Geometry of Surfaces - Exercises

Solutions to exercises marked with * are to be submitted online through the link on the Keats page for this module.

- **56.*** Describe the region of the unit sphere covered by the Gauss map of the paraboloid $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (x,y,x^2+y^2)$.
- **57.*** Let S^2 be the sphere of radius 1 centred at the origin. Prove that the equator, i.e., the intersection of S^2 with the plane given by z = 0, is a geodesic.
- **58.** A curve $\gamma(t)$ is an asymptotic curve in a surface if $\dot{\gamma}(t)$ is an asymptotic direction for any t. Show that if a unit speed curve in a surface is an asymptotic curve and a geodesic, then it is (part of) a straight line.
- **59.** Let γ be a unit speed curve in \mathbb{R}^3 with nowhere vanishing curvature and consider the surface $\sigma(u, v) = \gamma(u) + v\mathbf{b}(u)$, where **b** is the binormal of γ . Prove that γ is a geodesic on the surface.
- **60.*** Let σ be a surface whose first fundamental form satisfies E=G=1 and F=0. What are the geodesics on the surface?
- **61.** Let $\sigma:(0,1)\times(0,1)\to\mathbb{R}^3$ be a surface patch such that the first fundamental form is $E(u,v)=G(u,v)=\frac{1}{v^2}$ and F(u,v)=0. Show that the curves $\gamma(t)=\sigma(c,e^t)$ with $c\in(0,1)$ are unit speed geodesics.