Pythagoraan polku 16.4.2011

- 1. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa, niin on yhdysjana kohtisuorassa kantaa vastaan.
 - RATK Olkoot tasakylkisen kolmion kulmat α , $(\pi-\alpha)/2$ ja $(\pi-\alpha)/2$. Konstruktiossa syntyy toinen tasakylkinen kolmio, jonka kulmat ovat $\pi-\alpha$, $(\pi-(\pi-\alpha))/2$ ja $(\pi-(\pi-\alpha))/2$. Kysytty kulma muodostuu kantakulmista $(\pi-\alpha)/2$ ja $(\pi-(\pi-\alpha))/2$, joiden summa on $\pi/2$.
- 2. Puolita kolmion pinta suoralla, joka kulkee kolmion sivulla olevan tunnetun pisteen kautta.
 - RATK Kolmiosta tunnetaan pituudet A, B ja H, sekä pituus x (katso kuvaa). Ratkaistaan pituus b, joka määrää kysytyn suoran. Yhdenmuotoisista kolmista saadaan verranto $\frac{h}{H} = \frac{b}{B}$. Toisaalta aloja koskeva ehto on $\frac{1}{2}(\frac{1}{2}AH) = \frac{1}{2}xh$. Nämä yhdistämällä saadaan $b = \frac{AB}{2x}$.
- 3. Tunnetun kolmion kärkipisteet keskipisteinä on piirrettävä kolme ympyrää, jotka kaksittain sivuavat toisiansa ulkopuolelta.
 - RATK Olkoot kolmion sivut a, b ja c ja r_a sivua a vastaavaan kärkeen pirretyn ympyrän säde. Samoin r_b ja r_c . Saadaan yhtälöt $a = r_b + r_c$, $b = r_a + r_c$ ja $c = r_a + r_b$. Ratkaisemalla ryhmä saadaan $r_a = (b+c-a)/2$, $r_b = (a+c-b)/2$ ja $r_c = (a+b-c)/2$.
- 4. Vuosien 1860–70 kuluessa lisääntyi Helsingin väkiluku puolella vuoden 1860 väkiluvusta. Paljonko väkeä olisi Helsingissä 1900, jos väkiluku lisääntyisi seuraavinakin vuosikymmeninä samassa suhteessa ja siellä 1860 oli 21 700?
 - RATK Olkoon a=21700. Vuonna 1870 asukkaita oli $\frac{3}{2}a$. Kun kasvusuhde on sama, niin 1900 asukkaita on $(\frac{3}{2})^4a \approx 109900$.
- 5. Mies käveli kaupungista lähimpään majataloon. Kun hän oli käynyt 1 t, ajoi matkustaja kyydillä hänen ohitsensa. Majatalossa viipyi kyytimies $\frac{1}{4}$ t ja tapasi paluumatkallansa jalkamiehen 2 km:n päässä majatalosta. Kuinka kaukana kaupungista on majatalo, jos jalkamies 10 km:n matkalla viipyy 2 t ja kyytimies 50 min?
 - RATK Saadaan heti jalkamiehen nopeus $v_1 = 5$ km/h ja kyytimiehen $v_2 = 12$ km/h. Olkoon x matka ensimmäiseltä kohtauspaikalta majatalolle. Nyt tapaamisten

välinen aika (=matka/nopeus) voidaan ilmoittaa kahdella tavalla:

$$\frac{x - 2km}{v_1} = \frac{x + 2km}{v_2} + \frac{1}{4}h.$$

Tästä saadaan x = 7km, jolloin kysytty matka on (7+5)km = 12km.

- 6. Kolmenumeroisen luvun numeroiden summa on 15. Jos luku jaetaan ykkösten numerolla, saadaan osamääräksi 91; jos lukuun lisätään 99, saadaan toinen luku, jossa ovat samat numerot kuin alkuperäisessä, vaikka vastakkaisessa järjestyksessä. Mikä se luku on?
 - RATK Olkoot luvun numerot abc. Ehdot ovat a+b+c=15, 100a+10b+c=91c ja 100a+10b+c+99=100c+10b+a, joista ratkeaa a=5,b=4 ja c=6.
- 7. 600 m:n pituista ja 400 m:n levyistä suorakaiteen muotoista peltoa ympäröi joka taholta yhtä leveä niitty, jonka ala on 4 kertaa niin suuri kuin pellon. Kuinka leveä niitty on?
 - RATK Olkoon niityn leveys metreinä x. Tällöin niittyn pinta-alalle pätee $(400 + 2x)(600 + 2x) 600 \cdot 400 = 4 \cdot 400 \cdot 600$. Sieventämällä saadaan toisen asteen yhtälö $x^2 + 500x 240000 = 0$, jonka postiivinen ratkaisu on x = 300. Siis niityn leveys on 300m.
- 8. Neliön muotoisesta paperilevystä, jonka sivu on $1\frac{1}{2}$ dm, leikataan ympyräsektori, jonka keskipiste on neliön sivun keskipisteessä ja kaari sivuaa yhtä neliön sivua. Tämä sektori taivutetaan kartion vaippapinnaksi. Suuriko on täten syntyneen kartion tilavuus?
 - RATK Sektorin sisään voidaan piirtää tasasivuinen kolmio, joten sektorin keskuskulma on 60 astetta. Nyt Kartion säde r saadaan yhtälöstä $2\pi r = \frac{60}{360}2\pi R$. Kartion korkeus $h = \sqrt{R^2 r^2}$ saadaan Pythagoraan lauseella. Lopulta $V = \frac{1}{3}\pi r^2 h = \frac{\pi\sqrt{35}}{648}R^3 \approx 0,0968dm^3$.
- 9. Kahteen paikkaan, joiden väli on 10 pnk, näkyi sama lentotähti syttyvän 45° yli taivaanrannan, mutta päinvastaisissa ilmansuunnissa. Korkeallako maanpinnasta syttyi lentotähti, jos maapallon isoympyrän kehä on 40 000km? [Peninkulma on 10 km.]
 - RATK Tarkastellaan pisteessä C olevaa lentotähteä pisteistä A ja B. Olkoon lisäksi O Maan keskipiste ja D piste, jossa pisteiden C ja O yhdysjana leikkaa pisteiden A ja B kautta kulkevan isoympyrän kaaren. Olkoon Maan säde R ja lentotähden lentokorkeus h. Verrannosta $\frac{\alpha}{2\pi} = \frac{50km}{40000km}$ saadaan kulmaksi $\alpha = \frac{\pi}{400}$. Koska

lentotähti näkyy pisteestä A 45 asteen kulmassa, ovat kolmion muut kulmat $\frac{3\pi}{4}$ ja $\beta = \pi - \frac{3\pi}{4} - \frac{\pi}{400} = \frac{99\pi}{400}$. Sovelletaan sinilausetta kolmioon OAC. $\frac{R}{\sin\beta} = \frac{R+h}{\sin\frac{3\pi}{4}}$, josta $h = R(\frac{\sin\frac{3\pi}{4}}{\sin\beta} - 1) \approx 50,6$ km.

10. Missä on tasa-aineisen, ympyrä muotoisen levyn painopiste, jos siinä jossakin kohdassa on ympyrän muotoinen reikä?

RATK Olkoon levyn säde R, rei'än säde r sekä d levyn ja rei'än keskipisteiden välinen etäisyys. Symmetrian nojalla painopiste on levyn ja rei'än keskipisteiden kautta kulkevalla suoralla ei-rei'än puolella levyn keskipistettä. Lasketaan painopisteen ja levyn keskipisteen etäisyys x. Kun reikä-levy tuetaan painopisteestä, niin $\Sigma \bar{M} = \bar{0}$ eli $m_l g x - m_r g (x+d) = 0$, jossa m_l on ehjän levyn massa ja m_r "rei'än massa". Koska kappleen paino on suoraan verrannollinen alaan, saadaan $\pi R^2 x - \pi r^2 (x+d) = 0$, josta $x = \frac{r^2 d}{R^2 - r^2}$.

11. Olkoon $\bar{a} \neq \bar{0}$ origosta alkava avaruuden vektori. Minkä pinnan muodostavat ne avaruuden pisteet, joiden paikkavektoreilla \bar{b} on voimassa yhtälö $|\bar{a} \times \bar{b}| = |\bar{a} \cdot \bar{b}|$?

RATK Ehto on $|ab\cos t|=|ab\sin t\ \bar{e}|$ eli $|\cos t|=|\sin t|$, josta ratkeaa kulma t=45+180n (astetta, $n\in\mathbb{Z}$). Siis \bar{b} :n pituus saa olla mikä vain kunhan se on 45 tai 225 asteen kulmassa \bar{a} :han nähden. Näiden origosta alkavien vektoreiden kärjet piirtävät avaruuteen äärettömän kaksoiskartion, jonka akseli on vektorin \bar{a} määräämä suora, kärki on origossa ja akselin ja sivun välinen kulma 45 astetta.

12. Todista $\frac{x^2+2}{\sqrt{x^2+1}} \ge 2$.

RATK

$$\frac{x^2+2}{\sqrt{x^2+1}} = \frac{x^2+1}{\sqrt{x^2+1}} + \frac{1}{\sqrt{x^2+1}} = \sqrt{x^2+1} + \frac{1}{\sqrt{x^2+1}} \ge 2,$$

koska aritmeettisgeometrisen epäyhtälön mukaan

$$\frac{1}{2}(\sqrt{x^2+1} + \frac{1}{\sqrt{x^2+1}}) \ge \sqrt{\sqrt{x^2+1} \cdot \frac{1}{\sqrt{x^2+1}}} = 1.$$

13. Ratkaise yhtälö $x^4 - 3x^3 + 3x + 1 = 0$.

RATK Jaetaan puolittain termillä x^2 , jolloin saadaan

$$x^{2} - 3x + 3\frac{1}{x} + \frac{1}{x^{2}} = (x - \frac{1}{x})^{2} - 3(x - \frac{1}{x}) + 2 = 0.$$

Jatketaan toisen asteen yhtälön ratkaisukaavalla. Saadaan $x - \frac{1}{x} = 1$ tai $x - \frac{1}{x} = 2$ ja edelleen $x = 1 \pm \sqrt{2}$ tai $x = 1/2(1 \pm \sqrt{5})$.

- 14. Olkoot A,B,C ja D tason pisteitä. Todista: Jos jokaisella pisteellä X on voimassa ehto $|AX|^2 + |CX|^2 = |BX|^2 + |DX|^2$, niin ABCD on suorakulmio. (Merkintä |AB| tarkoittaa janan AB pituutta.)
 - RATK Samaistetaan piste P paikkavektorinsa OP kanssa. Tällöin Ehto $|AX|^2 + |CX|^2 = |BX|^2 + |DX|^2$ voidaan kirjoittaa muodossa $(A X)^2 + (C X)^2 = (B X)^2 + (D X)^2$, joka edelleen saadaan muotoon $A^2 + C^2 B^2 D^2 = 2X \cdot (A + C B D)$. Yhtälö toteutuu kaikilla tason pisteillä X vain, kun A + C = B + D (1) ja $A^2 + C^2 = B^2 + D^2$ (2). Ehdon (1) perusteella nelikulmio ABCD on suunnikas. Lisäksi ehdosta (1) seuraa, että $(A + C)^2 = (B + D)^2 \Leftrightarrow A^2 + C^2 + 2A \cdot C = B^2 + D^2 + 2B \cdot D$ (3). Vähnetämällä kaavasta (3) kaava (2) saadaan $2A \cdot C = 2B \cdot D$ (4). Vähentämällä kaava (4) kaavasta (3) saadaan $(A C)^2 = (B D)^2$ eli suunnikkaan ABCD lävistäjät ovat yhtä pitkät ja suunnikas on suorakulmio.
- 15. Olkoon n positiivinen kokonaisluku, joka ei ole jaollinen kahdella tai viidellä. Osoita, että on olemassa luvun n monikerta, joka koostuu pelkästään ykkösistä.
 - RATK Tarkastellaan n alkion lukujoukkoa $\{1,11,\ldots,11\cdots 1\}$. Olkoon x_i i kappaleesta ykkösiä koostuva luku. Jos jollekin joukon alkiolle x_i on voimassa $x_i \equiv 0 \mod n$, niin $x_i = kn$ ja x_i on haluttu pelkästään ykkösistä koostuva luvun n monikerta. Jos mikään luvuista x_i ei ole jaollinen luvulla n, niin mahdollisia jäännöksiä mod n ovat ovat $1,2,\ldots n-1$. Koska jäännöksiä on n-1 kappaletta, vähintään kaksi joukon luvuista kuuluu samaan jäännösluokkaan mod n. Olkoot nämä luvut x_i ja x_j . Oletetaan, että $x_i > x_j$. Tällöin $x_i x_j \equiv 0 \mod n$ eli $x_i x_j = \underbrace{111\cdots 1}_{(i-i)knl}\underbrace{00\cdots 0}_{iknl}$

on jaollinen luvulla n. Koska oletuksen nojalla n ei ole jaollinen luvulla 2 eikä luvulla 5, niin välttämättä luvun alkuosan $111\cdots 1$ on oltava jaollinen luvulla n.

16. Kymmenestä janasta kunkin pituus on pidempi kuin 1 cm mutta lyhempi kuin 55 cm. Osoita, että janoista voidaan valita kolmion kolme sivua.

RATK Olkoot janojen pituudet $1 < a_1 \le a_2 \le a_3 \le \cdots \le a_{10} < 55$. Jos janoista ei voida muodostaa kolmiota, niin tällöin välttämättä ovat voimassa epäyhtälöt $a_3 \ge a_1 + a_2 > 1 + 1 = 2, a_4 \ge a_2 + a_3 > 1 + 2 = 3, a_5 \ge a_3 + a_4 > 2 + 3 = 5, a_6 \ge a_4 + a_5 > 3 + 5 = 8, a_7 \ge a_5 + a_6 > 5 + 8 = 13, a_8 \ge a_6 + a_7 > 8 + 13 = 21, a_9 \ge a_7 + a_8 > 13 + 21 = 34, a_{10} \ge a_8 + a_9 > 21 + 34 = 55$. Koska päädyttiin ristiriitaan $a_{10} > 55$, voidaan janoista muodostaa kolmio.

- 17. Kuinka monessa joukon $\{1, 2, ..., n\}$ osajoukossa ei ole yhtään peräkkäistä lukua? RATK Jokaista osajoukkoa vastaa n merkin pituinen binäärijono. Olkoon a_n sellaisten n merkin binäärijonjoen lukumäärä, joissa ei ole peräkkäisiä ykkösiä. Jos binäärijonon alussa on 0, niin jono voi jatkua a_{n-1} tavalla ja jos jonon alussa on 10, niin jono voi jatkua a_{n-2} tavalla. Siis $a_n = a_{n-1} + a_{n-2}$. Lisäksi $a_1 = 2$ ja $a_2 = 3$. Siis a_n on Fibonaccin luku F_{n+2} .
- 18. Osoita, että seitsemästä reaaliluvusta y_1, \ldots, y_7 voidaan valita kaksi lukua siten, että niille on voimassa $0 \le \frac{y_i y_j}{1 + y_i y_j} \le \frac{1}{\sqrt{3}}$.

RATK Olkoot x_i välin $]-\frac{\pi}{2},\frac{\pi}{2}[$ luvut, joille $y_i=\tan x_i.$ Jaetaan väli $]-\frac{\pi}{2},\frac{\pi}{2}[$ kuuteen yhtä pitkään osaväliin. Seitsemästä luvusta x_i välttämättä vähintään kaksi on samalla osavälillä, joten on voimassa $0 \le x_i - x_j \le \frac{\pi}{6}.$ Koska tangentti on aidosti kasvava funktio, saadaan $\tan 0 \le \tan(x_i - x_j) \le \tan(\frac{\pi}{6}),$ mistä tangentin yhteenlaskukaavan avulla saadaan $0 \le \frac{\tan x_i - \tan x_j}{1 + \tan x_i \tan x_j} \le \frac{1}{\sqrt{3}}$ ja edelleen $0 \le \frac{y_i - y_j}{1 + y_i y_j} \le \frac{1}{\sqrt{3}}.$

19. Osoita, ettei ole olemassa polynomia p(x), jolle on voimassa

$$p(n) = \log 1 + \log 2 + \dots + \log n$$

kaikille luonnollisille luvuille n.

RATK Koska $\log x < x$, niin $p(n) < n \log n < n^2$, joten polynomin p aste on korkeintaan kaksi. Selvästi p(x) ei ole vakio eikä lineaarinen, joten voidaan olettaa, että p(x) on toisen asteen polynomi. Koska $p(1) = \log 1 = 0$, voidaan kirjoittaa p(x) = (x-1)(ax+b). Tarkastelemalla muuttujan arvoja x=2 ja x=4 saadaan yhtälöt $\log 2 = p(2) = 2a+b$ ja $\log 24 = p(4) = 3(4a+b)$, joista ratkaistaan $a = \frac{1}{6}\log 3$ ja $b = \log 2 - \frac{1}{3}\log 3$. Mutta nyt $\log 2 + \log 3 = p(3) = 2(\frac{3\log 3}{6} + \log 2 - \frac{1}{3}\log 3)$ eli $3\log 2 = 2\log 3$ eli päädyttiin ristiriitaan $2^3 = 3^2$, joten polynomia p ei ole olemassa.

20. Newtonin jäähtymislain mukaan kappaleen lämpötilan muutos on suoraan verrannollinen kappaleen ja ympäristön lämpötilaeroon. Uunin lämpötila on 190 °C. Sinne laitetaan kello viideltä 2kg:n paisti, jonka lämpötila on 10 °C. Varttia yli kuusi paistin sisälämpötila on 50 astetta. Milloin saadaan päivällistä, jos paisti halutaan syödä mediumina – sisälämpötila 65 astetta?

RATK Olkoon u(t) paistin lämpötila ajan t (minuuttia) kuluttua. On annettu siis u(0) = 10 ja u(75) = 50. Ratkaistaan t, jolla u(t) = 65. Newtonin mukaan

$$\frac{du}{dt} = k(190 - u),$$

josta integroimalla

$$\int_{10}^{50} \frac{du}{190 - u} = \int_{0}^{75} k \ dt$$

saadaan $k=\frac{\ln(9/7)}{75}.$ Nyt sijoittamalla kja integroimalla lauseke

$$\int_{10}^{65} \frac{du}{190 - u} = \int_{0}^{t} k \ dt$$

saadaan $t=\frac{\ln(180/125)}{\ln(9/7)}\cdot 75=108$ (min). Siis päivällinen aikaisintaan kello 6.48.