Contents

Calculation of wavelength	2
Excitation Energy Definition	2
Excitation Potential Definition	2
Ionization Energy	3
Ionization Potential	3
Limitation of Bohr's Atomic Model	3
De Broglie Hypothesis Calculation of wavelength of an electron	4
Heisenberg's uncertainity Principle	5
Canonically conjugate variables	5
Statement	5
Mathematical Interpretation	5
Application of Heisenberg's Uncertainty Principle	6

Calculation of wavelength

• The wavelength of lyman series is calculated using:

$$\frac{1}{\lambda} = R(\frac{1}{1^2} - \frac{1}{n^2})$$

- R is Rydberg constant.
- *n* is the value of orbit.

Excitation Energy

Definition

- The **excitation** energy is the amount of energy required to raise and electron from it's ground state to the corresponding excited *state*.
- The *first* excited state's excitation energy is the amount of energy required to raise the electron form ground state n=1 to the **first** excited state n=2.

$$E = E_2 - E_1 = -3.4eV - (-13.6eV) = 10.2eV$$

Excitation Potential

Definition

- The **excitation** potential is the amount of potential difference required to accelerate the electron from the ground state to the *corresponding* excited state.
- The *first* excitation potential is the amount of potential difference required to accelerate the electron from the *ground* state to the first *excited* state.

$$\frac{E_2 - E_1}{e} = \frac{-3.4eV - (-13.6eV)}{e} = 10.2V$$

Ionization Energy

• **Ionization Energy** is the amount of energy required to move an electron from it's **ground state** to **completely** *out* of the atom.

$$E = E_{\infty} - E_1 = 0 - (-13.6eV) = 13.6eV$$

Ionization Potential

• **Ionization Potential** is the amount of **potential difference** required to *accelerate* and electron from it's *ground state* to *completely out of the* **atom** .

$$V = \frac{E_{\infty} - E_1}{e} = \frac{0 - (-13.6eV)}{e} = 13.6V$$

Limitation of Bohr's Atomic Model

- · Bohr's atomic model could not explain spectral lines of:
 - multi electron systems other than hydrogen and hydrogen like atoms.
- Bohr's atomic model doesnot clarify the circular structure of orbit of electron.
- · Zeeman Effect:
 - Zeeman Effect is the splitting of spectral lines in magnetic field.
 - Bohr's model couldnot explain it.
- · Stark Effect:
 - Stark Effect is the splitting of spectral lines in electric field .
 - Bohr's model couldnot explain it.
- Bohr's model couldnot explain the wave like character of electron .
- It doesnot explain the **relative** splitting of spectral lines.

De Broglie Hypothesis

- Statement: Luis Debroglie states that:
 - A moving particle has both wave like and particle like characters.
 - A moving particle is associated with waves.
- These waves are called:
 - Debroglie Waves
 - Matter Waves
- The **wavelength** λ of **matter waves** can be expressed as the same way for photon.

$$\lambda = \frac{h}{p}$$

Calculation of wavelength of an electron

- mass = *m*
- $oldsymbol{\cdot}$ potential difference for acceleration = V
- $oldsymbol{\cdot}$ velocity of electron = v
- momentum of electron = p
- charge of electron = e
- wavelength = λ

$$\lambda = \frac{h}{p}$$

$$eV = \frac{1}{2}mv^{2}$$

$$v = \sqrt{\frac{2eV}{m}}$$

$$\lambda = \frac{h}{m\sqrt{\frac{2eV}{m}}}$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

• The equation for expressing wavelength of **electron** is:

$$\lambda = \frac{h}{\sqrt{2meV}}$$

Heisenberg's uncertainity Principle

Canonically conjugate variables

- · Canonically conjugate variables are:
 - pair of *physical* variables
 - those which can *describe* the motion of a system.
- Examples of **cannonically** conjugate variables are:
 - Momentum and Position
 - Energy and Time
 - Angular Momentum and Angular Position

Statement

- **Heisenberg's** uncertainty principle states that:
 - The pair of *physical* variables *describing* the motion of an **atomic system** cannot be measured **precisely** and **simultaneously**.

Mathematical Interpretation

• The interpretation of **canonically paired** physical variables are:

$$\triangle x \triangle p \ge \frac{h}{2\pi}$$
$$\triangle E \triangle t \ge \frac{h}{2\pi}$$
$$\triangle \theta \triangle L \ge \frac{h}{2\pi}$$

Application of Heisenberg's Uncertainty Principle

- **Heisenberg's uncertainty** principle is used to prove that the **electron** cannot exist inside the **nucleus**.
- mass of electron = m
- planck's constant = h
- change in position = $\triangle x$
- $\triangle x$ = magnitude of radius of nucleus
- $\triangle x = 10^{-14} m$
- change in momentum = $\triangle p$

$$\triangle x \triangle p \ge \frac{h}{2\pi}$$

$$\triangle p = \frac{h}{2\pi \triangle x}$$

$$\triangle v_x = \frac{h}{2\pi \triangle xm}$$

$$\triangle v_x = \frac{6.62 \times 10^{-34}}{2 \times 3.14 \times 9.1 \times 10^{-31} \times 10^{-14}}$$

$$\triangle v_x = 1.16 \times 10^{10} \text{m/s}$$

- This magnitude of velocity is unattainable.
- The speed limit in the universe is $3 \times 10^8 m/s$.