CSCI 301 M2 Homework

Bo Sullivan

April 16, 2020

Collaboration statement: By submitting this assignment, I am attesting that this homework is in full compliance with the course's https://www.instructure.com/courses/1340003/pages/academic-dishonesty-guidelines Homework Collaboration Policy and with all the other relevant academic honesty policies of the course and university. I discussed this homework with no one and wrote this solution without input from anyone else.

- 1. (a) x < y is not a statement because we do not know the values of x or y thus making it impossible to establish if it is true or false.
 - (b) x < y or x > y is not a statement for the same reason as (a). We do not know the values of x or y thus establishing true or false would be impossible.
 - (c) All... course can be equated to either true or false, so this is a statement.
 - (d) Every...one student can also be equated to either true or false, thus it is a statement.
 - (e) There exists ...cos(x) > 2 is a statement in which we can pick or find an x value to satisfy cos(x) > 2, making this a statement.
 - (f) Every ... than x. This is not a statement as we do not know the value of x to establish if any y > 0 is larger than it.
- 2. (a) $(P \vee Q) \rightarrow (Q \wedge R)$
 - (b) $P \rightarrow \neg R$
 - (c) $P \wedge (Q \vee R)$
 - (d) $(P \wedge Q) \rightarrow R$
- 3. (a)

p	q	$\neg p \rightarrow q$
T	T	F
T	F	T
F	T	F
F	F	F

(b)

p	q	r	$(p \rightarrow q) \lor r$
T	\overline{T}	T	T
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	T
F	F	T	T
F	F	$\mid F \mid$	T

(c)

p	q	r	$(p \to q) \land (p \to r)$
T	T	T	T
T	T	F	F
T	F	T	F
T	F	F	F
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	T

(d)

p	q	r	$(p \to q) \leftrightarrow (p \to r)$
T	T	T	T
T	T	F	F
T	F	T	F
$\mid T$	F	F	T
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	T

4.

$\neg (p \to q)$	$p \land \neg q$	$\neg (\neg p \lor q)$	$\neg q \to \neg p$
F	F	F	T
T	T	T	F
F	F	F	T
F	F	F	T

As you can see $\neg q \to \neg p$ is different per truth tables.

- 5. (a) There exists a person x for every person y where x teaches y is true.
 - (b) For every person y, there exists a person x where x teaches y is true.

- (c) For every person, a professor is sufficient for some person x to teach one another person y.
- (d) For every person y there exists a person x where it is not the case that the person is a professor and person x teaches person y.
- 6. When examining multiple quantifiers we must work through the negations carefully.

$$1 \\ \neg (\forall_{x \in P} \forall_{y \in P} T(x, y)) \\ \downarrow \\ \exists_{x \in P} \neg (\forall_{y \in P} T(x, y)) \\ \downarrow \\ \exists_{x \in P} \exists_{y \in P} \neg T(x, y) \\ 2 \\ \neg (\exists_{x \in P} \exists_{y \in P} T(x, y)) \\ \downarrow \\ \forall_{x \in P} \neg \exists_{y \in P} T(x, y) \\ \downarrow \\ \forall_{x \in P} \forall_{y \in P} \neg T(x, y) \\ 3 \\ \exists_{x \in P} \exists_{y \in P} \neg T(x, y) \\ 4 \\ \exists_{x \in P} \neg (\forall_{y \in P} T(x, y)) \\ \downarrow \\ \exists_{x \in P} \exists_{y \in P} \neg T(x, y) \\ \end{cases}$$

So you will see that the nested quantifier statements from 1, 3, and 4 all result in the same ending through negation. Nested quantifier statement 2 is the outlier that is not like the others. The down arrows indicate steps in negation.