Notation:

On note:

- N : l'ensemble des entiers naturels,
- R : l'ensemble des nombres réels,
- e : le nombre réel dont le logarithme népérien est égal 1.

Pour x appartenant à \mathbb{R} , on note |x| la valeur absolue de x.

Pour tout entier naturel, on note n! la factorielle de n avec la convention 0! = 1.

Si j et n sont deux entiers naturels fixes tels que $0 \le j \le n$, on note :

- [j, n] l'ensemble des naturels k vérifiant $j \leq k \leq n$,
- C_n^j le nombre de parties ayant j éléments d'un ensemble de n éléments.

On rappelle que pour tout entier naturel j élément de [0,n] on $a:C_n^j=\frac{n!}{i!(n-i)!}$

Si f est une fonction k fois dérivable sur un intervalle I (avec $k \ge 1$) on note f' (resp. $f^{(k)}$) sa fonction dérivée (resp. sa fonction dérivée k-ième).

Si u est une application de \mathbb{N} dans \mathbb{R} , donc une suite réelle, on utilise la notation usuelle : $u(n) = u_n$ pour tout n appartenant à \mathbb{N} .

Soit x un nombre réel, on rappelle que s'il existe un nombre entier p qui vérifie $|p-x| < \frac{1}{2}$ alors p est l'entier le plus proche de x.

On admet le résultat connu sous le nom du théorème de la convergence dominée

THÉORÈME: Convergence dominée

Soit $(f_n)_{n\in\mathbb{N}}\in C_{pm}\left(I,\mathbb{K}\right)^{\mathbb{N}}$ une suite de fonctions intégrables telle que

- \circ La série $\sum f_n$ converge simplement sur I de somme une fonction f continue par morceaux sur I;
- La série $\sum \int_I |f_n|$ converge.

Alors:

- la fonction f est intégrable sur I;
- On a l'interversion somme-intégral :

$$\int_{I} f = \int_{I} \sum_{n=0}^{+\infty} f_{n} = \sum_{n=0}^{+\infty} \int_{I} f_{n}$$

En outre

$$\int_{I} |f| = \int_{I} \left| \sum_{n=0}^{+\infty} f_n \right| \leqslant \sum_{n=0}^{+\infty} \int_{I} |f_n|.$$

Objectifs.

L'objet du problème est d'une part d'établir, pour tout entier naturel non nul, un lien entre l'entier naturel β_n le plus proche de $e^{-1}n!$ et le nombre γ_n d'éléments sans point fixe du groupe symétrique S_n et d'autre part, d'étudier l'écart $\delta_n = e^{-1}n! - \beta_n$.

Dans la partie I on étudie β_n et on le caractérise grâce à une récurrence, dans la partie II on étudie γ_n et on établit un lien avec β_n . La partie III est consacrée à une estimation de δ_n puis à une étude des deux séries $\sum_{n\geqslant 0}\delta_n$ et $\sum_{n\geqslant 1}\frac{|\delta_n|}{n}$.

Partie I: Les suites
$$(\alpha_n)_{n\geqslant 0}$$
 et $(\beta_n)_{n\geqslant 0}$.

On définit la suite $(\alpha_n)_{n\geqslant 0}$ par $\alpha_0=1$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ \alpha_{n+1} = (n+1)\alpha_n + (-1)^{n+1}$$

On rappelle que pour tout x réel, la série $\sum_{n\geq 0} \frac{x^n}{n!}$ est convergente, et que $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$; en particulier, pour x=-1

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = e^{-1}$$

Pour $n \in \mathbb{N}$, on note : $\beta_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$ et $\rho_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k!}$.

- 1. Étude de la suite $(\alpha_n)_{n\geq 0}$.
 - (a) Expliciter α_k pour k dans [0, 4].
 - (b) Montrer que α_n est un entier naturel pour tout n de \mathbb{N} .
- 2. Étude de la suite $(\beta_n)_{n\geq 0}$.
 - (a) Expliciter β_k pour k dans [0, 4].
 - (b) Montrer que β_n est un entier relatif pour tout n de \mathbb{N} .
 - (c) Expliciter $\beta_{n+1} (n+1)\beta_n$ en fonction de n, pour tout entier n de N.
 - (d) Montrer que $\alpha = \beta$.

3. Etude de ρ_n .

- (a) Préciser le signe de ρ_n en fonction de l'entier naturel n.
- (b) Établir, pour tout entier naturel n, l'inégalité suivante : $n!|\rho_n| \le \frac{1}{n+1}$. L'inégalité est-elle stricte?
- (c) Déduire de ce qui précède que pour tout entier naturel $n \ge 1$, β_n est l'entier naturel le plus proche de $e^{-1}n!$.

4. Étude d'une fonction.

On désigne par f la fonction définie et de classe C^1 (au moins) sur l'intervalle]-1,1[à valeurs réelles, vérifiant les deux conditions :

$$f(0) = 1$$
 et $\forall x \in]-1,1[, (1-x)f'(x) - xf(x) = 0$

(a) Justifier l'existence et l'unicité de la fonction f. Expliciter f(x) pour tout x de]-1,1[.

<u>Indication</u>: On trouve $f(x) = \frac{e^{-x}}{1-x}$

- (b) Justifier l'affirmation : "f est de classe C^{∞} sur]-1,1[".
- (c) Expliciter (1-x)f(x), puis en utilisant la formule de Leibniz, exprimer pour tout entier naturel n:

$$(1-x)f^{(n+1)}(x) - (n+1)f^{(n)}(x)$$

en fonction de n et de x.

(d) En déduire une relation, valable pour tout entier naturel n, entre β_n et $f^{(n)}(0)$.

Partie II: La suite $(\gamma_n)_{n\geq 0}$.

Dans cette partie, on désigne par n un entier naturel.

Pour $n \ge 1$, on note :

- S_n l'ensemble des permutations de [1, n],
- γ_n le nombre d'éléments de S_n sans point fixe (τ appartenant à S_n est sans point fixe si pour tout k de $[\![1,n]\!]$, on a $\tau(k) \neq k$).

Pour n = 0 on adopte la convention : $\gamma_0 = 1$.

- 1. Calculer γ_1 et γ_2 .
- 2. Classer les éléments de S_3 selon leur nombre de points fixes et calculer γ_3 .
- 3. On suppose dans cette question que n=4.

- (a) Quel est le nombre d'éléments τ appartenant à S_4 ayant deux points fixes?
- (b) Quel est le nombre d'éléments τ appartenant à S_4 ayant un point fixe?
- (c) Calculer γ_4 .
- 4. Relation entre les γ_k .
 - (a) Rappeler sans justification le nombre d'éléments de S_n .
 - (b) Si $0 \le k \le n$, combien d'éléments de S_n ont exactement k points fixes?
 - (c) Établir pour tout entier naturel n la relation : $\sum_{k=0}^{n} C_n^k \gamma_k = n!.$
- 5. On considère la série entière $\sum_{n\geqslant 0} \frac{\gamma_n}{n!} x^n$ et l'on pose $g(x) = \sum_{n=0}^{+\infty} \frac{\gamma_n}{n!} x^n$ lorsque la série converge.
 - (a) Montrer que le rayon de convergence de cette série entière est supérieur ou égal à 1.
 - (b) Pour tout x de]-1,1[, on pose $h(x)=e^xg(x)$. Justifier l'existence du développement en série entière de la fonction h sur]-1,1[et expliciter ce développement.
 - (c) Expliciter g(x) pour tout nombre réel x de] -1,1[. En déduire la valeur du rayon de convergence de la série $\sum_{n\geqslant 0}\frac{\gamma_n}{n!}x^n.$
 - (d) Comparer les deux suites $(\beta_n)_{n\geqslant 0}$ et $(\gamma_n)_{n\geqslant 0}$.
 - (e) La fonction g est-elle définie en 1?
 - (f) La fonction g est-elle définie en -1?
 - (g) Calculer γ_8 .

Partie III: Sur $\delta_n = e^{-1}n! - \beta_n$.

Pour tout entier naturel n, on note :

- 1. $\delta_n = e^{-1}n! \beta_n$.
- $2. J_n = \int_0^1 x^n e^x \, \mathrm{d}x.$
- 3. $v_n = (-1)^{n+1} J_n$.
- 1. La série $\sum_{n\geqslant 0}v_n$.
 - (a) Quelle est la limite de J_n lorsque n tend vers $+\infty$?
 - (b) Etablir la convergence de la série $\sum_{n\geqslant 0} v_n$.
- 2. Estimation intégrale de δ_n .
 - (a) Justifier, pour tout nombre réel x et pour tout entier naturel n, l'égalité :

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{t} dt$$
 (1)

- (b) Déduire de (1) l'expression de δ_n en fonction de v_n .
- 3. Sur la série $\sum_{n\geqslant 0}\delta_n$.

Justifier la convergence de la série $\sum_{n \geq 0} \delta_n$; la convergence est-elle absolue ?

4. Sur la série $\sum_{n\geqslant 1} \frac{|\delta_n|}{n}$.

- (a) Justifier la convergence de la série $\sum_{n\geqslant 1}\frac{|\delta_n|}{n}.$
- (b) On pose $A = -\int_0^1 e^x \ln(1-x) dx$.
 - i. Justifier la convergence de l'intégrale impropre ${\cal A}.$
 - ii. Exprimer la somme $\sum_{n=1}^{+\infty} \frac{|\delta_n|}{n}$ en fonction de l'intégrale A.

 $\underline{Indication}:\ Utiliser\ le\ DSE(0)\ de\ x\longmapsto \ln{(1-x)}\ et\ le\ th\'eor\`eme\ de\ la\ convergence\ domin\'ee\ cit\'e\ dans\ le\ pr\'eambule$

(c) Justifier la convergence de la série $\sum_{n\geqslant 0} \frac{(-1)^n}{n!(n+1)^2}$ et expliciter la somme $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+1)^2}$ en fonction de $\sum_{n=0}^{+\infty} \frac{|\delta_n|}{n}$.

<u>Indication</u>: Utiliser le DSE(0) de $x \mapsto e^{-x}$ et le théorème de la convergence dominée cité dans le préambule

(d) Expliciter un nombre rationnel $\frac{p}{q}$ vérifiant $\left|\sum_{n=0}^{+\infty} \frac{|\delta_n|}{n} - \frac{p}{q}\right| \leqslant \frac{1}{600}$.

Partie I: Les suites α et β .

- 1. (a) On trouve $\alpha_0 = 1$, $\alpha_1 = 0$, $\alpha_2 = 1$, $\alpha_3 = 2$ et $\alpha_4 = 9$
 - (b) On procède par récurrence sur n pour montrer que $\forall n \geq 2, \ \alpha_n \in \mathbb{N}^*$
 - $\alpha_2 = 1 \in \mathbb{N}^*$. Le résultat est donc vrai au rang 2.
 - Soit $n \ge 2$ tel que $\alpha_n \in \mathbb{N}$. On a

$$\alpha_{n+1} = (n+1)\alpha_n + (-1)^{n+1} \in \mathbb{Z}$$

De plus $\alpha_n \geqslant 1$ donc $\alpha_{n+1} \geqslant n+1-1 \geqslant n \geqslant 2$ et donc $\alpha_{n+1} \in \mathbb{N}^*$ et le résultat est vrai au rang n+1. Comme $\alpha_0, \alpha_1 \in \mathbb{N}$, on a donc prouvé que

$$\forall n \in \mathbb{N}, \ \alpha_n \in \mathbb{N}$$

2. (a) On a

$$\beta_0 = 1, \ \beta_1 = 0, \ \beta_2 = 1, \ \beta_3 = 2, \ \beta_4 = 9$$

(b) On a

$$\forall n \in \mathbb{N}, \ \beta_n = \sum_{k=0}^n (-1)^k \frac{n!}{k!} = \sum_{k=0}^n ((-1)^k n(n-1)\dots(k+1))$$

et β est un entier relatif comme somme de tels entiers.

(c) On a

$$\beta_{n+1} - (n+1)\beta_n = (n+1)! \left(\sum_{k=0}^{n+1} \frac{(-1)^k}{k!} - \sum_{k=0}^n \frac{(-1)^k}{k!} \right) = (-1)^{n+1}$$

(d) $\beta_0 = \alpha = 1$ et les suites α et β vérifient la même relation de récurrence d'ordre 1. On a donc

$$\forall n \in \mathbb{N}, \ \alpha_n = \beta_n$$

- 3. (a) La suite de terme général $z_k = \frac{(-1)^k}{k!}$ vérifie les hypothèses de la règle spéciale (signe alterné, décroissance en module et convergence vers 0). La série correspondante a donc un reste d'ordre n, ρ_n , du signe de $\frac{(-1)^{n+1}}{(n+1)!}$. On a donc ρ_n qui est positif si n est impair et négatif si n est pair.
 - (b) La règle spéciale indique aussi que

$$\forall n \in \mathbb{N}, \ |\rho_n| \leqslant \left| \frac{(-1)^{n+1}}{(n+1)!} \right|$$

c'est à dire que

$$\forall n \in \mathbb{N}, \ n! |\rho_n| \leqslant \frac{1}{n+1}$$

L'inégalité est stricte car sinon $\rho_n \in \mathbb{Q}$. Or

$$e^{-1} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} + \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k!} = \frac{\beta_n}{n!} + \rho_n$$

Donc $e^{-1} \in \mathbb{Q}$, ce qui est absurde.

Remarque: $Si(a_n)$ est une suite réelle, strictement décroissante et de limite nulle, alors S la somme de la série $\sum_{n\geqslant 0} (-1)^n a_n$ est strictement compris entre les sommes partielles S_n et S_{n+1} , en conséquence,

$$|R_n| = |S - S_n| < |S_{n+1} - S_n| = a_{n+1}$$

$$O\dot{u} R_n = \sum_{k=n+1}^{+\infty} (-1)^n a_n.$$

Dans notre question la suite $\left(\frac{1}{n!}\right)_{n\geqslant 0}$ est strictement décroissante et donc on a une inégalité stricte.

(c) On a $\frac{\beta_n}{n!} + \rho_n = e^{-1}$ et donc

$$\forall n \geqslant 1, \ |\beta_n - n!e^{-1}| = |-n!\rho_n| < \frac{1}{n+1} \leqslant \frac{1}{2}$$

D'après le préambule, β_n est l'entier naturel le plus proche de $e^{-1}n!$.

L'inégalité est stricte car $\frac{1}{k!}$ est strictement décroissante et donc on a une inégalité stricte dans le résultat sur les reste s provenant de la règle spéciale

(d) On a $\frac{\beta_n}{n!} + \rho_n = e^{-1}$ et donc

$$\forall n \geqslant 1, \ |\beta_n - n!e^{-1}| = |-n!\rho_n| < \frac{1}{n+1} \le \frac{1}{2}$$

D'après le dernier rappel du préambule, β_n est l'entier naturel le plus proche de $e^{-1}n!$.

4. (a) Sur]-1,1[, on a

$$f(0) = 1$$
, $f'(x) - \frac{x}{1 - x} f(x) = 0$

Comme $x\mapsto \frac{x}{1+x}$ est continue sur] -1,1[, le théorème de Cauchy-Lipschitz cas linéaire s'applique et f existe et est unique (on a ici un problème de Cauchy).

En écrivant que $\frac{x}{1-x} = \frac{1}{1-x} - 1$, on obtient que $x \mapsto -x - \ln(1-x)$ est une primitive sur]-1,1[de $x \mapsto \frac{x}{1-x}$. Il existe alors une constante c telle que

$$\forall x \in]-1,1[, f(x) = c \exp(-x - \ln(1-x)) = \frac{ce^{-x}}{1-x}$$

Comme f(0) = 1, on en déduit que c = 1 et donc que

$$\forall x \in]-1,1[, f(x) = \frac{e^{-x}}{1-x}$$

(b) L'expression précédente montre, par théorèmes généraux, que f est de classe C^{∞} sur \mathbb{R} .

Remarque : On peut aussi montrer par récurrence sur n que $f \in C^n(]-1,1[)$ est vraie pour tout n en utilisant seulement l'équation différentielle.

(c) On a donc

$$\forall x \in]-1, 1[, (1-x)f(x) = e^{-x}$$

En dérivant n+1 fois cette relation par formule de Leibnitz, on obtient

$$\forall x \in]-1,1[, \sum_{k=0}^{n+1} {n+1 \choose k} (1-x)^{(k)} f^{(n+1-k)}(x) = (-1)^{n+1} e^{-x}$$

 $(1-x)^{(k)}$ étant nul pour $k \ge 2$, ceci devient

$$(1-x)f^{(n+1)}(x) - (n+1)f^{(n)}(x) = (-1)^{n+1}e^{-x}$$

(d) Appliquous cette relation en x = 0:

$$f^{(n+1)}(0) = (n+1)f^{(n)}(0) + (-1)^{n+1}$$

Les suites (β_n) et $(f^{(n)}(0))$ ont même premier terme et vérifient la même relation de récurrence d'ordre 1 : elles sont égales et

$$\forall n \in \mathbb{N}, \ \beta_n = f^{(n)}(0)$$

Partie II: La suite γ .

- 1. S_1 possède un unique élément (l'identité) et $\gamma_1 = 0$. Dans S_2 , il y a l'identité et la transposition (1, 2). On a donc $\gamma_2 = 1$
- L'identité de [1,3] a trois points fixes.
 Les transpositions (1,2), (1,3) et (2,3) ont un point fixe.
 Les cycles (1,2,3), (1,3,2) n'ont pas de point fixe et on a donc

$$\gamma_3 = 2$$

- 3. (a) τ a deux points fixes si, et seulement, si deux éléments sont permutés et deux autres laissés fixes c'est à dire si, et seulement, si τ est une transposition. Il y a donc $\binom{4}{2} = 6$ telles permutations.
 - (b) τ possède un unique point fixe a si, et seulement, si τ permute circulairement les éléments de $[1,4] \setminus \{a\}$ (deux choix possibles). Comme on a quatre choix pour a, il y a $8 = 2 \times 4$ telles permutations.
 - (c) Si un élément possède trois points fixes, il en a quatre et c'est l'identité. Il y a 24 éléments dans S_4 . On a donc

$$\gamma_4 = 24 - 6 - 8 - 1 = 9$$

Remarque : Pour $p \in [2, n]$, le nombre de p-cycle de S_n égale $\frac{A_n^p}{p} = \frac{n!}{p(n-p)!}$

- 4. (a) On a $\operatorname{Card}(S_n) = n!$.
 - (b) Une permutation possédant exactement k points fixes est caractérisée par le choix de ces points fixes (k parmi n) et une permutation sans points fixes des n-k restant (γ_{n-k} choix). Ainsi, il y a $C_n^k \gamma_{n-k}$ permutations ayant k points fixes.
 - (c) S_n est la réunion disjointe des ensembles $T_{n,k}$ des éléments de S_n ayant exactement k points fixes. En passant au cardinal, on a donc

$$n! = \sum_{k=0}^{n} C_n^k \gamma_{n-k}$$

Comme $C_n^k = C_n^{n-k}$, on a donc (avec un changement d'indice j = n-k)

$$n! = \sum_{j=0}^{n} C_n^j \gamma_j$$

- 5. (a) On a bien sûr $\gamma_n \leq n!$ (il y a moins de permutations sans point fixe que de permutations) et donc $\left(\frac{\gamma_n}{n!}\right)$ est borné. Par définition, la série entière a un rayon de convergence au moins égal à 1.
 - (b) g est, par définition, développable en série entière de rayon de convergence au moins 1, exp est développable en série entière de rayon de convergence infini. h est donc développable en série entière de rayon de convergence au moins égal à $\min(1, +\infty) = 1$ et son développement s'obtient par produit de Cauchy :

$$\forall x \in]-1,1[, h(x) = \sum_{k=0}^{+\infty} c_k x^k \text{ avec } c_k = \sum_{j=0}^n \frac{\gamma_j}{j!(n-j)!} = \frac{1}{n!} \sum_{j=0}^n \binom{n}{j} \gamma_j = 1$$

(c) On en déduit que

$$\forall x \in]-1,1[, h(x) = \sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}$$

et donc

$$\forall x \in]-1,1[, g(x) = \frac{e^{-x}}{1-x} = f(x)$$

On en déduit (si une fonction est développable, son développement est le développement de Taylor) que

$$\forall x \in]-1,1[, \ g(x) = f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{+\infty} \frac{\beta_n}{n!} x^n$$

Comme $\frac{\beta_n}{n!} \sim e^{-1}$, alors le rayon de convergence vaut exactement 1.

(d) Le calcul de la question précédente et l'unicité du développement en série entière indique que

$$\forall n \in \mathbb{N}, \ \beta_n = \gamma_n$$

- (e) $\frac{\beta_n}{n!} \xrightarrow[n \to +\infty]{} e^{-1}$ est le terme général d'une série divergente. g n'est donc pas définie en 1.
- (f) De la même façon, g n'est pas définie en -1 (série grossièrement divergente).
- (g) On a $\gamma_8 = \alpha_8 = 14833$

Partie III: Sur $\delta_n = e^{-1}n! - \beta_n$.

1. (a) On a

$$|J_n| \leqslant e \int_0^1 x^n \, dx = \frac{e}{n}$$

et, par encadrement,

$$\lim_{n \to +\infty} J_n = 0$$

(b) (v_n) est une suite alternée, de limite nulle en l'infini. En outre

$$|v_n| - |v_{n+1}| = \int_0^1 e^x (x^n - x^{n+1}) dx \ge 0$$

car $\forall x \in [0,1], \ e^x(x^n-x^{n+1}) \geqslant 0$ (et les bornes sont dans le bon sens). On peut donc appliquer la règle spéciale pour affirmer que $\sum_{n\geq 0} v_n$ converge.

2. (a) La fonction exp est de classe C^{n+1} sur \mathbb{R} , d'après la formule de Taylor avec reste intégrale, pour tout $x \in \mathbb{R}$, on a

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} \exp^{(n+1)}(t) dt$$
$$= \sum_{k=0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{t} dt$$

(b) Pour x = -1, on a donc

$$e^{-1} = \frac{\beta_n}{n!} + \frac{1}{n!} \int_0^{-1} (-1 - t)^n e^t dt$$

Le changement de variable u = 1 + t donne alors

$$\int_0^{-1} (-1 - t)^n e^t dt = (-1)^{n+1} \int_0^1 u^n e^{u-1} du$$
$$= e^{-1} v_n$$

Donc

$$\delta_n = n!e^{-a} - \beta_n = e^{-1}v_n$$

3. Comme $\sum_{n\geqslant 0}v_n$ converge, il en est de même de $\sum_{n\geqslant 0}\delta_n.$

Une intégration par parties donne

$$J_{n+1} = \int_0^1 x^{n+1} e^x dx = \left[x^{n+1} e^x \right]_0^1 - (n+1) \int_0^1 x^n e^x dx$$
$$= e - (n+1) J_n$$

Comme $J_n \xrightarrow[n \to +\infty]{} 0$, on a donc $(n+1)J_n \xrightarrow[n \to +\infty]{} e$ et ainsi

$$J_n \sim \frac{e}{n}$$

 $|v_n|=J_n$ est le terme général d'une série divergente et $\sum_{n\geqslant 0}\delta_n$ n'est donc pas non plus absolument convergente.

3. Avec l'équivalent précédent, on a

$$\frac{|\delta_n|}{n} = e^{-1} \frac{J_n}{n} \sim \frac{1}{n^2}$$

qui est le terme d'une série absolument convergente.

(a) L'application $u: x \mapsto e^x \ln(1-x)$ est continue sur [0,1]. On a un unique problème d'intégrabilité au voisinage de 1. Or,

$$u(t) = o\left(\frac{1}{\sqrt{1-t}}\right)$$

par croissances comparées. Par comparaison aux fonctions de Riemann, u est intégrable au voisinage de 1. Elle l'est donc sur [0,1[et a fortiori l'intégrale A existe.

(b) On a

$$\forall x \in [0, 1[, -e^x \ln(1-x)] = \sum_{n=1}^{+\infty} \frac{e^x x^n}{n}$$

- $f_n: x \mapsto \frac{e^x x^n}{n}$ est continue sur [0,1] et donc intégrable sur ce segment.
- $\sum_{x>1} f_n$ converge simplement sur [0,1[de somme la fonction $x\mapsto -e^x\ln(1-x)$ qui est continue sur [0,1[
- On a

$$\int_0^1 |f_n(x)| \ dx = \frac{J_n}{n} \sim \frac{e}{n^2}$$

qui est le terme général d'une série convergente.

Le théorème d'interversion somme-intégrale s'applique et donne

$$A = \sum_{n=1}^{+\infty} \int_0^1 \frac{e^x x^n}{n} \ dx = \sum_{n=1}^{+\infty} \frac{J_n}{n}$$

Comme $J_n = e|\delta_n|$, on a donc

$$\sum_{k=1}^{+\infty} \frac{|\delta_k|}{k} = \frac{A}{e}$$

5. On a $\frac{(-1)^n}{n!(n+1)^2} = o\left(\frac{1}{n^2}\right)$ est le terme général d'une série absolument convergente.

Le changement de variable u = 1 - x et le DSE(0) de exp donnent

$$A = -e \int_0^1 e^{-u} \ln(u) \ du = -e \int_0^1 \sum_{n=0} \frac{(-u)^n \ln(u)}{n!} \ du$$

- $g_n: u \longmapsto \frac{(-u)^n \ln(u)}{n!}$ est une fonction continue sur]0,1] et intégrable sur]0,1] (négligeable devant $\frac{1}{\sqrt{u}}$ au voisinage de 0 par croissances comparées).
- $\sum_{n>0} g_n$ converge simplement sur]0,1] vers $u \longmapsto e^{-u} \ln(u)$ qui est continue sur]0,1].
- Une intégration par parties donne, pour a > 0,

$$\int_{a}^{1} u^{n} \ln(u) \ du = \left[\frac{u^{n+1}}{n+1} \ln(u) \right]_{a}^{1} - \frac{1}{n+1} \int_{a}^{1} u^{n} \ du$$

En faisant tendre a vers 0 et en multipliant par 1/n!, on obtient

$$\int_0^1 |g_n(u)| \ du = -\int_0^1 \frac{u^n \ln(u)}{n!} \ du = \frac{1}{(n+1)^2 n!}$$

qui est le terme général d'une série convergente.

Le théorème d'interversion somme-intégrale s'applique et donne

$$A = -e \sum_{n=0}^{+\infty} \int_0^1 g_n(u) \ du = e \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2 n!}$$

On a finalement

$$\sum_{k=1}^{+\infty} \frac{|\delta_k|}{k} = \frac{A}{e} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2 n!}$$

6. $\frac{(-1)^n}{(n+1)^2 n!}$ est le terme général d'une suite alternée vérifiant les hypothèses de la règle spéciale. On a donc

$$\left|\sum_{n=N}^{+\infty}\frac{(-1)^n}{(n+1)^2n!}\right|\leqslant \frac{1}{(N+1)^2N!}$$

Pour N = 4, on a $\frac{1}{(N+1)^2 N!} = \frac{1}{600}$ et donc

$$\left| \sum_{n=0}^{+\infty} \frac{|\delta_n|}{n} - \frac{p}{q} \right| \leqslant \frac{1}{600} \text{ pour } \frac{p}{q} = \sum_{n=0}^{3} \frac{(-1)^n}{(n+1)^2 n!} = \frac{229}{288}$$