DD2448 Foundations of cryptography

Homework	II
krypto18	

Persnr	Name	Email
941212-T437	Étienne	houze@kth.se
	Houzé	
123456-7890	Mohammad	mohammad@alkhwarizmi.hi
	Al-Khwarizmi	
123456-7890	Ada	ada@lovelace.hi
	Lovelace	

1 (2T) SOLVED

A proof by reduction is a means of proving that a cryptographic system is secrue. This proof is vastly inspired by the problem reduction often used in complexity theory. It conssists of finding a problem \mathcal{P} which is proved to be hard to solve, and reduce the breaking of the cryptosystem to the resolution of \mathcal{P} . Reducing the cryptosystem to \mathbb{P} means that solving the cryptosystem implies solving an instance of \mathcal{P} . Thus, if the cryptosystem is easy to solve, then \mathcal{P} should also be easy to solve. Since we know that \mathcal{P} is hard, then we have proved that the cryptosystem is at least as hard to solve.

 $\mathbf{2}$

2a (2T) SOLVED

The definition of a negligible function is: "a function $\epsilon : \mathbb{N} \to \mathbb{R}$ is negligible if and only if for every integer c there exists a rank n_c such that $\forall n > n_c, \epsilon(n) < \frac{1}{n^c}$ ". This implies that any negligible function tends to zero as n tends to infinity.

Moreover, let l be a polynomial function and let us call d its degree (d is finite). Let us prove that $l \times \epsilon$ is negligible.

Let c be an integer. Since ϵ is negligible, we know that there exists a rank n_0 such that for all $n > n_0$ we have $\epsilon(n) < n^{-c-d}$. Then we have for all $n > n_0$: $l(n) \times \epsilon(n) = Kn^{-c}$, where K is greater than the sum of all coefficients of l. Then there exists a rank n_1 such that, for all $n > n_1$ we finally have l(n) times $\epsilon n < n^{-c}$. So by definition, $l \times \epsilon$ is negligible.

- **2b** (1T) NOT SOLVED
- **2c** (2T) NOT SOLVED

3

- **3a** (1T) NOT SOLVED
- **3b** (1T) NOT SOLVED
- **3c** (1T) NOT SOLVED

- **3d** (1T) NOT SOLVED
- **3e** (2T) NOT SOLVED
- **3f** (2T) NOT SOLVED

4

- 4a (2T) NOT SOLVED
- **4b** (1T) NOT SOLVED
- 4c (3T) NOT SOLVED

5

- **5a** (7T) NOT SOLVED
- **5b** (3T) NOT SOLVED

6

- **6a** (4T) NOT SOLVED
- **6b** (2T) NOT SOLVED
- 7 (4I) NOT SOLVED
- 8 (3I) NOT SOLVED
- 9 (4I) NOT SOLVED
- 10 (2I) NOT SOLVED