

AVL

AVL (Adelson-Velskii and Landis)

- BST with balance
 - identical to a binary search tree, except that for every node in the tree, the height of the left and right subtrees can differ by at most 1.
- Which of the following is a binary tree? AVL tree?

AVL

- A binary tree is an AVL tree if balance(u) ∈ {-1, 0, +1} for every node u
- I.e. the heights of LEFT(u) and RIGHT(u) are "about the same" for every node u.
- balance(u) := right_height(u) left_height(u)

AVL Trees

- AVL tree with n nodes has height O(log n).
 - search will run in O(log n) time if AVL has binary search tree property.
- insert, delete can be implemented in O(log n) time.
- Good structure to implement dictionary or sorted set ADTs.

- First, do a standard BST insert: do a find and add node where you "fall off the tree."
- 2. Walk insertion path back up to root, updating balances.
- If node was added to the left subtree, decrement balance by 1, otherwise increment balance by 1.
 Stop when node's height doesn't change.
- 4. If a balance becomes +2 or -2, *fix it*.

Easy Cases

Node was added to the shorter subtree

Subtrees were equal, now slightly unbalanced

What to do?

Suppose n is the lowest node that would become -2

Two cases:

Left, Left

Left, Right

Left, Left Case

Right rotation (aka clockwise rotation)

Why does \triangle obey BST ordering?

Symmetric Left Rotation

Left rotation (aka counterclockwise rotation)

Only a constant # of pointers need to be updated for a rotation: O(1) time

Left, Right Case

Left, Right

(1) Left rotation at i

(2) Then right rotation at n

Critical Node

node on the insertion path closest to the leaves

with balance ≠ 0

 Rotations leave subtree rooted at critical node balanced with unchanged height.

Rotations preserve height of critical subtree

Left, Left Case:

Left, Right Case:

- Because height of critical subtree doesn't change, it can't effect the balance of any nodes higher up in the tree.
- We can stop processing once we process the critical node.
- Therefore, only one rotation will occur.
- Optimization:
 - on first pass down the tree to insert a node, remember the critical node (last node with non-zero balance)
 - Then, to adjust balances, start at critical node and rewalk the path down to inserted node.

AVL Trees

Nice Features:

- Worst case O(log n) performance guarantee
- Fairly simple to implement

• Problems:

 Have to maintain extra balance factor storage at each node.

QUESTIONS TO PONDER

1. [2 Points] If 10 is inserted into the following AVL tree, draw the resulting tree.

2. [2 Points] If 14 is inserted into the following AVL tree, draw the resulting tree.

3. [2 Points] If 12 is inserted into the following AVL tree, draw the resulting tree.

4. [2 Points] If 68 is inserted into the following AVL tree, draw the resulting tree.

5. [2 Points] If 90 is inserted into the following AVL tree, draw the resulting tree.

Questions to Ponder

6. Which of the following is a balanced AVL tree?

Questions to Ponder

7.

(e) T F An AVL tree is balanced, therefore a median of all elements in the tree is always at the root or one of its two children. Explain:

https://courses.csail.mit.edu/6.006/oldquizzes/solutions/q1-f2008-sol.pdf

8. What are the two invariants that an AVL tree must hold?

Given this tree structure:

(a) Assuming the tree is a binary search tree, and not an AVL tree, draw the tree structure created by the following code. Hint: Don't try to do it all at once in your head. Draw each insertion/deletion as an entirely separate tree.

```
t->insert (71);
t->delete (19);
t->delete (23);
t->delete (50);
t->insert (77);
t->insert (78);
t->insert (79);
t->insert (80);
```

(b) Repeat part (a) assuming the tree is an AVL tree.