Σχεδιασμός Συστημάτων VLSI 2022

Εργασία 2

Ενότητα Α:

1) Για την πρώτη άσκηση:

NAND

Device

xc7a100ticsg324-1L			
Resources	Used	Available	Utilization%
I/Os	192	210	91.43
LUTs	64	63400	0.10
FFs	0	126800	0.00
Power	16.337W*		
Frequency		0 GHz**	

^{*}Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock

Παρατηρήσεις:

- 1. Ως κρίσιμο μονοπάτι θα έχουμε την καθυστέρηση της πύλης NAND.
- 2. Δεν μπορεί να επιτευχθεί η παραλληλία όπως είχε υπολογισθεί με την αλλαγή του κώδικα αφού το κύκλωμα είναι πολύ μικρό.
- 3. Και για τις δύο διαφορετικές υλοποιήσεις των NAND προκύπτουν τα ίδια αποτελέσματα.

LU

Device

^{**} Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock. Ουσιαστικά η συχνότητα θα είναι όσο το αντίστροφο της καθυστέρησης της πύλης NAND.

Schematic

xc7a100ticsg324-1L			
Resources	Used	Available	Utilization%
I/Os	32	210	15.24
LUTs	8	63400	0.01
FFs	0	126800	0.00
Power	5.411W*		

Frequency	0 GHz*
-----------	--------

*Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock

Παρατηρήσεις:

1. Ως κρίσιμο μονοπάτι θα έχουμε το μονοπάτι με την μεγαλύτερη καθυστέρηση λόγω των πυλών.

LU with Registers

Device

xc7a100ticsg324-1L			
Resources	Used	Available	Utilization%
I/Os	34	210	16.19
LUTs	9	63400	0.01
FFs	16	126800	0.01
Power	5.438W*		
Frequency		0 GHz*	

^{*}Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock.

Παρατηρήσεις:

Δεν μπορούμε να υπολογίσουμε την συχνότητα λειτουργίας επειδή το clock αφορά μόνο τους registers και όχι το υπόλοιπο κύκλωμα. Θα έπρεπε να προσθέσουμε τις απαραίτητες καθυστερήσεις για να προκύψει η συχνότητα και το κρίσιμο μονοπάτι.

Για την δεύτερη άσκηση:

A1

Device

Schematic

xc7a100ticsg324-1L			
Resources	Used	Available	Utilization%
I/Os	26	210	12.38

LUTs	9	63400	0.01
FFs	0	126800	0.00
Power	2.199W*		
Frequency	0 GHz*		

^{*}Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock.

Παρατηρήσεις:

A2

Device

xc7a100ticsg324-1L			
Resources	Used	Available	Utilization%
I/Os	26	210	12.38
LUTs	9	63400	0.01
FFs	0	126800	0.00
Power	2.204W*		
Frequency		0 GHz*	

^{*}Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock.

Παρατηρήσεις:

1. Έχει παρόμοιες απαιτήσεις με το Α1.

B1

$$Z = ABC' + AB + C$$

Device

Schematic

xc7a100ticsg324-1L			
Resources	Used	Available	Utilization%
I/Os	4	210	1.90
LUTs	1	63400	<0.01
FFs	0	126800	0.00

Power	0.337W*
Frequency	0GHz*

^{*}Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock.

Παρατηρήσεις:

B2

Z = ABC' + AB + C

Device

xc7a100ticsg324-1L			
Resources	Used	Available	Utilization%
I/Os	4	210	1.90
LUTs	1	63400	<0.01
FFs	0	126800	0.00
Power	0.337W*		
Frequency		0 GHz*	

^{*}Δεν είναι αντιπροσωπευτικό λόγω απουσίας clock.

Παρατηρήσεις:

1. Ίδιες απαιτήσεις με το Β1

Ενότητα Β:

Ο κώδικας VHDL της RAM βρίσκεται στο αρχείο με όνομα RAM.vhdl

Simulation

Παρατηρούμε ότι λειτουργεί με τον αναμενόμενο τρόπου η RAM, αφού με we=1 και θετική ακμή ρολογιού γίνεται εγγραφή στην 6^η θέση της μνήμης(ram_s σήμα), ενώ με we=0 και θετική ακμή ρολογιού γίνεται ανάγνωση της μνήμης στην θέση 6 και παίρνουμε τα αποτελέσματα στο data_o.

2) Σύμφωνα με το εγχειρίδιο πρέπει:

- Κάθε προσπέλαση στην μνήμη να ελέγχεται από το ρολόι
- Χωρίς ρολόι να μην γίνεται τίποτα
- Κατά την διάρκεια της εγγραφής, στην έξοδο είτε θα φαίνονται τα προηγούμενα αποθηκευμένα δεδομένα ή τα καινούργια ή θα μένουν τα ίδια

Όλα αυτά έχουν ήδη πραγματοποιηθεί στον αρχικό κώδικα (RAM.v) οπότε δεν χρειάζεται αλλαγή.

Device

Schematic

xc7a100ticsg325-1L			
Resources	Used	Available	Utilization%
I/Os	21	150	14.00
LUTs	8	10400	0.08
FFs	8	20800	0.04

Power	2.092W
Frequency	0.125 GHz

Τα αποτελέσματα επιβεβαιώνουν τον αρχικό σχεδιασμό και είναι αναμενόμενα.