Zadanie 3

3.1 Opis problemu:

Sprawdzić rozmieszczenie liczb w arytmetyce float, dla różnych przedziałów. W przedziale [1,2],

z krokiem $\delta = 2^{(-52)}$. Jak wygląda rozmieszczenie w przedziale $[\frac{1}{2},1]$ i ogólnie.

3.2 Rozwiązanie:

Do rozwiązania użyjemy funkcji bits() oraz wiadomości z wykładu o reprezentacji zmiennopozycyjnej. Pierwsze rozwiązanie jakie nasuwa się na myśl to sprawdzenie różnicy pomiędzy każdą kolejną liczbą w przedziale [1,2], jednak w arytmetyce Float64, będzie ich aż 2⁵². Dlatego wyświetlimy sobie binarną reprezentację jedynki i sprawdzimy jaki krok możemy wykonać, biorąc pod uwagę cechę oraz część ułamkową mantysy. Dodatkowo sprawdzimy tylko jedną różnicę licz sąsiednich.

3.3 Wyniki:

prec: 2.220446049250313e-16

prec: 1.1102230246251565e-16

prec: 4.440892098500626e-16

3.4 Wnioski:

Dla przedziału [1,2] cecha wynosi 0 ponieważ obliczamy ze wzoru $c=(\tau-1023)$, gdzie $\tau-$ faktyczna wartość zapisana w biatch .

Następnie mamy 52 miejsca na część ułamkową mantysy. Dzięki czemu wiemy że najmniejszy krok jaki możemy wykonać to $2^{(-52)}$. Co jest zgodne z danymi podanymi w zadaniu.

Dla przedziału $\left[\frac{1}{2},1\right]$ cecha wynosi 1. Dalej mamy 52 miejsca na cześć ułamkową mantysy ale najmniejsza wartość będzie pomnożona przez 2^{-1} . Otrzymujemy zatem że najmniejszy krok jaki możemy zrobić w tym przedziale to $2^{(-53)}$. Wynik ten jest zgodny z obliczoną precyzją w programie. Zastanówmy się jak wyglądałby krok w dowolnym przedziale postaci $\left[2^{i},2^{(i+1)}\right]$. Najmniejszą liczbą

w tym przedziałe jest 2^i , zatem cecha wynosi i. Następnie mamy 52 bity części ułamkowej mantysy, zatem szukany przez nas krok jest równy $2^{(-52)}*2^i$. Co sprawdza się zadanych przedziałów.