

X Bit Labs IN - Software Training Institute

code.xbitlabs.in - Free Coding Tutorials

Training sessions

Master Tomorrow's skill with Hands-On Learning - with www.xbitlabs.in

1

Date :	Oct 16 2024	Board :	CBSE
Class:	12	Session # :	8
Subject :	Mathematics	Assignment # :	DeA1
Topic :	Differential Equations	Subtopic(s) :	Variable Separable
Lecture #:	1		

Variable Separable:

A variable separable differential equation is a first-order differential equation in which the variables can be separated on opposite sides of the equation, allowing the equation to be integrated directly. The general form of a variable separable equation is:

$$\frac{dy}{dx} = g(x)h(y)$$

Example

Consider the equation:

$$\frac{dy}{dx} = 3x^2y$$

Solution:

1. Separate variables:

$$\frac{1}{y}dy = 3x^2dx$$

2. Integrate both sides:

$$\int \frac{1}{y} dy = \int 3x^2 dx$$

- The left-hand side becomes $\ln |y|$.
- The right-hand side becomes x^3+C .

Thus, we have:

$$\ln|y| = x^3 + C$$

3. Solve for y:

$$y = e^{x^3 + C} = e^C e^{x^3}$$

Let $A=e^{\cal C}$ (a constant), so:

$$y = Ae^{x^3}$$

This is the general solution.

Session Board:

$$\Rightarrow dy = 1-y$$

$$\Rightarrow dx = -\log |x-y| + C$$

$$\Rightarrow dx = dy$$

$$\Rightarrow dx = dy$$

$$\Rightarrow dx = dy$$

$$\Rightarrow dx = dy$$

Put
$$2n+3=t$$

$$2dx=dt$$

$$dn=\frac{dt}{2}$$

$$1-y=t$$

$$-dy=dt$$

$$dy=-dt$$

$$x = -|0y| |-y| + C$$

$$x - C = -|0y| |-y|$$

$$C - x = |0y| |-y|$$

$$e^{(c-x)}$$

$$e^{(c-x)}$$

$$\frac{\left(e^{x}-c_{1}\right)}{e^{x}}$$

$$\frac{dy}{dr} = \frac{1+y^2}{1+u^2}$$

$$\frac{dy}{1+y^2} = \frac{du}{1+u^2}$$

$$\frac{1+u^{-1}y}{1+u^{-1}x} = \frac{1}{1+u^{-1}x} + 0$$

la riable separable)

$$\frac{3^{3}}{3} = \frac{1}{2} \times \frac{1}{2} + C \qquad (-2,3)$$

$$\frac{3^{3}}{3} = (-2)^{2} + C \qquad \frac{1}{3} = \frac{1}{3} \times \frac{1}{3}$$

$$P = P = P$$

$$P = P = P$$

$$P = P = P$$

$$2000 = 1000 e^{\frac{t_2}{20}}$$

$$2 = e^{\frac{t_2}{20}}$$

$$\log(2) = \log_e e^{\frac{t_2}{20}}$$

$$\log(2) = \frac{t_2}{20} \log_e e^{\frac{t_2}{20}}$$

$$\log_e(2) = \frac{t_2}{20} \times 1$$

$$20 \log_e^2 = t_2$$

Now complete this assignment #DeA1:

#DeA1:

Example 4 Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x+1}{2-y}$, $(y \ne 2)$

Example 5 Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.

Example 6 Find the particular solution of the differential equation $\frac{dy}{dx} = -4xy^2$ given that y = 1, when x = 0.

Example 7 Find the equation of the curve passing through the point (1, 1) whose differential equation is $x dy = (2x^2 + 1) dx (x \ne 0)$.

Example 8 Find the equation of a curve passing through the point (-2, 3), given that the slope of the tangent to the curve at any point (x, y) is $\frac{2x}{y^2}$.

Example 9 In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs 1000 double itself?

For each of the differential equations in Exercises 1 to 10, find the general solution:

1.
$$\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$$

2.
$$\frac{dy}{dx} = \sqrt{4 - y^2} \ (-2 < y < 2)$$

3.
$$\frac{dy}{dx} + y = 1 (y \neq 1)$$

4.
$$\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$$

5.
$$(e^x + e^{-x}) dy - (e^x - e^{-x}) dx = 0$$

6.
$$\frac{dy}{dx} = (1+x^2)(1+y^2)$$

$$7. \quad y \log y \, dx - x \, dy = 0$$

$$8. \quad x^5 \frac{dy}{dx} = -y^5$$

$$9. \quad \frac{dy}{dx} = \sin^{-1} x$$

10.
$$e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$$

For each of the differential equations in Exercises 11 to 14, find a particular solution satisfying the given condition:

11.
$$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$$
; $y = 1$ when $x = 0$

12.
$$x(x^2-1)\frac{dy}{dx} = 1$$
; $y = 0$ when $x = 2$

13.
$$\cos\left(\frac{dy}{dx}\right) = a \ (a \in \mathbf{R}); y = 1 \text{ when } x = 0$$

14.
$$\frac{dy}{dx} = y \tan x$$
; $y = 1$ when $x = 0$

15. Find the equation of a curve passing through the point (0, 0) and whose differential equation is $y' = e^x \sin x$.

- **16.** For the differential equation $xy \frac{dy}{dx} = (x+2)(y+2)$, find the solution curve passing through the point (1, -1).
- 17. Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.
- 18. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4, -3). Find the equation of the curve given that it passes through (-2, 1).
- 19. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.
- 20. In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years ($log_2 = 0.6931$).
- 21. In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years $(e^{0.5} = 1.648).$
- 22. In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?
- 23. The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is
 - (A) $e^x + e^{-y} = C$

(C) $e^{-x} + e^{y} = C$

(B) $e^{x} + e^{y} = C$ (D) $e^{-x} + e^{-y} = C$

End