

DISCRETE EVENT SIMULATION

BY THE WAY,
YOU MUST
SIMULATE

THAT YOU ARE AWAKE

DURING THIS PRESENTATION

Discrete Event Simulation (Example)

- Unprocessed events are stored in a pending event list
- Events are processed in time stamp order

The importance of Modeling and Simulation

"Science used to be composed of two endeavors, theory and experiment. Now it has a third component: computer simulation, which links the other two."

Rita R. Colwell, Ph.D. Director, National Science Foundation 1998-2004

"Through computer modeling, we understand the deep implications of our very detailed observational data and formulate new theories to stimulate further observations."

National Research Council

Modeling methods

- Physical models*
- Conceptual models
- Declarative models
- Functional models
- Constraint models
- Spatial models
- Multimodels

DES is one of many modeling methods

What is discrete event simulation?

- DES is not:
 - Time-stepped
 - Continuous (or pseudo-continuous)
 - Physics-based

• DES is:

- Event-driven
- Discrete
- Probability-based

Queues and servers

Example queueing system

Easy Pass toll station waiting lines

Queue x2

- Cars queue at toll station
- If queue length exceeds lane capacity, danger

- Question: expected queue length?
- Question: construction expense vs. revenue loss?

A sequence of events, 1 of 2

t = 5, Customer 1 departs, Customer 2 begins service

t = 8, Customer 4 arrives, enters queue

t = 9, Customer 2 departs, Customer 3 begins service

t = 14, Customer 3 departs, Customer 4 begins service

A sequence of events, 2 of 2

t = 16, Customer 5 arrives, enters queue

t = 17, Customer 4 departs, Customer 5 begins service

t = 22, Customer 5 departs, simulation ends

- How long did the queue get?
- What was the average queue length?
- What long did a customer wait for service, on average?
- How long did it take to service a customer, on average?

Analyzing the example simulation

Maximum queue length = 2 Mean queue length = 0.636

Mean waiting	time = 2.8
Mean service	time = 4.4

Time	Event	Queue length after event	Queue length * Time 0	
0	1 arrives	0		
3	2 arrives	1		
4 3 arrives 5 1 departs 8 4 arrives 9 2 departs		2	2	
		1	3	
		2	2	
		1	5	
14	3 departs	0	0	
16	5 arrives	1 0	1 0 0	
17	4 departs			
22	5 departs	0		
	,	Sum	14	
		Mean	0.636	

Customer	Arrive	Begin service	End service	Wait time	Service time
1	0	0	5	0	5
2	3	5	9	2	4
3	4	9	14	5	5
4	8	14	17	6	3
5	16	17	22	1	5
			Sum	14	22
			Mean	2.8	4.4

Concepts

- Model: representation of something else
- Simulation: executing a model over time

$$R = 2.59 \times \frac{1}{4} \sigma \times \left(\frac{\log^{-1} \left(\frac{ERP_t}{10} \right) \log^{-1} \left(\frac{G_r}{10} \right) \log^{-1} \left(\frac{MDS_r}{10} \right)}{\log^{-1} \left(\frac{FEL_r}{10} \right) F_t^2} \right)$$

Simulation

Definition

Model.

A physical, mathematical, or otherwise logical representation of a system, entity, phenomenon, or process.

To an observer B, an object A^* is a model of an object A to the extent that B can use A^* to answer questions that interest him about A.

- Representation of something else, often a "realworld" system
- Some aspects of the modeled system are represented in the model, others not

Example model

Equation describing vertical height of an object moving under gravity.

$$h(t) = -4.9t^2 + vt + s$$

h = height (meters)

t = time in motion (seconds)

v = initial velocity (meters per second)

s = initial height (meters)

Note that at t = 0, h = s, as expected.

$$h(t) = -4.9t^2 + vt + s$$

Model does represent

- Height of object (output of model)
- Mass of earth (as the –4.9 coefficient)
- Initial state, as velocity v and height s

Model does not represent

- Air resistance (not included in model)
- Location (assumed to be near surface of earth)
- Mass of object (not included in model)

Example model

Program that calculates the height of an object moving under gravity.

```
/* Height of an object moving under gravity. */
/* Initial velocity v and height s constants. */
void main()
{
    float h, v = 100.0, s = 1000.0;
    int t;
    for (t = 0, h = s; h >= 0.0; t++)
    {
        h = (-4.9 * t * t) + (v * t) + s;
         cout << "Height at time " << t << " = " << h <<endl;
}
</pre>
```

Definition

Simulation

[Executing] a model over time.

The imitation of the operation of a real-world process or system over time.

A technique for testing, analysis, or training in which real world systems are used, or where a model reproduces real world and conceptual systems.

Example simulation

Model: $h(t) = -4.9t^2 + vt + s$ Data: v = 30, s = 300

	1 ()	h(t)
t	h(t)	
0	300.0	Start 400 ↑
1	325.1	state
2	340.4	300
3	345.9	300
4	341.6	-
5	327.5	200
6	303.6	200 -
7	269.9	4
8	226.4	100
9	173.1	100 -
10	110.0	-
11	37.1	
11.46	0	5 10

Simulation vs reality

Model classification

Simulation uses and notes

- Uses of simulation
 - Investigate "what if" questions about system
 - Study proposed changes to system to predict impact
 - Evaluate system designs before system is built

Notes

- Data about system collected during simulation
- Measures of performance describe system
- Some models can be "solved" without simulation

Appropriate uses of simulation

- Experimentation with complex system's internal interactions
- Observation of effects of changes to system structure
- Learning about system through process of building model
- Studying system response to variations in input values
- Confirmation of solutions reached analytically
- Experiment with new designs or policies
- Determine new system requirements by simulating variations
- Provide training without disrupting real system
- Animate system in execution so as to provide insight

Simulation is not appropriate when ...

- Problem can be solved directly
- Direct experiments are less expensive
- Cost of simulation study exceeds potential savings
- Financial resources for the study are not available
- Calendar time for the study is not available
- Data describing system and its environment are not available
- Managers or users have unreasonable expectations
- System behavior is too complex to model

Typical applications areas for DES

- Manufacturing processes
- Business processes
- Construction and project management
- Logistics, supply chain, distribution
- Health care
- Computer and communications networks
- Others

Current General Trends

Risk Analysis
Insurance, options pricing, portfolio analysis

Call Center Analysis

Large Scale Systems
Internet backbones, wireless networks, supply chains

Automated Materials Handling (AMHS)
Control system sw - emulator

Ready for Logic Design?

Just a few others

- Cantera chemical kinetics.
- Celestia a 3D astronomy program.
- CP2K molecular dynamics program.
- **DWSIM** chemical process simulator.
- FlightGear -atmospheric and orbital flight simulator
- FreeFem++ multiphysics Finite Element Analysis software.
- ns-3 network simulator.
- Simulation of Urban MObility traffic simulation package.
- SOFA multi-physics simulation with an emphasis on medical simulation.
- SU2 code computational fluid dynamics simulation and optimal shape design.
- Step two-dimensional physics simulation engine (KDE)..
- UrbanSim –land use, transportation and environmental planning

