Processus discrets

Solutions prepartiel

Exercice 1. On considère deux v.a. X, Y telles que

$$\mathbb{E}[f(X)|Y] = f(Y).$$

Pour tout fonction f mesurable et bornée. Montrer que X=Y p.s. .

Solution. On fixe $N \ge 0$ et on considère

$$\begin{split} \mathbb{E}[|X-Y|^2 \mathbf{1}_{X\leqslant N} \mathbf{1}_{Y\leqslant N}] &= \mathbb{E}[(X^2 - 2\,XY + Y^2) \mathbf{1}_{X\leqslant N,Y\leqslant N}] \\ &= \mathbb{E}[\mathbb{E}[X^2 \mathbf{1}_{X\leqslant N}|Y] \mathbf{1}_{Y\leqslant N}] - 2\mathbb{E}[\mathbb{E}[X \mathbf{1}_{X\leqslant N}|Y] \,Y \mathbf{1}_{Y\leqslant N}] + \mathbb{E}[\mathbb{E}[\mathbf{1}_{X\leqslant N}|Y] Y^2 \mathbf{1}_{Y\leqslant N}] \\ &= \mathbb{E}[Y^2 \mathbf{1}_{Y\leqslant N}] - 2\,\mathbb{E}[Y^2 \mathbf{1}_{Y\leqslant N}] + \mathbb{E}[Y^2 \mathbf{1}_{Y\leqslant N}] = 0\,. \end{split}$$

Donc par convergence monotone

$$\mathbb{E}[|X - Y|^2] = \mathbb{E}[\sup_{N} (|X - Y|^2 1_{X \leqslant N} 1_{Y \leqslant N})] = 0$$

et X=Y p.s. A noter que on ne peut pas directement montrer que $\mathbb{E}[|X-Y|^2]=0$ car on ne suppose pas que X et Y sont dans $L^2(\Omega)$.

Exercice 2. Soit $X \sim \mathcal{U}([0,1])$ et $Y = \min(X, 1/2)$. Calculer $\mathbb{E}[X|Y]$.

Solution. Soit $\varphi(Y) = \mathbb{E}[X|Y]$. La fonction φ est caractérisé par l'équation $\mathbb{E}[f(Y)X] = \mathbb{E}[f(Y)\varphi(Y)]$ pour tout fonction f. On a

$$\mathbb{E}[f(Y)\varphi(Y)] = \int_0^{1/2} f(x)\varphi(x) dx + \frac{1}{2}f(1/2)\varphi(1/2)$$

et

$$\mathbb{E}[Xf(Y)] = \int_0^{1/2} x f(x) dx + \int_{1/2}^1 x dx f(1/2) = \int_0^{1/2} x f(x) dx + \frac{3}{8} f(1/2)$$

Donc on peut choisir

$$\varphi(x) = x \, 1_{x < 1/2} + \frac{3}{4} 1_{x = 1/2}.$$

Exercice 3. Soient X, Y deux v.a. telles que $\mathbb{E}[X] = \mathbb{E}[Y] = 0$ et telles que $Z = X + \beta Y$ est indépendante de Y pour un quelque $\beta \in \mathbb{R}$. Montrer que $\mathbb{E}[X|Y] = -\beta Y$.

Solution. Par indépendance on a que $\mathbb{E}[Z|Y] = \mathbb{E}[Z] = 0$ et donc par linéarité $\mathbb{E}[X|Y] = \mathbb{E}[Z - \beta Y|Y] = -\beta \mathbb{E}[Y|Y] = -\beta Y$.

Exercice 4. Soit $(X_n)_{n\geqslant 0}$ une suite des v.a.. Pour n fixé on considère deux v.a. Y, Z telles que $Y \in \sigma(X_0, ..., X_n)$ et $Z \in \sigma(X_n, X_{n+1}, ...)$. Montrer que les deux égalités suivantes sont équivalentes:

- i. $\mathbb{E}[Z|X_0,...,X_n] = \mathbb{E}[Z|X_n]$ pour tout v.a. $Z \in \sigma(X_n,X_{n+1},...)$ bornée ;
- ii. $\mathbb{E}[YZ|X_n] = \mathbb{E}[Y|X_n] \mathbb{E}[Z|X_n]$ pour toutes v.a. $Y \in \sigma(X_0, ..., X_n)$ et $Z \in \sigma(X_n, X_{n+1}, ...)$ bornées.

Solution. On montre que $i \Rightarrow ii$. Par emboîtement des espérances conditionnelles :

$$\mathbb{E}[YZ|X_n] = \mathbb{E}[\mathbb{E}[YZ|X_0,...,X_n]|X_n] = \mathbb{E}[\mathbb{E}[YZ|X_0,...,X_n]|X_n] = \mathbb{E}[Y|\mathbb{E}[Z|X_0,...,X_n]|X_n] = \mathbb{E}[Y|\mathbb{E}[Z|X_n,...,X_n]|X_n] = \mathbb{E}[Y|X_n,...,X_n]|X_n] = \mathbb{E}[Y$$

car Y est $\sigma(X_0,...,X_n)$ mesurable. Par i on a dono

$$\mathbb{E}[YZ|X_n] = \mathbb{E}[Y\mathbb{E}[Z|X_n]|X_n] = \mathbb{E}[Y|X_n]\mathbb{E}[Z|X_n]$$

car $\mathbb{E}[Z|X_n]$ est par définition $\sigma(X_n)$ mesurable. On montre maintenant que ii \Rightarrow i.

$$\mathbb{E}[Y \ \mathbb{E}[Z \ | X_0,...,X_n]] = \mathbb{E}[YZ] = \mathbb{E}[\mathbb{E}[YZ \ | X_n]] = \mathbb{E}[\mathbb{E}[Y \ | X_n] \mathbb{E}[Z \ | X_n]] = \mathbb{E}[Y \ \mathbb{E}[Z \ | X_n]]$$

et donc $\mathbb{E}[Z|X_0,...,X_n] = \mathbb{E}[Z|X_n]$.

Exercice 5. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov avec espace d'états \mathcal{M} discret.

a) Montrer que si $\mathcal{A} \subseteq \mathcal{M}$ est un ensemble fermé pour la chaîne alors

$$x \in \mathcal{A} \Rightarrow \mathbb{P}_x(\forall n \geqslant 0 : X_n \in \mathcal{A}) = 1.$$

b) Soit $N_x = \sum_{n \ge 1} 1_{X_n = x}$ et $T_x = \inf\{n \ge 1 : X_n = x\}$. Montrer que

$$\mathbb{P}_x(N_x \geqslant k) = \mathbb{P}_x(T_x < +\infty)^k$$
.

- c) Soit $Y_n = (X_n, X_{n+1}, X_{n+2})$. Montrer que la suite $(Y_n)_{n \ge 0}$ à valeurs dans \mathcal{M}^3 est une chaîne de Markov et donner sa matrice de transition $Q: \mathcal{M}^3 \times \mathcal{M}^3 \to [0, 1]$.
- d) En supposant que $\pi \in \Pi(\mathcal{M})$ est une probabilité invariante pour P déterminer une probabilité invariante $\mu \in \Pi(\mathcal{M}^3)$ pour Q.

Solution. a) \mathcal{A} est fermé, donc P(x,y) = 0 si $x \in \mathcal{A}$ et $y \notin \mathcal{A}$. Soit $x \in \mathcal{A}$:

$$\mathbb{P}_{x}(X_{n} \notin \mathcal{A}) = \sum_{x_{1} \in \mathcal{M}} \cdots \sum_{x_{n-2} \in \mathcal{M}} \sum_{x_{n-1} \in \mathcal{M}} \sum_{x_{n} \notin \mathcal{A}} P(x, x_{1}) \cdots P(x_{n-1}, x_{n})$$

$$= \sum_{x_{1} \in \mathcal{M}} \cdots \sum_{x_{n-2} \in \mathcal{M}} \sum_{x_{n-1} \notin \mathcal{A}} \sum_{x_{n} \notin \mathcal{A}} P(x, x_{1}) \cdots P(x_{n-1}, x_{n})$$

$$\leq \sum_{x_{1} \in \mathcal{M}} \cdots \sum_{x_{n-2} \in \mathcal{M}} \sum_{x_{n-1} \notin \mathcal{A}} P(x, x_{1}) \cdots P(x_{n-2}, x_{n-1}) = \mathbb{P}_{x}(X_{n-1} \notin \mathcal{A})$$

et par récurrence on obtient que $\mathbb{P}_x(X_n \notin \mathcal{A}) \leq \mathbb{P}_x(X_1 \notin \mathcal{A}) = 0$.

b) Par la propriété de Markov on a

$$\mathbb{P}_{x}(N_{x} \geqslant k) = \sum_{n=1}^{\infty} \mathbb{P}_{x}(N_{x} \geqslant k, T_{x} = n) = \sum_{n=1}^{\infty} \mathbb{P}_{x}(\sum_{j=1}^{\infty} 1_{X_{n+j}=x} \geqslant k - 1, T_{x} = n, X_{n} = x)$$

$$= \sum_{n=1}^{\infty} \mathbb{P}_{x}(\sum_{j=1}^{\infty} 1_{X_{n+j}=x} \geqslant k - 1 | X_{n} = x) \mathbb{P}_{x}(T_{x} = n, X_{n} = x)$$

$$= \sum_{n=1}^{\infty} \mathbb{P}_{x}(N_{x} \geqslant k - 1) \mathbb{P}_{x}(T_{x} = n, X_{n} = x) = \mathbb{P}_{x}(N_{x} \geqslant k - 1) \sum_{n=1}^{\infty} \mathbb{P}_{x}(T_{x} = n)$$

$$= \mathbb{P}_{x}(N_{x} \geqslant k - 1) \mathbb{P}_{x}(T_{x} < + \infty)$$

et donc on peut conclure par récurrence.

c) Si on note $y_k = (y_k^1, y_k^2, y_k^3), y_k \in \mathcal{M}^3, y_k^i \in \mathcal{M}, i = 1, 2, 3, k \ge 0.$

Soit $y_0, ..., y_{n+1} \in \mathcal{M}^3$. Si $y_k^1 = y_{k-1}^2$ pour $1 < k \le n+1$ et $y_k^1 = y_{k-2}^3$ pour $2 < k \le n+1$ alors

$$\mathbb{P}(Y_0 = y_0, ..., Y_{n+1} = y_{n+1}) = \mathbb{P}(X_0 = y_0^1, X_1 = y_1^1, ..., X_{n+1} = y_{n+1}^1, X_{n+2} = y_{n+1}^2, X_{n+3} = y_{n+1}^3)$$

$$= \mu(y_0^1)P(y_0^1, y_1^1)\cdots P(y_n^1, y_{n+1}^1)P(y_{n+1}^1, y_{n+1}^2)P(y_{n+1}^2, y_{n+1}^3)$$

et $\mathbb{P}(Y_0 = y_0, ..., Y_{n+1} = y_{n+1}) = 0$ autrement. Dans le premier cas on a donc

$$\mathbb{P}(Y_{n+1} = y_{n+1} | Y_n = y_n, \dots, Y_0 = y_0) = \frac{\mathbb{P}(Y_0 = y_0, \dots, Y_{n+1} = y_{n+1})}{\mathbb{P}(Y_0 = y_0, \dots, Y_n = y_n)}$$

$$=\frac{\mu(y_0^1)P(y_0^1,y_1^1)\cdots P(y_n^1,y_{n+1}^1)P(y_{n+1}^1,y_{n+1}^2)P(y_{n+1}^2,y_{n+1}^3)}{\mu(y_0^1)P(y_0^1,y_1^1)\cdots P(y_{n-1}^1,y_n^1)P(y_n^1,y_n^2)P(y_n^2,y_n^3)}=P(y_{n+1}^2,y_{n+1}^3)=P(y_n^3,y_{n+1}^3)$$

et $\mathbb{P}(Y_{n+1} = y_{n+1} | Y_n = y_n, ..., Y_0 = y_0) = 0$ autrement. Si on pose $Q(x, y) = P(x^3, y^3) \delta_{x^2, y^1} \delta_{x^3, y^2}$ on peut écrire que

$$\mathbb{P}(Y_{n+1} = y_{n+1} | Y_n = y_n, ..., Y_0 = y_0) = Q(y_n, y_{n+1})$$

donc $(Y_n)_{n\geq 0}$ est une chaîne de Markov de matrice Q.

d) Une probabilité invariante μ pour Q satisfait

$$\mu(y) = \sum_{z \in \mathcal{M}^3} \mu(z) Q(z,y) = \sum_{z^1, z^2, z^3 \in \mathcal{M}} \mu(z) P(z^3, y^3) \delta_{z^2, y^1} \delta_{z^3, y^2} = \sum_{z^1 \in \mathcal{M}} \mu((z^1, y^1, y^2)) P(y^2, y^3)$$

Si π est une probabilité invariante pour $(X_n)_{n\geqslant 0}$ alors si la loi de X_0 est π on a que

$$\mathbb{P}(Y_k = x) = \mathbb{P}(X_k = x^1, X_k = x^2, X_k = x^3) = \pi(x^1)P(x^1, x^2)P(x^2, x^3)$$

pour tout $k \ge 0$ et tout $x \in \mathcal{M}^3$ et donc si on pose $\mu(x) = \pi(x^1)P(x^1, x^2)P(x^2, x^3)$ on a que

$$\mathbb{P}(Y_{k+1} = x) = \mu Q(x) = \mu(x)$$

et donc que μ est une probabilité invariante pour Q.

Exercice 6. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène avec espace d'états $\{1, 2, 3\}$ et matrice de transition

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1/2 & 1/2 & 0 \\
1/3 & 1/3 & 1/3
\end{array}\right)$$

- a) Déterminer les classes de communication ;
- b) Soit $T = \inf\{n \geqslant 1 : X_n \in \{1,2\}\}$. Calculer $\mathbb{P}_3(T=k)$ pour tout $k \geqslant 1$;
- c) Déterminer toutes les probabilités invariantes de P;

Solution. a) Les classes de communication sont $\{3\}, \{1, 2\}$. b)

$$\mathbb{P}_3(T=k) = \mathbb{P}_3(X_1=3,...,X_{k-1}=3,X_k\neq 3) = (1/3)^{k-1}(2/3).$$

c) Si on note $\pi = (\pi_1, \pi_2, \pi_3)$ la proba invariante on doit avoir

$$\pi_1 = \pi_2/2 + \pi_3/3, \, \pi_2 = \pi_1 + \pi_2/2 + \pi_3/3, \, \pi_3 = \pi_3/3$$

et donc $\pi_3 = 0$, $\pi_1 = \pi_2/2$ et $1 = \pi_2 + \pi_1 = 3\pi_2/2$ ce qui donne $\pi = (1/3, 2/3, 0)$ comme la seule probabilité invariante.

Exercice 7. Dans deux pièces il y a un souris et un chat. Soit $X_n \in \{1, 2\}$ la position du chat à l'instant n et $Y_n \in \{1, 2\}$ la position du souris à l'instant n. On suppose que $(X_n)_{n \geqslant 0}$ et $(Y_n)_{n \geqslant 0}$ sont des chaînes de Markov sur $\{1, 2\}$ de matrices de transition

$$\left(\begin{array}{cc} 0.2 & 0.8 \\ 0.8 & 0.2 \end{array}\right) \qquad \left(\begin{array}{cc} 0.3 & 0.7 \\ 0.6 & 0.4 \end{array}\right).$$

À l'instant initial le souris est dans la pièce 1 et le chat dans la pièce 2. S'ils se trouvent dans la même pièce alors le chat mange le souris. Calculer le temps moyen de survie du souris $\mathbb{E}[T]$ où $T = \inf\{n \ge 0 : X_n = Y_n\}$.

Solution. On considère l'espace d'états $\mathcal{M} = \{(1,1), (1,2), (2,1), (2,2)\}$ où l'état $(x,y) \in \mathcal{M}$ corresponds à la situation ou le souris est dans la pièce x et le chat dans la pièce y. Si $Z_n = (X_n, Y_n)$, la chaîne de Markov $(Z_n)_{n\geqslant 0}$ a la matrice de transition P donnée par

$$\begin{pmatrix} 0.2 \cdot 0.3 & 0.2 \cdot 0.7 & 0.8 \cdot 0.3 & 0.8 \cdot 0.7 \\ 0.2 \cdot 0.6 & 0.2 \cdot 0.4 & 0.8 \cdot 0.6 & 0.8 \cdot 0.4 \\ 0.8 \cdot 0.3 & 0.8 \cdot 0.7 & 0.2 \cdot 0.3 & 0.2 \cdot 0.7 \\ 0.8 \cdot 0.6 & 0.8 \cdot 0.4 & 0.2 \cdot 0.6 & 0.2 \cdot 0.4 \end{pmatrix}$$

On a que $Z_0 = (1, 2)$ et que $T = \inf \{n \ge 0 : Z_n = (1, 1) \text{ ou } Z_n = (2, 2) \}$. Soit $\varphi(x) = \mathbb{E}_x[T]$. Par la propriété de Markov on a que

$$\varphi(x) = \begin{cases} 1 + \sum_{z} P(x, z) \varphi(z) & \text{si } x \neq (1, 1) \text{ ou } x \neq (2, 2); \\ 0 & \text{sinon.} \end{cases}$$

Cette formule est prouvé dans la façon suivante. Soit $A = \{(1, 1), (2, 2)\}$. On remarque dabord que

$$\mathbb{P}_x(T=k) = \mathbb{P}_x(X_1 \not\in A, ..., X_{k-1} \not\in A, X_k \in A)$$

$$= \sum_{z \in \mathcal{M}} \mathbb{P}_x(X_1 \not\in A, ..., X_{k-1} \not\in A, X_k \in A | X_1 = z) P(x, z)$$

Par la proprieté de Markov on a

$$= \sum_{z \in \mathcal{M}} \mathbb{P}_z(X_0 \not\in A, ..., X_{k-2} \not\in A, X_{k-1} \in A) P(x, z) = \sum_{z \in \mathcal{M}} \mathbb{P}_z(T = k - 1) P(x, z)$$

et donc si $x \notin A$:

$$\varphi(x) = \mathbb{E}_x[T] = \sum_{k=1}^{\infty} k \, \mathbb{P}_x(T=k) = \sum_{z \in \mathcal{M}} P(x,z) \sum_{k=1}^{\infty} k \, \mathbb{P}_z(T=k-1)$$

$$= \sum_{z \in \mathcal{M}} P(x,z) \sum_{m=0}^{\infty} (m+1) \, \mathbb{P}_z(T=m) = \sum_{z \in \mathcal{M}} P(x,z) \mathbb{E}_z[T+1] = 1 + \sum_{z \in \mathcal{M}} P(x,z) \mathbb{E}_z[T]$$

$$= 1 + \sum_{z \in \mathcal{M}} P(x,z) \varphi(z).$$

En revenant à notre probleme on a que

$$\varphi(1,2) = 1 + \alpha \varphi(1,2) + \beta \varphi(2,1)$$

$$\varphi(2,1) = 1 + \gamma \varphi(1,2) + \delta \varphi(2,1)$$

ou $\alpha = P((1,2),(1,2)) = 0.2 \cdot 0.4$, $\beta = P((1,2),(2,1)) = 0.8 \cdot 0.6$, $\gamma = P((2,1),(1,2)) = 0.8 \cdot 0.7$, $\delta = P((2,1),(2,1)) = 0.2 \cdot 0.3$. La solution est donc donnée par la solution d'un système linéaire:

$$\varphi(1,2) = \frac{1-\delta+\beta}{(1-\alpha)(1-\delta)-\beta\gamma}.$$

Pourquoi on est sûr d'avoir $(1-\alpha)(1-\delta)-\beta\gamma>0$?

Exercice 8. Soit $(Z_n)_{n\geqslant 0}$ une suite iid telle que $\mathbb{P}(Z_1=k)=p\,(1-p)^k$ pour $k\geqslant 0$. Soit $X_n=\max{(Z_0,...,Z_n)}$. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov sur \mathbb{N} et donner sa matrice de transition.

Solution. On a que $Z_n = \max(Z_{n-1}, X_n)$ et donc (Z_n) est une récurrence aléatoire car la suite $(X_n)_{n\geqslant 1}$ est iid. Cela montre que $(Z_n)_{n\geqslant 0}$ est une chaîne de Markov. Calculons la matrice de transition P(x,y):

$$P(x,y) = \mathbb{P}(Z_1 = y | Z_0 = x) = \mathbb{P}(\max(x, X_1) = y) = \begin{cases} \mathbb{P}(X_1 = y) = p(1-p)^y & \text{si } x < y \\ \mathbb{P}(X_1 \leqslant x) = 1 - (1-p)^{x-1} & \text{si } x = y \\ 0 & \text{si } x > y \end{cases}$$