

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

Motion Sensor

MODEL NUMBER: FGMS-001

FCC ID: 2AA9MFGMS002

REPORT NUMBER: 10340736A

ISSUE DATE: December 29, 2014

Prepared for
Fibar Group sp. z.o.o
Ul. Lotnicza 1
Poznań, Poland 60-453

Prepared by
UL LLC
333 Pfingsten Rd.
Northbrook, IL 60062
TEL: (847) 272-8800

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	12/29/14	Initial Issue	M.Ferrer

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
	4.1. MEASURING INSTRUMENT CALIBRATION	5
	4.2. SAMPLE CALCULATION	5
	4.3. MEASUREMENT UNCERTAINTY	6
	5.5. DESCRIPTION OF TEST SETUP	8
6.	TEST AND MEASUREMENT EQUIPMENT	10
7.	TEST RESULTS	11
	7.1.1. 99% BANDWIDTH and 20dB Bandwidth	11
	7.2. RADIATED EMISSIONS	
	7.2.1. FUNDAMENTAL FREQUENCY RADIATED EMISSION	16
	7.2.2. HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz	17
	7.2.3. WORST-CASE BELOW 1 GHz	
Q	SETUP PHOTOS	26

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Fibar Group sp. z.o.o

Ul. Lotnicza 1

Poznan, Poland 60-453

EUT DESCRIPTION: Motion Sensor

MODEL: FGMS-001

SERIAL NUMBER: Prototype

DATE TESTED: November 25, 2014 – December 18, 2014

APPLICABLE STANDARDS

STANDARD

CFR 47 Part 15 Subpart C

Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 4

Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

BART MUCHA
WISE STAFF ENGINEER
UL Verification Services Inc.

MICHAEL FERRER
WiSE Program Manager
UL Verification Services Inc.

FORM NO: CCSUP4701i

REPORT NO: 10340736A FCC ID: 2AA9MFGMS002

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

DATE: December 29, 2014

MODEL NUMBER: FGMS-001

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 333 Pfingsten Road, Northbrook, IL 60062 USA.

UL NBK is accredited by NVLAP, Laboratory Code 100414-0. The full scope of accreditation can be viewed at http://ts.nist.gov/Standards/scopes/1004140.htm

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test	Range	Equipment	Uncertainty k=2
Radiated Emissions	30-200MHz	Bicon 10m Horz	4.27dB
Radiated Emissions	30-200MHz	Bicon 10m Vert	4.28dB
Radiated Emissions	200-1000MHz	LogP 10m Horz	3.33dB
Radiated Emissions	200-1000MHz	LogP 10m Vert	3.39dB
Radiated Emissions	30-200MHz	Bicon 3m Horz	3.30dB
Radiated Emissions	30-130MHz	Bicon 3m Vert	4.84dB
Radiated Emissions	130-200MHz	Bicon 3m Vert	4.94dB
Radiated Emissions	200-1000MHz	LogP 3m Horz	3.46dB
Radiated Emissions	200-1000MHz	LogP 3m Vert	4.98dB
Radiated Emissions	1-6GHz	Horn	5.02dB
Radiated Emissions	6-18GHz	Horn	5.34dB
Radiated Emissions	18-26GHz	Horn	6.60dB
Conducted Ant Port	30MHz-26GHz	Spectrum Analyzer	2.94

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Motion Detector that contains a 900MHz transceiver. EUT is battery powered.

The radio module is manufactured by Fibar Group.

5.2. MAXIMUM OUTPUT E-FIELD STRENGTH

The transmitter has a maximum output peak E-field as follows:

Frequency Range	Mode	Output PK E-field Strength
(MHz)		(dBuV/m)
908-916	TX	87.48

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an wire type 1/4L antenna.

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT was set in worst axis as found in preliminary testing.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description	Manufacturer	Model	Serial Number	FCC ID				
Motion Sensor	Fibar	FGMS-001	-	2AA9MFMS002				

I/O CABLES

None

TEST SETUP

The EUT is a standalone product. 3 separate EUT samples were preprogrammed with 100% duty cycle for Lo, Mid, and Hi channels.

Duty Cycle was declared by the manufacturer as worst case of 5ms over 100ms, -26.02dB.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description	Manufacturer	Model	Asset	Cal Date	Cal Due			
EMI Test Receiver	Rohde & Schwarz	ESCI	EMC4328	20131215	20141230			
Bicon Antenna	Chase	VBA6106A	EMC4078	20140401	20150401			
Log-P Antenna	Schaffner	UPA6109	EMC4258	20131211	20141231			
Spectrum Analyzer	Rhode & Schwarz	ESU	EMC4323	20131215	20141230			
Antenna Array	UL	BOMS	EMC4276	20141014	20151030			
EMI Test Receiver	Agilent	N9030A	EMC4360	20131221	20141221			
Near Field Antenna	EMCO	-	-	-	-			

7. TEST RESULTS

7.1.1. 99% BANDWIDTH and 20dB Bandwidth

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% and 20dB bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth	20dB Bandwidth		
	(MHz)	(kHz)	(kHz)		
Low	908.40	114.37	79.5		
Middle	908.42	115.09	83		
High	916.00	130.08	93.5		

99% and 20dB BANDWIDTH

7.2. RADIATED EMISSIONS

LIMIT

IC RSS-210, A2.9 FCC 15.249

Operation within the bands 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHZ, and 24.0–24.25 GHz.

DATE: December 29, 2014

MODEL NUMBER: FGMS-001

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/ meter)	Field strength of harmonics (microvolts/ meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Field strength (microvolts/meter)	Measure- ment dis- tance (meters)	
2400/F(kHz) 24000/F(kHz) 30	300 30 30	
100 **	3	
150 ***	3	
200 **	3	
500	3	
	2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 **	

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

RESULTS

7.2.1. FUNDAMENTAL FREQUENCY RADIATED EMISSION

Fibaro Motion sensor Z Axis Battery

Radiated Emis Test Notes	sion Data Meter	Transducer	Gain/Loss	Corrected	Limit:1	2	3	4	5	6
Frequency (MHz)	Reading	Factor (dB)	Factor (dB)	Reading dB	(uVolts/me	eter)				
=======	al 200 - 1000MHz									
908.39813 Azimuth: 92	49.65dBuV QP Height:125 Vert	22.9	10	82.55 Margin (dB)	- : -	94 -11.45	- -	- -	- -	- -
908.39813 Azimuth: 61	52.84dBuV QP Height:153 Horz	22.9	10	85.74 Margin (dB)	- : -	94 -8.26		-	-	- -
908.41375 Azimuth: 315	54.58dBuV QP Height:165 Horz	22.9	10	87.48 Margin (dB)	- : -	94 -6.52	-	- -	- -	- -
908.41375 Azimuth: 108	50.28dBuV QP Height:133 Vert	22.9	10	83.18 Margin (dB)	- : -	94 -10.82	-	- -	- -	- -
916.00638 Azimuth: 312	53.26dBuV QP Height:163 Horz	23.3	10	86.56 Margin (dB)	- : -	94 -7.44		- -	- -	- -
916.00638 Azimuth: 141	50.23dBuV QP Height:137 Vert	23.3	10	83.53 Margin (dB)	- : -	94 -10.47	-	- -	- -	- -

LIMIT 2: CFR 47 Part 15 Class B 3m

QP - Quasi-Peak detector

7.2.2. HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz

DATE: December 29, 2014 MODEL NUMBER: FGMS-001

Fibaro
Motion Sensor
Tx 908.40MHz LoCH, Z axis
Battery
RED:Horizontal, GREEN:Vertical

(GHz)	Meter	Factor (dB)	Factor (dB)	, , ,	2	3	4	5	6
= 2 - 4GHz 2 - 2.7252	4MHz 82.64dBuV Pk	22.1	-51.33	53.41 74		_	_	-	_
Azimuth: 359	Height:108 Horz	Z		Margin (dB): -20.59) –	-	-	-	-
	81.85dBuV Av Height:108 Horz	22.1	-51.33	26.6* - Margin (dB): -	54 -26.6		_	-	-
2.7252 Azimuth: 0	82.15dBuV Pk Height:113 Vert	22.1	-51.33	52.92 74 Margin (dB): -21.08	- 3 -	-	_ _	- -	- -
2.7252 Azimuth: 0	81.36dBuV Av Height:113 Vert	22.1		26.11* - Margin (dB): -	54 -27.89		-	- -	-
8 - 12GHz 8 -									
	71.4dBuV Pk Height:121 Horz	36.3	-48.24	59.46 74 Margin (dB): -14.54		_	-	-	-
	68.83dBuV Av Height:121 Horz	36.3	-48.25	30.86* - Margin (dB): -	54 -23.14	-	- -	- -	- -
8.1758 Azimuth: 64	71.19dBuV Pk Height:105 Vert	36.3	-48.24	59.25 74 Margin (dB): -14.75		- -	-	- -	-
8.1757 Azimuth: 64	68.82dBuV Av Height:105 Vert		-48.25	30.85* - Margin (dB): -	54 -23.15		- -	- -	- -

LIMIT 1: 47 CFR Part 15 PK LIMIT 2: 47 CFR Part 15 AV

Pk - Peak detector
Av - Average detection
* Duty Cycle relevation

^{*} Duty Cycle relaxation included

Fibaro Motion Sensor Tx 908.42MHz MidCH, ${\tt Z}$ axis Battery RED:Horizontal, GREEN:Vertical

Radiated Emission Data Test Meter Frequency Reading (GH2)	Factor (dB)	Factor (dB)			3	4	5	6
= 2 - 4GHz 2 - 4MHz 2.7252 85.1dBuV Pk Azimuth: 360 Height:108 Horz	22.1	-51.33	55.87 74 Margin (dB): -18.13	- -	- -	- -	- -	- -
2.7253 84.91dBuV Av Azimuth: 360 Height:108 Horz	22.1	-51.33		54 24.34	-	- -	- -	- -
2.7252 84.12dBuV Pk Azimuth: 0 Height:113 Vert	22.1	-51.33	54.89 74 Margin (dB): -19.11	- -	- -	-	-	- -
2.7253 83.97dBuV Av Azimuth: 0 Height:113 Vert	22.1	-51.33		54 -25.28	-	- -	- -	- -
3.6337 77.01dBuV Pk Azimuth: 258 Height:101 Horz	23.3	-50.39	49.92 74 Margin (dB): -24.08	- -	-	- -	- -	- -
3.6337 75.34dBuV Av Azimuth: 258 Height:101 Horz	23.3	-50.39	22.23* - 5 Margin (dB):3	54 31.77		- -	- -	- -
3.6338 82.55dBuV Pk Azimuth: 149 Height:109 Vert	23.3	-50.38	55.47 74 Margin (dB): -18.53	- -	_	- -	- -	- -
3.6337 81.6dBuV Av Azimuth: 149 Height:109 Vert	23.3	-50.39	28.49* - 5 Margin (dB):25	54 5.51	_	- -	-	- -
4 - 8GHz 4 - 8MHz 7.2673 70.99dBuV Pk Azimuth: 322 Height:101 Horz	30.2	-46.12	55.07 74 Margin (dB): -18.93	- -	_ _	- -	- -	- -
7.2674 68.62dBuV Av Azimuth: 322 Height:101 Horz	30.2	-46.12	26.68* - 54 Margin (dB):27	1 7.32		- -	- -	- -
7.2671 68.88dBuV Pk Azimuth: 21 Height:104 Vert	30.2	-46.13	52.95 74 Margin (dB): -21.05	- -		- -	- -	- -
7.2674 66.27dBuV Av Azimuth: 21 Height:104 Vert	30.2	-46.12		54 9.67	- -	- -	- -	- -
8 - 12GHz 8 - 10MHz 9.0842 71.79dBuV Pk Azimuth: 314 Height:111 Horz	36.2	-49.36	58.63 74 Margin (dB): -15.37	- -	- -	- -	- -	- -
9.0842 70.6dBuV Av Azimuth: 314 Height:111 Horz	36.2	-49.36	31.42* - Margin (dB):2	54 22.58	-	-	-	- -
9.0843 67dBuV Pk Azimuth: 31 Height:104 Vert	36.2	-49.36	53.84 74 - Margin (dB): -20.16 -	-	- -	- -	- -	- -
9.0842 65.48dBuV Av Azimuth: 31 Height:104 Vert	36.2	-49.36	26.3* - Margin (dB): -	54 -27.7	- -	- -	- -	- -
8.1759 68.45dBuV Pk Azimuth: 318 Height:101 Horz		-48.23	56.52 74 Margin (dB): -17.48	- -	- -	- -	- -	- -
8.1758 63.62dBuV Av Azimuth: 318 Height:101 Horz	36.3	-48.24	25.66* - 5 Margin (dB):28		- -	- -	- -	- -
8.1755 68.16dBuV Pk Azimuth: 68 Height:105 Vert	36.3	-48.25	56.21 74 Margin (dB): -17.79	- -	- -	- -	- -	- -
8.1757 63.3dBuV Av Azimuth: 68 Height:105 Vert	36.3	-48.24	25.34* - 54 Margin (dB):28.		- -	-	-	-

LIMIT 1: 47 CFR Part 15 PK LIMIT 2: 47 CFR Part 15 AV

Pk - Peak detector Av - Average detection

Page 20 of 30

FORM NO: CCSUP4701i

^{*} Duty Cycle relaxation included

DATE: December 29, 2014 MODEL NUMBER: FGMS-001

Fibaro
Motion Sensor
Tx 916MHz HiCH, Z axis
Battery
RED:Horizontal, GREEN:Vertical

(GHz)	Meter Reading	Factor (dB)	Factor (dB)	, , ,	/m		3	4	5	6
= 2 - 4GHz 2 - 4MHz										
2.7479	83.47dBuV Pk Height:108 Horz	22.1	-51.24	54.33 Margin (dB):	74 -19.67	-	- -	- -	- -	- -
2.748 Azimuth: 360	82.8dBuV Av Height:108 Horz	22.1	-51.24	27.64* Margin (dB):		54 -26.36	-	- -	- -	-
2.748 Azimuth: 0	86.69dBuV Pk Height:113 Vert	22.1	-51.24	57.55 Margin (dB):	74 -16.45	-	-		-	- -
2.748 Azimuth: 0	86.34dBuV Av Height:113 Vert	22.1	-51.24	31.18* Margin (dB):		54 22.82	-	- -	-	- -
8 - 12GHz 8 - 8.2438 Azimuth: 315	· 10MHz 71.25dBuV Pk Height:121 Horz	36.4	-47.02	60.63 Margin (dB):	74 -13.37	- -	- -	_ _		- -
8.2441 Azimuth: 315	68.71dBuV Av Height:121 Horz	36.4	-47.03	32.06* Margin (dB):		54 -21.94	-	- -	-	- -
8.2441 Azimuth: 57	70.89dBuV Pk Height:113 Vert	36.4	-47.03	60.26 Margin (dB):	74 -13.74	-	-	- -	-	- -
8.2441 Azimuth: 57	68.28dBuV Av Height:113 Vert	36.4	-47.03	31.63* Margin (dB):		54 22.37	-	- -	-	- -
9.1601 Azimuth: 302	71.21dBuV Pk Height:131 Horz	36.3	-49.71	57.8 Margin (dB):	74 -16.2	- -	- -	- -	- -	- -
9.1601 Azimuth: 302	68.09dBuV Av Height:131 Horz	36.3	-49.71	28.66* Margin (dB):		54 25.34	- -	- -	- -	- -
9.1599 Azimuth: 39	69.41dBuV Pk Height:110 Vert	36.3	-49.71	56 Margin (dB):	74 -18	- -	- -	- -	- -	- -
9.1601 Azimuth: 39	65.11dBuV Av Height:110 Vert	36.3	-49.71	25.68* Margin (dB):		54 -28.32	-	-	-	-

LIMIT 1: 47 CFR Part 15 PK LIMIT 2: 47 CFR Part 15 AV

Pk - Peak detector Av - Average detection

* Duty Cycle relaxation included

333 Pfingsten Rd., Northbrook, IL 60062, USA

7.2.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz

FORM NO: CCSUP4701i TEL: (847) 272-8800

333 Pfingsten Rd., Northbrook, IL 60062, USA

