INTERNATIONAL BACCALAUREATE

MARKSCHEME

November 1997

MATHEMATICS

Higher Level

Paper 1

1. x = k is a solution of the equation $x^3 + kx^2 - x - k = 0$ if

$$k^3 + k^3 - k - k = 0 (M1)$$

$$k^3 - k = 0$$

$$k(k-1)(k+1) = 0 (M1)$$

$$\therefore k = 0, \pm 1. \tag{A2}$$

2. C has the same order as B, and so C is
$$n \times p$$
. (R1)(A1)

D has the same order as AB, and so D is
$$m \times p$$
. (R1)(A1)

3.
$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$
 (M1)

$$0.6 = 0.2 + p(B) - 0.2 \times p(B)$$
 since A, B are independent. (M1)(R1)

Therefore, $0.8 \times p(B) = 0.4$

and
$$p(B) = 0.5$$
 (A1)

4. (a)
$$\log_9 x^3 = \frac{\log_3 x^3}{\log_3 9} = \frac{3\log_3 x}{2} \Rightarrow k = \frac{3}{2}$$
 (A1)

$$\log_{27} 512 = \frac{\log_3 512}{\log_3 27} = \frac{\log_3 8^3}{3} = \frac{3\log_3 8}{3} = \log_3 8 \Rightarrow m = 1$$
 (A1)

(b)
$$\log_9 x^3 + \log_3 x^{1/2} = \log_{27} 512$$

$$\Rightarrow \frac{3}{2} \log_3 x + \frac{1}{2} \log_3 x = \log_3 8$$

$$\Rightarrow 2 \log_3 x = \log_3 8$$

$$\Rightarrow x^2 = 8$$

$$\Rightarrow x = \sqrt{8} = 2\sqrt{2} \qquad \text{(since } x > 0\text{)} \qquad (A1)(R1) \qquad (C2)$$

5. (a)
$$\frac{dy}{dt} = 1 + \cos t, \quad \frac{dx}{dt} = 2t + 2\cos 2t$$
Hence,
$$\frac{dy}{dx} = \frac{1 + \cos t}{2t + 2\cos 2t} = 1 \text{ at the point } t = 0. \tag{M2}$$

(b) At the point
$$t = 0$$
, $x = y = 0$.
Therefore, the required equation is $y = x$. (A1)

6.
$$y = xe^{3x} + \ln x$$

$$\Rightarrow \frac{dy}{dx} = e^{3x} + 3xe^{3x} + \frac{1}{x}$$
(C2)

$$\Rightarrow \frac{d^2 y}{dx^2} = 3e^{3x} + 3\left[e^{3x} + 3xe^{3x}\right] - \frac{1}{x^2} = \left[6 + 9x\right]e^{3x} - \frac{1}{x^2} \qquad (MI)(A1) \tag{C2}$$

7. (a)
$$\frac{z}{\omega} = \frac{(3+ik)(k-7i)}{(k+7i)(k-7i)} = \frac{10k}{k^2+49} + i\left(\frac{k^2-21}{k^2+49}\right)$$
 (M1)(A1)

(b)
$$\frac{z}{\omega}$$
 is real if and only if $k^2 = 21$, i.e. $k = \pm \sqrt{21}$ (M1)(A1)

8. MATHEMATICS contains 11 letters with 2 M's, 2 A's and 2 T's.

(a) Number of arrangements
$$=\frac{11!}{2!2!2!}$$
 (M1) $=4989600$ (A1) (C2)

(b) Number of arrangements =
$$\frac{9!}{2!2!}$$
 (M1)
= 90 720 (A1)

9.
$$5\sin x - 12\cos x = 6.5 \Rightarrow \frac{5}{13}\sin x - \frac{12}{13}\cos x = \frac{1}{2}$$

 $\Rightarrow \sin(x - \alpha) = \frac{1}{2} \text{ where } \cos \alpha = \frac{5}{13} \text{ and } \sin \alpha = \frac{12}{13}$ (M1)
Thus, $\alpha = 67.4^{\circ} \text{ will do.}$ (A1)
 $\Rightarrow x - 67.4^{\circ} = 30^{\circ}, 150^{\circ} (+360^{\circ} k, k \in \mathbb{Z})$
which gives $x = 97.4^{\circ}, 217^{\circ} (0^{\circ} \le x \le 360^{\circ})$ (A2)

which gives
$$x = 97.4^{\circ}$$
, $217^{\circ} \left(0^{\circ} \le x \le 360^{\circ}\right)$ (A2)

10. The coefficient of x^{2} in $\left(1+x\right)^{2n} = \binom{2n}{2}$ (M1)

The coefficient of
$$x^2$$
 in $(1+15x^2)^n = \binom{n}{1}15$ (M1)

Thus,
$$\binom{2n}{2} = 15 \binom{n}{1}$$
 $\Rightarrow \frac{2n(2n-1)}{2} = 15n$ (M1)
 $\Rightarrow 2n-1 = 15 \quad (n \neq 0)$
 $\Rightarrow n = 8$ (A1)

(C4)

11.
$$6x - x^2 - 5 = 4 - (x - 3)^2$$
 (M1)(A1)

$$\Rightarrow \int \frac{\mathrm{d}x}{\sqrt{6x-x^2-5}} = \int \frac{\mathrm{d}x}{\sqrt{4-\left(x-3\right)^2}} = \arcsin\frac{x-3}{2} + c \tag{M1)(A1)}$$

12. (a)
$$\det A = k^2 + 1$$
 (A1)
$$A^{-1} = \frac{1}{k^2 + 1} \begin{pmatrix} k & 1 \\ -1 & k \end{pmatrix}$$
 (A2)

(b)
$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{k^2 + 1} \begin{pmatrix} k & 1 \\ -1 & k \end{pmatrix} \begin{pmatrix} 2k \\ 1 - k^2 \end{pmatrix} = \begin{pmatrix} 1 \\ -k \end{pmatrix}$$

$$\Rightarrow x = 1, \ y = -k \tag{M1)(A1)}$$
(C2)

13.
$$\frac{1}{x - \sqrt{x}} \ge \frac{4}{15}$$

$$\Rightarrow \frac{1}{x - \sqrt{x}} - \frac{4}{15} \ge 0$$

$$\Rightarrow \frac{15 - 4x + 4\sqrt{x}}{15(x - \sqrt{x})} \ge 0$$

$$\Rightarrow \frac{(5 - 2\sqrt{x})(3 + 2\sqrt{x})}{15\sqrt{x}(\sqrt{x} - 1)} \ge 0$$
(M1)

Now, $3 + 2\sqrt{x} > 0$, $x \neq 0, 1$ and $\sqrt{x} > 0$

The required sign diagram is:

14.
$$9x - y = 14$$
 has gradient 9
For $y = x^3 - 3x + a$, $\frac{dy}{dx} = 3x^2 - 3$ (M1)

$$\Rightarrow 3a^2 - 3 = 9$$

$$\Rightarrow a = \pm 2.$$
(M1)(A1)

When
$$a = 2$$
, $a^3 - 3a + a = 4$ and $9 \times 2 - 4 = 14$
When $a = -2$, $a^3 - 3a + a = -4$ and $9 \times (-2) - (-4) = -14$
Therefore, $a = 2$, only. (A1)

15.

Let the median be m.

Then, the area of
$$OANM = \frac{1}{2}$$
 (M1)

Area of
$$\triangle OAP = \frac{1}{8}$$
, and (A1)

area of
$$ANMP = \frac{1}{4}(m-1)$$
 (A1)

Thus,
$$\frac{1}{8} + \frac{1}{4}(m-1) = \frac{1}{2}$$
, giving $m = 2\frac{1}{2}$ (A1)

Alternatively, since the area of
$$\triangle OAP = \frac{1}{8}$$
, then $\int_{1}^{m} \frac{1}{4} dx = \frac{3}{8}$ (A1)(M2)

giving
$$\frac{1}{4}(m-1) = \frac{3}{8}$$
 and finally $m = 2\frac{1}{2}$ (A1)

16.
$$\alpha + \beta = -5$$
 and $\alpha\beta = k$ (A1)

The sum of the roots is $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 25 - 2k$, and the product of the roots is $\alpha^2 \beta^2 = (\alpha \beta)^2 = k^2$. (M1)(A1)

A suitable quadratic equation is
$$x^2 + (2k-25)x + k^2 = 0$$
. (A1)

17.

Let $\angle TPQ = \theta$, then $\angle QOP = 2\theta$.

The shaded area is given by $A = \frac{1}{2} \times 12^2 \times (2\theta - \sin 2\theta)$ i.e. $A = 72(2\theta - \sin 2\theta)$ (A1)

$$\frac{\mathrm{d}A}{\mathrm{d}t} = 72(2 - 2\cos 2\theta) \frac{\mathrm{d}\theta}{\mathrm{d}t} \tag{M1}$$

When
$$\theta = 30^{\circ}$$
 and $\frac{d\theta}{dt} = \frac{\pi}{60} \text{ rad s}^{-1}$, $\frac{dA}{dt} = 72 \left(2 - 2 \times \frac{1}{2}\right) \times \frac{\pi}{60} = 12\pi$ (M1)

Therefore, the area is increasing at the rate of
$$1.2\pi$$
 cm²s⁻¹. (A1)

(C4)

18.

(a) Probability student is on time
$$=\frac{7}{10} + \frac{1}{50} = \frac{18}{25}$$
 (M1)(A1)

(b)
$$p(\text{alarm did not ring } | \text{student is late for school})$$

$$= \frac{p(\text{alarm did not ring and student is late for school})}{p(\text{student is late})}$$
(M1)

$$= \frac{9/50}{1/10+9/50}$$

$$= \frac{9}{14}$$
(A1) (C2)

19.
$$|1-iz| = |z+1|$$

$$\Rightarrow |1+y-ix|^2 = |1+x+iy|^2$$

$$\Rightarrow (1+y)^2 + x^2 = (1+x)^2 + y^2$$

$$\Rightarrow y = x, \text{ which is the required locus.}$$
(M1)(A1)
$$(C4)$$

Alternative Method:

$$\begin{aligned} |1 - iz| &= |z + 1| \\ \Rightarrow & |-i||z + i| &= |z + 1| \\ \Rightarrow & |z + i| &= |z + 1|. \end{aligned} \tag{M1}$$

Therefore,
$$P$$
 is equidistant from $-i$ and -1 . (R1)

Thus, the locus of
$$P$$
 is the straight line $y = x$. (A1)

20.

ul

(A1) (shape)

(A1) (max at(-1,5))

(AI) (for (0,0))

(A1) (min at (3, -27))

(C4)