

Lecture 1

Instructor: Mohamed Sarwat

What is a database

- A very large, integrated collection of data.
- Models real-world <u>enterprise</u>.
 - Entities (e.g., students, courses)
 - Relationships (e.g., Mike is taking CSE 412)

Distributed System

A collection of independent computers that appears to its users as a single coherent system.

Distributed System

- Multiple autonomous components
- Components are not shared by all users
- Software runs in concurrent processes on different processors
- Multiple Points of control
- Multiple Points of failure

Why Distribution?

Multiple Memory Systems

Multiple Storage

Why Distribution

Sharing Information and Services

More System Components means:

- More Availability
- More Reliability
- Better Fault Tolerance
- More Scalability

Availability

If a component goes down, another component is available to perform the task

Scalability

- Adaption of distributed systems to
 - Accommodate more users
 - Accommodate large volume of data (big data)
 - respond faster (reduce application latency)
- Usually done by adding more and/or faster processors.

Reliability / Fault Tolerance

- Hardware, software and networks fail!
- Distributed systems must maintain availability even at low levels of hardware/software/network reliability.
- Fault tolerance is achieved by
 - Recovery strategy
 - Redundancy (replication)

Transparency

Distributed systems should be perceived by users and application programmers as a whole rather than as a collection of cooperating components.

Distributed DBMS Environment

What is a Distributed Database System?

A distributed database (DDB) is a collection of multiple, logically interrelated databases distributed over a computer network.

A distributed database management system (D–DBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent to the users.

Distributed database system (DDBS) = DDB + D-DBMS

Distributed DBMS Promises

- Transparent management of distributed, fragmented, and replicated data
- Improved reliability/availability through distributed transactions
- Improved performance
- Easier and more economical system expansion

Transparency

 Transparency is the separation of the higher level semantics of a system from the lower level implementation issues.

 Fundamental issue is to provide data independence in the distributed environment

Why Transparency is Key?

Transparent Access

SELECT ENAME, SAL

FROM EMP, ASG, PAY

WHERE DUR > 12

AND EMP.ENO = ASG.ENO

AND PAY.TITLE = EMP.TITLE

Storing Data

- Fragmentation
 - Horizontal:
 - Vertical:
- Replication

Fragmentation

Easiest Way to Do Fragmentation?

Fragmentation Alternatives – Horizontal

PROJ₁: projects with budgets less

than \$200,000

PROJ₂: projects with budgets

greater than or equal to

\$200,000

PROJ

PNO	PNAME	BUDGET	LOC
P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance CAD/CAM	150000 135000 250000 310000 500000	Montreal New York New York Paris Boston

$PROJ_1$

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P2	Database Develop.	135000	New York

PROJ₂

PNO	PNAME	BUDGET	LOC
Р3	CAD/CAM	250000	New York
P4	Maintenance	310000	Paris
P5	CAD/CAM	500000	Boston

Fragmentation Alternatives – Vertical

PROJ₁: information about project budgets

PROJ₂: information about project names and locations

PROJ

PNO	PNAME	BUDGET	LOC
P1	Instrumentation Database Develop. CAD/CAM Maintenance CAD/CAM	150000	Montreal
P2		135000	New York
P3		250000	New York
P4		310000	Paris
P5		500000	Boston

 $PROJ_1$

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000
P5	500000

 $PROJ_2$

PNO	PNAME	LOC
P1 P2 P3 P4 P5	Instrumentation Database Develop. CAD/CAM Maintenance CAD/CAM	Montreal New York New York Paris Boston

Example:

$$\mathbf{F} = \{ F_1, F_2 \}$$

$$F_1 = \mathbf{O}_{sal < 10} E$$

$$F_2 = \mathbf{O}_{sal>20} E$$

Which are good fragmentations?

Example:

$$\mathbf{F} = \{ F_1, F_2 \}$$

$$F_1 = \mathbf{O}_{sal < 10} E \qquad F_2 = \mathbf{O}_{sal > 20} E$$

→ Problem: Some tuples lost!

Which are good fragmentations?

Second example:

$$\mathbf{F} = \{ \text{F3}, \text{F4} \}$$

$$F3 = \mathbf{O} \text{ sal} < 10 \text{ E}$$
 $F4 = \mathbf{O} \text{ sal} > 5 \text{ E}$

Which are good fragmentations?

Second example:

$$\mathbf{F} = \{F3, F4\}$$

$$F3 = \mathbf{O} \text{ sal} < 10 \text{ E} \qquad F4 = \mathbf{O} \text{ sal} > 5 \text{ E}$$

 \rightarrow Tuples with 5 < sal < 10 are duplicated...

⇒ Prefer to deal with replication explicitly

Example:
$$F = \{ F_5, F_6, F_7 \}$$

$$F_5 = \mathbf{O}_{sal \le 5} E$$
 $F_6 = \mathbf{O}_{5 \le sal \le 10} E$

$$F_7 = \mathbf{O}_{sal \ge 10} E$$

Then replicate F₆ if convenient

(part of allocation problem)

Desired Properties for Fragmentation

- Completeness
 - Decomposition of relation R into fragments $R_1, R_2, ..., R_n$ is complete if and only if each data item in R can also be found in some R_i

Desired Properties for Fragmentation

- Reconstruction
 - If relation R is decomposed into fragments $R_1, R_2, ..., R_n$, then there should exist some relational operator ∇ such that

$$R = \nabla_{1 \le i \le n} R_i$$

Desired Properties for Fragmentation

- Disjointness
 - -If relation R is decomposed into fragments R_1 , R_2 , ..., R_n , and data item d_i is in R_j , then d_i should not be in any other fragment R_k ($k \neq j$).

Activity

PROJ

PNO	PNAME	BUDGET	LOC
P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance CAD/CAM	150000 135000 250000 310000 500000	Montreal New York New York Paris Boston

Give an example of a fragmentation that does not satisfy completeness

Give an example of a fragmentation that does not satisfy reconstruction

Give an example of a fragmentation that does not satisfy disjointness

When does it become challenging?

Why Replication?

- Gives increased availability.
- Faster query evaluation.
- Updates are Challenging

Potentially Improved Performance

- Proximity of data to its points of use
 - Requires some support for fragmentation and replication