

Machine Learning

Problem formulation

Example: Predicting movie ratings

User rates movies using one to five stars

Machine Learning

Content-based recommendations

Content-based recommender systems

treat each as a seperate linear regression problem

 \Rightarrow For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating movie $(\theta W) h h x^{(i)}$

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longleftrightarrow \Theta^{(1)} = \begin{bmatrix} 0 \\ \frac{5}{0} \end{bmatrix} \quad (\Theta^{(1)})^{T} \chi^{(3)} = 5 \times 0.99$$

$$= 4.95$$

Problem formulation

- $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- $\rightarrow y^{(i,j)} = rating$ by user j on movie i (if defined)
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- $\Rightarrow x^{(i)}$ = feature vector for movie i
- \rightarrow For user j, movie i, predicted rating:
- $\underline{m^{(j)}}$ = no. of movies rated by user j

To learn $\theta^{(j)}$:

n is the number of features
$$\frac{\lambda}{\lambda} + \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda} \left(\frac{\delta(i)}{\lambda} \right)^{2}$$

$$\frac{Q_{(i)}}{Q_{(i)}} = \frac{5}{1} \sum_{i: \iota(i,i)=1}^{N} \frac{(Q_{(i)})_{i}(x_{(i)}) - A_{(i,i)}}{(Q_{(i)})_{i}(x_{(i)})} + \frac{5}{1} \sum_{i=1}^{N} (Q_{(i)}^{k})_{i}$$

sum of all the movies that user j has rated

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

2(0(1) (Na))

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	,	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

i robiem n	, iotivat				V		X ₀ =
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
Love at last	7 5	7 5	<u> </u>	7 0	1.1.0	A 0-1	<u> </u>
Romance forever	5	;	;	0	?	ý	x0= [10]
Cute puppies of love	?	4	0	?	?	?	(0.0)
Nonstop car chases	0	0	5	4	?	?	~(1)
Swords vs. karate	0	0	5	?	?	?	~1 (1)
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$, $\theta^{(2)}$	$\mathbf{C}^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	(e) (e)	(8)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5)

Optimization algorithm

Given $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$, to learn $\underline{x^{(i)}}$:

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given
$$\underline{x^{(1)},\dots,x^{(n_m)}}$$
 (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

Given
$$\theta^{(1)},\ldots,\theta^{(n_u)}$$
, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

Cives
$$m^{(1)}$$
 and $m^{(n_m)}$ setting to $O^{(1)}$

$$\Rightarrow \text{Given } x^{(1)}, \dots, \underbrace{x^{(n_m)}, \text{ estimate } \theta^{(1)}, \dots, \theta^{(n_u)}}_{1 \sum_{i=1}^{n_u} \sum_{(i,j) \in T} x^{(i)}, \dots, y^{(i,j)}}_{(i,j) \in T}$$

$$= \lim_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{u} \sum_{\substack{i: r(i,j)=1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{u} \sum_{k=1}^{u} (\theta^{(j)}_k)^2$$

 \rightarrow Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, estimate $x^{(1)}, \ldots, x^{(n_m)}$:

$$= \lim_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{\substack{j:r(i,j) = 1 \\ j:r(i,j) = 1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j) = 1 \\ x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, x^{(n_m)}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k$$

Collaborative filtering algorithm

- \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.
- ⇒ 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, \ldots, n_u, i = 1, \ldots, n_m$:

every
$$j=1,\ldots,n_u,t=1,\ldots,n_m$$
:
$$x_k^{(i)}:=x_k^{(i)}-\alpha\left(\sum_{j:r(i,j)=1}((\theta^{(j)})^Tx^{(i)}-y^{(i,j)})\theta_k^{(j)}+\lambda x_k^{(i)}\right)$$

$$\theta_k^{(j)}:=\theta_k^{(j)}-\alpha\left(\sum_{i:r(i,j)=1}((\theta^{(j)})^Tx^{(i)}-y^{(i,j)})x_k^{(i)}+\lambda \theta_k^{(j)}\right)$$
For a user with parameters θ and a movie with (learned)

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta}^T x$.

$$\left(\bigcirc^{(i)} \right)^{\mathsf{T}} \left(\times^{(i)} \right)$$

XOCI XER, OER,

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	^	^	1	1

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering X (1)

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \end{bmatrix}$$

$$\begin{bmatrix}
(\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\
(\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)})
\end{bmatrix}$$

$$\vdots & \vdots & \vdots & \vdots \\
(\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)})
\end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} - \\ \\ -(x^{(n_m)})^{T} - \end{bmatrix}$$

$$= \begin{bmatrix} -(\Theta_{(1)})_{\perp} \\ -(\Theta_{(2)})_{\perp} \end{bmatrix}$$

 $(\mathcal{O}_{\partial I})_{A}(\times,...)$

ال (زیزا)

Andrew Ng

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find
$$\underline{\text{movies } j}$$
 related to $\underline{\text{movie } i}$?

Small $\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \rightarrow \mathbf{movie} \ i$ and i are "similar"

5 most similar movies to movie i:

Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Machine Learning

Implementational detail: Mean normalization

Users who have not rated any movies

	•		-		V						
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		Г~	L	0	0	
→ Love at last	5	5	0	0	3,0		5	5	0	0	
Romance forever	5	?	?	0		V	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$			0	9
Cute puppies of love	?	4	0	?	5 D	Y =		4	U	: 1	
Nonstop car chases	0	0	5	4	S □			0	6 5	$\frac{4}{0}$	· 2
Swords vs. karate	0	0	5	?	? D		Lo	U	3	U	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j) = 1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{$$

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? & 2 & 5 & \\ 5 & ? & ? & 0 & ? & ? & \\ ? & 4 & 0 & ? & ? & \\ 0 & 0 & 5 & 4 & ? & \\ \hline 0 & 0 & 5 & 0 & ? & \\ \end{bmatrix} \xrightarrow{} Y = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ \hline 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 \\ 2.5 \\ ? & 2 \\ -2.25 \\ -1.25 \end{bmatrix} \xrightarrow{} ? \begin{bmatrix} 2.5 \\ 2.5 \\ ? & 2 \\ -2.25 \\ -1.25 \end{bmatrix} \xrightarrow{} ?$$

For user j, on movie i predict:

$$\Rightarrow (O^{(i)})^{T}(\chi^{(i)}) + \mu_{i}$$

User 5 (Eve):