嵌入式系統設計作業-2 紅外線解碼器

溫進坤 james wen@hotmail.com

作業題目

- p 開機後LCM第一行顯示"NTUST IR DECODER", 第二行不顯示任何字元。
- p 當接收到IR資料後,資料顯示在LCM第二行上,同時LED亮起並維持200ms後關閉
- p LCM第二行置中顯示為"XX-YY-ZZ-UU",其中XX 為第一個Byte,YY為第二個Byte,ZZ為第三個 Byte,UU為第四個Byte,顯示16進位值。
- p CPU工作頻率為72MHz
- p 不能有漏IR資料情形,或讀錯IR資料的狀況。
- p必須使用中斷方式解讀IR訊號。

執行畫面

IR NEC Protocol

- Logical "1":由0.56ms載波和 1.69ms space 組成
- Logical "0":由0.56ms載波和 0.56ms space 組成

• Leader code:由9ms載波和 4.5ms space 組成

IR NEC Protocol..

• Repeat code 由 9ms載波和 2.25ms space 組成,每間隔 110ms傳送一次

IR搖控器客戶/按鍵碼

遙控按鍵	客戶碼	客戶碼	鍵碼	反向鍵碼
*	00	FF	42	BD
#	00	FF	4A	B5
0	00	FF	52	AD
1	00	FF	16	E9
2	00	FF	19	E6
3	00	FF	0D	F2
4	00	FF	0C	F3
5	00	FF	18	E7
6	00	FF	5E	A1
7	00	FF	80	F7
8	00	FF	1C	E3
9	00	FF	5 A	A 5
OK	00	FF	40	BF
Up	00	FF	46	В9
Dn	00	FF	15	EA
Left	00	FF	44	BB
Right	00	FF	43	ВС

IR-KEY[1]接收波形

接收的資料: OxOO, OxFF, Ox16, OxE9

LM016L Block Diagram

p E : Chip Enable (H , H -> L)

P RS: H:Data, L:Instruction Code

P R/W: H:Read , L:Write

DB0-DB7 : Bidirection Data Bus

LM016L Interface Timing - Write

MCU Write Data to LCM

LM016L Interface Timing - Read

MCU Read Data From LCM

LM016L Instruction Table

Instruction	Instruction Code									Description	Execution time (fosc=270Khz)	
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Execution time (1050=270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "00H" to DDRAM and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1		Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39 μ s
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	39 μ s
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L		-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 μ s
Function Set	0	0	0	0	1	DL	N	F	_	_	Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line1-line)and, display font type (F:5 × 11 dots/5 × 8 dots)	39 μ s
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 μ s
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 μ s
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 jes
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	Dl	D0	Write data into internal RAM (DDRAM/CGRAM).	43 μ s
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	Dl	D0	Read data from internal RAM (DDRAM/CGRAM).	43 μ s

DDRAM : Display RAM CGRAM : Character RAM

LM016L – Power On Init

8 Bit Interface

計分方式

- 1. 程式完成後,將所有程式檔案壓縮7z檔後,將 檔案命名為作業題目號碼_學號,上傳至 Moodle[繳交作業]。(檔名:HW2_學號.7z)
- 助教會每週下載全部作業程式,檢查功能是否 正確,並將檢查結果放上公布欄,若有錯誤需 自行修正問題後,再重新上傳檔案。
- 3. 上傳截止時間後,將無法再上傳程式,未上傳程式該次作業為0分計算。
- 4. 計分標準依完成順序及程式內容給分,<u>若發現</u>程式有互相抄襲狀況,該兩人分數皆為0分。

参考資料

p LM016L-Hitachi.pdf