## Module 8: Internet Security

TCP/IP and DNS Security

## Acknowledgements

- Dan Boneh (Stanford University)
- John C. Mitchell (Stanford University)
- Nicolai Zeldovich (MIT)
- Jungmin Park (Virginia Tech)
- Patrick Schaumont (Virginia Tech)
- C. Edward Chow
- Arun Hodigere
- Web Resources

### Internet Infrastructure



- Local and interdomain routing
  - TCP/IP for routing and messaging
  - BGP for routing announcements
- Domain Name System
  - Find IP address from symbolic name (www.cse.iitk.ac.in)

### TCP Protocol Stack



### **Data Formats**



### Internet Protocol

- Connectionless
  - Unreliable
  - Best effort

- Notes:
  - src and destports not parts ofIP hdr

| Version                            | Header Length   |
|------------------------------------|-----------------|
| Type of Service                    |                 |
| Total Length                       |                 |
| Identification                     |                 |
| Flags                              | Fragment Offset |
| Time to Live                       |                 |
| Protocol                           |                 |
| Header Checksum                    |                 |
| Source Address of Originating Host |                 |
| Destination Address of Target Host |                 |
| Options                            |                 |
| Padding                            |                 |
| IP Data                            |                 |



- Typical route uses several hops
- IP: no ordering or delivery guarantees

## IP Protocol Functions (Summary)

- Routing
  - IP host knows location of router (gateway)
  - IP gateway must know route to other networks
- Fragmentation and reassembly
  - If max-packet-size less than the user-data-size
- Error reporting
  - ICMP packet to source if packet is dropped
- TTL field: decremented after every hop
  - Packet dropped if TTL=0. Prevents infinite loops.

### Problem: no src IP authentication

- Client is trusted to embed correct source IP
  - Easy to override using raw sockets
  - Libnet: a library for formatting raw packets with arbitrary IP headers (https://repolinux.wordpress.com/2011/09/18/libnet-1-1-tutorial/)
- Anyone who owns their machine can send packets with arbitrary source IP
  - ... response will be sent back to forged source IP
- Implications: (solutions in DDoS lecture)
  - Anonymous DoS attacks;
  - Anonymous infection attacks (e.g. slammer worm)

### **Transmission Control Protocol**

- Connection-oriented, preserves order
  - Sender
    - Break data into packets
    - Attach packet numbers
  - Receiver
    - Acknowledge receipt; lost packets are resent
    - Reassemble packets in correct order



### TCP Header

(protocol=6)



### Review: TCP Handshake



Received packets with SN too far out of window are dropped http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/

# Basic Security Problems

- 1. Network packets pass by untrusted hosts
  - Eavesdropping, packet sniffing
  - Especially easy when attacker controls a machine close to victim (e.g. WiFi routers)
- 2. TCP state easily obtained by eavesdropping
  - Enables spoofing and session hijacking
- 3. Denial of Service (DoS) vulnerabilities
  - DDoS lecture

### Why random initial sequence numbers?

Suppose initial seq. numbers (SN<sub>c</sub>, SN<sub>s</sub>) are predictable:

- Attacker can create TCP session on behalf of forged source IP
  - Random seq. num. does not block attack, but makes it harder



## Example DoS vulnerability: Reset

- Attacker sends a Reset packet to an open socket
  - If correct  $SN_s$  then connection will close  $\Rightarrow$  DoS
  - Naively, success prob. is  $1/2^{32}$  (32-bit seq. #'s).
    - ... but, many systems allow for a large window of acceptable seq. # 's. Much higher success probability.
  - Attacker can flood with RST packets until one works
- Most effective against long lived connections, e.g. BGP

# Routing Security

ARP, OSPF, BGP

# Interdomain Routing



# Routing Protocols

- ARP (addr resolution protocol): IP addr → eth addr Security issues: (local network attacks)
  - Node A can confuse gateway into sending it traffic for Node B
  - By proxying traffic, node A can read/inject packets into B's session (e.g. WiFi networks)
- OSPF: used for routing within an AS
- BGP: routing between Autonomous Systems Security issues: unauthenticated route updates
  - Anyone can cause entire Internet to send traffic for a victim IP to attacker's address
    - Example: Youtube-Pakistan mishap (see DDoS lecture)
  - Anyone can hijack route to victim (next slides)

[D. Wetherall]



## Security Issues

#### BGP path attestations are un-authenticated

- Anyone can inject advertisements for arbitrary routes
- Advertisement will propagate everywhere
- Used for DoS, spam, and eavesdropping (details in DDoS lecture)
- Often a result of human error

#### **Solutions:**

- RPKI: AS obtains a certificate (ROA) from RIR and attaches ROA to path advertisements.
   Advertisements without a valid ROA are ignored.
   Defends against a malicious AS (but not a network attacker)
- SBGP: sign every hop of a path advertisement

## Example path hijack (source: Renesys 2013)

Feb 2013: Guadalajara → Washington DC via Belarus



route in effect for several hours

Alestra (Mexico)  $\rightarrow$  PCCW (Texas)  $\rightarrow$  Qwest (DC) Normally:

Reverse route (DC  $\rightarrow$  Guadalajara) is unaffected:

Person browsing the Web in DC cannot tell by traceroute that HTTP responses are routed through Moscow

## **OSPF:** routing inside an AS

#### Link State Advertisements (LSA):

- Flooded throughout AS so that all routers in the AS have a complete view of the AS topology
- Transmission: IP datagrams, protocol = 89

#### Neighbor discovery:

- Routers dynamically discover direct neighbors on attached links --- sets up an "adjacency"
- Once setup, they exchange their LSA databases

## Example: LSA from Ra and Rb



## Security features

- OSPF message integrity (unlike BGP)
  - Every link can have its own shared secret
  - Unfortunately, OSPF uses an insecure MAC:MAC(k,m) = MD5(data || key || pad || len)
- Every LSA is flooded throughout the AS
  - If a single malicious router, valid LSAs may still reach dest.
- The "fight back" mechanism
  - If a router receives its own LSA with a newer timestamp than the latest it sent, it immediately floods a new LSA
- Links must be advertised by both ends

# Domain Name System

## Domain Name System

Hierarchical Name Space



### **DNS Root Name Servers**

- Hierarchical service
  - Root name servers for top-level domains
  - Authoritative name servers for subdomains
  - Local name resolvers contact authoritative servers when they do not know a name



## DNS Lookup Example



#### DNS record types (partial list):

- NS: name server (points to other server)
- A: address record (contains IP address)
- MX: address in charge of handling email
- TXT: generic text (e.g. used to distribute site public keys (DKIM) )

# Caching

- DNS responses are cached
  - Quick response for repeated translations
  - Useful for finding servers as well as addresses
    - NS records for domains
- DNS negative queries are cached
  - Save time for nonexistent sites, e.g. misspelling
- Cached data periodically times out
  - Lifetime (TTL) of data controlled by owner of data
  - TTL passed with every record

### **DNS Packet**

- Query ID:
  - 16 bit random value
  - Links response to query



# Resolver to NS request



## Response to resolver

Response contains IP addr of next NS server (called "glue")

Response ignored if unrecognized QueryID



## Authoritative response to resolver

bailiwick checking:
response is cached if
it is within the same
domain of query
(i.e. a.com cannot
set NS for b.com)

final answer



### Basic DNS Vulnerabilities

- Users/hosts trust the host-address mapping provided by DNS:
  - Used as basis for many security policies:
     Browser same origin policy, URL address bar
- Obvious problems
  - Interception of requests or compromise of DNS servers can result in incorrect or malicious responses
    - e.g.: malicious access point in a Cafe
  - Solution authenticated requests/responses
    - Provided by DNSsec ... but few use DNSsec

### DNS cache poisoning (a la Kaminsky' 08)

Victim machine visits attacker's web site, downloads Javascript



### If at first you don't succeed ...

Victim machine visits attacker's web site, downloads Javascript



success after ≈ 256 tries (few minutes)

### Defenses

- Increase Query ID size. How?
- Randomize src port, additional 11 bits
  - Now attack takes several hours
- Ask every DNS query twice:
  - Attacker has to guess QueryID correctly twice (32 bits)
  - ... but Apparently DNS system cannot handle the load

# **DNS Rebinding Attack**



Read permitted: it's the "same origin"

# DNS Rebinding Defenses

- Browser mitigation: DNS Pinning
  - Refuse to switch to a new IP
  - Interacts poorly with proxies, VPN, dynamic DNS,
  - Not consistently implemented in any browser
- Server-side defenses
  - Check Host header for unrecognized domains
  - Authenticate users with something other than IP
- Firewall defenses
  - External names can't resolve to internal addresses
  - Protects browsers inside the organization

# Summary

- Core protocols not designed for security
  - Eavesdropping, Packet injection, Route stealing, DNS poisoning
  - Patched over time to prevent basic attacks
     (e.g. random TCP SN)
- More secure variants exist (next lecture):

 $IP \rightarrow IPsec$ 

DNS → DNSsec

 $BGP \rightarrow SBGP$