Fisher Information Por a Poisson model

Suppose that we observe a sample $x_1,...,x_n \sim Poi(\lambda)$ The Fisher information of the sample is defined as $E\left[\frac{\partial \ell(x_1\lambda)}{\partial \lambda}\right]^2$ or equivalently $-E\left[\frac{\partial^2 \ell(x_1\lambda)}{\partial \lambda}\right]$.

So we have
$$L(x|x) = \frac{1}{1+n} \frac{1}{x \cdot 1} = \frac{1}{1+n$$

and we note that $\mathbb{E}[\hat{Z} \times] = n\lambda$, so we have that $-\mathbb{E}[\hat{Z} \times] = -\mathbb{E}[\hat{Z} \times] /\lambda^2$ $= -n\lambda/\lambda^2$ $= n/\lambda$

The Fisher information of one observation is 1/1.