DPP: Arithmetic Progression

General term of an Arithmetic progression Basic Level The sequence $\frac{5}{\sqrt{7}}, \frac{6}{\sqrt{7}}, \sqrt{7}$ is 1. (d) None of these (c) A.P. p^{th} term of the series $\left(3-\frac{1}{n}\right)+\left(3-\frac{2}{n}\right)+\left(3-\frac{3}{n}\right)+\dots$ will be 2. (a) $\left(3 + \frac{p}{n}\right)$ (b) $\left(3 - \frac{p}{n}\right)$ If the 9th term of an A.P. be zero, then the ratio of its 29th and 19th term is 3. (b) 2:1 3:1 (a) 1:2 Which of the following sequence is an arithmetic sequence 4. (a) $f(n) = an + b; n \in N$ (b) $f(n) = kr^n; n \in N$ $f(n) = (an + b)kr^n; n \in N$ If the p^{th} term of an A.P. be q and q^{th} term be p, then its r^{th} term will be 5. (c) (d) p-q-rIf the 9^{th} term of an A.P. is 35 and 19^{th} is 75, then its 20^{th} term will be 6. (c) 80 (d) 81 If (a+1), 3a, (4a+2) are in A.P. then 7th term of the series is 7. (c) 33 (d) 10a-4It x, y, z are in A.P., then its common difference is 8. (c) $\sqrt{z^2 - xy}$ (b) $\sqrt{y^2 - xz}$ (d) None of these The 10th term of the sequence $\sqrt{3}$, $\sqrt{12}$, $\sqrt{27}$, 9. (a) $\sqrt{243}$ (b) $\sqrt{300}$ (c) $\sqrt{363}$ (d) $\sqrt{432}$ Which term of the sequence (-8 + 18i), (-6+15i), (-4 + 12i),is purely imaginary 10. (d) 6th 11. If $(m+2)^{th}$ term of an A.P. is $(m+2)^2-m^2$, then its common difference is (c) 2 (d) - 2For an A.P., $T_2 + T_5 - T_3 = 10$, $T_2 + T_9 = 17$, then common difference is **12.**

Joint Effort By: Dr. Anoop Dixit & Dr. Harish Bhardwaj

(b) 1

(a) 0

(c) - 1

(d) 13

Advance Level

13.	If $\tan n\theta = \tan m\theta$, then the	different values of $ heta$ will be in		
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
14.	If the p^{th} , q^{th} and r^{th} term	of an arithmetic sequence are a , b and	I c respectively, then the value of	[a (q-r)+b(r-p)+c (p-q)]=
	(a) 1	(b) -1	(c) 0	(d) $\frac{1}{2}$
15.	If n^{th} terms of two A.P.'s are 3	3n + 8 and $7n + 15$, then the ratio of the	eir 12 th terms will be	\ ,\
	(a) $\frac{4}{9}$	(b) $\frac{7}{16}$	(c) $\frac{3}{7}$	(d) $\frac{8}{15}$
16.	The 6th term of an A.P. is equ	ual to 2, the value of the common diffe	erence of the A.P. which makes th	e product $a_1 a_4 a_5$ least is given
	by			
	(a) $\frac{8}{5}$	(b) $\frac{5}{4}$	(c) $\frac{2}{3}$	(d) None of these
17.	If p times the p^{th} term of a	n A.P. is equal to q times the q^{th} term	of an A.P., then $(p+q)^{th}$ term is	
	•		5/1	X
	(a) 0	(b) 1	(c) 2.	(d) 3
18.	The numbers $t(t^2+1)$, $-\frac{1}{2}t^2$	² and 6 are three consecutive terms o	f an A.P. If t be real, then the nex	t two terms of A.P. are
	(a) -2, -10	(b) 14,6	(c) 14,22	(d) None of these
19.	If the p^{th} term of the series 25	5, $22\frac{3}{5}$, $20\frac{1}{2}$, $18\frac{1}{4}$, is numerical	ly the smallest, then $p=$	
	(a) 11	(b) 12	(c) 13	(d) 14
20.	The second term of an A.P. is	(x-y) and the 5th term is $(x+y)$, then	n its first term is	
	(a) $x - \frac{1}{3}y$	(b) $x - \frac{2}{3}y$	(c) $x - \frac{4}{3}y$	(d) $x - \frac{5}{3}y$
21.	The number of common term	ns to the two sequences 17, 21, 25,	.417 and 16, 21, 26, 466 is	
	(a) 21	(b) 19	(c) 20	(d) 91
22.	In an A.P. first term is 1. If T_1	$T_3 + T_2T_3$ is minimum, then common	difference is	
	(a) -5/4	(b) -4/5	(c) 5/4	(d) 4/5
23.		and $B = \{3, 6, 9, 12, \dots\}$, and $n(A) = 200$		
	(a) $n(A \cap B) = 67$	(b) $n(A \cup B) = 450$	(c) $n(A \cap B) = 66$	(d) $n(A \cup B) = 384$
			Sum to n terms o	f an Arithmetic progression
	,			, p. og. obston
		Basic Le	vel	

24. The sum of first *n* natural numbers is

(c) n(n+1)

The sum of the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \dots$ to 9 terms is 25.

Joint Effort By: Dr. Anoop Dixit & Dr. Harish Bhardwaj

Corporate Office: 6/3 JAC Road Shipra Suncity Indirapuram Gzb

	(a) $-\frac{3}{6}$	(b) $-\frac{1}{2}$	(c) 1	(d) $-\frac{3}{2}$
26.	The sum of all natural numbe	rs between 1 and 100 which are mult	iples of 3 is	
	(a) 1680	(b) 1683	(c) 1681	(d) 1682
27.	The sum of 1+3+5+7+ upto	n terms is		
	(a) $(n+1)^2$	(b) $(2n)^2$	(c) n^2	(d) $(n-1)^2$
28.	If the sum of the series 2+5+	8+11 is 60100, then the number of	of terms are	
	(a) 100	(b) 200	(c) 150	(d) 250
29.	If the first term of an A.P. be 1	10, last term is 50 and the sum of all th	ne terms is 300, then the number	of terms are
	(a) 5	(b) 8	(c) 10	(d) 15
30.	The sum of the numbers betw	veen 100 and 1000 which is divisible l	by 9 will be	`//
	(a) 55350	(b) 57228	(c) 97015	(d) 62140
31.	If the sum of three numbers of	of a arithmetic sequence is 15 and the	sum of their squares is 83, then t	the numbers are
	(a) 4, 5, 6	(b) 3, 5, 7	(c) 1, 5, 9	(d) 2, 5, 8
32.	If the sum of three consecutiv	ve terms of an A.P. is 51 and the produ	act of last and first term is 273, th	en the numbers are
			/6 //	
	(a) 21, 17, 13	(b) 20, 16, 12	(c) 22, 18, 14	(d) 24, 20, 16
33.	There are 15 terms in an arith	hmetic progression. Its first term is 5 a		term is
	(a) 23	(b) 26	(c) 29	(d) 32
34.	If $S_n = nP + \frac{1}{2}n(n-1)Q$, whe	ere S_n denotes the sum of the first n to	erms of an A.P. then the common	difference is
	2	7A) Q		
	(a) D ((b) 2P+3Q	(a) 20	(4) 0
) F	(a) $P+Q$		(c) 2Q	(d) <i>Q</i>
35.	(a) 135657	0 to 1000 which are divisible by 3 is (b) 136557	(c) 161575	(d) 156375
36.		tic progression. The sum of first and		• •
JU.	least number of the series is	the progression. The sum of first and	last term is o and the product of	both initiale terms is 15. Th
	(a) 4	(b) 3	(c) 2	(d) 1
37.	The number of terms of the A	.P. 3, 7, 11, 15 to be taken so that t	he sum is 406 is	
	(a) 5	(b) 10	(c) 12	(d) 14
38.	The consecutive odd integers	whose sum is $45^2 - 21^2$ are		
	(a) 43, 45,, 75	(b) 43, 45, 79	(c) 43, 45,, 85	(d) 43, 45,, 89
39.	If common difference of m A.I	P.'s are respectively $1, 2, \dots$ m and first	st term of each series is 1, then su	of their $m^{\rm th}$ terms is
	(a) $\frac{1}{2}m(m+1)$	(b) $\frac{1}{2}m(m^2+1)$	(c) $\frac{1}{2}m(m^2-1)$	(d) None of these
	2	2 11 (11 - 17)	2	(u) None of these
40.	The sum of all those numbers	s of three digits which leave remainde	r 5 after division by 7 is	
	(a) 551 × 129	(b) 550 × 130	(c) 552 × 128	(d) None of these
41.	If $S_n = n^2 p$ and $S_m = m^2 p, m$	$i \neq n$, in A.P., then S_p is		
	(a) p^2	(b) p ³	(c) p ⁴	(d) None of these
42.	An A.P. consists of <i>n</i> (odd terr	ms) and its middle term is m . Then the	e sum of the A.P. is	
	(a) 2 mn	(b) $\frac{1}{2}mn$	(c) mn	(d) mn ²
	(a) 2 mn	$\frac{1}{2}mn$	(c) IIII	(u) IIIII-

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

(9	7810	683007,99	99	7568099)		
The minimum number of term		-		_		
(a) 15	(b) 37		(c) 3	35	(d) 17	7
		Advance Le	vel			
If the ratio of the sum of n ter						
(a) 2:3	(b) 3:4		(c) 4		(d) 5	
The interior angles of a poly sides is	gon are in <i>P</i>	A.P. If the smallest angle be	3 120	and the common differer	ice be 5	, then the number of
(a) 8	(b) 10		(c) 9		(d) 6	V
The sum of integers from 1 to	o 100 that ar	e divisible by 2 or 5 is				
(a) 3000	(b) 3050		(c) 4			one of these
If the sum of first <i>n</i> terms of a	an A.P. be eq	ual to the sum of its first <i>m</i>	terms	s, $(m \neq n)$, then the sum of i	ts first	(m+n) terms will be
(a) 0	(b) n		(2)		(d) m	
(a) 0 If a_1, a_2 ,, a_n are in A.P. wit	(b) <i>n</i>		(c) <i>r</i> f the f		(u) m	+ 11
$\sin d (\cos a_1 \cdot \csc a_2 + \cos a_1)$				oliowing series is	7 1	
(a) $\sec a_1 - \sec a_n$	(b) $\cot a_1$			$\tan a_1 - \tan a_n$	(d) co	osec a_1 – cosec a_n
The odd numbers are divided						n in the second
1 3						
5 7 9 11				/ , X , ' .		
13 15 17 19 21 23						
Then the sum of n^{th} row is		'4. \/. \				
(a) $2^{n-2}[2^n+2^{n-1}-1]$	(b) $\frac{1}{2}(2n)$	+1)	(c)	2n	(d) 4	n^3
If the sum of <i>n</i> terms of an A.	P is $2n^2 \pm 5n^2$	a then the a^{th} term will be	0			
				1n 6	(d) 4	n 7
(a) $4n+3$ The <i>n</i> th term of an A.P. is $3n$	(b) $4n+5$			4n+6	(d) 4	n + 1
(a) 14	(b) 35		(c) 8		(d) 40)
If the sum of two extreme nu						
number of the series will be						
(a) 5	(b) 7	· ·	(c) 9		(d) 11	
The ratio of sum of m and n t	erms of an A	.P. is $m^2:n^2$, then the ratio	of m	th and n^{th} term will be		
(a) $\frac{m-1}{n-1}$	(b) $\frac{n-1}{m-1}$		(c)	$\frac{2m-1}{2n-1}$	(d) $\frac{2}{2}$	n-1
n-1	m-1			2n-1	2	m-1
The value of x satisfying \log_a	$x + \log_{\sqrt{a}} x$	$+\log_{\sqrt[3]{a}}x + \dots + \log_{\sqrt[n]{a}}x =$	$\frac{a+1}{2}$	will be		
	(b) $x = a^{\alpha}$			$x = a^{-1/a}$	(d) <i>x</i>	$= a^{1/a}$
(a) $x = a$					(u) x	= u
Sum of first <i>n</i> terms in the fol			5 + CO	or 21 + is given by		
(a) $\tan^{-1}\left(\frac{n}{n+2}\right)$	(b) \cot^{-1}	$\left(\frac{n+2}{n}\right)$	(c)	$\tan^{-1}(n+1) - \tan^{-1} 1$	(d) Al	l of these
(n+2)	(n				

		•	,	•
56.	Let S_n denotes the	sum of <i>n</i> terms of an A.P. If $S_{2n} = 3S$	S_n , then ratio $\frac{S_{3n}}{S_n} =$	
	(a) 4	(b) 6	(c) 8	(d) 10
57.	If the sum of the firs	st <i>n</i> terms of a series be $5n^2 + 2n$, the	en its second term is	
	(a) 7	(b) 17	(c) 24	(d) 42
58.	All the terms of an A		of its first nine terms lies between	200 and 220. If the second term is 12,
	(a) 2	(b) 3	(c) 4	(d) None of these
59.	If $S_1 = a_2 + a_4 + a_6 + a_6$ d is	+up to 100 terms and $S_2 = a_1 + a_2$		ertain A.P. then its common difference
	(a) $S_1 - S_2$	(b) $S_2 - S_1$	(c) $\frac{S_1 - S_2}{2}$	(d) None of these
60.		rogression whose common difference to 0 the sum of the first $2n$ terms to 0		erms is equal to the sum of the next r
	(a) $\frac{1}{5}$	(b) $\frac{2}{3}$	(c) $\frac{3}{4}$	(d) None of these
61.	If the sum of <i>n</i> terms	s of an A.P. is $nA + n^2B$, where A, B a	are constants, then its common diffe	erence will be
	(a) $A - B$	(b) A + B	(c) 2A	(d) 2 <i>B</i>
				Arithmetic med
			Basic Level	
62.	A number is the rec	iprocal of the other. If the arithmetic	mean of the two numbers be $\frac{13}{12}$,	then the numbers are
	(a) $\frac{1}{4}, \frac{4}{1}$	(b) $\frac{3}{4}, \frac{4}{3}$	(c) $\frac{2}{5}, \frac{5}{2}$	(d) $\frac{3}{2}, \frac{2}{3}$
63.	The arithmetic mean	n of first <i>n</i> natural number		
	(a) $\frac{n-1}{2}$	(b) $\frac{n+1}{2}$	(c) $\frac{n}{2}$	(d) <i>n</i>
64.	(a) 5, 9, 11, 13	means between 3 and 23 are (b) 7, 11, 15, 19	(c) 5, 11, 15, 22	(d) 7, 15, 19, 21
65.	The mean of the ser (a) $a + (n-1)d$	ries a , $a + nd$, $a + 2nd$ is (b) $a + nd$	(c) $a + (n+1)d$	(d) None of these
66.	If <i>n</i> A.M. <i>s</i> are introd (a) 6	luced between 3 and 17 such that the		nean is $3:1$, then the value of n is (d) None of these
		(b) 8	(c) 4	(a) None of these
			dvance Level	(a) Note of these
67.	The sum of n arithm			(a) Noile of these

68. Given that n A.M.'s are inserted between two sets of numbers a, 2b and 2a, b, where a, $b \in R$. Suppose further that m^{th} mean between these sets of numbers is same, then the ratio a: b equals

(a) n - m + 1 : m

(b) n - m + 1 : n

(c) n: n-m+1

(d) m: n-m+1

69. Given two number *a* and *b*. Let A denote the single A.M. and *S* denote the sum of *n* A.M.'s between *a* and *b*, then *S/A* depends on

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///3000///	
(a) n, a, b The A.M. of series $a + (a + d)$	(b) n, b)+ $(a+2d)++(a+2nd)$ is	(c) n, a	(d) n
(a) $a + (n-1)d$	(b) $a+nd$	(c) $a + (n-1)d$	(d) None of these
If 11 AM's are inserted betw	veen 28 and 10, then three mid terms	of the series are	<i>f</i>
(a) $\frac{41}{2}$, 19, $\frac{35}{2}$	(b) $20, \frac{41}{2}, \frac{43}{2}$	(c) $20, \frac{61}{2}, \frac{62}{3}$	(d) 20, 22, 24
If $f(x+y, x-y) = xy$, then	the arithmetic mean of $f(x, y)$ and $f(y)$	(x,x) is	
(a) x	(b) y	(c) 0	(d) 1
If A.M. of the roots of a quad	dratic equation is $\frac{8}{5}$ and the A.M. of the	eir reciprocals is $\frac{8}{7}$, then the q	uadratic equation is
(a) $7x^2 + 16x + 5 = 0$	(b) $7x^2 - 16x + 5 = 0$	(c) $5x^2 - 16x + 7 = 0$	(d) $5x^2 - 8x + 7 = 0$
If $a_1=0$ and a_1 , a_2 , a_3 , a_n a	are real numbers such that $ a_i = a_{i-1} $	1 for all i , then A.M. of the num	obers a_1, a_2,a_n has the value x
where			
(a) x<1	(b) $x < -\frac{1}{2}$	(c) $x \ge -\frac{1}{2}$	(d) $x = \frac{1}{2}$
If A.M. of the numbers 5^{1+x}	and 5^{1-x} is 13 then the set of possib	le real values of <i>x</i> is	
(a) $\{5, \frac{1}{5}\}$	(b) {1,-1}	(c) $\{x \mid x^2 - 1 = 0, x \in R\}$	(d) None of these
			Properties of A.I
			Froperties of A.I
	Basic Le	evel	Froperties of A.I
If 2v vi 9 2v i 1 avain A.D.	4.7	evel	Properties of A.I
If $2x$, x + 8, $3x$ + 1 are in A.P.,	then the value of x will be		
(a) 3	then the value of x will be (b) 7	(c) 5	(d) -2
(a) 3	then the value of x will be	(c) 5	
(a) 3	then the value of x will be (b) 7	(c) 5	
(a) 3 If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 2$	then the value of x will be (b) 7 $\left(2^{x} - \frac{7}{2}\right) \text{ are in A.P., then } x \text{ is equal to}$ (b) $1, \frac{1}{3}$	(c) 5	(d) -2
(a) 3 If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 (a)$ 1, $\frac{1}{2}$ If a_m denotes the m^{th} term	then the value of x will be (b) 7 $\left(2^{x} - \frac{7}{2}\right) \text{ are in A.P., then } x \text{ is equal to}$ (b) $1, \frac{1}{3}$	(c) 5	(d) -2
(a) 3 If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 2$	then the value of x will be (b) 7 $ \left(2^{x} - \frac{7}{2}\right) \text{ are in A.P., then } x \text{ is equal to} $ (b) $1, \frac{1}{3}$ of an A.P., then $a_{m} =$ (b) $\frac{a_{m+k} - a_{m-k}}{2}$	(c) 5 (c) $1, \frac{3}{2}$	(d) -2 (d) None of these
(a) 3 If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 (a)$ (a) $1, \frac{1}{2}$ If a_m denotes the m^{th} term (a) $\frac{a_{m+k} + a_{m-k}}{2}$	then the value of x will be (b) 7 $ \left(2^{x} - \frac{7}{2}\right) \text{ are in A.P., then } x \text{ is equal to} $ (b) $1, \frac{1}{3}$ of an A.P., then $a_{m} =$ (b) $\frac{a_{m+k} - a_{m-k}}{2}$	(c) 5 (c) $1, \frac{3}{2}$	(d) -2 (d) None of these (d) None of these
(a) 3 If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 (a)$ (a) $1, \frac{1}{2}$ If a_m denotes the m^{th} term (a) $\frac{a_{m+k} + a_{m-k}}{2}$ If $1, \log_y x, \log_z y, -15 \log_x z$	then the value of x will be (b) 7 $ \left(2^{x} - \frac{7}{2}\right) \text{ are in A.P., then } x \text{ is equal to} $ (b) $1, \frac{1}{3}$ of an A.P., then $a_{m} =$ (b) $\frac{a_{m+k} - a_{m-k}}{2}$ are in A.P., then	(c) 5 (c) $1, \frac{3}{2}$ (c) $\frac{2}{a_{m+k} + a_{m-k}}$	(d) -2 (d) None of these
(a) 3 If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 (a)$ 1, $\frac{1}{2}$ If a_m denotes the m^{th} term (a) $\frac{a_{m+k} + a_{m-k}}{2}$ If 1, $\log_y x$, $\log_z y$, - 15 $\log_x z$ (a) $z^3 = x$	then the value of x will be (b) 7 $ \left(2^{x} - \frac{7}{2}\right) \text{ are in A.P., then } x \text{ is equal to} $ (b) $1, \frac{1}{3}$ of an A.P., then $a_{m} =$ (b) $\frac{a_{m+k} - a_{m-k}}{2}$ are in A.P., then (b) $x = y^{-1}$	(c) 5 (c) $1, \frac{3}{2}$ (c) $\frac{2}{a_{m+k} + a_{m-k}}$	(d) -2 (d) None of these (d) None of these

81. If a, b, c, are in A.P., then $b^2 - ac$ is equal to

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

(a)
$$\frac{1}{4}(a+c)^2$$

(b)
$$\frac{1}{4}(a-c)^2$$

(c)
$$\frac{1}{2}(a+c)^2$$

(d)
$$\frac{1}{2}(a-c)^2$$

82. If $a_1, a_2, a_3,...$ are in A.P. then a_p, a_q, a_r are in A.P. if p, q, r are in

(a) A.P.

(b) G.P.

(c) H.P.

(d) None of these

Advance Level

If the sum of the roots of the equation $ax^2 + bx + c = 0$ be equal to the sum of the reciprocals of their squares, then bc^2 , ca^2 , ab^2 83. will be in

(a) A.P.

(d) None of these

If $\frac{1}{b-c}$, $\frac{1}{c-a}$, $\frac{1}{a-b}$ be consecutive terms of an A.P., then $(b-c)^2$, $(c-a)^2$, $(a-b)^2$ will be in 84.

(a) G.P.

(d) None of these

If a^2 , b^2 , c^2 are in A.P., then $(b+c)^{-1}$, $(c+a)^{-1}$ and $(a+b)^{-1}$ will be in 85.

(d) None of these

86. If the sides of a right angled triangle are in A.P., then the sides are proportional to

(a) 1, 2, 3

(b) 2, 3, 4

(d) 4, 5, 6

If a, b, c are in A.P., then the straight line ax + by + c = 0 will always pass through the point 87.

(d) (1, 2)

If a, b, c are in A.P. then $\frac{(a-c)^2}{(b^2-ac)} =$ 88.

(d) 4

If a, b, c, d, e, f are in A.P., then the value of e - c will be 89.

(a) 2(c-a)

(b) 2(f-d)

(c) 2(d-c)

(d) d-c

If p, q, r are in A.P. and are positive, the roots of the quadratic equation $px^2 + qx + r = 0$ are all real for 90.

(c) All p and r

If $a_1, a_2, a_3, \dots = a_n$ are in A.P., where $a_i > 0$ for all i, then the value of $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} = \frac{1}{\sqrt{a_1} + \sqrt{a_n}}$ (b) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$ (c) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$ (d) $\frac{n+1}{\sqrt{a_n} + \sqrt{a_n}}$

(c) $\frac{n-1}{\sqrt{a_1} - \sqrt{a_n}}$ (d) $\frac{n+1}{\sqrt{a_1} - \sqrt{a_n}}$

Given a+d>b+c where a,b,c,d are real numbers, then 92.

(a) *a, b, c, d* are in A.P.

(b) $\frac{1}{a}, \frac{1}{b}, \frac{1}{a}, \frac{1}{d}$ are in A.P.

(c) (a+b), (b+c), (c+d), (a+d) are in A.P.

(d) $\frac{1}{a+b}$, $\frac{1}{b+c}$, $\frac{1}{c+d}$, $\frac{1}{a+d}$ are in A.P.

If a, b, c are in A.P., then (a+2b-c)(2b+c-a)(c+a-b) equals 93.

(a) $\frac{1}{2}abc$

(c) 2 abc

(d) 4 abc

If the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$ are in A.P., then their common difference will be 94.

[UPSEAT 1994, 99, 2001; Rajasthan PET 2001]

Joint Effort By: Dr. Anoop Dixit & Dr. Harish Bhardwaj

Corporate Office: 6/3 JAC Road Shipra Suncity Indirapuram Gzb

	(a) ±1	(b) ±2	(c) ± 3	(d) ±4
95.	If 1, $\log_9(3^{1-x}+2)$, $\log_3(4)$.	$3^x - 1$) are in A.P., then x equals		
	(a) $\log_3 4$	(b) $1 - \log_3 4$	(c) $1 - \log_4 3$	(d) log ₄ 3
96.	If <i>a, b, c, d, e</i> are in A.P. then	the value of $a+b+4c-4d+e$ in terms	of a, if possible is	
	(a) 4 <i>a</i>	(b) 2 <i>a</i>	(c) 3	(d) None of these
97.	If $a_1, a_2, a_3, \dots a_{2n+1}$ are in	A.P. then $\frac{a_{2n+1} - a_1}{a_{2n+1} + a_1} + \frac{a_{2n} - a_2}{a_{2n} + a_2} + \dots$	$+\frac{a_{n+2}-a_n}{a_{n+2}+a_n}$ is equal to	
	(a) $\frac{n(n+1)}{2} \cdot \frac{a_2 - a_1}{a_{n+1}}$	(b) $\frac{n(n+1)}{2}$	(c) $(n+1)(a_2-a_1)$	(d) None of these
98.	If the non-zero numbers <i>x</i> , <i>y</i>	, z are in A.P. and $\tan^{-1} x$, $\tan^{-1} y$, $\tan^{-1} y$	$^{-1}$ z are also in A.P., then	. ^ / /
	(a) $x = y = z$	(b) $xy = yz$	(c) $x^2 = yz$	(d) $z^2 = xy$
99.	If three positive real number	rs a , b , c are in A.P. such that $abc = 4$, t	then the minimum value of b is	
	(a) $2^{1/3}$	(b) $2^{2/3}$	(c) $2^{1/2}$	(d) $2^{3/2}$
100.	If $\sin \alpha$, $\sin^2 \alpha$, 1, $\sin^4 \alpha$ and	$\sin^5 \alpha$ are in A.P., where $-\pi < \alpha < \pi$	α , then α lies in the interval	
	(a) $(-\pi/2, \pi/2)$	(b) $(-\pi/3, \pi/3)$	(c) $(-\pi/6, \pi/6)$	(d) None of these
101.	If the sides of a triangle are triangle is	in A.P. and the greatest angle of the		gle, the ratio of the sides of th
	(a) 3:4:5	(b) 4:5:6	(c) 5:6:7	(d) 7:8:9
102.	If a , b , c of a $\triangle ABC$ are in A.P.	, then $\cot \frac{c}{2} =$	\/, \/'	
	(a) $3 \tan \frac{A}{2}$	(b) $3 \tan \frac{B}{2}$	(c) $3\cot\frac{A}{2}$	(d) $3\cot\frac{B}{2}$
103.	If <i>a, b, c</i> are in A.P. then the e	equation $(a - b)x^{2} + (c - a)x + (b - c) =$	= 0 has two roots which are	
	(a) Rational and equal	(b) Rational and distinct	(c) Irrational conjugates	(d) Complex conjugates
104.	The least value of 'a' for whi	ch $5^{1+x} + 5^{1-x}$, $\frac{a}{2}$, $25^x + 25^{-x}$ are thr	ree consecutive terms of an A.P. is	
	(a) 10	(b) 5	(c) 12	(d) None of these
105.	$\alpha, \beta, \gamma, \delta$ are in A.P. and $\int_0^2 f$	$f(x)dx = -4$, where $f(x) = x + \beta x + \beta$	$ \begin{cases} \beta & x + \alpha - \gamma \\ \gamma & x - 1 \\ \delta & x - \beta + \delta \end{cases} $, then the common	difference <i>d</i> is
	(a) 1	(b) -1	(c) 2	(d) -2
106.		triangle form an A.P. then the sines o		(-) -
	(a) $\frac{3}{5}, \frac{4}{5}$	(b) $\sqrt{3}, \frac{1}{3}$	(c) $\sqrt{\frac{\sqrt{5}-1}{2}}$, $\sqrt{\frac{\sqrt{5}+1}{2}}$	(d) $\frac{\sqrt{3}}{2}, \frac{1}{2}$
107.	If x, y, z are positive number	s in A.P., then		
	(a) $y^2 \ge xz$	\	(b) $y \ge 2\sqrt{xz}$	
	(c) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z}$ has the	e minimum value 2	(d) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z} \ge 4$	