

Fachpraktikum Gruppe 3 Kick-off-Meeting

Markus Zajac FernUniversität in Hagen

October 19th, 2023, Online

Content

- I. Introduction
- II. Architecture development (by example)
- III. Organization

Introduction

Why quantum computing?

- Solve complex problems faster
- Qubits: 0, 1 ($|0\rangle$, $|1\rangle$) or $|0\rangle$ and $|1\rangle$ at the same time (Superposition)

Fields of application

- **Optimization**
- Unstructured search
- Machine learning

Challenges

- Limited and error-prone hardware: Noisy Intermediate-Scale Quantum (NISQ) era.
- Encoding classical data in qubits is a prerequisite to process them with quantum computers [2,3,4].

Orchestration of classical and quantum programs is crucial.

Quantum Algorithms

Glosser.ca, CC BY-SA 3.0

Evaluation criteria:

- Speedup
- Quality of the solutions
- Runtime complexity
- Space complexity

Efficient encoding is a challenge and research direction [2,3,4]

A simple circuit: coin flip

OFINO

Hybrid Data Management Architecture - Concept

Requirements / Possible features

- (2) Efficient routines for data wrangling
- **2 3** Store data constraints in "profiles"
- **3 4** Pull/Push principle

Folie 6 II - Architecture development Chair of Databases and Information Systems

Quantum-based Distance Estimation (QDE)

Tuples (classical data)

	<u>ID</u>	Feature 1	Feature 2	Cluster
Centroid	0	-0.45	0.45	blue
Centroid	1	0.15	-0.15	green
Data point	2	0.15	-0.15	?
	•••			•••

Step 1: Preprocessing and Encoding

Step 2: Calculation of distances

Step 3: Postprocessing

Folie 8

QDE - Data Wrangling

Tuples (classical data)

<u>ID</u>	<i>v1</i> Feature 1	<i>v2</i> Feature 2	Cluster
0	-0.45	0.45	blue
1	0.15	-0.15	green
2	0.15	-0.15	?
•••			•••

Amplitude Encoding (Tuple by tuple)

Application

Coordinator

Data Management

II - Architecture development

Chair of Databases and Information Systems

QDE - Circuit Generation

Runtime [5]:

k-Means: O(kMN)

Quantum k-Means*: O(log(N)Mk)

Python source code:

for i in range(1, 3):
 qc.h(qreg[2])
 qc.u(theta_list[0], phi_list[0], 0, qreg[0])
 qc.u(theta_list[i], phi_list[i], 0, qreg[1])
 qc.cswap(qreg[2], qreg[0], qreg[1])
 qc.h(qreg[2])

qc.measure(qreg[2], creg[0])

qc.reset(qreg)

Technologies

- Qiskit SDK
 - Local development with simulators, quantum hardware over cloud
 - Documentation: https://docs.quantum-computing.ibm.com/
- Python
- MongoDB, Neo4, Relational databases

- ...

Organization

- Infrastruktur (GitLab, LG-Cluster, ...)
- Working mode (Project roles, status meetings, WeKan, ...)
- Communication (Zulip, ...)
- Meeting in Hagen am 27.10.23
- Next steps

Literature

[1] Weigold, Manuela; Barzen, Johanna; Leymann, Frank; Salm, Marie (2021): Expanding Data Encoding Patterns For Quantum Algorithms. In: 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C). 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C). Stuttgart, Germany, 22.03.2021 - 26.03.2021: IEEE, pp. 95–101.

[2] Essam H. Houssein, Zainab Abohashima, Mohamed Elhoseny, and Waleed M. Mohamed. Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision. Expert Syst. Appl., 194:116512, 2022.

[3] Steven Herbert. Quantum computing for data-centric engineering and science. Data-Centric Engineering, 3:e36, 2022.

[4] Mária Kieferová and Yuval Sanders. Assume a Quantum Data Set. Harvard Data Science Review, 4(1), 2022.

[5] Oumayma Ouedrhiri, Oumayma Banouar, Said Raghay, and Salah Elhadaj. 2021. Comparative study of data preparation methods in quantum clustering algorithms. In Proceedings of the 4th International Conference on Networking, Information Systems & Security (NISS2021).