

I -1. 스마트 제조 기술 개요

생산과 제조의 이해

■ 생산 (生産), Production

- 인간이 생활하는 데 필요한 각종 물건을 만들어 냄.
- The creation of utility: the making of goods available for use
- Total output especially of a commodity or an industry

■ 제조 (製造), Manufacture

- 공장에서 큰 규모로 물건을 만듦. 원료에 인공을 가하여 정교한 제
- The act or process of producing something
- A productive industry using mechanical power and machinery

생산은 일반적이고 포괄적인 용어, 제조는 기계적인 설비를 활용한 구체적인 프로세스.

생산과 제조의 이해

■ 생산성 (生産性), Productivity

- 생산 과정에 투입된 각 생산 요소(원료·동력·기계·노동·자본 등)가 그 산출에 공헌한 정도.
- the efficiency of production of goods or services expressed by some measure.
- Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input use in a production process,

■ 생산성 향상

- 아담 스미스가《An Inquiry into the Nature and Causes of the Wealth of Nations》에서 산업 혁명 태동기의 경제를 반영하여 생산성의 개념을 댜룸
- 인류의 생산성 향상은 70%의 기술 혁신(예, 증기기관의 발명, 전기의 사용)과 30%의 작업수 행도 향상에 기인함

■ 산업 혁명의 어원

- 1845년 프리드리히 엥겔스가《The Condition of the Working Class in England》에서 처음 사용
- 1884년 역사학자 아놀드 토인비가 《Lectures on the Industrial Revolution c the Eighteenth Century in England》에서 구체화
 - "인류 역사에서 기술혁신과 그에 수반해 일어난 사회 경제 구조의 변혁, 어떤 기술이 나타났다가 반짝하고 사라지는 것이 아니라 관련 기술들이 연쇄적으로 발전해경제 및 사회구조를 바꾸는 변혁이 일어나야 산업혁명이라는 용어를 쓸 수 있다"

■ 산업 혁명과 생산성 혁신

- 수 천년 간 인간과 동물의 힘에 의존해 왔던 재화와 서비스의 생산이 산업 혁명을 계기로 비약적으로 향상됨
- 오랜 기간 정체 상태에 있던 인류의 제조 활동, 특히 생산성에 혁신적인 변화가 생겨난 계기 가 산업 혁명
- 즉, 산업 혁명은 생산성 혁신, 제조 혁신의 역사이다.

■ 1차 산업혁명 (1/2)

- 기술의 진화 과정
 - 면공업은 영국 산업의 변형과정에서 주도적 역할을 담당했으며, 주요 기술로는 수력 방적기(1769년) 와 역직기(1785년)를 들 수 있음
 - 코크스 제철법에 의해 선철의 대량생산이 시작되었으며, 모즐리를 매개로 공작기계 공업이 독립적인 분야로 발전
 - 와트의 증기기관은 분리응축기의 발명(1769년), 증기기관의 상업화(1776년), 회전식 증기기관의 완성 (1783년) 등으로 이어짐

- 교통수단의 발전은 도로의 개량, 운하의 건설, 철도의 설치와 같은 세 가지 국면을 통해 이뤄짐

<스티븐슨의 증기기관차>

<증기기관이 장착된 방직기계>

1차 산업혁명 (2/2)

- 사회적 변화와 의미
 - 사람, 수력, 풍력 등의 자연력이 아닌 증기기관이라는 기계의 동력에 의해 수공업에 머물던 공장을 근대적 기계화된 공장으로 만들어 간 **기계화 혁명**
 - 생산성이 비약적으로 향상되고 풍부해진 공업 생산품으로 인해 시장이 확대되고, 이어 **새로운 직업과 일자리가 증가**됨
 - 수공업자들의 조합인 길드와 이를 뒷받침하던 도제제도가 기계화된
 공장과 저숙련 노동자로 대체되는 사회 경제적인 구조에 큰 변혁이 있었음
 - 사회 경제적인 변혁의 한 현상으로 기계에게 일자리를 빼앗긴 노동자들이 기계를 때려 부수는 러다이트 운동이 일어났던 것

<러다이트 운동>

■ 2차 산업혁명

■ 게데스가 1915년 발간한《Cities in Evolution》에서 산업혁명의 두 번째 단계를 표현하기 위해 처음 사용

- 기술의 진화 과정
 - Bessemer process는 녹은 선철에서 강철을 대량 생산하는 세계 최초의 저렴한 제법
 - 에디슨이 1879년에 백열등을 개발하면서 계기로 전기의 시대 시작
 - 전화(1876년), 무선전신(1896년), 라디오(1918년) 등 통신기기 발명
 - 가솔린 기관, 디젤 기관 등 내연기관이 등장하면서 석유에 대한 의존도 심화
 - 포드는 1908년에 모델 T를 대량생산하면서 테일러주의(과학적 관리)를 구현했으며, 1913년에 컨베이어 벨트를 도입하여 연속적인 조립라인을 구축

<컨베이어 벨트를 통한 대량생산>

■ 제레미 리프킨의 3차 산업혁명

- 3차 산업혁명의 다섯 가지 핵심 경제 계획
 - 1) 재생 가능 에너지로 전환
 - 2) 모든 대륙의 건물을 현장에서 재생가능 에너지를 생산할 수 있는 미니 발전소로 변형함
 - 3) 모든 건물과 인프라 전체에 수소 저장 기술 및 여타의 저장 기술을 보급하여, 불규칙적으로 생성되는 에너지를 보존함
 - 4) 인터넷 기술을 활용하여 모든 대륙의 동력 그리드를 인터넷과 동일한 원리로 작동하는 에너지 공유 인터그리드로 전환함
 - 5) 교통수단을 전원 연결 및 연로 전지 차량으로 교체하고 대륙별 양방향 스마트 동력 그리드 상에서 전기를 사고 팔 수 있게 함

■ 기술의 전화 과정

- 제조 공정의 자동화 및 정보화가 가능하게 된 시기
- 애플 컴퓨터(1976~1977년)과 IBM 호환용 PC(1981년)을 매개로 컴퓨터의 대중화가 진전
- 트랜지스터(1947년)와 집적회로(1958년)를 비롯한 반도체기술의 발전
- 수치제어 공작기계(1950년대 후반), 산업용 로봇(1962년), Modicon 084(1969년) 등을 매개로 자동화의 진전
- 인터넷은 1969년에 ARPANet에서 시작된 후 1994년에 대중화의 국면에 진입

■ 제조 방식의 변화

■ 대량맞춤형(Mass Customization) 생산 시대를 지나 개인화(Personalization)를 통한 스마트 제조의 시대로 변화하고 있음

	대량 제조 (대량 생산)	린 제조 (대량 맞춤 생산)	스마트 제조 개인화(맞춤형) 생산
주요 목표	비용 최소화	품질 극대화	가치 극대화
기간	과거 ~ 1980	1980 ~ 2010	2010 ~ 현재
주요 활동 도구	규모의 경제Push 방식라인방식 생산재고관리	Just-in Time칸반 방식 생산소규모 로트 운영주문형 생산	- 맞춤형 제품 - 사물인터넷(IoT) - 사이버물리시스템(CPS) - 빅데이터 활용

■ 제조 시스템의 발전 과정

 개인화된 스마트 제조가 가능해지기 위해서는 생산방식이 지능화되고 기기-데이터 등의 연계성이 확보되어야 함

• 1단계: 노동의 분업과 호환부품

• Eli Whitney – interchangeable parts

• 2단계: 과학적 관리

• Frederick W. Taylor (1856-1915)

 Frank B. Gilbreth (1868–1924) and Lillian M. Gilbreth (1878–1972)

3단계: 연속적 조립생산

Henry Ford (1863–1947)

• 4단계 : 통계적품질관리와 경영과학

• 5단계: 린 생산시스템과 TPS

• 6단계: 유연생산시스템(FMS)

• 7단계: 개인화된 스마트 제조

	1980년대	1990년대	2000년대 이후
제조 방식	대량 생산	대량 맞춤 생산	개인화 생산
경쟁력	비용 및 품질	유연성, 서비스	지식 정보
필요기술	JIT (Just-in Time)TQM (Total Quality Management)	ERP (Enterprise Resource Planning)SCM (Supply Chain Management)	- IoT (Internet of Things) - AI (Artificial Intelligence) - 빅데이터 분석 - Cloud Computing
제조시스템	CIM (Computer Integrated Manufacturing)	FMS (Flexible Manufacturing System)	Product Service (Service Oriented)

■ 과학적 관리

- 작업의 능률을 높이기 위해 노동의 표준량 산정, 작업량에 따른 임금 지급 등 객관적 측정과
 데이터 기반의 작업 관리 방법론을 연구
 - 종래에 근로자의 창의와 근면에만 의지했던 작업관리를 경영자의 과학적인 과업설정이라는 계획적 관리로 전환
 - 조직적 태업을 방지하고 객관적인 표준작업량을 설정하여 고임금 저노무비로 노사 모두 만족
- 과학적 관리의 원칙
 - 각 작업 요소에 과학을 적용 Taylor 는 이것이 4원칙 중 가장 중요하다고 강조
 - 각 작업 별로 가장 적합한 작업자의 선발, 훈련, 계발
 - 노사간의 마음으로부터 우러난 협동체제 구축 과학적 원칙에 의거하여
 - 노사간 업무의 균등분배
- 과학은 '**객관적 측정 방법 + 숫자**'를 의미
 - You cannot manage what you cannot measure.

■ 포드 생산 시스템

- 인재들의 팀 정신과 컨베이어 시스템을 이용한 이동조립작업과 그에 따른 대량생산, 그리고 혁신적 인적자원경영을 맨 먼저 실천한 진보적인 정신
- T형 자동차의 이동조립방식과 생산의 표준화(3S)로써 판매가격을 계속 인하, 1914년 '5불 선언(8시간 근무에 일당 5불)'을 통해 임금을 2배로 지급

- Simplification : 제품과 작업의 단순화

- Standardization : 부품과 작업의 표준화

- Specialization : 기계와 공구의 전문화

■ 작업 워칙

- 작업자는 가능한 한 한발이라도 움직이지 말아야 한다
- 작업자는 허리를 굽힐 필요가 없다
- 공정 순서에 따라 작업자를 배열하고 각 작업의 사이클타임을 균등하게 책정 (라인밸런싱)
- 각 작업자 사이를 컨베이어나 운반장치로 연결하여 작업물을 운반
- 컨베이어를 시간적 규칙성에 따라 운전하여 원활한 작업 흐름

■ 셀 생산방식과 U자형 생산라인

- 다양화, 고급화되는 고객의 니즈에 부합하기 위해, 물량 변동 디취약한 기존 컨베이어 생산방식을 유연성 있는 셀 생산시스템
 - 기능별 설비 배치를 가지는 잡샵(Job shop)의 성과를 개선하도록 숙련된 작업자가 셀 내부에서 전체 공정을 책임지고 완수

- U자형 생산라인은 라인의 입구와 출구가 같은 위치에 있는 것을 의미
 - 복수의 라인을 공간적으로 서로 연결하는 형태로 짜맞춘 것으로 노동자 한 사람이 동시에 여러 대의 기계를 다룰 수 있게 됨
 - GT(Group Technology)에서 출발한 개념으로 제품그룹별로 기계가 배치되는 GT에서는 공정보다 제품을 중심으로 라인이 형성됨

■ JIT 생산방식에서 노동력 이용의 유연화는 다기능공화 및 직무 구분의 완화와 함께 라인 내 기계설비의 합리적 배치(U자형 생산라인)로 인해 기술적으로 완성

■ 유연생산시스템 FMS (Flexible Manufacturing System)

- 소요생산량이 중규모인 여러 종류의 작업물들을 동시에
 순서 없이 생산할 수 있는 시스템이며, 공장자동화(FA)의 기반이 되는 시스템화 기술
 - FMS 실행을 위해서는 다기능작업자의 양성과 범용설비가 필요
 - 전기적 명령어 시퀀스(릴레이, PLC), 마이크로프로세서·컴퓨터로 제어되는 기기 등을 이용한 자동화

- (1) 가공 작업을 위한 여러 대의 공작기계(CNC), 산업용 로봇, 자동 공구교환장치
- (2) 물류 및 저장을 위한 무인운반차(AGV), 자동창고(AS/RS) 등의 자동생산기술과
- (3) 이를 종합적으로 관리하고 제어하는 컴퓨터 시스템을 종합한 자동화된 유연생산시스템

■ 클라우스 슈밥의 4차 산업혁명

 다보스 포럼에서 WEF의 의장인 클라우스 슈밥이 WEF의 보고서를 바탕으로 4차 산업혁명 시대가 도래하고 있다고 공식으로 선언

- 4차 산업혁명이 가져올 변화
 - 1) 4차 산업혁명의 핵심인 혁신적 기술과 4차 산업혁명이 촉발하는 새로운 수요의 전 세계적인 확산 등으로 세계 경제는 성장 국면으로 넘어갈 것으로 전망
 - 2) 디지털 기술이 기업의 공급과 수요 측면과 결합하여 파괴적 혁신이 일어나게 되고 그 결과, 기업의 전통적인 가치사슬이 파괴됨
 - 3) 국민들이 다양한 디지털 기술의 활용으로 많은 정보를 가지게 되어 이전보다 시민사회의 힘이 커지게 될 것
 - 4) 로봇과 알고리즘이 노동을 자본으로 대체하고, 노동시장은 전문적 기술이라는 제한된 범위로 더욱 편 중됨
 - 5) 4차 산업혁명은 개인의 행동 양식, 프라이버시와 오너십에 대한 개념, 소비패턴, 일과 여가에 할애하는 시간,
 - 경력을 개발하고 능력을 키우는 방식 등 개인의 정체성도 변화시킴

• 4차 산업혁명의 스마트기술

- 사물인터넷·빅데이터·클라우드·로봇·인공지능 등 기반 기술의 동시다발적 발전
 - 1) 초연결 기술에는 Connected Smart Device, Network, IOT, Block chain
 - 2) 초지능화 기술에는 AI를 그리고 여러 기술이 융합된 융합 기술로 자율주행
 - 3) Robot, AR/VR, 3D 프린팅 등

- 4차 산업혁명과 스마트제조 (1/2)
 - 4차 산업 혁명의 적용 범위는 넓지만 모든 스마트 기술이 활용될 수 있는 분야는 스마트 제조 분야가 유일함

■ 8대 핵심 스마트제조 기술 (미래부/산업부)

• 제품설계·생산·에너지효율 등 공정최적화를 달성하기 위한 생산시스템혁신기술 4개

: 스마트센서, 사이버물리시스템 (CPS), 3D프린팅, 에너지절감 기술

• 생산과정에서 발생한 다양한 정보를 수집·가공·활용하는 정보통신기반기술 4개

: 사물인터넷 (IoT), 클라우드, 빅데이터, 홀로그램

※ 주요 활용 기술: 인공지능 (AI, Artificial Intelligence), 산업용 로봇

<4차 산업 혁명의 스마트 기술>

<핵심 스마트 제조 기술>

4차 산업혁명과 스마트제조 (2/2)

4차 산업혁명기에는 ICT와 제조업의 융합으로 산업기기와 생산과정이 모두 네트워크로 연결되고,

상호 소통하면서 전사적 최적화를 달성할 것으로 기대

구분	1차 산업혁명	2차 산업혁명	3차 산업혁명	4차 산업혁명
시기	18세기 후반	20세기 초반	1970년 이후	2020년 이후
혁신 부문	증기의 동력화	전력, 노동 분업	전자기기, ICT 혁명	ICT와 제조업 융합
커뮤니케이션 방식	책, 신문 등	전화기, TV 등	인터넷, SNS 등	사물인터넷, 서비스 간 인터넷 (IoT & IoS)
생산방식	생산 기계화	대량생산	부분 자동화	시뮬레이션을 통한 자동 생산
생산통제	사람	사람	사람	기계 스스로

스마트제조시스템

 지능형 제조를 의미하며, 1) 스마트팩토리를 기반으로 공정의 지능 제어 및 동기화 생산, 2) 제조 빅데이터 플랫폼 활용 등을 통하여 고객이 원하는 제품을 품질, 비용, 납기에 맞추어 생산하는 맞 춤형 생산시스템

■ 스마트 팩토리

- 공정에서 필요한 데이터가 실시간으로 수집되고, 빅데이터 기술을 이용하여 제어 및 예측이 가능한 공장을 의미함
- 설계, 개발, 제조 및 유통·물류 등 생산과정에 디지털자동화 솔루션이 결합된 정보통신기술을 적용하는 지능형 생산공장을 의미

■ 제조 빅데이터 플랫폼 활용

- 제조 현장의 설비(생산설비, 계측설비)에 IoT를 연결하여 필요한 정보를 실시간으로 올리고 분석하는 역할을 수행
- 제조 빅 데이터 분석 및 활용은 스마트제조의 특성(3C)을 구현하기 위하여 지원하는 기능
- 결국 스마트제조시스템의 핵심은 데이터 수집 및 분석!

• 스마트공장의 목적

- 기계 가동상태를 실시간으로 점검
- 원격 모니터링을 통해 장비 효율 및 안정성을 극대화함
- 기계 파손이나 제품불량 발생 가능성을 사전에 예측함으로써 비용절감과 생산성 제고를 통해 제조업의 경쟁력을 강화하는 것

<기존 공장과 스마트 공장의 차이>

<스마트 공장의 구성요소>

■ 공정 자동화 vs 스마트공장

- 공장자동화는 스마트팩토리의 필요조건일 뿐 충분조건은 아님
- 스마트공장은 제품개발부터 양산까지, 시장 수요 예측 및 모기업의 주문에서부터 완제품 출하까지의 모든 제조 관련 과정을 포함, |
 일반적인 공장자동화뿐만 아니라 ICT 기술 및 기업정보시스템의 적용도 포함

	스마트공장	자동화 공장
센서 및 액츄에이터	통신으로 연결	물리적 연결
통신 프로토콜	표준 이더넷, 단일 표준	필드버스, 다양한 표준
통신 특성	개방형, 기업 네트워크 통합, 고속화, 유무선 통합 인프라, 노드 무제한, 공간 무제약	폐쇄적, 기업 네트워크와 분리, 제한된 속도, 유선 중심, 제한된 노드 및 공간
제어 장치	공장 정보 통합 중심, IT장치화, 스마트 설비	제어기능 중심, 전용시스템, 중앙처리장치
정보화 시스템	전사 통합, 모바일, 클라우드, 실시간 감지	아일랜드 형태, 보고 형태
데이터 활용	무제한 수집 및 분석, 빅데이터	제한적 수집 및 분석
업무 프로세스 및 기술	사람, 프로세스, 기술의 융합	개별적, 독립적
보안	설비, 시스템, 사이버 보안 등 전사적 보안	제한적 보안

감사합니다

스마트제조연구센터

