# Zestaw 1 - Arytmetyka komputerowa

#### Piotr Karamon

## 1 Znaleźć maszynowe epsilon

Maszynowe epsilon dla systemu zmiennoprzecinkowego jest to najmniejsza dodatnia liczba  $\epsilon$  którą można dodać do 1, aby otrzymać wynik różny od 1. Taka liczba musi mieć ten sam wykładnik jak liczba 1 oraz jak najmniejszą mantysę. Maszynowe epsilon zależy od podstawy systemu  $\beta$  i precyzji p. Wyraża się wzorem:

$$\epsilon = \beta^{1-p}$$

Maszynowe epsilon można również obliczyć poprzez dzielenie zmiennej a której początkowa wartość to 1 przez podstawę systemu. Ostatnia wartość a która spełnia warunek a+1>1 jest maszynowym epsilon.

## 2 Problem ewaluacji funkcji sin(x)

Rozważamy problem ewaluacji funkcji  $\sin(x)$ , m.in. propagację błędu danych wejściowych, tj. błąd wartości funkcji ze względu na zakłócenie h w argumencie x.

## 2.1 Błąd bezwzględny przy ewaluacji sin(x)

$$\Delta \sin(x) = |\sin(x+h) - \sin(x)|$$

#### 2.2 Błąd względny przy ewaluacji sin(x)

$$\frac{\Delta \sin(x)}{\sin x} = \frac{|\sin(x+h) - \sin(x)|}{\sin x}$$

#### 2.3 Uwarunkowanie

$$\operatorname{cond}(f(x)) = \left| \frac{x \cdot f'(x)}{f(x)} \right|$$
$$\operatorname{cond}(\sin(x)) = \left| \frac{x \cdot \cos(x)}{\sin(x)} \right| = |x \cot x|$$



**Rysunek 1:** Wykres funkcji będącej współczynnikiem uwarunkowania dla problemu obliczania funkcji  $\sin x$ 

#### 2.4 Ocena czułości problemu

Problem jest bardzo czuły w miejscach, gdzie cotx zbiega do  $\infty$ . Są to liczby postaci  $x=k\pi$ , gdzie k jest liczbą całkowitą z wyjątkiem 0. Problem jest bardzo dobrze uwarunkowany w miejscach w których cosx przyjmuje wartość 0. Są to liczby postaci  $x=k\pi+\frac{\pi}{2}$ , gdzie k jest liczbą całkowitą.

#### 2.5 Wnioski

Problem ewaluacji  $\sin x$  jest najgorzej uwarunkowany w otoczeniu miejsc zerowych tej funkcji. Problem jest jednocześnie najlepiej uwarunkowany w otoczeniu ekstremów lokalnych funkcji  $\sin x$ .

## 3 Różne rodzaje błędów podczas obliczania $\sin x$

Funkcja  $\sin x$  zadana jest nieskończonym ciągiem:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Błąd progresywny 
$$\Delta y = |\hat{y} - y|$$
  
Błąd wsteczny  $\Delta x = |\hat{x} - x|$ , gdzie  $f(\hat{x}) = \hat{y}$ 

## 3.1 Błąd progresywny i wsteczny przy przybliżeniu $\sin x \approx x$

Błąd progresywny 
$$\Delta y = |x - \sin x|$$
  
Błąd wsteczny  $\Delta x = |\arcsin \hat{y} - y| = |\arcsin x - \sin x|$ 

**Tablica 1:** Wartości błędu progresywnego i wstecznego jeśli przybliżamyfunkcję  $\sin x \approx x$ 

| x          | $y = \sin(x)$ | $\hat{y} = x$ | $\Delta y =  \hat{y} - y $ | $\hat{x} = \arcsin \hat{y}$ | $\Delta x =  \hat{x} - x $ |
|------------|---------------|---------------|----------------------------|-----------------------------|----------------------------|
| 0.10000000 | 0.09983342    | 0.10000000    | 0.00016658                 | 0.10016742                  | 0.00016742                 |
| 0.50000000 | 0.47942554    | 0.50000000    | 0.02057446                 | 0.52359878                  | 0.02359878                 |
| 1.00000000 | 0.84147098    | 1.00000000    | 0.15852902                 | 1.57079633                  | 0.57079633                 |

# 3.2 Błąd progresywny i wsteczny przy przybliżeniu $\sin x \approx x - \frac{x^3}{6}$

Błąd progresywny 
$$\Delta y = |x - \frac{x^3}{6} - \sin x|$$
  
Błąd wsteczny  $\Delta x = \left|\arcsin\left(x - \frac{x^3}{6}\right) - \sin x\right|$ 

**Tablica 2:** Wartości błędu progresywnego i wstecznego jeśli przybliżamyfunkcję  $\sin x \approx x - \frac{x^3}{6}$ 

| x          | $y = \sin(x)$ | $\hat{y} = x - \frac{x^3}{6}$ | $\Delta y =  \hat{y} - y $ | $\hat{x} = \arcsin \hat{y}$ | $\Delta x =  \hat{x} - x $ |
|------------|---------------|-------------------------------|----------------------------|-----------------------------|----------------------------|
| 0.10000000 | 0.09983342    | 0.09983333                    | 0.00000008                 | 0.09999992                  | 0.00000008                 |
| 0.50000000 | 0.47942554    | 0.47916667                    | 0.00025887                 | 0.49970504                  | 0.00029496                 |
| 1.00000000 | 0.84147098    | 0.83333333                    | 0.00813765                 | 0.98511078                  | 0.01488922                 |

#### 3.3 Wnioski

Przybliżenie z większą ilością wyrazów szeregu powoduje znaczące zmniejszenie błędu zarówno progresywnego jak i wstecznego. Możemy się spodziewać, że im więcej wyrazów weźmiemy tym dokładniejszy wynik uzyskamy.

## 4 Znormalizowany system zmiennoprzecinkowy

Zakładamy że mamy znormalizowany system zmiennoprzecinkowy z  $\beta=10,$  p=3, L=-98.

## 4.1 Wartość poziomu UFL(underflow) dla takiego systemu.

Wartość poziomu UFL to najmniejsza liczba dodatnia, jaka może zostać zapisana w danym systemie. System jest znormalizowany zatem mantysa takiej liczby będzie równa 1. Najmniejszy wykładnik jaki możemy uzyskać w naszym systemie jest równy L=-98. Zatem

$$UFL = \beta^L = 10^{-98}$$

## 4.2 Wynik x - y

$$x = 6.87 \cdot 10^{-97} \ y = 6.81 \cdot 10^{-97}$$

$$x - y = 6 \cdot 10^{-99} < \text{UFL} \implies x - y = 0$$

Wynik operacji x - y w takim systemie wyniesie 0.

#### 4.3 Wnioski

UFL jest miarą dokładności systemu zmiennoprzecinkowego. Aby system mógł sobie radzić z małymi liczbami parametr L takiego systemu powinien być możliwe jak najmniejszy.

# 5 Bibliografia

- $\bullet$  Prof. Michael T. Heath: Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing
- https://pl.wikipedia.org/wiki/IEEE\_754
- https://en.wikipedia.org/wiki/Machine\_epsilon