

AD-A116 709

ALBERTA UNIV EDMONTON DEPT OF CHEMISTRY

F/G 7/4

SIMULATION OF EDGE EFFECTS IN ELECTROANALYTICAL EXPERIMENTS BY --ETC(III)

N00014-A2-G-0017

UNCLASSIFIED TR-9

NL

1001
2
3
4
5
6
7
8
9

END
DATE
10-10-72
PAGE
1

AD A118709

DTIC FILE COPY

OFFICE OF NAVAL RESEARCH

Contract N00014-82-G-0017

Task No. NR 359-718

TECHNICAL REPORT NO. 9

Simulation of Edge Effects in Electroanalytical Experiments.
Part II. The Theory for Cyclic Voltammetry by Collocation.

Bernd Speiser and Stanley Pons

Prepared for Publication in

Canadian Journal of Chemistry

University of Alberta
Department of Chemistry
Edmonton, Alberta, Canada
T6G 2G2

August 18, 1982

Reproduction in whole or in part is permitted for
any purpose of the United States GovernmentThis document has been approved for public release
and sale; its distribution is unlimited.S DTIC
ELECTED
AUG 31 1982
H

(12)

REPORT DOCUMENTATION PAGE		SECURITY CLASSIFICATION OF THIS PAGE (Other than Unclassified)
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. DISTRIBUTION STATEMENT (Before Composing Form)
9	AD A118709	4. DECIDENTIAL CATALOGUE NUMBER
5. TITLE (and Subtitle) - Simulation of Edge Effects in Electroanalytical Experiments. II. The theory for Cyclic Voltammetry by Collocation.		5. TYPE OF REPORT & PERIOD COVERED Technical Report
6. AUTHOR(s)		6. PERFORMING ORG REPORT NUMBER Bernd Speiser and Stanley Pons
7. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry University of Alberta Edmonton, Alberta, Canada T6G 2G2		7. PRINCIPAL ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS Task No. NR 359-718
8. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Chemistry Program - Chemistry Code 472 Arlington, Virginia 22217		8. REPORT DATE August 18, 1982
9. MONITORING AGENCY NAME & ADDRESS if different from Controlling Office		9. NUMBER OF PAGES 11
10. SECURITY CLASS (If this report is different from Controlling Office)		10. SECURITY CLASS (If this report is Unclassified
11. DISTRIBUTION STATEMENT (Other than Report)		11. DECLASSIFICATION/DETERMINATION SCHEDULE
12. DISTRIBUTION STATEMENT (for the abstract entered in Block 2a, if different from Report)		
13. SUPPLEMENTARY NOTES		
14. KEY WORDS (Continue on reverse side if necessary and identify by block number) Electrochemistry, Simulation, Cyclic voltammetry, Orthogonal Collocation		
15. ABSTRACT (Continue on reverse side if necessary and identify by block number) The procedure and theory for simulation of currents perturbed by edge effects at disk electrodes in cyclic voltammetric experiments is presented. The results are obtained rapidly and accurately.		

DD FORM 17 (Rev. 1-74) 1473 EDITION OF 1 NOV 65 IS OBSOLETE

5/8 6102 11 814 4681

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Other than Unclassified)

82 27 052

1
SIMULATION OF EDGE EFFECTS IN ELECTROANALYTICAL EXPERIMENTS
BY ORTHOGONAL COLLOCATION. PART 2: THEORY FOR
CYCLIC VOLTAMMETRY

B. Speiser and Stanley Pons*
Department of Chemistry
University of Alberta
Edmonton, Alberta, Canada
T6G 2G2

INTRODUCTION

We have shown (1,2) that orthogonal collocation is suitable not only for the solution of linear diffusion problems but also for simulation of two-dimensional models. Thus, it is possible to simulate edge effects on electroanalytical experiments using this fast and flexible numerical technique.

Cyclic voltammetry is one of the most commonly used electroanalytical methods and it might be of considerable interest to calculate the effects caused by edge diffusion on the i/E -curves. Lines and Parker (3) have observed an increase of ΔE_p when using microelectrodes and attributed this to edge effects, a conclusion which was confirmed by theoretical calculations by Heinze (4). Speiser and Rieker (5) found dramatic changes in cyclic voltammograms of 2,6-di-*tert*-butyl-4(4-dimethylaminophenyl)-phenol I in unbuffered, neutral acetonitrile when decreasing the electrode area from 0.29 cm^2 to 0.0022 cm^2 . These experiments have also been explained in terms of edge diffusion. Up to now, however, it was not possible to simulate the complex mechanism describing the oxidation of I under the conditions of a finite circular disc electrode.

This paper expands the theory of two-dimensional orthogonal collocation to cyclic voltammetry and mechanisms as complex as the oxidation of I. It will only deal with the mathematics of the method, while a complete numerical analysis showing the usefulness of the derived equations will be given in part 4.

This partition has been used because the analysis (which has to be done to validate the new two-dimensional collocation method) requires the discussion of many parameters. We point out, however, that this has to be done only once, while extension to more complicated mechanisms is obvious. Also, research on a comparison of the experimental results with 1 and numerical simulations is under way.

INITIAL AND BOUNDARY CONDITIONS

The initial and boundary conditions have been given by Nicholson and Shain (6) and used by Speiser and Rieker (7) in the context of orthogonal collocation for linear diffusion. Pons (8) simulated cyclic voltammograms under spherical diffusion conditions using orthogonal collocation.

For simulation of edge effects we employ our two-dimensional model of a finite, circular electrode of radius r_0 imbedded into an insulator body (1). The radius of the insulator may go to infinity.

We assume an EC mechanism:

where the diffusion controlled electron transfer is described by the formal potential, E° , and the number of transferred electrons, n . The chemical step (2) proceeds with a rate constant k .

Fick's second law for the substrate A takes the form

$$\frac{\partial c_A}{\partial t} = D \left[\frac{\partial^2 c_A}{\partial x^2} + \frac{1}{r} \frac{\partial c_A}{\partial r} + \frac{\partial^2 c_A}{\partial r^2} \right] \quad (3)$$

where t is time and x and r are the distance coordinate perpendicular to the electrode and the radial coordinate respectively. The total diffusion is expressed as superimposition of a linear and a cylindrical term.

For species B and C equations (4) and (5) hold:

$$\frac{\partial c_B}{\partial t} = D \left[\frac{\partial^2 c_B}{\partial x^2} + \frac{1}{r} \frac{\partial c_B}{\partial r} + \frac{\partial^2 c_B}{\partial r^2} \right] - k c_A \quad (4)$$

$$\frac{\partial c_C}{\partial t} = D \left[\frac{\partial^2 c_C}{\partial x^2} + \frac{1}{r} \frac{\partial c_C}{\partial r} + \frac{\partial^2 c_C}{\partial r^2} \right] + k c_A \quad (5)$$

For convenience the diffusion coefficient of all species is set equal to D .

We assume that A is the only species present in the solution at the beginning of the experiment, its concentration being c_A^0 . Thus, the initial conditions are

$$t=0, x>0, r>0: \quad c_A(x, r, 0) = c_A^0 \quad (6)$$

$$c_B(x, r, 0) = c_C(x, r, 0) = 0 \quad (7)$$

At a distance far from the electrode no concentration changes take place during the experiment. This yields the boundary conditions at $x \rightarrow \infty$ and $r \rightarrow \infty$

$$t>0, x \rightarrow \infty, r \rightarrow \infty: \quad c_A(\infty, r, t) \rightarrow c_A^0 \quad (8)$$

<i>A</i>	Dist.	W.	Accession No.
Spec.	Distribution/	Availability Codes	NIS Serial
Special	Avail. and/or	Justification	UNCLASSIFIED
			DATE

DRIC
COPY
IMPROVED
2

$$c_B(\infty, r, t) = c_C(\infty, r, t) = 0 \quad (9)$$

$$t > 0, x > 0, r \rightarrow \infty: \quad c_A(x, \infty, t) \rightarrow c_A^* \quad (10)$$

$$c_B(x, \infty, t) = c_C(x, \infty, t) = 0 \quad (11)$$

At the electrode surface the concentrations of A and B are given by (12) and (13), while (14) holds for species C:

$$t > 0, x = 0, 0 < r < r_0: \quad \left(\frac{\partial c_A}{\partial x} \right)_{x=0} = - \left(\frac{\partial c_B}{\partial x} \right)_{x=0} \quad (12)$$

$$\frac{c_A(0, r, t)}{c_B(0, r, t)} = \exp \left[\frac{nF}{RT} (E^* - E) \right] = \theta_{A/B} S_A(t) \quad (13)$$

$$\left(\frac{\partial c_C}{\partial x} \right)_{x=0} = 0 \quad (14)$$

Equation (13) reflects the special features of cyclic voltammetry if

$$\theta_{A/B} = \exp \left[\frac{nF}{RT} (E^* - E_{\text{start}}) \right] \quad (15)$$

and

$$S_A(t) = \begin{cases} \exp[2(m-1)\alpha t_A - \alpha t] & \text{for } 2(m-1)t_A \leq t \leq (2m-1)t_A, \\ & m = 1, 2, \dots \\ \exp[\alpha t - 2m\alpha t_A] & \text{for } (2m-1)t_A \leq t \leq 2m t_A \end{cases} \quad (16)$$

Here F, R and T have their usual meaning, E_{start} is the starting potential of the scan, t the time when the scan is reversed, m the number of the present scan. A cycle consists of two scans. Finally α is given by

$$\alpha = \frac{nF}{RT} v \quad (17)$$

where v is the scan rate, dv/dt .

There is no redox reaction at the insulator and hence no flux through this surface. Thus

$$t > 0, x = 0, r \gg r_0:$$

$$\left(\frac{\partial c_A}{\partial r} \right)_{x=0} = \left(\frac{\partial c_B}{\partial r} \right)_{x=0} = \left(\frac{\partial c_C}{\partial r} \right)_{x=0} = 0 \quad (18)$$

At $r = 0$ there must be no flux in r -direction because our model is symmetric around $r = 0$:

$$t > 0, x > 0, r = 0:$$

$$\left(\frac{\partial c_A}{\partial r} \right)_r = \left(\frac{\partial c_B}{\partial r} \right)_r = \left(\frac{\partial c_C}{\partial r} \right)_r = 0 \quad (19)$$

It is convenient [1] to divide the space in the r -direction into two parts, inside and outside of r_0 . The concentration may be described by c_1 and c_2 , respectively. The two concentration

functions have to fulfill the conditions (20) and (21) at $r = r_0$ for all species.

$t > 0, x > 0, r > r_0$:

$$c_A(x, r_0, t) = c_A(x, r_0, t) \quad (20)$$

$$\left(\frac{\partial c_A}{\partial r} \right)_{r=r_0} = \left(\frac{\partial c_A}{\partial r} \right)_{r=r_0} \quad (21)$$

TRANSFORMATION TO A DIMENSIONLESS PROBLEM

Equations (3)-(22) are transformed into a dimensionless problem by

$$X = x/L \quad (22)$$

$$c_{A1}^* = c_{A1}/c_A^* \quad (23)$$

$$c_{A2}^* = c_{A2}/c_A^* \quad (24)$$

$$c_{B1}^* = c_{B1}/c_A^* \quad (25)$$

$$c_{B2}^* = c_{B2}/c_A^* \quad (26)$$

$$c_{Q1}^* = c_{Q1}/c_A^* \quad (27)$$

$$c_{Q2}^* = c_{Q2}/c_A^* \quad (28)$$

$$R = r/r_0 \quad \text{for } 0 < r < r_0 \quad (29a)$$

$$R = (r-r_0)/(L-r_0) \quad \text{for } r > r_0 \quad (29b)$$

$$T' = at \quad (30)$$

$$\alpha = kD/r_0^2 \quad (31)$$

Here X is a dimensionless distance perpendicular to the electrode, L is a distance from the electrode defined such that diffusion effects are negligible at all times the c^* are dimensionless concentrations, R and R' are dimensionless coordinates in r -direction for the inner and outer functions respectively, while M is defined as L except it is a radial distance from the center of the electrode. The symbols T' and α denote the dimensionless simulation time and rate constant respectively.

Thus, we get the dimensionless differential equations:

$$\frac{\partial c_{A1}^*}{\partial T'} = \beta \frac{\partial^2 c_{A1}^*}{\partial X^2} + \frac{\beta'}{R} \frac{\partial c_{A1}^*}{\partial R} + \beta' \frac{\partial^2 c_{A1}^*}{\partial R^2} \quad (32)$$

$$\frac{\partial c_{A2}^*}{\partial T'} = \beta \frac{\partial^2 c_{A2}^*}{\partial X^2} + \frac{\beta'}{R} \frac{\partial c_{A2}^*}{\partial R} + \beta' \frac{\partial^2 c_{A2}^*}{\partial R^2} - \alpha c_{A1}^* \quad (33)$$

$$\frac{\partial c_{31}^*}{\partial T'} = \beta \frac{\partial^2 c_{31}^*}{\partial x^2} + \beta' \frac{\partial c_{31}^*}{\partial R} + \beta'' \frac{\partial^2 c_{31}^*}{\partial R^2} + \alpha c_{32}^* \quad (34)$$

$$\frac{\partial c_{32}^*}{\partial T'} = \beta \frac{\partial^2 c_{32}^*}{\partial x^2} + \frac{\sqrt{\beta'} \beta''}{\sqrt{\beta'} + \sqrt{\beta''} R'} \frac{\partial c_{32}^*}{\partial R} + \beta'' \frac{\partial^2 c_{32}^*}{\partial R^2} \quad (35)$$

$$\frac{\partial c_{31}^*}{\partial T'} = \beta \frac{\partial^2 c_{31}^*}{\partial x^2} + \frac{\sqrt{\beta'} \beta''}{\sqrt{\beta'} + \sqrt{\beta''} R'} \frac{\partial c_{31}^*}{\partial R} + \beta'' \frac{\partial^2 c_{31}^*}{\partial R^2} - \alpha c_{32}^* \quad (36)$$

$$\frac{\partial c_{32}^*}{\partial T'} = \beta \frac{\partial^2 c_{32}^*}{\partial x^2} + \frac{\sqrt{\beta'} \beta''}{\sqrt{\beta'} + \sqrt{\beta''} R'} \frac{\partial c_{32}^*}{\partial R} + \beta'' \frac{\partial^2 c_{32}^*}{\partial R^2} + \alpha c_{31}^* \quad (37)$$

where β is given by

$$\beta = D/aL^2 \quad (38)$$

β' contains only experimental parameters

$$\beta' = D/a r_0^2 \quad (39)$$

and

$$\beta'' = D/a (N - r_0)^2 \quad (40)$$

As in the case of the chronoamperometric simulations [1] we have

two dimensionless parameters, here s and s'' . The parameter s' is given by experimental parameters and thus the simulations will depend on s' as e.g. on s .

The transformed initial and boundary conditions are given

by
 $T' \geq 0, 0 \leq x \leq 4, 0 \leq R \leq 4: c_{31}^*(x, R, 0) = c_{32}^*(x, R, 0) = 4 \quad (41)$

$$c_{31}^*(x, R, 0) = c_{32}^*(x, R, 0) = 0 \quad (42)$$

$T' > 0, x = 4, 0 \leq R \leq 4:$
 $c_{31}^*(4, R, T') = 4 \quad (43)$

$$c_{31}^*(4, R, T') = c_{32}^*(4, R, T') = 0 \quad (44)$$

$T' > 0, x = 4, 0 \leq R \leq 4:$
 $c_{31}^*(4, R, T') = 1 \quad (45)$

$$c_{31}^*(4, R, T') = c_{32}^*(4, R, T') = 0 \quad (46)$$

$T' > 0, 0 \leq x \leq 4, R = 4:$
 $c_{31}^*(x, 4, T') = 1 \quad (47)$

$$c_{31}^*(x, 4, T') = c_{32}^*(x, 4, T') = 0 \quad (48)$$

$T' > 0, x = 0, 0 \leq R \leq 4:$
 $\left(\frac{\partial c_{31}^*}{\partial x} \right)_{R=0} = - \left(\frac{\partial c_{31}^*}{\partial x} \right)_{x=0} \quad (49)$

$$\frac{c_{A1}^*(0, R, T')}{c_{A1}^*(0, R, T)} = \Theta_{A/B} S_A(T') \quad (50)$$

with

$$S_A(T') = \begin{cases} \exp[2(m-1)T'_A - T'] \\ \exp[T' - 2mT'_A] \end{cases} \quad m = 1, 2, \dots \quad (51)$$

where

$$T'_A = aT_A \quad (52)$$

$$\left(\frac{\partial c_{A1}^*}{\partial x} \right)_{x=0} = 0 \quad (53)$$

$$T' > 0, x = 0, 0 < R' < 1: \quad \left(\frac{\partial c_{A1}^*}{\partial x} \right)_{R=0} = \left(\frac{\partial c_{B1}^*}{\partial x} \right)_{R=0} = \left(\frac{\partial c_{C1}^*}{\partial x} \right)_{R=0} = 0 \quad (54)$$

$$T' > 0, 0 < x < 1, R = 0: \quad \left(\frac{\partial c_{A1}^*}{\partial R} \right)_{R=0} = \left(\frac{\partial c_{B1}^*}{\partial R} \right)_{R=0} = \left(\frac{\partial c_{C1}^*}{\partial R} \right)_{R=0} = 0 \quad (55)$$

$$T' > 0, 0 < x < 1, R = 1: \quad c_{A1}^*(x, 1, T') = c_{A1}^*(x, 0, T') \quad (56)$$

$$c_{B1}^*(x, 1, T') = c_{B1}^*(x, 0, T') \quad (57)$$

$$c_{C1}^*(x, 1, T') = c_{C1}^*(x, 0, T') \quad (58)$$

$$\left(\frac{\partial c_{A1}^*}{\partial R} \right)_{R=1} = \sqrt{\frac{R'}{R}} \left(\frac{\partial c_{A1}^*}{\partial R'} \right)_{R'=0} \quad (59)$$

$$\left(\frac{\partial c_{B1}^*}{\partial R} \right)_{R=1} = \sqrt{\frac{R'}{R}} \left(\frac{\partial c_{B1}^*}{\partial R'} \right)_{R'=0} \quad (60)$$

$$\left(\frac{\partial c_{C1}^*}{\partial R} \right)_{R=1} = \sqrt{\frac{R'}{R}} \left(\frac{\partial c_{C1}^*}{\partial R'} \right)_{R'=0} \quad (61)$$

APPLICATION OF TWO-DIMENSIONAL COLLOCATION

As in the case of chronoamperometry [1] we have to solve the system of second order partial differential equations (32)-(37) under the conditions (41)-(61) to get the dimensionless concentrations of species A, B and C as functions of x, R (R') and T'. We use the two-dimensional collocation method outlined in part 1 of this series [1] to discretize equations (32)-(37) with respect to the grid of collocation points (x_i, R_k) in the x/R-space.

We have shown [1] that the first and second derivatives of the concentration with respect to x and r respectively at a collocation point (x_i, R_k) may be expressed as

$$\left(\frac{\partial c}{\partial x} \right)_{x_i, R_k} = \sum_{j=1}^{N_x+2} A_{i,j} c(x_j, R_k, t) \quad (62)$$

$$\left(\frac{\partial^2 c}{\partial x^2}\right)_{x_i, r_k} = \sum_{j=2}^{n+2} B_{i,j} c(x_i, r_k, t) \quad (63)$$

$$\left(\frac{\partial c}{\partial r}\right)_{x_i, r_k} = \sum_{l=0}^{n+2} C_{i,l} c(x_i, r_l, t) \quad (64)$$

$$\left(\frac{\partial^2 c}{\partial r^2}\right)_{x_i, r_k} = \sum_{l=0}^{n+2} D_{i,l} c(x_i, r_l, t) \quad (65)$$

where N_x and N_r are the numbers of interior collocation points (chosen as the roots of an orthogonal polynomial [9]) in the x and r direction respectively and $A_{i,j}$, $B_{i,j}$, $C_{i,k}$ and $D_{i,k}$ are elements of matrices. The numerical values of those elements depend only on the degree and kind of the polynomial chosen for collocation [10]. Thus, if the matrix elements have once been calculated they may be used for any problem. The degree of the polynomial used depends on the desired accuracy of the simulation.

Using equations (62)-(65) we may discretize the partial differential equations (32)-(37) in terms of the concentrations at the collocation points. If we introduce the boundary conditions (43)-(48) we arrive at equations (66)-(71).

$$\frac{dc_{i,1}^*}{dT} \Big|_{x_i, r_k} = \beta \left\{ B_{i,1} c_{i,1}^*(0, R_k, T) + B_{i,n+2} c_{i,n+2}^*(x_i, R_k, T) + \sum_{j=2}^{n+1} B_{i,j} c_{i,j}^*(x_i, R_k, T) \right\} \quad (66)$$

$$+ \beta' \left\{ E_{i,1} c_{i,1}^*(x_i, 0, T) + E_{i,n+2} c_{i,n+2}^*(x_i, 1, T) + \sum_{l=2}^{n+1} E_{i,l} c_{i,l}^*(x_i, R_k, T) \right\}$$

$$\frac{dc_{i,2}^*}{dT} \Big|_{x_i, r_k} = \beta \left\{ B_{i,2} c_{i,2}^*(0, R_k, T) + \sum_{j=2}^{n+1} B_{i,j} c_{i,j}^*(x_i, R_k, T) \right\} \quad (67)$$

$$+ \beta' \left\{ E_{i,2} c_{i,2}^*(x_i, 0, T) + E_{i,n+2} c_{i,n+2}^*(x_i, 1, T) + \sum_{l=2}^{n+1} E_{i,l} c_{i,l}^*(x_i, R_k, T) \right\} - \alpha c_{i,2}^*$$

$$\frac{dc_{i,3}^*}{dT} \Big|_{x_i, r_k} = \beta \left\{ B_{i,3} c_{i,3}^*(0, R_k, T) + \sum_{j=2}^{n+1} B_{i,j} c_{i,j}^*(x_i, R_k, T) \right\} \quad (68)$$

$$+ \beta' \left\{ E_{i,3} c_{i,3}^*(x_i, 0, T) + E_{i,n+2} c_{i,n+2}^*(x_i, 1, T) + \sum_{l=2}^{n+1} E_{i,l} c_{i,l}^*(x_i, R_k, T) \right\} + \alpha c_{i,3}^*$$

$$\frac{dc_{i,4}^*}{dT} \Big|_{x_i, r_k} = \beta \left\{ B_{i,4} c_{i,4}^*(0, R_k, T) + B_{i,n+2} c_{i,n+2}^*(x_i, R_k, T) + \sum_{j=2}^{n+1} B_{i,j} c_{i,j}^*(x_i, R_k, T) \right\} \quad (69)$$

$$+ \beta' \left\{ F'_{i,4} c_{i,4}^*(x_i, 0, T) + F'_{i,n+2} c_{i,n+2}^*(x_i, R_k, T) + \sum_{l=2}^{n+1} F'_{i,l} c_{i,l}^*(x_i, R_k, T) \right\}$$

$$\frac{dc_{i,5}^*}{dT} \Big|_{x_i, r_k} = \beta \left\{ B_{i,5} c_{i,5}^*(0, R_k, T) + \sum_{j=2}^{n+1} B_{i,j} c_{i,j}^*(x_i, R_k, T) \right\} \quad (70)$$

$$+ \beta' \left\{ F'_{i,5} c_{i,5}^*(x_i, 0, T) + \sum_{l=2}^{n+1} F'_{i,l} c_{i,l}^*(x_i, R_k, T) \right\} - \alpha c_{i,5}^*$$

$$\frac{dc_{i1}^*}{dt'} = \beta \left\{ B_{i,4} c_{i1}^* (0, R_{i1}, T') + \sum_{j=2}^{M+4} B_{i,j} c_{i1}^* (x_j, R_{i1}, T') \right\} + \beta' \left\{ F'_{i,1} c_{i1}^* (x_i, 0, T') + \sum_{e=2}^{M+4} F'_{i,e} c_{i1}^* (x_i, R_{ie}, T') \right\} + c_{i1}^* \quad (71)$$

with

$$E_{e,A} = \frac{C_{e,A} + R_{e,A} D_{e,A}}{R_{e,A}} \quad (72)$$

and

$$F'_{e,A} = \frac{\sqrt{t'}}{\sqrt{t''} + \sqrt{t''} R'_{e,A}} (C'_{e,A} + D'_{e,A}) \quad (73)$$

Primed matrix elements correspond to the outer discretization function. As in the case of chronoamperometry we have to substitute implicit equations for the unknown concentrations at the boundaries. The calculations of the $c_1^*(x_1, 0, T')$, $c_1^*(x_1, 1, T')$, $c_1^*(x_1, 0, T')$, $c_1^*(0, R_{k1}, T')$ and $c_2^*(0, R_{k2}, T')$ is essentially the same as for chronoamperometric simulations and we refer to part 1 of this series [1] for the derivations.

They are [1]:

$$c_{11}^*(x_i, 0, T') = -\frac{1}{G_1} \left\{ \sum_{e=2}^{M+4} G_e c_{11}^* (x_i, R_{e1}, T') + \sum_{e=2}^{M+4} C_{n_{e1}, 1} C'_{e, 1} c_{11}^* (x_i, R_{e1}, T') + C_{n_{e1}, 2, 1} C'_{e, 2, 1} \right\} \quad (74)$$

$$c_{11}^*(x_i, 0, T') = -\frac{1}{G_1} \left\{ \sum_{e=2}^{M+4} G_e c_{11}^* (x_i, R_{e1}, T') + \sum_{e=2}^{M+4} C_{n_{e1}, 2, 1} C'_{e, 2, 1} c_{11}^* (x_i, R_{e1}, T') \right\} \quad (75)$$

$$c_{11}^*(x_i, 0, T') = -\frac{1}{G_1} \left\{ \sum_{e=2}^{M+4} G_e c_{11}^* (x_i, R_{e1}, T') + \sum_{e=2}^{M+4} C_{n_{e1}, 2, 1} C'_{e, 2, 1} c_{11}^* (x_i, R_{e1}, T') \right\} \quad (76)$$

$$c_{11}^*(x_i, 1, T') = c_{21}^*(x_i, 0, T') = \frac{1}{G_1} \left\{ \sum_{e=2}^{M+4} H_e c_{11}^* (x_i, R_{e1}, T') + \sum_{e=2}^{M+4} G_{e1} C'_{e, 1} c_{11}^* (x_i, R_{e1}, T') + C_{41} C'_{n_{41}, 1} \right\} \quad (77)$$

$$c_{11}^*(x_i, 1, T') = c_{21}^*(x_i, 0, T') = \frac{1}{G_1} \left\{ \sum_{e=2}^{M+4} H_e c_{11}^* (x_i, R_{e1}, T') + \sum_{e=2}^{M+4} C_{41} C'_{e, 1} c_{11}^* (x_i, R_{e1}, T') + C_{41} C'_{n_{41}, 1} \right\} \quad (78)$$

$$c_{C_0}^*(x_i, t, T) = c_{C_0}^*(x_i, 0, T) = \frac{1}{G_0} \left\{ \sum_{\ell=2}^{N_{C_0}} H_\ell c_{C_0}^*(x_i, R_\ell, T) + \sum_{\ell=2}^{N_{C_0}} C_{C_0} C'_{C_0, \ell} c_{C_0}^*(x_i, R_\ell, T') \right\} \quad (79)$$

$$c_{C_0}^*(0, R_k, T) = - \frac{1}{A_{4,4}} \sum_{j=2}^{N_{C_0}+4} A_{4,j} c_{C_0}^*(x_j, R_k, T) \quad (80)$$

$$c_{A_2}^*(0, R_k, T') = - \frac{1}{A_{4,4}} \left\{ A_{4, N_{A_2}+2} + \sum_{j=2}^{N_{A_2}+4} A_{4,j} c_{A_2}^*(x_j, R_k, T') \right\} \quad (81)$$

$$c_{B_2}^*(0, R_k, T') = - \frac{1}{A_{4,4}} \sum_{j=2}^{N_{B_2}+4} A_{4,j} c_{B_2}^*(x_j, R_k, T') \quad (82)$$

$$c_{C_1}^*(0, R_k, T') = - \frac{1}{A_{4,4}} \sum_{j=2}^{N_{C_1}+4} A_{4,j} c_{C_1}^*(x_j, R_k, T') \quad (83)$$

with

$$G_0 = (C_{N_{C_0}+2, N_{C_0}+1} - C'_{C_0, 4}) C_{C_0, 4} - C_{C_0, N_{C_0}+1} C_{N_{C_0}+2, N_{C_0}+1} \quad (84)$$

and

$$H_\ell = C_{N_{C_0}+2, \ell} C_{C_0, 4} - C_{C_0, N_{C_0}+1} C_{\ell, N_{C_0}+2} \quad (85)$$

The values of $c_{A_2}^*(0, R_k, T')$ and $c_{B_2}^*(0, R_k, T')$ may be calculated from equations (49) and (50), yielding

$$c_{A_2}^*(0, R_k, T') = - \frac{\theta_{A_2 R_k} S_A(T')}{A_{4,4} [1 + \theta_{A_2 R_k} S_A(T')]} \times \left\{ A_{4, N_{A_2}+2} + \sum_{j=2}^{N_{A_2}+4} A_{4,j} [c_{A_2}^*(x_j, R_k, T') + c_{B_2}^*(x_j, R_k, T')] \right\} \quad (86)$$

$$\text{and} \quad c_{B_2}^*(0, R_k, T') = - \frac{1}{A_{4,4} [1 + \theta_{A_2 R_k} S_A(T')]} \times \left\{ A_{4, N_{B_2}+2} + \sum_{j=2}^{N_{B_2}+4} A_{4,j} [c_{A_2}^*(x_j, R_k, T') + c_{B_2}^*(x_j, R_k, T')] \right\} \quad (87)$$

Now we may substitute (74)-(87) into equations (66)-(71) which gives us finally the discretized equations describing the time dependence of the concentration of all three species A, B and C at the collocation points.

From (66) it follows using (74), (77) and (86)

$$\frac{dc_{BA}^*}{dt'} \Big|_{X_i R_A} = \beta \left\{ -\frac{B_{i,A} \Theta_{AB} C_A(T')}{A_{i,A} [1 + \Theta_{AB} S_A(T')]} \left[A_{i,M_{i+2}} + \sum_{j=2}^{M_{i+4}} A_{i,j} [c_{BA}^*(X_i, R_A, T') + c_{BA}^*(X_i, R_A, T')] \right] + B_{i,M_{i+2}} + \sum_{j=1}^{M_{i+4}} B_{i,j} c_{BA}^*(X_i, R_A, T') \right. \\ \left. + \frac{P'}{G_A} \left\{ I_{i,A} C_{e_{M_{i+4}}} + \sum_{e=2}^{M_{i+4}} I_{e,A} (C_{e,i}^* - C_{e,M_{i+4}}) - I_{i,A} C_{e,M_{i+2}} - I_{e,A} C_{e,M_{i+4}} \right\} - C_{BA}^*(X_i, R_A, T') + \sum_{e=2}^{M_{i+4}} I_{e,A} C_{e,i}^* c_{BA}^*(X_i, R_A, T') \right\} \quad (88)$$

where

$$I_{e,A} = E_{M_{i+2},A} C_{e,i}^* - E_{e,A} C_{M_{i+2},i} \quad (89)$$

and

$$J_{e,A} = E_{i,A} C_{e,i}^* - E_{e,A} C_{i,i} \quad (90)$$

If we combine (67) with (75), (78) and (87), we get

$$\frac{dc_{BA}^*}{dt'} \Big|_{X_i R_A} = \beta \left\{ -\frac{B_{i,A}}{A_{i,A} [1 + \Theta_{AB} S_A(T')]} \left[A_{i,M_{i+2}} + \sum_{j=2}^{M_{i+4}} A_{i,j} [c_{BA}^*(X_i, R_A, T') + c_{BA}^*(X_i, R_A, T')] \right] \right. \\ \left. + \sum_{j=2}^{M_{i+4}} B_{i,j} c_{BA}^*(X_i, R_A, T') \right\} + \frac{P'}{G_A} \left\{ \sum_{e=2}^{M_{i+4}} J_{e,A} (C_{e,i}^* - C_{e,M_{i+4}}) - I_{i,A} C_{e,M_{i+2}} \right. \\ \left. - I_{e,A} C_{e,M_{i+4}} \right\} c_{BA}^*(X_i, R_A, T') + \sum_{e=2}^{M_{i+4}} I_{e,A} C_{e,i}^* c_{BA}^*(X_i, R_A, T') \Big\} - \alpha c_{BA}^* \quad (91)$$

Similarly (68) gives with (76), (79) and (80)

$$\frac{dc_{BA}^*}{dt'} \Big|_{X_i R_A} = \frac{\beta}{A_{i,A}} \sum_{j=2}^{M_{i+4}} K_{i,j} c_{BA}^*(X_i, R_A, T') \\ + \frac{P'}{G_A} \left\{ \sum_{e=2}^{M_{i+4}} [I_{e,A} (C_{e,i}^* - C_{e,M_{i+4}}) - I_{i,A} C_{e,M_{i+2}} - I_{e,A} C_{e,M_{i+4}}] c_{BA}^*(X_i, R_A, T') \right. \\ \left. + \sum_{e=2}^{M_{i+4}} I_{e,A} C_{e,i}^* c_{BA}^*(X_i, R_A, T') \right\} + \alpha c_{BA}^* \quad (92)$$

For the outer function describing the concentration species A it holds from (69), (77), and (81)

$$\frac{dc_A^*}{dt'} \Big|_{X_i R_A} = \frac{\beta}{A_{i,A}} \left\{ K_{i,M_{i+2}} + \sum_{j=2}^{M_{i+4}} K_{i,j} c_{BA}^*(X_i, R_A, T') \right\} \\ + \frac{P'}{G_A} \left\{ L_{i,M_{i+2},A} + \sum_{e=2}^{M_{i+4}} P_{i,A}^e H_e c_{BA}^*(X_i, R_A, T') + \sum_{e=2}^{M_{i+4}} L_{e,A}^i c_{BA}^*(X_i, R_A, T') \right\} \quad (93)$$

Equations (70), (78), and (82) combine to give

$$\frac{dc_{B2}^*}{dt'} \Big|_{X_i R_A} = \frac{\beta}{A_{i,A}} \sum_{j=2}^{M_{i+4}} K_{i,j} c_{B2}^*(X_i, R_A, T') \\ + \frac{P'}{G_A} \left\{ \sum_{e=2}^{M_{i+4}} P_{i,A}^e H_e c_{BA}^*(X_i, R_A, T') + \sum_{e=2}^{M_{i+4}} L_{e,A}^i c_{B2}^*(X_i, R_A, T') \right\} - \alpha c_{B2}^* \quad (94)$$

Finally (71), (79), and (83) yield

$$\frac{dc_{i2}^*}{dT} = \frac{\beta}{A_{i2}^*} \sum_{j=2}^{N_{i2}+1} K_{i,j} c_{i2}^*(X_j, R_{i2}^*, T') + \frac{\beta^*}{G_i} \left[\sum_{e=2}^{N_{i2}+1} F'_{e,i} G_e c_{i2}^*(X_e, R_{i2}^*, T') + \sum_{e=2}^{N_{i2}+1} L'_{e,i} c_{i2}^*(X_e, R_{i2}^*, T') \right] + \alpha c_{B2}^* \quad (95)$$

where we used

$$K_{i,j} = B_{i,j} A_{i,i} - B_{i,i} A_{i,j} \quad (96)$$

and

$$L'_{e,i} = F'_{e,i} G_e + C_{i,i} C'_{e,i} F'_{e,i} \quad (97)$$

Thus, the system of 6 second order partial differential equations (32)-(37) has been converted into a set of $3N_A(N_B + N_C)$ simultaneous ordinary differential equations, (88) and (91)-(95). After integrating this set we get the concentrations of species A, B and C at the collocation points (X_i, R_k) and (X_i, R_k') as a function of the simulation time T' .

One of the distinctive features of the orthogonal collocation approach can be seen from a comparison of equations (88) and (91)-(95). Those formulae are very similar from a structural point of view. Furthermore, compared to the expressions describing the model of a chronoamperometric experiment [1], there are only few changes in the inner

functions, while the outer functions are the same both for the models of cyclic voltammetry and chronoamperometry.

CALCULATION OF THE CURRENT

Also, the calculation of the current is fully analogous to that performed for the chronoamperometric model. Again we have to integrate the flux over the part between 0 and r_0 on the r-axis

$$i = nFD \int_0^{r_0} 2\pi r \left(\frac{\partial c_A}{\partial x} \right)_{x=0} dr \quad (98)$$

Transforming the right hand side of equation (98) into a dimensionless form we get

$$i = nFDc_A^* \sqrt{\frac{\beta}{\pi}} \cdot 2 \int_0^1 R \left(\frac{\partial c_A}{\partial x} \right)_{x=0} dR \quad (99)$$

or, using Nicholson and Shain's current function [6]

$$\chi = \frac{i}{nFDc_A^* \sqrt{\pi}} = 2 \sqrt{\frac{\beta}{\pi}} \int_0^1 R \left(\frac{\partial c_A}{\partial x} \right)_{x=0} dR \quad (100)$$

The integration may be performed exactly by a quadrature method [11], for we know the derivative $(\partial c_A^* / \partial x)_{x=0}$ at all collocation points

$$\chi = 2 \sqrt{\frac{\beta}{\pi}} \sum_{k=1}^{N+2} Q_k R_k \frac{1}{1 + \theta_{AB}^k S_A(T')} - [A_{1, N+2}] \quad (101)$$

$$\sum_{j=2}^{N+4} A_{kj} \zeta_{kj}^k (x_j, R_k, T') - \theta_{AB}^k S_A(T') \sum_{j=2}^{N+4} A_{kj} \zeta_{kj}^k (x_j, R_k, T')$$

where the elements of the vector Q depend only on the degree and kind of the trial function in x -direction.

MODEL MECHANISM FOR OXIDATION OF I

It has been shown [12,13] that the oxidation of I (denoted as A) may be described by an ECE-type mechanism, where protons released after the oxidation step are picked up by unoxidized phenol molecules giving the protonated form of I, HA^+ . The latter is oxidized at more positive potentials releasing two protons during reaction. The end product of both reactions is the stable phenoxenium cation, E, which is most probably formed from the neutral phenoxy radical, C, in a homogeneous redox reaction between C and the primary radical cation B [13]. The intermediate D was not oxidized further. The observation of changes in voltammograms of I with electrode size has been attributed to the protonation reaction $A \rightarrow HA^+$ which causes a phenol-free layer in front of the electrode [5]. The time after which phenol again reaches the electrode surface is decreased if more substrate diffuses into this layer due to edge effects.

With our two-dimensional simulation model it is now possible to include the effects of a finite disc into the calculations. This may also serve as a further example for the application of orthogonal collocation to electroanalytical problems. In this paper we show the derivation of the expressions for dc^0/dt' for the species involved, while the comparison with experimental results will be reported in part 4 of this series.

The kinetic diffusion equations for the above model mechanism in dimensionless form are

$$\frac{\partial c_{AB}^0}{\partial t'} = \beta \frac{\partial^2 c_{AB}^0}{\partial x^2} + \frac{\beta'}{R} \frac{\partial c_{AB}^0}{\partial R} + \beta' \frac{\partial^2 c_{AB}^0}{\partial R^2} - \alpha_1 c_{AB}^0 c_{AB}^0 - \alpha_2 c_{AB}^0 c_{AB}^0 + \alpha_3 c_{AB}^0 c_{AB}^0 \quad (102)$$

$$\frac{\partial c_{AB}^0}{\partial t'} = \beta \frac{\partial^2 c_{AB}^0}{\partial x^2} + \frac{\beta'}{R} \frac{\partial c_{AB}^0}{\partial R} + \beta' \frac{\partial^2 c_{AB}^0}{\partial R^2} - \alpha_1 c_{AB}^0 - \alpha_2 c_{AB}^0 c_{AB}^0 + \alpha_3 c_{AB}^0 c_{AB}^0 \quad (103)$$

$$\frac{\partial c_{CE}^0}{\partial t'} = \beta \frac{\partial^2 c_{CE}^0}{\partial x^2} + \frac{\beta'}{R} \frac{\partial c_{CE}^0}{\partial R} + \beta' \frac{\partial^2 c_{CE}^0}{\partial R^2} + \alpha_1 c_{CE}^0 + \alpha_2 c_{CE}^0 - \alpha_3 c_{CE}^0 + \alpha_4 c_{CE}^0 c_{CE}^0 \quad (104)$$

$$\frac{\partial c_{HA^+}^0}{\partial t'} = \beta \frac{\partial^2 c_{HA^+}^0}{\partial x^2} + \frac{\beta'}{R} \frac{\partial c_{HA^+}^0}{\partial R} + \beta' \frac{\partial^2 c_{HA^+}^0}{\partial R^2} + \alpha_1 c_{HA^+}^0 + 2\alpha_3 c_{HA^+}^0 - \alpha_2 c_{HA^+}^0 c_{HA^+}^0 \quad (105)$$

$$\frac{\partial c_{mn2}}{\partial T'} = \beta \frac{\partial^2 c_{mn2}}{\partial X^2} + \frac{\beta'}{R} \frac{\partial c_{mn2}}{\partial R} + \beta' \frac{\partial^2 c_{mn2}}{\partial R^2} + \alpha_1 c_{n1}^* c_{m2}^* \quad (106)$$

$$\frac{\partial c_{m2}}{\partial T'} = \beta \frac{\partial^2 c_{m2}}{\partial X^2} + \frac{\beta'}{R} \frac{\partial c_{m2}}{\partial R} + \beta' \frac{\partial^2 c_{m2}}{\partial R^2} - \alpha_3 c_{m2}^* \quad (107)$$

$$\frac{\partial c_{n2}}{\partial T'} = \beta \frac{\partial^2 c_{n2}}{\partial X^2} + \frac{\beta'}{R} \frac{\partial c_{n2}}{\partial R} + \beta' \frac{\partial^2 c_{n2}}{\partial R^2} + \alpha_2 c_{n1}^* c_{n2}^* - \alpha_4 c_{n1}^* c_{n2}^* \quad (108)$$

$$\frac{\partial c_{n1}}{\partial T'} = \beta \frac{\partial^2 c_{n1}}{\partial X^2} + \frac{\beta' \sqrt{\beta'}}{\sqrt{\beta''} + \sqrt{\beta'} R} \frac{\partial c_{n1}}{\partial R} + \beta'' \frac{\partial^2 c_{n1}}{\partial R^2} - \alpha_2 c_{n2}^* c_{n1}^* - \alpha_4 c_{n1}^* c_{n1}^* + \alpha_6 c_{n1}^* c_{n1}^* \quad (109)$$

$$\frac{\partial c_{n1}}{\partial T'} = \beta \frac{\partial^2 c_{n1}}{\partial X^2} + \frac{\beta' \sqrt{\beta'}}{\sqrt{\beta''} + \sqrt{\beta'} R} \frac{\partial c_{n1}}{\partial R} + \beta'' \frac{\partial^2 c_{n1}}{\partial R^2} - \alpha_4 c_{n1}^* - \alpha_6 c_{n1}^* c_{n1}^* + \alpha_8 c_{n1}^* c_{n1}^* \quad (110)$$

$$\frac{\partial c_{n1}}{\partial T'} = \beta \frac{\partial^2 c_{n1}}{\partial X^2} + \frac{\beta' \sqrt{\beta'}}{\sqrt{\beta''} + \sqrt{\beta'} R} \frac{\partial c_{n1}}{\partial R} + \beta'' \frac{\partial^2 c_{n1}}{\partial R^2} + \alpha_2 c_{n1}^* + \alpha_3 c_{n1}^* - \alpha_5 c_{n1}^* c_{n1}^* + \alpha_6 c_{n1}^* c_{n1}^* \quad (111)$$

$$\frac{\partial c_{mn2}}{\partial T'} = \beta \frac{\partial^2 c_{mn2}}{\partial X^2} + \frac{\beta' \sqrt{\beta'}}{\sqrt{\beta''} + \sqrt{\beta'} R} \frac{\partial c_{mn2}}{\partial R} + \beta'' \frac{\partial^2 c_{mn2}}{\partial R^2} + \alpha_1 c_{n2}^* + 2\alpha_3 c_{m2}^* - \alpha_5 c_{n1}^* c_{m2}^* \quad (112)$$

$$\frac{\partial c_{m2}}{\partial T'} = \beta \frac{\partial^2 c_{m2}}{\partial X^2} + \frac{\beta' \sqrt{\beta'}}{\sqrt{\beta''} + \sqrt{\beta'} R} \frac{\partial c_{m2}}{\partial R} + \beta'' \frac{\partial^2 c_{m2}}{\partial R^2} + \alpha_2 c_{n1}^* c_{m2}^* \quad (113)$$

$$\frac{\partial c_{n2}}{\partial T'} = \beta \frac{\partial^2 c_{n2}}{\partial X^2} + \frac{\beta' \sqrt{\beta'}}{\sqrt{\beta''} + \sqrt{\beta'} R} \frac{\partial c_{n2}}{\partial R} + \beta'' \frac{\partial^2 c_{n2}}{\partial R^2} - \alpha_3 c_{n2}^* \quad (114)$$

$$\frac{\partial c_{n1}}{\partial T'} = \beta \frac{\partial^2 c_{n1}}{\partial X^2} + \frac{\beta' \sqrt{\beta'}}{\sqrt{\beta''} + \sqrt{\beta'} R} \frac{\partial c_{n1}}{\partial R} + \beta'' \frac{\partial^2 c_{n1}}{\partial R^2} + \alpha_4 c_{n2}^* c_{n1}^* - \alpha_6 c_{n1}^* \quad (115)$$

where

$$\alpha_j = \beta_j / \alpha, \quad j = 1, 2, 3, 4, 5 \quad (116)$$

$$\alpha_1 = \beta_1 c_{n1}^* / \alpha \quad (117)$$

and

$$\alpha_6 = \beta_6 c_{n1}^* / \alpha \quad (118a)$$

$$\alpha_4 = \beta_4 c_{n2}^* / \alpha \quad (118b)$$

In addition to the initial conditions (41) and (42) we

assume

$$T' \geq 0, 0 \leq x \leq 1, 0 \leq R' \leq 1:$$

$$c_{\text{H}_2}^p(x, R, 0) = c_{\text{H}_2}^p(x, R', 0) = c_{\text{H}_2\text{O}_2}(x, R, 0) = c_{\text{H}_2\text{O}_2}(x, R', 0) =$$

$$c_{\text{O}_2}^p(x, R, 0) = c_{\text{O}_2}^p(x, R', 0) = c_{\text{H}_2}^p(x, R, 0) = c_{\text{H}_2}^p(x, R', 0) = 0 \quad (119)$$

The boundary conditions include now

$$T' > 0, x = 1, 0 \leq R \leq 1:$$

$$c_{\text{H}_2}^p(1, R, T') = c_{\text{H}_2}^p(1, R', T') = c_{\text{H}_2}^p(1, R, T) = c_{\text{H}_2}^p(1, R', T) = 0 \quad (120)$$

$$T' > 0, x = 1, 0 \leq R' \leq 1:$$

$$c_{\text{H}_2}^p(1, R, T') = c_{\text{H}_2\text{O}_2}(1, R', T') = c_{\text{H}_2}^p(1, R, T) = c_{\text{H}_2}^p(1, R', T) = 0 \quad (121)$$

$$T' > 0, 0 \leq x \leq 1, R' = 1:$$

$$c_{\text{H}_2}^p(x, 1, T') = c_{\text{H}_2}^p(x, 1, T') = c_{\text{H}_2}^p(x, 1, T) = c_{\text{H}_2}^p(x, 1, T) = 0 \quad (122)$$

$$T' > 0, x = 0, 0 \leq R \leq 1:$$

$$\left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=0} = - \left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=1} \quad (123)$$

$$\frac{c_{\text{H}_2}^p(0, R, T')}{c_{\text{H}_2}^p(0, R, T)} = \Theta_{\text{H}_2\text{O}_2/D} S_\lambda(T') \quad (124)$$

(where $\Theta_{\text{H}_2\text{O}_2/D}$ is defined in analogy to $\Theta_{\text{H}_2\text{O}/D}$)

$$\left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=0} = 0 \quad (125)$$

$$\left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=0} = - \left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=1} \quad (126)$$

$$\frac{c_{\text{H}_2}^p(0, R, T')}{c_{\text{H}_2}^p(0, R, T)} = \Theta_{\text{H}_2\text{O}_2/D} S_\lambda(T') \quad (127)$$

$$T' > 0, x = 0, 0 \leq R' \leq 1:$$

$$\left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=0} = \left(\frac{\partial c_{\text{H}_2\text{O}_2}}{\partial x} \right)_{x=0} = \left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=0} = \left(\frac{\partial c_{\text{H}_2}^p}{\partial x} \right)_{x=0} \quad (128)$$

$$T' > 0, x > 0, R = 1 (R' = 0):$$

$$c_{\text{H}_2}^p(x, 0, T') = c_{\text{H}_2}^p(x, 1, T') \quad (129)$$

$$c_{\text{H}_2\text{O}_2}^p(x, 0, T') = c_{\text{H}_2\text{O}_2}^p(x, 1, T') \quad (130)$$

$$C_{\text{B}}^p(x, 0, T') = C_{\text{B}}^p(x, 4, T') \quad (131)$$

$$C_{\text{E}}^p(x, 0, T') = C_{\text{E}}^p(x, 4, T') \quad (132)$$

$$\left(\frac{\partial C_{\text{B}}^p}{\partial R} \right)_{R=1} = \sqrt{\frac{R'}{R}} \left(\frac{\partial C_{\text{B}}^p}{\partial R'} \right)_{R'=0} \quad (133)$$

$$\left(\frac{\partial C_{\text{E}}^p}{\partial R} \right)_{R=1} = \sqrt{\frac{R'}{R}} \left(\frac{\partial C_{\text{E}}^p}{\partial R'} \right)_{R'=0} \quad (134)$$

$$\left(\frac{\partial C_{\text{P}}^p}{\partial R} \right)_{R=0} = \sqrt{\frac{R'}{R}} \left(\frac{\partial C_{\text{P}}^p}{\partial R'} \right)_{R'=0} \quad (135)$$

$$\left(\frac{\partial C_{\text{P}}^p}{\partial R} \right)_{R=0} = \sqrt{\frac{R'}{R}} \left(\frac{\partial C_{\text{P}}^p}{\partial R'} \right)_{R'=0} \quad (136)$$

$T' > 0, x > 0, R \neq 0$:

$$\left(\frac{\partial C_{\text{B}}^p}{\partial R} \right)_{R=0} = \left(\frac{\partial C_{\text{E}}^p}{\partial R} \right)_{R=0} = \left(\frac{\partial C_{\text{P}}^p}{\partial R} \right)_{R=0} = \left(\frac{\partial C_{\text{P}}^p}{\partial R} \right)_{R=0} = 0 \quad (137)$$

Now, the set of equations (102)-(115) in connection with the

initial conditions (41), (42) and (119) and the boundary conditions (43)-(50), (54)-(61) and (120)-(137) has to be solved.

After proceeding in the same manner as for the BC mechanism we arrive at

$$\frac{dC_{\text{B}}^p}{dT'} \Big|_{X_1 R_A} = \text{RHS (88)} - \alpha_2 C_{\text{H}_2\text{O}_2}^p C_{\text{A}_2}^p - \alpha_4 C_{\text{B}_2}^p C_{\text{P}_2}^p + \alpha_6 C_{\text{B}_2}^p C_{\text{E}_2}^p \quad (138)$$

$$\frac{dC_{\text{E}}^p}{dT'} \Big|_{X_1 R_A} = [\text{RHS (94) without kinetic term}] - \alpha_4 C_{\text{B}_2}^p - \alpha_6 C_{\text{B}_2}^p C_{\text{E}_2}^p + \alpha_8 C_{\text{B}_2}^p C_{\text{P}_2}^p \quad (139)$$

$$\begin{aligned} \frac{dC_{\text{P}}^p}{dT'} \Big|_{X_1 R_A} = & \beta \left\{ - \frac{B_{1,4} \Theta_{\text{C}_6\text{H}_5\text{N}_3} S_1(r)}{A_{1,4} + \Theta_{\text{C}_6\text{H}_5\text{N}_3} S_1(r)} \sum_{j=2}^{M+4} A_{1,j} [C_{\text{E}}^p(X_j, R_A, T) + C_{\text{B}}^p(X_j, R_A, T')] \right. \\ & + \sum_{j=2}^{M+4} B_{1,j} C_{\text{E}}^p(X_j, R_A, T') \Big\} + \frac{A'}{G} \left\{ \sum_{j=2}^{M+4} [I_{1,j} (C_{\text{P}}^p - C_{\text{H}_2\text{O}_2\text{N}_2\text{O}_2}) - I_{1,j} (C_{\text{E}}^p + C_{\text{B}}^p)] \right. \\ & \left. \left. + C_{\text{E}}^p(X_1, R_A, T') + \sum_{j=2}^{M+4} I_{1,j} C_{\text{E}}^p(X_j, R_A, T') \right\} + \alpha_1 C_{\text{B}_2}^p + \alpha_2 C_{\text{B}_2}^p - \alpha_4 C_{\text{B}_2}^p + \alpha_6 C_{\text{B}_2}^p \right. \\ & \left. + \alpha_8 C_{\text{B}_2}^p \right\} \quad (140) \end{aligned}$$

$$\begin{aligned} \frac{dC_{\text{B}}^p}{dT'} \Big|_{X_1 R_A} = & [\text{RHS (92) without kinetic term and } C_{\text{H}_2\text{O}_2}^p \text{ substituted for } C_{\text{P}}^p] \\ & + \alpha_1 C_{\text{B}_2}^p + 2\alpha_3 C_{\text{B}_2}^p - \alpha_5 C_{\text{B}_2}^p C_{\text{H}_2\text{O}_2}^p \quad (141) \end{aligned}$$

$$\begin{aligned} \frac{dC_{\text{E}}^p}{dT'} \Big|_{X_1 R_A} = & [\text{RHS (140) without kinetic terms and } C_{\text{H}_2\text{O}_2}^p \text{ substituted for } C_{\text{P}}^p, \\ & C_{\text{P}}^p \text{ substituted for } C_{\text{E}}^p \text{ and } \Theta_{\text{H}_2\text{O}_2\text{N}_3} \text{ substituted for } \Theta_{\text{C}_6\text{H}_5\text{N}_3}] + \end{aligned}$$

$$+ \alpha_2 c_{\text{Na}}^p c_{\text{NaO}_2}^p \quad (142)$$

$$\frac{dc_{\text{Na}}^p}{dT' / x_i R_A} = [\text{RHS}(94) \text{ without kinetic term and } c_{\text{O}_2}^p \text{ substituted for } c_{\text{O}_2}^p \text{ and } c_{\text{NaO}_2}^p \text{ substituted for } c_{\text{NaO}_2}^p] - \alpha_3 c_{\text{Na}}^p \quad (143)$$

$$\frac{dc_{\text{O}_2}^p}{dT' / x_i R_A} = [\text{RHS}(94) \text{ without kinetic term and } c_{\text{O}_2}^p \text{ substituted for } c_{\text{O}_2}^p \text{ and } c_{\text{NaO}_2}^p \text{ substituted for } c_{\text{NaO}_2}^p \text{ and } c_{\text{O}_2}^p \text{ substituted for } c_{\text{O}_2}^p] + \alpha_0 c_{\text{Na}}^p c_{\text{NaO}_2}^p - \alpha_4 c_{\text{O}_2}^p c_{\text{O}_2}^p \quad (144)$$

$$\frac{dc_{\text{NaO}_2}^p}{dT' / x_i R_A} = \text{RHS}(93) - \alpha_2 c_{\text{NaO}_2}^p c_{\text{O}_2}^p - \alpha_5 c_{\text{O}_2}^p c_{\text{O}_2}^p + \alpha_6 c_{\text{Na}}^p c_{\text{O}_2}^p \quad (145)$$

$$\frac{dc_{\text{O}_2}}{dT' / x_i R_A} = [\text{RHS}(94) \text{ without kinetic term}] - \alpha_2 c_{\text{O}_2}^p - \alpha_3 c_{\text{O}_2}^p c_{\text{O}_2}^p + \alpha_6 c_{\text{Na}}^p c_{\text{O}_2}^p \quad (146)$$

$$\frac{dc_{\text{NaO}_2}}{dT' / x_i R_A} = [\text{RHS}(95) \text{ without kinetic term}] + \alpha_2 c_{\text{O}_2}^p + \alpha_3 c_{\text{O}_2}^p - \alpha_4 c_{\text{O}_2}^p c_{\text{O}_2}^p + \alpha_6 c_{\text{Na}}^p c_{\text{O}_2}^p \quad (147)$$

$$\frac{dc_{\text{NaO}_2}}{dT' / x_i R_A} = [\text{RHS}(95) \text{ without kinetic term and } c_{\text{NaO}_2}^p \text{ substituted for } c_{\text{O}_2}^p] + \alpha_2 c_{\text{O}_2}^p + 2 \alpha_3 c_{\text{O}_2}^p - \alpha_4 c_{\text{NaO}_2}^p c_{\text{O}_2}^p \quad (148)$$

$$\frac{dc_{\text{NaO}_2}^p}{dT' / x_i R_A} = [\text{RHS}(95) \text{ without kinetic term and } c_{\text{NaO}_2}^p \text{ substituted for } c_{\text{O}_2}^p] + \alpha_2 c_{\text{NaO}_2}^p c_{\text{O}_2}^p \quad (149)$$

$$\frac{dc_{\text{O}_2}^p}{dT' / x_i R_A} = [\text{RHS}(95) \text{ without kinetic term and } c_{\text{O}_2}^p \text{ substituted for } c_{\text{O}_2}^p] - \alpha_2 c_{\text{O}_2}^p \quad (150)$$

$$\frac{dc_{\text{O}_2}}{dT' / x_i R_A} = [\text{RHS}(95) \text{ without kinetic terms and } c_{\text{O}_2}^p \text{ substituted for } c_{\text{O}_2}^p] + \alpha_0 c_{\text{Na}}^p c_{\text{O}_2}^p - \alpha_4 c_{\text{O}_2}^p c_{\text{O}_2}^p \quad (151)$$

Again, the close resemblance of all expressions may be noted. The current function in this model is determined by the fluxes of A, H^+ and C to the electrode

$$\begin{aligned} \mathcal{I} &= 2 \sqrt{\frac{A}{\pi}} \int R \left[\left(\frac{\partial c_{\text{Na}}^p}{\partial x} \right)_{x_0} \left(\frac{\partial c_{\text{NaO}_2}^p}{\partial x} \right)_{x_0} + \left(\frac{\partial c_{\text{O}_2}^p}{\partial x} \right)_{x_0} \right] dR \\ &= 2 \sqrt{\frac{A}{\pi}} \sum_{i=1}^{n_{\text{elec}}} Q_e R_i \left[\frac{1}{1 + \Theta_{\text{NaO}_2}^p S_i(T)} \left\{ A_{i,1} c_{\text{Na}}^p c_{\text{NaO}_2}^p (x_i, R_i, T) \right. \right. \\ &\quad \left. \left. - \Theta_{\text{NaO}_2}^p S_i(T) \sum_{j=2}^{n_{\text{elec}}} A_{i,j} c_{\text{Na}}^p (x_j, R_i, T) \right\} + \frac{n_1}{n_e} \frac{1}{1 + \Theta_{\text{NaO}_2}^p S_1(T)} \right. \\ &\quad \left[\sum_{j=2}^{n_{\text{elec}}} A_{1,j} c_{\text{NaO}_2}^p (x_j, R_1, T) - \Theta_{\text{NaO}_2}^p S_1(T) \sum_{j=2}^{n_{\text{elec}}} A_{1,j} c_{\text{O}_2}^p (x_j, R_1, T) \right] \\ &\quad \left. + \frac{n_2}{n_e} \frac{1}{1 + \Theta_{\text{O}_2}^p S_2(T)} \left[\sum_{j=2}^{n_{\text{elec}}} A_{2,j} c_{\text{O}_2}^p (x_j, R_2, T) - \Theta_{\text{O}_2}^p S_2(T) \sum_{j=2}^{n_{\text{elec}}} A_{2,j} c_{\text{O}_2}^p (x_j, R_2, T) \right] \right] \end{aligned} \quad (152)$$

CONCLUSION

We showed in this paper the use of two-dimensional collocation to spatially discretize partial differential equations describing a model of cyclic voltammetric experiments under the influence of edge effects. The formal similarity of discretized equations for even very complicated mechanisms has been demonstrated by considering the oxidation scheme of phenol I. This similarity simplifies the writing and testing of computer programs used to calculate numerical simulation results. In fact, a change in mechanism normally only requires the exchange of a few FORTRAN statements while the main body of the program is untouched. We see this as one of the great advantages of our method which outweighs the difficulties encountered while assessing the features and behavior of a new type of a model, as this two-dimensional one. A thorough discussion of the numerical results for cyclic voltammetry simulations is given in part 4.

ACKNOWLEDGEMENT

We thank the Office of Naval Research, Washington, D.C., for support of this work.

REFERENCES

1. B. Speiser and S. Pons, *Can. J. Chem.*, in press.
2. B. Speiser and S. Pons, in preparation.
3. R. Lines and V.D. Parker, *Acta Chem. Scand.* B31, 369 (1977).
4. J. Heinze, personal communication.
5. B. Speiser and A. Rieker, *Electrochim. Acta* 23, 983 (1978).
6. R.S. Nicholson and I. Shain, *Anal. Chem.* 36, 706 (1964).
7. B. Speiser and A. Rieker, *J. Electroanal. Chem.* 102, 373 (1979).
8. S. Pons, *Can. J. Chem.* 59, 1538 (1981).
9. J. Villadsen and M.L. Michelsen, *Solution of Differential Equation Models by Polynomial Approximation*, Prentice Hall, Englewood Cliffs, 1978.
10. L.F. Whiting and P.W. Carr, *J. Electroanal. Chem.* 81, 1 (1977).
11. Ref. (9), p. 134.
12. B. Speiser and A. Rieker, *J. Electroanal. Chem.* 102, 373 (1979).
13. B. Speiser and A. Rieker, *J. Electroanal. Chem.* 110, 231 (1980).

SP472-3/413

472:CAN:716:lab
78a472-60R

SP472-3/813

TECHNICAL REPORT DISTRIBUTION LIST, 359

No.	Copies	No.	Copies
Dr. E. Nowak Naval Research Laboratory Code 6130 Washington, D.C. 20375	1	Dr. Bernard Spiegelholz U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709	1
Dr. John F. Houlihan Shenango Valley Campus Pennsylvania State University Shanes, Pennsylvania 16146	1	Dr. Dennis Elliott Air Force Office of Scientific Research Boeing AFB Washington, DC 20332	1
Dr. D. F. Shriver Department of Chemistry Northwestern University Evanston, Illinois 60201	1	Dr. David Aikens Chemistry Department Rensselaer Polytechnic Institute Troy, NY 12181	1
Dr. D. R. Whitmore Department of Materials Science Northwestern University Evanston, Illinois 60201	1	Dr. A. P. S. Lever Chemistry Department York University Downsview, Ontario M3J1P3 Canada	1
Dr. Alan Bewick Department of Chemistry The University Southampton, SO9 5NH England	1	Mr. Maurice F. Murphy Naval Sea Systems Command 69332	1
Dr. A. Rimp NAVSEA-5433 NC 76 2541 Jefferson Davis Highway Arlington, Virginia 20362	1	2221 Jefferson Davis Highway Arlington, VA 20360	1
Dr. John Kincaid Department of the Navy Strategic Systems Project Office Room 901 Washington, DC 20376	1	Dr. Stanislaw Sapek Naval Ocean Systems Center Code 6343 San Diego, CA 92152	1
M. L. Roberston Manager, Electrochemical Power Sonics Division Naval Weapons Support Center Crane, Indiana 47522	1	Dr. Gregory Farrington Department of Materials Science & Engineering University of Pennsylvania Philadelphia, PA 19104	1
Dr. Elton Cairns Energy & Environment Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720	1	Dr. Bruce Dunn Department of Engineering & Applied Science University of California Los Angeles, CA 90024	1

TECHNICAL REPORT DISTRIBUTION LIST, 359

No.	Copies	No.	Copies
Dr. A. B. Ellis Chemistry Department University of Wisconsin Madison, Wisconsin 53706	1	Dr. R. P. Van Duyne Department of Chemistry Northwestern University Evanston, Illinois 60201	1
Dr. R. Wrightson Chemistry Department Massachusetts Institute of Technology Cambridge, Massachusetts 02139	1	Dr. E. Stanley-Pope Department of Chemistry University of Alberta Edmonton, Alberta CANADA T6G 2G2	1
Larry E. Plev Naval Weapons Support Center Code 30736, Building 2906 Crane, Indiana 47522	1	Dr. Michael J. Weaver Department of Chemistry Michigan State University East Lansing, Michigan 48824	1
S. Rabe DOE (STOR) 600 E Street Washington, D.C. 20545	1	Dr. R. David Bush KIC Corporation 35 Channel Street Newton, Massachusetts 02158	1
Dr. Aaron Wolf Brown University Department of Chemistry Providence, Rhode Island 02192	1	Dr. J. David Mervin Research Laboratories Division Hughes Aircraft Company 3011 Malibu Canyon Road Malibu, California 90265	1
Dr. R. C. Chudecek McGraw-Hill Company Edison Battery Division Post Office Box 28 Bloomfield, New Jersey 07003	1	Dr. Martin Fleischmann Department of Chemistry University of Southampton Southampton SO9 5NH England	1
Dr. A. J. Bard University of Texas Department of Chemistry Austin, Texas 78712	1	Dr. Janet Oteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. M. H. Nicholson Electronics Research Center Rockwell International 3370 Mirsaline Avenue Anaheim, California	1	Dr. R. A. Oteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. Donald W. Ernst Naval Surface Weapons Center Code 8-13 White Oak Laboratory Silver Spring, Maryland 20910	1	Mr. James E. Maden Naval Underwater Systems Center Code 3632 Newport, Rhode Island 02840	1

3

2

SP672-3/11

672:CAN:715:enj
70a-72-608

SP672-3/11

672:CAN:716:ddc
70a-72-608

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No. Copies	No. Copies	No. Copies	No. Copies				
Office of Naval Research Attn: Code 672 800 North Quincy Street Arlington, Virginia 22217	2	U.S. Army Research Office Attn: CDR-LA-1P P.O. Box 1211 Research Triangle Park, N.C. 27709	1	Dr. Paul Delaney Department of Chemistry New York University New York, New York 10003	1	Dr. P. J. Hendra Department of Chemistry University of Southampton Southampton SO9 5NH United Kingdom	1
ONR Western Regional Office Attn: Dr. A. J. Marcus 1030 East Green Street Pasadena, California 91106	1	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152	1	Dr. E. Turner Department of Chemistry Case Western Reserve University Cleveland, Ohio 44106	1	Dr. Sam Parsons Department of Chemistry Purdue University West Lafayette, Indiana 47907	1
ONR Eastern Regional Office Attn: Dr. L. N. Pueblo Building 114, Section D 666 Summer Street Boston, Massachusetts 02210	1	Naval Weapons Center Attn: Dr. A. S. Master, Chemistry Division China Lake, California 93553	1	Dr. D. W. Benson Department of Chemical Engineering Brigham Young University Provo, Utah 84602	1	Dr. George W. Murray Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27516	1
Director, Naval Research Laboratory Attn: Code 6100 Washington, D.C. 20390	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93041	1	Dr. R. A. Marcus Department of Chemistry California Institute of Technology Pasadena, California 91109	1	Naval Ocean Systems Center Attn: Technical Library San Diego, California 92152	1
The Assistant Secretary of the Navy (R&D) Department of the Navy Room 44734, Pentagon Washington, D.C. 20330	1	Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940	1	Dr. J. J. Auburn Bell Laboratories Murray Hill, New Jersey 07974	1	Dr. C. E. Mueller The Electrochemistry Branch Materials Division, Research & Technology Department Naval Surface Warfare Center White Oak Laboratory Silver Spring, Maryland 20910	1
Commander, Naval Air Systems Command Attn: Code 310C (R. Assmunder) Department of the Navy Washington, D.C. 20340	1	Naval Ship Research and Development Center Attn: Dr. G. Sosmajian, Applied Chemistry Division Annapolis, Maryland 21401	1	Dr. T. Keton Lockheed Missiles & Space Co., Inc. P.O. Box 506 Sunnyvale, California 94088	1	Dr. G. Goodman Globe-Union Incorporated 3737 North Green Bay Avenue Milwaukee, Wisconsin 53201	1
Defense Technical Information Center Building 3, Cameron Station Alexandria, Virginia 22314	12	Naval Ocean Systems Center Attn: Dr. S. Yamamoto, Marine Sciences Division San Diego, California 92132	1	Dr. Joseph Singer, Code 302-1 NASA-Lewis 21000 Brookpark Road Cleveland, Ohio 44135	1	Dr. J. Baechler Electrochimica Corporation Attention: Technical Library 2405 Charleston Road Mountain View, California 94039	1
Dr. Fred Seafield Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20373	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1	Dr. B. Brunner EIC Incorporated 55 Chapel Street Norton, Massachusetts 01648	1	Dr. F. P. Schmidt Department of Chemistry Oakland University Rochester, Michigan 48063	1
		Library P. B. Mallory and Company, Inc. Northwest Industrial Park Burlington, Massachusetts 01803	1	Dr. F. Biegel Chemistry Department Rensselaer Polytechnic Institute Troy, New York 12181	1		

TECHNICAL REPORT DISTRIBUTION LIST, 359

SP472-3/817

472:GAN:716:lab
78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, 359

No.
Copies

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, NY 11210

1

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, PR 00931

1

Dr. Joseph Gordon II
IBM Corporation
R33/281
5600 Cottle Road
San Jose, CA 95193

1

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91103

1

END

DATE
FILMED

9 .82

DTI