RSA for Bayes Filters and POMDPs

February 4, 2019

1 Definitions

- $b_i(s)$ is the listener's current belief in s
- $b^0(s \mid u)$ is the primitive interpretation of utterance u
- $b_i^d(s \mid u) = \frac{O^{d-1}(u \mid s)b(s)}{\sum_{s'} O^{d-1}(u \mid s')b(s')}$ would be the listener's updated belief

if they interpreted u with RSA of depth d

•
$$O_i^d(u \mid s) = \frac{e^{\alpha \ln(b_i^d(s|u))}}{\sum_{u'} e^{\alpha \ln(b_i^d(s|u'))}} = \frac{\left(b_i^d(s \mid u)\right)^{\alpha}}{\sum_{u'} \left(b_i^d(s \mid u')\right)^{\alpha}}$$
 is the probability of the

speaker saying u to communicate s with RSA of depth d.

2 Desired behavior

We hope that using the listener's current belief will allow utterances to have context-dependent meaning. As an example, we would like for a single, when spoken under belief b_i , to be evidence for s_0 , but when spoken under b_1 act as evidence against s_0 . Equivalently, we wish to find b_i , b_j , b^0 , d, α , u, s_0 , s_1 s.t.

(1)
$$\frac{O_i^d(u \mid s_0)}{O_i^d(u \mid s_1)} > 1,$$
 $\frac{O_j^d(u \mid s_0)}{O_j^d(u \mid s_1)} < 1$

Substituting the speaker formulas gives

(2)
$$\frac{\sum_{u'} (b_i^d(s_0 \mid u))^{\alpha}}{\sum_{u'} (b_i^d(s_1 \mid u))^{\alpha}} > 1, \quad \frac{(b_j^d(s_0 \mid u))^{\alpha}}{\sum_{j} (b_j^d(s_0 \mid u))^{\alpha}} > 1, \quad \frac{\sum_{j} (b_j^d(s_0 \mid u))^{\alpha}}{\sum_{j} (b_j^d(s_1 \mid u))^{\alpha}} > 1, \quad \frac{\sum_{j} (b_j^d(s_1 \mid u))^{\alpha}}{\sum_{j} (b_j^d(s_1 \mid u))^{\alpha}} > 1, \quad \frac{(b_j^d(s_1 \mid u))^{\alpha}}{\sum_{j} (b_j^d(s_1 \mid u))^{\alpha}} > 1, \quad \frac{(b_j^d(s_0 \mid u))^{\alpha} \sum_{j} (b_j^d(s_1 \mid u))^{\alpha}}{(b_j^d(s_1 \mid u))^{\alpha} \sum_{j} (b_j^d(s_0 \mid u))^{\alpha}} > 1, \quad \frac{(b_j^d(s_1 \mid u))^{\alpha} \sum_{j} (b_j^d(s_0 \mid u))^{\alpha}}{(b_j^d(s_1 \mid u))^{\alpha} \sum_{j} (b_j^d(s_0 \mid u))^{\alpha}} < 1$$

$$(3) \quad \frac{\left(b_i^d(s_0 \mid u)\right)^{\alpha} \sum_{u'} \left(b_i^d(s_1 \mid u')\right)^{\alpha}}{\left(b_i^d(s_1 \mid u)\right)^{\alpha} \sum_{u'} \left(b_i^d(s_0 \mid u')\right)^{\alpha}} > 1, \quad \frac{\left(b_j^d(s_0 \mid u)\right)^{\alpha} \sum_{u'} \left(b_j^d(s_1 \mid u')\right)^{\alpha}}{\left(b_j^d(s_1 \mid u)\right)^{\alpha} \sum_{u'} \left(b_j^d(s_0 \mid u')\right)^{\alpha}} < 1$$

$$(4) \quad \frac{\left(b_{i}^{d}(s_{0} \mid u)\right)^{\alpha}}{\left(b_{i}^{d}(s_{1} \mid u)\right)^{\alpha}} > \frac{\sum_{u'} \left(b_{i}^{d}(s_{0} \mid u')\right)^{\alpha}}{\sum_{u'} \left(b_{i}^{d}(s_{1} \mid u)\right)^{\alpha}}, \quad \frac{\left(b_{j}^{d}(s_{0} \mid u)\right)^{\alpha}}{\left(b_{j}^{d}(s_{1} \mid u)\right)^{\alpha}} < \frac{\sum_{u'} \left(b_{j}^{d}(s_{0} \mid u')\right)^{\alpha}}{\sum_{u'} \left(b_{j}^{d}(s_{1} \mid u)\right)^{\alpha}}$$

Unraveled recursion formula 2.1

(5)
$$O_{i}^{d}(u \mid s) = \frac{\left(b_{i}^{d}(s \mid u)\right)^{\alpha}}{\sum_{u'} \left(b_{i}^{d}(s \mid u')\right)^{\alpha}}$$

$$= \frac{\left(\frac{O^{d-1}(u \mid s)b(s)}{\sum_{s'} O^{d-1}(u \mid s')b(s')}\right)^{\alpha}}{\sum_{u'} \left(\frac{O^{d-1}(u' \mid s)b(s)}{\sum_{s'} O^{d-1}(u' \mid s')b(s')}\right)^{\alpha}}$$

3 Strategies

Write out desired behavior explicitly, find solution.

Uncurl recursion to see the effects of different initial belief after multiple steps.

Run simulations until a good example is found. Will need to write out theory of why that example works afterwards.