#### Билет 1

# 1) Функциональная схема цифровой системы связи. Основные характеристики системы связи.



Рисунок 1. Структурная схема системы электросвязи

Назначение отдельных элементов схемы:

**Источник сообщения** — это некоторый объект или система, информацию о состояние которой необходимо передать.

**ФНЧ** — ограничивает спектр сигнала верхней частотой. Нужен, чтобы ограничить спектр частот чтобы применить теорему Котельникова(делает из аналогового - дискретный).

**Дискретизатор**— представляет отклик ФНЧ в виде последовательности отсчетов

**Отсчёт** — значение сигнала в моменты времени  $k^* \Delta t$ .(  $\Delta t$  — период дескритизации  $\Delta t <= \pi/\omega_B$ )

**Квантователь** – преобразует отсчеты в квантовые уровни ; k=0,1,2...; , где L – число уровней квантования.

**Кодер** – кодирует квантованные уровни двоичным безызбыточным кодом, т.е. формирует последовательность комбинаций ИКМ.

На выходе АЦП(Аналого-цифровой преобразователь) – двоичный код

**Модулятор** — формирует сигнал, амплитуда, частота или фаза которого изменяются в соответствии с сигналом (делает из низкочастотного — высокочастотный сигнал).

Выходное устройство ПДУ (передающее устройство) — осуществляет фильтрацию и усиление модулированного сигнала для предотвращения внеполосных излучений и обеспечения требуемого соотношения сигнал/шум на входе приемника.

**Линия связи** — среда или технические сооружения, по которым сигнал поступает от передатчика к приемнику. В линии связи на сигнал накладывается помеха.

**Источник помех** — создает помехи в диапазоне частот от десятков килогерц до нескольких мегагерц. Влияние помех минимизируется до допустимых значений встроенными входными и выходными фильтрами, могут быть "+" аддитивными (складываются с сигналом) и "\*"мультипликативные (умножаются с сигналом)

**Входное устройство ПРУ**(приемное устройство) – осуществляет фильтрацию принятой смеси – сигнала и помехи.

**Детектор** – преобразует принятый сигнал в сигнал ИКМ(Импульсно-кодовая модуляция).

**Декодер** – преобразует кодовые комбинации в импульсы, исправляет возможные ошибки.

**Интерполятор и ФНЧ**(делает из дискретного - аналоговый) восстанавливают непрерывный сигнал из импульсов — отсчетов.

На выходе **ЦАП**(Цифро-аналоговый преобразователь) – последовательность отсчётов

**Получатель** — некоторый объект или система, которому передается информация.

## 2) Обнаружение радиосигнала со случайной начальной фазой на фоне АБГШ. Некогерентный прием.

Обнаружение радиосигнала со случайной начальной фазой на фоне АБГШ. Некогерентный прием.

АБГШ - Аддитивный белый гауссовский шум

**А**ддитивный - значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям

Белый – спектр равномерен и бесконечен

**Г**ауссовский — описывается распределением Гаусса **Ш**ум

## 2.1.5. <u>Обнаружение радиосигнала со случайной начальной фазой на фоне</u> *АБГШ*.

Пусть по гипотезе  $H_1$  на вход приемного устройства поступает аддитивная смесь сигнала и шума:  $y_i = S_i + \eta_i$ , где  $S_i = A\cos\left(\omega i + \varphi\right)$ . Здесь A — известная амплитуда,  $\omega = \frac{2\pi}{T}\Delta t$ , T — период сигнала,  $\Delta t$  — шаг (интервал) дискретизации,  $\varphi$  — начальная фаза колебания, которая является случайной величиной с равномерным распределением:  $\varphi \sim R\left[-\pi,\pi\right]$ , т.е.  $\Phi \Pi B$  фазы имеет

вид: 
$$w(\varphi) = \begin{cases} \frac{1}{2\pi}, & -\pi \leq \varphi \leq \pi, \\ 0, & \text{иначе.} \end{cases}$$



Отношние правдоподобия:

$$\begin{split} \boldsymbol{\varLambda}\left(\overrightarrow{\mathbf{y}_{\mathrm{n}}},\boldsymbol{\varphi}\right) &= \frac{\mathbf{w}(\overrightarrow{\mathbf{y}_{\mathrm{n}}},\boldsymbol{\varphi}\,|\,\mathbf{H}_{\mathrm{l}})}{\mathbf{w}(\overrightarrow{\mathbf{y}_{\mathrm{n}}},\boldsymbol{\varphi}\,|\,\mathbf{H}_{\mathrm{0}})}, \end{split}$$
 где  $\boldsymbol{w}(\overrightarrow{\mathbf{y}_{\mathrm{n}}},\boldsymbol{\varphi}\,|\,\mathbf{H}_{\mathrm{0}}) = \frac{1}{\left(\sqrt{2\pi}\sigma_{\eta}\right)^{n}} exp \Bigg( -\sum_{i=l}^{n} \frac{\left(y_{i} - A\cos(\omega i + \varphi)\right)^{2}}{2\sigma_{\eta}^{2}} \Bigg), \end{split}$   $\boldsymbol{w}(\overrightarrow{\mathbf{y}_{\mathrm{n}}},\boldsymbol{\varphi}\,|\,\mathbf{H}_{\mathrm{0}}) = \frac{1}{\left(\sqrt{2\pi}\sigma_{\eta}\right)^{n}} exp \Bigg( -\sum_{i=l}^{n} \frac{y_{i}^{2}}{2\sigma_{\eta}^{2}} \Bigg). \end{split}$ 

### ВЫВОД ФОРМУЛЫ

Т.к. отношение правдоподобия зависит от фазы $\varphi$ , то оно тоже является случайной величиной. Поэтому  $\Lambda(\overrightarrow{\mathbf{y}_{\scriptscriptstyle \mathrm{n}}}, \varphi)$  можно усреднить по фазе  $\Rightarrow$ 

$$\Lambda_{1}\left(\overrightarrow{\mathbf{y}_{n}}\right) = \int_{-\pi}^{\pi} \Lambda\left(\overrightarrow{\mathbf{y}_{n}}, \varphi\right) w(\varphi) d\varphi = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Lambda\left(\overrightarrow{\mathbf{y}_{n}}, \varphi\right) d\varphi.$$

Далее, приняв во внимание, что  $\sum_{i=1}^{n} A^2 cos(\omega_i + \varphi) = E$  - энергия сигнала и введя

обозначения 
$$X_{nc} = \sum_{i=1}^{n} y_i \cos(\omega i), \quad X_{ns} = \sum_{i=1}^{n} y_i \sin(\omega i), \quad \text{получим}$$

$$\Lambda_{l}(\overrightarrow{\mathbf{y}_{n}}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} exp\left(\frac{A(X_{nc}\cos\varphi - X_{nS}\sin\varphi)}{\sigma_{\eta}^{2}} - \frac{E}{2\sigma_{\eta}^{2}}\right) d\varphi = 
= exp\left(-\frac{E}{2\sigma_{\eta}^{2}}\right) \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} exp\left(\frac{A(X_{n}\cos(\varphi + \chi))}{\sigma_{\eta}^{2}}\right) d\varphi$$

где 
$$X_n = \sqrt{X_{nc}^2 + X_{nS}^2}$$
,  $\chi = arctg\left(\frac{X_{ns}}{X_{nc}}\right)$ .

Известно, что 
$$\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}exp\bigg(\frac{AX_{n}\cos(\varphi+\chi)}{\sigma_{\eta}^{\ 2}}\bigg)d\varphi=I_{\theta}\bigg(\frac{AX_{n}}{\sigma_{\eta}^{\ 2}}\bigg) \ - \ \text{функция} \ \text{Бесселя}$$
 нулевого порядка 
$$\Rightarrow \varLambda_{I}\bigg(\overrightarrow{\mathbf{y}_{n}}\bigg)=exp\bigg(-\frac{E}{2\sigma_{\eta}^{\ 2}}\bigg)I_{\theta}\bigg(\frac{AX_{n}}{\sigma_{\eta}^{\ 2}}\bigg).$$

### Конец вывода формулы

Коэффициент правдоподобия:

$$A_{I}\left(\overrightarrow{\mathbf{y}_{n}}\right) = exp\left(-\frac{E}{2\sigma_{\eta}^{2}}\right)I_{\theta}\left(\frac{AX_{n}}{\sigma_{\eta}^{2}}\right)$$

Т.к. функция Бесселя монотонная от  $X_n$  при отношении сигнал/шум  $h_{\text{вых}}>1$   $\Rightarrow$  решение можно принимать но,  $\Rightarrow X_n$ :

если 
$$X_n \ge C_\alpha \Longrightarrow \gamma_1$$
 (есть сигнал) (2.25) если  $X_n < C_\alpha \Longrightarrow \gamma_0$  (нет сигнала)

(если в функции Бесселя аргумент > 1, то бессель монотонный)

Поиск порога  $C_a$ .

Порог будем искать по критерию Неймана-Пирсона:

оптимальным решающем правилом является сравнение с некоторым порогом выбирающимся из условия получения заданной вероятности ложной тревоги α. При этом минимизируется вероятность пропуска сигнала β

$$\alpha$$
 - задано  $\Rightarrow \beta = \min$  (2.26)

В отсутствии радиосигнала случайная величина  $X_n$  характеризуется плотностью распределения Релея:

$$w(X_n | H_0) = \frac{X_n}{\sigma_X^2} exp\left(-\frac{X_n^2}{2\sigma_X^2}\right),$$

 $\sigma_{\rm x}^2 = \frac{\sigma_{\rm \eta}^2 {
m T_H}}{2}$  - дисперсия, составляющих  $X_{\it nc}, X_{\it ns}$  ,  ${
m T_H}$ = n  $\Delta t$  - время



$$C_{\alpha} = \sqrt{\sigma_{\eta}^2 T_H \ln\left(\frac{l}{\alpha}\right)}$$
, где  $\mathbf{f_d} = \frac{1}{\Delta \mathbf{t}}$  - частота дискретизации сигнала.

Затем можно вычислить вероятность пропускания сигнала β и вероятность обнаружения D=1-β.

По формуле: 
$$\beta = \int\limits_{-\infty}^{c_a} w(X_n \,|\, H_I) dX_n$$
 , где

$$w(X_n | H_1) = \frac{X_n}{\sigma_X^2} exp\left(-\frac{X_n^2 + m_c^2 + m_S^2}{2\sigma_X^2}\right) I_0\left(\frac{X_n^2 \sqrt{m_c^2 + m_S^2}}{\sigma_X^2}\right) - \text{плотность}$$

распределения Релея - Райса, где  $m_c, m_s$  — условие мат. ожидания,

составляющих: 
$$X_{nc}$$
,  $X_{ns}$ :  $m_c = E(X_{nc}/\varphi) = \frac{AT_H}{2}\cos\varphi$ ,

$$m_s = E(X_{ns}/\varphi) = -\frac{AT_H}{2} sin \varphi$$
, E — оператор мат. ожидания.

На рисунке 2.6. показана структура обнаружителя радиосигнала со случайной начальной фазой.



a)



$$\mathbf{6}) \ \omega_0 = \frac{2\pi}{T}$$

Рисунок 2.6. Структурная схема алгоритма обнаружения радиосигнала со случайной начальной фазой : a-в дискретном времени, b-в непрерывном времени.

Такая обработка называется **некогерентной**, т.к. начальная фаза  $\phi$  неизвестна

**Задача.** Периодический сигнал описывается функцией x(t) = x(t + nT) = A, где T - период. Найти амплитудный и фазовый спектр сигнала.





Фазовый спектр = 0, значит сигнал синфазный (все компоненты имеют одну и ту де фазу)