STATISTICAL INFERENCES (2cr)

Chapter 8 Sampling Distributions & Data Descriptions

Zhong Guan

Math, IUSB

Outline

1 8.7 *F*-Distribution

2 8.8 Quantiles and Q-Q Plot

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with
- variance σ_2^2 .

 Assume the two samples are independent and have
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $\nu_1 = n_1 1$ and denominator degrees of freedom $\nu_2 = n_2 1$.
- Generally, if U and V are independent chi-squared random variables with degrees of freedom ν_1 and ν_2 , respectively, then $F = \frac{U/\nu_1}{V/\nu_2}$ has an F-distribution with numerator and denominator degrees of freedom ν_1 and ν_2 .

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s₁² and s₂², respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $\nu_1=n_1-1$ and denominator degrees of freedom $\nu_2=n_2-1$.
- Generally, if U and V are independent chi-squared random variables with degrees of freedom ν_1 and ν_2 , respectively, then $F = \frac{U/\nu_1}{V/\nu_2}$ has an F-distribution with numerator and denominator degrees of freedom ν_1 and ν_2 .

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $\nu_1 = n_1 1$ and denominator degrees of freedom $\nu_2 = n_2 1$.
- Generally, if U and V are independent chi-squared random variables with degrees of freedom ν_1 and ν_2 , respectively, then $F = \frac{U/\nu_1}{V/\nu_2}$ has an F-distribution with numerator and denominator degrees of freedom ν_1 and ν_2 .

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $\nu_1=n_1-1$ and denominator degrees of freedom $\nu_2=n_2-1$.
- Generally, if U and V are independent chi-squared random variables with degrees of freedom ν_1 and ν_2 , respectively, then $F = \frac{U/\nu_1}{V/\nu_2}$ has an F-distribution with numerator and denominator degrees of freedom ν_1 and ν_2 .

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $\nu_1=n_1-1$ and denominator degrees of freedom $\nu_2=n_2-1$.
- Generally, if U and V are independent chi-squared random variables with degrees of freedom ν_1 and ν_2 , respectively, then $F = \frac{U/\nu_1}{V/\nu_2}$ has an F-distribution with numerator and denominator degrees of freedom ν_1 and ν_2 .

The F Critical Value (Table A.6)

Table A.6 gives $f_{\alpha}(\nu_1, \nu_2)$ for $\alpha = .05, .01$. For example, $\nu_1 = 5$, $\nu_2 = 7$, $f_{.05}(5, 7) = 3.97$ by Table A.6.

$$f_{1-\alpha}(\nu_1, \nu_2) = \frac{1}{f_{\alpha}(\nu_2, \nu_1)}$$

The F Critical Value (Table A.6)

Table A.6 gives $f_{\alpha}(\nu_1, \nu_2)$ for $\alpha = .05, .01$. For example, $\nu_1 = 5$, $\nu_2 = 7$, $f_{.05}(5, 7) = 3.97$ by Table A.6.

$$f_{1-\alpha}(\nu_1,\nu_2) = \frac{1}{f_{\alpha}(\nu_2,\nu_1)}$$

The F Critical Value using Technology

- In Excel: f_{.025}(5,7)=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the *x*-coordinate of the intersection is $f_{.025}(5,7)$ =5.2852369.

In R: f_{.025}= "qf(.975,5,7)=5.285237".

The F Critical Value using Technology

- In Excel: f_{.025}(5,7)=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is f_{.025}(5,7)=5.2852369.

In R: f_{.025}= "qf(.975,5,7)=5.285237".

The F Critical Value using Technology

- In Excel: f_{.025}(5,7)=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is f_{.025}(5,7)=5.2852369.

• In R: f_{.025}= "qf(.975,5,7)=5.285237".

Sample Quantile: A quantile of a sample is a value, q(p), for which a specific proportion p of the data values is less than or equal to q(p).

Specifically, Let $x_1, ..., x_n$ be the sample data. Then q(p) is the smallest data value such that the proportion of the data values less than or equal to q(p) is at least p.

Sample Quantile: A quantile of a sample is a value, q(p), for which a specific proportion p of the data values is less than or equal to q(p).

Specifically, Let x_1, \ldots, x_n be the sample data. Then q(p) is the smallest data value such that the proportion of the data values less than or equal to q(p) is at least p.

Step 1. Sort the data in increasing order: $y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n)}$;

- Step 2. Calculate m = pn;
- Step 3. If *m* is integer, then q(p) is the *m*th term $y_{(m)}$
- Step 4. If m is NOT integer, say m = i + r where i is an integer and r is a fraction, then

$$q(p) = y_i + r(y_{i+1} - y_i) = (1 - r)y_i + ry_{i+1}.$$

Note: $y_{(i)}$ is q(i/n)

Step 1. Sort the data in increasing order: $y_{(1)} \leqslant y_{(2)} \leqslant \cdots \leqslant y_{(n)}$;

- Step 2. Calculate m = pn;
- Step 3. If *m* is integer, then q(p) is the *m*th term $y_{(m)}$
- Step 4. If m is NOT integer, say m = i + r where i is an integer and r is a fraction, then

$$q(p) = y_i + r(y_{i+1} - y_i) = (1 - r)y_i + ry_{i+1}.$$

Note: $y_{(i)}$ is q(i/n)

- Step 1. Sort the data in increasing order: $y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n)}$;
- Step 2. Calculate m = pn;
- Step 3. If *m* is integer, then q(p) is the *m*th term $y_{(m)}$;
 - Step 4. If m is NOT integer, say m = i + r where i is an integer and r is a fraction, then

$$q(p) = y_i + r(y_{i+1} - y_i) = (1 - r)y_i + ry_{i+1}$$

Note: $y_{(i)}$ is q(i/n)

- Step 1. Sort the data in increasing order: $y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n)}$;
- Step 2. Calculate m = pn;
- Step 3. If *m* is integer, then q(p) is the *m*th term $y_{(m)}$;
- Step 4. If m is NOT integer, say m = i + r where i is an integer and r is a fraction, then

$$q(p) = y_i + r(y_{i+1} - y_i) = (1 - r)y_i + ry_{i+1}.$$

Note: $y_{(i)}$ is q(i/n)

- Step 1. Sort the data in increasing order: $y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n)}$;
- Step 2. Calculate m = pn;
- Step 3. If *m* is integer, then q(p) is the *m*th term $y_{(m)}$;
- Step 4. If m is NOT integer, say m = i + r where i is an integer and r is a fraction, then

$$q(p) = y_i + r(y_{i+1} - y_i) = (1 - r)y_i + ry_{i+1}.$$

Note: $y_{(i)}$ is q(i/n).

- Step 1. Sort the data in increasing order: $y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n)}$;
- Step 2. Calculate m = pn;
- Step 3. If *m* is integer, then q(p) is the *m*th term $y_{(m)}$;
- Step 4. If m is NOT integer, say m = i + r where i is an integer and r is a fraction, then

$$q(p) = y_i + r(y_{i+1} - y_i) = (1 - r)y_i + ry_{i+1}.$$

Note: $y_{(i)}$ is q(i/n).

Example.

Example 1.: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58

- (a) Find and interpret the 15% quantile q(0.15);
- (b) Find and interpret the 75% quantile q(0.75);

Example.

Example 1.: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58

- (a) Find and interpret the 15% quantile q(0.15);
- (b) Find and interpret the 75% quantile q(0.75);

Population Quantile: A quantile of a population with pmf/pdf f(x) is a value, $q_f(p)$, for which the probability that any population data value is less than or equal to $q_f(p)$ about p, that is

$$P(X \leqslant q_f(p)) \approx p, \quad q_f(p) = \min\{x : P(X \leqslant x) \geqslant p\}.$$

For discret distribution

$$\sum_{x \leqslant q_f(p)} f(x) \approx p$$

For continuous distribution

$$F(q_f(p)) = \int_{-\infty}^{q_f(p)} f(x) dx = p$$
, i.e. $q_f(p) = F^{-1}(p)$

Population Quantile: A quantile of a population with pmf/pdf f(x) is a value, $q_f(p)$, for which the probability that any population data value is less than or equal to $q_f(p)$ about p, that is

$$P(X \leqslant q_f(p)) \approx p, \quad q_f(p) = \min\{x : P(X \leqslant x) \geqslant p\}.$$

For discret distribution

$$\sum_{x \leqslant q_f(p)} f(x) \approx p$$

For continuous distribution

$$F(q_f(p)) = \int_{-\infty}^{q_f(p)} f(x) dx = p$$
, i.e. $q_f(p) = F^{-1}(p)$

Population Quantile: A quantile of a population with pmf/pdf f(x) is a value, $q_f(p)$, for which the probability that any population data value is less than or equal to $q_f(p)$ about p, that is

$$P(X \leqslant q_f(p)) \approx p, \quad q_f(p) = \min\{x : P(X \leqslant x) \geqslant p\}.$$

For discret distribution

$$\sum_{x \leqslant q_f(p)} f(x) \approx p$$

For continuous distribution

$$F(q_f(p)) = \int_{-\infty}^{q_f(p)} f(x) dx = p$$
, i.e. $q_f(p) = F^{-1}(p)$

Finding Population Quantiles $q_f(p)$

Example 2. Let the population distribution of *X* have pmf

$$f(x) = \frac{x}{10}, \quad x = 1, 2, 3, 4$$

Find $q_f(0.1)$ and $q_f(0.6)$.

Example 3. Let the population distribution of X have pdf

$$f(x) = \begin{cases} e^{-x}, & x > 0; \\ 0, & \text{elsewhere.} \end{cases}$$

Find $q_f(p)$ for 0 .

Finding Population Quantiles $q_f(p)$

Example 2. Let the population distribution of *X* have pmf

$$f(x) = \frac{x}{10}, \quad x = 1, 2, 3, 4$$

Find $q_f(0.1)$ and $q_f(0.6)$.

Example 3. Let the population distribution of *X* have pdf

$$f(x) = \left\{ \begin{array}{ll} e^{-x}, & x > 0; \\ 0, & \text{elsewhere.} \end{array} \right.$$

Find $q_f(p)$ for 0 .

Quantile-Quantile(Q-Q) Plot is a plot of $y_{(i)}$ against $q_f(p_i)$,

where
$$p_i = \frac{i-3/8}{n+1/4}$$
, $i = 1, 2, 3, \dots, n$.

Usage If the points of the q-q plot are close to a straight line, then the data is likely from the distribution f.

Quantile-Quantile(Q-Q) Plot is a plot of $y_{(i)}$ against $q_f(p_i)$,

where
$$p_i = \frac{i-3/8}{n+1/4}$$
, $i = 1, 2, 3, \dots, n$.

Usage If the points of the q-q plot are close to a straight line, then the data is likely from the distribution f.

Exponential Q-Q Plot is a plot of $y_{(i)}$ against $q_f(p_i)$, where $p_i = \frac{i-3/8}{n+1/4}$, $i = 1, 2, 3, \ldots, n$, and f is the exponential distribution with mean =1, i.e., $q_f(p) = -\ln(1-p)$, 0 . Usage If the points of the q-q plot are close to a straight line with y-intercept 0, then the data is likely from an exponential distribution with mean being estimated by the slope. Example 4. Construct an exponential q-q lot for the data: 1.094, 2.630, 0.882, 1.885, 0.721, 1.290, 0.019.

Exponential Q-Q Plot is a plot of $y_{(i)}$ against $q_f(p_i)$, where $p_i = \frac{i-3/8}{n+1/4}$, i = 1, 2, 3, ..., n, and f is the exponential distribution with mean =1, i.e., $q_f(p) = -\ln(1-p)$, 0 .**Usage**If the points of the q-q plot are close to a straight line with y-intercept 0, then the data is likely from an exponential distribution with mean being estimated by the slope.

Example 4. Construct an exponential q-q lot for the data: 1.094, 2.630, 0.882, 1.885, 0.721, 1.290, 0.019.

Exponential Q-Q Plot is a plot of $y_{(i)}$ against $q_f(p_i)$, where $p_i = \frac{i-3/8}{n+1/4}$, $i = 1, 2, 3, \ldots, n$, and f is the exponential distribution with mean =1, i.e., $q_f(p) = -\ln(1-p)$, 0 .**Usage**If the points of the q-q plot are close to a straight line with y-intercept 0, then the data is likely from an exponential distribution with mean being estimated by the slope.**Example 4.**Construct an exponential q-q lot for the data: 1.094, 2.630, 0.882, 1.885, 0.721, 1.290, 0.019.

Normal q-q plot is a plot of $y_{(i)}$ against $q_f(p_i)$, where f is the standard normal distribution N(0,1) and $p_i = \frac{i-3/8}{n+1/4}$, i = 1, 2, 3, ..., n. $q_f(p) = \Phi^{-1}(p) = \text{invNorm}(p)$.

Usage If the points of the q-q plot are close to a straight line, then the data is likely from a normal distribution $N(\mu, \sigma^2)$. The slope is an estimate of σ and y-intercept is an estimate of μ . **Example 5.** Construct a normal q-q lot for the data:

Normal q-q plot is a plot of $y_{(i)}$ against $q_f(p_i)$, where f is the standard normal distribution N(0, 1) and $p_i = \frac{i-3/8}{n+1/4}$,

$$i = 1, 2, 3, \dots, n.$$
 $q_f(p) = \Phi^{-1}(p) = \text{invNorm}(p).$

Usage If the points of the q-q plot are close to a straight line, then the data is likely from a normal distribution $N(\mu, \sigma^2)$. The slope is an estimate of σ and y-intercept is an estimate of μ .

Example 5. Construct a normal q-q lot for the data:

Normal q-q plot is a plot of $y_{(i)}$ against $q_f(p_i)$, where f is the standard normal distribution N(0,1) and $p_i = \frac{i-3/8}{n+1/4}$, i = 1, 2, 3, ..., n. $q_f(p) = \Phi^{-1}(p) = \text{invNorm}(p)$.

Usage If the points of the q-q plot are close to a straight line, then the data is likely from a normal distribution $N(\mu, \sigma^2)$. The slope is an estimate of σ and y-intercept is an estimate of μ . **Example 5.** Construct a normal q-q lot for the data:

6.72	6.77	6.82	6.70	6.78	6.70	6.62	6.75	6.66
6.66	6.64	6.76	6.73	6.80	6.72	6.76	6.76	6.68
6.66	6.62	6.72	6.76	6.70	6.78	6.76	6.67	6.70
6.72	6.74	6.81	6.79	6.78	6.66	6.76	6.76	6.72