De 'branch' en 'branch'

Récupération d'un FW d'ECU sur mémoire FAT "nettoyée"

Philippe AZALBERT - <u>@Phil_BARR3TT</u>

Quarkslab

- Analyse en boîte noire d'un calculateur additionnel d'auto-partage
- ► 1 seul équipement disponible pour l'audit

Analyse hardware : microcontrôleur STM32F7

- Puce principale : STM32F7
 - ► Architecture : Cortex M7 216 MHz
 - 2 Mo Flash
 - ▶ 512 Ko RAM
 - Connectivités CAN, LIN, USB
- Package BGA 176
- ► Accès de debug propriétaire **SWD**

Analyse hardware : recherche des ports SWD

STM32F7: protection RDP

Figure 8. Example of RDP protections (STM32L4 series)

Analyse hardware, round 2 : mémoire eMMC

SD Card Pin-out Configuration

Pin 1	DAT2
Pin 2	DAT3
Pin 3	CMD I/O
Pin 4	GND
Pin 5	VDD
Pin 6	CLK
Pin 7	GND
Pin 8	DAT0
Pin 9	DAT1

Pin	Signal	Description
1	Data2	Data signal 1
2	Data3	data signal 2
3	CMD I/O	input and output command
4	GND	supply voltage negative
5	VDD	supply voltage positive
6	CLK	clock signal
7	GND	supply voltage negative
8	Data0	data signal 0
9	Data1	data signal 1

Extraction de la mémoire eMMC

- Connexion d'un adaptateur SD sur les pins
 - VCC/GND
 - CMD
 - ► CLK
 - ▶ DATO
- Arrêt du STM32F7 via le debug SWD

Analyse de la mémoire

- 3 partitions FAT16
 - ► MAIN
 - EVENTS
 - LOGS
- Aucun autre résultat d'intérêt avec unblob ou binwalk
- La partition **MAIN** semble être utilisée pour les mises à jour, via le dossier **UPDATE**

Recherche d'instructions ARM

\$ binwalk -A dump.bin				
DECIMAL	HEXA	DESCRIPTION		
377182 400790 1298808 1481976 1575914 1576006 1576282 2202406	0x5C15E 0x61D96 0x13D178 0x169CF8 0x180BEA 0x180C46 0x180D5A 0x219B26	ARM instructions, function prologue		
	ONE TO DE O	The mondone, falleden prolegae		

Reverse: 1er essai

				LAB	0007e03c		XREF[1]:	0007e02e(j)
0007e03c	04	a8			add	r0.sp.#0x10		-
0007e03e	a9	f0	06	fb	bl	WAVE_000ea800+249422		
000/e042	04	46			mov	r4, r0		
				LAB	0007e044		XREF[1]:	0007e03a(j)
0007e044	32	0d			lsrs	r2, r6, #0x14		-
0007e046	03	d0			beg	LAB 0007e050		
0007e048	01	20			movs	r0,#0x1		
0007e04a	60	f3	1f	55	bfi	r5, r0, #0x14, #0xc		
0007e04e	05	e0			b	LAB_0007e05c		
				LAB	0007e050		XREF[1]:	0007e046(j)
0007e050	02	a8			add	r0, sp, #0x8		
0007e052	a9	f0	fc	fa	bl	WAVE 000ea800+249422		
0007e056	02	46			mov	r2, r0		
0007e058	dd	e9	02	75	ldrd	r7, r5, [sp,#local_38]		
				LAB	0007e05c		XREF[1]:	0007e04e(j)
0007e05c	a2	42		_	cmp	r2, r4		

- Un système de fichiers FAT se compose de :
 - Volume Boot Record (VBR)
 - ► 1+ File Allocation Table (FAT)
 - Root Directory
 - Data Area
- Concept de sectors et clusters
- Un fichier est stocké sur un ou plusieurs clusters

Volume Boot Record

- 1er sector d'une partition FAT
- Spécifie notamment la taille d'un sector et d'un cluster
 - Sector: 512 octets (0x0200)
 - Sector per cluster : 8
- ► Magic `Ox55 OxAA` en fin de VBR

```
0001:F800 E9 00 00 4D 53 57 49 4E 34 2E 31 00 02 08 1 00 6..MSWIN4.1....
0001:F820 DD E9 04 00 80 00 29 67 45 23 01 4E 4F 20 4E 41 Yé...) qE#.NO NA
0001:F830 4D 45 20 20 20 20 46 41 54 31 36 20 20 20 00 00 ME
```

File Allocation Table

- Permet de lier les différents clusters utilisés par un fichier, 2 octets / cluster en FAT16
- Valeurs spéciales
 - 0x0000 : cluster non utilisé
 - ► 0xFFF7 : erreur
 - OxFFF8 OxFFFF : dernier cluster du fichier

Root Directory

Q

- Liste les dossiers et fichiers stockés à la racine
- Format historique Short File Name (SFN) sur 32 octets, nom de 8 caractères ASCII et extension de 3 caractères
- ► Format Long File Name (LFN) pour accepter plus de 8 caractères et les jeux de caractères étendus
- Un fichier devant être effacé voit son premier caractère remplacé par **0xE5**

Bytes	Purpose	
0	First character of file name (ASCII) or allocation status (0x00=unallocated, 0xe5=deleted)	
1-10	Characters 2-11 of the file name (ASCII); the "." is implied between bytes 7 and 8	
11	File attributes (see File Attributes table)	
12	Reserved	
13	File creation time (in tenths of seconds)*	
14-15	Creation time (hours, minutes, seconds)*	
16-17	Creation date*	
18-19	Access date*	
20-21	20-21 High-order 2 bytes of address of first cluster (C for FAT12/16)*	
22-23	Modified time (hours, minutes, seconds)	
24-25	Modified date	
26-27	Low-order 2 bytes of address of first cluster	
28-31	File size (0 for directories)	

File Attributes		
Flag Value	Description	
0000 0001 (0x01)	Read-only	
0000 0010 (0x02)	Hidden file	
0000 0100 (0x04)	System file	
0000 1000 (0x08)	Volume label	
0000 1111 (0x0f)	Long file name	
0001 0000 (0x10)	Directory	
0010 0000 (0x20)	Archive	

* Bytes 13-22 are unused by DOS

000000000 | 54 45 53 54 46 49 4c 45 42 49 4E 20 00 00 10 75 | TESTFILEBINufw...\$...

Analyse forensic - recherche des fichiers effacés

- Analyse des entrées de la File Allocation Table
- ► Recherche de l'octet **0xE5** dans les **SFN**

Réorientation de notre recherche

- Tout ou partie du firmware semble présent dans différents clusters
- ▶ **Objectif #1** : comment identifier des clusters contenant des parties du firmware
- ▶ **Objectif #2** : comment ordonner les fragments

'Prologue' d'une récupération

- Des valeurs aléatoires peuvent produire des opcodes ARM valides , comment déterminer que le contenu d'un cluster est bien une partie de notre firmware ?
- ▶ Solution : rechercher une succession d'épilogue et de prologue typique des fonctions
 - pop push
 - pop branch
 - pop [ldr/sub/add] r3

Automatisation de la recherche avec Capstone


```
#!/usr/bin/python3
from capstone import *
def cluster_contains_valid_pattern(cluster_data):
 base addr = 0x00200000
 md = Cs(CS ARCH ARM, CS MODE THUMB)
 found pattern = Faise
 got_pop = False
 for instr in md.disasm(cluster_data,base_addr):
  ii "pop" in instr.mnemonic.
   got pop = True
   prev_mnemonic = instr.mnemonic + " " + instr.op_str
  elif ("push" in instr.mnemonic or "b." in instr.mnemonic or "r3" in instr.op_str) and got_pop == True:
   got pop = False
   found_pattern = f"{instr.address:#08x} {prev_mnemonic}; {instr.mnemonic} {instr.op_str}"
   break
  else:
   got_pop = False
 return found pattern
```

Résultat de la recherche


```
$ ./fat explorer.py --decompile-all
MSWIN4.1 - sector: 512 bytes - cluster: 8 sectors
 Start address: 0x0000f800
 FAT0: 0x0000fa00 [158 sectors]
 FAT1: 0x00023600 [158 sectors]
 Root: 0x00037200 [16384 bytes]
 Data: 0x0003b200
Cluster #20:
0x2008c8 pop {r4, r5, r6, pc}; ldrb.w r3, [sp, #0x19]
Cluster #21:
 0x2005fe pop.w {r4, r5, r6, r7, lr}; b.w #0x26d420
Cluster #22:
 0x20056c pop.w {r4, r5, r6, lr}; b.w #0x200086
Cluster #24:
0x2001e8 pop {r4, r5, r6, r7}; b.w #0x1ffda4
Cluster #26:
0x200702 pop.w {r3, r4, r5, lr}; b.w #0x267920
```

19

Recherche de liens entre deux clusters

 Exploitation des instructions "branch link" pour identifier des sauts vers une même fonction entre différents clusters

Code repartition in clusters:

Etablissement d'une liste de relations

Pondération des résultats

▶ Plus un cluster a d'appels à une même fonction, plus son poids sera élevé

Repositionnement des clusters

- ▶ 1 Position de départ du cluster avec le poids le plus élevé au ¾ du nombre de clusters non-nuls
- 2 Positionnement des clusters partageant les mêmes appels via la liste de relations
- 3 Identification du cluster ayant le poids le plus élevé parmis les derniers positionnés pour répéter l' étape 2

Relation list		
cluster	Higher Weight V	
A	34	
E	26	
С	24	
	•••	

Corrections et vérifications manuelles

\$./fat_explorer.py --decompile-all --compute-branch MSWIN4.1 - sector: 512 bytes - cluster: 8 sectors

Start address: 0x0000f800

FAT0: 0x0000fa00 [158 sectors] FAT1: 0x00023600 [158 sectors] Root: 0x00037200 [16384 bytes]

Data: 0x0003b200

positioning clusters from branches:

> 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 355, 47, 48, 49, 50, 51, 710, 53, 54, 55, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, -1, 318, -1, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 492, 335, 336, 337, 338, 339, 340, 341, 493, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, -1, 62, 357, 358, -1, -1, -1, -1, 60, 179, -1, 366, 367, 368, 369, -1, 371, 358, 373, 374, 361, 362, 377, 378, 365, 208, 142, 393, 397, 401, 71, 407, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, -1, 382, -1, 375, 433, 434, -1, 436, 437, 438, 439, 440, 441 [...]

Reverse: 2ème essai


```
)260 2d e9 f0 4f
                           push
                                         {r4, r5, r6, r7, r8, r9, r10, r11, lr}
)264 b2 f5 c0 7f
                           cmp.w
                                         param_3,#0x180
)268 ad f5 49 7d
                           sub.w
                                         sp, sp, #0x324
)26c 01 90
                           str
                                         param_1,[sp,#local_344]
126e 00 f2 d6 80
                                         LAB 0809041e
                           bhi.w
272 16 46
                                         r6, param 3
                           mov
)274 Oc 46
                                         r4, param 2
                           mov
)276 4f f4 d0 72
                                         param 3,#0xla0
                           mov.w
)27a 00 21
                                         param 2,#0x0
                           movs
)27c 60 a8
                           add
                                         param 1, sp, #0x180
)27e 66 ad
                           add
                                         r5, sp, #0x198
)280 20 fo 45 fd
                           bl
                                                                                                      void * memset(void * s, in
                                         memset
)284 la a8
                           add
                                         param 1, sp, #0x68
)286 fb f7 59 f9
                           bl
                                         mbedtls aes init
                                                                                                      undefined mbedtls aes init(v
)28a 21 46
                                         param 2, r4
                           mov
)28c 33 0a
                           lsrs
                                         r3, r6, #0x8
)28e 00 24
                                         r4,#0x0
                           movs
1290 32 46
                                         param 3,r6
                           mov
1292 28 46
                                         param 1,r5
                           mov
1294 8d f8 92 31
                           strb.w
                                         r3, [sp,#local 1b6]
1298 30 23
                                         r3,#0x30
                           movs
129a 8d f8 93 61
                           strb.w
                                         r6, [sp,#local 1b5]
129e 8d f8 97 31
                           strb.w
                                         r3,[sp,#local lb1]
)2a2 8d f8 90 41
                           strb.w
                                         r4, [sp,#local 1b8]
)2a6 8d f8 91 41
                           strb.w
                                         r4, [sp,#local_lb7]
)2aa 2d f0 96 f8
                           bl
                                                                                                      void * memcpy(void * dest,
                                         memcpy
)2ae 80 22
                                         param 3,#0x80
                            MOVS
)2b0 23 46
                                         r3, r4
                           mov
```

Merci!

Thank you

Contact information:

Email:

contact@quarkslab.com

Phone:

+33 1 58 30 81 51

Website:

www.quarkslab.com

@quarkslab

Quarkslab