Диференціальні рівняння Частина 1

Зміст

1	Ди	ференціальні рівняння першого порядку	2
	1.1	Основні означення	2
	1.2	Деякі типи рівнянь першого порядку	3
		1.2.1 Рівняння з відокремлювальними змінними	3
		1.2.2 Однорідне рівняння	4
		1.2.3 Лінійне рівняння	5
		1.2.4 Рівняння Бернуллі	6
		1.2.5 Рівняння, що можна звести до однорідного	7
	1.3	Задача Коші	9
2	Ди	ференціальні рівняння n-го порядку	13
	2.1	Основні означення	13
	2.2	Задача Коші	14
	2.3	Деякі типи рівнянь, що допускають зниження порядку	15
		2.3.1 Рівняння, в якої немає залежності від y в правій	1 -
		частині	15
		2.3.2 Рівняння, в якої немає залежності від x в правій	1.0
		частині	16
		2.3.3 Рівняння тип 3	16
3	Лін	іійні диференціальні рівняння	18
	3.1	Однорідне рівняння	19
	3.2	Неоднорідне рівняння	26
	3.3	Однорідне рівняння з постійними коефіцієнтами	29
	3.4	Неоднорідне рівняння з постійними коефіцієнтами	33
4	Ди	ференціальні рівняння, що не потрапили	35
	4.1	Рівняння $y' = f(ax + by + c)$	35
	4.2	Квазіоднорідні рівняння	35
	4.3	Лінійне рівняння методом Ейлера	36
	4.4	Рівняння Рікатті	37
	4.5	Канонічний вигляд рівняння Рікатті	38
	4.6	Спеціальні рівняння Рікатті	39
	4.7	Диференціальні рівняння в симетричній формі	41
		4.7.1 Рівняння в повних диференціалах	41
		4.7.2 Інтегрувальний множник	42

1 Диференціальні рівняння першого порядку

1.1 Основні означення

Definition 1.1.1. Задана область $D \subset \mathbb{R}^2$ - відкрита та однозв'язна; функція $f:D \to \mathbb{R}$

Диференціальним рівнянням першого порядку називається наступний вираз:

$$y' = f(x, y) \tag{1}$$

Definition 1.1.2. Розв'язком рівняння (1) називається функція $y = \varphi(x)$, що визначений та диференційований на відкритому інтервалі $I \subset \mathbb{R}$, графік якої міститься в області D та задовольняє рівнянню (1)

Definition 1.1.3. Графіком розв'язку $y=\varphi(x)$ називається **інтегральною кривою**

Example 1.1.4. Задане диференціальне рівняння: $y' = \frac{y}{x}$

Розв'язком буде функція $\varphi(x) = Cx$, причому:

$$I=(0,+\infty),$$
 якщо $D=\{(x,y)\in\mathbb{R}^2:x>0\}$

$$I = (-\infty, 0)$$
, якщо $D = \{(x, y) \in \mathbb{R}^2 : x < 0\}$

Геометричний зміст

Якщо $y=\varphi(x)$ - розв'язок рівняння (1), то $k=\frac{d\varphi(x)}{dx}$ - кутовий коефіцієнт до графіку функції $y=\varphi(x)$ в т. x

Remark 1.1.4.1. Розв'язки рівняння (1) іноді зрузчно розглядати як $x = \psi(y)$. Тоді рівняння (1) записують так:

$$x' = \frac{1}{f(x,y)}$$

Remark 1.1.4.2. В загальному випадку розв'язок рівняння (1) може розглядатись як неявна функція F(x,y) = 0. Тоді рівняння (1) записують так:

$$dy - f(x, y)dx = 0$$

Definition 1.1.5. Рівнянням Пфаффа називають наступне рівняння:

$$M(x,y)dx + N(x,y)dy = 0 (2)$$

(TODO)

Definition 1.1.6. Задана область $D \subset \mathbb{R}^2$ - відкрита та однозв'язна; точка $(x_0,y_0) \in D$

Задачею Коші з початковою умовою (x_0, y_0) називається система рівнянь:

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Розв'якзом називають такий розв'язок функції першого рівняння $y=\varphi(x)$, для якого $\varphi(x_0)=y_0$

Example 1.1.7.
$$\begin{cases} \frac{dy}{dx} = x \\ y(0) = 0 \end{cases}$$

Для нього існує єдиний розв'язок $y=\frac{x^2}{2},\,I=\mathbb{R}$

1.2 Деякі типи рівнянь першого порядку

1.2.1 Рівняння з відокремлювальними змінними

Дане рівняння має наступний вигляд:

$$M_1(x)M_2(y) dx + N_1(x)N_2(y) dy = 0$$

або

$$\frac{dy}{dx} = f_1(x)f_2(y)$$

 M_1, N_1, f_1 - неперервні на $I_1,$ а M_2, N_2, f_2 - неперервні на $I_2.$

Розглянемо випадок, коли $M_2(y) \not\equiv 0$, $N_1(x) \not\equiv 0$. Тоді рівняння перепишеться наступним чином:

$$\frac{M_1(x)}{N_1(x)} dx = -\frac{N_2(y)}{M_2(y)} dy$$

Далі проінтегруємо її:

$$\int \frac{M_1(x)}{N_1(x)} dx = -\int \frac{N_2(y)}{M_2(y)} dy$$

Якщо в обох частинах ми знайшли первісні $F_1(x), F_2(y)$, то розв'язок задається неявно таким чином:

$$F_1(x) = -F_2(y) + C$$

При якихось $x_* \in I_1, y_* \in I_2$ таких, що $M_2(y_*) = 0, N_1(x_*) = 0$, ці точки будуть відкинуті. Тобто розв'язок задається на меншому інтервалі

Example. Розв'язати рівняння: $\frac{dy}{dx} = 2x \cos^2 y$ Спочатку перевіримо, коли $\cos^2 y = 0$. Тоді

$$y_* \equiv \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$
 - розв'язок

Тепер поділимо на $\cos^2 y$:

$$\frac{dy}{\cos^2 y} = 2x \, dx$$

Інтегруємо обидві частини та маємо:

 $\operatorname{tg} y = x^2 + C$ на інтервалі $I = \mathbb{R} \setminus \{y_*\}$ - розв'язок

Можна привести в іншому вигляді:

$$y = \operatorname{arctg}(x^2 + C) + \pi m, m \in \mathbb{Z}$$

1.2.2Однорідне рівняння

Definition 1.2.2.1. Функція f(x,y) називається **однорідною**, якщо:

$$\forall t \neq 0 : f(tx, ty) = f(x, y)$$

Example 1.2.2.2. $f(x,y) = \frac{x^2 + y^2}{xy}$ - однорідна, оскільки:

$$f(tx, ty) = \frac{t^2x^2 + t^2y^2}{t^2xy} = \frac{x^2 + y^2}{xy} = f(x, y)$$

Proposition 1.2.2.3. Функція f(x,y) - однорідна $\iff \exists F(z)$:

$$f(x,y) = F\left(\frac{y}{x}\right)$$

Proof.

$$\sqsubseteq$$
 Дано: $\exists F(z): f(x,y) = F\left(\frac{y}{x}\right)$

Тоді
$$f(tx,ty)=F\left(\frac{ty}{tx}\right)=F\left(\frac{y}{x}\right)=f(x,y).$$
 Отже, $f(x,y)$ - однорідна

 \Rightarrow Дано: f(x,y) - однорідна

Тоді
$$f(x,y) = f\left(x \cdot 1, x \cdot \frac{y}{x}\right) = f\left(t \cdot 1, t \cdot \frac{y}{x}\right) \stackrel{f(tx,ty) = f(x,y)}{=} f\left(1, \frac{y}{x}\right)$$

Тому оберемо F(z) = f(1,z), що й завершує доведення

А тепер як розв'язувати. Дано стандартне диф. рівняння:

$$y' = f(x, y)$$

Цього разу f(x,y) - однорідна Скористаємось наступною заміною:

$$y = xz$$
, де $z = z(x)$

Знайдемо її похідну:

$$y' = z + xz'$$

Тоді наше початкове рівняння матиме вигляд:

$$z+xz'=f(x,xz)\stackrel{\text{однорідна}}{=} f(1,z)\stackrel{\text{позначу}}{=} g(z)$$
 $xz'=g(z)-z$

Прийшли до рівняння з відокремлювальними змінними

$$\frac{dx}{x} = \frac{dz}{g(z) - z} \dots$$

Після інтегрування замінюємо: $z = \frac{y}{x}$. Ну а далі як вийде

Example. Розв'язати рівняння: $y' = \frac{x+y}{x-y}$

Можна помітити, що $\frac{tx+ty}{tx-ty}=\frac{x+y}{x-y}$. Тобто ця функція - однорідна.

Тому робимо заміну:

$$y = xz, z = z(x) \Rightarrow y' = z + xz'$$

$$z + xz' = \frac{1+z}{1-z} \Rightarrow xz' = \frac{z^2+1}{1-z} \Rightarrow \frac{dx}{x} = \frac{1-z}{z^2+1} dz$$

$$\ln|x| + C = \arctan z - \frac{1}{2}\ln(z^2+1)| \cdot 2$$

$$\ln x^2 + \ln(z^2+1)C' = 2\arctan z$$

$$z = \frac{y}{x}$$

$$2\arctan \frac{y}{x} = \ln C\sqrt{x^2+y^2}$$

1.2.3 Лінійне рівняння

Розглядується рівняння наступного вигляду (TODO):

$$y' + a(x)y = b(x)$$

де $a, b \in C(I)$.

При $b(x) \equiv 0$ таке рівняння називають **однорідним**. В іншому випадку - **неоднорідним**

Розв'язок даного рівняння буде складатись так:

$$y = y_{g.h.} + y_{p.inh.}$$

 $y_{
m g.h.}$ - загальний розв'язок однорідного диф. рівняння

 $y_{\mathrm{p.inh.}}$ - частковий розв'язок неоднорідного диф. рівняння Знайдемо $y_{g.h.}$:

$$y'+a(x)y=0\Rightarrow \frac{dy}{y}=-a(x)\,dx\Rightarrow \ln|y|=-A(x)+C$$
 де $A(x)=\int a(x)\,dx$ $\Rightarrow y_{\mathrm{g.h.}}=Ce^{-A(x)}$

Наступним кроком буде знайти $y_{\mathrm{p.inh.}}$. Це можна зробити, якщо в початкове рівняння підставити цей раз наступне:

$$y = C(x)e^{-A(x)}$$
, тут $C(x)$ - функція

Підставляючи, отримаємо задачу - знайти функція C(x). Там рівняння буде з відокремленою змінною. Після чого ми підставляємо C(x) в $y = C(x)e^{-\tilde{A}(x)} = y_{\text{p.inh}}$

Example. Розв'язати рівняння: $y' + 2xy = xe^{-x^2}$

Тут буде демонструватись ті самі кроки

Спочатку знайдемо загальний однорідний розв'язок:

$$y' + 2xy = 0 \Rightarrow \frac{dy}{y} = -2x dx \Rightarrow \ln|y| = -x^2 + C \Rightarrow y_{\text{g.h.}} = Ce^{-x^2}$$

Задамо новий розв'язок: $y=C(x)e^{-x^2}$ та підставимо в початкове: $C'(x)e^{-x^2}+C(x)e^{-x^2}(-2x)+2xC(x)e^{-x^2}=xe^{-x^2}$

$$C'(x)e^{-x^2} + C(x)e^{-x^2}(-2x) + 2xC(x)e^{-x^2} = xe^{-x^2}$$

$$C'(x) = x \Rightarrow C(x) = \frac{x^2}{2} + C_0$$

Остаточно отримаємо, що:

$$y = e^{-x^2} \left(\frac{x^2}{2} + C_0 \right) = e^{-x^2} C_0 + e^{-x^2} \frac{x^2}{2}$$

Інший варіант розв'язку такого рівняння - це метод Бернуллі

Заміна:
$$y = uv$$
, де $u = u(x), v = v(x)$

$$y' = u'v + v'u$$

$$\Rightarrow u'v + v'u + a(x)uv = b(x) \Rightarrow u'v + u(v' + a(x)v) = b(x)$$

Далі ми v' + a(x)v = 0. Там достатньо одного розв'язку. Отримавши v, можемо знайти звідси u

1.2.4 Рівняння Бернуллі

Розглядується рівняння наступного вигляду:

$$y' + a(x)y = b(x)y^{\lambda}, \lambda \in \mathbb{R} \setminus \{0, 1\}$$

Remark. При $\lambda = 0$ рівняння буде лінійним. При $\lambda = 1$ рівняння буде з відокремленими змінними

Якщо $\lambda > 0$, то $y \equiv 0$ буде також розв'язком А далі ділимо обидві частини на y^{λ} : $y'y^{-\lambda} + a(x)y^{-\lambda+1} = b(x)$ Робимо заміну: $z=y^{-\lambda+1}, z=z(x)$

$$z' = (-\lambda + 1)y^{-\lambda}y'$$

$$\Rightarrow \frac{z'}{1 - \lambda} + a(x)z = b(x)$$

А далі вже розв'язується лінійне рівняння...

Example. Розв'язати рівняння: $y' + \frac{y}{x+1} + y^2 = 0$

 $(\text{тут } \lambda = 2)$

 $y\equiv 0$ - розв'язок. Далі ділимо на y^2 :

$$y'y^{-2} + \frac{y^{-1}}{x+1} + 1 = 0$$

Заміна: $z = y^{-1} \Rightarrow z' = -y^{-2}y'$ $-z' + \frac{z}{z+1} + 1 = 0$

$$-z' + \frac{z}{x+1} + 1 = 0$$

Заміна 2:
$$z = uv \Rightarrow z' = u'v + v'u$$

 $-u'v - v'u + \frac{uv}{x+1} + 1 = 0 \Rightarrow u'v - u(\frac{v}{x+1} - v') = 1$

$$\frac{v}{x+1} - v' = 0 \Rightarrow \dots \Rightarrow v = \frac{1}{x+1}$$
$$u'\frac{1}{x+1} = 1 \Rightarrow \dots \Rightarrow u = \frac{1}{2}(x+1)^2 + C$$

Зворотня заміна 2: $z = uv = \frac{x+1}{2} + \frac{C}{2}$

Зворотня заміна 1: $z = y^{-1} = \frac{x+1}{2} + \frac{C}{x+1} = \frac{(x+1)^2 + 2C}{2(x+1)}$

Остаточно отримаємо:

$$y = \frac{2(x+1)}{(x+1)^2 + 2C}$$
$$y \equiv 0$$

1.2.5Рівняння, що можна звести до однорідного

Нехай задане ось таке рівняння:

$$y' = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$$

Оскільки ми "хочемо" звести це рівняння до однорідної, то нам необхідно перетворити цю дріб на наступний вигляд

$$Y' = \frac{\alpha_1 X + \beta_1 Y}{\alpha_2 X + \beta_2 Y}$$

Можна компоненти дробу розглянути як два рівняння прямої:

$$\begin{cases} \alpha_1 X + \beta_1 Y = 0\\ \alpha_2 X + \beta_2 Y = 0 \end{cases}$$

та помітити, що в них існує єдиний розв'язок (0,0).

В нашому конкретному випадку:

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$$

Система матиме єдиний розв'язок при умові, що $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$. Скажімо (x_0,y_0) . Тепер для однорідного вигляду я хочу таку заміну на x та yзакласти, щоб згодом вони перетнулись в т. (0,0).

Тоді заміна:

$$\begin{cases} x = X + x_0 \\ y = Y + y_0 \end{cases} \Rightarrow \begin{cases} dx = dX \\ dy = dY \end{cases} \Rightarrow \frac{dY}{dX} = Y'$$

Тому ми отримали рівнання, яку ми "захотіли". І якщо погратись з алгеброю, то буде саме такий вираз: $Y' = \frac{a_1 X + b_1 Y}{a_2 X + b_2 Y}$

$$Y' = \frac{a_1 X + b_1 Y}{a_2 X + b_2 Y}$$

А далі це однорідне рівняння...

Example. Розв'язати рівняння $y' = \frac{2y - x - 5}{2x - u + 4}$

Одразу зауважу, що
$$\begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix} \neq 0$$

$$\begin{cases} -x + 2y - 5 = 0 \\ 2x - y + 4 = 0 \end{cases} \Rightarrow \begin{cases} x = -1 \\ y = 2 \end{cases}$$

$$\text{Заміна:} \begin{cases} X = x + 1 \\ Y = y - 2 \end{cases} \Rightarrow \begin{cases} dX = dx \\ dY = dy \end{cases}$$

$$Y' = \frac{2Y - X}{2X - Y}$$

$$\text{Заміна 2: } Y = ZX, Z = Z(X) \Rightarrow Y' = Z + XZ'$$

$$Z + XZ' = \frac{2Z - 1}{2 - Z} \Rightarrow XZ' = \frac{Z^2 - 1}{2 - Z} \Rightarrow \frac{dX}{X} = \frac{2 - Z}{Z^2 - 1} dZ$$

$$\ln |X| + C = \frac{1}{2} \ln |Z - 1| - \frac{3}{2} \ln |Z + 1|$$

$$\ln (CX)^2 = \ln \left| \frac{Z - 1}{(Z + 1)^3} \right|$$

$$CX^2 = \frac{Z - 1}{(Z + 1)^3}$$
Зворотня заміна 2:
$$CX^2 = \frac{\frac{Y}{X} - 1}{(\frac{Y}{Y} + 1)^3} = \frac{YX^2 - X^3}{(Y + X)^3}$$

$$CX^{2} = \frac{\frac{Y}{X} - 1}{(\frac{Y}{X} + 1)^{3}} = \frac{YX^{2} - X^{3}}{(Y + X)^{3}}$$

$$Y - X$$

$$C = \frac{Y - X}{(Y + X)^3}$$

Зворотня заміна і остаточна відповідь: $C = \frac{y - x - 3}{(y + x - 1)^3}$

$$C = \frac{y - x - 3}{(y + x - 1)^3}$$

Задача Коші 1.3

Definition 1.3.1. Задана область $D \subset \mathbb{R}^2$ та функція $f: D \to \mathbb{R}$ Така функція задовольняє умові Ліпшиця відносно у, якщо

$$\exists L > 0 : |f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

Proposition 1.3.2. Задан прямокутник $\Pi = I_a \times I_b \subset \mathbb{R}^2$. Відомо, що функція f(x,y) має часткову похідну f_y' , яка обмежена в D. Тоді f задовільняє умові Ліпшица в D, причому $L = \sup_{(x,y) \in D} |f_y'(x,y)|$

Proof.

Зафіксуємо довільне значення х

За теоремою Лагранжа, $\exists \xi \in (y_1, y_2)$:

$$f(x, y_1) - f(x, y_2) = f'_y(x, \xi) \cdot (y_1 - y_2)$$

Тоді
$$|f(x,y_1) - f(x,y_2)| = |f'_y x, \xi| |y_1 - y_2| \le \sup_{(x,y) \in D} |f'_y (x,y)| |y_1 - y_2| \blacksquare$$

А тепер розглянемо задачу Коші:

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

де
$$f: \Pi = I_a \times I_b \to \mathbb{R}$$

 $I_a = [x_0 - a, x_0 + a], I_b = [y_0 - b, y_0 + b]$

Наша головна мета: дізнатись, чи буде розв'язок задачі Коші єдиним взагалі і за якими умовами

Lemma 1.3.3. Функція y(x) - розв'язок задачі Коші $\iff y(x)$ задовільняє інтегральному рівнянню:

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$$

Причому $y:I\subset I_a o I_b$ - диференційована

Proof.

 \implies Дано: y(x) - розв'язок задачі Коші, тобто

$$\overline{y'(t)} = f(t, y(t)) \Rightarrow \int_{x_0}^x y'(t) \, dt = \int_{x_0}^x f(t, y(t)) \, dt \Rightarrow y(x) = y_0 + \int_{x_0}^x f(t, y(t)) \, dt$$

 \sqsubseteq Дано: y(x) - розв'язок інтегрального рівняння

Продиференціюємо з обох сторін:

$$y'(x) = 0 + f(x, y(x)) = f(x, y(x))$$

Більш того,
$$y(x_0) = y_0 + \int_{x_0}^{x_0} f(t, y(t)) dt = y_0$$

Отримали, що y(x) - розв'язок нашої задачі Коші \blacksquare

Ця лема знадобиться, оскільки розв'язок задачі Коші $y_*(x)$ ми будемо знаходити як границю рівномірно збіжної послідовності функцій $\{y_n(x), n \ge 1\}$ так, що:

$$y_n(x) = y_0 + \int_{x_0}^x f(t, y_{n-1}(t)) dt \ \forall n \in \mathbb{N}$$
$$y_0(x) \equiv y_0$$

Theorem 1.3.4. Теорема Пікара

Задана функція $f:\Pi\to\mathbb{R}$ така, що $f\in C(\Pi)$ та під умовою Ліпшиця відносно y

Тоді задача Коші містить єдиний розв'язок $y_*(x)$ на інтервалі $I_h = [x_0 - h, x_0 + h]$

Proof.

Частина 1. Існування

1) Доведемо (MI), що всі y_n знаходяться в прямокутнику $I_h \times I_b \subset \Pi$, тобто $\forall n \geq 1 : \forall x \in I_h : |y_n(x) - y_0| \leq b$

$$n=1\Rightarrow |y_1(x)-y_0(x)|=\left|y_0+\int_{x_0}^x f(t,y_0)\,dt-y_0\right|\leq \left|\int_{x_0}^x |f(t,y_0)|\,dt\right|\leq 0$$
 Оскільки $f\in C(\Pi)$, то вона взагалі є обмеженою, тому $\exists M=\max\ |f(x,y)|$

$$|\leq M|x - x_0| \leq Mh \leq M\frac{b}{M} = b$$

Нехай умова виконується для фіксованого n. Перевіримо твердження для n+1:

$$|y_{n+1}(x) - y_0| = \left| \int_{x_0}^x f(t, y_n(t)) dt \right| \le \left| \int_{x_0}^x |f(t, y_n(t))| dt \right| \le$$

За припущенням, y_n вже лежить в заданому прямокутнику. Тому $f(x, y_n(x))$ є також обмеженою

$$|\leq M|x - x_0| \leq Mh \leq M\frac{b}{M} = b$$

Отже, всі y_n лежать в прямокутнику $I_h \times I_b$

2) Доведемо, що послідовність $\{y_n(x), n \geq 1\}$ рівномірно збігається Зауважимо, що

$$y_n(x) = y_0 + (y_1(x) - y_0) + (y_2(x) - y_1(x)) + \dots + (y_n(x) - y_{n-1}(x))$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} (y_k(x) - y_{k-1}(x)).$$

Спробуємо довести збіжність критерієм Вейерштрасса, тобто ми оцінимо $|y_k(x) - y_{k-1}(x)| \ \forall x \in I_h$ таким чином, щоб було число

$$|y_1(x) - y_0(x)| \stackrel{\text{II. 1}}{\leq} M|x - x_0| = M \frac{|x - x_0|}{1!}$$

$$|y_2(x) - y_1(x)| = \left| \int_{x_0}^x f(t, y_1(t)) - f(t, y_0(t)) dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0(t))| dt \right| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_0$$

умова Ліппиця
$$\left| \int_{x_0}^x L|y_1(t) - y_0| dt \right| \le \left| \int_{x_0}^x LM|t - x_0| dt \right| = ML \frac{|x - x_0|^2}{2!}$$

. . .

Використовуючи **MI**, отримаємо таку оцінку $\forall k \geq 1$ і $\forall x \in I_h$:

$$|y_k(x) - y_{k-1}(x)| \le ML^{k-1} \frac{|x - x_0|^k}{k!} \le ML^{k-1} \frac{h^k}{k!}$$

Отримаємо мажорантний ряд $\sum_{k=1}^{\infty} ML^{k-1} \frac{h^k}{k!}$. Перевіримо на збіжність:

$$\sum_{k=1}^{\infty} ML^{k-1} rac{h^k}{k!} = \sum_{k=1}^{\infty} rac{M}{L} rac{(Lh)^k}{k!} = rac{M}{L} \left(e^{Lh} - 1
ight)$$
 - збіжний

Отже, підсумовуючи, отримаємо, що $y_n(x) \xrightarrow{} y_*(x)$

3) Доведемо, що $y_*(x) = \lim_{n \to \infty} y_n(x)$ також знаходиться в прямокутнику $I_h \times I_b$

Згідно з п.1), можемо отримати, що:

$$|y_*(x) - y_0| = |\lim_{n \to \infty} y_n(x) - y_0| = |\lim_{n \to \infty} (y_n(x) - y_0)| = \lim_{n \to \infty} |y_n(x) - y_0| \le |y_n(x) - y_0|$$

$$\leq \lim_{n \to \infty} b = b$$

4) Доведемо, що $y_*(x) \in C(\Pi)$ та є розв'язком задачі Коші Оскільки $y_0(x), f(x,y) \in C(\Pi)$, то $f(x,y_0(x)) \in C(\Pi)$ Тоді $y_1(x) \in C(\Pi)$, а за $\mathbf{MI}, y_n(x) \in C(\Pi)$. І нарешті, через рівномірну збіжність, $y_*(x) \in C(\Pi)$

$$y_*(x) = \lim_{n \to \infty} y_n(x) = \lim_{n \to \infty} \left(y_0 + \int_{x_0}^x f(t, y_{n-1}(t)) dt \right) = y_0 + \int_{x_0}^x f(t, \lim_{n \to \infty} y_{n-1}(t)) dt =$$

$$= y_0 + \int_{x_0}^x f(t, y_*(t)) dt$$

Тоді за лемою, $y_*(x)$ - розв'язок задачі Коші. **Кінець частини 1.**

Частина 2. Єдиність

!Вважаємо, що існують два розв'язки задачі Коші: $y_*(x), y_{**}(x)$.

Розглянемо функцію $z(x) = y_{**}(x) - y_{*}(x)$ та оцінимо її:

$$|z(x)| = \left| \int_{x_0}^x f(t, y_{**}(t)) - f(t, y_{*}(t)) dt \right| \le \left| \int_{x_0}^x |f(t, y_{**}(t)) - f(t, y_{*}(t))| dt \right| \le \left| \int_{x_0}^x L|y_{**}(t) - y_{*}(t)| dt \right| = \left| \int_{x_0}^x L|z(t)| dt \right| \le LM'|x - x_0| \le LM'h \text{ (TODO)}$$

2 Диференціальні рівняння п-го порядку

2.1 Основні означення

Definition 2.1.1. Задана область $D \subset \mathbb{R}^{n+1}$ - відкрита та однозв'язна; функція $f:D \to \mathbb{R}$

Диференціальним рівнянням n-го порядку називається наступний вираз:

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$
(3)

Definition 2.1.2. Розв'язком рівняння (3) називається функція $y = \varphi(x)$, що визначений та диференційований n разів на відкритому інтервалі $I \subset \mathbb{R}$, всі похідні якого містяться в області D та задовольняє рівнянню (3)

Example 2.1.3. Задане диференціальне рівняння: $y'' = e^x$ Розв'язком буде функція $\varphi(x) = e^x + C_0 x + C_1$ на інтервалі $I = \mathbb{R}$

Definition 2.1.4. Задана область $D \subset \mathbb{R}^{n+1}$ - відкрита та однозв'язна; точка $(x_0,y_0,y_0',\cdots,y_0^{(n-1)})\in D$

Задачею Коші з початковою умовою $(x_0, y_0, y_0', \cdots, y_0^{(n-1)})$ називається система рівнянь:

$$\begin{cases} y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ \dots \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

Розв'якзом називають такий розв'язок функції першого рівняння $y=\varphi(x)$, для якого $\varphi(x_0)=y_0,\, \varphi'(x_0)=y_0',\, \cdots,\, \varphi^{(n-1)}(x_0)=y_0^{(n-1)}$

Example 2.1.5.
$$\begin{cases} y'' = e^x \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$$

y(0) = 1 Вже отримали, що $y = e^x + C_0 x + C_1$. Тоді якщо знайти всі похідні та підставити значення, то отримаємо:

$$\begin{cases} e^0 + C_1 = 1 \\ e^0 + C_0 = 1 \end{cases} \Rightarrow C_0 = 0, C_1 = 0. \text{ Отже, } y = e^x \text{ - розв'язок задачі Коші}$$

2.2 Задача Коші

Definition 2.2.1. Задана область $D \subset \mathbb{R}^{n+1}$ та функція $f: D \to \mathbb{R}$ Така функція **задовольняє умові Ліпшиця відносно** $y, y', \cdots, y^{(n-1)},$ якщо

$$\exists L > 0 : \left| f(x, y_1, y_1', \dots, y_1^{(n-1)}) - f(x, y_2, y_2', \dots, y_2^{(n-1)}) \right| \le L \left(|y_1 - y_2| + |y_1' - y_2'| + \dots + \left| y_1^{n-1} - y_2^{(n-1)} \right| \right)$$

Proposition 2.2.2. Задан прямокутник $\Pi = I_a \times \Pi_b \subset \mathbb{R}^{n+1}$. Відомо, що функція $f(x,y,y',\cdots,y^{(n-1)})$ має всі частні неперервні похідні в Π . Тоді f задовільняє умові Ліпшиця, причому $L = \max\{L_1,L_2,\ldots,L_{n-1}\}$,

$$L_i = \sup_{(x,y,y',\dots,y^{(n-1)})} \left| f'_{y^{(i-1)}}(x,y,y',\dots,y^{(n-1)}) \right|$$

Proof.

Ми розглянемо функціяю $g:[0,1] \to \mathbb{R}$ таку, що:

$$g(t) = f(x, (1-t)y_1 + ty_2, (1-t)y_1' + ty_2', \dots, (1-t)y_1^{(n-1)} + ty_2^{(n-1)})$$
Зокрема отримаємо:

$$g(0) = f(x, y_1, y'_1, \dots, y_1^{(n-1)})$$

$$g(1) = f(x, y_2, y'_2, \dots, y_2^{(n-1)})$$

Часткові похідні неперервні, тому $g \in C^1([0,1])$. За теоремою Лагранжа,

$$\exists \xi \in (0,1) : g(0) - g(1) = -g'(\xi)$$

де
$$g'(t) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial u} \frac{du}{dt} + \dots + \frac{\partial f}{\partial u^{(n-1)}} \frac{du^{(n-1)}}{dt}$$
 \equiv $u = (1-t)y_1 + ty_2, \dots, u^{(n-1)} = (1-t)y_1^{(n-1)} + ty_2^{(n-1)}$ $\equiv \frac{\partial f}{\partial u}(y_2 - y_1) + \dots + \frac{\partial f}{\partial u^{(n-1)}}(y_2^{(n-1)} - y_1^{(n-1)})$

Залишилось зробити оцінку:

$$|g(0) - g(1)| = |g'(\xi)| \le |L_1(y_2 - y_1) + \dots + L_{n-1}(y_2^{(n-1)} - y_1^{(n-1)})| \le$$

$$\le |L_1(y_2 - y_1)| + \dots + |L_{n-1}(y_2^{(n-1)} - y_1^{(n-1)})| \le L\left(|y_1 - y_2| + \dots + |y_2^{(n-1)} - y_1^{(n-1)}|\right)$$

Тепер розглянемо задачу Коші:

$$\begin{cases} y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ \dots \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

де
$$f: \Pi = I_a \times \Pi_b \to \mathbb{R}$$

 $I_a = [x_0 - a, x_0 + a],$
 $\Pi_b = [y_0 - b, y_0 + b] \times [y_0' - b, y_0' + b] \times \cdots \times [y_0^{(n-1)} - b, y_0^{(n-1)} + b]$

Theorem 2.1.6. Теорема Пікара

Задана функція $f:\Pi\to\mathbb{R}$ така, що $f\in C(\Pi)$ та під умовою Ліпшиця відносно $y,y',\cdots,y^{(n-1)}$

Тоді задача Коші містить єдиний розв'язок $y_*(x)$ на інтервалі $I_h = [x_0 - h, x_0 + h]$

Доведення проводиться аналогічним чином, як з рівнянням першого порядку

2.3 Деякі типи рівнянь, що допускають зниження порядку

2.3.1 Рівняння, в якої немає залежності від y в правій частині

Тобто в нас рівняння буде такого типу:

$$y^{(n)} = f(x, y', y'', \dots, y^{(n-1)})$$

Для нього проводиться наступна заміна: z(x)=y'(x). Тоді $y''=z,\ldots,y^{(n)}=z^{(n-1)}$

Отримаємо наступне рівняння:

$$z^{(n-1)} = f(x, z, z', \dots, z^{(n-2)})$$

Ну а далі як пощастить з типажом рівняння

Також можемо розглянути рівняння такого типу:

$$y^{(n)} = f(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n-1)})$$

Для нього проводиться наступна заміна: $z(x) = y^{(k)}(x)$ Тоді отримаємо наступне рівняння: $z^{(n-k)} = f(x, z, z', \dots, z^{(n-k-1)})$ І т.д.

Example. Розв'язати рівняння: $xy^{(4)} - y''' = 0$ Заміна: $z = y''' \Rightarrow z' = y^{(4)}$

$$xz' - z = 0 \Rightarrow \frac{dz}{z} = \frac{dx}{x} \Rightarrow z = C_1 x$$
$$y''' = C_1 x \Rightarrow y'' = C_1 \frac{x^2}{2} + C_2 \Rightarrow y' = C_1 \frac{x^3}{3!} + C_2 x + C_3 \Rightarrow$$

$$\Rightarrow y = C_1 \frac{x^4}{4!} + C_2 \frac{x^2}{2!} + C_3 x + C_4$$
 Але C_1, C_2, C_3, C_4 - константи, тому можна записати іншим шляхом:
$$y = C_1 x^4 + C_2 x^2 + C_3 x + C_4$$

2.3.2 Рівняння, в якої немає залежності від x в правій частині

Тобто в нас рівняння буде такого типу:

$$y^{(n)} = f(y, y', y'', \dots, y^{(n-1)})$$

Проведемо таку заміну: y' = p(y)

Далі рахуємо другі, треті і т.д. похідні, але достатньо часто буде другої: y'' = p'(y)y' = p'(y)p(y)

В результаті чого ми отримаємо рівняння від функції $p(y)\ (n-1)$ -го порядку

Example. Розв'язати рівняння:
$$y'' = \frac{1}{4\sqrt{y}}$$
 Заміна: $y' = p(y) \Rightarrow y'' = p'(y)y' = p'p$ $p'p = \frac{1}{4\sqrt{y}} \Rightarrow \frac{dp}{dy}p = \frac{1}{4\sqrt{y}} \Rightarrow p \, dp = \frac{dy}{4\sqrt{y}} \Rightarrow \frac{p^2}{2} = \frac{\sqrt{y}}{2} + C_1 \Rightarrow p = \pm \sqrt{\sqrt{y} + C_1}$ $y' = \pm \sqrt{\sqrt{y} + C_1} \Rightarrow \frac{dy}{\sqrt{\sqrt{y} + C_1}} = \pm dx \Rightarrow \dots$ $\Rightarrow \frac{4}{3}\sqrt{(\sqrt{y} + C_1)^3} - 4C_1\sqrt{\sqrt{y} + C_1} = C_2 \pm x$

2.3.3 Рівняння тип 3

Буде нехай таке рівняння:

$$y^{(n)} = f(y^{(n-2)})$$

Проведемо наступну заміну: $z(x) = y^{(n-2)}(x)$

Тоді буде таке рівняння:

$$z'' = f(z)$$

Домножимо обидві частини на 2z' і нехай $\int f(z) dz = F(z)$ 2z'z'' = 2z'f(z) $((z')^2)' = (2F(z))'$ $(z')^2 = 2F(z) + C_1 \Rightarrow z' = \pm \sqrt{F(z) + C_1}$ І т.д.

Example. Розв'язати рівняння: $\varphi'' = -k \sin \varphi$, де $\varphi = \varphi(t)$ $2\varphi'\varphi'' = -2k\varphi'\sin\varphi$ $((\varphi')^2)' = 2k(\cos\varphi)'$ $(\varphi')^2 = 2k\cos\varphi + C_1$

Нехай
$$C_1 = 0$$
 (для спрощення). Тоді:
$$\varphi' = \pm \sqrt{2k\cos\varphi} \Rightarrow \frac{d\varphi}{\sqrt{2k\cos\varphi}} = \pm dt \Rightarrow t = \pm \frac{1}{\sqrt{2k}} \int \frac{d\varphi}{\sqrt{\cos\varphi}} + C_2$$

3 Лінійні диференціальні рівняння

Definition 3.0.1. Лінійним диференціальним рівнянням порядку n називається рівняння наступного вигляду:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$

де $a_0, a_1, \ldots, a_{n-1}, b \in C(I), I \subset \mathbb{R}$

Розв'язком називається функція $\varphi \in C^n(J), J \subset I,$ якщо вона задовольняє цьому рівнянню

Якщо $b(x) \equiv 0$, то рівняння називається **однорідним**. В інакшому випадку - **неоднорідним**

Theorem 3.0.2. Задача Коші для лінійного диференціального рівняння містить єдиний розв'язок

Proof.

Отже, є в нас задача Коші:

$$\begin{cases} y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x) \\ y(x_0) = y_0 \\ \dots \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

Доведення теореми буде посилатись на теорему Пікара в диф. рівнянні порядку n

Тому перше рівняння системи перепишемо в іншому вигляді:

$$y^{(n)} = b(x) - a_{n-1}(x)y^{(n-1)} - \dots - a_1(x)y' - a_0(x)y$$

Знайдемо всі її часткові похідні:

$$f'_y = -a_0(x), f'_{y'} = -a_1(x), \dots, f'_{y^{(n-1)}} = -a_{n-1}(x)$$

Всі вони є неперервними функціями на $\Pi = I_a \times \Pi_b$, тому що $a_0, \ldots, a_{n-1} \in C(I), I_a \subset I, \ \Pi_b \subset \mathbb{R}^n$ - довільний паралелепіпед навколо точки умов Коші. Отже, функція під умовою Ліпшиця. А значить, спрацьовує теорема Пікара

Визначимо оператор $L:C^n(I)\to C(I)$ такий, що:

$$(Ly)(x) = y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y'$$

Тобто наше рівняння перепишеться як: (Ly)(x) = b(x)

Lemma 3.0.3.1. Множина $C^k(I)$ є лінійним простором, для якого:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(\alpha f)(x) = \alpha f(x), \alpha \in \mathbb{R}$$

Lemma 3.0.3.2. Оператор L ϵ лінійним **Proof.**

Remark. $Ly \in C(I)$

Доведення безпосередньо за означенням:

$$L(y+z) = (y+z)^{(n)} + a_{n-1}(x)(y+z)^{(n-1)} + \dots + a_1(x)(y+z)' + a_0(x)(y+z) = y^{(n)} + z^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-1}(x)z^{(n-1)} + \dots + a_1(x)y' + a_1(x)z' + a_0(x)y + a_0(x)z =$$

$$= Ly + Lz$$

$$L(\alpha y) = (\alpha y)^{(n)} + a_{n-1}(x)(\alpha y)^{(n-1)} + \dots + a_1(x)(\alpha y)' + a_0(x)(\alpha y) =$$

$$= \alpha y^{(n)} + \alpha a_{n-1}(x)y^{(n-1)} + \dots + \alpha a_1(x)y' + \alpha a_0(x)y = \alpha Ly \blacksquare$$

Proposition 3.0.4. Множина розв'язків утворюють лінійний простор $= \ker L$

 $Bиплива \epsilon$ з означення ядра

Corollary 3.0.4. Якщо y_1, \dots, y_n - розв'язки, то $y = C_1 y_1 + \dots + C_n y_n$ - розв'язок також

Тепер перейдемо до розв'язку рівнянь

3.1 Однорідне рівняння

Спробуємо розв'язати рівняння

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

де $a_0, a_1, \ldots, a_{n-1} \in C(I), I \subset \mathbb{R}$

Нагадуємо:

Definition 3.1.1. Система функцій $\{f_1,\ldots,f_n\}\subset C^k(I)$ називається:

- **лінійно НЕзалежними**, якщо із $\forall x \in I : c_1 f_1(x) + \cdots + c_n f_n(x) = 0$ випливає, що $c_1 = \cdots = c_n = 0$
- **лінійно залежними**, якщо $\exists c_1, \dots, c_n : c_1^2 + \dots + c_n^2 \neq 0$, для яких $\forall x \in I : c_1 f_1(x) + \dots + c_n f_n(x) = 0$

Definition 3.1.2. Задана система функцій $\{f_1, \ldots, f_n\} \in C^{(n-1)}(I)$ Визначимо **детермінант Вронського** як функцію $W: I \to \mathbb{R}$:

$$W[f_1, f_2, \dots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

Example 3.1.3.(1) Нехай є система
$$\{1, x, x^2, \dots, x^{k-1}\}$$
. Тоді $W[1, x, x^2, \dots, x^{k-1}](x) = \begin{vmatrix} 1 & x & x^2 & \dots & x^{k-1} \\ 0 & 1! & 2x & \dots & (k-1)x^{k-2} \\ 0 & 0 & 2! & \dots & (k-1)(k-2)x^{k-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & (k-1)! \end{vmatrix} = 1!2!\dots(k-1)!$

Example 3.1.3.(2) Дуже важливий приклад

Нехай є система $\{e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}\}$

Тут $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}(\mathbb{C})$ та всі різні. Тоді маєм

$$W[e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}](x) = \begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} & \dots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} & \dots & \lambda_n e^{\lambda_n x} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \lambda_2^{n-1} e^{\lambda_2 x} & \dots & \lambda_n^{n-1} e^{\lambda_n x} \end{vmatrix} \equiv$$

Виносимо $e^{\lambda_1 x}$ з першої колони, $e^{\lambda_2 x}$ з другої колони...

$$= e^{\lambda_1 x} e^{\lambda_2 x} \dots e^{\lambda_n x} \begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix} = e^{(\lambda_1 + \lambda_2 + \dots + \lambda_n)x} D_n(\lambda_1, \lambda_2, \dots, \lambda_n)$$

Останній множник - детермінант Вандеморда. Із курсу лінійної алгебри,

$$D_n(\lambda_1, \lambda_2, \dots, \lambda_n) = \prod_{1 \le j < i \le n} (\lambda_i - \lambda_j)$$

Тому остаточно матимемо:

Тому остаточно матимемо:
$$W[e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}](x) = e^{(\lambda_1 + \lambda_2 + \dots + \lambda_n)x} \prod_{1 \le j < i \le n} (\lambda_i - \lambda_j)$$

Proposition 3.1.4. Якщо $\{f_1,\ldots,f_n\}\subset C^{(n-1)}(I)$ - лінійно залежні над \mathbb{R} , to $W[f_1,\ldots f_n](x)\equiv 0$

Proof.

Система - л.з., тобто при c_1, \ldots, c_n , що не всі нулі:

 $c_1 f_1(x) + \dots + c_n f_n(x) = 0$ Продиференціюємо рівняння (n-1) разів. Тоді отримається система:

$$\begin{cases} c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0 \\ c_1 f_1'(x) + c_2 f_2'(x) + \dots + c_n f_n'(x) = 0 \\ \vdots \\ c_1 f_1^{(n-1)}(x) + c_2 f_2^{(n-1)}(x) + \dots + c_n f_n^{(n-1)}(x) = 0 \end{cases}$$

Знову з курсу лінійної алгебри, система має нетрививіальний розв'язок

 \iff детермінант коефіцієнтів = 0

У нас c_1, c_2, \ldots, c_n - нетривіальні, тому матриця коефіцієнтів

$$\begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix} = W[f_1, f_2, \dots, f_n](x) \equiv 0 \blacksquare$$

Corollary 3.1.4. Якщо $\exists x_0 : W[f_1, \dots, f_n](x_0) \neq 0$, то $\{f_1, \dots, f_n\}$ -

лінійно НЕзалежна

Тут записано просто обернене твердження

Повертаючись до Ех. 3.1.3., обидва детермінанта Вронського ненулеві. Тому система $\{1,x,\ldots,x^{k-1}\}$ та $\{e^{\lambda_1x},e^{\lambda_2x},\ldots,e^{\lambda_nx}\}$ - лінійно НЕзалежні

 ${f Remark~3.1.5.}$ Якщо $W[f_1,\ldots,f_n]\equiv 0,$ то $\{f_1,\ldots,f_n\}$ може бути лінійно НЕзалежною

Example 3.1.5. Розгянемо систему
$$\{x^2, x|x|\} \subset C'((-2, 2))$$
 $W[x^2, x|x|](x) = \begin{vmatrix} x^2 & x|x| \\ 2x & 2|x| \end{vmatrix} = 2x^2|x| - 2x^2|x| \equiv 0$

Але за означенням л.н.з.,

$$\forall x \in (-2,2) : C_1 x^2 + C_2 x |x| = 0 \stackrel{x=1,x=-1}{\Rightarrow} \begin{cases} C_1 - C_2 = 0 \\ C_1 + C_2 = 0 \end{cases} \Rightarrow C_1 = C_2 = 0$$

Тому система - лінійно НЕзалежна

Theorem 3.1.6. Задані $y_1, \ldots, y_n \in \ker L$ - тобто розв'язки нашого однорідного рівняння

$$\{y_1,\ldots,y_n\}$$
 - л.н.з. над $\mathbb{R}\iff W[y_1,\ldots,y_n](x)\not\equiv 0$

Proof.

 \sqsubseteq Дано: $W[y_1,\ldots,y_n](x)\not\equiv 0$. Тоді за **Crl 3.1.4.** система $\{y_1,\ldots,y_n\}$ л.н.з.

 \Longrightarrow Дано: $\{y_1,\ldots,y_n\}$ - л.н.з.

Припустимо, що $\exists x_0 \in I : W[y_1, \dots, y_n](x_0) = 0$. Тоді система рівнянь:

$$\begin{cases} c_1 y_1(x_0) + c_2 y_2(x_0) + \dots + c_n y_n(x_0) = 0 \\ c_1 y_1'(x_0) + c_2 y_2'(x_0) + \dots + c_n y_n'(x_0) = 0 \\ \vdots \\ c_1 y_1^{(n-1)}(x_0) + c_2 y_2^{(n-1)}(x_0) + \dots + c_n y_n^{(n-1)}(x_0) = 0 \end{cases}$$

має нетривіальні розв'язки

Нехай $c_1 = c_1^0, \dots, c_n = c_n^0$

Розглянемо функцію:

$$y(x) = c_1^0 y_1(x) + \dots + c_n^0 y_n(x)$$

Якщо продиференціювати (n-1) раз та всюди $x=x_0$, то можна отримати, що:

$$y(x_0) = y'(x_0) = \dots = y^{(n-1)}(x_0) = 0$$

Таким чином отримана задача Коші:

$$\begin{cases} Ly = 0 \\ y(x_0) = 0 \\ \vdots \\ y^{(n-1)}(x_0) = 0 \end{cases}$$

Проте зауважимо, що $z(x)\equiv 0$ - також розв'язок задачі Коші. Тому в силу єдиності рішення задачі Коші, маємо, що $y(x)\equiv 0$

Отже, для $c_1 = c_1^0, \ldots, c_n = c_n^0$ отримали: $c_1^0 y_1(x) + \cdots + c_n^0 y_n(x) = 0$. Це є означенням л.з., що суперечить нашим припущенням.

Висновок: $W[y_1,\ldots,y_n](x)\not\equiv 0$

Theorem 3.1.7. Позначу через y_1, y_2, \dots, y_n наступні розв'язки задачі Коші:

$$y_1 : \begin{cases} Ly = 0 \\ y(x_0) = 1 \\ y'(x_0) = 0 \end{cases} \qquad y_2 : \begin{cases} Ly = 0 \\ y(x_0) = 0 \\ y'(x_0) = 1 \end{cases} \qquad \dots y_n : \begin{cases} Ly = 0 \\ y(x_0) = 0 \\ y'(x_0) = 0 \end{cases}$$

Тоді $\{y_1, y_2, \dots, y_n\}$ утворюють лінійний базис в просторі розв'язків нашого рівняння

Proof.

Базис означає лінійну незалежність та презентацію кожного елементу в лінійну комбінацію

Перевіримо на л.н.з.:

$$W[y_1, y_2, \dots, y_n](x_0) = \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{vmatrix} = 1 \neq 0$$

Отже, за **Crl. 3.1.4.**, система - л.н.з.

Доведемо, що будь-який розв'язок $y=y_1c_1+\cdots+y_nc_n$. Коротше, треба знайти c_1,\ldots,c_n і довести, що вони єдині

Диференціюємо (n-1) разів і вставляємо x_0 кожного разу. Тоді $c_1=y(x_0),\ldots,c_n=y^{(n-1)}(x_0)$. Ці константи виражаються єдиним чином Отже, $\exists ! c_1,\ldots,c_n:y=c_1y_1+\cdots+c_ny_n$

Висновок: $\{y_1, \dots, y_n\}$ - базис

Corollary 3.1.7.(1) dim L = n

Corollary 3.1.7.(2) Будь-яка л.н.з. система з n розв'язків утворює базис в просторі його рішень

Definition 3.1.8. Лінійним базисом $\{y_1, \dots, y_n\}$ в просторі розв'язків рівняння називають фундаментальною системою розв'язків В той же час $y=c_1y_1+\cdots+c_ny_n$ - загальний розв'язок

Lemma 3.1.9. Якщо
$$a_{ij} \in C'(I)i, j = \overline{1,n},$$
 то

Lemma 3.1.9. Herito
$$a_{ij} \in C'(I)$$
, $j = 1, n$, to
$$\begin{pmatrix} |a_{11}(x) & a_{12}(x) & \dots & a_{1n}(x) \\ |a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ |a_{n1}(x) & a_{n2}(x) & \dots & a_{nn}(x)| \end{pmatrix}' =$$

$$= \begin{vmatrix} |a'_{11}(x) & a'_{12}(x) & \dots & a'_{1n}(x) \\ |a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ |a_{n1}(x) & a_{n2}(x) & \dots & a_{nn}(x)| + |a_{11}(x) & a_{12}(x) & \dots & a'_{2n}(x) \\ |\vdots & \vdots & \ddots & \vdots \\ |a_{n1}(x) & a_{n2}(x) & \dots & a_{1n}(x) \\ |a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ |\vdots & \vdots & \ddots & \vdots \\ |a'_{n1}(x) & a'_{n2}(x) & \dots & a'_{nn}(x)| \end{vmatrix}$$

$$+ \dots + \begin{vmatrix} |a_{11}(x) & a_{12}(x) & \dots & a_{1n}(x) \\ |a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ |\vdots & \vdots & \ddots & \vdots \\ |a'_{n1}(x) & a'_{n2}(x) & \dots & a'_{nn}(x)| \end{vmatrix}$$

$$+ \text{Proof.}$$

Proof.

Доведення проводимо за означенням:

$$\begin{vmatrix} a_{11}(x) & a_{12}(x) & \dots & a_{1n}(x) \\ a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x) & a_{n2}(x) & \dots & a_{nn}(x) \end{vmatrix} = \sum_{\sigma \in S_n} \epsilon_{\sigma} a_{1\sigma(1)}(x) \cdot a_{2\sigma(2)}(x) \cdot \dots \cdot a_{n\sigma(n)}(x)$$

Тут S_n - група перестановок множини $A_n = \{1, 2, \dots, n\}$

 $\sigma(k) \in A_n$ - значення перестановки σ на елементі $k \in A_n$

$$\epsilon_{\sigma} = egin{cases} 1, \text{парна перестановка} \\ -1, \text{непарна перестановка} \end{cases}$$

А тепер візьмемо похідну від правої частини:

$$\left(\sum_{\sigma \in S_n} \epsilon_{\sigma} a_{1\sigma(1)}(x) \cdot a_{2\sigma(2)}(x) \cdot \ldots \cdot a_{n\sigma(n)}(x)\right)' =$$

$$\sum_{\sigma \in S_{n}} \epsilon_{\sigma} a'_{1\sigma(1)}(x) \cdot a_{2\sigma(2)}(x) \cdot \ldots \cdot a_{n\sigma(n)}(x) + \\
+ \sum_{\sigma \in S_{n}} \epsilon_{\sigma} a_{1\sigma(1)}(x) \cdot a'_{2\sigma(2)}(x) \cdot \ldots \cdot a_{n\sigma(n)}(x) + \\
+ \cdots + \sum_{\sigma \in S_{n}} \epsilon_{\sigma} a_{1\sigma(1)}(x) \cdot a_{2\sigma(2)}(x) \cdot \ldots \cdot a'_{n\sigma(n)}(x) \stackrel{def}{=} \\
= \begin{vmatrix} a'_{11}(x) & a'_{12}(x) & \ldots & a'_{1n}(x) \\ a_{21}(x) & a_{22}(x) & \ldots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x) & a_{n2}(x) & \ldots & a_{nn}(x) \end{vmatrix} + \begin{vmatrix} a_{11}(x) & a_{12}(x) & \ldots & a'_{1n}(x) \\ a'_{21}(x) & a'_{22}(x) & \ldots & a'_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x) & a_{n2}(x) & \ldots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a'_{21}(x) & a'_{22}(x) & \ldots & a'_{2n}(x) \end{vmatrix} + \\
+ \cdots + \begin{vmatrix} a_{11}(x) & a_{12}(x) & \ldots & a_{2n}(x) \\ a_{21}(x) & a_{22}(x) & \ldots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a'_{n1}(x) & a'_{n2}(x) & \ldots & a'_{nn}(x) \end{vmatrix} \blacksquare$$

Theorem 3.1.10. Теорема Остроградського-Якобі

Задана $\{y_1, \ldots, y_n\}$ - фундаментальна система розв'язків нашого рівняння та якась т. $x_0 \in I$. Тоді

$$W[y_1, \dots, y_n](x) = W[y_1, \dots, y_n](x_0)e^{-\int_{x_0}^x a_{n-1}(t) dt}$$

Proof.

Знайдемо похідну від детермінанта Вронського (Lm. 3.1.9.):

$$W'[y_1,\ldots,y_n](x) = \begin{vmatrix} y_1'(x) & y_2'(x) & \ldots & y_n'(x) \\ y_1'(x) & y_2'(x) & \ldots & y_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \ldots & y_n^{(n-1)}(x) \end{vmatrix} + \\ \begin{vmatrix} y_1(x) & y_2(x) & \ldots & y_n(x) \\ y_1''(x) & y_2''(x) & \ldots & y_n'(x) \\ y_1''(x) & y_2''(x) & \ldots & y_n''(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1''(x) & y_2''(x) & \ldots & y_n''(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \ldots & y_n^{(n-1)}(x) \end{vmatrix} + \\ \begin{vmatrix} y_1(x) & y_2(x) & \ldots & y_n(x) \\ y_1'(x) & y_2'(x) & \ldots & y_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)}(x) & y_2^{(n-2)}(x) & \ldots & y_n^{(n-2)}(x) \\ y_1^{(n)}(x) & y_2^{(n)}(x) & \ldots & y_n^{(n)}(x) \end{vmatrix} = \\ Tyt всі детермінанти, окрім останнього, онущяться через однакові рядки.$$

Тут всі детермінанти, окрім останнього, онуляться через однакові рядки

$$= \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)}(x) & y_2^{(n-2)}(x) & \dots & y_n^{(n-2)}(x) \\ y_1^{(n)}(x) & y_2^{(n)}(x) & \dots & y_n^{(n)}(x) \end{vmatrix} =$$

Оскільки y_1, \dots, y_n - розв'язки, то ми можемо виразити старші подіхні:

$$y_i^{(n)} = -a_0(x)y_j - a_1(x)y_j' - \dots - a_{n-1}(x)y_j^{(n-1)}, j = \overline{1, n}$$

Підставимо в наш детермінант і зробимо такі кроки:

- помножимо перший рядок на a_0 і додамо до останнього рядка;
- помножимо другий рядок на a_1 і додамо до останнього рядка;

нарешті, винесемо
$$-a_{n-1}$$
. Отримаємо:
$$\begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y_1'(x) & y_2'(x) & \dots & y_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix} = -a_{n-1}(x)W[y_1, \dots, y_n](x)$$

Отже, отримали таку тотожність:

$$W'[y_1, \dots, y_n](x) = -a_{n-1}(x)W[y_1, \dots, y_n](x)$$

А це - диф. рівняння з відокремленими змінними, яку ми розв'яжемо:

$$\frac{dW[y_1,\ldots,y_n](t)}{dt} = -a_{n-1}(t)$$

$$\frac{dW[y_1, \dots, y_n](t)}{dt} = -a_{n-1}(t)$$

$$\frac{dW[y_1, \dots, y_n](t)}{W[y_1, \dots, y_n](t)} = -a_{n-1}(t) dt$$

Інтегруємо на інтервалі
$$[x, x_0]$$
:
$$\ln \left| \frac{W[y_1, \dots, y_n](x)}{W[y_1, \dots, y_n](x_0)} \right| = -\int_{x_0}^x a_{n-1}(t) dt$$

$$W[y_1,\ldots,y_n](x)=W[y_1,\ldots,y_n](x_0)e^{-\int_{x_0}^x a_{n-1}(t)\,dt}$$
Взагалі, тут мав би бути знак \pm , але якщо підставити

Взагалі, тут мав би бути знак \pm , але якщо підставити $x=x_0$, то залишиться лише + ■

Метод розв'язку лінійних однорідних диференціальних рівнянь найчастіше другого порядку саме базується на теоремі Остроградського-Якобі. Спочатку ми вгадуємо перший частковий розв'язок, а далі за формулою шукаємо другий частковий, а згодом можна отримати загальний розв'язок

Example Розв'язати рівняння: (2x + 1)y'' + 4xy' - 4y = 0

Буду розглядувати на інтервалі $x > -\frac{1}{2}$

$$y'' + \frac{4x}{2x+1}y' - \frac{4}{2x+1}y = 0$$

Можна вгадати, що $y_1 = x$ - частковий розв'язок

Тоді за формулою Остроградського-Якобі:

$$\begin{vmatrix} x & y_2 \\ 1 & y_2' \end{vmatrix} = W_0 e^{-\int_1^x \frac{4t}{2t+1} dt}. \text{ Tyr } x_0 = 1$$

$$-\int_{1}^{x} \frac{4t}{2t+1} dt = \dots = -2x + \ln(2x+1) + 2 - \ln 3$$

$$\Rightarrow W_{0}e^{-\int_{1}^{x} \frac{4t}{2t+1} dt} = W_{0}e^{\ln(2x+1)}e^{-2x}e^{2-\ln 3} = W_{1}(2x+1)e^{-2x}$$

Таким чином за нашою формулою:

$$xy_2' - y_2 = W_1(2x+1)e^{-2x}$$

Ну а тут стандартне диф. рівняння першого порядку. Поділимо на x^2 і зауважимо:

$$\frac{y_2'x - y_2}{x^2} = W_1 \frac{2^{-2x}2x + e^{-2x}}{x^2} \Rightarrow \left(\frac{y_2}{x}\right)' = -W_1 \left(\frac{e^{-2x}}{x}\right)'$$

$$\frac{y_2}{x} = -W_1 \frac{e^{-2x}}{x} y_2 = -W_1 e^{-2x}$$

Отже, остаточно загальний розв'язок:

$$y = C_1 x + C_2 e^{-2x}$$

3.2 Неоднорідне рівняння

Спробуємо розв'язати рівняння

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$

де $a_0, a_1, \ldots, a_{n-1}, b \in C(I), I \subset \mathbb{R}$

Theorem 3.2.1. Про структуру розв'язків

y - розв'язок неоднорідного рівняння $\iff y = y_{g.h.} + y_{p.inh.}$

Де $y_{g.h.}$ - загальний розв'язок однорідного рівняння, а $y_{p.inh.}$ - частковий розв'язок неоднорідного рівняння

Proof.

 \implies Дано: y - розв'язок неоднорідного рівняння

Розглянемо $y_0 = y - y_{p.inh.}$. Для цього маємо:

$$Ly_0 = L(y - y_{p.inh,}) = Ly - Ly_{p.inh.} = b(x) - b(x) = 0$$

 $\Rightarrow y_0 = y_{q.h} \Rightarrow y = y_{q.h.} + y_{p.inh.}$

 $= Дано: y = y_{g.h.} + y_{p.inh.}$

Тоді $Ly = L(y_{g.h.} + y_{p.inh.}) = Ly_{g.h.} + Ly_{p.inh.} = b(x) \Rightarrow y$ - розв'язок неоднорідного рівняння \blacksquare

Corollary 3.2.1. Принцип суперпозиції

Якщо y_1 - розв'язок $Ly_1=b_1(x)$, а y_2 - розв'язок $Ly_2=b_2(x)$, то $y=\beta_1y_1+\beta_2y_2$ - розв'язок $Ly=\beta_1b_1(x)+\beta_2b_2(x)$

Для неоднорідних рівнянь існує поки єдиний загальних вихід, як розв'язати рівняння

Метод варіації довільних сталих

Спочатку знайдемо $y_{g.h.}$ з нашого рівняння, тобто:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

Якщо вважати, що y_1,\ldots,y_n - фундаментальна система розв'язків, то $y_{g.h.}=c_1y_1+\cdots+c_ny_n$

Наш розв'язок ми будемо шукати в такому вигляді:

$$y = c_1(x)y_1 + \dots + c_n(x)y_n$$

А тут $c_1(x), \ldots, c_n(x)$ - такі функції, задовільняючи наступним умовам:

$$\begin{cases} c'_1(x)y_1 + c'_2(x)y_2 + \cdots + c'_n(x)y_n = 0 \\ c'_1(x)y'_1 + c'_2(x)y'_2 + \cdots + c'_n(x)y'_n = 0 \\ \vdots \\ c'_1(x)y_1^{(n-2)}(x) + c'_2(x)y_2^{(n-2)}(x) + \cdots + c'_n(x)y_n^{(n-2)}(x) = 0 \end{cases}$$

Використовуючи всі наші умови, ми підставимо наше y до неоднорідного рівняння. Але перед цим знайдемо похідні:

$$y' = c'_1(x)y_1(x) + c_1(x)y'_1(x) + \dots + c'_n(x)y_n(x) + c_n(x)y'_n(x) \stackrel{\text{умова}}{=}$$

$$= c_1(x)y'_1(x) + \dots + c_n(x)y'_n(x)$$

$$y'' = c'_1(x)y'_1(x) + c_1(x)y''_1(x) + \cdots + c'_n(x)y'_n(x) + c_n(x)y''_n(x) \stackrel{\text{ymoba}}{=} c_1(x)y''_1(x) + \cdots + c_n(x)y''_n(x)$$

$$y^{(n-1)} = c_1'(x)y_1^{(n-2)}(x) + c_1(x)y_1^{(n-1)}(x) + \dots + c_n'(x)y_n^{(n-2)}(x) + c_n(x)y_n^{(n-1)}(x) \stackrel{\text{умова}}{=} 0$$

$$= c_1(x)y_1^{(n-1)}(x) + \dots + c_n(x)y_n^{(n-1)}(x)$$

Легко побачити, що завдяки системі зверху, ми можемо функції c_1, \ldots, c_n сприйняти як константу, що виноситься з похідної

$$y^{n} = c'_{1}(x)y_{1}^{(n-1)}(x) + c_{1}(x)y_{1}^{(n)}(x) + \dots + c'_{n}(x)y_{n}^{(n-1)}(x) + c_{n}(x)y_{n}^{(n)}(x)$$

Підставляємо в неоднорідне рівняння:

$$\left(c_1'(x)y_1^{(n-1)}(x) + \dots + c_n'(x)y_n^{(n-1)}(x) + c_1(x)y_1^{(n)}(x) + \dots + c_n(x)y_n^{(n)}(x)\right) + \dots + c_n(x)y_n^{(n)}(x)$$

+
$$a_{n-1}(x) \left(c_1(x) y_1^{(n-1)}(x) + \dots + c_n(x) y_n^{(n-1)}(x) \right) + \dots +$$

$$+ a_1(x) (c_1(x)y'_1(x) + \cdots + c_n(x)y'_n(x)) +$$

$$+ a_0(x) (c_1(x)y_1(x) + \cdots + c_n(x)y_n(x)) = b(x)$$

І перегрупуємо ці доданки:

$$c_{1}(x)\left(y_{1}^{(n)}(x)+a_{n-1}(x)y_{1}^{(n-1)}(x)+\cdots+a_{1}(x)y_{1}'(x)+a_{0}(x)y_{1}(x)\right)+\\+c_{2}(x)\left(y_{2}^{(n)}(x)+a_{n-1}(x)y_{2}^{(n-1)}(x)+\cdots+a_{1}(x)y_{2}'(x)+a_{0}(x)y_{2}(x)\right)+\cdots+\\+c_{n}(x)\left(y_{n}^{(n)}(x)+a_{n-1}(x)y_{n}^{(n-1)}(x)+\cdots+a_{1}(x)y_{n}'(x)+a_{0}(x)y_{n}(x)\right)+\\$$

 $+ c'_1(x)y_1^{(n-1)}(x) + \dots + c'_n(x)y_n^{(n-1)}(x) = b(x)$ Але оскільки y_1,\ldots,y_n - фундаментальна система розв'язків, тобто $Ly_i = 0, i = \overline{1,n}$, то залишається: $c'_1(x)y_1^{(n-1)}(x) + \dots + c'_n(x)y_n^{(n-1)}(x) = b(x)$ Дане рівняння додамо до нашої системи.

В результаті

$$\begin{cases} c'_1(x)y_1 + c'_2(x)y_2 \cdots + c'_n(x)y_n = 0 \\ c'_1(x)y'_1 + c'_2(x)y'_2 \cdots + c'_n(x)y'_n = 0 \\ \vdots \\ c'_1(x)y_1^{(n-2)}(x) + c'_2(x)y_2^{(n-2)}(x) \cdots + c'_n(x)y_n^{(n-2)}(x) = 0 \\ c'_1(x)y_1^{(n-1)}(x) + \cdots + c'_n(x)y_n^{(n-1)}(x) = b(x) \end{cases}$$

Розв'язуючи відосно $c_1(x) \dots, c_n'(x)$, отримаємо, що вона має єдиний розв'язок, оскільки детермінант матриці коефіцієнтів - детермінант Вронського - ненулевий, згідно з тим, що y_1, \ldots, y_n - фундаментальна система Залишилось їх проінтегрувати:

$$c_1(x) = \int_{x_0}^x c_1'(t) \, dt + \tilde{c_1}, \dots, c_n(x) = \int_{x_0}^x c_n'(t) \, dt + \tilde{c_n}$$
 Та підставити в наш початковий y :

$$y = \left(\int_{x_0}^x c_1'(t) dt\right) y_1 + \dots + \left(\int_{x_0}^x c_n'(t) dt\right) y_n + \tilde{c_1} y_1 + \dots + \tilde{c_n} y_n =$$
 $= y_{p.inh.} + y_{g.h.} \iff y$ - розв'язок нашого неоднорідного рівняння

Отже, враховуючи всі наші умови:

 $y=c_1(x)y_1+\cdots+c_n(x)y_n$ - розв'язок лінійного неоднорідного рівняння

Example. Розв'язати рівняння:
$$y'' + \frac{x}{1-x}y' - \frac{1}{1-x}y = x-1$$
 Тут фундаментальна система розв'язків: $y_1 = e^x$, $y_2 = x$ Запишемо загальний розв'язок: $y = c_1(x)e^x + c_2(x)x$ Тут $c_1(x), c_2(x)$ - такі функції, задовільняючи умовам:
$$\begin{cases} c'_1(x)e^x + c'_2(x)x = 0 \\ c'_1(x)e^x + c'_2(x) = x-1 \end{cases}$$
 Розв'язки системи: $c'_1(x) = xe^{-x}, c'_2(x) = -1$ $\Rightarrow c_1(x) = \cdots = -xe^{-x} - e^{-x} + \tilde{c}_1$ $\Rightarrow c_2(x) = -x + \tilde{c}_2$ Отже, $y = e^x(-xe^{-x} - e^{-x} + \tilde{c}_1) + x(-x + \tilde{c}_2) = -x - 1 + \tilde{c}_1e^x - x^2 + x\tilde{c}_2$

$$\Rightarrow y = \tilde{c_1}e^x + \tilde{c_2}x - (x^2 + 1)$$

3.3 Однорідне рівняння з постійними коефіцієнтами

Спробуємо розв'язати рівняння

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$$

де $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$

Деяка інформація про комплекснозначні функції в полі дійсних чисел

 $f: \mathbb{R} \to \mathbb{C}:$

$$f(x) = u(x) + iv(x)$$
, де $u(x) = \text{Re } f(x), v(x) = \text{Im } f(x)$

Похідна від цієї функції визначається таким чином:

$$f'(x) = u'(x) + iv'(x)$$

Всі властивості похідних зберігаються для комплекснозначних функцій

Визначимо ще один оператор D - оператор диференціювання:

$$Df = f'$$

Тобто наше рівняння матиме вигляд:

$$Ly = D^n y + a_{n-1} D^{n-1} y + \dots + a_1 Dy + a_0 Iy = 0$$

Розглянемо функцію $y=e^{\lambda x}, \lambda \in \mathbb{C}$. Підставимо в наше рівняння:

$$Le^{\lambda x} = \lambda^n e^{\lambda x} + a_{n-1} \lambda^{n-1} e^{\lambda x} + \dots + a_1 \lambda e^{\lambda x} + a_0 e^{\lambda x} =$$

$$= e^{\lambda x} \left(\lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 \right) = e^{\lambda x} P(\lambda) = 0$$

$$\Rightarrow Le^{\lambda x} = e^{\lambda x} P(\lambda) = 0 \iff P(\lambda) = 0$$

Definition 3.3.1. Характеристичним многочленом будемо називати вираз:

$$P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

З наших міркувань отримали, що:

Proposition 3.3.2. $e^{\lambda x}$ - корінь рівняння $\iff \lambda \in \mathbb{C}$ - корінь характеристичного полінома $P(\lambda)=0$

І. Випадок різних (лише дійсних) коренів

Theorem 3.3.I. Система $\{e^{\mu_1 x}, \dots, e^{\mu_n x}\}$ є фундаментальною системою розв'язків. Причому $\mu_1, \dots, \mu_n \in \mathbb{R}$ - різні корені характеристичного полінома

Proof.

Згідно з **Ех. 3.1.3.**, така система є лінійно НЕзалежною. Оскільки $\mu_1,\ldots,\mu_n\in$

 \mathbb{R} - різні корені характеристичного полінома, то $e^{\mu_1 x}, \dots, e^{\mu_n x}$ - розв'язки нашого рівняння. Отже, за Crl. 3.1.7.(2), система є фундаментальною

Example 1. Розв'язати рівняння: y'' - y = 0

Запишемо характеристичний поліном:

$$P(\lambda) = \lambda^2 - 1 = 0$$

Звідси $\lambda_1=1, \lambda_2=-1 \overset{Th.3.3.I.}{\Rightarrow} \{e^x, e^{-x}\}$ - фундаментальна система. Отже, $y = C_1 e^x + C_2 e^{-x}$

II. Випадок різних (можливо комплексних) коренів

Theorem 3.3.II. Система

 $\{e^{\mu_1 x}, \dots, e^{\mu_l x}\} \cup \{e^{\alpha_1 x} \cos \omega_1 x, e^{\alpha_1 x} \sin \omega_1 x, \dots, e^{\alpha_k x} \cos \omega_k x, e^{\alpha_k x} \sin \omega_k x\}$ ϵ фундаментальною системою розв'язків. Причому $\mu_1, \ldots, \mu_l \in \mathbb{R}$ та $\lambda_1=\alpha_1+i\omega_1,\ldots,\lambda_k=\alpha_k+i\omega_k\in\mathbb{C}$ - різні корені характеристичного полінома

Proof.

До речі, якщо $\lambda_1, \ldots, \lambda_k$ - корні характеристичного полінома, то (курс ліналу) $\lambda_1, \ldots, \lambda_k$ - також є коренями

Отже, за умовою і Ргр. 3.3.2., фундаментальний розв'язок рівняння задається системою

$$\{e^{\mu_1 x}, \dots, e^{\mu_l x}, e^{\lambda_1 x}, e^{\overline{\lambda_1} x}, \dots, e^{\lambda_k x}, e^{\overline{\lambda_k} x}\}$$

Замінимо цю систему функцій наступною системою:
$$\{e^{\mu_1 x}, \dots, e^{\mu_l x}, \frac{e^{\lambda_1 x} + e^{\overline{\lambda_1} x}}{2}, \frac{e^{\lambda_1 x} - e^{\overline{\lambda_1} x}}{2i}, \dots, \frac{e^{\lambda_k x} + e^{\overline{\lambda_k} x}}{2}, \frac{e^{\lambda_k x} - e^{\overline{\lambda_k} x}}{2i}\}$$
 Маємо права, оскільки від цього л.н.з. система не зміниться. В силу

лінійності оператора L, вони теж будуть розв'зяками. Більш того, за формулами Ейлера:

$$\frac{e^{\lambda_j x} + e^{\overline{\lambda_j} x}}{2} = e^{\alpha_j x} \cos \omega_j x$$
$$\frac{e^{\lambda_j x} - e^{\overline{\lambda_j} x}}{2i} = e^{\alpha_j x} \sin \omega_j x$$

Отримали, отримаємо бажану систему:

 $\{e^{\mu_1 x}, \dots, e^{\mu_l x}\} \cup \{e^{\alpha_1 x} \cos \omega_1 x, e^{\alpha_1 x} \sin \omega_1 x, \dots, e^{\alpha_k x} \cos \omega_k x, e^{\alpha_k x} \sin \omega_k x\} \blacksquare$

Remark. Тут всього n функцій в системі: l - дійсних і 2k - копмлексних. l + 2k = n

Example 2. Розв'язати рівняння: y'' + y = 0

Запишемо характеристичний поліном:

$$P(\lambda) = \lambda^2 + 1 = 0$$

Звідси $\lambda_1 = i, \lambda_2 = -i \overset{Th.3.3.II.}{\Rightarrow} \{\cos x, \sin x\}$ - фундаментальна система. Отже, $y = C_1 \cos x + C_2 \sin x$

III. Випадок кратних (можливо комплексних) коренів Theorem 3.3.III. Система

$$\bigcup_{j=1}^{k} \{e^{\mu_j x}, x e^{\mu_j x}, \dots, x^{s_j - 1} e^{\mu_j x}\} \cup
\cup \bigcup_{j=1}^{k} \{e^{\alpha_j x} \cos \omega_j x, e^{\alpha_j x} \sin \omega_j x, \dots, x^{r_j - 1} e^{\alpha_j x} \cos \omega_j x, x^{r_j - 1} e^{\alpha_j x} \sin \omega_j x\}$$

 ϵ фундаментальною системою розв'язків. Причому $\mu_1, \ldots, \mu_l \in \mathbb{R}$ з кратністю s_1,\ldots,s_l та $\lambda_1=\alpha_1+i\omega_1,\ldots,\lambda_k=\alpha_k+i\omega_k\in\mathbb{C}$ з кратністю r_1,\ldots,r_k різні корені характеристичного полінома

Proof.

Доведення дуже масивне. Тому розіб'ємо на 3 леми

Lemma 1. Якщо $\lambda_i \in \mathbb{C}$ - корінь кратності s_i характеристичного полінома $P\lambda = 0$, то розв'язком нашого рівняння буде:

$$y = x^p e^{\lambda_j x}, \forall p \in \mathbb{N} : 0 \le p < s_j$$

Proof.

Зазначимо, що справедлива така рівність:
$$D_{\lambda}^{p}e^{\lambda x}\Big|_{\lambda=\lambda_{j}}=\left(\frac{d}{d\lambda}\right)^{p}e^{\lambda x}\Big|_{\lambda=\lambda_{j}}=x^{p}e^{\lambda_{j}x}$$

Отриманою функцією подіємо на оператор:

$$L\left(D_{\lambda}^{p}e^{\lambda x}\Big|_{\lambda=\lambda_{j}}\right) = \left(D_{x}^{n} + a_{n-1}D_{x}^{n-1} + \dots + a_{1}D_{x} + a_{0}I_{x}\right)\left(D_{\lambda}^{p}e^{\lambda x}\Big|_{\lambda=\lambda_{j}}\right) = D_{\lambda}^{a}D_{x}^{b} = D_{x}^{b}D_{\lambda}^{a}$$

$$=D^p_\lambda\left(P(\lambda)e^{\lambda x}\right)\Big|_{\lambda=\lambda_j}\stackrel{\text{пр. Лейбниця}}{=}\sum_{q=0}^p C^q_p P^{(q)}(\lambda)(e^{\lambda x})^{(p-q)}\Big|_{\lambda=\lambda_j}=\sum_{q=0}^p C^q_p P^{(q)}(\lambda_j)\lambda_j^{p-q}e^{\lambda_j x}$$

Оскільки λ_j - корінь кратності s_j , то з курсу ліналу, $P(\lambda_j) = \cdots = P^{(s_j-1)}(\lambda_j) = 0$, але $P^{(s_j)}(\lambda_j) \neq 0$

$$P(\lambda_j) = \dots = P^{(s_j-1)}(\lambda_j) = 0$$
, але $P^{(s_j)}(\lambda_j) \neq 0$

Тому при $0 \le p < s_i$ отримаємо, що:

$$\sum_{q=0}^{p} C_p^q P^{(q)}(\lambda_j) = 0 \Rightarrow L(x^p e^{\lambda_j x}) = 0$$

Отже, $x^p e^{\lambda_j x}$ - розв'язки

Lemma 2. Система $\{e^{\lambda x}, xe^{\lambda x}, \dots, x^{s-1}e^{\lambda x}\}$ є лінійно НЕзалежною над

 \mathbb{C} (для довільних j в нашому випадку)

!Proof.

Припустимо, що ця система - л.з., тобто:

 $\exists C_0,\dots,C_{s-1}\in\mathbb{C}$ нетривіальні: $C_0e^{\lambda x}+C_1xe^{\lambda x}+\dots+C_{s-1}x^{s-1}e^{\lambda x}=0$ Звідси випливає, що:

$$e^{\lambda x}(C_0 + C_1 x + \dots + C_{s-1} x^{s-1}) = 0$$

Отримаємо, що права дужка має бути нулевою. Це означає, що система $\{1, x, \dots, x^{s-1}\}$ - л.з., що суперечить (в силу **Ex. 3.1.3.(1)**).

Тому
$$\{e^{\lambda x}, xe^{\lambda x}, \dots, x^{s-1}e^{\lambda x}\}$$
 - л.н.з.

Lemma 3. Якщо $\lambda_1,\dots,\lambda_m\in\mathbb{C}$ - різні комплексні числа з кратністю s_1,\dots,s_m , тоді система

$$\{e^{\lambda_1 x}, xe^{\lambda_1 x}, \dots, x^{s_1-1}e^{\lambda_1 x}\} \cup \dots \cup \{e^{\lambda_m x}, xe^{\lambda_m x}, \dots, x^{s_m-1}e^{\lambda_m x}\}$$
 є лінійно НЕзалежною над $\mathbb C$

!Proof.

Знову припустимо, що ля система - л.з., тобто:

$$\exists C_{pq} \in \mathbb{C}$$
 не всі нулі: $\sum_{p=1}^m \sum_{q=0}^{s_p-1} C_{pq} x^q e^{\lambda_p x} = 0$

Перепозначу
$$\sum_{q=0}^{s_p-1} C_{pq} x^q = f_p(x)$$
. Тоді

$$f_1(x)e^{\lambda_1 x} + f_2(x)e^{\lambda_2 x} + \dots + f_m(x)e^{\lambda_m x} = 0$$

Через те, що не всі C_{pq} нулеві, то принаймні одна з $f_p(x)$ є ненулевою. Вважатимемо, що $f_1(x) \not\equiv 0$

Поділимо рівняння на $e^{\lambda_m x}$, отримавши:

$$f_1(x)e^{(\lambda_1-\lambda_m)x} + f_2(x)e^{(\lambda_2-\lambda_m)x} + \dots + f_m(x) = 0$$

Продиференціюємо таку кількість разів, щоб позбутись від $f_m(x)$. Тут кожний доданок матиме наступний вираз:

$$\frac{d^l}{dx^l} \left(f_p(x) e^{(\lambda_p - \lambda_m)x} \right) = \sum_{q=0}^l C_l^q f_p^{(q)}(x) (\lambda_p - \lambda_m)^{l-q} e^{(\lambda_p - \lambda_m)x} \stackrel{\text{\tiny HOSH}}{=} f_p(x) e^{(\lambda_p - \lambda_m)x}$$

Зокрема для k=1:

$$f_1(x) = \underbrace{f_1(x)(\lambda_1 - \lambda_m)^l}_{\neq 0} + \sum_{q=1}^l C_l^q f_1^{(q)}(x)(\lambda_1 - \lambda_m)^{l-q} e^{(\lambda_1 - \lambda_m)x} \neq 0$$

Отримаємо, що:

$$f_1(x)e^{(\lambda_1-\lambda_m)x} + f_2(x)e^{(\lambda_2-\lambda_m)x} + \cdots + f_{m-1}(x)e^{(\lambda_{m-1}-\lambda_m)x} = 0$$

Вийшла така ж сама тотожнсть по формі, що й з самого початку.

Якщо продовжити за MI, то прийдемо до тотожності:

Але за умовою, $f_1(x) \neq 0$, що суперечить нашему припущенню Ці 3 леми й завершують доведення теореми ■

Example 3. Розв'язати рівняння: $y^{(8)} + 8y^{(6)} + 16y^4 = 0$ Запишемо характеристичний поліном:

$$P(\lambda) = \lambda^8 + 8\lambda^6 + 16\lambda^4 = 0$$

Звідси:

 $\lambda_1 = 0$ - кратність 4, тому тут система: $\{1, x, x^2, x^3\}$

 $\lambda_2 = 2i, \lambda_3 = -2i$ - кратності 2, тому тут система: $\{\cos 2x, \sin 2x, x\cos 2x, x\sin 2x\}$

Отже, $y = C_1 + C_2 x + C_3 x^2 + C_4 x^3 + C_5 \cos x + C_6 \sin x + C_7 x \cos x + C_8 x \sin x$

Неоднорідне рівняння з постійними коефіцієнтами 3.4

Спробуемо розв'язати рівняння

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = b(x)$$

де $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}, b \in C(I)$

В нашому випадку ми будемо розглядати $b(x) = e^{\sigma x}(b_0 + b_1 x + \dots + b_m x^m)$.

Тут $\sigma \in \mathbb{R}$, а також $b_m \neq 0$. I нехай характеристичний поліном $P(\lambda) =$ $(\lambda - \lambda_1)^{r_1} \dots (\lambda - \lambda_k)^{r_k}$

Для правої частини існує 3 унікальних випадків

I. Нерезонансний випадок

Theorem. Якщо $P(\sigma) \neq 0$, то існує частковий розв'язок рівняння такого вигляду:

$$y_{p.inh.} = e^{\sigma x} (q_0 + q_1 x + \dots + q_m x^m)$$

Proof.

За принципом суперпозиції, ми будемо мати, що:

$$y_{p.inh} = y_0 + \dots + y_m$$
, де

$$y_{p.inh}=y_0+\cdots+y_m$$
, де $Ly_j=y_j^{(n)}+a_{n-1}y_j^{(n-1)}+\cdots+a_1y_j'+a_0y_j=b_jx^je^{\sigma x}, j=\overline{0,m}$

Розглянемо дію оператора $D_{\sigma} = \frac{d}{dx} - \sigma I$ на вираз $x^{j}e^{\sigma x}$. Отримаємо:

$$D^{j}_{\sigma}(x^{j}e^{\sigma x}) = j!e^{\sigma x}$$
 (можна самому переконатись)

$$D_{\sigma}^{j+1}\left(x^{j}e^{\sigma x}\right) = 0$$

Останній оператор ми застосуємо до обох частин рівняння:

$$D_{\sigma}^{j+1}(Ly) = b_j D_{\sigma}^{j+1}\left(x^j e^{\sigma x}\right) = 0$$
 - однорідне лінійне рівняння [] Підставимо $y = e^{\lambda x}$

 $D_{\sigma}^{j+1}(Le^{\lambda x}) = D_{\sigma}^{j+1}(P(\lambda)e^{\lambda x}) = P(\lambda)(\lambda - \sigma)^{j+1}e^{\lambda x} = 0$ Тоді характеристичний поліном для $[P'(\lambda) = P(\lambda)(\lambda - \sigma)^{j+1} = 0$ Корені: $\sigma, \lambda_1, \dots, \lambda_k$, кратність r_1, \dots, r_k . За умовою, $P(\sigma) \neq 0$, а тому $\sigma \neq \lambda_l, l = \overline{1, k}$.

Фундаментальна система: до цього $+\{e^{\sigma x}, xe^{\sigma x}, \dots, x^je^{\sigma x}\}$

4 Диференціальні рівняння, що не потрапили

4.1 Рівняння y' = f(ax + by + c)

Маємо таке рівняння:

$$y' = f(ax + by + c)$$

Якщо b=0, то тоді ми прийдемо до рівняння з відокремленими змінними Робимо заміну

$$z(x) = ax + by + c$$

Тоді
$$z'=a+by'$$
 $\Rightarrow \frac{z'-a}{b}=f(z)$ $\Rightarrow z'=bf(z)+a$ - рівняння з відокремленими змінними...

Example. Розв'язати рівняння: $y' = (x + y + 1)^2$ Заміна: $z = x + y + 1 \Rightarrow z' = 1 + y'$ $z' - 1 = z^2 \Rightarrow z' = z^2 + 1 \Rightarrow \frac{dz}{z^2 + 1} = dx \Rightarrow \arctan z = x + C$ Проводимо зворотню заміну: $\arctan(x + y + 1) = x + C$

4.2 Квазіоднорідні рівняння

Маємо стандартне диф. рівняння

$$y' = f(x, y)$$

I нехай додатково для функції f(x,y) виконується така властивість

$$\exists \sigma \in \mathbb{R} : \forall t \neq 0 : f(tx, t^{\sigma}y) = t^{\sigma-1}f(x, y)$$

Якщо $\sigma = 1$, то ми повертаємось до однорідних рівнянь Робимо заміну

$$y = z \cdot x^{\sigma}$$

Тоді $y'=z'x^{\sigma}+\sigma zx^{\sigma-1}$ $\Rightarrow z'x^{\sigma}+\sigma zx^{\sigma-1}=f(x,zx^{\sigma})$ Оскільки маємо квазіоднорідне рівняння, то $f(x,zx^{\sigma})=x^{\sigma-1}f(1,z)$

$$\Rightarrow z'x + \sigma z = f(1, z) \Rightarrow z' = \frac{f(1, z) - \sigma z}{x}$$

Це вже рівняння з відокремленими змінними

Example. Розв'язати рівняння $y' = y^2 + \frac{1}{4\pi^2}$

Перевірка на квазіоднорідність:

$$f(tx,t^{\sigma}y)=t^{2\sigma}y^{2}+\frac{1}{4t^{2}x^{2}}\stackrel{?}{=}t^{\sigma-1}\left(y^{2}+\frac{1}{4x^{2}}\right)$$

$$\begin{cases} 2\sigma=\sigma-1\\ -2=\sigma-1\\ \text{Отже, маємо, що }\sigma=-1\\ \text{Заміна: }y=zx^{-1}\Rightarrow y'=\frac{z'}{x}-\frac{z}{x^{2}} \end{cases}$$

Заміна:
$$y = zx^{-1} \Rightarrow y' = \frac{z'}{x} - \frac{z}{x^2}$$

$$\Rightarrow \frac{z'}{x} - \frac{z}{x^2} = \frac{z^2}{x^2} + \frac{1}{4x^2} \Rightarrow z'x - z = z^2 + \frac{1}{4} \Rightarrow z' = \frac{z^2 + z + \frac{1}{4}}{x}$$

$$\Rightarrow \frac{dz}{dx} = \frac{\left(z + \frac{1}{2}\right)^2}{x} \Rightarrow -\frac{1}{z + \frac{1}{2}} = \ln|x| + C$$

Проводимо зворотню заміну:
$$-\frac{2}{2xy+1} = \ln|x| + C$$

Remark. Квазіоднорідні рівняння можуть скоротити область визначення. Наприклад, якщо $\sigma = \frac{1}{2}$, то ми маємо розв'язки лише для x > 0Тоді можна застосувати заміну x=-p, коли x<0

Лінійне рівняння методом Ейлера 4.3

Розглядується рівняння наступного вигляду:

$$y' + a(x)y = b(x)$$

Домножимо обидві частини рівняння на $e^{\int a(x)\,dx}$, маємо: $y'e^{\int a(x)\,dx}+a(x)ye^{\int a(x)\,dx}=b(x)e^{\int a(x)\,dx}$ $\left(ye^{\int a(x)\,dx}\right)' = b(x)e^{\int a(x)\,dx}$ $ye^{\int a(x) dx} = \int b(x)e^{\int a(x) dx} dx + C$

$$y = e^{-\int a(x) dx} \left(\int b(x) e^{\int a(x) dx} dx + C \right)$$

Example. Розв'язати рівняння: $y' - \frac{2y}{x} = 2x^3$

Tyt
$$a(x) = -\frac{2}{x} \Rightarrow \int a(x) dx = -2 \ln x = -\ln x^2$$

А далі множимо обидві частини рівняння на $e^{\int a(x) dx} = e^{-\ln x^2} = \frac{1}{x^2}$

$$\Rightarrow \frac{y'}{x^2} - \frac{2y}{x^3} = 2x \Rightarrow \left(\frac{y}{x^2}\right)' = 2x \Rightarrow \frac{y}{x^2} = x^2 + C$$
$$\Rightarrow y = x^4 + Cx^2$$

4.4 Рівняння Рікатті

Розглянемо таке рівняння

$$y' = P(x)y^2 + Q(x)y + R(x)$$

де $P, Q, R \in C(I)$

Remark. При $P(x) \equiv 0$ маємо лінійне рівняння

При $R \equiv 0$ маємо рівняння Бернуллі, де $\lambda = 2$

При P=Q=R=const маємо рівняння з відокремленими змінними

Проведемо заміну

$$y = z + y_{part}$$

де z=z(x) - така функція, що зможе звести до рівняння Бернуллі, а y_{part} - якийсь частковий розв'язок

$$\Rightarrow y' = z' + y'_{part} = z' + P(x)y_{part}^2 + Q(x)y_{part} + R(x)$$

Підставимо це в наше рівняння:

$$z' + P(x)y_{part}^2 + Q(x)y_{part} + R(x) = P(x)(z + y_{part})^2 + Q(x)(z + y_{part}) + R(x)$$

Якщо трохи поскоротити, отримаємо таке рівняння:

$$z' = P(x)z^2 + (2P(x)y_{part} + Q(x))z$$

А це вже - рівняння Бернуллі з $\lambda=2...$

Example. Розв'язати рівняння $y' - 2xy + y^2 = 5 - x^2$

Або
$$y' = -y^2 + 2xy + (5 - x^2)$$

Спробуємо вгадати розв'язок у вигляді $y_{part} = kx + b \Rightarrow y'_{part} = k$ $\Rightarrow k = -(kx+b)^2 + 2x(kx+b) + (5-x^2)$

$$\Rightarrow k = -k^{2}x^{2} - 2kxb - b^{2} + 2kx^{2} + 2bx + 5 - x^{2}$$

$$\Rightarrow (k^{2} - 2k)x^{2} + (2kb - 2b)x + (k + b^{2}) = -x^{2} + 5$$

$$\Rightarrow \begin{cases} k^{2} - 2k = -1 \\ 2kb - 2b = 0 \\ k + b^{2} = 5 \end{cases} \Rightarrow \begin{cases} k = 1 \\ b = \pm 2 \end{cases}$$

Заміна:
$$y=z+x+2\Rightarrow y'=z'+1$$
 $\Rightarrow z'+1=-(z+x+2)^2+2x(z+x+2)+5-x^2$ $\Rightarrow z'=-z^2-4z$ $\Rightarrow z'+4z=-z^2$ - рівняння Бернуллі, $\lambda=2$... $z=-\frac{4C'}{C'-e^{4x}}$ Зворотня заміна: $y-x-2=-\frac{4C'}{C'-e^{4x}}$

Канонічний вигляд рівняння Рікатті 4.5

Маємо таке рівняння

$$y' = y^2 + \tilde{Q}(x)$$

Виявляється, що будь-яке рівняння Рікатті можна звести до канонічного вигляду

Для цього проведемо заміну:

$$y = \alpha(x)z(x)$$

де $\alpha(x)$ - така функція, щоб коефіцієнт при z^2 був рівний 1 $y' = \alpha'z + \alpha z'$

$$y=\alpha z+\alpha z$$
 $\Rightarrow \alpha'z+\alpha z'=P(x)\alpha^2(x)z^2(x)+Q(x)\alpha(x)z(x)+R(x)$ Поділимо на α та виразимо z'

$$z' = P\alpha z^2 + \left(Q - \frac{\alpha'}{\alpha}\right)z + \frac{R}{\alpha}$$

 $P\alpha = 1$ згідно з заміною

Візьмемо $\alpha(x) = \frac{1}{P(x)}$. Тоді наша перша заміна вже матиме вигляд:

$$y = \frac{z(x)}{P(x)}$$

Проведемо другу заміну

$$z = u(x) + \beta(x)$$

де $\beta(x)$ - така функція, щоб коефіцієнт при u був рівний 0 $z'=u'+\beta'$

$$\Rightarrow u' + \beta' = (u + \beta)^2 + \left(Q - \frac{\alpha'}{\alpha}\right)(u + \beta) + \frac{R}{\alpha}$$

Виразимо u'

$$u' = u^2 + u\left(2\beta + Q - \frac{\alpha'}{\alpha}\right) + \beta^2 + \left(Q - \frac{\alpha'}{\alpha}\right)\beta + \frac{R}{\alpha} - \beta'$$

$$2\beta + Q - \frac{\alpha'}{\alpha} = 0$$
 згідно з заміною

$$\beta^2 + \left(Q - \frac{\alpha'}{\alpha}\right)\beta + \frac{R}{\alpha} - \beta' = \tilde{Q}(x)$$

I нарешті, візьмемо $\beta = \frac{1}{\alpha} \left(\frac{\alpha'}{\alpha} - Q \right)$, де $\alpha = \frac{1}{P(x)}$

 $\Rightarrow u' = u^2 + \tilde{Q}(x)$ - рівняння Рікатті в канонічному вигляді

Example. Звести до канонічного рівняння Рікатті $y' = \frac{y^2}{x^2} + \frac{2y}{x} + \frac{3}{x^2}$ $P(x) = \frac{1}{x^2}, Q(x) = \frac{2}{x}, R(x) = \frac{3}{x^2}$ Заміна 1: $y = \frac{z(x)}{P(x)} = x^2z \Rightarrow y' = x^2z' + 2xz$ $\Rightarrow x^2z' + 2xz = x^2z^2 + 2xz + \frac{3}{x^2} \Rightarrow x^2z' = x^2z^2 + \frac{3}{x^2}$ $\Rightarrow z' = z^2 + \frac{3}{x^4}$ - канонічне рівняння

4.6 Спеціальні рівняння Рікатті

Маємо таке рівняння

$$y' + Ay^2 = Bx^m$$

де $A, B, m \in \mathbb{R}$

Remark. При m=0 маємо рівняння з відокремленними змінними При m=-2 маємо квазіоднорідне рівняння, де $\sigma=-1$

Theorem. Спеціальне рівняння Рікатті є інтегрованим $\iff \frac{m}{2m+4} \in$

 \mathbb{Z}

Факт доволі складний

Розглянемо випадок, коли $\frac{m}{2m+4} \in \mathbb{Z}$ Зробимо заміну

$$y = \frac{z(x)}{r}$$

$$\Rightarrow y' = \frac{z'}{x} - \frac{z}{x^2}$$

$$\Rightarrow \frac{z'}{x} - \frac{z}{x^2} + A\frac{z^2}{x^2} = Bx^m$$

$$\Rightarrow z'x - z + Az^2 = Bx^{m+2}$$
Зробимо другу заміну

$$x^{m+2} = t$$

де
$$t$$
 - невідома змінна
$$\Rightarrow \frac{dz}{dx} = \frac{dz}{dt} \frac{dt}{dx} = \frac{dz}{dt} (m+2) x^{m+1}$$

$$\Rightarrow x \frac{dz}{dx} = (m+2) \frac{dz}{dt} x^{m+2} = (m+2) t \frac{dz}{dt}$$

$$\Rightarrow (m+2) t \frac{dz}{dt} - z + A z^2 = B t$$

$$t \frac{dz}{dt} - \frac{1}{m+2} z + \frac{A}{m+2} z^2 = \frac{B t}{m+2}$$
 Отримали рівняння Рікатті вигляду
$$t \frac{dz}{dt} + \alpha z + \beta z^2 = \gamma t$$

 ${\bf B}^{at}$ залежності від ситуації виконаємо одну з двох замін

$$z(t) = \frac{t}{a + u(t)}, \alpha < -\frac{1}{2}$$

де
$$a=rac{1+lpha}{2}$$

Або

$$z(t) = -\frac{\alpha}{\beta} + \frac{t}{u(t)}, \alpha > -\frac{1}{2}$$

Такі заміни робимо стільки разів, скільки потрібно, поки не отримуємо ще одне рівняння Рікатті

$$u't - \frac{1}{2}u + Du^2 = Ht$$
 Зробимо останню заміну

$$u = v(t)\sqrt{t}$$

$$\Rightarrow u'=v'\sqrt{t}+rac{v\sqrt{t}}{2}$$
 $\Rightarrow u't\sqrt{t}+Dv^2t=Ht$ $v'\sqrt{t}=H-Dv^2$ - рівняння з відокремленими змінними

4.7 Диференціальні рівняння в симетричній формі

Маємо рівняння Пфаффа

$$M(x,y) dx = N(x,y) dy = 0$$

де
$$M,N:D\to\mathbb{R},D\subset\mathbb{R}^2,M,N\in C(D),$$
 а також $|M(x,y)|+|N(x,y)|\not\equiv 0$

Definition. Крива $x = x(t), y = y(t), t \in I \in$ **розв'язком** заданого рівняння, якщо

$$x(t), y(t) \in C'(I)$$

$$\forall t \in I : ((x(t), y(t)) \in D$$

$$M(x(t)), y(t))x'(t) + N(x(t), y(t))y'(t) \equiv 0$$

Definition. Вираз F(x,y,c) = 0 задає **загальний розв'язок** заданого рівняння, якщо будь-який розв'язок кривої може бути представлений у такому вигляді

4.7.1 Рівняння в повних диференціалах

Definition. Рівняння Пфаффа називається **рівнянням в повних диференціалах**, якщо

$$\exists u(x,y) \in C'(D) : \frac{\partial u}{\partial x} = M(x,y), \frac{\partial u}{\partial y} = N(x,y)$$

Тоді рівняння прийме такий вигляд

$$\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = 0 \iff du = 0 \iff u(x,y) = c$$

Theorem. Критерій рівняння в повних диференціалах

 $M(x,y)\,dx+N(x,y)\,dy=0$ - в повних диференціалах $\iff \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ Доведення див. в мат анализі 3 семестр

Example. Розв'язати рівняння $(x^2 + y) dx + (x + y^2) dy = 0$ Оскільки $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 1$, то таке рівняння - в повних диференціалах Отже, $\exists u(x,y): \frac{\partial u}{\partial x} = M(x,y), \frac{\partial u}{\partial y} = N(x,y)$ $\Rightarrow u(x,y) = \int M(x,y) dx + \varphi(y) = \int (x^2 + y) dx + \varphi(y) = \frac{x^3}{3} + yx + \varphi(y)$ $\Rightarrow \frac{\partial u}{\partial y} = N(x,y) = \frac{\partial}{\partial y} \left(\int M(x,y) dx + \varphi(y) \right)$ $\Rightarrow x + y^2 = x + \varphi'(y) \Rightarrow \varphi'(y) = y^2 \Rightarrow \varphi(y) = \frac{y^3}{3}$ Остаточно $u(x,y) = \frac{x^3}{2} + xy + \frac{y^3}{2} + C$

4.7.2 Інтегрувальний множник

Тепер розглянемо рівняння Пфаффа, але вже не в повних диференціалах Проте завжди можна звести до повних диференціалах шляхом домноження на деяку неперервну функцію $\mu(x,y)$

Example. $y \, dx - x \, dy = 0$, не є рівняннях в повних диференціалах, тому що

$$\frac{\partial M}{\partial y} = 1, \frac{\partial N}{\partial x} = -1$$

Проте якщо рівняння домножити на $\mu(x,y) = \frac{1}{y^2}$, то тепер

$$\frac{1}{y}dx - \frac{x}{y^2}dy = 0$$
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = -\frac{1}{y^2}$$

Definition. Функція $\mu(x,y)$ називається **інтегрувальним множником**, якщо при множенні на рівняння Пфаффа ми отримуємо рівняння в повних диференціалах

З'ясуємо, як це знайти:

$$\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x} \iff \frac{\partial\mu}{\partial y}M + \mu\frac{\partial M}{\partial y} = \frac{\partial\mu}{\partial x}N + \mu\frac{\partial N}{\partial x}$$

Рівняння справа й дасть відповідь на те, який множник нам треба

Часткові випадки:

1.
$$\mu = \mu(x)$$
 Тоді $\frac{\partial \mu}{\partial y}M + \mu \frac{\partial M}{\partial y} = \frac{\partial \mu}{\partial x}N + \mu \frac{\partial N}{\partial x} \iff \mu \frac{\partial M}{\partial y} = \frac{\partial \mu}{\partial x}N + \mu \frac{\partial N}{\partial x}$ $\iff \frac{\partial \mu}{\partial x}\frac{1}{\mu} = \frac{\frac{\partial \mu}{\partial y} - \frac{\partial N}{\partial x}}{N}$ Оскільки ліва функція лише залежить від x , то права частина рівняння водночає теж має лише залежати від x . Отже, $\mu(x)$ буде знайдено, інтегруючи це рівняння

2.
$$\mu = \mu(y)$$

Аналогічним чином, не буду розписувати

Example. Розв'язати рівняння $(x^2 + y^2 + x) dx + y dy = 0$ Маємо, що $\frac{\partial M}{\partial x} = 2y, \frac{\partial N}{\partial x} = 0$ Тоді $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 2y$ $\Rightarrow \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 2 = \mu(x) \Rightarrow \exists \mu = \mu(x)$ $\Rightarrow \frac{\partial \mu}{\partial x} \frac{1}{\mu(x)} = 2 \Rightarrow \mu = e^{2x}$

Домножимо рівняння на інтегрувальний множник:

$$e^{2x}(x^2 + y^2 + x) dx + e^{2x}y dy = 0$$

Тепер це - рівняння в повних диференціалах...

Рівняння Пфаффа також має множники $\mu=\mu(\omega(x,y))$ (наприклад, $\mu(x+y),\mu(xy),\mu(x^2+y^2),\dots),$ але то таке