Introduction to Julia for High-Performance Computing

Convenience

Performance

Language Barrier

Gradual transition

	Tuesday	Wednesday	Thursday	Friday
	Foundations	Core	Node	Cluster
09:00 - 10:45	Intro Onboarding	Type & Memory Optimizations	Multithreading	Distributed Computing
10:45 - 11:00	Break	Break	Break	Break
11:00 - 12:30	Fundamentals	Exercises	Exercises	Exercises
12:30 - 14:00	Lunch	Lunch	Lunch	Lunch
14:00 - 15:30	Specialisation & Abstraction	SIMD & Profiling	GPU Computing	Exercises
15:30 - 15:45	Break	Break	Break	Outro
15:45 - 17:00	Exercises	Exercises	Exercises	

Quick Live Survey

Julia's Weaknesses

HPC with Julia is currently a niche.

Join us at conferences ...

(open to everyone!)

Achieving high performance can be tricky.

No great way to produce (small) binaries.

Julia's Strengths

Julia is interactive and convenient.

Julia has a great package manager

Laptop ~/myproject tree Manifest.toml Project.toml code.jl O directories, 3 files ~/myproject cat Project.toml = "052768ef-5323-5732-b1bb-66c8b64840ba" oifferentialEquations = "Oc46a032-eb83-5123-abaf-570d42b7fbaa" = "33e6dc65-8f57-5167-99aa-e5a354878fb2" = "da04e1cc-30fd-572f-bb4f-1f8673147195" ~/myproject

HPC Cluster

```
bauerc@n2login3 myproject julia --project
                          Documentation: https://docs.julialang.org
                          Type "?" for help, "]?" for Pkg help.
                          Version 1.7.2 (2022-02-06)
                         Official https://julialang.org/ release
(myproject) pkg> st
      Status `~/myproject/Project.toml`
  [052768ef] CUDA v3.11.0
  [0c46a032] DifferentialEquations v7.1.0
  [33e6dc65] MKL v0.5.0
  da04e1cc] MPI v0.19.2
       Info packages marked with → not downloaded, use 'instantiat
e' to download
(myproject) pkg> instantiate
```

Julia code can be fast and scalable.

Example: Good scaling of PDE codes

Trixi.jl (Multi-CPU)

ParallelStencil.jl (Multi-GPU)

Julia invites you to gradually delve deeper.

Julia makes it easier to become a developer.

Gradual transition

Let us delve deeper!