Reinforcement Learning and Optimal Control IFT6760C, Fall 2021

Pierre-Luc Bacon

December 12, 2021

Linear Quadratic Regulation

Assumption: cost function is quadratic and the dynamics are linear.

minimize
$$x_T Q_T x_T + \sum_{t=1}^T \left(x_t^\top Q x_t + u_t^\top R u_t \right)$$

subject to $x_{t+1} = A x_t + B u_t, \ t = 1, \dots, T-1$
given x_1 .

Backward Induction for LQR: Ricatti Equation

We can show that the value function is quadratic. Therefore, we can write the cost-to-go function as $J_t(x_t) \triangleq x_t^\top P_t x_t$. Hence, we need to find a set of matrices $\{P_1, \dots, P_T\}$ by backward induction:

- ightharpoonup Set $P_T = Q_T$
- From t = T 1, ..., 1:
 - ► Set $P_t = Q + A^T P_{t+1} A A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$
 - ► Set $K_t = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$

You can then compute the optimal control at time t in state x_t with $u_t^* = K_t x_t$ (the optimal controls are linear in the states).

Forward Sensitivity Equation

Let's consider a parameterized ODE of the form:

$$\dot{x}(t,\theta) = f(x(t),\theta), \quad x(t_0,\theta) = x_0(\theta)$$

Taking the total derivative:

$$D_2 D_1 x(t,\theta) = D_1 f(x(t,\theta),\theta) D_2 x(t,\theta) + D_2 f(x(t,\theta),\theta)$$

$$D_2 x(t,\theta) = D x_0(\theta) .$$

Using the symmetry of second derivatives (see Schwarz's theorem, Clairaut's theorem, or Young's theorem), we can write instead:

$$D_1D_2x(t,\theta) = D_1f(x(t,\theta),\theta)D_2x(t,\theta) + D_2f(x(t,\theta),\theta) .$$

Forward Sensitivity Equation

If we define $s(t, \theta) \triangleq D_2 x(t, \theta)$ ("s" as in sensitivity), we get the forward sensitivity equation:

$$D_1s(t,\theta) = D_1f(x(t,\theta),\theta)s(t,\theta) + D_2f(x(t,\theta),\theta)$$

$$s(t_0,\theta) = Dx_0(\theta) .$$

We can easily evaluate the Jacobian of f by augmenting the dynamics system f with the corresponding sensitivity equation. We can then solve for the original IVP simultaneously with its sensitivities.

Indirect Single Shooting for Parameterized IVPs

Goal: find the parameters θ which minimize a given cost function.

minimize
$$c(x(t_f, \theta))$$

subject to $\dot{x}(t, \theta) = f(x(t, \theta), \theta)$
given $x(t_0, \theta) = x_0(\theta)$.

Next slide: we will minimize this objective by gradient descent.

Indirect Single Shooting for Parameterized IVPs

Repeat:

Solve the augmented IVP (eg. Euler, RK4):

$$\dot{z}(t,\theta^{(k)}) = \tilde{f}(z(t,\theta^{(k)}),\theta^{(k)}) = \begin{pmatrix} f(x(t,\theta^{(k)}),\theta^{(k)}) \\ D_1 f(x(t,\theta^{(k)}),\theta^{(k)}) s(t,\theta^{(k)}) + D_2 f(x(t,\theta),\theta) \end{pmatrix}$$
with $z(t_0,\theta^{(k)}) = \begin{pmatrix} x_0(\theta^{(k)}) \\ s(t_0,\theta^{(k)}) \end{pmatrix}$

- ► Compute the gradient: $\Delta^{(k)} = Dc(x(t_f))s(t_f, \theta^{(k)})$
- ► Take a gradient step: $\theta^{(k+1)} = \theta^{(k)} \eta \Delta^{(k)}$

Direct Single Shooting for Parameterized IVPs

A "direct" approach to this problem is to first discretize the system, and then differentiate through it. For example, let's use Euler discretization with *n* intervals:

$$x^{(i+1)} = x^{(i)} + h^{(i)}f(x^{(i)}, \theta^{(k)})$$
.

What is the corresponding **discrete** forward sensitivity equation? Using the approach used earlier, define $\phi_i(\theta) = x_i$. We want $D\phi_{n+1}(\theta^{(k)})$:

$$D\phi_{n+1}(\theta^{(k)}) = D_1 f(x^{(n)}, \theta^{(k)}) D\phi_n(\theta^{(k)}) + D_2 f(x^{(n)}, \theta^{(k)}) .$$

Here again, we can form an augmented system to get both the state (approximate) and sensitivity (exact wrt to approximate sequence) at once.

Direct Single Shooting for Parameterized IVPs

Iterate the augmented system:

$$z^{(i+1)} = \tilde{f}(z^{(i)}, \theta) = \begin{pmatrix} z^{(i)} + h^{(i)}f(x^{(i)}, \theta^{(k)}) \\ D_1f(x^{(i)}, \theta^{(k)})D\phi_i(\theta^{(k)}) + D_2f(x^{(i)}, \theta^{(k)}) \end{pmatrix}$$
 with $z^{(1)} = \begin{pmatrix} x_0(\theta) \\ I \end{pmatrix}$

- ► Compute the gradient: $\Delta^{(k)} = Dc(x^{(n+1)})D\phi_{n+1}(\theta^{(k)})$
- ► Take a gradient step: $\theta^{(k+1)} = \theta^{(k)} \eta \Delta^{(k)}$

Multiple Shooting in BVPs

Consider a two-point boundary value problem of the form:

$$\dot{x}(t) = f(x(t)), \quad a < t < b$$

$$\psi(x(a), x(b)) = 0 \quad ,$$

That is, we need to find a trajectory which obeys the dynamics and satisfies the boundary constraint.

Multiple Shooting

The idea is to subdivide (a, b) into n intervals which will be treated as independent problems, whose solution is then stiched back together.

$$h(x_{t_1},...,x_{t_n}) = \begin{bmatrix} \phi_{t_2}(x_{t_1}) - x_{t_2} \\ \vdots \\ \phi_{t_{i+1}}(x_{t_i}) - x_{t_{i+1}} \\ \vdots \\ \phi_{t_N}(x_{t_n}) - x_{t_n} \\ \psi(x_{t_1},\phi_b(x_{t_n})) \end{bmatrix}.$$

This is a nonlinear equation of the form $h(x_{t_1}, \ldots, x_{t_n}) = 0$ which we can solve by Newton's method.

Measle Outbreak

Ppopulation stays constant and can be partitioned into *susceptible* cases S(t) (people who can contract measles), *infectives I(t)* (people who can infect other people), *latents L(t)* (people who have measles but can't spread it yet) and *immunes M(t)* (recovered cases).

$$S(t) + I(t) + L(t) + M(t) = N ,$$

where *N* is the total population. The dynamics are:

$$\dot{x}_1 = \mu - \beta(t)x_1x_3
\dot{x}_2 = \beta(t)x_1x_3 - \frac{x_2}{\lambda}
\dot{x}_3 = \frac{x_2}{\lambda} - \frac{x_3}{\eta}, \quad 0 < t < 1
\beta(t) = \beta_0(1 + \cos(2\pi t)) .$$

Boundary Condition

Find a value for the initial conditions such that at the end of the interval at t = 1 we got back to the same point: a periodic solution. That is:

$$\psi(x(0), x(1)) \triangleq x(1) - x(0) = 0$$
.

Visualization

Visualization

Collocation

The idea of collocation method in trajectory optimization is to approximate both the trajectory and the control function with a polynomial. This leads to a form of *implicit* simulation or integration in which the value of the states at the given *collocation points* is obtained *simultaneously*.

$$\dot{x}(t) = f(x(t), t), x(t_0) = x_0$$
.

Collocation Conditions

We can construct a collocation method by choosing a set of real numbers $0 \le c_i \le 1$ for i = 1, ..., N and a class of polynomial functions. We then require that our *collocation polynomial* of degree N satisfies:

$$p(t_0) = x_0$$

$$p'(t_0 + hc_i) = f(p(t_0 + hc_i), t_0 + hc_i), i = 1, ..., N,$$

where p' denotes the derivative. The value at the end of the interval is then:

$$\tilde{x}_1 \triangleq p(t_0 + h)$$
.

Example: Explicit Euler

Let's choose N = 1 with $c_1 = 0$, which means that we have to use a polynomial of the form:

$$p(t) = a_1(t - t_0) + a_0$$
 and $p'(t) = a_1$.

Applying the collocation conditions, we have:

$$p(t_0) = a_0 = x_0$$

 $p'(t_0) = a_1 = f(p(t_0), t_0)$.

Therefore, the value at the end of the time step must be:

$$p(t_0 + h) = x_0 + hf(x_0, t_0), t_0$$
,

which is the explicit Euler method