

Parameter	Theoretical value	Simulated Value
Vth	43.28 V	42.2432 V
Rth	29.2397 ohm	29.1891 ohm
Load current IL	0.7305 A	0.713699 A

Theoretical values calculations:

Batch: C5	2-1 Roll No. 1601012329
Name : Sa	Abhishek Koppisetty
Course : E	
Experiment /	assignment / tutorial No. IA - 1
Grade:	Signature of the Faculty with da

	Grade: Signature of the Faculty with date					
	15-2 R1=93-22 30-52					
91						
	1 13A \$ 50V					
	150 V					
	1552 93.52					
Ans-	155L 431L					
	150V D13A \$4052 50V					
	I, VI ₂					
	applying super-mesh analysis.					
	$I_2 - I_1 = 13 \longrightarrow 0$					
	apply KVL to couter loop of super-mesh.					
	$\frac{150 - 15I_1 - 93I_2 - 40I_2 = 0}{150 = 15I_1 + 133I_2}$					
	substituting 10 in 2 , we get					
	$15I_1 + 133(13+I_2) = 150$ $15I_1 + 133I_1 + 1729 = 150$					
	148I, = -1579 I, = -1579 = -10.668 A					
	II = -10.668 A					

 $I_2 = 13 + I_1 = 13 + (-10668)$: Iz = 2.332 A For V+h: 40I2 - V+n - 50 = 0 V+n = 40(2.332) - 50. = 43.28 V For Rtn: 9352 1552 RHO -MM ~~~~ 40525 R' = 15+93 = 108 /2 108 40 = 0.009a' + 0.025= 0.0342 :. R" = 29.2397 SZ = Rtn Now I 30 12 = Vth = 43-28 - 0-7305 A = 43.28 30+29.2397 59-2397

Roll No. 14.010123243

Name: Sai Abhushak koppisetty

Course: LEEE

Experiment / assignment / tutorial No. 1A - 1

Grade: Signature of the Faculty with date

	Compare incandescent light bulb, compact fluorexent damp (CFL) and LED (write any 8 points of difference.
Ans-	How are 8 differences points of comparison between incondescent light bulbs, compact fluorescent lamps (CFLS), and light-emitting diodes (LEDS):
1_	Enorgy Efficiency:
	Incondescent: least enougy-efficient, as it produces more heat than light.
0	CFL: More energy-efficient than incandescent bulbs, but less so compared to LEDS.
	LED: Highly energy-efficient, then incondescent bulbs, consulting a lorger porcentage of energy into light mather other heat.
2.	Life span:
•	Incandescent: Shortest difespan, typically around 1000 hours.
	CFL: Longer lifespan than incandescent bulbs, ranging
	CFL: Longer lifespan than incandescent bulbs, ranging from 8000 to 10000 hours. LED: Longest lifespan, with some models capable of lasting up to 25,000 hours or more.
3	Light quality:
	Incandescent: Provides worm and soft light with good
•	CFL: Initially had issues with colour temperature, but never models offer a range of options.
	11.

	- Miles
•	and good colour sundering, comparable to incondescent bulbs.
4.	Start-up time:
	Incandescent: Instantaneous, reaches full brightness immediately.
	CFL: Generally has a short delay before reaching full brightness.
	LED: Instantaneous stort-up, reaching full brightness instantly.
5.	Heat Emission.
	Incandescent: Generates a significant amount of heat contributing to energy waste.
	CFL: Generates less heat compared to incandescent bulb
•	LED: Produces very little heat, making it the most energy-efficient option.
6.	Environmental Impact:
•	Incandescent: Contains no hazardous materials, but is
	CFL: Contains a small amount of morcury, requiring proper disposal to minimise environmental impact.

Name : So	i Abhishek	Koppisetty
Course E		. 0
Experiment	/ assignment / tutore	INO IA-1
Grade:	Signature of th	ne Faculty with d

	LED: Contains no hazardous materials and is recyclable making it more environmentally friendly.
7.	Dimmability:
	Incandescent: Naturally dimmable without the need for special fixtures.
	CFL: Dinmable options are available but may require compatible dinmer switches.
•	LED: Many LED bulbs are dimmable but compatibility with dimmer switches should be checked
8.	Cost:
•	Incandescent: Grenerally the least expensive unfront, but higher operating costs own time.
	CFL: Moderately priced, with lower operating costs than incanded that bulbs.
	LED: Initially more expensive, but the cost has decreased, and the energy sawing over time make it a cost-effective choice.
_	