การทดลองที่ 9 วงจรบวกและวงจรลบเลขฐานสอง (Binary Adder and Subtractor)

วัตถุประสงค์

- 1. เข้าใจการทำงานของวงจรบวกเลขฐานสองแบบ Full Adder และแบบ Half Adder
- 2. เข้าใจการทำงานของวงจรลบเลขฐานสองแบบ Full Subtractor และแบบ Half Subtractor
- 3. เข้าใจหลักการบวกและลบเลขฐานสองขนาด 1 บิต

เอกสารที่เกี่ยวข้อง

การบวกและลบเลขฐานสองโดยวงจรลอจิกนั้นสามารถสร้างได้จากทฤษฎีการบวกและลบเลข โดย นำมาเขียนเป็นตารางความจริง เพื่อนำมาสร้างเป็นวงจรลอจิกที่ต้องการ

วงจรบวกแบบ Half Adder มีตารางความจริงแสดงการทำงานดังรูปที่1 และสามารถสร้างวงจรบวก แบบ Half Adderได้ดังรูปที่ 1

ตารางความจริง

อินพุต		เอาท์พุต		
А	В	Σ	C _o	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

รูปที่ 1 แสดงวงจรบวกแบบ Half Adder และตารางแสดงการทำงานของวงจร

วงจรบวกแบบ Full Adder ในการบวกเลขฐานสองนั้นมีตัวทดเกิดขึ้นจากการบวกเลขบิตที่ต่ำกว่ามา ทดให้บิตถัดไปดังนั้นจึงต้องศึกษาการทำงานของวงจรบวกแบบ Full Adder ซึ่งมีตารางการทำงานและวงจร ภายในซึ่งสร้างได้จากวงจรบวกแบบ Half Adder ดังรูปที่ 2

					-	_
M	200	างค	\sim	ı۵ı	2	~ 0
191	נו	1/1/	'L I'	111	٩1	וענ

	อินพุต		เอาฑ์พุต		
C _{in}	А	В	Σ	C _o	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
	Carry+B+A		SUM	Carry Out	

รูปที่ 2 แสดงวงจรแบบ Full Adder และตารางแสดงการทำงาน

วงจรลบแบบ Half Subtractor สามารถสร้างได้จากการนำกฎของการลบเลขฐานสองมาเขียนลง ตารางความจริงและจะได้วงจรลบเลขแบบ Half Subtractor ดังรูปที่ 3

ตารางความจริง

อินพุต		เอาท์พุต		
А	В	D _i	Во	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	
A - B		Difference	Borrow out	

รูปที่ 3 แสดงวงจรลบแบบ Half Subtractor และตารางความจริงแสดงการทำงาน

วงจรลบแบบ Full Subtractor ในการลบเลขฐานสองกรณีที่ตัวตั้งน้อยกว่าตัวลบ จำเป็นต้องมีการยืม เลขมาจากบิตที่สูงกว่า ดังนั้นวงจรที่ทำหน้าที่ลบเลขจึงต้องมีอินพุตเพิ่มขึ้น คือ ตัวยืมเข้า Bin เมื่อนำการ ทำงานมาเขียนลงในตารางความจริงจะสามารถสร้างวงจรลบแบบ Full Subtractor ได้ดังรูปที่ 4

อินพุต			เอาฑ์พุต		
C _{in}	C _{in} A B _{in}		D _i	Во	

0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
A – B - B _{in}		Difference	Borrow out	

รูปที่ 4 แสดงวงจรลบแบบ Full Subtractor และตารางความจริงแสดงการทำงาน

อุปกรณ์ที่ใช้ในการทดลอง

- 1. วงจรรวมเบอร์ 7486 7408 7404 และ 7432
- 2. ชุดทดลองดิจิตอล

วงจรการทดลองที่ 1 วงจรบวกแบบ Half Adder

วิธีการทดลอง

1.1 ทำการป้อนเลขฐานสอง 0 และ 1 เข้าที่อินพุต A และ B ตามตาราง ทำการทดลองและบันทึกผลการบวก และตัวทดที่เกิดขึ้นลงในตารางบันทึกผลการทดลองที่ 1

ตารางบันทึกผลการทดลองที่ 1

อินพุต		เอาท์พุต		
А	В	Σ	C ₀	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

วงจรการทดลองที่ 2 วงจรบวกแบบ Full Adder

วิธีการทดลอง

2.1 ทำการป้อนลอจิกอินพุตที่ตัวทดเข้าตัวคั้ง และตัวบวก (Cin A B) ตามตารางบันทึกผล และบันทึกผล ของตัวบวก (Σ) และตัวทดออก (Co) ลงในตารางบันทึกผลการทดลองที่ 2

ตารางบันทึกผลการทดลองที่ 2

	อินพุต	เอาท์พุต		
А	В	C _{in}	Σ	C ₀
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

วงจรการทดลองที่ 3 วงจรลบแบบ Half Subtractor

วิธีการทดลอง

3.1 ทำการทดลองโดยการป้อนเลขฐานสองที่ตัวตั้ง (A) และตัวยืม (B) ตามตารางบันทึกผลและบันทึกผล ของผลต่าง (Di) และตัวยืม (Bo) ลงในตารางบันทึกผลการทดลองที่ 3

ตารางบันทึกผลการทดลองที่ 3

อินพุต		เอาท์พุต		
А	В	D _i	Во	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

วงจรการทดลองที่ 4 วงจรลบแบบ Full Subtractor

วิธีการทดลอง

4.1 ป้อนเลขฐานสองลงในอินพุต Bin A B ตามตารางบันทึกผลการทดลองที่C 4 และบันทึกผลของ ผลลัพธ์ ตัวลบ (Di) และตัวยืม(Bo) ลงในตารางบันทึกผลการทดลองที่ 4

ตารางบันทึกผลการทดลองที่ 4

อินพุต			เอาท์พุต		
А	В	B _{in}	D _i	Во	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

วิเคราะห์ผลการทดลองที่ 1

สังเกตได้ว่าวงจรทดลองที่ 1 เป็นวงจรบวกเมื่อป้อนอินพุต AและB เป็น 1 ได้เอาท์พุต Σ = 0 แล้ว C_o = 1 เพราะถูกทดเลขไป

วิเคราะห์ผลการทดลองที่ 2

สังเกตจากตารางค่าความจริง จะได้สมการการทำงานว่า A + B + C_{in} ผลรวมคือ Σ ตัวทดคือ C_{o}

วิเคราะห์ผลการทดลองที่ 3

สังเกตได้ว่าวงจรทดลองที่ 1 เป็นวงจรลบ จากตารางค่าความจริงทำให้ทราบว่าวงจรนี้ทำงานคือ A - B เพราะเมื่อ A = 0 และ B = 1 จะมีการยืมค่า B_o มาดั้งนั้น B_o จึงมีเอาท์พุตเป็น 1

วิเคราะห์ผลการทดลองที่ 4

สังเกตจากตารางค่าความจริง จะได้สมการการทำงานว่า A - B - B_{in} ผลรวมคือ D_{i} ตัวยืมคือ B_{o}

สรุปผลการทดลอง

full adder และ Full Subtractor เป็นวงจรที่สามมารถคำนวณค่าได้ถึง 3 บิตส่วน Half Subtractor และ Half adder สามารถคำนวณค่าได้เพียง 2 บิตเท่านั้น

คำถามท้ายปฏิบัติการทดลอง

1. จากตารางความเป็นจริงต่อไปนี้ จงเขียนสมการของ $oldsymbol{\Sigma}$ และ Co ในรูปเทอมผลบวกของผลคูณ (SOP)

อินพุต			เอาท์	พ ุต
C _{in}	В	C _{in}	Σ	C _o
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

ทอบ
$$\Sigma = \overline{C_{in}} \cdot \overline{B} \cdot C_{in} + \overline{C_{in}} \cdot B \cdot \overline{C_{in}} + C_{in} \cdot \overline{B} \cdot \overline{C_{in}} + C_{in} \cdot B \cdot C_{in}$$

$$\Box_{\Box} = \overline{C_{in}} \cdot B \cdot C_{in} + C_{in} \cdot \overline{B} \cdot C_{in} + C_{in} \cdot B \cdot \overline{C_{in}} + C_{in} \cdot B \cdot C_{in}$$

2. จากสมการของ Σ และ Co ในข้อ 1 ให้นำมาสร้างเป็นวงจรลอจิก และทดสอบการทำงานว่าวงจรที่ สร้างได้ทำงานเหมือนวงจรในการทดลองใดที่ผ่านมา

<u>ตอบ</u>

การทดลองที่ 10 วงจรทางคณิตศาสตร์ (Arithmatic Circuits) วัตถุประสงค์

- 1. เข้าใจการทำงานของวงจรบวกเลขฐานสอง 4 บิต โดยใช้วงจรรวมเบอร์ 7483
- 2. เข้าใจการทำงานของวงจรบวก/ลบเลขฐานสอง 4 บิต โดยใช้วงจรรวมเบอร์ 7483
- 3. รู้หลักการลบเลขฐานสองแบบวิธีคอมพลีเมนต์ที่ 1 และวิธีคอมพลีเมนต์ที่ 2

เอกสารที่เกี่ยวข้อง

วงจรบวกและลบเลขฐานสองหลายๆบิต สามารถสร้างได้อย่างง่ายโดยใช้วงจรรวมที่Cทำหน้าที่C คำนวณเลขฐานสอง เช่น วงจรรวมเบอร์ 7483 (4 Bit-Full Adder) ซึ่งสามารถบวกเลขฐานสองได้พร้อมกัน ครั้งละ 4 บิต และสามารถต่อเพิ่ม เป็น 8 บิต หรือมากกว่า และยังสามารถนำมาสร้างวงจรลบเลขฐานสอง 4 บิตหรือ 8 บิตได้อีกด้วย โดยการใช้เทคนิคการลบเลขฐานสองแบบคอมพลีเมนต์ที่ 1 และคอมพลีเมนต์ที่ 2 ลักษณะการจัดวางตำแหน่งขาต่างๆ เป็นดังนี้ 4 บิตตัวตั้งคือขา A_1 - A_4 4 บิตตัวบวกหรือตัวลบ คือขา B1-B4 และ 4 บิตผลลัพธ์ คือขา Σ_1 - Σ_4 ดังแสดงในรูปที่ 1

รูปที่ 1 แสดงการจัดวางตำแหน่งขาของวงจรรวมเบอร์ 7483

การทำงานของตัวบวกขนาด 4 บิตเบอร์ 7483 แสดงในตารางรูปที่ 2

						เอา	ก์พุด		
	อินทุด -		When C ₀ =L When C ₁ =L			When C		nen C ₂ =L	
A ₁	B ₁	A ₂	B ₂	Σ_{i}	Σ ₂ Σ ₄	C ₂ / C ₄	E ₁	$\bar{\Sigma}_{2}$ $\bar{\Sigma}_{4}$	C ₂
L	L	L	L	L	L	L	Н	L	L
Н	L	L	L	Н	L	L	L	Н	L
L	HX	L	L	Н	L	L	L	Н	L
Н	Н	L	L	L	Н	L	Н	Н	L
L	L	Н	L	L	Н	L	Н	Н	L
Н	L	Н	L	Н	Н	L	L	L	Н
L	Н	Н	L	Н	Н	L	L	L	Н
Н	Н	Н	L	L	L	Н	Н	L	Н
L	L	L	Н	L	Н	L	Н	Н	L
Н	L	L	Н	Н	Н	L	L	L	Н
L	Н	L	Н	Н	Н	L	L	L	Н
Н	Н	L	Н	L	L	Н	Н	L	Н
L	L	Н	Н	L	L	Н	Н	L	Н
Н	L	Н	Н	Н	L	Н	L	Н	Н
L	Н	Н	Н	Н	L	Н	L	Н	Н
Н	Н	Н	Н	L	Н	Н	Н	н	Н

รูปที่ 2 แสดงตารางการทำงานของวงจรรวมเบอร์ 7483

อุปกรณ์ที่ใช้ในการทดลอง

- 1. วงจรรวมเบอร์ 7483
- 2. ชุดทดลองดิจิตอล

วงจรการทดลองที่ 1 วงจรบวกเลขฐานสองขนาด 4 บิต โดยใช้วงจรรวมเบอร์ 7483

วิธีการทดลอง

1.1 ต่อวงจรตามรูป และป้อนเลขฐานสอง 4 บิตที่ตัวตั้งและตัวบวกตามตารางบันทึกผลการทดลองที่ 1 และ บันทึกผลการบวกเลขฐานสอง 4 บิต ลงในตารางบันทึกผลการทดลองที่ 1

ตารางบันทึกผลการทดลองที่ 1

				อินท	งุ ต				เอาท์พุต							
A ₄	A ₃	A ₂	A ₁	B ₄	B ₃	B ₂	B ₁	C ₀	C ₄	Σ4	Σ_3	Σ2	Σ_1	เลข		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	1	0	0	0	0	1	0	2		
0	0	1	0	0	0	1	0	0	0	0	1	0	0	4		
0	0	1	1	0	0	1	1	0	0	0	1	1	0	6		
0	1	0	0	0	1	0	0	0	0	1	0	0	0	8		
1	0	0	0	1	0	0	0	0	1	0	0	0	0	16		
1	0	0	1	1	0	0	1	0	1	0	0	1	0	18		
1	0	1	0	1	0	1	0	0	1	0	1	0	0	20		
1	0	1	1	1	0	1	1	0	1	0	1	1	0	22		
1	1	0	0	1	1	0	0	0	1	1	0	0	0	24		

วงจรการทดลองที่ 2 วงจรบวกและวงจรลบเลขฐานสองขนาด 4 บิต ด้วยวิธีคอมพลีเมนต์ที่ 1

วิธีการทดลอง

2.1 ต่อวงจรตามรูปและทำการทดลองการบวกโดยให้สัญญาณลอจิกที่ขา Control Logic = "0" ทดลอง ป้อนเลขฐานสอง 4 บิตเข้าที่ตัวตั้งและที่ตัวบวกตามที่ตารางกำหนด และบันทึกผลการทดลองลงใน ตารางบันทึกผลการทดลองที่ 2

ตารางบันทึกผลการทดลองที่ 2

			อิ	นพุต		เอาท์พุต						
A ₄	A ₃	A ₂	A ₁	B ₄	B ₃	B ₂	B ₁	Σ_4	Σ_3	Σ_2	Σ_1	C ₄
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	1	0	0
0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	1	1	0	0	1	1	0	1	1	0	0
0	1	0	0	0	1	0	0	1	0	0	0	0
0	1	0	1	0	1	0	1	1	0	1	0	0
0	1	1	0	0	1	1	0	1	1	0	0	0
0	1	1	1	0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1	0	0	1	0	1

2.2 ต่อวงจรตามรูปเดิม ให้ทำงานเป็นวงจรลบเลขฐานสองขนาด 4 บิต โดยการป้อนขา Control Logic ด้วยลอจิก "1"ทดลองป้อนเลขฐานสอง 4 บิตเข้าที่ตัวลบ ตามลำดับในตาราง บันทึกผลการทดลองลงในตารางบันทึกผลการทดลองค่ 3

ตารางบันทึกผลการทดลองที่ 3

				อินพุต		เอาท์พุต						
A ₄	A ₃	A ₂	A ₁	B ₄	B ₃	B ₂	B ₁	Σ4	Σ_3	Σ2	Σ_1	C ₄
0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	1	1	1	1	0
0	0	1	0	0	0	1	0	1	1	1	1	0
0	0	1	1	0	0	1	1	1	1	1	1	0
0	1	0	0	0	1	0	0	0	0	0	0	1
0	1	0	1	0	1	0	1	0	0	0	0	1
0	1	1	0	0	1	1	0	1	1	1	1	0
0	1	1	1	0	1	1	1	0	0	0	0	1
1	0	0	0	1	0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1	0	0	0	0	1

วงจรการทดลองที่ 3 วงจรบวกและวงจรลบเลขฐานสองขนาด 4 บิต ด้วยวิธีคอมพลีเมนต์ที่ 2 วิธีการทดลอง

3.1 ต่อวงจรตามรูป ควบคุมขา Control Logic ให้เป็น "0" วงจรจะทำงานเป็นวงจรบวกเลขฐานสอง 4 บิตแบบคอมพลีเมนต์ที่ 2 ทดลองโดยป้อนเลขฐานสอง 4 บิต ตัวตั้งและตัวบวกตามตารางที่ 4 และ บันทึกผลการบวกลงในตารางที่ 4

ตารางบันทึกผลการทดลองที่ 4

			อิน	พุต		เอาท์พุต						
A ₄	A ₃	A ₂	A ₁	B ₄	B ₃	B ₂	B ₁	Σ_4	Σ_3	Σ_2	Σ_1	C_0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	1	0	0
0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	1	1	0	0	1	1	0	1	1	0	0
0	1	0	0	0	1	0	0	1	0	0	0	0
0	1	0	1	0	1	0	1	1	0	1	0	0
0	1	1	0	0	1	1	0	1	1	0	0	0
0	1	1	1	0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1	0	0	1	0	1

3.2 ต่อวงจรตามรูปเดิม ให้ทำงานเป็นวงจรลบเลขฐานสองขนาด 4 บิตแบบคอมพลีเมนต์ที่ 2 โดยการ ป้อนขา Control Logic ด้วยลอจิก "1" ทดลองป้อนเลขฐานสอง 4 บิต เข้าที่ตัวตั้งและป้อน เลขฐานสอง 4 บิตเข้าที่ตัวลบตามลำดับในตาราง บันทึกผลลงในตารางบันทึกผลการทดลองที่ 5

ตารางบันทึกผลการทดลองที่ 5

			อิน	เพุต		เอาท์พุต						
A ₄	A ₃	A ₂	A ₁	B ₄	B ₃	B ₂	B ₁	Σ_4	Σ_3	Σ2	Σ_1	C_0
0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	1	0	0	0	0	0	1
0	0	1	1	0	0	1	1	0	0	0	0	1
0	1	0	0	0	1	0	0	0	0	0	0	1
0	1	0	1	0	1	0	1	0	0	0	0	1
0	1	1	0	0	1	1	0	0	0	0	0	1
0	1	1	1	0	1	1	1	0	0	0	0	1
1	0	0	0	1	0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1	0	0	0	0	1

วิเคราะห์ผลการทดลองที่ 1

จากตารางผลการทดลองเมื่อตัวเลข 4 บิตเพิ่มขึ้นค่าที่ได้ออกมายิ่งมากขึ้นลักษะคือการบวก

วิเคราะห์ผลการทดลองที่ 2

จากตารางการทดลอง ค่าที่ได้ออกมา สามารถเป็น 1 ทั้งหมด หรือ 0 ทั้งหมดก็ได้ขึ้ยอยู่กับการ Control Logic

วิเคราะห์ผลการทดลองที่ 3

จากตารางการทดลอง เกิดการลบที่เท่ากันของอินพุตทุกครั้ง ทำให้ค่าที่ได้ออกมามีค่าเท่ากับ 0

สรุปผลการทดลอง

วงจรรวมเบอร์ 7483 สามารถบวกและลบเลขฐาน 2 พร้องกันถึง 4 บิต ที่มีความสามมารถมากกว่า วงจร full adder และ Full Subtractor

คำถามท้ายปฏิบัติการทดลอง

1. จงใช้วงจรรวมเบอร์ 7483 จำนวน 2 ตัว สร้างเป็นวงจรบวกเลขฐานสองขนาด 4 บิต ให้วาดภาพ วงจรและอธิบายการทำงานของวงจร

<u>ตอบ</u>

จากวงจรสมารถบวก ลบ เลข ได้ถึง 8 บิตซึ้งมีผลลัพธ์ในเลขฐาน 10 ได้ถึง 256 ตัว คือ 0 - 255

2. จงสร้างวงจรบวกและลบเลขฐานสิบอย่างง่าย ตามแผนภาพกรอบต่อไปนี้ให้ทำงานได้อย่างสมบูรณ์ และอธิบายการทำงานของส่วนต่างๆในวงจร

ตอบ วงจรบวกหลายบิต(Multiple bit Adder) คือการสรางวงจรบวกใหสามารถรับอินพุโดมากขึ้น กลาวคือบวกเลขไดหลายบิตนั้นเอง หลักการสรางก็งายๆคือการนำ Full Adder หลายๆตัวมาตอรวมๆกันเป นวงจรใหญๆ เพื่อที่จะไดคำนวณให่ไดหลายบิตมากขึ้นโดยเมื่อมีการตอวงจรแบบนี้แลวจะมีการคำนวณการทด ไดหลายแบบดังเช่นการทดแบบริปเปอรหรือ การทดแบบดูตัวทดลวงหน้าเปนตน