NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE

SEMESTER 2 EXAMINATION 2002-2003

MA2214 Combinatorial Analysis

April/May 2003 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains a total of FIVE (5) questions and comprises FOUR (4) printed pages.
- 2. Answer **ALL** questions.
- 3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Attempt ALL questions. Each question carries 20 marks.

Question 1 [20 marks]

(a) Let $S = \{1, 2, 3, \dots, n+1\}$ where $n \geq 3$, and let

$$T = \{(a, b, c, d) \in S^4 \mid a, b, c < d\}.$$

(i) By counting |T| in two different ways, show that

$$\sum_{r=1}^{n} r^3 = \binom{n+1}{2} + 6 \binom{n+1}{3} + 6 \binom{n+1}{4}.$$

- (ii) Show further that the above result is indeed true for all integers $n \ge 1$.
- (b) Prove by a combinatorial method that for each $n \in \mathbb{N}$, the following expressions are integers.

(i)
$$\frac{(n^2)!}{(n!)^{n+1}};$$

(ii)
$$\frac{(5n)!}{(4n+1)! \, n!}$$
.

Question 2 [20 marks]

- (a) Assuming that all fruits of the same kind are identical, how many ways are there to give away 20 apples, 30 bananas and 40 oranges to 4 children if
 - (i) there is no restriction;
 - (ii) every child must have at least one of each kind of fruit;
 - (iii) every child must have at least one fruit.
- (b) Let $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{N}^4 \mid x_1 \ge 1, x_2 \ge x_1 + 3, x_3 \ge x_2, x_3 + 5 \le x_4 \le 30\}$. Find |S|.

PAGE 3 MA2214

Question 3 [20 marks]

Each of 8 boys attends a school gathering with both of his parents. To play a game these 24 people are to be divided into 8 groups of 3 each such that each group comprises a boy, a male parent and a female parent. How many ways can this be done if

- (i) there is no restriction;
- (ii) no boy is with both of his parents in his group;
- (iii) no boy is with either of his parents in his group;
- (iv) no boy is with either of his parents in his group and at least one female parent is not with her husband in her group.

Question 4 [20 marks]

- (a) What is the probability that a roll of 6 distinct dice yields a sum of 16?
- (b) For a non-negative integer r, let a_r be the number of integer solutions to the inequality

$$x_1 + x_2 + x_3 + x_4 \le r,$$

with $x_1 \geq 1$, $x_2, x_3, x_4 \geq 3$. Find the ordinary generating function of a_r .

- (c) By using (b) or otherwise, find the number of ways to select a set of 4 integers from 1 to 30 so that any two of the integers selected differ by at least 3. Justify your answer.
- (d) Find the number of possible ways to assign a group of 10 people to 4 (different) committees such that each committee consists of an odd number of people.

PAGE 4

Question 5 [20 marks]

- (a) Solve the recurrence equation $a_n = a_{n-2} + 4n + 4$, given that $a_0 = -6$, $a_1 = 9$.
- (b) Three sequences (a_n) , (b_n) and (c_n) satisfy the following recurrence relations:

$$a_{n+1} = \frac{1}{3}(b_n + c_n - a_n),$$

$$b_{n+1} = \frac{1}{3}(c_n + a_n - b_n) + \frac{1}{3},$$

$$c_{n+1} = \frac{1}{3}(a_n + b_n - c_n) + \frac{2}{3},$$

with $a_0 = 1$, $b_0 = 0$ and $c_0 = 1$. Find a recurrence relation for the sequence $d_n = a_n + b_n + c_n$, and determine d_n for all $n \ge 0$.

(c) Find the ordinary generating function of the sequence $(u_n)_{n\geq 0}$ defined by

$$u_n - 3u_{n-1} - 4u_{n-2} = 0, \quad u_0 = 0, u_1 = 1.$$

Hence deduce a formula for u_n .

END OF PAPER