

А. А+В (пробная задача)

1 секунда, 256 мегабайт

Заданы два целых числа a и b. Выведите a+b.

Входные данные

В первой строке записано целое число t ($1 \le t \le 10^4$) — количество наборов входных данных в тесте. Далее следуют t наборов входных данных.

Каждый набор задан одной строкой, которая содержит два целых числа $a, b \ (-1000 \le a, b \le 1000)$.

Выходные данные

Выведите t целых чисел — искомые суммы a+b для каждого набора входных данных.

ВХОДНЫЕ ДАННЫЕ 4 1 5 314 15 -99 99 123 987 ВЫХОДНЫЕ ДАННЫЕ 6 329 0 1110

В. Ваня и кубики

1 секунда, 256 мегабайт

Ване на день рождения подарили n кубиков. Он с друзьями решил построить из них пирамиду. Ваня хочет построить пирамиду следующим образом: на верхушке пирамиды должен находиться 1 кубик, на втором уровне -1+2=3 кубика, на третьем -1+2+3=6 кубиков, и так далее. Таким образом, на i-м уровне пирамиды должно располагаться $1+2+\ldots+(i-1)+i$ кубиков.

Ваня хочет узнать, пирамиду какой максимальной высоты он может создать с использованием имеющихся кубиков.

Входные данные

В первой строке записано целое число n ($1 \le n \le 10^4$) — количество кубиков, подаренных Ване.

Выходные данные

Выведите единственной строкой максимально возможную высоту пирамиды.

входные данные
1
выходные данные
1
входные данные
25
выходные данные
4

Иллюстрация к второму примеру:

С. Грегор и криптография

1 секунда, 256 мегабайт

Грегор изучает RSA — известный алгоритм криптографии, и несмотря на то, что он пока не понимает, как работает RSA, он очаровался простыми числами и работой с ними.

Любимое **простое** число Грегора равно P. Грегор хочет найти два **основания** P. Формально, Грегор хочет найти два целых числа a и b, удовлетворяющих двум следующим условиям.

- $P \bmod a = P \bmod b$, где $x \bmod y$ обозначает остаток от деления x на y, и
- $2 \le a < b \le P$.

Помогите Грегору найти два основания его любимого простого числа!

Входные данные

Каждый тест состоит из нескольких наборов входных данных. Первая строка содержит количество наборов входных данных t ($1 \le t \le 1000$).

Каждая последующая строка содержит одно целое число P (5 $\leq P \leq 10^9$), где P гарантированно простое.

Выходные данные

Вывод должен состоять из t строк. Каждая строка должна содержать два целых числа a и b ($2 \le a < b \le P$). Если существует несколько решений, выведите любое.

В первом примере P=17. a=3 и b=5 допустимые *основания*, потому что $17 \mod 3=17 \mod 5=2$. Существуют другие допустимые пары.

Во втором примере P=5, единственное решение здесь -a=2 и b=4

D. Черви

1 секунда, 256 мегабайт

Пора Кроту пообедать. Его друг Сурок приготовил вкусный обед.

Сурок принес Кроту n упорядоченных кучек червей, таких, что в i-ой кучке содержатся a_i червей. Он пронумеровал всех этих червей последовательными целыми числами: черви в первой кучке пронумерованы числами от 1 до a_1 , черви во второй кучке пронумерованы числами от a_1+1 до a_1+a_2 и так далее. Смотрите пример для лучшего понимания.

Крот не может съесть всех червей (Сурок принёс их слишком много для того, чтобы съесть за один подход). К тому же, насколько мы знаем, Крот слепой — поэтому Сурок помогает ему, называ номера самых сочных червей. Сурок даст Кроту червяка, только если Крот правильно назовет кучку, в которой лежит червяк.

Крот просит вас ему помочь. Для всех сочных червей, которых назвал Сурок, подскажите Кроту правильные ответы.

Входные данные

В первой строке записано единственное целое число n ($1 \le n \le 10^5$), количество кучек.

Во второй строке записано n целых чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 10^3$, $a_1+a_2+...+a_n \le 10^6$), где a_i — количество червей в i-й кучке.

В третьей строке записано единственное целое число m ($1 \le m \le 10^5$), количество сочных червей, названных Сурком.

В четвертой строке записано m целых чисел $q_1, q_2, ..., q_m$ ($1 \le q_i \le a_1 + a_2 + ... + a_n$) — номера сочных червей.

Выходные данные

Выведите m строк. В i-ой строке должно быть целое число — номер кучки, в которой лежит червяк под номером q_i .

ВХОДНЫЕ ДАННЫЕ 5 2 7 3 4 9 3 1 25 11 Выходные данные 1 5 3

Для входного файла из примера:

- Черви под номерами в пределах [1, 2] лежат в первой кучке.
- Черви под номерами в пределах [3, 9] лежат во второй кучке.
- Черви под номерами в пределах [10, 12] лежат в третьей кучке.
- Черви под номерами в пределах [13, 16] лежат в четвертой кучке.
- Черви под номерами в пределах [17, 25] лежат в пятой кучке.

Е. Пашмак и цветы

1 секунда, 256 мегабайт

Пашмак решил подарить Пармиде пару цветов из своего сада. В саду растет n цветов, красота i-го из них равна b_i . Пармида — девушка необычная, она необязательно хочет получить два самых красивых цветка. Она хочет получить такие два цветка, разница красот которых максимально возможная!

Ваша задача — написать программу, которая посчитает два значения:

- 1. Максимальную разность красот двух цветов из сада Пашмака.
- 2. Сколько существует способов выбрать два цветка из сада, чтобы разность их красот была максимально возможной. Два способа считаются различными тогда и только тогда, когда хотя бы один цветок выбран в одном из них и не выбран во втором.

Входные данные

В первой строке записано целое число n ($2 \le n \le 2 \cdot 10^5$). В следующей строке записано n целых чисел через пробел $b_1, b_2, ..., b_n$ ($1 \le b_i \le 10^9$).

Выходные данные

1 4 5

В единственной строке выведите два целых числа — максимальную разность красот и количество способов ее получить.

```
входные данные
2
1 2
Выходные данные
1 1
входные данные
```

```
выходные данные
4 1

входные данные
5
3 1 2 3 1
```

В третьем примере максимальная разность красот равна 2. Существует 4 способа ее получить:

• выбрать первый и второй цветки;

выходные данные

2 4

- выбрать первый и пятый цветки;
- выбрать четвертый и второй цветки;
- выбрать четвертый и пятый цветки.

F. Заполнение формами

1 секунда, 256 мегабайт

Вам дано целое число n. Найдите количество способов заполнить все $3 \times n$ плитки формой, описанной на рисунке ниже. Нельзя, чтобы после заполнения были пустые плитки. Формы не могут перекрываться.

Эта картина описывает ситуацию, когда n=4. Слева — форма, а справа — $3\times n$ плиток.

Входные данные

Первая строка содержит одно целое число $n \ (1 \le n \le 60) -$ длину.

Выходные данные

выходные данные

Выведите количество способов.

В первом примере есть всего 4 возможных способов заполнения.

Во втором примере вы не можете заполнить 3×1 плиток.

G. Каникулы

1 секунда, 256 мегабайт

Каникулы Васи будут длиться n дней! И Вася решил за это время улучшить свои навыки программирования, а также позаниматься спортом. Про каждый из n дней каникул Вася знает, будет ли открыт в этот день спортзал, а также будет ли в интернете в этот день проводиться контест. Для i-го дня возможны четыре варианта:

- 1. в этот день закрыт спортзал и не проводится контест;
- 2. в этот день закрыт спортзал и проводится контест;
- 3. в этот день открыт спортзал и не проводится контест;
- 4. в этот день открыт спортзал и проводится контест.

В каждый из дней Вася может либо отдыхать, либо писать контест (если он проводится в этот день), либо заниматься спортом (если открыт спортзал).

Перед вами стоит задача найти минимальное количество дней, в которые Вася будет отдыхать (то есть не будет заниматься спортом и не будет писать контест одновременно). Единственное ограничение от Васи — он не хочет два дня подряд заниматься одним и тем же видом активности, то есть он не будет заниматься спортом два дня подряд и он не будет писать контесты два дня подряд.

Входные данные

В первой строке следует целое положительное число n ($1 \le n \le 100$) — количество дней в каникулах Васи.

Во второй строке следует через пробел последовательность целых чисел $a_1, a_2, ..., a_n$ ($0 \le a_i \le 3$), где:

- a_i равно 0, если в i-й день каникул не работает спортзал и не проводится контест;
- a_i равно 1, если в i-й день каникул не работает спортзал, но проводится контест;
- a_i равно 2, если в i-й день каникул работает спортзал и не проводится контест:
- a_i равно 3, если в i-й день каникул работает спортзал и проводится контест.

Выходные данные

Выведите минимально возможное количество дней, в которые Вася будет отдыхать. Помните, что Вася отказывается:

- заниматься спортом в какие-либо два подряд идущих дня,
- писать контест в какие-либо два подряд идущих дня.

Входные данные

Выходные данные

Входные данные

1

В первом тестовом примере Вася может написать контест в день номер 1 и позаниматься спортом в день номер 3. Таким образом, он будет отдыхать всего два дня.

Во втором тестовом примере Вася должен писать контесты в дни с номерами 1, 3, 5 и 7, а в остальные дни заниматься спортом. Таким образом, он не будет отдыхать ни одного дня.

В третьем тестовом примере Вася может позаниматься спортом либо в день номер 1, либо в день номер 2. Он не может заниматься спортом оба дня, так как это будет противоречить его ограничению. Таким образом, он будет отдыхать один день.

Н. Праздник

3 seconds, 256 megabytes

В компании работает n сотрудников, пронумерованных от 1 до n. У каждого сотрудника либо нет руководителя, либо есть ровно один непосредственный руководитель — некоторый другой сотрудник с другим номером. Сотрудник A называется <u>начальником</u> другого сотрудника B, если выполняется хотя бы одно из двух условий:

- Сотрудник A непосредственный руководитель сотрудника B.
- У сотрудника B есть непосредственный руководитель, сотрудник C, такой, что A является начальником сотрудника C.

В структуре компании нет циклов. То есть никакой сотрудник не является начальником своего непосредственного руководителя.

Сегодня компания собирается организовать праздник. Для этого необходимо разделить всех n сотрудников на несколько групп: каждый человек должен относиться ровно к одной группе. Более того, в каждой группе не должно быть таких двух сотрудников A и B, что A является начальником B.

Ваша задача — найти наименьшее возможное количество таких групп.

Входные данные

Первая строка содержит целое число n ($1 \le n \le 2000$) — количество сотрудников.

Следующие n строк содержат целые числа p_i ($1 \le p_i \le n$ или p_i = -1). Каждое p_i обозначает непосредственного руководителя i-го сотрудника. Если p_i равно -1, то i-ый сотрудник не имеет непосредственного руководителя.

Гарантируется, что никакой сотрудник не является своим собственным непосредственным руководителем $(p_i \neq i)$. Также гарантируется, что структура компании не содержит циклов.

Выходные данные

Выведите единственное целое число — минимальное количество групп, на которые можно разделить всех сотрудников.

В первом примере достаточно трех групп:

- Сотрудник 1
- Сотрудники 2 и 4
- Сотрудники 3 и 5