DESEMPEÑO DE RNN EN FUNCIÓN DE LARGOS DE SECUENCIA

Integrantes: Benjamín Bautista

Samuel Bugueño

Grupo: 7b

Tutor: Jorge Espejo

Sobre el Proyecto

INTRODUCCIÓN

El reconocimiento de comandos de voz es una característica importante en distintos dispositivos, siendo uno de los más comunes los teléfonos. En este proyecto, se investigará cómo diferentes longitudes de secuencia afectan el desempeño de las redes recurrentes

DATASET

- Para entrenamiento y prueba se va a usar el dataset Speech Commands.
- Almacena grabaciones de 1 segundo con varias clases de palabras comunes en inglés.
- Existe poca variación entre las muestras usadas.

MFCC

- Se procesa y condensa información del audio en una escala similar a cómo el oído humano procesa el sonido.
- Se obtienen coeficientes para una serie de ventanas de tiempo del audio.
- Se usan coeficientes de 0 al 12 al contener la mayor parte de la información relevante.

MODELOS

01 RNN (Vanilla)

- Arquitectura más simple.
- Salida de un paso de tiempo es entrada para el siguiente.
- Rápida y poco costo computacional.
- Poca memoria y desvanecimiento.

02 LSTM

- Variante de RNN para secuencias más largas.
- Introduce 3 compuertas para controlar flujo de información
- Mayor precisión para secuencias largas, pero más costoso.

og GRU

- Variante de LSTM.
- En lugar de 3 compuertas usa solo 2 compuertas.
- Menor costo computacional y desempeño comparable a LSTM.

EXPERIMENTOS

Modelo	Parámetro variado	Condición fija	Valores probados
RNN Vanilla	Neuronas por capa	1 capa oculta, secuencia = 98	64, 128, 256
RNN Vanilla	Capas ocultas	128 neuronas, secuencia = 98	1, 2, 3
RNN Vanilla	Largo de secuencia	1 capa oculta, 128 neuronas	50, 98, 120
GRU	Neuronas por capa	1 capa oculta, secuencia = 98	64, 128, 256
GRU	Capas ocultas	128 neuronas, secuencia = 98	1, 2
GRU	Largo de secuencia	1 capa oculta, 128 neuronas	50, 98, 160
LSTM	Neuronas por capa	1 capa oculta, secuencia = 98	128, 256
LSTM	Largo de secuencia	1 capa oculta, 128 neuronas	50, 98, 150

Parámetros de entrenamiento:

- Épocas: 20
- Early stopping patience: 3.

- Función de costos: Cross Entropy
- Optimizador: Adam

DESEMPEÑO

RNN

Tiempo de entrenamiento : 22 segundos Val loss: 1.8522, Val acc: 35.66% Epoch 8/20 Tlempo de entrenamiento : 31 segundos Val loss: 1.9254, Val acc: 32.41% Epoch 12/20\$

RNN

Largo de secuencia: 98

RNN

Modelo	Capas	Neuronas	${f T}$	Accuracy	Precision	Recall	F1-score
RNN Vanilla	1	128	98	0.3759	0.38	0.38	0.37
RNN Vanilla	1	128	50	0.3444	0.38	0.35	0.34

LTSM

Tiempo de entrenamiento : 39 segundos Val loss: 0.5693, Val acc: 81.47% Epoch 13/20 Tlempo de entrenamiento : 60 segundos Val loss: 0.2979, Val acc: 90.81% Epoch 17/20

LSTM

Largo de secuencia: 98

LSTM

Modelo	Capas	Neuronas	${f T}$	Accuracy	Precision	\mathbf{Recall}	F1-score
LSTM	1	128	98	0.8105	0.82	0.81	0.81
LSTM	1	128	150	0.9064	0.91	0.91	0.91

11

GRU

Tiempo de entrenamiento : 31 segundos Val loss: 0.5440, Val acc: 82.22% Epoch 11/20 Tiempo de entrenamiento : 32 segundos Val loss: 0.2298, Val acc: 93.32% Epoch 9/20

GRU

Largo de secuencia: 98

GRU

Modelo	Capas	Neuronas	${f T}$	Accuracy	Precision	Recall	F1-score
GRU	1	128	98	0.8242	0.83	0.82	0.83
GRU	1	128	150	0.9187	0.92	0.92	0.92

14

CONCLUSIONES PRELIMINARES

Modelo	Capas	Neuronas	${f T}$	Accuracy	Precision	Recall	F1-score
RNN Vanilla	1	128	98	0.3759	0.38	0.38	0.37
RNN Vanilla	1	128	50	0.3444	0.38	0.35	0.34
LSTM	1	128	98	0.8105	0.82	0.81	0.81
LSTM	1	128	150	0.9064	0.91	0.91	0.91
GRU	1	128	98	0.8242	0.83	0.82	0.83
GRU	1	128	150	0.9187	0.92	0.92	0.92

CONCLUSIONES PRELIMINARES

CONCLUSIONES PRELIMINARES

Modelo	Largo de secuencia (T)	Época final	Tiempo (s)
RNN Vanilla	98	8	22
RNN Vanilla	50	12	31
\mathbf{LSTM}	98	13	39
\mathbf{LSTM}	150	17	60
\mathbf{GRU}	98	11	31
\mathbf{GRU}	160	9	32