PRESENTATION TP2 ET TP3

Réaliser par:

Belhassen Feryel Ben Amor Insaf

Classe:

3DNIG2

END-TO-END MACHINE LEARNING PROJECT "FACE DETECTION APPLICATION"

Feature Engineering

un processus qui consiste à transformer les données brutes en caractéristiques


```
from skimage import data, transform
import numpy as np
from sklearn.feature_extraction.image import PatchExtractor
imgs_to_use = ['camera', 'text', 'coins', 'moon', 'page', 'clock', 'immunohistochemistry', 'chelsea', 'coffee', 'hubble_deep_field']
images = [color.rgb2gray(getattr(data, name)()) for name in imgs_to_use]
def extract_patches(img, N, scale=1.0, patch_size=positive_patches[0].shape):
extracted_patch_size = tuple((scale * np.array(patch_size)).astype(int))
extractor = PatchExtractor(patch_size=extracted_patch_size,
max_patches=N, random_state=0)
patches = extractor.transform(img[np.newaxis])
if scale != 1:
    patches = np.array([transform.resize(patch, patch_size)for patch in patches])
return patches
negative_patches = np.vstack([extract_patches(im, 1000, scale)
for im in images for scale in [0.5, 1.0, 2.0]])
```


Training model

Best model


```
ypred=best_model.predict(X_test)
evaluate_preds(y_test,ypred)

{'accuracy': 1.0, 'precision': 1.0, 'recall': 1.0, 'f1': 1.0}
```

Classifying Iris Flowers

Toy model to play to classify iris flowers into (setosa, versicolor, virginica) based on their sepal/petal and length/width.

Plant Features

Face detection

Try model to detect a face.

Upload Image

pres

suiv

Process

Skin Cancer Detection using Deep Learning

Processus de détection du cancer

Data Preprocessing:

```
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
          rescale = 1./255,
          rotation range=40,
          horizontal_flip=True,
          width shift range=0.3,
          height_shift_range=0.3,
          shear_range=0.3,
          zoom range=0.3,
          fill_mode='nearest',
          validation_split=0.5)
    train generator = train datagen.flow from directory(
        train dir,
        subset="training",
        shuffle=True,
        seed=42,
        color mode="rgb",
        class_mode="binary",
        target size=IMAGE SIZE,
        batch_size=BATCH_SIZE)
    validation_generator = train_datagen.flow_from_directory(
        train_dir,
        shuffle=False,
        seed=42,
        color mode="rgb",
        class mode="binary",
        subset="validation",
        target size=IMAGE SIZE,
        batch size=BATCH SIZE)
Found 20 images belonging to 2 classes.
```

Found 20 images belonging to 2 classes.

Les transformations doivent être adaptées à l'ensemble de données d'entraînement, puis appliquées aux ensembles de données d'entraînement/validation/test.

Modeling

ayer (type)	Output Shape	Param #
eras_layer (KerasLayer)	(None, 1280)	5919312
latten_1 (Flatten)	(None, 1280)	Ø
ense_2 (Dense)	(None, 512)	655872
opout_1 (Dropout)	(None, 512)	0
nse_3 (Dense)	(None, 2)	1026

efficientNet Summary

Training Model

- Validez chaque étape en formant le modèle avec l'ensemble de données de validation.
- Nous atteignons une précision de 81 % après 15 époques mais un réglage fin peut augmenter cette précision.

Data Augmentation

L'augmentation des données dans l'analyse des données sont des techniques utilisées pour augmenter la quantité de données en ajoutant des copies légèrement modifiées de données déjà existantes ou de données synthétiques nouvellement créées à partir de données existantes.

Evaluate model

```
1/1 [======= ] - Øs 239ms/step
Classification Report
                 recall f1-score support
         precision
   benign
            1.00
                   0.88
                         0.93
                                  8
                         0.94
 malignant
            0.89
                   1.00
                         0.94
                                 16
  accuracy
            0.94
                   0.94
                         0.94
                                 16
 macro avg
weighted avg
            0.94
                   0.94
                         0.94
                                 16
[0.3638246953487396, 0.9375]
```

Confusion Matrix

Merci pour votre attention