Trabalho Prático 2 - Algoritmos 1

Victor Hugo Silva Moura - 2018054958

Departamento de Ciência da Computação Universidade Federal de Minas Gerais (UFMG) Belo Horizonte - MG - Brasil

1 Introdução

Um grupo de amigas deseja visitar o Arquipélago San Blas, local onde foi gravado o seriado *La casa de papel*, antes que as ilhas do arquipélago desapareçam devido ao derretimento das calotas polares provocado pelo aquecimento global. Para isso, elas reservaram uma certa quantia para a viagem e desejam saber qual a melhor opção de viagem. O grupo estabeleceu uma pontuação para cada ilha de acordo com o quanto querem visitar essa ilha. A pontuação estabelecidas pelas meninas, para cada ilha, equivale a um dia naquela ilha.

Infelizmente elas não podem visitar todas as ilhas, pois o dinheiro que possuem é limitado. Dessa forma, elas criaram dois tipos de roteiro de viagem possíveis. No primeiro caso, dado um orçamento máximo disponível para ser gasto por cada pessoa, qual a maior pontuação possível ao escolher um conjunto de ilhas, podendo ocorrer repetições (elas ficariam na mesma ilha por mais de um dia). A maior pontuação equivale à soma das pontuações de cada visita diária incluída no roteiro. A outra possibilidade de roteiro analisada é dado o orçamento máximo a ser gasto por cada menina, qual a maior pontuação possível, sem repetições de ilhas.

O objetivo do trabalho prático é, dada o orçamento do grupo e um conjunto de ilhas, com suas respectivas pontuações, desenvolver duas soluções:

- 1. Utilizando algoritmo guloso determinar: (a) a maior pontuação possível se as meninas escolherem um roteiro no qual pode haver repetições de ilhas (ficar mais de um dia na mesma ilha) e (b) a quantidade de dias que durará a viagem. O tempo de execução do algoritmo para esse problema não deve ser superior a $O(m \log m)$;
- 2. Utilizando programação dinâmica determinar: (a) a maior pontuação possível se as meninas escolherem um roteiro no qual não pode haver repetições de ilhas e (b) a quantidade de dias que durará a viagem. O tempo de execução do algoritmo para esse problema não deve ser superior O(n * m);

2 Implementação

A solução para o problema foi implementada por meio de um array de ilhas. Cada ilha do array possui três informações: custo por dia, pontuação por dia e custo por pontuação. O último dado será utilizado, e explicado, na implementação gulosa para o problema.

O algoritmo guloso foi utilizado para solucionar a versão do problema onde é possível haver repetições de ilhas durante a viagem. Esse paradigma de programação foi selecionado para esse problema justamente pelo detalhe de poder haver repetições. Como será explicado mais a frente, o algoritmo preza pela melhor solução local e a repete enquanto for possível, ou, no caso desse problema em específico, enquanto essa solução não estourar o orçamento total.

Já a programação dinâmica for utilizada para solucionar a versão do problema onde as ilhas não se repetem na solução. Esse paradigma de programação foi selecionado pois, como será provado mais a frente, sempre retorna a solução ótima, coisa que não ocorre sempre no algoritmo guloso, principalmente quando não podem ocorrer repetições.

2.1 Algoritmo Guloso

O algoritmo guloso para esse problema se baseia em um princípio: selecionar a ilha com o maior custo/benefício atual enquanto ela não estourar o orçamento do grupo de amigas. Assim que essa ilha não foi mais possível, o mesmo processo é feito com a próxima ilha até que tenhamos passado por todas as ilhas.

O custo/benefício é calculado como o custo por dia na ilha sobre a pontuação da ilha. Dessa forma, quanto menor o valor, maior é o custo benefício daquela ilha. Em outras palavras, comparando duas ilhas, a que tem custo por pontuação menor significa que, para um mesmo custo a pontuação ganha por essa ilha é maior que a outra que estamos comparando.

Assim, para escolhermos a cada passo a ilha com o maior custo/benefício, das que ainda são possíveis, é feita uma ordenação das ilhas por esse parâmetro. De forma a garantir que a complexidade requisitada $O(m \log m)$, sendo m o número de ilhas, seja atendida, a ordenação utilizada foi o MergeSort, que garante isso.

Feita a ordenação, o próximo passo é escolher a melhor solução local, que nesse caso é a ilha com o maior custo benefício no momento. Para cada ilha, o custo dela é comparado com o orçamento. Se esse custo for menor que o orçamento, subtraímos o custo vezes o número de vezes que ele cabe no orçamento do orçamento total. Além disso, o número de vezes que o custo cabe no orçamento é adicionado no número de dias da viagem, já que o custo da ilha é por dia.

2.2 Programação Dinâmica

Ao "proibir" a repetição de ilhas, o problema se torna parecido com o problema da mochila. Nesse caso, a "capacidade" da mochila é o orçamento

total das amigas e os itens são as ilhas. Para o itens, o "peso" deles é o custo por dia e o "valor" é a pontuação que foi atribuída pelo grupo.

Dessa forma, a solução com programação dinâmica para esse problema é feita de forma semelhante à solução para o problema da mochila, explorando a divisão do problema principal em subproblemas, com sobreposição, mais simples de resolver. Para facilitar a notação, vamos utilizar a equação de Bellman.

Vamos considerar OPT(i,w) como a pontuação máxima que podemos obter em um sub-conjunto de ilhas 1,...,i e com um orçamento máximo de w. O objetivo que queremos maximizar OPT(m,W), onde m é o número de ilhas e W é o orçamento para a viagem. Note que existem dois casos possíveis para cada ilha i:

- A solução final não inclui a ilha i. Nesse caso, OPT(i, w) é a melhor solução com o sub-conjunto $\{1, ..., i-1\}$
- A solução final inclui a ilha i. Nesse caso, a pontuação da ilha é adicionada na solução e $OPT(i,w) = v_i + OPT(i-1,w-w_i)$, onde v_i é a pontuação da ilha i e w_i é o custo da ilha. Sendo assim, a solução é a soma da pontuação da ilha com a melhor solução que não inclui a ilha, mas com o custo da ilha subtraído do orçamento máximo.

A equação de Bellman para esse problema está apresentada abaixo:

$$OPT(i,w) = \begin{cases} 0 & \text{se } i = 0 \\ OPT(i-1,w) & \text{se } w_i > w \\ max\{OPT(i-1,w), v_i + OPT(i-1,w-w_i)\} & \text{caso contrário} \end{cases}$$

A recorrência foi calculada por meio de uma matriz $m \times W$, onde m é o número de ilhas e W é o orçamento total, seguindo as regras descritas acima. O resultado final é a posição [m][W] da matriz. Para diminuir o tamanho da matriz, e consequentemente o tempo de computação da matriz, é calculado um mdc entre os valores das ilhas e o orçamento total. Dessa forma, podemos dar saltos maiores na matriz, de acordo com o mdc, já que valores menores que ele não alterarão o resultado.

3 Análise de Complexidade

3.1 Complexidade de Tempo

Vamos dividir a complexidade de tempo nos dois paradigmas de programação usados para resolver esse problema.

O algoritmo guloso faz duas operações principais: ordenar as ilhas de acordo com o custo/benefício e percorrer as ilhas adicionando a que possui o melhor custo/benefício atual o número de vezes que ela cabe no orçamento restante. Para a primeira operação, foi utilizado o algoritmo MergeSort que possui uma complexidade $O(n \log n)$, sendo n o número de elementos a serem ordenados.

Como para esse problema temos m, ilhas, a complexidade dessa ordenação é $O(m \log m)$. Para a segunda operação, para cada ilha é checado quantas vezes o preço dela cabe no orçamento atual. Vamos chamar esse valor de k. Depois o valor da ilha vezes k é subtraído do orçamento atual e o número de dias é acrescido em k. Sendo assim, temos um número constante de operações para cada ilha e isso é feito para todas as ilhas, gerando um custo linear no número de ilhas O(m). Assim, a complexidade para o algoritmo guloso é:

$$O(m\log m) + O(m) = O(m\log m)$$

A programação dinâmica, desconsiderando o mdc, faz duas operações principais: preenchimento da matriz de OPT e backtracking na matriz para calcular o número de dias da viagem. A primeira operação necessita percorrer toda a matriz para calcular os valores ótimos das subsoluções. Como a matriz é de tamanho $m \times W$, sendo W o orçamento máximo do grupo de amigas, essa operação tem um custo O(m*W). A próxima operação volta nas linhas da matriz procurando por diferenças na linha anterior até chegar na primeira linha e primeira coluna da matriz. Essa operação é linear no número de linhas da matriz, tendo um custo O(m), onde m é o número de ilhas, que também é o número de linhas da matriz. Assim, a complexidade para a programação dinâmica é:

$$O(m * W) + O(m) = O(m * W)$$

3.2 Complexidade de Espaço

Para a complexidade de espaço, vamos dividir novamente a análise nos dois paradigmas de programação de forma a facilitar a análise da mesma. Para o algoritmo guloso, o MergeSort utiliza arrays adicionais para realizar a ordenação. Para cada operação de merge é criado um array adicional de tamanho igual a soma do tamanho das metades sendo ordenadas. A complexidade de espaço dessa ordenação é da ordem de $O(n \log n)$, sendo n o número de elementos da ordenação. Como para esse problema temos m, ilhas, a complexidade dessa ordenação é $O(m \log m)$, mesma complexidade que a complexidade de tempo. Além disso, são criados duas memórias que guardam o ganho total de pontos da viagem e o número de dias gastos, porém o custo delas é constante O(1). Assim, a complexidade de espaço do algoritmo guloso é:

$$O(m \log m)$$

Para a programação dinâmica, a única operação que utiliza espaço adicional é a criação da matriz de OPT. Essa matriz é de tamanho $m \times W$. O custo de criação dessa matriz, portanto, é a da ordem de O(m * W). Além disso, são criadas duas memórias que guardam o ganho total de pontos da viagem e o número de dias gastos, assim como no algoritmo guloso. O custo delas é constante O(1). Assim, a complexidade de espaço do algoritmo guloso é:

$$O(m*W)$$

4 Provas de Corretude

Vamos provar inicialmente para o algoritmo guloso. Esse algoritmo não apresenta sempre uma solução ótima. Sendo assim, será provado, por contra-exemplo, que a solução não é sempre ótima.

Suponha a seguinte entrada para o programa:

 $1800 \ 2$

1000 30

900 20

Calculando o custo/benefício das duas ilhas, temos 33.333... para a primeira ilha e 45 para a segunda, lembrando que o custo/benefício é custo sobre pontuação da ilha, e quanto menor o valor, melhor o custo/benefício. Segundo o algoritmo guloso, nesse caso deveríamos pegar a primeira ilha e o orçamento restante seria de \$800. Com esse orçamento, não é possível pegar outra ilha e a quantidade de pontos final é de 30 pontos. Porém a solução ótima seria pegar a ilha dois duas vezes, o que deixaria o orçamento restante zerado, mas uma pontuação final de 40 pontos. Dessa forma conseguimos ver que o algoritmo guloso não é sempre ótimo para todos os casos.

A prova da solução gerada pela programação dinâmica ser ótima se baseia na equação de Bellman descrita durante a implementação da programação dinâmica. Para cada nova ilha adicionada duas possibilidades são verificadas:

- A possibilidade da ilha se adicionada na solução final
- A possibilidade da ilha n\u00e3o ser adicionada na solu\u00e7\u00e3o final

Dessa forma, "todas" as possibilidades de solução são verificadas e a melhor delas é escolhida. Isso é feito recursivamente para cada subconjunto de ilhas, formando no final a solução ótima para o problema geral. Nem todas as soluções são realmente testadas (o que explica as aspas utilizadas) pois após descobrirmos a melhor solução para um determinado sub-conjunto, não é necessário utilizar as rever as outras opções para esse sub-conjunto enquanto estamos explorando conjuntos maiores. Como "todas" as possibilidade são checadas, podemos dizer que a solução final é sempre ótima.

5 Análise Experimental

Para a análise experimental, foram utilizados orçamentos e custos de ilhas aleatórios (o orçamento é um valor entre 10 e 10000), enquanto que o número de ilhas varia de 0 a 45000, crescendo de 5000 em 5000. Para cada teste, foi computado o tempo médio de execução para 20 execuções. Abaixo temos uma tabela para cada um dos paradigmas de programação mostrando os resultados obtidos:

Nº de Ilhas	Média do Tempo de Execução (ms)	Desvio Padrão do Tempo de Execução	Nº de Ilhas	Média do Tempo de Execução (ms)	Desvio Padrão do Tempo de Execução
0	0.00000	0.00000	0	0.00000	0.00000
5000	0.58345	0.00000	5000	157.12400	6.30500
10000	1.22130	0.00001	10000	292.89200	45.76500
15000	1.87840	0.00012	15000	490.98100	65.77500
20000	2.56050	0.00001	20000	690.83000	105.82000
25000	3.26080	0.00025	25000	864.48300	213.53400
30000	3.97030	0.00012	30000	1005.71400	296.85000
35000	4.70010	0.00020	35000	1162.52500	374.86400
40000	5.42820	0.00031	40000	1483.29800	420.50000
45000	6.15190	0.00034	45000	1096.55100	430.68500

Tabela 1: Número de Ilhas, Média do Tempo de Execução e o Desvio Padrão do Testes Para Cada Paradigma

Foi gerado um gráfico para cada uma das soluções a partir das tabela mostrando a relação entre o tempo de execução e a quantidade de ilhas. Os gráficos gerados estão presentes abaixo:

Figura 1: Gráfico de Tempo Para as Duas Soluções

Por meio desses gráficos, podemos ver que para a solução gulosa, o gráfico possui uma leve curvatura devido ao fator logarítmico que influencia na complexidade. Já o gráfico de programação dinâmica segue uma relação quase linear com o número de ilhas, visto que para os testes feitos, o orçamento total possuía um teto máximo, deixando de ser o possível fator dominante da complexidade. A queda que ocorre no final pode ser explicada por um valor de orçamento muito baixo no caso de teste, o que joga a complexidade para baixo, visto que a complexidade é O(n*m), ou O(m*W) caso estejamos considerando o orçamento como o peso da mochila no caso do problema da mochila.

O desvio padrão alto para a programação dinâmica pode ser explicado pela aleatorieade durante a geração das entradas para o programa. A forma como

os casos são feitos pode impactar muito no tempo final de execução.

Referências

- [1] GeeksForGeeks. Merge Sort.
- [2] B. Kleinberg and É. Thardos. Algorithm Design. Pearson, 2005.
- [3] N. Ziviani. Projeto de Algoritmos com Implementações em Pascal e C. Cengage, 2011.