$\frac{\text{ISSN } 1002 - 4956}{\text{CN}11 - 2034/\text{T}}$

实验技术与方法

环己烷-水-乙醇三元液系相图测定实验

葛华才,刘仕文,蒋荣英,肖逸凡

(华南理工大学 化学与化工学院,广东 广州 510641)

摘 要:开发了环己烷-水-乙醇三元液系相图测定实验,介绍了该实验的测定方法和测定结果。解决了目前 普遍开设的以苯为主的三元液系存在毒性大和刺激性强等问题。

关键词:环己烷-水-乙醇系统;液-液相图;实验

中图分类号: O6-3 文献标志码: A 文章编号: 1002-4956(2011)12-0034-02

Setting up experiment for determination of cyclohexanewater-alcohol ternary liquid-liquid phase diagram

Ge Huacai, Liu Shiwen, Jiang Rongying, Xiao Yifan

(School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China)

Abstract: This paper describes some application and experience of the experiment for determination of cyclohexane-water-alcohol ternary liquid-liquid phase diagram. This experiment can solve some problems such as large toxic and strong pungent existed in the experiment of traditional ternary liquid-liquid system with benzene.

 $\textbf{Key words:} \ \text{system of cyclohexane-water-alcohol; liquid-liquid phase diagram; experiment}$

具有一对共轭溶液的三元液系相图有助于确定合理的萃取条件,在国内的许多物理化学实验教材中常将其列入教学内容。目前主要涉及苯-水-醋酸^[1-3]、苯-水-醇^[4]、三氯甲烷-水-醋酸^[5]等三元液系恒温相图的测定。醋酸具有较大的刺激气味,其冰点亦较低(16.7℃),而实验通常在室温下进行,因此当室温接近醋酸冰点时,醋酸容易析晶而导致与醋酸有关的三元相图实验难以正常进行。另外,苯或三氯甲烷是毒性较大的致癌物或可疑致癌物,会严重影响人员的健康和实验室周围的环境。因此,有必要对传统实验进行低刺激性和低毒化等改造。考虑到工业生产已趋于使用毒性较低的环己烷、正己烷、碳酸酯等作为助剂,我们近年来开设了环己烷-水-乙醇三元液系相图测定的实验。未见有该三元液系相图的报道^[6]。

收稿日期:2011-02-10

基金项目:华南理工大学教研项目(2008 和 2009)

作者简介: 葛华才(1963一), 男, 广东大埔, 博士, 教授, 主要从事物理化学、高分子材料改性及计算机应用化学研究.

 $E ext{-mail:} \operatorname{chhcge} @\operatorname{scut.} \operatorname{edu.} \operatorname{cn}$

1 试剂与仪器

试剂:环己烷和无水乙醇均为分析纯,水为自制蒸馏水。

2 实验步骤

2.1 溶解度测定

移取 2 mL 环己烷置于 150 mL 干的锥形瓶中,用 刻度移液管吸取 0.1 mL 水并加入锥形瓶中,摇动变浊;然后用滴定管逐滴加入乙醇,至溶液恰由浊变清时,记下所加乙醇的体积;在此液中再滴加 1 mL 乙醇,用水返滴至溶液刚由清返浊,记下所用水的体积;按照预先设定的的数字继续加入水,然后又用乙醇滴定,如此反复进行实验。滴定时必须充分振荡。

2.2 连接线的测定

用移液管依次吸入 3 mL 环己烷、3 mL 水及 3 mL 乙醇置于干燥的分液漏斗中,充分摇动后静置分

层,放出下层(即水层)约1 mL 于已称重的 50 mL 干锥形瓶中,称其质量,然后滴加预先配置好的质量分数为 50 %环己烷-乙醇混合物,不断摇动,至由浊变清,再称其质量。

3 实验数据处理与结果

由查表得到密度后,将终点时溶液中各成分的体积换成质量,求出各组分的质量分数 w。室温 23.5 $^{\circ}$ 时的数据见表 1,绘于三角坐标中的结果见图 1。由于水和环己烷在室温下的相互溶解度小甚至可以忽略,因此将各点连成平滑曲线并外延到三角形的 2 个顶点 A 和 B,即为溶解度曲线,亦是环己烷(A)-水(B)-醇(C)的恒温相图。

将表 1 中的系统点 O 的组成绘于图 1 中。通过滴定法先定出水相点(G)的位置。用质量分数为 50% 的环己烷-乙醇混合物(组成点 E)滴定水层(相点 G)由浑浊恰至清(相点 F)。根据杠杆规则,加入环己烷-乙醇混合物的质量 $m_{\rm E}$ 与水层 G 的质量 $m_{\rm G}$ 之比有如下关系:

$$m_{\rm E}/m_{\rm G} = FG/EF$$

实验得 $m_E/m_G=10.99$,即可通过点 E 作溶解度曲线的割线 EG,使线段 FG 和 EF 符合 FG/EF=10.99,从而可确定点 G 的位置。由点 G 通过原系统总组成点 O,即可得连接线 GH。G 及 H 代表总组成为 O 的系统的两个共轭溶液,H 是它的环己烷层。

		-		. (. 1 🗆 //	2 H3 / IH IH 2 \ 3-				
编号 一	体积 / mL			质量 /g			质量分数		
	环己烷	水	乙醇	环己烷	水	乙醇	环己烷	水	乙醇
1	2	0.10	1.52	1.550	0.100	1. 195	0.5448	0.0351	0.4201
2	2	0.25	2.52	1.550	0.249	1.982	0.4099	0.0659	0.5241
3	2	0.45	3.61	1.550	0.449	2.839	0.3204	0.0928	0.5868
4	2	0.75	4.61	1.550	0.748	3.626	0.2617	0.1263	0.6120
5	2	1.35	5.95	1.550	1.347	4.680	0.2046	0.1777	0.6177
6	2	2.17	7.45	1.550	2.164	5.859	0.1619	0.2261	0.6120
7	2	3.67	10.55	1.550	3.661	8.298	0.1148	0.2710	0.6143
8	2	6.19	14.05	1.550	6.174	11.050	0.0826	0.3289	0.5886
9	2	10.69	20.45	1.550	10.662	16.084	0.0548	0.3768	0.5684
10	2	18.61	27.95	1.550	18.562	21.982	0.0368	0.4410	0.5222
系统点 〇	3.00	3.00	3.00	2.325	2.992	2.359	0.3029	0.3898	0.3073

表 1 三元液系(环己烷-水-乙醇)相图实验测定的相关数据

考虑到实验处理的数据较多和手工绘制相图较费时间,我们设计了专用 Excel 软件 $^{[7]}$,并可从网上下载。使用时只需输入实验数据和液体密度(测定或查表),数据处理和溶解度曲线图即可自动完成。连接线GH则采用手工辅助调整的方式绘制。利用计算机的图形放大功能和专门设计的标尺(EG),通过旋转和移动标尺便可以在计算机上精确确定水相点G。

4 讨论与建议

从图 1 可知,环己烷-水-乙醇三元液系的相图与苯-水-醋酸系统类似,曲线内为两相区,曲线外为单相区。但水在环己烷中的溶解度比在苯中更小,因此实验时,各种玻璃仪器必须干净,试剂(环己烷和乙醇)不能吸有水,系统的乙醇量较少时滴定需要逐滴观察相态的变化。

经过近几年的开设表明,改造后的实验是成功的。 实验避免了苯的毒性和醋酸的强刺激性,改善了实验

图 1 三组分液液相图

环境,在室温低至 $7 \, ^{\circ}\mathbb{C}$ (接近环己烷或苯的冰点)时仍能正常进行,学生亦能在限定的时间 $(4 \, \text{学时})$ 内完成实验。但实验存在设计性和综合性不够的问题 $^{[8-9]}$,

(下转第 43 页)

表 1(续)

以 (分)									
中成药	批号	二价汞含量/	汞形态之和/						
T 11% 29	111 -5	$mg \cdot kg^{-1}$	$\mathrm{mg} \cdot \mathrm{kg}^{-1}$						
小儿至宝丸	9015584	6.5	6.5						
小儿至宝丸	9015405	6.0	6.0						
小儿至宝丸	9015619	6.5	6.5						
人参再造丸	7011182	12.9	12.9						
人参再造丸	9010042	13.9	13.9						
人参再造丸	8013888	12.9	12.9						
人参再造丸	9010040	15.2	15.2						
久芝清心丸	9011473	2.8	2.8						
久芝清心丸	7013306	4.4	4.4						
久芝清心丸	9011469	2.0	2.0						
久芝清心丸	6011236	4.4	4.4						
牛黄清宫丸	8013906	1.4	1.4						
牛黄清宫丸	8012691	1.3	1.3						
同仁安神丸	9015145	11.8	11.8						
同仁安神丸	9015086	12.3	12.3						
同仁安神丸	9015308	9.5	9.5						
同仁安神丸	0015035	2.1	2.1						
天王补心丸	9015580	10.2	10.2						
天王补心丸	9015318	7.8	7.8						
天王补心丸	9015585	3.9	3.9						
天王补心丸	9015148	3.9	3.9						

3 结束语

通过比较微波的各种条件,建立了满足精密度和 准确性要求的分析中成药中可溶性汞形态的方法,应 用到市售的含朱砂的中成药中,获得了这些中成药中 不同形态汞的分析结果,为中成药的进一步研究提供 了基础数据。

参考文献(References)

- [1] 曾克武,王旗,杨晓达,等.朱砂溶出的体外研究[J].中国中药杂志, 2007(2);231-234.
- [2] 何滨,江桂斌. 汞形态分析中前处理技术[J]. 分析测试学报,2002 (1):89-94.
- [3] Liu Jie, Shi Jingzheng, Yu Limei, et al. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials [J]. Exp Biol Med 2008,233(7):810-817.
- [4] 周超凡,林育华. 传统中药朱砂应用概况及其安全性[J]. 药物不良 反应杂志,2008(6),184-189.
- [5] Han Y, Kingston H M, Boylan H M, et al. Speciation of mercury in soil and sedment by selective solvent and acid extraction[J]. Anal Bioanal Chem, 2003(375):428-436.
- [6] Jose Soares dos Santos, Miguel de la Guardia, Augustin Pastor, et al. Determination of organic and inorganic mercury species in water and sediment samples by HPLC on-line coupled with ICP-MS[J]. Talanta, 2009 (80):207-211.
- [7] Chen Haiting, Chen Jianguo, Jin Xianzhong, et al. Determination of trace mercury species by HPLC-ICP-MS after cloud point extraction[J]. Journal of Hazardous Materials, 2009 (172):1282-1287.
- [8] 王萌,丰伟悦,张芳,等.高效液相色谱-电感偶和等离子体质谱联用测定生物样品中的无机汞和甲基汞[J].分析化学,2005(12):
- [9] 刘娜,张兰英,杜连柱,等.高效液相色谱-电感偶和等离子体质谱法测定汞的三种形态[J].分析化学,2005(8):1116-1118.
- [10] Maria Maldonado Santoyo, Julio Alberto Landero Figueroa, Kazimierz Wrobel, et al. Analytical speciation of mercury in fish tissues by reversed phase liquid chromatography-inductively coupled plasma mass spectrometry with Bi³⁺ as internal standard[J]. Talanta, 2009(04):057-079.
- [11] 吕超,刘丽萍,董慧茹,等. 盐酸提取-液相色谱-原子荧光联用技术 检测水产品种甲基汞等汞化合物[J]. 分析试验室,2010(2): 64-68.

(上接第35页)

因此有待于进一步完善。具体的改进建议如下:(1)记录表 1 中乙醇或水的加入量可仅作为一个参考量,用滴定管滴入代替用移液管吸入,这样可减少滴定时间;(2)实验时不同学生选择不同的三元液系(如用低毒性的正己烷、正庚烷、碳酸二甲酯等替代环己烷)进行实验,然后实行实验数据共享[10],增加了解不同系统溶解度的异同点。由于替代组分的密度数据较难查到,还可以增加使用密度管测量密度这一内容。

参考文献(References)

- [1] 刘勇健,孙康. 物理化学实验[M]. 徐州:中国矿业大学出版 社.2005
- [2] 北京大学化学系物理化学教研室. 物理化学实验[M]. 北京:北京大学出版社,1995.

- [3] 华南理工大学物理化学教研室. 物理化学实验[M]. 广州:华南理工大学出版社,2003.
- [4] 罗澄源,向明礼. 物理化学实验[M]. 北京:高等教育出版社,2004.
- [5] 郭子成,杨建一,罗青枝.物理化学实验[M].北京:北京理工大学出版社,2005.
- [6] 徐桦,居红芳,王雯,等. 水-正已烷-乙醇体系的液液平衡研究[J]. 化学研究与应用,2006,18(4):409-412.
- [7] 葛华才,杨文聚,张剑如. 物理化学实验数据处理 Excel 资源的研制 [C]//大学化学化工基础课程报告论坛组委会. 大学化学化工基础课程报告论坛论文集. 北京:高等教育出版社,2006; 423-424.
- [8] 葛华才,刘仕文. 可充放模拟电池的制作及性能测试实验的开设[J]. 实验技术与管理. 2006, 23(9):110-111.
- [9] **葛华才,刘仕文,蒋荣英**. 物理化学实验教学中创新能力的培养 [J]. 实验室研究与探索. 2006, 25(11);1421-1422.
- [10] 张学军,王锁萍.全面改革实验教学,培养学生创新能力[J].实验室研究与探索,2005,24(1):4-6.