Statistics for Data Science - 2

Week 9 notes

- Let $X_1, \ldots, X_n \sim \text{i.i.d.} X$, where X has the distribution described by parameters $\theta_1, \theta_2, \ldots$
 - The parameters θ_i are unknown but a fixed constant.
 - Define the estimator for θ as the function of the samples: $\hat{\theta}(X_1,\ldots,X_n)$.

Note:

- 1. θ is an unknown parameter.
- 2. $\hat{\theta}$ is a function of *n* random variables.

Remark: Infinite number of estimators are possible for a parameter of a distribution.

- Estimation error: $\hat{\theta}(X_1, \dots, X_n) \theta$ is a random variable.
 - We expect the estimator random variable $\hat{\theta}(X_1, \dots, X_n)$ to take values around the actual value of the parameter θ . So, the random variable 'Error' should take values close to 0.
 - Mathematically, it is expressed as $P(|\text{Error }| > \delta)$ should be small.
 - Chebyshev bound on error: $P(|\text{Error} E[\text{Error}]| > \delta) \le \frac{\text{Var}(\text{Error})}{\delta^2}$.
 - Good design: $P(|\text{Error}| > \delta)$ will fall with n.
- Good design principles:
 - 1. Error should be close to or equal to 0.
 - 2. $Var(Error) \rightarrow 0$ with n.
- <u>Bias</u>: The bias of the estimator $\hat{\theta}$ for a parameter θ , denoted $\text{Bias}(\hat{\theta}, \theta)$ is defined as

$$\operatorname{Bias}(\hat{\theta}, \theta) = E[\hat{\theta} - \theta] = E[\hat{\theta}] - \theta$$

- 1. Bias is the expected value of Error.
- 2. An estimator with bias equal to 0 is said to be an unbiased estimator.
- Risk: The (squared-error) risk of the estimator $\hat{\theta}$ for a parameter θ , denoted Risk($\hat{\theta}, \theta$), is defined as

1

$$\operatorname{Risk}(\hat{\theta}, \theta) = E[(\hat{\theta} - \theta)^2]$$

- 1. Risk is the expected value of "squared error" and is also called mean squared error (MSE) often.
- 2. Squared-error risk is the second moment of Error.
- Variance of estimator:

$$Variance(\hat{\theta}) = E[(\hat{\theta} - E[\theta])^2]$$

 $Var(Error) = Var(\hat{\theta})$

• <u>Bias-Variance tradeoff</u>: The risk of the estimator satisfies the following relationship:

$$Risk(\hat{\theta}, \theta) = Bias(\hat{\theta}, \theta)^2 + Variance(\hat{\theta})$$

- Estimator design approach:
 - 1. Method of moments
 - (a) Sample moments: $M_k(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i^k$
 - (b) M_k is a random variable, and m_k is the value taken by it in one sampling instance. We expect that M_k will take values around $E[X^k]$
 - (c) Procedure:
 - Equate sample moments to expression for moments in terms of unknown parameters.
 - Solve for the unknown parameters.
 - (d) One parameter θ usually needs one moment
 - Sample moment: m_1
 - Distribution moment: $E[X] = f(\theta)$
 - Solve for θ from $f(\theta) = m_1$ in terms of m_1 .
 - $-\hat{\theta}$: replace m_1 by M_1 in above solution.
 - (e) Two parameters θ_1, θ_2 usually needs two moments.
 - Sample moments: m_1, m_2
 - Distribution moment: $E[X] = f(\theta_1, \theta_2), E[X^2] = g(\theta_1, \theta_2)$
 - Solve for θ_1, θ_2 from $f(\theta_1, \theta_2) = m_1, g(\theta_1, \theta_2) = m_2$ in terms of m_1, m_2 .
 - $-\hat{\theta}$: replace m_1 by M_1 and m_2 by M_2 in above solution.
 - 2. Maximum Likelihood estimators
 - (a) <u>Likelihood of i.i.d. samples</u>: Likelihood of a sampling x_1, x_2, \ldots, x_n , denoted $L(x_1, x_2, \ldots, x_n)$

$$L(x_1, x_2, ..., x_n) = \prod_{i=1}^n f_X(x_i; \theta_1, \theta_2, ...)$$

- Likelihood $L(x_1, x_2, \ldots, x_n)$ is a function of parameters.

- Maximum likelihood (ML) estimation

$$\theta_1^*, \theta_2^*, \dots = arg \max_{\theta_1, \theta_2, \dots} \prod_{i=1}^n f_X(x_i; \theta_1, \theta_2, \dots)$$

We find parameters that maximize likelihood for a given set of samples.