1. TEORETICKÝ ÚVOD

Cílem úlohy je otestovat a změřit převodník STID-Pt, což je převodník teploty na proud. Jako čidlo používáme Pt100, jenž funguje na základním elektrotechnickém vztahu, kde s vyšší teplotou je vyšší odpor, pak s vyšším odporem je vyšší proud. Využívá se v mnohých oblastech automatizace hlavně díky své jednoduchosti a spolehlivosti.

Náš převodník:

Typ převodníku: STID-Pt

Typ připojitelného čidla: Pt 100/3850

Vstupní měřící rozsah: 4-20mA

Výstup při přerušení čidla: >24mA

Výstup při zkratu čidla: <3,5mA

Napájení: 24Vss

Zatěžovací odpor: 100Ω

Výstupní odpor čidla Pt100 lze vypočítat vztahem:

$$R = 100 * (1 + A\vartheta + B\vartheta^2)$$

R = Odpor $[\Omega]$; ϑ = Teplota $[^{\circ}C]$; A = 3,9083*10⁻³ $[^{\circ}C^{-1}]$; B = -5,775*10⁻⁷ $[^{\circ}C^{-2}]$

2. SCHÉMA ZAPOJENÍ

Schéma č. 1 - Zapojení převodníku s odporovou dekádou

Schéma č. 2 - Zapojení převodníku s Pt100

Schéma č. 3 - Zapojení k testování vývodů

3. TABULKA POUŽITÝCH PŘÍSTROJŮ

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámky
Rs	Odporová dekáda	RLC-D1000	10-1370/08	1 až 999999Ω, tolerance 1%
Rz	Posuvný rezistor	PRN 322	10-1373/02	0Ω - 100Ω
Z	Stejnosměrný zdroj	DIAMETRAL P230R51D	Stůl č. 6	0-30V/4A
A	Ampérmetr	Mastech MY75	10-1369/09	$4^{1/2}$, MR=20mA, δ =±(0,5%rdg+50dgt)
Ω	Ohmmetr	Mastech MY75	10-1369/09	$4^{1/2}$, MR=200 Ω, δ =±(0,5%+10)
	Digitální multimetr	APPA106	Stůl č. 6	Užit s termočlánkovou sondou

Tabulka č. 1 - Použité přístroje

4. POSTUP MĚŘENÍ

- Zadání č.1 Prvně jsme se seznámili s převodníkem díky katalogu, ze kterého jsme si zjistili vše potřebné. Důležité údaje jsme si vypsali.
- Zadání č.2 a č.3 Zapojili jsme obvod podle schématu č.1, kde jsme postupně měnili R_s, abychom zjistili výstupní proud při odporu odpovídajícímu dané teplotě z tabulek.
 Otestovali jsme též odpojení a zkrat čidla.
- Zadání č.4 Dosadili jsme hodnoty do rovnice přímky, díky čemuž jsme zjistili směrnici přímky a kvocient. Poté jsme byli schopni vypočítat jakýkoliv proud podle teploty.
- Zadání č.5 Do 3 různých nádob jsme dali vodu s různými teplotami. Změřili jsme proud pomocí převodníku a teplotu podle termočlánkové sondy.

5. TABULKY ZMĚŘENÝCH A VYPOČÍTANÝCH HODNOT

Odpor [Ω]	Proud [mA]	Teplota [°]
100	4,217	0
103,9	5,84	10
107,8	7,49	20
111,7	8,539	30
115,5	10,194	40
119,4	11,034	50
123,2	12,678	60
127,1	13,93	70
130,9	14,903	80
134,7	16,571	90
138,5	18,259	100

Tabulka č. 2 – Změřený proud s odporem, teplota dána z tabulek

Výstup	Proud [mA]	
Přerušení	26,55	
Zkrat	2,03	

Tabulka č. 3 - Proud na výstupu při speciálních případech

Voda	Proud [mA] (Převodník)	Teplota [°C] (DMM)
Studená	6,246	14
Pokojová teplota	7,865	34
Teplá	10,341	39

Tabulka č. 4 - Měření teploty vody Pt100 a termočlánkem

6. Vzor výpočtu

1. Výpočet statické rovnice čidla Pt100 a převodníku

$$y = k * \vartheta + q$$

$$4,217 = k * 0^{\circ} + q \rightarrow q = 4,217$$

$$18,259 = k * 100^{\circ} + 4.217$$

$$14,042 = k * 100^{\circ}$$

$$k = 0,14042$$

2. Výpočet proudu podle zadané teploty (20°C)

$$\theta = 20^{\circ}\text{C}; I = ? \text{ mA}$$

$$I=k*\vartheta+q$$

$$I=0,14042*20+4,217$$

$$I=7,0254mA~(Změřená~hodnota~je~7,49mA)$$
 $\Delta=7,0254-7,49=-0,4646mA$

3. Absolutní chyba měření teploty DMM s termočlánkovou sondou

$$\theta = 14^{\circ}\text{C}; I = 6,246\text{mA}$$

$$I = k * \vartheta + q$$

$$I = 0,14042 * 14 + 4,217$$

$$I = 6,18288mA$$

$$\Delta = 6,246 - 6,18288 = 0,06312mA$$

7. GRAFY

Graf č. 1 - Závislost proudu na odporu

Graf č. 2 - Závislost proudu na teplotě

8. ZÁVĚR

Chyby měřících přístrojů:

Zdroj jsme vybrali stejnosměrný a nastavili jsme na něm 24V. Rozsah byl 0-30V, a tak měření vyhovoval.

Námi vybraná odporová dekáda měla nejnižší rozlišení 1Ω , a tak jsme museli mírně improvizovat. Výsledné hodnoty to nakonec skoro vůbec neovlivňovalo.

Ampérmetr i ohmmetr byl nám již známý Mastech MY75. Používáme jej při každém měření díky jeho malé chybě a velkému množství rozsahů. Měření zcela vyhovoval.

DMM s termočlánkovou sondou ve stole nám byl zcela nový, ale při výpočtu č.3 se skoro nelišil vypočítaným proudem k změřenému, a tak lze usoudit, že k měření byl vhodný.

Zhodnocení:

Vzniklý graf je skoro lineární, ale kvůli menším chybám je v částech zubatý. Statická rovnice přímky z něj jde odvodit docela jednoduše. Při měření teplot sondy byl DMM s termočlánkovou sondou mnohem rychlejší, protože Pt100 se musela ustálit ve vodě o něco déle.

Měření proběhlo v pořádku bez žádných větších komplikací. Námi měřený převodník s Pt100 je využitelný k měření kapalin s teplotou v rozsahu 0-100°C, výstup 4-20mA je ideální na připojení k PLC. Citlivost je pomalá, a tak rychlé změny nebudou zaznamenány.