31. LE MOLLE

Le molle sono elementi meccanici in grado di assorbire grandi quantità di energia elastica senza che le tensioni agenti raggiungano livelli critici. A questo scopo le molle sono conformate geometricamente in modo da permettere il verificarsi di grandi spostamenti mantenendo le deformazioni in campo elastico. Fra le applicazioni si possono citare:

- attenuazione degli urti,
- riduzione o esaltazione delle vibrazioni,
- comando del movimento di organi,
- immagazzinamento di energia,
- applicazione di forze proporzionali alla posizione.

Le molle vengono classificate, in base al tipo di sollecitazione che agisce nella sezione resistente, in molle di *flessione* e molle di *torsione*. Esistono sporadici esempi di molle di *trazione-compressione*.

Si vedrà nel seguito che le molle ad elica cilindrica (fig.1 e fig.4) vengono classificate anche in base alla direzione della forza agente rispetto all'asse longitudinale (cioè l'asse del cilindro attorno a cui si avvolge l'elica). In particolare si definiscono molle ad elica di *trazione-compressione* (la cui sezione è soggetta torsione) se la forza esterna agisce in direzione assiale e molle ad elica di *torsione* (la cui sezione è soggetta flessione) se la forza esterna genera un momento avente asse parallelo all'asse della molla.

Rigidezza

La relazione tra forza applicata ed inflessione della molla è del tipo

$$F = F\left(\delta, E, I/N/L\right) \qquad T = T\left(\beta, G, I/N/L\right) \tag{31.1,2}$$

nelle quali

- *F-T* forza esterna- momento torcente esterno
- δ - β spostamento rotazione
- E-G modulo elastico normale-tangenziale
- I/N/L parametri geometrici

La rigidezza della molla è espressa come:

$$K = \frac{\partial F}{\partial \delta} \qquad K = \frac{\partial T}{\partial \beta} \tag{31.3,4}$$

essa dipende dal modulo elastico del materiale e dalla geometria della molla. In molti casi può essere considerata costante e la molla risulta avere una relazione forza-spostamento di tipo lineare.

Capacità di immagazzinare energia

La capacità di immagazzinare energia di una molla è espressa mediante il coefficiente di utilizzazione C_u così definito:

$$C_{u} = U/U'. (31.5)$$

• *U'* rappresenta l'energia corrispondente alla massima sollecitazione agente nell'elemento; se *V* è il volume della molla, per molle di flessione e torsione, rispettivamente, si ha:

$$U' = \frac{1}{2} V \sigma_{\text{max}}^2 / E$$
 $U' = \frac{1}{2} V \tau_{\text{max}}^2 / G$ (31.6,7)

• U è l'energia elastica effettivamente immagazzinata nella molla:

$$U = \frac{1}{2} \int_{V} \sigma \varepsilon \, dV = F \, \delta/2 \qquad \qquad U = \frac{1}{2} \int_{V} \tau \, \gamma \, dV = T \, \beta/2 \qquad (31.8.9)$$

Se le molle sono conformate come elementi monodimensionali di lunghezza *L*, in base alla teoria delle travi, trascurando l'eventuale effetto della curvatura, l'energia di deformazione assume la forma:

$$U = \frac{1}{2E} \int_{L} \frac{M_f^2}{I} dx \qquad U = \frac{1}{2G} \int_{L} \frac{M_t^2}{I_p} dx \qquad (31.10,11)$$

rispettivamente nei casi di molle di flessione e di torsione.

Nel caso in cui la tensione è uniformemente distribuita si ha C_u =1 e il materiale risulta utilizzato nel modo più efficace; nella pratica questo caso si può verificare solo per elementi monoassiali tesi o compressi.

Molle ad elica cilindrica di compressione-trazione (molle di torsione)

Le molle ad elica cilindrica (fig.1) sono costituite da un filo di sezione S, circolare o rettangolare, il cui asse si avvolge su un cilindro di diametro D' con passo p, definito come distanza tra due spire, costante o variabile, formando un numero di spire N. Esse sono impiegate per resistere a sforzi diretti secondo l'asse del cilindro sul quale è avvolta l'elica (cioè sforzi di *trazione* o *compressione*); eccezionalmente sono impiegate per trasmettere coppie agenti in un piano normale all'asse del cilindro. Sotto l'azione delle forze dirette secondo l'asse del cilindro la sollecitazione principale alla quale è soggetto il filo è la *torsione*.

Per dato passo p, l'inclinazione α della tangente all'elica, la lunghezza l di una spira e la lunghezza complessiva per N spire l_n , possono essere ottenute mediante le seguenti espressioni:

Fig.31.1- Molla ad elica cilindrica.

$$p = \pi D \tan \alpha$$
 $l = \frac{\pi D}{\cos \alpha} = \sqrt{p^2 + \pi^2 D^2}$ $l_n = N l = N \sqrt{p^2 + \pi^2 D^2}$ (31.13,14)

se α è sufficientemente piccolo si può scrivere:

$$l = \pi D \qquad \qquad l_n = N \pi D \tag{31.15,16}$$

Le spire terminali della molla vengono conformate per vincolare la molla all'esterno e, se sono orizzontali, sono considerate non attive ai fini della rigidezza. Nel caso di molle soggette a trazione le spire terminali possono essere piegate a forma di gancio in modo da permettere la trasmissione della forza.

Quando la molla viene compressa totalmente raggiunge una lunghezza definita lunghezza a pacchetto L_p . Nel caso di filo a sezione circolare i parametri geometrici della molla sono:

- d diametro della sezione del filo d,
- D diametro medio dell'elica (il diametro esterno è $D_e=D+d$),
- N numero di spire attive (si noti che questo numero non è necessariamente intero!),
- N' numero di spire terminali, avvolte con inclinazione nulla,
- L_l lunghezza libera,
- L_p lunghezza a pacchetto, $L_p=d(N+N')+d'$ con d'=d o d'=0 a seconda che le spire terminali siano integre o spianate come in fig. 1 (l'espressione di L_p è indicativa!).

Il momento di inerzia polare della sezione e il volume della molla sono rispettivamente:

$$I_p = \frac{\pi}{32} d^4$$
 $V = l_n A = \frac{\pi^2}{4} N D d^2$ (31.17,18)

Tensioni

Sotto l'azione della forza F agente lungo l'asse del cilindro tutte le sezioni della molla, ugualmente orientate rispetto a F ed equidistanti dalla sua retta d'azione, sono sollecitate allo stesso modo per cui la molla ad elica cilindrica con passo costante è un solido di resistenza uniforme rispetto al carico F. La generica sezione è sollecitata dalle componenti normale F_N e tangenziale F_T della forza F e dai componenti flettente M_f e torcente M_t del momento M=FD/2 della forza stessa. Osservando la fig.2 si ottiene:

$$F_{N} = F \operatorname{sen} \alpha \qquad F_{T} = F \cos \alpha \tag{31.19,20}$$

$$M_f = F D \operatorname{sen} \alpha/2$$
 $M_t = F D \cos \alpha/2$ (31.21,22)

Generalmente α è sufficientemente piccolo da aversi $F_N \approx 0$, $M_f \approx 0$, $F_T \approx F$, $M_t \approx FD/2$ e la massima tensione tangenziale nel filo dovuta al momento torcente e al taglio può essere calcolata mediante la seguente equazione:

$$\tau = \left(q\frac{Dd}{4I_p} + \frac{1}{A}\right)F\tag{31.23}$$

essendo d/2 la distanza tra il punto più sollecitato al bordo delle sezione e il baricentro, A ed I_P rispettivamente l'area ed il momento d'inerzia polare della sezione, q il fattore di torsione per sezioni non circolari. Il primo termine è la tensione massima dovuta alla sollecitazione di torsione, il secondo è la tensione media dovuta al taglio. Nel caso di filo a sezione circolare di diametro d, sostituendo ad A ed I_P le relative espressioni si ottiene:

$$\tau = \left(\frac{8}{\pi} \frac{D}{d^3} + \frac{4}{\pi} \frac{1}{d^2}\right) F \tag{31.24}$$

Fig.31.2-Forze agenti sulla sezione della molla.

Fig.31.3- Tensioni nella spira: a) taglio, b) torsione, c) taglio e torsione, d) effettive.

che fornisce la tensione di taglio nella fibra interna della molla (fig.3). La (24) può essere riscritta come segue:

$$\tau = \frac{8}{\pi} \left(1 + \frac{0.5}{C} \right) \frac{D}{d^3} F \tag{31.25}$$

essendo C1'indice di molla.

$$C = D/d (31.26)$$

che, per motivi tecnologici deve essere compreso nel campo 6<C<12. Introducendo il fattore di correzione delle tensioni di taglio

$$k_s = 1 + 0.5/C (31.27)$$

si può scrivere:

$$\tau = \frac{8}{\pi} \frac{D}{d^3} k_s F = \frac{8}{\pi} \frac{C}{d^2} k_s F \tag{31.28}$$

Si deve notare che le espressioni (23-25,28) sono approssimate in quanto:

- la tensione dovuta al taglio dovrebbe essere determinata per mezzo della formula di Jurasky e tenendo conto del fattore di taglio,
- le formule utilizzate sono valide per solidi ad asse rettilineo mentre la curvatura provoca un aumento della tensione sul bordo interno e un andamento parabolico della tensione (fig.3).

Questi effetti vengono inclusi nel coefficiente k_b , detto coefficiente di Bergstrasser, con il quale la (28) può essere riscritta come segue:

$$\tau = \frac{8}{\pi} \frac{D}{d^3} k_b F = \frac{8}{\pi} \frac{C}{d^2} k_b F \tag{31.29}$$

 k_b è dato da:

$$k_b = \frac{4C - 2}{4C + 3} \approx \frac{4C - 1}{4C + 4} + \frac{0.615}{C}$$
(31.30)

 k_b tiene conto sia della concentrazione di tensione che dell'effetto del taglio. Il solo fattore di concentrazione delle tensioni è dato da:

$$k_c = k_b / k_s \approx \frac{2C(4C+2)}{(4C-3)(2C+1)}$$
 (31.31)

Per carichi statici la concentrazione di tensione dovuta alla curvatura può essere trascurata e a k_b può essere attribuito il valore k_s , mentre per carichi di fatica tipicamente si usa k_c .

Inflessione

L'espressione dell'abbassamento δ può essere ottenuta mediante il teorema di Clapeyron. Per calcolare le inflessioni il fattore k_b e l'effetto del taglio possono essere trascurati. L'energia di deformazione nel caso di torsione (11) è data da:

$$U = \frac{1}{2G} \int_{L} \frac{32}{\pi d^4} \frac{D^2 F^2}{4} dx = \frac{4}{\pi} \frac{D^2}{d^4} \frac{F^2}{G} \int_{L} dx = \frac{4}{\pi} \frac{D^2}{d^4} \frac{F^2}{G} \pi N D$$
 (31.32)

da cui:

$$U = 4N \frac{D^3}{d^4} \frac{F^2}{G} \tag{31.33}$$

Ponendo l'energia di deformazione pari al lavoro compiuto dalla forza $L_e=F\delta/2$ si ottiene la relazione tra lo spostamento e la forza o la tensione:

$$\delta = 8N \frac{D^3}{d^4} \frac{F}{G} = \pi N \frac{D^2}{d} \frac{\tau}{k_s G}$$
 (31.34)

In alternativa, applicando il teorema di Castigliano, lo spostamento δ si otterrebbe come $\delta = \partial U/\partial F$.

Costante elastica

La rigidezza della molla $K = \partial F / \partial \delta$ è costante ed è data da:

$$K = \frac{1}{8} \frac{1}{N} \frac{d^4}{D^3} G = \frac{1}{8} \frac{d}{C^3} G$$
 (31.35)

Le equazioni ottenute sono valide sia per molle in compressione che per molle in trazione.

Coefficiente di utilizzazione

In base alla (7) e alla (18) si ha:

$$U' = \frac{1}{2G} \left(\frac{8}{\pi} \frac{D}{d^3} k_b F \right)^2 \frac{\pi^2}{4} N D d^2 = 8 \frac{N D^3}{d^4} \frac{k_b^2 F^2}{G}$$
 (31.36)

da cui, ricordando la (5) e la (33), si ottiene $C_u=0.5/k_b^2$; per $k_b=1.2$ si ha $C_u=0.35$.

Tensioni ammissibili

Considerando le caratteristiche dei materiali per molle e tenuto conto della possibilità di limitare la freccia massima, la tensione ammissibile può essere espressa come τ_{am} = $a \sigma_r$ con a pari 0.45 o 0.35 rispettivamente per materiali ferrosi e non. Un opportuno superamento del limite di snervamento, detto *presetting*, provoca delle tensioni residue vantaggiose, che consentono di utilizzare valori di a più elevati: a=0.65 o a=0.55, rispettivamente.

Dimensionamento

Nel dimensionamento le variabili incognite sono D, d ed N. Solitamente la rigidezza è un dato di progetto, ad esempio, esprimibile mediante le frecce di lavoro δ_1 e δ_2 , o le lunghezze assunte dalla molla $L_1 = L_l - \delta_1$ ed $L_2 = L_l - \delta_2$, e le relative forze F_1 ed F_2 come $K = \Delta F/\Delta \delta = (F_2 - F_1)/(\delta_2 - \delta_1)$ o $K = \Delta F/\Delta \delta = (F_2 - F_1)/(L_1 - L_2)$. Se la rigidezza è un dato di progetto, è utile riscrivere l'espressione della tensione (28) in funzione della costante elastica come

$$\tau = \frac{1}{\pi} \frac{d}{ND^2} \frac{G}{K} k_{b/s} F = \frac{1}{\pi} \frac{1}{NCD} \frac{G}{K} k_{b/s} F$$
 (31.37)

Introducendo la tensione ammissibile, la (37) può essere esplicitata rispetto ai parametri geometrici

$$\frac{ND^2}{d} = NCD = \frac{1}{\pi} \frac{G}{K} k_{b/s} \frac{F}{\tau_{am}}$$
 (31.38)

ed utilizzata in modo opportuno per il dimensionamento. In particolare, i parametri D ed N possono essere imposti in base a vincoli sull'ingombro. Poiché i coefficienti $k_{b/s}$ dipendono da C (eq.30/27), i calcoli devono essere effettuati in modo iterativo, introducendo un valore iniziale di tentativo, generalmente unitario, e utilizzando il valore di C determinato per calcolare un valore più preciso di $k_{b/s}$.

Si noti che in vari casi, pur essendo dati di progetto le lunghezze L_1 ed L_2 assunte dalla molla, non si conosce la lunghezza libera L_1 che è determinata anche dall'inclinazione dell'elica.

È bene che, alla lunghezza a pacchetto L_p , la freccia sia pari al 110% della freccia δ_2 , in modo che l'eventuale sovraccarico massimo sia limitato al 10%. In pratica il carico massimo possibile per la molla risulta F_{max} =1.1 F_2 e la freccia massima deve essere δ_{max} =1.1 δ_2 . Questo implica l'ulteriore relazione:

$$L_{l} = L_{p} + 1.1 \,\delta_{2} = d \left(N + N' \right) + d' + 1.1 \,\delta_{2} \tag{31.39}$$

che permette di determinare la lunghezza libera e l'inclinazione dell'elica.

Frequenza critica delle molle ad elica

Frequentemente le molle ad elica sono utilizzate imponendo un moto di elongazione e schiacciamento molto rapido come, ad esempio, nelle valvole di comando di un motore a combustione interna. In questi casi è necessario verificare che la frequenza naturale di vibrazione della molla non sia prossima a quella della forza applicata poiché la molla potrebbe andare in risonanza. La frequenza critica di una molla ad elica per l'armonica di ordine a è data da

$$f = \frac{a}{2} \sqrt{\frac{K}{m}} = \frac{a}{2} \sqrt{\frac{K}{V\rho}} = \frac{a}{2} \sqrt{\frac{4}{\pi^2} \frac{1}{NDd^2} \frac{K}{\rho}} = \frac{a}{\pi d} \sqrt{\frac{1}{ND} \frac{K}{\rho}}$$
(31.40)

essendo m la massa della molla e ρ la densità del materiale. La frequenza critica fondamentale deve essere compresa fra 15 e 20 volte la frequenza della forza in modo da evitare risonanza.

Molle ad elica di torsione (molle di flessione)

Queste molle sono costruite in modo analogo a quelle ad elica di trazione o compressione, ma le estremità sono sagomate in modo da poter trasmettere un momento di asse parallelo all'asse della molla (cioè *torcente*) (fig.4). Le sezioni della molla risultano soggette ad una sollecitazione di *flessione*. Nella costruzione di queste molle si generano tensioni residue agenti in verso opposto a quelle di esercizio, di conseguenza esse possono essere progettate per operare a livelli di tensione che uguagliano o anche superano la resistenza allo snervamento del filo. Queste molle sono messe in esercizio avvolte attorno ad una guida cilindrica che reagisce con la forza F' mostrata in fig.4.

Fig.31.4 - Molla di flessione ad elica.

Per sezione circolare i parametri geometrici della molla sono:

- il diametro della sezione del filo d,
- il diametro medio dell'elica D,
- il numero di spire N,
- il braccio della forza R.

La lunghezza e il volume della molla sono dati dalle (17) e (18) rispettivamente, mentre il momento d'inerzia diametrale della sezione è

$$I = \pi \ d^4 / 64 \tag{31.41}$$

Tensioni

Poiché il cilindro a cui è avvolta la molla esplica una reazione F'=F, si può ritenere che sulle sezioni agisca un momento flettente costante dato dal prodotto di F per R e l'espressione della tensione massima può essere scritta nella seguente forma:

$$\sigma = \frac{32}{\pi} \frac{1}{d^3} k_w R F \tag{31.42}$$

essendo k_w un fattore di concentrazione delle tensioni il cui valore dipende dalla curvatura del filo e dal fatto che la tensione sia determinata sulla fibra interna od esterna. Wahl ha determinato il seguente valore per la fibra interna che risulta essere la più sollecitata:

$$k_{wi} = \frac{4C^2 - C - 1}{4C(C - 1)} \tag{31.43}$$

essendo C=D/d l'indice di molla.

Inflessione

L'angolo di rotazione dell'estremità della molla β può essere ottenuto utilizzando il teorema di Clapeyron. L'energia di deformazione in flessione (10) risulta

$$U = \frac{1}{2E} \int_{L} \frac{R^2 F^2}{I} dx = \frac{1}{2I} \frac{R^2 F^2}{E} \int_{L} dx$$
 (31.44)

da cui si ottiene:

$$U = 32 \frac{ND}{d^4} \frac{R^2 F^2}{E} \tag{31.45}$$

Ponendo l'energia di deformazione pari al lavoro compiuto dalla forza $L_e=FR\beta/2$ si ottiene:

$$\beta = 64 \frac{ND}{d^4} \frac{RF}{E} = 2\pi \frac{ND}{d} \frac{\sigma}{k_w E}$$
(31.46)

In alternativa, applicando il teorema di Castigliano, si la relazione (46) potrebbe essere ottenuta dall'espressione $R\beta = \partial U/\partial F$.

Costante elastica

La rigidezza della molla $K=\partial M/\partial \beta=\partial (FR)/\partial \beta$ è costante ed è data da:

$$K = \frac{1}{64} \frac{d^4}{ND} E = \frac{1}{64} \frac{d^3}{NC} E \tag{31.47}$$

In alcuni casi si preferisce riferire la costante elastica ad un giro completo. In questo caso si moltiplica la (47) per 2π e si ottiene:

$$K' = \frac{1}{10.2} \frac{d^4}{ND} E \left[\frac{\text{daNmm}}{\text{giro}} \right]$$
 (31.48)

Queste equazioni sono state ottenute senza tenere conto della curvatura del filo. Le prove sperimentali mostrano che la costante 10.2 deve essere leggermente aumentata. L'equazione:

$$K' = \frac{1}{10.8} \frac{d^4}{ND} E \tag{31.49}$$

fornisce migliori risultati.

Coefficiente di utilizzazione

In base alla (7) e alla (18) si ha

$$U' = \frac{\sigma_{\text{max}}^2}{2E} V = \frac{1}{2E} \left(\frac{32}{\pi} \frac{1}{d^3} K_{w} R F \right)^2 \frac{\pi^2}{4} N D d^2 = 128 K_{w}^2 \frac{N D}{d^4} \frac{R^2 F^2}{E}$$
(31.50)

da cui, ricordando la (5) e la (45), si ottiene $C_u=0.25/K_w^2$

Dimensionamento

Le problematiche del dimensionamento sono simili a quelle delle molle di torsione ad elica, ad eccezione del fatto che la resistenza dipende solo dal diametro d come mostra l'eq.(42). In questo caso d può essere dimensionato indipendentemente dagli altri parametri introducendo la tensione ammissibile σ_{am} nella (42). Per il dimensionamento degli altri parametri, la tensione (42) può essere espressa in funzione della costante elastica come:

$$\sigma = \frac{1}{2\pi} \frac{d}{ND} \frac{E}{K} k_{w} R F \tag{31.51}$$

ed esplicitata rispetto al prodotto ND o al prodotto NC introducendo la tensione ammissibile σ_{am} :

$$ND = \frac{1}{2\pi} \frac{E}{K} \frac{F}{\sigma_{am}} k_{w} R d \qquad NC = \frac{1}{2\pi} \frac{E}{K} \frac{F}{\sigma_{am}} k_{w} R \qquad (31.52a,b)$$

Molle a barra di torsione (molle di torsione)

Le molle a barra di torsione sono schematizzabili come semplici barre ad asse rettilineo di lunghezza L, a sezione costante, incastrate ad un'estremità, sollecitate all'estremità libera da una coppia torcente T; la sezione libera ruota rispetto alla sezione incastrata di un angolo β e l'asse della barra rimane rettilineo. Se la barra è di sezione circolare i parametri geometrici della molla sono:

- il diametro della sezione d,
- la lunghezza L.

Il momento di inerzia polare è dato dalla (17).

Tensioni

La tensione tangenziale al bordo esterno è:

$$\tau = \frac{16}{\pi} \frac{T}{d^3} \tag{31.53}$$

Inflessione

Le inflessioni possono essere calcolate mediante il teorema di Clapeyron. L'energia di deformazione (10) per la trave soggetta a momento torcente costante è:

$$U = \frac{16}{\pi} \frac{L}{d^4} \frac{T^2}{G} \tag{31.54}$$

Ponendo l'energia di deformazione pari al lavoro fatto dalla forza agente $L_e=T\beta/2$ si ottiene:

$$\beta = \frac{32}{\pi} \frac{L}{d^4} \frac{T}{G} = 2 \frac{L}{d} \frac{\tau}{G}$$
 (31.55)

Costante elastica

La rigidezza della molla $K = \partial T/\partial \beta$ è costante ed è data da:

$$K = \frac{\pi}{32} \frac{d^4}{L} G \tag{31.56}$$

Coefficiente di utilizzazione

In base alla (7) e tenuto conto che $V=L\pi d^2/4$, si ha

$$U' = \frac{\tau_{\text{max}}^2 V}{2G} = \frac{1}{2G} \left(\frac{T}{d^3} \frac{16}{\pi}\right)^2 d^2 L \frac{\pi}{4} = \frac{32}{\pi} \frac{L}{d^4} \frac{T^2}{G}$$
(31.57)

da cui, ricordando la (5) e (54), si ottiene C_u =0.5

Dimensionamento

Anche in questo caso il diametro d si ricava direttamente dalla (53). Se il valore della costante elastica K è un dato di progetto, esprimendo la tensione (53) in funzione di K (56) si può determinare il valore di L come

$$L = \frac{1}{2} \frac{G}{K} \frac{T}{\tau_{\text{max}}} d \tag{31.58}$$

Barra di torsione con manovella

Se il momento agente sulla barra di torsione è provocato da una forza F di direzione costante agente su una manovella di lunghezza R, come in fig.5, per grandi variazioni dell'angolo di torsione, tale momento risulta variabile in modo non lineare con lo spostamento δ della forza. In conseguenza di ciò, la relazione tra la forza applicata F e lo spostamento δ non è lineare.

In generale la manovella scarica (F=0) forma un angolo β_0 con l'orizzontale (fig.5); se la barra è di sezione circolare, sempre con riferimento alla fig.5, i parametri geometrici della molla sono:

Fig.31.5 - Barra di torsione con manovella.

- il diametro della sezione d,
- la lunghezza della barra L,
- la lunghezza della manovella R,
- l'angolo tra la manovella e la direzione orizzontale in assenza di forza β_0 .

Tensioni

Dalla (55) e dalla fig. 5 si osserva che, per la generica rotazione β , sulla barra agisce un momento torcente dato da:

$$T = K\beta = \frac{\pi}{32} \frac{d^4}{L} G\beta = \cos(\beta - \beta_0) RF$$
(31.59)

Introducendo tale espressione nella (53), si ottiene la tensione di torsione agente al bordo della barra in funzione dell'angolo di rotazione o della forza applicata:

$$\tau = \frac{1}{2} \frac{d}{L} G \beta = \frac{16}{\pi} \frac{\cos(\beta - \beta_0)}{d^3} R F$$
(31.60)

Rigidezza (forza F-spostamento δ)

La rigidezza intesa come derivata della funzione che esprime la forza applicata rispetto allo spostamento δ del suo punto di applicazione risulta essere funzione di β ed è data da:

$$K_{\delta}(\beta) = \frac{\partial F}{\partial \delta} = \frac{\partial F}{\partial \beta} \frac{\partial \beta}{\partial \delta}$$
(31.61)

Per ottenerne l'espressione in funzione dei vari parametri è necessario esprimere la forza e lo spostamento in funzione di β . L'espressione della forza esercitata in funzione dell'angolo di rotazione, in base alla (59), è:

$$F = \frac{K}{R} \frac{\beta}{\cos(\beta - \beta_0)} = \frac{\pi}{32} \frac{d^4}{LR} G \frac{\beta}{\cos(\beta - \beta_0)}$$
(31.62)

La freccia intesa come spostamento del punto di applicazione del carico è data da:

$$\delta = R \left[\operatorname{sen} \beta_0 + \operatorname{sen} \left(\beta - \beta_0 \right) \right]$$
 (31.63)

Derivando l'espressione del carico e quella della freccia rispetto a β si ottiene rispettivamente:

$$\frac{\partial F}{\partial \beta} = \frac{K}{R} \frac{1 + \beta \tan(\beta - \beta_0)}{\cos(\beta - \beta_0)} \qquad \frac{\partial \delta}{\partial \beta} = R \cos(\beta - \beta_0)$$
(31.64,65)

dalle quali, utilizzando la (61), si ottiene:

$$K_{\delta}(\beta) = \frac{K}{R^{2}} \frac{1 + \beta \tan(\beta - \beta_{0})}{\cos^{2}(\beta - \beta_{0})} = \frac{\pi}{32} \frac{d^{4}}{LR^{2}} G \frac{1 + \beta \tan(\beta - \beta_{0})}{\cos^{2}(\beta - \beta_{0})}$$
(31.66)

La (66) mostra che la rigidezza è variabile con la deformazione angolare e che essa è minima per un valore dell'angolo $\beta < \beta_0$. Quando l'asse della manovella è orizzontale ($\beta = \beta_0$) il braccio è massimo e la rigidezza diventa:

$$K_{\delta}(\beta_0) = \frac{K}{R^2} = \frac{\pi}{32} \frac{d^4}{LR^2} G$$
 (31.67)

Per molle montate su veicoli è opportuno fare in modo che tale posizione coincida con quella sotto carico statico $(\beta_s = \beta_0)$ in modo che la molla abbia rigidezza crescente con lo spostamento. L'angolo di rotazione può essere posto in funzione della forza F mediante la seguente relazione non lineare:

$$\frac{\beta}{\cos(\beta - \beta_0)} = \frac{R}{K} F = \frac{32}{\pi} \frac{LR}{d^4} \frac{F}{G}$$
(31.68)

Dimensionamento

In generale le grandezze da dimensionare sono β_0 , d, L ed R. Se i dati di progetto sono il carico statico F_s , cui deve corrispondere la posizione orizzontale ($\beta = \beta_s = \beta_0$), e la variazione di freccia $\Delta \delta$ (fig.6) tra la posizione statica δ_s e la freccia massima $\delta_M (\Delta \delta = \delta_M - \delta_s)$, in base alla (68) si può scrivere una prima relazione:

$$\beta_s = \beta_0 = \frac{R}{K} F_s = \frac{32}{\pi} \frac{LR}{d^4} \frac{F_s}{G}$$
 (31.69)

Dalla fig.6 si osserva che
$$\beta_{M}$$
=sen⁻¹ $\Delta \delta R + \beta_{s}$ per cui dalla (60), imponendo che τ sia pari alla tensione ammissibile del materiale τ_{am} , si ottiene una seconda relazione:
$$\tau = \frac{1}{2} \frac{d}{L} G \left(\text{sen}^{-1} \frac{\Delta \delta}{R} + \beta_{s} \right) = \tau_{am}$$
(31.70)

sostituendo β_s con la (69) nella (70), si ottiene la seguente relazione

$$\frac{1}{2}\frac{d}{L}G\,\,\mathrm{sen}^{-1}\,\Delta\delta/R + \frac{16}{\pi}\frac{1}{d^3}R\,F_s = \tau_{am} \tag{31.71}$$

nella quale le incognite sono d, L, R; occorre pertanto fissarne due per ricavare la terza. Ad esempio, per ricavare d si può scrivere la seguente relazione risolvibile in modo iterativo:

$$d = \sqrt[3]{\frac{16}{\pi} \frac{RF_s}{\tau_{am} - \frac{1}{2} \frac{d}{L} G \operatorname{sen}^{-1} \frac{\Delta \delta}{R}}}$$
(31.72)

Si noti che la radice nella (72) è cubica. Se la (72) non converge è necessario riconsiderare gli altri parametri, in particolare L ed R.

Molle a balestra (molle di flessione)

Le molle a balestra sono usualmente costruite come travi incastrate o appoggiate a sezione rettangolare avente base b e altezza h in generale variabili, sulle quali agisce una forza F (all'estremità per quelle incastrate, in mezzeria per quelle appoggiate) che provoca flessione.

Tensione

In una trave incastrata con carico di estremità la tensione massima (al bordo superiore) nella generica sezione di ascissa x e la tensione massima nella sezione di incastro sono date rispettivamente da:

$$\sigma_x = 6\frac{L - x}{b h^2} F$$

$$\sigma = 6\frac{L}{b_0 h_0^2} F$$
(31.73,74)

In questa ultima b_0 ed h_0 sono i valori all'incastro (x=0).

Il coefficiente di utilizzazione di una molla a sezione costante risulta molto basso. Nel caso in cui b e h sono costanti, essendo il volume dato da V=bhl, le espressione di U'(6) e U(8) sono rispettivamente

Fig.31.7 - La molla a balestra. A destra confronto tra molla a balestra incastrata e appoggiata.

$$U = \frac{1}{2EI} \int_{I} M^{2} dx = 2 \frac{L^{3}}{b h^{3}} \frac{F^{2}}{E} \qquad \qquad U' = b h L \frac{\sigma^{2}}{2E} = 18 \frac{L^{3}}{b h^{3}} \frac{F^{2}}{E}$$
(31.75,76)

ed effettuando il rapporto si ottiene C_u =0.111. Per ottenere una migliore utilizzazione del materiale impiegato, contenendo oltremodo il peso, è opportuno che la tensione σ_x sia costante rispetto ad x. Le travi di uniforme resistenza possono essere ottenute variando sia b che h imponendo che sia σ_x = σ_{max} :

$$6\frac{L}{b_0 h_0^2} F = 6\frac{L - x}{b h^2} F \tag{31.77,78}$$

Se si mantiene costante lo spessore $h=h_0$, la larghezza b deve variare linearmente con x, mentre, se si mantiene costante la larghezza $b=b_0$, lo spessore h deve variare in modo parabolico; nei due casi si ha

$$b = b_0 \frac{L - x}{L}$$
 $h = h_0 \sqrt{\frac{L - x}{L}}$ (31.79,80)

Nel primo caso la trave assume la forma di una barra triangolare che è il modello base per le molle a balestra. La molla a balestra (fig.7) si ottiene, infatti, tagliando la barra triangolare in una serie di strisce, simmetricamente disposte nella barra originale (quella centrale di larghezza w e le altre w/2), accostandole a due a due in modo da creare una foglia di larghezza w, e disponendo le foglie l'una sotto l'altra a partire dalla più lunga. Se N è il numero delle foglie, si ha b_0 =Nw.

La barra triangolare e la corrispondente balestra a foglie multiple hanno tensioni ed inflessioni quasi identiche, poiché le foglie agiscono come elementi elastici in parallelo (vedi paragrafo seguente). Le differenze sono dovute a 2 fattori:

- l'attrito fra le foglie produce smorzamento nella molla a foglie multiple,
- la molla a foglie multiple può sopportare carichi in una sola direzione dato che carichi di verso opposto tendono a separare le foglie.

Riassumendo, i parametri geometrici della molla sono:

- lo spessore *h*,
- il numero delle foglie *N*,
- la larghezza della foglia w o la larghezza totale b_0 ,
- la lunghezza L.

Il momento di inerzia, variabile rispetto all'asse x, ed il volume della molla sono rispettivamente:

$$I = \frac{b_0 h^3}{12} \frac{L - x}{L} \qquad V = L b_0 h/2 \tag{31.81,82}$$

In base ai parametri geometrici introdotti, l'eq.(74) può essere riscritta come segue:

$$\sigma = 6 \frac{L}{b_0 h^2} F = 6 \frac{L}{N w h^2} F \tag{31.83}$$

Inflessione

Le inflessioni possono essere calcolate mediante il teorema di Clapeyron. L'energia di deformazione per trave inflessa a sezione variabile (10), essendo M=F(L-x), è data da:

$$U = \frac{1}{2E} \int_{0}^{L} \frac{12L}{b_0 h^3 (L-x)} (L-x)^2 F^2 dx = 6 \frac{L}{b_0 h^3} \frac{F^2}{E} \int_{0}^{L} (L-x) dx$$
 (31.84)

da cui:

$$U = 3\frac{L^3}{b_0 h^3} \frac{F^2}{E} \tag{31.85}$$

Ponendo l'energia di deformazione pari al lavoro fatto dalla forza agente $L_e = F \delta/2$ si ottiene:

$$\delta = 6 \frac{L^3}{b_0 h^3} \frac{F}{E} = \frac{L^2}{h} \frac{\sigma}{E}$$
 (31.86)

La stessa espressione può essere ottenuta applicando il teorema di Castigliano, derivando l'energia di deformazione rispetto alla forza, cioè $\delta = \partial U/\partial F$.

Costante elastica

La rigidezza della molla $K = \partial F / \partial \delta$ è costante ed è data da:

$$K = \frac{1}{6} \frac{b_0 h^3}{L^3} E = \frac{1}{6} \frac{N w h^3}{L^3} E$$
 (31.87)

Coefficiente di utilizzazione

In base alla (6) e alla (82) si ha

$$U' = \frac{\sigma_{\text{max}}^2}{2 E} V = 9 \frac{L^3}{b_0 h^3} \frac{F^2}{E}$$
 (31.88)

da cui, ricordando la (5) e la (84), si ottiene C_u =0.33.

Dimensionamento

Solitamente i dati di progetto sono il carico statico F_s , la freccia elastica sotto carico statico δ_s , la freccia massima δ e/o il carico massimo F. Le variabili da dimensionare h, L, b_0 ed N sono legate fra loro dalle equazioni della tensione (83), dello spostamento (86) e della costante elastica (87). Si noti che le relazioni (83) e (86) non sono indipendenti, quindi due delle variabili geometriche devono essere fissate con regole empiriche, dedotte dalla pratica costruttiva. In generale con il calcolo si determinano lo spessore h ed il numero delle foglie N. Se la costante elastica K è assegnata o determinabile dalle frecce e dai carichi, esprimendo la tensione (83) in funzione di K

$$\sigma = \frac{h}{I_c^2} \frac{E}{K} F \tag{31.89}$$

è possibile ricavare la seguente relazione utile per il dimensionamento:

$$\frac{h}{L^2} = \frac{K}{E} \frac{\sigma_{am}}{F} \tag{31.90}$$

Le formule della tensione, dello spostamento e della rigidezza sono valide anche per il caso di balestra appoggiata (fig.7) considerando che i simboli L ed F si riferiscono rispettivamente a metà della lunghezza complessiva e a metà della forza agente in mezzeria e l'abbassamento si riferisce alla sezione di mezzeria.

Fig.31.8 - Che tipi di molle riconoscete in questa raffinata sella Brooks?

Molle in serie e parallelo

In vari casi più molle vengono utilizzate simultaneamente. Le configurazioni più tipiche sono quelle di molle in serie e parallelo. In questi casi è utile conoscere la relazione tra le costanti delle singole molle utilizzate e la costante di molla dell'insieme.

Serie

Nel caso di molle in serie (fig.9), tutti gli elementi sono soggetti alla stessa forza mentre lo spostamento del punto di applicazione è dato dalla somma degli allungamenti dei singoli elementi:

$$F = F_1 = F_2 \qquad \delta = \delta_1 + \delta_2 \tag{31.91,92}$$

Nel caso di due elementi, in base alla definizione di K si ottiene:

$$K = \frac{F}{\delta} = \frac{F}{\delta_1 + \delta_2} = \frac{F}{F/K_1 + F/K_2} = \frac{1}{1/K_1 + 1/K_2} = \frac{K_1 K_2}{K_1 + K_2}$$
(31.93)

In generale, per n molle, si ha:

$$K = \frac{1}{\sum_{i=1}^{n} \frac{1}{K_i}}$$
 (31.94)

Parallelo

Nel caso di molle in parallelo (fig.10), tutti gli elementi sono soggetti allo stesso allungamento che coincide con lo spostamento del punto di applicazione della forza, mentre la forza complessiva è data dalla somma delle forze agenti nei singoli elementi:

$$\delta = \delta_1 = \delta_2 \qquad F = F_1 + F_2 \tag{31.95,96}$$

Nel caso di due elementi, in base alla definizione di K si ottiene:

$$K = \frac{F}{\delta} = \frac{F_1 + F_2}{\delta} = \frac{F_1}{\delta} + \frac{F_2}{\delta} = K_1 + K_2 \tag{31.97}$$

In generale, per n molle, si ha:

$$K = \sum_{i=1}^{n} K_i \tag{31.98}$$

Si deve notare che le foglie della molla a balestra agiscono in parallelo in quanto sono soggette tutte alla stessa freccia δ . Il comportamento a flessione dell'insieme delle foglie è differente rispetto a quello di un unico elemento con sezione uguale all'insieme delle sezioni delle foglie (e quindi di altezza pari al prodotto Nh) in quanto le foglie sono fisicamente separate e non si trasmettono azioni tangenziali (a parte quelle dell'attrito). Per questo motivo nella (83) compare l'altezza h della singola foglia elevata al quadrato moltiplicata per il numero delle foglie, cioè il prodotto Nh^2 , e non l'altezza complessiva delle foglie elevata al quadrato, cioè il prodotto N^2h^2 .

Fig.31.9 - Molle in serie.

Fig.31.10 - Molle in parallelo.