Minimal sampling for stochastic transmission economic assessment

Erich Trieschman ¹

¹Department of Statistics

Introduction

Objective: To minimize the number of samples needed for generating uncertainty bounds for transmission economic assessments

- Traditional transmission planning models use deterministic load and resource availability forecasts, neglecting uncertainty in assessing economic benefits.
- Transmission Economic Assessment Methodology (TEAM) offers a solution to address uncertainties by stress-testing transmission alternatives under future conditions in a stochastic production cost simulation. However, the simulations are computationally expensive.
- We develop methods to select minimal samples of load, wind, and solar forecasts for use in the TEAM framework; our methods leverage experiment design and active learning techniques.

Background: Production cost simulation and stochastic profiles

Figure 1. pypsa-usa 96-node WECC network

• **Scenario:** We evaluate our methods under a single transmission expansion scenario for an HVDC VSC cable connecting Humboldt to PG&E Bay in a synthetic 96-node network of the Western Electricity Coordinating Council (WECC)

Benefits =
$$[\tilde{\lambda}_{n,t} - \lambda_{n,t}] \cdot P_{\mathsf{load},n,t}$$

- Cost model: To estimate economic costs we use a nodal production cost simulation (PCS) model built on the Breakthrough Energy synthetic WECC network model. The WECC model is built within the Python for Power System Analysis (pypsa) toolkit.
- **Stochastic profiles:** We generate stochastic load, wind, and solar profiles using the mean-reversion stochastic process method developed by the CAISO. Profiles are encoded using PCA to aid in sample selection; Only the first 10 principal components are used.

Methods

Methods: Baselines

- Full sample: Empirical distribution of the full sample of production cost model runs (N = 500)
- Random sample:

 Empirical distribution
 generated by a surrogate
 model fit with randomly
 selected samples
- Bootstrapping:

 Bootstrapping used to
 generate confidence intervals
 around performance metrics

Methods: One-shot sample selection with D-optimal experiment design

- Surrogate model: Linear relationship between forecasts and costs
- **Objective:** Select samples that maximize forecast covariance matrix (equivalent to minimizing standard errors of $\hat{\beta}$). Use $m \in \{0,1\}^n$ instead of the canonical formulation, $m \in \mathbb{Z}^n$, because the cost model is deterministic.
- Convex relaxations: Scalarize with D-optimal design formulation as described in Boyd et. al. and use L1-norm heuristics to maximize solution sparsity.

$$egin{array}{ll} \min_{\lambda} & -\log \det \left(\sum_{j=1}^p \lambda_j v_j v_j^T
ight) \ s.t. & 0 \preceq \lambda \preceq 1, \quad \|\lambda\|_1 \leq lpha M \end{array}$$

For p distinct forecasts, distinct scenario v_j , m_j selecting scenario v_j , target scenarios M, and hyperparameter α . This approach requires discretizing the dimensions of our input space x_i into scenarios v_i .

Methods: Active learning sample selection with Bayesian optimization

Surrogate model: Gaussian Process (GP) model

$$f^{(n+1)} \mid \mathbf{x}^{(1:n+1)} \sim \mathcal{N}\left(\mathbf{k}(x^{(n+1)})^{T}\mathbf{K}^{-1}\mathbf{f}^{(1:n)}, k(x^{(n+1)}, x^{(n+1)}) - \mathbf{k}(x^{(n+1)})^{T}\mathbf{K}^{-1}\mathbf{k}(x^{(n+1)})\right)$$

$$k(x^{(i)}, x^{(j)}) := \exp\left(-\frac{1}{2l^{2}}||x^{(i)} - x^{(j)}||_{2}^{2}\right) \quad \mathbf{k}(x^{(n+1)}) := \left[\dots, k(x^{(n+1)}, x^{(i)}), \dots\right] \quad \mathbf{K}_{ij} := k(x^{(i)}, x^{(j)})$$

• **Objective:** Select the next sample point to maximize the entropy of the surrogate model fit to all previous samples. Maximum entropy search (MES) aims to reduce overall surrogate model uncertainty

$$\operatorname{argmax}_{x} \frac{1}{2} \log(2\pi k(x^{(n+1)}, x^{(n+1)}) - \mathbf{k}(x^{(n+1)})^{T} \mathbf{K}^{-1} \mathbf{k}(x^{(n+1)})) + \frac{1}{2} = \operatorname{argmin}_{x} \mathbf{k}(x)^{T} \mathbf{K}^{-1} \mathbf{k}(x)$$

• Convex relaxations: Non-convex objective; Sequential convex programming (SCP) used to iteratively solve for local maxima for each sample, $x^{(n+1)}$

$$x^{(n+1)^{(k+1)}} = \operatorname{argmin}_{x} \hat{f}(x) \text{ s.t. } x \in \mathcal{T}^{(k)}$$

- Function approximations: Both second-order Taylor approximation and particle method approximation methods used to approximate the objective
- Second-order Taylor approximation:

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + (x - x^{(k)})^T P(x - x^{(k)}) \text{ for } P = (\nabla^2 f(x^{(k)}))_{\perp}$$

Particle method approximation:

$$\hat{f}(x) = (x - x^{(k)})^T P(x - x^{(k)}) + q^T (x - x^{(k)}) + r \text{ for}$$

$$P, q, r = \operatorname{argmin}_{P \succeq 0, q, r} \sum_{i=1}^{\infty} \left((z_i - x^{(k)})^T P(x_i - x^{(k)}) + q^T (z_i - x^{(k)}) + r - f(z_i) \right)^2, \text{ for } z_i \sim \mathsf{Unif} \left[\mathcal{T}^{(k)} \right]$$

Results

Table 1. Absolute difference between true distribution and surrogate distribution statistic (samples=50, bootstraps=100)

	One-shot		Active learning		
	Baseline	D-optimal	Baseline	Taylor	Particle
Min	0.73±0.37	1.49	0.64 ± 0.53	0.46 ± 0.41	0.41 ± 0.39
5th pctl	0.62 ± 0.23	0.85	0.68 ± 0.23	0.24 ± 0.16	0.23 ± 0.16
10th pctl	0.56 ± 0.20	0.53	0.47 ± 0.19	0.14 ± 0.12	0.17 ± 0.14
25th pctl	0.42 ± 0.17	0.26	0.28 ± 0.14	0.11 ± 0.10	0.14 ± 0.11
50th pctl	0.16 ± 0.12	0.11	0.11 ± 0.09	0.09 ± 0.07	0.14 ± 0.10
75th pctl	0.30 ± 0.19	0.34	0.26 ± 0.13	0.11 ± 0.09	0.12 ± 0.09
90th pctl	0.77 ± 0.27	0.66	0.45 ± 0.17	0.14 ± 0.13	0.16 ± 0.12
95th pctl	0.89 ± 0.30	0.75	0.47 ± 0.20	0.18 ± 0.17	0.18 ± 0.15
Max	2.41±0.69	1.35	0.76 ± 0.46	0.40 ± 0.45	0.53 ± 0.37
Mean	0.14±0.10	0.04	$\boxed{0.11\pm0.09}$	0.09 ± 0.07	0.11 ± 0.09
Std	0.50 ± 0.13	0.50	0.37 ± 0.09	0.10 ± 0.07	0.10 ± 0.07

Results

Active learning baseline

N samples to fit Surrogate model

Active learning Taylor approx.

Active learning samples selected with Taylor approximations in SCP. See final report appendix for the performance of the particle method and one-shot sample selection

Discussion

- ullet Optimal sample selection methods can be used generate cost distributions at 5-10% of the computational costs required to run the full production cost model for all samples
- Optimal sample selection methods outperform random sample selection methods, especially for estimating cost distribution percentiles and standard deviations.
- Active learning sample selection runtime is negligible compared to the production cost model runs (30min); one-shot sample selection runtimes are on the order of minutes.
- Future work: Apply sampling method to general generation and transmission capacity expansion modeling (instead of a single-scenario assessment); improved hyperparameter tuning

Contributions and acknowledgements

This work is conducted by Erich Trieschman as part of a larger project in collaboration with Kamran Tehranchi. Kamran is responsible for running the production cost model and generating stochastic profile data. Code and results are available on Github.

References

- 1 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
- [2] Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*. The MIT Press, Nov. 2005. ISBN: 9780262256834. DOI: 10.7551/mitpress/3206.001.0001. URL: https://doi.org/10.7551/mitpress/3206.001.0001.
- [3] Mohamed Labib et al. Awad. "Using market simulations for economic assessment of transmission upgrades". en. In: (2010). Ed. by Xiao-Ping Zhang, pp. 241–270. DOI: 10.1002/9780470608555.