

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет им. Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по домашнему заданию

Тема: Поток в транспортной сети. Алгоритм Форда-Фалкерсона Дисциплина: <u>Дискретная математика</u>

Задание

16 вариант

Общая формулировка задания:

Сеть в виде взвешенного орграфа задана матрицей Ω пропускных способностей ориентированных ребер. При помощи алгоритма Форда — Фалкерсона определить максимальный поток φ_{max} , доставляемый от источника $s=x_1$ к стоку $t=x_{12}$ и указать минимальный разрез, отделяющий t от s.

Оптимизационную часть алгоритма реализовать в виде коррекции потока хотя бы на одном увеличивающем маршруте.

Матрица Ω : см. по номеру варианта.

Матрица весов:

Вариант 16.

	$\boldsymbol{x_1}$	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}
x_1	1	17	23	8	14	1	1	ı	ı	ı	ı	_
x_2	ı	ı	10	ı	ı	ı	ı	ı	ı	1	-	5
x_3	1	1	ı	30	1	21	11	ı	ı	1	1	_
x_4	1	1	1	1	-	5	ı	14	ı	ı	ı	_
x_5	ı	ı	ı	2	ı	ı	ı	5	ı	26	-	_
x_6	1	8	ı	1	1	ı	6	ı	ı	1	1	15
<i>x</i> ₇	-	-	-	-	-	-	-	١	13	1	7	-
<i>x</i> ₈	ı	ı	ı	ı	ı	ı	6	ı	2	1	-	_
x_9	_	-	-	-	-	22	-	-	-	-	9	11
<i>x</i> ₁₀	-	-	-	-	-	-	-	١	-	1	١	6
<i>x</i> ₁₁	-	ı	ı	1	1	1	ı	-	ı	27	-	16
<i>x</i> ₁₂	_	_	_	_	_	_	_	_	_	_	-	_

Теоретические сведения

Теорема 1: Если (s, ..., x_i , ..., t) — путь от источника к стоку и все ребра на этом пути ненасыщенные, то величину потока на этом пути и, следовательно, во всей сети, можно увеличить на значение δ^* .

Где
$$\delta^* = \min\{\delta(x_i, x_j)\} = \min\{c(x_i, x_j) - \varphi(x_i, x_j)\}.$$

Теорема 2: Если (s, ..., x_i , ..., t) — маршрут от источника к стоку, такой, что все прямые ребра на нем ненасыщенные, а поток по всем обратным ребрам строго >0 (такой маршрут назовем <u>увеличивающим</u>), тогда на всех прямых ребрах такого маршрута поток φ можно увеличить на ε^* , а на все обратных — уменьшить на ε^* . При этом поток в сети возрастет на ε^* .

Где
$$\varepsilon^* = \min\{\delta^*, \varphi^*\},$$

$$\delta^* = \min\{\delta(x_i, x_j)\} = \min\{c(x_i, x_j) - \varphi(x_i, x_j)\}$$

$$\varphi^* = \min\{\varphi(x_i, x_j)\}$$

<u>Теорема 3</u>: Поток в сети достигает максимального значения φ_{\max} тогда и только тогда, когда в сети не существует ни одного увеличивающего маршрута.

<u>Теорема 4</u> (<u>теорема Форда-Фалкерсона</u>): Для любой сети с одним источником и одним стоком величина максимального потока φ_{max} от источника к стоку равна пропускной способности минимального разреза.

Решение

Изобразим заданную сеть графически в соответствии с матрицей Ω пропускных способностей ориентированных ребер.

Рисунок 1 — вид исходной сети

І. Достижение полного потока

1) Зададим начальное значение потока через все дуги (и соответственно через всю сеть) $\varphi_i = 0$ для $\forall i \in [1;12]$. Далее будем увеличивать поток в сети согласно теореме 1.

Рисунок 2 — сеть с нулевым потоком

2) Рассмотрим путь $(x_1,x_3,x_7,x_9,x_6,x_{12})$ от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_3,x_7,x_9,x_6,x_{12})$, увеличив поток на пути $(x_1,x_3,x_7,x_9,x_6,x_{12})$ на значение $\delta^*(x_1,x_3,x_7,x_9,x_6,x_{12})$.

 $\delta^*(x_1,x_3,x_7,x_9,x_6,x_{12}) = \min\{\delta(x_1,x_3), \delta(x_3,x_7), \delta(x_7,x_9), \delta(x_9,x_6), \delta(x_6,x_{12})\} = \min\{23, 11, 13, 22, 15\} = 11$

Дуга (x_3,x_7) стала насыщенной.

Рисунок 3 — увеличение потока на пути $(x_1, x_3, x_7, x_9, x_6, x_{12})$

3) Рассмотрим путь (x_1,x_4,x_6,x_2,x_{12}) от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_4,x_6,x_2,x_{12})$ увеличив поток на пути (x_1,x_4,x_6,x_2,x_{12}) на значение $\delta^*(x_1,x_4,x_6,x_2,x_{12})$.

 $\delta^*(x_1,x_4,x_6,x_2,x_{12})=\min\{\delta(x_1,x_4),\,\delta(x_4,x_6),\,\delta(x_6,x_2),\,\delta(x_2,x_{12})\}=\min\{8,\,5,\,8,\,5\}=5$ Дуги (x_4,x_6) и (x_2,x_{12}) стали насыщенными.

Рисунок 4 — увеличение потока на пути $(x_1, x_4, x_6, x_2, x_{12})$

4) Рассмотрим путь $(x_1,x_4,x_8,x_7,x_{11},x_{12})$ от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_4,x_8,x_7,x_{11},x_{12})$ увеличив поток на пути $(x_1,x_4,x_8,x_7,x_{11},x_{12})$ на значение $\delta^*(x_1,x_4,x_8,x_7,x_{11},x_{12})$.

Рисунок 5 — увеличение потока на пути $(x_1, x_4, x_8, x_7, x_{11}, x_{12})$

 $\delta^*(x_1,x_4,x_8,x_7,x_{11},x_{12}) = \min\{\delta(x_1,x_4), \ \delta(x_4,x_8), \ \delta(x_8,x_7), \ \delta(x_7,x_{11}), \ \delta(x_{11},x_{12})\} = \min\{3, 14, 6, 7, 16\} = 3$

Дуга (х₁,х₄) стала насыщенной

5) Рассмотрим путь $(x_1,x_5,x_4,x_8,x_9,x_{12})$ от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_5,x_4,x_8,x_9,x_{12})$ увеличив поток на пути $(x_1,x_5,x_4,x_8,x_9,x_{12})$ на значение $\delta^*(x_1,x_5,x_4,x_8,x_9,x_{12})$.

 $\delta^*(x_1,x_5,x_4,x_8,x_9,x_{12}) = \min\{\delta(x_1,x_5), \, \delta(x_5,x_4), \, \delta(x_4,x_8), \, \delta(x_8,x_9), \, \delta(x_9,x_{12})\} = \min\{14, \, 2, \, 11, \, 2, \, 11\} = 2$

Дуги (x_5,x_4) и (x_8,x_9) стали насыщенными.

Рисунок 6 — увеличение потока на пути $(x_1, x_5, x_4, x_8, x_9, x_{12})$

6) Рассмотрим путь (x_1,x_5,x_{10},x_{12}) от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_5,x_{10},x_{12})$ увеличив поток на пути (x_1,x_5,x_{10},x_{12}) на значение $\delta^*(x_1,x_5,x_{10},x_{12})$.

 $\delta^*(x_1,x_5,x_{10},x_{12})=\min\{\delta(x_1,x_5),\,\delta(x_5,x_{10}),\,\delta(x_{10},x_{12})\}=\min\{12,\,26,\,6\}=6$ Дуга (x_{10},x_{12}) стала насыщенной.

Рисунок 7 — увеличение потока на пути $(x_1, x_5, x_{10}, x_{12})$

7) Рассмотрим путь $(x_1,x_5,x_8,x_7,x_{11},x_{12})$ от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_5,x_8,x_7,x_{11},x_{12})$ увеличив поток на пути $(x_1,x_5,x_8,x_7,x_{11},x_{12})$ на значение $\delta^*(x_1,x_5,x_8,x_7,x_{11},x_{12})$.

$$\delta^*(x_1,x_5,x_8,x_7,x_{11},x_{12}) = \min\{\delta(x_1,x_5), \, \delta(x_5,x_8), \, \delta(x_8,x_7), \, \delta(x_7,x_{11}), \, \delta(x_{11},x_{12})\} = \min\{6, 5, 3, 4, 13\} = 3$$

Дуга (x_8,x_7) стала насыщенной.

Рисунок 8 — увеличение потока на пути $(x_1,x_5,x_8,x_7,x_{11},x_{12})$

8) Рассмотрим путь (x_1,x_2,x_3,x_6,x_{12}) от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_2,x_3,x_6,x_{12})$ увеличив поток на пути (x_1,x_2,x_3,x_6,x_{12}) на значение $\delta^*(x_1,x_2,x_3,x_6,x_{12})$.

 $\delta^*(x_1,x_2,x_3,x_6,x_{12}) = \min\{\delta(x_1,x_2),\,\delta(x_2,x_3),\,\delta(x_3,x_6),\,\delta(x_6,x_{12})\} = \min\{17,\,10,\,21,\,4\} = 3$ Дуга (x_6,x_{12}) стала насыщенной.

Рисунок 9 — увеличение потока на пути $(x_1, x_2, x_3, x_6, x_{12})$

9) Рассмотрим путь $(x_1,x_2,x_3,x_6,x_7,x_{11},x_{12})$ от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_2,x_3,x_6,x_7,x_{11},x_{12})$ увеличив поток на пути $(x_1,x_2,x_3,x_6,x_7,x_{11},x_{12})$ на значение $\delta^*(x_1,x_2,x_3,x_6,x_7,x_{11},x_{12})$.

 $\delta^*(x_1, x_2, x_3, x_6, x_7, x_{11}, x_{12}) = \min\{\delta(x_1, x_2), \delta(x_2, x_3), \delta(x_3, x_6), \delta(x_6, x_7), \delta(x_7, x_{11}), \delta(x_{11}, x_{12})\} = \min\{13, 6, 17, 6, 1, 10\} = 1$

Дуга (x_7, x_{11}) стала насыщенной.

Рисунок 10 — увеличение потока на пути $(x_1,x_2,x_3,x_6,x_7,x_{11},x_{12})$

10) Рассмотрим путь $(x_1,x_3,x_6,x_7,x_9,x_{12})$ от источника к стоку, состоящий из ненасыщенных дуг. Согласно <u>теореме 1</u> можно увеличить поток во всей сети на $\delta^*(x_1,x_3,x_6,x_7,x_9,x_{12})$ увеличив поток на пути $(x_1,x_3,x_6,x_7,x_9,x_{12})$ на значение $\delta^*(x_1,x_3,x_6,x_7,x_9,x_{12})$.

 $\delta^*(x_1,x_3,x_6,x_7,x_9,x_{12}) = \min\{\delta(x_1, x_3), \delta(x_3, x_6), \delta(x_6, x_7), \delta(x_7, x_9), \delta(x_9, x_{11})\} = \min\{12, 16, 5, 2, 9\} = 2$

Дуга (х₇,х₉) стала насыщенной.

Рисунок 11 — увеличение потока на пути $(x_1,x_3,x_6,x_7,x_9,x_{12})$

Итак, не существует путей из источника в сток, не включающих насыщенных дуг, следовательно, был получен полный поток в сети:

$$\varphi_{\text{полн}} = \sum \varphi(s, x_i) = \sum \varphi(x_i, t) = 5 + 13 + 8 + 11 = 5 + 15 + 4 + 7 + 6 = 37$$

Теперь проведем оптимизацию сети, опираясь на теоремы 2 и 3.

II. Достижение максимального потока

Для достижения максимального потока посредством оптимизации сети согласно теореме 2 будем искать увеличивающие маршруты в сети и корректировать значение потока в их дугах.

11) Рассмотрим маршрут (x_1,x_3,x_6,x_9,x_{12}) . Он является увеличивающим. Скорректируем величину потока в его дугах на величины $\varepsilon^*(x_1,x_3,x_6,x_9,x_{12})$ согласно <u>теореме 2</u>. Тогда поток в сети вырастет так же на величину $\varepsilon^*(x_1,x_3,x_6,x_9,x_{12})$

$$\begin{split} & \varphi^* = \min\{\varphi(x_9, x_6)\} = \min\{11\} = 11 \\ & \delta^* = \min\{\delta(x_1, x_3), \, \delta(x_3, x_6), \, \delta(x_9, x_{12})\} = \min\{10, \, 14, \, 7\} = 7 \\ & \epsilon^* = \min\{\varphi^*, \, \delta^*\} = \min\{11, \, 7\} = 7 \end{split}$$

Дуга (x_9, x_{12}) стала насыщенной

Рисунок 12 — увеличивающий маршрут $(x_1, x_3, x_6, x_9, x_{12})$

12) Рассмотрим маршрут $(x_1,x_2,x_3,x_6,x_9,x_{11},x_{12})$. Он является увеличивающим. Скорректируем величину потока в его дугах на $\varepsilon^*(x_1,x_2,x_3,x_6,x_9,x_{11},x_{12})$ согласно теореме 2. Тогда поток в сети вырастет так же на величину $\varepsilon^*(x_1,x_2,x_3,x_6,x_9,x_{11},x_{12})$ $\varphi^* = \min\{\varphi(x_9,x_6)\} = \min\{4\} = 4$ $\delta^* = \min\{\delta(x_1,x_2),\,\delta(x_2,x_3),\,\delta(x_3,x_6),\,\delta(x_9,x_{11})\} = \min\{12,\,5,\,7,\,6,\,9\} = 6$ $\varepsilon^* = \min\{\varphi^*,\,\delta^*\} = \min\{4,\,6\} = 4$ Дуга (x_9,x_6) имеет теперь $\varphi(x_9,x_6) = 0$

Рисунок 13 — увеличивающий маршрут $(x_1, x_2, x_3, x_6, x_9, x_{11}, x_{12})$

13) Как видно на рисунке 14, найти еще один увеличивающий маршрут не удалось, следовательно, по теореме 3, был достигнут максимальный поток φ_{max} $\varphi_{\text{max}} = \sum \varphi(\mathbf{s}, \mathbf{x}_i) = \sum \varphi(\mathbf{x}_i, \mathbf{t}) = 9 + 20 + 8 + 11 = 5 + 15 + 11 + 11 + 6 = 48$

Рисунок 14 — поиск увеличивающего маршрута

III. Построение минимального разреза

Отделим помеченные вершины от непомеченных (рисунок 15) и выпишем насыщенные дуги, составляющие минимальный разрез.

$$A = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_{10}\}$$

$$A' = \{x_9, x_{11}, x_{12}\}$$

Минимальный разрез: $(A \rightarrow A') = \{(x_2, x_{12}), (x_6, x_{12}), (x_7, x_9), (x_7, x_{11}), (x_8, x_9), (x_{10}, x_{12})\}$

Согласно теореме Форда-Фалкерсона, величина φ_{\max} максимального потока в сети равна $c(A' \to A)$.

$$c(A \rightarrow A') = c(x_2, x_{12}) + c(x_6, x_{12}) + c(x_7, x_9) + c(x_7, x_{11}) + c(x_8, x_9) + c(x_{10}, x_{12}) = 5 + 15 + 13 + 7 + 2 + 6 = 48$$

Значение совпало с величиной φ_{\max} , найденной в пункте II, следовательно, согласно <u>теореме 4</u>, задача решена верно.

Рисунок 15 — построение минимального разреза

Вывод:

• В ходе данной работы с помощью <u>теоремы 1</u> за 10 шагов был найден полный поток сети $\varphi_{\text{полн.}}$ Затем, за еще 3 шага с помощью <u>теорем 2 и 3</u> был найден максимальный поток в сети $\varphi_{\text{max.}}$ Затем был найден минимальный разрез сети, его пропускная способность совпала с максимальным потоком в сети, следовательно задача была решена верно (в соответствии с <u>теоремой 4</u>).

Максимальный поток в сети: $\varphi_{\text{max}} = 48$ $A = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_{10}\}$ $A' = \{x_9, x_{11}, x_{12}\}$ Минимальный разрез: $(A \rightarrow A') = \{(x_2, x_{12}), (x_6, x_{12}), (x_7, x_9), (x_7, x_{11}), (x_8, x_9), (x_{10}, x_{12})\}$ $c(A \rightarrow A') = 48$

• В ходе данной работы были освоены навыки применения алгоритма Форда-Фалкерсона для поиска максимального потока и минимального разреза в сети (с помощью теорем, перечисленных в теоретической части).