Задание 1. Реализуйте алгоритм, представленный на схеме.

Задание 2. Реализуйте алгоритм, представленный на схеме.

Задание 3. Покупка

Ручка стоила К рублей. Первого сентября стоимость ручки увеличилась ровно на Р процентов. Определите, сколько ручек можно купить на S рублей после подорожания. Программа получает на вход три целых положительных числа. Первое число К – стоимость ручки в рублях до подорожания. Второе число Р – величина подорожания ручки в процентах. Третье число S – имеющаяся сумма денег. Числа К и S не превосходят 107, число Р не превосходит 100.

Пример входных и выходных данных					
Ввод	Вывод	Примечание			
33 5 100	2	Ручка стоила 33 рубля. После подорожания на 5 % ручка будет стоить 34 рубля 65 копеек (заметим, что, поскольку первоначальная цена ручки была целым числом рублей, после подорожания стоимость ручки будет выражаться целым числом рублей и копеек). На 100 рублей после подорожания можно купить 2 ручки.			

Задание 4. На соревнования по спортивному программированию к участию допускаются только смешанные команды из 3 участников (1 мальчик и 2 девочки или 1 девочка и 2 мальчика). В школе учатся N девочек и М мальчиков. Напишите программу, вычисляющую максимальное количество команд, которое можно составить из учащихся этой школы. Первая строка ввода содержит одно целое число N — количество девочек в школе. Вторая строка ввода содержит одно целое число М — количество мальчиков в школе. Вывести одно целое число — вычисленный ответ.

Пример ввода 1	Пример вывода 1
3	2
4	
Пример ввода 2	Пример вывода 2
	тримор вывода 2
3	3

Задание 5. Маша любит чётные числа, а Миша — нечётные. Поэтому они всегда радуются, если встречают числа, которые им нравятся. Сегодня им встретились все целые числа от A до B включительно. Маша решила посчитать сумму всех чётных чисел от A до B, а Миша — сумму всех нечётных, после чего они начали спорить, у кого получилась сумма больше. Помогите им — найдите разность между суммой Маши и суммой Миши. Программа получает на вход два целых положительных числа A и B, не превосходящие 2×109 . Программа должна вывести одно число — разность между суммой чётных чисел и суммой нечётных чисел от A до B.

Примеры входных и выходных данных

Ввод	Вывод	Примечание
3 6	2	Сумма чётных чисел равна $4 + 6 = 10$, сумма нечётных чисел равна $3 + 5 = 8$, разность равна 2 .
3 7	-5	Сумма чётных чисел равна $4 + 6 = 10$, сумма нечётных чисел равна $3 + 5 + 7 = 15$, разность равна -5 .

Задание 6.

Рассмотрим все возможные подсписки списка из N элементов. В каждом подсписке найдем минимальное значение.

Например, для списка [3,1,2,5] получаются следующие подсписки и их минимумы.

Подсписок	Минимум	
[3]	3	
[3,1]	1	
[3,1,2]	1	
[3,1,2,5]	1	
[1]	1	
[1,2]	1	
[1,2,5]	1	
[2]	2	
[2,5]	2	
[5]	5	

Сумма минимумов по всем возможным подспискам равна 3+1+1+1+1+1+2+2+5=18.

Напишите программу, которая находит сумму минимумов по всем возможным подспискам для заданного списка из *N* элементов.

Первая строка ввода содержит одно целое число N (1 $\leq N\leq$ 35000) — количество элементов в списке. Следующие N строк содержат по одному целому числу A_i (1 $\leq A_i\leq$ 10000) — элементы списка.

Вывести одно целое число – сумму минимумов.

Пример ввода	Пример вывода
4	18
3	
1	
2	
5	