26) Propensity Score Matching (PSM)

Vitor Kamada

April 2019

1/16

Tables, Graphics, and Figures from

Caliendo, M., Kopeinig, S. (2008). Some Practical Guidance for the Implementation of Propensity Score Matching. Journal of Economic Surveys 22(1): 31–72.

Cameron and Trivedi (2005): Ch 25.1 to 25.4, and 25.8

Conditional Independence Assumption (CIA)

$$y_0, y_1 \perp D$$

$$y = \alpha D + u$$

$$y_0, y_1 \perp D | x$$

$$y = x'\beta + \alpha D + u$$

$$F(y_j | x, D = 1) = F(y_j | x, D = 0) = F(y_j | x)$$

3/16

 $F(u_i|x, D=1) = F(u_i|x, D=0) = F(u_i|x)$

Potential Outcome Approach (Rubin, 1974)

$$au_i = y_1 - y_0$$
 $au_{ATE} = E(au) = E[y_1 - y_0]$
 $au_{ATT} = E(au|D = 1)$
 $au = E[y_1|D = 1] - E[y_0|D = 1]$
 $au [y_1|D = 1] - E[y_0|D = 0]$
 $au [y_1|D = 1] - E[y_0|D = 0]$

Unconfoundedness and Common Support

$$y_0, y_1 \perp D|x$$
 $0 < Pr(D=1|x) < 1$ $y_0, y_1 \perp D|p(x)$

$$au_{ATT}^{PSM} = E\{E[y_1|D=1, p(x)] - E[y_0|D=0, p(x)]\}$$

4□ > 4□ > 4 = > 4 = > = 90

5/16

Matching Algorithms

Kernel Matching

$$ATET = \frac{1}{N_T} \sum_{i \in \{D=1\}} [y_{1,i} - \sum_{j} w(i,j) y_{0,j}]$$

$$w(i,j) = \frac{K(x_j - x_i)}{\sum\limits_{j=1}^{N_{c,i}} K(x_j - x_i)}$$

7/16

Nearest-Neighbor and Radius Matching

$$A_{j}(x) = \{j | x_{j} \in c(x_{i})\}$$
 $A_{i}(x) = \{j | min_{j} \parallel x_{i} - x_{j} \parallel \}$
 $A_{i}(p(x)) = \{p_{j} | min_{j} \parallel p_{i} - p_{j} \parallel \}$
 $A_{i}(p(x)) = \{p_{j} \parallel p_{i} - p_{j} \parallel < r \}$

8/16

Stratification or Interval Matching

$$ATET_b^S = \frac{1}{N_b^T} \sum_{i \in I(b)} Y_{1i} - \frac{1}{N_b^C} \sum_{j \in I(b)} Y_{0i}$$

$$ATET^{S} = \sum_{b=1}^{B} ATET_{b}^{S} \left[\sum_{i \in I(b)} D_{i} / \sum D_{i} \right]$$

Trade-offs in Terms of Bias and Efficiency

Decision	Bias	
Nearest neighbour matching: multiple neighbours/single neighbour with caliper/without caliper	(+)/(-) (-)/(+)	
Use of control individuals: with replacement/without replacement	(-)/(+)	
Choosing method: NN matching/Radius matching KM or LLM/NN methods	(-)/(+) (+)/(-)	
Bandwidth choice with KM: small/large	(-)/(+)	

10 / 16

Trimming the Common Support

Dehejia and Wahba (1999)

Variable	Definition	Treated	Control
AGE	Age in years	25.82	34.85
EDUC	Education in years	10.35	12.12
NODEGREE	1 if EDUC < 12	0.71	0.31
BLACK	1 if race is black	0.84	0.25
HISP	1 if Hispanic	0.06	0.03
MARR	1 if married	0.19	0.87
U74	1 if unemployed in 1974	0.60	0.10
U75	1 if unemployed in 1975	0.71	0.09
RE74	Real earnings in 1974 (in 1982 \$)	2,096	19,429
RE75	Real earnings in 1975 (in 1982 \$)	1,532	19,063
RE78	Real earnings in 1978 (in 1982 \$)	6,349	21,554
D	1 if received training (treatment)	1.00	0.00
Sample size		185	2,490

Training Impact

Method	Definition	Estimate	St. Error ^a	
Treatment–control comparison	$\overline{\text{RE78}}_{D=1} - \overline{\text{RE78}}_{D=0}$	-15,205	656	
Control function estimator	$\widehat{\alpha}$ from OLS regression (25.76)	218	768	
Before–after comparison	$\overline{RE78}_{D=1} - \overline{RE75}_{D=1}$	4,817	625	
Differences-in-differences	$\widehat{\alpha}$ from OLS regression (25.77)	2,326	749	
Propensity score	See Section 25.8.4	995	_	

Post-treatment Earnings against Propensity Score

Distribution of Propensity Score Using Dehejia and Wahba's (1999) Specification

Minimum $\widehat{p}(\mathbf{x})$	Treated	Untreated	Total	
0.000364	9	960	969	
0.10	10	56	66	
0.20	14	33	47	
0.40	24	22	46	
0.60	33	7	40	
0.80	95	8	103	
Total	185	1086	1271	

^a From the second row, for example, the propensity score lies between 0.10 and 0.20 for 10 treated and 56 untreated individuals.

Training Impact: Estimates of ATET

Matching Procedure	Number Treated	Number in Control	ATET	Standard Error	% of \$1794
Dehejia and Wahba (2002	2) specification	on ^a			
Nearest neighbor	185	53	2385	1209^{c}	133
Radius, $r = 0.001$	54	517	-7815	1118^{d}	-436
Radius, $r = 0.0001$	24	92	-9333	2282^{d}	-520
Radius, $r = 0.00001$	15	19	-2200	2986^{d}	-123
Stratification	185	1086	1452	1041^{c}	81
Kernel	185	1058	1309	975^{c}	73
Dehejia and Wahba (1999	9) specificatio	on^b			
Nearest neighbor	185	57	560	1098^{c}	31
Radius, $r = 0.001$	57	583	-9358	997^{d}	-522
Radius, $r = 0.0001$	27	76	-7847	2066^{d}	-437
Radius, $r = 0.00001$	16	13	223	4551^{d}	12
Stratification	185	1146	2156	814^{c}	120
Kernel	185	1146	1518	890^{c}	85

^a Logit Model: $Pr[treat = 1] = h(CONSTANT, AGE, AGE^2, EDU, EDU^2, MARRIED, NODEGREE, BLACK, HISPANIC, RE74, RE74^2, RE75, U74, U75, U74*HISPANIC).$

d Analytical standard errors.

16 / 16

b Logit Model: Pr[treat = 1] = h(CONSTANT, AGE, AGE², EDU, EDU² MARRIED, NODEGREE, BLACK, HISPANIC, RE74, RE74², RE75, RE75², RE74*RE75, U74*BLACK).

^c Bootstrapped standard errors with 200 replications.