Universitatea din București Facultatea de Matematică și Informatică

Scopul experimentului aleator. Statistică inferențială.

Partea I

Continut

Repartiția selecției

► Model probabilist. Selecție. Model statistic. Statistică.

Populație țintă. Eșantion

- TEHNICI DE SIMULARE \sim CURS nr.

- 1. Recapitulare: noțiuni de statistică
- 2. Metode generale de simulare a v.a.: metoda inversă

Lect. dr. Bianca Mogoș

Metode generale de simulare a variabilelor aleatoare: Metoda

► Numere aleatoare. Variabile uniforme

Partea a II - a

ů

Estimator Estimație. Consistența unui estimator

Convergența in probabilitate

0

Scopul experimentului aleator

- Experimentul aleator se realizează pentru colectarea de date necesară pentru a obține informații privind un anumit fenomen
- Pe baza datelor se emit concluzii care, în general, ies din sfera experimentului particular
- Cercetătorii generalizează concluziile experimentului pentru clasa tuturor experimentelor similare.
- Problema acestui demers este că nu putem garanta corectitudinea concluziilor obținute
- ▶ Totuși, folosind tehnici statistice, putem măsura și administra gradul de incertitudine al rezultatelor.

Statistică inferențială

- Statistica inferențială este o colecție de metode care permit cercetătorilor să observe o submulțime a obiectelor de interes și folosind informația obținută pe baza acestor observații să facă afirmații sau inferențe privind întreaga populație.
- Câteva dintre aceste metode sunt:
- estimarea parametrilor unei populații
- verificarea ipotezelor statistice
- estimarea densității de probabilitate.

Populație țintă

- Populația țintă este definită ca fiind întreaga colecție de obiecte sau indivizi despre care vrem să obținem anumite informații.
- Populația țintă trebuie bine definită indicând
- ce constituie membrii acesteia (de ex, populația unei zone geografice, o anumită firmă care construiește componente hard-
- caracteristicile populației (de ex, starea de sănătate, numărul de defecțiuni, etc.)
- întreaga populație; cercetătorii măsoară numai o parte a populației In majoritatea cazurilor este imposibil sau nerealist să observăm
- Pentru a face inferențe privind întreaga populație este important ca *mulțimea eșantion* să fie *reprezentativă* relativ la întreaga populație.

Model probabilist

▶ Fie X o v.a. cu densitatea $f(x,\theta), x \in \mathbb{R}, \theta \in \mathbb{R}$.

Mulţimea densităţilor de repartiţie $f(x,\theta), \theta \in \Theta \subset \mathbb{R}$, ce depind de parametrul θ se numește model probabilist unidimensional.

$$\{f(x,\theta)|x\in\mathbb{R},\theta\in\Theta\}.$$
 (1)

• Fie $X=(X_1,X_2,\ldots,X_n)$ un vector aleator cu densitatea de repartiție

$$f\left(x_{1},x_{2},\ldots,x_{n};\theta\right),\left(x_{1},x_{2},\ldots,x_{n}\right)\in\mathbb{R}^{n},\theta\in\mathbb{R}^{k}.$$

Definiție

Mulţimea densităţilor de repartiţie $f\left(x_1,x_2,\ldots,x_n;\theta\right)$ cu parametrul $\theta\in\Theta\subset\mathbb{R}^k$ se numeşte $model\ probabilist\ multidimensional.$

$$\{f(x_1, x_2, \dots, x_n; \theta) | \theta \in \Theta\}. \tag{2}$$

Selecție. Repartiția selecției

O selecție este o mulțime de v.a. X_1, X_2, \ldots, X_n având aceeași densitate de repartiție $f(x, \theta)$. Deoarece selecția este o mulțime de variabile aleatoare asociate unui model probabilist, selecția trebuie să aibă o repartiție, pe care o vom numi repartiția selecției

Repartiția selecției X_1, X_2, \ldots, X_n este definită ca fiind repartiția vectorului $X = (X_1, X_2, \ldots, X_n)$, notată prin $f(x_1, x_2, \ldots, x_n; \theta)$.

Cea mai folosită formă de selecție este selecția aleatoare și este bazată pe ideea experimentului aleator.

Model statistic. Statistică

Modelul probabilist

$$\{f(x;\theta),\theta\in\Theta)\}\$$

împreună cu selecția $X=(X_1,X_2,\ldots,X_n)$ definesc modelul statis

Statistica este o funcție $t_n:S o\Theta\subset\mathbb{R}^k$ care nu conține niciun parametru necunoscut.

Cele mai utilizate statistici sunt momentele de selecție

Selecție aleatoare

Spunem că X_1, X_2, \ldots, X_n este o selecție aleatoare asupra v.a. X care are densitatea de repartiție $f(x;\theta)$ dacă X_1, X_2, \ldots, X_n sunt v.a. independente și identic repartizate ca X.

 X_1, X_2, \ldots, X_n se numesc variabile de selecție.

▶ În cazul selecției aleatoare, densitatea de repartiție comună a variabilelor de selecție este

$$f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i; \theta)$$

- O selecție aleatoare poate fi construită prin repetarea unui experiment aleator de n ori.
- Un rezultat al selecției aleatoare se notează prin (x_1,x_2,\ldots,x_n) și mulțimea tuturor rezultatelor definesc spațiul observațiilor $S \equiv \mathbb{R}^n$.

Definiție

(3)

 $m'_r(x_1, x_2, \dots, x_n) = \frac{1}{n} \sum_{j=1}^n x_j^r$

▶ Momentul de selecție de ordinul r

Momente de selecție

(4)

 $m_1'(x_1, x_2, \dots, x_n) = \overline{X}_n = \frac{1}{n} \sum_{j=1}^n x_j$

Momentul de selecție de ordin 1 − media de selecție

(2)

 $m_r(x_1, x_2, ..., x_n) = \frac{1}{n} \sum_{j=1}^{n} (x_j - \overline{X}_n)^r$

► Momentul centrat de selecție de ordin r

➤ Momentul centrat de selecție de ordin 2 — dispersia de selecție

(9)

 $m_2(x_1, x_2, ..., x_n) = \frac{1}{n} \sum_{j=1}^{n} (x_j - \overline{X}_n)^2.$

$$f(x;\theta),\theta\in\Theta)$$

Definiție

unde $X=(X_1,X_2,\ldots,X_n)$, Ω este spațiul de selecție; $t_n(x),x\in S$,

Un estimator $t_n = t_n(X)$ se numește consistent pentru heta dacă

$$\lim_{n \to \infty} P(|t_n - \theta| < \epsilon) = 1 \tag{9}$$

și notăm t_n

Convergență în probabilitate

Definiție

Sirul de v.a. $(X_n)_n$ converge în probabilitate la v.a. X dacă

$$\lim_{n\to\infty} P\left(\left\{\omega\in\Omega, |X_n(\omega)-X(\omega)|<\epsilon\right\}\right)=1. \tag{7}$$

Propoziție

Avem relația

$$\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j \xrightarrow{P} E[X] = \mu$$

Estimator. Estimație

Definiție

Se numește estimator, variabila aleatoare

$$t_n(X):\Omega o\Theta,$$

8

S spațiul observațiilor se numește estimație.

 θ

Consistența unui estimator

Numere aleatoare

- Consistența unui estimator reprezintă o proprietate asimptotică a estimatorului.
- ▶ Un estimator bun pentru parametrul θ trebuie să aibă o repartiție cu o valoare centrală în vecinătatea lui θ .

nerarea unor numere aleatoare uniform distribuite pe intervalul

(0,1).

Majoritatea metodelor de generare a v.a.

se bazează pe

Datorită calculatorului avem posibilitatea de a genera foarte

ușor numere aleatoare uniforme.

lator sunt pseudo-aleatoare, deoarece acestea sunt generate cu

un algoritm determinist.

Ð

Totuși, trebuie cunoscut faptul că numerele generate de calcu-

•

Definiția următoare cere ca estimatorul să aibă o valoare centrală în vecinătatea lui θ nu numai pentru valori mari ale lui n, ci pentru orice n

Definiție

Estimatorul t_n se numește nedeplasat pentru θ dacă

$$E[t_n] = \theta. \tag{10}$$

Ð

Generarea numerelor uniforme în Matlab (1)

- În Matlab există funcția rand pentru generarea variabilelor aleatoare uniforme.
- rand(n), unde n este un număr natural, returnează o matrice de dimensiune n x n având ca elemente numere aleatoare uniform distribuite între 0 și 1.
- rand(m, n), unde m, n sunt numere naturale, returnează o matrice de dimensiune m x n având ca elemente numere aleatoare uniform distribuite între 0 și 1.

Generarea numerelor uniforme în Matlab $\left(2 ight)$

- O secvență de numere aleatoare generată în Matlab depinde de "sămânța" sau starea generatorului. Starea este resetată la valoarea implicită în momentul pornirii Matlab-ului, astfel aceeași secvență de variabile aleatoare este generată la o nouă pornire a Matlab-ului. Acesta poate fi un avantaj în situațiile în care analistul are nevoie să reproducă rezultatele unei simulări pentru a verifica anumite concluzii.
- ► Folosind sintaxa rand('state',0) Matlab-ul resetează generatorul la starea inițială.
- Se folosește sintaxa rand('state',j) pentru a seta generatorul la starea j.
- Pentru a obţine vectorul de stări se apelează S = rand('state'),
 S va reprezenta vectorul conţinând cele 35 de stări posibile.

6

Generarea numerelor uniforme în Matlab (3)

Pentru a genera numere aleatoare uniform ditribuite pe un interval (a,b), și scriem $X\sim \mathcal{U}(a,b)$, pornind de la un număr generat uniform pe intervalul (0,1) se poate folosi transformarea

$$X = (b-a) \cdot U + a, \tag{11}$$

unde $U \sim \mathcal{U}(0,1)$

Generarea numerelor uniforme în Matlab $\left(4 ight)$

Exemplu care ilustrează utilizarea funcției rand

- % Generam un vector de numere aleatoare pe intervalul (0,1). $\mathbf{x} = \text{rand}(\mathbf{1}, \mathbf{1000});$
 - % Histograma eșantionului generat in x
 - $[\mathsf{N},\mathsf{X}] = \mathsf{hist}(\mathsf{x},15);$
- % x: mulțimea eșantion
- % 15 reprezintă numărul de dreptunghiuri ale histogramei
- % N: vector conținând numărul de elemente din fiecare dintre dreptunghiuri.
 - % X: vector conținând centrele dreptunghiurilor
- % Folosirea funcției bar pentru reprezentarea grafică a histogramei.

bar(X,N,1,'w') title('Histograma asociata unei variabile aleatoare uniforme') xlabel('X')

ylabel('Frecventa absoluta')

Histograma rezultată este prezentată în Figura 1.

Generarea numerelor uniforme în Matlab (5)

Figura: 1 — Histograma asociată unui eșantion de numere aleatoare uniform distribuite

Funcții de o variabilă aleatoare (1)

- Fie X o v.a. $X:\Omega \to \mathbb{R}$ care ia valori în $D \subset \mathbb{R}$ și $\phi:D$
- $P(\{\omega \in \Omega | Y(\omega) \in A\} = P(\{\omega \in \Omega | X(\omega) \in \phi^{-1}(A)\}))$ (12) $Y=\phi(X):\Omega
 ightarrow\phi(D)\subset\mathbb{R}$ are repartiția dată de pentru orice $A \subset \phi(D)$ și $\phi^{-1}(A) = \{z | \phi(z) \in A\}$. Atunci v a

Funcții de o variabilă aleatoare (2): Exemplu

Funcții de o variabilă aleatoare (3): Exemplu 2

Propoziție

Dacă $X \sim N(m,\sigma^2)$ atunci $Y=e^X$ are densitatea de repartiție:

$$f_Y(y) = \frac{1}{y\sigma\sqrt{2\pi}} e^{-\frac{(\ln y - m)^2}{2\sigma^2}}, y > 0$$
 (13)

Dacă $X \sim U(0,1)$ atunci variabila aleatoare

Propoziție

Demonstrație

$$F_{Y}(y) = P(\{\omega \in \Omega | Y(\omega) \le y\}) = P(e^{X} \le y) = P(X \le \ln y) =$$

$$= F_{X}(\ln y) =$$

$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\ln y} e^{-\frac{(t-m)^{2}}{2\sigma^{2}}} dt.$$

Definiție

Variabila aleatoare Y având densitatea de probabilitate (13) se numește

$f(y) = aby^{b-1}e^{-ay^b},$

cu a, b > 0 are densitatea de probabilitate

 $Y = \left(-\frac{1}{a}\ln(1-X)\right)$

 $0 < y < \infty$.

Definiție

O variabilă aleatoare cu densitatea de probabilitate (0.15) se numește Weibull cu parametrii a și b și este notată W(a,b).

Metoda inversă (1): Teorema lui Hincin

Propoziție

Fie X o variabilă aleatoare (v.a.) cu funcția de repartiție inversabilă F(x). Atunci variabila aleatoare Y=F(X) este repartizată uniform

Teoremă (Teorema lui Hincin)

Fie $U\sim \mathcal{U}([0,1])$ și F(x) o funcție de repartiție inversabilă, de tip continuu. Atunci variabila aleatoare

$$X = F^{-1}(U) \tag{14}$$

este o variabilă aleatoare continuă cu funcția de repartiție F(x). Demonstrație: Funcția de repartiție a v.a. X este

$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x))$$

Cum $U \sim \mathcal{U}(0,1)$ rezultă $F_U(u) = u$ pentru $u \in (0,1)$. Obținem astfel $P(X \le x) = F(x)$. deoarece F este strict crescătoare.

Metoda inversă (2): Descrierea metodei

- este introdusă ca o consecință directă a teoremei lui Hincin
- se aplică în cazul în care funcția de repartiție se poate inversa
- abilei X atunci am putea produce valorile de selecție x_1, x_2, \ldots, x_n asupra lui X cu formula $x_i = F^{-1}(u_i), 1 \le i \le n$ • dacă am putea produce valorile de selecție u_1,u_2,\ldots,u_n asupra v.a. $U\sim \mathcal{U}(0,1)$ și am cunoaște funcția de repartiție F a vari-

Metoda inversă (3): Algoritm pentru simularea unor variabile aleatoare continue

Intrare	Intrare $F(x)$: funcția de repartiție a variabilei X pe care ne propunem să o simulăm
Pas 1	Se generează o valoare de selecție u uniformă pe $[0,1]$
Pas 2	Se determină expresia inversei funcției de repartiție ${\cal F}^{-1}(u)$
Pas 3	Se obține valoarea de selecție dorită $x=F^{-1}(u)$
leșire	Valoarea de selecție, x , a v.a. X

Metoda inversă (4): Variabile aleatoare continue care pot fi simulate folosind metoda inversă

Inversa ${\it F}^{-1}$	$x = -\frac{1}{\lambda}\ln(u)$	$x = (-\ln(u))^{1/\nu}$	$x=\tan\pi(u-1/2)$	$x = \sin \pi (u - 1/2)$
${\sf Densitate} \ f$	$f(x) = \lambda e^{-\lambda x}, x > 0$	$f(x) = \nu x^{\nu - 1} e^{-x^{\nu}}$	$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}, x \in \mathbb{R}$	$f(x) = \frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}}, x \in [-1, 1] \mid x = \sin \pi (u - 1/2)$
Repartiția	$Exp(\lambda)$, $\lambda > 0$	$\mathit{Weib}(0,1, u), \ u>0$	Cauchy	Arcsin

Metoda inversă (5): Histograma asociată variabilei aleatoare exponențiale

Metoda inversă (6): Simularea unei variabile aleatoare

discrete

Fie v.a. discretă X definită prin repartiția $X: \begin{pmatrix} x_1 & x_2 & \cdots & x_m \\ p_1 & p_2 & \cdots & p_m \end{pmatrix}, \sum_{i=1}^m p_i = 1, x_1 < x_2 < \cdots < x_m.$ (15)

Funcția de repartiție a v.a. X este dată de $\begin{pmatrix} 0 & \text{dacă} & x < x_1 \\ p_1 & \text{dacă} & x_1 \le x < x_2 \\ p_1 + p_2 & \text{dacă} & x_2 \le x < x_3 \\ \cdots & \cdots & \cdots \\ 1 & \text{dacă} & x_k \le x < x_{k+1} \end{pmatrix}$

Metoda inversă (7): Algoritm pentru simularea unor variabile aleatoare discrete

- lacktriangle Regula de generare a unei valori de selecție asupra v.a. X:
- $X = x_i$ dacă $F(x_{i-1}) < u \le F(x_i)$ și $x_0 < x_1$. (17)
- ► Algoritmul pentru simularea v.a. X:

-	Intrare \mid Repartiția variabilei X	$P(X = x_i) = p_i, \sum_{i=1}^m p_i = 1, x_1 < x_2 < \ldots < x_m.$	Se generează o valoare de selecție u uniformă pe $[0,1]$	Dacă $u \le p_1$ atunci $x = x_1$	Altfel dacă $u \le p_1 + p_2$ atunci $x = x_2$	Altfel dacă $u \le p_1 + p_2 + p_3$ atunci $x = x_3$:	Altfel dacă $u \le p_1 + p_2 + \ldots + p_m$ atunci $x = x_m$	
	Intrare		Pas 1	Pas 2					leșire

Metoda inversă (8): Exemplu simularea unei v.a. discrete

(16)

► Vrem să generăm o v.a. discretă X cu repartiția

$$X: \left(\begin{array}{ccc} 0 & 1 & 2\\ 0.3 & 0.2 & 0.5 \end{array}\right) \tag{18}$$

► Funcția de repartiție este dată de

$$F(x) = \begin{cases} 0 & \text{dacă} & x < 0 \\ 0.3 & \text{dacă} & 0 \le x < 1 \\ 0.5 & \text{dacă} & 1 \le x < 2 \\ 1 & \text{dacă} & x \ge 2 \end{cases}$$
(19)

. Se generează valori de selecție asupra v.a. X conform regulilor

$$X = \begin{cases} 0 & U \le 0.3 \\ 1 & 0.3 < U \le 0.5 \\ 2 & 0.5 < U \le 1 \end{cases}$$
 (20)

▶ Dacă v.a. u = 0.78 atunci obținem valoarea de selecție x = 2.

Bibliografie I

- M. Craiu (1998), Statistică matematică: teorie și probleme, Editura Matrix Rom, București
- W. L. Martinez, A. R. Martinez (2002), Computational Statistics Handbook with MATLAB, Chapman & Hall/CRC, Boca Raton London New York Washington, D.C.
- I. Văduva (2004), Modele de simulare: note de curs, Editura Universității din București, București