## Math 323 HW8

## Minh Bui

## May 29, 2017

Problem 6.\* Prove the Alternate Completeness axiom.

We first review our definition of a completed ordered field and the Alternate Completeness Axiom.

**Definition 1.** An ordered field  $\mathbb{F}$  is completed when: if for any nonempty subset S of  $\mathbb{F}$  and S has at least one lower bound, then  $\exists s \in \mathbb{F}$  that is the greatest lower bound of S.

**Theorem 0.1.** The Alternate Completeness Axiom. For a completed ordered field  $\mathbb{F}$ : If S is a nonempty set from  $\mathbb{F}$  and S has at least one upper bound, then  $\exists u \in \mathbb{F}$  that is the least upper bound of S.

*Proof.* Assume  $\mathbb{F}$  is a completed ordered field. Assume S is a nonempty set from  $\mathbb{F}$ . Assume S has at least one upper bound. We define

$$UB(S) = \{u \in \mathbb{F} \mid u \text{ is an upper bound of } S\}$$

We first want to prove the following

**Lemma 0.2.** If  $s \in S$  then s is a lower bound of UB(S).

*Proof.* Assume  $s \in S$ . We want to prove: if  $u \in UB(S)$ , then  $u \ge s$ . Assume  $u \in UB(S)$ , since UB(S) is a set of upper bounds of S, we know: if  $t \in S$ , then  $u \ge t$ . And so s is a lower bound of UB(S).

We consider UB(S). UB(S) has at least one element by our assumption of S having at least one upper bound. We know UB(S) has at least one lower bound by our lemma. We also know  $\mathbb{F}$  is completed. So by the definition of completeness,  $\exists g \in \mathbb{F}$  that is the greatest lower bound of UB(S). This means

- 1. If  $u \in UB(S)$ , then  $u \geq g$ .
- 2. If  $x \in \mathbb{F}$  and x > g, then  $\exists t \in UB(S)$  so that t < x.

We claim that g is the least upper bound of S. This means we have to prove two properties:

- 1. If  $s \in S$ , then  $g \ge s$ . Assume  $s \in S$ . Since g is the greatest lower bound of UB(S), if l is a lower bound on UB(S), then  $g \ge l$ . By our lemma, we know if  $s \in S$ , then s is a lower bound on UB(S). And so  $g \ge s$ .
- 2. If  $y \in \mathbb{F}$  and y < g, then  $\exists v \in S$  so that y < v. We can try to rewrite this statement: If u is an upper bound of S, then  $g \le u$ . Assume  $u \in UB(S)$ . Since g is the greatest lower bound of UB(S),  $u \ge g$ .

So we have proved that: For a completed ordered field  $\mathbb{F}$ : If S is a nonempty set from  $\mathbb{F}$  and S has at least one upper bound, then  $\exists u \in \mathbb{F}$  that is the least upper bound of S.

Problem 6.1: Let  $S = \{x \in \mathbb{R} \mid x^{-1} \in \mathbb{N}\}$ . Prove that 0 is the greatest lower bound of S.

*Proof.* To prove the above statement, we have to establish two properties for 0.

- 1. If  $x \in S$ ,  $0 \le x$ . Since  $x^{-1} \in \mathbb{N}$ ,  $x = \frac{1}{n}$  where  $n \in \mathbb{N}$ . So  $x = \frac{1}{n} \ge 0$ . This means 0 is a lower bound of S.
- 2. If  $x \in \mathbb{R}$  and x > 0, then  $\exists t \in S$  so that t < x. Since S is a nonempty set of real numbers and has 0 as a lower bound, by completeness, S has a greatest lower bound. Assume  $x \in \mathbb{R}$  and x > 0. We need to prove the following lemma.

**Lemma 0.3.** If  $r \in \mathbb{R}$  and r > 0, then  $\exists n \in \mathbb{N}$  so that  $\frac{1}{n} < r$ .

*Proof.* Assume  $r \in \mathbb{R}$  and r > 0. Consider  $r^{-1}$ . Since  $r \in \mathbb{R}$ ,  $r^{-1} \in \mathbb{R}$ . By the Archimedean principle,  $\exists n \in \mathbb{N}$  so that  $n > r^{-1}$ . This means

$$n > \frac{1}{r}$$
 
$$nr > 1 \text{ because } r > 0$$
 
$$r > \frac{1}{n}$$

The lemma we just proved basically says: For any real number r and r > 0,  $\exists n$  such that  $r > \frac{1}{n}$ . By our lemma, assume  $x \in \mathbb{R}$  and x > 0, then  $\exists n_0 \in \mathbb{N}$  such that

By our lemma, assume  $x \in \mathbb{R}$  and x > 0, then  $\exists n_0 \in \mathbb{N}$  such that  $r > \frac{1}{n_0}$ . Let  $t = \frac{1}{n_0}$ . So r > t. But  $t \in S$  so we are done.

Problem 6.2: Using the notation

 $UB(S) = \{u \in \mathbb{R} \mid u \text{ is an upper bound on the set } S\}.$ 

set in the proof of the proof of the alternate completeness axiom, find:

(a) UB(A) for  $A = \{x \in \mathbb{R} \mid x < 5\}$ .



(b) UB(B) for  $B = \{x \in \mathbb{R} \mid x \le 5\}$ .



(c) UB(C) for  $C = \{5\}$ 



(d) UB(D) for  $D = \{4, 5, 6\}$ 



(e) UB(E) for  $E = \{x \in \mathbb{Z} \mid x < 5\}$ 



(f) UB(F) for  $F = \{x \in \mathbb{Z} \mid x \le 5\}$ 

