0023	AFCS
-7	EXP 22	+ + + + + + + + + + + + + + + + + + + +	5.789980	0.12	0.08	0.21	0.01	-4.81	-0.35	32	-0.0109	S
42	EXP 54	+ ! + ! ; +	5.793014	0.17	-0.02	0.30	0.15	-5.98	0.18	32	0.0055	AIS
43	EXP 08	+ + + + + +	5.793014	0.03	00.0	-0.20	-0.07	-0.91	-0.02	32	-0.0007	FIS
;	EXP 38	+ + + + +	5.793014	0.05	-0.01	-0.19	0.50	-0.84	0.10	35	0.0031	AFES
45	EXP 30	+ - + +	6.788972	0.18	-0.09	0.13	-0.00	-0.24	-0.09	32	-0.0027	CIS
46	EXP 62	+ + + +	6.946978	0.11	-0.07	0.32	-0.10	-0.20	0.28	38	0.0087	ACIS
47	EXP 14	+ ! + + + +	6.781058	0.02	0.19	-0.29	0.02	0.05	90.0	32	0.0019	FCIS
48	EXP 48	+ + + + +	6.945051	0.05	-0.14	-0.10	-0.02	0.02	-0.17	32	-0.0054	AFCIS
67	EXP 16	+ + 1 1 1 1	6.799056	0.05	0.02	-0.00	1.66	-2.06	0.02	32	0.0006	CS
20	EXP 48	+++	6.957497	0.02	0.01	-0.01	0.11	-1.85	0.11	32	0.0035	AGS
51	EXP 00	+ + 1 1 + 1	6.742881	0.09	0.01	0.03	1.35	0.19	00.0-	32	00000-	FGS
52	EXP 32	++++	6.927558	0.11	0.05	-0.29	0.33	-0.22	0.17	32	0.0052	AFGS
53	EXP 24	+ + ! + ! !	6.994850	0.00	90.0	-0.10	60.0	0.14	-1.35	35	-0.0422	SSS
24	EXP 58	++++++	6.991177	0.00	0.02	-0.01	0.01	0.28	90.0	32	0.0020	ACGS
55	EXP 08	++1++1	6.931472	0.16	-0.05	0.02	0.19	-0.10	90.0	35	0.0015	FCGS
58	EXP 40	+ + + + +	8.986588	0.16	0.03	-0.33	0.19	-0.04	-0.03	38	6000.0-	AFCGS
57	EXP 20	+ + +	8.614728	0.16	-0.03	-0.01	-0.00	-1.55	0.50	32	0.0064	IGS
58	EXP 52	+++++++	8.694582	0.18	0.01	0.05	-0.32	-1.02	-0.40	32	-0.0128	AIGS
69	EXP 04	+++++	8.704414	-0.00	-0.00	-0.03	60.0	-0.08	0.14	32	0.0044	FIGS
60	EXP 36	++++++	6.793466	90.0	0.01	0.08	-0.35	0.01	90.0	32	0.0017	AFIGS
6.1	EXP 28	++++1	6.932448	0.08	0.03	0.05	0.03	-0.31	0.53	32	0.0165	CIGS
62	EXP 60	++++++	6.942157	60.0	90.0	0.01	0.12	-0.43	60.0	32	0.0028	ACIGS
63	EXP 12	+++++	6.837333	0.01	0.01	0.03	-0.04	60.0	-0.12	38	-0.0037	FCIGS
84	EXP 44	+ + + + + +	6.898715	90.0	0.05	0.04	0.01	0.05	-0.04	32	-0.0013	AFCIGS

Appendix J: Difference Between Two Averages - Calculations for Estimate of Effect and Standard Error for Transformed Results

Table 36. Summary of Estimated Effects of Conditions
on the Ratio of Cargo Delivered Results Transformed to Natural Logarithms

	RATIO	RATIO		RATIO	RATIO
	ON TIME	DELIVERED		ON TIME	DELIVERED
Average		DECITERED	Main Effec		DELIVERED
WASTURE	-1.535428	-0.664018	A A	0.069347	0.032740
	-1.000420	-0.004010	F	0.019679	0.025351
Two Fac	tor Interaction	n Effects	c	0.647986	0.643881
AF	0.008980	0.007268	I	-0.011130	-0.005024
AC	0.045037	0.001407	- G	0.612359	0.633737
AI	-0.009631	-0.000609	S	0.052023	0.041477
AG	0.009410	0.007187	_	5.002000	3.01111
AS	-0.009184	-0.002047	Four Facto	r Interaction	Effects:
FC	0.001497	-0.015130	AFCI	-0.001066	0.001112
FI	0.000950	0.005321	AFCG	0.002996	0.002633
FG	0.019679	0.027778	AFCS	0.005059	-0.000070
FS	0.005985	0.003353	AFIG	-0.000638	-0.000456
CI	0.006768	-0.008462	AFIS	0.000829	0.000417
CG	0.090673	-L 088493	AFGS	-0.001467	0.003331
CS	0.015203	-0.010836	ACIG	0.007724	-0.000102
IG	0.000525	0.013172	ACIS	0.003635	0.006757
IS	-0.006498	-0.010601	ACGS	0.005206	0.001238
GS	0.027544	0.020854	AIGS	-0.002295	-0.006087
			FCIG	0.000522	-0.007413
Three F	actor Interacti	ion Effects:	FCIS	-0.000945	0.000615
AFC	0.002996	0.005060	FCGS	0.000314	-0.002840
AFI	-0.000638	-0.000456	FIGS	-0.000830	0.001407
AFG	0.008980	0.004841	CIGS	0.010545	0.011198
AFS	-0.001467	0.000903			
ACI	785800.0	0.000229	Five Facto	r Interaction	Effects:
ACG	-0.014899	-0.024146	AFCIG	-0.001066	0.001112
ACS	-0.008159	-0.001521	AFCIS	0.000714	-0.001142
AIG	-0.010174	-0.000940	AFCGS	0.005059	0.002357
AIS	-0.001753	-0.001168	AFIGS	0.000829	0.000417
AGS	0.004182	0.000711	ACIGS	0.003093	0.001839
FCI	0 000522	-0.007413	FCIGS	-0.000945	0.000615
FCG	0.001497	-0.012702			
FCS	0.000314	-0.000413		Interaction E	
FIG	0.000950	0.005321	AFCGIS	0.000714	-0.001142
FIS	-0.000830	0.001407			
FGS	0.005985	0.000926	Calculation of Standar		
CIG	0.018423	0.009734	using 3, 4, 5 and 6	factor interac	tions:
CIS	-0.001111	-0.002410			
CGS	-0.009276	-0.031459	Sum of squares:	0 001363	0.002293
IGS	0.005157	0.003007	Variance:	0 000032	0.000055
			Est of Std Dev:	0.005696	0.007389

Table 37. Summary of Estimated Effects of Conditions
on the Number of Hours Flown Results Transformed to Natural Logarithms

	FLIGHT	FLIGHT		FLIGHT	FLIGHT
	HOURS	HOURS		HOURS	HOURS
Average:			Main Effects	i• i-	
	7.163	5.469	A	0.214	0.115
			F	-0.022	-0.003
Two Facto	r Interaction	Effects:	С	-0.501	0.778
AF	-0.006	0.009	I	-0.671	-0.657
AC	-0.022	0.029	G	0.807	0.851
ΑĪ	-0.045	-0.010	S	0.087	0.034
AG	-0.025	-0.033			
AS	-0.031	-0.009	Four Factor	Interaction E	Effects:
FC	0.005	-0.017	AFCI	-0.001	0.008
FI	-0.008	0.009	AFCG	0.009	0.004
FG	-0.006	-0.010	AFCS	0.010	200.0
FS	-0.006	0.005	AFIG	-0.006	-0.004
CI	0.112	0.124	AFIS	-0.003	0.004
CG	-0.462	-0.547	AFGS	-0.002	0.009
CS	-0.062	-0.012	ACIG	800.0	~0.007
IG	-0.106	0.136	ACIS	0.003	0.010
IS	-0.003	-0.004	ACGS	0.012	0.004
GS	-0.004	-0.001	AIGS	-0.015	-0.013
			FCIG	0.012	-0.020
Three Fac	tor Interacti	on Effects:	FCIS	-0.012	0.001
AFC	0.025	0.009	FCGS	-0.003	0.001
AFI	-0.002	-0.004	FIGS	-0.008	0.005
AFG	0.003	0.007	CIGS	0.020	0.014
AFS	-0.003	-0.003			
ACI	0.054	0.026		Interaction E	iffects:
ACG	-0.061	-0.080	AFCIG	0.013	0.004
ACS	0.007	-0.001	AFCIS	-0.003	-0.004
AIG	-0.013	-0.008	AFCGS	0.003	0.002
AIS	0.007	0.008	AFIGS	-0.003	-0.000
AGS	0.002	0.005	ACIGS	0.010	0.002
FCI	-0.004	-0.017	FCIGS	0.013	-0.002
FCG	-0.007	-0.011			
FCS	0.010	-0.007		nteraction Ef	
FIG	-0.016	0.015	AFCGIS	0.011	-0.001
FIS	-0.001	-0.000			
FGS	-0.001	-0.001	Calculation of Standard		
CIG	-0.035	-0.089	using 3, 4, 5 and 6 fe	actor interact	ions:
CIS	0.000	-0.002			
CGS	-0.027	-0.039	Sum of squares:	0.012109	0.018697
IGS	-0.012	0.005	Variance:	0.000288	0.000445
			Est of Std Dev:	0.016979	0.021099

Table 38. Summary of Estimated Effects of Conditions
on the Number of Sorties Flown Results Transformed to Natural Logarithms

	TOTAL SORTIES	PRODUCTIVE SORTIES		TOTAL SORTIES	PRODUCTIVE SORTIES
A wama <i>ca</i> :	SURTIES	SURTIES	Main Effects		SURTES
Average:	8.197	8.544	Main Effects	s: 0.20 5	0.085
	0.197	0.344	F F	-0.031	-0.008
Two Foot	am Iméanachta	m Effects	r C		
AF	or Interaction			-0.526	0.547
	-0.006	0.008	I	-0.009	0.013
AC	-0.046	0.005	G	0.493	0.589
AI AC	-0.044	-0.011	S	0.084	0.041
AG	-0.006	-0.000	Paus Pasta		D44
AS	-0.031	-0.008		Interaction	
FC	0.007	-0.021	AFCI	-0.001	0.004
FI	-0.007	0.009	AFCG	0.008	0.002
FG	-0.008	-0.010	AFCS	0.010	200.0
FS	-0.010	0.004	AFIG	-0.005	-0.004
CI	0.114	0.107	AFIS	-0.003	0.003
CG	-0.365	-0.330	AFGS	-0.003	0.005
CS	-0.067	-0.015	ACIG	0.013	-0.002
IG .	-0.082	-0.122	ACIS	0.002	
IS	-0.005	-0.011	ACGS	0.010	- 0.002
GS	-0.008	0.001	AIGS	-0.019	-0.013
			FCIG	0.014	-0.023
	ctor Interact		FCIS	-0.015	0.002
AFC	0.022	0.006	FCGS	-0.006	0.001
AFI	-0.003	-0.003	FIGS	-0.010	0.004
AFG	0.001	0.005	CIGS	0.019	0.017
AFS	-0.002	0.001	_		
ACI	0.046	0.015		Interaction	
ACG	-0.068	-0.055	AFCIG	0.013	0.004
ACS	0.006	-0.001	AFCIS	-0.001	-0.005
AIG	-0.012	-0.001	AFCGS	0.003	-0.001
AIS	0 0 0 9	0.005	AFIGS	-0.001	200.0
AGS	0.000	0.003	ACIGS	0.011	0.003
FCI	-0.005	-0.018	FCIGS	0.015	-0.004
FCG	-0.009	-0.014			
FCS	0.012	-0.005		Interaction E	
FIG	-0.019	0.013	AFCGIS	0.011	-0.001
FIS	0.001	-0.001			
FGS	-0.000	-0.000	Calculation of Standard		
CIG	0.008	-0.080	using 3, 4, 5 and 6 f	actor interac	tions:
CIS	-0.004	-0.003			
CGS	ES 0.0-	-0.042	Sum of squares:	0 0 1 1 1 8 7	0.013558
IGS	-0.007	0.006	Variance:	0 000286	0 000323
			Est of Std Dev	0.016321	0.017967

Table 39A Experimental Results Transformed to Natural Logarithms: GAMM Central American Scenario

			- 71	CAMM Central American Scenario	nerican Scenar	위		
Test					Total		Productive	
Condition			Ratio	Ratio	Flight	Total	Flight	Productive
Number	Run	Š	On Time	Delivered	Hours	Sorties	Hours	Sorties
	EXP	19	-2120264	-1.347074	7.008505	7.821643	4.709530	5.802118
83	EXP	51	-2.120264	-1.347074	7.364547	8.183088	4.787492	5.863631
ဗ	EXP	03	-2 120264	-1.347074	7.027315	7.841493	4.691348	5.789960
4	EXP	35	-2.120264	-1.347074	7.344719	8.138273	4.804021	5.874931
2	EXP	27	-1860731	-0.653928	6.866933	7.616776	5.686975	6.390241
9	EXP	29	-1.514128	-0.597837	7.188413	7.905442	5.942799	6.562444
~	EXP	11	-1.860731	-0.873345	6.844815	7.590852	5.669881	6.383507
8	EXP	43	-1.514128	-0.597837	7.161622	7.873598	5.983579	6.565265
6	EXP	23	-2.120284	- 347074	6.386879	7.882315	4.007333	5.780744
10	EXP	55	-2.120264	-1.347074	6.520621	8.004368	4.007333	5.771441
11	EXP	20	-2.120264	-1.347074	6.381816	7.870166	4.007333	5.780744
12	EXP	39	-2.120264	-1.347074	6.490724	7.974533	4.007333	5.777852
13	EXP	31	-1.660731	-0.653926	6.455199	7.822044	5.402877	6.768493
14	EXP	63	-1.514128	-0.616186	6.763885	8.072779	5.662960	6.900731
15	EXP	15	-1.680731	-0.673345	6.448889	7.817625	5.384495	6.758932
16	EXP	47	-1.514128	-0.616186	6.765039	8.070281	5.883580	8.911747
17	EXP	17	-1.660731	-0.733969	8.048149	8.665613	6.104793	8.704414
18	EXP	49	-1.609438	-0.693147	8.482809	9.128154	6.236370	6.822197
19	EXP	0	-1.660731	-0.693147	8.074028	8.681351	6.028279	6.630683
20	EXP	33	-1.580648	-0.634878	8.478038	9.120416	6.212606	8.803505
21	EXP	25	-0.967584	-0.105361	7.302498	7.965893	6.403574	7.000334
22	EXP	24	-0.867501	-0.094311	7.400621	8.045588	6.426488	7.031741
23	EXP	60	-0.967584	-0.083382	7.261225	7.916443	6.369901	6.958448
24	EXP	41	-0.820981	-0.051293	7.399398	8.035279	6.421622	7.013016
25	EXP	21	-1.660731	-0.755023	7.348655	8.592301	5.225747	8.507278
28	EXP	53	-1.660731	-0.673345	7.591862	8.880307	5.370838	6.666957
27	EXP	05	-1.660731	-0.653926	7.335634	8.570734	5.313208	6.603944
28	EXP	37	-1.609438	-0.579818	7.532088	8.812397	5.407172	6.709304
59	EXP	88	-0.967584	-0.083382	6.609349	7.998671	5.659482	6.935370
30	EXP	61	-0.867501	-0.083382	6.700731	8.084562	5.662960	6.955593
31	EXP	13	-0.941609	-0.083382	6.545350	7.937732	5.579730	6.846943
32	EXP	45	-0.820981	-0.051293	6.687109	8.052933	5.831212	6.897705

Table 39B Experimental Results Transformed to Natural Logarithms; GAMM Central American Scenario

Ratio On Time
-0.544727
-1.347074
-1.347074
-1.347074
-1.347074
-0.653926
•
-0.579818
-0.072571
·
·
-0.544727
•

Appendix L: Analysis of Initial Regression Equations

Explanation of Analysis

For each regression equation, 64 estimates were calculated with each variable being substituted by either +1 or -1, according to the value of that variable in the design matrix. Then, using all 64 results, the sum of the squares about the mean, the sum of the squares due to the regression, and the sum of the squares of the residuals were calculated.

In the ANOVA table, for each individual measure of effectiveness, the Total Sum of Squares, which is also the sum of the squares about the mean, has the same value. The exception to this is Ratio On Time, where there is one Total Sum of Squares value for the untransformed results, and one for the transformed results.

The calculations for each ANOVA table were carried out on a spreadsheet, and, as a result of round off error, the sum of the values for the Sum of Squares of the Regression and the Sum of Squares of the Error do not exactly equal the Total Sum of Squares. The values are accurate to the fourth significant figure, or better.

Ratio On Time Function – Equation 1 \hat{y} =0.239219+(0.020313/2)A+(0.006562/2)F+(0.155938/2)C +(0.148437/2)G+(0.015312/2)S+(0.065938/2)CG+(0.015313/2)AC +(0.007812/2)AG+(0.007812/2)CS+(0.010312/2)GS

	ANUVA	TABLE		
Source of	DF	Sum of	Mean	F
Variation		. Squares	Square	
Regression	10	0.82962	0.08296	1443.848
Error	53	0.00305	0.00006	
Total	63	0.83266		
R^2 0.996343		Adjusted R^2		0.995653

Ratio On Time Function - Equation 2 $Ln(\$) = -1.535428 + (0.069347/2)A + (0.019679/2)F + (0.647986/2)C \\ + (0.612359/2)G + (0.052023/2)S + (0.090673/2)CG + (0.045037/2)AC \\ + (0.019679/2)FG + (0.027544/2)GS + (0.018423)CIG$

	ANOVA	TABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	10	13.03193	1.30319	2331.128
Error	53	0.02963	0.00056	
Total	63	13.06174		
R^2 0.997732		Adjusted R^2		0.997304

Ratio Delivered Function - Equation 1 $Ln(\hat{y})=-0.664018+(0.03274/2)A+(0.025351/2)F+(0.643881/2)C+(0.633737/2)G+(0.041477/2)S+(0.027778/2)FG+(-0.088493/2)CG+(-0.024146/2)ACG+(-0.031459/2)CGS$

	ANUVA	IADLE		
Source of	DF	Sum of	Mean	F
Variation	L	Squares	Square	
Regression	9	13.27705	1.47523	2446.741
Error	54	0.03256	0.00060	
Total	63	13.30961		
R^2 0.997554		Adjusted R^2		0.997146

Total Flying Hours Function – Equation 1 $Ln(\hat{y})=7.163+(0.214/2)A+(-0.501/2)C+(-0.671/2)I+(0.607/2)G+(0.087/2)S+(0.122/2)CI+(-0.462/2)CG+(-0.106/2)IG+(0.054/2)ACI$

ANOVA TABLE

	ANOTA	14000		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	9	21.81114	2.42346	456.495
Error	54	0.28668	0.00531	
Total	63	22.08462		
P^2 0.987019		Adjusted R^2		0.984856

Total Sorties Flown Function – Equation 1 $Ln(\hat{y})=8.197+(.205/2)A+(-.526/2)C+(.493/2)G+(.084/2)S+(.114/2)CI+(-.082/2)IG+(-.365/2)CG+(-.068/2)ACG$

	ANOVA	TABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	8	11.62200	1.45275	284.49136
Error	55	0.28086	0.0051	
Total	63	11.90955		
R^2 0.976418		Adjusted R^2		0.9729874

Productive Flying Hours Function – Equation 1 $Ln(\hat{y})=5.469+(0.115/2)A+(0.778/2)C+(-0.657/2)I+(0.851/2)G+(0.124/2)CI+(-0.547/2)CG+(-0.136/2)IG+(-0.080/2)ACG+(-0.089/2)CIG$

ANOVA TABLE

Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	9	33.94818	3.77202	1524.693
Error	54	0.13359	0.00247	
Total	63	34.08075		
R^2 0.996080		Adjusted R^2		0.995427

Productive Sorties Function - Equation 1 $Ln(\hat{y})=6.544+(0.085/2)A+(0.547/2)C+(0.589/2)G+(0.107/2)CG +(-0.122/2)IG+(-0.33/2)CG+(-0.055/2)ACG+(-0.08/2)CIG$

	ANOVA	TABLE		
Source of	Df	Sum of	Mean	F
Variation		Squares	Square	
Regression	8	12.76821	1.59603	757.536
Error	55	0.11588	0.00211	
Total	63	12.88112		·
R^2 0.99100		Adjusted R^2		0.98970

Appendix M: Analysis of Reduced Regression Equations

Ratio On Time Function - Equation 3 $\hat{y}=0.239219+(0.020313/2)A+(0.155938/2)C+(0.148437/2)G+(0.015312/2)S+(0.065938/2)CG+(0.015313/2)AC$

	ANUVA	LABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	6	0.82527	0.13755	1061.041
Error	57	0.00739	0.00013	
Total	63	0.83266		
R^2 0.991126		Adjusted R^2		0.990192

Ratio On Time Function - Equation 4 $Ln(\hat{y})=-1.535428+(0.069347/2)A+(0.647986/2)C+(0.612359/2)G+(0.052023/2)S+(0.090673/2)CG+(0.045037/2)AC$

	ANUVA	IABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	6	13.00197	2.16699	2072.789
Error	57	0.05959	0.00105	
Total	63	13.06174		
R^2 0.995438		Adjusted R^	2	0.994958

Ratio On Time Function – Equation 5 $\hat{y}=0.239219+(0.155938/2)C+(0.148437/2)G+(0.065938/2)CG$

	ANUVA	IABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	3	0.81117	0.27039	754.795
Error	60	0.02149	0.00036	
Total	63	0.83266		
R^2 0.974187		Adjusted R^	2	0.972896

Ratio on Time - Plot of Residuals

Ratio On Time Function - Equation 6 $Ln(\hat{y})=-1.535428+(0.647986/2)C+(0.612359/2)G+(0.090673/2)CG$

	ANUVA .	IADLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	3	12.84927	4.28309	1210.546
Error	60	0.21229	0.00354	
Total	63	13.06174		
R^2 0.983747		Adjusted R^2		0.982935

Ratio Delivered Function - Equation 2 $Ln(\hat{y})=-0.664018+(0.03274/2)A+(0.643881/2)C+(0.633737/2)G+(0.041477/2)S+(0.088493/2)CG$

	ANOVA :	TABLE		
Source of	DF	Sum of	Mean	F
Variation	l L	Squares	Square	
Regression	5	13.22926	2:64585	1909.870
Error	58	0.08035	0.00139	
Total	63	13.30961		
R^2 0.993963		Adjusted R^	5	0.993443

Ratio Delivered Function - Equation 3 $Ln(\hat{y})=-0.664018+(0.643881/2)C+(0.633737/2)G+(0.088493/2)CG$

	ANUVA	ABLE	<u> </u>	
Source of	DF	Sum of	Mean	F
Variation	1	Squares	Square	
Regression	3	13.18458	4.39486	2109 084
Error	60	0.12503	0.00208	
Total	63	13.30961		
R^2 0.990606		Adjusted R^2	2	0.990137

Total Flying Hours Function - Equation 2 $Ln(\hat{y})=7.163+(0.214/2)A+(-0.501/2)C+(-0.671/2)I+(0.607/2)G+(-0.462/2)CG$

	ANOVA	TABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	5	21.26290	4.25258	295.197
Error	58	0.83554	0.01441	
Total	63	22.08462		
R^2 0.962166		Adjusted R^2		0.958905

Total Flying Hours Function – Equation 3 $Ln(\hat{y})=7.163+(-0.501/2)C+(-0.671/2)I+(0.607/2)G+(-0.462/2)CG$ ANOVA TABLE

	ANUVA	IABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	4	20.53016	5.13254	192.756
Error	59	1.57100	0.02663	
Total	63	22.08462		
R^2 0.928864		Adjusted R^2		0.924042

Total Sorties Flown Function – Equation 2 $Ln(\hat{y})=8.197+(.205/2)A+(-.526/2)C+(.493/2)G +(.114/2)CI+(-.365/2)CG$

ANOVA	TABLE
-------	-------

	ALTO IA	1 2 1 1 1		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	5	11.32754	2.26551	228.980
Error	58	0.57385	0.00989	
Total	63	11.90955		
R^2 0.951816		Adjusted R^2		0.947663

Total Sorties Flown Function - Equation 3 $Ln(\hat{y})=8.197+(.205/2)A+(-.526/2)C+(.493/2)G+(-.365/2)CG$

	ANUVA 1	ABLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	4	11.11960	2.77990	209.867
Error	59	0.78152	0.01325	
Total	63	11.90955		
R^2 0.934379		Adjusted R^2		0.929930

Total Sorties - Plot of Ln Residuals

Value of Residuals (Ln) 0.3 0.1 -0.1 × ğ -0.3/_ 7.6

8.4

Estimated Results (Ln) - Equation 3

8.8

Total Sorties Flown Function - Equation 4 $Ln(\mathbf{\hat{y}})=8.197+(-.526/2)C+(.493/2)G+(-.365/2)CG$

	ANOVA	TABLE	,	
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	3	10.44720	3.48240	143.802
Error	60	1.45300	0.02422	
Total	63	11.90955		
R^2 0.877997		Adjusted R^2		0.871897

Total Sorties - Plot of Ln Residuals

Productive Flying Hours Function – Equation 2 $Ln(\hat{y})=5.469+(0.778/2)C+(-0.657/2)I+(0.851/2)G+(0.124/2)CI+(-0.547/2)CG+(-0.136/2)IG$

ANOVA TABLE					
Source of	DF	Sum of	Mean	F	
Variation		Squares	Square		
Regression	6	33.50744	5.58457	553.353	
Error	57	0.57526	0.01009		
Total	63	34.08075			
R^2 0.983121		Adjusted R^2		0.981344	

Productive Flying Hours Function – Equation 3 $Ln(\hat{y})=5.469+(0.778/2)C+(-0.657/2)I+(0.851/2)G+(-0.547/2)CG$

	ANUVA	ADLE		
Source of	DF	Sum of	Mean	F
Variation		Squares	Square	
Regression	4	32.96549	8.24137	434.984
Error	59	1.11784	0.01895	
Total	63	34.08075		-
R^2 0.9672		Adjusted R^2		0.964977

Productive Sorties Function - Equation 2 $Ln(\hat{y})=6.544+(0.547/2)C+(0.589/2)G + (0.107/2)CI+(-0.122/2)IG+(-0.33/2)CG$

	<u>ANOVA</u>	TABLE		
Source of	Df	Sum of	Mean	F
Variation		Squares	Square	
Regression	5	12.50181	2.50036	380.002
Error	58	0.38163	0.00658	
Total	63	12.88112		
P^2 0970373		Adjusted R^2		0.9678186

Productive Sorties Function - Equation 3 $Ln(\hat{y})=6.544+(0.547/2)C+(0.589/2)G+(-0.33/2)CG$

Source of	Df	Sum of	Mean	F	
Variation		Squares	Square		
Regression	3	12.08048	4.02683	300.056	
Error	60	0.80522	0.01342		
Total	63	12.88112			
R^2 0.937489		Adjusted R^2		0.934363	

Productive Sorties-Plot of Ln Residuals

Bibliography

- 1. AAP1000. Royal Australian Air Force Air Power Manual. Air Power Study Centre, RAAF Base Fairbairn, Australia, 1990.
- Balci, Osman. "How To Assess The Acceptability and Credibility of Simulation Results," <u>Proceedings of the 1989 Winter Simulation</u> <u>Conference</u>. 559-568. San Diego: Society for Computer Simulation, 1989.
- 3. Banks, Jerry and John S. Carson II. <u>Discrete Event Simulation</u>. Englewood Cliffs NJ: Prentice-Hall Incorporated, 1984.
- 4. Box, G.E.P. and others. <u>Statistics for Experimenters, An Introduction To Design, Data Analysis, and Model Building</u>. New York: John Wiley and Sons, 1978.
- 5. Bryant, Capt Joseph C. and Capt Stephen R. Gordon. <u>User Need Satisfaction as a Basis For Tactical Airlift Scheduling</u>. MS Thesis GST/OS/84M-4. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1984 (AD-A141149).
- 6. Christie, Deborah P. "Keynote Address," <u>Proceedings of the Military Operations Research Society Mini-Symposium: Analysis of Tactical Transportation: Progress and Challenges (TACTRAN)</u>. 2:1-4. Fort Belvoir VA: Defence Systems Management College, 1988 (AD-A217344).
- 7. Department of the Army. <u>U.S. Army Operational Concepts The Airland Battle and Corps 86.</u> TRADOC Pamphlet 525-5. Fort Monroe, VA: HQ U.S. Army, 25 March 1981.
- 8. Draper, N.P. and H. Smith. <u>Applied Regression Analysis</u>. New York: John Wiley & Sons, 1984.
- 9. <u>Generalized Air Mobility Model (GAMM) Release 3.0</u>
 <u>Programmer/Analyst's Manual</u>, Directorate of Advanced Systems
 Analysis, ASD/XRM, Aeronautical Systems Division. Contract
 F33657-86-D-0157/0014 with General Research Corporation. WrightPatterson AFB OH, October 1989.
- 10. Generalized Air Mobility Model (GAMM) Release 3.0 User's Manual, Directorate of Advanced Systems Analysis, ASD/XRM, Aeronautical Systems Division. Contract F33657-86-D-0157/0014 with General Research Corporation. Wright-Patterson AFB OH, October 1989.
- 11. Hubbel, Maj Ralph. "Understanding Today's Theater Airlift Issues,"

 <u>Airlift, The Journal of the Airlift Operations School</u>, <u>10</u>:4-9

 (Winter 1988).

- 12. <u>Jane's All The World's Aircraft 1987-88</u>. London: Jane's Publishing Company Ltd, 1987.
- 13. Knowles, Brig Gen Billy M. "Tactical Airlift," <u>Airpower Journal</u>, <u>1</u>:41-47 (Fall 1987).
- 14. Lyons, Richard C. and John E. Tiehen. "Evaluating the Impact of Airlift on Combat Operations," <u>Proceedings of the Military Operations Research Society Mini-Symposium: Analysis of Tactical Transportation: Progress and Challenges (TACTRAN)</u>. 11:1-28. Fort Belvoir VA: Defense Systems Management College, 1988 (AD-A217344).
- 15. McManus, Col Michael D. "WIMS Overview," <u>Proceedings of the Military Operations Research Society Mini-Symposium: Analysis of Tactical Transportation: Progress and Challenges (TACTRAN)</u>. 3:1-25. Fort Belvoir VA: Defence Systems Management College, 1988 (AD-A217344).
- 16. Nash, J. <u>System Concept Evaluation Baseline</u>, <u>Subtask 1</u>. Contract F33657-86-D-Ø157. Fairborn OH: General Research Corporation, October 1990.
- 17. Overview of the Generalized Air Mobility Model, Directorate of Advanced Systems Analysis, Aeronautical Systems Division, Wright-Patterson AFB OH, undated.
- 18. Shine, Col Alexander P. "Tactical Mobility An Airlift
 Perspective," Proceedings of the Military Operations Research
 Society Mini-Symposium: Analysis of Tactical Transportation:
 Progress and Challenges (TACTRAN). 5:1-26. Fort Belvoir VA:
 Defence Systems Management College, 1988 (AD-A217344).
- 19. Shine, Col Alexander P. "Theater Ailift 2010," <u>Airpower Journal</u>, 2:4-19 (Winter 1988).
- 20. Vukmir, Vladimir and Steven J. Wourms. "Development of the ATTMA Database," <u>Proceedings of the Military Operations Research Society Mini-Symposium: Analysis of Tactical Transportation: Progress and Challenges (TACTRAN)</u>. 10:1-51. Fort Belvoir VA: Defence Systems Management College, 1988 (AD-A217344).
- 21. Whitner, Richard B. and Osman Balci. "Guidelines for Selecting and Using Simulation Model Verification Techniques," <u>Proceedings of the 1989 Winter Simulation Conference</u>. 559-568. San Diego: Society for Computer Simulation, 1989.
- 22. Wourms, Steven J. and others. <u>Advanced Transport Technology</u>
 <u>Mission Analysis Database (Central America) Final Report.</u> WrightPatterson AFB OH: Directorate of Mission Analysis, ASD/XRM,
 Aeronautical Systems Division, October 1987.

- 23. Wourms, Steven J. and Wayne A. Stimpson "Advanced Theater Transport and Theater Airlift System Productivity Analysis," Presented to the Mobility Working Group, WG21, 58th MORS Symposium, U.S. Naval Academy, 13 June 1990.
- 24. Wourms, Steven J. <u>GAMM Systems Study</u>, Volume 2, Section 3, Wright-Patterson AFB OH: Directorate of Advanced Systems Analysis, Aeronautical Systems Division, November 1990.
- 25. Wourms, Steven J. Deputy for Development Planning. Personal interview. Directorate of Advanced Systems Analysis, Aeronautical Systems Division, Wright-Patterson AFB OH, 26 February 1991.
- 26. Wourms, Steven J. Deputy for Development Planning. Personal interview. Directorate of Advanced Systems Analysis, Aeronautical Systems Division, Wright-Patterson AFB OH, 23 August 1991.

Vita

Flight Lieutenant Paul Pappas was born in Sydney, New South Wales, Australia on 7 January 1960. He completed his high school education at Phillip College in Phillip, in the Australian Capital Territory, in 1977. In January 1978, he entered the Royal Australian Air Force Academy, at Point Cook in Victoria, where he undertook a Bachelor of Science degree, majoring in Physics, and, later, a Graduate Diploma in Military Aviation. He graduated from the Academy in December 1981, receiving a permanent commission in the RAAF. He then commenced pilot training, graduating and receiving his wings in December 1982. His first flying tour was with Number 37 Squadron at RAAF Base Richmond, in New South Wales, where he flew C-13ØE aircraft. In January 1986, he was posted to the Officer Training School at Point Cook, where he served initially as an instructor, and later as the school's programming officer. In January 1988, he returned to flying duties with Number 35 Squadron at RAAF Base Townsville in Queensland, where he flew the C-7 DeHavilland Caribou until he was selected to attend the Graduate Logistics Management course. Flight Lieutenant Pappas entered the School of Systems and Logistics, at the U.S. Air Force Institute of Technology, in May 1990.

Permanent Address: 24 Lycett Street,
Weston. A.C.T. Australia 2611

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this i plection of information is estimated to average. Indicriper response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and competting and reviewing the cilection of information. Send comments regarding this burden estimate or any lither isspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information, Department on Department of Management and Budget, Paperwork Reduction Projectio704-0188). Washington, CC 2003.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 1991	3. REPORT TYPE AND Master's T				
4. TITLE AND SUBTITLE AN ANAL AIRLIFTER CHARACTERISTIC COMPUTER MODEL	PACTICAL	5. FUNDING NUMBERS				
6. AUTHOR(S)						
Paul Pappas, Flight Lie						
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDRESS(ES)]	8. PERFORMING ORGANIZATION REPORT NUMBER			
Air Force Institute of	45433-6583	AFIT/GLM/ENS/91S-50				
9. SPONSORING MONITORING AGEN		10. SPONSORING MÖNITORING AGENCY REPORT NUMBER				
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION: AVAILABILITY ST	ATEMENT		12b. DISTRIBUTION CODE			
Approved for public rela	nlimited					
13. ABSTRACT (Maximum 200 words) This study used computer simulation to identify which tactical airlifter characteristics most significantly affected tactical airlift capability in a given scenario. The Generalized Air Mobility Model was used to simulate a tactical airlift system. Aircraft characteristics within the model were grouped into six variables. A 26 two level full factorial experimental design was used to assess the effect of changes in aircraft characteristics on the effectiveness of the tactical airlift system. Yate's algorithm was used to identify significant terms based upon the results of the factorial experiment. These significant terms were used to develop a parsimonious regression model that represented the response function of the experimental variables. The variables remaining in the regression model represented the tactical airlifter characteristics that most significantly affected the capability of the tactical airlift system. Only one scenario was used in the experiment: Central America. This scenario was characterized by a tropical mountainous environment, poor infrastructure, a limited number of major airfields, and many short unprepared airfields. Two groups of tactical airlifter characteristics were found to significantly affect capability of the tactical airlift system in this scenario: the size of the aircraft's cargo bay, and the aircraft's ability to operate on unprepared surfaces.						
14. SUBJECT TERMS Tactical Aircraft,	15. NUMBER OF PAGES 186					
Models, Airlift Ope	16. PRICE CODE					
17. SECURITY CLASSIFICATION 18 OF REPORT Unclassified	19. SECURITY CLASSIFICA OF ABSTRACT Unclassified	1				

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications of AFIT thesis research. Please return completed questionnaires to: AFIT/LSC, Wright-Patterson AFB OH 45433-6583.

454	33-6	583.								
1.	Did	this	research	cont	ribute	to a cui	rent	research p	rojec	t?
	a.	Yes		b.	No					
have	e be	en re:	elieve th searched IT had no	(or c	ontract	ed) by :	s sig your	nificant en organizatio	ough n or	that it would another
	a.	Yes		b.	No					
vali Plea and,	ue t ase (/or (hat yo estima dolla:	our agend ate what	y rec this	eived b researc	y virtu h would	e of . have		ming rms o	
	ł	Man Ye	ear.	·			\$			
res Whe	earci ther	h, ala	though th ot you we	e res ere ab	ults of le to e	the res	searc n an	lent dollar h may, in f equivalent its signifi	act, value	be important. for this
	a.		ly ificant	b.	Signifi	cant (:. s s	lightly ignificant	d.	Of No Significance
5.	Com	ments								
Name	e an	d Grad	de			- 7)rgan	ization		
POS	1 L 1 OI	n or	iitie				ddre	S S		