MAT3400/4400 Spring 2020: Solutions.

Problem 1 a) We have

$$\int \mathbf{1}_A \mathbf{1}_B \, d\mu = \int \mathbf{1}_{A \cap B} \, d\mu = \mu(A \cap B) = \mu(A)\mu(B) = \left(\int \mathbf{1}_A \, d\mu\right) \left(\int \mathbf{1}_B \, d\mu\right).$$

b) Using a), we get

$$\int fg \, d\mu = \int \left(\sum_{i=1}^n a_i \mathbf{1}_{A_i}\right) \left(\sum_{j=1}^m b_j \mathbf{1}_{B_j}\right) d\mu = \sum_{i=1}^n \sum_{j=1}^m a_i b_j \int \mathbf{1}_{A_i} \mathbf{1}_{B_j} \, d\mu$$
$$= \sum_{i=1}^n \sum_{j=1}^m a_i b_j \left(\int \mathbf{1}_{A_i} \, d\mu\right) \left(\int \mathbf{1}_{B_j} \, d\mu\right)$$
$$= \left(\sum_{i=1}^n \int a_i \mathbf{1}_{A_i} \, d\mu\right) \left(\sum_{j=1}^m \int b_j \mathbf{1}_{B_j} \, d\mu\right) = \left(\int f \, d\mu\right) \left(\int g \, d\mu\right).$$

c) Let $\{f_n\}$ be an increasing sequence of nonnegative, \mathcal{A} -measurable simple functions converging pointwise to f, and let $\{g_n\}$ be an increasing sequence of nonnegative, \mathcal{B} -measurable simple functions converging pointwise to g (such sequences exist by Proposition 7.5.3 in Spaces). Then $\{f_ng_n\}$ is an increasing sequence of simple functions converging pointwise to fg, and by the Monotone Convergence Theorem and part b)

$$\int fg \, d\mu = \lim_{n \to \infty} \int f_n g_n \, d\mu = \lim_{n \to \infty} \left(\int f_n \, d\mu \right) \left(\int g_n \, d\mu \right)$$
$$= \left(\lim_{n \to \infty} \int f_n \, d\mu \right) \left(\lim_{n \to \infty} \int g_n \, d\mu \right) = \left(\int f \, d\mu \right) \left(\int g \, d\mu \right).$$

d) We split f and g in positive and negative parts, $f = f_+ - f_-$, $g = g_+ - g_-$, and observe that $fg = f_+g_+ - f_+g_- - f_-g_+ + f_-g_-$. Note that f_+ and f_- are \mathcal{A} -measurable, while g_+ and g_- are \mathcal{B} -measurable. Note also that by c), all the products on the right hand side are integrable. Hence fg is integrable and

$$\int fg \, d\mu = \int f_+ g_+ \, d\mu - \int f_+ g_- \, d\mu - \int f_- g_+ \, d\mu + \int f_- g_- \, d\mu$$

$$= \left(\int f_+ \, d\mu \right) \left(\int g_+ \, d\mu \right) - \left(\int f_+ \, d\mu \right) \left(\int g_- \, d\mu \right)$$

$$- \left(\int f_- \, d\mu \right) \left(\int g_+ \, d\mu \right) + \left(\int f_- \, d\mu \right) \left(\int g_- \, d\mu \right)$$

$$= \left(\int f_+ \, d\mu - \int f_- \, d\mu \right) \left(\int g_+ \, d\mu - \int g_- \, d\mu \right) = \left(\int f \, d\mu \right) \left(\int g \, d\mu \right).$$

Problem 2 a) To see that T is linear, note that

$$T(\alpha f + \beta g)$$
= $2(\alpha f(n) + \beta g(n)) - (\alpha f(n+1) + \beta g(n+1)) - (\alpha f(n-1) + \beta g(n-1))$
= $\alpha (2f(n) - f(n+1) - f(n-1)) + \beta (2g(n) - g(n+1) - g(n-1))$
= $\alpha Tf(n) + \beta Tg(n)$.

To estimate the norm, define f^+ and f^- by

$$f^{+}(n) = f(n+1)$$
 and $f^{-}(n) = f(n-1)$.

Clearly, $||f^+|| = ||f||$ and $||f^-|| = ||f||$, and hence by the triangle inequality

$$||Tf|| = ||2f - f^{+} - f^{-}|| \le 2||f|| + ||f^{+}|| + ||f^{-}|| = 4||f||$$

which shows that $||T|| \leq 4$.

b) We shall use the functions from the hint:

$$f_N(n) = \begin{cases} 1 & \text{if } |n| \le N \text{ and } n \text{ is even} \\ -1 & \text{if } |n| \le N \text{ and } n \text{ is odd} \\ 0 & \text{if } |n| > N \end{cases}$$

Note that $\|f_N\| = \sqrt{2N+1}$ and observe also that

$$Tf_N(n) = \left\{ \begin{array}{cc} 4 & \text{if } |n| < N \text{ and } n \text{ is even} \\ -4 & \text{if } |n| < N \text{ and } n \text{ is odd} \end{array} \right.$$

Hence $||Tf_N|| \ge 4\sqrt{2N-1}$, and we get

$$\frac{\|Tf_N\|}{\|f_N\|} \geq 4\sqrt{\frac{2N-1}{2N+1}} = 4\sqrt{\frac{1-\frac{1}{2N}}{1+\frac{1}{2N}}} \ \to \ 4.$$

This means that we can get $\frac{\|Tf_N\|}{\|f_N\|}$ as close to 4 as we want, and hence $\|T\|=4$.

c) It is easier to work backwards:

$$\sum_{n=-\infty}^{\infty} (f(n+1) - f(n))\overline{(g(n+1) - g(n))}$$

$$= \sum_{n=-\infty}^{\infty} \left(f(n+1)\overline{g(n+1)} - f(n+1)\overline{g(n)} - f(n)\overline{g(n+1)} + f(n)\overline{g(n)} \right)$$

$$= \sum_{n=-\infty}^{\infty} f(n+1)\overline{g(n+1)} - \sum_{n=-\infty}^{\infty} f(n+1)\overline{g(n)}$$

$$- \sum_{n=-\infty}^{\infty} f(n)\overline{g(n+1)} + \sum_{n=-\infty}^{\infty} f(n)\overline{g(n)}.$$

If we change summation variable in the first and third term, we see that

$$\sum_{n=-\infty}^{\infty} f(n+1)\overline{g(n+1)} = \sum_{n=-\infty}^{\infty} f(n)\overline{g(n)}$$

and

$$\sum_{n=-\infty}^{\infty} f(n)\overline{g(n+1)} = \sum_{n=-\infty}^{\infty} f(n-1)\overline{g(n)}.$$

Substituting this into the expression above, we get

$$\sum_{n=-\infty}^{\infty} (f(n+1) - f(n)) \overline{(g(n+1) - g(n))}$$

$$=2\sum_{n=-\infty}^{\infty}f(n)\overline{g(n)}-\sum_{n=-\infty}^{\infty}f(n+1)\overline{g(n)}-\sum_{n=-\infty}^{\infty}f(n-1)\overline{g(n)}=\langle Tf,g\rangle.$$

To show that T is self-adjoint, note that

$$\langle f, Tg \rangle = \overline{\langle Tg, f \rangle} = \overline{\sum_{n=-\infty}^{\infty} (g(n+1) - g(n)) \overline{(f(n+1) - f(n))}}$$

$$=\sum_{n=-\infty}^{\infty}\overline{(g(n+1)-g(n))}(f(n+1)-f(n))=\langle Tf,g\rangle.$$

d) From b) we have

$$\langle Tf, f \rangle = \sum_{n=-\infty}^{\infty} (f(n+1) - f(n)) \overline{(f(n+1) - f(n))}$$
$$= \sum_{n=-\infty}^{\infty} |f(n+1) - f(n)|^2 \ge 0.$$

Observe next that in order to have $\langle Tf, f \rangle = 0$, we must have f(n+1) = f(n) for all $n \in \mathbb{N}$, i.e., f has to be constant. As the only constant function in $l^2(\mathbb{Z})$ is the one that is constant zero, we see that T is positive definite.

Since T is self-adjoint and ||T|| = 4, we know from the *Notes* that all eigenvalues λ must be real and satisfy $|\lambda| \le 4$. To show that $\lambda > 0$, note that if f is a corresponding eigenvector, we have

$$\langle Tf, f \rangle = \langle \lambda f, f \rangle = \lambda ||f||^2,$$

and hence

$$\lambda = \frac{\langle Tf, f \rangle}{\|f\|^2} > 0.$$

e) Assume for contradiction that f is an eigenvector with eigenvalue 4. Then Tf(n) = 4f(n) for all $n \in \mathbb{Z}$, i.e.

$$2f(n) - f(n+1) - f(n-1) = 4f(n).$$

If we rearrange the terms, we get

$$f(n+1) + 2f(n) + f(n-1) = 0.$$

This means that the sequence $\{f(n)\}\$ is a solution of the difference equation

$$x_{n+1} + 2x_n + x_{n-1} = 0,$$

and must be of the form $f(n)=(Cn+D)(-1)^n$. However, for f to be in $H=l^2(\mathbb{Z})$, we need to have $\sum_{n=-\infty}^{\infty}|f(n)|^2<\infty$, and hence $\lim_{n\to\infty}f(n)=0$. This is only the case if C=D=0, i.e., if f=0. As f=0 can't be an eigenvector, we have our contradiction.

Problem 3: a) Since $y_n \in (T - \lambda I)H$, there are elements $z_n \in H$ such that $y_n = (T - \lambda I)z_n$. Using the orthogonal decomposition

$$H = \ker(T - \lambda I) \oplus \ker(T - \lambda I)^{\perp},$$

we see that

$$z_n = u_n + x_n$$

where $u_n \in \ker(T - \lambda I)$ and $x_n \in \ker(T - \lambda I)^{\perp}$. Hence

$$y_n = (T - \lambda I)z_n = (T - \lambda I)u_n + (T - \lambda I)x_n = 0 + (T - \lambda I)x_n = (T - \lambda I)x_n.$$

b) If $\{x_n\}$ is unbounded, we can choose the subsequence $\{x_{n_k}\}$ in this way: Let $n_1 = 1$, and if n_k is chosen, let n_{k+1} be the first number larger than n_k such that $||x_{n_{k+1}}|| \ge k+1$.

that $||x_{n_{k+1}}|| \ge k+1$. If $v_k = \frac{x_{n_k}}{||x_{n_k}||}$, we now have

$$\lim_{k \to \infty} (T - \lambda I) v_k = \lim_{k \to \infty} \frac{(T - \lambda I) x_{n_k}}{\|x_{n_k}\|} = 0$$

since $\lim_{k\to\infty} (T-\lambda I)x_{n_k} = y$ and $||x_{n_k}||\to\infty$.

c) Since $\{v_k\}$ is bounded and T is compact, there is a subsequence $\{v_{k_m}\}$ of $\{v_k\}$ such that $\{Tv_{k_m}\}$ converges to an element $x \in H$. Since (using b))

$$\lim_{m \to \infty} \lambda v_{k_m} = \lim_{m \to \infty} \left((Tv_{k_m} - (T - \lambda I)v_{k_m}) \right)$$

$$= \lim_{m \to \infty} T v_{k_m} - \lim_{m \to \infty} (T - \lambda I) v_{k_m} = x - 0 = x,$$

we see that $v_{k_m} \to \frac{x}{\lambda}$.

d) Since the elements x_n are in $\ker(T - \lambda I)^{\perp}$, so are the elements v_{k_m} , and since $x = \lambda \lim_{m \to \infty} v_{k_m}$ and $\ker(T - \lambda I)^{\perp}$ is closed, x must be in $\ker(T - \lambda I)^{\perp}$. On the other hand, since $(T - \lambda I)v_{k_m} \to 0$, we have

$$(T - \lambda I)x = \lim_{m \to \infty} (T - \lambda I)(\lambda v_{k_m}) = 0,$$

which shows that $x \in \ker(T - \lambda)$. Hence

$$x \in \ker(T - \lambda I) \cap \ker(T - \lambda I)^{\perp} = \{0\}$$

which means that x = 0. But as $x = \lambda \lim_{m \to \infty} v_{k_m}$ where $||v_{k_m}|| = 1$ and $\lambda \neq 0$, this is impossible, and hence our assumption that $\{x_n\}$ is unbounded leads to a contradiction.

e) As we now know that $\{x_n\}$ is bounded, the compactness of T implies that there is a subsequence $\{x_{n_\ell}\}$ such that $\{Tx_{n_\ell}\}$ converges to some point a. Since $\{(T-\lambda I)x_{n_\ell}\}$ converges to y by assumption, we get

$$\lim_{\ell \to \infty} \lambda x_{n_{\ell}} = \lim_{\ell \to \infty} \left(T x_{n_{\ell}} - (T - \lambda I) x_{n_{\ell}} \right) = a - y,$$

and hence $\lim_{\ell\to\infty} x_{n_\ell} = \frac{a-y}{\lambda}$. Thus if we let $z = \frac{a-y}{\lambda}$, we have

$$(T - \lambda I)z = \lim_{\ell \to \infty} (T - \lambda I)x_{n_{\ell}} = y,$$

which shows that $y \in (T - \lambda I)H$.

We have now proved that if y is the limit of a sequence $\{y_n\}$ of elements in $(T - \lambda I)H$, then $y \in (T - \lambda I)H$, and hence $(T - \lambda I)H$ is closed (see *Spaces*, Proposition 3.3.7).