Embedding Module: From Fundamentals to Deep Representations

DL & GenAl Project [BSDA2001P] Indian Institute of Technology Madras

INDRANIL BHATTACHARYYA

DATA SCIENTIST, RENAULT NISSAN

Agenda

- Setting the Stage: Why GPU for NLP
- From TF-IDF to Deep Embeddings
- Accelerating Embedding Computation with GPUs
- Matryoshka Representation Learning (MRL)
- Wrap-Up & Takeaways

Method	Hardware	Time (per 1k sentences)
TF-IDF	CPU	~2.1s
BERT (base)	CPU	~80s
BERT (base)	GPU	~4.5s

Why GPU for NLP?

- Modern NLP models → billions of parameters
 → need parallel tensor operations.
- GPUs accelerate:
 - o Matrix multiplications
 - Batch processing
 - o Embedding generation for large corpora

Activity – GPU In Kaggle

- Enable GPU in Kaggle
- Verify GPU availability through code

From TF-IDF to Deep Embeddings: The Evolution of Text Representations

Traditional Representations: Sparse and Static

$$ext{TF-IDF}(t,d) = ext{tf}(t,d) imes \log rac{N}{df(t)}$$

• Conceptual Foundations

- Bag of Words (BoW): Counts term occurrences ignores order & semantics.
- TF-IDF: Weights rare words higher but still independent of context.

Limitations:

- High dimensional & sparse vectors
- No notion of semantic similarity
- Fails on polysemous words (e.g., bank → river / finance)

Dense Embeddings

- The Transition Phase:
 - o Word2Vec / GloVe: Capture co-occurrence statistics via shallow neural nets.
 - o Learn dense, low-dimensional embeddings (~300D).
 - \circ Each word \rightarrow a single fixed vector representing global meaning.
- Properties:
 - o Enables vector arithmetic \rightarrow king man + woman \approx queen
 - Still static → cannot disambiguate "apple" (fruit vs company)

Deep Contextual Representations

Contextual Embeddings with Transformers

ELMo, **BERT**, **RoBERTa**: Represent words in *context* using self-attention.

Embedding of a word depends on *surrounding* tokens — **dynamic meaning**.

Multi-layer representations capture hierarchy:

Lower layers → syntax

Middle → semantics

Upper → task-specific nuances

Activity: Semantic Similarity

- We will use Cosine Similarity to measure the similarity between two sentences.
- Will compare:
 - o Tf-IDF Embedding
 - o Word2Vec
 - o Transformer-based embedding

Deep embeddings compress semantics \rightarrow fewer dimensions, richer relationships.

Representation	Contextual	Dimensionality	Training	Use-case
BoW/TF-IDF	×	10k+ (Sparse)	None	Simple baselines
Word2Vec	Partial	~300	Self- supervised	Lightweight NLP
BERT / SBERT	~	384–1024	Pre-trained Transformers	Semantic tasks, Sentiment, QA

Comparative Insights

Demo: Visualization Insight

- t-SNE / UMAP:
 - o TF-IDF clusters by *keywords*
 - o BERT clusters by meaning

Matryoshka Representation Learning (MRL)

The Problem — Embedding Efficiency at Scale

Context:

- o Modern sentence embeddings (e.g., 768–1024D) are **computationally expensive**.
- o Real-world NLP tasks (e.g., retrieval, clustering, QA) don't always need full precision embeddings.
- o Need for compact, multi-resolution embeddings without retraining for every size.

Challenge:

o Can we build one embedding space that performs well at multiple dimensionalities?

What is Matryoshka Representation Learning?

Formal Intuition:

If $f(x)\in\mathbb{R}^d$ is the full embedding, then $f_k(x)=f(x)[:k]$ (the first k dimensions) should maintain meaningful representation quality.

Core Idea:

- Like Russian nesting dolls

 embeddings contain smaller
 embeddings within them.
- A single model is trained so that progressively truncated embeddings (e.g., first 256D of 1024D) still perform well on downstream tasks.
- Key Property: Each prefix of the vector is itself a valid embedding.

Why this? (Training & Use Case)

- Multi-Scale Training:
 - The model produces a hierarchical embedding vector.
 - During training, multiple truncated versions are supervised to align with the full embedding space.
 - Output embedding: same meaning, smaller footprint.
- Deployment Flexibility:
 - Choose embedding size based on resource constraints:
 - Server \rightarrow 768D
 - Edge device → 256D

Questions?