Medical Image Processing for Diagnostic Applications

Modalities – PET and SPECT

Online Course – Unit 52 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Positron Emission Tomography

Single Photon Emission Computed Tomography

Summary

Take Home Messages Further Readings

Positron Emission Tomography (PET)

- PET is based on the insertion of a radioactive substance (e.g., isotopes ¹⁵O, ¹¹C, ¹³N, or ¹⁸F) into the patient's body via injection, inhalation, or ingestion.
- The radioactive substance is bound to a molecule that is of interest for the diagnostic task (e.g., sugar for analysis of the patient's metabolism).
- The imaging task delivers a map of the distribution of the radioactive tracer.

Positron Emission Tomography: Concept

Figure 1: Scheme of a PET scan workflow (Zeng, 2009)

Positron Emission Tomography: Physics

- The radio decay of the isotopes causes the creation of positrons.
- As soon as a positron hits an electron, their masses are annihilated, and two photons of 511 keV each are emitted into opposite directions.

Figure 2: Illustration of positron annihilation (Zeng, 2009)

Positron Emission Tomography: Acquisition Geometry

- Simultaneous events have to be detected in order to find a pair annihilation.
- As the direction of the gamma rays is on the same line, but in opposite direction, a parallel imaging geometry emerges.

Figure 3: Illustration of the parallel line acquisition in PET (Zeng, 2009)

Positron Emission Tomography

- PET imaging has lower resolution than X-ray imaging.
- PET scans show the concentration of the tracer substance.
- Time-of-flight imaging helps to increase the spatial resolution of PET scans.
- Attenuation correction helps to reduce image distortions.

Figure 4: PET torso image (inverse gray scale, Zeng, 2009)

Positron Emission Tomography: Attenuation Correction

Figure 5: Depending on the point of emission, the positrons may have different path length to the detectors (Zeng, 2009).

Topics

Positron Emission Tomography

Single Photon Emission Computed Tomography

Summary

Take Home Messages Further Readings

Single Photon Emission Computed Tomography (SPECT)

- SPECT (like PET) is based on the insertion of a radioactive substance into the patient's body via injection, inhalation, or ingestion.
- Analogously, the radioactive substance is bound to a molecule that is of interest for the diagnostic task (e.g., sugar for analysis of the patient's metabolism).
- The imaging task also delivers a map of the distribution of the radioactive tracer.
- However, the detected ray energy consists of collimated gamma rays in contrast to PET where coincident photons are measured, induced by positron annihilation.

Single Photon Emission Computed Tomography: Principle

- Radioactive decay causes the emission of gamma rays.
- The emitted gamma quanta are detected by a gamma camera.
- Only single gamma rays are seen by the camera.
- The imaging geometry is determined by the system's collimator.

Single Photon Emission Computed Tomography: Principle

Figure 6: Among others, there are parallel and fan beam collimators for SPECT (Zeng, 2009).

Single Photon Emission Computed Tomography: Collimators

Figure 7: The imaging result is dependent on the collimator type (Zeng, 2009).

Single Photon Emission Computed Tomography

- SPECT imaging has a lower resolution than PET imaging.
- SPECT scans show the concentration of the tracer substance.
- Attenuation correction helps to reduce image distortions.

Figure 8: SPECT cardiac images (Zeng, 2009)

Single Photon Emission Computed Tomography: Attenuation Correction

Figure 9: Attenuation correction for SPECT (left) vs. attenuation correction for PET (right box) (Zeng, 2009)

Topics

Positron Emission Tomography

Single Photon Emission Computed Tomography

Summary

Take Home Messages Further Readings

Take Home Messages

- PET and SPECT both are based on the detection of gamma rays emitted from radioactive substances *inside* the patient's body.
- ullet Every modality has its strengths and its weaknesses o PET and SPECT show functional images.
- ullet Combination of modalities helps to alleviate particular problems ullet hybrid systems, e.g., SPECT/CT and PET/MR, are emerging technologies.

Further Readings

Two reads for more insight into modalities:

Avinash C. Kak and Malcolm Slaney. *Principles of Computerized Tomographic Imaging*. Classics in Applied Mathematics. Accessed: 21. November 2016. Society of Industrial and Applied Mathematics, 2001. DOI: 10.1137/1.9780898719277. URL: http://www.slaney.org/pct/

Gengsheng Lawrence Zeng. *Medical Image Reconstruction – A Conceptual Tutorial*. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9