ELEC 341: Systems and Control

Lecture 6

Stability: Routh-Hurwitz stability criterion

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Some examples

 We want the mass to stay at x = 0, but wind causes the mass to move. What will happen?

How to characterize different behaviors with TF?

Stability

- Utmost important specification in control design!
- Unstable systems have to be stabilized by feedback.
- Unstable closed-loop systems are useless.
- What if a system is unstable? ("out-of-control")
 - It may hit electrical/mechanical "stops" (saturation).
 - It may break down or burn out.
 - Signals diverge.
- Examples of unstable systems
 - Tacoma Narrows Bridge collapse in 1940
 - SAAB Gripen JAS-39 prototype accident in 1989
 - Wind turbine explosion in Denmark in 2008

Definitions of stability

BIBO (Bounded-Input-Bounded-Output) stability

Any bounded input generates a bounded output.

Asymptotic stability

Any ICs generates y(t) converging to zero.

Some terminologies

$$G(s) = \frac{n(s)}{d(s)}$$

Ex.
$$G(s) = \frac{(s-1)(s+1)}{(s+2)(s^2+1)}$$

• **Zero:** roots of n(s)

(Zeros of
$$G$$
) = ± 1

• Pole: roots of d(s)

(Poles of
$$G$$
) = $-2, \pm i$

• Characteristic polynomial: d(s)

• Characteristic equation: d(s) = 0

Stability condition in s-domain

• For a system represented by transfer function G(s),

Idea of stability condition

Example

$$y'(t) + \alpha y(t) = r(t)$$

$$\Rightarrow sY(s) - y(0) + \alpha Y(s) = R(s)$$

$$Y(s) = \frac{1}{s+\alpha} (R(s) + y(0))$$

Asymptotic Stability:
$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = \mathcal{L}^{-1} \left\{ \frac{1}{s+\alpha} y(0) \right\} = e^{-\alpha t} y(0) \rightarrow 0 \Leftrightarrow (-\alpha) < 0$$

$$(r(t) = R(s) = 0)$$

BIBO Stability:
$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = \mathcal{L}^{-1} \{G(s)R(s)\} = \int_0^t g(\tau)r(t-\tau)d\tau = \int_0^t e^{-\alpha\tau}r(t-\tau)d\tau$$

$$(y(0) = 0)$$

$$|y(t)| \le \int_0^t |e^{-\alpha\tau}| |r(t-\tau)| d\tau \le \int_0^t |e^{-\alpha\tau}| d\tau \cdot r_{max}$$

Bounded if $(-\alpha) < 0$

Remarks on stability

- For general systems (nonlinear, time-varying),
 BIBO stability condition and asymptotic stability condition are different.
- For linear time-invariant (LTI) systems (for which we can use Laplace transform and we can obtain transfer functions), these two conditions happen to be the same.
- In this course, since we are interested in only LTI systems, we simply use "stable" to mean both BIBO and asymptotic stability.

Time-invariant & time-varying

- A system is called time-invariant if system parameters do not change in time. If they do, it is called time-varying.
- Example: Mx'(t) = f(t) is time-invariant while M(t)x'(t) = f(t) is time-varying.
- For time-invariant systems:

This course deals with time-invariant systems.

a place of mind

Remarks on stability (cont'd)

- Marginally stable if
 - G(s) has no pole in the open RHP (Right Half Plane), and
 - G(s) has at least one simple pole on $j\omega$ -axis, and
 - G(s) has no multiple pole on $j\omega$ -axis.

$$G(s) = \frac{1}{s(s^2 + 4)(s + 1)^2}$$

Marginally stable

$$G(s) = \frac{1}{s(s^2+4)^2(s+1)^2}$$

NOT marginally stable

 Unstable if a system is neither stable nor marginally stable.

Note: A simple pole is a pole of order one (i.e., a non-repeating pole).

"Marginally stable" in t-domain

- For any bounded input, except only special sinusoidal (bounded) inputs, the output is bounded.
 - In the example above, the special inputs are in the form of:

$$f(t) = \alpha \sin \sqrt{K}t + \beta \cos \sqrt{K}t \quad \Rightarrow \quad x(t) \to \pm \infty$$

Stability summary

Let s_i be poles of G(s). Then, G(s) is ...

- (BIBO, asymptotically) stable if $Re(s_i) < 0$ for all i.
- marginally stable if
 - $Re(s_i) \leq 0$ for all i, and
 - at least one simple pole for $Re(s_i) = 0$
- unstable if it is neither stable nor marginally stable.

Re-axis is sometimes shown by σ or δ while **Im-axis** is shown by $j\omega$.

Examples: revisited

Examples

G(s)	Stable/Marginally Stable/Unstable
------	-----------------------------------

(1)
$$\frac{20}{(s+1)(s+2)(s+3)}$$

(2)
$$\frac{20(s+1)}{(s-1)(s^2+2s+3)}$$

(3)
$$\frac{1}{(s+5)(s^2+2)^2}$$

(4)
$$\frac{1}{s^4 + 5s^3 + 10s^2 + 3s + 1}$$

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Routh-Hurwitz criterion

- This is for LTI systems with a *polynomial* denominator (without sine, cosine, exponential, etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots numerical values.
- Consider a polynomial

$$Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

Routh array

s^n	a_n	a_{n-2}	a_{n-4}	a_{n-6}	• • • •	From the given polynomial
s^{n-1}	$\begin{vmatrix} a_n \\ a_{n-1} \end{vmatrix}$	a_{n-3}	a_{n-5}	a_{n-7}		polyriorniai
s^{n-2}	b_1	b_2	b_3	b_4		
s^{n-3}	c_1	c_2	c_3	c_{4}		
i	:	:				
s^2	k_1	k_2				
s^1	$ l_1 $		Q(s) =	$= a_n s^n +$	$a_{n-1}s^{n-1}$	$a_{1}s^{-1} + \dots + a_{1}s + a_{0}$
s^0	$\mid m_1 \mid$					

Routh array (How to compute the third row)

 m_1

Routh array (How to compute the fourth row)

Routh-Hurwitz criterion

	,
s^n	$ a_n $
s^{n-1}	a_{n-1}
s^{n-2}	b_1
s^{n-3}	c_1
:	:
s^2	k_1
s^1	$ l_1 $
s^0	$ m_1 $
	'

 k_2

$$a_{n-2}$$
 a_{n-4} a_{n-6} ...
 a_{n-3} a_{n-5} a_{n-7} ...
 b_2 b_3 b_4 ...
 c_2 c_3 c_4 ...

The number of roots
in the open right half-plane
is equal to
the number of sign changes
in the first column of Routh array.

Example 1

$$Q(s) = s^3 + s^2 + 2s + 8 = (s+2)(s^2 - s + 4)$$

Routh array

Two sign changes in the first column $1 \rightarrow -6 \rightarrow 8$

Two roots in RHP

$$\frac{1}{2} \pm \frac{j\sqrt{15}}{2}$$

Example 2

$$Q(s) = s^3 + 3s^2 + 6s + 8 = (s+2)(s^2 + s + 4)$$

Routh array

No sign changes

in the first column $1 \rightarrow 3 \rightarrow 10/3 \rightarrow 8$

No roots in RHP

$$-2, -\frac{1}{2} \pm \frac{j\sqrt{15}}{2}$$

Example 3 (from slide 15)

$$Q(s) = s^4 + 5s^3 + 10s^2 + 3s + 1$$

Routh array

No sign changes in the first column

No roots in RHP

Simple important criteria for stability

• 1st order polynomial $Q(s) = a_1 s + a_0$

All roots are in LHP $\Leftrightarrow a_1$ and a_0 have the same sign

• 2nd order polynomial $Q(s) = a_2s^2 + a_1s + a_0$

All roots are in LHP $\Leftrightarrow a_2$, a_1 and a_0 have the same sign

• Higher order polynomial $Q(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0$

All roots are in LHP \Longrightarrow All a_k have the same sign

Examples

Q(s)

All roots in open LHP?

(1)
$$3s + 5$$

(2)
$$-2s^2 - 5s - 100$$

(3)
$$523s^2 - 57s + 189$$

(4)
$$s^4 + 2s^3 + s^2 - 1$$

(5)
$$s^3 + 5s^2 + 10s - 3$$

Yes / No

a place of mind

Summary

- Stability for LTI systems
 - (BIBO, asymptotically) stable, marginally stable, unstable
 - Stability for G(s) is determined by poles of G(s).
- Routh-Hurwitz stability criterion
 - To determine stability without explicitly computing the poles of a system.
- Next
 - Examples of Routh-Hurwitz criterion.