- 1. (15 points) Evaluate the following integrals. (5 points for each)

ET161A001/002

- (c) $\int \frac{1}{\sqrt{x\sqrt{x}+x}} dx \int_{u=\frac{1}{2}x^{\frac{1}{2}}}^{x^{\frac{1}{2}}} dx$
- (a) $\int x\sqrt{2-5x} dx \int \sqrt{u} \frac{2-u}{\sqrt{x}} \frac{1}{\sqrt{x}}$ (b) $\int \frac{\cos(\pi/x)}{x^2} dx \int \frac{\cos(\pi/x)}{\sqrt{x}} dx$ (c) $\int \frac{1}{\sqrt{x\sqrt{x}+x}} dx \frac{1}{\sqrt{x}\sqrt{x}+x} dx$ of 0.2 cm. Use differentials to estimate maximum error and the relative error in the calculated area of the disk. 125 UE - 4 UE +2
- 3. Let $f(x) = \int_0^{g(x)} \frac{1}{\sqrt{1+t^3}} dt$, where $g(x) = \int_0^{\cos x} [1+\sin(t^2)] dt$.
 - (a) (2 points) Find $g(\frac{\pi}{2})$
 - (b) (4 points) Find g'(x)
 - (c) (4 points) Find $f'(\frac{\pi}{2})$
- 4. (10 points) Find the volume of the solid generated by revolving the plane region enclosed by y = $2x - x^2$ and y = 0 about the line x = 4.

- 5. (10 points) Prove that the equation $3x + 1 \sin x = 0$ has exactly one real solution.
- 6. Let $f(x) = (x^3 + x^2)^{1/3}$
 - (a) (6 points) Find the intervals of increase or decrease.
 - (b) (6 points) Find the intervals of concavity.
 - (c) (2 points) Find the local maximum and minimum values.
 - (d) (1 points) Find the inflection points.

7. (10 points) A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is $\frac{\pi}{3}$, this angle is decreasing at a rate of $\frac{\pi}{6}$ rad/min. How fast is the plane traveling at that time?

- ET161A001/002 Calculus (I) Final Exam $\frac{2}{3}\sqrt{\frac{3}{4}$ 8. A curve $C: x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ on xy-plane. There is a point $P(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4})$ on the curve C.
 - (a) (5 points) Find the lines that are tangent to the curve C at the point P.
 - (b) (5 points) Find the lines that are normal to the curve *C* at the point *P*.
 - (c) (10 points) Find the arc length of the curve C from the point $P(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4})$ to the point Q(1,0) on the curve C. $\sqrt{\frac{3}{4}} \frac{\sqrt{3}}{4}$ $\sqrt{\frac{3}{4}} = \frac{3}{4} (1 \frac{\sqrt{3}}{4})^{\frac{1}{4}} \frac{3}{4} \sqrt{\frac{3}{4}}$ $\sqrt{\frac{3}{4}} = \frac{3}{4} (1 \frac{\sqrt{3}}{4})^{\frac{1}{4}} \frac{3}{4} \sqrt{\frac{3}{4}}$ $\sqrt{\frac{3}{4}} = \frac{3}{4} (1 \frac{\sqrt{3}}{4})^{\frac{1}{4}} \frac{3}{4} \sqrt{\frac{3}{4}} = \frac{3}{4} \sqrt{\frac{3}{4}} + \frac{3}{4} \sqrt{\frac{3}{4}} + \frac{3}{4} \sqrt{\frac{3}{4}} = \frac{3}{4} \sqrt{\frac{3}{4}} + \frac{3}{4} \sqrt{\frac{3}{4}} = \frac{3}{4} \sqrt{\frac{3}{4}} + \frac{3}{4} \sqrt{\frac{3}{4}} + \frac{3}{4} \sqrt{\frac{3}{4}} = \frac{3}{4} \sqrt{\frac{3}{4}} + \frac{3}{4} \sqrt{\frac{3}$
- 9. (10 points) If a resistor of R ohms is connected across a battery of E volts with internal resistance rohms, then the power (in watts) in the external resistor is

$$P = \frac{E^2 R}{(R+r)^2} \qquad \frac{E^2}{4^2}$$

If *E* and *r* are fixed but *R* varies, what is the maximum value of the power?

10. (10 points) A curve $x = \sqrt{r^2 - y^2}$, $0 \le y \le r/2$ is rotated about y-axis. Please find the area of the resulting surface.

$$A = \int 2\pi r \, ds$$

$$-\int 2\pi r \, ds$$

$$-$$