Отчет контест 3

Куприянов Александр Дмитриевич

Начненм с того что я сделал в финальной посылке, а потом расскажу какие отличались мои посылки и в чем была проблема сначала

Первая задача

Ссылка на решение: отчет к посылке

Переменные

- $x_{ij} \in \{0,1\}$ клиент j обслуживается i складом
- $y_i \in \{0,1\}$ склад i открыт

ну и получается что в итоге смотрим на такую

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} + \sum_{i=1}^{n} f_i y_i$$

где:

- c_{ij} стоимость обслуживания клиента j складом i,
- f_i стоимость содержания i.

Ограничения

- (1) Обслуживание каждого клиента: $\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots, m$
- (2) Ограничение по вместимости склада: $\sum_{j=1}^m d_j x_{ij} \leq cap_i \cdot y_i \quad \forall i=1,\ldots,n$
 - (3) Двоичность: $x_{ij}, y_i \in \{0, 1\}$

Вот теперь как раз то, в чем была проблема в прошлых посылках – размерность системы

• Сейчас всего переменных:

$$n \times m$$
 (переменные x_{ij}) + n (переменные y_i) = $n(m+1)$

• Всего ограничений:

$$m$$
 (по каждому складу) + n (по каждому объекту) = $n + m$

А во всех посылках, кроме последних 3 у меня была размерность

$$n + m + m * n$$

И я просто пробовал менять параметры GLPK, но все-равно не заходило по скорости и я подумал про уменьшение размерности

Кстати вот какие параметры GLPK использовал

- GLP_BV бинарная переменная
- \bullet GLP_DB, 0.0, 1.0 с двойной границей
- \bullet GLP_FX, 1.0, 1.0 фиксированное значение
- GLP_UP, 0.0, 0.0 верхняя граница для неравенств по вместимости
- предобработка и сечения: presolve, gmi_cuts, mir_cuts, cov_cuts, clq_cuts
- tol_int = 1e-4, tol_obj = 1e-4 точности,увеличение как раз помогло исправитье предпоследнюю посылку
- msg_lev = GLP_MSG_OFF чтобы убрать вывод

Вторая задача

Ссылка на решение: отчет к посылке

Линейная система достаточно простая:

Переменные

• $x_e \in \{0,1\}$ — включено ли ребро e в паросочетание (1 — включено, 0 — нет)

Целевая функция

$$\min \sum_{e \in E} w_e x_e$$

где w_e — вес ребра $e, x_e \in \{0, 1\}$.

Ограничения

Для каждой вершины $v \in V$ должно быть выбрано ровно одно ребро, инцидентное ей просто из постановки задачи:

$$\sum_{e \in \delta(v)} x_e = 1 \quad \forall v \in V$$

Размерность системы

- Переменные: m (по одному бинарному x_e на каждое ребро)
- Ограничения: n (по одному на каждую вершину)

GLPK и почему не зашло в 1 посылке

а в этой задаче как раз изменение параметров GLPK помогло (потому столько долго и пыталя это же сделать в 1), в й посылке я просто не использовал mircuts, поэтому падало с TL, вот какие еще параметры в итоге использовал, помимо тех, про котрые не говорил в прошлой:

- ullet GLP_FX, 1.0, 1.0 фиксированное значение для ограничений на степень вершины
- glp_intopt решатель LP
- mip_gap = 0.0 чтобы было точное решение
- br_tech = GLP_BR_MFV для ветвления: чтобы смотрели на значение с наибольшим дробным значением
- bt_tech = GLP_BT_BFS для бфса