DEVELOPERWEEK

FEBRUARY 17-19, 2021

The World's Largest
Developer & Engineering
Technology Conference & Expo

Leverage Power of Machine Learning with ONNX

×

Ron Dagdag

@rondagdag

ONNX
Not ONIX
Not ONYX

http://bit.ly/ml-onnx

programming

machine learning

ML Primer

Open and Interoperable Al

Open Neural Network Exchange

Open format for ML models

github.com/onnx onnx.ai/

Agenda

✓ What is ONNX

☐ How to create ONNX models

☐ How to deploy ONNX models

Create

Frameworks

Native support

Converters

ONNX Model

Deploy

Cloud Services

Azure Machine Learning services

Ubuntu VM

Windows Server 2019 VM

Windows Devices

IoT Edge Devices

Converters

Native

support

Other Devices (iOS, Android, etc)

Services

Native support

4 ways to get an ONNX model

ONNX Model Zoo

Azure Custom Vision Service

Convert existing models

Train models in Azure Machine Learning

Automated Machine Learning

ONNX Model Zoo: github.com/onnx/models

Image Classification

This collection of models take images as input, then classifies the major objects in the images into a set of predefined classes.

Top-5

Model Class	Reference	Description					
MobileNet	Sandler et al.	Efficient CNN model for mobile and embedded vision applications. Top-5 error from paper - ~10%					
ResNet	He et al., He et al.	Very deep CNN model (up to 152 layers), won the ImageNet Challenge in 2015.					
SqueezeNet	landola et al.	A ligh fewer Top-5	Model	Download	Checksum	Download (with sample test data	
VGG	Simonyan et al.	Deep Challe	ResNet- 18	44.6 MB	MD5	42.9 MB	

Model	Download	Checksum	Download (with sample test data)	ONNX version	Opset version	Top-1 accuracy (%)	Top-5 accuracy (%)
ResNet- 18	44.6 MB	MD5	42.9 MB	1.2.1	7	69.70	89.49
ResNet- 34	83.2 MB	MD5	78.6 MB	1.2.1	7	73.36	91.43
ResNet- 50	97.7 MB	MD5	92.0 MB	1.2.1	7	75.81	92.82
ResNet- 101	170.4 MB	MD5	159.4 MB	1.2.1	7	77.42	93.61
ResNet- 152	230.3 MB	MD5	216.0 MB	1.2.1	7	78.20	94.21

Custom Vision Service: customvision.ai

1. Upload photos and label X Image upload Add Tags Uploading 2. Train Predic **Training Images** Performance **Training Images Performance Predictions** 4 images will b Delete Export Add some tag 3. Download ONNX model! Add a tag and press enter fruit X Choose your platform **ONNX** ONNX

Convert models

1. Load existing model

2. (Convert to ONNX)

3. Save ONNX model

ONNX Models

Graph of operations

Netron

https://netron.app/

https://lutzroeder.github.io/netron/

Convert models: Pytorch

```
import torch.onnx
import torchvision
# Standard ImageNet input - 3 channels, 224x224,
# values don't matter as we care about network structure.
# But they can also be real inputs.
dummy input = torch.randn(1, 3, 224, 224)
# Obtain your model, it can be also constructed in your script explicitly
model = torchvision.models.alexnet(pretrained=True)
# Invoke export
torch.onnx.export(model, dummy_input, "alexnet.onnx")
```

Convert models: TensorFlow

python -m tf2onnx.convert --saved-model tensorflow-model-path --output model.onnx

Train models in Azure Machine Learning

Experiment locally then quickly scale with GPU clusters in the cloud

Use automated machine learning and hyper-parameter tuning.

 Keeping Track of experiments, manage models, and easily deploy with integrated CI/CD tooling

Machine Learning Typical E2E Process

Create

Frameworks

Native support

Converters

ONNX Model

Deploy

Azure

Azure Machine Learning services

Ubuntu VM

Windows Server 2019 VM

Windows/Linux Devices

IoT Edge Devices

Converters

Native

support

Other Devices (iOS, etc)

Services

Native support

Deploy with Azure Machine Learning

Model management services

- Deploy as web service to ACI or AKS
- Capture model telemetry

Azure Machine Learning

Machine Learning Typical E2E Process

ONNX Docker Image

onnx-base: Use published ONNX package from PyPi with minimal dependencies.

onnx-dev: Build ONNX from source with minimal dependencies.

onnx-ecosystem: Jupyter notebook environment

- getting started quickly with ONNX models
- ONNX converters
- inference using ONNX Runtime.

Caffe2/PyTorch Docker

docker run -it --rm onnx/onnx-docker:cpu /bin/bash

What is the Edge?

Imagimob AB

Al on the edge

ONNX as an intermediary format

- Convert to Tensorflow for Android
 - Convert a PyTorch model to Tensorflow using ONNX
- Convert to CoreML for iOS
 - https://github.com/onnx/onnx-coreml
- Fine-tuning an ONNX model with MXNet/Gluon
 - https://mxnet.apache.org/versions/1.3.1/tutorials/onnx/fine_tuning_gluon.html

https://github.com/onnx/tutorials

ONNX Runtime

- High performance runtime for ONNX models
- Supports full ONNX-ML spec
- Extensible architecture to plug-in hardware accelerators
- API Support
- onnxruntime.ai

ONNX Runtime

Windows Al platform

- WinML
 - Practical, simple model-based API for ML inferencing on Windows
- DirectML
 - Realtime, high control ML operator API; part of DirectX family
- Compute Driver Model
 - Robust hardware reach/abstraction layer for compute and graphics silicon

ONNX.js

- ONNX.js is a JavaScript library for running ONNX models on browsers and on Node.js.
- ONNX.js has adopted Web Assembly and WebGL technologies
- optimized ONNX model inference runtime for both CPUs and GPUs.

https://github.com/microsoft/onnxjs

ONNX.js

Compatibility

Desktop Platforms

OS/Browser	Chrome	Edge	FireFox	Safari	Opera	Electron	Node.js
Windows 10	✓	✓	✓	-	✓	✓	✓
macOS	✓	-	✓	~	✓	✓	✓
Ubuntu LTS 18.04	~	-	✓	-	~	~	✓

Mobile Platforms

OS/Browser	Chrome	Edge	FireFox	Safari	Opera
iOS	✓	✓	✓	✓	~
Android	✓	✓	Coming soon	-	✓

Wait... there's more

- Embedded Learning Library
 - https://github.com/microsoft/ELL
- Machine Learning Model Running on Azure IoT Starter Kit
 - https://www.hackster.io/waltercoan/machine-learning-model-running-on-azure-iot-starter-kit-f9608b

When to use ONNX?

- High Inferencing latency for production use
- Trained in Python deploy into a C#/Java/JavaScript app
- Model to run resource constraint device (e.g. IoT/edge devices)
- Model to run on different OS or Hardware
- Combine running models created from different frameworks
- Training takes too long (transformer models)

Recap

✓ What is ONNX

ONNX is an open standard so you can use the right tools for the job and be confident your models will run efficiently on your target platforms

✓ How to create ONNX models
 ONNX models can be created from many frameworks

✓ How to deploy ONNX models

ONNX models can be deployed with Windows ML, .NET/Javascript/Python and to the cloud with Azure ML and the high performance ONNX Runtime

http://bit.ly/ml-onnx

About Me

Ron Dagdag

Ron Lyle Dagdag

Immersive Experience Developer Cell: 682-560-3988 ron@dagdag.net

Experience AR http://ro

www.dagdag.net @rondagdag http://ron.dagdag.net Lead Software Engineer at Spacee

4th year Microsoft MVP awardee

Personal Projects www.dagdag.net

Email: ron@dagdag.net Twitter @rondagdag

Connect me via Linked In www.linkedin.com/in/rondagdag/

Thanks for geeking out with me about ONNX

Hackster Portfolio

www.dagdag.net @rondagdag

