lecture 03, the formal language PL

phil1012 introductory logic

overview

this lecture

- an introduction to the formal language PL
- the vocabulary and syntax of PL
- how formulas of PL are constructed
- \bullet translating propositions from English into PL with the use of a glossary

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - explain what the different symbols of PL mean
 - translate PL formulas into English
 - translate propositions from English into PL, providing a glossary for your translation
 - \circ identify well-formed formulas of PL $\,$
 - construct construction tables for formulas of PL

required reading

• all of chapter 2

the language of propositional logic (PL)

the language of propositional logic (PL)

- the formal symbolic language of propositional logic (PL)
- \bullet the language of PL consists of a ${\bf vocabulary}$ and a ${\bf syntax}$
- the vocabulary concerns the basic symbols
- the syntax concerns how basic symbols can be put together to form complex symbols

the vocabulary of PL

the vocabulary of PL

- basic propositions are represented in PL by simple capital letters with or without numerical subscripts
- they are called sentence letters
 - A,A2,A3,...B,B2,B3,...,C,C2,C3,...,Z,Z2,Z3A, A_2, A_3, \ldots B, B 2, B 3, \ldots, C, C 2, C 3, \ldots, Z, Z 2, Z 3

- suppose you want to use 'A' to represent the proposition expressed by the sentence 'John is short'
- in order to do this you would write a glossary like this:
 - AA: John is short
- we use sentence letters only for basic propositions. so the following is not okay:
 - AA: John is short and Jane is tall
- remember that a negation is not a basic proposition. so the following is not okay:
 - AA: John is not short
- we have introduced symbols to represent propositions (sentence letters)
- now we introduce symbols to represent the **connectives**
 - $\circ \neg$, Λ , V, \rightarrow , $\leftrightarrow \land$ lnot, \land lor, \land rightarrow, \land leftrightarrow

conjunction

- the connective conjunction is represented in PL by the symbol:
 - ∘ ∧\land
- the name of the symbol is caret
- \bullet we can use caret to represent the conjunction of AA and BB as follows:
 - $(AAB)(A \setminus land B)$
- we can use this to represent the proposition that John is short and Jane is tall

disjunction

- the connective disjunction is represented in PL by the symbol:
 - V\lor
- the name of the symbol is vel
- we can use vel to represent the disjunction of AA and BB as follows:
 - (AVB) (A \lor B)
- we can use this to represent the proposition that John is short or Jane is tall

conditional

- the connective conditional is represented in PL by the symbol:
 - →\rightarrow
- the name of the symbol is arrow
- we can use arrow to represent a conditional with AA as its antecedent and BB as its consequent as follows:
 - (A→B) (A \rightarrow B)
- we can use this to represent the proposition that if John is short, then Jane is tall

biconditional

- the connective biconditional is represented in PL by the symbol:
 ↔\leftrightarrow
- the name of the symbol is **double arrow**
- \bullet we can use double arrow to represent a biconditional with AA as its left-hand side and BB as its right-hand side as follows:
 - (A \leftrightarrow B) (A \leftrightarrow B)
- \bullet we can use this to represent the proposition that John is short if and only if Jane is tall

negation

- the connective negation is represented in PL by the symbol:
 ¬\lnot
- the name of the symbol is neg
- we can use neg to represent a negation with AA as its negand as follows:
 - ∘ ¬A\lnot A
- we can use this to represent the proposition that John is not tall

the connectives of PL

• here are the symbols for the connectives in PL:

connective	name		symbol
negation	neg		¬\lnot
conjunction	caret		∧ \land
disjunction	vel		V \lor
conditional	arrow		→\rightarrow
biconditional	double	arrow	↔\leftrightarrow

ullet here are some alternative symbols for the connectives

connective	symbol
negation	~
conjunction	&
disjunction	V
conditional	->
biconditional	<->

- note! although the choice of symbols for the connectives is entirely arbitrary, the choice we have made is final, and henceforth we will only use these symbols
- we now have the most important parts of the vocabulary of PL: sentence letters, connective symbols, and punctuation symbols '(' and ')'
- now we need to say how these can be put together

the syntax of PL

the syntax of PL

- we are now ready to precisely state the syntax of PL
- see the handout on the syntax of PL
- ullet we use lowercase Greek letters like lpha\alpha and llet\beta to express general claims about the formulas of PL
- these are called well-formed formula variables
- well-formed formula variables can stand in for single sentence letters like AA or for complex formulas like (A Λ B) (A \land B)
- they are not part of the language of PL
- the symbols of PL are:
 - sentence letters (basic propositions):
 - A, A2, A3, ...B, B2, B3, ..., C, C2, C3, ..., Z, Z2, Z3A, A 2, A 3, \ldots B, B 2, B 3, \ldots, C, C 2, C 3, \ldots, \(\text{Z}, \text{Z} \) \(\text{Z} \) \(\text{Z} \)
 - connectives:
 - $\neg \Lambda V \rightarrow \land$ \lnot \hspace{6pt} \land \hspace{6pt} \lor \hspace{6pt} \rightarrow \hspace{6pt} \leftrightarrow
 - punctuation symbols (parentheses):
 - () (\hspace{12pt})
- wffs of PL are defined as follows:
 - any basic proposition is a wff
 - if α \alpha and β \beta are wffs, then so are:
 - $\circ \neg \alpha \setminus lnot \setminus alpha$
 - $(\alpha \Lambda \beta)$ (\alpha \land \beta)
 - $(\alpha V \beta)$ (\alpha \lor \beta)

 - $(\alpha \rightarrow \beta)$ (\alpha \rightarrow \beta) $(\alpha \leftrightarrow \beta)$ (\alpha \leftrightarrow \beta)
 - nothing else is a wff
- the syntax of PL is specified by a recursive definition
- the base clause of the definition states certain things are wffs
- the recursive clause states that certain other things are wffs in terms of things we already know to be wffs
- all of the following can be generated using this definition:
 - $((R\rightarrow P) \leftrightarrow R) ((R \land rightarrow P) \land leftrightarrow R)$
 - $(B\leftrightarrow ((C\Lambda A)VC))(B\land C)$
 - ¬(BV(B↔A))\lnot (B\lor (B\leftrightarrow A))
 - $((H \rightarrow G) \rightarrow (H \leftrightarrow (GVH)))$ $((H \land rightarrow G) \land rightarrow$ (H\leftrightarrow (G\lor H)))
 - $((ZV(((YVY)\Lambda(Z\rightarrow Z))VY))VY)((Z\lor(((Y\lor Y)\land))))$ (Z\rightarrow Z))\lor Y))\lor Y)
 - (D\land A))\rightarrow A))\lor I)\land ((D\leftrightarrow J) \leftrightarrow J))
- the symbols of PL can be divided into the following categories:
 - logical symbols (the connective symbols)
 - nonlogical symbols (sentence letters)
 - auxiliary symbols (parentheses)
- the nonlogical symbols do not have a fixed meaning and need to be specified in a glossary

- this is why you must always provide a glossary for your translations
- given this syntax for PL we can show how any well-formed formula of PL is constructed
- suppose we want to construct $(\neg PA(QVR))$ (\lnot P \land (Q \lor R))
- \bullet we might construct it as follows using a ${\bf construction}\ {\bf table}$

step	wff constructed	at this	step from steps/by clau	ıse
1	PP		/(2i)	
2	QQ		/(2i)	
3	RR		/(2i)	

step	wff constructed at this step	from steps/by clause
1	PP	/(2i)
2	QQ	/(2i)
3	RR	/(2i)
4	¬P\lnot P	1 /(2ii ¬\lnot)
5	(QVR) $(Q \setminus lor R)$	2,3 /(2ii V \lor)

step	wff constructed at this step	from steps/by clause
1	PP	/(2i)
2	QQ	/(2i)
3	RR	/(2i)
4	¬P\lnot P	1 /(2ii ¬\lnot)
5	(QVR) $(Q \setminus lor R)$	2,3 /(2ii V \lor)
6	$(\neg P \Lambda (Q V R)) (\land P \land Q \land Q \land R))$	4, 5 /(2ii ∧ \land)

- the other wffs in the construction are **subformulas** of the formula
- the connective added last in the construction is the main connective
- the main connectives gives its name to the formula it constructs

wrapping up

this lecture

- an introduction to the formal language PL
- \bullet the vocabulary and syntax of PL
- how formulas of PL are constructed
- \bullet translating propositions from English into PL with the use of a glossary

next lectures

- lecture 4, issues in translation: assertability and implicature
- lecture 5, the semantics of PL