Time Series

Weights for Exponential Smoothing with w = 0.1

Weights for Exponential Smoothing with w = 0.5

Weights for Exponential Smoothing with w = 0.7

Exponential Smoothing

- MA distributes the weight equally to the recent observations
- \blacktriangleright Exponential Smoothing controls the weights of the recent observations by w

$$s_t = \frac{y_t + wy_{t-1} + w^2y_{t-2} + \ldots + w^ty_0}{1/(1-w)}$$

- ightharpoonup Smaller w smooths the series more lightly.
- lackbox Greater w smooths the series more strongly.

Exponential Smoothing

We have

$$\begin{aligned} s_t &= s_{t-1} + (1-w)(y_t - s_{t-1}) \\ &= (1-w)y_t + ws_{t-1} \end{aligned}$$

lackbox When w o 0, $s_t o y_t$, or little smoothing has taken

Exponential Smoothing with w = 0.1

Exponential Smoothing with w = 0.5

Exponential Smoothing with w = 0.9

Double Exponential Smoothing

Double Exponential Smoothing

We can use double smoothing to identify the trend and forecast linear trend time series as follows.

- \blacktriangleright Step 1: Create a smoothed series: $s_t^{(1)} = (1-w)y_t + ws_{t-1}^{(1)}$
- Step 2: Create a double smoothed series:

$$s_t^{(2)} = (1 - w)s_t^{(1)} + ws_{t-1}^{(2)}$$

Step 3: Estimate the trend:

$$b_1 = \frac{1-w}{w}(s_T^{(1)} - s_T^{(2)})$$

▶ Step 4: Forecast

$$\hat{y}_{T+l} = s_T^{(1)} + b_1 \cdot l$$

Example

You are given the following time series

\overline{t}	1	2	3	4	5
y_t	1	3	5	8	13

Assume that this is a linear trend time series. Using double exponential smoothing with w=.8 to estimate the trend (slope) and forecast y_6 .