Introducción a Machine Learning

Bootcamp Python – Febrero 2023

Visión General

Inteligencia Artificial

Emular el comportamiento humano

Machine Learning

Aprender a realizar tareas a partir de experiencias previas

Deep Learning

Mejorar el aprendizaje y representación de los datos

Artificial intelligence: Google's AlphaGo beats Go master Lee Se-dol

() 12 March 2016

https://www.bbc.com/news/technology-35785875

Sony Releases Beatles-Inspired Song Made with A.I. Software

written by Ville Iso-Ahola October 4, 2016

https://geekinsider.com/sony-releasesbeatles-inspired-song-created-artificaiintelligence-software/

Documentales y películas

¿Qué es machine learning?

Es un campo de estudio que le da a las computadoras la habilidad de aprender sin ser explícitamente programadas

(Arthur Samuel – 1959)

Aprendizaje supervisado

El conjunto de entrenamiento consiste en las variables y una **etiqueta**

Se entrena el modelo para **predecir** las etiquetas en un conjunto de datos nuevo

Ejemplo: predicción de compra de un producto

Aprendizaje no supervisado

El conjunto de entrenamiento no tiene etiquetas

Se entrena el modelo para **encontrar patrones** en la data

Ejemplo: segmentación de clientes

Aprendizaje supervisado: haciendo predicciones sobre el futuro

Aprendizaje supervisado: haciendo predicciones sobre el futuro

Aprendizaje supervisado: clasificación para predecir etiquetas

Aprendizaje supervisado: Terminología

Sueldo Antiguedad en Capacidad de **Edad** Pagó el endeudamiento préstamo sistema financiero Sí Sí Cantidad de Sí muestras No No Etiqueta Características (Label / Target) (Features, atributos, dimensiones)

Aprendizaje supervisado: Conjuntos de entrenamiento y prueba

Sueldo	•••	•••	•••	Pagó
				Sí
				Sí
				Sí
				No
				No

Conjunto de entrenamiento (Train)

Sueldo	•••	•••	•••	Pagó
				?
				?
				?
				?
				?

Conjunto de prueba (Test)

Clasificación: Predicción de probabilidades

- En los modelos de predicción, muchas veces no se predice directamente una clase, sino se predice una probabilidad.
- ¿Qué tan probable es que un cliente me pague un crédito?

Ingreso

Antiguedad en sistema financiero

Clasificación: Predicción de probabilidades

- En los modelos de predicción, muchas veces no se predice directamente una clase, sino se predice una probabilidad.
- ¿Qué tan probable es que un cliente me pague un crédito?

Aprendizaje supervisado: Proceso de modelamiento

Aprendizaje supervisado: regresión para predecir valores continuos

En un modelo de regresión queremos predecir un valor continuo de target.

En la imagen, dada una variable x intentamos estimar el valor de la variable y

La línea elegida (el modelo) es resultado de ajustar un modelo en el que se intenta minimizar la distancia entre los valores reales y la predicción del modelo.

Aprendizaje supervisado en la industria

Predicción de churn Retención de clientes

Forecasting Estimación de demanda

Aprendizaje no supervisado: encontrando subgrupos con clustering

Aprendizaje no supervisado: encontrando subgrupos con clustering

Técnicas de clustering: https://scikit-learn.org/stable/modules/clustering.html

Aprendizaje no supervisado en la industria

Análisis de redes transaccionales

Customers Who Bought This Item Also Bought

Análisis de canasta de mercado Sistemas de Recomendación

¿Qué es Deep Learning?

Es una nueva área de Machine Learning que fue introducida con el fin de acercar al Machine Learning a uno de sus objetivos originales: la inteligencia artificial

(deeplearning.net)

¿Qué es Deep Learning?

Disyuntivas en el desarrollo de modelos

Overfitting y underfitting

Overfitting: Cuando un modelo se sobreajusta demasiado a los datos de entrenamiento no generaliza sus resultados adecuadamente

Underfitting: Cuando el modelo se ajusta muy ligeramente a los datos no se realiza una buena predicción

Overfitting y underfitting

Para encontrar el equilibrio es necesario observar los resultados en train y test.

My model on training data

My model on test dataset

Complejidad vs Interpretabilidad

Evaluación de clasificación

Evaluación de modelos de clasificación: Matriz de confusión

- Es una tabla de tamaño m x m, donde m es el número de valores que toma la variable objetivo
- Un clasificador perfecto tendría todos los elementos en la diagonal

Clase Original

Clasificado como ...

	Spam	No Spam
Spam	120	40
No Spam	20	820

Evaluación de modelos de clasificación: Matriz de confusión

Clasificado como ...

	Spam	No Spam
Spam	Verdaderos Positivos	Falsos Negativos
No Spam	Falsos Positivos	Verdaderos Negativos

Evaluación de modelos de clasificación: Matriz de confusión

Clasificado como ...

	Spam	No Spam
Spam	True Positive (TP)	False Negative (FN)
No Spam	False Positive (FP)	True Negative (TN)

Evaluación de modelos de clasificación: Accuracy

 Eficacia: Es la capacidad del modelo de predecir correctamente la clase o etiqueta de los registros

$$accuracy = \frac{correctamente}{total\ de\ registros}$$

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Clasificado como ...

	Spam	No Spam
Spam	TP	FN
No Spam	FP	TN

El accuracy no siempre es suficiente para evaluar un modelo

- Si tenemos un modelo clasificador de spam, supongamos que 998 mensajes no son spam y solo 2 son spam
- Si nuestro modelo predice que ningún mensaje es spam nuestra accuracy sería 998 / 1000 = 99.8 %
- El valor es engañoso porque nuestro modelo no detecta ningún correo spam
- En general, el accuracy no es una métrica adecuada cuando tenemos clases desbalanceadas

Evaluación de modelos de clasificación: Precisión

 De los que predije como spam, ¿qué proporción efectivamente era spam?

$$precision = \frac{clasificados\ correctamente}{total\ de\ registros}$$

$$clasificados\ como\ positivos$$

Clase Original Clasificado como ...

	No Spam	Spam
No Spam	TN	FP
Spam	FN	TP

$$precision = \frac{TP}{TP + FP}$$

Evaluación de modelos de clasificación: Recall

 De todos los que efectivamente son correos spam, ¿qué proporción identifica mi modelo?

$$recall = \frac{clasificados\ correctamente}{total\ de\ registros}$$

$$positivos$$

$$recall = \frac{TP}{TP + FN}$$

Clasificado como ...

	No Spam	Spam
No Spam	TN	FP
Spam	FN	TP

Evaluación de modelos de clasificación: F1 score

 Es la media armónica de la precisión y el recall

$$f1 = \frac{2 * precision * recall}{precision + recall}$$

Clase Original

Clasificado como ...

	No Spam	Spam
No Spam	TN	FP
Spam	FN	TP

Bibliografía recomendada

Referencias

- Python Machine Learning Sebastian Raschka (Tercera edición):
 https://github.com/rasbt/python-machine-learning-book-3rd-edition
- Documentación de scikit-learn: https://scikit-learn.org/stable/
- Machine learning flashcards Chris Albon: https://machinelearningflashcards.com
- Interpretable Machine Learning Cristoph Molnar: Interpretable Machine Learning: https://christophm.github.io/interpretable-ml-book/