Session 71: Counting Problems

Solving counting problems with generating functions

Find the number of *k*-combinations of a set with n elements using generating functions

Find the number of *k*-combinations of a set with n elements using generating functions

• The number of k-combinations is the coefficient of x^k in the generating function

$$f(x) = (1+x)^n$$

Find the number of *k*-combinations of a set with n elements using generating functions

• The number of k-combinations is the coefficient of x^k in the generating function

$$f(x) = (1+x)^n$$

• Using the binomial theorem: $f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k$

Find the number of *k*-combinations of a set with n elements using generating functions

• The number of k-combinations is the coefficient of x^k in the generating function

$$f(x) = (1+x)^n$$

- Using the binomial theorem: $f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k$
- Therefore the number of k-combinations is $\binom{n}{k}$

Find the number of k-combinations of a set with n elements using generating functions when repetition is allowed

Find the number of k-combinations of a set with n elements using generating functions when repetition is allowed

• The number of k-combinations is the coefficient of x^k in the generating function

$$f(x) = (1 + x + x^2 + \cdots)^n$$

Find the number of k-combinations of a set with n elements using generating functions when repetition is allowed

• The number of k-combinations is the coefficient of x^k in the generating function

$$f(x) = (1 + x + x^2 + \cdots)^n$$

• As long as $|\mathbf{x}| < 1$ we have $(1 + x + x^2 + \cdots) = \frac{1}{1 - x}$

Find the number of k-combinations of a set with n elements using generating functions when repetition is allowed

• The number of k-combinations is the coefficient of x^k in the generating function

$$f(x) = (1 + x + x^2 + \cdots)^n$$

. As long as $|\mathbf{x}| < 1$ we have $\left(1 + x + x^2 + \cdots\right) = \frac{1}{1 - x}$

• Therefore
$$f(x) = \frac{1}{(1-x)^n} = (1+(-x))^n = \sum_{k=0}^{\infty} {\binom{-n}{k}} (-1)^k x^k$$

Extended Binomial Coefficients

Definition: Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient $\binom{u}{k}$ is defined as

$$\binom{u}{k} = \begin{cases} \frac{u(u-1)\cdots(u-k+1)}{k!}, & if \ k > 0\\ 1, & if \ k = 0 \end{cases}$$

Extended Binomial Theorem

Theorem: Let x be real number with |x| < 1 and let u be real number.

Then

$$(1+x)^{u} = \sum_{k=0}^{\infty} {u \choose k} x^{k}$$

• The coefficient of x^k is $\binom{-n}{k}(-1)^k$

Find the number of solutions of

$$e_1 + e_2 + e_3 = 17$$
,

where e_1 , e_2 , and e_3 are nonnegative integers with

$$2 \le e_1 \le 5$$
, $3 \le e_2 \le 6$, and $4 \le e_3 \le 7$.

Find the number of solutions of

$$e_1 + e_2 + e_3 = 17$$
,

where e_1 , e_2 , and e_3 are nonnegative integers with

$$2 \le e_1 \le 5$$
, $3 \le e_2 \le 6$, and $4 \le e_3 \le 7$.

The number of solutions is the coefficient of x^{17} in the expansion of

$$f(x) = (x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7).$$

Find the number of solutions of

$$e_1 + e_2 + e_3 = 17$$
,

where e_1 , e_2 , and e_3 are nonnegative integers with

$$2 \le e_1 \le 5$$
, $3 \le e_2 \le 6$, and $4 \le e_3 \le 7$.

The number of solutions is the coefficient of x^{17} in the expansion of

$$f(x) = (x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7).$$

A term equal to x^{17} is obtained in the product by picking x^{e_1} in the first sum, x^{e_2} in the second sum x^{e_2} , and x^{e_3} in the third sum x^{e_3} , such that $e_1 + e_2 + e_3 = 17$.

Find the number of solutions of

$$e_1 + e_2 + e_3 = 17$$
,

where e_1 , e_2 , and e_3 are nonnegative integers with

$$2 \le e_1 \le 5$$
, $3 \le e_2 \le 6$, and $4 \le e_3 \le 7$.

The number of solutions is the coefficient of x^{17} in the expansion of

$$f(x) = (x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7).$$

A term equal to x^{17} is obtained in the product by picking x^{e_1} in the first sum, x^{e_2} in the second sum x^{e_2} , and x^{e_3} in the third sum x^{e_3} , such that $e_1 + e_2 + e_3 = 17$.

There are three solutions since the coefficient of x^{17} in the product is 3.

Summary

- Counting combinations with generating functions
- Extended Binomial Theorem
- Counting Combinations with Repetition with generating functions