WHAT IS CLAIMED IS:

1	1. A method for controlling exhaust gas recirculation of an
2	internal combustion engine comprising:
3	determining a steady state condition at which an intake manifold
4	temperature is below an intake manifold critical temperature at which condensation
5	could occur in said intake manifold;
6	sensing at least one of a plurality of parameters taken from the group
7	of operating conditions consisting of ambient temperature, intake manifold
8	temperature, EGR mass rate, engine speed and intake manifold pressure to form a
9	first set of values including each said at least one parameter;
10	determining at least one parameter value for a second set of values
11	for said operating conditions taken from said group;
12	processing an equation wherein IMT_Critical is predicted as a
13	function of said group of operating condition variables by occupying variables with
14	said first and second sets of values; and
15	selecting a command in response to said processing.
1	2. The invention as described in claim 1 wherein said
2	determining comprises assuming a fixed value for said parameter value.
1	3. The invention as described in claim 1 wherein said sensing
2	comprises sensing each of said group of operating conditions to form a combination
3	of preferred variables defining critical intake manifold pressure as a linear function
4	of said preferred variables.
,	
1	4. The invention as described in claim 1 wherein said
2	determining comprises assigning a value from a memory or storage of data.
1	5. The invention as described in claim 4 wherein said assigning
2	comprises reading a look-up table

1	o. The invention as described in claim I wherein said selecting
2	comprises switching said engine into exhaust gas recirculation mode.
1	7. The invention as described in claim 1 wherein said selecting
2	comprises bypassing a cooler with exhaust gas recirculated to an intake manifold.
1	8. The invention as described in claim 1 wherein said processing
2	comprises calculating critical intake manifold pressure in a linear equation.
1	9. A computer readable storage medium having data stored
2	therein representing instructions executable by a computer to control a compression
3	ignition internal combustion engine installed in a vehicle to perform adjustment in
4	an exhaust gas recirculation operation, the computer readable storage medium
5	comprising:
6	instructions for establishing a combination of parameter values for a
7	set of engine operating conditions;
8	instructions for calculating an intake manifold temperature prediction
9	in response to said establishing by occupying variables of an equation with said
10	combination of parameter values;
11	instructions for comparing said intake manifold temperature
12	prediction with an intake manifold temperature indication; and
13	instructions for selecting a command in response to said comparing
14	that adjusts exhaust gas recirculation operation of the engine in response to said
15	comparing.
1	10. The invention as described in claim 9 wherein said instructions
2	for establishing including instructions for quantifying a sensed operating condition
3	of said engine.
1 ·	11. The invention as described in claim 10 wherein said sensed
2	operating condition is taken from the group consisting of ambient temperature,
3	intake manifold temperature, EGR mass rate, engine speed and intake manifold
4	pressure.

1	12. The invention as described in claim 9 wherein said response
2	to said comparing is dependent upon said intake manifold temperature being greater
3	than said intake manifold temperature prediction.
1	13. The invention as described in claim 9 wherein said adjusting
2	is switching on exhaust gas recirculation when said intake manifold temperature is
3	greater than said intake manifold temperature prediction.
1	14. A system for controlling a compression ignition internal
2	combustion engine in a vehicle with an exhaust gas recirculation operating mode
3	comprising:
4	at least one sensor for determining at least one of a plurality of
5	parameters taken from the group of operating conditions consisting of ambient
6	temperature, intake manifold temperature, EGR mass rate, engine speed and intake
7	manifold pressure to form a first set of values;
8	an occupier determining a combination of values including said first
9	set of values;
10	a processor for calculating intake manifold critical temperature as a
11	function of said combination of values; and
12	a controller for switching exhaust gas recirculation mode operation
13	when said calculated critical temperature exceeds a predetermined intake manifold
14	critical temperature at which condensation occurs in said intake manifold.