

FIG. 1 (PRIOR ART)

FIG. 3

FIG. 4

FIG. 5

Selecting an x-th sub-carrier among all sub-carriers with the smallest power increment, ΔP_x , for each further carring Δd bits.

S602

Selecting a y-th sub-carrier among all sub-carriers with the largest power decrement, ΔP_y , for each less carring Δd bits.

S603

Increasing Δd bits to the x-th sub-carrier and decreasing Δd bits from the y-th sub-carrier

FIG. 6

Sorting the M sub-carriers among all sub-carriers with first M largest power decrement for each less carring Δd bits.

S703

Sequentially performing one adjustment between the M pairs.

FIG. 7