TDAB01 Sannolikhetslära och Statistik

Jose M. Peña IDA, Linköpings Universitet

Föreläsning 12

Översikt

- ► Enkel regression, minsta kvadratmetoden, och R²
- ► Konfidensintervall och hypotestest för intercept och lutning
- Konfidensintervall f

 ör prediktion
- ► Prediktionsintervall för individuell responsvariabel
- ▶ Bonus: Bayesian Linear Regression

Enkel regression, minsta kvadratmetoden, och R^2

- Regression: Prediktera E[Y|X=x] där Y är en slumpvariabel (responsvariabel eller beroende variabel) och X=x är en observation (förklarandevariabel eller oberoende variabel).
- Obs. att vi vill prediktera en populations parameter.
- ▶ Linjär regression: Antag $Y|X = x \sim \mathcal{N}(\mu(x), \sigma^2)$ och $E[Y|X = x] = \mu(x) = \beta_0 + \beta_1 x$ där
 - β₀ är intercepten, och
 β₁ är lutningen.
- ▶ Minsta kvadratmetoden eller maximum likelihood metoden för att estimera β_0 och β_1 :
 - ▶ $b_0 = \hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$, och ▶ $b_1 = \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}$.
- ► $SS_{TOTAL} = \sum_{i} (y_i \bar{y})^2 = \text{den totala } \text{variationen av } Y \text{ i strickprovet.}$
- ► $SS_{REG} = \sum_{i} (\hat{y}_i \bar{y})^2$ = den variationen **förklarad** av modellen.
- ► $SS_{ERR} = \sum_{i} (y_i \hat{y}_i)^2$ = den variationen **inte** förklarad av modellen = $SS_{TOTAL} SS_{REG}$.
- ▶ $R^2 = \frac{SS_{REG}}{SS_{TOTAL}}$ = **andelen** av den totala variationen förklarad av modellen.
- ▶ Obs. $0 \le R^2 \le 1$. Dessutom, $R^2 = r^2 = \text{sampling korrelationskoefficienten}$ mellan X och Y.

Konfidensintervall och hypotestest för intercept och lutning

► Trick: $\sum_i (x_i - \bar{x}) = \sum_i x_i - n\bar{x} = 0$ och då

$$S_{xy} = \sum_{i} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i} (x_i - \bar{x})y_i - \bar{y}\sum_{i} (x_i - \bar{x}) = \sum_{i} (x_i - \bar{x})y_i$$

- $b_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_i (x_i \bar{x}) y_i}{S_{xx}}$ och då b_1 är en linjär funktion av y_i och då **normal** fördelad.
- ▶ $E[b_1] = \frac{\sum_i (x_i \bar{x}) E[y_i]}{S_{xx}} = \frac{\sum_i (x_i \bar{x}) (\beta_0 + \beta_1 x_i)}{S_{xx}} = \frac{\beta_1 \sum_i (x_i \bar{x}) x_i}{S_{xx}} = \beta_1$ och då b_1 är en väntevärdesriktig estimator av β_1 .
- $\operatorname{var}[b_1] = \frac{\sum_i (x_i \bar{x})^2 \operatorname{var}[y_i]}{S_{xx}^2} = \frac{\sigma^2}{S_{xx}}.$
- Nu kan vi bygga konfidensintervall och hypotestest för lutningen baserade på t-fördelningen, eftersom σ^2 brukar vara okänd.
 - $(1-\alpha)100\%$ tvåsidigt konfidensintervall:

$$b_1 \pm t_{\alpha/2} \frac{s}{\sqrt{S_{xx}}}$$

där t-fördelningen har n-2 frihetsgrader, och $s^2 = SS_{ERR}/(n-2)$. För tekniskt varför n-2 istället för n-1. Se sida 371 i Baron.

• Hypotestest $H_0: \beta_1 = B$ vs $H_A: \beta_1 \neq B$:

$$t = \frac{b_1 - B}{s / \sqrt{S_{xx}}}$$

som har en t-fördelningen har n-2 frihetsgrader. Ta B=0 för att pröva om det finns en linjär relation mellan X och Y.

Konfidensintervall och hypotestest för intercept och lutning

- ▶ $b_0 = \bar{y} b_1 \bar{x} = \frac{\sum_i y_i}{n} \frac{\sum_i (x_i \bar{x}) y_i \bar{x}}{S_{xx}}$ och då b_0 är en linjär funktion av y_i och då normal fördelad.
- ▶ $E[b_0] = \frac{\sum_i E[y_i]}{n} E[b_1]\bar{x} = \frac{\sum_i (\beta_0 + \beta_1 x_i)}{n} \beta_1 \bar{x} = \beta_0 + \beta_1 \bar{x} \beta_1 \bar{x} = \beta_0$ och då b_0 är en **väntevärdesriktig** estimator av β_0 .

Konfidensintervall för prediktion

- $\begin{array}{l} \blacktriangleright \ \mu_* = \mu(x_*) = E\big[Y|X=x_*\big] = \beta_0 + \beta_1 x_* \ \text{estimeras av} \\ \hat{y}_* = \hat{\beta}_0 + \hat{\beta}_1 x_* = \bar{y} b_1 \bar{x} + b_1 x_* = \bar{y} + b_1 \big(x_* \bar{x}\big) = \frac{\sum_i y_i}{n} + \frac{\sum_i (x_i \bar{x}) y_i (x_* \bar{x})}{S_{xx}} = \\ \sum_i \left(\frac{1}{n} + \frac{\sum_i (x_i \bar{x}) (x_* \bar{x})}{S_{xx}}\right) y_i \ \text{och då} \ \hat{y}_* \ \text{är en linjär funktion av} \ y_i \ \text{och då} \\ \text{normal fördelad.} \end{array}$
- Obs. att vi predikterar en populations parameter.
- $E[\hat{y}_*] = E[b_0] + E[b_1]x_* = \beta_0 + \beta_1 x_* = \mu_*$ och då \hat{y}_* är en väntevärdesriktig estimator av μ_* .
- $\text{ } var[\hat{y}_*] = \sum_i \left(\frac{1}{n} + \frac{\sum_i (x_i \bar{x})(x_* \bar{x})}{S_{xx}}\right)^2 var(y_i) = \sigma^2 \left(\frac{1}{n} + \frac{(x_* \bar{x})^2}{S_{xx}}\right).$
- $(1-\alpha)100\%$ tvåsidigt konfidensintervall:

$$\hat{y}_* \pm t_{\alpha/2} s \sqrt{\frac{1}{n} + \frac{\left(x_* - \bar{x}\right)^2}{S_{xx}}}$$

där t-fördelningen har n-2 frihetsgrader, och $s^2 = SS_{ERR}/(n-2)$.

6/11

Prediktionsintervall för individuell responsvariabel

- Ett konfidensintervall för \hat{y}_* representerar osäkerheten om **populationens väntevärde** vid $X = x_*$. Men hur ser osäkerheten för ett faktiskt y-värde ut om $X = x_*$?
- Obs. att vi inte längre predikterar en populations parameter utan en slumpvariabel, dvs vi predikterar inte väntevärdet för stoppsträckan när jag kör 50 km/t, utan stoppsträckan när jag kör 50 km/t, dvs utfallet av en körning istället för genomsnittet av många körningar.
- ▶ 95%-igt **prediktionsintervall** för y-värdet är ett intervall [a, b] sådant att

$$P(a \le y \le b | X = x_*) = 0.95$$

där a, b och y är slumpvariabler, dvs y också!

▶ **Prediktera** $Y = \hat{y}_*$. Obs. att $y - \hat{y}_*$ är normal fördelad, eftersom y och \hat{y}_* är normal fördelade. Dessutom,

$$E[y - \hat{y}_*] = 0 \text{ och } sd(y - \hat{y}_*) = \sqrt{var(y) + var(\hat{y}_*)} = \sigma \sqrt{1 + \frac{1}{n} + \frac{(x_* - \bar{x})^2}{S_{xx}}}$$

Då, $\frac{y-\hat{y}_*-E[y-\hat{y}_*]}{sd(y-\hat{y}_*)}$ är t-fördelad. Då,

$$\hat{y}_* \pm t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_* - \bar{x})^2}{S_{xx}}}$$

där t-fördelningen har n-2 frihetsgrader, och $s^2 = SS_{ERR}/(n-2)$.

Prediktionsintervall för individuell responsvariabel

• $(1-\alpha)100\%$ konfidensintervall:

$$\hat{y}_* \pm t_{\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x_* - \bar{x})^2}{S_{xx}}}$$

• $(1-\alpha)100\%$ prediktionsintervall:

$$\hat{y}_* \pm t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_* - \bar{x})^2}{S_{xx}}}$$

- Prediktionsintervallet är bredare än konfidensintervallet, dvs prediktera en individuell responsvariabel är svårare än prediktera populationens väntevärde.
- Konfidensintervallet convergerar mot 0 när n ökar, eftersom S_{xx} ökar också. Prediktionsintervallet convergerar inte mot 0.
- ▶ Prediktionsintervallet är smalare om x_* ligger nära \bar{x} , dvs lättare att prediktera under "normala" omständigheter.

Bonus: Bayesian Linear Regression

- ► Training data: $\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, ..., n\} = (X, \mathbf{y}).$
- ▶ Deterministic function: $f(x) = x^T w$.
- Additive noisy observations: $y = f(x) + \epsilon$.
- Gaussian noise: $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$.
- Likelihood function: $p(\mathbf{y}|X, \mathbf{w}) = \mathcal{N}(X^T \mathbf{w}, \sigma_n^2 I) \propto \exp\left\{\frac{1}{2\sigma_n^2}||\mathbf{y} X^T \mathbf{w}||^2\right\}$.
- ▶ To obtain w^{ML},
 - take the derivative of the log lik function wrt w, and
 - set it to zero, and
 - solve to obtain $\mathbf{w}^{ML} = (XX^T)^{-1}X\mathbf{y}$.
- Minimizing the least squared error (i.e., $\frac{1}{2}\sum_{i=1}^{n}(y_i \boldsymbol{x}_i^T\boldsymbol{w})^2$) gives the same result. This justifies the use of LSE.

Bonus: Bayesian Linear Regression

• Prior distribution: $\mathbf{w} \sim \mathcal{N}(0, \Sigma_p)$, e.g. ridge regression $\Sigma_p = \alpha^{-1}I$.

Posterior distribution:

$$\log p(\boldsymbol{w}|X,\boldsymbol{y}) \propto \log p(\boldsymbol{y}|X,\boldsymbol{w}) + \log p(\boldsymbol{w}) \propto \frac{1}{2\sigma_p^2} ||\boldsymbol{y} - \boldsymbol{X}^T \boldsymbol{w}||^2 - \frac{1}{2} \boldsymbol{w}^T \boldsymbol{\Sigma}_p^{-1} \boldsymbol{w}.$$

- ▶ So, **w**^{MAP} can be seen as a penalized/regularized ML estimate.
- ► Specifically, $p(\boldsymbol{w}|X,\boldsymbol{y}) = \mathcal{N}(\bar{\boldsymbol{w}} = \frac{1}{\sigma_n^2}A^{-1}X\boldsymbol{y},A^{-1})$ where $A = \sigma_n^{-2}XX^T + \Sigma_p^{-1}$, and thus $\boldsymbol{w}^{MAP} = \bar{\boldsymbol{w}}$.
- A full Bayesian approach does not use w^{MAP} but the predictive distribution:

$$p(f_*|\mathbf{x}_*,X,\mathbf{y}) = \int p(f_*|\mathbf{x}_*,\mathbf{w})p(\mathbf{w}|X,\mathbf{y})d\mathbf{w} = \mathcal{N}(\frac{1}{\sigma_*^2}\mathbf{x}_*A^{-1}X\mathbf{y},\mathbf{x}_*^TA^{-1}\mathbf{x}_*).$$

Översikt

- ► Enkel regression, minsta kvadratmetoden, och R²
- ► Konfidensintervall och hypotestest för intercept och lutning
- Konfidensintervall för prediktion
- ► Prediktionsintervall för individuell responsvariabel
- ▶ Bonus: Bayesian Linear Regression