Standard Probability Distributions					
Distribution	Parameter & Notation	PDF or PMF	Mean	Variance	Illustr
Bernoulli distribution (Discrete)	$X \sim Ber(p)$ $0 \le p \le 1$	$p_X(k) = p^k (1-p)^{1-k}$	$\mathbb{E}[X] = p$	Var(X) = p(1-p)	1- p
Binomial distribution (Discrete)	$X \sim Bin(n, p)$ $n \in \mathbb{N}, p \in [0, 1]$	$p_X(k) = \binom{n}{k} p^k (1 - p)^{n - k}$	$\mathbb{E}[X] = n \cdot p$	Var(X) = np(1-p)	

ration

 $X \sim \mathcal{N}(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_{>0}$ $f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$ $\mathbb{E}[X] = \mu \qquad \text{Var}(X) = \sigma^2$

Uniform distribution (Continuous) Normal

distribution (Continuous)