Calculabilité Interrogation Ecrite - Corrigé

Exercice 1 (2.5, 2.5)

Q1. Mettez des flèches dans le sens que jugez juste. +0.5 par réponse correcte – 0 pour si non i – 0.5 par réponse fausse.	Q2. Devant chaque proposition, écrivez V si vous
Effectivement Décidable Effectivement Récursive Enumérale Récursive Enumérale	 F - La fonction d'Ackerman n'est pas Turing-Calculable. V - Il existe des fonctions non calculables. F - Certaines fonctions primitives récursives ne sont pas calculables.

Exercice 2 (1.5, 1.5, 1)

Q1. Montrer en utilisant la règle de composition que les fonctions f et g définies ci-dessous sont primitives récursives :

$f(x,y) = \sqrt{\frac{y}{x}} $ (1.5 point)	$g(x,y) = \frac{\sqrt{y}}{\sqrt{x}} $ (1.5 point)
$f(x,y) = \sqrt{q(x,y)}$ (il est important que soit maintenu l'ordre des arguments) $f(x,y) = r(q(x,y))$ r représente la racine carrée. $h = racine \ carrée$ $g = q$	$g(x,y) = \frac{\sqrt{y}}{\sqrt{x}} = q(r(x), r(y)) (1 \text{ point})$ avec $r(x) = \sqrt{x}$ Appliquer la règle de composition : 0.5 point $g(x,y) = q(r(P_1^2)(x,y), r(P_2^2)(x,y))$ $h = q$ $g_1 = r(P_1^2)(x,y) , g_2 = r(P_2^2)(x,y)$

Q2. A-t-on f(x, y) = g(x, y)? (1 point) (0 si la réponse n'est pas motivée)

Non. Contre-exemple :

$$\sqrt{\frac{221}{6}} = \sqrt{36} = 6 \qquad \frac{\sqrt{221}}{\sqrt{6}} = \frac{14}{2} = 7$$

Exercice 3 (2, 2)

On se donne deux relations R_1 et R_2 telles que :

$$R_1(x, y, z) = \begin{cases} \mathbf{V} \text{ si } \frac{x}{y} = z \\ \mathbf{F} \text{ sinon} \end{cases}$$

$$R_2(u, v, w) = \begin{cases} \mathbf{V} \text{ si } w = \sqrt{u} \text{ et } w = \sqrt{v} \text{ et } u \neq v \\ \mathbf{F} \text{ sinon} \end{cases}$$

Q1. Montrer que R_1 est primitive récursive. (2 points)

Une relation est PR ssi sa fonction caractéristique est PR.

$$CarR_1(x, y, z) = \begin{cases} \mathbf{0} \text{ si } \frac{x}{y} = z \Rightarrow |\frac{x}{y} - z| = 0\\ \mathbf{1} \text{ sinon} \end{cases}$$

$$CarR_1(x, y, z) = sg(|\frac{x}{y} - z|)$$

 $Carr_1(x, y, z)$ est une composition de fonction primitives récursives. Elle est donc PR.

Q2. Montrer que R_2 est primitive récursive. (2 points)

$$R_2(u, v, w) = \begin{cases} \mathbf{V} & \text{si } w = \sqrt{u} \text{ et } w = \sqrt{v} \text{ et } u \neq v \\ \mathbf{F} & \text{sinon} \end{cases}$$

$$CarR_{2}(u, v, w) = \begin{cases} \mathbf{0} \text{ si } |w - \sqrt{u}| = 0 \text{ et } |w - \sqrt{v}| = 0 \text{ et } |u - v| \neq 0 \\ \mathbf{1} \text{ sinon} \end{cases}$$

$$CarR_2(u, v, w) = \begin{cases} \mathbf{0} \text{ si } (|w - \sqrt{u}| + |w - \sqrt{v}|) = 0 \text{ et } |u - v| \neq 0 \\ \mathbf{1} \text{ sinon} \end{cases}$$

$$CarR_2(u, v, w) = \begin{cases} \mathbf{0} \text{ si } sg(|w - \sqrt{u}| + |w - \sqrt{v}|) = 0 \text{ et } \overline{sg}|u - v| = 0 \\ \mathbf{1} \text{ sinon} \end{cases}$$

$$CarR_2(u,v,w) = \begin{cases} \mathbf{0} \text{ si } sg(|w-\sqrt{u}| + |w-\sqrt{v}| + \overline{sg}|u-v|) = 0 \\ \mathbf{1} \text{ sinon} \end{cases}$$

$$CarR_2(u, v, w) = sg(|w - \sqrt{u}| + |w - \sqrt{v}| + \overline{sg}|u - v|)$$

Exercice 4 (2, 3, 2)

Q1. Montrer que l'ensemble D = $\{y \mid \exists x \text{ tel que } x^2 = y \}$ est primitif récursif.

D est PR ssi sa fonction caractéristique est PR

$$Car_D(y) = \begin{cases} 0 \text{ si } \exists x \mid x^2 = y \\ 1 \text{ sinon} \end{cases}$$
 0.5 point

 x^2 est une fonction croissante. Par conséquent :

$$Car_D(y) = \begin{cases} 0 \text{ si } 0^2 = y \text{ ou } 1^2 = y \text{ ou } 2^2 = y \text{ ou } \dots \text{ ou } y^2 = y \\ 1 \text{ sinon} \end{cases}$$
 0.5 point

$$Car_D(y) = sg \prod_{x=0}^{y} |x^2 - y|$$

Q2. Montrer que D est récursif en utilisant la règle de minimisation.

Barème : 1 point si la règle de minimisation est comprise.

Etape 1. On recherche la plus petite valeur de x telle $x^2 \ge y$. Soit x_0 cette valeur.

$$\mu_x(x^2 \ge y)$$

$$\mu_x(y - x^2 = 0) = x_0$$

Etape 2. On compare $(x_0)^2$ à y.

$$y \in D ssi x_0^2 = y$$

$$y \in D \text{ ssi } ((\mu_x(y \dot{-} x^2 = 0))^2 \dot{-} y) = 0$$

$$Car_D(y) = sg((\mu_x(y - x^2 = 0))^2 - y)$$

Q3. Montrer, sans utiliser les résultats de Q1 et de Q2 que D est récursivement énumérable.

Barème: 0.5 point si l'étudiant sait ce qu'est un ensemble récursivement énumérable.

 $D = \{y | \exists x \text{ tel que } x^2 = y \} \Rightarrow D$ coïncide avec l'ensemble des carrés parfaits $\Rightarrow D$ coïncide avec l'ensemble des valeurs de la fonction $PR f(x) = x^2 \Rightarrow D$ est récursivement énumérable