Regression and uncertainty part 2: stochastic error

Frank Edwards

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 β_0 : The value of y when x is equal to zero

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 β_0 : The value of y when x is equal to zero

 β_1 : The average increase in y when x increases by one unit

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 β_0 : The value of y when x is equal to zero

 β_1 : The average increase in y when x increases by one unit

 ε : The distance between the line $y=\beta_0+\beta_1 X$ and the actual observed values of y. Allows us to estimate the line, even when x and y do not fall exactly on a line.

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 β_0 : The value of y when x is equal to zero

 β_1 : The average increase in y when x increases by one unit

 ε : The distance between the line $y=\beta_0+\beta_1 X$ and the actual observed values of y. Allows us to estimate the line, even when x and y do not fall exactly on a line.

Data for today

```
dat <- read_csv("https://www.openintro.org/data/csv/acs12.csv")
glimpse(dat)</pre>
```

```
## Rows: 2,000
## Columns: 13
## $ income
                                                <dbl> 60000. 0. NA. 0. 0. 1700. NA. NA. NA. 45000. NA. 8600. 0.~
## $ employment <chr> "not in labor force". "not in labor force". NA. "not in l~
## $ hrs work
                                               ## $ race
                                                <chr> "white", "white", "white", "white", "white", "other", "wh~
## $ age
                                                <dbl> 68. 88. 12. 17. 77. 35. 11. 7. 6. 27. 8. 69. 69. 17. 10. ~
                                                <chr> "female", "male", "female", "male", "female", "female", "~
## $ gender
## $ citizen
                                                <chr> "yes", "yes", "yes", "yes", "yes", "yes", "yes", "yes", "~
## $ lang
                                                <chr> "english", "english", "english", "other", "other", "other~
## $ married
                                                <chr> "no", "no", "no", "no", "no", "yes", "no", "no", "no", "y~
                                                <chr> "college". "hs or lower". "hs or lower". "hs or lower". "~
## $ edu
## $ disability <chr> "no". "ves". "no". "ves". "ves". "ves". "no". "ves". "ves". "no". "ves". "ves". "no". "ves". "ves". "no". "ves". "v
## $ birth grtr <chr> "jul thru sep", "jan thru mar", "oct thru dec", "oct thru~
```

Let's look at income for this ACS 2012 sample

ggplot(dat, aes(x = income)) + geom_histogram()

OK, what could cause variation in income?

glimpse(dat)

```
## Rows: 2,000
## Columns: 13
## $ income
                <dbl> 60000. 0. NA. 0. 0. 1700. NA. NA. NA. 45000. NA. 8600. 0.~
               <chr> "not in labor force", "not in labor force", NA, "not in l~
## $ employment
## $ hrs work
                <dbl> 40. NA. NA. NA. NA. 40. NA. NA. NA. 84. NA. 23. NA. NA. N~
## $ race
                <chr> "white". "white". "white". "white". "white". "other". "wh~
                <dbl> 68, 88, 12, 17, 77, 35, 11, 7, 6, 27, 8, 69, 69, 17, 10, ~
## $ age
## $ gender
                <chr> "female". "male". "female". "female". "female". "~
                <chr> "yes", "yes", "yes", "yes", "yes", "yes", "yes", "yes", "~
## $ citizen
## $ lang
                <chr> "english", "english", "english", "other", "other", "other~
## $ married
                <chr> "no", "no", "no", "no", "no", "yes", "no", "no", "no", "y~
                <chr> "college". "hs or lower". "hs or lower". "hs or lower". "~
## $ edu
## $ disability
               <chr> "no", "yes", "no", "no", "yes", "yes", "no", "yes", "no",~
## $ birth artr
               <chr> "iul thru sep". "ian thru mar". "oct thru dec". "oct thru~
```

Causation requires association (though it's not always unconditional!). So let's evaluate

```
ggplot(dat, aes(y = income, x = age)) + geom_point()
```


ggplot(dat, aes(x = income)) + geom_histogram() + facet_wrap(~race, scales = "free_y")

Let's build a **causal model** to formalize what we think causes variation in income across the population.

Let's build a **causal model** to formalize what we think causes variation in income across the population.

To do this, we'll use Directed Acyclic Graphs, or DAGs for short.

Let's start with a simple model

Based on our deep scientific knowledge we suspect that *hours worked t* has direct effects on *income I*

t

Basic features of a DAG

DAGs contain *nodes* that represent variables, and *edges* that represent causal relationships between variables. In this case, we have two nodes, hours worked and income, and one edge, representing the effect of time spent working on income.

Basic features of a DAG

DAGs compactly represent our theoretical models. What is the theory presented here and do we believe it is adequate?

Adding complexity

Let's add level of education to our model. What theoretical relationships does this model suggest?

The importance of theory

Which model is more plausible?

Confounding

We cannot obtain a valid estimate of the effect of *t* on *I* if model (2) is correct, unless we adjust for *E*.

This is a case of *confounding*. A relationship between two variables *X* and *Y* is confounded when a third variable *Z* also causes *X* and *Y*.

Confounding

We cannot provide an unbiased estimate of the effect of t and l if we don't adjust for E

Let's try it: unconditional linear relationship

```
library(broom)
m0 <- lm(income ~ hrs_work, data = dat)
tidy(m0)</pre>
```

Let's try it: additive linear relationship

```
library(broom)
m1 <- lm(income ~ hrs_work + edu, data = dat)
tidy(m1)</pre>
```

```
## # A tibble: 4 x 5
##
    term
                  estimate std.error statistic p.value
##
    <chr>
                     <dbl>
                              <dbl>
                                      <dbl>
                                                <dbl>
## 1 (Intercept)
                     1315.
                              5438. 0.242 8.09e- 1
## 2 hrs work
                    1198.
                              116. 10.3 1.19e-23
## 3 edugrad
                    42472.
                              5589.
                                      7.60 7.08e-14
## 4 eduhs or lower -18598.
                                       -5.20 2.48e- 7
                              3579.
```

Multiple regression (regression with more than 1 predictor)

We can generalize the linear regression

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
varepsilon $\sim N(0, \sigma^2)$

Multiple regression (regression with more than 1 predictor)

We can generalize the linear regression

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
varepsilon $\sim N(0, \sigma^2)$

as

$$Y = \beta_0 + \beta_1 x_1 \cdots \beta_k x_k + \varepsilon$$
$$\varepsilon \sim N(0, \sigma^2)$$

Where k is the number of predictor variables we include in the model. Our only constraint is that k must be smaller than the number of observations n in our data.

Our model for income

Our theoretical model tells us that if we want to learn about $t \to I$, we must adjust for the effects that E has on both t and I.

We tried this with the model:

(Keep in mind that **edu** is going to be treated as the number of categories in the variable - 1 extra parameters).

Interpreting this model

```
table(dat$edu)
##
      college
                    grad hs or lower
##
          359
##
                    144
                               1439
tidy(m1)
## # A tibble: 4 x 5
                  estimate std.error statistic p.value
##
    term
                     <dbl>
                                     <dbl>
##
   <chr>
                              <dbl>
                                                <dbl>
## 1 (Intercept)
                     1315.
                              5438. 0.242 8.09e- 1
## 2 hrs work
                    1198.
                              116. 10.3 1.19e-23
                                       7.60 7.08e-14
## 3 edugrad
                    42472.
                               5589.
                                       -5.20 2.48e- 7
## 4 eduhs or lower -18598.
                               3579.
```

Visualizing model expectations: setup

```
# set up prediction data with values of interest
hrs work <- 0:60
edu <- c("college", "hs or lower", "grad")
pred dat <- expand grid(hrs work, edu)</pre>
# generate expected values and CI, join pred_dat
e_y <- predict(m1, newdata = pred_dat, interval = "confidence") %>%
   bind cols(pred dat)
# inspect
head(e v)
## # A tibble: 6 x 5
       fit lwr upr hrs work edu
##
##
  <dbl> <dbl> <dbl> <int> <chr>
## 1 1315. -9356. 11986.
                               0 college
                         0 hs or lower
## 2 -17283 -26515 -8051
## 3 43787. 30390. 57184.
                               0 grad
## 4 2513. -7968. 12994.
                          1 college
## 5 -16085 -25110 -7060
                          1 hs or lower
## 6 44985, 31752, 58218,
                         1 grad
```

Visualizing model expectations

```
ggplot(e_y, aes(y = fit, ymin = lwr, ymax = upr, x = hrs_work, fill = edu, color = edu)) +
  geom_ribbon(alpha = 0.5) + geom_line()
```


Multiple regression basics

- 1. Categorical predictors act as intercepts, or differences in level
- 2. Continuous predictors act as slopes

Regression with more than one slope and multiple intercepts

Maybe we think age also plays a role. Let's assume this causal model, where A is age. Now, we have to condition on A and E to close all back door paths between t and I and adjust for confounding

Estimating the model

```
m2 <- lm(income ~ hrs work + edu + age, data = dat)
tidy(m2)
## # A tibble: 5 x 5
##
   term
                  estimate std.error statistic p.value
                                      <dbl>
   <chr>
                    <fdb>>
                              <fdb>
                                             <dbl>
## 1 (Intercept) -14596.
                              6739.
                                    -2.17 3.06e- 2
## 2 hrs_work
                  1154.
                             116. 9.95 2.99e-22
                              5566. 7.30 6.13e-13
## 3 edugrad
                  40626.
## 4 eduhs or lower -18215.
                              3553.
                                     -5.13 3.58e- 7
                                       3.94 8.67e- 5
## 5 age
                      411.
                              104.
```

Visualizing model expectations: setup

```
# set up prediction data with values of interest
hrs work \leftarrow c(0:60)
age <- c(18:65)
edu <- c("college", "hs or lower", "grad")
pred_dat <- expand_grid(hrs_work, edu, age)</pre>
# generate expected values and CI, join pred dat
e_y <- predict(m2, newdata = pred_dat, interval = "confidence") %>%
   bind_cols(pred_dat)
# inspect
head(e v)
## # A tibble: 6 x 6
##
       fit
           lwr
                     upr hrs work edu
                                           age
     <dbl> <dbl> <dbl> <int> <chr> <int>
##
## 1 -7197. -18604. 4211.
                               0 college
                                            18
## 2 -6785, -18118, 4547,
                               0 college
                                           19
## 3 -6374, -17636, 4887,
                               0 college
                                           20
## 4 -5963. -17157. 5230.
                               0 college
                                           21
## 5 -5552, -16681, 5577,
                               0 college
                                           22
## 6 -5141. -16209. 5927.
                               0 college
                                           23
```

Visualizing model expectations

The difference between a DAG and a specification

This DAG can help us theorize how to adjust our models, but it does not tell us the correct regression specification. Is the relationship between A and I linear?

Adding complexity: quadratic terms

We know that earnings for people less than age 18 and greater than age 70 tend to be very low (or zero). We can try to use a parabola (a quadratic equation) to model this process.

Quadratics take a form that looks like this

```
x <- -100:100
y <- 5 + 2 * x + x^2
plot(x, y, type = "l")
```


Adding complexity: negative sign

```
x <- -100:100
y <- 5 + 2 * x - x^2
plot(x, y, type = "l")
```


Fitting a quadratic term

We use the I() function to require R to evaluate math statements inside formula objects

```
m3 <- lm(income ~ hrs_work * edu * (age * I(age^2)), data = dat)
tidy(m3)</pre>
```

```
## # A tibble: 8 x 5
                        estimate std.error statistic p.value
   term
##
   <chr>
                                   <fdb>>
                                            <dbl>
                                                   <fdb>>
##
                           < fdb>>
## 1 (Intercept)
                        -56158.
                                14084. -3.99 7.20e- 5
## 2 hrs work
                         1530. 214.
                                           7.14 1.90e-12
## 3 edugrad
                         19318. 20210.
                                           0.956 3.39e- 1
## 4 eduhs or lower
                         12569. 10480.
                                           1.20 2.31e- 1
## 5 age
                         1718.
                                 582.
                                            2.95 3.25e- 3
## 6 I(age^2)
                                           -2.21 2.70e- 2
                         -14.4
                                6.49
## 7 hrs work:edugrad
                         471.
                                465.
                                            1.01 3.11e- 1
## 8 hrs work:eduhs or lower -792. 257.
                                           -3.08 2.10e- 3
```

Visualizing model expectations

```
## # A tibble: 6 x 6
       fit
              lwr
                   upr hrs work edu age
      <dbl> <dbl> <dbl>
                         <int> <chr>
##
                                        <int>
## 1 -29889. -48189. -11589.
                               0 college
                                          18
## 2 -28703. -46828. -10577.
                               0 college
                                          19
## 3 -27545. -45523. -9567.
                               0 college
                                          20
## 4 -26416. -44273. -8560.
                               0 college
                                          21
## 5 -25316. -43075. -7558.
                               0 college
                                          22
## 6 -24245. -41927. -6563.
                               0 college
                                          23
```

