Persistent Homology Of Randomized Simplicial Complexes

Masterarbeit

vorgelegt von

Ivan Lothar Arbo Spirandelli

zur Erlangung des akademischen Grades

Master of Science Mathematik

Betreuer: Dr. Frank Lutz Zweitgutachter: -

Technische Universität Berlin Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik

Berlin, den -.-.--

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbste ohne unerlaubte fremde Hilfe und ausschließlich unter Quellen und Hilfsmittel angefertigt habe.	
Berlin, den	
	Ivan Lothar Arbo Spirandelli

Zusammenfassung

Janz Abstracte Jeschichte.

Contents

1	Foundations	9
	1.1 Simplicial Complexes	9

This first section is committed to the introduction of the mathematical concepts we will need throughout this work. The goal is not an in depth build up, but rather a concise collection of basic definitions and theorems.

1.1 Simplicial Complexes

In this section we will introduce some notions of discrete geometry. For the following definitions let $S = \{s_1, ..., s_m\} \subseteq \mathbb{R}^n$ be a finite set of points.

Definition 1.1.1 (Affine combination). Let $\lambda_i \in \mathbb{R}$, i = 1, ..., m be scalars, which satisfy $\sum_{n=1}^{m} \lambda_i = 1$. Then:

$$\sum_{n=1}^{m} \lambda_i s_i$$

is called an *affine combination* of the points s_i . [2, Definition 2.11]

Definition 1.1.2 (Affine hull, affinely independent). The set of all affine combinations of points in S is called the **affine hull**. We say that the points in S are **affinely independent** if they generate a subspace of dimension m-1. [2, Definition 2.11]

An alternative definition is given in [1, III.1, paragraph 3]. The points in S are called **affinely independent** if any two affine combinations $x = \sum_{n=1}^{m} \lambda_i s_i$ and $y = \sum_{n=1}^{m} \mu_i s_i$ are the same, iff $\mu_i = \lambda_i$ for i = 1, ..., m.

Definition 1.1.3 (Convex combination). Let $S = \{s_1, ..., s_m\} \subseteq \mathbb{R}^n$, $1 \leq m \in \mathbb{N}$. Let $0 \leq \lambda_i \in \mathbb{R}$, i = 1, ..., m be scalars, which satisfy $\sum_{n=1}^m \lambda_i = 1$. Then the sum:

$$\sum_{n=1}^{m} \lambda_i s_i$$

is called a *convex combination* of the points s_i . [2, Definition 2.12]

In other words, a convex combination is an affine combination, in which the $\lambda_i \geq 0$. Now we can analogously define the convex hull.

Definition 1.1.4 (Convex hull). The set of all convex combinations of points in S is the **convex hull** of S.

We are particularly interested in the following special class of convex hulls.

Definition 1.1.5 (k-Simplex). A k-Simplex is the convex hull of k+1 affinely independent points.

Bibliography

- [1] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. 01 2010.
- [2] Michael Joswig and Thorsten Theobald. *Polyhedral and algebraic methods in computational geometry*. Universitext. Springer, London, 2013. Revised and updated translation of the 2008 German original.