

Mais sobre testes de comparação múltipla / Seleção e comparação de modelos

Notas de aula do Prof. Caio Azevedo modificadas pela Profa. Larissa Avila Matos

Revisão

- Já vimos como realizar comparações de interesse (em termos de igualdade de médias, existência de interação etc), através dos testes para a comparações $H_0: C\beta = 0$.
- Como também já visto, o teste para testar a hipótese acima, pode ser facilmente adaptado para testar as hipóteses

$$H_0: C_{(r\times p)}\boldsymbol{\beta}_{(p\times 1)} = \boldsymbol{M}_{(r\times 1)} \ vs \ H_1: C_{(r\times p)}\boldsymbol{\beta}_{(p\times 1)} \neq \boldsymbol{M}_{(r\times 1)}.$$

■ Vimos que, basta utilizar a seguinte estatística

$$Q = \frac{1}{r\widehat{\sigma}^2} \left(\boldsymbol{C}\widehat{\boldsymbol{\beta}} - \boldsymbol{M} \right)' \left(\boldsymbol{C} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{C}' \right)^{-1} \left(\boldsymbol{C} \widehat{\boldsymbol{\beta}} - \boldsymbol{M} \right)$$

e proceder da mesma forma anterior (M = 0).

 $^{2/52}$

- Entretanto, existem outros testes que servem para realizar comparações específicas (não tão gerais quanto as comparações de tipo $C\beta = M$).
- Veremos alguns desses testes.
- Uma preocupação (dado que podem existir muitas comparações de interesse) é controlar o nível de significância geral (considerando-se todos os testes).

- No caso de comparações do tipo $C\beta$ é aconselhável usar, em cada teste, um $\alpha^* = \alpha/m$, em que α é o nível de significância usado para os testes da tabela ANOVA e m é o número total de comparações de interesse.
- O processo acima é chamado de **controle de Bonferroni**.
- Os testes que veremos controlam, cada um à sua maneira, o nível de significância global.

- Vamos nos concentrar no PCA com um único fator (embora os desenvolvimentos possam ser estendidos para outros planejamentos).
- Primeiramente, lembremos o conceito de contraste.
- Um vetor $C_{(1\times p)} = [c_1 c_2 \dots c_p]$ é dito ser um contraste se $\sum_{i=1}^k n_i c_i = 0$. No caso de experimentos balanceados, basta que $\sum_{i=1}^k c_i = 0$.
- Uma matriz $C_{(q \times p)}$ é dita ser uma matriz de contrastes se suas linhas forem contrastes.

Contrastes

- Lembrando: temos $\mu_1, \mu_2, ..., \mu_k$ médias e supomos que o teste F relativo à ANOVA rejeitou a igualdade simultânea das médias.
- Nosso interesse então é testar hipóteses do tipo

$$H_0: \boldsymbol{C}_{(1 \times k)} \boldsymbol{\mu}_{(k \times 1)} = 0 \ vs \ H_1: \boldsymbol{C}_{(1 \times k)} \boldsymbol{\mu}_{(k \times 1)} \neq 0$$
em que $\boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_k).$

- Defina, para um dado C, o parâmetro $\gamma = C\mu = \sum_{i=1}^k c_i \mu_i$.
- Um estimador natural para γ é $\widehat{\gamma} = \sum_{i=1}^k c_i \overline{Y}_i$, em que $\overline{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$ (estimador de mínimos quadrados do modelo completo).

- Portanto, tem-se que $\mathcal{V}(\widehat{\gamma}) = \sigma^2 \sum_{i=1}^k \frac{c_i^2}{n_i}$.
- Se o experimento for balanceado, temos que $\mathcal{V}(\widehat{\gamma}) = \frac{\sigma^2}{n} \sum_{i=1}^k c_i^2$, onde n é o número de unidades experimentais em cada tratamento.
- \blacksquare Um estimador para variância de $\widehat{\gamma}$ é dado por $\widehat{\mathcal{V}(\widehat{\gamma})}=\widehat{\sigma}^2\sum_{i=1}^k\frac{c_i^2}{n_i}$
- Dessa forma, temos que $\frac{\widehat{\gamma} \gamma}{\sqrt{\widehat{\mathcal{V}}(\widehat{\gamma})}} \sim t_{(n-k)}$, e temos uma estatística do teste definida.
- Sob H_0 temos,

$$t_0 = \frac{\sum_{i=1}^{k} c_i \overline{Y}_i}{\sqrt{\widehat{\sigma}^2 \sum_{i=1}^{k} \frac{c_i^2}{n_i}}} \sim t_{(n-k)},$$

onde $p - valor = P(|t_{n-k}| > t_0)$.

■ Assim, um intervalo de confiança para o contraste é dado por

$$IC[\gamma; 1 - \alpha] = \left[\widehat{\gamma} - t_{(\alpha/2, n-k)} \sqrt{\widehat{\mathcal{V}}(\widehat{\gamma})}; \widehat{\gamma} + t_{(\alpha/2, n-k)} \sqrt{\widehat{\mathcal{V}}(\widehat{\gamma})} \right].$$

- Portanto, podemos construir intervalos de confiança para constrastes de interesse e utilizá-los para avaliar a veracidade das hipóteses em questão.
- Ou seja, a relação do IC com o teste de hipótese é dada por: Se o IC contém zero, então não temos evidência para rejeitar H_0 .

- Podemos testar contraste também utilizando a estatística F.
- Tomando-se o quadrado da estatística t_0 anterior, temos a estatística F_0 (sob H_0),

$$F_0 = t_0^2 = \frac{\left(\sum_{i=1}^k c_i \overline{Y}_i\right)^2}{\widehat{\sigma}^2 \sum_{i=1}^k \frac{c_i^2}{n_i}} \sim F_{(1,n-k)},$$

onde $p - valor = P(F_{(1,n-k)} > F_0)$.

 \blacksquare Então, rejeitamos H_0 se p-valor < α ou, de forma equivalente, se $F_0 > F_{(1,n-k)}.$

Contrastes Ortogonais

- Seja $\mathbf{D} = (d_1, d_2, ..., d_k)$ um outro contraste.
- lacktriangle Dizemos que C e D são contrastes ortogonais se

$$\sum_{i=1}^{k} n_i c_i d_i = 0.$$

No caso de um experimento balanceado, basta que $\sum_{i=1}^{k} c_i d_i = 0$.

- Em geral, para um conjunto de k tratamentos, podemos definir diversos contrastes (ortogonais) entre si, que representem hipóteses de interesse.
- \blacksquare Quando temos k tratamentos, sempre existe um conjunto de k-1 contrastes ortogonais que particiona SQF em componentes com 1 gl.

Método de Scheffé para comparação de contrastes

 \blacksquare Considere um conjunto de m constrastes de interesse dados por

$$\gamma_u = c_{1u}\mu_1 + c_{2u}\mu_2 + \dots + c_{ku}\mu_k, \quad u = 1, \dots, m.$$

Os respectivos estimadores são dados por:

$$\widehat{\gamma}_u = \delta_u = c_{1u}\overline{Y}_1 + c_{2u}\overline{Y}_2 + \dots + c_{ku}\overline{Y}_k, \quad u = 1, \dots, m.$$

O erro-padrão associado ao u-ésimo estimador, é dado por

$$S_{\delta_u} = \sqrt{\widehat{\sigma}^2 \sum_{i=1}^k \frac{c_{iu}^2}{n_i}},$$

onde $\hat{\sigma}^2 = QMR = \frac{SQR}{n-k}$.

, 11/52

Scheffé estabeleceu um valor crítico para o teste, da seguinte forma:

Rejeita-se
$$H_0$$
 se $|\delta_u| > S_{\alpha,u} = S_{\delta_u} \sqrt{(k-1)F_{\alpha,k-1,n-k}}$,

em que α é o nível de significância apropriado e

$$P(F > F_{\alpha,k-1,n-k}) = \alpha, F \sim F_{(k-1,n-k)}.$$

■ Scheffé provou que a probabilidade do erro do tipo I para cada um dos testes não ultrapassa α .

Exemplo 2

- Quanto maior a absorbância, melhor o solvente.
- Unidade experimental: 10 gramas de polpa do fruto de baguaçú.
- Casualização: a partir de 1 kg de polpa, foram sendo retiradas amostras de 10 gramas, onde foram aplicados os tratamentos, numa ordem aleatória.
- Experimento balanceado : mesmo número de observações (unidades experimentais) por nível do fator.
- Lembrando: tratamentos 1,2,3,4 e 5, representam respectivamente os tipos de solvente E50, E70, EAW, M1M, MAW.

, 13/52

Hipóteses de interesse:

$$H_0: 2\mu_1 + 2\mu_2 + 2\mu_3 = 3\mu_4 + 3\mu_5$$

 $H_0: \mu_1 + \mu_3 = 2\mu_2$
 $H_0: \mu_1 = \mu_3$
 $H_0: \mu_4 = \mu_5$

■ Implicam nos seguintes constrastes
$$C_1 = \begin{bmatrix} 2 & 2 & 2 & -3 & -3 \end{bmatrix}$$
 $C_2 = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \end{bmatrix}$
 $C_3 = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \end{bmatrix}$
 $C_4 = \begin{bmatrix} 0 & 0 & 0 & 1 & -1 \end{bmatrix}$

■ As estimativas dos constrastes 1 e 2 são dadas por:

$$\delta_1 = 1,488 \ e \ \delta_2 = -0,109,$$

e os respectivos erros-padrão, são dados por

$$S_{\delta_1} = 0,061 \ e \ S_{\delta_2} = 0,028.$$

■ Assim, dado que para $\alpha = 0,05$, temos que $F_{(0,05,4,20)} = 2,866$, os valores críticos para cada teste, são dados por:

$$S_{0,05,1} = 0,209 \ e \ S_{0,05,2} = 0,094.$$

■ Portanto, $|\delta_1| > 0,209$ e $|\delta_2| > 0,094$. Assim, rejeita-se ambas as hipóteses.

■ As estimativas dos constrastes 3 e 4 são dadas por:

$$\delta_3 = -0,027 \ e \ \delta_4 = -0,253,$$

e os respectivos erros-padrão, são dados por

$$S_{\delta_3} = 0,016 \ e \ S_{\delta_4} = 0,016.$$

■ Assim, dado que para $\alpha = 0,05$, temos que $F_{(0,05,4,20)} = 2,866$, os valores críticos para cada teste, são dados por:

$$S_{0,05,3} = 0,054 \ e \ S_{0,05,4} = 0,054.$$

■ Portanto, $|\delta_3| < 0.054$ e $|\delta_4| > 0.054$. Assim, rejeita-se a hipótese para o contraste C_4 e não rejeita-se a hipótese para o contraste C_3 .

Comandos no R

```
> library (DescTools)
> C1 \leftarrow cbind(2,2,2,-3,-3); C2 \leftarrow cbind(1,-2,1,0,0)
> C3 < - cbind(1,0,-1,0,0); C4 < - cbind(0,0,0,1,-1)
> ScheffeTest(aov(mabsor~solvfac), contrasts=t(rbind(C1,C2,C3,C4)))
  Posthoc multiple comparisons of means :
    Scheffe Test 95% family-wise confidence level
$solvfac
                         diff
                                   lwr.ci
                                               upr.ci pval
E50.E70.EAW-M1M.MAW 1.48896 1.27982134 1.69809866 1.8e-14 ***
E50 ,EAW-E70
                    -0.10956 -0.20308965 -0.01603035 0.0163 *
E50-EAW
                    -0.02752 -0.08151937 0.02647937 0.5731
M1M-MAW
                    -0.25288 -0.30687937 -0.19888063 4.8e-11 ***
Signif. codes: 0 '*** '0.001 '** '0.01 '* '0.05 '. '0.1 ' '1
```

Utilizando o R

- O teste de Scheffé também permite comparar médias par a par, dado que todas essas comparações estão relacionadas à contrastes.
- O procedimento é similar ao anterior.
- Existe uma pacote no R chamado agricolae que permite fazer comparações desse tipo, usando o método de Scheffé e outros que veremos.
- Vamos utilizá-lo em nosso exemplo.

Resultado da aplicação do teste de Scheffe

	Tratamento	Média	Grupo	n	erro-padrão
1	E70	0,61	a	5	0,01
2	EAW	0,57	ab	5	0,01
3	E50	$0,\!54$	b	5	0,01
4	MAW	$0,\!45$	\mathbf{c}	5	0,02
5	M1M	0,20	d	5	0,01

, 19/52

Comandos no R

```
> library ("agricolae")
> rsch<-scheffe.test (ranova, "solvfac", group=TRUE)
> rsch$groups

trt means M
1 E70 0.60788 a
2 EAW 0.56686 ab
3 E50 0.53934 b
4 MAW 0.44964 c
5 MIM 0.19676 d
```

, 20/52

Testes específicos para comparação de pares de médias

- Apesar do teste de Scheffé também permiter comparação de médias duas a duas, ele tende a ser muito conservativo (rejeita igualdades entre as médias menos do que deveria).
- Veremos outros testes: Tukey, LSD de Fisher, Duncan e Dunnet.
- As hipóteses são

$$H_0: \mu_i = \mu_j \ vs \ H_1: \mu_i \neq \mu_j, \forall i, j.$$

, 21/52

Teste de Tukey

 O teste de Tukey faz uso de percentis da distribuição da seguinte estatística

$$Q = \frac{max\{T_i\} - min\{T_i\}}{\sqrt{QMR/n}} = \frac{\overline{Y}_{max} - \overline{Y}_{min}}{\sqrt{QMR/n}}$$
(1)

em que $T_i = \overline{Y}_i - (\mu + \alpha_i)$, n é o tamanho amostral para cada tratamento. Se o experimento for desbalanceado, pode-ser usar uma média aritmética dos tamanhos amostrais. Além disso, \overline{Y}_{max} é a maior média amostral e \overline{Y}_{min} é a menor média amostral.

 \blacksquare O nível de significância global (considerando todos os testes) é exatamente igual à $\alpha.$

■ Rejeita-se H_0 , para um dado α , se

$$|\overline{Y}_i - \overline{Y}_j| > T_{\alpha},$$

em que \overline{Y}_i é a média amostral do i-ésimo tratamento e

$$T_{\alpha} = w_T \sqrt{QMR\left(\frac{1}{n_i} + \frac{1}{n_j}\right)},$$

com

$$w_T = \frac{q_\alpha(k, f)}{\sqrt{2}},$$

f o número de graus de liberdade do resíduo e $q_{\alpha}(k, f)$ o quantil de ordem α da distribuição da estatística (1).

■ Obs.: Os valores de $q_{\alpha}(k, f)$ são tabelados.

■ Assim, um conjunto de intervalos de confiança simultâneos de $100(1-\alpha)\%$ para todas as diferenças de pares $\mu_i - \mu_j$, $i \neq j$, é dado por

$$IC[\mu_i - \mu_j; 1 - \alpha] = \left[(\overline{Y}_i - \overline{Y}_j) - w_T \sqrt{QMR \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}; (\overline{Y}_i - \overline{Y}_j) + w_T \sqrt{QMR \left(\frac{1}{n_i} + \frac{1}{n_j}\right)} \right].$$

Resultado da aplicação do teste de Tukey

	Tratamento	Média	Grupo	n	erro-padrão
1	E70	0,61	a	5	0,01
2	EAW	0,57	ab	5	0,01
3	E50	$0,\!54$	b	5	0,01
4	MAW	$0,\!45$	\mathbf{c}	5	0,02
5	M1M	0,20	d	5	0,01

, 25/52

Comandos no R

```
> rtuk1
Tukey multiple comparisons of means 95% family-wise confidence level
Fit: aov(formula = mabsor ~ solvfac1)
$solvfac1
        diff
                     lwr
                                  upr
                                          p adi
2-1 0.06854 0.02081671 0.116263292 0.0028819
3-1 0.02752 -0.02020329 0.075243292 0.4416646
4-1 -0.34258 -0.39030329 -0.294856708 0.0000000
5-1 -0.08970 -0.13742329 -0.041976708 0.0001465
3-2 -0.04102 -0.08874329 0.006703292 0.1141101
4-2 -0.41112 -0.45884329 -0.363396708 0.0000000
5-2 -0.15824 -0.20596329 -0.110516708 0.0000000
4-3 -0.37010 -0.41782329
                         -0.322376708 0.0000000
```

5-3 -0.11722 -0.16494329 -0.069496708 0.0000038 5-4 0.25288 0.20515671 0.300603292 0.0000000

95% family-wise confidence level

Differences in mean levels of solvfac1

, 27/52

Comparação entre Bonferroni, Scheffé e Tukey

■ Suponha que k=5, n=35 e $\alpha=0.05$, e que apenas as 10 comparações entre os pares de médias $(\mu_i - \mu_j, i \neq j)$ são de interesse para o pesquisador e estas foram especificamente selecionadas antes da pesquisa (ou seja, foram pré-planejadas). Se compararmos os coeficientes críticos para os três métodos, obtemos

Bonferroni:
$$w_B = t_{30;0,025/10} = 3,02;$$

Scheffé: $w_S = \sqrt{4 \ F_{4;30;0.05}} = 3,28;$
Tukey: $w_T = \frac{1}{\sqrt{2}} \ q_{5;30;0.05} = 2,91.$

■ Uma vez que w_T é inferior a w_B , que é menor do que w_S para este exemplo, os intervalos de Tukey serão mais curtos que os intervalos de Bonferroni, que serão mais curtos que os intervalos de Scheffé.

Teste LSD de Fisher

 O teste LSD ("Least significance difference") de Fisher, baseia-se na seguinte estatística

$$T = \frac{\overline{Y}_i - \overline{Y}_j}{\sqrt{QMR\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

 \blacksquare Rejeita-se H_0 se

$$\begin{split} |\overline{Y}_i-\overline{Y}_j| > LSD, \\ \text{em que } LSD = t_{(\alpha/2,n-k)} \sqrt{QMR\left(\frac{1}{n_i}+\frac{1}{n_j}\right)} \text{ e temos que } \\ P(T > t_{(\alpha/2,n-k)}) = \alpha/2, T \sim t_{(n-k)}. \end{split}$$

, 29/52

- Se o teste F da ANOVA é significante a um nível α , cada par de média é então testado por um teste t de nível α .
- **Desvantagem:** controla apenas o nível α de cada teste, mas não controla o nível de significância geral.
- Regra de decisão: duas médias μ_i e μ_j são significativamente diferentes se $|\overline{Y}_i \overline{Y}_j| > LSD$.

Resultado da aplicação do teste LSD

	Tratamento	média	grupo	n	erro-padrão	LIIC	LSIC
1	E70	0,61	a	5	0,01	0,59	0,62
2	EAW	0,57	b	5	0,01	$0,\!55$	0,58
3	E50	$0,\!54$	b	5	0,01	$0,\!51$	$0,\!56$
4	MAW	$0,\!45$	\mathbf{c}	5	0,02	$0,\!41$	0,48
5	M1M	0,20	d	5	0,01	$0,\!17$	$0,\!22$

, 31/52

Teste de Duncan

No teste de Duncan as médias amostrais são dispostas de modo crescente e para cada uma delas é calculado o erro-padrão:

$$S_{\overline{Y}_i} = \sqrt{QMR/n_h}, n_h = \frac{k}{\sum_{i=1}^k n_i^{-1}}.$$

- Obtem-se quantis tabelados por Duncan, denotados por $r_{\alpha}(p,f), \ p=2,3,\cdots,k, \ \alpha$ é o nível de significância e f são os graus de liberdade do resíduo.
- Calcula-se $R_p = r_{\alpha}(p, f) S_{\overline{Y}_i}, \ p = 2, 3, \cdots, k.$
- Compara-se, então a maior média com a menor (tal diferença é comparada com R_k).

 $^{32/52}$

- Depois, compara-se a maior média com a segunda menor (tal diferença é comparada com R_{k-1}).
- Continua-se o processo acima até que todas as médias tenham sido comparadas com a maior.
- Depois, compara-se a segunda maior com a menor (tal diferença é comparada com R_{k-1}).
- Repete-se o processo até que todas as $\frac{k(k-1)}{2}$ diferenças tenham sido consideradas.

- Se a diferença observada for maior que R, rejeita-se H_0 .
- Para evitar-se contradições, duas médias não serão consideradas diferentes, se elas estiverem entre duas outras médias que não foram consideradas diferentes.

Resultado da aplicação do teste de Duncan

	Tratamento	Média	Grupo	n	erro-padrão
1	E70	0,61	a	5	0,01
2	EAW	0,57	b	5	0,01
3	E50	$0,\!54$	b	5	0,01
4	MAW	$0,\!45$	\mathbf{c}	5	0,02
5	M1M	0,20	d	5	0,01

, 35/52

Teste de Dunnett (comparação com um tratamento controle)

- Seja $\mu_r, r \in \{1, 2, ..., k\}$ a média correspondente ao tratamento controle.
- As hipóteses de interesse são:

$$H_0: \mu_i = \mu_r \ vs \ \mu_i \neq \mu_r, \forall i \neq r.$$

 \blacksquare Rejeita-se H_0 se

$$|\overline{Y}_i - \overline{Y}_j| > d_{\alpha}(k-1, f) \sqrt{QMR\left(\frac{1}{n_i} + \frac{1}{n_r}\right)},$$

em que a constante $d_{\alpha}(k-1,f)$ corresponde à valores tabelados por Dunnet, para um dado nível de significância α e graus de liberdade para o resíduo f.

Resultado da aplicação do teste de Dunnet

Hipótese	Estimativa	Erro-padrão	Estatística	pvalor
E70 - E50 = 0	0,07	0,02	4,30	0,001
EAW - E50 = 0	0,03	0,02	1,73	$0,\!279$
M1M - E50 = 0	-0,34	0,02	-21,48	< 0.001
MAW - E50 = 0	-0,09	0,02	-5,62	< 0,001

, 37/52

■ Neste caso, pode-se usar o pacote **multcomp**.

Seleção e comparação de modelos

Comparação dos modelos

- Vimos como verificar se um determinado modelo (normallinear-homocedástico) se ajusta adequadamente aos dados.
- Uma outra questão de interesse surge quando se dispõe de diversos modelos (que se ajustam adequadamente aos dados) e respondem às perguntas de interesse, e queremos escolher um como o "mais apropriado".
- Há diversas técnicas disponíveis para este fim.
- Veremos técnicas baseadas em testes de hipótese e comparação de estatísticas de ajuste.

Teste da razão de verossimilhanças

- Sejam M_1 e M_2 dois modelos, em que M_1 está encaixado em M_2 , ou seja, o modelo M_1 é um caso particular de M_2 .
- \blacksquare Por exemplo, M_1 é um modelo linear e M_2 é um modelo quadrático.
- Neste caso temos que
 H₀: o modelo M₁ é preferível ao modelo M₂.
- Denote por $L_i(\widetilde{\boldsymbol{\theta}})$ e $l_i(\widetilde{\boldsymbol{\theta}})$ o máximo da verossimilhança e da log-verossimilhança do modelo i, respectivamente.
- \blacksquare $\widetilde{\boldsymbol{\theta}}$ corresponde à estimativa de máxima verossimilhança obtida sob o modelo i.

- \blacksquare A estatística do TRV é dada por $\Delta = \frac{L_1(\widehat{\theta})}{L_2(\widehat{\theta})}.$
- Rejeita-se H_0 se $\Delta < \delta_c$, em que δ_c é um valor critico adequado.
- Alternativamente, rejeitamos H_0 se

$$\Lambda = -2ln(\Delta) = -2\left(l_1(\widehat{\boldsymbol{\theta}}) - l_2(\widehat{\boldsymbol{\theta}})\right) > \lambda_c,$$

em que $P(Q > \lambda_c) = \alpha$, $Q \sim \chi^2_{(\gamma)}$ e γ = número de parâmetros do modelo M_2 - número de parâmetros do modelo M_2 .

 $\blacksquare p-valor=P(Q>\lambda),$ em que λ é o valor observado da estatística $\Lambda.$

Estatísticas de comparação de modelos

- O TRV é apropriado na comparação de modelos encaixados.
- Além disso, ele não leva em consideração (diretamente) o número de parâmetros do modelo (somente na distribuição da estatística).
- Existem várias alternativas, em termos de estatística para comparar modelos, que "penalizam" a verossimilhança em relação ao número de parâmetros, tamanho da amostra entre outros fatores.
- Veremos o AIC e o BIC.

■ O AIC e BIC são dados, respectivamente, por:

$$AIC = -2l_i(\widetilde{\theta}) + 2k,$$

$$BIC = -2l_i(\widetilde{\theta}) + 2k \ln(n),$$

que $l_i(\widetilde{\theta})$ denota a log-verossimilhança do i-ésimo modelo avaliada em alguma estimativa, k é o número de parâmetros e n é o número de observações.

■ Portanto, o modelo que apresentar os menores valores, será o modelo "melhor ajustado" aos dados.

Exemplo Censo

- O conjunto de dados em questão foi extraído do censo do IBGE de 2000 e apresenta para cada unidade da federação o número médio de anos de estudo e a renda média mensal (em reais) do chefe ou chefes do domicílio.
- Um dos objetivos é estudar o relacionamento da renda média mensal em função do número médio de anos de estudo.

, 45/52

Dispersão entre anos de escolaridade e renda

- Modelo 1: $Y_j = \beta_0 + \beta_1 x_j + \xi_j$
- Modelo 2: $Y_j = \beta_0 + \beta_1 x_j + \beta_2 x_j^2 + \xi_j$ em que

$$\xi_j \stackrel{ind.}{\sim} N(0, \sigma^2)$$

, 47/52

Modelo 1

, 48/52

Modelo 2

, 49/52

■ Modelo 1

Parâmetro	Estimativa	EP	Estat. t	p-valor
β_0	-381,28	69,40	-5,49	<0,0001
eta_1	199,83	13,03	15,34	< 0,0001

■ Modelo 2

Parâmetro	Estimativa	EP	Estat. t	p-valor
eta_0	546,98	196,80	2,78	0,0104
eta_1	$-152,\!62$	$72,\!86$	-2,09	0,0469
eta_2	31,92	$6,\!54$	4,88	0,0001

■ Estatísticas de comparação dos modelos

Estatística	Modelo 1	Modelo 2
AIC	315,26	298,66
BIC	$319,\!15$	$303,\!85$
log-verossim.	-154,63	-145,33

■ TRV, estatísticas e pvalor entre parênteses: 18,80 (< 0,0001).

Modelos ajustados

, 52/52