

Bachelorarbeit in Informatik

Aktive Arbeitsraumüberwachung für die Mensch-Roboter-Kooperation mittels Tiefenbild-Kameras

Robert Maier – 29.10.2010

Betreuer: Dipl.-Ing. Claus Lenz

Aufgabensteller: Prof. Dr.-Ing. Alois Knoll

Inhalt

- Motivation
- JAHIR: Joint Action for Humans and Industrial Robots
- Gesamtkonzept
- Tiefenbild-Kamera
- Komponente zur aktiven Arbeitsraumüberwachung mittels Tiefenbild-Kameras
- Evaluation
- Zusammenfassung und Ausblick

Motivation

- Bisher: Getrennter Arbeitsraum von Mensch und Roboter
- JAHIR als hybride Montagestation: Kooperation von Mensch und Roboter

 Ziel: Komponente zur aktiven Arbeitsraumüberwachung mit Hilfe einer Tiefenbild-Kamera für JAHIR → Sicherheit des menschlichen Arbeiters

JAHIR: Aufbau des Set-Up

JAHIR: Systemarchitektur

Gesamtkonzept

Verfahren zum Gewinnen von Tiefeninformationen

Stereo Vision	3D-Laserscanner	PMD-Kamera
Bild 1 Bild 2	Reflektierter Strahl Ausgesendeter Strahl	
Kamera 1 Kamera 2 • Bilder verschied. Kameras → Features vergleichen • Triangulation	 Basierend auf ToF-Prinzip Laserstrahl tastet Szene ab Mechanische Ablenkung durch rotierenden Spiegel 	 Basierend auf ToF-Prinzip Gleichzeitige Beleuchtung der gesamten Szene Messen der Intensität und der Laufzeit des Lichts je Pixel → "smart pixels"
- Problem: Erkennen von Features- sehr rechenintensiv- eingeschränkt echtzeitfähig	- eingeschränkt echtzeitfähig	- Rauschen
+ Standard-Kameras	+ kontrastarme Szenen	+ echtzeitfähig + kontrastarme Szenen

Szenenrepräsentation

- Zusammensetzung: Szene → Models → Bodies → Shapes
- Statische Umgebung: dreidimensionales CAD-Modell

- Dynamische Umgebung: Änderungen der Umgebung über Ice-Interfaces
 - Änderungen der Roboter-Position und -Stellung
 - Hinzufügen, Ändern und Löschen von Models, Bodies und Shapes

Auswerten und Verarbeiten der Sensordaten

Wiedereinspeisen der verarbeiteten Daten und Visualisierung

Visualisierung: Cluster-Boxen (K-Means) – konvexe Hülle (Quickhull)

Publishen der unbekannten Hindernisse im Arbeitsraum über Ice-Interfaces

Systemarchitektur der erstellten Komponente

Evaluation: Genauigkeit (1)

Manuelle Anpassungen der extrinsischen Kalibrierungsparameter nötig

Evaluation: Genauigkeit (2)

- Zusätzlicher Sicherheitsabstand der Bounding-Boxen
- Fehler in den Tiefenwerten bei dunklen Flächen

Evaluation: Performanz

- Ausleserate der PMD-Kamera: ~14,2 fps
- Performanz: Verarbeitungsrate der Komponente

Zusammenfassung und Ausblick

- Fazit:
 - Zusätzliche Maßnahme zur Überwachung des Arbeitsraums
 - Auswahl, Montage und Kalibrierung einer PMD-Kamera
 - Verarbeitungszyklus zum Verarbeiten der Sensordaten
 - Veröffentlichen der gefundenen Hindernisse und Visualisierung
- Ausblick:
 - Einbinden von zusätzlichen PMD-Kameras
 - Fusion der Tiefendaten mit CCD-Bildern
 - Technische Weiterentwicklung von PMD-Kameras nötig