ANALYTICS EXPERIENCE 2018

Sept. 17-19 | San Diego

Customer Lifetime Value via SAS® Viya®

David C. Ogden, Advisory Analytical Consultant, SAS Institute

A Bit of Terminology

Wikipedia, as of September 2018:

In marketing, **customer lifetime value** (CLV or often CLTV), lifetime customer value (LCV), or life-time value (LTV) is a prediction of the net profit attributed to the entire future relationship with a customer. The prediction model can have varying levels of sophistication and accuracy, ranging from a crude heuristic to the use of complex predictive analytics techniques.

For the most part, I like this definition. Though, I do wish it mentioned the notion of historical value. And I personally would not preface this with "in marketing" alone.

The Gist

- Customer Lifetime Value (CLV) implementations can be complex, leading to "analysis paralysis".
- This presentation provides a few "best practices" for how to structure your CLV project.
- SAS® Viya® makes CLV modeling and analysis easier.
- The end result gets you closer to managing customer value.

Outline of Today's Talk

- Motivating the need for CLV.
- Implementing CLV.
- Using CLV output.
- Demo of CLV implemented via SAS® Viya®.

Outline of Today's Talk

- Motivating the need for CLV.
- Implementing CLV.
- Using CLV output.

If you aren't making data-driven decisions, then you aren't keeping up with your competition.

Demo of CLV implemented via SAS[®] Viya[®].

Quote-worthy

"In God we trust. All others bring data."

W. Edwards Deming

The Impetus

- Who are my best customers?
- How do I keep my best customers?
- How do I acquire more of the best customers?
- How do I make my existing customers better?

How do I use an understanding of customer value to make economically sound decisions... in marketing, sales, financial planning, operations, customer service, process improvements, etc.

CLV 101

Outline of Today's Talk

- Motivating the need for CLV.
- Implementing CLV.
- Using CLV output.

Collecting all the requisite data may be the most time-consuming part of any CLV project. This presentation does not cover the data requirements for a successful CLV project.

• Demo of CLV implemented via SAS® Viya®.

CLV 201

Predictive Modeling:

- Retention Likelihood
- Monetary Value

Financial Acumen:

- Customer Profitability

future scenarios

- Value-oriented Actions
- Managing the Future

CLV Step-by-Step

- 1. Pick an approach for calculating future value.
 - Financial acumen and mathematical formulas. (braving your fears)
- 2. Calculate historical customer profitability.
 - You can't predict it if you can't measure it. (accepting imperfection)
- 3. Build the predictive models that provide inputs to future value calcs.
 - All models are wrong; yet some happen to be useful. (gaining insights)
- 4. Use the CLV output to make value-oriented business decisions.
 - Believing in what you built, and actually using it. (walking the walk)

Pick Your Formula

$$CLV = CHV + CFV$$

$$CFV_j \rightarrow m_j \left(\frac{1 - c_j}{d + c_j} \right)$$

$$CFV_{j} = \sum_{t=1}^{k} \frac{m_{jt}}{(1+d)^{t}}$$

$$CFV_j \approx \sum_{t=1}^{T} m_{jt} * \frac{r_{jt}}{(1+d)^t}$$

$$CHV_{j} = A_{j} * (1+r)^{M} + \sum_{t=0}^{M} m_{jt} * (1+r)^{t}$$

$$CFV_{j} = \sum_{t=1}^{T_{j}} m_{jt} * \frac{r_{jt}}{(1+d)^{t}} + V_{j}$$

$$V_{j} = M_{j} \left(\frac{1-C_{j}}{d+C_{j}}\right) \left(\frac{1-C_{j}}{1+d}\right)^{T_{j}}$$

Your presenter welcomes a deep dive discussion into the various options for calculating CLV.

That's just how geeky he is.

$$CLV^{k} = \sum_{t=0}^{T} \frac{E_{t}^{k} - A_{t}^{k}}{(1+i)^{t}} = (E_{0}^{k} - A_{0}^{k}) + \frac{E_{1}^{k} - A_{1}^{k}}{(1+i)^{1}} + \dots + \frac{E_{T}^{k} - A_{T}^{k}}{(1+i)^{T}}$$

The formula you pick is based on the modeling approach you use, and vice versa.

Quote-worthy

"Beware of geeks bearing formulas."

Warren Buffett

Calculate Historical Customer Profitability

- An accurate history of customer-specific margins is the first critical component to an accurate projection of future value.
- The degree of accuracy and sophistication is a critical consideration in your CLV project, and depends primarily on two key factors:
 - 1. How much time do you have to work on this project?
 - 2. How will the output be used? Basic ranking for marketing lists? Strategic investment planning?
- Whatever you do, please don't simply use revenue as your measure of monetary value. *Please*.

The accuracy of customer-specific margins is as complicated as you want to make it. In order to get a CLV project off-the-ground, *some* "corners must be cut".

Build Predictive Models

- Option 1: The Game Theory Approach
 - Churn Model predicts future probabilities (time series) of retention.
 - Monetary Model predicts future cash, given retention.
- Option 2: The Survival Approach
 - Survival Model predicts remaining "life".
 - · Monetary Model predicts customer value over remaining "life".
- Option 3: The Transactional Approach
 - Predict future transaction counts based on transactional history.
 - Monetary Model predicts value of future transactions.

Within each of these options, there are a variety of modeling techniques.

Each of these options requires history of customer data.

Each option leads to a different math for calculating future value.

And now for the hard part...

Outline of Today's Talk

- Motivating the need for CLV.
- Implementing CLV.
- Using CLV output.

Believing in what you built. Knowing how to use it. Knowing how *not* to use it.

Convincing others to actually use it.

Demo of CLV implemented via SAS[®] Viya[®].

Quote-worthy

"Back off, man! I'm a scientist!"

Peter Venkman "Ghostbusters" (1984)

Two Cardinal Rules for Using CLV Output

- 1. First and foremost, *understand the mechanics* of what drives future value.
- 2. Focus on increasing the future value of your customers. It's not about labeling customers...it's about *managing the future*.

Use Case: Rental Car Company

Key challenge:

Over 50% of customers had only one transaction within the last 24 months.

Approach:

- Build CLV model based on frequent and infrequent transactors.
- Build look-alike model to determine which infrequent transactors *look like* they are really high-CLV (but are probably doing a majority of their business elsewhere).
- Target infrequent transactors with a strategy to gain share-of-wallet.

Outcome:

 New strategy to target not only the frequent transactors for loyalty membership conversion, but to also target infrequent transactors based on a "CLV look-alike" segmentation.

Use Case: Video Entertainment (stores vs online)

Key challenge:

- Video chain launches DVD distribution via web & postal mail; pressure from online competitor.
- Executives disagree on the best investments: build more brick-and-mortar locations? ramp-up in-store coupons? more distribution centers? increase online inventory? more advertising?

Approach:

- Build macro CLV models, by geography by time (metrics for both online & conventional business).
- Quantify incremental customer equity as a result of various strategic investment scenarios.

Outcome (recommendations to executives):

- completely cancel the in-store coupon program;
- invest heavily in online inventory;
- fund the online inventory by closing 10% of brick-and-mortar stores.

Recommendations presented in 2007. Executives opted to ignore. Company filed bankruptcy in 2010.

Third Cardinal Rule for Using CLV Output

3. Avoid the "death spiral":

Consider this scenario:

- churn = f (trend in purchases, customer service calls, etc)
- margin = f (product portfolio, customer service calls, etc)
- CLV calculated from predicted churn & margin; converted to a simple four-star rating system.
- 3- and 4-star customers are given priority customer service. 1- and 2-star customers are given less than stellar customer service (higher wait times, routing to junior reps, etc).
- New cable box model sent out; one that (unfortunately for the customers) has a lot of technical issues...resulting in many calls to customer service to report issues.
- Over the next few months, customers are calling and complaining. Those calls result in a
 higher predicted churn, and a lower predicted margin. CLV is decreasing for anyone calling
 customer service repeatedly. As their CLV decreases, 3- and 4-star customers become 1- and
 2-star customers. Which causes their customer service experience to get worse.

Outline of Today's Talk

- Motivating the need for CLV.
- Implementing CLV.
- Using CLV output.

This short demo is just a taste of the capabilities in SAS® Viya®.

If you'd like more information, please come visit the Innovation Hub.

Demo of CLV implemented via SAS® Viya®.

VDMML – Model Studio pipeline

VDMML – Model Results

VDMML – Model Comparison

Model Comparison

Champion	Name	Algorithm Name	KS (Youden)	Misclassification Rate
Я	Tree autotune	Decision Tree	0.7108	0.1260
	Gradient Boosting	Gradient Boosting	0.7106	0.1273
	Forest	Forest	0.7094	0.1296
	Decision Tree	Decision Tree	0.6985	0.1296
	Logistic - forward	Logistic Regression	0.6752	0.1377

VDMML – Model Studio pipeline

<u> </u>	PIPC		
Parameter	t Value	Sign	Estimate
purch_amt_36mo	145.0513	+	0.3463
margin_Y_neg_2	52.4841	-	-0.3683
marg_expctd_ann_v1	36.1631	+	0.5193
purch_amt_life	27.3699	-	-0.0089
purch_cnt_tt_36mo	25.0602	-	-10.0535
purch_avg_36mo	21.6906	-	-0.2052
tier_prev 5-Diamond	16.7459	+	1,018.6807
call_out_mo_36mo	16.4595	-	-31.1185
scheduled_purchase_flg 0	16.2271	-	-179.2938
IMP_demog_inc_fine \$ 250000 or more	15.4262	+	1,157.2779
Intercept	13.8637	+	661.7029
tier_prev 3-Gold	13.3006	+	358.9913
purch_cnt_ck_36mo	11.1002	+	4.6746
call_in_mo_36mo	10.7695	-	-0.8586
tier 4-Platinum	10.4303	-	-470.0420
margin_Y_neg_1	10.3733	+	0.0657
tier_prev 4-Platinum	8.0992	+	354.3811
tier 1-Bronze	7.5375	-	-336.4402
tier 3-Gold	7.3222	-	-329.0016
tier 2-Silver	7.3114	-	-330.5600
tier_prev 2-Silver	5.9123	+	119.9580
tier_prev 1-Bronze	4.4527	+	60.6102
IMP_demog_inc_fine \$ 150000 - \$174999	1.6537	+	79.6605
IMP_demog_inc_fine \$ 200000 - \$249999	1.2222	+	98.3359
IMP_demog_inc_fine \$ 125000 - \$149999	1.0886	+	30.0934
IMP_demog_inc_fine \$ 15000 - \$ 19999	0.8976	-	-17.6690
IMP_demog_inc_fine \$ 40000 - \$ 49999	0.7736	+	13.7450

Develop SAS Code – SAS Studio


```
⊖ data public.CLV SCORED;
35
           merge work.original
36
                 work.churn scored
37
                 work.margin scored:
38
           by acct ID:
39
40
           format CFV dollar12.2:
41
42
           array P churn (3) ;
43
           array P margin (3);
44
45
           do i = 1 to 3:
46
              P churn (i) = 1- (1-P churn year plus1 ind1)**i;
47
48
           *** since the margin model is based only on future non-churners
49
                   the predicted values need to be adjusted per the risk of churn
50
           *** Note: we are using the same margin in each future year, but a cumulative retention risk ***:
51
52
              P margin (i) = (1-P \text{ churn } (i))*(P \text{ margin } Y \text{ pos } 1);
53
54
           end:
55
56
          CFV = P margin 1/((1+\&annual\ discount)^{**1}) + P margin 2/((1+\&annual\ discount)^{**2}) + P margin 3/((1+\&annual\ discount)^{**3});
57
        run:
58
59
     ⊖ proc casutil;
60
        promote casdata="CLV SCORED"
61
        Incaslib="public" Outcaslib="public" CASOUT="CLV SCORED";
62
        run;
63
```


VA – Explore and Visualize Data

VA – Explore and Visualize Data

VA – Explore and Visualize Data

Customer Future Value

Own or Rent the Residence	Annual Churn Probability	Future Annual Margin
	32%	\$314
Definite Owner (any type dwelling unit)	23%	\$470
Definite Renter	28%	\$280
Probable Owner (any type dwelling unit)	29%	\$388
Probable Renter	34%	\$245

Food for Thought

A client once asked me, "In testing CLV, what is the percentage correct for the dollar-values assigned to customers? How often are the numbers right?"

The answer: "Zero percent. But that's OK. You can still use it to make better decisions."

Is CLV the end-all-be-all measure?

Think beyond customer-specific cashflow.

Example: Social Media Influencers.

Questions?

Don't forget to complete the session survey in your conference mobile app.

- 1. Go to the Agenda icon in the conference app.
- Find this session title and select it.
- 3. On the Sessions page, scroll down to Surveys and select the name of the survey.
- 4. Complete the survey and click Finish.

