

United States Department of Agriculture

Soil Conservation Service

Salt Lake City,

Utah Water Supply Outlook

June 1, 1986

Foreword

How Forecasts Are Made

Most of the annual streamflow in the Western United States originates as snowfall. This snowfall accumulates high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are viewed in conjunction with snowpack data to prepare runoff forecasts. This report presents a comprehensive picture of water supply outlook conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data and narratives describing current conditions.

Streamflow forecasts are cooperatively generated by Soil Conservation Service and National Weather Service hydrologists. Forecasts become more accurate as more data affecting runoff becomes known. For this reason, forecasts are issued that reflect three future precipitation conditions — Below Normal, Average, and Above Normal. These forecasts are termed reasonable minimum, most probable, and reasonable maximum. Actual streamflow can be expected to fall between the lower and upper forecast values eight out of ten years.

Snowpack data are obtained by using a combination of manual and automated measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthly or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation, temperature, and other parameters are monitored on a daily basis and transmitted via radio telemetry to central data collection facilities. Both monthly and daily data are used to project snowmelt runoff,

For More Information

Copies of Monthly Water Supply Outlook Reports and other reports may be obtained from the states listed below. Because of the limited space, snow survey measurements are not published in monthly reports. An annual snow survey data summary is published by the Soil Conservation Service for each of the western states. Historical snow survey data may be obtained at those same offices.

STATE	ADDRESS
Alaska	201 East 9th Ave., Suite 300, Anchorage, AK 99501-3687
Arizona	201 East Indianola, Suite 200, Phoenix, AZ 85012
Colorado (New Mexico)	2490 West 26th Ave., Denver, CO 80211
Idaho	304 North 8th Street, Room 345, Boise, ID 83702
Montana	10 East Babcock, Room 443, Federal Building, Bozeman, MT 59715
Nevada	50 South Virginia Street, Third Floor, Reno, NV 89505
Oregon	1220 Southwest 3rd Ave., 16th Floor, Portland, OR 97204

Utah 4402 Federal Building, 125 South State Street, Salt Lake City, UT 84147 Washington

360 U.S. Court House, Spokane, WA 99201

Wyoming Federal Building, 100 East "B" Street, Casper, WY 82602

In addition to state reports, a Water Supply Outlook for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 547, Portland, OR 97209.

Published by other agencies:

Water Supply Outlook Reports prepared by other agencies include: California - Snow Survey Branch, California Department of Water Resources, P.O. Box 388, Sacramento, CA 98502; British Columbia — The Ministry of Environment, Water Investigations Branch, Parliament Buildings, Victoria, British Columbia, V8V 1X5; Yukon Territory — Department of Indian and Northern Affairs, Northern Operations Branch, 200 Range Road, Whitehorse, Yukon Territory, Y1A 3V1; Alberta, Saskatchewan, and N.W.T. — The Water Survey of Canada, Inland Waters Branch, 110-12 Avenue S.W., Calgary, Alberta, T3C 1A6.

Utah Water Supply Outlook

and

Federal – State – Private Cooperative Snow Surveys

issued by

Wilson Scaling Chief Soil Conservation Service Washington, D. C.

Released by

Francis T. Holt State Conservationist Soil Conservation Service Salt Lake City, Utah

In cooperation with

Utah State Department of Natural Re Robert L. Morgan State Engineer Division of Water Rights

Prepared by

Jon G. Werner
Snow Survey Supervisor
Soil Conservation Service
125 So. State St., Fed. Bldg.
P. O. Box 11350
Salt Lake City, Utah 84147

Streamflow Prospects for Utah

- 1 BEAR RIVER BASIN
- 2 WEBER & OGDEN WATERSHEDS IN UTAH
- 3 UTAH LAKE, JORDAN RIVER & TOOELE VALLEY
 4 UNITAH BASIN & DAGGET SCD'S
 5 CARBON, EMERY, WAYNE, GRAND, & SAN JUAN CO.
 6 SEVIER & BEAVER RIVER BASINS
 7 E. GARFIELD, KANE, WASHINGTON, & IRON CO.

GENERAL OUTLOOK

SUMMARY:

Early May storms contributed more to the already heavy snowpacks on northern Utah watersheds and were responsible for bringing the Great Salt Lake to its historical peak of 4211.6 feet by mid-month. By month's end the Lake had set a new record elevation of 4211.8 feet with the new peak forecast set at 4212.0 feet. In contrast, sharp withdrawals of stored water in southwestern Utah reservoirs and extremely low streamflows are going to mean a shortened growing season.

SNOWPACK:

Snowpack across Utah varies from much above average in the north to almost melted in the south. The Bear, Weber and Provo River watersheds have from 50 to 70% more water in their snowpack than is normal for June 1. The Uintas have about 25% more snow water than normal. Southern Utah is quite a different story. Only a handful of snow courses at the highest elevations on the Lower Sevier and San Rafael River watersheds still have snow. The Beaver River watershed is still the exception in southern Utah with 160% normal snowpack for June 1.

PRECIPITATION:

Mountain precipitation varied widely across Utah. The Bear and Weber River watersheds had another month of above normal precipitation (the fifth and fourth month respectively). Mountain areas on the Lower Sevier and in extreme southern and southeastern Utah also had above normal precipitation. The central Uinta Mountain area received near normal precipitation. Mountain areas in the remainder of Utah had below normal rainfall in May. Seasonal precipitation accumulation (October-May) is greater than normal over the mountain areas of the entire state.

RESERVOIRS:

Storage of usable water in 23 key irrigation reservoirs in Utah is 93% of capacity and 120% of average for June 1. Deer Creek, Rockport and Echo reservoir have been held down in anticipation of high snowmelt runoff and are filling rapidly. Reservoirs in Washington County are being depleted rapidly and shortages are likley by August.

STREAMFLOW:

Forecasts on some of the streams that feed into the Great Salt Lake have increased from the levels forecast on May 1 due to heavy early May precipitation. Forecasts over the rest of the state are generally unchanged from last month. Forecasts range from 81% to 481% of normal across the state. High water is being experienced on the Weber and Provo with some localized flooding being reported and available storage in reservoirs being filled rapidly.

letin represent cooperative efforts of the Soil tional Weather Service in an effort to provide ter users and managers.

Bear River Basin

Mountain snowpack* (inches)

*Based on selected stations

Average ————

Current -

Precipitation* (percent of normal)

*Based on selected stations

Monthly precipitation

Year to date precipitation

WATER SUPPLY OUTLOOK:

Snowpack on the Bear River drainage is approximately one and one-half times normal for June 1. Logan River snowpack is also more than 50% greater than average. May precipitation at mountain stations was 153% of average (the fifth consecutive month of above normal precipitation). Reservoir storage is 95% of capacity and 119% of average. Streamflow forecasts are unchanged from last month ranging from 118% to 204% of average.

For more information contact your local Soil Conservation Service office:

Tremonton Field Office 801-257-5403 Logan Field Office 801-753-5616

BEAR RIVER BASIN

STREAMFLOW FORECASTS

	AVE .	MOST PROBABLE	MOST PROBABLE	REAS: MAX:	REAS, MON.	PEAK FLOW	PEAK	LOW FLOW	L.N.H. DATE
F F.KJ.!IU	(1000HF)	(1000HL)	(% HVE))	(% H/E)	(% HVE))	(1,53)	1714 1 E.	(CFS)	URIE
MAY-JUL	105.0	150,0	143			2038			
MAY-JIIL.	116.0	162.0	140						
HAY-JUL	15.1	21.3	142			333			
APR-JUL	5.3	9.5	179			90			
MAY-JUL	82,0	168.0	205						
APR-SEP	35.0	57.0	163	183	143				
APR-SEP	119.0	166.0	139	160	119				
APR-SEP	310.0	463.0	149						
MAY-JUL	101.0	145.0	104			1309			
MAY-JUL.	38.0	57.0	150						
MAY-JUN	26.0	35,0	135			649			
HAY-JUL	42.9	51.0	117						
	PERTOD HAY-JUL MAY-JUL APR-JUL APR-SEP APR-SEP APR-SEP MAY-JUL MAY-JUL MAY-JUL MAY-JUL	PERIOD (1000AF) MAY-JUL 105.0 MAY-JUL 116.0 MAY-JUL 15.1 APR-JUL 5.3 MAY-JUL 82.0 APR-SEP 35.0 APR-SEP 119.0 APR-SEP 310.0 MAY-JUL 101.0 MAY-JUL 38.0 MAY-JUL 38.0	PERTOD (1000AF) PROBABLE (1000AF) MAY-JUL 105.0 150.0 MAY-JUL 116.0 162.0 MAY-JUL 5.3 9.5 MAY-JUL 82.0 168.0 APR-SEP 35.0 57.0 APR-SEP 310.0 463.0 MAY-JUL 101.0 145.0 MAY-JUL 38.0 57.0	PERTIOD AVE (1000AF) PROBABLE (1000AF) PROBABLE (2 AVE) MAY-JUL 105.0 150.0 143 MAY-JUL 116.0 162.0 140 MAY-JUL 15.1 21.3 142 APR-JUL 5.3 9.5 179 MAY-JUL 82.0 168.0 205 APR-SEP 35.0 57.0 163 APR-SEP 119.0 166.0 139 APR-SEP 310.0 463.0 149 MAY-JUL 101.0 145.0 104 MAY-JUL 38.0 57.0 150 MAY-JUN 26.0 35.0 135	PERIOD AVE (1000AF) PROBABLE (1000AF) PROBABLE (X AVE.) MAX. (X AVE.) MAY-JUL 105.0 150.0 143 MAY-JUL 116.0 162.0 140 MAY-JUL 15.1 21.3 142 APR-JUL 5.3 9.5 179 MAY-JUL 82.0 168.0 205 APR-SEP 35.0 57.0 163 183 APR-SEP 119.0 166.0 139 160 APR-SEP 310.0 463.0 149 MAY-JUL 101.0 145.0 104 MAY-JUL 38.0 57.0 150 MAY-JUN 26.0 35.0 135	PROBABLE PROBABLE HAX. H3N.	PERIOD AUE, (1000AF) PROBABLE (1000AF) PROBABLE (X AUE,) MAX, (X AUE,) MAY, (X	Pertod Pertod Probable Probable Hax. Hax. Flow Cefs Date	Pertod Ave. Probable Hax. (% Ave.) (% Ave.)

RES	SERVOIR STORAGE		(1000AF)	! !	MATERSHED S	NONPACK AN	ALYSIS		
RESERVOIR		THIS	EABLE STOF	 AGE **	WATERSHED	אח. COURSES	ìHIS	YEAR	AS % OF
		YEAR	YEAR	AVE: I		AVE , D	LáSì	YR.	AVERAGE
BEAR LAKE	1421.0	348.0	1263.0	1130.7	BEAR RIVER, UPPER IN UTA	H 4	586		1434
HYRUM	15.3	12.7	15.5	14.7	BEAR RIVER, LOWER IN UTAI	1 6	103		1580
PORCUPINE	11.3	11,4	11,0	10.9	BEAR RIVER DRATNAGE IN U	r 10	1134		1510
WOODRUFF NARROWS	55.8	59.4	59.4		BEAR RIVER, UPPER (above	4	586		145
WOODRUFF CREEK	3.5	4.0	3,5		BEAR RIVER, LOWER (bolow	5	1:03		161
				212	BEAR RIVER DRAINAGE	8	967:		151
					LOGAN RO.VER	4	* d		157.
					RAFT RIVER	0	Q		Q
					BEAR RIVER BASIN	i.1	1207		154

^{*}Corrected for upstream diversions or changes in reservoir storage.

Average is for 1961-80 period.

Weber & Ogden Watersheds

Mountain snowpack* (inches)

Precipitation* (percent of normal)

*Based on selected stations

WATER SUPPLY OUTLOOK:

Snowpack on the Weber River drainage is nearly 70% above average for June 1. Ogden River snowpack is 56% greater than normal. Mountain precipitation for the fourth consecutive month was greater than normal with May precipitation at 140% of average. Reservoirs are storing 90% of capacity and 100% of average for the first of June. Forecasts of May through June streamflow are higher than the May 1 forecasts due to the heavy early May precipitation. Forecasts range from 161 to 248% of average.

or more information contact your local Soil
Conservation Service office;
Layton Sub Office 801-544-0174

WEBER & OGDEN WATERSHEDS in Utah

ς.	rpF	AMEI	nμ	FORE	PACT	C

FORECAST POLNI	FORECAST	20 YR, AUE,	MOST PROBABLE	MOS (REAS:	REAS, MIN.	PEAK FLOH	PEAK	LON FLON	l'uni
	PERIOD		(1000AF)					DATE	(CFS)	DATE
EBER RIVER near Oaklev	MAY-JUN	1893.0	170.0	183			2511			
OCKPORT RESERVOIR inflow	MUL-YAM	196.0	1217.0	226						
HALK CREEK near Coalville	MUL-YAM	-2940	62.0	1214			1005			
EBER RlVER near Coalville	MUL-YAM	98.0	202.0	1206						
DSI CREFK near Crovden	MAY-JUN	11.2	22.8	204						
AST CANYON CREEK near Mongan	MIJL-YAH	16.3	27.0	166						
ARDSCRABBLE CREEK near Porterville	APR-JUN	18,4	3040	163						
OUTH FORK OGDEN RIVER near Huntsvil	MUL-YAM	41.0	68.0	166						
INEVIEW RESERVOIR inflow	MAY-JUN	7410	143640	184						
CHO RESERVOIR inflow	MUL-YAH	.428.0	240.0	188						
EBER RIVER at Gateway	APR-JUN	36000	575.0	1192						
ARMINGTON CREEK near Farmington	MAY-JUL	*617	>1218	. 791						

	RESERVOIR STORAGE		(1000AF)	1 1 1	I MATERSHED SNOWPACK ANALYSTS I						
RESERVOIR	USEABLE CAPACITY 	** USE THIS YEAR	EABLE SIOR LAST YEAR		WA (ERSHED	NO. COURSES AVE.D		EAR AS % OF			
CAUSEY	6.9	6,5	7.0	6.3	OGDEN RIVER	4	0	156			
EAST CANYON	48.1	46.2	48.7	46.8	MEBER RIVER	9	752	169			
E.CHO	73.9	56.1	73.8	6516	MEBER & OCDEN MATERSHEDS	13	1112	164			
LOS! CREEK	20,0	19.2	20.4	19,1			Late:				
PINEVIEW	110.1	103.4	110.2	99.2							
ROCKPORT	60.9	40.9	62.4	47.2			1				
HILLARD BAY	165,5	163,9	165.5	152.7							

^{*}Corrected for upstream diversions or changes in reservoir storage. Average is for 1961-80 period.

Utah Lake, Jordan River & Tooele Valley

Mountain snowpack* (inches)

Precipitation* (percent of normal)

*Based on selected stations

Monthly precipitation

Year to date precipitation

WATER SUPPLY

Snowpack on the watershed which drains into Utah Lake is nearly 50% greater than average. Provo River snowpack contains almost 60% more water than is normal for the first of June. Precipitation at mountain stations was generally below average during May with the exception of Trial Lake which received 121% of average. Reservoir storage is 79% of capacity and 87% of average with Deer Creek being held down. Heavy early May precipitation increased some forecasts. Forecasts range from 92 to 241%.

For more information contact your local Soil Conservation Service office:
Midvale Field Office 801-524-4373
Provo Field Office 801-377-5580

UTAH LAKE, JORDAN RIVER & TOOELE VALLEY

STREAMFLOW FORECASIS

FORECAST POINT	FORECAS!	AVE :		MOSI PROBABLE (% AVE.)	(% AVE.)	(% AUE,)		L NN FLOW (CFS)	DVLE
ROVO near Hailstone	MAY-JUL	9410	190.0	202			 	***************************************	
ROVO below Deer Creek Dam	HAY-JUL	96.0	187.0	195					
MERICAN FORK near American Fk,	HAY-JUL	28.0	58.0	207					
OBBLE CREEK near Springville	HAY-JUL	13.3	25,0	188					
TRAMBERRY RESERVOTR inflow	APR-JUL	72.0	130.0	181					
AYSON CREEK near Payson	HAY-JUL	4.4	7.0	159					
TAH LAKE inflow	HAY-JUL	166.0	400,0	241			*		
IITLE COIIONWOOD CRK near SLC	JUL-YAK	36.0	49.0	136					
CG COTTONWOOD CRK mear SLC	MAY-JUL	33.0	49.0	148					
ARLEY'S CEEK near SLC	HAY~JUL	11.3	19.0	168					
CLL CREFK near SLC	HAY-JUL	5.0	9,5	190					
MIGRATION CREEK near SLC	MAY-JUL	245	65-01	240					
TY CREEK near SLC	MAY-JUL	6.8	10.0	152					
ETTLEMENT CREEK near Incele	HAY-JUL	2.1	2.7	129					
OUTH WILLOW CREEK near Grantsville	MAY-JUL	2,7	2.5	93					
ERNON CREEK near Vernon	MAY-JUN	535.0	856.0	160					

	RESERVOIR STORAGE		(1000AF)	1 ! !	MATERSHED SN	ЮИРАСК АМ	IALYSTS		
RESERVOIR	USEABLE I CAPACITYI I	** USE THTS YEAR	ABLE STOR LAST YEAR	 AGE	HATERSHED	NO, COURSES AVE,D		YEAR	AS % OF
DEER CREEK	149.7	117,5	151.0	135.9	PROVO RIVER & UTAH LAKE	6	463	10.4	148
GRANTSVILLE	3,3	3.3	4		PROVO RIVER	3.	920		158
SETTLEMENT CREEK	1,0	1.0	1.0	0,8	JORDAN RIVER & GREAT SALT	5	0		189
TRAMBERRY-ENLARGED	951.4	509.0	376.8)	TODELE VALLEY WATERSHEDS	0	0		· 0
TAH LAKE	883.9	1279.0	1236.7		UTAH LAKE, JORDAN RIVER &	11	923		167
PERNON CREEK	0.6	0.6	0.6	0.5					

*Corrected for upstream diversions or changes in reservoir storage.
Average is for 1961-80 period,

Uintah Basin & Dagget SCD's

Mountain snowpack* (inches)

Average -----

Precipitation* (percent of normal)

*Based on selected stations

Monthly precipitation

Year to date precipitation

WATER SUPPLY OUTLOOK:

Snowpack over the Uintas is 18% greater than normal on the tributaries to the Green River on the north slope and east end of the south slope and 26% above average on the Duchesne and its tributaries. Mountain precipitation was varied ranging from much above average on the west end to much below average on the east end. Reservoirs are 96% of capacity and 122% of average storage for June 1. Streamflow forecasts are unchanged from the levels forecast a month ago and range from 138 to 279% of average.

For more information contact your local Soil Conservation Service office: Roosevelt Field Office 801-722-4621

UINTAH BASIN & DAGGET SCD'S

STREAMFLOW FORECASIS

FORECAST POLNT	FORECAST	20 YR, AUE:	MOST PROBABLE	MOST PROBABLE	REAS, MAX,	REAS:	PEAK FLOW	PEAK	LOM FLOM	r'uñ
	PERIOD					(% AUE:)		DATE	(CFS)	DATE
NCHESME RIVER near Tabions	MAY-JUL	96.0	183.0	191						
UCHESNE RIVER near Duchosne	APR-JUL	189.0	344.0	182						
TRAMBERRY RIVER at Duchesne	APR-JUL	58.0	144.0	248			1050			
OCK CREEK near Mountain Home	JUL-YAM	88.0	163.0	185						
URRANT CREEK near Fruitland	MAY-JUL	16.6	30.0	181						
AKEFORK RIVER near Mountain Home	HAY-JUL	67.0	104.0	155						
ELLOWSTONE RIVER near Altonah	MAY-JUL	61.0	95.0	156						
UCHESNE near Myton	JIJL-YAN	186.0	598.0	322						
HIFE ROCKS RIVER near Whiterocks	MAY-JUL	56.0	91.0	163						
INTAH RIVER near Neola	HAY-JUL	81.0	135.0	167						
UCHESNE near Randlett	APR-JUL	257.0	709,0	276						
ES) FORK DUCHESNE RIVER near Hanna	APR-JUL	26.0	49.0	188						
EMRY'S FORK near Manila	APR-SEP	48.0	74.0	154						
LACK'S FORK near Millburne	APR-JUL	90.0	133.0	148						
LAMING GORGE RESERVOIR inflow	MAY-JUL	1080.0	2050.0	190						
SHLEY CREEK near Vernal	JIIL-YAK	49.0	72.0	147			1450			

1	RESERVOIR STORAGE		(1000AF)	! !	MATERSHED SN	IOMPACK AN	ALYSIS	
RESERVOIR	USEABLE I CAPACTIYI		EABLE STOF LAST YEAR	۱ ** AGE ۱ AVE	WATERSHED	NO. COURSES AVE.D		 AS % OF
FLAMING GORGE	3749.0	2924.0	3354.0	 	UPPER GREEN RIVER in UTAH	8	481	 118
HOON LAKE	35.8	35.8	30,1	18.0	ASHLEY CREFK	2	.30	1.6
RED FLEET	26.0	29.9	25.6	 	BLACK'S FORK RIVER	3	312	136
STEXNAKER	33.3	33.0	33.3	26.9 I	SHEEP CREEK	2	0	157
STARVATION	165,3	157.0	168.5	128.9	DUCHESNE RIVER	10	348	126
STRANBERRY-ENLARGED	951.4	509.0	37818		LAKE FORK-YELLOWSTONE CRE	2.	234	138
					STRAMBERRY RIVER	4	220	50
					UINTAH-HHITEROCKS RIVERS	i	à =0	63
					UTNIAH BASIN & DAGGET SCD	19	322	176

^{*}Corrected for upstream diversions or changes in reservoir storage.

Average is for 1961-80 period.

Carbon, Emery, Wayne, Grand, and San Juan Co.

Precipitation* (percent of normal)

*Based on selected stations

Monthly precipitation

Year to date precipitation

WATER SUPPLY OUTLOOK:

Snowpack on the snow courses of southeastern Utah has been nearly depleted by melt with the exception of a few of the highest sites on the tributaries to the San Rafael. Near normal precipitation was the rule during May with mountain stations average 98% of normal for the month. Reservoir storage is 96% of capacity and 107% of average. Streamflow forecasts are the same as forecast a month ago. Forecasts range from 91 to 192% of average.

For more information contact your local Soi Conservation Service office:
Price Field Office 801-537-0041

CARBON, EMERY, WAYNE, GRAND, & SAN JUAN Co.

~	COCAMEL	OH	500	COAL	2.7.5

FORECAST POLNT	FORECAS:	AUE.	MOST PROBABLE (1000AF)		REAS: MAX: (% AVE;)	REAS, MIN. (% AUE,)	PEAK FLOW (CFS)	PEAK DA FE	LON FLON (CFS)	DA CE
GOOSEBERRY CREEK near Scofield	MAY-, II)L	10.0	12.0	120		a case man and and the face from the and and and		and and and and and and and		
SCOFIFLD RESERVOIR inflow	JUL-YAM	33.0	54.0	164						
PRICE near Heiner	MAY-JUL	56.0	100,0	179						
HUNTINGTON CREEK near Huntington	MAY-JUL.	43.0	67.0	156						
COTTONWOOD CREEK near Orangeville	MAY-JUL	43.0	0.03	140						
FERRON CREEK near Ferron	MAY-, IUL	34,0	49.0	144			720			
HIDDY CREEK near Emery	APR-JUL	18,5	24,0	130			280			
COLORADO near Cisco, UT	HAY-JIIL	2638.0	5000.0	190						
OREEN near Green Rv., Uf	MAY-JUL	2594.0	5000.0	193						
MILL CREEK near Moab	MAY-JIIL	4.7	4.3	91						
NAVAJO RESERVOTR inflow	MAY-IIIL	540.0	1000.0	185						
GAN JUAN near Bluff, UT	MAY-JIII	793.0	1350.0	170						
SEVEN HILE CREEK near Fish Lake	APR-JUL	6.5	6.5	100						

· .	RESERVOIR STORAGE (1000AF)				I NATERSHED SNOWPACK ANALYSIS I					
RESERVOIR	USEABLE I CAPACITYI	THIS LAST		I AGE ≭≭ I I AVE, I	HA (ERSHED	NO. COURSES	THIS YEAR AS % OF			
HUNTINGTON NORTH	3,9	3,7		HVE.+	DETER DEUT D	0, 3vv				
		317	3.8		PRICE RIVER	2	0	0		
UNE'S VALLEY	54.6	41.7	56.5	54.5	SAN RAFAEL RIVER	4	449	79		
KEN'S LAKE	2,3	2,1	2.1		HUDDY RICVER	2.	0	0		
HILL SITE	16.7	16.7	16.7		FREMONT RIVER	٥	0	ø		
SCOFIELD	45+8	.73+8-	70.3	53.8 4	LASAL MOUNTAINS	l .	0	0		
			H. de		BLUF MOUNTAINS	1	0	0		
					CARBON, EMERY, MAYNE, GRA	11	449	46		
				J						

xCorrected for upstream diversions or changes in reservoir storage. Average is for 1961-80 period;

Sevier & Beaver River Basins

Mountain snowpack* (inches)

*Based on selected stations

Maximum Average ————
Minimum Current ————

Precipitation* (percent of normal)

*Based on selected stations

Monthly precipitation

Year to date precipitation

and equal to the second

WATER SUPPLY OUTLOOK:

Snowpack on both the Fast Fork and South Fork of the Sevier has melted off all snow courses. The Lower Sevier, including the San Pitch, is 82% of the June 1 average. Snowpack on the Beaver River remains well above average at 160% of the June 1 norm. May precipitation at mountain stations ranged from well below average on the Upper Sevier to well above average on the Lower Sevier. Reservoir storage is 95% of capacity and 176% of average. Streamflow forecasts are unchanged ranging from 81 to 481% average.

For more information contact your local Soil Conservation Service office: Richfield Field Office 801-896-6261 Fillmore Field Office 801-743-6655

SEVIER & BEAVER RIVER BASINS

STREAMFLOW FORECASTS

		.717(2.1	HELLOW FORE						
FORECAST POINT	FORECAST PERIOD	AUF:	MOST PROBABLE (1000AF)		REAS: MIN: (% AVE.)	PEAK FLOW (CFS)	PEAK DATE	LOW FLOW (CFS)	L DM DATE
	~~~~~~~				 				
SFUJER at Hatch	MAY-JUL	42,0	175.0	417					
SEVJER near Circleville	MAY-JUL	30.0	45.0	150					
SFUIFR near Kingston	HAY-JUL	22.0	25.0	114					
ANTIMONY CREEK near Antimony	HAY-,IIIL	5.7	8.5	149					
E F SEVIER near Kingston	HAYIIIL	12.5	20,0	160					
SEVTER blw Piute Dam	JIIL-YAM	. 33,0	38.0	115					
CLEAR CREEK near Sevier	MAY-JUL	16,2	22.0	136					
SIGURD to GUNNTSON	MAY-JUL	16.6	80.0	482					
KINGSION to VERNILLION DAM	MAY-JUL	28,0	55.0	196					
VERHILLION DAM to GUNNISON	MAYJIIL	19.0	45.0	342					
SALINA CREEK at Salina	HAY-JIIN	10.8	20.0	185					
SEVIER or Gunnison	HAY-JUL	41.0	115.0	280					
CHALK CREEK near Fillmore	MAY-JUL	13.2	13,3	101					
CHICKEN CREEK near Lovan	APR-JUL	3,5	4.2	120					
DAK CREEK near Dak City	<u> የ</u> ለያ-መኒ	1,1,	1,3	127					
EPHRAIM CREEK near Ephraim	маү-ди	8:3	12.0	145					
PLEASANT CREEK near Pleasant	нау-ли	7.9.	9,0	114					
BALl CREEK noar Nephi	MAY-JUL	10.8	8.8	81					
BEAUER RIVER near Beaver	MAY-JUL	21.0	35.0	167		450			
NORTH CREEK near Boaver (combined W	MAY~,UIL	12.7	20.6	162		1			
MINERSUCLIE RESERVOIR inflow	APR~JIIN	8.9	18.0	202					
				CNC					

	RESERVO (R	RESERVO (R. STORAGE		(3A000	 	WATERSHED SMOWPACK ANALYSTS					
RESERVOTE		USFABLE   CAPACITY!	THTS	BLE STORA	1	MATERSHED	NO.	THIS	YFAP	AS % OF	
			YFAR	YEAR	AUF, I		AVE (D	LAST	YR:	AUFRAGE	
CHANTSON		18.2	18.2	18.2	13.4	UPPER SEUTER PTUER (south	7	0		8	
MINERSUILLE (RKVFd)		26.0	23.3	22.6	13.4	EAST FORK SEUTER RIVER	2	0-		0	
OTIFR CREEK		52,5	52.4	52.8	46.3	SOUTH FORK SEVIER RIVER	5				
PTHIF		71,B	63.6	60 to				0		0	
		71,0	03+0	69.1	39.0	LOWER SEUCER RIVER (inclu	9	191		82	
SEVIER BRIDGE		236.0	224.3	228.6	112.3	BEAUER RIVER	3	201	, (4)	160	
PANGUICTCH LAKE		22,3	21.0	22.1	1	SEUTER & BEAUER RIVER BAS		195		84	

*Corrected for upstream diversions or changes in reservoir storage.
Average is for 1961-80 period;

# E. Garfield, Kane, Washington, & Iron Co.

### Mountain snowpack* (inches)



*Based on selected stations



### Precipitation* (percent of normal)



*Based on selected stations

Monthly precipitation Year to date precipitation

# WATER SUPPLY OUTLOOK:

All snow courses in southwestern Utah are bare. Mountain precipitation during May varied widely ranging from less than half of normal at [al] Poles in Parowan Canyon to 25% above normal at [itt]e Grassy Creek above Enterprise. Reservoir storage is only 64% of capacity and, with heavy withdrawals being made, the irrigation season will likely be cut short due to water shortages without some rainfall relief. Coal Ck., Santa Clara, and Virgin R. forecasts are unchanged. Inflow to L. Powell increased.

For more information contact your local Soil Conservation <mark>Service offi</mark>ce: Cedar City Field Office 801-586-2429

#### E. GARFIELD, KANE, WASHINGTON, & IRON Co.

STREAMFLOW FORECASIS

		77112								
FORECAST POINT	FORECAST	20 YR.	MOST PROBABLE	MOST PROBABLE	REAS,	REAS:	PEAK FLOW	PEAK	I.OH Floh	l'Uñ
	PERIOD	(1000AF)	(1000AF)	(% AUE.)	(% AUE.)	(% AUE,)	(CFS)	DATE	(CFS)	DATE
VIRGIN near Hurricane	MAYNIN	40.0	99.0	100						
SANTA CLARA near Pinc Valley	MIJL-YAM	9.1	4.2	102						
COAL CREEK near Cedar City	MAY-JUL	15.4	20.0	130						
CONL CREEK HEST CEGST CICY	HHI I TOUSE	2009	2010	1.09						
LAKE PRHELL inflow	JIIL-YAK	6475.0	13000.0	201						

	RESERVOIR SIGRAGE	i !	I I WATERSHED SNOWPACK ANALYSTS I						
RESERVOIR	USEARLE CAPACITY	1 THTS	REABLE STO LAST YEAR	1	HA FERSHED	NO. COURSES AVE.D		EAR AS % OF	
CHAF OCK	10.4	7.4			VIRGIN RIVER	4	0	0	
LAKE POHELL	25002,0	22674.0	24296.0		PARONAN	?.	0	0	
QUAIL CREEK	40.0	27.0	1 -4	I	ENTERPRISE TO NEW HARMONY	?	0	0	
UPPER ENTERPRISE	10.0	5.0			COAL CREEK	2	0	ø	
LOMER ENTERPRISE	2:6	1,0		I	ESCALANTE RIVER	1	0	0	
					E. GARFTELD, KANE, WASHIN	8	0	•	

[#]Corrected for upstream diversions or charges in reservoir storage.

Average is for 1961-80 period.

# **Utah Snowpack Progress**



# **Statewide**

Average monthly snow water equivalent for the current water year is compared to 1961-80, 20 year average monthly snow water equivalent. Peak average snow water equivalent achieved on April 1 equals 100%.



# The Following Organizations Cooperate With The Soil Conservation Service In Snow Survey Work

#### State

Utah State University
Utah State Department of Natural Resources
Division of Wildlife Resources
Division of Water Resources
Division of Water Rights
Bear River Commissioner
Price River Commissioner
Provo River Commissioner
Sevier River Commissioners
Spanish Fork River Commissioner
Utah Lake and Jordan River Commissioner

#### Federal

- U.S. Department of Agriculture Soil Conservation Service Forest Service
- U.S. Department of Commerce NOAA, National Weather Service
- U.S. Department of Interior Bureau of Reclamation Geological Survey National Park Service

### Municipality

Manti Salt Lake City

#### Public

Beaver River Water Users Association
Board of Canal Presidents - Jordan River
Central Utah Conservancy District
Emery Canal and Reservoir Company
Moon Lake Water Users Association
Ogden River Water Users Association
Provo River Water Users Association
Strawberry Water Users Association
Sevier River Water Users Association
Weber River Water Users Association
Weber Basin Conservancy District

Other organizations and individuals furnish information for the snow survey reports. Their cooperation is gratefully acknowledged.

All programs and services of U.S. Dept. of Agriculture are available to everyone without regard to race, creed, color, sex, age, handicap, or national origin.