A Deep Learning Approach to Maximising the Utility of 5G Mobile Backhaul Networks

Rui Li, Chaoyun Zhang, Pan Cao, Paul Patras, and John S. Thompson | School of Informatics and School of Engineering, The University of Edinburgh

5G Networks

- Ramified use cases and distinct performance requirements
- Network virtualisation and densification
- Millimetre-wave (mm-wave) enables Multi-Gbps backhauls

Utility Framework

- Application scenarios -> utility functions
- Combing all known types of utility functions

Finding the Optimal Rate Allocation

- High-dimensional highly non-convex problem
- Global search can be time consuming
- Heuristic method can solve but sub-optimal

The Deep Learning Approach

Supervised learning with convolutional neural network (CNN)

- 10 stacks of convolutional layers + batch normalisation + SeLU
- Input: Flow demands $(d_{i,j})$ and minimum service rates $(\delta_{i,j})$
- Output: Predicted flow rate $(r_{i,j})$

Performance Evaluation

10,000 data points $\{d_{i,j}, \delta_{i,j}, r_{i,j}\}$

- Optimal solutions obtained from Global Search (GS)^[1]
- Benchmark: Light-weight greedy solution

Topologies

Total network utility distributions over 2k instances

- CNN: close to optimal in terms of median, quartiles, etc.
- Achieves up to 62% total utility gain over greedy

Per type utility allocation in a single instance

- CNN attains close to optimal allocations
- Greedy tends to starve Sigmoidal utilities

Computation Time

2000x faster than GS and 50x faster than Greedy

Acknowledgement: We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research