

planetmath.org

Math for the people, by the people.

Thom space

Canonical name ThomSpace

Date of creation 2013-03-22 15:40:46 Last modified on 2013-03-22 15:40:46

Owner antonio (1116) Last modified by antonio (1116)

Numerical id 5

Author antonio (1116)
Entry type Definition
Classification msc 57R22
Classification msc 55R25
Defines Thom space
Defines disk bundle
Defines sphere bundle

Let $\xi \to X$ be a vector bundle over a topological space X. Assume that ξ has a Riemannian metric. We can form its associated disk bundle $D(\xi)$ and its associated sphere bundle $S(\xi)$, by letting

$$D(\xi) = \{ v \in \xi : ||v|| \le 1 \}, \quad S(\xi) = \{ v \in \xi : ||v|| = 1 \}.$$

The *Thom space* of ξ is defined to be the quotient space $D(\xi)/S(\xi)$, obtained by taking the disk bundle and collapsing the sphere bundle to a point. Notice that this makes the Thom space naturally into a based topological space.

Two common forms of notation for the Thom space are $Th(\xi)$ and X^{ξ} .

Remark 1 If $\xi = X \times \mathbb{R}^d$ is a trivial vector bundle, then its Thom space is homeomorphic to $\Sigma^d X_+$, where X_+ stands for X with an added disjoint basepoint, and Σ^d stands for the based suspension iterated d times. Thus, we may think of X^{ξ} as a "twisted suspension" of X_+ .

Remark 2 If X is compact, then X^{ξ} is homeomorphic as a based space to the one-point compactification of ξ . Even if X is not compact, X^{ξ} can be obtained by doing a one-point compactification on each fiber and then collapsing the resulting section of points at infinity to a point.

Remark 3 The choice of Riemannian metric on ξ does not change the homeomorphism type of X^{ξ} , and, by the previous remark, the Thom space can be described without reference to associated disk and sphere bundles.