Rings and Modules

B.Sury

Contents

Lectur																									2
1.1	Lecture-1																								2
1.2	Lecture-2																								3
1.3	Lecture-3																								3
1.4	Lecture-4																								4
Problems and Solutions													5												
2.1	Lecture-2																								5

Lectures

• I tried to latex all lecture notes and to make a concise notes, but due to time constraint it's remains undone.

1.1 Lecture-1

- Examples of rings; X is a **finite** set with powerset $\mathcal{P}(X)$ with $A+B=A\Delta B$, $A.B=A\cap B$ and $A^{-1}=A$. This ring has unity X. X is infinite then, $R=\{\text{all set of finite number of elements}\}$ is also a ring but with no unity.
- $C_c((0,1],\mathbb{R}))$ is the ring of all continuous function from (0,1] to \mathbb{R} with compact support.
- R is a finite ring then $\exists m \neq n$ such that $a^m = a^n$ for all $a \in R$.

$$P_k: x \mapsto x^k$$

We can vary k to get different functions. since R is finite R^R has finite cardinality. There is some $m \neq n$ such that $P_m = P_n$.

- A ring might not have unity but a subring can have unity. Example- $\left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} | a, b \in R \right\}$ has unity $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.
- Defination of Charecterestic of a Ring, Integral Domain, Field, Zero divisors.
- \mathbb{Z}_n is domain iff n is prime.
- R finite integral domain then R is field. (Look ar $a \neq 0$ in R then $\{ar_1, \dots, ar_k\}$ is R so $ar_i = 1$ for some unique r_i .)
- $M_n(R)$ has zero divisors for any commutative ring R.
- Defination of nilpotent element, Polynomial ring.
- Let, $k = \prod p_i^{\alpha_i}$. In \mathbb{Z}_k , s is a nilpotent element $\Leftrightarrow p_i \mid s$ for all $i \in \{1, \dots, r\}$.
- For a ring R, the set of units are defined as R^* . $M_n(\mathbb{Z})$ be the ring $M_n(\mathbb{Z})^* = \{A : \exists B; AB = BA = I\}$. Which is precisely $\{\det(A) = \pm 1\}$.
- Reference From Numbers to Rings: The Early History of Ring Theory Israel Kleiner.

1.2 Lecture-2

• G be a finite group and R be nay commutative ring with unity. Then **Group Ring** is the set of all function from G to R.

$$R[G] = \{ \varphi : G \to R \}$$

Here addition is $(\varphi + \psi)(g) = \varphi(g) + \psi(g)$. And multiplication * is defined as,

$$(\varphi * \psi)(g) = \sum_{xy=g} \varphi(x)\psi(y)$$

R[G] is commutative iff G is abelian. If R is a field then R[G] is an **R-Algebra**. For infinite we can define R[G] as $\{\varphi: G \to R \text{ with } |\operatorname{Supp}(\varphi)| < \infty\}$.

- (**Dorroh Extension**) Any ring without unity can be embedded in a ring with unity. Look at $R \times \mathbb{Z}$. $(r,m) \cdot (s,n) = (ms + nr + rs, mn)$ with unity (0,1).
- $\bar{\mathbb{Z}} = \{ \alpha \in \mathbb{C} : \alpha \text{ satisfy a monic Polynomial in } \mathbb{Z}[x] \}$ is **Algebraic integral Ring**. Let, $\alpha, \beta \in \bar{\mathbb{Z}}$ then $\alpha^n \in \sum_{i=0}^{n-1} \mathbb{Z}\alpha^i, \beta^n \in \sum_{i=0}^{m-1} \mathbb{Z}\beta^i$. We will show that $\alpha\beta \in \bar{\mathbb{Z}}$. Now define $A = \sum \mathbb{Z}\alpha^i\beta^j$ here sum is over $0 \le i \le n$ and $0 \le j \le m$. Let, $A = \sum_{i=1}^d \mathbb{Z}a_i$. Now we will show that $A \subseteq \bar{\mathbb{Z}}$. if $a \in A$ then,

$$aa_{1} = m_{11}a_{1} + \dots + m_{1d}a_{d}$$

$$\Rightarrow (a - m_{11}) + (-m_{12})a_{2} + \dots + (-m_{1d})a_{d} = 0$$
Similarly, $(-m_{21})a_{1} + (a - m_{22})a_{2} + \dots + (-m_{2d})a_{d} = 0$

$$\vdots$$

$$(-m_{d1})a_{1} + (-m_{2d}) + \dots + (a - m_{dd})a_{d} = 0$$

$$\Rightarrow \underbrace{\begin{pmatrix} a - m_{11} & \dots & -m_{1d} \\ \vdots & \ddots & \vdots \\ -m_{d1} & \dots & a - m_{dd} \end{pmatrix}}_{M} \underbrace{\begin{pmatrix} a_{1} \\ \vdots \\ a_{d} \end{pmatrix}}_{2} = 0$$

Now, $\operatorname{adj} M(M)\vec{a} = 0$ which gives $\det(M)I\vec{a} = 0$. Now $1 \in \{a_1, \dots, a_d\}$ so, $\det(M) = 0$

• $A = \sum_{i=1}^{d} \mathbb{Z}a_i$ is known as Cayley - Hamilton Ring.

1.3 Lecture-3

- Defination of Ideals. Right Ideals, Left Ideals, Both sided Ideals.
- $I = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \right\}$ is Left-Ideal which is not Right Ideal.
- R be a commutative Ring with 1. Then the Ideals of $M_n(R)$ are precisely $M_n(I)$ where $I \triangleleft R$. For any $J \triangleleft M_n(R)$; we have $(E_{ij}TE_{kl})_{il} = T_{jk}$. Here $T \in M_n(R)$. (See rest)
- Defination of Simple Ring
- Fields have only Ideal $\{0\}$. $M_n(K)$ is example of simple Ring for a field K.
- Defination of Maximal Ideal.

- Let R be a ring with unity. Let $I \subset R$ be proper Ideal , then $I \subseteq m \subset R$ where m is a maximal Ideal.
- Defination of Unit, Irreducible element, Prime elements.
- Ideals equivalent to to an Ideal generated by single element are called Principal ideal.
- For a field K all Ideals of K[x] are Principal Ideals. R = K[x] has Ideals of form (f) where $f \in R$. (One Property is used here Polynomial ring over a field is a euclidean domain)
- I = (x, 2) is not principal ideal in $\mathbb{Z}[x]$.
- Maximal Ideals of K[x] are (f) where, f is Irreducible.
- If f is an unit of k[x] then all the coefficient of f is nilpotent except the constant term. constant term is unit. So, f has degree 0 as K is field. So, $K[x]^* = K^*$.
- All Ideals of $\mathbb{C}[x]$ are principal. Irreducible Polynomial of it has degree 1.
- R integral domian with $1 \in R$ is a **Principal Ideal Domain (P.I.D)** iff R is field.
- $\mathbb{C}[x,y] = (\mathbb{C}[x])[y]$ is not P.I.D.
- (Hilbert Nullstellensatz) Maximal Ideals of $\mathbb{C}[X,Y]$ are of form (X-a,Y-b) where $a,b\in\mathbb{C}$.
- (Gaussian integers) $\mathbb{Z}[i] = \{a + ib | a, b \in \mathbb{Z}\}.$ (5) = $5R \subset (2+i)$ and (2) = 2R = (1+i)(1+i).

§ References

- [1] Lectures on Rings and Modules Joachim Lambek.
- [2] Transcendence of α^{β} The Gelfond-Schneider theorem.
- [3] Liouville's Constant and Liouville Number Transcendence of $\sum_{i=1}^{\infty} \frac{1}{10^{-n!}}$.

1.4 Lecture-4

- I is a left Ideal of R, $I = R \Leftrightarrow$ there is $x \in R$ such that it has a left inverse.
- If (x) = R then x might not have any left or right inverse. E.g. $R = M_2(\mathbb{R})$ and $x = E_{11}$ then $(x) = (E_{11} + E_{21}E_{11}E_{12}) = R$.
- $Ann(x) = \{r \in R | rx = 0\}$ (Left Annhilator)
- If I is Left Ideal then left Ann(I) is two sided Ideal.
- Introduced Ring Homomorphism for commutative Rings.
- R be any ring in which I is two sided Ideal then R/I is a ring with multiplication (a+I)(b+I) = ab + I.
- Isomorphism theorem's for Rings.

Problems and Solutions

2.1 Lecture-2

R be a ring with unity. a has right inverse and no left inverse. Show that it has infinite many right inverse.

Solution. Let b be a right-inverse of a. For any $i \ge 0$, we define $b_i = (1 - ba)a^i + b$. Show that if a doesn't have a left-inverse, the b_i are pairwise distinct right-inverses of a.

$$1 + xy \in R^* \implies 1 + yx \in R^*$$

Solution. Interprete this identity is by generalizing it:

$$(\lambda - ba)^{-1} = \lambda^{-1} + \lambda^{-1}b(\lambda - ab)^{-1}a. \tag{*}$$

Note that this is both more general than the original formulation (set $\lambda = 1$) and equivalent to it (rescale). Now the geometric series argument makes perfect sense in the ring $R((\lambda^{-1}))$ of formal Laurent power series, where R is the original ring or even the "universal ring" $\mathbb{Z}\langle a,b\rangle$:

$$(\lambda - ba)^{-1} = \lambda^{-1} + \sum_{n \ge 1} \lambda^{-n-1} (ba)^n = \lambda^{-1} (1 + \sum_{n \ge 0} \lambda^{-n-1} b(ab)^n a) = \lambda^{-1} (1 + b(\lambda - ab)^{-1} a).$$

For $\lambda = 1, a = x, b = -y$ we can get our desired result.

$$\mathbb{Q}[\sqrt{d}] \cup \overline{\mathbb{Z}} = \begin{cases} \mathbb{Z}\left[\frac{\sqrt{d}+1}{2}\right], & \text{if } d \equiv 1 \pmod{4} \\ \mathbb{Z}[\sqrt{d}], & \text{if } d \not\equiv 1 \pmod{4} \end{cases}$$

Proof. An element of Algebraic Integral ring is called **Integral element**. A integral element's(α) irreducible polynomial has integer coefficient $\iff \alpha \in \overline{\mathbb{Z}}$. Notice that, \sqrt{d} is Integral as it satisfy $x^2 - d$.

If $d \equiv 1 \mod 4$, then the monic irreducible polynomial of $\left(\frac{\sqrt{d}+1}{2}\right)$ over \mathbb{Q} is $x^2 - x + \frac{(1-d)}{4}$ which is in $\mathbb{Z}[x]$, so $\left[\frac{\sqrt{d}+1}{2}\right]$ is integral. Thus the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ contains the subring $\mathbb{Z}[\sqrt{d}]$, and the subring $\mathbb{Z}\left[\frac{\sqrt{d}+1}{2}\right]$ if $d \equiv 1 \mod 4$. We will show that there are no other integral elements.

An element $a+b\sqrt{d}$ with rational a and $b\neq 0$ is integral iff its monic irreducible polynomial $x^2-2ax+(a^2-db^2)$ belongs to $\mathbb{Z}[x]$. Therefore, 2a,2b are integers. If $a=\frac{(2k+1)}{2}$, for $k\in\mathbb{Z}$, then it is easy to see that $a^2-db^2\in\mathbb{Z}$ iff $b=\frac{2l+1}{2}$ for some $l\in\mathbb{Z}$, and $(2k+1)^2-d(2l+1)^2$ is divisible by 4. The latter implies that $d\equiv 1 \mod 4$. In turn, if $d\equiv 1 \mod 4$ then every element $\frac{2k+1}{2}+\left(\frac{2l+1}{2}\right)\sqrt{d}$ is integral.

Thus, integral elements of $\mathbb{Q}(\sqrt{d})$ are equal to $\mathbb{Z}[\sqrt{d}]$ if $d \not\equiv 1 \mod 4$, and $\mathbb{Z}\left\lceil \frac{\sqrt{d}+1}{2} \right\rceil$ if $d \equiv 1 \mod 4$.