Семинар 30 (16.05.2023)

Краткое содержание

Новая тема: сингулярное разложение матриц. Всякая матрица $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ представима в виде $A = U \Sigma V^T$, где $U \in \operatorname{M}_m(\mathbb{R})$, $V \in \operatorname{M}_n(\mathbb{R})$ — ортогональные матрицы, $\Sigma \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ — диагональная матрица с числами $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$ на диагонали, где $r = \operatorname{rk} A$. Более того, числа $\sigma_1, \ldots, \sigma_r$ определены однозначно. Усечённое сингулярное разложение матрицы A получается из обычного «обрезанием» матрицы Σ до квадратной размера $k \times k$, где $k = \min(m,n)$, при этом у одной из матриц U,V (у которой размер больше) нужно оставить только первые k столбцов, выкинув остальные.

Дальше исходя из вида сингулярного разложения $A = U \Sigma V^T$ вывели **алгоритм нахождения** сингулярного разложения:

I способ:

- 1) Вычисляем матрицу A^TA и находим все её ненулевые собственные значения s_1, s_2, \ldots, s_r (если какое-то из этих значений имеет кратность $\geqslant 2$, то записываем его столько раз, какова кратность). Они все автоматически будут положительны; перенумеровываем их так, чтобы $s_1 \geqslant s_2 \geqslant \ldots \geqslant s_r > 0$. Полагаем $\sigma_i = \sqrt{s_i}$.
- 2) Находим ортонормированную систему из собственных векторов v_1, \ldots, v_r (достаточно найти ортонормированный базис в каждом из собственных подпространств, после чего занумеровать эти векторы в соответствии с их собственными значениями, то есть чтобы выполнялось условие $A^T A v_i = s_i v_i$ для всех $i = 1, \ldots, r$).
- 3) Для каждого $i=1,\ldots,r$ вычисляем $u_i=\frac{1}{\sigma_i}Av_i$; полученная система векторов u_1,\ldots,u_r автоматически будет ортонормированна.
- 4) Дополняем обе системы v_1, \ldots, v_r и u_1, \ldots, u_r до ортонормированных базисов (в случае полного сингулярного разложения) или до ортонормированных систем v_1, \ldots, v_k и u_1, \ldots, u_k (в случае усечённого сингулярного разложения).
- 5) Составляем из чисел $\sigma_1, \ldots, \sigma_r$ матрицу Σ , а полученные на предыдущем шаге векторы u_1, u_2, \ldots и v_1, v_2, \ldots записываем в столбцы матриц U и V соответственно.

II способ фактически является I способом, применённым к матрице A^T :

- 1) Вычисляем матрицу AA^T и находим все её ненулевые собственные значения s_1, s_2, \ldots, s_r (если какое-то из этих значений имеет кратность $\geqslant 2$, то записываем его столько раз, какова кратность). Они все автоматически будут положительны; перенумеровываем их так, чтобы $s_1 \geqslant s_2 \geqslant \ldots \geqslant s_r > 0$. Полагаем $\sigma_i = \sqrt{s_i}$.
- 2) Находим ортонормированную систему из собственных векторов u_1, \ldots, u_r (достаточно найти ортонормированный базис в каждом из собственных подпространств, после чего занумеровать эти векторы так, чтобы выполнялось условие $AA^Tu_i = s_iu_i$ для всех $i = 1, \ldots, r$).
- 3) Для каждого $i=1,\ldots,r$ вычисляем $v_i=\frac{1}{\sigma_i}A^Tu_i$; полученная система векторов v_1,\ldots,v_r автоматически будет ортонормированна.
- 4) Дополняем обе системы u_1, \ldots, u_r и v_1, \ldots, v_r до ортонормированных базисов (в случае полного сингулярного разложения) или до ортонормированных систем u_1, \ldots, u_k и v_1, \ldots, v_k (в случае усечённого сингулярного разложения).
- 5) Составляем из чисел $\sigma_1, \dots, \sigma_r$ матрицу Σ , а полученные на предыдущем шаге векторы u_1, u_2, \dots и v_1, v_2, \dots записываем в столбцы матриц U и V соответственно.

В качестве примера нашли полное и усечённое сингулярное разложение матрицы $A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 4 & -2 \end{pmatrix}$, используя II способ.

Дальше обсудили разложение матрицы в сумму компонент ранга 1, связанное с её сингулярным разложением.

Поговорили о приложениях сингулярного разложения.

Теорема о низкоранговом приближении:

Пусть $A = U\Sigma V^T$ — сингулярное разложение матрицы A ранга r. Для каждого значения k < r обозначим через Σ_k матрицу, получаемую из Σ заменой диагональных элементов $\sigma_{k+1}, \ldots, \sigma_r$

нулями. Тогда среди всех матриц B (того же размера) ранга не выше k минимум величины ||A-B|| достигается при $B=U\Sigma_k V^T$.

Воспользовавшись сингулярным разложением матрицы $A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 4 & -2 \end{pmatrix}$, нашли для неё наилучшее по норме Фробениуса приближение B ранга 1 и величину ||A - B||, то есть расстояние от A до B по норме Фробениуса.

 \Diamond

Домашнее задание к семинару 31. Дедлайн 24.05.2023

Номера с пометкой Π даны по задачнику Проскурякова, с пометкой K – Кострикина, с пометкой KK – Ким-Крицкова.

- 1. Найдите полное и усечённое сингулярные разложения матрицы $A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 4 & -2 \end{pmatrix}$ с семинара, используя I способ. Сравните потраченные усилия в I и II способах.
- 2. Найдите полное и усечённое сингулярные разложения матрицы $\begin{pmatrix} -5 & 3 & 5 \\ 5 & -1 & 5 \end{pmatrix}$.
- 3. Найдите усечённое сингулярное разложение вектора-строки.
- 4. Пусть $A \in \operatorname{Mat}_{n \times 2}(\mathbb{R})$ и $a_1 = A^{(1)}$, $a_2 = A^{(2)}$ (то есть a_1, a_2 соответственно первый и второй столбцы матрицы A). Пусть $\sigma_1 \geqslant \sigma_2$ первое и второе сингулярные значения матрицы A. Докажите, что $\sigma_1 \geqslant |a_1| \geqslant \sigma_2$ и $\sigma_1 \geqslant |a_2| \geqslant \sigma_2$.
- 5. Пусть $\sigma_1, \ldots, \sigma_m$ сингулярные значения матрицы $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$, где $m \leqslant n$. Найдите все сингулярные значения матрицы $(A|E) \in \operatorname{Mat}_{m \times (n+m)}(\mathbb{R})$.
- 6. Найдите полное (оно же будет усечённым) сингулярное разложение матрицы $A = \begin{pmatrix} -2 & 6 \\ 9 & -2 \end{pmatrix}$. Также найдите матрицу B ранга 1, наиболее близкую к A по норме Фробениуса, и вычислите ||A B||.
- 7. Найдите усечённое сингулярное разложение матрицы $A = \begin{pmatrix} 6 & 1 & 2 \\ 2 & 2 & -6 \end{pmatrix}$. Также найдите матрицу B ранга 1, наиболее близкую к A по норме Фробениуса, и вычислите ||A B||.
- 8. Найдите полное (оно же будет усечённым) сингулярное разложение матрицы $\begin{pmatrix} 11 & -8 & 1 \\ -8 & 2 & 8 \\ 1 & 8 & 11 \end{pmatrix}$. Также найдите матрицы B и C рангов 2 и 1 соответственно, наиболее близкие к A по норме Фробениуса, и вычислите ||A-B||, ||A-C||.
- 9. Приведите пример матрицы $A \in \mathrm{Mat}_{2\times 3}(\mathbb{R})$ ранга 2, для которой ближайшей по норме Фробениуса матрицей ранга 1 будет матрица $B = \begin{pmatrix} 3 & 6 & -3 \\ -1 & -2 & 1 \end{pmatrix}$.