Classifying if a person knows a word using speech data

Marijn Schraagen

NLP Group Meeting

October 26th, 2023

Project overview

- Al Labs project about low literacy in Dutch high school students
- Collaboration between Computer Science (me, Mehdi Dastani), Social Science (Hans Marien, Henk Aarts), Humanities (Els Stronks)
- Goal to start an ELSA Lab (Ethical, Legal, Societal Aspects) in NL Al Coalition
- Topics: speech and text models for low literacy, (personalized) interventions
- Today: speech classification for vocabulary knowledge

Data

- Data collection for a separate FSS master project
- Data re-used by me for different experiments
- Discussion: can we collect more suitable data?
- Recordings of 40 single Dutch words repeated from TTS spoken prompts
- 50 high-literate participants, mostly students, native speakers
- Questionnaire at the end with many questions
- Did you know the words that are used in the experiment?

```
keen - yes no
rente - yes no
twee - yes no
zijp - yes no
omzet - yes no
zeeg - yes no
```

Research goal

Assumption: if a person knows a word then their voice will sound different – confidence, fluency, pitch, lower-level features

Assumption: this is measurable in principle

Assumption: current (transformer) models for audio can pick up on this

Assumption: the collected data exhibits the characteristic under study

Research goal: Build a model to classify from a spoken word if the person knows this word

Experiments

Classification task using the wav2vec model with a classification head for the binary word known variable

Data imbalance

- Data is imbalanced: 82% known word examples
- Use all 734 unknown word examples and an equal number of random known word examples
- Words range from largely unknown to known by everyone (more on that later)

Results

	precision	recall	f1-score	support	
unknown	0.82	0.88	0.85	110	
known	0.87	0.81	0.84	111	
accuracy			0.85	221	

Not bad?

Baseline

• Random baseline: 50%

• Second baseline: majority label per word from the training set

Results majority baseline

Trained classifier:

	precision	recall	f1-score	support
	-			
unknown	0.82	0.88	0.85	110
known	0.87	0.81	0.84	111
accuracy			0.85	221

Majority baseline:

iviajority basellile.					
unknown	0.82	0.84	0.83	111	
known	0.83	0.81	0.82	110	
accuracy			0.82	221	

Bad! The model just learns to predict the word.

Word split

- Rearrange train and test: split on vocabulary items
- Six words manually selected for test set: from frequently unknown to frequently known, other 34 words in training set

	precision	recall	f1-score	support	
unknown	0.49	0.13	0.20	188	
known	0.33	0.76	0.46	104	
			0.25	000	
accuracy			0.35	292	

Very bad!

Adding information

- Hypothesis: if a speech recognition system has trouble recognizing the word then the person did something strange – and may not know the word
- Far fetched? Let's try :)

- Three models: Kaldi-NL, Whisper small, Whisper large (with language="nl")
- Whisper models are highly accurate, but regularly hallucinate

word	transcription
notie	mankind. Uwanners van vandaag van de VLaughter. Bedankt
	voor uw tijd.
debat	대박 (Korean, pronunciation: <i>daebak</i>)
vamp	FAM vieleLijke
ander	Am there. Sorry voor het idee! Alująsfteroki
stomp	Stomp Stomp Stomp Stomp Stomp Stomp
notie	然后勾她一点

Kaldi doesn't hallucinate and makes more mistakes (=good!)

Adding speech recognition

- Perform ASR on the recording
- Input for the model: recording (audio) + ASR transcription (text)
- Multimodality for the lazy: use TTS to convert transcription back to audio and concatenate

	precision	recall	f1-score	support	
0	0.95	0.88	0.92	111	
1	0.89	0.95	0.92	110	
accuracy			0.92	221	

Seems better

Adding speech recognition

Audio + transcription on word split:

	precision	recall	f1-score	support	
0	0.37	0.16	0.23	188	
1	0.25	0.50	0.33	104	
accuracy			0.28	292	

Still bad

Relation ASR and words known

Experimental task: after reading a word participants were shown either that word (A) or a different word (B) and has to press button A or button B

Reaction time vs word known

ASR correct vs. known-unknown

	known	unknown
ASR correct	2096	329
ASR incorrect	1170	405

Preliminary conclusions

- The content of the word is rather important
 - Models like Word2Vec are trained on content
- ASR performance does seem to contain information
 - Even if you don't know if the ASR was right!
- Speaking style by itself does not seem to be sufficient

Issues

- Speech may not carry this kind of information
- Models are not pretrained to support this task
- The dataset is too small, the words too short, the participants too literate
- Asking people to self-report if they know a word is vague and unreliable
- Repeating a spoken word is easier than reading it from a screen or paper

Next steps: data collection

- Data issue can be addressed
- Reduce the influence of content
 - Speak an unknown word
 - 2 Learn this word: see/create example sentences, answer questions etc
 - Speak the same word again
 - Train models to find the difference between the two recordings

Next steps: data collection

- Data issue can be addressed
 - Read a word instead of repeating a spoken word
 - Test vocabulary knowledge by asking to provide a definition
 - Speak a longer sentence, post-process to isolate the word
 - Use longer words
 - Ask low-literate participants (but: first more trials)
 - Use actual multimodal model
- Suggestions?

