Билет 5: Дайте определение монотонных функций и последовательностей. Приведите примеры.

Монотонные функции.

Определение. Функция y = f(x), определенная на множестве $X \subset \mathbb{R}$, называется возрастающей на X, если $\forall x_1, x_2 \in X$ $\big((x_1 < x_2) \Rightarrow \big(f(x_1) < f(x_2) \big) \big)$, неубывающей на X, если $\forall x_1, x_2 \in X$ $\big((x_1 < x_2) \Rightarrow \big(f(x_1) \leq f(x_2) \big) \big)$, невозрастающей на X, если $\forall x_1, x_2 \in X$ $\big((x_1 < x_2) \Rightarrow \big(f(x_1) \geq f(x_2) \big) \big)$, убывающей на X, если $\forall x_1, x_2 \in X$ $\big((x_1 < x_2) \Rightarrow \big(f(x_1) > f(x_2) \big) \big)$.

Все эти функции называются монотонными на X.

Примеры. На своей области определения (\mathbb{R}) функция $y = x^3$ - возрастает, $y = e^{-x}$ - убывает, функция $y = \operatorname{sgn} x$ - неубывающая, а функция $y = x^2 \cdot (1 - \operatorname{sgn} x)$ - невозрастающая.

Для последовательностей, с учетом свойств их области определения и принятой формы обозначений, сформулированные выше определения выглядят следующим образом.

Определение. Последовательность $\{a_n\}$ называется возрастающей, если $\forall n \in \mathbb{N} \ (a_{n+1} > a_n)$, неубывающей, если $\forall n \in \mathbb{N} \ (a_{n+1} \ge a_n)$, невозрастающей, если $\forall n \in \mathbb{N} \ (a_{n+1} \le a_n)$, убывающей, если $\forall n \in \mathbb{N} \ (a_{n+1} < a_n)$.

Такие последовательности называются монотонными.

Пример. Исследуем последовательность $\{a_n\} = \left\{\frac{n-1}{2n+3}\right\}$ на монотонность:

$$a_{n+1} - a_n = \frac{n}{2n+5} - \frac{n-1}{2n+3} = \frac{5}{(2n+5)(2n+3)} > 0.$$

Следовательно, последовательность монотонно возрастает. Отсюда сразу вытекает, что она ограничена снизу $\forall n \in \mathbb{N} \left(a_n \geq a_1 \right)$. Покажем, что она ограничена сверху:

$$\frac{n-1}{2n+3} \le \frac{n}{2n} = \frac{1}{2},$$

то есть $C = \frac{1}{2}$ - верхняя граница значений последовательности (можно показать, что она также является и верхней гранью ее значений).

Билет 6 смотри в тетради!