Lecture 7

Clocking continued

Quick Review

Synchronous

Mesochronous

Plesiochronous

Asynchronous

GENERAL PURPOSE ASYNCHRONOUS CLOCK CROSSING

Observe

 Can build mesochronous and plesiochronous synchronizers with no failure probability

Asynchronous Clock Crossing

- Most common scenario in ASIC/FPGA design
- Non-zero probability of failure
- Can only reduce probability

Basics Again

Crude Exercise

Crossing 1 Signal

Solution

One More Thing

The Fix

Synchronizer Block

Multiple Control Signals

Counter

Datapath – Bus

FIFO

Write Synch: Write Clock = Read Clock
Rate matching
Asynch: Also for Clock Crossing

Use a dual-ported Asynch memory Asynch memory - address in Idata out - all combinational Word Lines Address Holdress Decoder The Bit Lines

STATIC TIMING ANALYSIS (STA)

Timing Simulation

Static Timing Analysis

False Path

Multi-cycle Path

Constraints and P&R Time

Timing and Clock Crossing

Synchronizer

STA

Simulation

Style: Partition