Supervised Learning

DATA SCIENCE BOOTCAMP

What is Supervised Learning?

Data with ____ model correct answers

New Data without — model — Predicted answers

Regression: "answers" are numeric

Movie data model including gross

Movie data ____ Predicted without gross gross

Movie data
including Oscar
wins or lack
thereof

Movie data
without

Oscar results

Movie data
model

Predict
winning oscar

Breast cancer
surgery patient
data including
(survived/not)

Patient data
without

model

Predict survival
survival result

Color, shape, weight, sweetness, sourness for a bunch of apples, bananas & peaches

model

Color, shape, weight, sweetness, sourness (without fruit type)

model

Predict apple,

→ banana or

peach

Labeled data model

data --- model --- label

Example: each data point (row)

Label: each category to be predicted

Feature: each property (column) used in predicting

2 Labels: Survived / Lost

Number of positive nodes

2 Features: Number of + nodes, Age

Number of positive nodes

2 Features: Number of + nodes, Age

Number of positive nodes

Binary classification:

Multi-class classification:

Patient status after 5 yr.

Number of positive nodes

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

Number of positive nodes

Number of positive nodes

Number of positive nodes

Logistic regression to the rescue

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

What is this function?

What is this function?

What is this function?

$$P(loss) = 0.8$$

$$P(survival) = 0.2$$

Probability

$$P(loss) = 0.8$$

 $P(survival) = 0.2$

$$\frac{P(loss)}{P(survival)} = 4$$

Probability

Odds

$$P(loss) = 0.05$$

$$P(survival) = 0.95$$

$$\frac{P(loss)}{P(survival)} = 0.053$$

Probability

Odds

$$P(loss) = 0.5$$

$$\frac{P(loss)}{P(survival)} = 1$$
 $P(survival) = 0.5$

Probability Odds

$$P(loss) = 0.5$$

$$P(survival) = 0.5$$

Probability

$$\frac{P(loss)}{P(survival)} = 1$$

Odds between 0 and inf

$$P(loss) = 0.5$$
$$P(survival) = 0.5$$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = 0$$

Probability

Log Odds between -inf and inf

$$P(loss) = 0.05$$

$$P(survival) = 0.95$$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = -2.94$$

Probability

Log Odds between -inf and inf

$$P(loss) = 0.8$$

 $P(survival) = 0.2$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = 1.39$$

Probability

Log Odds between -inf and inf

$$P(loss) = 0.999$$
$$P(survival) = 0.001$$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = 6.9$$

Probability

Log Odds between -inf and inf

$$P(loss) = 0.999$$

$$1 - P(loss) = 0.001$$

$$\log\left(\frac{P(loss)}{1 - P(loss)}\right) = 6.9$$

Probability

Log Odds logit function

$$P(loss) = 0.999$$

 $1 - P(loss) = 0.001$

$$\log\left(\frac{P(loss)}{1 - P(loss)}\right) = 6.9$$

Probability

Log Odds logit function

$$\frac{1}{1 - e^{\log\left(\frac{P(loss)}{1 - P(loss)}\right)}} = P(loss)$$

Logistic Function
Log Odds → Prob

What is this function?

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

from sklearn.linear_model import LogisticRegression
#(just like LinearRegression)

from statsmodels.formula.api import Logit
#(just like OLS)

Number of positive nodes

K=1:

Look at the nearest neighbor, predict their label

K=1: Look at the nearest neighbor, predict their label

K=1: Look at the nearest neighbor, predict their label

K=2:

Look at the 2 nearest neighbors, predict the label you see the most

Number of positive nodes

new example predict:

K=3:

Look at the 3 nearest neighbors, predict the label you see the most Number of positive nodes new example predict:

Number of positive nodes

