CSC 611: Analysis of Algorithms

Lecture 5

Divide and Conquer

Divide-and-Conquer

- **Divide** the problem into a number of subproblems
 - Similar sub-problems of smaller size
- Conquer the sub-problems
 - Solve the sub-problems recursively
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions to the sub-problems
 - Obtain the solution for the original problem

Merge Sort Approach

To sort an array A[p..r]:

Divide

 Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

Combine

- Merge the two sorted subsequences

CS 477/677 - Lecture 7

3

Merge Sort

Alg.: MERGE-SORT(A, p, r)

ifp∢r

then $q \leftarrow \lfloor (p + r)/2 \rfloor$

MERGE-SORT(A, p, q)

MERGE-SORT(A, q + 1, r)

MERGE(A, p, q, r)

Check for base case

Divide

Conquer

Conquer

Combine

• Initial call: MERGE-SORT(A, 1, n)

Example – **n** Power of 2

CS 477/677 - Lecture 7

5

Example – **n** Not a Power of 2

Example – n Not a Power of 2

CS 477/677 - Lecture 7

7

Merging

- Input: Array A and indices p, q, r such that
 p ≤ q < r
 - Subarrays A[p..q] and A[q+1..r] are sorted
- Output: One single sorted subarray A[p..r]

Merging

- Idea for merging:
 - Two piles of sorted cards
 - Choose the smaller of the two top cards
 - Remove it and place it in the output pile
 - Repeat the process until one pile is empty
 - Take the remaining input pile and place it facedown onto the output pile

CS 477/677 - Lecture 7

9

6

Merge - Pseudocode

Alg.: MERGE(A, p, q, r)

- 1. Compute n_1 and n_2
- 2. Copy the first n_1 elements into n_1 n_2 n_2 $n_1 + 1$ and the next n_2 elements into $R[1 ... n_2 + 1]$
- 3. $L[n_1 + 1] \leftarrow \infty$; $R[n_2 + 1] \leftarrow \infty$
- 4. $i \leftarrow 1$; $j \leftarrow 1$
- 5. for $k \leftarrow p$ to r
- 6. do if $L[i] \leq R[j]$
- 7. then $A[k] \leftarrow L[i]$
- 8. i ←i + 1
- 9. else $A[k] \leftarrow R[j]$
- 10. $j \leftarrow j + 1$

q

2

CS 477/677 - Lecture 7

Running Time of Merge

Initialization (copying into temporary arrays):

$$-\Theta(n_1+n_2)=\Theta(n)$$

- Adding the elements to the final array (the for loop):
 - n iterations, each taking constant time $\Rightarrow \Theta(n)$
- Total time for Merge:
 - $-\Theta(n)$

CS 477/677 - Lecture 7

11

Analyzing Divide and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
 - T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size n/b: takes D(n)
 - Conquer (solve) the subproblems: takes aT(n/b)
 - Combine the solutions: takes C(n)

$$O(1) if n \le c$$

$$T(n) = aT(n/b) + D(n) + C(n) otherwise$$

MERGE - SORT Running Time

• Divide:

- compute q as the average of p and r: $D(n) = \Theta(1)$

• Conquer:

recursively solve 2 subproblems, each of size n/2
 ⇒ 2T (n/2)

• Combine:

- MERGE on an **n**-element subarray takes $\Theta(n)$ time $\Rightarrow C(n) = \Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

CS 477/677 - Lecture 7

13

Solve the Recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Use Master's Theorem:

Compare n with
$$f(n) = cn$$

Case 2: $T(n) = \Theta(n | gn)$

Merge Sort - Discussion

- Running time insensitive of the input
- Advantages:
 - Guaranteed to run in $\Theta(nlgn)$
- Disadvantage
 - Requires extra space ≈N
- Applications
 - Maintain a large ordered data file
 - How would you use Merge sort to do this?

CS 477/677 - Lecture 7

15

Readings

