Тема:

Алгоритмы Маркова

Сергей Витальевич Рыбин svrybin@etu.ru

СПбГЭТУ «ЛЭТИ», кафедра «Алгоритмической математики»

16 июня 2023 г.

 $oldsymbol{1}$ Словом (цепочкой) в алфавите ${\mathcal A}$ называют последовательность символов из этого алфавита.

 $oldsymbol{1}$ Словом (цепочкой) в алфавите ${\mathcal A}$ называют последовательность символов из этого алфавита.

Пустое слово обозначают символом \wedge или $\varepsilon.$

 $oldsymbol{1}$ Словом (цепочкой) в алфавите ${\mathcal A}$ называют последовательность символов из этого алфавита.

Пустое слово обозначают символом \wedge или ε .

Множество слов алфавита \mathcal{A} обозначают \mathcal{A}^* .

Словом (цепочкой) в алфавите $\mathcal A$ называют последовательность символов из этого алфавита.

Пустое слово обозначают символом \wedge или ε .

Множество слов алфавита \mathcal{A} обозначают \mathcal{A}^* .

Рассмотрим алфавит $\mathcal{A}=\{a_1,\dots,a_n\}$. Если слова $P,\,Q\in\mathcal{A}^*,$ то выражения

$$P \to Q\,,\ P \to \cdot\,Q$$

называют формулами подстановки в алфавите \mathcal{A} .

 $oldsymbol{1}$ Словом (цепочкой) в алфавите ${\mathcal A}$ называют последовательность символов из этого алфавита.

Пустое слово обозначают символом \wedge или ε .

Множество слов алфавита \mathcal{A} обозначают \mathcal{A}^* .

 $oxed{2}$ Рассмотрим алфавит $\mathcal{A}=\{a_1,\ldots,a_n\}$. Если слова $P,Q\in\mathcal{A}^*$, то выражения

$$P o Q$$
, $P o \cdot Q$

называют формулами подстановки в алфавите \mathcal{A} .

При этом формулу P o Q называют **простой**, а формулу $P o \cdot Q$ — **заключительной**. В общем виде будем писать $P o(\cdot)$ Q.

Словом (пепочкой) в алфавите . А называют последовательность симводов из этого алфавита.

Пустое слово обозначают символом \wedge или ε .

Множество слов алфавита A обозначают A^* .

Рассмотрим алфавит $\mathcal{A} = \{a_1, \dots, a_n\}$. Если слова $P, Q \in \mathcal{A}^*$, то выражения

$$P \to Q\,,\ P \to \cdot\, Q$$

называют формулами подстановки в алфавите А.

При этом формулу P o Q называют **простой**, а формулу $P o\cdot Q$ — **заключительной**. В общем виде будем писать $P o(\cdot)$ Q.

Конечную упорядоченную последовательность таких формул называют нормальным алгоритмом Маркова (НАМ), иногда говорят схема нормаль**ного алгоритма Маркова**, обозначается как \mathcal{S}_{NL}

 $oldsymbol{1}$ Словом (цепочкой) в алфавите ${\mathcal A}$ называют последовательность символов из этого алфавита.

Пустое слово обозначают символом \wedge или ε .

Множество слов алфавита \mathcal{A} обозначают \mathcal{A}^* .

 $oxed{2}$ Рассмотрим алфавит $\mathcal{A} = \{a_1, \dots, a_n\}$. Если слова $P, Q \in \mathcal{A}^*$, то выражения

$$P \to Q\,,\ P \to \cdot\, Q$$

называют формулами подстановки в алфавите \mathcal{A} .

При этом формулу P o Q называют **простой**, а формулу $P o\cdot Q$ — **заключительной**. В общем виде будем писать $P o(\cdot)$ Q.

 $oldsymbol{3}$ Конечную упорядоченную последовательность таких формул называют нормальным алгоритмом Маркова (НАМ), иногда говорят схема нормального алгоритма Маркова, обозначается как \mathcal{S}_N .

Таким образом, схема \mathcal{S}_N имеет вид:

$$\mathcal{S}_{N} = \begin{cases} P_{1} \rightarrow (\cdot) Q_{1}, \\ P_{2} \rightarrow (\cdot) Q_{2}, \\ \dots \\ P_{m} \rightarrow (\cdot) Q_{m}. \end{cases}$$
 (1)

 $oldsymbol{1}$ Словом (цепочкой) в алфавите ${\mathcal A}$ называют последовательность символов из этого алфавита.

Пустое слово обозначают символом \wedge или ε .

Множество слов алфавита \mathcal{A} обозначают \mathcal{A}^* .

 $oxed{2}$ Рассмотрим алфавит $\mathcal{A} = \{a_1, \ldots, a_n\}$. Если слова $P, Q \in \mathcal{A}^*$, то выражения

$$P \to Q\,,\ P \to \cdot\, Q$$

называют формулами подстановки в алфавите \mathcal{A} .

При этом формулу P o Q называют **простой**, а формулу $P o\cdot Q$ — **заключительной**. В общем виде будем писать $P o(\cdot)$ Q.

 $oldsymbol{3}$ Конечную упорядоченную последовательность таких формул называют нормальным алгоритмом Маркова (НАМ), иногда говорят схема нормального алгоритма Маркова, обозначается как \mathcal{S}_N .

Таким образом, схема \mathcal{S}_N имеет вид:

$$\mathcal{S}_{N} = \begin{cases} P_{1} \to (\cdot) Q_{1}, \\ P_{2} \to (\cdot) Q_{2}, \\ \dots \\ P_{m} \to (\cdot) Q_{m}. \end{cases}$$
 (1)

Предполагается, что знаки \rightarrow и \cdot не входят в алфавит \mathcal{A} .

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ \, Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R=V_1\,Q\,V_2\,,\ Q\,,\,R\,,\,V_1\,,\,V_2\in\mathcal{A}^*\,.$$

Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N\,.$$

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N\,.$$

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ \, Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i
ightarrow (\cdot) \, Q_i \in \mathcal{S}_N$$
 .

Пусть слово $R \in \mathcal{A}^*$ содержит подслово P_i (таких подслов в слове R может быть несколько).

 $oldsymbol{3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки **действует на слово** R.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i o (\cdot) \, Q_i \in \mathcal{S}_N$$
.

- $oldsymbol{3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки **действует на слово** R.
- $oldsymbol{4}$ Говорят, что схема ${\cal S}_N$ **действует на слово** ${\cal R}$, если существует формула подстановки, действующая на это слово.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ \, Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N.$$

- ${f 3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки действует на слово R.
- $m{4}$ Говорят, что схема \mathcal{S}_N **действует на слово** R, если существует формула подстановки, действующая на это слово.
- $\ensuremath{\mathbf{5}}$ В формулах подстановок $P o (\cdot)$ Q слова P и (или) Q могут быть пустыми.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N \,.$$

- $oldsymbol{3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки **действует на слово** R.
- $oldsymbol{0}$ Говорят, что схема \mathcal{S}_N **действует на слово** $oldsymbol{R}$, если существует формула подстановки, действующая на это слово.
- $oldsymbol{5}$ В формулах подстановок $P o (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - \checkmark Если слово Q пустое, то результатом действия такой подстановки на слово $R = V_1 \, Q \, V_2$ будет слово $V_1 \, V_2$.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1\,Q\,V_2\,,\ Q\,,\,R\,,\,V_1\,,\,V_2 \in \mathcal{A}^*\,.$$

2 Рассмотрим формулу подстановки

$$P_i o (\cdot) \, Q_i \in \mathcal{S}_N$$
 .

- $oldsymbol{3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки **действует на слово** R.
- 4 Говорят, что схема ${\cal S}_N$ **действует на слово** ${\cal R}$, если существует формула подстановки, действующая на это слово.
- $oldsymbol{5}$ В формулах подстановок $P o (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - \checkmark Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1QV_2$ будет слово V_1V_2 .
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слева к слову R.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1\,Q\,V_2\,,\ Q\,,\,R\,,\,V_1\,,\,V_2 \in \mathcal{A}^*\,.$$

2 Рассмотрим формулу подстановки

$$P_i o (\cdot) \, Q_i \in \mathcal{S}_N$$
.

- $oldsymbol{3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки **действует на слово** R.
- 4 Говорят, что схема ${\cal S}_N$ **действует на слово** ${\cal R}$, если существует формула подстановки, действующая на это слово.
- $oldsymbol{5}$ В формулах подстановок $P o (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - 🗸 Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1\,Q\,V_2$ будет слово $V_1\,V_2$.
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слева к слову R.
- 6 Действие схемы \mathcal{S}_N применительно к слову R может быть описано следующим образом.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i o (\cdot) \, Q_i \in \mathcal{S}_N$$
 .

- ${f 3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки действует на слово R.
- 4 Говорят, что схема S_N действует на слово R, если существует формула подстановки, действующая на это слово.
- $oxed{5}$ В формулах подстановок $P o (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - 🗸 Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1\,Q\,V_2$ будет слово $V_1\,V_2$.
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слева к слову R.
- 6 Действие схемы \mathcal{S}_N применительно к слову R может быть описано следующим образом.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N\,.$$

Пусть слово $R \in \mathcal{A}^*$ содержит подслово P_i (таких подслов в слове R может быть несколько).

- ${f 3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки действует на слово R.
- 4 Говорят, что схема S_N действует на слово R, если существует формула подстановки, действующая на это слово.
- \blacksquare В формулах подстановок $P \to (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - 🗸 Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1\,Q\,V_2$ будет слово $V_1\,V_2$.
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слова R.
- 6 Действие схемы \mathcal{S}_N применительно к слову R может быть описано следующим образом.
- 7 Если в схеме \mathcal{S}_N имеются формулы подстановок, действующие на слово R, то **первая из них** применяется к R (к **первому** вхождению), в результате чего оно переходит в другое слово R_1 . К нему вновь применяется схема подстановок и т. д.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N\,.$$

Пусть слово $R \in \mathcal{A}^*$ содержит подслово P_i (таких подслов в слове R может быть несколько).

- ${f 3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки действует на слово R.
- 4 Говорят, что схема S_N действует на слово R, если существует формула подстановки, действующая на это слово.
- $oxed{5}$ В формулах подстановок $P o (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - 🗸 Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1\,Q\,V_2$ будет слово $V_1\,V_2$.
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слова R.
- 6 Действие схемы \mathcal{S}_N применительно к слову R может быть описано следующим образом.
- \overline{Q} Если в схеме \mathcal{S}_N имеются формулы подстановок, действующие на слово R, то **первая из них** применяется к R (к **первому** вхождению), в результате чего оно переходит в другое слово R_1 . К нему вновь применяется схема подстановок и т. д.

Процесс прекращается в двух случаях:

 \checkmark схема \mathcal{S}_N не действует на очередное слово R_n ;

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1 \, Q \, V_2 \, , \ Q \, , \, R \, , \, V_1 \, , \, V_2 \in \mathcal{A}^* \, .$$

2 Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N\,.$$

Пусть слово $R \in \mathcal{A}^*$ содержит подслово P_i (таких подслов в слове R может быть несколько).

- ${f 3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки действует на слово R.
- 4 Говорят, что схема S_N действует на слово R, если существует формула подстановки, действующая на это слово.
- \blacksquare В формулах подстановок $P \to (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - 🗸 Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1\,Q\,V_2$ будет слово $V_1\,V_2$.
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слева к слову R.
- 6 Действие схемы \mathcal{S}_N применительно к слову R может быть описано следующим образом.
- \bigcirc Если в схеме \mathcal{S}_N имеются формулы подстановок, действующие на слово R, то **первая из них** применяется к R (к **первому** вхождению), в результате чего оно переходит в другое слово R_1 . К нему вновь применяется схема подстановок и т. д.

- ✓ схема \mathcal{S}_N не действует на очередное слово R_n ;
- 🗸 при получении R_n была применена заключительная подстановка.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1\,Q\,V_2\,,\ Q\,,\,R\,,\,V_1\,,\,V_2 \in \mathcal{A}^*\,.$$

2 Рассмотрим формулу подстановки

$$P_i o (\cdot) \, Q_i \in \mathcal{S}_N$$
.

Пусть слово $R \in \mathcal{A}^*$ содержит подслово P_i (таких подслов в слове R может быть несколько).

- ${f 3}$ Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки действует на слово R.
- 4 Говорят, что схема S_N действует на слово R, если существует формула подстановки, действующая на это слово.
- \blacksquare В формулах подстановок $P \to (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - 🗸 Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1\,Q\,V_2$ будет слово $V_1\,V_2$.
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слова R.
- 6 Действие схемы \mathcal{S}_N применительно к слову R может быть описано следующим образом.
- \bigcirc Если в схеме \mathcal{S}_N имеются формулы подстановок, действующие на слово R, то **первая из них** применяется к R (к **первому** вхождению), в результате чего оно переходит в другое слово R_1 . К нему вновь применяется схема подстановок и т. д.

- ✓ схема \mathcal{S}_N не действует на очередное слово R_n ;
- \checkmark при получении R_n была применена заключительная подстановка.
- $oldsymbol{\mathbb{B}}$ Если процесс не заканчивается за конечное число шагов, то говорят, что схема \mathcal{S}_N неприменима к слову R.

 $oldsymbol{1}$ Слово Q называют **подсловом** слова R, если справедливо представление

$$R = V_1\,Q\,V_2\,,\ Q\,,\,R\,,\,V_1\,,\,V_2 \in \mathcal{A}^*\,.$$

2 Рассмотрим формулу подстановки

$$P_i \to (\cdot)\, Q_i \in \mathcal{S}_N\,.$$

Пусть слово $R \in \mathcal{A}^*$ содержит подслово P_i (таких подслов в слове R может быть несколько).

- f 3 Подстановкой называют замену первого по порядку подслова P_i исходного слова R на слово Q_i . В этом случае будем говорить, что формула подстановки действует на слово R.
- $oldsymbol{4}$ Говорят, что схема ${\cal S}_N$ **действует на слово** ${\cal R}$, если существует формула подстановки, действующая на это слово.
- $oldsymbol{5}$ В формулах подстановок $P o (\cdot) Q$ слова P и (или) Q могут быть пустыми.
 - \checkmark Если слово Q пустое, то результатом действия такой подстановки на слово $R=V_1\,Q\,V_2$ будет слово $V_1\,V_2$.
 - ✓ Если пустым является слово P, то считается, что результатом подстановки является слово QR, т. е. правая часть формулы подстановки приписывается слева к слову R.
- 6 Действие схемы \mathcal{S}_N применительно к слову R может быть описано следующим образом.
- \bigcirc Если в схеме \mathcal{S}_N имеются формулы подстановок, действующие на слово R, то **первая из них** применяется к R (к **первому** вхождению), в результате чего оно переходит в другое слово R_1 . К нему вновь применяется схема подстановок и т. д.

- ✓ схема S_N не действует на очередное слово R_n ;
- 🗸 при получении R_n была применена заключительная подстановка.
- f 8 Если процесс не заканчивается за конечное число шагов, то говорят, что схема ${\mathcal S}_N$ неприменима к слову R.
- $oldsymbol{0}$ Если же для слова R процесс заканчивается некоторым результатом $\widetilde{R}=R_n$, то говорят, что схема ${\mathcal S}_N$ **применима к слову** R.

Пример 1 (без служебного символа)

f 1 Построим алгоритм сортировки числовых строк в порядке возрастания компонент, для простоты рассмотрим алфавит $\mathcal{A} = \{0,1,2\}$.

Пример 1 (без служебного символа)

- 1 Построим алгоритм сортировки числовых строк в порядке возрастания компонент, для простоты рассмотрим алфавит $\mathcal{A} = \{0, 1, 2\}$.
- Рассмотрим схему S_N :

$$\mathcal{S}_{N} = \left\{ \begin{array}{ccc} 20 \rightarrow 02 & (1) \\ 10 \rightarrow 01 & (2) \\ 21 \rightarrow 12 & (3) \end{array} \right. \tag{2}$$

Пример 1 (без служебного символа)

- Построим алгоритм сортировки числовых строк в порядке возрастания компонент, для простоты рассмотрим алфавит $\mathcal{A} = \{0, 1, 2\}$.
- Рассмотрим схему S_N :

$$\mathcal{S}_N = \left\{ \begin{array}{rrr} 20 \to 02 & (1) \\ 10 \to 01 & (2) \\ 21 \to 12 & (3) \end{array} \right. \label{eq:sigmaN} \tag{2}$$

Применим схему (2) к слову $P = \{2110\}$, имеем:

$$\{2110\} \overset{2}{\to} \{2101\} \overset{2}{\to} \{2011\} \overset{1}{\to} \{0211\} \overset{3}{\to} \{0121\} \overset{3}{\to} \{0112\}.$$

Пример 2

① Построим схему НАМ инвертирования булевых наборов, т. е. перевод строки $\{\alpha_1, \dots, \alpha_n\}$, где $\alpha_i \in \{0, 1\}, 1 \leqslant i \leqslant n$, в двойственную строку $\{\overline{\alpha_1}, \dots, \overline{\alpha_n}\}$.

- Построим схему НАМ инвертирования булевых наборов, т. е. перевод строки $\{\alpha_1, \dots, \alpha_n\}$, где $\alpha_i \in \{0, 1\}, 1 \leqslant i \leqslant n$, в двойственную строку $\{\overline{\alpha_1}, \dots, \overline{\alpha_n}\}$.
- Добавим к алфавиту служебный символ *, чтобы отмечать текущую позицию инвертирования.

- ① Построим схему НАМ инвертирования булевых наборов, т. е. перевод строки $\{\alpha_1, \dots, \alpha_n\}$, где $\alpha_i \in \{0, 1\}, 1 \leqslant i \leqslant n$, в двойственную строку $\{\overline{\alpha_1}, \dots, \overline{\alpha_n}\}$.
- Добавим к алфавиту служебный символ *, чтобы отмечать текущую позицию инвертирования.
- \bigcirc Рассмотрим схему \mathcal{S}_N :

$$\mathcal{S}_N = \begin{cases} *0 \to 1* & (1) \\ *1 \to 0* & (2) & \text{индикатор позиции} * \text{движется вдоль строки, меняя } \alpha_i \text{ на } \overline{\alpha_i} \\ * \to \cdot \wedge & (3) & \text{удаляем символ} * u \text{ заканчиваем работу алгоритма} \\ \wedge \to * & (4) & \text{ставим символ} * u \text{ндикатора позиции в начало слова} \end{cases}$$

Пример 2

- ① Построим схему НАМ инвертирования булевых наборов, т. е. перевод строки $\{\alpha_1, \dots, \alpha_n\}$, где $\alpha_i \in \{0, 1\}, 1 \leqslant i \leqslant n$, в двойственную строку $\{\overline{\alpha_1}, \dots, \overline{\alpha_n}\}$.
- Добавим к алфавиту служебный символ *, чтобы отмечать текущую позицию инвертирования.
- \bigcirc Рассмотрим схему \mathcal{S}_N :

$$\mathcal{S}_N = \begin{cases} *0 \to 1* & (1) \\ *1 \to 0* & (2) & \text{индикатор позиции} * \text{движется вдоль строки, меняя } \alpha_i \text{ на } \overline{\alpha_i} \\ * \to \cdot \wedge & (3) & \text{удаляем символ } * \text{ и заканчиваем работу алгоритма} \\ \wedge \to * & (4) & \text{ставим символ } * \text{ индикатора позиции в начало слова} \end{cases}$$

4 Применяя описанную схему НАМ для слова $P = \{1101\}$, получаем:

$$\{1101\} \stackrel{4}{\rightarrow} \{*\,1101\} \stackrel{2}{\rightarrow} \{0\,*\,101\} \rightarrow ... \rightarrow \{0010\,*\} \stackrel{3}{\rightarrow} \{0010\}.$$

Пример 3

① Пусть $\mathcal{A} = \{a, b\}$. Требуется приписать символ a к концу слова P.

Пример 3

- Пусть $\mathcal{A} = \{a, b\}$. Требуется приписать символ a к концу слова P.
- Чтобы приписать символ a справа, надо сначала пометить конец слова.

16 июня 2023 г.

- ① Пусть $\mathcal{A} = \{a, b\}$. Требуется приписать символ a к концу слова P.
- 2 Чтобы приписать символ a справа, надо сначала пометить конец слова.
- 3 Для этого воспользуемся дополнительным знаком *, который сначала поместим в конец слова P, а затем заменим его на символ q.

- ① Пусть $\mathcal{A} = \{a, b\}$. Требуется приписать символ a к концу слова P.
- 3 Для этого воспользуемся дополнительным знаком *, который сначала поместим в конец слова P, а затем заменим его на символ q.
- 4 Но как поместить * в конец слова?

- Пусть $\mathcal{A} = \{a, b\}$. Требуется приписать символ a к концу слова P.
- Чтобы приписать символ a справа, надо сначала пометить конец слова.
- Для этого воспользуемся дополнительным знаком *, который сначала поместим в конец слова P, а затем заменим его на символ q.
- Но как поместить * в конец слова?
- Сделаем это следующим образом: сначала * припишем слева к слову P, а затем **перегоним** ее через все буквы слова:

$$bbab \rightarrow *bbab \rightarrow b*bab \rightarrow bb*ab \rightarrow bba*b \rightarrow bbab*$$

Примеры $\overline{\mathrm{HAM}}$ (3)

Пример 3

- Пусть $\mathcal{A} = \{a, b\}$. Требуется приписать символ a к концу слова P.
- 2 Чтобы приписать символ a справа, надо сначала пометить конец слова.
- 3 Для этого воспользуемся дополнительным знаком *, который сначала поместим в конец слова P, а затем заменим его на символ q.
- 4 Но как поместить * в конец слова?
- ⑤ Сделаем это следующим образом: сначала * припишем слева к слову P, а затем перегоним ее через все буквы слова:

$$bbab \rightarrow *bbab \rightarrow b*bab \rightarrow bb*ab \rightarrow bba*b \rightarrow bbab*$$

 ${\color{blue}6}$ Заметим, что **перегон** символа * через какой-то символ ${\color{blue}\alpha}$ — это замена пары $*{\color{blue}\alpha}$ на пару ${\color{blue}\alpha}*$, которая реализуется заменой $*{\color{blue}\alpha} \to *{\color{blue}\alpha}$.

- $oldsymbol{1}$ Пусть $\mathcal{A} = \{a\,,\,b\}$. Требуется приписать символ a к концу слова P.
- \bigcirc Чтобы приписать символ a справа, надо сначала пометить конец слова.
- 3 Для этого воспользуемся дополнительным знаком *, который сначала поместим в конец слова P, а затем заменим его на символ q.
- 4 Но как поместить * в конец слова?
- ⑤ Сделаем это следующим образом: сначала * припишем слева к слову P, а затем перегоним ее через все буквы слова:

$$bbab
ightarrow *bbab
ightarrow b*bab
ightarrow bb*ab
ightarrow bbab *bbab *$$

- $oldsymbol{0}$ Заметим, что **перегон** символа * через какой-то символ lpha \longrightarrow то замена пары *lpha на пару lpha*, которая реализуется заменой *lpha o *lpha.
- \bigcap Таким образом получаем следующую схему \mathcal{S}_N :

$${\cal S}_N = \left\{ egin{array}{ll} *a
ightarrow a*, \ *b
ightarrow b*, \ *
ightarrow \cdot a\,, \ \Lambda
ightarrow *. \end{array}
ight.$$