LECTURE 1: Numerical Methods: Integration and ODE&PDEs

Numerical Integration (also called Quadrature)

$$I = \int_{a}^{b} f(x)dx$$

Special case of differential equation

$$\frac{dy}{dx} = f(x), \ y(a) = 0$$

LECTURE 1: Numerical Methods: Integration and ODE&PDEs

• ODE: higher order differential equations can always be rewritten as a series of 1st order:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x)$$

$$\frac{dy}{dx} = z(x)$$

$$\frac{dz}{dx} = r(x) - q(x)z(x)$$

• We also need to specify boundary conditions. Typical case is initial value problem: we specify at initial time. For example, specify initial position and velocity of a particle and then use Newton's law to solve for its time evolution

Simple Trapezoidal Rule

$$x_i = x_0 + ih$$
$$f(x_i) = f_i$$

$$\int_{x_1}^{x_2} f(x)dx = \frac{h}{2}(f_1 + f_2) + \mathcal{O}(h^3 f'')$$

• Exact for linear f(x)

Simpson's Rule

$$\int_{x_1}^{x_3} f(x)dx = h(\frac{1}{3}f_1 + \frac{4}{3}f_2 + \frac{1}{3}f_3) + \mathcal{O}(h^5 f'''')$$

- Exact for $f(x) = \alpha x + \beta x^2 + \gamma x^3$
- Open if we cannot compute $f(x_0)$ or $f(x_{N+1})$

Extended Formula

Trapezoid:
$$\int_{x_1}^{x_N} f(x) dx = h \left[\frac{1}{2} f_1 + f_2 + f_3 + \cdots + f_{N-1} + \frac{1}{2} f_N \right] + O\left(\frac{(b-a)^3 f''}{N^2} \right)$$

Simpson:
$$\int_{x_1}^{x_N} f(x)dx = h \left[\frac{1}{3} f_1 + \frac{4}{3} f_2 + \frac{2}{3} f_3 + \frac{4}{3} f_4 + \cdots + \frac{2}{3} f_{N-2} + \frac{4}{3} f_{N-1} + \frac{1}{3} f_N \right] + O\left(\frac{1}{N^4}\right)$$

Open Trapezoid:

Extended
$$\int_{x_1}^{x_N} f(x)dx = h\left[\frac{3}{2}f_2 + f_3 + f_4 + \dots + f_{N-2} + \frac{3}{2}f_{N-1}\right] + O\left(\frac{1}{N^2}\right)$$

- How do we achieve a given accuracy?
- We cannot guess N ahead of time, so we need to vary it.

- If we double $N \rightarrow 2N$, we can reuse function evaluations.
- Error Estimate: Difference between two subsequent steps
- Also need to put a limit to the number of steps:

$$N_{\text{max}} = 2^{\text{JMAX}-1}, \text{ JMAX} = 20$$

- → QTRAP of NR or QSIMP + TRAPZD
- Final refinement: Extended trapezoidal error is even in 1/N:

$$\int_{x_1}^{x_N} f(x)dx = h \left[\frac{1}{2} f_1 + f_2 + f_3 + \dots + f_{N-1} + \frac{1}{2} f_N \right]$$
$$- \frac{B_2 h^2}{2!} (f_N' - f_1') - \dots - \frac{B_{2k} h^{2k}}{(2k)!} (f_N^{(2k-1)} - f_1^{(2k-1)}) - \dots$$

• Apply to N and 2N: $I = \frac{4}{3}I_{2N} - \frac{1}{3}I_N$ cancels out leading error.

$$I_{\text{true}} = I_N + E_t$$

$$E_t(N) = \frac{C}{N^2} = I_{\text{true}} - I_N$$
 $E_t(2N) = \frac{C}{4N^2} = I_{\text{true}} - I_{2N}$ $I_{\text{true}} = I_{2N} - \frac{I_{2N} - I_N}{3} = \frac{4}{3}I_{2N} - \frac{1}{3}I_N$

→ We get Simpson's Rule

Romberg Integration

• Use N, 2N, 4N, ... to cancel out higher orders $O(N^{-2k})$ using polynomial extrapolation

Romberg Integration

→ Romberg is the best routine for uniform interval sampling

Doubling N from
$$I_1$$
 to I_2 , $I_1 = R_{1,1}$ $I_1 + ch_1^2 = I_2 + ch_2^2$, $I_2 = I_1 = ch_1^2 - ch_2^2 = 3ch_2^2$, $I_3 = R_{3,1} \rightarrow R_{3,2} \rightarrow R_{3,3}$ $I_4 = R_{4,1} \rightarrow R_{4,2} \rightarrow R_{4,3} \rightarrow R_{4,4}$ $I_{4,1} = I_{4,1} \rightarrow R_{4,2} \rightarrow R_{4,3} \rightarrow R_{4,4}$ $I_{5,1} = I_{5,1} \rightarrow R_{5,2} \rightarrow R_{5,3}$ $I_{5,2} = I_{5,1} + \frac{1}{3}(I_{5,1} - I_{5,1})$.

Improper Integrals

Cannot be evaluated

Ex)
$$\frac{\sin(x)}{x}\Big|_{x=0}$$

Use open formula: Extended Midpoint Rule

• Infinite boundaryc Ex)
$$\int_{-\infty}^{\infty} f(x)dx$$
• Integrable singularity Ex) $\int_{0}^{x_0} x^{-\frac{1}{2}}dx$

$$\operatorname{Ex}) \int_0^{x_0} x^{-\frac{1}{2}} dx$$

Change of variables

$$\int_{a}^{b} f(x)dx = \int_{1/b}^{1/a} \frac{1}{t^{2}} \cdot f(1/t)dt$$

$$ab > 0$$

 $b \to \infty, a > 0$
 $a \to -\infty, b < 0$

Examples: Change of variables

Integrable singularity

If the integrand diverges as $(x-a)^{-\gamma}$,

$$0 \le \gamma < 1$$
, near $x = a$,

$$\int_{a}^{b} f(x)dx = \frac{1}{1-\gamma} \int_{0}^{(b-a)^{1-\gamma}} t^{\frac{\gamma}{1-\gamma}} f(t^{\frac{1}{1-\gamma}} + a)dt \qquad (b > a)$$

Exponential fall-off

$$t = e^{-x}$$
 or $x = -\log t$

$$\int_{x=a}^{x=\infty} f(x)dx = \int_{t=0}^{t=e^{-a}} f(-\log t) \frac{dt}{t}$$

Gaussian Quadratures

- Move beyond equally spaced points
- Choose abscissas and weights, achieving twice the order of accuracy
- Higher order \neq Higher accuracy!
- We can choose to be high accuracy for polynomial times a function W(x)

$$\int_{a}^{b} W(x)f(x)dx \approx \sum_{j=1}^{N} w_{j}f(x_{j})$$

Weights & Abscissas tabulated for several cases

Read about orthogonal polynomials construction of weights & abscissas in NR

• Commonly used cases:

Rescale for other intervals

Gauss-Legendre:

$$W(x) = 1 \qquad -1 < x < 1$$

Gauss-Chebyshev:

$$W(x) = (1 - x^2)^{-1/2}$$
 $-1 < x < 1$

Gauss-Laguerre:

$$W(x) = x^{\alpha} e^{-x}$$
 $0 < x < \infty$

Gauss-Hermite:

$$W(x) = e^{-x^2} \qquad -\infty < x < \infty$$

Gauss-Jacobi:

$$W(x) = (1-x)^{\alpha}(1+x)^{\beta}$$
 $-1 < x < 1$

Multidimensional Integrals

are HARD!

- Number of points scales as N^M, where M: # of dimensions
- Boundary can be complicated

Can dimension be reduced?

$$\int_0^x dt_n \int_0^{t_n} dt_{n-1} \cdots \int_0^{t_3} dt_2 \int_0^{t_2} f(t_1) dt_1$$
$$= \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} f(t) dt$$

If complicated boundary, low res, not strongly peaked integrand

→ Monte Carlo Integration (to be discussed later)

If boundary is simple and function is smooth

→ Repeated 1-D integrals

$$I = \int \int dx dy f(x, y)$$

$$H(x) = \int_{y_1}^{y_2} f(x, y) dy$$

$$I = \int_{x_1}^{x_2} H(x) dx$$

Best to use Gaussian Quadratures for high precision

Summary

- Workhorse for 1-D integrals is:
 Romberg: simple, nested error estimate
- Input: EPS (Error), Max # of iterations
- If evaluations expensive, use Gaussian Quadratures
- If many dimensions, use 1-D repeated integrals, with Gauss Q. preferred
- Complicated boundary + many dim integrals
 - → Use Monte Carlo

Euler Method, 2nd Order Midpoint ...

• We start with the simplest method, 1st order (explicit) Euler:

dy/dx = f(x,y), dx = h

 $\bullet \quad y_{n+1} = y_n + h f(x_n, y_n)$

• 2nd order extension (midpoint, or 2nd order Runge-Kutta)

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$

$$y_{n+1} = y_n + k_2 + O(h^3)$$

4th Order Runge-Kutta

• Historically often the method of choice

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$

$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 + O(h^5)$$

4th Order Runge-Kutta

- Add adaptive stepsize control, doubling the step.
- Richardson extrapolation adds one more order

$$y(x + 2h) = y_1 + (2h)^5 \phi + O(h^6) + \dots$$
$$y(x + 2h) = y_2 + 2(h^5)\phi + O(h^6) + \dots$$
$$y(x + 2h) = y_2 + \frac{\Delta}{15} + O(h^6)$$
$$\Delta \equiv y_2 - y_1$$

Bulirsch-Stoer method: "infinite" order extrapolation

- Uses Richardson's extrapolation again (we also used it for Romberg integration): we estimate the error as a function of interval size h, then we try to extrapolate it to h=0
- As in Romberg we need to have the error to be in terms of h² instead of h

• Can use polynomial or rational function extrapolation: we discussed both for interpolations

2 steps 4 steps ⊗

extrapolation to ∞ steps

x + H

2nd Order Conservative Equations

$$\ddot{q} = f(q)$$

- Stormer-Verlet with two step formulation: we are interpolating parabola through 3 points
- Gains a factor of 2

$$q_{n+1}-2q_n+q_{n-1}=h^2f(q_n)$$

One Step Formulation: Leap-frog

• We introduce momentum $p = \dot{q}$, $\ddot{q} = f(q)$

$$\dot{q}=p, \qquad \dot{p}=f(q)$$

$$p_{n+1/2} = p_n + \frac{h}{2}f(q_n)$$

$$q_{n+1} = q_n + hp_{n+1/2}$$

$$p_{n+1} = p_{n+1/2} + \frac{h}{2}f(q_{n+1})$$

Generalization: Symplectic Integrators

- Symplectic integrators preserve phase space (p,q) volume: p,q must be canonical variables
- Symplectic transformation preserves phase space area (p,q) (Lioville's theorem)

- Hamiltonian is not conserved, but a related quantity is and one does not accumulate amplitude error, only phase error
- Useful if one needs to integrate a system for a long time (e.g. planet orbits etc)

Leapfrog is Symplectic

Hamiltonian problem $\dot{p} = -H_q(p,q), \ \dot{q} = H_p(p,q)$

Theorem. The Störmer-Verlet method

$$p_{n+1/2} = p_n - \frac{h}{2} H_q(p_{n+1/2}, q_n)$$

$$q_{n+1} = q_n + \frac{h}{2} \Big(H_p(p_{n+1/2}, q_n) + H_p(p_{n+1/2}, q_{n+1}) + H_p(p_{n+1/2}, q_{n+1}) + H_p(p_{n+1/2}, q_{n+1}) \Big)$$

$$p_{n+1} = p_{n+1/2} - \frac{h}{2} H_q(p_{n+1/2}, q_{n+1})$$

is symplectic.

Euler can be made symplectic

applied to
$$\dot{p} = -H_q$$
, $\dot{q} = H_p$:

$$p_{n+1} = p_n - hH_q(p_{n+1}, q_n)$$

$$q_{n+1} = q_n + hH_p(p_{n+1}, q_n)$$
(SE1)

or

$$q_{n+1} = q_n + hH_p(p_n, q_{n+1})$$

 $p_{n+1} = p_n - hH_q(p_n, q_{n+1})$ (SE2)

Theorem. (de Vogelaere, 1956)

The symplectic Euler method is symplectic.

Theorem. The implicit midpoint rule is symplectic.

Phase Space Flow

Example: Planetary Orbit Integration

- Explicit Euler's orbits decay. This is not cured by higher order (Runge-Kutta, B-S...)
- Symplectic integrators preserve the orbit amplitude (but not the phases, not shown)

Stiff Equations

• Explicit (forward) Euler:

$$y' = -cy$$

$$y_{n+1} = y_n + hy'_n = (1 - ch)y_n$$

- Unstable if h > 2/c, since y goes to infinity
- Example:

$$u' = 998u + 1998v$$
 $u(0) = 1$ $v(0) = 0$
 $v' = -999u - 1999v$ $u = 2e^{-x} - e^{-1000x}$
 $u = 2y - z$ $v = -y + z$ $v = -e^{-x} + e^{-1000x}$

- But the system is unstable if h > 1/1000
- Solution: implicit (backward Euler)

$$y_{n+1} = y_n + hy'_{n+1}$$

$$y_{n+1} = \frac{y_n}{1 + ch}$$

General Appraoch

• If we are solving a linear system: $\mathbf{y}' = -\mathbf{C} \cdot \mathbf{y}$

$$\mathbf{T}^{-1} \cdot \mathbf{C} \cdot \mathbf{T} = \operatorname{diag}(\lambda_0 \dots \lambda_{N-1})$$
 $\mathbf{z}' = -\operatorname{diag}(\lambda_0 \dots \lambda_{N-1}) \cdot \mathbf{z}$ $\mathbf{z} = \operatorname{diag}(e^{-\lambda_0 x} \dots e^{-\lambda_{N-1} x}) \cdot \mathbf{z}_0$

- Exact solution: $\mathbf{y} = \mathbf{T} \cdot \operatorname{diag}(e^{-\lambda_0 x} \dots e^{-\lambda_{N-1} x}) \cdot \mathbf{T}^{-1} \cdot \mathbf{y}_0$
- Explicit scheme: $\mathbf{y}_0 = \sum_{i=0}^{N-1} \alpha_i \boldsymbol{\xi}_i$ $\mathbf{y}_n = \sum_{i=0}^{N-1} \alpha_i (1 h\lambda_i)^n \boldsymbol{\xi}_i$
- Stability condition: $|1 h\lambda_i| < 1$ i = 0, ..., N-1 $h < \frac{2}{\lambda_{\text{max}}}$
- Implicit scheme: $\mathbf{y}_{n+1} = (\mathbf{1} + \mathbf{C}h)^{-1} \cdot \mathbf{y}_n$
- Always stable: $|1 + h\lambda_i|^{-1} < 1$ i = 0, ..., N-1

Stiff Nonlinear Equations

• In general, implicit scheme hard to solve

$$\mathbf{y}' = \mathbf{f}(\mathbf{y})$$

 $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(\mathbf{y}_{n+1})$

- Linearize f: $\mathbf{y}_{n+1} = \mathbf{y}_n + h \left[\mathbf{f}(\mathbf{y}_n) + \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \middle|_{\mathbf{y}_n} \cdot (\mathbf{y}_{n+1} \mathbf{y}_n) \right]$ (Newton's method)
- Invert Jacobian: $\mathbf{y}_{n+1} = \mathbf{y}_n + h \left[\mathbf{1} h \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \right]^{-1} \cdot \mathbf{f}(\mathbf{y}_n)$
- This is semi-implicit Euler method
- There are also stiff versions of higher order ODE

Partial Differential Equations

- This is a vast subject, and we will only mention its existence
- Hyperbolic, e.g. wave equation: $\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$
- Parabolic, e.g. diffusion equation: $\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right)$
- Both of these are initial value (Cauchy) problems
- Boundary value problem: elliptic, Elliptic, e.g. Poisson equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$

• If source $\rho=0$ this is Laplace equation

Finite Difference Method

• Discretize on a grid...

(a)

Summary

- ODEs and PDEs are central to numerical analysis in physical sciences, engineering...
- ODEs have a relatively stable methods
- PDEs have a vast array of approaches: relaxation, finite differences, finite elements, spectral methods, matrix methods, multi-grid, Monte Carlo, variational...

Literature

Numerical Integration:

- *Numerical Recipes*, Press et al., Chapter 4 (http://apps.nrbook.com/c/index.html)
- *Computational Physics*, Mark Newman, Chapter 5 (http://www-personal.umich.edu/~mejn/cp/chapters/int.pdf)

ODE&PDEs

• Numerical Recipes, Press et al., Chapter 17-20