Particle Filtering over Sets

Aijun Bai

Mar 19, 2014

Outline

- ► The Problem
- ▶ The Approach
- Experimental Evaluation
- Future Work
- Conclusion and Discussion

The IMHT Problem

- Intention-Aware Multi-Human Tracking
 - Track multiple humans
 - Understand their motion intentions
- Human-Robot Interaction Tasks
 - Entering an elevator with human occupation
 - Following a human in crowded environments
 - Staying inside a team of moving humans

The Challenges

- Non-perfect human detectors
 - Inevitable false and missing detections
 - Can not distinguish different people
- Complex human dynamics
 - Dynamic number of humans
 - Unpredictable motion models
- The robot navigates from place to place
- Real-time constraints

The PFS Approach

- Hidden Markov Modelling
 - ▶ States: $S = \{h_i\}_{i=1:|S|}$, $h = (x, y, \dot{x}, \dot{y}, i, \rho)$ (or $h = (s, i, \rho)$ for short)
 - ▶ Observations: $O = \{(x_i, y_i)\}_{i=1:|O|}$
 - ▶ Motion model: $P(S' \mid S)$
 - ▶ Observation model: $P(O \mid S)$
- Particle filtering over sets
 - Observation function approximation
 - Particle refinement method
 - Kernel density estimation over sets
- Human identification process

A Set as a Random Variable

- Theorem
 - Let $S = \{X_i\}_{i=1:n}$
 - Observe $S = \{x_i\}_{i=1:n}$
 - $P(S) = \sum_{\sigma \in A_n} P(X_1 = x_{\sigma(1)}, X_2 = x_{\sigma(2)}, \dots, X_n = x_{\sigma(n)})$
 - A_n is the set of all permutations of $\{i\}_{i=1:n}$
- Example
 - Throw a dice for 3 times
 - Possible outputs:

$$\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{3,1\},\{1,2,3\}$$

►
$$P({1,2,3}) = P(1,2,3) + P(1,3,2) + \cdots = 3!P(1)P(2)P(3) = \frac{1}{36}$$

A Set as a Random Variable (cont'd)

- ► Corollary 1
 - $\mathcal{O} = \{o_i\}_{i=1:n}$
 - ▶ Sample without replacement for *k* times
 - ▶ Observe $S = \{o_{(i)}\}_{i=1:k}$
 - ▶ $P(S) = k! \frac{1}{n(n-1)\cdots(n-k+1)} = \frac{1}{\binom{n}{k}}$
- ► Corollary 2
 - Suppose $X \sim f_X(x)$
 - Let $S = \{X_i\}_{i=1:n}$, i.i.d. $X_i \sim f_X(x)$
 - Observe $S = \{x_i\}_{i=1:n}$
 - $P(S) = n! \prod_{1 \le i \le n} f_X(x_i)$

The Single Human Intention-Aware Motion Model

- Intention model
 - ▶ Select actions: $P(a \mid s, i)$
 - ▶ Change intentions: $P(i' \mid s, i)$
- Single human intention-aware motion function
 - ► $P(s', i' \mid s, i) = \sum_{a \in A} P(s' \mid s, a) P(a \mid s, i') P(i' \mid s, i)$
 - $P(s', i', \rho' \mid s, i, \rho) = \mathbf{1}[\rho' = \rho]P(s', i' \mid s, i)$ (1)

The Joint Intention-Aware Motion Model

- Number of humans follows a birth-death process
 - Birth rate λ per second
 - ▶ Death rate $|S|\mu$ per second
 - ightharpoonup Expected number of humans $\frac{\lambda}{|S|\mu}$
 - Expected survival time $\frac{1}{\mu}$
- Joint intention-aware motion function
 - ightharpoonup Current state S, and next state S'
 - ▶ Newly appearing human set $B \subseteq S'$
 - lacktriangle Newly disappearing human set $D\subseteq S$
 - Update time interval \(\tau \)

$$P(S' \mid S) = (\lambda \tau)^{|B|} e^{-\lambda \tau} \prod_{h \in B} P_b(h) \frac{(|S|\mu\tau)^{|D|} e^{-|S|\mu\tau}}{|D|!} \frac{1}{\binom{|S|}{|D|}} \cdot P(S' - B \mid S - D)$$

The Observation Model

- ▶ State S, and observation O
- Suppose no false and missing detections
- Let Ψ^O_S be the set of all possible assignments from S to O
- $P(O \mid S) = \sum_{\psi \in \Psi_S^O} \prod_{h \in S} P_o(\psi(h) \mid h)$ (2)

The Observation Model (cont'd)

- ▶ False and missing detections are mutually independent, following Poisson processes with parameters ν and $|S|\xi$ per second
- ▶ False detections $F = \{(x_i, y_i)\}_{i=1:|F|} \subseteq O$
- ▶ Missing detections $M = \{h_i\}_{i=1:|M|} \subseteq S$
- |O F| = |S M|
- Let $O \circ S = \{\langle F_i, M_i \rangle\}_{i=1:|O \circ S|}$ the set of all possible F-M pairs,
- $|O \circ S| = \sum_{0 \le i \le \min\{|O|, |S|\}} \binom{|O|}{i} \binom{|S|}{i} = \binom{|O| + |S|}{|O|}$ $P(O \mid S) = \sum_{i \le i \le \min} P(O F_i)$
- $P(O \mid S) = \sum_{\langle F, M \rangle \in O \circ S} P(O F \mid S M) \cdot (\nu \tau)^{|F|} e^{-\nu \tau} \prod_{o \in F} P_f(o) \frac{(|S|\xi \tau)^{|M|} e^{-|S|\xi \tau}}{|M|!} \frac{1}{\binom{|S|}{|M|}}$ (3)

Observation Function Approximation

- Assignment pruning
 - ► Convert probability densities $P_o(o \mid h)$ to costs $c(h, o) = -\log(P_o(o \mid h))$
 - ► Find the assignments in cost-increasing order by following Murty's algorithm [?]
 - Stop when the density ratio of the last assignment to the best assignment is lower than a threshold
- False-missing detection pruning
 - ▶ Let $P_F(F) = (\nu \tau)^{|F|} e^{-\nu \tau} \prod_{o \in F} P_f(o)$, and $P_M(M) = \frac{(|S|\xi \tau)^{|M|} e^{-|S|\xi \tau}}{|M|!} \frac{1}{\binom{|S|}{|M|}}$
 - ▶ Find F-M pairs $\langle F, M \rangle$ in $P_F(F)P_M(M)$ probability decreasing order until a threshold

Particle Filtering

- ▶ Propose: for $1 \le i \le |\mathcal{P}_{t-1}|$, draw samples from the proposal distribution $\hat{X}_t^{(i)} \sim \pi(\cdot \mid X_{t-1}^{(i)}, O_t)$
- ▶ Usually propose directly from motion model, $\pi(\cdot \mid X_{t-1}^{(i)}, O_t) = P(\cdot \mid X_{t-1}^{(i)})$