First tests

Rosa Flaquer Galmés

To start the resolution of the problem we compute with the Crank Nicolson method the time evolution for g=0 and $V_{ext}=0$ then the equation reads as:

$$i\frac{\partial\Psi(\tilde{z},\tilde{t})}{\partial\tilde{t}} = -\frac{\partial^2\Psi(\tilde{z},\tilde{t})}{\partial\tilde{z}^2} \tag{1}$$

1 Gaussian

To start testing the method we compute the time evolution for a gaussian function centered at zero and with $\sigma=1$. We expect it to evolve as it is not an eigenfunction of $H=-\frac{\partial^2}{\partial \bar{z}^2}$.

We compute the method for a spacing of $\Delta \tilde{z}=0.01$ with $\tilde{z}\in[-3,3]$ and a time interval $\delta \tilde{t}=0.001$.

Figure 1: $|\Psi|^2$ at time $\tilde{t} = 0$ in blue and at time $\tilde{t} = 5$ in green

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $1.16233793701x10^{-7}$

Figure 2: $|\Psi|^2$ at time $\tilde{t} = 0$ in blue and at time $\tilde{t} = 10$ in green

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $1.16241938852x10^{-7}$

Figure 3: $|\Psi|^2$ at time $\tilde{t} = 0$ in blue and at time $\tilde{t} = 10$ in green

2 Bright soliton

2.1 null velocity

We compute the method for a spacing of $\Delta \tilde{z} = 0.01$ with $\tilde{z} \in [-10, 10]$ and a time interval $\delta \tilde{t} = 0.001$ for a bright soliton solution with null velocity and $n_0 = 1$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $1.4.59786764218x10^{-9}$

2.2 0.5 velocity

We compute with $\tilde{v}=0.5$ and two different time intervals: $\delta \tilde{t}=0.001$ and $\delta \tilde{t}=0.01$

Figure 4: $|\Psi|^2$ at time $\tilde{t}=0$ in blue and at time $\tilde{t}=5$ in green with $\delta \tilde{t}=0.01$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $3.06995195931x10^{-9}$

Figure 5: $|\Psi|^2$ at time $\tilde{t} = 0$ in blue and at time $\tilde{t} = 10$ in green with $\delta \tilde{t} = 0.001$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $3.45472594976x10^{-9}$

Here we have also computed the time that the program's been runing to obtain the result. For $\delta \tilde{t} = 0.01$ it was only 19.82s whereas the running time for $\delta \tilde{t} = 0.001$ it was 87.26s and yet there is no significant improvement on the result.

3 Grey soliton

We run the code for the grey solution for a spacing of $\Delta \tilde{z} = 0.01$ with $\tilde{z} \in [-10, 10]$ and a time interval $\delta \tilde{t} = 0.01$ and the results found are:

Figure 6: $|\Psi|^2$ at time $\tilde{t}=0$ in blue and at time $\tilde{t}=5$ in green with $\tilde{v}=0.5$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $9.4415014253x10^{-5}$

Figure 7: $|\Psi|^2$ at time $\tilde{t}=0$ in blue and at time $\tilde{t}=5$ in green with $\tilde{v}=0$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $9.70332161562x10^{-5}$