ODPOWIEDZI I SCHEMAT PUNKTOWANIA – ZESTAW NR 2 POZIOM PODSTAWOWY

Nr zadania	Nr czynności	Etapy rozwiązania zadania	Liczba punktów	Uwagi
	1.1	Podanie dziedziny funkcji $f: \langle -6, 8 \rangle$.	1	
	1.2	Podanie wszystkich miejsc zerowych funkcji f : $x = -2$, $x = 3$, $x = 6$.	1	
	1.3	Podanie wartości funkcji f dla argumentu $x = 5$: $f(5) = -1$.	1	
1	1.4	Podanie zbioru wartości funkcji $f: \langle -2,6 \rangle$.	1	
	1.5	Podanie przedziału o długości 3, w którym funkcja f jest rosnąca: $\langle 5, 8 \rangle$.	1	
	1.6	Zapisanie zbioru wszystkich argumentów, dla których funkcja f przyjmuje wartości ujemne: $x \in (-2,3) \cup (3,6)$.	1	
	2.1	Zapisanie, że pierwsza współrzędna wierzchołka paraboli będącej wykresem funkcji f jest równa 2 i należy do przedziału $\langle 0,5 \rangle$.	1	Przyznajemy punkt, gdy zdający zapisze $x_w = 2$.
	2.2	Obliczenie najmniejszej wartości funkcji f w przedziale $\langle 0,5 \rangle$: $f(2) = 0$.	1	
2	2.3	Obliczenie największej wartości funkcji f w przedziale $\langle 0,5 \rangle$: $f(5) = 9$.	1	
2	2.4	Przekształcenie lewej strony nierówności do postaci iloczynowej $(2-x)\cdot(1-x)\geq 0$ i podanie miejsc zerowych: $x=1$ lub $x=2$, (albo wyznaczenie pierwiastków trójmianu $y=x^2-3x+2$).	1	
	2.5	Zapisanie zbioru rozwiązań nierówności: $\left(-\infty,1\right) \cup \left\langle 2,\infty\right)$.	1	
3	3.1	Zapisanie układu równań wynikających z treści zadania: $\begin{cases} x+y=\sqrt{7} \\ x-y=\sqrt{3} \end{cases}.$	1	
	3.2	Rozwiązanie układu równań: $x = \frac{\sqrt{7} + \sqrt{3}}{2}$ i $y = \frac{\sqrt{7} - \sqrt{3}}{2}$.	2	
	3.3	Obliczenie iloczynu szukanych liczb: $x \cdot y = 1$.	1	

		II sposób rozwiązania:		
	3.1	Zapisanie układu równań wynikających z treści zadania: $\begin{cases} x+y=\sqrt{7} \\ x-y=\sqrt{3} \end{cases}$.	1	
		Podniesienie stron każdego z równań do kwadratu i zapisanie układu:		
	3.2	$\begin{cases} x^2 + 2xy + y^2 = 7 \\ x^2 - 2xy + y^2 = 3 \end{cases}$	2	
		$\left(x^2 - 2xy + y^2 = 3\right)$		
	3.3	Obliczenie iloczynu szukanych liczb: $x \cdot y = 1$.	1	
	4.1	Zapisanie równania prostej AB: $2x-3y+2=0$.	1	
	4.2	Obliczenie odległości punktu C od prostej AB : $\frac{12}{13}\sqrt{13}$.	1	
4	4.3	Zapisanie warunku, przy którym punkt D leży na prostej AB :	1	
		2(-1)-3m+2=0 stad $m=0$.		
	4.4	Stwierdzenie i zapisanie, że dla $m \neq 0$ punkty A, B i D są wierzchołkami trójkąta.	1	
	5.1	Wykorzystanie definicji pierwiastka wielomianu i zapisanie warunku: $2 \cdot 1^3 - 3 \cdot 1^2 - 3 \cdot 1 + d = 0$.	1	Wystarczy jeśli zdający zapisze $Q(1) = 0$.
	5.2	Obliczenie wartości współczynnika d , gdy liczba 1 jest pierwiastkiem wielomianu: $d = 4$.	1	
	5.3	Zapisanie wielomianu Q dla $d=2$ w postaci sumy iloczynów, z których będzie wynikał wspólny czynnik: $Q(x) = 2(x^3 + 1) - 3x(x + 1)$.	1	
5	5.4	Zastosowanie wzoru skróconego mnożenia na sumę sześcianów i zapisanie wielomianu Q w postaci: $Q(x) = 2(x+1)(x^2-x+1)-3x(x+1)$.	1	
	5.5	Zapisanie wielomianu Q w postaci iloczynu dwóch wielomianów:		
		$Q(x) = (x+1)(2x^2-5x+2).$	1	
	5.6	Zapisanie wielomianu Q w postaci iloczynu trzech wielomianów stopnia		
		pierwszego: $Q(x) = (x+1)(2x-1)(x-2)$ lub $Q(x) = 2(x+1)(x-\frac{1}{2})(x-2)$.	1	

	6.1	Wykorzystanie wzoru na różnice kwadratów i zapisanie lewej strony nierówności w postaci: $\frac{\left(2^{16}-32\right)\left(2^{16}+32\right)}{2^{16}+32} \cdot x$.	1	
6	6.2	Włączenie przed nawias wspólnego czynnika 2^5 i zapisanie prawej strony nierówności w postaci: $2^5 \left(2^5 - 2^{16}\right) = -2^5 \left(2^{16} - 2^5\right)$.	1	
	6.3	Rozwiązanie nierówności: $x > -32$.	1	
	6.4	Zapisanie najmniejszej liczby całkowitej spełniającej daną nierówność: (-31).	1	
7	7.1	I sposób rozwiązania: Obliczenie przybliżonej wartości kąta α : $\alpha \approx 41^{\circ}$.	1	
	7.2	Obliczenie przybliżonej wartości kąta: $\beta \approx 53^{\circ}$.	1	
	7.3	Oszacowanie sumy kątów α i β : $\alpha + \beta > 90^{\circ}$.	1	Wystarczy obliczenie przybliżonej wartości sumy tych kątów.
	7.4	Stwierdzenie sprzeczności oraz zapisanie wniosku: trójkąt nie jest prostokątny.	1	
	7.1	II sposób rozwiązania: Obliczenie $\sin \beta$ (na podstawie równości $\sin \beta = \cos \alpha$): $\sin \beta = \frac{3}{4}$.	1	
	7.2	Obliczenie $\cos \beta$: $\cos \beta = \frac{\sqrt{7}}{4}$. Obliczenie $\operatorname{tg}\beta$: $\operatorname{tg}\beta = \frac{3\sqrt{7}}{7}$.	1	
	7.3	Obliczenie $tg\beta$: $tg\beta = \frac{3\sqrt{7}}{7}$.	1	
	7.4	Porównanie uzyskanego wyniku z wartością funkcji tgβ daną w zadaniu i stwierdzenie sprzeczności oraz zapisanie wniosku: trójkąt nie jest prostokątny.	1	

	III sposób rozwiązania:		
7.1	Wykorzystanie definicji funkcji cosinus i obliczenie długości przyprostokątnej $AC: \frac{ AC }{ AB } = \cos \alpha$ stąd $ AC = 18$.	1	
7.2	Wykorzystanie definicji funkcji tangens i obliczenie długości przyprostokątnej $BC: \frac{ AC }{ BC } = \operatorname{tg}\beta \operatorname{stąd} BC = \frac{27}{2}.$	1	
7.3	Obliczenie sumy kwadratów przyprostokątnych i kwadratu przeciwprostokątnej: $ AC ^2 + BC ^2 = (18)^2 + \left(\frac{27}{2}\right)^2 = 506\frac{1}{4}, AB ^2 = 576$.	1	
7.4	Uzyskanie sprzeczności $ AC ^2 + BC ^2 \neq AB ^2$ i zapisanie wniosku: trójkąt nie jest prostokątny.	1	
7.1	IV sposób rozwiązania: Wykorzystanie definicji funkcji cosinus i obliczenie długości przyprostokątnej $AC: \frac{ AC }{ AB } = \cos \alpha \text{ stąd } AC = 18.$	1	
7.2	Zastosowanie twierdzenia Pitagorasa i obliczenie długości przyprostokątnej BC : $ BC = 6\sqrt{7}$.	1	
7.3	Wykorzystanie funkcji tangens i obliczenie tangensa kąta β : $tg\beta = \frac{3}{\sqrt{7}}$.	1	
7.4	Uzyskanie sprzeczności: $tg\beta = \frac{3}{\sqrt{7}}$ i z warunków zadania $tg\beta = \frac{4}{3}$.	1	

	8.1	Zapisanie równania: $\frac{1}{4}(3n+1) = 37\frac{3}{4}$.	1	
	8.2	Rozwiązanie równania: $n = 50$.	1	
8	8.3	Zauważenie, że wartości wyrazów a_1 , a_5 , a_9 , a_{13} , a_{17} , a_{21} , a_{25} , są liczbami całkowitymi tworzącymi ciąg arytmetyczny lub obliczenie pierwszego wyrazu ciągu $a_1 = 1$ i zapisanie, że kolejny składnik szukanej sumy jest większy od poprzedniego o 3.	1	Wystarczy, że zdający zapisze sumę 1+4+7+10+ bez jej ostatniego składnika. Obliczenie różnicy ciągu nie jest konieczne.
	8.4	Obliczenie ostatniego składnika szukanej sumy: $a_{49} = 37$.	1	
	8.5	Obliczenie liczby wyrazów ciągu, które są liczbami całkowitymi: 13.	1	
	8.6	Obliczenie sumy: $S_{13} = \frac{a_1 + a_{49}}{2} \cdot 13 = \frac{1 + 37}{2} \cdot 13 = 247$.	1	Jeżeli zdający od razu zapisze $\frac{1+37}{2}\cdot 13$, to otrzymuje punkty w czynnościach 8.3, 8.4 i 8.5.
9	9.1	Wprowadzenie oznaczeń, np.: r – promień podstawy stożka, h – wysokość stożka, l – tworzącą stożka i zapisanie, że l = 3 oraz przedstawienie metody obliczenia długości promienia podstawy stożka, np. • porównanie długości łuku, równego trzeciej części łuku okręgu o promieniu l i obwodu koła w podstawie stożka o promieniu r : $\frac{1}{3} \cdot 2\pi l = 2\pi r$ lub • porównanie pola trzeciej części pola koła o promieniu l i pola powierzchni bocznej stożka $\frac{1}{3}\pi l^2 = \pi r l$.	1	
	9.2	Wyznaczenie promienia podstawy stożka: $r = 1$.	1	
	9.3	Obliczenie wysokości stożka: $h = 2\sqrt{2}$.	1	

	1			
	9.4	Obliczenie objętości stożka: $V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h = \frac{1}{3} \cdot \pi \cdot 1^2 \cdot 2\sqrt{2} = \frac{2\sqrt{2}}{3}\pi$.	1	
	10.1	Wprowadzenie oznaczeń, np.: a , b – długości boków równoległoboku i wykorzystanie zależności $\frac{h_1}{h_2} = \frac{3}{5}$ do zapisania proporcji zachodzącej między	1	
	10.2	bokami a oraz b równoległoboku: $\frac{a}{b} = \frac{3}{5}$. Wyznaczenie długości jednego z boków równoległoboku, np.: $b = \frac{5}{3}a$.	1	
	10.2	Zapisanie obwodu równoległoboku w zależności od długości jednego z boków,	•	
	10.3	np.: $2a + 2 \cdot \frac{5}{3}a = 144$.	1	
10	10.4	Wyznaczenie długości boków równoległoboku: $a = 27$, $b = \frac{5}{3} \cdot 27 = 45$.	1	
	10.1	II sposób rozwiązania: Wprowadzenie oznaczeń, np.: a, b - długości boków równoległoboku i zapisanie pola równoległoboku na dwa sposoby: $a \cdot h_1 = b \cdot h_2$.	1	Nie oceniamy, czy zdający analizuje zależność między długościami boków równoległoboku.
	10.2	Obliczenie stosunku długości boków równoległoboku: $\frac{b}{a} = \frac{3}{5}$.	1	
	10.3	Zapisanie układu równań z niewiadomymi a i b , np.: $\begin{cases} a+b=72 \\ \frac{b}{a}=\frac{3}{5} \end{cases}$.	1	
	10.4	Rozwiązanie układu równań i zapisanie długości boków równoległoboku: $a=45$, $b=27$.	1	

	11.1	Zapisanie, że w danym doświadczeniu jest 35 zdarzeń elementarnych.	1	
	11.2	Zapisanie, że 7 zdarzeń elementarnych sprzyja zdarzeniu <i>A</i> – suma wylosowanych liczb jest podzielna przez 5.	1	
	11.3	Obliczenie prawdopodobieństwa zdarzenia <i>A</i> : $P(A) = \frac{7}{35} = \frac{1}{5}$.	1	
11	11.1	II sposób rozwiązania: (metoda drzewa) Narysowanie drzewa: np. $ \frac{1}{5} $ $ \frac{1}{7} $	1	Zdający, analizując drugi etap losowania, może uwzględnić tylko istotnie potrzebne gałęzie.
	11.2	Zapisanie prawdopodobieństwa szukanego zdarzenia, jako sumy odpowiednich iloczynów: $P(A) = \frac{1}{5} \cdot \frac{1}{7} + \frac{1}{5} \cdot 1$	1	
	11.3	Obliczenie prawdopodobieństwa zdarzenia <i>A</i> : $P(A) = \frac{1}{5}$.	1	