IEC 61850 and Modbus Data Type Mapping Rules

For example, in the IEC 61850 telemetering data point list YC_List below, we can see two data types: "FLOAT32" and "INT32". In the Modbus telemetering list MB_List, we can see: "U_AB", 2 (meaning a 16-bit unsigned integer that should be converted with two decimal places, i.e., multiplied by 0.01) \rightarrow corresponds to "FLOAT32"; "U_AB", 0 (a pure 16-bit unsigned integer) \rightarrow corresponds to "INT32".

```
-- IEC61850 telemetering data point definitions
YC_List =
  -- Transformer #1
 {"RTU/GGIO1.AnIn1", ".mag.f", "FLOAT32"}, -- floating point, phase A temperature
  {"RTU/GGI01.AnIn2", ".mag.f", "FLOAT32"}, -- floating point, phase B temperature
  {"RTU/GGIO1.AnIn3", ".mag.f", "FLOAT32"}, -- floating point, phase C temperature
  {"RTU/GGIO1.Inc1", ".stVal", "INT32"}, -- integer, phase A sensor signal strength
  {"RTU/GGIO1.Inc2", ".stVal", "INT32"}, -- integer, phase B sensor signal strength
  {"RTU/GGIO1.Inc3", ".stVal", "INT32"} -- integer, phase C sensor signal strength
}
-- Modbus telemetering data point definitions
MB POLL TIME MS = 5000 -- minimum polling period for all RS-485 devices below: 5000 ms (5
s); may be longer if a device communicates poorly
MB_INTERVAL_MS = 100 -- minimum interval between RS-485 transactions
MB List =
  -- Transformer #1
   -- 115200 bps, no parity, 1 stop bit, function code "03", Modbus address 0x02, max
response wait 100 ms, inter-packet delay 1000 ms
   com = {"BAUDRATE 115200","NoneParity","StopBit 1","03",0x02,100,1000},
   data =
      {"RTU/GGIO1.AnIn1",0x0030,"U AB",2}, -- phase A temperature, 2 decimals (actually
U AB integer × 0.01)
      {"RTU/GGIO1.AnIn2",0x0031,"U AB",2}, -- phase B temperature, 2 decimals (actually
      {"RTU/GGI01.AnIn3",0x0032,"U AB",2}, -- phase C temperature, 2 decimals (actually
U AB integer × 0.01)
      {"RTU/GGIO1.Inc1",0x0060,"U_AB",0}, -- phase A signal strength, integer, 0 decimals
      {"RTU/GGIO1.Inc2",0x0061,"U_AB",0}, -- phase B signal strength, integer, 0 decimals
      {"RTU/GGI01.Inc3",0x0062,"U_AB",0} -- phase C signal strength, integer, 0 decimals
   }
 }
}
```

Below we describe this mapping in detail. In scenarios that involve numeric values such as telemetering and setpoint (control), IEC 61850 currently supports two data types: FLOAT32 and INT32, which already cover most use cases. Although Modbus defines more data formats, after normalization they can be easily mapped one-to-one to IEC 61850 FLOAT32 and INT32. Please keep this in mind when defining your data.

Modbus type	Description	Corresponding IEC 61850 type
"S_AB"	16-bit signed integer, AB byte order	INT32 when decimals = 0
"S_BA"	16-bit signed integer, BA byte order	INT32 when decimals = 0
"U_AB"	16-bit unsigned integer, AB byte order	INT32 when decimals = 0
"U_BA"	16-bit unsigned integer, BA byte order	INT32 when decimals = 0
"UL_ABCD"	32-bit unsigned integer, ABCD byte order	INT32 when decimals = 0
"UL_CDAB"	32-bit unsigned integer, CDAB byte order	INT32 when decimals = 0
"UL_BADC"	32-bit unsigned integer, BADC byte order	INT32 when decimals = 0
"UL_DCBA"	32-bit unsigned integer, DCBA byte order	INT32 when decimals = 0
"L_ABCD"	32-bit signed integer, ABCD byte order	INT32 when decimals = 0
"L_CDAB"	32-bit signed integer, CDAB byte order	INT32 when decimals = 0
"L_BADC"	32-bit signed integer, BADC byte order	INT32 when decimals = 0
"L_DCBA"	32-bit signed integer, DCBA byte order	INT32 when decimals = 0
"F_ABCD"	32-bit floating-point, ABCD byte order	FLOAT32
"F_CDAB"	32-bit floating-point, CDAB byte order	FLOAT32
"F_BADC"	32-bit floating-point, BADC byte order	FLOAT32
"F_DCBA"	32-bit floating-point, DCBA byte order	FLOAT32
"D_ABCDEFGH"	64-bit double, ABCDEFGH byte order	FLOAT32
"D_GHEFCDAB"	64-bit double, GHEFCDAB byte order	FLOAT32
"D_BADCFEHG"	64-bit double, BADCFEHG byte order	FLOAT32
"D_HGFEDCBA"	64-bit double, HGFEDCBA byte order	FLOAT32
"BIT"	Must be used for reading coils/discrete inputs	For telesignalling/telecontrol only