SOLUTIONS FOR HOMEWORK 5

THROUGHOUT THIS HOMEWORK, WE ASSUME THAT TRIGONOMETRIC FUNCTIONS – SUCH AS sin, cos, and tan – are continuous. Other common calculus facts about TRIG FUNCTIONS CAN ALSO BE USED.

- **14.2.** (d) Let $b_n = \frac{n^3}{3^n}$, then $\lim_n b_n^{1/n} = \lim_n \frac{(n^{1/n})^3}{3} = \frac{1}{3}$, since $\lim_n n^{1/n} = 1$. By Root Test, $\sum_n b_n$ converges.
- 14.4. (a) $\sum_{n=2}^{\infty} \frac{1}{(n+(-1)^n)^2}$ converges. Indeed, by Exercise 14.5(b), and the fact about p-

series, $\sum_{n=2}^{\infty} \frac{2}{n^2}$ converges. Note that $\frac{2}{n^2} \ge \frac{1}{(n+(-1)^n)^2}$ for $n \ge 2$, hence our series **converges** due to Comparison test.

(b) We are dealing with $\sum y_n$, where

$$y_n = \sqrt{n+1} - \sqrt{n} = \left(\sqrt{n+1} - \sqrt{n}\right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \ge \frac{1}{3\sqrt{n}}.$$

 $\sum \frac{1}{3\sqrt{n}} = +\infty$ (can use comparison with $\sum_{n} \frac{1}{n}$, plus Problem 14.6(b)), hence $\sum y_n$ diverges as well.

ALTERNATIVELY, one can compute the partial sums: $s_m = \sum_{n=1}^m y_n = \sqrt{m+1} - 1$, and $\lim_m s_m = +\infty$.

14.5. (a)
$$\sum_{k=j_0}^{\infty} (a_n + b_n) = \lim_{m} \sum_{k=j_0}^{m} (a_n + b_n) = \lim_{m} \sum_{k=j_0}^{m} a_n + \lim_{m} \sum_{k=j_0}^{m} b_n = A + B.$$

(b)
$$\sum_{j=j_0}^{\infty} k a_n = \lim_{m} \sum_{n=j_0}^{m} k a_n = k \lim_{n} \sum_{j=j_0}^{m} a_n = kA.$$

(c) In general, $\sum a_n b_n \neq AB$. Consider, for instance, $a_n = b_n = \frac{1}{2^n}$ (with $n \geq 0$). Then

$$A = B = \sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{1 - 1/2} = 2$$
, while $\sum_{n=0}^{\infty} a_n b_n = \sum_{n=0}^{\infty} \frac{1}{4^n} = \frac{1}{1 - 1/4} = \frac{4}{3} \neq 2^2$.

- **14.6.** (a) Find $\beta > 0$ s.t. $|b_n| \le \beta$ for any n. By Problem 14.6(b), $\sum \beta |a_n|$ converges. For any n, $|a_n b_n| \le \beta |a_n|$, hence, by Comparison Test, $\sum_n a_n b_n$ converges absolutely.
- **17.4.** By Example 5 (and Exercise 8.9) from §8, $\lim \sqrt{x_n} = \sqrt{x}$ whenever $\lim x_n = x$ (for any $x \in [0, \infty)$). Now apply the sequential criterion for continuity.
- **17.9.** (c) $\delta = \varepsilon$ with work. We need to show that, if $|x| = |x-0| < \delta$, then $|f(x)-f(0)| < \varepsilon$. For x = 0, the inequality is obvious. Otherwise, $|f(x)-f(0)| = |x| |\sin \frac{1}{x}| \le |x| < \varepsilon$, which is what we want.

- (d) We can take $\delta = \min \left\{ \frac{\varepsilon}{3(|x_0|+1)^2}, 1 \right\}$. If $|x-x_0| < \delta$, then $|x| < |x_0|+1$, hence $|x^2+xx_0+x_0^2| < 3(|x_0|+1)^2$. Per Hint, if $|x-x_0| < \delta$, then $|x^3-x_0^3| = |x-x_0||x^2+xx_0+x_0^2| < 3(|x_0|+1)^2\delta = \varepsilon$.
- **17.10.** (b) Use Definition 17.1 to show the lack of continuity. Let $x_n = \frac{2}{(2n+1)\pi}$; clearly $\lim x_n = 0$. However, $f(x_n) = \sin\left(n\pi + \frac{\pi}{2}\right) = (-1)^n$, so $(f(x_n))$ does not converge to f(0) = 0.