

FUNDAMENTOS DO DESENVOLVIMENTO WEB

Prof. Esp. Wagner Ito de Cabral

SOBRE O PROFESSOR

- Técnico de Informática
- Análise e Desenvolvimento de Sistemas
- Redes de Computadores e Comunicação de Dados
- Cyber Segurança Ofensiva
- Engenharia da Computação

- I. Professor
- II. Gestor de T.I / Finanças
- III. Analista de Infraestrutura de Redes

O Plano de estudos da disciplina pode ser acessado diretamente do portal do aluno.

COMPUTADOR

Em fevereiro de 1946, o primeiro computador eletrônico da história era apresentado. O ENIAC (Eletronic Numerical Integrator and Computer) tinha cerca de dois metros de altura, pesava 30 toneladas e ocupava 180 metros quadrados.

Encomendado pelo exército dos Estados Unidos, a máquina servia para fazer cálculos – a palavra "computador" vem de computar, sinônimo de calcular. Apesar de ser um gigante, o ENIAC tinha uma capacidade operacional menor do que qualquer calculadora de mão vendida atualmente.

Ele fazia cerca de 4,5 mil cálculos por segundo.

Anos 1960 – A Origem: ARPANET

- Durante a Guerra Fria, os EUA buscavam uma forma de comunicação descentralizada para resistir a ataques nucleares.
- A ARPANET (Advanced Research Projects Agency Network) foi criada pelo Departamento de Defesa dos EUA em 1969.
- Primeiro teste: uma mensagem foi enviada entre a UCLA e o Stanford Research Institute.

✓ Marcos importantes:

- 🖈 1969 Primeira conexão entre computadores.
- 🖈 1971 Ray Tomlinson cria o primeiro sistema de e-mail.
- 🖒 1973 ARPANET começa a se expandir internacionalmente.

Anos 1970 – A Invenção do TCP/IP

- ♦ Vinton Cerf e Robert Kahn desenvolveram o protocolo TCP/IP (Transmission Control Protocol/Internet Protocol).
- © Em **1º de janeiro de 1983**, a ARPANET adotou oficialmente o TCP/IP, tornando-se a base da **Internet moderna**.

Avanços na década de 70:

\$\text{\$\sigma}\$ 1974 – Primeira vez que o termo **"Internet"** foi usado.

🖈 1978 – Criação do primeiro **spam** (e-mail não solicitado).

Anos 1980 – Expansão para Universidades

- A Internet começou a crescer além do uso militar.
- Redes como **NSFNET** (National Science Foundation Network) conectavam universidades.
- Surgiram os primeiros **domínios (.com, .org, .edu, .gov, .net)** em 1985.

Destaques da década de 80:

\$\text{\$\sigma}\$ 1983 - ARPANET adota TCP/IP, tornando-se oficialmente "Internet".

🖈 1989 – **Tim Berners-Lee** propõe a **World Wide Web (WWW)** no CERN.

Anos 1990 – O Boom da Internet (#)

- ♦ 1991 A World Wide Web (WWW) foi disponibilizada publicamente.
- ♦ 1993 Surgiu o Mosaic, o primeiro navegador gráfico.
- ♦ 1994 Empresas como Amazon e Yahoo nasceram.

✓ Marcos dessa era:

🖈 1995 – Microsoft lança o **Internet Explorer**.

🖈 1999 – Primeiros serviços de música online como o **Napster**.

Anos 2010 – Internet das Coisas (IoT) e a Nuvem

- A computação em nuvem permitiu o armazenamento de dados online.
- Aplicativos como WhatsApp, Instagram e TikTok dominaram o mercado.
- A Internet das Coisas (IoT) conectou dispositivos do dia a dia (smart TVs, assistentes virtuais, carros inteligentes).

Eventos importantes:

🖈 2010 – Instagram é lançado.

2015 – Inteligência Artificial começa a ser integrada à Internet (assistentes como Alexa e Google Assistant).

Presente e Futuro – 5G, IA e Web3 💋

- O 5G promete velocidades ultra rápidas.
- O conceito de **Web3** traz uma Internet descentralizada com blockchain.
- A Inteligência Artificial está cada vez mais integrada à navegação online.

✓ Tendências:

- 🖈 Expansão do **Metaverso**.
- 🖈 Mais segurança e privacidade com **criptografia**.
- Desenvolvimento da **Internet espacial** (como o Starlink).

Principais Componentes

ROTEADOR/GATEWAY

SERVIDOR/DATACENTER

ACCES POINT

CABOS DE REDE

SWITCH

O QUE VOCE ENTENDE SOBRE CLOUD (NUVEM)?

PROTOCOLO HTTP

Um **protocolo** é um conjunto de regras e padrões que define como a comunicação entre dispositivos deve acontecer.

Ele estabelece como os dados são formatados, transmitidos, recebidos e interpretados em uma rede.

Principais Características de um Protocolo

- **✓ Definição de regras** → Especifica como a comunicação ocorre.
- Interoperabilidade → Permite que sistemas diferentes se comuniquem.
- ✓ Organização em camadas → Normalmente seguem modelos como o OSI e o TCP/IP.
- **Controle de erros** → Alguns protocolos garantem a entrega correta dos dados.

PROTOCOLO HTTP

Exemplos de Protocolos

★ HTTP/HTTPS → Comunicação na web.

★ TCP/IP → Base da Internet.

SMTP/POP3/IMAP → Envio e recebimento de e-mails.

Wi-Fi (802.11) → Comunicação sem fio.

Fundamentos do HTTP (Hypertext Transfer Protocol)

O HTTP (Hypertext Transfer Protocol) é um protocolo de comunicação utilizado para a transferência de dados na web. Ele define como as mensagens são formatadas e transmitidas entre clientes (navegadores) e servidores web.

Características Principais do HTTP

🖈 1.1. Baseado em Cliente-Servidor

- O cliente (geralmente um navegador) inicia uma requisição para um servidor web.
- O servidor processa a solicitação e retorna uma resposta ao cliente.

\$\times 1.2. Protocolo Sem Estado (Stateless)

- Cada requisição HTTP é independente, ou seja, o servidor não mantém informações sobre requisições anteriores.
- Para armazenar sessões, utiliza-se cookies, tokens ou mecanismos como o HTTP Sessions.

🖈 1.3. Texto Simples e Legível

• As mensagens HTTP são baseadas em texto, o que facilita a depuração e análise.

🖈 1.4. Utiliza o Modelo de Requisição-Resposta

• O cliente envia uma requisição e o servidor retorna uma resposta.

PROTOCOLO HTTP

Os métodos HTTP definem a ação a ser executada na requisição.

Os principais são:

Método	Descrição	
GET	Solicita um recurso sem modificar dados.	
POST	Envia dados para o servidor (ex.: formulários).	
PUT	Atualiza um recurso existente ou cria se não existir.	
DELETE	Remove um recurso específico.	
PATCH	Modifica parcialmente um recurso existente.	
HEAD	Igual ao GET, mas retorna apenas os cabeçalhos.	

PROTOCOLO HTTP

Códigos de Status HTTP (STATUS CODE)

Os códigos de status indicam o resultado da requisição:

1xx (Informativo): Processamento em andamento.

2xx (Sucesso): Requisição bem-sucedida.

- 200 OK → Requisição bem-sucedida.
- 201 Created → Recurso criado com sucesso.

3xx (Redirecionamento): Cliente precisa tomar ação adicional.

- 301 Moved Permanently → Página movida permanentemente.
- 302 Found → Redirecionamento temporário.

4xx (Erro do Cliente): Ocorreu um erro na solicitação.

- 400 Bad Request → Requisição inválida.
- 401 Unauthorized → Requer autenticação.
- 403 Forbidden → Acesso negado.
- 404 Not Found → Recurso não encontrado.

5xx (Erro do Servidor): Erro interno do servidor.

- **500 Internal Server Error** → Erro geral do servidor.
- 503 Service Unavailable → Servidor temporariamente indisponível.

TTP vs. HTTPS

A principal diferença entre HTTP e HTTPS está na segurança:

Protocolo	Segurança	Porta Padrão
HTTP	Não utiliza criptografia	80
HTTPS	Utiliza criptografia (SSL/TLS)	443

O que é Client-Side?

- Significa "lado do cliente" Refere-se a tudo que acontece no dispositivo do usuário (como um navegador ou um aplicativo).
- 🅸 É executado no navegador O código é baixado e processado localmente.
- ♦ Usa tecnologias como:
 - HTML, CSS (estrutura e estilo da página).
 - JavaScript (interatividade e manipulação de elementos).
 - Frameworks como React, Angular, Vue.js (melhoria na experiência do usuário).
- Exemplos de funcionalidades Client-Side:
- ✓ Validação de formulários no navegador.
- Animações e interatividade com JavaScript.
- Atualização de conteúdo sem recarregar a página (AJAX).

Client-Side vs. Server-Side

O que é Server-Side?

- Significa "lado do servidor" O processamento acontece no servidor antes de enviar os dados ao cliente.
- ♦ Usa tecnologias como:
- •Linguagens: PHP, Python, Node.js, Java, Ruby, C#.
- Banco de Dados: MySQL, PostgreSQL, MongoDB.
 Frameworks: Laravel (PHP), Django (Python), Express (Node.js), Spring (Java).
- **Exemplos de funcionalidades Server-Side:**
- ✓ Autenticação de usuários.
- Processamento de dados em banco de dados.
- Geração de páginas dinâmicas (como em um blog ou e-commerce).

- 1. GRUPOS DE ATÉ 4 PESSOAS.
- 2. ACESSE O SITE SUGERIDO PELO PROFESSOR.
- 3. ESCOLHA UM NICHO (Ex. Culinária, Contabilidade, Games)
- 4. DESENVOLVA O LAYOUT DA PAGINA E EM SEGUIDA MANDE UM PRINT AO PROFESSOR.
- 5. ENVIO INDIVIDUAL POR R.A NO PORTAL DO ALUNO.