DEVOIR SURVEILLÉ 4

Calculatrice autorisée Mardi 8 avril 2025

EXERCICE 1 (8 POINTS)

Un laboratoire réalise une expérience sur 100 rats, les uns dressés, les autres sauvages.

- 40% des rats sont sauvages;
- 35% des rats peuvent allumer une lumière;
- 36 rats dressés attrapent le fromage;
- 10% des rats sauvages peuvent ouvrir une trappe;
- 18 rats sauvages sont capables d'allumer une lumière.
- 1. Compléter sur l'énoncé le tableau résumant la situation.

	Attrape	Ouvre	Allume	Total
	le fromage	une trappe	une lumière	
Dressé				
Sauvage				
Total				100

2. On choisit au hasard un rat parmi les 100.

On considère les événements suivants :

A : « Le rat est capable d'attraper le fromage »;

B: « Le rat est dressé ».

- **a.** Donner les probabilités $\mathbb{P}(A)$ et $\mathbb{P}(B)$.
- b. Calculer la probabilité des événements suivants.
 - i) $A \cap B$
- ii) $A \cup B$
- iii) \overline{A}

iv) $A \cap \overline{B}$

CORRECTION

1.

	Attrape le fromage	Ouvre une trappe	Allume une lumière	Total
Dressé	36	7	17	60
Sauvage	18	4	18	40
Total	54	11	35	100

2. a.
$$\mathbb{P}(A) = \frac{54}{100} \text{ et } \mathbb{P}(B) = \frac{60}{100}$$

b. i)
$$\mathbb{P}(A \cap B) = \frac{36}{100}$$

ii)
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = \frac{54}{100} + \frac{60}{100} - \frac{36}{100} = \frac{78}{100}$$

iii)
$$\mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A) = \frac{40}{100}$$

iv)
$$\mathbb{P}(A \cap \overline{B}) = \frac{18}{100}$$

EXERCICE 2 (4 POINTS)

1. On sait que:

$$\mathbb{P}(A) = 0.2$$
; $\mathbb{P}(B) = 0.5$; $\mathbb{P}(A \cap B) = 0.1$.

Calculer $\mathbb{P}(\overline{A \cup B})$.

2. On sait que:

$$\mathbb{P}(\overline{A}) + \mathbb{P}(\overline{B}) = 0.9$$
; $\mathbb{P}(A \cup B) = 0.75$.

Calculer $\mathbb{P}(A \cap B)$.

CORRECTION

1.
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = 0,2 + 0,5 - 0,1 = 0,6 \text{ donc } \mathbb{P}(\overline{A \cup B}) = 0,4.$$

2.
$$\mathbb{P}(\overline{A}) + \mathbb{P}(\overline{B}) = 0.9$$
 donc $1 - \mathbb{P}(A) + 1 - \mathbb{P}(B) = 2 - \mathbb{P}(A) - \mathbb{P}(B) = 0.9$ ce qui veut dire que :

$$\mathbb{P}(A) + \mathbb{P}(B) = 2 - 0.9 = 1.1.$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B) = 1, 1 - 0,75 = 0,35$$

EXERCICE 3 (4 POINTS)

Pedro répond au hasard à un QCU (questionnaire à choix unique) : il y a trois questions et chaque question possède trois propositions de réponse mais seulement une est correcte.

- 1. Représenter cette situation à l'aide d'un arbre des possibles.
- 2. En déduire la probabilité que Pedro réponse juste à au plus une question.

CORRECTION

1. On compte $27 = 3^3$ issues sur l'arbre des possibles suivants.

2. On compte le nombre de chemins favorables sur l'arbre pour obtenir au plus une question juste (aucune ou une seule). La probabilité de cet événement est donc égale à :

$$\frac{20}{27} \approx 0.74$$

EXERCICE 4 (4 POINTS)

Un dé équilibré à **quatre faces** possède deux faces rouges, une face blanche et une face verte. On lance ce dé deux fois.

- 1. Représenter cette situation à l'aide d'un arbre des possibles.
- 2. Un casino met en place cette expérience aléatoire et propose les gains suivants pour chaque joueur.
 - Si on obtient deux fois « vert », on gagne 5€.
 - Si on obtient deux fois « blanc », on gagne 20€.
 - Si on obtient deux fois « rouge », on perd 5€.
 - Si les deux faces obtenues n'ont pas la même couleur, on perd 10€.

On considère les événements suivants :

G: « Le joueur gagne de l'argent »;

H: « Le joueur gagne au plus 8 euros ».

Calculer $\mathbb{P}(G)$ et $\mathbb{P}(H)$.

CORRECTION

1. On compte 16 issues possibles.

2. L'évènement G est réalisé par le biais des chemins VV et BB donc $\mathbb{P}(G) = \frac{2}{16}$.

Pour H, regardons d'abord son complémentaire \overline{H} : «Le joueur gagne strictement plus de 8 euros » \overline{H} est réalisé par BB seulement donc $\mathbb{P}(\overline{H}) = \frac{1}{27}$ et ainsi $\mathbb{P}(H) = \frac{26}{27}$.