Lecture7: Diode circuit

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

PN junction

Exponential model

$$I_D = I_s \left(\exp \frac{V_D}{V_T} - 1 \right)$$

- Constant-voltage model
 - An "offset" voltage of $V_{D,on}$

Rectifier

- Analyze it!
 - When $V_{in} < V_{D,on}$?
 - When $V_{in} > V_{D,on}$?

Simulation result

• Example) $I_S = 0.5$ fA and $R_1 = 1 \text{ k}\Omega$

Time-varying voltage source

• For example, $V_{in}(t) = 3\sin(2\pi ft)$ V. 60 Hz. 10 periods

Introducing a capacitor

- Difference from the previous one?
 - First, consider the DC case.
 - Remember that $I_C = C_1 \frac{d}{dt} V_{out}$.

Qualitative understanding (1)

- Consider the first period.
 - When the input voltage exceeds $V_{D,on}$, the diode is turned on.
 - The charge is stored in the capacitor. Hence, the output voltage increases.
 - When the input voltage is lower than $V_{D,on}$, the output voltage does not change. (*Why?*)

Qualitative understanding (2)

- After the first period…
 - In the second period, the diode current is smaller than the one in the first period. (Why?)
 - After some periods, the diode current vanishes.
 - A DC output voltage is established.

Simulation result

• The capacitance, $C_1 = 1 \mu F$.

