Google Cloud

Fairness in Al

Introduction to Responsible AI in Practice

In this module, you learn to ...

- Define (some types of) unfair bias
- Discuss why fairness is important and difficult
- Discover some **best practices** on fairness
- Explore tools to study fairness in datasets and models
- Lab: Using TensorFlow Data Validation and TensorFlow Model Analysis to Ensure Fairness

Topics

01	Overview of Fairness
02	Tools to Study Fairness in Datasets
03	Tools to Study Fairness in Models
04	Hands-on Lab

Topics

01	Overview of Fairness
02	Tools to Study Fairness in Datasets
03	Tools to Study Fairness in Models
04	Hands-on Lab

Fairness relates to Google's Al

Principle #2

- 1 Be socially beneficial
- 2 Avoid creating or reinforcing unfair bias
- 3 Be built and tested for safety
- 4 Be accountable to people
- 5 Incorporate privacy design principles
- 6 Uphold high standards of scientific excellence
- 7 Be made available for uses that accord with these principles

What is bias?

Stereotyping, prejudice or favoritism towards some things, people, or groups over others.

What is bias?

Al models are not inherently objective.

Reporting Automation Selection **Group Attribution Implicit** Frequency of events, Tendency to favor A data set's examples Tendency to generalize Assumptions are made results generated by are chosen in a way what is true of based on one's own properties, and/or outcomes in a data set automated systems that is not reflective of individuals to an entire mental models and over those generated their real-world does not accurately group to which they personal experiences reflect their real-world by non-automated distribution. that do not necessarily belong. frequency. apply more generally. systems.

Reporting

Frequency of events, properties, and/or outcomes in a data set does not accurately reflect their real-world frequency.

Automation

Tendency to favor results generated by automated systems over those generated by non-automated systems.

Selection

A data set's examples are chosen in a way that is not reflective of their real-world distribution.

Group Attribution

Tendency to generalize what is true of individuals to an entire group to which they belong.

Implicit

Assumptions are made based on one's own mental models and personal experiences that do not necessarily apply more generally.

Reporting

Frequency of events, properties, and/or outcomes in a data set does not accurately reflect their real-world frequency.

Automation

Tendency to favor results generated by automated systems over those generated by non-automated systems.

Selection

A data set's examples are chosen in a way that is not reflective of their real-world distribution.

Group Attribution

Tendency to generalize what is true of individuals to an entire group to which they belong.

Implicit

Assumptions are made based on one's own mental models and personal experiences that do not necessarily apply more generally.

Reporting

Frequency of events, properties, and/or outcomes in a data set does not accurately reflect their real-world frequency.

Automation

Tendency to favor results generated by automated systems over those generated by non-automated systems.

Selection

A data set's examples are chosen in a way that is not reflective of their real-world distribution.

Group Attribution

Tendency to generalize what is true of individuals to an entire group to which they belong.

Implicit

Assumptions are made based on one's own mental models and personal experiences that do not necessarily apply more generally.

Reporting Automation Selection **Group Attribution Implicit** Frequency of events, Tendency to favor A data set's examples Tendency to generalize Assumptions are made results generated by are chosen in a way what is true of based on one's own properties, and/or outcomes in a data set automated systems that is not reflective of individuals to an entire mental models and over those generated their real-world personal experiences does not accurately group to which they reflect their real-world by non-automated distribution. that do not necessarily belong. frequency. apply more generally. systems.

Reporting

Frequency of events, properties, and/or outcomes in a data set does not accurately reflect their real-world frequency.

Automation

Tendency to favor results generated by automated systems over those generated by non-automated systems.

Selection

A data set's examples are chosen in a way that is not reflective of their real-world distribution.

Group Attribution

Tendency to generalize what is true of individuals to an entire group to which they belong.

Implicit

Assumptions are made based on one's own mental models and personal experiences that do not necessarily apply more generally.

Al Fairness

Decisions made by computers after a machine-learning process may be considered unfair if they were based on variables considered sensitive

Why do you need Fairness?

As the impact of Al increases across sectors and societies...

Why do you need Fairness?

As the impact of Al increases across sectors and societies...

Opportunity

To be fairer and more inclusive at a broader scale.

Risk

To have a negative wide-scale impact.

Why is Fairness difficult?

Pre-existing bias

Al models learn from existing data, and an accurate model may learn or even amplify problematic pre-existing biases

Variety of scenarios

Even with the most rigorous and cross-functional training and testing, it is a challenge to build systems that will be fair across all situations.

No standard definition

Identifying appropriate fairness criteria for a system requires multidisciplinary considerations, several of which may have tradeoffs.

Incompatibility of fairness metrics

Fairness metrics can be incompatible and impossible to satisfy simultaneously.
Fairness needs to be defined contextually for the the given Al problem.

How do you address Fairness issues?

- Fostering an inclusive workflow
- Assessing training datasets for bias
- Engaging with experts to define concrete fairness goals
- Training models to remove / correct bias
- Evaluating models for disparities
- Entrusting adversarial testing to a diverse team
- Continuously testing for unfair outcomes

Topics

01	Overview of Fairness
02	Tools to Study Fairness in Datasets
03	Tools to Study Fairness in Models
04	Hands-on Lab

Tools to study fairness in datasets should allow you to easily examine:

What are good tools to study fairness in datasets?

TF Data Validation

Aequitas

What-if Tool

topen-source data validation library

- Scalable calculation of summary statistics of training and test data
- Integration with a data viewer for distributions, statistics, and faceted comparison of feature pairs
- Automated data-schema generation, and schema viewer
- Anomaly detection and viewer for missing features, out-of-range values, wrong feature types, ...

- Scalable calculation of summary statistics of training and test data
- Integration with a data viewer for distributions, statistics, and faceted comparison of feature pairs
- Automated data-schema generation, and schema viewer
- Anomaly detection and viewer for missing features, out-of-range values, wrong feature types, ...

- Scalable calculation of summary statistics of training and test data
- Integration with a data viewer for distributions, statistics, and faceted comparison of feature pairs
- Automated data-schema generation, and schema viewer
- Anomaly detection and viewer for missing features, out-of-range values, wrong feature types, ...

- Scalable calculation of summary statistics of training and test data
- Integration with a data viewer for distributions, statistics, and faceted comparison of feature pairs
- Automated data-schema generation, and schema viewer
 - Anomaly detection and viewer for missing features, out-of-range values, wrong feature types, ...

tfdv.visualize_statistics(stats)

- Scalable calculation of summary statistics of training and test data
- Integration with a data viewer for distributions, statistics, and faceted comparison of feature pairs
- Automated data-schema generation, and schema viewer
 - Anomaly detection and viewer for missing features, out-of-range values, wrong feature types, ...

tfdv.visualize_statistics(stats)

- Scalable calculation of summary statistics of training and test data
- Integration with a data viewer for distributions, statistics, and faceted comparison of feature pairs
- Automated data-schema generation, and schema viewer
 - Anomaly detection and viewer for missing features, out-of-range values, wrong feature types, ...

```
feature {
    name: "payment_type"
    value_count {
        min: 1
        max: 1
    }
    type: BYTES
    domain: "payment_type"
    presence {
        min_fraction: 1.0
        min_count: 1
    }
}
```

- Scalable calculation of summary statistics of training and test data
- Integration with a data viewer for distributions, statistics, and faceted comparison of feature pairs
- Automated data-schema generation, and schema viewer
- Anomaly detection and viewer for missing features, out-of-range values, wrong feature types, ...

```
anomalies = tfdv.validate statistics(
       statistics=other_stats, schema=schema,
       payment_type Unexpected string values
       Examples contain values missing from the
       schema: Prcard (<1%).
options = tfdv.StatsOptions(schema=schema)
anomalous_stats = tfdv.validate_examples_in_csv(
       data_location=input, stats_options=options
tfdv.get_feature(schema, payment_type).skew_comparat
or.infinity norm.threshold = 0.01
skew anomalies = tfdv.validate statistics(
       statistics=stats_1, schema=schema,
       serving statistics=stats 2.
```

Aequitas: an open-source bias and fairness audit toolkit

Aequitas: an open-source bias and fairness audit toolkit

The Bias Report

Audit Date: 17 Jul 2023

Data Audited: 9769 rows

Attributes Audited: gender

Audit Goal(s): Equal Parity - Ensure all protected groups are have equal representation in the selected set.

False Positive Rate Parity - Ensure all protected groups have the same false positive rates as the reference group).

False Negative Rate Parity - Ensure all protected groups have the same false negative rates (as the reference group).

Reference Groups: Custom group - The reference groups you selected for each attribute will be used to calculate relative disparities in

this audit.

Fairness Threshold: 80%. If disparity for a group is within 80% and 125% of the value of the reference group on a group metric (e.g. False

Positive Rate), this audit will pass.

Aequitas: an open-source bias and fairness audit toolkit

Audit Results: Summary

Equal Parity - Ensure all protected groups are have equal representation in the selected set. **Failed** Details

False Positive Rate Parity - Ensure all protected groups have the same false positive rates as the reference **Passed** Details

group).

False Negative Rate Parity - Ensure all protected groups have the same false negative rates (as the reference **Passed** group).

Aequitas: an open-source bias and fairness audit toolkit

Audit Results: Group Metrics Values

gender

Attribute Value	Group Size Ratio	Predicted Positive Rate	False Positive Rate	False Negative Rate
Female	0.33	0.39	0.97	0.59
Male	0.67	0.61	0.87	0.68

Aequitas: an open-source bias and fairness audit toolkit

FAIRNESS TREE

What-If Tool: open-source tool to visually probe ML models

What-If Tool: open-source tool to visually probe ML models

What-If Tool: open-source tool to visually probe ML models

Topics

01	Overview of Fairness
02	Tools to Study Fairness in Datasets
03	Tools to Study Fairness in Models
04	Hands-on Lab

What are good tools to study fairness in models?

TF Model Analysis

What-if Tool

Supported metrics are:

- Run model analysis on a single serving model
- Validate a candidate model against a baseline
- Compare two models
- Perform fairness analysis with FairnessIndicators

- Run model analysis on a single serving model
- Validate a candidate model against a baseline
- Compare two models
- Perform fairness analysis with FairnessIndicators

```
from google.protobuf import text_format
eval_config = text_format.Parse("""
model_specs {
  label_key: "label"
 example_weight_key: "weight"
metrics specs {
  metrics { class name: "AUC" }
  metrics { class_name: "ConfusionMatrixPlot" } # plots
slicing_specs {} # overall slice
slicing_specs {feature_keys: ["age"]}
""", tfma.EvalConfig())
eval_shared_model = tfma.default_eval_shared_model(
    eval_saved_model_path=saved_model_path,
    eval config=eval config.
eval result = tfma.run model analysis(
    eval_shared_model=eval_shared_model,
    eval_config=eval_config,
    data_location=data_location,
   output_path=output_path)
```

- Run model analysis on a single serving model
- Validate a candidate model against a baseline
- Compare two models
 - Perform fairness analysis with FairnessIndicators

- Run model analysis on a single serving model
- Validate a candidate model against a baseline
- Compare two models
 - Perform fairness analysis with FairnessIndicators

```
from google.protobuf import text_format
eval_config = text_format.Parse("""
model_specs {
  label_key: "label"
  example_weight_key: "weight"
metrics_specs {
  metrics {
    class name: "AUC"
   threshold {
      value_threshold {
        lower_bound { value: 0.9 }
      change_threshold {
        direction: HIGHER_IS_BETTER
        absolute { value: -1e-10 }
 metrics { class_name: "ConfusionMatrixPlot" } # plots
slicing_specs {} # overall slice
slicing_specs {feature_keys: ["age"]}
   ', tfma.EvalConfig())
eval_shared_model = ...
```

- Run model analysis on a single serving model
- Validate a candidate model against a baseline
- Compare two models
- Perform fairness analysis with FairnessIndicators

```
from google.protobuf import text_format
eval_config = text_format.Parse("""
""", tfma.EvalConfig())
eval shared models = [
    tfma.default_eval_shared_model(
      model name=tfma.CANDIDATE KEY.
      eval saved model path=saved candidate model path.
      eval_config=eval_config),
    tfma.default_eval_shared_model(
      model_name=tfma.BASELINE_KEY,
      eval_saved_model_path=saved_baseline_model_path,
      eval config=eval config).
eval_result = tfma.run_model_analysis(
    eval shared model=eval shared models.
    eval_config=eval_config,
   data_location=data_location,
   output_path=output_path)
```

- Run model analysis on a single serving model
- Validate a candidate model against a baseline
- Compare two models
 - Perform fairness analysis with FairnessIndicators

```
from
tensorflow_model_analysis.addons.fairness.post_export_met
rics import fairness indicators
eval_config = text_format.Parse("""
model_specs {
  label_key: "label"
metrics specs {
  metrics { class_name: "AUC" }
 metrics {
     class name: "FairnessIndicators"
     config: '{ "thresholds": [0.5, 0.9] }'
 metrics { class_name: "ConfusionMatrixPlot" } # plots
slicing specs {} # overall slice
slicing_specs {feature_keys: ["age"]}
""". tfma.EvalConfig())
# Let's see how to apply this to a Pandas df
eval_result = tfma.analyze_raw_data(
  data=df.
  eval_config=eval_config,
  output_path=_DATA_ROOT,
```

- Run model analysis on a single serving model
- Validate a candidate model against a baseline
- Compare two models
- Perform fairness analysis with FairnessIndicators

from tensorflow_model_analysis.addons.fairness.view
import widget_view

tfma.view.render_slicing_metrics(eval_result)

What-If Tool: open-source tool to visually probe ML datasets and models

Visualize inference results

- Edit a datapoint and see how your model performs
- Explore the effects of single features
- Arrange examples by similarity
- View confusion matrices and other metrics
- Test algorithmic fairness constraints

- Visualize inference results
- Edit a datapoint and see how your model performs
- Explore the effects of single features
- Arrange examples by similarity
- View confusion matrices and other metrics.
- Test algorithmic fairness constraints

- Visualize inference results
- Edit a datapoint and see how your model performs
- Explore the effects of single features
- Arrange examples by similarity
- View confusion matrices and other metrics
- Test algorithmic fairness constraints

- Visualize inference results
- Edit a datapoint and see how your model performs
- Explore the effects of single features
- Arrange examples by similarity
- View confusion matrices and other metrics
- Test algorithmic fairness constraints

- Visualize inference results
- Edit a datapoint and see how your model performs
- Explore the effects of single features
- Arrange examples by similarity
- View confusion matrices and other metrics
- Test algorithmic fairness constraints

- Visualize inference results
- Edit a datapoint and see how your model performs
- Explore the effects of single features
- Arrange examples by similarity
- View confusion matrices and other metrics
- Test algorithmic fairness constraints

Visualize inference results

Edit a datapoint and see how your model performs

Explore the effects of single features

Arrange examples by similarity

View confusion matrices and other metrics

Test algorithmic fairness constraints

- Visualize inference results
- Edit a datapoint and see how your model performs
- Explore the effects of single features
- Arrange examples by similarity
- View confusion matrices and other metrics
- Test algorithmic fairness constraints

Topics

01	Overview of Fairness
02	Tools to Study Fairness in Datasets
03	Tools to Study Fairness in Models
04	Hands-on Lab

Lab:

Using TensorFlow Data
Validation and
TensorFlow Model
Analysis to Ensure
Fairness

Appendix

What are good tools to study fairness in models?

What-If Tool

Fairlearn: an open-source Python toolkit compatible with scikit-learn

= Fairlearn: use fairness metrics for

assessment

```
from fairlearn.metrics import MetricFrame
from sklearn.metrics import *
data = fetch_openml(data_id=1590, as_frame=True)
X, y_true = ...preprocess data...
classifier = ...train...
y_pred = classifier.predict(X)
metrics = {
    "accuracy": accuracy_score,
    "precision": precision_score,
    "false positive rate": false_positive_rate,
    "false negative rate": false_negative_rate,
    "selection rate": selection_rate.
    "count": count.
metric_frame = MetricFrame(
       metrics, y_true, y_pred, sensitive_features=gender,
metric_frame.by_group.plot.bar(
    subplots=True,
    layout=[3, 3],
    legend=False.
    title="Show all metrics".
```


Fairlearn: use algorithms for mitigation

```
from fairlearn.preprocessing import CorrelationRemover
import pandas as pd
from sklearn.datasets import fetch_openml
data = fetch_openml(data_id=43874, as_frame=True)
X = data.data[["race", "time_in_hospital", "had_inpatient_days",
"medicare" 11
X = pd.get_dummies(X)
X = X.drop(["race_Asian",
                        "race_Caucasian",
                       "race_Hispanic",
                       "race_Other",
                       "race_Unknown",
                        "had_inpatient_days_False",
                       "medicare_False"], axis=1)
    CorrelationRemover(
        sensitive_feature_ids=['race_AfricanAmerican']
cr.fit(X)
X_{transform} = cr.transform(X)
```


Fairlearn: use algorithms for mitigation

```
from fairlearn.preprocessing import CorrelationRemover
import pandas as pd
from sklearn.datasets import fetch_openml
data = fetch_openml(data_id=43874, as_frame=True)
X = data.data[["race", "time_in_hospital", "had_inpatient_days",
"medicare" 11
X = pd.get_dummies(X)
X = X.drop(["race_Asian",
                        "race_Caucasian",
                       "race_Hispanic",
                       "race_Other",
                        "race_Unknown",
                        "had_inpatient_days_False",
                        "medicare_False"], axis=1)
cr =
CorrelationRemover(sensitive_feature_ids=['race_AfricanAmerican'])
cr.fit(X)
CorrelationRemover(sensitive_feature_ids=['race_AfricanAmerican'])
X_{transform} = cr.transform(X)
```

