Sistemas Realimentados - 2023/2

Nome: Luiza Batista Laquini

Data limite para entrega: 28/9 às 6hs

Trabalho 2 - O método do lugar das raízes

```
I=21; % Seu valor de I
[G1,G3,G4]=ini_t2(I);
datetime('now')
```

```
ans = datetime
28-Sep-2023 01:26:08
```

Atividade 1: Esboçar o lugar das raízes de $1 + KG_1(s) = 0$ para K > 0 e K < 0. Desenhe à mão, usando as propriedades de construção do LR, digitalize e insira abaixo a figura de forma bem visível. Incluir no esboço:

- 1.1 Raizes para K = 0 e $K \longrightarrow \infty$.
- 1.2 Pontos de passagem no eixo imaginário se houver.
- 1.3 As assíntotas e seus ângulos.
- 1.4 Ponto de interseção das assíntotas
- 1.5 Localização dos pontos de raízes múltiplas (encontro de polos)

```
G1
```

```
G1 =

21

s^3 + 58 s^2 + 792 s

Continuous-time transfer function.

Model Properties
```


33	190	792	101 22	Car Call (c)	LATER LANDS
82	58	21K	5017 X 80	0.5500	Rec (13) no tra
District of the last of the la	1-21K	0		o uza es	2 H's 11 ft.
sº 2	1K		10 10a	a 1 × K G f	wall or down of
				N+1	49186
Temos q	jue: 792			A / RANCING	
A STATE OF THE	21K	= 192		023/200	A service sectors and
	50				
0.50		2184.42	85 # 1	O set of care	LU Roless Roma K
052120		2184,42	85 \$1	genesis O	All length some K
fazende	K =			que tales	Lib Raiges station K
Fazendo	K= 583 ²	+ 21K =		· · · · · · · · · · · · · · · · · · ·	A DESCRIPTION OF A

· FAZENDO P/ K-O
83 1 492
∆2 58 -21K
51 (792+21K) O
s° -21K
<u> </u>
23 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Temos que: 792 + 21K = 0
38
21K = - ¥92 58 ×
58 ×
K=-218*, 4285*1
Fazenda: 58 s2 - 21 K = 0
$58x^2 = -45.936$
La se fazer a raiz, K vai assumir valores comp plexos, portante, para K<0 o LR mão toca o eixo
olora gortante para K<0 o LR mão toca o eiro
- press, possins, pr
imaginaris.

(13) Como mão há zeros, todos os polos totas Dessa forma, jó que termos	eaminham para as assim 3 polos, teremos 3 assintotas
Is ângules dessas assintetas são dad	os por: Malle Alle
Di=(2i+1) 180° p/ K>0 : (2i+	
$\theta i = \frac{(2i)180^{\circ}}{ m-m }$ $p/K = 0$: $\frac{(2i)180^{\circ}}{3}$	
(tilibra) (1.4) ademais, todos as assintat	

to sobre o eixo real, dado por:
σ = Σ polos de G1 - Σ geros de G1
m-m
0 = -36-22
0==-19,33
To 1 1 1 1 + I - a sing made has raises
(1.5) is portes de selo (pontes source à lite fait à la contra a
(1.5) Is portes de sels (pontes sobre à eixo real orde la raiges multiplas) devem satisfager d N(s)/D(s) = 0, ande a
WA
derivada de quociente nos leva a:
111 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N'(a) D(a) - N(a) D'(a) } onde N'(a) D(a) - N(a) D'(a) = 0 D(a) ²
D(S)
0 + + 1 1
Portante, para 21, temos:
5° + 58° + 792°
0 (x3+58x+792x)-21(3x2+116x+792)=0
$-63x^2 + 2436x + 16.632 = 0$
(1°=-29,81 € LRC) → K40
S"= - 8,86 € LR -> K>0
-> Cossimo 16 podemos esbocar o lucar das raises cara
Cassim, já podemos esboçar o lugar das raízes para K>O e para K <o calculados<="" com="" os="" parâmetros="" td=""></o>
1 - 0 x para 1 - 0 com os partigrados custados

Atividade 2: Seja o LR de $1+KG_2(s)=0$ mostrado, com G_2 da forma $G_2(s)=\frac{(s+z_1)(s+z_2)...}{(s+p_1)(s+p_2)...}$. Responder as perguntas abaixo, obtendo as informações aproximadas da figura:

imshow('fig2.png');

2.1 Quais são os polos e zeros de $G_2(s)$?

É possível ver na imagem que o sistema possui um zero no eixo real em aproximadamente -22 e 3 polos (pois, de acordo com a regra 2, o número de trajetórias é igual ao número de polos) localizados também no eixo real, sendo dois deles na origem e outro em aproximadamente -66.

2.2 Quais são as raízes quando $K \longrightarrow 0$ e quando $K \longrightarrow \infty$?

As raízes quando $K \longrightarrow 0$ são os polos de G2(s). Portanto, são os pontos -66 e 0 sobre o eixo real, sendo que na origem há dois.

Já as raízes quando $K \longrightarrow \infty$ são os zeros de G2(s). Portanto, é o ponto -22 sobre o eixo real e os infinitos que seguem as assíntotas: $(-22, \pm \infty)$

2.3 Para que valores de K > 0 e K < 0 esse sistema é estável?

O sistema é estável para todos os valores de $K \ge 0$, já que, como pode se observar na imagem, o LR está todo no semiplano esquerdo para esses valores. Entratanto, para os valores de K < 0, o sistema é instável, pois o LR de um dos polos da origem passa a ir para o semiplano direito no eixo real.

2.4 Obtenha os valores de K para os quais o par de polos complexos tem amortecimento $\zeta \ge 0.707$?

```
\zeta = \cos\beta
0.707 = \cos\beta
\beta = \cos^{-1}(0.707)
\beta = 45^{\circ}
```

O valor de amortecimento $\zeta \ge 0.707$ corresponde aos pontos dentro da área interna delimitada pelas retas de 45° traçadas para o semiplano esquerdo a partir da origem.

Tomei os pontos -50 do eixo real e ±50j do eixo imaginário para garantir que minha reta possuía 45° e, após traçá-la concluí que não há valores de K > 0 para os quais o par de polos complexos tem tal amortecimento, pois, apesar de para o polo mais à esquerda qualquer valor de K ser satisfatório, para o par de polos na região dominante, não há pontos de intersecção da reta de 45° (em vermelho) com o lugar das raízes, exceto por K=0:

Para K < 0 o LR fica todo no eixo real tal que, para os polos dominantes, um vai para infinito positivo e o outro encontra o zero. Com esse polo que vai para infinito positivo no eixo real o sistema se torna instável. Assim, também não há valores de K < 0 que satisfaçam o amortecimento de 0.707.

2.5 Obtenha os valores de K para os quais o tempo de estabelecimento atende $t_s \leq \frac{8}{I}$.

Sendo I = 21; $t_s \le 0,38$.

Sabemos que $t_s = \frac{4}{\zeta \omega n}$, onde $\zeta \omega n$ é a parte real.

Portanto, se desejamos que $t_s \le 0,38$, fazemos:

$$\frac{4}{\zeta \omega n} \le 0.38$$

 $\zeta \omega n \ge 10,53$

Assim, os valores de K para os quais o tempo de estabelecimento atende ao pedido são todos os valores no LR à esquerda da reta em 10,53:

Para estimar esses valores de K, pegaremos o ponto onde a reta imediatamente toca o LR e substituiremos na equação de G2. Já sabemos que a parte real é de 10,53 e, se traçarmos a direção correspondente no eixo imaginário, obtemos aproximadamente o valor de -28j, conforme a imagem abaixo:

Bastaria substituir s = $(10.53 , \pm 28j)$ em G2(s) para encontrar o valor de K que satisfaz a FT. entretanto não temos G2(s). Assim, vamos obtê-la com as informações que já temos e mais alguns cálculos:

Como já afirmamos na questão 2.1: o sistema possui um zero no eixo real em aproximadamente -22 e 3 polos, também no eixo real, sendo dois deles na origem e outro em aproximadamente -66. Sendo assim, trata-se de uma FT de 3ª ordem que, seguindo o formato $G_2(s) = \frac{(s+z_1)(s+z_2)...}{(s+p_1)(s+p_2)...}$ fornecido, é:

$$G_2(s) = \frac{(s+22)}{s^2(s+66)}$$

onde
$$1 + KG_2(s) = 0$$

então
$$1 + K \frac{(s+22)}{s^2(s+66)} = 0$$

$$G2 = tf([1,22],[1 66 0 0]);$$

Fazendo 'rlocus' para a G2 montada e clicando no ponto $s = (10.53, \pm 28j)$:

Portanto, $t_s \le 0.38$ é atendido para K $\ge 1.81e+03$, aproximadamente.

Vale lembrar que para K < 0 o sistema é instável, como afirmado anteriormente.

Atividade 3: Seja a FT de primeira ordem com tempo morto $G_3(s)$. Discretize esta FT obtendo $G_3(z)$ com tempo de amostragem igual a 1/5 do tempo morto, faça o LR discreto e responda as perguntas abaixo:

Como o tempo morto é de 9s, para discretizar a FT chamamos a função 'c2d' passando o tempo de amostragem de 1.8s para atender à especificação.

Agora, para se obter o LR chamamos a função 'rlocus'.

Model Properties

rlocus(G3d)

3.1 Identifique os polos e zeros de $G_3(z)$.

Não há zeros em G3(z) e há 6 polos, todos sobre o eixo real, sendo 4 deles na origem e 2 deles em +1.

3.2 Obtenha todos os valores de $K \in [-\infty, \infty]$ para os quais este sistema é estável.

O sistema é estável para os valores de K que mantém todos os polos dentro do círculo unitário.

• Quando K>0:

• Quando K<0:

Quando K é positivo e ultrapassa o valor de aproximadamente 0.63, a dupla de polos mais a direita sai do circulo unitário; E quando K é negativo e ultrapassa o valor de aproximadamente 0.1, o polo mais à direita sai do cirulo unitário. Por isso, o sistema é estável para $K \in [-0.1, 0.63]$.

OBS: Não foram exibidos nas imagens os valores dos ganhos dos 6 polos, pois, com pares conjugados, alguns valores se repetem.

3.3 Para que valores de K tem-se $UP \le 10\%$?

%rltool(G3d)

Executando-se o comando 'rltool' e adicionando um novo 'requerimento de design' obtemos que $UP \le 10\%$ para os valores de K que mantém todos os polos dentro ou nos limites da região em branco na imagem a seguir:

Posicionando o primeiro que alcança a margem, obtemos que K = 0.00017583.

Repetindo o feito acima para K negativo e posicionando o primeiro polo que chega acima da margem temos que K=-1.7716e-05.

Portanto, para que $UP \le 10\%$, temos que $\frac{-1.7716e-05}{6} < K < 0.00017583$, aproximadamente.

3.4 Verifique se existem valores de K para os quais $t_s \le 10I$ s.

%rltool(G3d)

Sendo I=21, então 10*21 = 210s

Sim, existem valores de K para os quais $t_s \le 210$ s, são os valores que mantém os polos dentro ou nos limites do círculo branco na imagem a seguir. A imagem foi obtida executando-se o comando 'ritool' e adicionando um novo 'requerimento de design' para o tempo espeificado.

Posicionando o primeiro polo que alcança o limite, obtemos que K = 0.49077

Repetindo o feito acima para K negativo, o polo mais a direita fica inteiramente fora da região delimitada. Sendo assim, não há valores de K negativo que satisfazem a especificação.

Portanto, para que $t_s \le 210$ s, temos que 0 < K < 0.49077, aproximadamente.

Lembrando: $\zeta = \cos \theta$, $ts = \frac{4}{\zeta \omega_n}$, $0 < \zeta < 0.9$.

Atividade 4: Seja o diagrama de blocos mostrado.


```
G4
G4 =
```

2400 -----s^4 + 4 s^3 + 6 s^2 + 4 s + 1

Continuous-time transfer function. Model Properties

M = tf([0.01 1],1);
step(feedback(M*G4, 1))

Ao fechar a malha com G4, mesmo com um K muito pequeno, obtemos uma resposta instável.

4.1 Faça o LR e explique o efeito de K sobre os polos de malha fechada.

Primeiro, é necessário transformar o que está no diagrama de blocos para o formato do LR:

Para obter o LR podemos chamar o comando 'rlocus' passando a função de transferência que foi calculada.

```
G = tf([2400, 0],[1, 4, 6, 4, 2401])
```

G =

2400 s -----s^4 + 4 s^3 + 6 s^2 + 4 s + 2401

Continuous-time transfer function. Model Properties

poles_G=pole(G) % instável

 $poles_G = 4 \times 1 complex$

-5.9492 + 4.9492i

-5.9492 - 4.9492i

3.9492 + 4.9492i

3.9492 - 4.9492i

rlocus(G)

O LR é instável, o que faz sentido, já que foi mostrado que apenas fechando a malha com G4 já gera uma resposta instável, de forma que aquilo que derivar disso será instável também.

O efeito de variar K sobre os polos de malha fechada é movê-los no LR caminhando "dos polos até os zeros ou assíntotas" de modo que quando K=0 suas localizações são as raízes do denominador (polos) da FT e quando K tende ao infinito, suas localizações são as raízes do numerador (zeros), ou, quando não há zeros o suficiente, suas localizações são as assíntotas no infinito.

4.2 Obtenha os valores de K > 0 para os quais o sistema é estável.

O sistema possui polos no semiplano direito, que lá permanecem independentemente do valor de K. Assim, não existe K > 0 para o qual o sistema é estável.

4.3 Obtenha um valor de K tal que $UP \le 10\%$ e o tempo de estabelecimento seja o menor possível. Faça uma simulação ao degrau comprovando.

Com um sistema instável, não existe valor de K tal que $UP \le 10\%$. Não é possível simular.