

SANET: Surveillance Ad hoc Network

DÉPARTEMENT D'INFORMATIQUE

Mark DIAMANTINO CARIBE, Sarah GARDIOL, Rawad GHOSTIN, Hugo LLOREDA SANCHEZ et Chin RIVAS

« SANET » est un système de surveillance de drones (représentés dans notre projet par des RaspberryPi) visant à aider lors de désastres tels que des incendies, des inondations, ou encore des enlèvements. Des systèmes similaires existent déjà, mais le notre est innovant par son réseau mèche : tous les drones sont autonomes, autant pour la détermination du partitionnement de la zone de surveillance que pour la communication entre eux. Nous pouvons visualiser notre système à l'aide d'une application, montré en exemple cicontre.

GUI Screenshot

Algorithmes de partitionnement et détermination du chemin optimal

Afin de diviser la zone de surveillance pour la partager entre les drones, nous utilisons un **algorithme de partitionnement**. Celui-ci nous donne une division de la zone en **n partitions**, correspondant au nombre de drones disponibles. Nous pouvons **la visualiser**, ainsi que l'avancé des drones, dans notre **application** qui communique avec les drones :

Une fois les zones assignées aux drones, ils doivent connaître le chemin qu'ils doivent parcourir. Nous utilisons pour ça un algorithme se basant sur le problème du Voyageur de

Protocole de communication

Les drones **communiquent** à l'aide de **paquets**, qu'on diffuse par un « **Reliable Broadcast** ». Chaque paquet produit par un drone es**t envoyé à tous** les drones, et pour s'assurer que ce paquet est bien reçu par tous, chaque drone ayant reçu le paquet va le **diffuser à nouveau** aux autres.

Par exemple, le drone n°0 envoie un paquet à tous les drones, y compris à lui-même. Ensuite, le drone 1 va à nouveau l'envoyer à tous les drones. Les drones n°2, 3 et 4 feront de même.

