(5)
$$\lim_{t \to -3} \frac{t^2 - 9}{8t^2 + 7t + 3} = L$$

At
$$t=-3g$$
 denominator = $2(-3)^2+7(-3)+3=2\times 9-21+3$
= $18-21+3=0$
and numerator = $(-3)^2-9=9-9=0$.

) we may be able to cancel out something from both numerator and denominator.

$$t^2 - 9 = t^2 - 3^2 = (t - 3)(t + 3)$$

 $2t^2 + 7t + 3 = 2t^2 + 6t + t + 3 = 2t(t + 3) + 1(t + 3) = (t + 3)(2t + 1)$

$$\Rightarrow L = \lim_{t \to -3} \frac{(t-3)(t+3)}{(t+3)(a+1)} = \lim_{t \to -3} \frac{t-3}{at+1} = \frac{-3-3}{a(-3)+1}$$

$$\Rightarrow L = \frac{-6}{-6+1} = \frac{-6}{-5} \Rightarrow L = \frac{6}{5}$$
direct substitution rule.

(8)
$$\lim_{h\to 0} \frac{(a+h)^3-8}{h} = L$$
 $(a+0)^3-8=8-8=0$

At h=0 9 both numerator and denominator become 0. \Rightarrow we may be able to cancel out something from both. $(a+h)^3 = a^3 + h^3 + 3(a)(h)(a+h) = 8+h^3 + 6h(a+h)$ $= 8+h^3 + 12h + 6h^2$

$$= \lim_{h \to 0} \frac{8+h^3+12h+6h^2-8}{h} = \lim_{h \to 0} \frac{h^3+12h+6h^2}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{h^2+12+6h}{h} \right) = \lim_{h \to 0} \left(\frac{h^2+12+6h}{h} \right)$$

=
$$0^2 + 12 + 6 \times 0$$
 (direct substitution rule).

$$\begin{array}{ccc}
(34) & \lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h} = L
\end{array}$$

At h=09 both numerator and denominator become 0.

=) we may be able to cancel out something, and then use direct substitution.

$$= \lim_{h \to 0} \frac{3-3-h}{h(3+h)3} = \lim_{h \to 0} \frac{-t}{t(3+h)3}$$

$$= \lim_{h \to 0} \frac{-1}{(3+h)^3} = \frac{-1}{(3+0)^3} = \frac{-1}{9}$$

$$=$$
 $L = -\frac{1}{9}$

$$\begin{array}{ccc}
31) & \lim_{h \to 0} & \frac{(\chi + h)^3 - \chi^3}{h} & = L
\end{array}$$

At h=09 both numerator and denominator become 0.

=) we try to simplify and cancel and then use direct substitution

$$= x^{3} + h^{3} + 3(x)(h)(x+h) = x^{3} + h^{3} + 3xh(x+h)$$

$$= x^{3} + h^{3} + 3x^{2}h + 3xk^{2}$$

$$\begin{array}{lll}
\Rightarrow & L = \lim_{h \to 0} \frac{x^2 + h^3 + 3x^2h + 3xh^2 - x^2}{h} \\
& = \lim_{h \to 0} \frac{h^3 + 3x^2h + 3xh^2}{h} \\
& = \lim_{h \to 0} \frac{K(h^2 + 3x^2 + 3xh)}{K} \\
& = \lim_{h \to 0} \frac{(h^2 + 3x^2 + 3xh)}{K} = 0^2 + 3x^2 + 3x \times 0 = 3x^2
\end{array}$$

$$\begin{array}{lll}
\Rightarrow & L = 3x^2
\end{array}$$

$$\Rightarrow & L = 3x^2$$
At h=09 both numerator and denominator become 0.
$$\frac{(x+y)^2 - \frac{1}{x^2}}{h} = \frac{1}{x^2} - \frac{1}{x^2} = 0$$

$$\Rightarrow & L = \lim_{h \to 0} \frac{x^2 - (x+h)^2}{h \times^2 (x+h)^2} = \lim_{h \to 0} \frac{x^2 - (x^2 + h^2 + 3xh)}{h \times^2 (x+h)^2}$$

$$= \lim_{h \to 0} \frac{x^2 - x^2 - h^2 - 3xh}{h \times^2 (x+h)^2} = \lim_{h \to 0} \frac{-h^2 - 3xh}{h \times^2 (x+h)^2}$$

$$= \lim_{h \to 0} \frac{K(-h - 3x)}{k \times^2 (x+h)^2} = \lim_{h \to 0} \frac{-h - 2x}{x^2 (x+h)^2}$$

$$= \lim_{h \to 0} \frac{K(-h - 3x)}{k \times^2 (x+h)^2} = \lim_{h \to 0} \frac{-h - 2x}{k^2 (x+h)^2}$$

$$= \frac{-0 - 3x}{x^2 (x+h)^2} = \frac{-3x}{x^4} \quad \Rightarrow x \neq 0 \text{ for it to } 0$$
If be weel-defined

 \Rightarrow $L = \frac{-2}{\sqrt{3}}$

we can cancel x.

(37)
$$4x-9 \le f(x) \le x^2 - 4x + 7$$
 for $x > 0$
Find $\lim_{x \to 4} f(x)$

By Squeeze Theorem,

$$\lim_{x \to y} (yx - a) \leq \lim_{x \to y} f(x) \leq \lim_{x \to y} (x^2 - yx + 7)$$

direct substitution rule (Since these are Polynomials)

$$=$$
 $4(4)-9 \leq \lim_{x \to 4} f(x) \leq (4)^2 - 4(4) + 7$

$$=) |6-9| \le \lim_{x \to y} f(x) \le |6-16+7|$$

$$\Rightarrow 7 \leq \lim_{x \to y} f(x) \leq 7$$

$$=) \lim_{x \to y} f(x) = 7$$

Section 1.8

(a)
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$
. Check continuity at $\alpha = 1$

f(1)=1.

$$\lim_{X \to 1} f(x) = \lim_{X \to 1} \frac{x^2 - x}{x^2 - 1} \cdot \text{At } x = 1, \text{ numerator} = 1^2 - 1 = 0$$

$$x \to 1 \quad x \to 1 \quad x^2 - 1 \quad \text{denominator} = 1^2 - 1 = 0$$

$$\Rightarrow \text{ we may be able to cancel out} \cdot \text{ and } x \to 1 \quad \text{and } x \to 1 \quad$$

$$\chi \rightarrow 1$$
 $\chi \rightarrow 1$ $\chi \rightarrow$

$$\Rightarrow$$
 $f(1) \neq \lim_{x \to 1} f(x) \Rightarrow f$ is discontinuous at $x=1$

(36) $\lim_{x\to\pi} \sin(x+\sin x) = L$ If f is continuous, then $\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x))$ $\Rightarrow L = \lim_{x \to \pi} \sin(x + \sin x) = \sin(\lim_{x \to \pi} (x + \sin x))$ X is continuous everywhere on IR Sin(x) is continuous everywhere on IR > 2+8in(x) is continuous on R. It a function is continuous, we can use direct substitution rule. follows from definition of continuity : lim f(x) = f(a) $\Rightarrow L = 8in \left(\lim_{x \to 0} (x + 8in x) \right) = 8in \left(TT + 8in TT \right)$ $= \sin\left(\pi + 0\right) = \sin\pi = 0$ ⇒ L=0 $\begin{array}{c} (43) \quad f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ 3x^2 & \text{if } 0 \leq x \leq 1 \end{cases} & \text{Find Points of } \\ 3-x & \text{if } x > 1. \end{cases}$ X+2 (being a polynomial) is continuous everywhere on (-00,0) Similarly, 2x2 is continuous everywhere on (0,1) and 2-x is continuous everywhere on (1,0). Sogthe only possible points of discontinuity are x=091. At 2=0 $LHL = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} (0-h) + 2 = \lim_{h \to 0} -h + 2 = 2$ RHL = $\lim_{h \to 0} f(0+h) = \lim_{h \to 0} 2(0+h)^2 = \lim_{h \to 0} 2h^2 = 0$

$$f(o) = a(o)^2 = 0$$
.
 $LHL \neq RHL = f(o) \Rightarrow f$ is discontinuous at $x = 0$.
Since $RHL = f(o)_g f$ is continuous from right at $x = 0$.

At
$$x=1$$

LHL = $\lim_{N\to 0} f(1-N) = \lim_{N\to 0} a(1-N)^2 = a(1)^2 = a$

RHL = $\lim_{N\to 0} f(1+N) = \lim_{N\to 0} a - (1+N) = a - 1 = 1$
 $f(1) = a(1)^2 = a$
 $f(1) = \lim_{N\to 0} f(1+N) = \lim_{N\to 0} a - (1+N) = a - 1 = 1$

Since, LHL = $f(1)$, $f(1)$ is continuous from left at $x=1$

Graph &

