Problem:

The joint probability dentity function of the two dimensional r.v is $f(x,y) = \frac{8\pi y}{9}$, $1 < \pi < y < 2$. Find the Conditional density function of x given y and y given x. Also verity the Conditional density function are Valid. Find $P(x < \frac{3}{2})$.

Adn. Given region of integration for 5(n,y) $|\langle x| \langle x| \rangle, \quad |\langle y| \langle x| \rangle, \quad |\langle x| \rangle | |\langle x|$

Marginal densities $g \times ad Y$ $f(x) = \int_{1}^{2} f(x,y) dy = \int_{1}^{2} \frac{g}{g} dy = g$ $f(x) = \frac{4\pi}{g} \left[(4-\pi^{2})^{2} \right] \quad 1 \leq \pi \leq g$ $f(y) = \int_{1}^{2} f(x,y) dx = \int_{1}^{2} \frac{g\pi y}{g} dx = \frac{gy}{g} \left[\frac{\pi^{2}}{2} \right] = \frac{gy}{g} \left[\frac{y^{2}-1}{2} \right]$ $f(y) = \frac{4y}{g} \left[\frac{y^{2}-1}{2} \right], \quad 1 \leq y \leq g$

Conditional density function g \times given Y. $\frac{1(\pi/y)}{1(\pi/y)} = \frac{1(\pi/y)}{1(\pi/y)} = \frac{1}{1(\pi/y)} = \frac{1}$

Conditioned density function $\frac{6}{9} \frac{y}{given} \times \frac{4}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac$

$$f(y|x) = \frac{2y}{4-x^2}$$
 $\pi < y < 2$

Find P(X<2/2)

 $= \int_{0}^{1} \frac{4\pi}{9} \left[4 - n^{\frac{1}{2}} \right] dn$

 $= \int f(\pi) d\pi$

Viritiation:
$$y$$

$$\int f(x)y dx = \int \frac{dx}{y^2-1} dx = \frac{2}{y^2-1} \int xdx$$

$$= \frac{x}{y^2-1} \left[\frac{x^2}{x^2} \right]_1^y = \frac{1}{y^2-1} \left[\frac{x^2}{y^2-1} \right]_1^y$$

$$= 1$$

$$f(n|y) \text{ is Volid.}$$

$$= \frac{1}{3} \frac{3}{2} \frac{3}{4 - n^2} dn$$

$$= \frac{4}{9} \int_{1}^{3} (4\pi - n^3) dn$$

$$= \frac{1}{4 - n^2} \left[\frac{y^2}{x^2} \right]_{n}^{2}$$

$$= \frac{1}{4 - n^2} \left[\frac{4}{n^2} \right] = 1$$

$$f(y|n) \text{ is Volid.}$$

Transformation of Random Variables:

$$(x,y) \rightarrow (0,v)$$

ULV are defined by
$$U=f_1(x,y)$$
, $V=f_2(x,y)$

Procedure!

- I Find the joint pd t of (x, Y) if it is not given.
- 2. U= fi(x,y) & v = fa(x,y) will be giren. From this we have to enpren the relation in the form X = 9, (0, 0) Y = 9, (0, 0)

$$\frac{\partial (1,y)}{\partial (1,y)} = \begin{vmatrix} \frac{\partial 1}{\partial x} & \frac{\partial 1}{\partial y} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} \end{vmatrix}$$

- 4. Find the joint pd.t of (U,V) using the formula f(U,V) = \allay) (.f(a,y) [Here f(a,y) > con be written
 - 5. Find the marginal densities f(v) from f(u, v)
 - 6. Find the limits for t(u,v), t(u) & t(v) using the relation in Step 2.

Problem.

If the foint density of x, +xx is given by

$$f(x_{1}, x_{0}) = e^{(x_{1}+x_{0})}$$
, $x_{1}, x_{2} > 0$ find the p.d.f of $Y = \frac{x_{1}}{x_{1}+x_{0}}$.

for Convenience
$$x_1 = x$$
 $x_2 = y$

Given
$$U = \frac{x}{x+y}$$
 Let $V = x+y$

$$V = \frac{\times}{\sqrt{}} \Rightarrow \boxed{\times = 0 }$$

Also
$$V = X + Y$$

 $V = UV + Y$
 $\Rightarrow Y = V - UV$

$$\frac{\partial (x,y)}{\partial (u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ -v & 1-u \end{vmatrix} = \frac{v}{v}$$

$$\frac{\partial(u,v)}{\partial(u,v)} = \frac{\partial(u,v)}{\partial(u,v)} \cdot f(u,v)$$

$$= 0 0$$

$$= 0 0$$

$$= 0 0$$

Limits for uso

$$\chi_{20} \Rightarrow \chi_{20}$$

$$\Rightarrow u < i$$

Judv= uv - Jvdy

70 find 5(0) 00 00 -0	Judiv:	uv _ (vdy
To find $f(0)_{\infty}$ $f(u) = \int f(u, 0) dv = \int $	J	V
	L U = V	dV = e
1 Integral of by par	16 d 1 a	~ 19
	9u = 00	Ve
$= \left[V \left(-\bar{e}^{V} \right) \right]^{2} - \left[-\bar{e}^{V} dv \right]$		
- 1 1 - 2 - 40		
D D		
- C		
$= 0 - \begin{bmatrix} -v \end{bmatrix}_0^{\infty}$		
- $ (0-1)$ $=$ 1		
v — x		