Angular momentum:

The principal quantum number (*n*) determines the energy of the state:

$$E_n = -\left[\frac{m_e}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2\right] \frac{1}{n^2} = \frac{E_1}{n^2}, \quad n = 1, 2, 3, \dots$$

ℓ and m are related to the orbital angular momentum:

In the classical theory of central forces, energy and angular momentum are the fundamental conserved quantities. The angular momentum of a particle (with respect to the origin) is given by:

$$\mathbf{L} = \mathbf{r} \times \mathbf{p},$$
 $L_x = yp_z - zp_y,$ $L_y = zp_x - xp_z,$ $L_z = xp_y - yp_x.$

The corresponding quantum operators are obtained by the standard prescription:

$$p_x \rightarrow -i\hbar\partial/\partial x, p_y \rightarrow -i\hbar\partial/\partial y, p_z \rightarrow -i\hbar\partial/\partial z.$$

We need to obtain the eigenvalues and the eigenfunctions of the angular momentum operators.

Angular momentum: Eigenvalues

The operators L_X and L_Y do not commute:

$$[L_x, L_y] = [yp_z - zp_y, zp_x - xp_z]$$

= $[yp_z, zp_x] - [yp_z, xp_z] - [zp_y, zp_x] + [zp_y, xp_z].$

x with p_x , y with p_y , and z with p_z fail to commute:

$$[L_x, L_y] = yp_x[p_z, z] + xp_y[z, p_z] = i\hbar(xp_y - yp_x) = i\hbar L_z.$$

We can get the others by cyclic permutation of the indices $(x \rightarrow y, y \rightarrow z, z \rightarrow x)$:

$$\begin{bmatrix} L_x, L_y \end{bmatrix} = i\hbar L_z; \quad \begin{bmatrix} L_y, L_z \end{bmatrix} = i\hbar L_x; \quad \begin{bmatrix} L_z, L_x \end{bmatrix} = i\hbar L_y.$$

These are the fundamental commutation relations for angular momentum.

Notice that L_X , L_Y , and L_Z are incompatible observables.

Angular momentum: Eigenvalues

According to the generalised uncertainty principle:

$$\sigma_{A}^{2}\sigma_{B}^{2} \geq \left(\frac{1}{2i}\left\langle\left[\hat{A},\hat{B}\right]\right\rangle\right)^{2}.$$

$$\sigma_{L_{x}}^{2}\sigma_{L_{y}}^{2} \geq \left(\frac{1}{2i}\left\langle i\hbar L_{z}\right\rangle\right)^{2} = \frac{\hbar^{2}}{4}\left\langle L_{z}\right\rangle^{2}$$

$$\sigma_{L_{x}}^{2}\sigma_{L_{y}}^{2} \geq \left(\frac{1}{2i}\left\langle i\hbar L_{z}\right\rangle\right)^{2} = \frac{\hbar^{2}}{4}\left\langle L_{z}\right\rangle^{2}$$

$$\sigma_{L_{x}}^{2}\sigma_{L_{y}}^{2} \geq \left(\frac{1}{2i}\left\langle i\hbar L_{z}\right\rangle\right)^{2} = \frac{\hbar^{2}}{4}\left\langle L_{z}\right\rangle^{2}$$

$$\sigma_{L_{x}}\sigma_{L_{y}} \geq \frac{\hbar}{2}\left|\left\langle L_{z}\right\rangle\right|.$$

There are no states that are simultaneously eigenfunctions of L_X and Ly.

The square of the total angular momentum: $L^2 \equiv L_x^2 + L_y^2 + L_z^2$,

does commute with L_X :

$$\begin{bmatrix} L^{2}, L_{x} \end{bmatrix} = \begin{bmatrix} L_{x}^{2}, L_{x} \end{bmatrix} + \begin{bmatrix} L_{y}^{2}, L_{x} \end{bmatrix} + \begin{bmatrix} L_{z}^{2}, L_{x} \end{bmatrix}
= L_{y} [L_{y}, L_{x}] + [L_{y}, L_{x}] L_{y} + L_{z} [L_{z}, L_{x}] + [L_{z}, L_{x}] L_{z}
= L_{y} (-i\hbar L_{z}) + (-i\hbar L_{z}) L_{y} + L_{z} (i\hbar L_{y}) + (i\hbar L_{y}) L_{z}
= 0.$$

Angular momentum: Eigenvalues

$$\begin{bmatrix} L^{2}, L_{x} \end{bmatrix} = \begin{bmatrix} L_{x}^{2}, L_{x} \end{bmatrix} + \begin{bmatrix} L_{y}^{2}, L_{x} \end{bmatrix} + \begin{bmatrix} L_{z}^{2}, L_{x} \end{bmatrix}
= L_{y} [L_{y}, L_{x}] + [L_{y}, L_{x}] L_{y} + L_{z} [L_{z}, L_{x}] + [L_{z}, L_{x}] L_{z}
= L_{y} (-i\hbar L_{z}) + (-i\hbar L_{z}) L_{y} + L_{z} (i\hbar L_{y}) + (i\hbar L_{y}) L_{z}
= 0.$$

 L^2 also commutes with Ly and Lz:

$$[L^2, L_x] = 0, \quad [L^2, L_y] = 0, \quad [L^2, L_z] = 0,$$

 $[L^2, \mathbf{L}] = 0.$

We can hope to find simultaneous eigenstates of L^2 and (say) L_z :

$$L^2 f = \lambda f$$
 and $L_z f = \mu f$.