

NLP Advanced

20기 정규세션

TOBIG'S 19기 임승섭

Contents

Unit 01 | Seq2Seq

Unit 02 | Attention machanism

Unit 03 | Transformer

Unit 04 | 과제

Unit 01

Seq2Seq

순환 신경망(Recurrent Neural Network, RNN)

- 은닉층에서 나온 결과값이 다시 은닉층으로 돌아가 새로운 입력값과 연산을 수행하는 순환구조의 신경망
- 연속적인 시퀀스를 처리하기 위해 설계됨
- RNN은 시점에 따라서 입력을 받고, 현재 시점의 hidden state 인 h_t 를 계산하기 위해 직전 시점의 hidden state 인 h_{t-1} 을 입력 받음

출력층 : $y_t = f(W_y h_t + b)$

은닉층: $h_t = tanh(W_h h_{t-1} + W_x \underline{X_t} + b)$

이전 은닉층 해당 시점에서의 input

Sequence-to-Sequence

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever
Google
ilyasu@google.com

Oriol Vinyals
Google
vinyals@google.com

Quoc V. Le Google qvl@google.com

NeurIPS 2014 (citation 23344호)

| Ilya Sutskever | Co-Founder and Chief Scientist of OpenAl | Verified email at openal.com - Homepage | Machine Learning | Neural Networks | Artificial Intelligence | Deep Learning |

LE	CITED BY	YEAR
agenet classification with deep convolutional neural networks rizhevsky, I Sutskever, GE Hinton ances in neural information processing systems 25	140847 *	2012
nsorflow: Large-scale machine learning on heterogeneous distributed systems badi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, iv preprint arXiv:1603.04467	48049 *	2016
poput: a simple way to prevent neural networks from overfitting rivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov pournal of machine learning research 15 (1), 1929-1958	45538	2014
stributed representations of words and phrases and their compositionality likolov, I Sutskever, K Chen, GS Corrado, J Dean rances in neural information processing systems 26	40342	2013
quence to sequence learning with neural networks stskever, O Vinyals, QV Le ances in neural information processing systems 27	23344	2014

Seq2seq 모델의 동작 방법

- Seq2seq 모델은 번역, 요약과 같이 시퀀스(sequence)를 입력받아 시퀀스를 출력하는 task를 위해 고안된 RNN 기반 모델
- Seq2seq 모델은 '시퀀스를 받아들이는 부분'과 '시퀀스를 출력하는 부분'을 분리한 것이 특징
- 시퀀스를 받아들이는 부분을 인코더(Encoder), 시퀀스를 출력하는 부분을 디코더(decoder)라고 함
- 인코더는 입력 시퀀스를 받아들여 컨텍스트 벡터(context vector)로 불리는, 고정된 크기의 벡터로 변환
- 디코더는 인코더가 생성한 컨텍스트 벡터를 받아 출력 시퀀스를 출력

Seq2seq 모델이 동작(inference)하는 순서

- 1. 인코더의 은닉 상태를 적절한 값으로 초기화
- 2. 매 시점(time step)마다 단어의 임베딩이 입력되면 인코더는 이를 이용해 은닉 상태를 업데이트
- 3. 입력 시퀀스의 끝까지 이 과정을 반복하면 인코더의 최종 은닉 상태는 입력 시퀀스의 정보를 압축 요약한 정보를 담고 있게 됨
- 4. 디코더는 전달받은 컨텍스트 벡터로 자신의 은닉 상태를 초기화
- 5. 매 시점 자신(Decoder)이 바로 직전 시점에 출력했던 단어를 입력으로 받아, 은닉 상태를 업데이트하고, 이를 이용해 다음 단어를 예측

Seq2seq 모델의 학습 방법 - 교사 강요(teacher forcing)

- Seq2seq 모델을 학습(training)시킬 때, 이전 시점의 디코더 출력 단어를 다시 디코더의 입력값으로 사용하는 방식으로는 학습이 잘 되지 않음
- 모델 학습 시에는 디코더의 입력값으로 이전 시점의 디코더 출력 단어가 아닌 실제 정답 단어를 입력해줘야 함
- 이러한 방식을 teacher forcing이라고 함

Fig.02 Seq2Seq - Teacher Forcing

Seq2Seq 모델의 학습은 교사 강요(teacher forcing) 방식으로 진행해야 한다. 즉 "<sos>je suis étudiant"가 입력되었을 때 "je suis étudiant<eos>"가 출력되어야 한다는 것을 디코더에게 직접 알려줘야 한다.

Seq2seq 모델의 한계

- 입력 시퀸스의 모든 정보를 하나의 고정된 크기의 벡터(컨텍스트 벡터)에 다 압축 요약하려 하다 보니 정보의 손실이 생길 수밖에 없음. 특히 시퀸스의 길이가 길다면 정보의 손실이 더 커짐
- RNN 구조로 만들어진 모델이다 보니, 필연적으로 gradient vaninshing/exploding 현상이 발생

Unit 02

Attention machanism

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

어학사전

영어사전

```
attention 미국·영국 [ə'tenʃn] • 영국식 • ★★ <u>다른 뜻(4건) | 예문보기</u>
1. 주의 (집중), 주목 2. 관심, 흥미 3. (관심을 끌기 위한) 행동
```

프랑스에사전

```
attention [atãsjɔ̃] • ★★ 다른 뜻(2건) □ 예문보기
```

[여성명사] 1, 주의(력),조심,긴장,관심 2, 친절,정중,배려 = amabilité,empressement,prévenance

Attention: 풀고자 하는 Task에 핵심이 되는 정보를 찾아서 집중!

어텐션 메커니즘 (Attention Mechanism)

- 어텐션 메커니즘은 Seq2seq 모델의 문제점을 개선하기 위해 제안됨
- 어텐션 메커니즘의 아이디어는 고정된 크기의 벡터(컨텍스트 벡터) 하나에 입력 시퀀스의 모든 정보를 다 담아야 한다는 인코더의 부담을 덜어주기 위함
- 디코더에서 다음 단어 예측을 위해 인코더의 매 시점 은닉 상태들을 모두 사용하자!
- 구체적으로, 어텐션 메커니즘은 다음을 가정

"단어 X를 출력하기 직전의 디코더 은닉 상태는, 인코더가 입력 시퀀스에서 X와 연관이 깊은 단어를 읽은 직후의 인코더 은닉 상태와 유사할 것이다."

étudiant

어텐션 메커니즘 (Attention Mechanism)

- Seq2seq + Attention 모델에서의 디코더는 다음과 같은 순서로 다음 단어를 예측
- 1. 어느 시점의 인코더 은닉 상태에 조금 더 '집중'해야 하는지 찾기 위해, 현재 디코더의 은닉 상태와 매 시점 인코더의 은닉 상태들 간 '유사도'를 계산
- 2. 이 유사도를 확률의 형태로 바꾸고, 그 값에 따라 인코더 은닉 상태들의 가중합(weighted sum)을 구해

'보정된 컨텍스트 벡터'를 구함

- 3. '보정된 컨텍스트 벡터'를 이용해 다음 단어를 예측
- > gradient vanishing/exploding 현상을 줄일 수 있음

어텐션 함수(Attention Function)

- 어텐션 함수는 주어진 쿼리(Query)에 대해서 모든 키(Key)와의 유사도를 각각 구함
- 구해낸 이 유사도를 키와 맵핑되어 있는 각각의 값(Value)에 반영
- 유사도가 반영된 값(Value)을 모두 더해서 리턴 (Attention Value)

Q = Query : t 시점의 디코더 셀에서의 은닉 상태

K = Keys : 모든 시점의 인코더 셀의 은닉 상태들

V = Values : 모든 시점의 인코더 셀의 은닉 상태들

20기 정규세션 TOBIG'S 19기 임승섭

Dot-Product Attention

Dot-Product Attention

1) 어텐션 스코어(Attention Score)를 구한다.

$$score(s_t,\ h_i) = s_t^T h_i$$

$$e^t = [s_t^T h_1, \dots, s_t^T h_N]$$

Dot-Product Attention

2) 소프트맥스(softmax) 함수를 통해 어텐션 분포(Attention Distribution)를 구한다.

디코더 시점 t에서의 어텐션 가중치의 모음값인 어텐션 분포를 α^t 이라고 할 때, α^t 을 식으로 정의하면 다음과 같다.

$$\alpha^t = softmax(e^t)$$

Dot-Product Attention

3) 각 인코더의 어텐션 가중치와 은닉 상태를 가중합하여 어텐션 값(Attention Value)을 구한다.

$$a_t = \sum_{i=1}^N lpha_i^t h_i$$

이러한 어텐션 값 α_t 는 인코더의 문맥을 포함하고 있다고 하여, 컨텍스트 벡터(context vector)라고도 불림 앞서 seq2seq에서는 인코더의 마지막 은닉 상태를 컨텍스트 벡터라고 부르는 것과 대조

Dot-Product Attention

4) 어텐션 값과 디코더의 t 시점의 은닉 상태를 연결한다.(Concatenate)

Dot-Product Attention

5) 출력층 연산의 입력이 되는 $\widetilde{s_t}$ 를 계산합니다.

- 논문에서는 v_t 를 바로 출력층으로 보내기 전에 신경망 연산을 한 번 더 추가
- 가중치 행렬과 곱한 후에 \tanh 함수를 지나도록 하여 출력층 연산을 위한 새로운 벡터인 $\widetilde{s_t}$ 를 얻음

$$ilde{s}_t = anh(\mathbf{W_c}[a_t;s_t] + b_c)$$

Dot-Product Attention

- 6) $\tilde{s_t}$ 를 출력층의 입력으로 사용합니다.
 - $\widetilde{s_t}$ 를 출력층의 입력으로 사용하여 예측 벡터를 얻음

$$\hat{y}_t = \text{Softmax}\left(W_y \tilde{s}_t + b_y\right)$$

Unit 03

Transformer

Attention Is All You Need

Ashish Vaswani* Google Brain

Google Brain avaswani@google.com Noam Shazeer*

Google Brain noam@google.com Niki Parmar*

Google Research nikip@google.com Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu Łukasz Kaiser*

Google Brain

lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

NeurIPS 2017, 87345회 인용

20기 정규세션

TOBIG'S 19기 임승섭

파운데이션 모델이라고도 불리는 트랜스포머는 여러 데이터 소스와 함께 다양한 영역에서 활용되고 있음

- 트랜스포머 모델의 아이디어는 Seq2seq + Attention 모델에서 RNN 구조를 제거하는 것
- 즉, RNN을 사용하지 않고 오직 어텐션 연산만 사용한 모델이 트랜스포머 모델

왜 RNN을 제거했을까

- 시퀀스 형태의 데이터는 각 항목의 값 뿐만 아니라 그 순서도 중요
- "John loves Sarah"와 "Sarah loves John"은 단어는 모두 같지만 순서가 달라 의미가 다름
- 즉, 시퀸스 형태의 데이터를 다루기 위해서는 순서 정보를 처리할 수 있는 모델을 사용해야 함
- 기존에는 시퀀스 형태의 데이터를 처리하기에 적합한 RNN을 사용하였으나, 단점이 많음
 - 병렬화 문제: RNN은 그 구조상 순차적으로 입력을 처리해야 하기에 병렬화가 불가능. 이 때문에 대규모의 데이터셋을 이용한 학습이 불가능(학습 시간이 너무 길어짐)
 - long distance dependency 문제 : 시퀸스에서 멀리 떨어진 항목들 간의 관계성은 gradient vanishing/exploding 문제로 학습이 잘 되지 않음

어떻게 RNN을 제거했나 : Positional Encoding

- RNN 구조에서는 순서 정보가 자연스럽게 모델에 입력됐지만, 어텐션 연산에서는 순서 정보가 고려되지 않음
- 그래서 트랜스포머 모델에서는 input embedding에 positional encoding이라 불리는, 입력 임베딩과 같은 차원의 위치 정보를 담고 있는 벡터를 더해줌

$$f(p) = egin{cases} \sin\left(rac{p}{10000^{i/d}}
ight) & (i=2k) \ \cos\left(rac{p}{10000^{(i-1)/d}}
ight) & (i=2k+1) \end{cases}$$

트랜스포머 모델의 구조

Figure 1: The Transformer - model architecture.

트랜스포머 모델의 구조

- 트랜스포머 인코더는 인코더 레이어를 N개 쌓은 구조
- 이전 인코더 레이어의 출력은 다음 인코더 레이어의 입력으로 사용

트랜스포머 모델의 구조

- 트랜스포머 디코더는 디코더 레이어를 N개 쌓은 구조
- 이전 디코더 레이어의 출력은 다음 디코더 레이어의 입력으로 사용

Input Embedding

- Input에 입력된 데이터를 컴퓨터가 이해할 수 있도록 행렬 값으로 바꾸는 과정
- Word embedding, glove, fasttext 를 사용해서 단어 -> 벡터 변환
- Ex) "I am a student"

4 x 512

Figure 1: The Transformer - model architecture.

20기 정규세션

TOBIG'S 19기 임승섭

Input Embedding

Positional encoding 더해주기

Why?) 기존 RNN, LSTM 과 다르게 문장을 병렬처리 -> sequential 데이터를 다루기 위해서는 위치 정보 값 을 반영 해줘야 함

- Positional encoding 은 sine & cosine 함수 사용
 - Why?) 의미정보가 변질되지 않기 위해서는 Positional encoding 값이 너무 크면 안됨. s&c 함수는 -1~1 사이를 반복하는 주기함수
 - But, 주기함수들이 같아질 수 있음 => 방지하기 위해 다양한 주기의 s&c 함수 사용 (512차원이므로 512개 사용)

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

- Pos는 입력 문장에서의 임베딩 벡터 위치
- i는 임베딩 벡터 내의 차원의 인덱스
- dmodel은 전체 임베딩 벡터 차원(512)
- i 인덱스가 짝수인 경우에는 sine, 홀수인 경우에는 cosine

Figure 1: The Transformer - model architecture.

20기 정규세션

TOBIG'S 19기 임승섭

Encoder

- 여러 개의 인코더 레이어가 중첩되어 사용 (본 논문: N=6)
- 각 레이어는 2개의 서브 레이어로 구성
 - => 멀티 헤드 어텐션, 피드 포워드 네트워크
- 인코더 디코더의 서브 레이어가 끝날 때마다 Residual connection 과 Norm 두가지 연산을 적용
- Residual connection은 어떠한 연산의 결과를 연산의 입력과 다시 더해주는 것을 의미. 그 이후 정규화를 진행
 - => LayerNorm(x+Sublayer(x))

Figure 1: The Transformer - model architecture.

Self-attention

• 입력 시퀀스의 특정 단어를 처리할 때, 다른 단어들이 각각 얼마나 영향을 주는지 계산하는 과정

'It' 이 'animal' 과 연관되었을 확률이 높다는 것을 찾아내기 위함!

Output

Figure 1: The Transformer - model architecture.

TOBIG'S 19기 임승섭

Self-attention

각 인코더의 input vector 로부터 3개의 벡터 생성

Input embedding(word embedding + pos) 에다 weight 곱해주기

- Query: 현재 처리중인 단어에 대한 벡터 (다른 단어와의 연관된 정도를 계산하기 위한 기준이 되는 값)
- Key: 단어와의 연관된 정도를 결정하기 위해 query와 비교하는데 사용되는 벡터
- Value: 특정 key에 해당하는 입력 시퀀스의 정보(가중치 벡터)

Scaled Dot-Product Attention

Self-attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

2) Attention score 계산

• 생성된 *Q*와 *K*를 곱해줌

3) Scaling 및 self-attention 계산

- 그 값을 softmax 후 value와 곱하면 self-attention 계산 끝

Scaled Dot-Product Attention

Multi-head Self-attention

• 트랜스포머는 한 번의 어텐션을 하는 것보다 어텐션을 병렬로 여러 번 사용하는 것이 더 효과적이기 때문에 여러 헤드로 나눠서 병렬로 계산 Why?) 병렬로 하면 다른 시각으로 정보들을 수집 가능

Ex)

The animal didn't cross the street because it was too tired.

어떤 헤드에서는 it과 animal 의 연관성을 높게 볼 것이고,

The animal didn't cross the **street** because **it** was too tired.

또다른 헤드에서는 it과 street 의 연관성을 더 높게 볼 것이라 병렬로 어텐션을 수행하면 여러 시각에서 접근 가능함!

• 본 논문에서는 head 수를 8로 설정하고, Self-attention 을 병렬로 계산한다음 concat(연결) 진행!

20기 정규세션

TOBIG'S 19기 임승섭

Multi-head Self-attention

- 본 논문에서는 임베딩 벡터 차원을 512로 두고 실험 진행
- 병렬로 처리해야하기에, multi-head self-attention 진행 시 하나의 head에서 이뤄지는 attention 연산의 차원은 512를 head 개수인 8 만큼 나눈 64 가 됨

Position-wise Feed-Forward Networks

• 단순 피드포워드 신경망을 의미

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- linear transformation 2개로 구성, max() 부분은 ReLU activation을 의미
- inner-layer(은닉층)의 차원 $d_f f$ =2048
- 입력 값과 출력 값은 512로 동일한 차원

Figure 1: The Transformer - model architecture.

Decoder

- 여러 개의 디코더 레이어가 중첩되어 사용 (본 논문 : N=6)
- 인코더와 다르게, 두가지의 self-attention이 존재
- 인코더와 마찬가지로 positional encoding을 더해주고, 서브 레이어 이후 Residual connection과 layer normalization 과정 수행
- 디코더의 입력에는 시작 토큰 <sos>과 종료 토큰 <eos> 이 존재

Figure 1: The Transformer - model architecture.

20기 정규세션

TOBIG'S 19기 임승섭

Masked multi-head attention

- 디코더의 Masked multi-head attention 은 근본적으로 self-attention과 동일
- 차이점은 attention score matrix 에 직각 삼각형의 마스킹을 해줌!

마스킹을 하는 이유는?

Figure 1: The Transformer - model architecture.

20기 정규세션

TOBIG'S 19기 임승섭

Masked multi-head attention

- 디코더는 훈련 과정에서 실제 예측할 문장 행렬을 입력으로 넣어 줌.
- 하지만, self-attention을 할 때, 미래 시점의 단어들을 참고하면 안됨!

=> 대처 방안으로 마스킹

How?) attention score에 softmax를 취할 때, 미래 시점 단어들은 softmax(-inf), 즉 0이 되게끔 적용함

Figure 1: The Transformer - model architecture.

20기 정규세션

TOBIG'S 19기 임승섭

Encoder-Decoder attention

- 인코더 디코더 어텐션은 Q와 K, V 가 다름
- Q는 디코더의 첫번째 서브 레이어 결과 행렬, K와 V 는 인코더의 아웃풋 행렬
- 인코더의 정보가 디코더로 넘어가는 과정

벡터

• 출력 단어(번역)를 만들기 위해 소스 문장(input data)에서 어떤 정보에 초점을 맞출지 학습하 는 과정

Figure 1: The Transformer - model architecture.

Unit 04

과제

과제 1: 여러분의 연구가 궁금합니다!

- 컨퍼런스 프로젝트 시작이 얼마 남지 않았습니다.
- 본인의 연구 분야 또는 앞으로 해보고 싶은 연구 분야를 선정한다음
- 해당 분야에 대해 연구 계획서를 작성해주세요(워드 기준 11pt, 한페이지 정도)

과제 2: Transformer 기반 후속 논문(ex: BERT, GPT 등) 1개를 읽고 정리해주세요!

- 자연어처리 계열 논문만 가능합니다. (ViT 등과 같은 Vision 계열 X)
- 후속 연구 관련 논문 1개를 선정한 다음 정리해주세요(노션 및 개인 블로그 링크를 올려도 됩니다.)

과제 1 or 과제 2 둘 중 하나 선택!

Reference

https://wikidocs.net/31379

https://heekangpark.github.io/nlp/attention

Attention Is All You Need

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Sequence to Sequence Learning with Neural Networks

19기 NLP Advanced 강의자료

