An Implementation of Halfedge Data Structure in Catmull-Clark Subdivision for 2-Manifold Single-sided Surface

Yu Wang August 2015

1 Introduction

2 Halfedge Data Structure

An object in 3D Euclid space can be represented by multiple meshes of polygons. A mesh comprises three types of geometry element: vertex, edge, and face. The adjacency structure stores the topological information (adjacency and connectivity) of the mesh. The author chose halfedge data structure as the adjacency structure in this project to realize Catmull-Clark subdivision.

2.1 Vertex, Halfedge, and Face

The definitions and assumptions of vertex, halfedge and face are shown in Table 1. An example for a face made with four halfedges is shown in Figure 1.

	Definition	Assumption
Vertex	A 3-dimensional point.	There are no overlapping ver-
		tices (vertices that share the
		same position) in a mesh. But
		overlapping vertices can exist
		in different meshes.
Halfedge	An edge that starts from one	A halfedge connects exactly
	vertex and end at another ver-	two non-overlapping vertices
	tex.	and it has a direction. Less
		than two halfedges start from
		the same vertex and end at the
		same vertex in a single mesh.
Face	A polygon that contains a loop	A face has at least three
	of vertices and halfedges.	non-overlapping vertices so it
		makes a polygon.

Table 1: Definitions and assumptions of vertex, halfedge, and face

Figure 1: An example of single face made with four halfedges.

- 2.2 Face Connections
- 3 Catumll-Clark Subdivision
- 3.1 General Approach of Catmull-Clark Subdivision
- 3.1.1 Compute Vertex Positions of New Mesh
- 3.1.2 Make Connections of New Mesh
- 3.2 Sharp Crease and Boundary Feature
- 3.3 Mobius Connection
- 4 Offset Surface
- 4.1 Compute Vertex Normals
- 4.2 Positive and Negative Offsets
- 4.3 Mobius Connection Issue
- 5 Test Cases and Discussions
- 6 Contribution to Knowledge
- 7 Future Researches