Experimental Mochemies : 24 Sept 2018
Nates on Optics
· By the E-HI fields, we're joing to mostly neglect magnetic field
· By were there of Isplit by Maruell, Eith fields me in phase ! outlagonal with
vouves being Laureveree to travel
- Promanters
-> A: vuvelength > Af = c; note that only monochounder light was ocialed. -> f: frequency a signlan A. most a speed
· War Thong of higher
1) Wave front description
The region of sme phase expands as asphase, given as optically homogeness median. Spherical Region is the numericant
ar optically homogeners median
· Pays pars though were front orthogonal to surface
wave funt
-7 with sound; the sunface on be approximated as planter
a loss on charge the shape of the une front
spherical neve lens collimental bean front

· Wave Equation

$$E = f(z-ct)$$

$$= f(z-ct)$$

$$=$$

· Wome Internation

$$\frac{E_1}{A_1} = a_1 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_1 = a_2$$

$$\frac{S_1}{A_2} = a_1 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_1 = a_2$$

$$\frac{S_2}{A_2} = a_2 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_2 = a_2$$

$$\frac{S_2}{A_2} = a_2 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_2 = a_2$$

$$\frac{S_2}{A_2} = a_2 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_2 = a_2$$

$$\frac{S_2}{A_2} = a_2 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_2 = a_2$$

$$\frac{S_2}{A_2} = a_2 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_3 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_3 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_3 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_3 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_2} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_3} = a_4 \cos \left(\frac{2\pi}{\lambda} \left(\frac{2-ct}{\lambda} \right) \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_2}{A_3} = a_4 \cos \left(\frac{2-ct}{\lambda} \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_3}{A_3} = a_4 \cos \left(\frac{2-ct}{\lambda} \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_3}{A_3} = a_4 \cos \left(\frac{2-ct}{\lambda} \right) \quad \text{for } a_4 = a_4$$

$$\frac{S_3}{A_3} = a_4 \cos \left(\frac{2-ct}{\lambda} \right)$$

Fig. 1 and place, we are maile

$$E : E_1 + E_2 = a \cos (\phi - \omega + \phi_1)$$

$$A^2 = a_1^2 + a_2^2 + 2a_1a_2 \cos (\phi_2 - \phi_1)$$

$$A^2 = + \cos^{-1} \left(\frac{a_1 \sin \phi_1 + a_2 \sin \phi_2}{a_1 \cos \phi_1 + a_2 \cos \phi_2} \right)$$

Therefore of $a_1 = a_2$:
$$A^2 = \sqrt{4 a_1^2 \cos^2 \phi_1}$$

Resultant E' hus the one frequezy

Just a
$$(a_1, a_2, a_1, a_2)$$
 and

 $\theta(a_1, a_2, a_1, a_2)$

I a
$$a^2$$

$$(\pi 8)$$

$$\propto 4a^2 \cos^2\left(\frac{\pi 8}{5}\right)$$
 20 that as intensity charges its a faction of the phase difference only

$$I_{-n} := \lim \left\{ \delta = n \right\}, n \in \mathbb{I} \right\} \rightarrow I_{nm} = 4a^2$$

$$I_{min}$$
 $\left\{ S = \frac{2n+1}{2} \times 7 \times 6I \right\} \rightarrow \frac{1}{2}, \frac{3}{2}, \frac{5}{2} \dots = 0$