<u>Dashboard</u> / My courses / [S22]IR / Part 5. Advanced search topics / Quiz #3

Started on Monday, 11 April 2022, 9:12 AM

State Finished

Completed on Monday, 11 April 2022, 9:32 AM

Time taken 19 mins 55 secs

Grade 10.00 out of 10.00 (100%)

Question 1

Correct

Mark 1.00 out of 1.00

Mark all data structures which are suitable for non-vector representation of the data.

- a. Hierarchical clustering with k-Means
- b. annoy
- c. navigable small world
- d. vantage-point tree
- e. kd-tree

Your answer is correct.

The correct answers are: vantage-point tree,

navigable small world,

Hierarchical clustering with k-Means

- k-Means indeed does not require vector representation!
 - this is a metric graph, no vectors needed
 - Uses only distance and variance

Question 2			
Correct			
Mark 1.00 out of 1.00			
Match the statements about clustering techniques in the scope of search (hierarchical clusterin	g).		
Does not guarantee convex cluster form, which can lead to search recall loss.	DBSCAN		
	✓		
Is not a clustering technique.	k-NN		
	✓		
Can be considered as clustering technique. Forms convex partitions, but these partitions don't	Binary space partitioning		
form Voronoi diagram.	✓		
Even if guarantees convex cluster form, does not promise to make clusters balanced in items	L. A.A room		
count.	k-Means		
	•		
Your answer is correct.			
The correct answer is:			
Does not guarantee convex cluster form, which can lead to search recall loss.			
→ DBSCAN,			
Is not a clustering technique. → k-NN, Can be considered as clustering technique. Forms convex partitions, but these partition	os don't form Voronoi diagram		
Binary space partitioning, Even if guarantees convex cluster form, does not promise to make clu			
k-Means			
Question 3			
Correct			
Mark 1.00 out of 1.00			
Propose the best expansion to the query "cookie recipe". "Best" here refers to an idea, that rec	all grows (we get more relevant)		
without precision reduction (not together with garbage).	,		
a. +Trump			
b. +soup			
© c. +biscuit	~		
d. +monster			
G. FINOISIE			
Your answer is correct.			
If should not significantly influence the meaning, but expand document set, e.g. with synonyms.			
The correct answer is: +biscuit			

Question 4	
Correct	
Mark 2.00 out of 2.00	
	nd range search. You will store k=17-dimensional data in the index. Which We mean, that it can potentially answer exact NN queries faster than full
a. 100	
□ b. 10 000	
☑ c. 1 000 000	✓
☑ d. 100 000 000	~
if log2(N) < k, then remaining dimensions can unp	d thus utilizes ~log2(N) first dimensions of the vector for tree levels, predictably influence data distribution in leaf nodes. Ou should choose those, where tree will be deeper than 17 levels.
Mark 2.00 out of 2.00	
Vector index of <i>normed</i> embeddings can be stor which can predictably influence (distort) the Eucl a. random walks b. t-SNE c. random projections	red with a smaller memory footprint. For this you can apply some techniques, lidean distance metric. Mark all such techniques: random projections due to Johnson–Lindenstrauss lemma preserve Euclidean metric in (1-eps1+eps) range.
d. PCAe. power iterations method	
• f. scalar quantization	SQ is method, which discretizes separate dimensions to store them in a smaller data type. E.g. float32 will be stored in int8. This, obviously, adds some error to distance metric, but we can estimate the error as $\sqrt{d * (step)^2 + 2*step}$
g. product quantization	PQ is a technique which discretizes subvectors and replaces them with indices. This method allows to make even better compression than SQ.

Your answer is correct.

The correct answers are:

random projections, scalar quantization, product quantization

Question (
Mark 1.00	out of 1.00										
Mark c	ıll necessary cond	itions to buil	d Navi	igable Small \	World	index.					
a.	a. Nodes should be elements of vector space										
	Graph should be	connected	l								~
_ c.	. New nodes can never be inserted										
☑ d.	d. Nodes should be elements of metric space									~	
Your a	nswer is correct.										
Classic algorithm is based only on metric function , which can be applied to any pair of nodes. Even if vectors have few well-known metrics (cosine, Lx,), elements doesn't have to vectors. Strings + editorial distance is also ok.											
	construction is ba						_		issumed as a	continuation of	
	algorithm starts a		point,	thus graph sh	ould	be connecte	ed to	end successfully	for each que	ry.	
	rrect answers are: should be elemer		space) ,							
	should be connec										
	middle of XXth cer small world	ntury experir	1	l data showe		t human soc		better described		3 a group of	
scienti	sts proposed	navigable	e small	world	~	graphs. They	adde	ed a distance fur	 nction which	can be compute	ed
for any	pair of nodes. We	e call such g	ıraphs		me	tric		✓ . Moreover,	they require t	this graph to hav	⁄e
edges	between nodes w	vhich are clo	ose in r	netric space.	. This o	additional re	quirer	ment defines	pro	oximity	
	aphs. e of years later the chical navigable :		practi	cal propertie	s of th	ne data struc	cture d	and proposed			
Your a	nswer is correct.										
In the I than [r can be	rrect answer is: middle of XXth cer andom]. In 2013 a e computed for ar en nodes which a	group of sony pair of no	cientists des. W	s proposed [r /e call such g	navigo graph:	able small wo [metric]. Mo	orld] g	graphs. They ado er, they require t	led a distance his graph to h	e function which	
Couple world].	e of years later the	ey improved	practi	cal propertie	s of th	ne data struc	cture (and proposed [h	ierarchical no	vigable small	
◄ IR1	3. Image and vide	eo retrieval									
Jump	to										

<u>Data retention summary</u> <u>Get the mobile app</u>