Limits

Def " In ~- rat has all limits of shape I if

$$A^{J} \xrightarrow{\beta} A^{\zeta}$$

an absolute right lifting of id through \triangle

A particular limit of a J-shaped diagram $1 \xrightarrow{d} A^{J}$

an absolute right lifting.

$$1 \longrightarrow A^{5}$$

Universal property of $(1, \lambda)$:

Goal Right adjoints preserve limits

$$c \xrightarrow{\text{g}} P$$

 $c \xrightarrow{g} A$ be absolute right lifting diagram

K is an absolute right lifting

iff $\lambda \cdot K$ is.

(This generalizes pullbacks)

Digression: right liftings are right adjoints and I is a counit The Right adjoints preserve limits.

Proof Juven a limit diagram

 $\lim_{M \to \infty} \frac{1}{M} = \lim_{M \to \infty} \frac{1}{M} = \lim_{M$ and

 $\frac{\mathcal{R}_{\text{ENO}}f}{f}$ for with counit $\mathcal{E}: fu \Rightarrow d_{\text{A}}$

 $\Rightarrow f^{3} \rightarrow u^{3}$ with counit ε^{3} $\downarrow z^{3} \downarrow f^{3}$ i e we've a right lifting diagram $A^{J} = A^{J}$

To prove this consider find [] and sumplify this too $1 \xrightarrow{d} A^{J} \xrightarrow{u^{3}} B^{J}$ and both $\xi , \xi \text{ are als right liftings} 1 \xrightarrow{d} A$

Initial Functor

Idea Consider $1 \xrightarrow{d} A^{2}$, $J \in q$ Cat, J has an initial element $1 \xrightarrow{i} J$ then $\lim_{t \to 0} d = d(i) \in A$.

Def $\exists \frac{k}{} \exists \exists \in g \text{ Cat}$ is unital (or in X if X is contactosed) is initial if $\exists -\text{indexed}$ limits exist if restricted $\exists -\text{indexed}$ limits exist + limits coincide.

Prop of I K I has a right adjoint then K is unital.