MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2017-18

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos três grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [**5,9**] Sejam o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^4$, em que $\vec{a} = (3, -2, 0, -1)$, $\vec{b} = (-2, 1, 0, 1)$, $\vec{c} = (1, -1, 1, 1)$ e $\vec{d} = (1, 0, 1, 0)$, e $H = \{(x, y, z, w) \in \mathbb{R}^4 : z = 0 \land w = 0\}$ um subespaço de \mathbb{R}^4 . Determine:
 - **a**) O subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço obtido e conclua em relação à sua dimensão.
 - **b**) Uma base ortogonal, V, para L(S) que inclua um vetor do conjunto S.
 - c) Uma base, W, para o espaço \mathbb{R}^4 que inclua dois elementos do subespaço H e tal que não existam em W vetores ortogonais entre si.
- **2.** [1,1] Seja B = $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, ..., \vec{x}_m\}$ uma base para o subespaço F do espaço vetorial \mathbb{R}^n . Mostre que o conjunto $C = \{\vec{x}_1, \vec{x}_1 + \vec{x}_2, \vec{x}_1 + \vec{x}_2 + \vec{x}_3, ..., \vec{x}_1 + \vec{x}_2 + \vec{x}_3 + ... + \vec{x}_m\}$ é, ainda, uma base para F. Justifique devidamente.

GRUPO II

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

- **4.** [2,2] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço \mathbb{R}^3 , tais que $\|\vec{a}\| = 2$, $\|\vec{b}\| = \|\vec{c}\| = 1$, $\|\vec{b} + 2\vec{c}\| = \sqrt{5}$, $\angle(\vec{a}, \vec{c}) = \pi/3$ e $\vec{d} = \vec{a} + \vec{c} + (\vec{a} \times \vec{c})$. Considere o conjunto $S = \{\vec{a} \times \vec{b}, \vec{b}, \vec{c}\}$ e admita que o prisma definido pelos vetores \vec{a} , \vec{b} e \vec{c} tem $\sqrt{2}$ unidades de volume.
 - a) Verifique, justificando devidamente, se S é um conjunto ortogonal.
 - **b)** Obtenha o ângulo, α , formado pelos vetores \vec{d} e $\vec{a} \times \vec{c}$.
 - c) Calcule a norma do vetor $\vec{a} \times (\vec{b} \times \vec{c})$.

GRUPO III

- **5.** [1,4] Enuncie a identidade de Lagrange e mostre que se $\vec{a} \times \vec{b} = \vec{0}$, $\vec{a}, \vec{b} \in \mathbb{R}^3$, então o conjunto $U = \{\vec{a}, \vec{b}\}$ é linearmente dependente.
- **6.** [5,0] Considere o plano M: x+y+z=1, o ponto Q=(-1,0,1) e a reta, h, com a equação vetorial $X(t)=P+t\vec{a}$, $t\in\mathbb{R}$, em que P=(1,0,1) e $\vec{a}=(0,1,2)$.
 - a) Determine um ponto, J, da reta h cuja distância a Q seja igual à distância de Q ao plano $M_1: x+2y+2z=7$.
 - **b**) Seja I o ponto de interseção da reta h com o plano M. Obtenha a equação vetorial da reta, h_1 , que é a projeção ortogonal da reta h sobre o plano M e determine o ângulo, θ , que as retas h e h_1 fazem entre si.
- 7. [2,5] Sejam o plano M e a reta h do exercício 6. Calcule a equação vetorial de uma reta, q, que passa no ponto P, é paralela ao plano M e faz o ângulo $\alpha = \arccos\left(\frac{1}{\sqrt{10}}\right)$ com a reta h.