CSC411 - A3

YUHENG HUANG Dec 2017

I. 20 Newsgroups predictions report:

1. Bernoulli Naive Bayes (Baseline):

Accuracy on training set: **0.5987272405868835**

Accuracy on test set: **0.4579129049389272**

2. Multinomial Naive Bayes:

Accuracy on training set: **0.9589004772847799**

Accuracy on test set: 0.7002124269782263 (best performance)

Alpha: 0.01

Q: how to pick the hyperparameter Alpha:

A: I use cross validation (*kfold = 10*) to pick the best hyperparameter alpha for Multinomial Naive Bayes. First, I select alpha's range from **0.01** to **1**, and then I uniformly random generate 100 samples of alpha.

Second, I put all those 100-different alphas into cross validation and then calculate its mean score (cross validation will return me 10 scores for each alpha). After I get 100 mean scores, I will pick the highest score as the

best hyperparameter alpha.

Q: Why I pick this method?

A: Because the classifier that we are going to create is 20 classes classifier, I think it is not belong to Bernoulli, but Multinomial. Therefore, I decide to try Multinomial Naïve Bayes, and they work just as I thought,

much better than Bernoulli Naive Bayes.

*For detail, please visit q1.py

3. Linear SVM Classifier:

Accuracy on training set: **0.9671203818278239**

Accuracy on test set: 0.6972915560276155

C: **0.53**

how to pick the hyperparameter C:

I use cross validation *(kfold = 5)* to pick the best hyperparameter **C** for Linear SVM Classifier. First, I select alpha's range from **0.01 to 3**, and then I uniformly random generate 10 samples of alpha. Second, I put all those 10-different C into cross validation and then calculate its mean score (cross validation will return me 5 scores for each C). After I get 10 mean scores, I will pick the highest score as the best hyperparameter C.

Q: Why I pick this method?

A: SVM is very Effective in high dimensional spaces, so I decide to give it a try. And the result is not bad too, just like what I expected. However, the training process is a little bit long.

*For detail, please visit q1.py

4. Logistic Regression:

Accuracy on training set: 0.9399858582287431

Accuracy on test set: 0.6836165693043016

C: 2.19

how to pick the hyperparameter C:

I use cross validation (kfold = 5) to pick the best hyperparameter C for

Logistic Regression Classifier. First, I select alpha's range from **0.01 to 3**,

and then I uniformly random generate 10 samples of alpha. Second, I put

all those 10-different C into cross validation and then calculate its mean

score (cross validation will return me 5 scores for each C). After I get 10

mean scores, I will pick the highest score as the best hyperparameter C.

Q: Why I pick this method?

A: Because Logistic Regression may handle non linear effects, and its

result is as what I thought, the accuracy is higher than the baseline, but

lower than SVM and Multinomial Naive Bayes.

*For detail, please visit q1.py

5. Confusion matrix for Multinomial Naive Bayes

- 250

150

100

As the above confusion matrix shows, 16th class and 20th class are most confused.

II. Training SVM with SGD

2.1 SGD With Momentum:

2.2 Training SVM:

For detail, please visit q2.py

2.3 Apply on 4-vs-9 digits on MNIST:

1) model use $\beta = 0$:

The training loss: 0.342191688002

The test loss: 0.337671534146

Training accuracy = 0.9329705215419501

Test accuracy = 0.9328980776206021

2) model use $\beta = 0.1$:

The training loss: 0.342207800632

The test loss: 0.337795184641

Training accuracy = 0.9340589569160997

Test accuracy = 0.9339862169024302

0	III. Keonek
	3.1 : KERobed and it is symmetric
	: Positive semidefinite, require require all te elements.
	matrix X have XTAX70, if A 1s positive semidefinite
	Matrix.
	: all vectors x ER of we have xTkx>0.
0	: all vetters x ER of we have xTkx>0. : K & Rolad is positive semidefinite.
	3.2.
	1. a function $k(x,y)$ is Rernel function have to.
	Satisfies two properties:
	1. Symmetry: k(x,y) = kcy.x)
tissalansivaddi", Marcillan (Clark Latt), astlavillar initias (1994), ast	2. Positive semi-definiteners.
	for $k(x,y)=X$, $x>0$,
	$first$, $k(x,y) = 2 \alpha$ and $k(y,x) = \alpha$.
	and, because $< >0$, so $< (x, y)$ is positive semi-definiteness.
7/0 = 100 (100)	

i. k(x,y) is kernel $\cdot,\cdot k(x,y) = f(x) \cdot f(y)$ $\therefore k(x,y) = k(y,x)$ $\therefore f: Rd \rightarrow R$ f(x).f(y): Rd -> R : f(x).f(y) is positive semi-definiteness i. t(x, y) is symmetry and positive semi-definiteness : k(x,4)=fix).fip is kernel 3. $(x,y) = a + (x,y) + b + (y \times x,y)$ $: k(y,x) = ak_1(y,x) + bk_2(y,x)$ k(x,y) = k(y,x) (symmetry) a,b>0 and k,k= are kernel. :. $K(x,y) = ak_1(x,y) + bk_2(x,y)$ is fositive semi-clefiniteness :. K(x,y) is kernel