ADVANCED BAYESIAN MODELING

EXAMPLE OF PRACTICAL MCMC:

RAT TUMOR DATA: MODEL 2

Consider alternative model specified in JAGS code file rattumor2.bug:

```
model {
  for (j in 1:length(v)) {
    v[i] ~ dbin(theta[i], N[i])
    theta[i] ~ dbeta(alpha, beta)
  alpha <- phi1 / phi2^2
  beta <- (1-phi1) / phi2^2
  phi1 \sim dunif(0,1)
  phi2 ~ dunif(0,1000)
(Also analyzed earlier)
```

Nodes alpha and beta are deterministic, so JAGS does not allow them to be initialized.

Instead initialize phi1 and phi2, which are

$$\phi_1 = \frac{\alpha}{\alpha + \beta} \in (0, 1)$$
 $\phi_2 = (\alpha + \beta)^{-1/2} \in (0, \infty)$

Helpful preliminary values can be obtained using the preliminary α and β values computed previously ...

```
> ( phi1hat <- alphahat / (alphahat + betahat) )
[1] 0.1381151
> ( phi2hat <- (alphahat + betahat)^(-1/2) )
[1] 0.3170556</pre>
```

Again, let's use 4 chains, initialized in a manner overdispersed relative to the preliminary values:

	Initial ϕ_1	Initial ϕ_2
Chain 1:	0.001	0.003
Chain 2:	0.9	0.003
Chain 3:	0.001	30
Chain 4:	0.9	30

Set up JAGS model in R with 4 chains initialized, and perform 1000 iterations of adaptation:

Perform 1000 iterations of burn-in, collect α and β for 2000 more iterations, and plot results:

> plot(x2, smooth=FALSE)

Trace plots look good. Check a version of the Gelman-Rubin statistic, also called a **potential scale reduction factor**:

```
> gelman.diag(x2, autoburnin=FALSE)
Potential scale reduction factors:
```

```
Point est. Upper C.I. alpha 1 1.01 beta 1 1.01
```

Multivariate psrf

1

> gelman.plot(x2, autoburnin=FALSE)

Gelman-Rubin statistics appear legitimately near 1 (not just there by chance).

Check autocorrelation plot (pooled over all chains):

> autocorr.plot(x2)

Some high autocorrelations, but essentially zero by lag 15.

Check effective sample sizes (summed over all chains):

> effectiveSize(x2)
 alpha beta
708.8611 723.9213

Both exceed the suggested minimum value of 400.

These diagnostics all suggest adequate convergence and sampling, but could have run further diagnostics on other parameters (θ s) had they been saved.