

Sentiment Analysis Using BERT and Multi-Instance Learning

Iryna Burak
Pablo Restrepo

June 8, 2020

Presentation Overview: What did we do on the last 2 weeks?

1. Cross-lingual zero shot learning:

- 1.1 Exploring our Amazon reviews dataset in German.
- 1.2 Generating multilingual BERT embeddings for our data.
- 1.3 Exploring other multilingual embedding options.
- 2. Trying to fine-tune our network.
 - 2.1 Running our MilNet with BERT base embeddings.
 - 2.2 Running our MilNet with BERT multilingual embeddings.
- 3. Plan for the next two weeks.
- 4. References.

1.1 Exploring our Amazon reviews dataset in German:

Amazon reviews dataset in German.

- 678.993 reviews.
- 34 categories including:
- → Home Improvement
- → Books
- → Digital_Video_Download,
- → Watches
- → Mobile_Apps
- **→** ...

1.1 Exploring our Amazon reviews dataset in German:

As training data, we are using amazon reviews in English from the following categories:

- Grocery and Gourmet Food
- Health and Personal Care
- Beauty

From the 34 categories in our dataset in German, the most relevant for us are:

- Health & Personal Care
- Personal_Care_Appliances
- Beauty
- Grocery

1.1 Exploring our Amazon reviews dataset in German:

Number of instances per selected category:

Personal_Care_Appliances 411

Health & Personal Care

• Grocery 2

Beauty

Sentiment	Instances	Percentage
negative	60	13.3%
neutral	40	8.8%
positive	351	77.8%

- → Total number of instances: 451
- → Total number of instances after splitting the comments in sentences (using NLTK): 1.762 (1.35% of our total data)
- → Number of sentences in our dataset in English: 129.867

1.1 Exploring our Amazon reviews dataset in German:

Dataset in German:

Dataset in English (training data):

1.2 Generating multilingual BERT embeddings for our data.

Number of instances per selected category:

- Model: "BERT-Base, Multilingual Cased" (recommended model for multilingual models)
- Pooling Strategy: Reduce Mean
- Pooling Layer = -2
- 767 values per sentence
- file size: 2.1 gb

1.3 Exploring other multilingual embedding options.

- Bert Multilingual.
- XLM: improved version of BERT to achieve state-of-the-art results in classification and translation tasks.
- XLM-RoBERTa (Facebook AI): provides strong gains over previously released multi-lingual models like mBERT or XLM on downstream tasks like classification, sequence labeling and question answering
- XLING: Concatenated Power Mean Embeddings as Universal Cross-Lingual Sentence Representations
- XLNet: Generalized Autoregressive Pretraining for Language Understanding.

2. Trying to fine-tune the model

2.1 Running our MilNet with BERT base embeddings.

- Added one additional linear layer to convert 768-dim embeddings to 300-dim embeddings.
- Dropout makes the training process unstable.
- Downsampling factor: 0.15

sentiment	before	after
negative	1372	1372
neutral	1533	1533
positive	12605	1951

2. Trying to fine-tune the model

2.1 Running our MilNet with BERT base embeddings.

metric	amazon	organic
F1 (micro)	0.662	0.464
F1 (macro)	0.643	0.449

Previous results

metric	amazon	organic
F1 (micro)	0.672	0.450
F1 (macro)	0.530	0.447

Amazon

True	-	0	+
-	58	54	13
0	22	109	16
+	7	50	150

Organic dataset

True	-	0	+
-	540	876	42
0	361	1295	317
+	178	909	526

2. Trying to fine-tune the model

2.2 Running our MilNet with BERT multilingual embeddings.

Base BERT

metric	amazon-german	amazon-english	organic
F1 (micro)	-	0.662	0.464
F1 (macro)	-	0.643	0.449

Multilingual BERT

metric	amazon-german	amazon-english	organic
F1 (micro)	0.47	0.585	0.430
F1 (macro)	0.40	0.557	0.430

3. Plan for the next two weeks:

- Update our baselines to work with data in German
- Generate embeddings for our data using different techniques (XLM-RoBERTa,XLING,XLNet).
- Train our MilNet using different embeddings and compare results.
- Try to improve our numbers as much as possible.

4. References

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018; [http://arxiv.org/abs/1810.04805 arXiv:1810.04805].
- Multi-lingual models, Huggingface, https://huggingface.co/transformers/multilingual.html
- Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, Veselin Stoyanov: "Unsupervised Cross-lingual Representation Learning at Scale", 2019; [http://arxiv.org/abs/1911.02116 arXiv:1911.02116].
- Andreas Rücklé, Steffen Eger, Maxime Peyrard, Iryna Gurevych: "Concatenated Power Mean Word Embeddings
 as Universal Cross-Lingual Sentence Representations", 2018; [http://arxiv.org/abs/1803.01400 arXiv:1803.01400].
- Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le: "XLNet: Generalized Autoregressive Pretraining for Language Understanding", 2019; [http://arxiv.org/abs/1906.08237 arXiv:1906.08237].