Review

- Logistics
 - MidTerm Date: Mar 6, 2020
 - Carmen?
 - Piazza?
 - Anonymous Feedback Form?
- What is AI
 - Chap 1 in R & N

Agent

• Agent is anything that perceives its environment through sensors and acts upon that environment through effectors.

Agent

- Agent is anything that perceives its environment through sensors and acts upon that environment through effectors.
- Humans
 - Sensors: eyes, ears, etc.
 - Effectors: hands, legs, mouth, etc.

Agent

- Agent is anything that perceives its environment through sensors and acts upon that environment through effectors.
- Humans
 - Sensors: eyes, ears, etc.
 - Effectors: hands, legs, mouth, etc.
- Robots
 - Sensors: cameras, microphones, etc.
 - Effectors: various motors

- Percept
 - Agent's perceptual inputs at any given instant

- Percept
 - Agent's perceptual inputs at any given instant
- Percept "sequence"
 - Complete history of everything agent has perceived

- Percept
 - Agent's perceptual inputs at any given instant
- Percept "sequence"
 - Complete history of everything agent has perceived
- Agent's choice of action can depend on entire percept sequence

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B,Clean]	Left
[B,Dirty]	Suck

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B,Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B,Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

Agent Function and Program

• Agent function

Agent program

Agent Function and Program

- Agent function
 - Specifying which action to take in response to any given percept sequence
 - Maps any given percept sequence to an action
 - Abstract mathematical description

Agent Function and Program

- Agent function
 - Specifying which action to take in response to any given percept sequence
 - Maps any given percept sequence to an action
 - Abstract mathematical description
- Agent program
 - Implements the agent function for an agent
 - Runs on the agent architecture

Mapping of Percepts to Actions

- Table of actions in response to each possible percept sequence
 - Simple table representation can be huge
 - Takes too long to build the table

Mapping of Percepts to Actions

- Table of actions in response to each possible percept sequence
 - Simple table representation can be huge
 - Takes too long to build the table
- Define a specification of the mapping
 - Example: sqrt()
 - enumerate of all possible mappings
 - use Newton's method

Good Behavior: The Rational Agent

- A rational agent is one that does the right thing (to be most successful)
 - e.g., every entry in the function table is filled out correctly

Good Behavior: The Rational Agent

- A rational agent is one that does the right thing (to be most successful)
 - e.g., every entry in the function table is filled out correctly
- What is the rational action for a particular circumstance?
 - Whichever action that will cause the agent to be most successful
 - Given what you have seen/know

Good Behavior: The Rational Agent

- A rational agent is one that does the right thing (to be most successful)
 - e.g., every entry in the function table is filled out correctly
- What is the rational action for a particular circumstance?
 - Whichever action that will cause the agent to be most successful
 - Given what you have seen/know
 - Need a way to measure success: performance measure

Performance Measure

- Performance measure
 - A way to evaluate the agent's success
 - Embodies the criterion for success of an agent's behavior
 - Specifies numerical value for any environment history toward the goals

Performance Measure

- Performance measure
 - A way to evaluate the agent's success
 - Embodies the criterion for success of an agent's behavior
 - Specifies numerical value for any environment history toward the goals
- Performance measures for vacuum cleaner
 - Amount of dirt cleaned up in shift
 - BUG: Could maximize by cleaning-up, dumping, cleaning-up, etc!
 - Amount of electricity consumed
 - Amount of noise generated

Performance Measure

- Performance measure
 - A way to evaluate the agent's success
 - Embodies the criterion for success of an agent's behavior
 - Specifies numerical value for any environment history toward the goals
- Performance measures for vacuum cleaner
 - Amount of dirt cleaned up in shift
 - BUG: Could maximize by cleaning-up, dumping, cleaning-up, etc!
 - Amount of electricity consumed
 - Amount of noise generated
- When to evaluate is also important
 - Timespan (shift, day, month, etc.)

Rationality Depends on...

- The performance measure that defines degree of success
- Everything the agent has perceived so far
 - The percept sequence
- What the agent knows about the environment
- The actions that the agent can perform

Rationality Depends on...

- The performance measure that defines degree of success
- Everything the agent has perceived so far
 - The percept sequence
- What the agent knows about the environment
- The actions that the agent can perform

This leads to...

Ideal Rational Agent

- For each possible percept sequence,
 - do whatever action is expected
 - maximize its performance measure
 - using evidence provided by the percept sequence and any built-in knowledge

Ideal Rational Agent

- For each possible percept sequence,
 - do whatever action is expected
 - maximize its performance measure
 - using evidence provided by the percept sequence and any built-in knowledge
 - -Does actions in correct order

Rationality

- Rationality ≠ omniscience
 - Omniscient agent knows actual outcome of its actions and can act accordingly
 - Impossible in reality (though available in simulation)

Rationality

- Rationality ≠ omniscience
 - Omniscient agent knows actual outcome of its actions and can act accordingly
 - Impossible in reality (though available in simulation)
- Rationality is concerned with *expected* success given what has been perceived

Rationality

- Rationality ≠ omniscience
 - Omniscient agent knows actual outcome of its actions and can act accordingly
 - Impossible in reality (though available in simulation)
- Rationality is concerned with *expected* success given what has been perceived
 - Considered safe crossing street, but then hit from above...
 - Can "explore" to gather more information

Autonomy

• A rational agent should be autonomous

Autonomy

- A rational agent should be autonomous
- Autonomous behavior
 - Behavior is determined by its own experience

Autonomy

- A rational agent should be autonomous
- Autonomous behavior
 - Behavior is determined by its own experience
- Non-autonomous behavior
 - If <u>no use of percepts</u> (use only built-in knowledge), then system has <u>no autonomy</u>
 - A clock

Nature of Environments

- Must specify the setting for intelligent agent design
- Task environments
 - The "problems" to which rational agents are the "solutions"
- Multiple flavors of task environments
 - Directly affects the design of the agent
- PEAS description
 (P)erformance Measure

 - (E)nvironment
 - (A)cutators
 - (S)ensors

- Consider an "automated taxi driver"
 - Performance Measure?

- Consider an "automated taxi driver"
 - Performance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits

- Consider an "automated taxi driver"
 - Performance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits
 - Environment?

- Consider an "automated taxi driver"
 - Performance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits
 - Environment?
 - Roads, other traffic, pedestrians, weather, customers

- Consider an "automated taxi driver"
 - Performance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits
 - Environment?
 - Roads, other traffic, pedestrians, weather, customers
 - Actuators?

- Consider an "automated taxi driver"
 - Performance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits
 - Environment?
 - Roads, other traffic, pedestrians, weather, customers
 - Actuators?
 - Steering, accelerator, brake, signal, horn, speak, display

- Consider an "automated taxi driver"
 - Performance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits
 - Environment?
 - Roads, other traffic, pedestrians, weather, customers
 - Actuators?
 - Steering, accelerator, brake, signal, horn, speak, display
 - Sensors?

- Consider an "automated taxi driver"
 - Performance Measure?
 - Safe, fast, obey laws, reach destination, comfortable trip, maximize profits
 - Environment?
 - Roads, other traffic, pedestrians, weather, customers
 - Actuators?
 - Steering, accelerator, brake, signal, horn, speak, display
 - Sensors?
 - Cameras, microphone, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard

Agent Type	Perf. Measure	Environment	Actuators	Sensors
Medical diagnosis system				
Part-picking robot				
Interactive English tutor				

Agent Type	Perf. Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, minimize costs/lawsuits	Patient, hospital, staff	Display questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answers
Part-picking robot				
Interactive English tutor				

Agent Type	Perf. Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, minimize costs/lawsuits	Patient, hospital, staff	Display questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answers
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts, bins	Jointed arm and hand	Camera, joint angle sensors
Interactive English tutor				

Agent Type	Perf. Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, minimize costs/lawsuits	Patient, hospital, staff	Display questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answers
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts, bins	Jointed arm and hand	Camera, joint angle sensors
Interactive English tutor	Maximize student's score on test	Set of students, testing agency	Display exercises, suggestions, corrections	Keyboard entry/ Microphone

Quiz-1

- Fully observable vs. partially observable
 - If sensors give access to complete state of environment

- Fully observable vs. partially observable
 - If sensors give access to complete state of environment
- Deterministic vs. stochastic
 - If next state of environment is completely determined by current state and the action executed by the agent (Can't predict environment in stochastic)

- Fully observable vs. partially observable
 - If sensors give access to complete state of environment
- Deterministic vs. stochastic
 - If next state of environment is completely determined by current state and the action executed by the agent (Can't predict environment in stochastic)
- Episodic vs. sequential
 - Experience divided into atomic episodes (perceiving and acting)
 - Next episode does not depend on previous episodes

- Fully observable vs. partially observable
 - If sensors give access to complete state of environment
- Deterministic vs. stochastic
 - If next state of environment is completely determined by current state and the action executed by the agent (Can't predict environment in stochastic)
- Episodic vs. sequential
 - Experience divided into atomic episodes (perceiving and acting)
 - Next episode does not depend on previous episodes
- Static vs. dynamic
 - Environment not change while agent is "thinking"

- Fully observable vs. partially observable
 - If sensors give access to complete state of environment
- Deterministic vs. stochastic
 - If next state of environment is completely determined by current state and the action executed by the agent (Can't predict environment in stochastic)
- Episodic vs. sequential
 - Experience divided into atomic episodes (perceiving and acting)
 - Next episode does not depend on previous episodes
- Static vs. dynamic
 - Environment not change while agent is "thinking"
- Discrete vs. continuous
 - Distinct, clearly defined percepts and actions (chess)

- Fully observable vs. partially observable
 - If sensors give access to complete state of environment
- Deterministic vs. stochastic
 - If next state of environment is completely determined by current state and the action executed by the agent (Can't predict environment in stochastic)
- Episodic vs. sequential
 - Experience divided into atomic episodes (perceiving and acting)
 - Next episode does not depend on previous episodes
- Static vs. dynamic
 - Environment not change while agent is "thinking"
- Discrete vs. continuous
 - Distinct, clearly defined percepts and actions (chess)
- Single Agent vs. multi-agent
 - Solving a puzzle is single agent
 - Chess is competitive multi-agent environment

	Crossword puzzle	Taxi Driving
Observability		
Deterministic vs Stochastic		
Episodic vs Sequential		
Static vs Dynamic		
Discrete vs Continuous		
Single vs Multi Agent		

	Crossword puzzle	Taxi Driving
Observability	Fully	
Deterministic vs Stochastic	Deterministic	
Episodic vs Sequential	Sequential	
Static vs Dynamic	Static	
Discrete vs Continuous	Discrete	
Single vs Multi Agent	Single	

	Crossword puzzle	Taxi Driving
Observability	Fully	Partially
Deterministic vs Stochastic	Deterministic	Stochastic
Episodic vs Sequential	Sequential	Sequential
Static vs Dynamic	Static	Dynamic
Discrete vs Continuous	Discrete	Continuous
Single vs Multi Agent	Single	Multi

	Vaccum Cleaner
Observability	
Deterministic vs Stochastic	; ;
Episodic vs Sequential	
Static vs Dynamic	
Discrete vs Continuous	
Single vs Multi Agent	

	Vaccum Cleaner
Observability	Partially
Deterministic vs Stochastic	; ;
Episodic vs Sequential	
Static vs Dynamic	
Discrete vs Continuous	
Single vs Multi Agent	

	Vaccum Cleaner
Observability	Partially
Deterministic vs Stochastic	Deterministic
Episodic vs Sequential	
Static vs Dynamic	
Discrete vs Continuous	
Single vs Multi Agent	

	Vaccum Cleaner
Observability	Partially
Deterministic vs Stochastic	Deterministic
Episodic vs Sequential	Sqential
Static vs Dynamic	
Discrete vs Continuous	
Single vs Multi Agent	

	Vaccum Cleaner
Observability	Partially
Deterministic vs Stochastic	Deterministic
Episodic vs Sequential	Sqential
Static vs Dynamic	Static/ Dynamic
Discrete vs Continuous	
Single vs Multi Agent	

	Vaccum Cleaner
Observability	Partially
Deterministic vs Stochastic	Deterministic
Episodic vs Sequential	Sqential
Static vs Dynamic	Static/ Dynamic
Discrete vs Continuous	Discrete
Single vs Multi Agent	

	Vaccum Cleaner
Observability	Partially
Deterministic vs Stochastic	Deterministic
Episodic vs Sequential	Sqential
Static vs Dynamic	Static/ Dynamic
Discrete vs Continuous	Discrete
Single vs Multi Agent	Single

QuestionS