Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 21

1. Пусть
$$z = \frac{3\sqrt{3}}{2} - \frac{3i}{2}$$
. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{2\sqrt{3} - 2i}$ имеет аргумент $-\frac{7\pi}{12}$.

2. Решить систему уравнений:

$$\begin{cases} x(-10-8i) + y(12-6i) = 24 + 176i \\ x(-2-9i) + y(-3-7i) = -32-94i \end{cases}$$

- 3. Найти корни многочлена $-2x^6 + 4x^5 + 30x^4 + 160x^3 958x^2 1764x + 7650$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -3 + 4i$, $x_2 = 4 + i$, $x_3 = -3$.
- 4. Даны 3 комплексных числа: -14-7i, 3+i, -8-i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=3i, z_2=-\frac{3\sqrt{3}}{2}+\frac{3i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4-i| < 2\\ |arg(z-1-6i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (2, 0, -1), b = (-4, -4, 1), c = (-6, 5, 4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-13,0,14) и плоскость P:-30x-18y+12z+126=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(10,11,5), $M_1(-1,4,-1)$, $M_2(-7,-2,-1)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -4x - 9y + 12z + 217 = 0 \\ 14x - 13y + 19z + 246 = 0 \end{cases} \qquad L_2: \begin{cases} -18x + 4y - 7z - 1585 = 0 \\ 15x - 2y + 15z + 1603 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .