MA0000

Test Module

Notes

2014-15

Version: 4/2/2015

Contents

1	Divisions	1
	1.1 First Section	1
	1.2 Another Section	1
	1.3 A little section	1
2	Exercises	2
	2.1 Diagnostic exercises (multiple choice)	2
	2.2 Formative exercises	2
3	Figures and Tables	3
	3.1 Figures	3
	3.2 Tables	3
4	Theorems (with labels)	5
5	Lists	7
6	Labels, References and Citations	8

Lecture 1 Divisions

Some initial text, before the first section

1.1 First Section

This is the first section.

1.2 Another Section

This is the second section.

1.2.1 A subsection

This is a subsection.

Lecture 2 Exercises

• Doesn't work across chapters yet: Lemma 4.3.

2.1 Diagnostic exercises (multiple choice)

Exercise 2.1 [Diagnositic]

- 1. Which among the following distributions is the odd one out?
 - A. Binomial
 - B. Exponential
 - C. Geometric
 - D. Poisson
- 2. Which is the definition of a random variable?
 - A. A function $X: \Omega \to \mathbb{R}$.
 - B. A function $X: \Omega \to [0,1]$.
 - C. A function $X : \mathbb{R} \to [0, 1]$.

2.2 Formative exercises

Exercise 2.2 [Formative]

This is the introduction.

- 1. This is the first question.
- 2. This is the second question.
- 3. This is the third question.
 - (a) This is the first part of the third question
 - (b) This is the second part of the third question

Lecture 3 Figures and Tables

3.1 Figures

Not done yet.

Figure 3.1: Humpty the Camel.

3.2 Tables

Here are some tables:

Notation	$X \sim \text{Uniform}\{1, 2, \dots, n\}$
Parameter(s)	$n \in \mathbb{N}$
Range	$\{1,2,\ldots,n\}$
PMF	f(k) = 1/n for all k = 1, 2,, n

Table 3.1: The uniform distribution

MA0000 3. Figures and Tables

Notation	$X \sim \text{Bernoulli}(p)$
Parameter(s)	$p \in [0, 1]$ (probability of success)
Range	$\{0,1\}$
PMF	f(0) = 1 - p and f(1) = p

Table 3.2: The Bernoulli distribution

Lecture 4 Theorems

Probability is a function that assigns numerical value to random events.

Definition 4.1

Let Ω be the sample space of some random experiment, and let \mathcal{F} be a field of sets over Ω . A probability measure on (Ω, \mathcal{F}) is a function

$$\mathbb{P}: \ \mathcal{F} \ \rightarrow \ [0,1]$$

$$A \mapsto \mathbb{P}(A)$$

such that $\mathbb{P}(\Omega) = 1$, and for any countable collection of pairwise disjoint events $\{A_1, A_2, \ldots\}$,

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a *probability space*.

Theorem 4.2 (Properties of probability measures)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $A, B \in \mathcal{F}$.

- (1) Complementarity: $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- (2) $\mathbb{P}(\emptyset) = 0$,
- (3) Monotonicity: if $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- (4) Addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

Proof:

(1) Since $A \cup A^c = \Omega$ is a disjoint union and $\mathbb{P}(\Omega) = 1$, it follows by additivity that

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c).$$

(2) Since $\emptyset = \Omega^c$ and $\mathbb{P}(\Omega) = 1$, it follows by complementarity that

$$\mathbb{P}(\emptyset) = \mathbb{P}(\Omega^c) = 1 - \mathbb{P}(\Omega) = 1 - 1 = 0.$$

(3) Let $A \subseteq B$ and let us write $B = A \cup (B \setminus A)$.

Since A and $B \setminus A$ are disjoint sets, it follows by additivity that

$$\mathbb{P}(B) = \mathbb{P}[A \cup (B \setminus A)] = \mathbb{P}(A) + \mathbb{P}(B \setminus A).$$

Hence, because $\mathbb{P}(B \setminus A) \geq 0$, it follows that $\mathbb{P}(B) \geq \mathbb{P}(A)$.

- $(4) \quad \bullet \ A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$
 - $A = (A \setminus B) + (A \cap B)$
 - $B = (B \setminus A) + (A \cap B)$

These are disjoint unions, so by additivity,

•
$$\mathbb{P}(A \cup B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B)$$

MA0000 4. Theorems

- $\mathbb{P}(A) = \mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B)$
- $\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B)$

Hence $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$, as required.

Here is a lemma:

Lemma 4.3 (Zorn's lemma)

If every totally ordered subset of a partially ordered set A has an upper bound in A, then A contains at least one maximal element.

Lecture 5 Lists

Here are nested itemize environments

- \bullet First item
 - First sub-item
 - Second sub-item
- ullet Second item

Here are nested enumerate environments

- (1) First item
 - (a) First sub-item
 - (b) Second sub-item
- (2) Second item

Lecture 6 Labels, References and Citations

- Here is a reference to Lemma 4.3 does it work?
- Here is a reference to Definition 4.1 does it work?