





# SiD ECal Studies

A. Steinhebel, J. Carlson, E. Meyer, J. Brau University of Oregon

25 October, 2017

2017 Linear Collider Workshop



#### Electromagnetic Calorimeter Geometry

Solid state sampling calorimeter Tungsten alloy/silicon



• 1024 pixels per wafer

**ECal** 

- 13 mm<sup>2</sup> pixels
- Half-size pixels at center
- KPiX readout chip (shown in green)

View from down the beamline



#### Module Design

#### Thin W layers

Thick W lavers

- 12 identical
  - 20 thin (2.5 mm W, Si in 1.25 mm gap)
  - 10 thick (5 mm W, Si in 1.25 mm gap)
- Overlapping ends
  - No projective cracks





#### Previous Studies





Notes containing more details soon to be on Confluence: https://confluence.slac.stanfo rd.edu/display/SiD/Notes



#### Simulation Information

- Full detector simulation features full DD4HEP integration
  - Current version : SiD\_o2\_v02 (stainless steel HCal)
    - ilcsoft v01-19-04
  - Default ECal geometry driver features realistic geometry including overlapping module structure
  - Features standard Digitization and Reconstruction processors
    - RealisticCaloDigiSilicon
    - RealisticCaloRecoSilicon
- Presented studies of 250 GeV e<sup>+</sup>e<sup>-</sup> physics files
  - Preliminary results using 100 events
- Particle reconstruction by Pandora

All presented plots are preliminary!



#### Higgs → TauTau Studies (J. Carlson)

$$e^{+} + e^{-} \rightarrow Z + H$$

$$e^{+} + e^{-} \rightarrow Z + H$$

$$e^{+} + e^{-} \rightarrow Z + H$$

- Leptonic Z decays (all to electrons)
- Leptonic H decays to (all to taus)
  - Tau decays to rho





A. Steinhebel - U of Oregon

$$\gamma + \gamma$$



#### Goals of Study

- Investigate efficiency of ECal reconstructing  $\pi^0$  decays and how it affects  $\tau$  reconstruction
  - More difficult for boosted objects
  - Fairly clean sample (no jets)
- Find  $H \rightarrow \tau \tau$  branching fraction
- Amend ECal design and compare effect on relevant physics cases
  - 25 active layers

Data file: E250-TDR\_ws.Pe1e1h.Gwhizard-1\_95.eL.pL.I106475.001.stdhep



# Mass Distributions (w/truth information)



Mass of rhos from higgs to tau tau decay [GeV] rho mass Entries 182 794.4 16 Std Dev 133.7 400 500 600 700 800 900 1000 1100 1200 1300 rho mass [GeV]

100 events, any Higgs decay 12 mechanism allowed A. Steinhebel - U of Oregon

182 events with desired Higgs decay from sample of 10,000



#### Next Steps

- Generate mass distributions with reconstructed particles and compare to truth information
- Understand calorimeter energy contained within cone around  $\rho$  constituents
- Change ECal geometry (number of active layers) to see effect on mass distributions previously shown
  - Consider reducing number of active layers as cost-reduction strategy
- Eliminate truth information crutch to identify  $H \rightarrow \tau\tau$  events and branching ratio
- Compare to ILD study: <u>arXiv:1509.01885</u> [hep-ex]



## Dijet Studies (E. Meyer)





xy plane (down beamline)



#### Dijet Studies (E. Meyer)



True vector of highest p<sub>T</sub> initial quark = 'thrustaxis'

Angle between component particle and thrust axis **=0** 



#### Goals of Study

- Investigate efficiency of ECal reconstructing  $\pi^0$  decays in crowded environments
- Understand ECal's contribution to jet reconstruction
- Ensure that jet behavior is as expected within the detector
- Amend ECal design and compare effect on relevant physics cases
  - Pixel size

Data file:

 $E250\text{-}TDR\_ws.P2f\text{-}highM\_z\_h.Gwhizard-1\_95.eL.pR.I110011.001.stdhep$ 

# • SiD

#### Particle Distributions





- Both hemispheres reconstruct mean event energy within 10% of truth mean energy
- Symmetric energy reconstructed within each hemisphere (within errors)



#### Particle Distributions, Continued (Photons)





- Open question: Why are photons reconstructed under expected energy?
  - Often reconstructed with 67% of expected
  - In hemisphere 2, reconstructed with 57% of expected
- Equal photon energy depositions in each hemisphere (within errors)



#### Particle Distributions, Continued (Neutrons)





Hemisphere Two Individual Neutron Energies



- Open question: Large neutron flux
  - ~10x more reconstructed neutrons than true neutrons
  - From nuclear interactions with calorimeters? Poor neutral particle reco?
- Open question: High energy reconstructed neutrons with no true counterpart? 15

#### Jet Component Energy Fractions



**Photons** 





Reconstructed jets have more energy fraction in neutral hadrons and less from photons (as expected from previous "Open Questions")

#### Truth

#### Jet Energy

**Hemisphere** 

- Sum of all 100 events
- Energy
   contained
   within cone
   drawn around
   thrust axis
- Reconstructed photons / photons / neutrons contain nearly identical energy











#### Next Steps

- Understand photon reconstruction energy discrepancy
  - Some ILD hard-coded information hiding in Pandora?
- Understand neutron reconstruction
- Identify and reconstruct  $\pi^0$ 's within the jets from EM showers
- Change ECal geometry (pixel size) to see effect on  $\pi^0$  reconstruction performance

# Backup



#### Example Higgs — TauTau Event Display



yz plane



xy plane (down beamline)



#### Dijet Event Distributions

Events are roughly isotropic within the detector





#### Photon Energy Reconstruction

100 GeV photon beam at normal incidence after Pandora reconstruction



#### Spatial Neutron Distributions in Dijet Events





# True Jet Component Energies by Hemisphere





### Reco Jet Component Energies by Hemisphere



