Data Science and Machine Learning in Python

Stephan Weyers

Topics covered in the online lectures

Part 1: Data Science

	Date	Topics covered
1	Apr 13 th	Course introduction Data Science motivation How to use Jupyter Notebook Python types and lists Loops, if/else, functions
2	Apr 20 th	Python tuples, lists, dictionaries Functions Numpy basics, operations Image processing
3	Apr 27 th	Pandas Series, DataFrame Pandas basic operations Import/export files
4	May 4 th	Principles of data visualization Data cleaning and preparation Join, combine and reshape data
5	May 11 th	Volkswohl Bund dataset Johanna Dahlbeck 14:30-15:30 German time Data visualization in Python How to write Data Science reports Data aggregation and grouping

Part 2: Machine Learning

	Date	Topics covered
6	Jun 1 st	Introduction to supervised learning Classification and regression scikit-learn k-Nearest Neighbors Linear Models
7	Jun 8 th	Decision trees Random forests and gradient boosting Support vector machines Neural networks
8	Jun 15 th	Introduction to unsupervised learning Preprocessing and scaling Dimensionality reduction Principal component analysis
9	Jun 22 nd	k-means clustering Hierarchical clustering DBSCAN
10	Jun 29 th	Representing data Engineering features
11	Jul 6 th	Model evaluation and improvement Text data analysis

Session	Topic	Mode	Materials used	Time (min)
14:30-16:00	Tutorial Marius Meiners	Q&A		10
	Data preparation / cleaning	Lecture / Q&A	Lecture slides	20
	Inventory step 1 & 2	Lecture / Q&A	Inventory Excel	10
	Inventory step 1	Lecture / Q&A	Lecture 04 notebook	10
	Inventory step 2	Team work in break-out rooms	Lecture 04 notebook	25
	Inventory step 2	Presentation of results	Lecture 04 notebook	10
16:10-17:40	Importance of Visualization	Lecture / Q&A	Lecture slides	5
	Visualization: Trustworthy	Discussion in main room	Lecture slides	15
	Visualization: Accessibility	Discussion in main room	Lecture slides	15
	Visualization: Elegance	Discussion in main room	Lecture slides	15
	Inventory step 3 & 4	Lecture / Q&A	Inventory Excel	10
	Inventory step 3	Lecture / Q&A	Lecture 04 notebook	10
	Inventory step 4	Team work in break-out rooms	Lecture 04 notebook	15
17:50-19:20	Inventory step 5 & 6 & 7	Lecture / Q&A	Inventory Excel	15
	Inventory step 5	Lecture / Q&A	Lecture 04 notebook	10
	Inventory step 4 & 6 & 7	Team work in break-out rooms	Lecture 04 notebook	40
	Inventory step 4 & 6 & 7	Presentation of results	Lecture 04 notebook	10
	Questions W02	Q&A		20
	Team grouping, deadlines	Lecture / Q&A		5

Data Preparation – Selection

		Description	Examples
	Validity	Restriction to valid cases	Only active customersNo "test-buyers"
Selection	Relevance	Restriction to relevant cases related to target	 Only contract customers, no pre-paid customers
of cases	Sample	Restriction to sample in case of large dataset	Random sampling vs. stratified sampling
	Partition	Split up into homogeneous segments	Certain customer segments, e.g. high-value
	Quality	Exclude variable of low quality	Zero varianceMany missing values
Selection of	Time	Use variables time-related to target variable	Use only sales data of last12 months
variables	Correlation	Exclude variables with high correlation among each other	Weight and heightOrders and returns
	Relevance	Exclude variables with no relevance for target	Postal codeInsurance ID

Data Cleaning

ID	Name	Income	Age	Gender	Target
1	Müller	50.570	45	М	1
2	Meyer	19.032	21	М	0
3	Schneider	43.452		F	0
4	Jäger	75.976	37	Male	1
5	Muller	50.570	45	М	J
6	Langer	47.414	140	Femnale	1
7	Schäfer	228.011	48	F	0
8	Simon	36.976	27	М	1

Question for discussion

Which errors can you observe in the dataset?

Data Preparation – Cleaning

Options for missing values

- Delete (e.g. remove all customers without email-address)
- Replace (e.g. by mean values by segment)
- Accept (use missing as new category)

Options for outliers

- Delete (e.g. remove all customers sales above 1 Mio. EUR)
- Replace (e.g. truncate all sales above 10.000 EUR to 10.000 EUR)
- Accept (maybe outliers are especially interesting for analysis)
- Binning (use categories like 0-20, 20-50, 50-100, 100-500, >500)

Options for values with errors

- Delete (e.g. remove all customers with sales < 0 EUR)
- Replace (e.g. replace "US" by "United States")
- Accept (if reasonable, e.g. negative sales = returns)

The Importance of Data Visualization

Example 1 – raw data

X	Υ	X	Υ
0.9	0.5	8.7	32.3
2.7	1.1	4.8	7.3
6.7	28.6	12.5	33.1
		13.4	32.9
10.9	32.8	2.0	0.75
6.0	15.7	3.6	3.6
6.3	19	14.6	33
7.0	32.6		

	X	Υ
Median	6.5	23.8
Mean	7.2	19.5
STD.DEV	4.2	13.6

Correlation = 0.88

Example 1 – Visualized

The Importance of Data Visualization

Example 2 – raw data

Χ	Υ	Χ	Υ
0.42	0.46750	0.66	0.51250
0.54	0.62500	0.63	0.48750
0.42	0.53750	0.92	1.00000
0.86	0.92750	0.86	0.88750
0.60	0.63750	0.91	0.97500
0.51	0.63125	0.82	0.75625
0.30	0.35625	0.86	0.00000
0.61	0.65000	0.80	0.85000
0.58	0.63125	0.69	0.79375
0.76	0.72500	0.62	0.74000
0.58	0.48125		

Example 2 – Visualized

Example 2 – Visualized

Principles of Good Design

Good data visualization

- Trustworthy
- Accessible
- Elegant

PRESIDENTIAL ELECTIONS, 2013

PRESIDENTIAL ELECTIONS, 2013

UNEMPLOYMENT 2013

UNEMPLOYMENT

Internet Traffic in the U.S.

Internet Traffic in the U.S.

Proportion of women on supervisory and management boards

Source:

https://www.datapine.com/blog/misleading-statistics-and-data/

A World of Agreement: Temperatures are Rising Global Temperature Anomaly (relative to 1951-1980, °C)

Before

After

Accessibility: Too Many Bars – Original Chart

Accessibility: Too Many Bars – Alternative Chart

Life Expectancy at Birth

Top Ten OECD Countries 2010

Elegance: Cholera Outbreak London 1854

Elegance: The Fate of Plastic

Elegance: GHG Abatement Cost Curves

Global GHG abatement cost curve beyond business-as-usual - 2030

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

Source: Global GHG Abatement Cost Curve v2.0

Trustworthy? Accessible? Elegant?

Number of measles cases per 100,000 people

Trustworthy? Accessible? Elegant?

Deadlines for Submission and Distribution of Grading

Student task	Deliverables	Deadline	Work	Share of grade
W01 Assignment	Code and results	Apr 26 th	Team A	5.0%
W02 Case Study	Code / presentation slides	May 15 th	Team B	18.0%
W02 Case Study	Peer review*	May 24 th	Individual	2.0%
W03 Assignment	Code and results	May 22 nd	Team B	5.0%
W04 Assignment	Code and results	Jun 7 th	Team C	10.0%
W05 Assignment	Code and results	Jun 14 th	Team D	7.0%
W06 Assignment	Code and results	Jun 28 th	Team D	13.0%
W07 Case Study	Code / presentation slides	Jul 12 th	Team D	22.0%
W07 Case Study	Peer review*	Jul 26 th	Individual	3.0%
DataCamp 1	Finish course	May 9 th	Individual	2.5%
DataCamp 2	Finish course	May 30 th	Individual	2.5%
DataCamp 3	Finish course	Jun 20 th	Individual	2.5%
DataCamp 4	Finish course	Jul 11 th	Individual	2.5%

^{*} Peer review is mandatory. Quality of peer review itself is graded. Not providing peer review at all would result in high point deduction