Лабораторная работа 3.2.2

Резонанс напряжений в последовательном контуре

Татаурова Юлия Романовна

13 сентября 2024 г.

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение ампилтудно-частотных и фазово-частотных характеристик, определение основных параметров контура.

Оборудование: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольмтетры.

Экспериментальная установка

Рис. 1: Схема установки

Источник напряжения, колебательный контур и блок питания находятся в отдельном корпусе, на котором так же имеется магазин ёмкостей C_n .

n	1	2	3	4	5	6	7
C_n , н Φ	25.0	33.2	47.5	57.2	67.4	82.1	99.6
$R = 3.45 \mathrm{Om}$							

Таблица 1: Велечины ёмкостей C_n

Теоретические сведения

Уравнение последовательного колебательного контура с подключенным внешним ЭДС выглядит следующим образом:

$$\ddot{U}_c + 2\gamma \dot{U}_c + \omega_0^2 U_c = \omega_0^2 \varepsilon_0 \cos(\omega t + \varphi) \tag{1}$$

Решение такой системы ищется в виде $\overline{U_C}(t)=\overline{U_{C0}}e^{i\omega t}$. И с учетом того, что импеданс системы можно записать как $Z=Z_0e^{i\psi}$, где $Z_0=\sqrt{R^2+\left(\omega L-\frac{1}{\omega C}\right)^2}$ Отсюда получаем:

$$I(t) = \frac{\varepsilon_0}{Z_0} \cos(\omega t + \phi_0 - \psi); \tag{2}$$

$$U_C(t) = \frac{\varepsilon_0}{Z_0 C \omega} \cos(\omega t + \phi_0 - \psi_C), \psi_C = \psi + \frac{\pi}{2};$$
(3)

$$U_L(t) = \frac{\varepsilon_0 L \omega}{Z_0} \cos(\omega t + \phi_0 - \psi_L), \psi_L = \psi - \frac{\pi}{2}$$
(4)

Тогда найдем частоту и соответсвующее ей напряжене при резонансе напряжения на конденсаторе:

$$U_{C\omega}^{\text{pes}} = U_{L\omega}^{\text{pes}} = \frac{\rho}{R} \varepsilon_0 \left(1 - \frac{\rho^2}{4R^2} \right)^{-1/2}; \tag{5}$$

$$\omega_C^{\text{pes}} = \omega_0 \left(1 - \frac{\rho^2}{2R^2} \right)^{1/2};$$
 (6)

$$\omega_L^{\text{pes}} = \omega_0 \left(1 - \frac{\rho^2}{2R^2} \right)^{-1/2} \tag{7}$$

Такая колебательная система характеризуется добротностю Q.

$$Q = \frac{1}{2} \sqrt{\frac{\omega_0^2}{\gamma^2} - 1} = \sqrt{\frac{\rho^2}{R_{\Sigma}^2} - \frac{1}{4}}$$
 (8)

где $\rho=\sqrt{\frac{L}{C}}$ - волновое сопротивление контура, $R_{\sum}=R+R_L+R_S$ - активное сопротивление системы. При слабом затухании $Q\gg 1\Rightarrow \gamma\ll \omega_0\Rightarrow Q\approx \frac{\omega_0}{2\gamma}=\frac{1}{R_{\sum}}\sqrt{\frac{L}{C}}=\frac{\rho}{R_{\sum}}=\frac{1}{\omega_0CR_{\sum}}$ Выражения для импедансов ёмкости, индуктивности и последовательного контура:

$$Z_C = R_S - \frac{i}{\omega C}, \quad Z_L = R_L + i\omega L, \quad Z = R_{\sum} + i\left(\omega L - \frac{1}{\omega L}\right)$$
 (9)

Экспериментальные данные

При резонансе $\omega_0=\omega$, тогда индуктивность можно вычислить по формуле $L=\frac{1}{4\pi^2\nu^2C}$, добротность колебательного контура определяется по формуле $Q=\frac{U_c^{\rm pes}}{\varepsilon_0}$, $\rho=\sqrt{\frac{L}{C}}$. Вудем придерживаться того, что Q>>1 (хотя судя на самом деле не совсем так) и считать суммарное сопротивление как $R_{\sum}=\frac{\rho}{Q}$. $R_{\rm Smax}=10^{-3}\rho$, $R_L=R_{\sum}-R_{\rm Smax}-R$, $I=\frac{\varepsilon_0}{R_{\sum}}$

C_n , н Φ	f_{0n} , к Γ ц	U_c , B	ε , B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	$R_{\mathrm{Smax}}, \mathrm{Om}$	R_L , Om	I, мА
25.0	31.3	4.93	0.2	1034.2	24.6	203.40	8.25	0.20	4.60	24.24
33.2	27.1	3.27	0.2	1024.7	16.4	175.60	10.74	0.18	7.11	18.62
47.5	23	3.86	0.2	1008.1	19.3	145.67	7.55	0.15	3.95	26.50
57.2	21	3.40	0.2	1004.2	17.0	132.50	7.80	0.13	4.21	25.66
67.4	19.4	2.78	0.2	998.6	13.9	121.71	8.76	0.12	5.19	22.84
82.1	17.5	3.06	0.2	1007.4	15.3	110.77	7.24	0.11	3.68	27.62
99.6	15.9	2.83	0.2	1006.0	14.2	100.50	7.10	0.10	3.55	28.16
Среднее значение		1011.7	-	_	-	-	4.61	-		
CJ	гуч. погрег	шность		11.6	-	-	-	-	1.14	-

Таблица 2: Результаты измерений резонансной частоты и напряжения для разных значений ёмкости при $\varepsilon_0=0.2\mathrm{B}$

C_n , н Φ	f_{0n} , к Γ ц	U_c , B	ε , B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	$R_{ m Smax},~{ m Om}$	R_L , Om	I, мА
25.0	31.18	9.47	0.4	1042.2	24	204.18	8.64	0.20	4.97	46.38
33.2	27.21	7.56	0.4	1030.5	19	176.18	9.21	0.18	5.58	43.42
47.5	22.92	7.22	0.4	1015.1	18	146.19	8.10	0.15	4.50	49.39
57.2	20.92	6.48	0.4	1011.9	16	133.00	8.21	0.13	4.63	48.72
67.4	19.26	5.86	0.4	1013.1	15	122.60	8.37	0.12	4.80	47.80
82.1	17.49	5.60	0.4	1008.6	14	110.84	7.92	0.11	4.36	50.52
99.6	15.92	5.51	0.4	1003.4	14	100.37	7.29	0.10	3.73	54.90
C	Среднее значение		1017.8	-	-	-	-	4.65	-	
Случ. погрешность			12.6	_	-	_	_	0.52	-	

Таблица 3: Результаты измерений резонансной частоты и напряжения для разных значений ёмкости при $\varepsilon_0=0.4\mathrm{B}$

Сравнивая таблицы, можно сказать, что все характеристики за исключением силы тока в среднем совпадают. Значения же для силы тока различаются примерно в 2 раза, что не удивительно, т.к напряжение тоже было поднято в 2 раза, а остальные значения сохранились.

Далее определим амплитудно-частотные характеристики системы для ёмкостей C_1 и C_7 . Данные представлены в таблицах 4,6. По ним так же вычислим добротность и сравинм результаты с прошлыми полученными значениями.

ν , к Γ ц	U_C
30560	3.00
30660	3.28
30760	3.58
30860	3.93
30960	4.27
31060	4.58
32160	4.81
31160	4.93
31260	4.93
31360	4.81
31460	4.61
31560	4.39
31660	4.12
31760	3.87
31860	3.62
31960	3.38
32060	3.15
32260	2.95
32360	2.76
32460	2.58

Таблица 4: АЧХ при C_1

$ u$, к Γ ц	U_C
15240	1.71
15340	1.87
15440	2.06
15540	2.26
15640	2.46
15740	2.65
15840	2.78
15940	2.84
16040	2.80
16140	2.69
16240	2.54
16340	2.36
16440	2.18
16540	2.01
16640	1.85
16740	1.70
16840	1.57

Таблица 5: АЧХ при C_7

График АЧХ для C_1 и C_7

График АЧХ для C_1 и C_7 в безразмерных координатах

$ u_{C1}$, к Γ ц	$ u_{C7}$, к Γ ц	x
29750	14150	2
30450	14550	3
30700	14850	4
30890	15150	5
31030	15350	6
31160	15550	7
31290	15610	8
31410	15680	9
31580	15740	10
31750	15840	11
32020	15870	12
32440	15920	13
	·	

0.80 $C_1: \Delta = 0.050$ 0.75 $C_7: \Delta = 0.075$ 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 1.00 1.01 1.01 1.05 1.05 1.05 1.06 1.07 1.07 1.06

Таблица 6: АЧХ при C_1

График ФЧХ для C_1 и C_7

Значение добротности по ФЧХ найдем по ширине кривой, ограниченной занчениями $\frac{\Delta \varphi}{\pi}$ между 0.25 и 0.75.

Теперь рассмотрим график зависимости $R_L(\nu_0)$ (представлен ниже). Видно, что значения R_L откланяются от среднего достаточно сильно ($\approx 25\%$). Причиной такого повидения могут быть скин-эффект (ток течет по меньшему сечению).

C_n	C_1	C_7
$Q = \frac{U_C^{\text{pes}}}{\varepsilon_0}$	24.6	14.2
$Q = \frac{\omega_0}{\delta\omega}$	23.81	13.88
$Q = \frac{1}{\Delta \frac{\nu}{\nu_0}}$	20	13.3

Рис. 2: Сравнение добротностей, посчитанных разными способами

Оценим погрешности.В случае АЧХ $\sigma_{\frac{\Delta\omega}{\omega}}=0.005$, тогда $\sigma_Q=\frac{\sigma_{\frac{\Delta\omega}{\omega}}}{\Delta\omega^2},~\sigma_{Q1}=2.82,~\sigma_{Q7}=0.96$. Аналогично считается в случае ФЧХ: $\sigma_{Q1}=4,\sigma_{Q7}=1.8$. Видно, что значения для добротности полученные всеми способоми близки и с учетом погрешности совпадают. Однако считать Q через ФЧХ менее точно, чем АЧХ.