Convexité

1 Parties convexes d'un espace vectoriel réel

Dans cette section, E désigne un R-espace vectoriel réel.

Définition 1.1 Barycentre

Soient $(x_1, \dots, x_n) \in \mathbb{E}^n$ et $(\lambda_1, \dots, x_n) \in \mathbb{R}^n$ tel que $\Lambda = \sum_{i=1}^n \lambda_i \neq 0$. On appelle **barycentre** de $\{(x_1, \lambda_1), \dots, (x_n, \lambda_n)\}$ le vecteur $\frac{1}{\Lambda} \sum_{i=1}^n \lambda_i x_i$.

REMARQUE. Un barycentre n'est donc rien d'autre qu'une moyenne pondérée.

Définition 1.2 Segment

Soit $(a, b) \in E^2$. On appelle **segment** [a, b] l'ensemble $\{(1 - \lambda)a + \lambda b, \lambda \in [0, 1]\}$.

Proposition 1.1 Segment et barycentres

Soit $(a, b) \in E^2$. Le segment [a, b] est l'ensemble des barycentre à coefficients **positifs** de a et b.

Définition 1.3 Partie convexe

On dit qu'une partie \mathcal{C} de E est **convexe** si pour tout $(a,b) \in \mathcal{C}^2$, $[a,b] \subset \mathcal{C}$.

Exemple 1.1

Un segment d'un \mathbb{R} -espace vectoriel est une partie convexe de cet espace vectoriel.

Exemple 1.2

Un sous-espace vectoriel ou un sous-espace affine d'un R-espace vectoriel est une partie convexe de cet espace vectoriel.

Exemple 1.3

Toute boule (fermée ou ouverte) est une partie convexe d'un \mathbb{R} -espace vectoriel.

Exercice 1.1

Montrer que les parties convexes de \mathbb{R} sont les intervalles.

Proposition 1.2 Convexité et barycentres

Une partie \mathcal{C} de E est convexe si et seulement si tout barycentre à coefficients **positifs** de vecteurs de \mathcal{C} appartient à \mathcal{C} .

2 Fonctions convexes

Dans cette section, I désigne un intervalle de \mathbb{R} .

Définition 2.1 Convexité

Soit $f: I \to \mathbb{R}$ une application.

• On dit que f est **convexe** sur I si :

$$\forall (a,b) \in I^2, \ \forall t \in [0,1], \ f((1-t)a+tb) \leq (1-t)f(a)+tf(b)$$

• On dit que f est **concave** sur I si :

$$\forall (a,b) \in I^2, \ \forall t \in [0,1], \ f((1-t)a+tb) \ge (1-t)f(a)+tf(b)$$

Remarque. Pour tout $t \in [0,1]$, le réel (1-t)a+tb est compris entre a et b et appartient donc à I puisque I est un intervalle.

Remarque. Une application $f: I \to \mathbb{R}$ est concave sur I si et seulement si -f est convexe sur I.

Soit $(a, b) \in I^2$. Pour $t \in [0, 1]$, posons $x_t = (1 - t)a + tb$ et notons

- F_t le point du graphe de f d'abscisse x_t ;
- S_t le point du segment $[F_0F_1]$ d'abscisse x_t .

Lorsque t décrit [0,1], S_t décrit le segment $[F_0F_1]$ et F_t décrit l'arc du graphe compris entre F_0 et F_1 . La condition de convexité dit simplement que F_t est toujours situé **au-dessous** de S_t . Géométriquement, tout arc du graphe de f est situé **au-dessous** de la corde correspondante.

De manière similaire, dire que f est concave signifie tout arc du graphe de f est situé **au-dessus** de la corde correspondante.

Définition 2.2 Épigraphe

Soit $f: I \to \mathbb{R}$. On appelle **épigraphe** de f l'ensemble $\{(x, y) \in I \times \mathbb{R} \mid y \ge f(x)\}$.

L'épigraphe d'une fonction f est la portion de \mathbb{R}^2 située au-dessus du graphe de f.

Proposition 2.1 Épigraphe et convexité

Soit $f: I \to \mathbb{R}$. Alors f est convexe si et seulement si son épigraphe est une partie convexe de \mathbb{R}^2 .

Proposition 2.2 Inégalité des trois cordes

Soit $f: I \to \mathbb{R}$. Alors f est convexe si et seulement si pour tout $(a, b, c) \in I^3$ tel que a < b < c

$$\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}$$

L'inégalité des trois cordes s'interprète de la manière suivante

pente de la corde AB ≤ pente de la corde AC ≤ pente de la corde BC

Régularité d'une fonction convexe

Soit f une fonction convexe sur un intervalle I. L'inégalité des trois cordes montre que le taux de variation en un point $a \in I$ est croissant sur I. Le théorème de la limite monotone permet d'affirmer que le taux de variation en a admet une limite finie à gauche et à droite si $a \in \mathring{I}$. Ainsi f est dérivable à gauche et à droite sur \mathring{I} et donc a fortiori continue sur \mathring{I} . Néanmoins, f n'est pas nécessairement continue sur I si I est fermé : il peut y avoir discontinuité au extrémités de I.

3 Lien avec la dérivabilité

Proposition 3.1

Soit $f: I \to \mathbb{R}$ une application dérivable sur I.

- (i) f est convexe sur I si et seulement si f' est croissante sur I.
- (ii) f est concave sur I si et seulement si f' est décroissante sur I.

Corollaire 3.1

Soit $f: I \to \mathbb{R}$ une application deux fois dérivable sur I.

- (i) f est convexe sur I si et seulement si $f'' \ge 0$ sur I.
- (ii) f est concave sur I si et seulement si $f'' \le 0$ sur I.

Exemple 3.1

- In est concave sur \mathbb{R}_+^* .
- exp est convexe sur \mathbb{R} .
- sin est concave sur $[0, \pi]$.
- cos est concave sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- tan est convexe sur $\left[0, \frac{\pi}{2}\right]$.
- arcsin est convexe sur [0, 1].
- arccos est concave sur [0, 1].
- arctan est concave sur \mathbb{R}_+ .

Proposition 3.2 Position par rapport aux tangentes

Soit $f: I \to \mathbb{R}$ une application dérivable sur I.

- 1. Si f est convexe sur I, alors pour tout $(a, x) \in I^2$, $f(x) \le f(a) + f'(a)(x a)$.
- 2. Si f est concave sur I, alors pour tout $(a, x) \in I^2$, $f(x) \ge f(a) + f'(a)(x a)$.

Exemple 3.2

- $\forall x \in]-1, +\infty[, \ln(1+x) \le x.$
- $\forall x \in \mathbb{R}, e^x \ge 1 + x$.
- $\forall x \in [-\pi, \pi], |\sin x| \le |x|.$
- $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, |\tan x| \ge |x|.$
- $\forall x \in [-1, 1], |\arcsin x| \ge |x|.$
- $\forall x \in \mathbb{R}$, $|\arctan x| \le |x|$.

4 Convexité généralisée et applications

A nouveau, désigne un intervalle de ℝ.

Définition 4.1 Convexité généralisée

Soient $f: I \to \mathbb{R}, (x_k)_{1 \le k \le n} \in I^n$ et $(\lambda_k)_{1 \le k \le n} \in (\mathbb{R}_+)^n$ tel que $\sum_{k=1}^n \lambda_k = 1$.

(i) Si f est convexe, alors

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k)$$

(ii) Si f est concave, alors

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \ge \sum_{k=1}^{n} \lambda_k f(x_k)$$

Remarque. La définition de la convexité correspond au cas n = 2.

Remarque. Pour tout $(\lambda_k)_{1 \le k \le n} \in \mathbb{R}^n_+$ tel que $\sum_{k=1}^n \lambda_k = 1$, le réel $\sum_{k=1}^n \lambda_k x_k$ est compris entre $\min_{1 \le k \le n} x_k$ et $\max_{1 \le k \le n} x_k$ et appartient donc à I puisque I est un intervalle.

Remarque. Ceci signifie que l'image d'un barycentre de réels par une fonction convexe est au-dessous du barycentre des images.

- Inégalités de moyennes

Soit $(x_k)_{1 \le k \le n} \in (\mathbb{R}_+^*)^n$.

- $H_n = \frac{n}{\sum\limits_{k=1}^n \frac{1}{x_k}}$ s'appelle la moyenne harmonique des réels x_1, \dots, x_n .
- $G_n = \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}}$ s'appelle la **moyenne géométrique** des réels x_1, \dots, x_n .
- $A_n = \frac{1}{n} \sum_{k=1}^n x_k$ s'appelle la moyenne arithmétique des réels x_1, \dots, x_n .

En utilisant la concavité du logarithme, on prouve :

$$H_n \le G_n \le A_n$$