The algorithm

```
initialize R to be the set of all availabilities;
sort R by increasing finish time;
initialize ordered list A to be empty;
while (R is not yet empty):
    get i∈R; #notice i ends the earliest out of all of R
    remove i from R;
    if ∃ j∈R such that i and j overlap by some time:
        get the first j∈R; #notice j ends the earliest out of all of R
        add i and j to the end of A;
endwhile
return A as list of all partners (every two consecutive elements are partners)
```

Proof of Correctness

For purposes of comparison, let O be an optimal list of intervals and A be our solution. We need to prove |A|=|O|. First we will show inductively that our greedy algorithm solution A "stays ahead" of O and that it is doing better in a step-by-step fashion.

Notation:

- i₁, ... , i_k is the list of partners' availabilities in A in the order they were added to A.
- j₁, ... , j_m is the list of partners' availabilities in O.

We need to prove k=m. Assume that the availabilities in O, like A, are also ordered by increasing finish time.

Base Case

Need to prove $f(i_1) \le f(j_1)$ and $f(i_2) \le f(j_2)$. This is true because our greedy algorithm chooses people with the earliest possible finish times.

Inductive Case

 \forall r>1, we need to prove $f(i_{r+1}) \le f(j_{r+1})$ assuming the inductive hypothesis $f(i_r) \le f(j_r)$. We know that our greedy algorithm when attempting to choose a partner i_{r+1} for a student i_r chooses the student with the earliest-ending overlapping availability; and that when it is trying to initiate a

new pair on some student i_{r+1} (after a pair – the second student of which is i_r – was just formed, or after a pairing attempt failed for i_r , someone prior), it once again chooses the student with the earliest-ending availability. We thus see that our algorithm always stays ahead of any optimal solution. $f(i_{r+1}) \le f(j_{r+1})$.

Proof of Optimality

We will prove it by contradiction. If A is not optimal, then an optimal list O must have more pairs, that is, we must have m>k. Applying what we just proved, we get that $f(i_k) \le f(j_k)$. Since m>k, there must be a j_{k+1} and a j_{k+2} in O. These availabilities end after j_k ends, and hence after i_k ends. So after deleting all eligible partners and everyone whose availability doesn't overlap with anyone else's $(i_1, ..., i_k)$, the list of possible availabilities still contains j_{k+1} and j_{k+2} . But the algorithm stops with availability i_k , and it is only supposed to stop when R is empty – a contradiction.