Einführung in die Numerik (Potschka)

Robin Heinemann

12. Mai 2017

Inhaltsverzeichnis

U	Einführung	I
1	Fehleranalyse 1.1 Zahldarstellung und Rundungsfehler	3 3 6 7 9 11
2	Interpolation und Approximation	15
0	Einführung	
	eispiel 0.1 Simulation einer Pendelbewegung Iodellannahmen: • Masse m an Stange	
	keine Reibung	
	- Stange: Gewicht 0 , starr, Länge l	
	- Auslenkung ϕ	
	rste Fehlerquelle: Modellierungsfehler lodellgleichungen: $F_T(\phi) = -m \cdot g \sin \phi$	
Ko	onsistenzcheck:	
	$F_T(0) = 0 (Ruhela)$	ıge)
	$F_T\left(\frac{\pi}{2}\right) = F_G = -mg$	

0 Einführung 2

Bewegungsgleichungen:

- Weg s(t)
- $\frac{\mathrm{d}s}{\mathrm{d}t} =: v(t)$ Geschwindigkeit
- $\frac{\mathrm{d}v}{\mathrm{d}t} =: a(t)$ Beschleunigung

Beziehungen:

- Bogenlänge $s(t) = l\phi(t)$
- 2. Newton's ches Gesetz (F=ma)

$$-mg\sin\phi(t) = m\frac{\mathrm{d}}{\mathrm{d}t}v(t) = m\frac{\mathrm{d}^2}{\mathrm{d}t^2}s(t) = ml\frac{\mathrm{d}^2}{\mathrm{d}t^2}\phi(t)$$

⇒ DGL 2. Ordnung

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\phi(t) = -\frac{g}{l}\sin\phi(t) \quad t \ge 0$$

Für eindeutige Lösung braucht man zwei Anfangsbedingungen:

$$\phi(0) = \phi_0 \quad \frac{\mathrm{d}}{\mathrm{d}t}\phi(0) = u_0$$

Lösung bei kleiner Auslenkung: Linearisiere um $\phi=0$

$$\sin \phi = \phi - \frac{1}{3!}\phi^3 + \dots \approx \phi$$

$$\implies \frac{d^2}{dt^2}\phi(t) = -\frac{g}{l}\phi(t)$$

Für $u_0 = 0$ findet man mit dem Ansatz $\phi(t) = A\cos(\omega t)$:

$$-\omega^2 A \cos(\omega t) = -\frac{g}{l} A \cos(\omega t)$$

die Lösung:

$$\phi(t) = \phi_0 \cos\left(\sqrt{\frac{g}{l}}t\right)$$

Fehlerquelle: Abschneidefehler.

Numerische Lösung:

Setze $u(t) := \frac{\mathrm{d}}{\mathrm{d}t}\phi(t)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \phi \\ u \end{pmatrix} = \begin{pmatrix} u \\ -\frac{g}{I} \sin(\phi) \end{pmatrix}$$

Approximation mit Differenzenquotienten

$$\begin{pmatrix} u(t) \\ -\frac{g}{l}\sin\phi(t) \end{pmatrix} = \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \phi \\ u \end{pmatrix} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \begin{pmatrix} \phi(t+\Delta t) - \phi(t) \\ u(t+\Delta t) - u(t) \end{pmatrix} \approx \frac{1}{\Delta t} \begin{pmatrix} \phi(t+\Delta t) - \phi(t) \\ u(t+\Delta t) - u(t) \end{pmatrix}$$

$$> 0, \text{ klein}$$

Fehlerquelle: Diskretisierungsfehler

Auf Gitter $t_n = n\Delta t$ mit Werten $\phi_n = \phi(n\Delta t), u_n = u(n\Delta t)$:

$$\phi_{n+1} = \phi_n + \Delta t u_n, u_{n+1} = u_n - \Delta t \frac{g}{l} \phi_n$$

Kleinerer Diskretisierungsfehler mit zentralen Differenzen:

$$-\frac{g}{l}\sin\phi(t) = \frac{\mathrm{d}^2}{\mathrm{d}t^2}\phi(t) \approx \frac{\phi(t+\Delta t) - 2\phi(t) + \phi(t-\Delta t)}{\Delta t^2}$$

Rekursionsformel:

$$\phi_{n+1} = 2\phi_n - \phi_{n-1} - \Delta t^2 \frac{g}{l} \sin \phi_n, n \ge 1$$

mit $\phi_1 = \phi_0 + \Delta t n_0$ (Expliziter Euler) Letzte Fehlerquelle: Rundungsfehler

1 Fehleranalyse

1.1 Zahldarstellung und Rundungsfehler

Anforderung: Rechnen mit reellen Zahlen auf dem Computer. Problem: Speicher endlich (\Longrightarrow endliche Genauigkeit). Lösung: Gleitkommazahlen, ein **Kompromiss** zwischen:

- Umfang darstellbarer Zahlen
- · Genauigkeit
- Geschwindigkeit einfacher Rechenoperationen (+, -, ·, /)

Alternativen:

- Fixkommazahlen
- · logarithmische Zahlen
- Rationalzahlen

Definition 1.1 Eine (normalisierte) Gleitkommazahl zur Basis $b \in \mathbb{N}, b \geq 2$, ist eine Zahl $x \in \mathbb{R}$ der Form

$$x = \pm m \cdot b^{\pm e}$$

mit der Mantisse $m=m_1b^{-1}+m_2b^{-2}+\ldots\in\mathbb{R}$ und dem Exponenten $e=e_{s-1}b^{s-1}+\cdots+e_0b^0\in\mathbb{N}$, wobei $m_i,e_i\in\{0,\ldots,b-1\}$. Für $x\neq 0$ ist die Darstellung durch die Normierungsvorschrift $m\neq 0$ eindeutig. Für x=0 setzt man m=0.

Beispiel 1.2 (b = 10) • m_i : i -te Nachkommastelle der Mantisse

- e: Verschiebt das Komma um e Stellen.

$$0.314 \times 10^1 = 3.14$$

 $0.123 \times 10^6 = 123000$

Auf dem Rechner stehen nur endlich viele Stellen zur Verfügung:

r Ziffern + 1 Vorzeichen für Mantisse m

s Ziffern + 1 Vorzeichen für Exponenten.

Für $x=\pm[m_1b^{-1}+\cdots+m_rb^{-r}]\cdot b^{\pm[e_{s-1}b^{s-1}+\cdots+e_0b^0]}$ muss man also nur $(\pm)[m_1\dots m_r](\pm)[e_{s-1}\dots e_0]$ abspeichern. Wählt man b=2, so gilt $m_i,e_i\in\{0,1\}$ und x kann mit 2+r+s Bits gespeichert werden (Maschinenzahlen). Maschinenzahlen bilden das numerische Gleitkommagitter A=A(b,r,s)

Beispiel 1.3 (b = 2, r = 3, s = 1)

$$m = \frac{1}{2} + m_2 \frac{1}{4} + m_3 \frac{1}{8} \in \left\{ \frac{4}{8}, \frac{5}{8}, \frac{6}{8}, \frac{7}{8} \right\}$$
$$e = e_0 \in \{0, 1\}$$

Da A endlich ist, gibt es eine größte/kleinste darstellbare Zahl:

$$x_{\{min/max\}} = \pm (b-1)[b^{-1} + \dots + b^{-r}] \cdot b^{(b-1)[b^{s-1} + \dots + b^{0}]}$$
$$= \pm (1 - b^{-r}) \cdot b^{(b^{s} - 1)}$$

sowie eine kleinste positive/größte negative Zahl:

$$x_{posmin/negmax} = \pm b^{-1} \cdot b^{-(b-1)[b^{s-1}+\dots+b^0]}$$

= b^{-b^s}

Das gängigste Format ist das IEEE-Format, das auch hinter dem Python-Datentyp float steht:

$$x = \pm m \cdot 2^{c - 1022}$$

Dieser Datentyp ist 64 Bit (8 Byte) groß (doppelte Genauigkeit, double). Davon speichert 1 Bit das Vorzeichen, 52 Bits die Mantisse $m=2^{-1}+m_22^{-2}+\cdots+m_{53}2^{-53}$ und 11 Bits die Charakteristik $c=c_02^0+\cdots+c_{10}2^{10}$, mit $m_i,c_i\in\{0,1\}$. Es gibt folgende spezielle Werte:

- Alle $c_i, m_i = 0 : x = \pm 0$
- Alle $m_i = 0, c_i = 1 : x = \pm \infty$
- Ein $m_i \neq 0$, alle $c_i = 1$: x = NaN (not a number)

Für c bleibt damit ein Bereich von $\{0,\ldots,2046\}$ beziehungsweise $c-1022\in\{-1022,\ldots,1024\}$. Damit gilt:

•
$$x_{max} \approx 2^{1024} \approx 1.8 \times 10^{308}, x_{min} = -x_{max}$$

•
$$x_{posmin} = 2^{-1022} \approx 2.2 \times 10^{-308}, x_{negmax} = -x_{posmin}$$

Ausgangsdaten $x \in \mathbb{R}$ einer numerischen Aufgabe und die Zwischenergebnisse einer Rechnung müssen durch Maschinenzahlen dargestellt werden. Für Zahlen des "zulässigen" Bereichs $D = [x_{min}, x_{negmax}] \cup \{0\}[x_{posmin}, x_{max}]$ wird eine Rundungsoperation $\mathrm{rd}: D \to A$ verwendet, die

$$|x - \operatorname{rd} x| = \min_{y \in A} |x - y| \forall x \in D$$

erfüllt.

Beispiel 1.4 (Natürliche Rundung im IEEE-Format)

$$rd(x) = sgn(x) \cdot \begin{cases} 0, m_1, \dots, m_{53} \cdot 2^e & m_{54} = 0\\ (0, m_1, \dots, m_{53} + 2^{-53}) \cdot 2^e & m_{54} = 1 \end{cases}$$

Rundungsfehler:

• absolut:

$$|x - \operatorname{rd}(x)| \le \frac{1}{2}b^{-r}b^e$$

· relativ:

$$\left| \frac{x - \operatorname{rd}(x)}{x} \right| \le \frac{1}{2} \frac{b^{-r} b^e}{|m| b^e} \le \frac{1}{2} b^{-r+1}$$

Der relative Fehler ist für $x \in D \setminus \{0\}$ beschränkt durch die "Maschienengenauigkeit"

$$eps = \frac{1}{2}b^{-r+1}$$

Für $x \in D$ ist $\mathrm{rd}(x) = x(1+\varepsilon), |(|\varepsilon)| \le eps$. Für das IEEE-Format (double)

$$eps = \frac{1}{2}2^{-52} \approx 10^{-16}$$

Arithmetische Grundoperationen

$$*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, * \in \{x, -, +, /\}$$

werden auf dem Rechner ersetzt durch Maschinenoperationen:

$$\circledast: A \times A \to A$$

Dies ist normalerweise für $x, y \in A$ und $x * y \in D$ realisiert durch

$$x \circledast y := \operatorname{rd}(x * y) = (x * y)(1 + \varepsilon), |\varepsilon| < eps$$

Dazu werden die Operationen maschinenintern (unter Verwendung einer längeren Mantisse) ausgeführt, normalisiert und dann gerundet. Im Fall $x*y \notin D$ gibt es eine Fehlermeldung (overflow, underflow)

oder das Ergebnis NaN. Achtung: Das Assoziativ- und Distributivgesetz gilt dann nur näherungsweise. Im Allgemeinen ist für $x,y,z\in A$

$$(x \oplus y) \oplus z \neq x \oplus (y \oplus z)$$

 $(x \oplus y) \odot z \neq (x \odot z) \oplus (y \odot z)$

Insbesondere gilt für $|y| \leq \frac{|x|}{b}eps$

$$x \oplus y = x$$

Damit ergibt sich eine alternative Charakterisierung der Maschienengenauigkeit: eps ist die kleinste positive Zahl in A, sodass $1 \oplus eps \neq 1$

1.2 Konditionierung numerischer Aufgaben

Eine numerische Aufgabe wird als **gut konditioniert** bezeichnet, wenn eine kleine Störung in den Eingangsdaten (Messfehler, Rundungsfehler) auch nur eine kleine Änderung der Ergebnisse zur Folge hat.

Beispiel 1.5 (Schnittpunkt von Geraden) Zwei Geraden, die sich (annähernd) rechtwinklig treffen sind gut konditioniert.

Zwei Geraden, die sich unter einem stumpfen, oder spitzen Winkel treffen sind schlecht konditioniert.

Beispiel 1.6 (Lineares Gleichungssystem)

$$\begin{pmatrix} 1 & 10^6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \implies \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -10^6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 \\ 10^{-3} \end{pmatrix} \implies x = \begin{pmatrix} -999 \\ 10^{-3} \end{pmatrix} \not\approx \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

⇒ schlecht konditioniert.

Definition 1.7 Eine **numerische Aufgabe** berechnet aus Eingangsgrößen $x_j \in \mathbb{R}, j = 1, \ldots, m$ unter der funktionellen Vorschrift $f(x_1, \ldots, x_m), i = 1, \ldots, n$ Ausgangsgrößen $y_i = f_i(x_1, \ldots, x_m)$

$$y = f(x), f: \mathbb{R}^m \to \mathbb{R}^n$$

Beispiel 1.8 (Lösung eines LGS) $Ay = x, f(x) = A^{-1}x$

Definition 1.9 Fehlerhafte Eingangsgrößen $x_i + \Delta x_i$ (Δx_i : Rundungsfehler, Maschienenfehler) ergeben fehlerhafte Resultate $y_i + \Delta y_i$. Wir bezeichnen $|\Delta y_i|$ als den absoluten Fehler und $\left|\frac{\Delta y_i}{y_i}\right|$ für $y_i \neq 0$ als den relativen Fehler.

1.2.1 Differentielle Fehleranalyse

Annahmen:

- kleine relative Datenfehler $|\Delta x_i| \ll |x_i|$
- f_i stetig partiell differenzierbar nach allen x_i

Dann gilt:

$$y_i = f_i(x_i), y_i + \Delta y_i = f_i(x + \Delta x)$$

$$\implies \Delta y_i = f_i(x + \Delta x) - f(x)$$

Taylorentwicklung

$$= \sum_{i=1}^{m} \frac{\partial f_i}{\partial x_j} \Delta x_j + R_i^f(x, \Delta x)$$

mit einem Restglied R_i^f , das für $|\Delta x| = \max_{j=1,\dots,m} |\Delta x_j| \to 0$ schneller gegen 0 geht als $|\Delta x|$. Wenn f sogar zweimal stetig differenzierbar ist, gilt sogar, dass

$$\left| R_i^f(x, \Delta x) \right| \le c |\Delta x|^2, c \in \mathbb{R}$$

Definition 1.10 (Landau-Notation) Seien $g,h:\mathbb{R}_+\to\mathbb{R},t\to0^+$. Wir schreiben:

- $g(t) = \mathcal{O}(h(t)) : \iff \exists t_0, c \in \mathbb{R}_+ : \forall t \in (0, t_0] : |g(t)| \le c|h(t)|$
- $gt = \sigma(ht)$: $\iff \exists t_0 \in \mathbb{R}_+, c : \mathbb{R}_+ \to \mathbb{R}, \lim_{t \to 0^+} c(t) = 0 : \forall t \in (0, t_0] : |g(t)| \le c(t)|h(t)|$

Bemerkung 1.11 • Analoge Schreibweise für $t \to \infty$

- $\mathcal O$ und σ sind Symbole, keine Funktionen

$$\mathcal{O}\left(t^{2}\right) + \mathcal{O}\left(t^{3}\right) + \mathcal{O}\left(2t^{2}\right) = \mathcal{O}\left(t^{2}\right) \not \Longrightarrow \mathcal{O}\left(t^{3}\right) + \mathcal{O}\left(2t^{2}\right) = 0$$

- $\sigma(t^n)$ ist stärker als $\mathcal{O}(t^n)$: $\sigma(t^n) + \mathcal{O}(t^n) = \mathcal{O}(t^n)$
- $\mathcal{O}ig(t^{n+1}ig)$ ist stärker als $\sigma(t^n)$: Wähle c(t)=t!

Beispiel 1.12 Ist g(t) zweimal stetig differenzierbar, so gilt mit Taylor

$$g(t + \Delta t) = g(t) + \Delta t g'(t) + \frac{1}{2} \Delta t^2 g''(\tau), \tau \in [t, t + \Delta t]$$

$$\implies \frac{1}{\Delta t} (g(t + \Delta t) - g(t)) = g'(t) + \mathcal{O}(\Delta t)$$

Damit folgt dass Δy_i in erster Näherung, das heißt bis auf eine Größe der Ordnung $\mathcal{O}(|\Delta x|^2)$ gleich

$$\sum_{i=1}^{m} \frac{\partial f_i}{\partial x_j}(x) \Delta x_j$$

ist. Schreibweise

$$\Delta y_i \doteq \sum_{j=1}^m \frac{\partial f_i}{\partial x_j}(x) \Delta x_j$$

Für den komponentenweisen relativen Fehler gilt

$$\frac{\Delta y_i}{y_i} \doteq \sum_{j=1}^m \frac{\partial f_i}{\partial x_j}(x) \frac{\Delta x_j}{y_i} = \sum_{j=1}^m \underbrace{\frac{\partial f_i}{\partial x_j}(x) \frac{x_j}{f_i(x)}}_{=:k_{ij}(x)} \frac{\Delta x_j}{x_j}$$

Vernachlässigt haben wir dabei

$$\left| \frac{R_i^f(x_j, \Delta x)}{y_i} \right| = \mathcal{O}\left(\frac{|\Delta x|^2}{|y_i|} \right)$$

Diese Vernachlässigung ist nur zulässig falls

$$|\Delta x| = \sigma(|y_i|), i = 1, \dots, n$$

damit

$$\mathcal{O}\left(\frac{|\Delta x|^2}{|y_i|}\right) = \sigma(|\Delta x|)$$

(stärker als $\mathcal{O}(|\Delta x|)$)

Definition 1.13 Die Größen $k_{ij}(x)$ heißen (relative) Konditionszahlen von f im Punkt x. Sie sind Maß dafür, wie sich kleine relative Fehler in den Ausgangsdaten x_j auf das Ergebnis y_i auswirken. Sprechweise:

- $|k_{ij}(x)| \gg 1$: Die Aufgabe y = f(x) ist schlecht konditioniert
- sonst: Die Aufgabe y = f(x) ist gut konditioniert
- $|k_{ij}(x)| < 1$: Fehlerdämpfung
- $|k_{ij}(x)| > 1$: Fehlerverstärkung.

Bemerkung 1.14 Man kann auch Störungen in f betrachten.

Beispiel 1.15 Implizit gegebene Aufgaben. Für n=m sie y die gegebene Eingangsgröße und ein x mit f(x)=y die Ausgabe (zum Beispiel: f(x)=Ax+b) Die differentielle Fehleranalyse auf der Umkehrfunktion $x=f^{-1}(y)$ liefert unter geeigneten Annahmen.

$$\frac{\Delta x_i}{x_i} \doteq \sum_{j=1}^n k_{ij}^{-1}(y) \frac{\Delta y_j}{y_j}, k_{ij}^{-1} = \frac{\partial f_i^{-1}}{\partial y_j}(y) \frac{y_j}{x_i}$$

Wir definieren die Matrizen

$$K^{-1}(y) = \left(k_{ij}^{-1}\right)_{i,j=1}^{n}, K(x) = \left(k_{ij}(x)\right)_{i,j=1}^{n}$$

und betrachten deren Produkt:

$$(K^{-1}(y)K(x))_{ij} = \sum_{l=1}^{n} k_{il}^{-1}(y)k_{lj}(x)$$

$$= \sum_{l=1}^{n} \frac{\partial f_{i}^{-1}}{\partial y_{l}}(y)\frac{y_{l}}{x_{i}}\frac{\partial f_{l}}{\partial x_{j}}(x)\frac{x_{j}}{y_{l}}$$

$$= \frac{x_{j}}{x_{i}}\sum_{l=1}^{n} \frac{\partial f_{i}^{-1}}{\partial y_{l}}\frac{\partial f_{l}}{\partial x_{j}} = \frac{x_{j}}{x_{i}}\frac{\mathrm{d}}{\mathrm{d}x_{j}}(f_{i}^{-1}(f(x)))$$

$$= \frac{x_{j}}{x_{i}}\frac{\mathrm{d}x_{i}}{\mathrm{d}x_{j}} = \delta_{ij} = \begin{cases} 1 & i = j\\ 0 & \text{sonst} \end{cases}$$

 K^{-1} ist gerade das Inverse von K.

Wiederholung: Numerische Aufgabe

$$f: x \in \mathbb{R}^m \mapsto y \in \mathbb{R}$$

Konditionszahlen:

$$\frac{\Delta y_i}{y_i} \doteq \sum_{j=1}^m k_{ij}(x) \frac{\Delta x_j}{x_j}$$
$$k_{ij}(x) = \frac{\partial f_i}{\partial x_i}(x) \frac{x_j}{f_i(x)}$$

1.2.2 Arithmetische Grundoperationen

Addition: $f(x_1, x_2) = x_1 + x_2, x_1, x_2 \in \mathbb{R} \setminus \{0\}$

$$k_{1j}(x) = \frac{\partial f}{\partial x_j} \frac{x_j}{f} = 1 \frac{x_j}{x_1 + x_2} = \frac{1}{1 + \frac{x_j}{x_j}}$$
$$\bar{j} = \begin{cases} 2 & j = 1\\ 1 & j = 2 \end{cases}$$

Die Addition ist schlecht konditioniert für $x_1 \approx -x_2$.

Definition 1.16 (Auslöschung) Unter Auslöschung versteht man den Verlust von Genauigkeit bei der Subtraktion von Zahlen gleichen Vorzeichens.

Beispiel 1.17
$$b = 10, r = 4, s = 1$$

Multiplikation: $y = f(x_1, x_2) = x_1 x_2$

$$k_{1j}(x) = \frac{\partial f}{\partial x_i} \frac{x_j}{f} = x_j - \frac{x_j}{x_1 x_2} = 1$$

⇒ gut konditioniert

Beispiel 1.18 (Lösungen quadratischer Gleichungen) Für $p,q\in\mathbb{R}$ betrachte:

$$0 = y^{2} - py + q$$
$$y_{1,2} = y_{1,2}(p,q) = \frac{p}{2} \pm \sqrt{\frac{p^{2}}{4} - q}$$

nach Vieta $p = y_1 + y_2, q = y_1 \cdot y_2$

$$1 = \frac{\mathrm{d}p}{\mathrm{d}p} = \frac{\partial y_1}{\partial p} + \frac{\partial y_2}{\partial p}$$

$$0 = \frac{\mathrm{d}q}{\mathrm{d}p} = \frac{\partial y_1}{\partial p} y_2 + y_1 \frac{\partial y_2}{\partial p}$$

$$\implies (y_2 - y_1) \frac{\partial y_2}{\partial p} = y_2$$

$$\implies \frac{\partial y_2}{\partial p} = \frac{y_2}{y_2 - y_1}$$

$$\implies \frac{\partial y_1}{\partial p} = \frac{y_1}{y_1 - y_2}$$

$$0 = \frac{\mathrm{d}p}{\mathrm{d}q} = \frac{\partial y_1}{\partial q} + \frac{\partial y_2}{\partial q}$$

$$1 = \frac{\mathrm{d}q}{\mathrm{d}q} = \frac{\partial y_1}{\partial q} y_2 + y_1 \frac{\partial y_2}{\partial q}$$

$$\implies 1 = (y_2 - y_1) \frac{\partial y_1}{\partial q}$$

$$\implies \frac{\partial y_1}{\partial q} = \frac{1}{y_2 - y_1}$$

$$\implies \frac{\partial y_2}{\partial q} = -\frac{1}{y_2 - y_1}$$

$$k_{11}(x) = \frac{\partial y_1}{\partial p} \frac{p}{y_1} = \frac{y_1}{y_1 - y_2} \frac{y_1 + y_2}{y_1} = \frac{1 + y_2/y_1}{1 - y_2/y_1}$$

$$k_{12}(x) = \frac{\partial y_1}{\partial q} \frac{q}{y_1} = \frac{1}{y_2 - y_1} \frac{y_1 y_2}{y_1} = \frac{1}{1 - y_1/y_2}$$

Analog für k_{21}, k_{22}

Die Berechnung von y_1, y_2 ist schlecht konditioniert $y_1 \approx y_2$.

Konkretes Beispiel: $p = 4, q = 33.999, y_{1,2} = 2 \pm 10 \times 10^{-1}$

$$k_{12} = \frac{y_2}{y_2 - y_1} = \frac{2 - 10^{-2}}{-2 \times 10^{-2}} = -99.5$$

⇒ 100-fache Fehlerverstärkung.

1.3 Stabilität numerischer Algorithmen

Gegeben: Numerische Aufgabe $f: x \in \mathbb{R}^m \mapsto y \in \mathbb{R}^n$

Definition 1.19 (Verfahren / Algorithmus) Unter einem Verfahren / Algorithmus zur (gegebenenfalls näherungsweise) Berechnung von y aus x verstehen wir eine endliche Folge von elementaren Abbildungen $\varphi^{(k)}$, die durch sukzessiv Anwendung einen Näherungswert \tilde{y} zu y liefern.

$$x = x^{(0)} \mapsto \varphi^{(1)}(x^{(0)}) = x^{(1)} \mapsto \ldots \mapsto \varphi^{(k)}(x^{(k-1)}) \mapsto \tilde{y} \to y$$

Im einfachsten Fall sind die $\varphi^{(i)}$ arithmetische Grundoperationen. Bei der Durchführung des Algorithmus auf dem Rechner treten in jedem Schritt Fehler auf (Rundungsfehler, Auswertungsfehler, ...), die sich akkumulieren können.

Definition 1.20 (Algorithmus) Ein Algorithmus heißt stabil, wenn die im Verlauf der Rechnung akkumulierten Fehler den durch die Konditionierung der Aufgabe y=f(x) bedingten unvermeidbaren Problemfehler nicht übersteigen.

Beispiel 1.21 (Lösung quadratischer Gleichungen) Annahme: $0 \neq q < p^2/4$

Für $\left|\frac{y_1}{y_2}\right| \gg 1$, das heißt $q \ll \frac{p^2}{4}$, ist die Aufgabe gut konditioniert. Algorithmus: $u = p^2/4, v = u - q, w = \sqrt{v}$.

Im Fall p < 0 wird zur Vermeidung von Auslöschung zunächst $\tilde{y}_2 = p/2 - w$ berechnet. Fehlerfortpflanzung:

$$w = \sqrt{u - q} \begin{cases} \approx \frac{|p|}{2} & q > 0 \\ > \frac{|p|}{2} & q < 0 \end{cases}$$

$$\frac{\Delta y_2}{y_2} \stackrel{\cdot}{\leq} \left| \frac{\frac{1}{2}p}{\frac{p}{2} - w} \right| \left| \frac{\Delta p}{p} \right| + \left| \frac{-w}{\frac{p}{2} - w} \right| \left| \frac{\Delta w}{w} \right|$$

$$= \underbrace{\left| \frac{1}{1 - \frac{2w}{p}} \right|}_{\leq \frac{1}{2}} \left| \frac{\Delta p}{p} \right| + \underbrace{\left| \frac{1}{1 - \frac{p}{2w}} \right|}_{\leq 1} \left| \frac{\Delta w}{w} \right|$$

Die zweite Wurzel kann so bestimmt werden:

$$A: \tilde{y}_1 = \frac{p}{2} + w, \quad B: \tilde{y}_1 = \frac{q}{\tilde{y}_2}$$

Für $|q| \ll \frac{p^2}{4}$ ist $w \approx \frac{|p|}{2} \implies$ Auslöschung in Variante A

$$\left| \frac{\Delta y_1}{y_1} \right| = \underbrace{\frac{1}{1 + \frac{2w}{p}}}_{\gg 1} \underbrace{\frac{\Delta p}{p}}_{} + \underbrace{\frac{1}{1 + \frac{p}{2w}}}_{\gg 1} \underbrace{\frac{\Delta w}{w}}_{}$$

⇒ Variante A ist instabil. Variante B ist stabil:

$$\left| \frac{\Delta y_1}{y_1} \right| \stackrel{\cdot}{\leq} \underbrace{\left| \frac{\Delta q}{q} \right|}_{\leq eps} + \underbrace{\left| \frac{\Delta y_2}{y_2} \right|}_{\approx eps}$$

Regel: Bei der Lösung quadratischer Gleichungen sollten nicht beide Wurzeln aus der Lösungsformel berechnet werden.

Konkretes Beispiel: p = -4, q = 0.01 (vierstellige Rechnung)

$$u = 4, v = 3.99, w = 1.9974948..., \tilde{y}_2 = -3.997(4981...)$$

$$\tilde{y}_1 = \begin{cases} \text{exakt:} & -0.9925915... \\ A: & -0.003000 \quad \text{(rel. Fehler: 20\%)} \\ B: & -0.002502 \quad \text{(rel. Fehler: } 1.7 \times 10^{-4}) \end{cases}$$

Auswertung arithmetischer Ausdrücke

Vorwärtsrundungsfehleranalyse: Akkumulation des Rundungsfehlers ausgehend von Startwert.

Beispiel 1.22
$$y = f(x_1, x_2) = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2)$$
 Konditionierung:

$$\left| \frac{\Delta y}{y} \right| \stackrel{\cdot}{\leq} \sum_{i=1}^{2} \left| \frac{\partial f}{\partial x_{i}} \frac{x_{i}}{f} \right| \left| \frac{\Delta x_{i}}{x_{i}} \right|$$

$$= \left| 2x_{1} \frac{x_{1}}{x_{1}^{2} - x_{2}^{2}} \right| \left| \frac{\Delta x_{1}}{x_{1}} \right| + \left| -2x_{2} \frac{x_{2}}{x_{1}^{2} - x_{2}^{2}} \right| \left| \frac{\Delta x_{2}}{x_{2}} \right|$$

$$\leq 2 \frac{x_{1}^{2} + x_{2}^{2}}{\left| x_{1}^{2} - x_{2}^{2} \right|} eps = 2 \left| \frac{\left(\frac{x_{1}}{x_{2}}\right)^{2} + 1}{\left(\frac{x_{1}}{x_{2}}\right)^{2} - 1} \right| eps$$

 \implies schlecht konditioniert für $\left|\frac{x_1}{x_2}\right| \approx 1$

$$\begin{array}{ll} \text{Algorithmus A} & \text{Algorithmus B} \\ u = x_1 \odot x_1 & u = x_1 \oplus x_1 \\ v = x_2 \odot x_2 & v = x_1 \ominus x_2 \\ \tilde{q} = u \ominus v & \tilde{q} = u \odot v \end{array}$$

Sei $x_1, x_2 \in A$. Für Maschinenoperationen \circledast und $a, b \in A$ gilt

$$a \circledast b = (a * b)(1 + \varepsilon), |(|\varepsilon) \le eps.$$

Algorithmus A:

$$u = x_1^2 (1 + \varepsilon_1), v = x_2^2 (1 + \varepsilon_2)$$

$$\tilde{y} = (x_1^2 (1 + \varepsilon_1) - x_2^2 (1 + \varepsilon_2)) (1 + \varepsilon_3)$$

$$= \underbrace{x_1^2 - x_2^2}_{y} + x_1^2 \varepsilon_1 - x_2^2 \varepsilon_2 + \underbrace{(x_1^2 - x_2^2)}_{y} \varepsilon_3, |\varepsilon| \le eps$$

$$\implies \left| \frac{\Delta y}{y} \right| \stackrel{\cdot}{\le} eps \frac{x_1^2 + x_2^2 + |x_1^2 - x_2^2|}{|x_1^2 - x_2^2|} = eps \left(1 + \left| \frac{\left(\frac{x_1}{x_2}\right)^2 + 1}{\left(\frac{x_1}{x_2}\right)^2 - 1} \right| \right)$$

Wegen der Konditionierung des Problems

$$\left| \frac{\Delta y}{y} \right| \le 2 \left| \frac{\left(\frac{x_1}{x_2}\right)^2 + 1}{\left(\frac{x_1}{x_2}\right)^2 - 1} \right| eps$$

ist A stabil. Algorithmus B:

$$u = x_1 \oplus x_2, v = x_1 \ominus x_2, y = u \odot v$$

Rundungsfehleranalyse

$$u = (x_1 + x_2)(1 + \varepsilon_1), v = (x_1 - x_2)(1 + \varepsilon_2)$$

$$\tilde{y} = (x_1 + x_2)(1 + \varepsilon_1)(x_1 - x_2)(1 + \varepsilon_2)(1 + \varepsilon_3)$$

$$= \underbrace{x_1^2 - x_2^2}_{y} + \underbrace{(x_1^2 - x_2^2)}_{\varepsilon_1 + \varepsilon_2 + \varepsilon_3} + \mathcal{O}(eps^3)$$

$$\implies \left| \frac{\Delta y}{y} \right| \stackrel{\cdot}{\leq} |(|\varepsilon_1 + \varepsilon_2 + \varepsilon_3) \leq 3eps$$

⇒ Algorithmus B ist stabiler als Algorithmus A.

Regel: Bei numerischen Rechnungen sollte man die schlechter konditionierten Operationen möglichst frühzeitug ansetzen.

Wiederholung

- Konditionierung: Eigenschaften einer numerischen Aufgabe
- Stabilität: Eigenschaft eines Verfahrens
 - Auslöschung
- Rundungsfehleranalyse

-
$$y = f(x_1, x_2) = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2)$$

Auswertung von Polynomen

$$y = p(x) = a_0 + a_1 x + \dots + a_n x^n$$

Als Modellfall betrachten wir

$$p(x) = a_1 x + a_2 x^2 = x(a_1 + a_2 x)$$

Zwei Varianten für $\tilde{y} = p(\xi), \xi \in A$

A:
$$u = \xi \odot \xi$$
, $v = a_2 \odot u$, $w = a_1 \odot \xi$, $\tilde{y} = v + w$

B:
$$u = a_2 \odot \xi, v = a_1 \oplus u, \tilde{y} = \xi \odot v$$

B spart eine arithmetische Operation.

Rundungsfehleranalyse A:

$$u = \xi^{2}(1+\varepsilon_{1}), v = a_{2}\xi^{2}(1+\varepsilon_{1})(1+\varepsilon_{2}), w = a_{1}\xi(1+\varepsilon_{3})$$

$$\tilde{y} = (a_{2}\xi_{2}(1+\varepsilon_{1})(1+\varepsilon_{2}) + a_{1}\xi(1+\varepsilon_{3}))(1+\varepsilon_{4})$$

$$= \underbrace{a_{2}\xi^{2} + a_{1}\xi}_{y} + \underbrace{(a_{2}\xi^{2} + a_{1})}_{y} \varepsilon_{4} + a_{2}\xi^{2}(\varepsilon_{1} + \varepsilon_{2}) + a_{1}\xi\varepsilon_{3} + \mathcal{O}eps^{2}$$

$$\frac{\Delta y}{y} \stackrel{\cdot}{=} \varepsilon_{4} \frac{a_{2}\xi^{2}(\varepsilon_{1}\varepsilon_{2}) + a_{1}\xi\varepsilon_{3}}{a_{2}\xi^{2} + a_{1}\xi}$$

$$= \varepsilon_{4} + \varepsilon_{3} + \frac{a_{2}\xi^{2}(\varepsilon_{1} + \varepsilon_{2} - \varepsilon_{3})}{a_{2}\xi^{2} + a_{1}\xi}$$

$$= \varepsilon_{3} + \varepsilon_{3} + \frac{\xi}{\frac{a_{1}}{a_{1}} + \xi}(\varepsilon_{1} + \varepsilon_{2} - \varepsilon_{3})$$

Variante B:

$$u = x_2 \xi(1+\varepsilon_1), v = (a_1 + a_2 \xi(1+\varepsilon_1))(1+\varepsilon_2)$$

$$\tilde{y} = \xi \cdot [a_1 + a_2 \xi(1+\varepsilon_1)](1+\varepsilon_2)(1+\varepsilon_3)$$

$$= \underbrace{\xi(a_1 + a_2 \xi)}_{y} + a_1 \xi(\varepsilon_2 + \varepsilon_3) + a_2 \xi^2(\varepsilon_1 + \varepsilon_2 + \varepsilon_3) + \mathcal{O}(eps^2)$$

$$\frac{\Delta y}{y} = \varepsilon_2 + \varepsilon_3 + \frac{a_2 \xi^2}{a_1 \xi + a_2 \xi} \varepsilon_2 = \varepsilon_2 + \varepsilon_3 + \frac{\xi}{\frac{a_1}{2} + \xi} \varepsilon_1$$

 \implies Variante B ist etwas stabiler als A im Fall $\xi \approx -\frac{a_1}{a_2}$ (nahe bei Nullstelle) Allgemein:

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

= $a_0 + x(a_1 + x(\dots + x(a_{n-1} + a_n x) \dots))$

Definition 1.23 (Horner-Schema)

$$b_n = a_n, b_k = a_k + \xi b_{k-1}, k = n - 1, \dots, 0$$

liefert den Funktionswert $p(\xi) = b_0$ des Polynoms an der Stelle $x = \xi$.

Regel: Die Auswertung von Polynomen sollte mit dem Horner-Schema erfolgen.

2 Interpolation und Approximation

Grundproblem:

Darstellung und Auswertung von Funktionen.

Aufgabenstellung:

- 1. Eine Funktion f(x) ist nur auf einer diskreten Menge von Argumenten x_0, \ldots, x_n bekannt und soll rekonstruiert werden (zum Beispiel für Graph Ausgabe)
- 2. Eine analytisch gegebene Funktion f(x) soll auf dem Rechner so dargestellt werden, dass jederzeit Funktionswerte zu beliebigen Argument x berechnet werden können.
- \rightarrow System mit unendlich vielen Freiheitsgraden y=f(x). "Simulation" durch endlich viele Datensätze in Klassen P von einfach strukturierten Funktionen
 - Polynome: $p(x) = a_0 + a_1 x + \dots + a_n x^n$
 - rationale Funktionen:

$$r(x) = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

· trigonometrische Funktionen

$$t(x) = \frac{1}{2}a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$$

• Exponentialsummen

$$e(x) = \sum_{k=1}^{n} a_k \exp(b_k x)$$

Definition 2.1 Geschieht die Zuordnung eines Elementes $g \in P$ zur Funktion f durch Fixieren von Funktionswerten

$$g(x_i) = y_i = f(x_i), i = 0, \dots, n$$

so spricht man von **Interpolation**. Ist g im gewissen Sinne die beste Darstellung von f, zum Beispiel: $\max_{a \le x \le b} |f(x) - g(x)|$ minimal für $g \in P$, oder

 $\left(\int_a^b |f(x)-g(x)|^2 \mathrm{d}x\right)^{1/2}$ minimal für $g \in P$ so spricht man von **Approximation**. Die Wahl der Konstruktion von $g \in P$ hängt von der zu erfüllenden Aufgabe ab. Offenbar ist die Interpolation eine Approximation mit

$$\max_{i=0,\dots,n} |f(x_i) - g(x_i)|$$

 $\operatorname{für} g \in P$

Wiederholung: Interpolation und Approximation

- Stützstellen x_i mit Werten $y_i, i = 0, \dots, n$
- Klassen P von Funktion

Polynominterpolation

Wir bezeichnen mit P_n den Vektorraum der Polynome vom Grad $\leq n$:

$$P_n = \{p(x) = a_0 + a_1 x + \dots + a_n x^n \mid a_i \in \mathbb{R}, i = 0, \dots, n\}$$

Definition 2.2 (Lagrangasche Interpolationsaufgabe) Die Lagrangsche Interpolationsaufgabe besteht darin zu x+1 paarweise verschiedenen Stützstellen (auch Knoten genannt) $x_0,\ldots,x_n\in\mathbb{R}$ und gegebenen Knotenwerten $y_0,\ldots,y_n\in\mathbb{R}$ ein Polynom $p\in P_n$ zu bestimmen mit der Eigenschaft $p(x_i)=y_i$

Satz 2.3 Die Lagrangsche Interpolationsaufgabe ist eindeutig lösbar.

Beweis Eindeutigkeit: Sind $p_1, p_2 \in P_n$ Lösungen, so gilt für $p = p_1 - p_2$, dass

$$p(x_i) = p_1(x_i) - p_2(x_i) = y_i - y_i = 0, i = 0, \dots, n$$

Also hat $p \, n + 1$ Nullstellen und ist folglich identisch Null. $\implies p_1 = p_2$ **Existenz:** Wir betrachten die Gleichungen

$$p(x_i) = y_i$$
 $i = 0, \dots, n$

Dies ist ein lineares Gleichungssystem mit n+1 Gleichungen und n+1 Freiheitsgraden.

$$\begin{pmatrix} x_0^0 & x_0^1 & \dots & x_0^n \\ x_1^0 & x_1^1 & & x_1^n \\ \vdots & & \ddots & \vdots \\ x_n^0 & x_n^1 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Wegen der Eindeutigkeit von p ist $\ker V = \{0\}$. Mit dem Rangsatz ($\dim \mathbb{R}^{n+1} = \dim \ker V + \dim \operatorname{im} V$) liefert V eine surjektive Abbildung. Damit existiert eine Lösung.

Zur Konstruktion des Interpolationspolynoms $p \in P_n$ verwenden wir die sogenannten Lagrangschen Basispolynome.

$$L_i^{(n)}(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j} \in P_n, i = 0, \dots, n$$

Lemma 2.4 $\{L_i^{(n)}, i=0,\ldots,n\}$ ist eine Basis von P_n

Beweis Übung.

Offensichtlich gilt:

$$L_i^{(n)}(x_k) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Definition 2.5 Das Polynom

$$p(x) = \sum_{i=0}^{n} y_i L_i^{(n)}(x) \in P_n$$

hat die gewünschten Eigenschaften

$$p(x_i) = y_i, j = 0, \dots, n$$

und wird die Lagrangsche Darstellung des (Lagrangschen) Interpolationspolynoms zu dem Stützpunkten $(x_i,y_i), i=0,\ldots,n$ genannt.

Nachteil: Bei Hinzunahme eines weiteren Stützpunktes (x_{n+1}, y_{n+1}) ändern sich die Basispolynome völlig.

Abhilfe: Newtonsche Basispolynome

$$N_0(x) = 1, N_i(x) = (x - x_{i-1})N_{i-1}(x) = \prod_{j=0}^{i-1} (x - x_j)$$

Für den Ansatz

$$p(x) = \sum_{i=0}^{n} a_i N_i(x)$$

erhält man durch Auswertung von x_0, \ldots, x_n das gestaffelte Gleichungssystem

$$y_0 = p(x_0) = a_0$$

$$y_1 = p(x_1) = a_0 + a_1(x_1 - x_0)$$

$$\vdots$$

$$y_0 = p(x_0) = a_0 + a_1(x_1 - x_0) + \dots + a_n(x_n - x_0) \cdot \dots \cdot (x_n - x_{n-1})$$

aus dem sich die Koeffizienten a_i rekursiv berechnen lassen. Bei Hinzunahme eines weiteren Stützpunktes (x_{n+1},y_{n+1}) setzt man den Prozess mit der Basisfunktion N_{n+1} fort. In der Praxis verwendet man folgende stabilere und effizientere Methode

Satz 2.6 (Newtonsche Darstellung) Das Lagrangsche Interpolationspolynom zu den Punkten $(x_0, y_0), \ldots, (x_n, y_n)$ lässt sich bezüglich der Newtonschen Polynombasis schreiben in der Form

$$p(x) = \sum_{i=0}^{n} y[x_0, \dots, x_i] N_i(x)$$

Dabei bezeichnen $y[x_0, \ldots, x_i]$ die zu den Punkten (x_i, y_i) gehörenden "dividierten Differenzen", welhce rekursiv definiert sind durch

$$L \text{für } k=1,\ldots,j: i=k-j: y\underbrace{\begin{bmatrix}x_i,\ldots,x_{1+k}\end{bmatrix}}_{k+1} = \underbrace{\frac{y\underbrace{[x_{i+1},\ldots,x_{1+k}]}-y\underbrace{[x_i,\ldots,x_{x_1+k-1}]}_k}_{x_{i+k}-x_i}}_{\text{für } j=0,\ldots,n: y[x_j]=y_j$$

Beweis Es bezeichne $pi, i+k \in P_k$ das Polynom, welhces die Punkte $(x_i, y_i), \ldots, (x_{i+k}, y_{i+k})$ interpoliert. Speziell ist $p_{0,n} = p$ das gesuchte Interpolationspolynom. Wir zeigen

$$p_{i,i+k}(x) = y[x_i] + y[x_i, x_{i+1}](x - x_i) + \dots + y[x_i, \dots, x_{i+k}](x - x_i) \cdot \dots \cdot (x - x_{i+k})$$

was für i=0 und k=n den Satz beweist. Der Beweis wird durch Induktion über die Indexdifferenz k geführt. Für k=0 ist $p_{i,i}=y_i=y[x_i], i=0,\ldots,n$. Sei die Behauptung richtig für $k-1\geq 0$. Nach Konstruktion gilt für ein $a\in\mathbb{R}$

$$p_{i,i+k}(x) = p_{i,i+k-1}(x) + a(x-x_1) \cdot \dots \cdot (x-x_{i+k-1}) = 0$$

für $x=x_j, j=i,\ldots,i+k-1$. Zu zeigen: $a=y[x_i,\ldots,x_{i+k}]$. Offenbar ist a der Koeffizient von x^k in $p_{0,i+k}$. Nach Induktionsannahme ist also

$$p_{i,i+k-1}(x) = \dots + y[x_i, \dots, x_{i+k-1}]x^{k-1}$$

$$p_{i+1,i+k-1}(x) = \dots + y[x_{i+1}, \dots, x_{i+k}]x^{k-1}$$
Grad $\leq k-2$

Ansatz:

$$q(x) = \frac{(x - x_i)p_{i+1,i+k}(x) - (x - x_{i+k})p_{i,i+k-1}(x)}{x_{i+k} - x_i}$$

$$= p_{i,i+k-1}(x) + \frac{(x - x_i)p_{i+1,i+k}(x) - (x - x_{i+k} + x_{i+k} - x_i)p_{i,i+k-1}(x)}{x_{i+k} - x_i}$$

$$= p_{i,i+k-1}(x) + (x - x_i)\frac{p_{i+1,i+k}(x) - p_{i,i+k-1}(x)}{x_{i+k} - x_i}$$

Ex gilt:

$$q(x_i) = y_i, q(x_{i+k}) = \frac{(x_{i+k} - x_i)y_{i+k} + 0}{x_{i+k} - x_i} = y_{1+k}$$
$$q(x_j) = \frac{(x_j - x_i)y_j - (x_j - x_{i+k})y_j}{x_{i+k} - x_i} = y_j, j = i+1, \dots, i+k-1$$

 $\implies q$ interpoliert die Stützpunkte $(x_i,y_i),\ldots,(x_{i+k},y_{i+k}) \implies q \equiv p_{i,i+k}$ (Eindeutigkeit des Interpolationspolynoms). Der führende Koeffizient in $p_{i,i+k}(x)$ ist demnach

$$q = \frac{y[x_{i+1}, \dots, x_{i+k}] - y[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

= $y[x_i, \dots, x_{i+k}]$

Korollar 2.7 Sei $\sigma:\{0,\ldots,n\}\to\{0,\ldots,n\}$ eine beliebige Permutation. Dann gilt für die Stützpunkte $(\tilde{x}_i,\tilde{y}_i)=\left(x_{\sigma(j)},y_{\sigma(j)}\right)$

$$y[\tilde{x}_0,\ldots,\tilde{x}_n]=y[x_0,\ldots,x_n]$$

Beweis Koeffizient des Monoms x^n ist $y[x_0,\ldots,x_n]$ unabhängig von der Reihenfolge. \square