# Photogrammetry & Robotics Lab Machine Learning for Robotics and Computer Vision Tutorial

**Detection with CNNs** 

**Jens Behley** 

# Single vs. Two-Stage Approaches



Single-stage



Two-stage

- Two paradigms for Object Detection:
  - 1. Single-stage approaches: Directly produces bounding boxes in single forward pass
  - 2. Two-stage approaches: First generates classagnostic proposals and classifies only top Nproposals

# How to get a CNN to output bounding boxes?





- Anchor-based approach: provide templates that need to be classified and "modified"
  - Examples: R-CNN, Fast R-CNN, Faster R-CNN, YOLO, EfficientDet, FPN, RetinaNet
- Anchor-free approach: produce corners or centers (key point) that produces the desired bounding box
  - Examples: CornerNet, CenterNet





 Each location in feature map corresponds to spatial position in the image





- At each location are anchors located
- Different aspect ratios, different sizes





 For each anchor, we produce class + bbox offsets





 For each anchor, we produce class + bbox offsets

# **Anchor Assignment**





- IoU-based assignment to determine positive vs. negative examples
  - Positive: highest or IoU > 0.7 with ground truth box
  - Negative: IoU < 0.3 for all ground truth boxes</li>
- Usually far more negatives than positive boxes

# **Anchor-free Approaches**





- Produce for location in the image how likely is that there is a bounding box
- In case of CenterNet: Likelihood that for specific class at that location

# **Center Heatmap**





$$Y_{xyc} = \exp\left(-\frac{(x-c_x)^2 + (y-c_y)^2}{2\sigma_p^2}\right)$$
$$Y \in \mathbb{R}^{H \times W \times K}$$

- Target for centerness heatmap is Gaussian at center location (variance is object size dependent)
- In case of overlap: maximum of values
- At center it is 1 and falls of with distance to the center

#### **Center Loss**

Focal loss 
$$L_k = \frac{-1}{N} \sum_{xyc} \begin{cases} (1 - \hat{Y}_{xyc})^{\alpha} \log(\hat{Y}_{xyc}) & \text{if } Y_{xyc} = 1 \\ (1 - Y_{xyc})^{\beta} (\hat{Y}_{xyc})^{\alpha} & \text{otherwise} \end{cases}$$

- $\ \ \, \ \, \ \,$  For a prediction  $\hat{Y}$  the loss is now computed perpixel-wise in respect to ground truth map Y
- For exact center location, we want prediction to be one
- For non-center locations, we want to push it to zero

#### Size estimation

$$L_{size} = rac{1}{N} \sum_{k=1}^{N} \left| \hat{S}_{p_k} - s_k \right|$$

- Here we want the size, e.g., width and height, predicted at the center location to be as close to real size
- Smoothed L1 loss (or L1 loss) used to compute the loss here (functional.smooth\_l1\_loss)

# **Complete Loss**

$$L_{det} = L_k + \lambda_{size} L_{size} + \lambda_{off} L_{off}.$$

- Weighted sum of center loss, size loss, and offset loss.
- CenterNet uses 0.1 for size and 1 for offsets.

# **Extracting Bounding Boxes**

- Simple algorithm for getting bounding boxes
  - Find 100 peaks (maximum in 8x8 neighborhood
     → 3x3 maximum pooling) for each category
- Centerness from heatmap is detection score of the bounding

# **Object Detection Datasets**



Pascal VOC



MS COCO



ImageNet



**LVIS** 

# **Dataset (Overview)**

| Name                                    | Year | #Categories | #Images | Data |  |
|-----------------------------------------|------|-------------|---------|------|--|
| Pascal VOC                              | 2012 | 20          | 12k     | В    |  |
| ImageNet                                | 2014 | 200         | 477k    | В    |  |
| MS COCO                                 | 2014 | 80          | 123k    | B, S |  |
| LVIS                                    | 2019 | 1000        | 164k    | B, S |  |
| Objects365                              | 2019 | 365         | 638k    | В    |  |
| Open Images                             | 2020 | 600         | 1.9M    | В    |  |
| Bounding Box (B) Segmentation Masks (S) |      |             |         |      |  |

Bounding Box (B), Segmentation Masks (S)

- Images gather from Image Databases
- Mostly handheld cameras, smart phones

#### **Automotive Datasets**



**KITTI** 



**NuScenes** 



Argoverse



Waymo Open Dataset

# **Automotive Dataset (Overview)**

| Name        | Year | #Categories | #Images | Data |
|-------------|------|-------------|---------|------|
| KITTI       | 2012 | 8           | 15k     | В    |
| BDD100K     | 2017 | 10          | 100k    | В    |
| ApolloScape | 2018 | 8-35        | 144k    | В    |
| KAIST       | 2018 | 3           | 9k      | В    |
| Argoverse   | 2019 | 15          | 22k     | В    |
| Lyft L5     | 2019 | 9           | 46k     | В    |
| A2D2        | 2019 | 14          | 12k     | В    |
| nuScenes    | 2019 | 23          | 40k     | B,S  |
| Waymo Open  | 2019 | 4           | 200k    | В    |

Bounding Box (B), Segmentation Masks (S)

# See you next week!