Number-Theoretic Characterizations of Some Restricted Clifford+T Circuits

QPL 2020

M. Amy, A. N. Glaudell, & N. J. Ross

I. The Clifford+T Gate Set and its Restrictions

The Clifford+T Gate Set

Let $\omega = e^{i\pi/4} = (1+i)/\sqrt{2}$. The Clifford+T gate set consists of the H and T gates below

together with the CX gate

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} .$$

The set {H, T, CX} forms a *universal* and *fault-tolerant* set of quantum gates.

Clifford+T Circuits

Clifford+T circuits are generated from Clifford+T gates via composition and tensor product (and ancillas).

The circuit below is a Clifford+T circuit.

Some of the gates in the above circuit are derived gates.

Because they are universal and well-suited for fault-tolerant quantum computing, Clifford+T circuits have received a lot of attention.

Single-Qubit Clifford+T Circuits

Single-qubit Clifford+T circuits are very well understood.

For single qubit Clifford+T operators we have:

- generators and relations [M.A. 2008],
- optimal normal forms [M.A. 2008],
- a number-theoretic characterization [K.M.M. 2013], and
- optimal approximations [R.S. 2014].

Multi-Qubit Clifford+T Circuits

Multi-qubit Clifford+T circuits are **not** very well understood.

For multi-qubit qubit Clifford+T operators we have:

- a number-theoretic characterization [G.S. 2013] and
- generators and relations for 2-qubit circuits [B.S. 2015].

Multi-Qubit Clifford+T Circuits

Multi-qubit Clifford+T circuits are **not** very well understood.

For multi-qubit qubit Clifford+T operators we have:

- a number-theoretic characterization [G.S. 2013] and
- generators and relations for 2-qubit circuits [B.S. 2015].

To circumvent the difficulties associated with multi-qubit Clifford+T circuits **restricted gate sets** have been considered.

Restricted Clifford+T Circuits

Several types of *restricted* Clifford+T circuits have been studied.

These include:

- Clifford circuits [S. 2015],
- CX+T circuits [A.M. 2016, C.H. 2017, A.C.R. 2017], and
- CX-dihedral circuits [A.C.R. 2017].

Unfortunately, these restrictions are not universal.

Restricted Clifford+T Circuits

Several types of *restricted* Clifford+T circuits have been studied.

These include:

- Clifford circuits [S. 2015],
- CX+T circuits [A.M. 2016, C.H. 2017, A.C.R. 2017], and
- CX-dihedral circuits [A.C.R. 2017].

Unfortunately, these restrictions are not universal.

Restricted Clifford+T Circuits

Several types of *restricted* Clifford+T circuits have been studied.

These include:

- Clifford circuits [S. 2015],
- CX+T circuits [A.M. 2016, C.H. 2017, A.C.R. 2017], and
- CX-dihedral circuits [A.C.R. 2017].

Unfortunately, these restrictions are not universal.

Goal: study restricted <u>and</u> universal Clifford+T circuits.

II. Number-Theoretic Characterizations

Characterizing Clifford+T Operators

Let $\mathbb{D} = \{\frac{\mathfrak{a}}{2^k} \mid \mathfrak{a} \in \mathbb{Z}, k \in \mathbb{N}\}$ be the ring of *Dyadic fractions* and let

$$\mathbb{D}[\omega] = \{a\omega^3 + b\omega^2 + c\omega + d \mid a, b, c, d \in \mathbb{D}\}\$$

where $\omega = e^{i\pi/4} = (1 + i)/\sqrt{2}$.

[G.S. 2013] A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit Clifford+T circuit if, and only if, $V \in U_{2^n}(\mathbb{D}[\omega])$.

This number-theoretic characterization proved extremely useful in the study of 1- and 2-qubit Clifford+T circuits.

Restricted Clifford+T Operators

We can restrict Clifford+T operators by considering unitary matrices over **subrings** of $\mathbb{D}[\omega]$.

For sufficiently large n, each one of these subrings of $D[\omega]$ corresponds to a **universal** subgroup of $U_n(\mathbb{D}[\omega])$ (sometimes in an encoded sense).

Results (I)

Theorem: A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit circuit over

- $\{X, CX, CCX, H \otimes H\}$ if and only if $V \in U_{2n}(\mathbb{D})$,
- $\{X, CX, CCX, H, CH\}$ if and only if $V \in U_{2n}(\mathbb{D}[\sqrt{2}),$
- $\{X, CX, CCX, F\}$ if and only if $V \in U_{2^n}(\mathbb{D}[i\sqrt{2}), \text{ and }$
- $\{X, CX, CCX, \omega H, S\}$ if and only if $V \in U_{2^n}(\mathbb{D}[i])$,

where $F \propto \sqrt{H}$. Moreover, a single ancilla is always sufficient.

III. The Dyadic Case

Dyadic Matrices

In the Dyadic case we focus on matrices of the form

$$V = \frac{1}{2^k} U$$

where $k \in \mathbb{N}$, $U \in \mathbb{Z}^{n \times n}$.

The smallest k such that V can be written as above is called the *least denominator exponent* of V, written Ide(V).

Our basic gates are X, CX, CCX, together with

Exact Synthesis

Easy: If a $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit circuit over $\{X, CX, CCX, H \otimes H\}$ then $V \in U_{2^n}(\mathbb{D})$.

<u>Harder</u>: If a $2^n \times 2^n$ matrix $V \in U_{2^n}(\mathbb{D})$ then V can be exactly represented by an n-qubit circuit over $\{X, CX, CCX, H \otimes H\}$.

To solve the harder problem, we follow [G.S. 2013] and introduce an *exact synthesis algorithm*.

The exact synthesis algorithm inputs $V \in U_{2^n}(\mathbb{D})$ and outputs an n-qubit circuit over $\{X, CX, CCX, H \otimes H\}$ for V.

Generators

The 1-, 2-, and 4-level operators

$$\{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, H \otimes H_{[\alpha,\beta,\gamma,\delta]} \mid 1 \leq \alpha < \beta < \gamma < \delta \leq n\}$$

can be exactly represented over the gate set $\{X, CX, CCX, H \otimes H\}$.

Where, e.g.,

$$\mathsf{H} \otimes \mathsf{H}_{[1,3,4,5]} \begin{bmatrix} \mathsf{a} \\ \mathsf{b} \\ \mathsf{c} \\ \mathsf{d} \\ \mathsf{e} \end{bmatrix} = \begin{bmatrix} (\mathsf{a} + \mathsf{c} + \mathsf{d} + \mathsf{e})/2 \\ \mathsf{b} \\ (\mathsf{a} - \mathsf{c} + \mathsf{d} - \mathsf{e})/2 \\ (\mathsf{a} + \mathsf{c} - \mathsf{d} - \mathsf{e})/2 \\ (\mathsf{a} - \mathsf{c} - \mathsf{d} + \mathsf{e})/2 \end{bmatrix}.$$

We now forget circuits and we use the set

$$\{(-1)_{[\alpha]}, X_{[\alpha,\beta]}, H \otimes H_{[\alpha,\beta,\gamma,\delta]} \mid 1 \leq \alpha < \beta < \gamma < \delta \leq n\}$$

as our set of generators.

Some Lemmas (I)

Lemma 1: If $u_1, ..., u_4$ are odd integers, then there exists $m_1, ..., m_4$ such that

$$(H \otimes H)(-1)_{[1]}^{m_1}(-1)_{[2]}^{m_2}(-1)_{[3]}^{m_3}(-1)_{[4]}^{m_4} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$$

for some even integers w_1, \ldots, w_4 .

Some Lemmas (I)

Lemma 1: If $u_1, ..., u_4$ are odd integers, then there exists $m_1, ..., m_4$ such that

$$(H \otimes H)(-1)_{[1]}^{m_1}(-1)_{[2]}^{m_2}(-1)_{[3]}^{m_3}(-1)_{[4]}^{m_4} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$$

for some even integers w_1, \ldots, w_4 .

Lemma 2: If $v = u/2^k$ is a unit vector such that $u \in \mathbb{Z}^n$ and $Ide(v) \ge 1$ then the number of odd entries in u is a multiple of 4.

Proof. Let k = Ide(v). Since v is a unit vector we have

$$4^k = u^{\dagger}u = \sum a_i^2$$

and since $k \ge 1$ the number of odd a_i must be a multiple of 4.

Some Lemmas (II)

Column Lemma: If $v \in \mathbb{D}^n$ is a unit vector then there exists a sequence G_1, \ldots, G_ℓ of 1-, 2-, and 4-level operators of type (-1), X, and $H \otimes H$ such that

$$G_1 \cdots G_\ell v = e_i$$

where e_i is the j-th standard basis vector.

Proof. By induction on the least denominator exponent k of v.

- If k = 0 then $v = \pm e_q$ and we choose the appropriate operators of type (-1) and X.
- If k>0 then we can apply 4-level operators of type (-1) and $H\otimes H$ to groups of 4 odd components until all the entries in our vector are even at which point the least denominator exponent decreases.

The Exact Synthesis Algorithm

Theorem: If $V \in U_n(\mathbb{D})$ then there exists a sequence G_1, \ldots, G_ℓ of 1- and 2- level operators of type (-1), X, and $H \otimes H$ such that

$$G_1 \cdots G_\ell V = I$$

or, equivalently, $G_{\ell}^{\dagger} \cdots G_{1}^{\dagger} = V$.

Proof. Apply the Column Lemma iteratively to the columns of V until the matrix is reduced to I.

IV. Further Results

Results (II)

Theorem: A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit circuit over

- $\{X, CX, CCX, H\}$ if and only if $V = W/\sqrt{2}^q$ for some matrix W over $\mathbb Z$ and some $q \in \mathbb N$, and
- $\{X, CX, CCX, H, S\}$ if and only if $V = W/\sqrt{2}^q$ for some matrix W over $\mathbb{Z}[i]$ and some $q \in \mathbb{N}$.

Moreover, a single ancilla is always sufficient.

Results (III)

Theorem: Let $n \ge 4$. A $2^n \times 2^n$ matrix V can be exactly represented by an n-qubit ancilla-free circuit over

- $\{X,CX,CCX,F\}$ if and only if $V\in U_{2^n}(\mathbb{D}[i\sqrt{2}])$ and det(V)=1, and
- $\{X, CX, CCX, \omega H, S\}$ if and only if $V \in U_{2n}(\mathbb{D}[i])$ and det(V) = 1,

where $F \propto \sqrt{H}$. Moreover, the requirement that $\det(V) = 1$ can be dropped for n < 4.

V. Conclusion and Outlook

Contributions

- We showed that the groups $U_n(\mathbb{D})$, $U_n(\mathbb{D}[i\sqrt{2}])$, $U_n(\mathbb{D}[i])$, and $U_n(\mathbb{D}[\sqrt{2}])$ correspond to classes of restricted Clifford+T circuits.
- In each case, the circuits are associated to gate sets
 obtained by extending the set of classical reversible gates
 {X, CX, CCX} with ananalogue of the Hadamard gate and an
 optional phase gate.

Looking Forward

- Can we further explore the lattice of subgroups of $U_n(\mathbb{D}[\omega])$ through the study of restricted Clifford+T circuits?
- Can we use these characterizations to find presentations for families of circuits?
- Can this work provide a foundation for the optimization and verification of quantum circuits?

References (I)

- [M.A. 2008]: Matsumoto and Amano, Representation of quantum circuits with Clifford and $\pi/8$ gates.
- [K.M.M. 2013]: Kliuchnikov, Maslov, and Mosca, Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates.
- [G.S. 2013]: Giles and Selinger, Exact synthesis of multiqubit Clifford+T circuits.
- [B.S. 2015]: Bian and Selinger, Relations for the group of 2-qubit Clifford+TT operators.
- [S. 2015]: Selinger, Generators and relations for n-qubit Clifford operators.

References (II)

- [R.S. 2014]: Ross and Selinger, Optimal ancilla-free Clifford+T approximation of z-rotations.
- [A.M. 2016]: Amy and Mosca, T-count optimization and Reed-Muller codes.
- [C.H. 2017]: Campbell and Howard, Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost.
- [A.C.R. 2017]: Amy, Chen, and Ross, *A finite presentation of CNOT-dihedral operators*.