YM2610 Datasheet

- 1. FM 4 Channels on 4 operators, DAC compatable with YM3016
- 2. SSG 3 operators, compatable with YM2149 (Atari ST), 4th operator is Noise
- 3. L/R Sound channels out
- 4. ADPCM-A 6 channels 18.5 KHz, 16 MB Sample ROM size, 256 B min size of sample, 1 MB max
- 5. ADPCM-B 1 channel 1.8-55.5 KHz, 16 MB Sample ROM size, 256 B min size of sample, 16 MB max, compatable with YM2608
- 6. Master clock 8MHz
- 7. 5V single power supply
- 8. 64-pin plastic SDIP

Prime function

The basic function of YM2610 can be divided roughly into four sound source part of FM sound source, SSG sound source, and ADPCM sound source.

1) FM sound source part

The basic function of the FM sound source part is the same as OPN(YM2203).

<u>Pronunciation mode</u> Four operator FM method and six sound pronunciation simultaneously.

<u>Algorithm</u> Eight kinds.

<u>Parameter</u> The register address and refer to the FM sound source part.

<u>LFO function</u> Sine wave LFO. Pitch (PM) and, it modulates amplitude (AM). The LFO

frequency is changeable. AM on/off is possible of PMS, the AMS control, and each operator.

Compound sine wave synthesis One sound is possible in six sounds. Timer function Two kinds of timers

of A and B.

Output control On/off of L and R.

2) SSG sound source part

The SSG sound source part is the same as OPN excluding the output method.

Pronunciation form Three rectangular liquid sounds + white noise.

Function of each data Refer to the register address.

Output It outputs it from one terminal by internal mixing.

I/O port Eight bit general purpose I/O port x2

3) ADPCM sound source part

Speech analysis, synthesis, and external memory control of ADPCM sound source part. It is composed of the AD/DA conversion function.

Sampling rate 18.5 kHz, 1.8kHz-55.5kHz

AD/DA conversion8-bitADPCM analysis4-bitLinear interpolation rate55.5kHz

<u>Data memory</u> Memory that external RAM-ROM

Output control On/off of L and R.

No sound discriminationThe state under the analysis of a no sound can be identified.

4) DAC

Exclusive use DAC YM3016 is used.

Terminal arrangement chart

GND	1	1		64	φS
DO	2	1/0		63	φM
D1	3	1/0	1	62	VCC
D2	4	1/0	1	61	A1
D3	5	1/0	1	60	AO
D4	6	1/0	1	59	RD
D5	7	1/0	1	58	₩R
D6	8	1/0	1	57	cs
D7	9	1/0	0	56	TRQ
RAD7	10	1/0	1/0		PAD7
RAD6	11	1/0	1/0		PAD6
RAD5	12	1/0	1/0		PAD5
RAD4	13	1/0	1/0		PAD4
RAD3	14	1/0	1/0		PAD3
RAD2	15	1/0	1/0		PAD2
RAD1	16	1/0	1/0		PAD1
RADO	17	1/0	1/0		PADO
GND	18	1	0	47	PMPX
VCC	19	1	0	46	POE
RMPX	20	0		45	NC
ROE	21	0	0	44	PA11
RA9	22	0	0	43	PA10
RA8	23	0	0	42	PA9
NC	24		0	41	PA8
NC	25		1	40	TEST
AGND	26	1		39	NC
ANALOG OUT	27	0	0	38	RA23
AVCC	28	I	0	37	RA22
SH1	29	0	0	36	RA21
SH2	30	0	0	35	RA20
OP0	31	0		34	NC
GND	32	1	1	33	īC

Terminal function

øM Master clock (standard 8MHz) of OPNA is input.

øS,SH1,SH2 It is clock (øS) for DAC and signal (SH1, SH2) of the cycle.

OPO It is a serial data of FM, ADPCM, and rhythm each sound source part output.

DO-D7 It is passing of interactive data of 8bit. CPU and data are exchanged.

/CS, /RD, /WR, A1, A0 Data passing (D0-D7) is controlled.

/IRQ The interrupt signal is output. It is an open drain output.

ANALOG OUT It is an analog output terminal in the SSG sound source part. It is source for an

output.

RAD0-RAD7 Each signal of address (A0-A7), data input (D0-D7) of ADPCM-A

RA8-RA9 Each signal of address (A8-A9) of ADPCM-A RA20-RA23 Each signal of address (A10-A14) of ADPCM-A

/ROE ADPCM-A /OE

RMPX Address control for data access of ADPCM-A

PAD0-PAD7 Each signal of address (A0-A7), data input (D0-D7) of ADPCM-B

PA8-PA11 Each signal of address (A8-A11) of ADPCM-B

/POE ADPCM-B /OE

PMPX Address control for data access of ADPCM-B

/TEST It is a terminal for the test of LSI.

GND, AGND It is a ground terminal.

Vcc, AVcc It is a power supply terminal of +5V.

Data bus control

The data bus control of read/write etc. of addressing and data is done with /CS, /WR, /RD, A1, A0. The table shows the allocation of the register address at this time and the control mode of the register.

Content of data passing control

/CS	/RD	/WR	A1	A0	D0-D7	Mode
				\$00~\$10	SSG	
0	1	0	0	0	\$1F~\$20	ADPCM-B
U	1	U	U	U	\$2F~\$30	FM
					\$30~\$B6	FM 1,2
					\$00~\$10	SSG
0	1	0	0	1	\$1F~\$20	ADPCM-B
U	1		U		\$2F~\$30	FM
					\$30~\$B6	FM 1,2
0	1	0	1	0	\$00~\$2F	ADPCM-A
U	1	U	1	U	\$30~\$B6	FM 3,4
0	0 1 0	1	1	\$00~\$2F	ADPCM-A	
U		U	1	1	\$30~\$B6	FM 3,4
0	0	1	0	0	\$00~\$0D	SSG

ADPCM-A

Address	D7	D6	D5	D4	D3	D2	D1	D 0	Comment
00	DM	-			A	ON			DUMP/ADPCM-A On
01	-			ATL					Total Level
02	0	0	0	0	0	0	0	0	Test
08~0D	L	R	-	- AC L					Output Select, Channel Select
10~15		Address						Start Address (L)	
18~1D	Address							Start Address (H)	
20~25	Address							End Address (L)	
28~2D		•		Add	ress			•	End Address (H)

ATL = all "0" - 0 db(silence)

ADPCM-B

Address	D7	D6	D5 1)4	D3	D2	D 1	D0	Comment			
10	Start - Repeat				-		Reset	Control 1				
11	L	R				-			Control 2			
12			A	Add	ress				Start Address (L)			
13			A	Add	ress				Start Address (H)			
14	Address								End Address (L)			
15	Address								End Address (H)			
16	-								-			
17	-								-			
18	-								-			
19	Frequency								uency Delta-N (L)			
1A	Frequency								Delta-N (H)			
1B	Volume								EG Control			
1C	B - A5 A4 A3 A2 A1 A0						$\frac{1}{2}$ A1	A0	Flag Control			

Frequency ADPCM-B = [(Delta-N (H)+Delta-N (L)) / 256] x 55.5 KHz (*Example:* Delta-N (H)=85, Delta-N (L)=33, Frequency = 18,050 KHz) (*Example:* Delta-N (H)=101, Delta-N (L)=71, Frequency = 22,050 KHz) (*Example:* Delta-N (H)=203, Delta-N (L)=42, Frequency = 44,100 KHz)

YM2610 ADPCM-B Codec

```
int YM2610 ADPCM-B Encode( short *src , unsigned char *dest , int len )
       int lpc, flag;
       long i, dn, xn, stepSize;
       unsigned char adpcm;
       unsigned char adpcmPack;
                     = 0;
       xn
                     = 127;
       stepSize
       flag
                     = 0;
       for (lpc = 0; lpc < len; lpc++)
              dn = *src - xn;
              src++;
              i = (abs(dn) << 16) / (stepSize << 14);
              if(i > 7) i = 7;
              adpcm = (unsigned char)i;
              i = (adpcm * 2 + 1) * stepSize / 8;
              if (dn < 0)
                     adpcm = 0x8;
                     xn = i;
              else
                     xn += i;
              stepSize = ( stepsizeTable[ adpcm ] * stepSize ) / 64;
              if(stepSize < 127)
                     stepSize = 127;
              else if (stepSize > 24576)
                     stepSize = 24576;
              if (flag == 0)
                     adpcmPack = (adpcm << 4);
                     flag = 1;
              }
              else
                     adpcmPack |= adpcm;
                     *dest = adpcmPack;
                     dest++;
                     flag = 0;
              }
       return 0;
}
```

```
int YM2610 ADPCM-B Decode(unsigned char *src, short *dest, int len)
       int lpc, flag, shift, step;
       long i, xn, stepSize;
       long adpcm;
                             = 0;
       xn
       stepSize
                     = 127;
                     = 0;
       flag
       shift
                     = 4;
                     = 0;
       step
       for (lpc = 0; lpc < len; lpc++)
              adpcm = (*src >> shift) & 0xf;
              i = ((adpcm & 7) * 2 + 1) * stepSize / 8;
              if( adpcm & 8)
                     xn = i;
              else
                     xn += i;
              if(xn > 32767)
                     xn = 32767;
              else if( xn < -32768 )
                     xn = -32768;
              stepSize = stepSize * stepsizeTable[ adpcm ] / 64;
              if( stepSize < 127 )
                     stepSize = 127;
              else if ( stepSize > 24576 )
                     stepSize = 24576;
              *dest = (short)xn;
              dest++;
              src += step;
              step = step ^1;
              shift = shift ^ 4;
       return 0;
```

}

Address	D7 D6 D5	D4 D3	D2 D1 D0	Comment
00		Fine Tune		Channel-A Tone Period
01	1	C	oarse Tune	
02		Fine Tune		Channel-B Tone Period
03	-	C	oarse Tune	
04		Fine Tune		Channel-C Tone Period
05	1	C	oarse Tune	
06	-	Noise 1	Frequency	Noise Period
07	- /No	oise	/Tone	/Enable
08	-	M	Level	Channel-A Amplitude
09	-	M	Level	Channel-B Amplitude
0A	-	M	Level	Channel-C Amplitude
0B		Fine Tune		Envelop Period
0C		oarse Tune	2	
0D	_	CONT AT	TT ALT HOLD	Envelop Shape Cycle

Fnoise = Fmaster / Noise Frequency

Fa,b,c = Fmaster / Fine Tune

M - Mode

When M=0, the level is determinated by 16 level selection

When M=1, the level is determinated by common 5 bit output of the envelope generator

D7	D6	D5	D4	D3	D2	D1	D0
/	/	/	/		SSG	-EG	

FM

1 1/1									
Address	D7	D 6	D5	D4	D3	D2	D1 D0	Comment	
21				Те	est			LSI ,M Test Data	
22	- LFC						EQ CONT	LFO, M Freq Control	
24				Time	er-A			Timer-A 8	
25			-			Tim	ner-A	Timer-A 2	
26				Time	er-B			Timer-B ,M Data	
27	Mode Reset B A				able A	Load B A	Timer-A/B ,M Control, 2 CH ,M Mode		
28		S	lot		-		СН	Key-ON/OFF	
29~2F	-								
31~3E	-		DT			MU	JLTI	Detune/Multiple	
41~4E	-				TL	,		Total Level	
51~5E	KS)	-		AR			Key Scale/Attack Rate	
61~6E	AM		-			DR		AMON/Decay Rate	
71~7E		-			SR			Sustain Rate	
81~8E		S	SL			R	RR	Sustain Level/Release Rate	
91~9E			-			SSC	G-EG	SSG-Type Envelop Control	
A1,A2				F-Nı	ım 1	1		F-Numbers/Block	
A5,A6	-	- Block				F-Num 2		F-Numbers/Diock	
A9,AA			2 C	CH * I	7-Nu	ım 1		2 CH - 2 Slot F-Numbers/Block	
AD,AE	- 2CH*Block			ck	2CH*F-Num2		2 C11 - 2 SIOUT-INUITIOGIS/DIOCK		
B1,B2	-	- FB				Connect		Self Feedback/Connection	
B5,B6	L	R	AN	ИS	-		PMS	LR SEL./AM,PM SENS	

FREQ CONT = $0 \sim 7 - 3.98 \mid 5.56 \mid 6.02 \mid 6.37 \mid 6.88 \mid 9.63 \mid 48.1 \mid 72.2 \text{ (Hz)}$

LFO = "1" - On

PMS = $0 \sim 7 - 0 \mid \pm 3.4 \mid \pm 6.7 \mid \pm 10 \mid \pm 14 \mid \pm 20 \mid \pm 40 \mid \pm 80$

AMS = $0 \sim 3 - 0 \mid 1.44 \mid 5.9 \mid 11.8 \text{ (dB)}$

AM = "1" - On