Exercises Qing Liu

Séverin Philip

21 juillet 2018

General properties of Schemes 1

Reduced schemes and integral schemes

Exercise . (4.2)

Démonstration. Le morphisme canonique $\operatorname{Spec} \mathcal{O}_{X,x} \to X$ est donné par le morphisme $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$ pour un ouvert affine U de X contenant x. On note $\mathcal{O}_X(U) = A$ et l' morphisme est celui de localisation en \mathfrak{p} idéal premier associé à x. Si y est un point de U qui se spécialise en $x, x \in \{y\}$, par définition si \mathfrak{q} est l'idéal premier associé à y, on a $\mathfrak{q} \subset \mathfrak{p}$ d'où \mathfrak{q} est un idéal premier du localisé $A_{\mathfrak{p}}$. Par suite y est dans l'image de $\operatorname{Spec} A_{\mathfrak{p}} \to \operatorname{Spec} A$. Il est clair que réciproquement un élément de cette image provient d'un idéal premier de A_p et donc par localisation d'un idéal premier de A inclus dans \mathfrak{p} ce qui correspond à un point qui se spécialise en x. Comme le morphisme $\operatorname{Spec} \mathcal{O}_{X,x} \to X$ est indépendant du choix de U (Pourquoi?) cela suffit.

A mon avis ça dépend pas du choix de l'ouvert car si tu prends un autre ouvert V, tu peux trouver un affine W dans $U \cap V$. Alors tu écris un diagramme commutatif avec tous les $\mathcal{O}_X(X)$, $\mathcal{O}_X(U)$, $\mathcal{O}_X(V)$, $\mathcal{O}_X(W)$, les flèches de restrictions et les flèches vers $\mathcal{O}_{X,x}$. Ensuite tu appliques Spec et tu vois que tous les morphismes coïncident.

Exercise . (4.3)

Démonstration. On a une inclusion $\mathcal{O}_K[T] \hookrightarrow K[T]$ qui induit un morphisme $j \colon \operatorname{Spec} K[T] \to \operatorname{Spec} \mathcal{O}_K[T]$. On montre que c'est une immersion ouverte. Si $\mathfrak{p} \in \operatorname{Spec} K[T], j(\mathfrak{p}) = \mathfrak{p} \cap \mathcal{O}_K[T]$. L'image de j est $\operatorname{Spec} \mathcal{O}_K[T] \setminus V(t)$ qui est ouverte. En effet, si $t \in \mathfrak{p} \cap \mathcal{O}_K[T]$ alors $t \in \mathfrak{p}$ et $\mathfrak{p} = K[T]$ ce qui est impossible. Inversement, si $t \notin \mathfrak{p}$ avec \mathfrak{p} idéal premier de $\mathcal{O}_K[T]$ alors par localisation en $S = \mathcal{O}_K[T] \setminus \{0\}$ ($\mathcal{O}_K \setminus \{0\}$?) on a $\mathfrak{p}K[T]$ idéal premier qui

vérifie $\mathfrak{p}K[T] \cap \mathcal{O}_K[T] = \mathfrak{p}$. Il reste à voir que j_x^{\sharp} est un isomorphisme en tout point $x \in \operatorname{Spec} K[T]$ ce qui est trivialement le cas (même une égalité).

Yes je suis d'accord, en fait pour l'homéomorphisme on peut direct appliquer 2.1.7.c) avec $S = \mathcal{O}_K \setminus \{0\}$. Les morphismes entre les fibres sont bien des égalités je suis d'accord.

L'idéal (T) est le seul point de Spec K[T] qui se spécialise en (T,t). (Je crois?)

Je suis d'accord car cela revient à chercher les polynômes irréductibles P de K[T] tels que $(P) \cap \mathcal{O}_K[T] \subset (T,t)$. En localisant tu as nécessairement T|P et donc P = T. Enfin je crois que c'est bon.

Exercise . (4.8)

Démonstration. Soit x un point de X et (U_i) les ouverts affines qui recouvrent X (en nombre fini). On suppose que $x \in U_1$ quitte à renuméroté les ouverts. Le point x correspond à un idéal premier \mathfrak{p} contenu dans un idéal maximal \mathfrak{m} de $\mathcal{O}_X(U_1)$ qui lui même correspond à un point fermé de U_1 . On a donc l'existence de $x_1 \in U_1$ fermé dans U_1 et $x_1 \in \overline{\{x\}}$ la fermeture étant prise dans X. Si x_1 est fermé dans tous les autres U_i qui le contiennent il est fermé dans X. Sinon il existe un $i \in \{2, \ldots, n\}$ tel que $x_1 \in U_i$ et x_1 n'est pas fermé dans U_i . On peut à nouveau supposer que i = 2 et par le même argument qu'avant obtenir $x_2 \in U_2$ fermé dans U_2 et $x_2 \notin U_1$. En répétant le procédé au plus n fois on obtient un point fermé dans tous les ouverts affines U_i qui le contiennent.

Exercise . (4.11)

Démonstration. (i) \Rightarrow (ii) On montre que $f^{\sharp}(U)$ est injectif pour tout ouvert affine U de Y. Soit $g \in \mathcal{O}_Y(U)$ tel que $f^{\sharp}(U)(g) = 0$. Pour tout $y = f(x) \in U \cap f(X)$ on a

$$f_x^{\sharp} \colon \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$$

qui est un morphisme local et $f_x^{\sharp}(g) = 0 \in \mathfrak{m}_x$. D'où $g \in \mathfrak{m}_{f(x)}$. Or l'ensemble $\{y \in U, g \in \mathfrak{m}_y\}$ est un fermé de U, celui-ci contient f(X) c'est donc U tout entier. Il suit que $g \in \bigcap_{\mathfrak{p} \in \operatorname{Spec} \mathcal{O}_X(U)} \mathfrak{p}$ est nilpotent.

Comme Y est réduit g = 0. Le résultat est vrai sans l'hypothèse U affine en prenant un recouvrement par des ouverts affine.

 $(ii) \Rightarrow (iii)$ Par la proposition 4.18 le morphisme $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$ est injectif pour tout $x \in U$ donc en particulier si $V \subset U$ est un ouvert,

 $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ est injectif. En effet le diagramme suivant commute

Le résultat suit trivialement de cette remarque et de l'injectivité de $\mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}(V))$ par (ii).

 $(iii) \Rightarrow (iv)$ Soit V un ouvert de Y contenant $f(\xi_X)$. Le diagramme suivant commute et par (iii) les flèches sont injectives.

$$\mathcal{O}_{Y}(V) \longrightarrow \mathcal{O}_{X}(f^{-1}(V))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{Y,f(\xi_{X})} \longrightarrow \mathcal{O}_{X,\xi_{X}}$$

Comme ξ_X est le point générique de X qui est un schéma entier (integral?) son idéal maximal associé est (0). Par injectivité et le fait que $f_{\xi_X}^{\sharp}$ est local l'idéal maximal de $f(\xi_X)$ est donc lui même (0). Il suit que $f(\xi_X) = \xi_Y$.

 $(iv) \Rightarrow (v)$ Trivial.

 $(v)\Rightarrow (i)$ Comme Y est un schéma entier $\overline{\{\xi_Y\}}=Y.$

2 Morphisms and base change

2.1 The technique of base change

Proposition 2.1. 1.4 Démonstration du point d.

Démonstration. On considère U, V des sous-schémas ouvert de X et Y. Il faut vérifier que $i \times j$ induit un isomorphisme de $U \times_S V$ dans $p^{-1}(U) \cap q^{-1}(V)$. Soit Z un schéma et f, g des morphismes $Z \to U, Z \to V$. En composant avec les injections de U, V dans X et Y on obtient un diagramme commutatif

Il suit que la flèche du milieu se factorise par $p^{-1}(U) \cap q^{-1}(V)$. Comme le morphisme $i \times j$ est l'unique morphisme de $U \times_S V$ dans $X \times_S Y$ faisant commuter les diagrammes et se factorisant par $p^{-1}(U) \cap q^{-1}(V)$ c'est un isomorphisme $U \times_S V \simeq p^{-1}(U) \cap q^{-1}(V)$.

Exercise . (1.7)

Démonstration. On suppose X,Y et S affines, c'est-à-dire $X=\operatorname{Spec} M,$ $Y=\operatorname{Spec} N$ et $S=\operatorname{Spec} R.$ Le résultat dans le cas général suit du cas affine par recollement (Intuitivement ok, l'idée doit marcher mais un truc détaillé serait bien...). On note $f\colon R\to M,\ g\colon R\to N.$ Soit $(\mathfrak{p},\mathfrak{q})\in X\times Y$ tels que $\mathfrak{p}\in X_s,\ \mathfrak{q}\in Y_s$ pour un point $s\in S.$ On a donc $f^{-1}(\mathfrak{p})=s$ d'où les morphismes

$$R \longrightarrow M \longrightarrow M/\mathfrak{p}$$

induisent

$$R/s \to \longrightarrow M/\mathfrak{p}$$

$$k(s) \longrightarrow k(\mathfrak{p})$$

et il en est de même pour \mathfrak{q} et N. On a donc des morphismes $M \to k(\mathfrak{p})$ et $N \to k(\mathfrak{q})$ tel que le diagramme suivant commute

et donc par propriété du produit tensoriel on obtient l'existence de la flèche en pointillé d'où un morphisme naturel

Spec
$$(k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})) \to X \times_S Y$$
.

On vérifie maintenant que l'image de ce morphisme est contenu dans l'ensemble

$$\{z \in X \times_S Y, \ p(z) = \mathfrak{p}, q(z) = \mathfrak{q}\}.$$

Il faut vérifier que si I est un idéal premier de $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ alors $\varphi^{-1}(I)$ est l'idéal \mathfrak{p} de M où φ est l'application $M \to k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. Comme $\varphi(\mathfrak{p}) = 0$

on a une inclusion. Maintenant, si $m \in M \setminus \mathfrak{p}$ est tel que $\varphi(m) \in I$ alors comme $\varphi(m) = \overline{m} \otimes 1$ qui est inversible dans $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ ce qui est impossible car alors $I = k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. Donc $\varphi^{-1}(I) = \mathfrak{p}$ et ce raisonnement appliqué à N et \mathfrak{q} assure l'inclusion.

Il faut maintenant voir qu'un idéal I de $M \otimes_R N$ tel que $i^{-1}(I) = \mathfrak{p}$ et $j^{-1}(I) = \mathfrak{q}$ où i, j sont les applications $M \to M \otimes_R N$, $N \to M \otimes_R N$ est tel que $M \otimes_R N \to k(I)$ se factorise par $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. En effet, $\mathfrak{p} \otimes 1$ est donc dans I et est envoyé sur 0 dans k(I) donc on a une factorisation

$$M \otimes_R N \to M/\mathfrak{p} \otimes_R N/\mathfrak{q} \to k(I)$$
.

Il reste à voir que l'on peut étendre cette dernière flèche à $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. Il suit donc une factorisation de $k(I) \to X \times_S Y$ en

$$k(I) \longrightarrow \operatorname{Spec} (k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})) \longrightarrow X \times_S Y.$$

Exercise . (1.8)

Démonstration. C'est une conséquence de l'exercice précédent. Soit $y \in Y$, il existe un $s \in S$ tel que $y \in Y_s$. Par surjectivité de $X \to S$ la fibre X_s au dessus de s est non vide donc contient un point $x \in X$. Par l'exercice 1.7 l'ensemble

$$\{z \in X \times_S Y, \ p(z) = \mathfrak{p}, q(z) = \mathfrak{q}\}$$

est homéomorphe à Spec $(k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q}))$ qui est non vide donc contient au moins un point. Le morphisme $q: X \times_S Y$ est donc surjectif.

Exercise . (1.10)

Démonstration. Par la propriété universelle du produit fibré en tant qu'ensembles les applications $p\colon X\times_S Y\to X$ et $q\colon X\times_S Y\to Y$ donnent l'existence d'une unique application continue $f\colon |X\times_S Y|\to |X|\times_{|S|}|Y|$. Cette application est surjective par l'exercice 1.7.

On considère le produit tensoriel $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$. On a

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[X]/(X^2 + 1) = \mathbb{C}[X]/(X^2 + 1) = \mathbb{C}(X)/(X + i)(X - i)$$

et ce dernier anneau est isomorphe à $\mathbb{C} \times \mathbb{C}$ (Spécifier l'isomorphisme). Comme il n'y a qu'un point dans $\operatorname{Spec} \mathbb{C}$ le produit fibré des deux ensembles $|\operatorname{Spec} \mathbb{C}|$ sur $|\operatorname{Spec} \mathbb{R}|$ ne contient qu'un seul point. Par contre $\operatorname{Spec} (\mathbb{C} \times \mathbb{C})$ contient deux idéaux premiers (1,0) et (0,1). L'application f est donc surjective mais pas injective ces deux points du produit fibré de schémas ayant même image dans le produit fibré d'ensembles.

2.2 Applications to algebraic varieties

Exercise . (2.4)

Démonstration. On va considérer le cas où $S = \operatorname{Spec} k$ pour un corps k. Comme Y est de type finie sur k, pour U un ouvert affine de Y, $\mathcal{O}_Y(U)$ est une k-algèbre de type finie.

Pour un ouvert affine V de X contenant x on a un morphisme canonique $\operatorname{Spec} \mathcal{O}_{X,x} \to V$ provenant d'un morphisme $\mathcal{O}_X(V) \to \mathcal{O}_{X,x}$. On a $f_x^\sharp(U) \colon \mathcal{O}_Y(U) \to \mathcal{O}_{\operatorname{Spec} \mathcal{O}_{X,x}}(f_x^{-1}(U))$. Or $\mathcal{O}_{\operatorname{Spec} \mathcal{O}_{X,x}}(f_x^{-1}(U))$ correspond à une localisation de $\mathcal{O}_{X,x}$ et comme $\mathcal{O}_Y(U)$ est une k-algèbre de type finie, l'image de f_x qui est un k-morphisme est déterminé par l'image des générateurs de $\mathcal{O}_Y(U)$ sur k. Soient y_1, \ldots, y_n ces générateurs et $\frac{f_i}{g_i}$ leurs images. Soit g le produit des g_i , D(g) est un ouvert affine principal W contenant x de V et l'on a $\frac{f_i}{g_i} \in \mathcal{O}_X(W)$. On peut donc définir le morphisme f_U de U dans V tel que $f_U \circ i_x = f_x$. On peut définir des morphismes f_U de cette façon pour tout ouvert affine U de Y qui se recolle par construction et obtenir le morphisme f souhaité.

2.3 Some global properties of morphisms

Exercise . (3.1)

Démonstration. Par hypothèse les morphismes $f_i \colon f^{-1}(Y_i) \to Y_i$ sont des immersions fermés et se recollent. Comme f(X) est fermé il suit que f est une immersion fermée topologique. Il reste à voir que les applications locales sur les faisceaux sont surjectives. Or c'est un problème local et on peut donc se restreindre à Y_i où le résultat vient à nouveau de l'hypothèse sur les f_i . \square

Exercise . (3.2)

- Démonstration. $(iii) \Rightarrow (ii)$ Tout morphisme de X dans un schéma Y est séparé, c'est en particulier le cas du morphisme vers Spec \mathbb{Z} qui est un schéma affine.
 - $(ii) \Rightarrow (i)$ La composition de morphismes séparés est séparé et tout morphisme entre schéma affines est séparé. Par hypothèse il existe $f: X \to \operatorname{Spec} A$ séparé et on a $\operatorname{Spec} A \to \operatorname{Spec} \mathbb{Z}$ séparé, donc $X \to \operatorname{Spec} \mathbb{Z}$ est séparé.
 - $(i) \Rightarrow (iii)$ Je n'ai pas réussi mais je pense qu'il faut voir qu'il y a un lien entre le produit fibré sur \mathbb{Z} et sur un schéma Y et obtenir la diagonale de l'un comme image réciproque de la diagonale de l'autre.

Exercise . (3.10)

Démonstration. On a un diagramme commutatif

Le triangle de gauche est commutatif donc $p \circ (Id_X, f) = Id_X$. On a un autre diagramme commutatif

On vérifie que Γ_f l'image de (Id_X, f) est $\varphi^{-1}(\Delta_Y)$. Si $x \in X$, l'élément $(Id_X, f)(x)$ est déterminé uniquement (Est-ce vrai???) par ces deux égalités

$$p((Id_X, f)(x)) = x;$$

$$q((Id_X, f)(x)) = f(x).$$

Or si $x \in \varphi^{-1}(\Delta_Y)$, on a $p_Y(\varphi(x)) = q_Y(\varphi(x))$ car $\varphi(x) \in \Delta_Y$. D'où

$$f \circ p(x) = p_Y(\varphi(x)) = q_Y(\varphi(x)) = q(x).$$

Donc $x=(Id_X,f)(p(x))$ par la caractérisation précédente. La réciproque est claire en remontant les égalités.

J'arrive pas à montrer la caractérisation... Je sais pas si c'est vrai en fait. Soit $z \in X \times_S Y$, on voudrait montrer l'équivalence

$$z \in \Gamma_f \iff \exists x \in X \text{ tel que } p(z) = x \text{ et } q(z) = f(x)$$

L'implication directe, c'est juste le premier diagramme que t'as écrit. Pour la réciproque c'est pas clair du tout...

Maintenant la manière de résoudre la question dans l'esprit géométrie algébrique (cad en ne comprenant plus rien :-D), c'est de faire comme dans EGA I.5.3.11 :-D. En fait le morphisme graphe est obtenu par changement de base du $Y \times_S Y$ -schéma $X \times_S Y$ le long du morphisme diagonal Δ_Y . En fait ça c'est vrai dans toute catégorie pourvue de produits fibrés. Maintenant, si Y est séparé, Δ_Y est une immersion fermée. Or, le fait d'être une immersion fermée est préservée par changement de base (faut que je relise la preuve de ca, on l'avait vu dans stacks, c'est aussi dans EGA). Cela torche la question 1. Je crois qu'on a aussi directe la deuxième question de l'exo, car si on considère (Id_X, f) corestreinte à son image c'est un isomorphisme car bijectif avec $p \circ (Id_X, f) = Id_X$, donc forcément $(Id_X, f) \circ p = Id_{X \times_S Y}$. En fait tous les sous-schémas de $X \times_S Y$ tels que la restriction de p à ce sous-schéma définisse un isomorphisme avec X sont des sous schéma graphe d'un morphisme (Cf EGA I.5.3.11).

3 Some local properties

3.1 Normal schemes

Exercise . (1.4)

 $D\acute{e}monstration$. Si X est normal alors il est normal en tout point donc en particulier pour les points fermés.

Soit $x \in X$ un point qui n'est pas fermé. Alors par l'exercice 2.4.8 il existe un point fermé y dans $\overline{\{x\}}$. Soit V un ouvert affine contenant y, alors si $x \notin V$ on aurait $x \in X \setminus V$ qui est fermé donc en particulier $\overline{\{x\}} \subset X \setminus V$ et donc $y \in X \setminus V$ ce qui est une contradiction. Il suit que $x \in V$ et que l'on obtient $\mathcal{O}_{X,x}$ par localisation de $\mathcal{O}_{X,y}$. Ce dernier est donc réduit, intègre ou normal si $\mathcal{O}_{X,y}$ l'est ce qui prouve l'implication.

Exercise . (1.9)

 $D\acute{e}monstration$. On considère A un anneau de Dedekind et $X=\operatorname{Spec} A$. Soit $x_0\in\operatorname{Spec} A$ un point fermé et $U=X\setminus\{x_0\}$ un ouvert. On note \mathfrak{m}_0 l'idéal associé à x_0 et t un générateur de \mathfrak{m}_0 dans $A_{\mathfrak{m}_0}$. L'idéal (t) se décompose en produit d'idéaux premiers car A est un anneau de Dedekind donc

$$(t)=\mathfrak{m}_0\prod_{i=1}^n\mathfrak{m}_i^{a_i}$$

et $V(t) = \{x_0, \dots x_n\}$ les points x_i étant ceux des idéaux \mathfrak{m}_i . On note t_i un générateur de \mathfrak{m}_i dans $A_{\mathfrak{m}_i}$. On peut choisir t_i tel que $t_i \notin \mathfrak{m}_0$. En effet, si $\mathfrak{m}_i \setminus \mathfrak{m}_i^2 \subset \mathfrak{m}_0$ on aurait $\mathfrak{m}_i \subset \mathfrak{m}_0$ et donc égalité par maximalité. On a $t = ut_i^{a_i}$ dans $A_{\mathfrak{m}_i}$ où u est inversible donc $t \cdot t_i^{-a_i} = u$ et par suite $f = t^{-1}t_i^{a_i} \prod_{i \neq j} t_j^{a_j} = u' \in A_{\mathfrak{m}_i} = \mathcal{O}_{X,x_i}$. Il existe donc des ouverts U_i contenant x_i tels que $f \in \mathcal{O}_X(U_i)$ et U_i ne contient pas x_0 . Il est de plus clair que $f \in \mathcal{O}_X(X \setminus V(t))$. Il suit que $f \in \mathcal{O}_X(U)$ car les U_i et $X \setminus V(t)$ forment un recouvrement ouvert de U.

3.2 Regular schemes

Définition 3.1. (2.1)

Démonstration. On montre que $\mathfrak{m}_x/\mathfrak{m}_x^2$ est le produit tensoriel de $\mathcal{O}_{X,x}$ modules $\mathfrak{m}_x \otimes_{\mathcal{O}_{X,x}} k(x)$. Soit $\phi \colon \mathfrak{m}_x \times k(x) \to \mathfrak{m}_x/\mathfrak{m}_x^2$ donné par $\phi(\overline{a},b) = \overline{ab}$ pour $a,b \in \mathcal{O}_{X,x} \times \mathfrak{m}_x$. L'application ϕ est $\mathcal{O}_{X,x}$ bilinéaire. On considère $f \colon \mathfrak{m}_x \times k(x) \to Z$ une application bilinéaire. Soient $a,b \in \mathcal{O}_{X,x} \times \mathfrak{m}_x$. Comme f est $\mathcal{O}_{X,x}$ bilinéaire on a

$$f(\overline{a}, b) = f(a \cdot \overline{1}, b) = af(\overline{1}, b) = f(\overline{1}, ab).$$

Il reste à voir que l'application $\mathcal{O}_{X,x}$ linéaire $\tilde{f} \colon b \mapsto f(\overline{1},b)$ se factorise par le quotient $\mathfrak{m}_x/\mathfrak{m}_x^2$. Si $b \in \mathfrak{m}_x^2$ par linéarité on peut supposer b = cd avec $c,d \in \mathfrak{m}_x$ et on a $\tilde{f}(b) = f(\overline{1},cd) = f(\overline{c},d) = f(\overline{0},d) = 0$. On a donc un diagramme commutatif

$$k(x) \times \mathfrak{m}_x \xrightarrow{f} Z$$

$$\downarrow \phi \qquad \downarrow \qquad \downarrow$$

$$\mathfrak{m}_x/\mathfrak{m}_x^2$$

ce qui donne le résultat.

L'application f_x^{\sharp} est locale donc $f_x^{\sharp-1}(\mathfrak{m}_x^2)=\mathfrak{m}_y^2$ d'où $f_{x|\mathfrak{m}_y}^{\sharp}$ induit

$$\widetilde{f}^{\sharp}_{x} \colon \mathfrak{m}_{y}/\mathfrak{m}_{y}^{2} o \mathfrak{m}_{x}/\mathfrak{m}_{x}^{2}.$$

Soit $g \in T_{X,x}$ on a $g \circ \tilde{f}_x^{\sharp} \colon \mathfrak{m}_y/\mathfrak{m}_y^2 \to k(x)$. Si k(y) = k(x) on a donc une application canonique

$$T_{X,x} \longrightarrow T_{Y,y}$$
 $g \longmapsto g \circ \hat{f}_x^{\sharp}.$

Dans le cas général $k(y)\subset k(x)$ et on effectue une extension des scalaires à droite.

Exercise . (2.1)

Démonstration. On $f_x^{\sharp}(\mathfrak{m}_x)$ engendre \mathfrak{m}_x si et seulement s'il existe des éléments a_1,\ldots,a_n de \mathfrak{m}_y tels que $f_x^{\sharp}(a_i)$ engendre \mathfrak{m}_x . Il suit que les $f_x^{\sharp}(a_i)$ forment une partie génératrice de $\mathfrak{m}_x/\mathfrak{m}_x^2$ et donc une forme linéaire $g\in T_{X,x}$ est entièrement déterminé par ses valeurs en ces points d'où l'injectivité de $T_{f,x}$. Réciproquement, si $f_x^{\sharp}(\mathfrak{m}_y)$ n'engendre pas \mathfrak{m}_x alors si $b_1,\ldots b_n$ engendre \mathfrak{m}_x et est minimale alors c'est une base de $\mathfrak{m}_x/\mathfrak{m}_x^2$ en tant que k(x)-espace vectoriel. Supposons que b_n ne soit pas dans l'image $f_x^{\sharp}(\mathfrak{m}_y)$ alors deux formes linéaires qui coïncident sur b_1,\ldots,b_{n-1} et diffèrent sur b_n auront même image par $T_{f,x}$.

(Pas réussi à démontrer la deuxième assertion dans le cas de type finie)

Exercise . (2.2)

Démonstration. La variété algébrique affine $\operatorname{Spec} k[x,y,z]/(x^2-yz)$ est de dimension 2 car il y a une relation algébrique liant x,y,z et donc le degré de transcendance de l'anneau sur k est 2. L'anneau local en o=(0,0,0) est aussi de dimension 2 l'idéal associé étant maximal. L'idéal maximal de $\mathcal{O}_{X,o}$ est engendré par x,y,z et la dimension sur k(o)=k de $(x,y,z)/(x,y,z)^2$ est 3 donc la variété n'est pas régulière en o. En effet, la relation $x^2=yz$ ne donne pas d'information modulo $(x,y,z)^2$ et donc $(x,y,z)/(x,y,z)^2$ est engendré par x,y,z.

Le critère Jacobien donne que l'anneau est régulier en tout point de X(k) sauf (0,0,0), la matrice étant

$$\begin{bmatrix} 2x & -z & -y \end{bmatrix}$$

donc de rang 1 partout sauf au point 0.

(Pour la normalité il n'y a pas de critère?)

L'anneau $A=k[x,y,z]/(x^2-yz)$ est normal. Soit $\varphi\colon k[x,y,z]\to k[S,T]$ l'application défini par $\varphi(x)=ST,\,\varphi(y)=S^2$ et $\varphi(z)=T^2$. Alors le noyau de φ est (x^2-yz) . L'inclusion $(x^2-yz)\subset \operatorname{Ker}\varphi$ est par définition. Pour l'inclusion réciproque soit f dans le noyau, on effectue la divison de f par (x^2-yz) dans l'anneau k[y,z][x]. On obtient $f=g(x^2-yz)+r$ où $\deg_x r\leq 1$. On a r=a(y,z)x+b(y,z) et de plus, $\varphi(r)=0$. Il suit $a(S^2,T^2)ST+b(S^2,T^2)=0$ ce qui est possible seulement si a=b=0 par considération des degrés en S ou T. On a obtenu que $A\simeq k[S^2,T^2,ST]$. En particulier c'est un sous-anneau de k[S,T] est l'extension est entière car T est racine de X^2-T^2 et de même pour S. On en déduit à nouveau que A est de

dimension 2. Finalement comme k[S,T] est factoriel il est normal. Donc si $f \in \operatorname{Frac}(k[S^2,T^2,ST))$ est entier sur celui-ci on a $f \in k[S,T]$ donc pour $f = \frac{P}{C}$ on obtient

$$P = R(S, T)Q.$$

Il reste à remarque qu'un élément $h = \sum a_{ij}S^iT^j \in k[S,T]$ appartient à $k[S^2,T^2,ST]$ si et seulement si $a_{ij}=0$ pour i-j impair. On en déduit une contradiction si R n'appartient pas à $k[S^2,T^2,ST]$.

Exercise . (2.3)

 $D\acute{e}monstration$. a) En utilisant le critère Jacobien on obtient que tous les points sont lisses (donc réguliers) sauf peut être (0,0) mais celui-ci n'est pas sur la variété.

b) La fibre spéciale est donné par le produit tensoriel

$$\mathcal{O}_K[x,y]/(x^2+y^3+t^n)\otimes_{\mathcal{O}_K}\mathcal{O}_K/\mathfrak{m}=\mathcal{O}_K/\mathfrak{m}\otimes_{\mathcal{O}_K}\mathcal{O}_K=k[x,y]/(x^2+y^3).$$

Le schéma affine associé est réduit si et seulement si (x^2+y^3) est radical. Comme k[x,y] est factoriel il suffit de montrer que x^2+y^3 est premier. Dans k[y][x] si on a

$$(a(y)x + b(y))(c(y)x + d(y)) = x^2 + y^3$$

alors a(y)c(y)=1, a(y)d(y)+b(y)c(y)=0 et $b(y)d(y)=y^3$. La première égalité donne $a(y)=\lambda\in k^*$ et $c(y)=\lambda^{-1}$. Il suit par la deuxième que les degrés en y de b et d sont égaux et donc la troisième égalité ne peut avoir lieu. L'anneau est réduit et le lemme 1.18 permet de conclure à la normalité.

- (Il faut encore montrer la platitude des $\mathcal{O}_X(U)$ et normalité de X_K)
- c) L'anneau $A_{\mathfrak{m}}$ est de dimension 2 où \mathfrak{m} est l'idéal maximal engendré par (x,y,t). On a $\mathfrak{m}^2=(t^2,tx,ty,x^2,xy,y^2)$ et donc

$$x^2 + y^3 + t^n = 0 \Rightarrow t^n = 0 \mod \mathfrak{m}^2.$$

Il suit que si n = 1 on a $\mathfrak{m}/\mathfrak{m}^2$ engendré par (x, y) donc le point est régulier. Si n > 1, il n'y a pas de nouvelles relations et le point est singulier.

(J'aimerai bien une interprétation de ce qu'il se passe quand n > 1 c'est vraiment bizarre ce truc)