1. This circuit takes 4-bit binary input and has a 7-bit binary output. From the basic analysis, it seems like it has a 7-segment display. This circuit is known as **BCD** (*Binary Coded Decimals*) to 7-segment display. It lights up each LED segment whenever the output is '1' and it gives out the decimal value. BCD: 4-bits to 16-bits ($2^4 = 16$), used for the 10 digits 0 to 9 to be displayed.

Display	D	С	В	A	a	b	С	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	1
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

Example: Decimal value 0 has output abcdef 'HIGH'.

HIGH = LED ONE

LOW = LED OFF

Although the output is recorded in binary, the 7-segment display shows decimal value.

- 2. Circuit A is a JK Flip Flop. It functions like a SR Flip Flop except when all the inputs are HIGH. SR Flip Flop is best expressed using **OR gates** whereas JK Flip Flop is best described using **AND gate**
- DFF has one input (data) and 2 possible combo

When a positive rising edge, the value remembered by the FF becomes the value of the D input

• JKFF has 2 inputs and 4 possible combo

When positive rising edge:

- the value remembered by the FF toggles when J = 1 & K = 1.
- the value remains the same when J & K = 0.
- the value equals to K or J when J=1 & K=0 or K=1 & J=0
- TFF functions with JKFF with same inputs

When the positive rising edge, the value remembered by FF either toggles or remains the same depending on whether the T inputs is 1 or 0

Truth Table for SR Flip Flop

Truth table for JK Flip Flop

clk	S	R	Output				
0	0	0	Memory				
1	0	0	Memory				
1	1	0	Q = 1	$\bar{Q} = 0$			
1	0	1	Q = 0	$\bar{Q}=1$			
1	1	1	Not in use				

clk	J	K	Output					
0	0	0	Memory					
1	0	0	Memory					
1	1	0	Q = 1	$\bar{Q} = 0$				
1	0	1	Q = 0	$\bar{Q}=1$				
1	1	1	Toggles					

Notice the first 4 inputs to be similar! The difference occurs when all inputs are HIGH. JK Flip Flop, toggles its output

Truth Table for T Flip Flop

clk	T	Output
		1

Display 0 d X	X_1	X_2	X_3	X_4	a	b	С	d	e	f	g
0 0 X	Memory	0	0	0	1	1	1	1	1	1	0
1 1 0	Memory	0	0	1	0	1	1	0	0	0	0
1 2 1	Toggles	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	1	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	1
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
A	1	0	1	0	1	1	1	0	1	1	1
b	1	0	1	1	0	0	1	1	1	1	1
С	1	1	0	0	1	0	0	1	1	1	0
d	1	1	0	1	0	1	1	1	1	0	1
Е	1	1	1	0	1	0	0	1	1	1	1
F	1	1	1	1	1	0	0	1	1	1	1

TFF uses a **XOR** gate

HW2

It is implemented using a JKFF – or at least it functions similarly as it. The output will depend on previous states.

3. Truth table for

the 7 segment display

$$A = X_1 \overline{X_2 X_3} + \overline{X_1} X_2 X_4 + \overline{X_2 X_4} + \overline{X_1} X_3 + X_1 \overline{X_4}$$

$$C = \overline{X_1}\overline{X_3} + \overline{X_1}X_4 + \overline{X_3}X_4 + \overline{X_1}X_2 + X_1\overline{X_2}$$

$$G = \overline{X_1}X_2 + X_1\overline{X_2} + X_2X_4 + X_3$$

This was the closest PLA Design I could find that is an replica of each Boolean expression.