M. pominguet.

CISE IV

Control: 16/04/2009 Temps: 1 hora

PROBLEMA

A la figura 1 es mostran els corresponents models dels següents elements:

- μP V25
- Memòria EPROM 27C1001 de 128K x 8. $t_{ACA}(Adreces) = 70ns$, $t_{ACC}(CS^*) = 70ns$, $t_{ACO}(OE^*) = 35ns$
- Memòria SRAM 68100 de 64K x 8. Temps d'accés de lectura: t_{ACA} (Adreces)= 50ns, t_{ACC}(CS*)= 50ns, t_{ACC}(OE*)= 20ns. Temps d'accés d'escriptura t_{CW} = 50ns (Veure definició més avall)

A més d'quests elements, només es poden fer servir portes que tenen un retard màxim de $t_R = 3$ ns.

La frequència de rellotge és de 20 MHz. Els cronogrames de lectura i escriptura son:

READ OPERATION

WRITE OPERATION

Els valors dels temps son els de la taula següent:

Parameter	Symbol	Test Conditions			
Address Delay Time from CLKOUT	toka	r out Conditions	MIN.	MAX.	Uni
Data Input Delay Time from Address	toade			90	ns
Data Delay Time from MREQ ↓	tompo	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		(n + 1.5)T - 90	ns
Data Delay Time from MSTB ↓	tomso	T. STREET		(n + 1)T - 75	ns
MSTB ↓ Delay Time from MREQ ↓	tomas			(n+ 0.5)T - 75	ns
MREQ Low-Level Width	twinkins		0.5T - 35	0.5T + 35	ns
Address Hold Time (from MREQ ↑)	thma		(n + 1)T - 30	(n + 1)T + 30	ns
Data Input Hold Time (from MREQ 1)		-	0.5T - 30		ns
Control Signal Recovery Time	thmor		0		ns
Data Output Delay Time from Address	trvc		T - 25		ns
Address Setup Time (to MREQ ↓)	tDADW	lerse silven a a c		0.5T + 50	ns
Address Setup Time (to MSTB ↓)	toamr		0.5T - 30		ns
MSTB Low-Level Width	tdams		T - 30		ns
Data Output Setup Time (to MSTB 1)	twmsL		(n + 0.5)T - 30	(n + 0.5)T + 30	ns
Data Output Hold Time (from MSTB 1)	tsom		(n + 1)T - 50		ns
T= període de rellotge. n = nombre d	trimow		0.5T - 30		ns

L'instant de lectura coincideix amb el flanc de pujada de MREQ*i MSTB*

L'accés per una operació d'escriptura a la SRAM (t_{CW}) es defineix com el temps entre l'instant en que tots dos senyals CS* i WE* estàn a nivel baix i que qualsevol dels dos torna a nivell alt.