lycée Montaigne - mpi informatique

DM2 (éléments de réponses)

Préliminaires

Question 1. Supposons que \mathcal{A} ne soit pas un automate standard. Cela signifie qu'une transition existe vers l'état initial q_0 . Afin de construire un automate fini déterministe standard \mathcal{A}' reconnaissant le même langage que \mathcal{A} , l'idée générale consiste à ajouter un état q_0' , état initial de \mathcal{A}' , pour lequel n'existe aucune transition menant à q_0' . En outre, toutes les transitions issues de q_0 sont dupliquées depuis q_0' .

Plus formellement, soit q'_0 un nouvel état n'appartenant pas à Q. On pose alors $Q' = Q \cup \{q'_0\}$, ensemble des états de \mathcal{A}' . Si $q_0 \in F$, on pose $F' = F \cup \{q'_0\}$; sinon, F' = F; cela permet de conserver le caractère acceptant de l'état initial. Enfin, la fonction de transition est modifiée en $\delta' = \delta \cup \{(q'_0, x, q) \mid (q_0, x, q) \in \delta\}$.

L'automate $\mathcal{A}'=(\Sigma,Q',q_0',F',\delta')$ est standard et reconnaît le même langage de $\mathcal{A}.$

Langages locaux

Question 2. Soit L un langage local sur un alphabet Σ . Alors P(L), S(L) et N(L) étant des langages finis, ce sont des langages réguliers. Par ailleurs, l'ensemble des langages réguliers est stable par union, produit et complémentation. Par conséquent, $P(L)\Sigma^*$, $\Sigma^*S(L)$, $\Sigma^*N(L)\Sigma^*$, puis $\hat{L}=(P(L)\Sigma^*\cap\Sigma^*S(L))\smallsetminus(\Sigma^*N(L)\Sigma^*)$ sont aussi des langages réguliers. Enfin, puisque $L=\hat{L}\cup\{\varepsilon\}$ ou $L=\hat{L}$ selon que ε appartient ou non à L, L est un langage régulier.

Question 3. Notons $\Sigma = \{a, b, c\}$. On a $P = \{a\}$, $S = \{c\}$, $F = \{ab, bc, ca\}$, $N = \Sigma^2 \setminus F$. Alors:

$$L_{EB}\left((abc)^*\right) \setminus \{\varepsilon\} = (P\Sigma^* \cap \Sigma^*S) \setminus (\Sigma^*N\Sigma^*)$$

Question 4. Notons $\Sigma = \{a,b\}$. On a $P = \{a,b\}$, $S = \{a\}$, $F = \{aa,ab,ba\}$, $N = \Sigma^2 \setminus F$. Le mot abab appartient au langage $(P\Sigma^* \cap \Sigma^*S) \setminus (\Sigma^*N\Sigma^*)$ mais il n'appartient pas à $L_{ER}(a^*ba) \setminus \{\varepsilon\}$. Le langage dénoté par a^*ba n'est pas local.

Question 5. Sur l'alphabet $\Sigma=\{a,b\}$, considérons les langages $L_1=\{ab\}$ et $L_2=\{ba\}$. Avec $P_1=\{a\}$, $S_1=\{b\}$, $F_1=\{ab\}$ et $N_1=\Sigma^2\smallsetminus F_1$, on a $L_1=(P_1\Sigma^*\cap\Sigma^*S_1)\smallsetminus(\Sigma^*N_1\Sigma^*)$. Donc L_1 est local. Par raison de symétrie, il en est de même de L_2 .

En revanche, $\tilde{L}_1 \cup L_2 = \{ab, ba\}$ n'est pas local. En effet, avec $P(L_1 \cup L_2) = \{a\}$, $S(L_1 \cup L_2) = \{b\}$, $F(L_1 \cup L_2) = \{ab, ba\}$ et $N = \Sigma^2 \setminus F$, le mot aba appartient au langage $(P\Sigma^* \cap \Sigma^*S) \setminus (\Sigma^*N\Sigma^*)$, ce qui établit que $L_1 \cup L_2$ n'est pas local.

Question 6. Sur l'alphabet $\Sigma=\{a,b\}$, reprenons le langage $L_1=\{ab\}$ dont on a montré qu'il est local. Notons à présent $P_1=P(L_1\cdot L_1)=\{a\}, S_1=S(L_1\cdot L_1)=\{b\}, F_1=F(L_1\cdot L_1)=\{ab,ba\}, N_1=\Sigma^2\smallsetminus F_1$. Alors, le langage $(P_1\Sigma^*\cap\Sigma^*S_1)\smallsetminus(\Sigma^*N_1\Sigma^*)$ est infini ; c'est $L_{ER}\left((ab)^+\right)$. En particulier, il n'est pas égal à $L_1\cdot L_1$. Par conséquent, $L_1\cdot L_1$ n'est donc pas local.

Question 7. Soit L un langage régulier sur l'alphabet X et ϕ un morphisme de X^* vers Y^* . On définit par induction structurelle l'application $\hat{\phi}$ de l'ensemble des expressions régulières sur lui-même par :

- $\hat{\phi}(\emptyset) = \emptyset$
- $\hat{\phi}(\varepsilon) = \varepsilon$
- $\bullet \ \forall x \in X, \hat{\phi}(x) = \phi(x)$
- $\hat{\phi}(e+e') = \hat{\phi}(e) + \hat{\phi}(e')$
- $\quad \bullet \ \ \hat{\phi}(e \cdot e') = \hat{\phi}(e) \cdot \hat{\phi}(e')$
- $\bullet \ \hat{\phi}(e^*) = \left(\hat{\phi}(e)\right)^*$

À un expression régulière e décrivant un langage $L, \hat{\phi}$ associe une expression régulière $\hat{\phi}(e)$ décrivant le langage $\phi(L)$. Avec le formalisme adopté ici, on a $\phi(L_{ER}(e)) = L_{ER}(\hat{\phi}(e))$, soit $\phi \circ L_{ER} = L_{ER} \circ \hat{\phi}$.

Question 8. Soit $Y = Q \times \Sigma \times Q$ un alphabet (des transitions). Tout calcul sur \mathcal{A} est un mot sur Y. Notons alors P l'ensemble des transitions qui partent de l'état initial, S l'ensemble des transitions qui mènent à un état final et F l'ensemble des couples ((q, x, q'), (q', x', q'')) de transitions qui s'enchaînent. Enfin, notons $N = Y^2 \times F$. Alors, l'ensemble des calculs réussis de \mathcal{A} est exactement $(PY^* \cap Y^*S) \times (Y^*NY^*)$, ce qui montre que c'est un langage local.

Question 9. Soit ϕ le morphisme projectif qui, à la transition (q,x,q'), associe la lettre x qui étiquette cette transition. L'image par ϕ d'un calcul de $\mathcal A$ est l'étiquette de ce calcul. En particulier, l'image par ϕ de l'ensemble des calculs réussis de $\mathcal A$, qui est un langage local d'après la question précédente, est l'ensemble des étiquettes des calculs réussis de $\mathcal A$, autrement dit $L_{AF}(\mathcal A)$.

lycée Montaigne - mpi informatique

Automates locaux

Ouestion 10.

□ 10.1. Soit L un langage local reconnu sur un alphabet Σ . Considérons l'automate $\mathcal A$ dont l'état initial est ε , dont les états acceptants sont les éléments de S(L) plus éventuellement ε si ε appartient au langage et les transitions de deux types : (ε,a,a) avec $a\in P(L)$ et (x,y,y) avec $xy\in F(L)$. Alors, on vérifie que $L_{AF}(\mathcal A)\setminus\{\varepsilon\}=(PX^*\cap X^*S)\setminus X^*NX^*$. □ 10.2. Soit $\mathcal A=(\Sigma,Q,q_0,F,\delta)$ un automate local. On ne restreint pas la généralité en supposant que chaque état autre de q_0 est une lettre de Σ qui étiquette les transitions menant à cet état. Notons $P=\{x\in\Sigma\,|\,(\varepsilon,x,x)\in\delta\},\,S=F,\,F=\{xy\,|\,(x,y,y)\in\delta\}$ et $N=\Sigma^2\setminus F\}$. On a alors :

$$L_{AF}(\mathcal{A}) \smallsetminus \{\varepsilon\} = (P\Sigma^* \cap \Sigma^* S) \smallsetminus \Sigma^* N\Sigma^*$$

Question 11.

□ 11.1. Soit $\mathcal{A}_1 = (X, Q_1, q_{01}, F_1, \delta_1)$ et $\mathcal{A}_2 = (Y, Q_2, q_{02}, F_2, \delta_2)$ deux automates locaux standards sur des alphabets disjoints qui reconnaissent L_1 et L_2 . Sans perte de généralité, on peut supposer que Q_1 et Q_2 sont également disjoints. Soit alors q_0 un nouvel état. Posons alors :

$$\begin{split} Q &= Q_1 \smallsetminus \{q_{01}\} \cup Q_2 \smallsetminus \{q_{02}\} \cup \{q_0\} \\ F &= \begin{cases} F_1 \cup F_2 & \text{si } q_{01} \notin F_1 \text{ et } q_{02} \notin F_2 \\ F_1 \smallsetminus \{q_{01}\} \cup F_2 \smallsetminus \{q_{02}\} & \text{sinon} \end{cases} \\ \delta &= \{(q,x,q') \in \delta_1 \mid q \neq q_{01}\} \cup \{(q,x,q') \in \delta_2 \mid q \neq q_{02}\} \\ & \cup \{(q_0,x,q') \in \delta_1 \mid (q_{01},x,q') \in \delta_1\} \cup \{(q_0,x,q') \in \delta_2 \mid (q_{02},x,q') \in \delta_2\} \end{split}$$

L'automate $\mathcal{A}=(X\cup Y,Q,q_0,F,\delta)$ est local et reconnaı̂t $L_1\cup L_2$.

 \square 11.2. Soit $\mathcal{A}_1=(X,Q_1,q_{01},F_1,\delta_1)$ et $\mathcal{A}_2=(Y,Q_2,q_{02},F_2,\delta_2)$ deux automates locaux standards sur des alphabets disjoints qui reconnaissent L_1 et L_2 . Sans perte de généralité, on peut supposer que Q_1 et Q_2 sont également disjoints. Posons alors :

$$\begin{split} Q &= Q_1 \cup Q_2 \smallsetminus \{q_{02}\} \\ F &= \begin{cases} F_2 & \text{si } q_{02} \notin F_2 \\ F_1 \cup F_2 \smallsetminus \{q_{02}\} & \text{sinon} \end{cases} \\ \delta &= \delta_1 \cup \{(q,x,q') \in \delta_2 \mid q \neq q_{02}\} \cup \{(q,x,q') \mid q \in F_1 \text{ et } (q_{02},x,q') \in \delta_2\} \end{split}$$

L'automate $\mathcal{A} = (X \cup Y, Q, q_{01}, F, \delta)$ est local et reconnaît $L_1 \cdot L_2.$

□ **11.3.** Soit $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ un automate local reconnaissant L. Notons $\delta' = \delta \cup \{(q, x, q') \mid q \in F \text{ et } (q_0, x, q') \in \delta\}$. L'automate $\mathcal{A} = (\Sigma, Q, q_0, F \cup \{q_0\}, \delta')$ reconnaît L^* .

Algorithme de McNaughton, Yamada et Glushkov

Question 12. On raisonne par induction structurelle.

Tout d'abord, $LER(\emptyset) = \emptyset$ est local; il suffit de prendre $P = \emptyset$.

Ensuite, $LER(\varepsilon)=\{\varepsilon\}$ est local; prendre encore $P=\varnothing$. Si $x\in\Sigma$, $L_{ER}(x)=\{x\}$. On prend $P=\{x\}$, $S=\{x\}$ et $N=X^2$.

Soient e et e' deux expressions régulières linéaires. Si e+e' et $e\dots e'$ sont linéaires, alors $L_{ER}(e)$ et $L_{ER}(e')$ sont des langages locaux sur des alphabets distincts. Donc $L_{ER}(e+e')=L_{ER}(e)\cup L_{ER}(e')$ est local d'après le résultat de la question 12 et $L_{ER}(e\cdot e')=L_{ER}(e)\cdot L_{ER}(e')$ est local d'après le résultat de la question 13. Enfin, $L_{ER}(e^*)$ est local d'après le résultat de la question 14.

Question 13. La réciproque est fausse. $L_{ER}(aa^*)$ est un langage local. On a $P=\{a\}, S=P$ et $F=\{aa\}$. Mais il ne peut pas être décrit par une expression régulière linéaire.

Question 14. On pose:

$$\lambda(\varnothing) = \varnothing \quad \lambda(\varepsilon) = \{\varepsilon\} \quad \forall x \in \Sigma, \lambda(x) = \varnothing \quad \lambda(e + e') = \lambda(e) \cup \lambda(e') \quad \lambda(e \cdot e') = \lambda(e) \cdot \lambda(e') \quad \lambda(e^*) = \{\varepsilon\}$$

Question 15. On pose:

$$\pi(\varnothing) = \varnothing \quad \pi(\varepsilon) = \varnothing \quad \forall x \in \Sigma, \\ \pi(x) = \{x\} \quad \pi(e + e') = \pi(e) \cup \pi(e') \quad \pi(e \cdot e') = \pi(e) \cup (\lambda(e) \cdot \pi(e')) \quad \pi(e^*) = \pi(e) \cup (\lambda(e) \cdot \pi(e')) \quad \pi(e) \cup (\lambda(e) \cdot \pi(e')) \quad \pi(e) = \pi(e) \cup (\lambda(e) \cdot \pi(e')) \quad \pi(e) \cup$$

Question 16. De la même façon, on pose :

$$\sigma(\varnothing) = \varnothing \quad \sigma(\varepsilon) = \varnothing \quad \forall x \in \Sigma, \sigma(x) = \{x\} \quad \sigma(e + e') = \sigma(e) \cup \sigma(e') \quad \sigma(e \cdot e') = \sigma(e) \cup (\sigma(e') \cup \lambda(e')) \quad \sigma(e^*) = \sigma(e') \cup (\sigma(e') \cup \lambda(e')) \quad \sigma(e') = \sigma(e') \cup (\sigma(e') \cup (\sigma(e') \cup \lambda(e')) \quad \sigma(e') = \sigma(e') \cup (\sigma(e') \cup (\sigma(e') \cup \lambda(e')) \quad \sigma(e') = \sigma(e') \cup (\sigma(e') \cup (\sigma$$

lycée Montaigne - mpi informatique

Puis:

$$\phi(\varnothing) = \varnothing \quad \phi(\varepsilon) = \varnothing \quad \forall x \in \phi, \phi(x) = \{x\} \quad \phi(e + e') = \phi(e) \cup \phi(e')$$
$$\phi(e \cdot e') = \phi(e) \cup \phi(e') \cup (\sigma(e) \cdot \pi(e')) \quad \phi(e^*) = \phi(e) \cup (\sigma(e) \cdot \pi(e))$$

Question 17. Après linéarisation, l'expression régulière $((ab(ac)^*+ca)^*b)^*$ devient $e'=((a_1b_1(a_2c_1)^*+c_2a_3)^*b_2)^*$. En appliquant l'algorithme de McNaughton-Yamada-Glushkov, on trouve :

$$\begin{split} \pi(e') &= \{b_2, c_2, a_1\} \\ \sigma(e') &= \{b_2\} \\ \phi(e') &= \{b_2b_2, b_2c_2, b_2a_1, a_3b_2, c_1b_2, b_1b_2, a_3c_2, c_1c_2, b_1c_2, a_3a_1, c_1a_1, b_1a_1, c_2a_3, b_1a_2, a_2c_1, c_1a_2, a_1b_1\} \end{split}$$

L'automate construit compte huit états (un pour chaque lettre de e' et l'état initial ε) et dix-sept transitions. (dessin à faire)

Question 18. L'automate fini \mathcal{A}' construit à la troisième étape de l'algorithme de McNaughton-Yamada-Glushkov est local. $L_{ER}(e)$ est l'image de $L_{AF}(\mathcal{A}')$ par le morphisme $a_i\mapsto a$ de décodage.