A Label Dependence-aware Sequence Generation Model for Multi-level Implicit Discourse Relation Recognition

Changxing Wu¹, Liuwen Cao¹, Yubin Ge², Yang Liu³, Min Zhang⁴, Jinsong Su⁵*

1.East China Jiaotong University 2. Illinois University

3. Tsinghua University 4. Soochow University 5. Xiamen University

Background

Most existing methods train multiple models to predict multi-level labels independently, while ignoring the dependence between hierarchically structured labels.

Main Contribution

- We consider multi-level IDRR as a label sequence generation task. To our knowledge, our work is the first attempt to deal with this task in the way of sequence generation.
- We propose a label dependence-aware sequence generation model. Both its encoder and decoder, combined with the mutual learning enhanced training method, can fully leverage the label dependence for multi-level IDRR.

LDSGM Model

Label Attentive Encoder

◆ Local and global representations

$$v_{cls}, v_1, ..., v_i, ..., v_{N_w} = \text{Transformers}(\text{arg}_1, \text{arg}_2)$$

• Use GCN to obtain better label embeddings

$$e_{j}^{l} = \sigma(\sum_{k=1}^{N_{C}} A_{jk} W^{l} e_{k}^{l-1} + b^{l})$$

 Label attention mechanisms to extract level-specific contexts

$$c_m = V\alpha$$

 $\alpha = \text{softmax}(\text{max-pooling}(V^T W^m E^m))$

Label Sequence Decoder

Our decoder is an RNN-based one that sequentially generates the predicted labels in a top-down manner, that is, the top-level label, the second-level label, and so on. By doing so, the easily-predicted higher-level labels can be used to guide the label prediction at the current level.

Mutual Learning Enhanced Training

our decoder generates labels in a top-down manner, which can only exploit the dependence from the predicted higher-level labels, leaving that from lower levels unexploited. The basic intuition behind our auxiliary decoder is that annotators usually insert a suitable connective to help the higher-level

Mutual Learning

label annotations of a given instance

$$L(D; \theta_{e}, \theta_{d}) = \sum_{(x,y) \in D} \sum_{m=1}^{M} \{-E_{y_{m}}[\log \overset{\mathbf{r}}{\mathbf{y}_{m}}] + \lambda * \mathrm{KL}(\overset{\mathbf{s}}{\mathbf{y}_{m}} \mathrm{P}\overset{\mathbf{r}}{\mathbf{y}_{m}})\}$$

$$L(D; \theta_{e}; \theta_{ad}) = \sum_{(x,y) \in D} \sum_{m=1}^{M} \{-E_{y_{m}}[\log \overset{\mathbf{s}}{\mathbf{y}_{m}}] + \lambda * \mathrm{KL}(\overset{\mathbf{r}}{\mathbf{y}_{m}} \mathrm{P}\overset{\mathbf{s}}{\mathbf{y}_{m}})\}$$

$$Decoder$$

$$L(D; \theta_{e}; \theta_{ad}) = \sum_{(x,y) \in D} \sum_{m=1}^{M} \{-E_{y_{m}}[\log \overset{\mathbf{s}}{\mathbf{y}_{m}}] + \lambda * \mathrm{KL}(\overset{\mathbf{s}}{\mathbf{y}_{m}} \mathrm{P}\overset{\mathbf{s}}{\mathbf{y}_{m}})\}$$

$$Decoder$$

$$v_{cls}$$

$$v_{cls}$$

$$v_{cls}$$

$$v_{cls}$$

$$v_{cls}$$

$$v_{cls}$$

Result

Model	Embeddings	Top-level		Second-level		Connective	
		F_1	Acc	F_1	Acc	F_1	Acc
IDRR-C&E (Dai and Huang 2019)	GloVe	50.49	58.32	32.13	46.03	-	-
IDRR-Con (Shi and Demberg 2019a)	word2vec	46.40	61.42	-	47.83	_	_
KANN (Guo et al. 2020)	GloVe	47.90	57.25	-	_	-	-
IDRR-C&E (Dai and Huang 2019)	ELMo	52.89	59.66	33.41	48.23	-	-
MTL-MLoss (Nguyen et al. 2019)	ELMo	53.00	-	-	49.95	_	-
BERT-FT (Kishimoto, Murawaki, and Kurohashi 2020)	BERT	58.48	65.26	-	54.32	_	-
HierMTN-CRF (Wu et al. 2020)	BERT	55.72	65.26	33.91	52.34	10.37	30.00
BMGF-RoBERTa (Liu et al. 2020)	RoBERTa	63.39	69.06	-	58.13	_	_
MTL-MLoss-RoBERTa	RoBERTa	61.89	68.42	38.10	57.72	7.75	29.57
HierMTN-CRF-RoBERTa	RoBERTa	62.02	<u>70.05</u>	<u>38.28</u>	<u>58.61</u>	<u>10.45</u>	<u>31.30</u>
OurEncoder+OurDecoder	RoBERTa	62.93	70.66	39.71	59.59	10.67	31.54
LDSGM	RoBERTa	63.73	71.18	40.49	60.33	10.68	32.20

Experimental results on PDTB.

Analysis

Unlike most previous studies predicting labels at different levels independently, our LDSGM model converts multi-level IDRR into a label sequence generation task, which intuitively is able to alleviate the inconsistency among label predictions at different levels

Model	Top-Sec	Top-Sec-Con
HierMTN-CRF	46.29	19.15
BMGF-RoBERTa	47.06	21.37
OurEncoder+OurDecoder	57.86	25.31
LDSGM	58.61	26.85

Comparison with recent models on the consistency among multi-level label predictions.

Ablation Study

LA means the level-specific label attention mechanism, PP represents previous predictions, and ML means the mutual learning enhanced training. Softmax+MultiTask denotes that we stack softmax layers on the top of our encoder to individually predict labels at different levels, and then train them based on multi-task learning.

Model	Top-level		Second-level		Connective	
	F_1	Acc	F_1	Acc	F_1	Acc
LDSGM	63.73	71.18	40.49	60.33	10.68	32.20
w/o GCN	63.47	70.77	39.32	59.54	9.81	30.94
w/o LA	62.84	70.19	39.15	59.09	10.64	31.32
w/o PP	63.68	70.78	39.27	59.62	10.08	30.86
w/o ML (aka. OurEncoder+OurDecoder)	62.93	70.66	39.71	59.59	10.67	31.54
OurEncoder+Softmax+MultiTask	62.82	70.25	38.28	58.37	9.60	30.82
OurEncoder+CRF	62.82	70.53	38.82	59.09	10.41	31.24
OurEncoder+Ensemble(OurDecoder, AuxDecoder)	63.04	70.80	39.91	59.61	8.61	29.95

Analysis

The performance of the labels which have few annotated instances is still poor. In the future, we will pay more attention to the minority labels

Second-level Label	BMGF-RoBERTa	LDSGM
Temp.Asynchronous	56.18	56.47
Temp.Synchrony	0.0	0.0
Cont.Cause	59.60	64.36
Cont.Pragmatic cause	0.0	0.0
Comp.Contrast	59.75	63.52
Comp. Concession	0.0	0.0
Expa.Conjunction	60.17	57.91
Expa.Instantiation	67.96	72.60
Expa.Restatement	53.83	58.06
Expa.Alternative	60.00	63.46
Expa.List	0.0	8.98

Label-wise F1 scores for the second-level labels.

