UNIT 2

Lecture 33
Normalization
3NF & BCNF

- Third normal form (3NF) is based on the concept of *transitive* dependency.
- A relation schema R is in 3NF if it is in 2NF and no nonprime attribute of R is transitively dependent on the primary key.
- A relation schema R is in 3NF if it is in 2NF and no nonprime attribute is dependent on other non prime attribute.
- General Def. Of 3NF A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional dependency X→A holds in R, either
 - X is a super key of R, or
 - A is a prime attribute of R.

E.g. 1 Consider a relation R (A, B, C, D) with a set of FDs

$$F = \{ A \rightarrow B,$$

$$B \rightarrow C,$$

$$A \rightarrow C,$$

$$C \rightarrow D \}$$

is not in 3NF, because it has 3 transitive dependencies B \rightarrow C, C \rightarrow D and B \rightarrow D, with candidate key as A.

3NF Decomposition Algorithm

- 1. Compute the canonical cover F_c . (Remove Redundant FDs from F)
- 2. For every dependency $X \rightarrow Y$ in F_C , create a relation Ri (X, Y).
- 3. If none of the relations preserve the candidate key, then create a relation to preserve the candidate key. (If the key K of R does not occur in any relation Ri, create one more relation Ri(K)).
- 4. If possible merge 2 or more relations on the basis of common candidate keys.

E.g. 1 Consider a relation R (A, B, C, D) with a set of FDs

$$F = \{ A \rightarrow B,$$

$$B \rightarrow C,$$

$$A \rightarrow C,$$

$$C \rightarrow D \}$$

Sol : First we have to find F_C .

$$F_C = \{ A \rightarrow B,$$

 $B \rightarrow C,$
 $C \rightarrow D \}$

So, the required 3NF decomposition of R is R1(\underline{A} , B), R2(\underline{B} , C) and R3(\underline{C} , D).

E.g. 2 Consider a relation R (A, B, C, D, E) with a set of FDs

$$F = \{ A \rightarrow B,$$

$$B \rightarrow E,$$

$$A \rightarrow C,$$

$$C \rightarrow D,$$

$$A \rightarrow E \}$$

Sol : First we have to find F_C.

$$F_C = \{ A \rightarrow BC,$$

 $B \rightarrow E,$
 $C \rightarrow D \}$

So, the required 3NF decomposition of R is R1(A, B, C), R2(B, E) and R3(C, D).

Third Normal Form (3NF) (Approach – I)

E.g.3 Consider a relation R (A, B, C, D, E) with a set of FDs

$$F = \{ AB \rightarrow C,$$
 $A \rightarrow D,$
 $D \rightarrow E \}$

Sol : First we compute F⁺.

So.
$$F^+ = \{AB \rightarrow CDE,$$

 $A \rightarrow DE,$
 $D \rightarrow E \}$

From F^+ , we have 2 partial dependencies $A \rightarrow D$, and $A \rightarrow E$.

R (A, B, C, D, E)
$$A \rightarrow DE$$
R1 (A, D, E)
$$R2(A, B, C)$$

So, relations R1 (<u>A</u>, D, E) with F1 = {A \rightarrow DE, D \rightarrow E} and R2 (<u>A</u>, <u>B</u>, C) with F2 = {AB \rightarrow C} are the required 2NF decompositions of R.

Now, relation R2 is already in 3NF but R1 is not in 3NF because it contains a transitive dependency D \rightarrow E. So again we decompose R1(\underline{A} , D, E) into R11(\underline{A} , D) with F11 = {A \rightarrow D} and R12(\underline{D} , E) with F12 = {D \rightarrow E}. So, R11 (\underline{A} , D), R12 (\underline{D} , E) and R2 (\underline{A} , B, C) are the required 3NF decomposition of R.

Third Normal Form (3NF) (Approach – II)

E.g.3 Consider a relation R (A, B, C, D, E) with a set of FDs

$$F = \{ AB \rightarrow C,$$
 $A \rightarrow D,$
 $D \rightarrow E \}$

Sol : First we compute F_C.

So.
$$F_C = \{ AB \rightarrow C, A \rightarrow D, D \rightarrow E \}$$

From F_C , we have 3 dependencies AB \rightarrow C, A \rightarrow D and D \rightarrow E.

So, relations R1 (A, B, C), R2 (A, D), and R3 (D, E) are the required 3NF decompositions of R.

Third Normal Form (3NF) (Approach – I)

E.g.4 Consider a relation R (A, B, C, D) with a set of FDs

$$F = \{ A \rightarrow B, \\ C \rightarrow D \}$$

Sol : First we compute F⁺.

So.
$$F^+ = \{ A \rightarrow B, C \rightarrow D \}$$

From F⁺, we have 2 partial dependencies A \rightarrow B, and C \rightarrow D.

So, relations R1 (<u>A</u>, B), R21 (<u>C</u>, D) and R22 (<u>A, C</u>) are the required 2NF decompositions of R.

Now, relations R1 (<u>A</u>, B), R21 (<u>C</u>, D) and R22 (<u>A, C</u>) are also in 3NF, because they do not contain any transitive dependencies.

Third Normal Form (3NF) (Approach – II)

E.g.4 Consider a relation R (A, B, C, D) with a set of FDs

$$F = \{ A \rightarrow B, C \rightarrow D \}$$

Sol : First we compute F_C .

So.
$$F_C = \{ A \rightarrow B, C \rightarrow D \}$$

From F_C , we have 2 dependencies $A \rightarrow B$, and $C \rightarrow D$.

So, we create 2 relations R1 (A, B), and R2 (C, D).

Now, none of the relations preserve the candidate key AC, so we create a relation R3 (\underline{A} , \underline{C}) to preserve the candidate key. So, R1 (\underline{A} , B), R2 (\underline{C} , D) and R3 (\underline{A} , \underline{C}) are the required 3NF decompositions of R.

- General Def. Of BCNF A relation schema R is in BCNF if whenever a nontrivial functional dependency X→ A holds in R, then X is a super key of R.
- A relation schema R is in BCNF if it is in 3NF and every determinant is a candidate key of R.
- Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily in BCNF.

E.g. 1 Consider a relation R (A, B, C) with a set of FDs

$$F = \{ AB \rightarrow C, C \rightarrow A \}$$

is not in BCNF, because it has 2 candidate keys AB and BC, and the determinant of $C \rightarrow A$ is not an super key of R.

BCNF Decomposition Algorithm

- 1. Compute the closure of set of FDs F⁺.
- 2. For every dependency $X \rightarrow Y$ in F^+ , where X is not a super key of R, create 2 relations Ri (X,Y) and Rj(R-Y).
- 3. If possible merge 2 or more relations on the basis of common candidate keys.

E.g.1 Consider a relation R (A, B, C) with a set of FDs

$$F = \{ AB \rightarrow C, C \rightarrow A \}$$

Sol : First we compute F⁺.

So.
$$F^+ = \{ AB \rightarrow C, C \rightarrow A \}$$

R (A, B, C) $C \rightarrow A$

R2(B, C)

From F⁺, we have 1

dependency C → A, which violates BCNF property.

So, relations R1 (A, \underline{C}) with F1 = {C \rightarrow A}, and R2 (\underline{B} , \underline{C}) with F2 = { \emptyset } are the required BCNF decompositions of R.

R1 (A, C)

E.g.2 Consider a relation R (A, B, C, D) with a set of FDs

$$F = \{ ABC \rightarrow D,$$
 $D \rightarrow B,$
 $D \rightarrow C \}$

Sol : First we compute F⁺.

So.
$$F^+ = \{ ABC \rightarrow D, D \rightarrow BC \}$$

R (A, B, C, D) $D \rightarrow BC$ R1 (B, C, D) R2(A, D)

From F⁺, we have 1

dependency D → BC which violates property.

So, relations R1 (B, C, \underline{D}) with F1 = {D \rightarrow BC}, and R2 (\underline{A} , \underline{D}) with F2 = { \emptyset } are the required BCNF decompositions of R.

Objective of Normalization

• "to create relations where every dependency is on the key, the whole key, and nothing but the key".

Levels of Normalization

Practice Question

Consider a relation schema R = (A, B, C, D) with a set of functional dependencies F = {C \rightarrow D, C \rightarrow A, B \rightarrow C}.

- 1. Identify all candidate keys for R.
- 2. Identify the best normal form that R satisfies.
- 3. Decompose R into a set of BCNF relations.
- 4. Decompose R into a set of 3NF relations.

For Video lecture on this topic please subscribe to my youtube channel.

The link for my youtube channel is

https://www.youtube.com/channel/UCRWGtE76JlTp1iim6aOTRuw?sub confirmation=1