

Appln No. 09/729,443
Amdt date March 18, 2005
Reply to Office action of December 22, 2004

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A method of processing signals, comprising:

receiving first and second signals each being modulated on a carrier signal, the first signal preceding the second signal in time;

multiplying each of the first and second signals with a reference signal having a reference frequency;

adjusting the multiplied first signal based on the multiplied first and second signals, wherein the adjustment of the multiplied first signal comprises Viterbi decoding;

comparing the adjusted first signal to the multiplied first signal; and

adjusting the reference frequency as a function of the comparison.

2. (original) The method of claim 1 wherein the first and second signals each comprises turbo encoded data.

3. (original) The method of claim 1 wherein the multiplied first and second signals each comprises a baseband signal.

Claim 4. (cancelled).

Appln No. 09/729,443
Amdt date March 18, 2005
Reply to Office action of December 22, 2004

5. (original) The method of claim 1 wherein the comparison of the adjusted first signal with the multiplied first signal comprises detecting a phase difference between the adjusted first signal and the multiplied first signal.

6. (original) The method of claim 5 wherein the adjustment of the reference frequency comprises tuning a voltage controlled oscillator as a function of the phase difference between the adjusted first signal and the multiplied first signal..

7. (original) The method of claim 1 wherein the adjustment of the reference frequency comprises adjusting the reference frequency to be substantially equal to a frequency of the carrier signal.

8. (original) The method of claim 1 wherein the first and second received signals each comprises a symbol representing a constellation point, and wherein the adjustment of the multiplied first signal comprises quantizing the multiplied first signal to its nearest constellation point as a function of the multiplied first and second signals.

9. (original) The method of claim 1 further comprising receiving a third signal between the first and second signals, wherein the adjustment of the multiplied first signal is not based on the received third signal.

Appln No. 09/729,443

Amdt date March 18, 2005

Reply to Office action of December 22, 2004

10. (original) The method of claim 1 further comprising transmitting signals including the first and second signals, wherein the receiving of the first and second signals comprises receiving the transmitted signals.

11. (original) The method of claim 10 wherein the transmission of the signals comprises turbo encoding the signals before transmission.

12. (currently amended) The method of claim 11 wherein the transmission of the signals comprises interleaving and de-interleaving of the turbo encoded signals before transmission.

13. (original) The method of claim 11 wherein the transmission of the signals comprises transmitting a third signal between the first and second signals, a first portion of the signals including the first and second signals being turbo encoded, and a second portion of the signals including the third signal being turbo encoded and interleaved.

14. (original) The method of claim 13 further comprising receiving the transmitted third signal between the transmitted first and second signals, wherein the adjustment of the multiplied first signal is not based on the received third signal.

15. (currently amended) A receiver, comprising:

Appln No. 09/729,443

Amdt date March 18, 2005

Reply to Office action of December 22, 2004

an oscillator having a reference signal output with a tunable reference frequency;

a multiplier to multiply a first signal with the reference signal, and to multiply a second signal, succeeding the first signal in time, with the reference signal, the first and second signals each being modulated on a carrier frequency;

~~a decoder~~ slicer to adjust the multiplied first signal based on the multiplied first and second signals, wherein the slicer comprises a Viterbi decoder; and

a detector to compare the adjusted first signal with the multiplied first signal, the detector being adapted to tune the reference frequency as a function of the comparison.

16. (original) The receiver of claim 15 wherein the oscillator comprises a voltage controlled oscillator.

Claim 17. (cancelled).

18. (currently amended) The receiver of claim [[17]] 15 wherein the Viterbi decoder comprises a zero trace back Viterbi decoder.

19. (original) The receiver of claim 15 wherein the detector comprises a phase detector to compare a phase of the adjusted first signal with a phase of the multiplied first signal, the phase detector being adapted to tune the reference frequency as a function of a difference in phases.

Appln No. 09/729,443

Amdt date March 18, 2005

Reply to Office action of December 22, 2004

20. (currently amended) The receiver of claim 15 further comprising a switch to prevent a third signal between the first and second signals from being ~~decoded by the decoder~~ sliced by the Viterbi decoder.

21. (currently amended) A receiver, comprising an oscillator having a tuning input; a multiplier having a first input to receive a signal, and a second input coupled to the oscillator, the signal comprising a first signal and a second signal succeeding the first signal in time, the first and second signals each being modulated on a carrier frequency;

~~a-decoder~~ slicer having an input coupled to the multiplier, and an output, wherein the slicer comprises a Viterbi decoder; and

a detector having a first input coupled to the ~~decoder~~ slicer input, a second input coupled to the ~~decoder~~ slicer output, and an output coupled to the tuning input of the oscillator.

22. (original) The receiver of claim 21 wherein the oscillator comprises a voltage controlled oscillator.

Claim 23. (cancelled).

24. (currently amended) The receiver of claim [[23]] 21 wherein the Viterbi decoder comprises a zero trace back Viterbi decoder.

Appln No. 09/729,443
Amdt date March 18, 2005
Reply to Office action of December 22, 2004

25. (original) The receiver of claim 21 wherein the detector comprises a phase detector.

26. (currently amended) The receiver of claim 21 further comprising a switch between the multiplier and the ~~decoder~~ slicer input.

27. (currently amended) A receiver, comprising oscillator means for generating a reference signal having a tunable reference frequency;

multiplier means for multiplying a first signal with the reference signal, and multiplying a second signal, succeeding the first signal in time, with the reference signal, the first and second signals each being modulated on a carrier frequency;

~~decoder-slicer~~ means for adjusting the multiplied first signal based on the multiplied first and second signals, wherein the slicer means comprises a Viterbi decoding means; and

detector means for comparing the adjusted first signal with the multiplied first signal, the detector means comprises tuning means for tuning the reference frequency as a function of the comparison.

28. (original) The receiver of claim 27 wherein the oscillator means comprises a voltage controlled oscillator.

Claim 29. (cancelled).

Appln No. 09/729,443

Amdt date March 18, 2005

Reply to Office action of December 22, 2004

30. (currently amended) The receiver of claim [[29]] 27 wherein the Viterbi decoder comprises a zero trace back Viterbi decoder.

31. (original) The receiver of claim 27 wherein the detector means comprises means for comparing a phase of the adjusted first signal with a phase of the multiplied first signal, the tuning means being adapted to tune the reference frequency as a function of a difference in phases.

32. (currently amended) The receiver of claim 27 further comprising a switch between the multiplying means and the ~~decoder~~ slicer means.

33. (currently amended) A method of processing signals having a first and second symbol each representing a constellation point, the first symbol preceding the second symbol in time, the method comprising:

quantizing the first symbol to its nearest constellation point as a function of the first and second signals, wherein the quantization of the first symbol comprises Viterbi decoding the first symbol;

comparing the first symbol to the quantized first symbol; and

adjusting a reference frequency as a function of the comparison.

Appln No. 09/729,443
Amdt date March 18, 2005
Reply to Office action of December 22, 2004

34. (original) The method of claim 33 further comprising receiving the first and second symbols before the first symbol is quantized.

35. (original) The method of claim 34 further comprising transmitting the signals including the first and second symbols, wherein the receiving of the first and second symbols comprises receiving the transmitted signals.

36. (original) The method of claim 35 wherein the transmission of the signals comprises turbo encoding the first and second symbols before transmission.

37. (original) The method of claim 36 wherein the transmission of the signals comprises interleaving and de-interleaving the turbo encoded signals before transmission.

38. (original) The method of claim 35 wherein the transmission of the signals comprises transmitting a third symbol between the first and second symbols, a first portion of the transmitted signals including the first and second symbols being turbo encoded, and a second portion of the signals including the third signal being turbo encoded and interleaved.

39. (original) The method of claim 38 further comprising receiving the transmitted third symbol between the transmitted first and second symbols, wherein the adjustment of

Appln No. 09/729,443

Amdt date March 18, 2005

Reply to Office action of December 22, 2004

the multiplied first signal is not based on the received third symbol.

40. (original) The method of claim 34 wherein the received first and second symbols are each modulated on a carrier frequency, the method further comprising multiplying each of the first and second symbols with a reference signal having the reference frequency.

41. (original) The method of claim 40 wherein the multiplication of the first and second modulated symbols each comprises recovering the respective symbol by removing the respective carrier frequency.

42. (original) The method of claim 33 wherein the first and second symbols each comprises turbo encoded data.

Claim 43. (cancelled).

44. (original) The method of claim 33 wherein the comparison of the first symbol with the quantized first symbol comprises detecting a phase difference between the first symbol and the quantized first symbol.

45. (currently amended) The method of claim [(45)] 33 wherein the adjustment of the reference frequency comprises tuning a voltage controlled oscillator as a function of the

Appln No. 09/729,443

Amdt date March 18, 2005

Reply to Office action of December 22, 2004

phase difference between the first symbol and the quantized first symbol.

46. (original) The method of claim 33 further comprising receiving a third symbol between the first and second symbols, wherein the quantization of the first signal is not based on the received third signal.

47. (currently amended) A receiver to receive a signal including first and second symbols each representing a constellation point, the first symbol preceding the second symbol in time, the receiver comprising:

a decoder slicer to quantize the first symbol as a function of the first and second symbols, wherein the slicer comprises a Viterbi decoder;

a detector to compare the first symbol to the quantized first symbol; and

an oscillator having a tunable output as a function of the comparison.

48. (original) The receiver of claim 47 wherein the first and second symbols are each modulated on a carrier frequency, the receiver further comprising a multiplier to multiply each of the first and second symbols with the oscillator output to recover its respective symbol by removing its respective carrier frequency.

Claim 49. (cancelled).

Appln No. 09/729,443
Amdt date March 18, 2005
Reply to Office action of December 22, 2004

50. (original) The receiver of claim 47 wherein the detector comprises a phase detector to detect a phase difference between the first symbol and the quantized first symbol.

51. (original) The receiver of claim 47 wherein the oscillator comprises a voltage controlled oscillator.

52. (currently amended) The receiver of claim 47 further comprising a switch positioned in front of the ~~decoder~~ slicer.

53. (currently amended) A communications system, comprising:

a transmitter to transmit a signal including first and second symbols each representing a constellation point, the first symbol preceding the second symbol in time; and

a receiver including a ~~decoder~~ slicer to quantize the first symbol as a function of the first and second symbols, wherein the slicer comprises a Viterbi decoder, a detector to compare the first symbol to the quantized first symbol, and an oscillator having a tunable output as a function of the comparison.

54. (original) The communications system of claim 53 wherein the transmitter modulates the first and second symbols on a carrier frequency, and the receiver further comprises a multiplier to multiply each of the first and second symbols with

Appln No. 09/729,443
Amdt date March 18, 2005
Reply to Office action of December 22, 2004

the oscillator output to recover its respective symbol by removing its respective carrier frequency.

Claim 55. (cancelled).

56. (original) The communications system of claim 54 wherein the detector comprises a phase detector to detect a phase difference between the first symbol and the quantized first symbol.

57. (original) The communications system of claim 54 wherein the oscillator comprises a voltage controlled oscillator.

58. (original) The communications system of claim 54 wherein the transmitter further comprises a turbo encoder to turbo encode the signals before transmission to the receiver.

59. (original) The communications system of claim 58 wherein the turbo encoder comprises a trellis encoder to encode a first portion of the signals including the fist and second symbols, and an interleaver coupled to a trellis encoder to process a second portion of the signal.

60. (currently amended) The communications system of claim 59 wherein the receiver further comprises a switch positioned before the ~~decoeder~~ slicer to pass only the first portion of the signal to the ~~decoeder~~ slicer.

Appln No. 09/729,443
Amdt date March 18, 2005
Reply to Office action of December 22, 2004

61. (original) The communications system of claim 58 wherein the turbo encoder comprises an interleaver, de-interleaver, and trellis encoder coupled in series to turbo encode the signals before transmission to the receiver.