Econometrics I - TA section

Eric Schulman

The University of Texas at Austin

October 23, 2020

2.4

Suppose that the random variables Y and X only take the values 0 and 1, and have the following joint probability distribution

	x = 0	x = 1
y = 0	.1	.2
y = 1	.4	.3

Find E(y|x), $E(y^2|x)$ and var(y|x) for x = 0 and x = 1

2.4

Suppose that the random variables Y and X only take the values 0 and 1, and have the following joint probability distribution

	x = 0	x = 1
y = 0	.1	.2
y = 1	.4	.3

Find E(y|x), $E(y^2|x)$ and var(y|x) for x=0 and x=1

•
$$Pr(y = 0|x = 0) = \frac{Pr(y = 0, x = 0)}{P(x = 0)} = \frac{.1}{.1 + .4} = .2$$

• $Pr(y = 1|x = 0) = \frac{.1}{.1 + .4} = .8$
• $Pr(y = 0|x = 1) = \frac{.2}{.2 + .3} = .4$
• $Pr(y = 1|x = 1) = \frac{.2}{.2 + .3} = .6$

•
$$Pr(y=1|x=0) = \frac{.1}{.1+.4} = .8$$

•
$$Pr(y = 0|x = 1) = \frac{.2}{.2 + .3} = .4$$

•
$$Pr(y=1|x=1) = \frac{.2}{2+.3} = .6$$

2.4

Suppose that the random variables Y and X only take the values 0 and 1, and have the following joint probability distribution

•
$$E(y|x=0) = E(y^2|x=0) =$$

2.4

Suppose that the random variables Y and X only take the values 0 and 1, and have the following joint probability distribution

•
$$E(y|x = 0) = E(y^2|x = 0) =$$

 $0 \times Pr(y = 0|c = 0) + 1 \times Pr(y = 1|x = 0) = .8$

2.4

Suppose that the random variables Y and X only take the values 0 and 1, and have the following joint probability distribution

- $E(y|x = 0) = E(y^2|x = 0) = 0 \times Pr(y = 0|c = 0) + 1 \times Pr(y = 1|x = 0) = .8$
- E(y|x=1) = .6
- $var(y^2|x=0) = E(y^2|x=0) (E(y|x=0))^2 = .8 .8^2 = .16$
- $var(y^2|x=1) = E(y^2|x=1) (E(y|x=1))^2 = .24$

2.5 Show that $\sigma^2(x)$ is the best predictor of e^2 given x.

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Write down the mean-squared error of a predictor h(x) for e^2

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Write down the mean-squared error of a predictor h(x) for e^2

$$E((e^2-h(x))^2)$$

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Write down the mean-squared error of a predictor h(x) for e^2

$$E((e^2-h(x))^2)$$

• What does it mean to be predicting e^2 ?

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Write down the mean-squared error of a predictor h(x) for e^2

$$E((e^2-h(x))^2)$$

• What does it mean to be predicting e^2 ?

Minimize
$$E((e^2 - h(x))^2)$$

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Show that $\sigma^2(x)$ minimizes the mean-squared error and is thus the best predictor.

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Show that $\sigma^2(x)$ minimizes the mean-squared error and is thus the best predictor.

$$E((e^{2} - h(x))^{2}) =$$

$$E((e^{2} - \sigma^{2}(x) + \sigma^{2}(x) - h(x))^{2}) =$$

$$E((e^{2} - \sigma^{2}(x))^{2}) + E((\sigma^{2}(x) - h(x))^{2}) + 2E((\sigma^{2}(x) - h(x))(e^{2} - \sigma^{2}(x)))$$

Note there are 3 terms... If we can get rid of the third we are done. Why?

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Show that $\sigma^2(x)$ minimizes the mean-squared error and is thus the best predictor.

$$E((e^{2} - h(x))^{2}) =$$

$$E((e^{2} - \sigma^{2}(x) + \sigma^{2}(x) - h(x))^{2}) =$$

$$E((e^{2} - \sigma^{2}(x))^{2}) + E((\sigma^{2}(x) - h(x))^{2}) + 2E((\sigma^{2}(x) - h(x))(e^{2} - \sigma^{2}(x)))$$

Note there are 3 terms... If we can get rid of the third we are done. Why?

$$E((\sigma^2(x) - h(x))(e^2 - \sigma^2(x)))$$

• Note $\sigma^2(x) = E(e^2|x)$ so using LIE

$$= E(E((\sigma^{2}(x) - h(x))(e^{2} - \sigma^{2}(x))|x)) = 0$$

- **2.5** Show that $\sigma^2(x)$ is the best predictor of e^2 given x.
 - Thus

$$E((e^{2} - g(x))^{2}) = E((e^{2} - \sigma^{2}(x))^{2}) + E((\sigma^{2}(x) - h(x))^{2})$$

$$\geq E((e^{2} - \sigma^{2}(x))^{2})$$

2.14 True or False. If $y = x'\beta + e$, E(e|x) = 0, and $E(e^2|x) = \sigma^2$, a constant, then e is independent of x.

2.14 True or False. If $y = x'\beta + e$, E(e|x) = 0, and $E(e^2|x) = \sigma^2$, a constant, then e is independent of x. What if,

$$E(e|x) = 0$$
$$E(e^{2}|x) = \sigma^{2}$$
$$E(e^{3}|x) = x^{3}$$

3.10

3.10

3.10

Show that if $X=\begin{bmatrix} X_1 & X_2 \end{bmatrix}$ and $X_1'X_2=0$ then $P=P_1+P_2$

• What is *P*?

3.10

Show that if $X = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$ and $X_1'X_2 = 0$ then $P = P_1 + P_2$

• What is P? The "projector" matrix i.e. $X(X'X)^{-1}X'$. It projects y onto X

3.10

- What is P? The "projector" matrix i.e. $X(X'X)^{-1}X'$. It projects y onto X
- What are the dimensions of *P*?

3.10

- What is P? The "projector" matrix i.e. $X(X'X)^{-1}X'$. It projects y onto X
- What are the dimensions of P? X is $n \times k$. and $(X'X)^{-1}$ is $k \times k$ so, $n \times n$ Makes sense, because y is $n \times 1$

3.10

- What is P? The "projector" matrix i.e. $X(X'X)^{-1}X'$. It projects y onto X
- What are the dimensions of P? X is $n \times k$. and $(X'X)^{-1}$ is $k \times k$ so, $n \times n$ Makes sense, because y is $n \times 1$
- What about the dimensions of X_1 and X_2 ?

3.10

- What is P? The "projector" matrix i.e. $X(X'X)^{-1}X'$. It projects y onto X
- What are the dimensions of P? X is $n \times k$. and $(X'X)^{-1}$ is $k \times k$ so, $n \times n$ Makes sense, because y is $n \times 1$
- What about the dimensions of X_1 and X_2 ? $n \times k_1$ and $n \times k_2$ where $k_1 + k_2 = k$

3.10

- What is P? The "projector" matrix i.e. $X(X'X)^{-1}X'$. It projects y onto X
- What are the dimensions of P? X is $n \times k$. and $(X'X)^{-1}$ is $k \times k$ so, $n \times n$ Makes sense, because y is $n \times 1$
- What about the dimensions of X_1 and X_2 ? $n \times k_1$ and $n \times k_2$ where $k_1 + k_2 = k$
- What about P_1 and P_2 .

3.10

- What is P? The "projector" matrix i.e. $X(X'X)^{-1}X'$. It projects y onto X
- What are the dimensions of P? X is $n \times k$. and $(X'X)^{-1}$ is $k \times k$ so, $n \times n$ Makes sense, because y is $n \times 1$
- What about the dimensions of X_1 and X_2 ? $n \times k_1$ and $n \times k_2$ where $k_1 + k_2 = k$
- What about P_1 and P_2 . Both are $n \times n$

$$P = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} X_1' X_1 & X_1' X_2 \\ X_2' X_1 & X_2' X_2 \end{bmatrix}^{-1} \begin{bmatrix} X_1 & X_2 \end{bmatrix}' =$$

$$\begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} (X_1' X_1)^{-1} & 0 \\ 0 & (X_2' X_2)^{-1} \end{bmatrix}^{-1} \begin{bmatrix} X_1 & X_2 \end{bmatrix}' =$$

$$X_1 (X_1' X_1)^{-1} X_1' + X_2 (X_2' X_2)^{-1} X_2' =$$

$$P_1 + P_2$$

3.22

You estimate a least-squares regression

$$y_i = x'_{1i}\tilde{\beta}_1 + \tilde{u}_i$$

and then regress the residuals on another set of regressors

$$\tilde{u}_i = x'_{2i}\tilde{\beta}_2 + \tilde{e}_i$$

Does this second regression give you the same estimated coefficients as from estimation of a least-squares regression on both set of regressors?

$$y_i = x'_{1i}\hat{\beta}_1 + x'_{2i}\hat{\beta}_2 + \hat{e}_i$$

Explain your reasoning. In other words, is it true that $\tilde{eta}_2=\hat{eta}_2$

3.22

- $\tilde{U} = Y X_1(X_1'X_1)^{-1}X_1'Y$
- $\bullet \ \ \tilde{\beta} = (X_2'X_2)^{-1}X_2'\tilde{U}$

Meanwhile

$$\hat{\beta} = \begin{bmatrix} X_1' X_1 & X_1' X_2 \\ X_2' X_1 & X_2' X_2 \end{bmatrix}^{-1} \begin{bmatrix} X_1 & X_2 \end{bmatrix}' Y$$

- Can use the partition inverse formula to show they are different
- $A^{-1} = \begin{bmatrix} (A_{11} A_{12}A_{22}^{-1}A_{21})^{-1} & -A_{11}^{-1}A_{12}(A_{22} A_{21}A_{11}^{-1}A_{12})^{-1} \\ -A_{22}^{-1}A_{21}(A_{11} A_{12}A_{22}^{-1}A_{21})^{-1} & (A_{22} A_{12}A_{11}^{-1}A_{12})^{-1} \end{bmatrix}$

So, no these are different.

Computer questions

- Question 3.22
- Homework Question 1
- Homework Question 2