Критерии за итегруемост на функция

23 януари 2017 г.

Нека f(x) е дефинирана и ограничена върху измеримо по Жордан множество Ω . Нека $I=\{G_i\}_{i=0}^n$ е разбиване на Ω . Тогава малката и голямата сума на Дарбу са съответно $s=\sum m_i m(G_i)$ и $S=\sum M_i m(G_i)$, където $m_i=inff(x)$ и $M_i=supf(x)$ $[x\in G_i]$ и имат следните свойства:

1) 3a
$$\forall s_{\tau} \leq \sum_{i=1}^{n} f(\xi_{i}) m(G_{i}) \leq S_{\tau}; \ f(\xi_{i}) = \delta_{\tau}(f;\xi)$$

2)
$$s = inf \delta_{\tau}(f; \xi); S_{\tau} = sup \delta_{\tau}(f; \xi)$$

Нека $\tau=\{G_i\}_{i=0}^n$ и $\tau'=\{G_j\}_{j=0}^l$ са разбивания на Ω . Тогава ако за $\forall j=\overline{1,l} \quad \forall i=\overline{1,n}: D_j < G_i, \ \tau<\tau',$ то τ' следват:

3) Ако $\tau=\{G_i\}_{i=0}^n$ и $\tau'=\{G_j\}_{j=0}^l$ са разбивания => $s_{\tau}\leq s_{\tau'}\leq S_{\tau'}\leq S_{\tau}$

$$s_{\tau} = \sum_{i=1}^{n} m_{i} m(G_{i}) = \sum_{i=1}^{n} m_{i} \left(\sum_{j=1}^{n} m(D_{j}) \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{i} m(D_{j}) \le$$

$$\leq \sum_{j=1}^{n} \sum_{j=1}^{n} m_{j} m(D_{j}) = \sum_{i=1}^{n} m_{j} m(D_{j}) = s_{\tau'} => s_{\tau} \le s_{\tau'}$$

- 4) за всеки две разбивания τ и $\tau' => s_{\tau} \le s_{\tau'}$ Следва от 3.
- 5) Съществуват $sups_{\tau} = \underline{I}$ и $infS_{\tau} = \overline{I}$, при това $s_{\tau} \leq \underline{I} \leq \overline{I} \leq S_{\tau}$

От свойство 4 имаме, че за $\forall \tau$ и τ' , разбивани на Ω имаме, че $S_{\tau} \leq S_{\tau'}$. Имаме, че $\{S_{\tau}; \tau\}$ е ограничена отгоре => $sups_{\tau} = \underline{I}$

Функцита f(x) е интегрируема по Риман върху измеримо по Жордан множесто $\Omega <=>$ за $\forall \epsilon>0$ $\exists \delta=\delta(\epsilon)>0$: $\forall \tau=\{G_i\}_{i=1}^n$ с големина разибиване $\delta_{\tau}<\delta=>S_{\tau}-s_{\tau}<\epsilon$

Нека f(x) е интегрируема по Риман върху Ω Тогава $\exists I \in R: \forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0: \forall \tau = \{G_i\}_{i=1}^n, \ \delta_\tau < \delta, \forall \xi = \{\xi_i\}_{i=1}^n, \xi \in G_i => |I - \delta_\tau(f; \xi)| < \epsilon$

Тогава
$$I - \epsilon < \delta_{\tau}(f; \xi) < I + \epsilon => I - \epsilon \le s_{\tau} = \inf \delta_{\tau}(f; \xi) \le \sup \delta_{\tau}(f; \xi) = S_{\tau} \le I + \epsilon.$$

Имаме, че $\begin{cases} S_\tau \leq -I + \epsilon \\ -s_\tau \leq -I + \epsilon \end{cases}$. Като ги съерем получаваме $S_\tau - s_\tau \leq 2\epsilon$ Локазано.

Обратно. За $\forall \epsilon>0$, можем да намерим $\delta=\delta(\epsilon)>0$: $\forall \tau=\{G_i\}_{i=1}^n < \delta,$ за което $S_{\tau}-s_{\tau}<\epsilon^*$. Имаме, че $s_{\tau}\leq \underline{I}\leq \overline{I}\leq S_{\tau}$. Тогава $0\leq \overline{I}-\underline{I}\leq S_{\tau}-s_{\tau}=>-\overline{I}-\underline{I}\leq 0\leq S_{\tau}-s_{\tau}<\epsilon$ За някое I

За
$$\forall \epsilon>0\quad 0\leq \overline{I}-\underline{I}<\epsilon=>\overline{I}-\underline{I}=0=>\overline{I}=\underline{I}=I$$
 Тогава $s_{\tau}-S_{\tau}\leq \delta_{\tau}(f;\xi)-I\leq S_{\tau}-s_{\tau}=>|\delta_{\tau}(f;\xi)|\leq S_{\tau}-s_{\tau}<\epsilon$

По деф f(x) е интегруема о Риман.

Нека f(x) е дефинирана и ограничена в множестовото $E\subset R^n$ Знаем, че $\exists Msupf(x)$ и $\exists minff(x)[x\in E]$. Разлиаката M-m се нарича колебание и $\omega_E(f)=sup\big(f'(x)-f''(x)\big)$