IDENTIFICAÇÃO AUTOMATIZADA DE OBSTÁCULOS NO ASFALTO

COM VISTA AO EMPREGO DE APRENDIZAGEM DE MÁQUINA

Lucas Cavalcanti Adorno Engenharia Eletrônica e de Computação Orientador: Flávio Luís de Mello

TEMA

JUSTIFICATIVA

- Condições Asfálticas Precárias
- Primeiro Lugar em número de mortes no trânsito na América do Sul.
- Processo custoso de Mapeamento

OBJETIVO

 Elaboração de algoritmo de aprendizado de máquina para identificação automatizada de obstáculos nas vias pavimentadas

Criação de Aplicação Android

Criação de Dataset

Criação de serviço Web

- Acelerômetro
- Normalização de Dados
- Machine Learning

Acelerômetro

→ Tipos mais comuns 🚽

Capacitivo

Piezoelétrico

Piezoresistivo

Normalização de Dados

Normalização Completa

Sliding Window

MinMax Scale

lista = list(np.random.uniform(low=0.0, high=30.0, size=20))
Convertendo números para inteiro
for i, num in enumerate(lista):
 lista[i] = int(num)

$$Z = \sqrt{\frac{(x - \bar{x})^2}{\sigma x}}$$

Normalização de Dados

Normalização Completa

25

Número da Lista 15

5 -

2.5

5.0

7.5

10.0

Sliding Window

MinMax Scale

```
lista = list(np.random.uniform(low=0.0, high=30.0, size=20))
# Convertendo números para inteiro
for i, num in enumerate(lista):
    lista[i] = int(num)
```

```
minimo = 0
maximo = 2

std = (lista - np.min(lista)) / (np.max(lista) - np.min(lista))
listaMinMax = std * (maximo - minimo) + minimo
```

15.0

12.5

Machine Learning

PESQUISA DE CAMPO

AQUISIÇÃO DE DADOS

AQUISIÇÃO DE DADOS

Acelerômetro

Buracos

1 timer; realtime 2 59794; 11:20:29 3 114121; 11:21:24 4 176814; 11:22:26 5 199667; 11:22:49

Quebra-molas

1 timer; realtime 2 28026; 11:19:57 3 82674; 11:20:51 4 130450; 11:21:39 5 225445; 11:23:14 6 260925; 11:23:49 7 387102; 11:25:56 8 453879; 11:27:02

DADOS PARCIAIS OBTIDOS

DADOS PARCIAIS OBTIDOS

DADOS PARCIAIS OBTIDOS

MAPEAMENTO DOS DADOS

CONCLUSÃO

- Dataset criado
- Viabilidade da detecção de obstáculos
- Baixo custo de implementação e manutenção

TRABALHOS FUTUROS

- Treinamento usando algoritmo de Redes Neurais Recorrentes
- Testes da Rede treinada
- Validação da Rede em campo

IDENTIFICAÇÃO AUTOMATIZADA DE OBSTÁCULOS NO ASFALTO

COM VISTA AO EMPREGO DE APRENDIZAGEM DE MÁQUINA

Lucas Cavalcanti Adorno Engenharia Eletrônica e de Computação Orientador: Flávio Luís de Mello