ENS1161 Computer Fundamentals Module 6 Storage

ENS1161 COMPUTER FUNDAMENTALS

Moving forward..

- Last module:
 - Programming languages
 - Programming 'tools' that convert programs to binary code
- Focus of this module: Storage
 - Types of storage
 - How data and instructions are moved from storage to the processor and back

Module Objectives

On completion of this module, students should be able to:

- Explain the differences between primary and secondary storage.
- Describe the different types of primary and secondary storage technologies covered and their principles of operation.
- Explain the how the characteristics and specifications of different storage technologies impacts their usage in computer systems.
- Evaluate different types of storage based on their specifications and determine the most suitable for a given application.

ENS1161 Computer Fundamentals

Introduction

Module Scope

- The role of storage in a computer system
- Types of storage
 - Classification based on usage and technology
- How different storage devices function
- Pros and cons of different storage media

Data & Instructions (recap)

Storage

- Computer systems are digital systems
 - All data and instructions are in the form of binary signals
 - signals that have only two possible values
 - 1 or 0
 - HIGH or LOW
 - ON or OFF
- These digital signals may be used to represent:
 - one bit of a binary number
 - one bit of a binary code
 - ASCII,BCD, instruction code, ...
 - a control signal state, etc.

School of Engineering

ENS1161 Computer Fundamentals

Storage (recap)

- Components used to 'hold' the binary data
 - The hardware used to store the software
- Primary storage / memory
 - Memory directly accessible by the processor
 - · E.g. RAM, ROM, cache memory
 - Fast access, but normally volatile
 - · Data disappears when power goes off
- Secondary storage
 - Devices that can store data more permanently (even when power off)
 - E.g. hard disk, flash drive, CD/DVD, etc.

- Sometimes called **main memory** (or just *memory*)
- Storage that is directly accessible by the CPU
 - Connected directly via system bus
- · The 'working storage' for the CPU
 - Currently running programs and data stored here
- Fast access, but limited capacity
- Most of it (RAM) loses data when powered off (volatile)

- Storage accessed indirectly
 - Connected via I/O interface
- Mainly for longer term storage of data
- Can also be used for temporary storage of memory data (swap space)
- Large capacity, but slower access
- Data preserved even when powered off (non-volatile)
- Could be physically remote from CPU
- Cheaper (lower cost per byte of data)

ENS1161 Computer Fundamentals

School of Engineering

Basic Components of a Computer (recap - Module 2)

- Every computer contains the same basic components:
 - · Arithmetic logic unit (ALU)
 - Register array
 - · Control unit
 - Memory
 - Input/Output (I/O) unit
 - System Bus

Storage in a computer

School of Engineering

RAM on it

ENS1161 Computer Fundamentals

Storage speed vs capacity / frequency of use

- Trade-off in storage: speed vs capacity
- Higher speed storage, lower capacity
 - Mainly due to cost per byte
 - Storage with lower access times tend to be more expensive
- Speed is also normally inversely proportional to distance
 - Further away storage is, the slower it is
 - Due to greater distance, more complex interface
- Data to be used (more frequently) is transferred to faster ('closer') storage
 - E.g. files stored in secondary storage are transferred to RAM for CPU to access
 - This principle is also used in other mechanisms (to be covered)

- Sometimes called **main memory** (or just *memory*)
- Storage that is directly accessible by the CPU
 - Connected directly via system bus
- The 'working storage' for the CPU
 - Currently running programs and data stored here
- Fast access, but limited capacity
- Most of it (RAM) loses data when powered off (volatile)

School of Engineering

ENS1161 Computer Fundamentals

Simplified Diagram of a Processor (recap)

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

Memory (recap - Module 2)

- Multiple storage locations, each containing binary data
 - Generally, each location contains 8 bits (1 byte) of data
 - Could contain multiple bytes (e.g. 16 bits, 32 bits)
- Each location has an address
 - Used to specify location to use
 - Has to be set first so 1 location is selected
- Data can be read from or written into the selected location
 - Depends on the control signal
 - For read, data in memory location → data bus
 - For write, data on data bus → memory location

Data

Address

Control signal

School of Engineering

ENS1161 Computer Fundamentals

Address bus (recap - Module 2)

- Used to select locations within the processors addressable space for reading or writing data
- The wider (more bits) the address bus, the greater the addressable space
 - 2^N addresses from an N-bit address bus
- The address bus is unidirectional
 - From the processor to memory or device
 - No information is read from it

Data bus (recap - Module 2)

- Used to transfer data to and from memory (or other device)
- All information in the system is transferred through this bus
 - data, program instructions, operand addresses, etc.
- Width of the data bus depends on processor
 - Normally the number of bits processor can process at one time
 - The wider the bus, more data can be transferred at one go
- The data bus is bidirectional
 - READ operation: data from memory location specified on address bus → processor
 - WRITE operation: data from processor
 → memory location specified on address bus

School of Engineering

ENS1161 Computer Fundamentals

Logic levels

- Voltages are used to represent 0 and 1
 - 0 V nominally used to represent a '0'
 - V_{cc} is used to represent '1'
 - V_{cc} = the device power high voltage
 - Typically 5V, but many mobile devices use 3.3V or lower
- In reality, a range of voltages can be accepted as a '1' or '0'
 - Range depends on the particular technology used
 - V_{H min} = lowest voltage that will be read as a '1'
 - V_{L max} = highest voltage that will be read as a '0'
 - In between is an 'indeterminate' range
 - Devices may read them as '1' or '0' (unpredictable)
 - Should not attempt to read when in this range

School of Engineering

Memory read sequence

Memory access time

- Memory read takes a number of steps from the time the address and read signal are sent till the data is available
 - Allow address signals (voltages) to 'settle' (stop changing)
 - Decode the address
 - Select the correct memory location
 - Transfer data to data buffer that is connected to the data bus
 - Enable data onto the bus
 - Allow data signals (voltages) to 'settle' (stop changing)
- Each step takes a finite amount of time
- This is called the access time for the memory
 - Normally in the order of 10 150 ns (nanoseconds)

Types of Read Only Memory (ROM)

- Mask ROMs or just ROM
 - · Data stored is built into chip at manufacture using a 'mask'
- PROMs (One-time) Programmable ROM
 - · Data is written in by 'fusing' (burning) connections
- EPROM Erasable Programmable ROM
 - Data can be cleared by exposing chip to UV light
 - · Can then be reprogrammed
- EEPROM Electrical Erasable PROM
 - Can be re-programmed in-circuit
 - Disadvantage low density, higher cost
- Flash Memory Higher density EEPROM
 - Designed for large block erase and writes

School of Engineering

ENS1161 Computer Fundamentals

Firmware

- Software embedded in hardware (ROM)
- The most common application of ROMs
 - E.g. ROM-BIOS (Basic Input Output System)
 - · Data and program code needed on power-up of computer systems
 - Instructions to initialise the system and invoke an operating system from auxiliary memory
 - bootstrapping or 'booting'
 - · Covered in more detail in Modules 8 and 9
 - Also low-level functions to handle I/O based on hardware in the system
 - EEPROM or Flash Memory used to allow the firmware to be upgraded if necessary

Types of RAM

- ▶ 2 main types of RAM used in computer systems:
 - Static RAM (SRAM)
 - Stores data in logic circuits (flip-flops)
 - · Can stay in a given state indefinitely as long as there is power
 - Fast and simple implementation, but space and power inefficient
 - Dynamic RAM (DRAM)
 - Data stored as charge on small MOS capacitors
 - Requires periodic recharging due to leakage of capacitors
 - More complex needs refresh circuitry
 - · Data read, and rewritten in
 - But can be much higher density and power requirements are much lower

DRAM vs SRAM

DRAM vs. SRAM Memory Cell Complexity

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS 25

Capacitor.

(a) DRAM cell

Bit

line

DRAM - principles of operation

- Essentially just a capacitor
 - Acts as a 'bucket' that stores charge
 - Electric current = flow of charge in or out
 - Voltage depends on 'level' of charge in the bucket
 - Whether cell contains '0' or '1' depends on the voltage

School of Engineering

DRAM - Limitations

Time to change data

- 'Bucket' needs time fill up / empty
- Physically impossible to change voltage instantly
- Voltage change follows exponential curve
- This physical limitation applies to all signals
 - Data or addresses
 - Though speed of change depends on circuit
 - 'Size of bucket'

Current, I-

Voltage, V

Discharging

(emptying 'bucket')

Charging (filling 'bucket')

School of Engineering

DRAM - Limitations

Charge leakage

- Capacitors are not perfect
- Charge can leak out
- Voltage will therefore drop
- Data may 'fade away'
- Solution: *Refresh circuitry*
 - Special circuit that periodically checks each cell and 'refreshes' the data
 - Charges it up if a '1' or discharges fully if a '0'
 - · 'Refill' or 'empty bucket' accordingly

Processor speed vs RAM speed

- A single processor instruction may require multiple memory access
 - 1 instruction read (minimum)
 - 1 or more data read or write
 - Depending on type and complexity of instruction
 - Refer Module 2
- Processor clock speeds have increased tremendously
 - E.g. Intel i7 processor standard clock speed = 3.7 GHz
 - i.e. 1 period of clock = 0.27 ns (nanosecond)
- RAM access speeds much slower
 - DRAM typically 60 ns
 - SRAM typically 10 ns
- While DRAM is cheap and compact, speed can be a bottleneck

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

Cache Memory

- Small amount of faster memory that sits 'between' CPU and main memory
 - Stores copies of frequently used data and instructions
 - To improve performance of primary storage
- If data required is in cache (hit), processor will read data from there
- If not in cache (miss), will then go to main memory to retrieve the data
- Static RAM used for cache memory
 - Bulkier, more expensive but faster

Internal vs External buses (recap Module 2)

- The internal address and data buses connect the processor components within the processor chip
 - Registers, ALU, etc.
- The external data bus connects the processor chip to external components
 - Memory, I/O devices
- Internal bus transfers are much faster because:
 - Transfers are within chip
 - · Shorter distance, less interference
 - On chip components are faster
 - E.g. registers have a much quicker response time compared to external memory

School of Engineering

ENS1161 Computer Fundamentals

On-chip Cache

- L1 cache is an additional level of cache memory
- Very fast (but small) cache memory that is within the processor chip
 - Takes advantage of the speed of internal transfers within chip
 - Previously described cache memory called L2 cache
- Needed as disparity between processor and memory speeds grew larger
- Evolving terminology (for multi-core processors):
 - L1 cache: On-chip cache for 1 core
 - L2 cache: On-chip cache shared between cores
 - L3 cache: Off-chip cache

School of Engineering

Hard Disk Drives (HDD)

- Data is stored on metallic platters ('hard disks')
 - Platters are coated on both sides with magnetic oxide
 - The magnetic 'orientation' of material changed to represent 1s or 0s
- Heads read the 1's and 0's from the platter
 - Or write them to the platter
 - Heads for top and bottom of each platter
- Platters spin at high speed
 - Typically 5,400 rpm or higher
- Actuator arm moves the heads together radially
- Allows any spot to be accessed

ENS1161 COMPUTER FUNDAMENTALS

HDD data layout

- Data on hard drives is organised in tracks
- Tracks are subdivided into blocks called sectors
 - Normally 512 bytes
- Operating systems allocate space in clusters
 - Groups of sectors
- Moving the heads from track to track takes time
 - Slows down read / write time
- So data is normally spread across the same track on the different surfaces of the platters
 - Blocks of data send to different heads
- This combination of tracks is called a cylinder

Image: Wimox, 2019

School of Engineering

HDD pros and cons

- Access time is relatively long
 - 4 to 20 ms (milliseconds), depending on drive
 - Seek time in addition to normal access delays
 - Seek time = time to get head positioned over data location
 - Time to move head to track
 - + time for disk to spin required sector under head
- Possibility of mechanical failure
 - e.g. head crash head hits platter due to mechanical shock
- Power consumption and noise
 - Because platters always rotating
- Cheap
 - Very low cost per byte
- Mature technology
 - Reliability, speed, noise and power consumption has been improved over time

School of Engineering

ENS1161 Computer Fundamentals

disk read-and-write head

magnetic layer aluminum plate

floating on a cushion of air

Image: Wimox, 2019

Disk Fragmentation

- As files are added and deleted from disk, and files on disk grow and shrink as they are updated, the files become fragmented
 - Occupy non-contiguous clusters
- Increases the read time as heads will need to move around from track to track
- May require defragmentation routines to be run to improve performance
 - Move data around on disk so that they lie on contiguous blocks

Image: XZise, 2008

School of Engineering

Image: Enterprise

Solid State Drives

- Mainly based on Flash ROM technology
 - Works in similar fashion to RAM
 - But transfer blocks of data rather than single bytes
- Main advantages:
 - Fast access (no seek time)
 - Typical access times: 35 100 μs (microseconds)
 - About 100x faster than HDD
 - Quiet no spinning disks
 - Reliable no moving mechanical parts
 - Fast startup no delays waiting for disks to get up to speed
- Main disadvantage: High cost per byte
 - Though price keeps dropping

Image: Ordercrazy, 2014

School of Engineering

ENS1161 Computer Fundamentals

Reproduced with permission.

All rights reserved.

Copyright 1999-2019 QuinStreet, Inc.

Tape

- Provides sequential access to data
 - Tape needs to be forwarded / rewound to find data
 - Very large access times
- Earliest computers used tape as secondary storage
- Now used mainly for archival purposes
 - Different formats: DDS-4, Data8, QIC, etc.
- Cheapest media per byte
- Tape can safely store data for decades
 - Provided temperature / humidity conditions maintained
 - c.f. Hard drives: mechanisms may seize up if not used for years
 - c.f. Flash: can lose data if not powered up for 2 3 years

Image: Dave Winer, 200

Image: Robert Jacek Tomczak, 200

ENS1161 COMPUTER FUNDAMENTALS

Optical discs

- Data read by laser heads
- ▶ 1s and 0s 'lands' (reflective) and 'pits' (non-reflective)
- Common formats:
 - CD (Compact Disc): 700 Mb
 - DVD (Digital Versatile Disc): 4.7Gb / 9.4 GB
 - Blu-Ray: 25 GB / 50 GB or more
- Can be read-only, write-once or rewritable
 - Need appropriate disc and drive
- Physical damage to surface (e.g. scratches) can affect data

Usage has declined with the increased popularity of flash drives

Image: By User:Wanted, User:Ochro

RAID

- Redundant Array of Independent Disks
 - Previously 'Redundant Array of Inexpensive Disks'
- Have different levels that achieve different objectives
 - Speed
 - To overcome latency of HDD
 - Redundancy
 - · Ability to recover data if a drive fails
- Video: What is RAID 0, 1, 5, & 10?

Basic RAID Level Summary

- Raid 0 ('striping')
 - Increases speed by distributing data over different drives
 - No redundancy worse because if 1 drive fails, all data lost
- Raid 1 ('mirroring')
 - Data is duplicated over 2 drives
 - Good redundancy if one drive fails, data still intact
 - Cost double number of drives
- Raid 5
 - Has data striped across a number of drives along with *parity* information
 - Data can be rebuilt from parity information if 1 drive fails
- Raid 10
 - Combines Raid 1 and 0

School of Engineering

ENS1161 Computer Fundamentals

Module Objectives

On completion of this module, students should be able to:

- Explain the differences between primary and secondary storage.
- Describe the different types of primary and secondary storage technologies covered and their principles of operation.
- Explain the how the characteristics and specifications of different storage technologies impacts their usage in computer systems.
- Evaluate different types of storage based on their specifications and determine the most suitable for a given application.

