

Jaringan Syaraf Tiruan - Content

1 Jaringan Syaraf Tiruan
2 Neuron
3 Perceptron
4 Supervised Learning
5 Unsupervised Learning
Kecerdasan Komputasional | Jaringan Syaraf Tiruan

Perceptron

Jaringan Syaraf Tiruan yang paling Sederhana
Terdiri satu lapisan (single layer) saja, yaitu output layer
Output layer dapat terdiri dari satu atau beberapa neuron

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

3

Perceptron

Agar perceptron dapat merubah sinyal input menjadi output yang diinginkan, diperlukan pembelajaran (training/learning):

- Perceptron belajar dari kesalahan
- · Data yang tersedia digunakan untuk proses pembelajaran
 - → Data Pembelajaran (training data)

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

Perceptron - Pembelajaran

Pembelajaran / training / learning:

- Membentuk suatu model
- Hasil dari pelatihan adalah bobot (weights) dan bias baru
- Iterasi pembelajaran disebut dengan epoch. Pembelajaran berhenti p
 ada epoch tertentu atau ketika dicapai error pembelajaran minimal
- Jika dalam pembelajaran, neuron menghasilkan output yang salah,
 bobot diupdate sedemikian hingga kesalahan diperkecil

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

5

Perceptron - Pembelajaran

Perceptron:

Jika terdapat sinyal baru, maka output akan diklasifikasikan sebagai kelas '0' atau kelas '1' Pembelajaran, misalkan kelas 0 adalah 'A', dan kelas 1 adalah 'B' :

Data 'A' \rightarrow output perceptron = 0 :

- Sesuai dengan Target
- Tidak perlu update bobot

Data 'B' \rightarrow output perceptron = 0 :

- Target = 1
- Tambahkan nilai bobot

Data 'A' \rightarrow output perceptron = 1:

- Target = 0
- Kurangi nilai bobot

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

7

Perceptron – Pembelajaran 1

- 1. Inisialisasi bobot $(w_1, w_2, ..., w_d)$ dan bias w_0
- 2. Masukkan data Training, yang merupakan pasangan sinyal Input dan

Target Output

3. Hitung NetInput dari setiap neuron

$$net = \sum_{i=0}^{d} x_i w_i$$

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

Perceptron – Pembelajaran 1

4. Hitung Nilai Aktivasi atau output, asumsi Fungsi Aktivasi yang diguna kan adalah Step function dengan threshold = 0

$$y = f(net) \text{ dimana } fnet = \begin{cases} 1, & jika \ net \ge 0 \\ 0, & jika \ net < 0 \end{cases}$$

5. Update Nilai Bobot

$$w_i(t+1)=w_i$$
; jika output=targetOutput $w_i(t+1)=w_i+x_i(t)$; jika output $<$ targetOutput $w_i(t+1)=w_i-x_i(t)$; jika output $>$ targetOutput

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

9

Perceptron – Pembelajaran 2

5. Update Nilai Bobot

$$w_i(t+1)=w_i$$
; jika output=targetOutput $w_i(t+1)=w_i+\eta x_i(t)$; jika output $<$ targetOutput $w_i(t+1)=w_i-\eta x_i(t)$; jika output $>$ targetOutput

dimana η adalah laju pembelajaran ($learnin\ rate$)

Kecerdasan Komputasional | Jaringan Syaraf Tiruan

Perceptron – Pembelajaran

Update bobot:

$$w_i(t+1) = w_i$$
; jika output=targetOutput $w_0(1) = w_0(0)$ 0.1 $w_1(1) = w_1(0)$ 0.5 $w_2(1) = w_2(0)$ 0.2

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

17

Perceptron – Pembelajaran

Terdapat 4 data, 1 epoch = 4 iterasi

Lakukan perulangan sampai epoch tertentu

Pada Saat Epoch = 10, maka bobot yang dihasilkan:

$$w_0 = -2.9$$
; $w_1 = 1.5$; $w_2 = 2.2$;

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

Perceptron - Pengujian $x_1 = 0$; $x_2 = 0$ net input = $x_1 w_1 = x_0 w_0 + x_1 w_1 + x_2 w_2$ = 1.(-2,9) + 0.1,5 + 0.2,2= -2, 9y = f(netinput)= f(-2,9)output $= 0 \Rightarrow Benar$ $x_1 = 0$; $x_2 = 1$ net input = $\sum x_1 w_1 = x_0 w_0 + x_1 w_1 + x_2 w_2$ = 1.(-2,9) + 1.1,5 + 0.2,2Cek untuk: = -1, 4 $x_1 = 1$; $x_2 = 0$ y = f(netinput) $x_1 = 1$; $x_2 = 1$ =f(-1,4) $= 0 \Rightarrow Benar$ Kecerdasan Komputasional Jaringan Syaraf Tiruan

