CONTROL BÁSICO

TEMAS:

- Errores en estado estacionario
- Diseño de reguladores PI y PD en bucle cerrado por método frecuencial

Facultad de Ingeniería – UNER Carrera: Bioingeniería

ESTABILIDAD

¿Qué es la ESTABILIDAD?

Definición BIBO (por su sigla en Ingles Boundet input – Boundet Ouput)

El sistema es ESTABLE si toda entrada acotada produce una salida total Acotada

ESTABILIDAD RELATIVA

 Margen de Ganancia (MG): es la ganancia adicional que puede incrementarse en un sistema para llevarlo al borde de la inestabilidad.

$$\begin{aligned} MG &= \frac{1}{\left|G\left(jw\right), H\left(jw\right)\right|_{w1}} = \frac{K_{critico}}{K_{trabajo}} & \text{W1-frecuencia de cruce de fase} \\ En \ decibeles \ \ \text{MG} \ \left[\text{db}\ \right] = 20 \cdot \log MG = -20 \cdot \log \left|\text{G(jw1),H(j\ w1)}\right| \end{aligned}$$

 Margen de Fase (MF): es la cantidad de retardo de fase adicional, en la frecuencia de cruce de ganancia, que lleva al sistema al borde de la inestabilidad.

 $MF = 180^{\circ} + q$

ESTABILIDAD RELATIVA

Para ESTABILIDAD se requiere que el MG en [db] y el MF sean positivos.

Para una **buena estabilidad relativa** el MF y MG se recomienda que se encuentren entre:

Errores Estáticos

* Función de transferencia en Lazo Abierto

$$G(s)H(s) = \frac{K(T_a s + 1)(T_b s + 1)\cdots(T_m s + 1)}{s^{N}(T_1 s + 1)(T_2 s + 1)\cdots(T_p s + 1)}$$

- * Tipo de un sistema de control
 - Definición
 - e Tipo N según el exponente N del polo en el origen (no es el orden)
 - Propiedades
 - Al aumentar

 - AUMENTA LA EXACTITUD
 EMPEORA LA ESTABILIDAD
 - Existe un compromiso entre exactitud y estabilidad

Errores Estáticos

∗Error Estacionario:

$$(s) \xrightarrow{C(s)} G(s) \xrightarrow{C(s)} e_{ss} = \lim_{s \to 0} e(t) = \lim_{s \to 0} s \cdot E(s) = \lim_{s \to 0} \frac{sX(s)}{1 + G(s)H(s)}$$

- * Caracterización del error estacionario
 - * Clasificación según función de transferencia en Lazo Abierto
 - e Definen el tipo de un sistema
 - Coeficientes Estacionarios definidos por las entradas
 - e Escalón
 - Rampa
 - e Parábola

Errores Estáticos

- Coeficiente estático de error de posición
 - * Se define para una entrada escalón

$$e_{ss} = \lim_{s \to 0} \frac{sX(s)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{s}{1 + G(s)H(s)} \frac{1}{s} = \frac{1}{1 + G(0)H(0)}$$

$$e_{ss} = \frac{1}{1+K_p}$$
 siendo $K_p = G(0)H(0)$

$$e_{ss} = \frac{1}{1 + K_p}$$

 $e_{ss} = \frac{1}{1 + K_p}$ • Para sistemas de tipo 1 o mayor

 $e_{ss} = 0$

Errores Estáticos

- Coeficiente estático de error de velocidad

• Se define para una entrada rampa
$$e_{ss} = \lim_{s \to 0} \frac{sX(s)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{s}{1 + G(s)H(s)} \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{sG(s)H(s)}$$

$$e_{ss} = \frac{1}{K_v}$$
 siendo $K_v = \lim_{s \to 0} sG(s)H(s)$

- Para sistemas de tipo 0 $e_{ss} = \infty$
- Para sistemas de tipo 1

 $e_{ss} = \frac{1}{K_v}$

Para sistemas de tipo 2 o mayor

Errores Estáticos

- * Coeficiente estático de error de aceleración
 - Se define para una entrada tipo parábola

$$e_{ss} = \lim_{s \to 0} \frac{sX(s)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{s}{1 + G(s)H(s)} \frac{1}{s^3} = \lim_{s \to 0} \frac{1}{s^2G(s)H(s)}$$

- $\frac{1}{\nu} \quad \text{siendo} \quad K_a = \lim_{s \to 0} s^2 G(s) H(s)$ K_a Para sistemas de tipo 0 y 1

 - $e_{ss} = \infty$ Para sistemas de tipo 2
 - $e_{ss} = \frac{1}{K_a}$ Para sistemas de tipo 3 o mayor
 - $e_{ss}=0$

1	
	r(t)c(t)
0	<i></i> ;

Errores Estáticos

 Error estático en función del tipo entrada con x(t) definida para t≥0:

Tipo	Error de POSICIÓN Entrada escalón	Error de VELOCIDAD Entrada rampa	Error de ACELERACIÓN Entrada parábola
0	1/(1+Kp)	∞	∞
1	0	1/Kv	∞
2	0	0	1/Ka

Regulador Proporcional – Integral (PI) Diseño por método Frecuencial

La ley de control de un regulador PI responde a la siguiente ecuación:

$$y = K_{p}(e + \frac{1}{T_{I}} \int_{0}^{t} e \, dt) \qquad G_{pI}(s) = \left(K_{p} + \frac{K_{p}}{T_{I} \cdot s}\right)$$

Diagrama de Bode de un regulador PI (Ti=0,8 y Kp=0,5)

Regulador Proporcional – Integral (PI) Diseño por método Frecuencial

De la gráfica de Bode de un PI se puede observar:

- Una década después de 1/Ti el aporte de fase casi cero.
- Para frecuencias superiores a 10/Ti la magnitud atenúa en una valor igual a 20 log Ki en [dB] y la fase es cercana a los cero grados. ESTA ES LA ZONA DE DISEÑO!!!!

Regulador Proporcional – Integral (PI) Diseño por método Frecuencial

Pasos orientativos para realizar el diseño:

- Si hay requisito de Error Estático y Margen de Fase verificar si al colocar un PI se cumple con la condición de error por tener un polo al origen. Caso contrario no se puede usar un
- Si se cumple con la condición de error y hay requisito de MARGEN DE FASE (MF), esto es MF=a entonces buscar en el diagrama de Bode de G(s).H(s) la frecuencia wa donde la fase de G(s).H(s)= a+5-180 y Medir la magnitud en dicha frecuencia a la que llamaremos Ma [dB]

$$\frac{1}{T_i} = \frac{w_a}{10} \implies T_i = \frac{10}{w_a}$$
 20.log K_p = -M_a

$$20.\log K_p = -M$$

Regulador Proporcional – Integral (PI) Diseño por método Frecuencial

Pasos orientativos para realizar el diseño:

- Si hay requisito de Error Estático y Margen de Ganancia verificar si al colocar un PI se cumple con la condición de error por tener un polo al origen. Caso contrario no se puede usar un PI.
- Si se cumple con la condición de error y hay además requisito de MARGEN DE GANANCIA (MG), esto es MG=b [dB] entonces buscar en el diagrama de Bode de G(s).H(s) la frecuencia wb donde la fase de G(s).H(s)=-180y Medir la magnitud en dicha frecuencia a la que llamaremos Mb [dB]
- Hacer: $\frac{1}{T_i} = \frac{w_b}{10} \implies T_i = \frac{10}{w_b}$

$$20.\log K_p = -M_b - b$$

Regulador Proporcional – Integral (PI) Diseño por método Frecuencial

Ejemplo para Resolver con Matlab:

Dado el sistema G(s) que trabaja en un lazo de control con realimentación unitaria y negativa se solicita que diseñe un regulador PI para estos dos casos:

$$G(s) = \frac{8}{(s+1)^3}$$

- a) Error de posición menor al 5% y Margen de Fase de 40 grados.
- b) Error de posición menor al 5% y Margen de Ganancia superior de 6 [dB].

Regulador Proporcional – Derivativo (PD) Diseño por método Frecuencial

La ley de control de un regulador PD responde a la siguiente ecuación:

$$y = K_p \cdot e + K_p T_D \cdot \frac{de}{dt}$$
 $G_{PD}(s) = K_p (1 + T_D . s)$

Diagrama de Bode de un regulador PD (Td=0,8 y Kp=1)

Regulador Proporcional – Derivativo (PD) Diseño por método Frecuencial

De la gráfica de Bode de un PD se puede observar:

- Para frecuencias mayores a w=1/Td la magnitud es mayor que 0 [dB] y la fase crece de 45 a 90 grados.
- Para frecuencias menores a 1/Td la magnitud es 0 [dB] y el regulador puede aportar hasta 45 grados de fase. ESTA ES LA ZONA DE DISEÑO!!!!

<u>/PD</u>=arctg (w.Td)

Regulador Proporcional – Derivativo (PD) Diseño por método Frecuencial

Pasos orientativos para realizar el diseño:

- Si hay requisito de Error Estático y Margen de Fase utilizar el valor de Kp del regulador para cumplir con la condición de error solicitada (aplicar los límites vistos para el cálculo de los errores estáticos).
- Si se cumple con la condición de error y hay requisito de MARGEN DE FASE (MF), esto es MF=a entonces buscar en el diagrama de Bode de Kp.G(s).H(s) la frecuencia wa donde el módulo de Kp.G(s).H(s)= 0 [dB]. Medir la fase en dicha frecuencia a la que llamaremos Fa. Hacer (a+5-Fa-180) si es menor a 40 grados se puede utilizar un PD.
- Hacer: $arctg(w_a.T_D) = (a+5-F_a-180)$ $T_D = \frac{tg(a+5-F_a-180)}{w_a}$

Regulador Proporcional – Derivativo (PD) Diseño por método Frecuencial

Pasos orientativos para realizar el diseño:

- Si hay requisito de Error Estático y Margen de Ganancia utilizar el valor de Kp del regulador para cumplir con la condición de error solicitada (aplicar los límites vistos para el cálculo de los errores estáticos).
- Si se cumple con la condición de error y hay además requisito de MARGEN DE GANANCIA (MG), esto es MG=b [dB], entonces buscar en el diagrama de Bode de Kp.G(s).H(s) la frecuencia wb donde el módulo vale -b [dB]. Medir la fase a esa frecuencia que será Fb. Si -(180+Fb) es menor de 40 grados poder utilizar un PD.

$$arctg(w_b.T_D) = -(180 + F_b)$$

r:
$$arctg(w_b, T_D) = -(180 + F_b)$$
 $T_D = \frac{tg(-180 - F_b)}{w_b}$

Regulador Proporcional – Derivativo (PD) Diseño por método Frecuencial

Ejemplo para Resolver con Matlab:

Dado el sistema G(s) que trabaja en un lazo de control con realimentación unitaria y negativa se solicita que diseñe un regulador PD para estos dos casos:

$$G(s) = \frac{6}{\left(s+2\right)^3}$$

- a) Error de posición del 10% y Margen de Fase de 30 grados.
- b) Error de posición del 10% y Margen de Ganancia igual o superior de 6 [dB].
- c) Si tuviera que elegir unos de los dos diseños para implementar: ¿Cuál elegiría? ¿Por qué?

Recordando Algunos Circuitos para Diseñar un Regulador...

PD	$\frac{R_4}{R_5} \frac{R_2}{R_1} (R_1 C_1 s + 1)$	$\begin{bmatrix} \vdots \\ e_i \\ R_1 \end{bmatrix} \begin{bmatrix} R_2 \\ R_3 \end{bmatrix} \begin{bmatrix} R_4 \\ R_5 \\ \vdots \\ R_5 \end{bmatrix}$
PI	$\frac{R_4}{R_3} \frac{R_2}{R_1} \frac{R_2 C_2 s + 1}{R_2 C_2 s}$	R, C, R, C, R, C, C, R, C,
PID	$\frac{R_4}{R_3} \frac{R_2}{R_1} \frac{(R_1 C_1 s + 1)(R_2 C_2 s + 1)}{R_2 C_2 s}$	C ₁ R ₂ C ₂ R ₄ R ₄ R ₅ R ₅ R ₆