《离散数学》期末考试题(B)参考答案

- -, 1. {{a, b}, a, b, \emptyset }, {{a, b}, a, b}, 16.
 - $2.2^9, 27.$
 - $3. P(x) \rightarrow Q(x), \ Q(y) \land \neg P(y).$
 - 4. 2, 4, 6, 12.
 - 5.≤4, 奇数.
- = 1(B); 2(D); 3(C); 4(B); 5(C).
- \equiv , $1(\times)$; $2(\sqrt{})$; $3(\times)$; $4(\times)$; $5(\times)$.

四 、 证 对 于 任 意 $x,y \in A$, 若 f(x) = f(y) , 则 g(f(x)) = g(f(y)) , 即 $(f \circ g)(x) = (f \circ g)(y). \text{ 由于 } f \circ g \text{ 是单射}, \text{ 因此 } x = y \text{ ,于是 } f \text{ 是单射}.$

例 如 取 $A = \{a,b\}, B = (1,2,3\}, C = \{\alpha,\beta,\gamma\}$, 令 $f = \{(a,1),(b,2)\}$, $g = \{(1,\alpha),(2,\beta),(3,\beta)\}$,这时 $f \circ g = \{(a,\alpha),(b,\beta)\}$ 是单射,而 g 不是单射.

五、解 1. R 的关系图 G_R 如下:

- 2.(1)由于(b,b) $\notin R$, 所以R不是自反的.
- (2)由于 $(a,a) \in R$,所以R不是反自反的.
- (3)因为(d,b) ∈ R ,而(b,d) ∉ R ,因此 R 不是对称的.
- (4)因(a,c), $(c,a) \in R$,于是R不是反对称的.
- (5)经计算知 $R \circ R = \{(a,a),(a,b),(a,c),(c,a),(c,b),(c,c),(d,a),(d,c)\} \subseteq R$, 进而 R 是传递的.

综上所述,所给R是传递的.

$$3.R$$
 的关系矩阵 $M_R = egin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$

六、**解** 命题公式 $A = (p \rightarrow (q \rightarrow r)) \leftrightarrow (r \rightarrow (q \rightarrow p))$ 的真值表如下:

p, q, r	$p \to (q \to r)$	$r \to (q \to p)$	A
1, 1, 1	1	1	1
1, 1, 0	0	1	0
1, 0, 1	1	1	1
1, 0, 0	1	1	1
0, 1, 1	1	0	0
0, 1, 0	1	1	1
0, 0, 1	1	1	1
0, 0, 0	1	1	1

由表可知, $A = (p \rightarrow (q \rightarrow r)) \leftrightarrow (r \rightarrow (q \rightarrow p))$ 的主析取范式为

$$A = (p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r)$$
$$\lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r).$$

A的主合取范式为 $A = (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r).$

七、证 不妨设G的阶数 $n \ge 3$,否则结论是显然的. 根据推论 1 知, $m \le 3n - 6$. 若G的任意节点v的度数均有 $\deg(v) \ge 5$,由握手定理知

$$2m = \sum_{v} \deg(v) \ge 5n.$$

于是 $n \le \frac{2}{5}m$, 进而 $m \le 3n - 6 \le 3 \cdot \frac{2}{5}m - 6$. 因此 $m \ge 30$, 与已知矛盾. 所以必存在 节点 v 使得 $\deg(v) \le 4$.

八、解 设满足要求的 r 位数的个数有 a_r 种,r=0,1,2,…,则排列计数生成函数

$$E(x) = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}\right) \left(1 + x + \frac{x^2}{2!}\right) \left(1 + x\right)$$
$$= 1 + 3x + 4x^2 + \frac{19}{6}x^3 + \frac{19}{12}x^4 + \frac{1}{2}x^5 + \frac{1}{12}x^6,$$

因而 $a_4 = \frac{19}{12} \cdot 4! = 38$.