

Optimization algorithms Graded Quiz • 30 min

✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Optimization algorithms

LATEST SUBMISSION GRADE

100%

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1 / 1 point
	$igcap a^{[8]\{3\}(7)}$	
	$igcap a^{[3]\{7\}(8)}$	
	$igo a^{[3]\{8\}(7)}$	
	$\bigcap \ a^{[8]\{7\}(3)}$	
	✓ Correct	
2.	Which of these statements about mini-batch gradient descent do you agree with?	1 / 1 point
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	O You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	;
	✓ Correct	

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

4. Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

1 / 1 point

- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
 Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
 If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
 Whether you're using batch gradient descent or mini-batch gradient descent, something is
 - ✓ Correct

wrong.

5. Suppose the temperature in Casablanca over the first three days of January are the same:

1 / 1 point

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $\bigcirc \ v_2 = 7.5, v_2^{corrected} = 7.5$
- $igcup v_2=10$, $v_2^{corrected}=7.5$
- $\bigcirc \ v_2=10$, $v_2^{corrected}=10$
- $igotimes v_2 = 7.5$, $v_2^{corrected} = 10$

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

\bigcirc	~ —	1_0	0/-	
\cup	α	_	$\frac{1}{1+2*t}\alpha$	0

$$\bigcirc \ \alpha = 0.95^t \alpha_0$$

$$\bigcap \ \alpha = \frac{1}{\sqrt{t}}\alpha_0$$

/	Correct
~	

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1 / 1 point

 \square Decreasing β will shift the red line slightly to the right.

Increasing β will shift the red line slightly to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

- Decreasing β will create more oscillation within the red line.
 - **/**

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

- 8. Consider this figure:

1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

Correct

	all that apply)	
	lacksquare Try tuning the learning rate $lpha$	
	✓ Correct	
	✓ Try mini-batch gradient descent	
	✓ Correct	
	Try better random initialization for the weights	
	✓ Correct	
	✓ Try using Adam	
	✓ Correct	
	Try initializing all the weights to zero	
10	. Which of the following statements about Adam is False?	1 / 1 point
	igcup The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	
	Adam should be used with batch gradient computations, not with mini-batches.	
	O We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)	
	Adam combines the advantages of RMSProp and momentum	
	✓ Correct	

the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check