Introduction to statistics:

Statistics is the branch of mathematics that deals with the collection, analysis, interpretation, and presentation of data.

It provides methods for making decisions and predictions based on data.

DATA:

A data is a fact/piece of information that can be stored, measured and re-accessed.

A data is used to bring insights to increase a company's revenue by collecting ,organizing and analysing.

	1. Collecting Data	2. Organizing Data	3. Analyzing Data
Techn iques:	Surveys & Questionnaires — Google Forms, Typeform, Qualtrics	Data Cleaning — Handling missing values, removing duplicates	Descriptive Statistics – Mean, Median, Mode, Standard Deviation
	Web Scraping — Python (BeautifulSoup, Scrapy)	Data Structuring – Converting raw data into tables, CSVs, or databases	Inferential Statistics – Hypothesis testing, Regression analysis
	IoT & Sensors – Collecting real-time data from devices	Data Storage – Using databases, spreadsheets, or cloud storage	Machine Learning – Predictive analytics, clustering, classification
	APIs & Databases – Google Analytics, SQL databases		
	Manual Data Entry – Excel, Google Sheets		
Tool	Google Forms, SurveyMonkey' -Online surveys & feedback collection	Microsoft Excel, Google Sheets	Python (Pandas, NumPy, SciPy, Scikit-learn)
	Scrapy, BeautifulSoup -	-Sorting, filtering, structuring data	- Statistical & predictive analysis
	Web scraping for data SQL, PostgreSQL, MySQL-	SQL, NoSQL Databases -Storing and managing structured	R (ggplot2, dplyr, tidyr)
	Database management	data	-Statistical modeling & visualization
	IoT Sensors, Raspberry Pi	Python (Pandas, NumPy) -Data manipulation and preprocessing	Excel (Pivot Tables, Data Analysis ToolPak)
	-Real-time data collection	Power BI, Tableau-	-Basic statistical analysis
		Data visualization & organization	Tableau, Power BI
			- Data visualization & reporting

Example:

Real-World Case Study:

Analyzing Customer Satisfaction for an E-Commerce Business

Objective

An **e-commerce company** wants to analyze **customer satisfaction** based on their shopping experience.

1. Collecting Data

☐ Primary Data (Direct Collection):

- **Customer Surveys** After each purchase, customers fill out a survey rating their experience (1 to 5 stars).
- Website Analytics Tracking how long users stay on the website and their interactions.
- Customer Support Logs Recording complaints, issues, and feedback.

☐ Secondary Data (Existing Data Sources):

- **Sales Records** Checking customer purchase history.
- **Competitor Analysis** Using industry reports to compare with competitors.
- Social Media Reviews Analyzing customer comments and ratings on social platforms.

Tools Used for Data Collection:

Method Tool

Surveys Google Forms, Typeform

Web Analytics Google Analytics
Customer Support Logs Zendesk, Freshdesk
Sales Data SQL Databases, Excel

Social Media Data Web Scraping (Python, BeautifulSoup)

2. Organizing Data

Once the data is collected, it needs to be cleaned and structured for analysis.

- 1. **Remove Duplicates** If a customer filled the survey multiple times, only one entry is kept.
- 2. **Handle Missing Data** If some customers skipped questions, missing values are handled using statistical methods.
- 3. Categorization
 - o Grouping customers by age, location, and shopping habits.
 - Sorting satisfaction ratings (1–5 stars).
- 4. Visualizing Data
 - o **Tables** Showing average rating per month.
 - o **Bar Charts** Number of customers per satisfaction level.
 - o **Pie Charts** Percentage of satisfied vs. unsatisfied customers.

Example of Organized Data (Table Format)

Month Avg. Satisfaction	(1-5)) No. of	Complain	ts Avg.	Delivery	Time (days)

Jan	4.2	50	3.1
Feb	4.5	40	2.8
Mar	4.1	60	3.4
Apr	3.8	90	4.2

Tools Used for Data Organization:

Method Tool

Data Cleaning & Sorting Excel, Python (Pandas)
Categorization SQL, Python (NumPy)

Visualization Tableau, Power BI, Matplotlib

3. Analyzing Data

company applies statistical techniques to extract insights.

\square Descriptive Analysis:

- Mean Satisfaction Score \rightarrow The company finds that the average rating is 4.1 out of 5.
- Complaint Rate → More complaints were received in April, which aligns with an increase in delivery times.

☐ Inferential Analysis:

- Regression Analysis \rightarrow Shows that faster deliveries lead to higher customer satisfaction.
- **Hypothesis Testing** \rightarrow Tests whether **offering discounts** significantly increases repeat purchases.

☐ Predictive Analysis (Machine Learning):

• A **classification model** predicts whether a customer is likely to return based on their shopping history and satisfaction score.

Analysis Findings:

Customers who received deliveries in 3 days or less rated the service 4.5+ on a	average.
Customers who had a complaint were 60% less likely to shop again.	

☐ Offering a 10% discount increased repeat purchases by 15%.

Tools Used for Data Analysis:

Method Tool

Descriptive Statistics Excel, Python (Pandas, NumPy) Inferential Statistics SPSS, Python (Statsmodels, SciPy)

Machine Learning Scikit-learn, TensorFlow

4. Business Decision & Outcome

□ Problem Identified: Customers were dissatisfied with longer delivery times in April, leading to more
complaints.
□ Solution Implemented: The company partnered with a faster delivery service and introduced free
shipping for orders above \$50.
□ Result:
☐ Customer satisfaction increased from 3.8 to 4.5 in the following months.
□ Complaints dropped by 30%.
□ Sales improved by 20% due to better customer retention.

Types of Statistics

1. Descriptive Statistics 2. Inferential Statistics Deals with summarizing and presenting data in a draws conclusions about a population based on a meaningful way. sample. Orgainzing and summarizing the Using data, has been measured to form conclusion complete data/population.(ex:average delay of about population(ex- no of trees in forest) flights/train, (height/weight of people in india) Height/weight of students in class) Why? Population is large ,because of time and resource constraints. ☐ **Measures of Central Tendency** – Find the "center" Within given sample, data can be concluded something about population of the data. **Mean (Average)** – Sum of values divided by ☐ **Probability Distributions** — Used to predict total count. outcomes. **Median** – Middle value in an ordered dataset. **Mode** – Most frequently occurring value. Normal Distribution **Binomial Distribution** ☐ Measures of Dispersion (Spread of Data) Poisson Distribution Pmf • Range – Difference between the highest and Pdf Cdf lowest value. • **Variance** – How far data points are spread from Ctl Statisticaltest Standard Deviation (SD) – Measures data Normal Distribution (Bell Curve) variability. Many natural datasets follow this pattern. ☐ Measures of Shape & Symmetry **Binomial & Poisson Distributions** – Used in probability-based events. **Skewness** – Measures if data is asymmetrical. ☐ **Hypothesis Testing** – Determines if a result is **Kurtosis** – Measures whether data has heavy or significant. light tails.

 Graphical Representation of Data Bar Charts, Histograms, Pie Charts – Used for categorical data. Box Plots, Scatter Plots – Used for numerical data. 	 Null Hypothesis (H₀) – No difference or effect. Alternative Hypothesis (H₁) – There is a significant effect. p-value – If p < 0.05, reject H₀. Confidence Intervals – Gives a range of values where a population parameter is likely to be. Regression Analysis – Identifies relationships between variables. Linear Regression – Predicts continuous outcomes. Logistic Regression – Predicts categorical outcomes.
Scope-	Scope-
Entire dataset	Uses a sample to infer about population
Graphs used -	Graphs used-
Bar charts, Histograms,	Confidence Intervals, Probability Distributions
Example:	Example:
□ Dataset: Exam scores \rightarrow 65, 75, 80, 85, 90 □ Mean = $(65+75+80+85+90) \div 5 = 79$ □ Median = 80 (Middle value) □ Range = 90 - 65 = 25 □ Visualization: A histogram of the scores shows the distribution.	 A company surveys 500 customers to estimate satisfaction for all customers. ☐ Hypothesis: "Discounts increase repeat purchases." ☐ p-value < 0.05, so the effect is significant. ☐ Regression: More discounts → Higher retention.
Method Tools Used Central TendencyExcel, Python (NumPy, Pandas) Dispersion MeasuresR, SPSS, Python (SciPy) Graphs & Charts Tableau, Power BI, Matplotlib	MethodTools Used Probability Distributions Python (SciPy, Statsmodels) Hypothesis Testing SPSS, R, Python (t-tests, ANOVA) Regression AnalysisExcel, Python (Scikit-learn)

Conclusion:

	Descriptive S	Statistics	helps	summarize	what l	happene	d in the da	ıta.
-1	re42-1 C	4 - 42 - 42 1	1		411 1		. 41 1	

☐ Inferential Statistics helps predict what will happen in the larger population.

Why is Statistics Important in Data Science & Analytics?

Statistics is the **foundation** of Data Science (DS) and Analytics because it helps in **data collection**, **processing**, **analysis**, **and interpretation** to **make informed decisions**.

It ensures that data-driven insights are reliable and accurate.

Few applications of statistics in data science/data analytics.

Concept	Purpose	Use Case	
Descriptive Statistics	Summarizes data	Analyzing user behavior on websites	
Inferential Statistics	Predicts trends	A/B Testing for marketing	
Probability Theory	Understands uncertainty	Fraud detection, risk assessment	
Regression Analysis	Finds relationships	Predicting sales revenue	
Time Series Analysis	Forecasts trends	Stock market predictions	
ANOVA & Chi-Square	Compares groups	Testing customer preferences	
Statistical ML	Predictive modeling	Customer segmentation	