COMP 232 Mathematics for Computer Science Fall 2013

Midterm Exam

 $(2_{\rm ea.}^{\rm pts})$

Name: ID:		Total Points: / 62
	_	red tool is an ENCS approved calculator. cil. <u>Do not</u> detach any pages from this
sentences, indicate wheth	er it is true or false. You answer, and 0 points for "c	itive integers. For each of the following get +2 points for each correct answer, lon't know." However, the total for this
(a) $\forall x ((x < 0) \lor (x \le 2x))$ True))	Don't know!
(b) $\exists x \exists y ((x+y=0) \lor (x))$ True	$(x \cdot y = 0)$ False	Don't know!
(c) $\forall x \forall y (x \cdot y \ge x + y)$ True	✓ False	☐ Don't know!
(d) $\exists x \exists y ((x=3) \lor (y=4))$ True	4))	☐ Don't know!
(e) $\exists x \forall y \exists z ((y = x + z) \land \Box$ True	$(z \le x)$ False	☐ Don't know!

 $(6_{\rm ea.}^{\rm pts})$ 2. Here you are to prove propositional equivalences using the laws in the handout.

12 pts

(a) Here is a proof that $p \to (q \to r) \equiv (p \land q)$.

	Step		Law applied
$p \to (q \to r)$	=	$\neg p \lor (q \to r)$	Implication
	≡	$\neg p \lor (\neg q \lor r)$	Implication
	=	$(\neg p \vee \neg q) \vee r$	Associativity
	≡	$\neg (p \land q) \lor r$	de Morgan
	≡	$(p \land q) \to r$	Implication

In the rightmost column above, fill in the law applied for each step (see handout for a list of laws)

(b) In the table below, construct a proof of the equivalence

$$(r \lor p) \to (r \lor q) \equiv r \lor (p \to q)$$

similarly to (a).

	Step		Law applied
$(r\vee p)\to (r\vee q)$	≡	$\neg(r\vee p)\vee(r\vee q)$	Implication
	≡	$\Big((\neg r)\wedge(\neg p)\Big)\vee(r\vee q)$	de Morgan
	=	$\Big(\Big((\neg r)\wedge(\neg p)\Big)\vee r\Big)\vee q$	Associativity
	=	$(r \lor ((\neg r) \land (\neg p))) \lor q$	Commutativity
	=	$\left(\left(r\vee (\neg r)\right)\wedge \left(r\vee (\neg p)\right)\right)\vee q$	Distributivity
	=	$\left(\left(r\vee (\neg p)\right)\wedge \left(r\vee (\neg r)\right)\right)\vee q$	Commutativity
	=	$\Big(\Big(r\vee (\neg p)\Big)\wedge T\Big)\vee q$	Excluded middle
	=	$\Big(r\vee (\neg p)\Big)\vee q$	Identity
	=	$r \vee \Big((\neg p) \vee q \Big)$	Associativity
	=	$r \lor (p \to q)$	Implication

Which of the following statements correctly describes the assertion?

The assertion is true. The proof follows from the distributive laws for ∧
The assertion is false. Counterexample: P(x) means "x is divisible by 6," and Q(x) means "x is divisible by 3."
The assertion is false. Counterexample: P(x) means "x < 0," and Q(x) means "x ≥ 0."
The assertion is true. To see why, let P(x) mean "x is divisible by 6," and Q(x) mean "x is divisible by 3." If x = 6, then x is divisible by both 3 and 6, so both side of the equivalence have the same truth value for this x.

 \square The assertion is false. Counterexample: P(x) means "x < 0 is a square" and Q(x) means "x is odd."

- $(6_{\rm ea.}^{\rm pts})$
- 7. (a) Consider the assertion "Let a and b be positive integers. If a < b then $a < \frac{a+b}{2} < b$." Give a direct proof of the assertion.

24 pts

Solution:

$$a \le 2a = a + a < a + b \implies a < \frac{a+b}{2}$$

 $\frac{a+b}{2} < \frac{b+b}{2} = \frac{2b}{2} = b \implies \frac{a+b}{2} < b$

(b) Consider the assertion "Let $n \in \mathbb{Z}$. If $n^5 + 7$ is even, then n is odd." Give a indirect proof of the assertion.

Solution: We need to prove $even(n) \Rightarrow odd(n^5 + 7)$

$$even(n) \Rightarrow n = 2k$$
, for some $k \in \mathbb{Z}$

$$\Rightarrow n^5 + 7 = (2k)^5 + 7 = 32k^5 + 7 = 32k^5 + 6 + 1 = 2(16k^5 + 3) + 1 \Rightarrow odd(n^5 + 7)$$

(c) Consider the assertion "Let $x, y \in \mathbb{R}$ with $x \ge 0$ and $y \ge 0$. Then $\frac{x+y}{2} \ge \sqrt{xy}$." Prove the assertion by contradiction.

Solution: Suppose to the contrary that $\frac{x+y}{2} < \sqrt{xy}$.

Then
$$\frac{x+y}{2} \cdot \frac{x+y}{2} < \sqrt{xy} \cdot \sqrt{xy} = xy$$

$$\Rightarrow (x+y)^2 < 4xy$$

$$\Rightarrow x^2 + 2xy + y^2 < 4xy$$

$$\Rightarrow x^2 - 2xy + y^2 < 0$$

 $\Rightarrow (x-y)^2 < 0$; a contradiction, since a square always is ≥ 0 .

(d) Consider the assertion "For all intgers n it holds that $n^2 + n$ is even." Give a proof by cases of the assertion.

Solution:

 \bullet Case 1: n is even.

$$\Rightarrow n = 2k$$
, for some $k \in \mathbb{Z} \Rightarrow n^2 + n = 4k^2 + 2k = 2(2k^2 + k) \Rightarrow n^2 + n$ is even

• Case 2: n is odd.

$$\Rightarrow n = 2k + 1$$
, for some $k \in \mathbb{Z}$

$$\Rightarrow n^2 + n = (2k+1)^2 + (2k+1) = (4k^2 + 4k + 1) + (2k+1) = 4k^2 + 6k + 2$$

$$\Rightarrow n^2 + n = 2(2k^2 + 3k + 1)$$

$$\Rightarrow n^2 + n$$
 is even

—... End of Exam ...—