Physics 2211 GPS Week 5

A spring with relaxed length $L_0 = 20$ cm and stiffness k = 100 N/m is hanging vertically down with its fixed end at the origin. The moving end of the spring is attached to a ball that has mass $m_1 = 5$ kg and **negative** electric charge $Q_1 = -1 \times 10^{-4}$ C. At t = 0 (shown in the diagram), the ball is moving downwards with speed v = 1 m/s and the spring is stretched to a length L = 30 cm.

A second ball with the same mass (m = 5 kg) but with **positive** electric charge $Q = 1 \times 10^{-4} \text{ C}$ is fixed, motionless and unable to move, at position $r_2 = <45, -30, 0 > \text{cm}$.

1. Take ball 1 alone to be the system. Draw a force diagram that shows ALL the forces acting on this system.

2.	What	is the	(vector)	force	acting	on bal	l 1 du	e to th	e Ear	t h ?	
3.	What	is the	(vector)	force	acting	on bal	l 1 du€	e to the	mass	of ball 2	?

4.	What	is the	(vector)	force ac	ting on b	all 1 due t	to the electr	ic charge of ba	all 2?
5.	What	is the	(vector)	force ac	ting on b	all 1 due	to the sprii	ng?	
5.	What	is the	(vector)	force ac	ting on b	all 1 due	to the sprin	${f ng}$?	
5.	What	is the	(vector)	force ac	ting on b	all 1 due	to the sprin	ng?	
5.	What	is the	(vector)	force ac	ting on b	all 1 due	to the sprin	ng?	
5.	What	is the	(vector)	force ac	ting on b	all 1 due	to the sprin	ng?	
5.	What	is the	(vector)	force ac	ting on b	all 1 due	to the sprin	ng?	

6. What is the net force acting on ball 1?
7. Determine the velocity of ball 1 at $t = 0.1$ seconds.
8. Determine the position of ball 1 at $t = 0.1$ seconds.

9. What is the **new net force** acting on ball 1 at t = 0.1 seconds?

10. Find the **new position** of ball 1 at t = 0.2 seconds.