ZESTAW 2 (grafy cd)

Zad 1

Jaka jest najmniejsza liczba wierzchołków w grafie prostym (zwyczajnym) o 54 krawędziach jeśli stopnie wierzchołków są nie większe jak cztery?

Zad.2

Narysować grafy K_6 i K_7 .

Zad 3

W grafie o n wierzchołkach i q krawędziach istnieje pewna liczba n_k wierzchołków stopnia k, n_{k-1} wierzchołków stopnia k-1 oraz pewna liczba wierzchołków stopnia k+1. Pokazać, że dla tego grafu spełnione jest równanie n_k + $2n_{k-1}$ = n(k+1)-2q.

Zad 4

- a) Narysować turniej o pięciu wierzchołkach.
- b) Narysować turniej tranzytywny o pięciu wierzcholkach.

Zad. 5

Pewna sieć składa się z 64 linii światłowodowych. Każdy serwer połączony jest z taką samą liczbą innych serwerów. Z iloma serwerami może zostać połączony dowolnie wybrany serwer oraz z ilu serwerów może składać się taka sieć?

Zad. 6

Pokazać, że dla grafów zwyczajnych i zupełnych o q_{n-1} , q_n , q_{n+1} krawędziach zachodzi relacja

$$2(n-2) q_{n+1} q_n = n^2 (n+1) q_{n-1}$$
.

Zad 7

Mamy graf dwudzielny o n wierzchołkach. Dobrać podział wierzchołków na dwa podzbiory tworzące graf dwudzielny tak, aby liczba krawędzi w grafie była maksymalna. Czy możliwe jest skonstruowanie grafu dwudzielnego o 10 wierzchołkach i 26 krawędziach?

Zad 8

Obliczyć gęstość grafu regularnego stopnia d o n wierzchołkach.

Zad 9

Pokazać, że jeśli z grafu prostego G usuniemy wierzchołek stopnia $d(v) \ge d_{\acute{s}r}(G)/2$ otrzymując graf G' to średni stopień nowego grafu spełnia nierówność $d_{\acute{s}r}(G) \ge d_{\acute{s}r}(G')$.