CS344: Design and Analysis of Computer Algorithms

Homework 1

Group	Members:	Stephen	K110.	Derek	Mui
Group	members.	prephen	rruo,	Derek	wrui

1.11) Is $4^{1536} - 9^{4824}$ divisible by 35? **Answer:**

temp

1.12) What is $2^{2^{2006}} \mod 3$

Answer:

$$2^{2^{2006}} = 4^{2006} = 4^{2^{1003}} = 16^{1003} = (15+1)^{1003}$$
 We know 15 is divisible by 3, so that leaves us with 1^{1003} . Thus, the answer is 1

1.13) Is the difference of $5^{30,000}$ and $6^{123,456}$ a multiple of 31? **Answer:**

temp

1.25) calculate $2^{125} \mod 127$ using any method you choose **Answer:**

Allswe

temp

1.33) Give an efficient algorithm to compute the least common multiple of two n-bit numbers x and y, that is, the smallest number divisible by both x and y. What is the running tie of your algorithm as a function of n?

Answer:

 temp

1.39) Give a polynomial-time algorithm for computing a^{b^c} mod p, given a, b, c, and prime p.

Answer:

temp

Problem)
Answer:

 $_{\mathrm{temp}}$