

OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation

Shenghai Yuan, Xinyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, Li Yuan

Subject-to-Video Generation

Highlight:

- The First Comprehensive S2V Benchmark. (<u>fully open-sourced</u>)
- The First Million-Scale S2V Datasets. (fully open-sourced)

Subject-to-Video (S2V) aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos.

Key Challengs for S2V Models

- **Poor generalization:** These models often perform poorly when encountering subject categories not seen during training.
- Copy-paste issue: The model tends to directly transfer the pose, lighting, and contours from the reference image to the video.
- Inadequate human fidelity: Current models often struggle to preserve human identity as effectively as non-human entities.

In addition to the three key challenges outlined before, we also observe some noteworth phenomenon, as shown above (e.g., First Frame Blurry).

OpenS2V-Eval Pipeline

Our benchmark includes not only **real** subject images but also **synthetic** images

Test Sample Construction

Subject Consistency (NexusScore) Subject Naturalness (NaturalScore) Text Relevance (GmeScore) Visual Quality (AestheticScore) Motion Amplitude (MotionScore) Face Consistency (FaceSim-Cur)

Evaluation

OpenS2V-5M Pipeline

We create data through **cross-video association** and **GPT-Image-1** to address the three core issues

Regular Data vs OpenS2V-5M

Compared to Regular Data, our **Nexus Data** is of higher quality.

(a) Input Video Frame (

(b) Output Subject Images

Statistic

Results

For simplicity, only total score is shown here.

Open-Domain

Human-Domain

Method	Venue	Total Score ↑
Vidu2.0 [5]	Closed-Source	51.95%
Pika2.1 [46]	Closed-Source	51.88%
Kling1.6 [45]	Closed-Source	56.23%
VACE-P1.3B [42]	Open-Source	48.98%
VACE-1.3B [42]	Open-Source	49.89%
VACE-14B [42]	Open-Source	<i>57.55%</i>
Phantom-1.3B [58]	Open-Source	54.89%
Phantom-14B [58]	Open-Source	56.77%
SkyReels-A2-P14B [22]	Open-Source	52.25%
MAGREF-480P [19]	Open-Source	52.51%

EchoVideo [100] Open-Source Human-Domain 56.36% VideoMaker [107] Open-Source Human-Domain 54.23% ID-Animator [31] Open-Source Human-Domain 49.75%

Ours † - Human-Domain 58.00% Ours ‡ - Human-Domain 59.23% (+1.23%)

Method Venue Total Score ↑

Method	Venue	Total Score ↑
Vidu2.0 [5]	Closed-Source	52.90%
Pika2.1 [46]	Closed-Source	53.12%
Kling1.6 [45]	Closed-Source	56.67%
VACE-P1.3B [42]	Open-Source	49.20%
VACE-1.3B [42]	Open-Source	51.13%
VACE-14B [42]	Open-Source	61.75%
Phantom-1.3B [58]	Open-Source	54.50%
Phantom-14B [58]	Open-Source	57.02%
SkyReels-A2-P14B [22]	Open-Source	55.06%
HunyuanCustom [35]	Open-Source	56.89%
MAGREF-480P [19]	Open-Source	53.44%

