

MITx: 6.00.1x Introduction to Computer Science and Programming Using ...

Final Exam > Final Exam > Problem 1 Bookmar ■ Bookmark The exam will be available here. Overview A reminder to students pursuing credit for this course from Charter Entrance Oak: Survey • re-verification is required for credit Week 1 • the passing score for credit is 65% overall Week 2 Re-verification is not required if you are just taking this course for the verified certificate. Week 3 Week 4 **Verification Checkpoint** Quiz Some learners who are working toward a verified certificate have to verify their identity before they can access this content. You do Week 5 not have to verify your identity, and you can proceed to the next unit. Week 6 To learn more about verified certificates, see Verified Certificates in the EdX Guide for Students. You are taking this exam as an honor Week 7 student. Week 8 Exit Survey Problem 1 **Final Exam** Answer all questions before clicking Final Check. **Final Exam** Final due Mar 15, 2016 1. at 23:30 UTC In the statement L = [1,2,3], L is a class. Sandbox

True

● False ✔
2. The orders of growth of $O(n^2+1)$ and $O(n^5+1)$ are both polynomial.
polynomial.
● True ✔
O False
3.
The complexity of binary search on a sorted list of n items is $O(\log n)$.
● True ✔
O False
4. A bisection search algorithm always returns the correct answer when searching for an element in a sorted list.
● True ✔
O False
5.
Performing binary search on an unsorted list will always return the correct answer in $O(n)$ time where n is the length of the list.
True True
O False

You have used 1 of 1 submissions

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

