```
pip install ydata-profiling
         requirement aireauy satistieu: tqum<5,>=4.46.2 in /usr/iocai/iib/python5.10/uist-packages (from yuar
        Requirement already satisfied: seaborn<0.14,>=0.10.1 in /usr/local/lib/python3.10/dist-packages (frc ^
         Collecting multimethod<2,>=1.4 (from ydata-profiling)
            Downloading multimethod-1.12-py3-none-any.whl.metadata (9.6 kB)
         Requirement already satisfied: statsmodels<1,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (fr
         Requirement already satisfied: typeguard<5,>=3 in /usr/local/lib/python3.10/dist-packages (from ydat
         Collecting imagehash==4.3.1 (from ydata-profiling)
            Downloading ImageHash-4.3.1-py2.py3-none-any.whl.metadata (8.0 kB)
         Requirement already satisfied: wordcloud>=1.9.3 in /usr/local/lib/python3.10/dist-packages (from yda
         Collecting dacite>=1.8 (from ydata-profiling)
             Downloading dacite-1.8.1-py3-none-any.whl.metadata (15 kB)
         Requirement already satisfied: numba<1,>=0.56.0 in /usr/local/lib/python3.10/dist-packages (from ydata)
         Collecting PyWavelets (from imagehash==4.3.1->ydata-profiling)
            Downloading pywavelets-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
         Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from imagehash==4
         Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jing
         Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from ma1
         Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplot
         Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from material form the satisfied of the satisfied
         Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from material from the control of the control of
         Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from mat
         Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from mat
         Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from
         Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib/python3.10/dist-packages
         Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas
         Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from panda
         Requirement already satisfied: joblib>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from phik
         Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (fr
         Requirement already satisfied: pydantic-core==2.23.4 in /usr/local/lib/python3.10/dist-packages (from
         Requirement already satisfied: typing-extensions>=4.6.1 in /usr/local/lib/python3.10/dist-packages
         Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages
         Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from request
         Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from r
         Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from r
         Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.10/dist-packages (from statsmc
         Requirement already satisfied: attrs>=19.3.0 in /usr/local/lib/python3.10/dist-packages (from vision
         Requirement already satisfied: networkx>=2.4 in /usr/local/lib/python3.10/dist-packages (from visior
         Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-date
         Downloading ydata profiling-4.12.0-py2.py3-none-any.whl (390 kB)
                                                                                       - 390.6/390.6 kB 7.4 MB/s eta 0:00:00
         Downloading ImageHash-4.3.1-py2.py3-none-any.whl (296 kB)
                                                                                       - 296.5/296.5 kB 13.8 MB/s eta 0:00:00
         Downloading dacite-1.8.1-py3-none-any.whl (14 kB)
         Downloading multimethod-1.12-py3-none-any.whl (10 kB)
         Downloading phik-0.12.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (686 kB)
                                                                                        · 686.1/686.1 kB 18.6 MB/s eta 0:00:00
         Downloading visions-0.7.6-py3-none-any.whl (104 kB)
                                                                                       - 104.8/104.8 kB 5.7 MB/s eta 0:00:00
         Downloading pywavelets-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)
                                                                                       - 4.5/4.5 MB 33.2 MB/s eta 0:00:00
         Building wheels for collected packages: htmlmin
            Building wheel for htmlmin (setup.py) ... done
            Created wheel for htmlmin: filename=htmlmin-0.1.12-py3-none-any.whl size=27081 sha256=7e1740fa7291
            Stored in directory: /root/.cache/pip/wheels/dd/91/29/a79cecb328d01739e64017b6fb9a1ab9d8cb18530986
         Successfully built htmlmin
         Installing collected packages: htmlmin, PyWavelets, multimethod, dacite, imagehash, visions, phik, y
         Successfully installed PyWavelets-1.7.0 dacite-1.8.1 htmlmin-0.1.12 imagehash-4.3.1 multimethod-1.12
```

```
import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from ydata_profiling import ProfileReport
```

```
from google.colab import drive
```

→▼

Mounted at /content/drive

Project Overview

The objective of this project is to develop a predictive model to estimate the likelihood of diabetes based on health-related features in the dataset. The process includes the following steps:

- 1. Data Exploration: Analyze the dataset to understand its structure, key features, and the target variable.
- 2. **Data Preprocessing**: Prepare the data by cleaning it, handling missing values and outliers, and applying normalization techniques.
- 3. **Feature Engineering**: Identify and select the most significant features that contribute to accurate predictions.
- 4. Model Development: Utilize Python libraries like Scikit-Learn to build machine learning models.
- 5. **Model Evaluation**: Measure the model's performance using metrics such as accuracy, precision, recall, and F1 score.

Data Overview

Import the Diabetes dataset from the specified CSV file using Pandas
df1 = pd.read_csv('/content/drive/MyDrive/diabetes_012_health_indicators_BRFSS2015.csv')
df1

3MI	Smoker	Stroke	${\tt HeartDiseaseorAttack}$	PhysActiv:
0.0	1.0	0.0	0.0	
5.0	1.0	0.0	0.0	
8.0	0.0	0.0	0.0	
7.0	0.0	0.0	0.0	
4.0	0.0	0.0	0.0	
5.0	0.0	0.0	0.0	
8.0	0.0	0.0	0.0	
8.0	0.0	0.0	0.0	
3.0	0.0	0.0	0.0	
5.0	0.0	0.0	1.0	

Basic Metrics

Checking Shape of data
df1.shape

∑• (253680, 22)

Columns in data
df1.columns

```
Index(['Diabetes_012', 'HighBP', 'HighChol', 'CholCheck', 'BMI', 'Smoker',
                                 'Stroke', 'HeartDiseaseorAttack', 'PhysActivity', 'Fruits', 'Veggies',
                                'HvyAlcoholConsump', 'AnyHealthcare', 'NoDocbcCost', 'GenHlth', 'MentHlth', 'PhysHlth', 'DiffWalk', 'Sex', 'Age', 'Education',
                             dtype='object')
# Overview of the dataset structure
df1.info()
 <<class 'pandas.core.frame.DataFrame'>
             RangeIndex: 253680 entries, 0 to 253679
             Data columns (total 22 columns):
              # Column
                                                         Non-Null Count Dtype
                       Diabetes_012 253680 non-null float64
HighBP 253680 non-null float64
               0
               1
                                                                           253680 non-null float64
253680 non-null float64
                        HighChol
               2
                        CholCheck
               3
               4 BMI
                                                                               253680 non-null float64
               5 Smoker 253680 non-null float64
6 Stroke 253680 non-null float64

        7
        HeartDiseaseorAttack
        253680 non-null
        float64

        8
        PhysActivity
        253680 non-null
        float64

        9
        Fruits
        253680 non-null
        float64

        10
        Veggies
        253680 non-null
        float64

        11
        HvyAlcoholConsump
        253680 non-null
        float64

        12
        AnyHealthcare
        253680 non-null
        float64

        13
        NoDocbcCost
        253680 non-null
        float64

        14
        GenHlth
        253680 non-null
        float64

        15
        MentHlth
        253680 non-null
        float64

        16
        PhysHlth
        253680 non-null
        float64

        17
        DiffWalk
        253680 non-null
        float64

        18
        Sex
        253680 non-null
        float64

        19
        Age
        253680 non-null
        float64

        20
        Education
        253680 non-null
        float64

        21
        Income
        253680 non-null
        float64

               7 HeartDiseaseorAttack 253680 non-null float64
```

dtypes: float64(22) memory usage: 42.6 MB

Data Cleaning

21 Income

Check for missing or null values in the diabetes dataset and count them for each column df1.isna().sum()

253680 non-null float64

	0
Diabetes_012	0
HighBP	0
HighChol	0
CholCheck	0
ВМІ	0
Smoker	0
Stroke	0
HeartDiseaseorAttack	0
PhysActivity	0
Fruits	0
Veggies	0
HvyAlcoholConsump	0
AnyHealthcare	0
NoDocbcCost	0
GenHlth	0
MentHIth	0
PhysHlth	0
DiffWalk	0
Sex	0
Age	0
Education	0
Income	0

dtype: int64

df1.groupby('Diabetes_012').apply(lambda x: x.count())

Warning: DataFrameGroupBy.apply operated on the grouping \cdot c.count())

Cho	1Check	BMI	Smoker	Stroke	HeartDiseaseorAttack	F
	213703	213703	213703	213703	213703	
	4631	4631	4631	4631	4631	
	35346	35346	35346	35346	35346	
4						

Descriptive Statistics

Summary statistics for numerical columns
df1.describe(include = 'all').T

	count	mean	std	min	25%	50%	75%	max	
Diabetes_012	253680.0	0.296921	0.698160	0.0	0.0	0.0	0.0	2.0	11.
HighBP	253680.0	0.429001	0.494934	0.0	0.0	0.0	1.0	1.0	
HighChol	253680.0	0.424121	0.494210	0.0	0.0	0.0	1.0	1.0	
CholCheck	253680.0	0.962670	0.189571	0.0	1.0	1.0	1.0	1.0	
ВМІ	253680.0	28.382364	6.608694	12.0	24.0	27.0	31.0	98.0	
Smoker	253680.0	0.443169	0.496761	0.0	0.0	0.0	1.0	1.0	
Stroke	253680.0	0.040571	0.197294	0.0	0.0	0.0	0.0	1.0	
HeartDiseaseorAttack	253680.0	0.094186	0.292087	0.0	0.0	0.0	0.0	1.0	
PhysActivity	253680.0	0.756544	0.429169	0.0	1.0	1.0	1.0	1.0	
Fruits	253680.0	0.634256	0.481639	0.0	0.0	1.0	1.0	1.0	
Veggies	253680.0	0.811420	0.391175	0.0	1.0	1.0	1.0	1.0	
HvyAlcoholConsump	253680.0	0.056197	0.230302	0.0	0.0	0.0	0.0	1.0	
AnyHealthcare	253680.0	0.951053	0.215759	0.0	1.0	1.0	1.0	1.0	
NoDocbcCost	253680.0	0.084177	0.277654	0.0	0.0	0.0	0.0	1.0	
GenHlth	253680.0	2.511392	1.068477	1.0	2.0	2.0	3.0	5.0	
MentHIth	253680.0	3.184772	7.412847	0.0	0.0	0.0	2.0	30.0	
PhysHlth	253680.0	4.242081	8.717951	0.0	0.0	0.0	3.0	30.0	
DiffWalk	253680.0	0.168224	0.374066	0.0	0.0	0.0	0.0	1.0	
Sex	253680.0	0.440342	0.496429	0.0	0.0	0.0	1.0	1.0	
Age	253680.0	8.032119	3.054220	1.0	6.0	8.0	10.0	13.0	
Education	253680.0	5.050434	0.985774	1.0	4.0	5.0	6.0	6.0	
Income	253680.0	6.053875	2.071148	1.0	5.0	7.0	8.0	8.0	

```
# Select numeric columns from the dataset
numeric_cols = df1.select_dtypes(include=['number']).columns
print("Numeric columns in the dataset:")
print(numeric_cols)
```

Variance measures how much the data is spread out from the mean.
variance_values = df1[numeric_cols].var()
print("\nVariance for each numeric column:")
variance_values

Variance for each numeric column:

	0
Diabetes_012	0.487427
HighBP	0.244960
HighChol	0.244243
CholCheck	0.035937
ВМІ	43.674839
Smoker	0.246771
Stroke	0.038925
HeartDiseaseorAttack	0.085315
PhysActivity	0.184186
Fruits	0.231976
Veggies	0.153018
HvyAlcoholConsump	0.053039
AnyHealthcare	0.046552
NoDocbcCost	0.077091
GenHlth	1.141644
MentHIth	54.950296
PhysHlth	76.002675
DiffWalk	0.139925
Sex	0.246442
Age	9.328262
Education	0.971751
Income	4.289652

dtype: float64

[#] Covariance measures how two variables move together. Positive covariance indicates that the variables ter
covariance_matrix = df1[numeric_cols].cov()
print("\nCovariance matrix:")
covariance_matrix

Covariance matrix:

	Diabetes_012	HighBP	HighChol	CholCheck	BMI	Smoker	Stroke	HeartD
Diabetes_012	0.487427	0.093848	0.072142	0.008940	1.035270	0.021820	0.014763	
HighBP	0.093848	0.244960	0.072940	0.009243	0.699142	0.023847	0.012653	
HighChol	0.072142	0.072940	0.244243	0.008024	0.348563	0.022414	0.009031	
CholCheck	0.008940	0.009243	0.008024	0.035937	0.043216	-0.000935	0.000904	
ВМІ	1.035270	0.699142	0.348563	0.043216	43.674839	0.045319	0.026276	
Smoker	0.021820	0.023847	0.022414	-0.000935	0.045319	0.246771	0.005995	
Stroke	0.014763	0.012653	0.009031	0.000904	0.026276	0.005995	0.038925	
HeartDiseaseorAttack	0.036762	0.030266	0.026094	0.002448	0.102122	0.016605	0.011698	
PhysActivity	-0.036539	-0.026608	-0.016554	0.000341	-0.417761	-0.018633	-0.005855	
Fruits	-0.014187	-0.009667	-0.009726	0.002178	-0.278571	-0.018582	-0.001272	
Veggies	-0.016105	-0.011862	-0.007708	0.000454	-0.160991	-0.005961	-0.003174	
HvyAlcoholConsump	-0.009307	-0.000453	-0.001314	-0.001036	-0.074176	0.011626	-0.000770	
AnyHealthcare	0.002321	0.004103	0.004503	0.004811	-0.026337	-0.002492	0.000374	
NoDocbcCost	0.006869	0.002385	0.001826	-0.003066	0.106804	0.006751	0.001907	
GenHlth	0.225720	0.158928	0.110060	0.009437	1.688945	0.086593	0.037511	
MentHith	0.380423	0.207130	0.227390	-0.011756	4.179280	0.339505	0.102627	
PhysHlth	1.072973	0.695598	0.524562	0.052513	6.979457	0.504356	0.256184	
DiffWalk	0.058562	0.041400	0.026745	0.002878	0.487193	0.022756	0.013031	
Sex	0.010758	0.012827	0.007656	-0.002081	0.140909	0.023098	0.000292	
Age	0.394537	0.520688	0.411044	0.052295	-0.739105	0.183039	0.076512	
Education	-0.089825	-0.068968	-0.034493	0.000282	-0.677084	-0.079308	-0.014783	
Income	-0.247963	-0.175530	-0.087475	0.005598	-1.369699	-0.127515	-0.052549	
22 rows × 22 columns								

Correlation measures the strength and direction of the relationship between two variables. It ranges from
correlation_table = df1[numeric_cols].corr()
print("\nCorrelation table:")

correlation_table

Correlation table:

	Diabetes_012	HighBP	HighChol	CholCheck	ВМІ	Smoker	Stroke	HeartD
Diabetes_012	1.000000	0.271596	0.209085	0.067546	0.224379	0.062914	0.107179	
HighBP	0.271596	1.000000	0.298199	0.098508	0.213748	0.096991	0.129575	
HighChol	0.209085	0.298199	1.000000	0.085642	0.106722	0.091299	0.092620	
CholCheck	0.067546	0.098508	0.085642	1.000000	0.034495	-0.009929	0.024158	
ВМІ	0.224379	0.213748	0.106722	0.034495	1.000000	0.013804	0.020153	
Smoker	0.062914	0.096991	0.091299	-0.009929	0.013804	1.000000	0.061173	
Stroke	0.107179	0.129575	0.092620	0.024158	0.020153	0.061173	1.000000	
HeartDiseaseorAttack	0.180272	0.209361	0.180765	0.044206	0.052904	0.114441	0.203002	
PhysActivity	-0.121947	-0.125267	-0.078046	0.004190	-0.147294	-0.087401	-0.069151	
Fruits	-0.042192	-0.040555	-0.040859	0.023849	-0.087518	-0.077666	-0.013389	
Veggies	-0.058972	-0.061266	-0.039874	0.006121	-0.062275	-0.030678	-0.041124	
HvyAlcoholConsump	-0.057882	-0.003972	-0.011543	-0.023730	-0.048736	0.101619	-0.016950	
AnyHealthcare	0.015410	0.038425	0.042230	0.117626	-0.018471	-0.023251	0.008776	
NoDocbcCost	0.035436	0.017358	0.013310	-0.058255	0.058206	0.048946	0.034804	
GenHlth	0.302587	0.300530	0.208426	0.046589	0.239185	0.163143	0.177942	
MentHIth	0.073507	0.056456	0.062069	-0.008366	0.085310	0.092196	0.070172	
PhysHlth	0.176287	0.161212	0.121751	0.031775	0.121141	0.116460	0.148944	
DiffWalk	0.224239	0.223618	0.144672	0.040585	0.197078	0.122463	0.176567	
Sex	0.031040	0.052207	0.031205	-0.022115	0.042950	0.093662	0.002978	
Age	0.185026	0.344452	0.272318	0.090321	-0.036618	0.120641	0.126974	
Education	-0.130517	-0.141358	-0.070802	0.001510	-0.103932	-0.161955	-0.076009	
Income	-0.171483	-0.171235	-0.085459	0.014259	-0.100069	-0.123937	-0.128599	
22 rows × 22 columns								

Mode is the value that appears most frequently in a dataset. mode_values = df1.mode().iloc[0] # Using iloc[0] to get the mode for each column print("Mode for each column:") $mode_values$

$\overline{\Rightarrow}$	Mode	for	each	column:

	0
Diabetes_012	0.0
HighBP	0.0
HighChol	0.0
CholCheck	1.0
ВМІ	27.0
Smoker	0.0
Stroke	0.0
HeartDiseaseorAttack	0.0
PhysActivity	1.0
Fruits	1.0
Veggies	1.0
HvyAlcoholConsump	0.0
AnyHealthcare	1.0
NoDocbcCost	0.0
GenHlth	2.0
MentHIth	0.0
PhysHlth	0.0
DiffWalk	0.0
Sex	0.0
Age	9.0
Education	6.0
Income	8.0

dtype: float64

Range is the difference between the maximum and minimum values in a dataset.
range_values = df1[numeric_cols].max() - df1[numeric_cols].min()
print("\nRange for each numeric column:")
range_values

Range for each numeric column:

Kange for each numers	0
Diabetes_012	2.0
HighBP	1.0
HighChol	1.0
CholCheck	1.0
ВМІ	86.0
Smoker	1.0
Stroke	1.0
HeartDiseaseorAttack	1.0
PhysActivity	1.0
Fruits	1.0
Veggies	1.0
HvyAlcoholConsump	1.0
AnyHealthcare	1.0
NoDocbcCost	1.0
GenHlth	4.0
MentHith	30.0
PhysHlth	30.0
DiffWalk	1.0
Sex	1.0
Age	12.0
Education	5.0
Income	7.0

dtype: float64

Range is the difference between the maximum and minimum values in a dataset.
range_values = df1[numeric_cols].max() - df1[numeric_cols].min()
print("\nRange for each numeric column:")
range_values

Range for each numeric column:

Mange for each numer.	ic corum
	0
Diabetes_012	2.0
HighBP	1.0
HighChol	1.0
CholCheck	1.0
ВМІ	86.0
Smoker	1.0
Stroke	1.0
HeartDiseaseorAttack	1.0
PhysActivity	1.0
Fruits	1.0
Veggies	1.0
HvyAlcoholConsump	1.0
AnyHealthcare	1.0
NoDocbcCost	1.0
GenHlth	4.0
MentHIth	30.0
PhysHlth	30.0
DiffWalk	1.0
Sex	1.0
Age	12.0
Education	5.0
Income	7.0

dtype: float64

```
# Convert any potential strings in numeric columns to NaN (if they exist)
df[numeric_cols] = df1[numeric_cols].apply(pd.to_numeric, errors='coerce')
Q1 = df1[numeric_cols].quantile(0.25)
Q3 = df1[numeric_cols].quantile(0.75)
IQR = Q3 - Q1
print("\nInterquartile Range (IQR) for each numeric column:")
IQR
```


Interquartile Range (IQR) for each numeric column:

(1QN) 0
0.0
1.0
1.0
0.0
7.0
1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
1.0
2.0
3.0
0.0
1.0
4.0
2.0
3.0

dtype: float64

Detecting outliers based on IQR
outliers = df1[((df1[numeric_cols] < (Q1 - 1.5 * IQR)) | (df1[numeric_cols] > (Q3 + 1.5 * IQR))).any(axis=1
print("Outliers:", outliers)

\rightarrow	Outliers:		Diabetes_012 H		HighBP	HighChol	nChol CholCheck		Smoker	Stroke	\
	0	(0.0	1.0	1.0	1.0	40.0	1.0	0.0		
	1	(0.0	0.0	0.0	0.0	25.0	1.0	0.0		
	2	(0.0	1.0	1.0	1.0	28.0	0.0	0.0		
	6	(0.0	1.0	0.0	1.0	30.0	1.0	0.0		
	7	(0.0	1.0	1.0	1.0	25.0	1.0	0.0		
	• • •						• • •				
	253675	(0.0	1.0	1.0	1.0	45.0	0.0	0.0		
	253676		2.0	1.0	1.0	1.0	18.0	0.0	0.0		
	253677	(0.0	0.0	0.0	1.0	28.0	0.0	0.0		
	253678	(0.0	1.0	0.0	1.0	23.0	0.0	0.0		
	253679	:	2.0	1.0	1.0	1.0	25.0	0.0	0.0		
		HeartDise	eartDiseaseorAttack		nysActivi	ity Fruits	s An	yHealth			
	0			0.0	. (0.0	·		1.0		
	1			0.0	1	1.0 0.6	·		0.0		
	2			0.0	6	0.0 1.6	·		1.0		
	6			0.0	6	0.0	·		1.0		
	7			0.0	1	1.0 0.0)		1.0		

5:37 PM					diabetes.ipyn	b - Col	ab	
• • •		• • •						
253675		0.0		0.0 1.	0		1.0	
253676		0.0		0.0 0.	0		1.0	
253677		0.0		1.0 1.	0		1.0	
253678		0.0		0.0 1.	0		1.0	
253679		1.0		1.0 1.	0		1.0	
	NoDocbcCost	GenHlth	MentHlth	PhysHlth	DiffWalk	Sex	Age	\
0	0.0	5.0	18.0	15.0	1.0	0.0	9.0	
1	1.0	3.0	0.0	0.0	0.0	0.0	7.0	
2	1.0	5.0	30.0	30.0	1.0	0.0	9.0	
6	0.0	3.0	0.0	14.0	0.0	0.0	9.0	
7	0.0	3.0	0.0	0.0	1.0	0.0	11.0	
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
253675	0.0		0.0	5.0	0.0	1.0	5.0	
253676	0.0	4.0	0.0	0.0	1.0	0.0	11.0	
253677	0.0	1.0	0.0	0.0	0.0	0.0	2.0	
253678	0.0	3.0	0.0	0.0	0.0	1.0	7.0	
253679	0.0	2.0	0.0	0.0	0.0	0.0	9.0	
	Education	Income						
0	4.0	3.0						
1	6.0	1.0						
2	4.0	8.0						
6	6.0	7.0						
7	4.0	4.0						
• • •	• • •	• • •						
253675	6.0	7.0						
253676	2.0	4.0						
253677	5.0	2.0						
253678	5.0	1.0						
253679	6.0	2.0						

[168001 rows x 22 columns]

outliers

⋺	Diabetes_012	HighBP	HighChol	CholCheck	BMI	Smoker	Stroke	HeartDiseaseorAttack	PhysActiv:
	0.0	1.0	1.0	1.0	40.0	1.0	0.0	0.0	
	0.0	0.0	0.0	0.0	25.0	1.0	0.0	0.0	
	0.0	1.0	1.0	1.0	28.0	0.0	0.0	0.0	
	0.0	1.0	0.0	1.0	30.0	1.0	0.0	0.0	
	0.0	1.0	1.0	1.0	25.0	1.0	0.0	0.0	
	0.0	1.0	1.0	1.0	45.0	0.0	0.0	0.0	
	2.0	1.0	1.0	1.0	18.0	0.0	0.0	0.0	
	0.0	0.0	0.0	1.0	28.0	0.0	0.0	0.0	
	0.0	1.0	0.0	1.0	23.0	0.0	0.0	0.0	
	2.0	1.0	1.0	1.0	25.0	0.0	0.0	1.0	
	ws × 22 columns	3							
	4								

Data Visualization

1. Diabetes Status by Age Group
plt.figure(figsize=(10, 6))

```
sns.barplot(x='Age', y='Diabetes_012', data=df1, estimator=lambda x: sum(x == 2)/len(x), palette='Blues')
plt.title('Proportion of Diabetes (Status = 2) by Age Group', fontsize=16)
plt.xlabel('Age Groups', fontsize=12)
plt.ylabel('Proportion with Diabetes', fontsize=12)
plt.xticks(rotation=45)
plt.show()
```

<ipython-input-36-46aeb23355b2>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` $sns.barplot(x='Age', y='Diabetes_012', data=df1, estimator=lambda x: <math>sum(x==2)/len(x), palette='Blu$


```
# 2. Diabetes Status by Education Level
plt.figure(figsize=(10, 6))
sns.barplot(x='Education', y='Diabetes_012', data=df1, estimator=lambda x: sum(x == 2)/len(x), palette='Pur
plt.title('Proportion of Diabetes (Status = 2) by Education Level', fontsize=16)
plt.xlabel('Education Level', fontsize=12)
plt.ylabel('Proportion with Diabetes', fontsize=12)
plt.show()
```

<ipython-input-38-ea88460d5906>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x`

 $sns.barplot(x='Education', y='Diabetes_012', data=df1, estimator=lambda x: sum(x == 2)/len(x), palett$


```
# 3. Diabetes Status by Income Level
plt.figure(figsize=(10, 6))
sns.barplot(x='Income', y='Diabetes\_012', data=df1, estimator=lambda x: sum(x == 2)/len(x), palette='Greens to sum (x == 2)/
plt.title('Proportion of Diabetes (Status = 2) by Income Level', fontsize=16)
plt.xlabel('Income Level', fontsize=12)
plt.ylabel('Proportion with Diabetes', fontsize=12)
plt.show()
```

<ipython-input-39-4b1038bbbe2e>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` $sns.barplot(x='Income', y='Diabetes_012', data=df1, estimator=lambda x: <math>sum(x==2)/len(x)$, palette='

Proportion of Diabetes (Status = 2) by Income Level

4. Diabetes and Multiple Health Issues (HighBP, HighChol, Stroke, HeartDiseaseorAttack)
df1['HealthIssuesCount'] = df1[['HighBP', 'HighChol', 'Stroke', 'HeartDiseaseorAttack']].sum(axis=1)

```
plt.figure(figsize=(10, 6))
sns.boxplot(x='Diabetes_012', y='HealthIssuesCount', data=df1, palette='coolwarm')
plt.title('Number of Health Issues by Diabetes Status', fontsize=16)
plt.xlabel('Diabetes Status', fontsize=12)
plt.ylabel('Number of Health Issues', fontsize=12)
plt.show()
```

<ipython-input-40-1b1f1054a3fb>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` sns.boxplot(x='Diabetes_012', y='HealthIssuesCount', data=df1, palette='coolwarm')

Number of Health Issues by Diabetes Status

