

Cost-aware Bayesian Optimization via the Pandora's Box Gittins Indices

Qian Xie¹, Raul Astudillo², Peter Frazier¹, Ziv Scully¹, Alexander Terenin¹ ¹ Cornell University, ² California Institute of Technology

Introduction to Bayesian optimization

0.2

Applications:

Hyperparameter tuning Drug discovery Control design

x: hyperparameter/configuration

mean: prediction variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Objective: optimize best observed value at time T $\max_{\text{policy}} \mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Decision: evaluate a set of points

Decision: adaptively evaluate

 $x_1, x_2, \dots, x_T \in \mathcal{X}$ given time budget T

Why is Bayesian optimization hard?

Connection with Pandora's box

Acquisition functions: El vs Gittins

$EI(x; y) = \mathbb{E}[(f(x) - y)^+]$

El policy: evaluate $\operatorname{argmax}_{x} \operatorname{El}(x; y_{\text{best}})$

 y_{best} : current best observed value

Pandora's box Gittins index (PBGI) g(x): solution to $EI(x; g(x)) = \lambda$

PBGI policy: evaluate $argmax_x g(x)$

λ: cost-per-sample (Lagrangian multiplier)

Both are one-step heuristics!

Other acquisition functions:

Upper Confidence Bound (UCB) • Thompson Sampling (TS)

Contour Plot **PBGI PBGI** Expected Improvement $\lambda = 10^0$ $\lambda = 10^{-5}$

> Mean Connection with UCB?

 $-3 \quad 0 \quad 3 \quad -3 \quad 0 \quad 3 \quad -3 \quad 0 \quad 3$

- Predictive Entropy Search
- Knowledge Gradient (KG)
- Multi-step Lookahead EI (MSEI)

Impact of λ Log Regret $10^{0.7}$ $--- \lambda = 0.01$ $--- \lambda = 0.001$ $\lambda = 0.00001$ 0 50 100 150 200 --- Dynamic λ **Cumulative Cost**

Smaller λ , higher exploration

Extension to heterogeneous costs

Experiment: timing

- Given cost function $c: \mathcal{X} \to \mathbb{R}^+$ and budget B
- Replace λ with $\lambda c(x)$ to compute g(x) as PBGI

Baselines: arbitrarily bad • EI Per Unit Cost (EIPC)

Budgeted MSEI (BMSEI)

Gittins is easy to compute using bisection method

Experiment: Bayesian regret

Experiment: synthetic benchmark

Experiment: empirical

Future work

Extension to exotic BO (freeze-thaw, multi-fidelity, function network, etc.) via Gittins variants (Golf/MDP, optional inspection, etc.)