ANOVA multifactorial Diseños ortogonales

Dept. of Marine Science and Applied Biology
Jose Jacobo Zubcoff

ANOVA

En el caso de 1 factor:

Compara la distribución de una variable continua normal en dos o más poblaciones (niveles o categorías)

Pruebas de contraste para dos o más grupos independientes (ANOVA entre sujetos): un factor completamente aleatorizado.

Se puede examinar **más de un factor** simultáneamente (ANOVA de 2 factores, de 3 factores, etc.)

¿Por qué un único análisis para todos los factores, en lugar de dos o más análisis separados?

- Eficacia
- Disminuye el efecto "achacado" al error aleatorio: (disminuir la probabilidad del error Tipo I)
- Mayor información (efecto combinado de los factores)

Ejemplo Diseño con 2 factores

Hipótesis 1: la abundancia total de los peces litorales mediterráneos responde a la protección pesquera en las reservas marinas

Hipótesis 2: pueden haber diferencias regionales de abundancia, achacables a variaciones puramente espaciales (debidas a otros factores además de la protección)

Tenemos dos factores experimentales:

nivel de protección P P NP p = 2 región R R1 R2 R3 R1 R2 R3 réplicas

	R1	R2	R3
Р	n	n	n
NP	n	n	n

n = 3

DISEÑO ORTOGONAL

Tenemos dos factores experimentales: DISEÑO ORTOGONAL

Modelo lineal para dos factores con interacción:

$$X_{ijk} = \mu + A_i + B_j + AB_{ij} + e_{k(ij)}$$

Modelo lineal para dos factores SIN interacción:

$$X_{ijk} = \mu + A_i + B_j + e_{k(ij)}$$

Modelo lineal para UN solo factor:

$$X_{ij} = \mu + A_i + e_{j(i)}$$

- Buscamos explorar más de un factor experimental simultáneamente y en combinación
- Cada nivel de un factor está presente en el experimento en combinación con cada nivel del otro factor (ortogonalidad)
- Debemos asegurar la ortogonalidad con el fin de investigar las interacciones entre factores

Diseños Factoriales

- Comparaciones entre los trat. -> afectados por las condiciones en las que ocurren.
- Los efectos de un factor deben tener en cuenta los efectos de otros factores. (mas real)
- Mas de un factor a la vez -> Diseño Factorial
- Son experimentos mas eficientes-> Cada observación proporciona información sobre todos los factores
- Las respuestas de un factor en diferentes niveles de otro
- Interacción-> ocurre cuando su actuación no es independiente.

Tests

Análisis para 2 factores

Efectos de un factor:

- Es un cambio en la respuesta medida ocasionado por un cambio en el nivel de ese factor
- Efectos Simples: comparaciones entre niveles de un factor (contrastes)
- Efectos principales: de un factor son comparaciones entre los niveles de un factor promediados para todos los niveles de otro factor
- Efectos de Interacción: son las diferencias entre efectos simples

Ejemplo para Diseño factorial 2 x 2

	В		
Α	B1	B2	Medias del Factor A
A1	68) FF	60 ECTO SIMPLE	64 EFECTO
A2	65)	97	81 PRINCI
Medias del Factor B	66.5	78.5	

Interacción

Ejemplo para Diseño factorial 2 x 2

Efectos Simples: (para factor A)

$$l_1 = \mu_{21} - \mu_{11} = 65 - 68 = -3$$

$$l_2 = \mu_{22} - \mu_{12} = 97 - 60 = 37$$

Efectos principales: (promedio de los dos efectos)

$$l_3 = \mu_2 - \mu_1 = 81 - 64 = 17$$

Efectos de Interacción:

$$l_4 = l_2 - l_1 = 37 - (-3) = 40$$

Y el efecto del error aleatorio ¿cómo se mide?

	E	3	
A	B1	B2	Medias del Factor A
A1	68 <u>r</u>	60	64 EFECTO
A2	65	97	PRINCIP
Medias del Factor B	66.5	78.5	

Interacción

¿Cuándo un factor es fijo?

Y ¿cuándo es aleatorio?

Ejemplos: Niveles de protección, Regiones, Estaciones, Años, etc.

Un factor será **fijo** si nos interesa saber si existen subconjuntos homogéneos (hacer un contraste a posteriori). En otro caso, será **aleatorio**.

El análisis con factores fijos es más potente, pero requiere más análisis a posteriori, no siempre justificado y no siempre racional.

Hipótesis nula:

2°) Efectos de los factores
$$H_{01}: \mu_1 = \mu_2 = \dots = \mu_i = \dots = \mu_a$$

$$H_{02}: \mu_1 = \mu_2 = \dots = \mu_j = \dots = \mu_b$$

1°) Ef. de la Interacción

H₀₃: las diferencias entre niveles del factor P son independientes de las diferencias entre niveles del factor R

• En nuestro ejemplo:

$$H_{01}$$
: $\mu_1 = \mu_2 = \mu_3$
 H_{02} : $\mu_1 = \mu_2$

Tests

H₀₃: las diferencias entre niveles del factor P son independientes de las diferencias entre niveles del factor R

Modelo lineal:

$$X_{ijk} = \mu + A_i + B_j + A_{ij} + e_{k(ij)}$$

Aditividad y Efectos de los factores:

Si no hubiera interacción

$$\mu_{ij} = \mu_{..} + \alpha_i + \beta_j$$

Siendo: $\alpha_i = \mu_{i.} - \mu_{..}$
 $\beta_j = \mu_{.j} - \mu_{..}$

 Los Efectos de los factores son aditivos en ausencia de Interacción

Tests

2 Factores Interacción

Modelo lineal:

$$X_{ijk} = \mu + A_i + B_j + A_{ij} + e_{k(ij)}$$
Si no hubiera interacción

$$Suma \ de \ cuadrados \\ Global \ (scG) \\ \underbrace{\sum_{i=1}^{I} \sum_{j=1}^{J} (y_{ij} - \bar{y}_{\cdot \cdot})^2}_{g.l. = IJ-1} = \underbrace{\int_{i=1}^{I} (y_{i.} - \bar{y}_{\cdot \cdot})^2}_{Suma \ de \ cuadrados} + \underbrace{\int_{i=1}^{J} (y_{i.} - \bar{y}_{\cdot \cdot})^2}_{Suma \ de \ cuadrados} + \underbrace{\int_{j=1}^{J} (y_{.j} - \bar{y}_{\cdot \cdot})^2}_{g.l. = J-1} + \underbrace{\int_{j=1}^{J} (y_{.j} - \bar{y}_{\cdot \cdot})^2}_{g.l. = J-1}$$

$$Suma \ de \ cuadrados \\ Functional \ (scR) \\ + \underbrace{\int_{i=1}^{J} (y_{i.} - \bar{y}_{i.})^2}_{g.l. = IJ-1} + \underbrace{\int_{i=1}^{J} (y_{i.} - \bar{y}_{i.})^2}_{g.l. = J-1} + \underbrace{\int_{i=$$

q.l. = (I-1)(J-1)

Modelo lineal:

$$X_{ijk} = \mu + A_i + B_j + AB_{ij} + e_{k(ij)}$$
 Si **existe** la **interacción**

$$\mu_{ij} = \mu_{..} + \alpha_{i} + \beta_{j} + \alpha \beta_{ij}$$

$$\alpha \beta_{ij} = (\mu_{ij} - \mu_{..}) - (\mu_{i.} - \mu_{..}) - (\mu_{.j} - \mu_{..})$$

$$\alpha \beta_{ij} = (\mu_{ij} - \mu_{i.} - \mu_{.j} + \mu_{..})$$

Suma de Cuadrados para los efectos de los factores

$$\sum \sum \sum (y_{ijk} - y_{...})^2 = r \sum \sum (y_{ij.} - y_{...})^2 + \sum \sum \sum (y_{ijk} - y_{ij.})^2$$
a b r SC Total SC Trat. SC Error

Modelo lineal con interacción:

$$X_{ijk} = \mu + A_i + B_j + AB_{ij} + e_{k(ij)} + e_{k(ij)} + X_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk} \qquad \textit{Modelo I de ANOVA de dos factores puro}$$

Prueba de NO Aditividad

$$H_{0:}(\alpha\beta)_{ij} = \mu_{ij} - \mu_{i.} - \mu_{.j} + \mu_{..} = 0$$

 $H_{1:}(\alpha\beta)_{ij} = \mu_{ij} - \mu_{i.} - \mu_{.j} + \mu_{..} \neq 0$

$$F_{interacción} = CM(AB) / CME$$

2 Factores Interacción

Tests

Modelo lineal con interacción:

$$X_{ijk} = \mu + A_i + B_j + AB_{ij} + e_{k(ij)}$$

$$Suma \ de \ cuadrados \\ Global \ (scG)$$

$$Suma \ de \ cuadrados \\ Explicada \ por \ T\alpha \ (scT\alpha)$$

$$Suma \ de \ cuadrados \\ Explicada \ por \ T\beta \ (scT\beta)$$

$$IK \sum_{i=1}^{J} \sum_{j=1}^{K} \left(\overline{y}_{i,i} - \overline{y}_{...} \right)^2 + IK \sum_{j=1}^{J} \left(\overline{y}_{i,j} - \overline{y}_{...} \right)^2$$

$$g.l. = IJK - 1$$

$$Suma \ de \ cuadrados \\ Explicada \ por \ interac. \ (sc\alpha\beta)$$

$$Explicada \ por \ interac. \ (sc\alpha\beta)$$

$$Fasidual \ (scR)$$

$$+ K \sum_{i=1}^{I} \sum_{j=1}^{J} \left(y_{ijk} - \overline{y}_{i,.} - \overline{y}_{.j} + \overline{y}_{...} \right)^2 + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \left(y_{ijk} - \overline{y}_{ij} \right)^2$$

q.l. = IJ(K-1)

q.l. = (I-1)(J-1)

A y B Fijos

Modelo lineal:

	$X_{ijk} = \mu + A$	$A_i + B_j + AB_{ij} + e_{k(ij)}$
Fuente de variación	SC	

$$\sum \sum \sum (X_i - X)^2$$

В

A

$$\sum \sum \sum (X_i - X)^2$$

AB

$$\sum \sum \sum (X_{ij} - X)^2 - \sum \sum \sum (X_i - X)^2 - \sum \sum (X_j - X)^2$$

Residual

$$\sum \sum \sum (X_{ijk} - X_{ij})^2$$

Total

$$\sum \sum \sum (X_{ijk} - X)^2$$

2 Factores Interacción

Tests

Modelo lineal:

A y B Fijos

$$X_{ijk} = \mu + A_i + B_j + AB_{ij} + e_{k(ij)}$$

Fuente de variación

SC

g.l.

Α

$$\sum \sum \sum (X_i - X_i)^2$$

B

$$\sum \sum (X_{i..} - X_{...})^2$$

AB

$$\sum \sum (X_{ij.} - X_{i..} - X_{j..} - X_{...})^2$$

Residual
$$\sum \sum (X_{ijk} - X_{ij.})^2$$

Total

$$\sum \sum (X_{ijk} - X_{...})^2$$

Cálculo grados de libertad

$$\sum \sum \sum (X_{ij.} - X_{i..} - X_{j..} - X_{...})^{2} \begin{cases} [ab - a - (b - 1)] = \\ (ab - a - b + 1) = \\ (a - 1)(b - 1) \end{cases}$$

Modelo lineal:

A y B Fijos

$$X_{ijk} = \mu + A_i + B_j + AB_{ij} + e_{k(ij)}$$

Fuente de variación SC

g.l.

Α

$$\sum \sum \sum (X_i - X)^2$$

(a-1)

В

$$\sum \sum \sum (X_i - X)^2$$

(b-1)

AB

$$\sum \sum (X_{ij} - X_i - X_j - X)^2$$
 (a-1) (b-1)

Residual
$$\sum \sum (X_{ijk} - X_{ij})^2$$

ab(n-1)

Total

$$\sum \sum \sum (X_{ijk} - X)^2$$

abn-1

2 Factores

Interacción

Tests

Fuente de variación g.l.

Est. SC

Α

$$(a-1)\sigma_e^2 + bn \sum (AB_i-AB)^2 + bn \sum (A_i-A)^2$$

B

$$(b-1)$$

(b-1) (b-1)
$$\sigma_e^2$$
 + an $\sum (AB_i - AB)^2$ + an $\sum (B_i - B)^2$

AB

(a–1) (b–1)
$$\sigma_e^2$$
 + interacción

Residual

ab(n-1)
$$\sigma_e^2$$

$$\sigma_{\!e}{}^2$$

Total

abn-1

2 Factores Interacción

 Importancia de definir si los factores considerados son fijos o aleatorios:

Matemáticamente se puede demostrar que el 2º término del estimador de la SC es 0 cuando el factor es fijo, puesto que...

$$\sum AB_{ij} = 0$$

En cambio, cuando uno de los factores (p.ej. B) es <u>aleatorio</u>, los valores B_i constituyen una muestra de todos los posibles valores, y el sumatorio de las interacciones será ≠ 0

En nuestro ejemplo?

Nivel de protección: FIJO

Tests

Región: ALEATORIO

A fijo B aleatorio

Fuente de var.	g.l.	Est. MC	Est. MC
Α	(a-1)	$\sigma_{\rm e}^2 + n\sigma_{\rm AB}^2 + bn \sum (A_i - A)^2 / (a - A)^2$	$1) \sigma_{\rm e}^2 + n\sigma_{\rm AB}^2 + bnk_{\rm A}^2$
В	(b-1)	$\sigma_{\rm e}^2$ + an $\sigma_{\rm B}^2$	$\sigma_{\rm e}^2$ + an $\sigma_{\rm B}^2$
AB	(a-1) (b-1)	$\sigma_{e}^{2} + n\sigma_{AB}^{2}$	$\sigma_{\rm e}^2$ + $n\sigma_{\rm AB}^2$
Residual	ab(n-1)	σ_{e}^{2}	σ_{e}^{2}
Total	abn–1		

2 Factores

Interacción

Tests

A fijo B fijo

Fuente de var.	g.l.	Est. MC	Est. MC
Α	(a–1)	σ_{e}^{2} + bn $\sum (A_{i}-A)^{2} / (a-1)$	$\sigma_{\rm e}^2$ + bn $k^2_{\rm A}$
В	(b-1)	σ_{e}^{2} + an \sum (B _i –B) ² / (b–1)	$\sigma_{\rm e}^2$ + an $k_{\rm B}^2$
AB	(a-1) (b-1)	σ_{e}^{2} + n [var. Interacc.] / (a-1)(b-2	$) \sigma_{\rm e}^2 + nk^2_{\rm AB}$
Residual	ab(n–1)	σ_{e}^{2}	$\sigma_{\rm e}^{\ 2}$
Total	abn–1		

2 Factores

Interacción

Tests

A fijo B fijo

Fuente de var.	g.l.	Est. MC	Est. MC
Α	(a–1)	σ_{e}^{2} + bn $\sum (A_{i}-A)^{2} / (a-1)$	$\sigma_{\rm e}^2$ + bn $k^2_{\rm A}$
В	(b-1)	σ_{e}^{2} + an \sum (B _i –B) ² / (b–1)	$\sigma_{\rm e}^2$ + an $k_{\rm B}^2$
AB	(a-1) (b-1)	σ_{e}^{2} + n [var. Interacc.] / (a-1)(b-2	$) \sigma_{\rm e}^2 + nk^2_{\rm AB}$
Residual	ab(n–1)	σ_{e}^{2}	$\sigma_{\rm e}^{\ 2}$
Total	abn–1		

2 Factores

Interacción

Tests

A aleatorio B aleatorio

Fuente de var.	g.l.	Est. MC
Α	(a–1)	$\sigma_{\rm e}^2$ + $n\sigma_{\rm AB}^2$ + $bn\sigma_{\rm A}^2$
В	(b-1)	$\sigma_{\rm e}^2$ + $n\sigma_{\rm AB}^2$ + $an\sigma_{\rm B}^2$
AB	(a-1) (b-1)	$\sigma_e^2 + n\sigma_{AB}^2$
Residual	ab(n-1)	$\sigma_{\rm e}^2$
Total	abn–1	

2 Factores

Interacción

Tests

Interacción

2 Factores

Fuente de v	var. g.l.	Est. MC	
A B AB Residual	(a-1) (b-1) (a-1) (b-1) ab(n-1)	σ_{e}^{2} + $\mathrm{n}\sigma_{\mathrm{AB}}^{2}$ + $\mathrm{bn}k_{\mathrm{A}}^{2}$ σ_{e}^{2} + $\mathrm{an}\sigma_{\mathrm{B}}^{2}$ σ_{e}^{2} + $\mathrm{n}\sigma_{\mathrm{AB}}^{2}$ σ_{e}^{2}	A fijo B aleatorio
Total A B AB Residual Total	abn–1 (a–1) (b–1) (a–1) (b–1) ab(n–1) abn–1	$\sigma_{\rm e}^2$ + ${\rm bn}k_{\rm A}^2$ $\sigma_{\rm e}^2$ + ${\rm an}k_{\rm B}^2$ $\sigma_{\rm e}^2$ + ${\rm n}k_{\rm AB}^2$ $\sigma_{\rm e}^2$	A fijo B fijo
A B AB Residual Total	(a–1) (b–1) (a–1) (b–1) ab(n–1) abn–1	$\sigma_{\rm e}^2$ + $n\sigma_{\rm AB}^2$ + $bn\sigma_{\rm A}^2$ $\sigma_{\rm e}^2$ + $n\sigma_{\rm AB}^2$ + $an\sigma_{\rm B}^2$ $\sigma_{\rm e}^2$ + $n\sigma_{\rm AB}^2$ $\sigma_{\rm e}^2$ (distancia entre g.l.)	A aleatorio B aleatorio

Resultados

Tests

Comparaciones múltiples a posteriori

Interacción NO significativa

 Se buscan las diferencias para los factores principales

Interacción significativa (*)

- Solo deben buscarse las diferencias a posteriori para la interacción
- Se deben analizar las combinaciones con al menos 1 nivel común

Comparaciones múltiples a posteriori (p.ej. SNK)

Comparaciones múltiples a posteriori

TukeyHSD(aov(PADINA~Zona*Profundidad))

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = PADINA ~ Zona * Profundidad)

\$Zona

diff lwr upr p adj N-C -2.314815 -12.03046 7.400825 0.8395177

S-C -4.259259 -13.97490 5.456381 0.5544780

S-N -1.944444 -11.66008 7.771196 0.8838268

\$Profundidad

diff lwr upr p adj 2-1 -17.22222 -23.84418 -10.60026 8e-07

\$`Zona:Profundidad`

diff lwr upr p adj

N:1-C:1 -6.666667 -23.42123 10.087898 0.8603058

S:1-C:1 -5.740741 -22.49530 11.013823 0.9209766 C:2-C:1 -21.111111 -37.86568 -4.356547 0.0049711

N:2-C:1 -19.074074 -35.82864 -2.319510 0.0156529

S:2-C:1 -23.888889 -40.64345 -7.134325 0.0008761

S:1-N:1 0.925926 -15.82864 17.680490 0.9999854

C:2-N:1 -14.444444 -31.19901 2.310120 0.1341259

N:2-N:1 -12.407407 -29.16197 4.347157 0.2740355

S:2-N:1 -17.222222 -33.97679 -0.467658 0.0400863

C:2-S:1 -15.370370 -32.12493 1.384194 0.0922796

N:2-S:1 -13.333333 -30.08790 3.421231 0.2018392

S·2-S·1 -18 148148 -34 90271 -1 393584 0 0253708

<u>Diseños ortogonales</u>

No hay límites matemáticos a la adición de factores ortogonales

Los límites están en... imaginar las hipótesis subyacentes
 ... interpretar las interacciones