Math 22B Solutions Homework 1 Spring 2008

Section 1.1

22. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential equation for the volume of the raindrop as a function of time.

Solution Let V= volume, t= time, and S= surface area. Then $\frac{dV}{dt}=-kS$, for k>0. Since the volume of the raindrop is given by $V=\frac{4}{3}\pi r^3$, where r is its radius, and its surface area is given by $S=4\pi r^2$, we can solve for r and substitute to get $S=4\pi\left(\frac{3}{4\pi}\right)^{\frac{2}{3}}V^{\frac{2}{3}}$. Thus, $\frac{dV}{dt}=-cV^{\frac{2}{3}}$, for some constant c>0.

23. The temperature of an object changes at a rate proportional to the difference between the temperature of the object itself and the temperature of its surroundings. The ambient temperature is 70^{o} F, the rate constant is $0.05 \ (min)^{-1}$. Write a differential equation for the temperature of the object at any time.

Solution Let T be the temperature of the object, and t be time. Then we have $\frac{dT}{dt} = c(T - 70) = -0.05(T - 70)$ degrees F/min. Notice that the coefficient c is negative because the object is cooling.

Section 1.2

- **3** Consider the differential equation $\frac{dy}{dt} = -ay + b$, where both a and b are positive numbers.
- (a) Solve the differential equation

Solution Since $\frac{dy}{dt} = -ay + b \Rightarrow \frac{dy}{-ay+b} = dt$. Now we integrate both sides and solve for y to get

$$\int \frac{dy}{-ay+b} = \int dt$$
$$\frac{-1}{a} \ln|-ay+b| = t+c$$

$$\ln |-ay + b|^{\frac{-1}{a}} = e^{t+c} = c'e^t$$
$$-ay + b = c'e^{-at}$$
$$\Rightarrow y(t) = \frac{b - ce^{-at}}{a}$$

(b) see figure 1

(c)

- (i) As a increases the equilibrium solution gets smaller. The convergence rate increases as well.
- (ii) As b increases, the equilibrium solution gets larger. The convergence rate stays the same.
- (iii) As a and b both increase, the equilibrium solution stays the same, but the convergence rate increases for all solutions.

8.

(a) Find the rate constant r if the population doubles in 30 days.

Solution The general solution is $p(t) = p_0 e^{rt}$ where time is measured in months, so 30 days is 1 month for t = 1. We plug in constants to get $2p_0 = p_0 e^r * 1$. If we solve for r, we get $r = \ln(2)$ per month.

(b) Find r if the population doubles in N days.

Solution Again, time is in months, so $t = \frac{N}{30}$ months. We solve for r as in part (a) to get $2p_0 = p_0 e^{r\frac{N}{30}} \Leftrightarrow r = \ln(2)\frac{30}{N}$ per month.

17.

(a) $R\frac{dQ}{dt} + \frac{Q}{C} = V$. In order to separate variables we need $R\frac{dQ}{dt} = V - \frac{Q}{C} \Leftrightarrow \frac{dQ}{V - \frac{Q}{C}} = \frac{dt}{R}$. Integrating both sides we get

$$\int \frac{dQ}{V - \frac{Q}{C}} = \int \frac{dt}{R}$$
$$-c \ln V - \frac{Q}{C} = \frac{t}{R} + C$$
$$\ln V - \frac{Q}{C} = \frac{t}{-cR} + c$$
$$V - \frac{Q}{C} = ce^{\frac{-t}{cR}}$$

$$Q = CV - Cce^{\frac{-t}{cR}}$$

$$Q(0) = 0 = CV - Cce^{\frac{-t}{cR}}$$

$$Q(t) = CV(1 - e^{\frac{-t}{cR}})$$

See figure 2 for more reference.

Section 1.3

Determine the order and state whether it is linear or nonlinear.

1.
$$t^2 \frac{d^2 y}{dt^2} + t \frac{dy}{dt} + 2y = sint$$

Solution Since the highest derivative is second order, the equation is second order. Moreover, the equation is linear since it has the form

$$a_n(t)y^{(n)} + \dots + a_0(t)y = g(t)$$
 (1)

3.
$$\frac{d^4y}{dt^4} + \frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 1$$

Solution The highest derivative is fourth order, so the equation is fourth order. This equation also has the form (1), so it is also linear.

4.
$$\frac{dy}{dt} + ty^2 = 0$$

Solution There is only one derivative, and it is of order 1, so the equation is first order. The equation is non-linear because it has the term y^2 .

5.
$$\frac{d^2y}{dt^2} + \sin(t+y) = \sin t$$

Solution The equation is second order because the highest order derivative is of order two. Since sin(t + y) is a term, the equation is not linear.

Verify that each is a solution of the differential equation

9.
$$ty' - y = t^2$$
, $y = 3t + t^2$

Solution We differentiate y to obtain y' = 3 + 2t. Substituting in to the differential equation gives

$$ty' - y = t(3t + 2t) - (3t + t^2) = 3t + 2t^2 - 3t - t^2 = t^2$$
, as desired.

Determine the values of r for which the given differential equation has solutions of the form $y = e^{rt}$.

15.
$$y' + 2y = 0$$

Solution We substitute $y = e^{rt}$ and $y' = re^{rt}$ into the equation to get $re^{rt} + 2e^{rt} = 0$. This implies that $re^{rt} = -2e^{rt}$, which gives us that r = -2.

16.
$$y'' - y = 0$$

Solution We substitute $y = e^{rt}$, $y' = re^{rt}$, and $y'' = r^2e^{rt}$ into the equation to get $r^2e^{rt} - e^{rt} = 0$. Then we have $(r^2 - 1)e^{rt} = 0$, which implies that $r^2 - 1 = 0$ since e^{rt} is never zero. Thus, $r = \pm 1$.

29. See textbook page 25 for question.

Solution

- (a) see figure (3)
- (b) We have that F=ma, but for the tangential direction. Let $F_{\theta}=ma_{t}heta$. The only force acting in the tangential direction is the weight, so $F_{\theta}=-mgsin\theta$. The acceleration $a_{t}heta$ is the linear acceleration along the path $a_{t}heta=L\frac{d^{2}\theta}{dt^{2}}$, as given in the problem. So $-mgsin\theta=mL\frac{d^{2}\theta}{dt^{2}}$. See figure 4 for more reference.
- (c) From part (b), we have $-mgsin\theta = mL\frac{d^2\theta}{dt^2}$, so $L\frac{d^2\theta}{dt^2} + gsin\theta = 0$, which implies that $\frac{d^2\theta}{dt^2} + \frac{g}{L}sin\theta = 0$.
- **30.** See book pgs. 25-26 for problem.
- (a) The kinetic energy of mass m is given by $T = \frac{1}{2}mv^2$, where v is the velocity. A particle in motion on a circle of radius L has speed $L\frac{d\theta}{dt}$, where θ is angular position, $\frac{d\theta}{dt}$ is angular speed. So $T = \frac{1}{2}m(L\frac{d\theta}{dt})^2$.
- (b) Potential energy is given by mgh, where h is the height and g is the gravity. If we take v=0, the lowest point of the swing is h=L. If the pendulum is not at the lowest point of the swing, $h=L(1-cos\theta)$. So $V=mgL(1-cos\theta)$ See figure 5 for more reference.

(c)
$$E = T + V \implies E = \frac{1}{2}mL^2(\frac{d\theta}{dt})^2 + mgL(1 - \cos\theta)$$
. So then

$$\frac{dE}{dt} = mL^2 \frac{d\theta}{dt} \frac{d^2\theta}{dt^2} + mgLsin\theta \frac{d\theta}{dt}$$

by the Chain Rule. Then we set $\frac{dT}{dt} = 0$ to get

$$0 = mL^{2} \frac{d\theta}{dt} \frac{d^{2}\theta}{dt^{2}} + mglsin\theta \frac{d\theta}{dt}$$

Dividing both sides by $mL\frac{d\theta}{dt}$ we get

$$0 = L\frac{d^2\theta}{dt^2} + gsin\theta, \text{ or } 0 = \frac{d^2\theta}{dt^2} + \frac{1}{L}gsin\theta$$