Approximation Algorithms

Analysis of Algorithms

Motivation: Getting around NP-completeness

- Exponential time may be acceptable for small inputs [Brute Force]
- Isolate special cases that can run in polynomial time [Divide-and-Conquer]
- Near-optimal solutions may be acceptable [Approximation Algorithms]

Performance Ratios

- C* is the cost of the optimal solution
- C is the cost of the solution produced by an approximation algorithm
- An algorithm has an approximation ratio of ρ(n) if for an input of size n, C is within a factor of C*

Performance Ratios [cont.]

- Maximization problem
 - 0 < C <= C*
 - C* / C factor by which the cost of the optimal solution is larger than the cost of the approximate solution
- Minimization problem
 - 0 < C* <= C
 - C / C* factor by which the cost of the approximate solution is larger than the cost of the optimal solution

Definitions

- Approximation Algorithm
 - produces "near-optimal" solution
- Algorithm has approximation ratio $\rho(n)$ if:

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \le \rho(n)$$

$$C = \text{cost of algorithm's solution}$$

$$C^* = \text{cost of optimal solution}$$

n = number of inputs = size of instance

- Approximation Scheme
 - (1+ ε)-approximation algorithm for fixed ε
 - $\varepsilon > 0$ is an input
 - Polynomial-Time Approximation Scheme
 - time is polynomial in *n*

How do approximations algorithms work?

- Exploit the nature of the problem
- Use greedy techniques
- Use linear programming
- Use dynamic programming
- Use random assignments

Overview

- VERTEX-COVER
 - Polynomial-time 2-approximation algorithm
- TSP
 - TSP with triangle inequality
 - Polynomial-time 2-approximation algorithm
 - TSP without triangle inequality
 - Negative result on polynomial-time ρ(n)-approximation algorithm
- SET-COVER
 - polynomial-time ρ(n)-approximation algorithm
 - $\rho(n)$ is a logarithmic function of set size
- SUBSET-SUM
 - Fully polynomial-time approximation scheme
- MAX-3-CNF Satisfiability
 - Randomized ρ(n)-approximation algorithm

The vertex-cover problem

- Let G=(V,E) be an undirected graph
- A vertex cover
 - subset V' of V
 - such that if (u,v) is an edge of G, then either u belongs in V' or v belongs in V' (or both)
- The size of a vertex cover is the number of vertices in it

The vertex-cover problem [cont.]

- The vertex-cover problem is to find a vertex cover of minimum size
- Such a vertex-cover is called an optimal vertex cover

This problem is NP-complete

Consider the graph:

By inspection, optimal vertex cover is {b,d,e}

 C^* = size of optimal solution = 3

Approx-Vertex-Cover (G)

- C ← NULL //C contains results of vertex cover
 E' ← E[G] //Initially all edges are stored here
 while E'!= NULL //all edges that are not considered yet
 do let (u,v) be an edge of E' //select an edge from E'
 C ← C U {u,v} //add vertices to C of the selected edge
 remove from E' all edges incident on u or v //delete all edges related to the vertices "u" and "v"
- 7. return C

Back to our graph:

E': (a,b) (b,c) (c,d) (c,e) (b,e) (b,f) (b,d) (e,f)

Improved version:

C: debc

Approximate vertex cover. C=4

E': (d,e) (c,d) (c,e) (d,f) (d,g) (e,f) (b,c) (a,b)

Is it possible to approximate the optimal solution?

In this case, and with our algorithm, NO!

Analysis of Algorithm

- Running time:
 - O(V+E): if we use adjacency list.
- 2-Approximation Algorithm
 - Minimization problem C* = 3; C = 6
 - Factor = C/C* = 2

Theorem: APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm

- Proof:
 - Polynomial time algorithm because : Complexity = O(V+E)
 - Let, A = set of edges picked by approximation algorithm
 - No 2 edges in A share an endpoint.
 - Thus no 2 edges in A are covered by the same vertex in C*
 - So, Lower bound: |C*| >= |A|
 - We pick an edge for which neither of its endpoints are already in C
 - So, Upper bound: |C| = 2|A|
 - Therefore: |C| = 2|A| <= 2|C*|

Traveling Salesman

TSP with triangle inequality

Polynomial-time 2-approximation algorithm

TSP without triangle inequality

Negative result on polynomial-time $\rho(n)$ approximation algorithm

The traveling-salesperson problem.

- Given a complete undirected graph G=(V,E)
- Each edge has a nonnegative integer cost c(u,v)
- Find a Hamiltonian cycle of G with minimum cost.

This is a NP complete problem

Triangle Inequality

- The cost function satisfies the triangle inequality for all vertices u, v, w in V
 - C(u,w) <= C(u,v) + C(v,w)

TSP with Triangle Inequality

Cost Function Satisfies Triangle Inequality

$$\forall u, v, w \in V$$
$$c(u, w) \le c(u, v) + c(v, w)$$

APPROX-TSP-TOUR(G, c)

- select a vertex $r \in V[G]$ to be a "root" vertex
- compute a minimum spanning tree T for G from root rusing MST-PRIM(G, c, r)
- let L be the list of vertices visited in a preorder tree walk of T
- return the hamiltonian cycle H that visits the vertices in the order L

final approximate tour

optimal tour

source: 91.503 textbook Cormen et al.

TSP with Triangle Inequality

- Time Complexity:
 - MST-Prim()'s running time: O(V²)
 - So, APPROX-TSP-TOUR's running time: O(V²)

TSP with Triangle Inequality

Theorem: APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for TSP with triangle inequality.

Proof:

Algorithm runs in time polynomial in *n*.

Let H * be an optimal tour and T be MST

$$c(T) \le c(H^*)$$
 (since deleting 1 edge from a tour creates a spanning tree)

Let W be a full walk of T (lists vertices when they are first visited and when returned to after visiting subtree)

$$c(W) = 2c(T)$$
 (since full walk traverses each edge of T twice)

$$c(W) \le 2c(H^*)$$

 $c(W) \leq 2c(H^*)$ Now make W into a tour H using triangle inequality. $c(H) \leq c(W)$ (New inequality holds since H is formed by deleting duplicate vertices from W.)

$$c(H) \le 2c(H^*)$$

TSP without Triangle Inequality

- If P ≠ NP, then for any constant ρ≥1, there is no polynomial time approximation algorithm with approximation ratio ρ for the general traveling-salesman problem
- Prove: try yourself

MAX-3-CNF Satisfiability

3-CNF Satisfiability Background
Randomized Algorithms
Randomized MAX-3-CNF SAT
Approximation Algorithm

MAX-3-CNF Satisfiability

- Background on Boolean Formula Satisfiability
 - Boolean Formula Satisfiability: Instance of language SAT is a boolean formula φ consisting of:
 - *n* boolean variables: x_1, x_2, \dots, x_n
 - m boolean connectives: boolean function with 1 or 2 inputs and 1 output
 - e.g. AND, OR, NOT, implication, iff

$$\vee$$
 \wedge \neg \rightarrow \longleftrightarrow

- parentheses
- truth, satisfying assignments notions apply

 $SAT = \{ \langle \phi \rangle : \phi \text{ is a satisfiabl e boolean formula} \}$

NP-Complete

source: 91.503 textbook Cormen et al.

MAX-3-CNF Satisfiability

(continued)

- Background on 3-CNF-Satisfiability
 - Instance of language SAT is a boolean formula φ consisting of:
 - literal: variable or its negation
 - CNF = conjunctive normal form
 - conjunction: AND of clauses
 - clause: OR of literal(s)
 - 3-CNF: each clause has **exactly 3** distinct literals

MAX-3-CNF Satisfiability: optimization version of 3-CNF-SAT

- Maximization: satisfy as many clauses as possible
- Input Restrictions:
 - exactly 3 literals/clause
 - no clause contains both variable and its negation

NP-Complete

source: 91.503 textbook Cormen et al.

Randomized approximation algorithm for MAX-3-CNF-SAT

- Each clause has 3 distinct literals. Also assume that no clause contains a variable and its negation.
- Problem: Return an assignment of variables which maximizes the number of clauses which evaluate to true.

The random approximation algorithm

 Randomly assign a 0 or a 1 value to all variables.

Analysis

- We have set each variable to 1 with a ½ probability.
- We have set each variable to 0 with a ½ probability.
- We define an indicator random variable
 - Y_i = I {clause i is satisfied}
- $Y_i = 1$ as long as at least one of the literals in the ith clause has been set to 1.
- A clause is not satisfied iff all it's literals are 0.
 - Pr {clause i is not satisfied} = $(\frac{1}{2})^3 = \frac{1}{8}$

Analysis [cont.]

- So Pr {clause i is satisfied} = 1 1/8 = 7/8
- Lemma 5.1 (CLRS)
 - Given a sample space S and an event A in the sample space, let X_A = I{A}. Then E[X_A] = Pr{A}
- $E[Y_i] = 7/8$

Analysis [cont.]

- Let Y = number of satisfied clauses.
 - $Y = Y_1 + Y_2 + \dots + Y_m$
- Then we have:

$$E[Y] = E\left[\sum_{i=1}^{m} Y_{i}\right]$$

$$= \sum_{i=1}^{m} E[Y_{i}]$$

$$= \sum_{i=1}^{m} 7/8$$

$$= 7m/8$$

- Since m is the upper bound on the number of satisfied clauses, the approximation ratio is m/(7m/8) = 8/7
- Therefore this is a 8/7 approximation algorithm