Optics

Yichao Yu

Journal Club

Oct. 18, 2022

Useful for > 90% of calculation.

Useful for > 90% of calculation.

Exceptions

- Focus
- Long propagation
- Diffraction optical elements e.g. gratings.

Useful for > 90% of calculation.

Exceptions

- Focus
- Long propagation
- Diffraction optical elements e.g. gratings.

2/10

Useful for > 90% of calculation.

Exceptions

- Focus
- Long propagation
- Diffraction optical elements e.g. gratings.

3/10

$$x_1x_2 = f^2$$

$$M = \frac{f}{x_1} = \frac{x_2}{f} = \sqrt{\frac{x_2}{x_1}}$$

Conjugate plane: Perfect image under ray optics

3/10

Conjugate plane: Perfect image under ray optics Principal planes: Conjugate plane where M=1

Aspherical lens

Aspherical lens

Use cases

- Collimation
- Fiber coupling

Other lens types

Reflective

- No chromatic shift
- Can be aspherical
- More difficult beam path layout

6/10

Other lens types

Reflective

- No chromatic shift
- Can be aspherical
- More difficult beam path layout

Lens set

- Could fix chromatic shift
- Could fix monochromatic aberration
- Better surface quality
- May not be UV compatible

Collimation

Collimation

Collimation

 $d \approx 2f \tan \theta$

Alignment

Alignment

Alignment

Alignment

Alignment

Polarization

Polarization: Polarizers

Polarization: Polarizers

PBS Cubes

PBS Cubes

- Based on coating
- Easy to use for both polarizations
- OK loss (few %)
- low-mid extinction
- Wavelength dependent

PBS Cubes

Prisms

- Based on coating
- Easy to use for both polarizations
- OK loss (few %)
- low-mid extinction
- Wavelength dependent

PBS Cubes

- Based on coating
- Easy to use for both polarizations
- OK loss (few %)
- low-mid extinction
- Wavelength dependent

Prisms

- Based on birefringence
- Non 90 reflection angle
- Low loss
- High extinction
- Etaloning
- Broadband

PBS Cubes

- Based on coating
- Easy to use for both polarizations
- OK loss (few %)
- low-mid extinction
- Wavelength dependent

Prisms

- Based on birefringence
- Non 90 reflection angle
- Low loss
- High extinction
- Etaloning
- Broadband

Thin film

PBS Cubes

- Based on coating
- Easy to use for both polarizations
- OK loss (few %)
- low-mid extinction
- Wavelength dependent

Prisms

- Based on birefringence
- Non 90 reflection angle
- Low loss
- High extinction
- Etaloning
- Broadband

Thin film

- Based on absorption
- Easy to use (minimal change to beam)
- High loss
- High extinction
- Broadband

$$\Delta \phi = \frac{2\pi nl}{\lambda}$$

Yichao Yu (Journal Club) Optics Oct. 18, 2022 9/10

$$\Delta\phi = \frac{2\pi nl}{\lambda}$$

Half WP:
$$\Delta \phi = \frac{\pi}{2}$$

Quarter WP:
$$\Delta \phi = \frac{\pi}{4}$$

$$\Delta \phi = \frac{2\pi nl}{\lambda}$$

Half WP:
$$\Delta \phi = 2n\pi + \frac{\pi}{2}$$
 Quarter WP: $\Delta \phi = 2n\pi + \frac{\pi}{4}$

Yichao Yu (Journal Club) Optics Oct. 18, 2022 9/10

$$\Delta \phi = \frac{2\pi nl}{\lambda}$$

Half WP:
$$\Delta \phi = 2n\pi + \frac{\pi}{2}$$
 Quarter WP: $\Delta \phi = 2n\pi + \frac{\pi}{4}$

Zero-th order WP: n = 0

9/10

Yichao Yu (Journal Club) Optics C

$$\Delta \phi = \frac{2\pi nl}{\lambda}$$

Half WP:
$$\Delta \phi = 2n\pi + \frac{\pi}{2}$$
 Quarter WP: $\Delta \phi = 2n\pi + \frac{\pi}{4}$

Zero-th order WP: n = 0

Other WP type: Achromatic, "Magic"

9/10

Yichao Yu (Journal Club) Optics Oct. 1

Normal incident

- π phase shift
- No effect on relative amplitude

Yichao Yu (Journal Club) Optics Oct. 18, 2022 10/10

Normal incident

- π phase shift
- No effect on relative amplitude

- *p*-polarization
- s-polarization

10/10

Yichao Yu (Journal Club) Optics Oct. 18, 2022

Normal incident

- π phase shift
- No effect on relative amplitude

Simple surface (metal or die)

- (metal or dielectric)
- π phase shift
- Change relative amplitude

- *p*-polarization
- s-polarization

10/10

Yichao Yu (Journal Club) Optics Oct. 18, 2022

Normal incident

- \bullet π phase shift
- No effect on relative amplitude

- *p*-polarization
- s-polarization

Simple surface

- (metal or dielectric)
- π phase shift
- Change relative amplitude

Coating

- "Arbitrary" phase shift
- Change relative amplitude
- (dielectric mirror, dichroics)