Análise de dados medidos em um filamento de tungstênio

Aluno: Átila Leites Romero Matrícula: 144679 IF-UFRGS

29 de abril de 2012

Resumo

Este trabalho apresenta uma verificação experimental da teoria de radiação de corpo negro, utilizando uma montagem onde foi medida a radiação emitida por uma lâmpada de tungstênio em função da tensão elétrica fornecida.

1 Introdução

Segundo a lei de Stefan-Boltzmann,

$$R_{(T)} = \sigma T^4$$

onde R é a potência total irradiada, σ é uma constante e T é a temperatura do corpo negro.

Mas a emissividade de corpos reais é menor que a emissividade de um corpo negro ideal. Por isso, para corpos reais, a equação é reescrita como

$$R_{(T)} = \varepsilon(T)\sigma T^4$$

onde ε é um número menor que 1 e representa a emissividade do corpo. Em outra experiência, foi verificado que as expressões

$$r = r_0 + r_1(T - T_0) + r_2(T - T_0)^2$$

e

$$r = r_0 (\frac{T}{T_0})^{\gamma}$$

fornecem uma boa aproximação para a relação entre resistência e temperatura do filamento de tungstênio.

A potência total dissipada por efeito Joule pode ser descrita por

$$P = VI$$

Assumindo que a energia dissipada por condução e convecção varie lineramente com a temperatura, pode-se afirmar que

$$P_D = D(T - T_0)$$

Já a potência dissipada por radiação pode ser descrita pela lei de Stefan-Boltzmann, logo

$$P = P_D + P_S = D(T - T_0) + S(T^4 - T_0^4)$$

onde

$$S = \sigma A 4\pi\varepsilon$$

Como σ é muito pequeno, para baixas temperaturas a dissipação por condução e convecção prevalece e, por isso,

$$P \simeq D(T - T_0)$$

e

$$(T-T_0)\simeq \frac{P}{D}$$

o que leva a

$$r = r_0 + r_1 \frac{P}{D} + r_2 (\frac{P}{D})^2$$

Para altas temperaturas, a potência irradiada passa a prevalecer, já que cresce muito mais rápido que a potência dissipada por difusão térmica. Neste caso,

$$P \simeq S(T^4 - T_0^4)$$

e, como

$$T^4 >> T_0^4$$

,

$$T^4 \simeq \frac{P}{S}$$

o que leva a

$$r = r_0 \frac{1}{T_0^{\gamma}} \left(\frac{P}{S}\right)^{\frac{\gamma}{4}}$$

Espera-se ainda que os dados experimentais possam ser descritos pela Lei de Planck para radiação de corpo negro:

$$Rd\lambda = \frac{hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda KT}} - 1} d\lambda$$

Com a aproximação de Wien, $e^{\frac{hc}{\lambda KT}}-1$ é substituido por $e^{\frac{hc}{\lambda KT}}$:

$$Rd\lambda = \frac{hc^2}{\lambda^5} e^{\frac{-hc}{\lambda KT}} d\lambda$$

2 Procedimento experimental

Uma lâmpada de tungstênio com 20W de potência nominal foi ligada a uma fonte regulável. Um sensor fotoelétrico foi instalado em frente à lâmpada e ligado a um amplificador de tensão.

Foram aplicadas diferentes tensões à lâmpada. Em cada etapa, eram medidas a corrente na lâmpada e a tensão de saída no sensor fotoelétrico, já amplificada. Assumiu-se que a luminância detectada seria proprocional a esta tensão de saída, mesmo sendo desconhecido o valor exato desta proporção.

3 Análise dos dados

Para cada medida, a resistência da lâmpada pode ser calculada através da lei de Ohm:

$$r = V/I$$

onde r é a resistência, V a voltagem e I a corrente aplicada à lâmpada.

Para voltagens baixas, como não há emissão luminosa detectável, a potência dissipada é constituída predominantemente pela difusão térmica. É esperado um comportamento polinomial entre a resistência elétrica do tungstênio e a potência dissipada, descrito por

$$r = r_0 + r_1 \frac{P}{D} + r_2 (\frac{P}{D})^2$$

A potência dissipada por difusão térmica pela lâmpada é calculada através da lei de Joule P=VI.

Os valores para r_0 , $\frac{r_1}{D}$ e $\frac{r_2}{D^2}$ podem ser calculados utilizando regressão polinomial.

Para voltagens mais elevadas, a potência irradiada deve prevalecer, e é esperado um crescimento geométrico da potência irradiada em relação à resistência, descrito por

 $r = r_0 \frac{1}{T_0^{\gamma}} \left(\frac{P}{S}\right)^{\frac{\gamma}{4}}$

Neste caso a potência dissipada é obtida a partir dos dados da luminosidade captada pelo sensor fotoelétrico.

Rearranjando os termos para isolar as constantes, temos:

$$\frac{r}{r_0} = (\frac{1}{T_0 S^{\frac{1}{4}}} P^{\frac{1}{4}})^{\gamma}$$

E usando logaritmos:

$$ln(\frac{r}{r_0}) = \gamma [ln(\frac{1}{T_0 S^{\frac{1}{4}}}) + ln(P^{\frac{1}{4}})]$$

$$ln(\frac{r}{r_0}) = \gamma ln(\frac{1}{T_0 S^{\frac{1}{4}}}) + \frac{ln(r_0)\gamma}{4} ln(P)$$

$$ln(\frac{r}{r_0}) = A + Bln(P)$$

onde

$$A = \gamma ln(\frac{1}{T_0 S^{\frac{1}{4}}}); B = \frac{\gamma}{4}$$

Os valores para $\gamma ln(\frac{1}{T_0S^{\frac{1}{4}}})$ e $\frac{\gamma}{4}$ podem ser calculados utilizando regressão linear.

Para o valor de r_0 da relação $\frac{r}{r_0}$, utiliza-se o valor obtido nas baixas voltagens.

Utilizando logaritmos com a aproximação de Wien, espera-se que o gráfico de $\ln(L)x\frac{1}{T}$ produza uma reta com inclinação $-\frac{hc}{\lambda K}$:

$$ln(L) = C - \frac{hc}{\lambda KT}$$

Para calcular T, usa-se:

$$T = T_0 \frac{r}{r_0}^1 / \gamma$$

Utilizando a inclinação β da reta, pode-se calcular a constante de Planck através de

$$h = -\beta \frac{\lambda K}{c} = -\beta 2.74705044 \times 10^{-19}$$

V(V)	I(A)	L	R(Ohm)	P(W)
0,11	0,12	5,7	0,92	0,01
0,21	0,22	5,8	0,95	0,05
0,30	0,27	5,9	1,11	0,08
0,41	0,33	5,6	1,24	0,14
0,50	0,35	6,0	1,43	0,18
0,61	0,38	5,5	1,61	$0,\!23$
0,70	0,40	6,0	1,75	$0,\!28$
0,80	0,42	6,1	1,90	$0,\!34$
0,90	0,44	5,1	2,05	$0,\!40$
1,00	0,46	6,0	2,17	$0,\!46$
1,10	0,48	6,0	2,29	$0,\!53$
1,20	0,50	6,6	2,40	0,60
1,29	0,52	6,9	2,48	$0,\!67$
1,41	0,54	7,6	2,61	0,76
1,50	0,55	8,7	2,73	0,83
1,60	0,57	9,9	2,81	0,91
1,68	0,59	11,4	2,85	0,99
1,79	0,60	13,5	2,98	1,07
1,88	0,62	15,7	3,03	$1,\!17$
2,01	0,64	19,4	3,14	1,29
2,53	0,72	44,7	3,51	1,82
2,99	0,79	84,8	3,78	2,36
3,46	0,85	146,2	4,07	2,94
4,01	0,92	246,5	4,36	3,69
4,55	0,98	370,8	4,64	4,46
5,00	1,04	504	4,81	5,20
5,53	1,09	689	5,07	6,03
6,05	1,15	895	5,26	6,96
7,02	1,25	1373	5,62	8,78
8,01	1,34	1956	5,98	10,73
9,00	1,43	2613	6,29	12,87
10,05	1,52	3428	6,61	15,28
11,02	1,60	4230	6,89	17,63
12,08	1,69	5200	7,15	20,42
13,04	1,76	6120	7,41	22,95

Tabela 1: Primeiro conjunto de medidas.

4 Resultados do primeiro conjunto de dados

No primeiro conjunto de dados, listado na tabela 1, não houve detecção de radiação luminosa até a voltagem de 1,1 volts. Ou seja, até 1,1 volts, prevaleceu a difusão térmica. Os valores calculados por regressão polinomial foram:

 $r_0 = 0,8148; \frac{r_1}{D} = 3,820; \frac{r_2}{D^2} = -1,882$

Na faixa de voltagens acima de 2 volts, foi notado um grande aumento da potência dissipada, correspondente à dissipação por irradiação.

Os valores calculados por regressão linear foram:

$$\gamma ln(\frac{1}{T_0 S^{\frac{1}{4}}}) = 1.286$$
$$\frac{\gamma}{4} = 0,2963$$
$$\beta = -11284,6$$

5 Discussão do primeiro conjunto de dados

Figura 1: Regressão polinomial para valores até 1,1 volts. Primeiro conjunto de medidas.

Figura 2: Regressão polinomial calculada usando todas as medidas. Primeiro conjunto de medidas.

Na figura 1, a regressão poninomial obtida utilizando valores de até 1,1volts é exibida. Também é mostrado como seria o resultado nesta faixa caso todo o conjunto de dados fosse utilizado.

Na figura 2, a regressão polinomial calculada usando o conjunto de dados completo é mostrada para toda a faixa de valores medidos, para mostrar que não é uma boa aproximação.

Na figura 3, a regressão linear obtida utilizando os valores medidos a partir de 2 volts é exibida.

Para mostrar que a utilização de toda a faixa de valores não fornece uma boa aproximação, na figura 4 é mostrado como ficaria a interpolação de dados se calculada desta forma.

Isolando γ temos que:

$$\gamma = 4 \times 0,2963 = 1.185$$

que é próximo ao valor 1.221 obtido em experiência prévia, mas o material lá utilizado pode ter características diferentes, como densidade e impurezas, que podem explicar parte desta diferença.

Na figura ??, foram comparados luminosidade e temperatura. A regressão linear obtida informa a inclinação β , usada para o cálculo de h.

O valor calculado para h foi $3.09993654 \times 10^{-15} eV.s$, que apresenta um erro de aproximadamente 25% em relação ao valor atualmente conhecido.

Figura 3: Regressão linar para os logaritmos dos valores medidos a partir de 2 volts. Primeiro conjunto de medidas.

Figura 4: Regressão linar para os logaritmos dos valores medidos, usando toda a faixa de valores. Primeiro conjunto de medidas.

Figura 5: Regressão linear do logaritmo da luminosidade versus 1/T. Primeiro conjunto de medidas.

É possível que um número maior de medidas em baixas voltagens fornecesse um valor mais preciso para r_0 , o que aumentaria a precisão do γ calculado.

Outra fonte de erro foi a luz da sala, que estava ligada durante o experimento, de modo que a movimentação das pessoas pode ter influenciado a quantidade de luz incidente no sensor, alterando o resultado das medidas, sobretudo nas voltagens mais baixas.

Mesmo com essas aproximações, foi possível observar que a potência irradiada de fato aumentou com a quarta potência da temperatura, o que está de acordo com a lei de Stefan-Boltzmann.

6 Resultados do segundo conjunto de dados

No segundo conjunto de dados, disponíveis no Moodle, não houve detecção de radiação luminosa até a voltagem de 0,650 volts. Ou seja, até 0,650 volts, prevaleceu a difusão térmica. Os valores calculados por regressão polinomial foram:

$$r_0 = 0,6543; \frac{r_1}{D} = 3,762; \frac{r_2}{D^2} = -1,361$$

Na faixa de voltagens acima de 2,60 volts, foi notado um grande aumento da potência dissipada, correspondente à dissipação por irradiação.

Os valores calculados por regressão linear foram:

$$\gamma ln(\frac{1}{T_0 S^{\frac{1}{4}}}) = 1,481$$

$$\frac{\gamma}{4} = 0,3002$$

7 Discussão do segundo conjunto de dados

Figura 6: Regressão polinomial para valores até 0,650 volts.

Na figura 5, a regressão poninomial do segundo conjunto de dados, obtida utilizando valores de até 0,650 volts é exibida.

Na figura 6, a regressão linear do segundo conjunto de dados, obtida utilizando os valores medidos a partir de 2,60 volts é exibida.

Isolando γ temos que:

$$\gamma = 4 \times 0,3002 = 1,200$$

que é mais próximo ao valor 1.221 obtido em experiência prévia que aquele obtido no primeiro conjunto de dados.

Na figura ??, foram comparados luminosidade e temperatura. A regressão linear obtida informa a inclinação β , usada para o cálculo de h.

O valor calculado para h foi $4.55721933 \times 10^{-15} eV.s$, que apresenta um erro de aproximadamente 10% em relação ao valor atualmente conhecido.

Figura 7: Regressão linar para os logaritmos dos valores medidos a partir de 2,60 volts.

Figura 8: Regressão linear do logaritmo da luminosidade versus 1/T. Segundo conjunto de medidas.

8 Conclusões

Neste experimento medimos a potência dissipada por um filamento de tungstênio sujeito a diferentes voltagens. Foi confirmado que a difusão térmica predomina em baixas temperaturas e que a irradiação predomina em temperaturas maiores.

O modelo de dissipação de energia para baixas temperaturas assume que a relação entre potência dissipada e temperatura é linear e descreveu satisfatóriamente as medidas feitas em baixa voltagem.

Para altas temperaturas, o modelo que considera que a energia dissipada é proporcional à quarta potência da temperatura forneceu uma descrição mais adequada para as medidas obtidas.

Os valores calculados para a constante de Planck utilizando os dois conjuntos de dados apresentaram aproximações razoáveis em relação aos valores atualmente conhecidos, principalemente se for considerado que a constante é um número muito pequeno, com uma ordem de grandeza -15.

O segundo conjunto de medidas apresentou resultados melhores do que o primeiro, por conter mais pontos na faixa de baixas voltagens e por apresentar uma precisão maior, que pode ser notada pela menor variação de luminosidade nesta mesma faixa.