Profesorado Universitario de Biología y Matemática

UNIDADES DE MEDICIÓN

Parte 1

Cátedra: Química General e Inorgánica

Profesora: Esther Voiro

1° Cuatrimestre 2021

MAGNITUDES

MAGNITUD: es una propiedad de los cuerpos y elementos que permite que sean medibles.

Se clasifican en:

- MAGNITUDES ESCALARES: se representan con un número y una unidad, por ejemplo la temperatura, la longitud, el tiempo, etc.
- MAGNITUDES VECTORIALES: se representan con vectores que indican una dirección o sentido que se mide por medio de un sistema de coordenadas. Por ejemplo, la velocidad, la fuerza, la aceleración, entre otros.

¿QUÉ ES MEDIR?

* Medir es Comparar con un Patrón de medida.

- ❖ En el año 1960 en la Conferencia General de Pesos y Medidas se establece el SISTEMA INTERNACIONAL DE MEDIDAS (S.I).
- Se definen 7 unidades básica; de la combinación de ellas, surgen todas las demás.

Unidades Fundamentales del S.I

UNIDAD	NOMBRE DE LA UNIDAD	SÍMBOLO
LONGITUD	metro	m
MASA	kilogramo	kg
TEMPERATURA	kelvin	K
TIEMPO	segundo	S
CANTIDAD DE SUSTANCIA	mol	mol
CORRIENTE ELÉCTRICA	amperio	Α
INTENSIDAD LUMINOSA	candela	cd

Prefijos utilizados con el S.I

Prefijo	Símbolo	Significado	Ejemplo
tera-	T	10000000000000, o 10 ¹²	1 terámetro (Tm) = 1×10^{12} m
giga-	G	1000000000, o 10 ⁹	1 gigámetro (Gm) = 1×10^9 m
mega-	M	1000000, o 10 ⁶	1 megámetro (Mm) = 1×10^6 m
/ kilo-	k	1000, o 10 ³	1 kilómetro (km) = 1×10^3 m
deci-	d	1/10, o 10 ⁻¹	1 decímetro (dm) = 0.1 m
centi-	c	1/100, o 10 ⁻²	1 centímetro (cm) = 0.01 m
mili-	m	1/1 000, o 10 ⁻³	1 milímetro (mm) = 0.001 m
micro-	μ	1/1 000 000, o 10 ⁻⁶	1 micrómetro (μ m) = 1 × 10 ⁻⁶ m
nano-	n	1/10000000000, o 10 ⁻⁹	1 nanómetro (nm) = 1×10^{-9} m
pico-	p	1/1 000 000 000 000, o 10 ⁻¹²	1 picómetro (pm) = 1×10^{-12} m

SIMELA Sistema Métrico Legal Argentino

- Sistema de unidades vigente en Argentina, de uso obligatorio en ámbitos públicos y privados.
- Adopta las siete unidades fundamentales del Sistema Internacional
- ❖Rige a partir del año 1972.
- La actividad metrológica, científica e industrial estatal se efectúa a través del INTI.

Unidades Derivadas del S.I.

- Son las que surgen a partir de las diferentes relaciones entre las unidades fundamentales.
- Ejemplos: velocidad, aceleración, fuerza, etc.

$$v = \frac{\Delta d}{\Delta t} = \frac{m}{s}$$

- Las unidades que utilizaremos en química, mas frecuentemente, son: tiempo, masa, temperatura, volumen, densidad, energía, trabajo, etc.
- Nuevas definiciones de unidades fundamentales vigentes a partir del 20/05/2019

Recursos

Infografía: https://www.inti.gob.ar/assets/uploads/metrologia/poster.pdf

Nuevas definiciones: https://www.inti.gob.ar/areas/metrologia-y-calidad/si

