HEWLETT-PACKARD

HP-67

Standard Pac

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Introduction

The HP-67 Standard Pac provides an excellent nucleus from which to build your program library. The programs address topics common to business, science, and engineering as well as providing enjoyable programs such as *Arithmetic Teacher*, *Follow Me*, *and Moon Rocket Lander*.

No knowledge of programming is required to use the programs in Standard Pac. However, familiarity with sections one through five of the Owner's Handbook (or previous HP calculator experience) is assumed. If this is your first encounter with programmability, be sure to read "Running a Program" on pages iv to xi of this manual. This detailed description is designed to help you become more familiar with your calculator. It is most effective when you perform all operations as they are described.

For each program the Standard Pac provides a description, user instructions, keystrokes for example problems, a prerecorded magnetic card (in the plastic card case) and program listings (at the back of this manual). There is also a diagnostic program for checking calculator operation, a head cleaning card which can be used occasionally to clean the magnetic card read/write head, and blank magnetic cards which may be used to record the programs you write.

Standard Pac differs from optional HP-67/97 application pacs in that it contains explanations of important programming techniques. The titles and page numbers of these explanations may be found opposite page 15-03 of this manual.

We hope you find Standard Pac useful in your daily calculations.

NOTES

CONTENTS

Progra	m Page
1. M	oving Average
2. Ta	abulator
3. C	urve Fitting
4. Ca	Alendar Functions
5. A	nnuities and Compound Amounts
6. Fo	bllow Me
7. Tr	iangle Solutions
	ector Operations
9. Po	olynomial Evaluation
10. M	atrix Operations
	Approximates the derivative of a function at a point, evaluates a function at a point, and approximates the integral over a finite interval for a user specified function $f(x)$. Also, approximates real roots of $f(x)$.
12. Er	eglish—SI Conversions (Metric Conversions)
13. Aı	rithmetic Teacher
	oon Rocket Lander
	agnostic Program

RUNNING A PROGRAM

Loading A Program

Select the *Curve Fitting* card, SD-03A, from the card case supplied with this application pac.

Set W/PRGM-RUN switch to RUN.

Turn the calculator ON. You should see 0.00.

Gently insert either end of the card (printed side up) in the reader slot as shown in figure 1.

Figure 1.

When the card is part way in, a motor engages and passes it out the side of the calculator. Sometimes the motor engages but does not pull the card in. If this happens, push the card a little farther into the machine. Do not impede or force the card; let it move freely.

The display will show "Error" if the card reads improperly. In this case, press **CLX** and reinsert the card.

Since *Curve Fitting* is longer than 112 steps, the display now shows "Crd" indicating that a second card pass is necessary to load the remaining steps. With the writing still visible to you, insert the *opposite* end of the card (figure 2) and pass the card through the card reader again.

Figure 2.

When the motor stops, remove the card from the side of the calculator and insert it in the "window slot" of the calculator (see figure 3).

Figure 3.

The program has now been stored in the calculator. It will remain stored until another program is loaded or the calculator is turned off.

MAGNETIC CARD

Instructions On The Magnetic Card

Look at the card that you just inserted in the window slot of the calculator. The mnemonics on the card can help you run the program. The most important thing to note is that the mnemonics are associated with the user-definable keys A - E. For instance "LOG?" and " $y + \hat{x}$ " are associated with the D key.

Following is a table of the important types of symbols and conventions used in this pac. The table is provided as a reference until you become familiar with the symbols on the magnetic cards.

Symbols And Conventions

SYMBOL OR CONVENTION	INDICATED MEANING
White mnemonic: x A	White mnemonics are associated with the user-definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing \mathbf{A} .
Gold mnemonic: y x	Gold mnemonics are similar to white mnemonics except that the gold we key must be pressed before the user-definable key. In this case y could be input by pressing we saw that the same input by pressing we saw the saw that the same input by pressing we saw the same input by pressing we saw the saw that the same input by pressing we saw the saw that the sa
x † y	is the symbol for ENTER . In this case ENTER is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER , key in y and press A .
X A	The box around the variable x indicates input by pressing STO A.
(x)	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.
→ x	→ is the symbol for calculate. This indicates that you may calculate x by pressing key .
→x, y, z	This indicates that x, y, and z are calculated by pressing A once. The values would be sequentially displayed in x, y, z order.

SYMBOL OR CONVENTION	INDICATED MEANING
→x; y; z	The semi-colons indicate that after x has been calculated using A, y and z may be calculated in turn by pressing R/S and then again R/S.
→''x '',y A	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.
Ф X A	The two-way arrow \Rightarrow indicates that x may be either output or input when the associated user-definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.
P? A	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a pause mode is controlled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.
START A	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.
DEL A	This special command indicates that the last value or set of values input may be deleted by pressing A .

100

0.00

-

-

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form—which accompanies each program—is your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT-DATA/UNITS column specifies the input data, and the units of data if applicable. Data input keys consist of (a) and decimal point (the numeric keys), (EEX (enter exponent), and (CHS (change sign)).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data.

The OUTPUT-DATA/UNITS column specifies intermediate and final outputs and their units, where applicable.

The following illustrates the User Instruction Form for Curve Fitting, SD-03A.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: Select pause input			
	mode.		[] A	1.00/0.00
3	Select type of regression:			
	for linear fit		11 B	1.00
	for exponential fit		1 G	1.00
	for logarithmic fit		11 D	1.00
	for power fit		O E	1.00
4	Input x value*.	X _i	ENTER+	Xi
5	Input y value.	y i	A	i + 1
6	Repeat steps 4 and 5 for all data			
	pairs**.			
7	Compute and output coefficient			
	of determination r ² and a and b.		0	r², a, b
8	Optional: Make projections			
	based on a known y value.	у	0	Ŷ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Optional: Make projections			
	based on a known x value.	X	8	ŷ
10	For a new case go to step 3.			
	*Note that this step may be skip-			
	ped if the x value equals the dis-			
	played counter (i + 1).			
	**The last set of data pairs may			
	be deleted by pressing h R+			
	then B . Any set of data pairs			
	may be deleted by entering them			
	as in steps 4 and 5 and			
	pressing B.			

Since you loaded this program in "Loading A Program" on page iv, step 1 is already done and we can move to step 2. (If you turned your calculator off, you must reload the program.)

Step 2 is optional. It is primarily intended for printer control on the HP-97 printing programmable calculator. On your HP-67 calculator, print commands are interpreted as pause commands. That is, the calculator stops and displays the X-register value for one second and then continues with program execution.

In this particular application the print mode provides a permanent record of input data on the HP-97 printing calculator. On the HP-67 pocket calculator the input values are displayed for review if the print input mode is selected.

To select this "print/pause" mode, you would press A as shown in the KEYS column of the User Instruction Form. Go ahead and press A now. You should see a 1.00 in the display as indicated in the OUTPUT DATA/UNITS column. Successive presses of A will cause 0.00 and 1.00 to be displayed alternately, indicating that the print/pause mode is off (0.00) or on (1.00). Try this, but leave 0.00 displayed (print/pause mode off) before moving to step 3.

In step 3 the type of curve fit is selected. There are four options listed, and you must select one. For example, to select exponential curve fit, refer to the *KEYS* column of the same line and press [1] ©. Do this. The number 1.00 should be displayed, as shown in the OUTPUT-DATA/UNITS column.

The magnetic card gives short mnemonic hints about the four possible modes that may be selected. Printed in gold above the key is "EXP?" indicating that the exponential mode is set by pressing c.

To do a curve fit, you must input a number of data pairs $(x_i \text{ and } y_i)$. Steps 4, 5 and 6 give the input instructions. First key in x_i as indicated under INPUT-DATA/UNITS. Then press **ENTER** to tell the calculator that you have completed building the number x. Then key in the value for y_i and press A. The number of data pairs plus one (i+1) will appear in the display. Repeat the procedure for all data pairs. Try it for this data set:

X_i	1	3	7
Уi	2.7	20	1100

The keystrokes you should use are 1 ENTER 2.7 A 3 ENTER 20 A 7 ENTER 1100 A. If you make a mistake, look at the second note at the bottom of the User Instructions. It describes procedures for correcting errors. If the last input pair was in error, you could press h R B and eliminate it. Don't do this. Instead eliminate the (3,20) pair and replace it with (4,60). The keystrokes are 3 ENTER 20 B 4 ENTER 60 A.

Now that you know how the program works, the mnemonics on the magnetic card will prompt you on data input and data correction.

When all data have been keyed into the calculator, the regression coefficients can be calculated. Step 7 of the User Instructions says press to do this.

Three values will be displayed in the order listed in the comments column of the user instructions. First, the coefficient of determination (r^2 here equal to 1.00) will be displayed. Then the regression coefficients, a (1.02) and b (1.00), will be displayed. Go ahead and press \Box . When execution stops (after all three values have been displayed), you may review the values by pressing \Box again.

If you wish to have more time to observe a value during a pause, press during the pause. This stops program execution leaving the value displayed. To restart the calculator, press **R/S** again. Try this. Press **C**, then stop the calculator during the first pause by pressing **R/S**. Press **R/S** again to restart program execution. Stop the calculator during the second pause and see 1.02. Press **R/S** again to complete the calculation. Note that during an output pause, the decimal point flashes. This signifies that program execution has not terminated and will resume automatically.

Now try a projection. Step 9 instructs you to key in an x value, press \blacksquare and see a projected \hat{y} value. Try an x value of 10. You should see a projected \hat{y} result of 22926.17. You can also estimate an x value \hat{x} using a known y value. Leave the value of 22926.17 in the display and press \blacksquare . The value 10.00 should be displayed again.

If your answers agree with ours, you are ready to try other programs in Standard Pac. If your answers did not agree with ours, try the procedure again.

MOVING AVERAGE

In a moving average, a specified number of data points are averaged. When there is a new piece of input data, the oldest piece of data is discarded to make room for the latest input. This replacement scheme makes the moving average a valuable tool in following trends. The fewer the number of data points, the more trend sensitive the average becomes. With a large number of data points, the average behaves more like a regular average, responding slowly to new input data.

This program allows for a moving average span of 1 to 22 units. The number of units, n, must be specified before any data input begins by keying it in and pressing \blacksquare . Then the data is input by keying in each value, x_k , and pressing \blacksquare in turn. The calculator will display the current input number, k, until at least n values have been entered. After the nth value (and for all succeeding values), the calculator will flash the current input number before halting with the moving average, AVG, in the display.

In many applications moving averages are calculated daily, weekly, monthly, or even yearly. In such cases it is necessary to store the register contents on a magnetic card for future use. To do this, press for WRITE DATA and insert one side of the blank card. If the display says "Crd" after the first card pass, insert the other end of the card. If the display is unchanged after the first pass, all data has been recorded on the first pass and you may proceed to other calculations. When the recorded data is required again, insert the data card. If "Crd" appears after the first pass, load the other end of the card. The original data has been returned to the storage registers and you are ready to continue the moving average at the point you left off.

The value of the average may be displayed at any time by pressing **D**. This feature allows the average to be calculated before n data points have been input. The average is based on the number of inputs or n, whichever is smaller.

Remarks:

Attempts to input a value larger than 22.00 or smaller than 1.00 for n will result in a flashing display which can be cleared by pressing R/S.

All data storage registers are used.

Moving averages of 10.00 or more units require two passes of the data card to record or store the values.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	If data from a previous calcu-			
	lation is stored on a magnetic			
	card, insert the magnetic			
	card and skip to step 5.			
3	Input number of points in			
	average (1 ≤ n ≤ 22)	n	O A	, n
4	Optional: Select pause input		□ B	1.00/0.00
	mode.			
5	Input data point and compute			
	moving average.*	X _k	A	"k", AVG
6	Go to step 5 for next input.			
7	Optional: To store data on			
	magnetic card for future use,			
	press B and insert card in			
	reader.		В	Crd
8	Optional: Output values in			
	newest to oldest order.		C	Values
9	Optional: Display average at		The state of the s	
	any time.		D	AVG
	For a new case go to step 2.			
	*If you make an error on data			
	input, you must start over unless			
	you previously recorded data			
	on a magnetic card. If data was			
	previously recorded, load the			
	data card and start with the first			
	value input after recording the			
	card.			

Example 1:

A six-period moving average is used to project monthly sales. The first 6 months of sales are as follows:

Month	1	2	3	4	5	6
Sales	125	183	207	222	198	240

Compute the moving average. Also compute the average after month three.

Keystrokes:	Outputs:	
6 🔲 🖪 ————	→ 6.00	
125 A ———	→ 1.00	
183 A ————	→ 2.00	
207 A —	→ 3.00	
D	→ 171.67	(average after month three)
222 A ————	→ 4.00	
198 A	→ 5.00	
240 🖪 ————	···6.00'',	195.83

Now record the data for example 2.

B — Crd

Insert a blank magnetic card in the card reader.

Now turn the calculator off and assume a month has passed. Turn the calculator back on and load both sides of *Moving Average*.

Example 2:

The actual sales for the seventh month totaled 225 units. Compute a new moving average with this data. Also, output the values in the average.

Load the magnetic data card recorded at the end of example 1.

Keystrokes:	Outputs:	
225 A —	·'7.00'',	212.50
C	→ 225.00 ***	
_	240.00 ***	_
	198.00 ***	in newest to
	222.00 ***	oldest order)
	207.00 ***	
	183.00 ***	
	6.00	

NOTES

TABULATOR

This program is designed to be of aid in tabulating applications such as accounting and estimating. It can be used to add single columns containing up to 24 values (VAL), remember each value, and find the percent of total of each value. (The first example problem shows this type of use.) The program can also be used to total any number of columns and find row totals, the percent of total for each row total, and the grand total for a table of values. The total of each column is displayed as soon as the column is completed.

Column totals (CTL) are output when the column is complete.

Figure 1

Equations:

% of Total_i =
$$\frac{\text{Row Total}_{i}}{\text{Grand Total}} \times 100$$

Remarks:

If the last value input was in error, it may be deleted by pressing **B**. This subtracts the value from both column and row totals and resets the indices.

Attempts to specify more than 24 or less than 1 for the number of rows will result in flashing input which can be cleared by pressing R/S.

All data storage registers are used.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.	A Company of the Comp		
2	Key in number of rows (1 to 24)			
	and initialize*.	ROWS	1 A	0.00
3	Optional: Select pause input			
	mode		0 B	1.00/0.00
4	Input value	VAL	A	VAL (or CTL)
5	If your last data input was in			
	error execute this step to return			
	to prior status:		B	
6	Go to step 4 until all values have			
	been input.			
7	Obtain outputs:			
	Output row totals and grand total.		0	ROWS
	or			
	Output % of grand total for each			
	row total.		0	ROW %
8	Optional: Compute percentage			
	of grand total for any number.	NUMBER	8	% of GT
9	For new case go to step 2.			
	*Flashing input indicates an			
	input less than one or greater			
	than 24. Clear with R/s.			

Example 1:

The following list of unit sales figures are to be totaled and converted to monthly percentages.

 January: 1012
 May: 1502
 September: 1051

 February: 1235
 June: 1073
 October: 1244

 March: 895
 July: 973
 November: 1127

 April: 1123
 August: 1250
 December: 977

Keystrokes:	Output:
12 🔟 🗛 —————————————————————————————————	0.00
1012 A 1235 A 895 A 1123 A	1123.00
1502 A 1073 A 973 A 1250 A	1250.00
1051 A 1244 A 1127 A 977 A	
D	7.52 *** (Percents)
	9.17 ***
	6.65 ***
	8.34 ***
	11.16 ***
	7.97 ***
	7.23 ***
	9.29 ***
	7.81 ***
	9.24 ***
	8.37 ***
	7.26 ***
	100.00 ***
G ———	1012.00 *** (row totals)
	1235.00 ***
	895.00 ***
	1123.00 ***
	1502.00 ***
	1073.00 ***
	973.00 ***
	1250.00 ***
	1051.00 ***
	1244.00 ***
	1127.00 ***
	977.00 ***
	13462.00 ***

Example 2:

1907

2040

2661

The following table is to be totaled (both rows and columns). Also, find the percent of total sales for each booklet.

BOOKLET SALES DATA

	JAN	FEB	MARCH	APRIL	MAY
BOOK 1 BOOK 2	273 1093	284 847	303 1222	244 1027	252 978
воок з	423	654	683	540	570
BOOK 4	118	255	453	755	805

Keystrokes: Outputs: 4 🚺 A -273 A 1093 A 423 A 118 A — → 1907.00 (Jan total) 284 A 847 A 654 A 255 A → 2040.00 (Feb total) 303 A 1222 A 683 A 453 A -→ 2661.00 (Mar total) 244 A 1027 A 540 A 755 A -**→** 2566.00 (Apr total) 252 A 978 A 570 A 805 A -**→** 2605.00 (May total) Row totals -**C** -% of row totals D -**BOOKLET SALES DATA** JAN FEB MARCH APRIL MAY TOTALS | PERCENTS | BOOK 1 273 284 303 244 252 1356 11.51% 11 BOOK 2 1093 847 1222 1027 978 5167 43.87% 11 **BOOK 3** 423 654 683 540 570 2870 24.37% 11 BOOK 4 118 255 453 755 805 2386 20.26% **TOTALS**

2566

2605

11779.00

100.00%

CURVE FITTING

This program can be used to fit data to:

- 1. Straight lines (linear regression); y = a + bx,
- 2. Exponential curves; $y = ae^{bx}$ (a > 0),
- 3. Logarithmic curves; $y = a + b \ln x$,
- 4. Power curves; $y = ax^b$ (a > 0).

The type of curve fit must be determined before data input begins. To select linear regression, you would press the **B** keys. To select exponential curve fit, press **B**. To select logarithmic curve fit, press **B**. To select power curve fit, press **B**. Do not attempt to change from one type of fit to another after data input has begun because the summation registers are cleared when the type of curve fit is selected. Restarting can be accomplished by repeating the curve fit selection process.

Data pairs $(x_i \text{ and } y_i)$ are input by keying in x_i , pressing **ENTER**, keying in y_i and pressing the **A** key. Any number of data pairs may be input. If, after pressing the **A** key, you discover a data pair was incorrect, wait until execution stops, press **B**, then the **B** key. This will eliminate the errant data pair. If you wish to eliminate any data pair previously input, key it in $(x \in NTER)$ y) and press **B**.

After all data pairs have been input, press $\c c$. This initiates calculation and output of the coefficient of determination r^2 , and the regression coefficients a and b. The coefficient of determination indicates the quality of fit achieved by the regression. Values of r^2 close to 1.00 indicate a better fit than values close to zero. The regression coefficients a and b define the curve generated, according to the equations at the beginning of this discussion.

After the regression coefficients have been calculated, projections may be made based on the curve fit. Key in a known x value, press \Box and see an estimated y value, \hat{y} , or key in a known y value, press \Box and see an estimated x value, \hat{x} .

Linear Regression

$$b = \frac{\sum_{x_i y_i} - \frac{\sum_{x_i} \sum_{y_i}}{n}}{\sum_{x_i^2} - \frac{(\sum_{x_i})^2}{n}}$$

$$a = \left[\frac{\sum y_i}{n} - b \frac{\sum x_i}{n} \right]$$

$$r^2 = \frac{\left[\sum_{x_i y_i} - \frac{\sum_{x_i} \sum_{y_i}}{n} \right]^2}{\left[\sum_{x_i^2} - \frac{(\sum_{x_i})^2}{n} \right] \left[\sum_{y_i^2} - \frac{(\sum_{y_i})^2}{n} \right]}$$

Exponential Curve Fit

$$b \, = \, \frac{ \Sigma_{X_i} \, \ln \, y_i \, - \frac{1}{n} \, (\Sigma_{X_i}) (\Sigma \, \ln \, y_i) }{ \Sigma_{X_i}^{\, 2} \, - \frac{1}{n} \, (\Sigma_{X_i})^2 }$$

$$a = exp \left[\frac{\sum ln \ y_i}{n} - b \frac{\sum x_i}{n} \right]$$

$$r^2 = \frac{\left[\sum_{x_i} \ln y_i - \frac{1}{n} \sum_{x_i} \sum_{x_i} \ln y_i \right]^2}{\left[\sum_{x_i^2} - \frac{(\sum_{x_i})^2}{n} \right] \left[\sum_{x_i^2} \left(\sum_{x_i} \sum$$

Logarithmic Curve Fit

$$b = \frac{\sum y_i \ln x_i - \frac{1}{n} \sum \ln x_i \sum y_i}{\sum (\ln x_i)^2 - \frac{1}{n} (\sum \ln x_i)^2}$$

$$a = \frac{1}{n} (\sum y_i - b \sum \ln x_i)$$

$$r^2 = \frac{\left[\sum y_i \ln x_i - \frac{1}{n} \sum \ln x_i \sum y_i \right]^2}{\left[\sum (\ln x_i)^2 - \frac{1}{n} (\sum \ln x_i)^2 \right] \left[\sum y_i^2 - \frac{1}{n} (\sum y_i)^2 \right]}$$

Power Curve Fit

$$b = \frac{\Sigma (\ln x_i) (\ln y_i) - \frac{(\Sigma \ln x_i) (\Sigma \ln y_i)}{n}}{\Sigma (\ln x_i)^2 - \frac{(\Sigma \ln x_i)^2}{n}}$$

$$a = exp \left[\frac{\sum ln \ y_i}{n} - b \frac{\sum ln \ x_i}{n} \right]$$

$$r^2 = \frac{ \left[\begin{array}{c} \Sigma(\ln\,x_i)(\ln\,y_i) \,-\frac{(\Sigma\,\ln\,x_i)(\Sigma\,\ln\,y_i)}{n} \end{array} \right]^2}{ \left[\begin{array}{c} \Sigma(\ln\,x_i)^2 \,-\frac{(\Sigma\,\ln\,x_i)^2}{n} \end{array} \right] \left[\begin{array}{c} \Sigma(\ln\,y_i)^2 \,-\frac{(\Sigma\,\ln\,y_i)^2}{n} \end{array} \right]}$$

Remarks:

Negative and zero values of x_i will cause a machine error for logarithmic curve fits. Negative and zero values of y_i will cause a machine error for exponential curve fits. For power curve fits both x_i and y_i must be positive, non-zero values.

Registers R_0 - R_9 are available for user storage.

It is not necessary to key in the x value if it corresponds to the counter returned to the display (see example 1).

As the differences between x and/or y values become small, the accuracy of the regression coefficients will decrease.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.		And the second s	
2	Optional: Select pause input			
	mode.		I A	1.00/0.00
3	Select type of regression:			
	for linear fit		1 B	1.00
	for exponential fit			1.00
	for logarithmic fit		II D	1.00
	for power fit		O E	1.00
4	Input x value*.	Xi	ENTER+	Xi
5	Input y value.	y i	A	i + 1
6	Repeat steps 4 and 5 for all data			
	pairs**.			
7	Compute and output coefficient			
	of determination r2 and a and b.		0	r², a, b
8	Optional: Make projections			
	based on a known y value.	у	D	Ŷ
9	Optional: Make projections			
	based on a known x value.	x	8	ŷ
10	For a new case go to step 3.			
	*Note that this step may be skip-			
	ped if the x value equals the dis-			
	played counter (i + 1).			
	**The last set of data pairs may			
	be deleted by pressing h R.			
	then B . Any set of data pairs may		COMMON TO SERVICE OF THE SERVICE OF	
	be deleted by entering them as in			
	steps 4 and 5 and pressing B.			

Example 1:

Below is the sales data for the first 6 months of a product's life. According to a linear projection, what should the sales be after 12 months? When would sales reach the 150 unit per month mark assuming constant linear growth.

Month	1	2	3	4	5	6
Sales	15	37	52	59	83	92

Example 2:

The velocity of a particle experiencing constant acceleration is expressed by

$$v = v_o + \alpha t$$

where v is the velocity, v_0 is the initial velocity, α is the acceleration and t is the time since $v = v_0$.

The following time velocity data was experimentally obtained for a particle:

T	U
t (sec)	V(m/sec)
5	140
6	149
7	159
9	175

What was the velocity at t = 0? What will the velocity be when t = 20? Note that the equation for velocity

$$v = v_0 + \alpha t$$

is the equation of a straight line and is analogous to

$$y = a + bx$$

Therefore use linear regression with v substituted for y, v_0 for a, α (acceleration) for b and t for x.

Keystrokes:	Outputs:	
<u>□</u> B	→ 1.00	
5 ENTER 140 A 6 ENTER 149 A		
7 ENTER+ 159 A	→ 4.00	
9 ENTER 175 A C	→ 1.00 ***	(r^2)
	96.54 ***	(a, v_o)
	8.77 ***	(b, acceleration)
20 E	→ 271.97	(m/sec)

Example 3:

Many compression processes can be correlated using the power curve

$$p = av^{-b}$$

where b is the polytropic constant of the process.

Pressure-volume data for a compression process is shown below. Run a power curve fit to determine the polytropic constant, -b. What is the pressure when v is 15?

V	р
10	210
30	40
50	12
70	9
90	6.8

Keystrokes:		Outputs:	
[E	→	1.00	
10 ENTER 210 A 30 ENTER 40 A			
50 ENTER ◆ 12 A —	→	4.00	
70 ENTER 9 A 90 ENTER 6.8 A C -	→	0.99 ***	(r^2)
		8599.81 ***	(a)
		-1.62 ***	(-b)
15 🖪	→	108.35	

CALENDAR FUNCTIONS

For the period March 1, 1900 through February 28, 2100, this program interchangeably solves for dates and days. Given two dates, the number of days between them can be calculated. Given one date and a specified number of days, a second date can be found. The program will also work in terms of weeks between dates or compute the day of the week given the date. After input of a date, its Julian Day number* is displayed.

A date must be input in mm.ddyyyy format. For instance, June 3, 1975 is keyed in as 6.031975. It is important that the zero between the decimal point and the day of the month be included when the day of the month is less than 10. Weeks are input and output as WKS.DYS. Seven weeks, three days would be 7.3. The day of the week is represented by the digits 0 through 6 where zero is Sunday.

Equations:

To compute the day number from the date:

Julian Day number = INT (365.25 y') + INT (30.6001 m') + d + 1,720,982

where

$$y' = \begin{cases} year - 1 & \text{if } m = 1 \text{ or } 2 \\ year & \text{if } m > 2 \end{cases}$$

$$m' = \begin{cases} month + 13 & \text{if } m = 1 \text{ or } 2 \\ month + 1 & \text{if } m > 2 \end{cases}$$

Then days between dates is found by

$$Days = Day number_2 - Day number_1$$

To compute the date from a day number:

Day # = Julian Day Number - 1,720,982

$$y' = INT \left[\frac{Day \# - 122.1}{365.25} \right]$$

^{*}The Julian Day number is an astronomical convention representing the number of days since January 1, 4713 B.C.

$$m' = INT \left[\frac{Day \# - INT(365.25 \ y')}{30.6001} \right]$$

Day of the month = Day # - INT
$$[365.25 \text{ y}']$$
 - INT $[30.6001 \text{ m}']$

Month = m =
$$\begin{cases} m' - 13 \text{ if } m' = 14 \text{ or } 15 \\ m' - 1 \text{ if } m' < 14 \end{cases}$$

Year =
$$\begin{cases} y' & \text{if } m > 2 \\ y' + 1 & \text{if } m = 1 \text{ or } 2 \end{cases}$$

To compute the day of the week:

Day of the week =
$$7 \times FRAC \left[(Day \# +5)/7 \right]$$

Remarks:

No checking is done to determine if input data represents valid dates.

In this program the calculator uses flag 3 to decide what to do after A, B, C or D is pressed. If the numeric keys have been pressed, flag 3 is on. This causes the value in the display to be stored as an input when the user-definable key is pressed. If no numeric keys have been touched, the program will calculate the value associated with the user-definable key. Thus, it is important not to touch the numeric keys between the last input and the attempt to calculate a result.

Registers R_0 - R_2 , R_B , R_D , R_E and R_{S0} - R_{S9} are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	For day of the week calculations			
	go to step 6.			
3	Input two of the following:			
	First date (mm.ddyyyy)	DT ₁	Δ	Day #₁
	Second date (mm.ddyyyy)	DT ₂	B	Day #2
	Days between dates	DAYS	C	Days
	or weeks between dates*	WKS. DYS	D	Days

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate one of the following:			
	First date		A	DT₁
	Second date		В	DT ₂
	Days between dates		C	Days
	Weeks between dates		0	WKS. DYS
5	For a new case go to step 2.			
6	Input date and calculate day			
	of the week (0 = Sunday,			
	6 = Saturday).	DT	8	DOW
7	For a new case go to step 2.			
	*Either days between dates or			
	weeks between dates, but not			
	both, may be input in step 3.			

Example 1:

Senior Lieutenant Yuri Gagarin flew Vostok I into space on April 12, 1961. On July 21, 1969 Neil Armstrong set foot on the moon. How many days had passed between the first manned space flight and the moon landing? How many weeks and days? On what day of the week did each event take place?

Keystrokes:	Outputs	:
4.121961 A 7.211969 B C ———	→ 3022.	(days)
D	→ 431.5	(weeks.days)
4.121961 E —————	→ 3.	(Wednesday)
7.211969 🗉 ———————————————————————————————————	→ 1.	(Monday)

Example 2;

A short term note is due in 200 days. If the issue date is June 11, 1976, what is the maturity date?*

Keystrokes:6.111976 ▲ 200 C B — 12.281976 (December 28, 1976)

^{*}Some securities use a 30/360 day calendar while this program performs all calculations using the actual number of days. Do not use the program for financial purposes unless you are sure that actual calendar days are correct.

ANNUITIES AND COMPOUND AMOUNTS

This program can be used to solve a variety of problems involving money, time and interest. The following variables can be inputs or outputs:

- n, which is the number of compounding periods. (For a 30 year loan with monthly payments, $n = 12 \times 30 = 360$.)
- i, which is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year; i.e. 8% annual interest compounded monthly equals 8/12 or 0.667%.)
- PMT, which is the periodic payment.
- PV, which is the present value of the cash flows or compound amounts.
- FV, which is the future value of a compounded amount or a series of cash flows.
- BAL, which is the balloon or remaining balance at the end of a series of payments.

The program accommodates payments which are made at the end of compounding periods or at the beginning. Payments made at the end of compounding periods (ordinary annuity) are common in direct reduction loans and mortgages while payments at the beginning of compounding periods (annuity due) are common in leasing. When the program is loaded into the calculator or when the START function [1] A is executed, the calculator is set in ordinary annuity mode. Pressing [1] B sets the calculator in annuity due mode and displays 1.00 indicating that the annuity due mode is set. Pressing [1] B again returns the machine to ordinary annuity mode and displays 0.00. Successive use of [1] B will alternately display 1.00 and 0.00 indicating that the annuity due mode is on or off, respectively.

In this program STO A is used to input n, STO B to input i, STO C to input PMT, STO D to input PV and STO E to input FV or BAL. After all inputs are stored it is possible to calculate the unknown value by pressing the appropriate user-definable key. For instance, you would press B to calculate interest.

- 1. It sets PMT, PV, and BAL to zero (n and i are not affected).
- 2. It sets the ordinary annuity mode.

START provides a safe, convenient, easy to remember method of preparing the calculator for a new problem. It is not necessary to use START between problems containing the same combination of variables. For instance, any number of n, i, PMT, FV problems involving different numbers and/or different combinations of knowns could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PV, FV problems, a zero would be stored (0 STO C) in place of PMT. Table 1 summarizes these procedures. START should always be used immediately after loading Annuities and Compound Amounts.

Table IPossible Solutions Using Annuities and Compound Amounts

Allowable	Applic	Applications		
Combination of Variables	Ordinary Annuity Annuity Due		Initial Procedure	
n, i, PMT, PV (Input any three and calculate the fourth.)	Direct reduction loan Discounted notes Mortgages	Leases	Use START or set BAL to zero.	
n, i, PMT, PV, BAL (Input any four and calculate the fifth.)	Direct reduction loan with balloon Discounted notes with balloon	Leases with residual values	None	
n, i, PMT, FV (Input any three and calculate the fourth.)	Sinking fund	Periodic savings insurance	Use START or set PV to zero.	
n, i, PV, FV (Input any three and calculate the fourth.)	Compound amount Savings (Annuity mode is not applicable and has no effect)		Use START or set PMT to zero.	

Equations:

$$PV = \pm \frac{PMT}{i} A [1 - (1 + i)^{-n}] + (BAL \text{ or } FV) (1 + i)^{-n}$$

where

$$A = \begin{cases} 1 & \text{ordinary annuity} \\ (1+i) & \text{annuity due.} \end{cases}$$

The sign is plus if FV is zero and minus if PV is zero.

Remarks:

The calculator must be in FIX display mode to solve for i when payments are involved.

The equation above is solved for i using Newton's method where:

$$i_n = i_{n-1} - \frac{f(i_{n-1})}{f'(i_{n-1})}$$

This is why solutions involving PMT and i take longer than other solutions. The algorithm works best for positive input values and for interest rates between zero and 100%. It is quite possible to define problems which cannot be solved by this technique. Such problems usually result in an error message but may simply continue to run indefinitely.

Iterative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

RCL A, RCL B, RCL C, RCL D and RCL E may be used to review associated values at any time.

Registers R_0 - R_2 and $R_{\rm S0}$ - $R_{\rm S9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize		10 A	0.00
3	If payments occur at the begin-			
	ning of the period set annuity			
	due mode*.		<u> </u>	1.00/0.00
4	Input the known values:			
	Number of periods	n	STO A	n
	Periodic interest rate	i (%)	STO B	i (%)
	Periodic payment	PMT	STO C	PMT
	Present value	PV	STO D	PV
	Future value, balloon or balance	FV, (BAL)	STO E	FV, (BAL)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Calculate the unknown value.			
	Number of periods		A	n
	Periodic interest rate		В	i (%)
	Periodic payment		C	PMT
	Present value		D	PV
	Future value, balloon or balance		B	FV, (BAL)
6	Output values in n, i, PMT, PV,			
	FV-BAL order.		o c	Values
7	For a new case, go to step 4			
	and change appropriate values.			
	Input zero for any value not			
	applicable in the new case.			
	*One or zero will be displayed	***		
	alternately after pressing 🔼 🖪,			
	indicating that the annuity			
	due mode is on or off.			

Example 1:

If \$155 is placed in a savings account paying 5%% compounded monthly, what sum of money will be in the account at the end of 9 years?

Keystrokes:	Outputs:
155 STO D	→ 155.00
5.75 ENTER • 12 ÷ STO B ————	→ 0.48
9 ENTER 12 × STO A	→ 108.00
E	→ 259.74

If the interest is changed to 6%, what is the sum?

Example 2:

What is the monthly payment required to fully amortize a 30 year, \$30,000 mortgage if the annual percentage rate is 9%? After solving the problem, review the values.

Keystrokes:	Outputs:	
1 A 30 ENTER 12 × STO A -	→ 360.00	
30000 STO D	→ 30000.00	
9 ENTER 12 ÷ STO B	→ 0.75	
C	→ 241.39	
<u> </u>	→ 360.00 *** (n)	
	0.75 *** (i)	
	241.39 *** (PM	
	30000.00 ***(PV)
	0.00 *** (FV)

Example 3:

A fixed term annuity is available which requires a \$35,000 initial deposit. In return the depositor will receive monthly payments of \$231 for 20 years. What annual interest rate is being applied?

Keystrokes:	Outputs:	
	→ 35000.00	
231 вто С	→ 231.00	
20 ENTER+ 12 × STO A	→ 240.00	
В ———	→ 0.42	(0.42% monthly)
12 🗙 —	→ 5.00	(5% annual
_		interest rate)

Example 4:

Two individuals are constructing a loan with a balloon payment. The loan amount is \$3,600 and it is agreed that the annual interest rate will be 10% with 36 monthly payments of \$100. What balloon payment amount, to be paid coincident with the 36th payment, is required to fulfill the loan agreement?

Keystrokes: Outputs: □ A 3600 STO D 10 ENTER 12 ÷ STO B 36 STO A 100 STO C E → 675.27

(Note that the final payment is \$675.27 + \$100.00 = \$775.27 since the final payment falls at the end of the last period.)

Example 5:

A corporation has determined that a certain piece of equipment costing \$50,000 will be required in 3 years. Assuming a fund paying 7% compounded quarterly is available, what quarterly payment must be placed in the fund in order to cover this cost if savings are to start at the end of this quarter?

Keystrokes:

Outputs:

1 A 50000 STO E 3 ENTER 4 X

STO A 7 ENTER
$$4 \div$$
 STO B C \longrightarrow 3780.69

What single amount, invested immediately, would provide the same effect?

Example 6:

A "third party" leasing firm is considering the purchase of a mini-computer priced at \$63,000 and intends to achieve a 13% annual yield by leasing the computer to a customer for a 5-year period. Ownership is retained by the leasing firm, and at the end of the lease they expect to be able to sell the equipment for at least \$10,000. What should they establish as the monthly payments in order to realize their desired yield? (Since lease payments occur at the start of the periods, this is an annuity due problem.)

Keystrokes:

12 ×

Outputs:

If the price increased to \$70,000, what should the payments be?

70000 **STO D C**
$$\longrightarrow$$
 1457.73

If the payments were increased to \$1500 what would the yield be?

→ 14.12

(% per year)

For more accuracy in calculation of the interest rate, change the display setting to five places and calculate the interest rate.

Return display to two places.

FOLLOW ME

This program allows the calculator to learn a simple set of keystrokes and repeat them over and over with different data. The allowable functions are plus, minus, times, divide, percent, constant and input-output halt. Up to 23 operations may be included in a sequence. Constants count as two operations each.

To run the program you would press \blacksquare to start. Then do the first of the desired calculations using the $+,-,\times,\div$, and % functions on the card. Any constants that repeat between problems should be followed by the \blacksquare key so they will be automatically introduced at the proper times. Where intermediate answers or inputs are required, press \blacksquare for an I/O halt. To signify the end of the sequence press \blacksquare .

After the sequence has been learned by the calculator, only variables need be keyed in at I/O halts. The **E** key is used to start execution after I/O halts.

If an error is made while running a sequence, press **D** to start over. If an error is made while teaching the calculator a sequence, press **A** for a restart.

FOLLOW ME INSTRUCTION SET

Program Control	Action
START	Clears program from <i>Follow Me</i> memory and prepares for a new program sequence.
END	Defines the end of a sequence of keystrokes and resets program counter to the beginning of <i>Follow Me</i> memory.
FOLLOW	Starts halted program.
Programmable Operations	
+	Adds content of X register and Y register leaving result in X register.
-	Subtracts content of X register from Y register leaving result in X register.

Program Control	Action
×	Multiplies content of X register by content of Y register leaving result in X register.
÷	Divides content of Y register by content of X register leaving result in X register.
%	Multiplies content of Y register by content of X register divided by 100, replaces X register content with result and leaves content of Y register undisturbed.
CNST	Recalls constant to X register (requires two steps).
I/O	Input or output halt causes <i>Follow Me</i> to stop for display of calculated results and/or input of variables.

Remarks:

All four registers of the operational stack are available for input and output of data. By using all four registers the need for I/O halts can be minimized. Keyboard functions other than $+, -, \times, \div$ and % may be used during I/O halts, but cannot be incorporated in a *Follow Me* program.

All data storage registers are used.

A flashing 24 results if more than 23 operations are attempted. This error condition may be cleared by pressing \mathbb{R}/\mathbb{S} .

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	Perform first string calculation			
	by pressing B at each point			
	where a halt for input or output			
	is desired, c after each con-			
	stant, 🗾 🖪 for each addition,			
	for each subtraction,			
	🔟 🖸 for each multiplication, 📆			
	for each division and 👖 🗉			
	for percent operations. 23			
	steps are allowed (constants			
	count as two steps).			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	End calculation		D	0.00
5	Key in variable(s) and initiate			
	execution	VAR	8	OUTPUT
6	If an error was made in step 5			
	go to step 4 and restart.			
7	Go to step five until calculation			
	is complete.			
8	For a new calculation of the			
	same type, go to step 5.			
9	For a new type of calculation,			
	go to step 2.			

Example 1:

Using Follow Me, program

$$y = 3(P + Q)$$

and calculate y for the following data:

Р	Q
6	4
5	8
9	11

A solution:

Keystrokes:	Outputs
(Start)	
A	→ 0.00
(I/O) (I/O) $(+)$ (\times)	
3 B 6 B 4 11 A 11 C	→ 30.00
(End)	
D	→ 0.00
3 E 5 E 8 E	→ 39.00
3 6 9 6 11 6	→ 60.00

A better solution:

Keystrokes:	Outputs:
A	→ 0.00
(CNST)	
3 C 6 ENTER 4 B 11 A 11 C -	→ 30.00
0	→ 0.00
E 9 ENTER 11 E ————————————————————————————————	→ 60.00

Best solution (uses least amount of Follow Me memory):

Keystrokes:	Outputs:
A	0.00
6 ENTER 4 11 A 3 C 11 C	30.00
D	0.00
5 ENTER 8 E	39.00
9 ENTER • 11 E ————————————————————————————————	60.00

Example 2:

A company determines the retail price of its products by adding the fixed cost of assembly and distribution to a variable parts cost then multiplying by 2.7. The company sets the wholesale price at 50% of the retail price. Use *Follow Me* to determine the retail and wholesale prices for the parts cost list below.

PARTS COST LIST

PART #	PARTS COST
0001	\$17.35
0002	\$21.18
0003	\$26.07
0004	\$28.75
0005	\$33.15

Retail cost = [Parts + Fixed] \times 2.7 Wholesale cost = 50% of retail cost Fixed cost = \$25/unit

Keystrokes:

Outputs:

Teach the sequence to the calculator and compute results for the first part #.

A 17.35 ENTER 25 C 1 A 2.7 C	1	
СВ	→ 114.35	(Retail)
50 C I E ——————————————————————————————————	→ 57.17	(Wholesale)
D	→ 0.00	

Compute prices for other parts.

21.18 🗉 ————	124.69
E	→ 62.34
26.07 E	→ 137.89
E	→ 68.94
28.75 E ————	→ 145.13
E	→ 72.56
33.15 E	→ 157.01
E	→ 78.50

Example 3:

Use Follow Me to help evaluate the following formula using the data below.

$$y = 0.75 \text{ A } e^{0.63t}$$

А	2.3	2.8	3.7	6.4
t	1.0	2.0	4.5	6.0

Any keyboard function may be used during I/O halts.

NOTES

TRIANGLE SOLUTIONS

This program can be used to find the area, the dimensions of the sides (S_1, S_2, S_3) and the angles (A_1, A_2, A_3) of a triangle.

Simply key in three known values and press the corresponding user definable key. The calculator will successively display the values of the sides, the angles, and the area. The order of output is determined by the order of input. If input values are selected in a clockwise order around the triangle, the outputs will also follow a clockwise order around the triangle. The order is as follows:

First side input (S₁)
Adjacent angle (A₁)
Adjacent side (S₂)
Adjacent angle (A₂)
Adjacent side (S₃)
Adjacent angle (A₃)

Area

After calculation has ended, the area will be in the display, S_1 in R_9 , A_1 in R_A , S_2 in R_B , A_2 in R_C , S_3 in R_D , and A_3 in R_E .

Equations:

S₁, S₂, S₃ (all sides of triangle are known)

$$A_3 = 2 \cos^{-1} \sqrt{\frac{P(P - S_2)}{S_1 S_3}}$$

where $P = (S_1 + S_2 + S_3)/2$

$$A_2 = 2 \cos^{-1} \sqrt{\frac{P(P - S_1)}{S_2 S_3}}$$

$$A_1 = \cos^{-1} \left(-\cos \left(A_3 + A_2 \right) \right)$$

A₃, S₁, A₁ (Two angles and the included side are known)

$$A_2 = \cos^{-1} \left(-\cos (A_3 + A_1) \right)$$

 $S_2 = S_1 \frac{\sin A_3}{\sin A_2}$

$$S_3 = S_1 \cos A_3 + S_2 \cos A_2$$

S₁, A₁, A₂ (side and following two angles known)

$$A_3 = \cos^{-1} \left(-\cos (A_1 + A_2) \right)$$

Problem has been reduced to the A_3 , S_1 , A_1 configuration.

S₁, A₁, S₂ (Two sides and included angle are known)

$$S_3 = \sqrt{S_1^2 + S_2^2 - 2 S_1 S_2 \cos A_1}$$

The problem has been reduced to the S₁, S₂, S₃ configuration.

S₁, S₂, A₂ (Two sides and the adjacent angle known)

-

$$A_3 = \sin^{-1} \left[\frac{S_2}{S_1} \sin A_2 \right]^*$$

$$A_1 = \cos^{-1} \left[-\cos (A_2 + A_3) \right]$$

The problem has been reduced to the A_3 , S_1 , A_1 configuration.

^{*}Note that two possible solutions exist if S₂ is greater than S₁ and A₃ does not equal 90°. Both possible answer sets are calculated.

Remarks:

Registers R_0 - $R_6,\ R_{\rm S0}$ - $R_{\rm S9}$ and I are available for user storage.

Angles must be in units corresponding to the angular mode of the machine. Degrees mode is set when the program is loaded.

Note that the triangle described by the program does not conform to standard triangle notation; i.e., A_1 is not opposite S_1 .

Angles must be entered as decimals. The HMS+ conversion can be used to convert degrees, minutes, and seconds to decimal degrees.

Accuracy of solution may degenerate for triangles containing extremely small angles.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Find applicable case in the list			
	below and input indicated			
	values:			
	All sides known	S ₁	ENTER+	S ₁
		S ₂	ENTER+	S ₂
		S ₃	A	S ₁ , A ₁ , S ₂
	Two angles and included side			
	known	A_3	ENTER+	A ₃
		S ₁	ENTER+	S ₁
		A ₁	B	S ₁ , A ₁ , S ₂

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Two angles and adjacent side			
	known	S ₁	ENTER+	S ₁
		A ₁	ENTER+	A ₁
		A ₂	C	S ₁ , A ₁ , S ₂
	Two sides and included angle			
	known	S ₁	ENTER+	S ₁
		A_1	ENTER+	A ₁
		S ₂	D	S ₁ , A ₁ , S ₂
	Two sides and adjacent angle			
	known	S ₁	ENTER+	S ₁
		S ₂	ENTER+	S ₂
		A ₂	3	S ₁ , A ₁ , S ₂
3	After step 2, the values of the			
	sides and angles of the triangle			
	are successively displayed. The			
	first value output is the first			
	side input. The next five outputs			
	are the remaining angles and			
	sides. The last output is the			
	triangle's area. For the last case			
	(S ₁ , S ₂ , A ₂), two possible			
	solutions may exist and both			
	will be output.			

Example 1:

Find the angles and the area for the following triangle.

Example 2:

A surveyor is to find the area and dimensions of a triangular land parcel. From point A, the distances to B and C are measured with an electronic distance meter. The angle between AB and AC is also measured. Find the area and other dimensions of the triangle.

This is a side-angle-side problem where:

$$S_1 = 171.63$$
, $A_1 = 98^{\circ}12'$ and $S_2 = 297.35$.

Example 3:

A pilot wishes to fly due north. The wind is reported as 25 knots at 77°. Because winds are reported opposite to the direction they blow, this is interpreted as 77 + 180 or 257°. The true airspeed of the aircraft is 140 knots. What heading (HDG) should be flown? What is the ground speed (GS)?

By subtracting the wind direction from 180 (yielding an angle of 103°), the problem reduces to a S_1 , S_2 , A_2 triangle.

Thus, the pilot should fly a heading 10.02° east of due north. His ground speed equals 132.24 knots.

VECTOR OPERATIONS

This program performs the basic vector operations of addition, cross product, and dot or scalar product. It also allows conversion between spherical and cartesian coordinates and can find the angle between two vectors.

Either two-dimensional or three-dimensional space may be selected using the keys. The machine is set in two-dimensional mode when the program is loaded. The first press of A yields a display of 3.00 indicating three-dimensional space. Repeatedly pressing A will yield alternate displays of 2.00 and 3.00 indicating the mode of the machine. Be sure the mode is correct before input of data.

Another available option allows review of input values. Pressing **B** causes a 1.00 to be displayed alternately indicating that the pause input mode is on or off. A print stack command is used to successively display the inputs in the following format:

Vector number (1.00 or 2.00) T
$$\phi$$
 (or $\pi \div 2$ for 2D vectors) Z θ Y

Vector outputs are displayed in the following order:

POLAR	FORM	RECTANGULAR FO	$ORM (S \rightarrow C only)$
0.00	T	0.00	Т
φ	Z	Z	Z
θ	Y	у	Υ
r	X	X	X

Equations:

Coordinate conversions:

$$x = r \sin \phi \cos \theta \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \phi \sin \theta \qquad \theta = \tan^{-1} (y/x)$$

$$z = r \cos \phi \qquad \phi = \cos^{-1} \left(z / \sqrt{x^2 + y^2 + z^2} \right)$$

Vector addition:

$$\vec{V}_1 + \vec{V}_2 = (x_1 + x_2)\vec{i} + (y_1 + y_2)\vec{j} + (z_1 + z_2)\vec{k}$$

Cross product:

$$\vec{V}_1 \times \vec{V}_2 = (y_1 z_2 - z_1 y_2) \vec{i} + (z_1 x_2 - x_1 z_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k}$$

Dot or scalar product:

$$\vec{\nabla}_1 \cdot \vec{\nabla}_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Angle between vectors:

$$\gamma = cos^{-1} \frac{\overrightarrow{V}_1 \cdot \overrightarrow{V}_2}{\left| \overrightarrow{V}_1 \right| \left| \overrightarrow{V}_2 \right|}$$

Remarks:

Registers $R_0 - R_6$ and $R_{S0} - R_{S9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and 2.			
2	Select mode for 2-dimensional			
	or 3-dimensional vectors.		II A	3.00/2.00
3	Optional: Select pause input		1	
	mode.		[] B	1.00/0.00
4	If coordinate conversion			
	needed:			
	Spherical to Cartesian-go to			
	step 8.			
	Cartesian to spherical-go to			
	step 10.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Input vectors one and two:			
	Co-latitude (skip for 2D)	(ϕ_1)	ENTER+	(ϕ_1)
	Longitude	$ heta_{ extsf{1}}$	ENTER+	$ heta_1$
	Magnitude	r ₁	0	1.00
	Co-latitude (skip for 2D)	(ϕ_2)	ENTER+	(ϕ_2)
	Longitude	$ heta_2$	ENTER+	θ_2
	Magnitude	r ₂	E	2.00
6	Perform vector operation:		No. of the other states of	
	Add vectors		A	0, φ, θ, r
	Cross product		В	0, φ, θ, r
	Dot product		C	$\overrightarrow{V}_1 \cdot \overrightarrow{V}_2, \gamma$
7	For a new case go to steps 2, 3,			
	4 or 5.		9000	
8	Input spherical coordinates:		CONTRACTOR OF THE CONTRACTOR O	
	(converts to Cartesian)			
	Co-latitude (skip for 2D)	(ϕ)	ENTER+	(φ)
	Longitude	θ	ENTER+	θ
	Magnitude	r		x
9	For a new case go to steps 2, 3,		No. of Contrast of	
	4 or 5.			
10	Input Cartesian coordinates			
	(converts to spherical)			
	z—distance (skip for 2D)	(z)	ENTER+	(z)
	y—distance	у	ENTER+	у
	x—distance	х	M &	r
11	For a new case go to steps 2, 3,			
	4 or 5.			and the second s

Example 1:

An aircraft flies a heading of 212 degrees at 225 knots. The wind is reported at 20 knots and 140 degrees (which translates to 20 knots and 320 degrees since

winds are reported opposite to the direction they blow). What is the course of the aircraft? What is the ground speed?

Example 2:

A microwave antenna is to be pointed at a transmitter which is 15.7 kilometers north, 7.3 kilometers east and 0.76 kilometers below. Use the cartesian to spherical conversion to find the total distance and the direction to the transmitter.

7.3 [] [17.33	(distance)
h R+	65.06	$(\theta \text{ from east})$
h R•	92.51	$(\phi \text{ from vertical})$
h R+	0.00	
h R+	17.33	(back to distance)

Example 3:

What is the moment at the origin of the lever shown below? What is the component of force along the lever? What is the angle between the resultant of the force vectors and the lever?

18.02 ***

Take dot product to resolve force along the lever.

Keystrokes:	Outputs:	
63 ENTER+ 125 ENTER+ 1 D	→ 1.00	
C	24.19 ***	(newtons)
	34.85 ***	(degrees)

POLYNOMIAL EVALUATION

This program may be used to find the roots of the following equations: Cubic equation (3 roots)

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 = 0$$

Quadratic equation (2 roots)

$$f(x) = a_0 + a_1 x + a_2 x^2 = 0$$

Linear equation (1 root)

$$f(x) = a_0 + a_1 x = 0$$

where a_0 , a_1 , a_2 and a_3 are the polynomial coefficients input by the user. Both real and imaginary roots can be extracted. When imaginary roots are found, a -1. is displayed followed by imaginary and real parts. Real roots are displayed without the -1. indicator. Example 3 involves imaginary roots and should make this clear.

Polynomials may also be evaluated for arbitrary values of x. This is of aid in plotting polynomials and using data correlations based on polynomials. Example 2 demonstrates this type of use.

Equations:

Cubic Equation:

$$Q = \frac{3a_1 - a_2^2/a_3}{9a_3}$$

$$R = \frac{9a_2a_1/a_3 - 27a_0 - 2a_2^3/a_3^2}{54a_3}$$

$$S = \sqrt[3]{R + \sqrt{Q^3 + R^2}}$$

$$T = \sqrt[3]{R - \sqrt{Q^3 + R^2}}$$

then
$$x_3 = S + T - \frac{a_2}{3a_2}$$

$$Q^3 + R^2 < 0$$
,

 $O^3 + R^2 \ge 0.$

$$x_3 = 2\sqrt{-Q}\cos\left[\frac{1}{3}\cos^{-1}(R/\sqrt{-Q^3})\right] - \frac{a_2}{3a_3}$$

After x_3 is found, synthetic division is performed to reduce the cubic equation to a quadratic equation.

$$a_2' = 1.00$$

$$a_1'/a_2' = x_3 + a_2/a_3$$

$$a_0'/a_2' = x_3(x_3 + a_2/a_3) + a_1/a_3$$

Quadratic equation:

$$x_1 = \begin{cases} -\frac{a_1}{2a_2} - \sqrt{(a_1/2a_2)^2 - (a_0/a_2)} & \text{If } -a_1/2a_2 < 0 \\ -\frac{a_1}{2a_2} + \sqrt{(a_1/2a_2)^2 - (a_0/a_2)} & \text{If } -a_1/2a_2 \ge 0 \end{cases}$$

$$x_2 = \frac{a_0}{a_2x_1}$$

Linear equation:

$$x = -\frac{a_0}{a_1}$$

Remarks:

Registers R_0 , $R_5 - R_9$, and $R_{S0} - R_{S9}$ are available for user storage.

Accuracy degenerates if the real root of the cubic equation is extremely small.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize		A	0.00
3	Input coefficients of Polynomial:			
	Constant	a _o	В	1.00
	x coefficient	a ₁	C	2.00
	x² coefficient	a ₂	0	3.00
	x³ coefficient	a_3	E	4.00
4	To evaluate polynomial for			
	various values of x go to step 7.			
5	Find the roots of the polynomial.			
	(Imaginary roots will be output			
	in imaginary, real order preced-			
	ed by a negative one).		В	roots
6	Go to step 8.			
7	Input x and see f(x)	х	A	f(x)
8	For a new case of same or high-			
	er degree, go to step 3 and			
	change appropriate coefficients.			
	For a lower degree go to step 2.			

Example 1:

A ball is thrown straight up at a velocity of 20 meters per second, from a height of 2 meters. At what time, neglecting air resistance, will it reach the ground? The acceleration of gravity is 9.81 meters per second. From physics:

$$f(t) = x = x_0 + v_0 t + \frac{1}{2} a t^2 = 0$$
$$= 2 + 20t + (-9.81/2)t^2 = 0$$

Keystrokes:

Outputs:

→ 0.00

2 B 20 C 9.81 ENTER•
2 ÷ CHS D D B
$$+0.10 ***$$
 (seconds) (seconds)

The answer is 4.18 seconds. The second root of -0.10 is a legitimate root of the equation but is not relevant to this problem.

Example 2:

The standard heat of formation of ammonia (NH₃) is given as a function of Kelvin temperature by:

$$\Delta H_T^{\circ} = -9140 - 7.596 \text{ T} + 4.243 \times 10^{-3} \text{ T}^2 - 0.742 \times 10^{-6} \text{ T}^3 \text{ (cal)}$$

Determine the heat of formation for temperatures of 400 K, 600 K, and 800 K.

Keystrokes:	Outputs:	
10 A	▶ 0.00	
9140 CHS B 7.596 CHS C	→ 2.00	
4.243 EEX CHS 3 D .742		
CHS EEX CHS 6 E	→ 4.00	
	→ -11547.01	(cal)
600 A	→ -12330.39	(cal)
800 A	→ -12881.18	(cal)

Example 3:

Find the roots of the following equation.

$$x^3 - 4x^2 + 8x - 8 = 0$$

The real root is 2.00. The imaginary roots are 1.00 + 1.73i and 1.00 - 1.73i. The -1. (which is not followed by asterisks) indicates that the last two outputs will be imaginary and real parts rather than real roots.

3 × 3 MATRIX OPERATIONS

3X3 MATRIX OPERATIONS			SD-10A			
	+ DET	→ INV	→ MULT			
9	a14a24a3	b14b24b3	C1+C2+C3	$d_1 + d_2 + d_3$	MATP	

This program can be used to find the determinant or generate the inverse of a 3×3 matrix. It can also multiply a 3×3 matrix by a column matrix. By using the matrix inverse function in combination with the matrix multiply function, it is possible to solve three linear equations in three unknowns.

Equations:

$$Matrix \ A \ = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$

$$Matrix D = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Determinant of matrix A

Det =
$$a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 b_3 a_2$$

- $c_1 b_2 a_3 - c_2 b_3 a_1 - c_3 a_2 b_1$

Inverse of matrix A

$$A^{-1} = \begin{bmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{bmatrix}$$

$$\alpha_1 = (b_2 c_3 - b_3 c_2)/Det$$

$$\alpha_2 = (a_3 c_2 - a_2 c_3)/Det$$

$$\alpha_3 = (a_2 b_3 - a_3 b_2)/Det$$

$$\beta_1 = (b_3 c_1 - b_1 c_3)/Det$$

$$\beta_2 = (a_1 c_3 - a_3 c_1)/Det$$

$$\beta_3 = (a_3 b_1 - a_1 b_3)/Det$$

$$\gamma_1 = (b_1 c_2 - b_2 c_1)/\text{Det}$$

$$\gamma_2 = (a_2 c_1 - a_1 c_2)/\text{Det}$$

$$\gamma_3 = (a_1 b_2 - a_2 b_1)/\text{Det}$$

Matrix multiplication

$$A \cdot D = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
$$= \begin{bmatrix} a_1d_1 + b_1d_2 + c_1d_3 \\ a_2d_1 + b_2d_2 + c_2d_3 \\ a_3d_1 + b_3d_2 + c_3d_3 \end{bmatrix}$$

Remarks:

During matrix inversion, A^{-1} replaces A in storage. If you wish to save matrix A, store it on a magnetic card before starting the inversion process.

Two by two matrix operations can be performed with this program (see example 2). A 2×2 matrix should be input in the following form:

$$A = \begin{bmatrix} a_1 & b_1 & 0 \\ a_2 & b_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The corresponding column vector is:

$$\mathbf{D} = \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \\ \mathbf{0} \end{bmatrix}$$

If the determinant of a matrix is zero, the inverse cannot be found.

Registers $R_{\rm S0}$ - $R_{\rm S9}$ are available for user storage.

Matrices may be output at any time by pressing \blacksquare . The order of output is a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , c_1 , c_2 , c_3 , d_1 , d_2 , d_3 .

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input 3 × 3 matrix:			
	Column 1	a ₁	ENTER+	a ₁
		a_2	ENTER+	a ₂
		a ₃	A	a_3
	Column 2	b₁	ENTER+	b ₁
		b ₂	ENTER+	b ₂
		b₃	В	b ₃
	Column 3	C ₁	ENTER+	C ₁
		C ₂	ENTER+	C ₂
		C ₃	C	C ₃
3	For solution of simultaneous			
	equations or multiplication of			
	the 3 $ imes$ 3 matrix by a column			
1	matrix, input column matrix.	d ₁	ENTER+	d ₁
		d ₂	ENTER+	d ₂
		d ₃	0	d_3
4	To find a determinant go to step			
	5. To find the inverse or solve a			
	3 $ imes$ 3 system, go to step 8. To			
	perform multiplication, go to			
	step 10.			
5	Find the determinant of the			
	3 × 3 matrix.		□ A	A
6	For a new case,go to step 2.			
	Change any or all of the columns			, I
	in step 3.			
7	If you wish to save the 3 $ imes$ 3			
	matrix for future use, record it			
	on a magnetic card.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	Find the inverse.		□ B	0.00
9	For a solution of a 3 $ imes$ 3 system			
	go to step 10. For a new case go			
	to step 2. The original 3 $ imes$ 3			
	matrix has been replaced in			
	storage by its 3 $ imes$ 3 inverse.			
10	Multiply the 3 $ imes$ 3 matrix by the			
	column matrix. (The resulting			
	column matrix is output in x, y, z			
	order).		<u></u> c	x, y, z
11	For multiplication by another			
	column matrix, perform step 3,			
	then press 🟮 🖪 . For a new			
	case go to step 2.			

Example 1:

Find the determinant and inverse of the following matrix; then multiply by the column matrix.

$$\begin{bmatrix} 23 & 15 & 17 \\ 8 & 11 & -6 \\ 4 & 15 & 12 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Example 2:

Find the determinant and the inverse of the 2×2 matrix below. After the inverse has been found, multiply by the column matrix.

$$\begin{bmatrix} 14 & -8 \\ -8 & 12 \end{bmatrix} \quad \begin{bmatrix} 20 \\ 5 \end{bmatrix}$$

First transform the matrices to three dimensions as specified in the remarks section:

$$\begin{bmatrix} 14 & -8 & 0 \\ -8 & 12 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 20 \\ 5 \\ 0 \end{bmatrix}$$

Example 3:

Solve for the loop currents in the following circuit.

The three loop equations are:

Loop 1
$$4I_1 - 4I_2 + 15 I_1 - 15 I_3 - 40 = 0$$
Loop 2
$$4I_2 - 4 I_1 + 8 I_2 + 10 I_2 - 10 I_3 = 0$$
Loop 3
$$10 I_3 - 10 I_2 + 1 I_3 + 15 I_3 - 15 I_1 = 0$$
or
$$19 I_1 - 4 I_2 - 15 I_3 = 40$$

$$-4 I_1 + 22 I_2 - 10 I_3 = 0$$

$$-15 I_1 - 10 I_2 + 26 I_3 = 0$$

or in matrix form

$$\begin{bmatrix} 19 & -4 & -15 \\ -4 & 22 & -10 \\ -15 & -10 & 26 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 40 \\ 0 \\ 0 \end{bmatrix}$$

and

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 19 & -4 & -15 \\ -4 & 22 & -10 \\ -15 & -10 & 26 \end{bmatrix}^{-1} \begin{bmatrix} 40 \\ 0 \\ 0 \end{bmatrix}$$

Keystrokes:

Outputs:

6.16 ***

 (I_3)

19 ENTER 4 CHS ENTER 15 CHS A
$$\rightarrow$$
 -15.00
4 CHS ENTER 22 ENTER 10 CHS B \rightarrow -10.00
15 CHS ENTER 10 CHS ENTER 26 C \rightarrow 26.00
40 ENTER 0 ENTER 0 D \rightarrow 0.00

1 B \rightarrow 0.00 (inverse has been found)
1 C \rightarrow 7.86 *** (I₁)
4.23 *** (I₂)

NOTES

- f- l

Fiscal Control

5 4

£ = 6

=

1

100

-

CALCULUS AND ROOTS OF f(X)

This program incorporates four routines for numerical analysis of user specified functions. Suppose figure 1 represents a known function of x called f(x).

Figure 1

If the formula for f(x) can be keyed into program memory in less than 112 steps (including LBL and RTN), this program can be used to find the value of f(x) at any point x, the derivative of f(x) at any point x, the integral of f(x) over a specified interval and the real roots of f(x). There may be up to five different f(x) functions in program memory at one time. They must be labeled from 1 to 5. The function to be evaluated is selected by keying in 1, 2, 3, 4 or 5 and pressing \blacksquare .

Only side 1 of Calculus and Roots of f(x) is used for the program. Side 2 of Calculus and Roots of f(x) has three functions recorded on it. These will be used in the example problems to show various applications of the program. You may wish to record functions you use frequently on blank magnetic cards. Once recorded, the functions can be linked to Calculus and Roots of f(x) by the following sequence of operations:

- 1. Load side 1 of Calculus and Roots of f(x).
- 2. Press **GTO** 1 1 2.
- 3. Press 9 MERGE.
- 4. Load your magnetic card.

Once a function is defined and selected, keying in a value of x and pressing the \mathbb{C} key will result in the evaluation of f(x) (see figure 2).

Figure 2

Similarly, the value of the slope of f(x) at a particular point x can be calculated by keying in x and pressing the \blacksquare key (see figure 3). The slope of f(x) is determined using an approximation to the differential:

$$f'(x) = \frac{f(x + \Delta x/2) - f(x - \Delta x/2)}{\Delta x}$$

Figure 3

The value of Δx used to approximate the differential is assumed to be 0.01% of x (10⁻⁴ \times x) unless a % Δ is specified by the user. That is:

$$\Delta x = \frac{\% \Delta}{100} \cdot x$$

In the special case where x = 0, Δx is set equal to $\% \Delta$.

For most applications, the assumed value of 0.01% should be adequate. In some cases more accurate results can be obtained using a smaller value of $\%\Delta$. However, care must be taken to assure that the calculator can accurately resolve the difference between $f(x - \Delta x/2)$ and $f(x + \Delta x/2)$.

The **D** key may be used to approximate the integral or area under a curve.

Figure 4

You specify the end points of the interval (a and b) and the number of rectangles (n) the interval should be broken into (see figure 4). The calculator computes the sum of the areas of the rectangles. The more rectangles used the closer this value is to the actual area under the curve. However, more rectangles mean more computation time. Experience with a particular function should lead to a balance between accuracy and execution time.

Root finders are used to solve equations which are difficult or impossible to solve explicitly. An example of such an equation is

$$f(x) = \ln x + 3x - 10.8074 = 0$$

which is solved in example 4.

The root finder incorporated in this program uses a secant method of approximation. You must supply the routine with an initial guess of the root. Based on this guess, it will attempt to make better and better approximations of the root by the following formula:

$$x_{i+1} = x_i - f(x_i) \left[\frac{(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})} \right]$$

Figure 5

The display is automatically set to fix mode during the root finder portion of the program. When the last approximation is accurate to the number of places specified by the display setting of the calculator, the routine halts and displays the root.

Since the root finder starts its search based on your guess, care should be exercised in guess selection. A bad guess will cause long execution times and could result in a machine status error halt (overflow, division by zero, log of a negative number, etc.). If this happens, simply try another guess. Practice will make the pitfalls more obvious and easier to avoid.

A special feature of the iterative routine is the pause function. This feature allows the program to pause at one point in each iteration to display the current approximation of the root. The pause option may be turned off and on by pressing . The pause allows you to watch the routine converge (or diverge) without interrupting the program. This can be a helpful tool when the iterative routine fails to converge. By watching each successive approximation of the root, the reasons for failure of convergence can usually be determined.

Remarks:

The value of x is stored in R_0 by the program. It is also in the X register when control transfers to the function subroutine.

Registers R_1 - R_8 , and R_{S0} - R_{S9} are available for use in f(x) or for other user storage.

User-specified functions may use one level of subroutine nesting.

The secant method does not guarantee convergence to a root.

Given one guess, the root finder will find, at most, one root of an equation. Other real roots, if they exist, may be found by modifying the initial guess. In order to compute f'(x), the function f(x) must be continuous on the interval $(x + \Delta x/2, x - \Delta x/2)$.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Load subroutine(s) (either key			
100	them in or link from program			
	step 112).			
3	Select function label number.	i(1-5)	A	i
4	Store any constants necessary			
	to subroutine(s) loaded in			
	step 2.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For differentiation, go to step 6.			
	For evaluation of a function, go		20,000	
	to step 9. For integration of a			
	function, go to step 11. To find a			
	root, go to step 15.			
6	Optional: Key in percent delta.	%Δ	u A	%Δ
7	Key in x and calculate derivative			THE RESIDENCE OF THE PARTY OF T
	at x.	x	В	f; '(x)
8	For new x, go to step 7. For a			
	new case, go to step 2, 3, 4, 5		- Constant	
	or 6.			
9	Key in x and evaluate function.	x	C	f _i (x)
10	For new x, go to step 9. For a			
	new case, go to step 2, 3, 4, or 5.			
11	Input the number of intervals.	n	ENTER+	n
12	Input the lower limit.	a	ENTER+	а
13	Input the upper limit and			
	calculate the integral.	b	D	$\int f_i(x) dx$
14	For new limits or interval, go to			
	step 11. For a new case, go to			
	step 2, 3, 4 or 5.			
15	Optional: Key in percent delta.	%Δ	ΙΑ	%Δ
16	Optional: Toggle pause			
WALL COLLEGE	mode.		n a	1.00/0.00
17	Key in guess and calculate root.	GUESS	E	x
18	For a new guess go to step 17.			
	For a new case go to step 2, 3,			
	4 or 5.			

Example 1:

Numerical integration provides the only solution to the complete elliptic integral of the first kind:

$$u = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - K^2 \sin \theta^2}}$$

Find the value of u for limits of integration of 0.0 to $\pi/2$. Let K be 0.5 and store it in register 1 for access by the program. Use 3 and then 10 for the number of intervals. The formula for the integral is recorded under label three on side two of the magnetic card. If either example 2 or example 3 has just been run, skip the first three lines under keystrokes.

Keystrokes:	Outputs:
Load side 1 only	
GTO • 112 9 MERGE	
Load side 2	
Select label 3	
3 🗛 ————	→ 3.00
0.50 STO 1	→ 0.50
Integrate using 3 intervals	
DSP 9 3 ENTER 0 ENTER	
n	→ 1.685750251
Integrate using 10 intervals	
10 ENTER 0 ENTER h 2 ÷ D —	→ 1.685750355

Example 2:

In the design of gear teeth, it is frequently necessary to calculate x for a given value of the involute:

$$INV(x) = \tan x - x$$
or restated
$$f(x) = \tan x - x - INV(x) = 0$$

If the involute of x is 0.0049819, what is x?

This problem requires an iterative solution since the equation cannot be explicitly solved for x. Use 0.21 radians as your initial guess. The equation for f(x) is recorded under label 2 on side 2 of the magnetic card. Use the pause

feature to watch the routine converge. Skip the first three lines under keystrokes if Example 1 or 3 has been run. Store the involute (.0049819) in R_2 for access by the function.

Example 3:

In many instances, a function is represented graphically. This program can be of use in integration and, in some cases, differentiation of such graphs. Label 1 of side 2 of the prerecorded magnetic card is designed for this purpose. It returns x values to the display. You must find f(x) from the graph, key it in and press R/S.

For the function below find the integral from a to b using 5 intervals. Then find the derivative at a, using 10% for $\% \Delta$. After the problem is complete, return $\% \Delta$ to 0.01%.

If either Example 1 or Example 2 was run previously, skip the first three lines under keystrokes.

Keystrokes: **Outputs:** Load side 1 only GTO • 112 9 MERGE Load side 2 Select Label 1 I A **▶** 1.00 Key in integration limits and return first x value 5 ENTER $\downarrow 1.40$ ENTER $\downarrow 4.70$ D $\longrightarrow 1.73$ (x) From the graph, f(x) at x = 1.73 equals 14.2. Key 14.2 in and press R/S. The next value of x will be displayed. 14.2 R/S f(2.39) = 1616 R/S —— f(3.05) = 1717 R/S ---f(3.71) = 16.916.9 R/S — f(4.37) = 15.3**→** 52.40 (Answer) 15.3 R/s ---To find the derivative at point a **→** 1.33 10 M A 1.40 Bf(1.33) = 12.7 $12.7 \, \text{R/s} -$ **→** 1.47 f(1.47) = 13.3(Slope) **→** 4.29 $13.3 \, \text{R/s} -$ Return $\%\Delta$ to 0.01%.01 📆 🗛 -→ 0.01

Example 4:

[] [LBL] [1] —

Find the root of $\ln x + 3x - 10.8074 = 0$. Determine the slope at the root.

This equation is not recorded on the magnetic card. It must be manually keyed into program memory starting at step 112. Use R₁ to store the 3 and R₂ to store 10.8074.

Keystrokes: **Outputs:** Load side 1 only **GTO ●** 112 Switch to W/PRGM 112 35 22 → 31 25 01

$(\ln x + 3x)$
$(\ln x + 3x -$
10.8074)
(ROOT)
f' (3.21)

NOTES

ENGLISH-SI CONVERSIONS

W; dd &m	IP\#3‡k8\	2m/N ‡ isd	L‡uf8	0.÷4.
ENG	LISH-SI CO	NVERSIONS		SD-12B
in : mm	ft : m	gal:1	lbf N	lbm ‡kg

This card provides the more common conversions between English and SI (metric) units. Side one of the card provides length, volume, force and mass conversions. Side two provides temperature, energy, pressure, density and power conversions. Only one side of the card may be loaded into program memory at any time.

Conversion Factors:

Side 1 of magnetic card

1 inch (in) = 25.4* millimeters (mm)

1 foot (ft) = 0.3048* meters (m)

1 U.S. liquid gallon (gal) = 3.785411784* liters (ℓ)

1 pound force avoirdupois (lbf) = 4.448221615 newtons (N)

1 pound mass avoirdupois (lbm) = 0.45359237* kilograms (kg)

Side 2 of magnetic card

Degrees Fahrenheit (°F) are related to degrees Celsius (°C) by the following formula:

$$^{\circ}C = (^{\circ}F - 32)/1.8$$

1 International Steam Table British thermal unit (Btu) = 1055.055853 joules (J)

1 pound per square inch (psi) = 6894.7572 newtons/square meters (N/m²)

1 pound per cubic foot (lb/ft³) = 16.018463 kilograms per cubic meter (kg/m³)

1 horsepower (550 ft-lbf/sec) = 745.69987 watts (W)

Remarks:

Only one side of the card may be in program memory at a time.

All data registers $(R_0 - I)$ are available for user storage. The T register of the operational stack is lost during conversions. The LAST X register contains the input value for all conversions except temperature conversions.

^{*}By definition.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	For length, volume, force or			
	mass conversion, load side 1.			
	For temperature, energy, pres-			
	sure, density, or power conver-			
	sion, go to step 4.			
2	To convert inches to millimeters	in	A	mm
	or millimeters to inches	mm	II A	in
	or feet to meters	ft	В	m
	or meters to feet	m	10 B	ft
	or gallons to liters	gal	G	Q
	or liters to gallons	Q	□ C	gal
	or pounds to newtons	lbf	D	N
	or newtons to pounds	N	<u> </u>	lbf
	or pounds to kilograms	lbm	E	kg
	or kilograms to pounds	kg	D B	lbm
3	For a new case, go to step 2.			
4	Load side 2.			
5	To convert Fahrenheit to Celsius	°F	A	°C
	or Celsius to Fahrenheit	°C	II A	°F
	or Btu to joules	Btu	B	J
	or joules to Btu	J	□ B	Btu
	or psi to N/m²	psi	C	N/m²
	or N/m² to psi	N/m²	00	psi
	or lb/ft³ to kg/m³	lb/ft³	D	kg/m³
	or kg/m³ to lb/ft³	kg/m³	0 D	lb/ft³
	or horsepower to watts	hp	E	W
	or watts to horsepower	W	00	hp
6	For a new case, go to step 5.			

12-03

Convert % of an inch to millimeters and round to an integer value.

Keystrokes:

Output:

Load side one

(mm) (mm)

(mm)

Example 2:

Convert 212°F to °C. Convert 0°C to °F.

Keystrokes:

Outputs:

Load side two

0 32.00

Example 3:

Convert 75 Btu/hr-ft² to joules/hr-m². (Since ft² is in the denominator, the sense of the conversion is reversed.)

Keystrokes:

Output:

Side 1

75 **■ B ■ B** 807.29 (Btu/hr-m²)

Side 2 В -----

→ 851739.50 (J/hr-m²)

(kg/l)

.

Example 4:

Convert six pounds per gallon to kilograms per liter.

Keystrokes:

Outputs:

Side 1

6 E 👸 C ----

→ 0.72

NOTES

-

-

- 3

4

-

-

_

-

-

_

- 1

- - - -

ARITHMETIC TEACHER

Preschool and elementary school students may use this program to help them learn addition, subtraction, multiplication, and division. The program generates and displays problems in the following form:

 $x \cdot y$

Where x is one variable and y is the other variable. The child mentally computes the answer $(x + y, x - y, x \times y, \text{ or } \vec{x} \div y \text{ depending on the lesson})$, keys it in, and presses the answer key \blacksquare . If the answer is correct, the calculator poses a new problem. If the answer is incorrect, the calculator returns the problem until a correct response is given.

One lesson consists of 20 problems. After problem 20, the calculator outputs number correct, number tried, and percent correct.

As the child progresses, the maximum size of the numbers, n_{max} , may be modified. For example, keying in 3 and pressing \blacksquare would set the maximum number size to 3 for addition and multiplication, 3 + 3 for subtraction, and 3^2 for division. For more advanced students, n_{max} might be set to 15. If the value is not specified by the user, the program assumes a value of 9.

Remarks:

The type of problem to be solved $(+, -, \times, \div)$ can be changed at any time during the lesson. When the problem type is selected, a code number is displayed for a moment before a new problem is posed. The digit 1 indicates addition, 2 indicates subtraction, 3 indicates multiplication, and 4 indicates division.

If the student realizes that a wrong answer has been keyed in before the key is pressed, the keys can be used to eliminate the error and return the problem to the display.

Any attempt to use the calculator to solve the problem will result in an error necessitating a restart of the program.

The number generator incorporated in this program will always give the same sequence of numbers unless n_{max} is changed or a "seed" is input. The seed can be any number between 0 and 1. To input a seed, simply key it in and press

Registers R_0 - R_6 and $R_{\rm S0}$ - $R_{\rm S9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Start program.		III A	0.00
3	Optional: Input a seed (any			
	number between 0 and 1).*	SEED	00	0.00
4	Optional: Select maximum			
	number size (default is 9).	nmax	□ B	0.00
5	Optional: Select print lesson			
	mode.		II C	1.00/0.00
6	Select arithmetic mode:* *			
	Addition		A	problem
	Subtraction		В	problem
	Multiplication		G	problem
	Division		o	problem
7	Let student key in answer and			
	press E.	answer	8	problem
8	Repeat step 7 for 20 problems.			
	After problem 20 the calculator			
	will output number correct,			
	number attempted and %			
	correct.			
9	For another session go to step 7.			
	To change arithmetic mode go			
	to step 6. To select print lesson			
	mode go to step 5. To sleect a			
	new maximum number size go			
	to step 4.			

^{*} See page L13-01 for description of algorithm and comments on optional seed selection.

^{*} After an arithmetic mode is selected a code is output to indicate which mode was set: 1 addition, 2 subtraction, 3 multiplication and 4 division.

Example 1:

A child is to practice multiplication of the numbers one through eight.

Keystrokes:	Outputs:
<u> </u>	→ 0.00
Select maximum number size of 8.	
8 🕼 B	→ 8.0 ***
Select lesson type	
C	→ 3.0 ***
	6.8
48 🗉	→ 1.4
4 E	→ 7.3
21 🗉	→ 8.8
64 E	→ 7.7
49 E ———————————————————————————————————	→ 7.4
28 E ———————————————————————————————————	→ 7.6
40 🗉	
45 E	-
42 E	→ 4.2
8 E	→ 8.6
48 🗉	→ 8.8
64 E	→ 8.7
56 E —	→ 8.6
48 🗉	→ 5.8
40 🖪	→ 6.7
40 🗉	
42 E	→ 5.8
40 🖪	→ 8.4
32 🗉 ———————————————————————————————————	→ 4.6
24 🗉	→ 7.4
28 🗉	→ 4.4
16 E —	→ 4.7
28 🗉	→ 18.0 ***
	20.
	90.0 ***

The calculator displays the first problem of the next set.

Example 2:

The child of example 1 now wishes to practice division for numbers 1 through 10.

Keystrokes:	Outputs:
10 🖪 B ————	→ 10.0 ***
D	→ 4.0 ***
	30.06
5 E	→ 70.07
10 🖪	→ 30.06
5 E	→ 28.04
78	→ 32.08
4 🖪 ———————————————————————————————————	→ 6.06
16	→ 80.10
8 E	→ 40.04
10 E	→ 16.04
4 🗉 ———————————————————————————————————	→ 80.08
10 E	→ 70.10
7 E	→ 80.08
10 E	→ 42.07
6 E	→ 81.09
9 E	7.07
18	→ 10.05
2 🗉 ————	→ 60.06
6 E	
10 E	→ 56.08
	→ 56.07
8 E	→ 70.10
7 E	→ 19.00 ***
	20.
	95.00 ***

MOON ROCKET LANDER

Imagine for a moment the difficulties involved in landing a rocket on the moon with a strictly limited fuel supply. You're coming down tail-first, freefalling toward a hard rock surface. You'll have to ignite your rockets to slow your descent; but if you burn too much too soon, you'll run out of fuel 100 feet up, and then you'll have nothing to look forward to but cold eternal moon dust coming faster every second. The object, clearly, is to space your burns just right so that you will alight on the moon's surface with no downward velocity.

The game starts off with the rocket descending at a velocity of 50 feet/second from a height of 500 feet. The velocity and altitude are shown in a combined display as -50.0500, the altitude appearing to the right of the decimal point and the velocity to the left, with a negative sign on the velocity to indicate downward motion. Then the remaining fuel is displayed and a rocket fire count down begins "3", "2", "1", "0",. Exactly at zero you may key in a fuel burn. You only have one second, so be ready. A zero burn, which is very common, is accomplished by doing nothing. However, if you miss the one second "fire window" and then try to key in a burn, your engine will die and you will have to restart by pressing **3**. This automatically uses 5 fuel units and gives no thrust. After a burn the sequence is repeated unless:

- 1. You have successfully landed—flashing zeros.
- 2. You have smashed into the lunar surface—flashing crash velocity.

You must take care, however, not to burn more fuel than you have; for if you do you will free-fall to your doom! The final velocity shown will be your inpact velocity (generally rather high). You have 60 units of fuel initially.

Equations:

We don't want to get too specific, because that would spoil the fun of the game; but rest assured that the program is solidly based on some old friends from Newtonian physics:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $v = v_0 + a t$ $v^2 = v_0^2 + 2a x$

where x, v, a, and t are distance, velocity, acceleration, and time.

Remarks:

Only integer values for fuel burn are allowed.

R/S can be used to stop Moon Rocket Lander at any time.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Assume manual control.		Α	"V.ALT"
				"FUEL"
				"3"
				"2"
				"1"
3	Key in burn*.	BURN		"V.ALT"
				"FUEL"
				"3"
				"2"
	1			"1"
4	Go to step 3 until you land			
	(flashing zeros) or crash (flash-			
1	ing impact velocity).			
5	If you survived last landing			
	attempt, go to step 2 for			
	another try.			
	*If you miss the burn window and			
	flameout, press B for a new			
	engine start.		В	

DIAGNOSTIC PROGRAM

This program can be used to test the calculator and diagnose calculator malfunctions. Simply insert the card and press A. After approximately two seconds, the calculator should pause displaying:

57.0

If the calculator does not pause with this number, there is a malfunction in executing and returning from a subroutine, finding Label 0, program storage, the display, the magnetic card, the PAUSE command or the card reader. After the pause, the calculator should continue to run about one-and-one-half minutes more and then print the three lines shown:

-888.9-90 -8.889-88 -8.88888888-88

This output indicates that printing and display formatting are working correctly. If the calculator stops before displaying **-8.88888888-88**, a code number corresponding to a function or operation malfunction will be displayed. For instance, if the calculator stopped with **36.0** in the display, an error in tangent or arctangent would be indicated. The sole exception is a failure in primary register 0. The calculator will stop execution of the program with the erroneous contents of R_0 displayed.

DIAGNOSTIC CODES

Function or Operation or Register Indicated	Code
STO i, RCL i, R_0 , GTO 0, LBL 0, $x=y$, $x\neq y$	0
ISZ I, R ₁	1
R_2	2
R_3	3
R_4	4
R_5	5
R_6	6
R_7	7
R_8	8
R_9	9
$ m R_{S0}$	10
R_{S1}	11
R_{S2}	12

Remarks:

If this program runs correctly, it strongly suggests that the calculator is operating correctly. However, the diagnosis is by no means complete or exhaustive. The diagnostic can be made to repetitively loop by changing step 224 from "R/S" to "GTO A". This may aid in detection of intermittent failures. The program relies on the status of the flags to be correctly set by the card. If a flag error occurs, re-insert the diagnostic card and verify repeatability of failure.

ERROR CODES

Malfunction	Code	Malfunction	Code
R ₁	1	y ^x , LAST x, 1/x	30
R_2	2	\sqrt{x} , x^2	31
R_3	3	LN, e ^x	32
R_4	4	LOG, 10 ^x	33
R ₅	5	→H.MS, H.MS→, RND	34
R_6	6	$\rightarrow P, \rightarrow R$	35
R ₇	7	TAN, TAN-1	36
R_8	8	COS, COS ⁻¹	37
R ₉	9	DEG, SIN, SIN ⁻¹	38
R_{S0}	10	FLAG 2, test cleared	39
R_{S1}	11	FLAG 1, set; LBL9	40
R_{S2}	12	FLAG 2, set; LBL8	41
R _{S3}	13	FLAG 0, clear	42
R_{S4}	14	FLAG 3, test cleared	43
R_{S5}	15	FLAG 0, set by card; LBL7	44
R_{S6}	16	FLAG 3, set by card; LBL6	45
R_{S7}	17	FLAG 1, cleared by card	46
R_{S8}	18	FLAG 2, cleared by card	47
R _{S9}	19	x>0, true; LBL4	48
RA	20	x < 0, false	49
R _B	21	x=0, false	50
$R_{\rm C}$	22	$x \neq 0$, true; LBL3	51
$R_{\rm D}$	23	I-REGISTER	52
$R_{\rm E}$	24	x≤y, true; LBL1	53
EEX, %	25	x=y, false	54
$D \rightarrow R, R \rightarrow D$	26	x>y, false	55
FRC, INT	27	ENTER \uparrow , R \downarrow , R \uparrow , x \rightleftharpoons y, STACK (X, Y, Z, T)	56
×,÷	28	Subroutine execution and return, CLREG,	see
			text
+, -	29	P⇌S; LBL0	

Function or Operation or Register Indicated	Code
Flag 3, off	48
Flag 0, on	49
Flag 1, on	50
Flag 2, on	51
Flag 3, on	52

Remarks:

If this program runs correctly, it strongly suggests that the calculator is operating correctly. However, the diagnostic is by no means complete or exhaustive. All data storage registers are used.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Start diagnostic		A	-7.77777770-77
3	See documentation for descrip-			
	tion of outputs.			

PROGRAM LISTINGS* AND PROGRAMMING TECHNIQUES Page Program Moving AverageL01-01 2. Curve FittingL03-01 3. 4. 5. 6. 7. 8. Flag Set, Clear and Test—Command 9. 10. 11. Unit ConversionsL12-01 12. 13.

14.

15.

^{*}Keycodes for program steps may be found in Appendix E of your Owner's Handbook.

COMPARISON

Subroutine D of *Moving Average* computes the moving average when the **D** key is pressed from the keyboard.

Generally, the average is calculated based on the summation of input values, Σ (stored in R_0) and the requested number of units, n (stored in R_D) in the moving average. However, if less than n values have been input, the average must be calculated based on the current number of inputs (k). The value of k is stored in R_E . The flowchart for this calculation might look like this:

Subroutine D begins by recalling the sum from R_0 , k from R_E and n from R_D . After these recalls the operational stack is as follows:

Unknown value	T
Sum	Z
k	Y
n	X

The comparison step $x \le y$ (if x is less than or equal to y) causes program execution to *skip* the next step when the conditions of the comparison are *not* met. If the conditions of the comparison are met, the *following step is executed*. This is the "DO if TRUE" rule. For instance, if k = y = 15 and n = x = 6 the comparison would be true or satisified (since x is less than y) and the next step, xxy (x exchange y), would be executed. If k were less than 6, say 4, the command would be skipped. The stack contents for both cases are shown below:

BEFORE COMPARISON

Unknown value	T	Unknown value	T
Sum	Z	Sum	\mathbf{Z}
15	Y	4	Y
6	X	6	\mathbf{X}

AFTER COMPARISON AND NEXT STEP

Unknown value	T	Unknown value	Τ ·
Sum	Z	Sum	Z
6	Y	4 not switched	Y
switched	X	6 mot switched	\mathbf{X}

The next step rolls the stack down removing the unwanted value from the X-register.

15 (Unwanted value)	T	6 (Unwanted value)	T
Unknown value	Z	Unknown value	Z
Sum	Y	Sum	Y
6	X	4	\mathbf{X}

The last step divides the sum by the value in the X-register to complete the calculation.

Moving Average

N.L.

1

a L

N.

16

1

1

-

E.L

-

A.R.

N.A.

-

Sin.

					055	-			
001	*LBLa		Clear registe	rs	857	FTIs			
002	CLRG P≇S		Oldar registe	13.	953			If print m	ode is off pause
993					859	#LBL6		for displa	
904 905	CLRG		If 1 ≤ n ≤ 2	2 continue	866	X∓ FØ≎		TOT GISPIG	, 0
886	X> V?		otherwise go		061 062	6100			
807			Other wise go	to label 1.	863	PSE			
	€T01		1			*LBL8		1	
808	CLX				864	RCL8		Compute	
889	- 2				065			Compate	average.
816	2				866	PCLD			
011	XZY				967	-			
012	XXYC				968	ENT?		Output ar	nd set for display.
813	GT01				869	FØS			
014	STOD				870	PRTN			
915	ī		Store n in R		071	RTN		Write data	1.
916	*		(n + n/100)	in R _I .	872	*LBLB			
017	+				073	MOTA			
₽18	STOI		1		874	RTN			
019	INT				075	*LBLk			
020	RTN				97€	F0?		Print/paus	e mode toggle.
021	*LBL1				977	GT00			
022	₽↓		Flash input	error.	978	1			
823	*LBL4				879	SF0		1	
024	PSE		1		080	RTN			
825	6104		1		081	*LBL0			
926	*LBLA		Increment k	by one. Print	882	ALDEO			
927	FØ?			I input if flag 0	983	CF8		1	
928	SPC		is set.	imput ii iiag o	884	RTN			
029	RCLE		15 561.		885	*LBLC			
838					986	SPC		0	lues in newest
831	1 +				887	ST C			
						*LBL3		to oldest	order.
032	F0?				888				
933	PRTX		1		889	RCLD			
934	XZY		1		090	X=Y?			
035	F0?		1		091	RTN		1	
036	PRTX				092	. 1			
837	RCL:		Remove olde	est value from	093	2		1	
038	ST-8		sum and add	input.	094	+			
039	X#Y				095	RCLI		1	
040	STO:				096	X= Y'?		1	
041	ST+0		1		097	FRC			
842	R4		Store k.		0 98	STOI			
843	XZY				899	ISZI			
844	STOE		1		100	RCL:			
945	RCLD		If n ≤ k,GTC) () and	101	PRTX			
946	X4YC		calculate ave		102	RŤ			
847	GSB0			-	103	1			
948	DSZI		16 1 :		104	+			
849	GT05			o, GTO 5 for	105	6103			
050	RCLI		display		106	*LBLD			
051	KLL1				107	RCLO		1	
052	é				108	ROLE			average at any
953	1		Reset index	for another	100	RCLD		time.	
854	×		loop.		110	XZY?			
854 855									
855 856	STOI ≉LBL5				111	XZY			
030	#LDLJ		Display avera	age or n.	112	₽↓			
0	T ₁	2	3	REGIS	STERS	6	17	8	9
	used	used	used	used	used	used	used	used	
	1 4364		S3	S4	S5	S6	S7	S8	S9 S9
Σ	S1	S2							
Σ	S1 used			-					
Σ	used	used B	used	used	used	used	used	used	used

113		-34 34 -						
115	RIS	5:						
		-						
	la .	Ic Ic	LABELS	TE .	FLAGS		SET STATUS	
•"k," Avg	B W DATA	G →VAL	D→AVG	E	0 print	FLAGS	TRIG	DISP
→"k," Avg	B W DATA	C →VAL c	LABELS D→AVG d 3 print	E e e error	Print 1			DISP FIX X SCI C ENG C n 2

DECREMENT AND SKIP ON ZERO (DSZI) LOOP IN COMBINATION WITH INDIRECT RECALL (RCLi)

One of the most powerful features of your calculator is its ability to do indirect recalls. That is, recall a register which is specified by a value stored in the I register. For instance, if the contents of I were 3.0 and an indirect recall (RCLi) command were encountered, the contents of R_3 would be recalled. When the content of I is changed, the action of the RCLi is also changed. Because of this relationship, it is possible to access all 26 data storage registers with only one RCLi command.

DSZI (Decrement and Skip on Zero) was designed to help take full advantage of RCLi and other indirect capabilities. A DSZI command causes 1.00 to be subtracted from the contents of I. After the subtraction, the content of I is automatically compared to zero. If the integer part of the value is zero, the calculator skips the step following the DSZI command. If the integer part is non-zero, the following step is executed. This automatic test capability makes DSZI a valuable looping tool.

Steps 102–130 of *Tabulator* illustrate a typical use of DSZI and RCLi. The task is to recall the values of the row totals, in order, and output them. Below are the flowchart and the commented code which performs the task.

NOTES

Tabulator

111

Ni.

11

The second

Tol.

181

01

I AL

1.1.

R.L.

N.

MIN.

81

111

EL

121

1

Table 1

801	*LBL o				957	*LBL1			except for last
002	CF2		Clear flag 2 and	registers.	95 8	ENT†		input.	
003	CLRG								
004	P#5				060	ENT1 R1			
905	CLRG				061	RTN		1	
006	INT				962			16 and town a fe	
007	1		If the value inp		863	#LBLB F2?			ist changed
008	X> Y?		of rows is not i		964	GT01		GTO 1.	
009	GT02		1 to 24, reject	the value.	965				nter. Subtract
810	CLX				966	ISZI		display fron	
011	2				967	LOTE		display from	n totals.
912	4				968	LSTX			
013	X# ?				969	ST-0			
014	XEY?				979	ST-:			
015	GT00				071	F0?		Print space	to indicate
01€	GT07				872	SPC		deletion.	
017	*LBL@				973	RTN			
918	1		Store # register	rs + #	974	*LBL1			to previous
919	2		registers/100 in		075	RT		column, las	t value.
826	+				676	RCLI			
021	STOI				977	FRC			
822	0				678	1			
823	ENT†		Clear stack.		079	+			
824	ENTT		Olcar Stack.		080	STOI			
825	ENT+				881	R4		Subtract di	splay from
826	RTN				982	-		totals.	
827	*LBLA		If flag 2 is set of	oloar stack	983	LSTX		to turn.	
028	F2?		If flag 2 is set o	clear stack.	884	ST-0		1	
829	GSB1				985	ST-i			
030	ST+:		A 111		88€	FB?		Print space	to indicate
931	ST+0		Add input to r		887	SPC		deletion.	
032	XZY		Add input to 0	31.	888	RTN		deletion.	
	R+				889	*LBLb			
833	+		Add input to d	column total.	890	FØ?		Tanala pris	t/pause flag.
834					891	CTOO		Toggle prii	it/pause nay.
035	LSTX				892	SF0			
036	FØ?		Print input?		893	CLX		1	
937	PRTX				894	SPC			
938	DSZI		Stop if I is not	0.	895	1			
039	RTN				096	RTN		1	
040	F0?				097	*LBL0		1	
941	SPC		Set flag 2 for r	new stack					
942	SF2		total.		098	CF0			
043	RCLI				199	CLX			
944	EEX		Reset index for	r next loop.	100	9			
845	4			•	181	RTN			
846	2				102	*LBLC			
947	+				163	CF1		Clear % fla	g.
948	STOI				104	*LBL6			
949	CLX		Print or displa	v column	105	SPC		Set index 1	o begin at first
959	ENTT		total and stop		10€	RCLI		row total.	
851	RT		total and stop		107	FRC			
852	F0?				108	EEX			
853	PRTX				109	4			
854	F0?				116	%			
055	SPC				111	XZI		1	
	RTH				112	DSF2			
856				REGI	STERS				
826		2	3	4	5	6	7	8	9
826	1			1 .	and the same of	used	used	used	used
826	1 used	used	used	used	used				
	1 used S1		used S3	S4	S5	S6	S7	S8	S9
		used							

	Return original index to 1.	Wal #rows	b P?	c c c	d 3	e Tot	1% Col Chg	ON OFF 0	DEG ☑ GRAD □ RAD □	FIX X SCI DENG D
LADELO	Return original index to 1.	1/-1	B Dal			F _{al→ %} Tot				DISP
123 F1° 124 GSBE 125 PRTX			SPC RCL0							
121 SPC Output grand total or % of 122 RCLØ grand total if flag 1 is set. 123 F1° 124 GSBE 125 PRTX	121 SPC Output grand total or % of	121 122 123		If I ≠ 0						
118 R4 119 D5Z1 If 1≠0 loop again. 128 GT04 121 SPC Output grand total or % of 122 RCL8 grand total if flag 1 is set. 123 F1? 124 GSBE 125 PRTX	116 R4 119 D5Z1 If 1≠0 loop again. 126 €T04 121 SPC Output grand total or % of	116 119 120 121 122 123	R4					1		
119 DSZI If 1≠0 loop again. 120 GT04 121 SPC Output grand total or % of grand total if flag 1 is set. 123 F1° 124 GSBE 125 PRTX	116 GSBE to % before output. 117 PRTX 118 R4 119 D521 If I ≠ 0 loop again. 128 GT04 121 SPC Output grand total or % of	116 117 116 119 120 121 122 123	GSBE PRTX R4	to % be	fore output.					

PRIMARY EXCHANGE SECONDARY REGISTERS

The data storage of your calculator is comprised of 26 registers. Sixteen of these registers are directly accessible at all times through store and recall commands. The remaining 10 secondary registers $R_{\rm S0}-R_{\rm S9}$ are not directly addressable but may be exchanged with primary registers R_0-R_9 at any time. The command can be used to do this. Figure 1 represents the action of PSS. After execution of the command, the value originally stored in $R_{\rm S0}$ is found in R_0 , and the value originally in R_0 is in $R_{\rm S0}$. A similar exchange would occur between R_1-R_9 and $R_{\rm S1}-R_{\rm S9}$, respectively.

P≵S

Primary data registers I $R_{\rm E}$ $R_{\rm D}$ $R_{\rm C}$ $R_{\rm B}$ Secondary data registers R_A R_{S9} R_9 R_{S8} R_8 R_{S7} R_7 R_{s6} R_6 R_{S5} R_5 R_{S4} R_4 R_{S3} R_3 R_{S2} R_2 R_{S1} R_1 R_{S0} R_0

BIL.

11

.

I BI

K

188

1 1

L

Figure 1.

In Curve Fitting, the **E+** command is used to automatically accumulate the necessary sums in the registers indicated below:

$\Sigma_{\rm X}$	-	R_{S4}
Σx^2	•	$R_{\rm S5}$
Σy	•	$R_{\rm S6}$
Σy^2 ————————————————————————————————————	•	$R_{\rm S7}$
Σ_{xy}	•	$R_{\rm S8}$
Σn	•	$R_{\rm S9}$

Before starting to accumulate the sums, registers $R_{\rm S4}$ - $R_{\rm S9}$ must be cleared. Since the clear registers command only operates on the primary registers, a command is necessary. The code from *Curve Fitting* which prepares the secondary registers for summation is shown below:

Exchange primary and secondary registers.

[CL REG] Clear primary registers.

Return cleared registers to secondary status, ready to accumulate sums.

Note that this sequence has no effect on the original, primary registers R_0-R_9 . They still contain exactly what they contained before the sequence. This allows R_0-R_9 to be used for user storage during execution of *Curve Fitting*.

After the sums are accumulated, they must be accessed to calculate the regression coefficients a, b and r². However, since the sums are in the secondary registers, they are not directly accessible by the store and recall commands. This necessitates use of PES again. Label C (steps 68–113) of Curve Fitting performs the calculation. PES is found at the beginning and the end of the Label C routine. The first PES allows the values to be accessed directly. The second PES returns the registers to their original configuration.

Exchanges primary and secondary registers for access by

. STO and RCL.

Exchanges primary and secondary registers returning calculator to original status.

Curve Fitting

	IB	Ic	D				
	S1 S2 0	S3 S4 Σx	S5 Σx ²	S6 Σy	S7 Σγ ²	S8 Σxy	S9 n
	1 2	3 4	5	6	7	8	9
	I. S		REGISTERS				
056	SPC	flag.	112	P≠S		Switch reg	
955	*LBL9	Print inputs and reset p		PETX			
854	6T07		110	RCLB		Output a	and b.
853	Σ-	Subtract from sums.	108	STOA PRTX			
051 052	RTN ≠LBL0		107	ex			
850	XZY		106	F12			
049	RCLD	tioned for possible dele	105	÷			
948	XZY	tioned for possible dele		RCL9			
847	RCLC	Set inputs in stack posi	107	-			
846	+		102	X		1	
945	1		101	RCL4			
844	ENT†	Calculate i + 1.	100	RCL6 RCL4		Compute	a.
842 843	Σ+ *LBL7	Compute sums.	998	PRTX			
841	6100		89 7	÷			
848	F3?	If flag 3, then Σ	896	+			
039	LH		205	RCL7			
838	FØ?		894	CHS			
937	STOC	In x if flag 0 is set.	893	*CL9			
836	XZY		891 892	RCL9			
034 035	F1? LN	In y if flag 1 set.	898	RCL6			
933	STOD		089	X		Compute	r ² .
032	GSB9	5 - 7 - 2 · 1	083	STOE			
031	F2?	Print if flag 2 is set.	887	÷			
030	*LBL8		986	-			
829	CF3	Clear Z- Tiag.	085	XZY			
828	*LBLA	Clear Σ- flag.	884	RCL5			
927	RTH		082 083	RCL9			
826	GSBal SF1	for power curve fit.	981	χz			
824 825	*LBLe	Call LBL d, then set fla		RCL4			
023	RTH			ENT†			
822	SF0	- cgartanno nagi	078	ENTT			
921	GSB6	logarithmic flag.	877	-			
	*LBLd	Call LBL b, then set	876	+ E			
819	RTN		975	RCL9			
918	SF1	exponential flag.	873 874	RCL6			
016 017	*LBLc GSBb	Call LBL b, then set	872	RCL4			
015	RTH		071	RCL8			
814	1		970	SPC		Compute	
013	P≠S		869	P#S		registers.	
812	CLRG		968	*LBLC		Switch to	secondary
811	P≠S		967	GT08			puts
818	CF1	linear regression.	866	GSB3		flag is se	
889		Clear flags and register linear regression.	s for 864 865	SF3 F2?		Set Σ- fl	ag. ete indicator if
808		Class flows and varietos	963	*LBLE		Sat V fl	0.0
807	RTH		962	RTN			
995 996			961	SF2			
004			868	PRTX			
003		flag.	859	XIY			
002		Toggle print/pause mo	de 958	PRTX			

XEL.

TIL.

-11

T. BL

A SIL

111

1 II.

01

H

113 FTN 114 *LBLE	Position coefficients in stack	169 ÷ 170 F0 °	Power exp calc For power GTO 1
115 STOE	for use by projection	171 GT01	
:16 RCLA	routines.	172 LN	Exponential projection
117 RCLB		173 ± F20	
118 PCLE			
119 F1°	If flag 1 is set, power or	175 GT09	<u>Print?</u>
120 GTG1	exp projection.	176 RTN	Stop
121 F0°		177 #LBL1	
122 LH	Logarithmic?	178 X≇Y	Power projection.
123 ×		179 YX	
124 +	Linear or logarithmic	180 F2?	Print?
125 F2?	projection.	181 GT09	Stop.
12€ GT09	Print?	182 RTN	
127 RTN		183 R/S	
128 *LBL1	Stop		
129 F0?	If flag 0 is set, do power fit.		
130 GTD2			
131 ×	Do exponential projection.		
132 e ^x			
133 ×			
134 F29	Print?		
135 GT09			1
13€ RTH	Stop		1
137 *LBL2			
138 X≢Y	Do power projection.		1
139 YX	1-0,000		
140 ×			
141 F2?			1
142 GT09	Print?		
143 RTN	Stop		1
144 *LBL3	Print -1 indicator.		
145 SPC	Trint - I malcator.		1
146 1			1
147 CHS			
148 PRTX			
149 SF2			į.
150 R4			
151 RTH			
152 *LBLD	Position coefficients in stack		
153 STOE	for use by projection	1	
154 RCLB	routine.		
155 1/X	Toutine.		
156 RCLA			
157 RCLE			
158 X≢Y			
159 F1?	Power or exp?		
160 GT01			
161 -	Linear and log projection.		
162 ×			
163 FØ?	Logarithmic.		
164 e ^x 165 F2?			
	Print?		
166 GT09			
167 RTN	Stop		
168 #LBL1	LABELS	FLAGS	SET STATUS

LABELS				FLAGS	SET STATUS			
1 t y; (+)	B x _i ↑ y _i (-)	$C \rightarrow r^2$, a, b	P _y → x̂	\(\xi \rightarrow \hat{\partial}\)	0 _{Log}	FLAGS	TRIG	DISP
a _{P?}	b LIN?	CEXP?	Log?	PWR?	1Exp	ON OFF	DEG 🗷	FIX 🗵
$^{0}\Sigma^{-}$	1 used	² power	Brint	4	² print	1 X 2 X 3 X	GRAD □ RAD □	SCI DENG D
5	6	⁷ display	⁸ Σ-	9 print	³ Σ-			

MULTIPLE STORAGE IN REGISTERS

In *Calendar Functions* the date is input in mm.ddyyyy format. This allows three pieces of information (the day, the month, and the year) to be carried in one register. In *Calendar Functions* this provides a convenient means of displaying the date. In other programs a similar technique could be used to store more than 26 values in the 26 addressable registers.

When multiple storage techniques are used, two types of code are usually required. The first type breaks a combined number into its individual components. The second type assembles the individual components into a single number.

Steps 83 through 97 of *Calendar Functions* break the date into its individual components.

PROGRAM STEPS	X REGISTER CONTENT			
ENT↑	mm.ddyyyy	(combined form)		
INT	mm.000000			
STO7	mm.000000	(months)		
	.ddyyyy			
EEX				
2	100.000000			
X	dd.yyyy00			
ENT↑	dd.yyyy00			
INT	dd.000000			
STO8	dd.000000	(days)		
·	.yyyy00			
EEX				
4	10000.000000			
X	yyyy.000000			
STO9	yyyy.000000	(years)		

Steps 54 through 78 of *Calendar Functions* assemble the three values into one number for display. However, other operations are being performed which obscure the technique being used. Below is a sample program which could be used to build a date in mm.ddyyyy format if m were stored in R_7 , d in R_8 , and y in R_9 .

X REGISTER CONTENTS **PROGRAM STEPS** mm.000000 RCL7 RCL8 dd.000000 **EEX** 100.000000 2 0.dd0000 • mm.dd0000 RCL9 yyyy.000000 **EEX** 1000000.000000 6 0.00yyyy <u>.</u> mm.ddyyyy +

Calendar Functions

W.

E.

L

14.1

THE

111

L.B.I.

LHA

1

111

111

The same

1

N. I

1 11

100

(III

1

1

E SI

(iii

001 *LBLA	Calculate △ days and put	057	% + 7		
002 ROL4	control 3 in display.		ROL6		
003 ROLC	control a in display.	859			
604 -		050	INT	1	
005 3		061	-		
00€ GT00			STO8		
007 *LBLB	Calculate △ days and put		RCL7	Build (m'	- 1). dd part of
008 RCL3	control 4 in display.	964	1	display.	
009 RCLC			RCL8		
010 +		966	2		
011 4		957	-		
012 *LBL0	Store control code.	068 069	0017		
013 STOI		070	RCL7		y' - 1 and y' to m
014 R4 015 3	Store constants.	971	1 4	and y.	
916 6		872	÷		
017 5			GSB2		
916 .			RCL9		
Ø19 2	1	975	EEX		ilding mm.ddyyy
820 5		876	6		display final
021 ST05	j	977	÷	answer.	
022 3		678	+		
923 6			DSP6	l	
024 .		880	RTN		
025 6		08: #	LBL1	Brook dat	e input into the
826 0		032	R↓		components of
027 0		683	ENT ↑	mm, dd, y	
928 1		984	INT	min, dd, y	ууу.
029 STO6		085	ST07		
030 R↓	Return △ days to display.	086	-		
031 R4		087	EEX		
032 F3?	If data input, GTO 1.	880	2		
033 GTO1		089	X		
034 STO:	Store ∆ days according to		ENT†		
035 1	control code.	091	INT		
93 6 2			ST08		
037 2	Calculate y'.	093			
038		094	EEX		
039 1		995	4		
940 -		996	x ST09		
041 RCL5	1				
942 ÷		898 899	RCL7 1	m + 1	
843 INT		100	4		
944 ST09	Calculate m'.		ENT1		
845 RCL5 846 ×		102	1/8		
947 INT		103	4.11	m + 1 → m	ı'
948 RCL;		104	7		
849 -		105	+	$y \rightarrow y'$	
050 CHS		106	CHS		
051 STOA			65 B 2		
052 RCL6			RCL6		
852 KCL6		109	X	Compute of	day number.
054 INT		110	INT		
055 ST07	Calculate day of month.		RCL9	1	
056 RCLA	Salvanate day of month.		RCL5		
	REGIS	TERS			
1 2	3	365.25	30.6001 7 m	8 d	9 V
0 S1 S2			S6 S7	S8	S9
В	C ∆ days)	E	1	
used					trol

117	TAIT			169 178	XZY FRC			
114	INT			171	1			
115	t box o				0			
116	RCL8			172	×			
117	+			173			1	
118	STO:			174	+			
119	1	Comp	ute Julian day numb	er 175	STOC			
120			itput.	176	RTH			
131	2	101 00	report.	177	*LBLE		Calculate day	number.
122	0	1		178	SF3			
123	9	1		179	RCL5			
124	8			180	5			
125	. 2			181	GSB0			
126	+	1		182	RCL:		Channa days	
127	DSP0			183	5		Change day r	
128	RTN			184	+		modulo 7 nu	mber.
129	*LBL2			105	GSB3			
130	INT	1	ut to this routine has	186	LSTX			
131	ST+9	absol	ute value 1 or greater	187	1			
	1	y = y	± 1		6			
132			n ± 12	188				
133	2	1		189	X			
134	X			198	RTN			
135	-	(+ for	plus input)	191	R/S			
136	RTH							
137	*LBLC	Store	input.					
138	DSP0	Store	post.					
139	STOC			_				
140	F3?	16:	ut flog stop					
141	RTN	IT inp	ut flag, stop.				1	
142	RCL4							
143	RCL3	Calcu	late \triangle days and stop.					
144	_							
145	STOC							
146	RTN							
147	*LBLD			-				
148	F3?	If inp	ut GTO 4.					
149	GT04			- 1				
150	GSBC BCB1	Com	oute ∆days.					
151	DSF1			-				
152	*LBL3	Conv	ert to ∆ weeks.days					
153	7	forma						
154	÷	1000						
155	INT							
15€	LSTX							
157	FRC						1	
158								
159	7							
160	×							
161	+							
162	RTN						1	
163	*LBL4			-				
			ert ∆ weeks.days to					
164	DSP0	days	and store.					
165	ENTT							
166	INT							
167	7							
168	X		ABELS		FLAGS	T	SET STATUS	
	8 57	-		DT . DOU:	0 FLAGS	+		
DT ₁	⁸ ↔DT ₂	C +→△Days	D↔∆Wks. Days E	DT → DOW	1	FLAGS ON OFF	TRIG	DISP
	р	C				0 🗆 🛭	DEG 🗷	FIX 🕱
							0040	
С	¹ DT → days	² m - 12	³ mod 7	∆wk → ∆day	2	1 🗆 🕱	GRAD □ RAD □	SCI D

INTERCHANGEABLE SOLUTIONS

In programs like Annuities and Compound Amounts, it is necessary to be able to calculate any value given the other values. While there are many ways to do these interchangeable solutions, two methods are designed into your calculator. The method used in Annuities and Compound Amounts takes advantage of the STO A through STO E commands. The other method, used in Calendar Functions, takes advantage of the keyboard sensing flag (flag 3).

An interchangeable solution requires a method for storage and calculation. It is also desirable to associate inputs and outputs with the mnemonics on the magnetic cards. The STO A through STO E commands accommodate the storage of up to five values in the A through E registers and associate these values with the user definable keys which can be used to initiate calculation. Below is a diagram representing these relationships.

BEL

MAL

100.0

123

1 44

CA.

To store a, press **STO A**; to calculate a, press **A**. Note that after any value is calculated, it is automatically stored just before the RTN command stops execution. This eliminates the need to reinput calculated values in subsequent calculations.

The keyboard sensing flag allows up to ten variables to be interchangeably input. It also allows more versatility in storage register selection and allows input processing of data. However, it is slightly more complicated, requires extra steps and may seem mysterious to the uninitiated program user. The diagram below shows the relationships between the magnetic card and the keyboard sensing code.

4	on	terchanga, b,	gable	Dolut	ions of	2
	0	a, b,	a, a,	e, p	0.	
	u	D		4		
	_	_	_	_	-	
	A	В	C	D	E	
LBL f A	LBL A	LBL B	LBL C	LBL D	LBL E	
STO 0	STO ₁	STO 2	STO3	STO 4	STO 5	
F3?	F3?	F3?	F3?	F3?	F3?	
RTN	RTN	RTN	RTN	RTN	RTN	
C	С	C	C	C	C	
A	Α	Α	A	Α	Α	
L	L	L	L	L	L	
C	C	C	C	С	С	
U	U	U	U	U	U	
1	L	L	L	L	L	
A	Α	Α	Α	Α	Α	
T	T	T	T	T	Т	
E	E	E	E	E	Ε	
f	a	b	С	d	е	
STO 0	STO 1	STO 2	STO 3	STO 4	STO 5	
RTN	RTN	RTN	RTN	RTN	RTN	

To input the value a, key it in and press A. To calculate a, press A. Pressing for both input and output works because Flag 3 is set when the digit entry keys are pressed. When Flag 3 is set, the value is stored and execution stops at the first RTN. If the flag is not set (no digit keys were pressed), the program skips the first return and continues through the calculate portion of the program.

Annuities and Compound Amounts

001	#LBLA	Ct d 0.f	or -	CTOF	/1 + i\ in P-
802	#LBLH	Store dummy 0 for n.	957 958	ST05 ST07	(1 + i) in R ₅ . Store (1 + i) in R ₇ .
993	STOA				Store (1 + 1) in R ₇ .
884	6SB0	61-1	959		Calculate (1 + i) ⁻ⁿ and
905	RCLE	Calculate subroutine.	969		
996		6	961	γν	store in R ₈ .
	LSTX	Solve for n and store it in	862	ST08	
807		R _A .	863	RCLE	FV (1 + i) ⁻ⁿ
808	RCLD		964	X	
009	LSTX		965	1	Calculate [1 - (1 + i) ⁻ⁿ]
010	-	1	966	RCL8	and store in R ₄ .
011	÷	1	967	-	
012	LN	1	868	ST04	Calculate ± (PMT/i). Use
013	RCL7	1	869	RCLC	- if FV flag is set.
814	LH	1 1	979	RCL9	Store in R ₃ .
015	÷	1 1	971	÷	Store III 113.
016	STOA		872	F1?	
017	RTH		973	CHS	
018	*LBLC	Store dummy 1 for PMT.	874	STO3	
019	1	Store duminy 1 for PW1.	075	RCL5	6-11
820	STOC		976	X X	Calculate
821	65B0	C-1	977	×	$\frac{+PMT}{i}[1-(1+i)^{-n}] R_5$
022	1/8	Calculate subroutine.	978	RTN	1
923	RCLD				
023	R†	Solve for PMT and store it	979	*LBLa	Start by clearing PMT, PV
024 025	KT	in R _C .	989	CLX	FV (BAL) registers and
			081	STOC	annuity due flag.
926	X		882	STOD	
827	STOC		983	STOE	
828	RTN		984	CF0	1
029	*LBLD	Store dummy 1 for PV.	085	RTN	
930	1		08€	*LBLb	Annuity due flag toggle.
031	STOD		087	F0?	, ,
032	GSB0	Calculate subroutine.	986	GT01	
033	+	Solve for PV and store in	089	1	
934	STOD	R _D .	898	SF0	
035	RTN	b.	091	RTN	
836	*LBLE	Calculate subroutine.	092	#LBL1	1
037	GSB0	Calculate subroutine.	093	A	
838	RCLD		894	CFØ	1
039	XZY	Solve for FV (or BAL) and	095	RTN	
848	-	store in R _E .	896	*LBLB	
941	RCL8				Clear R _B for sum of i terr
		1	097	0	
942	÷ CTOF		898	STOB .	Store address of R _B in R _I
043	STOE		099	2	for indirect access.
844	RTH		100	1	
845	*LBL0	Clear FV flag.	101	STOI	
846	CF1		102	RCLE	Recall FV, n, and PMT.
847	RCLD		103	RCLA	Jocan I V, II, and FWII.
948	X=0?	If PV = 0 set FV flag.	104	RCLC	W DIAT . 0. OTO
849	SF1	III V - U Set F V Hag.	105	X=8º	If PMT = 0, GTO n, i, PV,
858	1	1=======	106	ET08	FV solution.
851	ST05	Set annuity due mode off	107	x.	Start guess of i. n PMT
852	RCLB	(R ₅ = 1).	108	^ +	+ BAL.
953	%		100	RCLD	
054	ST09	Convert i to decimal and	110	X=0?	If PV = 0, GTO FV guess.
		store in Rg.			
955	+	Calculate (i + 1).	111	GT03	
956	F0?	If AD flag is set store	112		PV guess for i.
	I In	REGIS		I6 I7	le lo
	1 2		1 or 1 + i	n(1+i) ⁻ⁿ⁻¹ 7	i) 8 9 i/100
	S1 S2		55	S6 S7	S8 S9
	31	34		13/	39
	В	Ic c)	IE .	
	B		PV	FV (BA	L) 21
					1.1 1.21

ELL

BL

calc	¹ AD ⁶ loop	7	⁸ FV guess	4 guess		3	1	RAD	ENG D
start	b _{AD}	c print	d	e		1 PV = 0	0 🗆 🕱	DEG ☒ GRAD □	FIX X
'n	Bi	PMT	D PV	FV (E	BAL)	O AD	FLAGS ON OFF	TRIG	DISP
	In	10	ABELS	Te .		FLAGS		SET STATUS	
168	F0?								
167	RCL4								
166	FØ?								
165	KLL5								
163 164	RCL5								
162	÷								
161	RCL9			- 1					
168	RCL4				21€	R/5			
159	LSTX				215	RTK			
157 158	R↓ F1?				213 214	RCLE PRTX			
156	F1?				212	PRTX			
155	ST06			- 1	211	RCLD			
154	CLX				210	PRTX			
153	F1?				209	RCLC			
152	X				208	PRTX			
150 151	RCL7				206 207	PRTX RCLB			
149	RCLA BCLZ	Calcu	1 11/1		205	RCLA		. V OI DAL.	
148	RCLB	Calcu	late f'(i).		204	SPC		FV or BAL.	, i v a
147	-				203	*LBLc		Output n, i, l	PMT PV a
146	RCLD			- 1	202	RTN			
145	CHS				201	ST+:			
144	F12				200	×		content of R	B·
142	GSB0	Calcu	late f(i).		198	EEX 2		Convert i to	
141	*LBL6				197	*LBL5			
140	RTN	If gue	ss = 0 stop.		196	-1.51.E			
139	X=0?		guess as a 76.		195	1			
138	GSB5	8.000	guess as a %.		194	YX			
137	XZY				193	1/8		1	
136	X¥Y?			1	192	RCLA			
135	CHS	-0.9	or guess.		191	*CLD			
133 134	9		ss is less than -0	.9 use	189 19 0	RCLE RCLD		problem.	
132	÷				188	*LBL8		Compute i fo	rn, i, PV,
131	*LBL4	Guess	for i.		187	RTN			
130	+				18€	RCLE		Stop and dis	olay.
129	RCLE				185	GT0€			
128	X				184	X≠0°		loop again.	
127	RCLC	1		1	183	RND		If value is no	t = to zero.
125 126	X2				181 182	RCLB		current i valu	ie.
124	1				180	GSB5		Subtract f(i)	
123	RCLA	(n - 1)2 PMT + FV		179	CHS			
122	+	and d	enominator:		178	÷		f(i)/f'(i)	
121	ENT†				177	-			
120					176	X			
119	LSTX	2(FV	- nPMT)		175	RCLE			
118	RCLE		less for i numera	itor:	174	RCL6			
116	€T04 *LBL3			- 1	172 173	RCL9		1	
		recall			171	DO: 0			
115	RCLD					RCLC			

INDIRECT GTO

The GTO function is used to cause program execution to transfer from the location of the GTO to the label specified. The label may be specified in one of two ways:

- 1. As a direct branch such as GTO 1, GTO A, GTO f C, etc.
- 2. As an indirect branch GTOi which causes execution to transfer to the label specified by the content of the I register.

In *Follow Me* the content of the I register is used to specify the operation to be performed. The operation codes are:

CODE	OPERATION
1	+
2	_
3	×
4	÷
5	%
6	I/O HALT
7	Constant

The first time a problem is done using Follow Me these codes are stored starting in R_D and ending in R_1 . The calculator accesses these codes in subsequent calculations and performs the operations indicated by them.

The GTOi instruction at step 083 actually selects the next operation. The RCLi and X \leftrightarrows I commands directly above the GTOi place the operation code in the I register. The GTOi command transfers control to one of seven labels corresponding to the operation code stored in the I register. For instance, if 3 is stored in I, the GTOi command will transfer control to LBL3 and the multiply at step 108 will be performed.

NOTES

-

-

-

3

3

3

3

3

Follow Me

001	*LBLA		Clear regist	ers and set index	957	STO:		recall con	nstant value.
992	CLRG			egin sequence.	958	CLX			
003	P≓S				955	RCLE			
884	CLRG				960	*LBL8			
905	2				961	DSZI		If I is no	n zero after dec
996	4 CTOI				962	GT01		store cd.	
967 988	STOI CLX				963	GT09		GTO erro	
909					864	*LBL1		Store co	de and return dis-
	RTN				865	STO:		play to p	roper status.
010	#LBL a			dition and put	866	CLX			
812	+,			ode of 1 in display		RCLE			
013	етое		register.		968	RTN		1	
014	*LBLb				069	*LBLD		Store 24	in I to reset count
015	#LDLE			btraction and put		CLX		er and st	ore zero code in
816	- 2			y, then transfer	971	2		R ₀ for a	to reset at end of
	_		to LBL 0.		972	4		sequence	
817	STO8				973	STOI			
018	*LBLc		Perform m	ultiplication and	974	CLX			
019	×		put 3 in di	splay.	075	ST00			
920	3				07€	RTN			
021	ST00				877	*LBLE		Store dis	play value, access
022	#LBL ai				078	STOE			r dec, put code in
823	÷		Perform di	vision and put 4	879	R4			r to LBL corre-
824	4		in the displ		888	DSZI			
025	*LBL0				081	RCL:		sponding	to code.
026	DSZI		Decrement	step count.	982	XZI			
927	GT01		GTO funct		083	GTO:			
828	6709		GTO error		884	*LBL0		Reset to	start new sequence
029	*LBL1				885	CLX			I to 24 and re-
030	STO:		1	tion code and	986	2			
031	R4			ration result.	887	4		turning o	utput to display.
032	RTH		return oper	ation result.	988	STOI			
033	*LBLe		Porform %	store display	089	CLX			
034	2			ue, and put 5	898	RCLE			
835	STOE				091	RTN			
936	CLX		code in dis	ріау.	092	#LBL1			ddition and re-
037	5		1		893	X#I			BL E for next
938	6T08		1		094	CLX		instructio	n.
039	*LBLB		1/01						
848	STOE			de of 6 put in	895	RCLE			
841	CLX			er storing display	096	+			
042	6		register valu	ue.	097	GTOE			
042	GT08				998	*LBL2		Perform s	ubtraction.
					099	XZI			
044	*LBLC		Constant co	ode of 7 put in	100	CLX			
945	STOE		display afte	er display value is	101	RCLE			
846	CLX		stored.		102	-			
847	7				103	GTOE			
048	DSZI		If I is non 2	ero after decre-	104	*LBL3		Perform r	nultiplication.
649	GT01		ment, store	code.	105	X#I			,
	*LBL9			dicating that too	106	CLX			
051	CLX			ations have been	107	RCLE			
8 52	2		attempted.	Jillio Deell	108	X			
053	4		attempted.		109	GTOE		I	
054	PSE				:10	#LBL4		Perform d	ivision.
955	GT09				111	XZI			
956	*LBL1		Store const	ant code and	112	CLX			
					STERS				
	1 used	2 used	3	4 used	5	6	7	8	9
	used S1	used S2	used S3	used S4	used S5	used	used	used	used
	used	used	used	used	S5 used	S6 used	S7 used	S8 used	S9 used
		useu	used	useu	usea	usea	usea	usea	usea
ed		B	C		D		F	T.	

EUL.

201

111

		ABELS	FLAGS	SET STATUS	
104	K/S				
124 125 R 126 127 *L 128 129 136 R 131 D 132 R 133 G	BL6 X*1 CLE RTN BL7 X*#1 CLX CLX CLX CLX CLE SZI TOE R-/S	 or I/0.			

VARIABLE INPUT

In many instances, it is desirable to input more than one value per user definable key. In *Triangle Solutions*, the lengths of all three sides of a triangle are input with one press of \mathbf{A} . Before \mathbf{A} is pressed the values of S_1 , S_2 , and S_3 must be keyed into the operational stack. The sequence to do this is:

 S_1 ENTER+ S_2 ENTER+ S_3

After this sequence is completed, the operational stack contains the values in the following positions:

T: Unknown value

Z: S₁ Y: S₂

X: S₃

The X, or display register, shows S_3 .

To operate successfully, *Triangle Solutions* must store S_1 in R_9 , S_2 in R_B and S_3 in R_D . Since S_3 is in the X-register, it can be stored in R_D with a **STO D** command (step 002). The value of S_2 must now be moved to the X-register so that they can be stored. A **RV** function (step 003) is used for this purpose. It moves the Y value to X, the Z value to Y, the T value to Z and the X value to T. After the **RV**, **STO B** is performed placing S_2 in S_2 . The operational stack is left as follows:

A.L

T: S₃

Z: Unknown value

Y: S₁ X: S₂

Both S_3 and S_2 are stored in the correct registers. After \mathbb{R}^{\bullet} and \mathbb{S}^{\bullet} \mathbb{Q} , S_1 is correctly stored. The final stack contents are as follows:

T: S₂

Z: S₃

Y: Unknown value

X: S₁

The complete input sequence is:

LBL A STO D (store S_3) R_{\downarrow} STO B (store S_2) R_{\downarrow} STO 9 (store S_1)

Up to four values may be input per user definable key using this type of technique.

Triangle Solutions

991	*LBLA		lengths of sides S ₃ ,	857	RCLA		GSB thir	d angle
002	STOD	S ₂ , S	1 •	958	ESB0			
993	R#			959	STOC		Y = Stsir	1 A ₃ .
884	STOB			868	RCLE			
965	R4			061	RCL9		X = S1 cc	s A ₃ .
996	ST09			962	→R			
997	R↓	i		963	XZY		1	
998	R4	P=(S	+S ₂ +S ₃)/2	964	ST08		h = X.	
809	+	. 10	102.03//2	965	RCLC		$\frac{h}{Y} = \frac{X}{\sin A}$	
618	+			96€	1		X = cos A	\
911	2	1		967	÷Ř		1 2037	.2.
812	+	1					2 -2 -:-	A /-:- A
813	STO7			968	R4		32-31511	A_3 /sin A_2 .
				869	÷			
814	X2			878	STOB			
915	LSTX			971	₽÷		S ₃ =S ₁ co	A3 + S2cos A2
916	RCLB			972	30			
817	X	1	DID C)	973	+		1	
818	-	A ₂ =2	$\cos^{-1} \sqrt{\frac{P(P-S_2)}{S_1S_2}}$	874	STOD			
019	RCL9	1.3.	√ S ₁ S ₃	975	GT01		GTO prir	nt.
828	RCLD			876	*LBLC		Store 4	, A ₁ , and S ₁ .
821	X			977	STOC		Julione A2	, . 1, and 01.
822	÷			978	R+			
823	1X			879	STOA		1	
824	cos						1	
825	2			986	R.L		1	
				981	ST09			
926	X			982	RCLC		GSB thir	d angle routine.
027	STOE			983	RCLA		1	
828	SIN			884	ESB0			
029	RCL9	h=S ₁	sin A ₃	985	RCL9		Set stack	for A3, S1, A1
830	×	" - "		986	RCLA		solution.	
031	ST08			987	GTOE		solution.	
032	RCL7			888	*LBLD		Store C.	A ₁ , and S ₁ .
833	Χz			889	STOB		31016 32	A1, and 31.
834	LSTX			898	RI			
935	RCL9			091	STOA		1	
936	X						1	
937	_	1		892	R4		1	
		- 1		093	ST09		1	
938	RCLB		P/P-S-1	094	RCLA			
039	÷	A ₂ =2	$\cos^{-1} \sqrt{\frac{P(P-S_1)}{S_2S_3}}$	995	RCLB		$S_3^2 = S_1$	2 + S ₂ 2 - 2S ₁ S ₂
940	RCLD		V 5253	096	→R		cos A ₁ .	
941	÷			097	RCL9			
942	1X	ı		898	-			
843	COS-	1		899	→P		1	
844	2			100	STOD			
845	x			101	RCL9			
946	STOC			102	RCLB			, S ₂ , and S ₃ and
947	RCLE						GTO A.	
948	6SB0	GSB	hird angle routine.	103	RCLD			
				104	GTDA		1	
849	STOA	GTO	print.	105	*LBLE		Store A-	, S ₂ , and S ₁ .
950	GTD1	010		106	STOC		Joint A2	, o ₂ , and o ₁ .
951	 ≢LBLB	Store	A ₁ , S ₁ , and A ₃ .	107	R↓		1	
952	STDA	Store	~1, 31, and ~3.	108	STOR		1	
953	R4			109	R4		1	
854	ST09			110	ST09			
055	R4			111	RCLC			
95€	STOE			112	SIN		1	
0.50	3702		850		214			
	11	2 3	REG [4	ISTERS Is	16	17	18	Tq.
	1	ا ا	[1	1	used	h	S ₁
0	S1	S2 S3	S4	S5	S6	S7	S8	S9
				-				
A ₁		B	C Ac	S ₃		E A3	1	
		S ₂	A ₂	53		A ₃	1	

$^{A}S_{1}, S_{2}, S_{3}$	B A3, S1, A1	C S ₁ , A ₁ , A ₂ D S ₁ , A ₁ , S ₂	E_{S_1, S_2, A_2}	0	FLAGS	TRIG	DISP
		LABELS	Ic	FLAGS		SET STATUS	
168	X			FLACE		CET CTATUS	
167	RCLD	(S ₁ S ₃ sin A ₃)/2.					
		Calculate and print are	ea =				
166	RCL8						
165	SPC						
164	PRTX					1	
163	RCLE						
162	PRTX						
161	RCLD						
160	SPC						
159	PRTX						
158	RCLC	1					
157	PRTX						
156	RCLB						
155	SPC						
		1					
154	PRTX	1					
153	RCLA						
152	PRTX	1					
151	RCL9						
150	SPC	Print values starting w	th S ₁ .				
149	SPC						
	*LBL1						
147	RTN						
146	COS-1	1					
145	CHS	1					
144	COS	COS (-COS (A + B))					
143	+	cos ⁻¹ [-cos (A + B)]					
142	*LBL0	Third angle =					
141	GTOB						
140	RCLA						
139	RCL9	1					
138	RCLE	GSB B.					
137	STOA	Recall A ₃ , S ₁ , and A ₁	and			1	
136	6SB0						
		GSB third angle.					
134	RCLC						
134	STOE						
133	COS-						
132	CHS	alternate solution.					
131	COS	alternate solution.					
130	RCLE	Find secondary angle f	or				
129	6709						
128	X¥Y?						
127	RCLB	solution.				I	
126	RCL9	Stop if this is the only				1	
125	6SBB						
124	RCLA						
123	RCL9					1	
122	RCLE	GSB B.					~
121	STOA	Recall A ₃ , S ₁ , and A ₁	and 177	R/S			
120	6SB0	GSB third angle.	176	RTN			
119	RCLC	GCR at land and	175	RJ			
118	STOE		174	R4			
117	SIN-	I	173	*LBL9		Area.	
116	÷	, ,	172	RTN			
115	RCL9	(5,)	171	PRTX			
114	.%	$A_3 = \sin^{-1}\left(\frac{S_2}{S_1}\sin A_2\right)$	170	÷			
113	RCLB	1/32	169	2			

	LABELS					SET STATUS			
AS ₁ , S ₂ , S ₃	B A3, S1, A1	C S1, A1, A2	DS1, A1, S2	ES1, S2, A2	0	FLAGS	TRIG	DISP	
a	b	c	d	е	1	ON OFF	DEG 🗷	FIX 🛭	
O 3rd angle	1 print	2	3	4	2	1 🗆 🕱	GRAD RAD	SCI ENG_	
5	6	7	8	9 Area	3	3 🗆 🛭	HAD L	n_2	

FLAG SET, CLEAR AND TEST—COMMAND CLEARING FLAGS

Review of the input values for *Vector Operations* is an option available to the user. When the program is loaded, the non-review status is automatically set. The user can change this status by pressing **1 B**. Each time the **1 B** keys are pressed, the status is changed and 1.00 or 0.00 is displayed to indicate whether or not the input values will be reviewed. The 1.00 indicates review and the 0.00 indicates no review.

Flag 0 and flag 1 are command clearing flags. That is, once they are set they remain set until a clear flag command is encountered. Testing them has no effect on their on/off status.

Flag 0 is used to control the review of the input values in *Vector Operations*. Lines 064, 090 and 112 contain PRST (print stack).* Preceding each of these statements is F0? (test flag 0). If flag 0 is set the PRST commands will be executed, reviewing the input values. If flag 0 is not on, the PRST commands are skipped. Below is the code used to change the flag status.

If flag 0 is off, this code sets flag 0 on and displays 1.00. If flag 0 is on, this code turns flag 0 off and displays 0.00.

^{*}The HP-67 interprets PRST as pause stack. The values contained in the T, Z, Y, and X registers will be displayed for approximately 3 seconds each. The decimal point will flash, indicating program execution will resume automatically.

NOTES

Vector Operations

Put vector code in T.
Print input?
Convert S→C.
1
· •
Begin C→S.
If 2D, set content of Z
register to zero.
register to zero.
Set T to zero.
Set I to zero.
Print input?
Convert C→S.
1
Put zero in T register.
Print result?
7 8 9
r ₁ r ₂ x ₁
S7 S8 S9
-

113 RTH	www.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s	169 X≢Y	
114 at 81.3	Convert negative angles to	176 R1	
118 1	positive angles 0° - 360°.	171 CLX	
ile CHE	The state of the s	172 R4	1
117 (00"		173 PRST	
110 .		174 RTH	
110 1875		175 #LBLC	
1.70		176 SPC	Take dot product.
101 RTH		177 RCL7	Take dot product.
188 WILLIA	Add \vec{V}_1 and \vec{V}_2 and con-	178 RCL8	
183 RCLB	Add V1 and V2 and con-	179 ×	
124 RELE	vert back to spherical	180 1/X	1
1,75 4	coordinates.	181 RCL9	
126 MCLD		182 RCLC	
127 MCLA			
126 4			
		184 RCLA	
129 RCLC		185 RCLD	i
1.10 RCL 9		186 ×	
131 +		187 +	
132 SF 2		188 RCLB	
133 65B6		189 RCLE	1
134 PRST		190 ×	
135 RTN		191 +	
136 *LBLB	Take cross product.	192 PRTX	Compute angle between
137 RCL9	Tuke oross producti	193 ×	
138 RCLD		194 LSTX	vectors.
139 ×		195 X≇Y	
148 RCLA		196 COS-	
141 RCLC		197 PRTX	
142 ×		198 RTN	
143 -		199 R/S	1
144 RCLB		199 K/S	
145 RCLC			
146 ×			
147 RCL9			
148 RCLE			
149 X			
150 -			1
151 RCLB			1
152 RCLD			
153 X			
154 STOI			
155 CLX			I
156 RCLA			
157 RCLE			
158 ×			
159 RCLI			
168 -			
161 →P	Convert healt to anti-start		
162 X#Y	Convert back to spherical.		
163 X<8°			
164 GSB3			
165 R4			
166 XZY			
167 →F			
168 Rt			
TOU K!	LABELS	FLAGS	SET STATUS
	\vec{V}_2 $\vec{C} \vec{V}_1 \cdot \vec{V}_2$ $\vec{D} \phi_1 \uparrow \theta_1 \uparrow r_1$ $\vec{E} \phi_2$		JE. 0.11.00

	LABELS					SET STATUS			
A \vec{V}_{1} + \vec{V}_{2}	$\vec{V}_1 \times \vec{V}_2$	C V1 · V2	$D_{\phi_1 \uparrow \theta_1 \uparrow r_1}$	$E \phi_2 \uparrow \theta_2 \uparrow r_2$	O PRINT?	FLAGS	TRIG	DISP	
a 3D/2D?	b P?	С	dS→C	e C→S	¹ 3D/2D?	ON OFF	DEG 🛭	FIX 🔯	
0 used	1 V ₁	² V ₂ , print	³ 0° - 360°	4	² S→C	1 🗆 🗵	GRAD	SCI 🗆	
⁵ S→C	6 C→S	7	8	9	3	2 🗆 🕱 3 🗆 🕱	RAD 🗆	n_2	

FLAG SET, CLEAR AND TEST-TEST CLEARING FLAG

Flag 2 and flag 3* are test clearing flags. Each time they are tested, they are automatically cleared. This makes them especially useful in many programming situations.

In *Polynomial Evaluation*, flag 2 is used twice. At step 62 it is used to decide whether to add or subtract; and at step 145, it is used to determine whether a result should be positive or negative. The following discussion details the use in the latter case.

Label 1 calculates the cube root of a number. This would be very simple if y^x were defined for the case where y is negative and x is a non-integer. However, if we tried to find the cube root of -8 (which is -2) directly, we would obtain an error message. The following flow chart and code yield the desired result:

Flow chart	Code	X register	X register
LBL 1	LBL 1	(Positive 8) 8	(Negative 8) -8
no Is input negative?	x < 0	8	-8
Set flag 2	SF2	8	-8
Take absolute value of input	ABS	8	8
Calculate root of value	3 1/x y*	0.333 2	0.333 2
no Was input negative?	F2?	2	2
Change sign of output	CHS	2	-2
RTN	RTN	2	-2

^{*}When using flag 3, you must be aware that it is set whenever the numeric keys are pressed.

NOTES

Polynomial Evaluation

Ei.

in.

III

E # 11

¥ X.J.

NI.

N. NO.

EX

E BEI

RA

901	*LBLc		C+		857	RCLB		T	
882	0		Store zero for of initialize.	regree, to	958	-			
003	STOE		initialize.		059	XK 0 2		Imaginary	roots?
994	RTN				960	GT00			
905	*LBLB		Store a ₀ and se		6€1	4X		1	
886	ST01		indicator (= deg		062	F2?		Compute	x ₁ (the root of
997	1		1.	gree . 1/10	863	CHS		largest abs	olute value).
998	RTN		·		864	+		Compute	
	*LBLC		Store a ₁ and se	t indicator to	965	÷			2
016	ST02		2.		966	LSTX			
811	2		2.		967	6106			
812	STOR				068	*LBL@		Compute	imaginary part.
	*LBLD				869	ABS			
814	ST03		Store a ₂ and se	t indicator	979	1X			
015	3		to 3.	i indicator	871	1		Output in	ng code.
916	STOR		10 3.		672	CHS			
917	*LBLE				073	PRTX			
018	ST04		Store a ₃ and se	t indicator	874	R4		Img part t	o X.
019	4		to 4.		075	*LBL6			or img part.
020	#LBL0				976	PRTX			
021	XZY		Sort to find an	d retain	077	*LBL2		Output x ₁	or real part.
022	X=0?		largest indicato		978	XZY			
023	RTN		largest mulcato		879	PRTX			
824	824				989	RCLA			
025	RCLE		1		981	*LBL5		Return eq	uation to orig-
826	X#Y				982	STX4		inal form.	
827	X) YO		I		083	STX3			
028	STOE				984	STX2			
829	X#Y				985	ST×1			
030	R↓				086	R4		Stop and	display.
031	RTN				087	CF2			
032	*LBLb		Start polynomi	ial solution.	988	RTN			
033	SPC		otal t porynomi		989	*LBL4		Start 3 rd	degree solution b
934	RCLE				090	3		computin	άQ.
935	STOI		Put degree cod		091	÷			3
036	÷		control.	le in i ioi	892	RCL3			
837	RCL:		Control.		893	X2			
036	STOA		Divide all coef.	by coef of	894	9			
839	1/8		highest deg.	b, 00011 01	095	÷			
848	GSB5				096	-			
041	RCL1		Select proper of		897	STOD			
842	CHS		Deleter proper e	icg solution.	098	3		Compute	Q^3 .
843	RCL2				899	Y×			
844	GTO:				100	STOC			
045	*LBL3		Begin quadration		101	RCL3		Compute	R.
946	RCL1		Degin quadrati	c cquation.	102	RCL2			
947	#LBL9				103	×			
948	STOB		Calculate - a		194	RCL1			
849	XZY		Calculate - 2a	2	105	3			
050	CHS				106	X			
851	2				107	-			
952	÷				108	6			
			Set flag to det	sol order.	109	÷		1	
	X (82				110	RCL3			
053	X<0? SF2		1			_		1	
	X (0? SF2 ENT1		(a ₄ /2a ₂) ² -(a ₂	/aa)	111	3			
953 954	SF2		$(a_1/2a_2)^2 - (a_0$	/a ₂)	112	3 Y*			
953 954 955 956	SF2 ENT1		$(a_1/2a_2)^2 - (a_0$	/a ₂) REGIS	112 STERS	Y*			
053 054 055	SF2 ENT1 X2	2	(a ₁ /2a ₂) ² -(a ₀ ,	/a ₂) REGIS	112		7	8	9
953 954 955 956	SF2 ENT1 X2	a ₁	(a ₁ /2a ₂) ² -(a ₀ ,	/a ₂) REGIS	STERS 5	6		8	9
953 954 955 956	SF2 ENT1 X2		(a ₁ /2a ₂) ² -(a ₀ ,	/a ₂) REGIS	112 STERS	Y*	7 S7		
053 054 055 056	SF2 ENT1 X2	a ₁	(a ₁ /2a ₂) ² -(a ₀ ,	/a ₂) REGIS	STERS 5	6		S8	

162 163 164 165 166 167	ENT† RCL3 3 4	LABELS	FLAGS	SET STATUS
162 163 164 165 166 167	ENT† † RCL3 3 ÷			
162 163 164 165	ENT† RCL3			
162 163 164	ENT† + RCL3			
162 163	ENT†			
162	ENTT			
	×			
161				
160	JX			
159	CHS			
157 158	COS RCLD	3		
156		$M = \frac{1}{3} \cos^{-1} (R/\sqrt{-Q^3})$		
155	3			
154	COS-	Where		
153	-			
152	1X	3a ₃		
151	CHS	$x = 2\sqrt{-Q} \cos(M) - \frac{a_2}{3a_3}$		
150	RCLC	a ₂		
149	RCLB			1
	*LBL0	Compute x ₃ using		
147	RTN			
146	CHS			
145	F2?			
144	YK			Stop and display.
143	1/X		199 R/S	
142	3		198 RTN	
141	ABS		197 GTOW	
140	SF2		19€ DSZI	Evaluate f(x).
139	X<0?		195 +	
	*LBL1	Cube root of a number.	194 RCL:	
137	6108		193 ×	
136	0.700		192 *LBLd	
135	÷		191 RTN	Degree one check.
134	3		190 GTOd	
133	RCL3		189 DSZI	
132	+		188 RCL:	
131	GSB1		187 CLX	
130	XZY		186 STOI	
129	SSB1		185 RCLE	
128	4		184 ENT1	evaluation.
127	RCLB	3a ₃	183 ENT†	Set up for polynomia
126	LSTX	$x_3 = S + T - \frac{a_2}{3a_3}$	182 ENT1	
125	-		181 #LBLA	1
124	X#Y		180 GT09	
123	RCLB	Compute x ₃ using	179 +	
122	1%		178 RCL2	
121	6100		177 ×	
120	X O		176 RCLB	
119	+	$Q^3 + R^2$ decision.	175 ENT†	
118	Xs		174 ENT†	
117	ST0B		173 +	
116	11.0		172 RCL3	1
115	4		171 STOB	synthetic division.
113	7		170 SPC	Output x ₃ and begin

	LABELS					SET STATUS			
A ×→f(x)	13 a ₀	C a ₁	D a2	E a ₃	0	FLAGS	TRIG	DISP	
Start	b⇒Solve	C	d	е	1	ON OFF	DEG 🗵	FIX X	
used	1 cube root	2 output x ₁	3 deg 2	4 deg 3	2 sign	1 0 🗷	GRAD □ RAD □	SCI □	
divide	6 output x ₂	7 used	8 syn div	9 deg 2	3	2 🗆 🕱 3 🗆 🕱	NAU 🗆	n_2	

SUBROUTINES AND INDIRECT RECALLS

LBL a (lines 22 through 49) of *Matrix Operations* calculates the determinant of the 3×3 matrix stored in registers R_1 through R_9 .

$$\begin{vmatrix} R_1 & R_2 & R_3 \\ R_4 & R_5 & R_6 \\ R_7 & R_8 & R_9 \end{vmatrix} = (R_5R_9 - R_6R_8) R_1 - (R_4R_9 - R_6R_7) R_2 + (R_4R_8 - R_5R_7) R_3$$

$$=-\left(R_{6}R_{8}R_{1}+R_{4}R_{9}R_{2}+R_{5}R_{7}R_{3}\right)+R_{3}R_{8}R_{4}+R_{1}R_{9}R_{5}+R_{2}R_{7}R_{6}$$

The following keystroke procedure will perform the calculation:

There are two patterns in the above procedure which can be exploited to reduce the number of program steps necessary for solution:

- 1. **X X +** appears repeatedly.
- 2. The values recalled immediately before **X X +**, are recalled from consecutive registers (note underlined RCL instructions in keystrokes above).

A subroutine can be used to take advantage of item one, while indirect recalls in combination with the ISZ command can be used to recall values consecutively. Let's examine the code that does this.

4

3

=

3

111111

Each time the GSB 7 command is encountered, the calculator goes to LBL 7, executes the ISZ command, which adds one to the contents of register I, and recalls the contents of the register specified by the contents of register I (R_1 through R_6). After this, the \times \times + is done and execution continues at the step following the GSB 7 call.

Matrix Operations

			Set 0 in displ	ay for indi-	857	RCLT			
	¢LBL⊬ a		rect store.		958	GSE3			
002	6105				85.9	STOD		1	
967			Set 3 in displ	ay for indi-	860	CLX		l	
	*LBLE		rect store.		961	RCL3		1	
005	3				862	RCL4		1	
86€	6105	1			863	X			
	*LBLC	1	Set 6 in displ	ay for fildi-	964	RCL1			
808	6	1	rect store.		965	RCL6		1	
009	ET05				866	GSB3			
010	*LBLD		Set 19 in dis	play for indi-					
911	1		rect store.		967	STOE			
812	9	-			968	CLX			
	*LBL5		Store code in	ı I.	069	RCL2		1	
614	STOI	1.			979	RCL?		1	
015	€SB€		Store three is	nput values in	871	×			
816	GSB6			ers according	872	RCL1			
	*LBL6			cra according	873	P.CL8		1	
	R1		to code.		874	6SB3			
018					875	STOI		1	
019	ISZI				976	CLX			
828	STO:	1:	0.1		877	RCL1		1	
021	RTN		Calculate de	terminant.	978	RCL5		1	
022	*LBL a				879	X			
823	€				880	RCL2		1	
924	STOI	Į.			981	RCL4		1	
825	RCL6	- 1							
826	RCLS				882	6SB3			
927	6SB7				987	STOR		1	
928	RCL4	i			884	CLX		1	
829	RCL9				085	RCL3			
030	GSB7	- 1			88€	RCL8		1	
031	RCL5	1			987	X		1	
832	RCL?				988	RCL2			
833	GSB7	1			989	RCL9			
	CHS	- 1			898	GSB3		1	
034		- 1			891	STG1		1	
035	RCL3	- 1			892	CLX		1	
936	RCL8	- 1			093	RCL2		1	
037	GSB7	- 1				RCL6		1	
938	RCL1	1			894				
039	RCL5				895	X			
848	GSB7	l			896	RCL3			
841	RCL2				097	RCL5			
942	RCL7	1			898	ese3			
843	*LBL7	1			099	ST03			
844	ISZI	1			100	CLX			
845	RCL:	1			101	PCL5			
846	X				102	RCL9			
947	X				103	λ		1	
648	+	1			104	RCL6		1	
	RTN				105	RCL8			
849			Calculate re	eciprocal of	106	6SB3			
858	*LBL&		determinan	t.	107	ST02			
951	6SBa								
052	1 /X				108	CLX			
953	RCL1		Calculate in	nverse.	109	RCL€			
854	RCL9				110	RCL 7			
955	X	1			111				
856	RCL3				112	RCL4			
				REG	ISTERS			- 10	To
	1	2	3	4	5	6	7	8	9 62 72
γ_3	a ₁ ,α ₁	a ₂ ,α ₂	a ₃ ,α ₃	b ₁ ,β ₁	b ₂ ,β ₂	b3,β3	c ₁ ,γ ₁	c ₂ ,	γ ₂ c ₃ ,γ ₃
0	S1	S2	S3	S4	S5	S6	S7	S8	29
-									
	- II	3	С		D		E		1
de	,	do	d ₃		β2		β_3		control

⁰ print	¹ mult	² print	3 inv	⁴ mult		2	0 8	GRAD RAD	SCI ENG
a ₁ , a ₂ , a ₃ a→Det	B_{b_1}, b_2, b_3 $b \rightarrow Inv$	C_{c_1, c_2, c_3} $C \rightarrow Mult$	D d ₁ , d ₂ , d ₃	e	+	1	ON OFF	TRIG DEG 🛭	DISP FIX D
A	В		LABELS	E Print	-	FLAGS	= 1.05	SET STATUS	DICT
168	RTN								
167	PRTX							1	
166	RCLC								
165	PRTX								
163 164	PRTX RCLB								
162	RCLA	thro	ugn MC.					1	
161	SPC		put registers R _A					1	
	*LBL0		aut registers P						
159	ET02								
158	ISZI								
157	RCLI								
156	SPC								
155	X=0?								
154	FRC								
153	3 ÷								
151	3								
150 151	X=Y? GT00			- '	00	R. D			
149	RCLI				06	R/S			
148	9	1.19.			04 05	RTN			
147	PRTX	Ro.			03	ISZI ISZI			
146	RCL:	Out	out registers R ₁ th		02	ISZI			
	kLBL2	1			01	+			
144	STOI				00	×			
143	1	1			99	RCL:			
	SPC	Initi	anze output 100p.	1	98	*LBL4		Multiplication	subrouti
	LBLE	Initi	alize output loop.		97	RTH			
140	RTH			1	96	PRTX			
139	×				95	GSB4			
138	-	Inve	rse subroutine.		94	ROLO			
136	KLBL3				93	GSB4			
135 136	KIN LBL3	Stop	and display 0.		92	RCLE			
134	CLX RTN				91	GSB4			
133	GSBB				89 90	RCLA			
	RCLE				88	*LBL1 Ø		Multiplication	١.
	RCLD				87	RTN			
	RCL6				8€	RCLO			
129	GSBA				85	RCLE		Gispiay.	
	RCL3				84	RCLD		display.	
127	RCL1				83	0		Put values in s	stack for
	RCL2	prop	er registers.		82	STOR			
	ESEC		er registers.	2	81	GSB1		di Eipiication	
	RCLO	Stor	e inverse values in		80	STOI		multiplication	
	RCLI				79	13		Third value fr	om
	6SB3				78	STOE			
	RCL7				77	GSB1			
119	RCL5				76	STOI		multiplication	
	RCL8				75	2			
					74	STOD		Second value	from
116	CLX FCL4				73	GSB:		I	
	STO6				72	5701		multiplication	
	6983				70 71	SPC		multiplication	
					70			First value fro	m

ITERATIVE TEST AND LOOP

Some equations cannot be solved explicitly. That is, it is impossible to separate a particular variable from the rest of the equation. Solution of this type of equation requires a repetitive technique. In general, such techniques are composed of three basic operations.

E.S.A.

- 1. An initial guess is made.
- 2. This guess is refined.
- 3. The refined guess is tested for accuracy. If the accuracy is satisfactory, the result is displayed. If the result is not satisfactory, the refinement process is repeated.

In flow chart form, the process might look like this:

In Calculus And Roots Of f(x), LBL E (steps 83 through 112) performs a general interative solution for user-specified functions. The initial guess supplied by the user is refined using the secant method. The secant method evaluates the function f(x) at two points and generates a third refined point. Graphically, this can be represented by the sketch below:

By defining a straight line using x_1 and x_2 , x_3 can be found. Subsequently, x_2 and x_3 can be used to generate x_4 etc.

The equation defining the secant method is as follows:

$$x_{i+1} = x_i - f(x_i) \left(\frac{(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})} \right)$$

It is evaluated repeatedly by steps 88 through 103. Each time these steps are repeated, the value of x is refined.

Steps 104 through 110 (excluding steps 105 and 106) test to determine whether the guess has been refined to the desired accuracy. If another loop is required, control is transferred to LBL 6. If the value is sufficiently accurate, the program stops, displaying the result at step 112.

The display setting, in combination with the RND function, is used to determine the accuracy of the result. If the amount of change in x_i divided by x_{i+1} rounds to zero, the condition for convergence is met and x_{i+1} is displayed as the answer. If the rounded value is not zero, another iteration is required. For instance, if $x_i = 10$, the change in x_i is 0.1 and the display is set at two decimal places, the test value would be calculated as follows:

Test value =
$$RND(0.1/(10 - 0.1)) = RND(0.01010101)$$

= 0.01

3

Since the value is not zero, another loop is required. If, on the next loop, the refinement were 0.01, and x_i were 9.9, the test value would be calculated as follows:

Test value =
$$RND(0.01/(9.9 - 0.01)) = RND(0.001011122)$$

= 0.00

Since the value is zero, x_{i+1} would be displayed as the result ($x_{i+1} = 9.89$). Note that, if the display had been set to three decimal places, another loop would be required since the RND function is display dependent.

Calculus and Roots of f(x)

001 002 003	*LBLA STOI RTN	Store function number.	058 ÷ 059 STOC	(b - a)/n
904	*LBLe	Pause toggle.	960 2	
005	FØ?	rause toggle.	961 ÷	b - a
996	GT00		062 ST+0	
997	SF0		963 8	Set integral sum at 0.
800	1		964 ST09	
009	RTN		965 RCLB	Put number of intervals
010	*LBL0		966 X≠I	in I.
911	0	1	067 #LBL7	
012	CFB		068 X#I	Return function number
013	RTN		069 STOB	to I and n to R _B .
814	*LBLa	Store %∆ and set flag.	070 RCL0	
015	SF1		071 GSB:	F'(R ₀)
016	STOE		072 RCLC	
017	RTN		073 ST+0	$R_0 + (b - a)/n$
018	*LBLE	Choose default %∆ or u	se 074 ×	Add $f(R_0)$ (b – a)/n
019	EEX	0.01%?	075 ST+9	
820	CHS	0.01701	876 RCLB	Decrement n and save
021	2	1	077 X≠I	function in display.
022	RCLE	1	078 DSZI	
923	F1?		079 GT07	Store function number.
024	XZY		080 STOI	
025	R↓		881 RCL9	Display result of
026	%	If x=0 use %∆ rather th	an 862 RTN	integration.
827	X=0?	% of x as ∆x.	083 *LBLE	Use numerical differentia
928	LSTX	70 01 X US LIX.	084 FIX	
029	STOC		085 GSBB	to generate x _i from user
030	2		986 RCLB	guess.
031	÷	$f(x - \Delta x/2)$.	087 GT00	
#32	-	1,	088 *LBL6	Evaluate f(x _i)
033	STOA	1	089 RCL0	
834	STO@		090 GSB:	
935	GSB i		091 STOB	
836	STOD		092 *LBL0	
937	RCLA	$f(x + \Delta x/2)$.	093 RCLA	Secant method calculates
938	RCLC	1,00	094 RCL6	correction for x value
839	+		095 STDA	and sets values for next
840	STO0		096 -	loop.
941	CSB:		097 RCLD	Тоор.
842	STOB	$f(x+\Delta x/2)-f(x-\Delta x/2)$	098 RCLB	
043	RCLD	Δx	099 STOD	
844	-		100 -	
945	RCLC		101 ÷	
946	÷		102 ×	
947	RTN		103 ST-0	_Subtract correction
948	*LBLC	f(x).	184 RCL8	Pause and display root if
849	ST00		105 F0?	flag set?
650	CSB:		106 PSE	
051	RTH		107 ÷	RND (change/x _{i+1})
952	*LBLD	Store a.	188 RND	
853	X∓Y		109 X≠0?	Accurate to display?
854	STO®	b-a.	110 GT06	
855	-		111 RCL0	If it is, display result.
8 56	XZY	Store n.	112 RTN	
	L In		EGISTERS 6 7	8 9
×	1 2	3 4	5 6 7	integral
0	S1 S2	S3 S4	S5 S6 S7	S8 S9
		lc	D E	
	l _B			

901 *	LBL1	To :	Control of the					
002	R/S		nical evaluation					
963	RTN	subro	utine.					
	LBL2							
005	RAD							
996	TAN							
	LSTX	f(x) =	tan(x) - Inv(x) -	- x				
	-							
800								
	RCL2							
016	-							
011	DEG							
012	RTN							
	LBL3	1						
014	RAD							
015	SIN	f(0) =	$\frac{1}{\sqrt{1-k^2\sin^2\theta}}$	_				
	RCL1	1.007	1/1 1.2 -: -2 0					
017	X		VI-K SIN 0					
018	Xs	1						
019	1	1						
828	XZY							
821	_	i						
022	1X	1						
923	1/8	1						
924	DEG	1						
825	RTH							
020								
		1						
		i						
		1						
1								
1								
		1						
1								
1								
1								
		-						
		1						
		- 1						
		- 1						
				1				
		1						
		l						
	10		ABELS	Té	FLAGS		SET STATUS	
Function #	$B x \rightarrow f^{i}(x)$	C x→f(x)	^D n†a†b→∫	E x ₀ →root	O Pause	FLAGS	TRIG	DISP
^a %∆	b	С	d	e pause	1 %∆	ON OFF	DEG 🖼	FIX 🗵
	1	2	3	4	2	1 🗆 🗵	GRAD □	SCI []
⁰ used	1	-				2 🗆 🛛	RAD	ENG D
l c	6 iterate	7 integrate	8	9	3	3 🗆 🛛		n_2_
2								

English—SI Conversions (Metric Conversions)

					-	_	
001	*LBLa	Set millimeter inch flag.	857	1			
862 863	SF2 ∗LBLA		958 959	5 F2?			
004	2		868	1 %			
805	5	Input conversion constant.	961	XZY			
886			862	λ.			
807	4		863	RTN			
808	F20		864	*LBLe			
869	1/8	in. to mm or mm to in?	965	SF2		Pound mass	kiloarom
818	X#Y		966	*LBLE			
011	X	Set stack for LST x	1 8€7	+LULL		conversion.	
812	RTN	1	068	4			
013	*LBLb	Convert.	969	5			
814	SF2		970	3			
815	*LBLB	Feet-meter conversion.	871	5			
	*LDLD		073	9			
916 917	3	l .	673	2			
			874	3			
019	8		075	7		1	
819	4 8		976	F22			
828			977	1/8		1	
021	F2?		078	178 8 ‡ Y			
922	1/X		079	A+ /			
923	XZY	i		RTH			
024	X		989				
825	RTH		180	R/S			
826	*LBLc					1	
927	SF2	Gallon-liter conversion.	1				
928	*LBLC						
029	3	l .	1				
030							
831	7		1				
832	8		1			1	
033	5		1				
834	4		ł				
935	1		1			1	
936	1		1			1	
937	7	1	1				
038	8	1	1				
8 39	4						
846	F2?		1				
941	1/8	1	1				
842	XZY	I					
943	×						
844	RTN	I					
945	*LBL d						
846	SF2	Pound force-newton					
947	*LBLD	conversion.					
048	4	CONTRACTSION.					
849							
950	4						
051	4						
052	8						
953	2						
054	2		1				
855	1						
05 6	6						
		REGI	STERS				
0	1. 2	3 4	5	6	7	8	9
				-		-	
S0	S1 S2	S3 S4	S5	S6	S7	S8	S9
				1			
A	В	С	D		E	1	
			L				

HIL

(i

III

801	*LBLA			957 958	*LBL0 1		Pound mass pe	ar cubic foo
002	3			959	6			
063	5				ь		to kilogram pe	er cubic me
004	-,	00 = 10	F - 32)/1.8	060			conversion.	
805	1	0 - 1	1 - 32//1.0	061 062	1			
606				963	8			
007	-8			964	4			
800					6			
009	RTH			065			1	
010	*LBLa			966	3		1	
(111	1	0-	-0	967	F2?		1	
012	*	F = 1	.8°C + 32	068	1/8		1	
813	8			069	X≠Y		1	
614	X			070	X		1	
015	3			071	RTN			
016	2			672	*LBLe			
017	+			073	SF2			
918	RTH			874	*LBLE		Horsepower to	o watt
019	*LBLk			075	7		conversion.	
020	SF2	British	thermal unit to je	oule 076	4			
021	*LBLB	conver		8//	5			
022	1	Conver	510111	078	4			
023	Ū			879	6			
024	5			080	9			
025	5			081	9]	
026				082	9			
027	Û	1		083	8			
928	5			084	7		1	
029	5			085	F2?			
030	6			086	17X			
031	5			987	XZY			
032	3			986	×			
833	F2?			089	RTH			
034	1/X			090	R/S			
035	XZY							
036	A							
037	RTN							
038	*LBLc							
039	SF2	Paula	d per square inch t					
040	*LBLC							
041	6		on per square metr	е				
042	8	conve	rsion.					
043	9							
044	4							
045	,							
846	7							
047	5							
048	7							
049	2							
050	F2?							
051	1/X							
	XZY							
052								
053	X							
054	RTN							
055	*LBLd							
056	SF2							
			BELS		FLAGS		SET STATUS	
	^B ft-m	C _{gal-1}	D _{lbf-N}	E Ibm-kg		FLAGS	TRIG	DISP
n-mm	16.111	gen .		1		ON OFF	11110	

LABELS					FLAGS	SET STATUS		
A in-mm	^B ft-m	C _{gal-1}	D _{Ibf-N}	E Ibm-kg	0	FLAGS	TRIG	DISP
°F - °C	Btu-J	psi-N/m ²	lb/ft ³ – kg/m	hp-W	1	ON OFF	DEG 🗵	FIX 🗵
0	1	2	3	4	2 reverse	1		SCI 🗆
4,	6	7	8	9	3		n_2	

PSEUDORANDOM NUMBER GENERATOR

Arithmetic Teacher incorporates a pseudorandom number generator. This generator supplies a sequence of numbers between zero and one which are converted into the problems displayed by the program.

The term "Pseudorandom" implies that the sequence of numbers is predictable from the algorithm and the initial value or seed used for the generator. A truly random device, such as a fair roulette wheel, is totally unpredictable. However, pseudorandom generators can be used to model random events provided they yield uniformly distributed numbers (i.e., as many values fall between 0.00 and 0.10 as fall between 0.10 and 0.20 etc.) and they do not repeat the same sequence of values during the simulation.

The pseudorandom number generator incorporated in *Arithmetic Teacher* is very simple but quite good. It uses the multiplicative linear congruential method:

$$u_{i+1}$$
 = fractional part of (997 u_i)
where $i = 0, 1, 2,...$
 $u_0 = 0.5284163*$ (seed)

The period of this generator has a length of 500,000 numbers and the generator passes the frequency test (chi square) for uniformity, the serial test and the run test. The most significant digits (the left hand digits) are the most random digits. The right most digits are significantly less random.

In *Arithmetic Teacher* the initial seed of .5284163 is stored at step 022. Label 5 (steps 084-096) actually generates the digits for each arithmetic problem. However, pseudorandom number generation occupies only the first six steps of label 5. These six steps and the corresponding x register contents are as follows:

STEPS X REGISTER

LBL 5	
RCL E	old seed
9	
9	
7	997
X	seed \times 997

*Other seeds may be selected but the quotient of (seed \times 10⁷) divided by two or five must not be an integer. Also, it would be wise to statistically test other seeds before using them.

FRC fractional part of (seed × 997) STO E pseudorandom number is stored to act as seed for next loop.

Arithmetic Teacher

Store +, _, x, ÷ code. REGIS 2 3 4 5 52 S3 S4 S	112 TERS	6 S6	7 20 - n S7	8 9 wrong problem S8 S9
REGIST	112 TERS		700	
	112	XZY		
Store + - v ÷ code		V+V		
		X=0?		
	110 111	*LBL3		Multiplication problem.
Select division.	189	RTN		
	108	LSTX		
Select martiplication.	107	+		
Select multiplication.	106	XZY		
	105	STOC		oubtraction problem.
Select subtraction.	104	*LPL2		Subtraction problem.
Select subtraction.	103	RTN		
	102	LSTX		
Select addition.	101	-		
	100	LSTX		
	899	STOC		
problems.	098	+		Addition problem.
Calculate and store scale for	897	*LBL1		
	896	RTN		n _{max} .
	895	INT		Create integer no larger tha
	093 094	RCLD ×		
	892	1%		Skew numbers high.
store for later access.	091	STOE		
Calculate display setting and	898	FRC		
	089	Ж		
	988	7		
	887	9		
	986	9		generation.
	085	RCLE		Pseudorandom number
value.	084	*LBL5		D
Set flag to eliminate default	983	RTN		
Input and store n _{max} + 1.	982	PRIX		
	989 981	ST09 F1?		Display problem.
user.	079	R↓ CTOO		
Store seed, either default or	978	GT09		given, gen new problem.
	877	X=Y^		If same problem was just
	07€	RCL9		
	975	+		Place 0 in LST x.
	874	0		
	873	+		x, y.
	972	÷		Add values for display of
	871	RCLE		
	878	R4		Scale one value.
	069	XZI		Scale one value.
	968	DSF:		
	966 967	RCLA X≇I		Set display.
	965	GSB €		
	864	RCLC		Generate problem.
	863	6SB5		
	862	STOC		
	861	GSB5		problem.
		*LBL9		Generate two values for a
default constants.	959	SPC		
Store initial constants and	858	PRT		Output operation code.
		default constants. 859	Store initial constants and default constants. 058 PRT: 059 SPC 060 *LBL9	Store initial constants and default constants. ### ### ### ### ####################

160 161 162	SPC SPC 2							
158	SPC							
156	PRTX							
154 155	EEX 2							
152	PRTX							
151	θ							
149	PRTX 2							
149	DDTV							
147	RCL8						l	
146	6							
145	2	Ou	tput results of less	ion.			1	
144	SPC		oblem.					
143	6109		en done gen. anoth	ner				
142	X¥0?		20 problems have					
140	ST-7 RCL7	-			170	K/O		
139	ST+8		_		195 19€	RTN R/S		
138	F2?		oblems wrong.		194	0		
137	1	To	tal problems done		193	CF1		
136	6708	_			192	≉LBL8		
135	X¥Y?	dis	play problem again		191	RTH	1	
133	RCLC RCLC		answer is not right		196	1	1	
132	GTO?	-			188 189	SF1		
131	X≠Ø?		utine.		187	F1º GTO0		
130	LSTX		ve problem, GTO	error	186	*LBLc	Print toggle.	
129	*LBLE	If	keyboard was use		185	RTN		
128	RTN	-			184	1		
127	LSTX	1			183	CLX		
125	6583				182	STOC		
124	X=0° GSB5				181	0	Undefined div	ision patch
123	X*Y				180	*LBL5		
122	5100	Div	rision problem.		178 179	÷ RTN		
121	at BL 4				177	6		
120	RIN				176	*LBL7	Display error	for cheating
119	LSTA				175	RTN		
118	Lain				174	SPC		
116	STUC LSTX				173	F10	will be increm	ented.
115	4				172	+	answer flag so	
114	1				17 0 171	RCL9 6	case of error.	

Moon Rocket Lander

	TE		Ic		D		E		
	S1	S2	S3	S4	S5	S6	S7	S8	Accel.
	1	2	3	4	5	6 x	7 v	8 Fuel	9
000	,			REG	STERS				
856	RCL7								
954 955	+								
053	RCL6								
052	÷								
051	2								
858	STO9								
849	_ 5								
048	5								
047	2 ×		height.						
045 046	ST-E			velocity and					
044	GT02				1				
943	X>Y?							1	
042	XZY		determine	crash velocity.					
041	RCL8			has been used,					
040	*LBL5		1						
039	PSE		Accept in		095	R/S			
938	DCT.		Accept in		094	GT05			
837	PSE				093	0		}	
036	1				892	ST-8			
035	PSE		1		891	5		Flame out	recovery.
034	2				898	*LBLB			
033	FSE				089	GT04			
832	3				988	CHS			
031	PSE				087	1X			
030	RCLB		Count do	vn for burn.	986	+			
029	DSP0				085	Xs			
028	PSE		height.		084	ROL7			
027	PSE			elocity and	983	X			
			D:		982	e			
025	CHS				081	1			
025	F2?					RCL6			
024	# # #				080				
023	ABS				679	ST+7			
022	SF2		account.		078	×		ļ	
021	8<02		account.	uides III(O	977	2			
828	CF2			alues into	076	ST+6			
819	RCL7		Build vv (hhh display takir		_			
018	÷				874	5			
017	4		- 1		673	-		Crasii veio	city.
016	EEX				072	2		crash velo	
015	DSF4		vv.0hhh	med display 01	871	RCLS		Fuel-eyba	usted free-fall
014	RCL6			ined display of	070	*LBL2			
013	*LBLS		Divide be	ight by 10000	869	6T04			
812	STO8				968	PSE			
011	0				066 067	RCL7 ∗LBL4			
010	5107				965	DSP0		Flash cras	h velocity.
889	STO7				964				
008	CHS				963	GT09		burn.	
807	g				962	X>0?			ict go for anothe
005	5106		Store init	ial conditions.	961	INT			
005	STD€		0		969	ST06			
004	6 6				059	R4			
002 003	5				058	ST+7			
					957	RCL9			

III

18.2

ME

		_4						
								1
	To .	L	BELS	Tr	FLAGS		SET STATUS	
A Cntrl	B Restart	С	D	E	0	FLAGS	TRIG	DISP
в	b	С	d	е	1	ON OFF	DEG 🐷	FIX 🗷
0 used	6	² fuel = 0	3 crash	4 flash	2 sign	1	DEG ☑ GRAD □ RAD □	FIX X SCI D ENG D
restart				burn		3 🗆 😡		n

Diagnostic Program

001 *LBL0 002 CLRG			
	Clear registers subroutine.	057 GSBe 058 X≟Y?	
003 F#S	Subroutine.	059 GT01	
604 CLRG		060 RTN	
005 RTH		061 *LBL1	
00€ *LBLa	Function test	062 63Be	Decrement x.
007 RND	subroutine.	663 ST01	
008 RCLI	Subroutine.	064 RCLI	I-register test.
003 X≠Y?		065 XZY	r register test.
016 R/S	1	066 X≠Y?	
011 *LBL2		067 RTN	
012 DSZI	DCZL R DCLL	068 GSB2	X to 0 comparisons.
813 *LBL5	DSZI & RCLI	069 X≠0?	A to 0 comparisons.
814 RCLI	subroutine.	070 GT03	
015 RTN		071 RTN	
	RCLI & STOP		
016 *LBLc	if called	072 *LBL3	1
017 RCL:		073 GSB2	1
01S RCLI	Verify registers &	074 X=0?	+
01 9 X≠Y?	sum in R ₀	075 RTH	1
626 R/S	subroutine.	076 GSB2	1
021 ST+0		077 X<0?	
022 DSZI		078 RTH	
023 GTOc		675 6SB2	1
024 3		080 X>0?	
025 EEX		081 GTG4	1
026 2		082 RTH	
027 RCL0	1	083 *LBL4	Check set status
028 X≠V?	Test Ro	084 DSZI	on flags.
029 R/S	1 1031 110	085 F2?	Of Hugs.
030 RTH		086 GT05	
031 *LBLe	Decrement x	087 DSZI	
032 1	subroutine.	088 F1?	
033 -	subroutine.	089 GT05	1
834 RTII		090 DSZI	
035 *LBLA	OTA DT 0	091 F3?	
036 5	START &	092 GT06	
037 7	pause after first	093 6T05	
038 GSB0	subroutine execution.	094 *LBL6	
039 PSE		095 DSZI	
040 GSBe		696 F0?	
041 ENT1	Decrement x.	097 GT07	
042 R\$		098 GT05	
042 K3 043 XZY	STACK (X,Y,Z,T)	099 *LBL7	
	TEST		Check complement
044 Rt		100 SF2	of set status on
645 R↑		101 SF1	flags.
046 X#Y		162 CF0	
047 R1		103 DSZI	
048 X≠0?		104 F3?	
049 X≠Y?		105 GT05	1
050 RTH		106 DSZI	1
051 GSBe	Degramant	107 F0?	1
05 2 X>Y?	Decrement x.	108 GT05	1
053 RTH	V to V comparisons	109 DSZI	
054 GSBe	X to Y comparisons	110 F2?	
055 X=Y?		111 6708	
		112 GT05	1
056 RTH	REGISTER		
056 RTH		6 7	I8 I9
056 RTN	3 4 5	,	0
JSED USED USED	USED USED USE	D USED USED	USED USED
1	USED USED USE S3 S4 S5	D USED USED S6 S7	USED USED S8 S9
1	USED USED USE S3 S4 S5 USED USED USE	ED USED USED S6 S7 ED USED USED	USED USED S8 S9
USED USED USED USED S1 S2	USED USED USE S3 S4 S5	D USED USED S6 S7	USED USED S8 S9

IL DE PRES.	Rev beil	'pagt, ncm	3 X×0 SEIP	4 X>0 SKIP	USED)	1 🗆 🗓	GRAD □ RAD ☑	SCI ENG
THE REAL PROPERTY.	12gazmirestine	Hastely som	d tocomember	" Recrement	USED)	ON OFF	DEG 🗆	FIX 🗵
HART		1	10		USED)	FLAGS	TRIG	DISP
		LAI	BELS	Ic	-	AGS		SET STATUS	
166	FRE	Test	FRC, INT		224	R/S		END TEST	
167	1×		EDZ INIT	-	223	PRTX			
166	LBB.				222	FIX			
163	Lars				221	DSP1			
163	LSTX	1050			220	PRIX		and printing.	
162	LHIT	Test	X +		216 219	PRTX		and printing.	
161	GSB _u				217	ENG		formatting	
160	· mem				216	DSF3		Test display	
159	LSTX				215	RAD		pass.	
136		Test	+,		214	SF3		for possible s	econd
157	ENTT	20 00 0			213	CF1		Reset status	
136	65Bu				212	SFØ			
155	100				211	X			
153 154	LSTX				210	CHS			
152	YX				2 0 8 2 0 9	1/8			
151	EHTT	Test	×, LASTx, 1/x		207	1/8			00
150	65Ba				206	8		-8-8888888	88-88
149	X2	lest	\sqrt{X} , X^2		205	EEX		display.	100
148	1%		/		284	9		Generate 'PA	100"
147	6SBa				203	€SBc			
146	e*	Test	LN, e ×		202	STOI		changes)	
145	LH				201	POLS		higher-order	register
144	6SBa				200	X≠Y?		order registe	
142	10°	Test	LOG, 10 ×		199	4		(sensitivity o	
141	ESBa LOE				197	2		(initial	f lauren
140	SIN-				196	STOI		0→24	
139	HMS+				195 196	RCLI ABS			
138	→HMS				194	DSZI		Test registers	
137	SIN	Test -	→HMS, HMS→		193	*LBLd			
136	GSBa				192	6SB0		Clear register	s.
135	→R	lest	.,		191	GSBc			
134	→P	Test -	>P, →R		190	X≢I			
133	GSBa	1			189	4		changes	
132	TAN-	rest	IAN, IAN		188	2		changes)	register
131	TAN	T	ΓΑΝ, ΤΑΝ ⁻¹		187	GTOL		lower-order	
130	6SBc				186	DSZI		order registe	
129	COS-	Test (cos, cos ⁻¹		185	STO		(sensitivity of	f higher-
127 128	GSBa CDS				184	RCLI		24→0	
126	SIN-				182 183	*LBLb		Test registers	
125	SIN				181	GSBa DSP1			
124	DEG				180	200			
123	DSP7				179	XZY			
122	GSB2	Test [DEG, SIN, SIN	1	178	2			
121	GT05				177	EEX		Test EEX, %	
120	F2?				176	6SBa			
119	DSZI	cleari	ng.		175	$R \rightarrow D$			
118	*LBL9	Check	F2 for test		174	$D \ni R$			
117	GT05				173	€SBa		Test D→R, R-	→D
116	GT09	1			172	X2			
115	F1?				171	+			
114	DSZI	1		- 1	170	INT			

NOTES

NOTES

NOTES

M.L

EL

Ei.

u.i

Si

120

ML

TL

-

ME

1000 N.E. Circle Blvd., Corvallis, OR 97330

00067-90021 Rev. 11/78

ABC . E

HEWLETT-PACKARD

HP67 HP97

Standard Pac

HEWLETT DE PACKARD

4444444

ABGDE 9282-0896 MADE IN SINGAPORE