CHAP.3 – LA PHOTOSYNTHESE LES EVENEMENTS PHOTOCHIMIQUES

- 1. Le transport acyclique des électrons
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

La réaction de Hill (1939)

Le NADP accepteur d'électrons de la réaction de Hill

Le transfert spontané des électrons

Il ne peut se réaliser que d'un système de **potentiel rédox bas vers** un système de **potentiel rédox élévé**.

1. Le transport acyclique des électrons

- 1.1. Evènements autour de PS1
- 1.2. Evènements autour de PS2
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- 5. Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

hy
Holochrome → Holochrome + e Accepteur

Donneur e⁻ + Holochrome⁺ → Holochrome

On appelle photosystème, l'ensemble :

Donneur d'e-holochrome accepteur d'e-

Et on note :

PS2 le photosystème

dont l'holochrome est P680

PS1 le photosystème

dont l'holochrome est P700

- 1. Le transport acyclique des électrons
- 1.1. Evènements autour de PS1
- 1.2. Evènements autour de PS2
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- 5. Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

La circulation des électrons

Loi de la thermodynamique :

Le transfert des électrons est **spontané**d'un potentiel rédox bas
vers un potentiel rédox élevé.

Evènements autour de PS1

Energie libre

$$\Delta G'_0 = - n \times Cte Faraday \times \Delta E'_0$$

23 Kcal

Variation du potentiel rédox standard, affectée du signe « moins », chaque fois que l'on va vers des potentiels de plus en plus électronégatifs

Bilan thermodynamique autour de PS1

$$P_{100} \longrightarrow P_{430}$$
 $\Delta G'_{0} = -2 \times 23 \times (-0.9) \simeq 42 \text{ K cal}$
 $P_{430} \longrightarrow \text{ferredoxine}$
 $\Delta G'_{0} = -2 \times 23 \times (+0.1) \simeq -4.6 \text{ K cal}$
 $\Delta G'_{0} = -2 \times 23 \times (+0.1) \simeq -4.6 \text{ K cal}$

+ 33 K cal

- 1. Le transport acyclique des électrons
- 1.1. Evènements autour de PS1
- 1.2. Evènements autour de PS2
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- 5. Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

Evènements autour de PS2

Bilan thermodynamique autour de PS2

POUR UN ACQUIS INITIAL P680 -> X 320

AGO 2+42 Kcol

PQ __ Cf

Al Kcal nont perdues MAIS cette energie peut être ré-utilisé

pour fabriquex ATP -> PHOSPHORYLATION

ADP+P _> ATP consomme 7 K cal.

PERTE TOTALE DE X320 -> P200 AGO = -2 x23 x (+0,4) 2-18,5 Kcal

- 1. Le transport acyclique des électrons
- 1.1. Evènements autour de PS1
- 1.2. Evènements autour de PS2
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- 5. Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

Le transport cyclique

Bilan thermodynamique du transport cyclique :

- $P_{430} \rightarrow Cb_6$ $\Delta G'_0 = -2 \times 23 \times (+0,5) = -23 \text{ Kcal } synthèse 3 ATP$
- $Cb_6 \rightarrow Cf$ $\Delta G'_0 = -2 \times 23 \times (+0,2) = -9 \text{ Kcal}$ perte de chaleur

• Cf \rightarrow PS1 $\Delta G'_0 = -2 \times 23 \times (+0,2) = -9 \text{ Kcal } \text{perte de chaleur}$

Le transport acyclique des électrons

- 1. Le transport acyclique des électrons
- 1.1. Evènements autour de PS1
- 1.2. Evènements autour de PS2
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- 5. Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

La photolyse de l'eau

$$H_2O \rightarrow \frac{1}{2} O_2 + 2 H^+ + 2 e^ P_{coo}$$

Le transport acyclique des électrons

- 1. Le transport acyclique des électrons
- 1.1. Evènements autour de PS1
- 1.2. Evènements autour de PS2
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- 5. Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

Le schéma Z

Bilan thermodynamique des réactions claires :

• $H_2O \rightarrow NADP$

$$\Delta G'_0 = -2 \times 23 \times (-1,1) = +50 \text{ Kcal}$$

Pouvoir réducteur de la photosynthèse

- + 50 Kcal pouvoir réducteur
- + 21 Kcal photophosphorylation

+71 Kcal pouvoir réducteur assimilateur

- 1. Le transport acyclique des électrons
- 1.1. Evènements autour de PS1
- 1.2. Evènements autour de PS2
- 2. Le transport cyclique des électrons
- 3. La photolyse de l'eau
- 4. Le schéma Z : bilan des réactions photochimiques
- 5. Vision cytologique et moléculaire du transfert des électrons : mécanisme de la photophosphorylation

4H+ 2P+ 2ADP 2 ATP 2H+ - NADPH2 2H+ ext. NADP P430 X320 P52 PSA Mn III int. 2H+ 102+2H+ 4H+

pH = 4

La photophosphorylation

