Examen rápido No. 1

Reconocimiento de Patrones (2023-2)

Julio Waissman Vilanova

Nombre:			
mompre:			

Problema 1

La desigualdad de Hoeffding es un medio para caracterizar el error fuera de muestra de una hipótesis de aprendizaje a partir de una cota superior:

$$P[|E_{out}(h^*) - E_{in}(h^*)| > \varepsilon] \le 2|\mathcal{H}|e^{-2\varepsilon^2 M}, \quad \varepsilon > 0.$$

Si establecemos que $\varepsilon = 0.05$ y queremos que la cota superior $2|\mathcal{H}|e^{-2\varepsilon^2M}$ sea a lo más 0.03, ¿Cuál sería el número mínimo de datos de entrenamiento M, dependiendo de la cardinalidad del modelo de aprendizaje?

- Para el caso $|\mathcal{H}| = 1$:
- Para el caso $|\mathcal{H}| = 10$:
- Para el caso $|\mathcal{H}| = 100$:

Problema 2

Consideremos el modelo de aprendizaje que vamos a llamar 2-intervalos. En este modelo $\mathcal H$ vamos a considerar que:

$$h: \mathbb{R} \to \{-1, +1\},\$$

donde h(x) = +1 si el punto $x \in \mathbb{R}$ se encuentra dentro de alguno de dos intervalos (i.e. [a,b] y [c,d]) preestablecidos. En caso contrario, h(x) = -1.

- ¿Cual es el breakpoint de \mathcal{H} ?
- ¿Que valor tiene $d_{VC}(\mathcal{H})$?

Problema 3

Ahora consideremos el caso genérico M-intervalos, donde \mathcal{H} está definido como el conjunto de funciones $h: \mathbb{R} \to \{-1, +1\}$ tales que h(x) = +1 si x se encuentra en alguno de los M intervalos establecidos y h(x) = -1 en caso contrario.

- ¿Que valor tiene $d_{VC}(\mathcal{H})$?
- Si fueras a decidir utilizar un modelo 5-intervalos, ¿Cuantos datos necesitarías como mínimo en tu conjunto de aprendizaje para asegurar la generalización?

Problema 4

Define con tus propias palabras que significa $Probablemente\ Aproximadamente\ Correcto\ (PAC)$