

LEVELI

RADC-TR-81-179
Final Technical Report
July 1981

ELECTROMAGNETIC FIELD MAPPING OF CYLINDER AND MISSILE NOSECONE

Bell-Northern Research

Richard R. Goulette Kent E. Felske

E

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, New York 13441

01 9 16 018

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-81-179 has been reviewed and is approved for publication.

APPROVED: Ry 7. Station

ROY F. STRATTON Project Engineer

APPROVED:

DAVID C. LUKE, Colonel, USAF

Chief, Reliability and Compatibility Division

FOR THE COMMANDER:

JOHN P. HUSS Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBCT) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
RADCUTR-81-179 AD A 104 31	3. RECIPIENT'S CATALOG NUMBER
ELECTROMAGNETIC FIELD MAPPING OF CYLINDER AND MISSILE NOSECONE	Final Technical Report Aug 79 - Sep 80
Richard R. Goulette Kent E. Felske	F30692-79-C-0197 NG
9. PERFORMING ORGANIZATION NAME AND ADDRESS Bell-Northern Research Ottawa Canada KlY 4H7	10. PROGRAM ELEMENT, PROJECT, TO AREA & WORK UNIT NUMBERS 162702F
Rome Air Development Center (RBCT) Griffiss AFB NY 13441	July 81 3. NUMBER OF PAGES 210
TA. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same	UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADII N/A
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to Same	om Report)
	om Report)
Same 16. SUPPLEMENTARY NOTES	
Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Roy Stratton (RBCT) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number	y and instrumentation ric and magnetic fields figurations are illuminat
Same 16. SUPPLEMENTARY NOTES RADC Project Engineer: Roy Stratton (RBCT) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number Electromagne: ic Field Mapping 28. ABSTRACT (Continue on reverse side if necessary and identify by block number This technical report describes the technolog developed for the measurement of vector elect with cylindrical configurations, when the con	y and instrumentation ric and magnetic fields figurations are illuminat ncy range of 225 to 400 M

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PREFACE

Bell-Northern Research is pleased to submit this Final Report on "Electromagnetic Field Mapping of Cylinder and Missile Nosecone", Air Force Contract No. F30602-79-C-0197, to Rome Air Development Centre (RADC/RBCT).

This one year program has demonstrated that electromagnetic probes can be designed with the necessary resolution, sensitivity and accuracy for mapping complex electric and magnetic fields at UHF frequencies within metal structures containing apertures.

TABLE OF CONTENTS

							Page	
1.0	፤ አ ሞክር	DUCTIO	N				1	
1.0	1.1						_	
		_						
2.0	APPRO	•				• • • • • • • • • • • •	3	
	2.1			in Electr			3	
3.0	EM F	ELD MA	PPING SYS	TEM			6	
	3.1	Gener	al System	Descripti	on		6	
	3.2	Elect	ric Field	Probe Des	ign	• • • • • • • • • • •	1.7	
	3.3	Magne	tic Field	Probe Des	ign		21	
	3.4	Signa	l Conditi	oning and	Transmissi	on	28	
	3.5	Signa	l Acquisi	tion and A	malysis Sy	stem	د 3	
	3.6	Mecha	nical Pos	itioning S	ystem		37	
	3.7	Field	Illumina	tion Syste	m for Mapp	ing	37	
4.0	RESUI	LTS				• • • • • • • • • • • • • • • • • • • •	39	
	4.1	Probe	Evaluati	on	• • • • • • • • • • • • • • • • • • • •		39	
	4.2	Illum	ination S	ystem Eval	uation		42	
	4.3	Mecha	nical Pos	itioning S	ystem Test	s	42	
	4.4	Field	Contours			••••••	45	
5.0	CONCI	LUSIONS				• • • • • • • • • • • • • • • • • • • •	47	
	REFER	RENCES	•••••			• • • • • • • • • • • • • • • • • • • •	48	
	APPEN	NDIX A	Definiti	on of Fiel	d Measurem	ent Geometry	and Sampling	
	APPEN	NDIX B	Field Co	ntour Maps	for Missi	le Nosecone a	nd Cylinder	
	APPEN	NDIX C	Tabulati	on of E-Fi	eld and H-	Field Measure	ement Data	
	APPE	NDIX D	Results	of E-Field	Perturbat	ion Test Cond	lucted in Missile	
	APPE	NDIX E	Probe Ca	libration	Curves and	Lookup Table	(Nosecone Removed)	
	APPE	NDIX F	Computer	Programs				
	APPE	NDTX G	Operatio	g and Main	tenance Da	ta for EM Fie	ld Machine Component	

LIST OF ILLUSTRATIONS

FIGURE		Page
1	Missile Nosecone in Position for Field Mapping	6
2	View of Forward Section of Missile with Nosecone Removed, Showing Probe Carriage	7
3	View of Mechanical Positioning Unit, Assembled to Nosecone Bulkhead	8
4	Rear View of Missile, showing Signal Conditioner Installed	9
5	Laboratory Setup Outside of RF Anechoic Chamber	10
6	Block Diagram of Instrumentation Used for Field Mapping	11
7	Equivalent Circuit of E-Field Probe	13
8	E-Field Probe in Holding Fixture	18
9	Mechanical Assembly of E-Field Probe	19
10	DC Characteristics of E-Field Probe	20
11	Equivalent Circuit of H-Field Probe	22
12	H-Field Probe in Holding Fixture	23
13	Mechanical Assembly of H-Field Probe	24
14	DC Characteristic of H-Field Probe	25
15	View of Signal Conditioner, Showing Controls and Signal Ports	29
16	Block Diagram of Signal Conditioner	30
17	Transfer Characteristics of Signal Conditioner	31
18	Freuqency Response of Signal Conditioner	32
19	Total Transfer Characteristic of Signal Conditioner and E-Field Probe	34
20	Total Transfer Characteristic of Signal Conditioner and H-Field Probe	35
2 1	View of Optical Link Receiver Unit connected via Fiber Optic Link to Signal Conditioner	36
22	Frequency Response of E-Field Probe	43
23	Probe Gradient and Resolution	44
24	Frequency Response of H-Field Probe	45

LIST OF TABLES

		Page
TABLE 1	Summary of E-Field Probe Results	40
TABLE 2	Summary of H-Field Probe Results	41

1.0 INTRODUCTION

Bell Northern Research (BNR), under contract to Rome Air Development Center (RADC) has carried out a two-part program for electromagnetic field mapping:

- (a) First, using the EM probing methodology previously developed at BNR, techniques and instrumentation were devised to measure the total vector electric (E) and magnetic (H) fields inside metallic enclosures in the frequency range of 225 MHz to 400 MHz and
- (b) In the second part of the program, these techniques and instrumentation were applied to the mapping of E and H fields within the two metallic enclosures described in this report.

The instrumentation developed by BNR was required to meet the following design objectives:

Frequency range 225-400 MHz
E-field strength 0.19-200 V/m
H-field strength 0.0005-0.52 A/m
Field gradient 10 dB/cm (or more)
Spatial resolution ±0.5 cm
Accuracy ±1 dB
Free of resonance in the range 225-400 MHz

1.1 Background

Measuring electromagnetic field distributions yields accurate results without the need to make assumptions about the enclosing structure or to develop mathematical approximations of complex shapes. On the other hand, there can be severe or even insurmountable physical difficulties to apply the technique within metallic enclosures containing many obstacles.

Prediction techniques avoid this problem and can readily be applied to many complex geometric structures. However, before using a prediction technique with confidence, it is necessary to verify by measurement that the mathematical model accurately portrays reality. It is also useful to learn by measurement which parameters

utilized in the model are most sensitive - that is, in which cases will small changes in parameter value have a significant impact on model results.

The measurement objectives set by RADC which are summarized in paragraph 1.0 were based upon the need to obtain experimental verification for recently developed mathematical modeling techniques developed by Taflove [1].

This is in response to the need for improved high resolution field prediction and measurement techniques in the UHF frequency range. Two "standard cylindrical configurations" were used in comparing various field penetration results. These are described as:

- a) Right Circular Aluminum Cylinder, closed one end, 27-3/16" long by 7-3/16" diameter.
- b) Empty shell of guidance, control, and telemetry section of a missile, subsequently referred to as a "rosecone" as field mapping takes place in this forward section.

The configurations used to obtain the measured results in this report are the identical configurations described in reference [1].

2.0 APPROACH

The approach was to use miniature dipole and loop antennas incorporating detector diodes. This approach permitted the use of a non-perturbing, high-resistance transmission line to transmit demodulated signals to a signal conditioner outside the field measurement zone.

Selection of key elements was carefully optimized in order to meet the requirements for both high sensitivity and high spatial resolution in the UHF frequency band. These stringent requirements for sensitivity and resolution were necessary in order to accurately measure the complex fields within metallic enclosures such as weapon system casings.

2.1 Considerations in Electromagnetic Field Mapping

The design of a high performance electromagnetic field mapping system for use in the UHF frequency range must consider several important factors.

The need for high sensitivity must be carefully balanced against the conflicting need for high spatial resolution. The E-field antenna design in this case uses a biconical dipole in conjunction with a zero-bias schottky diode in order to achieve the required sensitivity at a maximum permissible sensor dimension of one centimeter. For a given physical length, the biconical design exhibits a high antenna effective length and low source impedance, which allow a higher signal to be developed across the detector diode. The H-field antenna employs a resonant coil structure in order to achieve a similar goal.

Some probe requirements arise due to the very complexity of the fields being measured within metallic structures.

When these structures encounter an external radiation field, energy is coupled in a complex way through openings, slits, and seams in the structure to produce concentrated electric and magnetic fields having E/H ratios that depart radically from the usual value of 377 ohms encountered in ideal situations. Accordingly, field probes must be small in order to resolve such

concentrated fields, and must also be free from cross-field sensitivity errors. For example, a high magnetic field could couple to an E-field probe in a region of low electric field strength giving a false reading. Similarly a high electric field could adversely affect an H-field probe.

Since the probes are used to measure only one vector field at a time, it is also important that the polar field pattern of each probe conforms closely to the ideal figure-eight (cosine) field pattern of an infinitesimal dipole (or loop); otherwise the total vector field obtained by summation of the three cartesian coordinate vector fields will be subject to error.

The probes and the mechanical system used to position them must not significantly perturb the very field being measured. Thus, metallic RF transmission cables cannot be used for measurements at UHF frequencies and for high spatial resolutions (e.g., +0.5 cm).

Fibre optic transmission from the probe was also ruled out because of the difficulty in making an RF-to-optical converter sufficiently small. Hence detector diodes coupled to miniature dipoles and wire loops were used. The resulting do signal developed across the diode is transmitted via high resistance (one kilohm per cm. or greater) conductors out of the field measurement zone to an appropriate high-impedance do amplifier.

All mechanical parts used within the field measurement zone must be non-metallic and have the smallest size consistent with accurate positioning. This constraint can present design difficulties. For example, reactive torques developed in a carriage pulley drive system can impart a bending moment on long plastic shafts causing deflection; also, using only non-metallic fasteners severely limits the clamping forces available in small non-metallic assemblies.

The illumination system itself may produce radiation at harmonic frequencies. This radiation may cause a problem in regions within the objects under test where high field attenuation exists at the illuminating frequency but not at harmonic frequencies. This situation commonly occurs in coupling through apertures in general and could give false readings where attenuation of 40 dB or more are expected, despite taking normal precautions to filter the radiated signal. The

technique used to minimize this problem, an amplitude-modulated illuminating field, is used together with a narrow-bandwidth filter in the amplifier receiving the signal detected from the antenna probe. In this way, higher transmitter harmonics with multiples of the original modulating frequency are rejected in the amplifier.

This technique also resulted in less background noise and a high signal-to-noise ratio.

Other sources of error include temperature effects, which are controllable for the amplifier system but can be significant in the probe structures. These are systematic errors that can be included in the probe calibrations. It is difficult, however, to add perturbing components to a miniscule antenna structure to compensate automatically for probe temperature effects.

3.0 EM FIELD MAPPING SYSTEM

3.1 General System Description

An overview of the total system configuration used for mapping the missile nosecone and the aluminum cylinder may be obtained by reference to Figures (120) inclusive. Figure 1 depicts the missile nosecone installed in BNR's RF anechoic chamber in a wooden support rack of peg-and-dowel construction.

Fig. 1 Missile Nosecone in Position for Field Mapping

Figure 2 shows the nosecone removed from the missile, revealing the probe carriage which is holding the E-field probe.

Fig. 2 View of Forward Section of Missile with Nosecone Removed Showing Probe Mounted on Carriage

Figure 3 shows the mechanical positioner, which is bolted to the rear of the resecond bulkhead section that is shown in Figure 2.

Fig. 3.— View of Moonanteal Positioning Unit, Assembled to Noscourse Bulkbond.

Figure 4 shows the probe signal conditioner, installed in the missile telemetry section, with conductive plastic probe transmission line leads connected to the "in" terminals, a fibre optic link connected to the "out" terminal, and a pneumatic actuator for remote switching of amplifier sensitivity.

Fig. 4 Rear View of Missile, Showing Signal Conditioner Installed

Fig. 5 - (aboratory Setup Outside of R.i. Anochoic Charle)

Figure of in a block diagram showing bow in strumertation in Figure 6 is function. The corresponder. Details of tystem function are provided paragraphs 5.4 to 1.7.

Fig. 6 Block Diagram of Instrumentation Used for Field Mapping

3.2 Electric Field Probe Design

The E-field probe developed under this contract is a small, balanced dipole antenna having a length of one The antenna incorporates a zero-bias centimeter. schottky-diode detector which demodulates the received radio-frequency signal. The demodulated signal is fed to a remote electronic signal conditioner via a high resistance transmission link which provides a high attenuation to radio frequency signals but permits low-loss transmission of dc or low frequency audio signals. The use of this high resistance link minimizes the perturbation of the fields being measured and at the same time provides isolation of RF signals between the probe and its associated electronics. The fundamentals of this technique were first described by Green [2], and subsequently by several other investigators [7,8].

This section treats the subject of the design of a probe having high sensitivity (better than $0.2\,$ volt/meter), high spatial resolution (better than $0.5\,$ cm), when used for electric field mapping applications in confined metal cylinders in the aeronautical UHF band from $225\,$ to $400\,$ MHz.

The mapping application described herein employed amplitude-modulated RF illumination, thereby allowing the use of a tuned amplifier to improve the signal-to-noise ratio. However, the probes can be used in other applications to measure unmodulated signals and are discussed in this broader context.

The antenna may be represented by an equivalent Thevenin voltage source e which equals the antenna open-circuit voltage reduced by the capacitive voltage divider actions of the antenna distributed capacitance Ca and the diode detector circuit distributed capacitance Cd. The equivalent source impedance $C_{\rm eff}$ is equal to Ca and Cd connected in parallel. The dc load impedance is represented by the input resistance of the signal conditioner in series with the resistance of the transmission line link.

This simple lumped representation of an essentially distributed network is shown in Figure 7 and accounts for the dominant probe characteristics measured in the UHF region of interest from 225 to 400 MHz.

E = Incident Field Strength, Volts/Meter

I_e = Antenna Effective Length, MetersC_a = Antenna Distributed Capacitance

C_d = Diode Distributed Capacitance

R₁ = Load Resistance

e = Source Voltage of Thevenin Equivalent Circuit

Ceff = Source Impedance of Thevenin Equivalent Circuit

Fig. 7 Equivalent Circuit of E-Field Probe

A closed-form solution for this equivalent circuit may be obtained when the diode is operating in the square law region where diode rectified current is proportional to the square of the applied RF voltage and when the diode is operating in the linear region where rectified current is directly proportional to applied RF voltage.

Starting with the standard diode equation we have:

$$\dot{\lambda} = \lambda_{S} \left(\exp \left(\frac{qV}{nKT} \right) - 1 \right) \tag{1}$$

where:

i = dc current flowing through the diode, Amperes

v = dc voltage across the diode junction resulting from dc current "ί", volts

n = constant, \approx 2 for silicon

q = electron charge = 1.601×10^{-19} coulomb

K = Boltzman's Constant, 1.38×10^{-23} Joule/ K

T = Temperature, K

i = saturation current

The term $\exp\left(\frac{qV}{nKT}\right)$ may be expanded into a Taylor series:

$$1 + \frac{qV}{nKT} + \frac{1}{2!} \left(\frac{qV}{nKT}\right)^2 + \frac{1}{3!} \left(\frac{qV}{nKT}\right)^3 + \dots$$
 (2)

Accordingly,

$$\dot{\mathcal{L}} = \dot{\mathcal{L}}_{S} \left(\frac{qV}{nKT} + \frac{1}{2} \left(\frac{qV}{nKT} \right)^{2} + \frac{1}{6} \left(\frac{qV}{nKT} \right)^{3} + \dots \right)$$
 (3)

If V is an ac signal, only the even-powered terms in this series can produce rectification.

Also, if $V < \frac{nKT}{q}$, only the term raised to the power of two need be considered as the sum of the remaining even-powered terms becomes negligible.

In other words, $i_{dc} \simeq \frac{i_{s}}{2} \left(\frac{qV}{nKT}\right)^2$ representing "square law" behavior.

This expression is valid with an error of 8%

if
$$V = \frac{nKT}{q}$$

The error diminishes rapidly as V becomes less, and is reduced to 0.015% when:

$$V = \frac{nKT}{q} / 10$$

Now, if V = (Vm cos wt - iR_L) is substituted in this simplified expression, we may solve for:

$$idc \simeq \frac{\frac{q}{nKT} i_s Vm^2}{4\left(R_L i_s + \frac{nKT}{q}\right)}$$
(4)

If $R_L >> \frac{nKT}{q \lambda_s}$, equation (4) may be simplied to:

$$idc \simeq \frac{q \text{ Vm}^2}{4R_{\text{L}} \text{ nKT}} = \frac{q \text{ Vrms}^2}{2R_{\text{L}} \text{ nKT}}$$
 (5)

Vrms is the root-mean square value of the rf voltage appearing across the diode and $R_{\underline{L}}$ is the resistance of the load across the diode.

The quantity $\frac{nKT}{q\dot{\ell}_s}$ corresponds to the diode ac resistance when $V < \frac{nKT}{q}$, as derived from the first term of equation (3).

Since:
$$iac \simeq i_s = \frac{qv}{nKT}$$
 if $V < \frac{nKT}{q}$

Then diode ac resistance
$$\simeq \frac{V}{iac} = \frac{nKT}{qi}$$

The RF voltage appearing across the diode may be expressed as a function of the incident electric field strength E (V/m), the antenna effective length le, the antenna capacitance Ca and the diode Capacitance Cd, multiplied by the transfer function of the voltage divider formed by the source effective capacitance Ceff and the diode effective ac impedance:

$$V_{\text{DIODE}} = \frac{C_{\text{a}}}{C_{\text{a}} + C_{\text{d}}} \quad \text{E}\ell_{\text{e}} \quad \left[\frac{\left(\frac{\text{nKT}}{\text{q}\lambda_{\text{s}}}\right)}{\left[\left(\frac{\text{nKT}}{\text{q}\lambda_{\text{s}}}\right)^{2} + \left(\frac{1}{\omega C_{\text{eff}}}\right)^{2}\right]^{\frac{1}{2}}} \right]$$
(6)

for a 1 cm length biconical antenna with cone angle 30°

$$C_a \simeq 0.17 \text{ pf}$$
 $\ell_c \simeq 1 \text{ cm} = 0.01 \text{m}$

for a MA 40230 schottky diode

$$C_{\rm d}$$
 = 0.2 pf, q/nKT = 20 to 30,
 $\dot{c}_{\rm S}$ = 8.9 x 10⁻⁵ to 1.25 x 10⁻⁵A

Now at 300 MHz, the right-hand side of equation (6), which is $\frac{nKT}{q \, \ell_s}$ divided by the denominator, is typically

0.7 for the above antenna and diode.

The RF Voltage across the diode

$$V_{\text{DIODE}} = \left(\frac{.17}{.17 + .2}\right) \times E \times .01 \times .7 = 3.2 \times 10^{-3} E$$
 (7)

Then

$$e_{dc} = \frac{\frac{q}{nkT}}{2} \left[3.2 \times 10^{-3} E \right]^2 = \frac{1.28 \times 10^{-4} E^2}{at \ 300 \ MHz}$$
 Volts (8)

This estimate agrees very closely with Figure 8 which presents measured data. The characteristic gradually changes from a square law characteristic to a linear characteristic above 40 V/m. This corresponds to the region where:

$$V_{DIODE}$$
 > $\frac{nKT}{q}$ Volts = $\frac{1}{25}$ Volt
= 40 mV
= $3.2 \times 10^{-3} \text{ E}$

then

E >
$$\frac{40 \times 10^{-3}}{3.2 \times 10^{-3}} \approx 12.5 \text{ V/m}$$

office some of the second conditions of the

Fig. 9 Mechanical Assembly of E-Field Probe

Fig. 10 DC Characteristics of E-Field Probe

3.3 Magnetic Field Probe Design

The H-field probe developed under this contract is a small, balanced loop antenna having an inner diameter of 0.5 centimeter. The antenna incorporates a zero-bias schottky diode detector which demodulates the received radio frequency signal. The construction and use of the probe is identical in all respects to the E-field probe described in paragraph 3.2 except for the coil-diode configuration and probe response to the H-field component of the electromagnetic field. Magnetic field probes of this type have been described by Green [4].

The H-field probe may be represented in simplified form as shown in Figure 11. An equivalent Thevenin voltage source eois formed which consists of the antenna open circuit voltage μo ωHAN which is further reduced by the voltage dividing action of the diode, its connection capacitance and the impedance of the resonant circuit formed by the antenna inductance and total stray circuit capacitance.

Fig. 11 Equivalent Circuit of H-Field Probe

Fig. 12 H-Field Probe in Holding Fisture

2.5

Fig. 14 DC Characteristic of H-Field Probe

The RF voltage appearing across the diode may be expressed as a function of the incident magnetic field strength H and the antenna characteristics, as follows:

$$e_{\text{diode}_{\text{rms}}} = e_{\text{antenna}} \frac{\frac{-j}{\omega(C_a + C_d)}}{j(\omega L - \frac{1}{\omega C_{\text{eff}}}) + R_a}$$

$$e_{antenna}$$
 = NHA ω x 4π x 10^{-7}
= 1.55031 x 10^{-4} NHF

$$e_{dc} = \frac{q}{2nKT} \times \left[e_{diode_{rms}}\right]^2$$

$$= \frac{16.2866}{2} \left[1.55031 \times 10^{-4} \text{NHF} \left[\frac{\frac{1}{C_a + C_d}}{\left(\omega L - \frac{1}{\omega C_{eff}} \right)^2 + R_a^2} \right]^{1/2} \right]^2$$

(Note: A value of 16.2866 was used for $\frac{q}{2nKT}$, based upon diode measurements at T=298K.)

where:

C_a = portion of coil distributed capacitance
 shunting diode

Ceff = effective distributed capacitance associated
with coil self-resonance (.3365 pf)

 C_d = diode capacitance (.2 pf)

H = incident magnetic field, Amperes/m

 $A = area of loop, m^2$

 ω = angular frequency

F = frequency, MHz

L = self inductance of loop ≈628.786 nH

N = number of turns in loop = 9

 R_a = effective resistance in resonant circuit of loop

 $R_a \simeq 160$ ohms at 10°C 250 ohms at 20°C 415 ohms at 30°C

This estimate agrees very closely with Figure 10 which presents measured data. The characteristic gradually changes from a square law characteristic to a linear characteristic above 0.1 A/m.

3.4 Signal Conditioning and Transmission

The signal conditioner, into which the signals from the probe are fed, is a high-gain, high input impedance audio amplifier, fixed-tuned to the modulating frequency of the r.f. illuminating signal.

The output of the amplifier is in the form of a pulsed optical signal whose pulse repetition frequency corresponds to the full wave rectified average value of the modulated input signal.

As discussed in paragraph 2-1, an amplitude—modulated RF illuminating field, in conjunction with a narrow-bandwidth filter in the probe signal conditioner, was used to provide a better signal-to-noise ratio by eliminating the effect of unwanted harmonics in the received signal. This technique also helped to reduce the effects of other low-frequency noise sources including stray 60 Hz fields, electrostatic fields and cable microphonics associated with the floating high resistance transmission line.

A nominal amplitude-modulating frequency of 550 Hz was chosen as it was sufficiently low to avoid significant signal loss in the one meter long resistive transmission line connecting the field probes to the signal conditioner. Actual testing was conducted at 552 Hz as this was found by measurement to be the fixed center frequency of the above narrowband filter.

The attenuation characteristics and design of a resistive transmission line using conductive plastic of a similar diameter and resistance per unit length have been described by Greene [4]. The attenuation of a one-meter length of such a line is estimated to be less than one dB at 550 Hz. This is based upon a line resistance of 60 Kilohms per foot (including return path) and a line capacitance of 10 pf per foot.

A twin-lead resistive transmission line was fabricated by bonding the nylon jackets of two parallel conductive monofilaments at five centimeter intervals with an adhesive. The monofilament material is described in Figures 9 and 13. This construction provided a line of sufficient lightness and flexibility to prevent undue mechanical strain on the delicate plastic probe positioning mechanisms required for this non-perturbing field mapping application. A pressure contact was used to electrically connect this line to the field probes, as shown in Figures 9 and 13. At the signal conditioner end

of the line, connection was achieved by crimping metal connector pins onto the ends of the monofilament. Further details on transmission line materials are provided in appendix G.

A photograph of the signal conditioner is shown in Figure 15. All controls and input/output connections appear on the front panel. A power on-off switch, a high-low range switch with pneumatic actuator for remote control, an input signal connector and a connector for the fibre optic transmission cable appear on the front panel. Two jacks are provided for charging an internal nickel-cadmium battery pack. In order to achieve a high degree of shielding the box is completely sealed with a joint between the front panel and flange.

The operation of this circuit can be described with reference to the block diagram shown in Figure 16. Figure 17 through 19 give the input/output characteristics. The demodulated signal from the probe, which is a variable amplitude 552 Hz signal, is amplified by the low-noise instrumentation amplifier consisting of two LF353 W dual FET operational amplifiers. This amplifier provides two ranges of sensitivity selectable by the front panel switch.

The signal is then fed to a single stage active band pass filter which is fixed-tuned to the centre frequency of 552 Hz. The filter has a 3 dB bandwidth of 23 Hz and provides more than 30 dB rejection at the harmonics of the modulated signal.

The filter output is then fed to an AC-DC converter which consists of an operational amplifier rectifier filter stage.

Fig. 15 View of Signal Conditioner, Showing Controls and Signal Ports

Fig. 16 Block Diagram of Signal Conditioner

Fig. 17 Transfer Characteristic of Signal Conditioner

Fig 18 Frequency Response of Signal Conditioner

The DC output of this stage is then converted to a 0-10 KHz variable frequency signal by a voltage-to-frequency converter. This converts the output pulses from a light emitting diode to produce a variable frequency optical signal which is then transmitted over a fibre optic link to an optical receiver unit. The optical signal is then transformed back to a standard TTL level pulse train. The pulse train is fed to a standard frequency counter which forms part of the signal acquisition system described in paragraph 3.5.

3.5 Signal Acquisition and Analysis System

The signal conditioner output is fed to a frequency counter which displays the signal for monitoring purposes and provides the interface to the computer for data storage and analysis. The elements of this system are shown in Figure 5 and 6.

The main functions of the computer includes: -

- (i) conversion of the frequency counter output, in Hz, to the appropriate field parameter (V/m or A/m) by use of a probe calibration look-up table stored in the computer.
- (ii) control of an external relay actuator to sequentially step the mechanical positioner through the 73 positions of the measurements grid shown in Figure A-1, Appendix A.
- (iii) recording, storing and printing the field strength measurements at each grid point.
- (iv) calculations of contours of constant field strength by use of linear interpolation for terminal display and for hard copy.
- (v) performing automatic range switching when the signal conditioner output exceeds a given level as shown in Figure 19 and 20.
- (vi) performing signal averaging to further improve noise rejection.

Fig. 19 Total Transfer Characteristic of Signal Conditioner and E-Field Probe

NOTE: Crossover levels shown were implemented in the computer programs of Appendix F for automatic range switching purposes; a small degree of range overlap is provided.

Fig. 20 Total Transfer Characteristic of Signal Conditioner and H-Field Probe

NOTE: Crossover levels shown were implemented in the computer programs of Appendix F for automatic range switching purposes; a small degree of range overlap is provided.

Fig. 21 View of Optical Link Receiver Unit, Connected via Fiber Optic Link to Signal Conditioner

3.6 Mechanical Positioning System

The function of the positioning system is to translate the probes over a 5 cm X 5 cm two dimensional scanning grid with 73 positions as defined in Figure A-1 of Appendix A. This translation is perfomed by stepper motors and sliding carriage mechanisms which move in axial and radial directions.

The axial motion is achieved by a direct worm-gear drive moving a carriage sliding on two ground steel shafts on four linear motion bearings. The radial movement uses a pulley drive system which moves a small probe mounting block back and forth on two parallel glass shafts. This is shown in Figure 2.

The motors are remotely controlled by a probe position and control unit (PPCU) which is preprogrammed with hard-wired logic to transmit the appropriate number of pulses to the stepping motors. The PPCU lends itself to both manual and automatic control.

In operation the positioning system has to be so mounted that the motors are placed where they can have no influence on the field being mapped.

3.7 Field Illumination System for Mapping

The cylindrical configurations required RF plane wave illumination at 300 MHz for mapping purposes. BNR used its RF anechoic chamber having internal dimensions of 20 x 20 x 12 feet to contain the radiation and to provide an environment relatively free of stray reflections. The chamber is treated with pyramidal absorber cones 26 inches in length, the cylindrical objects to be illuminated were mounted at a height of five feet on a wooden support fixture at one corner of the chamber, as shown in Figure 1. The support fixture used peg-and-dowel construction in order to avoid field perturbations due to metal fasteners or brackets.

The illuminating antenna was mounted at the diagonally opposite corner of the chamber with its nearest surface 3 meters from the geometric centre of the

object under illumination.

 $2D^2$

At this distance, the normal λ or 3λ criteria for plane wave illumination was satisfied, as well as a test requirement that the longitudinal field gradient over the 1.13 meter maximum length of the missile nosecone was not to exceed ± 1 dB.

The elements of the illuminating system are shown in schematic form in Figure 6.

A high gain 12.15 dBi Yagi-Uda antenna designed for operation at 300 MHz was used to illuminate the cylindrical configurations with a horizontally polarized plane wave during mapping. The antenna was fed by a 10 dB gain R.F. Power Amplifier via a 300 MHz tuned filter used to lower harmonic content of radiated signals. This power amplifier required up to 100 watts of drive provided by a 200 watt broadband R.F. Amplifier. The signal source feeding the RF driver was an H.P. Model 8640 signal generator which was capable of providing a high stability, 300 MHz signal with 552 Hz amplitude modulation.

The illumination level was checked at the configuration geometric centre using a calibrated dipole and receiver.

4.0 RESULTS

This section presents in summary form the results of tests to characterize the probes, the mechanical positioning system, the illumination system, and actual field mapping of the cylinder and nosecone. Details of results are given in Appendix B for the contour maps, Appendix C for numerical values of measurements made at the various grid points, Appendix D for field illumination tests and Appendix E for probe evaluation tests.

4.1 Probe Evaluation

Characterization tests were performed for both the E-field and H-field probes using a TEM Cell in laboratory ambient conditions and at high and low temperatures.

The results are given in Table 1 for the E-field probe and Table 2 for the H field probe.

The TEM Cell used for the majority of tests had a rectangular cross-section and was based upon a design described by Crawford [9].

The cell dimensions are 9 cm high by 15 cm wide with a total length of 38 cm. Over the frequency band 225 to 400 MHz the VSWR measured was less than 1.1.

The dimensions of the cell are small enough that no propagation of higher modes exists; consequently the main source of error is due to inaccuracy of cell plate spacing and width, and discontinuities at input and output terminations.

The probes were installed in the upper half of the cell midway between the centre plate and the top inner surface. The probes were oriented for maximum pick up for all tests except those requiring probe rotation, i.e., directional pattern tests.

In order to establish the probe errors due to operation in fields of high gradient a special coaxial TEM Cell was used to produce the variation in gradients required for the tests. This consisted of an outer cylinder of 8 cm diameter with a centre No. 12 AWG

TABLE 1 Summary of E-Field Probe Results

0.07 V/m to1.6 V/mLow Range 100% Dynamic Range:

Modulation

1.6 V/m to 200 V/m High Range 100%

Modulation

 $\frac{S+N}{N}$ Ratio 100% M 0.07 V/m at 10 dB Sensitivity: 0.14 V/m at 10 dB (Low Range)

Frequency Response: -.7 dB + .3 dB Referred to 300 MHz

Directional Field Pattern:

 ± 0.35 dB for $\theta = 0 \pm 60^{\circ}$ Cosine θ ± 0.90 dB for $\theta = 60$ to 80° Cosine θ

Cross Sensitivity to H-Fields:

E-field measurement error *less than 4.4 V/m per A/m H-field.

* Determination of this value limited by measurement technique.

Spatial Resolution: ± 0.5 cm

Gradient Error:

±0.5 dB in Fields of 10 dB/cm gradient

Temperature Stability: -0.02 dB/°C

TABLE 2 Summary of H-Field Probe Results

Dynamic Range: (300 MHz)

0.36 mA/m to

6.5 mA/m

Low Range 100% Modulation

6.5 mA/m to 520

mA/m High Range 100%

Modulation

Sensitivity:

0.36 mA/m at 10 dB $\frac{S+N}{N}$ Ratio

100% Modulation

300 MHz

0.72 mA/m at 10 dB

50% Modulation 300 MHz

Frequency Response: (Referred to 300 MHz)

225 MHz

- 12.2 dB

300 MHz

0 dB

(Resonant Frequency)

is 343 MHz

343 MHz 5.1 dB

400 MHz $0.2 \, \mathrm{dB}$

Directional Field Pattern:

 ± 0.4 dB for $\theta \approx 0 \pm 80^{\circ}$ Cosine θ

Cross-Sensitivity to E-Fields:

H-field measurement error *less than 8.7×10^{-5} A/m per V/m E-field.

* Determination of this value limited by measurement technique.

Spatial Resolution: ±0.5 cm

Gradient Error:

±0.5 dB in Fields of 10 dB/cm

gradient

Temperature Stability:

260 MHz 300 MHz

- .10 dB/°C - .13 dB/°C

346 MHz

- .35 dB/°C

400 MHz

- .17 dB/°C

copper wire. This fixture was also used for directional pattern measurement of the H-field probe to take advantage of the field orientation which allowed easy rotation of the magnetic probe through the lateral access port in the cell.

TEM cells were terminated in their characteristic impedance except during cross-sensitivity tests when open and short circuit stubs were used to produce standing wave minima and maxima.

The influence of the opposite field component (ie. E-field effects on H field probes and vice versa) were measured at these locations.

4.2 Illumination System Evaluation

The longitudinal and lateral field gradients were measured to verify the uniformity of plane waves incident upon the test configuration. This was accomplished by measuring the field strength at all six locations displaced ±50 cm from the geometric centre of the test configuration along the X, Y and Z coordinate axes, with the level at the geometric centre serving as reference. Measurements were made with a calibrated dipole and tuned receiver. The variation in field strength was within +1 dB for all cases.

4.3 Mechanical Positioning System Tests

The ability of the mechanical positioning system to accurately move the field probes to the specific locations on the scanning grid was determined by use of a vernier caliper. This measurement confirmed that the displacement of the probe mounting carriage in the axial and radial directions was within the required +0.5 mm tolerance, when the carriage was moved in 1 cm steps following the prescribed scanning sequence. (See Fig. 1A, Appendix A).

Fig. 22 Frequency Response of E-Field Probe

FIG 23 PROBE GRADIENT AND RESOLUTION

Fig. 24 Frequency Response of H-Field Probe

4.4 Field Contours

The detailed results of field measurements conducted in the missile nosecone and the aluminum cylinders are presented in Appendices A, B, and C.

Appendix A defines the geometry of field measurement for these structures and gives a matrix defining all 36 test combinations.

Appendix B presents the measurement data in the form of contour maps of the measured vector electric and magnetic fields.

Appendix C presents the source data for the contour maps in numerical form.

5.0 CONCLUSIONS

The program has demonstrated that electromagnetic probes can be designed with the necessary resolution, sensitivity and accuracy for mapping complex electric and magnetic fields at UHF frequencies and within metal structures containing apertures.

The appropriate instrumentation has also been developed for the application of the probes to map the variation in field strength in typical equipment enclosures such as weapons systems casings.

Preliminary inspection of maps obtained by theoretical analysis [1] indicates a reasonable agreement with the measured data, however it is beyond the scope of this report to present a detailed analysis of correlation.

The techniques developed will be invaluable for establishing the validity of the assumptious used in mathematical modelling techniques. They will improve the capability to measure and control field strength distributions in general and should be particularly useful in radiated susceptibility testing. Additionally the methodology shows great promise for extension into the gigahertz frequency region and for applications requiring wide frequency band sensors.

REFERENCES

- (1) TAFLOVE, A., "Time Domain Solutions for Electromagnetic Coupling," Document No. RADC-TR-78-142, Rome Air Development Center (RBCT) Griffiss AFB, NY 13441
- (2) GREENE, F.M., "A New Near-Zone Electric Field Strength Meter", NBS J. of Res., Vol. 71-C (Eng. and Instr.), No. 1, pp. 51-57, (Jan.-Mar. 1967).
- (3) GREENE, F.M., "NBS Field-Strength Standards and Measurements," Proc. IEEE, Vol. 55, No. 6, pp. 970-981 (June 1967).
- (4) GREENE, F.M., "Development of Electric and Magnetic Near-Field Probes", NBS Technical Note 658, U.S. Dept. of Commerce/National Bureau of Standards.
- (5) WHITESIDE, H., and KING, R.W.P., "The Loop Antenna as a Probe," IEEE Trans. on Antennas and Propagation, Vol. AP-12, No. 3, pp. 291-297, May 1964.
- (6) BAUM, C.E., et al, "Sensors for Electromagnetic Pulse Measurements both Inside and Away from Nuclear Source Regions", IEEE Trans. Ant. and Propagation, Vol. AP-26, No. 1, Jan. 1978.
- (7) KERNS, D.R. and BRONAUGH, E.L., "A Non-obstructive Remote Indicating Instrument for Probing EM Fields Having Potentially Hazardous Levels," IEEE Int. SYMP. on EMC, Atlanta, GA., p.p. 133-136, June 20-22, 1978.
- (8) BASSEN, H., et. al., "EM Probe with Fiberoptic Telemetry System," Microwave Journal, Vol. 20, No. 4, pp. 35-47, April 1977.
- (9) CRAWFORD, M.I., "Generation of Standard EM Fields using TEM Transmission Cells," IEEE Transactions on EMC, Vol. EMC-16, No. 4, pp. 189-195, Nov. 1974.

APPENDIX A

DEFINITION OF FIELD MEASUREMENT GEOMETRY AND SAMPLING

A.1 INTRODUCTION

This appendix defines the conventions used to describe probe orientation and location with respect to the cylinder and missile nosecone structures and with perfect to incident field polarization.

A complete test matrix of all mapping configurations used is also given which defines the extent of the data sample obtained within the cylinder and missile nosecone structures.

TABLE A-1
FIELD CONTOUR MEASUREMENT DATA INDEX

TEST NUMBER	CONFIGURATION	SCAN LOCATION	E-FIELD	H-FIELD	SCANNING PLANE	VECTOR FIELD BEING MEASURED X Y 2	
1 2 3 4 5	CYLINDER	AT OPEN END	X X X	x x x	A A A A A	x x x	x x
7 8 9 10 11 12		AT OPEN END	x x x	X X X	B B B B B	x x x	x x
13 14 *15 16 17 *18	NOSECONE	NEAR BULKHEAD	X X X	X X X	A A A A A	x x x	x x
19 20 *21 22 23 *24		NEAR BULKHEAD	X X X	X X X	B B B B B	x x x	x
25 26 27 28 29 30		NEAR TIP	X X X	x x x	C C C C	x x x	X
31 32 33 34 35 36		NEAR TIP	X X X	X X X	D D D D D	x x x	x x

^{*} Z-AXIS Data for these locations not available due to Limited Mechanical Clearance for Fixturing.

Illuminating Signal Polarization: HORIZONTAL (X)

Illuminating Signal Intensity at Configuration Centre:

V = VERTICAL
H = HORIZONTAL
HORIZONTAL (X)
43.65 V/M CARRIER
100% A.M. MODULATION

Notes:

- Arrows indicate direction of probe motion during field mapping.
- 2. Numbers indicate sequence of measurements and correspond with tabulated measurement points shown in the tables of Appendix "B".

Fig. A-1 Definition of Reference Grid Used for Field Mapping

Note: Letters A, B refer to grid locations; refer to Fig. A-3 for detail view.

Grid "A" is Parallel to Y-Z Plane, Grid "B" is Parallel to X-Z Plane

Fig. A-2 Reference Axes and Scanning Grid Locations for Aluminum Cylinder

Fig. A-3 Scanning Grid Location Details for Aluminum Cylinder

Note: Letters A, B, C, D refer to grid locations; refer to Fig. A-5 for detail views.

Grids "A" and "C" are Parallel to Y-Z Plane, Grids "B" and "D" are Parallel to X-Z Plane

Fig. A-4 Reference Axes and Scanning Grid Locations for Missile Nosecone

Detail: Grids A, B as Shown on Fig. A-4

Detail: Grids C, D as Shown on Fig. A-4

Fig. A-5 Scanning Grid Location Details for Missile Nosecone

APPENDIX B

FIELD CONTOUR MAPS FOR MISSILE NOSECONE AND CYLINDER

B.1 INTRODUCTION

This appendix contains the final field contour maps obtained for the cylinder and missile nosecone configurations.

Contours indicate that vector E or H field component measured, in dB referred to the incident field strength measured at the geometric centre of the configuration. Geometry of measurement is described in Appendix A.

Some contour information is not complete due to the difficulties of positioning probes for Z-axis measurements in the narrow confines of the nosecone tip and base. Figs. B-29 and B-34 were associated with a mechanical coupling failure and are valid for grid points between corners 1 and 73 only. Figs. B-27, 30, 33 and 36 are partial scans due to limited room for scanning in the nosecone tip. Figs. B-15, 18, 21 and 24 are not available due to limited space in the nosecone base for probe fixture clearance.

The numerical suffixes of the figure numbers correspond to the test numbers defined in Table A-1 of Appendix A.

B-2

CYLINDER MAP Ez

Figure B-4
CYLINDER MAP Hx

B-9

B-10

CYLINDER MAP Ηz

B-13

B-14

SEE APPENDIX B

B.1 INTRODUCTION FOR EXPLANATION

FOR FIGURE B-15

SEE APPENDIX B

B.1 INTRODUCTION FOR EXPLANATION

FOR FIGURE B-18

B-20

SEE APPENDIX B B.1 INTRODUCTION FOR EXPLANATION FOR FIGURE B-21

SEE APPENDIX B

B.1 INTRODUCTION FOR EXPLANATION

FOR FIGURE B-24

B-25

B-30

B-32

BELL NORTHERN RESEARCH LTD OTTAWA (ONTARIO) F/G 16/3 ELECTROMAGNETIC FIELD MAPPING OF CYLINDER AND MISSILE NOSECONE.(U) AD-A104 312 F30602-79-C-0197 JUL 81 R R GOULETTE, K E FELSKE UNCLASSIFIED 2 of 3 40 A

B-33

B-35

APPENDIX C

TABULATION OF E-FIELD AND H-FIELD MEASUREMENT DATA

C.1 INTRODUCTION

This appendix contains a tabulation of all E-Field and H-Field measurements made during field mapping of the cylinder and missile nosecone.

This comprises the source data $% \left(A_{1}\right) =A_{1}$ field contour maps shown Appendix "B" were derived.

The tabulation shows field strength levels in dB relative to the incident plane wave field strength used during the mapping procedure.

The 73 measurement points correspond to the scanning grid locations as defined in Appendix A.

The numerical suffixes of the figure numbers correspond to the test numbers defined in Table A-1 of Appendix A.

TABLE C-1
CYLINDER MAP Ex

POINT	LEVEL dB	POINT	LEVEL dB
1	-8.95356	51	-10.6574
2	-8,3 7354	52	-10.8918
3	-7.67411	53	~10.7898
4	-6.77432	54	~10.6324
5	-5.89276	55	~10.3963
6	-4.96334	56	~10.0605
7	-5.00654	57	~9.50165
8	-5.97309	58	-8.61034
9	-6.98987	59	-7.61381
10	-7.90585	60	-6.57132
11	-8.64349	61	-5.73125
12	-9.29812	62	-4.95229
13	-9.66781	63	-4.81432
14	-9.08389	64	-5.6214
15	-8.28482	65	-6.53705
16	-7.31005	66	-7.74517
17	-6.14392	67	-9.04434
1 S	-5.06681	68	-10.0374
19	-5.07709	69	-10.5348
20	-5.6971	70	-10.7945
21	-6.31966	71	-10.9274
22	-7.028	72	-11.0208
23	-7.69016	73	-11.0965
24	-8.27486		
25	-8.80018		
26	-9.29046		
27	-9.63903		
28	-9.92547		
29	-10.1488		
30	-10.3865		
31	-10.2097		
32	-9.96774		
3.3	-9.64241		
34	-9.22006		
35	~8.6237 <i>6</i>		
36	-7.57176		
37	-7.25107		
38	-6.44659		
39	-5.75612		
40	-5.09113		
41	-5.03968		
42	-5.75546		
43	-6.52417		
44	-7.42521		
45	~8.25353		
46	-9.0038		
47	-9.59916		
48	~10.0169		
49	~10.2947		
50	~10.4988		

TABLE C-2 CYLINDER MAP Ey

DOLLE	LEVEL dB	POINT	LEVEL dB
POINT 1	-9.98569	51	-9.49998
2	-9.94983	52	-9.45129
3	-7.74763 -9.9231	53	-9.15536
4		54	
5	-9.92491	=	-8.77413
	-9.99349	55	-8.37991
6	-10.0823	56 	-8.11158
7	-10.0483	57 2.	-8.08761
8	-9.93377	5년 -	-8.44395
9	-9.84425	্ ছ ণু	-8.99 5 66
10	-9.81217	କ୍ର ମୁଣ୍ଡ	-9.5419
11	-9.80872	61	-9.93321
12	-9.93614	62	-10.1471
13	-9.7734	63	-10.2584
14	-9.59471	64	-10.0963
15	-9.52533	65	-9.71895
1.6	-9.59417	ର ଟି	-8.93383
17	-9.76366	67	-7.83921
18	-9.96593	ଶ୍ୱି	-7.1702
19	-9.98689	69	-7.36707
29	-9.839	70	-7.93849
21	-9.67459	71	-8.49868
22	-9.50658	72	-9.01003
23	-9.33732	73	-9.41304
24	-9.23474		
25	-9.20328		
26	-9.25216		
er en Gran	-9.36337		
28	-9.50492		
29	-9.65026		
30	-9.54967		
31	-9.36617		
32	-9.18596		
33	-9.01373		
34	-8.93506		
35	-8.96221		
36	-9.14458		
37	-9.39958		
3 9	-9.64972		
39	-9.87471		
ធំពុំ	-10.0362		
41	-10.1041		
42	-9.91126		
43	-9.63004		
44	-9.26527		
45	-8.84023		
45	-0.690466 -8.60466		
- 구요 4구	-8.57919		
48 48	-8.7308		
49	-8.96718		
50 50	-9.24177		
20	7:491()		

TABLE C-3

CYLINDER MAP ·Ez

DOTAT LEVEL db DOTAT LEVEL db		i puri dh		
2	POINT	LEVEL dB	POINT	LEVEL dB
9.83721 53 -11.3629 4 -9.61768 54 -11.1609 5 -10.1354 55 -10.1617 6 -10.0671 56 -10.1637 7 -10.0121 57 -8.59621 8 -9.91126 58 -6.03451 9 -10.041 59 -8.90134 10 -10.332 60 -8.92949 11 -10.6372 61 -9.0763 12 -10.9549 62 -9.28495 13 -10.9798 63 -9.12757 14 -10.7918 64 -8.7498 15 -10.5916 65 -8.44148 16 -10.221 66 -8.7498 17 -10.003 67 -8.33543 18 -9.9021 63 -8.33543 19 -9.74928 69 -9.82554 19 -9.506643 70 -10.6352 21 -9.506643 70 -10.6352 21 -9.506643 70 -10.6352 22 -9.50669 72 -11.1692 23 -9.67059 73 -11.1692 24 -9.90005 25 -10.1687 26 -10.4408 27 -10.6935 29 -11.1692 30 -11.2465 31 -11.1185 32 -10.9316 33 -10.7371 34 -10.3551 35 -9.57059 38 -9.57156 37 -9.59027 38 -9.57254 40 -9.50678 39 -9.51211 40 -9.58745 41 -9.47229 42 -9.90005 44 -9.90205				
4				
5				
6				
7	5			
8				
9			57	-9.55021
10			58	-9.08451
11	9		59	-8.90184
12	10		ବ୍ୟ	-8.92949
12	11	-10.6372	61	-9.0760
13	12	-10.9549		
14	13	-10.9798		
15	14	-10.7918		
16	15	-10.5916		
17		-10.221		
18				
19		-9.93021		
20		-9.74928		- · - · ·
21		-9.60643		
22		-9.52479		
-9.67059 73 -11.4462 -9.90005 -10.1687 -10.4688 -10.4688 -10.935 -10.935 -11.1692 -11.1692 -11.1692 -11.1693 -11.2465 -11.1185 -11.1185 -11.1185 -11.185 -11.7371 -11				
24				
25			í Þ	-11.5776
25				
-10.6965 -10.935 -10.935 -11.1692 -11.1653 -11.1185 -10.9316 -10.9316 -10.3951 -10.3951 -10.0525 -10.0525 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9527 -10.9529 -10.95295 -10.95295 -10.95296 -10.964				
-10.935 -11.1692 -11.2465 -11.2465 -11.1185 -10.9316 -10.7371 -10.3951 -10.0525 -10.0525 -10.0525 -10.0527 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.59027 -10.65021 -10.0296 -10.0296 -10.0296 -10.0296 -10.0296				
-11.1692 30				
11.2465 31				
-11.1185 32 -10.9316 33 -10.7371 34 -10.3951 35 -10.0525 36 -9.77456 37 -9.59027 38 -9.50878 39 -9.51211 40 -9.58745 41 -9.47329 42 -9.23797 43 -9.09205 44 -9.07947 45 -9.27621 46 -9.560811 47 -10.0296 48 -10.465 49 -10.864				
32 -10.9316 33 -10.7371 34 -10.3951 35 -10.0525 36 -9.77456 37 -9.59027 38 -9.50878 39 -9.51211 40 -9.58745 41 -9.47329 42 -9.27521 43 -9.07947 45 -9.27621 46 -9.60811 47 -10.465 48 -10.864				
-10.7371 -10.3951 -10.0525 -10.0525 -10.0525 -10.50527 -10.50878 -10.50878 -10.50878 -10.50878 -10.50878 -10.50878 -10.50878 -10.50878 -10.50878 -10.50878 -10.60811 -10.60811 -10.6084				
-10.3951 -10.0525 -9.77456 -9.59027 -9.590878 -9.51211 -9.58745 -10.3797 -10.3797 -10.9205 -10.9205 -10.0296 -10.0296 -10.465 -10.864		- ·		
-10.0525 -9.77456 -9.59027 -9.50878 -9.51211 -9.58745 -11 -9.47329 -12 -9.23797 -13 -9.09205 -14 -9.07947 -15 -9.08611 -17 -10.0296 -10.465 -10.864				
9.77456 9.7				
-9.59027 -9.50878 -9.51211 -9.58745 -41 -9.47329 -9.23797 -9.09205 -44 -9.07947 -45 -9.27621 -46 -9.60811 -47 -10.0296 -48 -10.465 -49 -10.864				
38	35 55			
99 -9.51211 40 -9.58745 41 -9.47329 42 -9.23797 43 -9.09205 44 -9.07947 45 -9.27621 46 -9.60811 47 -10.0296 49 -10.465	ت ا - ای			
40				
41				
42				
43 -9.09205 44 -9.07947 45 -9.27621 46 -9.60811 47 -10.0296 48 -10.465 49 -10.864				
44				
45 -9.27621 46 -9.50811 47 -10.0296 48 -10.465 49 -10.864				
45 -9.50811 47 -10.0295 48 -10.465 49 -10.864				
47 -10.0296 48 -10.465 49 -10.864				
48 -10.465 49 -10.864				
49 -10.864				
50 -11.188/				
	ৰু কু	-11.1887		

TABLE C-4

CYLINDER MAP Hx

			LEVEL dB
POINT	LEVEL dB	POINT	LEVEL dB -19.2087
1	-19.5943	51	-19.2007
2	-19.5943	52	-
3	-19.1194	53	-19.3686
4	-18.4209	54	-18.8291
5	-17.7311	55	-17.7861
6	-16.8784	56	-15.5431
7	-16.7874	57	-15.9641
8	-17.8	58	-15.6821
9	-18.5274	59	-15.5257
10	-19.1305	ବ୍ର	-15.3671
1 1	-19.51	€1	~15.185
12	-19.2943	62	~14.9701
13	-19.3421	63	-14.4913
14	-19.4495	64	-14.663
15	-18.851	65	~14.8459
16	-18.1075	ಕಕ	-14.9025
17	-17.3857	67	÷14.8973
18	-16.5064	63	-15.0281
1.9	-15.8892	69	-15.7396
20	-16.2715	70	-17.3207
21	-16.6897	7.1	-18.7682
22	-17.2059	72	-19.321
23	-17.5776	73	-18.8732
24	-17.8761		
25	-18.2254		
26	-18.7596		
27	-19.1918		
28	-19.4007		
29	-19.3053		
_ 30	-19.2943		
31	-19.4061		
32	-19.1139		
33	-18.549		
34	-17.9432		
35	-17.4108		
36	-16.8877		
37	-16.5501		
38	-16.2304		
39	-15.942		
40	-15.6621		
41	-15.3426		
42	-15.6311		
43	-15.9486		
44	-16.2407		
45	-16.5695		
46	-16.857		
4.7	-17.4171		
48	-18.1678		
49	-18.9224		
58	-19.3474		
- -			

TABLE C-5

CYLINDER MAP Hy

LEVEL dB -5.58147 -7.20569 -4.85304 -2.45013 -.000577112 2.30654 4.28685 5.41972 5.99973 6.22095 6.14981 5.9502 6.50774 6.94318 7.22332 7.2379 6.74201 5.32442 2.69388 -.480291 -3.82195 -6.92899 -9.84174

		,
POINT	LEVEL dB	POINT
1	-2.10219	51
2	612744	52
3	.590987	53
4	1.68363	54
5	2.44741	55
6	3.05748	56
7	3.45853	57
8	2.77648	58
9	1.92094	59
10	.727342	60 60
11	721696	61
12	-2.44534	62
13	-2.88994	63
	796441	
1 4	1.02905	64
15		65
16	2.44532	තිව
17	3.46306 3.5566	67
1.8	3.9566	68
13	4.68956	69
20	4,56033	70
2 1	4.30839	71
22	3.88913	72
23	3.27314	73
24	2.38573	
25	1,41349	
26	.219646	
27	-1.10739	
28	-2.40682	
29	-3.77986	
ଓଡ଼	-4.47913	
31	-2.90193	
32	-1.33438	
3.3	.247031	
34	1.67714	
35	2.85422	
36	3.8718	
37	4.50937	
38	4.89359	
39	5.15345	
40	5.20733	
41	5.46826	
42	5.49647	
4.3	5.44817	
44	5.2709	
45	4.57788	
46	3.51592	
47	1.99769	
48	.217524	
49	-1.7319	
50	-3.65558	

TABLE C-6 CYLINDER MAP Hz

POINT	LEVEL dB	POINT	LEVEL dB
1	-14.6669	51	-1.37042
2	-14.9571	5.2 5.2	0895712
3	-14.8793	53	.113602
4	-14.6689	54	.344622
5	-13.9901	2.2. 2.4.	.215768
9 6	-13.3516	पुरु	220525
-	-15.282	7.7 7.7	-1.23642
8	-14.661	53	-2.51038
9.	-12.4413	평명	-4.19844
10	-10.9517	କ୍ରିଆ କ୍ରିଆ	-6,23377
11	-10.3833	61	
12	-10.6828	62 61	-8.55731
13	-7.03312	주요 중3	-11.3626
14	-7.13617	จง 64	-11.5899
15	-7.75555		~8.27 6 3
16	-9.20944	65 66	-5.57997
17	-11.6761	ರರ ಕೃ_	-3.15582
18	-15.1115		-1.09113
19	-13.0812	68 69	.577029
20	-10.3051	ବଟ ମିଷ୍	1.70209
21	-8,38842	71	2.17141
22	-6.97888	72	2.16071
23	-5.77857	73	1.78492
24	-4.7918	(5	1.09358
25	-4.11284		
26	-3.72743		
27	-3.56323		
23	-3.68972		
29	-3.91498		
30	-2.56514		
31	-2.56775		
32	-2.47151		
33	-2.67506		
34	-3.13999		
35	-3.88746		
ଓର୍ଗ	-4.8868		
37	-6.20517		
₹.	-7.89968		
39	-9.81892		
40	-12.1538		
41	-11.6134		
42	-3.7 58 2		
43	-6.60152		
44	-4.76765		
45	-3.32114		
46	-2.13704		
47	-1.33231		
48	833023		
4.9	688583		
50	~.965223		

TABLE C-7

CYLINDER MAP Ex

	0111111	•
	LEVEL dB	POINT
POINT		51
1	-11.0326	52
2	-10.3073	
•	-9.71207	53
2 3 4	-9.11225	54
7 F	-8.37939	55
3	-7.57379	56
Đ		57
5 6 7 8	-7.63856	
8	-8.33299	58
9	-8.77042	5.3
13	-9.10339	៩១
11	-9.50824	61
1 1	-10.208	62
12	-9.1949	60
1 3		
1 +	-8.26439	64
15	-7.90491	65
16	-8.04229	គួក
17	-8.13886	66 67
1.8	-7.57 33€	55
	-7.6532	69
19	-3.01817	7e
29	-7.96519	71
21		72
<u> 22</u>	-7.47245	
21 22 23 24 25 25 25 27 29 28	-6.74269	73
24	-6.23902	
25	-6.03936	
ā 8	-6.16502	
3-	-6.55357	
50 50	-7.19718	
조 년 등 5	-7.89607	
프 F - 및	-7.283	
호텔 	207 -6.34255	
3.1		
3.2	-5.58912	
3.2	-4.94726	
34	-4.69512	
35	-4.93689	
36	-5.73996	
35 36 37	-€.831 1	
3 B	-7.83921	
99 39	-8.07843	
45	∼7.65363	
	-7.59619	
41	-3.21773	
4.2	-7.88817	
43		
4.4	-6.2775	
4 🗇	-4.48668	
4년	-3.4126	
47	-3.21964	
4.5	-3.69533	
49	-4.53998	
ন - মুঞ্	-5.62437	
# %		

LEVEL dB -6.66524 -6.21986 -4.88331 -3.55501 -2,18648 -1.21 -1.10779 -2.5782 -5.65781 -3.13494 -8.33933 -7.34438 -6.50438 -7.93239 -3.95294 -5.6343 -.0306342 2.43747 1.40952 ~.527074 -2.45679 -4,19537 -5.75716

TABLE C-8

CYLINDER MAP Ey

	01.11.11.11.11		
POINT	LEVEL dB	POINT	LEVEL dB
1	-17.2271	51	-16.3449
2	-17.3002	52	-16.7003
3	-17.2325	53 53	-16.727
4	-17.2362	54	-16.316
5	-17.2947	ភ ូត្	-15.7997
6	-17.5383	56	-15.1899
	-17.5731	57	-14.5131
8	-17.5249	58	-14.3196
9	-17.416	59	-14.9933
10	-17.2544	<u> </u>	-16.1306
11	-17.129	61	-17.0732
12		62	-17.4597
	-17.1911		
1 3	-17.3094	63	-17.4981
14	-17.0557	64	-17.4254
15	-16.7737	65	-17.5134
15	-16.6878	66	-17.3671
17	-16.8815	€7	-16.1879
1 3	-17.3039	68	-13.8729
19	-17.5191	63	-12.6579
20	-17.521	70	-13 .5 063
21		71	
	-17.3839		-14.6724
22	-17.1143	72	-15.6738
23	-16.7038	73	-16.3128
24	-16.3968		
25	-16.1879		
26	-16.126		
27	-16.1942		
28	-16.3659		
29	-16.5762		
39	-16.8082		
31	-16.7449		
32	-16.4608		
33	-16.1724		
34	-15.9148		
3 5	-15.7602		
36	-15.787		
97	-16.0436		
38	-16.4575		
39	-16.9		
ু হ বুলু	-17.3205		
41	-17.454		
42	-17.4827		
43	-17.3639		
44	-16.9		
45	-16.2777		
46	-15.6463		
47	-15.2521		
45	-15.2572		
49	_		
	-15.5395		
50	-15.9425		

TABLE C-9

CYL	INDER	MAP	Ez

		2022
POINT	LEVEL dB	POINT
1	-12.5546	5 <u>1</u>
2	-11.3171	er Services
3	-10.2494	5 3
4	-9.36617	54
٦	-3.51669	55
4 9 6 7	+7.88772	56 55
	-6.14243	57
8	-7.98113	5 8
9	-10.302	59
10	-11.8146	ବ୍ଷ
1 1	-11.7919	61
1 🚊	-11.8092	6 2
1 3	-11.3564	63
1 4	-11.3485	64
15	-10.7717	65
1 =	-9.39 95 8	ବ୍ର
1 7	-7.78292	67
1 3	-6.21538	68
19	-5.01881	69
20	-6.79962	70
21	-8.8279	71
22	-10.9363	72
23 24 25 26 27 28 28	-11.7565	73
⊉4	-11.7423	
25	-11.743	
교육	-11.7535	
27	-11.7603	
	-11.7483	
	-11.7438	
ଞ୍ଚିତ	-12.5565	
31	-12.5733 -12.5584	
32	-12.5798	
33	-12.5639	
34	-12.5637 -12.578	
35	-12.3462	
36	-11.0417	
37 5.5	-9.79421	
38	-8.51521	
39 40	-7.24076	
	-7.73974	
41 42	-10.5765	
4 3	-13,5033	
44	-14,137	
45	-14,1359	
# 3 4 년	-14.1249	
47	-14.1184	
48	-14.1403	
49	-14.1304	
77 50	-14.1194	
20		

-17.4712 -17.4597 -17.4654 -17.4654 -17,4654 -17.4693 -16.8723 -14.6798 -12.8145 -10.8979 -15.9837 -20.8411 -21.816 -21.816 -21.8241 -60.7588 -60.7588 -60.7588 -60.7588 -60.7588 -60.7588

LEVEL dB -14.126 -17.4712

TABLE C-10

CYLINDER MAP Hx

POINT	LEVEL dB	POINT	LEVEL dB
2	-15.4334	51	-15.4
3	-13.916	52	-15.6973
4	-12.7972	53	-13.6096
5	-12.0145	54	-11.5539
6	-12.0145 -11.4563	55 	-9.6058
7		56	-8.03745
8	~10.8047	57	-7.38979
ğ.	-11.3 5 78 -12.0898	58 	-7.2555
10		59	-3.7429
1.1	~13.2136 ~14.6357	60	-9.97226
12	-16.6721	61	-11.377
13	~15.8372	62 _.	-12.9314
14	-13.5851	63	-14.8715
15	-11.9087	64	-18.3235
16	-10.8295	6 5	-29.3466
17		66	-30.6173
18	-10.229 -9.94805	67	-32.1401
19	-9.22835	6 8	-69.232
20	-9.22689	69	-68.232
21	-9.30104	70	-69.232
22	~9.54345	71	-69.232
23	-9.793 5 7	72	-69.232
24	-10.2104	73	-69.232
25	-10.2104		
26	-11.7492		
27	-12.8495		
28	-14.0887		
29	-15.5851		
30	-15.3671		
31	-13.36/1 -13.7215		
32	~12.2476		
23	-10.9507		
34	-9.97384		
35	-9.33292		
 3ਲੰ	-8.90773		
37	~8.82348		
38	~8.79478		
39	-8.85085		
49	-8.93103		
41	-8. 5 9379		
42	-8.47761		
43	-8.3131		
44	-8.1295 5		
45	~8.07515		
46	~8.33612		
47	-9.12212		
4.5	-10.2631		
49	-11.8354		
5a	-13.56		
-			

TABLE C-11
CYLINDER MAP Hy

LEVEL dB -2.73101 -2.91059 -2.14906 -1.38833 -.571466 .117229 .730446 1.28337 1.64591 1.88786 2.04038 2.12872 2.10108 2.06904 1.99202 1.81214 1.44658 .835259 .103304 -.624586 -1.51585 -2.32287 -3.1824

POINT	LEVEL dB	POINT
1	-1.81964	51
2	561617	52
3	.452172	53
4	1.37785	54
5	2.09194	55
6	2.6312	56
7	2.49324	57
8	2.00787	58
9	1.29048	59
		69
19	.347145	61
1 1	67106	62 62
12	-1.96048	
13	-2.17792	63
1 4	862301	5 <u>+</u>
15	.254756	65 1
1 €	1.20373	66
17	1.89558	67
13	2.37541	68
19	2.25774	69
20	2.07075	70
21	1.83166	71
22	1.51969	72
23	1.131	73
24	.63907	
25	.142799	
26	385122	
27	-1.10057	
28	-1.76039	
29	-2.42477	
39	-2.56491	
31	-1.88071	
32	-1.19268	
33	460652	
34	.133496	
35	.658076	
36	1.15947	
3.7 3.7	1.52321	
38	1.81689	
39	2.03925	
40	2.20075	
41	2.15948	
42	2.02399	
43	1.83998	
44	1.56573	
45	1.17416	
4 등 4 등	.646663	
47	.0929195	
4-8	499975	
49	-1,28234	
50 50	-2.00429	
- %		

TABLE C-12

CYLINDER MAP Hz

DATUM	L dB POI	7.T	
POINT LEVE	, L,		EVEL dB
1 -22.3	958 5	-	-14.8407
2 -21.5	3264 5	; <u>2</u> -	-14.1507
3 -19.8	891 5	;3 —	-13.9966
4 -18.3	3596 5	54 -	-14.5798
5 -17.3	871	55 -	-15.6443
6 -16.3			-16.4124
7 -14.9			-14.5511
9 -15.9			-11.431
9 -17.3	-	. =	-9.45411
10 -18.5			-8.51358
11 -19.3		<u> </u>	
12 -19.8			-8.20379
13 -18.8	· `		-8.1765
	`		-7.15925
14 -18.1	· ·		-6.89376
15 ~18.1	'		-7.13617
16 -16.1	· '		-7.67372
-14.3		57 ·	-9.55187
18 -13.1		58 · ·	-13.5277
19 -11.4	'	59 ·	-13.2574
20 -11.8	· ·	7g -	-11.6301
21 -12.7		71	-11.4592
22 -13.6	5401 ;	72	-11.8692
23 -14.7	'201 ;		-12.5506
24 -15.9	9353	_	
25 -16.7	102		
26 -17.9	9615		
27 -16.6	162		
28 -16.8	3326		
29 -16.8	3784		
30 -16.3	833		
31 -15.8	3157		
32 -15.8			
33 -16.0			
34 -16.7			
35 -15.6			
36 -13.9			
37 -12.0			
38 -11			
39 -10.s			
40 -10.0			
41 -9.33	12		
42 +9.5°			
43 -10.3			
44 -11.0			
+5 -12.9			
45 -14.8			
47 -15.7			
48 -15.4			
49 -14.8			
50 ~14.6	6689		

TABLE C-13
NOSECONE MAP Ex

POINT	LEVEL dB	POINT
1	-38.5069	51 52
2	-43.3792	
3	-44.1581	53 54
4	-36.9423	
5	-34.5633	5 5
6	-34.2827	56 63
7	-34.3283	57 58
8	-34.7082	70 59
9	-37.225	
10	-44.0228	60
11	-42.1193	61 60
12	-37.3976	62
13	-36.6599	63 64
14	-41.4196	64
15	-43.8799	65 66
1.6	-37.3521	66
17	-34.9374	67 60
18	-34.5467	6 8
19	-35.0677	69 70
20	-34.9942	70
21	-35.179	71
22	-35.8122	72
23	-37.0175	73
24	-39.08	
25	-42.5469	
26	-46.0528	
27	-43.515	
28	-39.5525	
29	-37.0798	
30	-38.0692	
31	-40.9997	
32	-45.5707	
33	-46.0765	
34	-41.6505	
3 5	-38.6538	
ଓଟ	-36.896	
37	-35.9771	
38	-35.4734	
39	-35.3936	
40	-35.5591	
41	-36.1616	
42	-35.8293	
43	-35.6762	
44	-35.8886	
45	-36.5028	
45	-37,7356	
47	-40.1168	
48	-44.3631	
4.3	-49.0811	
50	-44,3265	

TABLE C-14
NOSECONE MAP Ey

1	POINT	LEVEL dB	POINT	LEVEL dB
-46.8489 52 -40.8714 3 -46.8898 53 -44.852 4 -48.8724 54 -47.4574 5 -49.3648 55 -44.3652 7 -51.4004 57 -44.3711 8 -50.1995 59 -44.58 10 -49.1238 60 -45.7637 11 -46.9548 11 -46.9548 12 -43.6636 61 -46.743 13 -42.1865 63 -46.2975 14 -43.8656 62 -47.7761 15 -48.4062 65 -43.886 16 -51.625 65 -43.886 17 -52.4889 67 -41.6335 18 -52.4889 67 -41.6335 19 -52.4889 67 -41.6335 19 -52.4889 67 -41.6335 20 -53.2282 72 -43.896 21 -52.9899 71 -41.9808 22 -53.2282 72 -43.826 23 -53 -58.5787 26 -48.4197 27 -46.2227 28 -44.1966 39 -42.6249 31 -44.9048 32 -48.4971 33 -51.7411 34 -52.426 36 -51.426 36 -51.426 37 -51.426 38 -51.4064 39 -51.4064 39 -51.4064 39 -51.504 41 -49.3536 42 -49.2995 44 -48.3838 45 -48.4988 45 -48.4988 45 -48.4988 46 -48.3838 45 -48.4988 47 -50.4449 49 -51.504 44 -48.3838 45 -48.4988 45 -48.4988	=			
3				
4	2			
5				
6				
7	ě			
8	7			
9				
10				
11				
12	• -		-	
-42,1865 63 -46,2975 14 -44,8555 64 -45,0906 15 -48,4062 65 -43,806 16 -51,6325 66 -42,7218 17 -52,4689 67 -41,6325 18 -52,5303 69 -41,0213 20 -52,6774 70 -41,9806 21 -52,9899 71 -43,4484 22 -53,2282 72 -43,8278 24 -52,2726 73 -38,8794 25 -50,5787 26 -48,4197 27 -46,2227 28 -44,1566 29 -42,5218 30 -42,6649 31 -44,9040 32 -48,4971 33 -51,7411 34 -52,8272 35 -51,6 37 -51,4004 39 -51,4004 39 -51,4004 39 -51,504 41 -49,2595 43 -48,7839 44 -48,7839 44 -48,7839 44 -48,7839 44 -48,7839 44 -48,9868 47 -48,4062 46 -48,9868 47 -48,4062 46 -48,9868 47 -50,7449				
14				
15				
16	-		= :	
17				
19				
19				= '
-52.6774 70 -41.9806 21 -52.9899 71 -43.4484 22 -53.2282 72 -43.8278 23 -53 24 -52.2726 25 -50.5787 26 -48.4197 27 -46.2227 28 -44.1566 29 -42.5218 30 -42.6649 31 -44.9048 32 -48.4971 33 -51.7411 34 -52.8272 35 -51.6 37 -51.4106 38 -51.4004 39 -51.504 41 -49.3536 42 -49.2995 43 -49.2995 44 -48.3838 45 -48.4962 46 -48.3838 45 -48.4962 46 -48.9868 47 -50.74499				·
21				
22			· ·	
23	_			
24			72	
25			73	-38.8794
26				
27				
28				
-42.5218 30				
30				
31 -44.9048 32 -48.4971 33 -51.7411 34 -52.8272 35 -52.4226 36 -51.6 37 -51.4106 38 -51.4621 40 -51.504 41 -49.3536 42 -49.2995 43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -50.4499				
-48.4971 33 -51.7411 34 -52.8272 35 -52.4226 36 -51.6 37 -51.4106 38 -51.4004 39 -51.4621 40 -51.504 41 -49.3536 42 -49.2995 43 -48.3838 44 -48.3838 45 -48.4062 46 -48.9868 47 -48.9868 47 -48.9868				
33 -51.7411 34 -52.8272 35 -52.4226 36 -51.6 37 -51.4106 38 -51.4004 39 -51.4621 40 -51.504 41 -49.3536 42 -49.2995 43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -52.6344 43 -50.4499				
34				
-52.4226 36 -51.6 37 -51.4106 38 -51.4004 39 -51.4621 40 -51.504 41 -49.3536 42 -49.2995 43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -50.7				
36	_			
37				
38		· · ·		
-51.4621 40 -51.504 41 -49.3536 42 -49.2995 43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -50.6344 49 -50.4499				
40 -51.504 41 -49.3536 42 -49.2995 43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -50.6344 49 -50.4499				
41 -49.3536 42 -49.2995 43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -50.4499				
42 -49.2995 43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -52.6344 49 -50.4499				
43 -48.7839 44 -48.3838 45 -48.4062 46 -48.9868 47 -50.7 48 -52.6344 49 -50.4499				
44 ~48.3838 45 ~48.4062 46 ~48.9868 47 ~50.7 48 ~52.6344 49 ~50.4499				
45 ~48.4062 46 ~48.9868 47 ~50.7 48 +52.6344 49 -50.4499				
46 +48.9868 47 +50.7 48 +52.6344 49 +50.4499				
47 +50.7 48 +52.6344 49 +50.4499				
ୟଓ କ୍ଷିଥ-ଷ୍ଟିୟୟ ୟୁନ୍ କ୍ଷିଥ-ୟୟନ୍ୟ	_			
ୟୁର୍ କ୍ଷିଣ୍ଡିୟକ୍ଷ		=		
통명 - 구축한, 최고기인 				
	ទីថ្	-4D,4272		

SEE APPENDIX C C.1 INTRODUCTION FOR EXPLANATION FOR TABLE C-15

TABLE C-16

NOSECONE MAP Hx

POINT	LEVEL dB	POINT	LEVEL dB
1	-30.0179	51	-33.5431
2	-30.2874	52	-34.7707
3	-31.3261	53	-36.5399
4	-33.1798	54	-41.7491
5	-35.249	55	-43.0114
6	-37.1144	56	-39.4153
7	-35.8317	57	-37.205
8	-35.3022	58	-36.1581
9	-33.5334	59	-35.6766
10	-32.8041	ଶେଷ	-35.7038
11	-40.935	61	-36,2575
12	-34.5441	62	~36.9725
1.3	-35.6396	63	-37.109
14	-41.1213	64	~36.2046
15	-50.1662	គូក្ គូក្	-35.3911
16	-41.2245	66	-34.8951
17	-38.8246	67	-34.7932
18	-39.1511	68 68	-34.9958
19	-38.0408	69	-35.7573
20	-37.6 52 8	70	-37.607
21	-37.7599	71	-41.7689
22	-38.4925	72	-42.7031
23	-40.2729	73	-36.7017
24	-43		
25	-46.0345		
26	-42.0187		
27	-37,2497		
28	-34.0388		
29	-32.7334		
30	-32.7429		
31	-33,8927		
32	-37.2266		
33	-42.2529		
34 35	~44.8597		
	-41.5516		
36 37	~39.025		
38 38	-37.637		
39	~37.1035		
37 40	~37.1958		
41	-37.5254		
42	-37.1965		
43	-36.5945. -36.3121		
44	-36.4955		
45	-37.2359		
46	-30.2307 -38.985 5		
47	-38.9833 -42.5313		
48	-44.4544		
49	-39.6049		
7. 50	-35.294		
	그님 - 스카드		

TABLE C-17 NOSECONE MAP Hy

POINT	LEVEL dB	POINT	LEVEL dB
1	-7.09672	51	-5.76143
2	-7.38437	52	-5.02729
3	-8.22183	53	-4.53486
4	-9.65016	54	-4.75369
5	-11.5221	5 5	-5.53064
6	-13.5365	56	-6.5181
7	-13.3558	57	-7.77522
3	-11.3846	58	-9.06632
9	-9.65953	59	-10.345
10	-3.34602	60	-11.7193
11	-7.58781	61	-13.0389
12	-7.34128	62	-14,3539
13	-7.25014	63	-14.0015
14	-7.41863	64	-12.6938
15	-8.20045	65	-11.43
16	-9.51826	66	-10.0759
17	-11.2088	67	-8.7845
18	-13.2185	68	-7.57461
19	-13.5146	69	-6.35479
20	-12.3605	70	-5.40333
21	-11.3369	71	-4.66619
22	-10.2597	72	+4.51297
23	-9.36426	73	-5.10966
24	-8.47558		
25	-7.76721		
26	-7.21153		
27	-6.75249		
28	-6.59485		
29	-6.70081		
30	-6.29924		
31	-6.10896		
32	-6.25778		
33	~6.69291		
34	~7.44785		
35	~8.28307		
36	~9.29734		
37	~10.3		
38	-11.4709		
39	~12.6018		
40	~13.8163		
41	-14.1864		
42	-12.9314		
4 3	-11.7045		
44	-10.4236		
45	-9.27743		
46	-8.10852		
47	-7.11088		
48	-6.18875		
49	-5.64322		
50	-5.46741		

SEE APPENDIX C

C.1 INTRODUCTION FOR EXPLANATION

FOR TABLE C-18

TABLE C-19

NOSECONE MAP Ex

POINT	LEVEL dB	POINT	LEVEL dB
1	-44.6443	51	-35.0366
2	-42.1304	52	-31.8713
3	-34.2685	53	-34.0152
4	-31.482	54	-27.7
5	-30.9523	55	-24.5448
5	-31.6349	56	-23.9639
7	-32.4598	57	-23,8672
8	-31,9341	53 53	-24,3145
9	-32,7502	59	-25,297
10	-35,4812	ି. ଶ୍ରେ	-26.3839
11	-40.9184		
12	-43.2134	€1	-27.7374
13	-42.3141	62	-29.2182
14	-39.0967	63	-28.1508
15	-34.6293	64	-26.4881
	-31.9362	6 5	-24,9723
16	-31.5344	చేచ్	-23.6141
17		67	-22.3634
18	-32.2712	ର ଣ	-21.5383
19	-30.9941	69	-21.2787
20	~30.3306	70	~21.8282
21	~29.7401	71	+23.4161
22	~29.4423	72	-29.5897
23	~29.4675	73	-27.3391
24	~29.9713		
25	-31.033		
26	-33.0526		
27	-36.2552		
28	-39.9322		
29	-40.098		
30	-37.6776		
31	-38.7917		
32	-34.0627		
3.3	-30.6843		
34	-28.8771		
35	-28.5776		
36	-28.6247		
37	-28,9198		
38	-28.6072		
39	-29.2181		
40	-30.1334		
41	-29.263		
42	-28.8115		
43	-28.065		
44	-27.3391		
45	-26.7567		
46	-26.6451		
47	-27.2946		
43	-28.9819		
7.5	-31.1818		
50	-37.3573		

TABLE C-20

NOSECONE MAP Ey

POINT	LEVEL dB	POINT	LEVEL dB
-	-41.5183	51	-34.1156
1 2	-43.2255	<u>52</u>	-32.9864
3	-45.1049	53	-33.2785
	-47.4923	54	-33.5802
4	-49.36	55	-34.2707
5 6	-47.35 -50.4062	56	-35.4204
5	-52.2873	57	-37.2274
7	-92.28.3 -49.8229	53	-39.4831
8	-45.6092	53	-42.1762
9	-42.6346	වීව	-45.144
10	-42.6346 -41.4295	61	-48.207
11	· -	62 62	-50.9907
12	-42.8357	63	-52.6991
13	-39.0133	64	-51.0376
14	-37.6912	65	-48.3395
15	-38.8143	60 60	-45.8483
16	-42.1762	67	-43.4243
17	-47.0413	ବ (ବ୍ରେ	-41.3455
18	-51.8017	59 69	-39.7285
19	-51.6162	70	-38.5741
20	-49.1078	7 1	-37.7114
21	-45.8645	72	-36.4523
22	-43.1639	7.4 7.3	-33.5904
23	-40.5828	, D	••••
24	-38.3896		
25	-36,7459		
26	-35.5113		
27	-35.0766		
28	-35.2179		
29	-35.8179		
30	-34,98 5 9		
31	-34.5252		
32	-34.4509		
33	-34.9393		
34	-36,2331		
35	-38.0751		
36 	-40,4088		
37	-43.1307		
38	-46.3827		
3 9	-49.5383		
40	-52.5817		
41	-52.3921		
42	-49.647 4		
43	-45.9858		
44	-43.0915		
45	-40.2873		
46	-37.8571		
47	-35.9879		
43	-34.5965		
49	-33.8983		
ରିଶ	-33.7983		

SEE APPENDIX C C.1 INTRODUCTION FOR EXPLANATION

FOR TABLE C-21

TABLE C-22

NOSECONE	MAP	Hx
----------	-----	----

POINT	LEVEL dB	POINT	LEVEL dB
1	-20.6751	51 53	-19.3732
2	-22.5369		-19.8729
3	-23.8444	53	-19.39
4	-25.1841	54 #.=	-19.3793
5	-26.7393	55 E	-19.7359
6	-27.6013	56 53	-20.3368
7	-27.4408	57	-21.2421
8	-25.779	53	-22.2023
9	-24.1414	53	-23.2959
10	-22.8862	ର୍ ଣ୍ଡ	-24.3351
11.	-21.5188	61	-25.5559
1.2	-20.4271	62	-26.8025
1 3	-19.4495	63	- <u>27</u> .4468
14	-20.3305	64	+26.2175
15	-21.7752	65	-24.7465
1 6	-23.324	66	⇒ଥିଞ. ଅମ୍∳୍ର
1 7	-24.4613	ଧ୍ୟ	-22.8726
18	-26.429	68	-21.9768
19	-26.0732	69	-21.1279
20	-24.7231	70 -	-20.46
21	-24.0328	71	-20.1097
22	-23.1849	72	-19.924
23	-22.3763	73	⊢ଥିପ. ଅଣ୍ଡିଟ
24	-21.6918		
25	-20.9421		
26	-20.2245		
27	-19.6647		
28	-18.9134		
29	-18.9542		
30	-18.5621		
31	-19.0214		
32	-19.4605		
33	-19.9848		
34	-20.6393		
35	-21.4439		
36	-22.2507		
37	-23.1255		
38	-24.0494		
39	-25.1841		
4 0	-26.3167		
41	-26.3456		
42	-24.92		
43	-24.1414		
44	-23.155		
45	-22.1643		
46	-21.3464		
47	-20,4403		
48	-19.8461		
49	-19.4605		
ରଥ	-18.9678		

TABLE C-23

NOSECONE 144 III	NOSECONE	MAP	Ну
------------------	----------	-----	----

POINT	LEVEL dB	POINT	LEVEL dB
_			-8.9874
1 2	-9.8068	51	-8.63558
3	-8.62131	<u>52</u>	-8.13481
	-8.8873	53	
4	-10.0767	54	-8.04783
5	-11.8441	55	-8.30131
6	-13.8382	56	-8.44526
1	-13.7614	57	-9.21815
8	-11.5426	58	-9.99738
9	-10.0274	<u> 독</u>	-10.9194
10	-8.89626	ਚੋੜੇ	-11.9426
11	-8.53812	€1	-12.9946
1.2	-9.56723	62	-14.1104
1 3	-9.29218	6 3	-14.3237
14	-8.36121	64	-13.2347
15	-8.76987	65	-12.0234
1 <i>€</i>	-9.9968	තිබ	-11.0857
17	-11.6541	67	-10.124
1 ∂	-13.5926	68	-9.54958
19	-13.639	69	-8.75746
29	-12.6416	79	-8.16522
21	-11.6104	₹ 1	-7.82157
22	-10.7525	72	-7.81661
23	-9.96288	73	-8.279
24	-9.28186		
	-8.65988		
26	-8.25405		
27	-8.10655		
	-8.26213		
29	-8.94658		
0.9	-8.75019		
9.1	-8.0941		
32	-7.97062		
3 3	-8.15265		
34	-8.5 6 348		
35 35	-9.2087		
2 E	-9.92474		
37	-10.7507		
38	-11.7534		
3.3	-12.7208		
40	-12.7200 -13.7917		
41	-13.7917		
42	-12.8692		
43	-11.7374		
44	-10.8525		
45	-10.8020 -9.99188		
→ २ . + ĕ	-7.77188 -9.22253		
47 47	-7.42253 -8.58206		
43 43	-8.12823		
# 3 4 원	-8.12823 -7.83 64 8		
97 50			
2 U	T0.15717		

SEE APPENDIX C

C.1 INTRODUCTION FOR EXPLANATION

FOR TABLE C-24

TABLE C-25

NOSECONE MAP Ex

LEVEL dB ~37.3089 -38.3944 -36.6264 -34.8312 -33.0606 -31.2 -29.3236 -27.7563 -25.6692 -23.0647 -20.3608 -17.3933 -18.5751 -21.9615 -24.7507 -27.4845 -28.946 -30.8855 -32.7537 -34.4941 -36.2344 +37.9058 -39.64

	HOODOOME 124	DA.
POINT	LEVEL dB	DOTNE
1	-40.7694	POINT
ž	-37.3604	51
3		52
3 4	-34.0531	53 -
	-30.507	54
5	-26.4528	55
6	-19.0602	56
7	-16.6825	57
S	-22.5213	58
9	-27.4701	<u>5</u> 9
10	-30.7505	କ୍ଷ
1 1	-34.4114	61
12	-37.99	62
13	-36.6353	63
14	-32.9811	64
15	-29.2125	65
16	-25.7301	66 66
17	-21.0301	67
18	-15.8655	-
19	-15.8397	68 43
	· - - ·	69
20	-18.3672	70 -
21	-20.8257	71
22	-23.3094	72
23	-25.5593	73
24	-27.7186	
25	-29.0121	
26	-30.8872	
27	-32.7759	
28	-34.5838	
29	-36.4299	
<u>ଃ</u> ଡ	-36.7875	
31	-34.9507	
32	-33.158	
33	-31.2724	
34	-29,4073	
35	+28	
36	-25.9806	
37		
38	-23.653	
	-21.2589	
39	-18.7172	
46	-16.0816	
41	-16.5006	
42	-19.2879	
43	-21.361	
44	-24.3531	
45	-26.6451	
46	-28.94	
47	-30.1115	
48	-31.8659	
49	-33.7154	
50	-35.4984	

TABLE C-26

NOSECONE MAP Ey

		•
POINT	LEVEL dB	POINT
1	-47.8 5 76	51
2	-43.1806	52
3	-36.989	53
4	-30.581	54
5	-24.4912	55
6	-20.7359	
7	-27.5433	56 #2
8	-28.7832	57
9	-33.2031	58
7 10	-38.7313	59
11	~44.1345	60
12	-48.9971	51
	~54.6556	62
13	-49.6003	63
14	-47.6003 -44.6405	54
15		65
16	~39.8481	66
17	-36.6726	67
18	-35.4842	୫୫
19	-41.942	69
20	-43.9285	70
21	-47.1461	71
22	-49.9948	72
23	-53.0128	73
24	⊬5 6. 2327	
25	-57.0096	
26	-57.0096	
27	-57.0096	
28	-57.0096	
29	-57.0096	
ଓଡ଼ି	-57.0096	
31	-55.3642	
32	-52.6344	
33	-49.7431	
34	-46.9454	
35	-44.353	
36	-41.9944	
37	-40.0575	
33	-38.6153	
39	-37.1105	
40	-36.903	
41	-32.3771	
42	-32.2348	
43	-33.3319	
44	-34.8558	
45	-36.8754	
46	-39.2227	
47	-41.8683	
43	-44.5388	
49	-47.4152	
50	-50.3095	

LEVEL dB -53.2567 -50.6794 -47.4613 -44.7726 -42.0532 -39.2001 -36.4586 -33.7363 -31.3704 -29.51 -28.2049 -28.3179 -24.7422 -25.0728 -26.9583 -29.1239 -31.8001 -34.7478 -37.7505 -40.687 -43.6372 -48.4454 -48.7591

TABLE C-27

NOSECONE MAP Ez

POINT	LEVEL dB	POINT	LEVEL dB
1	-54.1701	51	-60.7588
2	-55.2276	52	-80.7588
3	-53.4749	53	-60.758°
4	-45.1357	5.1	-60.7588
5	-34.7197	E 0	-80.7588
6	-44.5314	53 53	-60.7588
7	-40.6134	27 22	-80.7588
8	-48.5811	58	-80.7588
9	-54.1701	59 59	-60.7588
10	-56.6	50 60	-60.7588
11	-54,5432	· ·	-80.7588
12	-54.5432	€1	-80.7588
13	-48.6284	62	-60.7588
14	-48.6332	63	-60.7588
15	-48.6189	64	-60.7588
16	-48.6189	55	-60.7588
	-48.6237	€6	-60.7583
17	-48.5811	67	-60.7588
18	-60.7588	68	-60.7 5 88
19	-60.7588	69	-60.7588 -60.7588
50	-60.7588	79	-60.7588
21	-60.7588	7.1	
22	-60.7588 -60.7588	72	-60.7588 -6.7588
23		73	-60.7588
24	-60.7588		
25	-60.7588		
26	-60.7588		
27	-60.7588		
28	-60.7 5 88		
29	-60.7 5 88		
30	-60.7588		
31	-60.7538		
32	-60.7588		
33	-60.7588		
-4	-60.7588		
35	-60.7588		
36	-60.7583		
37	-60.7588		
3 🖰	-60.7588		
39	-60.7588		
40	-60.7 5 88		
41	-60.7588		
42	-60.7588		
43	-60.7588		
44	-60.7588		
45	-60.7588		
46	-60.7588		
47	-60.7 5 88		
4 🗄	-60.7588		
4.5	-60.7588		
50	-63.7588		

TABLE C-28

NOSECONE MAP Hx

POINT	LEVEL dB	POINT	LEVEL dB
1	-46.0172	51	-30.1621
2	-44.4739	25 21	-29.5339
3	-41.145	53 53	-27.4292
4	-34.1774	94 54	-25.2702
5	-22.4056	55 55	-23.3668
6	-11,7791	56	-21.354
7	-13.1334	20	-19.3954
8	-18.682	58	-17.6269
9	-25.5559	59 59	-15.9508
10	-31.6371	60	-14.6455
11	-36.4082		-13.6083
12	-41.4564	61	-12.8705
13	-35.0168	62	-12.6925
14	-30.5826	63	-13.2185
15	-26.1391	64	-14,0788
16	-21.5571	65 	-15.4628
17	-17.2	ବ୍ର ବ୍ୟ	-17.2179
18	-13.3069	ବ୍ୟ ବ୍ରି	-19.8268
19	-14.254	69	-21.0785
29	-15.3671	67 70	-23.1108
21	-16.4874	71	-25.2702
22	-18.1451	72	-27.2213
23	-19.8783	72 73	-29.3411
24	-21.7752	1.5	
25	-23.773		
26	-25.6706		
27	-27.7927		
28	-29.9386		
29	-32.1657		
30	-31.3783		
31	-29.2619		
32	-27.1649		
33	-24.9462		
34	-23.2681		
35	-21.4073		
36	-19.5943		
37	-17.9575		
38	-16.2844		
39	-15.0546		
40	-13.9416		
41 42	-13.487		
43	14.2705		
44	-15.3750		
45	-16.6172 -18.2487		
45 46			
45 47	-19.9909 -21.9082		
4 . 4 ⊛			
49	-23.8898 -35 00:4		
97 50	-25.8814 -28.0184		
2.0	-20.0154		

TABLE C-29 NOSECONE MAP Hy

DOTNE	ar tentar	DOTNE	LEVEL dB
POINT	LEVEL dB	POINT	=:: :
1	-15.0228	51 53	-10.1474
2 3	-15.0466	52	-11.534
3 4	-15.0626	5 3	-11.537
5	-15.0626	54 5-	~11.539
<u> </u>	-15.052	55 53	-11.532
6 ?	-15.0573	56	-11.53
<i>€</i> 8	-10.5899	57	-11.532
8 9	-10.5861	5 8	~11.533
	-10.5899	5 9	~11.531
10	-10.5899	60	~11.53
11	-10.5852	61	~11.533
12	-10.5908	62	-11.53
13	-8.96391	63	-13.5703
1.4	-8.95958	64	-13.5703
15	-9.95785	65	-13.5689
16	÷8.96044	66	-13.5689
17	-3.95611	67	-13.5689
18	-8.96044	68	-13.5718
19	~8.89327	ଟେ	~13.563
20	~3.89 40 2	70	-13.56
21	-3.89028	71	-13.5644
22	-8.88878	72	-13.5659
23	-3. 5 8878	73	-13.563
24	-3.89028		
25	-8.83507		
26	-8.88133		
27	-8.88356		
28	-8.88 58		
29	-8.88208		
30 -	-9.40258		
3 t	-9.40107		
32	-9.40484		
33	-9.40258		
34	-9.39957		
35	-9.39957		
36	-9.40107		
37	-9.40258		
38	-9.40333		
33	∼9.3958		
40	-9.39731		
41	-10.1566		
42	-10.1557		
43	-10.149		
44	-10.1474		
45	-10.1541		
46	-10.1524		
47	-10.1499		
48	-10.1465		
49	-10.1465		
50	-10.149		

TABLE C-30

NOSECONE	MAP	Ηz
----------	-----	----

		·	
POINT	LEVEL dB	POINT	LEVEL dB
1	-18.9405	51	-69.232
2	-14.7739	52	-69.232
3	-10.4628	53	-69.232
4	-6.05529	54	-69.232
• 5	-1.45109	5년 5년	-69.232
6	2.01614	56	-69.232
7			-69.232
	-4.85401	57	-69.232
8	-5.85684	ূ ত্	
9	-9.15066	59	-69,232
10	-12.9987	ବ୍ୟ	-69.232
1,1	-17.2119	61	-69.232
12	-21.3846	62	-69.232
13	-69.232	63	-69.232
14	-69.232	64	-69.232
15	-69.232	65 65	-69.232
16	-69.232	66 66	-89.232
17	-69.232	67	-69.232
18	-69.232		-69.232
19	-69.232	68	-69.232
29 20		<u>69</u>	
	-69.232	70	-69.232
21	-69.232	7.1	-69.232
22	-69.232	72	-69.232
23	-69.232	73	-69.232
24	-69.232		
25	-69.232		
26	-69.232		
27	-69.232		
28	-69.232		
29	-59.232		
30	-69.232		
31	-69.232		
32	-69.232		
33	-69.232		
34	-69.232		
35 35	-69.232		
36 27	-69.232		
37	-69.232		
39	-69.202		
39	-69.232		
4 អ៊ូ	-69.232		
41	-69.232		
42	-69.232		
43	-69.232		
44	-69.232		
45	-69.232		
46	-69.232		
47	-69.232		
48	-69.232		
	-69.232		
শুর জুঞ্	-69.232		
D- E 7	-ರಶ.ಷಕ್ಷ		

TABLE C-31

NOSECONE MAP Ex

LEVEL dB ~37.896 ~38.8756

-37.6869 -36.4359 -35.1398

-33.8864 -32.7127 -31.4152 -30.2658

-28.9

POINT	LEVEL dB	POINT
1	-33.9815	51
2	-29.5212	52
3	-25.21	53
4	-20.3268	54
5	-15.7	55
5 6 7	-11.6029	56 56
7	-14.3919	57
8	-17.8816	58
9	-21.8487	59
10	-26.1125	ର୍ଷ ଶ୍ରୀ
11	-30.2317	<u> </u>
1.2	-3 4.5 882	
13	-35.1477	
1.4	-31.1889	
15	-27.4845	
1.5	-23.4739	
1 -	-19.2848	
1 8	-14.7747	
1.7	-15.569	
20	-18.2045	
11 23	-20.8205	
<u> </u>	-23.3404	
<u> </u>	-25.6098	
24 54	-27.6356	
실고 5.5	-29.2594	
25 26 27 28 28	-31.0724	
	-32.8814	
75	-34.585g	
2.0 2.0	-36.3054	
31	-37.049 -35.5356	
32 32	-34.0033	
33	-32.4539	
24	-30.764	
35	-29.0722	
36	-27.2946	
3.7	-25.1221	
3.3	-22.4936	
39	-19.552	
4.3	-16.4509	
41	-17.9873	
4 <u>.2</u>	-21.7039	
43	-25.0484	
44	-27.7	
45	-29.3493	
4 <i>5</i>	-30.9223	
47	-32.4272	
48 49	-33.7951	
- কুল সূঠ্	-35.1578	
ិមា	-36.5891	

TABLE C-32

MOCECOME	MAD	P.,
NOSECONE	MAP	Ev

	NOSECONE 1	MAP Ey	
POINT	LEVEL dB	POINT	LEVEL dB
1	-60.7588	51	-6 0. 7588
2	-50.0255	52	~60.7588
- 3	-44.9813	53	-60.7588
4	-40.0903	54	-60.7588
5	-35.5217	55	-52.628
6	-31.5333	56	-50.1292
7	-37.4125	57	-47.5036
8	-38.2329	58	-44.911
9	-41.6739	59	-44.0133
10	-45.7563	କ୍ଟ	-42.9251
11	-49.6933	61	-40.8461
12	-52.5433	62	-41.9684
13	-52.628	63	-44.876
14	-50.0656	64	-41.4595
15	-46.3144	65	-42.7242
16	-42.8614	66	-45.232
17	-41.001	67	-47.989
18	-39.1933	68	-50.7239
19	-40.5655	69	-52.5264
20	-40.6295	70	-60.7588
21	-41.5067	71	-60.7588
22	-42.7788	72	-60.7588
23	-44.3024	73	-60.758S
24	-46.0309		
25	-47,7916		
26	-49.4537		
27	-51.2164		
28	-60.7588		
29	-60,7588		
30	-60.7588		
31	-60.7588		
32	-52.4677		
33	-50.3885		
34	-48.5031		
35	-46.6501		
36	-44.8412		
37	-43.9818		
38	-42.7242		
39	-41.578		
40	-40.8242		
41	-36.515 -42.3772		
42			
43	-44.2373 -45.1958		
44	-43.1938 -46.4806		
45 4.5	-47.989		
46 47	-47.909 -49.3948		
47 48	-47.3740 -50.5882		
48 49	-50.3662 -52.2123		
47 50	-60.7588		
שכ	-00.1000		

TABLE C-33 NOSECONE MAP Ez

			r nunt 1n
POINT	LEVEL dB	POINT	LEVEL dB
1	-47.788	51	-60.7588
2	-45.1398	52	-60.7588
3	-40.8139	53	-60.7588
4	-34.1419	54	-60.7588
5	-24.9815	55	-60.7588
6	-14.1491	56	-60.7588
7	-17.4122	57	-60.7588
8	-23.7123	58	-60.7588
9	-31.3864	59	-60.7 5 88
10	-38.2297	ଶ୍ର	-60.7588
11	-43.2457	61	-60.7588
12	-47.064	62	~60.7588
13	-46.6262	63	~60.7588
14	-42.6582	64	~60.7588
15	-37.8627	65	~60.7588
16	-32.5347	66	-60.7588
17	-27.4138	67	-60.7588
18	-23.6335	68	-60.7588
19	-60.7 53 8	69	-60.7588
20	-60.7588	70	-60.7588
21	-60.7538	71	-60.7588
22	-60.7588	72	-60.7588
23	-60.7588	73	-60.7588
24	-60.7588		
25	-60.7588		
26	~60.7588		
27	~60.7588		
28	~60.7588		
29	~60.7588		
30	~60.7588		
31	-60.7588		
32	-60.7588		
33	-60.7588		
34	-60.7588		
35	-60.7588		
3 <i>6</i>	-60.7588		
37	-60.7588		
38	-60.7588		
39	-60.7588		
40	-60.7588		
41	-60.7588		
42	-60.7588		
43	-60.7588		
44	-60.7588		
45	-60.7588		
46	-60.7588		
47	-60.7 5 88		
48	-60.7588		
49	-60.7588		
50	-60.7588		

TABLE C-34

NOSECONE MAP Hx

Doziem.	I CHANGE IN	DOTM	i Duni — in
POINT	LEVEL dB	POINT	LEVEL dB
1	-24.493	51	-25.1026
2	-24.493	52	-26.2735
3	-24.4457	5 3	-26.3088
4	-24.4771	54	-26.3249
5 6	-24.4771	55	-26.3368
6	-24.4457	5 6	-26.3419
7	-25.5141	57	-26.35
8	-25.5141	53	-26.3597
à.	-25.5141	ছুণ্	-26.3774
10	-25.5141	មូម៉	+26.372ଟ
41	-25.455	61	-26.4008
1.2	~25.455	62	-26.3954
1.3	-25.241	63	-28.3318
14	-25.2123	64	-28.2996
15	~25.241	65	-28.3002
16	-25.241	66	-28.7544
17	-25.241	67	-28.3774
18	-25.2702	68	-28.7559
19	-24.6815	69	-28.7578
20	-24.6633	70	-28.7544
21	-24.6453	71	-28.7556
22	-24.6275	72	-28.7759
23	-24.6275	73	-28.7543
24	-24.6453	1 -	
25	-24.7943		
26	-24.6815		
27	-24.6633		
28	-24.6633		
29	-24.6275		
30	-24.4771		
31	-24.5091		
32	-24.493		
33	-24.493		
34	-24.5091		
35	-24.5091		
36	-24.4771		
37	-24.5091		
38	-24.5091		
39	-24.493		
40	-24,4771		
41	-25.0763		
42	-25.0763		
43	-25.0763		
44	-25.1026		
45	-25.0763		
46 46	-25,1026		
47 47	-25.0763		
4. 48	-25.1026		
49	-25.0763		
47 50	-25.0763 -25.0763		
20	-20,0103		

TABLE C-35
NOSECONE MAP · Hy

LEVEL dB -17.5613 -18.1112 -16.0386 -13.969 -11.9163 -9.81818 -7.73961 -5.67595 -3.62537 -1.89744 .148922 1.73127 1.91751 .314866 -1.60741 -3.63081 -5.73296 -7.85642 -9.95117 -12.0683 -14.144 -16.2126 -18.3156

POINT	LEVEL dB	POINT
1	-18.7127	51
2	-14.4255	52
3	-10.3938	53
4	-6.01558	54
5	-1.67675	55
6	2.28926	56
7	1.78348	57
3	-1.71663	58 58
9	-5.82262	59 59
10	-10.025	ଟ. ବିଶି
11	-14.1864	61
12	-18.3196	62 62
13	-17.5906	63
14	-13.4596	64
15	-9.34187	65
16	-5.33361	
17		66
	-1.56878	67
18	1.50096	68
19	1.53724	69
20	.249728	70
21	-1.33715	71
22	-3.05145	72
23	-4.86818	73
24	-6.8095	
25	-8.8198	
26 	-10.8295	
27	-12.9115	
28	-15.0096	
29	-17.0773	
30	-17.23 5 8	
31	-15.15	
32	-13.0545	
33	-10.9664	
34	-8.94572	
35	-6.94022	
36	-4.96025	
37	-3.12814	
38	-1.38885	
39	.212475	
40	1.58819	
41	1.65974	
42	.304297	
43	-1.32125	
44	-3.14642	
45	-5.07845	
46	-7.18068	
47	-9.23273	
42	-11.3104	
49	-13.3685	
50	-15.4607	

TABLE C-36

POINT LEVEL dB POINT LEVEL dB 1		NOSECONE	Hz	
1	POINT	LEVEL dB	POINT	LEVEL dB
2		=24 9215	5.1	-69.232
3		-		
4				-69.232
5				
6		-		
7	6			-69.232
8				-69.232
9				÷69.232
10				-69.232
11	10	- · · · - -	60	-69.232
12	1 1		611	-69.232
13	12	-34.8004		-69.232
14	1 3	-35.3813		-69.232
16			- -	-69.232
16		-25.936	65	-69.232
18			66	-69.232
19		-18.2879	67	
20			68	
21			69	
22		_	70	
23				
24				
25			73	-69.232
26				
27				
28				
29				
30				
31				
32				
33				
34				
35	34	-		
36	35			
38				
39				
40 -69.232 41 -69.232 42 -69.232 43 -69.232 44 -69.232 45 -69.232 46 -69.232 47 -69.232 48 -69.232 49 -69.232		-69.232		
41				
42		-69.232		
43				
44 -69.232 45 -69.232 46 -69.232 47 -69.232 48 -69.232 49 -69.232				
45 -69.232 46 -69.232 47 -69.232 48 -69.232 49 -69.232				
46 -69.232 47 -69.232 48 -69.232 49 -69.232				
47 -69.232 48 -69.232 49 -69.232				
48 -69.232 49 -69.232				
49 -69.232				
~ / · E / L				
-69.232				
	a) (4)	-69.232		

APPENDIX D

RESULTS OF E-FIELD PERTURBATION TEST CONDUCTED IN MISSILE (NOSECONE REMOVED)

D.1 INTRODUCTION

A test was conducted in the missile nosecone area, with the nosecone removed to assess the effects of E-field perturbations due to the presence of another E-field probe, located at the grid centre, 1 cm away from the plane of the grid.

The resulting contours are shown in Figs. D-1, D-2. The perturbations caused are negligible when referred to the incident carrier level of 43.65 v/m.

No similar test was conducted for the H-field probedue to its smaller size and the absence of any significant amount of metallic material.

Probe and Grid Orientation per Test No. 19 of Table A-1, Appendix A

FIG. D-1 NO PERTURBING PROBE IN PLACE

Probe and Grid Orientation per Test No. 19 of Table A-1, Appendix A

FIG. D-2 PERTURBING PROBE INSTALLED

APPENDIX E

PROBE CALIBRATION CURVES AND LOOKUP TABLE

E.1 INTRODUCTION

This appendix contains E-field and H-field probe calibration data obtained at 300 MHz. All data is based upon the use of 100% amplitude modulation, except pages E-23 to E-27, which show the effect of using 50% A.M. for the E-field probe.

E-Field Probe Calibration, low range, 100% Modulation
Run 1 of 2: 0.01 v/m to 3 v/m

LEVEL	v/m	READING	Ηz	STD	BEV HZ
.01		1			1.05409255343
1.035	1-216669E-0	2 1			1.05409255343
	51930525E-0				1.05409255343
1.109	17481526E-0	2 1			1.05409255343
1.148	:15362157E-0	2 1			1.05409255343
1.198	50222744E-0	2 1			1.05409255343
1.230	26877084 E -0	2 1			1.05409255343
.0127	3503081	1			1.05409255343
1.318	25673857 E -0	2 1			1.05409255343
1.364	58313661E-0	2 i			1.05409255343
	53754465 E -0	-			1.05409255343
1.462	17717445E-0.	2 1			1.05409255343
1.513	56124851E-0	- 			1.05409255343
	75107015E-0;				
	18188974	1			1.05409255343
	80401814E-0;				1.05409255343
	50082884 E -0;				1.05409255343
	87091516E-00				1.05409255343
	20871367	1			1.05409255343
	52491321E-03	2 1			1.05409255343
	16131506E-03				1.05403255343
	38015583E-0;				1.05409355343
2.137	96208955E-0;	e 1 ⊃ 1			1.05409255343
2.213	09470964E-0;	2 1			1.05409255343
2 240	86765277 E -0:	2 1			1.05409255343
0.271	37370571E-0;	_			1.05409255343
	70891581E-0:				1.05409255343
	.0091361 <u>6</u> -0. 09727 05 6				1.05409255343
	07,27036 26799191E-03	1			1.05409255343
2.000	20,991916-02 701308146-02	2 1			1.05409255343
2.122	:0130814E-02 38293125E-02				1.05409255343
2 917	aa273125E-02 42701399E-02	2 1			1.05409255343
2 0100	95:72046E-03	2 1			1.05409255343
	:0.72046E-02 60793671	-		:	1.05409255343
	93656927 E -03	. 1			1.05409255343
2.233	236367276-02 55439171 6 -02	1		1	1.05409255343
3 4471 3 4471	369E04E0E ∧o	1			1.05409255343
9.40). 9.5000	36850456E-02	1		1	1.05409255343
2.3074 2.7450	21934644E-02	1		1	1.05409255343
3.713:	35229101E-02			1	1.05409255343
0.049; 0.0040	91782046E-02	1		1	.05409255343
- 2.7516 - 4.1500	07170558E-02	1		1	.05409255343
	97519094E-02	-		1	.05409255343
	79518787E-02	-		1	.05409255343
	57044736	1			.05409255343
	88189609E-02	-			.05409255343
	1258965E-02				.05409255343
4.8977	'88193 52E-0 2	1			.05409255343

v / m	Нz	. H z
5.0699070827 9E-0 2	1	1.05409255343
5.24807460259E-02	i	1.05409255343
5.43250331504E-02	i	1.05409255343
5.62341325187E-02	1	1.05409255343
5.82103217767E-02	1	1.05409255343
6.02559586081E-02	.3	.67494855771
6.2373483 5 482 E-0 2	2	.66666666666
6.45654229044E-02	2.6	.966091783079
6.68343917557E-02	3	.942809041582
6.91830970931E-02	4	.47140452079
7.16143410216E-02	4.3	.67494855771
7.41310241296E-02	5.3	.67494855771
7.67361489387E-02	6.2	1.22927259434
7.94328234702 E -02	7.6	.966091783079
8.222426499 5 8 E -02	8.9	.87559503577
8.511380381 88E-02	9.9	.737864787372
8.81048872987 E-0 2	12.1	1.19721899976
9.12010939367E-02	13.4	.69920589878
9.44060876301E-02	15.4	.516397779493
9.7723722 0966E-02	17.6	.516397779493
. 1	19.7	.94868329805
.103514216669	22.5	.849836585598
.107151930525	24.5	.527046276694
.110917481526	26.5	.971825315807
.114815362157	30	1.56347191992
.118850222744	32.9	1.28668393772
.123026877084	36.7	.94868329805
.1273503081	40.1	.737864787372
.131825673857	44.7	.823272602348
.136458313661	48.8	.788810637746
.141253754465	52.6	1.42984070595
.146217717445	56.4	1.57762127546
.151356124851	62.8	1.13529242435
.156675107015	68.5	1.50923085636
.16218100974	74.6	1.34989711541
.167880401814	81.2	1.6865480854
.173780082884	89.2	1.03279555895
.179887091516	95.2	1.31656117723
.18620871367	102.8	1.39841179757
1927F2491921	111.€	୍ରାଷ୍ଟ୍ର ଅନ୍ତର୍ଗ ଅନ୍
.199526231506	121.1	1.19721899976
.206538015583	132	1.49071198499
.213796208955	142.2	1.13529242435
.221309470964	151.1	1.10050493465
.229086765277	163.7	1.41813649244
.23713737 05 71	176.4	1.07496769979
.245470891581	190.9	1.10050493465
.25409727056	208.1	1.10050493465
.263026799191	224.2	1.81352940114
.272270130814	242.7	1.49443411811
.281838293125	257.4	1.34989711541
.291742701399	276.7	1.56702123648
.301995172 0 46	298.3	1.94650684273
.31260793671	322.4	2.27058484879

.323 5 93656927	348.4	1.50554530539
.334965439171	375.2	2.57336787541
.346736850456	404.7	1.56702123648
.358921934644	426.9	1.96920739837
.371535229101	459.4	2.54732975658
.384591782046	459.4 493.4	2.41292814277
	533	2.53859103527
.412097519094	574.6	2.8751811537
.426579518787	617.8	2.52982212813
.44157044736	655	3.59010987143
.457088189609	704.4	3.09838667696
	755.8	3.64539283054
.489778819352	812.4	3.43834585552
.506990708279	875.5	4.47834294751
	943.2	4.44222166639
		5.02880591085
.562341325187		4.97661196664
.582103217767	1156	5.0 33222295685
	1243	5.73488351137
.645654229044	1440	6.50555318341
.668343917557	1548.2	6.37704215656
	1666.3	7.14609450445
.691830970931 .716143410216		7.55792446520
	1755	7.87400787401
.741310241296	1880.1	7.83794190673
.767361489387	2021.7	9.40508136889
	2174.2	9.65861733836
	2341.2	10.3042601762
.851138038188	2516.2	10.6854002161
.881048872987	2673.9	11.589746426
	2870.6	12.5715728705
	3077.6	13.2430275156
.977237220966	3303.5	13.6075959177
1	3469.9	10.5561988111
1.03514216667	3733.5	15. 7286009819
	4011.4	17.0632809142
1.10917481529	4196.1	15.9195896096
1.14815362146	4503.3	18.4152714403
1.1885022274	4825.6	19.5913813249
	5178.7	20.6991679919
1.27350308102	5574.5	23.0855895406
1.31825673851	5991.1	25.030869 8298
1.36458313659	6439.7	26.9775626934
1.41253754462	6791.4	30.3980993557
1.46217717443	7270.6	28.3556774639
1.5135612484	7807.4	32.541255866
1.56675107006	8386.9	35.1329221987
1.62181009733	9014.8	37.5878230872
1.57880401811	9474	26.3818119165
1.73780082871	9526.2	2.52982212913
1.79887091509	9562.1	5.6656 8618968
* : : : : : : : : : : : : : : : : : : :	7.5 % I - +	

E-Field 100% A.M.

1.92752491316	9659.3	2.9458068127
1.99526231494	9712.6	3.06231575409
2.06538015578	9768.2	3.25917508308
2.1379620895	9816.7	2.75075747142
2.21309470956	9850.6	6.20394139954
2.29086765276	9898	2.49443825784
2.37137370562	9942.8	2.4404006957
2.4547089156	9987.2	2.57336787541
2.54097270546	10027	2.49443825784
2.6302679919	10062	2.16024689945
2.72270130804	10098.3	2.21359436211
2.81838293116	10129.1	2.88482620311
2.91742701384	10166.2	2.20100986921

E-Field Probe Calibration, low range 100% Modulation Run 2 of 2: 0.1 v/m to 3 v/m

E-6

LEVEL	v/m	READING	Нz	STD	DEV	Нz
. 1		23.9				13767461
.10233	29299228	24.7			1.636	39169449
.10471	12854805	27.1			.9944	28926012
.10715	51930525	28.1			.9944	28926012
.10964	¥7819613	29.9			1.100	50493465
.11220	01845432	31			.4714	0452079
.11481	15362157	32.6			1.264	91106406
.11748	39755495	34			.9428	09041582
.12023	26443466	36.4			.6992	0589878
.12303	26877084	38 .5			.7071	06781186
.12589	92541181	41.2			1.135	29242435
.12382	24955169	43.6			1.074	96769979
.13183	25673857	46			.8164	96580927
.13489	762882 5 9	48.3			1.251	665557
.13800	38426462	52.1			.8755	9503577
.14125	53754465	54.1			1.197	21899976
. 1445	43977081	57.6			.6992	0589878
.1479	10838815	59.9			1.197	21899976
.15135	56124851	64.1			1.370	32031941
.15489	81661889	67.2			1.032	79555895
. 15343	99919 24 8	71.4			.9660	91783979
.16218	3100974	74.8			.7888	10637746
	58690737	79.9			.8755	9503577
.16982	2436525	84.5				23085636
	30082884	88.6			.8432	7404271
.17782	27941011	93.2			.7888	810637746
.18197	70085862	98.2			1.398	41179757
	3871367	103.4				69767717
	46071803	109.9				888392674
	3445998	115.8				55532033
	26231506	121.6				91783079
	73794472	128.1				28926012
	29613085	135.9				88392674
	96208955	143.4				7404271
	76162396	151.5			_	11234497
	72113864	155.4				78779078
	86765277	164.4				91783079
	22881537	173				99316183
	83291908	182.1				132031941
	70891581	190.9				68393772
	88643153	201.1				21899976
	39578277	212.5				51130193
	26799191 50400005	223.5				8 5 113 0 193
	5348 0 395	235.1				68393772
	22870329	248.2				19007152
	38293125	258				7005384
	03150315 5005557:	270.4				91106406 927259434
.2951.	20922671	283.8			1.447	27437434

.301995172046	298.9	.87559503577
.309029543255	313.9	1.37032031941
.31622776603	329.5	1.17851130193
.323593656927	347.2	1.31656117723
.331131121481	364.7	1.33749350981
.33884415614	384.3	.94868329805
.346736850456	403.9	2.02484567313
.354813389247	415.7	1.88856206321
.363078054775	436.7	1.33749350981
.371535229101	458.7	1.88856206321
.38018939632	481.4	1,26491106406
.389045145011	504.8	1.6865480854
.398107170558	531.4	1.83787316695
.407380277818	557.7	1.8287822299
	587.4	1.71269767717
	616.7	1.94650684273
	648.5	
		2.27058484879
	669.7	2.26323269289 2.50333111405
.457088189609	702.6	
-	735.6	1.9550504398
	772.1	2.80673792467
.489778819352	811.2	2.93636207273
	851.6	2.59058123038
	896.7	2.86937856223
	-	4.0674862562
.537031796388	987.6	2.75680975041
.54954087387	1037.3	3,40098025093
	1976	4.02768199119
		4.04969134626
.588843655339	1180.3	3.40098025083
.602559586081	1239.1	3.98469293394
.616595001872	1300.4	5.77712412644
.630957344465	1365.9	3,98469293394
.645654229044	1434.9	4. ୧୯୫୫ (୧୯୫୫ -
.660693448023	1507	5,49650214943
.676082975409	1580.9	4.62961481479
.691830970931	1660.8	5.65292451352
.707945784386	1709.2	5.09465951321
.7244559950113	1792.9	य, वृष्टमहुद्रम्य यस्य
		5.1218486246
・ (サインスがとサイエフで マロのロフマロフロのロフ	1874.3 1967.1	5.44569146716
.758577575056	• • - · • -	5.59364719025
.776247116631	2063.8	•
.794328234702	2166.3	6.1653151672
.812830516179	2275.2	6.52856969191
.831763771142	2390.5	6.57013444813
.851138038188	2506.2	6.95701085237
.870963 5 89984	2632.7	7.67463354173
.891250938151	2729	7.87400787401
.912010839367	2861.1	8.23879710745
.933254300804	2991.9	7.80953832751
.95499258604	3139.9	8.41229259278
.977237220966	3292.3	9.34582497398

1	3455.6	9.78888258292
1	3458.9	1.19721899976
1.01329299227	3628.8	10.5338171376
1.04712854803	3809.5	10.7832174131
1.07151930523	3995.7	10.8735152246
1.09647819613	4194.6	12.1856017036
1.12201845428	4282.3	10.6879995013
1.14815362146	4488.1	12.7405738575
1.17489755496	4692.5	12.545472844
1.20226443456	4922.6	14.3465055752
1.23026877079	5160.6	14.6757547601
1.25892541183	5415.6	16.4330290707
1.28824955169	5687	15.8605030046
1.31825673851	5968.1	16.5827889355
1.3489628826	6258.2	17.6811261581
1.38038426453	6568.6	18.88679727
1.41253754462	6770.9	19.677680532
1.44543977072	7095.7	19.2587642386
1.47910838813	7417.4	19.8561493411
1.5135612484	7780	22.528993665
1.54881661889	8154	21.7970436325
1.5848931925	8 5 54.1	23.6288430148
1.62181009733	8980.5	24.8517828559
1.65958690742	9420,4	26.1839645584
1.69824365251	9498,7	4.11096095821
1.73780082871	9530.1	1.52388392674
1.77827941005	9551.5	6.5192024052
1.81970085857	9583.5	1.58113883008
1.8620871366	9613.3	1.88856206321
1.90546071793	9647.2	1.87379590969
1.94984459969	9681.4	
1.99526231494	9717.8	1.8973665961
2.04173794474	9755.9	2.09761769634
2.0892961308	9791.8	2.13177026069
2.1379620895		2.09761769634
	9824.4	1.8973665961
2.18776162398	9857.2	1.87379590969
2.23872113854	9875.2	5.00666222813
2.29086765276	9907.4	1.8973665961
2.3442288154	9936.6	1.64654520472
2.39883291894	9967.8	1.75119007152
2.4547089156	9997.9	1.79195734078
2.51188643148	10027.7	1.70293863659
2.57039578266	10052.1	1.52388392674
2.6302679919	10075.6	1.26491106406
2.5915348039	10099	1.49071198499
2.7542287033	10123.9	1.44913767461
2.81838293116	10143.4	1.8973665961
2.8840315031	10168.7	1.33749350981
2.95120922666	10193.4	1.57762127546

E-Field Probe Calibration, High Range 100% Modulation Run 1 of 1: 1 v/m to 200 v/m

FREQUENCY= 300 Mhz

15:15:/	DEADING	••	етъ	DEV Hz
LEVEL v/m	READING 1	Ηz	O I D	1.05409255343
1	_			1.05409255343
1.03514216667 1.07151930523	1			1.05409255343
	1			
1.10917481529	1			1.05409255343
1.14815362146	1			1.05409255343
1.1885022274	1			1.05409255343
1.23026877079	1			1.05409255343
1.27350308102	1			1.05409255343
1.31825673851	i			1.05409255343
1.36458313659	1			1.05409255343
1,41253754462	1			1.05409255343
1.46217717443	1.1			.994428926012
1.5135612484	3.2			.421637021356
1.56675107006	4.5			.527046276694
1.62181909733	5.6			.516397779493
1.67880401911	7.1			.316227766 016
1.73736682871	8.8			.421637021356
1.79397091509	10.3			.48304589154
1.8୫%.ଡଟମ13୫୫	12.3			.48304589154
1.92752481316	:4,4			.516397779493
1.99526231494	15.7			.48304589154
2.06538015578	17.9			.316227766016
2.1379620895	20.6			.516397779493
2.21309470956	23.1			.316227766016
2.29086765276	26			0
2.37137370562	29.1			.567646212197
2.4547089156	31.5			.527046276694
2.54097270546	34.9			.316227766016
2.6302679919	38.4			.516397779493
2.72270130804	42.4			.516397779493
2.81838293116	46.7			.48304539154
2.91742701384	51.3			.48304589154
3.01995172042	56.1			.567646212197
3.12607936698	60.4			.69920589878
3.23593656926	65.7			.48304589154
3.34965439152	71.2			.632455532033
3.4673635045	77.4			.69920589878
3.5892193463	84.7			.67494855771
3.71535229094	91.5			.707106781186
3.8459178204	99.1			.87559503577
3.9810717055	104.8			.632455532033
4.12097519084	113			.47140452079
4.26579518792	121.8			.632455532033
4.4157044734	130.9			.737864787372
4.57088189612	141.7			.67494855771
4.70151258958	152			.816496580927
4.89778819356	162.2			.918936583472

		01/240/500007
5.06990708268	174	.816496580927
5.24807460232	186.5	.971825315807
5,43250331472	199.7	.94868329805
5.62341325168	214.4	.966091783079
5.82103217776	229.6	.966091783079
6.025595861	245.7	.94868329805
	256	1,1547005384
6.23734835472		
6.45654229044	272.7	1.41813649244
6.6834391756	290.9	1.44913767461
6.91830970888	310.3	1.251665557
7.16143410192	331.2	1.22927259434
7.413102413	353.6	1.71269767717
7.67361489364	377.1	1.52388392674
7.94328234716	394.8	1.75119007152
		1.54919333848
8.22242649952	419.2	1.39841179757
8.51138038192	445.8	
8.81048873032	473.6	1.64654520472
9.12010839368	503.2	1.87379590969
9.44060876264	533.6	2.01108041718
9.77237220952	560.3	1.88856206321
10	583.3	1.33749350981
10.3514216667	615	2.16024689945
	650.8	2,4404006957
10.7151930523		2.18326971915
11.0917481528	688.1	2.57336787541
11.4815362146	728.2	
11.885022274	769.3	3.02030167734
12.3026877079	801.8	3.11982905515
12.7350308102	846.I	2.84604989415
13.1825673851	890	2.666655656666
13.6458313659	940.5	3.06412938512
14.1253754462	990.9	3.17804971641
14.6217717443	1044.1	3.24722103411
15.135612484	1098.2	3.61478445645
= - :	1146.1	4.30632609591
15.5675107006	1202.9	3.47850542618
16.2181009733		3.68781778291
16.7880401811	1263.4	
17.3780082871	1328	4.37162568285
17.9887891509	1393.1 1461.8	3.95671019353
13.820871366		4.15799096788
19.2752491316	1534.4	4.78887599895
19.9526231494	1586.7	5.57872944515
20.6538015578	1666.8	3.82390143991
21.379620895	1745.2	4.73286382647
22.1309470956	1827.5	5.54276304943
22.13094,0930 22.9086765276	1916.6	5.87272414548
		5.29150262212
23.7137370562	2004	7.81451640644
24.547089156	2076.2	5.38413306754
25.4097270546	2167.1	
26.302679919	2261.2	6.23253114267
27.2270130804	2359.8	6.71317113342
28.1838293116	2466.3	6.79950978625
29.1742701384	2575.6	6.96339636161
30.1995172042	2686.4	6.5353738 31

31.2607936698	2780	7.48331477354
32.3593656926	2888.9	6.70737570805
33.4965439152	3009.6	8.00277729563
34.673685045	3134.6	7.26024180802
35.892193463	= - : : - :	11.4022414954
37.1535229094	3404.1	7.12507309903
38.459178204	3543.6	8.66923039004
39.810717055	3642.7	10.832564075
41.2097519084	3781	8.58939915115
42.6579518792	3927.8	7.81451640644
44.157044734	4080.7	9.09273214044
45.7088189612	4240.6	10.3085724841
		11.327939893
47.3151258956		
48.9778819356	4541.4	12.5273035143
50.6990708268	4707.3	10.4035250439
52.4807460232	4873.2	9.58934593992
54.3250331472	5043.7	10.4035250439
56.2341325168	5229.4	10.7103273115
58.2103217776	5409.8	10.8504992207
60.25595861	5598.8	11.3019172417
62.3734835472		12.9460418661
64.5654229044	5898	10.9036181554
	6094.4	12.7383934096
66.834391756		12.7303754676
69.1830970888	6298.9	
71.6143410192		13.4164078649
74.13102413	6715	12.6666666664
76.7361489364	6927	13.4329611195
79.4328234716	7078.3	16.7335325356
82.2242649952	7504.4	25.8938002015
85.1138038192	7737.3	14.5910931735
88.1048873032	7965.9	14.0669036315
91.2010839368	8195.4	14.2610580876
		19.5564709382
94.4060876264	0070.0 8632.6	12.9888841368
97.7237220952		
100	8785.6	10.221980673
103.514216667		40.5710624842
107.151930523	9498.4	1.26491106406
110.917481528	9508.3	8.92001494766
114.815362146	9527.4	.966091783079
118.85022274	9543.6	.69920589878
123.026877079	9559.2	.918936583472
127.350308102	9575.6	.966091783079
131.825673851	9591.7	1.05934990546
136.458313659	9609	1.1547005384
141.253754462	9622	2.82842712474
	9639.3	.94868329805
146.217717443	- ·	
151.35612484	9693.8	3.11982905515 #07046076694
156.675107006	9700.5	.527046276694
162.181009733	9701.1	3.212821536
167.990401311	9702.6	. 51 ୫୧୫୮ ଅଟେ ୫୧
**** ********************************	a 7.4 to 3	, একুকুণু চেল্টিক্টুড
(79.887091509	9698.2	.421637021356
186.20871366	9693.8	.632455532033
192.752491316	9687.8	.632455532033
	9681.1	.316227766016
199.526231494	7001.1	

H-Field Probe Calibration, Low Range 100% Modulation Run 1 of 1: .26 ma/m to 20 ma/m

E-14

LEVEL ma/m	DEADING	Hz c	TD DEV Hz
	READING	5	1.22927259434
.26525198939	4.8		
.271430501931	5		1.333333333334
.277752930517	5.8		.632455532033
.284222627387	6.2		1.03279555895
.290843022846	6.9		.994428926012
.297617627141	6.6		.966091783079
.304550032247	8.3		.823272602348
.31164391378	9.6		.84327404271
.318903033066	19		1.05409255343
.32633123895	9.9		.737864787372
.333932469976	11.9		.737864787372
.341710756416	12.5		.849836585598
.349670222432	14.6		1.26491106406
.35781508822	15.8		.788810637746
.356149672313	16.4		1.07496769979
.374678393806	17.6		.966091783079
.383405774751	18.5		1.58113883008
.39233644248	20.7		1.1595018087
.401475132231	21.9		.994428926012
.4:09288899361	23.9		.823272602348
.420396072271	25		1.41421356237
.430138354748	27.4		1.34989711541
.440208728745	28.1		1.10050493465
.450462507294	31.4		.69920589878
.460955127013	33.8		1.13529242435
.471692151223	35.8		1.31656117723
.482679272844	37.3		.94868329805
.493922317427	39.7		1.1595018087
.505427246162	42		1.1547005384
.517200159098	45.7		1.1595018087
.529247298424	47		.666666666666
.54157505165	51.9		1.10050493465
.554189955133	54.5		1.17851130193
.567098697493	58 . 5		1.26929551767
.580308123066	61.9		.87559503577
.593825235714	64.1		1.10050493465
.607657202326	67.9		1.37032031941
.621811356862	72.1		.994428926012
.636295204	77.2		1.13529242435
.651116423292	80.9		.994428926012
.666282873085	85.5		.527046276694
.681802594899	90.4		1.17378779078
.697683817483	96.5		.971825315807
.71393496126	101		1.49071198499
.730564642782	107		1.1547005384
.747581679377	112.3		1.56702123648
.764995093674	118.1		.567646212197
.782814118491	123.6		1.42984070595
.801048201714	130.2		1.42927259434
.819707011286	138.7		1.05934990546
・フェフィントによるでき	100.7		1.007734770146

.833800440398	145.4	1.50554530539
.858338612538	154.2	1.31656117723
.878331887218	162.5	1.17851130193
.898790865093	171.4	1.42984070595
.919726393782	180.8	1.31656117723
.9411495735+>	186.8	1.31656117723
.963071763329	196	.942809041582
.985504586475		1.19721899976
	205.1 216.5	1.26929551767
1.00845993719		1.57762127546
1.03194998677	227.6	
1.05598718981	239.5	.707106781186 1.13529242435
1.08058429129	252.8	
1.10575433285	265.7	1.63639169449
1.13151065991	280	1.7638342074
1.15786692902	295.1	.737864787372
1.18483711447		1.19721899976
1.2124355162	320.9	1.59513148185
1.24067676734	336.3	.94868329805
1.26957584174	353.5	.971825315807
1.29914806194	372.3	1.63639169449
1.32940910779	390.6	1.8973665961
1.3603750239	411.4	2.17050941 283
1.3920622288	432.1	1.59513148185
1.42448752358	454.2	1,47572957475
1.45766810045	478.2	1.98885785203
1.49162155222	495.9	1.59513148185
1.52636568156	520.8	2.09761769634
1.56191951018	545	1.94365063162
1.59830128934	572.3	2.162817093
1.63553050894	601.7	1,49443411811
1.6736269084		カームの中間のようようのか。
	ರಾಭಕ.ಗಾ ನನಕ್	2.40370085331
1.71261068712	665 300 8	4.90 0.0000000. 0.00000000000000
1.75250251465	698.5 732.4	ತ. ಅವರ 10 1 21 3 3 5 ಕ ಕಾರ್ಡ 10 1 21 3 3 5
1.7993235422	≀ విష్ఠాశి కావారు కు	ವ.ವಾಶಾಂಗವರ್ಗವನ್ನು ಎಂ. ಎ.ಎನಡಾಪಕ್ಕಾಗಳಲ್ಲಿ
1.83509541361	770.9	ಷ್ಕೃತ್ವಾತ್ರವಾಗಿ ಸಮಯಕ್ಕೆ ಕೆಲ್ಲಿಸಿಕೆ ಬೆಂದು ಪ್ರಾಥಾಗಿ ಪ್ರಾಥಾಗಿ ಪ್ರಾಥಾಗಿ ಪ್ರಾಥಾಗಿ ಪ್ರಾಥಾಗಿ ಪ್ರಾಥಾಗಿ ಪ್ರಾಥಾಗಿ ಪ್ರಾಥಾಗ
1,97794027688	792.7	೬,೨೮೮೨ ಗರಿಸಲಾಗ ೧. ಶಕ್ಷಣದಲ್ಲಿಗಳು ಅಧಿಕ
1.92158079606	832.3	2.710000394700
1.96634016259	870.1	2.33095116495
2.0121421089	913.8	2.73535287273 0.504400055044
2.05901091945	959.3	2.58413965911
2.10697144483	1007.7	3.19895816374
	1059.2	3,48966728755
2.20626994998	1112	4
2.25766057875	1167.4	4.52646538561
2.31024824929	1227	3,77123616632
2.3640608439	1272.3	4.4484703988
2.41912689487	1334.5	2.0655711775 2.40370085031 3.02765035408 2.36643191323 2.96085573214 2.96917954223 2.71006354968 2.33095116495 2.93636207273 2.58413965911 3.19895816374 3.48966728755 4 4.52646538561 3.77123616632 4.4484703988 4.52769256906 4.34613493631 4.2998707991
2.47547559895	1397	4.34613493631
2.533136833	1465.6	4.2998707991
2.59214116967	1537.4	5.015 53143301
2.6525198939	1613	4.9888765157
2.6525198939	1615.8	.918936583472
2.71430501928	1694.5	5.10446427704
2.77752930512	1780.6	5.18973345494

2.84222627382	1867.6	5.23237783209
2.90843022846	1961.1	5.72421755933
2.9761762713	2002.4	5.54176065082
3.04550032218	2099.6	6.61983551322
3.11643913782	2195.7	6.36046818682
3.1890303304	2305.9	6 26745195954
3.26331238936	2417.4	6.00170170007
3.33932469981	2537.8	7 43564986396
3.41710756416	2665.9	9 464960450
3.49670222416	2798.9	0.7505060504
	2935.3	0.01303000327
3.66149672289	3083	0.01071102110
3.74678393798	3179.1	0.13(103(4302 0.20005450477
3.83405774727	3332.7	10 100000000000
3.0340J((4(2) 3.0393244347 5	3485.7	10.1330073007 0 7407450705
3.92336442475	- 3403.(- 3450	0.(0740400(30 40 5004000540
4.01475132202	3658 3836.4	10,3734770346
4.10826689361	ವಶ್ವಶ. ಈ ಸರ್ವಹ ನ	10.8130717178
	4025.3	12.1202310209
4.30188354729	4228.9	12.635487943
	4439.5	13.5912553585
4.50462507297	4656.4	13.5662981111
	4888.9	14.0431873561
4.71692151207	5068.8	16.4775942151
	5314.1	15.2275335422
4.93922317401	5556.4	14.5922353784
5.05427246135	5830.5 -	16.0225535486
	6113.7	16.7865687047
	6416	13.281745601
	6739.6	19.2307623931
5.54189955119	7074.3	20.1937834216
5.6709869748	7420.2	20.4982384067
5.80308123072	7790	22.5141930541
	8019.4	24.4322191652
6.07657202324	8407.4	24.1117767445
6.2181135687	8789.9	23.5770604143
6.36295203963	9224	5.23237783209 5.72421755933 5.72421755933 5.54176065082 6.61983551322 6.36745195854 6.9153613226 7.43564986326 8.464980458 8.87505868524 8.31397752115 8.13770374382 9.68905453477 10.1330433807 8.76926450735 10.5934990546 10.8135717198 12.1202310209 12.635487943 13.5912553585 13.566298111 14.0431873561 16.4775942151 15.2275335486 16.7865687047 18.281745601 19.2307623931 20.4982384067 22.5141930541 24.4322191652 24.1117767445 23.5770604143 26.7664793664
6,51116423236	9483.4	15.980543726
6.06282873072	9517.9	1.79195734078
6.8180259487	9547.7	1.70293863659
6.9768381748	9577.2	1.54919333848
7.13934961247	9606.9	1.79195734078
7.30564642785	9637.8	2.09761769634
	9660.9	4.55704582669
7.47581679353 7.6499509366	9693.4	1.8973665961
7.82814118477	9723.8	1.75119007152
8.01048201703	9757.7	1.70293863659
8.19707011284	9792	24.4322191652 24.1117767445 23.5770604143 26.7664798664 15.980543726 1.79195734078 1.70293863659 1.54919333848 1.79195734078 2.09761769634 4.55704582669 1.8973665961 1.75119007152 1.70293863659 2.16024689945
F (FFFFF444972F	P824.3	୍ , କଳନ୍ମଣ୍ଡୁଲ୍ଗରୁ †
•		

H-Field, 100% A.M.

8.5833861253 <i>6</i>	9856.3	1.88856206321
8.78331887204	9887.3	1.88856206321
8.98790865077	9917.5	1.58113883008
9.19726393767	9948.4	1.57762127546
9.4114957357	9966.2	4.66190232988
9.63071763332	9997.2	1.54919333848
9.85504586456	10025.6	1.64654520472
10.0945993718	10056.8	2.09761769634
10.3194998672	10086.8	2.09761769634
10.5598718979	10117.2	1.87379590969
10.805842912	10143.3	1.56702123648
11.0575433279	10169.9	1.44913767461
11.3151065993	10196.1	1.52388392674
11.5786692902	10224	1.49071198499
11.8483711442	10242	3.88730126321
12.1243551621	10271.2	1.54919333848
12.4067676731	10298.3	1.56702123648
12.6957584171	10328.7	1.70293863659
12.9914806195	10359.1	1.85292561464
13.294091077	10375.6	.966091783079
13.6037502382	10407.9	2.13177026069
13.9206222873	10441,1	2.18326971915
14.244875235	10474.4	1.8973665961
14.5766810041	10509.2	1.87379590969
14.9162155217	10537.1	3.212821536
15.2636588145	10572.7	2.05750658161
15.619195102	10606.5	1.95789002076
15.9830128939	10643.9	2.46981780704
16.3553050887	10680.9	2.13177026069
16.7362690844	10719.7	2.40601099099
17.1261068712	10759.4	2.27058484879
17.5250251453	10799.4	2 .2705 8484879
17.9332354213	10839.6	2.36643191323
18.350954135	10880.9	2.46981780704
18.7784027685	10907.5	4.74341649025
19.2158079593	10949.9	2.46981780704
19.663401626	10989.4	1.52388392674 1.49071198499 3.88730126321 1.54919333848 1.56702123648 1.56702123648 1.70293863659 1.85292561464 .966091783079 2.13177026069 2.18326971915 1.8973665961 1.87379590969 3.212821536 2.05750658161 1.95789002076 2.46981780704 2.13177026069 2.27058484879 2.27058484879 2.27058484879 2.46981780704 4.74341649025 2.46981780704 2.27058484879

H-Field Probe Calibration, High Range 100% Modulation Run 1 of 1: 5.6 ma/m to 520 ma/m

E-19

LEVEL ma/m	READING	Ηz	STD	DEV Hz
2.6525198939	1			1.05409255343
2.74573519011	1			1.05409255343
2.84222627382	1			1.05409255343
2.94210826337	1			1.05409255343
3.04550032219	1			1.05409255343
3.15252580212	1			1.05409255343
3.26331238936	1			1.05409255343
3.37799225735	1			1.05409255343
3.49670222416	1			1.05409255343
3.61958391668	1			1.05409255343
3.74678393798	1			1.05409255343
3.87845404358	1			1.05409255343
4.01475132202	i			1.05409255343
4.15583838212	1			1.05409255343
4.30188354729	ī			1.05409255343
4.45306105599	1			1.05409255343
4.60955126979	1			1.05409255343
4.77154088888	1			1.05409255343
4.93922317401	1			1.05409255343
	1			1.05409255343
5.11279817814	1			1.05409255343
5.29247299393	•			
5.47846195167	1			1.05409255343
5.6709869748	1			1.05409255343
5.87027774419	2.6			.51639777949 3
6.07657202324	3.6			.516397779493
6.29011593003	5.2			.421637021356
6.51116423236	6.3			.48304589154
6.73998065109	7.5			.527046276694
6.9768381748	9.3			.48304589154
7.22201938472	11.3			.48304589154
7.47581679353	13.2			.421637021356
7.73853319321	15.6			.516397779493
8.01048201703	17.7			.48304589154
8.29198771082	19.8			.421637021356
8.5 8338612 5 36	22.1			.316227766016
8.88502491119	25.1			.5 67646212197
9.19726393767	28.3			.48304589154
9.52047571963	31			0
9.85504586456	34.9			.316227766016
10.2013735289	39			0
10.5598718979	41.9			.316227766016
10.930968676	46.1			.316227766016
11.3151065993	50.8			.421637021356
11.7127439613	55.6			.69920589878
12.1243551621	61.4			.69920589878
12.550431272	66.9			.737864787372
12.9914806195	72.3			.67494855771
13.448029397	79.1			.567646212197
13.9206222873	86			.816496580927

14.409823116	93.7	.67494855771
14.9162155217	102.1	.567646212197
15.4404036545	111.1	.87559503577
15.9830128939	120.8	.632455532033
	126.5	.707106781186
17.1261068712	136.6	.69920589878
17.7279553729	147.8	1.03279555895
18.350954135	159.8	1.31656117723
18.9958464242	173.7	.67494855771 .567646212197 .87559503577 .632455532033 .707106781186 .69920589878 1.03279555895 1.31656117723 .94868329805 .966091783079 .94868329805 .918936583472 .966091783079 1.26491106406 1.07496769979 1.26491106406 1.58113883008 1.56702123648 .966091783079 1.44913767461 1.87379590969 1.79195734078 1.49071198499 2.82055944018 1.93218356617
19.663401626	187.6	.966091783079
20.3544161635	202.7	94868329805
21.0697144487	214.2	918936583472
21.8101498661	200 6	966091783079
22.5766057876	247.4	1 26491106406
23.3699966321	265.6	1 07496769979
24.1912689488	286.6	1 06491196496
	200.0 007 F	1.20471100400
25.0414025534	307.3	1.3011300300
25.9214116963	326.3	1.06/02123645
26.525198939	341.4	.966091783077
27.4573519011	363.9	1.44913757451
	390.2	1.8737959955
29.4210826334	416.9	1.79195734078
30.4550032218	445	1.490/1198499
31.5252580212	475.8	2.82055944018
32.6331238936	498.2	1.93218356617
33.7799225735	529.4	1.49071198499 2.82055944018 1.93218356617 2.27058484879 2.41292814277 2.14993539954 2.31180545124 2.4517567398 2.46981780704 2.82842712474
34.9670222416	561.6	2.41292814277
36.19 5 8391668	596.8	2.14993539954
37.4678393798	635.3	2.31180545124
38.7845404358	673.7	2.4517567398
40.1475132202	713.9	2.46981780704 2.82842712474 2.93636207273 2.78088714862 2.97396106975 3.33499958353 3.06231575409 3.4657049948 3.88730126321 4.06201920231 3.97212509594 4.59589188539 3.71931893407 3.77270893785
41.5583838212	748	2.82842712474
42.01383 54 729	789.2	2.93636207273
44.5306105599	833.8	2.78088714862
46.0955126979	879.2	2.97396106975
47.7154088888	927.3	3.33499958353
49.3922317401	977.6	3.06231575409
ಕಳ ಕರ್ಮದ್ಯಕ್ಷಣೆ	1028.7	3,4657849948
52.9247298393	1066	3.88730126321
54.7846195167	1119.5	4.06201920231
56.709869748	1176	3.97212509594
58.7027774419	1233.3	4.59589188539
60.7657202324	1296.5	3.71931893407
62.9011593003	1357.7	3.77270901785
65.1116423236	1406.4	4.83505716386
67.3998065109	1467.9	3.7549966711
69.768381748	1532.1	3.212821536
72.2201938472	1598.5	4.14326763154
74.7581679353	1672.1	3.92852813829
77.3853319321	1743.5	5.16935413975
80.1048201703	1821	4.05517502019
82.9198771082	1882.3	6.56675126848
95.8338612536	1958.3	5.14349643293

88.8502491119	2039.8	4.87168690839
91.9726393767	2122.1	5.10881590977
· - · · · - · · · ·	2207.1	4.97661196664
95.2047571963		
98 .55045 86456		4.80277697448
102.013735289	2377.5	5.12618549974
105.598718979		7.4087035903
	2443	
109.30968676	2529.6	4.88080139139
113.151065993	2625.9	4.88080139139 7.09381577306
117.127439613	2722	7.22649446289
	2122	
121.243551621	28 2 2.9	7.09381577306
125.50431272	2921.7	5.88878406615
129.914806195	3006.2	8.5738620884
	2480	6.34209919681
	3108	6.34207717601
139.206222873	3208.1	6.77331364826
144.09823116	3314.4	- 6.00123192436
149.162155217	3422.1	7.28406681319
154.404036545		6.931 40998963
159.830128939	3649.4	9.37135114176
165.446905961		7.714344593
	3832.2	6.76264248156
	3004.£	0.10504540170
177.279553729	3945.8	6.64663657632
183.50954135	4063.2	6.76264248156
189.958464242	4180.5	7.23033732116
	4303.7	8.01457006541
203.544161635		7.46547609556
210.697144487	4515.8	10.485969462
218.101498661	4758.9	- 15.4 736334886
225.766057876	4891.3	8.60297106301
233.699966321		8.19213715162
20010777000221	5455 5	
241.312689488		8.47545475673
250.414025534	5263.7	9.01911550233
259.214116963	5398	10.0443461151
		4.80277697448
	5000 0	4.80277697448 26.1790841023 9.66609193694 14.3994598662 9.42573309851 10.3923048454
274.573519011	5903.3	26.1770041023
284.222627382	6056.9	9.66609193694
294.210826334	6165.3	14.3994598662
304.550032218	6309.8	9.42573309851
015 050500010	6459	10 2937040454
315.252580212 326.331238936	0407	10.0020070707
326.331238936	6614.8	4.40515.41883
337.799225735	6775.9	11.327939893
349.670222416	ଶ୍ୟଣ୍ଡ ୍	10.7888831674
361,958391668	7108.5	11 530153704
	110010	11.500105:04
374.678393798	7250.6	12.5361678717
397.945404358	7418	10.3923048454 9.40212741883 11.327939893 10.7888831674 11.530153704 12.5361698919 10.2523709999 42.5341692708
401.475132202	8093.6	42.5341692708
415.583838212	8310.8	11.7265131697
430.183354729	8448.7	16.1455188142
445.306105599	8651.9	14.7531540885
460.955126979	3 362. 3	12.4190713557
477,154098989	ୱଞ୍ଚୁତ୍ର ବ	14,5129295701
511.279817814	9470.7	10.0890479669
		• • • • • • • • • • • • • • • • • • • •
529.247298393	9491.6	1.26491106406

E-Field Probe Calibration, Low Range 50% Modulation (for reference only) Run l of 1: .01 v/m to 1.5 v/m

E-23

LEVEL	v/m	READING	Нz	STD	DEV Hz
. 01		1			1.05409255343
1.035	14216669E-0:	2 1			1.05409255343
1.0715	51930525E-0.	E 1			1.05409255343
	17481526E-0:	-			1.05409255343
	15362157E-0:				1.05409255343
	1910219,5 0. 50222744 E -0:				1.05409255343
	26377∂84E-0. >⊏a>ao.				1.05409255343
	3503081	1			1.05409255343
	15673857 E -0.				1.05409255343
	58313661 E -0:				1.05409255343
	53754465E-0;				1.05409255343
1.462	17717445E-0:	2 1			1.05409255343
1.5135	56124851 E -0:	2 1			1.05409255343
1.5667	75107015E-0.	2 1			1.05409255343
.0162)	18100974	1			1.05409255343
1.6789	:0401814 E +0:	2 1			1.05409255043
1.737	89982884 E- 0:	2 1			1.05409255343
	87091516E-0.				1.05409255343
	20871367	1			1.05409255743
	51491321E-0.				1.05409255141
	26231506 E -0.				1.05409255343
	28015583 E-0 :				1.05409255343
	36013363E-0. 96208955E-0.				1.05409255343
	09470964E-0;				1.05409255343
	86765277E-0;				1.05409255343
	37370571 E- 0:				1.05409255343
	70891581E-0;				1.05409255343
	09727056	1			1.05409255343
	26799191E-0				1.05409255343
	70130814 E -0:				1.05409255343
2.818	382931 25E- 0	2 1			1.05409255343
2.917	42701399E-0:	2 1			1.05409255343
3.019	95172046E-0:	2 1			1.05409255343
.0312	60793671	1			1.05409255343
3.235	93656927 E-0	2 1			1.05409255343
3.349	65439171 E -0	2 1			1.05409255343
3.467	36850 456E-0	2 1			1.05409255343
3,589	21934644 E -0	2 1			1.05409255343
	35229101E-0				1.05409255343
	91782046 E -0				1.05409255343
	07170558E-0				1.05409255343
	97519094E-0				1.05409255343
	79518787E-0				1.05409255343
	,,5010,0,6,6,0 57044736	1			1.05409255343
	5,044,35 88189609 E -0				1.05409255343
					1.05409255343
	51258965E-0 700:00 5 05				
4.897	788193 52E-0	2 1			1.05409255343

5.06990708279 E-02	1	1.05409255343
5.248074602 59E-0 2	1	1.05409255343
5.43250331504E-02	1	1.05409255343
5.62341325187E-02	1	1.05409255343
5.82103217767E-02	1	1.05409255343
6.02559586081E-02	i	1.05409255343
	1	1.05409255343
6.23734835482 E-02		1.05409255343
5.45654229044E-02	1	
6.68343917557E-02	1	1.05409255343
6.91830970931 E-02	1	1.05409255343
7.18143418216 E +82	1 .	1.05409255343
7.41310241296E-02	1	1.05409255343
7.67361489387 E-02	1	1.05409255343
7.94328234702 E- 02	1	1.05409255343
8.222426499 58E-0 2	1	1.05409255343
8.51138038188 E-02	1	1.05409255343
8.81048872987 E-0 2	1	1.05409255343
9.12010839367 E-02	1	1.05409255343
9.44060876301E-02	1	1.05409255343
9.77237220966 E -02	1	1.05409255343
. 1	1	1.05409255343
.103514216669	1	1.05409255343
.107151930525	i	1.05409255343
.110917481526	1	1.05409255343
.114815362157	.7	.823272602348
.118850222744	1.4	69920589878
.123026877084	2.7	1.05409255343 1.05409255343 .823272602348 .69920589878 .94868329805 .316227766016 .788810637746
.127025077004 .1273503081	4.0	0120077228012
	2.9 4.2	.31022(100010 700010277742
.131825673857	4.2	., QQQ180QQ,, 9Q 0,40QQQ8415QQ
.136458313661	5	1.05934990546
.141253754465	5.7	1 10050105155
.146217717445	7.1	1.10050493465
.151356124851	8.5	.971825315897
.156675107015	9.7	1.05934990346
.16218100974	11.6	.84327404271
	12.7	1.159501808/
.173780082884	15	1.41421356237
.179897091516	16.4	.966091783079
.19620971367	1877	1,251665557
.192752491321	21.7	1.10000473460 .971825315807 1.05934990546 .84327404271 1.1595018087 1.41421356237 .966091783079 1.251665557 1.05934990546 .66666666666666666666666666666666666
.199526231506	23	.666666666666
.206538015583	27.5	.849836585598
.213796208955	30.3	1.05934990546
.221309470964	32.2	1.13529242435
.229086765277	36.4	.966091783079
.237137370571	39.3	1.251665557
.245470891581	43.4	.84327404271
.25409727056	47.7	.94868329805
.263026799191	52.9	1.37032031941
.272270130814	58.2	1.03279555895
.281838293125	63.5	.849836585598
.291742701399	68.5	1.0801234497
.301995172046	74.4	1.8973665961
	, ,, ,	

.31260793671	80.6	1.17378779078
.323593656927	88.1	1.37032031941
.334965439171	95.8	.918936583472
.346736850456	104.2	1.13529242435
.358921934644	111.2	1.75119007152
.371535229101	120.3	1.05934990546
	129.9	1.28668393772
.398107170558	140.9	1.66332999329
.412097519094	153.1	.87559503577
.426579518787	165.2	1.03279555895
.44157044736	176.4	1.50554530539
	191.1	1.28668393772
.457088189609 .473151258965	204.7	.823272602348
• • • • • • • • •	221.5	1.43372087785
.489778819352	239.7	1.70293863659
.506990708279	207.7 257.5	1.26929551767
.524807460259		1.49443411811
.543250331504	277.3	2.4244128728
.562341325187	298.1	1.63639169449
.582103217767	319.3	1.90029237518
.602559586081	345.5	2.068278941
.623734835482	371.5	2.13177026069
.645654229044	400.1	1.77951304198
.668343917557	430.5	2,36643191323
.691830970931	465.4	
.716143410216	492.4	2.11869981092
.741310241296	527.4	2,50333111405
.767361489387	568,2	1,75119007152
.794328234702	610.1	2,7668674626
.822242649958	657.9	3,41402336775
.851138038188	707.5	3,4399612401
.881048872987	756.4	4.32563418598
.912010839367	812.3	4.02906109824
.944060876301	869.9	4.33205109233
.977237220966	934.6	4.37670601658
1	981.9	3.51030229783
1.03514216667	1055.៩	3.51030227763 4.90351347957
1.07151930523	1134.7	4.34/202400:4
1.10917481529	1193.2	5.07280330127
1.14815362146	1280.3	4.73872931866
1.1885022274	1372.2	6.44291169511
1.23026877079	1473.1	6.488451279
1.27350308102	1584.7	7.36432843736
1.31825673851	1701.9	7.43041796341
1.36458313659	1829.3	7.55792446523
1.41253754462	1939.2	9.97582560575
1.46217717443	2074.8	8.44327477279
1,5135612484	2228	8.88194172965
1.56675107006	2392.3	9.68446637089
1.62181009733	2570.5	10.4695325167
1.67880401811	2759.9	11.249197502
1.73780082871	2963.1	13.0677720618
1.78887891589	3158.1	14,1378137553

E-Field, 50% A.M.

1 00000001000	0076 5	
1.8620871366	3376.5	13.2182533725
1.92752491316	3623.2	15.3101273672
1.99526231494	3886.5	15.6507010846
2.06538015578	4176.4	17.7275679849
2.1379620895	4475.9	17.5654332266
2.21309470956	4733.1	21.5223398151
2.29086765276	5050	18.3666364187
2.37137370562	5274	43.1740662898
2.4547089156	5433.4	44.9967900088
2.54097270546	5639.2	24.7691564474
2.6302679919	5648.6	7.77746031098
2.72270130804	5668.7	5.88878406615
2.91838293116	5661.8	10.870960297
2.91742701384	5639.6	15.3202843028
3.01995172042	5606.2	19.1357722023
3.12607936698	5561.3	22.4551404658
3.23593656926	5521.5	10.6379822645
3.34965439152	5444.3	28.7326759397
3.4673685045	5370.2	31.5305847992
3.5892193463	5279.9	33.2714425431
3.71535229094	5191.8	35.143515286
3.8459178204	5103.6	34.345305356
3.9810717055	5009	38.2157617278

APPENDIX F

COMPUTER PROGRAMS

F.1 INTRODUCTION

This appendix contains listings of computer programs used during field mapping to acquire and process data from the field measurement system.

The programs are written in Hewlett-Packard Compatable BASIC, level 1, and were excuted on the H.P. model 9845B desktop computer.

The programs are designated as file number 1, 2, and 3. File No. 1 is a brief utility program which upon manual command allows a series of 10 probe readings to be acquired and printed. File No. 2 provides for complete automatic control of probe scanning operations, and results in a printout and a magnetic tape file of all 73 measurment grid data points in engineering units. (ie., in volts/m or Amps/m.)

File 3 provides for contour plotting of the data obtained from File No. 2.

```
10
      KEM THIS PROGRAM IS A UTILITY PROGRAM TO ACQUIRE AND PROCESS DATA FROM THE
hp5300B FREQUENCY COUNTER.REF TEST PLAN:FILE NO.1
20
      ON KEY #0 GOTO 140
30
      OPTION BASE 1
40
      DIM Freq(50), Mean(100), Std(100), Error(100), Label $[70]
50
      PRINTER IS 16
60
      1=14
70
      PRINT "THIS PROGRAM WILL TAKE N NUMBER OF MEASURMENTS AND THEN"
      FRINT "FIND THE MEAN STANDARD DEVIATION AND STANDARD ERROR."
80
      INPUT "WHAT IS N THE NUMBER OF MEASURMENTS?", K
96
      PRINT "TO START PROGRAM PRESS KEY #K0"
100
      DISP "WAITING TO START"
110
120
      G0T0 110
130
      STOP
      INPUT "TEST LABEL?", Label$
140
      PRINTER IS 0
150
160
      FOR I=1 TO K STEP 1
170
      00TPUT 717; "I"
180
      ENTER 717: Freq(I)
190
      HEMT I
                  ISTART OF THE MEAN CALCULATION
200
      Z=0
210
      j = J + 1
220
      FOR I=1 TO K STEP 1
230
      Z=Z+Freq(I)
240
      NENT I
250
      Mean(J) = Z/K
260
      T=0
                  ISTART OF THE STD DEV. CALCULATION
      FOR I=1 TO K STEP 1
270
      T=T+(Freq(I)-Mean(J))^2
280
290
      NEXT I
300
      Std(J)≃SQR(T/(K-1))
      Error(J = Std(J)/SQR(K)
310
320
      PRINT
330
      PRINT
340
      PRINT
350
      PRINT Label$
      PRINT
369
370
      FOR I=1 TO K STEP 1
      PRINT Freq(I);
380
390
      MEXT I
400
      PRINT
410
      PRINT
      PRINT "MEAN
                                  STD DEV
                                                      STD ERROR"
420
430
      FRINT
      {\tt PRINT Mean}(J), {\tt Std}(J), {\tt Error}(J)
440
450
      PRINTER IS 16
      DISP "READY FOR NEXT READING"
460
470
      GOTO 460
480
      END
```

```
10
      REM THIS IS THE MAIN PROGRAM FOR EM FIELD MAPPING.REF TEST PLAN:FILE NO.2
      REM IT IS CALLED "MAP"AND IS FOR LOW RANGE INITIAL SCANS
20
      PRINTER IS 16
30
      PRINT " THIS PROGRAM IS AN AUTOMATIC SCANNING PROGRAM FOR EM FIELD MAFFING
40
50
      PRINT "CONSULT BHR REPORT NUMBER
                                                 BEFORE USING. "
      OPTION BASE 1
ΕÜ
      SHORT Reading(80),Std(80),Stdern(80),F2(20),F(200),R(200),S(200),Fange(30)
76
,R1:200),F1(200),S1(200)
80
      DJM Label1#[80], Label2#[80], Label3#[80], Name#[50]
90
      ASSIGN #1 TO "DATA"
      ASSIGN #2 TO "LOW"
100
      ASSIGN #3 TO "HIGH"
110
      ASSIGN #4 TO "HLOW"
120
      ASSIGN #5 TO "HHIGH"
130
140
      Count =0
      PPINT "YOU ARE ALLOWED 3 LINES OF COMMENT (SO CHARACTERS) WHICH WILL APPEA
150
R ON ALL DATA QUIPUT."
      INPUT "PLEASE ENTER EACH LINE OF COMMENT AND PUSH (CONT) AFTER EACH LINE .
160
Labeli#,Label2#,Label3#
      INPUT "WHAT IS THE RECORD NUMBER IN WHICH THIS DATA IS TO BE CITATED AND ADDRESS.
179
      INFUT "WHAT IS THE RECORD NAME FOR THIS RECORD", Name #
186
      INPUT " IS THIS A E FIELD OR H FIELD SCAN? (TYPE E OR H:".Iden: #
193
200
      IF Ident#="E" THEN Limit=9420
      IF Ident*="H" THEN Limit=9224
210
220
      INPUT "WHAT IS THE RADIANTING FIELD FREQUENCY (MHz)?", Freq
      INPUT "WHAT IS THE GENERATOR POWER OUTPUT (dbm)?", Power
2390
240
      PRINT "SETUP INSTRUMENTATION AND SET PROBE AT IT START POSITION"
      PRINT "TO START SCANNING PRESS /CONT/KEY/"
250
260
      PEMOTE 710
270
      LOCAL LOCKOUT 7
280
      OUTPUT 710; "B123456" | RESETS RELAYS TO THE B+C POSITION
290
      PAUSE
300
      PRINT "NOW DOUBLE CHECK EVERYTHING SO YOU DON'T DESTROY THE POSITIONER"
      PRINT "IF YOU ARE SURE THEN PRESS THE "CONT" KEY TO START SCANNING
310
320
      PAUSE
330
      OUTPUT 728; "A"; Freq; ", K, $50.0, Y1, S"; Power; ", "
348
      WAIT 10000
350
      GOSUB Scan
360
      GOSUB Stone
370
      GOSUB Plotco
380
390 Roam: OUTPUT 710; "A6"
                                        I set positionner remote relation.
400
      FOR J=1 TO 3 STEP 1
410
      FOR I=1 TO 5 STEP 1
4.741
      G0SUB Measure
      OUTPUT 710: "A2"
439
440
      WAIT 500
450
      OUTPUT 710;"B2"
460
      WAIT 23500
470
      NEXT I
      GOSUB Measure
480
      007PUT 710;"84"
490
      WALT 500
500
510
      OUTPUT 710; "B4"
      WAIT 23500
520
530
      HELLT J
```

```
540
      FOR J=1 TO 5 STEP 1
550
      FOR I=1 TO 10 STEP 1
560
      G0508 Measure
570
      OUTPUT 710;"A1"
580
      WAIT 500
596
      OUTPUT 710; "B1"
      WAIT 11500
២១២
      NEXT I
510
620
      GOSUB Measure
630
      IF J=5 THEN GOTO Local
640
      OUTPUT 710: "A3"
650
      WAIT 500
      OUTPUT 710; "B3"
660
670
      WAIT 11500
689
      MEKT J
698 Local: LOCAL 7
200
      RETURN
      STOP
210
720 Measure: REM THIS SECTION READS THE 5300B AND DOES SOME STATISTICS
736
      |Count=Count+1
740
      Pange(Count)=1
750
      r_0 = 1.0
769
      FOR N=1 TO 10 STEP 1
770
      OUTPUT 717;"I"
្រាស់
      ENTER 717; F2(N)
798
      HERT N
803
      3=0
                ISTART OF MEAN CALCULATION
      FOR R=1 TO 10 STEP 1
810
      CHE+F2(N)
92.
830
      HEXT N
846
      |Read) ng(Count) = Z/K
      if wading(Count))Limit THEN GOTO Switch
850
      IF Reading(Count)=0 THEN Reading(Count)=1
860
370
      T = \Omega
                ! START OF STANDAD DEV
880
      FOR N=1 TO K STEP 1
890
      T=T+(F2(N)-Reading(Count))^2
GUO
      MEXT N
      Std(Count)=SQR(T/(K-1))
910
920
      OUTPUT 710;"B5"
930
      G6T0 990
440 Switch: IF Range(Count)=2 THEN GOTO 860 - 1 IF ALREADY ON HIGH RANGE PETUFR
950
      OUTPUT 710:"A5"
960
      Range(Count)=2
970
      WAIT 10000
980
      G010 750
      RETURN
990
1000 State: REM THIS ROUTINE STORES THE DATA ON TO MAG TAPE 1010 PRINT #1.Record; Name*, Reading(*), Std(*), Pange(*), END
1000 RETURN
1933 Florio: REM THIS IS THE CONTOUR SECTION
      -SHOPT X:11,11),Y(11,11),Bata(11,11),Xline(2),Yline(2),Contour(10),V(80-
1ពិធីព
1950
      GOSUB Grid
      GOSUB Data
1060
1070 GOSUB Print
1030 GOSUB Sort
1 គឺម៉ាត់
     - G03UB Fill
1100
      PRINTER IS 16
1110 PRINT "WHAT ARE THE VALUES OF THE CONTOURS YOU WANT TO SEET/ENTER Ø AS LAS
T VALUEY"
1120 FOR I=1 TO 10 STEP 1
      IMPUT "CONTOUR VALUE=".Contour(I)
1130
1140
      IF Contour(I)=0 THEN GOTO 1160
1150 HEST I
1160 | Conma = I-1
1170 | G05UB Draw
1180 GOSUL Contour
```

```
1190 GOSUB Label
1200 PRINTER IS 16
     INPUT "DO YOU WANT A HARD COPY", A$
1210
     IF A$="YES" THEN DUMP GRAPHICS
1220
1230 PRINTER IS 0
1240 PRINT LIN(5), "CONTOUR VALUES=";
1250 FOR I=1 TO Conmax STEP 1
1260
     PRINT Contour(I);
1270
     NEXT I
1280 INPUT "DO YOU WANT TO PLOT MORE CONTOURS?(TYPE YES OR NO)", B$
1290 IF B$="YES" THEN GOTO 1100
1300 RETURN
1310
     STOP
1320
     END
1330 Draw: REM THIS SUBROUTINE DRAWS THE GRID
1340 GCLEAR
1350 PRINTER IS 0
1360
     PRINT PAGE
1370
     GRAPHICS
     LINE TYPE 3,8
1380
1390 DEG
1400 LOCATE 20,80,20,80
1410 SCALE 0,5,0,5
1420
     M=1
1430
     FOR N=1 TO 11 STEP 2
1440
     MOVE \times (N,M), Y(N,M)
1450 DRAW X(N,11),Y(N,11)
1460
     NEXT N
1470
     N=1
1480
     FOR M=1 TO 11 STEP 2
1490 MOVE X(N,M),Y(N,M)
1500 DRAW X(11,M),Y(11,M)
1510 NEXT M
1520
     M=7
1530
     FOR N=1 TO 11 STEP 1
1540 MOVE X(N,M), Y(N,M)
1550 DRAW X(N,11),Y(N,11)
1560 NEXT N
1570
     N=1
1580
     FOR M=7 TO 11 STEP 1
1590 MOVE X(N,M),Y(N,M)
1600 DRAW X(11,M),Y(11,M)
1610 NEXT M
1620 RETURN
1630
     STOP
1640 Contour: REM THIS SUBROUTINE PLOTS THE CONTOURS
1650 GRAPHICS
1660 LINE TYPE 1
1670 FOR I=1 TO Conmax STEP 1
1680
     FOR M=1 TO 10 STEP 1
1690
     FOR N=1 TO 10 STEP 1
1700
     L=1
1710 IF .Contour(I):=Data(N,M)) AND (Contour(I):(Data(N+1,M)) THEN GOTO F1
1720 IF (Contour(I): ≈Data(N,M)) AND (Contour(I))Data(N+1,M)) THEN GOTO F1
     IF (Contour(I)=Data(N.M)) AND (Contour(I)(>Data(N+1.M)) THEN GOTO P1
1730
1740
      IF (Contour(I)>≈Data(N+1,M)) AND (Contour(I)<Data(N+1,M+1) THEN GOTO P2</pre>
1750
     IF ·Conteum(I) (≈Data(N+1,M)) AND (Contour(I))Data(N+1,M+1)/ THEN 5010 FC
     IF (Contour(I)=Bata(N+1,M)) AND (Contour(I)<)Data(N+1,M+1); THEN GOTO F2
1760
1770
     IF L=3 THEN GOTO Plot
1780
     IF (Contour(I)>=Data(N+1,M+1)> AND (Contour(I)<Data(N,M+1)) THEN GOTO P3
1790
      IF (Contour(I)<=Data(N+1,M+1)) AND (Contour(I))Data(N,M+1)) THEN GOTO PS</pre>
1800
     IF (Contour(I)=Data(N+1,M+1)) AND (Contour(I)<>Data(M,M+1)) THEN GOTO PO
     IF L=3 THEN GOTO Plot
1820
     -IF (Contour(I)>=Data(N.M+1)) AND (Contour(I)<Data(N.M)> THEN GOTO P4
1830
     IF (Contour(I)<=Data(N,M+1)) AND (Contour(I))Data(N,M)) THEN GOTO P4
     IF (Contour(I)=Data(N,M+1)) AND (Contour(I)<>Data(N,M): THEN GOTO P4
1840
```

```
1850 IF L=3 THEN GOTO Plot
1860
              MEAT N
1870
              NEXT M
1880 NEXT I
1890 RETURN
1900 STOP
1910 P1: Xline(L)=ABS((Contour(I)-Data(N,M))/(Data(N,M)-Data(N+1,M))>>+(X(N+1,M)-
(M,M)\times(M,M)
1920 White (Liter (N. M.)
1930 L≈L+1
1940 GOTO 1740
1950 \ \ P2: \ \ Yline(L) = ABS((Contour(I) - Data(N+1,M)) \times (Data(N+1,M) - Data(N+1,M+1))) + (Y(R+1) + R+1) \times (Data(R+1,M) - Data(R+1,M+1)) + (Y(R+1) + R+1) \times (Data(R+1,M) - Data(R+1,M) - Data(R+1,M)) + (Y(R+1) + R+1) \times (Data(R+1,M) - Data(R+1,M) - Data(R+1,M)) + (Y(R+1) + R+1) \times (Data(R+1,M) - Data(R+1,M)) + (Y(R+1) + R+1) \times (Y(R+1) + Y(R+1) \times (Y(R+1) + Y(R+1) \times (Y(R+1
+1,M+1/-Y(N+1,M))+Y(N+1,M)
1960 \times 1ine(L)=X(N+1,M)
1970 L=L+1
1980 5010 1770
 1990 P3: ((line(L)=-ABS((Contour(I)-Data(N+1,M+1))/(Data(N,M+1)-Data(N+1,M+1))/+(
 X(N+1,M+1)-X(N,M+1))+X(N+1,M+1)
 2000
              Yline(L)=Y:N,M+1)
2010 L=L+1
2020 GOTO 1810
 2030 F4: //line(Lu=-ABS((Contour(I)-Data(N,M+1))/(Data(N,M+1)-Data(N,M)))*(Y(N,M+
 19-7(N,M))+Y(H,M+1)
 2040 - \text{Nline}(L) = X(N, M+1)
 2050 PRINTER IS 0
 2060 L=L+1
 2070 5070 1854
 2080 Plat: REM THIS SUBROUTINE DRAWS THE CONTOUR
 2090 MOVE Stime(1), Yline(1)
 2100
               BRAW \otimes Inne(2), Yline(2)
 2118 GOTO 1860
 2126 STOP
 2130 Grad: REM PROGRAM TO LOAD VALUES IN X.Y MATRIX
 2140
              71=0
2150
              FOR J=1 TO 11 STEP 1
 2160
              X1 = 0
 2170 FOR I=1 TO 11 STEP 1
 2180 ×(I,J)≃X1
 2190
              21≈X1+.5
 2200
               Y(I,J)≃Y1
 2210
              NEXT I
              Y1 = Y(I-1, J) + .5
 2220
 2230 NEXT J
 2240 RETURN
 2250
              STOP
 2260 Sort: PEM THIS SECTION SORTS THE MEASURED DATA ARRAY INTO THE MATRIX
 2270 READ N.M,L,S,J
 2280 GOSUB Load
 2290 IF JC>11 THEN GOTO 2270
 2300 RETURN
 2310 Load: I=1
 2320 FOR K=N TO M STEP L
 2330 Data(I,J)=V(K)
 2340 I=I+S
 2350
              NEXT K
 2360
               RETURN
 2378
               STOP
 2380 Data: REM THIS SUBROUTINE LOADS THE RAW DATA INTO V
                                               I THIS JUMPS OVER THE NEXT LINE BEL IT IF YOU WANT DATA FROM
 2390 GOTO 2420 |
 TAPE
 2400
               READ #1, Record; Name$, Reading(*), Std(*), Range(*)
              IF Ident $= "H" THEN GOTO 2450
 2410
 2420 READ #2;R(*),S(*),F(*)
 2430 READ #3;R1(*),S1(*),F1(*)
 2440 GOTO 2490
 2450 READ #4;R(*),S(*),F(*)
```

```
2460 REHD #5;R1(**,S1(*),F1(*)
2470 PRINTER IS 0
2480
     PRINT PAGE
2490
     FOR I=1 TO 70 STEP 1
2500 IF Rangevi's: THEN GOTO Low
2510 IF Pange (I)=2 THEN GOTO High
2520 Low: FOR J=1 TO 199 STEP 1
2530 IF (Reading(!) =F(J)) AND (Reading(I)(F(J+1)) THEN GOTO Value
2540
     NEXT J
2550 PRINT "VALUE OF DATA IN 5300B FREQ. NOT FOUND ON LOW LOOK UP TABLE"
2560 PPINT "VALUE IS=", Reading(I)
2570 V(I)=0
2580 GOTC 2740
                      TGO TO NEXT I
2600 B#LGT(R(J))-M*LGT(F(J))
2610 - \text{V} \cdot \text{I} / \text{=} 10^{\circ} (\text{M*LGT/Reading}(\text{I})) + \text{B})
2620 GOTO 2740
2630.High: FOR J=1 TO 199 STEP 1
2640 | IF (Reading(I):=F1(J)) AND (Reading(I)(F1(J+1)) THEN GOTO Value2
2650 | NEXT J
2660 PRINT "VALUE OF DATA IN 5300B FREQ NOT FOUND IN HIGH LOOK UP TABLE"
2670 PRINT "VALUE IS=":Reading(I)
2680 V(I)=1.5
2690 GOTO 2740
                 .! GO TO NEXT I
2700 Value2: M=LGT(R1(J+1)/R1(J))/LGT(F1(J+1)/F1(J))
2710 B=LGT(R1(J))+M*LGT(F1(J))
2720 - V(I) = 10 \land M \cdot LGT/Reading(I)) + B
2730 GOTO 2740
2740 NEXT I
2750
      RETURN
2760
     STOP
2770 REM THE FOLLOWING DATA STATEMENTS ARE USED IN ASSAUL
2790 DATA 1.6.1,2,1,12,7,-1,2,3,13,18,1,2,5,29,19,-1,1,7,30,40.1,1.9
2790 DATA 51,41,-1,1,9,52,62,1,1,10,73,63,-1,1,11
2800
     END
2810 Fill:
           REM THIS SUBROUTINE FILLS THE DATA MATRIX
2820 SHORT B(3),A(3,3),A1(3,3),C(3),E(3)
2830 MAT BECON
2840 MAT A=CON
2850
     H= 2
2860
     FOR J=1 TO 5 STEP 2
2870 FOR I=1 TO 9 STEP 2
2880 GOSUB Mar
2890 - B(2) = M(I+1, J)
2900 B(3)=7(I+1,J)
2910
     -Data(I+1,J)=DOT(0,B)
2920
      B(2) = X(1, J+1)
2930 - B(3) = Y(1, J+1)
2940 Data(I,J+1)=DOT(C,B)
2950 B(2)=X(I+1,J+1)
2960
     B(3)=Y(I+1,J+1)
2970
      | Data(I+1, J+1)≈DOT(0, B)
2980 NEXT I
2990 MENT J
3000 U=-2
1010
      I = 1.1
0020
      FOR J=3 TO 7 STEP 2
3030 G050B Mat
3040 - B(2) = X(I, J-1)
3050 B(3)=Y(1,J-1)
3060
      Data(I, J-1)=DOY(0,B)
3070
      NEST J
3080 RETURN
3090 STOP
3100 Mat: A(1,2)=X(1,J)
3110 - A(1,3) = 7(1,1)
```

```
3120 A(2,2) = \times (I+U,J)
3130 A(2,3)=Y(1+U,J)
3140 A(3,2)=X(1,1+U)
3150 A(3,3)=Y(1,J+U)
3160 E(1)=Data(1,J)
3170 E(2)=Bata(I+U, J)
3180 E(3)=Data(I,J+U)
3190 MAT A1≈INV(A)
3200 MAT C=A1*E
3210 RETURN
3220 STOP
3230 Label: REM THIS SECTION PRINTS THE LABELS ON THE GRAPHS
3240 PRINT LIN(5), Label1$
3250 PRINT Label2#
3260 PRINT Label3#
3270 RETURN
3280 Print: REM THIS SECTION PRINTS THE DATA
3290 FPINTER IS 0
3300 PRINT PAGE
3310 PRINT "POINT
3320 FOR I=1 TO 73 STEP 1
3330 PRINT I,V(I)
                                    FIELD STRENGTH"
3340 NEST I
3350 RETURN
```

```
REM THIS IS THE MAIN PROGRAM FOR EM FIELD DATA ANALYSIS
20
      PEM REF TEST PLAN: FILE NO.3
      PRINTER IS 16
30
40
      OPTION BASE 1
56
      SHORT Reading(80:,Std(80),Stdern(80),F2(20),F(200),R(200),S(200),Range-30:
,R1(200),F1(200),S1(200)
60
      DIM Label1#180], Labe12#180], Labe13#180], Name#150]
70
      ASSIGN #1 TO "DATA"
80
      ASSIGN #2 TO "ULOW"
      ASSIGN #3 TO "HIGH"
96
100
      ASSIGN #4 TO "HLOW"
110
      ASSIGN #5 TO "HHIGH"
      GOLEAR
111
120
      Signal=152.8
130
      Count =0
      PRINT "YOU ARE ALLOWED 3 LINES OF COMMENT (80 CHARACTERS) WHICH WILL AFFEA
140
R ON ALL DATA OUTPUT.
150
     INPUT "PLEASE ENTER EACH LINE OF COMMENT AND PUSH "CONT" AFTER EACH LINE".
Labell#,Label2#,Label3#
     INPUT "DO YOU WANT TO ENTER DATA FROM THE KEYBOARDPKTYPE WES OR NO)",A$
160
      IF A≢="YES" THEN GOTO Enter
170
180
     INPUT "WHAT IS THE RECORD NUMBER OF THE DATA YOU WANT TO SEE?", Record
190
     READ #1, Record: Name$, Reading(+), Std(*), Range(*)
200
      PRINT "THE RECORD NAME FOUND IS"; Names
      INPUT " IS THIS A E FIELD OR H FIELD SCAN?(TYPE E OR H)", Ident$
219
220
      IF Ident*="E" THEN Limit=3
236
      IF Ident#="H" THEN Limit=3.5
240
      GOSUB Plotco
250
      EHD
260 Enter:
          PRINTER IS 16
270
      INPUT "DO YOU WANT TO ENTER Reading(FREQ) OR V(V/m)?(TYPE Read OF V:", 5:
      IF B#="V" THEN GOTO Pass1
280
      PRINT "ENTER DATA FROM THE KEYBOARD IN THE FOLLOWING ORDER"
290
300
      FRINT "Reading .Range"
      PRINT "TYPE ANY NUMBER GREATER THAN 2 FOR Range TO EXIT AND BEGIN CALCULAT
310
IONS"
320
      FOR I=1 TO 73 STEP 1
      INPUT Peading(I), Range(I)
339
340
      IF Pange(I)>2 THEN GOTO Pass
350
      NEXT I
360 Pass: Pange(I)=0
370
      Reading(I)≈0
380
      G0T0 210
390 Passi: PRINT "ENTER VALUES OF V IN V/m OR mA/m;TYPE A NUMBER J200 TO ETTE
400
      FOR I=1 TO 73 STEP 1
410
      INPUT VOID
420
      IF V(I)-200 THEN GOTO Pass2
      NEXT I
430
440 Pass2:
            V(I)≠Ø
450
     GOTO 490
460 Plotco:
             REM THIS IS THE CONTOUR SECTION
470
      SHOPT X(11,11),Y(11,11),Data(11,11),Xline(2),Yline(2),Contour(30),V(80),Vd
5(80)
480
      GOSUB Data
490
      GOSUB Grad
500
      GOSUB Convt1
519
      GOSUB Print
```

```
GOSUB Sont
520
530
      GOSUB Fill
      G09UB Convt2
540
550
      PRINTER 15 16
      PRINT "WHAT ARE THE VALUES OF THE CONTOURS YOU WANT TO SEE?KENTER 188 AS L
560
AST VALUE:"
      FOR I=1 TO 30 STEP 1
570
      INPUT "CONTOUR VALUE=", Contour(I)
580
590
      IF Contour(I)=100 THEN GOTO 610
      NEXT I
600
610
      Conmak=I-1
      5030B Draw
620
630
      G0SUB Contour
      GOSUB Label
640
650
      PRINTER IS 16
163
      INPUT "DO YOU WANT A HARD COPY", A$
      IF A$≈"YES" THEN DUMP GRAPHICS
570
      PRINTER IS 0
630
      PRINT LIN(3), "CONTOUR VALUES(dB)="
690
700
      FOR I=1 TO Commax STEP 1
      PRINT Contour(I);
710
725
      HELLT I
      FRIST
230
      IMPUT 'DO YOU WANT TO PLOT MORE CONTOURS?(TYPE YES OR NO)".B$
740
150
      IF 8** "YES" THEN GOTO 550
160
      RETURN
270
      STUF
780
      EHD
798 Dr aw:
            REM THIS SUBROUTINE DRAWS THE SRID
      GOLEAR
300
310
      PRINTER IS 0
      PRINT PAGE
820
      GRAPHICS
830
      LINE TYPE 3,8
840
850
      DEG
      LOCATE 20,80,20,80
860
278
      SCALE 0,5,0,5
880
      11=1
390
      FOR N=1 TO 11 STEP 2
900
      MOVE X(N,M),Y(N,M)
910
      DRAW X(N,11),Y(N,11)
920
      MEST N
      #1≈1
930 🕥
      FOR M=1 TO 11 STEP 2
940
950
      MOVE SCH, MO, YCH, MO
      DRAW R(11,M), Y(11,M)
960
970
      NEXT M
980
      M=7
      FOR N=1 TO 11 STEP 1
990
      MOVE X(N,M), Y(N,M)
1000
      DRAW X(N,11),Y(N,11)
1010
1020
      NEXT N
1030
      N=1
1040
      FOR M=7 TO 11 STEP 1
      MOVE X(N,M),Y(N,M)
1050
 1060
      DRAW X(11,M),Y(11,M)
      HEXT M
 1070
      RETURN
 1080
      STOP
 1090
 1100 Contour: REM THIS SUBROUTINE PLOTS THE CONTOURS
 1110 GRAPHICS
      LINE TYPE 1
1120
      FOR I=1 TO Conmax STEP 1
 1130
 1140 FOR M=1 TO 10 STEP 1
 1150 FOR N#1 TO 10 STEP 1
 1160 L=1
```

```
1170
     1180 | IF | Contour(I)(≈Data(N,M)) AND (Contour(I)>Data(N+1,M)) THEN GOTO P1
11-0 15
          longour(I)=Bata(N,M)) AND (Contour(I)<>Bata(N+1,M)) THEN GOTO P1
1200 | IF (Contour I : #Data(N+1,M)) AND (Contour (I) < Data(N+1,M+1)) THEN GOTO P2
1210
     | IF | Contour | I | | Pata(N+1,M)) | AND | Contour(I)>Data(N+1,M+1) | THEN | SOTO | F2
1220
     IF +Contour(I)=Data(N+1,M)) AND +Contour(I)<>Data(N+1,M+1); THEN GOTO P2
12.50
     IF L≈? THEN GOTO Plot
1243
     1250 IF (Contoun(I) = Data(N+1,M+1)) AND (Contoun(I)) Data(N,M+1)) THEN GOTO F:
1266 IF (Cintour/I)=Data(N+1,M+1)) AND (Confour/I)<>Data(N,M+1)) THEN GOTO P3
1.70
     IF L=3 THEN GOTO Plot
     ΙF
1 \pm 5.3
        -Contour(I) =Data(N,M+1)) AND (Contour(I)<Data(N,M)) THEN GOTO P4</pre>
     IF (Contour(I) =Data(N,M+1)) AND (Contour(I))Data(N,M)) THEN GOTO P4
1230
     IF - Contour (I = Data(N, M+1)) AND (Contour (I) (>Data(N, M)) THEN GOTO P4
1310 IF L=3 THEN GOTO Plot
1330 NEST N
1370
     MEST II
1 40 HERT I
1350 RETURN
1360 STOP
1375 F1: Nline(L:=AB5) (Contour(I)-Data(N,M))/(Data(N,M)-Data(N+1,M))/+/%(N+1,%)-
XIN.MID+XIN.MI
1380 - Yline(L)=Y(N,M)
1390 L=L+1
:400 GOTO 1200
1410 F2: Vline(L)=ABS::Contour:I>-Data(N+1,M))/(Data(N+1,M)-Data N+1,M+1>>>+ >> N
+1, M+1 (-Y(N+1, M))+Y(N+1, M)
1420 | DinnerLieWiH+1.My
1430 L≈L+1
1440 GOTO 1230
1450 F3: {}}ine{L :=-ABS::Contour(I)-Data:N+1,M+1)}/<Data(N,M+1)-Data:N+1,n+1:::+
U:N+1,M+1:-M:N,M+1:))+X(N+1,M+1)
1468 | Yline(L)=Y(N,M+1)
1470 L=L+1
1480 GOTO 1270
1490 P4: Yline(L)=-ABS((Contour(I)-Data(N,M+1))/ Data(N,M+1)-Data(N,M))/+(Y(N,M+
12-06H,M00+7(N,M+1)
1500 Xline(L)=X(N,M+1)
1510 PRINTER IS 0
1520 L=L+1
1530 GOTO 1310
1540 Plot: REM THIS SUBROUTINE DRAWS THE CONTOUR
1550 MOVE Xline(1), Yline(1)
1560 DRAW Mline(2), Mline(2)
1570
     GOTO 1320
1580 STOP
1590 Grid: REM PROGRAM TO LOAD VALUES IN X.Y MATRIX
1600
         J=1 TO 11 STEP 1
1610 F
1620
     1630
     FOR I=1 TO 11 STEP 1
1640 X(I,J)≈X1
1650 Xi=Xi+.5
1660
     () I,J)=Y1
1670 NEST I
     +1 = V(I-1, J) + .5
16.5
1: 40 NEXT J
1789 RETURN
:7:0 STOP
    \sim 200 : PEM THIS SECTION SORTS THE MEASURED DATA ARRAY INTO THE MATRIX
** * PEAD H.M.L.S.J
 (4) SOFUR Load
     IF 7 11 THEN GOTO 1730
     EF THEN
      . 1: I = 1
       - - DA TO M STEP L
```

```
1790 | Dat at 1, Juny (1)
1860 [≈1+5
1816 HE..T H
1820 RETURN
1800
      STOR
1840 Data: PEW THIS SUBROUTINE LOADS THE RAW DATA INTO V
1850 IF Ident#="H" THEN GOTO 1890
1860 READ #2;P(*),S(*),F(*)
1876 READ #3;R1(*/,S1(*/,F1(*)
1880
      GOTO 1920
1890
      | READ | #4;R(+),S(+),F(+)
1900 READ #5;R1(*),S1(*),F1(*)
1910 PRINTER IS 0
1920 FOR I=1 TO 73 STEP 1
1930
      IF Range(I)=1 THEN GOTO Low
1940 IF Kange (I)=2 THEN GOTO High
1958 gar: FOR J=1 TO 199 STEP 1
1960 IF \langle Feading \langle I \rangle \rangle = F(I) \rangle AND (Reading \langle I \rangle \langle Fe, +1 \rangle \rangle THEN GOTO Value
1970 REXT J
     PRINT "VALUE OF DATA IN 5300B FRED. NOT FOUND ON LOW LOOK UP TABLE"
1980
      PRINT "VALUE IS=", Reading(I)
1990
2000 Val =.04
2010 GOTO 2170
                        4GO TO NEXT I
2020 value: M≈LGT(P(J+1)) R(J+)/LGT(F(J+1+F(J+) + LINEAR EXTRAP.
2030 BELGT(RKJ))-M+LGT(FKJ))
3-2-4-1
      .V+I)=181.M+LGT(Peading-I))+B)
2050 - Quio 2170
2060 A.j.: FOR J=1 TO 199 STEP 1
207. is tPeading(1) >=Fi(J ) AND tPeading(1:4Fi(J+1)) THEN GOTO Value2
2027
     BET I J
2040 FRINT "VALUE OF DATA IN 5300E FRED NOT FOUND IN HIGH LOOK UP TABLE"
2100 F of "VACUE IS="; Reading(I)
2119 00 00 00 1.5
2120 | 6070 2170
                   - GO TO NEXT I
2120 Valua2: M=LGT(R1(J+1)/R1(J)) LGT(F1)J+1 -- F1(J-)
2140 B=_GT(R1(J))-M*LGT(F1(J))
2150 V(I)=10 (M+LGT(Reading(I))+B)
2160 GUTO 2170
2170 NEXT I
21.50
      RETURN
2150
      310P
2208 REM THE FOLLOWING DATA STATEMENTS ARE USED IN Sort
2210 BATA 1.6,1,2,1,12,7,-1,2,3,13,18,1,2,5,29,19,-1,1,7,30,40,1,1,8
2220 PATA 51,41,-1,1,9,52,62,1,1,10,73,63,-1,1,11
2230
     EHI
2240 Polit: Fam THIS BUBROUTINE FILLS THE DATA MATRIC
2250 NHOR' B 37.A 3,37,A1(3,3),C(3),E(3)
2265 NA° .=00N
2276 Fr H:10H
22.3
      1300
2190 FOR =1 TO 5 STEP 2
2300 FOW 1=1 TO 9 STEP 2
SKIR GOSUE Mat
2.12.5
      B:2:=X:1+1.1
      Ex3 = WVI+1.7:
30 (34)
2340
      | Data: I+1, J:=DOT(C,B)
2050 B 2 5K 1.7+1/
2360 B.B. = Y. I.J+1:
2370 | Data: I, J+1 = B0T(0, B)
2380 B(2)=X(I+1,J+1)
2390 B(3)=Y(I+1,J+1)
2400 Data: I+1, J+1)=DOT(C, B)
2410 NEST 1
2420 NEST J
2430
      11= -2
2441
      . - . 1
```

```
2450 FOR J=3 TO 7 STEP 2
2460 GOSUB Mat
2470 - B(2) = X(1, J-1)
2480 B(3)=Y(I,J-1)
2490 Data(I, J-1)=DOT(0, B)
2500
     NEXT J
2510
     RETURN
2520
     STOP
2530 Mat: A(1,2)=X(I,J)
2540 A(1,3)=Y(I,J)
     A(2,2)=X(I+U,J)
2550
2560 A(2,3)=Y(I+U,J)
2570 A(3,2)=X(I,J+U)
2580 A(3,3)=Y(I,J+U)
2590 - E(1) = Data(I,J)
     E(2)=Data(I+U,J)
2600
2610
     E(3)=Data(I,J+U)
2620 MAT A1=INV(A)
2630 MAT C=A1*E
2640 RETURN
2650 STOP
2660 Label: REM THIS SECTION PRINTS THE LABELS ON THE GRAPHS
2670 PRINT LIN(5), Label1$
2680 PRINT Label2$
2690 PRINT Label3#
2700 RETURN
2710 Print: REM THIS SECTION PRINTS THE DATA
2720 PRINTER IS 0
2730 PRINT "TEST NO."; Record
2740 PRINT LIN(3)
                                   LEVEL (dB DOWN FROM INCIDENT FIELD ."
2750 PRINT "POINT
     .JTO 2790
2760
      IF Ident$="E" THEN PRINT " (V/m)"
2770
     IF Ident$="H" THEN PRINT " (mR/m)"
2780
2790 FOR I=1 TO 73 STEP 1
2800 PRINT I, Vdb(I)
2810 NEXT I
2820
     RETURN
2830 Convt1: REM THIS SECTION CONVERTS FIELD STR. TO dB DOWN
2840 FOR I=1 TO 73 STEP 1
     - IF Ident#="E" THEN Vdb(I)=20*LGT(V(I)/1E-6)+Signal
2860 IF Ident#="H" THEN Vdb(I)=20*LGT(V(I)/1E-3)-Signal+20*LGT(): 7
     MEXT I
2870
2880
     RETURN
2890 Convt2: PEM CONVERTS Data TO dB DOWN
2900 IF Ident#="E" THEN GOTO X×
2910 IF Ident #= "H" THEN GOTO Uu
2920 PRINT "ERROR E OR H NOT FOUND"
2930
     STOP
2940 Xx: FOR M=1 TO 11 STEP 1
2950 FOR N#1 TO 11 STEP 1
2960
     - Da a(N.M)=20*LGT(Data(N.M)/1E-6)-Signal
2970 NEXT N
2980
     NEXT M
2990
     GOTO Return
3000 Uu: FOR M=1 TO 11 STEP 1
3010 FOR N=1 TO 11 STEP 1
3020 - \text{Data}(N,M) = 20 \times \text{LGT}(Data(N,M) / 1E-3) - \text{Signal} + 20 \times \text{LGT}(377)
3030 HEXT I
3040
     HEBT M
3050 Return: RETURN
3060 END
```

APPENDIX G

OPERATING AND MAINTENANCE DATA FOR EM FIELD MAPPING COMPONENTS

G.1 INTRODUCTION

This section contains a description of the measurement system operating procedure along with schematic diagrams and parts lists for the probe signal conditioner, the optic link receiver unit, and the probe position control unit.

G2. OPERATING PROCEDURE

This section contains a description of the measurement system operating procedure for the probe signal conditioner, the optic link receiver unit, and the probe position control unit.

The probe position controller causes the probe to scan in a fixed scan sequence, therefore, proper setting of the probe starting position is extremely important for correct scanning operation. The setting of the probe start position is as follows:

- Loosen the two screws on the probe carriage so that it slides freely on the thread. This step need only be done for the initial setting up of the probe positioner or when the thread is replaced.
- Turn Probe Position Controller ON and push the Axial and Radial RESET buttons.
- Check that the LED in the lower left hand corner of the position indicator matrix lights.
- 4. The motion in both axes will now correspond to the settings of the radial and axial direction switches. These should now be set to the positive direction.
- 5. Move the Axial carriage (using the .5cm or 1 cm buttons) such that the back of the motor is 1/8 inch from the back support plate. Note: The reset switch can be used to stop the actuator motion.
- Move the Radial carriage to the point where the carriage just touches the brass coupler.
- 7. Move the Radial carriage off the brass coupler to the point where any system backlash is removed. Note the direction switch must be in the positive or middle position.
- 8. Check that the Radial carriage is no more than 1/16 inch from the brass coupler.
- 9. Push the RESET button on both the Radial and Axial channel.

- 10. Move the probe carriage so that it is 3/32 inch from the side that the scan will start. (The side is determined by how the thread is installed, check this by tracing the thread routing.) Tighten the plexiglass mount to the teflon slide such that the thread is pinched between them.
- 11. The probe positioner can now scan the 73 positions indicated in Figures 7 and 9 by actuating the 1 cm and 0.5 cm step switches. This must be accomplished in ascending numerical order from position 1 to position 73 in order to obtain the highest possible mechanical positioning accuracy. In this way, the probe carriage is driven by the thread-pulley system in one direction only, minimizing the effects of friction and backlash.
- 12. The Probe Position Control Unit automatically changes scanning directions at the grid boundaries as manual scanning proceeds.

 Accordingly, the scanning sequence described in Step 11 above should be followed exactly to prevent the probe from getting out of step with the indicated position on the lightemitting diode display, and to minimize the risk of probe damage.

 When performing manual measurements observe the frequency counter output to determine over-range conditions and change the range switch on the signal conditioner accordingly.

When a scan is complete, the probe can be moved to its start position by following Steps 2 to 9 in the instructions for setting probe positioner start position.

Automatic Control of the scanning and measurement process may be obtained through the use of the IEEE 488 bus-controlled relay actuator (H.P. 59306A). This allows the Probe Position Control Unit and the Range Switch on the Signal Conditioner to be computer controlled, and completely eliminates Steps 11 and 12 above.

A Measurement system used to automatically map the electric and magnetic fields within a cylinder and missile nosecone is illustrated in Figure 6. The connection of the H.P. 59306A Relay Actuator to the Probe Position Controller is given in Table 3 following.

LIST OF CONNECTIONS FOR REMOTE CONTROL INTERFACE

TABLE 3

H.P. 59306A Relay Actuator Terminal	Connected to Probe Unit Circuit Desig	Position Control (Ref. Fig.13)
ľ		
A1	(Normally Open)	N.O 1
B1	(Normally Closed)	
C1	(Common)	COM
A 2		N.O 2
В2		N.C 2
C2		COM
A 3		N.O 3
в3		N.C 3
C3		COM
A 4		N.O 4
В 4		N.C 4
C4		COM
A5	For pneumatic actu	ator coil
В5	Not used	
C5	Pneumatic actuator	power supply
A6	Local/Remote coil	
В6	Not used	
C6	External +20 vdc s	supply

Fig. G-1 Sheet 1 of 2 Schematic Diagram, Signal Conditioner

Fig. G-1 Sheet 2 of 2 Schematic Diagram, Signal Conditioner

Fig. G-2 Schematic Diagram, Optic Link Receiver Unit

* Note: Circuitry for radial motion is shown, except where indicated. Circuitry for axial motion is identical to that shown for radial motion.

Fig. G-3 Sheet 1 of 4 Probe Position Control Unit

Fig. G-3 Sheet 2 of 4 Probe Position Control Unit

Fig. G-3 Sheet 3 of 4 Probe Position Control Unit

Fig. G-3 Sheet 4 of 4 Probe Position Control Unit

ELECTRIC FIELD PROBE

Diode

Zero-bias Schottky detector diode Microwave Associates type MA 40230 Case style 120

Conductive Plastic

Polypenco Conductive TFE monofilament, 0.030" outer diameter, insulated with nylon sheath of 0.005" wall thickness

The Polymer Corp., Reading, Pa. 19603

Conductive Epoxy

ACME E-solder 3021 silver epoxy

ACME Chemicals and Insulation Co., Div. of Allied Products Corp., New Haven, Connecticut, 06505

MAGNETIC FIELD PROBE

Diode, conductive plastic, and conductive epoxy materials are identical to those listed for the Electric Field Probe

Wire Used for Coil:

Belden #38 AWG Magnet Wire

SIGNAL CONDITIONER

All fixed resistors are 1/4 watt, 2% tolerance, film types, Corning Glass Works type FP55 or equivalent, unless indicated otherwise.

RI	RESISTOR	FIXED	10	Mohm	}
R 2	**	tt	10	Mohm	1/2Watt, 2% IRC type CGH-1/2
R 3	u	11	91	ohm	J 0011-172
R4	tt	11	3	Kohm	
R 5	11	**	20	Kohm	
R6	ŧı	11	20	Kohm	
R 7	11	11	10	Kohm	
R8	11	**	10	Kohm	
R 9	11	11	10	Kohm	
R10	11	VARIABLE	50	Kohm	Bourns Trimpor Model
R11	RESISTOR	FIXED	100	V - b -	3006P-1-503
KII		LIVED	100	Kohm	
R12	*1	**	6.8	Kohm	
R13	11	11	100	Kohm	
R14	11	tt	3.3	Kohm	
R15	11	71	130	ohm	
R16	11	11	300	Kohm	
R17	11	**	20	Kohm	
R18	m	11	15	Kohm	
R19	11	77	20	Kohm	
R20	11	11	20	Kohm	
R21	11	11	10	Kohm	
R22	11	11	6.2	Kohm	
R23	"	11	22	Kohm	
R24	**	1f	300	ohm	

C1	CAPACITOR, FIXED, CERAMI	C, AXIAL LEAD	4700pf, 50v.	5%			
C2	11 11 11	11 . 11	4700pf, 50v,				
С3	" POLYSTY	RENE	0.047µf,60v,				
C4	11 11 11		0.047µf,60v,				
C5	" CERAMIC	, RADIAL LE	AD .47µf,50v,				
C6	n n	,, ,,	.47µf,50v,	10%			
C7	n n n	11 11	.47µf,50v,	10%			
C8	11 11 11	11 11	.47µf,50v,	10%			
C9	CAPACITOR, FIXED, CERAMI	C, AXIAL LEAD	800pf,50v,	5%			
C10	CAPACITOR, ALUMINUM ELEC	CTROLYTIC	15µf,50v,	20%			
D1	DIODE, SILICON		IN 914				
D2	n n		IN 914				
D3	DIODE, LIGHT EMITTING	HP 5082-4855					
Q1	TRANSISTOR	2N3904					
Q2	11	2N3904					
1C1	DUAL BIFET OPERATIONAL A		LF353N				
1C2	DUAL BIFET OPERATIONAL AMPLIFIER LF353N						
1C3	OPERATIONAL AMPLIFIER MC 3403 P						
1C4	VOLTAGE REGULATOR +15 VI	7815					
1C5	VOLTAGE REGULATOR -15 VDC 7915						
1C6	VOLTAGE TO FREQUENCY CON ANALOG DEVICES	WERTER,	545				
S1	SWITCH TOGGLE DPDT						
S2	SWITCH TOGGLE DPDT						
J1	CONNECTOR, BNC, MODIFIED)					
J2	JACK						
J3	JACK						
В1	BATTERY PACK	16 AA CELLS, MALLORY TYPE	NICKEL-CADMIU NC-15	M			
В2	BATTERY PACK	16AA CELLS, MALLORY TYPE	NICKEL-CADMIUM NC-15	!			

OPTICAL LINK RECEIVER UNIT

NOTE: (Resistors R1-R5 are Corning Glass Works Type FP55 or equivalent)

Rl	RESISTOR,	FIXED,	FILM	430	Kohm,	1/4w, 2%
R2	11	"	11	430	Kohm,	1/4w, 2%
R3	11	91	11	430	Kohm,	1/4w, 2%
R4	12	11	11	130	ohm,	1/4w, 2%
R5	**	** "	11	130	ohm,	1/4w, 2%
						•
C1	CAPACITOR,	FIXED,	CERAMIC, RAI	DIAL	LEAD,	0.47µf, 10%
C2	11	11	11	11	11	0.47µf, 10%
וַתַ	DIODE, SILIC	ON ZENER		1N75	51A	
D2	11 11	11		1N75	51A	
D3	PHOTO DIODE	RCA		C308	808	
101	OPERATIONAL	AMPLIF1E	R	MC3	403	
1C2	DUAL NAND SC	HMITT TR	IGGER	74	13	
S1	SWITCH, DPDT					
J1	JACK, SWITCH	CRAFT		3501	LFP	
B1	BATTERY, 9VD	C ALKALI	NE			
B2	11 11	17				

FIBER OPTIC CABLE

Fiber Optic Link 20 Ft Length Part No. LP-20

Instruments for Industry, Inc.

151 Toledo St., Farmingdale, N.Y.

11735

PROBE POSITIONING UNIT

QTY	DESCRIPTION	PART NO. AND SUPPLIER
2	Stepper Motor with 10:1 Reduction	Airpax K-82221-P2
	Gear Output Step Angle= 0.75 Degree	Cheshire Div., Cheshire Industrial Park, Cheshire, CT06410
4	Linear Motion Bearings for 1/4" DIA. Shaft.	Thompson Part No. A - 4812
	Outer Dia: 1/2" Length: 3/4"	
1	Connector Plug 25 - Pin	Amphenol Part No. 17 - 90250-15
2	Connector Receptacle 25 - Pin	Amphenol Part No. 17-80250-15

PARTS LIST

PROBE POSITION CONTROL UNIT

Cl	CAPACITOR,	CERAMIC,	AXIAL	LEAD	0.01	μ f, 50v	. 10%	
C2	tt tt tt			11	0.01µf,50v, 10%			
C3	"	**	**	11		μ f ,50ν	-	
R1, 2	RESISTOR,	FIXED FILM				•	1/4w,	2%
R3 - R9	13	11 11					1/4w,	
R14-R16	11	11 11			1	Kohm,	1/4w,	2%
R10,11		11 11			200	ohm,	1/4w,	2%
R12	. 11	11 11			390	ohm,	1/4w,	2%
R13	ti	u u			100	ohm,	1/4w,	2%
1C1	INTEGRATED	CIRCUIT			LM55	5		
1C2	. 11	ff			SN74	279		
1C3	1'	**			SN74	08		
1C4, 15, 16	11	f1			SN74	04		
1C5	11	**			SN74	74		
1C6	11	н			SN74	76		
1C7	11	11			SN74	151		
1C8	tt	11			SN74	27		
109, 10, 11	11	*1			SN74	193		
1C12, 13	11	11			SN74	154		
1C14	11				SN74	191		
1C17	11	11			SN74	06		
1C18	STEPPER MO	TOR DRIVER		AIRPAX	SAA1	027		
	+5v SUPPLY	REGULATOR		MOTOROLA	78 H	105		
	+12v. SUPF	LY REGULAT	OR	MOTOROLA	7812			

NOTE: Resistors Rl to R 16 are Corning Glass Works
Type FP55 or equivalent

MISSION of Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence {C³I} activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices {POs} and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

in startancono and and an analogous

per proposition of the contraction of the contracti