18-10-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-9_Key &Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 18-10-15

 Time: 3 Hours
 2011-P2-Model
 Max Marks: 240

KEY & SOLUTIONS

CHEMISTRY

1	D	2	A	3	D	4	В	5	В	6	D
7	С	8	В	9	A	10	BCD	11	CD	12	A
13	2	14	3	15	0	16	5	17	0	18	3
19	A-PT,	20	A-PQST,								

19 A-PT, B-PS, B-PQR, C-PQ, D-PR D-PS

PHYSICS

21	D	22	C	23	A	24	C	25	В	26	В
27	C	28	C	29	AD	30	AD	31	AC	32	ВС
33	1	34	9	35	7	36	5	37	9	38	5
39 A -		40	A-PRT;								
	-QT; -R;		B-QS; C-Q;								

MATHEMATICS

D-PT

D-S;

41	В	42	С	43	A	44	В	45	С	46	В
47	C	48	D	49	BC	50	ABCD	51	BD	52	AD
53	2	54	2	55	1	56	4	57	1	58	3
	A-R, B-P, C-PQR, D-S		A-R, B-RS, C-RS, D-PR								

Sri Chaitanya IIT Academy

18-10-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-9_Key &Sol's

MATHEMATICS

41.
$$(\vec{a} \times \vec{c}) \cdot (\vec{b} \times \vec{d}) = \begin{vmatrix} 22 & 2y^2 - 4y + 9 \\ 4x^2 + 16x + 25 & 3 \end{vmatrix} = -3$$

$$\Rightarrow (2y^2 - 4y + 9)(4x^2 + 16x + 25) = 63. \text{ This is possible only when } y = 1, x = -2$$

- 42. Let the new plane is $(3x+8y+15z+91)+\lambda(5x+17y+29z-2)=0$. It should be same as x-y+z=k. Hence $\frac{3+5\lambda}{1} = \frac{8+17\lambda}{-1} = \frac{15+29\lambda}{1} = \frac{91-2\lambda}{k} \Rightarrow \lambda = -\frac{1}{2}; k=184$.
- 43. $\cos\theta = \frac{1}{\sqrt{3}}$
- 44. $\overrightarrow{NP} = \frac{3}{4}\overrightarrow{AB} \frac{1}{2}\overrightarrow{AF}$
- 45. Direction ratios are proportional to 2,-7,5
- 49. We have f' = g; g' = h; h' = f hence $\vec{a} = fi + gj + hk$; $\vec{b} = gi + hj + fk$; $\vec{c} = hi + fj + gk$ Consider $A = f^3 + g^3 + h^3 - 3fgh$ we can see that $\frac{dA}{dx} = 0$. We can see that A = 1.
- 50. $\begin{bmatrix} a & 4 & 1 \\ 0 & 2 & 3 \\ 3 & 0 & -b \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$

$$\Delta = \begin{vmatrix} a & 4 & 1 \\ 0 & 2 & 3 \\ 3 & 0 & -b \end{vmatrix} = 30 - 2ab, \Delta_1 = \begin{vmatrix} 0 & 4 & 1 \\ 1 & 2 & 3 \\ -2 & 0 & -6 \end{vmatrix} = 4b - 20 \ \Delta_2 = 6a - ab - 3, \ \Delta_3 = -4a + 12$$

If ab ≠15, system has unique solution

If
$$ab = 15$$
, $\Delta_1 = \frac{60}{a} - 20$, $\Delta_2 = 6a - 18$, $\Delta_3 = -4a + 12$

For
$$a = 3$$
, $\Delta_1 = \Delta_2 = \Delta_3 = 0$

For $a \neq 3$ or $b \neq 5$, at least one of $\Delta_1, \Delta_2, \Delta_3$ is non zero

- 51. Take i, jas sides of right triangle.
- 52. $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{a} \cdot \overrightarrow{AB} \times \overrightarrow{AC} = \overrightarrow{b}; \overrightarrow{AB} \times \overrightarrow{AD} = \overrightarrow{c}$

$$\overrightarrow{AB} \cdot \overrightarrow{a} = 3 = \overrightarrow{AC} \cdot \overrightarrow{a} \Rightarrow \overrightarrow{AD} \cdot \overrightarrow{a} = 3$$
; $\overrightarrow{AB} - \overrightarrow{AC} = \frac{1}{3} (\overrightarrow{a} \times \overrightarrow{b})$; $\overrightarrow{AB} - \overrightarrow{AD} = \frac{1}{3} (\overrightarrow{a} \times \overrightarrow{c})$

Sri Chaitanya IIT Academy

18-10-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-9_Key &Sol's

53. We have $\overrightarrow{AD}.\overrightarrow{BC} = \frac{1}{4} |\overrightarrow{AD}| |\overrightarrow{BC}| \Rightarrow 4\overrightarrow{d}.(\overrightarrow{c} - \overrightarrow{b}) = |\overrightarrow{d}| |\overrightarrow{c} - \overrightarrow{b}| = |\overrightarrow{d}| |\overrightarrow{b}|$ as the triangle ABC is equilateral.

This gives $4(3|\vec{b}|-6|\vec{b}|\cos\alpha) = 6|\vec{b}| \Rightarrow \cos\alpha = \frac{1}{4}$

- 54. $m = \frac{3 \frac{32}{9}}{\frac{32}{9} 4} = \frac{5}{4} \cdot |(2mi + j k) \cdot (i + 2mj + 3k)| = |4m 3| = 2$
- 56. Take $\vec{r} = x\hat{\alpha} + y\hat{\beta} + z(\hat{\alpha} \times \hat{\beta})$
- 57. Direction ratios of the line of intersection of 2x + y + z = 0 and x + y + 2z = 0 are 1, -3, 1
- 58. P(3, 5, 2)
- 59. We have ab+bc+ca=1; $(a-b)^2+(b-c)^2+(c-a)^2=1$. This gives $\sum a^2=\frac{3}{2}$. Hence $(a+b+c)^2=\frac{3}{2}+2=\frac{7}{2}$. We know, if x+y+z=0; $x^2+y^2+z^2=1$ then $|9xyz|^2\leq \frac{3}{2}$

 $\left[\overrightarrow{OP} \quad \overrightarrow{OQ} \quad \overrightarrow{OR} \right] = \left| \left(\sum a \right) \left(\sum a^2 - \sum ab \right) \right| = \frac{1}{2} \sqrt{\frac{7}{2}}$

- 60. A) $(\vec{x} + \vec{y}) \times (\vec{x} \times \vec{y}) = \vec{a} \times \vec{b} \Rightarrow \frac{3}{2} (\vec{x} \vec{y}) = \vec{a} \times \vec{b} \text{ and } \vec{x} + \vec{y} = \vec{a} \text{ then } \vec{x} = \frac{1}{2} \vec{a} + \frac{1}{3} (\vec{a} \times \vec{b}) \text{ then } \frac{1}{a} + 4p = 5$
 - B) $(2\vec{a} \times 3\vec{b}) \times (\vec{r} \times 4\vec{c}) + (3\vec{b} \times 2\vec{c}) \times (\vec{r} \times 4\vec{a}) + (2\vec{c} \times 4\vec{a}) \times (\vec{r} \times 3\vec{b}) = 48[\vec{a}\ \vec{b}\ \vec{c}]\vec{r} = \frac{16\lambda(\lambda 2)}{5}[\vec{a}\ \vec{b}\ \vec{c}]\vec{r}$ implies $\lambda = 5, -3$
 - C) Given $\vec{a} \perp \vec{c}$, $\vec{b} \perp \vec{c} \Rightarrow \vec{c} = p(\vec{a} \times \vec{b})$. We have $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \frac{\vec{c} \cdot \vec{c}}{p} \vec{b} = \frac{36}{p} \vec{b}$

Hence $m = \frac{6}{\sqrt{14p}}$

We have $\vec{c} = p(\vec{a} \times \vec{b}) \Rightarrow 36 = p^2 9.25. \frac{\sqrt{224}}{9.25} \Rightarrow p = \pm \frac{3}{2\sqrt{14}}$ this gives $m = \pm 4$

D) pq=6, p+q=r+1=5 then the value of 3p-2q is 0 or 5