1. és 2. gyakorlat

Függvények határértéke

Szükséges ismeretek

- Definiálja az $A \in \overline{\mathbb{R}}$ elem r > 0 sugarú környezetét.
- Mikor mondja azt, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely $a \in \overline{\mathbb{R}}$ helyen van határértéke?
- Adja meg egyenlőtlenségek segítségével a végesben vett véges határérték definícióját.
- Adja meg egyenlőtlenségek segítségével a plusz végtelenben vett plusz végtelen határérték definícióját.
- Írja le a hatványsor definícióját.
- Definiálja az exp függvényt.
- Mit tud mondani a hatványsor összegfüggvényének a határértékéről?

Feladatok

1. Legyen f valós-valós függyény. Fogalmazza meg környezetekkel és egyenlőtlenségekkel is az alábbi állításokat:

(a)
$$\lim_{n \to \infty} f = 7$$
,

(b)
$$\lim_{x \to +\infty} f(x) = -1$$
.

2. A definíció alapján határozza meg az alábbi határértékeket:

(a)
$$\lim_{x \to 0} \frac{1}{1+x}$$
,

(b)
$$\lim_{x \to +\infty} \frac{x^2 - 1}{2x^2 + 1}$$
,

(c)
$$\lim_{x \to 1} \frac{x^4 + 2x^2 - 3}{x^2 - 3x + 2}$$
.

M. Kritikus határértékek vizsgálata. Függvények határértékének a meghatározásánál "szerencsés esetekben" alkalmazhatjuk a határérték és a műveletek kapcsolatára vonatkozó (igen általános!) tételünket. Ezek az eredmények akkor használhatók, ha a tételben szereplő Rbeli A+B, AB, A/B műveletek értelmezve vannak. Ha valamelyik művelet nincs értelmezve, akkor a megfelelő függvények határértékéről általában semmit sem mondhatunk. Ezeket a kritikus határértékeket röviden a

$$(+\infty) + (-\infty), \qquad 0 \cdot (\pm \infty), \qquad \frac{\pm \infty}{\pm \infty}, \qquad \frac{0}{0}$$

szimbólumokkal szoktuk jelölni. Ilyen esetekben a sorozatoknál már megismert "módszert" követhetjük: a kritikus határértéket "valamilyen módon" (alkalmas azonosságok felhasználásával) megpróbáljuk nem kritikus határértékké átalakítani.

2

3. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x \to 1} \frac{x^n - 1}{x^m - 1}$$
 $(m, n = 1, 2, ...),$

(b)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$$

(b)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$$
, (c) $\lim_{x\to +\infty} \frac{x^2 - 3x + 2}{x^3 - 7x^2 + 5x - 1}$,

(d)
$$\lim_{x \to +\infty} \frac{x^3 + 2x^2 + 11x + 2}{x^2 + 3x + 2}$$

(d)
$$\lim_{x \to +\infty} \frac{x^3 + 2x^2 + 11x + 2}{x^2 + 3x + 2}$$
, (e) $\lim_{x \to +\infty} \frac{2x^3 + 3x^2 + 23}{-3x^3 - 5x^2 + 31x + 1}$.

4. A "gyöktelenítés technikájával" határozza meg az alábbi határértékeket:

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$
,

(b)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x^2}}{\sqrt{1+x}-1}$$
,

(c)
$$\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$$
 $(n=2,3,\ldots).$

5. A $\lim_{x\to 0} \frac{\sin x}{x} = 1$ felhasználásával számítsa ki az alábbi határértékeket:

(a)
$$\lim_{x\to 0} \frac{\sin ax}{\sin bx}$$
 $(a, b \in \mathbb{R} \setminus \{0\}),$ (b) $\lim_{x\to 0} \frac{1-\cos x}{x^2},$

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(c)
$$\lim_{x \to 0} \frac{1 - \cos x}{x},$$

(d)
$$\lim_{x \to 0} \frac{\operatorname{tg} x - \sin x}{x^3}.$$

6. A hatványsorokra vonatkozó ismeretek alkalmazásával határozza meg a következő határértékeket:

(a)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
,

(b)
$$\lim_{x \to +\infty} e^x$$
,

(c)
$$\lim_{x \to -\infty} e^x$$
,

(d)
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
.

Házi feladatok

1. A definíció alapján határozza meg az alábbi határértékeket:

(a)
$$\lim_{x \to 2} \sqrt{2x + 5}$$
,

(b)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^3 - 2x^2 - x + 2}$$
.

2. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{3}{x^3 - 1} \right)$$
, (b) $\lim_{x \to 5} \frac{\sqrt{x-1} - 2}{x - 5}$,

(b)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$$
,

(c)
$$\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x},$$

(d)
$$\lim_{x\to 0} \frac{e^{3x} - e^{2x}}{x}$$
.

Gyakorló feladatok

1. A definíció alapján lássa be, hogy

(a) minden $a \in \mathbb{R}$ esetén $\lim_{x \to a} x^n = a^n$, ahol $n = 1, 2, 3, \dots$;

3

(b) $\lim_{x \to +\infty} x^n = +\infty$, ha $n = 1, 2, 3, \dots$;

(c) $\lim_{x \to -\infty} x^n = \begin{cases} +\infty, & \text{ha } n = 2, 4, 6, \dots \\ -\infty & \text{ha } n = 1, 3, 5, \dots; \end{cases}$

(d) minden
$$a \in \mathbb{R} \setminus \{0\}$$
 esetén $\lim_{x \to a} \frac{1}{x^n} = \frac{1}{a^n}$, ahol $n = 1, 2, 3, \dots$;

(e)
$$\lim_{x \to +\infty} \frac{1}{x^n} = 0 = \lim_{x \to -\infty} \frac{1}{x^n}$$
, ha $n = 1, 2, 3, \dots$;

(f)
$$\lim_{x \to 0} \frac{1}{x^n} \begin{cases} \nexists, & \text{ha } n = 1, 3, 5, \dots \\ = +\infty & \text{ha } n = 2, 4, 6, \dots \end{cases}$$

2. Számítsa ki az következő határértékeket:

(a)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^3 - 1} \right)$$
,

(b)
$$\lim_{x \to 1} \left(\frac{n}{1 - x^n} - \frac{m}{1 - x^m} \right)$$
 $(m, n = 1, 2, ...),$

(c)
$$\lim_{x\to 0} x\left[\frac{1}{x}\right]$$
, ahol $[x]$ az $x\in\mathbb{R}$ egész részét jelöli,

(d)
$$\lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} - x \right),$$

(e)
$$\lim_{x \to 1} \frac{\sqrt[n]{x} - 1}{\sqrt[n]{x} - 1}$$
 $(m, n = 2, 3, ...)$, (f) $\lim_{x \to 0} \frac{x^2}{\sqrt[5]{1 + 5x} - 1}$,

(g)
$$\lim_{x \to 0} \frac{x^2}{\sqrt{1 + x \sin x} - \sqrt{\cos x}}.$$

- **3. Polinom határértéke.** Legyen $p(x) := \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n \ (x \in \mathbb{R})$ polinom, ahol $\alpha_0, \dots, \alpha_n \in \mathbb{R}$ és $\alpha_n \neq 0$. Mutassa meg, hogy
 - (a) minden $a \in \mathbb{R}$ esetén $\lim_{x \to a} p(x) = p(a)$,

(b)
$$\lim_{x \to +\infty} p(x) = \operatorname{sign}(\alpha_n)(+\infty),$$

(c)
$$\lim_{x \to -\infty} p(x) = (-1)^n \operatorname{sign}(\alpha_n)(+\infty)$$
.

- **M.** A (b) és (c) állítások tehát azt jelentik, hogy polinomok "viselkedését" a plusz/mínusz végtelen környezetében a polinom főtagja (az $\alpha_n x^n$ tag, illetve még pontosabban az α_n főegyüttható előjele és n paritása) határozza meg, azaz polinom határértéke a \pm végtelenben megegyezik a főtag \pm végtelenben vett határértékével.
- 4. Racionális törtfüggvények határértéke. Legyen p és q polinom, $a \in \overline{\mathbb{R}}$. Vizsgáljuk a következő határértéket:

$$\lim_{x \to a} \frac{p(x)}{q(x)}.$$

A lehetséges esetek: $a=\pm\infty,\,a\in\mathbb{R};\,q(a)\neq0,\,q(a)=0;$ egyoldali határértékek.

5. Milyen
$$a, b \in \mathbb{R}$$
 mellett igaz az, hogy $\lim_{x \to +\infty} (\sqrt{x^2 - x + 1} - (ax + b)) = 0$?

4

- **6.** Vizsgálja meg, hogy az alábbi függvényeknek az értelmezési tartományuk melyik torlódási pontjában van határértéke:
 - (a) $\mathbb{R} \ni x \mapsto \{x\}$, ahol $\{x\} := x [x]$ az x valós szám tört része,
 - (b) $\mathbb{R} \ni x \mapsto x \{x\},$

(c)
$$f(x) := \begin{cases} x^2, & \text{ha } x \in \mathbb{Q} \\ -x^2, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

(d)
$$f(x) := \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

(e) Riemann-függvény:

$$f(x) := \begin{cases} \frac{1}{q}, & \text{ha } x = \frac{p}{q} \in \mathbb{Q} \setminus \{0\}, (p,q) = 1, q \in \mathbb{N}, p \in \mathbb{Z} \\ 1, & \text{ha } x = 0 \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

(itt (p,q) jelöli a p és q számok legnagyobb közös osztóját).