UNIVERSIDADE FEDERAL TECNOLÓGICA DO PARANÁ VARIÁVEIS COMPLEXAS

LISTA Nro. 4

Prof. Dr. Iván Gonzáles

9 de maio de 2022

1 Integração Complexa II

- Prove o seguinte teorema : Qualquer polinômio P(z) = a₀+a₁z+a₂z²+···+a_nzⁿ, com a_n ≠ 0, de grau n (n > 1) possui pelo menos uma raíz. Isto é, existe pelo menos um ponto z₀ tal que P(z₀) = 0. Dica: Use redução ao absurdo!: Suponha que o polinômio não possui raíz, então a função f(z) = 1/P(z) é inteira, mostre que ela é limitada e contínua e use o teorema de Liouville.
- 2)* Seja C: |z| = 3 e parametrize em sentido positivo. Mostre que se

$$g(w) = \int_C \frac{2z^2 - z - 2}{z - w} dz$$

com $|w| \neq 3$, então $g(2) = 8\pi i$. Qual é o valor de g(w) quando |w| > 3?.

3)* Seja C o círculo unitário $z = re^{i\theta}$, onde $\pi \leq \theta \leq \pi$. Mostre primeiro que, para qualquer constante real a temos

$$\int_C \frac{e^{az}}{z} dz = 2\pi i.$$

Logo, re-escreva esta integral em termos de θ para obter a fórmula de integração

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi.$$

2 Séries de funções

1) Ache a região de convergência das séries

(a)
$$\sum_{n=1}^{\infty} \frac{(z+2)^n}{(n+1)^3 4n}.$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}z^{2n-1}}{(2n-1)!}.$$

(c)
$$\sum_{n=1}^{\infty} n! z^n.$$

- 2) Seja $S_n = z + 2z^2 + 3z^3 + \dots + nz^n$, $T_n = z + z^2 + z^3 + \dots + z^n$.
- (a) Prove que $S_n = \frac{T_n nz^{n+1}}{1-z}$.
- (b) Use (a) para calcular a soma da série $\sum_{n=1}^{\infty} nz^n$ e determine o conjunto de valores para os quais ela converge.
- 3) Mostre que:

(a)
$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n$$
.

(b)
$$ln(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}$$
.

(c)
$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n$$
.

(d)
$$\frac{1}{1-z^2} = \sum_{n=0}^{\infty} z^{2n}$$
.

(e)
$$ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$
.

4) Use o teste de Weierstrass para testar a con- 6.)* Escreva $z = re^{i\theta}$, onde 0 < r < 1. Mostre vergência das seguintes séries:

(a)
$$\sum_{n=1}^{\infty} \frac{n \cos 3n}{1+5n} z^n$$
, no disco $|z| \le r < 1$.

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 - 2\cos n}{10n^2 + 7} z^{2n-1}$$
, no disco $|z| \le r <$

(c)
$$\sum_{n=1}^{\infty} \frac{n+7\sqrt{n+1}}{(n+1)2^n} z^{2n-1}$$
, no disco $|z| \le r < 2\sqrt{2}$.

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n(z-1)^n}{n+1}$$
, no disco $|z-1| \le r < 1$

(e)
$$\sum_{n=1}^{\infty} \frac{n^k}{R^n} z^n$$
, no disco $|z| \le r < R$, quaisquer $R \in k$.

(f)
$$\sum_{\substack{n=1\\a}}^{\infty} \frac{a^n}{n!} z^n$$
, no disco $|z| < R$, quaisquer R e

(g)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - z}$$
, em qualquer desco compacto que exclua os quadrados perfeitos.

(h)
$$\sum_{n=1}^{\infty} \frac{e^{z/n}}{n^2 + z^2}$$
, em qualquer conjunto compacto que não contenha os números da forma $z = \pm in$ com n natural.

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n!(z-n)}$$
, em qualquer conjunto compacto que exclua os números naturais.

(j)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^2-z^2}$$
, em qualquer conjunto que exclua os números inteiros.

(k)
$$\sum_{n=1}^{\infty} \frac{\cos(nz)}{n^3}$$
, no disco $|z| \le 1$.em qualquer conjunto que exclua os números inteiros.

5)* [A função que vale 1 milhão de dólares!] Mostre que a função ZETA DE RIE-MANN

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$

define uma função analítica em Re(z) > 0.

$$\sum_{n=1}^{\infty} r^n \cos n\theta = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2}$$

$$\sum_{n=1}^{\infty} = \frac{r \sin \theta}{1 - 2r \cos \theta + r^2}.$$

Dica: use a série geométrica.