Bayesian Inference using GP

Outline

Background information

Bayesian Inference

Gaussian Process

Bayesian calibration

Bayesian

Doculto

Parametrio study

Conclusi

Deference

Bayesian Inference Using Gaussian Process Metamodel in Biomechanical Imaging

Colin Cui

Outline

Bavesian Inference using GP

Outline

Background information

Bayesian Inference

Gaussian Process

Bayesian calibration

GP model

Bayesian framework

Results

Parametric study

Conclusion

Reference

Thank you

Background information

Bayesian Inference using GP

Outlir

Background information

Bayesian Inference

Gaussiar ^Orocess

calibrati

Bayesiar

Result

Paramet study

Conclusio

Reference

Biomechanical imaging

- Traditional ultrasound has low contrast when soft tissue have similar ultrasonic echogenicity
- Biomechanical Imaging is based on the soft tissue mechanical properties
- Soft tissues having similar ultrasonic echogenicity may have very different mechanical properties

Sonogram

Photograph

Background information

Bayesian Inference using GP

Outlin

Background information

Bayesian Inference

Gaussiar Process

Bayesian calibratio

Rayesian

ITalliewo

Result

Parametri study

Conclusio

Reference

Biomechanical imaging

- Imaging soft tissues based on their mechanical properties
- The excitation: surface or internal, static or dynamic
- The responses: strain, displacement, phase angle
- Imaging: strain imaging, stiffness contrast or absolute mechanical properties

Input-output system representation of soft tissue investigation

black-box, inverse problem

Background information

Bayesian Inference using GP

Outline

Background information

Bayesian Inference

Gaussian Process

Bayesian calibratio

GP mod

Bayesian framewor

Results

Parametri study

Conclusi

Defendation

Biomechanical imaging: Internal excitation

Internal excitation: Acoustic Radiation Force (ARF) Imaging

Bayesian inference

Bayesian Inference using GP

Outlin

Background information

Bayesian Inference

Gaussia Process

Bayesian calibratic

GP mod

framewo

Results

Parametrio study

Conclusio

Bayesian inference

Bayes' rule

$$p(\theta|D) = \frac{p(D|\theta) \times p(\theta)}{p(D)}$$

$$p(D) = \int p(D|\theta)p(\theta)d\theta$$

The posterior is normalized by p(D)

$$\begin{aligned} \text{posterior} &= \frac{\text{likelihood} \times \text{prior}}{\text{evidence}} \\ p(\theta|D) &\propto p(D|\theta) \times p(\theta) \end{aligned}$$

- 2 Posterior: intractable integral
 - MCMC, variational inference
 - Maximum-a-Posteriori

$$\hat{\theta}_{MAP} = \arg\max_{\alpha} p(\theta|D)$$

Gaussian Process I

Bayesian Inference using GP

Outlin

Background information

Bayesian Inference

Gaussian Process

Bayesian calibratio

GP mode

Bayesian

Result

Parametric study

Gaussian Process
$$y = f(t) + \epsilon$$

$$f(t) \sim N(m(t), K(t, t'))$$

- mean function: m(t)
- kernel function: $K(t, t') = \sigma_f^2 \exp\{-\frac{1}{2} \sum_{i=1}^d (t t')^2 / I_i\}$
 - prior: σ_f^2 , $I \sim p(\sigma_f^2)p(I)$
 - hyperparameters: σ_f^2 , I

A random GP random vector,

$$y \sim N(\mathbf{0}, K(X, X))$$

Thus,

$$\begin{pmatrix} y \\ y_* \end{pmatrix} \sim N \begin{pmatrix} \mathbf{0} , \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \end{pmatrix}$$

Gaussian Process II

Bayesian Inference using GP

Outline

Background information

Bayesian Inference

Gaussian Process

Bayesian calibration

GP mod

framewor

Results

Parametri study

Conclus

Reference

Gaussian Process is a latent function, we will integrate it out

$$p(y|X) = \int p(y|f,x)p(f|X)df$$

$$\log p(y|X) = -\frac{1}{2}y^{T}(K + \sigma_{f}^{2}I)^{-1} - \frac{1}{2}\log|K + \sigma_{f}^{2}I| - \frac{n}{2}\log 2\pi$$

This result can be observed directly by $y \sim N(0, K + \sigma_f^2 I)$

Bayeisan Calibration: Overview

Bavesian Inference using GP

Bayesian calibration

The Bayesian calibration model used in this study,

Full model

$$y^e = y^m(x, \theta) + \delta(x) + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$

- $y^m(x, \theta)$: computer model
 - x: input design
 - for example, latin hypercube
 - \bullet θ : parameter
- $\delta(x)$: discrepancy function
 - bias of the computer model
- y^e: observation
- black-box, true model unknown

Bayesian Calibration: the computer model

Bayesian Inference using GP

Outlir

Background information

Bayesian Inference

Process

Bayesian calibration

GP mod

framewor

Result

Parametrio study

Conclusion

Computer model: $y=\eta(X,\theta)+\epsilon$

- Computer model $y(x, \theta, ee)$ input
 - x: input design location
 - θ : **estimation parameter** time constant
 - ee: elasticity
- y: model output

Full model: $z = \eta(x, \theta) + \delta(x) + \epsilon$

- Observation points
 - x: observation input
 - z: observation output
- Throwing basketball into a well, let it bounce back

GP for Computer Model

Bayesian Inference using GP

Outli

Background information

Bayesian Inference

Gaussian Process

Bayesian calibratior

GP model

frameworl

Result

Parametric study

Conclusion

Full model

$$z = \eta(x, \theta) + \delta(x) + \epsilon$$

Part 1: Computer model using GP

Computer model

$$y = \eta(x, \theta) + \epsilon$$

$$\eta(x,\theta) \sim N(0,K\{(x,\theta),(x,\theta)\})$$

$$K(x,\theta),(x,\theta)=$$

$$\sigma_{\epsilon}^2 \exp\{-(x-x')^T \Omega_x (x-x')\} \exp\{-(\theta-\theta')^T \Omega_{\theta} (\theta-\theta')\}$$

where Ω_x and Ω_θ are diagonals Hyperprior: σ_{ϵ}^2 , $I_1 \sim p(\sigma_{\epsilon}^2)p(I_1)$

Optimize: σ_{ϵ}^2 , I_1

Bayesian Calibration: Discrepancy Function

Bavesian Inference using GP

GP model

Full model

$$z = \eta(x, \theta) + \delta(x) + \epsilon$$

Part 2: discrepancy function using GP

Discrepancy function

$$\delta(x) = z(x) - y(x, \theta)$$

$$\delta(x) \sim N(0, K(x, x))$$

GP for discrepancy function

Bayesian Inference using GP

Outlin

Background information

Bayesian Inference

Gaussian Process

Bayesian calibratic

GP model

framewoi

Results

Parametri study

Conclusio

Reference

 $\delta(x)$ is modeled as a GP

- discrepancy function aims to improve any lacking of the computer model
- unknown but true θ at $y^m(x,\theta)$

$$\delta(x) = y^{e}(x) - y^{m}(x, \theta)$$

• build GP for discrepancy function $\delta(x)$

$$\delta(x) \sim N(0, K(x, x'))$$

$$K(x,x') = \sigma_{\delta}^2 \exp\{-(x-x')^T \Omega_x(x-x')\}$$

Hyperprior: σ_{δ}^2 , $I_2 \sim p(\sigma_{\delta}^2)p(I_2)$

Optimize: σ_{δ}^2 , I_2

The Bayesian framework

Bayesian Inference using GP

Outlir

Background information

Bayesian Inference

Gaussiar Process

Bayesian

GP mod

Bayesian framework

Result

Parametric study

Conclusio

Full Bayesian treatment

Full Bayesian posterior

$$p(\theta, \phi|D) \propto p(\theta)p(\phi)f(D; m, V)$$

where $\phi = \{\sigma_{\epsilon}^2, \sigma_{\delta}^2, \mathit{l}_1, \mathit{l}_2\}; f \sim \mathit{N}(\mathit{m}, \mathit{V})$

- information theory perspective
 - the amount of information gain after observing the data
- considers all sources of uncertainty
 - **1** parameter uncertainty: θ
 - 2 latent model uncertainty: y^m
 - \odot obervation uncertainty: y^e
 - ullet hyperparameter uncertainty: ϕ

Results: computer model only

Bavesian Inference using GP

Results

Computer model only, and estimate τ

• prior: $\tau \sim N(0.8, 0.6^2)$

• $y^e = y^m(\mathbf{x}, \tau) + \epsilon$

• posterior: $\tau \sim N(0.9556, 0.0689^2)$

MCMC 2000 simulations

computer model alone is not sufficient to converge

Computer model random walk

Results: Full model

Bavesian Inference using GP

Results

Estimate τ using full model

• prior: $\tau \sim N(0.8, 1)$

• model: $y^e = y^m(\mathbf{x}, \tau) + \delta(\mathbf{x}) + \epsilon$

• posterior: $\tau \sim N(0.9813, 0.0969^2)$

MCMC 10000 simulations

MCMC moving average (simulation is stable)

MCMC convergence (algorithm converged)

Parametric study: compare priors I

Bavesian Inference using GP

Parametric study

Uninformative prior

2000 simulations Uniform τ U(0.3, 1.3)prior $N(0.9766, 0.0983^2)$ posterior

10000 simulations		
τ	Uniform	
prior	U(0.3, 1.3)	
posterior	$N(0.9825, 0.1003^2)$	

Informative prior

2000 cimulations

	mean	sd
/	IIIcaii	Su
prior	1	0.6
posterior	0.9795	0.0992

Large sd, same run, conv.

τ	mean	sd
prior	1	0.2
posterior	0.9855	0.0897

Small sd, same run, almost conv.

Parametric study: compare priors II

Bavesian Inference using GP

 τ

Parametric study

Informative prior

5000 simulations sd mean 1.8 0.6 prior 1.0085 posterior 0.1037

prior posterior

20000 simulations sd τ mean 0.2 1.8 1.16 0.1148

Bigger sd, short run, no conv.

Smaller sd, long run, no conv.

Informative prior

2000 simulations

τ	mean	sd
prior	1	0.6
posterior	0.9795	0.0992

Large sd, same run, conv.

2000 simulations sd τ mean prior 0.2 0.9855 0.0897 posterior

Small sd, same run, almost conv.

Which one is better: uniform vs biased mean with small sd

Bavesian Inference using GP

Parametric study

Choices of prior: uniform vs. normal biased mean and small sd

• uninformative prior: $\tau \sim U(0.3, 1.3)$

• informative prior, but biased prior: $\tau \sim N(1.8, 0.2^2)$

Let both chains run for long time

• true τ estimate 0.98

Compare priors

10000 simulations

τ	Uniform
prior	U(0.3, 1.3)
posterior	$N(0.9825, 0.1003^2)$

This performed better

10000 simulations

τ	Normal
prior	$N(0.8, 0.2^2)$
posterior	$N(0.9460, 0.0915^2)$

Conclusion

Bayesian Inference using GP

Outlin

Background information

Bayesian Inference

Process

Bayesian calibratio

GP mode

framewor

Result

Parametric study

Conclusion

Why Bayesian inferece?

- parameter of interest not fixed
- impose prior belief on the unknown
- includes all sources of uncertainty

Why GP?

- advantages of GP over other choices
 - metamodel: model about a model
 - a flexible class of function, takes shape of data
 - a nonparametric function
 - a latent fuction, to be integrated out, not used for estimation

Reference

Bayesian Inference using GP

Outlin

Background information

Bayesiar Inference

Gaussian Process

Bayesian calibratio

GP mod

Bayesian framewo

Result

Parametri study

Conclusi

Kennedy, Marc C and O'Hagan, Anthony. *Bayesian calibration of computer models*. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), pp. 425-464.

Rasmussen, C. E., and Williams, C. K. I., 2005, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), The MIT Press.

Thank you

Bayesian Inference using GP

Outline

Background information

Bayesian Inference

Gaussian Process

> yesian Iibratior

CD mod

Bayesiar framewo

Results

Parametri study

Conclusio

Thank you! Any Questions?