Parte III

Collaborative Filtering

Schema del metodo

Consideriamo l'utente

X

Troviamo **N** altri utenti i cui rating sono "simili" ai rating di x

Stimiamo i rating di **x** sulla base degli **N** rating degli utenti

Come misuriamo la similarità

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$

Jaccard similarity:

$$sim(x,y) = |r_x \cap r_y|/|r_x \cup r_y|$$

•Cosine similarity:

$$sim(x,y) = cos(r_{x_i} r_y)$$

• Pearson correlation coefficient:

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_x[s] - \bar{r_x}) (r_y[s] - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_x[s] - \bar{r_x})^2 (r_y[s] - \bar{r_y})^2}}$$

Predizioni

Dalla similarità alla raccomandazione:

- Sia r_x il vettore di rating dell'utente x
- Sia ${\it N}$ l'insieme dei ${\it k}$ utenti più simili a ${\it x}$ che hanno valutato l'oggetto ${\it i}$
- Predizione dell'oggetto i per l'utente x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

•
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$
 $s_{xy} = sim(x, y)$

- Altre opzioni?
 - Molte..

Oggetto-Oggetto Collaborative Filtering

Vista: oggetto-oggetto

- Troviamo gli oggetti simili a i
- Stimiamo il rating per i in base ai rating degli oggetti simili

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}} \quad \begin{array}{l} \mathbf{s}_{ij} \dots \text{ similarità degli oggetti } \mathbf{i} \text{ e } \mathbf{j} \\ \mathbf{r}_{xj} \dots \text{rating dell'utente } \mathbf{x} \text{ sull'oggetto } \mathbf{j} \\ \mathbf{N}(\mathbf{i};\mathbf{x}) \dots \text{ set di oggetti simili a } \mathbf{i} \text{ valutati da } \mathbf{x} \end{array}$$

- Rating

sconosciuto

utenti

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- rating tra 1 e 5

utenti

		1	2	3	4	5	6	7	8	9	10	11	12
_	1	1		3		?	5			5		4	
_	2			5	4			4			2	1	3
_	3	2	4		1	2		3		4	3	5	
_	4		2	4		5			4			2	
	5			4	3	4	2					2	5
_	6	1		3		3			2			4	

- Stimare il rating del film 1 per l'utente 5

				•	•
		Δ	n		
ч	L	C		L	

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
film	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identificare film simili al film 1, valutati dall'utente 5

Usiamo la Pearson correlation come :

- 1) Sottraiamo il rating medio m_i da ogni film i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Calcoliamo la cosine similarity

utenti

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m
	1	1		3		?	5			5		4		1.00
film	2			5	4			4			2	1	3	-0.18
	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Pesi similarità:

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

utenti

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
film	<u>3</u>	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predizione tramite media pesata:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Approccio comune

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

- Definiamo la similarità s_{ij} tra gli oggetti i e j
- Selezioniamo k nearest neighbor N(i; x)
 - Oggetti più simili a i, valutati dall'utente x
- Stimiamo il rating r_{xi} pesato con la media:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

Stima baseline per r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

- μ = media generale di tutti i film
- b_x = deviazione del rating dalla media dell'utente x = (avg. rating utente x) μ
- \mathbf{b}_{i} = deviazione del rating per l'oggetto \mathbf{i}

Pro e contro

- +: Lavora con tutti i tipi di oggetti
- +: Non è necessaria feature selection

- -: New user problem
- -: New item problem
- -: Matrice dei rating sparsa

Dimensionality Reduction

- Possibile soluzione per il problema dovuto alla "sparsità" della matrice?
 - Dimensionality Reduction
- Latent Semantic Indexing (LSI)
 - Tecnica algoritmica sviluppata tra la fine degli anni '80 primi anni '90
 - Risolve problemi di sinonima, "sparsità" e scalabilità per grandi dataset
 - Riduce la dimensionalità e cattura le relazioni latenti
- Si può mappare facilmente nel Collaborative Filtering!

- Tecnica di indicizzazione che usa la Singular
 Value Decomposition per identificare pattern
 nella relazione tra termini e concetti
 contenuti nel testo.
- •Si basa sul principio che parole che sono usate nello stesso contesto tendono ad avere significato simile.

LSI per CF

- Matrice Termini-Documenti
- Spazio dei concetti
- Mapping tra:
 - Termini ←→ Concetti
 - Documenti ←→ Concetti

- Matrice Utenti-Oggetti
- Spazio delle categorie
- Mapping tra:
 - Oggetti ← Categorie
 - Utenti ← Categorie

Part IV

Metodi Graph-based

Metodi Graph-based

- Simile al Collaborative Filtering ma usa un grafo bipartito per immagazzinare le informazioni.
- Le raccomandazioni sono ottenute a partire dalla struttura della rete bipartita.
- Due classi di identità: Utenti (U) e Oggetti (O).
- Definiamo il grafo bipartito come segue:
 - G(U, O, E, W)
 - $E = \{e_{ij} : u_i \text{ likes } o_j\}$
 - W: $E \rightarrow \Re$
 - "E" insieme degli archi e "W" è una funzione che rappresenta il degree di preferenza che un utente ha per il particolare oggetto.

La utility matrix come grafo bipartito

Schema del metodo

NBI

- NBI (Network-based inference) sviluppato nel 2007.
- Bipartite network projection per ottenere informazioni sulle proiezioni.
- Dopo la proiezione:
 - Reti con nodi dello stesso tipo (utenti o oggetti);
 - Due nodi sono connessi se sono collegati da almeno un nodo di altro tipo;

NBI

- Idea base dell'algoritmo: flusso delle risorse sulla rete bipartita:
 - agli oggetti viene assegnata una quantità iniziale di risorse;
 - in un processo a due fasi le risorse sono trasferite dagli oggetti agli utenti e successivamente trasferiti indietro agli oggetti;
 - questo processo, con una fase di normalizzazione consente di ottenere degli score per le coppie utenti - oggetti.

NBI

• Il calcolo dei pesi avviene attraverso la seguente equazione:

$$w_{ij} = \frac{1}{\Gamma(i,j)} \sum_{l=1}^{\infty} \frac{a_{il}a_{jl}}{D(u_l)}$$

- Dove $\Gamma(i, j)$ è definita come :
 - $\Gamma(i, j) = D(o_i)$ per NBI
 - $\Gamma(i, j)=D(o_i)$ per **HeatS**

 D(t) degree del nodo "t" nella rete bipartita.

Raccomandazioni con NBI

• Il peso " \mathbf{w}_{ij} " della proiezione corrisponde a quante risorse vengono trasferite dall'oggetto " \mathbf{j} " all'oggetto " \mathbf{i} ", o quanto piacerà l'oggetto " \mathbf{j} " ad un utente a cui piace l'oggetto " \mathbf{i} ".

• Data la matrice di adiacenza "A" del grafo bipartito e la matrice "W", la matrice di raccomandazione "R" per tutti gli utenti può essere calcolata in un unico step:

$$R = A \times W$$

Pro e contro

- +: Funziona su tutti i tipi di oggetti
- +: Risolve il problema della sparsità della utility matrix.

- -: New user problem
- -: New item problem
- -: Richiede importanti risorse computazionali

Metodi ibridi

- Usare in combinazione diversi metodi di raccomandazione
- Supponiamo di avere i metodi "X" e "Y" che danno rispettivamente gli score " $\mathbf{x_a}$ " e " $\mathbf{y_a}$ ". Lo score di un modello ibrido può essere ottenuto come:

$$z_a = (1 - \lambda) \frac{x_a}{\max_{\beta} x_{\beta}} + \lambda \frac{y_a}{\max_{\beta} y_{\beta}}$$

•λ∈[0;1]

Pro e contro

+: Efficace nel migliorare la qualità delle raccomandazioni

-: Computazionalmente pesante

Part VI

Results Evaluation

Valutazione delle previsioni

- Confrontare le previsioni con le valutazioni note
 - Root-mean-square error (RMSE)

$$RMSE(\widehat{Y},Y) = \sqrt{\frac{\sum_{i=1}^{|\widehat{Y}|} (\widehat{Y}_i - Y_i)^2}{|\widehat{Y}|}}$$

- Un altro approccio: modello 0/1
 - Coverage
 - Numero di elementi/utenti per i quali il sistema può effettuare previsioni
 - Precision/Recall

Precision =
$$\frac{tp}{tp + fp}$$

Recall = $\frac{tp}{tp + fn}$

Accuracy of predictions

$$\text{Recall} = \frac{tp}{tp + fn}$$

- Receiver operating characteristic (ROC)
 - Curva di tradeoff tra falsi positive and falsi negativi

The Netflix Prize

Training data

- 100 millioni di rating, 480,000 utenti, 17,770 film
- 6 anni di dati: 2000-2005

Test data

- Ultimi rating degli utenti (2.8 million)
- Criterio di valutazione: Root Mean Square Error (RMSE) = $\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} r_{xi})^2}$
- Netflix's system RMSE: 0.9514

Competizione

- 2,700+ team
- \$1 million prize for 10% improvement on Netflix

La matrice di utilità Netflix R

Matrice R 1

17,700 film

					<u> </u>
1	3	4			
	3	5			5
		3	5		5
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

480,000 utenti

Matrice di utilità R: Valutazione

BellKor Recommender System

- Vincitore della Netflix Challenge!
- Multi-scale modeling :

Combinare top level, "regional" modeling dei dati, con una vista locale:

- Global:
 - Overall deviations of users/movies
- Factorization:
 - Addressing "regional" effects
- Collaborative filtering:
 - Extract local patterns

Modellazione di effetti locali e globali

Globale:

- Mean movie rating: 3.7 stelle
- *Il sesto senso* is **0.5** stelle sopra la media.
- Joe valuta 0.2 stelle sotto la media
- ⇒ Baseline estimation:

Joe valuterà il sesto Senso 4 stelle

Local neighborhood (CF/NN):

- A Joe non è piaciuto Signs
- ⇒ Final estimate:

Joe valuterà il sesto Senso 3.8 stelle

Riepilogo: Filtraggio collaborativo (CF)

- Il primo e il più popolare metodo collaborative filtering
- Ricavare valutazioni sconosciute da quelle di film "simili" (variante item-item)
- Definiamo la misura di similarità s_{ii} degli item i e j
- Seleziona i vicini k-NN, calcola la valutazione
 - N(i; x): item più simili a i che sono stati valutati da x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarità degli item *i* e *j*r_{xj}...rating dell'utente *x* sull'tem *j*N(i;x)... set di item simili all'item *i* già valutati da *x*

Modellazione di effetti locali e globali

• In pratica, otteniamo stime migliori se modelliamo le deviazioni:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

Stima baseline per r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

 μ = Valutazione media complessiva

 b_x = Deviazione di valutazione dell'utente x

= (avg. rating utente \mathbf{x}) – $\boldsymbol{\mu}$

 $b_i = (avg. rating film i) - \mu$

Problemi:

- 1) Le misura di simiòarità sono "arbitrarie"
- 2) Le simiarità pairwise trascurano le interdipendenze tra gli utenti
- **3)** Prendere una media ponderata può essere limitante

Solution: Invece di s_{ij} usare w_{ij} che stimiamo direttamente dai dati

Idea: Pesi di interpolazione w_{ij}

• Usare una somma pesata invece di una media pesata:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- Alcune note:
 - N(i; x) ... set di film valutati da x simili al film i
 - w_{ij} è il peso dell'interpolazione (un numero reale)
 - Permettiamo: $\sum_{j \in N(i,x)} w_{ij} \neq 1$
 - w_{ij} modella l'interazione tra coppie di filmati (non dipende dall'utente x)

Idea: Pesi di interpolazione w_{ij}

$$\bullet \widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

- Come impostare w_{ij} ?
 - Ricorda, la metrica di errore è: $\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} r_{xi})^2}$ o equivalentemente**SSE:**

$$\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2$$

- Trovare w_{ij} che minimizzano SSE sui dati di training!
 - Models relationships between item *i* and its neighbors *j*
- w_{ij} può essere appreso/stimato basandosi su x and e sugli altri utenti che hanno valutato i

Perché è una buona idea?

Raccomandazioni tramite ottimizzazione

- •Goal: Fare Buone recommendazioni
 - Quantifica la bontà usando RMSE:
 - **Lower RMSE** ⇒ raccomandazioni migliori

- Desidera fornire buone raccomandazioni su elementi che l'utente non ha ancora visualizzato. Non posso davvero farlo!
- Costruiamo un sistema in modo tale che funzioni bene su valutazioni note (utente, articolo)

E speriamo che il sistema preveda **bene** anche le valutazioni **sconosciute**

Raccomandazioni tramite ottimizzazione

- Idea: Impostiamo i valori w in modo che funzionino bene su valutazioni note (utente, articolo)
- Come trovare tali valori w?
- Idea: definire una funzione obiettivo e risolvere il problema dell'ottimizzazione
- Trova wij che minimizzano l'SSE sui dati di training!

$$J(w) = \sum_{x,i} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$
Predizione
Rating reale

Pensa a w come a un vettore di numeri

Minimizzare una funzione

- •Un modo semplice per trovare il minimo di una funzione f(x):
 - Calcola la derivate ∇f
 - Inizia da un certo punto y e valuta abla f(y)
 - Fai un passo nella direzione opposta al gradiente: $y = y \nabla f(y)$

Pesi di interpolazione

 Abbiamo il problema dell'ottimizzazione, ora cosa facciamo?

$$J(w) = \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$

- Gradient decent:
 - Iterare fino alla convergenza: $w \leftarrow w \eta \nabla_w J$

 η ... learning rate

• dove $\nabla_w J$ è il gradiente (derivate valutata sui data):

$$\nabla_{w}J = \left[\frac{\partial J(w)}{\partial w_{ij}}\right] = 2\sum_{x,i} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik}(r_{xk} - b_{xk})\right] - r_{xi}\right) \left(r_{xj} - b_{xj}\right)$$

$$\text{while } |w_{new} - w_{old}| > \varepsilon:$$

$$\text{for } j \in \{N(i;x), \forall i, \forall x\}\}$$

$$\text{else } \frac{\partial J(w)}{\partial w_{ij}} = 0$$

$$w_{new} = w_{old} - \eta \cdot \nabla w_{old}$$

• Nota: Fissiamo il film i, Andiamo su tutti i r_{xi} , per ogni film $j \in N(i;x)$, calcoliamo $\frac{\partial J(w)}{\partial w_{ij}}$

Pesi di interpolazione

• Finora:
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- Pesi w_{ij} derivato basato sul loro ruolo; l'assenza di ricorso a una misura arbitraria di similarità $(w_{ij} \neq s_{ij})$
- Tenere conto in modo esplicito delle interrelazioni tra i film vicini
- Prossimo: Latent factor model
 - Estrarre "regional" Correlazioni

Performance dei vari metodi

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

Grand Prize: 0.8563

Esercizio

Considerare il modello NBI:

$$w_{ij} = \frac{1}{\Gamma(i,j)} \sum_{l=1}^{\infty} \frac{a_{il} a_{jl}}{D(u_l)}$$

Generalizzarlo definendo $\frac{1}{\Gamma(i,j)}$ come un peso γ_{ij} $\gamma = \begin{bmatrix} \gamma_{1,1} & ... & \gamma_{1,n} \\ \vdots & \ddots & \vdots \\ \gamma_{n,1} & ... & \gamma_{n,n} \end{bmatrix}$

$$w_{ij} = \gamma_{ij} \sum_{l=1}^{\infty} \frac{a_{il} a_{jl}}{D(u_l)} \qquad r_{xi} = \sum_{j} a_{xj} \times w_{ji} \quad \rightarrow \quad r_{xi} = \sum_{j} a_{xj} \times \left[\gamma_{ij} \sum_{l=1}^{\infty} \frac{a_{il} a_{jl}}{D(u_l)} \right]$$

$$\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2} \text{ consideriamo } l'SSE \sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2$$

$$\min_{\gamma} \sum_{(i,x)\in R} \left(\left(\sum_{j} a_{xj} \times \left[\gamma_{ij} \sum_{l=1}^{\infty} \frac{a_{il} a_{jl}}{D(u_l)} \right] \right) - r_{xi} \right)^{2}$$

Definire $J(\gamma)$. Ottimizzare i pesi γ_{ij} utilizzando il Gradiente Discendente:

Notebook

https://colab.research.google.com/drive/1taAEyeHeNrfddjYO3niJSrRR9sduYnt1?us p=sharing