Causal contextuality and adaptive MBQC

Rui Soares Barbosa (joint work with Cihan Okay)

rui.soaresbarbosa@inl.int

5th Workshop on Quantum Contextuality in Quantum Mechanics and Beyond (QCQMB 2022) Prague, 18th December 2022

Joint work with Cihan Okay

Joint work with Cihan Okay

▶ Related to talks by Samson & Amy, but only using a particular type of models.

▶ May have some relation to upcoming talk by Sivert.

Introduction

Quantum advantage

Contextuality / Nonclassicality

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

MBQC: Classical control computer with access to quantum resources

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

 ℓ_2 -MBQC: Classical control computer with access to quantum resources

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

- ℓ₂-MBQC: Classical control computer with access to quantum resources
- ▶ Classical control restricted to \mathbb{Z}_2 -linear computation

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

 ℓ_2 -MBQC: Classical control computer with access to quantum resources

- ▶ Classical control restricted to \mathbb{Z}_2 -linear computation
- ▶ Resource treated as a **black box**, described by its **behaviour**

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

 ℓ_2 -MBQC: Classical control computer with access to quantum resources

- ▶ Classical control restricted to \mathbb{Z}_2 -linear computation
- ▶ Resource treated as a **black box**, described by its **behaviour**

Theorem

If an ℓ_2 -MBQC deterministically computes a nonlinear Boolean function then the resource is strongly contextual.

The AND function

'Computational power of correlations', Anders & Browne, PRL 2009.

Adaptive MBQC

Adaptive MBQC

In adaptive MBQC:

▶ For a given computation, the black box is used in a given (partial) order.

In adaptive MBQC:

- ► For a given computation, the black box is used in a given (partial) order.
- ▶ Why should the classical benchmark be so restrictive?

In adaptive MBQC:

- ▶ For a given computation, the black box is used in a given (partial) order.
- ▶ Why should the classical benchmark be so restrictive?
- ▶ We could think of a classical model that exploits this (causal) knowledge.

In adaptive MBQC:

- ▶ For a given computation, the black box is used in a given (partial) order.
- Why should the classical benchmark be so restrictive?
- ▶ We could think of a classical model that exploits this (causal) knowledge.

Can we find conditions on the computed functions that exclude even such classical HV models?

Non-locality

Bell scenarios

A Bell **scenario** consists of:

ightharpoonup a set Ω of **sites** or parties

Bell scenarios

A Bell **scenario** consists of:

- ightharpoonup a set Ω of sites or parties
- ▶ for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of **questions**, or measurement settings
- ▶ for each $\omega \in \Omega$ a set A_{ω} of **answers**, or measurement outcomes

Bell scenarios

A Bell **scenario** consists of:

- ightharpoonup a set Ω of sites or parties
- ▶ for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of **questions**, or measurement settings
- ▶ for each $\omega \in \Omega$ a set A_{ω} of **answers**, or measurement outcomes

Given $S \subset \Omega$, we write

$$\mathcal{Q}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{Q}_{\omega} \qquad \text{and} \qquad \mathcal{A}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{A}_{\omega}$$

If $S \subset T$ there are restriction maps

$$Q_{S \subset T} : Q_T \longrightarrow Q_S$$
 and $A_{S \subset T} : A_T \longrightarrow A_S$

A deterministic local model is given by a family of functions

$$f_{\omega}:\mathcal{Q}_{\omega}\longrightarrow\mathcal{A}_{\omega}\qquad (\omega\in\Omega).$$

E.g. bipartite scenario: $(Q_A \longrightarrow A_A) \times (Q_B \longrightarrow A_B)$.

A deterministic local model is given by a family of functions

$$f_{\omega}:\mathcal{Q}_{\omega}\longrightarrow\mathcal{A}_{\omega}\qquad (\omega\in\Omega).$$

E.g. bipartite scenario:
$$(Q_A \longrightarrow A_A) \times (Q_B \longrightarrow A_B)$$
.

Equivalently, a function $f:\mathcal{Q}_\Omega\longrightarrow\mathcal{A}_\Omega$ such that

$$\mathcal{Q}_\Omega \stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathcal{A}_\Omega$$

A deterministic local model is given by a family of functions

$$f_{\omega}:\mathcal{Q}_{\omega}\longrightarrow\mathcal{A}_{\omega}\qquad (\omega\in\Omega).$$

E.g. bipartite scenario:
$$(Q_A \longrightarrow A_A) \times (Q_B \longrightarrow A_B)$$
.

Equivalently, a function $f:\mathcal{Q}_{\Omega}\longrightarrow\mathcal{A}_{\Omega}$ such that for any $S\subset\Omega$,

$$\mathcal{Q}_\Omega \stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathcal{A}_\Omega$$

A deterministic local model is given by a family of functions

$$f_{\omega}:\mathcal{Q}_{\omega}\longrightarrow\mathcal{A}_{\omega}\qquad (\omega\in\Omega).$$

E.g. bipartite scenario:
$$(\mathcal{Q}_A \longrightarrow \mathcal{A}_A) \times (\mathcal{Q}_B \longrightarrow \mathcal{A}_B)$$
.

Equivalently, a function $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

$$Q_{\Omega} \stackrel{f}{\longrightarrow} \mathcal{A}_{\Omega}$$

$$\downarrow^{\mathcal{A}_{S \subset \Omega}}$$

A deterministic local model is given by a family of functions

$$f_{\omega}:\mathcal{Q}_{\omega}\longrightarrow\mathcal{A}_{\omega}\qquad (\omega\in\Omega).$$

E.g. bipartite scenario:
$$(Q_A \longrightarrow A_A) \times (Q_B \longrightarrow A_B)$$
.

Equivalently, a function $f:\mathcal{Q}_{\Omega}\longrightarrow\mathcal{A}_{\Omega}$ such that for any $S\subset\Omega$,

A deterministic local model is given by a family of functions

$$f_{\omega}:\mathcal{Q}_{\omega}\longrightarrow\mathcal{A}_{\omega}\qquad (\omega\in\Omega).$$

E.g. bipartite scenario: $(\mathcal{Q}_A \longrightarrow \mathcal{A}_A) \times (\mathcal{Q}_B \longrightarrow \mathcal{A}_B)$.

Equivalently, a function $f:\mathcal{Q}_{\Omega}\longrightarrow\mathcal{A}_{\Omega}$ such that for any $S\subset\Omega$,

$$f: \mathcal{Q}_A \times \mathcal{Q}_B \longrightarrow \mathcal{A}_A \times \mathcal{A}_B$$
 such that $f(q_A, q_B) = (a_A, a_B) = (f_A(q_A), f_B(q_B))$.

$$\blacktriangleright f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \qquad (\omega \in \Omega)$$

▶ $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Adding probabilities. . .

$$\blacktriangleright f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \qquad (\omega \in \Omega)$$

▶ $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Adding probabilities. . .

▶ $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Adding probabilities. . .

This yields the local models.

• $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Adding probabilities. . .

This yields the local models.

E.g. bipartite scenario:
$$(\mathcal{Q}_A \longrightarrow \mathbf{D}(\mathcal{A}_A)) \times (\mathcal{Q}_B \longrightarrow \mathbf{D}(\mathcal{A}_B))$$
.

• $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Adding probabilities. . .

This yields the local models.

E.g. bipartite scenario:
$$(\mathcal{Q}_A \longrightarrow \mathbf{D}(\mathcal{A}_A)) \times (\mathcal{Q}_B \longrightarrow \mathbf{D}(\mathcal{A}_B))$$
.

• $f: \mathcal{Q}_{\Omega} \longrightarrow \mathbf{D}(\mathcal{A}_{\Omega})$ such that for any $S \subset \Omega$,

Adding probabilities. . .

This yields the **local models**.

E.g. bipartite scenario:
$$(\mathcal{Q}_A \longrightarrow \mathbf{D}(\mathcal{A}_A)) \times (\mathcal{Q}_B \longrightarrow \mathbf{D}(\mathcal{A}_B))$$
.

• $f: \mathcal{Q}_{\Omega} \longrightarrow \mathbf{D}(\mathcal{A}_{\Omega})$ such that for any $S \subset \Omega$,

$$\begin{array}{c|c} \mathcal{Q}_{\Omega} & \stackrel{f}{\longrightarrow} & \mathsf{D}(\mathcal{A}_{\Omega}) \\ & \downarrow & & \downarrow \mathsf{D}(\mathcal{A})_{S \subset \Omega} \\ & \downarrow & & \downarrow \mathsf{D}(\mathcal{A})_{S \subset \Omega} \\ \mathcal{Q}_{S} & & \stackrel{f}{\longleftarrow} & \mathsf{D}(\mathcal{A}_{S}) \end{array}$$

This yields **no-signalling models**.

Adding probabilities. . .

This yields the local models.

E.g. bipartite scenario: $(\mathcal{Q}_A \longrightarrow \mathbf{D}(\mathcal{A}_A)) \times (\mathcal{Q}_B \longrightarrow \mathbf{D}(\mathcal{A}_B))$.

• $f: \mathcal{Q}_{\Omega} \longrightarrow \mathbf{D}(\mathcal{A}_{\Omega})$ such that for any $S \subset \Omega$,

This yields **no-signalling models**.

$$f: \mathcal{Q}_A \times \mathcal{Q}_B \longrightarrow \mathbf{D}(\mathcal{A}_A \times \mathcal{A}_B)$$
 such that $P_f(a_A \mid q_A, q_B) = P_f(a_A \mid q_A)$ and similarly for a_B .

Causal contextuality

'The sheaf-theoretic structure of definite causality', Gogioso & Pinzani, QPL 2021.

► A causal (partial) order between sites

'The sheaf-theoretic structure of definite causality', Gogioso & Pinzani, QPL 2021.

- ► A causal (partial) order between sites
- Classical models are allowed to use information from the causal past
- ▶ i.e. the answer at a given site may depend on the questions asked at sites in its past.
- ► Correspondingly, no-signalling gets relaxed, permitting signalling to the future.

NB: a special class of scenarios within the formalism presented by Samson & Amy.

A Bell **scenario** consists of:

- ightharpoonup a set Ω of **sites** or parties
- for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of **questions**, or measurement settings
- for each $\omega \in \Omega$ a set \mathcal{A}_{ω} of **answers**, or measurement outcomes

Given $S \subset \Omega$, we write

$$\mathcal{Q}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{Q}_{\omega} \qquad ext{ and } \qquad \mathcal{A}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{A}_{\omega}$$

If $S \subset T$ there are restriction maps

$$Q_{S \subset T}: Q_T \longrightarrow Q_S$$
 and $A_{S \subset T}: A_T \longrightarrow A_S$

A causal Bell scenario consists of:

- ightharpoonup a partially ordered set Ω of sites or parties
- ▶ for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of **questions**, or measurement settings
- ▶ for each $\omega \in \Omega$ a set A_{ω} of **answers**, or measurement outcomes

Given $S \subset \Omega$, we write

$$\mathcal{Q}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{Q}_{\omega} \qquad ext{and} \qquad \mathcal{A}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{A}_{\omega}$$

If $S \subset T$ there are restriction maps

$$Q_{S \subset T}: Q_T \longrightarrow Q_S$$
 and $A_{S \subset T}: A_T \longrightarrow A_S$

A causal Bell scenario consists of:

- ightharpoonup a partially ordered set Ω of sites or parties
- ▶ for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of **questions**, or measurement settings
- for each $\omega \in \Omega$ a set A_{ω} of **answers**, or measurement outcomes

Given $S \subset \Omega$, we write

$$\mathcal{Q}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{Q}_{\omega} \qquad ext{ and } \qquad \mathcal{A}_{\mathcal{S}} := \prod_{\omega \in \mathcal{S}} \mathcal{A}_{\omega}$$

If $S \subset T$ there are restriction maps

$$Q_{S \subset T} : Q_T \longrightarrow Q_S$$
 and $A_{S \subset T} : A_T \longrightarrow A_S$

Notation:
$$\downarrow \omega := \{\omega' \in \Omega \mid \omega' \leq \omega\}$$
 $\downarrow S := \bigcup_{\omega \in S} \downarrow \omega = \{\omega' \in \Omega \mid \exists \omega \in S. \ \omega' \leq \omega\}$

Deterministic classical causal models

A deterministic causally classical model is given by a family of functions

$$f_{\omega}: \mathcal{Q}_{\downarrow \omega} \longrightarrow \mathcal{A}_{\omega} \qquad (\omega \in \Omega).$$

E.g. bipartite scenario with $A \leq B$: $(Q_A \longrightarrow A_A) \times (Q_A \times Q_B \longrightarrow A_B)$.

Equivalently, a function $f:\mathcal{Q}_{\Omega}\longrightarrow\mathcal{A}_{\Omega}$ such that for any $S\subset\Omega$,

$$f: \mathcal{Q}_A \times \mathcal{Q}_B \longrightarrow \mathcal{A}_A \times \mathcal{A}_B$$
 such that $f(q_A, q_B) = (a_A, a_B) = (f_A(q_A), f_B(q_A, q_B))$.

Locality and no-signalling

Adding probabilities. . .

This yields the causal classical models.

E.g. bipartite scenario with $A \leq B$: $(Q_A \longrightarrow D(A_A)) \times (Q_A \times Q_B \longrightarrow D(A_B))$.

• $f: \mathcal{Q}_{\Omega} \longrightarrow D(\mathcal{A}_{\Omega})$ such that for any $S \subset \Omega$,

This yields models that are no-signalling except from the past.

$$f: \mathcal{Q}_A \times \mathcal{Q}_B \longrightarrow D(\mathcal{A}_A \times \mathcal{A}_B)$$
 such that $P_f(a_A \mid q_A, q_B) = P_f(a_A \mid q_A)$ but not for a_B .

Measurement-based quantum computation

Adaptive ℓ_2 -MBQC

- ▶ input size *m*
- output size /
- ▶ adaptive structure (Ω, \leq) with $n = |\Omega|$

Adaptive ℓ_2 -MBQC

- ▶ input size *m*
- output size /
- adaptive structure (Ω, \leq) with $n = |\Omega|$
- $ightharpoonup Q: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^n$
- $ightharpoonup T: \mathbb{Z}_2^n \longrightarrow \mathbb{Z}_2^n$
- $ightharpoonup Z: \mathbb{Z}_2^n \longrightarrow \mathbb{Z}_2^l$

such that $T_{\omega,\omega'}=0\Rightarrow\omega\leq\omega'$

Adaptive ℓ_2 -MBQC

- ▶ input size *m*
- output size I
- adaptive structure (Ω, \leq) with $n = |\Omega|$
- $ightharpoonup Q: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^n$
- $T: \mathbb{Z}_2^n \longrightarrow \mathbb{Z}_2^n$
- $ightharpoonup Z: \mathbb{Z}_2^n \longrightarrow \mathbb{Z}_2^l$

such that $T_{\omega,\omega'}=0\Rightarrow \omega\leq \omega'$

$$q = Qi + Ts$$

$$\mathbf{s} \leftarrow e(\mathbf{q})$$

$$\mathbf{o} = Z\mathbf{s}$$

implements a function $\mathbb{Z}_2^m \longrightarrow D(\mathbb{Z}_2^l)$.

Causal contextuality and adaptive MBQC

Main result

- ▶ Functions $g: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2$ can be represented as m-variable polynomials in \mathbb{Z}_2 , $\pi(g)$.
- Functions $g: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^l$ are represented by *l*-tuples of *m*-variable polynomials $\pi(g) = \langle \pi(g)_1, \dots \pi(g)_l \rangle$.

Main result

- ▶ Functions $g: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2$ can be represented as m-variable polynomials in \mathbb{Z}_2 , $\pi(g)$.
- ▶ Functions $g: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^l$ are represented by *l*-tuples of *m*-variable polynomials $\pi(g) = \langle \pi(g)_1, \dots \pi(g)_l \rangle$.

Theorem

Let (e,Q,T,Z) be an Ω -adaptive ℓ_2 -MBQC protocol that **deterministically** computes a function $g:\mathbb{Z}_2^m\longrightarrow\mathbb{Z}_2^l$. If e is **causally classical** then each $\pi(g)_j$ is a polynomial with degree at most the height of Ω , where the height of a poset is the maximum length of a chain in it.

Main result

- ▶ Functions $g: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2$ can be represented as m-variable polynomials in \mathbb{Z}_2 , $\pi(g)$.
- ▶ Functions $g: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^l$ are represented by *l*-tuples of *m*-variable polynomials $\pi(g) = \langle \pi(g)_1, \dots \pi(g)_l \rangle$.

Theorem

Let (e,Q,T,Z) be an Ω -adaptive ℓ_2 -MBQC protocol that **deterministically** computes a function $g:\mathbb{Z}_2^m\longrightarrow\mathbb{Z}_2^l$. If e is **causally classical** then each $\pi(g)_j$ is a polynomial with degree at most the height of Ω , where the height of a poset is the maximum length of a chain in it.

NB: If Ω is flat, i.e. has height 1, one recovers Raussendorf's result about nonlinear functions.

Questions...

?