פתרון תרגיל מספר 9־ חישוביות וסיבוכיות

שם: מיכאל גרינבאום, ת.ז: 211747639

6 ביוני 2020

שאלה 2

 σ סעיף 1 coNP = NP צ"ל:

הוכחה:

$$L \in \operatorname{NP} \overset{P = \operatorname{NP}}{\Rightarrow} L \in P \Rightarrow \overline{L} \in P \overset{P = \operatorname{NP}}{\Rightarrow} \overline{L} \in \operatorname{NP} \overset{\text{by definition}}{\Rightarrow} L \in \operatorname{coNP}$$

 $| \overline{\mathrm{coNP} = \mathrm{NP}} |$ ואז מהסעיף הבא נקבל או $\mathrm{NP} \subseteq \mathrm{coNP}$ ולכן

מ.ש.ל.א.©

2 סעיף

coNP = NP צ"ל:

הוכחה:

$$L \in \text{coNP} \Rightarrow \overline{L} \in \text{NP} \stackrel{\text{NP}\subseteq \text{coNP}}{\Rightarrow} \overline{L} \in \text{coNP} \stackrel{\text{by definition}}{\Rightarrow} \overline{\overline{L}} \in \text{NP} \stackrel{\overline{\overline{L}}=L}{\Rightarrow} L \in \text{NP}$$

 $\mathrm{coNP}\subseteq\mathrm{NP}$ ולכן ולכן הכסNP $\Rightarrow L\in\mathrm{NP}$ כי כלומר קיבלנו כי $\boxed{\mathrm{coNP}=\mathrm{NP}}$ ולכן נקבל ולכן החר $\mathrm{NP}\subseteq\mathrm{coNP}$ וגם נתון

מ.ש.ל.ב.☺

3 סעיף

 $conp \subseteq Exptime$ צ"ל:

הוכחה:

תהי $L\in \mathrm{coNP}$ אזי $T\in \mathrm{NP}$, כלומר קיימת מ"ט N לא דטרמניסטית כך ש־ $L\in \mathrm{coNP}$ וגם N רצה בזמן פולינומי. N רצה בזמן פולינומי קיים פולינום t (n) כך שזמן הריצה של N חסום על ידי O(t(n)). ראינו בהרצאה שאפשר להמיר מ"ט לא דטרמינסטי N למ"ט דטרמניסטי M שזמן הריצה חסום על ידי O(t(n)) נבנה M דטרמניסטית באופן הבא:

- x נקבל קלט.
- x על \mathcal{M} על 2.
- x על \mathcal{M} על מ־ .3

נשים לב ש־ M מכריעה ני מתקיים M מכריעה וגם מתקיים

$$x \in L \iff x \notin \overline{L} \iff x \notin L(\mathcal{M}) \iff x \in L(M)$$

 $L=L\left(M
ight)$ כלומר קיבלנו כי

|x|=n נסמן

עתה נשים לב ששלב 1 לוקח $O\left(1
ight)$, שלב 2 לוקח $2^{O(t(n))}$ ושלב 3 לוקח $O\left(1
ight)$ ולכן זמן הריצה של

$$O(1) + 2^{O(t(n))} + O(1) = 2^{O(t(n))}$$

. ולכן זמן הריצה של M הוא $2^{O(t(n))}$ כאשר M פולינום

 $L \in \mathrm{EXPTIME}$ באינום. ולכן t(n) כאשר באמן ורצה באמן באמן שמכריעה את דטרמניסטית שמכריעה את ורצה באמן באמן ורצה באמן ורצה באמן ולכן t(n)מההגדרה.

כנדרש ,coNP \subseteq EXPTIME ולכן ולכן ולכן בכח כנדרש ,coNP כלומר הראנו כי ולכן ולכן בכח הראנו כי

מ.ש.ל.ג.©

4 סעיף

NEXPTIME = EXPTIME צ"ל:

תהי אקפוננציאלי. רצה בזמן אקפוננציאלי אקפוננציאלי. לא דטרמניסטית מ"ט מ"ט א דטרמניסטית מ"ט וגם $L\in ext{NEXPTIME}$ $2^{O(n^k)}$ בא פולינומי קיים $k\in\mathbb{N}$ כך שזמן הריצה של N חסום על ידי $k\in\mathbb{N}$ נבנה N^\prime לא דטרמניסטית לא אופן הבא:

- x נקבל קלט.
- (נבדוק האם כמות ה1 היא בדיוק $x=w\cdot 1^{2^{|w|^k}}$ פעמים). 2
 - נריץ את N על w ונענה כמוהו 3.

$$L' = \left\{ w \cdot 1^{2^{|w|^k}} \mid w \in L \right\}$$
 נגדיר נשים לב ש
- N' מכריעה (עוצרת בכל קלט שלה) וגם מתקיים נשים לב א

$$x \in L' \iff x = w \cdot 1^{2^{|w|^k}} \land x \in L \iff x = w \cdot 1^{2^{|w|^k}} \land x \in L(N) \iff x \in L(N')$$

 $L'=L\left(N'
ight)$ כלומר קיבלנו כי

עתה נשים לב ששלב 1 לוקח $O\left(2^{n^k}\right)$ שלב $O\left(\left|w\cdot 1^{2^{n^k}}\right|\right)=O\left(n+2^{n^k}\right)$ לוקח שלב $O\left(1\right)$ ושלב $O\left(1$ ושלב $O\left(1\right)$ ושלב $O\left(1\right)$ אינים לב ששלב $O\left(1\right)$ ושלב $O\left(1\right)$ ו הוא N^\prime

$$O(1) + O(n + 2^{n^k}) + O(2^{n^k}) = O(n + 2^{n^k}) = O(|w \cdot 1^{2^{|w|^k}}|)$$

ולכן זמן הריצה של M הוא פולינומי בקלט!

 $L' \in \mathrm{NP}$ כלומר הראנו שקיימת L' דטרמינסטית שמכריעה את דטרמינסטית דטרמינסטית אקיימת ראנו שקיימת אוכן אוכן

 $L' \in P$ נתון) ולכן $P = \mathrm{NP}$ עתה אנחנו יודעים כי

לכן קיימת מכונה M^\prime שמכריעה את שמכריעה M^\prime אמכונה לכן קיימת

 $O\left(t\left(n\right)\right)$ כלומר קיים פולינום $t\left(n\right)$ כך שזמן הריצה של נבנה M דטרמניסטית באופן הבא:

x נקבל קלט.1

- $x\cdot 1^{2^{|x|^k}}$ נכתוב על הסרט 2.
- ונענה כמוהו $x\cdot 1^{2^{|x|^k}}$ על הקלט M' את גריץ את 3.

נשים לב כי

$$x \in L \iff x \cdot 1^{2^{|x|^k}} \in L' \iff x \cdot 1^{2^{|x|^k}} \in L(M') \iff x \in L(M)$$

, $L=L\left(M
ight)$ כלומר קיבלנו כי

|x|=n נסמן

$$O\left(1\right) + O\left(n + 2^{n^k}\right) + O\left(t\left(n + 2^{n^k}\right)\right) = O\left(t\left(n + 2^{n^k}\right)\right) = O\left(2^{\log\left(t\left(n + 2^{n^k}\right)\right)}\right)$$

$$\leq O\left(2^{n^k \cdot \log(t(n+2))}\right) \leq O\left(2^{n^{k+1}}\right)$$

. כלומר M רצה בזמן אקפוננציאלי

. מההגדרה. בזמן $L \in \mathrm{EXPTIME}$ ולכן מההגדרה שמכריעה את L ורצה בזמן ווער שקיימת $L \in \mathrm{EXPTIME}$ מההגדרה.

כלומר הראנו כי $L\in ext{NEXPTIME} \Rightarrow L\in ext{EXPTIME}$, כלומר הראנו כי אולכן ולכן ולכן אולכן אולכן אונד הראנו כי

עתה נשים לב כי אז אז אז קיים מ"ט M דטרמינסטי שמכריע את בפרט $L \in \mathrm{EXPTIME}$ עתה נשים לב כי אז קיים מ"ט לא דטרמינסטי ולכן $L \in \mathrm{NEXPTIME}$ דטרמינסטי ולכן לכיע בזמן אקפוננציאלי עם מכונה לא דטרמינסטית ב

 $\overline{ ext{EXPTIME}} = \overline{ ext{NEXPTIME}}$ כלומר נקבל כי $\overline{ ext{EXPTIME}} \subseteq \overline{ ext{NEXPTIME}}$, ולכן נקבל כי

מ.ש.ל.ד.☺