

Classification

- Response is qualitative Very common problem
- Examples:
 - Email spam detection system: spam or not spam
 - Medical system: Set of symptoms attributed to one of three possible medical conditions. Which of these conditions does the individual have
 - Handwritten digit recognition system: Is the digit 0, 1, 2,..or 9?

Reponse Y can be represented by unordered set C

Can we use linear regression for binary classification?

- Assume two classes: We want to classify whether patient has stroke or drug overdose based on symptoms
- We can potentially use the dummy variable approach by defining

$$Y = \begin{cases} 0 & \text{if stroke;} \\ 1 & \text{if drug overdose.} \end{cases}$$

- If the **predicted** Y > 0.5 (**not meaningful**), then classify as drug overdose, otherwise classify as stoke
 - Linear regression may work for two-level response

Can we still use linear regression for more than 2 classes?

- Assume three-level response (3 classes) Three possible diagnosis: stroke, drug overdose and epileptic seizure
- Can linear regression be applied if we used the following encoding?

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases} \quad \text{OR} \quad Y = \begin{cases} 1 & \text{if epileptic seizure;} \\ 2 & \text{if stroke;} \\ 3 & \text{if drug overdose.} \end{cases}$$

- Different coding result in different linear model and the encoding does not reflect a meaningful interpretation
 - Why error between stroke & seizure is higher than difference between stoke and overdose
- Linear regression is not appropriate here
- There is no general way to convert qualitative response into quantitative response

Logistic Regression

- A classifier estimates the conditional probability that X belongs to each possible class label (elements in C)
 - Recall optimal Bayes classifier
 - What is the probability that the email is spam (or not) given features of email
- The predicted class label is the one with the highest probability

 Logistic regression: models the probability that the response Y belongs to a particular category

Example: Default Data Set

- Predict whether an individual will default on his/her credit card payment
 - Two features: balance on the credit card and income
- Dataset contains information of n=10,000 individuals

Logistic regression models the conditional probability

• Consider that we take a single feature: balance

• Logistic regression models the probability of default given the balance:

$$\Pr(\text{default} = \text{Yes}|\text{balance})$$

- Range?
 - This conditional probability is in the range [0,1]

Linear Model for Probability?

- Assume two possible classes, and denote $f(X) = \Pr(Y = 1|X)$
- Now we can assume that this probability is the response we want to predict
- Can we use the linear regression model?

$$f(X) = \beta_0 + \beta_1 X$$

- Linear regression may result in values outside range [0-1]
 - Not estimate of probability, thus is not used

Predict negative probability of default !!

Balance

Logistic Model

Logistic – Sigmoid function f(a)=1/(1+exp(-a))

• To solve this problem the logistic regression uses the form (e = 2.71828 is a mathematical constant):

$$f(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- f(X) is always in the range [0,1]
- Large exp. power (∞): logistic regression output 1
- Small exp. power $(-\infty)$: logistic regression output 0

Logit term is linear - hence the term logistic regression

• We can rearrange the terms, and get logit $\log(f(x)/(1-f(X))$:

$$\frac{f(X)}{1 - f(X)} = e^{\beta_0 + \beta_1 X}$$

$$\log\left(\frac{f(X)}{1-f(X)}\right) = \beta_0 + \beta_1 X$$
 This log is base e, i.e. In

Logistic regression has a **logit** that is **linear** with X

What is the decision boundary?

Estimating Coefficients – Maximum Likelihood

- It is more common to use maximum likelihood to estimate coefficients
- Likelihood gives probability of the observed zeros and ones in the training data.

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} f(x_i) \prod_{i':y_{i'}=0} (1 - f(x_{i'}))$$

Note that $f(x_i)$ is the probability Pr(Yi = 1|xi).. Therefore, 1- $f(x_i) = Pr(Yi = 0|xi)$.

• Get coefficients that maximizes the likelihood, then use them for predictions

Note

• Maximizing the likelihood function is equivalent to minimizing the cost function $J(\beta)$ defined as

$$J(\beta) = -\sum_{i=1}^{n} [y_i log(P(y_i = 1|x)) + (1 - y_i) log(1 - P(y_i = 1|x))]$$

Called cross-entropy function

proof!

Non-linear optimization problem. Can be solved iteratively (for e.g. stochastic gradient descent)

No closed form solution due to the non-linear sigmoid function

Coefficient statistics

- Similar aspects to linear regression: accuracy of coefficient estimate and pvalue
- Here we have Z-statistics (instead of t-statistics as it have normal distribution):

$$\hat{\beta}_1/SE(\hat{\beta}_1)$$

Credit card Default data using Balance

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is the probability of default for someone with balance \$1000?

Predictions and estimating coefficients

- After estimating coefficients, we can make predictions.
- Example: estimated probability of default for someone with balance \$1000 is

$$\hat{f}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

Coefficient values are in the previous table

Multiple Features

Y is 1 or zero, and is predicted using multiple features

Denote p(X) as the probability Pr(Y = 1|X)

$$Pr(Y = 1|X) = f(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

$$\log\left(\frac{f(X)}{1-f(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Example

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

• **Student** with card **balance** of \$1,500 and an **income** of \$40,000 (units of income in data is in \$1000) has an estimated probability of default:

$$\hat{f}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058.$$

Multiple Classes

- One vs all
 - Predict whether response is from: class 1 or not, class 2 or not,...
- Train classifier for each class j to predict y=j or not
- Pick class that has max P(y=j|X)

 We'll talk about other methods that are more popular for multiclass classification

One vs. All for Multiclass Classification

- Assume two features and three classes shown in the Figure
- One can build three binary classifiers

The region (triangle)
where the classification is
"rest" by all three binary
classifiers: decision is
made to assign to the
class with the closest
boundary

Logistic Regression in Python

From sklearn.linear_model import LogisticRegression

LogRegModel= LogisticRegression()

Use .fit and .score as before.

Regularization in Logistics Regression

- Regularization can be applied to logistic regression
- Same principles as before:
 - Ridge: All coefficients shrink towards zero
 - Lasso: Shrinks coefficients, and some coefficients will be forced to be zero (feature selection)

Logistic Regression in Python - Ridge

From **sklearn.linear_model** import **LogisticRegression** LogRegModel= LogisticRegression(C=100)

- Regularization strength, Ridge Large C => less regularization
- By default, logistic regression in scikit-learn implements Ridge regularization to the classification problem, with strength defined by parameters C.
 - By default, C=1 in LogisticRegression()
 - Large C means less regularization strength
 - very large C means is close to the no regularization case
 - Small C means more regularization and coefficients will be close to zero
 - Note that C is opposite to alpha or λ in the regression functions

Logistic Regression in Python - Lasso

We can implement Lasso regularization (also called L1 regularization)
 which limits the model to few features

LogRegModel= LogisticRegression(C=0.1, penalty=" ℓ 1")

Finding Class probabilities in Python

- predict_proba: gives the probability of each of the classes given the observation
 - First row is: [probability that first observation is in class 1, probability that the first observation is in class 2,...]
- In python:

```
FittedLogRegModel1= LogisticRegression().fit(X_train,Y_train) Probabilities=FittedLogRegModel1.predict_proba(X_test)
```