5-6: More Metrics

Introduction to Recommender Systems

A couple of stories ...

• The perfect supermarket recommender ...

Buy Bananas

Maybe Bread Too!

Goals for Today

- To understand metrics that relate more closely to business goals and/or user experience, specifically:
 - Coverage
 - Diversity
 - Serendipity
- To understand why it may be worth trading off accuracy for other purposes ...

Introduction to Recommender Systems

Ziegler's Inspiration ...

 Let's see what books Amazon.com recommends that I buy ...

Coverage

- Coverage is the measure of the percentage of products for which a recommender can make a prediction
 - Or a prediction that's personalized
 - Or a prediction above a confidence threshold
- Computed as a simple percentage
 - Inconsistent averaging over user/unrated item
 - Easiest is to "hide" every item and compute for entire data set

Introduction to Recommender Systems

Diversity

- Measure of how different the items recommended are
 - Applied to a top-n list
- Start with a pairwise similarity metric
 - E.g., Ziegler used book categories, others have used tags, keyword vectors
- Intra-list similarity is the average pairwise similarity, lower score is higher diversity

Use of Coverage

- Directly relevant in cases where predictions are displayed
 - What percentage of movies will I get a star-score for?
- Often used as "background" metric when comparing top-n recommenders
 - Some have extended to ask what percentage of items will appear in someone's top-n
- Business interest: reach entire catalog ...

Introduction to Recommender Systems

Diversification ...

- Common approach is to penalize/remove the items from the top-n list that are too similar to prior items already recommended (never touch #1)
 - Replace with n+1st or later items first ones that don't exhibit too high a similarity
 - Diversification factor limits how many substitutions will be made

Alternatives to Diversification

- Clustering approaches allow "diversification through bundling"
- Scatter-gather interfaces allow usercontrolled diversification
- Business goal: don't turn away customers who are not currently interested in a narrow portion of your catalog

Introduction to Recommender Systems

Serendipity in Practice

- Don't need an overall metric to increase serendipity
 - Simply downgrade items that are highly popular (or otherwise obvious)
 - This tends to require experimentation and tuning
 - May use diversification factor approach, or a constant down-weighting by popularity
- Business goal get people to consume less popular items

Serendipity

- Definition: "the occurrence and development of events by chance in a happy or beneficial way"
- In recommender systems: surprise, delight, not the expected results
- Several ways to operationalize, such as:
 - $serend = \frac{1}{N} \sum_{i=1}^{N} \max(\Pr(s_i) \Pr(s_i), 0) * isrel(s_i)$
 - Key concept need prior "primitive" estimate of obviousness, one such metric is overall popularity.

Introduction to Recommender Systems

Business Objectives and Metrics

- Users of recommenders have a much broader set of objectives than the metrics we've discussed:
 - Immediate lift
 - Net lift (subtract out cost of returns)
 - Time to next transaction
 - Long-term customer value (lifetime value)
 - Referrals
 - And much more

Wrap up ...

- Metrics can address "fuzzier" goals such as producing a diverse, delightfully surprising set of recommendations; or assessing whether recommendations go deep into the "long tail" of the catalog and not just a few oft-recommended items.
- Experimental data shows that these objectives may even be worth sacrificing some accuracy.

Introduction to Recommender Systems

5-6: More Metrics

Looking forward ...

 Now that we have an extensive set of metrics, a couple of sessions on how to use them rigorously, and how to apply them to special cases ...

Introduction to Recommender Systems