Report: Optimising NYC Taxi Operations

Include your visualisations, analysis, results, insights, and outcomes. Explain your methodology and approach to the tasks. Add your conclusions to the sections.

1. Data Preparation

1.1. Loading the dataset

I loaded one file from the 12 files and then realized that it is a big data. So went ahead with sampling.

1.1.1. Sample the data and combine the files

I have used path from the D drive from my computer and took sampled of 1% for each date and hour.

For the hour and date, I have used the column, **tpep_pickup_datetime** to extract the hour and date.

Then using joblib I saved the 1% data file to my computer in the form of parquet file named "Samples File - 1pct"

I named the DataFrame "sampled_df"

2. Data Cleaning

2.1. Fixing Columns

Fix the index

I brough the columns "hour" and "date" in index 1 and 2.

I removed the column "**tpep_pickup_datetime**", but later in Section 3, I had to restore it due to the requirement for pickup time data.

2.1.1. Combine the two airport_fee columns

- Replaced NaN values with 1 to enable adding the two columns.
- Then I added the two columns in one column named "total_airport_fee"

2.2. Handling Missing Values

2.2.1. Find the proportion of missing values in each column

Columns having null values: passenger_count, RatecodeID, store_and_fwd_flag, congestion_surcharge

Columns having negative values: mta_tax, improvemnet_surcharge, total_amount, congestion_surcharge, trip_duration, total_airport_fee

2.2.2. Handling missing values in passenger_count

Number of null entries in 'passenger_count': 14406 Median of entries in 'passenger_count': 1.0

So I replaced the missing passenger count by median value.

Zero entries in 'passenger_count': 6907

Percentage of zero entries in 'passenger_count': 1.54%, hence we may drop this small number of rows.

The passenger count rows with zero entries is dropped.

2.2.3. Handle missing values in RatecodelD

Number of null entries in 'RatecodeID': 14406 Percentage of null entries in 'RatecodeID': 3.2547326469611426% .

Unusual value "99" is seen in the RatecodeID data.

Dropped RatecodeID with 99 and replace NaN values with 1 (i .e the usual ratecode ID as per data).

2.2.4. Impute NaN in congestion surcharge

The count of null values in congestion_surcharge is:14418

The mean of congestion_surcharge is:2.32

The median of congestion_surcharge is:2.5

Null values are replaced with median value "2.5"

Impute NaN in store_and_fwd_flag

N: 423337

Y: 2377

Null: 14406

Total: 440120

Null values are replaced by N

2.3. Handling Outliers and Standardising Values

2.3.1. Check outliers in payment type, trip distance and tip amount columns

The outliers are identified using box plot.

Payment type:

Trip distance:

Tip amount:

3. Exploratory Data Analysis

3.1. General EDA: Finding Patterns and Trends

Classify variables into categorical and numerical

Categorise the varaibles into Numerical or Categorical.

VendorID: Categorical

tpep_pickup_datetime: Date time - Numerical

tpep_dropoff_datetime: Date time - Numerical

passenger_count:Categorical

trip_distance: Numerical

RatecodeID:Categorical

PULocationID: Numerical

DOLocationID: Numerical

payment_type:Categorical

pickup_hour:Categorical

trip_duration: Numerical

fare_amount: Numerical

extra: Numerical

mta_tax: Numerical

tip_amount: Numerical

tolls_amount: Categorical

improvement_surcharge: Categorical

total_amount: Numerical

congestion_surcharge: Categorical

airport_fee: Numerical

3.1.1. Analyse the distribution of taxi pickups by hours, days of the week, and months

Monthly/daily:

3.1.2. Filter out the zero/negative values in fares, distance and tips

I had filtered negative columns in the second section.

Analyse the monthly revenue trends

month total_amount

- 0 2023-01 1377752.22
- 1 2023-02 689164.54
- 2 2023-03 831487.49
- 3 2023-04 810260.33
- 4 2023-05 883369.36
- 5 2023-06 834821.79
- 6 2023-07 689553.27
- 7 2023-08 676301.55
- 8 2023-09 722130.83
- 9 2023-10 890484.14
- 10 2023-11 837455.22
- 11 2023-12 823104.01

3.1.3. Find the proportion of each quarter's revenue in the yearly revenue quarter total_amount

0 2023Q1 2898404.25

1 2023Q2 2528451.48

2 2023Q3 2087985.65

3 2023Q4 2551043.37

3.1.4. Analyse and visualise the relationship between distance and fare amount

3.1.5. Analyse the relationship between fare/tips and trips/passengers

3.1.6. Analyse the distribution of different payment types

Payment Type Percentages: payment_type 1 99.99 2 0.004 0.003 0.00

3.1.7. Load the taxi zones shapefile and display it

3.1.8. Merge the zone data with trips data

merged_df = sampled_df.merge(zones, left_on='PULocationID', right_on='LocationID', how='left')

3.1.9. Find the number of trips for each zone/location ID

3.1.10. Add the number of trips for each zone to the zones dataframe

	OBJECTID	Shape_Leng	Shape_Area	zone	LocationID	borough	geometry	trip_count
236	237	0.042213	0.000096	Upper East Side South	237	Manhattan	POLYGON ((993633.442 216961.016, 993507.232 21	16506
160	161	0.035804	0.000072	Midtown Center	161	Manhattan	POLYGON ((991081.026 214453.698, 990952.644 21	15756
131	132	0.245479	0.002038	JFK Airport	132	Queens	MULTIPOLYGON (((1032791.001 181085.006, 103283	14989
235	236	0.044252	0.000103	Upper East Side North	236	Manhattan	POLYGON ((995940.048 221122.92, 995812.322 220	14656
161	162	0.035270	0.000048	Midtown East	162	Manhattan	POLYGON ((992224.354 214415.293, 992096.999 21	12269
137	138	0.107467	0.000537	LaGuardia Airport	138	Queens	MULTIPOLYGON (((1019904.219 225677.983, 102031	12067
141	142	0.038176	0.000076	Lincoln Square East	142	Manhattan	POLYGON ((989380.305 218980.247, 989359.803 21	11304
185	186	0.024696	0.000037	Penn Station/Madison Sq West	186	Manhattan	POLYGON ((986752.603 210853.699, 986627.863 21	11230
229	230	0.031028	0.000056	Times Sq/Theatre District	230	Manhattan	POLYGON ((988786.877 214532.094, 988650.277 21	10381
169	170	0.045769	0.000074	Murray Hill	170	Manhattan	POLYGON ((991999.299 210994.739, 991972.635 21	10103
162	163	0.034177	0.000041	Midtown North	163	Manhattan	POLYGON ((989412.663 219020.943, 990045.841 21	9884
238	239	0.063626	0.000205	Upper West Side South	239	Manhattan	POLYGON ((991168.979 226252.992, 991955.565 22	9642
233	234	0.036072	0.000073	Union Sq	234	Manhattan	POLYGON ((987029.847 207022.299, 987048.27 206	9260
47	48	0.043747	0.000094	Clinton East	48	Manhattan	POLYGON ((986694.313 214463.846, 986568.184 21	8880
67	68	0.049337	0.000111	East Chelsea	68	Manhattan	POLYGON ((983690.405 209040.369, 983550.612 20	8789

3.1.11. Plot a map of the zones showing number of trips

3.1.12. Conclude with results

> Busiest hours, days and months:

Busiest months in descending order: January, October, May, November, June, march, Descember, April, September, February, July, August.

Busiest dates: January 2023

Hours: 10th -24th hour. Highest picups in 19th hour

> Trends in revenue collected:

Monthly revenue collected:

0	2023-01	1377752.22
1	2023-02	689164.54
2	2023-03	831487.49
3	2023-04	810260.33
4	2023-05	883369.36

```
5 2023-06 834821.79
6 2023-07 689553.27
7 2023-08 676301.55
8 2023-09 722130.83
9 2023-10 890484.14
10 2023-11 837455.22
11 2023-12 823104.01
```

> Trends in quarterly revenue:

quarter total_amount

- 0 2023Q1 2898404.25
- 1 2023Q2 2528451.48
- 2 2023Q3 2087985.65
- 3 2023Q4 2551043.37
- ➤ How fare depends on trip distance, trip duration and passenger counts:
 - fare amount is mostly equally proportionate to Trip distance.
 - Generally long trip duration implies long distances. Hence, fare in crease as duration increases, but- some entries that needs to be considered where fare is the same even if durations are long.
 - Graphical representations indicate that passenger count is inversely proportional to fare amount.
- ➤ How tip amount depends on trip distance:
 - Tip amount is equally proportionate to trip distances.
- Busiest zones:

	OBJECTID	Shape_Leng	Shape_Area	zone	LocationID	borough	geometry	trip_count
236	237	0.042213	0.000096	Upper East Side South	237	Manhattan	POLYGON ((993633.442 216961.016, 993507.232 21	16506
160	161	0.035804	0.000072	Midtown Center	161	Manhattan	POLYGON ((991081.026 214453.698, 990952.644 21	15756
131	132	0.245479	0.002038	JFK Airport	132	Queens	MULTIPOLYGON (((1032791.001 181085.006, 103283	14989
235	236	0.044252	0.000103	Upper East Side North	236	Manhattan	POLYGON ((995940.048 221122.92, 995812.322 220	14656
161	162	0.035270	0.000048	Midtown East	162	Manhattan	POLYGON ((992224.354 214415.293, 992096.999 21	12269
137	138	0.107467	0.000537	LaGuardia Airport	138	Queens	MULTIPOLYGON (((1019904.219 225677.983, 102031	12067
141	142	0.038176	0.000076	Lincoln Square East	142	Manhattan	POLYGON ((989380.305 218980.247, 989359.803 21	11304
185	186	0.024696	0.000037	Penn Station/Madison Sq West	186	Manhattan	POLYGON ((986752.603 210853.699, 986627.863 21	11230
229	230	0.031028	0.000056	Times Sq/Theatre District	230	Manhattan	POLYGON ((988786.877 214532.094, 988650.277 21	10381
169	170	0.045769	0.000074	Murray Hill	170	Manhattan	POLYGON ((991999.299 210994.739, 991972.635 21	10103
162	163	0.034177	0.000041	Midtown North	163	Manhattan	POLYGON ((989412.663 219020.943, 990045.841 21	9884
238	239	0.063626	0.000205	Upper West Side South	239	Manhattan	POLYGON ((991168.979 226252.992, 991955.565 22	9642
233	234	0.036072	0.000073	Union Sq	234	Manhattan	POLYGON ((987029.847 207022.299, 987048.27 206	9260
47	48	0.043747	0.000094	Clinton East	48	Manhattan	POLYGON ((986694.313 214463.846, 986568.184 21	8880

3.2. Detailed EDA: Insights and Strategies

3.2.1. Identify slow routes by comparing average speeds on different routes

```
merged_df['speed']=merged_df['trip_distance']/merged_df['trip_duration']
print("Speed is calculated in units: miles/minute")
merged_df['speed'].head(20)
Speed is calculated in units: miles/minute
     0.193388
      0.255670
      0.472015
     0.181818
      0.226214
      0.173913
      0.532686
     0.306569
0.429412
     0.148662
0.408987
     0.177841
0.128878
      0.173576
     0.434191
     0.226829
Name: speed, dtype: float64
```

fast zones

3.2.2. Calculate the hourly number of trips and identify the busy hours

3.2.3. Scale up the number of trips from above to find the actual number of trips

```
# Scale up the number of trips
# Fill in the value of your sampling fraction and use that to scale up the numbers
sample_fraction = 0.01
sampled_trips=zones_with_counts['trip_count'].sum()

total_trips=sampled_trips/sample_fraction
print("total number of trips\n:",total_trips)
print("\nSampled trips\n:",sampled_trips)

total number of trips
: 32795300.0
Sampled trips
: 327953
```

3.2.4. Compare hourly traffic on weekdays and weekends

```
merged_df[['day_name','trip_count']].value_counts()
day_name
Thursday
              52562
                                52562
Wednesday 51055
                                51055
Tuesday
             48843
                                48843
Friday
               48782
                                48782
Saturday
              47613
                                47613
Sunday
              41216
                                41216
Monday
             40882
                                40882
Name: count, dtvpe: int64
day_name hour
Thursday 18
Wednesday 18
                  52562
51055
                  48843
Tuesday
                                 3766
Thursday 17
                  52562
                                 3663
                  52562
51055
Wednesday 17
                  51055
                                 3485
                  48843
                                 3473
                  48782
Thursday 21
                  52562
                                 3381
Friday 19
Tuesday 19
Wednesday 21
                  51055
                                 3266
                  51055
Thursday 15
Monday 18
Monday 18
Tuesday 21
                  48843
                                 3170
Wednesday 14
                  51055
Tuesday 16
Thursday 20
                                 3106
                  52562
                                 3062
                  51055
48843
                                 3053
3033
Wednesday 16
Tuesday 15
Thursday 22
                  52562
Tuesday 20
Wednesday 15
                  48843
```

3.2.5. Identify the top 10 zones with high hourly pickups and drops

```
]: pick_drop_zone = merged_df[['zone', 'dropoff_hour','pickup_hour' , 'speed']].value_counts()
   pick_drop_zone.head(10)
                             dropoff_hour
                                                  pickup_hour
   Upper West Side North
                            2023-01-04 11:00:00 2023-01-03 17:40:00.000000002 0.148846
   Greenwich Village North 2023-08-09 09:00:00 2023-08-08 19:04:00.000000002 0.180144
   Battery Park City 2023-04-21 18:00:00 2023-04-20 22:01:00.0000000000 0.220183

Kins Ray 2023-12-11 20:00:00 2023-12-11 12:58:00 000000000 0.110000
                             2023-12-11 20:00:00 2023-12-11 12:58:00.000000000 0.110900
   East Village
                             2023-02-13 13:00:00 2023-02-13 05:18:00.000000000
                                                                                   0.181818
   Upper West Side South 2023-06-23 11:00:00 2023-06-22 16:34:00.000000000 0.097649
   Lenox Hill West
                             2023-11-21 09:00:00 2023-11-20 23:24:00.000000000
                                                                                   0.104167
   Greenwich Village South 2023-02-24 20:00:00 2023-02-24 07:25:00.000000002 0.080265
   Lenox Hill West
Lincoln Square West
                            2023-05-04 15:00:00 2023-05-03 13:13:00.000000002 0.232321
                             2023-12-18 08:00:00 2023-12-18 01:46:59.99999999 0.167292
   Name: count, dtype: int64
```

3.2.6. Find the ratio of pickups and dropoffs in each zone

	N in dropoff zone: 0 p 10				
:	PULocationID	pickup zone	pickup_count	DOLocationID	1
0	70.0	East Elmhurst	1501.0	70.0	
1	132.0	JFK Airport	14989.0	132.0	
	138.0 L	aGuardia Airport	12067.0	138.0	
2	186.0 Penn Station	/Madison Sq West	11230.0	186.0	
4	114.0 Greenwi	ch Village South	4673.0	114.0	
5	249.0	West Village	8037.0	249.0	
6	43.0	Central Park	5291.0	43.0	
7	162.0	Midtown East	12269.0	162.0	
8	93.0 Flushing Mea	dows-Corona Park	68.0	93.0	
9	161.0	Midtown Center	15756.0	161.0	
	dropoff_zo	ne dropoff_count	pickup_dropoff	ratio	
0	East Elmhur	st 96.0	15.	635417	
2 3	JFK Airpo	rt 3145.0	4.	765978	
2	LaGuardia Airpo	rt 4176.0	2.	889607	
	Penn Station/Madison Sq We	st 6955.0	1.	614666	
4	Greenwich Village Sou	th 3411.0	1.	369979	
5	West Villa	ge 5969.0	1.	346457	
6	Central Pa	rk 4054.0	1.	305131	
7	Midtown Ea	st 9695.0	1.	265498	
8	Flushing Meadows-Corona Pa	rk 55.0	1.	236364	
9	Midtown Cent	er 12760.0	1.	234796	

3.2.7. Identify the top zones with high traffic during night hours

Night hours are considered from hours<4th and >22nd on the scale of 0 to 23.

3.2.8. Find the revenue share for nighttime and daytime hours

Total amount(Dat time): 9783594.000000004

Total amount(Night time): 1073475.9300000002

For the different passenger counts, find the average fare per mile per passenger

Trips with 1 passenger

Total amount for trips with 1 passenger is: 7377952.77

Total distance in miles for trips with 1 passenger is: 870686.84

Hance per mile fare is: 8.473715727689187

Therefore, fare per mile per passenger will be: 8.473715727689187 USD/mile

Trips with 2 passenger

Total amount for trips with 2 passenger is: 1608448.38

Total distance in miles for trips with 2 passenger is: 198926.78

Hance per mile fare is: 8.085630200217386

Therefore, fare per mile per passenger will be: 4.042815100108693

USD/mile

Trips with 3 passenger

Total amount for trips with 3 passenger is: 377650.14

Total distance in miles for trips with 3 passenger is: 45007.09

Hance per mile fare is: 8.390903299902305

Therefore, fare per mile per passenger will be: 2.796967766634102

USD/mile

Trips with 4 passenger

Total amount for trips with 4 passenger is: 204198.07

Total distance in miles for trips with 4 passenger is: 24942.83

Hance per mile fare is: 8.186644017539308

Therefore, fare per mile per passenger will be: 2.046661004384827

USD/mile

Trips with 5 passenger

Total amount for trips with 5 passenger is: 131340.47

Total distance in miles for trips with 5 passenger is: 15248.56

Hance per mile fare is: 8.613303157806376

Therefore, fare per mile per passenger will be: 1.7226606315612751 USD/mile

Trips with 6 passenger

Total amount for trips with 6 passenger is: 84004.17

Total distance in miles for trips with 6 passenger is: 9587.18

Hance per mile fare is: 8.762135476751244

Therefore, fare per mile per passenger will be: 1.460355912791874 USD/mile

Average per passenger per mile fare is: 3.4238626905283263

3.2.9. Find the average fare per mile by hours of the day and by days of the week

3.2.10. Analyse the average fare per mile for the different vendors

3.2.11. Compare the fare rates of different vendors in a distance-tiered fashion

3.2.12. Analyse the tip percentages

3.2.13. Analyse the trends in passenger count

3.2.14. Analyse the variation of passenger counts across zones

Due to the size, whole graph is not inserted here.

3.2.15. Analyse the pickup/dropoff zones or times when extra charges are applied more frequently.

improvement_surcharge

count	330953.000000
mean	0.999588
std	0.017172
min	0.000000
25%	1.000000
50%	1.000000
75%	1.000000
max	1.000000

congestion surcharge

count	330953.000000
mean	2.371087
std	0.552867
min	0.000000
25%	2.500000
50%	2.500000
75%	2.500000

max 2.500000

extra

count 330953.000000

mean 1.643726

std 1.838072

min 0.000000

25% 0.000000

50% 1.000000

75% 2.500000

max 14.250000

4. Conclusions

- **4.1.** Final Insights and Recommendations
 - 4.1.1. Recommendations to optimize routing and dispatching based on demand patterns and operational inefficiencies.
 - 4.1.2. Suggestions on strategically positioning cabs across different zones to make best use of insights uncovered by analysing trip trends across time, days and months.
 - 4.1.3. Propose data-driven adjustments to the pricing strategy to maximize revenue while maintaining competitive rates with other vendors.