5. Impédances complexes des composants usuels

5.1. Impédance d'une résistance

5.2. Impédance d'une bobine d'induction

 $\underline{Z}_L = j L\omega$: imaginaire pur

$$\underline{\mathbf{u}}(\mathbf{t}) = \underline{\mathbf{Z}}_{\mathsf{L}} \ \underline{\mathbf{i}}(\mathbf{t})$$

Si:
$$\underline{i}(t) = I_m \exp j(\omega t - \pi/2)$$

Alors: $\underline{\mathbf{u}}(t) = \mathbf{U}_{m} \exp j(\omega t)$

Avec : $U_m = L_{\omega} I_m$

Et déphasage

Si: $\underline{i}(t) = I_m \exp j(\omega t - \pi/2)$

Alors: $\underline{\mathbf{u}}(t) = \mathbf{U}_{m} \exp \mathbf{j}(\omega t)$

Fréquence *f* faible : amplitude de i(t) forte.

 $U_{\rm m} = L_{\rm m} I_{\rm m}$

 $\begin{array}{c|c} \underline{http://physics.bu.edu/\sim duffy/semester2/c20_AC.html} \\ \underline{U_m} \\ \underline{I_m} \\ 0 \end{array}$

Fréquence f élevée : amplitude de i(t) faible.

5.3. Impédance d'un condensateur

$$\underline{Z}_{C} = 1/jC\omega = (1/C\omega) \exp j(-\pi/2)$$

Z_C est un imaginaire pur

$$\underline{\mathbf{u}}(\mathbf{t}) = \underline{\mathbf{Z}}_{\mathbf{C}} \, \underline{\mathbf{i}}(\mathbf{t})$$

Si:
$$\underline{i}(t) = I_m \exp j(\omega t + \pi/2)$$

Alors: $\underline{\mathbf{u}}(t) = \mathbf{U}_{m} \exp j(\omega t)$

Avec : $U_m = I_m/C\omega$

Si:
$$\underline{i}(t) = I_m \exp j(\omega t + \pi/2)$$

Alors: $\underline{\mathbf{u}}(t) = \mathbf{U}_{m} \exp j(\omega t)$

Fréquence f faible : amplitude de i(t) faible.

 $U_{\rm m} = I_{\rm m}/C\omega$

Fréquence f élevée : amplitude de i(t) grande.

5.4. Modélisations à haute et basse fréquences

$$|\underline{Z}_{C}| = 1/C\omega \text{ et } |\underline{Z}_{L}| = L\omega$$

- Une inductance à basse fréquence se comporte comme un court-circuit, alors qu'à haute fréquence elle se comporte comme un circuit ouvert.
- Et inversement, à haute fréquence un condensateur se comporte comme un court-circuit, alors qu'à basse fréquence il se comporte comme un circuit ouvert.

6. Représentation de Fresnel 6.1. Principe de f^{nt}

6.2. Loi des mailles et loi des nœuds

<u>Loi des mailles</u> : nullité de la somme des tensions dans une maille :

6.2. Loi des mailles et loi des nœuds

Loi des noeuds : nullité de la somme algébrique des courants arrivants dans un nœud :

Rotation de l'ensemble des

vecteurs à la vitesse angulaire ω

7. Application à un circuit RLC série

7.1. <u>Mise en équation sans les impédances complexes</u>

7.2. Impédance complexe du circuit RLC

$$\underline{Z} = R + j \left(L\omega - \frac{1}{C\omega} \right) = R + j \left(\frac{LC\omega^2 - 1}{C\omega} \right)$$

Module:
$$|\underline{Z}| = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$$

Argument:
$$tg \ \theta = \frac{LC\omega^2 - 1}{RC\omega} = \frac{L\omega - \frac{1}{C\omega}}{R}$$

7.3. Pulsation propre du circuit RLC

$$\omega = \omega_0 = \frac{1}{\sqrt{LC}}$$

Pour $\omega = \omega_0$ on a

- un minimum de $|\underline{Z}|$ et donc un maximum de I_m .
- tg θ = 0 soit θ = 0 : pas de déphasage entre u(t) et i(t).

7.4. Limites basse et haute fréquences

Si
$$\omega \ll \omega_0$$
 $|\underline{Z}| = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2} \approx \frac{1}{C\omega}$

$$tg \theta = \frac{L\omega - \frac{1}{C\omega}}{R} \approx \frac{-1}{RC\omega} \to -\infty \qquad Soit \theta \to -\pi/2$$

→ Comportement capacitif.

Si
$$\omega >> \omega_0$$
 $|\underline{Z}| = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2} \approx L\omega$

$$tg \theta = \frac{L\omega - \frac{1}{C\omega}}{R} \approx \frac{L\omega}{R} \to \infty \qquad Soit \theta \to +\pi/2$$

→ Comportement inductif.

7.5. Evolution des diverses grandeurs

http://www.sciences.univ-nantes.fr/sites/ genevieve_tulloue/Elec/Alternatif/transfert2RLC.html

7.6. Représentation de Fresnel

Somme vectorielle:

Limites des basse et haute fréquences à courant fixé :

Limites des basse et haute fréquences à tension fixée :

7.7. Résonance

Intensité dans un circuit RLC

Expressions du facteur de qualité :

$$Q = \frac{\omega_0}{\Delta \omega} = \frac{f_0}{\Delta f}$$

$$Q = \frac{\omega_0}{\Delta \omega} = \frac{\omega_0}{\omega_2 - \omega_1} = \frac{L\omega_0}{R} = \frac{1}{RC\omega_0} = \frac{1}{R}\sqrt{\frac{L}{C}}$$

 ω_1 et ω_2 correspondent à $I = I_m / \sqrt{2}$

7.8. Facteur de surtension

Pour $\omega = \omega_0$ on a :

$$\frac{U_{_{C0}}}{U_{_{m}}}=\frac{1}{RC\omega_{_{0}}}=Q$$

