- 14. Numa ALU, a detecção de overflow nas operações de adição algébrica é efectuada através:
 - (a.) do "ou" exclusivo entre o carry in e o carry out da célula de 1 bit mais significativa.
 - b. da avaliação do bit mais significativo do resultado.
 - c. do "ou" exclusivo entre o bit mais significativo e o menos significativo do resultado.
 - d. do "ou" exclusivo entre os 2 bits mais significativos do resultado.
- 15. A decomposição numa sequência de adições e subtracções, de acordo com o algoritmo de Booth, da quantidade binária 101101₍₂₎ é:
 - a. $-2^0 + 2^1 2^2 + 2^4 2^5$
 - b. $2^0 2^1 + 2^2 2^4 + 2^5$
 - c. $2^0 2^1 + 2^2 + 2^3 2^4 + 2^5$
 - d. $-2^0 + 2^1 2^2 2^3 + 2^4 2^5$
- 16. A quantidade real binária 1011,110000002 quando representada em decimal é igual a:
 - a. 12,6
 - b. 11,75
 - c. 3008,0
 - d. 1504,0

II

Apresente o diagrama de blocos de um multiplicador de números de 16 bits sem sinal, iterativo e optimizado em termos da dimensão dos seus elementos funcionais. Indique os registos onde devem ser carregados os operandos e lido o resultado, a função de cada um dos restantes blocos, bem como as respectivas dimensões.

III

Considere as tabelas a seguir apresentadas. Admita que o valor presente no registo \$PC corresponde ao endereço da primeira instrução, que nesse instante o conteúdo dos registos é o indicado, e que vai iniciar-se o instruction fetch dessa instrução.

Endereço	Dados
0x10010040	0xFEC81248
0x10010044	0x00410312
0x10010048	0xC630F731
0x1001004C	0x3A509DB0
0x10010050	0x8421C630
0x10010054	0x5FF38C29

Opcode	Funct	Operação
0	0x20	add
0	0x22	sub
0	0x24	and
0	0x25	or
0x02		j
0x04		beq
0x05		bne
0x08		addi
0x0C		andi
0x23		1w
0x2B		sw

\$4	0x00000F03
\$5	0x10010050
\$6	0x10010040
\$7	0x0040003C
\$8	0x10010054
\$9	0x00000004
\$PC	0x0040002C
	CPU

L1:	beq	\$5,\$6,L2
	1w	\$7,0(\$5)
	and	\$8,\$7,\$4
	sw	\$8,4(\$5)
	addi	\$5,\$5,-8
	j	L1
L2:		

- 1. Traduza para código máquina do MIPS o trecho de código correspondente às seis instruções da tabela da direita (expressando o resultado em hexadecimal) e indique o endereço de memória em que cada uma se encontra. Justifique todos os passos da sua resposta.
- Indique o conteúdo dos registos do CPU e das posições do segmento de dados apresentadas, após a
 execução do trecho de código fornecido, isto é, imediatamente antes de ser iniciado o instruction fetch
 da instrução armazenada no endereço correspondente à etiqueta L2. Justifique adequadamente a sua
 resposta.