Department of Informatics

Series of Exercises 02 Sets, Functions and Binary Relation

Exercice 1 Let the following sets : $A =]-\infty, 3], B = [-2, 8], C =]-5, +\infty[, D = \{x \in \mathbb{R}, |x-3| \le 5\}$

- 1. What are the equality or inclusion relationships that exist between these sets?
- 2. Find the complement in the following cases: $C_{\mathbb{R}}A, C_{\mathbb{R}}B, C_{\mathbb{R}}C, C_{C}B$.
- 3. Find $A \cap B$, $A \cup B$, $B \cap C$, $B \cup C$, A/C, $(\mathbb{R}/A) \cap (\mathbb{R}/B)$, and $A \triangle B$.

Exercice 2 Let the set E and A, B, C are three parts of E

- a. Show that:
 - 1. $(A \cap B) \cup C_E B = A \cup C_E B$
 - 2. $(A/B)/C = A/(B \cup C)$
 - 3. $A/(B \cap C) = (A/B) \cup (A/C)$ (homework)
- b. Simplify
 - 1. $C_E(A \cup B) \cap C_E(C \cup C_E A)$
 - 2. $C_E(A \cap B) \cup C_E(C \cap C_E A)$.

Exercice 3 Let the functions $f : [0,1] \to [0,2]$ with f(x) = 2 - x and $g : [-1,1] \to [0,2]$ with $g(x) = x^2 + 1$

- 1. Find $f(\{\frac{1}{2}\}), f^{-1}(\{0\}), g([-1,1]), g^{-1}[0,2]$
- 2. Is the function f bijective? Justify
- 3. Is the function g bijective? Justify
- 4. Can we calculate $g \circ f$ and $f \circ g$ Justify.

Exercice 4 *I.* Let the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by :

$$f(x) = \begin{cases} 1, & x < 0 \\ 1 + x, & x \ge 0 \end{cases}$$

- 1. Find the following sets : $f(\mathbb{R}^+)$, $f^{-1}(\{0\})$, $f^{-1}(\{1\})$, $f^{-1}([1,2])$
- 2. f is one-to-one (injective) function? f is onto (surjective) function?
- **II.** Let the function $g: \mathbb{R} \left\{\frac{1}{2}\right\} \longrightarrow \mathbb{R}^*$ defined by:

$$g(x) = \frac{9}{2x - 1}$$

Show that g is a bijection. Find the inverse function.

Exercice 5 Let f be a function from E to F. Let A and A' be two subsets of E, and let B and B' be two subsets of F

1. Show that

$1-A \subset f^{-1}(f(A))$	$2 - f(f^{-1}(B)) \subset B(\ homework\)$
$S- f(A \cup A') = f(A) \cup f(A') (devoir)$	$4 - f(A \cap A') \subset f(A) \cap f(A')$
$5 - f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$	$6 - f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B') \text{ (homework)}$

2. Show that if f is injective, then we have equality in (4).

Exercice 6 We define the relation \Re on \mathbb{R}^2 :

$$\forall (x,y) \in \mathbb{R}^2, (x,y)\Re(x',y') \Leftrightarrow x+y=x'+y'$$

- 1. Show that \Re is an equivalence relation.
- 2. Find the equivalence class of the pair (0,0).

Exercice 7 We define the relation T in \mathbb{R}^2 :

$$\forall (x,y); (x',y') \in \mathbb{R}^2, (x,y)T(x',y') \Leftrightarrow |x-x'| \le y'-y$$

- 1. Show that T is a order relation.
- 2. Is the order total or partial?

Exercice 8 We define the following relation S on \mathbb{N}^* :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^* : nSm \Leftrightarrow there \ exists \ k \in \mathbb{N}^* \ such \ that : n = km$$

- 1. Verify that 6S2 and 5S1.
- 2. Show that the relation S is a partial order relation on \mathbb{N}^* .
- 3. In the following exercise, we assume that the set \mathbb{N}^* is ordered by the relation S. Does \mathbb{N}^* have a maximum? A minimum?

2022/2023 Dr. Neggal bilel

Département d'Informatique

Série de TD 02 Ensembles et Applications

exercice 1 On considère les ensembles suivants : $A =]-\infty, 3]$, B = [-2, 8], $C =]-5, +\infty[$, $D = \{x \in \mathbb{R}, |x-3| \le 5\}$

- 1. Quelles sont les relations d'égalité ou d'inclusion qui existent entre ces ensembles?
- 2. Déterminer le complémentaire dans les cas suivantes : $C_{\mathbb{R}}A$, $C_{\mathbb{R}}B$, $C_{\mathbb{R}}C$, $C_{C}B$ dana F.
- 3. Déterminer $A \cap B$, $A \cup B$, $B \cap C$, $B \cup C$, A/C, $(\mathbb{R}/A) \cap (\mathbb{R}/B)$, et $A \triangle B$.

exercice 2 Soit E un ensemble, A, B et C trois parties de E

a. Montrer que :

- 1. $(A \cap B) \cup C_E B = A \cup C_E B$
- 2. $(A/B)/C = A/(B \cup C)$
- 3. $A/(B \cap C) = (A/B) \cup (A/C)$ (devoir)

b. Simplifier

- 1. $C_E(A \cup B) \cap C_E(C \cup C_E A)$
- 2. $C_E(A \cap B) \cup C_E(C \cap C_E A)$.

exercice 3 Soient les applications $f:[0,1] \to [0,2]$ avec f(x)=2-x et $g:[-1,1] \to [0,2]$ avec $g(x)=x^2+1$

- 1. Déterminer $f(\lbrace \frac{1}{2} \rbrace), f^{-1}(\lbrace 0 \rbrace), g([-1,1]), g^{-1}[0,2]$
- 2. L'application f est-elle bijective? justifier
- 3. L'application g est-elle bijective? justifier
- 4. Est ce que, on peut calculer $g \circ f$ et $f \circ g$ justifier.

exercice 4 *I.* Soit l'application $f : \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$f(x) = \begin{cases} 1, & x < 0 \\ 1 + x, & x \ge 0 \end{cases}$$

- 1. Déterminer les ensembles suivants : $f(\mathbb{R}^+), f^{-1}(\{0\}), f^{-1}(\{1\}), f^{-1}([1,2])$
- 2. f est-elle injective? f est-elle surjective?
- II. Soit l'application $g: \mathbb{R} \left\{\frac{1}{2}\right\} \longrightarrow \mathbb{R}^*$ définie par :

$$g(x) = \frac{9}{2x - 1}$$

Montrer que q est une bijection. Déterminer son application réciproque.

exercice 5 Soit f une application de E vers F. Soient A et A' deux partie de E, et soient B et B' deux partie de F

1. Montrer que

112 7 707 6 7 4 6 6		
	$1 - A \subset f^{-1}(f(A))$	$2 - f(f^{-1}(B)) \subset B(\ devoir\)$
	$S- f(A \cup A') = f(A) \cup f(A') (devoir)$	$4 - f(A \cap A') \subset f(A) \cap f(A')$
	$5 - f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$	$6 - f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B') \ (devoir)$

2. Montrer que si f est injective alors on a égalité dans (4).

exercice 6 On définit sur \mathbb{R}^2 la relation \Re par :

$$\forall (x,y) \in \mathbb{R}^2, (x,y)\Re(x',y') \Leftrightarrow x+y=x'+y'$$

- 1. Montrer que \Re une relation d'équivalence.
- 2. Trouver la classe d'équivalence du couple (0,0).

exercice 7 On définit dans \mathbb{R}^2 la relation T par :

$$\forall (x,y); (x',y') \in \mathbb{R}^2, (x,y)T(x',y') \Leftrightarrow |x-x'| \le y'-y$$

- 1. Montrer que T est une relation d'ordre.
- 2. L'ordre est-il total ou partiel?

exercice 8 On définit sur \mathbb{N}^* la relation S suivante :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^* : nSm \Leftrightarrow il \ existe \ un \ k \in \mathbb{N}^* \ tel \ que : n = km$$

- 1. Vérifier que 6S2 et 5S1.
- 2. Montrer que la relation S est une relation d'ordre partiel sur \mathbb{N}^* .
- 3. On suppose dans la suite de l'exercice que l'ensemble \mathbb{N}^* est ordonné par la relation S. \mathbb{N}^* possédé-t'il un maximum ? un minimum ?

Corrigé Série de TD 02

Corrigé exercice 1 Soient : $A =]-\infty, 3]$, B = [-2, 8], $C =]-5, +\infty[$, $D = \{x \in \mathbb{R}, |x - 3| \le 5\}$.

1. Relations d'égalité ou d'inclusion qui existent entre ces ensembles :

On
$$a:|x-3|\leq 5\Rightarrow -5\leq x-3\leq 5\Rightarrow -2\leq x\leq 8\Rightarrow x\in [-2,8]$$
 donc: $B=D\subset C$

2. Déterminons le complémentaire :

$$C_{\mathbb{R}}A =]3, +\infty[, C_{\mathbb{R}}B =]-\infty, -2[\cup]8, +\infty[, C_{\mathbb{R}}C =]-\infty, -5], C_{C}B =]-5, -2[\cup]8, +\infty[, C_{\mathbb{R}}B =]-5, -2[\cup]8,$$

3. Déterminons les ensembles suivants :

$$A \cap B = [-2,3], \quad A \cup B =]-\infty,8], \quad A \cap C =]-5,3], \quad A \cup C =]-\infty,+\infty[$$

$$A/C =]-\infty,-5]$$

$$A\triangle B = (A/B) \cup (B/A) =]-\infty,-2[\cup]3,8]$$

$$(\mathbb{R}/A) \cap (\mathbb{R}/B) = (]3,+\infty[) \cap (]-\infty,-2[\cup]8,+\infty[) =]8,+\infty[.$$

Corrigé exercice 2 Soit E un ensemble, A, B et C trois parties de E a. Montrerons que :

1. $(A \cap B) \cup C_E B = A \cup C_E B$

Méthode 1 : on a

$$A \cap B) \cup C_E B = (A \cup C_E B) \cap (B \cup C_E B)$$
$$= (A \cup C_E B) \cap E$$
$$= A \cup C_E B$$

<u>Méthode 2</u>: montrons que $(A \cap B) \cup C_E B \subset A \cup C_E B$ et $A \cup C_E B \subset (A \cap B) \cup C_E B$: 1.1) Montrons que : $(A \cap B) \cup C_E B \subset A \cup C_E B$:

$$\forall x \in (A \cap B) \cup C_E B \Longrightarrow \begin{cases} x \in A \cap B \\ ou \\ A \in C_E B \end{cases}$$

$$- si \ x \in A \cap B \Rightarrow x \in A \quad et \quad x \in B \quad alors : x \in A \Rightarrow x \in A \cup C_E B$$

$$- si \ x \in C_E B \Rightarrow x \in A \cup C_E B$$

$$d'où$$

$$(A \cap B) \cup C_E B \subset A \cup C_E B$$

$$(1)$$

1.2) Montrons que : $A \cup C_E B \subset (A \cap B) \cup C_E B$

$$\forall x \in A \cup C_E B \Rightarrow \begin{cases} x \in A \\ ou \\ x \in C_E B \end{cases}$$

$$- si \quad x \in A \Rightarrow x \in A \cap B \quad alors \quad x \in (A \cap B) \cup C_E B$$

$$- si \quad x \in C_E B \Rightarrow x \in (A \cap B) \cup C_E B$$

$$d'où$$

$$A \cup C_E B \subset (A \cap B) \cup C_E B \tag{2}$$

de (1) et (2) on déduit que : $(A \cap B) \cup C_E B = A \cup C_E B$.

2. $(A/B)/C = A/(B \cup C)$

Méthode 1 : on a

$$(A/B)/C = (A \cap C_E B) \cap C_E C$$
$$= A \cap (C_E B \cap C_E C)$$
$$= A \cap C_E (B \cup C) = A/(B \cup C)$$

<u>Méthode 2</u>: montrons que $(A/B)/C \subset A/(B \cup C)$ et $A/(B \cup C) \subset (A/B)/C$:

2.1) Montrons que : $(A/B)/C \subset A/(B \cup C)$

$$\forall x \in (A/B)/C \Rightarrow \begin{cases} x \in A \\ et \ x \notin B \\ et \ x \notin C \end{cases} \Rightarrow \begin{cases} x \in A \\ et \\ x \notin B \cup C \end{cases}$$

 $alors: x \in A/(B \cup C) \ donc$

$$(A/B)/C \subset A/(B \cup C) \tag{3}$$

2.1) Montrons que : $A/(B \cup C) \subset (A/B)/C$

$$\forall x \in A/(B \cup C) \Rightarrow \left\{ \begin{array}{l} x \in A \\ et \ x \notin B \cup C \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x \in A \\ et \ x \notin B \\ et \ x \notin C \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \in A/B \\ et \ x \notin C \end{array} \right.$$

 $alors: x \in (A/B)/C \ donc:$

$$A/(B \cup C) \subset (A/B)/C \tag{4}$$

de (3) et (4) on déduit que : $(A/B)/C = A/(B \cup C)$

3. $A/(B \cap C) = (A/B) \cup (A/C)$

$$A/(B \cap C) = A \cap C_E(B \cap C)$$

$$= A \cap (C_E B \cup C_E C)$$

$$= (A \cap C_E B) \cup (A \cap C_E C)$$

$$= (A/B) \cup (A/C)$$

- b. La simplifications:
 - 1. $C_E(A \cup B) \cap C_E(C \cup C_E A)$

$$C_E(A \cup B) \cap C_E(C \cup C_E A) = (C_E A \cap C_E B) \cap (C_E C \cap A)$$
$$= (A \cap C_E A) \cap (C_E B \cap C_E C)$$
$$= \varnothing \cap (C_E B \cap C_E C)$$
$$= \varnothing$$

2. $C_E(A \cap B) \cup C_E(C \cap C_E A)$.

$$C_E(A \cap B) \cup C_E(C \cap C_E A) = (C_E A \cup C_E B) \cup (C_E C \cup A)$$
$$= (A \cup C_E A) \cup (C_E B \cup C_E C)$$
$$= E \cup (C_E B \cup C_E C)$$
$$= E$$

Corrigé exercice 3 Soient $f:[0,1] \to [0,2]$ avec f(x) = 2 - x et $g:[-1,1] \to [0,2]$ avec $g(x) = x^2 + 1$

- 1. Déterminons: $f(\lbrace \frac{1}{2} \rbrace), f^{-1}(\lbrace 0 \rbrace), g([-1,1]), g^{-1}[0,2]$
 - $f(\left\{\frac{1}{2}\right\}) = \left\{f(x) \in [0, 2], \ x \in \left\{\frac{1}{2}\right\}\right\} = \left\{f(\frac{1}{2})\right\} = \left\{\frac{3}{2}\right\}$
 - $f^{-1}(\{0\}) = \{x \in [0,1], f(x) \in \{0\}\}\$ on $a: f(x) \in \{0\} \Leftrightarrow f(x) = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2 \notin [0,1]$ $donc: f^{-1}(\{0\}) = \varnothing$

- $g([-1,1]) = \{g(x) \in [0,2], x \in [-1,1]\}$ on $a: x \in [-1,1] \Leftrightarrow -1 \le x \le 1 \Rightarrow 0 \le x^2 \le 1$ $\Rightarrow 1 \le x^2 + 1 \le 2 \Rightarrow 1 \le g(x) \le 2$ $g(x) \in [1,2] \subset [0,2]$ donc: g([-1,1]) = [1,2]
- $g^{-1}([0,2]) = \{x \in [-1,1], g(x) \in [0,2]\}$ $g(x) \in [0,2] \Leftrightarrow 0 \le x^2 + 1 \le 2$ $\Rightarrow -1 \le x^2 \le 1$ $\Rightarrow 0 \le x^2 \le 1$ $\Rightarrow -1 \le x \le 1 \Rightarrow x \in [-1,1]$ $donc: g^{-1}([0,2]) = [-1,1]$
- 2. L'application f est bijective \Leftrightarrow $\begin{cases}
 f \text{ injective} \\
 et \\
 f \text{ surjective}
 \end{cases}$
 - 2.1) l'injectivité :

f injective $\Leftrightarrow \forall x_1, x_2 \in [0, 1], \quad f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ on $a: f(x_1) = f(x_2) \Leftrightarrow 2 - x_1 = 2 - x_2 \Rightarrow x_1 = x_2, \quad donc: f \text{ est injective.}$

2.2) la surjectivité :

f surjective $\Leftrightarrow \forall y \in [0,2], \exists x \in [0,1]$ tel que y = f(x)on $a: y = f(x) \Rightarrow y = 2 - x \Rightarrow x = 2 - y \notin [0,1]$ (car pour $y = 0 \Rightarrow x = 2 \notin [0,1]$) donc f n'est pas surjective et par la suite f n'est pas bijective.

- 3. L'application g est bijective \Leftrightarrow $\begin{cases}
 g \text{ injective} \\
 et \\
 g \text{ surjective}
 \end{cases}$
 - 3.1) l'injectivité :

g injective $\Leftrightarrow \forall x_1, x_2 \in [-1, 1], \quad g(x_1) = g(x_2) \Rightarrow x_1 = x_2$ où : $x_1 \neq x_2 \Rightarrow g(x_1) \neq g(x_2)$ on $a : -2 \neq 2$ mais g(-2) = g(2) = 5donc : g n'est pas injective par la suite g n'est pas bijective .

4. On ne peut pas calculer $g \circ f$ et $f \circ g$ car l'ensemble d'arriver et l'ensemble de départ dans les deux cas n'est pas les même

Corrigé exercice 4 *I.* Soit l'application $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que : $f(x) = \begin{cases} 1, & x < 0 \\ 1 + x, & x \ge 0 \end{cases}$

- 1. Déterminons: $f(\mathbb{R}^+), f^{-1}(\{0\}), f^{-1}(\{1\}), f^{-1}([1,2])$
 - $f(\mathbb{R}^+) = \{f(x), x \in \mathbb{R}^+\}$ on $a: x \in \mathbb{R}^+ \Leftrightarrow x \in [0, +\infty[\Rightarrow x \ge 0 \Longrightarrow x + 1 \ge 1 \Leftrightarrow f(x) \in [1, +\infty[$ $donc: f(\mathbb{R}^+) = [1, +\infty[$
 - $f^{-1}(\{0\}) = \{x \in \mathbb{R}, f(x) = 0\}$ — $Sur[-\infty, 0[, f(x) = 0 \text{ n'admet pas de solution.}$ — $Sur[0, +\infty[, f(x) = 0 \Rightarrow x + 1 = 0 \text{ donc } x = -1 \notin [0, +\infty[$ $d'où : \nexists x \in \mathbb{R}, \text{ tel que : } f(x) = 0 \text{ donc : } f^{-1}(\{0\}) = \varnothing$
 - $f^{-1}(\{1\}) = \{x \in \mathbb{R}, f(x) = 1\}$ $- \forall x \in]-\infty, 0[\text{ on } a: f(x) = 1$ $- \text{ pour } x \in [0, +\infty[\Rightarrow x + 1 = 1 \Rightarrow x = 0]$ $\text{donc } :f^{-1}(\{1\}) =]-\infty, 0[\cup \{0\} =]-\infty, 0]$

- $f^{-1}([1,2]) = f^{-1}(\{1\}) \cup f^{-1}([-1,2])$ $f^{-1}(\{1\}) =]-\infty,0]$ (déjà calculé) $f^{-1}([1,2]) = \{x \in \mathbb{R}, f(x) \in [1,2]\}$
- pour $x \in]-\infty,0[$, il est clair qu'il n'existe pas de réels négatif ayant une image dans l'intervalle [1, 2].
- $-pour \ x \in [0, +\infty[\ , \ 1 < x+1 \le 2 \Leftrightarrow 0 < x \le 1]$ Ainsi $f^{-1}([1,2]) = [0,1]$ $d'où f^{-1}([1,2]) =]-\infty, 0 \cup [0,1] =]-\infty, 1]$
- 2. f n'est pas injective car: $-3 \neq -2$ mais f(-3) = f(-2) = 1f n'est pas surjective car : d'après la question précédente 0 n'a pas d'antécédents

II. Soit l'application $g: \mathbb{R} - \left\{\frac{1}{2}\right\} \longrightarrow \mathbb{R}^*$ telle que $: g(x) = \frac{9}{2x-1}$

- 1. Montrons que g est bijective :
 - g injective $\forall x_1, x_2 \in \mathbb{R} \left\{\frac{1}{2}\right\}$ $g(x_1) = g(x_2) \Leftrightarrow \frac{9}{2x_1 1} = \frac{9}{2x_2 1}$ $2x_1 1 = 2x_2 1 \Rightarrow x_1 = x_2$

donc: q injective.

— g est Surjective : $\forall y \in \mathcal{R}^*$, $\exists x \in \mathbb{R} - \{\frac{1}{2}\}$ tel que : y = g(x) $y = g(x) \Rightarrow y = \frac{9}{2x-1} \Rightarrow x = \frac{9+y}{2y}$ On doit montrer que : $\frac{9y}{2y} \neq \frac{1}{2}$

Par l'absurde : on suppose : $\frac{c}{9+y}2y = \frac{1}{2} \Rightarrow 9 = 0$ ce qui est impossible

On déduit alors $\forall y \in \mathbb{R}^*, \exists x \in \mathbb{R} - \{\frac{1}{2}\}, \ y = g(x)$. Donc g est Surjective.

En déduit que q est bijective.

2. Déterminons l'application réciproque q^{-1}

$$g^{-1}: \mathbb{R}^* \longrightarrow \mathbb{R} - \{\frac{1}{2}\}$$
$$y \longrightarrow x = g^{-1}(y) = \frac{9+y}{2y}$$

 $donc: g^{-1}(x) = \frac{9+x}{2x}$

Corrigé exercice 5 Soit f une application de E vers F. Soient A et A' deux partie de E, et soient B et B' deux partie de F

- 1. Montrons que:
 - **1.1** $A \subset f^{-1}(f(A)) \ \forall x \subset A \ on \ a : f(x) \in f(A)$ alors : $x \in f^{-1}(f(A))$ $car: f^{-1}(B) = \{x \in E, f(x) \in B\}$ d'où $A \subset f^{-1}(f(A))$.
 - **1.4** $f(A \cap A') \subset f(A) \cap f(A')$

 $\forall y \in f(A \cap A') \subset \exists x \in A \cap A' \text{ tel que} : y = f(x)$ $x \in A \cap A' \Rightarrow \begin{cases} x \in A \Rightarrow f(x) \in f(A) \\ et \\ x \in A' \Rightarrow f(x) \in f(A') \end{cases} \Rightarrow f(x) \in f(A) \cap f(A')$

et comme y = f(x) donc : $y \in f(A) \cap f(A')$

on $d\acute{e}duit: f(A \cap A') \subset f(A')$.

1.5 $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$ (1.5.a) montrons que : $f^{-1}(B \cup B') \subset f^{-1}(B) \cup f^{-1}(B')$

$$\forall x \in f^{-1}(B \cup B') \Rightarrow f(x) \in B \cup B'$$

$$alors : \begin{cases} f(x) \in B \Rightarrow x \in f^{-1}(B) \\ ou \\ f(x) \in B' \Rightarrow x \in f^{-1}(B') \end{cases} \Rightarrow x \in f^{-1}(B) \cup f^{-1}(B')$$

(1.5.b) De la même manière on démontre l'inclusion inverse. De (1.5.a) et (1.5.b) on déduit que :

$$f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$$

- 2. Montrons que si f est injective alors on a égalité dans (4) :
 - **2.1** D'après (4), nous avons montré que : $f(A \cap A') \subset f(A) \cap f(A')$
 - 2.2 Montrons que : $f(A) \cap f(A') \subset f(A \cap A')$ $\forall y \in f(A) \cap f(A') \Rightarrow \begin{cases} y \in f(A) \Rightarrow \exists x \in A \text{ tel que } y = f(x) \\ et \\ y \in f(A') \Rightarrow \exists x' \in A' \text{ tel que } y = f(x') \end{cases}$ y = f(x) = f(x') et f est injective. On déduit que : x = x' $d'où x \in A \cap A' \Rightarrow f(x) \in f(A \cap A')$ $donc : y \in f(A \cap A')$ De (2.1) et (2.2) on obtient :

$$f(A \cap A') = f(A) \cap f(A')$$

Corrigé exercice 6 On $a: \forall (x,y); (x',y') \in \mathbb{R}^2, (x,y)\Re(x',y') \Leftrightarrow x+y=x'+y'$

- 1. Montrons que R est une relation d'équivalence : R est une relation d'équivalence si et seulement si : elle est réflexive, symétrique, transitive.
 - a) \Re réflexive : $\forall (x,y) \in \mathbb{R}^2 : (x,y)\Re(x,y)$ $(x,y)\Re(x,y) \Leftrightarrow x+y=x+y \Rightarrow 0=0$ vraie D'où \Re est réflexive.
 - **b)** \Re symétrique : $\forall (x,y); (x',y') \in \mathbb{R}^2 : (x,y)\Re(x',y') \Rightarrow (x',y')\Re(x,y')$ On $a:(x,y)\Re(x',y') \Leftrightarrow x+y=x'+y' \Leftrightarrow x'+y'=x+y \Rightarrow (x',y')\Re(x,y)$ D'où \Re est symétrique.
 - $\mathbf{c)} \ \ \Re \ \ transitive : \forall (x,y), (x',y'), (x'',y'') \in \mathbb{R}^2 : \begin{cases} (x,y)\Re(x',y') \\ et \\ (x',y')\Re(x'',y'') \end{cases} \Rightarrow (x,y)\Re(x'',y'')$ $on \ a : \begin{cases} (x,y)\Re(x',y') \\ et \\ (x',y')\Re(x'',y'') \end{cases} \Leftrightarrow \begin{cases} x+y=x'+y' \\ et \\ x'+y'=x''+y'' \end{cases} \Rightarrow x+y=x''+y'' \Leftrightarrow (x,y)\Re(x'',y'')$ $D'où \ \Re \ \ est \ \ transitive.$

Ainsi, de (a), (b) et (c), \Re est une relation d'équivalence.

2. La classe d'équivalence du couple (0,0):

$$cl \{(0,0)\} = \{(x,y) \in \mathbb{R}^2 : (x,y)\Re(0,0)\}$$
$$= \{(x,y) \in \mathbb{R}^2/x + y = 0 + 0 = 0\}$$
$$= \{(x,y) \in \mathbb{R}^2/y = -x\}$$
$$= \{(x,-x)/x \in \mathbb{R}\}$$

Corrigé exercice 7 On $a: \forall (x,y); (x',y') \in \mathbb{R}^2, (x,y)T(x',y') \Leftrightarrow |x-x'| \leq y'-y$

1. Montrons que T un relation d'ordre :

T est une relation d'ordre si et seulement si :T réflexive, symétrique, transitive.

- a) T est réflexive : $\forall (x,y) \in \mathbb{R}^2 : (x,y)T(x,y)$. $(x,y)T(x,y) \Leftrightarrow |x-x| \leq y-y \Rightarrow 0 \leq 0$ (vraie) d'où T est réflexive.
- **b)** T $antisymétrique: \forall (x,y), (x',y') \in \mathbb{R}^2: \begin{cases} (x,y)T(x',y') \\ et \\ (x',y')T(x,y) \end{cases} \Rightarrow (x,y) = (x',y')$ $\begin{cases} (x,y)T(x',y') \Leftrightarrow |x-x'| \leq y'-y \\ (x',y')T(x,y) \Leftrightarrow |x'-x| \leq y-y' \end{cases} \Rightarrow 2|x-x'| \leq 0 \Rightarrow |x-x'| = 0 \Rightarrow x = x' \\ (x',y')T(x,y) \Leftrightarrow |x'-x| \leq y-y' \end{cases}$ $de \ plus, \begin{cases} y'-y \geq 0 \\ et \\ y-y' \geq 0 \end{cases} \Rightarrow \begin{cases} y'-y \geq 0 \\ y'-y \leq 0 \end{cases} \Rightarrow y'-y = 0 \Rightarrow y = y' \\ y'-y \leq 0 \end{cases}$ $d'au \ (x,y) = (x',y') \quad alors T \ est \ antisymétrique \end{cases}$

Ainsi, de (a), (b) et (c), T est une relation d'ordre.

2. L'ordre n'est pas totale (partiel) car : $\exists (x,y) = (2,3)$ et (x',y') = (4,3) tel que : $\begin{cases} (x,y) \not T(x',y') \\ ou \\ (x',y') \not T(x,y) \end{cases}$

Corrigé exercice 8 $\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^*, nSm \Leftrightarrow \exists k \in \mathbb{N}^* \ tel \ que : \ n=km$

1. Vérifions que : 6S2 et 5S1.

 $On \ a: 6S2 \Leftrightarrow 6=k(2) \ (\textit{vraie il suffit de prendre} \ k=3)$

On $a:5S1 \Leftrightarrow S=k(1)$ (vraie il suffit de prendre k=5)

- 2. Montrons que S est une relation d'ordre partiel :
 - a) Réflexive: $\forall n \in N^*, nSn$ On $a: nsn \Leftrightarrow n = kn$ (il suffit de prendre k = 1 pour que n = kn soit vraie)

b) Antisymétrique :
$$\forall n, m \in N^*$$
 :
$$\begin{cases} nSm \\ et \Rightarrow n = m \\ mSn \end{cases}$$

$$On \ a : \begin{cases} nSm \\ et \Leftrightarrow \begin{cases} \exists k \in N^* \ tel \ que : \ n = km \\ et \\ \exists k' \in N^* \ tel \ que : \ m = k'n \end{cases}$$

$$donc : kk' = 1 \ et \ comme \ k, k' \in N^*, \ on \ a : k = k' = 1 \ d'où \ n = m$$

$$d'où \ S \ Antisymétrique \ .$$

c) transitive:
$$\forall n, m, l \in N^*$$
:
$$\begin{cases} nSm \\ et \\ mSl \end{cases} \Rightarrow nSl$$

$$\begin{array}{l} On \ a : \left\{ \begin{array}{l} nSm \\ et \\ mSl \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \exists k \in N^* \ \ tel \ que : \ n = km \\ et \\ \exists k' \in N^* \ \ tel \ que : \ m = k'l \end{array} \right. \Rightarrow n = k(k'l) \Rightarrow n = kk'l \\ ainsi \ \exists k" = kk' \in N^* \ \ tel \ que : \ n = k"l \Rightarrow nSl \\ d'où \ S \ \ transitive. \end{array}$$

Alors, de (a),(b),(c) la relation S est une relation d'ordre mais partiel car si on prend : n = 3 et m = 5 on a : n Sm

- 3. a) On dit que l'ensemble N^* possède un minorant N pour la relation S si $\forall n \in N^*$, on $a: NSn \Leftrightarrow \exists k \in N^*$ tel que : N=kn donc le N est le multiple de tous les entiers naturels nuls , cet élément ne pourra jamais exister , puisque il y'a une infinité de nombres dans N^* s'il n'y a pas de minorant , il n'existe plus de minimum.
 - **b)** On dit que N^* possède un majorant M pour la relation S si : $\forall n \in N^*$, $nSM \Leftrightarrow \exists k \in N^*$ tel que : n = KMDonc, il suffit de prendre M = 1, $car \ \forall n \in N^*$, $\exists k \in N^*$ tel que : n = K(1) (n = K) donc : le majorant est M = 1 . de plus, comme $M = 1 \in N^*$ alors, le maximum est 1.