3.41 The distance h=12 cm, and the tension in cable AD is 200 N. What are the tensions in cables AB and AC?

3.42 You are designing a cable system to support a suspended object of weight W. Because your design requires points A and B to be placed as shown, you have no control over the angle α , but you can choose the angle β by placing point C wherever you wish. Show that to minimize the tensions in cables AB and ABC, you must choose $\beta = \alpha$ if the angle $\alpha \ge 45^\circ$.

Strategy: Draw a diagram of the sum of the forces exerted by the three cables at \boldsymbol{A} .

3.44 The masses $m_1 = 12$ kg and $m_2 = 6$ kg are suspended by the cable system shown. The cable BC is horizontal. Determine the angle α and the tensions in the cables AB, BC, and CD.

3.46 Assume that $W_2 = W_1/2$. If you don't want the tension anywhere in the supporting cable to exceed 200 N, what is the largest acceptable value of W_1 ?

THE UNIVERSITY OF MANITOBA

YEAR NAME
SECTION

DATE PROBLEM
OF
OF

TAD = 200 N

$$[\Sigma F_{x}=0] - T_{AB} \cos x - T_{AC} \cos \beta + T_{AD} = 0$$

$$-0.8018 T_{AB} - 0.9489 T_{AC} + 200 = 0 \quad (1)$$

B in Ared < = variable

case 1) 0.345° The smallest force TAB is one

Whose direction is normal to force

TBC (smallest length AB)

In this case, $0.47 = 90^{\circ}$ also $0.47 = 90^{\circ}$ $0.48 = 90^{\circ}$

cax2) d<45° The smallest force in this case will be in cable BC (BC smaller than AB)

COURSE

SHEET

3.44)

$$W_1 = M_1 g = 12 (9.81)$$

= 117.72

$$W_2 = M_2 g = 6 (9.81)$$

= 58.86^N

from (4):
$$T_{cD} \sin 70 - 58.86 = 0$$
 $T_{cD} = 62.64 (N) (5)$
 $Subs (5) into (3)$ $-T_{cg} + (62.64) \cos 70 = 0$ $T_{cg} = 21.42^{M} (6)$
 $Subs (6) into (1)$ $-T_{eq} \cos (4) + 21.42 = 0$

$$T_{BA} = \frac{21.42}{\cos \alpha} \tag{7}$$

$$Subs(7)$$
 into (2) $\frac{21.42}{\cos \alpha}$ $\sin \alpha - 117.72 = 0$
 $\frac{\sin \alpha}{\cos \alpha} = \tan \alpha = \frac{117.72}{21.42}$ $\cos \alpha$
from (7) $T_{BA} = 119.80 N$

THE UNIVERSITY OF MA		NAME	•
DURSE	SEĆTION	PROBLEM	SHEET OF
3,46) A 2m	3m TgA	3m 3	m p 1.6m
tan ∝	$=\frac{2}{3}$ to	$W_2 = \frac{W_1}{2}$ $2n \gamma = \frac{0.4}{3}$	$\tan \beta = \frac{1.6}{3}$
×	= 33,7°	8=7.6°	B = 28.1°
Max	force in cab	iles 200 h	
$(\mathcal{B}) \left[\Sigma F_{x}=0\right] \left[\Sigma F_{y}=0\right]$	-TBA COSX +TA		
$C = \left(\sum F_{x=0}\right)$		TED 511 B - 2	a veri e la calacta de la c
from (1)	-T8A (O.	8319) + Tec(0 Be= 0.8393 i	0.9912)=0 Tea [:- Tec < Tea] (5
From (3)	-Tes (0.0	$1912) + T_{co}(0) = 0,88997$.8821) =0 => [:.TcB < Tcb] (6)
	Since TBC=T	** L	TeA = 0.8899 Top 3A = 1.0603 Top (7)
	° TBC < 7	TCO < TBA	i. [TBA > Tco]

THE UNIVERSITY OF MANITOBA YEAR NAME
SECTION NAME
DATE PROBLEM 2 // SHEET

COURSE _____ DATE PROBLEM 3.46

: Set Ten = 200 N

(cable with max tension)

in from (5) TBE = 167.86 "

from(6) Tcp = 188.62 N

from (2) 200 sind + 167,86 sing - W, =0

: W, = 133.17 N