Module I: Introduction

Module I Part 1

Remark I.1.1 What is Linear Algebra?

Linear algebra is the study of linear maps.

- In Calculus, you learn how to approximate any function by a linear function.
- In Linear Algebra, we learn about how linear maps behave.
- Combining the two, we can approximate how any function behaves.

Remark I.1.2 What is Linear Algebra good for?

- Linear algebra is used throughout several fields in higher mathematics.
- In computer graphics, linear algebra is used to help represent 3D objects in a 2D grid of pixels.
- Linear algebra is used to approximate differential equation solutions in a vast number of engineering applications (e.g. fluid flows, vibrations, heat transfer) whose solutions are very difficult (or impossible) to find precisely.
- Google's search engine is based on its Page Rank algorithm, which ranks websites by computing an eigenvector of a matrix.

Remark I.1.3 What will I learn in this class?

By the end of this class, you will be able to:

- Solve systems of linear equations. (Module E)
- Identify vector spaces and their properties. (Module V)
- Analyze the structure of vector spaces and sets of vectors. (Module S)
- Use and apply the algebraic properties of linear transformations. (Module A)
- Perform fundamental operations in the algebra of matrices. (Module M)
- Use and apply the geometric properties of linear transformations. (Module G)

Module E: Solving Systems of Linear Equations

Standards for this Module

How can we solve systems of linear equations? At the end of this module, students will be able to...

- E1. Systems as matrices. ... translate back and forth between a system of linear equations and the corresponding augmented matrix.
- E2. Row reduction. ... put a matrix in reduced row echelon form.
- E3. Systems of linear equations. ... compute the solution set for a system of linear equations.

Module E Part 1

Definition E.1.1 A linear equation is an equation of the variables x_i of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b.$$

A solution for a linear equation is expressed in terms of the Euclidean vectors

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix}$$

and must satisfy

$$a_1s_1 + a_2s_2 + \dots + a_ns_n = b.$$

Observation E.1.2 The linear equation 3x - 5y = -2 may be graphed as a line in the xy plane.

The linear equation x + 2y - z = 4 may be graphed as a plane in xyz space.

Remark E.1.3 In previous classes you likely assumed $x = x_1$, $y = x_2$, and $z = x_3$. However, since this course often deals with equations of four or more variables, we will almost always write our variables as x_i .

Definition E.1.4 A system of linear equations (or a linear system for short) is a collection of one or more linear equations.

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

A solution

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix}$$

for a linear system satisfies

$$a_{i1}s_1 + a_{i2}s_2 + \dots + a_{in}s_n = b_i$$

for $1 \le i \le m$ (that is, the solution satisfies all equations in the system).

Remark E.1.5 When variables in a large linear system are missing, we prefer to write the system in one of the following standard forms:

Original linear system:

Verbose standard form:

Concise standard form:

$$x_1 + 3x_3 = 3$$
 $1x_1 + 0x_2 + 3x_3 = 3$ $x_1 + 3x_3 = 3$ $3x_1 - 2x_2 + 4x_3 = 0$ $3x_1 - 2x_2 + 4x_3 = 0$ $3x_1 - 2x_2 + 4x_3 = 0$ $-x_2 + x_3 = -2$ $-x_2 + x_3 = -2$

Definition E.1.6 A linear system is **consistent** if there exists a solution for the system. Otherwise it is **inconsistent**.

Fact E.1.7 All linear systems are either consistent with one solution, consistent with infinitely-many solutions, or inconsistent.

Activity E.1.8 (5 min) Consider the following graphs representing linear systems of two variables. Label each graph with consistent with one solution, consistent with infinitely-many solutions, or inconsistent.

Activity E.1.9 (10 min) All inconsistent linear systems contain a logical **contradiction**. Find a contradiction in this system.

$$-x_1 + 2x_2 = 5$$
$$2x_1 - 4x_2 = 6$$

Activity E.1.10 (10 min) Consider the following consistent linear system.

$$-x_1 + 2x_2 = -3$$
$$2x_1 - 4x_2 = 6$$

Part 1: Find three different solutions $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}, \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}, \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$ for this system.

Part 2: Let $x_2 = a$ where a is an arbitrary real number, then find an expression for x_1 in terms of a. Use this to describe all solutions (the **solution set**) $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ? \\ a \end{bmatrix}$ for the linear system in terms of a.

Activity E.1.11 (10 min) Consider the following linear system.

$$x_1 + 2x_2 - x_4 = 3$$
$$x_3 + 4x_4 = -2$$

Describe the solution set

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} ? \\ a \\ ? \\ b \end{bmatrix} = \begin{bmatrix} t_1 \\ 0 \\ t_3 \\ 0 \end{bmatrix} + a \begin{bmatrix} ? \\ 1 \\ ? \\ 0 \end{bmatrix} + b \begin{bmatrix} ? \\ 0 \\ ? \\ 1 \end{bmatrix}$$

to the linear system by setting $x_2 = a$ and $x_4 = b$, and then solving for x_1 and x_3 .

Observation E.1.12 Solving linear systems of two variables by graphing or substitution is reasonable for two-variable systems, but these simple techniques won't cut it for equations with more than two variables or more than two equations.

Remark E.1.13 The only important information in a linear system are its coefficients and constants.

Original linear system:

Verbose standard form:

Coefficients/constants:

$$x_1 + 3x_3 = 3$$

$$3x_1 - 2x_2 + 4x_3 = 0$$

$$-x_2 + x_3 = -2$$

$$1x_1 + 0x_2 + 3x_3 = 3$$
$$3x_1 - 2x_2 + 4x_3 = 0$$
$$0x_1 - 1x_2 + 1x_3 = -2$$

$$\begin{array}{c|cccc}
1 & 0 & 3 & | & 3 \\
3 & -2 & 4 & | & 0 \\
0 & -1 & 1 & | & -2
\end{array}$$

Definition E.1.14 A system of m linear equations with n variables is often represented by writing its coefficients and constants in an **augmented matrix**.

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Definition E.1.15 Two systems of linear equations (and their corresponding augmented matrices) are said to be **equivalent** if they have the same solution set.

For example, both of these systems have a single solution: $(x_1, x_2) = (1, 1)$.

$$3x_1 - 2x_2 = 1$$
$$x_1 + 4x_2 = 5$$

$$3x_1 - 2x_2 = 1$$
$$4x_1 + 2x_2 = 6$$

Therefore these augmented matrices are equivalent:

$$\begin{bmatrix} 3 & -2 & 1 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 & 1 \\ 4 & 2 & 6 \end{bmatrix}$$

Activity E.1.16 (10 min) Following are six procedures used to manipulate an augmented matrix. Label the procedures that would result in an equivalent augmented matrix as **valid**, and label the procedures that would change the solution set of the corresponding linear system as **invalid**.

a) Swap two rows.

d) Multiply a row by a nonzero constant.

b) Swap two columns.

- e) Add a constant multiple of one row to another row.
- c) Add a constant to every term in a row.
- f) Replace a column with zeros.

(Instructor Note:) This activity could be ran as a card sort.

Module E Part 2

Definition E.2.1 The following **row operations** produce equivalent augmented matrices:

- 1. Swap two rows.
- 2. Multiply a row by a nonzero constant.
- 3. Add a constant multiple of one row to another row.

Whenever two matrices A, B are equivalent (so whenever we do any of these operations), we write $A \sim B$.

Activity E.2.2 (10 min) Consider the following two linear systems.

$$3x_1 - 2x_2 + 13x_3 = 6$$
 $x_1 - x_2 + 5x_3 = 1$ $2x_1 - 2x_2 + 10x_3 = 2$ $x_2 - 2x_3 = 3$ $-1x_1 + 3x_2 - 6x_3 = 11$ $x_3 = 2$

Part 1: Show these are equivalent by converting the first system to an augmented matrix, and then performing the following row operations to obtain an augmented matrix equivalent to the second system.

- 1. Swap R_1 (first row) and R_2 (second row).
- 4. Add $-3R_1$ to R_2 .

2. Multiply R_2 by $\frac{1}{2}$.

5. Add $-2R_2$ to R_3 .

3. Add R_1 to R_3 .

6. Multiply R_3 by $\frac{1}{3}$.

Part 2: Which linear system would you rather solve?

Definition E.2.3 The leading term of a matrix row is its first nonzero term. A matrix is in row echelon form if all leading terms are 1, the leading term of every row is farther right than every leading term on a higher row, and all zero rows are at the bottom of the matrix. Examples:

$$\begin{bmatrix} 1 & -1 & 5 & | & 1 \\ 0 & 1 & -2 & | & 3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 & 5 & | & 1 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 & 5 & | & 1 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 5 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 5 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Activity E.2.4 (10 min) Find your own sequence of row operations to manipulate the matrix

$$\begin{bmatrix} 3 & -2 & 13 & 6 \\ 2 & -2 & 10 & 2 \\ -1 & 3 & -6 & 11 \end{bmatrix}$$

into row echelon form. (Note that row echelon form is not unique.)

The most efficient way to do this is by circling **pivot positions** in your matrix:

- 1. Circle the top-left-most cell that (a) is below any existing pivot positions and (b) has a nonzero term either in that position or below it.
- 2. Ignoring any rows above this pivot position, use row operations to change the value of your pivot position to 1, and the terms below it to 0.
- 3. Repeat these two steps as often as possible.

Activity E.2.5 (10 min) Solve this simplified linear system:

$$x_1 - x_2 + 5x_3 = 1$$
$$x_2 - 2x_3 = 3$$
$$x_3 = 2$$

Observation E.2.6 The consise standard form of the solution to this linear system corresponds to a simplified row echelon form matrix:

$$\begin{aligned}
x_1 &= -2 \\
x_2 &= 7 \\
x_3 &= 2
\end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 7 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

Definition E.2.7 A matrix is in reduced row echelon form if it is in row echelon form and all terms above leading terms are 0. Examples:

$$\begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 7 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 3 & 0 & | & -2 \\ 0 & 0 & 1 & | & 7 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 0 & -2 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Activity E.2.8 (10 min) Show that the following two linear systems:

$$x_1 - x_2 + 5x_3 = 1$$

 $x_2 - 2x_3 = 3$
 $x_3 = 2$

$$x_1 = -2$$

$$x_2 = 7$$

$$x_3 = 2$$

are equivalent by converting the first system to an augmented matrix, and then zeroing out all terms above pivot positions (the leading terms).

Remark E.2.9 We may verify that
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \\ 2 \end{bmatrix}$$
 is a solution to the original linear system

$$3x_1 - 2x_2 + 13x_3 = 6$$
$$2x_1 - 2x_2 + 10x_3 = 2$$
$$-1x_1 + 3x_2 - 6x_3 = 11$$

by plugging the solution into each equation.

Fact E.2.10 Every augmented matrix A reduces to a unique reduced row echelon form matrix. This matrix is denoted as RREF(A).

Activity E.2.11 (10 min) Consider the following matrix.

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 8 & 0 \end{bmatrix}$$

Part 1: Find RREF(A).

Part 2: How many solutions does the corresponding linear system have?

Module E Part 3

Definition E.3.1 An algorithm that reduces A to RREF(A) is called **Gauss-Jordan elimination**. For example:

- 1. Circle the cell that (a) is in the top-most row without a pivot position and (b) is in the left-most column with a nonzero term either in that position or below it. This position (not the number inside) is called a **pivot**.
- 2. Change the pivot's value to 1 by using row operations involving only the pivot row and rows below it.
- 3. Add or subtract multiples of the pivot row to zero out above and below the pivot.
- 4. Return to Step 1 and repeat as needed until the matrix is in row reduced echelon form.

Observation E.3.2 Here is an example of applying Gauss-Jordan elimination to a matrix:

$$\begin{bmatrix} 2 & -2 & -6 & 1 & 3 \\ -1 & 1 & 3 & -1 & -3 \\ 1 & -2 & -1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & 1 & 2 \\ -1 & 1 & 3 & -1 & -3 \\ 2 & -2 & -6 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & 1 & 2 \\ 0 & (-1) & 2 & 0 & -1 \\ 0 & 2 & -4 & -1 & -1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -2 & -1 & 1 & 2 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 2 & -4 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 & 1 & 4 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & (-1) & -3 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & -5 & 1 & 4 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & (1) & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 & 0 & 1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & (1) & 3 \end{bmatrix}$$

Definition E.3.3 The columns of RREF(A) without a leading term represent **free variables** of the linear system modeled by A that may be set equal to arbitrary parameters. The other **bounded variables** can then be expressed in terms of those parameters to describe the solution set to the linear system modeled by A.

Example E.3.4 Here, x_3 is the free variable set equal to a since its column lacks a pivot, and the other bounded variables are put in terms of a.

So the solution set is $\left\{ \begin{bmatrix} 1+5a\\1+2a\\a\\3 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$.

Activity E.3.5 (20 min) Solve the system of linear equations, circling the pivot positions in your augmented matrices as you work.

$$-x_1 + x_2 - 3x_3 + 2x_4 = 0$$

$$2x_1 - x_2 + 5x_3 + 3x_4 = -11$$

$$3x_1 + 2x_2 + 4x_3 + x_4 = 1$$

$$x_2 - x_3 + x_4 = 1$$

Remember to find the solution set of the system by setting the free variable (the column without a pivot position) equal to a, and then express each of the other bounded variables equal to an expression in terms of a.

(Instructor Note:) The resulting RREF matrix is

$$\begin{bmatrix} 1 & 0 & 2 & 0 & | & -1 \\ 0 & 1 & -1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Remark E.3.6 From now on, unless specified, there's no need to show your work in finding RREF(A), so you may use a calculator to speed up your work.

Activity E.3.7 (10 min) Solve the linear system

$$2x_1 - 3x_2 = 17$$
$$x_1 + 2x_2 = -2$$
$$-x_1 - x_2 = 1$$

(Instructor Note:) This is an inconsistent solution. Point out to the students that one need not go all the way to RREF to discover a system is inconsistent.

Activity E.3.8 (5 min) Show that all linear systems of the form

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0$$

are consistent by finding a quickly verifiable solution.

Definition E.3.9 A homogeneous system is a linear system satisfying $b_i = 0$, that is, it is a linear system of the form

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0$$

Fact E.3.10 Because the zero vector is always a solution, the solution set to any homogeneous system with infinitely-many solutions may be generated by multiplying the parameters representing the free variables by a minimal set of Euclidean vectors, and adding these up. For example:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = a \begin{bmatrix} 3 \\ 1 \\ -1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Definition E.3.11 A minimal set of Euclidean vectors generating the solution set to a homogeneous system is called a **basis** for the solution set of the homogeneous system. For example:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = a \begin{bmatrix} 3 \\ 1 \\ -1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$Basis = \left\{ \begin{bmatrix} 3\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$$

Activity E.3.12 (10 min) Find a basis for the solution set of the following homogeneous linear system.

$$x_1 + 2x_2 - x_4 = 0$$
$$x_3 + 4x_4 = 0$$
$$2x_1 + 4x_2 + x_3 + 2x_4 = 0$$

$$2x_1 + 4x_2 + x_3 + 2x_4 = 0$$

Module V: Vector Spaces

Standards for this Module

What is a vector space? At the end of this module, students will be able to...

- V1. Vector property verification. ... show why an example satisfies a given vector space property, but does not satisfy another given property.
- **V2. Vector space identification.** ... list the eight defining properties of a vector space, infer which of these properties a given example satisfies, and thus determine if the example is a vector space.
- **V3.** Linear combinations. ... determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.
- **V4. Spanning sets.** ... determine if a set of Euclidean vectors spans \mathbb{R}^n .
- **V5.** Subspaces. ... determine if a subset of \mathbb{R}^n is a subspace or not.

Module V Part 1

Activity V.1.1 (20 min) Consider each of the following vector properties. Label each property with \mathbb{R}^1 , \mathbb{R}^2 , and/or \mathbb{R}^3 if that property holds for Euclidean vectors/scalars $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of that dimension.

1. Addition associativity.

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$$

2. Addition commutivity.

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Addition identity.

There exists some **0** where $\mathbf{v} + \mathbf{0} = \mathbf{v}$.

4. Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.

5. Addition midpoint uniqueness.

There exists a unique \mathbf{m} where the distance from \mathbf{u} to \mathbf{m} equals the distance from \mathbf{m} to \mathbf{v}

6. Scalar multiplication associativity.

$$a(b\mathbf{v}) = (ab)\mathbf{v}.$$

7. Scalar multiplication identity.

$$1\mathbf{v} = \mathbf{v}$$
.

8. Scalar multiplication relativity.

There exists some scalar c where either $c\mathbf{v} = \mathbf{w}$ or $c\mathbf{w} = \mathbf{v}$.

9. Scalar distribution.

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$$

10. Vector distribution.

$$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$$

11. Orthogonality.

There exists a non-zero vector \mathbf{n} such that \mathbf{n} is orthogonal to both \mathbf{u} and \mathbf{v} .

12. Bidimensionality.

 $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ for some value of a, b.

Definition V.1.2 A vector space V is any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following properties. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ belong to V, and let a, b be scalar numbers.

• Addition associativity.

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$$

• Addition commutivity.

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

• Addition identity.

There exists some **0** where $\mathbf{v} + \mathbf{0} = \mathbf{v}$.

• Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.

• Scalar multiplication associativity.

$$a(b\mathbf{v}) = (ab)\mathbf{v}.$$

• Scalar multiplication identity.

$$1\mathbf{v} = \mathbf{v}$$
.

• Scalar distribution.

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$$

• Vector distribution.

$$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$$

Definition V.1.3 The most important examples of vector spaces are the **Euclidean vector spaces** \mathbb{R}^n , but there are other examples as well.

Activity V.1.4 (25 min) Consider the following set that models motion along the curve $y = e^x$. Let $V = \{(x,y) : y = e^x\}$. Let vector addition be defined by $(x_1,y_1) \oplus (x_2,y_2) = (x_1 + x_2, y_1y_2)$, and let scalar multiplication be defined by $c \odot (x,y) = (cx,y^c)$.

Part 1: Which of the vector space properties are satisfied by V paired with these operations?

• Addition associativity.

$$\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}.$$

• Addition commutivity.

$$\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$$
.

• Addition identity.

There exists some **0** where $\mathbf{v} \oplus \mathbf{0} = \mathbf{v}$.

• Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} \oplus (-\mathbf{v}) = \mathbf{0}$.

Part 2: Is V a vector space?

- Scalar multiplication associativity. $a \odot (b \odot \mathbf{v}) = (ab) \odot \mathbf{v}$.
- Scalar multiplication identity.

$$1 \odot \mathbf{v} = \mathbf{v}$$
.

• Scalar distribution.

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$$

• Vector distribution.

$$(a+b)\odot \mathbf{v} = (a\odot \mathbf{v})\oplus (b\odot \mathbf{v}).$$

Module V Part 2

Remark V.2.1 The following sets are examples of vector spaces, with the usual/natural operations for addition and scalar multiplication.

- \mathbb{R}^n : Euclidean vectors with n components.
- \mathbb{R}^{∞} : Sequences of real numbers (v_1, v_2, \dots) .
- $\mathbb{R}^{m \times n}$: Matrices of real numbers with m rows and n columns.
- C: Complex numbers.
- \mathcal{P}^n : Polynomials of degree n or less.
- \mathcal{P} : Polynomials of any degree.
- $C(\mathbb{R})$: Real-valued continuous functions.

Activity V.2.2 (10 min) Let $V = \{(a, b) : a, b \text{ are real numbers}\}$, where $(a_1, b_1) \oplus (a_2, b_2) = (a_1 + b_1 + a_2 + a_2 + a_3)$ $b_2, b_1^2 + b_2^2$) and $c \odot (a, b) = (a^c, b + c)$. Show that this is not a vector space by finding a counterexample that does not satisfy one of the vector space properties.

• Addition associativity.

$$\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}.$$

• Addition commutivity.

$$\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$$
.

• Addition identity.

There exists some **0** where $\mathbf{v} \oplus \mathbf{0} = \mathbf{v}$.

• Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} \oplus (-\mathbf{v}) = \mathbf{0}$.

• Scalar multiplication associativity.

$$a \odot (b \odot \mathbf{v}) = (ab) \odot \mathbf{v}.$$

• Scalar multiplication identity.

$$1 \odot \mathbf{v} = \mathbf{v}$$
.

• Scalar distribution.

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$$

• Vector distribution.

$$(a+b)\odot \mathbf{v} = (a\odot \mathbf{v})\oplus (b\odot \mathbf{v}).$$

Definition V.2.3 A linear combination of a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is given by $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + c_3\mathbf{v}_4 + c_3\mathbf{v}_3 + c_3\mathbf{v}_4 + c_3\mathbf{v}_3 + c_3\mathbf{v}_4 + c_3\mathbf{v}_4$ $\cdots + c_m \mathbf{v}_m$ for any choice of scalar multiples c_1, c_2, \ldots, c_m .

For example, we say $\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ since

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ since}$$

$$\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Definition V.2.4 The **span** of a set of vectors is the collection of all linear combinations of that set:

$$\operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\} = \{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_m\mathbf{v}_m : c_i \text{ is a real number}\}$$

Activity V.2.5 (10 min) Consider span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$.

Part 1: Sketch $c \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ in the xy plane for c = 1, 3, 0, -2.

Part 2: Sketch a representation of all the vectors given by span $\left\{\begin{bmatrix}1\\2\end{bmatrix}\right\}$ in the xy plane.

Activity V.2.6 (10 min) Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$.

Part 1: Sketch the following linear combinations in the xy plane: $1\begin{bmatrix}1\\2\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix}$, $0\begin{bmatrix}1\\2\end{bmatrix} + 1\begin{bmatrix}-1\\1\end{bmatrix}$, $2\begin{bmatrix}1\\2\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix}$, $2\begin{bmatrix}1\\2\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix}$, $2\begin{bmatrix}1\\2\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix}$.

Part 2: Sketch a representation of all the vectors given by span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ in the xy plane.

Activity V.2.7 (5 min) Sketch a representation of all the vectors given by span $\left\{ \begin{bmatrix} 6 \\ -4 \end{bmatrix}, \begin{bmatrix} -2 \\ 3 \end{bmatrix} \right\}$ in the xy plane.

Activity V.2.8 (15 min) The vector $\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when the vector

equation $x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ holds for some scalars x_1, x_2 .

Part 1: Reinterpret this vector equation as a system of linear equations.

Part 2: Solve this system. (Remember, you should use a calculator to help find RREF.)

Part 3: Given this solution, does $\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$ belong to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$?

Module V Part 3

Fact V.3.1 A vector **b** belongs to span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ if and only if the linear system corresponding to $[\mathbf{v}_1 \dots \mathbf{v}_n \mid \mathbf{b}]$ is consistent.

Remark V.3.2 To determine if **b** belongs to span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, find RREF $[\mathbf{v}_1 \dots \mathbf{v}_n \mid \mathbf{b}]$.

Activity V.3.3 (5 min) Determine if $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ by row-reducing an appropriate matrix.

Activity V.3.4 (5 min) Determine if $\begin{bmatrix} -1 \\ -9 \\ 0 \end{bmatrix}$ belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ by row-reducing an appropriate matrix.

Observation V.3.5 So far we've only discussed linear combinations of Euclidean vectors. Fortunately, many vector spaces of interest can be reinterpreted as an **isomorphic** Euclidean space \mathbb{R}^n ; that is, a Euclidean space that mirrors the behavior of the vector space exactly.

Activity V.3.6 (5 min) We previously checked that $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ does not belong to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$. Does $f(x) = 3x^2 - 2x + 1$ belong to span $\{x^2 - 3, -x^2 - 3x + 2\}$?

Activity V.3.7 (10 min) Does the matrix $\begin{bmatrix} 6 & 3 \\ 2 & -1 \end{bmatrix}$ belong to span $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \right\}$?

Activity V.3.8 (10 min) Does the complex number 2i belong to span $\{-3+i, 6-2i\}$?

Activity V.3.9 (10 min) How many vectors are required to span \mathbb{R}^2 ? Sketch a drawing in the xy plane to support your answer.

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) Infinitely Many

Activity V.3.10 (5 min) How many vectors are required to span \mathbb{R}^3 ?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) Infinitely Many

Module V Part 4

Fact V.4.1 At least n vectors are required to span \mathbb{R}^n .

Activity V.4.2 (10 min) Choose a vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ in \mathbb{R}^3 that is not in span $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \right\}$ by ensuring

$$\begin{bmatrix} 1 & -2 & a \\ -1 & 0 & b \\ 0 & 1 & c \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 (Why does this work?)

Fact V.4.3 The set $\{\mathbf{v}_1,\dots,\mathbf{v}_m\}$ fails to span all of \mathbb{R}^n exactly when RREF $[\mathbf{v}_1\,\dots\,\mathbf{v}_m]$ has a row of zeros:

$$\begin{bmatrix} 1 & -2 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & a \\ -1 & 0 & b \\ 0 & 1 & c \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Activity V.4.4 (5 min) Consider the set of vectors $S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-4\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\3\\5\\7 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix} \right\}$. Does $\mathbb{R}^4 = \operatorname{span} S$?

Activity V.4.5 (10 min) Consider the set of third-degree polynomials

$$S = \left\{2x^3 + 3x^2 - 1, 2x^3 + 3, 3x^3 + 13x^2 + 7x + 16, -x^3 + 10x^2 + 7x + 14, 4x^3 + 3x^2 + 2\right\}.$$

Does $\mathcal{P}^3 = \operatorname{span} S$?

Definition V.4.6 A subset of a vector space is called a **subspace** if it is itself a vector space.

Fact V.4.7 If S is a subset of a vector space V, then span S is a subspace of V.

Remark V.4.8 To prove that a subset is a subspace, you need only verify that $c\mathbf{v} + d\mathbf{w}$ belongs to the subset for any choice of vectors \mathbf{v} , \mathbf{w} from the subset and any real scalars c, d.

Activity V.4.9 (5 min) Prove that $P = \{ax^2 + b : a, b \text{ are both real numbers}\}$ is a subspace of the vector space of all degree-two polynomials by showing that $c(a_1x^2 + b_1) + d(a_2x^2 + b_2)$ belongs to P.

Activity V.4.10 (10 min) Consider the subset of \mathbb{R}^2 where at least one coordinate of each vector is 0.

Find a linear combination $c\mathbf{v} + d\mathbf{w}$ that does not belong to this subset. (Instructor Note:) Use this linear combination to sketch a picture illustrating why this subset is not a subspace.

Fact V.4.11 Suppose a subset S of V is isomorphic to another vector space W. Then S is a subspace of V.

Activity V.4.12 (5 min) Show that the set of 2×2 matrices

$$S = \left\{ \begin{bmatrix} a & b \\ -b & -a \end{bmatrix} : a, b \text{ are real numbers} \right\}$$

is a subspace of $\mathbb{R}^{2\times 2}$ by identifying a Euclidean space isomorphic to S.

Module S: Structure of vector spaces

Standards for this Module

What structure do vector spaces have? At the end of this module, students will be able to...

- S1. Linear independence. ... determine if a set of Euclidean vectors is linearly dependent or independent.
- **S2.** Basis verification. ... determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .
- S3. Basis computation. ... compute a basis for the subspace spanned by a given set of Euclidean vectors.
- **S4.** Dimension. ... compute the dimension of a subspace of \mathbb{R}^n .
- **S5. Abstract vector spaces.** ... solve exercises related to standards V3-S4 when posed in terms of polynomials or matrices.
- S6. Basis of solution space. ... find a basis for the solution set of a homogeneous system of equations.

Module S Part 1

Activity S.1.1 (15 min) In the previous module, we considered

$$S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\}$$

and showed that span $S \neq \mathbb{R}^4$. Find two vectors from this set that are linear combinations of the other three vectors.

(Instructor Note:) Actually, the activity involved the corresponding vectors in \mathcal{P}^3 .

Definition S.1.2 We say that a set of vectors is **linearly dependent** if one vector in the set belongs to the span of the others. Otherwise, we say the set is **linearly independent**.

Activity S.1.3 (10 min) Suppose $3\mathbf{v}_1 - 5\mathbf{v}_2 = \mathbf{v}_3$, so the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent. Is the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ consistent with one solution, consistent with infinitely many solutions, or inconsistent?

Fact S.1.4 The set $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ is linearly dependent if and only if $x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n = \mathbf{0}$ is consistent with infinitely many solutions.

Activity S.1.5 (10 min) Find

RREF
$$\begin{bmatrix} 2 & 2 & 3 & -1 & 4 & 0 \\ 3 & 0 & 13 & 10 & 3 & 0 \\ 0 & 0 & 7 & 7 & 0 & 0 \\ -1 & 3 & 16 & 14 & 2 & 0 \end{bmatrix}$$

and mark the part of the matrix that demonstrates that

$$S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\}$$

is linearly dependent.

Fact S.1.6 A set of Euclidean vectors $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ is linearly dependent if and only if RREF $\begin{bmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_n \end{bmatrix}$ has a column without a pivot position.

Activity S.1.7 (5 min) Is the set of Euclidean vectors $\left\{ \begin{bmatrix} -4\\2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\4\\7\\2\\2\\1 \end{bmatrix} \right\} \text{ linearly dependent or}$

linearly independent?

Activity S.1.8 (10 min) Is the set of polynomials $\{x^3+1, x^2+2, 4-7x, 2x^3+x\}$ linearly dependent or linearly independent?

Module S Part 2

Activity S.2.1 (10 min) Last time we saw that $\{x^3+1, x^2+2, 4-7x, 2x^3+x\}$ is linearly independent. Show that it spans \mathcal{P}^3 .

Definition S.2.2 A basis is a linearly independent set that spans a vector space.

Observation S.2.3 A basis may be thought of as a collection of building blocks for a vector space, since every vector in the space can be expressed as a unique linear combination of basis vectors.

Activity S.2.4 (15 min) Which of the following sets are bases for
$$\mathbb{R}^4$$
?

$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix} \right\} \\
\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3\\0\\-1 \end{bmatrix} \right\} \\
\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3\\0\\-1 \end{bmatrix} \right\} \\
\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\1\\5\\1\\3 \end{bmatrix} \right\} \\
\left\{ \begin{bmatrix} 5\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\1\\3\\3 \end{bmatrix} \right\}$$

Activity S.2.5 (10 min) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a basis for \mathbb{R}^4 , that means RREF $[\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4]$ doesn't have a column without a pivot position, and doesn't have a row of zeros. What is RREF $[\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4]$?

Fact S.2.6 The set
$$\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$$
 is a basis for \mathbb{R}^n if and only if $m = n$ and RREF $[\mathbf{v}_1 \dots \mathbf{v}_n] = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$.

That is, a basis for \mathbb{R}^n must have exactly n vectors and its square matrix must row-reduce to the **identity** matrix containing all zeros except for a downward diagonal of ones.

Activity S.2.7 (10 min) Consider the set
$$\left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\}$$
.

Part 1: Use RREF
$$\begin{bmatrix} 2 & 2 & 2 & 1 \\ 3 & 0 & -3 & 5 \\ 0 & 1 & 2 & -1 \\ 1 & -1 & -3 & 0 \end{bmatrix}$$
 to identify which vector may be removed to make the set linearly

Part 2: Find a basis for span
$$\left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\}$$

Module S Part 3

independent.

Fact S.3.1 To compute a basis for the subspace span $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, simply remove the vectors corresponding to the non-pivot columns of RREF $[\mathbf{v}_1 \dots \mathbf{v}_m]$.

Activity S.3.2 (10 min) Find all subsets of $S = \left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\}$ that are a basis for span S by changing the order of the vectors in S.

Activity S.3.3 (10 min) Assume $\mathbf{w}_1 \neq \mathbf{w}_2$ are distinct vectors in V, which has a basis containing a single vector: $\{\mathbf{v}\}$. Could $\{\mathbf{w}_1, \mathbf{w}_2\}$ be a basis?

Fact S.3.4 All bases for a vector space are the same size.

Definition S.3.5 The **dimension** of a vector space is given by the cardinality/size of any basis for the vector space.

Activity S.3.6 (15 min) Find the dimension of each subspace of \mathbb{R}^4 .

$$span \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\} \qquad span \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\1\\3 \end{bmatrix} \right\}$$

$$\operatorname{span}\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\} \quad \operatorname{span}\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\1\\5 \end{bmatrix} \right\}$$

$$\operatorname{span}\left\{\begin{bmatrix}5\\3\\0\\-1\end{bmatrix},\begin{bmatrix}-2\\1\\0\\3\end{bmatrix},\begin{bmatrix}4\\5\\1\\3\end{bmatrix}\right\}$$

Activity S.3.7 (5 min) What is the dimension of the vector space of 7th-degree (or less) polynomials \mathcal{P}^7 ?

a) 6

b) 7

c) 8

d) infinite

Activity S.3.8 (5 min) What is the dimension of the vector space of all polynomials \mathcal{P} ?

a) 6

b) 7

c) 8

d) infinite

Observation S.3.9 Several interesting vector spaces are infinite-dimensional:

- The space of polynomials \mathcal{P} (consider the set $\{1, x, x^2, x^3, \dots\}$).
- The space of continuous functions $C(\mathbb{R})$ (which contains all polynomials, in addition to other functions like $e^x = 1 + x + x^2/2 + x^3/3 + \ldots$).
- The space of real number sequences \mathbb{R}^{∞} (consider the set $\{(1,0,0,\ldots),(0,1,0,\ldots),(0,0,1,\ldots),\ldots\}$).

Fact S.3.10 Every vector space with finite dimension, that is, every vector space with a basis of the form $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is isomorphic to a Euclidean space \mathbb{R}^n :

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n \leftrightarrow \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$