The Effects of Local Demographics on Black Lives Matter Protester Crowd Size

Makayla Bibby (mdb9vku)

Kathia Crawford (klc6myc)

Hannan Mumtaz (hm9tac)

Tyler Vo (tkv9zd)

University of Virginia

STAT 2120

On our honor, we did not give nor receive aid on this assignment.

Introduction — We are attempting to predict protester crowd size for Black Lives Matter (BLM) protests. The three explanatory variables we are utilizing are: the number of Black people in the total population of a given city, the number police related Black and People of Color (POC) deaths in a given city, and the percentage of people who possess Bachelor's degrees in a given city. We chose the total Black population because the larger this demographic population is the larger the personal impact by black death is on each individual, influencing BLM protest turnout. We chose the number of police-related Black and POC deaths in a given city for the same reason. Bachelor's degrees were chosen because cities with a greater proportion of people that have higher education are more likely to be educated about racial equity and crime reform, which would lead to more protest turnout. Our response variable is average turnout per protest, as we are trying to predict the number of people that will attend a protest. Protest turnout is a quantitative variable that we will be predicting based on other quantitative data. We are predicting a positive relationship between all three variables with our response variable, which

Effect of Total Black Population in Locality on Average Turnout

1400
1200
10000
100000 200000 300000 400000 500000 600000 700000 800000
Total Black Population

Analysis With Simple Linear Regression (SLR) — We used SLR to analyze the relationship between average protester turnout and all three explanatory variables.

Graphical summaries for our three explanatory variables are to the left and below.

we will further explore in this study.

Residual Graph for The Effect of Total Black Population in Locality on Average Turnout:

SLR models are robust against deviations from the Normal distribution, so the normality assumption is satisfied. Linearity, independence, and constant variance are not satisfied because although the graph is scattered randomly and around zero, it does not have uniform variation. Thus, a linear regression plot is not a reliable

way to

analyze this set of data. Residual Graph for the

Effect of Black/PC Deaths in Locality on

Average Turnout: SLR models are robust against deviations from the Normal distribution, so the normality assumption is satisfied. Linearity, independence, and constant variance are not

satisfied because although the graph is scattered randomly and around zero, it does not have uniform variation. Thus, a linear regression plot is not a reliable way to analyze this set of data.

Residual Graph for the Effect of Percentage of Bachelors in Locality on Average Turnout:

SLR models are robust against deviations from the Normal distribution, so the normality assumption for this residual is satisfied. Linearity, independence, and constant variance are not satisfied. Although the graph is scattered randomly and around zero and it does not have uniform variation. Thus, a linear regression plot may not be a reliable way to analyze this set of data.

The SLR Model for each of our three variables is: $y_1 = \beta_0 + \beta_1 X + \epsilon_1$ where y_1 is the predicted value, β_0 is the population intercept, β_1 is the population slope and ϵ_1 are the deviations.

We chose the Percentage of Bachelor's Degrees as the "best" option to perform a test on because the r-squared value for Percentage of Bachelor's is the largest (0.052) compared to the Total Black Population (0.029) and Total Black/PC Deaths (0.001). The square root of r-squared values allows us to find the correlation. The strongest correlation was between Percentage Bachelors (where r=0.228) and Average Turnout. The linear regression model for the this is: $y_1 = \beta_0 + \beta_1 X + \epsilon_1$ where y_1 is the predicted value, β_0 is the population intercept, β_1 is the population slope and ϵ_1 are the deviations. The least squares regression equation for this is: y = 11.17 + 2.87x. This means that the predicted average turnout will increase by 2.87 members when the Percentage of the population with Bachelor's Degrees increases by one unit. When it is zero, the predicted value is 11.17 (the intercept).

The following is our t-test for slope and conclusion for the slope in context: $H_0: \beta_1 = 0$, There is no relationship between the percentage of people with Bachelor Degrees and average turnout. $H_a: \beta_1 \neq 0$, There is a relationship between the percentage of people with Bachelor Degrees and average turnout

The following table gives us our test-statistic and p-value for this variable:

	coef	std err	t	P> t	[0.025	0.975]
const	11.1698	55.082	0.203	0.840	-98.559	120.899
PercentBachelor.s	2.8696	1.413	2.031	0.046	0.055	5.684

The resulting test-statistic is 2.031. At a significance level $\alpha = 0.05$ (note: this significance level will be used for all subsequent tests) we reject our null hypothesis given our p-value of 0.046. There is sufficient evidence to suggest that there is a linear relationship

between the percentage of people with a Bachelor's degree in each locality and average protester turnout.

In our original dataset that included Null/Nan in the data, rows 95-99 had no values for the average protester turnout. We used the least squares regression equation from the Percent Bachelor's variable to predict these values. We used 35.1923 as our value from the Percent Bachelor's column to predict an average turnout value of 112.157, 24.52 to predict 81.535, 26.289 to predict 86.608, 48.248 to predict 149.624, and 74.5203 to predict 255.012.

From these estimates, we can be confident in using Percent Bachelor's as a predictor of turnout because these predicted values are within the higher range of real averages for protester turnout from the dataset. Also, the prediction intervals (a predicted range of estimates for each missing value) demonstrate a significant overlap where the real value for each of these missing values is. Thus, we are also comfortable with ranking these predictions from highest to lowest protester turnout as follows: 225.012, 149.624, 112.157, 86.608, 81.535.

Analysis with Multiple Linear Regression (MLR) — Next, we used MLR to analyze the relationship between average protester turnout and all the explanatory variables to determine if adding additional variables to our regression test would be more useful in predicting protester turnout. To conduct this analysis we used the MLR model, $y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \epsilon_i$, where β_0 is the population intercept, and the predicted protester turnout when all the other

variables in this model have a value of 0. $\beta_1 x_{12}$ is each variable population slope (β_1 ...) multiplied by each additional variables value (x_{1p}). This model helps us determine how dependent protester turnout is on the variables. Using the MLR model, we conducted the

following residual plots to assess the linear regression assumptions for each of our variables:

This residual plot (previous page) is a summation of all the chosen variables as predictors for protest crowd size. The MLR model is robust against deviations from the Normal distribution, so the normality assumption for this residual is satisfied. Linearity, independence, and constant variance assumptions are not satisfied. While the residuals are clustered around 0,

there is no random scattering, and all the points seem to follow a negative value, with some points above 0. The variation is not uniform.

For the residual for Total Black Population (left), it is a MLR model, robust against deviations from the Normal distribution and satisfies the normality assumption. The linearity, independence, and constant variance

assumptions are not satisfied. The residuals are clustered under 0 in the same location, but there is no random scattering.

For the residual for Black/PC Deaths(left), it is a MLR model, robust against deviations from the Normal distribution satisfying the normality assumption. The linearity, independence, and constant variance assumptions are not satisfied. The residuals are clustered under 0 in the same location, there is no random

scattering, and it is not uniform.

For the residual for the Percentage of Bachelor's, it is a MLR model, robust against deviations from the Normal distribution, which satisfies the normality assumption. The linearity, independence, and constant variance assumptions are not satisfied. The residuals are clustered under 0 in the same location, there is no random scattering, and it is not uniform.

We conducted MLR t-tests to determine whether each explanatory variable added to the model will be useful in predicting the number of people who will attend a protest.

Total Black Population:

 H_0 : $\beta_j = 0$, Adding the total Black population in each locality to the model will have no effect on the model's usefulness in predicting the number of protesters that will attend a BLM protest. H_a : $\beta_j \neq 0$, Adding the total Black population in each locality to the model will have an effect on the model's usefulness in predicting the number of protesters that will attend a BLM protest.

The following table gives us our test-statistic and p-value for this variable (highlighted):

	coef	std err	t	P> t	[0.025	0.975]
const	-28.1480	60.010	-0.469	0.640	-147.748	91.452
BlackPop	0.0004	0.000	1.975	0.052	-3.35e-06	0.001

The resulting test-statistic for this hypothesis test is 1.975. We fail to reject our null hypothesis given a p-value of 0.052. We do not have sufficient evidence to suggest that the model with this added variable is useful at predicting the number of protesters.

Deaths of Black/PC:

 H_0 : $\beta_j = 0$, Adding the proportion of Black and POC deaths in each locality to the model will have no effect on the model's usefulness in predicting the number of protesters that will attend a BLM protest. H_a : $\beta_j \neq 0$, Adding the proportion of Black and POC deaths in each locality to the model will have an effect on the model's usefulness in predicting the number of protesters that will attend a BLM protest.

	coef	std err	t	P> t	[0.025	0.975]
const BlackPop	-28.1480 0.0004	60.010 0.000	-0.469 1.975	0.640 0.052	-147.748 -3.35e-06	91.452 0.001
deaths_black_pc	-53.4169	223.574	-0.239	0.812	-498.999	392.166

Once again, to conduct the t-test for slope, the table above gives us our test-statistic and p-value for this variable. The resulting test-statistic for this hypothesis test is -0.239. We fail to reject our null hypothesis given a p-value of 0.812. We do not have sufficient evidence to suggest that the model with this added variable is useful at predicting the number of protesters.

Percent Bachelor's Degrees:

 H_0 : $\beta_j = 0$, Adding the Percentage of people with a Bachelor's degree in each locality to the model will have no effect on the model's usefulness in predicting the number of protesters that will attend a BLM protest. H_a : $\beta_j \neq 0$, Adding the Percentage of people with a Bachelor's degree in each locality to the model will have an effect on the model's usefulness in predicting the number of protesters that will attend a BLM protest.

	coef	std err	t	P> t	[0.025	0.975]
const	-28.1480	60.010	-0.469	0.640	-147.748	91.452
BlackPop	0.0004	0.000	1.975	0.052	-3.35e-06	0.001
deaths_black_pc	-53.4169	223.574	-0.239	0.812	-498.999	392.166
PercentBachelor.s	3.3755	1.424	2.371	0.020	0.538	6.213

The table (above) gives us the test-statistic and p-value for this variable. The resulting test-statistic for this hypothesis test is 2.371. We reject our null hypothesis given a p-value of 0.020. We do have sufficient evidence to suggest that the model with this variable is useful at predicting the number of protesters. This is consistent with our findings from the SLR analysis conducted in Part II. Based on our results from each t-test, two out of the three variables (total Black population and deaths of Black citizens/POC) demonstrate no linear relationship with average turnout. This indicates that these two variables are not appropriate to use in a linear regression analysis. The Percent Bachelor's variable indicated some statistical linear relationship with average turnout. Therefore, it may be an appropriate variable to use in regression analysis.

Individually, our variables may not be useful to our model. To determine if these variables will be useful together, we conducted the ANOVA F test. This helps us assess how much of the variation in the response variable is a product of our model and how much of the variation in the response variable is not caused by the model.

 $H_0: \beta_1 = \beta_2 = \beta_3 = 0$, the model is not useful at predicting protester turnout. $H_a: \beta_j \neq 0$ (at least one variable is useful at predicting turnout), the model is useful at predicting protester turnout.

	SS	df	MS		pvalue
Regression	3.359392e+05	1.0	111979.721883	2.711404	0.051146
Residual	3.014866e+06	75.0	41299.536850	NaN	NaN
Total	3.350805e+06	76.0	NaN	NaN	NaN

We used the F-statistic to conduct this test. Using the ANOVA F model table, (above) to determine our F-statistic and p-value for this variable we received 2.711 as the F-statistic. We fail to reject our null hypothesis given a p-value of 0.051. We do not have sufficient evidence to suggest that the model is useful at predicting the number of protesters. This is consistent with our findings from the ANOVA F model, which indicated an r-squared value of 0.100. This is almost a 0.05 increase from the r-square value of just the Percent Bachelor's variable conducted in our SLR analysis in Part II. If an r-squared value increases with the addition of variables to the MLR model, then that variable(s) provides no useful information to the model, thereby making it less useful. To support this finding, we conducted a Partial F-test, to evaluate if adding additional variables to the Percent Bachelor's variable chosen in the SLR analysis in Part II made our model less useful.

 H_0 :all $\beta_a = 0$, the set of the extending variables in the model is not useful at predicting protester turnout. H_a : $\beta_a \neq 0$ (at least one extending variable is useful at predicting turnout) the set of extending variables in the model is useful in predicting protester turnout

For the Partial F test, we coded a comparison (displayed below) using the SLR model for Percent Bachelor's and an extended variable model using MLR with two additional variables (total Black population and proportion of deaths for Black citizens and POC).

The resulting F-statistic for this hypothesis test was 1.95, and the p-value was 0.1496, which is larger than the significance level. As a result, we fail to reject the null hypothesis. This indicates that we do not have sufficient evidence to suggest that adding additional variables to our model is useful at predicting the number of protesters.

Conclusion — Our prediction before analyzing this data was a positive relationship between each of the explanatory variables and the response, meaning that, as each variable increased, the response variable would as well. Utilizing a SLR Model and conducting tests on all explanatory variables, we discovered that each has a relatively weak relationship with the average turnout per protest. However, the best explanatory variable, percentage of people with a Bachelor's degree in each locality, demonstrated sufficiently that there is a linear relationship between the percentage of people with a Bachelor's degree and average protester turnout. Utilizing MLR and adding the total Black population and Deaths of Black/POC as explanatory variables to the model, we found no sufficient evidence to suggest that the model with either of these added variables is useful at predicting the number of protesters that will attend. Conducting this test only for Percent

Bachelor's, however, demonstrated that this variable might be useful to predict protest turnout on its own. In order to accomplish our goal of accurately estimating protester crowd size, the best option would be using the Percentage of Bachelors to predict, even if it is not incredibly strong. **Reflection** — If we were to conduct this analysis again, we would have worked to address other variables that might have demonstrated a stronger linear relationship with the response. In earlier deliberations, we noticed that the Poverty Rate, both for the general population, and for the Black community, demonstrated a linear relationship. We found it incredibly interesting that the variables we suspected to be the most influential in garnering protester turnout (the Black population, proportion of deaths for Black/POC), actually had no real effect when making predictions. This was shocking, since this suggests that the magnitude of the Black population in any given locality, is not a central factor in garnering protester turnout. Also, we expected the most "best variable" (Percent Bachelor's) to yield one of the least influential effects. It was surprising to see that this had some degree of influence as a predictor variable. However, it is probably more significant to note that the linear relationship between the percentage of people in the locality with a Bachelor's degree and average turnout was very weak (about 0.2) and the p-value from this test was not *significantly* smaller than the significance level. Despite the linear relationship, we would not suggest that this an immediate factor in predicting protester turnout. Instead, it is likely that exogenous factors have a significant effect on whether or not people participate in protests. Finally, in conducting the models for the ANOVA F test, the coding output made a note that our model displays some multicollinearity between variables. This suggests that with one or more of these variables, the results from the model are unreliable.

Appendix A

Milestone Checklist

Milestone 1:

Sergey Levshin <sl7tcu@virginia.edu>

Tue, Apr 27, 2:12 PM (2 days ago)

to me ▼

This email serves as a confirmation that I have reviewed your work on Milestone 1. Please note that this check does not guarantee any project. If you have additional questions, please feel free to reach out to a LTA or Professor Ross.

2pm Lab, 4/27/2021

Milestone 2:

2:00 PM (

Hi Hannan,

This is confirmation of your Milestone 2 on 4/30/2021.

Milestone 3:

Tyler Lapointe

to me ▼

This is your confirmation of Milestone 3 on 4/30/2021.

•••

--

Tyler LaPointe

Appendix B

Data

TotalPop Po 205048		llackPop B 152536	BlackPoverty As 34.1	ianPop As 1999	sianPoverty H 14.3	HispanicPop His 7239	spanicPc V 38.4	VhitePop W 41665	19.1 23.42096	qMiles to 149.236	ot.protests 1	tot.attend A	28	AACPyears MayorPartisans 10 D	hip dem 88787	rep pop.density 17486 1373.984829			deaths_pc 0.0975381	unarmed_deaths_black_pc (deaths_black_pc a 0.097538137	anyprotests 1
599620	18.2	300482	26.5	20585	16.1	60874	17.1	208411	7.4 54.01759	61.095	22	48983	2226.5	26 D	NA	NA 9814.551109	15.84336747		0.1334178		0.083386145	1
44493 169310	8.4 21.2	1289 53268	20.3 34.2	1005 2115	11.8 12.9	25727 26568	8.8 25	15498 84838	7 62.11579 11.9 34.073	12.927 34.789	1	50 100	50 100	0 R 2 D	10910 48885	11787 3441.865862 23769 4866.768231	0	0.05906325	0.3543795	0.059063257	0.118126513	1
112696	35.8	27084	40.5	7926	39.6	11046	46.5	63942	31.3 43.65177	60.134	3	250	83.33333333	3 D	40958	16299 1874.081219			0.1774686	(0.088734294	1
818636 408781	17.8 29.9	249884 78753	28.8	36151 3662	12.5 16.6	67982 290886	20.9 28.8	443077 45211	11.7 25.7012 14.6 23.8293	746.987 35.924	4	170 450	42.5 112.5	13 R 3 R	186447 67685	189137 1095.917332 43725 11379.05022			0.1343699 0.3914076	0.012215441	0.073292648	1
245928	19.8	69483	29.8	9038	16	66017	25	98276	9.9 33.73409	101.773	5	294	58.8	0 D	61026	30485 2416.436579	0	0 0	0.4066231	Č	0.162649231	1
243375 53988	17.2	58636 15317	30.3 31.9	8110 1395	17.4 14.2	16774 11240	15.2 19.7	153090 25162	12 30.15731 15.5 22.11825	61.739 22.766	1	24	24	7 D 0 R	74777 10122	39574 3941.997765 5297 2371.431081	0		0.3697997		0.041088855	1
172761	31.1	61651	41.9	6860	22.7	10490	35.1	90844	24.1 48.40661	99.99	3	50	16.66666667	4 D	62727	27949 1727.782778	34.7300606	0 0	0.1157669	Č	0.115766869	1
338153 99511	20.2	88793 31332	37.5 24.2	12527 2503	10.1 16.1	79412 23888	28.4	153517 40819	11.5 33.88104 12.3 31.37057	113.468 55.383	4	248 50	62 50	13 D 0 D	86428 27077	47781 2980.161808 10849 1796.778795	11.08965468		0.0887172	0.100491403	0.059144825	1
107933	36	29880	37.8	4278	38.8	12139	45.3	59556	33.5 39.79699	116.357	1	30	30	9 D	NA	NA 927.6021211		0 0	0 0	(0	1
412162 82388	25.2 6.3	221102 12256	35.8 8.3	13048 4748	25 5.7	22319 5788	32 35	150249 58391	9.1 47.7806 3.2 56.26351	133.094 47.478	15	1722 55	114.8 55	12 D 0 R	NA 5265	NA 3096.773709 17807 1735.287923	16.37705562	0.024262305	0.0970492		0	1
132491	26.1	72735	31.4	2933	28.1	6133	37.8	48743	16.7 27.59603	102.685	1	60	60	0 D	NA	NA 1290.266349	7.547682484		0.1509537	· ·	0	1
177552 52558	17.6 13.5	52091 16871	29.6 16.6	4294 3667	4.2	10233 7601	31.8 34.7	106197 24080	9.8 39.46439 5.8 51.71881	206.808 15.335	1 2	24 324	24 162	O R	39642 NA	40247 858.5354532 NA 3427.323117	5.632152834	1 0.056321528	0.1689646	0.056321528	0.056321528	1
54074	33.3	27516	42.9	940	39.5	2663	44	21653	21.3 24.98125	35.48	1	20	20	O R	NA	NA 1524.069899		1 (0	(0	1
334016 2660712	12 22.7	6153 845577		182668 151738	8.9 20.1	19297 777985	14.8	54665 851266	12 35.5753 I 10.6 35.1757		3 27	54 7106	18 263.1851852	1 D 18 D	79891 930923	29047 NA 149420 11695.54018	14.96934279 4.942286125		0.0598774	0.011275177	0.06013428	1
68427	13.9	12236	18	5449	31.9	7032	18.1	41815	9.7 67.52879	7.795	1	300	300	13 D	31046	4158 8778.319436	65.7635144		0.1461411		0	1
51594 147382	8.8 25.4	10706 31206	15.9 45	2727 4311	13.2 21.3	3707 25513	15 34.7	32721 82640	5.7 67.26267 15.1 21.30459	4.7 61.028	2	726 0	363 0	0 D	24580 37762	4271 10977.44681 22438 2414.989841		0 0) 0		0	1
36199	22	6926	37	579	45.9	4128	23.3	23497	16.9 22.26122	16.817	1	24	24	0 D	11550	6473 2152.524231	0	0 (0	Ċ	0	1
113589 34454	18.6 36	22134 6156	37.7 42.9	2563 5937	11.6 56.8	2709 1462	26.9 38.9	83389 19971	13 35.15672 27.8 54.97696	59.392 11.617	2	175 60	87.5 60	0 D 4 D	32964 12089	24594 1912.530307 3447 2965.825945	0 87.07261856	0 0	0 0	(0	1
50301	6.8	1870	22.8	3088	18.1	2398	6.5	42135	5.5 62.00581	11.252	1	100	100	2 NP	14459	14899 4470.405261	4.970080118	0 0) 0	Č	0	1
67839 816687	39 21.4	2741 227483	47 29.2	6177 19738	55.8 24	2833 79037	43.6 40.3	53684 469578	36.4 56.90877 14.2 27.89766	23.168 361.528	1	140 270	140 135	0 D 18 R	27170 220161	9470 2928.133633 117892 2258.986856			0.1474078	0.024489186	0.147407833	1
34297	27.9	2332	34.1	526	0	1405	46.8	28474	25.7 18.01671	23.915	2	56	28	4 D	7832	6442 1434.120845	7.289267283	0 (0	0.02,1.03100	0	1
52203 53029	25.5	3786 1955	46.2 34.8	864 5113	48 41.1	1304 1600	44	44497 42992	21.7 21.07528 28 63.31134	35.106 24.149	1	20 50	20 50	O R O D	13731 10469	7850 1487.010767 7472 2195.908733	0 56.57281865	1 (0 0.1885761	(0	1
201343	19.9	22023	39.6	10291	18.6	25099	29.9	138158	14.1 24.88409	81.124	4	240	60	15 D	36783	21818 2481.916572	6.20831119	0 0	0.099333	C	0	1
63887 291067	27.6 8.3	3866 16864	47.4 15.1	4984 25066	33 15.2	3351 23812	23.4 9.7	49849 178423	26.1 59.18597 4.9 33.24485	24.903	1	40 145	40 72,5	0 D	9909 31897	5112 2565.433883 52323 170.742023	46.95791006	0 (0 0.0343564		0	1
53982	29.5	7293	39.2	2296	43.5	3828	44.1	39275	24.7 26.84421	38.27	1	40	40	2 R	NA	NA 1410.556572		1 (0.0343304	Č	0	1
291027 592342	19.3 18.4	41436 134071	32.2	10488 13453	15.9 18.2	20294 27727	36.1 28.7	211320 402201	15 41.02211 12.3 27.67549	283.77 325.325	2	88 40	44 13.33333333	2 D 0 D		NA 1025.573528 NA 1820.769999	11.16734873	0 (0	(0	1
220776	25.5	123273	31	7848	22.9	7191	29.8	78848	16.7 32.85976	76.952	2	10	5	4 D	46870	32939 2869.009253	1.13236946	0 0	0.0452948	ò	0.045294778	1
33510 119433	20.9 19.4	8355 36950	38.2 34.3	351 2398	0 20.4	1690 5601	30.3 20.5	21066 72852	12.8 16.1454 11.5 33.77402	14.408 49.199	1	0	0	1 NP 2 R	3607 17575	7098 2325.791227 28575 2427.54934	0 15.07121147	0 000373000	0 0.1674579		0	1
357411	27.7	214584	35.6	10456	22.4	19242	26	108478	13 34.74465	169.423	3	75	25	0 D	90964	24390 2109.577802	0	0.027978993	0.083937	0.027978993	0.08393698	1
196172 30857	23.1 25	108826 499	33.7 41.5	2677 705	12.5 20.9	5379 634	16.2 32.8	76471 28392	9.1 25.7094 24.8 28.68452	105.39 34.396	1	14	14	16 D 6 D	43547 NA	30498 1861.391024 NA 897.1101291		0.050975674	0.152927	0.050975674	0.050975674	1
64828	21	4674	59.9	2495	31	2160	29.4	53691	16.3 46.19217	21.331	2	109	54.5	0 D	NA	NA 3039.144906		0 (0	· ·	0	1
37841 598360	10.8 24.2	9070 379557	24.2 28.3	673 14496	8.9 22.9	6830 26420	15.7 25.5	21215 166696	4.3 45.94779 14.4 28.07632	7.201 80.948	2 16	30 10124	15 632.75	0 R 19 D	11394 197653	5271 5254.964588 26137 7391.905915	9.191790895		0.2642636	0.050137041	0.264263629 0.183835818	1
65073	10.8	12194	17.8	4129	8.9	10776	12.9	35473	7.4 38.03203	20.764	1	75	75	5 R	14858	8984 3133.933731		1 (0.1536736	0.030137041	0	1
30109 49545	30.7 11.4	10729 9676	36.1 12.4	969 6728	36.5 8.2	1977 20244	39 15.3	15368 11818	25 28.20743 6.5 34.3134	13.333	1	40 20	40 20	0 D 0 NA	5758 9771	3843 2258.231456 3131 NA	0	0 0	0.6642532		0.664253213	1
43482	4.4	873	7.6	3927	7.1	1646	3.9	35989	4.1 67.48304	5.16	1	400	400	O NA	14553	2280 8426.744186	0	0 0	0	Č	0	1
597942 57493	21.9 11.8	156752 1392	25.4 25.2	53299 9508	30.4 15.1	113622 3199	33.2 13.6	266988 42317	14.1 44.89895 10.7 81.57751	48.266 6.766	16	5089 625	318.0625 208.3333333	O D O NA	200362 20286	24487 12388.47222 3230 8497.339639		0 (0.0668961		0.05017209	1
90989	15	10667	28.5	12367	18	6498	28.4	58334	10.2 74.42161	6.385	5	810	162	0 D	35814	2827 14250.4307	131.8840739	0 () 0	Č	0	1
87370 31887	23.3	3459 350	36.1 16.6	1893 7075	26.1 4.1	7548 577	51 0.3	71460 22947	19.5 13.90748 4.2 77.71054	33.133 16.371	1	12 150	12 150	O D O NA	27903 8527	3222 2636.948058 2261 1947.773502	8.584182214	0 0	0 0		0	1
54651	10.5	5075	13.2	3904	6.6	2479	18	41695	9.9 45.22462	8.089	1	0	0	0 D	16326	2538 6756.21214		0 0	0	à	0	1
79162 54906	5.6 10.4	2497 3275	22.6 19.2	10697 5951	6.7 19.1	4006 8111	11.9 19.7	59954 36249	4.4 76.33716 6 48.2283	17.836 12.741	1	500 75	500 75	0 D 0 R	25847 12667	4541 4438.326979 3439 4309.394867		0 (0		0	1
171864	22	21873	23.1	12110	17.4	36584	40.9	98986	15.3 30.24974	37.388	3	420	140	8 D	41976	8400 4596,769017	18.91030117	0 0	0	Č	0	1
105161 685058	22.6 39.8	8159 556491	26.2 39.5	15565 8049	29.8 54.9	4978 50450	25.2 40.4	72609 57608	20.6 71.04776 38.9 13.12972	27.806 138.751	4	250 885	62.5 221.25	8 D 0 D	51539 251266	10664 3781.953535 6394 4937.319371		0 0	0 0.1167784		0.029194608	1
32245	42.9	2321	47.4	2765	50.5	1126	28.5	24618	43.5 70.44021	13.594	2	230	115	0 D	19099	6226 2372.002354	93.03768026	0 0	0		0.029194008	1
68112 113788	35 29.4	14616 24825	46.6 36.5	1856 4697	42.1 30	4717 14389	46.9 35.9	44249 62901	29.7 33.25913 23.2 25.13633	24.679 35.996	1	50	50	10 D 5 D	25833 39937	8051 2759.917339 12400 3161.129014		0 (0.293634		0	1
49564	35.5	22115	44.9	250	8.8	7197	34.1	18605	25.6 11.63563	17.338	1	13	13	5 D	18571	4401 2858.691891	0	0 0	0		0	1
84204 80521	9 22.7	6464 2132	26.8 65.9	5442 1202	7.5 37.9	6088 1265	23 21.5	63823 72248	6 39.87894 19.9 33.29145	34.678 67.858	1	1500 100	1500 100	0 R 11 D	28570 35614	21703 2428.167714 15255 1186.610274		1 0	0 0.1241912	(0	1
378923	22.6	68165	48.1	21994	29.4	38013	28.2	229918	13 47.56101	54.783	9	6940	771.1111111	15 D	169204	34958 6916.799007	11.21599903		0.0527812	Č	0.026390586	1
106974 167412	9.7	6777 134540	39.8 33.6	7743 448	6.3 12.9	5684 2536	16.7 43.4	83780 28961	7.1 42.8631 12.2 26.2064	53.65 108.692	1	50 100	50 100	0 D 5 D	29297 58489	24255 1993.923579 13259 1540.242152		0 0.059732874	0 0.0597329	0.059732875	0.059732875	1
104086	24.9	11283	35.5	6035	31.8	3312	24.1	79587	22.2 56.42311	62.547	6	720	120	6 R	33114	20779 1664.124578	43.71385201	1 (0	(0	1
51372 457040	8.2 19.4	14505 133421	9.1 31.7	528 11204	55.1 21.5	694 46800	19.5 29.1	33506 251269	6.7 23.29332 10.7 31.82266	12.438 314.385	1	20 75	20 25	0 NP 17 D	20562 146838	9586 4130.24602 61344 1453.758926	7.657973044	0 0.04375984#	0.1531595	(0.021879923	1
73038	19.5	3801	30.3	736	5.3	4605	24.6	61321	17.6 20.0183	43.987	1	21	21	8 R	15199	14529 1660.445132	10.26862729	1 (0.136915	Č	0	1
308873 151492	27.8 26.4	149191 5761	39.2 43.7	8223 2970	28.7 39.7	11296 6203	27.7 39.2	132002 131175	14.7 30.843 24.4 27.06321	61.876 81.357	32	7249 75	226.53125 75	15 D 12 R	132925 35295	24662 4991.806193 40456 1862.064727	36.42273685 33.3350936		0.3561334 0.1980303	0.032375766	0.323757661	1
65714	19.8	385	75.8	767	31.9	2183	24.6	58815	18.8 45.98488	26.625	1	50	50	0 D	NA	NA 2468.131455	22.8261862	0 0	0	Č	0	1
52598 589447	17.1 17.7	572 65913	0.5 27.8	1274 37521	7.6	11791 190055	30.4	36754 273424	13 21.06555 10.8 21.74777	144.663 135.041	1	25 100	25 100	0 D	11611 118169	11416 363.5898606 78789 4364.948423	4.753032435 0	0 0.016965054	0.1866156	0.016965054	0.016965054	1
220378	16.9	44157	21.1	13305	8.5	86384	23.7	65888	7.7 15.34254	81.686	1	40	40	0 D	42915	17976 2697.867444	0	0.04537658	0.0907532	(0.04537658	1
226490 39180	19.1 35.8	6594 15812	42.6 38.3	14564 6383	14.2 26.8	56311 9814	28.1 43.3	139998 7358	14.8 29.62574 29.8 15.69836	101.644	1	0	0	0 D 8 R	53324 9850	33971 2228.267286 1990 3646.007817	0		0.0883041	0	0.04415206	1
74540	39.3	35866	38.5	1853	23.6	36604	42.2	3000	31.4 8.454274	8.921	3	95	31.66666667	12 D	19934	1127 8355.56552		0 (0	Č	0	1
253412 267061	19 29.9	64451 134746	25.9 33.1	63365 4267	11.6 31.1	69773 95182	25.6 30.3	53878 28608	13 42.73842 17.6 13.53595	14.794 24.186	1 5	30 1210	30 242	13 D 15 D	49346 64281	10337 17129.37677 3688 11041.96643			0.1183843	0.03946143	0.118384291	1
47935	34.9	6330	25.8	2735	44.9	29889	32	8864	48.6 20.0869	5.227	2	120	60	9 D	10046	1796 9170.652382	62.58475018	0 0	0.2086158	Č	0	1
144799 548804	28.4 18.5	45654 17985	29.6 26.5	5475 14476	39.9 11.4	84843 259976	26.1 23.5	12040 227061	31.3 10.71372 11.5 33.24664	8.428 188.043	1	0 169	0 42.25	4 D 15 R	35511 141814	3841 17180.70717 88880 2918.502683			0.0690613	(0.054664325	1
88947	26.7	29123	30.9	5654	49	8216	37	44319	18.2 36.66358	21.386	2	200	100	0 D	31019	6467 4159.122791	20.23677021	0 (0.2300707	Č	0	1
45361 251561	33.9 30.9	5839 95775	50.2	2334 9918	58.7 49.6	3035 25382	57.1 50.6	32935 113878	27.4 23.62227 17.5 24.82029	10.42	1	40 20	40 10	6 R 15 D	10940 83990	5993 4353.262956 18183 6228.299084	0 7.950357965	0 (0	0	0	1
8219906	20.6	2028266	23.2 1	1095334	20.3	2376798	28.9	2682684	12.5 35.19234	303.374	*			54 D	2058903	510502 27094.9587	5.066967919		0.0328471	0.008515912		1
201739	33.8	84385	41.5	6444	34.9	35683	43.8	71731	19.5 24.52114	35.809				4 D	61622	11909 5633.751292	7.435349635	0 (0.049569	(0.049568998	1

131280 56225 48950 762199 230992 230992 240917 240167 245169 2451	35.1 10.1 21.7	40904 5494 4125	43.7 24.2 40.4	7777 3847 6794	473 2.3 9.5	10668 19324 2756	14.9	65954 25226 33976	23.8 26.28899 4.9 48.24901 22 74.52035	9.761		12 D 5 D 1 D	9916 1625 20473	10709 5342.183444 6897 5760.168016 5069 2317.818079	0	0 0.07617 0 0	31 0 0 0 0		1 1 1 1
99596 336686																			
93365 621206 117804 121638																			
121638 124235																			

Appendix C

Sources Used

We used one source from JournalDev to learn how to drop the Null/NA values from our DataFrame, which greatly impacted our ability to conduct the linear analyses. The citation for this source is included below.

Pankaj. (2021). "Pandas Dropna() - Drop Null/NA Values from DataFrame."

www.journaldev.com/33492/pandas-dropna-drop-null-na-values-from-dataframe.

Accessed 27 April 2021.