In [40]: H import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") H In [41]: import plotly.express as px In [42]: H china_data = pd.read_csv("china_dept_trap.csv") In [43]: china_data.head()

Out[43]:

	Expand All Collapse All	YEAR	AMOUNT	LENDER	BORROWER	SECTOR	SENSITIVE TERRITORY OVERLAP	Cour
0	"Lar Patriota" Infrastructure (Phase 1)	2011	\$50M	CDB	Government	Transport	None Known	Ang
1	10-Year Oil Supply Plan (10Mt/Year), "Oil for	2009	\$7.0B	CDB	Petrobras	Extraction, pipelines	None Known	Br
2	1000 housing project	2012	\$47M	ExlmBank	Government	Government	None Known	Surina
3	115kV Transmission Line and Substation from Ph	2009	\$475M	ExlmBank	Electricite Du Cambodge	Power	None Known	Cambo
4	151 Multisector infrastructure projects	2016	\$600M	CDB	Central Bank of Kenya	Mulit- sector/discretionary	None Known	Keı
4								

In [44]: ▶

```
china_data.tail()
```

Out[44]:

	Expand All Collapse All	YEAR	AMOUNT	LENDER	BORROWER	SECTOR	SENSITIVE TERRITORY OVERLAP	Country
853	Zalingei-El Geneinah Road Construction	2009	\$120M	ExlmBank	Government	Transport	None Known	Sudan
854	Zanzibar Airport Terminal 2 Expansion	2010	\$73M	ExlmBank	Government	Transport	None Known	Tanzania
855	Zemun-Borca bridge	2009	\$217M	ExlmBank	Government	Transport	None Known	Serbia
856	Zongo II Hydropower Station	2011	\$367M	ExlmBank	Government	Power	None Known	Congo, Democratic Republic of the
857	Zungeru Hydropower Plant Project	2013	\$984M	ExlmBank	Government	Power	Within Indigenous Peoples' Lands	Nigeria

```
In [45]:
```

china_data.shape

Out[45]:

(858, 8)

In [46]: ▶

china_data.columns

Out[46]:

```
In [47]:
```

```
china_data = china_data.rename(columns = {'Expand All | Collapse All' : 'Title'})
```

```
In [48]:
                                                                                           M
china_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 858 entries, 0 to 857
Data columns (total 8 columns):
     Column
                                    Non-Null Count Dtype
     -----
- - -
                                    -----
 0
     Title
                                    858 non-null
                                                     object
 1
     YEAR
                                    858 non-null
                                                     int64
 2
     AMOUNT
                                    858 non-null
                                                     object
 3
     LENDER
                                    858 non-null
                                                     object
 4
     BORROWER
                                    857 non-null
                                                     object
 5
     SECTOR
                                    858 non-null
                                                     object
                                   858 non-null
                                                     object
 6
     SENSITIVE TERRITORY OVERLAP
     Country
                                    858 non-null
                                                     object
dtypes: int64(1), object(7)
memory usage: 53.8+ KB
In [49]:
                                                                                           H
china_data.describe()
Out[49]:
            YEAR
       858.000000
count
mean 2013.268065
  std
         2.894155
  min 2008.000000
 25% 2011.000000
 50% 2013.000000
 75% 2016.000000
 max 2019.000000
                                                                                           H
In [50]:
china data.isnull().sum()
Out[50]:
                                 0
Title
YEAR
                                 0
AMOUNT
                                 0
LENDER
BORROWER
                                 1
SECTOR
                                 0
SENSITIVE TERRITORY OVERLAP
                                 0
Country
                                 0
dtype: int64
```

```
H
In [51]:
china_data.dropna(inplace = True)
In [52]:
                                                                                            H
china_data.nunique()
Out[52]:
Title
                                 827
YEAR
                                  12
AMOUNT
                                 346
LENDER
                                   7
BORROWER
                                 120
SECTOR
                                  10
SENSITIVE TERRITORY OVERLAP
                                   8
                                  94
Country
dtype: int64
In [53]:
                                                                                            H
china_data['YEAR'].unique()
Out[53]:
array([2011, 2009, 2012, 2016, 2015, 2017, 2018, 2014, 2008, 2010, 2013,
       2019], dtype=int64)
In [54]:
                                                                                            H
china_data['YEAR'].value_counts()
Out[54]:
2016
        133
2011
        106
         91
2013
2012
         86
         79
2015
2017
         75
         70
2014
2009
         69
2010
         58
         45
2018
2008
         40
2019
          5
Name: YEAR, dtype: int64
```

In [55]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot('YEAR', data = china_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [56]: ▶

```
fig1 = px.histogram(china_data, x = 'YEAR', color = 'YEAR')
fig1.show()
```



```
In [57]:
china_data['LENDER'].unique()
```

Out[57]:

In [58]: ▶

```
china_data['LENDER'].value_counts()
```

Out[58]:

ExImBank 625
CDB 219
CDB, ExImBank 8
CDB, ICBC 2
BOC, CDB, ExImBank 1
CDB, others 1
CDB, Citic 1
Name: LENDER, dtype: int64

In [59]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot('LENDER', data = china_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [60]: ▶

```
fig2 = px.histogram(china_data, x = 'LENDER', color = 'LENDER')
fig2.show()
```



```
In [61]:
china_data['SECTOR'].unique()
```

Out[61]:

In [62]: ▶

```
china_data['SECTOR'].value_counts()
```

Out[62]:

Transport	316		
Power	203		
Government	138		
Telecom	63		
Extraction, pipelines	38		
Mulit-sector/discretionary	30		
Other construction	29		
Agriculture, food	27		
Manufacturing			
fTransport	1		

Name: SECTOR, dtype: int64

```
In [63]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot('SECTOR', data = china_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [64]: ▶

```
fig3 = px.histogram(china_data, x = 'SECTOR', color = 'SECTOR')
fig3.show()
```



```
In [65]:
china_data['SENSITIVE TERRITORY OVERLAP'].unique()
```

Out[65]:

In [66]: ▶

```
china_data['SENSITIVE TERRITORY OVERLAP'].value_counts()
```

Out[66]:

```
None Known
524
Within Critical Habitats
124
Within Critical Habitats\n Within National Protected Areas
57
Within Indigenous Peoples' Lands\n Within Critical Habitats
45
Within Indigenous Peoples' Lands
41
Within Indigenous Peoples' Lands\n Within Critical Habitats\n Within Natio
nal Protected Areas 34
Within National Protected Areas
19
Within Indigenous Peoples' Lands\n Within National Protected Areas
19
Within Indigenous Peoples' Lands\n Within National Protected Areas
13
Name: SENSITIVE TERRITORY OVERLAP, dtype: int64
```

```
In [67]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot('SENSITIVE TERRITORY OVERLAP', data = china_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [68]: ▶

```
china_data['Country'].unique()
```

Out[68]:

```
array(['Angola', 'Brazil', 'Suriname', 'Cambodia', 'Kenya',
         'Congo, Democratic Republic of the', 'Laos', 'Bangladesh',
         'Nigeria', 'Benin', 'Zambia', 'Bahamas', "Cote d'Ivoire",
         'Ethiopia', 'Djibouti', 'Indonesia', 'Togo', 'Philippines'
         'Myanmar', 'Mozambique', 'Eritrea', 'Ukraine', 'South Sudan',
         'Sudan', 'Kyrgyz Republic', 'Uzbekistan', 'Ecuador', 'Mauritania',
         'Kazakhstan', 'Jordan', 'Niger', 'Mauritius', 'Pakistan', 'Mali',
         'Hungary', 'Serbia', 'Belarus', 'Morocco', 'Regional', 'Malawi', 'Egypt', 'Tanzania', 'Congo, Republic of the', 'Fiji', 'Nepal',
         'Rwanda', 'Ghana', 'Senegal', 'Sri Lanka', 'Argentina', 'Guyana',
         'Trinidad and Tobago', 'Maldives', 'Bolivia', 'Vietnam', 'Gabon',
         'Montenegro', 'Papua New Guinea', 'Samoa', 'Iran', 'Cameroon',
         'Venezuela', 'Timor-Leste', 'Peru', 'Tajikistan', 'Malaysia',
         'Dominican Republic', 'Uganda', 'Russian Federation', 'Madagascar',
         'Turkmenistan', 'Jamaica', 'Gambia', 'Lesotho', 'Zimbabwe',
        'Mongolia', 'Cuba', 'Guinea', 'Macedonia', 'Vanuatu',
'Equatorial Guinea', 'Grenada', 'South Africa', 'Namibia', 'Chad',
'Tonga', 'Barbados', 'Liberia', 'Costa Rica', 'Antigua & Barbuda',
'Comoros', 'Mexico', 'Tunisia', 'Bosnia & Herzegovina'],
       dtype=object)
```

In [69]: ▶

```
china_data['Country'].value_counts()
```

Out[69]:

Angola	115	
Ethiopia	34	
Cambodia	31	
Sri Lanka	30	
Indonesia	30	
Malaysia	1	
Peru	1	
Hungary	1	
Jordan	1	
Bosnia & Herzegovina	1	
Name: Country, Length:	94, dtype:	int6

In [70]:

```
plt.figure(figsize=(20,8))
sns.countplot('Country', data = china_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [71]:

def amount(a):
    y=a
    if ',' in a:
        a=a.replace(',','')
    a=float(a[1:-1])
    if y[-1]=='M':
        return a*1000000
    elif y[-1]=='B':
        return a*1000000000
    else:
        return 'Please check'
```

```
In [72]:
china_data['AMOUNT']=china_data['AMOUNT'].apply(amount)
```

In [73]:

```
china_data.head()
```

Out[73]:

	Title	YEAR	AMOUNT	LENDER	BORROWER	SECTOR	SENSITIVE TERRITORY OVERLAP	
0	"Lar Patriota" Infrastructure (Phase 1)	2011	5.000000e+07	CDB	Government	Transport	None Known	
1	10-Year Oil Supply Plan (10Mt/Year), "Oil for	2009	7.000000e+09	CDB	Petrobras	Extraction, pipelines	None Known	
2	1000 housing project	2012	4.700000e+07	ExlmBank	Government	Government	None Known	S
3	115kV Transmission Line and Substation from Ph	2009	4.750000e+08	ExlmBank	Electricite Du Cambodge	Power	None Known	Ci
4	151 Multisector infrastructure projects	2016	6.000000e+08	CDB	Central Bank of Kenya	Mulit- sector/discretionary	None Known	
4								•

In [74]:

```
plt.figure(figsize=(20,8))
sns.barplot(x = 'Country',y = 'AMOUNT', data = china_data.head(500))
plt.xticks(rotation = 90)
plt.show()
```


In []: ▶

```
plt.figure(figsize=(20,8))
fig = px.bar(x = 'Country',y = 'AMOUNT', data = china_data.head(500))
plt.xticks(rotation = 90)
plt.show()
```

```
In [87]:
```


In [86]: ▶

In [93]: ▶

```
plt.figure(figsize=(20,8))
sns.lineplot(x = 'Country',y = 'YEAR', data = china_data)
plt.xticks(rotation = 90)
plt.show()
```


In [97]: ▶

In [99]: ▶

```
plt.figure(figsize=(10,7))
plt.xticks(rotation=90)
data=china_data.groupby('YEAR').sum().reset_index().sort_values('YEAR').sort_values('YEAR')
display(data)
sns.barplot(data=data,x='YEAR',y='AMOUNT',palette='spring')
plt.show()
```

	YEAR	AMOUNT
0	2008	7.565000e+09
1	2009	6.240000e+10
2	2010	4.123500e+10
3	2011	3.394900e+10
4	2012	3.488600e+10
5	2013	4.185200e+10
6	2014	4.839100e+10
7	2015	5.110400e+10
8	2016	7.500100e+10
9	2017	4.924100e+10
10	2018	1.258300e+10
11	2019	3.940000e+09

In [100]:

```
plt.figure(figsize=(15,10))
plt.suptitle('top 25 countries on which china invested the most(world wide)',size=20,we:
data=china_data.groupby('Country').sum().reset_index().sort_values('AMOUNT',ascending=Faplt.subplot(1,2,1)
plt.xticks(rotation=90)
sns.barplot(data=data.head(25),x='Country',y='AMOUNT')
plt.subplot(1,2,2)
plt.axis('off')
plt.tight_layout()
plt.table(cellText=data.head(25).values, colLabels=data.columns, loc='center')
```

Out[100]:

<matplotlib.table.Table at 0x2df31151c0>

Country	AMOUNT		
Venezuela	57691000000.0		
Pakistan	39853000000.0		
Russian Federation	37045000000.0		
Angola	29640000000.0		
Brazil	28156000000.0		
Ecuador	18390000000.0		
Argentina	17083000000.0		
Iran	16500000000.0		
Indonesia	14499000000.0		
Turkmenistan	14200000000.0		
Bangladesh	11089000000.0		
Philippines	9954000000.0		
Kenya	8756000000.0		
Vietnam	8713000000.0		
Sri Lanka	8709000000.0		
Kazakhstan	8400000000.0		
Ethiopia	8291000000.0		
Ukraine	6552000000.0		
Belarus	6440000000.0		
Nigeria	6119000000.0		
Laos	5463000000.0		
Cameroon	5309000000.0		
Cambodia	5008000000.0		
Zambia	4957000000.0		
Uzbekistan	4890000000.0		

In [101]:

```
plt.figure(figsize=(15,10))
plt.suptitle("top 25 countrie's Government on which china invested the most(world wide)'
data=china_data[china_data['BORROWER']=='Government'].groupby('Country').sum().reset_inc
plt.subplot(1,2,1)
plt.xticks(rotation=90)
sns.barplot(data=data.head(25),x='Country',y='AMOUNT')
plt.subplot(1,2,2)
plt.axis('off')
plt.tight_layout()
plt.table(cellText=data.head(25).values, colLabels=data.columns, loc='center')
```

Out[101]:

<matplotlib.table.Table at 0x2df7bd9d00>

Country	AMOUNT		
Venezuela	3900000000.0		
Pakistan	29528000000.0		
Angola	22140000000.0		
Argentina	16741000000.0		
Iran	1500000000.0		
Ecuador	14489000000.0		
Indonesia	8061000000.0		
Sri Lanka	7729000000.0		
Kenya	7529000000.0		
Bangladesh	7221000000.0		
Turkmenistan	7100000000.0		
Ethiopia	6651000000.0		
Kazakhstan	6600000000.0		
Russian Federation	6097000000.0		
Nigeria	5791000000.0		
Belarus	5040000000.0		
Cameroon	4860000000.0		
Cambodia	4533000000.0		
Zambia	4415000000.0		
Congo, Republic of the	4056000000.0		
Uzbekistan	3690000000.0		
Philippines	3369000000.0		
Ukraine	3052000000.0		
Myanmar	3019000000.0		
Nenal	2916000000 0		

In [103]: ▶

import textwrap

In [105]:

M

```
country='Pakistan'
data=china_data[china_data['Country']==country]
ax=plt.figure(figsize=(15,10))
plt.suptitle(f"China's investments on {country}", weight='bold', size=20)
plt.subplot(2,2,1)
plt.title('Year-wise Investment')
sns.lineplot(data=data.groupby('YEAR').sum().reset_index(),x='YEAR',y='AMOUNT',color='r
plt.subplot(2,2,2)
plt.title('Sector-wise Investment')
data['SECTOR'].value_counts().plot.pie(autopct='%.2f%%')
plt.subplot(2,2,3)
plt.title('Borrower-wise Amount invested')
plt.xticks(rotation=90)
ax=sns.barplot(data=data.groupby('BORROWER').sum().reset_index(),x='BORROWER',y='AMOUNT
labels = [textwrap.fill(label.get_text(), 12) for label in ax.get_xticklabels()]
ax.set_xticklabels(labels)
plt.subplot(2,2,4)
plt.title('YEAR-wise Amount invested')
ax=sns.barplot(data=data,x='YEAR',y='AMOUNT',hue='SECTOR',ci=False)
labels = [textwrap.fill(label.get_text(), 12) for label in ax.get_xticklabels()]
display(data.sort_values('AMOUNT', ascending=False)[['YEAR', 'AMOUNT']].reset_index(drop=1)
```

	YEAR	AMOUNT
0	2009	6.900000e+09
1	2014	6.500000e+09
2	2017	6.100000e+09
3	2016	2.900000e+09
4	2015	2.700000e+09
5	2015	2.700000e+09
6	2014	1.900000e+09
7	2014	1.600000e+09
8	2017	1.500000e+09
9	2017	1.200000e+09
10	2013	1.200000e+09
11	2016	9.560000e+08
12	2015	7.850000e+08
13	2015	5.760000e+08
14	2016	5.000000e+08
15	2012	4.480000e+08
16	2011	3.770000e+08
17	2008	3.270000e+08
18	2015	2.070000e+08
19	2008	2.000000e+08
20	2011	1.570000e+08
calhost	·9999/pot/	shooks/China's Deht

	YEAR	AMOUNT
21	2017	7.600000e+07
22	2013	4.400000e+07

China's investments on Pakistan

