Logistic Regression

Odds + probabilities

Prof. Maria Tackett

Click here for PDF of slides

Topics

- Logistic regression for binary response variable
- Relationship between odds and probabilities
- Use logistic regression model to calculate predicted odds and probabilities

Types of response variables

Quantitative response variable:

- Sales price of a house in Levittown, NY
- Model: Expected sales price given the number of bedrooms, lot size, etc.

Categorical response variable:

- High risk of coronary heart disease
- Model: Probability an adult is high risk of heart disease given their age, total cholesterol, etc.

Models for categorical response variables

Logistic Regression Multinomial Logistic Regression

2 Outcomes 3+ Outcomes

1: Yes, 0: No 1: Democrat, 2: Republican, 3:

Independent

Let's focus on logistic regression models for now.

FiveThirtyEight 2020 election forcasts

FiveThirtyEight NBA finals predictions

Friday, Oct. 2 FINALS

Game 2 • FINAL	RAPTOR SPREAD	WIN PROB.	SCORE
# Heat		43%	114
Lakers 2-0	- 2	57%	√124

Wednesday, Sept. 30 FINALS

Game 1 • FINAL	RAPTOR SPREAD	WIN PROB.	SCORE
# Heat	- 5	68%	98
Lakers 1-0		32%	√116

2019-20 NBA Predictions

Do teenagers get 7+ hours of sleep?

Students in grades 9 - 12 surveyed about health risk behaviors including whether they usually get 7 or more hours of sleep.

Sleep7

1: yes

0: no

Age	Sleep7
16	1
17	0
18	0
17	1
15	0
17	0
17	1
16	1
16	1
18	0

Let's fit a linear regression model

Response: Y = 1: yes, 0: no

Let's use proportions

Response: Probability of getting 7+ hours of sleep

What happens if we zoom out?

Response: Probability of getting 7+ hours of sleep

This model produces predictions outside of 0 and 1.

Let's try another model

This model (called a **logistic regression model**) only produces predictions between 0 and 1.

Different types of models

Method	Response Type	Model
Linear Regression	Quantitative	$Y = \beta_0 + \beta_1 X$
Linear regression (transform Y)	Quantitative	$\log(Y) = \beta_0 + \beta_1 X$
Logistic regression	Binary	$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X$

Binary response variable

- Y = 1: yes, 0: no
- π : probability that Y = 1, i.e., P(Y = 1)
- $\frac{\pi}{1-\pi}$: odds that Y=1
- $\log\left(\frac{\pi}{1-\pi}\right)$: log odds
- Go from π to $\log\left(\frac{\pi}{1-\pi}\right)$ using the **logit transformation**

Odds

Suppose there is a 70% chance it will rain tomorrow

- Probability it will rain is p = 0.7
- Probability it won't rain is 1 p = 0.3
- Odds it will rain are 7 to 3, 7:3, $\frac{0.7}{0.3} \approx 2.33$

Are teenagers getting enough sleep?

A tibble: 2 x 3
Sleep7 n p
* 'int > 'int > 'dbl >
1 0 150 0.336
2 1 296 0.664

$$P(7+ \text{ hours of sleep}) = P(Y=1) = p = 0.664$$
 $P(<7 \text{ hours of sleep}) = P(Y=0) = 1 - p = 0.336$

$$P(\text{odds of 7+ hours of sleep}) = \frac{0.664}{0.336} = 1.976$$

From odds to probabilities

odds

$$\omega = \frac{\pi}{1 - \pi}$$

probability

$$\pi = \frac{\omega}{1 + \omega}$$

Logistic model: from odds to probabilities

1 Logistic model: $\log \operatorname{odds} = \log \left(\frac{\pi}{1-\pi} \right) = \beta_0 + \beta_1 X$

2 odds =
$$\exp \left\{ \log \left(\frac{\pi}{1-\pi} \right) \right\} = \frac{\pi}{1-\pi}$$

Combining 1 and 2 with what we saw earlier

probability =
$$\pi = \frac{\exp{\{\beta_0 + \beta_1 X\}}}{1 + \exp{\{\beta_0 + \beta_1 X\}}}$$

Logistic regression model

Logit form:

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X$$

Probability form:

$$\pi = \frac{\exp\{\beta_0 + \beta_1 X\}}{1 + \exp\{\beta_0 + \beta_1 X\}}$$

Risk of coronary heart disease

This dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. We want to use **age** to predict if a randomly selected adult is high risk of having coronary heart disease in the next 10 years.

high_risk:

- 1: High risk of having heart disease in next 10 years
- 0: Not high risk of having heart disease in next 10 years

age: Age at exam time (in years)

High risk vs. age

Age vs. High risk of heart disease

Let's fit the model

term	estimate	std.error	statistic	p.value
(Intercept)	-5.561	0.284	-19.599	0
age	0.075	0.005	14.178	0

Let's fit the model

term	estimate	std.error	statistic	p.value
(Intercept)	-5.561	0.284	-19.599	0
age	0.075	0.005	14.178	0

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = -5.561 + 0.075 \times \text{age}$$

where $\hat{\pi}$ is the predicted probability of being high risk

Predicted log odds

predict(high_risk_model)

For observation 1

predicted odds =
$$\hat{\omega} = \frac{\hat{\pi}}{1 - \hat{\pi}} = \exp\{-2.650\} = 0.071$$

Predcited probabilities

```
predict(high_risk_model, type = "response")

## 1 2 3 4 5 6 7 8 9 10 ## 0.066 0.106 0.122 0.267 0.106 0.087 0.298 0.100 0.157 0.087

predicted probabilities = \hat{\pi} = \frac{\exp\{-2.650\}}{1 + \exp\{-2.650\}} = 0.066
```


Recap

- Logistic regression for binary response variable
- Relationship between odds and probabilities
- Used logistic regression model to calculate predicted odds and probabilities

