# 01. R 기초

- 1. R 설치 및 기본 사용법
  - 설치 생략
  - R 기본 사용법
    - 。 R의 데이터 타입
      - 변수의 타입은 class 함수를 이용해 확인 가능 EX) class("abc") → "character"

| 데이터 타입                                                    | 의미                                 | 비고                                              |
|-----------------------------------------------------------|------------------------------------|-------------------------------------------------|
| character                                                 | 문자형 타입                             | 따옴표('), 쌍따옴표(")로 표시                             |
| numeric(숫자형)<br>double(실수)<br>integer(정수)<br>complex(복소수) | 숫자형 타입                             | double : 숫자로만 표현 가능<br>Inf : 무한대, -Inf : 음의 무한대 |
| logical                                                   | 논리형 타입                             | 참 OR 거짓                                         |
| NaN<br>NA<br>NULL                                         | NaN : 숫자가 아님을 반환<br>NA, NULL : 결측값 | NA : 공간을 차지하는 결측값<br>NULL : 존재하지 않는값            |

#### 2. R 기본 문법

- 연산자
  - 대입연산자 : 변수에 값을 할당하기 위해 사용하는 연산자

| 대입 연산자   | 내용            |
|----------|---------------|
| ←, <←, = | 오른쪽 값을 왼쪽에 대입 |
| →, →>    | 왼쪽 값을 오른쪽에 대  |



비교연산자: 할당된 값과 변수를 비교하거나 임의의 숫자, 문자 혹은 논리값을 비교 가능, NA는 어떤 것과 비교를 하더라도 NA를 반환

| 비교 연산자       | 내용                 |
|--------------|--------------------|
| ==           | 두 값이 같은지 비<br>교    |
| <, >         | 초과, 미만을 비교         |
| !=           | 두 값이 다른지를<br>비교    |
| <=, ⇒        | 이상, 이하를 비교         |
| is.character | 문자형인지 아닌<br>지를 비교  |
| is.numeric   | 숫자형인지 아닌<br>지를 비교  |
| is.logical   | 논리형인지 아닌<br>지를 비교  |
| is.na        | NA인지 아닌지를<br>비교    |
| is.null      | NULL인지 아닌지<br>를 비교 |

```
> string1 == 'abc'
[1] TRUE
> string1 != 'abcd'
[1] TRUE
> string2 > 'DATA'
[1] FALSE
> number1 <= 15
[1] TRUE
> is.na(logical)
[1] TRUE
> is.null(NULL)
[1] TRUE
```

• 산술 연산자 : 두 숫자형 타입의 계산을 위한 연산자

| 산술 연산자 | 내용             |
|--------|----------------|
| +      | 두 숫자의 덧셈       |
| -      | 두 숫자의 뺄셈       |
| *      | 두 숫자의 곱셈       |
| 1      | 두 숫자의 나눗셈      |
| %/%    | 두 숫자의 나눗셈의 몫   |
| %%     | 두 숫자의 나눗셈의 나머지 |
| ^ **   | 거듭제곱           |
| exp()  | 자연상수의 거듭제곱     |

• 기타 연산자 :논리값을 계산하기 위해 연산자

| 기타 연산자 | 내용      |
|--------|---------|
| !      | 부정 연산자  |
| &      | AND 연산자 |
| 1      | OR 연산자  |

```
> !TRUE
[1] FALSE
> TRUE&TRUE
[1] TRUE
> TRUE&FALSE
[1] FALSE
>!(TRUE&FALSE)
[1] TRUE
> TRUE | FALSE
[1] TRUE
```

#### • R 데이터 구조

#### 1. 벡터

• 타입이 같은 여러 데이터를 하나의 행으로 저장하는 1차원 데이터 구조, '연결한다'라는 의미의 'concatenate'의 c를 써서 데이터를 묶을 수 있음

```
> v4 <- c( 3 , TRUE , FALSE)
> v4

[1] 3 1 0
> v5 <- c( 'a' , 1 , TRUE )
> v5

[1] "a" "1" "TRUE"
```

#### 2. 행렬

- 2차원 구조를 가진 벡터. 행렬에 저장된 모든 데이터는 같은 타입이어야 함
- matrix 함수 사용시 nrow → 행의 수, ncol → 열의 수

• byrow 옵션 T 지정시 값들이 열이 아닌 행으로 저장

• dim 함수 사용시 행의 개수와 열의 개수를 지정하여 행렬로 변환 가능

```
> v1 <- c( 1 : 6 )
> v1
[1] 1 2 3 4 5 6
> dim(v1) <- c( 2 , 3 )
> v1
      [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

#### 3. 배열

- 3차원 이상의 구조를 갖는 벡터, 행렬에 저장된 모든 데이터는 같은 타입이어야 함
- array 함수 사용시 dim 옵션 명시 필요, 그렇지 않으면 1차원 벡터 생성

• dim 함수 사용시

```
> a2 <- c( 1 : 12 )
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> dim(a2) <- c( 2 , 3 , 2 )
```

### 4. 리스트

- 데이터 타입, 데이터 구조에 상관없이 사용자가 원하는 모든 것을 저장할 수 있는 자료구조
- list()를 사용한 예시

```
> L <- list()
> L[[1]] <- 5
> L[[2]] <- c( 1 : 6 )
> L[[3]] <- matrix( c( 1 : 6 ) , nrow=2 )
> L[[4]] <- array( c( 1 : 12 ) , dim=c( 2 , 3 , 2 ) )
> L
[[1]]
[1] 5
[[2]]
[1] 1 2 3 4 5 6
[[3]]
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
[[4]]
, , 1
   [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
   [,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
```

#### 5. 데이터프레임

- 데이터 분석을 위한 2차원 구조를 갖는 관계형 데이터 구조
- 행렬과 같은 모양을 갖지만 여러 개의 벡터로 구성되어 있기 때문에 각 열
   은 서로 다른 타입의 데이터를 가질 수 있음

```
> v1 <- c( 1 , 2 , 3 )
> v2 <- c( 'a' , 'b' , 'c' )
> df1 <- data.frame( v1 , v2 )
```

```
> df1
v1 v2
1 1 a
2 2 b
3 3 c
```



#### 참고 배열의 시작 인덱스 값

파이썬, 자바, C 등 많은 언어는 배열의 시작 인덱스 값을 0으로 갖지만, R의 벡터는 시작 인덱스 값을 1로 갖는다.

• R 내장 함수

### 1. 기본 함수

| 함수          | 내용                           |
|-------------|------------------------------|
| help() 또는 ? | 함수들의 도움말<br>을 볼 수 있음         |
| paste()     | 문자열을 이어 붙<br>임               |
| seq()       | 시작값, 끝갑스,<br>간격으로 수열을<br>생성  |
| rep()       | 주어진 데이터를<br>일정 횟수만큼 반<br>복   |
| rm()        | 대입 연산자에 의<br>해 생성된 변수를<br>삭제 |
| ls()        | 현재 생성된 변수<br>들의 리스트를 보<br>여줌 |
| print()     | 값을 콘솔창에 출<br>력               |

### 2. 통계 함수

| 함수     | 내용                |
|--------|-------------------|
| sum    | 입력된 값의 합          |
| mean   | 입력된 값의 평균         |
| median | 입력된 값의 중앙<br>값    |
| var    | 입력된 값의 표본<br>분산   |
| sd     | 입력된 값의 표본<br>표준편차 |
| max    | 입력된 값의 최댓<br>값    |
| min    | 입력된 값의 최솟<br>값    |

```
> v1 <- c( 1 : 9 )
> sum( v1 )
[1] 45
> mean( v1 )
[1] 5
> median( v1 )
[1] 5
> median( v1 )
[1] 7
> > set( v1 )
[1] 7
> sd( v1 )
[1] 7
> sd( v1 )
[1] 9
> min( v1 )
[1] 1
> range( v1 )
[1] 1
> range( v1 )
[1] 1 9
> summary( v1 )
Min. 1st Qu. Median Mean 3rd Qu. Max.
1 3 5 7 9
# 철도의 대로 간 계신 하는데 보신하는데 보도의 때키지가 필요하다.
> install.packages( *f Basics *)
> skewness( v1 )
[1] 0
attr(, "method" )
[1] ** noment"
> kurtosis( v1 )
[1] ** noment"
> kurtosis( v1 )
[1] ** li -1.66181
attr(, "method" )
[1] ** li ** excess**
```

| 함수       | 내용                  |
|----------|---------------------|
| range    | 입력된 값의 최댓<br>값과 최솟값 |
| summary  | 입력된 값의 요약<br>값      |
| skewness | 입력된 값의 왜도           |
| kurtosis | 입력된 값의 첨도           |

• R 데이터 핸들링

•

1. 데이터 이름 변경 : 2차원 이상의 데이터 구조는 colnames와 rownames 함수를 사용하여 행과 열의 이름을 알 수 있으며, 이름을 지정할 수 있음

```
> m1 <- matrix( c( 1 : 6 ) , nrow = 2 )
> colnames( m1 ) <- c( 'c1' , 'c2' , 'c3' )
> rownames( m1 ) <- c( 'r1' , 'r2' )
> m1
 c1 c2 c3
r1 1 3 5
r2 2 4 6
> colnames( m1 )
[1] "c1" "c2" "c3"
> rownames( m1 )
[1] "r1" "r2"
> df1 <- data.frame( x = c( 1 , 2 , 3 ) , y = c ( 4 , 5 , 6 ) )
> colnames( df1 ) <- c( 'c1' , 'c2' )
> rownames( df1 ) <- c( 'r1' , 'r2' , 'r3' )
> df1
 c1 c2
r1 1 4
r2 2 5
r3 3 6
> colnames( df1 )
[1] "c1" "c2"
> rownames( df1 )
[1] "r1" "r2" "r3"
```

2. 데이터 추출: R이 보유한 여러 데이터 구조 모두 인섹싱을 지원, 대괄호 기호 ([,])를 사용하여 원하는 위치의 데이터 추출 가능, 행과 열의 이름으로도 가능

```
> v1 <- c( 3 , 6 , 9 , 12 )
> v1[ 2 ]
[1] 6
> m1 <- matrix( c( 1 : 6 ) , nrow = 3 )
> m1[ 2 , 2 ]
[1] 5
> colnames( m1 ) <- c( 'c1' , 'c2' )
> m1[ , 'c1' ]
[1] 1 2 3
> rownames( m1 ) <- c( 'r1' , 'r2' , 'r3' )
> m1[ 'r3' , 'c2' ]
[1] 6
```

### 데이터프레임에서는 \$ OR []기호 → 열의 데이터 추출

```
> v1 <- c( 1 : 6 )
> v2 <- c( 7 : 12 )
> df1 <- data.frame( v1 , v2 )
> df1$v1
[1] 1 2 3 4 5 6
> df1$v2[3]
[1] 9
```

#### 3. 데이터 결합

• rbind 함수: 행으로 결합

• cbind 함수 : 열로 결합

```
> cbind( v1 , v2 )
    v1 v2
[1,] 1 4
[2,] 2 5
[3,] 3 6
```

#### • 제어문

1. 반복문:특정 부분의 코드가 반복적으로 수행

• for 문

```
> for ( i in 1:3 ){
+ print( i )
+ }
# 콘솔박스에서 명령어가 완성되지 않은 채 엔터가 입력되면 자동으로 +가 입력된다. 따라서 +는 입력하지 않는다.

[1] 1
[1] 2
[1] 3

> data <- c( "a" , "b" , "c" )
> for ( i in data ){
    print( i )
    }
[1] "a"
[1] "b"
[1] "c"
```

• while 문

```
> i <- 0
> while( i < 5 ){
    print( i )
        i <- i + 1
    }
[1] 0
[1] 1
[1] 2
[1] 3
[1] 4</pre>
```

2. 조건문 : 참과 거짓에 따라 특정 코드가 수행될지 혹은 수행되지 않을지를 결정

```
> number <- 5
> if ( number < 5 ){
   print( 'number는 5보다 작다.' )
 } else if ( number > 5 ){
   print( 'number는 5보다 크다.' )
  }else{
   print( 'number는 5와 같다.' )
[1] "number는 5와 같다."
> number <- 3
> if ( number < 5 ){
   print( 'number는 5보다 작다.' )
  } else if ( number > 5 ){
   print( 'number는 5보다 크다.' )
   print( 'number는 5와 같다.' )
[1] "number는 5보다 작다."
> number <- 7
> if ( number < 5 ){
   print( 'number는 5보다 작다.' )
  } else if ( number > 5 ){
   print( 'number는 5보다 크다.' )
  }else{
   print( 'number는 5와 같다.' )
[1] "number는 5보다 크다."
```

3. 사용자 정의 함수 : 사용자가 임의로 하나의 함수로 명명하여 저장하였다가 필요한 경우 함수를 호출

```
> comparedTo5 <- function( number ){
> if ( number < 5 ){
    print( 'number는 5보다 작다.' )
} else if ( number > 5 ){
    print( 'number는 5보다 크다.' )
} else{
    print( 'number는 5와 같다.' )
}
}
> comparedTo5( 10 )
[1] "number는 5보다 크다."
> comparedTo5( 3 )
[1] "number는 5보다 작다."
> comparedTo5( 5 )
[1] "number는 5와 같다."
```

4. 주석 : 실행되지 않는 문장, R코드를 설명하거나 함수를 설명할 목적으로 작성 하는 글로서 #을 사용하여 표시

```
# 1+1을 계산하는 방법
> 1 + 1
[1] 2
```

- 통계분석에 자주 사용되는 R 함수
  - 1. 숫자 연산

| 함수      | 내용                       |
|---------|--------------------------|
| sqrt    | 주어진 수의 제곱근               |
| abs     | 주어진 수의 절대값               |
| exp     | 자연상수 $e$ 의 제곱수           |
| log     | 밑이 자연상수인 로그 값            |
| log10   | 밑이 10인 로그 값              |
| pi      | 원주율을 의미하는 pi 값인 3.141592 |
| round   | 주어진 수의 반올림 값             |
| ceiling | 주어진 수를 올림                |
| floor   | 주어진 수를 내림                |

# 2. 문자 연산

| 함수       | 내용                  |
|----------|---------------------|
| tolower  | 주어진 문자열을 소문자로 바꿈    |
| toupper  | 주어진 문자열을 대문자로 바꿈    |
| nchar    | 주어진 문자열의 길이를 구함     |
| substr   | 문자열의 일부분을 추출        |
| strsplit | 문자열을 구분자로 나눔        |
| grepl    | 문자열에 주어진 문자가 있는지 확인 |
| gsub     | 문자열의 일부분을 다른 문자로 대체 |

### 3. 벡터 연산

| 함수     | 내용                   |
|--------|----------------------|
| length | 주어진 벡터의 길이를 구함       |
| paste  | 주어진 벡터를 구분자를 기준으로 결합 |

| 함수    | 내용            |
|-------|---------------|
| cov   | 두 수치 벡터의 공분산  |
| cor   | 두 수치 벡터의 상관계수 |
| table | 데이터의 개수       |
| order | 벡터의 순서        |

# 4. 행렬 연산

| 함수   | 내용      |
|------|---------|
| t    | 전치행렬    |
| diag | 대각행렬    |
| %*%  | 두 행렬의 곱 |

# 5. 데이터 탐색

| 함수       | 내용             |
|----------|----------------|
| head     | 데이터의 앞 일부<br>분 |
| tail     | 데이터의 뒤 일부<br>분 |
| quantile | 수치 벡터의 4분<br>위 |

```
# 벡터 생성

> x <- c(1:12)

# 기본값은 6이지만 원하는 개수만큼 데이터를 탐색한다.

> head(x,5)

[1] 1 2 3 4 5

> tail(x,5)

[1] 8 9 10 11 12

> quantile(x)

0% 25% 50% 75% 100%

1.00 3.75 6.50 9.25 12.00
```

# 6. 데이터 전처리

| 함수     | 내용                        |
|--------|---------------------------|
| subset | 데이터에서 조건식에 맞는 데이터 추출      |
| merge  | 두 데이터를 특정 공통된 열을 기준으로 병함  |
| apply  | 데이터에 열(또는 행)별로 주어진 함수를 적용 |

# 7. 정규분포 (기본값은 표준 정규 분포로 mean=0, sd=1)

| 함수    | 내용                       |
|-------|--------------------------|
| dnorm | 정규 분포의 주어진 값에서 함수 값      |
| rnorm | 정규 분포에서 주어진 개수만큼 표본 추출   |
| pnorm | 정규 분포에서 주어진 값보다 작을 확률 값  |
| qnorm | 정규 분포에서 주어진 넓이 값에서 갖는 x값 |

### 8. 표본추출

| 함수     | 내용                        |
|--------|---------------------------|
| runif  | 균일 분포에서 주어진 개수만큼 표본을 추출   |
| sample | 주어진 데이터에서 주어진 개수만큼 표본을 추출 |

### 9. 날짜

| 함수         | 내용                  |
|------------|---------------------|
| Sys.Date   | 연, 월,일을 출력          |
| Sys.time   | 연, 월, 일, 시간을 출력     |
| as.Date    | 주어진 데이터를 날짜 형식으로 변환 |
| format     | 원하는 날짜 형식으로 변경      |
| as.POSIXct | 타임스탬프를 날짜 및 시간으로 변  |

### 10. 산점도



### 11. 파일 읽기 쓰기

| 함수        | 내용              |
|-----------|-----------------|
| read.csv  | csv 파일 불러옴      |
| write.csv | csv 파일로 저장      |
| saveRDS   | 분석 모델 및 R 파일 저장 |

| 함수      | 내용               |
|---------|------------------|
| readRDS | 분석 모델 및 R 파일 불러옴 |

# 12. 기타

| 함수               | 내용         |
|------------------|------------|
| install.packages | 패키지 설치     |
| library          | 설치된 패키지 호출 |
| getwd            | 작업 디렉터리 확인 |
| setwd            | 작업 디렉터리 설정 |