# Advanced Machine Learning

Likhit Nayak

## Gradient descent

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta)$$

$$heta = heta - \eta \cdot 
abla_{ heta} J( heta; x^{(i)}; y^{(i)})$$

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$$

# Disadvantages of SGD

1. Dependent on learning rate



## Disadvantages of SGD

- Learning rate schedulers and thresholds defined in advance are unable to adapt to a dataset's characteristics
- 3. The same learning rate applies to all parameter updates
  - If our data/feature set is sparse, we might want to different updates for different features
- 4. Doesn't know how to deal with saddle points, i.e. points where one dimension slopes up and another slopes down



### SGD with momentum



(a) SGD without momentum



(b) SGD with momentum

#### SGD with momentum

Momentum helps accelerate SGD in the relevant direction and dampens oscillations by adding another hyperparameter  $\gamma$ :

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$$
$$\theta = \theta - v_t$$

### SGD with Nesterov momentum

Computes an additional term representing the approximate future position of the parameters  $\theta$ :

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_t$$

### SGD with Nesterov momentum





(a) Momentum-Based Gradient Descent

(b) Nesterov Accelerated Gradient Descent

## Adagrad

It adapts the learning rate to the parameters, performing larger updates for infrequent and smaller updates for frequent parameters

If we consider SGD for each single parameter  $\theta_i$ :

$$g_{t,i} = 
abla_{ heta_t} J( heta_{t,i})$$
  $heta_{t+1,i} = heta_{t,i} - rac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$ 

## **RMSProp**

Instead of accumulating the sum of squared gradients, this method uses a decaying average of past gradients:

$$E[g^{2}]_{t} = \gamma E[g^{2}]_{t-1} + (1 - \gamma)g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$

#### Adam

In addition to using the past squared gradients, Adaptive Moment Estimation (Adam) also uses past gradients:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

#### Adam

In addition to using the past squared gradients, Adaptive Moment Estimation (Adam) also uses past gradients:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

#### Adam

In addition to using the past squared gradients, Adaptive Moment Estimation (Adam) also uses past gradients:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

# Comparison of SGD variants



# Comparison of SGD variants



Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).