Kernel View of Attention

• Suppose there exists φ such that $sim(q,k) = \langle \varphi(q), \varphi(k) \rangle$

• If $Q' = \varphi(Q)$ and $K' = \varphi(K)$, output is

Why write this way?

- Linear time algorithm for computing $\mathsf{LT}(A \cdot B^\mathsf{T}) \cdot C$

• What about ϕ for softmax?

No finite dimensional feature maps

$$D^{-1} \cdot \mathsf{LT}(Q' \cdot (K')^\mathsf{T}) \cdot V$$

Kernel View of Attention

- Suppose there exists φ such that $sim(q,k) = \langle \varphi(q), \varphi(k) \rangle$
- If $Q' = \varphi(Q)$ and $K' = \varphi(K)$, output is

$$D^{-1} \cdot \mathsf{LT}(Q' \cdot (K')^\mathsf{T}) \cdot V$$

- Why write this way?
 - Linear time algorithm for computing $\mathrm{LT}(A\cdot B^{\mathsf{T}})\cdot C$
- What about φ for softmax?
 - No finite dimensional feature maps

Previous Works