6 Однофакторный дисперсионный анализ

- 1. Однофакторный дисперсионный анализ статистических данных.
- 2. Проверка гипотезы о значимости статистического влияния фактора на математические ожидания исследуемых случайных величин.

Дисперсионный анализ — статистический метод, предназначенный для оценки влияния различных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов.

По числу факторов, влияние которых исследуется, различают однофакторный и многофакторный дисперсионный анализ.

Пусть на случайную величину о воздействует фактор F, который имеет k постоянных уровней $F_1, F_2, ..., F_k$. На каждом уровне произведено по n_i испытаний. Результаты наблюдений — числа x_{ij} $(i=\overline{1,k};\,j=\overline{1,n_i})$.

Будем рассматривать результаты измерений x_{ij} как выборки из нормальных распределений: $\xi_i \sim N(a_i, \sigma^2)$ $(i = \overline{1,k})$.

По выборочным данным вычисляются:

- групповые средние

$$\bar{x}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} x_{ij}, \quad i = \overline{1, k};$$

- общая средняя

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} \sum_{i=1}^{n_i} x_{ij}, \quad n = \sum_{i=1}^{k} n_i.$$

Проверяется нулевая гипотеза

$$H_0: a_1 = a_2 = \dots = a_k$$
.

Для проверки нулевой гипотезы вычисляется наблюдаемое значение критерия

$$F_{\text{набл}} = \frac{\frac{1}{k-1} \sum_{i=1}^{k} \mathbf{q}_{i} - \bar{x}^{2} n_{i}}{\frac{1}{n-k} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \mathbf{q}_{ij} - \bar{x}_{i}^{2}}.$$

Критическая область имеет вид

$$K = \int F_{\alpha;k-1,n-k}; +\infty$$
,

где $F_{\alpha;k-1,n-k} = F(100\alpha\%; k-1,n-k)$ — 100α -процентная точка распределения Фишера с (k-1) и (n-k) степенями свободы.

Если $F_{\text{набл}} \notin K$, т. е. $F_{\text{набл}} < F_{\alpha;k-1,n-k}$, то нет оснований отвергнуть нулевую гипотезу; если $F_{\text{набл}} \in K$, т. е. $F_{\text{набл}} \ge F_{\alpha;k-1,n-k}$, то нулевую гипотезу отвергают.

Формулы, используемые для расчета наблюдаемого значения критерия, приведены в таблице 8.

Таблица 8

Источник измен- чивости	Суммы квадратов отклонений	Число степе- ней свободы	Дисперсия	Наблю- даемое значение критерия
Фактор <i>F</i> (между группами)	$\sum_{i=1}^{k} \mathbf{C}_{i} - \overline{x} \mathbf{n}_{i}$ (факторная)	k-1	$S_1^2 = \frac{1}{k-1} \sum_{i=1}^k (\overline{x}_i - \overline{x})^2 n_i$ (факторная)	$F_{\text{набл}} = \frac{S_1^2}{S_2^2}$
Остаточная (внутри групп)	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} \P_{ij} - \bar{x}_i$ (остаточная)	n-k	$S_2^2 = \frac{1}{n-k} \sum_{i=1}^k \sum_{j=1}^{n_i} \P_{ij} - \bar{x}_i$ (остаточная)	
Общая изменчиво сть	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} \mathbf{\zeta}_{ij} - \bar{x}^{2}$ (общая)	n-1	$S^2 = S_1^2 + S_2^2$ (общая)	

Отклонение нулевой гипотезы является статистическим доказательством влияния фактора F на математические ожидания исследуемых случайных величин.

Пример 6.1 Произведено по шесть испытаний на каждом из пяти уровней фактора F. Методом дисперсионного анализа при уровне значимости 0,05 проверить нулевую гипотезу о равенстве групповых средних. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями. Результаты испытаний приведены в таблице 9.

Таблица 9

№ испытания	Уровни фактора						
i	F_1	F_2	F_3	F_4	F_5		
1	1,37	-0,13	1,16	-1,16	0,93		
2	0,11	-0,64	-0,3	2,65	0,01		
3	1,56	-0,46	-0,31	1,55	-1,56		
4	-0,11	-0.88	1,13	0,29	1,59		
5	0,23	-0,56	-0,17	-2,16	-1,13		
6	-0,76	1,28	0,6	-0,77	-1,74		

Вычислим вспомогательные величины:

- групповые средние

$$\bar{x}_1 = \frac{1,37 + 0,11 + 1,56 - 0,11 + 0,23 - 0,76}{6} \approx 0,4;$$

$$\bar{x}_2 = \frac{-0,13 - 0,64 - 0,46 - 0,88 - 0,56 + 1,28}{6} \approx -0,23;$$

$$\bar{x}_3 = \frac{1,16 - 0,3 - 0,31 + 1,13 - 0,17 + 0,6}{6} \approx 0,35;$$

$$\bar{x}_4 = \frac{-1,16 + 2,65 + 1,55 + 0,29 - 2,16 - 0,77}{6} \approx 0,07;$$

$$\bar{x}_5 = \frac{0,93 + 0,01 - 1,56 + 1,59 - 1,13 - 1,74}{6} \approx -0,32;$$

общая средняя

$$\overline{x} = \frac{1,62}{30} \approx 0,05.$$

$$\sum_{j=1}^{6} \P_{1j} - \overline{x}_{1} \stackrel{?}{>} \approx 4; \quad \sum_{j=1}^{6} \P_{2j} - \overline{x}_{2} \stackrel{?}{>} \approx 3,04; \quad \sum_{j=1}^{6} \P_{3j} - \overline{x}_{3} \stackrel{?}{>} \approx 2,46;$$

$$\sum_{j=1}^{6} \P_{4j} - \overline{x}_{4} \stackrel{?}{>} \approx 16,11; \quad \sum_{j=1}^{6} \P_{5j} - \overline{x}_{5} \stackrel{?}{>} \approx 9,53; \quad \sum_{i=1}^{5} \sum_{j=1}^{6} \P_{ij} - \overline{x}_{i} \stackrel{?}{>} \approx 35,14.$$

$$\sum_{j=1}^{5} \P_{i} - \overline{x} \stackrel{?}{>} n_{i} \approx 2,56.$$

Результаты расчетов приведены в таблице 10.

Таблица 10

Источник	Суммы	Число		Наблюдаемое
	квадратов	степеней	Дисперсия	значение
изменчивости	отклонений	свободы		критерия
Фактор <i>F</i>				
(между	2,56	4	0,64	$F_{\text{набл}} = \frac{0.64}{1.41} \approx 0.45$
группами)				$r_{\text{набл}} = 1,41$
Остаточная				
(внутри	35,14	25	1,41	
групп)				
Общая	37,70	29	1,3	
изменчивость	31,10	29	1,5	

По таблице процентных точек распределения Фишера найдем $F_{0.05;4.25}=2,76$. Так как $F_{\text{набл}}\not\in K$, то нет оснований отвергнуть нулевую гипотезу. Другими словами, групповые средние не различаются значимо.

Вопросы для самоконтроля

- 1. Сформулируйте основную задачу дисперсионного анализа.
- 2. Как найти факторную и остаточную дисперсии?
- 3. Как построить критическую область?