臺北市立松山高級中學 107 學年度第一學期高二社會組數學第一次期中考試卷

班級: 座號: 姓名:

一、單一選擇題(每題4分,共12分)

- ()1.若 θ 滿足 $\sin \theta < 0$ 且 $\cos \theta > 0$,則 P ($\tan \theta$, $1 + \sin \theta$) 在何象限?
 - (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (E)以上皆非。
- ()2.試問有多少個實數 x 滿足 $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$ 且 $\cos x \le \cos x$?
 - (A)0個 (B)1個 (C)2個 (D)4個 (E)無窮多個。
- ()3.試問下列何者值最小?
 - (A) sin 3000°
- (B) $3\sin 25^{\circ} 4\sin^{3} 25^{\circ}$
- $(C) 2\cos^2 10^{\circ} -1$

- (D) $\frac{2 \tan 10^{\circ}}{1 \tan^2 10^{\circ}}$
- $(E)\cos 50 \cos 40 \circ + \sin 50 \circ \sin 40 \circ$
- 二、多重選擇題(每題6分,共18分,錯一個選項得4分,錯二個選項得2分,錯三個(含)以上得0分)
- ()1.如圖,單位圓上定點A(-1,0), θ 角之終邊與單位圓交點P,P在x軸之投影點H,過A點做切線交直線 \overrightarrow{OP} 於Q。下列各相關敘述,選出正確的選項:

- (A) $\sin \theta = \overline{PH}$ (B) $\cos \theta = \overline{OH}$ (C) $\tan \theta = \overline{AQ}$ (D) $\cos(180^{\circ} + \theta) = \overline{OH}$ (E) $\tan(180^{\circ} + \theta) = \overline{AQ}$
- ()2.在 $\triangle ABC$ 中,若 $\angle A=120^\circ$, $\overline{AB}=8$, $\overline{CA}=7$,則以下哪些選項是正確的?
 - $(A)\overline{RC} = 13$
- (B) $\triangle ABC$ 的內切圓半徑為 $\sqrt{3}$
- $(C)\overline{AB}$ 上的中線長為 $\sqrt{93}$
- (D)ΔABC 的外接圓半徑為 $\frac{13}{3}$ (E) $\angle A$ 的角平分線交 \overline{BC} 於 D 點,則 $\overline{AD} = \frac{56}{15}$ 。
- ()3.下列敘述,何者正確?
 - (A)若 θ 是第二象限角,則 $\frac{\theta}{2}$ 是第一象限角
 - (B)在 $\triangle ABC$ 中,若 $\angle A$: $\angle B$: $\angle C=3$:4:5,則 $\sin A$: $\sin B$: $\sin C=3$:4:5
 - (C)在 $\triangle ABC$ 中,若 $a^2 < b^2 + c^2$,則 $\triangle ABC$ 為銳角三角形
 - (D)直角 $\triangle ABC$ 中, $\angle C=90^{\circ}$, $\overline{AB}=1$, \overline{CD} 為斜邊上的高,則 \overline{BD} 長可用 $\sin^2 A$ 表示
 - (E)已知180°< θ <270°且 $\tan\theta = \frac{3}{4}$,則 $\cos\frac{\theta}{2} = -\frac{\sqrt{10}}{10}$ 。

三、填充題(每格6分,共60分)

- 1.已知 $\sin\theta + \cos\theta = \frac{2}{3}$,則 $\sin 2\theta = \underline{\hspace{1cm}}$ 。
- $2.\left[\cos \pi + 2\sin \frac{\pi}{6} + \cos(-\frac{\pi}{4})\right] \times \left[\tan \frac{5\pi}{4} \sin \frac{3\pi}{4} + 2\cos \frac{2\pi}{3}\right] = \underline{\hspace{1cm}}$

- 3.若 θ 不使分母為0,則 $\frac{sin(90^\circ-\theta)}{cos(180^\circ+\theta)}+\frac{cos(90^\circ+\theta)}{sin(180^\circ-\theta)}=$ _______。
- $4.在\Delta ABC$ 中, \overline{AB} = 13, \overline{BC} = 14, \overline{AC} = 15,設D為 \overline{BC} 之中點,而 $\angle BAC$ 之角平分線 \overline{AE} 交 \overline{BC} 於E,試求 ΔADE 的面積為_____。
- 5.如圖,ABCD 為圓內接四邊形。若 $\angle DBC = 15^{\circ}$, $\angle ABD = 30^{\circ}$, $\overline{CD} = 2$,則 $\overline{AD} = \underline{\qquad}$

6.圓內接四邊形 ABCD 中,已知 $\overline{AB}=5$, $\overline{BC}=3$, $\overline{CD}=3$, $\overline{DA}=4$,求對角線 $\overline{AC}=$ ______。

- 7.設 sin 190°= k , 將 tan 100°以 k 表示為____。
- 8.設 $\tan \alpha$ 、 $\tan \beta$ 為 $x^2 4x + 2 = 0$ 的二根,試求 $\sin 2(\alpha + \beta) = \underline{\hspace{1cm}}$ 。
- 9.設 $A[4,\frac{5\pi}{18}]$, $B[\sqrt{3},\frac{17\pi}{18}]$ 是極坐標上二個點,而 O 為極點,求 ΔAOB 的面積為_____。
- 10.試問有_______個角度 θ ,滿足 $0^{\circ} \le \theta \le 90^{\circ}$,且 $\cos(3\theta 60^{\circ})$ 、 $\cos 3\theta$ 、 $\cos(3\theta + 60^{\circ})$ 依序成一等差數列。

四、計算題(共10分)(請詳列計算過程,否則不予計分)

1.設直角三角形 ABC 之三邊長為 $\overline{AB} = 3$, $\overline{BC} = 5$, $\overline{CA} = 4$,

以斜邊 \overline{BC} 為一邊向外作出正方形BCDE,如右圖所示,

令
$$\angle ACD = \theta$$
,試求 $\frac{\sin\theta + \cos\theta}{1 + \tan(90^{\circ} + \theta)}$ 之值。

臺北市立松山高級中學 107 學年度第一學期高二社會組數學第一次期中考答案卷								
使用	高二	班級	座號		姓名		得分	
班級	社會組	近級			姓石		付刀	

一、單一選擇題(每題4分,共12分)

1	2	3
В	Α	D

二、多重選擇題(每題 6 分, 共 18 分, 錯一個選項得 4 分, 錯二個選項得 2 分, 錯三個(含)以上得 0 分)

1	2	3
AD	ABCE	DE

三、填充題(每格6分,共60分)

三、填尤超(每格 0 分) 共 00 分]						
1	2	3	4			
$-\frac{5}{9}$	$-\frac{1}{2}$	-2	3			
5	6	7	8			
$\sqrt{6} + \sqrt{2}$	$\sqrt{29}$	$\frac{\sqrt{1-k^2}}{k}$	$-\frac{8}{17}$			
9	10					
3	2					

四、計算題(共10分)(請詳列計算過程,否則不予計分)

1.

設
$$\angle ACB = \alpha$$
 ,則 $\theta = 90^{\circ} + \alpha$,
$$\frac{\sin \theta + \cos \theta}{1 + \tan (90^{\circ} + \theta)} = \frac{\sin (90^{\circ} + \alpha) + \cos (90^{\circ} + \alpha)}{1 + \tan (180^{\circ} + \alpha)} = \frac{\cos \alpha - \sin \alpha}{1 + \tan \alpha}$$

$$= \frac{\frac{4}{5} - \frac{3}{5}}{1 + \frac{3}{4}} = \frac{\frac{1}{5}}{\frac{7}{4}} = \frac{4}{35}$$
 。

註:
$$\sin(90^{\circ} + \alpha) = \frac{4}{5}(3 \%)$$
, $\cos(90^{\circ} + \alpha) = -\frac{3}{5}(3 \%)$, $\tan(180^{\circ} + \alpha) = \frac{3}{4}(3 \%)$, 原式 = $\frac{4}{35}(1 \%)$

3