Минимум

Выпуклость и гладкость. Градиентный спуск Методы оптимизации

Александр Безносиков

Московский физико-технический институт

12 сентября 2024

• Вопрос: какие приложения задач оптимизации знаете/уже встречали?

• Вопрос: какие приложения задач оптимизации знаете/уже встречали? Приложений у оптимизации масса: машинное обучение, анализ данных, статистика, финансы, логистика, планирование, управление и многие другие.

Минимум

- Вопрос: какие приложения задач оптимизации знаете/уже встречали? Приложений у оптимизации масса: машинное обучение, анализ данных, статистика, финансы, логистика, планирование, управление и многие другие.
- Оптимизация часто выступает инструментом во многих прикладных задачах, люди пользуются готовыми решениями/пакетами/"черными ящиками", который способны решать задачи оптимизации. Цель курса – как познакомиться с такими "черными ящиками", так и заглянуть внутрь и понять, что лежит внутри (в том числе с токи зрения теории).

Немного истории

- 1847: Коши и градиентный спуск для линейных систем
- 1950ые: линейное программирование (быстро перешло в нелинейное программирование), появление стохастических методов
- 1980ые: появление теории для общих задач.
- 2010ые: задачи оптимизации большого размера, теория стохастических методов

$$\min_{\substack{g_i(x) \& 0, \\ i=1,\dots,m,\\ x \in O}} f(x) \tag{1}$$

- $Q \subseteq \mathbb{R}^d$ подмножество d-мерного пространства
- ullet $f:Q o\mathbb{R}$ некоторая функция, заданная на множестве Q
- В качестве & берётся ≤ либо =
- ullet $g_i(x):Q o\mathbb{R},\ i=1,\ldots,m$ функции, задающие ограничения

$$\min_{\substack{g_i(x) \& 0, \\ i=1,\dots,m,\\ x \in O}} f(x) \tag{1}$$

- $Q \subseteq \mathbb{R}^d$ подмножество d-мерного пространства
- ullet $f:Q o\mathbb{R}$ некоторая функция, заданная на множестве Q
- В качестве & берётся ≤ либо =
- $g_i(x): Q \to \mathbb{R}, i = 1, ..., m$ функции, задающие ограничения

Вопрос: что можно сказать про эту задач? сложная ли эта задача?

Задачи оптимизации. Первые наблюдения.

- **1** В общем случае задачи оптимизации могут не иметь решения. Например, задача $\min_{x \in \mathbb{R}} x$ не имеет решения.
- 2 Задачи оптимизации часто нельзя решить аналитически.
- **3** Их сложность зависит от вида целевой функции f, множества Q и может зависеть от размерности x.

Задачи оптимизации. Первые наблюдения.

- **1** В общем случае задачи оптимизации могут не иметь решения. Например, задача $\min_{x \in \mathbb{R}} x$ не имеет решения.
- 2 Задачи оптимизации часто нельзя решить аналитически.
- ③ Их сложность зависит от вида целевой функции f, множества Q и может зависеть от размерности x.

Если же задача оптимизации имеет решение, то на практике её обычно решают, вообще говоря, приближённо. Для этого применяются специальные алгоритмы, которые и называют методами оптимизации.

Методы оптимизации

- Нет смысла искать лучший метод для решения конкретной задачи. Например, лучший метод для решений задачи $\min_{x \in \mathbb{R}^d} \|x\|^2$ сходится за 1 итерацию: этот метод просто всегда выдаёт ответ $x^*=0$. Очевидно, что для других задач такой метод не пригоден.
- Эффективность метода определяется для класса задач, т.к. обычно численные методы разрабатываются для *приближённого* решения множества однотипных задач.
- Метод разрабатывается для класса задач ⇒ метод не может иметь с самого начала полной информации о задаче. Вместо этого метод использует модель задачи, например, формулировку задачи, описание функциональных компонент, множества, на котором происходит оптимизация и т.д.

Вопрос: Какого рода вопросы хочется задавать оракулу?

Минимум

Вопрос: Какого рода вопросы хочется задавать оракулу?

Минимум

Вопрос: Какого рода вопросы хочется задавать оракулу?

Примеры оракулов

- Оракул нулевого порядка в запрашиваемой точке x возвращает значение целевой функции f(x).
- Оракул первого порядка в запрашиваемой точке возвращает значение функции f(x) и её градиент в данной точке $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$.
- Оракул второго порядка в запрашиваемой точке возвращает значение и градиент функции $f(x), \nabla f(x)$, а также её гессиан в данной точке $\left(\nabla f^2(x)\right)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$.

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$. Настройка. Задать k = 0 (счётчик итераций) и $I_{-1} = \emptyset$ (накапливаемая информационная модель решаемой задачи).

Входные данные: начальная точка x^0 (0 — верхний индекс), требуемая точность решения задачи $\varepsilon>0$. Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи). Основной цикл

 $oldsymbol{1}$ Задать вопрос к оракулу \mathcal{O} в точке x^k .

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- **1** Задать вопрос к оракулу \mathcal{O} в точке x^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$.

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- f 0 Задать вопрос к оракулу ${\cal O}$ в точке x^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$.
- f 3 Применить правило метода ${\cal M}$ для получения новой точки x^{k+1} по модели I_k .

Входные данные: начальная точка x^0 (0 – верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- $oldsymbol{0}$ Задать вопрос к оракулу $\mathcal O$ в точке x^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$.
- f 3 Применить правило метода ${\cal M}$ для получения новой точки x^{k+1} по модели I_k .
- **4** Проверить критерий остановки $\mathcal{T}_{\varepsilon}$. Если критерий выполнен, то выдать ответ \bar{x} , иначе положить k:=k+1 и вернуться на шаг 1.

Рассмотрим задачу оптимизации

$$\min_{x \in \mathbb{R}^d} f(x),\tag{2}$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Рассмотрим задачу оптимизации

$$\min_{x \in \mathbb{R}^d} f(x),\tag{2}$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 3: $x = x \gamma V I (x)$
- 4: end for

Выход: x^K

Рассмотрим задачу оптимизации

$$\min_{x \in \mathbb{R}^d} f(x),\tag{2}$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 4: end for

Выход: x^K

Вопрос: в чем Алгоритм 1 отличается от определения общей

итеративной схемы?

Рассмотрим задачу оптимизации

$$\min_{x \in \mathbb{R}^d} f(x),\tag{2}$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 4: end for

Выход: x^K

Вопрос: в чем Алгоритм 1 отличается от определения общей итеративной схемы? В итеративной схеме использовался $\mathcal{T}_{\varepsilon}$.

9 / 42

• По аргументу: $\|x^k - x^*\| \le \varepsilon$.

Вопрос: какие проблемы тут видим?

• По аргументу:

Основные понятия

000000000

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

х* – неизвестно, но можно так

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*|| \le 2\varepsilon.$$

Из $||x^{k+1}-x^k|| < ||x^k-x^*|| < \varepsilon/2$, следует $||x^{k+1}-x^k|| < \varepsilon$ (в обратную сторону, очевидно, неверно). $||x^{k+1}-x^k|| < \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $||x^{k} - x^{*}|| \to 0$.

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*|| \le 2\varepsilon.$$

Из $\|x^{k+1}-x^k\| \leq \|x^k-x^*\| \leq \varepsilon/2$, следует $\|x^{k+1}-x^k\| \leq \varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\| \leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\| \to 0$.

• x^* – не уникально. Тогда можно поменять критерий

По аргументу:

Основные понятия

000000000

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

х* – неизвестно, но можно так

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*|| \le 2\varepsilon.$$

Из $\|x^{k+1} - x^k\| \le \|x^k - x^*\| \le \varepsilon/2$, следует $\|x^{k+1} - x^k\| < \varepsilon$ (в обратную сторону, очевидно, неверно). $||x^{k+1}-x^k|| < \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $||x^k - x^*|| \to 0$.

• x^* – не уникально. Тогда можно поменять критерий

По функции:

$$f(x^k) - f^* \le \varepsilon$$
.

Часто f^* известно, например, для $f(x) = \|Ax - b\|^2$. На практике можно использовать $|f(x^k) - f(x^{k+1})|$.

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*|| \le 2\varepsilon.$$

Из $\|x^{k+1}-x^k\| \leq \|x^k-x^*\| \leq \varepsilon/2$, следует $\|x^{k+1}-x^k\| \leq \varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\| \leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\| \to 0$.

• x^* – не уникально. Тогда можно поменять критерий

• По функции:

$$f(x^k) - f^* \le \varepsilon$$
.

Часто f^* известно, например, для $f(x) = \|Ax - b\|^2$. На практике можно использовать $|f(x^k) - f(x^{k+1})|$.

• По норме градиента: $\|\nabla f(\mathbf{x}^k)\| \leq \varepsilon$.

Вопрос: когда такой критерий можно использовать?

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

• x^* – неизвестно, но можно так

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*|| \le 2\varepsilon.$$

Из $\|x^{k+1}-x^k\| \leq \|x^k-x^*\| \leq \varepsilon/2$, следует $\|x^{k+1}-x^k\| \leq \varepsilon$ (в обратную сторону, очевидно, неверно). $\|x^{k+1}-x^k\| \leq \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $\|x^k-x^*\| \to 0$.

• x^* – не уникально. Тогда можно поменять критерий

• По функции:

$$f(x^k) - f^* \le \varepsilon.$$

Часто f^* известно, например, для $f(x) = \|Ax - b\|^2$. На практике можно использовать $|f(x^k) - f(x^{k+1})|$.

• По норме градиента: $\|\nabla f(\mathbf{x}^k)\| \leq \varepsilon$.

Вопрос: когда такой критерий можно использовать? В безусловной оптимизации

Сложность методов оптимизации

- Аналитическая/Оракульная сложность число обращений к оракулу, необходимое для решения задачи с точностью ε .
- Арифметическая/Временна'я сложность общее число вычислений (включая работу оракула), необходимых для решения задачи с точностью ε .

Глобальный и локальный минимумы

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Глобальный и локальный минимумы

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d (локальным решением задачи минимизации f на \mathbb{R}^d), если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)=\{y\in\mathbb{R}^d\mid \|y-x^*\|_2\leq r\}$ следует, что $f(x^*)\leq f(y)$.

Глобальный и локальный минимумы

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d (локальным решением задачи минимизации f на \mathbb{R}^d), если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)=\{y\in\mathbb{R}^d\mid \|y-x^*\|_2\leq r\}$ следует, что $f(x^*)\leq f(y)$.

Глобальный минимум

Точка x^* называется глобальным минимумом функции f на \mathbb{R}^d (глобальным решением задачи минимизации f на \mathbb{R}^d), если для любого $y \in \mathbb{R}^d$ следует, что $f(x^*) \leq f(y)$.

12 / 42

Глобальный и локальный минимумы

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d (локальным решением задачи минимизации f на \mathbb{R}^d), если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)=\{y\in\mathbb{R}^d\mid \|y-x^*\|_2\leq r\}$ следует, что $f(x^*)\leq f(y)$.

Глобальный минимум

Точка x^* называется глобальным минимумом функции f на \mathbb{R}^d (глобальным решением задачи минимизации f на \mathbb{R}^d), если для любого $y \in \mathbb{R}^d$ следует, что $f(x^*) \leq f(y)$.

Определение можно обобщить и до локального/глобального минимума на множестве \mathcal{X} , т.е. для задачи вида $\min_{x \in \mathcal{X}} f(x)$. Для этого надо брать $y \in B_2^d(r, x^*) \cap \mathcal{X}$ и $y \in \mathcal{X}$ в соответствующих определениях.

Условие оптимальности: общий случай

Теорема об условии оптимальности локального минимума

Пусть x^* – локальный минимумом функции f на \mathbb{R}^d , тогда если f дифференцируема, то $\nabla f(x^*) = 0$.

Теорема об условии оптимальности локального минимума

Пусть x^* – локальный минимумом функции f на \mathbb{R}^d , тогда если f дифференцируема, то $\nabla f(x^*) = 0$.

Легко проверить, что обратное неверно.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где
$$\lim_{x \to x^*} \frac{o(\|x - x^*\|_2)}{\|x - x^*\|_2} = 0.$$

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x\to x^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x}=x^*-\lambda\nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x\to x^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x}=x^*-\lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x \to x^*} \frac{o(\|x - x^*\|_2)}{\|x - x^*\|_2} = 0.$

Рассмотрим $\hat{x}=x^*-\lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \hat{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти. Тогда с одной стороны:

$$f(\tilde{x}) \geq f(x^*), \quad \mathsf{u}$$

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x\to x^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x}=x^*-\lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти. Тогда с однук стороны:

$$f(\tilde{x}) \geq f(x^*), \quad \mathsf{u}$$

$$f(\tilde{x}) = f(x^*) + \langle \nabla f(x^*), \tilde{x} - x^* \rangle + o(\|\tilde{x} - x^*\|_2)$$

= $f(x^*) - \lambda \|\nabla f(x^*)\|^2 + o(\lambda \|\nabla f(x^*)\|_2)$

Доказательство

Набросим еще одно ограничение на "малость" λ . Пусть теперь еще выполнено, что $|o(\lambda \|\nabla f(x^*)\|_2)| \leq \frac{\lambda}{2} \|\nabla f(x^*)\|_2^2$. Тогда для подобранного $\lambda > 0$

$$f(\tilde{x}) \le f(x^*) - \frac{\lambda}{2} \|\nabla f(x^*)\|^2$$

Пришли к противоречию, что x^* – локальный минимум.

Локальный и глобальный минимум

- Наша цель глобальный минимум (или точка близкая к нему в некотором смысле).
- Заветная мечта придумать метод решающий все задачи оптимизации. Выглядит нереалистично, но чем черт не шутит.

Класс задач минимизации липшицевых функций

$$\min_{x \in B_d} f(x)$$

- $B_d = \{x \in \mathbb{R}^d \mid 0 \le x_i \le 1, \quad i = 1, \dots, d\}$
- ullet Функция f(x) является M-липшицевой на B_d относительно ℓ_∞ -нормы:

$$\forall x, y | f(x) - f(y) | \le M ||x - y||_{\infty} = M \max_{i=1,...,d} |x_i - y_i|.$$

Класс задач минимизации липшицевых функций

Наблюдение

Множество B_d является ограниченным и замкнутым, т.е. компактом, а из липшицевости функции f следует и её непрерывность, поэтому задача (17) имеет решение, ибо непрерывная на компакте функция достигает своих минимального и максимального значений. Пусть $f^* = \min_{x \in B_d} f(x)$.

- Класс методов. Для данной задачи рассмотрим методы нулевого порядка.
- Цель: найти $\bar{x} \in B_d$: $f(\bar{x}) f^* \le \varepsilon$.

Метод перебора

Рассмотрим один из самых простых способов решения этой задачи — метод равномерного перебора.

Алгоритм 2 Метод равномерного перебора

Вход: целочисленный параметр перебора $p \geq 1$

- 1: Сформировать $(p+1)^d$ точек вида $x_{(i_1,\ldots,i_d)}=\left(\frac{i_1}{p},\frac{i_2}{p},\ldots,\frac{i_d}{p}\right)^{\top}$, где $(i_1,\ldots,i_d)\in\{0,1,\ldots,p\}^d$
- 2: Среди точек $x_{(i_1,\dots,i_d)}$ найти точку \bar{x} с наименьшим значением целевой функции f .

Выход: $\bar{x}, f(\bar{x})$

Гарантии

Теорема 1

Алгоритм 2 с параметром p возвращает такую точку \bar{x} , что

$$f(\bar{x}) - f^* \le \frac{M}{2p},\tag{3}$$

откуда следует, что методу равномерного перебора нужно в худшем случае

$$\left(\left\lfloor \frac{M}{2\varepsilon}\right\rfloor + 2\right)^d \tag{4}$$

обращений к оракулу, чтобы гарантировать $f(\bar{x}) - f^* \leq \varepsilon$.

Доказательство Теоремы 1

Пусть x^* — решение задачи (точка минимума функции f). Тогда в построенной «сетке» из точек найдётся такая точка $x_{(i_1,\dots,i_d)}$, что $x:=x_{(i_1,\dots,i_d)}\leq x^*\leq x_{(i_1+1,\dots,i_d+1)}=:y$, где знак « \leq » применяется покомпонентно.

Доказательство Теоремы 1

Пусть x^* — решение задачи (точка минимума функции f). Тогда в построенной «сетке» из точек найдётся такая точка $x_{(i_1,\dots,i_d)}$, что $x:=x_{(i_1,\dots,i_d)}\leq x^*\leq x_{(i_1+1,\dots,i_d+1)}=:y$, где знак « \leq » применяется покомпонентно. Во-первых, $y_i-x_i=\frac{1}{p}$ и $x_i^*\in[x_i,y_i]$ для всех $i=1,\dots,d$.

Доказательство Теоремы 1

Пусть x^* — решение задачи (точка минимума функции f). Тогда в построенной «сетке» из точек найдётся такая точка $x_{(i_1,\dots,i_d)}$, что $x:=x_{(i_1,\dots,i_d)}\leq x^*\leq x_{(i_1+1,\dots,i_d+1)}=:y$, где знак « \leq » применяется покомпонентно. Во-первых, $y_i-x_i=\frac{1}{p}$ и $x_i^*\in[x_i,y_i]$ для всех $i=1,\dots,d$. Кроме того, рассмотрим точки \hat{x} и \tilde{x} такие, что $\hat{x}=\frac{x+y}{2}$ и

$$ilde{x}_i = egin{cases} y_i, & ext{если } x_i^* \geq \hat{x}_i, \ x_i, & ext{иначе.} \end{cases}$$

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i - x_i^*| \leq \frac{1}{2p}$, а значит, $\|\tilde{x} - x^*\|_{\infty} \leq \frac{1}{2p}$.

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i - x_i^*| \leq \frac{1}{2p}$, а значит, $\|\tilde{x} - x^*\|_{\infty} \leq \frac{1}{2p}$. Поскольку $f(\bar{x}) \leq f(\tilde{x})$ (по определению), получаем

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i - x_i^*| \leq \frac{1}{2p}$, а значит, $\|\tilde{x} - x^*\|_{\infty} \leq \frac{1}{2p}$. Поскольку $f(\bar{x}) \leq f(\tilde{x})$ (по определению), получаем

$$f(\bar{x}) - f^* \le f(\tilde{x}) - f^* \le M \|\tilde{x} - x^*\|_{\infty} \le \frac{M}{2n}.$$

Доказательство Теоремы 1 (продолжение)

Заметим, что \tilde{x} принадлежит «сетке» и $|\tilde{x}_i - x_i^*| \leq \frac{1}{2p}$, а значит, $\|\tilde{x} - x^*\|_{\infty} \leq \frac{1}{2p}$. Поскольку $f(\bar{x}) \leq f(\tilde{x})$ (по определению), получаем

$$f(\bar{x}) - f^* \le f(\tilde{x}) - f^* \le M \|\tilde{x} - x^*\|_{\infty} \le \frac{M}{2p}.$$

Выписанная выше оценка достигается методом равномерного перебора за $(p+1)^d$ обращений к оракулу. Следовательно, чтобы гарантировать $f(\bar{x})-f^*\leq \varepsilon$, необходимо взять $p=\left\lfloor \frac{M}{2\varepsilon} \right\rfloor+1$, т.е. метод сделает $\left(\left\lfloor \frac{M}{2\varepsilon} \right\rfloor+2\right)^d$ обращений к оракулу.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Вопрос: хороший результат получили или нет?

• Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.

- Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2c}\right|+2\right)^d=102^{13}>10^{26}$.

- Предположим M = 2, d = 13 И $\varepsilon = 0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2c}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее d операции.

- Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее d операции.
- Производительность компьютера: 10¹¹ арифметических операций в секунду.

Вопрос: хороший результат получили или нет?

- Предположим M=2, d=13 И $\varepsilon=0.01$, то есть размерность задачи сравнительно небольшая и точность решения задачи не слишком высокая.
- Необходимое число обращений к оракулу: $\left(\left|\frac{M}{2\varepsilon}\right|+2\right)^d=102^{13}>10^{26}.$
- Сложность одного вызова оракула не менее 1, но если потребовать, чтобы он обязательно считал, переданную ему точки, то сложность не менее *d* операции.
- Производительность компьютера: 10¹¹ арифметических операций в секунду.
- Общее время: хотя бы 10^{15} секунд, что больше 30 миллионов лет.

12 сентября 2024

Верхние и нижние оценки

• **Bonpoc**: что мы сейчас получили? верхнюю или нижнюю оценку? что такое верхняя оценка?

Верхние и нижние оценки

- Вопрос: что мы сейчас получили? верхнюю или нижнюю оценку? что такое верхняя оценка?
- Верхняя оценка гарантии нахождения решения <u>определенным</u> методом из рассматриваемого класса методов (например, методы с оракулом нулевого порядка) для <u>любой</u> задачи из класса (Липшецева целевая функция на кубе).
- Нижняя оценка гарантия, что для <u>любого</u> метода из класса <u>существует</u> «плохая» задача из класса такая, что метод будет сходиться не лучше, чем утверждает нижняя оценка.
- Возникает вопрос: может мы плохо вывели верхнюю оценку (неидеальный анализ), может ли предложить другой метод из рассматриваемого класса, который будет находить приближённое решение существенно быстрее? На этот вопрос и даст ответ нижняя оценка.

Нижняя оценка

Теорема 2

Пусть $\varepsilon < \frac{M}{2}$. Тогда аналитическая сложность описанного класса задач, т.е. аналитическая сложность метода на «худшей» для него задаче из данного класса, составляет по крайней мере

$$\left(\left|\frac{M}{2\varepsilon}\right|\right)^d$$
 вызовов оракула. (5)

Схема доказательства Теоремы 2

Пусть $p = \left\lfloor \frac{M}{2\varepsilon} \right\rfloor$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N < (p^d-1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции).

Схема доказательства Теоремы 2

Пусть $p = \lfloor \frac{M}{2\varepsilon} \rfloor$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N < (p^d-1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции). Построим такую функцию, на которой метод не сможет найти ε -решение, при помощи сопротивляющегося оракула: пусть изначально наша целевая функция f(x) всюду равна 0.

Схема доказательства Теоремы 2

Пусть $p=\lfloor \frac{M}{2\varepsilon} \rfloor$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N<(p^d-1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции). Построим такую функцию, на которой метод не сможет найти ε -решение, при помощи сопротивляющегося оракула: пусть изначально наша целевая функция f(x) всюду равна 0. Запустим метод, он запросит значение f в N точках, везде получит 0 и выдаст какую-то точку (возможно, отличную от всех предыдущих N, как ответ). В итоге мы в ходе работы алгоритма заглянули в $N+1< p^d$ точку.

Схема доказательства Теоремы 2

Пусть $p = \left| \frac{M}{2\varepsilon} \right|$. Доказываем от противного: предположим, что существует такой метод, который решает задачу за $N < (p^d - 1)$ обращений к оракулу, чтобы решить задачу с точностью ε (по функции). Построим такую функцию, на которой метод не сможет найти arepsilon-решение, при помощи сопротивляющегося оракула: пусть изначально наша целевая функция f(x) всюду равна 0. Запустим метод, он запросит значение f в N точках, везде получит 0 и выдаст какую-то точку (возможно, отличную от всех предыдущих N, как ответ). В итоге мы в ходе работы алгоритма заглянули в $N+1 < p^d$ точку. Тогда по принципу Дирихле найдётся такой «кубик» $B=\{x\mid \hat{x}\preceq x\preceq \hat{x}+rac{1}{p}e\}$ (где \hat{x} и $\hat{x}+rac{1}{p}e$ — точки из «сетки» с шагом p, e — вектор из единиц), который не содержит ни одной из N+1точки (в том числе и выхода метода).

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$.

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$.

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* .

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* . Более того, функция $\bar{f}(x)$ отлична от нуля только внутри куба $B' = \{x \mid \|x - x^*\| \leq \frac{\varepsilon}{M}\}$, который лежит внутри куба B, т.к. $2p \leq \frac{M}{\varepsilon}$.

Нижняя оценка: доказательство

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2p}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M\|x - x^*\|_{\infty} - \varepsilon\}$. Функция $\bar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* . Более того, функция $\bar{f}(x)$ отлична от нуля только внутри куба $B' = \{x \mid \|x - x^*\| \leq \frac{\varepsilon}{M}\}$, который лежит внутри куба B, т.к. $2p \leq \frac{M}{\varepsilon}$. Следовательно, рассмотренный метод на данной функции не может найти ε -решение. Противоречие.

Нижняя оценка: доказательство

Схема доказательства Теоремы 2 (продолжение)

Пусть x^* — это центр «кубика» B, т.е. $x^* = \hat{x} + \frac{1}{2n}e$. Немного модифицируем функцию $\bar{f}(x) = \min\{0, M \|x - x^*\|_{\infty} - \varepsilon\}$. Функция $ar{f}(x)$ липшицева с константой M относительно ℓ_{∞} -нормы и принимает своё минимальное значение $-\varepsilon$ в точке x^* . Более того, функция $\bar{f}(x)$ отлична от нуля только внутри куба $B' = \{x \mid \|x - x^*\| \leq \frac{\varepsilon}{M}\}$, который лежит внутри куба B, т.к. $2p \leq \frac{M}{c}$. Следовательно, рассмотренный метод на данной функции не может найти ε -решение. Противоречие. Итак, в указанном классе у любого метода оценки на скорость сходимости весьма пессимистичные. Возникает вопрос: какие свойства нужно потребовать от класса оптимизируемых функций, чтобы оценки стали более оптимистичными?

Выпуклость: определение

Определение выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d o \mathbb{R}$. Будем говорить, что она является выпуклой, если для любых $x, y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Выпуклость: определение

Определение выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является выпуклой, если для любых $x,y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

На 5 семинаре будет еще одно определение (эквивалентное в случае дифференцируемых функций).

Определение выпуклой функции

Будем говорить, что она является выпуклой, если для любых $x,y\in\mathbb{R}^d$ и для любого $\lambda\in[0;1]$ выполнено

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Выпуклость

Ограничение снизу на поведение.

Сильная выпуклость: определение

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d o \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu > 0)$, если для любых $x, y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Сильная выпуклость: определение

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d o\mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu > 0)$, если для любых $x, y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Определение μ -сильно выпуклой функции

Будем говорить, что она является μ -сильно выпуклой, если для любых $x, y \in \mathbb{R}^d$ и для любого $\lambda \in [0; 1]$ выполнено

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \lambda(1-\lambda)\frac{\mu}{2}||x-y||_2^2$$

Сильная выпуклость

Более сильное ограничение снизу на поведение.

Александр Безносиков Лекция 2 12 сентября 2024 31/42

Условие оптимальности: выпуклый случай

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*) = 0$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Условие оптимальности: выпуклый случай

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*) = 0$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Доказательство

Запишем определение выпуклости:

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*) = 0$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Доказательство

Запишем определение выпуклости:

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

В обратную сторону уже доказывали выше для произвольных функций.

Выпуклое множество: определение

Определение выпуклого множества

Множество \mathcal{X} называется выпуклым, если для любых $x, y \in \mathcal{X}$ и для любого $\lambda \in [0; 1]$ следует, что

$$\lambda x + (1 - \lambda)y \in \mathcal{X}.$$

Выпуклое множество: определение

Определение выпуклого множества

Множество \mathcal{X} называется выпуклым, если для любых $x, y \in \mathcal{X}$ и для любого $\lambda \in [0; 1]$ следует, что

$$\lambda x + (1 - \lambda)y \in \mathcal{X}.$$

Смысл: вместе с любыми двумя точками множества в множество входит и отрезок с концами в этих точках. Подробнее на 4 семинаре.

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые?

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые? 1 (смотрите на границы 3)

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые? 1 (смотрите на границы 3) **Вопрос:** понятие выпуклости функции можно обобщить на множество \mathcal{X} (необязательно \mathbb{R}^d), но важно, чтобы множество \mathcal{X} было выпуклым. Зачем?

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – выпуклая, $\mathcal X$ - выпуклое. Тогда всякий локальный минимум f на $\mathcal X$ является и глобальным.

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*$$

где x – произвольная точка из \mathcal{X} .

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ?

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум.

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \le f(x_\lambda) \le \lambda f(x) + (1 - \lambda)f(x^*).$$

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \le f(x_\lambda) \le \lambda f(x) + (1 - \lambda)f(x^*).$$

Вопрос: что получили?

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \le f(x_\lambda) \le \lambda f(x) + (1 - \lambda)f(x^*).$$

Вопрос: что получили? $f(x) \ge f(x^*)$. В силу произвольности $x \in \mathcal{X}$ минимум из локального превратился в глобальный.

ベロト (部) (注) (注) (注)

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – выпуклая, \mathcal{X} - выпуклое. Тогда множество точек минимума \mathcal{X}^* выпукло.

Доказательство

Пустое множество и множество из 1 точки выпуклы.

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*,$ где $\lambda \in [0;1].$ $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

<u>Миниму</u>мы выпуклых функций

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in [0;1]$. $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

В силу выпуклости функции f:

$$f^* \le f(x_{\lambda}^*) \le \lambda f(x_1^*) + (1 - \lambda)f(x_2^*) = f^*.$$

<u>Миниму</u>мы выпуклых функций

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in [0;1]$. $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

В силу выпуклости функции f:

$$f^* \le f(x_{\lambda}^*) \le \lambda f(x_1^*) + (1 - \lambda)f(x_2^*) = f^*.$$

Откуда $f(x_{\lambda}^*) = f^*$, а значит $x_{\lambda}^* \in \mathcal{X}^*$.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – cильно выпуклая, \mathcal{X} - выпуклое. Тогда множество точек минимума \mathcal{X}^* может состоять только из одного элемента.

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_1^* = \lambda x_1^* + (1 - \lambda) x_2^*$, где $\lambda \in (0; 1)$. Опять же $x_1^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Но теперь в силу сильной выпуклости функции f:

$$f^* \le f(x_{\lambda}^*) \le \lambda f(x_1^*) + (1 - \lambda) f(x_2^*) - \lambda (1 - \lambda) \frac{\mu}{2} ||x_1^* - x_2^*||_2^2$$

= $f^* - \lambda (1 - \lambda) \frac{\mu}{2} ||x_1^* - x_2^*||_2^2$.

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_{\lambda}^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Но теперь в силу сильной выпуклости функции f:

$$f^* \le f(x_{\lambda}^*) \le \lambda f(x_1^*) + (1 - \lambda) f(x_2^*) - \lambda (1 - \lambda) \frac{\mu}{2} \|x_1^* - x_2^*\|_2^2$$

= $f^* - \lambda (1 - \lambda) \frac{\mu}{2} \|x_1^* - x_2^*\|_2^2$.

Последнее слагаемое <0 в силу выбора $x_1^* \neq x_2^*$ и $\lambda \in (0;1)$. Противоречие.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – сильно выпуклая, \mathcal{X} - выпуклое. Тогда множество точек минимума \mathcal{X}^* может состоять только из одного элемента.

• На самом деле для сильно выпуклой функции можно доказать, что решение строго единственное (т.е. добавить к предыдущей теореме существование). Это следует из того, что мы снизу всегда подперты параболой. Смотри док-во в конспекте.

Сильная выпуклость: больше фактов

Теорема об еще одном определении сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y\in\mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2$$
.

Сильная выпуклость: больше фактов

Теорема об еще одном определении сильной выпуклости

Пусть функция $f:\mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y\in\mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2$$
.

Теорема о критерии сильной выпуклости

Пусть функция $f:\mathbb{R}^d \to \mathbb{R}$ дважды непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ выполнено

$$\nabla^2 f(x) \succeq \mu I$$
.

4 D > 4 D > 4 E > 4 E > E = 990

Теорема об еще одном определении сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y\in\mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2.$$

Теорема о критерии сильной выпуклости

Пусть функция $f: \mathbb{R}^d \to \mathbb{R}$ дважды непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ выполнено

$$\nabla^2 f(x) \succeq \mu I$$
.

Оба факта доказаны в пособии. Второй пригодится для Лекция 2