P4 de Álgebra Linear I-2010.1

Data: 30 de junho de 2010

Matrícula:
Turma:

Caderno de Respostas

Preencha CORRETA e COMPLETAMENTE todos os campos acima (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota **ZERO**.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Respostas a caneta. Respostas a lápis não serão corrigidas e terão nota ZERO.

Duração: 1 hora 50 minutos

\mathbf{Q}	1.a	1.b	1.c	2.a	2.b	2.c	2. d	3.a	3. b	3.c	soma
\mathbf{V}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0
N											
\mathbf{R}											

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- \bullet É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas e resoluções.
- Escreva de forma clara, ordenada e legível.
- Somente serão aceitas respostas devidamente <u>JUSTIFICADAS</u>.

Respostas a lápis não serão corrigidas e terão nota ZERO.

Questão 1)

Considere a transformação linear $T:\mathbb{R}^3\to\mathbb{R}^3$ cuja matriz na base canônica é:

$$[T]_e = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}.$$

- a) Determine todos os autovalores e os correspondentes autovetores de T.
- b) T é diagonalizável? Porquê?
- c) Ache, se possível, uma base γ na qual

$$[T]_{\gamma} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}.$$

Respostas:
(a)
(b)
(d)

Resolução:

Questão 2)

Considere o plano π cuja equação cartesiana é

$$\pi$$
: $x + y - 2z = 1$.

- a) Ache a equação vetorial da reta r que é ortogonal a π e passa pelo ponto P=(1,0,1).
- **b)** Encontre o ponto Q que pertence a π e está o mais próximo possível do ponto P. Ache a distância d de P a Q.
- c) Ache a equação cartesiana do plano ρ tal que: é ortogonal ao plano π , contém a reta r e contém a reta s que passa pelo ponto Q e tem vetor diretor (2,0,1).
- d) Ache explicitamente todos os pontos R da reta s tais que a área do triângulo PQR seja igual a $\sqrt{30}/6$

Res	spostas:		
$(\mathbf{a})_{_{_{\Gamma}}}$			
	r:		
$(\mathbf{b})_{ar{b}}$			
	Q =	d =	
$(\mathbf{c})_{ar{c}}$			
	ho :		
(d)			

Resolução:

Questão 3)

Decida se as afirmações a seguir são Verdadeiras ou Falsas (Justificando!)

- a) O subespaço gerado pelos vetores (1,1,1),(1,0,1),(2,1,2) e (0,1,0) é um plano.
- b) Sejam λ_1 e λ_2 autovalores distintos e não-nulos de uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, com autovetores respectivos \overrightarrow{v}_1 e \overrightarrow{v}_2 . Então o conjunto $\{T(\overrightarrow{v}_1), T(\overrightarrow{v}_2)\}$ é L.I.
- c) As retas $r_1:X(t)=(1+t,2+t,3)$ e $r_2:Y(t)=(1-t,1+2t,5-t),\ t\in\mathbb{R},$ são reversas.

Respostas:

(a)

(b)

Resolução: