

Modern Computer Architecture

Lecture 1 Fundamentals of Quantitative Design and Analysis (I)

Hongbin Sun

国家集成电路人才培养基地

Xi'an Jiaotong University

Course Administration

Instructor: Prof. Hongbin Sun (<u>hsun@mail.xjtu.edu.cn</u>)

Office: West 4th Building, Qujiang Campus

• TA:

Lectures:

 Text Book: Computer Architecture: A Quantitative Approach Hennessey and Patterson, 5th Edition (2012)

- Prerequisite: Digital Logic&Computer Organization
- Course Webpage: http://gr.xjtu.edu.cn/web/hsun/3

1.1 Introduction

- ENIAC was the first electronic general-purpose computer announced in 1946. ENIAC was designed to calculate artillery firing tables (火炮射击图表) for the US Army's Ballistic Research Laboratory (弹道研究实验室, BRL).
- Computer technology has made incredible progress in the roughly 65 years since ENIAC was created.

Computers then

IAS Machine. Design directed by John Von Nuemann. First booted in Princeton NJ in 1952

Computers now

Major Technology Generations

Growth in Processor Performance

The Moore's Law

- "Cramming More Components onto Integrated Circuits"
 - Gordon Moore, Electronics, 1965
- # of transistors on cost-effective integrated circuit double every 18 months

CISC vs. RISC

- CISC (Complex Instruction Set Computer), 1970s
- Two significant changes in the computer marketplace
 - The emergence of high level language
 - The creation of standardized, vendor-independent operating systems, such as UNIX and Linux
- RISC (Reduced Instruction Set Computer), 1980s
 - The exploitation of instruction-level parallelism (pipelining and multiple instruction issue)
 - The use of cache
- The RISC-based computers raised the performance bar, forcing prior architectures to keep up or disappear
 - Digital Equipment Vax
 - Intel x86

RISC Architecture

- RISC: A fixed (32-bit) instruction size with few format;
- CISC: typically had variable length instruction sets with many format.
- RISC: A load-store arch. where data processing instructions operate only on registers, separate from MA instruction;
- CISC: typically allowed values in memory to be used as operands in data processing instructions.
- RISC: A large register bank of thirty two 32-bit registers, all
 of which could be used for any purpose, to allow the loadstore architecture to operate efficiently;
- CISC: not as large as RISC, and most had different registers for different purpose.

RISC Organization

- RISC: hard-wired instruction decode logic;
- CISC: used large microcode ROMs to decode their instructions.
- RISC: pipelined execution;
- CISC: allowed little, if any, overlap between consecutive instruction (though they do now)
- RISC: single-cycle execution;
- CISC: typically took many clock cycles to complete a single instruction.

RISC: MIPS, ARM

CISC: x86

The Growth Effect in 20th Century

- 1. It has significantly enhanced the capability available to computer users.
- 2. This dramatic improvement in cost-performance leads to new classes of computers.
 - Personal Computer (PC)
 - Mobile Client Devices
 - Warehouse-scale computer
- 3. Continuing improvement of semiconductor manufacturing has led to the dominance of microprocessor-based computers across the entire range of computer design.
- 4. Software development, allowed programmers today to trade performance for productivity.

SaaS & Cloud Computing

 Software as a Service (SaaS) used over the Internet is replacing shrink-wrapped software that must be installed and run on a local computer.

The Diversified Applications

Google's Goggles

The nature of applications also changed!

The Growth after 2003

- Since 2003, uniprocessor performance improvement has dropped to less than 22% per year.
 - Maximum power dissipation of air-cooled chip
 - The lack of more instruction-level parallelism to exploit efficiently
- The milestone signal in 2004: Intel canceled its uniprocessor project.
 - Instruction-Level Parallelism (ILP)
 - Data-Level Parallelism (DLP)
 - Thread-Level Parallelism (TLP)
 - Request-Level Parallelism (RLP)

Pinnacle of Single-Core MP

- Intel Pentium4 (2003)
 - Application: desktop/server
 - Technology: 90nm (1/100x)
 - 55M transistors (20,000x)
 - 101 mm² (10x)
 - 3.4 GHz (10,000x)
 - 1.2 Volts (1/10x)
 - 32/64-bit data (16x)
 - 22-stage pipelined datapath
 - 3 instructions per cycle (superscalar)
 - Two levels of on-chip cache
 - data-parallel vector (SIMD) instructions, hyperthreading

The Future: Processor becomes a transistor?

Intel 48 cores single chip cloud computing

1.2 Classes of Computers

- Personal Mobile Device (PMD)
- Desktop Computing
- Servers
- Clusters/Warehouse-Scale Computers
- Embedded Computers

Classes of Parallelism and Arch.

- There are basically two kinds of parallelsim in applications:
 - Data-Level Parallelism (DLP)
 - Task-Level Parallelism (TLP)
- Computer hardware in turn can exploit these two kinds of application parallelism in four major ways:
 - Instruction-Level Parallelism: pipelining & speculative execution
 - Vector Architecture and Graphic Processor Units (GPU)
 - Thread-Level Parallelism
 - Request-Level Parallelism

Flynn's Taxonomy of CA

- Single instruction stream, single data stream (SISD)
 - Uniprocessor
 - Instruction Level Parallelism, ILP
- Single instruction stream, multiple data stream (SIMD)
 - Vector architecture, multimedia extensions and GPUs
 - Data-Level Parallelism, DLP
- Multiple instruction streams, single data stream (MISD)
 - No commercial multiprocessor of this type right now
- Multiple instruction streams, multiple data stream (MIMD)
 - Multiprocessor, Thread-Level Parallelism, TLP
 - Cluster and ware-house scale computers, RLP

1.3 What is Computer Architecture?

Abstraction in modern computer system

Application

Algorithm

Programming Language

Operating System/Virtual Machines

Instruction Set Architecture

Microarchitecture

Register-Transfer Level

Gates

Circuits

Devices

Physics

Abstraction in modern computer system

Application

Algorithm

Programming Language

Operating System/Virtual Machines

Instruction Set Architecture

Microarchitecture

Register-Transfer Level

Gates

Circuits

Devices

Physics

The myopic view of computer architecture: instruction set architecture, the interface between software and hardware.

Abstraction in modern computer system

Computer Architecture is Constantly Changing

Application Requirements:

- Suggest how to improve architecture
- Provide revenue to fund development

Technology Constraints:

- Restrict what can be done efficiently
- New technologies make new arch possible

Computer Architecture is Constantly Changing

Application
Algorithm
Programming Language
Operating System/Virtual Machines
Instruction Set Architecture
Microarchitecture
Register-Transfer Level
Gates
Circuits
Devices
Physics

Application Requirements:

- Suggest how to improve architecture
- Provide revenue to fund development

Architecture provides feedback to guide application and technology research directions

Technology Constraints:

- Restrict what can be done efficiently
- New technologies make new arch possible

Computer Architecture's Changing Definition

- 1950s to 1960s: Computer Architecture Course: Computer Arithmetic
- 1970s to mid 1980s: Computer Architecture Course: Instruction Set Design, especially ISA appropriate for compilers
- 1990s: Computer Architecture Course:
 Design of CPU, memory system, I/O system,
 Multiprocessors, Networks
- 2000s: Computer Architecture Course: Non Von-Neumann architectures, Reconfiguration, Focused MIPs

Computer architecture topics

Input/Output and Storage

Computer architecture topics

Processor-Memory-Switch

Multiprocessors
Networks and Interconnections

Shared Memory, Message Passing, Data Parallelism

Network Interfaces

Topologies, Routing, Bandwidth, Latency, Reliability

Instruction Set

ISA vs. Microarchitecture

- Architecture covers all three aspects of computer design –
 instruction set architecture (ISA), microarchitecture or
 organization and hardware.
- Instruction Set Architecture:
 - Programmer visible state (register and memory)
 - Operations (Instructions and how they work)
 - Execution semantics (Interrupts)
 - Input/Output
 - Data types/sizes
- Microarchitecture:
 - Trade-offs on how to implement ISA for some metrics (speed, energy and cost).
 - Examples: pipeline depths, cache size, execution order, bus widths and ALU widths.

Same ISA, Different Microarchitecture

AMD Phenom X4

- X86 Instruction Set
- Quad Core
- 125W
- Decode 3 Instructions/Cycle/Core
- 64KB L1 I Cache, 64KB L1 D Cache
- 512KB L2 Cache
- Out-of-order
- 2.6GHz

Intel Atom

- X86 Instruction Set
- Single Core
- 2W
- Decode 2 Instructions/Cycle/Core
- 32KB L1 I Cache, 24KB L1 D Cache
- 512KB L2 Cache
- In-order
- 1.6GHz

Diff. ISA, Diff. Microarchitecture

AMD Phenom X4

- X86 Instruction Set
- Quad Core
- 125W
- Decode 3 Instructions/Cycle/Core
- 64KB L1 I Cache, 64KB L1 D Cache
- 512KB L2 Cache
- Out-of-order
- 2.6GHz

IBM POWER7

- Power Instruction Set
- Eight Core
- 200W
- Decode 6 Instructions/Cycle/Core
- 32KB L1 I Cache, 32KB L1 D Cache
- 256KB L2 Cache
- Out-of-order
- 4.25GHz

A Review of ISA (1)

- Class of ISA: General-purpose register architectures
 - Register-memory ISAs: 80x86
 - Load-store ISAs: ARM and MIPS
- Memory address: byte addressing, aligned

A Review of ISA (2)

Addressing Mode	Instruction	Function
Register	Add R4, R3, R2	Regs[R4] <- Regs[R3] + Regs[R2] **
Immediate	Add R4, R3, #5	Regs[R4] <- Regs[R3] + 5 **
Displacement	Add R4, R3, 100(R1)	Regs[R4] <- Regs[R3] + Mem[100 + Regs[R1]]
Register Indirect	Add R4, R3, (R1)	Regs[R4] <- Regs[R3] + Mem[Regs[R1]]
Absolute	Add R4, R3, (0x475)	Regs[R4] <- Regs[R3] + Mem[0x475]
Memory Indirect	Add R4, R3, @(R1)	Regs[R4] <- Regs[R3] + Mem[Mem[R1]]
PC relative	Add R4, R3, 100(PC)	Regs[R4] <- Regs[R3] + Mem[100 + PC]
Scaled	Add R4, R3, 100(R1)[R5]	Regs[R4] <- Regs[R3] + Mem[100 + Regs[R1] + Regs[R5] * 4]

A Review of ISA (3)

Type and size of operands

- 8-bit (ASCII character)
- 16-bit (Unicode character or half word)
- 32-bit (Integer or word)
- 64-bit (double word or long integer)
- IEEE 754 floating point in 32-bit (single precision) and 64-bit (double precision)

Operations

- Data transfer
- Arithmetic/logical
- Control
- Floating point

A Review of ISA (4)

- Control flow instructions: PC relative addressing
 - Conditional branches
 - Unconditional jumps
 - Procedure calls and returns
- Encoding on ISA
 - Fixed length: easy to decode, RISC arch, eg. ARM, MIPS, PowerPC
 - Variable length: less space in memory and caches, CISC arch
 - eg. 80x86 (1 byte up to 17 bytes)
 - Mostly fixed or compressed:
 - eg. MIPS16, Thumb
 - eg. PowerPC and some VLIW (store instructions compressed and, decompress into instruction cache)
 - Very Long Instruction Word (VLIW): multiple instructions in a fixed length bundle
 - eg. TI C6000

A Review of ISA (5)

X86 (IA-32) Instruction Encoding

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

A Review of ISA (6)

MIPS Instruction Encoding

_	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	
R:	op	rs	rt	rd	shamt	funct	
_							
I:	op	rs	rt	address / immediate			
_				'			
J:	op	target address					

op: basic operation of the instruction (opcode)

rs: first source operand register

rt: second source operand register

rd: destination operand register

shamt: shift amount

funct: selects the specific variant of the opcode (function code)

address: offset for load/store instructions (+/-215) immediate: constants for immediate instructions

A Review of ISA (7)

Arch	Туре	# Oper	# Mem	Data Size	# Regs	Addr Size	Use
Alpha	Reg-Reg	3	0	64-bit	32	64-bit	Workstation
ARM	Reg-Reg	3	0	32/64-bit	16	32/64-bit	Cell Phones, Embedded
MIPS	Reg-Reg	3	0	32/64-bit	32	32/64-bit	Workstation, Embedded
SPARC	Reg-Reg	3	0	32/64-bit	24-32	32/64-bit	Workstation
TI C6000	Reg-Reg	3	0	32-bit	32	32-bit	DSP
IBM 360	Reg-Mem	2	1	32-bit	16	24/31/64	Mainframe
x86	Reg-Mem	2	1	8/16/32/ 64-bit	4/8/24	16/32/64	Personal Computers
VAX	Mem-Mem	3	3	32-bit	16	32-bit	Minicomputer
Mot. 6800	Accum.	1	1/2	8-bit	0	16-bit	Microcontroler

A Review of ISA (8)

- Technology influenced ISA
 - Storage is expensive, tight encoding important
 - Reduced Instruction Set Computer
 - Multicore/Manycore: Transistors not turning into sequential performance
- Application influenced ISA
 - Instructions for applications: embedded, DSP
 - Compiler technology has improved
 - SPARC register windows no longer needed
 - Compiler can do register allocation efficiently
- The other challenges beyond ISA design are particularly acute at the present, when differences among ISAs are small and when there are distinct application areas.