Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт информационных технологий и управления Кафедра «Информационная безопасность компьютерных систем»

ЛАБОРАТОРНАЯ РАБОТА № 8

RC-автогенератор

по дисциплине «Электроника и схемотехника»

Выполнила студентка гр. 23508/4

Е.Г. Проценко

Руководитель

А.Ф. Супрун

Цель работы

Изучить процесс самовозбуждения и установившийся режим работы автогенератора, выполненного на операционном усилителе с цепями отрицательной и положительной обратной связи.

Теоретические сведения.

Автогенератор — это устройство, в котором самопроизвольно (но не беспричино) возникают, растут и устанавливаются колебания. Первопричинами, обусловливающими возникновение автоколебаний, являются внутренние шумы в автогенераторе, импульсы, возникающие в схеме при включении питания, а также помехи, наводки и т. п. В автогенераторе осуществляется преобразование энергии источника питания в энергию колебаний. Автогенератор — одно из основных устройств в радиоэлектронике. Он — источник всех сигналов в радиоэлектронных устройствах: радиопередатчиках, модемах, компьютерах, электронных часах и т. п.

Для построения автогенераторов используются *неустойчивые* электрические цепи, в которых после окончания малого по величине возмущения амплитуда оставшихся колебаний возрастает с течением времени. В предыдущих параграфах рассматривались *устойчивые* электрические цепи, в которых после окончания воздействия колебания затухают.

Фундаментальный критерий устойчивости: электрическая цепь неустойчива, если в решении однородного дифференциального уравнения есть хотя бы одно слагаемое, у которого ак>0. Если все ak<0, то цепь устойчива.

Основная часть

Схема RC- автогенератора построена на операционном усилителе (ОУ) U1. Численные значения параметров цепи: R3 = 10 кОм, R4 = 40 кОм, C3 = 15 мкФ, D1 и D2 – модель ideal, U1 – LM741.

С помощью переключателей стенда можно осуществить три режима работы схемы.

Режим установившихся автоколебаний. Это основной режим работы автогенератора. В этом режиме в цепи отрицательной обратной связи (ООС) с помощью переключателя J2 подключаются R4. Переключатель J3 устанавливается в положении "замкнуто". При этом подключается цепь ПОС. На выходных гнездах генератора можно измерить амплитуду и частоту квазигармонических установившихся колебаний.

Режим генератора с линейной отрицательной обратной связью. Этот режим отличается от предыдущего установкой переключателя J2 в положение с подключенным переменным резистором R_{OC} . Уменьшая сопротивление этого резистора, получаем увеличение ООС, уменьшение коэффициента усиления усилителя и, наконец, исчезновение колебаний автогенератора, так как условия самовозбуждения автогенератора перестают выполняться. Наоборот, при увеличенном сопротивлении

резистора $R_{\rm OC}$ условия самовозбуждения выполняются и в автогенераторе возникают колебания.

Режим нелинейного усилителя. В этом случае цепь положительной обратной связи размыкается: ключ J1 устанавливаем в положение "Отключено". Автоколебания в устройстве отсутствуют. Переключателем J2 отключаем от ОУ R4. Получаем схему нелинейного усилителя с ООС. На вход ОУ подаем колебания от внешнего генератора. Выходное напряжение на усилителе измеряем с помощью вольтметра (осциллографа).

1.) Измерение основных показателей автогенератора Подключить к выходным разъёмам генератора частотомер и вольтметр (осциллограф). Измерить основные показатели автогенератора: частоту f_0 , уровень выходного сигнала $U_{\rm Bыx}$ и уровень входных $U_{\rm CT}$ э автоколебаний в установившемся режиме при изменении сопротивлений и емкостей цепи ПОС (R1 =R2 = 5 кОм, 10 кОм, 15 кОм, C1 =C2 = 15 нФ, 20 нФ, 25 нФ). Результаты измерений занести в таблицу. Для дальнейших исследований R1 =R2 = 5 кОм и C1 =C2 = 15 нФ.

		T	ı	
	C(1)=C(2)=15	C(1)=C(2)=20	C(1)=C(2)=25	
	нФ	нФ	нФ	
R(1)=R(2)=5кОм	1,285	1,037	0,996	Uвх,мВ
	3,182	3,182	3,182	Ивых,мВ
	2123,142	1592,357	1273,885	f0, Гц
R(1)=R(2)=10кОм	0,943	0,839	0,743	Uвх,мВ
	3,182	3,182	3,182	Ивых,мВ
	1061,571	796,1783	636,9427	f0, Гц

R(1)=R(2)=15ĸOm	0,412	0,788	0,56	Uвх,мВ
	3,182	3,182	3,182	Ивых,мВ
	707,7141	530,7856	424,6285	f0, Гц

R1 =R2 = 5 кОм и C1 =C2 = 15 нФ. Следовательно, f_0 = $2123,142\Gamma$ ц, т.к. коэффициент β =1/3,т.е. максимальное значение при R=5кОм и C=15нФ.

2.) Исследование условий самовозбуждения автогенератора

 R_{oc} =28кОм - положение движка резистора, при котором начинают возникать колебания автогенератора. По напряжению может определить K_{yc} \approx 5, отсюда $\beta*K_{yc}$ \approx 1,5>1, т.е. больше теоретического значения, при котором генератор самовозбуждается.

3.) Исследование баланса амплитуд и баланса фаз в автогенераторе. Снять амплитудную характеристику ($U_{Bыx} = f(UBx)$ нелинейного усилителя генератора, подавая на вход усилителя сигнал от низкочастотного генератора с частотой f_0 . Выходное квазигармоническое напряжение измерить на выходе усилителя. Рассчитать зависимость коэффициента усиления нелинейного квазигармонического усилителя $K_{yC} = U_{Bыx}/U_{Bx}$ от уровня входного сигнала.

Ивх,мВ		К
	1	5
	1,5	3,33
	2	2,5
	2,5	2,08
	3	1,72
	3,5	1,72
	4	1,25
	4,5	1,13

Как и предполагалось, $U_{cr} \approx U_{cr.9} : 1,5 \text{мB} \approx 1,285 \text{мB}$. Это объясняется условием баланса амплитуд в автогенераторе.

Исследование цепи ПОС.

f,Гц	Ивых,мкВ
100	1,102
150	1,638
200	2,167
250	2,677
500	4,755
700	5,931
900	6,715
1000	7
1500	7,793
2000	8,011
3000	7,817
5000	6,769
7000	5,707
10000	4,475
fk≈2КГц	

Из графика получаем $\max(U_{\text{вых}})=8,011$ мкВ, значит, $f_{\kappa}{\approx}2$ к Γ ц, что примерно равно $f_0=2123,142$,как и предполагалось.

Вывод

В ходе лабораторной работы было получено представление о таких понятиях, как операционный усилитель, автоколебания, обратная связь – последнее играет особую роль в электротехнике; были рассчитаны значения входной частоты, амплитуды входного напряжения, при котором генератор начинает самовозбуждаться. Рассчитанные и экспериментальные данные оказались довольно близки.