Firmware Version 1.48

TMCLTM FIRMWARE MANUAL

TMCM-1630

1-Axis BLDC
Controller / Driver
10A / 48V
RS232 / CAN or
RS485 / USB

TRINAMIC Motion Control GmbH & Co. KG Hamburg, Germany

Table of Contents

1		tures	
2	0ve	rview	5
3	Put	ting the TMCM-1630 into Operation	6
	3.1	Starting up	6
	3.2	Operating the Module in Direct Mode	8
4	TMC	L and TMCL-IDE	10
	4.1	Binary Command Format	10
	4.2	Reply Format	11
	4.2.	1 Status Codes	
	4.3	Standalone Applications	
	4.4	Testing with a Simple TMCL Program	
	4.5	TMCL Command Overview	
	4.5.		
	4.5.		
	4.6	Commands	
	4.6.		
	4.6.	3	
	4.6.		
	4.6.	·	
	4.6.	·	
	4.6.	·	
	4.6.	•	
	4.6.	·	
	4.6.	·	
	4.6.	- ,	
	4.6.		
	4.6.	- · ·	
	4.6.	- ,	
	4.6.	·	
	4.6.		
	4.6.		
	4.6.	·	
	4.6.	• •	
	4.6.		
	4.6.		
	4.6.		
	4.6.	/	
		23 CALCX (calculate using the X register)	
		24 AAP (accumulator to axis parameter)	
	4.6.	·	
		26 Customer Specific TMCL Command Extension (UFO UF7/User Function)	
		27 TMCL Control Functions	
5		s Parameter Overview (SAP, GAP, STAP, RSAP, AAP)	
,	5.1	Axis Parameter Sorted by Functionality	
5		bal Parameter Overview (SGP, GGP, STGP, RSGP)	
,	6.1	Bank 0	
	6.2	Bank 1	
	6.3	Bank 2	
7		Regulation	
,	7.1	Structure of the Cascaded Motor Regulation Modes	
	7.1 7.2	PWM Regulation	
	7.2 7.3	Current PID Regulation	
	7.5 7.4	Velocity PID Regulation	
	7. 4 7.5	Velocity Ramp Generator	
	7.5 7.6	Position PID Regulation	
	7.6 7.7	Parameter Sets for PID Regulation	
	1.1	raianieter sets ioi lin vedaranon	о⊥

8	Tem	mperature Calculation	62		
9	I²t I	Monitoring	62		
10	Life	e Support Policy	63		
11	1 Revision History				
		Firmware Revision			
		Document Revision			
	12 References				

1 Features

The TMCM-1630 is a highly integrated single axis BLDC servo controller module with several interface-options. The highly integrated module (size: 50mm x 92.5 mm) has been designed in order to be plugged onto a baseboard. It integrates velocity and position control and offers hall sensor and incremental encoder (a/b/n) inputs. The module can be used in standalone operation or remote controlled.

Applications

• Demanding single and multi-axis BLDC motor solutions

Electrical data

- Supply voltage: +24V DC or +48V DC nominal (+12... +55V DC max.)
- Motor current: up to 10A RMS (programmable) peak

Integrated motion controller

 High performance ARM Cortex™-M3 microcontroller for system control and communication protocol handling

Integrated motor driver

- High performance integrated pre-driver (TMC603A)
- Support for sensorless back EMF commutation (hall FXTM)
- High-efficient operation, low power dissipation (MOSFETs with low R_{DS(ON)})
- Dynamic current control
- Integrated protection
- On the fly alteration of motion parameters (e.g. position, velocity, acceleration)

Interfaces

- Two standard assembly options:
 - RS232 and CAN (2.0B up to 1Mbit/s)
 - RS485 and USB
- 2 analogue and 2 digital inputs
- 3 open drain outputs

Motor type

- Block commutated 3 phase BLDC motors with optional hall sensors / optional encoder
- Motor power from a few Watts to nearly 500W
- Motor velocity up to 100,000 RPM (electrical field)
- Common supply voltages of 12V DC, 24V DC, 36V DC and 48V DC supported
- Coil current up to 10A peak

Software

- TMCL standalone operation or remote controlled operation
- TMCL program memory (non volatile) for up to 2048 TMCL commands
- TMCL PC-based application development software TMCL-IDE and TMCL-BLDC available for free
- CANopen ready: CiA 301 + CiA 402 (homing mode, profile position mode and velocity mode) under development

Other

- Two double-row 2.54mm connectors
- ROHS compliant
- Size: 50x92.5mm²

Please see separate TMCM-1630 Hardware Manual for additional information

2 Overview

The software running on the microprocessor of the TMCM-1630 consists of two parts, a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).

The firmware is related to the standard TMCL firmware [TMCL] with regard to protocol and commands. The module is based on the ARM Cortex-M3 microcontroller and the high performance pre-driver TMC603 and supports the standard TMCL with a special range of values.

3 Putting the TMCM-1630 into Operation

Here you can find basic information for putting your module into operation. The text contains a simple example for a TMCL program and a short description of operating the module in direct mode.

THINGS YOU NEED:

- TMCM-1630
- Interface suitable to your TMCM-1630 with cables
- Nominal supply voltage +24V DC or +48V DC for your module
- Encoder optional
- BLDC motor
- TMCL-IDE program and PC

PRECAUTIONS

- Do not mix up connections or short-circuit pins.
- Avoid bounding I/O wires with motor power wires as this may cause noise picked up from the motor supply.
- The power supply has to be buffered by a capacitor. Otherwise the module will be damaged!
- Do not exceed the maximum power supply of 55V DC.
- Do not connect or disconnect the motor while powered!
- Start with power supply OFF!

3.1 Starting up

The following figure shows how the connectors have to be used.

Figure 3.1: Connectors of the TMCM-1630

Domain	Connector type	Mating connector type
I/Os, interfaces,	TSM-113-03-L-DV-K-A, 2x13 poles, double	SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW,
encoder	row, 2.54mm pitch, SMD vertical, Samtec	CES, HLE , IDSS and IDSD series, Samtec
Power, hallFX™,	TSM-113-03-L-DV-K-A, 2x13 poles, double	SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW,
motor	row, 2.54mm pitch, SMD vertical, Samtec	CES, HLE , IDSS and IDSD series, Samtec

1. Connect the motor, power supply and hall sensors

Since the two connectors of the TMCM-1630 are similar be careful not to connect the module turned around. When powered up this would damage the module. Be sure to place the connectors exactly to their opponents. A deviation of only one pin row can damage the module also.

Start with power supply OFF!

Pin	Label	Description	Pin	Label	Description
1	W	Motor coil W	2	W	Motor coil W
3	W	Motor coil W	4	W	Motor coil W
5	V	Motor coil V	6	V	Motor coil V
7	V	Motor coil V	8	V	Motor coil V
9	U	Motor coil U	10	U	Motor coil U
11	U	Motor coil U	12	U	Motor coil U
13	VM	Module driver supply voltage	14	VM	Module driver supply voltage
15	VM	Module driver supply voltage	16	VM	Module driver supply voltage
17	GND	Module ground (power supply and signal ground)	18	GND	Module ground (power supply and signal ground)
19	GND	Module ground (power supply and signal ground)	20	GND	Module ground (power supply and signal ground)
21	GND	Module ground (power supply and signal ground)	22	GND	Module ground (power supply and signal ground)
23	+5V	+5V output (100mA max.) for encoder and/or hall sensor supply	24	HALL3	Hall sensor 3 signal input
25	HALL1	Hall sensor 1 signal input	26	HALL2	Hall sensor 2 signal input

2. Connect the interface, IOs and the encoder as follows:

Since the two connectors of the TMCM-1630 are similar be careful not to connect the module turned around. When powered up this would damage the module. Be sure to place the connectors exactly to their opponents. A deviation of only one pin row can damage the module also.

Pin	Label	Description	Pin	Label	Description
1	+5V	5V analog reference as used by the internal DAC. Max. load 0.5mA	2	Velocity	Used for velocity control in standalone operation by supplying external 0 - 10V signal
3	Torque	Used for max. motor current / torque control in standalone operation by supplying external 0-10V signal	4	GND	Module ground (power supply and signal ground)
5	Dir_IN	5V TTL input. Tie to GND to inverse motor direction, leave open or tie to 5V otherwise.	6	Tacho	This pin outputs a tacho impulse, i.e. toggles on each hall sensor change
7	Stop_IN	Emergency stop. Tie this pin to GND to stop the motor (same as the <i>Motor OFF</i> switch on PCB). The motor can be restarted via the interface, or by cycling the power supply	8	LED-Temp	5V TTL output: Toggling with 3Hz when temperature prewarning threshold is exceeded, high when module shut down due to overtemperature
9	LED-Curlim	High, when module goes into current limiting mode	10	+5V	5V output as reference for external purpose
11	GND	GND reference	12	GND	GND reference
13	Enc_A+	Encoder A+ channel	14	Enc_A-	Encoder A- channel

15	Enc_B+ Encoder B+ channel 1		16	Enc_B-	Encoder B- channel
17	Enc_N+	Encoder N+ channel	18	Enc_N-	Encoder N- channel
19	CANL/USBD-	CAN low /	20	RXD/	RXD signal for RS232 /
17	CANL/USBD-	USB D- bus line	20	485-	inverting signal for RS485
21	CANH/USBD+	CAN high /	22	TXD/	TXD signal for RS232 /
21		USB D+ bus line		485+	non inverting signal for RS485
23	USB_+VB	Use to detect availability of	24	n.c	
23		attached host system (e.g. PC)	4	n.c.	
25	GND	GND reference	26	GND	GND reference

3. Switch ON the power supply

The power LED is ON now.

If this does not occur, switch power OFF and check your connections as well as the power supply.

4. Start the TMCL-IDE software development environment

The TMCL-IDE is available on the TechLibCD and on www.trinamic.com.

Installing the TMCL-IDE

Make sure the COM port you intend to use is not blocked by another program. Open TMCL-IDE by clicking **TMCL.exe**.

Choose **Setup** and **Options** and thereafter the **Connection tab**. Choose **Type**. The TMCL-IDE shows you which **Port** the module uses. Click **OK**.

Figure 3.2: Setup menu

Figure 3.3: Connection tab of TMCL-IDE

3.2 Operating the Module in Direct Mode

1. Start TMCL Direct Mode.

- 2. If the communication is established the TMCM-1630 is automatically detected. If the module is not detected, please check all points above (cables, interface, power supply, COM port, baud rate).
- 3. Issue a command by choosing *instruction*, *type* (if necessary), *motor*, and *value* and click *execute* to send it to the module.

Figure 3.4: TMCL direct mode window

Examples:

- ROR rotate right, motor 0, value 500
- MST motor stop, motor 0
- -> Click Execute. The first motor is rotating now.
- -> Click Execute. The first motor stops now.

4 TMCL and TMCL-IDE

The TMCM-1630 module supports TMCL direct mode (binary commands) and standalone TMCL program execution. You can store up to 2048 TMCL instructions on it.

In direct mode the TMCL communication over USB, CAN, RS232, and RS485 follows a strict master/slave relationship. That is, a host computer (e.g. PC/PLC) acting as the interface bus master will send a command to the module. The TMCL interpreter on it will then interpret this command, do the initialization of the motion controller, read inputs and write outputs or whatever is necessary according to the specified command. As soon as this step has been done, the module will send a reply back over the interface to the bus master. The master should not transfer the next command till then. Normally, the module will just switch to transmission and occupy the bus for a reply, otherwise it will stay in receive mode. It will not send any data over the interface without receiving a command first. This way, any collision on the bus will be avoided when there are more than two nodes connected to a single bus.

The Trinamic Motion Control Language (TMCL) provides a set of structured motion control commands. Every motion control command can be given by a host computer or can be stored on the TMCM-1630 to form programs that run standalone on the module. For this purpose there are not only motion control commands but also commands to control the program structure (like conditional jumps, compare and calculating).

Every command has a binary representation and a mnemonic:

- The binary format is used to send commands from the host to a module in direct mode.
- The mnemonic format is used for easy usage of the commands when developing standalone TMCL applications with the TMCL-IDE (IDE means *Integrated Development Environment*).

There is also a set of configuration variables for the axis and for global parameters which allow individual configuration of nearly every function of a module. This manual gives a detailed description of all TMCL commands and their usage.

4.1 Binary Command Format

When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes.

When a command is to be sent via RS232, USB or RS485 interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. In this case it consists of nine bytes.

The binary command format for RS232/RS485/USB is structured as follows:

Bytes	Meaning
1	Module address
1	Command number
1	Type number
1	Motor or Bank number
4	Value (MSB first!)
1	Checksum

- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- Do not send the next command before you have received the reply!

Checksum calculation

As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition. Here is an example for the calculation:

Command[8]=Checksum; //insert checksum as last byte of the command //Now, send the command back to the module

4.2 Reply Format

Every time a command has been sent to a module, the module sends a reply.

The reply format for RS232/RS485/USB is structured as follows:

Bytes	Meaning	
1	Reply address	
1	Module address	
1	Status (e.g. 100 means no error)	
1	Command number	
4 Value (MSB first!)		
1	Checksum	

- The checksum is calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- Do not send the next command before you have received the reply!

4.2.1 Status Codes

The reply contains a status code.

The status code can have one of the following values:

Code	Meaning
100	Successfully executed, no error
101	Command loaded into TMCL
	program EEPROM
1	Wrong checksum
2	Invalid command
3 Wrong type	
4 Invalid value	
5 Configuration EEPROM locked	
6	Command not available

4.3 Standalone Applications

The module is equipped with an EEPROM for storing TMCL applications. You can use the TMCL-IDE for developing standalone TMCL applications. You can load your program down into the EEPROM and then it will run on the module. The TMCL-IDE contains an *editor* and a TMCL *assembler* where the commands can be entered using their mnemonic format. They will be assembled automatically into their binary representations. Afterwards this code can be downloaded into the module to be executed there.

4.4 Testing with a Simple TMCL Program

Open the file test2.tmc of the TMCL-IDE. The following source code appears on the screen:

```
//A simple example for using TMCL and TMCL-IDE

Loop:
ROL 0, 4000 //rotate left with 4000 rev/min
WAIT TICKS, 0, 2000
ROR 0, 4000 //rotate right with 4000 rev/min
WAIT TICKS, 0, 2000
JA Loop
```


Figure 4.1: Assemble, download, stop, and run icons of TMCL-IDE

- 1. Click on icon **Assemble** to convert the example into binary code.
- 2. Then download the program to the TMCM-1630 module via the icon **Download**.
- 3. Press icon *Run*. The desired program will be executed.
- 4. Click **Stop** button to stop the program.

For further information about the TMCL-IDE and TMCL programming techniques please refer to the TMCL-IDE User Manual on TRINAMICs website.

TRINAMIC offers two software tools for BLDC applications: the TMCL-BLDC and the BLDC tool of the TMCL-IDE. Whereas the TMCL-BLDC is used for testing different configurations in all modes of operation the TMCL-IDE is mainly designed for conceiving programs and firmware updates. New versions of the TMCL-BLDC and the TMCL-IDE can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).

4.5 TMCL Command Overview

The following section provides a short overview of the TMCL commands supported by the TMCM-1630.

4.5.1 TMCL Commands

Command	Number	Parameter	Description
ROR	1	<motor number="">, <velocity></velocity></motor>	Rotate right with specified velocity
ROL	2	<motor number="">, <velocity></velocity></motor>	Rotate left with specified velocity
MST	3	<motor number=""></motor>	Motor stop movement
MVP	4	ABS REL, <motor number="">, <position offset></position offset></motor>	Move to position (absolute or relative)
SAP	5	<pre><parameter>, <motor number="">, <value></value></motor></parameter></pre>	Set axis parameter (motion control specific settings)
GAP	6	<pre><parameter>, <motor number=""></motor></parameter></pre>	Get axis parameter (read out motion control specific settings)

Command	Number	Parameter	Description
STAP	7	<pre><parameter>, <motor number=""></motor></parameter></pre>	Store axis parameter permanently
			(non volatile)
RSAP	8	<pre><parameter>, <motor number=""></motor></parameter></pre>	Restore axis parameter
SGP	9	<pre><parameter>, <bank number="">, <value></value></bank></parameter></pre>	Set global parameter (module
			specific, e.g. communication
			settings or TMCL user variables)
GGP	10	<pre><parameter>, <bank number=""></bank></parameter></pre>	Get global parameter (module
			specific, e.g. communication
			settings or TMCL user variables)
STGP	11	<parameter>, <bank number=""></bank></parameter>	Store global parameter (TMCL user
			variables only)
RSGP	12	<pre><parameter>, <bank number=""></bank></parameter></pre>	Restore global parameter (TMCL
			user variables only)
SIO	14	<port number="">, <bank number="">, <value></value></bank></port>	Set output
GIO	15	<port number="">, <bank number=""></bank></port>	Get input
CALC	19	<operation>, <value></value></operation>	Process accumulator & value
COMP	20	<value></value>	Compare accumulator <-> value
JC	21	<condition>, <jump address=""></jump></condition>	Jump conditional
JA	22	<jump address=""></jump>	Jump absolute
CSUB	23	<subroutine address=""></subroutine>	Call subroutine
RSUB	24		Return from subroutine
WAIT	27	<condition>, <motor number="">, <ticks></ticks></motor></condition>	Wait with further program
			execution
STOP	28		Stop program execution
CALCX	33	<operation></operation>	Process accumulator & X-register
AAP	34	<pre><parameter>, <motor number=""></motor></parameter></pre>	Accumulator to axis parameter
AGP	35	<pre><parameter>, <bank></bank></parameter></pre>	Accumulator to global parameter

4.5.2 Commands Listed According to Subject Area

4.5.2.1 Motion Commands

These commands control the motion of the motor. They are the most important commands and can be used in direct mode or in standalone mode.

Mnemonic	Command number	Meaning
ROL	2	Rotate left
ROR	1	Rotate right
MVP	4	Move to position
MST	3	Motor stop

4.5.2.2 Parameter Commands

These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set independently for the axis, whereas global parameters control the behavior of the module itself. These commands can also be used in direct mode and in standalone mode.

Mnemonic	Command number	Meaning		
SAP	5	Set axis parameter		
GAP	6	Get axis parameter		
STAP	7	Store axis parameter into EEPROM		
RSAP	8	Restore axis parameter from EEPROM		
SGP	9	Set global parameter		
GGP	10	Get global parameter		
STGP	11	Store global parameter into EEPROM		
RSGP	12	Restore global parameter from EEPROM		

4.5.2.3 Control Commands

These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to use them in direct mode. They are intended for standalone mode only.

Mnemonic	Command number	Meaning			
JA	22	Jump always			
JC	21	Jump conditional			
COMP	20	Compare accumulator with constant value			
CSUB	23	Call subroutine			
RSUB	24	Return from subroutine			
WAIT	27	Wait for a specified event			
STOP	28	End of a TMCL program			

4.5.2.4 I/O Port Commands

These commands control the external I/O ports and can be used in direct mode and in standalone mode.

Mnemonic	Command number	Meaning
SIO	14	Set output
GIO	15	Get input

4.5.2.5 Calculation Commands

These commands are intended to be used for calculations within TMCL applications in standalone mode, only. For calculating purposes there are an accumulator (or accu or A register) and an X register. When executed in a TMCL program (in standalone mode), all TMCL commands that read a value store the result in the accumulator. The X register can be used as an additional memory when doing calculations. It can be loaded from the accumulator.

Mnemonic	Command number	Meaning
CALC	19	Calculate using the accumulator and a
		constant value
CALCX	33	Calculate using the accumulator and the
		X register
AAP	34	Copy accumulator to an axis parameter
AGP	35	Copy accumulator to a global parameter

Mixing standalone program execution and direct mode

It is possible to use some commands in direct mode while a standalone program is active. When a command which reads out a value is executed (direct mode) the accumulator will not be affected. While a TMCL program is running standalone on the module, a host can still send commands like GAP and GGP to it (e.g. to query the actual position of the motor) without affecting the flow of the TMCL program running standalone on the module.

4.6 Commands

The module specific commands are explained in more detail on the following pages. They are listed according to their command number.

4.6.1 ROR (rotate right)

The motor will be instructed to rotate with a specified velocity in *right* direction (increasing the position counter).

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2 (target velocity).

Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR 0, <velocity>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE <velocity></velocity>
1	don't care	0	-2147483648 +2147483647

Reply in direct mode:

STATUS	COMMAND	VALUE	
100 – OK	1	don't care	

Example:

Rotate right, velocity = 350 *Mnemonic:* ROR 0, 350

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$01	\$00	\$00	\$00	\$00	\$01	\$5e

4.6.2 ROL (rotate left)

The motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the position counter).

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2 (target velocity).

Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL 0, <velocity>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE
2	don't care	0	<velocity></velocity>
			-2147483648 +2147483647

Reply in direct mode:

STATUS	COMMAND	VALUE	
100 - OK	2	don't care	

Example:

Rotate left, velocity = 1200 Mnemonic: ROL 0, 1200

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$02	\$00	\$00	\$00	\$00	\$04	\$b0

4.6.3 MST (motor stop)

The motor will be instructed to stop.

Internal function: The axis parameter target velocity is set to zero.

Related commands: ROL, ROR, SAP, GAP

Mnemonic: MST 0

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
3	don't care	0	don't care	

Reply in direct mode:

STATUS	COMMAND	VALUE
100 – OK	3	don't care

Example:

Stop motor *Mnemonic:* MST 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$03	\$00	\$00	\$00	\$00	\$00	\$00

4.6.4 MVP (move to position)

The motor will be instructed to move to a specified relative or absolute position. It uses the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-blocking (like all commands). A reply will be sent immediately after command interpretation and initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration are defined by axis parameters #4 and #11.

Two operation types are available:

- Moving to an absolute position in the range from -2147483648... +2147483647.
- Starting a relative movement by means of an offset to the actual position. In this case, the new resulting position value must not exceed the above mentioned limits, too.

Internal function: A new position value is transferred to the axis parameter #0 target position.

Related commands: SAP, GAP, and MST

Mnemonic: MVP <ABS|REL>, 0, <position|offset value>

Binary representation:

•			
COMMAND	TYPE	TYPE MOT/BANK VALUE	
4	0 ABS – absolute	0	<pre><position> -2147483648 +2147483647</position></pre>
	1 REL - relative	0	<pre><offset> -2147483648 +2147483647</offset></pre>

Reply in direct mode:

STATUS	COMMAND	VALUE
100 – OK	4	don't care

Example MVP ABS:

Move motor to (absolute) position 9000 *Mnemonic:* MVP ABS, 0, 9000

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$04	\$00	\$00	\$00	\$00	\$23	\$28

Example MVP REL:

Move motor from current position 1000 steps backward (move relative -1000) *Mnemonic:* MVP REL, 0, -1000

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$00	\$04	\$01	\$00	\$ff	\$ff	\$fc	\$18

4.6.5 SAP (set axis parameter)

Most of the motion control parameters of the module can be specified by using the SAP command. The settings will be stored in SRAM and therefore are volatile. Thus, information will be lost after power off. *Please use command STAP (store axis parameter) in order to store any setting permanently.*

Related commands: GAP, STAP, and RSAP

Mnemonic: SAP <parameter number>, 0, <value>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
5	<pre><parameter number=""></parameter></pre>	0	<value></value>	

Reply in direct mode:

STATUS	COMMAND	VALUE
100 - OK	5	don't care

A list of all parameters which can be used for the SAP command is shown in section 5.

Example:

Set the absolute maximum current to 200 mA

Mnemonic: SAP 6, 0, 200

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$05	\$00	\$00	\$00	\$00	\$00	\$c8

4.6.6 GAP (get axis parameter)

Most parameters of the TMCM-1630 can be adjusted individually. They can be read out using the GAP command.

Related commands: SAP, STAP, and RSAP

Mnemonic: GAP <parameter number>, 0

Binary representation:

COMMAND	ТҮРЕ	MOT/BANK	VALUE
6	<parameter number=""></parameter>	0	don't care

Reply in direct mode:

STATUS	COMMAND	VALUE
100 - OK	6	don't care

A list of all parameters which can be used for the GAP command is shown in section 5.

Example:

Get the actual position of motor

Mnemonic: GAP 1, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$06	\$01	\$00	\$00	\$00	\$00	\$00

Reply:

Byte Index	0	1	2	3	4	5	6	7
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand
	address	address			Byte3	Byte2	Byte1	Byte0
Value (hex)	\$00	\$00	\$64	\$06	\$00	\$00	\$02	\$c7

4.6.7 STAP (store axis parameter)

The STAP command stores an axis parameter previously set with a *Set Axis Parameter command (SAP)* permanently. Most parameters are automatically restored after power up (refer to axis parameter list in chapter 5).

Internal function: An axis parameter value stored in SRAM will be transferred to EEPROM and loaded from EEPORM after next power up.

Related commands: SAP, RSAP, and GAP

Mnemonic: STAP <parameter number>, 0

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
7	<parameter number=""></parameter>	0	don't care*	

^{*} The value operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is saved.

Reply in direct mode:

STATUS	COMMAND	VALUE
100 - OK	7	don't care

A list of all parameters which can be used for the STAP command is shown in section 5.

Example:

Store the maximum speed *Mnemonic:* STAP 4, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$07	\$04	\$00	\$00	\$00	\$00	\$00

Note: The STAP command will not have any effect when the configuration EEPROM is locked. The error code 5 (configuration EEPROM locked) will be returned in this case.

4.6.8 RSAP (restore axis parameter)

For all configuration related axis parameters non-volatile memory locations are provided. By default, most parameters are automatically restored after power up (refer to axis parameter list in chapter 5). A single parameter that has been changed before can be reset by this instruction also.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Related commands: SAP, STAP, and GAP

Mnemonic: RSAP <parameter number>, 0

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
8	<parameter number=""></parameter>	0	don't care	

Reply in direct mode:

STATUS	COMMAND	VALUE		
100 – OK	8	don't care		

A list of all parameters which can be used for the RSAP command is shown in section 5.

Example:

Restore the maximum current *Mnemonic:* RSAP 6, 0

Binarv:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$08	\$06	\$00	\$00	\$00	\$00	\$00

4.6.9 SGP (set global parameter)

Global parameters are related to the host interface, peripherals or other application specific variables. The different groups of these parameters are organized in *banks* to allow a larger total number for future products. Currently, only bank 0 and 1 are used for global parameters, and only bank 2 is intended to use for user variables.

Related commands: GGP, STGP, RSGP

Mnemonic: SGP <parameter number>, <bank number>, <value>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
9	<parameter number=""></parameter>	<bank number=""></bank>	<value></value>	

Reply in direct mode:

STATUS	VALUE		
100 – OK	don't care		

A list of all parameters which can be used for the SGP command is shown in section 6.

Example: set variable 0 at bank 2 to 100

Mnemonic: SGP, 0, 2, 100

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$09	\$00	\$02	\$00	\$00	\$00	\$64

4.6.10 GGP (get global parameter)

All global parameters can be read with this function.

Related commands: SGP, STGP, RSGP

Mnemonic: GGP <parameter number>, <bank number>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE		
10	<parameter number=""></parameter>	<bank number=""></bank>	don't care		

Reply in direct mode:

STATUS	VALUE		
100 - OK	<value></value>		

A list of all parameters which can be used for the GGP command is shown in section 6.

Example: get variable 0 from bank 2

Mnemonic: GGP, 0, 2

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0a	\$00	\$02	\$00	\$00	\$00	\$00

4.6.11 STGP (store global parameter)

Some global parameters are located in RAM memory, so modifications are lost at power down. This instruction copies a value from its RAM location to the configuration EEPROM and enables permanent storing. Most parameters are automatically restored after power up.

Related commands: SGP, GGP, RSGP

Mnemonic: STGP <parameter number>, <bank number>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
11	<parameter number=""></parameter>	<bank number=""></bank>	don't care	

Reply in direct mode:

STATUS	VALUE
100 – OK	don't care

A list of all parameters which can be used for the STGP command is shown in section 6.

Example: copy variable 0 at bank 2 to the configuration EEPROM

Mnemonic: STGP, 0, 2

Byte Index	0	1	2	3	4	5	6	7
Function		Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0b	\$00	\$02	\$00	\$00	\$00	\$00

4.6.12 RSGP (restore global parameter)

This instruction copies a value from the configuration EEPROM to its RAM location and so recovers the permanently stored value of a RAM-located parameter. Most parameters are automatically restored after power up.

Related commands: SGP, GGP, STGP

Mnemonic: RSGP <parameter number>, <bank number>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
12	<parameter number=""></parameter>	<bank number=""></bank>	don't care	

Reply in direct mode:

STATUS	VALUE	
100 – OK	don't care	

A list of all parameters which can be used for the RSGP command is shown in section 6.

Example: copy variable 0 at bank 2 from the configuration EEPROM to the RAM location *Mnemonic:* RSGP, 0, 2

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0c	\$00	\$02	\$00	\$00	\$00	\$00

4.6.13 SIO (set output)

This command sets the status of the general digital outputs either to low (0) or to high (1).

Internal function: The passed value is transferred to the specified output line.

Related commands: GIO, WAIT

Mnemonic: SIO <port number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE	
14	<port number=""></port>	<bank number=""></bank>	<value></value>	

Reply structure:

STATUS	VALUE	
100 - OK	(don't care)	

Example:

Set OUT_1 to high (bank 2, output 1; general purpose output)

Mnemonic: SIO 0, 2, 1

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0e	\$00	\$02	\$00	\$00	\$00	\$01

Figure 4.2: Connectors of the TMCM-1630

Available I/O port of TMCM-1630:

Pin	I/O port	Command	Range
6	Tacho	SIO 0, 2, <n></n>	1/0

Example:

Set the output pin high. *Mnemonic:* SIO 0, 2, 1

The following program will show the states of the input lines on the output lines:

Please ask TRINAMIC if you need more general digital outputs. On request, it is possible to change LED_Temp and LED_Curlimit into general digital outputs.

4.6.14 GIO (get input/output)

With this command the status of the three available general purpose inputs of the module can be read out. The function reads a digital or analogue input port. Digital lines will read 0 and 1, while the ADC channels deliver their 10 bit result in the range of 0... 1023. In standalone mode the requested value is copied to the accumulator (accu) for further processing purposes such as conditioned jumps. In direct mode the value is only output in the value field of the reply, without affecting the accumulator. The actual status of a digital output line can also be read.

Internal function: The specified line is read.

Related commands: SIO, WAIT

Mnemonic: GIO <port number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
15	<port number=""></port>	<bank number=""></bank>	(don't care)	

Reply in direct mode:

STATUS	VALUE
100 - OK	<status of="" th="" the<=""></status>
	port>

Example:

Get the analogue value of ADC channel 0

Mnemonic: GIO 0, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0f	\$00	\$01	\$00	\$00	\$00	\$00

Reply:

Byte Index	0	1	2	3	4	5	6	7
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand
	address	address			Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	\$64	\$0f	\$00	\$00	\$01	\$fa

⇒ value: 506

Figure 4.3: Connectors of the TMCM-1630

4.6.14.1 I/O bank 0 - digital inputs:

The ADIN lines can be read as digital or analogue inputs at the same time. The analogue values can be accessed in bank 1.

Pin	I/O port	Command	Range
5	Dir_IN	GIO 0, 0	1/0
7	Stop_IN	GIO 1, 0	1/0

4.6.14.2 I/O bank 1 - analogue inputs:

The ADIN lines can be read back as digital or analogue inputs at the same time. The digital states can be accessed in bank 0.

Pin	I/O port	Command	Range
2	Velocity	GIO 0, 1	0 4095
3	Torque	GIO 1, 1	0 4095

4.6.14.3 I/O bank 2 - the states of digital outputs

The states of the OUT lines (that have been set by SIO commands) can be read back using bank 2.

Pin	I/O port	Command	Range
6	Tacho	GIO 0, 2, <n></n>	1/0

Please ask TRINAMIC if you need more general digital outputs. On request, it is possible to change LED_Temp and LED_Curlimit into general digital outputs.

4.6.15 CALC (calculate)

A value in the accumulator variable, previously read by a function such as GAP (get axis parameter), can be modified with this instruction. Nine different arithmetic functions can be chosen and one constant operand value must be specified. The result is written back to the accumulator, for further processing like comparisons or data transfer.

Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO

Mnemonic: CALC <op>, <value>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE
19	0 ADD - add to accu	don't care	<operand></operand>
	1 SUB - subtract from accu		
	2 MUL – multiply accu by		
	3 DIV – divide accu by		
	4 MOD – modulo divide by		
	5 AND – logical and accu with		
	6 OR – logical or accu with		
	7 XOR – logical exor accu with		
	8 NOT – logical invert accu		
	9 LOAD - load operand to accu		

Example:

Multiply accu by -5000 Mnemonic: CALC MUL, -5000

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$13	\$02	\$00	\$FF	\$FF	\$EC	\$78

4.6.16 COMP (compare)

The specified number is compared to the value in the accumulator register. The result of the comparison can be used for example by the conditional jump (JC) instruction. This command is intended for use in standalone operation, only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. It does not make sense to use this command in direct mode.

Internal function: The specified value is compared to the internal *accumulator*, which holds the value of a preceding *get* or calculate instruction (see GAP/GGP/CALC/CALCX). The internal arithmetic status flags are set according to the comparison result.

Related commands: JC (jump conditional), GAP, GGP, CALC, CALCX

Mnemonic: COMP <value>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE
20	don't care	don't care	<comparison value=""></comparison>

Example:

Jump to the address given by the label when the position of the motor #2 is greater or equal to 1000.

GAP 1, 2, 0 //qet axis parameter, type: no. 1 (actual position), motor: 2, value: 0 don't care

COMP 1000 //compare actual value to 1000

JC GE, Label //jump, type: 5 greater/equal, the label must be defined somewhere else in the program

Binary format of the COMP 1000 command:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$14	\$00	\$00	\$00	\$00	\$03	\$e8

4.6.17 JC (jump conditional)

The JC instruction enables a conditional jump to a fixed address in the TMCL program memory, if the specified condition is met. The conditions refer to the result of a preceding comparison. This function is for standalone operation only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. It is not possible to use this command in direct mode.

Internal function: The TMCL program counter is set to the passed value if the arithmetic status flags are in the appropriate state(s).

Related commands: JA, COMP, WAIT

Mnemonic: JC <condition>, <label>

where <condition>=ZE|NZ|EQ|NE|GT|GE|LT|LE|ETO|EAL

Binary representation:

COMMAND	ТҮРЕ	MOT/BANK	VALUE
21	0 ZE - zero	don't care	<jump address=""></jump>
	1 NZ - not zero		
	2 EQ - equal		
	3 NE - not equal		
	4 GT - greater		
	5 GE - greater/equal		
	6 LT - lower		
	7 LE - lower/equal		
	8 ETO - time out error		
	9 EAL – external alarm		

Example:

Jump to address given by the label when the position of the motor is greater than or equal to 1000.

GAP 1, 0, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don't care

COMP 1000 //compare actual value to 1000 JC GE, Label //jump, type: 5 greater/equal

...

Label: ROL 0, 1000

Binary format of JC GE, Label when Label is at address 10:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$15	\$05	\$00	\$00	\$00	\$00	\$0a

4.6.18 JA (jump always)

Jump to a fixed address in the TMCL program memory. This command is intended for standalone operation, only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. This command cannot be used in direct mode.

Internal function: The TMCL program counter is set to the passed value.

Related commands: JC, WAIT, CSUB

Mnemonic: JA <Label>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE
22	don't care	don't care	<jump address=""></jump>

Example: An infinite loop in TMCL

Loop: MVP ABS, 0, 10000

WAIT POS, 0, 0 MVP ABS, 0, 0 WAIT POS, 0, 0

JA Loop //Jump to the label Loop

Binary format of JA Loop assuming that the label Loop is at address 20:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$16	\$00	\$00	\$00	\$00	\$00	\$14

4.6.19 CSUB (call subroutine)

This function calls a subroutine in the TMCL program memory. It is intended for standalone operation, only. The host address and the reply are required to take the instruction to the TMCL program memory while the TMCL program downloads. This command cannot be used in direct mode.

Internal function: The actual TMCL program counter value is saved to an internal stack, afterwards overwritten with the passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls to 8. The command will be ignored if there is no more stack space left.

Related commands: RSUB, JA

Mnemonic: CSUB <Label>

Binary representation:

COMMAND TYPE		MOT/BANK	VALUE		
23	don't care	don't care	<subroutine address=""></subroutine>		

Example: Call a subroutine Loop: MVP ABS, 0, 10000

CSUB SubW //Save program counter and jump to label "SubW"

MVP ABS, 0, 0 JA Loop

SubW: WAIT POS, 0, 0 WAIT TICKS, 0, 50

RSUB //Continue with the command following the CSUB command

Binary format of the CSUB SubW command assuming that the label SubW is at address 100:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$17	\$00	\$00	\$00	\$00	\$00	\$64

4.6.20 RSUB (return from subroutine)

Return from a subroutine to the command after the CSUB command. This command is intended for use in standalone mode only.

The host address and the reply are only used to take the instruction to the TMCL program memory while the TMCL program loads down. This command cannot be used in direct mode.

Internal function: The TMCL program counter is set to the last value of the stack. The command will be ignored if the stack is empty.

Related command: CSUB

Mnemonic: RSUB

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
24	don't care	don't care	don't care	

Example: RSUB

Loop: MVP ABS, 0, 10000

CSUB SubW //Save program counter and jump to label SubW

MVP ABS, 0, 0 JA Loop

SubW: WAIT POS, 0, 0

WAIT TICKS, 0, 50

RSUB //Continue with the command following the CSUB command

Binary format of RSUB:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$18	\$00	\$00	\$00	\$00	\$00	\$00

4.6.21 WAIT (wait for an event to occur)

This instruction interrupts the execution of the TMCL program until the specified condition is met. This command is intended for standalone operation only. The host address and the reply are only used to take the instruction to the TMCL program memory while the TMCL program downloads. This command is not to be used in direct mode.

There are different wait conditions that can be used:

TICKS: Wait until the number of timer ticks specified by the <ticks> parameter has been reached.

POS: Wait until the target position of the motor specified by the <motor> parameter has been reached. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command to check for such errors or clear the error using the CLE command.

Internal function: The TMCL program counter is held until the specified condition is met.

Related commands: JC, CLE

Mnemonic: WAIT <condition>, <motor number>, <ticks>

where <condition> is TICKS|POS

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
27	0 TICKS - timer ticks*	don't care	<no. of="" ticks*=""></no.>	
	1 POS - target position reached	<motor number=""></motor>	<no. for="" of="" ticks*="" timeout="">,</no.>	
		0	0 for no timeout	

^{*} One tick is 10msec (in standard firmware).

Example:

Wait for motor to reach its target position, without timeout

Mnemonic: WAIT POS, 0, 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$1b	\$01	\$01	\$00	\$00	\$00	\$00

4.6.22 STOP (stop TMCL program execution)

This function stops executing a TMCL program. The host address and the reply are only used to transfer the instruction to the TMCL program memory.

Every standalone TMCL program needs the STOP command at its end. It is not to be used in direct mode.

Internal function: TMCL instruction fetching is stopped.

Related commands: none

Mnemonic: STOP

Binary representation:

COMMAND	ТҮРЕ	MOT/BANK	VALUE	
28	don't care	don't care	don't care	

Example:

Mnemonic: STOP

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$1c	\$00	\$00	\$00	\$00	\$00	\$00

4.6.23 CALCX (calculate using the X register)

This instruction is very similar to CALC, but the second operand comes from the X register. The X register can be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the accumulator for further processing like comparisons or data transfer.

Related commands: CALC, COMP, JC, AAP, AGP

Mnemonic: CALCX <operation>

Binary representation:

COMMAND	TYPE <operation></operation>	MOT/BANK	VALUE
33	0 ADD - add X register to accu	don't care	don't care
	1 SUB – subtract X register from accu		
	2 MUL – multiply accu by X register		
	3 DIV – divide accu by X-register		
	4 MOD – modulo divide accu by x-register		
	5 AND – logical and accu with X-register		
	6 OR – logical or accu with X-register		
	7 XOR – logical exor accu with X-register		
	8 NOT – logical invert X-register		
	9 LOAD – load accu to X-register		
	10 SWAP – swap accu with X-register		

Example:

Multiply accu by X-register Mnemonic: CALCX MUL

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$21	\$02	\$00	\$00	\$00	\$00	\$00

4.6.24 AAP (accumulator to axis parameter)

The content of the accumulator register is transferred to the specified axis parameter. For practical use, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction.

Related commands: AGP, SAP, GAP, SGP, GGP, CALC, CALCX

Mnemonic: AAP <parameter number>, <motor number>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
34	<parameter number=""></parameter>	0	<don't care=""></don't>	

Reply in direct mode:

STATUS	VALUE		
100 – OK	don't care		

Example:

Positioning a motor by a potentiometer connected to the analogue input #0:

Start: GIO 0,1 // get value of analogue input line 0

CALC MUL, 4 // multiply by 4

AAP 0,0 // transfer result to target position of motor 0

JA Start // jump back to start

Binary format of the AAP 0.0 command:

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Bvte1	Operand Byte0
Value (hex)	\$01	\$22	\$00	\$00	\$00	\$00	\$00	\$00

4.6.25 AGP (accumulator to global parameter)

The content of the accumulator register is transferred to the specified global parameter. For practical use, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction. **Note that the global parameters in bank 0 are mostly EEPROM-only and thus should not be modified automatically by a standalone application.** (See chapter 5 for a complete list of global parameters

Related commands: AAP, SGP, GGP, SAP, GAP

Mnemonic: AGP <parameter number>, <bank number>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
35	<pre><parameter number=""></parameter></pre>	<bank number=""></bank>	don't care	

Reply in direct mode:

STATUS	VALUE
100 – OK	don't care

Example:

Copy accumulator to TMCL user variable #3

Mnemonic: AGP 3, 2

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$23	\$03	\$02	\$00	\$00	\$00	\$00

4.6.26 Customer Specific TMCL Command Extension (UF0... UF7/User Function)

The user definable functions UFO... UF7 are predefined functions without topic for user specific purposes. A user function (UF) command uses three parameters. Please contact TRINAMIC for a customer specific programming.

Internal function: Call user specific functions implemented in C by TRINAMIC.

Related commands: none

Mnemonic: UF0... UF7 <parameter number>

Binary representation:

COMMAND	TYPE	MOT/BANK	VALUE	
64 71	user defined	user defined	user defined	

Reply in direct mode:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand
	address	address			Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	user	64 71	user	user	user	user
			defined		defined	defined	defined	defined

4.6.27 TMCL Control Functions

There are several TMCL control functions, but for the user only command 136 is interesting. Other control functions can be used with axis parameters.

Command	Type	Parameter	Description	Access
136	0 – string	Firmware version	Get the module type and firmware revision as a	read
	1 – binary		string or in binary format. (Motor/Bank and Value	
			are ignored.)	

Type set to 0 - reply as a string:

Byte index	Contents
1	Host Address
2 9	Version string (8 characters, e.g. 1630V100)

There is no checksum in this reply format!

Type set to 1 - version number in binary format:

Please use the normal reply format. The version number is output in the value field.

Byte index in value field	Contents
1	Version number, low byte
2	Version number, high byte
3	Type number, low byte (currently not used)
4	Type number, high byte
	(currently not used)

5 Axis Parameter Overview (SAP, GAP, STAP, RSAP, AAP)

The following section describes all axis parameters that can be used with the SAP, GAP, STAP and RSAP commands.

MEANING OF THE LETTERS IN COLUMN ACCESS:

Access	Related	Description
type	command(s)	
R	GAP	Parameter readable
W	SAP, AAP	Parameter writable
E	STAP, RSAP	Parameter automatically restored from EEPROM after reset or power-on. These parameters can be stored permanently in EEPROM using STAP command and also explicitly restored (copied back from EEPROM into RAM) using RSAP.

Number	Axis Parameter	Description	Range [Unit]	Access
0	Target position	The target position of a currently executed ramp.	-2147483648 +2147483647	RW
1	Actual position	Set/get the position counter without moving the motor.	-2147483648 +2147483647	RW
2	Target speed	Set/get the desired target velocity.	-2147483648 +2147483647 [rpm]	RW
3	Actual speed	The actual velocity of the motor.	-2147483648 +2147483647 [rpm]	R
4	Max. ramp velocity	The maximum velocity used for velocity ramp in velocity mode and positioning mode. Set this value to a realistic velocity which the motor can reach!	-2147483648 +2147483647 [rpm]	RWE
5	PWM limit	Set/get PWM limit (0% 100%).	0 1799	RWE
6	Max current	Set/get the max allowed motor current. *This value can be temporarily exceeded marginal due to the operation of the current regulator.	0 +4294967295 [mA]	RWE
7	MVP Target reached velocity	Maximum velocity at which end position can	-2147483648 +2147483647 [rpm]	RWE
8	Threshold speed for velocity PID	Threshold speed for velocity regulation to switch between first and second velocity PID parameter set.	-2147483648 +2147483647 [rpm]	RWE
9	Motor halted velocity	If the actual speed is below this value the motor halted flag will be set.	-2147483648 +2147483647 [rpm]	RWE
10	MVP target reached distance	Maximum distance at which the position end flag is set.	-2147483648 +2147483647	RWE
11	Acceleration	Acceleration parameter for ROL, ROR, and the velocity ramp of MVP.	-2147483648 +2147483647 [RPM/s]	RWE
12	Threshold speed for position PID	Threshold speed for position regulation to switch between first and second position PID parameter set.	-2147483648 +2147483647 [rpm]	RWE
13	Ramp generator speed	The actual speed of the velocity ramp used for positioning and velocity mode.	-2147483648 +2147483647 [rpm]	R

Number	Axis Parameter	Description	Range [Unit]	Access
14	velocity	Velocity to switch from controlled to hallFX™	-2147483648	RWE
	threshold for	mode.	+2147483647	
	hallFX™	Set this value to a realistic velocity which the	[rpm]	
		motor can reach in controlled mode!		
20	Switch 2 active	0: inactive	0/1	R
		1: active		
		(IO connector pin 7 / stop_IN)		
21	Switch 1 active	0: inactive	0/1	R
		1: active		
		(IO connector pin 5 / Dir_IN)		
22	Potentiometer 1	The value of the analog input (IO connector	0 4095	R
		pin 2 / velocity).		
23	Potentiometer 2	The value of the analog input (IO connector	0 4095	R
		pin 3 / torque).		
25	Thermal	Thermal winding time constant for the used	0 +4294967295	RWE
	winding time	motor. Used for I2t monitoring.	[ms]	
	constant			
26	I ² t limit	An actual I2t sum that exceeds this limit leads	0 +4294967295	RWE
		to increasing the I²t exceed counter.		
27	I²t sum	Actual sum of the I2t monitor.	0 +4294967295	R
28	I ² t exceed	Counts how often an I2t sum was higher than	0 +4294967295	RWE
	counter	the I ² t limit.		
29	Clear I²t	Clear the flag that indicates that the I2t sum	(ignored)	W
	exceeded flag	has exceeded the I2t limit.		
30	Minute counter	Counts the module operational time in	_	RWE
		minutes.	[min]	
130	P parameter for	P parameter of position PID regulator (first		RWE
	position PID (I)	parameter set)	+2147483647	
131	I parameter for	I parameter of position PID regulator (first		RWE
	position PID (I)	parameter set)	+2147483647	
132	D parameter for	D parameter of position PID regulator (first		RWE
	position PID (I)	parameter set)	+2147483647	
133	PID regulation	PID calculation delay. Set PID operational		RWE
	loop delay	frequency.	[ms]	
134	Current	Delay of current limitation algorithm / PID		RWE
	regulation loop	current regulator.	[50µs]	
	delay			
135	I-Clipping	I-Clipping parameter of position PID regulator		RWE
	parameter for		+2147483647	
	position PID (I)	overshooting at positioning mode.)		
136	PWM-Hysteresis	Compensates dead time of PWM and motor	0 +4294967295	RWE
4.4		friction.	24/7/02//0	511/5
140	P parameter for	P parameter of velocity PID regulator (first		RWE
4.4	velocity PID (I)	parameter set, used at lower speed)	+2147483647	511/5
141	I parameter for	I parameter of velocity PID regulator (first	-2147483648	RWE
4 (2	velocity PID (I)	parameter set, used at lower speed)	+2147483647	DIA/E
142	D parameter for	D parameter of velocity PID regulator (first		RWE
1/2	velocity PID (I)	parameter set, used at lower speed)	+2147483647	DIATE
143	I-Clipping	I-Clipping parameter of velocity PID (first		RWE
	parameter for	parameter set, used at lower speed)	+2147483647	
	velocity PID (I)			
146	Activate ramp	1: Activate velocity ramp generator for		RWE
		position PID control. Allows usage of		
		acceleration and positioning velocity for MVP		
		command.		

Number	Axis Parameter	•	Range [Unit]	Access
150	Actual motor	Get actual motor current.	0 +4294967295	R
	current		[mA]	
151	Actual voltage	Actual supply voltage.	0 +4294967295	R
152	Actual driver	,	0 +4294967295	R
1) <u>L</u>	temperature	Actual temperature of the motor univer.	0 14274707273	
153	Actual PWM	Get actual PWM duty cycle.	0 +1799	R
	duty cycle	, ,		
154	Target PWM	Get desired target PWM or set target PWM to	-1799+1799	RW
		activate PWM regulation mode. (+= turn motor		
		in right direction;		
155	Target current	-= turn motor in left direction)	-2147483648	RW
700	Target current	Get desired target current or set target current to activate current regulation mode. (+= turn	+2147483647	KVV
		motor in right direction; -= turn motor in left		
		direction)	נוויהן	
156	Error/Status	Bit 0: Overcurrent flag. This flag is set if	0+4294967295	R
	flags	overcurrent limit is exceeded.		
		Bit 1: Undervoltage flag. This flag is set if		
		supply voltage to low for motor operation.		
		Bit 2: Overvoltage flag. This flag is set if the		
		motor becomes switched off due to		
		overvoltage. Bit 3: Overtemperature flag. This flag is set if		
		overtemperature limit is exceeded.		
		Bit 4: Motor halted flag. This flag is set if		
		motor has been switched off.		
		Bit 5: Hall error flag. This flag is set upon a		
		hall error.		
		Bit 6: unused		
		Bit 7: unused		
		Bit 8: PWM mode active flag. Bit 9: Velocity mode active flag		
		Bit 10: Position mode active flag.		
		Bit 11: Torque mode active flag.		
		Bit 12: unused		
		Bit 13: unused		
		Bit 14: Position end flag. This flag is set if the		
		motor has been stopped at the target		
		position.		
		Bit 15: unused		
		Bit 16: unused for TMCM-1630 (value should be 0 or 1)		
		Bit 17: I ² t exceeded flag. This flag is set if the		
		I ² t sum exceeded the I ² t limit of the motor.		
		(reset by SAP 29 after the time specified by		
		the I ² t thermal winding time constant)		
		Flag 0 to 15 are automatically reset. Only flag		
1 [0	C	16 and 17 must be cleared manually.	ο Γ	DIA/F
159	Commutation mode	0: Block commutation with hall sensors 1: Sensorless block commutation (hallFX™)	05	RWE
	illoue	2: Sine commutation with hall sensors		
		3: Sine commutation with encoder		
		4: Controlled block commutation		
		5: Controlled sine commutation		

Number	Axis Parameter	Descrip	tion		Range [Unit]	Access
160	Re-Initialization	0: sine o	commutation is stil	ll re-initializing	0/1	RW
	of Sine		commutation is re-			
			n: Depending on			
			tor before issuing			
161	Encoder set	1: set	position counter	to zero at next N	0/1	RWE
	NULL	channel	event.			
162	Switch set NULL	1: set p event.	osition counter to	zero at next switch	0/1	RWE
163	Encoder clear		osition counter to	zero only once	0/1	RWE
103	set NULL			l event, respectively	0/1	NVV L
	360 11022	switch e		c eventy respectively		
164	Activate stop	Bit 0	Left stop switch	When this bit is set	0 3	RWE
	switch		enable	the motor will be		
				stopped if it is		
				moving in negative		
				direction and the		
				left stop switch		
				input becomes		
		Bit 1	Right stop switch	When this bit is set		
		DIL I	enable	the motor will be		
				stopped if it is		
				moving in positive		
				direction and the		
				right stop switch		
				input becomes		
		DI	 16	active		
				6 for selecting the		
165	Actual encoder		itch input polarity.		-2147483648	RWE
100	commutation		value represent ation offset.	+2147483647	KVVE	
	offset		x. encoder steps pe	or rotation)	+214/40304/	
166	Stop switch	Bit 0	Left stop switch		0 3	RWE
100	polarity	DIL 0	polarity	switch input is high	U J	KVVL
	potanty			active		
				Bit clear: Left stop		
				switch input is low		
				active		
		Bit 1	Right stop switch	Bit set: Right stop		
			polarity	switch input is high		
				Bit clear: Right stop		
				switch input is low		
				active		
167	Block PWM			ide, HI on low side	-128 +127	RWE
	scheme		chopper on low si			
			chopper on low si	-		
168	P parameter for	P paran	neter of current	PID regulator. (first		RWE
	current PID (I)	•	er set, used at low	•	+2147483647	
169	I parameter for	-		PID regulator. (first		RWE
	current PID (I)		er set, used at low		+2147483647	
170	D parameter for	-		PID regulator. (first		RWE
	current PID (I)		er set, used at low		+2147483647	
171	I-Clipping			ırrent PID regulator.	-2147483648	RWE
	parameter for				+2147483647	
	current PID (I)					
172	P parameter for	P param	eter of current PI	D regulator. (second	-2147483648	RWE
	current PID (II)	paramet	er set, used at hig	her speed)	+2147483647	
173	I parameter for	I param	eter of current PI	D regulator. (second	-2147483648	RWE
	current PID (II)	I.	er set, used at hig		+2147483647	i i

Number	Axis Parameter	Description	Range [Unit]	Access
D parameter for		D parameter of current PID regulator. (second	-2147483648	RWE
	current PID (II)	parameter set, used at higher speed)	+2147483647	
175	I-Clipping parameter for current PID (II)	I-Clipping parameter of current PID regulator. (second parameter set, used at higher speed)	-2147483648 +2147483647	RWE
176	Threshold speed for current PID	parameter set.	-2147483648 +2147483647 [rpm]	RWE
177	Start current	Motor current for controlled commutation. This parameter is used in commutation mode 1, 4, 5 and in initialization of sine.	0 +4294967295 [mA]	RWE
178	Tachometer signal	0 Tachometer signal off (default). 1 Tachometer signal on. The output pin toggles on each hall sensor event.	0/1	RWE
200	Current PID error	Actual error of current PID regulator	-2147483648 +2147483647	R
201	Current PID error sum	Sum of errors of current PID regulator	-2147483648 +2147483647	R
209	Actual encoder position	Actual encoder position / counter value	-2147483648 +2147483647	R
226	Position PID error	Actual error of position PID regulator	-2147483648 +2147483647	R
227	Position PID error sum	Sum of errors of position PID regulator	-2147483648 +2147483647	R
228	Velocity PID error	Actual error of velocity PID regulator	-2147483648 +2147483647	R
229	Velocity PID error sum	Sum of errors of velocity PID regulator	-2147483648 +2147483647	R
230	P parameter for position PID (II)	P parameter of position PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
231	I parameter for position PID (II)	I parameter of position PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
232		D parameter of position PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
233	I-Clipping parameter for position PID (II)	I-Clipping parameter of position PID regulator. (second parameter set) (A too high value causes overshooting at positioning mode.)	-2147483648 +2147483647	RWE
234	P parameter for velocity PID (II)	P parameter of velocity PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
235	I parameter for velocity PID (II)	I parameter of velocity PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
236	D parameter for velocity PID (II)	D parameter of velocity PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
237	I-Clipping parameter for velocity PID (II)	I-Clipping parameter of velocity PID regulator. (second parameter set, used at higher speed)	-2147483648 +2147483647	RWE
238	Mass inertia constant	Mass inertia constant. Compensates the rotor inertia of the motor.	-2147483648 +2147483647	RWE
239	BEMF constant	BEMF constant of the motor. Used for current, position, and velocity regulation. Feed forward control for current, position, and velocity regulation is disabled if BEMF constant is set to zero.	-2147483648 +2147483647 [rpm/(10V)]	RWE

Number	Axis Parameter	Description	Range [Unit]	Access
240	Motor coil	Resistance of motor coil. Used for current,	-2147483648	RWE
	resistance	position, and velocity regulation.	+2147483647 [mΩ]	
241	Init sine speed	Velocity for sine initialization. A positive sign initializes in right direction, a negative sign in left motor direction.	-32768 +32767 [rpm]	RWE
242	Init sine block offset CW	This parameter helps to tune hall sensor based initialization in a way, that the motor has the same velocity for left and right turn. It compensates for tolerance and hysteresis of the hall sensors. It is added to the Commutation offset upon CW turn initialization.	-32768 +32767	RWE
243	Init sine block offset CCW	This parameter helps to tune hall sensor based initialization in a way, that the motor has the same velocity for left and right turn. It compensates for tolerance and hysteresis of the hall sensors. It is added to the Commutation offset upon CCW turn initialization.	-32768 +32767	RWE
244	Init sine delay	Duration for sine initialization sequence. This parameter should be set in a way, that the motor has stopped mechanical oscillations after the specified time.		RWE
245	Overvoltage protection	1: Enable overvoltage protection.	0/1	RWE
246	Maximum PWM change per PID interval	Maximum PWM change per PID interval.	0 +1799	RWE
247	Sine Compensation Factor	Compensates the propagation delay of the MPU	0 +255	RWE
249	Init sine mode	0: Initialization in controlled sine commutation (determines the encoder offset) 1: Initialization in block commutation using hall sensors 2: Initialization in controlled sine commutation (use the previous set encoder offset)	-128 +127	RWE
250	Encoder steps	Encoder steps per rotation.	0 +4294967295	RWE
251	Encoder direction	Set the encoder direction in a way, that ROR increases position counter.	0/1	RWE
253	Number of motor poles	Number of motor poles.	+2 +254	RWE
254	Hall sensor invert	1: Hall sensor invert. Invert the hall scheme, e.g. used by some Maxon motors.	0/1	RWE

5.1 Axis Parameter Sorted by Functionality

The following section describes all axis parameters that can be used with the SAP, GAP, STAP and RSAP commands.

MEANING OF THE LETTERS IN COLUMN ACCESS:

Access	Related	Description
type	command(s)	
R	GAP	Parameter readable
W	SAP, AAP	Parameter writable
E	STAP, RSAP	Parameter automatically restored from EEPROM after reset or power-on. These parameters can be stored permanently in EEPROM using STAP command and also explicitly restored (copied back from EEPROM into RAM) using RSAP.

MOTOR/MODULE SETTINGS

Number	Axis Parameter	Description	Range [Unit]	Access
253	Number of	Number of motor poles.	+2 +254	RWE
	motor poles			
5	PWM limit	Set/get PWM limit (0% 100%).	0 1799	RWE
239	BEMF constant	BEMF constant of the motor. Used for current,	-2147483648	RWE
		position, and velocity regulation. Feed	+2147483647	
		forward control for current, position, and	[rpm/(10V)]	
		velocity regulation is disabled if BEMF		
		constant is set to zero.		
240	Motor coil	Resistance of motor coil. Used for current,		RWE
	resistance	position, and velocity regulation.	+2147483647 [mΩ]	
238	Mass inertia	Mass inertia constant. Compensates the rotor		RWE
	constant	inertia of the motor.	+2147483647	
136	PWM-Hysteresis	Compensates dead time of PWM and motor	0 +4294967295	RWE
		friction.		
25	Thermal winding	Thermal winding time constant for the used	0 +4294967295	RWE
	time constant	motor. Used for I2t monitoring.	[ms]	
26	I ² t limit	An actual I2t sum that exceeds this limit leads	0 +4294967295	RWE
	_	to increasing the I²t exceed counter.		_
27	I²t sum	Actual sum of the I ² t monitor.	0 +4294967295	R
28	I ² t exceed	Counts how often an I2t sum was higher than	0 +4294967295	RWE
20	counter	the I²t limit.	/· IV	14/
29	Clear I ² t	Clear the flag that indicates that the I ² t sum	(ignored)	W
20	exceeded flag	has exceeded the I²t limit.	0 /30/0/7305	DIA/E
30	Minute counter	Counts the module operational time in	0 +4294967295	RWE
2/5	0 1	minutes.	[min]	DIA/E
245	Overvoltage	1: Enable overvoltage protection.	0/1	RWE
246	protection Maximum PWM	Marianum DWM abana and DID interval	0 +1799	DVVC
240		Maximum PWM change per PID interval.	U +1/77	RWE
	change per PID			
	interval			

ENCODER/INITIALIZATION SETTINGS

Number	Axis Parameter	Description	Range [Unit]	Access
254	Hall sensor	1: Hall sensor invert. Invert the hall scheme,	0/1	RWE
	invert	invert e.g. used by some Maxon motors.		
250	Encoder steps	Encoder steps per rotation.	0 +4294967295	RWE
209	Actual encoder	Actual encoder position / counter value	-2147483648	R
	position	·	+2147483647	
251	Encoder direction	Set the encoder direction in a way, that ROR	0/1	RWE
		increases position counter.		
165	Actual encoder	This value represents the internal	-2147483648	RWE
	commutation	commutation offset.	+2147483647	
	offset	(0 max. encoder steps per rotation)		
177	Start current	Motor current for controlled commutation.	0 +4294967295	RWE
		This parameter is used in commutation mode	[mA]	
		1, 4, 5 and in initialization of sine.		
249	Init sine mode	0: Initialization in controlled sine	-128 +127	RWE
		commutation (determines the encoder offset)		
		1: Initialization in block commutation using		
		hall sensors		
		2: Initialization in controlled sine		
		commutation (use the previous set encoder		
		offset)		
241	Init sine speed	Velocity for sine initialization. A positive sign	-32768 +32767	RWE
		initializes in right direction, a negative sign in	[rpm]	
		left motor direction.	., .	
244	Init sine delay	Duration for sine initialization sequence. This	-32768 +32767	RWE
	Interstite detay	parameter should be set in a way, that the	[ms]	
		motor has stopped mechanical oscillations		
		after the specified time.		
14	velocity	Velocity to switch from controlled to hallFX™	-2147483648	RWE
		mode.	+2147483647	
	hallFX™	Set this value to a realistic velocity which the	[rpm]	
		motor can reach in controlled mode!		
159	Commutation	0: Block commutation with hall sensors	0 5	RWE
	mode	1: Sensorless block commutation (hallFXTM)		
		2: Sine commutation with hall sensors		
		3: Sine commutation with encoder		
		4: Controlled block commutation		
		5: Controlled sine commutation		
160	Re-Initialization	0: sine commutation is still re-initializing	0/1	RW
	of Sine	1: sine commutation is re-initialized		
		Attention: Depending on initialization mode,		
		stop motor before issuing this command!		
247	Sine	Compensates the propagation delay of the	0 +255	RWE
	Compensation	MPU		
	Factor			
167	Block PWM	0: PWM chopper on high side, HI on low side	-128 +127	RWE
	scheme	1: PWM chopper on low side, HI on high		
		2: PWM chopper on low side and high side		
242	Init sine block		-32768 +32767	RWE
	offset CW	based initialization in a way, that the motor		
		has the same velocity for left and right turn.		
		It compensates for tolerance and hysteresis of		
		the hall sensors. It is added to the		
		Commutation offset upon CW turn		
		commutation onest upon on turn		

Number	Axis Parameter	Description	Range [Unit]	Access
243	Init sine block	This parameter helps to tune hall sensor	-32768 +32767	RWE
	offset CCW	based initialization in a way, that the motor		
		has the same velocity for left and right turn.		
		It compensates for tolerance and hysteresis of		
		the hall sensors. It is added to the		
		Commutation offset upon CCW turn		
		initialization.		

PWM MODE

Number	Axis Parameter	Description	Range [Unit]	Access
153	Actual PWM duty	Get actual PWM duty cycle.	0 +1799	R
	cycle			
154	Target PWM	Get desired target PWM or set target PWM to	-1799+1799	RW
		activate PWM regulation mode. (+= turn motor		
		in right direction;		
		-= turn motor in left direction)		

TORQUE REGULATION MODE

Number	Axis Parameter	s Parameter Description		Access	
6	Max current	Set/get the max allowed motor current. This value can be temporarily exceeded marginal due to the operation of the current regulator.	0 +4294967295 [mA]	RWE	
150	Actual motor current	Get actual motor current.	0 +4294967295 [mA]	R	
155	Target current	Get desired target current or set target current to activate current regulation mode. (+= turn motor in right direction; -= turn motor in left direction)	-2147483648 +2147483647 [mA]	RW	
134	Current regulation loop delay	Delay of current limitation algorithm / PID current regulator.	0 +4294967295 [50µs]	RWE	
176	Threshold speed for current PID	Threshold speed for current regulation to switch between first and second current PID parameter set.	-2147483648 +2147483647 [rpm]	RWE	
168	P parameter for current PID (I)	P parameter of current PID regulator. (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE	
169	I parameter for current PID (I)	I parameter of current PID regulator. (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE	
170	D parameter for current PID (I)	D parameter of current PID regulator. (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE	
171	I-Clipping parameter for current PID (I)	I-Clipping parameter of current PID regulator. (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE	
172	P parameter for current PID (II)	P parameter of current PID regulator. (second parameter set, used at higher speed)	-2147483648 +2147483647	RWE	
173	I parameter for current PID (II)	I parameter of current PID regulator. (second parameter set, used at higher speed)	-2147483648 +2147483647	RWE	
174	D parameter for current PID (II)	D parameter of current PID regulator. (second parameter set, used at higher speed)	-2147483648 +2147483647	RWE	
175	I-Clipping parameter for current PID (II)	I-Clipping parameter of current PID regulator. (second parameter set, used at higher speed)	-2147483648 +2147483647	RWE	
200	Current PID error	Actual error of current PID regulator	-2147483648 +2147483647	R	
201	Current PID error sum	Sum of errors of current PID regulator	-2147483648 +2147483647	R	

VELOCITY REGULATION MODE

Number	Axis Parameter	Description	Range [Unit]	Access
3	Actual speed	The actual velocity of the motor.	-2147483648 +2147483647 [rpm]	R
2	Target speed	Set/get the desired target velocity.	-2147483648 +2147483647 [rpm]	RW
9	Motor halted velocity	If the actual speed is below this value the motor halted flag will be set.	-2147483648 +2147483647 [rpm]	RWE
133	PID regulation loop delay	PID calculation delay. Set PID operational frequency.	0 +4294967295 [ms]	RWE
8	Threshold speed for velocity PID	Threshold speed for velocity regulation to switch between first and second velocity PID parameter set.	-2147483648 +2147483647 [rpm]	RWE
140	P parameter for velocity PID (I)	P parameter of velocity PID regulator (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE
141	I parameter for velocity PID (I)	I parameter of velocity PID regulator (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE
142	D parameter for velocity PID (I)	D parameter of velocity PID regulator (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE
143	I-Clipping parameter for velocity PID (I)	I-Clipping parameter of velocity PID (first parameter set, used at lower speed)	-2147483648 +2147483647	RWE
234	P parameter for velocity PID (II)	P parameter of velocity PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
235	I parameter for velocity PID (II)	I parameter of velocity PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
236	D parameter for velocity PID (II)	D parameter of velocity PID regulator. (second parameter set)	-2147483648 +2147483647	RWE
237	I-Clipping parameter for velocity PID (II)	I-Clipping parameter of velocity PID regulator.	-2147483648 +2147483647	RWE
228	Velocity PID error	Actual error of PID velocity regulator	-2147483648 +2147483647	R
229	Velocity PID error sum	Sum of errors of PID velocity regulator	-2147483648 +2147483647	R

VELOCITY RAMP PARAMETER

Number	Axis Parameter	Description	Range [Unit]	Access
4	Max. ramp	The maximum velocity used for velocity ramp	-2147483648	RWE
	velocity	in velocity mode and positioning mode. Set	+2147483647	
		this value to a realistic velocity which the	[rpm]	
		motor can reach!		
11	Acceleration	Acceleration parameter for ROL, ROR, and the	-2147483648	RWE
		velocity ramp of MVP.	+2147483647	
			[RPM/s]	
13	Ramp generator	The actual speed of the velocity ramp used	-2147483648	R
	speed	for positioning and velocity mode.	+2147483647	
			[rpm]	
146	Activate ramp	1: Activate velocity ramp generator for	0/1	RWE
		position PID control. Allows usage of		
		acceleration and positioning velocity for MVP		
		command.		

POSITION REGULATION MODE

Number	Axis Parameter	Description	Range [Unit]	Access
1	Actual position	Set/get the position counter without moving	-2147483648	RW
		the motor.	+2147483647	
0	Target position	The target position of a currently executed	-2147483648	RW
		ramp.	+2147483647	
7	MVP Target	Maximum velocity at which end position can	-2147483648	RWE
	reached velocity	be set. Prevents issuing of end position when	+2147483647	
		the target is passed at high velocity.	[rpm]	
10	MVP target	Maximum distance at which the position end	-2147483648	RWE
	reached distance	flag is set.	+2147483647	
161	Encoder set NULL	1: set position counter to zero at next N	0/1	RWE
		channel event.		
162	Switch set NULL	1: set position counter to zero at next switch	0/1	RWE
		event.		
163	Encoder clear set	1: set position counter to zero only once	0/1	RWEP
	NULL	0: always at an N channel event, respectively		
		switch event.		
12	Threshold speed	Threshold speed for position regulation to	-2147483648	RWE
	for position PID	switch between first and second position PID	+2147483647	
		parameter set.	[rpm]	
130	P parameter for	P parameter of position PID regulator (first	-2147483648	RWE
	position PID (I)	parameter set)	+2147483647	
131	I parameter for	I parameter of position PID regulator (first	-2147483648	RWE
	position PID (I)	parameter set)	+2147483647	
132	D parameter for	D parameter of position PID regulator (first	-2147483648	RWE
	position PID (I)	parameter set)	+2147483647	
135	I-Clipping	I-Clipping parameter of position PID regulator	-2147483648	RWE
	parameter for	(first parameter set) (A too high value causes	+2147483647	
	position PID (I)	overshooting at positioning mode.)		
230	P parameter for	P parameter of position PID regulator. (second	-2147483648	RWE
	position PID (II)	parameter set)	+2147483647	
231	I parameter for	I parameter of position PID regulator. (second	-2147483648	RWE
	position PID (II)	parameter set)	+2147483647	
232	D parameter for	D parameter of position PID regulator.		RWE
	position PID (II)	(second parameter set)	+2147483647	
233	I-Clipping	I-Clipping parameter of position PID regulator.	-2147483648	RWE
	-	(second parameter set) (A too high value	+2147483647	
	position PID (II)	causes overshooting at positioning mode.)		
226	Position PID	Actual error of PID position regulator	-2147483648	R
	error		+2147483647	
227	Position PID	Sum of errors of PID position regulator	-2147483648	R
	error sum		+2147483647	

STATUS INFORMATION

Number	Axis Parameter	Description	Range [Unit]	Access
151	Actual voltage	Actual supply voltage.	0 +4294967295	R
152	Actual driver	Actual temperature of the motor driver.	0 +4294967295	R
	temperature			
156	Error/Status flags	Bit 0: Overcurrent flag. This flag is set if	0+4294967295	R
		overcurrent limit is exceeded.		
		Bit 1: Undervoltage flag. This flag is set if		
		supply voltage to low for motor operation.		
		Bit 2: Overvoltage flag. This flag is set if the		
		motor becomes switched off due to		
		overvoltage.		
		Bit 3: Overtemperature flag. This flag is set if		
		overtemperature limit is exceeded.		
		Bit 4: Motor halted flag. This flag is set if		
		motor has been switched off.		
		Bit 5: Hall error flag. This flag is set upon a		
		hall error.		
		Bit 6: unused		
		Bit 7: unused		
		Bit 8: PWM mode active flag.		
		Bit 9: Velocity mode active flag		
		Bit 10: Position mode active flag.		
		Bit 11: Torque mode active flag.		
		Bit 12: unused		
		Bit 13: unused		
		Bit 14: Position end flag. This flag is set if the		
		motor has been stopped at the target		
		position.		
		Bit 15: unused		
		Bit 16: unused for TMCM-1630 (value should		
		be 0 or 1)		
		Bit 17: I2t exceeded flag. This flag is set if the		
		I^2 t sum exceeded the I^2 t limit of the motor.		
		(reset by SAP 29 or after the time specified by		
		the I ² t thermal winding time constant)		
		and I thermat trinaing time constant,		
		Flag 0 to 15 are automatically reset. Only flag		
		16 and 17 must be cleared manually.		
157	Module supply	Get actual supply current of the module.	0 +4294967295	R
171	current	det actual supply current of the module.	[mA]	1
	Carrent		[ניייר]	1

SWITCHES AND ANALOG INPUTS

Number	Axis Parameter	Descrip	tion		Range [Unit]	Access
20	Switch 2 active	0: inacti	ve		0/1	R
		1: active				
		(IO con	nector pin 7 / stop	_IN)		
21	Switch 1 active	0: inacti	ve		0/1	R
		1: active	!			
		(IO con	nector pin 5 / Dir_I	N)		
22	Potentiometer 1		ie of the analog in		0 4095	R
			velocity).	,		
23	Potentiometer 2			input (IO connector	0 4095	R
		pin 3 / t	_	,		
164	Activate stop	Bit 0	Left stop switch	When this bit is set	0 3	RWE
	switch		enable	the motor will be		•
				stopped if it is		
				moving in negative		
				direction and the		
				left stop switch		
				input becomes		
				active		
		Bit 1	Right stop switch	When this bit is set		
			enable	the motor will be		
				stopped if it is moving in positive		
				direction and the		
				right stop switch		
				input becomes		
				active		
		Please	see parameter 16	6 for selecting the		
			itch input polarity.			
166	Stop switch	Bit 0	Left stop switch	Bit set: Left stop	0 3	RWE
	polarity		polarity	switch input is high		
	polarit,			active		
				Bit clear: Left stop		
				switch input is low		
				active		
		Bit 1	Right stop switch	Bit set: Right stop		
			polarity	switch input is high		
				active		
				Bit clear: Right stop		
				switch input is low active		
178	Tachometer	0	Tachometer signa		0/1	RWE
1/0					0/1	KVVE
	signal	1		on. The output pin		
			toggles on each h	all sensor event.		

6 Global Parameter Overview (SGP, GGP, STGP, RSGP)

The following section describes all global parameters that can be used with the SGP, GGP, STGP and RSGP commands.

GLOBAL PARAMETERS ARE GROUPED INTO 3 BANKS:

- bank 0 (global configuration of the module)
- bank 1 (normally not available; for customer specific extensions of the firmware)
- bank 2 (user TMCL variables)

6.1 Bank 0

PARAMETERS 64... 255

Parameters below 63 configure stuff like the serial address of the module RS485 baud rate or the telegram pause time. Change these parameters to meet your needs. The best and easiest way to do this is to use the appropriate functions of the TMCL-IDE. The parameters between 64 and 85 are stored in EEPROM only. A SGP command on such a parameter will always store it permanently and no extra STGP command is needed.

Take care when changing these parameters, and use the appropriate functions of the TMCL-IDE to do it in an interactive way.

MEANING OF THE LETTERS IN COLUMN ACCESS:

- R = readable (GGP)
- W = writeable (SGP)
- E = automatically restored from EEPROM after reset or power-on.

Number	Global parameter	Desci	ription		Range	Access
64	EEPROM magic	Setting this parameter to a different value as \$E4 will		0 255	RWE	
		cause	re-initialization of t	the axis and global parameters		
		(to fa	ctory defaults) afte	r the next power up. This is		
		usefu	l in case of miss-cor	nfiguration.		
65	RS485 baud rate	0	9600 baud	Default	0 7	RWE
		1	14400 baud			
		2	19200 baud			
		3	28800 baud			
		4	38400 baud			
		_ 5	57600 baud			
		6	76800 baud	Not supported by Windows!		
		7	(115200 baud)			
66	serial address	The r	nodule (target) addr	ess for RS485 and virtual COM	0 255	RWE
		port				
73	configuration	Write	: 1234 to lock the EE	PROM, 4321 to unlock it.	0/1	RWE
	EEPROM lock flag	Read:	1=EEPROM locked, 0	=EEPROM unlocked.		
75	telegram pause time	Pause	Pause time before the reply via RS485 is sent.			RWE
76	serial host address			reply telegrams sent back via	0 255	RWE
		RS485		, , ,		
77	auto start mode	0: D	o not start TMCL	application after power up	0/1	RWE
		(defa		The state of the state of		
		_		automatically after power up.		

Number	Global parameter	Description	Range	Access
81	TMCL code	Protect a TMCL program against disassembling or	0, 1, 2, 3	RWE
	protection	overwriting.		
		0 – no protection		
		1 - protection against disassembling		
		2 – protection against overwriting		
		3 – protection against disassembling and overwriting		
		If you switch off the protection against disassembling,		
		the program will be erased first!		
		Changing this value from 1 or 3 to 0 or 2, the TMCL		
		program will be wiped off.		
85	do not restore user	0 – user variables are restored (default)	0/1	RWE
	variables	1 – user variables are not restored		
128	TMCL application	0 -stop	0 3	R
	status	1 – run		
		2 – step		
		3 – reset		
129	download mode	0 – normal mode	0/1	R
		1 – download mode		
130	TMCL program	The index of the currently executed TMCL instruction.	0 2047	R
	counter			
132	tick timer	A 32 bit counter that gets incremented by one every	0	RW
		millisecond. It can also be reset to any start value.	+4294967295	
255	suppress reply	0 - reply (default)	0/1	RW
		1 - no reply		

6.2 Bank 1

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands (see section 4.6.26) these variables form the interface between extensions of the firmware (written in C) and TMCL applications.

6.3 Bank 2

Bank 2 contains general purpose 32 bit variables for the use in TMCL applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Up to 256 user variables are available.

MEANING OF THE LETTERS IN COLUMN ACCESS:

- R = readable (GGP)
- W = writeable (SGP)
- E = automatically restored from EEPROM after reset or power-on.

Number	Global parameter	Description	Range	Access
0 55	general purpose variable #0 55	for use in TMCL applications	-2 ³¹ +2 ³¹	RWE
56 255	general purpose variables #56 #255	for use in TMCL applications	-2 ³¹ +2 ³¹	RW

7 PID Regulation

7.1 Structure of the Cascaded Motor Regulation Modes

The TMCM-1630 supports current, velocity, and position PID regulation modes for motor control in different application areas. These regulation modes are cascaded as shown in Figure 7.1. The specific modes are explained in the following sections.

Figure 7.1 Cascaded PID regulation

7.2 PWM Regulation

The PWM regulation mode is the most direct control mode for the TMCM-1630. Thereby, a target PWM given by axis parameter 154 is adjusted directly without limiting the motor current. The sign of the target PWM controls the motor rotation direction.

7.3 Current PID Regulation

Based on the PWM regulation the current regulation mode uses a PID regulator to adjust a desired motor current. This target current can be set by axis parameter 155. The maximal current is limited by axis parameter 6.

The PID regulation uses five basic parameters: The P, I, D and I-Clipping value as well as the timing control value. The timing control value (current regulation loop delay, axis parameter 134) determines how often the current regulation is invoked. It is given in multiple of 50µs:

$$t_{PIDDELAY} = x_{PIDRLD} \cdot 50 \mu s$$

 $t_{PIDDELAY}$ = resulting delay between two PID calculations x_{PIDRLD} = current regulation loop delay parameter

For most applications it is recommended to leave this parameter unchanged at its default of 50µs. Higher values may be necessary for very slow and less dynamic drives. The structure of the current PID regulator is shown in Figure 7.2. It has to be parameterized with respect to a given motor.

Figure 7.2 Current PID regulation

Parameter	Description				
I_{ACTUAL}	Actual motor current				
I_{TARGET}	Target motor current				
I_{Max}	Max. motor current				
e _{LAST}	Error value of the last PID calculation				
e _{SUM}	Error sum for integral calculation				
P _{PARAM}	Current P parameter				
$I_{\sf PARAM}$					
D _{PARAM}					
I_{CLIP}	Current I-Clipping parameter				
PWM _{LIMIT}	PWM Limit				
PWM _{NEW}	New target PWM value				

To parameterize the current PID regulator for a given motor, first set the P, I and D parameter of both parameter sets to zero. Then start the motor by using a low target current (e.g. 1000mA). Then modify the current P parameter (II). This is the P parameter of parameter set 2. Start from a low value and go to a higher value, until the actual current nearly reaches the desired target current.

After that, do the same for the current I parameter (II) with the current D parameter (II) still set to zero. For the current I parameter (II), there is also a clipping value. The current I clipping parameter (II) should be set to a relatively low value to avoid overshooting, but high enough to reach the target current. The current D parameter (II) can still be set to zero.

After having found suitable values for parameter set 2, the first parameter set (PID Parameter Set 1) should be set to lower values, to minimize overshooting during zero-time of motor start. Then stop the motor and start again to test the current regulation settings. If the motor current is overshot during zero-time, set the PID parameter set 1 once more to lower values.

For all tests set the motor current limitation to a realistic value, so that your power supply does not become overloaded during acceleration phases. If your power supply goes to current limitation, the unit may reset or undetermined regulation results may occur.

7.4 Velocity PID Regulation

Based on the current regulation the motor velocity can be controlled by the velocity PID regulator. Also, the velocity PID regulator uses a timing control value (*PID regulation loop delay*, axis parameter 133) which determines how often the PID regulator is invoked. It is given in multiple of 1ms:

$$t_{PIDDELAY} = x_{PIDRLD} \cdot 1$$
ms

 $t_{PIDDELAY}$ = resulting delay between two PID calculations

 x_{PIDRLD} = PID regulation loop delay parameter

For most applications it is recommended to leave this parameter unchanged at its default of 1ms. Higher values may be necessary for very slow and less dynamic drives. The structure of the velocity PID regulator is shown in Figure 7.3.

Figure 7.3: Velocity PID regulation

Parameter	Description				
V _{ACTUAL}	Actual motor speed				
V _{RAMPGEN}	Target speed of ramp generator				
V _{Max}	Max. speed				
e _{LAST}	Error value of the last PID calculation				
e _{SUM}	Error sum for integral calculation				
P _{PARAM}	Velocity P parameter				
$I_{\sf PARAM}$	Velocity I parameter				
D _{PARAM}	Velocity D parameter				
$I_{ extsf{CLIP}}$	Velocity I-Clipping parameter				
${ m I}_{\sf Max}$	Max. current				
I _{Target}	Target current for current PID regulator				

For parameterizing the PID regulator set the *velocity I parameter* and *velocity D parameter* to zero and start the motor by using a medium target velocity (e.g. 3000 rpm). Then modify the *velocity P parameter*, only. Start from a low value and go to a higher value, until the actual motor speed reaches 80 or 90% of the desired motor speed. The rest of the speed difference can be reduced by using a high I clipping value (e.g. 500000) and a slow increase of the *velocity I parameter* with the *velocity D parameter* still set to zero. For the first tests, both PID parameter sets can be set equal.

7.5 Velocity Ramp Generator

For a controlled start up of the motor's velocity a velocity ramp generator can be activated/deactivated by axis parameter 146. The ramp generator uses the maximal allowed motor velocity (axis parameter 4), the acceleration (axis parameter 11) und the desired target velocity (axis parameter 2) to calculate a ramp generator velocity for the following velocity PID regulator.

7.6 Position PID Regulation

Based on the current and velocity PID regulators the TMCM-1630 supports a positioning mode based on encoder or hall sensor position. During positioning the velocity ramp generator can be activated to enable motor positioning with controlled acceleration or disabled to support motor positioning with max allowed speed. The structure of the position PID regulator is shown in Figure 7.4.

Figure 7.4 Positioning PID regulation

Parameter	Description					
n _{ACTUAL}	Actual motor position					
n _{TARGET}	Target motor position					
e _{LAST}	Error value of the last PID calculation					
e _{SUM}	Error sum for integral calculation					
P _{PARAM}	Position P parameter					
I _{PARAM}	Position I parameter					
D _{PARAM}	Position D parameter					
I_{CLIP}	Position I-Clipping parameter					
V _{MAX}	Max. allowed velocity					
V _{TARGET}	New target velocity for ramp generator					

The PID regulation uses five basic parameters. The P, I, D, and I-Clipping value as well as a timing control value. The timing control value (*PID regulation loop delay* - axis parameter 133) determines how often the PID regulator is invoked. It is given in multiple of 1ms:

$$t_{PIDDELAY} = x_{PIDRLD} \cdot 1$$
ms

 $t_{PIDDELAY}$ = the resulting delay between two PID calculations

 x_{PIDRLD} = PID regulation loop delay parameter

For most applications it is recommended to leave this parameter unchanged at its default of 1ms. Higher values may be necessary for very slow and less dynamic drives.

Based on the velocity PID regulator the position PID regulator can be parameterized as P regulator in the simplest case. Therefore, disable the velocity ramp generator and set *position P, I, and D parameters* to zero. Now, set a target position and increase the *position P parameter* until the motor reaches the target position approximately.

After finding a good position P parameter the velocity ramp generator can be switched on again. Based on the max. positioning velocity (axis parameter 4) as well as the acceleration (axis parameter 11) value the ramp generator automatically calculates the slow down point, i.e. the point at which velocity is to be reduced in order to stop at the desired target position. Reaching the target position is signaled by setting the position end flag.

In order to minimize the time until this flag becomes set, a positioning tolerance (MVP target reached distance) can be chosen by axis parameter 10. Since the motor typically is assumed not to signal target reached when the target was just passed in a short moment at a high velocity, additionally a maximum target reached velocity (MVP target reached velocity) can be defined by axis parameter 7. A value of zero is the most universal, since it implies that the motor stands still at the target. But when a fast rising of the Position end flag is desired, a higher value for MVP target reached velocity parameter will save a lot of time. The best value should be tried out in the actual application. The correlation of axis parameter 10, 7, the target position and the position end flag are summarized in Figure 7.5.

Figure 7.5 Positioning algorithm

Depending on the motor and mechanics respectively, a bit of oscillation is normal, in the best case it can be reduced to be at least +1-1 encoder step, because otherwise the regulation cannot keep the position.

7.7 Parameter Sets for PID Regulation

Every PID regulation provides two parameter sets, which are used as follows:

- Below a specified velocity threshold the PID regulator uses a combination of parameter set 1 and parameter set 2
- Above the velocity threshold the PID regulator uses only parameter set 2. If the velocity threshold is set to zero, parameter set 2 is used all the time. (The switch over between both parameter sets is soft.)

Figure 7.5 Transition between PID parameter sets

The velocity thresholds for current, velocity, and position PID regulation can be set as follows:

- axis parameter 176: velocity threshold for current PID regulator
- axis parameter 8: velocity threshold for velocity PID regulator
- axis parameter 12: velocity threshold for position PID regulator

<u>Attention:</u> For all tests set the motor current limitation to a realistic value, so that your power supply does not become overloaded during acceleration phases. If your power supply goes to current limitation, the unit may reset or undetermined regulation results may occur.

8 Temperature Calculation

Axis parameter 152 delivers the actual ADC value of the motor driver. This ADC value can be converted to a temperature in °C as follows:

ADC = $actual\ value\ of\ GAP\ 152$

B = 3434 (material constant)

$$R_{\text{NTC}} = \frac{9011,2}{ADC} - 2,2$$

$$T = \frac{B * 298,16}{B + (\ln\left(\frac{R_{NTC}}{10}\right) * 298,16} - 273,16 \,^{\circ}C$$

Example 1:

ADC = 1000 R_{NTC} ≈ 6,81 T ≈ 35°C Example 2: ADC = 1200 $R_{NTC} \approx 5.31$ $T \approx 42^{\circ}C$

9 I2t Monitoring

The I²t monitor determines the sum of the square of the motor current over a given time. The integrating time is motor specific. In the datasheet of the motor this time is described as *thermal winding time constant* and can be set for each module using axis parameter 25. The value of the actual I²t sum can be read by axis parameter 27. With axis parameter 26 the default value for the I²t limit can be changed (default: 160000). If the actual I²t sum exceeds the I²t limit of the motor, flag 17 (axis parameter 156) is set and the motor pwm is set to zero as long as the I²t exceed flag is set. The actual regulation mode will not be changed. Furthermore, the I²t exceed counter is increased once every second. The I²t exceed flag can be cleared manually using parameter 29 but only after the cool down time given by the *thermal winding time constant* has passed. The I²t exceed flag will not be reset automatically. The I²t limit can be determined as follows:

Example:

$$t_{tw} = 13.2s = 13200$$
ms

 t_{tw} is the thermal winding time constant given by the motor datasheet

$$t_{PIDDELAY} = x_{PIDRLD} \cdot 100 \text{ [}\mu\text{s]} = x_{PIDRLD} \cdot \frac{1}{10000} \text{[}\text{s]}$$

 $t_{PIDDELAY}$ is the resulting delay between two current PID calculations x_{PIDRLD} is the current regulation loop delay parameter (default: 1)

 I^2t limits for an average current of a) 1000 mA, b) 2000 mA, c) 3000 mA and d) 4000 mA over the thermal winding time. (current regulation loop delay=1)

a) I²t limit = $1000 * 1000 * t_{PIDDELAY} * 100 = 10.000$ b) I²t limit = $2000 * 2000 * t_{PIDDELAY} * 100 = 40.000$ c) I²t limit = $3000 * 3000 * t_{PIDDELAY} * 100 = 90.000$ d) I²t limit = $4000 * 4000 * t_{PIDDELAY} * 100 = 160.000$

10 Life Support Policy

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

© TRINAMIC Motion Control GmbH & Co. KG 2012

Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.

Specifications are subject to change without notice.

11 Revision History

11.1 Firmware Revision

Version	Date	Author	Description
1.0	2011-MAY-16	OK	First version
1.46	2011-SEP-27	ED	New version including hall FX parameters
1.47	2012-JAN-26	ED	hallFX parameters corrected
1.48	2012-DEC-12	ED	Axis parameter 178 added.

11.2 Document Revision

Version	Date	Author SD – Sonja Dwersteg	Description
1.00	2011-JUN-06	SD	Initial version
1.10	2011-NOV-07	SD	Complete revision including parameter descriptions for hallFX TM .
1.11	2012-JUN-11	SD	Hall signals corrected (connector description).
1.13	2012-AUG-28	SD	Minor changes
1.14	2012-AUG-29	SD	Axis parameters 164 and 166 added.
1.15	2013-JAN-03	SD	Axis parameter 178 (tachometer signal) added.

12 References

[TMCM-1630]TMCM-1630 Hardware Manual[BB-1630]BB-1630 Hardware Manual[TMCL-IDE]TMCL-IDE User Manual[TMCL-BLDC]TMCL-BLDC User Manual[TMC603]TMC603 Datasheet

Please refer to our homepage http://www.trinamic.com.