Discrete VS Continuous Control

Shusen Wang

Discrete Action Space

- Action space $\mathcal{A} = \{ \text{left, right, up} \}$.
- The action space \mathcal{A} is discrete.

Continuous Action Space

- The action space \mathcal{A} is a subset of \mathbb{R}^2 .
- The action space \mathcal{A} is continuous:

$$\mathcal{A} = [0^{\circ}, 360^{\circ}] \times [0^{\circ}, 180^{\circ}].$$

• Actions are 2-dim vectors.

DQN for Discrete Action Space

Policy Network for Discrete Action Space

Discretization

• Discretize the action space. (Draw a grid.)

Discretization

- Discretize the action space. (Draw a grid.)
- Now, the number of actions is the number of grid points.

Discretization

- Discretize the action space. (Draw a grid.)
- Now, the number of actions is the number of grid points.
- Problem: curse of dimensionality.
 - Let *d* be the degree of freedom.
 - The number of actions grows exponentially with d.

Better Approaches to Continuous Control

- 1. Deterministic policy network (the second lecture).
- 2. Stochastic policy network (the third lecture).

Thank you!