LC29 — Cinétique électrochimique

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Spécificités de la cinétique des réactions électrochimiques

1. L'intensité comme mesure de la vitesse de réaction

ALGÉBRISATION DU COURANT À L'ÉLECTRODE

MOUVEMENT DES ÉLECTRONS LORSQUE I > 0

I. Spécificités de la cinétique des réactions électrochimiques

2. Relevé des courbes i-E

II. Interprétation des courbes i-E

II. Interprétation des courbes i-E

1. Influence du transfert de charge

II. Interprétation des courbes i-E

1. Influence du transfert de matière

Mur du solvant 6

1. Electrolyse

1. Electrolyse

1. Electrolyse

2. Retour sur l'expérience introductive

Merci pour votre attention!

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

1. Electrolyse

Anode = Oxydation

Thermodynamiquement : $2 H_2 O_{(l)} = O_{2(g)} + 4e^- + 4H_{(aq)}^+$

A cause des surtensions : $2Cl_{(aq)}^- = Cl_{2(aq)} + 2e^-$

Cathode

$$2H_{(aq)}^{+} + 2e^{-} = H_{2(g)}$$
$$2 H_{2}O_{(l)} + 2e^{-} = H_{2(g)} + 2HO_{(aq)}^{-}$$

-> Production de HO⁻

Eau de Javel

$$Cl_{2(aq)} + 2HO_{(aq)}^{-} = Cl_{(aq)}^{-} + ClO_{(aq)}^{-} + H_2O_{(l)}$$