Linear Model Simulations: Canonical IV DGP

Kellie Ottoboni

April 1, 2016

Suppose

$$Y_i = \beta X_i + \epsilon_i$$
$$T_i = \mathbb{I}(U_i + \delta_i > 0)$$

where $(U_i, X_i, \epsilon_i, \delta_i)$ are IID multivariate normal with mean 0 across individuals i = 1, ..., N. For each i, we take the three objects X_i , U_i , and (ϵ_i, δ_i) to be mutually independent. Suppose further that

$$\operatorname{Var}(U_i) = \operatorname{Var}(X_i) = 1$$

 $\operatorname{Var}(\epsilon_i) = \operatorname{Var}(\delta_i) = \sigma^2$
 $\operatorname{Cov}(\epsilon_i, \delta_i) = \rho$

Estimate \hat{Y} using OLS on X.

We have N=100 individuals. Suppose we use two strata, defined by whether $\hat{Y} \geq 0$ or $\hat{Y} < 0$.

We'll do the model-based matching permutation test using the difference in means as our statistic 5000 times to get a distribution of p-values under the null hypothesis of no treatment effect. The simulations are done **conditionally on** X **and** ϵ : we draw X and ϵ once to generate the potential outcomes Y, then draw random U and δ to generate treatment T for each simulation.

1 Uncorrelated errors

Unadjusted Permutation Test	0.055
Model-based Matching	0.057

Table 1: Proportion of tests rejected at level 0.05

2 Correlated errors

Here, we let $N=100,\,\beta=1,\,\sigma^2=1,\,{\rm and}\,\,\rho=3/4.$

Unadjusted Permutation Test	0.700
Model-based Matching	0.937

Table 2: Proportion of tests rejected at level 0.05