First Order Logic

Subhajit Roy subhajit@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~subhajit/cs202/

Where are we?

Syntax

First-Order Formula

First order term: $t := c \mid x$

First-Order Formula

First order term: $t := c \mid x$

First order formula:

$$\Phi := \textit{p}(\textit{t}_{1}, \textit{t}_{2}, \ldots, \textit{t}_{\textit{n}}) \mid \neg \Phi \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \exists \textit{x}_{1}, \textit{x}_{2}, \ldots \textit{x}_{\textit{n}}. \Phi \mid \forall \textit{x}_{1}, \textit{x}_{2}, \ldots \textit{x}_{\textit{n}}. \Phi$$

First-Order Formula

First order term: $t := c \mid x$

First order formula:

$$\Phi := \textit{p}(\textit{t}_1, \textit{t}_2, \ldots, \textit{t}_\textit{n}) \, | \, \neg \Phi \, | \, \Phi \land \Phi \, | \, \Phi \lor \Phi \, | \, \exists \textit{x}_1, \textit{x}_2, \ldots \textit{x}_\textit{n}. \Phi \, | \, \forall \textit{x}_1, \textit{x}_2, \ldots \textit{x}_\textit{n}. \Phi$$

Generally we always add a predicate for =(equality)

Predicates

Predicates are used to represent:

- Relations (R):
 - $p(x_1, x_2, ..., x_n) = T$ iff $(x_1, x_2, ..., x_n) \in \mathcal{R}$

Predicates

Predicates are used to represent:

- Relations (R):
 - $p(x_1, x_2, ..., x_n) = T$ iff $(x_1, x_2, ..., x_n) \in \mathcal{R}$
- Functions (F): relation in which each input has only one output.
 - $p(x_1, x_2, ..., x_n) = T$ iff $(x_1, x_2, ..., x_n) \in \mathscr{F}$

Predicates

Predicates are used to represent:

- Relations (R):
 - $p(x_1, x_2, ..., x_n) = T$ iff $(x_1, x_2, ..., x_n) \in \mathcal{R}$
- Functions (F): relation in which each input has only one output.
 - $p(x_1, x_2, ..., x_n) = T$ iff $(x_1, x_2, ..., x_n) \in \mathscr{F}$

The encoding is much nicer with relations and function than with raw predicates.

First order term

$$t := c \mid x \mid f(t_1, t_2, \ldots, t_n)$$

First order term

$$t := c \mid x \mid f(t_1, t_2, \dots, t_n)$$

Atomic formula

$$\alpha := r(t_1, t_2, \ldots, t_n) \mid t_1 = t_2$$

First order term

$$t := c \mid x \mid f(t_1, t_2, \ldots, t_n)$$

Atomic formula

$$\alpha := r(t_1, t_2, \ldots, t_n) \mid t_1 = t_2$$

First order formula

$$\Phi := \alpha \mid \neg \Phi \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \exists x_1, x_2, \dots x_n. \Phi \mid \forall x_1, x_2, \dots x_n. \Phi$$

First order term

$$t := c \mid x \mid f(t_1, t_2, \ldots, t_n)$$

Atomic formula

$$\alpha := r(t_1, t_2, \ldots, t_n) \mid t_1 = t_2$$

First order formula

$$\Phi := \alpha \mid \neg \Phi \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \exists x_1, x_2, \dots x_n. \Phi \mid \forall x_1, x_2, \dots x_n. \Phi$$

Then, (R, F, C) is a first order language where $r \in R$, $f \in F$ and $c \in C$.

Universe (Domain) of Discourse

- Set of elements are we are discussing about
- The quantifiers run over this set
- Intentional versus Extensional description of the domain:
 - Intentional: what properties that this domain holds (necessary and sufficient conditions)
 - Extensional: listing of all the elements in the set or a enumerative description that shows how the set can be constructed

Not all birds can fly

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$
 - $\exists x. \ B(x) \land \neg F(x)$
 - Universe of discourse: all creatures

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$
 - $\exists x. \ B(x) \land \neg F(x)$
 - Universe of discourse: all creatures
- Andy and Paul have the same paternal grandfather.

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$
 - $\exists x. \ B(x) \land \neg F(x)$
 - Universe of discourse: all creatures
- Andy and Paul have the same paternal grandfather.
 - $\forall x \forall y \forall u \forall v$. $(F(x,y) \land F(y,a) \land F(u,v) \land F(v,p) \rightarrow x = u)$ [Note the relation F(x,y) has no knowledge that y is the only father of x; so the following formulation says that "all grandfathers of Andy and Paul are same; using \exists would say that at least one grandfather of Andy and Paul are same: both formulations are correct with the implicit knowledge of a unique father.)

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$
 - $\exists x. \ B(x) \land \neg F(x)$
 - Universe of discourse: all creatures
- Andy and Paul have the same paternal grandfather.
 - $\forall x \forall y \forall u \forall v$. $(F(x,y) \land F(y,a) \land F(u,v) \land F(v,p) \rightarrow x = u)$ [Note the relation F(x,y) has no knowledge that y is the only father of x; so the following formulation says that "all grandfathers of Andy and Paul are same; using \exists would say that at least one grandfather of Andy and Paul are same: both formulations are correct with the implicit knowledge of a unique father.)
 - f(f(a)) = f(f(p)) (with functions, captures the knowledge that one has only one father)
 - Universe of discourse: all people

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$
 - $\exists x. \ B(x) \land \neg F(x)$
 - Universe of discourse: all creatures
- Andy and Paul have the same paternal grandfather.
 - $\forall x \forall y \forall u \forall v$. $(F(x,y) \land F(y,a) \land F(u,v) \land F(v,p) \rightarrow x = u)$ [Note the relation F(x,y) has no knowledge that y is the only father of x; so the following formulation says that "all grandfathers of Andy and Paul are same; using \exists would say that at least one grandfather of Andy and Paul are same: both formulations are correct with the implicit knowledge of a unique father.)
 - f(f(a)) = f(f(p)) (with functions, captures the knowledge that one has only one father)
 - Universe of discourse: all people
- Ann likes Mary's brothers

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$
 - $\exists x. \ B(x) \land \neg F(x)$
 - Universe of discourse: all creatures
- Andy and Paul have the same paternal grandfather.
 - $\forall x \forall y \forall u \forall v$. $(F(x,y) \land F(y,a) \land F(u,v) \land F(v,p) \rightarrow x = u)$ [Note the relation F(x,y) has no knowledge that y is the only father of x; so the following formulation says that "all grandfathers of Andy and Paul are same; using \exists would say that at least one grandfather of Andy and Paul are same: both formulations are correct with the implicit knowledge of a unique father.)
 - f(f(a)) = f(f(p)) (with functions, captures the knowledge that one has only one father)
 - Universe of discourse: all people
- Ann likes Mary's brothers
 - Ambigiuous! two possibilities:

- Not all birds can fly
 - $\neg(\forall x. \ B(x) \rightarrow F(x))$
 - $\exists x. \ B(x) \land \neg F(x)$
 - Universe of discourse: all creatures
- Andy and Paul have the same paternal grandfather.
 - $\forall x \forall y \forall u \forall v$. $(F(x,y) \land F(y,a) \land F(u,v) \land F(v,p) \rightarrow x = u)$ [Note the relation F(x,y) has no knowledge that y is the only father of x; so the following formulation says that "all grandfathers of Andy and Paul are same; using \exists would say that at least one grandfather of Andy and Paul are same: both formulations are correct with the implicit knowledge of a unique father.)
 - f(f(a)) = f(f(p)) (with functions, captures the knowledge that one has only one father)

7 / 32

- Universe of discourse: all people
- Ann likes Mary's brothers
 - Ambigiuous! two possibilities:
 - $\exists x. (B(x, m) \land L(a, x))$ (Mary likes one of several brothers)

• We can use first-order logic to describe the universe of discourse, like it forms a group under some operator

- We can use first-order logic to describe the universe of discourse, like it forms a group under some operator
- Group is a structure (G, op, ϵ)
 - op is associative;
 - ullet existence of a right-identity ϵ
 - existence of an right-inverse, i.e. for all $x \in G$ there exists a right inverse $y \in G$

- We can use first-order logic to describe the universe of discourse, like it forms a group under some operator
- Group is a structure (G, op, ϵ)
 - op is associative;
 - ullet existence of a right-identity ϵ
 - existence of an right-inverse, i.e. for all $x \in G$ there exists a right inverse $y \in G$
- $\forall x, y, z. \ op(op(x, y), z) = \forall x, y, z. \ op(x, op(y, z))$

- We can use first-order logic to describe the universe of discourse, like it forms a group under some operator
- Group is a structure (G, op, ϵ)
 - op is associative;
 - ullet existence of a right-identity ϵ
 - existence of an right-inverse, i.e. for all $x \in G$ there exists a right inverse $y \in G$
- $\forall x, y, z. \ op(op(x, y), z) = \forall x, y, z. \ op(x, op(y, z))$
- $\forall x. op(x, \epsilon) = x$

- We can use first-order logic to describe the universe of discourse, like it forms a group under some operator
- Group is a structure (G, op, ϵ)
 - op is associative;
 - ullet existence of a right-identity ϵ
 - existence of an right-inverse, i.e. for all $x \in G$ there exists a right inverse $y \in G$
- $\forall x, y, z$. $op(op(x, y), z) = \forall x, y, z$. op(x, op(y, z))
- $\forall x. op(x, \epsilon) = x$
- $\forall x \exists y. op(x, y) = \epsilon$

Precedence and associativity

- ¬, ∀y and ∃y bind most tightly;
- then \bigvee and \bigwedge ;
- ullet then \to , which is right-associative.

Syntax Tree for $\forall x (\neg \exists y p(x, y) \lor \neg \exists y p(y, x))$

Definition

- occurrence of x in ϕ is free (in ϕ) if
 - ullet it is a leaf node in the parse tree of ϕ , such that
 - there is no path upwards from that node x to a node $\forall x$ or $\exists x$.
- Otherwise, that occurrence of x is called bound.

Definition

- occurrence of x in ϕ is free (in ϕ) if
 - ullet it is a leaf node in the parse tree of ϕ , such that
 - there is no path upwards from that node x to a node $\forall x$ or $\exists x$.
- Otherwise, that occurrence of x is called bound.
- For $\forall x \ \phi$, or $\exists x \ \phi$, we say that ϕ minus any of ψ 's subformulas $\exists x \ \psi$, or $\forall x \ \psi$ is the scope of $\forall x$, respectively $\exists x$.

Definition

- occurrence of x in ϕ is free (in ϕ) if
 - ullet it is a leaf node in the parse tree of ϕ , such that
 - there is no path upwards from that node x to a node $\forall x$ or $\exists x$.
- Otherwise, that occurrence of x is called bound.
- For $\forall x \ \phi$, or $\exists x \ \phi$, we say that ϕ minus any of ψ 's subformulas $\exists x \ \psi$, or $\forall x \ \psi$ is the **scope** of $\forall x$, respectively $\exists x$.
- A formula that has no free variables is referred to as a closed formula.

Definition

- occurrence of x in ϕ is free (in ϕ) if
 - it is a leaf node in the parse tree of ϕ , such that
 - there is no path upwards from that node x to a node $\forall x$ or $\exists x$.
- Otherwise, that occurrence of x is called bound.
- For $\forall x \ \phi$, or $\exists x \ \phi$, we say that ϕ minus any of ψ 's subformulas $\exists x \ \psi$, or $\forall x \ \psi$ is the **scope** of $\forall x$, respectively $\exists x$.
- A formula that has no free variables is referred to as a closed formula.

$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

Substitution

Substitution

Given a variable x, a term t and a formula ψ we define $\psi[t/x]$ to be the formula obtained by replacing each *free* occurrence of variable x in ψ with t.

Substitution

Substitution

Given a variable x, a term t and a formula ψ we define $\psi[t/x]$ to be the formula obtained by replacing each *free* occurrence of variable x in ψ with t.

• Incorrect failure can lead to (binding) capture.

Substitution

Equality

$$t=t$$
 = i $t_1 = t_2$ $\phi[t_1/x]$ = e

Equality

$$t=t=i$$
 $t_1=t_2$ $\phi[t_1/x] = e$

Here equality does not mean syntactic, or intensional, equality, but equality in terms of computation results

Universal Quantification

Universal Quantification

Note the *scope* (shown by the box): the scope contains *local assumptions* and fresh variables, and hence the derived formulas and fresh variables are not valid/occur outside the proof

Existential Quantification

Existential Quantification

Note the *scope* (shown by the box): the scope contains *local assumptions* and fresh variables, and hence the derived formulas and fresh variables are not valid/occur outside the proof

- Proof system
 - Easy to prove something is valid (show a proof for it)
 - Difficult to prove that something is not valid (maybe you are just not able to construct a proof
 - For satisfiability, easy to prove contradictions (give proof of $\neg \phi$)
- Semantics
 - Easy to prove something is not valid (show a falsifiable interpretation)
 - Difficult to prove that something is valid (need to show all interpretations are satisfiable)
 - For satisfiability, easy to prove satisfiability (show the satisfiable interpretations)

- Proof system
 - Easy to prove something is valid (show a proof for it)
 - Difficult to prove that something is not valid (maybe you are just not able to construct a proof
 - For satisfiability, easy to prove contradictions (give proof of $\neg \phi$)
- Semantics
 - Easy to prove something is not valid (show a falsifiable interpretation)
 - Difficult to prove that something is valid (need to show all interpretations are satisfiable)
 - For satisfiability, easy to prove satisfiability (show the satisfiable interpretations)

So, both are important!

Semantics

Interpretation

Given a set of formulas U with a set of relations R, set of functions F and a set of constants C, an interpretation $\mathscr I$ is a four tuple $(D,r_1^{\mathscr I},r_2^{\mathscr I},\ldots,r_n^{\mathscr I}\in R^{\mathscr I},f_1^{\mathscr I},f_2^{\mathscr I},\ldots,f_m^{\mathscr I}\in F^{\mathscr I},c_1^{\mathscr I},c_2^{\mathscr I},\ldots,c_l^{\mathscr I}\in C^{\mathscr I})$, where

- D is the domain of discourse
- For each relation symbol, $r_i \in R$, there exists a <u>concrete</u> relation $r_i^{\mathscr{I}} \in R^{\mathscr{I}}$ (of same arity)
- For each function symbol, $f_i \in F$, there exists a <u>concrete</u> function $f_i^{\mathscr{I}} \in F^{\mathscr{I}}$ (of same arity)
- For each function symbol, $c_i \in C$, there exists a <u>concrete</u> constant $c_i^{\mathscr{I}} \in C^{\mathscr{I}}$

Valuations

• Valuations/satisfact of a first-order formula on an interpretation $\mathscr I$ only makes sense for a closed formula: $\mathscr I \vDash \phi$

Valuations

- Valuations/satisfact of a first-order formula on an interpretation $\mathscr I$ only makes sense for a closed formula: $\mathscr I \vDash \phi$
- For open formula, we also need to consider an environment Γ, where Γ: x → v (mapping of free variables to values in the universe of discourse)
 - $\mathscr{I} \models_I \phi$, $I \in \Gamma$ can now be questioned.

Valuations

- Valuations/satisfact of a first-order formula on an interpretation $\mathscr I$ only makes sense for a closed formula: $\mathscr I \vDash \phi$
- For open formula, we also need to consider an environment Γ, where Γ: x → v (mapping of free variables to values in the universe of discourse)
 - $\mathscr{I} \models_I \phi$, $I \in \Gamma$ can now be questioned.
- For simplicity, we will only restrict overselves to closed formulas

Example: State Transition System

Given
$$\mathscr{I} = (\{a, b, c\}, \{\{(a, a), (a, b), (a, c), (b, c), (c, c)\}, \{b, c\}\}, \{(a, b), (b, c), (c, a)\}, \{(a, b), (a, c), (c, a)\}, \{(a, b), (c, a)\}, \{$$

Example: State Transition System

Given $\mathscr{I} = (\{a, b, c\}, \{\{(a, a), (a, b), (a, c), (b, c), (c, c)\}, \{b, c\}\}, \{(a, b), (b, c), (c, a)\}, \{(a, b), (b, c), (c, a)\}, \{(a, b), (a, c), (c, c)\}, \{(a, b), (c, c), (c, c)\}, \{(a, c), (c, c), (c, c), (c, c), (c, c)\}, \{(a, c), (c, c), (c, c), (c, c), (c, c)\}, \{(a, c), (c, c), (c, c), (c, c), (c, c)\}, \{(a, c), (c, c), (c, c), (c, c), (c, c)\}, \{(a, c), (c, c), (c, c), (c, c), (c, c)\}, \{(a, c), (c, c)$

- $D = \{a, b, c\}$ (states)
- There are two relations, $R^{\mathscr{I}} = \{r_1^{\mathscr{I}}, r_2^{\mathscr{I}}\}:$
 - $r_1^{\mathscr{I}} = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$ (transition relation)
 - $r_2^{\mathscr{I}} = \{b, c\}$ (a uninary relation, i.e. a set) (final states)
- There is one function, $F^{\mathscr{I}} = \{f_1^{\mathscr{I}}\}$ (additional "failure" function)
 - $f_1^{\mathscr{I}}(a) = b$; $f_1^{\mathscr{I}}(b) = c$; $f_1^{\mathscr{I}}(c) = a$;
- There are two constants: $C^{\mathscr{I}} = \{a, b\}$ (initial states)

Check on \mathscr{I}

- $\exists y. R(i, y)$
- ¬F(i)
- $\forall x, y, z \ (R(x, y) \rightarrow R(x, z) \rightarrow y = z)$
- $\forall x \exists y. \ R(x,y)$

Ground Terms

- A ground term is a term which does not contain any variables.
- A ground atomic formula is an atomic formula, all of whose terms are ground.
- A ground literal is a ground atomic formula or the negation of one.
- A ground formula is a quantifier-free formula, all of whose atomic formula are ground.
- A is a ground instance of a quantifier free formula A' iff it can be obtained from A' by substituting ground terms for the (free) variables in A'.

Theorem: The set of ground terms is countable.

Proving Semantic Consequence

Harder than propositional logic (building truth tables)—needs argument on sets (1-ary relations), relations and functions

Proving Semantic Consequence

Harder than propositional logic (building truth tables)—needs argument on sets (1-ary relations), relations and functions

$$\forall x (P(x) \rightarrow Q(x)) \vDash \forall x P(x) \rightarrow \forall x Q(x)$$

- Let $\mathcal M$ be a model of $\forall x(P(x) \to Q(x))$; need to show it is a model of $\forall x P(x) \to \forall x Q(x)$
- Case I: all $x \in P$
 - then, all $x \in Q$ (from $\forall x (P(x) \rightarrow Q(x))$)
- Case II: let some $x_0 \notin P$
 - then, $\forall x P(x)$ is false, so \mathcal{M} satisfies.

Proving Semantic Consequence

- $\forall x P(x) \rightarrow \forall x Q(x) \vDash \forall x (P(x) \rightarrow Q(x))$
 - Let $\mathcal M$ be a model of $\forall x P(x) \to \forall x Q(x)$; need to show it is a model of $\forall x (P(x) \to Q(x))$
 - Case I: if all $x_0 \in P$, then for all $x_0 \in Q$. Consequent holds.
 - Case II: if there is some x ∉ P, the premise is vacously true asseting no constraints, allowing sets P and Q to be arbitrarily. Let is create counterexample: ({a, b}, {{a}, {b}}, {}, {a, b}).

Soundness and Completeness

Natural Deduction is sound and complete with respect to first order semantics as described above.

Compactness

Compactness Theorem

Let Γ be a set of sentences in predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ .

Proof

- proof by contradiction
- let all finite subsets of Γ are satisfiable and Γ is not satisfiable
- then, $\Gamma \vDash \bot$ (Γ can have infinite premises)
- by completeness, $\Gamma \vdash \bot$
- so there exists a proof for $\Gamma \vdash \bot$
- ullet a proof implies that it can use only a finite premises, say some Δ (Δ is finite)
- so, ∆ ⊢ ⊥
- by soundness, $\Delta \vDash \bot$

Application of Compactness

Reachability

Reachability is not expressibe in predicate logic

Proof

- ullet Let there be such a first order formula ψ
- $\Phi_0 \stackrel{\text{def}}{=} c = c'; \ \phi_1 = R(c, c');$ $\Phi_n \stackrel{\text{def}}{=} \exists x_1, x_2, \dots x_{n-1} (R(c, x_1) \land R(x_1, x_2) \land \dots \land R(x_{n-1}, c'))$
- here, interpretations are graphs
- Φ_n : there exists a path of length n
- Let $\Delta = \{\neg \Phi_i | i \ge 0\} \cup \{\psi[c/u][c'/v]\}$
- Δ : there does not exist a path of length 1, 2, ... but a finite path from c to c'
- But, every finite subset is satisfiable
- Λ is unsatisfiable Subhajit (subhajit)

Application of Compactness

Reachability

Reachability is not expressibe in predicate logic

Proof

- ullet Let there be such a first order formula ψ
- $\Phi_0 \stackrel{\text{def}}{=} c = c'; \ \phi_1 = R(c, c');$ $\Phi_n \stackrel{\text{def}}{=} \exists x_1, x_2, \dots x_{n-1} (R(c, x_1) \land R(x_1, x_2) \land \dots \land R(x_{n-1}, c'))$
- here, interpretations are graphs
- Φ_n : there exists a path of length n
- Let $\Delta = \{\neg \Phi_i | i \ge 0\} \cup \{\psi[c/u][c'/v]\}$
- Δ : there does not exist a path of length 1, 2, ... but a finite path from c to c'
- But, every finite subset is satisfiable
- Λ is unsatisfiable Subhajit (subhajit)

Normal Forms

PCNF (prenex conjunctive normal form)

$$Q_1x_1Q_2x_2\dots Q_nx_nM$$

- $Q_1x_1Q_2x_2...Q_nx_n$ is prefix
- M is the matrix

Clausal form

$$Q_1x_1Q_2x_2\dots Q_nx_nM$$

- If all Q_i in prefix is universal quantification,
- M is written as CNF

then formula can we written as a list of clauses.

Skolem's Theorem

Skolem's Theorem

For a closed formula A, there exists a clausal form such that $A \approx A'$ (\approx is equisat)

Skolem's Theorem

Skolem's Theorem

For a closed formula A, there exists a clausal form such that $A \approx A'$ (\approx is equisat)

Skolemization

For a closed formula $\exists x A(x, y)$, $\exists x A = A[f(y)/x]$

- $\forall x \exists y p(x, y)$: for all x, produce a y such that p(x,y) holds
- f(y): produces one such value of x (for a given y) for which p(x,y) holds
- so, equisat (not all interpretations are retained) but not equivalent

Skolemization Algorithm

$$\forall x(p(x) \rightarrow q(x)) \rightarrow (\forall xp(x) \rightarrow \forall xq(x))$$

Rename bound variables

$$\forall x(p(x) \rightarrow q(x)) \rightarrow (\forall yp(y) \rightarrow \forall zq(z))$$

- ullet Transform to only \vee and \wedge
 - $\neg \forall x (\neg p(x) \lor q(x)) \lor (\neg \forall y p(y) \lor \forall z q(z))$
- Push negations inside

$$\exists x (p(x) \land \neg q(x)) \lor \exists y \neg p(y) \lor \forall z q(z)$$

- Extract quantifiers from matrix (out to in)
 - $\exists y \exists x \forall z (p(x) \land \neg q(x)) \lor \neg p(y) \lor q(z))$
- Skolemization (add functions with arguments for universal quantifier outside it)
 - $\exists y \exists x \forall z (p(x) \land \neg q(x)) \lor \neg p(y) \lor q(z))$
 - No, universal quantifier outside existentials: $\forall z(p(a) \land \neg q(a)) \lor \neg p(b) \lor q(z))$
 - $\forall z \exists y \exists x (p(x) \land \neg q(x)) \lor \neg p(y) \lor q(z))$
 - universal quantifier outside existentials is z:

$$\forall z(p(f(z)) \land \neg q(f(z))) \lor \neg p(g(z)) \lor q(z))$$

Herbrand Models

- cannonical interpretations for set of models
- if a set of clauses has a model, it has a Herbrand model.

Herbrand Models

- cannonical interpretations for set of models
- if a set of clauses has a model, it has a Herbrand model.

Herbrand Universe

- $a_i \in C$, then $a_i \in H_s$
- $f_i \in F$, $t_i \in H_s$, then $f_i(t_1, t_2, \dots, t_n) \in H_s$

Herbrand Models

- cannonical interpretations for set of models
- if a set of clauses has a model, it has a Herbrand model.

Herbrand Universe

- $a_i \in C$, then $a_i \in H_s$
- $f_i \in F$, $t_i \in H_s$, then $f_i(t_1, t_2, \dots, t_n) \in H_s$

Herbrand Base

set of ground atomic formulae that can be formed from predicate symbols in S and terms in $H_{\rm S}$

A relation over Herbrand universe is simply a subset of Herbrand base.

Herbrand's Theorem

A set of clauses S is unsatisfiable if and only if a finite set of ground instances of clauses of S is unsatisfiable.

Herbrand's Theorem

A set of clauses S is unsatisfiable if and only if a finite set of ground instances of clauses of S is unsatisfiable.

Gives a semi-decision procedure to solve first order satisfiability/validity.