Bayesian Spatial Analysis

Dr. Jarad Niemi

STAT 615 - Iowa State University

October 23, 2017

Spatial modeling

Three main types of spatial data:

- Point-referenced (georeferenced)
- Areal-referenced
- Point process

Point-referenced spatial data

Features

- ullet Some spatial domain ${\mathcal D}$ is under study
- ullet Measured spatial locations $s \in \mathcal{D}$ are pre-determined
- Some quantity, Y(s), is measured at each location $s \in \mathcal{D}$

Examples

- Air quality monitoring
- Bird point counts
- Coastal tide level monitoring
- Earthquake monitoring

Areal-referenced spatial data

Features

- Some set of spatial regions $1, \ldots, S$ are pre-determined
- ullet Some quantity, Y_s , is measured as an aggregate over that region

Examples

- Disease occurrence per county
- Unemployment rate per state
- Inflation per country

Point-process spatial data

Features

- ullet Some spatial domain ${\mathcal D}$ is under study
- Spatial locations $s \in \mathcal{S} \subset \mathcal{D}$ are random
- Y(s) = 1 indicates an occurrence of the event

Examples

- Locations of Mayan ruins
- Locations of invasive species
- Locations of caught Lingcod

Point-referenced spatial data

Let Y(s) for $s \in \mathcal{D} \subseteq \mathbb{R}^d$ be a spatial process. Let E[Y(s)] = 0 for all $s \in \mathcal{D}$ because we will model the mean separately.

Assumptions:

- Intrinsic stationarity
- Isotropy
- Weak stationarity
- Strong stationarity
- Gaussian process

Example spatial process

log of DNA amplification rate (KCL=29.77, KPO4=32.13)

Intrinsic stationarity

Definition

A process Y(s) is intrinsically stationary if $\big(E[Y(s+h)-Y(s)]=0$ and $\big)$

$$E[(Y(s+h) - Y(s))^{2}] = Var[Y(s+h) - Y(s)] = 2\gamma(h)$$

when $s, s+h \in \mathcal{D}$. We call $2\gamma(h)$ the variogram and $\gamma(h)$ the semivariogram.

Definition

A process Y(s) is isotropic if the semivariogram function depends only on ||h||, the length of the separation vector. Otherwise the process is anisotropic.

Weak stationarity

Definition

A process Y(s) has weak stationarity if $\big(E[Y(s)] = \mu \text{ and}\big)$ Cov[Y(s),Y(s+h)] = C(h) when $s,s+h \in \mathcal{D}$. We call C(h) the covariance function or covariogram.

Since $\gamma(h)=C(0)-C(h)$, a weakly stationary process is also intrinsicly stationary.

If the spatial process is ergodic, then $C(h)\to 0$ as $||h||\to \infty$ and $\lim_{||h||\to\infty}\gamma(h)=C(0)$. Thus

$$C(h) = C(0) - \gamma(h) = \lim_{\|u\| \to \infty} \gamma(u) - \gamma(h).$$

Thus, if the process is ergodic, an intrinsicly stationary process is also weakly stationary.

Covariance functions for isotropic models

Model	Covariance function, $C(t)$	Semivariogram, $\gamma(t)$
Linear	C(t) does not exist	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 t & \text{if } t > 0\\ 0 & \text{otherwise} \end{cases}$
Spherical	$C(t) = \begin{cases} 0\\ \sigma^2 \left[1 - \frac{3}{2}\phi t + \frac{1}{2}(\phi t)^3\right]\\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 t & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[\frac{3}{2}\phi t - \frac{1}{2}(\phi t)^3 \right] & \text{otherwise} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \exp(-\phi t) \right] & \text{otherwise} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \exp(- \phi t ^p) \right] \\ 0 & \text{otherwise} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \exp(- \phi^2 t^2) \right] \\ 0 & \text{otherwise} \end{cases}$
Exponential	$C(t) = \begin{cases} \sigma^2 \exp(-\phi t) \\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \exp(-\phi t)\right] & t > 0 \end{cases}$
Powered exponential	$C(t) = \begin{cases} \sigma^2 \exp(- \phi t ^p) \\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \exp(- \phi t ^p)\right] \\ 0 \end{cases}$
Gaussian	$C(t) = \begin{cases} \sigma^2 \exp(-\phi^2 t^2) \\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \exp(-\phi^2 t^2) \right] \\ 0 \end{cases}$
Rational quadratic	$C(t) = \begin{cases} \sigma^2 \left(1 - \frac{t^2}{(1+\phi^2)} \right) \\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \frac{t^2}{(1+\phi^2)} & t > 0\\ 0 & \text{otherwise} \end{cases}$
Wave	$C(t) = \begin{cases} \sigma^2 \frac{\sin(\phi t)}{\phi t} \\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \frac{\sin(\phi t)}{\phi t} \right] & t > 0 \end{cases}$ other
Power law	C(t) does not exist	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 t^{\lambda} & t > 0\\ 0 & \text{otherwise} \end{cases}$
Matérn	$C(t) = \begin{cases} \frac{\sigma^2}{2^{\nu - 1} \Gamma(\nu)} (2\sqrt{\nu}t\phi)^{\nu} K_{\nu} (2\sqrt{\nu}t\phi) \\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \frac{\sin(\phi t)}{\phi t} \right] & t > 0 \\ 0 & \text{othe} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 t^{\lambda} & t > 0 \\ 0 & \text{otherwise} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \frac{(2\sqrt{\nu}t\phi)^{\nu}}{2^{\nu-1}\Gamma(\nu)} (2\sqrt{\tau}t\phi)^{\nu} \right] \\ 0 & \text{otherwise} \end{cases}$ $\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - (1+\phi t) \exp(-\phi t) \right] \end{cases}$
Matérn ($\nu=3/2$)	$C(t) = \begin{cases} \sigma^2 (1 + \phi t) \exp(-\phi t) \\ \tau^2 + \sigma^2 \end{cases}$	$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 [1 - (1 + \phi t) \exp(-\phi t)] \\ 0 \end{cases}$

Spherical semivariogram

Matérn

Perhaps the most important isotropic process is the Matérn process with covariance

$$C(t) = \begin{cases} \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (2\sqrt{\nu}t\phi)^{\nu} K_{\nu}(2\sqrt{\nu}t\phi) & t > 0\\ \tau^2 + \sigma^2 & t = 0 \end{cases}$$

and variogram

$$\gamma(t) = \left\{ \begin{array}{c} \tau^2 + \sigma^2 \left[1 - \frac{(2\sqrt{\nu}t\phi)^\nu}{2^{\nu-1}\Gamma(\nu)} K_\nu(2\sqrt{\nu}t\phi) \right] & t > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

where

- ν controls the smoothness of the spatial process ($\lfloor \nu \rfloor$ number of times process realizations are mean square differentiable) while
- ullet ϕ is a spatial scale parameter.

Special cases are the exponential $(\nu=1/2)$ and Gaussian $(\nu\to\infty)$.

Strong stationarity

Definition

A process Y(s) is strongly (or strictly) stationary if, for any set of $n \ge 1$ sites $\{s_1, \ldots, s_n\}$ and any $h \in \mathbb{R}^d$,

$$(Y(s_1), \dots, Y(s_n))^{\top} \stackrel{d}{=} (Y(s_1 + h), \dots, Y(s_n + h))^{\top}$$

where $\stackrel{d}{=}$ means equal in distribution.

If we assume all variances exist, then strong stationarity implies weak stationarity.

The reverse is not necessarily true.

Gaussian process

Definition

Y(s) is a Gaussian process if, for any $n \ge 1$ and any set of sites $\{s_1, \ldots, s_n\}$, $Y = (Y(s_1), \ldots, Y(s_n))^{\top}$ has a multivariate normal distribution.

For a Gaussian process, weak stationarity and strong stationarity are equivalent.

Bayesian estimation of Gaussian process parameters

Suppose we observe data at some locations s_1,\ldots,s_n . Collectively, we have $y=(y(s_1),\ldots,y(s_n))$. Let's assume the data arise from a Gaussian process and according to a particular covariance function. Collectively refer to the parameters as θ , then our objective is

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
.

Suppose we assume the Matérn covariance function and a common mean μ so that $\theta=(\mu,\nu,\phi,\tau^2,\sigma^2)$. Then we have

$$p(\mu, \nu, \phi, \tau^2, \sigma^2 | y) \propto N(y; \mu, \Sigma) p(\mu, \nu, \phi, \tau^2, \sigma^2)$$

where Σ is constructed from the parameters ν , ϕ , τ^2 , and σ^2 and the distances between locations, e.g. $||s_1 - s_2||$.

Consider point-referenced data at spatial locations s_1, \ldots, s_n , model this data as

$$Y(s) = \mu(s) + w(s) + \epsilon(s)$$

If we constrain ourselves to isotropic models, the Matérn class is suggested as a general tool (Banerjee pg. 37). If $w = (w(s_1), \dots, w(s_n))^{\top}$ and $\epsilon = (\epsilon(s_1), \dots, \epsilon(s_n))^{\top}$, then a general model is

$$Var[w] = \sigma^2 H(\phi)$$
 $Var[\epsilon] = \tau^2 I$

where H is a correlation matrix with $H_{ij} = \rho(s_i - s_j; \phi)$ and ρ is a valid isotropic correlation function on \mathbb{R}^r , i.e. Matérn:

$$\rho(u;\nu,\phi) = \frac{(u/\phi)^{\nu} K_{\nu}(u/\phi)}{2^{\nu-1} \Gamma(\nu)}$$

as defined in geoR:matern. The overall mean is modeled separately and uses covariates x(s) via

$$\mu(s) = x(s)^{\top} \beta.$$

Bayesian estimation for spatial random effects

Let $\theta=(\beta,\sigma^2,\tau^2,\phi)$, then parameter estimates may be obtained from the posterior distribution:

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

where

$$Y|\theta \sim N(X\beta, \sigma^2 H(\phi) + \tau^2 I).$$

Typically, independent priors are chosen so that

$$p(\theta) = p(\beta)p(\sigma^2)p(\tau^2)p(\phi).$$

As a general rule, non-informative priors can be chosen for β , e.g. $p(\beta) \propto 1$. However, improper (or vague proper) priors for the variance parameters can lead to improper (or computationally improper) posteriors.

Diameter at breast height (DBH) for an experimental forest

Interpolation of mean DBH (ignoring species)

Regression

```
## variog: computing omnidirectional variogram
## variofit: covariance model used is exponential
## variofit: weights used: equal
## variofit: minimisation function used: nls
##
## Call:
## lm(formula = DBH_cm ~ Species, data = d)
## Residuals:
             10 Median
      Min
                              30
                                     Max
## -78.423 -9.969 -3.561 10.924 118.277
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          89.423
                                     1.303 68.629 <2e-16 ***
## SpeciesGrand Fir
                       -51.598
                                     4.133 -12.483 <2e-16 ***
                     -5.873 15.744 -0.373 0.709
## SpeciesNoble Fir
## SpeciesSilver Fir
                    -68.347
                                 1.461 -46.784 <2e-16 ***
## SpeciesWestern Hemlock -48.062
                                     1.636 -29.377 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.19 on 1950 degrees of freedom
## Multiple R-squared: 0.5332, Adjusted R-squared: 0.5323
## F-statistic: 556.9 on 4 and 1950 DF, p-value: < 2.2e-16
```

Variogram (exponential model)

Isotropy?

spBayes

```
p = nlevels(d$Species)
r = spLM(DBH_cm ~ Species,
         data = d.
         coords = as.matrix(d[c('East_m','North_m')]),
         knots = c(6,6,.1),
         cov.model = 'exponential',
         starting = list(tau.sq = fit.DBH.resid$nugget,
                         sigma.sq = fit.DBH.resid$cov.pars[1],
                         phi = fit.DBH.resid$cov.pars[2]).
         tuning = list(tau.sq = 0.015,
                       sigma.sq = 0.015,
                       phi = 0.015).
         priors = list(beta.Norm=list(rep(0,p), diag(1000,p)),
                       phi.Unif = c(3/1,3/0.1),
                       sigma.sq.IG = c(2,200).
                       tau.sq.IG=c(3.300)),
         n.samples = 2000,
         n.report = 500,
         verbose=TRUE)
```

```
General model description
## Model fit with 1955 observations.
## Number of covariates 5 (including intercept if specified).
##
## Using the exponential spatial correlation model.
##
## Using modified predictive process with 36 knots.
##
## Number of MCMC samples 2000.
##
## Priors and hyperpriors:
   beta normal:
   mu: 0.000 0.000 0.000 0.000 0.000
   cov:
   1000.000 0.000 0.000 0.000 0.000
   0.000 1000.000 0.000 0.000 0.000
   0.000 0.000 1000.000 0.000 0.000
   0.000 0.000 0.000 1000.000 0.000
   0.000 0.000 0.000 0.000 1000.000
##
   sigma.sq IG hyperpriors shape=2.00000 and scale=200.00000
   tau.sq IG hyperpriors shape=3.00000 and scale=300.00000
   phi Unif hyperpriors a=3.00000 and b=30.00000
##
   Sampling
## Sampled: 500 of 2000, 25.00%
## Report interval Metrop. Acceptance rate: 38.40%
## Overall Metrop. Acceptance rate: 38.40%
## Sampled: 1000 of 2000, 50.00%
## Report interval Metrop. Acceptance rate: 36.00%
```

Traceplots

Traceplot 2s

Trace of (Intercept)

Trace of SpeciesNoble Fir

Trace of SpeciesWestern Hemlock

Trace of SpeciesGrand Fir

Trace of SpeciesSilver Fir

Summary statistics

```
##
## Iterations = 1:2000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 2000
## 1. Empirical mean and standard deviation for each variable,
     plus standard error of the mean:
##
##
                       SD Naive SE Time-series SE
             Mean
## sigma.sq 273.22 114.234 2.55434
                                          43.210
## tau.sq 217.41 113.562 2.53932
                                        45.843
        11.16 4.076 0.09113
                                         1.735
## phi
##
## 2. Quantiles for each variable:
##
             2.5%
                      25%
                             50%
                                   75% 97.5%
##
## sigma.sq 80.202 179.210 277.39 378.38 441.30
## tau.sq 57.521 112.004 210.19 309.94 416.81
## phi 4.954 7.375 11.38 14.56 18.24
```

Summary statistics 2

```
##
## Iterations = 1:2000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 2000
##
  1. Empirical mean and standard deviation for each variable,
##
     plus standard error of the mean:
##
##
                                    SD Naive SE Time-series SE
                           Mean
## (Intercept)
                        89.012 1.274 0.02849
                                                      0.02849
## SpeciesGrand Fir -50.400 4.233 0.09466
                                                      0.09466
## SpeciesNoble Fir -4.725 13.977 0.31253
                                                      0.31253
## SpeciesSilver Fir
                    -67.903 1.465 0.03275
                                                      0.03275
## SpeciesWestern Hemlock -47.604 1.659 0.03709
                                                      0.03709
##
## 2. Quantiles for each variable:
##
##
                          2.5%
                                  25%
                                          50%
                                                 75% 97.5%
## (Intercept)
                        86.55 88.14 88.985 89.865 91.55
## SpeciesGrand Fir
                      -58.64 -53.20 -50.360 -47.567 -41.90
                     -31.79 -14.32 -4.826 4.684 22.18
## SpeciesNoble Fir
                   -70.86 -68.85 -67.881 -66.955 -65.16
## SpeciesSilver Fir
## SpeciesWestern Hemlock -50.77 -48.72 -47.625 -46.478 -44.48
```

Spatial surface

If interest resides in \boldsymbol{w} , draws can be obtained using the following relationship

$$p(w|y) = \int p(w|\sigma^2, \phi)p(\sigma^2, \phi|y)d\sigma^2d\phi$$

which suggests the following strategy:

- 1. Run the MCMC sampler to obtain draws $(\sigma^2, \phi)^{(g)} \sim p(\sigma^2, \phi|y)$
- 2. After burn-in and for $g=1,\ldots,G$, sample $w^{(g)}\sim p(w|(\sigma^2,\phi)^{(g)}).$

Prediction

For prediction at points s_{01},\ldots,s_{0m} and denoting $Y_0=(Y(s_{01}),\ldots,Y(s_{0m}))^{\top}$ and design matrix X_0 having rows $x(s_{0j})^{\top}$, the following relationship

$$p(y_0|y, X, X_0) = \int p(y_0|y, \theta, X_0) p(\theta|y, X) d\theta \approx \frac{1}{G} \sum_{g=1}^{G} p(y_0|y, \theta^{(g)}, X_0).$$

It is more common to take draws $y_0^{(g)} \sim p(y_0|y,\theta^{(g)},X_0)$ and estimate the predictive distribution using

$$p(y_0|y, X_0) \approx \frac{1}{G} \sum_{g=1}^{G} \delta_{y_0^{(g)}}$$

where $p(y_0|y,\theta,X_0)$ has a conditional normal distribution.

Predictions are not conditionally independent

Consider the joint distribution for y and $y_0=y(s_0)$ (a scalar for simplicity), then

$$\left(\begin{array}{c} y \\ y_0 \end{array}\right) \sim N\left(\left[\begin{array}{c} X\beta \\ X_0\beta \end{array}\right], \left[\begin{array}{cc} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{array}\right]\right)$$

where

$$\Omega_{11} = \sigma^{2} H(\phi) + \tau^{2} \mathbf{I}
\Omega_{22} = \sigma^{2} + \tau^{2}
\Omega_{12}^{\top} = \sigma^{2} (\rho(d_{01}; \phi), \dots, \rho(d_{0n}; \phi))$$

and $d_{ij} = ||s_i - s_j||$.

Thus $y_0|y,\theta,X,X_0$ is normal with

$$\begin{array}{ll} E[Y(s_0)|y,\theta,X,X_0] &= x_0^\top \beta + \Omega_{12}^\top \Omega_{22}^{-1}(y - X\beta) \\ V[Y(s_0)|y,\theta,X,X_0] &= \sigma^2 + \tau^2 - \Omega_{12}^\top \Omega_{22}^{-1} \Omega_{12} \end{array}$$

Generalized linear spatial modeling

Let Y(s) be the response of interest with

$$E[Y(s)] = g^{-1}(x(s)^{\top}\beta + w(s))$$

where w(s) is our spatial random effect.

For example, Poisson regression

$$Y(s) \sim Po(e^{x(s)^{\top}\beta + w(s)}).$$

For GLMs (other than linear models), w(s) cannot be integrated out and therefore a common MCMC strategy is

- 1. Sample $\beta | \dots$
- 2. Sample $w | \dots$
- 3. Sample $\theta | \dots$ (the spatial parameters [no nugget]).

Choropleth

MN Lung Cancer SMR

Modeling areal units

Let Y_i represent the SMR for lung cancer in MN county i. Consider the model defined by conditional distributions:

$$Y_i|y_{-i} \sim N\left(\sum_{j \in n_i} y_j/m_i, \tau^2/m_i\right)$$

where

- n_i indicates the neighbors of i
- ullet m_i indicates the number of neighbors for i

This defines a Markov Random Field.

Brook's Lemma

It is clear that given $p(y_1, \ldots, y_n)$, the *full conditionals*, i.e. $p(y_i|y_{-i})$, are determined.

Definition

Brook's Lemma states that

$$\frac{p(y_1,\ldots,y_n)}{p(y_1',\ldots,y_n')} = \frac{p(y_1|y_2,\ldots,y_n)}{p(y_1'|y_2,\ldots,y_n)} \cdot \frac{p(y_2|y_1',y_3,\ldots,y_n)}{p(y_2'|y_1',y_3,\ldots,y_n)} \cdot \cdot \cdot \frac{p(y_n|y_1',\ldots,y_{n-1}')}{p(y_n'|y_1',\ldots,y_{n-1}')}$$

for all (y'_1,\ldots,y'_n) .

lf

$$p(y_1',\ldots,y_n') = \int \frac{p(y_1|y_2,\ldots,y_n)}{p(y_1'|y_2,\ldots,y_n)} \cdot \frac{p(y_2|y_1',y_3,\ldots,y_n)}{p(y_2'|y_1',y_3,\ldots,y_n)} \cdots \frac{p(y_n|y_1',\ldots,y_{n-1}')}{p(y_n'|y_1',\ldots,y_{n-1}')} dy_1,\ldots,dy_n < \infty$$

then $p(y_1, \ldots, y_n)$ is a proper joint distribution.

Conditionally autoregressive models

More generally, we can consider

$$Y_i|y_{-i} \sim N\left(\sum_{j \neq i} b_{ij}y_j, \tau_i^2\right)$$

Through Brook's Lemma, we have

$$p(y_1, \dots, y_n) \propto \exp\left(-\frac{1}{2}y^{\top}D^{-1}[\mathbf{I} - B]y\right)$$

where

- ullet B has elements b_{ij}
- D is diagonal with elements τ_i^2

In order for $D^{-1}[I-B]$ to be symmetric, we need $\frac{b_{ij}}{\tau_i^2}=\frac{b_{ji}}{\tau_j^2}$ for all i,j.

Proximity matrix

Definition

A proximity matrix is a an $n \times n$ matrix, W, with elements

- $w_{ii} = 0$ and
- ullet w_{ij} representing the "distance" between unit i and unit j

Common choices for w_{ij} are

- 1 if i is a neighbor of j and 0 otherwise
 - neighbors defined by those who share an edge
 - neighbors defined by those who share a point
 - ullet neighbors defined by those who are within distance δ
 - K-nearest neighbors
- "distance"
 - inverse intercentroidal distance
 - inverse minimum distance plus c

Intrinsicially autoregressive model

Recall

$$p(y_1, \dots, y_n) \propto \exp\left(-\frac{1}{2}y^{\top}D^{-1}[I - B]y\right)$$

if we set $w_{i+}=\sum_{j=1}^n w_{ij}$, $b_{ij}=w_{ij}/w_{i+}$, and $\tau_i^2=\tau^2/w_{i+}$, we have

$$p(y_1, \dots, y_n) \propto \exp\left(-\frac{1}{2\tau^2}y^{\top}[D_w - W]y\right)$$

where

- W is our proximity matrix and
- D_w has diagonal elements w_{i+}

This can be rewritten as

$$p(y_1, \dots, y_n) \propto \exp\left(-\frac{1}{2\tau^2} \sum_{i \neq j} w_{ij} (y_i - y_j)^2\right)$$

This is called the *intrinsically autoregressive* model.

Proper CAR models

To make this proper,

$$p(y_1, \dots, y_n) \propto \exp\left(-\frac{1}{2\tau^2}y^{\top}[D_w - \rho W]y\right)$$

with

- $\rho \in (1/\lambda_{(n)}, 1/\lambda_{(1)})$ where
- $\lambda_{(1)} < \cdots < \lambda_{(n)}$ are the ordered eigenvalues of $D_w^{-1/2} W D_w^{-1/2}$.

The full conditionals are

$$Y_i|y_{-i} \sim N\left(\rho \sum_{j \neq i} w_{ij}y_j/w_{i+}, \tau^2/w_{i+}\right)$$

a reasonable prior for ρ should put most of its mass near 1.

Dealing with ρ

- Choose ρ so the CAR model is proper
- Choose $\rho = 1$ (improper IAR model) and constrain $\sum_{i=1}^{n} Y_i = 0$
- \bullet Choose $\rho=1$ and estimate a mean (remove mean from the fixed effect)
- Let $\rho \sim Be(18,2)$ (Banerjee pg 164) and estimate it.

CAR as a model for random effects

Let

- ullet Y_i represent the (continuous) response for observation i
- ullet X_i represent explanatory variables for observation i
- ullet s[i] represent the areal unit for observation i

then a possible model is

$$Y_i = X_i^{\top} \beta + \omega_{s[i]} + \epsilon_i$$

where

- $\epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2)$ is noise
- ullet ω_s is the spatial random effect associated with areal unit s, e.g.

$$p(\omega_1, \dots, \omega_S) \propto \exp\left(-\frac{1}{2\tau^2}\omega^{\top}[D_w - \rho W]\omega\right)$$

Housing price model

Let

- ullet Y_i be the logarithm of the median home price in each Intermediate Geography (IG) to the north of the river Clude in the Greater Glasgow and Clyde health board,
- use explanatory variables
 - crime: crime rate (number of crimes per 10,000 people) in each IG (logged),
 - rooms: median number of rooms in a property in each IG,
 - type: predominant property type in each IG with levels: detached, flat, semi, terrace.
 - sales: percentage of properties that sold in each IG in a year, and
 - driveshop: average time taken to drive to a shopping centre in minutes (logged).

Housing price model

Assume

$$Y_i \stackrel{ind}{\sim} N(X_i\beta + \omega_i, \nu^2)$$

or, alternatively,

$$Y_i = X_\beta + \omega_i + \epsilon_i$$

where

- ullet eta are the regression parameters,
- $m{\omega}_i$ are assumed to come from an intrinsic CAR model with proximity matrix indicating those regions that share a border, and
- $\epsilon_i \stackrel{ind}{\sim} N(0, \nu^2)$.

```
propertydata.spatial@data$logprice <- log(propertydata.spatial@data$price)</pre>
propertydata.spatial@data$logdriveshop <- log(propertydata.spatial@data$driveshop)
### code chunk number 9: CARBayes.Rnw:495-498
library(splines)
form <- logprice~ns(crime,3)+rooms+sales+factor(type) + logdriveshop</pre>
model <- lm(formula=form, data=propertydata,spatial@data)
### code chunk number 10: CARBayes.Rnw:505-510
library(spdep)
W.nb <- poly2nb(propertydata.spatial, row.names = rownames(propertydata.spatial@data))
W.list <- nb2listw(W.nb, style="B")
resid.model <- residuals(model)
moran.mc(x=resid.model, listw=W.list, nsim=1000)
##
  Monte-Carlo simulation of Moran I
##
## data: resid model
## weights: W.list
## number of simulations + 1: 1001
##
## statistic = 0.2733, observed rank = 1001, p-value = 0.000999
## alternative hypothesis: greater
```

```
##
## Call:
## lm(formula = form, data = propertydata,spatial@data)
##
## Residuals:
       Min
                10 Median
                                  30
                                         Max
## -0.91319 -0.15992 0.00136 0.15647 0.81675
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                     4.436135
                                0.157971 28.082 < 2e-16 ***
## (Intercept)
## ns(crime, 3)1
                    -0.358967 0.089006 -4.033 7.24e-05 ***
## ns(crime, 3)2
                    -0.617084 0.165152 -3.736 0.000229 ***
                    -0.299454 0.126516 -2.367 0.018670 *
## ns(crime, 3)3
                     ## rooms
                                0.000362 5.619 4.93e-08 ***
## sales
                    0.002034
## factor(type)flat
                  -0.215967 0.066412 -3.252 0.001298 **
## factor(type)semi
                    -0.153610 0.057750 -2.660 0.008301 **
## factor(type)terrace -0.280023   0.072634   -3.855   0.000146 ***
## logdriveshop
                     -0.089084
                                 0.025588 -3.482 0.000585 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2243 on 260 degrees of freedom
## Multiple R-squared: 0.6206, Adjusted R-squared: 0.6075
## F-statistic: 47.26 on 9 and 260 DF, p-value: < 2.2e-16
```