

Etude d'un robot marcheur

Ci-dessous est représenté un robot marcheur avec la manivelle OA (1) qui est animée d'un mouvement de rotation continu tel que : $\omega_{1/0} = \frac{d\theta}{dt}$ = constante

La partie fixe S_0 (support) est associée au référentiel R ($O, \vec{x}, \vec{y}, \vec{z}$)

La manivelle OA (1) est liée au repère R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}$) est en liaison pivot d'axe O \vec{z} par rapport à S_0 avec $\Theta = (\vec{x}, \overrightarrow{x_1})$ La biellette AB (2) est liée au repère R_2 ($A, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$) est en liaison pivot d'axe A \vec{z} par rapport à S_1 avec $\alpha = (\vec{x}, \overrightarrow{x_2})$ La patte BP (3) est liée au repère R_3 ($O_1, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3}$) est en liaison pivot d'axe O_1 \vec{z} par rapport à S_0 avec $\varphi = (\overrightarrow{x_0}, \overrightarrow{x_1})$

On pose : $\theta = (\vec{x}, \overrightarrow{x_1})$; $\alpha = (\vec{x}, \overrightarrow{x_2})$; $\varphi = (\vec{x}, \overrightarrow{x_3})$; $\overrightarrow{OA} = r.\overrightarrow{x_1}$; $\overrightarrow{AB} = a.\overrightarrow{x_2}$; $\overrightarrow{O_1B} = b.\overrightarrow{x_3}$; $\overrightarrow{O_1P} = -c.\overrightarrow{x_3}$; $\overrightarrow{OO_1} = -d.\overrightarrow{x}$ Solide S_1 (biellette OA): Masse M_1 , centre de gravité G_1 tel que $\overrightarrow{OG_1} = \frac{r}{2}.\overrightarrow{x_1}$, Moment d'inertie en O_{1} O_{1} O_{2} O_{3} O_{1} O_{2} O_{3} O_{3} O_{3} O_{3} O_{4} O_{2} O_{3} O_{3} O_{4} O_{5} O_{6} O_{1} O_{1} O_{2} O_{2} O_{3} O_{3} O_{4} O_{1} O_{2} O_{2} O_{3} O_{3} O_{4} O_{2} O_{3} O_{4} O_{2} O_{3} O_{4} O_{2} O_{3} O_{4} O_{2} O_{3} O_{3} O_{4} O_{2} O_{3} O_{4} O_{4} O_{5} O_{5} O_{1} O_{2} O_{3} O_{4} O_{5} O_{5} O_{6} O_{1} O_{2} O_{3} O_{4} O_{2} O_{3} O_{4} O_{5} O_{5} O_{2} O_{5} O_{5} O_{5} O_{6} O_{5} O_{7} O_{1} O_{1} O_{2} O_{2} O_{3} O_{2} O_{3} O_{4} O_{5} O_{5

Questions

- 1) Réalisez les figures de changement de repère
- 2) Déterminez les vecteurs rotation $\vec{\Omega}(S_1/R)$; $\vec{\Omega}(S_2/R)$; $\vec{\Omega}(S_3/R)$; $\vec{\Omega}(S_3/S_2)$; $\vec{\Omega}(S_2/S_1)$
- 3) Exprimez $\vec{V}_{A\ 1/R}$. Vous l'exprimerez dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 4) Exprimez $\vec{V}_{B\ 3/R}$. Vous l'exprimerez dans le repère R_3 ($O, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3}$)
- 5) Exprimez $\vec{V}_{B \ 2/R}$
- 6) Que peut-on dire de $\vec{V}_{B\,2/R}$ et de $\vec{V}_{B\,3/R}$? Justifiez votre réponse.
- En déduire une relation entre $\dot{\theta}$ et $\dot{\phi}$ en fonction de b, r, ϕ , α , θ
- 7) Exprimez $\vec{V}_{P3/R}$ par dérivation puis par changement de point. Vous l'exprimerez dans le repère R_3 ($O, \vec{x_3}, \vec{y_3}, \vec{z_3}$)
- 8) Exprimez $\vec{I}_{P\ 3/R}$. Vous l'exprimerez dans le repère R_3 ($O, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3}$)
- 9) La patte (BP) peut être assimilée à un solide dont les caractéristiques sont données sur le croquis coté ci-après :

- a) Calculer la masse du solide sachant que sa masse volumique sera notée ρ
- b) Calculer les coordonnées de son centre d'inertie
- c) Déterminer sa matrice d'inertie exprimée au point O_1 dans la base $(\vec{x_3}, \vec{y_3}, \vec{z_3})$

Pour information, page suivante, on donne la forme de la matrice d'inertie d'un pavé exprimée en G (centre de gravité)

$$I_{GS/R0} = \begin{bmatrix} \frac{m}{12}(b^2 + c^2) & 0 & 0\\ 0 & \frac{m}{12}(a^2 + c^2) & 0\\ 0 & 0 & \frac{m}{12}(a^2 + b^2) \end{bmatrix}_{R0}$$

$$\vec{z}$$

Ainsi que celle d'un cylindre (rayon R et longueur L) exprimée en G (centre de gravité)

10)

a) Déterminez le moment cinétique en O_1 $\overrightarrow{\sigma}_{O_1(S_3/R)}$ de la patte (B O_1).

On prendra pour matrice d'inertie en O_1 : $I_{O_1}(S) = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{(\overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})}$

- b) Déterminez le moment cinétique en G_2 $\overrightarrow{\sigma}_{G_2(S_2/R)}$ de la biellette AB (2). Le moment d'inertie de la biellette en G_2 autour de l'axe Oz est C_2
- c) Déterminez le moment cinétique en 0 $\vec{\sigma}_{O(S_1/R)}$ de la manivelle OA (1). Le moment d'inertie de la manivelle en O autour de l'axe Oz est C_1
- 11) Déterminez le moment dynamique en O $\vec{\delta}_{O(S/R)}$ de l'ensemble { patte (BO1), biellette (AB), manivelle (OA) }
- 12) Sachant : que l'action du moteur en O est modélisée par le torseur $\{\mathcal{T}_{(moteur \to S_1)}\} = \begin{cases} \overrightarrow{0} \\ \overrightarrow{C_M} = C_M \cdot \overrightarrow{z} \end{cases}$ que l'action de contact en P est modélisée par le torseur $\{\mathcal{T}_{(sol \to S_3)}\} = \begin{cases} \overrightarrow{R} = R \cdot \overrightarrow{y} \\ \overrightarrow{0} \end{cases}$ que le poids propre des pièces est négligé

Par application du théorème du moment dynamique en O, établissez l'équation permettant de déterminer le couple moteur C_M en fonction des masses, des inerties, des dimensions des solides en mouvement ainsi que des paramètres θ , ϕ , α et de leurs dérivées successives.