GRADE 100%

Sequence models & Attention mechanism

LATEST SUBMISSION GRADE

100%

1 / 1 point

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False

✓ Correct

2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that

1/1 point

Beam search will run more slowly.

✓ Correct

Beam search will use up more memory

✓ Correct

 $\hfill \square$ Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)

✓ Correct

- Beam search will converge after fewer steps.
- $3. \quad \text{In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to} \\$ output overly short translations.

- True
- False

✓ Correct

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

1 / 1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^* =$ "I'm building an Al system in Silicon Valley."

According to your model,

 $P(\hat{y} \mid x) = 1.09 * 10^{-7}$

 $P(y^* \mid x) = 7.21*10^-8$

Would you expect increasing the beam width B to help correct this example?

- igotimes No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search
- $\bigcirc \ \, \text{No, because } P(y^* \mid x) \leq P(\hat{y} \mid x) \text{ indicates the error should be attributed to the search algorithm rather than to}$
- O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

 $\bigcirc \ \ \, \text{Yes, because } P(y^* \mid x) \leq P(\hat{y} \mid x) \text{ indicates the error should be attributed to the search algorithm rather than to}$ ✓ Correct 5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the 1 / 1 point vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm. True. False. ✓ Correct 6. Consider the attention model for machine translation. Further, here is the formula for $\alpha^{< t,t'>}$. $\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$ Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply. output for $y^{< t>}$. (Note the indices in the superscripts.) ✓ Correct $igstyle \sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.) ✓ Correct 7. The network learns where to "pay attention" by learning the values $e^{<t,t'>}$, which are computed using a small neural 1 / 1 point We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet. True ○ False ✓ Correct 8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), 1/1 point we expect the attention model to have the greatest advantage when: lacksquare The input sequence length T_x is large. \bigcirc The input sequence length T_x is small. ✓ Correct

CTC model, what does the following string collapse to?	17 Fpoint
_c_o_o_kkb_ooooo_oo_kkk	
○ cokbok	
○ cook book	
ocookkbooooookkk	
✓ Correct	
10. In trigger word detection, $x^{< t>}$ is:	1/1 point
lacktriangle Features of the audio (such as spectrogram features) at time t .	
The <i>t</i> -th input word, represented as either a one-hot vector or a word embedding.	
igcup Whether the trigger word is being said at time $t.$	
igcup Whether someone has just finished saying the trigger word at time $t.$	
✓ Correct	