Amendments to the Claims

1. (Original) 1. A method of treatment of bacterial infections in mammals, which method comprises the administration to a mammal in need of such treatment of an effective amount of a compound of formula (I) or a pharmaceutically acceptable derivative thereof:

70450

A-B-(CH₂)_n

$$X = X^{1}$$
 $X = X^{1}$
 $X = X^{2}$
 $X = X^$

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N or CR^{1a} and the remainder are CH;

 R^1 is selected from hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6})alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6})alkyl, acyl or (C_{1-6})alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C_{1-6})alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6})alkylsulphonyloxy; (C_{1-6})alkoxy-substituted (C_{1-6})alkyl; halogen; (C_{1-6})alkyl; (C_{1-6})alkylthio; trifluoromethyl; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6})alkylsulphonyl; (C_{1-6})alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6})alkyl, acyl or (C_{1-6})alkylsulphonyl groups, or when one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, R^1 may instead be hydrogen;

R^{1a} is selected from hydrogen and the groups listed above for R¹;

 R^3 is in the 2- or 3-position and is: carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenyloxycarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or

-3-

U.S. Serial No. 09/889,820 Group Art Unit: 1614

 (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R^{10} ; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R^{10} ; or 5-oxo-1,2,4-oxadiazol-3-yl; or R^3 is in the 2- or 3-position and is (C_{1-4}) alkyl or ethenyl substituted with any of the groups listed above for R^3 and 0 to 2 groups R^{12} independently selected from:

thiol; halogen; (C_{1-6}) alkylthio; trifluoromethyl; azido; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenylcarbonyl; hydroxy optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenylcarbonyl; amino optionally mono- or disubstituted by (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkylsulphonyl, (C_{2-6}) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl or (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkyl, aminocarbonyl; or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; oxo; oxo optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; oxo optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

provided that when R^3 is disubstituted with hydroxy or amino and carboxy containing substituents these may optionally together form a cyclic ester or amide linkage, respectively; and provided that R^3 is other than (C_{1-4}) alkyl or ethenyl substituted by (C_{1-6}) alkoxycarbonyl or aminocarbonyl optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl and 0 to 2 groups R^{12} ;

wherein R^{10} is selected from (C_{1-4}) alkyl; (C_{2-4}) alkenyl; aryl; a group R^{12} as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; or tetrazolyl;

U.S. Serial No. 09/889,820 Group Art Unit: 1614

 R^4 is a group -CH₂- R^5 in which R^5 is selected from:

 $(C_{3-12})alkyl; hydroxy(C_{3-12})alkyl; (C_{1-12})alkoxy(C_{3-12})alkyl; (C_{1-12})alkyl; (C_{1-12})alkyl; (C_{1-12})alkyl; (C_{3-6})cycloalkyl(C_{3-12})alkyl; hydroxy-, (C_{1-12})alkoxy- or (C_{1-12})alkanoyloxy-(C_{3-6})cycloalkyl(C_{3-12})alkyl; cyano(C_{3-12})alkyl; (C_{2-12})alkenyl; (C_{2-12})alkynyl; tetrahydrofuryl; mono- or di-(C_{1-12})alkylamino(C_{3-12})alkyl; acylamino(C_{3-12})alkyl; (C_{1-12})alkyl- or acyl-aminocarbonyl(C_{3-12})alkyl; mono- or di- (C_{1-12})alkylamino(hydroxy) (C_{3-12})alkyl; optionally substituted phenyl(C_{1-2})alkyl, phenoxy(C_{1-2})alkyl or phenyl(hydroxy)(C_{1-2})alkyl; optionally substituted diphenyl(C_{1-2})alkyl; optionally substituted heteroaryl(C_{1-2})alkyl; and optionally substituted heteroaroyl or heteroaroylmethyl;$

n is 0, 1 or 2;

either A-B is NHC(O)NH or NHC(O)O, or

A is NR^{11} , O, $S(O)_X$ or CR^6R^7 and B is NR^{11} , O, $S(O)_X$ or CR^8R^9 where x is 0, 1 or 2 and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkylsulphonyl;

6)alkenylsulphonyl; or (C_{1-6}) aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined;

or \mathbb{R}^6 and \mathbb{R}^8 together represent -O- and \mathbb{R}^7 and \mathbb{R}^9 are both hydrogen;

or R^6 and R^7 or R^8 and R^9 together represent oxo;

and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenylcarbonyl, (C_{1-6}) alkyl or (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

provided that A and B cannot both be selected from NR^{11} , O and $S(O)_X$ and when one of A and B is CO the other is not CO, O or $S(O)_X$.

-5-

U.S. Serial No. 09/889,820 Group Art Unit: 1614

2-11. (Cancelled)

(Original) A pharmaceutical composition for use in the treatment of bacterial infections in mammals comprising a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.

13. (Cancelled)