This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出頗公開番号

特開平6-130226

(43)公開日 平成6年(1994)5月13日

C08J 5 C09K 3 G02B 1	i/30 i/18 i/00 i/08	識別記号 CEP 104	庁内整理番号 9018-2K 9267-4F 8517-4H 7132-2K	FΙ			技術表示箇所
# C 0 8 L 1	: 00			ş	審查請求	未請求	請求項の数2(全 15 頁)
(21)出願番号		特願平4-278440	F-0.5	(71)出願人	コニカを	朱式会社	新宿1丁目26番2号
(22)出願日		平成 4年(1992)10	月16日	(72)発明者	高木 和	利也	くら町1番地コニカ株式会
				(72)発明者			くら町1番地コニカ株式会
				(72)発明者			くら町1番地コニカ株式会

(54)【発明の名称】 セルロースエステルフィルム

(57)【要約】

【目的】 髙温、髙温下に長時間曝されてもUV吸収性 能が劣化したり、着色したりすることのないセルロース エステルフィルムの提供。

【構成】 (1)温度80℃、RH90%下に1000時間放置後の フィルムが、波長400nm以下における透過率の変化量が 2%未満で、かつJIS Z 8720で規定する標準の光Cの下 で、JIS Z 8729の方法に従って10度視野XYZ系における 三刺激値から求められるa値、b値の変化量が各々0.1 未満、0.3未満であるセルロースエステルフィルム。(2) 特定のベンゾトリアゾール系UV吸収剤を含有する上記 (1)項記載のセルロースエステルフィルム。

(

【特許請求の範囲】

【請求項1】 温度80℃、R H90%の雰囲気下に1000時間放置後のフィルムが、400m以下の波長における透過率の変化量が2%未満であって、かつJIS Z 8720で規定する標準の光Cの下で、JIS Z 8729の方法に従って10度視野XYZ系における三刺激値から求められるa値、b値の変化量が各々0.1未満、0.3未満であることを特徴とするセルロースエステルフィルム。

【請求項2】 下記一般式[1]で示されるベンゾトリアゾール系UV吸収剤の少なくとも一つを含有すること 10を特徴とする請求項1記載のセルロースエステルフィルム。

【化1】 一般式 [1]

[式中、 R_1 、 R_2 、 R_3 、 R_4 及び R_5 は同じか又は異なってもよく、水素原子、ハロゲン原子、ニトロ基、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノ又はジアルキルアミノ基、アシルアミノ基又は5~6員の複素環基を表し、 R_4 と R_5 は閉環して5~6員の炭素環を形成してもよい。〕

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、セルロースエステルフィルムに関し、詳しくは液晶表示装置の偏光板に使用されているセルロースエステルフィルム自体の耐久性及び、液晶物質の保護のためにUV(紫外線)吸収性能を付与した偏光板用保護フィルムに関するものである。

[0002]

【発明の背景】セルロースエステルフィルムは、透明性が優れ、かつ屈折率の異方性の小さな膜を容易に作製することが出来るため偏光板用の保護フィルムなどの光学的用途に広く使用されている。

【0003】しかしながらセルロースエステルフィルムは、紫外線に長時間暴露されると黄変するという該フィルム固有の欠点を有している。

【0004】一般に自動車などの計器表示に用いられる 液晶表示の場合、偏光板は過酷な耐湿性及び耐熱性が要 求される。

【0005】このため従来より、予めセルロースエステル溶液中にUV吸収剤を混入し、この溶液を用いてキャステングフィルムとする方法、或は特開昭61-98301号に記載されているようなUV吸収剤溶液を、セルロースエステルフィルム上に塗布あるいは浸漬してUV吸収性を

付与し黄変を防止することが開示されている。

【0006】しかしながら使用環境の厳しい高温多湿の条件下、例えば温度80℃、RH90%以上の雰囲気下に1000時間程度経時した場合、前記の方法で製造されたフィルムでは、UV吸収剤が均一に分散含有されたものであるためブリード現象により光学特性が劣化し、黄変してUV吸収性能が著しく劣化し満足されるものではなく、その改良が強く望まれていた。

[0007]

【発明の目的】従って本発明の第1の目的は、高温高湿下での過酷な条件に長時間曝されてもUV吸収能が劣化したり、着色したりすることのない偏光板用保護フィルムとしてのセルロースエステルフィルムを提供することである。

【0008】本発明の他の目的は、ケン化処理工程を省略してコストを低減したセルロースエステルフィルムを提供することである。

[0009]

【発明の構成】本発明の上記の目的は、以下の本発明により達成されることを見い出し本発明を成すに至った。【0010】即ち、(1)温度80℃、RH90%の雰囲気下に1000時間放置後のフィルムが、400nm以下の波長における透過率の変化量が2%未満であって、かつJIS Z 8720で規定する標準の光Cの下で、JIS Z 8729の方法に従って10度視野XYZ系における三刺激値から求められるa値、b値の変化量が各々0.1未満、0.3未満であることを特徴とするセルロースエステルフィルム。

【0011】(2)下記一般式〔1〕で示されるベンソトリアゾール系UV吸収剤の少なくとも一つを含有することを特徴とする(1)項記載のセルロースエステルフィルム。

【0012】により達成される。

[0013]

【化2】

- 般 式 〔 1 〕

【0014】式中、 R_1 、 R_2 、 R_3 、 R_4 及び R_5 は同じか又は異なってもよく、水素原子、ハロゲン原子、ニトロ基、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノ又はジアルキルアミノ基、アシルアミノ基又は $5\sim6$ 員の複素環基を表し、 R_4 と R_5 は閉環して $5\sim6$ 員の炭素環を形成してもよい。以下、本発明を詳述する。

記載されているようなUV吸収剤溶液を、セルロースエ 【0015】本発明に於けるセルロースエステルフィル ステルフィルム上に塗布あるいは浸漬してUV吸収性を 50 ムの耐熱及び耐湿性については、温度80℃(好ましくは7

5℃以上85℃以下)で、RH(相対湿度)が90%(好ましくは85%以上)の雰囲気下に1000時間放置することにより、実際に使用される条件の代用試験法とした。

【0016】得られた処理試料については、波長400mm以下の透過率を測定し、紫外部域に於ける未処理試料との透過率の差を求めた。未処理試料に対して透過率の変化量が2%未満(好ましくは1.5%未満)であれば経時劣化の少ないことを意味する。さらに該試料がJIS 2 8720に規定する標準の光Cの下で、JIS 2 8729の方法に従って10度視野XYZ系における三刺激値から求められる a 値、b 値の変化量が各々0.1未満、0.3未満であることである。

【0017】ここで言うJIS Z 8720の標準の光Cとは、 昼光で照明される物体色を表示する場合に用いられる標 準光である。

【0018】本発明に於ける試料が、10度視野XYZ系における三刺激値から求めたa値は、0.1未満(好ましくは0~0.08)で、b値は0.3未満(好ましく0~0.25)であることが耐熱、耐湿性の優れた色相変動のないセルロースエステルフィルムとして評価される。

【0019】本発明に係るセルロースエステルフィルム中には、上述した一般式[1]のベンゾトリアゾール系UV吸収剤の少なくとも一つが含有される。

【0020】上述した一般式 [1] のR₁、R₂、R₃、 R_4 及び R_5 は同一又は異ってもよく、水素原子、ハロゲ ン原子(塩素、臭素、沃素、フッ素)、ニトロ基、ヒド ロキシル基、アルキル基(例えば、メチル、エチル、n-プロピル、iso-プロピル、アミノプロピル、n-ブチル、 sec-ブチル、tert-ブチル、クロロブチル、n-アミル、i so-アミル、ヘキシル、オクチル、ノニル、ステアリル アミドブチル、デシル、ドデシル、ペンタデシル、ヘキ サデシル、シクロヘキシル、ベンジル、フェニルエチ ル、フェニルプロピルなど)、アルケニル基(例えば、 ビニル、アリル、メタアリル、ドデセニル、トリデセニ ル、テトラデセニル、オクタデセニルなど)、アリール 基(例えばフェニル、4-メチルフェニル、4-エトキシフ ェニル、2-ヘキソキシフェニル、3-ヘキソキシフェニル など)、アルコキシ基(例えば、メトキシ、エトキシ、 プロポキシ、ブトキシ、クロロブトキシ、デコキシ、ジ アミノフェノキシ、エトキシ、ペンタデコキシ、オクタ 40 デコキシなど)、アシルオキシ基(例えば、カルボメト キシ、カルボブトキシ、カルボヘキソキシ、カルボペン タデコキシなど)、アリールオキシ基(例えば、フェノ キシ、4-メチルフェノキシ、2-プロピルフェノキシ、3-アミルフェノキシなど)、アルキルチオ基(例えば、メ チルチオ、エチルチオ、t-ブチルチオ、t-オクチルチ オ、ベンジルチオなど)、アリールチオ基(例えば、フ ェニルチオ、メチルフェニルチオ、エチルフェニルチ オ、メトキシフェニルチオ、エトキシフェニルチオ、ナ フチルチオなど)、モノ又はジアルキルアミノ基(例え 50

ば、N-エチルアミノ、N-t-オクチルアミノ、N,N-ジエチルアミノ、N,N-ジーt-ブチルアミノなど)、アシルアミノ基(例えば、アセチルアミノ、ベンゾイルアミノ、メタンスルホニルアミノなど)、酸素又は窒素を含む5又は6員の複素環基(例えば、ピペリジノ、モルホリノ、ピロリジノ、ピペラジノなど)を示し、 R_4 と R_5 は閉環して炭素原子からなる5又は6員環を形成してもよい。【0021】一般式 [1] において、 R_1 \sim R_5 で示される置換基は、炭素数5~36が好ましく、アルキル基は炭素数1~18であることが好ましい。

【0022】上記一般式で表される化合物例を以下に示すが、本発明はこれらに限定されるものではない。

【0023】(1-1) 2-(2′-ヒドロキシ-5′-t-ブ チルフェニル)-ベンゾトリアゾール

(1-2) 2-(2' -ヒドロキシ-3' ,5' -ジ-t-ブチルフェニル)-ベンゾトリアゾール

(1-3) 2-(2' -ヒドロキシ-3' -t-ブチル-5' -メチルフェニル)-5-クロロベンゾトリアゾール

(1-4) 2-(2' -ヒドロキシ-3' ,5' -ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール

(1-5) 2-(2'-ヒドロキシ-5'-イソオクチルフェ ニル)-ベンゾトリアゾール

(1-6) 2-(2'-ヒドロキシ-5'-n-オクチルフェニル)-ベンゾトリアゾール

(1-7) 2-(2' -ヒドロキシ-3' ,5' -ジ-t-アミルフェニル)-ベンゾトリアゾール

(1-8) 2-(2'-ヒドロキシ-5'-ドデシルフェニル)-ベンゾトリアゾール

(1-9) 2-(2'-ヒドロキシ-5'-ヘキサデシルフェニル)-ベンゾトリアゾール

(1-10) 2-(2'-ヒドロキシ-3'-t-アミル-5'-ベ ンゾフェニル)-ベンゾトリアゾール

なお、本発明においては上記の化合物を含めて本発明と同一の出願人による特開昭60-128434号公報第10頁~第12頁に記載されている化合物例の(IV-1)~(IV-39)を用いることが出来る。本発明に用いられる上記のベンゾトリアゾール系化合物は、例えば特公昭44-29620号に記載の方法、又はそれに準じた方法により容易に合成することが出来る。

【0024】本発明に係るセルロースエステルフィルムとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートなどが挙げられ、特に重合度250~400、結合酢酸量が54~62%のセルローストリアセテートが好ましい。

【0025】本発明に係るセルロースエステルフィルムは、皮膜の柔軟性、耐湿性などの向上のために可塑剤を添加してもよい。その具体例としては、例えばトリフェニルホスペート、ジエチルフタレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレートなどが挙げられる。これらの可塑剤の使用量は、セル

ローストリアセテートに対して重重比で2~20%が用いられるが、膜の柔軟性を損なわない最小量を用いるのが好ましい。

【0026】本発明に係るセルロースエステルフィルムの溶剤としては、例えばメタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブタノールなどの低級アルコール類、シクロヘキサンジオキサン類、メチレンクロライドのような低級脂肪族炭化水素塩化物類などを用いることができる。

【0027】溶剤比率としては例えば、メチレンクロライド70~95重量%、その他の溶剤は30~5重量%が好ましい。又セルロースエステルの濃度は10~50重量%が好ましい。溶剤を添加しての加熱温度は、使用溶剤の沸点以上で、かつ該溶剤が沸騰しない範囲の温度が好ましく例えば60℃以上、80~110℃の範囲に設定するのが好適である。又、圧力は設定温度において、溶剤が沸騰しないように定められる。

[0028] 溶解後は冷却しながら容器から取り出すか、または容器からポンプ等で抜きだして熱交換器などで冷却し、これを製膜に供する。

【0029】本発明に於けるセルロースエステルフィルムの製造方法は特に制限はなく、当業界で一般に用いられている方法でよく、例えば米国特許2,492,978号、同2,739,070号、同2,739,069号、同2,492,977号、同2,336,310号、同2,367,603号、同2,492,978号、同2,607,704* 一般式 [I]

* 号、英国特許64071号、同735892号、特公昭45-9074号、 同49-4554号、同49-5614号、同60-27562号、同61-39890 号、同62-4208号等に記載の方法を参考にすることがで きる。

6

[0030] 本発明に係るセルロースエステルフィルム の厚さは、 $10\sim500\,\mu\,\mathrm{m}$ で特に $30\sim200\,\mu\,\mathrm{m}$ であることが 好ましい。

[0031] 本発明に係る偏光板用保護フィルムは、コスト低減の目的で偏光膜と接着する面側に偏光膜の接着10 性を付与する親水性バインダーを含有した接着処理層を塗設することが好ましい。

[0032] ここで言う親水性バインダーとしては、例えば-COOM基含有の共重合体又は親水性セルロース誘導体(例えばメチルセルロース、カルボキシメチルセルロース、ヒドロキシアルキルセルロース等)ポリビニルアルコール誘導体(例えば酢酸ビニルとビニルアルコールの共重合体、ポリビニルアセタール、ポリビニルボルマール、ポリビニルベンザール等)、天然高分子化合物(例えばゼラチン、カゼイン、アラビアゴム等)、親水20 性基含有ポリエステル誘導体、スルホン基含有ポリエステル共重合体等が挙げられる。

【0033】本発明に使用される特定の-COOM基含有共重合体化合物は下記一般式で示される。

[0034]

【化3】

[0035] 式中、Aはビニル単量体、Bは水素原子、-CO-OM あるいは-(CO)-R であって、z=0のときBは水素原子、またRがアルキル基のときBは水素原子、Mは水素あるいはカチオン、Rは-O-R' あるいは-N(R")(R') ここでR' はアルキル基、アラルキル基、アリール基、異項環残基あるいはR" と共同して異項環を形成するに必要な非金属原子、R" は水素原子、低級アルキル基あるいはR' と共同して異項環を形成す

50 【0036】上記一般式においてビニル単量体としては

例えばスチレン、ニトロ基、弗素、塩素、臭素、クロル メチル基、低級アルキル基等が置換されたスチレン、ビ ニルメチルエーテル、ビニルエチルエーテル、ビニルク ロルエチルエーテル、酢酸ビニル、クロル酢酸ビニル、 プロピオン酸ビニル、アクリル酸、メタクリル酸あるい はイタコン酸等の不飽和酸、炭素数1~5であって、非 置換あるいは塩素、フェニル基等を置換したアルキルア クリレートあるいはアルキルメタアクリレート、フェニ ルアクリレートあるいはフェニルメタアクリレート、ア クリロニトリル、塩化ビニル、塩化ビニリデン、エチレ ン、アクリルアミド、炭素数1~5のアルキル基あるい は塩素、フェニル基等を置換したアクリルアミド、ビニ ルアルコール、クリシジルアクリレート、アクロレイン 等があり、好ましくはスチレン、置換基を有するスチレ ン、酢酸ビニル、ビニルメチルエーテル、アルキルアク リレート、アクリロニトリル等である。

[0037] また、上記のR'のアルキル基としては、* 一般式[A]

*炭素数1~24のものが好ましく、直鎖アルキル基、分岐アルキル基、シクロアルキル基等のアルキル基のいずれでもよく、また該アルキル基は置換基を有していてもよく、この置換基としてはヒドロキシ基、ヒドロキシカルボニル基、カチオンのオキシカルボニル基等で、特に弗素のごときハロゲンが置換されたハロゲノアルキル基またはハロゲノアルキルオキシアルキル基は望ましい結果が得られ、このとき炭素数2~18のハロゲノアルキル基、ハロゲノアルキルオキシアルキル基をびハロゲノアルキル基をびハロゲノアルキル基をびハロゲノアルキルオキシアルキル基及び前記式中のR3のハロゲノアルキルオキシアルキル基及び前記式中のR3のハロゲノアルキル基及びハロゲノアルキル基及びハロゲノアルキルオキシアルキル基は、好ましくは下記一般式〔A〕で示される。

[0038] 【化4】

$$\begin{array}{c|c}
R_4 & R_5 \\
\hline
(C)_{n_1} & (C)_{n_2} & (C)_{n_3} & CF_2 - R_8 \\
R_6 & R_7
\end{array}$$

[0039] (式中、R₄, R₅, R₆, R₇, R₈ は水素 あるいは弗素で、 n_2 は0または1であり、 n_2 が0のと きには n_1 は0、 n_2 が1のときには n_1 は2または3で あって、 n_3 は1~17の整数、但 $0n_1+n_3$ は1~17であ る。但しR4が構造式中で2個以上ある場合には1個が 水素で他が弗素であるように異なる基であってもよく、 同様に R_5 , R_6 , R_7 がそれぞれ構造式中に複数個ある ときには、異なる基であってもよい。)また、前記一般 式[I]及び一般式[II]中のR'が前述のようなハロ ゲノアルキル基、あるいはハロゲノアルキルオキシアル キル基のときには、好ましくは前記一般式〔I〕及び一 般式 [II] 中の R は - O - R' である。また、R' のフェ ニル基のごときアリール基、あるいはベンジル基のごと きアラルキル基は置換基を有していてもよく、この置換 基としては、弗素、塩素、臭素等のハロゲン低級アルキ ル基、ヒドロキシ基、ヒドロキシカルボニル基、カチオ ンのオキシカルボニル基、ニトリル基、ニトロ基等が挙 40 げられる。また、式中のR'の異項環またはR'とR"と

で形成する異項環は、酸素、イオウ、または窒素を含む 飽和あるいは不飽和の異項環であって、例えばアジリジ ン、ピロール、ピロリジン、ピラゾール、イミダゾー ル、イミダゾリン、トリアゾール、ピペリジン、ピペラ ジン、オキサジン、モルホリン、チアジン等の異項環か ら選択される異項環である。また式中Mのカチオンとし ては、例えばアンモニウムイオン、ナトリウムイオン、 カリウムイオン、リチウムイオン等のカチオンである。 【0040】そして上記一般式で示される「COOM基含有 共重合体化合物は単独あるいは2種以上併用して用いら れ、好ましくは平均分子量約500~500,000(重量平均) 程度のものが用いられる。

【0041】このような本発明に使用する上記共重合体 化合物の代表的なものとしては、下記のものを挙げるこ とができる。しかし本発明はこれらに限定されるもので はない。

40 【0042】 【化5】

$$(P-1) \qquad -(CH_2 - CH)_{\overline{n}} \qquad (CH - CH)_{\overline{p}} \qquad (CH - CH)_{\overline{p}} \qquad (CH - CH)_{\overline{q}} \qquad$$

$$(m = 50, p = 7, q = 43)$$

$$(P-2) \qquad (CH_2 - CH)_{\overline{M}} \qquad (CH - CH)_{\overline{D}} \qquad (CH - CH)_{\overline{Q}} \qquad ($$

$$(m = 40, p = 40, q = 20)$$

(P-3)
$$-(CH_2-CH)_{\overline{M}}$$
 (CH $-(CH)_{\overline{p}}$ (CH $-(CH)_{\overline{q}}$ (CH

(P-4)
$$-(CII_2 - CII)_m$$
 (CII $-(CII)_p$ (CII $-(CII)_q$ | CII $-(CII)_q$

[0043]

$$(P-5) \xrightarrow{\text{CH}_2 - \text{CH}_{\frac{1}{10}}} (CH \xrightarrow{\text{CH}_{\frac{1}{10}}} (CH \xrightarrow{\text{CH}_{\frac{1$$

$$(m=50, p=7, q_1+q_2=q_3, q_1=33, q_2=10)$$

$$(P-6) \qquad -(CH_2-CH)_{\overline{m}} \qquad (CH-CH)_{\overline{q}} \qquad (CH-CH)_{\overline{p}}$$

$$0 \qquad C=0 \qquad C=0 \qquad C=0$$

$$C=0 \qquad OH \qquad OH \qquad OH$$

$$(m = 50, q = 25, r = 25)$$

(P-7)
$$-(CH_2 - CH)_{tt}$$
 $-(CH_2 - CH)_{tt}$ $-(CH_2 - CH)_{tt}$

$$(P-8) \qquad (CH_{2}-CH)_{\overline{M}} \qquad (CH - CH)_{\overline{p}} \qquad (CH - CH)_{\overline{q}}$$

$$C=0 \qquad C=0 \qquad C=0$$

$$CH_{2} \qquad CH_{2} \qquad 0 \qquad 0 \qquad 0$$

$$CH_{2} \qquad CH_{2} \qquad Na \qquad Na \qquad Na$$

$$(m=55, p=2, q=43)$$

【0044】本発明に使用される前記一般式で表される る。即ち、無水マレイン酸共重合物は極く一般的な重合 物であることは周知の通りであり、これらの誘導体もそ れらに適合するアルコールあるいはアミン類を無水マレ イン酸共重合物に反応させれば簡単に得られ、また無水 マレイン酸単量体に適合するアルコールあるいはアミン 類を反応し精製したものを他のビニル単量体と共重合さ せても得られる。また、ハロゲノアルキル、ハロゲノア ルキルオキシアルキル等のアクリレート類は、ジャーナ ル・オブ・ポリマー・サイエンス (Journal of Polymer Science.15 515~574 (1955) あるいは英国特許1,121, 50 300μπが好ましい。

357号明細書に記載されている単量体及び重合体の合成 -COOM基含有共重合体化合物は、公知の方法で合成され 40 法によって容易に合成される。本発明に係る前記共重合 体化合物の使用量は、 $10\sim 1000 \, \mathrm{mg/m^2}$ であることが好ま しく、更には20~300mg/m²であることが特に好ましい。 【0045】本発明において使用される保護フィルム は、セルローストリアセテートが主であるが、セルロー スジアセテート, セルロースアセテートブチレート, セ ルロースプロピオネートなどのセルロースエステル,ポ リカーボネート, ポリエチレンテレフタレート, ポリア クリレートなども適用できる。厚みは特に制限はない が、機能上および取扱い易さから10~500μm、特に30~

【0046】又、本発明に係るポリマー溶液はグラビアコーター、ディプコーター、リバースロールコーター、押し出しコーターなど公知の方法で塗布できる。本発明に係るポリマーの付量は10~1000mg/m²の範囲であり、特に安定な接着力、塗布後の仕上り性からみると20~300mg/m²が好ましい。該塗布液を塗布した後乾燥する方法としては特に制限はないが乾燥後の残留溶媒量は5wt%以下とするのが好ましい。残留溶媒量が多いと、偏光膜と積層された後の乾燥過程で接着界面に気泡を生じる場合があり好ましくない。

【0047】本発明に係る保護フィルムの処理面と、偏光膜を貼り合わせるのに使用される接着剤としては例えばポリビニルアルコール、ポリビニルブチラールなどのポリビニルアルコール系接着剤や、ブチルアクリレートなどビニル系ラテックス等があげられる。

【0048】本発明のセルロースエステルフィルムには、本発明に係る一般式[1]の化合物とともに下記の一般式[2]で表される化合物を組み合わせて用いることができる。

[0049]

【化7】

一般式〔2〕

【0050】式中、Yは水素原子、ハロゲン原子またはアルキル基、アルケニル基、アルコキシ基、及びフエニル基を表し、これらのアルキル基、アルケニル基及びフエニル基は置換基を有していてもよい。Aは水素原子、アルキル基、アルケニル基、フエニル基、シクロアルキル基、アルキルカルボニル基、アルキルスルホニル基又は一CO(NH)_{n-1}-D基を表し、Dはアルキル基、アルケニル基又は置換基を有していてもよいフエニル基を表す。m及びnは1または2を表す。

10 【0051】上記において、アルキル基としては例えば、炭素数24までの直鎖又は分岐の脂肪族基を表し、アルコキシ基としては例えば、炭素数18までのアルコキシ基で、アルケニル基としては例えば、炭素数16までのアルケニル基で例えばアリル基、2-ブテニル基などを表す。又、アルキル基、アルケニル基、フェニル基への置換分としてはハロゲン原子、例えばクロール、ブロム、フッ素原子など、ヒドロキシ基、フェニル基、(このフェニル基にはアルキル基又はハロゲン原子などを置換していてもよい)などが挙げられる。

20 【0052】以下に一般式〔2〕で表されるベンゾフェ ノン系化合物の具体例を示すが、本発明はこれらのみに 限定されるものではない。

[0053]

[化8]

$$2^{15} - 1$$

2 - 3

2 - 4

2 - 5

[0054]

【化9】

$$\overset{17}{2} - 6$$

$$\bigcirc OH \longrightarrow OCO-CH=CH_3$$

$$CF_3$$
 CF_3
 CF_3
 CF_3
 CF_3

2 - 9

$$C \ell C H = C H - C O - C O (C H_2)_5 C O O H$$

2 - 10

[0055]

 $\frac{19}{2} - 11$

2 - 12

2 - 13

2 - 14

【0056】又、本発明においては、上述の一般式

[1] の化合物とともにセルロースアセテートの劣化防 30 止剤として従来から知られている例えばエポキシ化合物、弱有機酸、飽和多価アルコール類或は有機材料の酸化防止剤として知られている例えばヒンダートフェノール系、チオエーテル系、亜リン酸エステル系などの化合物を本発明の一般式[1] の化合物と組み合わせて用いてもよい。

【0057】本発明における上記の一般式〔1〕又は [2]の化合物の使用量は化合物の種類、使用条件など により一様ではないが、通常はセルロースエステルフィ ルム1㎡²当り、0.2g~3gが好ましく、特に0.5g~2*40

セルローストリアセテート(酸化度61.0%) トリフェニルホスフェート 本発明の例示化合物(表 1) メチレンクロライド メタノール

上記組成物を密閉容器に投入し、加圧下で80℃に保温し 撹伴しながら完全に溶解した。

【0061】次にこのドープを濾過し、冷却して33℃に保ち2つのドラムにはられた回転する長さ6 π (有効長5.5 π)のエンドレスステンレスバンド上に均一に流延し、

* gが特に好ましい。

【0058】添加方法としては、予め有機溶剤(例えば メタノール、メチレンクロライドなど)に溶解したもの を本発明に係るセルローストリアセテートなどのドープ 組成中に添加してもよく、直接添加してもよい。

[0059]

【実施例】以下、本発明を実施例にて具体的に説明するが、本発明はこの実施例に限定されるものではない。 実施例 1

表1に示すUV吸収剤を添加し、下記のドープ組成物を 調製した。

[0060]

部量重001 部量重21 部量重8 部量重84

90重量部

剥離が可能になるまで溶媒を蒸発させたところで、ステンレスバンド上から剥離後、多数のロールで搬送させながら乾燥を終了させ膜厚80μmのフィルムを得た。

【0062】このようにして得られたセルローストリア 50 セテートフィルムを各々10cm平方の大きさに切りとり、

80℃、90%RHの髙温髙温雰囲気下に1000時間放置後、分 光光度計を用いて保護フィルム単体の透過率の分光吸収 特性を測定し波長320nmおよび400nmに於ける透過率を25 ℃、56%RH雰囲気下に放置した試料と比較し、変化度を 評価した。

【0063】又、上記で作成したセルローストリアセテ* 例示化合物 (P-1)

> 水 メタノール

アセトン

次に上記保護フィルムの接着層面が粘着剤面となるよう に下記の方法で作ったフィルムと重ね合わせて偏光板を 作成した。

【0065】また上記セルローストリアセテートフィル ムを保護膜とし、次の方法で作った偏光板フィルムの両 面にアクリル系粘着剤で接着させ偏光板を作った。

【0066】偏光板フィルムの作り方

厚さ120μmのフィルムのポリビニルアルコールフィルム を沃素1重量部、沃化カリウム2重量部、ホウ酸4重量 部を含む水溶液に浸積し50℃で4倍に延伸し偏光板フィ ルムを得た。

【0067】次に上記で作成したセルローストリアセテ ートフィルムの一部に、温度60℃、濃度8wt%の水酸化※

*ートフィルムの1部に表1に示したように本発明試料と してフィルムの片面に下記組成物から成る塗布液を25ml /m²になるようにダブルロールコーターを用いて塗布 し、90℃で5min間乾燥し、接着層を有する保護フィル ム試料No.1, 2を得た。

22

[0064]

10重量部

20

400

600

※ナトリウム水溶液に5分間浸漬し、水洗してケン化処理 層を形成させ接着性の比較試料(試料No.3)とし、同 様の方法で偏光板を作成した。

【0068】得られた各偏光板を各々5cm×7cmのサイ ズに切断した。得られた切断片を各々6cm×8cmのガラ ス板の中央部にアクリル系粘着剤で仮粘着し、次いでこ れらを押圧して各片とガラス板の気泡を完全に除去する ようにして各切断片をガラス板に粘着した。

【0069】比較例1

20 紫外線吸収剤としてベンゾフェノン系の下記化合物を添 加し、下記のドープ組成物を調整し実施例1と同じ方法 で膜厚80μmのフィルムを得た。

100重量部

15重量部

10重量部

430重量部

90重量部

[0070]

セルローストリアセテート(酸化度61.0%)

トリフェニルホスフェート 2,2' -ジヒドロキ-4,4' -ジメトキシベンゾフェノン

(例示化合物2-5)

メチレンクロライド

メタノール

実施例1と同様な方法で80μπTACベースを作成し

【0071】次に上記フィルムを温度が60℃で濃度が8 wt%の水酸ナトリウム水溶液に5分間浸漬し水洗してケ ン化処理層を形成した。以下、実施例1と同様の方法に より偏光板を作成し比較例の試料No.4とした。

【0072】こうして作成した試験片を80℃、95%RHに セットした恒温恒湿オーブン内に互いに重ならないよう に垂直に配して支持枠に1000時間固定した後、各片につ いて下記の測定を行った。

[0073]

- (A) 保護フィルム単体と偏光板の透過率変化度
- (B) 偏光膜と保護フィルムの接着性
- (C) 偏光度の変化度

保護フィルム単体と偏光板の透過率変化度の評価は、前 記サンプルを80℃、90%RHの高温高湿雰囲気下に1000時 間放置後、分光光度計を用いて320nm~400nmの分光吸収 特性と500nm~600nmの分光吸収特性を測定し、25℃、56 %RH雰囲気下に於ける分光吸収特性との変化度 Δ T

30★ (%) を評価した。

【0074】〇・・・変化度2%以下

 $\triangle \cdot = 2 \sim 5\%$

×··· " 5~11%

××·· ~ 11%

偏光膜と保護フィルムの接着性の評価は、高温高湿処理 後、目視により観察を行い偏光膜と保護フィルムの間の 剥離状態を評価した。

[0075]

〇・・・膜の浮き上がり部分が周辺1mm以下

40 Δ・・・膜の浮き上がり部分が周辺1~5㎜の範囲

×・・・膜の浮き上がり部分が周辺5mm以上

偏光度の評価は、400~700nmの領域における値を、平行 時と直行時との透過の平均値から下記式に基づき算出 し、25℃、56%RH雰囲気下に於ける偏光度の変化度を評 価した。ただし透過率は43%に補正した。

 $[0076]P = (HO-H90/HO+H90) \times 100$ (式中Pは偏光度、HOは平均平行透過率、H90は平均 直行透過率を示す。)

〇・・・湿熱処理前の測定値(43%)との差±2%以内

 $\triangle \cdot \cdot \cdot$

 $\pm 2\% \sim 5\%$

 $\begin{array}{c} 23 \\ \times \cdot \cdot \cdot \cdot \\ \times \times \cdot \cdot \end{array}$

±5%~11% ±11%以上

*【表1】

[0077]

本発明 较 丑 蕪 接着性 0 0 0 0 色相変化量 0 0 0 × م 逥 0 0 0 × æ 偏光度 0 0 × 0 偏光板分光特性 600nm (AT%) 0 × 0 0 500nm 0 0 0 × 透過率損失 (AT%) \circ 0 0 × 320nm 0 0 0 × ン化処理 接着曆 処理) > 3 列示化合物 1 - 1 + 11 - 21 2-就 운 က $^{\circ}$

> ※設けた本発明の試料は、偏光膜との接着性が優れ、ケン 化処理層を省略することができる。

[0080] 実施例2

-下記のドープ組成物を実施例1と同様の方法で調製し た。

[0081]

フィルム表面に、親水性バインダーを含有する処理層を※ 【(セルローストリアセテート(酢化度61.0%)

トリフェニルホスフェート

【0078】表から分かるように、本発明の方法によれ

ば苛酷な条件下においても400nm以下に於ける透過率変

化度が少なく、かつ偏光板としての分光特性の劣化がな

い優れた偏光板フィルムが得られることが分かる。 【0079】さらに本発明に係るセルロースアセテート

> 100重量部 12重量部

(14)

特開平6-130226

25

(表2) 本発明の例示化合物 メチレンクロライド

メタノール

nーブタノール

次にこのドープを濾過し、冷却して33℃に保ち2つのド ラムにはられた回転する長さ 6 mのエンドレスステンレ スバンド上に位置した図1に記載した第一流延口から均 一に流延し、ついで第二流延口から実施例2に記載した ドープを仕上がり膜厚80μmに対し、それぞれ80%、20 テンレスバンド上から剥離可能になるまで溶媒を蒸発 後、ステンレスバンドから剥離し、多数のロールで搬送 させながら乾燥を終了させ膜厚80μmのフィルムを得

【0082】更に実施例1と同様な方法で偏光板を作成*

例示化合物 (P-6)

酢酸エチル

アセトン

又、比較例2として以下を作成した。

【0086】比較例2

10重量部 550重量部 30重量部 60重量部

*し、保護フィルム単体のUV吸収特性並びに偏光板のU V吸収特性と偏光フィルムとセルロースアセテートとの 間の接着性を評価した。

26

【0083】なお、接着性については、実施例1と同様 に上記で得られた本発明に係るセルロースアセテートフ %に寄与するよう流延溶液量を調整して流延した後、ス 10 イルムの試料の片面にケン化処理層を設けた試料と、親 水性バインダーを含む接着層を塗布した試料を作成し

> 【0084】接着層としては以下に示す溶液を調製し、 以下の条件で塗布した。

[0085]

5 重量部

500 "

500

※加し、下記のドープ組成物を調整し実施例1と同じ方法 20 で膜厚80μmのフィルムを得た。

紫外線吸収剤としてベンゾフェノン系の下記化合物を添※

[0087]

セルローストリアセテート(酸化度61.0%)

トリフェニルホスフェート

(例示化合物2-9)

メチレンクロライド

メタノール

n-ブタノール

100重量部 12重量部 10重量部 550重量部

30重量部

60重量部

実施例2と同様な方法で80μmTACベースを作成し

【0088】次に上記フィルムを温度が60℃で濃度が8 30 wt%の水酸ナトリウム水溶液に5分間浸漬し水洗してケ ン化処理層を形成した。以下、実施例2と同様の方法に より偏光板を作成し、比較例の試料No.8とした。

【0089】得られた試料について実施例1と同様の方 法で評価した。

【0090】得られた結果を下記の表2に示した。表か ら明らかなように本発明の方法によれば、苛酷な雰囲気 下に長時間おかれても偏光度の変化及び偏光板分光特性 の劣化が少ないことが分かる。

[0091]

【表2】

40

[0092]

【発明の効果】本発明により、苛酷な高温、高温下に長時間曝されても、400nm以下の透過率変化が少なく、UV吸収性能の劣化のない偏光板用保護フィルムを得られた

【図面の簡単な説明】

【図1】実施例2で用いた製膜機の断面図である。 【符号の説明】

- 1 第一流延口
- 10 2 エンドレスステンレスバンド
 - 3 第二流延口
 - 4 剥離位置

20

30

【図1】

 使相変化量

 a 値
 b 値

 C
 O

 X
 X

本発明

0

\$

李

痲

接着性

榖

土

0

=

0

処理層 接着層 ルケン化処理

海 No. 5 1-7 6 1-3+1-7 7 1-4 8 2-9

数 N C O L