Bootstrap-Assisted Inference for Generalized Grenander-type Estimators

Matias D. Cattaneo, Princeton University

Michael Jansson, UC-Berkeley and CREATES

Kenichi Nagasawa, University of Warwick

June 2021

Setup: Grenander-Type Estimators [Westling & Carone, 2020]

Monotone function estimators $\hat{\theta}_n(x)$ at interior point x exhibit:

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}(\hat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_-\mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x}+\mathcal{M}_{\mathsf{x},\mathfrak{q}})(0),$$

$$\mathcal{M}_{\mathbf{x},\mathfrak{q}}(v) = \frac{\partial^{\mathfrak{q}}\theta_{0}(\mathbf{x})\partial\Phi_{0}(x)}{(1+\mathfrak{q})!}v^{1+\mathfrak{q}}, \qquad \mathfrak{q} = \min\{j \in \mathbb{N}: \partial^{j}\theta_{0}(\mathbf{x}) \neq 0\}.$$

as $n \to \infty$, where:

- \bullet $\theta_0(\cdot)$ is density, regression or hazard fuction, among other possibilities.
- \bullet \mathcal{G}_x is zero-mean Gaussian process (nonstationary, rough cov kernel).
- \bullet $\mathcal{M}_{x,\mathfrak{q}}$ is non-random drift function (usually quadratic, but not always).
- ullet Φ_0 unknown non-decreasing and càdlàg functions.
- $GCM_I(f)$ is greatest convex minorant of function f on interval I.

Motivation: Conducting inference can be challenging.

Setup: Grenander-Type Estimators [Westling & Carone, 2020]

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}(\hat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_-\mathrm{GCM}_{\mathbb{R}}(\mathcal{G}_\mathsf{x}+\mathcal{M}_{\mathsf{x},\mathfrak{q}})(0),$$

$$\mathcal{M}_{\mathsf{x},\mathfrak{q}}(v) = \frac{\partial^{\mathfrak{q}} \theta_0(\mathsf{x}) \partial \Phi_0(x)}{(1+\mathfrak{q})!} v^{1+\mathfrak{q}}, \qquad \mathfrak{q} = \min\{j \in \mathbb{N} : \partial^j \theta_0(\mathsf{x}) \neq 0\}.$$

Examples:

- Isotonic density [Grenander, 1956] and extensions (censoring, covariates).
- Isotonic regression [Brunk, 1970] and extensions (censoring, covariates).
- Monotone Hazard [Rao, 1970] and extensions (censoring, covariates).
- Current Status [Ayer et al. 1955] and extensions (censoring, covariates).

Problem: NP bootstrap inconsistent [Kosorok, 2008; Sen, Banerjee & Woodroofe, 2010].

- \bullet Restore bootstrap validity: modifying the distribution used when resampling (subsampling, m-out-of-n bootstrap, smooth bootstrap).
- This paper: Modifying ("reshaping") functional form estimator [CJN, 2020].

Leading Example (Today): Isotonic Density Estimation

Model:

- X_1, \ldots, X_n i.i.d. with support [0, 1].
- $F(x) = \mathbb{P}[X_i \leq x]$ absolutely continuous.
- $\partial F(x) = f(x)$ monotone (e.g., non-decreasing).

Estimand: $\theta_0(x) = f(x)$ for interior point x.

Estimator: for \mathcal{F} the class of non-decreasing densities supported on [0,1],

$$\hat{\theta}_n(\cdot) = \underset{f \in \mathcal{F}}{\operatorname{argmax}} \sum_{i=1}^n \log f(X_i)$$

$$\implies \qquad \hat{\theta}_n(\mathbf{x}) = \partial_- \mathrm{GCM}_{[0,1]}(\hat{\Gamma}_n)(\mathbf{x}), \qquad \hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x)$$

Asy Dist: under regularity, $\mathfrak{q} = 1$ and $\Phi_0(x) = x$,

$$\sqrt[3]{n}(\hat{\theta}_n(\mathsf{x}) - \theta_0(\mathsf{x})) \rightsquigarrow \partial_-\mathrm{GCM}_{\mathbb{R}}(\mathcal{G}_\mathsf{x} + \mathcal{M}_{\mathsf{x},1})(0) \sim \sqrt[3]{4f(\mathsf{x})\partial f(\mathsf{x})} \operatorname*{argmin}_{v \in \mathbb{R}} \left\{ \mathcal{G}(v) + v^2 \right\}$$

Second Example: Isotonic Regression Estimation

Model:

- $(Y_1, X_1), \ldots, (Y_n, X_n)$ i.i.d. with X_i on support I, and $F(x) = \mathbb{P}[X_i \leq x]$.
- $\mu(x) = \mathbb{E}[Y_i|X_i = x]$ differentiable and monotone (e.g., non-decreasing).

Estimand: $\theta_0(x) = \mu(x)$ for interior point x.

Estimator: for \mathcal{F} the class of non-decreasing functions supported on I,

$$\hat{\theta}_n(x) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^n (Y_{(i)} - f(X_{(i)}))^2$$

$$\implies \hat{\theta}_n(x) = \left(\partial_- GCM_{[0,1]}(\hat{\Gamma}_n \circ \hat{\Phi}_n^-)\right) \circ \hat{\Phi}_n(x),$$

$$\hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le x) Y_i, \qquad \hat{\Phi}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le x).$$

Asy Dist: under regularity, $\mathfrak{q} = 1$ and $\Phi_0(x) = F(x)$,

$$\sqrt[3]{n}(\hat{\theta}_n(\mathsf{x}) - \theta_0(\mathsf{x})) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_- \mathrm{GCM}_{\mathbb{R}}(\mathcal{G}_\mathsf{x} + \mathcal{M}_{\mathsf{x},1})(0) \sim \sqrt[3]{\frac{4\sigma^2(\mathsf{x})\partial \mu(\mathsf{x})}{f(\mathsf{x})}} \underset{v \in \mathbb{R}}{\operatorname{argmin}} \left\{ \mathcal{G}(v) + v^2 \right\}$$

Third Example: Covariate-Adjusted Isotonic Regression

Model:

- $(Y_1, X_1, \mathbf{Z}'_1), \dots, (Y_n, X_n, \mathbf{Z}'_n)$ i.i.d. with X_i on support I, and $F(x) = \mathbb{P}[X_i \leq x]$.
- $\mu(x) = \mathbb{E}\left[\mathbb{E}[Y_i|X_i=x,\mathbf{Z}_i]\right]$ differentiable and monotone (e.g., non-decreasing).

Estimand: $\theta_0(x) = \mathbb{E}\left[\mathbb{E}[Y_i|X_i = x, \mathbf{Z}_i]\right]$

Estimator:

$$\hat{\theta}_n(\mathsf{x}) = \left(\partial_- \mathrm{GCM}_{[0,1]}(\hat{\Gamma}_n \circ \hat{\Phi}_n^-)\right) \circ \hat{\Phi}_n(\mathsf{x})$$

$$\hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le x) \left[\frac{Y_i - \hat{\mu}(X_i, \mathbf{Z}_i)}{\hat{f}(\mathbf{Z}_i | X_i)} + \frac{1}{n} \sum_{j=1}^n \hat{\mu}(X_i, \mathbf{Z}_j) \right], \quad \hat{\Phi}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le x).$$

Asy Dist: under regularity, $\mathfrak{q} = 1$ and $\Phi_0(x) = F(x)$,

$$\sqrt[3]{n}(\hat{\theta}_n(\mathsf{x}) - \theta_0(\mathsf{x})) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_- \mathrm{GCM}_{\mathbb{R}}(\mathcal{G}_\mathsf{x} + \mathcal{M}_{\mathsf{x},1})(0) \sim c_0(\mathsf{x}) \operatorname*{argmin}_{v \in \mathbb{R}} \left\{ \mathcal{G}(v) + v^2 \right\}$$

Generalized Grenander-Type Estimators: Framework

Estimand: $\theta_0(x)$ at interior point x, a monotone function.

Estimator:

$$\hat{\theta}_n(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\hat{\Gamma}_n \circ \hat{\Phi}_n^-)] \circ \hat{\Phi}_n(\mathsf{x}),$$

for some (application specific) $\hat{\Gamma}_n \to_{\mathbb{P}} \Gamma_0$ and $\hat{\Phi}_n \to_{\mathbb{P}} \Phi_0$.

Asy Dist:

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}(\hat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_-\mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x}+\mathcal{M}_{\mathsf{x},\mathfrak{q}})(0),$$

$$\mathcal{M}_{\mathsf{x},\mathfrak{q}}(v) = \frac{\partial^{\mathfrak{q}} \theta_0(\mathsf{x}) \partial \Phi_0(x)}{(1+\mathfrak{q})!} v^{1+\mathfrak{q}}, \qquad \mathfrak{q} = \min\{j \in \mathbb{N} : \partial^j \theta_0(\mathsf{x}) \neq 0\}.$$

Our Goals:

- \bullet Develop valid bootstrap-assisted & automatic distributional approximations.
- Develop valid inference procedures: e.g., confidence intervals for $\theta_0(x)$.

Isotonic Density Estimation: Distribution Theory

- $\theta_0(x) = f(x)$, a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\hat{\theta}_n(\mathbf{x}) = \partial_- GCM_{J_n}(\hat{\Gamma}_n)(\mathbf{x})$ with $\hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x)$.

Switching Lemma:

$$\mathbb{P}\left[\sqrt[3]{n}(\hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})) > t\right] = \mathbb{P}\left[\underset{v \in S_n}{\operatorname{argmax}} \left\{\hat{G}_{\mathbf{x},n}(v) + t\hat{L}_{\mathbf{x},n}(v) + M_{\mathbf{x},n}(v)\right\} < 0\right],$$

where

$$\hat{G}_{\mathbf{x},n}(v) = -n^{2/3} [\hat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \Gamma_0(\mathbf{x} + vn^{-1/3}) - \hat{\Gamma}_n(\mathbf{x}) - \Gamma_0(\mathbf{x})]$$

$$\hat{L}_{\mathbf{x},n}(v) = v$$

$$M_{\mathbf{x},n}(v) = -n^{2/3} [\Gamma_0(\mathbf{x} + vn^{-1/3}) - \Gamma_0(\mathbf{x}) - \theta_0(\mathbf{x})vn^{-1/3}]$$

and

$$S_n = [-xn^{1/3}, \infty)$$
 with $\mathbb{1}(v \in S_n) \to \mathbb{1}(v \in I)$

Isotonic Density Estimation: Distribution Theory

- $\theta_0(x) = f(x)$, a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\hat{\theta}_n(\mathbf{x}) = \partial_- \text{GCM}_{J_n}(\hat{\Gamma}_n)(\mathbf{x}) \text{ with } \hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x).$

Switching Lemma:

$$\mathbb{P}\left[\sqrt[3]{n}(\hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})) > t\right] = \mathbb{P}\left[\underset{v \in S_n}{\operatorname{argmax}} \left\{\hat{G}_{\mathbf{x},n}(v) + t\hat{L}_{\mathbf{x},n}(v) + M_{\mathbf{x},n}(v)\right\} < 0\right],$$

where

$$\hat{G}_{\mathsf{x},n}(v) = -n^{2/3} [\hat{\Gamma}_n(\mathsf{x} + vn^{-1/3}) - \Gamma_0(\mathsf{x} + vn^{-1/3}) - \hat{\Gamma}_n(\mathsf{x}) - \Gamma_0(\mathsf{x})] \rightsquigarrow \mathcal{G}_{\mathsf{x}}(v)$$

$$\hat{L}_{x,n}(v) = v$$

$$M_{x,n}(v) = -n^{2/3} \left[\Gamma_0(x + vn^{-1/3}) - \Gamma_0(x) - \theta_0(x)vn^{-1/3} \right] \to -\mathcal{M}_{x,q}(v) = -\frac{\partial f(x)}{2}v^2$$

which implies

$$\operatorname*{argmax}_{v \in S_n} \left\{ \hat{G}_{\mathsf{x},n}(v) + t \hat{L}_{\mathsf{x},n}(v) + M_{\mathsf{x},n}(v) \right\} \leadsto \operatorname*{argmax}_{v \in I} \left\{ \mathcal{G}_{\mathsf{x}}(v) + tv - \mathcal{M}_{\mathsf{x},\mathfrak{q}}(v) \right\}$$

Isotonic Density Estimation: Distribution Theory

$$\mathbb{P}\left[\sqrt[3]{n}(\hat{\theta}_{n}(\mathbf{x}) - \theta_{0}(\mathbf{x})) > t\right] = \mathbb{P}\left[\underset{v \in S_{n}}{\operatorname{argmax}}\left\{\hat{G}_{\mathbf{x},n}(v) + t\hat{L}_{\mathbf{x},n}(v) + M_{\mathbf{x},n}(v)\right\} < 0\right]$$

$$\rightarrow \mathbb{P}\left[\underset{v \in I}{\operatorname{argmax}}\left\{\mathcal{G}_{\mathbf{x}}(v) + tv - \mathcal{M}_{\mathbf{x},q}(v)\right\} < 0\right]$$

$$= \mathbb{P}\left[\partial_{-}\operatorname{GCM}_{\mathbb{R}}(\mathcal{G}_{\mathbf{x}} + \mathcal{M}_{\mathbf{x},q})(0) > t\right]$$
The second states of the second states are sufficiently as the second states of the second states are sufficiently as th

where

$$\mathcal{M}_{\mathsf{x},\mathfrak{q}} = rac{\partial f(\mathsf{x})}{2} v^2$$

In this stylized example,

$$\mathfrak{q} = 1, \qquad \Phi_0(x) = x, \qquad \mathcal{G}_{\mathsf{X}}(v) = \sqrt{f(x)}\mathcal{W}(v),$$

with $\mathcal{W}(\cdot)$ two-sided Wiener process.

Next: let's investigate what happens when we apply the nonparametric bootstrap...

Isotonic Density Estimation: Bootstrapping

- $\theta_0(x) = f(x)$ a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\hat{\theta}_n(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\hat{\Gamma}_n)(\mathsf{x})$ with $\hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x)$.
- $\hat{\theta}_n^*(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\hat{\Gamma}_n^*)(\mathsf{x}) \text{ with } \hat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i^* \leq x).$

Switching Lemma:

$$\mathbb{P}^*\left[\sqrt[3]{n}(\hat{\boldsymbol{\theta}}_n^*(\mathbf{x}) - \hat{\boldsymbol{\theta}}_n(\mathbf{x})) > t\right] = \mathbb{P}^*\left[\underset{v \in \boldsymbol{S}_n^*}{\operatorname{argmax}}\left\{\hat{G}_{\mathbf{x},n}^*(v) + t\hat{L}_{\mathbf{x},n}^*(v) + \underline{M}_{\mathbf{x},n}^*(v)\right\} < 0\right],$$

where

$$\hat{G}_{\mathbf{x},n}^{*}(v) = -n^{2/3} [\hat{\Gamma}_{n}^{*}(\mathbf{x} + vn^{-1/3}) - \hat{\Gamma}_{n}(\mathbf{x} + vn^{-1/3}) - \hat{\Gamma}_{n}^{*}(\mathbf{x}) - \hat{\Gamma}_{n}(\mathbf{x})]$$

$$\hat{L}_{\mathsf{x},n}^*(v) = v$$

$$M_{\mathbf{x},n}^*(v) = -n^{2/3} [\hat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \hat{\Gamma}_n(\mathbf{x}) - \hat{\theta}_n(\mathbf{x})vn^{-1/3}]$$

and

$$S_n^* = [-xn^{1/3}, \infty), \quad \text{with} \quad \mathbb{1}(v \in S_n^*) \to \mathbb{1}(v \in I)$$

Isotonic Density Estimation: Bootstrapping

- $\theta_0(x) = f(x)$ a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\hat{\theta}_n(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\hat{\Gamma}_n)(\mathsf{x})$ with $\hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x)$.
- $\hat{\theta}_n^*(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\hat{\Gamma}_n^*)(\mathsf{x})$ with $\hat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i^* \leq x)$.

NP Bootsrtap Failure:

$$\underset{v \in S_n^*}{\operatorname{argmax}} \left\{ \hat{G}_{\mathsf{x},n}^*(v) + t \hat{L}_{\mathsf{x},n}^*(v) + \underline{M}_{\mathsf{x},n}^*(v) \right\} \not \leadsto_{\mathbb{P}} \underset{v \in I}{\operatorname{argmax}} \left\{ \mathcal{G}_{\mathsf{x},\alpha}(v) + tv + \mathcal{M}_{\mathsf{x},\alpha}(v) \right\}$$

because

$$\hat{G}_{\mathbf{x},n}^*(v) \quad = \quad -n^{2/3}[\hat{\Gamma}_n^*(\mathbf{x} + vn^{-1/3}) - \hat{\Gamma}_n(\mathbf{x} + vn^{-1/3}) - \hat{\Gamma}_n^*(\mathbf{x}) - \hat{\Gamma}_n(\mathbf{x})] \rightsquigarrow_{\mathbb{P}} \mathcal{G}_{\mathbf{x}}(v)$$

$$\hat{L}_{\mathbf{v},n}^{*}(v) = v$$

$$M_{\mathbf{x},n}^{*}(v) = -n^{2/3} [\hat{\Gamma}_{n}(\mathbf{x} + vn^{-1/3}) - \hat{\Gamma}_{n}(\mathbf{x}) - \hat{\theta}_{n}(\mathbf{x})vn^{-1/3}] \not\to_{\mathbb{P}} -\mathcal{M}_{\mathbf{x},n}(v) = -\frac{\partial f(\mathbf{x})}{2}v^{2}$$

Recall: for Asy Dist, we instead had

$$M_{x,n}(v) = -n^{2/3} \left[\Gamma_0(x + vn^{-1/3}) - \Gamma_0(x) - \theta_0(x)vn^{-1/3} \right] \to -\mathcal{M}_{x,n}(v) = -\frac{\partial f(x)}{\partial x} v^2$$

Isotonic Density Estimation: Recap and Intuition

- $\theta_0(x) = f(x)$ a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\hat{\theta}_n(x) = \partial_- GCM_{J_n}(\hat{\Gamma}_n)(x)$ with $\hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x)$.

Asymptotic Distribution:

$$\sup_{t\in\mathbb{R}}\left|\mathbb{P}[\sqrt[3]{n}(\hat{\theta}_n(x)-\theta_0(x))\leq t]-\mathbb{P}\left[\partial_-\mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{X}+\mathcal{M}_{\mathsf{X},\mathfrak{q}})(0)\leq t\right]\right|\to 0$$

NP bootstrap: $\hat{\theta}_n^*(x) = \partial_- GCM_{J_n}(\hat{\Gamma}_n^*)(x)$ with $\hat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i^* \leq x)$ is invalid,

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}^*[\sqrt[3]{n}(\hat{\boldsymbol{\theta}}_n^*(\mathbf{x}) - \hat{\boldsymbol{\theta}}_n(\mathbf{x})) \leq t] - \mathbb{P}[\sqrt[3]{n}(\hat{\boldsymbol{\theta}}_n(\mathbf{x}) - \boldsymbol{\theta}_0(\mathbf{x})) \leq t] \right| \not \to_{\mathbb{P}} 0$$

This paper: consistency can be achieved by reshaping $\hat{\Gamma}_n^*$.

- Intuition:
 - around x, $\hat{\Gamma}_n(x)$ has mean $\Gamma_0(x) \approx \Gamma_0(x) + f(x)(x-x) + \frac{1}{2}\partial f(x)(x-x)^2$
 - whereas the mean of $\hat{\Gamma}_n^*(x)$ under the bootstrap distribution is given by $\hat{\Gamma}_n(x)$.
- Reshaping: Let $\partial \tilde{f}_n(x)$ denote a consistent estimator of $\partial f(x)$, then

$$\tilde{\Gamma}_n^*(x) = \hat{\Gamma}_n^*(x) - \hat{\Gamma}_n(x) + \hat{\theta}_n(x)(x - x) + \frac{1}{2}\partial \tilde{f}_n(x)(x - x)^2.$$

Isotonic Density Estimation: Bootstrap Consistency

- $\theta_0(x) = f(x)$ a monotone density with $\Gamma_0(x) = \mathbb{P}(X_i \leq x)$.
- $\hat{\theta}_n(\mathbf{x}) = \partial_- GCM_{J_n}(\hat{\Gamma}_n)(\mathbf{x})$ with $\hat{\Gamma}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x)$.
- $\hat{\theta}_n^*(x) = \partial_- GCM_{J_n}(\hat{\Gamma}_n^*)(x)$ with $\hat{\Gamma}_n^*(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i^* \leq x)$.
- $\tilde{\theta}_n^*(\mathsf{x}) = \partial_- \mathrm{GCM}_{J_n}(\tilde{\Gamma}_n^*)(\mathsf{x})$ with

$$\tilde{\Gamma}_n^*(x) = \hat{\Gamma}_n^*(x) - \hat{\Gamma}_n(x) + \hat{\theta}_n(x)(x - x) + \frac{1}{2}\partial \tilde{f}_n(x)(x - x)^2.$$

Bootstrap-Assisted Validity:

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}^*[\tilde{\boldsymbol{\theta}}_n^*(\mathbf{x}) - \hat{\boldsymbol{\theta}}_n(\mathbf{x}) \leq t] - \mathbb{P}[\hat{\boldsymbol{\theta}}_n(\mathbf{x}) - \boldsymbol{\theta}_0(\mathbf{x}) \leq t] \right| \to_{\mathbb{P}} 0$$

provided that

$$\partial \tilde{f}_n(\mathsf{x}) \to_{\mathbb{P}} \partial f(\mathsf{x}).$$

- The consistency requirement is mild and easy to achieve automatically.
- Confidence intervals based on kernel estimator perform well in simulations.

Generalized Grenander-Type Estimators: General Case

- $\theta_0(x)$ at interior point x, a monotone function.
- $\bullet \ \hat{\theta}_n(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\hat{\Gamma}_n \circ \hat{\Phi}_n^-)] \circ \hat{\Phi}_n(\mathsf{x}), \ \mathrm{with} \ (\hat{\Gamma}_n, \hat{\Phi}_n) \to_{\mathbb{P}} (\Gamma_0, \Phi_0).$

Asymptotic Distribution: using their Generalized Switching Lemma,

$$n^{\mathfrak{q}/(1+2\mathfrak{q})}(\hat{\theta}_n(\mathsf{x})-\theta_0(\mathsf{x})) \rightsquigarrow \frac{1}{\partial \Phi_0(\mathsf{x})} \partial_- \mathrm{GCM}_\mathbb{R}(\mathcal{G}_\mathsf{x}+\mathcal{M}_{\mathsf{x},\mathfrak{q}})(0),$$

$$\mathcal{M}_{\mathsf{x},\mathsf{q}}(v) = \frac{\partial^{\mathsf{q}} \theta_0(\mathsf{x}) \partial \Phi_0(x)}{(1+\mathsf{q})!} v^{1+\mathsf{q}}, \qquad \mathsf{q} = \min\{j \in \mathbb{N} : \partial^j \theta_0(\mathsf{x}) \neq 0\}.$$

Bootstrap-assisted Inference using reshaped estimator:

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}^*[\tilde{\boldsymbol{\theta}}_n^*(\mathsf{x}) - \hat{\boldsymbol{\theta}}_n(\mathsf{x}) \leq t] - \mathbb{P}[\hat{\boldsymbol{\theta}}_n(\mathsf{x}) - \boldsymbol{\theta}_0(\mathsf{x}) \leq t] \right| \to_{\mathbb{P}} 0$$

where

$$\tilde{\boldsymbol{\theta}}_n^*(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n} (\tilde{\boldsymbol{\Gamma}}_n^* \circ (\hat{\boldsymbol{\Phi}}_n^*)^-)] \circ \hat{\boldsymbol{\Phi}}_n^*(\mathsf{x})$$

with

$$\tilde{\Gamma}_n^*(x) = \hat{\Gamma}_n^*(x) - \hat{\Gamma}_n(x) + \hat{\theta}_n(x)\hat{\Phi}_n(x-x) + \tilde{\mathcal{M}}_{x,\mathfrak{q}}(x-x),$$

and provided that

$$\tilde{\mathcal{M}}_{\mathsf{X},\mathfrak{q}}(v) \to_{\mathbb{P}} \mathcal{M}_{\mathsf{X},\mathfrak{q}}(v).$$

Grenander-Type Estimators: Bootstrap-assisted Inference

Valid percentile CI for monotone function $\theta_0(x)$ at interior point x:

$$\mathbf{I}_{1-a}^*(\mathbf{x}) = \begin{bmatrix} \hat{\theta}_n(\mathbf{x}) - q_{1-a/2}^* & , & \hat{\theta}_n(\mathbf{x}) - q_{a/2}^* \end{bmatrix}$$

where

$$\bullet \ \hat{\theta}_n(\mathsf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\hat{\Gamma}_n \circ \hat{\Phi}_n^-)] \circ \hat{\Phi}_n(\mathsf{x}), \qquad (\hat{\Gamma}_n, \hat{\Phi}_n) \to_{\mathbb{P}} (\Gamma_0, \Phi_0).$$

$$\begin{split} \bullet \ q_a^* &= \inf\{t \in \mathbb{R} : \mathbb{P}^*[\check{\boldsymbol{\theta}}_n^*(\mathbf{x}) - \hat{\boldsymbol{\theta}}_n(\mathbf{x}) \leq t] \geq a\}, \\ \\ & \quad \quad \hat{\boldsymbol{\theta}}_n^*(\mathbf{x}) = [\partial_- \mathrm{GCM}_{J_n}(\check{\Gamma}_n^* \circ (\hat{\Phi}_n^*)^-)] \circ \hat{\Phi}_n^*(\mathbf{x}), \end{split}$$

$$\tilde{\Gamma}_n^*(x) = \hat{\Gamma}_n^*(x) - \hat{\Gamma}_n(x) + \hat{\theta}_n(x)\hat{\Phi}_n(x-x) + \tilde{\mathcal{M}}_{x,\mathfrak{q}}(x-x),$$

$$\tilde{\mathcal{M}}_{\mathsf{x},\mathfrak{q}}(v) \to_{\mathbb{P}} \mathcal{M}_{\mathsf{x},\mathfrak{q}}(v).$$

Key outstanding issue: How to construct $\tilde{\mathcal{M}}_{x,q}(v)$?

Bootstrap-assisted Inference: Drift Estimation

$$\begin{aligned} \mathbf{Recall:} \ \hat{\theta}_n(\mathbf{x}) &= [\partial_{-}\mathrm{GCM}_{J_n}(\hat{\Gamma}_n \circ \hat{\Phi}_n^{-})] \circ \hat{\Phi}_n(\mathbf{x}), \qquad (\hat{\Gamma}_n, \hat{\Phi}_n) \to_{\mathbb{P}} (\Gamma_0, \Phi_0), \\ \mathcal{M}_{\mathbf{x}, \mathfrak{q}}(v) &= \frac{\partial^{\mathfrak{q}} \theta_0(\mathbf{x}) \partial \Phi_0(\mathbf{x})}{(1+\mathfrak{q})!} v^{1+\mathfrak{q}}, \qquad \mathfrak{q} = \min\{j \in \mathbb{N} : \partial^j \theta_0(\mathbf{x}) \neq 0\}. \end{aligned}$$

- Sometimes, $\partial^{\mathfrak{q}}\theta_0(x)$ and $\partial\Phi_0(x)$ easy to caracterize (if \mathfrak{q} is known!) and estimate.
 - For example, $\pi_0(x) = \partial f(x)$ and $\partial \Phi_0(x) = 1$ in Isotonic Density Estimation.
- In general, if \mathfrak{q} is known, $\tilde{\mathcal{M}}_{x,\mathfrak{q}}(v)$ based on numerical derivative estimator:

$$\frac{\partial^{\mathfrak{q}} \widehat{\theta_n(\mathsf{x})} \widehat{\partial \Phi_n(\mathsf{x})}}{(\mathfrak{q}+1)!} = \epsilon_n^{-(\mathfrak{q}+1)} \sum_{k=1}^{\mathfrak{q}+1} (-1)^{k+\mathfrak{q}+1} \binom{\mathfrak{q}+1}{k} [\hat{\Upsilon}_n(\mathsf{x}+k\epsilon_n) - \hat{\Upsilon}_n(\mathsf{x})]$$

where

- $\hat{\Upsilon}_n(v) = \hat{\Gamma}_n(v) \hat{\theta}_n(x)\hat{\Phi}_n(v)$ and $\epsilon_n > 0$ is a (small) tuning parameter.
- $\tilde{\mathcal{M}}_{x,\mathfrak{q}}(v) \to_{\mathbb{P}} \mathcal{M}_{x,\mathfrak{q}}(v)$ requires $\epsilon_n \to 0$ and $n\epsilon_n^{1+2\mathfrak{q}} \to \infty$.
- Under additional conditions, MSE-optimal ϵ_n can be obtained.
- Possible to develop estimator $\tilde{\mathcal{M}}_{x,q}(v)$ adaptive to unknown $q \leq \bar{q}$.

	DGP 1			DGP 2			DGP 3		
	h, ϵ	Coverage	Length	h, ϵ	Coverage	Length	h, ϵ	Coverage	Length
Standard									
		0.828	0.146		0.808	0.172		0.821	0.155
m-out-of-n									
$m = \lceil n^{1/2} \rceil$		1.000	0.438		0.995	0.495		0.998	0.452
$m = \lceil n^{2/3} \rceil$		0.989	0.314		0.979	0.360		0.989	0.328
$m = \lceil n^{4/5} \rceil$		0.953	0.235		0.937	0.274		0.948	0.248
\mathbf{PI} : $\tilde{M}_n^{\mathtt{PI}}$									
$0.7 \cdot h_{\texttt{MSE}}$	0.264	0.955	0.157	0.202	0.947	0.183	0.209	0.957	0.165
$0.8 \cdot h_{ exttt{MSE}}$	0.302	0.954	0.157	0.231	0.946	0.182	0.239	0.952	0.165
$0.9 \cdot h_{\texttt{MSE}}$	0.339	0.951	0.156	0.260	0.944	0.181	0.269	0.949	0.164
$1.0 \cdot h_{\texttt{MSE}}$	0.377	0.949	0.154	0.289	0.941	0.180	0.299	0.948	0.163
$1.1 \cdot h_{ exttt{MSE}}$	0.415	0.940	0.151	0.318	0.938	0.178	0.329	0.944	0.161
$1.2 \cdot h_{ exttt{MSE}}$	0.452	0.934	0.147	0.347	0.934	0.176	0.359	0.939	0.158
$1.3 \cdot h_{\texttt{MSE}}$	0.490	0.922	0.142	0.376	0.928	0.173	0.389	0.935	0.155
$h_{\mathtt{AMSE}}$	0.380	0.949	0.154	0.300	0.940	0.180	0.333	0.943	0.161
$\hat{h}_{\mathtt{AMSE}}$	0.364	0.950	0.155	0.290	0.941	0.180	0.401	0.930	0.154

	DGP 1			DGP 2			DGP 3		
	h, ϵ	Coverage	Length	h, ϵ	Coverage	Length	h, ϵ	Coverage	Length
Standard									
		0.828	0.146		0.808	0.172		0.821	0.155
m-out-of-n									
$m = \lceil n^{1/2} \rceil$		1.000	0.438		0.995	0.495		0.998	0.452
$m = \lceil n^{2/3} \rceil$		0.989	0.314		0.979	0.360		0.989	0.328
$m = \lceil n^{4/5} \rceil$		0.953	0.235		0.937	0.274		0.948	0.248
$ND: \tilde{M}_n^{ND}$									
$0.7 \cdot \epsilon_{\mathtt{MSE}}$	0.726	0.954	0.158	0.527	0.947	0.183	0.554	0.952	0.165
$0.8 \cdot \epsilon_{\texttt{MSE}}$	0.830	0.956	0.159	0.602	0.947	0.182	0.633	0.950	0.164
$0.9 \cdot \epsilon_{\texttt{MSE}}$	0.933	0.956	0.160	0.678	0.944	0.181	0.712	0.949	0.163
$1.0 \cdot \epsilon_{\mathtt{MSE}}$	1.037	0.956	0.159	0.753	0.942	0.180	0.791	0.948	0.162
$1.1 \cdot \epsilon_{\texttt{MSE}}$	1.141	0.955	0.159	0.828	0.940	0.179	0.870	0.946	0.161
$1.2 \cdot \epsilon_{\texttt{MSE}}$	1.244	0.956	0.160	0.904	0.936	0.177	0.949	0.943	0.160
$1.3 \cdot \epsilon_{\texttt{MSE}}$	1.348	0.960	0.163	0.979	0.935	0.176	1.028	0.940	0.159
$\epsilon_{\mathtt{AMSE}}$	0.927	0.956	0.160	0.731	0.943	0.180	0.812	0.948	0.162
$\hat{\epsilon}_{\mathtt{AMSE}}$	0.888	0.956	0.159	0.708	0.943	0.181	0.978	0.942	0.159

Discussion and Conclusion

- Nonparametric bootstrap fails for Grenander-Type Estimators.
- Other valid resampling methods available change the bootstrap distribution.
- This paper:
 - Employs standard nonparametric bootstrap.
 - Reshapes estimator to deal with bootstrap inconsistency.
- Our method applies to many problems in econ, stats, biostats, ML and beyond:
 - Isotonic density [Grenander, 1956] and extensions (censoring, covariates).
 - ▶ Isotonic regression [Brunk, 1970] and extensions (censoring, covariates).
 - ► Monotone Hazard [Rao, 1970] and extensions (censoring, covariates).
 - ▶ Current Status [Ayer et al. 1955] and extensions (censoring, covariates).
- Coming soon: Smoothed pairwise maximum rank correlation and related problems.
 - ightharpoonup \sqrt{n} -consistent U-process optimizer but with Chernoff-type distribution