Signals, Antennas and Propagation

Arkaitz Bitorika

arkaitz.bitorika@cs.tcd.ie

Oriel House 4.15

Radio frequency spectrum

$$\lambda = c / f (c = 3 \cdot 10^8 \text{ m/s})$$

- VHF/UHF for mobile radio
 - GSM uses 900/1800/1900 MHz
- UHF to SHF used for Wireless LAN
 - 802.11 (Wi-Fi) uses 2.4 GHz, WiMAX 10-66 GHz
 - Limitations due to water/oxygen caused fading
- SHF and higher for satellite communications
 - Small directed antennas
 - Large bandwidth available

Regulations

- Radio frequencies are scarce resources
- International Telecommunications Union (ITU) responsible for worldwide regulations
- ITU Radiocommunication sector (ITU-R) handles standardisation in wireless communications
- ITU-R splits the world in three regions, within them national agencies are responsible for further regulations
- In Europe the European Telecommunications Standards Institute (ETSI) is responsible for standardisation
- ITU-R periodically holds the World Radio Conference to try achieve worldwide harmonisation of radio frequency regulations

Signals

- Physical representations of data
- Signal parameters represent data values
- Continuous/discrete in time and value
- Parameters of periodic signals
 - Frequency (f)
 - Period (T = 1 / f)
 - Amplitude (A)
 - Phase shift (φ)

• Sine wave, special periodic signal:

$$s(t) = A_t \sin(2 \pi f_t t + \phi_t)$$

Signal representations

- Time domain
- Frequency domain
- Phase domain

 Fourier transformation to go from time domain to frequency domain

Fourier representation of periodic signals

 Possible to reconstruct any periodic signal using sine and cosine functions:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

- Perfect representations require an infinite number of sine/cosine functions
- In practice, a limited number of functions is enough, as real world mediums have limited bandwidth

Antennas: isotropic radiator

- Theoretical reference antenna
- Point in space radiating equally in three dimensions
- Real antennas always have directive effects
- Radiation pattern: measurement of radiation around antenna

Dipole antennas

- Shape of antenna proportional to wavelength
 - Half-wave dipole (Hertzian dipole)
 - Quarter-wave dipole (Marconi dipole)

– Radiation pattern of a Hertzian dipole:

Directed and sectorised antennas

- Used for microwave connections or mobile phone base stations
 - Radio coverage of a valley or between buildings

 Sectorised antenna: combination of directed antennas on a single pole

Multi-element antenna arrays

- Antenna group to improve reception
- Switched/selection diversity: receiver chooses antenna with largest output
- Diversity combining: combine output of all antennas to produce gain
 - Phase correction(cophasing) to avoid cancellation

Signal propagation

- Propagation in free space like light
- Path loss or attenuation
 - Receiving power in vacuum proportional to 1 / d²
 - d = distance, much more in a real environment
 - Long distance transmissions affected by atmosphere (satellite)
 - Rain absorbs energy
 - The lower the frequency the better the penetration
 - Long waves cross sea, high freq. stopped by a tree
 - The higher the frequency the behaviour is more similar to light

Signal propagation ranges

- Transmission range
 - Communication possible
 - Low error rate
- Detection range
 - Signal detection possible
 - No communication possible
- Interference range
 - Signal may not be detected
 - Signal adds to background noise

Signal propagation effects

- Propagation effects that affect the receiving power
 - Frequency dependent fading
 - Blocking or shadowing
 - Reflection: at large objects
 - Refraction: depends on density of medium
 - Scattering at small objects
 - Diffraction at edges

Multipath propagation

 Signal can take different paths to arrive to sender due to propagation effects

- Time dispersion / delay spread
 - Signal dispersed over time
- Inter symbol interference (ISI)
 - Symbols in signal interfere with their "neighbour" symbols due to delay spread

Effects of mobility

- Channel characteristics change over time
 - Different signal paths
 - Different delays of signal parts
 - Different phases of signal parts
- Short term fading: quick changes on receiver power
- Long term fading
 - Slow change on average power
 - Due to distance to sender or obstacles further away

