Exercice 1

Compléter avec les symboles \in ou \notin .

a)
$$3 cdots ... [-1; 8]$$
 b) $-2 cdots ... [-1; 6]$ **c)** $10^{-3} cdots ... [0; +\infty[$ **d)** $\pi cdots ... [3, 14; 3, 15[$

e)
$$-2 \dots [-\infty; -2[\mathbf{f}) 0 \dots [-\sqrt{2}; \sqrt{2}[$$

Exercice 2

Parmi les affirmations suivantes, indiquer celles qui sont justes.

a)
$$2 \in [1; 5]$$
 b) $-2 \in]-2; 2]$ **c)** $4 \in]-\infty; 4]$

Exercice 3

Représenter sur une demi-droite graduée les intervalles suivants :

$$I =]-5; -1[$$
 et $J = [-4; +\infty[$.

Exercice 4

Traduire chaque inégalité ou encadrement qui suit sous forme d'appartenance du réel x à un intervalle. **Représenter** ensuite cet intervalle sur une droite graduée.

a)
$$-5 \le x \le 1$$
 b) $x < 4$ **c)** $x > 7$

d)
$$1 < x < 2, 5$$
 e) $x \ge 0, 5$ **f)** $\frac{1}{2} \le x < \frac{3}{4}$

Exercice 5

Traduire l'appartenance d'un nombre réel aux intervalles donnés par une(ou des) inégalité(s).

a)
$$I = [5; 9]$$
 b) $J =] - 0, 5; +\infty[$

c)
$$K =]-7; 0]$$
 d) $L =]-\infty; \pi]$

e)
$$N = [1; +\infty[$$
 f) $O =] -1; 10]$

Exercice 6

Indiquer si les affirmations suivantes sont vraies ou fausses puis **justifier**.

- 1) π appartient à l'intervalle [3; 3, 14].
- 2) L'ensemble des réels x tels que $3 \le x$ est l'intervalle $]-\infty;3].$
- 3) $x \in [-1; 7[$ est éuivalent à $7 > x \ge -1$.

Exercice 7

Représenter sur une droite graduée chaque intervalle suivant :

a)
$$R =]-2; 4[$$
 b) $T =]-6; +\infty[$

c)
$$V =]-\infty; 1]$$
 d) $W =]-1, 5; 4, 5]$

Exercice 8

Soient les ensembles d'entiers suivants : $A = \{1; 5; 6\}$ $B = \{2; 5; 6; 7\}$ et $C = \{2; 6\}$

- 1) Déterminer l'ensemble $A \cap B$.
- **2)** Déterminer l'ensemble $A \cup B$.
- **3)** A-t-on $C \subset A$? A-t-on $C \subset B$?

Exercice 9

Quels sont les entiers naturels de l'intervalle [-2;3[? En déduire l'ensemble $\mathbb{N} \cap [-2;3[$.

Exercice 10

Pour chaque question, déterminer les ensembles $I \cap J$ et $I \cup J$:

- 1) I = [-2, 5; 4[et J =]1; 5]
- **2)** $I = [-\infty; 4[$ et $J = [2; +\infty[$
- 3) $I = [-1; +\infty[\text{ et } J =] 2; 3]$
- **4)** I = [2; 5, 5] et J = [1; 2]