Project

Important dates

- Monday 30 September: Present Phase 1 & 2
- Monday 7 Oct: Final presentation & documentation
- Thursday 10 October: Final presentation & documentation
- Friday 11 October: Optional test: R / Python (whichever one you need to write to improve your mark)

Prepare for phase 1

- Read the data
- Create a new data frame containing only the rows about your group's sport
- From this data frame, create 2 data frames:
 - Set 1: One containing only the columns "perform" and all the continuous xvariables
 - Set 2: Same as above, but also include "gender"
- Use Set 1 to obtain correlations
- Identify the variables that show quite a significant correlation with "perform"
- Use "perform", "gender" and these identified variables to create summary statistics and graphs.

Selecting multiple columns from a large data frame Example

 Create a "slice" of the data frame (subset) that contains all the rows of the 1st and 3rd to 6th variables.

Data provided:

:		var1	var2	var3	var4	var5	var6
	0	23	11	9	39	491	93
	1	43	13	7	37	472	75
	2	53	15	2	32	428	27
	3	73	10	8	38	483	88
	4	79	14	7	37	476	70

```
# First, select all the rows of the 1st column
slice1a = df1.iloc[:, 0:1]

slice1a.head()
#type(slice1a)
```

```
      var1

      0
      23

      1
      43

      2
      53

      3
      73

      4
      79
```

```
# Then, select all the rows of the 3rd to 6th columns
slice1b = df1.iloc[:, 2:6]
slice1b.head()
#type(slice1b)
```

	var3	var4	var5	var6
0	9	39	491	93
1	7	37	472	75
2	2	32	428	27
3	8	38	483	88
4	7	37	476	70

```
# Then, concatenate the two dataframes next to one another
slice1 = pd.concat([slice1a, slice1b], axis = 1)
slice1.head()
#type(slice1)
```

	var1	var3	var4	var5	var6
0	23	9	39	491	93
1	43	7	37	472	75
2	53	2	32	428	27
3	73	8	38	483	88
4	79	7	37	476	70

Calculate correlation matrix

```
correlation_matrix = slice1.corr()
print(correlation_matrix)
         var1
                  var3
                           var4
                                       var5
                                                 var6
     1.000000 -0.043823 -0.043823 -0.844546 -0.050588
                         1.000000 -0.235910
var3 -0.043823
               1.000000
                                             0.994243
var4 -0.043823
               1.000000
                         1.000000 -0.235910
                                             0.994243
var5 -0.844546 -0.235910 -0.235910
                                  1.000000 -0.262118
var6 -0.050588 0.994243 0.994243 -0.262118
                                             1.000000
```

Create a heatmap from the correlations

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
                                                  -1.00
             -0.044
                     -0.044
                              -0.84
                                      -0.051
                                                 - 0.75
                                                 - 0.50
                                                 -0.25
                                                 -0.00
                                                 - -0.25
             var3
     var1
                      var4
                              var5
                                       var6
```

What is required from you

- The team must decide who will do what.
- Every person needs to create 3 different graphs, using the "Perform",
 "Gender" and fairly significant variables found from the correlation analysis.
- Think which hypotheses you would like to explore using graphs, e.g.:
 - What is the effect of gender on Var X?
 - Is Var X normally distributed?
 - Is there a relationship between Var X and Var Y?
- Create nice graphs, adding titles, labels, legends, colours, lines, etc.

How will it work?

- **Each team member** is responsible for creating the following outputs for this project:
 - Phase 1: Descriptive stats & graphs
 - Phase 2: Hypothesis tests
 - Phase 3: Model(s)
 - Phase 4: Literature study
- What you create, you need to put in a Powerpoint and you need to present YOUR section.
- You will receive an INDIVIDUAL mark.
- As a team, you will coordinate your efforts so that everyone does something unique for the understanding of the sport you are responsible for.
- E.g. Person 1 does histogram to test normality of X1, person 2 does a scatterplot between X1 and X2, person 3 does a boxplot of X3 versus gender. They all work on the ice skating dataset, but each contributes a different part for each phase.

Presentation 1

- Time limit: 4 minutes per student
- Each student will present his/her work on phases 1 & 2 using professional-looking Powerpoint slides. You can be informally dressed (as you usually come to class).
- If you cannot attend class on the day, you have to arrange with me BEFORE the time. Then you need to create a video with a voice-over and submit that.
- Ensure that your code is neatly structured and have suitable comments.
- Submit your Powerpoint slides.
- Submit your code in Word format as well as Python format.

Presentation 2

- Time limit per student: 5 minutes
- Each student will present his/her work on phases 3 & 4 using professional-looking Powerpoint slides. You may add a summary of the work done in phase 1 & 2 to support the work of phase 3&4, but don't go over the time!! You can dress slightly more formally (but please, don't spend money!).
- This counts as a Python test, therefore, you must present in person.
- Ensure that your code is neatly structured and have suitable comments.
- Submit your Powerpoint slides.
- Submit your code in Word format as well as Python format.
- Complete a questionnaire on your experiences with this project.

Rubric Individual marks

Slides:			12
	Grammar and spelling	3	
	Visually pleasing	6	
	Font size colour readible	3	
Presentatio	on:		13
	Audible	3	
	Makes eye contact	3	
	Confidence	5	
	Sticks to time	2	
Graphs:			15
	Effort	8	
	Interpretations	7	

Hypothese	es:		15
	Effort	8	
	Interpretations	7	
Model(s):			15
	Effort	8	
	Interpretations	7	
Coding:			4
	Structure	2	
	Comments	2	
Literature:	Literature:		6
	Effort	2	
	Referencing	2	
	Writing style	2	

Rubric Team marks

Team	marks		20
	Planning document	5	
	Working together in class	5	
	Final presentation	<u>10</u>	