Expectations

Manuel Lleonart Anguix

Exercise 1. Compute the expectation of a random normal $\mathcal{N}(\mu, \sigma^2)$.

Exercise 2. Compute the expectation and the variance of a uniform distribution in the interval [0,2].

Exercise 3. Let X be a random variable with mean μ and variance σ^2 . Compute

- 1. E(2X-3) and V(2X-3).
- 2. V(5-X).
- 3. E((X-2)(X+1)).

Exercise 4. If X is a Poisson random variable of parameter λ , show that

- 1. $E(X) = \lambda$.
- 2. $E(X(X-1)) = \lambda^2$.
- ! Compute $E(X^2)$ and $E((X E(X))^2)$

Exercise 5. Compute the expectation of a continuous random variable X with distribution:

- 1. f(x) = 6x(1-x) in [0,1]-
- 2. $f(x) = \frac{3}{x^4}$ if x > 1.
- 3. f(x) if it's proportional to x^2 whenever 0 < x < 1 and zero otherwise.

Exercise 6. Compute the expectation of a discrete random variables such that $P(X = 1) = \frac{1}{4}$, $P(X = 2) = \frac{1}{2}$ and $P(X = 1000) = \frac{1}{4}$.

Exercise 7. Compute the expectation and the variance of a random variable with distribution $f(x) = \lambda^2 x e^{-\lambda x}$ for x > 0.

Exercise 8. ! Let X be a random variable with uniform distribution in [0,1]. Compute $E(e^{5X})$. Can you find E(1/X)?

Exercise 9. Let X and Y be two independent random variables such that E(X) = 2 $E(X^2) = 6$, $E(Y^2) = 13$ and E(Y = 3). Compute

- $E(X^2 3X + 2)$, $E((X + 1)^2)$, $E((X E(X))^2)$ and $E(X^2) E(X)^2$.
- E(X + Y), E(2XY), $E((3X Y)^2)$, $E(3X Y)^2$ and $E(X \mid Y = 2 =)$.