Set Theory

Paolo Bettelini

Contents

1	Defi	finitions		
	1.1	Subset	 	
	1.2	Empty Set	 	
	1.3	Power Set	 	
	1.4	Union \dots	 	
	1.5	Intersection	 	
	1.6	Difference \dots	 	
	1.7	Cartesian Product	 	
	1.8	$Complement \dots \dots \dots$	 	
	1.9	Binary Relation	 	
	1.10) Injection	 	
	1.11	Surjectivity	 	
	1.12	2 Bijectivity	 	
	1.13	Reflexive relation	 	
	1.14	1 Symmetric relation	 	
	1.15	5 Transitive relation	 	

1 Definitions

1.1 Subset

If A and B are sets, then A is a subset of B $(A \subseteq B)$, iff all the elements of A are also in B.

1.2 Empty Set

The empty set \emptyset is a subset of all other sets.

1.3 Power Set

If B is a set, then the power set $\mathcal{P}(B)$ is defined as the set of all subsets of B

$$\mathcal{P}(B) = \{ A \mid A \subseteq B \}$$

Note that $\emptyset \subseteq \mathcal{P}(B)$ and $B \in \mathcal{P}(B)$

1.4 Union

If A and B are sets, then their union is

$$A \cup B = \{x \mid c \in A \lor X \in B\}$$

1.5 Intersection

If A and B are sets, then their intersection is

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

1.6 Difference

If A and B are sets, then their difference is

$$A \backslash B = \{ x \mid x \in A \land x \notin B \lor x \in B \land \notin A \}$$

1.7 Cartesian Product

If A and B are sets, then their cartesian product is

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

1.8 Complement

If A is a set, its complement is

$$\bar{A} = \{x \mid x \notin A\}$$

1.9 Binary Relation

If A and B are sets, a function $f:A\to B$ is a binary relation R

$$R = \{(a, b) \mid f(a) = b\}$$

Note that $R \subseteq A \times B$

1.10 Injection

A function $f: A \to B$ is injective iff

$$\forall a, b \in A \mid a \neq b, f(a) \neq f(b)$$

1.11 Surjectivity

A function $f: A \to B$ is *surjectiv* iff

$$\forall b \in B \exists a \mid f(a) = b$$

1.12 Bijectivity

A function $f:A\to B$ is bijective iff it is both surjective and injective.

1.13 Reflexive relation

A binary relation R for $f: A \to B$ is reflexive iff

$$\forall a \in A, (a, a) \in R$$

1.14 Symmetric relation

A binary relation R for $f: A \to B$ is symmetric iff

$$\forall (a,b) \in R, (b,a) \in R$$

1.15 Transitive relation

A binary relation R for $f:A\to B$ is transitive

$$\forall a,b,c \in A, (b,c) \in R \wedge (b,c) \in R \implies (a,c) \in R$$