Author-Index of Volumes 1-5 (1977-1980)

Abu-Eid, R.M. 1, 273; 3, 271 Ahrens, T.J. 1, 95; 4, 253 Akimoto, S.-i. 2, 171 Alberti, A. 2, 365 Alekseeva, S.A. 3, 92 Allred, D.D. 3, 199 Amossé, J. 3, 331 Amthauer, G. 1, 399; 3, 55, 66; 4, 235 Anderson, O.L. 5, 33 Annersten, H. 1, 399; 5, 343 Aonuma, K. 5, 53 Appleman, D.E. 5, 245 Appleton, B.R. 3, 199 Aranovich, L.Ya. 3, 303; 5, 1 Arkhipenko, D.K. 1, 233 Atkinson, B.K. 2, 305 Authier, A. 1, 15

Babushkina, M.S. 3, 84 Babuška, V. 3, 56 Bagmut, N.N. 3, 78 Bailey, S.W. 3, 69 Baillif, P. 1, 385 Bal, K.D. 5, 133 Ball, A. 3, 163 Bambauer, H.U. 3, 57 Barber, D.J. 5, 141 Barinsky, R.L. 1, 325 Baur, W.H. 2, 3 Belitsky, I.A. 3, 67 Bell, I.A. 2, 153 Bell, P.M. 3, 97 Belov, V.F. 4, 209 Bill, H. 3, 117 Bokij, G.B. 1, 233 Bookin, A.S. 3, 58 Borg, I.Y. 5, 219 Borg, R.J. 5, 219 Bovin, J.-O. 4, 299 Brindley, G.W. 1, 379 Brown, G.E. 4, 83 Brown, W.L. 5, 95 Brytov, I.A. 3, 59 Burgner, R.P. 2, 317 Burns, R.G. 1, 301; 2, 177, 349; 4, 221 Bychkov, A.M. 3, 305

Cahay, R. 4, 55
Calas, G. 3, 117
Camargo, W.G.R. de 3, 60
Cameron, W.E. 1, 265
Carpenter, M.A. 2, 237; 3, 61; 5, 119
Cemič, L. 3, 94; 4, 189
Chelishev, N.F. 3, 62
Christ, C.L. 2, 59
Christie, J.M. 1, 137
Clark, G.J. 3, 199
Clark, J.R. 2, 59

Cline, T.W. 4, 129 Craig, J.R. 4, 317 Crews, S.S. 1, 243 Cross, L.E. 4, 129

Dainyak, L.G. 3, 58 Debolsky, E.I. 1, 27; 3, 63 Deliens, M. 4, 281 Denks, V. 3, 64 Dikov, Yu.P. 1, 27; 3, 63 Dodd, C.G. 3, 145 Donetskich, V.I. 3, 92 Dolin, S.P. 1, 27; 3, 63 Douglas, I.N. 1, 129 Doukhan, J.C. 5, 201 Dowty, E. 3, 173 Drits, V.A. 3, 58 Dudelzak, A. 3, 64

Edgar, A. 1, 165 Egorov, V.K. 1, 1; 3, 82 Ekimov, S.P. 3, 84 Ericsson, T. 5, 343 Evans, B.J. 3, 55, 66 Evans, H.T. Jr. 4, 77

Fenn, P.M. 4, 83 Fiala, J. 3, 56 Foris, C.M. 5, 245 Frank-Kamenetskii, V.A. 3, 91 Frey, F. 1, 227 Fukunaga, O. 5, 167

Ganguly, D.J. 3, 301 Garcia, A. 4, 55 Ghose, S. 4, 102 Gibbons, R.V. 1, 95 Gibbs, G.V. 1, 53, 243; 2, 21; 4, 11, 317 Gier, T.E. 5, 245 Goldman, D.S. 3, 225; 4, 43 Goni, J. 1, 385 Gottardi, G. 3, 67 Goto, T. 4, 253 Gueguen, Y. 5, 15

Habuda, S.P. 3, 67
Hafner, S.S. 1, 399; 3, 68
Hall, S.H. 3, 69
Hazen, R.M. 1, 83
Hemingway, B.S. 5, 83
Henderson, C.M.B. 2, 325, 337; 5, 95
Hicks, T.J. 5, 309
Hill, E.G. 1, 243
Hill, R.J. 1, 53; 4, 317; 5, 179
Hinze, E. 3, 94; 4, 189
Hornemann, U. 1, 257; 3, 90
Horst, W. 3, 74
Hutchison, J.L. 4, 275
Hutton, D.R. 3, 33

Huybrechts, W. 4, 281 Hyde, B.G. 4, 299

lishi, K. 3, 1; 4, 173, 341 Ito, E. 2, 171; 4, 265 Ivanova, N.I. 3, 86 Iwai, S.-i. 4, 307

Jackson, I. 3, 11 Jagodzinski, H. 1, 227; 3, 69 Jamieson, J.C. 2, 215 Jaoul, O. 5, 15 Jaurand, M.C. 1, 385 Jeanloz, R. 5, 327 Johnsen, O. 3, 72 Jones, L.E.A. 1, 179; 4, 23 Julg, A. 3, 45

Kern, H. 4, 161 King, H.E., Jr. 3, 72 Kirby, S.H. 1, 137; 3, 309 Kitamura, M. 1, 199, 213; 5, 65 Kliem, W. 4, 65 Kogan, B.S. 3, 86 Konashenok, K.I. 3, 59 Korekawa, M. 3, 69, 74, 263; 5, 351 Korovushkin, V.V. 4, 209 Kotelnikov, A.R. 3, 303 Kotov, N. 3, 75 Kramer, J.J. 1, 379 Kroitoru, S.G. 3, 92 Kroll, H. 3, 57, 76; 5, 255 Krupka, K.M. 5, 83 Kulikova, I.M. 1, 325 Kumazawa, M. 3, 56; 5, 279 Kuzmin, V.I. 4, 209 Kuznetsov, G.V. 3, 92

Lager, G.A. 3, 237
Langer, K. 1, 273; 3, 271; 4, 101
Laughner, J.W. 4, 129
Lavrentjeva, I.V. 3, 303
Lehmann, G. 4, 65
Levien, L. 4, 105
Levin, A.A. 1, 27
Liebermann, R.C. 3, 11
Litovchenko, A.S. 3, 78
Liu, L.-g. 3, 291
Loeffler, B.M. 1, 301
Loucks, D. 1, 109
Louisnathan, S.J. 1, 53

Madureira F°, J.B. de 3, 60 Malysheva, T.V. 3, 77 Mao, H.-K. 3, 97 Marshall, D.B. 1, 351 Mashimo, T. 5, 367

Mashkovtsev, R.I. 3, 91 Matsui, Y. 4, 265 Matyash, I.V. 3, 78 McConnell, J.D.C. 2, 253 McIver, J.R. 4, 235 McLaren, A.C. 1, 351; 3, 33; 5, 309, 315 Meagher, E.P. 4, 11 Michaut, M. 5, 15 Middleton, A.P. 3, 79 Minato, I. 4, 307 Mineeva, R.M. 2, 267; 3, 79 Minko, O.E. 3, 87 Mirwald, P.W. 4, 291 Miyake, M. 4, 307 Moiseev, B.M. 3, 80 Morimoto, N. 1, 199, 213; 4, 361 Moze, O. 5, 309 Müller, W.F. 1, 71; 5, 255 Myers, R.H. 1, 243

Nagpaul, K.K. 5, 133 Nakajima, Y. 1, 213 Narbutt, K.I. 5, 285 Navrotsky, A. 1, 109; 2, 89; 3, 81 Nelen, J.A. 5, 245 Newnham, R.E. 1, 379; 4, 129 Nikitina, L.P. 3, 84, 302 Nikolskaya, L.V. 3, 82, 213 Nishii, K. 5, 367 Nissen, H.-U. 4, 275 Nobugai, K. 4, 361 Nolet, D.A. 4, 221 Nover, G. 3, 95; 4, 199 Novikov, G.V. 1, 1; 3, 82 Nozik, Yu.Z. 3, 83

O'Donovan, J.B. 5, 235 Özkan, H. 2, 215 Ohno, I. 3, 56 Okajima, S. 3, 11 Okamura, F.P. 4, 102 O'Keeffe, M. 4, 299 Olsen, A. 1, 313; 4, 115 O'Neil, J.R. 2, 105 Openshaw, R.E. 5, 83, 95 O'Reilly, W. 5, 235 Osherovitch, E.Z. 3, 84 Ostrovsky, I.A. 2, 297; 5, 105

Paquet, J. 5, 201
Parkin, K.M. 1, 301; 3, 225
Parsons, I. 2, 199
Pavlishin, V.I. 3,91
Payling, R. 5, 315
Pentinghaus, H. 3, 85
Perchuk, L.L. 3, 303; 5, 1
Pertsov, N.V. 3, 86

Platonov, A.N. 3, 87
Podlesskii, K.K. 3, 303
Polshyn, E.V. 3, 87
Popov, V.I. 1, 1
Prandl, W. 1, 227
Prewitt, C.T. 3, 72; 4, 105
Proshko, V.Ja. 3, 78

Putnis, A. 1, 335; 3, 183

Rager, H. 1, 371; 3, 88

Runciman, W.A. 1, 129

Remaut, G.A. 3, 93; 4, 281 Ribbe, P.H. 3, 145 Ricoult, D. 5, 15 Ried, H. 3, 263; 5, 351 Rinaldi, R. 2, 305 Ringwood, A.E. 3, 11 Rizhenko, B.N. 2, 297 Robie, R.A. 5, 83 Romashchenko, Yu.N. 1, 27; 3, 59 Rossman, G.R. 3, 225; 4, 43, 253 Rozhdestvenskaya, I.V. 3, 91

Saini, H.S. 5, 133 Samoilovich, M.I. 3, 82, 213 Salje, E. 4, 173 Sato, Y. 2, 171 Sawaoka, A. 5, 367 Scala, C.M. 3, 33 Scheetz, B.E. 2, 317 Schirmer, U. 3, 57 Schlenker, J.L. 1, 243 Schmalzried, H. 2, 279 Schneider, H. 1, 257; 3, 89; 4, 245 Schreiber, E. 5, 21 Schulien, S. 3, 90 Schulze, W.A. 1, 379 Seifert, F. 1, 43; 3, 271 Seifert, K.-F. 3, 94; 4, 189 Semenova, T.F. 3, 91 Senderov, E.E. 3, 305 Seya, K. 3, 111 Shannon, R.D. 4, 139; 5, 245

Shcherbakova, M.Ya. 3, 91 Sipavina, L.V. 1, 1; 3, 82 Skvortsova, Z.N. 3, 86 Smith, G. 3, 343, 375 Sobolev, V.V. 3, 92 Soboleva, S.V. 3, 79 Solntsev, V.P. 3, 91 Sōma, T. 5, 367 Sondergeld, C.H. 5, 21 Stöffler, D. 3, 90 Sumino, Y. 3, 56, 111 Sunagawa, I. 5, 53, 65

Sharma, O.P. 5, 133

Shcherbakov, V.N. 3, 67

Sung, C.-M. 2, 177, 349 Surikov, V.V. 3, 306; 5, 297 Suzuki, I. 3, 111; 5, 279

Tagai, T. 3, 74 Takahashi, J. 5, 53 Takahashi, M. 5, 53 Takéuchi, Y. 4, 149 Tang Kai, A. 5, 343 Taran, M.N. 3, 87 Taraschan, A.N. 3, 92 Tarte, P. 4, 55 Taylor, D. 2, 325, 337 Terekhova, V.M. 3, 213 Thomassin, J.H. 1, 385 Tibballs, J.E. 1, 313 Tiller, W.A. 2, 125 Tomura, S. 5, 65 Tossell, J.A. 2, 21, 225; 4, 11 Touray, J.C. 1, 385 Traskin, V.Yu. 3, 86 Trépied, L. 5, 201 Tsong, I.S.T. 3, 199

Urusov, V.S. 3, 307

Vance, E.R. 1, 165 Vaughan, M.T. 3, 133 Vernadsky, V.I. 3, 307 Vezzalini, G. 2, 365 Viljoen, E.A. 4, 235 Vochten, R.F.C. 3, 93; 4, 281 Voigt, R. 3, 94; 4, 189

Wang, H.F. 3, 251
Wegner, M.W. 3, 309
Weidner, D.J. 3, 133; 4, 105
Wenk, H.-R. 5, 141
Werneke, Ch. 4, 173
Wessicken, R. 4, 275
White, C.W. 3, 199
White, S. 3, 163
White, W.B. 2, 317
Whittaker, E.J.W. 3, 79; 4, 1
Will, G. 3, 94, 95; 4, 189, 199
Wilson, C.J.L. 2, 153
Winter, J.K. 4, 102

Yagi, T. 3, 97 Yamanaka, T. 4, 149 Yamaoka, S. 5, 167 Yelon, W.B. 1, 227

Zagainov, E.F. 3, 92 Zarka, A. 1, 15 Zvyagin, B.B. 3, 79 Zyrianov, V.N. 3, 303

Collective Subject Index of Volumes 1-5 (1977-1980)

All mineral names occurring in titles, subtitles, and abstracts are indexed. Mineral names not listed in the index of H. Strunz, Mineralogische Tabellen, Leipzig, 1978, are marked with *. Chemical formulas are according to H. Strunz (in some cases abbreviated) or as given by authors. Also indexed are revised subject key words submitted by the authors. The number in italic refers to the volume, the following, straight numbers refer to the title page or, in some cases, to a subtitle page.

titanium andradite 4,55

```
zirconium andradite 4, 60
absorption optics cf. optical absorption spectra
                                                                  anhydrite CaSO<sub>4</sub> 4, 77, 341
acmite NaFeSi<sub>2</sub>O<sub>6</sub> 1, 273, 286
                                                                  anorthite CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> 1, 199, 213, 227; 3, 77,
acoustic emission
                                                                    304; 5, 119, 255
  quartz 4, 129
                                                                  anthophyllite (Mg,Fe)<sub>7</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> 1, 43
actinolite Ca<sub>2</sub>(Mg,Fe)<sub>5</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> 3, 84
                                                                  antiperthite (Na,K)AlSi<sub>3</sub>O<sub>8</sub> 3, 263
actinolitic hornblende 3, 84
                                                                  antiphase domains
alamosite PbGeO<sub>3</sub> 3, 83
                                                                    anorthite 1, 213
albite NaAlSi<sub>3</sub>O<sub>8</sub> 1, 199, 213; 3, 70, 77, 304,
                                                                    anorthite-type 5, 255
   305; 4, 83, 102; 5, 83
                                                                    carbonate 5, 141
   analbite 3, 77; 4, 102; 5, 255
                                                                    hexacelsian 1,71
   monalbite 4, 102; 5, 255
                                                                    labradorite 1, 213; 3, 70
alkalifeldspar (Na,K)AlSi<sub>3</sub>O<sub>8</sub> 1, 90; 2, 199;
                                                                    omphacite 3,61
   3, 57, 78, 303, 305; 4, 83
                                                                    pigeonite 2, 237; 4, 361
   antiperthite 3, 263
                                                                    pyroxene 5, 119
alkaline earth metals cf. oxides
                                                                  apatite Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(CI,F,OH) 3, 60
almandine Fe<sub>3</sub>Al<sub>2</sub>Si<sub>3</sub>O<sub>12</sub> 3, 56
                                                                    chlorapatite 3,60
aluminium oxide 1, 257; 4, 253
                                                                    fluorapatite 3,60
  corundum 3, 1; 4, 253
                                                                    hydroxylapatite 3, 60, 84
   ruby 4, 253
                                                                  aquamarine (beryl) Al<sub>2</sub>Be<sub>3</sub>Si<sub>6</sub>O<sub>18</sub> 1, 301;
   sapphire 3, 213, 375
aluminium phosphate 3, 62
                                                                  arfvedsonite (Na,Ca)<sub>2</sub>(Mg,Fe,Al,Si)<sub>13</sub>O<sub>22</sub>
aluminium silicate 1, 233; 2, 325, 337, 365;
                                                                    (OH,F)<sub>2</sub> 5, 219
   3, 59, 62, 64, 67, 301
                                                                  arsenates
amazonite (microcline KAISi<sub>3</sub>O<sub>8</sub>) 1, 313
                                                                    rare earth 1,91
amesite Mg<sub>3.2</sub>Fe<sub>0.8</sub>Al<sub>4</sub>Si<sub>2</sub>O<sub>10</sub>(OH)<sub>8</sub> 3, 69
                                                                  astrakhanite Na<sub>2</sub>Mg(SO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O 3, 83
amethyst SiO<sub>2</sub> 3, 92
                                                                    zinc astrakhanite 3,84
ammonium 1, 233
                                                                  atomic bond
amorphous silica 5, 367
                                                                    bond energy 5, 285, 297
amphibole 3, 302; 4, 1
                                                                    copper-sulfur clusters 2, 225
   actinolite 3,84
                                                                    sulfates 1,53
  actinolitic hornblende 3, 84
                                                                    tetrahedral oxyanion 2, 21
  anthophyllite 1,43
                                                                    X-ray spectra 5, 285
  calcium amphibole 3, 84
                                                                  atomic charge
  clinoamphibole 1, 137, 160; 4, 1
                                                                    niobium 1,325
  gedrite 1,43
                                                                     zirconium 1,325
  riebeckite 5, 219
                                                                  augite (Ca,Mg,Fe)SiO<sub>3</sub> 1, 109; 2, 237; 4, 361
  tremolite 3, 246; 4, 275
analbite NaAlSi<sub>3</sub>O<sub>8</sub> 3, 77; 4, 102; 5, 255
andalusite Al<sub>2</sub>SiO<sub>5</sub> 1, 257; 3, 59, 133; 4, 101,
   173, 245
                                                                  babingtonite Ca<sub>2</sub>Fe<sub>2</sub>Si<sub>5</sub>O<sub>14</sub>OH 5, 351
andesine Na_{x}Ca_{1-x}Al_{2-x}Si_{2+x}O_{8}(0.5 \le x \le 0.7)
                                                                  barrerite* Na<sub>16</sub>Al<sub>16</sub>Si<sub>56</sub>O<sub>144</sub> · 52H<sub>2</sub>O 2, 365
  3, 37; 4, 115
                                                                  beidellite (Ca,Na), 0.3(Al,Si)6O10(OH)2 · 4H2O
andradite Ca<sub>3</sub>Fe<sub>2</sub>Si<sub>3</sub>O<sub>12</sub> 1, 399; 3, 56; 5, 1
  cf. garnet
                                                                  beryl Al<sub>2</sub>Be<sub>3</sub>Si<sub>6</sub>O<sub>18</sub> 1, 165, 243, 301; 3, 82, 87,
  germanium andradite 4, 60
                                                                    225
```

tin bearing andradite 4, 235

beryllium silicate 3, 62	chrysotile Mg ₆ Si ₄ O ₁₀ (OH) ₈ 1, 385; 3, 79
biotite K(Mg,Fe,Mn) ₃ AlSi ₃ O ₁₀ (OH,F) ₂ 2, 153,	parachrysotile 3,79
267; 3, 84, 301, 303, 375; 4, 65	clathrates 3, 67
Böggild intergrowths 4, 115	clay mineral 1, 379; 3, 63
bond, bond angle cf. atomic bond	etching 5, 133
bond energy 5, 285, 297	fission track 5, 133
borates 2,59	tosudite 3,75
Borralha deposit 3, 331	vermiculite 5, 133
Brillouin scattering 3, 133; 4, 105	clinoamphibole 1, 137, 160; 4, 1
brucite Mg(OH) ₂ 3, 79	clinoenstatite MgSiO ₃ 3, 97
bytownite $Na_xCa_{1-x}Al_{2-x}Si_{2+x}O_8(0.1 \le x \le 0.3)$	clinopyroxene cf. pyroxene
1,199; 3, 33	clinozoisite Ca ₂ Al ₃ Si ₃ O ₁₂ OH 5, 14
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	clustering 4, 1
	sulfur 2, 225
С	CNDO/2 1, 27; 4, 11
cadmium carbonate 1, 109	cobalt germanate 4, 265
calcite CaCO ₃ 4, 291; 5, 141	cobalt silicate 3, 81
carbonate 1, 109	coesite SiO ₂ 3, 86; 4, 11
twinning 5, 141	color
calcium amphibole 3, 84	aquamarine 1,301
calcium carbonate 1, 109	beryl 3, 87, 225
calcium feldspar 3, 78	cordierite 1, 301
calcium germanate 3, 291	fluorite, natural 3, 117
calcium silicate 3, 291	kyanite 1, 301
calorimetry	sapphire, natural 3, 213
high temperature 2, 89	sodalite 3,65
carbonate 3, 141	spodumene 3,92
antiphase domains 5, 141	titanium pyroxene 3, 173
CaCO ₃ 1, 109	tourmaline 3, 343
CdCO ₃ 1, 109	computer simulation
deformation mechanism 5, 141	crystal structures 2,3
kutnahorite 5, 141	sodalite 2,325
MgCO ₃ 1, 109	copper-sulfur clusters 2, 225
pyroxene 5, 119	copper sulfide 2, 232, 233
rhodochrosite 5, 141	cordierite Mg ₂ Al ₄ Si ₅ O ₁₈ 1, 301; 3, 303, 30
carbonatite 3, 61	coronadite Pb≤₂Mn ₈ O ₁₆ 3, 85
carbon dioxide 5, 105	corundum α-Al ₂ O ₃ 5, 14
carnegieite NaAlSiO ₄ 4, 139	corundum type
cation distribution	Al ₂ O ₃ 3, 1; 4, 253
Fe ²⁺ 4, 43	Fe ₂ O ₃ 3, 183
Mg ²⁺ ,Fe ²⁺ 4, 199	MgGeO ₃ 4, 265
schorlomite 1, 399	ZnGeO ₃ 4, 265
titanomagnetite 5, 235	cotunnite PbCl ₂ 3, 83
celadonite * K(Fe,Mg, Al) ₂ Si ₄ O ₁₀ (OH) ₂ 3, 58	cristobalite SiO ₂ 3, 89; 4, 11, 139
chalcopyrite CuFeS ₂ 1, 335; 2, 253	cryptomelane K≤₂Mn ₈ O ₁₆ 3, 85
channels	crystal field effect
beryl 3, 225	olivine 2,349
hollandite 3, 85	perovskite 3,97
spodumene 1, 15	ruby (synthetic) 4, 253
charge compensation 3, 213	spinel 2, 177
charge transfer 4, 221	crystallization 2, 125
iron cations 1, 301; 3, 55	alkalifeldspar 2, 199
chemical bond 3, 45	crystal structure
chemical etching	andalusite 3, 133
olivine 3, 309	biotite 2, 267
chlorapatite Ca ₅ (PO ₄) ₃ Cl 3, 60	borates 2,59
chondrites 3, 78	calcium silicate 3, 291
	5, 291

computer simulation 2, 3 emeleusite 3, 72 labradorite 3, 74 monalbite 4, 102 olivine 2, 177 perovskite-type MgSiO ₃ 3, 97 pigeonite 2, 237	spodumene 1, 15 disorder cf. order-disorder disproportionation andalusite 1, 257 dissolution chrysotile 1, 385 distance least squares 2, 3
protolithionite 3, 91 sillimanite 3, 133 sodalite 2, 325 spinel 2, 177 cf. superstructure cubanite CuFe ₂ S ₃ 1, 335	disthene Al_2SiO_5 3, 59 disulfide S_2 2, 317 dolerite 2, 237 dolomite $CaMg(CO_3)_2$ 4, 275; 5, 141 carbonate 1, 109 deformation mechanism 5, 141
cuprite Cu ₂ O 3, 92 curite Pb ₃ U ₈ O ₂₇ ·4H ₂ O 3, 93; 4, 281	double oxides 2, 279 dunite 3, 90
D	E
decorating forsterite 5, 15 white mica 5, 65 defects	earth's interior 5, 33 earth's mantle 2, 297, 349; 3, 56, 97, 291, 309; 5, 105
amethyst 3, 92 biotite 2, 153, 267 diopside 1, 137	free energies 5, 105 elastic constants andalusite 3, 133 corundum 3, 1
double oxides 2, 279 feldspar 3, 78 pigeonite 4, 361 plagioclase 1, 351 quartz 3, 91	garnet 3, 56 sillimanite 3, 133 systematics 3, 251 zircon 2, 215 elastic moduli
silicates 2, 279 spodumene 1, 15 deformation mechanism 5, 141	diopside 4, 105 magnesium wüstite 3, 11 magnesium fluoride 1, 179
andalusite 4, 245 calcite 5, 141 forsterite 5, 15 galena 2, 305	perovskite 4, 23 elasticity 1, 179; 4, 115 MgO 5, 21 electric field gradient
plagioclase 1, 351 quartzite 3, 163 dehydrated structures 2, 365 diamond C 1, 129; 3, 61	biotite 2, 267 ilvaite 3, 55 layer silicates 3, 58 olivine 3, 68
diamond cell 4, 105 diapletic glass 1, 95 diaspore A100H 5, 179 dickite $Al_4Si_4O_{10}(OH)_8$ 1, 379; 3, 75	electrical conductivity 3, 90, 94; 4, 189, 291 electrokinetic properties 3, 93; 4, 281 electron delocalization 4, 221 electron density
diffuse scattering anorthite 1, 227 diffusion	diaspore 5, 179 s-electron 5, 343 electron microscopy
chrysotile 1, 385 diopside Ca(Mg,Fe)Si ₂ O ₆ 1, 109, 137; 3, 60; 4, 105 dioptase Cu ₆ Si ₆ O ₁₈ ·6H ₂ O 3, 83	amazonite 1, 313 anorthite 1, 213 antiperthite 3, 263 augite 4, 361
dislocations 5, 15, 53, 201 disposide 1, 137 olivine 3, 309	calcite 5, 141 cubanite 1, 335 diopside 1, 137
plagioclase 1, 351 quartzite 3, 163	hexacelsian 1,71 labradorite 1,213

metamorphic biotite 2, 153	cf. albite
olivine 3, 309	cf. alkalifeldspar
omphacite 3, 61	amazonite 1, 313; 3, 305
peristerite 4, 115	andesine 3, 37; 4, 115
pigeonite 2, 237; 4, 361	cf. anorthite
plagioclase 1, 351	bytownite 1, 199; 3, 33
pyroxene 5, 119	calcium feldspar 3, 78
	labradorite 1, 95, 213; 3, 33, 69, 74; 4, 115
pyroxenoid 5, 351	microcline 1, 313; 3, 305
quartz 5, 201	oligoclase 3,35
rare earth silicates 5, 245	orthoclase 3, 305
talc-tremolite 4, 275	
electron paramagnetic resonance (EPR)	peristerite 4, 115
alkalifeldspar 3,78	phase transition 5, 255
beryl 1, 165	cf. plagioclase
fluorite, natural 3, 117	potassium feldspar 1, 313; 3, 78, 263, 305
forsterite 1, 371; 3, 88	sanidine 3, 305; 4, 83
plagioclase 3, 33	sodium feldspar 1, 313; 3, 78
quartz 3, 91	feldspath cf. feldspar
electron spin resonance (ESR)	feldspathoids* 3,67
cf. electron paramagnetic resonance (EPR)	ferberite FeWO ₄ 3, 331
electronic absorption spectra	ferric iron 5, 343
cf. optical absorption spectra	isomer shift 5, 343
electric charge transfer	molecular orbital theory 5, 343
cf. charge transfer	ferrobielastic 4, 129
emeleusite* Na ₂ LiFeSi ₆ O ₁₅ 3, 72	ferromagnesium silicate 3, 95, 301, 302
emerald* (beryl) Al ₂ Be ₃ Si ₆ O ₁₈ 1, 243	ferrosilite FeSiO ₃ 1, 109; 3, 145, 306
enstatite MgSiO ₃ 1, 109; 3, 60, 77, 97, 306:	orthoferrosilite 1, 273
4, 189	ferrous oxide 5, 105
enthalpy 2, 89	ferrous silicate 3, 145
epidote Ca ₂ (Al,Fe) ₃ Si ₃ O ₁₂ (OH) 3, 84, 303,	cf. favalite, ferrosilite
	fission track
304; 5, 1, 4, 5	
clinozoisite 5, 14	vermiculite 5, 133
equation of state 5, 33	flow laws
zircon 2, 215	galena 2,305
etching	fluorapatite Ca ₅ (PO ₄) ₃ F 3, 60
vermiculite 5, 133	fluorite CaF ₂ 3, 64, 117
exsolution	fluor perovskite 4, 23
andesine 4, 115	forsterite Mg ₂ SiO ₄ 1, 371; 3, 88; 5, 15, 41, 105
antiperthite 3, 263	dislocation 5, 15
augite 4, 361	Frank's formula
Böggild intergrowths 4, 115	quartz 5, 201
labradorite 4, 115	free energies
microcline 1, 313	earth's mantle 5, 105
peristerite 4, 115	freezing velocity 2, 125
pigeonite 4, 361	fugacity of gases 2, 297; 5, 105
rutile 3, 183	2, 201, 0, 100
_	G
F	galena PbS 2, 305; 3, 92
fabrics	galozones 3, 183
quartz 3, 163	
fayalite Fe ₂ SiO ₄ 2, 349; 3, 68, 95, 145; 4, 102,	garnet 1, 273; 3, 26, 60, 68, 301; 4, 102;
189, 199	5, 1, 105
feldspar 1, 90, 95, 199, 213, 227, 313, 351;	almandine 3,56
2 199:3 33 57 60 63 60 70 70 70	andradite 1, 399; 3, 56; 5, 1
2, 199; 3, 33, 57, 60, 63, 69, 70, 76, 77, 78, 86, 263, 303, 304, 305; 4, 83, 409, 445	germanium andradite 4, 60
86, 263, 303, 304, 305; <i>4</i> , 83, 102, 115; 5, 83, 119, 255	grossular 3, 56; 5, 1, 5
0, 00, 119, 200	indium garnet 4, 56

pyralspite 3,56	cf. equation of state
pyrope 3,56	hollandite $A_xM_8(O,OH)_{16}(x \le 2)$ 3, 62, 85
schorlomite 1, 399	hornblende cf. amphibole
silicate garnet 4, 235	hübnerite MnWO ₄ 3, 331
spessartine 1, 282; 3, 56; 4, 60, 101	hübnerite-ferberite zoning 3, 331
tin bearing andradite 4, 235	hydrogen content
titaniferrous garnet 3, 381	quartz 3, 199
titanium garnet 3, 375; 4, 55	silicates 5, 315
titanium spessartine 4, 55	synthetic quartz 5, 309
ugrandite 3, 56	hydrostatic compression
uvarovite 4, 102	ilmenite type phases 2, 171
zirconium andradite 4, 60	hydrothermal synthesis 3,75
gedrite (Mg,Fe) ₅₋₆ Al ₁₋₂ Si ₈ O ₂₂ (OH) ₂ 1, 43	hydroxyl group 3, 82
germanates 4, 265	hydroxylapatite Ca ₅ (PO ₄) ₃ OH 3, 60, 84
$Ca_{1-x}Fe_{1+x}GeO_3$ 3, 84	hydroxylsodalite Na ₈ Al ₆ Si ₆ O ₂₄ (OH) ₂ 3, 83
CaGeO ₃ 3, 291	3 3 5 5 24(1 1/2 2/3
CoGeO ₃ 4, 265	
MgGeO ₃ 2, 171; 3, 81	I
cf. MGeO ₃ high pressure phase transition	idealized solids for geophysics 5, 33
germanium andradite Ca ₃ Fe ₂ (Si _{1-x} Ge _x) ₃ O ₁₂	ilmenite type
4, 60	CoGeO ₃ 4, 265
glauconite	MgGeO ₃ 2, 171
(K,Na,Ca)(Al,Fe,Mg) ₂ (Al,Si) ₄ O ₁₀ (OH) ₂ 3, 58	MgSiO ₃ 2, 171
granite 3, 306; 4, 161	ZnSiO ₃ 2, 171
granulite 4, 161	ilvaite CaFe ₃ Si ₂ O ₈ (OH) 3, 55; 4, 149, 221
grossular Ca ₃ Al ₂ Si ₃ O ₁₂ 3, 56; 5, 1, 5,	inclusions
growth defects cf. defects	formation 2, 125; 3, 67
Grüneisen-parameter 5, 33	spodumene 1,15
gypsum CaSO ₄ ·2H ₂ O 4, 341	indialite Mg ₂ Al ₄ Si ₅ O ₁₈ 1, 243
	indium garnet $Ca_3In_2(Si_{1-x}Ti_x)_3O_{12}$ 4, 56
	information storage and display 3, 64
Н	infrared absorption (IR) 5, 327
	amphibole 4, 1
halloysite Al ₄ Si ₄ O ₁₀ (OH) ₈ ·4H ₂ O 1, 379	andalusite 1, 257; 4, 173
metahalloysite 3, 75	anhydrite 4, 341
hardness 3, 45	gypsum 4, 341
harmonic generation 1, 379	inclusion compounds 3, 67
heat capacity	layer silicates 1, 233
microcline 5, 83	mullite 1, 265
hedenbergite CaFeSi ₂ O ₆ 1, 109	olivine 5, 327
hematite Fe ₂ O ₃ 3, 183	sillimanite 1, 265
hexacelsian BaAl ₂ Si ₂ O ₈ 1,71	spinel 5, 327
high pressure 4, 246, 265; 5, 33	titanium garnet 4, 55
calcium silicate 3, 291	infrared optical
fugacity of gases 2, 297	hydroxyl group 3, 82
ilvaite 3, 55	iron pairs 3, 375
magnetite 3, 66	interphase morphology 2, 134
olivine 3, 89, 90	talc-tremolite 4, 275
perovskite-type MgSiO ₃ 3, 97	ion beam 3, 199
phase transition 5, 167	silicates 5, 315
troilite 3,72	ion exchange centers aluminium silicate type 3, 62
cf. shock effects	
high temperature	oxide-type 3, 62 uranium phosphate type 3, 62
elasticity (MgF ₂) 1, 179	zirconium silicate type 3, 62
fugacity of gases 2, 297	
galena (synthetic) 2, 305 Hildebrand equation of state	ionic conductivity sodium magnesium silicates 4, 139

	4 400 005 000 F 343
ionicity 3, 45	4, 189, 265, 299; 5, 343
iron	magnesium wüstite (Mg _x Fe _{1-x})O 3, 11
biotite 4, 65	magnetic circular dichroism (MCD)
pairs 3, 213, 343, 375	beryl 1, 165
X-ray spectra 5, 285	diamond 1, 129
iron group metals cf. oxides	magnetic properties
iron silicate 3, 95, 145	riebeckite 5, 219
cf. ferrous silicate	magnetism 4, 149
iron sulfide 1, 1	magnetite Fe ₃ O ₄ 3, 66; 4, 189
irradiation	titanomagnetite 5, 235
	manganese oxides 3, 63
beryl 3, 225	mantle cf. earth's mantle
isomer shift	maskelynite $Na_xCa_{1-x}Al_{2-x}Si_{2+x}O_8$ 1, 95
ferric iron 5, 343	
isomorphism	mechanical twinning
$Fe^{2+} - AI^{3+} = 3,213$	diopside 1, 137
isotopes	plagioclase 1, 351
⁴⁶ Ti, ⁵⁰ Ti infrared absorption spectra 4, 55	metahalloysite Al ₄ Si ₄ O ₁₀ (OH) ₈ 3, 75
	metamict minerals 1, 325
V	metamorphism
K	white mica 5, 65
kaolinite Al ₄ Si ₄ O ₁₀ (OH) ₈ 1, 379; 3, 75	metasomatite 3, 78
katapleite Na ₂ ZrSi ₃ O ₉ ·2H ₂ O 3, 62	metatorbernite Cu(UO ₂) ₂ (PO ₄) ₂ ·8H ₂ O 3, 93;
K ₂ NiF ₄ isotype 3, 291	4, 281
kosmochlore NaCrSi ₂ O ₆ 4, 102	meteorites 3,78
K-space symmetry 2, 253	methane CH ₄ 5, 105
kutnahorite (Ca,Mn)SO ₃ 5, 141	mica 2, 153, 267; 3, 79, 84, 301, 302, 303, 375;
kyanite Al ₂ SiO ₅ 1, 257, 273, 292, 301; 3, 86,	4, 65; 5, 105
271; 4, 102	
271, 4, 102	cf. biotite
	muscovite 3, 75, 79
L	Na,K mica-montmorillonite 3, 75
	NH₄ mica 3,75
labradorite $Na_xCa_{1-x}Al_{2-x}Si_{2+x}O_8(0.3 \le x \le 0.5)$	paragonite 3, 75
1, 95, 213; 3, 33, 69, 74; 4, 115	phlogopite 3, 75, 84
laser 1, 379	protolithionite 3, 91
lattice dynamics	sericite 5, 65, 68
andalusite 4, 173	white mica 5, 65, 68
anhydrite 4, 341	microcline KAISi ₃ O ₈ 1, 313; 3, 305; 5, 83, 95
corundum 3, 1	amazonite 1,313
gypsum 4, 341	heat capacity 5, 83
lead selenide 3, 92	phase transition 5, 83, 95
lead telluride 3, 92	microspectrophotometry 1, 273
lithionite	milarite KCa ₂ AlBe ₂ Si ₁₂ O ₃₀ ·1/2H ₂ O 3, 72
protolithionite 3, 91	mineral stability 1, 83; 2, 89
lovdarite * (Na,K,Ca) _{3.5} (Be,Al) ₂ Si ₆ O ₁₆ 3, 62	Mössbauer spectra cf. nuclear gamma ray
luminescence	resonance
scapolite 2, 317	molecular orbital theory
spodumene 3,92	copper-sulfur clusters 2, 225
	ferric iron 5, 343
M	silica polymorphs 4, 11
magmas 2, 94; 3, 95	silicates 1, 27
magnesite MgCO ₃ 3, 79	sulfates 1,53
magnesium carbonate 1, 109	tetrahedral oxyanion 2, 21
magnesium fluoride 1, 179	monalbite NaAlSi ₃ O ₈ 4, 102; 5, 255
magnesium gormanata 2 474 6 2	monazite CePO ₄ 1, 91
magnesium germanate 2, 171; 3, 81	montmorillonite 3, 75
magnesium oxide 3, 11; 5, 21, 41, 105	morphology
magnesium silicate 2, 171; 3, 88, 95, 291;	quartz 5, 53

mullite Al _{4+2x} Si _{2-2x} O _{10-x} 1, 265 muscovite KAl ₃ Si ₃ O ₁₀ (OH) ₂ 3, 75, 79 sericite 5, 65, 68	olivine (Mg,Fe) ₂ SiO ₄ 1, 371; 2, 349; 3, 60, 68 77, 88, 89, 90, 94, 95, 145, 241, 302, 309; 4, 102, 189, 199; 5, 15, 41, 105, 327 cf. fayalite
N	cf. forsterite
nacrite Al ₄ Si ₄ O ₁₀ (OH) ₈ 1, 379; 3, 75 natrolite Na ₂ Al ₂ Si ₃ O ₁₀ ·2H ₂ O 3, 62 near infrared cf. infrared, optical nemalite Mg(OH) ₂ 3, 79 nepheline KNa ₃ Al ₄ Si ₄ O ₁₆ 3, 303 nephrite 4, 275 neutron diffraction 3, 83	infrared absorption (IR) 5, 327 (Mg,Fe) ₂ SiO ₄ 2, 177, 349; 3, 28 Mg ₂ GeO ₄ 1, 90; 3, 81 Mg ₂ SiO ₄ 3, 68; 5, 15, 41, 105 Ni ₂ SiO ₄ 3, 81; 4, 189 spinel transition 2, 177, 349; 3, 81 tephroite 3, 11 cf. ferrous silicate
alamosite 3,83	omphacite (Ca,Na)(Mg,Fe,Al)(Si ₂ O ₆) 3, 61;
anorthite 1, 227	5, 119
astrakhanite 3, 83 cotunnite 3, 83 dioptase 3, 83 hydroxylapatite 3, 84 hydroxylsodalite 3, 83 neutron polarization synthetic quartz 5, 309	optical absorption spectra andalusite 4, 101 aquamarine 1, 301 beryl 1, 165; 3, 87, 225 biotite 3, 375; 4, 65 cordierite 1, 301
nickel silicate 3, 81, 95; 4, 189	diamond 1, 129
niobates 1, 325	fayalite 4,102 fluorite, natural 3,117
non-stoichiometry	kyanite <i>1</i> , 301
chalcopyrite 2, 253	orthopyroxene 4, 43
mullite 1, 265	ruby 4, 253
sillimanite 1, 265	sapphire, natural 3, 213
nuclear gamma ray resonance (NGR)	spessartine 4, 101
andradite 1, 399; 4, 235	synthetic silicates 1, 273
anthophyllite 1,43	titanium clinopyroxene 3, 173
aquamarine 1, 301	tourmaline 3, 343, 375
beryl 3, 225	viridines 4, 101
biotite 2, 267	yoderite 3, 271
cordierite 1,301	optical properties
germanates Ca _{1-x} Fe _{1+x} GeO ₃ 3, 84	clay mineral 1, 379
ilvaite 3, 55; 4, 149, 221	order-disorder
kyanite 1,301	alkalifeldspar 3, 305
layer silicates 3, 58	amesite 3, 69 amphibole 4, 1
magnetite 3, 66 orthopyroxene 4, 43	carbonates 1,109
riebeckite 5, 219	chalcopyrite 2, 253
¹¹⁹ Sn <i>4</i> , 235	plagioclase 3, 33, 76
tourmaline 4, 209	tourmaline 4, 209
troilite-pyrrhotite 1, 1; 3, 82	orthoclase KAISi ₃ O ₈ 3, 305 cf. feldspar
yoderite 3, 271	orthoferrite type* 3, 97
nuclear magnetic resonance (NMR)	orthoferrosilite* FeSiO ₃ 1, 273, 289
inclusion compounds 3, 67	orthopyroxene 1, 109; 3, 28, 302, 304, 306;
olivine 3, 68	4, 43
plagioclase 3, 33	cf. pyroxene
nucleation	CoSiO ₃ 3, 81
augite 2, 237	orthoferrosilite 1, 273
	overlap population
	sulfates 1,53
	oxidation
oligoclase $Na_xCa_{1-x}Al_{2-x}Si_{2+x}O_8(0.7\pi \times \pi 0.9)$	Fe ²⁺ /Fe ³⁺ 4, 65
2 35	oxides 5, 297

spinel 5, 279

stellerite 2, 365

	-411L14- 0 00E
alkaline earth metals	stilbite 2, 365
elastic constants 3, 11, 251	synthetic plagioclase 5, 255
ion exchange centers 3, 62	titanates 4, 265
iron group metals	troilite 3, 72
molecular orbitals 2, 21	zircon 2, 215
cf. oxides	phenocryst 3, 306
oxonium 1, 233	phlogopite KMg ₃ AlSi ₃ O ₁₀ (OH,F) ₂ 3, 75, 84
oxyanion, tetrahedral 1, 53; 2, 21; 3, 63	phonon spectra 3, 1; 4, 173, 341
oxyamon, tottamount it, it, it, it, it, it, it, it, it, it	phosphates
	aluminium phosphates 3, 62
P	rare earth phosphates 1, 91
palygorskite (Mg,Al) ₂ Si ₄ O ₁₀ (OH)·2H ₂ O+2H ₂ O	uranium phosphates 3, 62
3, 63	piemontite Ca ₂ (Mn,Fe,Al) ₂ AlSi ₃ O ₁₂ OH
parachrysotile	1, 273, 286
(Mg,Fe) _{~5.8} (Al,Si) _{~4} O ₁₀ (OH) _{~8.5} 3, 79	pigeonite (Ca,Mg,Fe)SiO ₃ 1, 109; 2, 237;
	4, 361; 5, 119
paragonite NaAl ₂ (AlSi ₃ O ₁₀)(OH,F) ₂ 3, 75	pistacite cf. epidote
paramagnetic centers cf. defects	·
partial equilibrium	plagioclase 1, 95, 199, 213, 313, 351; 3, 33,
alkalifeldspar 2, 199	60, 69, 76, 263, 304; 4, 115; 5, 255
pegmatite 1, 313; 3, 78, 91, 92	cf. feldspar
periclase MgO 3, 89, 97	point defects cf. defects
peridotite xenolith 3, 309	potassium
peristerite 4, 115	feldspar KAlSi ₃ O ₈ 1, 313; 3, 78, 263, 305
perovskite type 3, 90	sulfate 4, 307
CaSiO₃ 3, 291	protolithionite* 3, 91
CoSiO ₃ 3, 97	psilomelane \sim MnO ₂ 3, 63
FeSiO ₃ 3, 97	pyralspite 3, 56
fluor perovskite 4, 23	pyrope Mg ₃ Al ₂ Si ₃ O ₁₂ 3, 56
KMgF ₃ 4, 23	pyroxene 1, 109, 137; 3, 28, 78, 94, 173, 243
MgSiO ₃ 3, 97; 4, 265, 299; 5, 105	301, 302, 303, 304, 306; 4, 43, 102, 189; 5, 119
MnGeO ₃ 4, 265	acmite 1, 273
NaMgF ₃ 4, 299	antiphase domains 5, 119
NiSiO ₃ 3, 97	augite 1, 109; 2, 237; 4, 361
silicate perovskite 3, 97, 291	(Ca,Mg,Fe)SiO ₃ 1, 109
phase equilibria 1, 83; 4, 265	clinoenstatite 3, 97
phase transition 5, 167	cf. clinopyroxene
alkalifeldspar 3,57	CoSiO ₃ 3, 81
anorthite 1, 227	diopside 1, 109, 137; 3, 60; 4, 105
barrerite 2, 365	enstatite 1, 109; 3, 60, 77, 97, 306; 4, 189
calcite 4, 291	ferrosilite 1, 109; 3, 145, 306
cubanite 1,335	hedenbergite 1, 109
curite/metatorbernite 4, 281	omphacite 3, 61; 5, 119
germanates 4, 265	orthoferrosilite 1, 273
hexacelsian 1,71	
high pressures 5, 167	cf. orthopyroxene
inclusion compounds 3, 67	pigeonite 5, 119
kaolinite 3,75	spodumene 1, 15; 3, 92
K₂NiF₄ type 3, 291	pyroxenoid 5, 351
layer silicates 3, 75	pyroxferroite FeSiO ₃ 5, 351
microcline 5, 83, 95	pyroxmangite (Mn,Fe)SiO ₃ 5, 351
	pyrrhotite Fe _{1-x} S 1, 1; 3, 82; 5, 105
muscovite-phlogopite 3, 75	
olivine-spinel 2, 177, 349; 3, 81	
potassium sulfate 4, 307	Q
α, β -quartz 4, 161	
silicates 4, 265	quantum yield spectra 1, 27

quartz SiO₂ 1, 379; 2, 37; 3, 80, 81, 89, 91, 199; 4, 11, 129; 5, 53, 201, 309, 315, 367

α,β -transition 4, 161	s-electron density 5, 343
dislocation 5, 53, 201	sericite cf. muscovite
electron microscopy 5, 201	serpentine 3,75
fabrics 3, 163	shock effects 5, 367
morphology 5, 53	
neutron polarization 5, 309	andalusite 1, 257; 4, 245
re-entrant corner effect 5, 53	olivine 3, 89
shock effects 5, 367	plagioclase 1,95
synthetic 5, 309	quartz 5, 367
subgrain boundaries 5, 201	ruby 4, 253
twinning 5, 53	silica
	amorphous 5, 367
quartzite 3, 163; 4, 161	polymorphs 4, 11
	SiO ₂ 1, 257; 3, 82; 4, 11; 5, 367
_	silicate garnet 4, 235
R	silicate spinel
Raman spectra	Co ₂ SiO ₄ 3, 81
andalusite 4, 173	Fe ₂ SiO ₄ 2, 177
anhydrite 4, 341	(Mg,Fe) ₂ SiO ₄ 1, 90; 2, 349
	silicates 1, 90, 233; 2, 171, 325, 337, 365;
gypsum 4, 341	3, 59, 62, 64, 67, 88, 95, 291, 301, 302;
rare earth arsenates 1.91	4, 189, 265, 299; 5, 315, 343
rare earth phosphates 1,91	
rare earth silicates 5, 245	absorption spectra 4, 101
electron microscopy 5, 245	cf. aluminium silicate
sodium 5, 245	beryllium silicate 3, 62
rare earth vanadates 1,91	calcium silicate 3, 291
rectorite 3,75	cobalt silicate 3, 81
redledgeite (Mg,Ca,OH,H ₂ O) _{≤2} (Ti,Cr,Si) ₈ O ₁₆	crystallization 2, 125
3, 85	elastic constants 2, 215
re-entrant corner effect	cf. ferromagnesium silicate
quartz 5, 53	ferrous silicate 3, 145; 5, 343
refractive index	high pressure transformation 4, 265
plagioclase (shocked) 1,95	cf. silicate spinel
rhodochrosite MnCO ₃ 5, 141	high temperature calorimetry 2, 89
rhodonite 5, 351	cf. magnesium silicate
riebeckite Na ₂ Fe ₅ Si ₈ O ₂₂ (OH,F) ₂ 5, 219	molecular orbitals 1, 27; 2, 21
nuclear gamma ray resonance 5, 219	nickel silicate 3, 81, 95; 4, 189
ringwoodite* (Mg,Fe) ₂ SiO ₄ 3, 89	perovskite type 3, 97, 291
rock magnetism 5, 235	point defects 2, 279
	rare earth silicates 5, 245
rocksalt type 3, 291; 4, 265	sodium magnesium silicate 4, 139
periclase 3, 89, 97	spectrochemical analysis 5, 315
ruby Al ₂ O ₃ 4, 253	spinel type 3, 60, 68
rutile type 3, 183; 4, 265	symmetry 3, 67
MgF ₂ 1, 179	titanium silicate 3, 62
TiO ₂ 1, 179	zinc silicate 2, 171; 4, 265
	zirconium silicate 3, 62
	silicium oxide 5, 105 cf. silica
S	
	sillimanite Al ₂ SiO ₅ 1, 265; 3, 59, 133
sanidine KAISi ₃ O ₈ 3, 305; 4, 83	sodalite Na ₈ Al ₆ Si ₆ O ₂₄ Cl ₂
sapphire Al ₂ O ₃ 3, 213, 375	hydroxylsodalite 3, 83
satellite reflections	$M_8(T_{12}O_{24})X_2$ 2, 325, 337
labradorite 3, 69	Na ₈ Al ₆ Si ₆ O ₂₄ X ₂ 3, 65
plagioclase 1, 199	spinel type 1, 90; 2, 177, 349; 3, 81
scapolite (Na,Ca) ₈ (Cl ₂ ,SO ₄ ,CO ₃) ₁₋₂ (Al,Si) ₂₄ O ₄₈	thermal expansion 2, 337
2,317	sodium feldspar NaAlSi ₃ O ₈ 1, 313; 3, 78
schörl NaFe ₃ Al ₆ B ₃ Si ₆ O ₂₇ (OH) ₄ 3, 343	sodium magnesium silicates
-sharlamita Ca (Fa Ti) (Si Ti)-O. 1 399	Na ₂ Ma ₂ SiO ₄ 4, 139

Na ₄ Mq ₂ Si ₃ O ₁₀ 4, 139	strontium plumbate 3, 90
sodium rare earth silicates 5, 245	strontium titanate 4, 23
soft X-ray spectroscopy	structural deformation
ferrous silicate 3, 145	cf. deformation mechanism
solid solution	subgrain boundaries
alkalifeldspar 3, 303, 305	quartz 5, 201
biotite 3, 304	sulfates
carbonates 1, 109	atomic bond 1, 53
clinopyroxene 1, 109	potassium sulfate 4, 307
cordierite 3, 304	sulfides
epidote 3, 303, 304	copper sulfide 2, 232, 233
ferromagnesium silicate 3, 301, 302	disulfide S ₂ 2, 317
garnet 3,56	iron sulfide 1, 1
hubnerite-ferberite 3, 331	spinel type 4, 317
ilvaite 4, 149	superstructure
mullite 1, 265	anorthite 1, 213
nepheline 3, 303	labradorite 1, 213; 3, 74
orthopyroxene 1, 109; 3, 304, 306	mullite 1, 265
plagioclase 3, 304	plagioclase 1, 199, 213
sillimanite 1, 265	sillimanite 1, 265
solute redistribution 2, 125	surface microtopography
solvus	white mica 5, 65
alkalifeldspar 2, 199	syenite 3,78
spectrochemical analysis	symmetry
silicates 5, 315	chalcopyrite 2, 253
spectromechanical analyzer 3, 199	silicates 3, 67
spessartine Mn ₃ Al ₂ Si ₃ O ₁₂ 1, 282; 3, 56; 4, 101	synthetic minerals
titanium spessartine 4, 60	acmite 1, 273, 286
spinel MgAl ₂ O ₄ 5, 235, 279, 327	alkalifeldspar 3, 57
infrared absorption 5, 327	forsterite 1, 371
phase transition 5, 279	galena 2,305
titanomagnetite 5, 235	kyanite 1, 273, 293
spinel type 3, 60, 68	metatorbernite 4, 281
β -modified 2, 177	olivine 3, 68, 90
magnetite 3, 66; 4, 189	orthoferrosilite 1, 273, 289
(Mg,Fe)Al ₂ O ₄ 3, 27	piemontite 1, 273, 286
(Mg,Fe)₂GeO₄ 1, 90; 3, 27	ruby 4, 253
(Mg,Fe) ₂ TiO ₄ 3, 27	silicates 1, 273
olivine transition 2, 177, 349; 3, 81	sodalite 2, 325, 337
spinel 5, 235, 279, 327	titanium garnet 4, 55
systematics 4,317	uvarovite 1, 293
cf. silicate spinel	synthetic plagioclase 5, 255
spodumene LiAlSi ₂ O ₆ 1, 15; 3, 92	synthetic quartz 5, 309
stacking faults cf. defects	o, ooo
biotite 2, 153	
pigeonite 4, 361	Т
stable isotopes 2, 105	talc Mg ₃ Si ₄ O ₁₀ (OH) ₂ 4, 275
staurolite Fe ₂ Al ₉ Si ₄ O ₂₂ (O,OH) ₂ 3, 301	talc-like layer 1, 88
stellerite Ca ₈ Al ₁₆ Si ₅₆ O ₁₄₁ ·58H ₂ O 2, 365	tenorite CuO 3, 92
stilbite Na ₂ Ca ₈ Al ₁₈ Si ₅₄ O ₁₄₄ ·58H ₂ O 2, 365	tephroite Mn ₂ SiO ₄ 3, 111
stishovíte SiO ₂ 3, 81, 86, 90, 97	tetrahedral oxyanion 1, 53; 2, 21; 3, 63
stoichiometry	thermal expansion 1, 83
mullite 1, 265	alkalifeldspar 3, 57
sillimanite 1, 265	anhydrite 4,77
strain analysis 3, 237	beryl 1, 243
stress relaxation	emerald 1, 243
galena at high temperature 2, 305	indialite 1,243

microcline 5, 95 oxides 3, 237 silicates 3, 237 sodalite 2, 337 spinel 5, 279 tephroite 3, 111	etching 5, 133 fission track 5, 133 vibrational structure scapolite 2, 317 viridine Al ₂ SiO ₅ 4, 101
thermodynamics of the earth's interior 5.33	w
tin bearing andradite 4, 235	W
titanates MTiO ₃ high pressure transformation	wadeite KAISi ₃ O ₈ 3, 86
4, 265 strontium titanate 4, 23	water weakening
titanium andradite $Ca_3Fe_2(Si_{1-x}Ti_x)_3O_{12}$ 4, 55	quartzite 3, 163
titanium clinopyroxene 3, 173	wave velocity anomaly 4, 161
titanium garnet 3, 375; 4, 55	white mica 5, 65, 68
titanium spessartine Mn ₃ Al ₂ (Si _{1-x} Ti _x) ₃ O ₁₂	wolframite $Mn_xFe_{1-x}WO_4$ 3, 331
4, 55	wüstite FeO 2, 37, 89; 3, 11
titaniferrous garnet 3, 381	magnesium wüstite 3, 11
titanium silicate 3, 62	wurtzite type
titanomagnetite (Fe,Mg,Ti) ₃ O ₄ 5, 235	cubanite 1, 335
todorokite ~MnO ₂ 3, 63	
topaz Al ₂ SiO ₄ (OH,F) ₂ 3, 59, 82, 91	X
torbernite Cu(UO ₂) ₂ (PO ₄) ₂ ·8-12H ₂ O 3, 93 metatorbernite 3, 93; 4, 281	xenotime YPO ₄ 1, 91
tosudite 3, 75	X-ray diffraction
tourmaline Na(Mg,Fe) ₃ Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₄	andalusite 4, 245
3, 82, 343, 375; 4, 209	anhydrite 4,77
transmission electron microscopy (TEM)	antiperthite 3, 263
cf. electron microscopy	chlorapatite 3, 60
tremolite Ca ₂ Mg ₅ Si ₈ O ₂₂ (OH,F) ₂ 3, 246; 4, 275	fluorapatite 3, 60
troilite FeS 1, 1; 3, 72, 82	hydroxylapatite 3, 60
tuhualite (Na,K,Mn) ₂ (Fe,Al,Mg,Ti)H	ilmenite 2, 171
(Si,AlH) ₈ O ₂₀ 3, 72 twinning	line broadening 4, 245 olivine 4, 199
antiperthite 3, 263	perovskite-type MgSiO ₃ 3, 97
calcite 5, 141	sodalite 2,337
diopside 1, 137	streaking of reflections 4, 245
hexacelsian 1,71	troilite, pyrrhotite 1, 1; 3, 82
microcline 1,313	X-ray photoelectron spectroscopy
plagioclase 1, 351	chrysotile 1, 385
quartz 4, 129; 5, 53	X-ray spectra 2, 21; 5, 285
	aluminium silicates 3, 59 antiperthite 3, 263
U	apatite 3, 60
ugrandite 3, 56	augite 4, 361
ultraviolet cf. optical	copper-sulfur 2, 225
upper mantle cf. earth's mantle	ferrous silicates 3, 145
uranite 3, 63	inclusion compounds 3, 67
uranium phosphates 3, 62	iron 5, 285
uvarovite Ca ₃ Cr ₂ Si ₃ O ₁₂ 1, 273; 4, 102	nemalite 3, 79
	niobates 1, 325 olivine 3, 95
V	perovskite-type MgSiO ₃ 3, 97
vanadate	pigeonite 4, 361
rare earth 1, 91	plagioclase 3, 76
velocity-density relations 3, 251	silicates 1, 27; 3, 59
vermiculite	troilite-pyrrhotite 3, 82
(Mg,Ca) _{0.3} (Mg,Fe,Al) ₆ (Al,Si) ₈ (OH) ₂ ·4H ₂ O 5, 133	zircon 1, 325
-	

X-ray topography spodumene 1,15

Υ

 $\textbf{yoderite} \; (\text{AI}, \text{Mg}, \text{Fe})_2 \text{SiO}_4(\text{O}, \text{OH}) \quad 3,\,271$

Z

zektzerite* LiNa(Zr,Ti,Hf)Si₆O₁₅ 3, 72

 $\begin{tabular}{lll} \textbf{zeolite} & 3,63,67 \\ \textbf{zinc astrakhanite} & Na_2Zn(SO_4)_2\cdot 4(H_{1.06}D_{0.94})O \\ & 3,84 \\ \textbf{zinc silicate} & 2,171;4,265 \\ \textbf{zircon Z}rSiO_4 & 1,325;2,215 \\ \textbf{zirconium andradite} & Ca_3Fe_2(Si_{1-x}Zr_x)_3O_{12} \\ & 4,60 \\ \textbf{zirconium silicate} & 3,62 \\ \end{tabular}$

Articles published in Volumes 1-5 (1977-1980)

Volume 1 Number 1 Published on February 10, 1977

- 1 G. V. Novikov, V. K. Egorov, V. I. Popov, L. V. Sipavina
 Kinetics and Mechanism of Transformations in Iron-Rich Pyrrhotites and in
 Troilite-Pyrrhotite Metastable Assemblages
- A. Authier, A. Zarka Observation of Growth Defects in Spodumene Crystals by X-Ray Topography
- 27 Yu. P. Dikov, E. I. Debolsky, Yu. N. Romashenko, S. P. Dolin, A. A. Levin Molecular Orbitals of Si₂O₇⁶, Si₃O₁₀⁸, etc., and Mixed (B, Al, P, Si)_m Applied to Clusters and X-Ray Spectroscopy Data of Silicates
- 43 F. Seifert Compositional Dependence of the Hyperfine Interaction of ⁵⁷Fe in Anthophyllite
- 53 S. J. Louisnathan, R. J. Hill, G. V. Gibbs Tetrahedral Bond Length Variations in Sulfates
- 71 W. F. Müller
 Phase Transitions and Associated Domains in Hexacelsian (BaAl₂Si₂O₈)
- **83 R. M. Hazen**Temperature, Pressure, and Composition: Structurally Analogous Variables
- 95 R. V. Gibbons, T. J. Ahrens Effects of Shock Pressures on Calcic Plagioclase
- 109 A. Navrotsky, D. Loucks
 Calculation of Subsolidus Phase Relations in Carbonates and Pyroxenes

Volume 1 Number 2 Published on April 19, 1977

- 129 I. N. Douglas, W. A. Runciman Application of Magnetic Circular Dichroism Spectroscopy to the Optical Spectra of Natural and Irradiated Diamonds
- 137 S. H. Kirby, J. M. Christie

 Mechanical Twinning in Diopside Ca (Mg, Fe) Si₂O₆:

 Structural Mechanism and Associated Crystal Defects
- **A. Edgar, E. R. Vance**Electron Paramagnetic Resonance, Optical Absorption, and Magnetic Circular Dichroism Studies of the CO₃Molecular-Ion in Irradiated Natural Beryl
- **179** L. E. A. Jones High Temperature Elasticity of Rutile-Structure MgF₂
- **M. Kitamura, N. Morimoto**The Superstructure of Plagioclase Feldspars. A Modulated Coherent Structure of the e-Plagioclase
- 213 Y. Nakajima, N. Morimoto, M. Kitamura
 The Superstructure of Plagioclase Feldspars. Electron Microscopic Study of
 Anorthite and Labradorite
- 227 F. Frey, H. Jagodzinski, W. Prandl, W. B. Yelon
 Dynamic Character of the Primitive to Body-Centered Phase Transition in
 Anorthite

Volume 1 Number 3 Published on June 13, 1977

- 233 G. B. Bokij, D. K. Arkhipenko Infrared Spectra of Oxonium and Ammonium Ions in Layer Aluminosilicates
- **J. L. Schlenker, G. V. Gibbs, E. G. Hill, S. S. Crews, R. H. Myers**Thermal Expansion Coefficients for Indialite, Emerald, and Beryl
- 257 H. Schneider, U. Hornemann
 The Disproportionation of Andalusite (Al₂SiO₅) to Al₂O₃ and SiO₂ Under
 Shock Compression
- **W. E. Cameron**Nonstoichiometry in Sillimanite: Mullite Compositions With Sillimanite-Type Superstructures
- 273 K. Langer, R. M. Abu-Eid Measurement of the Polarized Absorption Spectra of Synthetic Transition Metal-Bearing Silicate Microcrystals in the Spectral Range 44,000-4,000 cm⁻¹
- 301 K. M. Parkin, B. M. Loeffler, R. G. Burns
 Mössbauer Spectra of Kyanite, Aquamarine, and Cordierite Showing
 Intervalence Charge Transfer
- 313 J. E. Tibballs, A. Olsen
 An Electron Microscopic Study of Some Twinning and Exsolution Textures in Microcline Amazonites

Volume 1 Number 4 Published on October 3, 1977

- 325 R. L. Barinsky, I. M. Kulikova

 Metamict Transformations in Some Niobates and Zirkons According to X-ray Absorption Spectra
- **A. Putnis**Electron Microscope Study of Phase Transformations in Cubanite
- 351 D. B. Marshall, A. C. McLaren Deformation Mechanisms in Experimentally Deformed Plagioclase Feldspars
- 371 H. Rager Electron Spin Resonance of Trivalent Chromium in Forsterite, Mg₂SiO₄
- 379 R. E. Newnham, J. J. Kramer, W. A. Schulze, G. W. Brindley Optical Second Harmonic Signals from Clay Minerals
- 385 J. H. Thomassin, J. Goni, P. Baillif, J. C. Touray, M. C. Jaurand
 An XPS Study of the Dissolution Kinetics of Chrysotile in 0.1 N Oxalic Acid
 at Different Temperatures
- 399 G. Amthauer, H. Annersten, S. S. Hafner The Mössbauer Spectrum of ⁵⁷Fe in Titanium-Bearing Andradites

Volume 2 Number 1/2 Published on November 2, 1977

Frontiers in Mineralogy

- 1 Editorial
- 3 W. H. Baur Computer Simulation of Crystal Structures
- 21 J. A. Tossell, G. V. Gibbs Molecular Orbital Studies of Geometries and Spectra of Minerals and Inorganic Compounds
- 59 C. L. Christ, J. R. Clark A Crystal-Chemical Classification of Borate Structures With Emphasis on Hydrated Borates
- **89** A. Navrotsky
 Progress and New Directions in High Temperature Calorimetry
- 105 J. R. O'Neil Stable Isotopes in Mineralogy
- 125 W. A. Tiller
 On the Cross-Pollenation of Crystallization Ideas Between Metallurgy and Geology
- 153 I. A. Bell, C. J. L. Wilson Growth Defects in Metamorphic Biotite
- 171 Y. Sato, E. Ito, S.-i. Akimoto
 Hydrostatic Compression of Ilmenite Phase of ZnSiO₃ and MgGeO₃

Volume 2 Number 3 Published on January 20, 1978

- 177 C.-M. Sung, R. G. Burns Crystal Structural Features of the Olivine → Spinel Transition
- 199 I. Parsons Alkali-Feldspars: Which Solvus?
- 215 H. Özkan, J. C. Jamieson
 Pressure Dependence of the Elastic Constants of Nonmetamict Zircon
- 225 J. A. Tossell

 Theoretical Studies of the Electronic Structure of Copper in
 Tetrahedral and Triangular Coordination With Sulfur
- **M. A. Carpenter**Nucleation of Augite at Antiphase Boundaries in Pigeonite
- **J. D. C. McConnell**K-Space Symmetry Rules and Their Application to Ordering
 Behaviour in Non-Stoichiometric (Metal-Enriched) Chalcopyrite
- 267 R. M. Mineeva
 Relationship Between Mössbauer Spectra and Defect Structure
 in Biotites From Electric Field Gradient Calculations
- 279 H. Schmalzried
 Reactivity and Point Defects of Double Oxides
 With Emphasis on Simple Silicates

Volume 2 Number 4 Published on March 20, 1978

- 295 Acknowledgment to the referees of 1976 and 1977
- 297 I. A. Ostrovsky, B. N. Rizhenko
 Fugacities of Gases and Some Mineralogical Reactions at Very High
 Pressures and Temperatures (An Extrapolation)
- 305 B. K. Atkinson High-Temperature Stress Relaxation of Synthetic, Polycrystalline Galena
- 317 R. P. Burgner, B. E. Scheetz, W. B. White Vibrational Structure of the S₂ Luminescence in Scapolite
- 325 D. Taylor, C. M. B. Henderson A Computer Model for the Cubic Sodalite Structure
- **337 C. M. B. Henderson, D. Taylor**The Thermal Expansion of Synthetic Aluminosilicate-Sodalites, $M_8(Al_6Si_6O_{24})X_2$
- **R. G. Burns, C.-M. Sung**The Effect of Crystal Field Stabilization on the Olivine → Spinel Transition in the System Mg₂SiO₄—Fe₂SiO₄
- **A.** Alberti, R. Rinaldi, G. Vezzalini
 Dynamics of Dehydration in Stilbite-Type Structures; Stellerite Phase B.

Volume 3 Number 1 Published on June 28, 1978

- 1 K. lishi Lattice Dynamics of Corundum
- 11 I. Jackson, R.C. Liebermann, A.E. Ringwood The Elastic Properties of (Mg_xFe_{1-x})O Solid Solutions
- 33 C.M. Scala, D.R. Hutton, A.C. McLaren
 NMR and EPR Studies of the Chemically Intermediate Plagioclase Feldspars
 - **A. Julg**An Empirical Relation Between Hardness and Bond-Ionicity in a Crystal
 - 55 Abstracts of Papers Held at the IMA Symposium Physics of Minerals, Novosibirsk, USSR, 1978

Volume 3	Number 2	Published on August	28. 1978
----------	----------	---------------------	----------

- 97 T. Yagi, H.-K. Mao, P.M. Bell Structure and Crystal Chemistry of Perovskite-Type MgSiO₃
- 111 S. Okajima, I. Suzuki, K. Seya, Y. Sumino Thermal Expansion of Single-Crystal Tephroite
- 117 H. Bill, G. Calas Color Centers, Associated Rare-Earth lons and the Origin of Coloration in Natural Fluorites
- 133 M.T. Vaughan, D.J. Weidner The Relationship of Elasticity and Crystal Structure in Andalusite and Sillimanite
- 145 C.G. Dodd, P.H. Ribbe Soft X-Ray Spectroscopy of Ferrous Silicates
- **A. Ball, S. White**On the Deformation of Quartzite
- 173 E. Dowty
 Absorption Optics of Low-Symmetry Crystals-Application to Titanian
 Clinopyroxene Spectra
- **A. Putnis**The Mechanism of Exsolution of Hematite From Iron-Bearing Rutile
- 199 G.J. Clark, C.W. White, D.D. Allred, B.R. Appleton, I.S.T. Tsong Hydrogen Concentration Profiles in Quartz Determined by a Nuclear Reaction Technique

Volume 3 Number 3 Published on October 31, 1978

- 213 L.V. Nikolskaya, V.M. Terekhova, M.I. Samoilovich On the Origin of Natural Sapphire Color
- **225** D.S. Goldman, G.R. Rossman, K.M. Parkin Channel Constituents in Beryl
- **237** G.A. Lager
 A Novel Technique for Characterizing Thermal Expansion in Minerals
- 251 H.F. Wang Elastic Constant Systematics
- 263 H. Ried, M. Korekawa Twinning and Exsolution in an Antiperthite
- 271 R.M. Abu-Eid, K. Langer, F. Seifert
 Optical Absorption and Mössbauer Spectra of Purple and Green Yoderite,
 a Kyanite-Related Mineral
- **291** L.-g. Liu High Pressure Ca₂SiO₄, the Silicate K₂NiF₄-Isotype With Crystalchemical and Geophysical Implications
- 301 Abstracts of Papers Held at the IMA Symposium Physics of Minerals, Novosibirsk, USSR, 1978

Volume 3 Number 4 Published on December 22, 1978

- 309 S.H. Kirby, M.W. Wegner
 Dislocation Substructure of Mantle-Derived Olivine as Revealed by Selective
 Chemical Etching and Transmission Electron Microscopy
- **J. Amossé**Physicochemical Study of the Hubnerite-Ferberite (MnWO₄–FeWO₄) Zonal Distribution in Wolframite (Mn_XFe_(1-X)WO₄) Deposits. Application to the Borralha Mine (Portugal)
- **G. Smith**A Reassessment of the Role of Iron in the 5,000–30,000 cm⁻¹ Region of the Electronic Absorption Spectra of Tourmaline
- 375 G. Smith Evidence for Absorption by Exchange-Coupled Fe²⁺—Fe³⁺ Pairs in the Near Infra-red Spectra of Minerals

Volume 4 Number 1 Published on March 12, 1979

1 E.J.W. Whittaker
Clustering of Cations in Amphiboles

Cubic Perovskite KMgF₃

- 11 E.P. Meagher, J.A. Tossell, G.V. Gibbs A CNDO/2 Molecular Orbital Study of the Silica Polymorphs Quartz, Cristobalite, and Coesite
- Cristobalite, and Coesite
 L.E.A. Jones
 Pressure and Temperature Dependence of the Single Crystal Elastic Moduli of the
- **D.S. Goldman, G.R. Rossman**Determination of Quantitative Cation Distribution in Orthopyroxenes From Electronic Absorption Spectra
- 55 P.Tarte, R. Cahay, A. Garcia Infrared Spectrum and Structural Role Titanium in Synthetic Ti-Garnets
- 65 W. Kliem, G. Lehmann A Reassignment of the Optical Absorption Bands in Biotites
- 77 H.T. Evans, Jr. The Thermal Expansion of Anhydrite to 1000° C
- 83 G.E. Brown, P.M. Fenn Structure Energies of the Alkali Feldspars
- 101 Abstracts of Papers Held at the IMA Symposium Physics of Minerals, Novosibirsk, USSR, 1978 (Appendix)

Volume 4 Number 2 Published on May 31, 1979

- 105 L. Levien, D.J. Weidner, C.T. Prewitt Elasticity of Diopside
- A. Olsen Coherent Elastic Energies of Exsolution Boundaries in Peristerite and Böggild Intergrowths
- 129 J.W. Laughner, T.W. Cline, R.E. Newnham, L.E. Cross Acoustic Emissions From Stress-Induced Dauphiné Twinning in Quartz
- 139 R.D. Shannon Ionic Conductivity in Sodium Magnesium Silicates
- 149 T. Yamanaka, Y. Takéuchi Mössbauer Spectra and Magnetic Features of Ilvaites
- 161 H. Kern Effect of High-Low Quartz Transition on Compressional and Shear Wave Velocities in Rocks Under High Pressure
- 173 K. lishi, E. Salje, Ch. Werneke
 Phonon Spectra and Rigid-Ion Model Calculations on Andalusite
- 189 G. Will, L. Cemic, E. Hinze, K.-F. Seifert, R. Voigt
 Electrical Conductivity Measurements on Olivines and Pyroxenes Under Defined
 Thermodynamic Activities as a Function of Temperature and Pressure
- 199 G. Will, G. Nover
 Influence of Oxygen Partial Pressure on the Mg/Fe Distribution in Olivines

Volume 4 Number 3 Published on July 16, 1979

- **209** V.V. Korovushkin, V.I. Kuzmin, V.F. Belov Mössbauer Studies of Structural Features in Tourmaline of Various Genesis
- 221 D.A. Nolet, R.G. Burns
 Ilvaite: A Study of Temperature Dependent Electron Delocalization by the
 Mössbauer Effect
- **G. Amthauer, J.R. McIver, E.A. Viljoen**⁵⁷Fe and ¹¹⁹Sn Mössbauer Studies of Natural Tin-Bearing Garnets
- 245 H. Schneider
 Deformation of Shock-Loaded Andalusite Studied With X-Ray Diffraction
 Techniques
- **T. Goto, T.J. Ahrens, G.R. Rossman**Absorption Spectra of Cr³⁺ in Al₂O₃ Under Shock Compression
- **E. Ito, Y. Matsui**High-Pressure Transformations in Silicates, Germanates, and Titanates With ABO_3 Stoichiometry
- 275 J.L. Hutchison, H.-U. Nissen, R. Wessicken
 Observation of Talc-Tremolite Interfaces by High Resolution Electron Microscopy

Volume 4 Number 4 Published on August 31, 1979

- **281** R. Vochten, W. Huybrechts, G. Remaut, M. Deliens
 Formation of Meta-Torbernite Starting From Curite: Crystallographic Data and
 Electrokinetic Properties
- 291 P.W. Mirwald
 The Electrical Conductivity of Calcite Between 300 and 1200° C at a CO₂ Pressure of 40 Bars
- **M.O'Keeffe, B.G. Hyde, J.-O. Bovin**Contribution to the Crystal Chemistry of Orthorhombic Perovskites: MgSiO₃ and NaMgF₃
- 307 M. Miyake, I. Minato, S.-i. Iwai Thermal Phase Transition of Potassium Sulfate, K₂SO₄. A High Temperature Polarizing Light Microscopic Study
- 317 R.J. Hill, J.R. Craig, G.V. Gibbs Systematics of the Spinel Structure Type
- **K. lishi**Phononspectroscopy and Lattice Dynamical Calculations of Anhydrite and Gypsum
- **361** K. Nobugai, N. Morimoto
 Formation Mechanism of Pigeonite Lamellae in Skaergaard Augite

Volume 5 Number 1 Published on October 29, 1979

- 1 L.L. Perchuk, L.Ya. Aranovich Thermodynamics of Minerals of Variable Composition: Andradite-Grossularite and Pistacite-Clinozoisite Solid Solutions
- 15 O. Jaoul, M. Michaut, Y. Gueguen, D. Ricoult Decorated Dislocations in Forsterite
- 21 C.H. Sondergeld, E. Schreiber An Examination of the Elasticity of Hot-Pressed MgO
- 33 O.L. Anderson The Hildebrand Equation of State for Minerals Relevant to Geophysics
- 53 I. Sunagawa, J. Takahashi, K. Aonuma, M. Takahashi Growth of Quartz Crystals Twinned After Japan Law
- **S. Tomura, M. Kitamura, I. Sunagawa**Surface Microtopography of Metamorphic White Micas
- 83 R. E. Openshaw, B.S. Hemingway, R.A. Robie, K.M. Krupka
 A Room-Temperature Phase Transition in Maximum Microcline: Heat Capacity
 Measurements
- 95 R.E. Openshaw, C.M.B. Henderson, W.L. Brown A Room-Temperature Phase Transition in Maximum Microcline. Unit Cell Parameters and Thermal Expansion

Volume 5 Number 2 Published on December 5, 1979

105 I.A. Ostrovsky

The Thermodynamics of Substances at Very High Pressures and Temperatures and Some Mineral Reactions in the Earth's Mantle

119 M.A. Carpenter

Contrasting Properties and Behaviour of Antiphase Domains in Pyroxenes

- 133 O.P. Sharma, K.D. Bal, H.S. Saini, K.K. Nagpaul Fission Track Annealing Characteristics and Dating of Vermiculite
- 141 D.J. Barber, H.-R. Wenk Deformation Twinning in Calcite, Dolomite, and Other Rhombohedral Carbonates
- **O. Fukunaga, S. Yamaoka**Phase Transformations in *ABO*₄ Type Compounds Under High Pressure
- 179 R.J. Hill Crystal Structure Refinement and Electron Density Distribution in Diaspore

Volume 5 Number 3 Published on January 29, 1980

- 201 L. Trépied, J.C. Doukhan, J. Paquet Subgrain Boundaries in Quartz. Theoretical Analysis and Microscopic Observations
- 219 R.J. Borg, I.Y. Borg
 Mössbauer Study of Behavior of Oriented Single Crystals of Riebeckite at Low
 Temperatures and Their Magnetic Properties
- 235 J.B. O'Donovan, W. O'Reilly

The Temperature Dependent Cation Distribution in Titanomagnetites. An Experimental Test

- **R.D. Shannon, T.E. Gier, C.M. Foris, J.A. Nelen, D.E. Appleman** Crystal Data for Some Sodium Rare Earth Silicates
- **255** H. Kroll, W.F. Müller X-Ray and Electron-Optical Investigation of Synthetic High-Temperature Plagioclases
- **1. Suzuki, M. Kumazawa**Anomalous Thermal Expansion in Spinel MgAl₂O₄. A Possibility for a Second Order Phase Transition?

Volume 5 Number 4 Published on April 21, 1980

- 285 K.I. Narbutt
 X-Ray Spectra of Iron Atoms in Minerals
- 297 V.V. Surikov A Quantum-Chemical Model of Calculating the Bond Energy of Crystals
- 309 O. Moze, T.J. Hicks, A.C. McLaren Determination of the Hydrogen Content of Synthetic Quartz by Neutron Polarization Analysis
- 315 A.C. McLaren, R. Payling
 The Determination of Hydrogen Concentration in Silicates Using Ion-Beam Spectrochemical Analysis (IBSCA)
- 327 R. Jeanloz Infrared Spectra of Olivine Polymorphs: α,β Phase and Spinel
- **A. Tang Kai, H. Annersten, T. Ericsson**Molecular Orbital (MSXα) Calculations of *s*-Electron Densities of Tetrahedrally Coordinated Ferric Iron: Comparison With Experimental Isomer Shifts
- **351 H. Ried, M. Korekawa**Transmission Electron Microscopy of Synthetic and Natural Fünferketten and Siebenerketten Pyroxenoids
- 367 T. Mashimo, K. Nishii, T. Sōma, A. Sawaoka Some Physical Properties of Amorphous SiO_2 Synthesized by Shock Compression of α Quartz

Indexed in Current Contents/Physical and Chemical Sciences

Referee Acknowledgement

The Editors should like to thank all scientists who supported the journal by serving as referees for articles submitted in 1976–1979:

Aitken, M.J., Oxford, UK Allen, L.C., Princeton, USA Allmann, R., Marburg, FRG Amthauer, G., Marburg, FRG Annersten, H., Uppsala, Sweden Arndt, J., Tübingen, FRG

Bailey, S.W., Madison, USA Bank, H., Idar-Oberstein, FRG Banner, B., Livermore, USA Barsch, G.R., University Park, USA Bass, J., Stony Brook, USA Bersov, L.V., Moscow, USSR Bloss, D., Blacksburg, USA Boatner, L.A., Lausanne, Switzerland Brinkmann, D., Zurich, Switzerland Brown, G.E., Stanford, USA Brown, M.G., Cambridge, UK Brown, W.L., Nancy, France Buck, P., Marburg, FRG Burnham, C.W., Cambridge (MA), USA Burns, R.G., Cambridge (MA), USA Buseck, P., Tempe, USA

Carpenter, M.A., Cambridge (MA), USA Carter, N.L., Stony Brook, USA Chen, R., Ramat Aviv, Israel Christie, J., Los Angeles, USA

Cruickshank, D.W.J., Manchester, UK

Dachs, H., Berlin, FRG
Davies, G.F., Rochester, USA
DesLattes, R.D., Washington, USA
Dollase, W., Los Angeles, USA
Dowty, E., Princeton, USA
Duba, A., Utrecht, Holland

Edgar, A., Canberra, Australia Elschner, B., Darmstadt, FRG Etheridge, M., Clayton, Australia Evans, B.J., Ann Arbor, USA Eysel, W., Aachen, FRG Fenn, P.M., Stanford, USA Finger, L.W., Washington, USA Fleet, S.G., Cambridge, UK

Gay, P., Cambridge, UK Ghose, S., Seattle, USA Giese, R.F., Amherst, USA Goetze, C., Cambridge (MA), USA Gonser, U., Saarbrücken, FRG Gottardi, G., Modena, Italy Graham, E.K., University Park, USA Green H.H., Davis, USA Grodzicki, M., Saarbrücken, FRG Grögler, N., Bern, Switzerland Grove, T., Stony Brook, USA Grünenfelder, M., Zurich, Switzerland

Haussühl, S.G., Cologne, FRG Hazen, R.M., Washington, USA Heimendahl, M. von, Erlangen, FRG Herley, P.J., Stony Brook, USA Hinze, E., Bonn, FRG Hohlneicher, G., Cologne, FRG Hoppe, R., Gießen, FRG Huggins, F.E., Monroeville, USA

Jackson, I., Pasadena, USA Jefferson, D., Cambridge, UK Jones, L.E.A., Cambridge (MA), USA

Kleemann, J.D., Armidale, Australia Klein, U., Munich, FRG Kohlstedt, D.L., Ithaca, USA Korekawa, M., Frankfurt, FRG Kroll, H., Munster, FRG Küppers, H., Kiel, FRG Kutoglu, A., Marburg, FRG

Langer, K., Berlin, FRG Lauterbur, P., Stony Brook, USA Lehmann, G., Munster, FRG Levy, P.W., Upton, USA Liu, L.G., Pasadena, USA Lofgren, G., Houston, USA Luchner, D.K., Munich, FRG

Manning, P.C., Ontario, Canada Mao, H.K., Washington, USA McKie, D., Cambridge, UK Meier, W.M., Zurich, Switzerland Metz, P., Göttingen, FRG Müller, W., Frankfurt, FRG Muller, O., Webster, USA

Nagel, D.J., Washington, USA Nakajima, Y., Blacksburg, USA Nakazawa, H., Ibaraki, Japan Nelmes, R.J., Edinburgh, UK Nissen, H.-U., Zurich, Switzerland Nitzan, U., Golden, USA Nord, G.L., Reston, USA

Ohashi, Y., Philadelphia, USA Otto, J., Marburg, FRG

Parsons, I., Aberdeen, UK Pentinghaus, H., Munster, FRG Platonov, A.N., Kiev, USSR Pollak, H., Kinshasa, Zaire Prandl, W., Munich, FRG Putnis, A., Cambridge, UK

Rager, H., Marburg, FRG
Reinen, D., Marburg, FRG
Ribbe, P.H., Blacksburg, USA
Rosenhauer, M., Frankfurt, FRG
Ross, M., Reston, USA
Rossman, G., Pasadena, USA
Roth, W.L., Schenectady, USA
Runciman, W.A., Canberra, Australia

Saalfeld, H., Hamburg, FRG Salje, E., Hannover, FRG Samoilovich, M.I., Alexandrov, USSR Savin, S., Cleveland, USA Sawicki, J., Cracow, Poland Scheringer, Chr., Marburg, FRG Schlenker, J.L., Chicago, USA
Schmidt, P.C., Darmstadt, FRG
Schulz, H., Stuttgart, FRG
Seck, H.A., Cologne, FRG
Seifert, F., Kiel, FRG
Seifert, K.-F., Bonn, FRG
Shuey, R.T., Pittsburgh, USA
Smith, D.K., University Park, USA
Smith, G., Berlin, FRG
Smith, J.V., Chicago, USA
Solomon, E., Cambridge (MA), USA
Spetzler, H., Boulder, USA
Stevenson, D., Stanford, USA
Stöffler, D., Munster, FRG

Tarte, P., Liége, Belgium Thomsen, L., Binghamton, USA Touray, J.R., Orléans, France Trautwein, A., Saarbrücken, FRG

Velde, B., Paris, France Virgo, D., Washington, USA

Waldner, F., Zurich, Switzerland
Waff, H., Eugene, USA
Wang, H.F., Madison, USA
Weeks, R.A., Oak Ridge, USA
Weidner, D.J., Stony Brook, USA
Weiss, A., Darmstadt, FRG
Wenk, H.-R., Berkeley, USA
White, S., London, UK
Whitney, J., Wilmington, USA
Wiebel, M., Zurich, Switzerland
Wilkins, R.W.T., North Ryde, Australia
Woermann, E., Aachen, FRG
Wondratschek, H., Karlsruhe, FRG

Yagi, T., Washington, USA Yund, R.A., Providence, USA

Zemann, J., Vienna, Austria Zeuch, D., Davis, USA Ziegler, J.F., Yorktown Heigths, USA Zussman, J., Manchester, UK

Advisory Board

- **T.J. Ahrens,** California Institute of Technology, Division of Geological and Planetary Science, Pasadena, CA 91125, U.S.A.
- A. Authier, Université Pierre et Marie Curie, Paris VI, Laboratoire de Minéralogie-Cristallographie, Tour 16, 4, place Jussieu, 75230 Paris Cedex 05, France
- P.M. Bell, Carnegie Institution, Geophysical Laboratory, 2801 Upton Street, N.W., Washington, D.C. 20008, U.S.A.
- G.B. Bokij, IGEM, Academy of Sciences, Staromonetniy 35, Moscow 109017, USSR
- V. Gabis, Université d'Orléans, Centre de Recherche, Ressources et Matériaux Minéraux, 45045 Orléans, France
- G.V. Gibbs, Virginia Polytechnic Institute, Department of Geological Science, 4044 Derring Hall, Blacksburg, VA 24061, U.S.A.
- T. Hahn, Institut für Kristallographie der Technischen Hochschule, Templergraben 55, 5100 Aachen, Germany (F.R.G.)
- H. Jagodzinski, Institut für Kristallographie und Mineralogie der Universität, Theresienstraße 41, 8000 München 2, Germany (F.R.G.)
- **J.C. Jamieson**, The University of Chicago, Department of the Geophysical Sciences, 5734 S. Ellis Avenue, Chicago, IL 60637, U.S.A.
- N. Kato, Nagoya University, Department of Applied Physics, Faculty of Engineering, Furo-Cho, Chikusa-Ku, Nagoya 464, Japan
- R.C. Liebermann, State University of New York, Department of Earth and Space Sciences Stony Brook, NY 11794, U.S.A.
- **J.D.C. McConnell**, University of Cambridge, Department of Mineralogy and Petrology, Downing Place, Cambridge CB2 3EW, Great Britain
- A.C. McLaren, Monash University, Department of Physics, Clayton, Victoria 3168, Australia
- N. Morimoto, Department of Geology and Mineralogy, Faculty of Science, Kyoto University, Kyoto 606, Japan
- A. Navrotsky, Arizona State University, Department of Chemistry, Tempe, AZ 85281, U.S.A.
- R.E. Newnham, Pennsylvania State University, Materials Research Laboratory, University Park, PA 16802, U.S.A.
- **A.F. Reid,** CSIRO, Minerals Research Laboratories, Division of Mineral Chemistry, P.O. Box 124, Port Melbourne, Victoria 3207, Australia
- R.D. Shannon, 365 Du Pont Experimental Station, Wilmington, DE 19898, U.S.A.
- Sunagawa, Tohoku University, Institute of Mineralogy, Petrology and Economic Geology, Sendai, Japan
- D.W. Strangway, University of Toronto, Department of Geology, Toronto, Ontario, M5S 1A1, Canada
- V.M. Vinokurov, Kazanj University, Department of Mineralogy, Lenin Ave. 18, Kazanj 420008, USSR
- **E.J.W. Whittaker**, University of Oxford, Department of Geology and Mineralogy, Parks Road, Oxford OX1 SPR, Great Britain
- **B.J. Wuensch**, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA 02139, U.S.A.

PHYSICS AND CHEMIST OF MINERALS

General Index for Volumes 1-5 (1977-1980)

Contents

Author Index			- 1
Subject Index			V
Articles published in Vols. $1-5$			XVII
Referee Acknowledgement .			XXVII

DEPARTMENT OF THE PARTY OF THE

Velument 1 1980)

- monwiedge, ment

XVII

XAVII