Algoritmos y Estructuras de Datos III TP3

29 de mayo de 2015

Integrante	LU	Correo electrónico
Martin Baigorria	575/14	martinbaigorria@gmail.com
Federico Beuter	827/13	federicobeuter@gmail.com
Juan Rinaudo	864/13	jangamesdev@gmail.com
Mauro Cherubini	835/13	cheru.mf@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

${\rm \acute{I}ndice}$

	Introducción
	1.1. Definiciones
	1.2. Introducción
	1.3. Maximalidad y dominancia
	1.4. Modelado
	1.4.1. Planificador Urbano
2.	Algoritmo Exacto
	2.1. Notacion
	2.2. Cotas Superiores e Inferiores

1. Introducción

1.1. Definiciones

Antes de enunciar el problema a resolver en este trabajo practico, es necesario definir algunos conceptos. Sea G = (V, E) un grafo simple:

Definición Un conjunto $I \subseteq V$ es un *conjunto independiente* de G si no existe ningún eje de E entre los vértices de I. Es decir, los ejes de I no están conectados por las aristas de G.

Definición Un conjunto $D \subseteq V$ es un conjunto dominante de G si todo vértice de G esta en D o bien tiene al menos un vecino que esta en D.

Definición Un conjunto *conjunto independiente dominante* de G es un conjunto independiente que a su vez es dominante del grafo G. Desde un conjunto independiente dominante se puede acceder a cualquier vértice del grafo G con solo recorrer una arista desde uno de sus vértices.

Definición Un Conjunto Independiente Dominante Mínimo (CIDM) es el conjunto independiente dominante de G de mínima cardinalidad.

Mostrar como el CIDM y el CDM no son necesariamente los mismos, y de ser posible mostrar que hasta pueden tener diferente cardinalidad.

Cada definición debería ser acompañada con un gráfico. Por ejemplo, podemos mostrar dos conjuntos independientes y dominantes del mismo grafo, donde uno ese el CIDM.

1.2. Introducción

En 1979, Garey y Johnson probaron que el problema de encontrar el CIDM de un grafo es un problema NP-Hard¹. El objetivo del trabajo es utilizar diferentes técnicas algorítmicas para resolver este problema. En un principio diseñaremos e implementaremos un algoritmo exacto para el mismo. Dada la complejidad del problema, luego propondremos diferentes algoritmos heurísticos para llegar a una solución que sea lo suficientemente buena a fines prácticos en un tiempo razonable.

Si recordamos el problema 3 del TP1, podemos ver claramente que el mismo es un caso particular del problema del conjunto dominante optimo. Esto se debe a que el problema de los caballos imponía cierta estructura sobre el grafo en el que se efectuaba la búsqueda. El grafo en si no era completo, dado que cada casilla era representada por un nodo, y un caballo no podía acceder a los nodos adyacentes. El movimiento de los caballos se modelaba con aristas entre nodos. En cambio, el problema de encontrar el CDM se aplica a cualquier tipo de grafo. Sin embargo, no es equivalente al problema del CIDM dado que la solución al problema no necesariamente era independiente. Dado que el problema de los caballos era computacionalmente costoso, considerando que la minimalidad no afecta mucho la estructura del problema podemos conjeturar, como ya lo confirma la literatura, que este problema se resolverá en tiempo no polinomial.

1.3. Maximalidad y dominancia

Las siguientes proposiciones serán útiles a lo largo del trabajo:

Proposición 1.1 Sea M un conjunto independiente maximal de G. $\forall v \in G.V$, si $v \notin M \implies \exists u \in M$ tal que u es adyacente a v.

Demostración Por absurdo. Sea M un conjunto independiente maximal y $v \notin G.V$. $\not\exists u \in M$ tal que u es adyacente a v. Por lo tanto, puedo agregar v a M y el conjunto va a seguir siendo independiente. Esto es absurdo, dado que el conjunto era maximal.

Proposición 1.2 Dado G(V, E), todo conjunto independiente maximal es un conjunto independiente dominante.

Demostración Sea M un conjunto independiente maximal. Por la propiedad anterior, si $v \notin M \implies \exists u \in M$ tal que u es adyacente a v. Por lo tanto, si $v \notin M$ entonces tiene algún vecino que esta en M. Esto significa que M es dominante.

¹M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman and Company, San Francisco (1979).

1.4. Modelado

Muchos problemas se pueden modelar con grafos y se pueden resolver mediante la búsqueda del conjunto independiente dominante mínimo.

1.4.1. Planificador Urbano

Supongamos que un planificador urbano esta diseñando una ciudad con muchos barrios. Con el objetivo de proveer un buen sistema de salud para los habitantes, el planificador determina que cada barrio debe tener que cruzar a lo sumo un barrio para acceder a un hospital publico. Aquí podemos modelar a cada barrio con un vértice, y representar la adyacencia entre barrios con una arista. Al obtener el CIDM, obtenemos la ubicación y la mínima cantidad de hospitales públicos necesarios para cumplir con los objetivos del planificador.

2. Algoritmo Exacto

2.1. Notacion

Sea $\gamma(G)$ el numero de vertices en el conjunto CIDM.

2.2. Cotas Superiores e Inferiores

El problema de