LFA

Prova por Indução Matemática: Reverso

March 7, 2018

1 Exercício: $(uv)^r = v^r u^r$

Demonstre que $(uv)^r = v^r u^r$.

r : reverso ou invertido

 $\Lambda \equiv \epsilon \equiv \lambda$: vazio

BASE Indutiva:

1. Se
$$u = \Lambda$$
 e $v = \Lambda \rightarrow k=0$

2. Se
$$u = a$$
 e $v = \Lambda \rightarrow k=1$

3. Se
$$u = \Lambda$$
 e $v = a \rightarrow k=1$

4.

5. e k = |uv|

HIPÓTESE Indutiva:

1. $|u^r v^r| = n$

2. Passo k
: temos $k=n \Rightarrow u^r v^r = (vu)^r$

 \Rightarrow **Precisamos provar para** k = (n+1). Por exemplo seja a palavra: $(aw)^r \log_{} | (aw)^r | = n+1$ (passo em n+1), onde $\underline{w = uv}$ então $(auv)^r = v^r u^r a^r = v^r u^r a$ e $| u^r v^r a^r | = n+1$, ou ainda $| (auv)^r | = n+1$

Passo (ou Prova) Indutivo:

1.
$$(aw)^r = (auv)^r$$

assim, esta é a partida

2.
$$(auv)^r = ((au)v)^r$$

(1) Associatividade

3.
$$((au)v)^r = v^r(au)^r$$

(2) usando a Hipótese Indutiva

4.
$$v^{r}(au)^{r} = v^{r}(u^{r}a^{r})$$

(3) novamente Hipótese Indutiva

5.
$$v^r(u^ra^r) = v^ru^ra^r$$

(4) Associatividade

6.
$$(auv)^r = v^r u^r a^r = v^r u^r a$$

(5) C.Q.D.

- 7. Esclarecendo: $a^r=a$ da definição do reverso, pois a é símbolo do alfabeto.
- 8. Idem quanto $\lambda^r = \lambda$

2 Notas:

- 1. Esclarecendo: $a^r \equiv a$ da definição do reverso, pois a é símbolo do alfabeto.
- 2. Idem quanto $A^r \equiv A$
- 3. Há uma outra solução desta prova no livro do Sudkamp, página 41.
- 4. Digitação inicial: Paula