When to Use a Particular Statistical Test

Univariate Descriptive

Central Tendency

Mode

the most commonly occurring value

ex: 6 people with ages 21, 22, 21, 23, 19, 21 - mode = 21

Median

the center value

• the formula is $\frac{N+1}{2}$

ex: 6 people with ages 21, 22, 24, 23, 19, 21 line them up in order form lowest to highest 19, 21, 21, 22, 23, 24 and take the center value - mode =21.5

Mean

- the mathematical average
- the formula is $\sum X/N$

ex: mean age = age of person one + age of person two + age of person three, etc./number of people

Variance

- a measure of how spread out a distribution is
- it is computed as the average squared deviation of each number from its mean

Standard Deviation

- how much scores deviate from the mean
- it is the square root of the variance
- it is the most commonly used measure of spread

Bi- and Multivariate Inferential Statistical Tests

Differences of Groups

Chi Square

- compares observed frequencies to expected frequencies
- ex: Is the distribution of sex and voting behavior due to chance or is there a difference between the sexes on voting behavior?

t-Test

- looks at differences between two groups on some variable of interest
- the IV must have only two groups (male/female, undergrad/grad)
- ex: Do males and females differ in the amount of hours they spend shopping in a given month?

ANOVA

- tests the significance of group differences between two or more groups
- the IV has two or more categories
- only determines that there is a difference between groups, but doesn't tell which is different
- ex: Do SAT scores differ for low-, middle-, and high-income students?

ANCOVA

- same as ANOVA, but adds control of one or more covariates that may influence the DV
- ex: Do SAT scores differ for low-, middle-, and high-income students after controlling for single/dual parenting?

MANOVA

- same as ANOVA, but you can study two or more related DVs while controlling for the correlation between the DV
- if the DVs are not correlated, then separate ANOVAs are appropriate
- ex: Does ethnicity affect reading achievement, math achievement, and overall scholastic achievement among 6th graders?

MANCOVA

 same as MANOVA, but adds control of one or more covariates that may influence the DV ex: Does ethnicity affect reading achievement, math achievement, and overall scholastic achievement among 6th graders after controlling for social class?

Relationships

Correlation

- used with two variables to determine a relationship/association
- do two variables covary?
- does not distinguish between independent and dependent variables

ex: Amount of damage to a house on fire and number of firefighters at the fire

Multiple Regression

- used with several independent variables and one dependent variable
- used for prediction
- it identifies the best set of predictor variables
- you can enter many IVs and it tells you which are best predictors by looking at all of them at the same time
- in sequential regression the computer adds the variables one at a time based on the amount of variance they account for

ex: IVs drug use, alcohol use, child abuse DV, suicidal tendencies

Path Analysis

- looks at direct and indirect effects of predictor variables
- used for relationships/causality

ex: Child abuse causes drug use which leads to suicidal tendencies.

Group Membership

Logistic Regression

• like multiple regression, but the DV is a dichotomous variable

• logistic regression estimates the odds probability of the DV occurring as the values of the IVs change

ex: What are the odds of a suicide occurring at various levels of alcohol use?