Week 9, Day 1 Problems

GSI: Caleb Eades

10/16

1 Potential Midterm Potentials

1.1 Conductors

An uncharged solid conducting sphere of radius R, centered at the origin, contains two spherical cavities or radii r_1 and r_2 , respectively. Point charge Q_1 is then placed within the cavity of radius r_1 , and point charge Q_2 is then placed within the cavity of radius r_2 , as shown below. Determine the resulting electric field vector for r > R, where r is the distance from the origin.

(Source: Birgeneau Fall 2015 Midterm 2, Problem 2)

1.2 Rods

Consider a thin rod of length 2d centered on the x-axis as shown. The rod has a non-uniform linear charge distribution $\lambda = ax$. Determine the potential V for

- (a) a point along the y-axis at a distance y_0 from the origin
- (b) points along the x-axis outside the rod, at a distance x_0 from the origin

(Source: Birgeneau Fall 2015 Midterm 2, Problem 3)

1.3 Connected Conductors

Two conducting globes (spherical shells) with radii r_1 and r_2 , with $r_2 = 2r_1$, are joined by a long thin wire. +ve charge is steadily added to the system until a faint glow is seen around one of the spheres, a consequence of ionisation of the air nearby. Which is it? (no credit for simply giving the answer without proof).

(Source: Bloxham Summer 2015 Midterm 2, Problem 2)

1.4 The Slab

The figure shows an infinite slab of charge that has a width, d, and within which the charge density, $\rho(x) = \rho_0 \cos\left(\frac{n\pi x}{d}\right)$.

- (a) The electric field is zero for $x \le 0$ and $x \ge d$. What, then, are the possible values of n?
- (b) Take V(0)=0. Under the conditions in part a, what is the electric potential, V(x), inside the slab (for $0 \le x \le d$)? Express it in terms of n, π , ρ_0 , ϵ_0 , d, and x.

(Source: Speliotopoulos Spring 2014 Midterm 2, Problem 2)

