GRAFOS DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 12 de março de 2024

Departamento de Ciência da Computação

GRAFOS

Diversos problemas computacionais podem ser representados como grafos

- Uma estrutura de dados especial
- Representação de uma rede
- Talvez seja a estrutura mais útil em toda a Ciência da Computação

Um grafo G é definido como G = (V, E)

- $\bigcirc V = \{v_1, v_2, \dots, v_n\}$ é o conjunto de vértices
- $\bigcirc E = \{e_1, e_2, \dots, e_m\}$ $\circ e_i = (u, v) \mid u, v \in V$

2

DIREÇÃO

Um grafo pode ser direcionado ou não-direcionado

CAMINHOS E CICLOS

Caminho $C = \langle c, e, d, c \rangle$

ADJACÊNCIA E GRAU

FECHO TRANSITIVO

Direto e inverso

FONTE E SUMIDOURO

GRAFO COMPLETO

8

GRAFO COM PESOS

GRAFO CONEXO

GRAFO DESCONECTADO E COMPONENTES CONEXAS

ÁRVORE GERADORA (MÍNIMA)

GRAFO BIPARTIDO

PROPRIEDADES ADICIONAIS

Diversas destas propriedades serão utilizadas no decorrer deste curso

Grafos são uma das estruturas mais importantes em Ciência da Computação, tendo aplicações em uma infinidade de áreas

- Redes
- Biologia
- Eletrônica
- Pesquisa Operacional
- ... ► Link

Interessados em um pouco mais de propriedades de grafos podem acessar o seguinte link Link

ESTRUTURAS DE DADOS

Existem duas estruturas de dados capazes de representar grafos

- Matriz de adjacência
- Lista de adjacência

Cada estrutura difere-se da outra pela complexidade de suas operações

- Complexidade de adicionar ou retirar nós
- O Complexidade de inserir ou remover arestas
- Complexidade de pesquisa
 - Saber se uma aresta existe ou não
- O Diferentes complexidades de espaço

MATRIZ DE ADJACÊNCIA

Talvez seja a maneira mais natural de se representar um grafo

- Grafo com n vértices
- \bigcirc Matriz bi-dimensional $n \times n$
- O Complexidade de espaço: $\mathcal{O}(n^2) = \mathcal{O}(m)$

Inserção e remoção de vértices é cara

Necessário alocar ou desalocar memória

Modificação de arestas e pesquisa é barata

 Necessário apenas modificar (ou verificar) uma célula específica da matriz

MATRIZ DE ADJACÊNCIA

	1	2	3	4	5	
1			1	1		
2				1	1	
3	1				1	
5	1	1				
5		1	1			

	1	2	3	4	5
1		1			1
2	1		1		
3		1		1	
5			1		1
5	1			1	

MATRIZ DE ADJACÊNCIA

Weighted Directed Graph & Adjacency Matrix

Weighted Directed Graph

Adjacency Matrix

Uma lista de adjacência pode ser representada como uma lista de listas

- O Uma lista que contém todos os vértices do grafo
- O Cada lista contém outra lista
 - Contém todos os vértices adjacentes

Complexidades diferem das de matriz de adjacência

- O Complexidade de espaço: $\mathcal{O}(n^2) = \mathcal{O}(m)$
- \bigcirc Inserção, pesquisa e remoção de arestas: $\mathcal{O}(n)$
- O Inserção e remoção de vértices: $\mathcal{O}(1)$

