

جامعة مواري بومدين للعلوم و التكنولوجيا

Université des Sciences et de la Technologie Houari Boumediene

Faculté d'Electronique et d'Informatique Département d'Informatique

Concours d'accès au Doctorat LMD Informatique (Option : Intelligence Artificielle)

Epreuve Résolution de Problèmes

Exercice 1: Considérez les phrases suivantes :

- Jamel aime tous ce qui est comestible.
- Les pommes sont comestibles
- Le saucisson est comestible.
- Tous ce qu'on peut manger et qui ne tue pas est comestible.
- Chacun qui a été tué par quelque chose n'est plus vivant.
- Boubakr mange des cacahuètes et vit toujours.
- Samira mange tout ce que mange Boubakr.
- 1) Traduisez ces phrases en formules de la logique du 1^{er} ordre.
- 2) Peut on démontrer par la méthode de réfutation que : « Jamel aime les cacahuètes »

Utiliser les prédicats suivants : comestible(x), aime(x,y), mange(x,y), tue(x), vivant(x) et les constantes : jamel, pomme, saucisson, boubakr, cacahouete, samira etc..

On dispose d'une carte topographique des routes (entre les villes) où on peut rouler avec différentes vitesses. Il y a des parties où on traverse des agglomérations et donc on peut rouler avec une vitesse de 60 km/h, des parties autoroute où on peut rouler à 120 km/h et des parties de route nationale où on peut rouler à 90 km/h. Dans le tableau suivant sont indiqués pour chaque route, le nombre de kilomètres entre deux villes pour différents types de vitesses (60 km/h, 120 km/h et 90 km/h). Par exemple entre A et C, il y a 55 km (20km en agglomération, 20km en autoroute et 15km en route nationale).

α 1 1 1	1' CC/	1		• ,	1	1' CC/	1
- Calculer les	differents te	mns de i	narcours	en miniites	des	differentes	distances
Culculul los	uniforcints to	mps ac	parcours	cii iiiiiiuucos	uco	unitation	distances.

Chemin	A,C	A,I	C,D	C,F	D,E	E,J	E,B	F,E	F,G	G,B	I,J	J,B
Agglomération	20	50	10	20	0	0	20	0	50	0	0	10
Autoroute	20	10	20	0	10	0	30	20	0	60	10	10
Route nationale	15	30	9	21	9	30	0	21	0	0	30	21

On veut trouver le chemin le plus court en temps (en minutes) entre A et B. Pour cela on applique l'algorithme A*. On dispose de l'information heuristique suivante : Pour chaque ville X on connaît les distances à vol d'oiseau des parties traverse d'agglomération, parties autoroute et parties route nationale entre la ville X et la ville B.

- Calculer les différents temps de parcours des différentes distances à vol d'oiseau (direct).

Chemin Direct entre	A ,B	C,B	D,B	E,B	F,B	G,B	I,B	J,B
Agglomération	40	30	30	40	40	20	20	10
Autoroute	40	30	20	0	10	30	0	10
Route nationale	30	18	12	0	12	0	12	12

- L'heuristique associant à X le temps de parcours du chemin à vol d'oiseau de X à B est-elle admissible?. Justifier.

On prend maintenant comme heuristique h le temps de parcours si toute la distance était autoroute.

- Cette heuristique est elle admissible ? Justifier.
- Donner l'espace de recherche avec cette heuristique ainsi que le coût du chemin optimale de A à B en utilisant l'algorithme A^* .
- Soient 2 heuristiques h1 et h2 admissibles. Montrer lesquelles des heuristiques suivantes sont admissibles : $\min(h1,h2)$, $\max(h1,h2)$, σ^*h1 avec $0 < \sigma < 1$, σ^*h1 avec $1 < \sigma$ (σ un nombre réel). Justifier vos réponses.