Summary | Riemann Integration

Introduction

Interval

Let I = [a, b]. Length of the interval |I| = b - a.

Disjoint interval

When 2 intervals don't share any common numbers.

Almost disjoint interval

When 2 intervals are disjoint or intersect only at a common endpoint.

Riemann Integral

Let $f-[a,b] o\mathbb{R}$ is a bounded (not necessarily continuous) function on a closed, bounded (compact) interval.

Riemann integral of f is: $\int_a^b f$

Definite integral

When a, b are constants.

Indefinite integral

When a is a constant but b is replaced with x.

Partition

Let I be a non-empty, compact interval (closed and bounded). A partition of I is a finite collection $\{I_1,I_2,\ldots,I_n\}$ of almost disjoint, non-empty, compact sub-intervals whose union is I.

A partition is determined by the endpoints of all sub-intervals: $a = x_0 < x_1 < \dots < x_n = b$.

A partition can be denoted by:

- its intervals $P = \{I_1, I_2, \ldots, I_n\}$
- ullet the endpoints of its intervals $P=\{x_0,x_1,\ldots,x_n\}$

Riemann Sum

Let

- $f:[a,b] o \mathbb{R}$ is a bounded function on the compact interval I=[a,b] with $M=\sup_I f$ and $m=\inf_I f$.
- $P = \{I_1, I_2, \dots, I_n\}$
- $\bullet \hspace{0.2cm} M_k=\sup_{I_k}f=\sup\left\{f(x):x\in[x_{k-1},x_k]\right\}$
- $\bullet \hspace{0.3cm} m_k = \inf_{I_k} f = \inf \left\{ f(x) : x \in [x_{k-1}, x_k] \right\}$

Upper riemann sum

$$U(f;P) = \sum_{k=1}^n M_k |I_k|$$

Lower riemann sum

$$L(f;P) = \sum_{k=1}^n m_k |I_k|$$

$$m_k < M_k \implies L(f;P) \le U(f;P)$$

When P_1, P_2 are any 2 partitions of I: $L(f; P_1) \leq U(f; P_2)$

Refinements

Q is called a refinement of $P\iff$ if P and Q are partitions of [a,b] and $P\subseteq Q$.

When Q is a refinement of P:

$$L(f; P) \le L(f; Q) \le U(f; Q) \le U(f; P)$$

(i) Note

If P_1 and P_2 are partitions of [a,b], then $Q=P_1\cup P_2$ is a refinement of both P_1 and P_2 . In that case:

$$L(f; P_1) \leq L(f; Q) \leq U(f; Q) \leq U(f; P_2)$$

Upper & Lower integral

Let $\mathbb P$ be the collection of all possible partitions of the interval [a,b].

Upper Integral

$$U(f)=\inf\left\{U(f;P);P\in\mathbb{P}
ight\}=\overline{\int_a^bf}$$

Lower Integral

$$L(f)=\sup\left\{L(f;P);P\in\mathbb{P}
ight\}=\int_a^bf$$

For a bounded function f, always $L(f) \leq U(f)$

Riemann Integrable

A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable on [a,b] iff U(f)=L(f). In that case, the Riemann integral of f on [a,b] is denoted by $\int_a^b f(x) \,\mathrm{d}x$.

Reimann Integrable or not

Function	Yes or No?	Proof hint
Unbounded	No	By definition
Constant	Yes	$orall P ext{ (any partition) } L(f;P) = U(f;P)$
Monotonically increasing/decreasing	Yes	Take a partition such that $\Delta x < \delta = rac{\epsilon}{f(b) - f(a)}$
Continuous	Yes	Take a partition such that $\Delta x < \delta = rac{\epsilon}{2(b-a)}$

(i) Note

If the set of points of discontinuity of a bounded function $f:[a,b] \to \mathbb{R}$ is finite, then f is Riemann integrable on [a,b].

(i) Note

If the set of points of discontinuity of a bounded function $f:[a,b] \to \mathbb{R}$ is finite number of limit points, then f is integrable on [a,b].

A function may have infinitely many discontinuous points, but if the set of all discontinuous points have finite number of limit points, then f is integrable on [a, b].

Cauchy Criterion

Theorem

A bounded function $f:[a,b]\to R$ is Riemann integrable **iff** for every $\epsilon>0$ there exists a partition P_ϵ of [a,b], which may depend on ϵ , such that:

$$U(f,P\epsilon)-L(f,P\epsilon)\leq \epsilon$$

- To prove \implies : consider $L(f) rac{\epsilon}{2} < L(f;P)$ and $U(f;P) < U(f) + rac{\epsilon}{2}$
- ullet To prove $\buildrel =$: consider L(f;P) < L(f) and U(f) < U(f;P)

(i) Note

 $f:[a,b] o\mathbb{R}$ is integrable on [a,b] when:

- ullet The set of points of discontinuity of a bounded function f is finite.
- ullet The set of points of discontinuity of a bounded function $m{f}$ is finite number of limit points. (may have infinite number of discontinuities)

Theorems on Integrability

Theorem 1

Suppose $f:[a,b] o \mathbb{R}$ is bounded, and integrable on [c,b] for all $c\in (a,b)$. Then f is integrable on [a,b]. Also valid for the other end.

(i) Proof Hint

- Isolate a partition on the required end.
- ullet Choose x_1 or x_{n-1} such that $\Delta x < rac{\epsilon}{4M}$ where M is an upper or lower bound.

Theorem 2

Suppose $f:[a,b] o \mathbb{R}$ is bounded, and continuous on [c,b] for all $c\in(a,b)$. Then f is integrable on [a,b]. Also valid for the other end.

⚠ TODO: Proof Hint

Properties of Integrals

Notation

If a < b and f is integrable on [a, b], then:

$$\int_a^b f = - \int_b^a f$$

Properties

Suppose f and g are integrable on [a, b].

Addition

f + g will be integrable on [a, b].

$$\int_a^b (f\pm g) = \int_a^b f\pm \int_a^b g$$

i Proof Hint

- Prove f + g is integrable using:
 - $\circ \ \ sup(f+g) \leq \sup(f) + \sup(g)$
 - $\circ inf(f+g) \ge \inf(f) + \inf(g)$
- ullet Start with U(f+g) and show $U(f+g) \leq U(f) + U(g)$
- ullet Start with L(f+g) and show $L(f+g) \geq L(f) + L(g)$

Constant multiplication

Suppose $k \in \mathbb{R}$. kf will be integrable [a,b].

$$\int_a^b kf = k \int_a^b f$$

- ullet Prove for $k\geq 0$. Use $U-L<rac{\epsilon}{k}$
- Prove for k=-1
- ullet Using the above results, proof for $\,k < 0\,$ is apparent

Bounds

If $m \leq f(x) \leq M$ on [a, b]:

$$m(b-a) \leq \int_a^b f \leq M(b-a)$$

If $f(x) \leq g(x)$ on [a,b]:

$$\int_a^b f \leq \int_a^b g$$

Modulus

|f| will be integrable on [a, b].

$$igg|\int_a^b figg| \leq \int_a^b |f|$$

(i) Proof Hint

Start with $-|f| \leq f \leq |f|$. And integrate both sides.

Multiple

fg will be integrable on [a, b].

- ullet Suppose f is bounded by k
- ullet Prove f^2 is integrable (Use $rac{\epsilon}{2k}$)
- ullet fg is integrable because:

$$fg = \frac{1}{2} [(f+g)^2 - f^2 - g^2]$$

Max, Min

 $\max(f,g)$ and $\min(f,g)$ are integrable.

Where max and min functions are defined as:

$$\max(f,g) = \frac{1}{2}(|f-g|+f+g)$$

$$\min(f,g) = \tfrac{1}{2}(-|f-g|+f+g)$$

Additivity

 $\iff f$ is Riemann integrable on [a,c] and [c,b] where $c\in(a,b).$

(i) Proof Hint

• ⇒ : Use Cauchy criterion after defining these:

$$\circ$$
 $P' = \{c\} \cap P$

$$\circ \ \ Q = P' \cap [a,c]$$

$$\circ R = P' \cap [c,b]$$

ullet : Use cauchy criterion on [a,c],[c,b] separately and then combine using a union partition

After the integrability is proven,

$$\int_a^b f = \int_a^c f + \int_c^b f$$

- 1. Let $\,Q\,$ be a partition on $\,[a,c]\,$ and $\,R\,$ be a partition on $\,[c,b]\,$. And $\,P=Q\cap R\,$.
- 2. Prove the below using Cauchy criteria:

$$\int_a^b f < L(f;P) + \epsilon \;\;\implies \;\; \int_a^b f \leq \int_a^c f + \int_c^b f$$

3. Prove the below using Cauchy criteria (by considering RHS):

$$\int_a^c f + \int_c^b f \le \int_a^b f$$

Sequential Characterization of Integrability

A bounded function $f:[a,b] o \mathbb{R}$ is Riemann integrable if and only if $\exists\,\{P_n\}$ a sequence of partitions, such that:

$$\lim_{n o\infty} \left[U(f;P_n) - L(f;P_n)
ight] = 0$$

In that case:

$$\int_a^b f = \lim_{n o\infty} U(f;P_n) = \lim_{n o\infty} L(f;P_n)$$

Cauchy criteria and squeeze theorem is used for both side proof.

For \iff :

- Consider the limit definition.
- ullet Prove f is Riemann integrable on P_n by Cauchy criteria.
- ullet Use squeeze theorem for $\,U(f;P_n)-U(f)\leq U(f;P_n)-L(f;P_n)\,$ to prove limit of upper sum
- · Prove limit of lower sum using the limit of upper sum

For \Longrightarrow : Consider the below, where $n \in \mathbb{N}$.

$$0 \leq U(f;P_n) - L(f;L_n) \leq \frac{1}{n}$$

Theorem

Suppose f is Riemann integrable on [a,b] and $\epsilon>0$. Then $\exists \epsilon>0 \forall P$:

$$|P| < \delta \implies \left| \int_a^b f - \sum_{j=1}^n f(\zeta_j) I_j
ight| < \epsilon$$

where $\zeta_i \in [x_{i-1}, x_i], j=1, 2, \cdots, n$.

(i) Proof Hint

$$\int_a^b f - \epsilon \ < \ L(f;P) \ \le \ \sum_{j=1}^n f(\zeta_j) I_j \ \le \ U(f;P) \ < \ \overline{\int_a^b f} + \epsilon$$

Intermediate Value Theorem for Integrals

Suppose f is a continuous function on [a,b]. Then $\exists x \in (a,b)$:

$$f(x) = rac{1}{b-a} \int_a^b f$$

(i) Proof Hint

Suppose $f_{
m max}=M=f(x_0)$ and $f_{
m min}=m=f(y_0).$

When M=m: f is a constant function. Proof is trivial.

Otherwise:

$$m(b-a) \leq \int_a^b f \leq M(b-a)$$

Then there exists $x \in (x_0, y_0)$.

Generlized IVT

Suppose f,g are continuous functions on [a,b] and $g\geq 0$. Then $\exists x\in (a,b)$:

$$f(x)\int_a^b g=\int_a^b fg$$

(i) Proof Hint

Consider this and proof is similar to IVT.

$$mg \leq fg \leq Mg$$

Convergence Functions

Convergence of functions is introduced in <u>Sequence of Functions | Real Analysis</u>.

Uniform Convergence Theorem

Let f_n be a sequence of Riemann integrable functions on [a,b]. Suppose f_n converges to f uniformly. Then f is Riemann integrable on [a,b] and $\forall x \in [a,b]$:

$$\int_a^x f_n(x) dx$$
 converges to $\int_a^x f(x) dx$ uniformly

and:

$$\lim_{n o\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x$$

(i) Proof Hint

- Consider $\frac{\epsilon}{2(b-a)}$ in place of ϵ .
- ullet Consider Cauchy criteria for f_N .
- ullet Prove $f-f_N$ is Riemann integrable using Cauchy criteria.
- f is Riemann integrable as $f=f_N+\left(f-f_N
 ight)$.

When f_n converges to f pointwise, we cannot be sure if f is Riemann integrable or not. An example where f is not Riemann integrable:

$$\lim_{n o \infty} u_n = \left\{egin{array}{ll} 1 & x = q_k ext{ where } k \leq n \ 0 & ext{otherwise} \end{array}
ight.$$

Here q_k is the enumeration of rational numbers in [0,1].

Dominated Convergence Theorem

Let f_n be a sequence of Riemann integrable functions on [a,b]. Suppose f_n converges to f pointwise where f is Riemann integrable on [a,b]. If $\exists M>0 \ \forall n \ \forall x\in [a,b] \ \mathrm{s.t.} \ |f_n(x)|\leq M$:

$$\lim_{n o\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x$$

Monotone Convergence Theorem

Let f_n be a sequence of Riemann integrable functions on [a,b], and they are monotone (all increasing or decreasing, like $f_1 \leq f_2 \cdots \leq f_n$). Suppose f_n converges to f pointwise where f is Riemann integrable on [a,b]. If $\exists M>0 \ \forall n \ \forall x\in [a,b] \ \mathrm{s.t.} \ |f_n(x)|\leq M$:

$$\lim_{n o\infty}\int_a^b f_n(x)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x$$

Can be proven from the dominated convergence theorem.

Fundamental Theorem of Calculus

Theorem I

If g is continuous on [a,b] that is differentiable on (a,b) and if g^\prime is integrable on [a,b] then

$$\int_a^b g' = g(b) - g(a)$$

i Proof Hint

Consider a general partition and use <u>Mean Value Theorem</u> on each parition.

Integration by parts

Suppose u,v are continuous functions on [a,b] that are differentiable on (a,b). If u' and v' are Riemann integrable on [a,b]:

$$\int_a^b u(x)v'(x)\,\mathrm{d}x + \int_a^b u'(x)v(x)\,\mathrm{d}x = u(b)v(b) - u(a)v(a)$$

(i) Proof Hint

Consider g = uv and use <u>FTC I</u>.

Theorem II

Suppose f is an Riemann integrable function on [a,b]. For $x\in(a,b)$.

$$F(x) = \int_a^x f(t) \, \mathrm{d}t$$

- ullet F(x) is uniformly continuous on [a,b]
- ullet f is continuous at $x_0 \in (a,b) \implies F$ is differentiable and $F'(x_0) = f(x_0)$

(i) Proof Hint

For the first point:

- ullet Consider 2 points in the interval $x,y\,(>x)$ such that $|x-y|<\delta=rac{\epsilon}{M}$
- Show $|F(y) F(x)| \le \epsilon$

For the second point: Consider the continuity definition of $m{f}$ and prove is quite trivial.

$$\left|\frac{F(x)-F(x_0)}{x-x_0}-f(x_0)\right|<\epsilon$$

Theorem

Suppose f is Riemann integrable on an open interval I containing the values of differentiable functions a,b. Then:

$$rac{\mathrm{d}}{\mathrm{d}x}\int_{a(x)}^{b(x)}f(t)\,\mathrm{d}t=f(b(x))b'(x)-f(a(x))a'(x)$$

(i) Proof Hint

Can be done using FTC I and II. Proof is quite trivial.

Theorem - Change of Variable

Suppose u is a differentiable function on an open interval J such that u' is continuous. Let I be an open interval such that $\forall x \in J, \ u(x) \in I$.

If f is continuous on I, then $f \circ u$ is continuous on J and:

$$\int_a^b (f\circ u)(x)\,u'(x)\,\mathrm{d}x = \int_{u(a)}^{u(b)} f(u)\,\mathrm{d}u$$

Improper Riemann Integrals

Riemann integral is defined only for **bounded** functions defined on a set of **compact** intervals.

Type 1

A function that is **not** integrable at one endpoint of the interval.

Suppose $f:(a,b] o \mathbb{R}$ is integrable on $[c,b]\ orall c\in (a,b).$

$$\int_a^b f = \lim_{\epsilon o 0} \, \int_{a+\epsilon}^b f \, .$$

Can be similarly defined on the other endpoint. The above integral converges **iff** the limit exists and finite. Otherwise diverges.

Examples

$$\int_0^1 \frac{1}{x^p} \, \mathrm{d}x = \lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \frac{1}{x^p} \, \mathrm{d}x$$

The above integral converges (to $\frac{1}{p-1}$) iff $0 . When <math>p \geq 1$, it diverges to ∞ .

Type 2

A function defined on unbounded interval (including ∞).

Suppose $f:[a,\infty) o\mathbb{R}$ is integrable on $[a,r] \forall r>a$.

$$\int_a^\infty f = \lim_{r \to \infty} \int_a^r f$$

Can be similarly defined on the other endpoint. The above integral converges **iff** the limit exists and finite. Otherwise diverges.

Examples

$$\int_1^\infty rac{1}{x^p}\,\mathrm{d}x = \lim_{r o\infty} \int_1^r rac{1}{x^p}\,\mathrm{d}x$$

The above integral converges (to $rac{1}{p-1}$) iff p>1. When $0< p\leq 1$, it diverges to ∞ .

Type 3

A function that is undefined at finite number of points. The integral can be split into multiple integrals of type 1. Similarly integrals from $-\infty$ to ∞ can be defined.

The integral can be split into multiple integrals only when all those integrals exist.

Convergence of improper integrals is similar to the convergence of series.

Absolute convergence test

$$\int_a^b |f| \text{ converges } \implies \int_a^b f \text{ converges}$$

Beta function

Beta function is defined as below, for m, n > 0:

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, \mathrm{d}x$$

Aka. Eulerian integral of the first kind.

(i) Note

For $m, n \leq 0$, the beta function is divergent.

Properties

Symmetrical

From the definition:

$$B(m,n) = B(n,m)$$

(i) Proof Hint

Proof is trivial.

Gamma function

Defined as below for n > 0:

$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} \,\mathrm{d}x$$

Aka. Eulerian integral of the second kind.

Convergence

 $\Gamma(n)$ is convergent **iff** n>0.

(i) Proof Hint

Direct comparison test is used. Proved in 3 cases:

- ullet Case 1: for positive integer n
 - o Consider the lemma 2's limit definition
 - \circ Take $\epsilon=1$
 - $\circ~$ Use the convergence of $\,\int_0^\infty e^{-x/2}\,\mathrm{d}x$
- Case 2: for n > 1 non-integers
 - \circ Use $\lfloor n
 floor < n < \lfloor n
 floor + 1$
 - \circ Use $x^{y-1}e^{-x} \leq x^{\lfloor n
 floor}e^{-x}$
 - $\circ \ \Gamma(\lfloor n
 floor + 1)$ is converging from case 1
- Case 3: for 0 < n < 1.
 - o Proof is similar to case 1
 - $\circ~$ But $\int_0^N e^{-x} x^{n-1} \, \mathrm{d}x$ is an improper
 - Prove that it is also converging

Properties

Proofs are required for each property mentioned below.

•
$$\Gamma(1) = 1$$

•
$$\Gamma(n+1) = n\Gamma(n)$$

•
$$\Gamma(n+1)=n!$$

Extension of gamma function

 $\Gamma(n)$ function can be extended for negative non-integers using:

$$\Gamma(n) = rac{\Gamma(n+1)}{n}$$

This cannot be used to define $\Gamma(0)$ because of the denominator. And through induction, Γ function cannot be defined for negative integers.

Lemmas

Lemma 1

$$orall s>0$$
 $\int_0^\infty e^{-sx}\,\mathrm{d}x$ converges

Lemma 2

$$orall n \in \mathbb{Z}^+ \lim_{x o \infty} rac{x^{n-1}}{e^{x/2}} = 0$$

Transformations

Alternate forms of $\Gamma(n)$.

Form 1

$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} \,\mathrm{d}x$$

Use $x^n = t$.

i Note

One of the most frequently used integrals in mathematics:

$$\int_0^\infty e^{-x^2}\,\mathrm{d}x = rac{\sqrt{\pi}}{2}$$

Form 2

$$\int_0^\infty e^{-kx} x^{n-1} \,\mathrm{d}x = rac{\Gamma(n)}{k^n}$$

(i) Proof Hint

Use x = kt.

Form 3

$$\Gamma(n) = \int_0^1 \ln(rac{1}{x})^{n-1} \,\mathrm{d}x$$

(i) Proof Hint

Use $e^{-x} = t$.

Form 4

$$\Gamma(n)=2\int_0^\infty e^{-x^2}x^{2n-1}\,\mathrm{d}x$$

Use $x=t^2$.

This PDF is saved from https://s1.sahithyan.dev