Tribhuvan University

Institute of Science and Technology

Bachelor of Computer Science and Information Technology

Detailed-Syllabus: Real Time Systems (CSC-354) Sixth Semester

Lesson Plan:

S.N.	Chapters	Descriptions	Time Hrs.	Hours
1.	Unit 1. Introduction	Digital control - example	0.5	3
	ome 1. meroadetion	High level controls – examples of control	1	\dashv
		hierarchy, guidance and control, real time	1	
		commands and control		
		Signal processing – radar system	0.5	
		Real time applications – issues and examples	1	
2.	Unit 2. Hard versus Soft real	Jobs and processors, release time, deadlines	1.5	4
	time systems	and timing constraints, hard and soft timing	1.5	
	time systems	constraints		
		Common definitions, hard timing constraints	0.5	
		and temporal quality of service guarantees	0.5	
		Hard real time systems	1	
		Soft real timing systems	1	
3.	Unit 3. Reference model of	Processors and resources, temporal	1	4
J.	real time systems	parameters of real time workload	-	
	real time systems	Periodic task model	1	
		Precedence constraints and data	1.5	
		dependency, other dependency	1.5	
		Functional parameters-figure of usefulness	0.5	
		function, resource parameters-concepts only,	0.5	
		scheduling hierarchy-concepts only		
4.	Unit 4. Approaches to real	Clock driven approach, weighted round Robin	1.5	4
	time scheduling	approach, priority driven approach, dynamic	1.5	
	time some daming	versus static systems		
		Effective release time-example, optimality of	2	
		EDF & LST algorithms-theorem (with	_	
		proof)/corollary (without proof) and		
		example, Non-optimality of EDF & LST		
		algorithms-theorem/corollary (without proof)		
		and example		
		Challenging in validating timing constraints in	0.5	
		priority driven systems-anomalous behavior		
		of priority driven systems with example only,		
		office versus online scheduling-concepts only		
5.	Unit 5. Clock driven	Notations and assumptions. Static, time	2.5	5
	scheduling	driven scheduler, general structure of cyclic		
		schedules		
		Cyclic executives-concept only (without	1.5	
		algorithm), improving the average response		
		time of aperiodic jobs-slack stealing with an		
		example, scheduling sporadic jobs-		
		acceptance test, EDF scheduling of accepted		

Collection By: www.csitprogram.blogspot.com

		jobs with an example (without algorithm)		
		Practical considerations- concepts only,	1	
		algorithm for constructing static schedules-		
		network flow graph only, pros and cons of		
		clock driven scheduling-concepts only		
6.	Unit 6. Priority driven	Static assumptions, fixed priority versus	2	6
	scheduling of periodic tasks	dynamic priority algorithms – (without		
		relative merits)		
		Maximum schedule utilization-theorem	1	
		(without proof), example of infeasible EDF		
		schedules, optimality of RM & DM		
		algorithms- only (without proof)		
		Scheduling test for fixed priority tasks with	1.5	
		short response times-critical instants,		
		theorem (without proof) and example,		
		schedulability test for fixed priority tasks with		
		arbitrary response times-busy intervals,		
		general scheduling test (general time demand		
		analysis method- statements only)		
		Sufficient schedulability conditions for RM &	1.5	7
		DM algorithms- theorem only (without		
		proof), practical factors- concepts only		
7.	Unit 7. Scheduling aperiodic	Assumptions and approaches- objectives,	3	6
	and sporadic jobs in priority	correctness and optimality only, deferrable		
	driven systems	servers- operations of deferrable servers		
		only, sporadic servers- sporadic server in		
		fixed priority systems only		
		[Constant utilization, total bandwidth and	1	
		weighted fair queuing servers]- concepts,		
		theorems/corollary (without proof) only		
		Slack stealing in deadline driven systems-	2	
		example of deadline stealer, slack stealing in		
		sixed priority systems-optimality criterion		
		and design consideration with an example,		
		[scheduling of sporadic jobs- real time		
		performance for jobs with soft timing		
		constraints, two level scheme for integrated		
		scheduling]- basic concepts only		
8.	Unit 8. Resources and	Assumptions on resources and their usage,	1	5
	resource access control	effects of resources contention and resource		
		access control		_
		Non-preemptive critical sections, basic	1	
		priority inheritance protocol-definition of		
		basic priority inheritance protocol		_
		Basic priority ceiling protocol- definition of	1	
		basic priority ceiling protocol, stack based,		
		priority ceiling (ceiling priority) protocol-		
		motivation and definition of stack sharing		
		priority ceiling protocol	_	_
		Use of priority ceiling protocol in dynamic	1	
		priority systems- implementation of priority		

		ceiling protocol in dynamic priority systems. Preemption ceiling protocol- preemption levels of jobs and periodic tasks, definitions of protocols and duration of blocking (motivation and assumptions only) Controlling access to multiple unit resources- priority (preemption) ceiling of multiple unit resources, controlling concurrent accesses to data objects- convex ceiling	1	
		protocol(motivation and assumptions only)		
9.	Unit 9. Multiprocessor scheduling. Resource access	Model of multiprocessor and distributed systems	1.5	5
	control and synchronization	Task assignment- task assignment based on execution time requirements (simple bin packing formulation only), multiprocessor priority ceiling protocol- blocking time due to resource contention	1.5	
		Elements of scheduling algorithms for end- end periodic tasks- interprocessor synchronization protocols (greedy synchronization protocol only), end-to-end tasks in heterogeneous systems- corollary (without proof)	1.5	
		Predictability validation of dynamic multiprocessor systems	0.5	
10.	Unit 10. Real time	Model of real time communication	1	6
	communication	Priority based service disciplines for switched networks- weighted fair queuing discipline	1	
		Weighted round Robin service disciplines- greedy WRR discipline	1	
		Medium access control protocol of broadcast networks- medium access protocols in CAN and IEEE 802.5 token ring	1	
		Internet and resource reservation protocolsissues in resource reservation	0.5	
		Real time protocols	1	
		Communication in multi computer systems- wormhole networks	0.5	
			Total	45

Tribhuvan University

Institute of Science and Technology

Bachelor of Computer Science and Information Technology (BSc. CSIT)

Semester: Sixth

Course: Real Time Systems
Course No.: CSC-354
Model Question

Full Marks: 80 Pass Marks: 32

Long Answer Questions

Attempt any two questions. [2x12=24]

- 1. What do you understand by Priority driven algorithms? State and prove the optimal Earliest Deadline First (EDF) Theorem.
- 2. What do you understand by slack stealing in dead line driven systems? Explain the operation of a slack stealing with a suitable example.
- 3. What is multiprocessor priority ceiling protocol? Describe it with the help of suitable diagrams.

Short answer questions

Attempt any eight questions. [8x7=56]

- 1. Define wormhole networks used for communication in multiprocessor systems. Describe routing and transmission mechanism in a wormhole networks.
- 2. Describe the terms tracking and gating used in a radar signal processing system.
- 3. Differentiate between hard real time systems and soft real time systems. Give three examples of each.
- 4. Define temporal parameter of real time workload? Explain different types of temporal parameters of a job.
- 5. How does the system handle frame overruns in a clock-driven scheduling? Explain.
- 6. What do you understand by 'Busy Intervals' in fixed priority tasks with arbitrary response times? Explain.
- 7. What are the objectives and levels of two level schemes for integrated scheduling?
- 8. Explain 'Priority Inversion' caused by resource contention, with suitable example.
- 9. Describe a real-time communication model with the help of suitable diagram.
- 10. Write sort notes on
 - a. Identical versus heterogeneous processors
 - b. Fixed priority versus dynamic priority algorithms

Collection By: www.csitprogram.blogspot.com