数字图像处理

第二讲 数字图像基础

提纲

- 视觉感知要素
- 光和电磁波谱
- 图像感知和获取
- 图像取样和量化
- 像素间的关系
- 数学工具

人眼结构

- 成像过程
 - 焦距范围14-17mm

亮度适应

• 人眼可以感知的光强度范围很广

亮度适应

• 人眼可以同时分辨的强度范围有限

感知亮度不是实际亮度的函数

• 马赫带

感知亮度不是实际亮度的函数

• 同时对比

人眼的错觉

眼见 未必 为实

提纲

- 视觉感知要素
- 光和电磁波谱
- 图像感知和获取
- 图像取样和量化
- 像素间的关系
- 数学工具

电磁波谱

波长 $\lambda = \frac{\mathcal{H} \cdot \mathbf{k} \cdot \mathbf{k}}{\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}}$, 能量E =普朗克常数 $h \cdot$ 频率v

可感知的光

- 物体的颜色
 - 均匀反射,则观测到白色
 - 反射特定颜色,则观测到该颜色
- 单色光
 - 没有颜色的光
 - 唯一的属性:强度(intensity)
 - 感知:黑色、灰色、白色
 - 灰度(gray level):表示强度的数值
 - 单色图像也被称为灰度图像

可感知的光

- 彩色光
 - 约为0.43微米-0.79微米电磁波

- 1. 辐射 (radiance):能量(瓦特)
- 2. 光强(luminance):感知的能量(流明)
- 3. 亮度 (brightness):主观描绘
- 观测精度
 - 波长必须小于物体的尺寸

提纲

- 视觉感知要素
- 光和电磁波谱
- 图像感知和获取
- 图像取样和量化
- 像素间的关系
- 数学工具

图像产生

- 照射源
 - 不局限于可见光
 - X射线、微波、超声波
- 被观测物体
 - 3D物体、分子、沉积岩
 - 反射:日常拍照
 - 透射:X射线诊断
- 光转换器
 - 能量转换为可见光

传感器

• 将照射能量变化为数字图像

单个成像传感器

能量

• 光二极管

滤光器

电源输入

外壳

条带传感器

阵列传感器

• 数码相机、摄像机

图像形成模型

二维函数f(x,y)

$$0 < f(x, y) < \infty$$

$$f(x, y) = i(x, y)r(x, y)$$

- 入射分量 $0 < i(x, y) < \infty$
- 反射分量 0 < r(x, y) < 1

• 透射系数

举例

- 入射分量*i*(*x*, *y*)
 - 晴朗的白天 90000 lm/m²
 - 有云的白天 10000 lm/m²
 - 晴朗的夜晚 0.1 lm/m²
 - 商用办公室 1000 lm/m²
- 反射分量r(x,y)
 - 黑天鹅绒 0.01
 - 不锈钢 0.65
 - 白色的墙 0.8
 - 雪 0.93

灰度范围

• 单色图像的灰度值

$$L_{\min} \le \ell \le L_{\max}$$

- 最小值 $L_{\min} = i_{\min} r_{\min}$
- 最大值 $L_{\text{max}} = i_{\text{max}} r_{\text{max}}$
- 商用办公室:[10,1000]
- 灰度范围
 - \bullet [L_{\min} , L_{\max}]
 - 归一化到[0, L-1]
 - 0表示黑色,L-1表示白色,其余为灰色

提纲

- 视觉感知要素
- 光和电磁波谱
- 图像感知和获取
- 图像取样和量化
- 像素间的关系
- 数学工具

• 目的:把连续图像转换为数字图像

• 取样:对坐标进行数字化

• 量化:对幅值进行数字化

• 举例

• 阵列传感器

- 2维数组f(x,y)
 - 包含M行、N列
 - x = 0,1,2,...,M-1
 - y = 0,1,2,...,N-1
 - f(x,y)表示在(x,y)处的值
- 空间域
 - 图像坐标所张成的实平面
- 空间坐标
 - x和y

f(x, y)

函数

2维数组

• 公式形式的2维数组

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

- 右边的元素被称为像素
- 矩阵

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \dots & a_{1,N-1} \\ \vdots & \vdots & & \vdots \\ a_{M-1,0} & a_{M-1,1} & \dots & a_{M-1,N-1} \end{bmatrix}$$

- 行数*M* ∈ *Z*
- 列数N∈Z
- 灰度级数 $L = 2^k, k \in \mathbb{Z}$
 - 灰度值[0,L-1]内的整数
- 动态范围
 - 最大可测量灰度和最小可检测灰度的比值
- 图像的对比度
 - 图像内最高和最低灰度之间的差值
 - 动态范围广、对比度高

• 存储一幅图像的比特数

$$b = M \times N \times k$$

• 当M = N时, $b = N^2 k$

图像有 2^k 个灰度级别时,称为k比特图像

N/k	1 (L = 2)	2 (L=4)	3 (L=8)	4 (L = 16)	5 (L=32)	6 (L=64)	7 (L=128)	8 (L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,512