

Aprendizado de máquina

Fundamentos e aplicações em processamento de linguagem natural

Github do curso

https://github.com/fnbalves/curso_machine_learning/

Bibliografia de interesse

Natural Language Processing with Python

Steven Bird (Disponível online)

Getting started with Python Data Analysis

Phuong Vo. T.H

Introduction to information Retrieval

Cristopher D. Manning

Data Mining - Concepts and Techniques

Pattern Classification
Han & Kamber

Han & Kamber

Deep Learninglan Goodfellow (Disponível online)

Bibliografia de interesse - Material online

NLTK book:

https://www.nltk.org/book/

Introduction to Information Retrieval:

https://nlp.stanford.edu/IR-book/

Scikit-learn documentation:

https://scikit-learn.org/stable/

The Deep Learning book:

https://www.deeplearningbook.org/

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recog-Algorithms: SVM, nearest neighbors, random forest. ...

Applications: Visualization, Increased effi-

Algorithms: PCA, feature selection, non-

negative matrix factorization.

Dimensionality reduction

consider.

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

Model selection

Reducing the number of random variables to Comparing, validating and choosing parameters and models.

> Goal: Improved accuracy via parameter tun-Modules: grid search, cross validation, met-

Clustering

Automatic grouping of similar objects into

Applications: Customer segmentation. Grouping experiment outcomes Algorithms: k-Means, spectral clustering,

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms Modules: preprocessing, feature extraction.

Exemplo prático: precificar um imóvel

Seu trabalho é ajudar um corretor de imóveis a estimar o preço de uma propriedade.

Como podemos atacar o problema?

Exemplo prático: precificar um imóvel

O corretor lhe fornece a seguinte planilha de dados de precificação anteriores

Imóvel	Tamanho do imóvel em metros quadrados	Preço do imóvel em reais
Rua da Palma, 467	30	250.000
Conde de irajá 344	45	325.100
Agamenon magalhães 56	70	453.000
Joaquim Nabuco 443	92	570.000

Exemplo prático: precificar um imóvel

Você decide plotar os dados

Você descobre que a relação é aproximadamente uma reta, de equação

Exemplo prático: precificar um imóvel

Agora vamos supor que a planilha fornecida fosse assim:

lmóvel	Tamanho do imóvel (m^2)	Número de quartos	Tem gás encanado	Impostos em dia?	Vagas de garagem	Cidade	Construtora
Imóvel 1	30	1	Sim	Não	1	Recife	(dado faltante)
Imóvel 2	45	3	Não	Sim	2	Jaboatão	Construtora legal
Imóvel 3	70	2	Não	(dado faltante)	2	Paulista	A sua construtora
Imóvel 4	92	5	Sim	Não	3	Olinda	A melhor construtora

Exemplo prático: precificar um imóvel

E agora, como fazemos para extrair uma regra de forma visual?

lmóvel	Tamanho do imóvel (m^2)	Número de quartos	Tem gás encanado	Impostos em dia?	Vagas de garagem	Cidade	Construtora
Imóvel 1	30	1	Sim	Não	1	Recife	(dado faltante)
Imóvel 2	45	3	Não	Sim	2	Jaboatão	Construtora legal
Imóvel 3	70	2	Não	(dado faltante)	2	Paulista	A sua construtora
Imóvel 4	92	5	Sim	Não	3	Olinda	A melhor construtora

Aprendizado de máquina é um sub-ramo da ciência da computação especializado no reconhecimento automático de padrões a partir de dados

Inteligência artificial x aprendizado de máquina

Inteligência artificial é um conceito mais amplo e trata de máquinas capazes de realizar tarefas consideradas "inteligentes". Abrange temas como Teoria dos jogos, Sistemas de busca, representação de conhecimento, planejamento, entre outros

Inteligência artificial x aprendizado de máquina

Evolução do AM

Surgimento do deep learning

Shallow network

Vs Alex net

Surgimento do deep learning

Evolução de poder computacional

300X energy efficiency 400X lower cost Fits under a desk

1 Titan Z-Accelerated Server 3 Titan Zs • 17,280 cores 2 kWatts \$12,000

máquina

máquina

de

Identificação **Business** Data Understanding **Understanding** oportunidade Data **Preparation** Deployment Data Modeling **Evaluation CRISP - DM**

máquina

Entendimento do significado das variáveis

Caracterização estatística das variáveis

Limpeza e tratamento da base de dados

Em relação aos dados

O primeiro passo para a correta utilização de uma variável é entender o que ela representa

Dessa forma, evitamos utilizar dados a posteriori

Exemplo: Suponha que se deseja criar um modelo para prever a complexidade do conserto de uma máquina a partir do log de eventos da mesma. Podemos usar como feature a **peça que foi substituída?**

Caracterização estatística dos dados

A seguir, precisamos identificar qual o tipo da variável em questão:

Variável numérica: Tamanho do terreno (30m2, 49 m2,)

Variável categórica: IPTU em dia? (Sim ou não)

Dentro das variáveis categóricas, podemos classificá-las em:

Variável nominal: Não existe uma ordem de grandeza. Ex: sexo, estado civil

Variável ordinal: Existe uma ordem entre as categorias. Ex: escolaridade

Uma variável categórica pode ser nominal ou ordinal dependendo do contexto.

...

Caracterização estatística dos dados

Para **variáveis numéricas**, é importante identificar durante o entendimento dos dados, as seguintes grandezas:

Porcentagem de Missing data

Média
$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

Variância
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

Outliers

Mediana

Histograma

Caracterização estatística dos dados

Para **variáveis categóricas**, é importante identificar durante o entendimento dos dados, as seguintes grandezas:

Porcentagem de Missing data

Moda

Outliers

Histograma

Análise de correlação

Muitas vezes, uma mesma informação é representada de múltiplas formas em uma mesma base de dados. Variáveis redundantes são um **problema** para muitos algoritmos de aprendizado. Desta forma, se faz necessária uma análise de correlação

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X) \cdot \text{var}(Y)}}$$

Se p > 0, as variáveis tendem a crescer ou decrescer ao mesmo tempo. Se p < 0, as variáveis tendem a ter comportamento oposto.

Análise de correlação

Nas bibliotecas que mostraremos ao longo do treinamento, a análise de correlação pode ser feita a partir de uma **matriz de correlação**

Missing data

O tratamento de missing data varia bastante de acordo com o contexto e com o negócio. É necessário tentar entender qual o **motivo** do aparecimento do valor faltante. Para variáveis numéricas, temos algumas opções:

- 1. Listwise deletion: Eliminar registros com o missing data;
- 2. **Average imputation:** Substituir um dado faltante pela média dos demais;
- 3. **Regression substitution:** Criação de um modelo para prever o missing value.

Missing data

No caso de variáveis categóricas, as opções são um pouco diferentes:

- 1. Listwise deletion: Eliminar registros com o missing data;
- Average imputation: Substituir um dado faltante pela moda dos demais;
- Classification substitution: Criação de um modelo para prever o missing value;
- 4. Criação de uma categoria extra para identificar missing values;

Engenharia de atributos

Suponha que se deseje criar um modelo para calcular a probabilidade de um indivíduo ter uma **doença vascular**.

Suponha que você possua dois parâmetros: peso (kg) e altura (m).

Provavelmente, estas duas variáveis em conjunto não serão mais relevantes do que a variável combinada:

imc = peso / altura ^ 2

Engenharia de atributos

Para criar novas variáveis de **grande relevância**, é, em geral necessário um grande conhecimento específico do domínio.

Exemplo 2:

Engenharia de atributos

A engenharia de features é utilizada em todas as modalidades do aprendizado de máquina. Geralmente exigem **conversas com especialistas**

Processamento de imagens

Audio Feature Extraction

Processamento de texto

Mudança de granularidade

Com frequência o processo de análise de dados exige a mudança da granularidade da informação. Como exemplo, suponha que temos à disposição dados de **alunos** do ensino médio, mas estamos interessados em analisar **instituições** de ensino médio.

Como devemos lidar com variáveis como a idade dos alunos, a escolaridade dos pais, etnia, etc... quando analisamos a instituição como um todo?

Mudança de granularidade - variáveis numéricas

Para variáveis numéricas, podemos criar novas variáveis que representam características estatísticas dos dados

Média

Desvio padrão

Max

Min

Mediana

Moda

Ouantis

Quantis

Quantis são valores que dividem a área sob a função distribuição de probabilidade em partes iguais

No grão maior, podemos colocar a quantidade de elementos que apareceu em cada uma das regiões

Quantis

Quantis são valores que dividem a área sob a função distribuição de probabilidade em partes iguais

Ex:

Mudança de granularidade - variáveis categóricas

Para variáveis categóricas, podemos fazer algo similar à estratégia dos quantis, inserindo quantos elementos apareceram em cada classe, ou até mesmo inserindo a frequência relativa

máquina

Neste momento, tentaremos identificar o padrão nos dados

Tipos de modelos

Podemos dividir os modelos de aprendizado de máquina em duas grandes classes: modelos supervisionados e modelos não supervisionados.

O exemplo de precificação de um imóvel é uma forma de **aprendizado supervisionado**, onde existe um "professor" que diz a resposta correta para vários exemplos de entrada. Dizemos que temos **dados rotulados**.

Existe o **aprendizado não supervisionado**, onde não existem dados rotulados, o objetivo é encontrar **grupos de similaridade**

Aprendizado supervisionado

Dentro do aprendizado supervisionado, podemos ter dois tipos de problemas

Regressão: Exemplo do preço da casa

Classificação: Classificar uma entrada em um número discreto de possibilidades (Ex: reconhecer se uma imagem é um gato ou cachorro)

Ganho de informação

No caso de algoritmos de classificação, existe outra métrica que pode ser utilizada para analisar os dados, que é o **Ganho de informação**, que se baseia na medida **entropia**

$$Entropia(S) = -\sum p_i log_2 p_i$$

Dois casos:

classe 1: probabilidade (50%)

classe 1: probabilidade (90%)

classe 2: probabilidade (50%)

classe 2: probabilidade (10%)

Entropia = -0.5*log2(0.5) + -0.5*log2(0.5) = 1

Entropia = -0.9*log2(0.9) + -0.1*log2(0.1) = 0.46

Ganho de informação

O Ganho de informação de uma variável é definida da seguinte forma:

$$IG(T,a) = H(T) - H(T|a)$$

$$S_a(v) = \{\mathbf{x} \in T | x_a = v\}$$

$$\mathrm{H}(T|a) = \sum_{v \in vals(a)} rac{|S_a(v)|}{|T|} \cdot \mathrm{H}\left(S_a(v)
ight)$$

Variáveis com maior ganho de informação tem maior chance de serem relevantes no processo de classificação

Aprendizado não supervisionado

No **aprendizado não supervisionado**, onde não existem dados rotulados, o objetivo é encontrar **grupos de similaridade**

Aprendizado não supervisionado

Exemplo

Preço da casa

Formas de aprendizado

Exemplo

Formas de aprendizado

Exemplo

Analisando o padrão encontrado

Exemplo prático: precificar um imóvel

Voltando ao exemplo da precificação do imóvel. Temos os dados. Qual é o **padrão**?

Avaliando o padrão encontrado

No âmbito da ciência de dados, o padrão também é chamado de **hipótese**

Neste caso, a nossa hipótese é que a lei que regia o fenômeno era uma linha reta, mas precisava ser?

Qual o padrão?

No âmbito da ciência de dados, o padrão também é chamado de **hipótese**

Esta outra hipótese também modela perfeitamente os dados de treinamento

Será que ela é melhor?

Como funciona um projeto de Aprendizado de

máquina

O exemplo anterior mostra a necessidade de métricas de avaliação dos modelos

Visualização de dados

Como sugerido pelo exemplo da precificação de imóveis, uma forma do cientista de dados ter ideias a respeito de quais **hipóteses** testar é a **visualização dos dados**

Visualização de dados

Uma possibilidade é dispor a relação entre features individuais e a variável objetivo em um gráfico de dispersão ou scatter plot

Visualização de dados

Outra possibilidade é analisar a relação entre duas variáveis e representar a variável objetivo pelo tipo de marcação

Visualização de dados - TSNE

Seria possível analisar através de um gráfico 2d pontos que estão em um hiperplano de dimensão maior que 2?

20D

Visualização de dados - TSNE

A técnica **TSNE** se propõe a representar um reticulado hiperdimensional por pontos 2d preservando as relações de proximidade. Basicamente com o TSNE podemos ter uma idéia se as features utilizadas são ou não satisfatórias para a classificação

Para o Iris dataset

Como funciona um projeto de Aprendizado de

máquina

Neste momento, avaliamos se o desempenho do modelo é adequado ao negócio

Business Data **Understanding** Understanding Data **Preparation** Deployment Data **Modeling Evaluation**

CRISP - DM

Por que utilizar Python?

Python é uma linguagem de alto nível interpretada e de propósito geral.

É também **multi-plataforma**, **multi-paradigma**, além de possuir tipagem dinâmica e gerenciamento automático de memória.

É uma das linguagens **mais utilizadas** para aplicações de aprendizado de máquina

Projections of future traffic for major programming languages

Figura extraída de: https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Por que utilizar Python?

Python é uma linguagem de **fácil leitura** e possui muitos pacotes para lidar com **diversos tipos de dados** de forma simples

Imagem

Áudio

Texto

Dados tabulares

Por que utilizar Python?

O mesmo é verdade para pacotes de análise de dados

Análise numérica

Visualização de dados

Mineração e leitura de dados

Aprendizado de máquina

Deep Learning

Testando Python no Browser

Ao longo do curso, utilizaremos uma ferramenta simples para testar o Python e suas principais bibliotecas em um ambiente visual

Notebook: Aprendendo python - parte 1

Gerenciando dependências com o Python

O Python possui um gerenciador de dependências bastante simples chamado **pip** os principais comandos são:

pip list

pip install <package>

pip install <package>==<version>

pip uninstall <package>

pip install -r requirements.txt

É possível criar um documento com as dependências da seguinte forma:

numpy == 1.14.5 pandas == 0.23.1 scikit-learn == 0.19.1 scipy == 1.1.0 python-dateutil == 2.7.3 tqdm == 4.23.4 pydotplus == 2.0.2 sphinx == 1.7.6 matplotlib == 2.2.2 vertica-python == 0.7.3 s3io == 0.1.1 boto3 == 1.9.11 awscli == 1.16.21 torch == 0.4.0 torchyision == 0.2.1

Análise numérica em Python

Os conhecimentos matemáticos mais importantes para a análise de dados são a álgebra linear e a estatística. Em função disso, surgiu a biblioteca **Numpy**

Exemplo de entendimento dos dados

Análise da qualidade das instituições de ensino superior utilizando microdados do ENADE e do Censo da Educação Superior

Caracterização do problema

Ao longo dos últimos 20 anos, o número de instituições de educação superior no Brasil mais que dobrou. No entanto:

 O Brasil ainda é o 60º colocado em educação em um ranking de 76 países criado pela OCDE (Organização para a Cooperação e Desenvolvimento Econômico);

2. O Brasil não possui nenhuma universidade entre as 100 melhores do mundo.

Objetivo

Definir os **fatores que mais influenciam** para a qualidade de um **curso de graduação**.

Esses fatores podem influenciar na criação de **diretrizes mais eficientes** para tratar o déficit da educação de nível superior brasileira.

Definir os **fatores que mais influenciam** para a qualidade de um **curso de graduação**.

Esses fatores podem influenciar na criação de **diretrizes mais eficientes** para tratar o déficit da educação de nível superior brasileira.

Como as instituições são avaliadas hoje em dia

Atualmente, o INEP (Instituto Nacional de Estudos e Pesquisas Educacionais) utiliza as seguintes métricas para avaliar os cursos de graduação no Brasil.

- Notas dos alunos no ENADE;
- **2.** Características do corpo docente;
- 3. Instalações físicas;
- Organização didático-pedagógica;

Essas informações são integradas no chamado índice **CPC** (Conceito preliminar de curso)

Definição da métrica de desempenho

Queremos verificar também a influência das características do corpo docente e da organização didático-pedagógica na qualidade dos cursos. Dessa forma, a utilização do CPC como métrica de desempenho carrega **informação à posteriori**.

Assim, podemos utilizar apenas a nota do **ENADE**, uma vez que ele **já é utilizado** para avaliar as escolas implicitamente no CPC.

Entendimento do negócio ENADE

Prova destinada à avaliação de instituições de ensino superior, obrigatória para os alunos selecionados e **condição indispensável** para a emissão de um histórico escolar.

O ENADE possui um **Ciclo de Avaliação**, onde a cada ano, apenas algumas áreas do conhecimento se submetem à prova.

Últimos dados disponíveis: ENADE 2014

Avaliaremos apenas as áreas do conhecimento que **prestaram a prova em 2014**.

Definição do grão de análise

Assim como o INEP, queremos avaliar as instituições respeitando as **diferenças entre os cursos**.

GRÃO DE ANÁLISE (VERSÃO 1): O par Instituição x curso, exemplo:

UFPE - Engenharia Eletrônica; UFBA - Ciência da Computação

Base de dados disponível

Censo Escolar

Cerca de 5GB de dados

Dados de várias granularidades

Instituição: 2.368

• Curso: 33.274

Aluno 10.793.933

Professor: 396.596

ENADE

481.721 registros

Dados na granularidade aluno

- Existe um índice comum entre as duas bases de dados para identificar a instituição de ensino (IES);
- Não existe um índice comum para a identificação do curso;
- Nas duas bases de dados, existem campos que identificam a área do curso;

GRÃO DE ANÁLISE (Versão 2): Instituição x área do conhecimento:

Ex : UFPE - Humanas / UFPE - Engenharia / USP - Educação, etc....

Área dos cursos - Base do Censo Escolar

São utilizados códigos OCDE (Organização para Cooperação e Desenvolvimento Econômico). O primeiro dígito define a área geral do conhecimento:

1	Educação
2	Humanidades e Artes
3	Ciências Sociais, Negócios e Direito
4	Ciências, Matemáticas e Computação
5	Engenharia, Produção e Construção
6	Agricultura e Veterinária
7	Saúde e bem estar social
8	Serviços

Área do curso - Base do ENADE

- 21 = AROUITETURA E URBANISMO
- 72 = TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS
- 73 = TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL
- 76 = TECNOLOGIA EM GESTÃO DA PRODUÇÃO
- 79 = TECNOLOGIA EM REDES DE COMPUTADORES
- 701 = MATEMÁTICA (BACHARELADO)
- 702 = MATEMÁTICA (LICENCIATURA)
- 903 = LETRAS-PORTUGUÊS (BACHARELADO)
- 904 = LETRAS-PORTUGUÊS (LICENCIATURA) 905 = LETRAS-PORTUGUÊS E INGLÊS (LICENCIATURA)
- 906 = LETRAS-PORTUGUÊS E ESPANHOL
- (LICENCIATURA)
- 1401 = FÍSICA (BACHARELADO)
- 1402 = FÍSICA (LICENCIATURA) 1501 = QUÍMICA (BACHARELADO)
- 1502 = OUÍMICA (LICENCIATURA)
- 1601 = CIÊNCIAS BIOLÓGICAS (BACHARELADO)
- 1602 = CIÊNCIAS BIOLÓGICAS (LICENCIATURA)
- 2001 = PEDAGOGIA (LICENCIATURA)
- 2401 = HISTÓRIA (BACHARELADO)
- 2402 = HISTÓRIA (LICENCIATURA) 2501 = ARTES VISUAIS (LICENCIATURA)
- 3001 = GEOGRAFIA (BACHARELADO)
- 3002 = GEOGRAFIA (LICENCIATURA)
- 3201 = FILOSOFIA (BACHARELADO)
- 3202 = FILOSOFIA (LICENCIATURA)
- 3502 = EDUCAÇÃO FÍSICA (LICENCIATURA)
- 4004 = CIÊNCIA DA COMPUTAÇÃO (BACHARELADO)
- 4005 = CIÊNCIA DA COMPUTAÇÃO (LICENCIATURA)
- 4006 = SISTEMAS DE INFORMAÇÃO
- 4301 = MÚSICA (LICENCIATURA)
- 5401 = CIÊNCIAS SOCIAIS (BACHARELADO)
- 5402 = CIÊNCIAS SOCIAIS (LICENCIATURA)
- 5710 = ENGENHARIA CIVIL
- 5806 = ENGENHARIA ELÉTRICA
- 5809 = ENGENHARIA DE COMPUTAÇÃO
- 5814 = ENGENHARIA DE CONTROLE E AUTOMAÇÃO
- 5902 = ENGENHARIA MECÂNICA
- 6008 = ENGENHARIA QUÍMICA
- 6009 = ENGENHARIA DE ALIMENTOS
- 6208 = ENGENHARIA DE PRODUÇÃO
- 6306 = ENGENHARIA
- 6307 = ENGENHARIA AMBIENTAL
- 6405 = ENGENHARIA FLORESTAL

Realizamos a conversão dos códigos utilizados no ENADE para os códigos OCDE através de um dicionário.

Base do Censo Escolar

Esta base possui dados em vários grãos

Identificação dos cursos/ área/ sexo / raça / idade / necessidades especiais / participação em pesquisas ou projetos assistencialistas / etc...:

DM_CURSO: Grão curso,

Identificação dos cursos/ área/ carga horária/ recursos didáticos e acessibilidade/ vagas e métodos de ingresso/ número de concluintes e ingressantes;

DM_DOCENTE: Grão docente (está separado por IES, não por curso)

Escolaridade / necessidades especiais;

DM_IES: Grão instituição de ensino;

Código da Instituição / Quantidade de Técnicos de todos os níveis / Valores de Receitas (Transferências) em R\$

Base ENADE

Grão aluno. Utilizamos apenas a informação da nota média, pois os demais dados já estão presentes em DM_ALUNO com melhor qualidade

Missing data

Missing data para valores categóricos: Criação de uma nova categoria para missing;

Missing para valores numéricos: Substituição pela média dos demais (variância artificial)

Aglutinação dos dados

Variáveis categóricas: Criação de variáveis dummy e aglutinação pela média, assim, no grão final, temos a proporção de elementos em cada uma das classes;

Valores monetários: Aglutinação pela média;

Variáveis numéricas que representam contagens ou valores contínuos (ex: Número de vagas EAD ou idade do aluno): Aglutinação pela média;

Datas (ex: Data de abertura do curso): Consideramos apenas o ano e tomamos a média;

Idade média = Média(ano atual - ano de abertura) = ano atual - Média (ano de abertura)

Colunas removidas

A fim de garantir que o classificador construído não aprenda aspectos regionais da educação, removemos as colunas relativas à localização das IES, ex: UF, Estado, etc...

Para alunos estrangeiros, consideramos apenas a booleana: é brasileiro ou não, ignoramos o país de origem por possuir muitas categorias

Mudança de grão e filtragem de dados

DM_ALUNO

10793935 (total)

6809245 (aluno cursando)

6786979 (co_ocde_area_geral presente)

perda total: 37.12 %

agrupamento IES / Área

Mudança de grão e filtragem de dados

DM_CURSO

33273 (total)

31069 (curso ativo e com ano de inicio)

30868(co_ocde_area_geral presente)

perda total: 7.22 %

agrupamento IES / Área

Mudança de grão e filtragem de dados

DM_DOCENTE

396595 (total)

383386 (docente em atividade)

perda total: 3.33 %

agrupamento IES

Mudança de grão e filtragem de dados

DM_ENADE

481720 (total)

395557 (presente)

395453 (nota geral presente)

perda total: 17.90 %

agrupamento IES / Área

Junção de dados

IES presentes no Enade mas não no CENSO....

ALUNOS 7222

> Enade 2626

Curso 7215

Docente 2368

no CENSO....

Join 1 2593 Join 2 2580

Join 3 2580 Join 4 2580

IES 2368

Avalie a primeira parte do curso

https://docs.google.com/forms/d/e/1FAIpQLScjRf ErajmoXclnExnMia32RJ9NLDQbtS_DJ25jGHYDSm hQbq/viewform?usp=sf_link

Notebook: Aprendendo python - parte 2