Correlation 1) Positive & Negative Correlation If both variables change in same disation. Then the correlation also - we correlation Example effort & marks tve difficulty & marks Dinear & non Linear Correlation If graph between two variables is straight Line than Linear correlation else it is non linear correlation

Scatter diagram Perfect positive Correlation Perfect Negative Correlation All are in One All are in one st. Line of downwar st. Line & upward High degree + ve Correlation High degree - ve Correlation

Jour degr Positive Co	relation	Jow degree Negative Carrelation
Distance bette points more	iveer	Distance between points more
	correlation	

Karl-Cearsons Coordation Cooperation $y = \angle (x_i - x_i)(y_i - y_i)$ standered deviation Z (xi-x) (yi-5 Coverishe = N-> Number of Samples

	7		9	4	2	%	0.9	97	
2	3		8				Cor		tw
2	1		2)	ligh	degr	le	
2	8		3						
2	9	2	- 4						
3	0	2	3						
3	1	2 (
3	3	2 8	3						
3	5	29							
3	6	30							
3	9	32							

25											
.\	عـ	•	~	ယ		0		ا م	ا س	1	2 2
									1		7; 30
4	4	v	~	ပာ	_	0		5	v	42	7
											-73
215	05	3	25	ڪ	_	C		2	9	19	دہ
7 3	3	25	3	<u>_</u>	_	O		~	-0	9	C 4
98)	63	30	20	9		C)		~	5	4 9	7
	_										
) [\1			1, A		<1				12	
	• -		ر ر		7	ا_ احر					
7	2/0	C	2	7		1	0	11	2	2	
<u>.</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		70	ì	_			r1			
g q	10/1	× -	ر لار	7	•	1+7		•			
7,		۲ 0.	12/	< 1		0.7					
	2		ر ا ا								
	3-10										
	الم		1					ı	1		

	Spea	Ma	ns	rah	k	Cove	late	<u>,</u>	Coef	ician	<i>f</i>
U	sed	for	h	m	meg	sur	ahla	2 (jra.	bel))
ľω	sed	les									
R.		1 -		6	€ d	.2					
				N 3	- N						
-1 <	<pre></pre>		1								
	di =	H	- 4								

	Ca	lcul !	te	S	rear	Mer	, S	ran	k		
ومي	elat	! Oh	for	The	d	ata					
			-								
s R No	in alit	Port in the		di	di		F	} ~_	1 - 6	\ \{ \alpha	
1	(3		2	4					N ³ -1	
2	3	1		2	4			=	1-	96,	٤ (
3	7	4		3	9					1000	- 10
4	5	5		0	6			2	0.4	182	
3	4	6		2	4						
6	6	9		3	9						
7	2	7		5	27						
8	10	8		2	4						
4	9	10		1	1						
10	8	2		6	36						
			₹d;	۔ د	9 6						
			W	-10)						

#	Nai	ks	are	1	grea	Ted	The state of the s	hen			
•	f =	<u> </u>	- 6	\(\frac{1}{2} \)	; ~	+ 1/2	2	m,	3-n) k	
					N ³	- W					
	m;	2	New	wher	of	iter	ns	hav	ing	egu	al a
			ras	rks							

3	fin	d R	. fr	on	dat	f A							
X	9	2	4	di									
32	46	3	5	1		2	=	l - (6	20	1; 4	[5(m,	3 - 17
55	30.	9	3.5	9-15					~	ک -۲			
•				0.25		-	(-	6 ((76	+ 1	646	+ c)
60	26	10	•	81				_			()		
	30								1	ツー	10		
57	50	4	4	4			(_	6	1	17	(+	.5)	
				12.25				(7	70			
49	60	4.3	8	0.25	5		- -	-0.	0	7-6			
lo	45	1	6	16									
20	23	2	2	0									
			çd;	= 17	6								
		M		2				<u></u>					
		M	` ~ ~	2		13	7						

(a) Let
$$8xy = 0.4$$

(a) $(x, y) = 1.6$
 $8^2 - 2.5$ find $6x$
 $6x - 5$

7. $7xx = (xx)(xx)$
 $6x - 5$

0.4 $x = 1$

1.6 $6x$

(3) $6x - 6$

(4) $6x - 6$

(5) $6x - 6$

(6) $6x - 6$

(7) $6x - 6$

(8) $6x - 6$

(9) $6x - 6$

(10) $6x - 6$

(11) $6x - 6$

(12) $6x - 6$

(13) $6x - 6$

(14) $6x - 6$

(15) $6x - 6$

(16) $6x - 6$

(17) $6x - 6$

(18) $6x - 6$

(19) $6x - 6$

(10) $6x - 6$

(11) $6x - 6$

(11) $6x - 6$

(12) $6x - 6$

(13) $6x - 6$

(14) $6x - 6$

(15) $6x - 6$

(16) $6x - 6$

(17) $6x - 6$

(18) $6x - 6$

(18) $6x - 6$

(19) $6x - 6$

(19)

On Sub

$$N^{3}-N = 336.05$$
 $V(N^{3}-1) = 336$
 (673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(673)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

(773)

	Sub	stili	lins								
	7		60								
			180	-101	16	121	<u> </u>				
		1									
		=	0.9	114							
3	Lor	25	. oa	is	3/1	alne	5				
	for	ź N	= 12	.7	\(\frac{1}{\pi} = \frac{1}{2}	123/25					
		9-									
	4	אכ	=	16	5						
		2 5	-	44	9						
		271 4	7.	50 U							
Já	ter e	r i	t w	5	sud	21	rais	we	r		
(8 (A)	(8)	, ()	ins	tend		(8)	12)	f ((,8,)
_	4 4										

0	h Sc	rbst	Hiti	92							
	A	ronc	\ -		_ 0	- 3	09				
									A A .		
Fo	er 10	pai	uc	f vali	us e	$\begin{cases} x \end{cases}$	2 4	the	follow	ing	
are	deto	mines		later	Oh.	it w	as f	oure	1 tha	Yon	e
Pair	of v	alues	W	no (34,	47),	inste	ad	of,	(43	74)
, De	term	ine	Corr	eit	Value	Cof	1 - W	efic	iant	of	
		54									
		n) =		. 1	Med	n 14) = 4	7.8			
	S·D·	(ĸ)	= 6.	2	ς.	1).(4)=	9.5			
		8	- 0	.72							
d	J		- 3 (
		ુક =	: 47	.8							
	6	7	= 6	2							
	6	9 8	- 7 ·	, 12							

$$6x^{2} = 181.34$$

$$6x = 13.47 = 367804$$

$$6y = 2(y)^{2} - N(y)^{2}$$

$$4(y)^{2} = 22938.65$$

$$5(y)^{2} = 22938.65 - (47)^{2} + (45)^{2}$$

$$- 26205.65$$

$$- 763.15$$

$$- 26.51697569$$

		I			I				1		l		
ole		8	_		< X	9	_	~	(X)(9)	
					621	6	9						
	•	0 -	72 X	۲.	2 %	9.	5	=	2	N	5 ~	16	(30.1)
													(47.8)
		•••	٤ >1	9 =	14	4	3	0 · 2	0	8			
Ne	ととと	15		144	30	. 2	0	5 –		34	x 4	7	
									+	4	3у	7 5	
			7	16	01	4.2	2 6) ક					
1	Ja 7	<u>-</u>		2 × 2	- 1	1 (7	115.)				
				6,	1 64								
				35	9.2	0	8			7	1.	003	

7 =		- N x 5	
	1(2 x; - N	-2)(55°-	5 N)
P	1 6 4:	+ 12 Mi3-1	1 i
	- 6 - 1 3 N3	- N	

