891

Titanic Disaster Survival Using Logistic Regression

```
In [126]:
#import libraries

In [109]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

Load the Data

In [110]:
titanic_data = pd.read_csv('titanic_train.csv')

In [111]:
len(titanic_data)
Out[111]:
```

View the data using head function which returns top rows

In [112]:

titanic_data.head()

Out[112]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4 4										

In [114]:

titanic_data.index

Out[114]:

RangeIndex(start=0, stop=891, step=1)

In [115]:

```
titanic_data.columns
```

Out[115]:

In [116]:

titanic_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
<pre>dtypes: float64(2), int64(5), object(5)</pre>							
memory usage: 83.7+ KB							

In [117]:

titanic_data.dtypes

Out[117]:

PassengerId	int64
Survived	int64
Pclass	int64
Name	object
Sex	object
Age	float64
SibSp	int64
Parch	int64
Ticket	object
Fare	float64
Cabin	object
Embarked	object
dtype: object	

In [118]:

titanic_data.describe()

Out[118]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Explaining Dataset

survival: Survival 0 = No, 1 = Yes

pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

sex: Sex

Age: Age in years

sibsp: Number of siblings / spouses aboard the Titanic

parch # of parents / children aboard the Titanic

ticket: Ticket number fare Passenger fare cabin Cabin number

embarked: Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

Data Analysis

Import Seaborn for visually analysing the data

Find out how many survived vs Died using countplot method of seaboarn

In [119]:

#countplot of survived vs not survived

In [120]:

```
sns.countplot(x='Survived',data=titanic_data)
plt.show()
```


Male vs Female Survival

In [121]:

#Male vs Female Survived

In [122]:

```
sns.countplot(x = 'Survived', data = titanic_data, hue = 'Sex')
plt.show()
```


^{**}See age group of passengeres travelled **

Note: We will use displot method to see the histogram. However some records does not have age hence the method will throw an error. In order to avoid that we will use dropna method to eliminate null values from graph

In [123]:

#Check for null

In [124]:

```
titanic_data.isna()
```

Out[124]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	False	False	False	False	False	False	False	False	False	False	True
1	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True
3	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	True
886	False	False	False	False	False	False	False	False	False	False	True
887	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False	True
889	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True

891 rows × 12 columns

In [27]:

#Check how many values are null

In [125]:

```
titanic_data.isna().sum()
```

Out[125]:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

In [30]:

#Visualize null values

In [35]:

```
sns.heatmap(titanic_data.isna())
plt.show()
```


In [36]:

#find the % of null values in age column

In [44]:

```
(titanic_data['Age'].isna().sum()/len(titanic_data['Age']))*100
```

Out[44]:

19.865319865319865

In [50]:

#find the % of null values in cabin column

In [51]:

```
(titanic_data['Cabin'].isna().sum()/len(titanic_data['Cabin']))*100
```

Out[51]:

77.10437710437711

In [54]:

sns.displot(x='Age',data=titanic_data)

Out[54]:

<seaborn.axisgrid.FacetGrid at 0x182ec58eec0>

Data Cleaning

Fill the missing values

we will fill the missing values for age. In order to fill missing values we use fillna method. For now we will fill the missing age by taking average of all age

In [55]:

#fill age column

In [58]:

titanic_data['Age'].fillna(titanic_data['Age'].mean(),inplace=True)

We can verify that no more null data exist

we will examine data by isnull mehtod which will return nothing

```
In [59]:
```

```
#verify null value
```

In [60]:

```
titanic_data['Age'].isna().sum()
```

Out[60]:

0

Alternatively we will visualise the null value using heatmap

we will use heatmap method by passing only records which are null.

In [61]:

#visualize null values

In [63]:

```
sns.heatmap(titanic_data.isna())
plt.show()
```


We can see cabin column has a number of null values, as such we can not use it for prediction. Hence we will drop it

In [65]:

#Drop cabin column

In [66]:

titanic_data.drop('Cabin',axis=1,inplace=True)

In [67]:

#see the contents of the data

In [69]:

titanic_data.head()

Out[69]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4 6										•

Preaparing Data for Model No we will require to convert all non-numerical columns to numeric. Please note this is required for feeding data into model. Lets see which columns are non numeric info describe method

In [70]:

#Check for the non-numeric column

In [71]:

```
titanic_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	891 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Embarked	889 non-null	object
44	C1+C4/2	\ :-+<4/5\	/41

dtypes: float64(2), int64(5), object(4)

memory usage: 76.7+ KB

In [72]:

```
titanic_data.dtypes
```

Out[72]:

PassengerId int64 Survived int64 Pclass int64 Name object Sex object float64 Age int64 SibSp int64 Parch Ticket object float64 Fare Embarked object dtype: object

We can see, Name, Sex, Ticket and Embarked are non-numerical.It seems Name,Embarked and Ticket number are not useful for Machine Learning Prediction hence we will eventually drop it. For Now we would convert Sex Column to dummies numerical values****

In [73]:

```
#convert sex column to numerical values
```

In [74]:

```
gender = pd.get_dummies(titanic_data['Sex'], drop_first = True)
```

In [75]:

titanic_data ['Gender'] = gender

In [78]:

titanic_data.head()

Out[78]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4 (

In [79]:

#drop the columns which are not required

In [80]:

titanic_data.drop(['Name','Sex','Ticket','Embarked'],axis=1,inplace=True)

In [81]:

titanic_data.head()

Out[81]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	Gender
0	1	0	3	22.0	1	0	7.2500	1
1	2	1	1	38.0	1	0	71.2833	0
2	3	1	3	26.0	0	0	7.9250	0
3	4	1	1	35.0	1	0	53.1000	0
4	5	0	3	35.0	0	0	8.0500	1

```
In [82]:
#Seperate Dependent and Independent variables
In [84]:
x = titanic_data[['PassengerId','Pclass','Age','SibSp','Parch','Fare','Gender']]
y = titanic_data['Survived']
In [85]:
У
Out[85]:
0
       0
1
       1
2
       1
3
       1
       0
886
       0
887
       0
888
889
       1
890
```

Data Modelling

Building Model using Logestic Regression

Name: Survived, Length: 891, dtype: int64

Build the model

```
In [86]:
#import train test split method

In [87]:
from sklearn.model_selection import train_test_split

In [88]:
#train test split

In [89]:
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.33,random_state=42)

In [90]:
#import Logistic Regression
```

```
In [91]:
from sklearn.linear_model import LogisticRegression
In [92]:
#Fit Logistic Regression
In [93]:
lr = LogisticRegression()
In [95]:
lr.fit(x_train,y_train)
C:\Users\baps\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.p
y:458: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown i
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression)
  n_iter_i = _check_optimize_result(
Out[95]:
LogisticRegression
In [96]:
#predict
In [97]:
predict = lr.predict(x_test)
```

Testing

See how our model is performing

```
In [98]:
#print confusion matrix
In [99]:
```

from sklearn.metrics import confusion_matrix

In [102]:

```
od.DataFrame(confusion_matrix(y_test, predict), columns = ['Predicted No', 'Predicted Yes']
```

Out[102]:

	Predicted No	Predicted Yes
Actual No	151	24
Actual Yes	38	82

Type Markdown and LaTeX: α 2

In [104]:

#import classification report

In [105]:

from sklearn.metrics import classification_report

In [106]:

print(classification_report(y_test,predict))

	precision	recall	f1-score	support
0	0.80	0.86	0.83	175
1	0.77	0.68	0.73	120
accuracy			0.79	295
macro avg	0.79	0.77	0.78	295
weighted avg	0.79	0.79	0.79	295

Precision is fine considering Model Selected and Available Data. Accuracy can be increased by further using more features (which we dropped earlier) and/or by using other model

Note:

Precision: Precision is the ratio of correctly predicted positive observations to the total predicted positive observations

Recall: Recall is the ratio of correctly predicted positive observations to the all observations in actual class F1 score - F1 Score is the weighted average of Precision and Recall.

In []: