

Flooding and Water Level Monitoring

What is flooding?

An overflowing of water onto land that is normally dry.

We monitor and describe flooding with water level data.

Water level – the vertical depth of water from a reference point. Often referred to as gauge height or stage.

- NOT the depth of the water. It's the deviation from normal or mean if the area is tidal.

Why do we monitor water levels?

- Flood mitigation land/habitat management
- Flood risk management
- Emergency action planning

Water level Averaged by day SMC-KERR-WL

The Engineering Cycle

Problem: Notify communities when they need to be prepared for flooding impacts.

- Brainstorm solutions and research what's already in existence
- 2. Make a model
- 3. Test

Low-tech No-tech monitoring

Pros	Cons
Low costEasyinstallation	- Must monitor by viewing at regular intervals.

Procedure

Pros Cons

- 5 minute make a plan
- 10 minutes build
- Test
 - While you wait to test...
 - What are pros & cons of your design?
 - What would you do in a redesign?

USGS Crest Stage Guage

Pros	Cons
 Records the highest water level Don't have to be in the field to record the high. 	Must reset between each storm.Increased room for error.

The sensor sends down **sound** waves to the water.

Step 2

The sensor counts the **amount of time** it takes to receive those sound waves back.

Step 3

We use **math** to determine the water level based on the time.

What does the data look like?

https://wl.cormp.org/?health=Off&quality=Off&units=English&duration=1%20month&m aps=storm_tracks&legend=Off&forecast=Point&hti=&nhc=undefined&nhcWinds=undefined&sst=¤t=&datum=MLLW&windPrediction=wind%20speed%20prediction®ion=&bbox=-77.97374725341798,34.225996753139725,-

77.84139633178712,34.27041037539809&iframe=null&mode=home&basemap=Streets &basemap_overlays=Bathymetry&layer_opacity=100&station_mode=null&platform=SM C-KERR-WL

