Grytodisterrant GOLDWASSER - MICALI

p prim, $a \in \mathbb{Z}$ restiduu printic mod p dore $\exists x \in \mathbb{Z}_p^*$ a $\exists a = x \mod p$ (a,p)=1Simbolul Legendre a lui a mod p, (a) tot [a], dore a residuu printic mod [a]Criterial lui Eulor: (a) = $a^{\frac{1}{2}}$ mod [a], who [a] prim impant [a]

 $\left(\frac{a}{p}\right) = \left(\frac{a \mod p}{p}\right)$; $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$; $\left(\frac{a}{p}\right) = \left(\frac{a}{p}\right)^{k} = \left(\frac{a}{p}\right)^{k} = \left(\frac{a}{p}\right)^{k}$

Tie m= p.2, p.2 prime distincte

Sombold Jacobi (a) det (a) (a)

Propri: a \(\frac{\text{Z}}{\text{, \(\infty, \(\infty) = 1}}\)
a residuu patratie mod \(n (=) \) a residuu patratie mod \(p \) \(n \)

deci $\exists a$, $\binom{a}{m} = 1$, dans a NU este meridum primatie mod $\binom{a}{n} = \binom{a}{2} = -1$ cheia publică : $m = p \cdot q$, $y \in \mathbb{Z}_m^+$ $\binom{y}{p} = \binom{y}{q} = -1$ (y este um elom. au amb factoria privata : $p \cdot q$ prime, imprase, distinctra primatic)

Gupton: m €79,19, enc(m) = ym. 2 mod m, 2 ∈ Zm general aleatour

Descriptione: $dec(x) = \begin{cases} 0, doca \\ \\ 1, oliper \end{cases} = 1$

Obo. & com outstext G-M, (c)=1

(4p) 1. Dom. cà $\forall c$ oiptotext GM, $\binom{c}{p}=1 \iff c=enc(0)$

(2p) 2. Fie p=3, g=7, m=21, y=206M cheio publica: m=21, y=20cheia privata: p=3, g=7

Decoplate =5.

(2p) 3. Dam ca + m, m, eto, 1, doc (enc(m,) enc (m)) = m, Am, m

(2p) 4. Protentati un algoritam glicent core, avaind la interne cheia publica is un origitatext c) são complimienca um alt criptotext c'at dec(c)= dec(c)

Resolvan

1.
$$\frac{C}{p} = 1 \Rightarrow dec(e) = 0$$

$$= enc(0) = C$$

emc(0)=
$$C = 1$$
 $C = y$ d $mod m$

$$C = d^2 \mod m$$

$$C = d^$$

$$\frac{\partial}{\partial ec(5)} = ?$$

$$\left(\frac{c}{p}\right) = c \mod p \iff \left(\frac{c}{p}\right) = 5 \mod 3 \iff \left(\frac{c}{p}\right) = 5 \mod 3$$

$$- dec(e) = 1$$

3.
$$\operatorname{enc}(m_1)^{\circ} \operatorname{enc}(m_2) = \operatorname{y}^{m_1} \operatorname{d}_1^2 \operatorname{mod} m \cdot \operatorname{y}^{m_2} \operatorname{d}_2^2 \operatorname{mod} m = \operatorname{y}^{m_1 + m_2} \operatorname{d}_1^2 \operatorname{d}_1^2 \operatorname{d}_1^2 \operatorname{d}_2^2 \operatorname{mod} m = \operatorname{y}^{m_1 + m_2} \operatorname{d}_1^2 \operatorname{mod} m = \operatorname{y}^{m_1 + m_2} \operatorname{mod} m = \operatorname{y}^{m_1 +$$

=,
$$dec$$
 (emc(m₁)· emc(m₂)) =
1, $deco$ (m, Θ) em₂=)

4. Imput: m,
$$\delta$$

Output: $c' \neq c$ of $dec(c') = dec(c)$

$$c' = 7c \mod m = (\frac{c'}{p}) = (\frac{c \mod m}{p}) = (\frac{c}{p})^3 = (\frac{c}{p})$$
 $2kH, ke2t$
 $= dec(c') = dec(c)$