Owais Siddiqi

omsiddigi01@gmail.com | https://owaissiddigi.co.uk/ | London, United Kingdom

EDUCATION

Imperial College London

Oct. 2022 - Oct. 2023

MSc in Biomedical Engineering - Merit

- Reinforcement Learning: Explored advanced algorithms including Deep Q Networks (DQN), Proximal Policy
 Optimisation (PPO), Soft Actor Critic (SAC), Monte Carlo methods, Temporal Differences, and Dynamic
 Programming.
- **Statistics And Data Analysis:** Proficient in Markov Decision Processes, Bayesian Probability, and both Linear and Non-Linear Regression techniques.
- **Image Processing:** Mastered techniques such as Image Classification, Object Detection, Image Segmentation, Fourier Transformations, and the application of Neural Networks in image data.
- **Brain Machine Interfaces:** Acquired knowledge in Neural Decoding, Information Theory, Time Series Analysis, K-Nearest Neighbours, Naive Bayes Theorem, SVM, Random Forests, and Multi-Layer Perceptron's.
- Mathematical Methods: Developed a strong foundation in Graph Theory, Time Series Analysis, Data Visualisation Techniques (PCA, ICA, SVD), and Linear Algebra.

Queen Mary University of London

Sept. 2019 - Sept. 2022

BEng (Hons) in Biomedical Engineering – 1st Class

- Mathematics and Computing for Engineers I & II: Expertise in Calculus, Differential Equations, Sequences, EigenValues, Vectors, and Gaussian Elimination methods.
- **Vector Calculus for Engineering:** Strengthened skills in Multivariable Calculus, Linear Algebra, and Second Order Differential Equations.

WORK EXPERIENCE

Genevation ltd. Apr. 2024 - Present

Junior Biomedical Engineer and Developer:

- Cancer Biomarker Prediction: Helped develop an AI model with PyTorch for the prediction and identification
 of neoantigen biomarkers, facilitating personalised vaccine production for cancer immunotherapy. Collaborated
 with cross-functional teams to refine model architectures and enhance development pipelines, enabling
 targeted cancer therapies.
- **Bespoke VCF Production**: Designed a specialised pipeline to convert raw sequence data (FASTQ) into customised VCF formats, focusing on efficient data processing tailored for downstream genetic analyses of tumour-specific biomarkers, including somatic/germline mutation annotation.
- Bioinformatics and Computational Tools: Applied bioinformatics tools for RNA-seq data processing and variant calling, leveraging containerised environments with Docker and managing Linux-based virtual machines on Google Cloud Platform (GCP) for high-performance, scalable data analysis.
- **Optimised Data Processing**: Reduced the genetic downstream analysis of neoantigen biomarkers **from a week to a few days**, significantly accelerating the development timeline for personalised vaccine production.
- **Continuous Learning**: Engaged in ongoing professional development to stay updated with advancements in genomics, Al, and bioinformatics. Participated in relevant workshops and online courses to sharpen skills in computational biology and Al-driven data analysis.

PDUK ltd. Aug. 2023 – Jan. 2024

Data Scientist Intern:

- Data Engineering: Employed SQL queries to import, organise, and clean data in MySQL, resulting in a <u>25%</u> reduction in data processing time, ensuring comprehensive information retrieval on <u>3000+ customers</u>, products and transactions. Enhanced overall efficiency and improved data accessibility through streamlined processes.
- **Data Visualisation:** Employed Python tools such as **Pandas** for data visualisation, creating insightful charts and graphs with **Matplotlib** and **Seaborn**. Effectively communicated trends, patterns, and relationships within the data via reports, facilitating informed decision-making.
- **Predictive Modelling:** Leveraged advanced AI techniques, including transfer learning and pre-trained recurrent neural network (RNN) models within **PyTorch**, for predictive modelling. Adapted existing RNN architectures for

time series forecasting of customer purchase history, resulting in a **20% improvement in forecast accuracy**, leading to a **10% reduction in inventory costs**.

• **Customer Segmentation:** Utilised K-means clustering with the Elbow Method to achieve optimal cluster determination for segmenting customers based on purchasing behaviour. This approach led to a **15% increase in conversion rates** through targeted marketing strategies tailored to distinct customer groups.

Imperial College London

Mar. 2023 – Sept. 2023

MSc Project:

- Bespoke Model Development: Pioneered the creation of a cutting-edge, novel, end to end regression Al
 model using artificial microscopy data, revolutionising cell differentiation through deep learning. Resulted in an
 exceptional 80%+ accuracy in seamless single stage cell quantification.
- **Data Management & Augmentation**: Optimised data preprocessing by implementing advanced methods, ensuring meticulous preparation of microscopy images for analysis. Implemented data augmentation techniques, which expanded the training dataset, resulting in a **30% increase in generalisation capabilities** and a **15% improvement in predictive accuracy**.
- Tool Utilisation: Led the seamless integration of a comprehensive toolset, featuring Pandas, Matplotlib,
 OpenCV, TensorFlow, Keras, and NumPy. This initiative optimised data preprocessing, parameter extraction, and model implementation, ensuring an efficient and effective workflow.

Imperial College London

Oct. 2022 - Dec. 2022

Reinforcement Learning Project:

- **Deep Reinforcement Learning**: Engineered the development and implementation of a state of the art neural network algorithm for solving the pole balancing problem using **PyTorch**. Achieved optimal action prediction in a simulated environment, showcasing innovation and excellence.
- **Hyperparameter Optimisation**: Engaged in rigorous experimentation and fine-tuning of hyperparameters to optimise algorithm performance and achieve desired outcomes, **reducing training time by 20%** and enhancing overall efficiency.

Imperial College London

Oct. 2022 - Dec. 2022

Neural Data Analysis:

- **Data Decoding:** Utilised advanced libraries such as **Matplotlib**, **NetworkX**, and **SciPy** to decode and analyse complex neural data from mice, extracting meaningful insights from intricate datasets.
- **Visualisation Expertise:** Orchestrated the development of a diverse array of visualisation tools, including autocorrelation plots, recurrence plots, and raster grams, to present a comprehensive and insightful perspective on neural activity patterns.

Queen Mary University of London

Sept. 2021 - May. 2022

Third Year Project:

- **Fuzzy Modelling:** Led the charge in researching and implementing **ANFIS** combined with a bagging ensemble approach, crafting a sophisticated multi-class classifier for brain-machine interfaces. Achieved a remarkable 64% accuracy in classifying/predicting new **SSVEP** data using **MATLAB**.
- **Recognition & Presentation:** Secured a prestigious position among the **top 20% of engineering projects**, showcasing an innovative approach. Presented compelling findings at the annual Industrial Liaison Forum, garnering accolades for groundbreaking research.

The Institute of Cancer Research

Jun. 2021 – Aug. 2021

Summer Intern:

- **Neural Network Development:** Led the development of a novel few-shot learning Siamese Network with a triplet loss function using **OpenCV**, **Keras**, and **TensorFlow**. Achieved a remarkable <u>70% accuracy score</u>, showcasing innovation and expertise.
- **Research Contribution:** Established the creation of an innovative imaging phantom, enabling independent experiments and generating valuable data and insights. Contributed significantly to the success of the research project, resulting in a **20% increase in experimental efficiency and data quality**.

Publications

Siddiqi, O., Winfield, J., Sormpas-Petridis, K., Harris, E., Ramkumar, A., Candito, A., Görner, S., Messiou, C., Blackledge, M., & Thrussell, I. (2022). Investigating the Repeatability of Multifrequency Magnetic Resonance Elastography applied to a Soft

Gelatine Phantom. Presented as a digital poster at the ISMRM 31st Conference & Exhibition, Excel London 2022.	, 7th – 12th May