EE101: Basic Electronics

Theme: Micro-electronics

Tutorial Problems

Solution

General Procedure:

- 1. Let the series diode be D_s and the shunt diode be D_p .
- 2. Derive the conditions for diodes to be ON/OFF:
 - D_s is ON when V_{in} is ...
 - D_s is OFF when V_{in} is ...
 - D_p is ON when V_{in} is ...
 - D_p is OFF when V_{in} is ...

Example: In circuits (a) and (c), D_s will be ON for $V_{in} > 0$ V. In circuits (b) and (d), D_s will be ON for $V_{in} < 0$ V

Remember: When an ideal diode is ON, the voltage across it is equal to zero.

- 3. Divide V_{in} (X-axis) into segments based on the above conditions.
- 4. Analyze the circuit (find out V_{out}) in each segment of V_{in} . If required, draw the equivalent circuit for each segment.
- 5. Plot V_{out} for each V_{in} segment.

Solution for Q2:

- 1. Fig. 1 shows the equivalent circuits for different segments of V_{in} .
- 2. Transfer characteristics are given in the middle column of Fig. 3.
- 3. Please note that the X-axis of transfer characteristics in (b) and (e) is V_s .

Solution for Q3:

- 1. Fig. 2 shows the equivalent circuits for different segments of V_{in} .
- 2. Transfer characteristics are given in the middle column of Fig. 3.
- 3. Please note that the X-axis of transfer characteristics in (b) and (e) is V_s .

Figure 1: Equivalent circuits when the diodes are ideal

Figure 2: Equivalent circuits when the diodes have a cut-in voltage of $0.7\mathrm{V}$

Figure 3: Transfer characteristics

Fig. Q4

The voltage induced in the 2 H coil by the current I_2 will have its positive polarity at its dotted terminal as I_2 enters into its dotted terminal. The magnitude of this induced voltage will be $j\omega MI_2 = j300I_2$. Similarly, the induced voltage by I_1 in 5 H coil will be $j\omega MI_1 = j300I_1$ and its polarity will be positive at the dotted terminal of the 5 H coil.

Applying KVL in the loop having the source and the current I_1

$$100 - I_1(50 + j200) - j300I_2 = 0$$

$$\Rightarrow I_1(5 + j20) + j30I_2 = 10 -----(1)$$

Applying KVL in the second loop, i.e. loop with current I_2

$$-j\omega 5I_2 - 2000I_2 - j\omega 3I_1 = 0$$

$$\Rightarrow j3I_1 + I_2(20 + j5) = 0$$
 -----(2)

Solving equation (1) & (2)

$$I_2 = 0.069 \angle - 168.04^0 \text{ A}, \quad I_1 = 0.475 \angle - 64.04^0 \text{ A}$$

- a) Power absorbed the source = $V_S I_1 \cos \theta = -100 \times 0.475 \cos(64.04^0)$ (-ve sign is used as the current enters the –ve polarity of the voltage source)
 - = -20.80 watt (-ve sign indicate power is being delivered)

b)
$$P_{50} = I_1^2 \times 50 = 11.28 \text{ W}$$
, $P_{2K} = I_2^2 \times 2K = 9.52 \text{ W}$

c) & d) No power will be absorbed by the inductances and the mutual inductance.

When current enters into a dotted terminal, it will induce a voltage in the other coil where the positive polarity of the induced voltage will be the corresponding dotted terminal.

$$V_{AD} = 20 \frac{di_{s1}(t)}{dt} + 4 \frac{di_{s2}(t)}{dt}$$

$$= 20 \times 4 + 4 \times 10 = 120 V$$

$$V_{CD} = -6 \frac{di_{s1}(t)}{dt} = -6 \times 4 = -24V$$

$$V_{BD} = V_{BC} + V_{CD} = 3 \frac{di_{s2}(t)}{dt} + 4 \frac{di_{s1}(t)}{dt} - 6 \frac{di_{s1}(t)}{dt}$$

$$= 3 \times 10 + 4 \times 4 - 6 \times 4 = 22V$$