Number Plate Detection & OCR

Presented By:

Mostafa Hamada, Yasin Elmezayen, Omar Alsabahi

Content

Overview

Motives

Project Architecture

Challenges

Future aspects

Conclusion

• Life Demo

Introduction

This project focuses on developing a robust system to accurately detect and recognize car number plates. The system utilizes advanced technologies in computer vision, deep learning, and optical character recognition.

Key Motives

- Ability to identify and manage traffic violations efficiently.
- Automated Toll Collection and enhancing the efficiency and accuracy of toll collection.

Law Enforcement and Security:

- Facilitating the identification of stolen or wanted vehicles.
- Enhancing surveillance and security in high-risk areas.

Parking Management:

 Improving the management of parking spaces in urban areas.

Project Architecture

Labeling Training Save Model OCR & Pipeline

Dataset Overview

Dataset Description:

- Total images: 228
- Images contain cars with visible number plates.
- Variety of angles and lighting conditions to ensure robustness.

Label Studio

- Label Studio is an open-source data labeling tool that supports multiple data types.
- User-friendly interface for annotating images with bounding boxes.

Data Annotation

- Step-by-Step Process:
 - 1. Import Images:
 - Import the dataset of 228 car images into Label Studio.
 - Supported formats include JPEG, PNG, etc.

2. Annotation:

- Use the bounding box tool to draw rectangles around the car number plates.
- Assign a label called "Number Plate" to each annotation.

3. Review and Edit:

- Review annotations for accuracy and consistency.
- **■** Edit annotations if necessary.

Exporting Annotations

▼<annotation verified="yes">

```
<folder>images</folder>
 <filename>N1.jpeg</filename>
 <path>C:\Users\Mostafa\Desktop\Project Files\1 Labeling\images\N1.jpeg</path>
▼ <source>
   <database>Unknown</database>
 </source>
▼<size>
   <width>1920</width>
   <height>1080</height>
   <depth>3</depth>
 </size>
 <segmented>0</segmented>
▼ <object>
   <name>number_plate</name>
   <pose>Unspecified</pose>
   <truncated>0</truncated>
   <difficult>0</difficult>
  ▼ <bndbox>
     <xmin>1099
     <ymin>647
     <xmax>1402</xmax>
     <ymax>729</ymax>
   </bndbox>
 </object>
</annotation>
```

Exporting Annotations

- After labeling all images, export the annotations.
- Choose the XML file format for exporting.
- XML format includes details about bounding boxes and image file paths.

Converting XML to CSV

Converting XML to CSV

- Why Convert to CSV:
 - CSV format is easier to manipulate and use in model training.
 - Simplifies data loading and preprocessing in machine learning pipelines.a
- Conversion Process:
 - Use a Python script to convert XML files to a CSV format.
 - The CSV file includes columns for image file paths and bounding box coordinates (xmin, ymin, xmax, ymax).

Splitting the Dataset

Splitting the Dataset

- Importance of Splitting the Dataset:
 - Ensures the model is trained on one subset of data and tested on another to evaluate performance.
 - Prevents overfitting and provides a measure of how the model generalizes to unseen data.
- Splitting Process:
 - Split the dataset into 80% training and 20% testing sets.
 - Use the train_test_split function from sklearn.model_selection.

Model Architecture

```
inception_resnet = InceptionV3(weights="imagenet",include_top=False,input_tensor=Input(shape=(224,224,3)))
inception_resnet.trainable=False
# ------
headmodel = inception_resnet.output
headmodel = Flatten()(headmodel)
# headmodel = Dense(500,activation="relu")(headmodel)
headmodel = Dense(64,activation="relu")(headmodel)
headmodel = Dense(4,activation='sigmoid')(headmodel)
# ------ model
model = Model(inputs=inception_resnet.input,outputs=headmodel)
# complie model
model.compile(loss='mean_squared_error',optimizer=tf.keras.optimizers.Adam(learning_rate=1e-6))
model.summary()
```

Model Architecture

- Pre-trained InceptionV3 Model:
 - InceptionV3 used for feature extraction.
 - Pre-trained on ImageNet dataset.
 - Include top layer removed to adapt for new task.
- Custom Head for Bounding Box Regression:
 - Flattening the output of InceptionV3.
 - Adding dense layers for predicting bounding box coordinates.

Model Training Setup

```
history = model.fit(x=x_train,y=y_train,batch_size=10,epochs=100, validation_data=(x_test,y_test),callbacks=[tfb])
```

Model Training Setup

- Training Configuration:
 - Optimizer: Adam with a learning rate of 1e-6
 - Loss function: Mean Squared Error (MSE)
 - Batch size: 10
 - Number of epochs: 100

Model Performance

Model Performance

- Evaluation Metric:
 - Mean Squared Error (MSE)
- Results:
 - Training vs. validation performance

Model Training Performance Analysis

Model Training Performance Analysis

First Epoch:

poch	Name	Smoothed	Value	Step
	train	0.1054	0.1054	0
0	validation	0.1145	0.1145	0

Final Epoch:

Model Training

- At the beginning (initial epochs), both training and validation loss start relatively high and begin to decrease quickly.
- The model rapidly improves during the initial epochs, which is expected as it learns the fundamental patterns in the data.

Convergence:

- As training progresses, both the training and validation loss continue to decrease.
- The training loss tends to decrease more smoothly, whereas the validation loss has some fluctuations.
- Towards the end of the training (final epochs), the losses start to stabilize, indicating the model is converging.

Predictions

Original Image

Predicted Image

 Our model demonstrated excellent performance in detecting the number plate, even when the plate was not in the regular position.

• This example highlights the robustness and accuracy of our model in diverse conditions.

Other Examples of The Model Predictions

Integrating OCR with Tesseract

- Tesseract is an open-source OCR engine that can recognize text in images.
- It is highly effective for recognizing characters on number plates.

Why Tesseract:

- High accuracy in text recognition.
- Supports multiple languages and scripts.
- Easy to integrate with Python using the pytesseract library.

Example of Extracting the Numbers of a plate

extract text from image
text = pt.image_to_string(roi)
print(text)

TS 08 FM 8888

Limitations of Tesseract OCR

Common Limitations:

- 1. Image Quality:
- 2. Varied Fonts and Styles:
- 3. Complex Backgrounds:
- 4. Lighting Conditions:
 - Inconsistent results under different lighting conditions

Technical Limitations:

- Processing Speed:
 - Slower processing times compared to some commercial OCR solutions, especially for large batches of images.

Future work and challenges

 Transition to real-time video feeds for continuous, immediate recognition.

 Improve OCR to handle low-quality images, noise, and distortions more effectively.

Conclusion

Successful Development:

 Robust system for number plate detection and recognition.

• Key Achievements:

- High accuracy in diverse conditions.
- Effective integration of Tesseract OCR.

Applications:

 Enhanced traffic management, law enforcement, and parking.

Challenges:

 Managed variations in lighting, angles, and image quality.

• Future Work:

- Real-time video recognition.
- Improved OCR for low-quality images.

Thanks for listening

Any Questions?