Matrius i Vectors Grupo Tarde Examen de reevaluación, problemas

Enero 2013

Todos los teléfonos deberán estar desconectados durante el examen. Pongan nombre y apellidos en cada hoja. Entreguen los problemas en hojas separadas y al menos una hoja por problema (aunque sea sólo con el nombre). En la parte de problemas pueden consultarse libros y apuntes propios.

Al terminar la parte de problemas dejen todo el material escrito en la tarima bajo la pizarra.

Horario:

• Problemas: de 9 a 12.50 horas

• Teoría: de 13 a 14 horas

1.- En \mathbb{R}^4 se consideran los subespacios

$$F = <(1, 1, 1, 1), (1, 0, 1, 0)>,$$

G, dado por las ecuaciones

$$x + y - 3z + 3t = 0$$
, $x + 5y - 3z - t = 0$,

y H, dado por las ecuaciones

$$x + 4y - 3z = 0$$
, $x + 5y + 3z + t = 0$.

Se pide calcular ecuaciones (independientes) y la dimensión de $F \cap (G + H)$.

- 2.- Sean e_1,e_2,v_1,v_2 vectores de \mathbb{R}^4 , $F=< e_1,e_2>$, $G=< v_1,v_2>$ y M la matriz cuyas columnas son e_1,e_2,v_1,v_2 . Se pide demostrar que det $M\neq 0$ si y sólo si $\mathbb{R}^4=F\oplus G$
 - 3.-a) Determine para qué valores de a la matriz

$$M = \left(\begin{array}{ccc} a & -1 & -1 \\ 1 & a-1 & 0 \\ 0 & 1 & a+1 \end{array}\right)$$

tiene inversa y calcule en estos casos M^{-1} , M^t y $(M^t)^{-1}$.

- b) Para los casos en los que M no es inversible, fijada en un espacio vectorial E una base (e_1, e_2, e_3) , se considera el endomorfismo f de E que tiene matriz M en dicha base y se pide calcular el núcleo y la imagen de f.
- 4.- Fijada en un espacio vectorial E, de dimensión 3, una base $\mathfrak{B}=(e_1,e_2,e_3)$, se consideran la aplicación

$$f: E \longrightarrow E$$
$$v \longmapsto -v$$

y la aplicación lineal

$$g: E \longrightarrow E$$
,

que cumple

$$g(e_1) = e_2$$

 $g(e_2) = e_3$
 $g(e_3) = e_1$,

y se pide:

- a) Demostrar que f es lineal y calcular las matrices de f y g relativas a la base $\mathfrak{B}.$
 - b) Comprobar que se cumplen las igualdades

$$(g \circ f)^2 = g^2,$$
$$(g \circ f)^3 = f.$$

c) Encontrar todos los vectores $v \in E$ que cumplen $g(v) = e_1 + 2e_2 - e_3$.