Curso Tecnologia em Sistemas para Internet Redes de Computadores e Aplicações

Aula 12 – Fragmentação IP

Objetivos

- Entender o funcionamento da fragmentação do datagrama IP;
- Ver quais campos atuam nesse processo;

Revisando

0	4	8	16	19	24	31		
VERS	HLEN	SERVICE TYPE	TOTAL LENGTH					
IDENTIFICATION			FLAGS	FRAGMENT OFFSET				
TIME I	E TO LIVE PROTOCOL HEADER CHEC			IECKSUM				
SOURCE IP ADDRESS								
DESTINATION IP ADDRESS								
IP	PADDING							
DATA								

Introdução

- Cada tecnologia de rede física impõe um limite no tamanho máximo do quadro;
 - Logo, o tamanho máximo do datagrama IP que é encapsulado no campo dados do quadro é dependente dessa tecnologia da rede física utilizada;

Introdução

- A Unidade de Transferência Máxima é a forma de denominar esse limite;
 - MTU(Maximum Transfer Unit)
- A estação de origem seleciona o tamanho máximo de um datagrama IP com base na MTU da rede física diretamente conectada que será usada para transmissão;

Introdução

- Como um datagrama pode ser encaminhado por diversas rede físicas, com MTUs diferentes, o tamanho inicial pode não ser adequado nas demais redes intermediárias;
- Isso requer algum mecanismo que adapte o datagrama a rede;
 - Divisão do datagrama em fragmentos;
 - O processo é chamado de fragmentação;

- Cada fragmento possui o mesmo formato de um datagrama IP;
 - Com cabeçalho semelhante ao original, mas com algumas particularidades;

- É possível um fragmento ser diversas vezes fragmentado por roteadores ao longo do seu percurso até o destino;
- As informações do cabeçalho de cada fragmento permitem a reconstrução do datagrama original;
 - Independe do número de fragmentações ocorridas;

- Para evitar diversas e fragmentações, o agrupamento dos fragmentos para produzir o datagrama original é realizado apenas no destino final;
 - Processo denominado remontagem
 - Isso evita gasto de tempo de processamento de roteadores, o que acarretaria atrasos entrega;

- Como o serviço de entrega do IP é não-confiável, os fragmentos podem ser perdidos e assim o datagrama original não poderá ser remontado;
 - Por isso, existe um temporizador de remontagem;
 - Ele é iniciado quando um fragmento de um datagrama chega a estação destino;
 - Se o tempo expira antes da chegada de todos os fragmentos, ocorre o descarte;

- Para controlar os processo de fragmentação e remontagem, o IP faz uso dos seguinte campos;
 - Identification;
 - Flags;
 - Fragment offset;

- Campo Identification
 - Contém um número inteiro que representa o datagrama original;
 - Quando ocorre framentação esse campo é apenas copiado para cada fragmento;
 - Baseado no source ip address e no identification a estação destino identifica todos os fragmentos de um datagrama;

- Campo fragment offset
 - Identifica o deslocamento dos dados transportados, em cada fragmento, em relação ao datagrama original;
 - Ele é medido em unidades de 8 bytes, sendo assim a quantidade de dados transportada deve ser múltipla de 8;
 - O valor inicial é zero, e a estação posiciona cada fragmento em sua posição(de acordo com o fragment offset) na remontagem;

- Campo Flags
 - Possui 3 bits
 - 2 são usados no controle de fragmentação

Do not fragment;

 Sinaliza se o datagrama pode(0) ou não pode(1) ser fragmentado;

More fragments;

 Indica se o fragmento contém dados do início/meio (1) ou do final (0) do datagrama original;

- Processo de fragmentação de um datagrama de 1000 bytes enviado de E1 para E2;
 - 1000 bytes
 - 20 bytes de cabeçalho;
 - 980 bytes de dados;

E1 gera o seguinte datagrama:

0 1000	980
	0 1000

 No roteador R1, em função da MTU de N2, o datagrama é fragmentado, gerando três fragmentos de tamanho igual ou menor que 420 bytes;

Cabeçalho dos fragmentos

Identification	More fragments	Fragment Offset	Total Lengh	Data
5000	1	0	420	400
(6 BITS)	(6 BITS)	(6 BITS)	(6 BITS)	(6 BITS)
Identification	More fragments	Fragment Offset	Total Lengh	Data
5000	1	50	420	400
(6 BITS)	(6 BITS)	(6 BITS)	(6 BITS)	(6 BITS)
Identification	More fragments	Fragment Offset	Total Lengh	Data
5000	0	100	200	180
(6 BITS)	(6 BITS)	(6 BITS)	(6 BITS)	(6 BITS)

Referência

- SOARES, Luiz F.; LEMOS, Guido e COLCHER, Sérgio. Redes de Computadores: Das LANs, MANs e WANs às Redes ATM, Ed. Campus.
- ROSS, Keith e KUROSE, JAMES. Redes de Computadores e a Internet: Uma nova abordagem, Ed. Addison Wesley.
- TORRES, Gabriel. Redes de Computadores, Ed. Nova Terra.
- TANENBAUM, Andrew. S.. Redes de computadores, Ed.
 Campus. 4ª Edição.

