- 1. (a) $f = \Theta(g)$. To verify this, we must prove that f = O(g) as well as $f = \Omega(g)$. First, when c = 2, $f(n) \le 2g(n)$ for all $n \ge 100$. Then when c = 1, $f(n) \ge g(n)$ for all $n \ge 0$;
 - (b) $n^{1/2} = O(n^{2/3})$. This is simply because $n^{\frac{1}{2}}$ is always smaller than $n^{2/3}$ no matter how small the c constant is, given that x is large enough.
 - (c) f = O(g). Since both f and $g = O(n \log n)$, f = O(g) and g = O(f) when c is changing.
 - (d) $f = \Theta(g)$. To verify this, we must prove that f = O(g) as well as $f = \Omega(g)$. As for 0, when c = 1, obviously, f(n) grows slower than g(n). Therefore, f = O(g). Similarly, when $f = \Omega(g)$, let's say c = 0.001. In this case $f(n) = n\log n$, c = 0.001 f(n) = 0.001
 - (e) $f = \theta(g)$. Since both of f and $g = O(n \log n)$, f = O(g) and g = O(f) when c is changing.
 - (f) $f = \theta(g)$. Since both of f and $g = O(n \log n)$, f = O(g) and g = O(f) when c is changing.
 - (g) $f(n) = \Omega(g)$. f can be simplified as $n^*n^{0.01}$ while $g = n^*(logn)^2$. In this way, we can find that $n^{0.01}$ is superior to log^2n . Therefore $f(n) = \Omega(g)$.
 - (h) If we multiply both f and g by logn/n, we have f = n and $g = (logn)^3$. And there is no doubt that a power function is superior to the cubic of a logarithmic function. Therefore, $f = \Omega(g)$
 - (i) Same as what is illustrated in the (h), $f = \Omega(g)$
 - (j) $f = \Omega(g)$. Since f(n) can be simplified as $f(n) = n^{\log \log n}$, f becomes a power function which means f always wins.
 - (k) f is a power function which means it always grows faster than g(n). Therefore, $f = \Omega(g)$
 - (l) g can be simplified as $g(n) = n^{\log_2 5} > f(n) = n^{1/2}$. Therefore, f = O(g).
 - (m) f = O(g). Since 2^n is dominated by 3^n with the definition of the exponential function.
 - (n) $f = \theta(n)$. Because f and g both $= 0(2^n)$.
 - (o) $f = \Omega(g)$. Because a factorial function grows much faster than an exponential function.
 - (p) f = O(g). Since f(n) can be simplified as $f(n) = n^{\log \log n}$, g(n) can be simplified as $n\log_2 n$, obviously f(n) grows faster than g(n).
 - (q) f = 0(g). Since $f = 1 + 2^k + 3^k + ... + n^k$. $g = n^k + n^k +(n \text{ times})$, f grows slower than g.
- 2. (a) $g(n) = (c^{n+1}-1)/(c-1)$. When n approaches the positive infinite, $\lim g(n) = 1/(1-c)$. And 1/(1-c) > 1. But if 1 * a constant c 1/(1-c) can be smaller than 1*c. Therefore $g(n) = \theta(1)$.
 - (b) when c = 1. $g(n) = n + 1 = \Theta(n)$
 - (c) when $c > 1 \lim_{n \to \infty} g(n) = c^{n+1}/(c-1) = \Theta(c^n)$
- 4. (a) Let's say a matrix A = a b c d, the other B = e f g h. In this case $A \times B = ae + bg$ af + bh ce + dg cd + dh. And we have done 4 additions and 8 multiplications. Thus proved. To calculate X^n , it takes n matrix multiplications.
 - (b) $X^n = X^{(n/2)} * X^{(n/2)}$ (n is even) $X^n = X * X^{(n/2)} * X^{(n/2)}$ (n is odd)

We can see that the whole process would take logn(n is even) or 1+logn(n is odd) multiplications. Therefore, O(logn) matrix multiplications suffice for computing X^n .