

Università degli Studi di Milano Bicocca
Scuola di Scienze
Dipartimento di Informatica, Sistemistica e Comunicazione
Corso di laurea in Informatica

Allineamento wavefront per l'individuazione di ricombinazioni

VOLPATO MATTIA

MATRICOLA: 866316

RELATORE: GIANLUCA DELLA VEDOVA

CO-RELATORE: PAOLA BONIZZONI

ANNO ACCADEMICO 2022-2023

Panoramica del lavoro

Allineamento di sequenze

- i. Allineamento con grafi di variazione
- ii. Allineamento con ricombinazione

II. Algoritmo wavefront per il calcolo della distanza di edit

i. Estensione a grafi di variazione

III. Implementazione e sperimentazione

- Prototipo per migliorare le prestazioni di RecGraph
- ii. Confronto sperimentale con *RecGraph*

Distanza di edit

- Misurare la **similarità** di due sequenze
- Programmazione dinamica
- Generalizzabile a **strutture** a **grafo**?

Time: $O(N^2)$

POA e grafi di variazione

Grafi di variazione

Esempio di un grafo di variazione

Allineamento con ricombinazione

- **Ricombinazione**: scambio (parziale) di materiale genetico tra cromosomi omologhi, che può portare a variazioni genetiche
- Allineamento con al più una ricombinazione:
 - Grafi di variazione
 - $T(n,m,p) = O(n^2 \cdot m \cdot p^2)$

 Obiettivo: migliorare le prestazioni con l'algoritmo wavefront

- Calcola la distanza di edit ottimale tra due sequenze
- Basato su:
 - i. **Diagonali** della matrice **crescenti**
 - ii. **Fronte d'onda**: insieme delle celle della matrice con la **stessa distanza di edit**
- Complessità
 - i. **Tempo:** $T(n, m, d) = O(min\{n, m\} \cdot d + d^2)$
 - ii. **Spazio:** $M(n, m, d) = O(d^2)$

d=0

Initial state

- Calcola la distanza di edit ottimale tra due sequenze
- Basato su:
 - i. Diagonali della matrice crescenti
 - ii. **Fronte d'onda**: insieme delle celle della matrice con la **stessa distanza di edit**
- Complessità
 - i. **Tempo:** $T(n, m, d) = O(min\{n, m\} \cdot d + d^2)$
 - ii. **Spazio:** $M(n, m, d) = O(d^2)$

- Calcola la distanza di edit ottimale tra due sequenze
- Basato su:
 - i. Diagonali della matrice crescenti
 - ii. **Fronte d'onda**: insieme delle celle della matrice con la **stessa distanza di edit**
- Complessità
 - i. **Tempo:** $T(n, m, d) = O(min\{n, m\} \cdot d + d^2)$
 - ii. **Spazio:** $M(n, m, d) = O(d^2)$

- Calcola la distanza di edit ottimale tra due sequenze
- Basato su:
 - i. **Diagonali** della matrice **crescenti**
 - ii. **Fronte d'onda**: insieme delle celle della matrice con la **stessa distanza di edit**
- Complessità
 - i. **Tempo:** $T(n, m, d) = O(min\{n, m\} \cdot d + d^2)$
 - ii. **Spazio:** $M(n, m, d) = O(d^2)$

- Calcola la distanza di edit ottimale tra due sequenze
- Basato su:
 - i. Diagonali della matrice crescenti
 - ii. **Fronte d'onda**: insieme delle celle della matrice con la **stessa distanza di edit**
- Complessità
 - i. **Tempo:** $T(n, m, d) = O(min\{n, m\} \cdot d + d^2)$
 - ii. **Spazio:** $M(n, m, d) = O(d^2)$

- Calcola la distanza di edit ottimale tra due sequenze
- Basato su:
 - i. Diagonali della matrice crescenti
 - ii. **Fronte d'onda**: insieme delle celle della matrice con la **stessa distanza di edit**
- Complessità
 - i. **Tempo:** $T(n, m, d) = O(min\{n, m\} \cdot d + d^2)$
 - ii. **Spazio:** $M(n, m, d) = O(d^2)$

- Calcola la distanza di edit ottimale tra due sequenze
- Basato su:
 - i. **Diagonali** della matrice **crescenti**
 - ii. **Fronte d'onda**: insieme delle celle della matrice con la **stessa distanza di edit**
- Complessità
 - i. **Tempo:** $T(n, m, d) = O(min\{n, m\} \cdot d + d^2)$
 - ii. **Spazio:** $M(n, m, d) = O(d^2)$

Implementazione

- Prototipo per effettuare allineamenti tra grafi di variazione e sequenze con algoritmo wavefront
 - Linguaggio di programmazione Rust
 - https://github.com/iFoxz17/WF Recgraph
- Primo approccio: adattamento di wavefront a POA
 - **Problema:** troppo complesso
- Secondo approccio: estrazione dei percorsi e multithreading
 - Vantaggio: esecuzione parallela di allineamenti su più cammini
 - Svantaggio: ridondanza dei calcoli su vertici che appartengono a più cammini

Sperimentazione

- Tre gradi di libertà
 - 1. Distanza di edit
 - 2. Numero di threads
 - 3. Numero di **percorsi**
- Risultati: tempo
 - 1. $\Theta(d)$
 - 2. $\Theta(\frac{1}{t})$
 - 3. $\Theta(p)$

Confronto con RecGraph (1)

- Grafo:
 - $\approx 50000 \text{ bp}$
 - **Percorsi** (*p*): 30
 - Lunghezza media percorsi (n): \approx 29000 bp
- Genoma appartenente al virus SARS-CoV-2

- Reads (*m*):
 - 150 bp
 - 1000 bp
 - 10000 bp
 - 25000 bp

Sperimentazione eseguita su un server con 64 core, 256 GB di RAM

Confronto con RecGraph (2)

Modalità globale

$$T(n, m, d, p) = O(\min\{n, m\} \cdot d \cdot p)$$

$$M(n, m, d, p) = O(\max\{n, m\} \cdot d \cdot p)$$

Riepilogo

Allineamento di sequenze:

- i. Studio della generalizzazione di Needleman-Wunsch su grafi
- ii. Studio dell'**algoritmo** wavefront
- iii. Generalizzazione di wavefront su grafi di variazione

Implementazione

- i. Implementazione di un **prototipo** per migliorare le prestazioni di *RecGraph*
- ii. Linguaggio di programmazione Rust
- iii. Confronto sperimentale con RecGraph