

Pasajeros de avión

Datos

Datos mensuales de enero de 1949 a diciembre de 1960

Observaciones

No es estacionaria

Tiene una tendencia creciente

Tiene un componente estacional

Varianza crece (efecto multiplicativo)

Descomposición clásica

El modelo se puede expresar como

$$X_t = m_t + s_t + Y_t$$

donde

- m_t es el componente de tendencia
- S_t es el componente estacional
- Y_t es un componente de ruido aleatorio estacionario
- No necesariamente aparecerán los dos componentes
- ightharpoonup El objetivo es estimar m_t y s_t (no se consideran aleatorios)

Datos

Tendencia creciente y ciclos anuales

Estimación de m_t sin componente estacional

Método 1: Suavizamientos

Suavizamiento mediante promedios móviles

$$\widehat{m}_t = (2q+1)^{-1} \sum_{j=-q}^q X_{t-j}, \quad q+1 \le t \le n-q$$

Asumiendo observaciones $X_1, ..., X_n$, no se puede calcular para $t \le q$ ni para $t \ge n-q$

Bajo ciertas condiciones puede remover la variación estacional

Promedio móvil q = 1

Residuales

Sigue sin ser estacionario

Promedio móvil q = 6

Sigue sin ser estacionario

Método 1: Suavizamientos

Suavizamiento exponencial para $\alpha \in [0,1]$

$$\widehat{m}_t = \alpha X_t + (1 - \alpha) \, \widehat{m}_{t-1}, \qquad t = 2, \dots, n$$

$$\widehat{m}_1 = X_1$$

• Equivalentemente para $t \ge 2$

$$\widehat{m}_{t} = \sum_{j=0}^{t-2} \alpha (1 - \alpha)^{j} X_{t-j} + (1 - \alpha)^{t-1} X_{1}$$

- Versiones más generales para eliminar tendencia, estacionalidad, modelos aditivos y multiplicativos (en R: paquetería forecast y la función es ets)
- Eficiente para hacer predicciones a corto plazo pero no siempre es adecuado

Suavizamiento exponencial

Ya parece ser un ruido blanco

Método 2: Operador de diferencias

Diferencia de lag 1

$$\nabla X_{t} = X_{t} - X_{t-1} = (1 - B)X_{t}$$

 $donde BX_t = X_{t-1}$

- Álgebra de ∇ y B
 - $\bullet \quad B^j X_t = X_{t-j}$
 - $\nabla^{j} X_{t} = \nabla (\nabla^{j-1} X_{t}) \operatorname{con} \nabla^{0} X_{t} = X_{t}$
- Por ejemplo:

$$\nabla^2 X_t = (1 - B)(1 - B)X_t = X_t - 2BX_t + B^2 X_t = X_t - 2X_{t-1} + X_{t-2}$$

Diferencia de lag 1

No parece ser estacionario

Diferencias mejoradas

Se puede mejorar estabilizando la varianza con logaritmo y combinando operadores

Estimación de m_t con componente estacional s_t

Método 1: Suavizamientos

- Método 'clásico' (función decompose en R)
 - 1. Estimar m_t con un filtro de promedios móviles
 - 2. Construir serie sin tendencia, $d_t = X_t m_t$
 - 3. Estimar la estacionalidad de d_t promediando por año en cada punto estacional
 - 4. Construir la serie $y_t = x_t \widehat{m}_t \widehat{s}_t$
- Brockwell y Davis (no hay función en R que lo haga)
 - 1. Estimar s_t mediante los promedios por punto estacional
 - 2. Construir serie sin estacionalidad, $d_t = X_t s_t$
 - 3. Estimar la tendencia de d_t
 - 4. Construir la serie $y_t = x_t \widehat{m}_t \widehat{s}_t$

Método 1: Suavizamientos

Opciones más avanzadas y modernas

- Suavizamiento exponencial mediante modelos de espacio de estados
 - Función ets de R
 - Hyndman (2008). Forecasting with exponential smoothing: The state space approach.
- Suavizamiento Loess (Locally Estimated Scatterplot Smoothing)
 - Función stl de R
 - Cleveland et al. (1990). STL: A Seasonal-Trend Decomposition Procedure Based on Loess.

Método 2: Operador diferencias

Para remover estacionalidad utilizar el operado:

$$\nabla_d X_t = (1 - B^d) X_t = X_t - X_{t-d} = m_t - m_{t-d} + Y_t - Y_{t-d}$$

Eliminar el nuevo componente de tendencia $m_t - m_{t-d}$ con algún operador ∇^k

Diferencias mejoradas

• Aplicar logaritmo a la serie y utilizar ∇_{12} para el componente estacional y ∇ para el componente de tendencia

Análisis de residuales

ACF

- Para n sufficientemente grande las autocorrelaciones muestrales $\hat{\rho}(j)$ de los residuales deben ser $\mathcal{N}(0,n^{-1})$
- Graficar el acf y checar que no haya muchos valores fuera de las bandas $(\pm 1.96/\sqrt{n})$ o un valor extremadamente grande

Suavizamiento exponencial

Operador diferencias

Prueba de Portmanteau

Para n suficientemente grande las autocorrelaciones muestrales $\widehat{\rho}(j)$ de los residuales deben ser $\mathcal{N}(0,n^{-1})$

Bajo la hipótesis nula

$$Q = n \sum_{j=1}^{h} \widehat{\rho}(j)^2 \sim \chi_h^2$$

Rechazamos para valores grandes de Q

No es muy utilizada en la práctica

Prueba de Ljung-Box

Modificación de la prueba de Portmanteau, donde bajo la hipótesis nula

$$Q_{LB} = n(n+2) \sum_{j=1}^{h} \frac{\hat{\rho}(j)^2}{n-j} \sim \chi_h^2$$

Rechazamos para valores grandes de Q_{LB}

Residuales	Q_{LB}	p-valor
Suavizamiento Exponencial	0.34999	0.5541
Operador Diferencias	15.596	7.843E-05

Los residuales del suavizamiento ya son ruido estacionario pero los del operador de diferencias no