EC5.203 Communication Theory I (3-1-0-4):

Lecture 9:

Analog Communication Techniques: Frequency Modulation - 2

Feb. 13, 2025

Recap

Key Concepts

- Two ways of encoding info in complex envelope
 - I and Q: amplitude modulation (several variants)
 - Envelope and phase: angle modulation (constant envelope)
- For example, for a sinusoid carrier

$$A_c(t)\cos(2\pi f_c(t)t + \theta_c(t))$$

where $A_c(t)$, $f_c(t)$, $\theta_c(t)$ are the amplitude, frequency, and the phase of the carrier respectively.

Amplitude Modulation

Frequency Modulation

Phase Modulation

Frequency Modulation

• The transmitted signal is given as

$$u_{\rm FM}(t) = A_c \cos(2\pi (f_c + f(t))t + \phi)$$

- Here $f(t) = k_f m(t)$ is the frequency offset relative to the carrier, m(t) is the message signal while k_f (design constant), A_c (amplitude) and ϕ (phase) are constants.
- The instantaneous frequency is given by

$$f_i(t) = f_c + f(t) = f_c + k_f m(t)$$

Example of FM Wave

• The instantaneous frequency is given by

$$f_i(t) = f_c(1 + m(t))$$

Example 2 of FM Wave

• The instantaneous frequency is given by

$$f_i(t) = f_c + f(t) = f_c + k_f m(t)$$

Phase Modulation

• The transmitted signal is given as

$$u_{\rm PM}(t) = A_c \cos(2\pi f_c t + \theta(t) + \phi)$$

• Here $\theta(t) = k_p m(t)$ while k_p , A_c , ϕ and f_c are constants.

Example of PM Wave

Generalized Model: Angle Modulation

• The transmitted signal is given as

$$u_{p}(t) = A_{c} \cos(2\pi f_{c}t + \theta(t))$$
$$\theta(t) = g(m(t))$$

- Angle modulation is a general form
 - Phase modulation

$$\theta(t) = \theta(0) + k_p m(t)$$

- Frequency modulation

$$\frac{1}{2\pi} \frac{d\theta(t)}{dt} = f(t) = k_f m(t)$$
$$\theta(t) = \theta(0) + 2\pi k_f \int_0^t m(\tau) d\tau$$

where k_p and k_f are constants while f(t) is the frequency offset relative to the carrier. Also $\phi = \theta(0)$ where t = 0 is used as reference point.

Equivalence of PM and FM: FM using PM

$$m(t) \longrightarrow \boxed{ \begin{array}{c} \mathbf{FM} \\ f(t) = f_c + k_f m(t) \end{array} }$$

$$\theta(t) = \theta(0) + 2\pi k_f \int_0^t m(\tau) d\tau$$

Equivalence of FM and PM: FM using PM

Equivalence of PM and FM: PM using FM

$$m(t) \longrightarrow \begin{array}{|c|c|} \hline \mathbf{PM} \\ \theta(t) = \theta(0) + k_p m(t) \\ \hline \end{array}$$

$$\theta(t) = \theta(0) + k_p m(t)$$

PM versus FM

PM versus FM in practice

- Legacy analog communication \rightarrow no control over message signal \rightarrow FM preferred
 - Integration of message prior to phase modulation leads to smooth phase which leads to better bandwidth containment.
 - Most famous application: radio broadcasting
 - FM has been used in 2G GSM (Gaussian MSK, a form of FM); Optimal demodulation more complicated
 - Lately being used in power limited systems: FSK is used in Lo-RaWAN
- Digital communication \rightarrow can design message signal \rightarrow PM (PSK specifically) often preferred
 - Easier to implement optimal demodulator
 - Use bandwidth-efficient pulses rather than rectangular pulses to create smoother signals with better frequency containment
 - Used in modern digital communication systems

Focus on FM in this chapter. PSK studied in Chapter 4 and beyond.

Frequency Modulation

• The transmitted signal is given as

$$u_{\rm FM}(t) = A_c \cos(2\pi (f_c + f(t))t + \phi)$$

- Here $f(t) = k_f m(t)$ is the frequency offset relative to the carrier, m(t) is the message signal while k_f (design constant), A_c (amplitude) and ϕ (phase) are constants.
- The instantaneous frequency is given by

$$f_i(t) = f_c + f(t) = f_c + k_f m(t)$$

FM Modulation Index

• Modulation index for FM is given by

$$\beta = \frac{\Delta f_{\text{max}}}{B}$$

where the frequency deviation $\Delta f_{\text{max}} = k_f \max_t |m(t)|$ and B is the bandwidth of the signal..

- Narrowband FM: $\beta < 1$
- Wideband FM: $\beta > 1$

• Solve: For sinusoidal message $m(t) = A_m \cos(2\pi f_m t)$, find β . Also find $\theta(t)$ in terms of β assuming $\theta(0) = 0$.

Modulation

• Direct method

- Voltage controlled oscillator (VCO)
- Use of varacter diode which provides voltage controlled capacitance in LC tuned circuits
- Directly generates passband
- Both narrow and wideband

• Indirect method

- An alternative method for wideband FM signal generation when direct method is infeasible or costly
- First generate narrowband signal (using PM modulation) and then increase the frequency shift and frequency by using several stages of multipliers (non-linearity)
- Not used nowadays as direct FM methods are now feasible and cost-effective.

FM Demodulation

- There are several methods
 - Limiter discriminator
 - Phase locked loop (PLL) (in detail later in this chapter)

Limiter Discriminator

Enforces constant envelope

Removes amplitude fluctuations caused by noise and channel

Limiting enduces habenonics Since it is a non-linear speration y(t) = ault) + buttl+ coldbe--.

Today's Class

Ref Books: U. Madhow and B. P. Lathi

FM Spectrum

FM spectrum

- Narrowband FM
 - Similar to DSB
 - Bandwidth = 2B (where B=message bandwidth)
- Wideband FM
 - Bandwidth dominated by max frequency deviation
- Carson's formula: adds the two components

Recap: Time domain expressions for a passband signal

• In terms of I and Q components

$$u_p(t) = u_c(t)\cos(2\pi f_c t) - u_s(t)\sin(2\pi f_c t)$$

• In terms of envelope and phase

$$u_p(t) = e(t)\cos(2\pi f_c t + \theta(t))$$

• In terms of complex envelope

$$u_p(t) = \operatorname{Re}(u(t)e^{j2\pi f_c t})$$

• Complex baseband in terms of Envelope and phase

 $u(t) = u_{c}(t) + ju_{s}(t) = e(t)e^{j\theta(t)}$

Starting from one representation, can derive the rest based on the relations depicted in the figure

Narrowband FM

• Show that the bandwidth of narrowband of FM is 2B where B is the bandwidth of the signal m(t).

Narrowband FM: Example

• Example: find the bandwidth of FM signal corresponding to a sinusoidal message $m(t) = \cos 2\pi f_m t$.

Questions?

Wideband FM

• Bandwidth is dominated by frequency deviation

$$\Delta f = k_f m(t)$$

• Frequency will swing between $\pm \Delta f_{\text{max}}$ assuming equal positive and negative swings in message.

$$\Delta f_{\max} = k_f \max_t |m(t)|$$

• Bandwidth $B_{\rm FM} = 2\Delta f_{\rm max}$

Carson's rule

• Add up estimates for narrowband and wideband FM

$$B_{\rm FM} \approx 2B + 2\Delta f_{\rm max} = 2B(\beta + 1)$$

where $\beta = \Delta f_{\text{max}}/B$ is the FM modulation index or the deviation ration.

Bandwidth of Angle Modulated Waveforms

- Prove that Angle Modulated Waveforms have infinite bandwidth theoretically!
- As a special case, derive narrowband FM expression and its bandwidth!

Ref: B.P.Lathi

FM spectrum for periodic messages

- Complex envelope is periodic for periodic messages → Fourier series
 - Spectrum of complex envelope is discrete with impulses at integer multiples of fundamental frequency
- Standard example: sinusoidal message
 - But approach is quite general
- Somewhat artifical since most messages (such as speech) are not periodic

(Approximate) FM spectrum

• The bandwidth of narrowband FM ($\beta < 1$) is 2B where B is the bandwidth of the signal m(t).

Assumption $\theta(t)$ is small for narrowband FM! Not valid for general case.

• Add up estimates for narrowband and wideband FM

$$B_{\rm FM} \approx 2B + 2\Delta f_{\rm max} = 2B(\beta + 1)$$

where $\beta = \Delta f_{\text{max}}/B$ is the FM modulation index or the deviation ration.

Exact FM spectrum for sinusoidal message

• Prove that FM spectrum for sinusoidal message is given by

$$U(f) = \sum_{n=-\infty}^{\infty} J_n(\beta)\delta(f - nf_m)$$

where $J_n(\beta)$ is the n^{th} order Bessel function given by

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx) \, dx} \quad \begin{array}{l} \text{Complex-valued integral} \\ \\ = \frac{1}{\pi} \cos(\beta \sin x - nx) \, dx \end{array} \quad \begin{array}{l} \text{Real Valued} \end{array}$$

Bessel function plots

Bessel function properties

• Note that the Bessel function $J_n(\beta)$ is real

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx) dx} = \frac{1}{\pi} \oint_{0}^{\infty} \cos(\beta \sin x - nx) dx$$

Properties of Bessel function

•
$$J_n(\beta) = (-1)^n J_{-n}(\beta) = (-1)^n J_n(-\beta)$$

• For fixed β , $J_n(\beta) \to 0$ as $n \to \infty$.

Generally,
$$J_n(\beta) \approx 0$$
 for $|n| > \beta + 1$
 $B_{\rm FM} \approx 2(\beta + 1) f_m$
This is consistent with Carson's rule.

This is only an approximation

• For fixed n, $J_n(\beta)$ vanishes for specific values of β . This is useful in spectral shaping.

Modulation index and Power in Sidebands

Modulation index	Sideband																
	Carrier	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0.00	1.00																
0.25	0.98	0.12															
0.5	0.94	0.24	0.03														
1.0	0.77	0.44	0.11	0.02													
1.5	0.51	0.56	0.23	0.06	0.01												
2.0	0.22	0.58	0.35	0.13	0.03												
2.41	0	0.52	0.43	0.20	0.06	0.02											
2.5	-0.05	0.50	0.45	0.22	0.07	0.02	0.01										
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01										
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02									
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.05	0.02								
5.53	0	-0.34	-0.13	0.25	0.40	0.32	0.19	0.09	0.03	0.01							
6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02							
7.0	0.30	0.00	-0.30	-0.17	0.16	0.35	0.34	0.23	0.13	0.06	0.02						
8.0	0.17	0.23	-0.11	-0.29	-0.10	0.19	0.34	0.32	0.22	0.13	0.06	0.03					
8.65	0	0.27	0.06	-0.24	-0.23	0.03	0.26	0.34	0.28	0.18	0.10	0.05	0.02				
9.0	-0.09	0.25	0.14	-0.18	-0.27	-0.06	0.20	0.33	0.31	0.21	0.12	0.06	0.03	0.01			
10.0	-0.25	0.04	0.25	0.06	-0.22	-0.23	-0.01	0.22	0.32	0.29	0.21	0.12	0.06	0.03	0.01		
12.0	0.05	-0.22	-0.08	0.20	0.18	-0.07	-0.24	-0.17	0.05	0.23	0.30	0.27	0.20	0.12	0.07	0.03	0.0

Fourier coefficients for complex envelope

Passband Bandwidth (frequency unit = message frequency f_m)

Fractional power containment BW

• Parseval's theorem: Power = sum of magnitude of Fourier series coefficients

$$1 = |u(t)|^2 = \overline{|u(t)|^2} = \sum_{n = -\infty}^{\infty} J_n^2(\beta) = J_0^2(\beta) + 2\sum_{n = 1}^{\infty} J_n^2(\beta)$$

• Fractional power containment bandwidth for fraction α is $2Kf_m$ with K given by

$$J_0^2(\beta) + 2\sum_{n=1}^K J_n^2(\beta) \ge \alpha$$

Carson's rule

• Add up estimates for narrowband and wideband FM

$$B_{\rm FM} \approx 2B + 2\Delta f_{\rm max} = 2B(\beta + 1)$$

where $\beta = \Delta f_{\text{max}}/B$ is the FM modulation index or the deviation ration.

• Carson's rule uses $\alpha = 0.98$.

Example 3.3.1: Tutorial

- The signal a(t) is fed to a VCO with quiescent frequency 5 MHz and frequency deviation of 25 KHz/mV.
- Give an estimate of the bandwidth of y(t), which is output of VCO. Use only the first harmonic for bandwidth calculation.
- If signal y(t) is passed through an ideal passband filter of bandwidth 5 KHz, centered at 5.005 MHz, then provide the simplest possible expression for the power at the filter output.

Features of Angle Modulated Non-linearities

- Exchanging signal power with bandwidth
 - Bandwidth for AM cannot be changed while it can be changed changed based on Δf .
 - SNR is roughly proportional to square of transmission signal bandwidth.
- Immunity of angle modulation to non-linearities.
 - Non-linearity does not affect FM signal while it does affect AM signal.(Proofs)

Ref: B.P.Lathi