Bayesian model validation metrics in retail datasets

Leevi Rönty

School of Science

Bachelor's thesis Espoo 14.10.2020

Supervisor

Prof. Fabricio Oliveira

Advisors

DSc (Tech.) Mikko Ervasti

DSc (Tech.) Paavo Niskala

Copyright © 2021 Leevi Rönty

The document can be stored and made available to the public on the open internet pages of Aalto University.
All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the bachelor's thesis

Author Leevi Rönty		
Title Bayesian model v	alidation metrics in retail datas	ets
Degree programme En	gineering Physics and Mathema	tics
Major Mathematics an	d Systems Sciences	Code of major SCI3029
Teacher in charge Prof	. Fabricio Oliveira	
Advisors DSc (Tech.)	Mikko Ervasti, DSc (Tech.) Paa	vo Niskala
Date 14.10.2020	Number of pages 13+2	Language English

Abstract

Your abstract in English. Keep the abstract short. The abstract explains your research topic, the methods you have used, and the results you obtained.

Aalto-yliopisto, PL 11000, 00076 AALTO www.aalto.fi Tekniikan kandidaatintyön tiivistelmä

Tekijä Leevi Rönty					
Työn nimi Bayeslaisten mallien validointi vähittäismyynnin aineistoissa					
Koulutusohjelma Teknillinen	fysiikka ja matematiikka				
Pääaine Matematiikka ja sys	Pääaineen koodi SCI3029				
Vastuuopettaja Prof. Fabricio Oliveira					
Työn ohjaajat TkT Mikko Ervasti, TkT Paavo Niskala					
Päivämäärä 14.10.2020	Sivumäärä $13+2$	Kieli Englanti			

Tiivistelmä

Tiivistelmässä on lyhyt selvitys kirjoituksen tärkeimmästä sisällöstä: mitä ja miten on tutkittu, sekä mitä tuloksia on saatu.

Tämän opinnäytteen tiivistelmäteksti kirjoitetaan opinnäytteen luettavan osan lomakkeen lisäksi myös pdf-tiedoston metadataan \thesisabstract-makron avulla (kasto yllä). Kirjoita tähän luettavaan tiivistelmälomakkeeseen menevä teksti. Tässä saa olla erikoismerkkejä kuten kreikkalaiset kirjaimet ja rivinvaiho- ja kappaleenjakomerkit. Tämän tekstin on muuten oltava sama kuin metedatatiivistelmän teksti.

Jos tiivistelmäsi ei sisällä erikoimerkkejä eikä kaipaa kappaleenjakoa, voit hyödynttää makroa \abstracttext luodessasi lomakkeen tiivistelmää (katso kommentti alla).

Avainsanat Bayeslaiset mallit, mallin validointi, informaatiokriteeri, Facebook Prophet

Contents

Al	bstract	3
Al	ostract (in Finnish)	4
Co	ontents	5
1	Introduction	6
2	Background 2.1 Rakenne	6 7
3	Tutkimusaineisto ja -menetelmät	7
4	Tulokset	7
5	Summary	9
A	Esimerkki liitteestä	14
\mathbf{B}	Toinen esimerkki liitteestä	15

1 Introduction

Businesses need to forecast a multitude of things to succeed. As companies collect more and more data the possibilities of forecastable subjects and possible features increase dramatically. However, one can't just thow more features at a model and except it to perform well. Also not all models are suitable for all forecasting tasks. The amount of possible models is endless, but most of them are bad. To find the usefull ones we must be able to measure the goodness of a model.

Model validation is an integral part of a robust modelling framework. Bayesian models are a relatively novel model type which has gained a lot of populatiry in recent years as computational power of modern computers has kept rising. As a relatively new method not too many validation metrics have been proposed with these kinds of models in mind.

The current state of model validation for bayesian models can be described as "unsatisfactory". Information criterions which try to predict out of sample fit can have strong biases and some may not take into consideration the nature of bayesian models and distributions of parameters. Cross validation can be computationally extremely intensive. Also most information criterions are based on a loss function proportional to the root mean square of errors, but that may not always be the most usefull function to optimize for. In some businesses the consecuences of errors in forecasts can be described better with the mean absorbed percentage error. All in all there does not exist a clearly better method for solving all bayesian model validation problems.

In this paper we will model sales timeseries of some Wallmart stores in the United States. We will be using the Facebook's Prophet modelling framework. It consists of a flexible bayesian model which can be customized to fit a wide range of possible time series modelling tasks. We will implement some information criterions for the model and compare it to more ad-hoc methods for model validation.

2 Background

In retail business many things can be a subject for optimizing. Predictions of sales can be used to minimize waste and ensure sufficient supply of goods. Advertising products can yield greater sales but not all ads are equally effective. Shifting marketing investments to more impactfull marketing channels can increase sales while keeping costs the same. Both of these examples demonstrate scenarios where statistical models can be used to avoid making unoptimal decisions my manual guesswork.

Models can be viewed as simplifications of reality. This means that no model never really mathces the true data generating processes, but if we can formulate a model that works well enough we can try to draw some conclusions from them. Most of the models we are concerned with link together some explanatory variables to the measured data. The parameters of the function are learned by fitting the data to the model. The fitted model can then be used to predict future observations if we can know the explanatory variables beforehand. The fitted model parameters can also

give insight on the behaviour of the physical world, assuming that said parameters have a sensible interpretation.

Bayesian models differ from frequentist models in two major ways. In bayesian thinking parameters are not expressed as point values but distributions. Uncertainty can be expressed with wider distributions. New data is not the sole source of the newly fitted parameters as it is merely used to update prior beliefs about parameter distribution.

2.1 Rakenne

3 Tutkimusaineisto ja -menetelmät

4 Tulokset

Figure 1: Aggregated weekly sales by store group. Groups A and B demonstrate holiday effects while group C remains relatively stable through each year.

Table 1: Results of validation metrics applied on store group A

Model	AIC	DIC	WAIC	MAPE	10-fold CV
m1	-394.4	-438.8	-15.9	0.0336	205.4
m2	-384.6	-431.5	136.5	0.0445	208.2
m3	-654.5	-702.1	-669.3	0.0219	349.6
m4	-457.4	-512.4	-41.6	0.0275	164.1
m5	-703.9	-703.2	-707.8	0.0253	351.3

Figure 3: Visualisation of model validation metric results applied on store group A. Agganged such that visually lower is better. Each axis is scales so that extreme values are at the ends. Please note the inverted axis of 10-fold cross validation metric. For precise values please refer to table 1.

Figure 4: Caption this

5 Summary

References

Figure 5: Caption this

Table 2: Results of validation metrics applied on store group B

Model	AIC	DIC	WAIC	MAPE	10-fold CV
m1	-374.3	-419.1	19.3	0.0279	204.2
m2	-365.5	-412.2	315.9	0.0494	196.9
m3	-647.8	-695.3	-663.2	0.0255	347.3
m4	-446.9	-501.4	152.2	0.0286	162.1
m5	-699.4	-698.3	-701.5	0.0297	348.9

Table 3: Results of validation metrics applied on store group C

Model	AIC	DIC	WAIC	MAPE	10-fold CV
m1	-454.0	-501.2	-397.1	0.0339	247.4
m2	-447.1	-496.6	-186.4	0.0349	244.2
m3	-668.9	-715.6	-668.1	0.0136	357.0
m4	-549.1	-605.1	-214.3	0.0253	291.4
m5	-741.9	-740.6	-743.7	0.014	370.2

Figure 6: Demo of what kind of precidition plots the Propchet package can produce by default. These may be helpful (?)

Figure 7: A concept of what another kind of prediction plot could look like. This plot shows in-sample predictions from each of the models in one dataset.

Figure 8: Demonstrating the cv metric calculation

Figure 9: A prediction 30 weeks in the future. Training data in black, test data in red.

Figure 10: Components of the fitted model used in figure $9\,$

A Esimerkki liitteestä

B Toinen esimerkki liitteestä