

จัดทำโดย

นางสาว ทนทวรรณ บัวภาคำ 6040200049
 นาย ธรรมธัช ตันติปิธรรม 6040201983
 นาย ธีระวัฒน์ ชรินทร์ 6040202203
 นางสาว รัดดาพร อัทษรทอง 6040204010
 นาย อนุชา ศรีลาแก้ว 6040205407

เสนอ

ดร.นิตยา เมืองนาค

รายงาน เรื่อง Human Skeleton model

จัดทำโดย

นางสาว กนกวรรณ บัวภาคำ	6040200049
นาย ธรรมธัช ตันติปิธรรม	6040201983
นาย ธีระวัฒน์ ชรินทร์	6040202203
นางสาว รัดดาพร อักษรทอง	6040204010
นาย อนุชา ศรีลาแก้ว	6040205407

เสนอ

ดร.นิตยา เมืองนาค

รายวิชา 01204483 การประมวลผลสัญญาณภาพดิจิทัล คณะวิทยาศาสตร์และวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์

มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตเฉลิมพระเกียรติ จังหวัดสกลนคร พ.ศ. 2560

บทคัดย่อ

การจัดทำโครงงานนี้ ได้จากการศึกษาการนำเสนอวิธีการประมาณท่าทางของมนุษย์เพื่อศึกษาการ แบ่งส่วนและตรวจจับของรูปภาพในการวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกาย มนุษย์ และเพื่อพัฒนาอินเตอร์เฟสคอมพิวเตอร์ (HCI) สำหรับโครงสร้างเสมือนจริง

ในเทคนิคที่นำเสนอแบบจำลองกราฟิก 3D นั้นถูกสร้างขึ้นครั้งแรก การฉายภาพบนระนาบ ภาพเสมือนจะใช้จับคู่กับเงาที่ได้ตรงกับภาพ ด้วยการปรับแบบจำลอง 3 มิติซ้ำ ๆ ของแบบจำลองกราฟิก 3 มิติ ด้วยข้อจำกัดทางกายภาพและกายวิภาคของการเคลื่อนไหวของมนุษย์ ท่าทางของมนุษย์และพารามิเตอร์ การเคลื่อนไหว 3D ที่เชื่อมโยงสามารถระบุภาพได้หลากหลายและไม่ซ้ำกัน โดยผลการทดลองจะถูกนำเสนอ ด้วยภาพเสมือนจริง

สารบัญ

บทคัดย	jə	
สารบัญ		
1.	บทน้ำ	
	1.1 ที่มาและความสำคัญ 1	
	1.2 วัตถุประสงค์	
2.	การทบทวนวรรณกรรม2	
	2.1 ขั้นตอนการทำงาน Human Skeleton model2	
3.	วิธีการ	
	จัดทำ4	
	3.1 การได้มาซึ่งรูปภาพ 4	
	3.2 การเตรียมภาพ4	
	3.3 การประมวลผลตามวัตถุประสงค์5	
	3.4 การประเมินและวิเคราะห์ผล7	
4.	สรุปผลและข้อเสนอแนะ	
5.	บรรณานุกรม9	
6.	ภาคผนวก	

บทน้ำ

1. ที่มาและความสำคัญ

เนื่องจากในปัจจุบันนั้นมีการค้นคว้าและพัฒนาเทคโนโลยีต่างๆเกี่ยวกับการวิเคราะห์ความเคลื่อนไหว ของมนุษย์และการปฏิสัมพันธ์ระหว่างมนุษย์กับคอมพิวเตอร์ (HCI) เพื่อนำมาประยุกต์ใช้ในการอำนวยความ สะดวกหรือตอบสนองความต้องการของมนุษย์ ซึ่งระบบจับการเคลื่อนไหวที่มีวางจำหน่ายส่วนใหญ่ต้องการ ให้ผู้ใช้ใส่เครื่องหมาย แทนข้อต่อหรือส่วนต่างๆ ของร่างกาย และเทคโนโลยีพื้นฐานที่ใช้มักจะมีราคาแพงและ อาจไม่ตรงวัตถุประสงค์สำหรับการนำมาวิเคราะห์การเคลื่อนไหวของมนุษย์

จากการที่ได้ศึกษาเกี่ยวกับเทคนิคต่างๆ ในการปรับปรุงคุณภาพของภาพ ทางคณะผู้จัดทำ ได้เลือก เทคนิค Color Image Segmentation by Thresholding เพื่อศึกษาการแบ่งส่วนและตรวจจับของรูปภาพใน การวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ โดยเริ่มจากเขียนโปรแกรมใน ภาษา Python ใช้ opencv-python เข้ามาช่วยในการใช้งานโปรแกรม การทำงานของโปรแกรม จะมีการกำหนด ลักษณะต่างๆของร่างกายมนุษย์โดยทั้งหมด 19 องค์ประกอบที่ไล่จากศรีษะจนถึงเท้า และลักษณะท่าทางที่ เป็นส่วนขยับของร่างกายเช่น คอ มือ แขน เป็นต้น

ซึ่งจากเหตุผลที่กล่าวมาข้างต้นทางคณะผู้จัดทำจึงมีความคิดริเริ่มที่อยากจะนำเอาความรู้ทาง Digital Image Processing และ Algorithm มาประยุกต์ใช้ เพื่อศึกษาผลลัพธ์ ซึ่งอาจจะเป็นแนวทางในการพัฒนาต่อ ยอดและนำไปประยุกต์ใช้ให้เข้ากับเทคโนโลยีต่างๆ ได้

2. วัตถุประสงค์

- 1. เพื่อศึกษาเกี่ยวกับ เทคนิค Color Image Segmentation by Thresholding
- 2. เพื่อศึกษาการแบ่งส่วนและตรวจจับของรูปภาพ
- 3. โปรแกรมสามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ได้

การทบทวนวรรณกรรม

จากการศึกษาเนื้อหาจาก เอกสารและโครงงานที่เกี่ยวข้องที่นิสิตสืบค้นจากอินเทอร์เน็ต

ขั้นตอนการทำงาน Human Skeleton model

1. แบบจำลองและวิธีการอ้างอิง

อัลกอริทึมการประมวลภาพ 3D ที่นำเสนอขึ้นอยู่กับการเปรียบเทียบแบบจำลอง 3 มิติ แบบมนุษย์ กับกราฟิกที่คาดการณ์ไว้อย่างชัดเจนและภาพที่ถ่าย กราฟิกแบบเชื่อมต่อแบบจำลองของมนุษย์ถูกสร้างขึ้น และปรับกับภาพซ้ำๆ เพื่อให้สอดคล้องกับภาพอินพุตขึ้นอยู่กับข้อมูลของภาพ เงา และสีของขอบเขตวัตถุ

1.1 การสร้างแบบจำลองร่างกายมนุษย์ เนื่องจากการขาดข้อมูล 3D จากภาพอินพุต a จึงต้องสร้างแบบจำลองกราฟิก 3 มิติ ของร่างกายมนุษย์สำหรับ การประมวลค่าแบบ 3D ควรมีความสามารถในการแสดงการเคลื่อนไหวของมนุษย์ได้หลากหลาย ขนาดใหญ่ และง่ายต่อการระบุจากเงา แบบจำลอง 3 มิติของมนุษย์ส่วนใหญ่สร้างขึ้นมีจำนวนชิ้นส่วนและข้อต่อที่ แข็งแรง จำนวนองศาอิสระจึงเป็นปัจจัยสำคัญในการสร้างแบบจำลอง 3 มิติของมนุษย์ กราฟิกในงานนี้ รูปแบบมนุษย์ 3D ถูกสร้างขึ้นโดยใช้ห้องสมุด OpenGL ประกอบด้วยส่วนต่างๆ ของร่างกาย 10 ข้อข้อต่อ 9 ข้ออิสรภาพ 22 องศาส่วนต่างๆของร่างกายจะถูกแทนด้วยทรงกลมทรงรีและกระบอกสูบ สีที่แตกต่างกันจะ ถูกกำหนดให้กับส่วนต่างๆของร่างกายเพื่ออำนวยความสะดวกในกระบวนการจดจำท่าทาง เนื่องจาก แบบจำลองกราฟิก 3 มิติได้ถูกฉายเป็นระนาบรูปภาพเสมือนสำหรับการจับคู่แม่แบบและการจัดแนวด้วยภาพ ฉากจริง พื้นที่วัตถุในภาพทั้ง 2 ควรมีขนาดและทิศทางเหมือนกัน ดังนั้นโมเดลมนุษย์ 3D จึงเป็นที่ยอมรับถูก สร้างขึ้นก่อนและการเริ่มต้นโมเดลในพื้นที่กระบวนการถูกดำเนินการสำหรับคนในฉาก

1.2 การประมาณแบบ Pose จาก Silhouette

ด้วยภาพเงาเบื้องหน้าของร่างกายมนุษย์ ท่าทางที่เกี่ยวข้องนั้นถูกประเมินโดยการลดความแตกต่าง ระหว่างเงาในภาพฉากจริงและประมาณการของโมเดล 3 มิติบนระนาบภาพเสมือน การค้นหาโพสท่าที่ดีที่สุด ของโมเดล 3 มิติกราฟิกที่เข้ากับท่าทางของมนุษย์ควรมีฟังก์ชั่นการวัดและราคาที่เหมาะสม ในงานแรกเฉิน และคณะ ได้นำเสนอวิธีการแปลงระยะทางแบบยุคลิดเพื่อคำนวณระยะทางพิกเซลที่ชาญฉลาดระหว่างภาพ เงาที่แท้จริงและเสมือนจริง ฟังก์ชั่นค่าใช้จ่ายที่กำหนดโดยผลรวมของระยะทางพิกเซล ใช้ในการปรับ แบบจำลอง 3 มิติ เนื่องจากรูปภาพทั้งหมดใช้สำหรับการเปรียบเทียบต้นทุนการคำนวณค่อนข้างสูงและ ผลลัพธ์มีแนวโน้มที่จะรวมกันเป็นท้องถิ่นขั้นต่ำแตกต่างจากวิธีการจับคู่เงาทั้งหมด โดยเสนอเทคนิคการจัด ตำแหน่งแบบหลายส่วน ส่วนต่างๆ ของร่างกายในภาพเงาที่เกิดขึ้นจริงและแบบจำลองจะถูกนำมา เปรียบเทียบและปรับทีละภาพโดยใช้ XOR ที่มีน้ำหนักหลักการทำงาน ความแตกต่างของพิกเซลจะได้รับการ

ประมวลผลภายในสำหรับแต่ละอันส่วนของร่างกายเพื่อให้ได้ผลการจัดตำแหน่งที่ดีขึ้นด้วยการคำนวณสามารถ ทำได้ นอกจากนี้ยังเหมาะสำหรับการเชื่อมต่อโมเดล 3 มิติที่มีข้อต่อและชิ้นส่วนที่แข็งแรงหากต้องการ ดำเนินการประมาณท่าทางแบบหลายส่วน ส่วนที่สำคัญที่สุด คือ ลำตัวจะถูกระบุก่อน มันคือส่วนกลางของ ภาพเบื้องหน้าเชื่อมต่อส่วนที่เหลือของส่วนต่างๆของร่างกาย เมื่อแตกลำต้นพื้นที่แล้วของหัวแขนขาส่วนบน และส่วนล่างสามารถหาได้ง่ายในการระบุลำตัวก่อนวนซ้ำเพื่อลบแขนขาออกในภาพเบื้องหน้าโมเดล 3 มิติที่ ฉายจะถูกวางซ้อนบนกึ่งกลางของรูปเงาดำตามด้วยการหมุน 3 มิติ เพื่อลดความแตกต่างระหว่างส่วนท้ายของ ภาพเงาและ 2 มิติ

การฉายภาพของแบบจำลอง 3 มิติ หลังจากที่ได้รับแบบ 3D ของลำตัวขึ้นและบนแขนขาที่ต่ำกว่าจะ ถูกประมวลผลในลำดับของแขนข้อมือต้นขาและขา การจำแนกแขนขานั้นดำเนินการโดยการเปรียบเทียบ อัตราส่วนพื้นหน้ากับพื้นหลังของแบบจำลองกราฟิก สำหรับส่วนต่างๆ ของร่างกายจะกำหนด 2 DOF สำหรับ การหมุน (ไม่มีการหมุนตามแกนหลัก) ดังที่แสดงในรูป 1 (a) แขนมีความสามารถในการหมุน360°บนระนาบ ภาพ (แสดงเป็นมุม $oldsymbol{\theta}$) และ180°จากระนาบภาพ (แทนด้วยมุม $oldsymbol{\phi}$) เมื่อค้นหาโพสท่าของ แขนขา, มุม $oldsymbol{\theta}$ ถูก ระบุก่อนโดยหมุนส่วนของร่างกายที่สอดคล้องกันในแบบจำลอง 3 มิติ การหมุนเริ่มต้นหลายครั้ง คั่นด้วย45° ใช้เพื่อหลีกเลี่ยงการค้นหาแบบเต็มและเร่งกระบวนการจัดตำแหน่ง จากนั้นคำนวณมุม $oldsymbol{\phi}$ โดยการตรวจจับ การเปลี่ยนแปลงขนาดของชิ้นส่วนร่างกายที่คาดการณ์ไว้เนื่องจาก foreshortening ดังแสดงในรูปที่ 1 (b)

1.3 ข้อ จำกัดลักษณะที่ปรากฏ

เป็นที่ทราบกันดีว่าเงาฉากหน้าไม่ได้ให้ข้อมูลการบดบังตัวเองของวัตถุที่จะทำให้ก่อให้เกิดอัลกอริธึม การประเมินที่แข็งแกร่งยิ่งขึ้นซึ่งใช้กันทั่วไป วิธีการคือ ใช้ข้อมูลสีและขอบของวัตถุโดยการแยกแต่ละส่วนของ วัตถุ มีข้อจำกัดทางกายภาพและจลนศาสตร์บังคับใช้กับการเคลื่อนไหวของโมเดลมนุษย์เริ่มต้น 3 มิติ ดังนั้น การปิดกั้นตนเองของอวัยวะต่างๆ จึงไม่จำเป็นสกัดก่อนกระบวนการประเมินแบบจำลอง หนึ่งสามารถระบุ จุดสิ้นสุดของแต่ละแขนรวมกับข้อจำกัดข้างต้นเพื่อประมาณค่ามนุษย์ 3D ก่อให้เกิดความกำกวม projective ในกรณีนี้แต่ละส่วนของร่างกายถือเป็นลิงค์ของแบบจำลองโครงกระดูกมนุษย์และตำแหน่งของมือและเท้าควร ระบุไว้ในภาพเบื้องหน้า

(a) 2 rotation DOF of a limb.

(b) Changes due to foreshortening.

รูปที่ 1 ภาพจากเปเปอร์

วิธีการจัดทำ

จากการศึกษาเนื้อหาจาก เอกสารและโครงงานที่เกี่ยวข้องที่นิสิตสืบค้นจากอินเทอร์เน็ต และจากการ ที่ได้ศึกษาเกี่ยวกับเทคนิคต่างๆ ในการปรับปรุงคุณภาพของภาพ ทางคณะผู้จัดทำ ได้เลือกเทคนิค Color Image Segmentation by Thresholding เพื่อศึกษาการแบ่งส่วนและตรวจจับของรูปภาพในการวิเคราะห์ หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์โดยเริ่มจากเขียนโปรแกรมใน ภาษา Python ใช้ opencv-python เข้ามาช่วยในการใช้งานโปรแกรม การทำงานของโปรแกรม จะมีการกำหนดลักษณะต่างๆ ของร่างกายมนุษย์โดยทั้งหมด 19 องค์ประกอบที่ไล่จากศรีษะจนถึงเท้า และลักษณะท่าทางที่เป็นส่วนขยับ ของร่างกายเช่น คอ มือ แขน เป็นต้น

1. การได้มาซึ่งรูปภาพ

ภาพที่ใช้ในการทดสอบโปรแกรม คือ ภาพที่นำมาจากอินเตอร์เน็ต ซึ่งใช้ทั้งหมด 5 ภาพ และภาพที่ ถ่ายเองอีก 1 ภาพ

2. การเตรียมภาพ

นำภาพที่ได้มาจากอินเตอร์เน็ต และภาพที่ถ่ายเอง มาปรับปรุงให้คุณสมบัติของภาพนั้นๆ เด่นขึ้น

รูปที่ 2 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รูปที่ 3 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รูปที่ 4 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รูปที่ 5 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รูปที่ 6 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รูปที่ 7 ภาพที่ใช้ในการทดสอบจากการถ่ายเอง

3. การประมวลผลตามวัตถุประสงค์

โดยเริ่มแรก การทำงานโปรแกรมจะมีการตรวจจับรูปภาพเข้ามาทาง input เพื่อทำการ scan ว่า รูปภาพที่เข้ามาลักษณะอย่างไร (ซึ่งใช้ Ai ในการตรวจจับมันเร็วมาก) ถ้าหากการตรวจสอบผ่าน โปรแกรมก็จะ เอาภาพ input ที่ได้มานำไปประมวลผลต่อและแสดงออกมาเป็น output ที่ detect 19 องค์ประกอบ ของ ร่างกายมนุษย์นั้นคือ skeleton แต่จะตรวจจับถูกต้องหรือไม่ จึงต้องใช้ฟังก์ชัน assert เข้ามาช่วยในการเทส ว่าองค์ประกอบที่ตรวจสอบ เข้ามานั้นถูกต้องและผิดพลาดน้อยที่สุดหลังจากผ่านการทดสอบจะเก็บค่า ไว้ที่ Point เพื่อรอคำสั่งค้นหาชิ้นส่วนของร่างกายนั้นก็คือลักษณะท่าทางของมนุษย์ว่า ณ รูปภาพนั้นกำลังทำ ท่าทางอะไรอยู่ และถ้าหากมีความสอดคล้องกับตัวแปรที่กำหนดไว้ข้างต้นจะทำการเช็คค่าของ threshold ใน ท่าทางและลักษณะของร่างกายมนุษย์ทั้งหมดแต่ละส่วนเพื่อค่าสูงสุดและต่ำสุดเพื่อทำการโยงหากัน ถ้าหากค่า threshold ที่ได้มีค่าสูงกว่าปกติ การทำ Skeleton นั้นก็จะไม่เกิดขึ้นเพราะเนื่องจากค่า threshold สูงเกินไป และหากทำการ threshold เรียบร้อย จะเข้ามาใน loop ของการค้นหาองค์ประกอบและลักษณะท่าทางที่มี ความสัมพันธ์กัน และเกิดการเทสขึ้นอีกครั้ง จากนั้นเมื่อทำการเทสผ่านเสร็จสมบูรณ์ก็จะเก็บค่าไว้ที่ตัวแปรตัว ถัดไปก็คือ idFrom และ idTo

หมายความว่า ai จะเริ่ม detect ว่าทั้งหมดของร่างกายมนุษย์ตรงไหนสัมพันธ์กันมั้งและเริ่มโยงเส้น Skeleton จากตรงนี้ ถึงตรงนั้น จากนั้นจะใช้คำสั่ง if เพื่อทำการตรวจสอบว่า จุดนี้ไปตรงนู้นและจุดนู้นมาตรง นี้ ถูกหรือไม่ จากนั้นเขียนหน้าต่างหรือที่เรียกว่า Figure แบบใน matlab เพื่อจะแสดง output ออกมาให้ เห็นก็จะกำหนดค่าต่างๆ จากนั้นก็จะแสดง Output ออกมา 2 รูปแบบ gray-scale นั้นก็คือ รูปแรกเป็นรูป ปกติ รูปที่สองเป็นรูปที่ผ่านการตรวจสอบมาทุกวิธี

รูปที่ 8 เป็นภาพผลลัพธ์จากการทำ color image segmentation โดยภาพที่ได้จากอินเตอร์เน็ต

รูปที่ 9 เป็นภาพผลลัพธ์จากการทำ color image segmentation โดยภาพที่ถ่ายเอง

4. การประเมินและวิเคราะห์ผล

output ออกมาให้เห็นก็จะกำหนดค่าต่างๆ จากนั้นก็จะแสดง Output ออกมา 2 รูปแบบ grayscale นั้นก็คือ รูปแรกเป็นรูปปกติ รูปที่สองเป็นรูปที่ผ่านการตรวจสอบมาทุกวิธี

ซึ่ง output ที่ได้ สามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ได้ตรง ตามที่คณะผู้จัดทำได้ศึกษามา

สรุปผลและข้อเสนอแนะ

1. สรุปผล

จากการศึกษาการแบ่งส่วนและตรวจจับของรูปภาพในการวิเคราะห์หารูปร่างและความเป็นไปได้ของ โครงสร้างร่างกายมนุษย์ โดยเริ่มจากเขียนโปรแกรมใน ภาษา Python ใช้ opency-python เข้ามาช่วยใน การใช้งานโปรแกรม การทำงานของโปรแกรม และการทดลองใช้โปรแกรม ผลที่ได้คือ ตรงตามวัตถุประสงค์ ของผู้จัดทำ เนื่องจาก โปรแกรมที่ทางผู้จัดทำได้ทำขึ้นนั้น สามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของ โครงสร้างร่างกายมนุษย์ได้

2. ข้อเสนอแนะ

เนื่องจาก เป็นการเรียกใช้การทำของ Image Segmentation โดยแบ่งหลักการให้ส่งข้อมูลเป็น รูปภาพที่มีร่างกายเป็นมนุษย์และใช้ opencv-python ในการตรวจจับเป็นภาพ Skeleton ขึ้นมา ยังมีปัญหา ติดขัดอยู่ เนื่องจากเพิ่งได้ศึกษาการเขียน Opencv-python ส่วนใหญ่จะใช้ Video Capture ในการตรวจจับ วัตถุและแสดงออกมาในลักษณะร่างของ Skeleton

ควรใช้ Video Capture ในการตรวจจับวัตถุและแสดงออกมาในลักษณะร่างของ Skeleton จะ สามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ได้ดีกว่า

บรรณานุกรม

1. Skeleton Viewer for Kinect V2 Skeletal Data:

https://ww2.mathworks.cn/help/supportpkg/kinectforwindowsruntime/examples/plot-skeletons-with-the-kinect-v2.html?fbclid=IwAR3OK4eX55qPTydOAPMh--B9G0ez7n83OLsig2ZClKuCPcUEwpX6kqf5zcs#d117e260

2. Background Substraction With Python And OpenCV:

http://grauonline.de/wordpress/?page_id=3065&fbclid=lwAR2j_Yi0drXbVgowHilyciqOTiM kPhiqiKolApsETEh7vgcGhdGdADaUTlg

3. Skeletonize:

https://scikit-

image.org/docs/dev/auto_examples/edges/plot_skeleton.html?fbclid=IwAR0u2cZU3d1 n0LwrHs3xupzYDH6r5fxcTP2PqOVOTc4ORTT6JBtoRpziWng

4. Object Detection of Code Using Python:

https://towardsdatascience.com/object-detection-with-less-than-10-lines-of-code-using-python-2d28eebc5b11

ภาคผนวก

โค้ดแสดงการทำงานของโปรแกรม:

```
Terminal Help
                                                                                skeletonrgb.py - Project Image - Visual Studio Code
ai.py
                  skeletonrgb.py ×
🕏 skeletonrgb.py > ...
        import cv2
        import numpy as np
        import argparse #เป็น module ที่กำหนด argument ที่จะเรียกใช้งานได้ทาง console
        from skimage.morphology import skeletonize
        import matplotlib.pyplot as plt
       import cvlib as cv
        from cvlib.object_detection import draw_bbox
        parser = argparse.ArgumentParser() #ตัวกำหนดเรียกใช้ที่ console
       parser.add_argument('--input') #เพิ่มรูปภาพโดยใช้ argument สั่งที่ console
parser.add_argument('--thr', default=0.2, type=float) #ปรับระดับค่า threshold
        parser.add_argument('--width', default=368, type=int) #กำหนดความกว้างของ figure
        parser.add_argument('--height', default=368, type=int) #กำหนดความสูงของ figure
        im = cv2.imread("make.jpg", 0) # ภาพ .jpg ไว้เทส args = parser.parse_args() #ตัวกำหนดเรียกใช้ argument ทั้งหมด
        BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
                           "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }
        #กำหนดท่าทางให้คล้องกับร่างกายมนษย์
        POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
                           ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
                          ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"], ["REye", "REar"]]
        inWidth = args.width
        inHeight = args.height
        #เรียกใช้ไฟล์ graph_opt.pb
        net = cv2.dnn.readNetFromTensorflow("graph_opt.pb")
        cap = cv2.VideoCapture(args.input if args.input else 0)
         while cv2.waitKey(1) < 0:
            hasFrame, frame = cap.read()
             if not hasFrame:
                 cv2.waitKey()
             #เเสดงรูปร่างที่ได้ในหน้าต่าง gui
             frameWidth = frame.shape[1]
             frameHeight = frame.shape[0]
```

```
net.setInput(cv2.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
out = net.forward()
out = out[:, :19, :, :]
#assert เป็นฟังก์ชันที่ใว้เทสว่าองค์ประกอบร่างกายของมนุษย์ตรงตาม output ที่เช็คเข้ามาใหม
assert(len(BODY_PARTS) == out.shape[1])
#กำหนดตัวแปร points ขึ้นมาค่าว่างปล่าว
points = []
for i in range(len(BODY_PARTS)):
   heatMap = out[0, i, :, :] #ตรวจสอบชิ้นส่วนร่างกายที่มีความสอดคล้องกัน
   _, conf, _, point = cv2.minMaxLoc(heatMap)
    x = (frameWidth * point[0]) / out.shape[3]
   y = (frameHeight * point[1]) / out.shape[2]
     #จุดที่มีการเช็คค่า ถ้าหากค่าของ threshold มีค่าที่สูงกว่าปกติ
     points.append((int(x), int(y)) if conf > args.thr else None)
 for pair in POSE_PAIRS:
     partFrom = pair[0]
     partTo = pair[1]
     assert(partFrom in BODY_PARTS)
     assert(partTo in BODY_PARTS)
     idFrom = BODY_PARTS[partFrom]
     idTo = BODY_PARTS[partTo]
     if points[idFrom] and points[idTo]:
         cv2.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
         cv2.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv2.FILLED)
         cv2.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv2.FILLED)
 fig, axes = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)
 ax = axes.ravel()
 skeleton = skeletonize(frame)
 ax[0].imshow(im)
 ax[0].set title('threshold')
 ax[1].imshow(frame, cmap=plt.cm.gray)
 ax[1].set_title('skeleton')
 ax[1].axis('off')
 #ตัวแปรที่พาเข้าใลบราลีที่จะทำการอ่านภาพจากหน่วยเก็บข้อมูลทำการตรวจสอบวัตถุบนภาพและแสดงออกมาเป็นกล่องข้อความ
 bbox, label, conf = cv.detect_common_objects(im)
 output_image = draw_bbox(frame, bbox, label, conf)
 t, _ = net.getPerfProfile()
 freq = cv2.getTickFrequency() / 1000
 cv2.putText(frame, '%.2fms' % (t / freq), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
 print('Success')
 cv2.imshow('Human Skeleton using OpenCV', frame) #ตัวแสดงทั้งกล้องและ gui
 fig.tight_layout()
 plt.imshow(output_image)
 plt.show()
```