AS.280.347 CLASS 1.3

- Look at data displays & logistic regression models!
- Propensity scores
- Using R for propensity scores

Module 1: Smoking and risk of disease

- Question 1.1 (Q1.1): How does the risk of disease compare for smokers and otherwise similar non-smokers?
- Question 1.2 (Q1.2): Does the contribution of smoking to the risk of disease vary by sex or SES?
- To address each question, we want:
 - a data display
 - a statistical analysis
- We will answer these questions using data from the National Medical Expenditures Survey (NMES)

Today's agenda

Group presentations and critiques Q1.1:

How does the risk of disease compare for smokers and otherwise similar non-smokers?

- Updated data displays
- Logistic regression models
- Plans to improve displays/models
- Propensity score approach

Confounding

- Goal is to estimate the effect of a "treatment" or "risk factor"
 (e.g., ever smoking) on an outcome (e.g., major smokingcaused disease) by comparing otherwise similar persons
 with and without the risk factor.
- How could we account for any possible confounding variables in a logistic regression analysis?

Review of logistic regression

- How could we account for any possible confounding variables in a logistic regression analysis?
 - We could include potential confounding variables as covariates in our analysis using multivariable logistic regression:

```
\log(odds \ of \ death) = \beta_0 + \beta_1 \cdot (gestational \ age) + \beta_2 \cdot twin
```

- We interpret the regression coefficients in a multivariable model as ceteris paribus – holding all other things equal
- $-\beta_1 = \log(OR)$ for a one-unit change in gestational age, **holding twin** status constant
- $-\beta_2 = \log(OR)$ comparing twins to singleton births, **holding** gestational age constant

Scenario for today's discussion

- Health response: Y
 - Major smoking caused disease
- Binary treatment or risk factor: Z=1,0
 - Ever smoker
- Potential confounders: X
 - Age
 - Gender
 - SES: poverty, education
 - Marital status
 - Etc

Stratification to account for confounding

- Stratify by the covariate
- Estimate the difference in mean outcome within each covariate stratum
- Pool the stratum-specific values

Example: Stratifying by income

Income Level	Probability of MSCD (n)		Smoking effect Log OR	Std error	W=1/var	W* Log OR
	Ever smokers	Never smokers				
1	.158	.079				
(Poverty)	(677)	(579)				
2	.191	.120				
	(303)	(292)				
3	.187	.092				
	(925)	(739)				
4	.131	.094				
	(2083)	(1548)				
5	.105	.073				
	(2607)	(1892)				
Pooled						

Example: Stratifying by income

Income Level	Probability of MSCD (n)		Smoking effect Log OR	Std error	W=1/var	W* Log OR
	Ever smokers	Never smokers				
1 (Poverty)	.158 (677)	.079 (579)	.777	.186		
2	.191 (303)	.120 (292)	.553	.232		
3	.187 (925)	.092 (739)	.820	.153		
4	.131 (2083)	.094 (1548)	.370	.109		
5	.105 (2607)	.073 (1892)	.397	.109		
Pooled						

Example: Stratifying by income

Income Level	Probability of MSCD (n)		Smoking effect Log OR	Std error	W=1/var	W* Log OR
	Ever smokers	Never smokers				
1 (Poverty)	.158 (677)	.079 (579)	.777	.186	.112	.087
2	.191 (303)	.120 (292)	.553	.232	.072	.040
3	.187 (925)	.092 (739)	.820	.153	.165	.135
4	.131 (2083)	.094 (1548)	.370	.109	.326	.121
5	.105 (2607)	.073 (1892)	.397	.109	.326	.129
Pooled					1	.512

Example: MSCD

 Regression of Y on X and indicator variables of the strata is identical to weighting the log ORs inversely related to their variances.

```
> model6 = glm(mscd ~ eversmk + as.factor(income), family=binomial(link="logit"), data=nmesData)
> summary(model6)$coefficients
                     Estimate Std. Error
                                           z value
                                                        Pr(>|z|)
(Intercept) -2.27864855 0.09510615 -23.959004 7.444629e-127
eversmk
                 0.51664113 0.06211029
                                          8.318124 8.936644e-17
as.factor(income)2 0.30670165 0.14266039
                                         2.149873 3.156530e-02
as.factor(income)3 0.19255875 0.11127643
                                          1.730454 8.354917e-02
as.factor(income)4 -0.07918846 0.10105222
                                         -0.783639
                                                    4.332520e-01
as.factor(income)5 -0.34393439 0.10095077
                                                    6.569275e-04
                                         -3.406952
```

A faster method of pooling the evidence!

What to do with many potential confounders?

- Stratify on all confounder combinations
 - Large number of strata, hard to make tables
- Match each smoker to a few "similar" non-smokers
 - Not bad, but does not use all the data
- Stratify on a single derived variable chosen so that the distribution of all the covariates is similar fore the two treatment groups within each stratum of the variable
 - One such variable is the propensity score

What is a propensity score?

- <u>Definition</u>: p(X) = Pr(Z=1|X)
 - The propensity score is the probability of being "treated" (smoking) as a function of the potential confounders
- <u>Fact</u>: The distribution of X given p(X) is the same whether Z=1 or Z=0
 - The treated (smokers) and untreated (non-smokers) within a propensity score stratum are alike with respect to the covariates (age, gender, SES variables)

Propensity score strategy - idea

- Estimate the propensity score using logistic regression (or other classification method)
 - Estimate probability of being a smoker, given age, sex, SES, etc
 - Estimate Pr(eversmk = 1 | age, sex, SES, etc)
- Stratify by this propensity score (perhaps into 5 groups based on the quintiles of the scores)
- Estimate the treatment effect within each stratum
 - Calculate the log OR (or OR) of MSCD, comparing smokers to nonsmokers, within each PS group
- Pool the estimates across strata
 - Use inverse-variance weighting to combine estimates

Propensity score strategy - implementation

Estimate the propensity score using logistic regression (or other classification method)

```
propModel <- glm( eversmk ~ ??? , family=binomial(link="logit"))
predLogOdds <- predict(propModel)
predProb <- exp(predLogOdds)/(1+exp(predLogOdds))
propScores <- predProb</pre>
```

 Stratify by this propensity score (perhaps into 5 groups based on the quintiles of the scores)

```
psCutoffs <- quantile(propScores, probs=c(0,0.25, 0.5, 0.75, 1))
ps.groups <- cut(propScores, psCutoffs, include.lowest=TRUE)</pre>
```

Estimate the treatment effect within each stratum and pool the estimates across strata

```
glm( mscd ~ eversmk + ps.groups , family=binomial(link="logit"))
```

Pros and cons of propensity scores

- Organizes the analysis into 2 steps
 - 1. Estimate the probability of treatment given the covariates
 - 2. Compare treatment groups within strata of this probability
- Easy to picture the evidence for the binary treatment effect
 - Most natural with binary treatment (extensions possible, but awkward)
- Not as simple to study effect modifications (interactions)
- No method controls for unmeasured confounders, regardless of what is claimed

Assignment 1.3

- Improve your data display to answer Q1.1: How does the risk of disease compare for smokers and otherwise similar non-smokers?
- Update your logistic regression model to answer Q1.1. What does this model say about Q1.1? Be sure to focus on answering the question being asked!
- Estimate propensity scores for the treatment of smoking (eversmk); that is, use logistic regression to estimate the probability of smoking given possible confounders.
- Use logistic regression with quintiles of your propensity scores to answer Q1.1. Interpret the results.
- Work together in groups!
- Submit your assignment in R markdown through Blackboard by Sunday @ midnight.

Thinking ahead...

- What statistical analysis will effectively use the NMES data to address Q1.1?
 - Multiple logistic regression
 - Propensity scores
- What displays and statistical analysis will address Question 1.2 (Q1.2):
 - Does the contribution of smoking to the risk of disease vary by sex or SES?

References for propensity scores

- Rosenbaum and Rubin, 1983. Biometrika, 70: 41-55.
- Rubin. 1997. Annals of Internal Medicine, 127: 757-763.