The s-m-n Theorem thy.1

cmp:thy:smn:

The next theorem is known as the "s-m-n theorem," for a reason that will be explanation clear in a moment. The hard part is understanding just what the theorem says; once you understand the statement, it will seem fairly obvious.

cmp:thy:smn: Theorem thy.1. For each pair of natural numbers n and m, there is a primitive recursive function s_n^m such that for every sequence $x, a_0, \ldots, a_{m-1}, y_0$ \dots , y_{n-1} , we have

$$\varphi_{s_n^m(x,a_0,\ldots,a_{m-1})}^n(y_0,\ldots,y_{n-1})\simeq \varphi_x^{m+n}(a_0,\ldots,a_{m-1},y_0,\ldots,y_{n-1}).$$

It is helpful to think of s_n^m as acting on programs. That is, s_n^m takes a explanation program, x, for an (m+n)-ary function, as well as fixed inputs a_0, \ldots, a_{m-1} ; and it returns a program, $s_n^m(x, a_0, \ldots, a_{m-1})$, for the *n*-ary function of the remaining arguments. It you think of x as the description of a Turing machine, then $s_n^m(x, a_0, \ldots, a_{m-1})$ is the Turing machine that, on input y_0, \ldots, y_{n-1} , prepends a_0, \ldots, a_{m-1} to the input string, and runs x. Each s_n^m is then just a primitive recursive function that finds a code for the appropriate Turing machine.

Photo Credits

Bibliography