

Asma Smaoui CEA/LIST/DILS/LSEA: asma.smaoui@cea.fr

▶ with contributions from Morayo Adedjouma, Matteo MORELLI, Ansgar RADERMACHER, Fabio ARNEZ, Guillaume OLLIER, Diana RAZAFINDRABE (CEA-LIST/DILS/LSEA); EL JIHAD Hasnaa; Huascar ESPINOZA (KDT JU)

- ► Safety of robotics applications must be guaranteed
- ► Legal directives and standards compliance must be fulfilled!
- ► Avoid emergency stops and ensure system stability

Safety is the condition of being protected from harm or other non-desirable outcomes. It can also refer to risk management.

Functional safety is the part of the overall safety of a system or piece of equipment that depends on automatic protection operating correctly in response to its inputs or failure in a predictable manner.

Safety of the Intended Functionality (SOTIF) concerns with guaranteeing the safety of a functionality that can have safety risks in the absence of a fault.

How to anticipate the fault impact on the system to ensure safety?

If a fault develops here qdes Derivative control Derivative control q1_do Propotional contro → qdes_dot qdes_dot2 prob_dot ref_robot Robot manipulator What effect does the fault have? qdes_dot

Credits: Yiannis Papadopoulos, University of Hull, U.K

Guidance on measures to ensure the absence of unreasonable risk due to a hazard caused by insufficiencies of functionalities where proper situational awareness is essential to safety and where such situational awareness is derived from complex sensors and processing

algorithms, including Al

► SOTIF is crucial to achieve trustworthy AI-based systems

e.g., autonomous shuttles for passenger transportation near activity zones, living areas open to pedestrians, etc.

► Challenges:

complex/changing operational contexts; data noise, ambiguous scenarios; degraded sensor quality and sensor failures.

Model-driven engineering as a key enabler for design and V&V of safe autonomous systems

Operational Design Domain (ODD) definition

Context: In practice, the number of possible scenarios which have to be managed by an automated tends to be infinite. Because the NNs learned from data, it is impossible to ensure that these data capture the infinite number of scenarios in which automated systems must operate, which makes their safety evaluation challenging.

Goal: We need a mean to define the scenario-space in which the automated system must operate safely without having to enumerate the different scenarios individually. The scenario-space is specified through the operational design domain.

Operating conditions under which a given driving automation system or feature thereof is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristic.

*Definition from SAE J3016

Operational Design Domain: From Operational Domain to ODD and scenarios

Ontology for Automated Systems

 Contains crossdomain concepts to describe the environment (e.g, weather, maneuvers, human operator)

Domain- specific Ontology

Contains relevant concepts to describe the environment for a specific domain (e.g, automotive, avionic, railway)

Operational Domain

- Contains
 concepts to
 describe the
 environment
 for a specific
 system
- Represents
 the system
 scenario space.

ODD

Refers to the intended
 ADS capability to
 handle operating
 conditions.

Usage Scenario

Expected ADS
 behavior under
 specific operating
 conditions.

From Operational Domain to ODD and scenarios

The structuring of scenarios can be achieved following a number of approaches, e.g.:

✓ descriptions from the <u>outside</u> of the ADS (e.g. 6-layer approach, ISO/DIS 34503, PAS 1883)

Attribute	Sub-attribute	Sub-attribute	Саравшту
Drivable area type	Motorways (M)	_	Yes
	Radial roads (A-roads)		Yes
	Distributor roads (B-roads)		Yes
	Minor roads		No
Lane specification	Number of lanes	_	Yes, minimum of two lanes
	Lane dimensions		Minimum 3.7 m
	Lane type	Bus lane	No
		Traffic lane	Yes
		Cycle lane	No
		Tram lane	No
		Emergency lane	No
		Other special purpose lane	No
	Direction of travel	Right-hand traffic	No
		Left-hand traffic	Yes

Top-level taxonomy with ODD attributes

ovable objects	
ayer 3	
emporal modifications	
ayer 2	
affic infrastructure	
ayer 1	

Attribute	Sub-attribute	Sub-attribute	Capability
Drivable area geometry	Horizontal plane	Straight roads	Yes
	_	Curves	Yes – up to 1/500 m (radius of curvature)
	Vertical plane	Up-slope	Yes
		Down-slope	Yes
		Level plane	Yes
	Cross-section	Divided/undivided	Divided
		Pavement	Yes
		Barrier on the edge	No
		Types of lanes together	Only traffic lane
Drivable area surface type	Asphalt	_	Yes
	Concrete		Yes
	Cobblestone		No
	Gravel		No
	Granite setts		No
Drivable area signs	Туре	Regulatory	Yes
		Warning	Yes
		Information	Yes
	Time of operation	Part-time	No
		Full-time	Yes
	State	Variable	Yes
		Uniform	Yes

From Operational Domain to ODD and scenarios

The structuring of scenarios can be achieved following a number of approaches, e.g.:

descriptions from the inside the ADS (e.g. 3-categories approach, ISO/DIS 34502 approach)

^{*}Source: ISO 34502-#:####(X)-DIS draft 210908

✓ ODD definition and formalization using OpenODD language

*Source: ISO 34503-#:####(X)-WD 34503 - r11.0

From Operational Domain to ODD and scenarios

Scenario description can be done at functional, logical, concrete levels

Functional scenarios

Base road network:

three-lane motorway in a curve, 100 km/h speed limit indicated by traffic signs

Stationary objects:

-

Moveable objects:

Ego vehicle, traffic jam; Interaction: Ego in maneuver "approaching" on the middle lane, traffic jam moves slowly

Environment:

Summer, rain

Logical scenarios

Base road network:

Lane width [2.3..3.5] m Curve radius [0.6..0.9] km Position traffic sign [0..200] m

Stationary objects:

Moveable objects:

End of traffic jam [10..200] m

Traffic jam speed [0..30] km/h
Ego distance [50..300] m
Ego speed [80..130] km/h

Environment:

Temperature [10..40] $^{\circ}$ C Droplet size [20..100] μ m

Concrete scenarios

Base road network:

Lane width [3.2] m Curve radius [0.7] km Position traffic sign [150] m

Stationary objects:

-

Moveable objects:

End of traffic jam 40 m
Traffic jam speed 30 km/h
Ego distance 200 m
Ego speed 100 km/h

Environment:

Temperature 20 °C Droplet size 30 μm

digital map

 Weather, lighting and other surrounding conditions

Layer 6: Digital Information

· (e.g.)V2X information,

Level of abstraction

Number of scenarios

✓ Do we need to include occupants and vehicle status?

*Source: https://www.pegasusprojekt.de/de/about-PEGASUS

Layer 3: Temporary manipulation of Layer 1 and Layer 2

Layer 4: Objects

Static, dynamic, movable
 Interactions, maneuvers

- Geometry, topology (overlaid)
- Time frame > 1 day
- Layer 2: Traffic Infrastructure

 Boundaries (structural)
 - · Traffic signs, elevated barriers

Layer 1: Road-Level

- Geometry, topology
- Quality, boundaries (surface)

Combined process based on knowledge engineering and simulation for the identification and evaluation of unsafe scenarios in autonomous driving systems

https://github.com/ollierGuillaume/AI-HARA/blob/main/Demonstration_Video.mp4

Thank you

Updated version 06-12-2024 by Asma Smaoui asma.smaoui@cea.fr