

Foundations of Machine Learning (CS 725)

FALL 2024

Lecture 2:

- Introduction to Linear Regression

Instructor: Preethi Jyothi

Question 1a

Say you have a continuous random variable X with pdf g(x).

True or False?
$$\int_{-\infty}^{\infty} g(x)dx = 1$$

Question 1b

Say you have a continuous random variable X with pdf g(x).

True or False? g(x) can be greater than 1

Question 1c

Say you have a continuous random variable X with pdf g(x).

True or Fig.
$$\int_{a}^{b} g(x)dx$$
 can be greater than 1

Question 2

We are given two random variables X and Y. X is discrete and can take values -2, -1,0,1,2, with probability $\frac{1}{5}$ each. Let $Y = X^2$. What is the covariance of X and Y, Cov[X, Y]?

Ans: 0

Recap: Learning a Predictor Function

Consider a target/true function $f: \mathcal{X} \to \mathcal{Y}$ that holds over a training dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}$. Our goal is to find a predictor function or hypothesis $h: \mathcal{X} \to \mathcal{Y}$ that closely approximates f.

1. What functions are permissible for the hypothesis h? [Hypothesis Class]

2. How can we quantify the performance of the hypothesis? [Loss/Error Function]

3. How do we find the best hypothesis? [Optimization]

Linear Regression

1. What functions are permissible for the hypothesis h? [Hypothesis Class]

Hypothesis class
$$\mathcal{H}$$
 is: $\{h_{\mathbf{w}}: h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}, \mathbf{w} \in \mathbb{R}^{d+1}\}$

2. How can we quantify the performance of the hypothesis? [Loss/Error Function]

Least squares (or mean squared) loss:
$$\mathcal{L}_{\text{MSE}} = \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

3. How do we find the best hypothesis? [Optimization]

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \mathrm{argmin}_{\mathbf{w}} ||\mathbf{y} - \mathbf{x}^T \mathbf{x}_i||_2^2$$

$$\mathbf{w}_{\mathrm{MSE}} = \mathrm{argmin}_{\mathbf{w}} ||_2^2$$

Linear Regression: Linear Functions

Fitting a plane to 2D points

Linear Regression

Consider a set of predictor (*independent*) variables $x_1, ..., x_d$ corresponding to an outcome (*dependent*) variable y. Regression is the problem of estimating y as a function of $x_1, ..., x_d$. In *Linear Regression*, the relationship between y and $x_1, ..., x_d$ uses a linear model, that is it is linear in its parameters:

