ANALISI MATEMATICA 1

Università di Pisa

FLAVIO ROMANO

(INFORMATICA $\mathcal I$ anno 2020-2021)

Science is a differential equation. Religion is a boundary condition A. Turing

Contents

Chapter 1. Funzioni	4
Chapter 2. Questioni legate all'ordinamento dei numeri Reali	6
Chapter 3. Valore Assoluto 3.1. Proprietà	8 8
Chapter 4. Continuità 4.1. Continuità delle funzioni elementari	9 10
Chapter 5. Ancora continuità 5.1. Intorni 5.2. Limiti	11 11 12
Chapter 6. Derivata 6.1. Punti di non derivabilità 6.2. Teoremi Fermat, Rolle, Lagrange, Cauchy 6.3. De l'Hôpital 6.4. Formule di Taylor	17 18 19 21 22
Chapter 7. Studio di funzione completo 7.1. Convessità e Concavità	23 23
Chapter 8. Integrali 8.1. Metodi di calcolo, proprietà e teoremi: 8.2. Teorema fondamentale del calcolo integrale, Torricelli-Barrow 8.3. Integrali impropri 8.4. Criteri per studiare la convergenza di integrali impropri	26 27 29 30 31
Chapter 9. Successioni 9.1. Limiti di successioni 9.2. Sottosuccessioni (estratte)	33 33
 9.3. Monotonia 9.4. Limitatezza 9.5. Legame tra limiti di funzioni e limiti di successioni 9.6. Calcolo dei limiti di successione 	34 34 35 36 37
Chapter 10. Serie (numeriche) 10.1. Serie (definitivamente) a termini positivi 10.2. Legami con gli integrali impropri 10.3. Serie a segno arbitrario 10.4. Serie a segno alterno	40 43 45 46 47
Chapter 11 Formulario	10

CHAPTER 1

Funzioni

Una funzione è una terna di oggetti (A, B, f) $f: A \to B$.

- (1) A=Dominio
- (2) B=Codominio
- (3) f=è una legge che lega gli elementi di A con quelli di B, f mette in corrispondenza ogni elemento di A con un solo elemento di B.

DEFINITION 1.1. Grafico di una funzione: Il grafico di una funzione è sottoinsieme del prodotto cartesiano di A per B. $graph(f) = \{(a,b) \subseteq A \times B \ t.c \ B = f(a)\}$

DEFINITION 1.2. **Immagine**: L'immagine di una funzione è l'insieme dei valori assunti da una funzione sul proprio dominio, ed è quindi contenuta nel codominio con il quale può al più coincidere.

Data una $f: A \to B$ e $D \subset A$ allora $f(D) = \{f(x) \mid x \in D\}$. f(D) è immagine di D attraverso f e contemporaneamente è parte del codominio (poiché sottoinsieme di esso).

In pratica quando si parla di Imm(f) = f(A) voglio sapere dove vanno a finire tutti i punti del dominio A, cioé l'immagine di tutto il dominio attraverso f.

DEFINITION 1.3. Funzione iniettiva, surgettiva e biettiva

- **INIETTIVA:** Una funzione si dice iniettiva se elementi distinti del dominio hanno immagini distinte. Scriveremo che $f: A \to B$ iniettiva se $\forall x_1, x_2 \in A$ t.c $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$.
- SURGETTIVA: Una funzione si dice surgettiva se l'immagine della funzione coincide con il codominio; in altri termini se per ogni elemento b del codominio B esiste almeno un elemento a del dominio A tale che b è immagine di a mediante f ossia b = f(a). Nel codominio non devono esserci elementi scoperti. Scriveremo che $f: A \to B$ è surgettiva se $\forall b \in B \exists a \in A \ f(a) = b$.
- **BIETTIVA:** Una funzione si dice biettiva (o corrispondenza 1:1) se f è sia iniettiva che surgettiva. In particolare se f è biettiva posso costruire la funzione inversa che indico con f^{-1} , ad esempio se $f: A \to B$ è biettiva allora esiste $f^{-1}: A \to B$.
 - Dato $b \in B$ esiste almeno un elemento $a \in A$ t.c f(a) = b (surgettività) mentre l'elemento a è unico perché f è iniettiva. In sostanza poniamo $f^{-1}(b) = a \iff f(a) = b$. Se f è una funzione invertibile, i grafici di f e di f^{-1} sono simmetrici rispetto alla retta y = x (bisettrice 1° e 2° quadrante).

PROPOSITION. Capire iniettività

Abbiamo due vie, il metodo analitico ed il metodo grafico:

Metodo analitico:

- (1) Data una funzione y = f(x) imponiamo l'uguaglianza $f(x_1) = f(x_2)$.
- (2) Risolviamo l'uguaglianza portando tutti gli x_1 a sinistra e gli x_2 a destra.
- (3) Se alla fine arriviamo a una soluzione del tipo $x_1 = x_2$ allora la f è iniettiva, altrimenti non lo è.

Metodo grafico:

- (1) Disegniamo un grafico della funzione.
- (2) Tracciamo una serie di rette orizzontali parallele all'asse x.
- (3) Se riusciamo a trovare anche solo una retta che abbiamo disegnato che interseca il grafico della funzione al massimo in un punto, allora la funzione è iniettiva. Se interseca in più punti allora non lo è.

1. FUNZIONI

Proposition. Capire surgettività

Abbiamo un metodo analitico e uno grafico per capire se una funzione è surgettiva oppure no.

Metodo analitico:

Si tratta di trovare $\forall y \in Cod(f)$ almeno una $x \in Dom(f)$ t.c f(x) = y. [n.b il codominio di f è spesso \mathbb{R}]

- (1) Bisogna considerare f(x) = y come un'equazione e risolverla in favore di x.
- (2) Se la x trovata appartiene al dominio, allora è surgettiva. Questo metodo è poco efficiente e macchinoso da fare durante un compito.

Metodo grafico:

- (1) Prendo un punto qualunque sull'asse \mathbb{R} e traccio una retta parallela all'asse delle x.
- (2) Se questa retta orizzontale non interseca il grafico della funzione, allora la f non è surgettiva (altrimenti lo è).

DEFINITION 1.4. Funzioni monotone: La monotonia riguarda la crescenza o la decrescenza delle funzioni.

Dati due insiemi $A, B \subset \mathbb{R}$ (sottoinsiemi di \mathbb{R}) e $x_1, x_2 \in A$ con $x_1 < x_2$, se $\forall x_1, x_2$ risulta che:

- (1) $f(x_1) < f(x_2) \implies f$ si dice **STRETTAMENTE CRESCENTE**.
- (2) $f(x_1) \le f(x_2) \implies f$ si dice **DEBOLMENTE CRESCENTE**.
- (3) $f(x_1) > f(x_2) \implies f$ si dice **STRETTAMENTE DECRESCENTE**.
- (4) $f(x_1) \ge f(x_2) \implies f$ si dice **DEBOLMENTE DECRESCENTE**.

In generale se si verificano la (1). o la (3). la funzione si dice **STRETTAMENTE MONOTONA**, se invece si verificano la (2). o la (4). la funzione si dice **DEBOLMENTE MONOTONA**.

Una cosa molto importante da ricordare è che se la f è crescente, allora mantiene l'ordinamento:

 $x_1 < x_2$ quindi $f(x_1) < f(x_2)$. Mentre se f è decrescente l'ordinamento si inverte: $x_1 < x_2$ però $f(x_1) > f(x_2)$.

Remark. Se f è strettamente crescente allora è anche debolmente crescente, ma non viceversa.

Remark. Se f è strettamente monotona allora f è iniettiva, ma non viceversa.

Fact. Analogamente...

- f è strettamente crescente sse se il rapporto incrementale è maggiore di zero: $\frac{f(x_1)-f(x_2)}{x_1-x_2}>0$, $x_1\neq x_2$.
- f è strettamente decrescente sse se il rapporto incrementale è minore di zero: $\frac{x_1-x_2}{x_1-x_2} > 0$, $x_1 \neq x_2$. • f è strettamente decrescente sse se il rapporto incrementale è minore di zero: $\frac{f(x_1)-f(x_2)}{x_1-x_2} < 0$, $x_1 \neq x_2$.

COROLLARY. Riconoscere la monotonia

Tipo	Come si comporta?	Quindi
Monotona crescente	Cresce e basta	
Monotona debolmente crescente	Cresce o resta uguale	Tratto orizzontale. $f(x^1) = f(x^2)$
Monotona decrescente	Decresce e basta	
Monotona debolmente decrescente	Decresce o resta uguale	Tratto orizzontale. $f(x^1) = f(x^2)$

DEFINITION 1.5. Composizione di funzioni monotone:

Dati tre insiemi $A, B, C \subset \mathbb{R}$ e due funzioni $f: A \to B$ e $g: B \to C$ allora abbiamo che

- (1) Se f è CRESCENTE e g è CRESCENTE, allora $g \circ f$ sarà CRESCENTE.
- (2) Se f è CRESCENTE e g è DECRESCENTE, allora $g \circ f$ sarà DECRESCENTE (def. analoga per f decrescente e g crescente).
- (3) Se f è **DECRESCENTE** e g è **DECRESCENTE**, allora $g \circ f$ sarà **CRESCENTE**.

DEFINITION 1.6. **Dominio di funzione**: L'insieme di definizione (dominio naturale) di una funzione è il più grande sottoinsieme di \mathbb{R} dove ha senso scrivere la funzione, infatti la funzione è definita solo nei valori del suo dominio.

- (1) Se f(x) = f(-x) per ogni x nel dominio di f, la f si dice **PARI**: $\{f \ pari \implies graph(f)specchiato\}.$
- (2) Se f(x) = -f(-x) per ogni x nel dominio di f, la f si dice **DISPARI**: $\{f \ dispari \implies graph(f)simmetrico \ rispetto \ a \ 0\}.$

REMARK. Il dominio di f deve essere: se $x \in Dom \implies -x \in Dom$ (simmetrico rispetto a 0).

DEFINITION 1.7. Funzione periodica: f si dice periodica di periodo $p \in \mathbb{R}$ se $\forall x \ f(x+p) = f(x)$. Il dominio di f deve essere tale che $\{x \in Dom \implies (x+p) \in Dom\}$, ad esempio le funzioni goniometriche.

sen e cos sono periodiche e il loro periodo è compreso tra $[0, 2\pi]$.

Questioni legate all'ordinamento dei numeri Reali

DEFINITION 2.1. **Massimo**: Dato un sottoinsieme $A \subset \mathbb{R}$, con $A \neq \emptyset$, un numero reale si dice massimo di A se $m \geq a \ \forall a \in A$ e $m \in A$. (def. analoga per minimo)

Example. $A = [0,1] \implies max(A) = 1, \quad B = [0,1) \implies max(B) = \nexists.$

REMARK. Supponiamo per assurdo che un certo numero $m \in \mathbb{R}$ sia massimo di B.

Quindi m deve appartenere a $B, m \in B$, allora m deve essere minore di 1 poiché B = [0, 1).

Poniamo $\varepsilon = 1 - m > 0$) e definiamo $m_1 = m + \frac{\varepsilon}{2}$. Risulta che m_1 è elemento di B, ma $m < m_1$ che contrasta con il fatto che m è il massimo di B. Infatti dovrebbe essere $m \ge b \ \forall \ b \in B$.

DEFINITION 2.2. **Maggiorante**: Sia $A \subset \mathbb{R}$, con $A \neq \emptyset$, un $k \in \mathbb{R}$ si dice maggiorante di A se $k \geq a \ \forall \ a \in A$. L'insieme di tutti i maggioranti di A si indica con M_A . Non è detto che appartenga ad A. (def. analoga per minorante).

Example. $A = [0,1] \implies 3$ è maggiorante di $A,3 \in M_A$

REMARK. Se esiste un maggiorante di A, allora ne esistono infiniti.

Infatti se $k \in M_A$, m è maggiorante di $A \forall m \geq k$.

Remark. Ci sono insiemi che non hanno maggioranti. Es: $A = [4, +\infty)$ non ha maggioranti.

DEFINITION 2.3. Limitato superiormente: Se l'insieme dei maggioranti $M_A \neq \emptyset$, allora l'insieme A si dice limitato superiormente. (def. analoga per limitato inferiormente).

DEFINITION 2.4. Limitato: Se ho un insieme $A \subset \mathbb{R}$, con $A \neq \emptyset$, se A è limitato sia superiormente che inferiormente, allora A si dice limitato.

Remark. A è limitato se e solo se $\exists h, k \in \mathbb{R} \ t.c \ k \leq a \leq h \ \forall a \in A$.

DEFINITION 2.5. Estremo superiore: Sia $A \subset \mathbb{R}$, con $A \neq \emptyset$, superiormente limitato. Allora esiste il minimo dell'insieme dei maggioranti. Tale minimo si dice estremo superiore di A e si indica con sup(A).

Example.
$$A = [0,1) \implies M_A(1,+\infty)$$
, da cui $min(M_A) = 1 \implies sup(A) = 1$.

Remark. Se esiste il max(A) allora il max(A) = sup(A)

DEFINITION 2.6. Caratterizzazione dell'estremo superiore: Sia $A \neq \emptyset$ superiormente limitato Allora vale m = sup(A) se e solo se valgono 2 condizioni:

- (1) $a \le m \ \forall a \in A$, cioé m è un maggiorante.
- (2) $\forall \varepsilon > 0 \; \exists \; \overline{a} \in A \; t.c \; \overline{a} > (m \varepsilon)$, non ci sono maggioranti più piccoli di m.

Remark. La scrittura $sub(A)<+\infty$ vuol dire che l'estremo superiore di A è un numero reale, quindi A è superiormente limitato.

DEFINITION 2.7. Retta reale estesa: Si indica con $\overline{\mathbb{R}}$ ed è la retta reale dove aggiungiamo 2 elementi: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$.

Questa aggiunta deve essere fatta in modo che valga la condizione: $-\infty \le x \le +\infty \ \forall \ x \in \overline{\mathbb{R}}.$

REMARK. Se $x \in \mathbb{R}$, quindi $x \neq +\infty$ e $x \neq -\infty$, allora $-\infty < x < +\infty$ (strettamente).

DEFINITION 2.8. Parte intera: Dato $x \in \mathbb{R}$ si dice parte intera di x, e si indica con [x], il più grande numero intero minore o al più uguale ad x. In poche parole è il primo numero che incontriamo spostandoci da x verso sinistra. $[x] = max\{m \in \mathbb{Z} \ t.c. \ m \le x\}$.

Example.
$$\left[-\frac{25}{10} \right] = -2$$

DEFINITION 2.9. Limitata superiormente: f è limitata superiormente sse f(A), cioé la sua immagine, è limitata superiormente. (viceversa per limitata inferiormente)

REMARK. sup(f) = sup(f(A)), se f non è limitata superiormente si scrive $sup(f) = +\infty$, se non è limitata inferiormente scriverò $inf(f) = -\infty$

DEFINITION 2.10. **Massimo**: f ha massimo se f(A) ha massimo, si dice che M è massimo di f, M = max(f), se M = max(f(A)). (viceversa per il minimo)

REMARK. Se f ha massimo, allora ogni $x_0 \in A$ t.c $f(x_0) = max(f)$ si dice punto di massimo per f. (viceversa per minimo)

REMARK. Il massimo di f è unico, i punti di massimo potrebbero essere molti.

2.0.1. Correlazione tra massimo, minimo e monotonia di una funzione

- . Supponiamo di avere una funzione $A \subset \mathbb{R}, f: A \to \mathbb{R}$:
 - (1) Se A ha Massimo e f è Debolmente Crescente, allora f ha massimo max(f) = f(max(A)).
 - (2) Se A ha Minimo e f è Debolmente Crescente, allora f ha minimo min(f) = f(min(A)).
 - (3) Se A ha Massimo e f è Debolmente Decrescente, allora f ha minimo min(f) = f(max(A)).
 - (4) Se A ha Minimo e f è Debolmente Decrescente, allora f ha massimo max(f) = f(min(A)).

REMARK. Data $f: A \to \mathbb{R}$ allora $m = \sup(f)$ se e solo se valgono:

- (1) $f(x) \le m \ \forall x \in A$
- (2) $\forall \varepsilon > 0 \; \exists \; \overline{x} \in A \; t.c \; f(\overline{x}) > m \varepsilon$

CHAPTER 3

Valore Assoluto

DEFINITION 3.1. Dato $x \in \mathbb{R}$, si dice valore assoluto di x, il numero: $|x| = max\{x, -x\}$.

Example. $|5| = max\{5, -5\} = 5, \quad |-3| = max\{-3, -(-3)\} = 3$

3.1. Proprietà

$1) \ x \le x $	5) -x = x
$ x = x \text{ se } x \ge 0, x = -x \text{ se } x \le 0$	$ 6) - x \le x \le x $
$3) x \ge 0 \ \forall x \in \mathbb{R}$	7) $ x \le M$ sse $-M \le x \le M$
4) $ x = 0$ sse $x = 0$	8) $ x \ge M$ sse $x \ge M$ oppure $x \le -M$

REMARK. su il 7) e l'8):

REMARK. Se M<0, che vuol dire $|x|\geq M$? tipo... Quali sono le soluzioni di $|x|\geq -3$? Risposta: $\forall \ x\in\mathbb{R}$, perché ogni numero reale è maggiore o uguale di -3.

Definition 3.2. Disuguaglianza triangolare: Dati $a, b \in \mathbb{R}$ risulta che :

- (1) $|a+b| \le |a| + |b|$
- (2) $||a| |b|| \le |a b|$

Proof. (1)

- 1. Siano $a,b\in\mathbb{R}$: $\{-|a|\leq a\leq |a|\}$ e $\{-|b|\leq b\leq |b|\}$, sommo le disuguaglianze.
- 2. $\{-|a|-|b| \le a+b \le |a|+|b|\}$, $\{-(|a|+|b|) \le a+b \le |a|+|b|\}$ cioé $-M \le x \le M$.
- 3. Per la proprietà (7) $|x| \le M$ cioé $|a+b| \le |a| + |b|$.

Remark. La disuguaglianza triangolare si estende anche a n-elementi:

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$$

CHAPTER 4

Continuità

DEFINITION 4.1. Funzione continua in un punto: Sia $A \subset \mathbb{R}$, e sia $f : A \to \mathbb{R}$ con $x_0 \in A$. La funzione f si dice continua in x_0 se

per ogni
$$\varepsilon > 0$$
 esiste un $\delta > 0$ tale che $x \in A$, $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$

REMARK. Date le diseguaglianze appena viste, è logico affermare che:

$$|x-x_0| < \delta \iff (x_0-\delta) < x < (x_0+\delta) \text{ e anche} |f(x)-f(x_0)| < \varepsilon \iff (f(x_0)-\varepsilon) < f(x) < (f(x_0)+\varepsilon)$$

DEFINITION 4.2. Funzione continua: Sia $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ e $B \subset A$. Si dice che f è continua in B se f è continua in ogni $x_0 \in B$. Se dice solo "f è continua" (senza specificare l'insieme B), intendo dire che f è continua in tutti i punti del suo dominio A.

Example. Se
$$f(x) = \begin{cases} 0 & \text{se } x \leq 0 \\ 1 & \text{se } x > 0 \end{cases}$$
 allora f è continua in $(-\infty, 0) \cup (0, +\infty)$.

THEOREM 4.1. **Permanenza del segno**: Sia $A \subset \mathbb{R}$, una funzione $f : A \to \mathbb{R}$ con $x_0 \in A$. Se f è continua in x_0 e $f(x_0) > 0$ allora \exists un $\delta > 0$ tale per cui se $x \in A$ e $|x - x_0| < \delta$ allora f(x) > 0. (analogo viceversa per $f(x_0) < 0$)

PROOF. Supponiamo che $f(x_0) > 0$. Scelgo un $\varepsilon = \frac{f(x_0)}{2}$ e lo uso nella definizione di continuità. Allora \exists un $\delta > 0$ tale per cui se $x \in A$ e $|x - x_0| < \delta$ allora $|f(x) - f(x_0)| < \varepsilon$, cioé (ricollegandoci a quanto spiegato nella continuità su un punto): $(f(x_0) - \varepsilon) < f(x) < (f(x_0) + \varepsilon)$

$$\underline{f(x) > f(x_0) - \varepsilon} \implies f(x) > f(x_0) - \frac{f(x_0)}{2} \implies f(x) > \frac{f(x_0)}{2} \text{ quindi } f(x) > 0.$$

9

COROLLARY 4.1. Se f è continua in x_0 , $f: A \to \mathbb{R}$, $x_0 \in A$ e $f(x_0) > M \in \mathbb{R}$ allora \exists un $\delta > 0$ tale per cui se $x \in A$ e $|x - x_0| < \delta \implies f(x) > M$. (analogo viceversa per $f(x_0) < M \implies f(x) < M$)

PROOF. Applico il teorema precedente alla funzione g(x) = f(x) - M.

THEOREM 4.2. Conseguenze continuità: Se f e g sono continue in x_0 allora lo sono anche le funzioni $(f+g), (f \cdot g), \left(\frac{f}{g}\right), |f|$. Se inoltre $f(x_0) \neq 0$ allora anche $\frac{1}{f}$ è continua.

PROPOSITION 4.1. Dato un intervallo $I \subset \mathbb{R}$ e $f: I \to B$ con $B \subset \mathbb{R}$, se f è continua in I ed è invertibile allora f^{-1} è continua in B. Attenzione se f non è definita su un intervallo potrebbe succedere che f^{-1} non è continua anche se f lo è.

4.1. Continuità delle funzioni elementari

- f(x) = x è **continua**, da questo segue che tutti i *polinomi* sono continui. Le funzioni costanti sono continue. $P(x) = a_n x^n + ... + a_1 x + a_0$ infatti $a_0, a_1, a_n \in \mathbb{R}$ sono *coeff.* dei monomi.
- $f(x) = \frac{P(x)}{Q(x)}$ con P, Q polinomi, le funzioni razionali sono **continue** nel loro *insieme di definizione*, in questo caso è continua per $Q(x) \neq 0$.
- e^x , senx, cosx, logx, arcsenx, arccosx, tgx, arctgx sono **continue**.

Theorem 4.3. Composizione di funzioni continue: Siano $f: A \to B$, $g: B \to \mathbb{R}$ con $x_0 \in A$ e $y_0 = f(x_0) \in B$. Se f è continua in x_0 e g è continua in y_0 allora $g \circ f$ è continua in x_0 .

Example. $e^{\cos(x)}$ è una funzione continua, è la composizione di $f(x) = \cos(x)$ e $g(y) = e^y$.

REMARK. Se abbiamo una funzione definita su un intervallo chiuso $f:[a,b]\to\mathbb{R}$ continua in [a,b]. Allora $\sup\{f(x)_{x\in[a,b]}\}=\sup\{f(x)_{x\in[a,b]}\}$ e $\inf\{f(x)_{x\in[a,b]}\}=\inf\{f(x)_{x\in[a,b]}\}$

THEOREM 4.4. **Teorema degli zeri**: Sia $f:[a,b] \to \mathbb{R}$ continua. Se $f(a) \cdot f(b) < 0$ allora \exists un $c \in (a,b)$ tale per cui la f si annulla f(c) = 0.

Theorem 4.5. Teorema dei valori intermedi: Dato un intervallo $I \in \mathbb{R}$ e sia $f: I \to \mathbb{R}$ continua. Allora f(I) è un intervallo.

COROLLARY 4.2. Dato un intervallo $I \subset \mathbb{R}$ con una f continua. Se f assume i valori y_1 e y_2 allora assume anche tutti i valori compresi fra y_1 e y_2 .

Theorem 4.6. Teorema di Weirstrass: Se $f : [a, b] \to \mathbb{R}$ è continua, allora f ha massimo e minimo. Il dominio di f deve essere necessariamente chiuso e limitato, altrimenti non ci sarebbe o il massimo o il minimo.

Ancora continuità

5.1. Intorni

DEFINITION 5.1. **Intorno**: Dato un $x_0 \in \mathbb{R}$ si dice *intorno* di x_0 un insieme del tipo $(x_0 - \varepsilon, x_0 + \varepsilon)$ dove $\varepsilon \in \mathbb{R}$ con $\varepsilon > 0$ (ε è il raggio dell'intorno).

Un insieme del tipo $[x_0, x_0 + \varepsilon)$ si dice **intorno destro** di x_0 .

Un insieme del tipo $(x_0 - \varepsilon, x_0]$ si dice **intorno sinistro** di x_0 .

DEFINITION 5.2. Intorno a $+\infty$: Se $x_0 = +\infty$, un intorno di x_0 è un insieme del tipo $(a, +\infty)$ con $a \in \mathbb{R}$. Un intorno a $-\infty$ è un insieme del tipo $(-\infty, a)$ con $a \in \mathbb{R}$.

DEFINITION 5.3. **Punto di accumulazione**: Dato un $A \subset \mathbb{R}$ e $x_0 \in \overline{\mathbb{R}}$, x_0 si dice punto di accumulazione per A se \forall intorno v di x_0 risulta $v \cap A \setminus \{x_0\} \neq 0$ (vicino a x_0 ci sono altri punti di A oltre x_0).

EXAMPLE. A = (2,3), Acc(A) = [2,3]. Tutti i punti di A sono punti di accumulazione, poiché ogni intorno di x_0 interseca A in infiniti punti.

REMARK. $(x_0 - \varepsilon, x_0 + \varepsilon) \setminus \{x_0\}$ si chiama anche **intorno bucato**, x_0 non fa parte dell'intorno.

DEFINITION 5.4. **Punto isolato**: Un punto $x_0 \in A$ si dice punto isolato di A se \exists un intorno v di x_0 tale per cui $v \cap A = \{x_0\}$.

Example. $A = [2,3] \cup \{5\} \implies 5$ è un punto isolato di A

EXAMPLE. $Acc(\mathbb{N}) = \{+\infty\}$, ogni numero naturale rappresenta un punto isolato all'interno della retta reale, l'unico punto di accumulazione è $+\infty$.

DEFINITION 5.5. **Punto interno**: Sia $A \subset \mathbb{R}$, un $x_0 \in A$ si dice punto interno ad A se \exists un intorno v di x_0 tale per cui $v \subset A$. Cioé che l'intorno sia contenuto tutto in A.

Example. A = [3, 5], int(A) = (3, 5) poiché gli estremi non sono punti interni.

DEFINITION 5.6. Limite del reciproco di una funzione:

${f Se}$	Allora
$\lim_{x \to x_0} f(x) = 0^+$	$\lim_{x \to x_0} \frac{1}{f(x)} = +\infty$
$\lim_{x \to x_0} f(x) = 0^-$	$\lim_{x \to x_0} \frac{1}{f(x)} = -\infty$
$\lim_{x \to x_0} f(x) = +\infty$	$\lim_{x \to x_0} \frac{1}{f(x)} = 0^+$
$\lim_{x \to x_0} f(x) = -\infty$	$\lim_{x \to x_0} \frac{1}{f(x)} = 0^-$
$\lim_{x \to x_0} f(x) = l \text{ con } l \neq 0, \pm \infty$	$\lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{l}$

11

DEFINITION 5.7. Monotonia e limiti superiori e inferiori: Siano $a,b \in \overline{\mathbb{R}}$ e sia $f:(a,b) \to \mathbb{R}$ con f debolmente crescente. Allora esistono $\lim_{x \to a^+} f(x) = \inf_{x \in (a,b)} \{f(x)\}$ e $\lim_{x \to b^-} f(x) = \sup_{x \in (a,b)} \{f(x)\}$.

(analogo viceversa per f debolmente decrescente)

DEFINITION 5.8. Limite della composizione di funzioni: Siano $A, B \subset \mathbb{R}, f: A \to B$ e $g: B \to \mathbb{R}$ con $x_0 \in Acc(A)$. Se esiste il $\lim_{x \to x_0} f(x) = y_0$ con $y_0 \in Acc(B)$ ed esiste $\lim_{y \to y_0} g(y) = l$ con $l \in \overline{\mathbb{R}}$ e se è verificata almeno una delle 2 ipotesi: Allora $\lim_{x \to x_0} (g \circ f)(x) = l$, cioé $\lim_{x \to x_0} (g \circ f)(x) = \lim_{y \to y_0} g(y)$.

- (1) $y_0 \in B$ e g è continua in y.
- (2) \exists un intorno v di x_0 tale per cui se $x \in (v \cap A \setminus \{x_0\})$ allora $f(x) \neq y_0$.

5.2. Limiti

DEFINITION 5.9. Limite: Sia $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ e $x_0 \in Acc(A)$. Si dice che $l \in \overline{\mathbb{R}}$ è il limite per x che tende a x_0 di f(x), se \forall intorno V di l esiste un intorno v di x_0 tale per cui $x \in v \cap A \setminus \{x_0\}$ allora $f(x) \in V$.

• Caso $x_0 \in \mathbb{R}(finito), l \in \mathbb{R}(finito)$

 $v=(x_0-\delta,x_0+\delta)$ è un intorno di $x_0,\,V=(l-\varepsilon,l+\varepsilon)$ è un intorno di l. $x\in v?\Longrightarrow |x-x_0|<\delta,\,f(x)\in V?\Longrightarrow f(x_0)-\varepsilon< f(x)< f(x_0)+\varepsilon.$ Il $\lim_{x\to x_0}f(x)=l$ se e solo se $\forall\,\,\varepsilon>0\,\,\exists\,\,$ un $\delta>0$ tale per cui $x\in A$, $|x-x_0|<\delta$ e $x\neq x_0$ allora $|f(x)-f(x_0)|<\varepsilon.$

• Caso $x_0 \in \mathbb{R}(finito), l = +\infty(infinito)$

 $V = (a, +\infty)$ è intorno di $+\infty$, dire che $f(x) \in V$ vuol dire f(x) > a.

Il $\lim_{x\to x_0} f(x) = +\infty$ se e solo se $\forall a \in \mathbb{R} \ \exists \, \delta > 0$ tale per cui $|x-x_0| < \delta$, tale per cui $x \in A$ e $x \neq x_0$ allora f(x) > a.

Il $\lim_{x\to +\infty} f(x) = l \text{ con } l \in \mathbb{R}$ se e solo se $\forall \ \varepsilon > 0 \ \exists \ a > 0$ tale per cui x > a allora $|f(x) - l| < \varepsilon$.

Il $\lim_{x \to +\infty} f(x) = +\infty$ se e solo se $\forall \ a \in \mathbb{R} \ \exists \ b \in \mathbb{R}$ tale per cui x > b allora f(x) > a. (anche per $-\infty$).

• Caso $x_0 \in A, l \in \mathbb{R}$

Il $\lim_{x\to x_0}f(x)=l$ se e solo se $\forall\,\varepsilon>0\,\,\exists\,\delta>0$ tale per cui $x\in A,\,x\neq x_0$ e $|x-x_0|<\delta$ allora $|f(x)-l|<\varepsilon$.

f è continua in x_0 se e solo se $\forall \varepsilon > 0 \ \exists \delta > 0$ tale per cui $|x - x_0| < \delta$ e $x \in A$ allora $|f(x) - f(x_0)| < \varepsilon$.

REMARK. Siano $f: A \to \mathbb{R}, A \subset \mathbb{R}, x_0 \in A$ con $x_0 \in Acc(A)$, allora f è continua in x_0 see $\lim_{x \to x_0} f(x) = l$.

Remark. Una funzione è sempre continua nei punti isolati.

REMARK. Nella def. di limite, non serve che x_0 sia nel dominio della funzione, basta che sia un punto di accumulazione per il dominio.

THEOREM 5.1. Unicità del limite: Se il limite esiste allora è unico, non può esistere un limite che si avvicina a due valori distinti contemporaneamente.

DEFINITION 5.10. Limite destro e sinistro: Siano $A \subset \mathbb{R}$, $x_0 \in \mathbb{R}$, $x_0 \in Acc(A)$ e $f : A \to \mathbb{R}$. Si dice che l è il limite di f(x) per x che tende a x_0 :

• da \underline{destra} $(\lim_{x \to x^+} f(x) = l)$ se $\forall V$ intorno di l esiste $\delta > 0$ tale per cui $x_0 < x < x_0 + \delta$ allora $f(x) \in V$.

• $da \ \underline{sinistra} \ (\lim_{x \to x_0^-} f(x) = l) \ \text{se} \ x_0 - \delta < x < x_0 \ \text{con} \ x \in A \ \text{allora} \ f(x) \in V \ .$

DEFINITION 5.11. Limite che tende a destra o sinistra: Siano $A \subset \mathbb{R}, \ f: A \to \mathbb{R} \ \mathrm{e} \ x_0 \in Acc(A)$. Si dice che $\lim_{x \to x_0} f(x) = l^+$ con $l \in \mathbb{R}$ se il $\lim_{x \to x_0} f(x) = l$ ed esiste un intorno v di x_0 tale per cui $x \in v \cap A \setminus \{x_0\}$, allora f(x) > l.

Definizione analoga per $\lim_{x\to x_0} f(x) = l^-$ dove richiederò che l'intorno sia fatto in modo che $x \in v \cap A \setminus \{x_0\}$.

Remark. Quando scrivo $\lim_{x\to +\infty} f(x) = l^+$ vuol dire che tende a quel valore ma la funzione ci sta solo sopra.

THEOREM 5.2. Teorema permanenza del segno (limiti): Siano $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ e $x_0 \in Acc(A)$. Se esiste $\lim_{x \to x_0} f(x) = l$, $con \ l \in \overline{\mathbb{R}}$ e $l \neq 0$, allora \exists un intorno v di x_0 tale per cui se $x \in A \cup v \setminus \{x_0\}$ allora f ha lo stesso segno di l definitivamente.

EXAMPLE. $f:(0,+\infty)\to\mathbb{R},\ f(x)=\frac{1}{x},$ $\lim_{x\to 0^+}f(x)=+\infty$ quindi la funzione sarà positiva a destra di zero sempre.

Definition 5.12. Continuità a destra o a sinistra: Siano $A \subset \mathbb{R}$, $x_0 \in A$ con $x_0 \in Acc(A)$.

- Se $\lim_{x \to x_{+}^{+}} f(x) = f(x_{0})$ allora si dice che f è continua a destra in x_{0} .
- Se $\lim_{x \to x_0^-} f(x) = f(x_0)$ allora si dice che f è continua a sinistra in x_0 .

REMARK. f è continua in x_0 se e solo se è continua in x_0^+ e x_0^- .

THEOREM 5.3. **Teorema del confronto**: Siano $A \subset \mathbb{R}$, $x_0 \in Acc(A)$ e $f, g : A \to \mathbb{R}$. Se esistono $\lim_{x \to x_0} f(x) = l_1$ e $\lim_{x \to x_0} g(x) = l_2$, e se \exists un intorno v di x_0 tale per cui $x \in v \cap A \setminus \{x_0\}$ allora $f(x) \leq g(x)$ quindi $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$, cioé $l_1 \leq l_2$.

THEOREM 5.4. **Teorema dei Carabinieri**: Sia $A \subset \mathbb{R}$, 3 funzioni $f, g, h : A \to \mathbb{R}$ con $x_0 \in Acc(A)$. Se esistono $\lim_{x \to x_0} f(x) = \underline{l}$ e $\lim_{x \to x_0} h(x) = \underline{l}$ e se esiste un intorno v di x_0 tale che $x \in A \cap v \setminus \{x_0\}$ allora $f(x) \leq g(x) \leq h(x)$ e di conseguenza esiste $\lim_{x \to x_0} g(x) = \underline{l}$.

Praticamente dall'esistenza dei limiti f e h, deduco l'esistenza del limite di g.

THEOREM 5.5. **Teorema somma e prodotto di limiti**: Sia $A \subset \mathbb{R}$ con $x_0 \in Acc(A)$ e $f, g : A \to \mathbb{R}$. Supponiamo che esistano i limiti: $\lim_{x \to x_0} f(x) = l_1$ e $\lim_{x \to x_0} g(x) = l_2$ con $l_1, l_2 \in \overline{\mathbb{R}}$.

- (1) Se ha senso l_1+l_2 allora esiste $\lim_{x\to x_0}(f+g)(x)=l_1+l_2,$ con $l_1,l_2\neq \pm\infty$
- (2) Se ha senso $l_1 \cdot l_2$ allora esiste $\lim_{x \to x_0} (f \cdot g)(x) = l_1 \cdot l_2$, escluse le forme di indeterminazione.

THEOREM 5.6. Funzione limitata se limite finito: Sia $A \subset \mathbb{R}$ con $x_0 \in Acc(A)$ e $f: A \to \mathbb{R}$. Se esiste $\lim_{x \to x_0} f(x) = l$ e $l \in \mathbb{R}$ con $l \neq \pm \infty$, allora f è limitata in un intorno di x_0 cioé

 \exists un intorno v di x_0 ed \exists un $M \in \mathbb{R}$ con M > 0 tale per cui $x \in v \cap A \implies |f(x)| \leq M$. Quindi una funzione che tende a un valore finito, vicino al punto, deve essere finita e limitata.

EXAMPLE. $f(x) = \frac{1}{x}$, è limitata in un intorno di $+\infty$ perché $\lim_{x \to +\infty} f(x) = 0$.

DEFINITION 5.13. Se $\lim_{x\to x_0} f(x) = 0$ allora si dice che f è **infinitesima** per $x\to x_0$.

Se $\lim_{x\to x_0} f(x) = +\infty$ si dice che f diverge positivamente $x\to x_0$.

Se $\lim_{x\to x_0} f(x) = -\infty$ si dice che f diverge negativamente per $x\to x_0$.

Se $\lim_{x\to x_0} f(x) = l$, con $l \in \mathbb{R}$, si dice che f converge in l per $x\to x_0$.

Proposition 5.1. .

Se f è limitata inferiormente in un intorno di x_0 e $\lim_{x\to x_0} g(x) = +\infty$ allora $\lim_{x\to x_0} (f+g)(x) = +\infty$ Se f è limitata superiormente in un intorno di x_0 e $\lim_{x\to x_0} g(x) = -\infty$ allora $\lim_{x\to x_0} (f+g)(x) = -\infty$ Se f è limitata in un intorno di x_0 e $\lim_{x\to x_0} g(x) = 0$ allora $\lim_{x\to x_0} (f\cdot g)(x) = 0$

THEOREM 5.7. Teorema di Weirstrass generalizzato: Siano $a,b \in \overline{\mathbb{R}}$ e sia $f:(a,b) \to \mathbb{R}$ continua tale per cui $\exists \lim_{x \to a} f(x) = l_1$ e $\lim_{x \to b} f(x) = l_2$. Valgono i seguenti risultati:

- (1) f è limitata inferiormente sse $l_1 \neq -\infty$ e $l_2 \neq -\infty$
- (2) f è limitata superiormente sse $l_1 \neq +\infty$ e $l_2 \neq +\infty$
- (3) f è limitata sse $l_1 \in \mathbb{R}$ e $l_2 \in \mathbb{R}$
- (4) f ha minimo sse \exists un $x_0 \in (a,b)$ tale per cui $f(x_0) \leq min\{l_1, l_2\}$
- (5) f ha massimo sse \exists un $x_1 \in (a,b)$ tale per cui $f(x_1) \geq max\{l_1,l_2\}$

REMARK. I risultati precedenti valgono anche nel caso $a \in \mathbb{R}$ e $f: [a,b) \to \mathbb{R}$ oppure $b \in \mathbb{R}$ e $f: (a,b] \to \mathbb{R}$.

DEFINITION 5.14. Massimo e minimo locale: Sia $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$. Un punto $x_0 \in A$ si dice punto di minimo/massimo locale (o relativo):

- Si dice punto di **minimo locale** se esiste un intorno v di x_0 tale che $f(x) \ge f(x_0) \ \forall x \in v \cap A$
- Si dice punto di **minimo locale stretto** se \exists un intorno v di x_0 tale che $f(x) > f(x_0) \ \forall x \in v \cap A \setminus \{x_0\}$
- Si dice punto di massimo locale se esiste un intorno v di x_0 tale che $f(x) \leq f(x_0) \ \forall \ x \in v \cap A$
- Si dice punto di massimo locale stretto se \exists un intorno v di x_0 tale che $f(x) < f(x_0) \ \forall x \in v \cap A \setminus \{x_0\}$

REMARK. Se x_0 è un punto di minimo (o massimo) allora è anche minimo (o massimo) locale.

Definition 5.15. Infinitesimi: Sia $A \subset \mathbb{R}$, $f, g : A \to \mathbb{R}$ con $x_0 \in Acc(A)$. Supposto $g(x) \neq 0$, in un intorno x_0 vale che $k(x) = \frac{f(x)}{g(x)}$.

- $\begin{array}{ll} (1) \ \ f(x) = o(g(x)), \ \operatorname{per} \ x \to x_0, \ \Longleftrightarrow \lim_{x \to x_0} k(x) = \frac{f(x)}{g(x)} \\ (2) \ \ f(x) = O(g(x)), \ \operatorname{per} \ x \to x_0, \ \Longleftrightarrow \left| \frac{f(x)}{g(x)} \right| \leq M \ \ (M = \operatorname{costante}) \\ (3) \ \ f(x) \sim g(x), \ \operatorname{per} \ x \to x_0, \ \Longleftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \\ \end{array} \quad \quad [\operatorname{n.b} \ ``\sim" = \operatorname{as intoticamente equivalente}]$

Inoltre possiamo specificare che:

- (1) f(x) è o(g(x)), per $x \to x_0$ se è possibile scrivere $f(x) = k(x) \cdot g(x)$ dove $\lim_{x \to x_0} k(x) = 0$
- (2) $f(x) \in O(g(x))$, per $x \to x_0$ se è possibile scrivere $f(x) = k(x) \cdot g(x)$ dove k(x) stavolta risulta essere limitata (non $\pm \infty$) nell'intorno di x_0 .
- (3) f(x) è asintoticamente equivalente a g(x), per $x \to x_0$ se è lecito scrivere $f(x) = k(x) \cdot g(x)$ e il limite $\lim_{x \to x_0} k(x) = 1$

Definition 5.16. Proprietà o-piccoli:

- (1) Sia $f_1(x) = o(g(x))$ e $f_2(x) = o(g(x))$ per $x \to x_0$, la somma $f_1(x) + f_2(x) = o(g(x))$. Poiché o(g(x)) + o(g(x)) = o(g(x))
- (2) Sia $f_1(x) = o(g(x))$ e $f_2(x) = o(g(x))$ per $x \to x_0$, la differenza $f_1(x) f_2(x) = o(g(x))$. Poiché o(g(x)) - o(g(x)) = o(g(x))
- (3) Sia f(x) = o(g(x)), per $x \to x_0$, introduciamo un parametro $\alpha \in \mathbb{R}$ (costante), risulta che $\alpha f(x) = o(g(x))$.
- (4) Sia $f_1(x) = o(g(x))$ e $f_2(x) = o(g(x))$, per $x \to x_0$, il prodotto $f_1(x) \cdot f_2(x) = o(g(x))^2 = o(g^2(x))$
- (5) Non il rapporto $\frac{f_1}{f_2} = \frac{o(f_1)}{o(f_2)}$, nel limite verrebbe una forma di indeterminazione.

Definition 5.17. Proprietà fondamentali o-piccoli:

- Sia f(x) = o(g(x)) per $x \to x_0$, e g(x) = o(h(x)) per $x \to x_0$. Risulta che f(x) = o(h(x)) per $x \to x_0$. Infatti o(o(g)) = o(g).
- Sia f(x) = o(g(x)) per $x \to x_0$ e g(x) = O(h(x)) per $x \to x_0$. Risulta che f(x) = o(h(x))

Definition 5.18. Asintoti orizzontali: Sia $f:(a,+\infty)\to\mathbb{R}$ (con $a\in\overline{\mathbb{R}}$). Se esiste il $\lim_{x\to+\infty}f(x)=l$ ed $l \in \mathbb{R}$, allora si dice che f ha un asintoto orizzontale di equazione y = l per $x \to +\infty$. (analoga def. per $-\infty$). Praticamente la funzione si stabilizza verso un valore finito.

EXAMPLE. $f(x) = e^x$, $f: \mathbb{R} \to \mathbb{R}$. $\lim_{x\to-\infty}e^x=0$, quindi f ha un asintoto orizzontale di eq. y=0 per $x\to-\infty$.

Remark. Gli asintoti possono essere attraversati, $f(x) = \frac{sen(x)}{x}$ la funzione "tocca" l'asintoto.

Remark. Una funzione ammette asintoti orizzontali quando non ha asintoti obliqui.

Definition 5.19. Asintoti verticali: Sia $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ con $x_0 \in Acc(A)$. Se f diverge per $x \to x_0$ da $destra^+$ o a $sinistra^-$ (o da entrambi) si dice che f ha un $asintoto\ verticale$ di equazione $x=x_0$.

EXAMPLE. $f(x) = \frac{1}{x}, f: \mathbb{R} - \{0\} \to \mathbb{R}.$ $\lim_{x \to 0^+} \frac{1}{x} = +\infty, \lim_{x \to 0^-} \frac{1}{x} = -\infty$, quindi f ha un asintoto verticale di eq. x = 0.

REMARK. Una funzione al massimo può avere due asintoti orizzontali (a $+\infty$ e a $-\infty$) ma può avere infiniti asintoti verticali. Tipo la funzione f(x) = tg(x) ha infiniti asintoti verticali.

DEFINITION 5.20. Asintoti obliqui: Sia $f:(a,+\infty)\to\mathbb{R}$. Se esiste $\lim_{x\to+\infty}\frac{f(x)}{x}=m$ con $m\in\mathbb{R}-\{0\}$ ed esiste $\lim_{x\to +\infty} f(x) - mx = q$ con $q\in \mathbb{R}$, allora si dice che f ha un asintoto obliquo di equazione y = mx + q per $x \to +\infty$. (Analoga definizione per $x \to -\infty$).

REMARK. Una funzione ammette asintoto obliquo quando non ha asintoti orizzontali.

Definition 5.21. Tabella riassuntiva asintoti:

Orizzontale	$\lim_{x \to \pm \infty} f(x) = l, \text{con } l \in \mathbb{R}$	y = l
Verticale	$\lim_{x \to x_0^{\pm}} f(x) = \pm \infty$	$x = x_0$
	$x \rightarrow x_0^{\pm}$	
Obliquo	$m = \lim_{x \to +\infty} \frac{f(x)}{x}, \ q = \lim_{x \to +\infty} f(x) - mx$	y = mx + q

DEFINITION 5.22. Sviluppi di Taylor al primo ordine:

$$sen(x) = x + o(x)$$

$$log(1+x) = x + o(x)$$

$$e^{x} = 1 + x + o(x)$$

$$cos(x) = 1 - \frac{x^{2}}{2} + o(x^{2})$$

$$tg(x) = x + o(x)$$

Derivata

Definition 6.1. Derivata prima: Sia $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ con $x \in Acc(A)$.

- Se esiste il limite: $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = l$, allora l si dice derivata di f in x_0 . Se $l \in \mathbb{R}$ (è finita) allora f si dice derivabile in x_0 .
- La derivata si indica con $f'(x_0) \cong Df(x_0) \cong \frac{df}{dx}(x_0)$, cioé $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$, anche noto come limite del rapporto incrementale.

REMARK. L'esistenza della derivata e la derivabilità sono due cose diverse, la derivata potrebbe anche valere $\pm \infty$. In tal caso f non è derivabile ma esiste la derivata.

Theorem 6.1. Derivabilità e continuità: Se f è derivabile in x_0 allora f è continua in x_0 .

(1) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (f(x) - f(x_0) + f(x_0))$ (2) $f(x_0) = \lim_{x \to x_0} (f(x) - f(x_0))$

(2)
$$f(x_0) = \lim_{x \to x_0} (f(x) - f(x_0))$$

(3) $f(x_0) + \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right) = f(x_0) + f'(x_0) \cdot \underbrace{\lim_{x \to x_0} (x - x_0)}_{x \to x_0}$

(4) $\lim_{x \to x_0} f(x) = f(x_0)$ ciò dimostra che f è continua in x_0 .

REMARK. Non vale il viceversa, cio $\acute{\rm e}$ errato dire che se f è continua allora è anche derivabile, vediamo:

EXAMPLE.
$$f(x) = |x|$$
, nel quale $\lim_{x \to 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to 0} \frac{|x| - 0}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}$.

Ma $|x| = \begin{cases} x & x \ge 0 \\ -x & x \le 0 \end{cases} \implies \begin{cases} \lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1 & x \ge 0 \\ \lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{-x}{x} = -1 & x \le 0 \end{cases}$

Quindi $\lim_{x\to 0^+} \neq \lim_{x\to 0^-}$, da ciò capiamo che il limite in realtà non esiste. Non esistendo il limite allora nemmeno la derivata di |x| in $x_0=0$ esisterà.

DEFINITION 6.2. **Derivata sinistra e destra**: Se esiste $\lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0}$ questo si chiama derivata destra di f in x. (Analogo viceversa per la derivata sinistra). Si indicano con $f'_+(x_0)$ e $f'_-(x_0)$.

17

REMARK. f è derivabile in x_0 sse $f'_+(x_0) = f'_-(x_0)$ e sono entrambe finite

EXAMPLE. $f(x) = |x|, f'_{+}(x_0) = 1$ mentre $f'_{-}(x_0) = -1$. Quindi f non è derivabile in $x_0 = 0$.

6.1. Punti di non derivabilità

DEFINITION 6.3. Punto angoloso: Se esistono $f'_{-}(x_0)$ e $f'_{+}(x_0)$, sono entrambe finite ma diverse tra loro allora x_0 si dice punto angoloso.

EXAMPLE. f(x) = |x| ha un punto angoloso in 0.

DEFINITION 6.4. Punto di cuspide: Se $f'_{-}(x_0)$ e $f'_{+}(x_0)$ sono infiniti di segno opposto, allora il punto x_0 si dice punto di cuspide.

EXAMPLE. $f(x) = \sqrt{|x|}, f: \mathbb{R} \to \mathbb{R}$. Ha $f'_{-}(0) = -\infty$ e $f'_{+}(0) = +\infty$

Remark. f è derivabile in $x_0 \iff f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0)$

Infatti il $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$ cioé $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) = 0$, $\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0) \cdot (x - x_0)}{x - x_0} = f(x) - f(x_0) - f'(x_0) \cdot (x - x_0) = o(x - x_0)$

 $\lim_{x \to x_0} \frac{1}{x - x_0} \frac{1}{x - x_0}$ Ne viene che f è derivabile in x_0 sse $f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \underbrace{o(x - x_0)}_{\text{per } x \to x_0}$.

DEFINITION 6.5. Derivata e tangente: Se f è derivabile in x_0 allora la retta $y = f(x_0) + f'(x_0)(x - x_0)$ si dice retta tangente al grafico di f nel punto di coordinate $(x_0, f(x_0))$.

Infatti la retta tangente passa per un punto che ha per coefficiente angolare $f'(x_0)$.

DEFINITION 6.6. Derivata seconda: Sia $f: A \to \mathbb{R}$ derivabile in ogni $x \in A$, allora esiste $f'(x) \ \forall x \in A$ e costruisco la funzione derivata di f. Che sarà $f': A \to \mathbb{R}$, se la f' è a sua volta derivabile posso calcolarne la derivata che chiamo f''. Questa operazione può essere ripetuta finché la funzione risulta derivabile.

DEFINITION 6.7. Classe C^n : Dato un $n \in \mathbb{N}$ si dice che f è di classe C^n se f è derivabile n-volte e la $f^{(n)}$ è continua.

THEOREM 6.2. Teorema di derivazione: Se f e g sono funzioni derivabili in x_0 , allora.

- (1) f + g è derivabile in x_0 e $(f + g)'(x_0) = f'(x_0) + g'(x_0)$ (2) $f \cdot g$ è derivabile in x_0 e $(f + g)'(x_0) = f'(x_0) \cdot g(x_0) + f'(x_0) \cdot g'(x_0)$ (3) Se $f(x_0) \neq 0$ e $\frac{1}{f}$ è derivabile in x_0 allora $\left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{(f(x_0))^2}$
- (4) Se $g(x_0) \neq 0$ e f, g sono derivabili in x_0 allora $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) f'(x_0) \cdot g'(x_0)}{(g(x_0))^2}$

DEFINITION 6.8. Derivata della funzione inversa: Sia $f:(a,b)\to\mathbb{R}$ continua e strettamente monotona (quindi invertibile). Se f è derivabile in x_0 e $f'(x_0) \neq 0$, allora f^{-1} è derivabile in $y_0 = f(x_0)$ e $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$. Inoltre posso scriverla $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$.

DEFINITION 6.9. Derivata della funzione composta: Sia $f:A\to B$ e $g:B\to\mathbb{R}$ con $x_0\in Acc(A)$ e $y_0 \in Acc(B)$. Se f è derivabile in x_0 e g è derivabile in y_0 allora $g \circ f$ è derivabile e vale: $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$

Example. Funzione non derivabile: Sia $f(x) = \begin{cases} xsen\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$

Domandiamoci se f è continua in x = 0: $\lim_{x \to 0} x \sin \frac{1}{x} = 0 = f(0)$, è continua.

Domandiamoci se f è derivabile in x=0: $\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{xsen\frac{1}{x}-0}{x}=\lim_{x\to 0}sen\frac{1}{x}=\nexists$. Non esiste la derivata di f in x=0.

6.2. Teoremi Fermat, Rolle, Lagrange, Cauchy

THEOREM 6.3. **Teorema di Fermat**: Sia $A \subset \mathbb{R}, f : A \to \mathbb{R}$. Se x_0 è un punto interno ad A che è massimo o minimo locale per f, con f derivabile in x_0 . Allora $f'(x_0) = 0$ (cioé nulla).

PROOF.

- Se f è derivabile in x_0 allora $f'_+(x_0) = f'_-(x_0)$.
- Ma $f'_+(x_0) = \lim_{x \to x_0^+} \underbrace{\frac{f(x) f(x_0)}{x x_0}}_{\ge 0}$, supponiamo che x_0 sia minimo locale per f:

• In un intorno di x_0 il rapporto incrementale è ≥ 0 , quindi anche il limite del rapporto incrementale sarà ≥ 0 (cioé la sua derivata).

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\leq 0} \implies f'_{-}(x_0) \leq 0 \text{ ma } f'_{+}(x_0) = 0 \text{ e } f'_{-}(x_0) = 0. \text{ Quindi } f'(x_0) = 0.$$

REMARK. Se il punto non è interno al dominio, allora il teorema non è valido.

Remark. L'ipotesi di derivabilità è necessaria. Quindi possono esserci punti di minimo o massimo locale dove la derivata si annulla (perché non esiste).

EXAMPLE. f(x) = |x|, c'è un minimo assoluto in x = 0 ma f'(x) = 0 non esiste.

REMARK. Il teorema è condizione necessaria per un massimo e minimo locale, ma non sufficiente.

Example. $f(x) = x^3$, $f'(x) = 3x^2$ e f'(0) = 0 ma x = 0 non è né massimo né minimo locale.

THEOREM 6.4. **Teorema di Rolle**: Sia $f:[a,b] \to \mathbb{R}$ continua in [a,b] e derivabile in (a,b). Se f(a) = f(b) allora \exists un punto $c \in (a,b)$ tale per cui f'(c) = 0 (si annulla).

PROOF. f è continua in [a, b] quindi per Weirstrass so che assuma massimo e minimo. Siano x_1 e x_2 con $x_1, x_2 \in [a, b]$ i punti di massimo e minimo, $f(x_1) = max(f)$ e $f(x_2) = min(f)$:

- Caso 1. $x_1 = a$, $x_2 = b$ (o viceversa): Dato che f(a) = f(b) allora sarebbe $\underbrace{max(f) = min(f)}_{f \text{costante in } [a,b]} \implies f'(c) = 0 \quad \forall c \in (a,b).$
- Caso 2. almeno uno dei 2 punti non è negli estremi: Allora esiste un punto di massimo o minimo interno ad (a, b). Quindi per **Fermat** f'(c) = 0.

THEOREM 6.5. **Teorema di Lagrange**: Sia $f:[a,b]\to\mathbb{R}$ continua in [a,b] e derivabile in (a,b). Allora \exists un punto $c\in(a,b)$ tale per cui $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Remark. La tangente nel punto c è parallela alla retta che unisce i punti estremi del grafico.

Proof.

- Definiamo una funzione $r(x) = f(a) + \frac{f(b) f(a)}{b a} \cdot (x a)$, dove r(x) è la retta che passa per gli estremi del grafico (a, f(a)) e (b, f(b)).
- Definiamo anche g(x) = f(x) r(x), con g continua in [a, b] e derivabile in (a, b).
- Calcoliamo: g(a) = f(a) r(a) = f(a) f(a) = 0, g(b) = f(b) r(b) = f(b) f(b) = 0.
- Allora g(a) = g(b) e posso applicare **Rolle** a g.
- Quindi \exists un punto $c \in (a, b)$ tale per cui g'(c) = 0.
- Calcoliamo: $g'(x) = f'(x) r'(x) = \frac{f(b) f(a)}{b a}, g'(c) = 0 \implies f'(c) \frac{f(b) f(a)}{b a} = 0.$ Cioé $f'(c) = \frac{f(b) f(a)}{b a}$.

THEOREM 6.6. **Teorema di Cauchy**: Siano $f, g : [a, b] \to \mathbb{R}$ continue in [a, b] e derivabili in (a, b). Allora \exists un punto $c \in (a, b)$ tale per cui $f'(c) \cdot (g(b) - g(a)) = g'(c) \cdot (f(b) - f(a))$. Se inoltre $g'(x) \neq 0 \ \forall x \in (a, b)$ allora la relazione precedente si può scrivere come:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Theorem 6.7. Conseguenze teorema di Lagrange: Sia $I \subset \mathbb{R}$ un intervallo, sia $f: I \to \mathbb{R}$ continua in I e derivabile in Int(I) (punti interni di I). Allora valgono i seguenti casi:

- (1) Se $f'(x) = 0 \ \forall x \in Int(I) \implies f$ costante in I
- (2) Se $f'(x) \ge 0 \ \forall x \in int(I) \implies f$ debolmente crescente in I
- (3) Se $f'(x) \le 0 \ \forall x \in int(I) \implies f$ debolmente decrescente in I
- (4) Se $f'(x) > 0 \ \forall x \in int(I) \implies f$ strettamente crescente in I
- (5) Se $f'(x) < 0 \ \forall x \in int(I) \implies f$ strettamente decrescente in I

PROOF. Caso (4).

- Prendiamo $x_1, x_2 \in I$ con $x_1 < x_2$, devo mostrare che $f(x_1) < f(x_2)$.
- Osservo che $(x_1, x_2) \subset Int(I)$, allora applico Lagrange all'intervallo $[x_1, x_2]$.
- Quindi \exists un punto $c \in (x_1, x_2)$ tale per cui $f'(c) = \frac{f(x_2) f(x_1)}{x_2 x_1}$.
- Ma io so che f'(c) > 0, quindi $\frac{f(x_2) f(x_1)}{x_2 x_1} > 0$ e quindi $f(x_2) f(x_1) > 0$
- Allora diremo che $f(x_2) > f(x_1)$.

REMARK. Se f non è definita su un intervallo, il teorema potrebbe non risultare vero.

PROPOSITION 6.1. Teorema di Lagrange: Sia $I \subset \mathbb{R}$ un intervallo con $x_0 \in I$, sia $f: I \to \mathbb{R}$ derivabile in $I - \{x_0\}$ e continua in I. Valgono:

- (1) Se $f'(x) \leq 0$ in un intorno sinistro di x_0 e $f'(x) \geq 0$ in un intorno destro di x_0 , allora x_0 è punto di minimo locale per f.
- (2) Se $f'(x) \ge 0$ in un intorno sinistro di x_0 e $f'(x) \le 0$ in un intorno destro di x_0 , allora x_0 è un punto di massimo locale per f.

REMARK. Cosa succede nel caso f non sia derivabile in x_0 ?

EXAMPLE. f(x) = |x|, f non è derivabile in $x_0 = 0$, $f'(x) = \begin{cases} 1 & x > 0 \\ -1 & x > 0 \end{cases}$, x = 0 è un punto angoloso e punto di minimo.

Theorem 6.8. Derivata seconda e Lagrange: Sia $A \subset \mathbb{R}$ con $x_0 \in Int(A)$, sia f derivabile due volte in x_0 e $f'(x_0) = 0$. Allora valgono:

- (1) Se x_0 è punto di **minimo locale** $\implies f''(x_0) \ge 0$. (condizione necessaria)
- (2) Se x_0 è punto di massimo locale $\implies f''(x_0) \le 0$. (condizione necessaria)
- (3) Se $f''(x_0) > 0 \Longrightarrow x_0$ è punto di **minimo locale**. (condizione sufficiente)
- (4) Se $f''(x_0) < 0 \implies x_0$ è punto di massimo locale. (condizione sufficiente)

6.3. De l'Hôpital

Theorem 6.9. Teorema di De l'Hôpital: Siano $a, b \in \overline{\mathbb{R}}$, e siano $f, g : (a, b) \to \mathbb{R}$ derivabili in (a, b).

Se valgono le seguenti condizioni:

- (1) $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$, oppure, $\lim_{x \to a^+} f(x) = \pm \infty$ e $\lim_{x \to a^+} g(x) = \pm \infty$ (2) $g'(x) \neq 0$ in un intorno destro di a (3) $\exists \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l$, con $l \in \overline{\mathbb{R}}$

 $Allora\ esiste\ \lim_{x\to a^+} \frac{f'(x)}{g'(x)} = l,\ stesso\ risultato\ per\ x\to b^-\ e\ x\to a.$

- EXAMPLE. $\lim_{x\to 0} \frac{2cos(x)-2+x^2}{x^4} = \begin{bmatrix} \frac{0}{0} \end{bmatrix}$, applied D.L.H. 1) $\lim_{x\to 0} \frac{-2sen(x)+2}{4x^3} = \begin{bmatrix} \frac{0}{0} \end{bmatrix}$, applied nuovamente D.L.H.
- 2) $\lim_{x\to 0}\frac{-2\cos(x)+2}{12x^2}=\left[\frac{0}{0}\right],$ applico un'altra volta D.L.H.

3)
$$\lim_{x \to 0} \frac{2sen(x)}{24x} = \frac{1}{12} \cdot \lim_{x \to 0} \underbrace{\frac{sen(x)}{x}}_{x \to 1} = \frac{1}{12}$$

REMARK. Potrebbe non esistere il $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ ma esistere $\lim_{x\to x_0} \frac{f(x)}{g(x)}$.

COROLLARY 6.1. Corollario De L'Hopital: .

(1) Se f è continua in x_0 e derivabile in un intorno di x_0 (eccetto al più in x_0) e se esiste il $\lim_{x\to x} f'(x) = l$ con $l \in \overline{\mathbb{R}}$. Allora $f'(x_0) = l$

Example.
$$f(x) = \begin{cases} x^2 + 1 & x \ge 0 \\ x^2 & x < 0 \end{cases}$$
, f è derivabile in $x_0 = 0$

EXAMPLE. $f(x) = \begin{cases} x^2 + 1 & x \ge 0 \\ x^2 & x < 0 \end{cases}$, f è derivabile in $x_0 = 0$? $f'(x) = \begin{cases} 2x^2 & x \ge 0 \\ 2x^2 & x < 0 \end{cases}$, quindi $\lim_{x \to 0^+} f'(x) = 0$ e $\lim_{x \to 0^-} f'(x) = 0$. La f non è continua quindi non è derivabile.

(2) Se $\nexists \lim_{x \to x_0} f'(x)$ non è detto che f non sia derivabile in x_0 .

DEFINITION 6.10. Fattoriale: Sia $n \in \mathbb{N}$ con $n \ge 1$, definiamo $n! = 1 \cdot 2 \cdot \ldots \cdot n$ come il prodotto dei primi n numeri fattoriali. In più possiamo (n+1)! possiamo riscriverlo come $(n+1)! = n! \cdot (n+1)$.

DEFINITION 6.11. Sommatorie: Presi dei numeri reali indicizzati con un numero naturale, definisco sommatoria degli a_j per j che va da m a n dove $m, n \in \mathbb{N}$ con $m \leq n$:

$$\underline{a_1, a_2, ..., a, n}$$
, $\underline{a_j \in \mathbb{R}}$ con $\underline{j \in \mathbb{N}}$, allora $\sum_{j=m}^n a_j = a_m + a_{m+1} + a_{m+2} + ... + a_n$

6.4. Formule di Taylor

DEFINITION 6.12. Formula di Taylor: Supponiamo di avere una f derivabile in $x_0 \in (a, b)$. Allora $f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{Polinomio di 1° grado}} + \underbrace{o(x - x_0)}_{\text{Resto}}$. È chiaro che f differisce dal polinomio per un

resto che è un infinitesimo (di grado > 1) rispetto a $x - x_0$. Cioé $\lim_{x \to x_0} \frac{o(x - x_0)}{x - x_0} = 0$. Posso precisare meglio la quantità $o(x - x_0)$ ma la f deve essere derivabile più volte in x_0 .

DEFINITION 6.13. Formula di Taylor con resto di Peano: Sia $f:(a,b)\to\mathbb{R}$ con $x_0\in(a,b)$. Se f è derivabile n volte in x_0 e almeno n-1 volte nel resto dell'intervallo $(a,b)-\{x_0\}$. Allora \exists un solo polinomio $P_n(x)$ di grado $\leq n$ e una funzione $R_n(x)$ tale per cui $f(x) = P_n(x) + R_n(x)$ ed $R_n(x) = o((x - x_0)^n)$ per $x \to x_0$.

• Il polinomio
$$P_n(x)$$
, di grado n , ha la seguente forma:
$$P_n(x) = \sum_{j=0}^n \frac{f^{(j)}(x_0)}{j!} \cdot (x - x_0)^j$$

$$\operatorname{Cio\'{e}} P_n(x) = \underbrace{f(x_0)}_{j=0} + \underbrace{f'(x_0)(x - x_0)}_{j=1} + \underbrace{\frac{f''(x_0)}{2!}(x - x_0)^2}_{j=2} + \underbrace{\frac{f'''(x_0)}{3!}(x - x_0)^3}_{j=3} + \dots + \underbrace{\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n}_{j=n}$$

• Legame Polinomio/Resto:

Il grado del polinomio è collegato all'ordine di infinitesimo del resto:

 P_n è di grado n e $R_n=o((x-x_0)^n).$ Ad esempio posso dire che $f(x)-P_n(x)=o((x-x_0)^n)$

DEFINITION 6.14. Formula di Taylor con il resto di Lagrange: Sia $f:(a,b)\to\mathbb{R}$ con $x_0\in(a,b)$ ed f derivabile n+1 volte in $(a,b)-\{x_0\}$ ed n volte in x_0 .

Allora
$$f(x) = P_n(x) + R_n(x)$$
 ed \exists un punto z con $x < z < x_0$ tale per cui $R_n(x) = \frac{f^{(n+1)}(z) \cdot (x - x_0)^{n+1}}{(n+1)!}$

Example.
$$f(x) = e^x$$
, $f'(x) = e^x$, $f''(x) = e^x$,..., $f^{(j)}(x) = e^x$

Calcolo la formula di Taylor in $x_0 = 0$ (chiamato centro dello sviluppo di Taylor)

$$f(0) = e^0 = 1, f'(0) = e^0 = 1, f^{(j)}(0) = 1$$

Quindi
$$e^x = \sum_{j=0}^n \frac{x^j}{j!} + o(x^n) = \sum_{j=0}^n \frac{f^j(0)}{j!} (x-0)^j + o(x^n),$$

Allora
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$

Allora $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$.

Per l'ordine 2 avremo, $e^x = 1 + x + \underbrace{\frac{x^2}{2} + o(x^2)}_{R_2(x)}$ mentre $e^x = 1 + x + \underbrace{o(x)}_{R_1(x)}$ è ovvio che $R_2(x)$ sia più precisa.

REMARK.
$$R_2(x)$$
 è proprio $o(x)$, infatti $\frac{R_2(x)}{x} = \frac{x^2}{2} + o(x^2) = \frac{x^2}{2} + o(x) (\rightarrow 0 \text{ se } x \rightarrow 0)$

DEFINITION 6.15. Formula di Taylor (binomiale): Considerato un
$$\alpha \in \mathbb{R}$$
, abbiamo che $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} \cdot x^2 + \underbrace{\frac{\alpha(\alpha-1) \cdot (\alpha-2)}{3!}}_{\text{coeff. binomiale}} \cdot x^3 + \dots + \underbrace{\frac{\alpha(\alpha-1) \cdot (\alpha-2) \cdot \dots \cdot (\alpha-n+1)}{n!}}_{\text{coeff. binomiale}} \cdot x^n + o(x^n)$

Studio di funzione completo

7.1. Convessità e Concavità

DEFINITION 7.1. Convessità: Sia $I \in \mathbb{R}$ intervallo e sia $f: I \to \mathbb{R}$, f si dice convessa in I se presi 2 punti qualsiasi, nel grafico di f, il segmento che li unisce sta sopra il grafico di f.

• In formule:

f è convessa in I se $\forall x_1, x_2 \in I$ con $x_1 < x_2$ e $\forall t \in (0, 1)$ risulta che $\implies f(x_1 + t(x_2 - x_1)) \le f(x_1) + t(f(x_2) - f(x_1))$.

Se vale la stessa disuguaglianza con il minore stretto, allora si dice che f è strettamente convessa (il segmento tocca il grafico solo agli estremi).

DEFINITION 7.2. Concavità: f si dice concava se -f è convessa, (analoga definizione per $strettamente\ concava$).

• In formule:

 $f(x_1 + t(x_2 - x_1)) \ge f(x_1) + t(f(x_2) - f(x_1))$ (cambia il verso della disequazione)

Example. Parabola: $f(x) = x^2$ Convessa, $f(x) = -x^2$ Concava

Example. Seno: f(x) = sen(x), $[0, 2\pi]$ né Concava né Convessa

PROPOSITION 7.1. Come capire dove è concava o convessa: Sia $I \subset \mathbb{R}$ intervallo, sia $f: I \to \mathbb{R}$ derivabile due volte. Valgono le seguenti affermazioni:

- (1) f convessa (strettamente convessa)
- (2) f' debolmente crescente (strettamente crescente)
- (3) $f'' \ge 0 \ (f'' > 0)$

Vale il contrario di tutt'e 3 per la concavità.

Example. $f(x) = x^2, f: \mathbb{R} \to \mathbb{R}$

 $f'(x) = 2x \implies f''(x) = 2$. f'' è maggiore di zero $\forall x \in \mathbb{R}$, quindi f è convessa (strettamente).

EXAMPLE. f(x) = log(x), $f'(x) = \frac{1}{x} \implies f''(x) = -\frac{1}{x^2} < 0$. f'' è minore di zero $\forall x > 0$, quindi f è concava (strettamente).

DEFINITION 7.3. Cosa vuol dire che f' è crescente?: Dire che la derivata è crescente vuol dire che il coefficiente angolare della tangente sta aumentando(cresce), man mano che cresce la retta tangente ruota su se stessa.

EXAMPLE. $f(x) = sen(x), f: [0, 2\pi]$

 $f'(x) = cos(x) \implies f''(x) = -sen(x)$. f''(x) è minore di zero nell'intervallo $x \in [0, \pi]$ quindi concavo. Mentre f''(x) è maggiore di zero nell'intervallo $x \in [\pi, 2\pi]$ quindi convesso.

PROPOSITION 7.2. Legame tra tangente e convessità/concavità: Sia $I \subset \mathbb{R}$ intervallo, sia $f: I \to \mathbb{R}$ derivabile. Allora f è convessa in I sse $\forall x_0 \in I$ il grafico di f è sopra la retta tangente nel punto $(x_0, f(x_0))$, cioé $\forall x_0, x \in I$ vale che $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$. Se c'è un ">" con $x \ne x_0$ allora è strett. convessa.

Retta tangente

(vale la stessa disuguaglianza ma di segno opposto per la f concava)

PROPOSITION 7.3. Sia $I \subset \mathbb{R}$ intervallo con $Int(x_0) \in I$, sia $f: I \to \mathbb{R}$ derivabile in $I - \{x_0\}$ e siano $I_1 = \{x \in I \ t.c \ x < x_0\} \ e \ I_2 = \{x \in I \ t.c \ x > x_0\}.$ Se f è convessa in I_1 e I_2 e I_3 è punto angoloso per I_3 e I_4 e I_5 e I_7 e I_8 e allora f è convessa in I sse $f'_{-}(x_0) \leq f'_{+}(x_0)$.

DEFINITION 7.4. Flessi: Sia $I \subset \mathbb{R}$ intervallo, sia $f: I \to \mathbb{R}$ con $Int(x_0) \in I$. Si dice punto di flesso se f è derivabile in x_0 ed \exists un intorno v di x_0 (quindi $v \subset I$) tale per cui la quantità $\frac{f(\bar{x}) - (f(x_0) + f'(x_0)(x - x_0))}{x - x_0}$ non cambia segno in $v - \{x_0\}$.

• Se invece $f'(x_0)$ esiste ma vale $\pm \infty$ (f non è derivabile) e se f è convessa in un intorno destro di x_0 e convaca in un intorno destro di x_0 (o viceversa) allora x_0 si dice **punto di flesso a tangente** verticale.

Remark. Il numeratore della formula $\frac{f(x) - (f(x_0) + f'(x_0)(x - x_0))}{f'(x_0)(x - x_0)}$ rappresenta la differenza tra la funzione e la tangente. Dire che questa quantità non cambia segno, vuol dire che il grafico passa da

sopra o da sotto la tangente (o viceversa).

DEFINITION 7.5. Come si trova un flesso?: Sia $I \subset \mathbb{R}$ intervallo ed $f: I \to \mathbb{R}$. Se f è derivabile due volte in I, e se $f''(x_0) = 0$ (si annulla) e la f cambia di segno in x_0 allora x_0 è punto di flesso. È importante controllare sempre il segno della derivata seconda. $f''(x) \le 0$ se $x \le x_0$, $f''(x) \ge 0$ se $x \ge x_0$ (o viceversa), con $x \in v$ intorno di x_0 .

REMARK. Sia $I\subset\mathbb{R}$, sia $f:I\to\mathbb{R}$ convessa nei punti interdi di I, con f continua in I. Allora f sarà convessa anche in I

EXAMPLE. $f:[a,b]\to\mathbb{R}$ convessa in (a,b) f continua in $[a,b]\Longrightarrow f$ è convessa in [a,b] estremi compresi.

DEFINITION 7.6. Studio di funzione completo:

- (1) Trovare l'insieme di definizione (dominio) di f
- (2) Determinare l'insieme di continuità di f
- (3) Determinare l'insieme di derivabilità
- (4) Eventuali asintoti
- (5) Studiare la monotonia di f e dedurre eventuali punti massimi e minimi locali
- (6) Determinare massimo e minimo di f oppure $\sup\{f\}$ e $\inf\{f\}$
- (7) Studiare la convessità di f (eventuali punti di flesso)

Integrali

DEFINITION 8.1. Integrali (di Riemann): Sia $f : [a, b] \to \mathbb{R}$ limitata (ad esempio f continua). L'integrale (definito) di f(x) su [a, b] rappresenta l'area del sottografico di f (se $f \ge 0$ su [a, b]).

DEFINITION 8.2. Suddivisione intervallo: Una suddivisione di [a,b] è un insieme di punti dell'intervallo A. $A = \{x_0, x_1, ..., x_n\}$ con $a = x_0 < x_1 < ... < x_n = b$

Remark. Le lunghezze degli intervalli, $[x_{i-1}, x_i]$, non sono necessariamente uguali.

Remark. La somma delle lunghezze degli intervalli deve dare la lunghezza di [a,b].

$$\sum_{i=1}^{n} (x_i - x_{i-1}) = b - a = \text{Lunghezza di } [a, b]$$

DEFINITION 8.3. Somma inferiore: La somma inferiore di f relativa alla suddivisione di A è la somma delle aree dei rettangoli che non superano il grafico di f. Essa approssima l'area del sottografico per difetto.

$$S'(f,A) = \sum_{i=1}^{n} (\inf\{f(x)\}) \cdot (x_i - x_{i-1}) \text{ con } x \in [x_{i-1}, x_i].$$

DEFINITION 8.4. **Somma superiore**: La somma superiore di f relativa alla suddivisione di A è la somma delle aree dei rettangoli che superano il grafico di f. Essa approssima per eccesso l'area del sottografico per eccesso.

$$S''(f, A) = \sum_{i=1}^{n} (\sup\{f(x)\}) \cdot (x_i - x_{i-1}) \text{ con } x \in [x_{i-1}, x_i].$$

DEFINITION 8.5. Integrabilità di Riemann: Se S'(f) = S''(f) si dice che f è integrabile secondo Riemann su [a, b], e il valore comune è l'integrale di f su [a, b]: $\int_a^b f(x) dx = (S'(f) = S''(f))$

REMARK. Questa definizione ha senso anche quando f può prendere valori negativi. Infatti in generale l'integrale definito rappresenta la somma algebrica dell'area negativa o positiva che sia.

Theorem 8.1. Integrabilità: Se $f:[a,b]\to\mathbb{R}$ è continua, allora è integrabile.

REMARK. Ci sono anche funzioni non continue che sono integrabili, ad esempio una funzione costante a tratti.

DEFINITION 8.6. Generalmente continua: Una $f:[a,b]\to\mathbb{R}$ è generalmente continua se è limitata e discontinua (ha eventualmente un numero finito di punti di discontinuità). Non è generalmente continua quando c'è un solo punto di discontinuità anche se tutta via può essere limitata.

THEOREM 8.2. Generalmente continua e integrabilità: Se $f:[a,b]\to\mathbb{R}$ è generalmente continua, allora f è integrabile. Se f è integrabile, $(S''(f,A) - S'(f,A)) \to 0$ (tende a zero) al raffinarsi della suddivisione. Man mano che si aggiungono punti, l'area si assottiglia.

8.1. Metodi di calcolo, proprietà e teoremi:

DEFINITION 8.7. Siano f e g integrabili in [a,b] e $l \in \mathbb{R}$, allora $f+g, k \cdot f, |f|$ sono integrabili per

(1)
$$\int_{a}^{b} (f+g)(x) d(x) = \int_{a}^{b} (fx) d(x) + \int_{a}^{b} g(x) d(x)$$

(2) $\int_{a}^{b} (k \cdot f)(x) d(x) = k \cdot \int_{a}^{b} f(x) dx$

(2)
$$\int_{a}^{b} (k \cdot f)(x) \ d(x) = k \cdot \int_{a}^{b} f(x) \ dx$$

(3) Se
$$f(x) \le g(x) \ \forall x \in [a, b] \implies \int_a^b f(x) \ dx \le \int_a^b g(x) \ d(x)$$

$$(4) \left| \int_{a}^{b} f(x) \ dx \right| \leq \int_{a}^{b} |f(x)| \ dx$$

(5) Se
$$a < c < b$$
 ($c = \text{punto tra } a \in b$) $\Longrightarrow \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$
Esempi proprietà (3),(4) e (5):

REMARK. Se $f:[a,b]\to\mathbb{R}$ è costante, cioé $f(x)=k\ \forall x\in[a,b]$, allora $\int\limits_{a}^{b}f(x)\ dx=k\cdot(b-a)$.

DEFINITION 8.8. Media integrale: Sia $f:[a,b]\to\mathbb{R}$ integrabile, si dice media integrabile di f su [a,b] il prodotto $m=\frac{1}{b-a}\cdot\int\limits_a^bf(x)\ dx$. Graficamente m è l'altezza di un rettangolo di base b-a con la stessa area del sottografico di f.

Theorem 8.3. Teorema della media integrale: Sia $f:[a,b] \to \mathbb{R}$ integrabile.

Allora
$$\inf\{f(x)\} \le \frac{1}{b-a} \int_a^b f(x) \ dx \le \sup\{f(x)\}.$$

Se f è continua, allora \exists un punto $z \in [a, b]$ tale per cui $f(z) = \frac{1}{b-a} \cdot \int_a^b f(x) \ dx$.

PROOF. $\forall x \in [a, b]$ abbiamo $\inf\{f(x)\} \le f(x) \le \sup\{f(x)\}.$

- (1) Integriamola usando la prop. del teorema sopra: $\int_{a}^{b} \underbrace{\inf\{f(x)\}}_{\text{costante}} \ dx \leq \int_{a}^{b} f(x) \ dx \leq \int_{a}^{b} \underbrace{\sup\{f(x)\}}_{\text{costante}} \ dx$
- (2) Allora $(\inf\{f(x)\})(b-a) \le \int_{a}^{b} f(x) dx \le (\sup\{f(x)\})(b-a)$
- (3) Quindi $\inf\{f(x)\} \leq \frac{1}{b-a} \int_a^b f(x) \ dx \leq \sup\{f(x)\}$
- (4) Se f è continua, per Weirstrass, allora $\inf\{f\}=\min(f)$ e $\sup\{f\}=\max(f)$
- (5) Per il teorema dei valori intermedi, f prende tutti i valori compresi tra min(f) e max(f)
- (6) Segue che la media integrale è un tale valore, per la disuguaglianza appena dimostrata, quindi \exists un punto $z \in [a,b]$ tale per cui $f(z) = \frac{1}{b-a} \int\limits_a^b f(x) \ dx$

REMARK. Se l'estremo b < a, possiamo sempre definire l'integrale tra $a \in b$ così: $-\int_{b}^{a} f(x) dx$.

Quando a=b allora il sottografo diventa un segmento, quindi $\int\limits_a^a f(x) \ dx=0$

REMARK. La media integrale ha senso anche quando gli estremi sono scambiati b < a:

$$\frac{1}{b-a} \left(-\int_{b}^{a} f(x) \ dx \right) = \frac{1}{a-b} \int_{b}^{a} f(x) \ dx$$

DEFINITION 8.9. **Primitiva**: Sia $I \subset \mathbb{R}$ intervallo, e $f: I \to \mathbb{R}$. Una funzione $F: I \to \mathbb{R}$ si dice *primitiva* se F è derivabile in I e vale $\Longrightarrow F'(x) = f(x) \ \forall x \in I$

EXAMPLE.
$$f(x) = 2x \implies F(x) = x^2$$

Non è l'unica primitiva, devo considerare anche le possibili costanti che valgono zero, per questo sommo alla primitiva un $c \in \mathbb{R}$. Infatti due primitive di f(x) differiscono sempre per una costante.

PROOF. Siano $F \in G$ due primitive di f. Allora ho che $F' = f \in G' = f$.

- Quindi (F G)' = F' G' = f f = 0.
- Visto che siamo su un intervallo, concludo che F-G è una costante $c\in\mathbb{R}$
- $F(x) G(x) + c \ \forall x \in I$

DEFINITION 8.10. Integrale indefinito: L'integrale indefinito di f(x) è l'insieme di tutte le primitive di f(x). Si indica con $\int f(x) dx$.

REMARK. $\int f(x) dx$ non indica una singola funzione, bensì un insieme di funzioni. $\int f(x) dx = \{F : I \to \mathbb{R} \text{ tale che } F \text{ derivabile, ed } F' = f\}$

8.2. Teorema fondamentale del calcolo integrale, Torricelli-Barrow

Theorem 8.4. Sia $I \subset \mathbb{R}$ un intervallo con $a \in I$, e sia $f: I \to \mathbb{R}$ continua.

Allora la funzione integrale: $F(x) = \int_{0}^{\infty} f(t) dt$ è una primitiva di f, cioé F(x) è derivabile e la sua derivata è F'(x) = f(x).

Proof. Mostriamo che f è derivabile calcolandone il rapporto incrementale e facendone il

$$(1) \ \frac{F(x) - F(x_0)}{x - x_0} = \frac{1}{x - x_0} \cdot \left(\int_a^x f(t) \ dt - \int_a^{x_0} f(t) \ dt \right) = \frac{1}{x - x_0} \cdot \left(\int_a^x f(t) \ dt + \int_{x_0}^a f(t) \ dt \right)$$

- (2) Quindi è uguale a $\frac{1}{x-x_0} \cdot \left(\int_{x_0}^x f(t) \ dt \right)$, cioé la media integrale di f sull'intervallo $[x_0, x]$.
- (3) Visto che f è continua, per il teorema della media integrale posso dire che \exists un punto $z \in [x_0, x]$ tale per cui $f(z(x)) = \frac{1}{x - x_0} \cdot \left(\int_{x_0}^x f(t) dt \right)$ (4) Quindi $F'(x) = \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0} f(z(x))$ (5) Cambio variabile y = z(x), so che z(x) è compreso tra $x_0 \in x$.

- (6) Quindi per il teorema dei carabinieri anche il $\lim f(z(x))$ tende a x_0
- (7) Segue che $\lim_{x \to x_0} f(z(x)) = \lim_{x \to x_0} f(y) = f(x_0).$
- (8) Questo dimostra che $F'(x_0) = f(x_0)$, quindi $F'(x) = f(x) \ \forall x \in I$
- (9) F è effettivamente una primitiva di F.

THEOREM 8.5. Teorema di Torricelli: Sia $I \subseteq \mathbb{R}$ intervallo con $a \in I$, e sia $f: I \to \mathbb{R}$ continua.

Se G è una primitiva di f su I, allora \exists un punto $c \in \mathbb{R}$ tale per cui $G(x) = \int f(t) \ dt + c$ e dati

due punti
$$\alpha, \beta \in I$$
 abbiamo:
$$\int\limits_{\alpha}^{\beta} f(t) \ dt = [G(x)]_{\alpha}^{\beta} = G(\beta) - G(\alpha)$$

Theorem 8.6. Integrali con estremi variabili: Sia $I \subseteq \mathbb{R}$ intervallo, sia $A \subseteq \mathbb{R}$

con
$$\alpha, \beta: A \to I$$
 derivabili, e sia $G(x) = \int_{-\infty}^{\beta(x)} f(t) dt$.

 $\begin{array}{c} \subset & \subset \\ \operatorname{con} \ \alpha, \beta: A \to I \ \operatorname{derivabili, \ e \ sia} \ G(x) = \int \limits_{\alpha(x)}^{\beta(x)} f(t) \ dt. \\ \operatorname{Allora} \ G(x) \ \operatorname{\grave{e} \ derivabile \ e \ vale} \ G'(x) = f(\beta(x)) \cdot \beta'(x) - f(\alpha(x)) \cdot \alpha'. \end{array}$

In particolare se $\alpha(x)=a$ costante e $\beta(x)=x$ si ha: $G(x)=\int\limits_a^s f(t)\ dt \implies G'(x)=f(x)\cdot 1-f(a)\cdot 0=f(x).$

Example.
$$G(x) = \int\limits_{x^2}^{sen(x)} e^t \cdot arctg(t) \ dt$$
, sostituisco $f(t) = e^t arctg(t)$, $\alpha(x) = x^2$ e $\beta(x) = sen(x)$

$$G'(x) = f(\beta(x)) \cdot \beta'(x) - f(\alpha(x)) \cdot \alpha'(x) = e^{sen(x)} \cdot arctg(sen(x)) \cdot cos(x) - e^{x^2} \cdot arctg(x^2) \cdot 2x$$

Questo teorema è utile per calcolare alcuni limiti dove compaiono funzioni con estremi variabili.

8.3. Integrali impropri

Estende la definizione di integrale definito al caso in cui la funzione dentro l'integrale non è limitata, oppure l'intervallo di integrazione non è limitato.

Tipo $\int_{0}^{\infty} e^{-x} dx$, in questo caso l'integrale rappresenta l'area di tutto il sottografico positivo $[0, +\infty)$.

Formalmente defineremo: $\int\limits_0^\infty e^{-x}\ dx = \lim_{M\to +\infty} \int\limits_0^M e^{-x}\ dx = \lim_{M\to +\infty} \left[-e^{-x}\right]_0^M = \lim_{M\to +\infty} -e^{-M} + 1 = 1$ In questo caso il sottografo ha area finita pari a 1.

DEFINITION 8.11. **Integrale improprio**: Siano $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$ con a < b e $f : [a,b) \to \mathbb{R}$ integrabile in tutti gli intervalli chiusi [a,M] con a < M < b. Se $\exists \lim_{M \to b^-} \int\limits_a^M f(x) \ dx = l$, allora definiamo $\int\limits_a^b f(x) \ dx = l$. Se $l \in \mathbb{R}$, si dice che l'integrale di f(x) su [a,b) converge, altrimenti diverge a $\pm \infty$. Se il limite non esiste diciamo che f non è integrabile su [a,b).

DEFINITION 8.12. Integrale improprio con problemi in a,b: Sia $f:(a,b) \to \mathbb{R}$ con $a,b \in \overline{\mathbb{R}}$ che sia integrabile su $[M_1,M_2)$ con $a < M_1 < M_2 < b$. Scegliamo arbitrariamente un punto $c \in (a,b)$.

Se esistono entrambi i seguenti integrali impropri: $\int_{a}^{c} f(x) \ dx = l_{1} \in \int_{c}^{b} f(x) \ dx = l_{2}$

allora si definisce $\int_a^b f(x) dx = l_1 + l_2$. Si dice che f è integrabile in senso improprio su (a, b).

REMARK. L'esistenza e il valore dell'integrale improprio non dipendono dalla scelta di c. Qualunque $c \in (a, b)$ io scelga ottengo sempre lo stesso risultato.

PROPOSITION 8.1. Sia $f : [a, b) \to \mathbb{R}$ integrabile su [a, M] con a < M < b e supponiamo che f abbia segno costante. Allora esiste (finito o infinito) l'integrale improprio di f(x).

PROOF. Supponiamo che $f \ge 0$ su [a,b). Mostriamo che $F(x) = \int_a^x f(t) \ dt$ è debolmente crescente.

Segue che $\exists \lim_{x \to b^-} F(x)$ che è proprio $\int_a^b f(t) dt$. Infatti se prendo $x_1 < x_2$ allora:

$$F(x_2) = \int_{a}^{x_2} f(t) dt = \int_{a}^{x_1} f(t) dt + \int_{x_1}^{x_2} f(t) dt \ge \int_{a}^{x_1} f(t) dt = F(x_1)$$

Integrali impropri notevoli

Caso	Integrale	Risultato
$\alpha > 0$	$\int_{0}^{\alpha} \frac{1}{x^{p}} dx, \text{ generalizzato } \int_{a}^{b} \frac{1}{(x-a)^{p}} dx$	$\begin{cases} converge & \text{se } p < 1 \\ diverge & \text{se } p \ge 1 \end{cases}$
$\alpha > 0$	$\int_{\alpha}^{+\infty} \frac{1}{x^p} dx$	$\begin{cases} converge & \text{se } p > 1 \\ diverge & \text{se } p \le 1 \end{cases}$
$0 < \alpha < 1$	$\int_{\alpha}^{+\infty} \frac{1}{x^{\alpha} \left log(x) \right ^{b}} dx$	$\begin{cases} converge & \text{se } \begin{cases} a < 1 & \forall b \in \mathbb{R} \\ a = 1 & b > 1 \end{cases} \\ diverge & \text{se } \begin{cases} a > 1 & \forall b \in \mathbb{R} \\ a = 1 & b \le 1 \end{cases} \end{cases}$
$\alpha > 1$	$\int_{\alpha}^{+\infty} \frac{1}{x^{\alpha} log^{b}(x)} dx$	$\begin{cases} converge & \text{se } \begin{cases} a < 1 & \forall b \in \mathbb{R} \\ a = 1 & b > 1 \end{cases} \\ diverge & \text{se } \begin{cases} a > 1 & \forall b \in \mathbb{R} \\ a = 1 & b \le 1 \end{cases} \end{cases}$
$\alpha > 1$	$\int_{1}^{\alpha} \frac{1}{\log^{p}(x)} dx$	$\begin{cases} converge & \text{se } p < 1 \\ diverge & \text{se } p \ge 1 \end{cases}$

8.4. Criteri per studiare la convergenza di integrali impropri

Theorem 8.7. Criterio del confronto: Sia $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$, siano $f, g : [a, b) \to \mathbb{R}$ integrabili in $(a, M] \ \forall a < M < b$. Se \exists un intorno sinistro u di b tale per cui $0 \le f(x) \le g(x) \ \forall \ x \in u \cap [a, b)$ allora:

- (1) Se $\int_{a}^{b} g(x) dx$ converge, allora anche $\int_{a}^{b} f(x) dx$ converge. (2) Se $\int_{a}^{b} f(x) dx$ diverge (positivamente a $+\infty$) allora anche $\int_{a}^{b} g(x) dx$ diverge (positivamente a $+\infty$). (enunciato analogo se $f, g: (a, b] \to \mathbb{R},...$)

Theorem 8.8. Criterio del confronto asintotico: Sia $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$, siano $f,g:[a,b) \to \mathbb{R}$ integrabili in $(a,M] \ \forall \ a < M < b$. Se \exists un integrabili un integrabili but tale per cui $f(x) \geq 0$, $g(x) \geq 0 \ \forall \ x \in u \cap [a,b)$ e $\lim_{x\to b^-} \frac{f(x)}{g(x)} = l$. Allora:

- (1) Se $l \neq 0 \land l \neq +\infty$, $\int_{a}^{b} f(x) dx$ converge $\iff \int_{a}^{b} g(x) dx$ converge
- (2) Se l = 0 e $\int_a^b g(x) dx$ converge $\implies \int_a^b f(x) dx$ converge
- (3) Se $l = +\infty$ e $\int_{a}^{b} f(x) dx$ converge $\implies \int_{a}^{b} g(x) dx$ converge

Remark. Le implicazioni di questi criteri $non\ si\ invertono$

EXAMPLE. $\frac{1}{x^2} \leq \frac{1}{x}$ per $x \geq 1$, $f(x) = \frac{1}{x^2}$ e $g(x) = \frac{1}{x}$, e $\int_{-\frac{\pi}{2}}^{+\infty} \frac{1}{x} dx$ diverge

Non si può concludere tuttavia che $\int_{-x^2}^{+\infty} \frac{1}{x^2} dx$ diverge.

Il criterio del confronto dice che $\int_{-\infty}^{+\infty} f(x) dx$ diverge $\Longrightarrow \int_{-\infty}^{+\infty} g(x) dx$ diverge (non viceversa)

REMARK. I criteri del confronto e del confronto asintotico si possono usare anche per funzioni negative cambiando le conclusione.

Example. Se $g(x) \leq f(x) \leq 0$ per $x \in [a,b)$ Allora: se $\int\limits_a^b g(x) \ dx$ converge, allora anche $\int\limits_a^b f(x) \ dx$ converge. se $\int\limits_a^b f(x) \ dx$ diverge (a $-\infty$ per forza) allora $\int\limits_a^b g(x) \ dx$ diverge (a $-\infty$)

DEFINITION 8.13. Funzione assolutamente integrabile: f è assolutamente integrabile sull'intervallo Ise |f| è integrabile su I. Cioé se $\int_{I} |f(x)| dx$ converge (è finita).

DEFINITION 8.14. Parte positiva: Dato un $x \in \mathbb{R}$ definiamo x^+ come parte positiva di x e

rappresenta
$$x^+ = max\{x, 0\} = \begin{cases} x & \text{se } x \ge 0\\ 0 & \text{se } x < 0 \end{cases}$$

DEFINITION 8.15. Parte negativa: Dato un $x \in \mathbb{R}$ definiamo x^- come parte negativa di x e rappresenta

l'opposto del minimo
$$x^- = -min\{x, 0\} = \begin{cases} -x & \text{se } x \le 0 \\ 0 & \text{se } x > 0 \end{cases}$$

Example.
$$4^+ = 4$$
, $4^- = 0$, $(-3)^+ = 0$, $(-3)^- = 3$

Remark. Ogni numero $x \in \mathbb{R}$ può essere scritto come differenza della sua parte positiva e della sua parte negativa. (1) $x = x^+ - x^-$

REMARK. Mentre |x| può essere scritto come somma della ssua parte positiva e della sua arte negativa.

(2)
$$|x| = x^+ + x^- \implies (1) \land (2) \implies x^+ = \frac{|x|+x}{2} e x^- = \frac{|x|-x}{2}$$
 (analoghi per le funzioni)

П

THEOREM 8.9. Criterio dell'Assoluta convergenza: Serve per capire l'integrabilità di una funzione a segno variabile. Se f è assolutamente integrabile su I allora f è integrabile su I. (Non vale il viceversa)

Proof.

- $|f(x)| = (f(x))^{+} + (f(x))^{-}$
- Quindi sia la parte negativa che la parte positiva sono schiacciati tra $0 \in |f(x)|$ $0 < (f(x))^{+} < |f(x)|, \quad 0 < (f(x))^{-} < |f(x)|$
- Per confronto, visto che sto supponendo che $\int\limits_{\cdot}|f(x)|\ dx$ converga, allora **convergono** $\int_{I} (f(x))^{+} dx e \int_{I} (f(x))^{-} dx$
- Visto che $f(x) = (f(x))^{+} (f(x))^{-}$, concludo che
- $\int_I f(x) \ dx = \int_I (f(x))^+ \ dx \int_I (f(x))^- \ dx$ converge

Proof.

Soffermiamoci sull'uguaglianza $\int_I f(x) dx = \int_I (f(x))^+ dx - \int_I (f(x))^- dx$:

• Se I = [a, b) abbiamo che

• Se
$$I = [a, b)$$
 abbiamo che
• $\int_{a}^{M} f(x) dx = \int_{a}^{M} (f(x)^{+} - f(x)^{-}) dx = \int_{a}^{M} (f(x))^{+} dx - \int_{a}^{M} (f(x))^{-} dx$

- Passando al limite per $M \to b^-$ so che i limiti di α e β esistono, quindi esiste anche $\lim_{M \to b^-} \int\limits_{-\infty}^{M} f(x) \ dx$
- Dunque f è **integrabile**

COROLLARY 8.1. Criterio del confronto + Assoluta convergenza:

Date $f, g: [a, b) \to \mathbb{R}$ con $a \in \mathbb{R}$, $b \in \mathbb{R}$ entrambe integrabili in $[a, M] \, \forall \, a < M < b$. Se \exists un

intorno sinistro v di b tale per cui $|f(x)| \le g(x) \ \forall x \in (v \cap [a,b])$ e se $\int_{a}^{b} g(x) \ dx$ converge $\implies \int_{a}^{b} f(x) \ dx$ converge.

EXAMPLE.
$$\int_{1}^{+\infty} \frac{sen(x)}{x^2} dx, f(x) = \frac{sen(x)}{x^2}$$
 è a segno variabile su $[1, +\infty)$

$$f(x) = \left| \frac{sen(x)}{x^2} \right| \le \frac{1}{x^2}$$
, prendo $g(x) = \frac{1}{x^2}$ nel corollario di sopra

Visto che $\int_{1}^{+\infty} \frac{1}{x^2} dx$ converge, concludo che $\int_{1}^{+\infty} \frac{sen(x)}{x^2} dx$ converge.

Example.
$$\int\limits_{1}^{+\infty} \int\limits_{x^2}^{|sen(x)|} dx \ \mathbf{diverge} \ \left\{ \mathbf{mentre} \ \int\limits_{1}^{+\infty} \frac{sen(x)}{x^2} \ dx \ \mathbf{converge} \right\}$$

Quindi
$$\int_{1}^{M} \frac{|sen(x)|}{x^2} dx \ge \int_{1}^{M} \frac{sen^2(x)}{x^2} dx = \int_{1}^{M} \frac{(1-cos(2x))}{x^2} dx$$

$$\int_{1}^{M} \frac{1}{2x} \ dx - \int_{1}^{M} \frac{\cos(2x)}{2x} \ dx = \underbrace{\frac{1}{2} \int_{1}^{M} \frac{1}{x} \ dx}_{\alpha} - \underbrace{\frac{1}{2} \int_{2}^{2M} \frac{\cos(t)}{t} \ dt}_{\beta} \ (t = 2x, \ dt = 2 \ dx)$$
Mandando $M \to +\infty$ otteniamo che α : **Diverge** e β : **Converge**

Quindi
$$\int_{1}^{+\infty} \frac{|sen(x)|}{x^2} dx$$
 diverge a $+\infty$

Successioni

DEFINITION 9.1. Successione: Una successione è una funzione $f: S \to \mathbb{R}$ dove S è una semiretta di \mathbb{N} , cioé $\{S = n \in \mathbb{R} \text{ t.c } n \geq n_0\}$ per un qualche n_0 . In soldoni $S \subset \mathbb{N}$. Un punto nel grafico è (n, f(n))

EXAMPLE.
$$f(n) = n^2 \text{ con } S = \mathbb{N}$$

 $f(0) = 1, f(1) = 1, f(2) = 4...$

DEFINITION 9.2. Notazione: Una successione f(n) si denota con a_n , o per esteso l'intera successione $\{a_n\}_{n\in\mathbb{N}}$.

EXAMPLE.
$$a_n = \frac{1}{n-5} \text{ con } S = \{n \in \mathbb{N} \text{ } t.c. n \geq 6\}$$

EXAMPLE.
$$a_n = \sqrt{5-n}$$
, ma $5-n>0 \implies n \le 5$ quindi nessuna S va bene. Questa a_n non definisce una successione $a_n: S \to \mathbb{R}$

9.1. Limiti di successioni

L'unico limite che ha senso per una successione a_n è $\lim_{n\to+\infty}$, $+\infty$ è l'unico punto di accumulazione \forall $S\subset\mathbb{N}$.

DEFINITION 9.3. Limite di una successione: Il limite di una successione $\lim_{n\to+\infty} a_n = l$ con l che può essere un numero Reale o $\pm\infty$. \forall intorno $v\in l$ si ha che \exists un $\overline{n}\in\mathbb{N}$ (un certo n) tale per cui $a_n\in v$ \forall $n\geq\overline{n}$.

Si dice che a_n converge a l se $l \in \mathbb{R}$, invece diverge a $\pm \infty$ se $l = \pm \infty$

• Graficamente se $l \in \mathbb{R}$:

(Per i primi valori di n, sta fuori l'intevallo. Da un certo punto in poi i valori devono stare dentro)

• Graficamente $l = +\infty$:

Terminologia: Se P(n) è un predicato la cui verità dipendde da un $n \in \mathbb{N}$, si dice che P(n) è vero definitivamente se \exists un $\overline{n} \in \mathbb{N}$ tale per cui P(n) è vero $\forall n \geq \overline{n}$.

Example.
$$P(n) = "n$$
 è pari" per $n = 2$

9.3. MONOTONIA

DEFINITION. Limite di successione generale: $\lim_{n\to +\infty} a_n = l$ se $\forall v$ intorno di l si ha che $a_n \in v$ definit.

9.2. Sottosuccessioni (estratte)

Data una successione $a_n: S \to \mathbb{R}$, una sua sottosuccessione è una successione fatta da alcuni valori a_n ma non tutti.

DEFINITION 9.4. Sottosuccessione: Consideriamo una funzione $k_n : \mathbb{N} \to S$ strettamente crescente (cioé $k_n > k_m$ quando n > m) possiamo considerare la composizione a_{k_n} , questa è una nuova successione detta sottosuccessione di a_n . In pratica scegliamo solo un certo sottoinsieme di indici in modo crescente.

Example.
$$a_n = \frac{1}{n} \text{ con } S = \{n \in \mathbb{N} \text{ } t.c \text{ } n \geq 1\}$$

EXAMPLE. $a_n = \frac{1}{n}$ con $S = \{n \in \mathbb{N} \ t.c \ n \ge 1\}$ Prendo $k_n : \mathbb{N} \to S$, con $n \mapsto 2n+1$ abbiamo $a_{k_n} = \frac{1}{k_n} = \frac{1}{2n+1}$. Graficamente:

Theorem 9.1. Teorema che lega i limiti alle sottosuccessioni:

Data una successione a_n , questa ha $\lim_{n \to +\infty} a_n = \mathbf{l} \iff \lim_{n \to +\infty} a_{k_n} = \mathbf{l}$ per ogni sottosuccessione $k_n \in \{a_n\}$. Questo teorema si può usare per dimostrare che una successione non ha limite.

EXAMPLE. $a_n = (-1)^n = \begin{cases} 1 & n \ pari \\ -1 & n \ dispari \end{cases}$, questa successione non ha limite, vediamo:

- Consideriamo le sottosuccessioni {a_{2n}} e {a_{2n+1}} date da indici pari/dispari.
 Abbiamo a_{2n} = (-1)²ⁿ = ((-1)²)ⁿ = (1)ⁿ = 1 e quindi converge a 1
 Mentre a_{2n+1} = (-1)²ⁿ⁺¹ = (-1)²ⁿ · (-1) = 1 · (-1) = -1 e quindi converge a -1
- Visto che i due limiti esistono ma sono diversi, $\{a_n\}$ non ha limite.

REMARK. Per le successioni e i loro limiti valogo i teoremi visti per le funzioni (permanenza del segno, Carabinieri, Confronto, ecc...)

Theorem 9.2. Permanenza del segno per successioni: Se ho una successione $\{a_n\}$ con $\lim_{n\to+\infty} a_n = l > 0$, allora prima o poi la successione diventa positiva e lo rimane per sempre $(a_n > 0)$.

9.3. Monotonia

DEFINITION 9.5. Una successione $\{a_n\}$ è:

- Debolmente crescente se $n > m \implies a_n \ge a_m$
- Strettamente crescente se $n > m \implies a_n > a_m$
- Debolmente decrescente se $n > m \implies a_n \le a_m$
- Strettamente decrescente se $n > m \implies a_n < a_m$

REMARK. $\{a_n\}$ è debolmente crescente sse vale che $a_{n+1} \ge a_n \ \forall \ n \in S$ (def. analoghe per le altre 3). Infatti, se so che $a_{n+1} \ge a_n \ \forall \ n \in \mathbb{N}$, poi se n > m allora $a_n \ge ... \ge a_{m-1} \ge a_m$

EXAMPLE. $a_n=n^2$, controlliamo che sia strettamente crescente: $a_{n+1}>a_n$ Infatti $a_{n+1}=(n+1)^2=n^2+2n+1, \ a_n=n^2$ $n^2+2n+1>n^2\iff 2n+1>0$ vera $\forall\ n\in S$

$$n^2 \pm 2n \pm 1 > n^2 \iff 2n \pm 1 > 0 \text{ word } \forall n \in S$$

THEOREM 9.3. Monotonia: Se $\{a_n\}$ è monotona (cioé debolmente crescente o decrescente) allora ammette

- Se è debolmente crescente il limite non può essere $-\infty$
- Se è debolmente decrescente il limite non può essere $+\infty$

35

9.4. Limitatezza

DEFINITION 9.6. Tipi di limitatezza: Una successione $\{a_n\}$ è:

- (1) Limitata superiormente se $\exists M \in \mathbb{R}$ tale per cui $a_n \leq M \ \forall n \in S$.
- (2) Limitata inferiormente se $\exists m \in \mathbb{R}$ tale per cui $a_n \geq m \ \forall n \in S$.
- (3) **Limitata** se è limitata sia inferiormente che superiormente.

Graficamente (es. limitata):

THEOREM 9.4. Relazione tra esistenza dei limiti e limitatezza: Una successione convergente (che ha limite finito) è limitata. Preso un intorno di l, ad un certo \overline{n} in poi la successione starà dentro l'intorno. Questo non è vero per funzioni di variabile reale.

EXAMPLE. $f(x) = \frac{1}{x}$, $f:(0,+\infty) \to \mathbb{R}$ $\lim_{x \to +\infty} f(x) = 0$ (converge a $+\infty$), ma non è limitata perché $\lim_{x \to 0^+} f(x) = +\infty$ Però $a_n = \frac{1}{n}$ è **limitata**

THEOREM 9.5. Massimo e minimo: Se $\lim_{x\to +\infty} a_n = +\infty$, allora la successione $\{a_n\}$ ha minimo. Cioé $\exists n_{min} \in \mathbb{N}$ tale per cui $a_n \geq a_{n_{min}} \forall n \in S$. Se invece il $\lim_{x\to +\infty} a_n = -\infty$ allora a_n ha il massimo.

Remark. Limitata non implica avere massimo e minimo:

Example. $a_n=\frac{1}{n}$ è limitata, $1\geq\frac{1}{n}\geq0$, ma non ha minimo. $max\{a_n\}=1,\ inf\{a_n\}=0\ (=\lim_{x\to+\infty}a_n)$

 $\nexists \min$ poiché non esiste nessun $n \in \mathbb{N}$ tale per cui $\frac{1}{n} = 0$

Remark. Limitata non implica che esiste almeno un massimo e minimo:

Example. $a_n = \left(1 - \frac{1}{n}\right)(-1)^n = \begin{cases} 1 - \frac{1}{n} & n \ pari \\ -\left(1 - \frac{1}{n}\right) & n \ dispari \end{cases}$

Complessivamente abbiamo che $sup\{a_n\} = 1$ mentre $inf\{a_n\} = -1$. \nexists max e min pur essendo $\{a_n\}$ limitata $\iff -1 < a_n < 1$

THEOREM 9.6. Convergenza e limitatezza: Se ho una successione che converge a l, $\lim_{x\to +\infty} a_n = l$, e supponiamo esista un $\overline{n} \geq l$. Allora la successione ha massimo. Se esiste un $\overline{n} \leq l$ allora ha minimo.

9.5. Legame tra limiti di funzioni e limiti di successioni

THEOREM 9.7. Legame tra limiti di funzioni e limiti di successioni:

Presa una $f: A \to \mathbb{R}$ definita su $A \subset \mathbb{R}$, con $x_0 \in Acc(A)$.

Allora abbiamo che $\lim_{x\to x_0} f(x) = l$ se e solo se vale $\lim_{n\to +\infty} f(a_n) = l$ per ogni $\{a_n\} \subset A$ tale che:

- (1) $\lim_{n\to+\infty} a_n = x_0$ (2) $a_n \neq x_0$ definitivamente

Grazie a questo teorema posso dimostrare che il limite di una funzione non esiste.

Remark. Se abbiamo una funzione in cui $\lim_{x\to +\infty} f(x) = l$, allora esiste $\lim_{n\to +\infty} f(n) = l$

9.6. Calcolo dei limiti di successione

Theorem 9.8. $a_n \to l$ è un modo più compatto di scrivere $\lim_{n \to \infty} a_n = l$.

- Se ho $a_n \to l$ e $b_n \to l'$, allora $(a_n + b_n \to l + l')$, $(a_n \cdot b_n \to l \cdot l')$, e così via se $l' \neq 0$ e $b_n \neq 0$ definitivamente.
- Se $a_n = c \ \forall \ n \in \mathbb{N}$ allora $a_n \to c$.

EXAMPLE. Esiste il $\lim_{n \to +\infty} sen(n)$? NO

- Chiediamoci quando $sen(x) \ge \frac{1}{2}$? In $[0,\pi]$ succede esattamente per gli $x \in [\frac{\pi}{6}, \frac{5}{6}\pi]$, l'intervallo ha lunghezza $\frac{5}{6}\pi - \frac{1}{6}\pi = \frac{4}{6}\pi = \frac{2}{3}\pi > 2$
- Questo ci permette di costruire una successione crescente h_n di naturali tale per cui $sen(h_n) \geq$
- Quindi l'intervallo contiene almeno 2 numeri interi naturali, e lo stesso vale per tutti i multipli traslati
- Questo mi dice che se esiste $\lim_{n\to +\infty} sen(n) = l$, allora l deve essere $l \geq \frac{1}{2}$.
- Posso fare lo stesso discorso partendo da $sen(x) \leq \frac{1}{2}$ e trovo che $l \leq -\frac{1}{2}$. Questo è assurdo perché $\lim_{n \to +\infty} sen(n) = l(\geq \frac{1}{2})$, mentre $\lim_{n \to +\infty} sen(x) = l(\leq -\frac{1}{2})$.
- Quindi non esiste tale limite.

EXAMPLE. Esiste $\lim_{n \to +\infty} n^2 \cdot sen(n)$? NO

- \bullet Considerando la successione h_n dell'esempio precedente, troviamo una sottosuccessione simile $h_n^2 \cdot \underbrace{sen(h_n)} \ge \frac{1}{2} \cdot h_n^2 \to +\infty$
- Se k_n è una successione di interi t.c $sen(k_n) \le -\frac{1}{2} \ \forall n$, abbiamo una sottosuccessione $k_n^2 \cdot sen(k_n) \le -\frac{1}{2}k_n^2 \to -\infty$
- Quindi ho due sottosuccessioni di $n^2 \cdot sen(n)$ che hanno limiti diversi, per cui il limite non esiste.

THEOREM 9.9. Sia $\{a_n\}_{n\in\mathbb{N}}$ una successione, e $\{a_{h_n}\}$ e $\{a_{k_n}\}$ due sottosuccessioni tale per cui $\{h_n \ t.c \ n \in \mathbb{N}\} \cup \{k_n \ t.c \ n \in \mathbb{N}\} = \mathbb{N}$ (si dice che le due sotto successioni saturano gli indici).

• Se esiste $\lim_{n \to +\infty} a_{h_n}$ ed esiste $\lim_{n \to +\infty} a_{k_n}$ e sono uguali, allora esiste anche $\lim_{n \to +\infty} a_n$ ed è uguale ai due precedenti limiti.

Caso tipico: indici pari e indici dispari

Es: $\lim_{n \to +\infty} \frac{(\log(n+1))^{(-1)^n}}{n^3}$, indici pari: $k_n = 2n$, indici dispari: $h_n = 2n + 1$

- Limite pari: $\frac{(log(2n+1))^1}{2n^3} \to 0$ Limite dispari: $\frac{(log(2n+2))^{(-1)}}{(2n+1)^3} = \frac{1}{(2n+1)^3 \cdot log(2n+2)} = \frac{1}{0} = +\infty$ quindi $lim \to 0$.

Concludiamo che il limite esiste ed è zero.

Theorem 9.10. Criterio del rapporto: Sia $\{a_n\}$ una successione: Se $a_n > 0$ definitivamente e supponiamo esista $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$, allora:

- (1) Se $0 \le l < 1$ allora $\lim_{n \to +\infty} a_n = 0$
- (2) Se l > 1 allora $\lim_{n \to +\infty} a_n = +\infty$

REMARK. Oss: Se l=1 il criterio non si applica, non si conclude nulla sul comportamento di a_n . Infatti abbiamo tre comportamenti diversi:

- $a_n = 1 \ \forall n \in \mathbb{N} \ \text{allora} \ \frac{a_{n+1}}{a_n} = \frac{1}{1} = 1 \to 1, \ l = 1 \ \text{e} \ a_n \ \text{converge a 1.}$ $a_n = n$. Allora $\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \to 1, \ l = 1 \ \text{e} \ a_n \to +\infty.$ $a_n = \frac{1}{n}$. Allora $\frac{a_{n+1}}{a_n} = \frac{n}{n+1} \to 1, \ l = 1 \ \text{e} \ a_n \to 0.$

Example. $a_n=1 \ \forall \ n\in\mathbb{N}.$ Allora $\frac{a_{n+1}}{a_n}=\frac{1}{1}=1 \to 1, \ l=1$ e a_n converge a 1

Confronto $(n! \text{ con } n^k, b^n, n^n)$

• $n^k (\operatorname{con} k \ge 1)$

 $\lim_{n\to+\infty}\frac{n!}{n^k}=\left[\stackrel{\sim}{\infty}\right]$ usiamo il criterio del rapporto:

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^k} \cdot \frac{n^k}{n!} = \frac{(n+1) \cdot n!}{n!} \cdot \frac{n^k}{(n+1)^k} = (n+1) \cdot \left(\frac{n}{n+1}\right)^k \to +\infty \cdot (1)^k = +\infty \ (l > 1)$$

Ne viene che $\frac{n!}{n^k} \to +\infty$, quindi $n!$ tende a ∞ più velocemente di n^k

 $\lim_{n \to +\infty} \frac{n!}{b^k} = \left[\frac{\stackrel{\checkmark}{\infty}}{\infty}\right]$ usiamo il criterio del rapporto

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{b^{n+1}} \cdot \frac{b^k}{n!} = \frac{(n+1)!}{n!} \cdot \frac{b^n}{b^{n+1}} = (n+1) \cdot \frac{1}{b} = (n+1) \cdot \frac{1}{b} \to +\infty \ (l > 1)$$

Segue che $\frac{n!}{b^n} \to +\infty,$ quindin!tende a ∞ più velocemente di b^n

• $n^n (n^n \to +\infty \text{ perché } n^n \ge n \text{ ed } n \to +\infty)$

 $\lim_{n\to +\infty}\frac{n^n}{n!}=\left[\frac{\infty}{\infty}\right] \text{ usiamo il criterio del rapporto}$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{n!}{(n+1)!} \cdot \frac{(n+1)^{n+1}}{n^n} = \frac{1}{n!} \cdot \frac{(n+1)^{n+1}}{n^n} = (1+\frac{1}{n})^n$$
 è un limite notevole $(1+\frac{1}{n})^n \to e = l$. $(l>1)$

Segue che $\frac{n^n}{n!} \to +\infty,$ quindi n^n tende più velocemente a ∞ di n!

Theorem 9.11. Criterio della radice: Se $a_n > 0$ definitivamente e supponiamo $\exists \lim_{n \to +\infty} \sqrt[n]{a_n} = l$, allora:

- (1) Se $0 \le l < 1$ allora $\lim_{n \to +\infty} a_n = 0$
- (2) Se l > 1 allora $\lim_{n \to +\infty} a_n = +\infty$

REMARK. Se l=1 il criterio non si applica, non si conclude nulla sul comportamento di a_n .

Proof.

- Suppongo che $0 \le l < 1$, fisso un $m \in \mathbb{R}$ tale per cui l < m < 1. Visto che $\sqrt[n]{a_n} \to l$, definitivamente avrò $\sqrt[n]{a_n} < m$, quindi $a_n < m^n$. Ora sapendo che m < 1 abbiamo che $m^n \to 0$, per confronto dei carabinieri segue che $a_n \to 0$ (visto che $0 < a_n < m^n$).
- Se invece l > 1, scelgo $m \in \mathbb{R}$ tale per cui 1 < m < l. Visto che $\sqrt[n]{a_n} \to l$, avrò $\sqrt[n]{a_n} > m$ definitivamente. Segue che definitivamente ho $a_n > m^n$ e visto che m > 1 ho $m^n \to +\infty$, per confronto dei carabinieri ho che $a_n \to +\infty$.

Theorem 9.12. Teorema che collega i due criteri: Se $a_n > 0$ definitivamente ed

esiste
$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$$
 allora esiste anche il $\lim_{n \to +\infty} \sqrt[n]{a_n} = l$.

Criterio della radice

Remark. Per questo teorema l può essere uguale a 1, ma l=1 per entrambi.

REMARK. Non vale il viceversa (Se esiste il criterio della radice allora non esiste l'altro).

Example. $\lim_{n\to+\infty} \sqrt[n]{n} =?$... usiamo il teorema con $a_n=n$ $\frac{a_{n+1}}{a_n}=\frac{n+1}{n}\to 1$, quindi $\sqrt[n]{a_n}=\sqrt[n]{n}\to 1$ (stesso limite)

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \to 1$$
, quindi $\sqrt[n]{a_n} = \sqrt[n]{n} \to 1$ (stesso limite)

Allo stesso modo, per un polinomio p(n) in n, $\sqrt[n]{p(n)} \to 1$.

EXAMPLE. Esiste $\lim_{n\to+\infty} \sqrt[n]{a_n}$ ma non $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n}$

- Prendiamo $a_n = \begin{cases} 1 & \text{se n pari} \\ 2 & \text{se n dispari} \end{cases}$
- Abbiamo che $1 \le a_n \le 2 \ \forall n \in \mathbb{N}$, e anche $\sqrt[n]{1} \le \sqrt[n]{a_n} \le \sqrt[n]{2}$.
- Abbiamo visto negli esempi che $\sqrt[n]{1} \to 1$, $\sqrt[n]{2} \to 1$.
- Per il teorema dei carabinieri segue che $\sqrt[n]{a_n} \to 1$.

• Ora
$$\frac{a_{n+1}}{a_n} = \begin{cases} 2 & \text{se n pari} \\ \frac{1}{2} & \text{se n dispari} \end{cases}$$

La successione non ha limite, saltella tra $2 e \frac{1}{2}$, ha due sottosuccessioni che convergono a limiti diversi.

EXAMPLE.
$$\lim_{n \to +\infty} \sqrt[n]{n!}$$
, pongo $a_n = n!$
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1 \to +\infty$$

Serie (numeriche)

Sia a_n una successione da $S \to \mathbb{R}$. Vogliamo dare un senso alla somma di tutti i termini di una successione: $\sum_{n \in S} a_n$

EXAMPLE. $a_n = \frac{1}{2^n} \text{ con } S = \{n \ge 1\}$

• Voglio dare un senso alla seguente somma: $a_1 + a_2 + ... + a_n + ... = \frac{1}{2} + \frac{1}{4} + ... + \frac{1}{2^n} + ...$ (Sommando un termine successivo al precedente mi avvicino sempre di più a 1)

• Se mi fermo a a_n ottengo $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$, e prendendo il limite per $n \to +\infty$, sembra ragionevole che la somma di tutti gli inversi delle potenze di 2 sia proprio uguale a 1

$$\lim_{n \to +\infty} 1 - \frac{1}{2^n} = 1 \iff \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1$$

• In effetti definiremo $\sum_{n>1} \frac{1}{2^n} = 1$.

DEFINITION 10.1. Serie numerica: Data una successione a_n ($\{a_n\}: \mathbb{N} \to \mathbb{R}$), definiamo una successione di somme parziali come $\sum_{j=0}^{n} a_j = a_0 + a_1 + ... + a_n$

Somma parziale n-esima

• $\{S_n\}_{n\in\mathbb{N}}$ è una nuova successione che ho costruito partendo da a_n . Definiamo $\sum_n a_n$ come $S = \lim_{n \to +\infty} S_n$ se questo esiste, se invece non esistesse allora la serie è *indeterminata*.

40

- Altrimenti:
- (1) Se è un numero reale, $S \in \mathbb{R}$, si dice che la serie è **convergente**.
- (2) Se è $+\infty$, $S = +\infty$, si dice che la serie diverge positivamente.
- (3) Se è $-\infty$, $S = -\infty$, si dice che la serie diverge negativamente.

Example. $a_n=0 \ \forall \ n\in\mathbb{N}$ $S_n=a_0+a_1+\ldots+a_n=0+0+\ldots+0$

Example. $a_n = 1 \ \forall \ n \in \mathbb{N}$ $S_n = a_0 + a_1 + \ldots + a_n = 1 + 1 + \ldots + 1$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (n+1) = +\infty \iff \sum_{n \in \mathbb{N}} a_n = \sum_{n \in \mathbb{N}} 1 = +\infty$

$$\begin{split} & \text{Example.} \ \ a_n = n \\ & S_n = 0 + 1 + \ldots + n = \frac{n \cdot (n+1)}{2} \\ & \sum_{n \in \mathbb{N}} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n^2 + n}{2} = +\infty \end{split}$$

Serie Geometrica

Sia $\alpha \in \mathbb{R}$ e $\alpha \neq 0$, $a_n = \alpha^n$ (l'esempio della definizione era $\alpha = \frac{1}{2}$)

- Calcoliamo la somma della serie: $\sum_{n\in\mathbb{N}} a_n = \sum_{n\in\mathbb{N}} \alpha^n$
- Calcoliamo le somme parziali: $S_n = \sum_{j=0}^n \alpha^j = 1 + \alpha + \alpha^2 + ... + \alpha^n = \frac{\alpha^{n+1}-1}{\alpha-1}$
- $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{\alpha^{n+1} 1}{\alpha 1} =$
 - (1) Se $|\alpha| < 1$, abbiamo $\alpha^{n+1} \to 0$ quindi $\sum_{n \in \mathbb{N}} \alpha^n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{\alpha^{n+1} 1}{\alpha 1} = \frac{-1}{\alpha 1} = \frac{1}{1 \alpha}.$ Converge
 - (2) Se α > 1, allora αⁿ⁺¹ → +∞, quindi tutto tende a +∞

 ∑αⁿ = lim S_n = lim αⁿ⁺¹ −1 = +∞. Diverge Positivamente

 (3) Se α = 1, allora a_n = αⁿ = 1ⁿ = 1 ∀ n ∈ N

 ∑αⁿ = ∑n∈N = +∞. Diverge Positivamente

 (4) Se α = 0, allora a_n = αⁿ = 0 ∀ n ≥ 1

 ∑n∈N = ∑n∈N = 0 = 0. Converge a Zero

 (5) Se α < -2, αⁿ⁺¹? È indeterminata poiché ∄ il limite n → ∞.

 - -se n è pari ($\implies n+1$ è dispari), $\alpha^{n+1}<0$ e tende a $-\infty$ (perché $|\alpha|>1)$ - se n è dispari($\implies n+1$ è pari), $\alpha^{n+1} > 0$ e tende a $+\infty$

Ho 2 sottosuccessioni $b_{2n} \to -\infty$ e $b_{2n+1} \to +\infty$, quindi $b_n = \alpha^{n+1}$ non ha limite. Quindi nemmeno $\frac{\alpha^{n+1}-1}{\alpha-1}$ non ne ha.

 $S_{2n} = \frac{b_{2n}-1}{\alpha-1} \to \frac{-\infty}{\alpha-1} \to +\infty, \ S_{2n+1} = \frac{b_{2n+1}-1}{\alpha-1} \to \frac{+\infty}{\alpha-1} \to -\infty \ (\text{con } \alpha-1<0)$ Dunque S_n non ammette limite. $\sum_{n\geq 1} \alpha^n \ \text{è indeterminata}.$

(6) Se $\alpha = -1$, $\alpha^n = (-1)^n = \begin{cases} 1 & \text{n pari} \\ -1 & \text{n dispari} \end{cases}$ $S_0 = a_0 = (-1)^0 = 1$ $S_1 = a_0 + a_1 = (-1)^0 + (-1) = 0$ $S_2 = a_0 + a_1 + a_2 = (-1)^0 + (-1) + 1 = 1$ $S_3 = a_0 + a_1 + a_2 + a_3 = (-1)^0 + (-1) + 1 + (-1) = 0$ S_n non ha limite, la serie è indeterminata.

DEFINITION 10.2. Calcolo di una serie: Come si calcola $\sum_{n=b}^{\infty} \alpha^n = \alpha^k + \alpha^{k+1} + \dots$ per $|\alpha| < 1$ e $\alpha \neq 0$?

$$\sum_{n=k}^{\infty}\alpha^n=\alpha^k+\alpha^{k+1}...=\alpha^k(1+\alpha+\alpha^2+...)=\frac{\alpha^k}{1-\alpha}$$

Example. $\left\{\alpha = \frac{1}{2}, k = 1\right\} \implies \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{\alpha^k}{1 - \alpha} = \frac{\left(\frac{1}{2}\right)^1}{1 - \frac{1}{\alpha}} = \frac{\frac{1}{2}}{\frac{1}{\alpha}} = 1$

Example. $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 1 + 1 = 2$

Example. $\left\{\alpha = -\frac{1}{3}, k = 0\right\} \implies \sum_{n=0}^{\infty} \left(-\frac{1}{3}\right)^n = \frac{1}{1 + \frac{1}{3}} = \frac{3}{4}$

REMARK. Se ho un $(-1 < \alpha < 0) \iff (0 < -\alpha < 1) \iff (1 < 1 - \alpha < 2)$

la somma $\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\infty}$ è compresa tra $\frac{1}{2}$ e 1.

$$\underbrace{\left(\sum_{n=0}^{\infty}\alpha^{n}=1+\underbrace{\alpha}_{<0}+\underbrace{\alpha^{2}}_{>0}+\ldots\right)}_{}$$

Calcolo di serie con sviluppo di Taylor

$$\sum_{n} \frac{1}{n!} = ?$$

Remark. Quando scrivo $\sum\limits_{n}$ vuol dire che sommo tutti gli $n\in\mathbb{N}$

• Partiamo da
$$e^x = \sum_{j=0}^n \frac{x^j}{j!} + \underbrace{R_n(x)}_{\text{Resto di Lagrange}}$$

REMARK.
$$R_n = \frac{f^{(n+1)}(z)}{(n+1)!} \cdot (x - x_0)^{n+1} \text{ con } x < z < x_0$$

- Nel nostro caso $R_n(x) = \frac{e^z}{(n+1)!} \cdot (x-0)^{n+1} = \frac{e^z}{(n+1)!} \cdot x^n$ con 0 < z < x
- Specifichiamo x = 1 e troviamo

$$e^{1} = \sum_{\substack{j=0 \ S_n \text{ per } \sum_{j=1}^{1} \\ 1}}^{n} + R_n(1) = \frac{e^z}{(n+1)!} \cdot 1$$

• Quindi $|e - S_n| = \frac{e^z}{(n+1)!}$ con 0 < z < 1

$$\lim_{n \to +\infty} \frac{e}{(n+1!)} = 0 \implies S_n \to e$$

• Quindi $\sum_{n} \frac{1}{n!} = e$

Theorem 10.1. Condizione necessaria: Sia a_n una successione e la serie $\sum a_n$ converge,

allora $\lim_{n\to\infty} a_n = 0$ tende a zero

Proof.

• Il trucco è considerare la differenza tra due somme parziali successive.

$$S_{n+1} = \underbrace{a_0 + a_1 + a_2 + \dots + a_n}_{S_n} + a_{n+1}$$

- Quindi $S_{n+1} S_n = a_{n+1}$ Se suppongo che $\sum_{n=0}^{\infty} a_n = l$, con $l \in \mathbb{R}$, allora $(S_{n+1} S_n) \to (l-l) = 0$
- Segue che $a_n \to 0$, tende a zero.

Conseguenza pratica

Se ho una $\{a_n\}$ e $\lim_{n\to\infty} a_n \neq 0$ (può essere tutto e anche non esistere), allora sicuramente la serie non converge

Example.
$$a_n = 1 \ \forall n$$

Example.
$$a_n = 1 \ \forall n$$

$$\lim_{n \to \infty} a_n = 1 \iff \sum_n 1 = \infty, \ non \ converge$$

Attenzione

Se $\lim a_n = 0$ non è detto che la serie *converga*!

THEOREM 10.2. Collega la somma di 2 serie con la serie di 2 somme: Se a_n e b_n sono due successioni e $\sum_{n} a_n$ e $\sum_{n} b_n$ hanno senso (non sono indeterminate), allora anche la somma:

$$\sum_{n} (a_n + b_n) \text{ ha senso e vale} \underbrace{\left(\sum_{n} a_n + \sum_{n} b_n\right)}_{Supponendo \text{ non sia } (+\infty - \infty) \text{ e } (-\infty + \infty)}$$

Example.
$$a_n = \left(\frac{1}{2}\right)^n, b_n = \left(\frac{1}{3}\right)^n$$

$$\sum_{n=0}^{\infty} a_n = \frac{1}{1-\frac{1}{2}} = 2, \sum_{n=0}^{\infty} a_n = \frac{1}{1-\frac{1}{3}} = \frac{3}{2}$$
Quindi $\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n = 2 + \frac{3}{2} = \frac{7}{2}$

REMARK. Non c'è un teorema analogo riguardo al prodotto.

EXAMPLE 10.1.
$$a_n = \left(\frac{1}{2}\right)^n, b_n = \left(\frac{1}{3}\right)^n \in \sum_n a_n = 2, \sum_n b_n = \frac{3}{2}$$
 $a_n \cdot b_n = \left(\frac{1}{6}\right)^n, \in \sum_n (a_n \cdot b_n) = \sum_n \left(\frac{1}{6}\right)^n = \frac{1}{1 - \frac{1}{6}} = \frac{6}{5}$ $\frac{6}{5} \neq \left(2 \cdot \frac{3}{2}\right), \text{ infatti non vale. } \underline{Sbagliatissimo}$

REMARK. Può anche succedere che $\sum_n a_n$ e $\sum_n b_n$ convergono ma la serie dei prodotti $\sum_n a_n b_n$ non converge

10.1. Serie (definitivamente) a termini positivi

Theorem 10.3. Serie a termini positivi: Se ho una a_n definitivamente positiva, allora $\sum_n a_n$ non può essere indeterminata o andare a $-\infty$. Può solo convergere o divergere positivamente a $+\infty$.

PROOF. Abbiam visto che $S_{n+1} = S_n + a_{n+1}$ Se $a_n \geq 0$ definitivamente, ho che $S_{n+1} \geq S_n$ definitivamente. Quindi $\{S_n\}$ è definitivamente crescente, con ciò ammette limite che può essere $l \in \mathbb{R}$ o $+\infty$

REMARK. Se $a_n \leq 0$ definitivamente, analogamente la $\sum_n a_n$ esiste e può solo convergere o divergere a $-\infty$

Theorem 10.4. Criterio del confronto: Se $0 \le a_n \le b_n$ definitivamente, allora:

(1) Se
$$\sum b_n$$
 converge $\implies \sum a_n$ converge

(2) Se
$$\sum_{n=0}^{n} b_n$$
 diverge $\implies \sum_{n=0}^{n} a_n$ diverge

CLAIM. Se $0 \le a_n \le b_n$ vale $\forall n \in \mathbb{N}$, allora $0 \le \sum_n a_n \le \sum_n b_n$

EXAMPLE.

•
$$\sum_{n=0}^{\infty} 1 = +\infty$$
 allora $\sum_{n=0}^{\infty} n = +\infty$ (perché $0 \le \underbrace{1}_{n} \le \underbrace{n}_{k} \forall n \ge 1$)

•
$$\sum_{n} \frac{\sin^{2} n}{2n}$$

$$a_{n} = \frac{\sin^{2} n}{2n} \le b_{n} = \frac{1}{2^{n}}$$

So che $\sum_n b_n$ converge, dunque per il teorema $\sum_n a_n$ converge e sappiamo calcolare la somma.

Ma di $\sum_{n=0}^{\infty} a_n$ non sappiamo calcolare la somma. Dio

• $a_n = n!$ $\sum_{n} n!$, abbiamo $n! \ge n \ \forall \ n \ge 1$ e sappiamo che $\sum_{n} n = +\infty \implies \sum_{n} n! = +\infty$ THEOREM 10.5. Criterio del confronto asintotico: Siano a_n e b_n due successioni definitivamente positive $(a_n, b_n > 0)$, supponiamo che $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l$ con $l \in \overline{\mathbb{R}}$. Succede questo:

(1) Se $l \in (0, +\infty)$, allora $\sum_{n} a_n e \sum_{n} b_n$ hanno lo stesso comportamento, o **divergono entrambe** $(a + \infty)$ o **convergono entrambe**.

Casi limite:

(2) Se
$$l = 0$$
 e so che $\sum_{n} b_n$ converge $\Longrightarrow \sum_{n} a_n$ converge.

PROOF. $\frac{a_n}{b_n} \to 0 \implies \frac{a_n}{b_n} < 1 \implies \underline{a_n < b_n}$ e da qui è chiaro che $\sum_n b_n$ converge $\implies \sum_n a_n$ converge \square

(3) Se
$$l = +\infty$$
 e $\sum_{n} b_n$ diverge $\implies \sum_{n} a_n$ diverge.

PROOF.
$$\frac{a_n}{b_n} \to +\infty \implies \frac{a_n}{b_n} > 1 \implies \underline{a_n > b_n}$$
 come sopra...

REMARK. In (2) se la $\sum_{n} b_n$ diverge a $+\infty$ non concludo niente a riguardo $\sum_{n} a_n$.

EXAMPLE.
$$\sum_{n} \frac{1}{2^n - log(n)}$$
, allora $a_n = \frac{1}{2^n - log(n)} > 0$ perché $2^n > log(n)$

• Uso il confronto asintotico, mi devo chiedere quali sono i termini più importanti di a_n ?

$$2^n \in -log(n)$$

• Per $n \to +\infty$ chi cresce più velocemente?

$$2^n$$

• Quindi faccio confronto asintotico con $b_n = \frac{1}{2^n}$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\frac{1}{2^n-\log(n)}}{\frac{1}{2^n}}=\lim_{n\to\infty}\frac{2^n}{2^n-\log(n)}=\lim_{n\to\infty}\frac{1}{1-\underbrace{\frac{\log(n)}{2n}}}=\lim_{n\to\infty}\frac{1}{1}=1\to l=1$$

- Quindi $l \in (0, +\infty)$, quindi $\sum_{n} a_n$ ha lo stesso comportamento $\sum_{n} b_n = \sum_{n} \left(\frac{1}{2}\right)^n$ che converge.
- Quindi $\sum_{n} a_n$ converge.

Theorem 10.6. Criterio della radice (per serie): Sia a_n una successione tale che $a_n > 0$ e suppongo $\exists \lim_{n \to \infty} \sqrt[n]{a_n} = l \text{ con } l \in \overline{\mathbb{R}}$. Allora:

- (1) Se 0 < l < 1, allora $\sum_{n} a_n$ converge $\left(\implies \lim_{n \to \infty} a_n = 0 \right)$
- (2) Se l > 1, allora $\sum a_n^n diverge \ a + \infty$

- (1) Se l < 1 scelgo un $\alpha \in \mathbb{R}$ tale per cui $l < \alpha < 1$, visto che $\sqrt[n]{a_n} \to l$ definitivamente avrò $\sqrt[n]{a_n} < \alpha$, quindi $a_n < \alpha^n$ definitivamente. Per confronto, visto $\sum \alpha^n$ converge, concludo che anche $\sum a_n$ converge.
- (2) Discorso analogo, prendo un α tale per cui $1 < \alpha < l$ e poi definitivamente $\alpha < \sqrt[n]{a_n}$ perché si avvicina a l. Quindi $\alpha^n < a_n$ definitivamente e avrò che $\sum_n \alpha^n = +\infty$ (diverge⁺) perché $\alpha > 1$, quindi per confronto anche $\sum a_n$ diverge⁺

Remark. Come per le successioni con l=1 non si conclude niente.

Example.
$$\sum_{n} \frac{n}{3^n}$$
, allora $a_n = \frac{n}{3^n}$ quindi $\sqrt[n]{a_n} = \frac{\sqrt[n]{n}}{3}$ $\frac{\sqrt[n]{n}}{3} \to \frac{1}{3} \Longrightarrow l = \frac{1}{3}$ $l < 1$ quindi $\sum_{n} \frac{n}{3^n}$ converge.

THEOREM 10.7. Criterio del rapporto (per serie): Sia a_n una successione tale che $a_n > 0$. Se $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l \text{ con } l \in \overline{\mathbb{R}}$. Allora:

(1) Se 0 < l < 1, allora $\sum_{n} a_n$ converge.

- (2) Se l > 1, allora $\sum_{n} a_n^n diverge$.

Proof.

- Sappiamo che se \exists il $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ allora \exists anche il $\lim_{n\to\infty} \sqrt[n]{a_n}$, ed è uguale allo stesso l. Quindi la dimostrazione è analoga a quella del criterio della radice.
- (2) Analogo al (2) del criterio della radice.

EXAMPLE.
$$\sum_{n} \frac{n^2}{n!}$$
, allora $a_n = \frac{n^2}{n!}$ [criterio del rapporto] $\frac{a_{n+1}}{a_n} = \frac{(n+1)^2}{(n+1)!} \cdot \frac{n!}{n^2} = \frac{(n+1)^{\frac{l}{l}}}{(n+1)!} \cdot \frac{\cancel{n}!}{n^2} = \frac{n+1}{n^2} \to 0$ Quindi visto che $l=0$, concludo che $\sum_{n} \frac{n^2}{n!}$ converge.

REMARK. I due criteri appena visti si applicano anche a successioni definitivamente negative. L'importante è che la successione non saltelli, deve essere o definitivamente positiva o definitivamente negativa.

• Infatti se $a_n < 0$, allora $-a_n$ sarà positivo definitivamentem quindi a $-a_n$ posso applicare i criteri visti e poi $\sum_{j=0}^{n} a_j = -\sum_{j=0}^{n} -(a_j)$, dunque passando a limite: $\sum_{n=0}^{\infty} a_n = -\sum_{n=0}^{\infty} -(a_n)$ (se \exists i limiti)

10.2. Legami con gli integrali impropri

DEFINITION 10.3. Serie come integrale improprio: Una serie $\sum_{n} a_n$ si può scrivere come integrale improprio. Considero una funzione $f:[0,+\infty]\to\mathbb{R}$ data da $f(x)=a_{[x]}$ ($[x]=parte\,intera$)

Example. $a_{\left[\frac{1}{2}\right]} = a_0$

- Si ha $\sum_{j=0}^{n} a_j = \int_{0}^{n+1} f(x) dx$
- Quindi prendendo il limite per $n \to \infty$, trovo che $\sum_{n} a_n = \int_{0}^{\infty} f(x) dx$ (se \exists i limiti)

Viceversa: Partendo da $f:[0,+\infty]\to\mathbb{R}$ io posso considerare la successione $a_n=f(n)$, e la serie

$$\sum_{n} a_n = \sum_{n} f(n)$$

• Questa volta $\sum_{n=0}^{\infty} a_n \in \int_{0}^{\infty} f(x) dx$ non saranno proprio uguali

THEOREM 10.8. Criterio dell'integrale: Fissiamo un $\overline{n} \in \mathbb{N}$, e una $f : [\overline{n}, +\infty] \to \mathbb{R}$ che sia debolmente decrescente, continua, non negativa $f(x) \ge 0 \ \forall x \in [\overline{n}, +\infty]$, e poniamo a = f(n).

Allora $\sum_{n} a_n e^{\int_{-\infty}^{\infty} f(x) dx}$ hanno lo stesso comportamento, e

Somma della parte dei rettangoli sottesa al grafico

$$\sum_{n=\overline{n}+1}^{\infty} a_n \leq \int_{\overline{n}}^{\infty} f(x) \ dx \leq \sum_{n=\overline{n}}^{\infty} a_n$$
 dei rettangoli sottesa al grafico Somma di tutti i rettangoli

EXAMPLE.

• Serie Armonica Generalizzata $\sum_{n} \frac{1}{n^{\alpha}} \operatorname{con} \alpha \in \mathbb{R}^{+} \implies \alpha > 0$

$$\int_{n}^{\infty} -\sum_{n} \frac{1}{n^{\alpha}} = \begin{cases} converge & se \ \alpha > 1\\ diverge^{+} & se \ \alpha \leq 1 \end{cases}$$

- Infatti
$$f(x) = \frac{1}{x^{\alpha}}$$
 (è decrescente e continua), $\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$ si comporta esattamente come $\sum_{n} \frac{1}{n^{\alpha}}$

REMARK. Se $\alpha \leq 0$, $\sum_{n} \frac{1}{n^{\alpha}}$ diverge perché non è soddisfatta la condizione necessaria

10.3. Serie a segno arbitrario

DEFINITION 10.4. Convergenza assoluta: Diciamo che $\sum_{n} a_n$ converge assolutamente se $\sum_{n} |a_n|$ converge.

Theorem 10.9. Criterio dell'assoluta convergenza: Se $\sum_{n} a_n$ converge assolutamente, allora

converge e in più sappiamo che $\left|\sum_{n} a_{n}\right| \leq \sum_{n} |a_{n}|$

PROOF. Segue quella dell'analogo per gli integrali impropri:

$$\begin{vmatrix} a_n = a_n^+ - a_n^- & 0 \le a_n^+ \le |a_n| \\ |a_n| = a_n^+ + a_n^- & 0 \le a_n^- \le |a_n| \end{vmatrix}$$

• E se $\sum_{n} |a_n|$ converge, per confronto convergono $\sum_{n} a_n^+$ e $\sum_{n} a_n^-$, quindi converge anche

$$\sum_{n} a_n = \sum_{n} a_n^+ - \sum_{n} a_n^-$$

• Per la disuguaglianza triangolare:

$$\left|\sum_{j=0}^n a_j\right| \leq \sum_{j=0}^n |a_j| \text{ e prendendo il limite per } n \to +\infty \text{ trovo che } \left|\sum_n a_n\right| \leq \sum_n |a_n|$$

EXAMPLE. $\sum_{n=1}^{\infty} \frac{sen(n)}{n^2}$, allora $a_n = \frac{sen(n)}{n^2}$ (è a segno variabile) $|a_n| = \left| \frac{sen(n)}{n^2} \right| = \frac{|sen(n)|}{n^2} < \frac{1}{n^2}$

• Visto che $\sum_{n} \frac{1}{n^2}$ converge (serie armonica generalizzata con $\alpha=2>1$) per confronto segue che $\sum_{n} \left| \frac{sen(n)}{n^2} \right|$ converge, quindi per il [criterio dell'assoluta convergenza] concludo che anche $\sum_{n} \frac{sen(n)}{n^2}$

REMARK. Se $\sum_{n} |a_n|$ diverge, non si può dire niente riguardo a $\sum_{n} a_n$.

10.4. Serie a segno alterno

DEFINITION 10.5. Serie a segno alterno: Una serie a segno alterno è una serie della forma: $\sum (-1)^n \cdot a_n$, dove $\{a_n\}$ è una successione a segno costante (sempre positiva o negativa).

Example.
$$\sum_{n} \frac{(-1)^n}{n^3}$$
 è a segno alterno, $\sum_{n} (-1)^n \cdot sen(n)$ non è a segno alterno.

THEOREM 10.10. Criterio di Leibniz: Sia a_n una successione ≥ 0 , debolmente decrescente e $\lim_{n\to\infty} a_n = 0$,

allora
$$\sum_{n} (-1)^n \cdot a_n$$
 converge. $\left(e \left| \sum_{j=0}^{\infty} (-1)^j \cdot a_j - \sum_{j=0}^{\infty} (-1)^j \cdot a_j \right| \le a_{n+1} \right)$

EXAMPLE. $\sum_{n} \frac{(-1)^n}{n}$ converge, perché $a_n = \frac{1}{n}$ è:

- $\frac{1}{n} \ge 0$ $\frac{1}{n}$ è debolmente crescente $\lim_{n \to \infty} \frac{1}{n} = 0$

REMARK. La serie dei valori assoluti è: $\sum_{n} \left| \frac{(1)^{n}}{n} \right| = \sum_{n} \frac{1}{n} = +\infty$ (diverge) Questo è un esempio in cui la serie $\sum_{n} |b_{n}|$ diverge ma $\sum_{n} b_{n}$ converge.

Esempi di avvertimento

(1) Può essere che $\sum_{n} a_n$ e $\sum_{n} b_n$ convergano ma $\sum_{n} a_n \cdot b_n$ non convergano.

Example.
$$a_n = \frac{(-1)^n}{n}, b_n = \frac{(1)^n}{\log(n)}$$

- $\sum_{n} a_n$ converge, $\sum_{n} b_n$ converge (per Leibniz) $a_n b_n = \frac{(-1)^n}{n} \cdot \frac{(-1)^n}{\log(n)} = (-1)^{2n} \cdot \frac{1}{n \cdot \log(n)} = \frac{1}{n \cdot \log(n)}$
- $\sum_{n} a_n \cdot b_n = \sum_{n} \frac{1}{n \cdot log(n)} \to diverge$

(2) Il confronto asintotico non funzione se il segno della successione non è costante.

Example.
$$a_n = \frac{(-1)^n}{\sqrt{n}}, b_n = \frac{(1)^n}{\sqrt{n}} + \frac{1}{n} = \frac{(-1)^n \cdot \sqrt{n+1}}{n}$$

- Si ha $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{(-1)^n}{\sqrt{n}}}{\frac{(-1)^n \cdot \sqrt{n}+1}{n}} = \lim_{n \to \infty} \frac{(-1)^n \cdot \sqrt{n}}{(-1)^n \cdot \sqrt{n}+1} = \lim_{n \to \infty} \frac{1}{1 + \underbrace{\left(-1\right)^n \cdot \sqrt{n}}} = 1$
- Se il confronto asintotico funzionasse, mi direbbe che $\sum_{n} a_n$ e $\sum_{n} b_n$ si comportano uguale...
- Ma $\sum_{n} a_n = \sum_{n} \frac{(-1)^n}{\sqrt{n}}$ converge per Leibniz e $\sum_{n} b_n = \underbrace{\sum_{n} \frac{(-1)^n}{\sqrt{n}}}_{n} + \underbrace{\sum_{n} \frac{1}{n}}_{n} = diverge^+(a + \infty)$

CHAPTER 11

Formulario

Tabella dei limiti				
	$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	
	$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x \to 0 \text{ pos}} \left(1 + \frac{1}{x} \right)^x = 1$	$\lim_{x \to -1 \text{ negat}} \left(1 + \frac{1}{x} \right)^x = +\infty$	
	$\lim_{x \to -1 pos} \left(1 + x\right)^{\frac{1}{x}} = +\infty$	$\lim_{x\to 0} \left(1+\alpha x\right)^{\frac{1}{x}} = e^{\alpha}$	$\lim_{x \to +\infty} \left(1 + x\right)^{\frac{1}{x}} = 1$	
	$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a a > 0$	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$	$\lim_{x \to 0} \frac{(1+x)^{\lambda} - 1}{x} = \lambda$	
	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$	$\lim_{x \to 0} \frac{\tan x}{x} = 1$	
	$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$	$\lim_{x \to 0} \frac{\arctan x}{x} = 1$	$\lim_{x \to 1} \frac{(\arccos x)^2}{1 - x} = 2$	
	$\lim_{x\to\infty}\log_{\alpha}\left(1+\frac{1}{x}\right)^{x} = \log_{\alpha}e$	$\lim_{x \to \infty} \ln \left(1 + \frac{1}{x} \right)^x = \ln e = 1$	$\lim_{x \to 0} \frac{x}{\log_{\alpha}(1+x)} = \frac{1}{\log_{\alpha} e}$	
	$\lim_{x \to +\infty} \log_a x = +\infty$	$\lim_{x \to -\infty} a^x = 0$	$\lim_{x \to \pm \infty} \left(1 + \frac{a}{x} \right)^{bx} = e^{ab}$	

$$\begin{aligned} \mathbf{Sviluppi} & \text{ di Taylor per le funzioni elementari per } x \to 0 \\ e^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + o(x^n) \\ \sin x &= x - \frac{x^3}{6} + \frac{x^5}{5!} + \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+2}) \\ \cos x &= 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n+1}) \\ \tan x &= x + \frac{x^3}{3} + \frac{1}{2!} x^5 + \frac{17}{315} x^7 + \frac{62}{2835} x^9 + o(x^{10}) \\ \sinh x &= x + \frac{x^3}{6} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \\ \cosh x &= 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) \\ \tanh x &= x - \frac{x^3}{3} + \frac{1}{15} x^5 - \frac{17}{315} x^7 + \frac{62}{2835} x^9 + o(x^{10}) \\ \frac{1}{1-x} &= 1 + x + x^2 + x^3 + \dots + x^n + o(x^n) \\ \log(1+x) &= x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n+1}}{n} x^n + o(x^n) \\ \arctan x &= x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{(-1)^{n+1}}{2n+1} x^{2n+1} + o(x^{2n+2}) \\ \arctan x &= x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \\ (1+x)^\alpha &= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6} x^3 + \dots + \binom{\alpha}{n} x^n + o(x^n) \end{aligned}$$