Redkejši grafi z velikim kromatičnim številom

Matija Kocbek

mentor: prof. dr. Riste Škrekovski

2. december 2024

Kromatično in neodvisnostno število

Definicija

Naj bo G=(V,E) neusmerjen graf. Pravilno k-barvanje grafa G je preslikava $c:V\to 1,\ldots,k$, za katero velja $u\sim v\implies c(u)\neq c(v)$ oziroma c ne pobarvna nobeni sosednji vozlišči enako. Najmanjšemu k, za katero obstaja pravilno k-barvanje G pravimo kromatično število grafa G in ga označimo s $\chi(G)$.

Kromatično in neodvisnostno število

Definicija

Naj bo G=(V,E) neusmerjen graf. Pravilno k-barvanje grafa G je preslikava $c:V\to 1,\ldots,k$, za katero velja $u\sim v\implies c(u)\neq c(v)$ oziroma c ne pobarvna nobeni sosednji vozlišči enako. Najmanjšemu k, za katero obstaja pravilno k-barvanje G pravimo kromatično število grafa G in ga označimo s $\chi(G)$.

Definicija

Naj bo G=(V,E) in $H\subseteq V$. Če nobeni dve vozlišči iz H nista med seboj povezani, pravimo, da je H neodvisna množica. Velikost neodvisne množice z največjo močjo imenujemo neodvisnostno število grafa G in ga označimo z $\mu(G)$.

Interpretacija kromatičnega števila

Kromatično in neodvisnostno število sta meri "konfliktnosti"grafa. Kromatično število nam pove, kako težko je razbiti graf na popolnoma nekonfliktne množice. Pomembno je, ko je vsaka povezava "problematična".

Interpretacija kromatičnega števila

Kromatično in neodvisnostno število sta meri "konfliktnosti"grafa. Kromatično število nam pove, kako težko je razbiti graf na popolnoma nekonfliktne množice. Pomembno je, ko je vsaka povezava "problematična".

Trditev

Za vsak graf G z n vozlišči je $\chi(G)\mu(G) \geq n$.

Zakaj nas zanima kromatično (in tudi neodvisnostno) število grafov brez trikotnikov?

• Ali obstaja graf brez trikotnikov, ki ni dvodelen?

- Ali obstaja graf brez trikotnikov, ki ni dvodelen?
- Kolikšen delež grafov brez trikotnikov je dvodelen ali skoraj dvodelen?

- Ali obstaja graf brez trikotnikov, ki ni dvodelen?
- Kolikšen delež grafov brez trikotnikov je dvodelen ali skoraj dvodelen?
- Kako močno lokalna struktura grafa vpliva na globalno strukturo?

- Ali obstaja graf brez trikotnikov, ki ni dvodelen?
- Kolikšen delež grafov brez trikotnikov je dvodelen ali skoraj dvodelen?
- Kako močno lokalna struktura grafa vpliva na globalno strukturo?
- Določanje Ramseyjevega števila R(3, t).

- Ali obstaja graf brez trikotnikov, ki ni dvodelen?
- Kolikšen delež grafov brez trikotnikov je dvodelen ali skoraj dvodelen?
- Kako močno lokalna struktura grafa vpliva na globalno strukturo?
- Določanje Ramseyjevega števila R(3, t).
- Kako zgraditi globalno najbolj možno konfliktna omrežja, ki so lokalno neodvisna, tj. popolnoma nekonfliktna? Koristno za decentralizirane sisteme (npr. "blockchain"), simuliranje evolucijskih procesov...

Trditev (Mycielski)

Naj bo G_3 cikel dolžine 5. Naj bo $G_{k+1}=M(G_k)$ za vsak $k\geq 3$, kjer z M(G) označimo graf Mycielskega grafa G. Tedaj je G_k brez trikotnikov in $\chi(G_k)=k$ za vsak $k\geq 3$.

Trditev (Mycielski)

Naj bo G_3 cikel dolžine 5. Naj bo $G_{k+1}=M(G_k)$ za vsak $k\geq 3$, kjer z M(G) označimo graf Mycielskega grafa G. Tedaj je G_k brez trikotnikov in $\chi(G_k)=k$ za vsak $k\geq 3$.

Trditev

Naj bo T_n število grafov na n vozliščih brez trikotnikov, S_n pa število dvodelnih grafov na n vozliščih. Tedaj je $T_n = S_n(1 + o(\frac{1}{n}))$.

Trditev

Imejmo končno projektivno ravnino s k^2+k+1 točkami. Zgradimo graf G tako, da za vozlišča vzamemo vse urejene pare točk in premic (p,L), za katere velja, da p leži na L. Vozlišča opremimo s poljubno linearno urejenostjo <. Vozlišči (p,L) in (p',L') povežemo, če velja, da je (p,L)<(p',L'), da sta p in p' različni ter L in L' različni in da p leži na L'. Tedaj velja, da G ne vsebuje trikotnikov in da je $\alpha(G_k) \leq 2 \cdot (k^2+k+1)$ ter $\chi(G_k) \geq \frac{k+1}{2}$.

Trditev

Imejmo končno projektivno ravnino s k^2+k+1 točkami. Zgradimo graf G tako, da za vozlišča vzamemo vse urejene pare točk in premic (p,L), za katere velja, da p leži na L. Vozlišča opremimo s poljubno linearno urejenostjo <. Vozlišči (p,L) in (p',L') povežemo, če velja, da je (p,L)<(p',L'), da sta p in p' različni ter L in L' različni in da p leži na L'. Tedaj velja, da G ne vsebuje trikotnikov in da je $\alpha(G_k) \leq 2 \cdot (k^2+k+1)$ ter $\chi(G_k) \geq \frac{k+1}{2}$.

Trditev

Za vsak graf G brez trikotnikov velja $\chi(G) \leq (2+o(1))\sqrt{\frac{n}{\log n}}$.

Kromatično število grafov z veliko ožino

Izrek (Erdos)

Za vsaka k in I obstaja graf G, da je $\chi(G) \ge k$ in girth(G) > I.