Емелюшкина Варвара Дмитриевна

ПРАКТИКА 3

РАЗДЕЛ 1

1-2) Войдите под пользователем user1 из практики 2 (su - user1). Подсчитайте количество процессов, имеющих несколько потоков выполнения.

Посмотрим список всех процессов и потоков:

```
        user1@eltex-practice2-pg1-v9:/root$
        ps -eLf

        UID
        PID
        PPID
        LWP
        C
        NLWP
        STIME
        TTY
        TIME
        CMD

        root
        1
        0
        1
        0 ct15
        ?
        00:00:21
        /usr/lib/system

        root
        2
        0
        2
        0
        1
        0ct15
        ?
        00:00:00
        [kthreadd]

        root
        3
        2
        3
        0
        1
        0ct15
        ?
        00:00:00
        [pool_workqueue

        root
        4
        2
        4
        0
        1
        0ct15
        ?
        00:00:00
        [kworker/R-rcu_

        root
        5
        2
        5
        0
        1
        0ct15
        ?
        00:00:00
        [kworker/R-rcu_

        root
        6
        2
        6
        0
        1
        0ct15
        ?
        00:00:00
        [kworker/R-slub

        root
        7
        2
        7
        0
        1
        0ct15
        ?
        00:00:00
        [kworker/R-mtn

        root
        12
        2
```

Извлечем PID процессов и подсчитаем количество потоков на процесс

Посчитаем процессы с более чем 1 потоком.

```
user1@eltex-practice2-pg1-v9:/root$ ps -eLf | awk '{print$2}' | sort |uniq -c |
awk '$1 > 1 {count++} END {print count}'
10
```

3) Запустите top и настройте вывод полей с информацией о процессе следующим образом:

- удалите поля VIRT, RES, SHR;
- добавьте поле RUSER и сделайте так, чтобы это поле было показано после поля USER;

```
PID
        = Process Id
                                USED
                                         = Res+Swap Size (KiB)
        = Effective User Name nsIPC
                                         = IPC namespace Inode
USER
        = Real User Name
                                nsMNT
                                         = MNT namespace Inode
                                nsNET
        = Priority
                                        = NET namespace Inode
        = Nice Value
                                nsPID
                                        = PID namespace Inode
NΙ
        = Virtual Image (KiB)
                                nsUSER = USER namespace Inod
RES
        = Resident Size (KiB)
                                         = UTS namespace Inode
        = Shared Memory (KiB)
                                         = LXC container name
        = Process Status
                                RSan
                                         = RES Anonymous (KiB)
%CPU
        = CPU Usage
                                RSfd
                                         = RES File-based (KiB
        = Memory Usage (RES)
%MEM
TIME+
        = CPU Time, hundredths
                                         = RES Shared (KiB)
COMMAND = Command Name/Line
                                CGNAME
                                         = Control Group name
                                         = Last Used NUMA node
PPID
        = Parent Process pid
```

PID	USER	RUSER	PR	NI S	%CPU	%MEM	TIME+ COMMAND
1	root	root	20		0.0	0.4	0:21.77 systemd
2	root	root	20		0.0	0.0	0:00.21 kthreadd
3	root	root	20	0 S	0.0	0.0	0:00.00 pool workqueue release
4	root	root		-20 I	0.0	0.0	0:00.00 kworker/R-rcu g
5	root	root		-20 I	0.0	0.0	0:00.00 kworker/R-rcu p
6	root	root		-20 I	0.0	0.0	0:00.00 kworker/R-slub
7	root	root		-20 I	0.0	0.0	0:00.00 kworker/R-netns
12	root	root		-20 I		0.0	0:00.00 kworker/R-mm pe
13	root	root	20	0 I	0.0	0.0	0:00.00 rcu tasks kthread
14	root	root	20	0 I	0.0	0.0	0:00.00 rcu tasks rude kthread
15	root	root	20	0 I	0.0	0.0	0:00.00 rcu tasks trace kthread
16	root	root	20		0.0	0.0	0:00.31 ksoftirqd/0
17	root	root	20	0 I	0.0	0.0	0:10.39 rcu preempt
18	root	root	rt		0.0	0.0	0:04.79 migration/0
19	root	root	-51		0.0	0.0	0:00.00 idle inject/0
20	root	root	20	0 S	0.0	0.0	0:00.00 cpuhp/0
21	root	root	20	0 5	0 0	0 0	0.00 00 cpubp/1

- 4) В другом терминальном окне выполните команду passwd и оставьте ее в состоянии запроса текущего пароля.
- 5) Перейдите в терминальное окно с top и выполните следующие действия:
 - выведите все процессы, для которых реальным пользователем является пользователь, которым вы вошли в сеанс;

top –U user1

PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+	COMMAND
86918	user1	20	0	8652	5376	3840 S	0.0	0.2	0:00.00	bash
86926	root	20		9780	5056	4352 S	0.0	0.1	0:00.02	su
86927	user1	20		8652	5376	3840 S	0.0	0.2	0:00.00	bash
86934	root	20		9784	4928	4352 S	0.0	0.1	0:00.02	su
86935	user1	20		8652	5376	3840 S	0.0	0.2	0:00.00	bash
86950	root	20		9776	5052	4352 S	0.0	0.1	0:00.01	su
86951	user1	20		8652	5376	3840 S	0.0	0.2	0:00.01	bash
87167	user1	20		8652	5376	3840 S	0.0	0.2	0:00.00	bash
87176	user1	20		11952	5888	3712 T	0.0	0.2	0:00.01	top
87192	user1	20	0	12076	6016	3840 R	0.0	0.2	0:00.16	top
87194	root	20		9172	3712	3456 S	0.0	0.1	0:00.00	passwd

• найдите процесс, запущенный командой passwd;

87194 root 20 0 9172 3712 3456 S 0.0 0.1 0:00.00 passwd

• отправьте этому процессу сигналы 15 (SIGTERM), 2 (SIGINT), 3 (SIGQUIT), 9(SIGKILL)

Умер с четвертого раза после 9(SIGKILL). Ядро принудительно завершает процесс (т.к. это смена пароля -> данные важные -> вежливо попросить не получится)

```
user1@eltex-practice2-pg1-v9:/root$ kill -15 87194
user1@eltex-practice2-pg1-v9:/root$ kill -2 87194
user1@eltex-practice2-pg1-v9:/root$ kill -3 87194
user1@eltex-practice2-pg1-v9:/root$ kill -9 87194
user1@eltex-practice2-pg1-v9:/root$ []

user1@eltex-practice2-pg1-v9:/root$
user1@eltex-practice2-pg1-v9:/root$
user1@eltex-practice2-pg1-v9:/root$
user1@eltex-practice2-pg1-v9:/root$
changing password for user1.
Current password: Killed
user1@eltex-practice2-pg1-v9:/root$ []
```

6) Выполните команду vim ~/file task3.txt и нажмите Ctrl-Z.

```
user1@eltex-practice2-pg1-v9:/root$ vim ~/file_task3.txt
[1]+ Stopped vim ~/file_task3.txt
```

7) Выполните команду sleep 600, нажмите Ctrl-Z и выполните команду jobs.

```
userl@eltex-practice2-pgl-v9:/root$ jobs
[1]- Stopped vim ~/file_task3.txt
[2]+ Stopped sleep 600
```

8) Последнее задание (sleep 600) сделайте фоновым.

```
userl@eltex-practice2-pgl-v9:/root$ bg %2 [2]+ sleep 600 &
```

9) Измените число NICE у задания (sleep 600), сделав его равным 10.

```
user1@eltex-practice2-pg1-v9:/root$ renice 10 -p $(jobs -p %2) 87303 (process ID) old priority 0, new priority 10
```

10) Проверьте, что число NICE у этого задания изменилось.

```
user1@eltex-practice2-pg1-v9:/root$ ps -o pid,ni,comm -C sleep
PID NI COMMAND
87436 10 sleep
```

11) Сделайте задание vim ~/file task3.txt активным и выйдите из редактора.

```
user1@eltex-practice2-pg1-v9:/root$ fg %1
vim ~/file task3.txt
```

12) Отправьте сигнал 15 (SIGTERM) заданию sleep 600 и выполните команду jobs.

```
user1@eltex-practice2-pg1-v9:/root$ kill -15 %2
user1@eltex-practice2-pg1-v9:/root$ jobs
[2]+ Terminated sleep 600
user1@eltex-practice2-pg1-v9:/root$ \(\bar{1}\)
```

13) Создайте перехватчик сигналов SIGINT и SIGQUIT внутри командного интерпретатора, который выводит сообщение «Меня голыми руками не возьмёшь!» (используйте встроенную команду trap) и отправьте сигналы самому себе.

```
userl@eltex-practice2-pg1-v9:/root$ trap 'echo "Меня голыми руками не возьмешь!"
' SIGINT SIGQUIT
userl@eltex-practice2-pg1-v9:/root$ kill -SIGINT $$
Меня голыми руками не возьмешь!
userl@eltex-practice2-pg1-v9:/root$ kill -SIGQUIT $$
Меня голыми руками не возьмешь!
```