Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.	A car repair shop receives a car with reports of strange noises coming from the engine. The shop knows 90% of the cars that come in for "noises" have a loose fan belt while the other 10% have a loose muffler. A common description, 95%, of cars having loose mufflers are reported as a rattle. Less commonly, 8%, fan belt issues can also sound like a rattle. The car owner is describing the strange noise as a rattle. What is the probability the car has a loose muffler?	1 / 1 point
	0.95	
	0.78	
	0.57	
	✓ CorrectYes! Bayes gives us a way to update our prior probabilities given new data.	
2.	It is estimated that 80% of emails are spam. You have developed a new algorithm to detect spam. Your spam software can detect 99% of spam emails but has a false positive rate of 5%. Your company receives 1000 emails in a day, how many emails will be incorrectly marked as spam?	1 / 1 point

50

	10	
	O 200	
	✓ CorrectYes! Bayes tells us how to update probabilities.	
3.	You have developed a new algorithm for detecting fraud. It has a sensitivity of 90% with a specificity of 95%. Choose the correct statement:	1 / 1 point
	true positive rate = 90%, true negative rate = 5%	
	true positive rate = 90%, true negative rate = 95%	
	Correct Correct!	
4.	Cost functions are measures of fit.	1 / 1 point
	true	
	Correct! The score is an indication of how well the model fits the data.	
5.	Cost functions are only useful in categorical decision settings.	1 / 1 point
	false	
	O true	
	 Correct Correct. Cost functions are definable for both discrete and continuous problems. 	

6.The following is a valid example of a cost function:

1/1 point

(A)

$$L(\theta, a) = \begin{cases} 0, \text{for (predict disease, actual disease), (predict no disease, actual no disease)} \\ 1, \text{for predict no disease, actual no disease} \\ 100, \text{for predict disease, actual no disease} \end{cases}$$

(B)

$$L(\theta,a) = \begin{cases} 0, \text{for (predict disease, actual disease), (predict no disease, actual no disease)} \\ 1, \text{for predict no disease, actual disease} \\ 100, \text{for predict disease, actual no disease} \end{cases}$$

- \bigcirc A
- B
 - Correct
 Correct! Each possible outcome is assigned a cost in the loss function.
- 7. In a recent study, you created a cost function for classification of 4 classes. Following training, you obtained the following resuls. What are the predictions for the samples in terms of thier class?

1/1 point

- A,B,C,B
- D,B,D,A,D
- O D,B,C,E

