How do viscous + MHD wind discs evolve in the presence of the dead zone?

Simin Tong
Supervisor: Richard Alexander
6th June 2023, Leicester

Disc Modelling: parameterised viscosity & MHD winds

Viscosity (
$$\alpha_{SS}$$
) + MHD wind (α_{DW}) + internal photoevaporation

$$\frac{\partial \Sigma_g}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} (\nu \Sigma_g R^{1/2}) \right] + \frac{3}{2R} \frac{\partial}{\partial R} \left(\frac{\alpha_{\rm DW} \Sigma_g c_s^2}{\Omega} \right) - \frac{3\alpha_{\rm DW} \Sigma_g c_s^2}{4(\lambda - 1)R^2 \Omega} - \dot{\Sigma}_w(R, t)$$

$$\nu = \alpha_{\rm SS} c_s h$$

Grid: 0.008 — 20K au

$$M_* = 1 M_{\odot} \qquad M_d = 0.01 M_{\odot}$$

Dead Zone Modelling

- Dead (wind) zone inner & outer edge?
 - ~ 0.1 au tens of au
- α_{SS} in and beyond the dead zone?
 - Inner disc: 10^{-2}
 - Dead zone: 10^{-4}
 - Outer disc: ???
- $\alpha_{\rm DW}$ in and beyond the wind zone?
 - Inner disc: 10^{-4}
 - Wind region and outer disc?
 - Evolution of magnetic field: $\alpha_{\rm DW}(t) \propto \Sigma_g(t)^{-0.5}$

Dead Zone Modelling: Parameter space exploration

Dead Zone Modelling: Parameter space exploration

Dead Zone Modelling: Parameter space exploration

- 1. 3 X 3 X 3 simulations: fixed $r_{\rm dzo}$ and r_c
- 2. 13 X 6 simulations: fixed $\alpha_{\rm DW}$ & $\alpha_{\rm SS}$

Preliminary result 1: Surface density classification

(Fixed disc size $r_c = 60$ au & dead zone size $r_{\rm dzo} = 30$ au)

Weak MHD winds (small $\alpha_{\mathrm{DW,dz}}$)

Strong MHD winds (large $\alpha_{\rm DW,dz}$) +

Inefficient outer expansion

Strong MHD winds +

Efficient outer expansion

Preliminary result 2: Disc lifetime

(Fixed disc size $r_c = 60$ au & dead zone size $r_{\rm dzo} = 30$ au)

• Short lifetime when $\alpha_{\rm DW,dz}$ and $\alpha_{\rm SS,out}$ is large (10⁻²).

Preliminary result 2: Disc lifetime

(Varying disc size r_c & dead zone size $r_{\rm dzo}$)

- $r_{\rm dzo} = 30 \rightarrow 75/135$ au:
 - Radially averaged $\overline{\alpha(r)}$ changes
 - Lifetime: increase or decrease
 - Exceptions

(Offset for illustration)

Preliminary result 2: Disc lifetime

(Varying disc size r_c & dead zone size $r_{\rm dzo}$)

- $r_{\rm dzo} = 30 \rightarrow 75/135$ au:
 - Radially averaged $\overline{\alpha(r)}$ changes \rightarrow lifetime: increase or decrease
 - Exceptions:

(Fixed disc size $r_c = 60$ au & dead zone size $r_{\rm dzo} = 30$ au)

Transition radius

(Fixed disc size $r_c = 60$ au & dead zone size $r_{\rm dzo} = 30$ au)

Characteristic radius

Disc gas size expansion rates almost only depend on $\alpha_{\rm SS,out}$. Increasing radii in most cases.

$$\alpha_{\rm DW,out} > \alpha_{\rm SS,out}$$

(Fixed disc size $r_c = 60$ au & dead zone size $r_{\rm dzo} = 30$ au)

Disc gas size starts decreasing only when $\alpha_{\rm DW}$ is remarkably larger than $\alpha_{\rm SS}$.

Potential Implication 1: Gas disc size measurements

Evolution of Gas Disc Size

Low-sensitivity observations: $\Sigma > 10^{-2}$ g cm⁻² High-sensitivity observations: $\Sigma > 10^{-4}$ g cm⁻²

Potential Implication 2: Stellar accretion rate

Take-home messages

- We ran 1D simulations to study the evolution of disc regulated by viscosity, MHD winds, internal photoevaporation and the dead zone.
- $\alpha_{\rm DW,out}$ is important to the inner disc evolution and $\alpha_{\rm SS,out}$ is important to the outer disc evolution.
- The disc outer radius r_o only decreases when $\alpha_{\rm DW,out}$ is significantly larger than $\alpha_{\rm SS,out}$.
- We may not be able to distinguish the "viscosity/wind" scenarios by purely measuring the gas disc sizes with time and by statistically measuring stellar accretion rates if we consider the dead zone.
- Caveats:
 - Not easy to accurately depict the evolution of the magnetic field; MHD winds may not always drive accretion.
 - α in the dead/wind zone should be a variable of the surface density and the dead zone size shrinks over time.
 - Pure gas simulations. Dust is needed!