COMPTE RENDU TR 14

Mesure de la Vitesse d'un moteur

DJAMBA Michel BAELE Nicolas 25/03/2019 – 01/04/2019

Sommaire:

I.	Réalisation				
	. Realisation				
	1.	Capteur de vitesse			
	2.	Circuit monostable			
		Filtre			
	Э.	FILLE			
	4.	Sortie Analogique			
	5	Sortie sur LED			
II.	Schéma Complet				
III.	Conclusion				
IV.	Nomenclature				

But du TR:

Concevoir un prototype permettant de mesurer la vitesse de rotation d'un moteur à partir d'un capteur optique. Les tensions disponibles sont : +5V et +/- 12V. Le système est constitué de quatre sous-ensembles :

- Le capteur de vitesse et son circuit électronique.
- - un circuit monostable (impulsions calibrées).
- - un filtre.
- - deux sorties (une sortie analogique et un affichage sur LED).

•

I) Réalisation

1) Le Capteur de Vitesse

Frequence(Hz)	UMoteur (Volt)	T(sec)
156,3	1	6,4
454,54	2	2,2
714,28	3	1,4
1041,6	4	0,96
1612	6	0,62
2777,77	10	0,36
3333,33	12	0,3

UMoteur	Nombre de Tours par minute
1	390,75
2	1136
3	1789
4	2604
6	4032
8	5434
12	8332

2) Le Monostable

2.2)

₹(To) = TC = 3ms

On calcule fmax = 0,3 ms et fmin=6,4ms

2.4) On pose R=470k

On sait que R'=R+2k et que R'C= 0,3ms

On utilise la formule: $(R+2k)*C=0,3 DONC C=0,3*10^{-3}/470k+2k = 63 nF$

Frequence (Hz)	Vmoyenne
156	274mV
454	753mV
714	1,23 V
1041	1,77 V
1612	2,77 V
2777	4,73 V
3333	5 V

- 2.6) Même Nbr de tour/min
- 2.8) Excel

3) Filtre

- 3.1) On utilise un filtre passe bas, selon la structure de Rauch pour clarifier le signal.
- 3.2) On utilise R=6,8k C1=2nF et C2=1nF

4) La Sortie Analogique

4.2) On utilise pour cela un Amplificateur Opérationnel avec un Gain de 2

5) La Sortie LED

5.1) On utilise pour cela un comparateur.

II) Schéma Simulation

III) Conclusion

On parvient à répondre aux attendus du TR, cependant il existe un manque de précision due aux composants électroniques pour avoir un bon résultat par rapport au fréquences en entrée.

IV) Nomenclature

-Un AOP (TL084 à 1.43€

-Un CD4538 à 0.4€

- -Une diode à 0.4€
- -Des résistances à environ 0.2€ unité
- -Des condensateurs à 0.5€

On obtient un prix total de 5€.