Classification metrics

Plan for the video

- Accuracy
- Logarithmic loss
- Area under ROC curve
- (Quadratic weighted) Kappa

Notation

- N is number of objects
- L is number of classes
- y ground truth
- \hat{y} predictions
- [a = b] indicator function
- Soft labels (soft predictions) are classifier's scores
- Hard labels (hard predictions):
 - $\underset{i}{\operatorname{arg max}} f_i(x)$
 - [f(x) > b], b-threshold

Accuracy score

Accuracy =
$$\frac{1}{N} \sum_{i=1}^{N} [\hat{y}_i = y_i]$$

How frequently our class prediction is correct.

Accuracy score

Accuracy =
$$\frac{1}{N} \sum_{i=1}^{N} [\alpha = y_i]$$

- How frequently our class prediction is correct.
- Best constant:
 - predict the most frequent class.

Accuracy score

Accuracy =
$$\frac{1}{N} \sum_{i=1}^{N} [\alpha = y_i]$$

- How frequently our class prediction is correct.
- Best constant:
 - predict the most frequent class.
- Dataset:
 - 10 cats
 - 90 dogs

Predict always dog:

Accuracy = **0.9**!

• Binary:

LogLoss
$$= -\frac{1}{N} \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

 $y_i \in \mathbb{R}, \quad \hat{y}_i \in \mathbb{R}$

• Binary:

LogLoss =
$$-\frac{1}{N} \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

 $y_i \in \mathbb{R}, \quad \hat{y}_i \in \mathbb{R}$

• Multiclass:

LogLoss =
$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{L} y_{il} \log(\hat{y}_{il})$$

 $y_i \in \mathbb{R}^L, \quad \hat{y}_i \in \mathbb{R}^L$

Binary:

LogLoss =
$$-\frac{1}{N} \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

 $y_i \in \mathbb{R}, \quad \hat{y}_i \in \mathbb{R}$

Multiclass:

LogLoss =
$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{L} y_{il} \log(\hat{y}_{il})$$

 $y_i \in \mathbb{R}^L, \quad \hat{y}_i \in \mathbb{R}^L$

• In practice:

$$LogLoss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{L} y_{il} \log(\min(\max(\hat{y}_{il}, 10^{-15}), 1 - 10^{-15}))$$

$$\operatorname{LogLoss} = -\frac{1}{N} \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

Logloss strongly penalizes completely wrong answers

$$LogLoss = -\frac{1}{N} \sum_{i=1}^{N} y_i \log(\alpha) + (1 - y_i) \log(1 - \alpha)$$

- Best constant:
 - set α_i to frequency of *i*-th class.

- Dataset:
 - 10 cats
 - 90 dogs

$$\alpha = [0.1, 0.9]$$

$$Accuracy([\hat{y} > 0.7]) = 1$$

$$Accuracy([\hat{y} > 0.7]) = 1$$

- Only for binary tasks
- Depends only on ordering of the predictions, not on absolute values
- Several explanations
 - 1) Area under curve
 - 2) Pairs ordering

$$AUC = \frac{\text{\# correctly ordered pairs}}{\text{total number of pairs}} = 1 - \frac{\text{\# incorrectly ordered pairs}}{\text{total number of pairs}}$$

- Best constant:
 - All constants give same score
- Random predictions lead to AUC = 0.5

Cohen's Kappa motivation

Dataset:

- 10 cats
- 90 dogs

Baseline accuracy = 0.9

$$my_score = 1 - \frac{1 - accuracy}{1 - baseline}$$

- accuracy = 1
- accuracy = 0.9

Cohen's Kappa motivation

Dataset:

- 10 cats
- 90 dogs

Predict 20 cats and 80 dogs at random: accuracy ~ 0.74

0.2*0.1 + 0.8*0.9 = 0.74

Cohen's Kappa =
$$1 - \frac{1 - \text{accuracy}}{1 - p_e}$$

 $p_e - \text{what accuracy would be on average, if we randomly permute our predictions}$

$$p_e = \frac{1}{N^2} \sum_{k} n_{k1} n_{k2}$$

Cohen's Kappa motivation

Dataset:

- 10 cats
- 90 dogs

Predict 20 cats and 80 dogs at

random: *accuracy* ~ 0.74

error ~ 0.26

Cohen's Kappa =
$$1 - \frac{\text{error}}{\text{baseline error}}$$

Weighted error

Dataset:

- 10 cats
- 90 dogs
- 20 tigers

Error weight matrix

pred\ true	cat	dog	tiger
cat	0	1	10
dog	1	0	10
tiger	1	1	0

Weighted error and weighted Kappa

Confusion matrix C

pred\ true	cat	dog	tiger
cat	4	2	3
dog	2	88	5
tiger	4	10	12

Weight matrix W

pred\ true	cat	dog	tiger
cat	0	1	10
dog	1	0	10
tiger	1	1	0

weighted error =
$$\frac{1}{const} \sum_{i,j} C_{ij} W_{ij}$$

Weighted error and weighted Kappa

Confusion matrix C

pred\ true	cat	dog	tiger
cat	4	2	3
dog	2	88	4
tiger	4	10	12

Weight matrix W

pred\ true	cat	dog	tiger
cat	0	1	10
dog	1	0	10
tiger	1	1	0

weighted error =
$$\frac{1}{const} \sum_{i,j} C_{ij} W_{ij}$$

weighted kappa =
$$1 - \frac{\text{weighted error}}{\text{weighted baseline error}}$$

Quadratic and Linear Weighted Kappa

Linear weights

pred\ true	1	2	3
1	0	1	2
2	1	0	1
3	2	1	0

Quadratic weights

pred\ true	1	2	3
1	0	1	4
2	1	0	1
3	4	1	0

$$w_{ij} = |i - j|$$

$$w_{ij} = (i-j)^2$$

weighted kappa =
$$1 - \frac{\text{weighted error}}{\text{weighted baseline error}}$$

Quadratic Weighted Kappa

CrowdFlower Search Results Relevance

Diabetic Retinopathy
Detection

Prudential Life
Insurance Assessment

The Hewlett Foundation: Automated Essay Scoring

Conclusion

- Accuracy
- Logloss
- AUC (ROC)
- (Quadratic weighted) Kappa