

Organización del Computador 1 Lógica Digital 1: circuitos combinacionales

Dr. Marcelo Risk

23 de agosto de 2022

Índice

Introducción

Álgebra de Boole

Circuitos

Bloques

Lógica digital

 La computadoras necesitan almacenar datos e instrucciones en memoria.

Sistema binario: solo dos estados posibles.

- ▶ ¿Por qué?
 - Es mucho más sencillo identificar entre solo dos estados.
 - Es menos propenso a errores

Diseño de circuitos

- Circuitos que operan con valores lógicos:
 - ▶ Verdadero = 1
 - ► Falso = 0

 Idea: realizar diferentes operaciones lógicas y matemáticas combinando circuitos.

Figura: George Boole (1815-1864).

 George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero / falso.

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero / falso.
 - ▶ on/off.

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero / falso.
 - ▶ on / off.
 - ► 1 / 0.

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero / falso.
 - ▶ on/off.
 - ► 1 / 0.
- ► Tres operadores:

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero / falso.
 - ▶ on / off.
 - ► 1 / 0.
- Tres operadores:
 - ► AND (y).

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero / falso.
 - ▶ on / off.
 - ► 1 / 0.
- Tres operadores:
 - ► AND (y).
 - ► OR (o).

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero / falso.
 - ▶ on / off.
 - ► 1 / 0.
- Tres operadores:
 - ► AND (y).
 - ► OR (o).
 - ► NOT (no).

- ► Las variables Booleanas **solo** pueden tomar los valores binarios: 1 ó 0.
- Una variable Booleana representa un bit.
- Este álgebra se presenta formalmente en la materia Lógica y Computabilidad, acá vamos a dar los conceptos prácticos para utilizarla en Lógica Digital.

- ► Las variables Booleanas **solo** pueden tomar los valores binarios: 1 ó 0.
- Una variable Booleana representa un bit.
- Este álgebra se presenta formalmente en la materia Lógica y Computabilidad, acá vamos a dar los conceptos prácticos para utilizarla en Lógica Digital.

Definición

bit: se popularizó como una abreviatura de Binary digIT.

Operadores básicos: AND

- Un operador booleano puede ser completamente descripto usando tablas de verdad.
- ► El operador **AND** es conocido como producto booleano (.). También se lo nota como ∧ (una letra 'v' invertida):

$egin{array}{cccccccccccccccccccccccccccccccccccc$	X	Y	X AND Y $(X \land Y)$
	0	0	0
$\begin{array}{ccc} 1 & 0 & & 0 \\ 1 & 1 & & 1 \end{array}$	0	1	0
1 1 1	1	0	0
	1	1	1

Operadores básicos: OR

► El operador **OR** es conocido como suma booleana (+). También se lo nota como ∨:

X	Y	$X \mathbf{OR} \ Y (X \lor Y)$
0	0	0
0	1	1
1	0	1
1	1	1

Operadores básicos: NOT

► El operador NOT se nota con una barra \overline{X} . Otra forma de notarlo es $\neg X$.

$X (\neg X)$
1
0

• Queremos hacer la tabla de verdad de esta función $F(x, y, z) = x\overline{z} + y$

► El **NOT** tiene mayor precedencia que el resto de los operadores

► El **AND** mayor precedencia que el **OR**

- Queremos hacer la tabla de verdad de esta función $F(x, y, z) = x\overline{z} + y$
- ► El **NOT** tiene mayor precedencia que el resto de los operadores
- El AND mayor precedencia que el OR

Comenzamos con la operación que tiene mayor precedencia:

1 .		.1.	-
\bar{x}	у	z	\overline{z}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Queremos hacer la tabla de verdad de esta función $F(x, y, z) = x\overline{z} + y$
- ► El **NOT** tiene mayor precedencia que el resto de los operadores
- El AND mayor precedencia que el OR

 $Seguimos\ resolviend \underline{o}\ el\ \textbf{AND}\ usando\ lo\ que\ recién\ calculamos$

, 10	uiiu	<i>-</i> ao		0 01
$x\overline{z}$	\overline{z}	z	у	x
0	1	0	0	0
0	0	1	0	0
0	1	0	1	0
0	0	1	1	0
1	1	0	0	1
0	0	1	0	1
1	1	0	1	1
0	0	1	1	1

- Queremos hacer la tabla de verdad de esta función $F(x, y, z) = x\overline{z} + y$
- ► El **NOT** tiene mayor precedencia que el resto de los operadores
- ► El **AND** mayor precedencia que el **OR**

Finalmente hacemos el OR

$x\overline{z} + y$	$x\overline{z}$	\overline{z}	z	у	\bar{x}
0	0	1	0	0	0
0	0	0	1	0	0
1	0	1	0	1	0
1	0	0	1	1	0
1	1	1	0	0	1
0	0	0	1	0	1
1	1	1	0	1	1
1	0	0	1	1	1

Propiedades

Identidad	1.A = A	0 + A = A
Nula	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inversa	$A.\overline{A}=0$	$A + \overline{A} = 1$
Conmutativa	A.B = B.A	A + B = B + A
Asociativa	(A.B).C = A.(B.C)	(A+B)+C=A+(B+C)
Distributiva	A+B.C=(A+B).(A+C)	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
de Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A}.\overline{B}$

Usando identidades booleanas podemos reducir esta función:

$$F(x, y, z) = (x + y).(x + \overline{y}).\overline{(x.\overline{z})}$$

$$(x+y).(x+\overline{y}).(\overline{x}+z)$$
 de Morgan

$$(x+y).(x+\overline{y}).(\overline{x}+z)$$
 de Morgan $(x.x+x.\overline{y}+y.x+y.\overline{y}).(\overline{x}+z)$ Distributiva

$$(x+y).(x+\overline{y}).(\overline{x}+z)$$
 de Morgan
 $(x.x+x.\overline{y}+y.x+y.\overline{y}).(\overline{x}+z)$ Distributiva
 $(x+x.\overline{y}+y.x+0).(\overline{x}+z)$ Idempotencia e inversa

$$(x+y).(x+\overline{y}).(\overline{x}+z)$$
 de Morgan
 $(x.x+x.\overline{y}+y.x+y.\overline{y}).(\overline{x}+z)$ Distributiva
 $(x+x.\overline{y}+y.x+0).(\overline{x}+z)$ Idempotencia e inversa
 $(x+x.(\overline{y}+y)).(\overline{x}+z)$ Nula y distributiva

$(x+y).(x+\overline{y}).(\overline{x}+z)$	de Morgan
$(x.x + x.\overline{y} + y.x + y.\overline{y}).(\overline{x} + z)$	Distributiva
$(x+x.\overline{y}+y.x+0).(\overline{x}+z)$	Idempotencia e inversa
$(x+x.(\overline{y}+y)).(\overline{x}+z)$	Nula y distributiva
$x.(\overline{x}+z)$	Inversa, identidad y nula

de Morgan
Distributiva
Idempotencia e inversa
Nula y distributiva
Inversa, identidad y nula
Distributiva

$(x+y).(x+\overline{y}).(\overline{x}+z)$	de Morgan
$(x.x + x.\overline{y} + y.x + y.\overline{y}).(\overline{x} + z)$	Distributiva
$(x+x.\overline{y}+y.x+0).(\overline{x}+z)$	Idempotencia e inversa
$(x+x.(\overline{y}+y)).(\overline{x}+z)$	Nula y distributiva
$x.(\overline{x}+z)$	Inversa, identidad y nula
$x.\overline{x} + x.z$	Distributiva
<i>x.z</i>	Inversa e identidad

Fórmulas equivalentes

- Varias fórmulas pueden tener la misma tabla de verdad:
 - Son lógicamente equivalentes.

- ► En general se suelen elegir las formas **canónicas**
 - Suma de productos:

$$F_1(x, y, z) = x.y + z.x + y.z$$

- Producto de sumas:
 - $F_2(x, y, z) = (x + y).(z + x).(y + z)$

Suma de productos

- Es fácil convertir una función a una suma de productos usando la tabla de verdad.
- ► Elegimos los valores que dan 1 y hacemos un producto (AND) de la fila (negando si aparece un 0)?
- ► Luego sumamos todo (OR):

	\boldsymbol{x}	y	z	$x\overline{z} + y$	
	0	0	0	0	
	0	0	1	0	
\rightarrow	0	1	0	1	←
\rightarrow	0	1	1	1	←
\rightarrow	1	0	0	1	←
	1	0	1	0	
\rightarrow	1	1	0	1	←
\rightarrow	1	1	1	1	←

$$F(x, y, z) = (\overline{x}y\overline{z}) + (\overline{x}yz) + (xy\overline{z}) + (xy\overline{z}) + (xyz)$$

Circuitos booleanos

 Las computadores digitales contienen circuitos que implementan funciones booleanas.

Cuando más simple la función más chico el circuito.

Circuitos booleanos

 Las computadores digitales contienen circuitos que implementan funciones booleanas.

Cuando más simple la función más chico el circuito.

Son más baratos, consumen menos, y ¡son mas rápidos!

 Podemos usar las identidades del álgebra de Boole para reducir estas funciones y hacer circuitos más simples.

¿Qué hay dentro?

- ► Ya vimos que hay dos valores: 1 (5V) y 0 (0V).
- Este circuito se comporta como una llave.
- Se mira lo qué ocurre en Vout (tensión de salida).
- Cuando la llave está cerrada, Vout está conectada con la tierra (GROUND - 0 V), tiene un 0 o False.
- Cuando la llave está abierta, Vout está desconectada y Vout tiene 5V o un 1 o True.

¿Qué hay dentro?

- ► Ya vimos que hay dos valores: 1 (5V) y 0 (0V).
- Este circuito se comporta como una llave.
- Se mira lo qué ocurre en Vout (tensión de salida).
- Cuando la llave está cerrada, Vout está conectada con la tierra (GROUND - 0 V), tiene un 0 o False.
- Cuando la llave está abierta, Vout está desconectada y Vout tiene 5V o un 1 o True.

Pero, ¿lo digital dónde está?

► El dispositivo del centro del circuito es un **transistor**, dispositivo que revolucionó nuestra historia en los años 70.

Pero, ¿lo digital dónde está?

- ► El dispositivo del centro del circuito es un **transistor**, dispositivo que revolucionó nuestra historia en los años 70.
- Se lo puede usar como amplificador de una señal (lo que entra en Vin).

Pero, ¿lo digital dónde está?

- ► El dispositivo del centro del circuito es un **transistor**, dispositivo que revolucionó nuestra historia en los años 70.
- Se lo puede usar como amplificador de una señal (lo que entra en Vin).
- También puede ser usado como una llave controlada por una señal.

Llave cerrada

► El transistor se satura (se lo conoce como *saturated state*) cuando se aplica un potencial suficientemente alto en Vin.

Llave cerrada

- ► El transistor se satura (se lo conoce como *saturated state*) cuando se aplica un potencial suficientemente alto en Vin.
- Durante esta condición el transistor actúa (casi) como si fuera un cortocircuito.
- Circula una corriente que depende de la resistencia.

Llave abierta

- El transistor está apagado (se lo conoce también como *cut-off* state cuando el potencial aplicado a Vin es 0V.
- En este estado, el transistor actúa como si fuera un circuito abierto.
- ► No hay circulación de corriente entre VCC y GROUND.

▶ Se mira la señal marcada en Out.

- Se mira la señal marcada en Out.
- ► Cuando se aplica un 1 en A, en la salida tenemos un 0.

- Se mira la señal marcada en Out.
- Cuando se aplica un 1 en A, en la salida tenemos un 0.
- Cuando se aplica un 0 en A, en la salida tenemos un 1.

- Se mira la señal marcada en Out.
- Cuando se aplica un 1 en A, en la salida tenemos un 0.
- Cuando se aplica un 0 en A, en la salida tenemos un 1.

Este circuito implementa la negación de una variable booleana.

Definición

Una **compuerta** es un dispositivo electrónico que produce un resultado en base a un conjunto de valores de entrada.

Definición

Una **compuerta** es un dispositivo electrónico que produce un resultado en base a un conjunto de valores de entrada.

En realidad, están formadas por uno o varios transistores, pero lo podemos ver como una unidad.

 Los circuitos integrados contienen colecciones de compuertas conectadas con algún propósito.

Las más simples: AND, OR, y NOT:

Se corresponden exactamente con las funciones booleanas que vimos.

- ► Una compuerta muy útil: el OR exclusivo => XOR.
- La salida es 1 cuando los valores de entrada difieren.

Implementación de funciones booleanas

 Combinando compuertas se pueden implementar funciones booleanas.

Este circuito implementa la siguiente función: $F(x, y, z) = x + \overline{y}z$

Ejemplo: función mayoría

Α	В	С	М
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Compuertas lógicas combinadas

- NAND y NOR son dos compuertas lógicas combinadas.
- Con la identidad de Morgan se pueden implementar con AND u OR.
- Son más baratas y cualquier operación básica se puede representar usándolas cualquiera de ellas (¡sin usar la otra!).

NAND y NOR

Ejemplos

- Not usando Nand: simplemente unir las dos entradas.
- Utilizando solo NAND o NOR se pueden realizar circuitos con la misma funcionalidad que el AND y OR.

Circuitos combinatorios

Producen una salida específica al (casi) instante que se le aplican valores de entrada.

Implementan funciones booleanas.

La aritmética y la lógica de la CPU se implementan con estos circuitos.

Sumador

- ¿Cómo podemos construir un circuito que sume dos bits X e Y?
- ► F(X, Y) = X + Y (suma aritmética)
- ightharpoonup ¿Qué pasa si X = 1 e Y = 1?

X	Y	Suma	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Semi-Sumador

- Podemos usar un XOR para la suma y un AND para el carry.
- ► A este circuito se lo llama semi-sumador (*half-adder*).

Sumador

Sumador: estructura interna

Sumador: estructura interna y tabla de verdad

X	Y	Ci	Suma	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sumador de 4 bits

Decodificadores

- Los decodificadores de n entradas pueden seleccionar una de 2ⁿ salidas.
- Son ampliamente utilizados.
- Por ejemplo:
 - Seleccionar una locación en una memoria a partir de una dirección colocada en el bus memoria.

Decodificadores: ejemplo

► Decodificador 2-a-4:

Multiplexores

- Selecciona una salida a de varias entradas.
- La entrada que es seleccionada como salida es determinada por las líneas de control.
- Para seleccionar entre n entradas, se necesitan log₂n líneas de control.
- Demultiplexor
 - Exactamente lo contrario al multiplexor.
 - Dada una entrada la direcciona entre n salidas, usando log2 n líneas de control.

Multiplexor: ejemplo

► Multiplexor 4-a-1:

Función mayoría

Α	В	С	М	l
0	0	0	0	l
0	0	1	0	l
0	1	0	0	l
0	1	1	1	l
1	0	0	0	l
1	0	1	1	l
1	1	0	1	l
1	1	1	1	l

Función mayoría con multiplexor

Ejemplo

- Construir una ALU de 1 bit.
- ▶ 3 entradas:
 - ► A, B, carry.
- ▶ 4 operaciones:
 - ► A.B, A+B, NOT B, Suma(A,B,Carry).
- ► Salidas:
 - Resultado, Carry out.

ALU de 1 bit

ALU de 8 bits

Memoria ROM

Entradas					Salidas							
I_4	I_3	I_2	I_1	I_0	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
1	1	1	1	0	0	1	1	1	0	1	0	1
1	1	1	1	1	0	0	1	1	0	0	1	1

ROM con decoder

