Filière: SMI-S4

A.U: 2020-2021

Module: Électromagnétisme dans le Vide <u>Travaux Dirigés: Série 1</u> <u>Prof. Youssef HADDOUT</u>

Exercice 1: Ponts diviseurs de tension et de courant

On considère les circuits des deux figures, ci-contre, qui représente des ponts diviseurs de tension (*Figure1*) et de courant (*Figure 2*) en représentation complexe.

- 1. Exprimer les tensions complexes \bar{U}_1 aux bornes de \bar{Z}_1 et \bar{U}_2 aux bornes de \bar{Z}_2 en fonction de \bar{E} , \bar{Z}_1 et \bar{Z}_2 pour le circuit de la figure 1.
- 2. Exprimer les intensités complexes \bar{I}_1 dans \bar{Z}_1 et \bar{I}_2 dans \bar{Z}_2 en fonction de \bar{I} , \bar{Z}_1 et \bar{Z}_2 pour le circuit de la figure 2.
- Déduire les règles des ponts diviseurs de tension et de courant.

Figure 1

Figure 2

Exercice 2:

On considère les circuits suivants :

- 1. Déterminer l'impédance complexe \bar{Z}_{AB} entre A et B pour chaque circuit.
- 2. Déduire le module et l'argument de \bar{Z}_{AB} pour chaque circuit.
- 3. On veut remplacer chacune des deux associations considérées par deux éléments passifs branchés en série entre A et B.

Quelles sont la nature et la valeur de la grandeur caractéristique de chaque élément pour une fréquence de 50 Hz sachant que $R=10~k\Omega$, $C=200~\mu F$ et L=100~mH.

Exercice 3:

Considérons le circuit ci-contre, on applique entre A et B une tension sinusoïdale $u(t) = U_m \cos(\omega t)$. On pose $R = L\omega = \frac{1}{C\omega}$.

- 1. Trouver l'impédance complexe \bar{Z} équivalente du circuit AB.
- 2. Donner l'expression des courants i(t), $i_1(t)$ et $i_2(t)$.
- 3. Vérifier que $i(t) = i_1(t) + i_2(t)$.

Exercice 4:

I. On considère un montage à l'aide de trois impédances \bar{Z}_A , \bar{Z}_B et \bar{Z}_C branchées comme indiqué sur le schéma. Ce montage (*Figure 1*) est alimenté par une source de tension sinusoïdale :

$$u(t) = U_0 \cos(\omega t)$$

- 1. Déterminer en fonction de \bar{U} , \bar{Z}_A , \bar{Z}_B et \bar{Z}_C le courant \bar{I}_A qui circule dans l'impédance \bar{Z}_A .
- 2. Déterminer en fonction de \bar{U} , \bar{Z}_A , \bar{Z}_B et \bar{Z}_C le courant \bar{I}_C qui circule dans l'impédance \bar{Z}_C .
- 3. Comment peut-on constituer \bar{Z}_A et \bar{Z}_B pour que le courant \bar{I}_C soit indépendant de \bar{Z}_C .

- II. On considère le circuit électrique présenté sur la figure 2.
 - 1. Etablir l'expression de l'impédance complexe \bar{Z}_{AB} de ce circuit. En Déduire le module et l'argument de \bar{Z}_{AB} .
 - 2. Entre les bornes A et B on applique la tension sinusoïdale $v(t) = V_m \cos(\omega t)$, déterminer, par la méthode des nombres complexes, le courant principal i(t), on posera $i(t) = I_m \cos(\omega t + \varphi)$, φ représente le déphasage du courant par rapport à la tension. En déduire I_m et φ .

- 3. Déterminer la tension $v_{MB}(t)$ aux bornes de l'association de R et C en parallèle en fonction de r, R, C et ω .
- 4. Déterminer le courant $i_C(t) = I_{Cm} \cos(\omega t + \varphi_C)$ qui circule dans le condensateur C. En déduire I_{Cm} et φ_C .

Exercice 5:

Le circuit de la figure ci-dessous est alimenté par un générateur de fréquence f=50~Hz et d'amplitude $E_m=311~V$. La phase à l'origine de la tension e(t) délivrée par le générateur est prise égale à zéro. Données : $R=40~\Omega, L=0.2~H, C=5~\mu F$.

- 1. Exprimer l'amplitude complexe \bar{l} du courant i(t). En déduire l'amplitude l_m et la phase à l'origine φ_i de l'intensité i(t).
- 2. Exprimer les amplitudes complexes \bar{U}_R , \bar{U}_L et \bar{U}_C des tensions aux bornes de chacun des dipôles. En déduire les amplitudes et les phases à l'origine de ces tensions.

Exercice 6:

On considère le circuit de la figure ci-dessous. Le dipôle AD est alimenté par une source de tension sinusoïdale d'amplitude $E_m = 155 V$ et de pulsation $\omega = 400 \ rad. \ s^{-1}$.

Données : $R = 100 \Omega$, et $C = 33 \mu F$.

1. Déterminer l'expression de l'impédance complexe \bar{Z}_{AD} de ce circuit.

- 2. Exprimer l'inductance L en fonction de R, C et ω pour que le dipôle AD soit équivalent à une résistance pure R_{eq} . Calculer L ainsi que R_{eq} .
- 3. Exprimer puis calculer alors l'amplitude I_m de l'intensité i(t).
- 4. Exprimer puis calculer les amplitudes U_{AB} et U_{BD} des tensions $u_{AB}(t)$ et $u_{BD}(t)$.
- 5. Exprimer puis calculer les amplitudes I_{1m} et I_{2m} des intensités $i_1(t)$ et $i_2(t)$.

Exercice 7:

On considère le circuit ci-contre où $u(t)=U_m\cos(\omega t)$.

- 1. Calculer les intensités des courants dans chacune des branches du circuit.
- 2. Calculer les puissances actives et réactives dans chaque branche. Etablir le bilan des puissances.

