Exploration of Inflation-Adjusted Revenue in Disney Dataset

Author: Muntakim Rahman UBC Student Number: 71065221

Foreword

This **Jupyter Notebook** will be showing some exploratory data analysis for the Disney dataset. We're going to be investigating Disney 's historical box office records to get an idea of which projects yielded the highest gross revenue (adjusted for inflation).

Although total box office revenue is an important indicator, we are concerned with films which are able to sell a higher volume of tickets. We are going to assume this has a relatively linear correlation with *inflation-adjusted gross* revenue. Hence this will be our success indicator metric in this exploration.

Introduction

Intended Outcome

We can utilize our learnings to <u>replicate previous success & prevent previous failures</u> with respect to **Inflation Adjusted Gross** in upcoming projects.

Questions(s) of Interests

In this analysis, I will be investigating questions associated with the highest **Inflation Adjusted Gross** for the Disney dataset located here.

What I Want to Learn

Which films had the highest inflation adjusted gross overall?

Decade Distributions

- How many films were released each decade?
- What is the highest grossing film for each decade?
- How much (inflation adjusted) gross revenue is (typically) being made by films through the decades?
 - Are there any outliers in the data (i.e. decades with relatively higher/lower inflation adjusted grossing films)?

Which decades had the highest inflation adjusted grossing films? Is Release
 Decade a determining factor of our success indicator?

Further Exploration - Will Be Performed Based on Data Availability

These are questions I want to explore given data availability in addition to the above analysis.

Highest Inflation Adjusted Grossing Films

- Which top 5 actors had the highest inflation adjusted grossing films by decade?
- Which top 5 directors had the highest inflation adjusted grossing films by decade?
- Which top 5 actors had the overall highest inflation adjusted grossing films?
- Which top 5 directors had the overall highest inflation adjusted grossing films?

Lowest Inflation Adjusted Grossing Films

- Which top 5 actors had the lowest inflation adjusted grossing films by decade?
- Which top 5 directors had the lowest inflation adjusted grossing films by decade?
- Which top 5 actors had the overall lowest inflation adjusted grossing films?
- Which top 5 directors had the overall lowest inflation adjusted grossing films?

Dataset Description

This dataset provides an overview of "Disney characters, box office success & annual gross income", as described by the source.

Summary

"What are the trends in the Walt Disney Studio's box office data? How do certain characters contribute to the success or failure of a movie?"

Tabulated Data

```
In [1]: # Lets import all the required libraries needed for this analysis
import pandas as pd

import altair as alt
from vega_datasets import data

import matplotlib.pyplot as plt
from matplotlib.lines import Line2D

import seaborn as sns
```

import datetime as dt
from disney_functions import *

In [2]: gross_df = pd.read_csv("data/disney_movies_total_gross.csv")
 display(gross_df.head())

	movie_title	release_date	genre	MPAA_rating	total_gross	inflation_adjusted_gross
0	Snow White and the Seven Dwarfs	Dec 21, 1937	Musical	G	\$184,925,485	\$5,228,953,251
1	Pinocchio	Feb 9, 1940	Adventure	G	\$84,300,000	\$2,188,229,052
2	Fantasia	Nov 13, 1940	Musical	G	\$83,320,000	\$2,187,090,808
3	Song of the South	Nov 12, 1946	Adventure	G	\$65,000,000	\$1,078,510,579
4	Cinderella	Feb 15, 1950	Drama	G	\$85,000,000	\$920,608,730

	Year	Studio Entertainment[NI 1]	Disney Consumer Products[NI 2]	Disney Interactive[NI 3][Rev 1]	Walt Disney Parks and Resorts	Disney Media Networks	Total
0	1991	2593.0	724.0	NaN	2794.0	NaN	6111
1	1992	3115.0	1081.0	NaN	3306.0	NaN	7502
2	1993	3673.4	1415.1	NaN	3440.7	NaN	8529
3	1994	4793.0	1798.2	NaN	3463.6	359	10414
4	1995	6001.5	2150.0	NaN	3959.8	414	12525

	movie_title	release_date	hero	villian	song
0	\r\nSnow White and the Seven Dwarfs	December 21, 1937	Snow White	Evil Queen	Some Day My Prince Will Come
1	\r\nPinocchio	February 7, 1940	Pinocchio	Stromboli	When You Wish upon a Star
2	\r\nFantasia	November 13, 1940	NaN	Chernabog	NaN
3	Dumbo	October 23, 1941	Dumbo	Ringmaster	Baby Mine
4	\r\nBambi	August 13, 1942	Bambi	Hunter	Love Is a Song

display(directors_df.head())

	name	director
0	Snow White and the Seven Dwarfs	David Hand
1	Pinocchio	Ben Sharpsteen
2	Fantasia	full credits
3	Dumbo	Ben Sharpsteen
4	Bambi	David Hand

```
In [6]: voice_actors_df = pd.read_csv("data/disney-voice-actors.csv")
display(voice_actors_df.head())
```

	character	voice-actor	movie
0	Abby Mallard	Joan Cusack	Chicken Little
1	Abigail Gabble	Monica Evans	The Aristocats
2	Abis Mal	Jason Alexander	The Return of Jafar
3	Abu	Frank Welker	Aladdin
4	Achilles	None	The Hunchback of Notre Dame

Clean Data

Convert Dates to Type DateTime.Date

We are primarily interested in release month and year to account for data inconsistencies.

In [9]: ## Let's look at the release month-year information for the movies to deal with dat

```
gross_df.drop(columns=["release_date"], inplace=True)
characters_df.drop(columns=["release_date"], inplace=True)
```

In [10]: display(gross_df.head())

	movie_title	genre	MPAA_rating	total_gross	inflation_adjusted_gross	release_year	releas
0	Snow White and the Seven Dwarfs	Musical	G	\$184,925,485	\$5,228,953,251	1937	
1	Pinocchio	Adventure	G	\$84,300,000	\$2,188,229,052	1940	
2	Fantasia	Musical	G	\$83,320,000	\$2,187,090,808	1940	
3	Song of the South	Adventure	G	\$65,000,000	\$1,078,510,579	1946	
4	Cinderella	Drama	G	\$85,000,000	\$920,608,730	1950	

In [11]: display(characters_df.head())

	movie_title	hero	villian	song	release_year	release_month
0	\r\nSnow White and the Seven Dwarfs	Snow White	Evil Queen	Some Day My Prince Will Come	1937	12
1	\r\nPinocchio	Pinocchio	Stromboli	When You Wish upon a Star	1940	2
2	\r\nFantasia	NaN	Chernabog	NaN	1940	11
3	Dumbo	Dumbo	Ringmaster	Baby Mine	1941	10
4	\r\nBambi	Bambi	Hunter	Love Is a Song	1942	8

Complete DataFrame (With Merged Tables)

	movie_title	genre	MPAA_rating	total_gross	inflation_adjusted_gross	release_year	releas
0	Snow White and the Seven Dwarfs	Musical	G	\$184,925,485	\$5,228,953,251	1937	
1	Pinocchio	Adventure	G	\$84,300,000	\$2,188,229,052	1940	
2	Fantasia	Musical	G	\$83,320,000	\$2,187,090,808	1940	
3	Song of the South	Adventure	G	\$65,000,000	\$1,078,510,579	1946	
4	Cinderella	Drama	G	\$85,000,000	\$920,608,730	1950	

In [14]: ## Lets merge the char_revenue_df and directors_df.
directors_df.rename(columns={"name": "movie_title"}, inplace=True)
film_revenue_df = pd.merge(char_revenue_df, directors_df, on="movie_title", how="ou
display(film_revenue_df.head())

	movie_title	genre	MPAA_rating	total_gross	inflation_adjusted_gross	release_year	releas
0	Snow White and the Seven Dwarfs	Musical	G	\$184,925,485	\$5,228,953,251	1937	
1	Pinocchio	Adventure	G	\$84,300,000	\$2,188,229,052	1940	
2	Fantasia	Musical	G	\$83,320,000	\$2,187,090,808	1940	
3	Song of the South	Adventure	G	\$65,000,000	\$1,078,510,579	1946	
4	Cinderella	Drama	G	\$85,000,000	\$920,608,730	1950	

Merge Duplicate Rows

Multiple Voice Actors For a Single Character

```
In [15]: voice_actors_df.rename(columns={"movie": "movie_title"}, inplace=True)
         voice_actors_df.sort_values(by=["movie_title"]).reset_index(drop=True, inplace=True
In [16]: hero_actors_df = merge_on_actor(voice_actors_df, film_revenue_df, char_type="hero")
In [17]: villain_actors_df = merge_on_actor(
             voice_actors_df, film_revenue_df, char_type="villain"
In [18]: complete_cols = hero_actors_df.columns.to_list() + villain_actors_df.columns.to_lis
         complete_cols = list(dict.fromkeys(complete_cols))
In [19]: effective_cols = [col for col in complete_cols if col.find("actor") == -1]
         complete_df = pd.merge(
             hero_actors_df, villain_actors_df, on=effective_cols, how="outer"
         complete_df = complete_df.assign(
             release_decade=get_release_decade(complete_df["release_year"])
         )
         Get gross in numerical datatype (i.e. float64)
In [20]: complete_df = complete_df.assign(
             total_gross=complete_df["total_gross"].apply(lambda x: get_totalgross_value(x))
         complete_df = complete_df.assign(
             inflation_adjusted_gross=complete_df["inflation_adjusted_gross"].apply(
                 lambda x: get_totalgross_value(x)
             )
In [21]: display(complete_cols)
         ['movie title',
          'genre',
          'MPAA_rating',
          'total_gross',
          'inflation_adjusted_gross',
          'release_year',
          'release_month',
          'hero',
          'villain',
          'song',
          'director',
          'hero-actor',
          'villain-actor']
In [22]: complete_cols = [
             "movie_title",
             "release decade",
             "release_year",
             "release_month",
             "total_gross",
             "inflation_adjusted_gross",
```

```
"director",
   "MPAA_rating",
   "genre",
   "hero-actor",
   "villain-actor",
   "villain",
   "song",
]

complete_df = (
   complete_df[complete_cols]
   .sort_values(by=["release_year", "movie_title"])
   .reset_index(drop=True)
)
```

In [23]: display(complete_df.head())

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
0	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09
1	Fantasia	1940	1940	11	83320000.0	2.187091e+09
2	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
3	Dumbo	1940	1941	10	NaN	NaN
4	Bambi	1940	1942	8	NaN	NaN

Sum Box Office Revenue for Movie Rereleases

movie_title release_decade release_year release_month total_gross inflation_adjusted_gros 101 240 1990 1996 11 136189294.0 258728898.0 **Dalmatians** The Jungle 592 2010 2016 4 364001123.0 364001123.0 Book

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gros
18	101 Dalmatians	1960	1961	1	153000000.0	1.362871e+0!
24	The Jungle Book	1960	1967	10	141843000.0	7.896123e+0
201	The Jungle Book	1990	1994	12	44342956.0	8.893032e+0
240	101 Dalmatians	1990	1996	11	136189294.0	2.587289e+0
592	The Jungle Book	2010	2016	4	364001123.0	3.640011e+0

The Jungle Book Data Quality

Through a quick glance here, this is another instance of data quality issues in the dataset. The Jungle Book rerelease in 1990 has a different MPAA_rating and genre as well as other fields from the initial release. This makes it seem as if it is another film, which is not the case. The 2016 live-action adaptation of The Jungle Book is indeed another film and was directed by Jon Favreau. This is mislabeled as Wolfgang Reitherman, which is highly problematic for our analysis as it will skew our results. We need to clean this data.

In our data cleaning procedure, we could have merged these two records together based on movie_title and director. Since **Disney** has a track record for remakes and live action adaptations, we can't be certain these are releases.

What would we do in the case that a film is remade by the same director? There are a series of directors who have done so in the past - *Alfred Hitchcock* had remade *The Man Who Knew Too Much*, originally released in 1934 and remade in 1956.

```
(complete_df["movie_title"] == "The Jungle Book")
              & (complete_df["release_year"] == 2016)
          ].index[0]
          complete_df.at[remake_index, "director"] = "Jon Favreau"
          complete_df.query('movie_title == "The Jungle Book"')
Out[26]:
               movie_title release_decade release_year release_month
                                                                    total_gross inflation_adjusted_gros
                The Jungle
           24
                                   1960
                                               1967
                                                                10 141843000.0
                                                                                          789612346.0
                     Book
                The Jungle
          201
                                   1990
                                                                    44342956.0
                                                                                           88930321.0
                                               1994
                                                                12
                     Book
                The Jungle
          592
                                   2010
                                               2016
                                                                 4 364001123.0
                                                                                          364001123.0
                    Book
In [27]:
          # Let's Make Things Easier for Us in Passing the Rerelease to Our Function.
          jungle_book_df = complete_df[
              (complete_df["movie_title"] == "The Jungle Book")
              & (complete_df["release_year"] != 2016)
          ].sort_values(by=["release_year"])
          original_index = jungle_book_df.index[0]
          rerelease_index = jungle_book_df.index[1:]
          for i in rerelease_index:
              complete_df.at[i, "MPAA_rating"] = complete_df.at[original_index, "MPAA_rating"
              complete_df.at[i, "genre"] = complete_df.at[original_index, "genre"]
          complete_df.query('movie_title == "The Jungle Book"')
Out[27]:
               movie_title release_decade release_year release_month total_gross inflation_adjusted_gros
                The Jungle
           24
                                   1960
                                               1967
                                                               10 141843000.0
                                                                                          789612346.0
                     Book
                The Jungle
          201
                                   1990
                                               1994
                                                                    44342956.0
                                                                                           88930321.0
                                                               12
                     Book
                The Jungle
          592
                                   2010
                                               2016
                                                                 4 364001123.0
                                                                                          364001123.0
                     Book
In [28]:
          complete_df = add_rereleases(complete_df)
In [29]:
          display(
              complete_df[
                   (complete_df["movie_title"] == "101 Dalmatians")
                   | (complete_df["movie_title"] == "The Jungle Book")
```

```
movie_title release_decade release_year release_month total_gross inflation_adjusted_gros
                      101
            18
                                     1960
                                                  1961
                                                                    1 289189294.0
                                                                                             1.621600e+09
                Dalmatians
                 The Jungle
            24
                                     1960
                                                  1967
                                                                   10 186185956.0
                                                                                             8.785427e+08
                     Book
                 The Jungle
          590
                                     2010
                                                  2016
                                                                    4 364001123.0
                                                                                             3.640011e+08
                     Book
In [30]:
          # Look for Repeated Movie Entries
          display(
               complete_df[
                   complete_df.duplicated(
                        subset=["movie_title", "director", "genre", "MPAA_rating"]
               ].movie_title.unique()
          array([], dtype=object)
In [31]:
         display(complete_df.head())
             movie_title release_decade release_year release_month
                                                                     total_gross inflation_adjusted_gross
                   Snow
               White and
          0
                                   1930
                                               1937
                                                                12 184925485.0
                                                                                           5.228953e+09
               the Seven
                  Dwarfs
          1
                 Fantasia
                                  1940
                                               1940
                                                                11
                                                                     83320000.0
                                                                                           2.187091e+09
          2
               Pinocchio
                                   1940
                                               1940
                                                                     84300000.0
                                                                                           2.188229e+09
          3
                 Dumbo
                                  1940
                                               1941
                                                                 10
                                                                           NaN
                                                                                                   NaN
                  Bambi
                                  1940
                                               1942
                                                                           NaN
                                                                                                   NaN
```

Assess Feasibility of Analysis

```
In [32]: # Look at Data Sparsity in Complete DataFrame
    plt.figure(figsize=(10, 8))

    custom_lines = [Line2D([0], [0], color="black", lw=4)]

    sparsity_plot = sns.heatmap(
        complete_df.notnull(), cmap="binary", cbar=False, yticklabels=False
)

    sparsity_plot.set_xlabel("Features", fontsize=15)

    sparsity_plot.set_title("Disney Dataset - Data Availability", fontsize=20)

plt.legend(
    custom_lines,
    ["Available"],
    fontsize=10,
    bbox_to_anchor=(1.05, 1),
    loc=2,
    borderaxespad=0.0,
)

plt.show()
```


Fortunately, there appears to be $\sim 100\%$ data availability for release_decade , which is extracted from the release_date column.

We should be set to get accurate insights for our exploration of release_decade v inflation_adjusted_gross .

That's pretty disappointing to see that we have such high data sparsity in the following columns:

- director
- hero-actor
- hero
- villain-actor
- villain
- song

This is going to affect our ability to perform the feature discovery for inflation_adjusted_gross. Note: If we were able to identify potential features which exhibit *linear correlation* with the inflation_adjusted_gross, we may have been able to utilize this in building a **Regression Machine Learning** model.

Release Decade & Inflation Adjusted Gross

Here are the top 5 movies by inflation adjusted gross.

```
In [33]: # Let's order our complete dataframe in descending order of inflation adjusted gros
    complete_df.sort_values(by="inflation_adjusted_gross", ascending=False, inplace=Tru
    complete_df.reset_index(drop=True, inplace=True)

display(complete_df.head(5))
```

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
0	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09
1	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
2	Fantasia	1940	1940	11	83320000.0	2.187091e+09
3	101 Dalmatians	1960	1961	1	289189294.0	1.621600e+09
4	Lady and the Tramp	1950	1955	6	93600000.0	1.236036e+09

Through observing the top 5 highest grossing films when adjusted for inflation, we can see this data sparsity issue entailing missing features.

Record Distribution By Decade

```
In [34]: plot_df = complete_df.query("release_decade == release_decade").assign(
    release_decade=complete_df["release_decade"].apply(lambda x: str(x) + "s")
)

In [35]: display_histogram(
    effective_df=plot_df,
    feature="release_decade",
        maxbins=False, # We don't want to bin the data.
        target="count()",
)
```

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.
for col_name, dtype in df.dtypes.iteritems():

Out[35]:

Highest Grossing Film of Each Decade

This dataframe is ordered in ascending order of release_decade, then decending order of inflation_adjusted_gross.

Count of Records

```
In [36]: complete_df.sort_values(
          by=["release_decade", "inflation_adjusted_gross"],
          ascending=[True, False],
          inplace=True,
)
     complete_df.reset_index(drop=True, inplace=True)

display(complete_df.head(5))
```

0	Snow White and the Seven Dwarfs	1930	1937	12 184925485.0	5.228953e+09
1	Pinocchio	1940	1940	2 84300000.0	2.188229e+09
2	Fantasia	1940	1940	11 83320000.0	2.187091e+09
3	Song of the South	1940	1946	11 65000000.0	1.078511e+09
4	Dumbo	1940	1941	10 NaN	NaN

These are the highest grossing films of each decade in ascending order of release_decade.

0	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09
1	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
2	Lady and the Tramp	1950	1955	6	93600000.0	1.236036e+09
3	101 Dalmatians	1960	1961	1	289189294.0	1.621600e+09
4	The Aristocats	1970	1970	4	55675257.0	2.551615e+08
5	3 Men and a Baby	1980	1987	11	167780960.0	3.533346e+08
6	The Lion King	1990	1994	6	422780140.0	7.616409e+08
7	Pirates of the Caribbean: Dead Man'	2000	2006	7	423315812.0	5.448171e+08
8	Star Wars Ep. VII: The Force	2010	2015	12	936662225.0	9.366622e+08

total_gross inflation_adjusted_gross

Lowest Grossing Film of Each Decade

Awakens

movie_title release_decade release_year release_month

This dataframe is ordered in ascending order of release_decade, then ascending order of inflation_adjusted_gross.

```
In [38]: complete_df.sort_values(
          by=["release_decade", "inflation_adjusted_gross"],
          ascending=[True, True],
          inplace=True,
    )
    complete_df.reset_index(drop=True, inplace=True)
```

```
display(complete_df.head(5))
```

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
0	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09
1	Song of the South	1940	1946	11	65000000.0	1.078511e+09
2	Fantasia	1940	1940	11	83320000.0	2.187091e+09
3	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
4	Dumbo	1940	1941	10	NaN	NaN

C:\Users\Muntakim\AppData\Local\Temp\ipykernel_13488\3134541077.py:10: UserWarnin
g: Boolean Series key will be reindexed to match DataFrame index.
 lowest_grossing_decade_df = complete_df.loc[effective_indices][

movie title	release decade	release vear	release month	total gross	inflation_adjusted_gross
IIIOVIC CICIC	i cicase accade				

0	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09
1	Song of the South	1940	1946	11	65000000.0	1.078511e+09
2	Sleeping Beauty	1950	1959	1	9464608.0	2.150583e+07
3	Bon Voyage!	1960	1962	5	9230769.0	1.095816e+08
4	The Many Adventures of Winnie the Pooh	1970	1977	3	0.0	0.000000e+00
5	Condorman	1980	1981	8	0.0	0.000000e+00
6	The War at Home	1990	1996	11	34368.0	6.554300e+04
7	Frank McKlusky C.I.	2000	2002	1	0.0	0.000000e+00
8	Zokkomon	2010	2011	4	2815.0	2.984000e+03

We're not going to visualize the distributions of the inflation adjusted highest/lowest grossing film for each decade. These films may just be outliers in our larger dataset.

Inflation Adjusted Gross Distribution By Decade

```
In [40]: display_histogram(
    effective_df=complete_df,
    feature="inflation_adjusted_gross",
    target="release_decade",
    maxbins=10,
)

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
    a future version. Use .items instead.
    for col_name, dtype in df.dtypes.iteritems():
```

Distribution: Inflation Adjusted Gros:

There appears to be a few major outliers in the data visualized above. There are tiny slivers of data for films with inflation_adjusted_gross $> 1*10^9$.

Films With Inflation Adjusted Gross Greater Than/Equal To \$1*10^9.

Let's take a closer look at films which meet and exceed this threshold.

```
In [41]: geq_1e9_df = complete_df.query(f"inflation_adjusted_gross >= 1e9")
display(geq_1e9_df)
```

movie title	release decade	release vear	release month	total gross	inflation_adjusted_gross

0	Snow White and the Seven Dwarfs	1930	1937	12 184925485.0	5.228953e+09
1	Song of the South	1940	1946	11 65000000.0	1.078511e+09
2	Fantasia	1940	1940	11 83320000.0	2.187091e+09
3	Pinocchio	1940	1940	2 84300000.0	2.188229e+09
15	Lady and the Tramp	1950	1955	6 93600000.0	1.236036e+09
24	101 Dalmatians	1960	1961	1 289189294.0	1.621600e+09

```
In [42]: display_histogram(
    effective_df=geq_1e9_df,
    feature="inflation_adjusted_gross",
    target="release_decade",
    maxbins=10,
)
```

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.

for col_name, dtype in df.dtypes.iteritems():

Out[42]:

Distribution: Inflation Adjusted Gross

These films were exclusively released between the 1930s and 1960s. The upper bounds of inflation_adjusted_gross seems to have been during this era. If Disney wishes to replicate these extremes of success, we need to understand what caused this trend, looking at macroeconomic factors (in which case, perhaps there is a lot replicability) and even internal business practices adopted during these projects.

Let's look at the rest of the data below this threshold.

```
In [43]: lt_1e9_index = [i for i in complete_df.index if i not in geq_1e9_df.index.to_list()
    lt_1e9_df = complete_df.loc[lt_1e9_index].reset_index(drop=True)

display(lt_1e9_df)
```

	movie_title	release_decade	release_year	release_month	total_gross	iiiiation_aujusteu_gros
0	Dumbo	1940	1941	10	NaN	Nan
1	Bambi	1940	1942	8	NaN	Nañ
2	Saludos Amigos	1940	1943	2	NaN	Nan
3	The Three Caballeros	1940	1945	2	NaN	Nan
4	Make Mine Music	1940	1946	4	NaN	Nan
•••						
582	Avengers: Age of Ultron	2010	2015	5	459005868.0	459005868.0
583	Finding Dory	2010	2016	6	486295561.0	486295561.(
584	Rogue One: A Star Wars Story	2010	2016	12	529483936.0	529483936.(
585	The Avengers	2010	2012	5	623279547.0	660081224.0
586	Star Wars Ep. VII: The Force Awakens	2010	2015	12	936662225.0	936662225.(

movie title release decade release year release month total gross inflation adjusted gros

587 rows × 14 columns

```
In [44]: display_histogram(
        effective_df=lt_1e9_df,
        feature="inflation_adjusted_gross",
        target="release_decade",
        maxbins=10,
)
```

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.
for col_name, dtype in df.dtypes.iteritems():

Distribution: Inflation Adjusted Gross

Similarly, we may want to exclude films with inflation_adjusted_gross $>= $5*10^8$.

Films With Inflation Adjusted Gross Greater Than/Equal To \$5*10^8.

Let's take a closer look at films which meet and exceed this threshold.

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gros
0	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+0!
1	Song of the South	1940	1946	11	65000000.0	1.078511e+0!
2	Fantasia	1940	1940	11	83320000.0	2.187091e+09
3	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
13	20,000 Leagues Under the Sea	1950	1954	12	28200000.0	5.282800e+0{
14	Cinderella	1950	1950	2	85000000.0	9.206087e+08
15	Lady and the Tramp	1950	1955	6	93600000.0	1.236036e+09
23	The Jungle Book	1960	1967	10	186185956.0	8.785427e+0{
24	101 Dalmatians	1960	1961	1	289189294.0	1.621600e+0!
331	The Lion King	1990	1994	6	422780140.0	7.616409e+0
503	Finding Nemo	2000	2003	5	380529370.0	5.181486e+0
504	Pirates of the Caribbean: Dead Man'	2000	2006	7	423315812.0	5.448171e+0{
590	Rogue One: A Star Wars Story	2010	2016	12	529483936.0	5.294839e+0{
591	The Avengers	2010	2012	5	623279547.0	6.600812e+08

```
Star Wars

Ep. VII: The
Force
Awakens

Star Wars

2010
2015
12
936662225.0
9.366622e+08
```

```
In [46]: display_histogram(
        effective_df=geq_5e8_df,
        feature="inflation_adjusted_gross",
        target="release_decade",
        maxbins=10,
)
```

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.
for col_name, dtype in df.dtypes.iteritems():

Out[46]:

Distribution: Inflation Adjusted Gross

This is really interesting. We now have more recent films included in this data as the 1990s, 2000s, and 2010s are present in the data which meets this threshold. Let's look at the data visualized here which was released past the 1960s.

Films Released Past 1960s Which Meet Threshold

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.
 for col_name, dtype in df.dtypes.iteritems():

Out[47]:

Distribution: Inflation Adjusted Gross

Observations

- There are 2 films from the 2000s which have grossed between \$5.0-5.5*10^8 when adjusted for inflation.
- There are 3 films from the 2010s which have grossed >= \$5*10^8 when adjusted from inflation.
 - One of these films from the *2010*s have grossed between \$9.0-9.5*10^8 which is highly interesting.
- There is 1 film from the 1990s which has grossed between \$7.5-8.0*10^8. This seems to be a sole project from this decade which has passed this threshold, which is interesting as well.

C:\Users\Muntakim\AppData\Local\Temp\ipykernel_13488\3979521889.py:1: SettingWithC
opyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
 geq5e8_1960s_df.sort_values(

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
0	Star Wars Ep. VII: The Force Awakens	2010	2015	12	936662225.0	936662225.0
1	The Lion King	1990	1994	6	422780140.0	761640898.0
2	The Avengers	2010	2012	5	623279547.0	660081224.0
3	Pirates of the Caribbean: Dead Man'	2000	2006	7	423315812.0	544817142.0
4	Rogue One: A Star Wars Story	2010	2016	12	529483936.0	529483936.0
5	Finding Nemo	2000	2003	5	380529370.0	518148559.0

This is pretty interesting. Most of these are franchise films.

The outliers are:

- Finding Nemo was a **Pixar** film prior to the **Disney** acquisition.
- The Lion King is a standalone animation.

Star Wars Films

What made *Star Wars Ep. VII: The Force Awakens* such a major success in this time period? Let's look at the other films in the **Star Wars** franchise.

	movie_title	reiease_decade	reiease_year	release_month	total_gross	inflation_adjusted_gros
590	Rogue One: A Star Wars Story	2010	2016	12	529483936.0	529483936.0
592	Star Wars Ep. VII: The Force Awakens	2010	2015	12	936662225.0	936662225.(

We only have data for 2 of the films in the **Star Wars** franchise. This is an implicit data sparsity issue as there are 10 films in the franchise.

This dataset should be updated to reflect the box office history for this franchise prior to the **Disney** acquisition of **Lucasfilm** as well as to reflect the box office history for the *Star Wars* films released after the acquisition.

Films With Inflation Adjusted Gross Less Than \$5*10^8.

```
In [50]: lt_5e8_index = [i for i in complete_df.index if i not in geq_5e8_df.index.to_list()
    lt_5e8_df = complete_df.loc[lt_5e8_index].reset_index(drop=True)

display(lt_5e8_df)
```

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gros
0	Dumbo	1940	1941	10	NaN	Nan
1	Bambi	1940	1942	8	NaN	Nan
2	Saludos Amigos	1940	1943	2	NaN	Nan
3	The Three Caballeros	1940	1945	2	NaN	Nan
4	Make Mine Music	1940	1946	4	NaN	Nat
•••						
573	Frozen	2010	2013	11	400738009.0	414997174.(
574	Iron Man 3	2010	2013	5	408992272.0	424084233.0
575	Toy Story 3	2010	2010	6	415004880.0	443408255.0
576	Avengers: Age of Ultron	2010	2015	5	459005868.0	459005868.0
577	Finding Dory	2010	2016	6	486295561.0	486295561.(

578 rows × 14 columns

```
In [51]: display_histogram(
    effective_df=lt_5e8_df,
    feature="inflation_adjusted_gross",
    target="release_decade",
    maxbins=10,
)
```

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.
 for col_name, dtype in df.dtypes.iteritems():

Distribution: Inflation Adjusted Gross

It's appears that there is a **exponential decay**-like relationship between inflation_adjusted_gross and the record count . **Disney**'s historical track record tends towards outputting films with relatively lower inflation_adjusted_gross values.

This seems to be the case across the remaining decades here, with a few exceptions. The 2010s seem interesting. There are a few films which have inflation_adjusted_gross between \$2.0-2.5*10^8

Directors and Actors Exploration

Directors & Inflation Adjusted Gross

```
In [53]: display(exploration_df[exploration_df["director"].notna()].head())
```

		movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
	0	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09
	3	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
	2	Fantasia	1940	1940	11	83320000.0	2.187091e+09
	24	101 Dalmatians	1960	1961	1	289189294.0	1.621600e+09
	15	Lady and the Tramp	1950	1955	6	93600000.0	1.236036e+09
<pre>In [54]: display(exploration_df[exploration_df["director"].notna()].tail())</pre>				.())			
		movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
	71	The Great Mouse Detective	1980	1986	7	23605534.0	53637367.0
	69	The Black Cauldron	1920	1985	7	21288692.0	50553142.0
	527	Winnie the Pooh	2010	2011	7	26692846.0	28375869.0
	12	Sleeping Beauty		1959	1	9464608.0	21505832.0
	26	The Many Adventures of Winnie the Pooh	1970	1977	3	0.0	0.0
In [55]:	<pre>director_plots = display_concat_histograms(effective_df=exploration_df, feature="inflation_adjusted_gross", target="director", category_title="Grossing Films", maxbins=5, record_count=5</pre>						

record_count=5,

Lowest Grossing Films:

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross	
0	The Many Adventures of Winnie the Pooh	1970	1977	3	0.0	0.0	F
1	Sleeping Beauty	1950	1959	1	9464608.0	21505832.0	
2	Winnie the Pooh	2010	2011	7	26692846.0	28375869.0	
3	The Black Cauldron	1980	1985	7	21288692.0	50553142.0	
4	The Great Mouse Detective	1980	1986	7	23605534.0	53637367.0	

Highest Grossing Films:

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
42	Lady and the Tramp	1950	1955	6	93600000.0	1.236036e+09
43	101 Dalmatians	1960	1961	1	289189294.0	1.621600e+09
44	Fantasia	1940	1940	11	83320000.0	2.187091e+09
45	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
46	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.

for col_name, dtype in df.dtypes.iteritems():

Lowest Grossing Films: Distribution

From our data, we are able to look at 5 of the lowest grossing films and 5 of the highest grossing films out of the films with non-null director information.

We've accounted for duplicates and filtered them from the Highest Grossing Films:

Distribution . The decision was made to classify these with the Lowest Grossing Films:

Distribution as we can't really rely on these being projects we'd like to replicate in upcoming initiatives.

Starting with Highest Grossing Films:

• *David Hand* directed the highest grossing film when adjusted for inflation, which happens to be the highest grossing film in the entire dataset (i.e. *Snow White*).

Looking at Lowest Grossing Films:

- Wolfgang Reitherman directed the lowest grossing film when adjusted for inflation and another film which was included in the plot for the highest grossing films.
 - Perhaps his work isn't completely replicable. We might have to look into when his projects have been more/less successful financially.

Directors Ranked By Film Count

Let's look at the directors who have directed the most films in the dataset.

```
In [56]: # Get the Total Number of Films for Each Director.
    directors_df = ranked_df(complete_df, "director")
    display(directors_df)
```

	director	number_of_films
0	Wolfgang Reitherman	8
1	Ron Clements	8
2	Clyde Geronimi	4
3	Jack Kinney	4
4	Gary Trousdale	3
5	Mark Dindal	2
6	Hamilton Luske	2
7	Wilfred Jackson	2
8	Stephen J. Anderson	2
9	Robert Walker	2
10	Mike Gabriel	2
11	full credits	2
12	Ben Sharpsteen	2
13	David Hand	2
14	Chris Buck	2
15	George Scribner	1
16	Roger Allers	1
17	Will Finn	1
18	Byron Howard	1
19	Ted Berman	1
20	Chris Sanders	1
21	Chris Williams	1
22	Don Hall	1
23	Rich Moore	1
24	Ralph Zondag	1
25	Norman Ferguson	1
26	Nathan Greno	1
27	Barry Cook	1
28	Jon Favreau	1
29	Art Stevens	1

Wolfgang Reitherman's Films

That's interesting how *Wolfgang Reitherman* has directed the highest number_of_films given our prior observation of his films' ability to generate box office revenu. Let's query these and visualize them.

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
0	The Many Adventures of Winnie the Pooh	1970	1977	3	0.0	0.000000e+00
1	The Sword in the Stone	1960	1963	12	22182353.0	1.538708e+08
2	The Rescuers	1970	1977	6	48775599.0	1.597439e+08
3	The Aristocats	1970	1970	4	55675257.0	2.551615e+08
4	The Jungle Book	1960	1967	10	186185956.0	8.785427e+08
5	101 Dalmatians	1960	1961	1	289189294.0	1.621600e+09
6	The Aristocats	1970	1970	12	NaN	NaN
7	Robin Hood	1970	1973	11	NaN	NaN

```
In [58]: wolfgang_plots = display_histogram(
    effective_df=wolfgang_df,
    feature="inflation_adjusted_gross",
    target="count()",
    plot_title="Wolfgang Reitherman Film & Box Office Performance",
    maxbins=5,
)

display(wolfgang_plots)
```

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.

for col_name, dtype in df.dtypes.iteritems():

From this histogram, we can see that *Wolfgang Reitherman* has directed mostly films which have grossed between \$0.0-5.0*10^8 when adjusted for inflation.

He has directed 2 films which have grossed between \$5.0-20.010^8 when adjusted for inflation, which are The Jungle Book* and 101 Dalmatians. These are the 2 films which we saw were rereleased during our cleaning procedure.

Rereleased Films

This provides merit to **Disney**'s practice of rereleasing their major successes. Anecdotally, **Avatar**, **Spiderman**: **No Way Home** and a few more films have been rereleased in the past few years. These films are some of the highest grossing films of all time prior to being adjusted for inflation.

Avatar was a part of the **Fox** acquisition. This film itself is the 2nd highest grossing film of all time when adjusted for inflation.

Heroes & Inflation Adjusted Gross

Lowest Grossing Films:

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross	
	The Many Adventures of Winnie the Pooh	1970	1977	3	0.0	0.0	F
	Sleeping Beauty	1950	1959	1	9464608.0	21505832.0	
2	Winnie the Pooh	2010	2011	7	26692846.0	28375869.0	
3	The Black Cauldron	1980	1985	7	21288692.0	50553142.0	
4	The Great Mouse Detective	1980	1986	7	23605534.0	53637367.0	

Highest Grossing Films:

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
34	The Jungle Book	1960	1967	10	186185956.0	8.785427e+08
35	Cinderella	1950	1950	2	85000000.0	9.206087e+08
36	Lady and the Tramp	1950	1955	6	93600000.0	1.236036e+09
37	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
38	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.

for col_name, dtype in df.dtypes.iteritems():

Highest Grossing Films: Distribution

Lowest Grossing Films: Distribution

Starting with Highest Grossing Films:

- *Snow White* is the heroine of the highest grossing film when adjusted for inflation, which happens to be the highest grossing film in the entire dataset (i.e. *Snow White*).
- *Pinocchio* is the runner up for the hero in the highest grossing film when adjusted for inflation. This film was released in the *1940s*, which makes sense when considering our observation that the films released before and during the *1960s* had the highest inflation adjusted gross.

Looking at Lowest Grossing Films:

• Winnie the Pooh is the hero in the lowest grossing film when adjusted for inflation and another film in the group of lowest grossing films as well.

- Before we classify this character as a serial offender, we should recall that there is data sparsity and we need more data to make an informed decision whether or not to exclude him from upcoming projects.
- Note: I'm going to include an anecdotal observation from personal experience. I cannot identify the *Basit* and *Taran* characters in the plot for the lowest grossing films. These characters may perhaps not be well known by the general public. We might want to do some research to see whether the larger **Disney** audience can identify these characters and what their perspective on their respective films are.

Heroes Ranked By Film Count

Let's look at the heroes who have appeared in the most films.

```
In [60]: # Get the Total Number of Films for Each Hero.
heroes_df = ranked_df(complete_df, "hero")

display(heroes_df)
```

	hero	number_of_films
0	Winnie the Pooh	2
1	Donald Duck	2
2	Bernard and Miss Bianca	2
3	Moana	1
4	Mowgli	1
5	Mr. Toad and Ichabod Crane	1
6	Mulan	1
7	Oliver	1
8	Peter Pan	1
9	Pinocchio	1
10	Pocahontas	1
11	Pongo	1
12	Quasimodo	1
13	Ralph	1
14	Mickey Mouse	1
15	Rapunzel	1
16	Robin Hood	1
17	Simba	1
18	Snow White	1
19	Taran	1
20	Tarzan	1
21	Thomas and Duchess	1
22	Tiana	1
23	Tod and Copper	1
24	Milo Thatch	1
25	Ace Cluck	1
26	Maggie	1
27	Cinderella	1
28	Aladdin	1
29	Alice	1
30	Ariel	1
31	Arthur	1
32	Aurora	1

	hero	number_of_films
33	Bambi	1
34	Basil	1
35	Belle	1
36	Bolt	1
37	Dumbo	1
38	Aladar	1
39	Elsa	1
40	Hercules	1
41	Hiro Hamada	1
42	Jim Hawkins	1
43	Judy Hopps	1
44	Kenai	1
45	Kuzco	1
46	Lady and Tramp	1
47	Lewis	1
48	Lilo and Stitch	1

There isn't a hero who has appeared in a relatively higher number_of_films than the others. This makes it difficult to identify heroes which have consistently amounted to box office success.

Villains & Inflation Adjusted Gross

```
In [61]: villain_plots = display_concat_histograms(
    effective_df=exploration_df,
    feature="inflation_adjusted_gross",
    target="villain",
    category_title="Grossing Films",
    maxbins=5,
    record_count=5,
)

display(villain_plots)
```

Lowest Grossing Films:

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross	
0	Sleeping Beauty	1950	1959	1	9464608.0	21505832.0	(
1	The Black Cauldron	1980	1985	7	21288692.0	50553142.0	
2	The Great Mouse Detective	1980	1986	7	23605534.0	53637367.0	(
3	Treasure Planet	2000	2002	11	38120554.0	55189145.0	(
4	The Rescuers Down Under	1990	1990	11	27931461.0	55796728.0	

Highest Grossing Films:

	movie_title	release_decade	release_year	release_month	total_gross	inflation_adjusted_gross
30	Cinderella	1950	1950	2	85000000.0	9.206087e+08
31	Lady and the Tramp	1950	1955	6	93600000.0	1.236036e+09
32	Fantasia	1940	1940	11	83320000.0	2.187091e+09
33	Pinocchio	1940	1940	2	84300000.0	2.188229e+09
34	Snow White and the Seven Dwarfs	1930	1937	12	184925485.0	5.228953e+09

c:\Users\Muntakim\AppData\Local\Programs\Python\Python310\lib\site-packages\altair
\utils\core.py:317: FutureWarning: iteritems is deprecated and will be removed in
a future version. Use .items instead.

for col_name, dtype in df.dtypes.iteritems():

The 3 villains who I recognize from this list immediately are:

- Maleficient from Sleeping Beauty
- The Evil Queen from Snow White
- Lady Tremaine from Cinderella

The results here surprised me. I expected to see *Maleficient* in the Highest Grossing

Films: Distribution plot. This is a character who has multiple spin-offs and is a part of the *Maleficient* franchise. She is described to be "one of the most sinister **Disney** Villains" and is deemed to be an iconic character. It surprised me that the *Sleeping Beauty* film was the lowest grossing film in the dataset when adjusted for inflation.

Let's look at the villains who have appeared in the most films.

```
In [62]: # Get the Total Number of Films for Each Hero.
villains_df = ranked_df(complete_df, "villain")
display(villains_df)
```

villain number_of_films

	Villaili	number_or_mms
0	Alameda Slim	1
1	Professor Ratigan	1
2	Madam Mim	1
3	Madame Medusa	1
4	Maleficent	1
5	Mother Gothel	1
6	Mr. Winkie and The Headless Horseman	1
7	Percival C. McLeach	1
8	Prince Hans	1
9	Prince John	1
10	Professor Callaghan	1
11	Queen of Hearts	1
12	Amos Slade	1
13	Ringmaster	1
14	Scar	1
15	Shan Yu	1
16	Si and Am	1
17	Stromboli	1
18	Sykes	1
19	Turbo	1
20	Ursula	1
21	Willie the Giant	1
22	Lady Tremaine	1
23	Kron	1
24	Kaa and Shere Khan	1
25	John Silver	1
26	Captain Hook	1
27	Chernabog	1
28	Claude Frollo	1
29	Clayton	1
30	Commander Rourke	1
31	Cruella de Vil	1
32	Denahi	1

	villain	number_ot_tilms
33	Doris	1
34	Dr. Calico	1
35	Dr. Facilier	1
36	Edgar Balthazar	1
37	Evil Queen	1
38	Foxy Loxy	1
39	Gaston	1
40	Governor Ratcliffe	1
41	Hades	1
42	Horned King	1
43	Hunter	1
44	Jafar	1
45	Yzma	1

No villain has appeared in more than 1 film according to our dataset. I know this to be false as *Maleficient* has a spin-off film and is a part of the *Maleficient* franchise. We cannot perform the investigation of repeated appearances of villains in films as we don't have the data to do so.

villain number of films

Discussion

From this investigation, we were able to observe **Disney** films released through the decades. We were able to identify the most successful films and the least successful films over the years. It's evident that the **Golden Age** and **Silver Age** of **Disney** films (1930-1960s) were the most successful. This seems to be a "magical" period in **Disney**'s history. Even though the **Renaissance Era** (1980-1990s) was a period of success for **Disney**, it was not as successful as the **Golden Age** and **Silver Age**.

Assumptions

This aligns with what I expected to find as some of the highest inflation adjusted grossing films of all times are from this period (e.g. *Gone With the Wind, The Sound of Music, The Ten Commandments*). I didn't expect to find *Sleeping Beauty* being a relatively lower grossing film when adjusted for inflation. I was under the assumption that this is a **Disney** classic and its success sparked the creation of the *Maleficient* franchise.

Future Success

Based on our exploration, **Disney**'s best bets are to try to replicate the success of the **Golden Age** and **Silver Age**, however this seems rather complex. An easier route is to replicate more recent successes such as through standalone animations (*The Lion King*) and long-running franchises, especially those which were part of major acquisitions (**Marvel**, **Star Wars**, **Pixar**, **Fox**). We are missing data for entries in these franchises which makes it difficult to confirm the strong box office track record of these franchises. However, the *Avatar*, *Avengers*, *Star Wars* films are some of the highest inflation adjusted grossing films of all time.

Disney is in a good place to continue to replicate their success. They have a strong track record of success and have a large portfolio of franchises which have been successful. They have a strong pipeline of upcoming films which are expected to be successful.

Further Exploration

We were able to identify the *directors*, *heroes*, and *villains* who have been most successful in generating box office revenue. However, this latter exploration was limited by data sparsity. We did not gain conclusive evidence behind features which consistently contribute to success here. Ideally if we had more data, we would be able to identify these features and replicate them in upcoming projects.

Questions

I would like to conduct the following investigation based on director - actor projects and Inflation Adjusted Gross:

- Which top 5 actors-directors worked together most frequently?
 - What was the average inflation adjusted gross of their movies?

I would also like to have data on which production house each film falls under (e.g. **Pixar**, **Marvel**, **20th Century Studios**). This would allow us to investigate the success of each production house and which production houses we should be investing in.

Citations

These links provided the supplementary data to refute or complement the analysis in this notebook.

- Eras of Disney Cinema
- Highest Grossing Films Wikipedia Page
- Star Wars Wikipedia Page
- The Jungle Book Wikipedia Page
- Beauty and the Beast Wikipedia Page
- Maleficient Wikipedia Page

• Logistic Regression Data Sparsity Heatmap