Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий
институт
Программная инженерия
кафедра

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №5

Синтаксический анализ контекстно-свободных языков

тема

Преподаватель		А. С. Кузнецов
	подпись, дата	инициалы, фамилия
Студент КИ23-17/1Б, 032320072		М. А. Мальцев
номер группы, зачетной книжки	подпись, дата	инициалы, фамилия

1 Цель

Исследование контекстно-свободных грамматик и алгоритмов синтаксического анализа контекстно-свободных языков.

2 Залания

Часть 1.

Необходимо с использованием системы JFLAP, построить LL(1)-грамматику, описывающую заданный язык, или формально доказать невозможность этого. Полученная грамматика не должна повторять SLR(1)-грамматику, конструируемую в части 3. Ассоциативность операций на усмотрение разработчика.

Вариант 2.

Язык оператора присваивания, в правой части которого задано логическое выражение. Элементами выражений являются целочисленные константы в шестнадцатеричной системе счисления, имена переменных из одного символа (от g до k), знаки операций и скобки для изменения порядка вычисления подвыражений. Операции (в сторону уменьшения приоритета): отрицание, мультипликативные, аддитивные, присваивание.

Часть 2.

Предложить программную реализацию метода рекурсивного спуска для распознавания строк заданного языка. Представить формальное доказательство принадлежности к классу LL(1)-грамматики, лежащей в основе синтаксического анализа заданного языка. Во всех случаях язык должен состоять из последовательностей выражений. В качестве разделителя может выступать символ новой строки, точка с запятой или любой другой символ, не задействованный в других лексемах. Ассоциативность операций на усмотрение разработчика. Результатом работы синтаксического анализатора является выдача сообщения «Ассерted» или «Rejected».

Вариант 2.

Язык логических выражений, элементами которых являются целочисленные константы в шестнадцатеричной, двоичной или десятичной системах счисления, имена переменных из 1-2 символов, знаки операций и скобки для изменения порядка вычисления подвыражений. Операции (в сторону уменьшения приоритета): отрицание, мультипликативные, аддитивные, присваивание

Часть 3.

Необходимо с использованием системы JFLAP, построить SLR(1)грамматику, описывающую заданный язык, или формально доказать невозможность этого. Во всех случаях реализуется язык, состоящий из последовательностей операторов присваивания. В качестве разделителя может выступать символ новой строки, точка с запятой или любой другой символ, не задействованный в прочих лексемах. В качестве L-значения оператора присваивания выступает только имя переменной. В правой части оператора присваивания указывается выражение, элементы которых оговариваются в задания. Ассоциативность операций каждом варианте усмотрение разработчика. Полученная грамматика не должна повторять LL(1)-грамматику, конструируемую в части 1.

Вариант 2.

Элементами логического выражения являются целочисленные константы в 8- и 16-чной системах счисления, имена переменных из одного символа (от g до k), знаки операций и скобки для изменения порядка вычисления подвыражений. Операции (в сторону уменьшения приоритета): отрицание, мультипликативные, аддитивные, присваивание.

3 Ход выполнения

3.1 Создание LL(1)-грамматики

Сначала была сделана первая часть задания практической работы. За знаки операций были приняты следующие: «~» (отрицание), «|» (аддитивная, ИЛИ),

«&» (мультипликативная, И) и «=» (присваивание). Были использованы круглые скобки. Составленная LL(1)-грамматика в JFLAP показана на рисунке 1.

LHS		RHS
S	\rightarrow	V=E
V	\rightarrow	g
V	\rightarrow	h
V	\rightarrow	i
V	\rightarrow	j
V	\rightarrow	k
E	\rightarrow	Α
Α	\rightarrow	MB
В	\rightarrow	MB
В	\rightarrow	ε
M	\rightarrow	UN
N	\rightarrow	&UN
N	\rightarrow	ε
U	\rightarrow	~U
U	\rightarrow	Р
Р	\rightarrow	V
Р	\rightarrow	С
С	\rightarrow	HD
D	\rightarrow	HD
D	\rightarrow	3
Н	\rightarrow	0
Н	\rightarrow	1
Н	\rightarrow	2
Н	\rightarrow	3
Н	\rightarrow	4
Н	\rightarrow	5
Н	\rightarrow	6
Н	\rightarrow	7
Н	\rightarrow	8
Н	\rightarrow	9
Н	\rightarrow	а
Н	\rightarrow	b
Н	\rightarrow	С
Н	\rightarrow	d
Н	\rightarrow	е
Н	\rightarrow	f
P	\rightarrow	(E)
		\—/

Рисунок 1 — Составленная LL(1)-грамматика

Затем был выполнен «Build LL(1) Parse» и получено множество первых порождаемых символов и символов последователей и таблица синтаксического анализа. Они показаны на рисунке 2 и 3.

	FIRST	FOLLOW
Α	{ a, b, c, d, e, f, g, h, (, i, j, k, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ~ }	{ \$,) }
В	{ ε, }	{\$,)}
С	{ a, b, c, d, e, f, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }	{ \$, &,), }
D	{ ε, a, b, c, d, e, f, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }	{ \$, &,), }
E	{ a, b, c, d, e, f, g, h, (, i, j, k, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ~ }	{\$,)}
Н	{ a, b, c, d, e, f, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }	{ a, b, c, \$, d, e, &, f,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, }
M	{ a, b, c, d, e, f, g, h, (, i, j, k, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ~ }	{ \$,), }
N	{ ε, & }	{ \$,), }
Р	{ a, b, c, d, e, f, g, h, (, i, j, k, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }	{ \$, &,), }
S	{ g, h, i, j, k }	{\$}
U	{ a, b, c, d, e, f, g, h, (, i, j, k, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ~ }	{ \$, &,), }
V	{ g, h, i, j, k }	{ \$, &,), , = }

Рисунок 2 — Множество первых порождаемых символов и символов последователей составленной грамматики

	&	()	0	1	2	3	4	5	6	7	8	9	=	a	b	С	d	е	f	g	h	i	j	k	- 1	~	\$
Α		MB		MB		MB	MB	MB	MB	MB		MB																
В			3																							IMB		3
С				HD		HD	HD	HD	HD	HD	HD																	
D	3		3	HD		HD	HD	HD	HD	HD	HD						3		3									
Е		Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		Α	
Н				0	1	2	3	4	5	6	7	8	9		a	b	С	d	е	f								
М		UN		UN		UN	UN	UN	UN	UN		UN																
N	&UN		3																							3		3
Р		(E)		С	С	С	С	С	С	С	С	С	С		С	С	С	С	С	С	V	V	V	V	V			
S																					V=E	V=E	V=E	V=E	V=E			
U		Р		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р		~U	
٧																					g	h	i	j	k			

Рисунок 3 — Таблица синтаксического анализа составленной грамматики

Как можно заметить, в каждой ячейке таблицы не более одной записи, что говорит о принадлежности грамматики LL(1)-грамматике.

Дальше было проведено распознавание тестовых цепочек, путём нажатия на кнопку «Parse» и ввода 6 тестовых цепочек для проверки. Результаты теста показаны на рисунках 4, 5, 6, 7, 8 и 9.

Рисунок 4 — Тест для цепочки « $g=\sim(h|a2)\&c2$ »

Рисунок 5 – Тест для цепочки «g=h»

Рисунок 6 – Тест для цепочки «k=~a23»

Рисунок 7 — Тест для цепочки «j=(k|12))»

Рисунок 8 - Тест для цепочки «~(12|k=2)»

Рисунок 9 – Тест для цепочки «h=~j&»

В итоге все тесты были успешно пройдены, и полученная грамматика правильно определяет исходный язык.

3.2 Создание SLR(1)-грамматики

Затем была выполнена 3 часть задания практической работы. В качестве знаков операций были приняты те же знаки, что и в прошлой части задания. В качестве разделителя использовался «;». Составленная SLR(1)-грамматика в JFLAP показана на рисунке 10.

Рисунок 10 — Составленная RLS(1)-грамматика

Затем был выполнен «Build SLR(1) Parse» и получено множество первых порождаемых символов и символов последователей, канонический набор LR(0)-ситуаций и таблица синтаксического анализа. Они показаны на рисунке 11, 12 и 13.

FOLLOW
{\$,),;, }
{ \$, &,), ;, }
{\$,;}
{ a, b, c, \$, d, e, &, f,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ;, }
{ \$, &,), ;, , = }
{ a, b, c, \$, d, e, &, f,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ;, }
{\$,;}
{ \$, &,), ;, }
{\$, &,), 0, 1, 2, 3, 4, 5, 6, 7, ;, }
{ \$, &,), ;, }
{\$, &,), 0, 1, 2, 3, 4, 5, 6, 7, ;, }
{\$,;}
{\$, &,), ;, }
{\$}

Рисунок 11 — Множество первых порождаемых символов и символов последователей составленной грамматики

Рисунок 12 – Канонический набор LR(0)-ситуаций

Рисунок 13 — Таблица синтаксического анализа составленной грамматики

Дальше было проведено распознавание тестовых цепочек, путём нажатия на кнопку «Parse» и ввода 6 тестовых цепочек для проверки. Результаты теста показаны на рисунках 14, 15, 16, 17, 18 и 19.

Рисунок 14 - Тест для цепочки « $g=\sim(h|071)\&0xa2f$ »

Рисунок 15 — Тест для цепочки «k=j=02&g»

Рисунок 16 — Тест для цепочки « $k=\sim h|0x1;j=k\&07$ »

Рисунок 17 – Тест для цепочки «g=h;i=02;j=0xa»

Рисунок 17 — Тест для цепочки «g=~k;i»

Рисунок 17 — Тест для цепочки « $g=\sim j=k$ »

В итоге все тесты были успешно пройдены, и полученная грамматика правильно определяет исходный язык.

3.3 Программная реализация синтаксического анализатора методом рекурсивного спуска

Затем была выполнена 2 часть задания практической работы. Сначала была составлена LL(1)-грамматика, определяющая язык, описанный во 2 части задания, которая затем легла в основу разработанного синтаксического анализатора. Описание составленной грамматики показано на рисунке 18.

```
LIST_TAIL -> E
LIST_TAIL -> ; ASSIGN LIST_TAIL
ASSIGN -> EXPR ASSIGN_TAIL
ASSIGN_TAIL -> = ASSIGN
ASSIGN_TAIL -> ε
CONST -> 0 CONST_TAIL
CONST -> NZDIGIT DIGIT_TAIL
CONST_TAIL -> b BINARY
CONST_TAIL -> x HEX
CONST_TAIL -> DIGIT_TAIL
NZDIGIT -> 1, 2, 3, 4, 5, 6, 7, 8, 9
DIGIT -> NZDIGIT
```

Рисунок 18 – Составленная LL(1)-грамматика

Также было доказано, что данная грамматика принадлежит LL(1)-грамматикам. Для этого она была написана в JFLAP и проанализирована.

Во-первых, данная грамматика не имеет левой рекурсии и неоднозначности. Во-вторых, вычисленные множества FIRST для каждого нетерминала не пересекаются. В-третьих, вычисленные множества FOLLOW для каждого нетерминала выполняли равенство: «Если для продукции $A \to \alpha$ есть $\epsilon \in FIRST(\alpha)$, то $FOLLOW(A) \cap FIRST(\beta) = \emptyset$ для всех других продукций $A \to \beta$ ». В-четверых, в таблице синтаксического анализа каждая ячейка содержит не больше одной продукции, как показано на рисунке 19.

						_							CIDO:	-										<u> </u>												A /									
_	[2	h		1.0	f a	<i>(</i>)	. i	i k	Lm	. n	0.0		FIRS		c 2	+ 4	п. Б	v 6	144	7 v	9 v	0	z, ~]	1 [1 1									FU	LLO	V									
	-							_															z, ~]																						_
	{ ε			ı, c,	ı, y,	(, 1	1, 1,	j, ix,	1, 111	1, 11,	0, 0	, р, ч	į, i,	1, 2,	3, 0,	ι, 4,	u, o,	v, c	, w,	/ , A,	O, y	, 5,	۷, ا		s,,, \$}																				_
	ı-			1 6	f a	<i>(</i>)	ı i	i k	Lm	n	0.0	n o	1 1	r 2	c 3	t 1	п. 5	v 6	107	7 v	8 v	a	z, ~]	-		- = 1																			_
E	ı.			ı, c,	ı, y,	(, 1	1, 1,	j, ĸ,	1, 11	1, 11,	0, 0	р, ч	6 5	1, 2,	3, 0,	ι, 4,	u, o,	v, 0	, w,	/ , A,	О, у	, 5,	۷, ۱		s, <i>j</i> , S. : }		ſ																		
	ı.		•	1 6	f a	<i>(</i>)	ı i	i k	Lm	n	0.0	n o	1 1	r 2	e 3	t 1	п. 5	v 6	W	7 v	8 v	a	z, ~]				= 1																		
G	ı.			ı, c,	ı, g,	(, ,	5 5	j, ix,	1, 11	1, 11,	0, 0	, p, q	6 5	1, 2,	3, 0,	ι, 4,	u, o,	v, c	, w,	, A,	O, y	, 0,	۷, ا		s,), S,),		-																		
	-			1 6	f a	<i>(</i>)	ı i	i k	l m	n	0.0	n o	1 1	r 2	s 3	t 4	п.5	v 6	w	7 x	8 v	Q	z, ~]	-			_	l																	
ï	3 }			., 0,	., 9,	ζ, .	., .,	j, r.,	.,	.,,	0, 0	, p, 4	1, .,	., _,	0, 0,	-, -,	u, o,	., .	,,	. ,,	٠, ,	, 0,	-, ,	-	\$, <u>u,</u>																				_
J	ı.		_	1 e	f a	<i>(</i>)	ı i	i k	I m	n	0 0	p o	1 1	r 2	s 3	t 4	u, 5,	v 6	w	7 x	8 v	9	7 }				j, = }	}																	
	ı-				_										W, X,									-			1. = }																		
	-				5, 6		-									,, -,										,	j, = }																		
	-							-	m, r	n, o.	p, c	, r, s	, t, u	I, V, 1	W, X,	y, z 1								-					f, g,	h, i.), j, l	ς, Ι, n	n, n.	o, p.	q, r	s, t	, u, v	/, W.	x, y.	Z, ;.	j, = }	_			
	-				_										/, W,												1. = }			- '											. ,				
	_				3, 4,						- 1													-			j, = }																		
Р	{1	, 2,	3, 4	1, 5,	6, 7	, 8,	9}																						f,), (0, 1,	2, 3	4, 5	5, 6,	7, 8,	9, ;,	j, =	}								
Q	3 }	, 0,	1, 2	2, 3,	4, 5	6,	7, 8	3, 9	}															{ 5	\$, &,), ;,	, = }	}																	
R	{ 0	, 1	}																					{ 5	\$, &,), ;,	[, = <u>}</u>	}																	
s	{ a	, b,	c, d	i, e,	f, 0,	1,	2, 3	, 4,	5, 6	5, 7,	8, 9	}												{ 5	\$, &,), ;,	, = }	}																	
Т	{ 0	, 1	}																					{ (0, 1,	\$, 8	,), ;,	, , =	- }																
U	3 }	, 0,	1 }																					{ 5	\$, &,), ;,	j, = }	}																	
V	{ a	, b,	c, c	i, e,	f, 0,	1,	2, 3	, 4,	5, 6	, 7,	8, 9	}												{ 8	a, b,	c, \$, d, e	e, &,	f,), (0, 1,	2, 3	4, 5	6, 6,	7, 8,	9, ;,	j, =	}								
W	3 }	, a,	b, c	, d,	e, f,	0,	1, 2	, 3,	4, 5	, 6,	7, 8	9}												{ 5	\$, &,), ;,	, = }	}																	
Υ	{ 0	, 1,	2, 3	3, 4,	5, 6	, 7,	8, 9	9 }																{ 8	a, b,	c, \$, d, e	e, &,	f,), (0, 1,	2, 3	4, 5	6, 6,	7, 8,	9, ;,	ļ, =	}								
	&	() .	1	2	3	4	5	6	7	8	9	:	=	a	b	С	d	e	f	a	h	i	i	k	1	m	n	0	р	a	r	s	t	u	v	w	x	v	z	1	~	\$
Α		ВС		ВС	BC) E	3C	ВС	ВС	ВС	ВС	ВС	ВС	ВС	Ė		ВС	ВС	вс	ВС	ВС	ВС	BC	ВС	BC	ВС	BC	ВС	BC	ВС	ВС	ВС	BC	ВС	ВС	ВС	ВС	ВС	ВС	ВС	BC	ВС		ВС	
B C		DE	+	DE	E DE	= [)E	DE	DE	DE	DE	DE	DE	DE	:BC		DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	-	DE	ε
D		FG		FG	FC	F	G	FG	FG	FG	FG	FG	FG	FG	-		FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG	FG		FG	
E		Н	+	н	HI	ŀ	11	HI	HI	Н	HI	HI	HI	HI	3	=B	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	HI	-	HI	Ε
G			3												3	3																											JFG		3
H	8HI	J	ε	J	J	J		J	J	J	J	J	J	J	ε	ε	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	ε	~H	٤
J		(D)		L	L	L		L	L	L	L	L	L	L								K	K	K	K	K	K	K	K	K	K	K		K		K	K	K	K	K	K	K			
K L			+	00) P() F	Q.	PQ	PQ	PQ	PQ	PQ	PQ	PQ	+		MN	MN	MN	MN	MIN	MN	MN	MN	MN	MN	MN	MN	1 MN	MN	MN	MN	MN	MN	MN	MN	MN	MN	MN	MN	MN	MN	-		
M									Ĺ								-		-		-	f	g	h	i	j	k	L		n	0	p	7	r	S	t	u	٧		X	,	Z			
N O			Q Q	Q	Q	(2	Q	Q	Q	Q	Q	Q	Q	_	ε Q		M bR	M	M	M	М	M	M	M	М	M	M	M	М	M	M	M	M	M	M	M	M	М	M	M	M	ε Q		ε Q
Р			Ļ	1/2	1	2			4	5	6	7	8	9																									_						
Q R			3		J TL		Q	rQ	YQ	YQ	YQ	YQ	YQ	YQ	3	3											+	+	+										+		+	-	Ε		3
S				VV 0	V VV	۷	W	VW	VW	VW	VW	VW	VW	VW			VW	VW	VW	VW	VW	VW																	_				_		
Ů,	E		ε		J TU	J				L				Ĺ	ε	ε							L					İ											\pm				٤		ε
V W			-	Y							Y			Y	2	-	a VW			_	-	f VAN																	\perp				2		3
Y			3	0			VVV				P			P	٤	Ł	VVV	VVV	VVV	VVV	VVV	VVV																	+				٤		č.
					_	_				_												_						_				_	_		_									_	

Рисунок 19 — Таблица синтаксического анализа и множество первых порождаемых символов и символов последователей составленной грамматики

После составления грамматики был написан код программы на C++, реализующей синтаксический анализатор методом рекурсивного спуска на основе составленной LL(1)-грамматики. Он показан на рисунках 20, 21 и 22.

Рисунок 20 – Первая часть кода реализованной программы на С++

```
| March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | March | Marc
```

Рисунок 21 – Вторая часть кода реализованной программы на С++

Рисунок 22 – Третья часть кода реализованной программы на С++

На рисунке 23 показаны тестовые примеры работы программы на тестовых цепочках.

```
PS D:\work space\AutomataTheoryCourse\pw5> .\recursive descent.exe
 Enter your input line: ab = \sim (0x2f \mid z) & (02 \mid \sim 0b101)
 Accepted.
PS D:\work space\AutomataTheoryCourse\pw5> .\recursive descent.exe
 Enter your input line: c = d = ~xx
 Accepted.
PS D:\work_space\AutomataTheoryCourse\pw5> .\recursive_descent.exe
 Enter your input line: (zx | xc) & ~0b10101
PS D:\work space\AutomataTheoryCourse\pw5> .\recursive descent.exe
 Enter your input line: a = \sim b \mid (ab \mid ba); b = jj; \sim (x \& 0b10)
PS D:\work_space\AutomataTheoryCourse\pw5> .\recursive_descent.exe
 Enter your input line: bb = \sim ((a \mid 000))
 Accepted.

PS D:\work space\AutomataTheoryCourse\pw5> .\recursive descent.exe

 Enter your input line: a = \sim (z \mid x)
Enter your input line: bbb = a

    PS D:\work_space\AutomataTheoryCourse\pw5> .\recursive_descent.exe

 Enter your input line: a = 0b023
 Rejected.

    PS D:\work space\AutomataTheoryCourse\pw5> .\recursive descent.exe

 Enter your input line: zx = 0x123k

PS D:\work_space\AutomataTheoryCourse\pw5> .\recursive_descent.exe

 Enter your input line: pl = $ | 12
```

Рисунок 23 – Тест программы на произвольных цепочках

Все тесты были пройдены программой успешно. Принимаются только логические выражения и есть возможность разделения логических выражения с помощью точки с запятой.

4 Выводы

В ходе данной практической работы были исследованы свойства универсальных алгоритмов синтаксического анализа контекстно-свободных языков, построены LL(1) и SLR(1) грамматики, а также изучены шаги формального доказательства принадлежности грамматики к LL(1)-грамматике. Также мы узнали про синтаксический анализатор, работающий методом рекурсивного спуска.