

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

AL

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G01N 33/574, 33/68, C07K 14/47, G01N 33/577		A1	(11) International Publication Number: WO 98/10291
(21) International Application Number: PCT/GB97/02394		(22) International Filing Date: 5 September 1997 (05.09.97)	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(30) Priority Data: 9618600.2 6 September 1996 (06.09.96) GB 9707132.8 8 April 1997 (08.04.97), GB		(71) Applicant (for all designated States except US): CENTER FOR CLINICAL & BASIC RESEARCH [DK/DK]; Ballerup Byvej 222, DK-2750 Ballerup (DK).	(72) Inventors; and (75) Inventors/Applicants (for US only): BYRJALSEN, Inger [DK/DK]; Melanders Vaenge 5, DK-2970 Hoersholm (DK). LARSEN, Peter, Mose [DK/DK]; Vestervang 10, DK-8000 Aarhus C (DK). FEY, Stephen, John [GB/DK]; Vestervang 7, DK-8000 Aarhus C (DK).
(74) Agent: SMART, Peter, J.; W.H. Beck, Greener & Co., 7 Stone Buildings, Lincoln's Inn, London WC2A 3SZ (GB).		(73) Claims: 1-10	(76) Published With international search report.
(54) Title: BIOCHEMICAL MARKERS OF THE HUMAN ENDOMETRIUM			
(57) Abstract Assay methods are provided for detection or quantitation of any of several proteins which are specifically produced in the endometrium in association with hyperplasia, adenocarcinoma or the proliferative phase of the endometrium. The relevant proteins have been identified by 2D gel electrophoresis with subsequent sequence identification by mass spectroscopic finger printing of tryptic digests.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

-1-

BIOCHEMICAL MARKERS OF THE HUMAN ENDOMETRIUM

The endometrium is the mucous lining of the uterine cavity. During the menstrual cycle, the endometrium is the organ in the body that shows the greatest changes under the influence of the sex hormones, oestradiol and progesterone.

5 In the oestrogen dominated phase the endometrium proliferates until progesterone from the corpus luteum transforms the oestrogen-primed proliferative endometrium to a secretory phase endometrium. In due course this is followed by shedding of the fully transformed endometrium

10 during the menstruation, and a new cycle will begin.

Persistent unbalanced oestrogen stimulation either due to increased endogenous production of oestrogens, or replacement therapy in which oestrogens are given alone, is associated with increased risk of developing endometrial hyperplasia and subsequently endometrial adenocarcinoma.

15 Histologically, these pathological conditions are characterised by increased thickness of the endometrium and irregular pattern of the endometrial glandular cells.

20 Endometrial adenocarcinoma is a life threatening condition.

At present the endometrial status is assessed by histological and biochemical analysis of endometrial biopsies. This is time-consuming, expensive and causes discomfort for the woman. It would be highly desirable to identify biochemical markers which could be measured in body fluids reflecting the endometrial status, obviating the need for endometrial biopsies. The detection of such markers in histological samples would also however be advantageous as an additional method of recognising the histological status of such samples.

We have now discovered that certain proteins are produced in the endometrium in increased amounts associated with hyperplasia and that certain proteins are produced in increased amounts associated with adenocarcinoma. These two groups of proteins overlap somewhat. The present invention relates in a first aspect to such proteins and to their diagnostic uses.

-2-

Unless otherwise indicated, references to the proteins herein include references to modified forms of the proteins and derivatives of the proteins, including but not restricted to glycosylated, phosphorylated, acetylated, 5 methylated or lipidated forms thereof.

Thus the invention provides a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma as 10 shown by 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium and endometrium showing hyperplasia or adenocarcinoma, excluding variations due to the menstrual cycle, or detecting or quantitating a fragment or breakdown product thereof, or a 15 nucleic acid coding therefor, or an antibody thereto.

The invention includes a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma and 20 characterised by one of the following combinations of molecular weight and pI values:

hyperplasia		
	pI	MW kDa
25	6.7	91
	6.6	90
	6.9	64
	6.6	67
	6.3	66
30	6.8	46
	5.7	41
	5.5	35
	5.3	13
	6.6	101
35	5.8	14
	7.4	51
	8.2	44
	9.5	48

- 3 -

	adenocarcinoma	
	pI	MW (kDa)
5	6.3	32
	6.0	109
	6.7	91
	6.6	90
10.	6.9	64
	6.6	67
	6.3	66
	6.2	62
	6.2	45
15	5.7	45
	5.4	33
	6.3	27
	6.5	103
	6.8	90
20	6.9	78
	5.3	13
	6.2	130
	6.3	66
	6.3	73
25	8.3	32
	8.1	55
	8.2	44
	6.6	111
	7.7	43
30	9.5	48
	8.3	32
	7.7	39

or a fragment or breakdown product thereof, or a nucleic acid coding therefor, or an antibody thereto.

Said protein, fragment, breakdown product, antibody or nucleic acid may preferably be detected in a body fluid sample but may also be detailed in other forms of sample such as histological samples or cytological samples.

The invention includes an immunological binding partner specifically reactive with a protein as defined above with a 5 fragment or breakdown product thereof or with a nucleic acid coding therefor.

It also includes a cell line producing a monoclonal antibody being such an immunological binding partner.

The invention includes also an assay kit for use in 10 such an analysis method comprising an immunological binding partner as described.

This aspect of the invention has resulted from studies aiming to detect endometrial proteins with increased synthesis in endometrial adenocarcinoma as compared to the 15 synthesis during the normal menstrual cycle; to detect endometrial proteins with increased synthesis in endometrial hyperplasia as compared to the synthesis during the normal menstrual cycle; and to detect proteins showing a cycle-related expression during the normal menstrual cycle.

In a second aspect the invention relates to the discovery of markers of the "proliferative" phase of the 20 human endometrium. A protein marker for the "secretory" phase of the endometrium has been previously described, see US-A-4,489,166. No similar marker has been described for 25 the proliferative phase although certain candidate proteins were described in Ref. 1.

Under influence of the sex hormones, oestradiol and progesterone, the human endometrium undergoes cyclical variation with an oestrogen-dominated phase, i.e. the 30 proliferative phase, an ovulation phase, i.e. the interval phase, a progesterone-dominated phase, i.e. the secretory phase, and finally the endometrium is shed, i.e. the menstrual phase. The same cyclical variation of the endometrium is seen in postmenopausal women receiving 35 sequentially combined hormone replacement therapy. The demand for endometrial status assessment has highly increased in the latest decade, not only on account of the extensive research into fertility, but also in order to

-5-

estimate endometrial response to the large number of combined oestrogens/progestogen preparations used in hormone replacement therapy. It would be highly desirable to identify biochemical markers which could be measured in body fluids reflecting the endometrial status, obviating the need for endometrial biopsies. Studies have suggested that serum placental protein 14 (PP14), which is produced in the glandular cells of the secretory phase endometrium (Ref. 3), is a reliable marker of the secretory phase endometrium. It has been shown that serum PP14 strongly correlates with the secretory activity of the endometrium in postmenopausal women receiving hormone replacement therapy (Ref. 4,5). No similar marker exists for the proliferative phase endometrium.

We have now discovered that certain proteins are produced in the endometrium in increased amounts in proliferative phase endometrium as compared to secretory phase endometrium.

According to this aspect of the invention there is now provided a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

PI	MW (kDa)
6.9	86
5.4	34
5.6	67
5.3	23
6.8	52
8.7	47
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	59
6.8	66
7.9	48
7.7	31
6.8	29
7.2	70
8.0	119
6.7	62

or a fragment or breakdown product thereof, or a nucleic acid coding therefor or an antibody thereto.

Such a method may preferably be for detecting the phase of the endometrium.

The preferred features of the first aspect of the invention apply also to this second aspect.

- This aspect of the invention includes a method of determining the proliferative/secretory phase status of the endometrium comprising the quantitative or qualitative measurement in a sample of any one or more of the proteins defined above or a breakdown product or fragment thereof.
- It also includes an immunological binding partner for any of the said proteins, breakdown products or fragments or a cell line producing such a binding partner.

-7-

Whilst the sequences and properties of proteins discussed above relate to human proteins, the assay procedures of the invention may be practised on samples arising from other species. Especially in this context, references to proteins herein should be understood to include proteins having a degree of homology of at least 60% with the given amino acid sequences irrespective of any modifications of said amino acids. When determining homology, modified amino acids such as phosphorylated, acetylated, amidated, methylated, glycosylated or lipidated derivatives of an amino acid should thus be considered to be the same as the amino acid without any such modification. Such peptides may be derived from similar proteins from other species, e.g. other mammals such as mouse, rabbit, guinea pig, pig, or cow or may be entirely or predominantly of synthetic origin.

The degree of homology may be advantageously be at least 65%, or at least 70%. Under certain circumstances, it is advantageous that the degree of homology is even higher such as at least 80% or at least 90%. Other DNA sequences which encode substantially the same amino acid sequence as a gene encoding a marker protein, i.e. a marker gene, may be used in the practice of the present invention. These include, but are not limited to, allelic genes and homologous genes from other species.

Nucleic acid fragments comprising a nucleotide sequence which codes for a protein described above or a peptide derived from it as well as nucleic acid fragments which hybridise with these nucleic acid fragments or a part thereof under stringent hybridisation conditions, e.g. 5 mM monovalent ions (0.1xSSC), neutral pH and 65°C are important aspects of the invention. The term "highly stringent", when used in conjunction with hybridisation conditions, is as defined in the art, i.e. 5-10°C under the melting point T_m , cf, Sambrook et al, 1989, pages 11.45 - 11.49.

By the term "nucleic acid" is meant a polynucleotide of high molecular weight which can occur as either DNA or RNA and may be either single-stranded or double-stranded.

-8-

Once the amino acid sequences of the proteins of utility in the present invention are known, it is possible to synthesise DNA or RNA probes which may be used for:

- 5 i) direct detection of DNA and RNA expressing said proteins on a fixed or frozen tissue section using, e.g. chromogenous, chemiluminescent or immunofluorescent techniques;
- 10 ii) polymerase chain reaction (PCR) or other amplification techniques; and
- 15 iii) locating the part or all of the gene, isogene, pseudogene or other related genes either in cDNA libraries, genomic libraries or other collections of genetic material from either the host or other animals, including man.

15 In another aspect, the invention relates to a binding means which specifically binds to a relevant protein or peptide or nucleic acid fragment as described above. In particular, the invention relates to an antibody which specifically binds to a relevant protein or peptide or an 20 antigen-binding fragment thereof, i.e. a polyclonal antibody, a monoclonal antibody, chimeric antibody, single chain antibody fragment, Fab and Fab' fragments, and an Fab expression library.

25 It is contemplated that both monoclonal and polyclonal antibodies will be useful in providing the basis for one or more assays to detect relevant peptides and proteins. Antibodies which are directed against epitopes that are specific for the proteins will be most useful as cross reaction will be minimised therewith.

30 Based upon the identification of relevant proteins described above, assay methods and kits may be produced according to standard methodology. Thus, the proteins may be obtained in purified form, either by extraction from tissues or by synthesis, and antibodies may be raised 35 thereto or to characterising peptide sequences thereof. Standard assay formats employing such antibodies may be utilised according to the invention.

Preferred immunoassays are contemplated as including various types of enzyme linked immunoassays (ELISA), immunoblot techniques, and the like, known in the art.

5 However, it is readily appreciated that utility is not limited to such assays, and useful embodiments including RIAs and other non-enzyme linked antibody binding assays or procedures. The proteins themselves or peptides derived from the protein sequences may be used in detecting auto-
10 antibodies to such proteins.

Samples of the proteins described above have been subjected to trypsin digestion and the molecular weight of the resulting fragments has been determined by mass spectrometry. This provides a "fingerprint" of the protein
15 which can be matched to date in established data bases available to those working in this field. This procedure has enabled us to identify certain of the proteins as being previously known in other contexts. No matches have been found for certain others, indicating that they have not
20 previously been known.

The invention will be illustrated and explained further by the following description in which the Figures as follows:-

25 Figure 1: Fluorograph of a two-dimensional gel electrophoresis of [³⁵S]methionine labelled endometrial proteins separated in the first dimension by iso-electric focusing (IEF; pI 3.5-7) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations
30 of the spots with increased synthesis in hyperplasia are indicated.

Figure 2: Fluorograph of a two-dimensional gel electrophoresis of [³⁵S]methionine labelled endometrial proteins separated in the first dimension by non-equilibrium pH gradient gel electrophoresis (NEPHGE; pI 6.5-11) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel
35

-10-

electrophoresis. The locations of the spots with increased synthesis in hyperplasia are indicated.

Figure 3: Fluorograph of a two-dimensional gel electrophoresis of [³⁵S]methionine labelled endometrial proteins separated in the first dimension by iso-electric focusing (IEF; pI 3.5-7) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations of the spots with increased synthesis in adenocarcinoma are indicated.

Figure 4: Fluorograph of a two-dimensional gel electrophoresis of [³⁵S]methionine labelled endometrial proteins separated in the first dimension by non-equilibrium pH gradient gel electrophoresis (NEPHGE; pI 6.5-11) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations of the spots with increased synthesis in adenocarcinoma are indicated.

Figure 5: Fluorograph of a two-dimensional gel electrophoresis of [³⁵S]methionine labelled endometrial proteins separated in the first dimension by iso-electric focusing (IEF; pI 3.5-7) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations of the spots with increased synthesis in proliferative phase endometrium are indicated.

Figure 6: Fluorograph of a two-dimensional gel electrophoresis of [³⁵S]methionine labelled endometrial proteins separated in the first dimension by non-equilibrium pH gradient gel electrophoresis (NEPHGE; pI 6.5-11) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations of the spots with increased synthesis in proliferative phase endometrium are indicated.

Figure 7: Tryptic digestion mass spectroscopic characteristics of I#350. The peaks marked with a star

-11-

are not protein identification specific but represents methodologically non-specific peaks.

Figure 8: Tryptic digestion mass spectroscopic characteristics of I#687. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

Figure 9: Tryptic digestion mass spectroscopic characteristics of N#414. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

Figure 10: Tryptic digestion mass spectroscopic characteristics of I#1035. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

Figure 11: Tryptic digestion mass spectroscopic characteristics of N#26. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

Figure 12: Tryptic digestion mass spectroscopic characteristics of N#31+N#32. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

To identify proteins expressed at an increased level in differing endometrial conditions, endometrial samples were obtained as follows.

Normal menstrual cycle samples were obtained as described in Ref. 1. Endometrial biopsies were collected from 13 pre-menopausal, regular cycling women (35-50 years old) undergoing endometrial curettage (n=1) or hysterectomy (removal of the uterus) (n=12) for a variety of medical reasons not related to abnormality or malignancy of the endometrium. None used hormone contraception. For pathological condition samples, endometrial biopsies were collected from 16 patients (41 to 79 years old) undergoing endometrial curettage (n=9) or hysterectomy (n=7) for medical reasons related to abnormality or malignancy of the endometrium.

-12-

The samples were treated as described in Ref. 1. The proteins of the endometrial biopsies were metabolically labelled with ³⁵S-methionine for 20 hours, and total cell lysates were processed for 2D gel electrophoresis, a technique in which proteins are separated in the first dimension according to the isoelectric point and in the second dimension according to the molecular weight. It was possible to study proteins with iso-electric points ranging from 3.5 to 11 and relative molecular weights ranging from 10 to 300 kDa. After electrophoresis the gels were fixed and treated for fluorography. The fluorograms of the 2D gel electrophoresis were subjected to quantitative analysis by computer-aided analysis, by which the density of each spot was quantified, the fluorogram patterns were matched i.e. numbers were assigned to each spot and the same spot was given the same number on all the fluorograms. The density (quantity synthesis) of each spot was assessed to find proteins with increased synthesis in endometrial adenocarcinoma or hyperplasia and assessed for periodic characteristics during the normal menstrual cycle to find proteins with the menstrual cycle-related synthesis.

Some of the menstrual cycle-related proteins so identified have been identified by amino acid sequence analysis (Ref.2). Selected menstrual cycle-related proteins were excised from several 2D gels, concentrated by 1D sodium dodecylsulphate polyacrylamide gel electrophoresis, and cleaved in situ by trypsin. The tryptic fragments were extracted and separated by reverse phase high pressure liquid chromatography. Finally, the partial amino-terminal amino acid sequence of selected tryptic fragments were determined for each protein. For identification the amino acid sequences of the tryptic fragments were compared to previously reported sequences by searching in databases.

The hyperplasia and adenocarcinoma associated proteins of the present invention may be sequenced and further characterised by similar methods.

Out of a total number of approximately 1,700 spots, 14 spots were found to have increased synthesis in hyperplasia. The locations of these are shown in Figures 1 and 2. Some 5 27 spots had increased synthesis in adenocarcinoma. The locations of these are shown in Figures 3 and 4. The information obtained from the 2D-gel electrophoresis with respect to the isoelectric point (pI) and the molecular weight (MW) of the spots with increased synthesis in 10 hyperplasia is given in Table 1, and the spots with increased synthesis in adenocarcinoma are listed in Table 2. Eight spots had increased expression in both hyperplasia and adenocarcinoma. Based on subjective evaluation, preferred subgroups of spots were selected with increased 15 synthesis in hyperplasia and in adenocarcinoma, respectively. The preferred subgroup of spots with increased synthesis in hyperplasia were selected as being the spots showing the highest relative increase in expression in hyperplasia as compared to the samples 20 obtained from women during the normal menstrual cycle and women with irregular proliferative phase endometrium. Similarly, the preferred subgroup of spots with increased synthesis in adenocarcinoma were selected as the spots showing the highest relative increase in expression in 25 adenocarcinoma as compared to the samples obtained from women during the normal menstrual cycle and women with irregular proliferative phase endometrium. The preferred subgroup of 7 spots with increased synthesis in hyperplasia is given in Table 3, and the preferred subgroup of 12 spots 30 with increased synthesis in adenocarcinoma is given in Table 4.

-14-

TABLE 1

Endometrial proteins with increased synthesis in hyperplasia		
Match #	pI	MW (kDa)
I#111	6.7	91
I#121	6.6	90
I#158	6.9	64
I#177	6.6	67
I#191	6.3	66
I#307	6.8	46
I#350	5.7	41
I#405	5.5	35
I#653	5.3	13
I#892	6.6	101
I#1183	5.8	14
N#126	7.4	51
N#148	8.2	44
N#414	9.5	48

-15-
Table 2

Endometrial proteins with increased synthesis in adenocarcinoma		
Match #	pI	MW (kDa)
I#16	6.3	32
I#53	6.0	109
I#111	6.7	91
I#121	6.6	90
I#158	6.9	64
I#177	6.6	67
I#191	6.3	66
I#194	6.2	62
I#337	6.2	45
I#346	5.7	45
I#436	5.4	33
I#452	6.3	27
I#542	6.5	103
I#558	6.8	90
I#627	6.9	78
I#653	5.3	13
I#788	6.2	130
I#1137	6.3	66
I#1271	6.3	73
N#15	8.3	32
N#91	8.1	55
N#148	8.2	44
N#251	6.6	111
N#354	7.7	43
N#414	9.5	48
N#549	8.3	32
N#551	7.7	39

-16-

TABLE 3

Preferred endometrial proteins with increased synthesis in hyperplasia

Match #	pI	MW (kDa)
I#111	6.7	91
I#158	6.9	64
I#191	6.3	66
I#350	5.7	41
I#405	5.5	35
I#653	5.3	13
I#892	6.6	101

5

TABLE 4

Preferred endometrial proteins with increased synthesis in adenocarcinoma

Match #	pI	MW (kDa)
I#111	6.7	91
I#158	6.9	64
I#191	6.3	66
I#194	6.2	62
I#337	6.2	45
I#346	5.7	45
I#452	6.3	27
I#627	6.9	78
I#653	5.3	13
N#91	8.1	55
N#354	7.7	43
N#551	7.7	39

-17-

Out of the total number of approximately 1,700 spots, 135 had a menstrual cycle-related expression. These 135 spots had maximal expression as follows: 61 spots in 5 proliferative endometrium, 29 spots in interval phase endometrium, 41 in secretory phase endometrium and 4 in late secretory/menstrual phase endometrium. The information obtained from the 2D-gel electrophoresis with respect to the isoelectric point (pI) and the molecular weight (MW) of a 10 preferred subgroup of these spots which show increased synthesis in proliferative phase endometrium are given in Table 5 and their positions are indicated in Figures 5 and 6.

-18-

TABLE 5

Endometrial proteins with menstrual cycle-related expression Maximal expression in proliferative phase endometrium		
Match #	pI	MW (kDa)
I#103	6.9	86
I#590	5.4	34
I#687	5.6	67
I#960	5.3	23
I#1035	6.8	52
N#8	8.7	47
N#21	8.2	138
N#26	6.5	124
N#31	7.7	119
N#32	7.8	119
N#64	8.1	66
N#71	7.1	59
N#74	6.8	66
N#124	7.9	48
N#192	7.7	31
N#207	6.8	29
N#265	7.2	70
N#332	8.0	119
N#342	6.7	62

Fluorographs of gels exemplifying those upon which the
 5 identifications given in Tables 1 to 5 above are based
 appear in Figures 1 to 6.

-19-

The proteins described above may be further characterised by partial amino acid sequence analysis as described in Ref. 2, or by the more sensitive technique of mass spectrometric peptide mapping. By way of example, we have identified the proteins for which previously given names, data-base accession numbers and amino acid sequences are given in Table 6. Mass spectroscopic characteristics of tryptic digests of further proteins are shown in Figures 7 to 13 which have not matches to any known protein. These proteins can be sequenced by known techniques and are included per se within the scope of the invention.

15

TABLE 6

Match #	Name ID	Amino Acid Sequence
I#191 And I#1137 SEQ ID. No.1	Human heat shock 70 kD protein 1 P08107	MAKAAAIGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA LNPQNTVFDA KRLIGRKFGD PVVQSDMKHW PFQVINDGDK PKVQVSYKGE TKAFYPEEIS SMVLTKMKEI AEAYLGYPVT NAVITVPAYF NDSQRQATKD AGVIAGLNVL RIINEPTAAA IAYGLDRTGK GERNVLIFDL GGGTFDVSIL TIDDGIFEVK ATAGDTHLGG EDFDNRLVNH FVEEFKRKHK KDISQNKRRAV RRLRTACERA KRTLSSSTQA SLEIDSLFEG IDFYTSITRA RFEELCSDLF RSTLEPVKA LRDAKLDKAQ IHDLVLVGGS TRIPKVQKLL QDFFNGRDLN KSINPDEAVA YGAAVQAAIL MGDKSENVQD LLLLDVAPLS LGLETAGGVM TALIKRNSTI PTKQTQIFTT YSDNQPGVLI QVYEGERAMT KDNNLLGRFE LSGIPPAPRG VPQIEVTFDI DANGILNVTA TDKSTGKANK ITITNDKGRL SKEEIERMVQ EAEKYKAED E VQRERVSAKN ALESYAFNMK SAVEDEGLKG KISEADKKKV LDKCQEVISW LDANTLAEKD EFEHKRKELE QVCNPIISGL YQGAGGPGPG GFGAQGPKG SGSGPTIEEV D
I#337 SEQ ID No.2	CAMP-dependent protein kinase type I-beta regulatory chain	ASPPACPSEE DESLKGCELY VQLHGIQQVL KDCIVHLCIS KPERPMKFLR EHFEKLEKEE NRQILARQKS NSQSDSHDEE VSPTPPNPVV KARRRRGGVS AEVYTEEDAV SYVRKVIPKD YKTMTALAKA ISKNVLFAHL DDNERSDIFD AMFPVTIAG ETVIQQNEG DNFYVVDQGE VDVYVNGEWV TNISEGGSGF ELALIYGTPR AATVKAKTDL KLWGIDRDSY RRILMGSTLR

- 20 -

	P31321	KRKMYEEFLS KVSILESLEK WERLTVADRL EPVQFEDGEK IVVQGEPGDD FYIITEGTAS VLQRRSPNEE YVEVGRLGPS DYFGEIALLL NRPRAATVVA RGPLKCVKLD RPRFERVLGP CSEILKRNIQ RYNSFISLTV
I#346 And I#405 SEQ ID No. 3	Vimentin P08670	STRSVSSSSY RRMFGGGPTA SRPSSSSRSYV TTSTRTYSLG SALRPSTSRS LYASSPGGVY ATRSSAVRLR SSVPGVRLLQ DSVDFSLADA INTEFKNTRT NEKVELQELN DRFANYIDKV RFLEQQNKIL LAELEQLKGQ GKSRLGDLYE EEMRELRRQV DQLTNDKARV EVERDNLAED IMRLREKLQE EMLQREEAEN TLQSFRQDVD NASLARLDLE RKVESLQEEI AFLKKLHEEE IQELQAQIQE QHVQIDVDVS KPDLTAAALRD VRQQYESVAA KNLQEAEWY KSKFADLSEA ANRNNDALRQ AKQESTEYRR QVQSLTCEVD ALKGTNESLE RQMREMEENF AVEAANYQDT IGRLQDEIQN MKEEMARHLR EYQDLLNVKM ALDIEIATYR KLLEGEESRI SLPLPNFSSL NLRETNLDL PLVDTHSKRT FLIKTVETRD GQVINETSQH HDDLE
I#452 SEQ ID No. 4	Heat Shock 27 KD Protein P04792 And Prohibitin P35232 (in adixture)	MTERRVPFSL LRGPSWDPER DWYPHSRLFD QAFGLPRLPE EWSQWLGGSS WPGYVRPLPP AAIESPAVAA PAYSRALSRQ LSSGVSEIRH TADRWRVSLD VNHFAPDELT VKTKDGVVEI TGKHEERQDE HGYSRCFTR KYTLPPGVDP TQVSSSLSP E GTLTVEAPMP KLATQSNEIT IPVTFESRAQ LGGRSCKIR MAAKVFESIG KFGLALAVAG GVNSALYNV DAGHRMIVFD RFRGVQDIVV GEGTHFLIPW VQKPIIFDCR SRPRNVPVIT GSKDLQNVNI TLRILFRPVA SQLPRIFTSI GEDYDERVLP SITTEILKSV VARFDAGELI TQRELVSQRV SDDLTERAAT FGLILDDVSL THLTFGKEFT EAVEAKQVAQ QEAERARFVV EKAEEQQKAA IISAEGDSKA AELIANSLAT AGDGLIELRK LEAAEDIAYQ LSRSRNITYL PAGQSVLLQL PQ
I#436 And I#590 SEQ ID No. 5	Tropomyosin fibroblast isoform TM3 P09494	MDAIKKKMQM LKLDKENALD RAEQAEADKK AAEDRSKQLE DELVSLQKQL KGTEDELDKY SEALKDAQEK LELAEKKATD AEADVVASLNR RIQLVEEELD RAQERLATAL QKLEEAEKAA DESERGMKVI ESRAQKDEEK MEIQEIQLKE AKHIAEDADR KYEEVARKLV IIESDLERAE ERAELSEGQV RQLEEQLRIM DQTLKALMAA EDKYSQKEDR YEEEIKVLSD KLKEAETRAE FAERSVTKLE KSIDDLEEKV AHAKEENLSM HQMLDQTLLE LNNM
I#627 SEQ ID No. 6	Serotrans- ferrin precursor P02787	MRLAVGALLV CAVLGLCLAV PDKTVRWCAV SEHEATKCQS FRDHMKSVIP SDGPSVACVK KASYLDCIRA IAANEADAVT LDAGLVYDAY LAPNNLKPVV AEFYGSKEDP QTFFYAVAVV KKDSGFQMNQ LRGKKSCHTG LGRSAGWNIP IGLYCDLPE PRKPLEKAVA NFFSGSCAPC ADGTDFPQLC QLCPGCGCST LNQYFGYSGA FKCLKDGAGD VAFVKHSTIF ENLANKADRD QYELLCLDNT RKPVDEYKDC HLAQVPSHTV VARSMGGKED LIWELLNQAQ EHFGKDKSKE

-21-

		FQLFSSPHGK DLLFKDSAHG FLKVPPRMDA KMYLGYEVVT AIRNLREGTC PEAPTDECKP VKWCALSHHE RLKCDEWSVN SVGKIECVSA ETTEDCIAKI MNGEADAMSL DGGFVYIAGK CGLVPVLAEN YNKSNDCEDT PEAGYFAVAV VKKSASDLTW DNLKGKKSC H TAVGRTAGWN IPMGLLYNKI NHCRFDEFFS EGCAPGSKKD SSLCKLCMGS GLNLCEPNNK EGYYGYTGAF RCLVEKGDV A FVKHQTVPQN TGGKNPDPWA KNLNEKDYL LCLDGTRKPV EYANCHLAR APNHAVVTRK DKEACVHKIL RQQQHLFGSN VTDCSGNFCL FRSETKDLLF RDDTVCLAKL HDRNTYEKYL GEEYVKAVGN LRKCSTSSLL EACTFRRP
N#8 SEQ ID No. 7	47 KD Heat Shock Protein Precursor P29043	MRSLLLGTLC LLAVALAAEV KKPVEAAAPG TAEKLSSKAT TLAEPSTGLA FSLYQAMAKD QAVENILVSP VVVASSLGLV SLGGKATTAS QAKAVLSAEQ LRDEEVHAGL GELLRSLSNS TARNVTWKLG SRLYGPSSVS FADDFVRSSK QHYNCEHSKI NFPDKRSALQ SINEWAAQTT DGKLPEVTKD VERTDGALLV NAMFFKPHWD EKFHHKMVDN RGFMVTRSYT VGVTMMHRTG LYNYYDDEKE KLQLVEMPLA HKLSSLIILM PHHVEPLERL EKLLTKEQLK IWMGKMQKKA VAISLPKGVV EVTHDLQKHL AGLGLTEAID KNKADLSRMS GKKDLYLASV FHATAFELDT DGNPFDQDIY GREELRSPKL FYADHPFIFL VRDTQSGSLL FIGRLVRLKG DKMRDEL
N#124 SEQ ID No. 8	Ubiquinol- cytochrom C reductase complex core protein 2 precursor P22695	MKLLTRAGSF SRFYSLKVP KVAKATAAPAG APPQPQDLEF TKLPNGLVIA SLENYSRVSR IGLFIKAGSR YEDFSNLGTT HLLRLTSSLT TKGASSFKIT RGIEAVGGKL SVTATRENMA YTVECLRGDV DILMEFLLNV TTAAPEFRRWE VADLQPQLKI DKAVALFQNPQ THVIENLHAA AYQNALANPL YCPDYRIGKV TSEELHYFVQ NHFTSARMAL IGLGVSHPVL KQVAEQFLNM RGGLGLSGAK ANYRGGEIRE QNGDSLVHAA FVAESAVAGS AEANAFSVLQ HVLGAGPHVK RGSNTTSHLH QAVAKATQQP FDVSAFNASY SDSGLFGIYT ISQATAAGDV IKAAYNQVKR IAQGNLSNTD VQAAKKNKLKA GYLMVESSE CFLEEVGSQA LVAGSYMPPS TVLQQIDSVA NADIINAAKK FVSGQKSMAA SGNLGHTPFV DEL
N#126 SEQ ID No. 9	Alpha Enolase P06733	SILKIHAREI FDSRGNPTVE VDLFTSKGLF RAAVPSGAST GIYEALELRD NDKTRYMGKG VSKAVEHINK TIAPALVSKK LNVTEQEKID KLMIEDGTE NKSKEGANAI LGVSLAVCKA GAVEKGVPLY RHIADLAGNS EVILPVPAFN VINGGSHAGN KLAMQEFMIL PVGAANFREA MRIGAEVYHN LKNVIKEKYG KDATNVGDEG GFAPNILENK EGLELLKTAI GKAGYTDKVV IGMDVAASEF FRSGKYDLDLDF KSPDDPSRYI SPDQLADLYK SFIKDYPVVS IEDPDFDQDDW GAWQKFTASA GIQVVGDDLT VTNPKRIAKA VNEKSCNCLL LKVNQIGSVT ESLQACKLAQ ANGWGVMVSH RSGETEDTFI ADLVVGLCTG QIKTGAPCRS ERLAKYNQLL RIEEELGSKA KFAGRNRNP LAK

-22-

N#148 SEQ ID No.10	Phospho-glycerate kinase 1 P00558	SLSNKLTLDK LDVKGKRVVM RVDFNPMKNNQITNNQRK AAVPSIKFCL DNGAKSVVLM SHLGRPDCGP MPDKYSLEPV AVELKSLLGK DVLFLKDCVG PEVEKACANP AAGSVILLE LRFHVEEEGK GKDasGNKVK AEPAKIEAFR ASLSKLGDVY VNDAGTAHR AHSSMVGVNL PKAGGFLMK KELNYFAKAL ESPERPFLAI LGGAKVADKI QLINNMLDKV NEMIIGGGMA FTFLKVNNM EIGTSLFDEE GAKIVKDLMS KAEKNGVKIT LPVDFVTADK FDENAKTGQA TVASGIPAGW MGLDCGPRESS KKYEAEAVTRA KQIVWNGPVG VFEWEAFARG TKALMDEVVK ATSRGCITII GGGDTATCCA KWNTEDKVSH VSTGGGASLE LLEGKVLPGV DALSNIL
N#207 SEQ ID No.11	Triose-phosphat isomerase ISHUT S29743	MAPSRKFVFG GNWKMNGRKQ SLGELIGTLN AAKVPADTEV VCAPPAYID FARQKLDPKI AVAAQNCYKV TNGAFTGEIS PGMIKDCGAT WVVLGHSER R HVFGESDELI GQKVAHALAE GLGVIACIGE KLDEREAGIT EKVVFEQTKV IADNVKDWSK VVLAYEPVWA IGTGKTATPQ QAQEVEHEKLR GWLKNVSDA VAQSTRIIYG GSVTGATCKE LASQPDVDGF LVGGASLKPE FVDIINAKQ
N#332 SEQ ID No.12	Hypo-thetical Protein KIAA0083 P51530	PVPLSFLSTV CDPRVQDGAA ERTGAADGEE FLGGGGLPAE LFQKKVVASF PRTVLSTGMD NRYLVLAVENT VQNKEGNCEK RLVITASQL ENKELCILRN DWCSVPVEPG DIIHLEGDCT SDTWIIDKDF GYLILYPDML ISGTSIASSI RCMRRAVLSE TFRSSDPATR QMLIGTVLHE VFQKAINNSF APEKLQELAF QTIQEIRHLK EMYRLNLSQD EIKQEVEDYL PSFCKWAGDF MHKNTSTDFFP QMQLSLPSDN SKDNSTCNIE VVKPMDIEES IWSPRFGLKG KIDVTGVVKI HRGYKTKYKI MPLELKTGKE SNSIEHRSQV VLYTLLSQER RADPEAGLLL YLKTGQMYPV PANHLDKREL LKLRNQMAFS LFHRISKSAT RQKTQLASLP QIEEEEKTCY YCSQIGNCAL YSRAVEQQMD CSSVPIVMLP KIEEETQHLK QTHLEYFSLW CLMLTLESQS KDNKKNHQNI WLMPASEMEK SGSCIGNLIR MEHVKIVCDG QYLHNFQCKH GAIPTVNIMA GDRVIVSGEE RSLFALSRGY VKEINMTTVT CLLDRNLSQL PESTLFRLDQ EEKNCIDTP LGNLSKLMEN TFVSKKLRDL IIDFREPQFI SYLSSVLPHD AKDTVACILK GLNKPQRQAM KKVLLSKDYT LIVGMPGTGK TTTICTLVRI LYACGFSVLL TSYTHSAVDN ILLKLAKFKI GFLRLGQIQK VHPAIQQFTE QEICRSKSIK SLALLEELYN SQLIVATTCM GINHPIFSRK IFDFCIVDEA SQISQPICLG PLFFSRRFVL VGDHQQLPPL VLNREARALG MSESLFKRLE QNKSAVVQLT VQYRMNSKIM SLSNKLTYEG KLECGSDKVA NAVINLRHFK DVKLELEFYA DYSDNPWLMG VFEPNNPVCF LNTDKVPAPE QVEKGGVSNV TEAKLIVFLT SIFVKAGCSP SDIGIIAPYR QQLKIIDLL ARSIGMVEVN TVDKYQGRDK SIVLVSFVRS NKDGTVGELL KDWRRLNVAI TRAKHKLILL GCVPSLNCYP PLEKLLNHLN

-23-

		SEKLIIDLPS REHESLCHIL GDFQRE				
N#342 SEQ ID No.13	Catalase P04040	MADSRDPASD QMQHWKEQRA AQKADVLTTG AGNPVGDKLN VITVGPRGPL LVQDVVFTDE MAHFDRERIP ERVVHAKGAG AFGYFEVTHD ITKYSKAKVF EHIGKKTPIA VRFSTVAGES GSADTVRDPR GFAVKFYTED GNWDLVGNNT PIFFIRDPL FPSFIHSQKR NPQTHLKDPD MVWDFWSLRP ESLHQVSFLF SDRGIPDGHR HMNGYGSHTF KLVNANGEAV YCKFHYKTDQ GIKNLSVEDA ARLSQEDPDY GIRDLFNAIA TGKYPFWTFY IQVMTFNQAE TFPFNPFDLT KVWPHKDYPL IPVGKLVLNR NPVNYFAEVE QIAFDPSNMP PGIEASPDKM LQGRLFAYPD THRHLGPYI LHIPVNCPYR ARVANYQRDG PMCMQDNQGG APNYYPPNSFG APEQQPSALE HSIQYSGEVR RFNTANDNV TQVRAFYVNV LNEEQRKRLC ENIAGHLKDA QIFIQKKAVK NFTEVHPDYG SHIQALLDKY NAEKPKNAIH TFVQSGSHLA AREKANL				
N#551 SEQ ID No.14	Hetero- geneous nuclear ribonucleo- proteins A2/B1 P22626	MEKTLETVPL ERKKREKEQF RKLFIGGLSF ETTEESLRNY YEQWGKLTDC VVMRDPASKR SRGFGEVTFS SMAEVDAAMA ARPHSIDGRV VEPKRAVARE ESGKPGAHVT VKKLFVGGIK EDTEEHHLRD YFEEYGKIDT IEIITDRQSG KKRGFGFVTF DDHDPPVDKIV LQKYHTINGH NAEVRKALSR QEMQEVTQSSR SGRGGNFGFG DSRGGGGNFG PGPGSNFRGG SDGYGSGRGF GDGYNGYGGG PGGGNFGGSP GYGGGRGGY GGGPGYGNQG GGYGGGYDNY GGGNYGSGNY NDFGNYNQQP SNYGPMSKSGN FGGSRNMGGP YGGGNYGPAGG SGGSGGYGGR SRY				
I#960 (Prolifer- ative phase marker) SEQ ID No.15	Steroid membrane binding protein X99714	MAAEDVAATG ADPSELEGGG LLHEIFTSPL NLLLLGLCIF LLYKIVRGDQ PAASDSDDE PPPLPRLKRR DFTPAELRRF DGVQDPRILM AINGKVFDT KGRKFYGPPEG PYGVFAGRDA SRGLATFCILD KEALKDEYDD LSDLTPAQQE TLNDWDSQFT FKYHHVGKLL KEGEEPTVYS DEEPEPKDESA RKND				
I#177 (Hyperpla- sia & Cancer Marker) SEQ ID No.16	Heat shock cognate 71 KD protein P11142	MSKGPAVGID LGTTYSQVG FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA MNPTNTVFDA KRLIGRRFDD AVVQSDMKHW PFMVVNDAGR PKVQEYKGE TKSFYPEEV .SMVLTKMKEI AEAYLGKVT NAVVTVPAYF NDSQRQATKD AGTIAGLNVL RIINEPTAAA IAYGLDKKVG AERNVLIFDL GGGTFDVSL TIEDGIFEVK STAGDTHLGG EDFDNRMVN FIAEFKRKHK KDISENKRAV RRLRTACERA KRTLSSSTQA SIEIDSLEYG IDFYTSITRA RFEELNADLF RGTLDPVEKA LRDAKLDKSQ IHDIVLVGGS TRIPKIQKLL QDFNGKELN KSINPDEAVA YGAAVQAAIL SGDKSENVQD LLLLDVTPLS LGIETAGGVM TVLIKRNNTI PTKQTQTF YSDNQPGVLI QVYEGERAMT KDNLLLGKFE LTGIPPA VPQIEVTDFI DANGILNVSA VDKSTGKENK ITITNDKGRL SKEDIERMVQ EAEKYKAED E KQRDKVSSKN SLESYAFNMK ATVEDEKLQG KINDEDKQKI LDKCNEIINW LDKNQTAKE EFEHQKKELE KVCNPIITKL YQSAGGMPGG MPGFPGGGA PPSGGASSGP TIEEV				

ID: Accession Identification in protein or nucleotide databases
(e.g. SwissProt, Protein Identification Resource (PIR) or EMBL)

- 24 -

The proteins of interest may be isolated from endometrial tissue or other protein sources by 2D gel electrophoresis or by using chromatographic techniques. Poly- or 5 monoclonal antibodies towards the protein of interest can be raised, and immunoassays can be established based on such antibodies. Synthetic peptides being fragments characteristic of such proteins may be used for the same purposes. Assays may be based on more than one such protein 10 for measurement at one time.

- Ref.1 : Byrjalsen et al. Hum Reprod 1995;10:13-18.
Ref.2 : Byrjalsen et al., Hum Reprod 1995;10:2760-2766.
Ref.3 : Julkunen et al., Endocrinology 1986;118:1782-1786.
15 Ref.4 : Byrjalsen et al., Obstet Gynecol 1992;79:523-528.
Ref.5 : Byrjalsen et al., Hum Reprod 1992;7:1042-1047.

-25-

SEQUENCE LISTING

5

(1) GENERAL INFORMATION:

10

(i) APPLICANT:

(A) NAME: Center for Clinical and Basic Research

15

(B) STREET: Ballerup Byvej 222,
(C) CITY: Ballerup
(E) COUNTRY: Denmark
(F) POSTAL CODE (ZIP): DK-2750

20

(ii) TITLE OF INVENTION: Biochemical Markers for the Human
Endometrium

(iii) NUMBER OF SEQUENCES: 16

25

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

30

(vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: GB 9618600.2
(B) FILING DATE: 06-SEP-1996

35

(vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: GB 9707132.8
(B) FILING DATE: 08-APR-1997

40

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 641 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

45

(ii) MOLECULE TYPE: protein

50

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

55

(vi) ORIGINAL SOURCE:

(A) ORGANISM: homo sapiens

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Met Ala Lys Ala Ala Ala Ile Gly Ile Asp Leu Gly Thr Thr Tyr Ser
1 5 10 15

65

Cys Val Gly Val Phe Gln His Gly Lys Val Glu Ile Ile Ala Asn Asp
20 25 30Gln Gly Asn Arg Thr Thr Pro Ser Tyr Val Ala Phe Thr Asp Thr Glu
35 40 45

-26-

	Arg Leu Ile Gly Asp Ala Ala Lys Asn Gln Val Ala Leu Asn Pro Gln
	50 55 60
5	Asn Thr Val Phe Asp Ala Lys Arg Leu Ile Gly Arg Lys Phe Gly Asp
	65 70 75 80
10	Prc Val Val Gln Ser Asp Met Lys His Trp Pro Phe Gln Val Ile Asn
	85 90 95
15	Asp Gly Asp Lys Pro Lys Val Gln Val Ser Tyr Lys Gly Glu Thr Lys
	100 105 110
20	Ala Phe Tyr Pro Glu Glu Ile Ser Ser Met Val Leu Thr Lys Met Lys
	115 120 125
25	Glu Ile Ala Glu Ala Tyr Leu Gly Tyr Pro Val Thr Asn Ala Val Ile
	130 135 140
30	Thr Val Pro Ala Tyr Phe Asn Asp Ser Gln Arg Gln Ala Thr Lys Asp
	145 150 155 160
	Ala Gly Val Ile Ala Gly Leu Asn Val Leu Arg Ile Ile Asn Glu Pro
	165 170 175
35	Thr Ala Ala Ala Ile Ala Tyr Gly Leu Asp Arg Thr Gly Lys Gly Glu
	180 185 190
	Arg Asn Val Leu Ile Phe Asp Leu Gly Gly Thr Phe Asp Val Ser
	195 200 205
40	Ile Leu Thr Ile Asp Asp Gly Ile Phe Glu Val Lys Ala Thr Ala Gly
	210 215 220
	Asp Thr His Leu Gly Gly Glu Asp Phe Asp Asn Arg Leu Val Asn His
	225 230 235 240
	Phe Val Glu Glu Phe Lys Arg Lys His Lys Lys Asp Ile Ser Gln Asn
	245 250 255
45	Lys Arg Ala Val Arg Arg Leu Arg Thr Ala Cys Glu Arg Ala Lys Arg
	260 265 270
50	Thr Leu Ser Ser Ser Thr Gln Ala Ser Leu Glu Ile Asp Ser Leu Phe
	275 280 285
	Glu Gly Ile Asp Phe Tyr Thr Ser Ile Thr Arg Ala Arg Phe Glu Glu
	290 295 300
55	Leu Cys Ser Asp Leu Phe Arg Ser Thr Leu Glu Pro Val Glu Lys Ala
	305 310 315 320
	Leu Arg Asp Ala Lys Leu Asp Lys Ala Gln Ile His Asp Leu Val Leu
	325 330 335
60	Val Gly Gly Ser Thr Arg Ile Pro Lys Val Gln Lys Leu Leu Gln Asp
	340 345 350
65	Phe Phe Asn Gly Arg Asp Leu Asn Lys Ser Ile Asn Pro Asp Glu Ala
	355 360 365
	Val Ala Tyr Gly Ala Ala Val Gln Ala Ala Ile Leu Met Gly Asp Lys
	370 375 380

-27-

	Ser	Glu	Asn	Val	Gln	Asp	Leu	Leu	Leu	Asp	Val	Ala	Pro	Leu	Ser	
	385				390					395				400		
5	Leu	Gly	Leu	Glu	Thr	Ala	Gly	Gly	Val	Met	Thr	Ala	Leu	Ile	Lys	Arg
					405					410				415		
10	Asn	Ser	Thr	Ile	Pro	Thr	Lys	Gln	Thr	Gln	Ile	Phe	Thr	Thr	Tyr	Ser
					420					425				430		
15	Asp	Asn	Gln	Pro	Gly	Val	Leu	Ile	Gln	Val	Tyr	Glu	Gly	Glu	Arg	Ala
					435					440				445		
20	Met	Thr	Lys	Asp	Asn	Asn	Leu	Leu	Gly	Arg	Phe	Glu	Leu	Ser	Gly	Ile
					450					455				460		
25	Pro	Pro	Ala	Pro	Arg	Gly	Val	Pro	Gln	Ile	Glu	Val	Thr	Phe	Asp	Ile
					465					470				475		
	Asp	Ala	Asn	Gly	Ile	Leu	Asn	Val	Thr	Ala	Thr	Asp	Lys	Ser	Thr	Gly
					485					490				495		
30	Lys	Ala	Asn	Lys	Ile	Thr	Ile	Thr	Asn	Asp	Lys	Gly	Arg	Leu	Ser	Lys
					500					505				510		
35	Glu	Glu	Ile	Glu	Arg	Met	Val	Gln	Glu	Ala	Glu	Lys	Tyr	Lys	Ala	Glu
					515					520				525		
	Asp	Glu	Val	Gln	Arg	Glu	Arg	Val	Ser	Ala	Lys	Asn	Ala	Glu	Ser	
					530					535				540		
40	Tyr	Ala	Phe	Asn	Met	Lys	Ser	Ala	Val	Glu	Asp	Glu	Gly	Leu	Lys	Gly
					545					550				555		
	Lys	Ile	Ser	Glu	Ala	Asp	Lys	Lys	Val	Leu	Asp	Lys	Cys	Gln	Glu	
					565					570				575		
45	Val	Ile	Ser	Trp	Leu	Asp	Ala	Asn	Thr	Leu	Ala	Glu	Lys	Asp	Glu	Phe
					580					585				590		
50	Glu	His	Lys	Arg	Lys	Glu	Leu	Glu	Gln	Val	Cys	Asn	Pro	Ile	Ile	Ser
					595					600				605		
	Gly	Leu	Tyr	Gln	Gly	Ala	Gly	Gly	Pro	Gly	Pro	Gly	Gly	Phe	Gly	Ala
					610					615				620		
55	Gln	Gly	Pro	Lys	Gly	Gly	Ser	Gly	Ser	Gly	Pro	Thr	Ile	Glu	Glu	Val
					625					630				635		
	Asp															

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

-28-

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: homo sapiens

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

10 Ala Ser Pro Pro Ala Cys Pro Ser Glu Glu Asp Glu Ser Leu Lys Gly
 1 5 10 15

15 Cys Glu Leu Tyr Val Gln Leu His Gly Ile Gln Gln Val Leu Lys Asp
 20 25 30

20 25 30 35 40 45
 Cys Ile Val His Leu Cys Ile Ser Lys Pro Glu Arg Pro Met Lys Phe

20 25 30 35 40 45 50 55 60
 Leu Arg Glu His Phe Glu Lys Leu Glu Lys Glu Glu Asn Arg Gln Ile

25 30 35 40 45 50 55 60 65 70 75 80
 Leu Ala Arg Gln Lys Ser Asn Ser Gln Ser Asp Ser His Asp Glu Glu

30 35 40 45 50 55 60 65 70 75 80 85 90 95
 Val Ser Pro Thr Pro Pro Asn Pro Val Val Lys Ala Arg Arg Arg Arg

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
 Gly Gly Val Ser Ala Glu Val Tyr Thr Glu Glu Asp Ala Val Ser Tyr

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
 Val Arg Lys Val Ile Pro Lys Asp Tyr Lys Thr Met Thr Ala Leu Ala

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
 Lys Ala Ile Ser Lys Asn Val Leu Phe Ala His Leu Asp Asp Asn Glu

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160
 Arg Ser Asp Ile Phe Asp Ala Met Phe Pro Val Thr His Ile Ala Gly

45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175
 Glu Thr Val Ile Gln Gln Gly Asn Glu Gly Asp Asn Phe Tyr Val Val

50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190
 Asp Gln Gly Glu Val Asp Val Tyr Val Asn Gly Glu Trp Val Thr Asn

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205
 Ile Ser Glu Gly Gly Ser Phe Gly Glu Leu Ala Leu Ile Tyr Gly Thr

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220
 Pro Arg Ala Ala Thr Val Lys Ala Lys Thr Asp Leu Lys Leu Trp Gly

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240
 Ile Asp Arg Asp Ser Tyr Arg Arg Ile Leu Met Gly Ser Thr Leu Arg

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255
 Lys Arg Lys Met Tyr Glu Glu Phe Leu Ser Lys Val Ser Ile Leu Glu

60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270
 Ser Leu Glu Lys Trp Glu Arg Leu Thr Val Ala Asp Arg Leu Glu Pro

65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285
 Val Gln Phe Glu Asp Gly Glu Lys Ile Val Val Gln Gly Glu Pro Gly

65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
 Asp Asp Phe Tyr Ile Ile Thr Glu Gly Thr Ala Ser Val Leu Gln Arg

-29-

Arg Ser Pro Asn Glu Glu Tyr Val Glu Val Gly Arg Leu Gly Pro Ser
305 310 315 320
5 Asp Tyr Phe Gly Glu Ile Ala Leu Leu Leu Asn Arg Pro Arg Ala Ala
325 330 335
Thr Val Val Ala Arg Gly Pro Leu Lys Cys Val Lys Leu Asp Arg Pro
10 340 345 350
Arg Phe Glu Arg Val Leu Gly Pro Cys Ser Glu Ile Leu Lys Arg Asn
355 360 365

15 Ile Gln Arg Tyr Asn Ser Phe Ile Ser Leu Thr Val
370 375 380

20 (2) INFORMATION FOR SEQ ID NO: 3:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 465 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: protein

35 (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

40 (vi) ORIGINAL SOURCE:
(A) ORGANISM: homo sapiens

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

40 Ser Thr Arg Ser Val Ser Ser Ser Tyr Arg Arg Met Phe Gly Gly
1 5 10 15

45 Pro Gly Thr Ala Ser Arg Pro Ser Ser Ser Arg Ser Tyr Val Thr Thr
20 25 30

50 Ser Thr Arg Thr Tyr Ser Leu Gly Ser Ala Leu Arg Pro Ser Thr Ser
35 40 45

55 Arg Ser Leu Tyr Ala Ser Ser Pro Gly Gly Val Tyr Ala Thr Arg Ser
50 55 60

60 Ser Ala Val Arg Leu Arg Ser Ser Val Pro Gly Val Arg Leu Leu Gln
65 70 75 80

65 Asp Ser Val Asp Phe Ser Leu Ala Asp Ala Ile Asn Thr Glu Phe Lys
85 90 95

70 Asn Thr Arg Thr Asn Glu Lys Val Glu Leu Gln Glu Leu Asn Asp Arg
100 105 110

75 Phe Ala Asn Tyr Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn Lys
115 120 125

80 Ile Leu Leu Ala Glu Leu Glu Gln Leu Lys Gly Gln Gly Lys Ser Arg
130 135 140

- 30 -

-31-

(2) INFORMATION FOR SEQ ID NO: 4:

-32-

	Ala Leu Tyr Asn Val Asp Ala Gly His Arg Ala Val Ile Phe Asp Arg			
	225	230	235	240
5	Phe Arg Gly Val Gln Asp Ile Val Val Gly Glu Gly Thr His Phe Leu			
	245	250	255	
10	Ile Pro Trp Val Gln Lys Pro Ile Ile Phe Asp Cys Arg Ser Arg Pro			
	260	265	270	
	Arg Asn Val Pro Val Ile Thr Gly Ser Lys Asp Leu Gln Asn Val Asn			
	275	280	285	
15	Ile Thr Leu Arg Ile Leu Phe Arg Pro Val Ala Ser Gln Leu Pro Arg			
	290	295	300	
	Ile Phe Thr Ser Ile Gly Glu Asp Tyr Asp Glu Arg Val Leu Pro Ser			
	305	310	315	320
20	Ile Thr Thr Glu Ile Leu Lys Ser Val Val Ala Arg Phe Asp Ala Gly			
	325	330	335	
25	Glu Leu Ile Thr Gln Arg Glu Leu Val Ser Arg Gln Val Ser Asp Asp			
	340	345	350	
	Leu Thr Glu Arg Ala Ala Thr Phe Gly Leu Ile Leu Asp Asp Val Ser			
	355	360	365	
30	Leu Thr His Leu Thr Phe Gly Lys Glu Phe Thr Glu Ala Val Glu Ala			
	370	375	380	
	Lys Gln Val Ala Gln Gln Glu Ala Glu Arg Ala Arg Phe Val Val Glu			
	385	390	395	400
35	Lys Ala Glu Gln Gln Lys Lys Ala Ala Ile Ile Ser Ala Glu Gly Asp			
	405	410	415	
40	Ser Lys Ala Ala Glu Leu Ile Ala Asn Ser Leu Ala Thr Ala Gly Asp			
	420	425	430	
	Gly Leu Ile Glu Leu Arg Lys Leu Glu Ala Ala Glu Asp Ile Ala Tyr			
	435	440	445	
45	Gln Leu Ser Arg Ser Arg Asn Ile Thr Tyr Leu Pro Ala Gly Gln Ser			
	450	455	460	
	Val Leu Leu Gln Leu Pro Gln			
	465	470		

50

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- 60 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: homo sapiens

- 33 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Asp Ala Ile Lys Lys Lys Met Gln Met Leu Lys Leu Asp Lys Glu
 1 5 10 15
 Asn Ala Leu Asp Arg Ala Glu Gln Ala Glu Ala Asp Lys Lys Ala Ala
 20 25 30
 10 Glu Asp Arg Ser Lys Gln Leu Glu Asp Glu Leu Val Ser Leu Gln Lys
 35 40 45
 Lys Leu Lys Gly Thr Glu Asp Glu Leu Asp Lys Tyr Ser Glu Ala Leu
 50 55 60
 15 Lys Asp Ala Gln Glu Lys Leu Glu Leu Ala Glu Lys Lys Ala Thr Asp
 65 70 75 80
 20 Ala Glu Ala Asp Val Ala Ser Leu Asn Arg Arg Ile Gln Leu Val Glu
 85 90 95
 Glu Glu Leu Asp Arg Ala Gln Glu Arg Leu Ala Thr Ala Leu Gln Lys
 100 105 110
 25
 Leu Glu Glu Ala Glu Lys Ala Ala Asp Glu Ser Glu Arg Gly Met Lys
 115 120 125
 30 Val Ile Glu Ser Arg Ala Gln Lys Asp Glu Glu Lys Met Glu Ile Gln
 130 135 140
 Glu Ile Gln Leu Lys Glu Ala Lys His Ile Ala Glu Asp Ala Asp Arg
 145 150 155 160
 35 Lys Tyr Glu Glu Val Ala Arg Lys Leu Val Ile Ile Glu Ser Asp Leu
 165 170 175
 40 Glu Arg Ala Glu Glu Arg Ala Glu Leu Ser Glu Gly Gln Val Arg Gln
 180 185 190
 Leu Glu Glu Gln Leu Arg Ile Met Asp Gln Thr Leu Lys Ala Leu Met
 195 200 205
 45 Ala Ala Glu Asp Lys Tyr Ser Gln Lys Glu Asp Arg Tyr Glu Glu Glu
 210 215 220
 Ile Lys Val Leu Ser Asp Lys Leu Lys Glu Ala Glu Thr Arg Ala Glu
 225 230 235 240
 50 Phe Ala Glu Arg Ser Val Thr Lys Leu Glu Lys Ser Ile Asp Asp Leu
 245 250 255
 55 Glu Glu Lys Val Ala His Ala Lys Glu Glu Asn Leu Ser Met His Gln
 260 265 270
 Met Leu Asp Gln Thr Leu Leu Glu Leu Asn Asn Met
 275 280
 60

65

- 34 -

(2) INFORMATION FOR SEQ ID NO: 6:

-35-

	Gln	Tyr	Glu	Leu	Leu	Cys	Leu	Asp	Asn	Thr	Arg	Lys	Pro	Val	Asp	Glu
				245					250			255				
5	Tyr	Lys	Asp	Cys	His	Leu	Ala	Gln	Val	Pro	Ser	His	Thr	Val	Val	Ala
				260				265				270				
10	Arg	Ser	Met	Gly	Gly	Lys	Glu	Asp	Leu	Ile	Trp	Glu	Leu	Leu	Asn	Gln
				275				280				285				
15	Ala	Gln	Glu	His	Phe	Gly	Lys	Asp	Lys	Ser	Lys	Glu	Phe	Gln	Leu	Phe
				290				295				300				
20	Ser	Ser	Pro	His	Gly	Lys	Asp	Leu	Leu	Phe	Lys	Asp	Ser	Ala	His	Gly
				305				310				315			320	
25	Phe	Leu	Lys	Val	Pro	Pro	Arg	Met	Asp	Ala	Lys	Met	Tyr	Leu	Gly	Tyr
				325				330				335				
30	Glu	Tyr	Val	Thr	Ala	Ile	Arg	Asn	Leu	Arg	Glu	Gly	Thr	Cys	Pro	Glu
				340				345				350				
35	Ala	Pro	Thr	Asp	Glu	Cys	Lys	Pro	Val	Lys	Trp	Cys	Ala	Leu	Ser	His
				355				360				365				
40	His	Glu	Arg	Leu	Lys	Cys	Asp	Glu	Trp	Ser	Val	Asn	Ser	Val	Gly	Lys
				370				375				380				
45	Ile	Glu	Cys	Val	Ser	Ala	Glu	Thr	Thr	Glu	Asp	Cys	Ile	Ala	Lys	Ile
				385				390				395			400	
50	Met	Asn	Gly	Glu	Ala	Asp	Ala	Met	Ser	Leu	Asp	Gly	Gly	Phe	Val	Tyr
				405				410				415				
55	Ile	Ala	Gly	Lys	Cys	Gly	Leu	Val	Pro	Val	Leu	Ala	Glu	Asn	Tyr	Asn
				420				425				430				
60	Lys	Ser	Asp	Asn	Cys	Glu	Asp	Thr	Pro	Glu	Ala	Gly	Tyr	Phe	Ala	Val
				435				440				445				
65	Ala	Val	Val	Lys	Lys	Ser	Ala	Ser	Asp	Leu	Thr	Trp	Asp	Asn	Leu	Lys
				450				455				460				
70	Gly	Lys	Lys	Ser	Cys	His	Thr	Ala	Val	Gly	Arg	Thr	Ala	Gly	Trp	Asn
				465				470				475			480	
75	Ile	Pro	Met	Gly	Leu	Leu	Tyr	Asn	Lys	Ile	Asn	His	Cys	Arg	Phe	Asp
				485				490				495				
80	Glu	Phe	Phe	Ser	Glu	Gly	Cys	Ala	Pro	Gly	Ser	Lys	Lys	Asp	Ser	Ser
				500				505				510				
85	Leu	Cys	Lys	Leu	Cys	Met	Gly	Ser	Gly	Leu	Asn	Leu	Cys	Glu	Pro	Asn
				515				520				525				
90	Asn	Lys	Glu	Gly	Tyr	Tyr	Gly	Tyr	Thr	Gly	Ala	Phe	Arg	Cys	Leu	Val
				530				535				540				
95	Glu	Lys	Gly	Asp	Val	Ala	Phe	Val	Lys	His	Gln	Thr	Val	Pro	Gln	Asn
				545				550				555			560	
100	Thr	Gly	Gly	Lys	Asn	Pro	Asp	Pro	Trp	Ala	Lys	Asn	Leu	Asn	Glu	Lys
				565				570				575				
105	Asp	Tyr	Glu	Leu	Leu	Cys	Leu	Asp	Gly	Thr	Arg	Lys	Pro	Val	Glu	Glu
				580				585				590				

- 36 -

(2) INFORMATION FOR SEQ ID NO: 7;

-37-

	Leu	Gly	Ser	Arg	Leu	Tyr	Gly	Pro	Ser	Ser	Val	Ser	Phe	Ala	Asp	Asp
	130						135					140				
5	Phe	Val	Arg	Ser	Ser	Lys	Gln	His	Tyr	Asn	Cys	Glu	His	Ser	Lys	Ile
	145					150				155			160			
	Asn	Phe	Pro	Asp	Lys	Arg	Ser	Ala	Leu	Gln	Ser	Ile	Asn	Glu	Trp	Ala
10		165				170				175						
	Ala	Gln	Thr	Thr	Asp	Gly	Lys	Leu	Pro	Glu	Val	Thr	Lys	Asp	Val	Glu
		180					185			190						
15	Arg	Thr	Asp	Gly	Ala	Leu	Leu	Val	Asn	Ala	Met	Phe	Phe	Lys	Pro	His
		195				200			205							
	Trp	Asp	Glu	Lys	Phe	His	His	Lys	Met	Val	Asp	Asn	Arg	Gly	Phe	Met
		210				215			220							
20	Val	Thr	Arg	Ser	Tyr	Thr	Val	Gly	Val	Thr	Met	Met	His	Arg	Thr	Gly
	225					230				235			240			
	Leu	Tyr	Asn	Tyr	Tyr	Asp	Asp	Glu	Lys	Glu	Lys	Leu	Gln	Leu	Val	Glu
25		245					250			255						
	Met	Pro	Leu	Ala	His	Lys	Leu	Ser	Ser	Leu	Ile	Ile	Leu	Met	Pro	His
		260					265			270						
30	His	Val	Glu	Pro	Leu	Glu	Arg	Leu	Glu	Lys	Leu	Leu	Thr	Lys	Glu	Gln
		275					280			285						
	Leu	Lys	Ile	Trp	Met	Gly	Lys	Met	Gln	Lys	Lys	Ala	Val	Ala	Ile	Ser
		290					295					300				
35	Leu	Pro	Lys	Gly	Val	Val	Glu	Val	Thr	His	Asp	Leu	Gln	Lys	His	Leu
		305				310				315			320			
40	Ala	Gly	Leu	Gly	Leu	Thr	Glu	Ala	Ile	Asp	Lys	Asn	Lys	Ala	Asp	Leu
						325				330			335			
	Ser	Arg	Met	Ser	Gly	Lys	Lys	Asp	Leu	Tyr	Leu	Ala	Ser	Val	Phe	His
						340				345			350			
45	Ala	Thr	Ala	Phe	Glu	Leu	Asp	Thr	Asp	Gly	Asn	Pro	Phe	Asp	Gln	Asp
		355					360				365					
	Ile	Tyr	Gly	Arg	Glu	Glu	Leu	Arg	Ser	Pro	Lys	Leu	Phe	Tyr	Ala	Asp
		370					375				380					
50	His	Pro	Phe	Ile	Phe	Leu	Val	Arg	Asp	Thr	Gln	Ser	Gly	Ser	Leu	Leu
		385				390				395			400			
	Phe	Ile	Gly	Arg	Leu	Val	Arg	Leu	Lys	Gly	Asp	Lys	Met	Arg	Asp	Glu
55						405				410			415			
	Leu															

60 (2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

- 38 -

(iii) HYPOTHETICAL: NO

(IV) ANTI-SENSE. NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: h

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Lys Leu Leu Thr Arg Ala Gly Ser Phe Ser Arg Phe Tyr Ser Leu
1 5 10 15

Lys Val Ala Pro Lys Val Lys Ala Thr Ala Ala Pro Ala Gly Ala Pro
20 25 30

Pro Gln Pro Gln Asp Leu Glu Phe Thr Lys Leu Pro Asn Gly Leu Val
35 40 45

Ile Ala Ser Leu Glu Asn Tyr Ser Pro Val Ser Arg Ile Gly Leu Phe
50 55 60

Ile Lys Ala Gly Ser Arg Tyr Glu Asp Phe Ser Asn Leu Gly Thr Thr
65 70 75 80

His Leu Leu Arg Leu Thr Ser Ser Leu Thr Thr Lys Gly Ala Ser Ser
85 90 95

30 Phe Lys Ile Thr Arg Gly Ile Glu Ala Val Gly Gly Lys Leu Ser Val
100 105 110

35 Thr Ala Thr Arg Glu Asn Met Ala Tyr Thr Val Glu Cys Leu Arg Gly
115 120 125

40 Asp Val Asp Ile Leu Met Glu Phe Leu Leu Asn Val Thr Thr Ala Pro
130 135 140

Glu Phe Arg Arg Trp Glu Val Ala Asp Leu Gln Pro Gln Leu Lys Ile
145 150 155 160

45 Asp Lys Ala Val Ala Phe Gln Asn Pro Gln Thr His Val Ile Glu Asn
165 170 175

Leu His Ala Ala Ala Tyr Gln Asn Ala Leu Ala Asn Pro Leu Tyr Cys
180 185 190

Pro Asp Tyr Arg Ile Gly Lys Val Thr Ser Glu Glu Leu His Tyr Phe
195 200 205

55 Val Gln Asn His Phe Thr Ser Ala Arg Met Ala Leu Ile Gly Leu Gly
210 215 220

Val Ser His Pro Val Leu Lys Gln Val Ala Glu Gln Phe Leu Asn Met
225 230 235 240

60 Arg Gly Gly Leu Gly Leu Ser Gly Ala Lys Ala Asn Tyr Arg Gly Gly

Glu Ile Arg Glu Gln Asn Gly Asp Ser Leu Val His Ala Ala Phe Val

Ala Giu Ser Ala Val Ala Gly Ser Ala Glu Ala Asn Ala Phe Ser Val

- 39 -

35 (2) INFORMATION FOR SEO ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 433 amino acids

40 (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
(A) ORGANISM: homo sap

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Ser Ile Leu Lys Ile His Ala Arg Glu Ile Phe Asp Ser Arg Gly Asn
1 5 10 15

60 Pro Thr Val Glu Val Asp Leu Phe Thr Ser Lys Gly Leu Phe Arg Ala
20 25 30

Ala Val Pro Ser Gly Ala Ser Thr Gly Ile Tyr Glu Ala Leu Glu Leu
35 40 45

65 Arg Asp Asn Asp Lys Thr Arg Tyr Met Gly Lys Gly Val Ser Lys Ala
50 55 60

-40-

	Val	Glu	His	Ile	Asn	Lys	Thr	Ile	Ala	Pro	Ala	Leu	Val	Ser	Lys	Lys
65								70				75				80
5	Leu	Asn	Val	Thr	Glu	Gln	Glu	Lys	Ile	Asp	Lys	Leu	Met	Ile	Glu	Met
								85				90				95
10	Asp	Gly	Thr	Glu	Asn	Lys	Ser	Lys	Phe	Gly	Ala	Asn	Ala	Ile	Leu	Gly
								100				105				110
15	Val	Ser	Leu	Ala	Val	Cys	Lys	Ala	Gly	Ala	Val	Glu	Lys	Gly	Val	Pro
								115				120				125
20	Leu	Tyr	Arg	His	Ile	Ala	Asp	Leu	Ala	Gly	Asn	Ser	Glu	Val	Ile	Leu
								130				135				140
	Pro	Val	Pro	Ala	Phe	Asn	Val	Ile	Asn	Gly	Gly	Ser	His	Ala	Gly	Asn
								145				150				160
25	Lys	Leu	Ala	Met	Gln	Glu	Phe	Met	Ile	Leu	Pro	Val	Gly	Ala	Ala	Asn
								165				170				175
	Phe	Arg	Glu	Ala	Met	Arg	Ile	Gly	Ala	Glu	Val	Tyr	His	Asn	Leu	Lys
								180				185				190
30	Asn	Val	Ile	Lys	Glu	Lys	Tyr	Gly	Lys	Asp	Ala	Thr	Asn	Val	Gly	Asp
								195				200				205
	Glu	Gly	Gly	Phe	Ala	Pro	Asn	Ile	Leu	Glu	Asn	Lys	Glu	Gly	Leu	Glu
								210				215				220
35	Leu	Leu	Lys	Thr	Ala	Ile	Gly	Lys	Ala	Gly	Tyr	Thr	Asp	Lys	Val	Val
								225				230				240
	Ile	Gly	Met	Asp	Val	Ala	Ala	Ser	Glu	Phe	Phe	Arg	Ser	Gly	Lys	Tyr
								245				250				255
40	Asp	Leu	Asp	Phe	Lys	Ser	Pro	Asp	Asp	Pro	Ser	Arg	Tyr	Ile	Ser	Pro
								260				265				270
	Asp	Gln	Leu	Ala	Asp	Leu	Tyr	Lys	Ser	Phe	Ile	Lys	Asp	Tyr	Pro	Val
								275				280				285
45	Val	Ser	Ile	Glu	Asp	Pro	Phe	Asp	Gln	Asp	Asp	Trp	Gly	Ala	Trp	Gln
								290				295				300
	Lys	Phe	Thr	Ala	Ser	Ala	Gly	Ile	Gln	Val	Val	Gly	Asp	Asp	Leu	Thr
50								305				310				320
	315															
	Val	Thr	Asn	Pro	Lys	Arg	Ile	Ala	Lys	Ala	Val	Asn	Glu	Lys	Ser	Cys
								325				330				335
55	Asn	Cys	Leu	Leu	Lys	Val	Asn	Gln	Ile	Gly	Ser	Val	Thr	Glu	Ser	
								340				345				350
	350															
	Leu	Gln	Ala	Cys	Lys	Leu	Ala	Gln	Ala	Asn	Gly	Trp	Gly	Val	Met	Val
60																
	355								360				365			
	Ser	His	Arg	Ser	Gly	Glu	Thr	Glu	Asp	Thr	Phe	Ile	Ala	Asp	Leu	Val
								370				375				380
65	Val	Gly	Leu	Cys	Thr	Gly	Gln	Ile	Lys	Thr	Gly	Ala	Pro	Cys	Arg	Ser
								385				390				400
	390															
	Glu	Arg	Leu	Ala	Lys	Tyr	Asn	Gln	Leu	Leu	Arg	Ile	Glu	Glu	Leu	
	405											410				415

-41-

Gly Ser Lys Ala Lys Phe Ala Gly Arg Asn Phe Arg Asn Pro Leu Ala
 420 425 430

5 Lys

10 (2) INFORMATION FOR SEQ ID NO: 10:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 417 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: protein

25 (iii) HYPOTHETICAL: NO

30 (iv) ANTI-SENSE: NO

35 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

40 Ser Leu Ser Asn Lys Leu Thr Leu Asp Lys Leu Asp Val Lys Gly Lys
 1 5 10 15

45 Arg Val Val Met Arg Val Asp Phe Asn Val Pro Met Lys Asn Asn Gln
 20 25 30

50 Ile Thr Asn Asn Gln Arg Ile Lys Ala Ala Val Pro Ser Ile Lys Phe
 35 40 45

55 Cys Leu Asp Asn Gly Ala Lys Ser Val Val Leu Met Ser His Leu Gly
 50 55 60

60 Arg Pro Asp Gly Val Pro Met Pro Asp Lys Tyr Ser Leu Glu Pro Val
 65 70 75 80

65 Ala Val Glu Leu Lys Ser Leu Leu Gly Lys Asp Val Leu Phe Leu Lys
 85 90 95

70 Asp Cys Val Gly Pro Glu Val Glu Lys Ala Cys Ala Asn Pro Ala Ala
 100 105 110

75 Gly Ser Val Ile Leu Leu Glu Asn Leu Arg Phe His Val Glu Glu Glu
 115 120 125

80 Gly Lys Gly Lys Asp Ala Ser Gly Asn Lys Val Lys Ala Glu Pro Ala
 130 135 140

85 Lys Ile Glu Ala Phe Arg Ala Ser Leu Ser Lys Leu Gly Asp Val Tyr
 145 150 155 160

90 Val Asn Asp Ala Phe Gly Thr Ala His Arg Ala His Ser Ser Met Val
 165 170 175

95 Gly Val Asn Leu Pro Gln Lys Ala Gly Gly Phe Leu Met Lys Lys Glu
 180 185 190

-42-

	Leu Asn Tyr Phe Ala Lys Ala	Leu Glu Ser Pro Glu Arg Pro Phe Leu		
	195	200	205	
5	Ala Ile Leu Gly Gly Ala Lys Val Ala Asp Lys Ile Gln Leu Ile Asn			
	210	215	220	
10	Asn Met Leu Asp Lys Val Asn Glu Met Ile Ile Gly Gly Met Ala			
	225	230	235	240
15	Phe Thr Phe Leu Lys Val Leu Asn Asn Met Glu Ile Gly Thr Ser Leu			
	245	250	255	
20	Phe Asp Glu Glu Gly Ala Lys Ile Val Lys Asp Leu Met Ser Lys Ala			
	260	265	270	
25	Glu Lys Asn Gly Val Lys Ile Thr Leu Pro Val Asp Phe Val Thr Ala			
	275	280	285	
30	Asp Lys Phe Asp Glu Asn Ala Lys Thr Gly Gln Ala Thr Val Ala Ser			
	290	295	300	
35	Gly Ile Pro Ala Gly Trp Met Gly Leu Asp Cys Gly Pro Glu Ser Ser			
	305	310	315	320
40	Lys Lys Tyr Ala Glu Ala Val Thr Arg Ala Lys Gln Ile Val Trp Asn			
	325	330	335	
45	Gly Pro Val Gly Val Phe Glu Trp Glu Ala Phe Ala Arg Gly Thr Lys			
	340	345	350	
50	Ala Leu Met Asp Glu Val Val Lys Ala Thr Ser Arg Gly Cys Ile Thr			
	355	360	365	
55	Ile Ile Gly Gly Asp Thr Ala Thr Cys Cys Ala Lys Trp Asn Thr			
	370	375	380	
60	Glu Asp Lys Val Ser His Val Ser Thr Gly Gly Ala Ser Leu Glu			
	385	390	395	400
65	Leu Leu Glu Gly Lys Val Leu Pro Gly Val Asp Ala Leu Ser Asn Ile			
	405	410	415	
70	Leu			

(2) INFORMATION FOR SEQ ID NO: 11:

- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 249 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - 55 (ii) MOLECULE TYPE: protein
 - 60 (iii) HYPOTHETICAL: NO
 - 65 (iv) ANTI-SENSE: NO
 - 70 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: homo sapiens
 - 75 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
- Met Ala Pro Ser Arg Lys Phe Phe Val Gly Gly Asn Trp Lys Met Asn
 1 5 10 15

-43-

	Gly Arg Lys Gln Ser Leu Gly Glu	Leu Ile Gly Thr Leu Asn Ala Ala
	20 25	30
5	Lys Val Pro Ala Asp Thr Glu Val Val Cys Ala Pro Pro	Thr Ala Tyr
	35 40	45
	Ile Asp Phe Ala Arg Gln Lys Leu Asp Pro Lys	Ile Ala Val Ala Ala
10	50 55	60
	Gln Asn Cys Tyr Lys Val Thr Asn Gly Ala Phe Thr Gly Glu	Ile Ser
	65 70 75	80
15	Pro Gly Met Ile Lys Asp Cys Gly Ala Thr Trp Val Val Leu Gly His	
	85 90 95	
	Ser Glu Arg Arg His Val Phe Gly Glu Ser Asp Glu Leu Ile Gly Gln	
	100 105 110	
20	Lys Val Ala His Ala Leu Ala Glu Gly Leu Gly Val Ile Ala Cys Ile	
	115 120 125	
	Gly Glu Lys Leu Asp Glu Arg Glu Ala Gly Ile Thr Glu Lys Val Val	
25	130 135 140	
	Phe Glu Gln Thr Lys Val Ile Ala Asp Asn Val Lys Asp Trp Ser Lys	
	145 150 155 160	
30	Val Val Leu Ala Tyr Glu Pro Val Trp Ala Ile Gly Thr Gly Lys Thr	
	165 170 175	
	Ala Thr Pro Gln Gln Ala Gln Glu Val His Glu Lys Leu Arg Gly Trp	
	180 185 190	
35	Leu Lys Ser Asn Val Ser Asp Ala Val Ala Gln Ser Thr Arg Ile Ile	
	195 200 205	
	Tyr Gly Gly Ser Val Thr Gly Ala Thr Cys Lys Glu Leu Ala Ser Gln	
40	210 215 220	
	Pro Asp Val Asp Gly Phe Leu Val Gly Gly Ala Ser Leu Lys Pro Glu	
	225 230 235 240	
45	Phe Val Asp Ile Ile Asn Ala Lys Gln	
	245	

(2) INFORMATION FOR SEQ ID NO: 12:

- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1076 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 55 (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- 60 (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: homo sapiens

65

- 44 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

5	Pro	Val	Pro	Leu	Ser	Phe	Leu	Ser	Thr	Val	Cys	Asp	Pro	Arg	Val	Gln
	1			5					10						15	
10	Asp	Gly	Ala	Ala	Glu	Arg	Thr	Gly	Ala	Ala	Asp	Gly	Glu	Glu	Phe	Leu
				20					25						30	
15	Gly	Gly	Gly	Gly	Leu	Pro	Ala	Glu	Leu	Phe	Gln	Lys	Lys	Val	Val	Ala
				35					40						45	
20	Ser	Phe	Pro	Arg	Thr	Val	Leu	Ser	Thr	Gly	Met	Asp	Asn	Arg	Tyr	Leu
		50				55					60					
25	Val	Leu	Ala	Val	Asn	Thr	Val	Gln	Asn	Lys	Glu	Gly	Asn	Cys	Glu	Lys
		65				70					75					80
30	Arg	Leu	Val	Ile	Thr	Ala	Ser	Gln	Ser	Leu	Glu	Asn	Lys	Glu	Leu	Cys
				85						90					95	
35	Ile	Leu	Arg	Asn	Asp	Trp	Cys	Ser	Val	Pro	Val	Glu	Pro	Gly	Asp	Ile
				100					105						110	
40	Ile	His	Leu	Glu	Gly	Asp	Cys	Thr	Ser	Asp	Thr	Trp	Ile	Ile	Asp	Lys
				115					120						125	
45	Asp	Phe	Gly	Tyr	Leu	Ile	Leu	Tyr	Pro	Asp	Met	Leu	Ile	Ser	Gly	Thr
				130				135				140				
50	Ser	Ile	Ala	Ser	Ser	Ile	Arg	Cys	Met	Arg	Arg	Ala	Val	Leu	Ser	Glu
				145				150				155				160
55	Thr	Phe	Arg	Ser	Ser	Asp	Pro	Ala	Thr	Arg	Gln	Met	Leu	Ile	Gly	Thr
						165				170					175	
60	Val	Leu	His	Glu	Val	Phe	Gln	Lys	Ala	Ile	Asn	Asn	Ser	Phe	Ala	Pro
						180				185					190	
65	Glu	Lys	Leu	Gln	Glu	Leu	Ala	Phe	Gln	Thr	Ile	Gln	Glu	Ile	Arg	His
						195			200						205	
70	Leu	Lys	Glu	Met	Tyr	Arg	Leu	Asn	Leu	Ser	Gln	Asp	Glu	Ile	Lys	Gln
				210					215						220	
75	Glu	Val	Glu	Asp	Tyr	Leu	Pro	Ser	Phe	Cys	Lys	Trp	Ala	Gly	Asp	Phe
						225			230						240	
80	Met	His	Lys	Asn	Thr	Ser	Thr	Asp	Phe	Pro	Gln	Met	Gln	Leu	Ser	Leu
						245				250					255	
85	Pro	Ser	Asp	Asn	Ser	Lys	Asp	Asn	Ser	Thr	Cys	Asn	Ile	Glu	Val	Val
						260				265					270	
90	Lys	Pro	Met	Asp	Ile	Glu	Glu	Ser	Ile	Trp	Ser	Pro	Arg	Phe	Gly	Leu
						275				280					285	
95	Lys	Gly	Lys	Ile	Asp	Val	Thr	Val	Gly	Val	Lys	Ile	His	Arg	Gly	Tyr
						290			295						300	
100	Lys	Thr	Lys	Tyr	Lys	Ile	Met	Pro	Leu	Glu	Leu	Lys	Thr	Gly	Lys	Glu
						305			310						320	

-45-

	Ser Asn Ser Ile Glu His Arg Ser Gln Val Val Leu Tyr Thr Leu Leu	
	325 330 335	
5	Ser Gin Glu Arg Arg Ala Asp Pro Glu Ala Gly Leu Leu Leu Tyr Leu	
	340 345 350	
	Lys Thr Gly Gln Met Tyr Pro Val Pro Ala Asn His Leu Asp Lys Arg	
	355 360 365	
10	Glu Leu Leu Lys Leu Arg Asn Gln Met Ala Phe Ser Leu Phe His Arg	
	370 375 380	
15	Ile Ser Lys Ser Ala Thr Arg Gln Lys Thr Gln Leu Ala Ser Leu Pro	
	385 390 395 400	
	Gln Ile Ile Glu Glu Glu Lys Thr Cys Lys Tyr Cys Ser Gin Ile Gly	
	405 410 415	
20	Asn Cys Ala Leu Tyr Ser Arg Ala Val Glu Gln Gln Met Asp Cys Ser	
	420 425 430	
	Ser Val Pro Ile Val Met Leu Pro Lys Ile Glu Glu Glu Thr Gln His	
	435 440 445	
25	Leu Lys Gln Thr His Leu Glu Tyr Phe Ser Leu Trp Cys Leu Met Leu	
	450 455 460	
	Thr Leu Glu Ser Gln Ser Lys Asp Asn Lys Lys Asn His Gln Asn Ile	
	465 470 475 480	
30	Trp Leu Met Pro Ala Ser Glu Met Glu Lys Ser Gly Ser Cys Ile Gly	
	485 490 495	
35	Asn Leu Ile Arg Met Glu His Val Lys Ile Val Cys Asp Gly Gln Tyr	
	500 505 510	
	Leu His Asn Phe Gln Cys Lys His Gly Ala Ile Pro Val Thr Asn Leu	
	515 520 525	
40	Met Ala Gly Asp Arg Val Ile Val Ser Gly Glu Glu Arg Ser Leu Phe	
	530 535 540	
45	Ala Leu Ser Arg Gly Tyr Val Lys Glu Ile Asn Met Thr Thr Val Thr	
	545 550 555 560	
	Cys Leu Leu Asp Arg Asn Leu Ser Val Leu Pro Glu Ser Thr Leu Phe	
	565 570 575	
50	Arg Leu Asp Gln Glu Glu Lys Asn Cys Asp Ile Asp Thr Pro Leu Gly	
	580 585 590	
55	Asn Leu Ser Lys Leu Met Glu Asn Thr Phe Val Ser Lys Lys Leu Arg	
	595 600 605	
	Asp Leu Ile Ile Asp Phe Arg Glu Pro Gln Phe Ile Ser Tyr Leu Ser	
	610 615 620	
60	Ser Val Leu Pro His Asp Ala Lys Asp Thr Val Ala Cys Ile Leu Lys	
	625 630 635 640	
	Gly Leu Asn Lys Pro Gln Arg Gln Ala Met Lys Lys Val Leu Leu Ser	
	645 650 655	
65	Lys Asp Tyr Thr Leu Ile Val Gly Met Pro Gly Thr Gly Lys Thr Thr	
	660 665 670	

-46-

	Thr Ile Cys Thr Leu Val Arg Ile Leu Tyr Ala Cys Gly Phe Ser Val			
	675	680	685	
5	Leu Leu Thr Ser Tyr Thr His Ser Ala Val Asp Asn Ile Leu Leu Lys			
	690	695	700	
	Leu Ala Lys Phe Lys Ile Gly Phe Leu Arg Leu Gly Gln Ile Gln Lys			
10	705	710	715	720
	Val His Pro Ala Ile Gln Gln Phe Thr Glu Gln Glu Ile Cys Arg Ser			
	725	730	735	
15	Lys Ser Ile Lys Ser Leu Ala Leu Leu Glu Glu Leu Tyr Asn Ser Gln			
	740	745	750	
	Leu Ile Val Ala Thr Thr Cys Met Gly Ile Asn His Pro Ile Phe Ser			
	755	760	765	
20	Arg Lys Ile Phe Asp Phe Cys Ile Val Asp Glu Ala Ser Gln Ile Ser			
	770	775	780	
	Gln Pro Ile Cys Leu Gly Pro Leu Phe Phe Ser Arg Arg Phe Val Leu			
25	785	790	795	800
	Val Gly Asp His Gln Gln Leu Pro Pro Leu Val Leu Asn Arg Glu Ala			
	805	810	815	
30	Arg Ala Leu Gly Met Ser Glu Ser Leu Phe Lys Arg Leu Glu Gln Asn			
	820	825	830	
	Lys Ser Ala Val Val Gln Leu Thr Val Gln Tyr Arg Met Asn Ser Lys			
	835	840	845	
35	Ile Met Ser Leu Ser Asn Lys Leu Thr Tyr Glu Gly Lys Leu Glu Cys			
	850	855	860	
	Gly Ser Asp Lys Val Ala Asn Ala Val Ile Asn Leu Arg His Phe Lys			
40	865	870	875	880
	Asp Val Lys Leu Glu Leu Glu Phe Tyr Ala Asp Tyr Ser Asp Asn Pro			
	885	890	895	
45	Trp Leu Met Gly Val Phe Glu Pro Asn Asn Pro Val Cys Phe Leu Asn			
	900	905	910	
	Thr Asp Lys Val Pro Ala Pro Glu Gln Val Glu Lys Gly Gly Val Ser			
	915	920	925	
50	Asn Val Thr Glu Ala Lys Leu Ile Val Phe Leu Thr Ser Ile Phe Val			
	930	935	940	
55	Lys Ala Gly Cys Ser Pro Ser Asp Ile Gly Ile Ile Ala Pro Tyr Arg			
	945	950	955	960
	Gln Gln Leu Lys Ile Ile Asn Asp Leu Leu Ala Arg Ser Ile Gly Met			
60	965	970	975	
	Val Glu Val Asn Thr Val Asp Lys Tyr Gln Gly Arg Asp Lys Ser Ile			
	980	985	990	
65	Val Leu Val Ser Phe Val Arg Ser Asn Lys Asp Gly Thr Val Gly Glu			
	995	1000	1005	

- 47 -

Leu Leu Lys Asp Trp Arg Arg Leu Asn Val Ala Ile Thr Arg Ala Lys
 1010 1015 1020
 His Lys Leu Ile Leu Leu Gly Cys Val Pro Ser Leu Asn Cys Tyr Pro
 1025 1030 1035 1040
 Pro Leu Glu Lys Leu Leu Asn His Leu Asn Ser Glu Lys Leu Ile Ile
 1045 1050 1055
 10 Asp Leu Pro Ser Arg Glu His Glu Ser Leu Cys His Ile Leu Gly Asp
 1060 1065 1070
 Phe Gln Arg Glu
 1075

(2) INFORMATION FOR SEQ ID NO: 13:

20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 527 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

30 (iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: homo sapiens

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Met Ala Asp Ser Arg Asp Pro Ala Ser Asp Gln Met Gln His Trp Lys
 1 5 10 15

40 Glu Gln Arg Ala Ala Gln Lys Ala Asp Val Leu Thr Thr Gly Ala Gly
 20 25 30

Asn Pro Val Gly Asp Lys Leu Asn Val Ile Thr Val Gly Pro Arg Gly
 45 35 40 45

Pro Leu Leu Val Gln Asp Val Val Phe Thr Asp Glu Met Ala His Phe
 50 50 55 60

Asp Arg Glu Arg Ile Pro Glu Arg Val Val His Ala Lys Gly Ala Gly
 50 65 70 75 80

Ala Phe Gly Tyr Phe Glu Val Thr His Asp Ile Thr Lys Tyr Ser Lys
 55 85 90 95

Ala Lys Val Phe Glu His Ile Gly Lys Lys Thr Pro Ile Ala Val Arg
 100 105 110

60 Phe Ser Thr Val Ala Gly Glu Ser Gly Ser Ala Asp Thr Val Arg Asp
 115 120 125

Pro Arg Gly Phe Ala Val Lys Phe Tyr Thr Glu Asp Gly Asn Trp Asp
 65 130 135 140

Leu Val Gly Asn Asn Thr Pro Ile Phe Phe Ile Arg Asp Pro Ile Leu
 145 150 155 160

-48-

	Phe Pro Ser Phe Ile His Ser Gln Lys Arg Asn Pro Gln Thr His Leu			
	165	170	175	
5	Lys Asp Pro Asp Met Val Trp Asp Phe Trp Ser Leu Arg Pro Glu Ser			
	180	185	190	
10	Leu His Gln Val Ser Phe Leu Phe Ser Asp Arg Gly Ile Pro Asp Gly			
	195	200	205	
	His Arg His Met Asn Gly Tyr Gly Ser His Thr Phe Lys Leu Val Asn			
	210	215	220	
15.	Ala Asn Gly Glu Ala Val Tyr Cys Lys Phe His Tyr Lys Thr Asp Gln			
	225	230	235	240
	Gly Ile Lys Asn Leu Ser Val Glu Asp Ala Ala Arg Leu Ser Gln Glu			
	245	250	255	
20	Asp Pro Asp Tyr Gly Ile Arg Asp Leu Phe Asn Ala Ile Ala Thr Gly			
	260	265	270	
25	Lys Tyr Pro Ser Trp Thr Phe Tyr Ile Gln Val Met Thr Phe Asn Gln			
	275	280	285	
	Ala Glu Thr Phe Pro Phe Asn Pro Phe Asp Leu Thr Lys Val Trp Pro			
	290	295	300	
30	His Lys Asp Tyr Pro Leu Ile Pro Val Gly Lys Leu Val Leu Asn Arg			
	305	310	315	320
	Asn Pro Val Asn Tyr Phe Ala Glu Val Glu Gln Ile Ala Phe Asp Pro			
	325	330	335	
35	Ser Asn Met Pro Pro Gly Ile Glu Ala Ser Pro Asp Lys Met Leu Gln			
	340	345	350	
	Gly Arg Leu Phe Ala Tyr Pro Asp Thr His Arg His Arg Leu Gly Pro			
40	355	360	365	
	Asn Tyr Leu His Ile Pro Val Asn Cys Pro Tyr Arg Ala Arg Val Ala			
	370	375	380	
45	Asn Tyr Gln Arg Asp Gly Pro Met Cys Met Gln Asp Asn Gln Gly Gly			
	385	390	395	400
	Ala Pro Asn Tyr Tyr Pro Asn Ser Phe Gly Ala Pro Glu Gln Gln Pro			
	405	410	415	
50	Ser Ala Leu Glu His Ser Ile Gln Tyr Ser Gly Glu Val Arg Arg Phe			
	420	425	430	
	Asn Thr Ala Asn Asp Asp Asn Val Thr Gln Val Arg Ala Phe Tyr Val			
55	435	440	445	
	Asn Val Leu Asn Glu Glu Gln Arg Lys Arg Leu Cys Glu Asn Ile Ala			
60	450	455	460	
	Gly His Leu Lys Asp Ala Gln Ile Phe Ile Gln Lys Lys Ala Val Lys			
	465	470	475	480
65	Asn Phe Thr Glu Val His Pro Asp Tyr Gly Ser His Ile Gln Ala Leu			
	485	490	495	
	Leu Asp Lys Tyr Asn Ala Glu Lys Pro Lys Asn Ala Ile His Thr Phe			
	500	505	510	

-49-

515	520	525												
Val	Gln	Ser	Gly	Ser	His	Leu	Ala	Ala	Arg	Glu	Lys	Ala	Asn	Leu

5 (2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:
 10 (A) LENGTH: 353 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

15 (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

20 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: homo sapiens

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

1	5	10	15												
Met	Glu	Lys	Thr	Leu	Glu	Thr	Val	Pro	Leu	Glu	Arg	Lys	Lys	Arg	Glu

20	25	30													
Lys	Glu	Gln	Phe	Arg	Lys	Leu	Phe	Ile	Gly	Gly	Leu	Ser	Phe	Glu	Thr

35	40	45													
Thr	Glu	Glu	Ser	Leu	Arg	Asn	Tyr	Tyr	Glu	Gln	Trp	Gly	Lys	Leu	Thr

50	55	60													
Asp	Cys	Val	Val	Met	Arg	Asp	Pro	Ala	Ser	Lys	Arg	Ser	Arg	Gly	Phe

65	70	75	80												
Gly	Phe	Val	Thr	Phe	Ser	Ser	Met	Ala	Glu	Val	Asp	Ala	Ala	Met	Ala

85	90	95													
Ala	Arg	Pro	His	Ser	Ile	Asp	Gly	Arg	Val	Val	Glu	Pro	Lys	Arg	Ala

100	105	110													
Val	Ala	Arg	Glu	Glu	Ser	Gly	Lys	Pro	Gly	Ala	His	Val	Thr	Val	Lys

115	120	125													
Lys	Leu	Phe	Val	Gly	Gly	Ile	Lys	Glu	Asp	Thr	Glu	Glu	His	His	Leu

130	135	140													
Arg	Asp	Tyr	Phe	Glu	Glu	Tyr	Gly	Lys	Ile	Asp	Thr	Ile	Glu	Ile	Ile

145	150	155	160												
Thr	Asp	Arg	Gln	Ser	Gly	Lys	Lys	Arg	Gly	Phe	Gly	Phe	Val	Thr	Phe

165	170	175												
Asp	Asp	His	Asp	Pro	Val	Asp	Ile	Val	Leu	Gln	Lys	Tyr	His	Thr

180	185	190													
Ile	Asn	Gly	His	Asn	Ala	Glu	Val	Arg	Lys	Ala	Leu	Ser	Arg	Gln	Glu

195	200	205													
Met	Gln	Glu	Val	Gln	Ser	Ser	Arg	Ser	Gly	Arg	Gly	Gly	Asn	Phe	Gly

210	215	220													
Phe	Gly	Asp	Ser	Arg	Gly	Gly	Gly	Gly	Asn	Phe	Gly	Pro	Gly	Pro	Gly

-50-

Ser Asn Phe Arg Gly Gly Ser Asp Gly Tyr Gly Ser Gly Arg Gly Phe
 225 230 235 240
 5 Gly Asp Gly Tyr Asn Gly Tyr Gly Gly Pro Gly Gly Asn Phe
 245 250 255
 Gly Gly Ser Pro Gly Tyr Gly Gly Arg Gly Tyr Gly Gly Gly
 10 260 265 270
 Gly Pro Gly Tyr Gly Asn Gln Gly Gly Tyr Gly Gly Tyr Asp
 275 280 285
 Asn Tyr Gly Gly Asn Tyr Gly Ser Gly Asn Tyr Asn Asp Phe Gly
 15 290 295 300
 Asn Tyr Asn Gln Gln Pro Ser Asn Tyr Gly Pro Met Lys Ser Gly Asn
 305 310 315 320
 20 Phe Gly Gly Ser Arg Asn Met Gly Gly Pro Tyr Gly Gly Asn Tyr
 325 330 335
 Gly Pro Gly Gly Ser Gly Gly Ser Gly Gly Tyr Gly Gly Arg Ser Arg
 25 340 345 350
 Tyr

(2) INFORMATION FOR SEQ ID NO: 15:

30 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 194 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 35 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: protein
 (iii) HYPOTHETICAL: NO
 40 (iv) ANTI-SENSE: NO
 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: homo sapiens

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:
 50 Met Ala Ala Glu Asp Val Ala Ala Thr Gly Ala Asp Pro Ser Glu Leu
 1 5 10 15
 55 Glu Gly Gly Gly Leu Leu His Glu Ile Phe Thr Ser Pro Leu Asn Leu
 20 25 30
 Leu Leu Leu Gly Leu Cys Ile Phe Leu Leu Tyr Lys Ile Val Arg Gly
 35 40 45
 60 Asp Gln Pro Ala Ala Ser Asp Ser Asp Asp Asp Glu Pro Pro Pro Leu
 50 55 60
 Pro Arg Leu Lys Arg Arg Asp Phe Thr Pro Ala Glu Leu Arg Arg Phe
 65 70 75 80
 65 Asp Gly Val Gln Asp Pro Arg Ile Leu Met Ala Ile Asn Gly Lys Val
 85 90 95

-51-

	Phe	Asp	Val	Thr	Lys	Gly	Arg	Lys	Phe	Tyr	Gly	Pro	Glu	Gly	Pro	Tyr
	100								105						110	
5	Gly	Vai	Phe	Ala	Gly	Arg	Asp	Ala	Ser	Arg	Gly	Leu	Ala	Thr	Phe	Cys
		115							120						125	
10	Leu	Asp	Lys	Glu	Ala	Leu	Lys	Asp	Glu	Tyr	Asp	Asp	Leu	Ser	Asp	Leu
		130						135					140			
15	Thr	Pro	Ala	Gln	Gln	Glu	Thr	Leu	Asn	Asp	Trp	Asp	Ser	Gln	Phe	Thr
		145				150				155				160		
20	Phe	Lys	Tyr	His	His	Val	Gly	Lys	Leu	Leu	Lys	Glu	Gly	Glu	Glu	Pro
						165			170			175				
	Thr	Vai	Tyr	Ser	Asp	Glu	Glu	Pro	Lys	Asp	Glu	Ser	Ala	Arg	Lys	
						180			185			190				
25	Asn	Asp														

(2) INFORMATION FOR SEQ ID NO: 16:

25	(i) SEQUENCE CHARACTERISTICS:															
	(A) LENGTH: 646 amino acids															
	(B) TYPE: amino acid															
	(C) STRANDEDNESS: single															
	(D) TOPOLOGY: linear															
30	(ii) MOLECULE TYPE: protein															
	(iii) HYPOTHETICAL: NO															
35	(iv) ANTI-SENSE: NO															
	(vi) ORIGINAL SOURCE:															
	(A) ORGANISM: homo sapiens															
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:															
45	Met	Ser	Lys	Gly	Pro	Ala	Val	Gly	Ile	Asp	Leu	Gly	Thr	Thr	Tyr	Ser
	1				5					10				15		
	Cys	Val	Gly	Val	Phe	Gln	His	Gly	Lys	Val	Glu	Ile	Ile	Ala	Asn	Asp
					20				25				30			
50	Gln	Gly	Asn	Arg	Thr	Thr	Pro	Ser	Tyr	Val	Ala	Phe	Thr	Asp	Thr	Glu
					35			40				45				
55	Arg	Leu	Ile	Gly	Asp	Ala	Ala	Lys	Asn	Gln	Val	Ala	Met	Asn	Pro	Thr
					50			55			60					
60	Asn	Thr	Val	Phe	Asp	Ala	Lys	Arg	Leu	Ile	Gly	Arg	Arg	Phe	Asp	Asp
					65			70			75			80		
	Ala	Vai	Val	Gln	Ser	Asp	Met	Lys	His	Trp	Pro	Phe	Met	Val	Val	Asn
					85				90			95				
65	Asp	Ala	Gly	Arg	Pro	Lys	Val	Gln	Val	Glu	Tyr	Lys	Gly	Glu	Thr	Lys
					100				105			110				
	Ser	Phe	Tyr	Pro	Glu	Glu	Val	Ser	Ser	Met	Val	Leu	Thr	Lys	Met	Lys
					115				120			125				

-52-

	Glu Ile Ala Glu Ala Tyr Leu Gly Lys Thr Val Thr Asn Ala Val Val	
	130 135 140	
5	Thr Val Pro Ala Tyr Phe Asn Asp Ser Gln Arg Gln Ala Thr Lys Asp	
	145 150 155 160	
	Ala Gly Thr Ile Ala Gly Leu Asn Val Leu Arg Ile Ile Asn Glu Pro	
10	165 170 175	
	Thr Ala Ala Ala Ile Ala Tyr Gly Leu Asp Lys Lys Val Gly Ala Glu	
	180 185 190	
15	Arg Asn Val Leu Ile Phe Asp Leu Gly Gly Gly Thr Phe Asp Val Ser	
	195 200 205	
	Ile Leu Thr Ile Glu Asp Gly Ile Phe Glu Val Lys Ser Thr Ala Gly	
20	210 215 220	
	Asp Thr His Leu Gly Gly Glu Asp Phe Asp Asn Arg Met Val Asn His	
	225 230 235 240	
	Phe Ile Ala Glu Phe Lys Arg Lys His Lys Lys Asp Ile Ser Glu Asn	
25	245 250 255	
	Lys Arg Ala Val Arg Arg Leu Arg Thr Ala Cys Glu Arg Ala Lys Arg	
	260 265 270	
30	Thr Leu Ser Ser Ser Thr Gln Ala Ser Ile Glu Ile Asp Ser Leu Tyr	
	275 280 285	
	Glu Gly Ile Asp Phe Tyr Thr Ser Ile Thr Arg Ala Arg Phe Glu Glu	
	290 295 300	
35	Leu Asn Ala Asp Leu Phe Arg Gly Thr Leu Asp Pro Val Glu Lys Ala	
	305 310 315 320	
	Leu Arg Asp Ala Lys Leu Asp Lys Ser Gln Ile His Asp Ile Val Leu	
40	325 330 335	
	Val Gly Gly Ser Thr Arg Ile Pro Lys Ile Gln Lys Leu Leu Gln Asp	
	340 345 350	
45	Phe Phe Asn Gly Lys Glu Leu Asn Lys Ser Ile Asn Pro Asp Glu Ala	
	355 360 365	
	Val Ala Tyr Gly Ala Ala Val Gln Ala Ala Ile Leu Ser Gly Asp Lys	
	370 375 380	
50	Ser Glu Asn Val Gln Asp Leu Leu Leu Asp Val Thr Pro Leu Ser	
	385 390 395 400	
	Leu Gly Ile Glu Thr Ala Gly Gly Val Met Thr Val Leu Ile Lys Arg	
55	405 410 415	
	Asn Thr Thr Ile Pro Thr Lys Gln Thr Gln Thr Phe Thr Thr Tyr Ser	
	420 425 430	
60	Asp Asn Gln Pro Gly Val Leu Ile Gln Val Tyr Glu Gly Glu Arg Ala	
	435 440 445	
	Met Thr Lys Asp Asn Asn Leu Leu Gly Lys Phe Glu Leu Thr Gly Ile	
65	450 455 460	
	Pro Pro Ala Pro Arg Gly Val Pro Gln Ile Glu Val Thr Phe Asp Ile	
	465 470 475 480	

-53-

Asp Ala Asn Gly Ile Leu Asn Val Ser Ala Val Asp Lys Ser Thr Gly
485 490 495

5 Lys Glu Asn Lys Ile Thr Ile Thr Asn Asp Lys Gly Arg Leu Ser Lys
500 505 510

Glu Asp Ile Glu Arg Met Val Gln Glu Ala Glu Lys Tyr Lys Ala Glu
515 520 525

10 Asp Glu Lys Gln Arg Asp Lys Val Ser Ser Lys Asn Ser Leu Glu Ser
530 535 540

Tyr Ala Phe Asn Met Lys Ala Thr Val Glu Asp Glu Lys Leu Gln Gly
545 550 555 560

Lys Ile Asn Asp Glu Asp Lys Gln Lys Ile Leu Asp Lys Cys Asn Glu
565 570 575

20 Ile Ile Asn Trp Leu Asp Lys Asn Gln Thr Ala Glu Lys Glu Glu Phe
580 585 590

Glu His Gln Gln Lys Glu Leu Glu Lys Val Cys Asn Pro Ile Ile Thr
595 600 605

25 Lys Leu Tyr Gln Ser Ala Gly Gly Met Pro Gly Gly Met Pro Gly Gly
610 615 620

Phe Pro Gly Gly Ala Pro Pro Ser Gly Gly Ala Ser Ser Gly Pro
625 630 635 640

Thr Ile Glu Glu Val Asp
645

-54-

CLAIMS

- 5 1. A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma as shown by 2D gel electrophoresis comparison of cell lysates of endometrial
10 biopsies from normal endometrium and endometrium showing hyperplasia or adenocarcinoma, excluding variations due to the menstrual cycle, or detecting or quantitating a fragment or breakdown product thereof, or a nucleic acid coding therefor or antibodies thereto.
- 15 2. A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma and characterised by one of
20 the following combinations of molecular weight and pI values:

hyperplasia		
	pi	MW kDa
25	6.7	91
	6.6	90
	6.9	64
	6.6	67
	6.3	66
30	6.8	46
	5.7	41
	5.5	35
	5.3	13
	6.6	101
35	5.8	14
	7.4	51
	8.2	44
	9.5	48

- 55 -

	adenocarcinoma	
	pI	MW (kDa)
5	6.3	32
	6.0	109
	6.7	91
	6.6	90
	6.9	64
10	6.6	67
	6.3	66
	6.2	62
	6.2	45
	5.7	45
15	5.4	33
	6.3	27
	6.5	103
	6.8	90
	6.9	78
20	5.3	13
	6.2	130
	6.3	66
	6.3	73
	8.3	32
25	8.1	55
	8.2	44
	6.6	111
	7.7	43
	9.5	48
30	8.3	32
	7.7	39

or a fragment or breakdown product thereof, or a nucleic acid coding therefor or antibodies thereto.

3. A method as claimed in Claim 1 or Claim 2, wherein said protein, fragment, breakdown product, antibodies, or nucleic acid is detected in a body fluid sample.

-56-

4. An immunological binding partner specifically reactive with a protein as defined in Claim 1 or Claim 2 or with a fragment or breakdown product thereof or with a nucleic acid coding therefor.
5. A cell line producing a monoclonal antibody being an immunological binding partner as claimed in Claim 4.
- 10 6. An assay kit for use in a method as claimed in Claim 1 or Claim 2, comprising an immunological binding partner as claimed in Claim 4.
- 15 7. A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel electrophoresis comparison of cell lysates of 20 endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

-57-

PI	MW (kDa)
6.9	86
5.4	34
5.6	67
5.3	23
6.8	52
8.7	47
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	58
6.8	66
7.9	48
7.7	31
6.8	29
7.2	70
8.0	119
6.7	62

or a fragment or breakdown product thereof, or a nucleic acid coding therefor, or an antibody thereto.

8. A method as claimed in Claim 7, for detecting the phase of the endometrium.

10 9. A method as claimed in Claim 7 or Claim 8, wherein said protein, fragment, or breakdown product is detected in a body fluid sample.

15 10. An immunological binding partner specifically reactive with a protein as defined in Claim 7 or with a fragment or breakdown product thereof or with a nucleic acid coding therefor.

-58-

11. A cell line producing a monoclonal antibody being an immunological binding partner as claimed in Claim 10.

125 12. An assay kit for use in a method as claimed in Claim 7 or Claim 8, comprising an immunological binding partner as claimed in Claim 10.

10 13. A protein produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma as shown by 2D gel electrophoresis comparison of cell lysates of endo-metrial biopsies from normal endometrium and endometrium showing hyperplasia or adenocarcinoma, excluding variations due to the menstrual cycle, and 15 characterised by one of the following combinations of molecular weight and pI values:

hyperplasia		
	pI	MW kDa
20	6.7	91
	6.6	90
	6.9	64
	6.8	46
	5.7	41
25	5.3	13
	6.6	101
	5.8	14
	9.5	48

-59-

adenocarcinoma		
	pI	MW (kDa)
5	6.3	32
	6.0	109
	6.7	91
	6.6	90
	6.9	64
	6.2	62
10	6.5	103
	6.8	90
	5.3	13
	6.2	130
	6.3	66
	6.3	73
15	8.3	32
	8.1	55
	6.6	111
	7.7	43
	9.5	48
	8.3	32

14. A protein produced by the endometrium in increased amounts during the proliferative phase of the
25 endometrium as shown in 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

30

-60-

PI	MW (kDa)
6.9	86
5.6	67
6.8	52
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	58
6.8	66
7.7	31

15. A protein as claimed in Claim 13 or Claim 14,
5 characterised by the properties:-

PI	MW (kDa)
5.7	41
5.6	67
9.5	48
6.8	52
6.5	124
7.7	119
7.8	119

and by the respective tryptic digestion MS spectra shown in
Figures 7 to 12.

10 16. The use of a protein as defined in any one of Claims 1,
2 or 7 or a fragment thereof, for detecting autoantibodies
to a said protein.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

7/12

8/12

9/12

FIG. 9

10/12

FIG. 10

11/12

12/12

Fig. 12

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 97/02394

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 G01N33/574 G01N33/68 C07K14/47 G01N33/577

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G01N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>I. BYRJALSEN ET AL.: "Human endometrial proteins with cyclic changes in the expression during the normal menstrual cycle: characterization by protein sequence analysis." HUMAN REPRODUCTION, vol. 10, no. 10, 1 October 1995, OXFORD UK, pages 2760-2766, XP002048682 cited in the application see tables 1,2</p> <p>---</p> <p style="text-align: center;">-/--</p>	1,2,7,8, 13-15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

1

Date of the actual completion of the international search

1 December 1997

Date of mailing of the international search report

12/12/1997

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Van Bohemen, C

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 97/02394

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	I. BYRJALSEN ET AL.: "Two-dimentional gel analysis of human endometrial proteins: cyclic changes in the expression of specific proteins during the normal menstrual cycle." HUMAN REPRODUCTION, vol. 10, no. 1, 1 January 1995, OXFORD UK, pages 13-18, XP002048683 cited in the application see the whole document	1
Y	---	2-16
Y	WO 94 28021 A (MEDICAL UNIVERSITY OF SOUTH CAROLINA) 8 December 1994 see page 3, line 10 - line 5; claims 4,17 ---	2-16
X	W.B. NOTHNICK ET AL.: "Detection of a unique 32-kd protein in the peritoneal fluid of women with endometriosis." FERTILITY AND STERILITY, vol. 61, no. 2, 1 February 1994, WASHINGTON DC USA, pages 288-293, XP002048684 see figure 2	1-3,13
A	K.L. SHARPE ET AL.: "Polypeptides synthesized and released by human endometriosis differ from those of the uterine endometrium in cell and tissue explant culture." FERTILITY AND STERILITY, vol. 60, no. 5, 1 November 1993, WASHINGTON DC USA, pages 839-851, XP002048685 see figures 1,2 -----	1-16

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 97/02394

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9428021 A	08-12-94	AU 6960694 A	20-12-94