Исследование характеристик биполярного транзистора

Вопрос	Ответ
Какие транзисторы «биполярные» по типу перехода?	Биполярные транзисторы – это транзисторы с тремя полупроводниковыми областями, создающими два p-n-перехода. В зависимости от типа перехода различают NPN и PNP транзисторы.
Нагрузочная прямая строится по двум точкам, что они обозначают? И что такое нагрузочная прямая?	Нагрузочная прямая строится на графике выходных характеристик транзистора и определяется двумя точками: при напряжении коллектора равном нулю и при нулевом токе коллектора. Она описывает соотношение тока и напряжения в цепи и показывает возможные рабочие режимы транзистора.
Какие есть схемы подключения транзистора? В лабе была с общим эммитером.	Существует три основных схемы подключения транзистора: - Схема с общим эмиттером - Схема с общей базой - Схема с общим коллектором.
Режим отсечки.	Режим отсечки транзистора – это состояние, когда транзистор полностью закрыт, ток коллектора практически отсутствует, и транзистор находится в состоянии высокого сопротивления.
Плюсы и минусы схемы с общей базой?	Плюсы: - Высокая частотная характеристика Низкий входной импеданс. Минусы: - Низкий коэффициент усиления по напряжению Требует источника сигнала с низким сопротивлением.
Плюсы и минусы схемы с общим эмиттером?	Плюсы: - Высокий коэффициент усиления по току и напряжению Широкое применение в усилителях. Минусы: - Низкая частотная характеристика по сравнению с другими схемами.
Плюсы и минусы схемы с общим коллектором?	Плюсы: - Высокий коэффициент усиления по

Про коэффициенты усиления (по напряжению, по току и т.д.)	току Высокий входной и низкий выходной импеданс. Минусы: - Коэффициент усиления по напряжению близок к единице. Коэффициент усиления по току (β) показывает, насколько увеличивается ток в цепи коллектора по сравнению с базовым током. Коэффициент усиления по напряжению определяется как
	отношение изменения напряжения на выходе к изменению напряжения на
Нагрузочная прямая, что она	входе. Нагрузочная прямая разделяет
разделяет?	различные режимы работы транзистора: режим отсечки, активный режим и режим насыщения.
Смысл рабочей точки? Почему и как ее выбираем?	Рабочая точка транзистора (Q-точка) определяет стабильный режим работы транзистора в активной области. Выбор рабочей точки важен для предотвращения искажений сигнала и обеспечения оптимальной работы схемы в усилительном режиме.
Что показывает нагрузочная линия? Где она строится?	Нагрузочная линия показывает зависимость тока коллектора от напряжения на коллекторе для определенного значения нагрузки. Она строится на графике выходных характеристик транзистора.
Усилительный каскад на общей базе, плюсы и минусы?	Плюсы: - Высокая частотная характеристика Низкий уровень шумов. Минусы: - Низкий коэффициент усиления потоку.
Почему частотный диапазон такой?	Частотный диапазон схемы зависит от типа транзистора, его характеристик и схемы подключения. Схемы с общей базой имеют высокую частотную характеристику благодаря низкому входному сопротивлению и малому времени переключения.

1. Схема с общим эмиттером (ОЭ)

- Входное напряжение и ток:

- Входное напряжение подаётся между базой и эмиттером транзистора (Ube).
- Входной ток это ток базы (lb), который протекает от источника через базу к эмиттеру.

- Выходное напряжение и ток:

- Выходное напряжение снимается между коллектором и эмиттером (Uce).
- Выходной ток это ток коллектора (Ic), который течёт через транзистор и внешний нагрузочный резистор \((R_C\)).
- Назначение: Усиление по току и напряжению, инвертирующий усилитель (выходной сигнал по фазе противоположен входному).

2. Схема с общей базой (ОБ)

- Входное напряжение и ток:

- Входное напряжение подаётся между эмиттером и базой транзистора (Ueb).
- Входной ток это ток эмиттера (Ie), который протекает от источника через эмиттер к базе.

- Выходное напряжение и ток:

- Выходное напряжение снимается между коллектором и базой (Ucb).
- Выходной ток это ток коллектора (Ic), который течёт через транзистор и внешний нагрузочный резистор \((R_C \).
- Назначение: Усиление по напряжению, но без усиления по току. Сигнал не инвертируется (выходная и входная фазы совпадают).

3. Схема с общим коллектором (ОК) (эмиттерный повторитель)

- Входное напряжение и ток:

- Входное напряжение подаётся между базой и коллектором (Ubc).
- Входной ток это ток базы (Ib), который протекает от источника через базу к коллектору.

- Выходное напряжение и ток:

- Выходное напряжение снимается между эмиттером и коллектором (Uec). Поскольку эмиттер следует за входным сигналом, выходное напряжение близко к входному, но немного ниже (на величину Ube).
- Выходной ток это ток эмиттера (Ie), который больше входного тока (Ib), что даёт усиление по току.