Devoir sur table nº 6

Correction

Durée : 4h. Calculatrice interdite.

•	Mettre	le	numéro	des	questions.
---	--------	----	--------	-----	------------

• Justifiez vos réponses.

• ENCADREZ vos résultats.

• Utilisez des mots en français entre les assertions mathématiques.

• Numérotez les copies doubles.

• Bon courage!

Exercice 1. On travaille dans l'espace euclidien rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

- 1) Soient $\mathcal{D} = A + \text{Vect}(\vec{u})$ et $\mathcal{D}' = B + \text{Vect}(\vec{v})$ deux droites de l'espace.
 - a) À quelle condition \mathcal{D} et \mathcal{D}' sont-elles parallèles (ou confondues)?
 - b) On suppose que \mathcal{D} et \mathcal{D}' ne sont pas parallèles (ou confondues). Montrer que les deux droites s'intersectent si et seulement si $[\overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v}] = 0$.

On considère les points A(0,0,1) et B(1,1,2). On désigne par Δ_1 la droite (AB); par Δ_2 la droite d'équations y=z=0; par Δ_3 la droite d'équations : $\begin{cases} x+y=0 \\ y+z=-1 \end{cases} .$

- 2) Déterminer une représentation paramétrique de Δ_1 .
- 3) Soient $a, b \in \mathbb{R}$. On considère le point M_1 de Δ_1 d'abscisse a et le point M_2 de Δ_2 d'abscisse b. Déterminer une représentation paramétrique de la droite (M_1M_2) .
- 4) À quelles conditions nécessaires et suffisantes portant sur a et b la droite (M_1M_2) a-t-elle une intersection non vide avec Δ_3 ?
- 5) On suppose dans cette question que la droite (M_1M_2) a une intersection non vide avec Δ_3 . Donner une représentation paramétrique de (M_1M_2) , on veillera à ce que le paramètre a n'apparaisse plus.
- 6) Soit une droite Δ' qui rencontre les droites Δ_1 , Δ_2 et Δ_3 . Montrer qu'elle est incluse dans la surface $\mathscr S$ d'équation cartésienne xz=y(y+1).

Solution.

1) a) \mathcal{D} et \mathcal{D}' sont parallèles (ou confondues) si et seulement si \vec{u} et \vec{v} sont colinéaires i.e. $|\vec{u} \wedge \vec{v} = \vec{0}.|$

b) On procède par double implication.

<u>Sens direct</u>: supposons que \mathcal{D} et \mathcal{D}' s'intersectent en un point M de l'espace. Alors, le plan $\mathcal{P} = M + \operatorname{Vect}(\vec{u}, \vec{v})$ (qui est bien défini car \vec{u} et \vec{v} sont non-colinéaires par hypothèse) contient les deux droites donc, en particulier, les points A et B. Ainsi, les vecteurs \overrightarrow{AB} , \vec{u} et \vec{v} sont coplanaires et leur produit mixte est donc nul.

Sens réciproque : supposons que $\left[\overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v}\right] = 0$ et considérons le plan $\mathcal{P} = A + \operatorname{Vect}(\overrightarrow{u}, \overrightarrow{v})$. L'hypothèse signifie que $B \in \mathcal{P}$ et donc finalement \mathcal{D} et \mathcal{D}' sont deux droites de \mathcal{P} . Puisqu'on les suppose aussi non-parallèles, nécessairement elles s'intersectent.

2) On a $A \in \Delta_1$ et le vecteur $\overrightarrow{AB} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ dirige la droite. Ainsi, une représentation paramétrique est

$$\begin{cases} x = t \\ y = t \\ z = 1 + t \end{cases}$$

3) On a $M_1(a, a, a + 1)$ et $M_2(b, 0, 0)$ donc $\overrightarrow{M_2M_1} \begin{pmatrix} a - b \\ a \\ a + 1 \end{pmatrix} \neq \overrightarrow{0}$. Ainsi,

$$(M_1M_2): \begin{cases} x = b + (a - b)t \\ y = at \\ z = (a + 1)t \end{cases}$$

4) On pourrait utiliser la question 1) mais le plus simple reste d'injecter les coordonnées d'un point quelconque de (M_1M_2) dans le système d'équations cartésiennes définissant Δ_3 . Ainsi, les droites s'intersectent si et seulement si il existe $t \in \mathbb{R}$ tel que

$$\begin{cases} b + (a-b)t + at = 0 \\ at + (a+1)t = -1 \end{cases} \iff \begin{cases} b + (2a-b)t = 0 \\ (2a+1)t = -1 \end{cases}$$

La deuxième équation impose que $2a + 1 \neq 0$ et $t = \frac{-1}{2a+1}$. On peut donc multiplier la première équation par 2a + 1, ce qui donne (2a + 1)b - (2a - b) = 0 *i.e.* ab = a - b. Finalement,

$$(M_1M_2)$$
 et Δ_3 s'intersectent \iff
$$\begin{cases} ab = a - b \\ a \neq -\frac{1}{2} \end{cases}$$

5) Par hypothèse, ab = a - b donc a(1 - b) = b. En particulier, $b \neq 1$ car sinon on aurait 0 = 1. Ainsi, $a = \frac{b}{1 - b}$ et la représentation paramétrique de $(M_1 M_2)$ devient dans ce cas

$$(M_1 M_2): \begin{cases} x = b + \frac{b^2 t}{1 - b} \\ y = \frac{bt}{1 - b} \\ z = \frac{t}{1 - b} \end{cases}$$

6) Δ' intersecte Δ_1 en M_1 et Δ_2 en M_2 . Donc $\Delta' = (M_1 M_2)$ et cette droite intersecte Δ_3 . D'après ce qui précède, une paramétrisation de Δ' est donnée par le système précédent. Soit $M(x, y, z) \in \Delta'$. Il existe donc des réels a, b, t tels que

$$\begin{cases} x = b + \frac{b^2 t}{1 - b} \\ y = \frac{bt}{1 - b} \\ z = \frac{t}{1 - b} \end{cases}$$

On a alors

$$xz = \frac{bt}{1-b} + \left(\frac{bt}{1-b}\right)^2 = \frac{bt}{1-b}\left(1 + \frac{bt}{1-b}\right) = y(1+y).$$

D'où, $M \in \mathscr{S}$.

Exercice 2. Un tireur tire à l'arc sur n cibles distinctes. On suppose que pour chaque tir, il atteint sa cible avec la même probabilité p. On notera q = 1 - p la probabilité de rater la cible.

1) On note X le nombre de cibles atteintes. Quelle est la loi de X?

Le tireur retente sa chance sur les n-X cibles qu'il a ratées la première fois. On note Y le nombre de cibles atteintes à la deuxième tentative et on pose Z = X + Y.

- 2) Déterminer $Z(\Omega)$ et calculer P(Z=0).
- 3) Soit $k \in [0, n]$. Exprimer P(Z = k) en fonction des P(X = i) et $P_{X=i}(Z = k)$ pour $i \in [0, n]$. On donnera le nom ainsi que les paramètres de la formule utilisée.
- 4) Pour $(i, m) \in \mathbb{N}^2$, déterminer $P_{X=i}(Y=m)$. On distinguera deux cas. Les variables X et Y sont-elles indépendantes?
- 5) Montrer que $\binom{n}{i}\binom{n-i}{k-i} = \binom{n}{k}\binom{k}{i}$.
- 6) En déduire : $P(Z=k) = \binom{n}{k} p^k (1+q)^k (q^2)^{n-k}$. Reconnaitre alors la loi de Z.
- 7) Retrouver ce résultat en calculant la probabilité qu'une cible soit atteinte à l'issue des deux tirs.

Finalement, le tireur retente sa chance sur toutes les cibles (y compris celles qu'il a déjà atteintes). Il fait donc deux essais par cible. Pour chaque cible touchée au premier essai, il gagne 5 euros et pour chaque cible touchée au second essai, il gagne X euros.

8) Calculer le gain moyen du tireur en fonction de n et p. Dans le cas où $p = \frac{1}{2}$, déterminer la valeur de n à partir de laquelle ce gain moyen est supérieur ou égal à 36 euros.

Solution.

- 1) On répète n fois la même expérience de manière indépendante. La probabilité d'atteindre la cible (succès) est p et X compte le nombre de succès. Ainsi, X suit la loi binomiale $\mathcal{B}(n,p)$.
- 2) On a $Z(\Omega) = [0, n]$ et puisque (Z = 0) correspond à l'événement où chaque cible a été ratée deux fois, on trouve par indépendance des tirs : $P(Z = 0) = q^{2n}$.
- 3) On applique la formule des probabilités totales à (Z=k) relativement au système complet d'événements $(X=i)_{0 \le i \le n}$:

$$P(Z = k) = \sum_{i=0}^{n} P(X = i) P_{X=i}(Z = k).$$

4) Si X = i alors Y vaut au maximum n - i. Ainsi, $[lorsque \ m + i > n, P_{X=i}(Y = m) = 0.]$ Sinon, puisqu'on effectue n - i tir indépendants avec pour chacun une probabilité p de succès, on a

$$P_{X=i}(Y=m) = \binom{n-i}{m} p^m q^{n-i-m}.$$

En particulier, si on prend i=n et m=1, on a $P_{X=n}(Y=1)=0 \neq P(Y=1)$ donc X et Y ne sont pas indépendantes.

5)
$$\binom{n}{i} \binom{n-i}{k-i} = \frac{n!}{i!(n-i)!} \frac{(n-i)!}{(k-i)!(n-k)!} = \frac{n!}{k!(n-k!)} \frac{k!}{i!(k-i)!} = \binom{n}{k} \binom{k}{i}.$$

6) Si X=i alors $Z=k \Leftrightarrow Y=k-i$ et nécessairement $k-i \ge 0$ donc

$$P(Z = k) = \sum_{i=0}^{n} P(X = i) P_{X=i}(Y = k - i) \qquad \text{d'après Q.3}$$

$$= \sum_{i=0}^{k} \binom{n}{i} p^{i} q^{n-i} \binom{n-i}{k-i} p^{k-i} q^{n-k} \qquad \text{d'après Q.4 avec } m = k - i$$

$$= \sum_{i=0}^{k} \binom{n}{k} \binom{k}{i} p^{k} q^{2n-k-i} \qquad \text{d'après Q.5}$$

$$= \binom{n}{k} p^{k} q^{2(n-k)} \sum_{i=0}^{k} \binom{k}{i} 1^{i} q^{k-i}$$

$$= \binom{n}{k} p^{k} q^{2(n-k)} (1+q)^{k} \qquad \text{par la formule du binôme}$$

Or,
$$p(1+q) = (1-q)(1+q) = 1-q^2$$
. On reconnait alors que Z suit la loi binomiale $\mathcal{B}(n, 1-q^2)$.

7) L'expérience peut-être décrite ainsi :

Pour chaque cible, le succès est "le tireur atteint la cible à l'issue des deux tirs". L'échec est donc "le tireur rate deux fois la cible" et la probabilité d'échec est alors q^2 . Les tirs sont indépendants et Z compte le nombre de succès.

Ainsi, Z suit une loi binomiale $\mathcal{B}(n, 1-q^2)$.

8) Notons Y' le nombre de cibles touchées lors du second essai et G le gain du tireur. D'après l'énoncé, G = 5X + XY'. De plus $Y' \sim \mathcal{B}(n,p)$ est indépendante de X. Les propriétés de l'espérance donnent alors

$$E(G) = 5E(X) + E(X)E(Y') = np(np+5).$$

On cherche maintenant à savoir quand cette valeur est supérieure ou égale à 36. On résout donc

$$x(x+5) \geqslant 36 \iff x^2 + 5x - 36 \geqslant 0.$$

On a $\Delta = 169$ et les racines du trinômes sont -9 et 4. Ainsi, on doit avoir $np \ge 4$ *i.e.* $n \ge 8$ pour $p = \frac{1}{2}$.

Exercice 3.

Partie I: Un exemple

On considère la matrice $A = \begin{pmatrix} 2 & -14 & 4 \\ 1 & -7 & 2 \\ 3 & -21 & 6 \end{pmatrix}$. On note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A (c'est-à-dire dont la matrice dans la base canonique de \mathbb{R}^3 est A).

- 1) Déterminer le rang de A ainsi que deux matrices colonnes $U, V \in \mathcal{M}_{3,1}(\mathbb{R})$ tel que $A = UV^{\mathrm{T}}$.
- 2) Déterminer des bases de l'image et du noyau de f.
- 3) Déterminer, en justifiant, si f est éventuellement un projecteur ou une symétrie.
- 4) A-t-on $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$? Justifier.

On pose, pour tout $(x, y, z) \in \mathbb{R}^3$, $\varphi(x, y, z) = x - 7y + 2z$.

- 5) Montrer que φ définit une forme linéaire sur \mathbb{R}^3 .
- 6) Montrer qu'il existe $u \in \mathbb{R}^3$ tel que, pour tout $(x,y,z) \in \mathbb{R}^3$, $f(x,y,z) = \varphi(x,y,z)u$.

Partie II: Cas général

Soit M une matrice carrée à $n \in \mathbb{N}^*$ lignes et à coefficients dans \mathbb{K} . On note g l'endomorphisme de \mathbb{K}^n canoniquement associé à M. On suppose que M est de rang 1.

- 7) Montrer qu'il existe U et V des matrices colonnes telles que $M=UV^{\mathrm{T}}.$
- 8) Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $M^2 = \lambda M$. Dans quel cas g est-il un projecteur?
- 9) Montrer qu'il existe une matrice inversible P et des scalaires α_1,\ldots,α_n tels que

$$P^{-1}MP = \begin{pmatrix} 0 & \cdots & 0 & \alpha_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_n \end{pmatrix}.$$

10) En déduire qu'il existe une forme linéaire φ sur \mathbb{K}^n et un vecteur $u \in \mathbb{K}^n$ tels que pour tout $x \in \mathbb{K}^n$, $g(x) = \varphi(x)u$.

Solution.

1) On rappelle que le rang d'une matrice est égal à la dimension de l'espace engendré par ses vecteurs colonnes. Or, ici les trois colonnes de A sont proportionnelles et non nulles donc A est de rang 1. En posant

$$U = \begin{pmatrix} 2\\1\\3 \end{pmatrix} \text{ et } V = \begin{pmatrix} 1\\-7\\2 \end{pmatrix},$$

on a
$$A = UV^{T}$$

2) Une base de l'image de f est un vecteur dont les coordonnées sont une colonne de A non nulle (car A est de rang 1) : ((2,1,3)) est une base de l'image de f.

Les lignes de A étant elles aussi proportionnelles, on a immédiatement :

$$Ker(f) = \{(x, y, z) \in \mathbb{R}^3 \mid x - 7y + 2z = 0\} = Vect((7, 1, 0), (-2, 0, 1))$$

et comme (7,1,0) et (-2,0,1) ne sont pas colinéaires, ils forment une base de Ker(f): ((7,1,0),(-2,0,1)) est une base de Ker(f).

- 3) On a, en calculant, $A^2 = A$ donc $f \circ f = f$. Ainsi, f un projecteur.
- 4) Puisque f est un projecteur de \mathbb{R}^3 , d'après le cours on a $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
- 5) φ est bien à valeur dans \mathbb{R} . Il reste à montrer qu'elle est linéaire. Soit $(x, y, z), (x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$. On a

$$\varphi((x, y, z) + \lambda(x', y', z')) = \varphi(x + \lambda x', y + \lambda y', z + \lambda z')$$

$$= x + \lambda x' - 7(y + \lambda y') + 2(z + \lambda z')$$

$$= x - 7y + 2z + \lambda(x' - 7y' + 2z')$$

$$= \varphi(x, y, z) + \lambda \varphi(x', y', z')$$

donc φ est une forme linéaire sur \mathbb{R}^3

6) On pose u = (2, 1, 3). On a, pour tout $(x, y, z) \in \mathbb{R}^3$,

$$f(x,y,z) = (2(x-7y+2z), x-7y+2z, 3(x-7y+2z)) = \varphi(x,y,z)u.$$

- 7) Comme M est de rang 1, elle admet au moins une colonne non nulle et toutes les colonnes sont proportionnelles à celle-ci. En notant C_i une colonne non nulle dont les coefficients sont u_1, \ldots, u_n et C_1, \ldots, C_n les colonnes de M, pour tout $j \in [1, n]$, il existe v_j tel que $C_j = v_j C_i$ (on a notamment $v_i = 1$). Ainsi, en posant $U = C_i$ et V la colonne dont les coefficients sont v_1, \ldots, v_n , on a $M = UV^T$.
- 8) On a $M^2 = UV^{\mathrm{T}}UV^{\mathrm{T}}$. Or, $V^{\mathrm{T}}U$ est une matrice de taille 1×1 donc elle s'identifie au scalaire

$$\lambda = V^T U = \sum_{k=1}^n u_k v_k$$

en notant toujours u_k et v_k les coefficients des colonnes. Ainsi,

$$M^2 = U\lambda V^{\mathrm{T}} = \lambda UV^{\mathrm{T}} = \lambda M.$$

De plus, g est un projecteur si et seulement si $M^2=M$, c'est-à-dire, comme M n'est pas nulle, $\lambda=1.$

9) Comme M est de rang 1, le noyau de g est, par le théorème du rang, de dimension n-1. On considère donc (e_1, \ldots, e_{n-1}) une base de $\operatorname{Ker}(g)$ qu'on complète (par le théorème de la base incomplète) par un vecteur $e_n \in \mathbb{R}^n$. On pose $\mathscr{B} = (e_1, \ldots, e_n)$ et on note $\alpha_1, \ldots, \alpha_n$ les coordonnées de $g(e_n)$ dans la base \mathscr{B} . Soient P la matrice de passage de la base canonique à la base \mathscr{B} et M' la matrice de g dans \mathscr{B} . Par définition, comme $g(e_1) = \cdots = g(e_n) = 0_{\mathbb{R}^n}$ et $g(e_n) = \sum_{i=1}^n \alpha_i e_i$, on a

$$M' = \begin{pmatrix} 0 & \cdots & 0 & \alpha_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_n \end{pmatrix}.$$

Or, par propriété des changements de base, on a aussi $M=PM'P^{-1}$ donc finalement

$$P^{-1}MP = M' = \begin{pmatrix} 0 & \cdots & 0 & \alpha_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_n \end{pmatrix}.$$

10) Matriciellement, dans la base \mathscr{B} , pour tout vecteur colonne $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$,

$$M'X = \begin{pmatrix} \alpha_1 x_n \\ \alpha_2 x_n \\ \vdots \\ \alpha_n x_n \end{pmatrix} = x_n U$$

où $U = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$. En revenant à l'écriture vectorielle, on a donc pour tout $x \in \mathbb{K}^n$,

$$g(x) = \varphi(x)u$$

où $u = \sum_{i=1}^{n} \alpha_i e_i$ et $\varphi(x) = x_n$, la *n*-ième coordonnée de x dans \mathscr{B} (on vérifie facilement que φ est linéaire).

Exercice 4. On considère la fonction f définie sur \mathbb{R} par : $f(x) = \begin{cases} \frac{1 - e^{-x}}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$ On note \mathcal{C}_f la courbe représentative de f.

- 1) Étude de f.
 - a) Déterminer un développement limité à l'ordre deux de f en zéro.
 - b) En déduire que f est dérivable sur \mathbb{R} et donner l'équation de la tangente T_0 en zéro ainsi que la position relative de \mathcal{C}_f par rapport à T_0 au voisinage de zéro.

- c) Calculer f'(x) pour $x \neq 0$.
- d) Déterminer $\lim_{x\to 0} f'(x)$ puis montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
- e) Dresser les variations de f, limites comprises.
- f) Donner un équivalent simple de f en $+\infty$ puis en $-\infty$.
- 2) Étude d'une fonction définie par une intégrale
 - a) On note $G: \mathbb{R} \to \mathbb{R}$ l'application définie pour tout $x \in \mathbb{R}$ par $: G(x) = \int_x^{x^2} f(t)dt$. Montrer que G est de classe C^1 sur \mathbb{R} .
 - b) Déterminer le signe de G(x) pour $x \in \mathbb{R}$.
 - c) Calculer G'(x) pour tout $x \in \mathbb{R}$.
 - d) Par un calcul de limite, vérifier que G' est bien continue en zéro.
 - e) Montrer que : $\forall t \ge 1$, $e^{-t} \le \frac{1}{2}$ puis que : $\forall t \ge 1$, $f(t) \ge \frac{1}{2t}$.
 - f) En déduire $\lim_{x \to +\infty} G(x) = +\infty$.
- 3) Étude d'une suite
 - a) On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par : $u_n = \int_0^n \frac{e^{\frac{-s}{n}}}{1+s} ds$. Montrer que u_n existe pour tout $n\in\mathbb{N}^*$.
 - b) Démontrer que pour tout entier n non nul, $u_n \ge \frac{1}{e} \ln(n+1)$. En déduire la limite de la suite $(u_n)_n$.
 - c) Justifier que l'intégrale $\int_0^1 f(t)dt$ existe puis que :

$$0 \leqslant \int_0^n \frac{1}{1+s} ds - u_n \leqslant \int_0^1 f(t) dt$$

d) En déduire un équivalent simple de u_n lorsque n tend vers $+\infty$.

Solution.

1) a) On démarre avec un DL à l'ordre 3 de \exp :

$$\frac{1 - e^{-x}}{x} = \frac{1 - (1 - x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3))}{x} = 1 - \frac{x}{2} + \frac{x^2}{6} + o(x^2)$$

b) f admet un DL à l'ordre 1 donc f est dérivable et $f'(0) = \frac{-1}{2}$.

Les premiers termes du DL permettent aussi de déterminer la tangente en 0 et sa position relative. Ainsi,

$$T_0: y = 1 - \frac{x}{2}$$

et
$$f(x) - (1 - \frac{x}{2}) = \frac{x^2}{6} + o(x^2) \ge 0$$
 au voisinage de 0.

Donc la courbe est au-dessus de sa tangente au voisinage de 0.

c) f est dérivable sur \mathbb{R}^* comme quotient de fonctions dérivables.

$$\forall x \neq 0, \quad f'(x) = \frac{xe^{-x} - (1 - e^{-x})}{x^2} = \frac{xe^{-x} - 1 + e^{-x}}{x^2}.$$

d) On fait un DL de f' en $0: f'(x) = \frac{x(1-x+o(x))-1+1-x+\frac{x^2}{2}+o(x^2)}{x^2} = -\frac{1}{2}+o(1)$.

Ainsi, $\lim_{x\to 0} f'(x) = -\frac{1}{2} = f'(0)$ d'après la question a) et donc f' est continue en 0.

De plus, f est de classe C^1 sur \mathbb{R}^* d'après les théorèmes généraux donc finalement, f est de classe C^1 sur \mathbb{R} .

e) On pose $\phi(x) = xe^{-x} - 1 + e^{-x}$ de sorte que f' est du signe de ϕ . ϕ est dérivable : $\forall x \in \mathbb{R}, \phi'(x) = -xe^{-x} + e^{-x} - e^{-x} = -xe^{-x}$ et $\phi(0) = 0$. On en déduit le tableau de variations suivant.

x	$-\infty$	0	$+\infty$
ϕ'	+	_	-
ϕ	, m	0	_
ϕ	_	0 -	-
f'		1/2 -	_
\int	$+\infty$	1	0

Par limite directe : $\lim_{x \to +\infty} f(x) = 0$

Par croissance comparée : $\lim_{x \to +\infty} f(x) = +\infty$

- f) $1 e^{-x} \underset{+\infty}{\sim} 1 \text{ donc } f(x) \underset{+\infty}{\sim} \frac{1}{x}.$ $1 - e^{-x} \underset{-\infty}{\sim} -e^{-x} \text{ donc } f(x) \underset{-\infty}{\sim} \frac{-e^{-x}}{x}.$
- 2) a) Comme f est continue sur \mathbb{R} , on note F une primitive de f. Alors, F est de classe \mathcal{C}^1 et d'après le théorème fondamental de l'analyse : $G(x) = F(x^2) F(x)$ pour tout $x \in \mathbb{R}$. Ainsi G est de classe C^1 en tant que somme et composée de fonctions de classe C^1 .
 - b) D'après les variations de f, on trouve que $f \ge 0$ sur \mathbb{R} . Reste à savoir si les bornes sont dans l'ordre croissant :

$$x \leqslant x^2 \Leftrightarrow x(x-1) \geqslant 0 \Leftrightarrow x \geqslant 1 \text{ ou } x \leqslant 0.$$

Donc par passage à l'intégrale :

- i. si $x \ge 1$ ou $x \le 0$ alors $x \le x^2$ et $G(x) \ge 0$;
- ii. si 0 < x < 1 alors $x \geqslant x^2$ et $G(x) \leqslant 0$.

c)
$$G'(x) = 2xF'(x^2) - F'(x) = 2xf(x^2) - f(x)$$
.
Si $x \neq 0$: $G'(x) = 2x\frac{1 - e^{-x^2}}{x^2} - \frac{1 - e^{-x}}{x} = \frac{1 + e^{-x} - 2e^{-x^2}}{x}$.
Si $x = 0$: $G'(0) = 2 \times 0f(0) - f(0) = -1$

d) On fait un DL de
$$G'(x)$$
:
$$G'(x) = \frac{1 + e^{-x} - 2e^{-x^2}}{x} = \frac{1 + 1 - x + o(x) - 2 + 2x^2 + o(x^2)}{x} = -1 + o(1) \xrightarrow[x \to 0]{} -1 = G'(0).$$

On retrouve que G' est continue en zéro.

e) Si
$$t \ge 1$$
 alors $e^{-t} \le e^{-1} = \frac{1}{e} \le \frac{1}{2}$.
Si $t \ge 1$ alors $f(t) \ge \frac{1 - 1/2}{t} = \frac{1}{2t}$ car $t > 0$.

f) Pour $x \ge 1$, on a $x \le x^2$ et pour tout $t \ge x \ge 1$: $f(t) \ge \frac{1}{2t}$. Ainsi, par croissance de l'intégrale,

$$\int_{x}^{x^{2}} f(t)dt \geqslant \int_{x}^{x^{2}} \frac{1}{2t}dt = \frac{1}{2} [\ln t]_{x}^{x^{2}} = \frac{1}{2} (\ln(x^{2}) - \ln x) = \frac{1}{2} \ln x.$$

Or $\lim_{x\to +\infty} \ln x = +\infty$. Donc par comparaison : $\lim_{x\to +\infty} G(x) = +\infty$.

- 3) a) Sur [0, n], $\frac{1}{1+s}$ ne s'annule pas. Donc $s \mapsto \frac{e^{\frac{-s}{n}}}{1+s}$ y est continue et u_n est bien définie.
 - b) Si $0 \le s \le n$ alors $e^{-1} \le e^{\frac{-s}{n}} \le 1$ et donc : $\frac{e^{-1}}{1+s} \le \frac{e^{\frac{-s}{n}}}{1+s}$ car $1+s \ge 0$.

Par croissance de l'intégrale $(0 \le n)$: $u_n \ge e^{-1} \int_0^n \frac{1}{1+s} ds = e^{-1} \ln(n+1)$.

Or, $\lim_{n\to+\infty} \ln(n+1) = +\infty$ donc, par comparaison, $\lim_{n\to+\infty} u_n = +\infty$.

c) f est continue sur [0,1], donc l'intégrale existe.

$$\int_0^n \frac{1}{1+s} ds - u_n = \int_0^n \frac{1 - e^{\frac{-s}{n}}}{1+s} ds.$$

Sur
$$[0, n]$$
, $1 - e^{\frac{-s}{n}} \ge 0$ et $1 + s \ge 0$ donc $\int_0^n \frac{1 - e^{\frac{-s}{n}}}{1 + s} ds \ge 0$.

Pour l'autre inégalité, on effectue le changement de variable suivant : $t = \frac{s}{n}$:

$$\int_0^n \frac{1 - e^{\frac{-s}{n}}}{1 + s} ds = \int_0^1 \frac{1 - e^{-t}}{1 + nt} n dt.$$

Or,
$$\frac{n}{1+nt} \leqslant \frac{n}{nt} = \frac{1}{t}$$
 pour $t \geqslant 0$. Ainsi, $\int_0^n \frac{1-e^{\frac{-s}{n}}}{1+s} ds \leqslant \int_0^1 \frac{1-e^{-t}}{t} dt = \int_0^1 f(t) dt$. Finalement, on a bien $0 \leqslant \int_0^n \frac{1}{1+s} ds - u_n \leqslant \int_0^1 f(t) dt$.

d) $\int_0^n \frac{1}{1+s} ds = \ln(n+1)$ donc l'encadrement précédent est équivalent à

$$\ln(n+1) - \int_0^1 f(t)dt \leqslant u_n \leqslant \ln(n+1).$$

Quand n tend vers l'infini, les membres de gauche et de droite sont tous les deux équivalents à $\ln n$ donc u_n aussi par encadrement. D'où, $u_n \sim \ln n$.