MATH 222, Week 12: Series! (and vectors maybe...)

Name: _____

You aren't necessarily expected to finish the entire worksheet in discussion. There are a lot of problems to supplement your homework and general problem bank for studying.

Problem 1. Let $a_n = \frac{1}{n^2 - n}$ and $S_N = \sum_{n=2}^N a_n$. (a) Use one of your convergence tests to conclude that this series converges.

- (b) Now we'll find what it converges to. Use partial fractions to rewrite a_n
- (c) Use part(a) to write out S_2, S_3, S_4 explicitly and notice how terms cancel. Generalize this to find a formula for S_N .
- (d) Compute $\sum_{n=2}^{\infty} a_n$ i.e. $\lim_{N\to\infty} S_N$.

Problem 2. If x > 2, use the geometric series formula to find $\sum_{n=0}^{\infty} \frac{2^{n+1}}{x^n}$

Problem 3. Using convergence tests determine the convergence or divergence of the following series: (a) $\sum_{n=1}^{\infty} ne^{-n^2}$

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{n^4+1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

(e)
$$\sum_{n=1}^{\infty} \sin(n)$$

(f)
$$\sum_{n=1}^{\infty} \frac{5^k}{3^k + 4^k}$$

Problem 4. Let $\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. Compute

- (a) $||\vec{a}||$
- (b) $2\vec{a}$
- (c) $||2\vec{a}||^2$
- (d) $\vec{a} + \vec{b}$