

Équipe Modélisation, Contrôle/Commande

DELAUNE Ferdinand TROHMAE Ukanë POSTÉ Louis BONNEVILLE Emile TIMOCHENKO Sergey BOUGEARD Gaël **Présentation S1**

Sommaire

- I. Présentation générale
- II. Bibliographie et modélisation pour l'axe vertical
- III. Identification des paramètres du modèle
- IV. Expérimentation et mise en relation des résultats
- V. Asservissements
- VI. Conception d'une carte
- VII. Perspectives pour le S2

Présentation générale

Etat actuel du projet :

- Ballon gonflé à l'hélium
- Scratchs d'accrochage
- Carte électronique avec raspberry pi 0

Ne permet pas au dirigeable de se déplacer sans pilote

Notre rôle:

 Créer un modèle permettant de décrire le comportement du dirigeable dans l'optique de l'automatiser

Bibliographie

D'après la bibliographie, on trouve qu'on peut modéliser le comportement du dirigeable par cette équation (2nde loi de Newton) : $m\ddot{z}=F_p+F_b-G-F_r$ Éléments pris en compte dans le modèle et hypothèses :

- ullet Force de propulsion du moteur : F_p
- ullet Force de gravité : (considérée constante) G
- ullet Frottements de l'air (proportionnel à la vitesse) : F_r
- ullet Poussée d'Archimède : (considérée constante et opposée à la gravité) F_b
- Temps de réponse du moteur → phénomène de retard (supposé négligeable)
- Le contrôle du dirigeable dans toutes les directions est découplé

Ce qui donne finalement :
$$\ddot{z}(t) = a\dot{z}(t) + bu(t-\tau) + c$$

c = 0 grâce aux hypothèses

Modélisation pour l'axe vertical

Implémentation sur Matlab:

- Passage de l'équation dans le domaine de Laplace : $s^2.Z(s) = a.s.Z(s) + b.e^{-\tau.s}.U(s)$
- D'où la fonction de transfert : $\frac{Z(s)}{U(s)} = \frac{b.e^{-\tau s}}{s^2 a.s}$

Problématique : Comment déterminer a et b ?

- Modèle de connaissance
- Modèle dit "Boîte noire"

Modélisation pour l'axe vertical

Mise en oeuvre

Modélisation:

Essais:

Choix d'un modèle théorique

Réponse du système non asservi :

- consigne échelon

Identification des paramètres

Réponse du système asservi :

- consigne échelon
- perturbations

Méthode d'identification

- Modèle d'ordre 2 : identification du système par analyse d'une réponse indicielle
- Outil d'identification : System Identification (Matlab)
- Objectif: Trouver les meilleurs paramètres pour avoir
- l'identification la plus fiable possible

Mise en place de la méthode d'identification

- Génération d'un modèle bruité pour tester la méthode
- Choix d'un algorithme de régression : Algorithme de
- Levenberg-Marquardt
- Choix des conditions initiales : calculé par l'algorithme à
- partir des données (Estimate sur Matlab)

Résultats de l'identification

Courbe à identifier pour un essai indiciel

Résultats de l'identification

$$a=-0,014\,{
m s}^{{\scriptscriptstyle -1}}\,b=0,021\,{
m m/V.\,s}$$

Correspondance: 80%

$$a=-0,05\,{}_{\mathrm{s}^{-1}}\,b=0,005\,{}\,\mathrm{m/V.\,s}$$

Correspondance: 90%

Fortes variations de paramètres sans impact

avec un même essai, obtention de jeux de paramètres assez différents mais résultats semblables

(-0.014,0.021), (-0.05,0.005), (-26,0.0027),(-0.0016,1.8e4)

tous obtenus avec une identification assez proche

Critique du modèle

identification pas géniale car résultante Poids+poussée d'archimède non nulle

Vitesse initiale non nulle saturations capteur

de haut en bas : simulation expérimental simu-exp

Possibilités d'amélioration

-mesurer la force résiduelle et la prendre en compte pour l'identification

-réitérer le processus pour les 4 cas possibles (vitesse >/<0, volonté de monter ou descendre)

En pratique pas besoin, ça marche très bien comme ça. (cf performances)

performances stables entre utilisations

Objectifs:

- Améliorer le modèle simulink initial pour tester notre dirigeable
- Évaluer les performances du capteur de hauteur
- Évaluer les performances de l'asservissement.
- Évaluer les performances du capteur angulaire (en cours)

Modèle simulink initial

Modélisation de l'asservissement en hauteur

Performance de l'asservissement en hauteur

Pour une consigne de 80 cm

temps de montée : 1,2 s

D1% = 0.25

Erreur statique quasi nulle

Performance du l'asservissement hauteur

Conclusion:

- Asservissement plutôt bon pour un "simple" correcteur PID
- Besoin des modélisateurs pour le paramétrer au mieux possible
- Capteur inutilisable de part sa faible plage de mesure

Modélisation capteur angulaire

Performance du capteur angulaire

Conclusion:

- Modèle complètement fonctionnel
- Nécessaire de tester sur le dirigeable afin d'évaluer les performances.

Conception d'une nouvelle carte

Problématique

Ancienne carte:

- Connecteurs inadaptés pour 2 moteurs
- Intrication des câbles

Nouvelle carte à concevoir :

- Avoir une carte extensible
- Avoir des connecteurs bien placés

Conception d'une nouvelle carte

Schéma fonctionnel

Étapes de conception :

- 1. Composants du dirigeable
- 2. Relations entre les fonctions
- 3. Schéma électrique

Conception d'une nouvelle carte

Contraintes de routage

- Tailles des pistes, des forêts

- Vias difficilement métallisés

https://www.protoexpress.com/wp-content/uploads/2022/10/filled-and-covered-vias.jpg

https://electronics.stackexchange.com/questions/450585/which-is-the-preferred-approach-to-pcb-layout-for-signal-vs-power-traces-in-analelectronics.

- Types d'empreintes

- Placement des composants

Conception d'une carte

Etapes de fabrication

-kinematics_Q640.jpg

- 1. Réception du circuit imprimé
- 2. Fraisage des trous
- 3. Brasage des composants

http://www.circuitrework.com/images/7-3-1-2-600400.jpg

Perspectives pour le S2

Problèmes

- Exécution lente sur Simulink
- Faible parallélisation du travail de groupe

Objectifs

- Contrôle d'un 2nd moteur
- Identifier les autres paramètres (translation selon x, selon y, rotation autour de y, de z)
- Asservissement en position et rotation (3 axes)

