Zelfreflectie Hoofdstuk 6

- 1. Zij $V, \langle \cdot, \cdot \rangle$ een inproductruimte. Toon aan dat $\langle v, 0 \rangle = 0 = \langle 0, v \rangle$ voor elke $v \in V$.
- 2. Zij $V, \langle \cdot, \cdot \rangle$ een inproductruimte. Toon aan dat $\|x+y\|^2 = \|x\|^2 + \|y\|^2$ van zodra $\langle x,y \rangle = 0$.
- 3. Ga alle stappen na in het bewijs van het orthogonalisatieprocédé van Gram-Schmidt.
- 4. Toon aan: een matrix is symmetrisch als en slechts als ze orthogonaal diagonaliseerbaar is.
- 5. Juist of fout? Een matrix $A \in \mathbb{R}^{n \times n}$ heet orthogonaal als en slechts als de kolommen van A een orthogonale basis vormen van \mathbb{R}^n .
- 6. Zij

$$Q(x_1, x_2, \dots, x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j$$

een kwadratische vorm. Definieer $A = \left(\frac{a_{ij} + a_{ji}}{2}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathbb{R}^{n \times n}$. Zij $x = (x_1, x_2, \dots, x_n)$; toon aan dat $Q(x) = x^T A x$.

- 7. Zij $\|\cdot\|_F$ de Frobenius
norm op $\mathbb{R}^{n\times n}$. Toon aan dat $\|AB\|_F \leq \|A\|_F \|B\|_F$ voor alle $A,B\in\mathbb{R}^{n\times n}$.
- 8. Zij $A \in \mathbb{R}^{n \times n}$ diagonaliseerbaar. Staan eigenvectoren horende bij verschillende eigenwaarden altijd loodrecht op elkaar (ten opzichte van het standaard inproduct)?
- 9. Geef een meetkundige interpretatie van symmetrische transformaties van \mathbb{R}^2 .
- 10. Bewijs de Spectraalstelling voor Hermitische matrices.
- 11. Formuleer en bewijs de Spectraalstelling voor symmetrische transformaties van V, waarbij V een eindigdimensionale inproductruimte is.
- 12. Zij $A \in \mathbb{R}^{n \times n}$ een diagonaliseerbare matrix en zij $\{v_1, v_2, \dots, v_n\}$ een basis van \mathbb{R}^n bestaande uit eigenvectoren van A. Juist of fout: indien er $i \neq j$ bestaan zodat $\langle v_i, v_j \rangle \neq 0$, dan is A niet symmetrisch.
- 13. Waarom definieert $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ geen in product in de vectorruimte van de integreerbare functies over [a, b]?
- 14. Zij $A, B \in \mathbb{R}^{2\times 3}$. Schrijf $\langle A, B \rangle$ uit Voorbeeld 5 op pagina 225 op in termen van de componenten van A en B.
- 15. Zij V een n-dimensionale Euclidische ruimte met inproduct $\langle \cdot, \cdot \rangle$ en zij β een orthonormale basis van V. Zij $v, w \in V$ en zij $co_{\beta}(v) = X$ en $co_{\beta}(w) = Y$. Toon aan dat $\langle v, w \rangle = \langle X, Y \rangle = X^{T}Y$, waarbij $\langle X, Y \rangle$ het standaard inproduct is van \mathbb{R}^{n} . Waar loopt het fout als β niet orthonormaal is?