НИУ ИТМО Факультет программной инженерии и компьютерных технологий

Отчет по ла	бораторной	работе №2)

по дисциплине Вычислительная математика

Студент группы № Р32151 Преподаватель

Шипулин Павел Андреевич Машина Екатерина Алексеевна

Санкт-Петербург

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Порядок выполнения

Функция, интервалы изоляции корней и методы для поиска корней, согласно варианту указаны ниже.

$$f(x) = x^3 + 4.81x^2 - 17.37x + 5.38$$

Рисунок 1. График функции целиком

Рисунок 2. График функции, другой масштаб

Интервалы изоляции корней (по графику функции):

- 1) (-8, -7)
- 2) (0,1)
- 3) (2,3)

Методы для корней:

- 1) метод простой итерации;
- 2) метод хорд;
- 3) метод Ньютона.

№ шага	x_k	x_{k+1}	$f(x_k)$	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	-7,000	-7,316	19,660	-1,644	0,316
2	-7,316	-7,289	-1,644	0,266	0,026
3	-7,289	-7,293	0,266	-0,041	0,004
4	-7,293	-7,293	-0,041	0,006	0,001
5	-7,293	-7,293	0,006	-0,001	0,000
6	-7,293	-7,293	-0,001	0,000	0,000
7	-7,293	-7,293	0,000	0,000	0,000
8	-7,293	-7,293	0,000	0,000	0,000
9	-7,293	-7,293	0,000	0,000	0,000

Таблица 1. Метод простой итерации для поиска 1-го корня.

№ шага	а	b	x	f(a)	f(b)	f(x)	a-b
1	0,000	1,000	0,465	5,380	-6,180	-1,561	1,000
2	0,000	0,465	0,361	5,380	-1,561	-0,213	0,465
3	0,000	0,361	0,347	5,380	-0,213	-0,026	0,361
4	0,000	0,347	0,345	5,380	-0,026	-0,003	0,347
5	0,000	0,345	0,345	5,380	-0,003	0,000	0,345
6	0,000	0,345	0,345	5,380	0,000	0,000	0,345
7	0,000	0,345	0,345	5,380	0,000	0,000	0,345
8	0,000	0,345	0,345	5,380	0,000	0,000	0,345
9	0,000	0,345	0,345	5,380	0,000	0,000	0,345

Таблица 2. Метод хорд для поиска 2-го корня.

№ шага	x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_{k+1}-x_k $
1	3,000	23,560	38,490	2,388	0,612
2	2,388	4,945	22,708	2,170	0,218
3	2,170	0,557	17,635	2,139	0,032
4	2,139	0,011	16,922	2,138	0,001
5	2,138	0,000	16,907	2,138	0,000
6	2,138	0,000	16,907	2,138	0,000
7	2,138	0,000	16,907	2,138	0,000
8	2,138	0,000	16,907	2,138	0,000
9	2,138	0,000	16,907	2,138	0,000

Таблица 3. Метод Ньютона для поиска 3-го корня.

Код численных методов

Для уравнений

```
b=0.0, epsilon=0.001):
    result = Table(head=["Homep mara", "x k", "x k+1", "f(x k+1)"])
        x2 = \overline{phi}(x1)
```

Для систем из 2-х уравнений

```
def cramer(a11, a12, b1, a21, a22, b2):
    det_a = a11 * a22 - a12 * a21
    det_x = b1 * a22 - a12 * b2
    det_y = a11 * b2 - b1 * a21

    return det_x / det_a, det_y / det_a

def newton_method(f, df_dx, df_dy, g, dg_dx, dg_dy, x, y, epsilon=0.01):
    result = Table(head=["Homep mara", "x_k", "y_k", "-f(x_k, y_k)", "-g(x_k, y_k)", "dx", "dy"])

    dx = 1
    dy = 1
    iters_count = 0

while ((abs(dx) > epsilon) or (abs(dy) > epsilon)) and (abs(x) < 1000000)
and (abs(y) < 1000000):
    dx, dy = cramer(
        df_dx(x, y), df_dy(x, y), -f(x, y),
        dg_dx(x, y), dg_dy(x, y), -g(x, y)
    )

    x += dx
    y += dy
    iters_count += 1
    result.add_row([iters_count, x, y, -f(x, y), -g(x, y), dx, dy])

return result</pre>
```

Примеры работы

Пример 1

```
[Info]: Введите комманду:
lab2_one
[Input]: lab2_one
[Info]: Уравнения для исследования
[Info]:
+----+
| Номер | Уравнение |
+----+
```

```
| 1 | 5*cos(x) + x |
+-----+
| 2 | x**4 + 6.64x**3 - 15.12x**2 - 55.79x + 63.9 |
+-----+
| 3 | ln[(x*sin(x))**2 + cos(x)**2 - 0.5] |
+-----+
```

3

[Input]: 3


```
[Info]: Введите первую границу интервала:
```

1

[Input]: 1

[Info]: Введите вторую границу интервала:

2

[Input]: 2

```
[Info]: На интервале 1 корень
[Info]: Метод половинного деления:
+----+
| Номер шага | a | b | x | f(x) |
+----+
     1 | 1.000 | 2.000 | 1.500 | 0.556 |
+----+
     2 | 1.000 | 1.500 | 1.250 | 0.007 |
+----+
     3 | 1.000 | 1.250 | 1.125 | -0.334 |
+----+
     4 | 1.125 | 1.250 | 1.188 | -0.159 |
+----+
     5 | 1.188 | 1.250 | 1.219 | -0.075 |
+----+
    6 | 1.219 | 1.250 | 1.234 | -0.034 |
+----+
     7 | 1.234 | 1.250 | 1.242 | -0.014 |
+----+
     8 | 1.242 | 1.250 | 1.246 | -0.004 |
+----+
     9 | 1.246 | 1.250 | 1.248 | 0.002 |
+----+
    10 | 1.246 | 1.248 | 1.247 | -0.001 |
+----+
[Info]: Метод секущих:
+----+
| Номер шага | x_k-1 | x_k | x_k+1 | f(x_k+1) |
```

+----+

[Info]: Рассматриваемый интервал: [1.0; 2.0]

+									0.334
I	2		2.000	I	1.388	I	1.119		-0.352
+	3		1.388	I	1.119	I	1.257		0.024
	4		1.119	I	1.257	I	1.248		0.001
+	5	I	1.257	I	1.248	I	1.247		-0.000
+		+-		-+-		-+-		+	
[Info]: Me			_		_				
+		+-		-+-		-+-			
+	 га	+-	x_k	-+-	x_k+1	-+-	f(x_k+	-1)	I
+ Номер ша +	га 1	+-	x_k 2.000	-+·	x_k+1 1.623	-+·	f(x_k+	-1) 	 -+
+ Номер ша +	га 1	+-	x_k 2.000	-+·	x_k+1 1.623	-+·	f(x_k+	-1) 	 -+
+	га 1 	+-	x_k 2.000	-+·	x_k+1 1.623 1.361	-+- -+- 	f(x_k+	-1) /55 	 -+ -+
+	 ra 1 2	+- +- +-	x_k 2.000 1.623	-+- -+-	x_k+1 1.623 1.361	-+-	f(x_k+		 -+ -+ +
+	ra 1 2 3	+- +- +-	x_k 2.000 1.623 1.361	-+·	x_k+1 1.623 1.361 1.266	-+·	f(x_k+ 0.7 0.2	755 755 755 75	 -+ + +
+	ra 1 2 3	+-	x_k 2.000 1.623 1.361	-+·	x_k+1 1.623 1.361 1.266	-+- -+- -+-	f(x_k+ 0.7 0.2	755 755 755 75	 -+ -+ +

5 | 1.250 | 1.248 | 0.001 |

+----+

[Info]: Лабораторная 2 (нелинейное уравнение) завершилась

Пример 2

+----+

```
| 3 | x**2 + y**2 - 4 = 0 |
| -3 * x ** 2 + y = 0 |
+-----+
```

[Input]: 1


```
[Info]: Проверка решений:

3.312**2 / 16 + -0.561**2 / 1 - 1 = 0.000

3.312*sin(3.312) - -0.561 = -0.000
```


[Info]: Лабораторная 2 (система функций) завершилась

Выводы

Познакомился с численными методами поиска корней нелинейных уравнений вида f(x) = 0 и систем 2-х нелинейных уравнений. Изученные

методы: метод простой итерации, метод хорд, метод Ньютона (для уравнений), метод Ньютона (для систем из 2-х уравнений).