

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Αυτόματη Συγγραφή Κώδικα με Αναδραστικά Νευρωνικά Δίκτυα (Source Code Generation)

Δ ΙΠΛΩΜΑΤΙΚΉ ΕΡΓΑΣΙΑ

του

ΒΑΣΙΛΗ ΜΠΟΥΝΤΡΗ

Επιβλέποντες: Ανδρέας Συμεωνίδης, Επίκουρος Καθηγητής Α.Π.Θ. Κυριάκος Χατζηδημητρίου, Μεταδιδάκτορας Α.Π.Θ.

ΕΡΓΑΣΤΗΡΙΟ ΕΥΦΥΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΛΟΓΙΣΜΙΚΟΥ (ISSEL) Θεσσαλονίκη, Ιούνιος 2017

Ευχαριστίες

Θα ήθελα αρχικά να ευχαριστήσω τον καθηγητή κ. Ανδρέα Συμεωνίδη για την εμπιστοσύνη και την καθοδήγηση και τον κ. Κυριάκο Χατζηδημητρίου για την καθοδήγηση και τη συνεργασία στα πλαίσια αυτής της διπλωματικής εργασίας. Επίσης θέλω να ευχαριστήσω την οικογένειά μου για την αδιάληπτη στήριξη όλα αυτά τα χρόνια.

Περίληψη

Η περίληψη θα συμπληρωθεί αργότερα. Αυτή είναι μια περίληψη άλλης εργασίας:

Ένα σύστημα ομότιμων χόμβων αποτελείται από ένα σύνολο αυτόνομων υπολογιστικών χόμβων στο Διαδίκτυο, οι οποίοι συνεργάζονται με σκοπό την ανταλλαγή δεδομένων. Στα συστήματα ομότιμων κόμβων που χρησιμοποιούνται ευρέως σήμερα, η αναζήτηση πληροφορίας γίνεται με χρήση λέξεων κλειδιών. Η ανάγκη για πιο εκφραστικές λειτουργίες, σε συνδυασμό με την ανάπτυξη του Σημασιολογικού Ιστού, οδήγησε στα συστήματα ομότιμων κόμβων βασισμένα σε σχήματα. Στα συστήματα αυτά κάθε κόμβος χρησιμοποιεί ένα σχήμα με βάση το οποίο οργανώνει τα τοπικά διαθέσιμα δεδομένα. Για να είναι δυνατή η αναζήτηση δεδομένων στα συστήματα αυτά υπάρχουν δύο τρόποι. Ο πρώτος είναι όλοι οι κόμβοι να χρησιμοποιούν το ίδιο σχήμα κάτι το οποίο δεν είναι ευέλικτο. Ο δεύτερος τρόπος δίνει την αυτονομία σε κάθε κόμβο να επιλέγει όποιο σχήμα θέλει και απαιτεί την ύπαρξη κανόνων αντιστοίχισης μεταξύ των σχημάτων για να μπορούν να αποτιμώνται οι ερωτήσεις. Αυτός ο τρόπος προσφέρει ευελιξία όμως δεν υποστηρίζει την αυτόματη δημιουργία και τη δυναμική ανανέωση των κανόνων, που είναι απαραίτητες για ένα σύστημα ομότιμων κόμβων.

Στόχος της διπλωματικής εργασίας είναι η ανάπτυξη ενός συστήματος ομότιμων κόμβων βασισμένο σε σχήματα το οποίο (α) θα επιτρέπει μια σχετική ευελιξία στην χρήση των σχημάτων και (β) θα δίνει την δυνατότητα μετασχηματισμού ερωτήσεων χωρίς την ανάγκη διατύπωσης κανόνων αντιστοίχισης μεταξύ σχημάτων, ξρησιμοποιώντας κόμβους με σχήματα RDF που αποτελούν υποσύνολα-όψεις ενός βασικού σχήματος (καθολικό σχήμα).

Λέξεις Κλειδιά

Σύστημα ομότιμων κόμβων, Σύστημα ομότιμων κόμβων βασισμένο σε σχήματα, Σημασιολογικός Ιστός, RDF/S, RQL, Jxta

Abstract

The Compact Linear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 10^{15} electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated.

One candidate is the Electron Beam Scanner. A probe beam of low-energy electrons crosses the accelerator beam perpendicularly. The probe beam is deflected by the space-charge fields of the accelerator beam. By scanning the probe beam and measuring its deflection with respect to its initial position, the transverse profile of the accelerator beam can be reconstructed.

Analytical expressions for the deflection exist in the case of long bunches, where the charge distribution can be considered constant during the measurement. In this paper we consider the performance of an electron beam scanner in an accelerator where the bunch length is much smaller than the probe-beam scanning time. In particular, the case in which the bunch length is shorter than the time taken for a particle of the probe beam to cross the main beam is difficult to model analytically. We have developed a simulation framework allowing this situation to be modelled.

Keywords

Fill in

Περιεχόμενα

E	υχαρ	ριστίες	1
П	ερίλι	ηψη	3
A	bstra	act	5
П	εριεχ	χόμενα	8
K	ατάλ	.ογος Σχημάτων	9
K	ατάλ	ογος Πινάκων	11
1	Εισ	αγωγή	13
	1.1	Κίνητρο	14
	1.2	Περιγραφή του προβλήματος	14
	1.3	Στόχοι της διπλωματικής	
	1.4	Μεθοδολογία	15
	1.5	Διάρθρωση	15
2	Θεα	ωρητικό υπόβαθρο	17
	2.1	Deep Learning	17
	2.2	Supervised Learning	18
	2.3	Recurrent Neural Networks	19
3	Μέ	θοδοι προσομοίωσης	21
	3.1	Προσομοίωση με το CST Particle Studio	21
	3.2	Προσομοίωση με το CST Particle Studio και το MATLAB	21
4	$A\pi$	οτελέσματα προσομοίωσης	23
5	Επί	λογος	25
	5.1	Συμπεράσματα	25
	5.2	Μελλοντικές Επεκτάσεις	25

8	Περιεχόμενα

Α΄ Μεταφράσεις Ξένων όρων	27
Βιβλιογραφία	26
Β΄ Το μοντέλο στο CST Particle Studio	29
Γ΄ Ο κώδικας MATLAB	31

Κατάλογος Σχημάτων

Κατάλογος Πινάκων

Εισαγωγή

Η πράξη του προγραμματισμού, δηλαδή η ανάπτυξη μίας διαδικασίας με στόχο την επίτευξη ενός έργου, είναι μια εντυπωσιακή επίδειξη των δυνατοτήτων συλλογιστικής του ανθρώπινου εγκεφάλου. Η αυτοματοποίηση της συγγραφής κώδικα και προγραμμάτων (Αυτόματος Προγραμματισμός) είναι ένας στόχος με μακρόχρονη ιστορία, τόσο για τους μηχανικούς λογισμικού, όσο και για τον κλάδο της τεχνητής νοημοσύνης. Ο ακριβής ορισμός του "Αυτόματου Προγραμματισμού" παραμένει ένα θέμα στο οποίο υπάρχει ασυμφωνία μεταξύ των ειδικών, γεγονός που ενισχύεται από την συνεχή αλλαγή του όρου χάρη στις εξελίξεις της τεχνολογίας. Ο David Parnas, αναζητώντας την ιστορία του όρου, καταλήγει: "Ο αυτόματος προγραμματισμός ήταν πάντα ένας ευφημισμός για προγραμματισμό σε μια υψηλότερου επιπέδου γλώσσα από αυτή που είναι διαθέσιμη στον προγραμματιστή.

Δεδομένης της εγγενούς δυσκολίας και πολυπλοκότητας του στόχου υπάρχει πληθώρα προκλήσεων αλλά και προσεγγίσεων στη λύση του. Δύο σημαντικές ομάδες προσεγγίσεων είναι:

1. Επαγωγικός Προγραμματισμός (Induction Programming)

Χρησιμοποιώντας τεχνικές τόσο από τον προγραμματισμό όσο και από την τεχνητή νοημοσύνη στοχεύει στη μάθηση προγραμμάτων, τυπικά δηλωτικών και συχνά αναδρομικών. Για την εκμάθηση χρησιμοποιούνται μη αυστηρές προδιαγραφές, όπως παραδείγματα εισόδου - εξόδου ή περιορισμοί.

2. Παραγωγή Κώδικα Βάσει Οντοτήτων (Ontology Based Code Generation)

Η συγγραφή του κώδικα γίνεται σύμφωνα με τις οντότητες και τις σχέσεις τους όπως αυτές αποτυπώνονται στο εκάστοτε πρόβλημα. Εδώ αναφερόμαστε στις απολύτως δομημένες προσεγγίσεις παραγωγής κώδικα όπως αυτές με γνώμονα δομικά διαγράμματα, μοντέλα ή πρότυπα, αλλά και την παραγωγή κώδικα που κάνουν οι μεταφραστές/μεταγλωττιστές γλωσσών προγραμματισμού.

1.1 Κίνητρο

Αφενός, η πρόοδος της τεχνητής νοημοσύνης, και ειδικότερα του κλάδου της υπολογιστικής εκμάθησης, είναι ραγδαία τα τελευταία χρόνια. Οι σχετικές τεχνολογικές και θεωρητικές ανακαλύψεις ανοίγουν νέα μονοπάτια πειραματισμού, καινούρια εργαλεία αναπτύσσονται και δημιουργούνται κίνητρα επανεξέτασης κάποιων προβλημάτων. Αφετέρου, η εξέλιξη και η ευρεία χρήση του λογισμικού γεννά ανάγκες για αυτοματοποίηση στην παραγωγή του έτσι ώστε να μειωθεί ο χρόνος ανάπτυξης και ο αριθμός λαθών.

Σύμφωνα με τα παραπάνω και ιδιαίτερα χάρη στις πρόσφατες επιτυχίες γύρω από τα Αναδραστικά Νευρωνικά Δίκτυα, δομές τις οποίες θα εξετάσουμε παρακάτω, είμαστε σε θέση να αντιμετωπίσουμε την παραγωγή κώδικα ως ένα πρόβλημα υπολογιστικής εκμάθησης ακολουθιών, προσέγγιση η οποία βρίσκεται ανάμεσα στον επαγωγικό προγραμματισμό και την παραγωγή κώδικα βάσει οντοτήτων.

1.2 Περιγραφή του προβλήματος

Το πρόβλημα μπορεί να αναλυθεί σε δύο διαφορετικά μέρη. Από τη μία πλευρά, καλούμαστε να αυτοματοποιήσουμε τη διαδικασία παραγωγής κώδικα. Δεδομένων των σύγχρονων μεθόδων και τεχνολογιών, αυτό είναι ζήτημα στο οποίο είναι από εξαιρετικά δύσκολο έως αδύνατο να δοθεί μια γενική λύση, τουλάχιστον για το εγγύς μέλλον. Αντί για μία γενική λύση, μπορούμε να επικεντρωθούμε στις διεργασίες οι οποίες είναι μεν απλές, αλλά επαναλαμβάνονται συχνά και είναι χρονοβόρες. Από την άλλη, καλούμαστε να εκμεταλλευτούμε την ραγδαία ανάπτυξη της χρήσης λογισμικού. Έχουμε στη διάθεση μας πληθώρα υλοποιημένων προγραμμάτων, σε πολλές διαφορετικές γλώσσες και μορφές, κάθε δυσκολίας και σκοπού. Εξίσου πολλά είναι και τα ζευγάρια προβλημάτων - προδιαγραφών. Ιδανικά, θα θέλαμε να αποφύγουμε να καταβάλουμε κόπο για να δημιουργήσουμε κάτι το οποίο ήδη υπάρχει.

Η αφθονία της διαθέσιμης πληροφορίας σε μορφή κώδικα – αλλά και αυτής που εμπεριέχεται σε ολόκληρο το οικοσύστημα του λογισμικού – δίνει τη δυνατότητα για σχεδιασμό λύσεων οι οποίες έχουν ως επίκεντρο αυτήν ακριβώς τη διαθέσιμη πληροφορία. Δεδομένου του εκπαιδευτικού χαρακτήρα της διπλωματικής εργασίας, θα εξετάσουμε το πρόβλημα αυτόματης παραγωγής κώδικα από μία πληροφοριακά οδηγούμενη σκοπιά, η οποία επιχειρεί να εκμεταλλευτεί τις εξελίξεις στην επιστήμη της πληροφορίας.

1.3 Στόχοι της διπλωματικής

Στόχος της διπλωματικής εργασίας αυτής είναι η δημιουργία ενός τεχνητού νευρωνικού δικτύου με αναδράσεις (artificial recurrent neural network το οποίο αφού εκπαιδευτεί στην συγγραφή κώδικα σε μία γλώσσα προγραμματισμού της επιλογής μας – διαβάζοντας εκατομμύρια γραμμές κώδικα – θα προσπαθήσει να παράξει κώδικα. Ο κώδικας αυτός γενικά μπορεί να φτάσει σε ένα από τα παρακάτω επίπεδα:

1. Να 'μοιάζει' με κώδικα

1.4 Μεθοδολογία

- 2. Να μην έχει συντακτικά λάθη
- 3. Να γίνεται compile
- 4. Να 'κάνει κάτι χρήσιμο'

Σε επίπεδο διπλωματικής εργασίας επιζητούμε κώδικα στα επίπεδα τουλάχιστον 1 ή και 2.

1.4 Μεθοδολογία

Χρησιμοποιούμε μοντέλα βασισμένα σε αναδραστικά νευρωνικά δίκτυα και ένα σύνολο δεδομένων. Το τελευταίο αποτελείται από έναν μεγάλο αριθμό προγραμμάτων σε μια γλώσσα της επιλογής μας. Η μεθοδολογία μπορεί να χωριστεί, αφαιρετικά, σε 3 μέρη:

1. Προ-επεξεργασία

Δεδομένου ενός μεγάλου όγχου πληροφοριών σε μορφή χώδιχα, καλούμαστε να τις επεξεργαστούμε με στόχο την καλύτερη εκμετάλλευση τους από το μοντέλο μας και τελικώς την επίτευξη βέλτιστων αποτελεσμάτων. Αφαιρούμε την πληροφορία που φαίνεται είτε να δυσκολεύει την εκμάθηση του μοντέλου, είτε είναι αδύνατο να ερμηνευτεί από αυτό. Σε μία από τις προτεινόμενες προσεγγίσεις προσθέτουμε πληροφορία για τον χώδικα με σκοπό την αποσαφήνιση των δεδομένων. Η πληροφορία του χώδικα εκφράζεται ως σειρά από στοιχειώδεις χαραχτήρες.

2. Εκπαίδευση

Τα προτεινόμενα μοντέλα, τα οποία είναι σύνθετες δομές αναδραστικών νευρωνικών δικτύων, εκπαιδεύονται βάσει της παραπάνω επεξεργασμένης πληροφορίας. Μετά από το "διάβασμα' μιας σειράς χαρακτήρων καλούνται να προβλέψουν τον επόμενο χαρακτήρα. Οι επιδόσεις εκφράζονται μέσω μιας μετρικής λάθους, την οποία η εκπαιδευτική διαδικασία προσπαθεί να ελαχιστοποιήσει χρησιμοποιώντας γενικευμένες μεθόδους βελτιστοποίησης.

3. Παραγωγή κώδικα

Τα εκπαιδευμένα, πλέον, μοντέλα μπορούν να χρησιμοποιηθούν για την παραγωγή κώδικα. Αρχικοποιούνται με κώδικα της επιλογής μας, ο οποίος επεξεργάζεται όπως και τα δεδομένα στα οποία εκπαιδεύεται. Το μοντέλο παράγει ένα χαρακτήρα σε κάθε πρόβλεψη και χρησιμοποιεί την πρόβλεψη του ως αληθή για να παράξει τον επόμενο χαρακτήρα. Με αυτό τον τρόπο μπορεί να συγγράφει απεριόριστη ποσότητα κώδικα.

1.5 Διάρθρωση

Η εργασία αυτή είναι οργανωμένη σε πέντε κεφάλαια: Στο Κεφάλαιο 2 δίνεται το θεωρητικό υπόβαθρο των βασικών τεχνολογιών που σχετίζονται με τη διπλωματική αυτή. Αρχικά περιγράφονται ..., στη συνέχεια το ... και τέλος Στο κεφάλαιο 3 παρουσιά Στο Κεφάλαιο

αρχικά παρουσιάζεται ανάλυση και η σχεδίαση του συστήματος Τέλος στο Κεφάλαιο 5 δίνονται τα συμπεράσματα, η συνεισφορά αυτής της διπλωματικής εργασίας, καθώς και μελλοντικές επεκτάσεις.

Θεωρητικό υπόβαθρο

Στο κεφάλαιο αυτό παρουσιάζονται αναλυτικά οι ...

2.1 Deep Learning

Η υπολογιστική εκμάθηση (Machine Learning) είναι η κινητήριος δύναμη για διάφορες εκφάνσεις της σύγχρονης κοινωνίας: από αναζητήσεις στο διαδίκτυο μέχρι και φιλτράρισμα περιεχομένου σε κοινωνικά δίκτυα και προτάσεις αγορών σε ηλεκτρονικά καταστήματα. Ολοένα συχνότερη και συνηθέστερη γίνεται η εμφάνιση του σε προϊόντα ευρείας κατανάλωσης όπως κάμερες και κινητά τηλέφωνα. Τα συστήματα υπολογιστικής εκμάθησης χρησιμοποιούνται για την αναγνώριση αντικειμένων σε εικόνες, την αυτόματη καταγραφή προφορικού λόγου, την αντιστοίχηση προϊόντων, νέων, δημοσιεύσεων με τις προτιμήσεις χρηστών. Σε όλες αυτές τις εφαρμογές, είναι αυξανόμενη η χρήση ενός σετ τεχνικών που φέρει το όνομα Deep Learning.

Οι συμβατικές τεχνικές υπολογιστικής εκμάθησης είχαν περιορισμένη δυνατότητα χρήσης της ανεπεξέργαστης πληροφορίας. Για δεκαετίες, η σχεδίαση και η υλοποίηση ενός συστήματος αναγνώρισης προτύπων ή υπολογιστικής εκμάθησης, απαιτούσε προσεκτική προσέγγιση και σημαντική εξειδίκευση στον εκάστοτε τομέα. Αυτό επειδή χρειαζόταν η μετατροπή της ανεπεξέργαστης πληροφορίας σε μία κατάλληλη εσωτερική αναπαράσταση, την οποία το υποσύστημα εκμάθησης – συχνότερα ένας ταξινομητής – θα χρησιμοποιούσε για αναγνωρίσει πρότυπα στις διάφορες εισόδους.

Η εκμάθηση αναπαραστάσεων είναι ένα σύνολο μεθόδων που επιτρέπουν σε ένα σύστημα να ανακαλύψει αυτόματα ποιες ακριβώς αναπαραστάσεις της ανεπεξέργαστης πληροφορίας κρειάζεται για να επιτελέσει την αναγνώριση προτύπων ή την ταξινόμηση. Οι μέθοδοι Deep Learning είναι μέθοδοι εκμάθησης αναπαραστάσεων με πολλαπλά επίπεδα αναπαράστασης, που αποτελούνται από την σύνθεση απλών, μη γραμμικών υποσυστημάτων, το καθένα από τα οποία – ξεκινώντας από την ανεπεξέργαστη είσοδο – μετατρέπει την αναπαράσταση της πληροφορίας σε μια λίγο πιο υψηλά αφαιρετική μορφή σε κάθε επίπεδο. Με την χρήση αρκετών τέτοιων μετατροπών το σύστημα μπορεί να μάθει εξαιρετικά σύνθετες λειτουργίες. Για διαδικασίες ταξινόμησης, τα υψηλότερα επίπεδα αναπαράστασης ενισχύουν πτυχές τις εισόδου που είναι

πιο σημαντικές για τον τελικό σκοπό. Σε μία εικόνα, για παράδειγμα, η οποία αναπαριστάται ως διάνυσμα τιμών εικονοκυττάρων, τα χαρακτηριστικά που μαθαίνονται στο πρώτο επίπεδο είναι συνήθως πληροφορία για την παρουσία ή την απουσία ακμών σε συγκεκριμένες θέσεις και προσανατολισμούς. Στο δεύτερο επίπεδο, συνήθως εντοπίζονται μοτίβα μέσω των διαφόρων διατάξεων των ακμών, χωρίς να χρειάζεται τα μοτίβα να επαναλαμβάνονται επακριβώς. Στο τρίτο επίπεδο μπορούν να αναγνωριστούν σύνολα μοτίβων σε μεγάλους συνδυασμούς που αντιστοιχούν σε γνωστά αντικείμενα ή μέρη τους. Τα επόμενα επίπεδα, παρόμοια, εντοπίζουν πιο σύνθετα αντικείμενα ως συνδυασμούς απλούστερων μερών. Το βασικότερο στοιχείο του Deep Learning είναι πως τα επίπεδα που εντοπίζουν χαρακτηριστικά και δομές δεν είναι σχεδιασμένα από τους ανθρώπους: μαθαίνονται από τα δεδομένα χρησιμοποιώντας γενικευμένες διαδικασίες εκμάθησης.

Η χρήση του Deep Learning έχει βοηθήσει στην αντιμετώπιση προβλημάτων που δυσκόλευαν την κοινότητα της τεχνητής νοημοσύνης εδώ και χρόνια. Αποδεικνύεται να έχει επιδόσεις χωρίς προηγούμενο στον εντοπισμό πολύπλοκων δομών σε δεδομένα πολλών διαστάσεων και για αυτό είναι εφαρμόσιμο σε πολλούς διαφορετικούς τομείς, επιστημονικούς, επιχειρησιακούς και κοινωνικοπολιτικούς. Πέρα από επαναστατικές επιδόσεις στην αναγνώριση φωνής και εικόνας, έχει ξεπεράσει άλλες τεχνικές υπολογιστικής εκμάθησης στην πρόβλεψη συμπεριφοράς μορίων φαρμάκων, στην ανάλυση δεδομένων από επιταχυντές σωματιδίων, στην ανακατασκευή εγκεφαλικών κυκλωμάτων και στην πρόβλεψη των επιπτώσεων μεταλλάξεων μη κωδικοποιητικού DNA στις γονιδιακές εκφράσεις και ασθένειες. Ίσως, οι πιο αναπάντεχα υποσχόμενες επιδόσεις έγιναν στον κλάδο της επεξεργασίας φυσικής γλώσσας, συγκεκριμένα στην εντοπισμό θεμάτων, την ανάλυση συναισθήματος, τις ερωτήσεις - απαντήσεις και την μετάφραση.

2.2 Supervised Learning

Η πιο συνήθης μορφή υπολογιστικής εκμάθησης, είτε Deep Learning είτε όχι, είναι αυτή της επιτηρούμενης εκμάθησης. Ας θεωρήσουμε πως θέλουμε να φτιάξουμε ένα σύστημα που αποφασίζει τι περιέχει μια εικόνα, όπως ένα σπίτι, ένα αυτοκίνητο, έναν άνθρωπο ή μία γάτα. Αρχικά, συλλέγουμε ένα αρκετά μεγάλο σύνολο δεδομένων με εικόνες στα οποία σημειώνεται τι αντικείμενο από τα παραπάνω περιέχει κάθε εικόνα. Κατά τη διάρκεια της εκπαίδευσης, δείχνουμε στο σύστημα μια εικόνα και αυτό παράγει μία πρόβλεψη, στη μορφή ενός διανύσματος με σκορ για κάθε κατηγορία. Θέλουμε η επιθυμητή κατηγορία να έχει το μεγαλύτερο σκορ πρόβλεψης, αλλά αυτό είναι πολύ δύσκολο πριν την εκπαίδευση. Υπολογίζουμε μία αντικειμενική συνάρτηση με την οποία μετράμε το λάθος (ή την απόσταση) μεταξύ των αποτελεσμάτων του συστήματος και τον επιθυμητών αποτελεσμάτων. Το σύστημα, ύστερα, προσαρμόζει τις εσωτερικές του παραμέτρους ώστε να μειώσει το λάθος. Οι εσωτερικές παράμετροι, που συχνότερα στη βιβλιογραφία απαντώνται ως βάρη, είναι πραγματικοί αριθμοί που ορίζουν την λειτουργικότητα εισόδου-εξόδου του συστήματος. Σε ένα τυπικό Deep Learning σύστημα, οι εσωτερικές παράμετροι και τα παραδείγματα που χρησιμοποιούμε για την εκμάθηση του συστήματος μπορεί να είναι εκατοντάδες εκατομμύρια σε αριθμό.

Για την κατάλληλη προσαρμογή των βαρών, ο αλγόριθμος εκμάθησης υπολογίζει ένα διάνυσμα κλίσης, για κάθε βάρος, που δείχνει κατά πόσο και προς ποια κατεύθυνση αλλάζει το λάθος αν αλλάξουμε απειροστά το αντίστοιχο βάρος. Το διάνυσμα των βαρών τελικά ρυθμίζεται έτσι ώστε να έχει αντίθετη φορά με το διάνυσμα κλίσης. Η διαδικασία αυτή είναι μία προσπάθεια ελαχιστοποίησης της συνάρτησης λάθους και μεταγενέστερα της μείωσης, κατά μέσο όρο, των λαθών προβλέψεων του συστήματος.

Στην πλειοψηφία της σύγχρονης βιβλιογραφίας, και στην παρούσα διπλωματική, ο αλγόριθμος ελαχιστοποίησης που χρησιμοποιείται είναι ο stochastic gradient descent (SGD). Αυτός συνίσταται από την επίδειξη λίγων κάθε φορά, σωστά επισημασμένων, παραδειγμάτων στο σύστημα, τον υπολογισμό των προβλέψεων και του λάθους, τον υπολογισμό του διανύσματος κλίσης και την ρύθμιση των βαρών. Η παραπάνω διαδικασία επαναλαμβάνεται για πολλά μικρά σετ παραδειγμάτων, μέχρι η συνάρτηση στόχου να σταματήσει να μειώνεται. Μετά την εκπαίδευση, οι επιδόσεις του συστήματος μετρώνται σε ένα σύνολο διαφορετικών παραδειγμάτων, έτσι ώστε να εξεταστεί η ικανότητα γενίκευσης του συστήματος σε εισόδους που βλέπει για πρώτη φορά.

2.3 Recurrent Neural Networks

Τα αναδραστικά νευρωνικά δίκτυα (Ρεςυρρεντ Νευραλ Νετωορκς - PNNς) είναι μία προσαρμογή των κλασσικών, πλήρως συνδεδεμένων νευρωνικών δικτύων, έτσι ώστε τα πρώτα να μπορούν να διαχειριστούν ακολουθίες. Σε κάθε χρονική στιγμή, τα PNNς δέχονται μια είσοδο, ενημερώνουν την εσωτερική τους κατάσταση και παράγουν μία έξοδο. Η πολυδιάστατη εσωτερική κατάσταση, που συχνά απαντάται στη βιβλιογραφία ως κρυφή κατάσταση, και η μη γραμμική εξέλιξη της διαχειριζόμενης πληροφορίας δίνουν στα αναδραστικά νευρωνικά δίκτυα μεγάλη εκφραστική ευελιξία και δυνατότητα ενσωμάτωσης και διατήρησης της πληροφορίας σε μεγάλα χρονικά διαστήματα. Ακόμα και όταν η μη γραμμική συνάρτηση που χρησιμοποιείται από κάθε στοιχείο του PNN είναι εξαιρετικά απλή, η χρήση της σε πολλά επίπεδα και η επανάληψη της σε κάθε χρονική στιγμή οδηγεί σε ένα εξαιρετικά δυναμικό σύστημα.

Τα αναδραστικά νευρωνικά δίκτυα ορίζονται ως εξής: δεδομένης μιας ακολουθίας διανυσμάτων εισόδου $(x_1,x_2,...,x_T)$

Μέθοδοι προσομοίωσης

Κεφάλαια 3 και 4

- Αποτέλεσμα και σχόλια
- Περιγραφή του CST Particle Studio
- Screenshots

Στο κεφάλαιο αυτό περιγράφεται η υλοποίηση του συστήματος, με βάση τη μελέτη που παρουσιάστηκε στο προηγούμενο κεφάλαιο. Αρχικά παρουσιάζεται η πλατφόρμα και τα προγραμματιστικά εργαλεία που χρησιμοποιήθηκαν. Στη συνέχεια δίνονται οι λεπτομέρειες υλοποίησης για τους βασικούς αλγορίθμους του συστήματος καθώς και η δομή του κώδικα.

3.1 Προσομοίωση με το CST Particle Studio

To CST Particle Studio μπλα μπλα μπλα.

3.2 Προσομοίωση με το CST Particle Studio και το MAT-LAB

Αποτελέσματα προσομοίωσης

Στο κεφάλαιο αυτό δεν περιγράφεται κάτι (ακόμα)

Some examples illustrating the dependence on bunch intensity, bunch length and transverse size, plus at least on example from the multi-bunch simulations.

Επίλογος

5.1 Συμπεράσματα

Συμπεράσματα κλπ

5.2 Μελλοντικές Επεκτάσεις

Το σύστημα που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής εργασίας θα μπορούσε να βελτιωθεί και να επεκταθεί περαιτέρω, τουλάχιστον ως προς τρεις κατευθύνσεις. Συγκεκριμένα, αναφέρονται τα ακόλουθα:

- Ένα
- Δύο
- Τρία

Παράρτημα Α΄

Μεταφράσεις Ξένων όρων

Μετάφραση

αδερφός

αμεταβλητότητα

ανάχτηση πληροφορίας

αντιμεταθετικότητα

απόγονος

απορρόφηση

βάση δεδομένων

γνώρισμα

διαπροσωπεία

διαφορά

δικτυακός κατάλογος

δικτυωτή δομή

δομικές επερωτήσεις

δομικές σχέσεις

δομικό σχήμα

εγχυρότητα

ένωση

Αγγλικός όρος

sibling

idempotency

information retrieval

commutativity

descedant

absorption

database

attribute

interface

difference

portal catalog

lattice

structural queries

structural relationships

schema

validity

union

Παράρτημα Β΄

Το μοντέλο στο CST Particle Studio

Παράρτημα Γ΄

Ο κώδικας MATLAB