CS303T Theory of Computation

R. Kabaleeshwaran

August 10, 2022

Outline

- Recap
 - Deterministic Finite Automata (DFA)
 - More Examples for DFA
 - Non-deterministic Finite Automata (NFA)
- Today
 - NFA More Examples
 - NFA to DFA

More NFA Examples

Qn. Can we determine the language determined by NFA?

• An NFA for the language of strings of length at least 3 that have a 1 in position 3 from the end

 An NFA for the language of strings of length at least 3 that have a 1 in position 3 from the end

 An NFA for the language of strings of length at least 3 that have a 1 in position 3 from the end

• Qn. Can we construct an equivalent DFA?

 An NFA for the language of strings of length at least 3 that have a 1 in position 3 from the end

Qn. Can we construct an equivalent DFA?

Equivalence of DFA and NFA

- Every language that can be described by some NFA can also be described by some DFA
- If a language is recognized by an NFA, then we must show the existence of a DFA that also recognizes it
- The proof that DFA's can do whatever NFA's can do involves an important "construction" called the subset construction
- If k is the number of states of the NFA, it has 2^k subsets of states
- Each subset corresponds to one of the possibilities that the DFA must remember, so the DFA simulating the NFA will have 2^k states.

Continue...

- Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language L. We construct a DFA $M=(Q',\Sigma',\delta',\{q_0\},F')$, where N has no ϵ transitions.
 - $ightharpoonup Q' = \mathcal{P}(Q)$ (Every state of M is a set of states of N)
 - ▶ For $R \in Q'$ and $a \in \Sigma$, $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$
 - $q_0' = \{q_0\}$
 - ▶ $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$
- If N has ϵ transition then we proceed as follows
 - ▶ For any state $R \in Q'$, first we define E(R) as a collection of states that can be reached from members of R by going only along ϵ arrows, including the members of R themselves.
 - * $E(R) = \{q|q \text{ can be reached from } R \text{ by traveling along}$ 0 or more ϵ arrows $\}$
 - ▶ Changes $q'_0 = E(q_0)$
 - ▶ Changes $\delta'(R, a) = \{q \in Q | q \in E(\delta(r, a)) \text{ for } r \in R\}$

Example from NFA to DFA

