# ECE 286: Bayesian Machine Perception Class 1: Probability Theory

**Florian Meyer** 

Electrical and Computer Engineering Department University of California San Diego



# **Event Spaces (i)**

- Possible outcomes  $\Omega$ 
  - Example: If we consider a dice roll, we have  $\Omega = \{1,2,3,4,5,6\}$
- Events S to which we want to assign probabilities
  - Each event  $\alpha \in \mathcal{S}$  is a subset of  $\Omega$
  - Examples: The event  $\, \alpha = \{1\}$  represents the case where the die shows 1 The event  $\, \alpha = \{2,4,6\}$  represents the case of an even outcome

#### **Event Spaces (ii)**

- An event space S needs to satisfy the three basic properties
  - It contains the empty event  $\emptyset$ , and the trivial event  $\Omega$
  - It is closed under union, i.e., if  $\alpha, \beta \in \mathcal{S}$ , then so is  $\alpha \cup \beta$
  - It is closed under complementation, i.e., if  $\alpha \in \mathcal{S}$ , then so is  $\Omega \setminus \alpha$

# **Axioms of Probability Theory**

- A probability distribution P is a mapping from events in S to real values that satisfies
  - $-P(\alpha) \geqslant 0$  for all  $\alpha \in \mathcal{S}$  (Probabilities are not negative)
  - $-P(\Omega)=1$  (All possible outcomes have the maximal probability of one)
  - If  $\alpha, \beta \in \mathcal{S}$  and  $\alpha \cap \beta = \emptyset$ , then  $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$  (The probability of two disjoint is the sum of their probabilities)

# Properties (i)

• Monotonicity: if  $\alpha \subseteq \beta$  then  $P(\alpha) \leqslant P(\beta)$  *Proof:* 

• The probability of the empty set:  $P(\emptyset) = 0$  Proof:

# Properties (ii)

• The complement rule:  $P(\Omega \setminus \alpha) = 1 - P(\alpha)$  Proof:

• The sum rule:  $P(\alpha \cup \beta) = P(\alpha) + P(\beta) - P(\alpha \cap \beta)$  Proof:

#### A Closer Look at the Sum Rule

$$P(\alpha \cup \beta) = P(\alpha) + P(\beta) - P(\alpha \cap \beta)$$



#### Discrete Random Variables

- x denotes a random variable
- $m{x}$  can take on a countable number of values in  $m{\mathcal{X}} = \{m{x}_1, m{x}_2, \dots, m{x}_I\}$
- $p_{\boldsymbol{x}}(\boldsymbol{x}_i)$ , or  $p(\boldsymbol{x}_i)$ , is the *probability* that the random variable  $\boldsymbol{x}$  takes on value  $\boldsymbol{x}_i$
- $p(\cdot)$  is called *probability mass function (pmf)*
- Example: If  ${m x}$  is the outcome of a dice roll, we have  ${\cal X}=\{1,2,\dots,6\}$  and  $p({m x}_i)=1/6, \, \forall {m x}_i\in {\cal X}$

© Florian Meyer, 2020 7

#### **Continuous Random Variables**

- x takes on values in the continuum
- $f_{\boldsymbol{x}}(\boldsymbol{x})$ , or  $f(\boldsymbol{x})$ , is its probability density function (pdf)

$$P(a < x \le b) = \int_{a}^{b} f(x) dx$$

• Example:



#### Joint and Conditional Distributions

- $p_{m{x},m{y}}(m{x},m{y})$  or  $p(m{x},m{y})$  is the joint pmf of random variables  $m{x}$  and  $m{y}$
- If x and y are independent then

$$p(\boldsymbol{x}, \boldsymbol{y}) = p(\boldsymbol{x})p(\boldsymbol{y})$$

•  $p(\boldsymbol{x}|\boldsymbol{y})$  is the probability of  $\boldsymbol{x}$  given (conditioned on)  $\boldsymbol{y}$ 

$$p(\boldsymbol{x}|\boldsymbol{y}) = p(\boldsymbol{x},\boldsymbol{y})/p(\boldsymbol{y})$$
  $p(\boldsymbol{x},\boldsymbol{y}) = p(\boldsymbol{x}|\boldsymbol{y})p(\boldsymbol{y})$ 

• If x and y are independent then

$$p(\boldsymbol{x}|\boldsymbol{y}) = p(\boldsymbol{x})$$
  $p(\boldsymbol{y}|\boldsymbol{x}) = p(\boldsymbol{y})$ 

Equivalent expressions exist for the pdfs of continuous random variables

#### Law of Total Probabilities, Marginals

#### Discrete Case

$$\sum_{\boldsymbol{x} \in \mathcal{X}} p(\boldsymbol{x}) = 1$$

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in \mathcal{Y}} p(\boldsymbol{x}, \boldsymbol{y})$$

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in \mathcal{Y}} p(\boldsymbol{x}|\boldsymbol{y}) p(\boldsymbol{y})$$

#### **Continuous Case**

$$\int f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = 1$$

$$f(\boldsymbol{x}) = \int f(\boldsymbol{x}, \boldsymbol{y}) \, \mathrm{d} \boldsymbol{y}$$

$$f(\boldsymbol{x}) = \int f(\boldsymbol{x}|\boldsymbol{y}) f(\boldsymbol{y}) d\boldsymbol{y}$$

# **Bayes Rule**

• Recall  $p({m x},{m y}) = p({m x}|{m y})\,p({m y}) = p({m y}|{m x})\,p({m x})$ 

• It therefore follows that



#### Normalization

For y observed and thus fixed

$$p(\boldsymbol{x}|\boldsymbol{y}) = rac{p(\boldsymbol{y}|\boldsymbol{x}) \ p(\boldsymbol{x})}{p(\boldsymbol{y})}$$

$$= C p(\boldsymbol{y}|\boldsymbol{x}) p(\boldsymbol{x})$$

$$\propto p(\boldsymbol{y}|\boldsymbol{x}) p(\boldsymbol{x})$$

• The constant C ensures that  $p({m x}|{m y})$  sums to one and can be calculated as

$$C = \frac{1}{\sum_{\boldsymbol{x} \in \mathcal{X}} p(\boldsymbol{y}|\boldsymbol{x}) p(\boldsymbol{x})}$$

# Conditioning

• Law of total probability

$$p(\boldsymbol{x}|\boldsymbol{z}) = \int p(\boldsymbol{x}, \boldsymbol{y}|\boldsymbol{z}) d\boldsymbol{y}$$
  
=  $\int p(\boldsymbol{x}|\boldsymbol{y}, \boldsymbol{z}) p(\boldsymbol{y}|\boldsymbol{z}) d\boldsymbol{y}$ 

Bayes rule with background knowledge

$$p(\boldsymbol{x}|\boldsymbol{y}, \boldsymbol{z}) = rac{p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{z}) \ p(\boldsymbol{x}|\boldsymbol{z})}{p(\boldsymbol{y}|\boldsymbol{z})}$$

# **Conditional Independence**

ullet Condition on z , random variables x and y are independent if

$$p(\boldsymbol{x}, \boldsymbol{y}|\boldsymbol{z}) = p(\boldsymbol{y}|\boldsymbol{z})p(\boldsymbol{x}|\boldsymbol{z})$$

• This is equivalent to

$$p(\boldsymbol{x}|\boldsymbol{z}) = p(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{y})$$

and

$$p(\boldsymbol{y}|\boldsymbol{z}) = p(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{x})$$

# Simple Example of State Estimation (i)

- ullet Suppose a robot obtains a measurement z of a door
- What is  $p(open|\boldsymbol{z})$ ?



S. Thrun, W. Burgard, and D. Fox, *Probabilistic Robotics*, MIT Press, 2006.

# Causal vs. Diagnostic Reasoning

- p(open|z) is diagnostic
- [p(z|open)] is causal
- Often causal knowledge is easier to obtain, e.g., sensor calibration
- Bayesian rule allows up to use causal knowledge:

$$p(open|\mathbf{z}) = \frac{p(\mathbf{z}|open)p(open)}{p(\mathbf{z})}$$

#### Simple Example of State Estimation (ii)

- Likelihood: p(z|open) = 0.7, p(z|notopen) = 0.1
- Prior: p(open) = p(notopen) = 0.5

$$p(open|\mathbf{z}) = \frac{p(\mathbf{z}|open) p(open)}{p(\mathbf{z}|open) p(open) + p(\mathbf{z}|notopen) p(notopen)}$$
$$= \frac{0.7 \cdot 0.5}{0.7 \cdot 0.5 + 0.1 \cdot 0.5}$$
$$= 0.875$$

Observation z raises the probability that the door is open