ЗАДАНИЕ на лабораторные работы №1

Тема: Построение и программная реализация алгоритма полиномиальной интерполяции табличных функций.

Цель работы. Получение навыков построения алгоритма интерполяции таблично заданных функций полиномами Ньютона и Эрмита.

Входные данные

1. Таблица функции и её производных

X	у	y ,
0.00	1.000000	1.000000
0.15	0.838771	-1.14944
0.30	0.655336	-1.29552
0.45	0.450447	-1.43497
0.60	0.225336	-1.56464
0.75	-0.018310	-1.68164
0.90	-0.278390	-1.78333
1.05	-0.552430	-1.86742

- 2. Степень n аппроксимирующих полиномов Ньютона и Эрмита.
- 3. Значение аргумента X, для которого выполняется интерполяция.

Выходные данные

Значения у(х) для заданного значения аргумента.

Применить разработанную программу для решения следующих задач

- 1. Получить таблицу значений у(x) при степенях полиномов Ньютона и Эрмита n=1, 2, 3, 4 и 5 при фиксированном x, например, x=0.675 (середина интервала 0.6 0.75). Сравнить результаты при одинаковых **степенях** .полиномов Ньютона и Эрмита.
- 2. Найти корень заданной выше табличной функции с помощью обратной интерполяции обоими полиномами.
- 3. Решить систему нелинейных уравнений, основываясь на простой идее обратной интерполяции.

$$\begin{cases} f(x,y) = e^{0.5x} - \sqrt{\dots} = 0, & (1) \\ \varphi(x,y) = x^2 - \sqrt{\frac{y+\dots}{2}} = 0. & (2) \end{cases}$$

Для реализации указанной идеи необходимо иметь явные зависимости одной переменной от другой. Из неявных функций системы (1), (2) численно получены в табличной форме явные зависимости x(y) и y(x) для области определения переменных, в которой существует единственное решение системы уравнений (таблицы 1,2):

Таблица 1 (из (1))

У	X
0.005	0.137
0.035	0.343
0.055	0.421
0.065	0.454
0.135	0.626
0.155	0.664
0.195	0.731
0.275	0.843
0.315	0.891
0.405	0.985

Таблица 2 (из (2))

X	у
0.1	-0.284
0.3	-0.300
0.4	-0.293
0.48	-0.266
0.6	-0.165
0.68	-0.037
0.75	0.128
0.88	0.610
0.95	0.988
1.03	1.547

Используя таблицы 1 и 2 найдите корни системы.

Указание. С помощью интерполяции перестроить приведенные табличные представления функций к новой таблице, в которой содержится зависимость разности функций у(х) из (1) и (2) от фиксированного набора значений аргумента х, например, такого, как во второй таблице, или любого другого из рассматриваемого интервала. Затем применить процедуру обратной интерполяции.

Примерные вопросы при защите лабораторной работы.

При удаленной работе ответы на вопросы дать письменно в Отчете о лабораторной работе.

1. Будет ли работать программа при степени полинома Ньютона n=0?

- 2. Как практически оценить погрешность интерполяции? Почему сложно применить для этих целей теоретическую оценку?
- 3. Если в одной точке заданы значения функции и ее первой, второй и третьей производных, а в другой точке заданы значения функции и ее первой производной, то какова будет степень полинома Эрмита, построенного на этих двух точках?
- 4. Если в одной точке заданы функция и все ее производные, то, что собой представляет полином Эрмита, построенный в этой точке?
- 5. В каком месте алгоритма построения полинома существенна информация об упорядоченности аргумента функции (возрастает, убывает)?
- 6. Что такое выравнивающие переменные и как их применить для повышения точности интерполяции?
- 7. Будет ли работать ваша программа при произвольном неупорядоченном расположении узлов в исходной таблице?
- 8. Принципиально ли для корректной работы вашего алгоритма, чтобы узлы были расположены обязательно по возрастанию?
- 9. Что будет происходить с точностью интерполяции по мере продвижения от центра к краям таблицы?
- 10. Всегда ли можно использовать для обратной интерполяции полином Эрмита?
- 11. Предложите алгоритм получения явной зависимости у(x) из неявной функции f(x,y)=0.

Методика оценки работы.

Модуль 1, срок - 6-я неделя.

- 1. Задание полностью выполнено 9 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на вопросы при защите работы до 15 баллов (максимум).