Machine Learning - In the Fashion Industry

Group 6

OUR TEAM

Maria

Aina

Levan

Subiksha

TABLE OF CONTENTS

02 →

03 →

Introduction

Data gathering

Data cleaning & **Exploration**

04 →

05 →

06 →

Optimization Visualization

Conclusion

Data Gathering

• Kaggle dataset: Fashion Dataset UK-US

• 20 columns: Price

Season

Brand

Style

Category

Number of reviews

• Over 1 millions rows

The Goal:

As a fashion wholesaler, what category and size of clothes to buy for the all seasons?

Data Cleaning and Exploration

- Drop non-value-added column
- Drop N/A values
- Normalize rating customer columns
- Get dummies function for style attributes

- Data type
- Data description (count, mean, min, max)
- Correlation Matrix
- Boxplot for outliers (matplot lib)

The testing phase

Was affected by our unbalanced dataset

Random Forest gave a better accuracy score

Random Forest

Definition:

- Classification algorithm
- Ensemble type of decision tree

Library used:

- Pandas
- train_test_split
- sklearn.metrics import classification_report
- RandomForestClassifier
- cross_val_score

Cross-Validation Scores: Test Set Score: 0.8329		[0.8337125 0.8336625 0.8319875		0.83308125 0.83288125]	
	precision	recall	f1-score	support	
0	0.87	0.88	0.88	133547	
1	0.76	0.73	0.74	66453	
accuracy			0.83	200000	
macro avg	0.81	0.81	0.81	200000	
weighted avg	0.83	0.83	0.83	200000	

Why Random Forest?

Argument 1

Large number of observations

Argument 2

Data mix - Numerical and categorical

Argument 3

Highest performance from our testing phase

Argument 4

Builds trees sequentially, each correcting the errors of the previous

one

Optimization

Unbalanced Data – Binary version

Steps followed

SMOTE - Synthetic Minority Over-sampling Technique

Small improvement

Top 10 Features Importance

Categories of Clothes

~ Equal size distribution

Demand of Sizes for Categories

THANKS!

Question?