Туре	Description	Name
Hadronic leakage	Ratio of E_{T} in the first layer of the hadronic calorimeter to E_{T} of the EM cluster	$R_{\rm had1}$
	(used over the range $ \eta < 0.8$ or $ \eta > 1.37$)	
	Ratio of E_{T} in the hadronic calorimeter to E_{T} of the EM cluster	$R_{ m had}$
	(used over the range $0.8 < \eta < 1.37$)	
Back layer of	Ratio of the energy in the back layer to the total energy in the EM accordion	f_3
EM calorimeter	calorimeter. This variable is only used below 100 GeV because it is known to	
	be inefficient at high energies.	
Middle layer of	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the	$w_{\eta 2}$
EM calorimeter	energy and η_i is the pseudorapidity of cell i and the sum is calculated within	
	a window of 3×5 cells	
	Ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the	R_{ϕ}
	electron cluster position	
	Ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the	R_{η}
	electron cluster position	
Strip layer of	Shower width, $\sqrt{(\Sigma E_i(i-i_{\max})^2)/(\Sigma E_i)}$, where i runs over all strips in a window	$w_{ m stot}$
EM calorimeter	of $\Delta \eta \times \Delta \phi \approx 0.0625 \times 0.2$, corresponding typically to 20 strips in η , and	
	$i_{ m max}$ is the index of the highest-energy strip	
	Ratio of the energy difference between the largest and second largest energy	$E_{ m ratio}$
	deposits in the cluster over the sum of these energies	
	Ratio of the energy in the strip layer to the total energy in the EM accordion	f_1
	calorimeter	
Track conditions	Number of hits in the innermost pixel layer; discriminates against	$n_{ m Blayer}$
	photon conversions	
	Number of hits in the pixel detector	$n_{ m Pixel}$
	Number of total hits in the pixel and SCT detectors	$n_{ m Si}$
	Transverse impact parameter with respect to the beam-line	d_0
	Significance of transverse impact parameter defined as the ratio of d_0	d_0/σ_{d_0}
	and its uncertainty	
	Momentum lost by the track between the perigee and the last	$\Delta p/p$
	measurement point divided by the original momentum	
TRT	Likelihood probability based on transition radiation in the TRT	eProbabilityHT
Track-cluster	$\Delta \eta$ between the cluster position in the strip layer and the extrapolated track	$\Delta \eta_1$
matching	$\Delta\phi$ between the cluster position in the middle layer and the track extrapolated	$\Delta\phi_2$
	from the perigee	
	Defined as $\Delta \phi_2$, but the track momentum is rescaled to the cluster energy	$\Delta\phi_{ m res}$
	before extrapolating the track from the perigee to the middle layer of the calorimeter	
	Ratio of the cluster energy to the track momentum	E/p