Multi-Modal Spectral Image Super-Resolution

IVRL Prime
Fayez Lahoud, Ruofan Zhou, Sabine Süsstrunk

Image and Visual Respresentation Lab School of Computer and Communication Sciences École Polytechnique Fédérale de Lausanne

Multi-Modal Input

Multi-Scale: different spatial resolutions

Downsampled x2 (LR2)

Downsampled x3 (LR3)

Multi-Modal Input

- Multi-Scale: different spatial resolutions
- Multi-Spectral: different spectral resolutions

14-channel spectral

3-channel RGB

Small Dataset

- Track 1
 - 200 14-channel spectral images (LR2, LR3)
 - Solution: Upsampling + Stage-I
- Track 2
 - 100 registered pairs
 - 14-channel spectral image (LR2, LR3)
 - 3-channel RGB image (HR)
 - Solution: Upsampling + Stage-I + Stage-II

Main Contributions

• LR2 + LR3 Upsampling

Main Contributions

- LR2 + LR3 Upsampling and Image Completion
- Transfer Learning

Nearest Neighbor and Image Completion

5	9	8	24	1	12
3	16	6	7	2	19
2	1	3	23	20	0
15	3	7	17	2	10
9	11	16	32	0	3
8	15	3	12	3	8

High Resolution

5	8	1	
2	3	20	
9	16	0	

Downsampled x2

Downsampled x3

5	24	
15	17	

Reconstruction

Nearest Neighbor and Image Completion

Downsampled x2

Downsampled x3

Reconstruction

Nearest Neighbor and Image Completion

Downsampled x2

Downsampled x3

High Resolution Candidate

Residual Learning

- Small model size
 - Stage-I: 1.6MB
 - Stage-II: 1.1MB
- Fast inference
- Low memory requirements

Classical Learning Track1 Data Track2 Data Network 1 Network 2 Spectral Input Track 1 Origin Color Input Track 2 Origin

Blind Residuals

Transfer Learning: Example Output

Comparative Results

Metric	Bicubic x2	EDSR	Stage-I
MRAE	0.11	0.10	80.0
SID	57.39	43.57	43.48
PSNR	36.07	37.27	37.44

Validation Track 1

Comparative Results

Metric	Bicubic x2	EDSR	Stage-I
MRAE	0.11	0.10	80.0
SID	57.39	43.57	43.48
PSNR	36.07	37.27	37.44

Validation Track 1

Metric	Bicubic x2	EDSR	Stage-I	Stage-II
MRAE	0.13	0.16	0.10	0.09
SID	43.32	30.67	38.04	24.51
PSNR	36.48	37.13	37.02	39.17

Validation Track 2

Conclusion

- Multi-Modal Spectral Super Resolution
 - Use any signal you get your hands on!
 - Difficulty in obtaining new modalities can be
 - overcome by transfer learning

Thank you!

https://github.com/IVRL/Multi-Modal-Spectral-Image-Super-Resolution

{fayez.lahoud,ruofan.zhou,sabine.susstrunk}@epfl.ch

