RIS-Assisted Joint Radar and Communications Beamforming Design

Zhaolin Wang

Communications and Signal Processing Group Department of Electrical and Electronic Engineering Imperial College London

March 3, 2021

Communication and Radar Spectrum Sharing

Motivation¹

 Radar systems utilize numerous spectrum bands below 10 GHz, leading to sever spectrum congestion with future wireless communications systems.

Communication and Radar Spectrum Sharing (CRSS)²

- Coexistence of existing radar and communications.
- Co-design for dual-functional radar and communications (DFRC)
 - Radar-centric (information embedding)
 - 2 Communication-centric (joint beamforming design)

Figure: Schematic diagram for separated and shared multi-antenna joint RadCom³

¹F. Liu et al. "Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead". In: *IEEE Transactions on Communications* 68.6 (2020), pp. 3834–3862. DOI: 10.1109/TCOMM.2020.2973976.

²F. Liu and C. Masouros. "A Tutorial on Joint Radar and Communication Transmission for Vehicular Networks—Part I: Background and Fundamentals", In: IEEE Communications Letters 25.2 (2021), pp. 322–326. DOI: 10.1109/LCOMM.2020.3025310.

³ C. Xu, B. Clerckx, and J. Zhang, "Multi-Antenna Joint Radar and Communications: Precoder Optimization and Weighted Sum-Rate vs Probing Power Tradeoff". In: IEEE Access 8 (2020), pp. 173974–173982. DOI: 10.1109/ACCESS.2020.3025156.

Trade-off between Radar and Communication

$$\begin{aligned} \max_{\mathbf{P}, \mathbf{R}_x} \rho \sum_{k=1}^K \mu_k R_k(\mathbf{P}, \mathbf{R}_x) + \\ \mathbf{a}_1^H(\varphi_m) \mathbf{R}_x \mathbf{a}_1(\varphi_m) + \mathbf{a}_2^H(\varphi_m) \mathbf{P} \mathbf{P}^H \mathbf{a}_2(\varphi_m) \\ \mathbf{s.t.} \quad \operatorname{diag}(\mathbf{R}_x) &= \frac{P_r \mathbf{1}^{M_r \times 1}}{M_r} \\ \operatorname{Tr}(\mathbf{P} \mathbf{P}^H) &\leq P_c \\ \mathbf{R}_x \succeq 0 \end{aligned}$$

Figure: Pareto Optimal Front

- What if the channel is totally controllable?
 - Precoder (beamforming) is only for Radar
 - Control the channel to meet the Communication requirement
- Reconfigurable Intelligent Surface (RIS)⁴
 - Composed of many small and low-cost reflecting elements
 - Achieve the desired propagation characteristics

4Y. Liu et al. "Reconfigurable intelligent surfaces: Principles and opportunities". In: arXiv preprint arXiv:2007. @3435 (2020) 🔻 🚆 🕨 👙 🔇

Zhaolin Wang (Imperial) RIS-assisted RadCom March 3, 2021

- System Model
 - ullet M_r antennas for the radar, M_c antennas for the communication
 - ullet N reflecting elements at RIS
 - K users with single antenna; 1 target
 - Observation at user k

$$y_k = \mathbf{h}_k^H \mathbf{\Theta}^H \mathbf{H}_c \sum_{k=1}^K \mathbf{p}_j s_j + \mathbf{h}_k^H \mathbf{\Theta}^H \mathbf{H}_r \mathbf{r} + n_k$$

SINR and Achievable Rate at user k

$$\gamma_k(\mathbf{P}, \mathbf{R}_x, \mathbf{\Theta}) = \frac{|\mathbf{h}_k^H \mathbf{\Theta}^H \mathbf{H}_c \mathbf{p}_k|^2}{\sum_{j=1, j \neq k}^K |\mathbf{h}_k^H \mathbf{\Theta}^H \mathbf{H}_c \mathbf{p}_j|^2 + \mathbf{f}_k^H \mathbf{R}_x \mathbf{f}_k + 1}$$
$$R_k(\mathbf{P}, \mathbf{R}_x, \mathbf{\Theta}) = \log_2(1 + \gamma_k(\mathbf{P}, \mathbf{R}_x, \mathbf{\Theta}))$$

Optimization Problem

$$\begin{aligned} \max_{\mathbf{P},\mathbf{R}_x,\mathbf{\Theta}} \rho \sum_{k=1}^K \mu_k R_k(\mathbf{P},\mathbf{R}_x,\mathbf{\Theta}) + \mathbf{a}_1^H(\varphi_m) \mathbf{R}_x \mathbf{a}_1(\varphi_m) + \mathbf{a}_2^H(\varphi_m) \mathbf{P} \mathbf{P}^H \mathbf{a}_2(\varphi_m) \\ \text{s.t.} \quad \operatorname{diag}(\mathbf{R}_x) &= \frac{P_r \mathbf{1}^{M_r \times 1}}{M_r} \\ \operatorname{Tr}(\mathbf{P} \mathbf{P}^H) &\leq P_c \\ \mathbf{R}_x \succeq 0 \\ |\theta_n| &\leq 1, n = 1, ..., N \end{aligned}$$

Block Coordinate Descent, WMMSE⁵⁶, Fractional Programming⁷

⁵S. S. Christensen et al. "Weighted Sum-Rate Maximization Using Weighted MMSE for MIMO-BC Beamforming Design". In: 2009 IEEE International Conference on Communications. 2009, pp. 1–6. DOI: 10.1109/ICC.2009.5199574.

Zhaolin Wang (Imperial) RIS-assisted RadCom March 3, 2021

⁶C. Xu, B. Clerckx, and J. Zhang, "Multi-Antenna Joint Radar and Communications: Precoder Optimization and Weighted Sum-Rate vs Probing Power Tradeoff". In: IEEE Access 8 (2020), pp. 173974–173982. DOI: 10.1109/ACCESS.2020.3025156.

Tradeoff': In: IEEE Access 8 (2020), pp. 173974–173982. DOI: 10.1109/ACCESS.2020.3026156.

7 K. Shen and W. Yu. "Fractional Programming for Communication Systems—Part I: Power Control and Beamforming". In: IEEE Transactions on Signal Processing 66.10 (2018), pp. 2616–2630. DOI: 10.1109/TSP.2018.2812733.

ullet Update ${f P},\,{f R}_x$ using WMMSE o Semi-definite Programming

$$\begin{aligned} & \min_{\mathbf{P}, \mathbf{R}_x} \rho \sum_{k=1}^K \mu_k \xi_k(\mathbf{P}, \mathbf{R}_x) - \mathbf{a}_1^H(\varphi_m) \mathbf{R}_x \mathbf{a}_1(\varphi_m) + \sum_{k=1}^K \mathbf{p}_k^H \mathbf{Z}(\varphi_m) \mathbf{p}_k \\ & \mathbf{s.t.} \quad \mathrm{diag}(\mathbf{R}_x) = \frac{P_r \mathbf{1}^{M_r \times 1}}{M_r} \\ & & \mathrm{Tr}(\mathbf{P}\mathbf{P}^H) \leq P_c \\ & & \mathbf{R}_x \succeq 0 \end{aligned}$$

 $\bullet \ \mathsf{Update} \ \Theta \ \mathsf{using} \ \mathsf{Fractional} \ \mathsf{Programming} \ \to \ \mathsf{Quadratic} \ \mathsf{Programming}$

$$\begin{aligned} & \max_{\mathbf{y}, \boldsymbol{\theta}} \sum_{k=1}^{K} \left(2\Re \left\{ y_k^* \sqrt{\tilde{\alpha}_k} \mathbf{a}_{k,k}^H \boldsymbol{\theta} \right\} - |y_k|^2 \left(\sum_{j=1}^{K} |\mathbf{a}_{j,k}^H \boldsymbol{\theta}|^2 + \boldsymbol{\theta}^H \mathbf{B}_k \boldsymbol{\theta} + 1 \right) \right) \\ & \text{s.t.} \quad |\theta_n| \leq 1, n = 1, ..., N \\ & y_k \in \mathbb{C} \end{aligned}$$

Algorithm WMMSE-FP Algorithm

Input: $t \leftarrow 0$, $\mathbf{P}^{[t]}$, $\mathbf{\Theta}^{[t]}$

- 1: WSR^[t] is calculated from $\mathbf{P}^{[t]}$ and $\mathbf{\Theta}^{[t]}$
- 2: repeat
- 3: $\boldsymbol{\omega}^* = \boldsymbol{\omega}^{\mathrm{MMSE}}(\mathbf{P}^{[t]}, \mathbf{\Theta}^{[t]})$
- 4: $\mathbf{g}^* = \mathbf{g}^{\text{MMSE}}(\mathbf{P}^{[t]}, \mathbf{\Theta}^{[t]})$
- 5: update $\mathbf{P}^{[t+1]}$, $\mathbf{R}_x^{[t+1]}$ by solving the SDP with updated $\boldsymbol{\omega}^*$ and \mathbf{g}^* .

6:
$$\boldsymbol{lpha}^* = oldsymbol{\gamma}ig(\mathbf{P}^{[t+1]}, \mathbf{R}_x^{[t+1]}, oldsymbol{\Theta}^{[t]}ig)$$

7:
$$y_k^* = \frac{\sqrt{\tilde{a}_k \mathbf{a}_{j,k}^H \mathbf{\theta}_k}}{\sum_{i=1}^K |\mathbf{a}_{j,k}^H \mathbf{\theta}_k|^2 + \mathbf{\theta}_k^H \mathbf{B}_k \mathbf{\theta}_k + 1}, k = 1, \dots, K$$

- 8: update $\Theta^{[t+1]}$ by solving the QP with updated α^* and y_k^* .
- 9: t + +
- 10: **until** $\left| \mathbf{WSR}^{[t]} \mathbf{WSR}^{[t+1]} \right| \leq \epsilon$

Challenges

- If the discrete phase shift of RIS is considered, the constraint set is non-convex
 - Discrete set
- If the shared deployment is considered, the constraint set is also non-convex
 - · Quadratic equality constraint

Thanks

9/9