An Statistical Manual Book For Data Analysis in R

Methods of Statistical Analysis

Submitted by

Manasvi Lamichhane BSC Medical Science

White House College PutaliSadak, Kathmandu

Contents

1	Acr	conyms	iv		
2	Background				
	2.1	Introduction	1		
	2.2	Objectives	1		
		2.2.1 General Objectives	1		
		2.2.2 Specific Objectives	1		
	2.3	Limitations	1		
3	${ m Lit}\epsilon$	erature Review	2		
4	Me	thodology	3		
	4.1	Study Area	3		
	4.2	Data Collection	3		
		4.2.1 Primary Data	3		
		4.2.2 Secondary data	3		
	4.3	Data Anlayis	3		
		4.3.1 Descriptive	3		
		4.3.2 Statistical Anlaysis	3		
5	5 Result				
6 Discussion					
7	Cor	nclusions	8		
\mathbf{R}	efere	ence	9		

List of Tables

1	The Data source	3
2	The Summary Iris data	3

List of Figures

1	Statistical Analysis	4
2	Satsitical Analysis in R	4
3	The distribution of Sepal Length in Species	ļ

1 Acronyms

2 Background

2.1 Introduction

The medical science is very crucial for modern health problems Collins (2001). The basic science is started from early 1800 (Parajuli et al., 2022).

2.2 Objectives

2.2.1 General Objectives

The overall objectives of the study is to determine whether the temperature has its significant effect on plant growth.

2.2.2 Specific Objectives

To fulfill the general objective of the study following specific objectives are designed.

- 1. specific objective 1
- 2. specific objective 2
- specific objective 1
 - specific objective 1.1
 - specific objective 1.2
- specific objective 2

2.3 Limitations

BOLD is favorite format.

Italic is less favorite

BOLDitalic is less used.

<u>Underlined statement</u>

3 Literature Review

4 Methodology

4.1 Study Area

4.2 Data Collection

4.2.1 Primary Data

4.2.2 Secondary data

Table from latex script

Table 1: The Data source

s.n.	Primary Data	Secondary Data
1	Questionnaire Survey	Articles
2	Focus Group Discussion	Published National Reports

4.3 Data Anlayis

Table 2: The Summary Iris data

Species	Number of Samples	$Mean\ Sepal\ Length(cm)$	Mean Petal Length (cm)
setosa	50	5.006	1.462
versicolor	50	5.936	4.260
virginica	50	6.588	5.552

In the figure, the mean sepal length of setosa species is 5.006.

4.3.1 Descriptive

Another Method

```
knitr::include_graphics("figures/stat.jpg")
```

4.3.2 Statistical Anlaysis

head(iris)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

Methods of Statistical Analysis

Figure 1: Statistical Analysis

Methods of Statistical Analysis

Figure 2: Satsitical Analysis in ${\bf R}$

```
iris %>%
  ggplot(aes(x = Sepal.Length)) +
  geom_histogram(bins = 30, color = "black", fill = "blue") +
  facet_wrap(~Species) +
  labs(x = "Sepal Length", y = "Frequency") +
  theme_bw()
```


Figure 3: The distribution of Sepal Length in Species

5 Result

6 Discussion

$$\overline{X} = \frac{\sum X_i}{N}$$

The formula for volume is $V = L \times B$.

$$V = L \times B \tag{i}$$

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2ab} \tag{ii}$$

$$r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

7 Conclusions

Reference

Collins, F. S. (2001). Implications of the Human Genome Project for Medical Science. *JAMA*, 285(5), 540. https://doi.org/10.1001/jama.285.5.540

Parajuli, A., Gautam, A. P., Sharma, S., Lamichhane, P., Sharma, G., Bist, B. S., ... Basnet, R. (2022). A strategy for involving community forest managers in effective forest fire management in nepal. *Banko Janakari*, 32(1), 41–51. https://doi.org/10.3126/banko.v32i1.45476