Tutorial-7

Om Swostik

15.9(ii):

Assume for contradiction there exists a FO sentence F without = such that F doesn't satisfy any model with > 2 elements.

Let m be a model over $\{a,b\}$ such that $m \models F$. (with any signature)

Construct a model $m^{'}$ (over the same signature) such that $D_{m^{'}} = \{a, b, c\}$ and $m^{'}(x) = m(x)$

 $(\forall x \in FVars)$

And m'(c) = a, m' is identity over $\{a, b\}$.

If $f \in R$, $f_{m'}(l_1, ..., l_n)$ is true if $f_m(m'(l_1), ..., m'(l_n))$ holds. $(l_i \in \{a, b, c\})$

For
$$g \in F$$
, $g_{m'}(l_1, \dots, l_n) = g_m(m'(l_1), \dots, m'(l_n))$ $(l_i \in \{a, b, c\})$

(Basically replace all occurences of c with a)

Observe that, since we don't have =, $m' \models F$.

Contradiction. (since $|D_{m'}|=3$)

16.6:

This is a tricky problem. It is quite tempting to try \forall -elim n times and substitute the appropriate terms (wrt σ)

However, this approach fails as the following example shows:

Consider the formula $\forall x_1, x_2, x_3 \ x_1 = x_3$ and let $\sigma = [x_1 \to x_2, x_2 \to x_1]$

If we try to apply \forall -elim starting from x_1 and substituting each term (according to σ), we get the formula $x_1 = x_3$.

However, $F\sigma = (x_2 = x_3)$ (As x_2 doesn't occur in F)

A possible solution to this issue is the following:

We use extra variables $y_1, y_2 \dots y_n$ (y_i are fresh variables not in F and distinct from x_i)

If σ maps x_i to t_i , we replace all occurrences of x_i in t_i with y_i to create a new term t_i'

We apply \forall -elim on the x_i 's and replace with the corresponding terms t_i'

We obtain a formula F' which has some y_i 's occurring in it (we want to replace these y_i 's with x_i 's to obtain $F\sigma$)

Now apply \forall -intro for y_i 's in order, starting from y_1 (Why can we do this?)

Now, apply \forall -elim again (on the the universally quantified y_i 's) and replace each term with the corresponding x_i to get $F\sigma$ (Check that \forall -elim can be applied in this context)

With this, we get a proof of atmost 2n steps

16.8:

We will simulate \forall -elim using \exists -def and other proof rules t refers to any arbitrary term

- 1. $\Sigma \vdash \forall x F(x)$ (Premise)
- 2. $\Sigma \vdash \neg \exists x (\neg F(x))$ (\exists -def-1)
- 3. $\Sigma \cup \{\neg F(t)\} \vdash \neg F(t)$ (Associativity)
- 4. $\Sigma \cup \{\neg F(t)\} \vdash \exists x(\neg F(x))$ (\exists -intro-3)
- 5. $\Sigma \cup \{\neg F(t)\} \vdash \neg \exists x (\neg F(x))$ (Monotonicity-2)
- 6. $\Sigma \vdash \neg \neg F(t)$ (By-Contra-4-5)
- 7. $\Sigma \vdash F(t)$ (Double-neg-elim-6)

17.4.1:

1.
$$\phi \vdash R(s_1, s_2) \lor \neg R(s_1, s_2)$$
 (Tautology)

2.
$$\phi \vdash \exists w (R(s_1, s_2) \lor \neg R(w, s_2))$$
 (\exists -intro-1)

3.
$$\phi \vdash \forall z \exists w (R(s_1, s_2) \lor \neg R(w, z))$$
 (\forall -intro-2)