Group Number		Name	Type
List Number		Surname	
Student ID		Signature	$\mid A \mid$
E-mail			

ATTENTION: Each question has only one correct answer and is worth one point. Be sure to fill in completely the circle that corresponds to your answer on the answer sheet. Use a pencil (not a pen). Only the answers on your answer sheet will be taken into account.

Questions 1-5

An object of mass m is thrown from point A at t=0 with an initial speed $v_0=10~m/s$ from a height h=1~m over the ground making an angle $\theta=53^{\circ}$ with the horizontal, and following the trajectory shown in the figure, it hits the point D which is at height H=7/4~m over the ground.

Take $g = 10 \ m/s^2$ and $\sin 53^o = \cos 37^o = 4/5$.

1. In the given Cartesian coordinate system, which of the followings is the y(t) of the object in meters?

(a) $1 + 8t + 5t^2$ (b) $1 + 6t - 5t^2$ (c) $1 - 8t - 5t^2$ (d) $1 + 8t - 5t^2$ (e) $1 - 6t + 5t^2$

2. What is the time to reach point D in seconds?

(a) 2 (b) 5/3 (c) 4/3 (d) 1 (e) 3/2

3. If C is the highest point of the trajectory over the ground, what is the ratio R/d?

(a) 4/5 (b) 3/5 (c) 7/15 (d) 8/15 (e) 11/15

4. Assuming that B and D are at the same height, what is x_B in meters?

(a) 3/5 (b) 4/3 (c) 2/5 (d) 1 (e) 3/4

5. What is the velocity \vec{v}_B at point B in units of m/s?

(a) $6\hat{i} - 6\hat{j}$ (b) $6\hat{i} + 7\hat{j}$ (c) $8\hat{i} + 7\hat{j}$ (d) $6\hat{i} - 7\hat{j}$ (e) $8\hat{i} + 6\hat{j}$

Questions 6-8

Consider a particle moving in the xy-plane with a constant acceleration. At t = 0 the particle's initial position is $(2 m)\hat{i} - (3 m)\hat{j}$ and at that instant its initial velocity is $(10 m/s)\hat{i}$. At t = 3 s its velocity is $(4 m/s)\hat{i} + (3 m/s)\hat{j}$.

6. What is the acceleration of this particle?

(a) $(2 m/s^2)\hat{i} - (1 m/s^2)\hat{j}$ (b) $(3 m/s^2)\hat{i} + (2 m/s^2)\hat{j}$ (c) $(-2 m/s^2)\hat{i} + (3 m/s^2)\hat{j}$ (d) $(-3 m/s^2)\hat{i} + (2 m/s^2)\hat{j}$ (e) $(-2 m/s^2)\hat{i} + (1 m/s^2)\hat{j}$

7. What is the position vector of the particle at t = 3 s?

(a) $(5 m)\hat{i} + (2 m)\hat{j}$ (b) $(17 m)\hat{i} + (5/2 m)\hat{j}$ (c) $(23 m)\hat{i} + (3/2 m)\hat{j}$ (d) $(13 m)\hat{i} + (5/2 m)\hat{j}$

(e) $(3 m)\hat{i} + (4 m)\hat{j}$

8. During the time interval $t_i = 0$ and $t_f = 3$ s what is the average velocity of the particle?

(a) $(4 m)\hat{i} + (5/2 m)\hat{j}$ (b) $(7 m)\hat{i} + (3/2 m)\hat{j}$ (c) $(5 m)\hat{i} + (5/2 m)\hat{j}$ (d) $(4 m)\hat{i} + (7/2 m)\hat{j}$ (e) $(5 m)\hat{i} + (3 m)\hat{j}$

Questions 9-10

A block of mass m is at rest at the origin at t=0. It is pushed with constant force F_0 from x=0 to x=L across a horizontal surface whose coefficient of kinetic friction is $\mu_k = \mu_0(1-x/L)$, that is, the coefficient of friction decreases from μ_0 at x=0 to zero at x=L.

9. What is the net work done by the net force to bring the block from x=0 to x=L?

(a) $\left(F_0 - \frac{3}{2}mg\mu_0\right)L$ (b) $\left(2F_0 - \frac{1}{2}mg\mu_0\right)L$ (c) $\left(F_0 + \frac{3}{2}mg\mu_0\right)L$ (d) $\left(3F_0 + \frac{5}{2}mg\mu_0\right)L$ (e) $\left(F_0 - \frac{1}{2}mg\mu_0\right)L$

10. What is the block's speed as it reaches position L?

(a) $\sqrt{\left(\frac{F_0}{m} - 4\mu_0 g\right)L}$ (b) $\sqrt{\left(\frac{F_0}{m} - 3\mu_0 g\right)L}$ (c) $\sqrt{\left(\frac{2F_0}{m} + 3\mu_0 g\right)L}$ (d) $\sqrt{\left(\frac{2F_0}{m} - 3\mu_0 g\right)L}$ (e) $\sqrt{\left(\frac{2F_0}{m} - \mu_0 g\right)L}$

Exam Type A Page 1/2

Questions 11-13

Consider the system shown in the figure. The pulleys are assumed to be frictionless and massless. The coefficient of kinetic friction between m_1 and the horizontal surface is $\mu_k = 0.25$. Take $m_1 = 2 kg$ and $m_2 = 4 kg$, $g = 10 m/s^2$.

- (a) $3a_1 = 2a_2$ (b) $a_1 = a_2$ (c) $a_1 = 3a_2$ (d) $a_1 = 2a_2$ (e) $2a_1 = a_2$
- **12.** What is the acceleration of the block m_1 ?
 - (a) $3 m/s^2$ (b) $4.5 m/s^2$ (c) $3.5 m/s^2$ (d) $5 m/s^2$ (e) $4 m/s^2$

- 13. What is the tension T in the rope?

 - (a) 13 N (b) 11 N (c) 19 N
- (d) 17 N (e) 15 N

Questions 14-16

Two blocks of masses $m_1 = 5 kq$ and $m_2 = 10 kq$ are connected by a string of negligible mass, as shown in the figure. The coefficient of kinetic friction between the block m_1 and the inclined plane is given by $\mu_k = 0.25$ and the angle of inclanation is $\theta = 37^\circ$.

Take $g = 10 \ m/s^2$ and $\sin 37^o = \cos 53^o = 3/5$.

- 14. What is the acceleration of the blocks?
 - (a) $6.5 \ m/s^2$
- (b) $8 m/s^2$
- (c) $6 m/s^2$ (d) $7 m/s^2$ (e) $7.5 m/s^2$
- **15.** What is the tension in the string?
 - (a) 25 N
- (b) 30 N (c) 15 N

- (d) 35 N (e) 20 N
- **16.** What is the work done by gravity when m_2 falls a distance h = 0.5 m?
 - (a) 55 J

- (b) 65 J (c) 60 J (d) 50 J (e) 45 J

Questions 17-18

A disk shaped platform of radius R is being rotated with a constant angular speed $\omega = 3 \, rad/s$ about the axis passing through its center of mass, as shown in the figure. A block of mass $m = 500 \ q$ is at rest relative to the platform at a distance $r = 25 \ cm$ from the axis of rotation. The coefficient of static and kinetic frictions between the block and the platform are $\mu_s = 0.7$ and $\mu_k = 0.4$, respectively.

Take $q = 10 \ m/s^2$.

- 17. What is the magnitude and direction of the friction force on m?
 - (a) 11/8 N, away from the rotation axis
 - (b) 9/5 N, towards the rotation axis
 - (c) 9/8 N, towards the rotation axis
 - (d) 11/8 N, towards the rotation axis
 - (e) 9/8 N, away from the rotation axis
- 18. What is the maximum value of ω to keep the block at rest relative to the platform in units of rad/s?

- (a) $3\sqrt{7}$ (b) $2\sqrt{7}$ (c) $4\sqrt{2}$ (d) $3\sqrt{5}$ (e) $2\sqrt{5}$

Questions 19-20

A small block of mass m = 0.5 kg is set into a uniform circular motion on a horizontal frictionless table at a distance r = 50 cm from a hole in the center of the table, as shown in the figure. A string tied to m passes down through the hole, and a larger block of mass M is suspended from the free end of the string. If the small block mmakes 4 turns in a second, the height of M is not changing.

Take $g = 10 \ m/s^2$, $\pi \approx 3$.

- 19. For this given configuration of the system, what is the magnitude of the acceleration of m?

- (a) $328 m/s^2$ (b) $148 m/s^2$ (c) $288 m/s^2$ (d) $178 m/s^2$ (e) $258 m/s^2$

- **20.** What is the value of M?
 - (a) 72/5 kg

- (b) $18 \ kg$ (c) $17 \ kg$ (d) $76/7 \ kg$ (e) $72/7 \ kg$

Exam Type A