МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

ТЕМА: Изучение режимов адресации и формирования исполнительного адреса.

Студентка гр. 9382	 Пя С.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Изучить режимы адресации на примере готовой программы lr2_comp.asm на Ассемблере, объяснить неправильность допущенных ошибок и откорректировать код.

Задание:

5 Вариант

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Ход работы:

Часть 1.

Файл диагностических сообщений корректный в приложении А. Пояснения имеющихся неправильных конструкций:

mov mem3, [bx]

LR2.ASM(42): error A2052: Improper operand type

Неверный тип операндов

Не получится одновременно считывать из памяти и вписывать в нее.

mov cx, vec2[di]

LR2.ASM(49): warning A4031: Operand types must match

Типы операндов должны совпадать

Однако размер элементов массива 'vec2' - 1 байт, а 'cx' - 2 байта

mov cx, matr[bx][di]

LR2.ASM(53): warning A4031: Operand types must match

Типы операндов должны совпадать

Размер элементов матрицы 'matr' - 1 байт, а 'cx' - 2 байта

mov ax, matr[bx*4][di]

LR2.ASM(54): error A2055: Illegal register value

Незаконное значение регистра

Вх – 16-битный регистр, на который нельзя умножать

Типы операндов должны совпадать

Размер элементов матрицы 'matr' - 1 байт, а 'ax' - 2 байта

mov ax, matr[bp+bx]

LR2.ASM(73): error A2046: Multiple base registers

Несколько базовых регистров

Нельзя использовать несколько базовых регистров

Типы операндов должны совпадать

Размер элементов матрицы 'matr' - 1 байт, а 'ax' - 2 байта

mov ax, matr[bp+di+si]

LR2.ASM(74): error A2047: Multiple index registers

Несколько индексных регистров

Нельзя использовать несколько индексных регистров

Слишком много регистров

Нельзя использовать более двух регистров

Типы операндов должны совпадать

Размер элементов матрицы 'matr' - 1 байт, а 'ax' - 2 байта

push mem1

push mem2

семантическая ошибка: чтобы завершить программу и вернуться в DOS нужно, чтобы вершина стека имела смещение и сегмент начала PSP. Однако при выполнении вышеуказанных команд она имеет mem2 и mem1, при выполнении ret 2 программа не сможет правильно завершиться.

Содержимое сегментных регистров до старта программы: CS:1A0A, DS:19F5, ES:19F5, SS:1A05, HS:19F5, FS:19F5

Табл.1.

Адре	Символический	16-ричный	Содержимое	регистров и ячеек
c	код команды	код команды	памяти	
Кома			До	После
нды			выполнения	выполнения
0000	PUSH DS	1E	(SP) = 0018	(SP)=0016
			(IP) = 0000	(IP) = 0001
			Stack +0	Stack +0 19F5
			0000	+2 0000
			+2 0000	+4 0000
			+4 0000	
0001	SUB AX, AX	2BC0	(IP) = 0001	(IP) = 0003
0003	PUSH AX	50	(SP)=0016	(SP) = 0014
			(IP) = 0003	(IP) = 0004
			Stack +0	Stack +0 0000
			19F5	+2 19F5
			+2 0000	+4 0000
			+4 0000	
0004	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
			(IP) = 0004	(IP) = 0007
0007	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
	,	<u> </u>	(IP) = 0007	(IP) = 0009
				, ,
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4
			(IP) = 0009	(IP) = 000C

000C	MOV CX, AX	8BC8	(CX) = 00A8	(CX) = 01F4
0000	1,10 (6,1,111	одсо	(IP) = 000C	(IP) = 000E
			(h) = 000C	(n) = 000L
000E	MOV BL, 24	B324	(BX) = 0000	(BX) = 0024
	,	15521	(IP) = 000E	(IP) = 0010
0010	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24
0010	1,10 , 211, 62	D/CL	(IP) = 000E	(IP) = 0012
0012	MOV [0002], FFCE	C7060200CEFF	(IP) = 0012	(IP) = 0018
0012	1,10 ([0002], 11 CL	C/000200CLI1	$(\mathbf{n}) = 0012$	(h) = 0010
0018	MOV BX, 0006	BB0600	(BX) = 0000	(BX) = 0006
	,,	BBoood	(IP) = 0018	(IP) = 001B
001B	MOV [0000], AX	A30000	(IP) = 001B	(IP) = 001E
001D	MOV [0000], AA	A30000	$(\mathbf{H}) = 001\mathbf{D}$	(II) = 001E
001E	MOV AL, [BX]	8AO7	(AX) = 01F4	(AX) = 010B
OOIL	100 V 71E, [B71]	0AO7	(IP) = 001E	(IP) = 0020
			(h) - 001L	(n) = 0020
0020	MOV AL, [BX+03]	8A4703	(AX) = 010B	(AX) = 010E
	, [,	0111703	(IP) = 0020	(IP) = 0023
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4	(CX) = 120E
0028	1/10 (CII, [BII 05]	0 D -1 03	(IP) = 0023	(IP) = 0026
			(11) 0025	(11) 0020
0026	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
	, , , , , , , , , , , , , , , , , , , ,	D1 0200	(IP) = 0026	(IP) = 0029
			,	
0029	MOV AL,	8A850E00	(AX) = 010E	(AX) = 01F6
	[000E+DI]		(IP) = 0029	(IP) = 002D
002D	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
			(IP) = 002D	(IP) = 0030
0030	MOV AL,	8A811600	(AX) = 01F6	(AX) = 0104
	[0016+BX+DI]		(IP) = 0030	(IP) = 0034
0034	MOV AX, 1A07	B8071A	(AX) = 0104	(AX) = 1A07
			(IP) = 0034	(IP) = 0037
0027	MONEGAN	05.00	(EG) 10E5	(EG) 1 4 07
0037	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 1A07
			(IP) = 0037	(IP) = 0039
0039	MOV AY ECIDVI	260007	(AX) = 1A07	(AX) = 00FF
0039	MOV AX, ES:[BX]	268B07		, ,
			(IP) = 0039	(IP) = 003C
003C	MOV AX, 0000	B80000	(AX) = 00FF	(AX) = 0000
0030	1410 v AA, 0000	DOUUUU	(IP) = 003C	(IP) = 003F
			(H) = 003C	(11) = 0031
003F	MOV ES, AX	8EC0	(ES) = 1A07	(ES) = 0000
	1,10,1111	OLCO	(IP) = 003F	(IP) = 0041
<u> </u>			<u> </u>	

0041	PUSH DS	1E	(SP) = 0014	(SP) = 0012
		12	(IP) = 0041	(IP) = 0042
			Stack +0	Stack +0 1A07
			0000	+2 0000
			+2 19F5	+4 19F5
			+4 0000	
0042	POP ES	07	(SP) = 0012	(SP) = 0014
		-	(IP) = 0042	(IP) = 0043
			Stack +0	Stack +0 0000
			1A07	+2 19F5
			+2 0000	+4 0000
			+4 19F5	
0043	MOV CX, ES:[BX-	268B4FFF	(CX) = 120E	(CX) = FFCE
	01]		(IP) = 0043	(IP) = 0047
0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
			(IP) = 0047	(IP) = 0048
0048	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
			(IP) = 0048	(IP) = 004B
004B	MOV	268901	(IP) = 004B	(IP) = 004E
	ES:[BX+DI],AX			
004E	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0014
			(IP) = 004E	(IP) = 0050
			(==)	
0050	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0014
			(IP) = 0050	(IP) = 0052
0052	MOV DV (DD+021	0D5700	(DX) = 0000	(DX) = 19F5
0032	MOV DX, [BP+02]	8B5602	` /	(DX) = 19F3 (IP) = 0055
			(IP) = 004E	(IP) = 0033
0055	RET Far 0002	CA0200	(SP) = 0014	(SP) = 001A
	11211410002	CAU200	(CS) = 1A0A	(CS) = 19F5
			(IP) = 0055	(IP) = 0000
			Stack +0	Stack +2 0000
			0000	+4 0000
			+2 19F5	+6 01F4
			+4 0000	
			T T 0000	

0000	INT 20	CD20	(AX) = FFCE	(AX) = 0000
			(BX) = 0003	(BX) = 0000
			(DX) = 19F5	(DX) = 0000
			(DI) = 0002	(DI) = 0000
			(BP) = 0014	(BP) = 0000
			(SP) = 001A	(SP) = 0018
			(CS) = 19F5	(CS) = 1A0A
			(DS) = 1A07	(DS) = 19F5
			(ES) = 1A07	(ES) = 19F5
			Stack +2	Stack +0 7244
			0000	+2 0000
			+4 0000	+4 0000
			+6 01F4	

Выводы.

В результате выполнения лабораторной работы был исправлен код готовой программы, освоена базовая теория о режимах адресации.

Приложение.

Текст файла LR2_COMP.LST

__Microsoft (R) Macro Assembler Version 5.10 10/21/20 00:58:1 Page 1-1

```
; Программа изучения режимов адресации процессо
                          pa IntelX86
= 0024
                                 EOL EQU '$'
= 0002
                                 ind EQU 2
= 01F4
                                 n1 EQU 500
=-0032
                                 n2 EQU -50
                          ; Стек программы
                          AStack SEGMENT STACK
9999
     000C[
                           DW 12 DUP(?)
0000
         ????
                    ]
0018
                          AStack ENDS
                          ; Данные программы
0000
                          DATA SEGMENT
                          ; Директивы описания данных
0000 0000
                          mem1 DW 0
0002
     0000
                          mem2 DW 0
0004
     0000
                          mem3 DW 0
0006 0B 0C 0D 0E 12 11
                          vec1 DB 11,12,13,14,18,17,16,15
      10 0F
000E 0A 14 F6 EC 1E 28
                          vec2 DB 10,20,-10,-20,30,40,-30,-40
      E2 D8
                          matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5
0016
     01 02 FC FD 03 04
      FE FF 05 06 F8 F9
      07 08 FA FB
                          DATA ENDS
0026
                           ; Код программы
0000
                          CODE SEGMENT
                           ASSUME CS:CODE, DS:DATA, SS:AStack
                           ; Головная процедура
0000
                          Main PROC FAR
0000
      1E
                           push DS
0001
      2B C0
                           sub AX,AX
      50
0003
                           push AX
0004
      B8 ---- R
                           mov AX, DATA
                           mov DS,AX
0007
     8E D8
                          ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                          ; Регистровая адресация
0009 B8 01F4
                                  mov ax,n1
                           mov cx,ax
000C 8B C8
000E B3 24
                           mov bl,EOL
0010 B7 CE
                           mov bh, n2
                          ; Прямая адресация
0012 C7 06 0002 R FFCE
                           mov mem2,n2
0018 BB 0006 R
                           mov bx, OFFSET vec1
001B A3 0000 R
                           mov mem1,ax
                          ; Косвенная адресация
001E 8A 07
                           mov al,[bx]
                           ;mov mem3,[bx]
                          ; Базированная адресация
0020
      8A 47 03
                                  mov al, [bx]+3
0023 8B 4F 03
                                  mov cx,3[bx]
                          ; Индексная адресация
_Microsoft (R) Macro Assembler Version 5.10
                                                              10/21/20 00:58:1
```

Page 1-2

```
0026 BF 0002
                               mov di,ind
 0029 8A 85 000E R
                        mov al, vec2[di]
                         ;mov cx,vec2[di]
                        ; Адресация с базированием и индексированием
002D BB 0003
                               mov bx,3
 0030 8A 81 0016 R
                         mov al,matr[bx][di]
                         ;mov cx,matr[bx][di]
                         ;mov ax,matr[bx*4][di]
                        ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
                        ; Переопределение сегмента
                        ; ----- вариант 1
                        mov ax, SEG vec2
0034 B8 ---- R
0037 8E C0
                        mov es, ax
0039
      26: 8B 07
                        mov ax, es:[bx]
003C B8 0000
                             mov ax, 0
                        ; ----- вариант 2
003F 8E C0
                        mov es, ax
0041 1E
                         push ds
0042 07
                         pop es
0043 26: 8B 4F FF
                        mov cx, es:[bx-1]
0047 91
                        xchg cx,ax
                        ; ----- вариант 3
mov di,ind
0048 BF 0002
004B 26: 89 01
                        mov es:[bx+di],ax
                        ; ----- вариант 4
004E 8B EC
                        mov bp,sp
                         ;mov ax,matr[bp+bx]
                         ;mov ax,matr[bp+di+si]
                        ; Использование сегмента стека
                         ;push mem1
                         ;push mem2
                        mov bp,sp
0050 8B EC
 0052 8B 56 02
                               mov dx,[bp]+2
 0055 CA 0002
                               ret 2
 0058
                        Main ENDP
0058
                        CODE ENDS
                         END Main
__Microsoft (R) Macro Assembler Version 5.10
                                                       10/21/20 00:58:1
                                                      Symbols-1
Segments and Groups:
              Name
                              Length Align Combine Class
                                    0018
                                          PARA
                                                STACK
0058
                                          PARA
                                                NONE
0026
                                          PARA
                                                NONE
Symbols:
              Name
                              Type
                                     Value Attr
EOL . . . . . . . . . . . . . . . . .
                                    NUMBER 0024
                                    NUMBER 0002
IND . . . . . . . . . . . . . . . .
                                    F PROC 0000
                                                CODE
                                                      Length = 0058
L BYTE 0016
                                                DATA
L WORD 0000
                                                DATA
MEM2 . . . . . . . . . . . . . . . . . .
                                    L WORD 0002
                                                DATA
MEM3 . . . . . . . . . . . . . . .
                                    L WORD 0004
                                                DATA
```

```
NUMBER 01F4
                                      NUMBER -0032
N2 . . . . . . . . . . . . . . . . . .
                                      L BYTE 0006
                                                   DATA
L BYTE 000E
                                                  DATA
VEC2 . . . . . . . . . . . . . . . . .
TEXT 0101h
                                      TEXT LR2 COMP
@FILENAME
         . . . . . . . . . . .
                                      TEXT 510
@VERSION . . . . . . . . . . . . . . . . .
    83 Source Lines
    83 Total Lines
    19 Symbols
 47800 + 461507 Bytes symbol space free
     0 Warning Errors
     0 Severe Errors
      Текст файла LR2_COMP.ASM
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EOU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 11,12,13,14,18,17,16,15
vec2 DB 10,20,-10,-20,30,40,-30,-40
matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX,AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax,n1
mov cx,ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al,[bx]
;mov mem3,[bx]
; Базированная адресация
```

```
mov al,[bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al,vec2[di]
 ;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
 mov al,matr[bx][di]
 ;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ---- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
 ;mov ax,matr[bp+bx]
 ;mov ax,matr[bp+di+si]
; Использование сегмента стека
;push mem1
 ;push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
        END Main
```