Moscow 2025

Colored Noise in Financial Time Series

Pavlova A., ICEF'26

Введение

Статистические характеристики случайного процесса

Colored Noise in Financial Time Series

Рассмотрим **процессы** X(t) и $\rho(t)$:

- X(t) стационарный **в широком смысле** процесс;
- $\langle X(t) \rangle = \mathbf{0}$;
- Автокорреляционная функция X(t): $E[X(t)X(t+\tau)] = R_X(\tau)$;
- t достаточно большое $(t \to \infty)$.

$$\rho(t) = \int_{0}^{t} X(s)ds$$

В соответствии с теоремой Винера-Хинчина, спектральная плотность процесса представляется интегралом Фурье:

$$S_X(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} R_X(\tau) e^{-i\omega t} d\tau,$$

тогда

$$D_{\rho}=2\pi S_X(0),$$

т. е. коэффициент диффузии пропорционален спектральной плотности, взятой на нулевой частоте.

Спектральная плотность мощности

Applied seminar «Quantitative

analysis»

Спектральная плотность мощности (СПМ) — это функция, описывающая, как мощность сигнала распределена по частотам.

В финансах СПМ помогает анализировать динамику цен, объема торгов и других рыночных индикаторов:

- Анализ волатильности резкие скачки на высоких частотах могут указывать на высокочастотную торговлю или рыночную турбулентность.
- **Долгосрочные тренды** если в спектре есть мощные низкочастотные компоненты, это может указывать на фундаментальные изменения рынка.
- Обнаружение циклов некоторые рынки имеют повторяющиеся паттерны, например, недельные или месячные циклы.

Белый шум

$$X(t) = w(t) -$$
 гауссовский белый шум.

- $S_w(0) = S_w(\omega) = const;$
- $w(t_1)$ и $w(t_2)$ некоррелированы, если $t_1 \neq t_2$;
- $\langle w(t) \rangle = \mathbf{0}$;
- w(t) обобщенный случайный процесс.

w(t) — обобщенный случайный процесс.

АКФ белого шума — $R_w(t_1-t_2)=E[X(t_1)X(t_2)]=\sigma^2\delta(t_1-t_2)$, где σ^2 — интенсивность белого шума, а $\delta(t_1-t_2)$ — дельта-функция.

$$\delta(\tau) = \begin{cases} +\infty, & \tau = 0 \\ 0, & \tau \neq 0 \end{cases}$$

$$\int_{-\infty}^{+\infty} \delta(\tau) d\tau = 1.$$

Винеровский процесс

Applied seminar «Quantitative

analysis»

$$ho(t) = W(t)$$
 — винеровский процесс.

- $W_0 = 0$ почти достоверно;
- W_t процесс с **независимыми** приращениями;
- $W_t W_s \sim N(0, \sigma^2(t-s))$. Величину σ^2 , постоянную для процесса, будем считать равной **1**.

Из предыдущей задачи $\sigma_W^2 pprox t D_W$.

$$D_W = \int_{-\infty}^{+\infty} R_w(\tau) d\tau = \int_{-\infty}^{+\infty} \sigma^2 \delta(\tau) = \sigma^2 \int_{-\infty}^{+\infty} \delta(\tau).$$

Так как
$$\int_{-\infty}^{+\infty} \delta(au) = 1$$
 и $\sigma^2 = 1$, то

$$\sigma_W^2 \approx t!$$

Дисперсия винеровского процесса растет линейно со временем.

Проблемы, связанные с белым шумом

Белый шум — математически сложный объект, поскольку его реализации (функции во времени) не являются дифференцируемыми. Его автокорреляционная функция представляет собой дельтафункцию, что означает бесконечную мощность на любой частоте, что невозможно в реальных системах.

В реальной практике дельта-функция, используемая в определении белого шума, заменяется на некоторую приближенную симметричную функцию $\Delta(\tau)$ с конечной шириной $2\tau_{\Delta}$, обладающую свойством нормировки $\int_{-\infty}^{+\infty} \Delta(\tau) d\tau = 1$.

Величина au_{Δ} называется **временем корреляции** случайного процесса с АКФ $R_{\Delta}(au) = \sigma^2 \Delta(au)$.

Если $au_\Delta o 0$, то случайный процесс превращается в белый шум, поскольку его АКФ приближается к дельта-функции.

Цветной шум

Applied seminar «Quantitative

analysis»

Если за интервал времени, равный времени корреляции, изменением состояния динамической системы можно пренебречь, то модель белого шума, когда $au_X=0$, является удобным приближением для решения конкретных задач.

Однако, например, в статистической физике, где почти всегда необходимо учитывать инерционность динамических систем, приходится рассматривать коррелированные процессы, для которых $\tau_X \neq 0$.

Подобные шумы обычно называют цветными.

Процесс Орнштейна-Уленбека

Простейшим и одним из наиболее популярных примеров окрашенного шума является известный процесс **Орнштейна – Уленбека**:

$$dX_t = -\theta X_t dt + \sigma dW_t,$$

где:

- X_t случайный процесс;
- $\theta > 0$ коэффициент возврата к среднему (частота затухания);

- σ интенсивность шума;
- \boldsymbol{W}_t стандартный винеровский процесс.

В отличие от белого шума, процесс Орнштейна – Уленбека обладает конечным временем корреляции. Его автокорреляционная функция имеет вид

$$R_X(\tau) = \frac{\sigma^2}{2\theta} e^{-\theta|\tau|},$$

т. е. АКФ затухает **экспоненциально** с характерным временем $au = rac{1}{ heta}$.

Дисперсия процесса Орнштейна-Уленбека (АКФ при au=0) имеет вид

$$R_X(0) = \frac{\sigma^2}{2\theta}.$$

Процесс Орнштейна — Уленбека является единственным случайным процессом, который является одновременно **гауссовским**, **марковским** и **стационарным**.

Модель Васичека

Модель Васичека (Vasicek Model) описывает эволюцию **краткосрочной процентной ставки** как стохастический процесс, управляемый уравнением типа Орнштейна-Уленбека:

Colored Noise in Financial Time Series

$$dr_t = \kappa(\theta - r_t)dt + \sigma dW_t,$$

где:

- r_t краткосрочная ставка в момент времени t;
- κ скорость возврата к среднему θ ;
- θ долгосрочное среднее значение процентной ставки;
- σ волатильность процесса;
- $\boldsymbol{W_t}$ стандартный винеровский процесс.

Модель CIR

Модель CIR является модификацией модели Васичека и описывает динамику процентных ставок так, чтобы гарантировать их **неотрицательность**:

$$dr_t = \kappa(\theta - r_t)dt + \sigma\sqrt{r_t}dW_t.$$

В рамках исследования заменим стандартный винеровский процесс на цветной шум.

Applied seminar «Quantitative

analysis»

Влияние цветных шумов на предвидение аномалий внутри модели CIR

Noise		P = 1			P = 3			P = 5			
η	1	5	10	1	5	10	1	5	10		
Accuracy											
White	0.68	0.72	0.77	0.68	0.71	0.75	0.69	0.71	0.73		
Pink	0.95	0.94	0.95	0.94	0.94	0.94	0.9	0.91	0.9		
Red	0.97	0.97	0.97	0.83	0.83	0.84	0.81	0.8	0.81		
Balanced accuracy											
White	0.52	0.51	0.52	0.5	0.52	0.51	0.51	$0.5 \ 8$	0.51		
Pink	0.87	0.91	0.95	0.83	0.86	0.89	0.76	0.77	0.8		
Red	0.92	0.94	0.98	0.82	0.82	0.83	0.77	0.75	0.76		

Applied seminar «Quantitative

analysis»

Влияние цветных шумов на предвидение аномалий внутри модели CIR

Noise	P = 1			P=3			P = 5				
η	1	5	10	1	5	10	1	5	10		
Precision											
White	0.41	0.4	0.39	0.39	0.38	0.39	0.4	0.4	0.41		
Pink	0.8	0.73	0.68	0.84	0.75	0.67	0.85	0.76	0.66		
Red	0.88	0.83	0.79	0.86	0.82	0.77	0.86	0.82	0.77		
Recall											
White	0.49	0.47	0.44	0.48	0.44	0.43	0.49	0.45	0.43		
Pink	0.77	0.84	0.93	0.68	0.76	0.83	0.53	0.58	0.66		
Red	0.87	0.92	0.98	0.75	0.78	0.81	0.65	0.65	0.67		

Литература

Applied seminar «Quantitative

analysis»

- 1. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. М.: Наука, 1965.
- 2. Гуз С.А., Свиридов М.В. Теория стохастических систем, находящихся под действием широкополосного стационарного шума, фильтрованного в области низких частот: монография. М.: Университетская книга, 2020.
- 3. Зотов Г.А., Лукьянченко П.П. Нейросетевой подход в задаче предвидения аномалий процентных ставок под воздействием коррелированных шумов. М.: Докл. РАН. Матем., информ., проц., упр., 2023.
- 4. Давенпорт В.Б., Рут В.Л. Введение в теорию случайных сигналов и шумов. М.: ИЛ, 1960.
- 5. Крамер Г., Лидбеттер М. Стационарные случайные процессы. М.: Мир, 1969.

https://cs.hse.ru/iai/aimf/