ESTADÍSTICA

V.A. discreta parte I

Índice

- Variable aleatoria discreta
 - * Función de probabilidad ó densidad
 - * Función de distribución (acumulada)
- Esperanza matemática ó media de v.a. discreta
- Varianza y Desv. típica de v.a. discreta
- Transformaciones de v.a. discretas
- Variable aleatoria Bidimensional

Variable aleatoria

Una variable aleatoria X es una función que asocia a cada suceso del espacio muestral E de un experimento aleatorio un valor numérico real:

$$X: E \to \Re$$

$$w \to X(w)$$

Llamar variable a una función resulta algo confuso, por ello hay que insistir en que es una función.

La variable aleatoria puede ser discreta o continua. Veremos en este capítulo el caso discreto.

Función de probabilidad o densidad

Una vez definida una variable aleatoria X, podemos definir una **función de probabilidad** o **densidad** asociada a X, de la siguiente forma:

$$f: \Re \to [0,1]$$
$$x \to f(x) = P(X = x)$$

La función de probabilidad debe cumplir:

$$(i) 0 \le f(x) \le 1 \ \forall x \in \Re$$

$$(ii)$$
 $\sum_{x} f(x) = 1$ (Suma sobre todos los posibles valores que puede tomar la variable aleatoria).

Requerimientos de una distribución de probabilidad

X	P(X)
-1	.1
0	.2
1	.4
2	.2
3	<u>.1</u>
	1.0

X	P(X)
-1	1
0	.3
1	.4
2 3	.3
3	<u>.1</u>
	1.0

X	P(X)	
-1	.1	
0	.3	
1	.4	
2 3	.3	
3	<u>.1</u>	
	1.2	

$$0 \le f(x) \le 1$$
 para todo x

$$\sum_{x} f(x) = 1$$

Dibuja la función de probabilidad f(x)

Realicemos el experimento aleatorio de lanzar un dado.

X tiene como posibles valores x = 1, 2, 3, 4, 5, 6 cada uno con probabilidad 1/6 (está **uniformemente distribuida**)

Realicemos el siguiente **experimento aleatorio**: lanzar una moneda dos veces

Espacio muestral

Realicemos el siguiente experimento aleatorio:

Lanzar 1 moneda, 3 veces.

Elementos del espacio muestral

Ley de correspondencia

Nº reales (# de caras)

 $X: E \to \Re$

$$w \to X(w)$$

Probabilidad

 $f: \Re \to [0,1]$ $x \to f(x) = P(X = x)$

Realicemos el siguiente experimento aleatorio: girar la ruleta de la imagen y apuntar el número del sector que coincide con la flecha.

La variable aleatoria X de este experimento asocia cada sector a un número entero, como podemos observar en la imagen.

Es una variable aleatoria discreta.

Los resultados posibles son: {0, 1, 2, 3, 4, 5, 6, 7}.

Por simetría podemos establecer una función de probabilidad: la probabilidad de cada resultado es 1/8.

Por tanto, la variable aleatoria *X* en el caso de esta ruleta está **uniformemente distribuida**, ya que todos los resultados tienen la misma probabilidad

Función de distribución (acumulada)

Dada una variable aleatoria discreta X se llama **función de distribución** a la función F definida como:

$$F: \mathfrak{R} \to [0,1]$$
$$x \to F(x) = P(X \le x)$$

Además se puede obtener **la inversa de la función de distribución** que será *F*⁻¹ definida como:

$$F^{-1}: \Re \leftarrow [0,1]$$
$$x \leftarrow F(x) = P(X \le x)$$

Dibuja la función de distribución F(x)

Experimento aleatorio de lanzar un dado (continuación)

X tiene como posibles valores x = 1, 2, 3, 4, 5, 6 cada uno con probabilidad 1/6 (está **uniformemente distribuida**)

Realizamos un **experimento aleatorio** con esta nueva ruleta. Obtener su función de distribución F(x) y su inversa. Dibuja F(x).

El espacio muestral está compuesto por 4 eventos.

La probabilidad es proporcional al ángulo del sector

	Función de probabilidad	P. Acumulada ó Función de distribución
Xi	$f(x) = P(X=x_i)$	$F(x) = P(X \le x_i)$
0	0.25	0.25
1	0.5	0.75
2	0.125	0.875
3	0.125	1

Xi	$F(x) = P(X \le x_i)$
0	0.25
1	0.75
2	0.875
3	1

Función de distribución inversa

γ = P(X ≤ valor)	valor = x _i
$0 \le \gamma < 0.25$	0
$0.25 \le \gamma < 0.75$	1
$0.75 \le \gamma < 0.875$	2
$0.875 \le \gamma < 1$	3

Gráfico de la función de distribución F(x)

Sea el **experimento aleatorio** "lanzar dos dados uno rojo y uno azul". Dibuja la función de probabilidad y de distribución.

Luego, el espacio muestral E es como sigue:

$$E = \{(1,1),(1,2),...,(1,6),...,(5,6),(6,6)\}$$

Definamos la variable aleatoria discreta *X, como* **X = "Suma de puntos al lanzar dos dados rojo y azul"**

$$X:E \to S \in \Re$$
 con $S = \{2, 3, ..., 12\}$ la suma de puntos.

Luego, su función de probabilidad es:

$$f: \mathfrak{R} \to [0,1]$$

$$f(2) = P (X = 2) = P((1,1)) = 1/36$$

 $f(3) = P (X = 3) = P((1,2) U (2,1)) = 2/36$
 $f(4) = P (X = 4) = P((1,3) U (3,1) U (2,2)) = 3/36$

. . . .

Función de probabilidad de la variable aleatoria X

Observa que cumple las dos condiciones: es siempre positiva (y menor o igual a 1) y está normalizada.

Función de distribución de la variable aleatoria X

 $P(X \le 5) = P(x = 2 \text{ o } x = 3 \text{ o } x = 4 \text{ o } x = 5) = 1/36 + 2/36 + 3/36 + 4/36 = 10/36 = 0.278 = F(5)$ $P(X < 5) = P(X \le 4) = P(x = 2 \text{ o } x = 3 \text{ o } x = 4) = 1/36 + 2/36 + 3/36 = 6/36 = 0.167 = F(4)$ $P(X > 5) = 1 - P(X \le 5) = 1 - 0.278 = 0.722 = 1 - F(5)$ $P(X \ge 5) = 1 - P(X < 5) = 1 - P(X \le 4) = 1 - 0.167 = 0.833 = 1 - F(4)$

Algunos problemas de probabilidad están relacionados con la probabilidad $P(a < X \le b)$ de que X asuma algún valor en un intervalo (a, b). Observa que:

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

En el ejemplo de los dos dados, calcula la probabilidad de que los dos dados sumen al menos 4 pero no más de 8:

$$P(4 \le X \le 8) = P(3 < X \le 8) = P(X \le 8) - P(X \le 3) = F(8) - F(3) = 26/36 - 3/36 = 23/36$$

Esperanza matemática o media de una función de probabilidad discreta

$$\mu = E(X) = \sum_{i} x_i P(X = x_i) = \sum_{i} x_i f(x_i)$$

Momento de orden k

Los momentos de orden k centrados en el origen:

$$m_k = E(X^k) = \sum_i x_i^k f(x_i)$$

Obseva que: $m_1 = E(X) = \mu$

Ejemplo. Probabilidades en una tabla

X_i	$P(X=x_i)$	$x_i f(x_i)$
-1	0.1	-0.1
0	0.2	0.0
1	0.4	0.4
2	0.2	0.4
3	0.1	0.3

$$E(X) = \sum_{i} x_{i} f(x_{i}) = -0.1 + 0.0 + 0.4 + 0.4 + 0.3 = 1 = \mu$$

Experimento: lanzar dos dados, uno rojo y otro azul (continuación) Calcular la esperanza de la variable aleatoria *X*

$$E(X) = \sum_{i=2}^{12} f(\boldsymbol{\chi}_i) \cdot \boldsymbol{\chi}_i =$$

$$\frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \dots + \frac{6}{36} \cdot 7 + \dots + \frac{1}{36} \cdot 12 = 7 = \mu$$

Ejercicio: juegos

Decía Albert Einstein (1879 – 1955): "La mejor forma de ganar dinero en un casino es asaltándolo". Con humor, recor-

Sea el juego que consiste en sacar una bola de una urna que contiene 7 bolas rojas y 3 bolas negras. Ganamos 50 euros si la bola extraída es roja y pagamos 150 euros en el caso de que sea negra. ¿Qué podemos esperar si jugamos muchas veces?

Si la esperanza matemática es 0 se dice que el juego es justo.

Si es mayor que 0 se dice que el **juego** es **favorable** al jugador.

Si es menor que 0 se dice que perjudica al jugador y **no** es **favorable**.

Espacio <u>muestral</u> $E = \{R, N\}$. Consideramos las ganancias como positivas y las pérdidas negativas:

Variable aleatoria X	Función de probabilidad	b
R	50 ─	0,7
N	150	0,3
$\mu = 50 \cdot 0.7 + 0.0$	$(-150) \cdot 0,3 = -10$ Ganancia media	

Varianza y desviación estándar o típica de una función de probabilidad discreta

Varianza

$$\sigma^{2} = Var(X) = E((X - \mu)^{2}) =$$

$$\sum_{i} (x_{i} - \mu)^{2} f(X = x_{i})$$

Desviación estándar o típica

$$\sigma = \sqrt{Var(X)}$$

Ambas miden la "dispersión de los datos". Observa que la desviación típica lo hace con las mismas unidades que los propios datos.

Ejemplo. Probabidades en una tabla (continuación) Sabemos que µ=1

x_i	$P(X=x_i) = f(x)$	$x_i - \mu$	$(x_i-\mu)^2$	$\left (x_i - \mu)^2 \cdot f(x) \right $
-1	.1	-2	4	.4
0	.2	-1	1	.2
1	.4	0	0	.0
2	.2	1	1	.2
3	.1	2	4	<u>.4</u>
				1.2

$$\sigma^{2} = \sum_{i} (x_{i} - \mu)^{2} f(x_{i}) = 1,2$$

$$\sigma = \sqrt{Var(X)} = 1.10$$

Experimento: lanzar dos dados, uno rojo y otro azul (continuacion) Calcula la varianza y desv. típica de la v.a. X

$$f(x) = \begin{pmatrix} 6/36 \\ 5/36 \\ 4/36 \\ 3/36 \\ 1/36 \\ 2/36 \\ 2/36$$

Var
$$(X) = \sum_{i=2}^{12} f(X_i) \cdot (X_i - 7)^2 =$$

$$\frac{1}{36} \cdot (2 - 7)^2 + \frac{2}{36} \cdot (3 - 7)^2 + \dots + \frac{1}{36} \cdot (12 - 7)^2 = 5,83$$

$$\sigma = \sqrt{Var(X)} = \sqrt{5,83} = 2,41$$

Algunas propiedades de la varianza

Momento de orden k

Los momentos de orden k centrados en la media de X:

$$M_k = E((X - \mu)^k) = \sum_i (x_i - \mu)^k f(x_i)$$

Obseva que:
$$M_1 = E(X - \mu) = E(X) - \mu = 0$$

 $M_2 = E((X - \mu)^2) = Var(X)$

$$\sigma^2 = E(X^2) - (E(X))^2$$

Ejemplo. Probabidades en una tabla (continuación) Sabemos que $E(X)=\mu=1$

x_i	$P(X=x_i) = f(x)$
-1	.1
0	.2
1	.4
2	.2
3	.1

$$E(X^{2}) = \sum_{i=1}^{5} f(x_{i}) \cdot x_{i}^{2} =$$

$$0.1*(-1)^{2} + 0.2*0^{2} + 0.4*1^{2} + 0.2*2^{2} + 0.1*3^{2} = 2.2$$

$$|\sigma^2 = E(X^2) - (E(X))^2 = 2.2 - 1^2 = 1.2|$$

Transformaciones de variables aleatorias

Ejemplo.

X número de hijos por familia

X Hamero de Hijos por lamina		
x_i	$P(X=x_i) = f(x)$	
0	0.47	
1	0.3	
2	0.1	
3	0.06	
4	0.04	
5	0.02	
6	0.01	

 Y_i $P(Y=y_i) = f(y)$ 0.47 0.30.1 0.06

0.04

0.02

0.01

Y ingreso por hijo: Y = 15X

$$\mu_{x} = E(X) = \sum x f(x) = 1$$

$$\sigma_{x}^{2} = V[X] = E(X^{2}) - (E(X))^{2} = 2.74 - 1^{2} = 1.74$$

$$\mu_{y} = E(Y) = \sum yf(y) = 15 = 15 * E(X)$$

$$\sigma_{y}^{2} = V[Y] = E(Y^{2}) - (E(Y))^{2} = 616.5 - 15^{2} = 391.5 = 15^{2} * V[X]$$

<u>Sean a y b constantes.</u>

(1)
$$E(aX + b) = aE(X) + b$$
 (3) $E(X + W) = E(X) + E(W)$

(3)
$$E(X+W) = E(X) + E(W)$$

60

75

90

(2)
$$V(aX + b) = a^2V(X)$$
 (4) $\sigma^2 = V(X) = E(X^2) - (E(X))^2$

(4)
$$\sigma^2 = V(X) = E(X^2) - (E(X))^2$$

Variable aleatoria Bidimensional

- •Vector Aleatorio: A = (X, Y)
- F. densidad Conjunta: f(x, y)
- •F. densidad Marginales: Para g(x) se suma la probabilidad de cada categoría en Y. Análogo para h(y).

y Condicionadas: Para Y/X= x_i sería $f(x_i,y_i)/g(X=x_i)$. Análogo para X/Y= y_i

•Independencia de V.A.: Las variables aleatorias X, Y son independientes si

$$f(x,y) = g(x) \cdot h(y)$$

•Vector de medias:
$$\bar{\mu}_A = \begin{pmatrix} \mu_\chi \\ \mu_Y \end{pmatrix}$$
•Matriz de Varianzas, Covarianzas:
$$\begin{pmatrix} \sigma_\chi^2 = \sum x^2 g(x) - E[X]E[X] \\ \sigma_{\chi \chi} = \sum xyf(x,y) - E[X]E[Y] \\ \sigma_{\chi} = \sum xyf(x,y) - E[X]E[X] \\ \sigma_{\chi} = \sum xyf(x,y) - E[X]E[X] \\ \sigma_{\chi} = \sum xyf(x,y) - E[X]E[X] \\ \sigma_{\chi} = \sum xyf(x,y) - E[X]E[X]$$

Ejemplo.

En un estudio sobre las preferencias de los habitantes de la ciudad de Pamplona. Sea X la variable que, en euros, expresa la renta familiar y sea Y otra variable que toma el valor 0 cuando el lugar de vacaciones elegido sea la playa y 1 si se elige la montaña. Como resultado del estudio se propone la siguiente distribución de probabilidad conjunta para las variables citadas:

Glauas.				
	Y\X	6.000	18.000	36.000
	0=playa	0'15	0'35	0'15

$P(X=x_i)$	g(x)	0.3	0.5	0.

0'15 0'15

- a) ¿Son independientes X e Y?
- b) Obtener la distribución condicionada de X/Y=0(playa)

|1=montaña |

- c) Calcula la Covarianza(X,Y)
- a) Independientes si $f(x,y)=g(x)^*h(y)$

f(6000, montaña) = 0.15

g(6000) * h(montaña) = 0.3 * 0.35 = 0.105

Luego, NO independientes.

b) X/Y=0 (playa)

X_i	$P(X=x_i/Y=0)$		
6000	0.15/0.65 = 0.2308		
18000	0.35/0.65 = 0.5384		
36000	0.15/0.65 = 0.2308		

c)
$$Cov(X,Y) = \sigma_{XY}$$

 $P(Y=y_i) = h(y)$

0.65

0.35

$$\Sigma xy f(x,y) = 5400$$

$$E[X] = \Sigma \times g(x) = 18000$$

$$E[Y] = \Sigma y h(y) = 0.35$$

$$Cov(X,Y) = \sum xy f(x,y) - E[X] E[Y]$$

= - 900