A Better Bayesian Convergence Theorem

Notation

hypotheses: h_i h_j ... background and auxiliaries: b experimental/observation conditions:

$$c_1, c_2, ..., c_n : c^n$$

evidential outcomes:

$$e_1, e_2, \dots, e_n : e^n$$

likelihoods:
$$P[e^n | h_i \cdot b \cdot c^n]$$

Notation

Likelihoods Priors Posteriors

$$P[e \mid h_i] : P_{\alpha}[h_i] \Rightarrow P_{\alpha}[h_i \mid e]$$

$$P[e \mid h_i \cdot b \cdot c]: P_{\alpha}[h_i \mid b] \Rightarrow P_{\alpha}[h_i \mid b \cdot c \cdot e]$$

$$P_{\alpha}[h_i \mid b \cdot c^n \cdot e^n]$$

$$\frac{P_{\alpha}[h_{j} \mid b \cdot c^{n} \cdot e^{n}]}{P_{\alpha}[h_{i} \mid b \cdot c^{n} \cdot e^{n}]}$$

$$= \frac{P[e^{n} | h_{j} \cdot b \cdot c^{n}]}{P[e^{n} | h_{i} \cdot b \cdot c^{n}]} \cdot \frac{P_{\alpha}[h_{j} | b]}{P_{\alpha}[h_{i} | b]}$$

$$\Omega_{\alpha} [\sim h_i \mid b \cdot c^n \cdot e^n] = \begin{array}{c} P_{\alpha} [\sim h_i \mid b \cdot c^n \cdot e^n] \\ \hline P_{\alpha} [h_i \mid b \cdot c^n \cdot e^n] \end{array}$$

$$+ \quad \frac{P_{\alpha}[e^{n} \mid h_{K} \cdot b \cdot c^{n}]}{P[e^{n} \mid h_{i} \cdot b \cdot c^{n}]} \cdot \frac{P_{\alpha}[h_{K} \mid b]}{P_{\alpha}[h_{i} \mid b]}$$

where h_K is the catch-all, "something-else" hypothesis.

$$P_{\alpha}[h_i \mid b \cdot c^n \cdot e^n] =$$

$$1 + \Omega_{\alpha} [\sim h_i \mid b \cdot c^n \cdot e^n]$$

$$\Sigma_{j\neq i} \quad \begin{array}{c} P[e^n \mid h_j \cdot b \cdot c^n] & P_{\alpha}[h_j \mid b] \\ \hline P[e^n \mid h_i \cdot b \cdot c^n] & P_{\alpha}[h_i \mid b] \end{array}$$

$$\leq \Omega_{\alpha}[\sim h_i \mid b \cdot c^n \cdot e^n] \leq$$

$$\frac{P_{\alpha}[h_{j} \mid b \cdot c^{n} \cdot e^{n}]}{P_{\alpha}[h_{i} \mid b \cdot c^{n} \cdot e^{n}]}$$

$$= \begin{array}{cccc} P[e^n \mid h_j \cdot b \cdot c^n] & P_{\alpha}[h_j \mid b] \\ \hline P[e^n \mid h_i \cdot b \cdot c^n] & P_{\alpha}[h_i \mid b] \end{array}$$

Sufficient Conditions for the *Likely*

Bayesian Refutation

of False Alternatives to the True Hypothesis

choose any $\varepsilon > 0$ consider the set of outcome streams:

$$\{e^n: P[e^n \mid h_j \cdot b \cdot c^n] / P[e^n \mid h_i \cdot b \cdot c^n] < \epsilon\}$$

now consider the sentence:

$$\vee \{e^n : P[e^n \mid h_j \cdot b \cdot c^n] / P[e^n \mid h_i \cdot b \cdot c^n] < \epsilon\}$$

Consider

$$P[\vee\{e^n: P[e^n \mid h_j \cdot b \cdot c^n]/P[e^n \mid h_i \cdot b \cdot c^n] < \epsilon\} \mid h_i \cdot b \cdot c^n]$$

The Outcome Space

c_1	c_2	c_3	c_4	c_5	c_6	c ₇	c_8	c_9
o _{1,1}	$o_{2,1}$	o _{3,1}	O _{4,1}	o _{5,1}	o _{6,1}	o _{7,1}	o _{8,1}	•••
o _{1,2}	02,2	03,2	04,2	o _{5,2}	0 _{6,2}	o _{7,2}	o _{8,2}	•••
o _{1,3}	02,3	03,3	0 _{4,3}	O _{5,3}	0 _{6,3}	07,3	08,3	•••
o _{1,4}	02,4	03,4	04,4	O _{5,4}	0 _{6,4}	o _{7,4}	08,4	•••
o _{1,5}	02,5	03,5				o _{7,5}	08,5	•••
0 _{1,6}	02,6	03,6	04,6	05,6		07,6	08,6	•••
o _{1,7}		03,7	O _{4,7}	o _{5,7}		O _{7,7}	o _{8,7}	•••
o _{1,8}				O _{5,8}		o _{7,8}	08,8	•••
•••			•••	•••	•••	•••	•••	•••

for each h,

$$P[o_{ku} \cdot o_{kv} \mid h \cdot b \cdot c_k] = 0$$

$$\sum_{u=1}^{w} P[o_{ku} | h \cdot b \cdot c_k] = 1$$

Possible Path of Evidence Stream through the Outcome Space C

c_1	c_2	c_3	c_4	$\begin{vmatrix} \mathbf{n} \\ \mathbf{c}_5 \end{vmatrix}$	c_6	c_7	c_8	c_9
$o_{1,1}$	$o_{2,1}$	o _{3,1}	O _{4,1}	o _{5,1}	o _{6,1}	o _{7,1}	o _{8,1}	•••
$o_{1,2}$	0 _{2,2}	o _{3,2}	04,2	o _{5,2}	o _{6,2}	o _{7,2}	o _{8,2}	•••
	0 _{2,3}	03,3	04,3	O _{5,3}	0 _{6,3}	O _{7,3}	08,3	•••
o _{1,4}	02,4	03,4	04,4	o _{5,4}	0 _{6,4}	o _{7,4}	08,4	•••
o _{1,5}	02,5	03,5				o _{7,5}	O _{8,5}	•••
0 _{1,6}	02,6	03,6	04,6	o _{5,6}		07,6	08,6	•••
o _{1,7}		O _{3,7}	O _{4,7}	O _{5,7}		O _{7,7}	o _{8,7}	•••
$o_{1,8}$			0 _{4,8}	o _{5,8}		o _{7,8}	08,8	•••
•••			•••	•••	•••	•••	•••	•••

 e^n

Possible Path of Evidence
Stream
through the
Outcome Space

 e^n

 $h_i \cdot b$

\mathbf{c}_1	c_2	c_3	c_4	$c_5^{\rm II}$	c_6	c ₇	c_8	c_9
$o_{1,1}$	$o_{2,1}$	o _{3,1}	O _{4,1}	o _{5,1}	o _{6,1}	o _{7,1}	$o_{8,1}$	• • •
					$o_{6,2}$	o _{7,2}	$o_{8,2}$	•••
$O_{1,3}$		03,3				07,3	08,3	• • •
$O_{1,4}$				o _{5,4}	o _{6,4}	O _{7,4}	08,4	•••
$O_{1,5}$				O _{5,5}	,	07,5	O _{8,5}	•••
$O_{1,6}$			04,6	o _{5,6}		07,6	08,6	•••
$O_{1,7}$		O _{3,7}	04,7	O _{5,7}		o _{7,7}	0 _{8,7}	•••
$O_{1,8}$			04,8	O _{5,8}		o _{7,8}	08,8	•••
•••			•••	•••	•••	•••	•••	•••

$$P[\vee\{e^n: P[e^n \mid h_j \cdot b \cdot c^n]/P[e^n \mid h_i \cdot b \cdot c^n] < \epsilon\} \mid h_i \cdot b \cdot c^n]$$

Independent Evidence Assumptions:

1.
$$P[e^k | h_j \cdot b \cdot c_{k+1} \cdot c^k] = P[e^k | h_j \cdot b \cdot c^k];$$

2.
$$P[e_{k+1} | h_j \cdot b \cdot c_{k+1} \cdot c^k \cdot e^k] = P[e_{k+1} | h_j \cdot b \cdot c_{k+1}]$$

$$\therefore P[e^n \mid h_j \cdot b \cdot c^n] = \prod_{k=1}^n P[e_k \mid h_j \cdot b \cdot c_k]$$

Definition: o_{ku} is a **falsifying outcome** of c_k for h_j with respect to h_i iff

$$P[o_{ku} \mid h_j \cdot b \cdot c_k] = 0 \text{ but } P[o_{ku} \mid h_i \cdot b \cdot c_k] > 0$$

Definition: h_j is **outcome-compatible** with h_i on c_k iff none of the outcomes of c_k are **falsifying** for h_i with respect to h_i

Theorem 1: The Falsification Theorem:

Suppose c^n contains a sub-sequence consisting of m experiments or observations such that for each of them the likelihood of obtaining a *falsifying outcome* is no less than some number $\delta > 0$

i.e.,
$$P[\lor \{o_{ku} : P[o_{ku} | h_j \cdot b \cdot c_k] = 0\} | h_i \cdot b \cdot c_k] \ge \delta$$
.

Then,

$$P[\vee\{e^n : P[e^n \mid h_j \cdot b \cdot c^n] / P[e^n \mid h_i \cdot b \cdot c^n] = 0\} \mid h_i \cdot b \cdot c^n]$$

$$\geq 1-(1-\delta)^{m}$$
.

(Notice: if there is a *crucial experiment* in evidence stream cⁿ, then we may choose whome 1 rand 084=1.)

A measure of the Empirical Distinctness of Hypotheses when Outcome-Compatible on the experiment

Definitions: Quality of Information from an outcome

$$QI[o_{ku} | h_i/h_j | b \cdot c_k] = log(P[o_{ku} | h_i \cdot b \cdot c_k] / P[o_{ku} | h_j \cdot b \cdot c_k])$$

$$= log(P[o_{ku} | h_i \cdot b \cdot c_k]) - log(P[o_{ku} | h_j \cdot b \cdot c_k])$$

$$QI[e^n \mid h_i/h_j \mid b \cdot c^n] = log(P[e^n \mid h_i \cdot b \cdot c^n] / P[e^n \mid h_j \cdot b \cdot c^n])$$

$$\therefore QI[e^n \mid h_i/h_j \mid b \cdot c^n] = \sum_{k=1}^n QI[e_k \mid h_i/h_j \mid b \cdot c_k]$$

Definition: Expected Quality of information for an observation or experiment:

for c_k on which h_j is outcome-compatible with h_i ,

$$EQI[c_{k} | h_{i}/h_{j} | h_{i}\cdot b] = \sum_{u} QI[o_{ku} | h_{i}/h_{j} | b\cdot c_{k}] \cdot P[o_{ku} | h_{i}\cdot b\cdot c_{k}]$$

$$EQI[c^n \mid h_i/h_j \mid h_i \cdot b] = \sum_{e^n} QI[e^n \mid h_i/h_j \mid b \cdot c^n] \cdot P[e^n \mid h_i \cdot b \cdot c^n]$$

$$\therefore \quad \text{EQI}[\mathbf{c}^{n} \mid \mathbf{h}_{j}/\mathbf{h}_{i} \mid \mathbf{h}_{i} \cdot \mathbf{b}] = \sum_{k=1}^{n} \text{EQI}[\mathbf{c}_{k} \mid \mathbf{h}_{j}/\mathbf{h}_{i} \mid \mathbf{h}_{i} \cdot \mathbf{b}]$$

Definition:
$$\underline{EQI}[c^n | h_i/h_j | h_i \cdot b] = EQI[c^n | h_i/h_j | h_i \cdot b] \div n$$

Theorem: Boundedness of EQI

$$EQI[c_k | h_j/h_i | h_i \cdot b] \ge 0$$
; and

$$EQI[c_k \mid h_j/h_i \mid h_i \cdot b] > 0$$

if and only if

for at least one of its possible outcomes o_{ku},

$$P[o_{ku} | h_i \cdot b \cdot c_k] \neq P[o_{ku} | h_j \cdot b \cdot c_k].$$

Definition: Variance in the Quality of Information for c_k:

for c_k on which h_i is outcome-compatible with h_i,

$$VQI[c_k \mid h_i/h_i \mid h_i \cdot b] =$$

$$\sum_{u} (QI[o_{ku} | h_i/h_j | b \cdot c_k] - EQI[c_k | h_i/h_j | h_i \cdot b])^2 \cdot P[o_{ku} | h_i \cdot b \cdot c_k]$$

$$VQI[c^n \mid h_i/h_i \mid h_i \cdot b] =$$

$$\sum e^n \left(QI[e^n \mid h_i/h_i \mid b \cdot c^n] - EQI[c^n \mid h_i/h_i \mid h_i \cdot b]\right)^2 \cdot P[e^n \mid h_i \cdot b \cdot c^n]$$

$$\therefore VQI[c^n \mid h_i/h_j \mid h_i \cdot b] = \sum_{k=1}^n VQI[c_k \mid h_i/h_j \mid h_i \cdot b]$$

Definition: $\underline{VQI}[c^n | h_i/h_i | h_i \cdot b] = VQI[c^n | h_i/h_i | h_i \cdot b] \div n$

Theorem 2: Non-falsifying Likelihood Ratio Convergence Theorem

Choose positive $\varepsilon < 1$, as small as you like, but large enough that (for the number of observations n being contemplated) the value of $\underline{EQI}[c^n \mid h_i/h_j \mid h_i \cdot b] > -(\log \varepsilon)/n$. Then

$$P[\vee\{e^n: P[e^n \mid h_j \cdot b \cdot c^n]/P[e^n \mid h_i \cdot b \cdot c^n] < \epsilon\} \mid h_i \cdot b \cdot c^n] \geq$$

Theorem 2*:

Non-falsifying Likelihood Ratio Convergence Theorem

Suppose there is some fraction γ , $0 < \gamma \le (1/e)^2$ ($\approx .135$) such that for each possible outcome o_{ku} of each observation condition c_k in c^n , either $P[o_{ku} \mid h_i \cdot b \cdot c_k] = 0$ or $P[o_{ku} \mid h_j \cdot b \cdot c_k]/P[o_{ku} \mid h_i \cdot b \cdot c_k] \ge \gamma$.

Choose positive $\varepsilon < 1$ such that $\underline{EQI}[c^n \mid h_i/h_j \mid h_i \cdot b] > -(\log \varepsilon)/n$. Then

$$P[\vee\{e^n: P[e^n \mid h_i \cdot b \cdot c^n]/P[e^n \mid h_i \cdot b \cdot c^n] < \epsilon\} \mid h_i \cdot b \cdot c^n] \geq$$

Directional Agreement Condition: For each experiment or observation c and each of its possible outcomes o, the *likelihood ratios agree in direction*: i.e.,

$$P_{\alpha}[o \mid h_{j} \cdot b \cdot c] / P_{\alpha}[o \mid h_{i} \cdot b \cdot c] > 1$$
 iff

$$P_{\beta}[o \mid h_j \cdot b \cdot c] / P_{\beta}[o \mid h_i \cdot b \cdot c] > 1$$
, and

$$P_{\alpha}[o \mid h_i \cdot b \cdot c] / P_{\alpha}[o \mid h_i \cdot b \cdot c] < 1$$
 iff

$$P_{\beta}[o \mid h_{j} \cdot b \cdot c] / P_{\beta}[o \mid h_{i} \cdot b \cdot c] < 1.$$