CLAIMS

1	1. A composition of matter comprising;			
2	a vascularized densely collagenous tissue structure performing a			
3	biomechanical function in a body, the collagenous tissue structure having been			
4	treated in wo in the body with a measurable amount of thermal energy which			
5	increased a cross-sectional diameter of a collagen fibrils in the collagenous tissue			
6-	structure and decreased a longitudinal length of the collagen fibrils while			
7	preserving at least a portion of the biomechanical function performed by the			
8	collagenous tissue structure in the body.			
1	2. The composition of claim 1, wherein the vascularized densely			
2	collagenous tissue structure was treated in vivo with sufficient and measurable			
3	thermal energy to create a scaffold for remodeling the collagen fibrils and/or the			
4	creation of new collagen fibrils.			
	λ_{l}			
1	3. The composition of claim 1, wherein application of the thermal			
2	energy changes the conformation of the collagen protein molecules from an			
3	extended organized conformation to a random coil, contracted conformation in			
4	order to achieve a macroscopic shrinkage along a longitudinal length of tissue.			
1	4. The composition of claim \(\frac{1}{2}\), wherein the collagen fibrils were			
2	treated with sufficient thermal energy to increase a cross-sectional diameter of			
3	the collagen fibrils, decrease a longitudinal length of the collagen protein			
4	molecules and produce a substantially uniform histology.			
1	5. The composition of claim 1 wherein the thermal energy was			
2	produced by an energy source selected from the group consisting of RF,			
3	microwave, resistive heating, ultrasonic and liquid thermal jet.			

1	29. The composition of claim 15, wherein the collagen containing			
2	ligament or tendon structure is a connecting tendon.			
1	30. A composition of matter comprising:			
2	a vascularized densely collagenous tissue structure positioned within a			
3	region of a body which naturally attaches a first portion of the body to a second			
4 .	portion of the body, the collagenous tissue structure having collagen fibrils which			
5	were treated in viva in the body with a measurable amount of thermal energy to			
6	modify a position of the first portion of the body relative to the second portion of			
7	the body.			
1	The composition of claim 30, wherein the collagen fibrils were			
2	treated in vivo with sufficient thermal energy to create a scaffold for remodeling			
3	the collagen fibrils and/or the creation of new collagen fibrils.			
1	32. The composition of claim 30, wherein the thermal energy			
2	increased a cross-sectional diameter of the fibrils and reduced a longitudinal			
3	length of the fibrils.			
1	33. The composition of claim 30, wherein the thermal energy changed			
2	a conformation of the collagen fibrils from an extended structure with a linear			
3	configuration to a random coil, contracted state.			
1	34. The composition of claim 30, wherein the thermal energy			
2	increased a cross-sectional diameter of the collagen fibrils, decreased a			
3	longitudinal length of the collagen fibrils and produced a substantially uniform			
4 .	histology.			

: :

1	The composition of claim 30, wherein the thermal energy was
2	from an energy source is selected from the group consisting of RF, microwave,
3	resistive heating, ultrasonic and a liquid thermal jet.
1	36. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified in vivo.
1	The composition of claim 30, wherein the geometry of the fibrils
2	was modified by delivering thermal energy in vivo to the vascularized densely
3	collagenous tissue structure at a temperature of 80 °C or less.
1	38. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified by heating the collagen fibrils in vivo at a
3	temperature range of 45 to 75 °C.
1	39. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified in vivo at a temperature range of 50 to 70 °C.
1	40. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified in vivo at a temperature of 55 to 65 °C.
1	41. The composition of claim 30, wherein the collagen containing
2 .	tissue is a collagen connecting tissue.
1	42. The composition of claim 30, wherein the collagen containing
2	tissue is a medial side ligament of the patella.
•	
1	43. The composition of claim 30, wherein the collagen containing
2	tissue is a patellar tendon allograft.

1	44\	The composition of claim 30, wherein the collagen containing	
2	tissue is a pate	ellar tendon autograft	
	\		
1	45.	The composition of claim 30, wherein the collagen containing	
2	tissue is a con	necting tendon.	
		\	
1	46.	The composition of claim 30, wherein the region of the body is a	
2	joint surface.		
1	47.	The composition of claim 30, wherein the region of the body is a	
2	shoulder.		
		$X \int$.	
1	48.	The composition of claim 30, wherein the region of the body is	
2	selected from	the group consisting of a shoulder, a spinal disc, an elbow, an	
3	ankle, a wrist and a knee.		
-	miles, a wrist		
1	49.	The composition of allim 20 subscript the first new in a Salar	
		The composition of claim 30, wherein the first portion of the	
2	body was broi	ught closer to the second portion of the body.	
	a1	•	
dd	>171		
	<u> </u>		
/ 1. n-h			