Bachelorarbeit

Explizite Berechnung der Levelt-Turrittin-Zerlegung für spezielle D-Moduln

vorgelegt von Maximilian Huber

am Institut für Mathematik der Universität Augsburg

betreut durch Prof. Dr. Marco Hien

abgegeben am 04.07.2013

stand: 5. April 2013

Inhaltsverzeichnis

0	Mat	thematische Grundlagen	1	
1	Mod	duln über \mathcal{D}_k	6	
	1.1	Weyl-Algebra und der Ring \mathcal{D}_k	6	
		1.1.1 Alternative Definition / Sichtweise	8	
	1.2	(Links) \mathcal{D} -Moduln	9	
		1.2.1 Holonome \mathcal{D} -Moduln	10	
	1.3	Lokalisierung von $\mathbb{C}\{x\}$ -Moduln	11	
	1.4	Lokalisierung eines \mathcal{D} -Moduls	11	
	1.5	Twisten von \mathcal{D} -Moduln	11	
2	Mer	romorphe Zusammenhänge	12	
	2.1	Systeme von ODEs und Meromorphe Zusammenhänge	12	
		2.1.1 Meromorphe Zusammenhänge	13	
	2.2	Eigenschaften / Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln	14	
	2.3	Newton Polygon	17	
		2.3.1 Die Filtrierung ${}^LV\mathcal{D}_{\widehat{K}}$ und das L -Symbol	21	
	2.4	Formale Struktur regulärer Zusammenhänge	23	
	2.5	pull-back und push-forward	23	
	2.6	Fouriertransformation	32	
3	Eler	mentare Meromorphe Zusammenhänge	33	
	3.1	Definition von Notizen	37	
	3.2	Definition in [Sab90]	37	
	3.3	Definition in [Sab07]	38	
4	Leve	elt-Turrittin-Theorem	39	
	4.1	Klassische Version	39	
	4.2	Sabbah's Refined version	40	

In halts verzeichn is

5		42 42 45 47		
	5.3 Angewendet für $\varphi_2 := \frac{a}{x^2}$	47 48 50 51		
Ar	nhang	51		
Α	Aufteilung von	52		
В	Genaueres zu $(x^2\partial_x)^k$	53		
Plan :				
*	Grundlagen			
*	Moduln über D			
*	Meromorphe Zusammenhänge			
	Sind spezielle moduln über D ??			
	* ODE zu Meromorphe Zush			
	* Newton polygon und Steigungen			
	* pullback und pushforward			
	* Fouriertransformation			
*	Elementare Meromorphe Zusammenhänge			
.1.	Braucht pullback oder pushforward Levelt Turrittin Theorem			
本	Braucht elem, Meromorphe Zush			
*	Das Beispiel			
	* Rezept			
	* Anwenden			

0 Mathematische Grundlagen

Hier werde ich mich auf [Sab90] und [Cou95] beziehen.

Wir betrachten \mathbb{C} hier als Complexe Mannigfaltigkeit mit der Klassischen Topologie. In dieser Arbeit spielen die folgenden Funktionenräume eine große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^{N} a_i x^i | N \in \mathbb{N} \}$ die einfachen Potenzreihen
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz$ $radius} \}$ ([HTT07, Chap 5.1.1])
- $\mathbb{C}[\![x]\!] := \{\sum_{i=1}^{\infty} a_i x^i\}$ die formalen Potenzreihen
- $K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$ der Ring der Laurent Reihen.
- $\widehat{K}:=\mathbb{C}(\!(x)\!):=\mathbb{C}[\![x]\!][x^{-1}]$ der Ring der formalen Laurent Reihen.
- \tilde{O} als der Raum der Keime aller (möglicherweise mehrdeutigen) Funktionen. (bei [HTT07] mit \tilde{K} bezeichnet)

Wobei offensichtlich die Inclulsionen $\mathbb{C}[x]\subsetneq\mathbb{C}\{x\}\subsetneq\mathbb{C}[\![x]\!]$ und $K\subsetneq\widehat{K}$ gelten.

Es bezeichnet der Hut (^) das jeweils formale äquivalent zu einem konvergentem Objekt.

Lemma 0.1 (Seite 2). ein paar eigenschaften

- 1. $\mathbb{C}[x]$ ist ein graduierter Ring, durch die Grad der Polynome. Diese graduierung induziert eine aufsteigende Filtrierung.
 - alle Ideale haben die form (x-a) mit $a \in \mathbb{C}$

2. wenn \mathfrak{m} das maximale Ideal von $\mathbb{C}[x]$ (erzeugt von x ist), so ist

$$\mathbb{C}[[x]] = \varprojlim_{k} \mathbb{C}[X] \backslash \mathfrak{m}^{k}$$

The ring $\mathbb{C}[[x]]$ ist ein nöterscher lokaler Ring: jede Potenzreihe mit konstantem term $\neq 0$ ist invertierbar.

Der ring ist ebenfalls ein diskreter ??? Ring (discrete valuation ring)

Die Filtrierung nach grad des Maximalen Ideals, genannt \mathfrak{m} -adische Fitration, ist die Filtrierung $\mathfrak{m}^k = \{f \in \mathbb{C}[[x]] | v(f) \geq k\}$

und es gilt
$$gr_{\mathfrak{m}}(\mathbb{C}[[x]]) = \mathbb{C}[x]$$

Für $v = (v_1, \ldots, v_n)$ ein Vektor, bezeichnet

$${}^tv := \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

den Transponierten Vektor. Es bezeichnet $M(n \times m, k)$ die Menge der n mal m Dimensionalen Matritzen mit Einträgen in k.

Definition 0.2 (Direkte Summe). [Sta12, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 0.3 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

Faserprodukt: [Sta12, 4(Categories).6.1]

Für eine Abbildung $f: M \to M'$ definiere das Tensorprodukt davon über R mit N als

$$\operatorname{id}_N \otimes f: N \otimes_R M \to N \otimes_R M'$$

 $n \otimes m \mapsto n \otimes f(m)$

Bemerkung 0.4. Hier ein paar Rechenregeln für das Tensorprodukt,

$$(M \otimes_R N) \otimes_S L \cong M \otimes_R (N \otimes_S L) \tag{0.1}$$

$$M \otimes_R R \cong M \tag{0.2}$$

Sei $f: M' \to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong N \otimes_R M/\operatorname{im}(\operatorname{id}_R \otimes f) \tag{0.3}$$

Definition 0.5 (Exacte Sequenz). Eine Sequenz

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

heißt exact, wenn für alle i gilt, dass $\operatorname{im}(f_{i-1}) = \ker f_i$.

Definition 0.6 (Kurze exacte Sequenz). Eine kurze exacte Sequenz ist eine Sequenz

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

welche exact ist.

Definition 0.7 (Kokern). Ist $f: M' \to M$ eine Abbildung, so ist der *Kokern* von f definiert als $\operatorname{coker}(f) = M/\operatorname{im}(f)$.

Proposition 0.8. Ist $f: M' \to M$ eine injektive Abbildung, so ist

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M/f(M') \longrightarrow 0$$
$$m \longmapsto m \mod f(M')$$

eine kurze exacte Sequenz und $M/f(M') = \operatorname{coker}(f)$ ist der Kokern von f.

Beweis.
$$\Box$$

Definition 0.9 (Filtrierung). [Sta12, Def 10.13.1.] [Ell10, Rem 2.5.] Eine aufsteigende Filtrierung F von einem Objekt (Ring) A ist eine Familie von $(F_iA)_{i\in\mathbb{Z}}$ von Unterobjekten (Unterring), so dass

$$0 \subset \cdots \subset F_i \subset F_{i+1} \subset \cdots \subset A$$

und definiere weiter $gr_i^FA:=F_iA/F_{k-1}A$ und damit das zu A mit Filtrierung F assoziierte graduierte Modul

$$gr^F A := \bigoplus_{k \in \mathbb{Z}} gr_i^F A$$
.

gr_i^F als was??

Definition 0.10. [Ayo09] [Sab90, Def 3.2.1] Eine Filtrierung heißt gut, falls ...

Definition 0.11 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 0.12. Sei $k \in \{\mathbb{C}[x], \mathbb{C}[x], \mathbb{C}[x], K, \widehat{K}\}$. Sei $\partial_x : k \to k$ der gewohnte Ableitungs-operator nach x, so gilt

1.
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. $f\ddot{u}r \ f \in k \ ist$

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

3. Es gelten die Formeln

$$[\partial_x, x^k] = kx^{k-1} \tag{0.4}$$

$$[\partial_x^j, x] = j\partial_x^{j-1} \tag{0.5}$$

$$[\partial_x^j, x^k] = \sum_{i \ge 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i}$$
 (0.6)

Beweis. 1. Klar.

2. Für ein Testobjekt $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f\partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Siehe [AV09, ???]

1 Moduln über \mathcal{D}_k

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Wir werden als k immer ein Element aus $\{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \widehat{K}\}$ betrachten.

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in k$. Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.1}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g.$$

Definition 1.1. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.1). Wir schreiben diesen Ring auch als

- $A_1(\mathbb{C}):=\mathbb{C}[x]<\partial_x>$ falls $k=\mathbb{C}[x],$ und nennen ihn die Weyl Algebra
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\}$
- $\widehat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x]$
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K \stackrel{\text{def}}{=} \mathbb{C}\{x\}[x^{-1}]$
- $\mathcal{D}_{\widehat{K}} := \mathbb{C}((x)) < \partial_x > \text{falls } k = \widehat{K} \stackrel{\text{def}}{=} \mathbb{C}[x][x^{-1}]^{[1]}$.

Bemerkung 1.2. • Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\widehat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\widehat{K}}$

^[1] Wird mit $\widehat{\mathcal{D}}_{\widehat{K}}$ bezeichnet, in [AV09].

- Offensichtlich erhält \mathcal{D}_k in kanonischer weiße eine Ringstruktur, dies ist in [AV09, Kapittel 2 Section 1] genauer ausgeführt.
- \mathcal{D}_k ist offensichtlich nichtkommutativ.

Proposition 1.3. [Sab90, Proposition 1.2.3] Jedes Element in \mathcal{D}_k kann auf eindeutige weiße als $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3]

ein teil des Beweises ist "left as an exersice"

Gilt das folgende??

$$\alpha_i(x)\partial_x^i \equiv \frac{\alpha_i}{x^i}(x\partial_x)^i \mod F_{i-1}\mathcal{D}$$

Besser?:

erst Filtrierung definieren und dadurch dann den Grad?

Definition 1.4. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.3, gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

als den Grad von P.

Unabhängigkeit von Schreibung? Sabbah script!

In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{\text{def}}{=} F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.5. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\} [\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \ grad. \ Ringe$$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als graduierte Ringe.

Beweis. TODO

Treffen?

1.1.1 Alternative Definition / Sichtweise

Nur abgeschrieben

[Kas03, Chap 1.1.] Sei X eine 1-Dimensionale complexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) differenzial Operator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n \ge 0} a_n(x) \partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen ein Operator hat höchstens Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$.

Definition 1.6. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X.

Die Garbe \mathcal{D}_X hat eine Ring Struktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein links \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 1.7. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[x]\partial_x$. Wobei ∂_x als $\partial_x(x^n) = nx^{n-1}$ wirkt. Dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[x, \partial_x],$$
 mit $\partial_x x - x \partial_x = 1.$

Somit stimmt die Alternative Definition schon mal mit der Einfachen überein.

Definition 1.8. [Ark12, Defn 2.1] Sei $X = \mathbb{A}^1$, $\mathcal{O}_X = \mathbb{C}[x]$ und $\mathcal{D}_X = [x, \partial_x]$ mit der Relation $[\partial_x, x] = 1$. Dann definieren wir die links \mathcal{D} -Moduln über \mathbb{A}^1 als die $\mathbb{C}[x, \partial_x]$ -Moduln. Sie werden geschrieben als $\mathcal{D} - mod(\mathbb{A}^1)$

1.2 (Links) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links unr rechts \mathcal{D} -Moduln unterschiden. Wenn ich im folgendem von \mathcal{D} -Moduln rede, werde ich mich immer auf links \mathcal{D} -Moduln beziehen.

Beispiel 1.9 (links \mathcal{D} -Moduln). [Ark12, Exmp 2.2]

- 1. \mathcal{D} ist ein links und rechts \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[x]$ oder $\mathcal{M} = \mathbb{C}[x, x^{-1}]$ jeweils durch $x \cdot x^m = x^{m+1}$ und $\partial(x^m) = mx^{m-1}$
- 3. [Ark12, Exmp 2.2] Führe formal, also ohne analytischen Hintergurnd, ein Symbol $\exp(\lambda x)$ ein, mit $\partial(f(x)\exp(\lambda x)) = \frac{\partial f}{\partial x}\exp(\lambda x) + f\lambda\exp(\lambda x)$. So ist $\mathcal{M} = \mathscr{O}_X\exp(\lambda x)$ ein \mathcal{D} -Modul.
- 4. [Gin98, Exmp 3.1.4] Führe formal ein Symbol $\log(x)$ mit den Eigenschaften $\partial_x \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} erzeugt durch $\log(x)$ und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x,x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial_x x \partial_x).$$

Lemma 1.10. [Sab90, Lem 2.3.3.] Sei \mathcal{M} ein links \mathcal{D} -Modul von endlichem Typ, welches auch von endlichem Typ über $\mathbb{C}\{x\}$ ist. Dann ist \mathcal{M} bereits ein freies $\mathbb{C}\{x\}$ -Modul.

Beweis. Siehe [Sab90, Lem 2.3.3.].

Korollar 1.11. [Sab90, Cor 2.3.4.] Falls \mathcal{M} ein links \mathcal{D} -Modul von endlichem typ, welches außerdem ein endich dimensionaler Vektorraum ist, so ist schon $\mathcal{M} = \{0\}$.

1.2.1 Holonome \mathcal{D} -Moduln

TODO: defn of Car als Charakteristische Varietät

Definition 1.12. [Sab90, Def 3.3.1.] Sei \mathcal{M} lineares Differentialsystem (linear differential system) . Man sagt, \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ oder falls $\operatorname{Car} \mathcal{M} \subset \{x = 0\} \cup \xi = 0$.

Lemma 1.13. [Sab90, Lem 3.3.8.] Ein \mathcal{D} -Modul ist holonom genau dann, wenn $\dim_{gr^F\mathcal{D},0} gr^F\mathcal{M} = 1$.

Beweis. Siehe [Sab90, Lem 3.3.8.]

Alternative Definition A

Countinho definiert die Carakteristische Varietät erst nach holonom

Definition 1.14 (Holonome \mathcal{D} -Moduln). [Cou95, Chap 10 §1] Ein endlich genertierter \mathcal{D} -Modul \mathcal{M} ist *holonom*, falls $\mathcal{M} = 0$ gilt, oder falls es die Dimension 1 hat.

Bemerkung 1.15. [Cou95, Chap 10 §1] Sei $\mathfrak{a} \neq 0$ ein Links-Ideal von \mathcal{D} . Es gilt nach [Cou95, Corollary 9.3.5], dass $d(\mathcal{D}/\mathfrak{a}) \leq 1$. Falls $\mathfrak{a} \neq \mathcal{D}$, dann gilt nach der Bernstein's inequality [Cou95, Chap 9 4], dass $d(\mathcal{D}/\mathfrak{a}) = 1$. Somit ist \mathcal{D}/\mathfrak{a} ein holonomes \mathcal{D} -Modul.

Bemerkung 1.16. [Cou95, Prop 10.1.1]

- ullet Submoduln und Quotienten von holonomen \mathcal{D} -Moduln sind holonom.
- Endliche Summen von holonomen D-Moduln sind holonom.

Alternative Definition B

Definition 1.17. Ein \mathcal{D} -Modul \mathcal{M} heißt *holonom*, falls es ein $\mathfrak{a} \triangleleft \mathcal{D}$ gibt, so dass

 $\mathcal{M} \cong \mathcal{D}/a$.

Bemerkung 1.18. In [Cou95] wird dies über die Dimension definiert, und bei [Sab90] über die Carakteristische Varietät.

1.3 Lokalisierung von $\mathbb{C}\{x\}$ -Moduln

[Sab90, Chap 4.1.] Sei M ein $\mathbb{C}\{x\}$ -Modul. Wir schreiben $M[x^{-1}]$ für den K-Vektor Raum $M \otimes_{\mathbb{C}\{x\}} K$. Im allgemeinen gilt, falls M von andlichen Typ über $\mathbb{C}\{x\}$ ist, so ist $C[x^{-1}]$ von endlichem Typ über K. Bemerke aber, dass $M[x^{-1}]$ generell nicht von endlichem Typ über $\mathbb{C}\{x\}$ ist.

1.4 Lokalisierung eines \mathcal{D} -Moduls

[Sab90, Chap 4.2.] Sei \mathcal{M} ein links \mathcal{D} -Modul. Betrachte \mathcal{M} als $\mathbb{C}\{x\}$ -Modul und definiere darauf

$$\mathcal{M}[x^{-1}] := \mathcal{M} \otimes_{\mathbb{C}\{x\}} K$$

als die Lokalisierung von \mathcal{M} .

Proposition 1.19. [Sab90, Prop 4.2.1.] $\mathcal{M}[x^{-1}]$ erhält in natürlicher Weise eine \mathcal{D} -Modul Struktur.

Beweis. [Sab90, Prop 4.2.1.] mit:

$$\partial_x(m \otimes x^{-k}) = ((\partial_x m) \otimes x^{-k}) - km \otimes x^{-k-1}$$

beweis der \mathcal{D} -linearität ist als übung gelassen

Korollar 1.20. [Sab90, Cor 4.2.8.] Sei \mathcal{M} ein holonomes Modul. Dann ist die lokalisierung von \mathcal{M} isomorph zu $\mathcal{D}/\mathcal{D} \cdot P$ für ein $P \in \mathcal{D}/\{0\}$

1.5 Twisten von \mathcal{D} -Moduln

[Cou95, Chap 5 §2]

2 Meromorphe Zusammenhänge

Sei \mathcal{M} ein \mathcal{D} -Modul ungleich Null von endlichem Typ. Falls die links-Multiplikation mit x bijektiv ist, so nennen wir \mathcal{M} einen Meromorphen Zusammenhang. [Sab90, Chap 4]

2.1 Systeme von ODEs und Meromorphe Zusammenhänge

[HTT07, Chap 5.1.1] Für eine Matrix $A(x) = (a_{ij}(x))_{ij} \in M(n \times n, K)$ betrachten wir das System von gewöhnlichen Differentialgleichungen (kurz ODEs)

$$\frac{d}{dx}u(x) = A(x)u(x) \tag{2.1}$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor von unbekannten Funktionen. Wir werden (2.1) immer in einer Umgebung um $x = 0 \in \mathbb{C}$ betrachten. Als Lösungen von (2.1) betrachten wir Keime von holomorphen (aber möglicherweise mehrdeutigen) Funktionen an x = 0 (geschrieben als $\tilde{\mathcal{O}}$). Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine Lösung von (2.1), falls $v_i \in \tilde{\mathcal{O}}$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

TODO: zeige, das der lösungsraum die eigenschaften von \mathcal{D} -Moduln erfüllt siehe alternativer Zugang

Alternativer Zugang

Sei P ein linearer Differentialoperator mit Koeffizienten in $a_i(x) \in \mathbb{C}\{x\}$ geschrieben als $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$. Man sagt eine Funktion $u \in \mathcal{F}$ ist Lösung von P, falls u die Gleichung Pu = 0 erfüllt. Man sagt 0 ist ein singulärer Punkt falls $a_d(0) = 0$. Falls 0 kein singulärer Punkt ist, hat P genau d über \mathbb{C} Unabhängige Lösungen in $\mathbb{C}\{x\}$.

[Sab90, 3.1.1] Sei \mathcal{F} ein Funktionenraum, auf dem die Differentialoperatoren \mathcal{D} wirken. Ein Element $u \in \mathcal{F}$ ist Lösung von $P \in \mathcal{D}$ falls $P \cdot u = 0$ gilt.

Falls u ein Lösung von P ist, so ist u auch Lösung von $Q \cdot P$ mit $Q \in \mathcal{D}$. Also hängt die Lösung nur vom Links Ideal $\mathcal{D} \cdot P \triangleleft \mathcal{D}$ ab.

2.1.1 Meromorphe Zusammenhänge

Nun wollen wir dieses Klassische Gebilde nun in die moderne Sprache der Meromorphen Zusammenhänge übersetzen.

Definition 2.1 (Meromorpher Zusammenhang). Ein Meromorpher Zusammenhang (bei x = 0) ist ein Tuppel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum
- einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.2}$$

erfüllen soll.

Bemerkung 2.2 (Formaler Meromorpher Zusammenhang). Analog definiert man einen formalen Meromorphen Zusammenhang $(\mathcal{M}_{\widehat{K}}, \partial)$ bestehend, analog wie in Definition 2.1, aus folgenden Daten:

- $\mathcal{M}_{\widehat{K}}$, ein endlich dimensionaler \widehat{K} -Vektor Raum
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\widehat{K}} \to \mathcal{M}_{\widehat{K}}$, welche die *Leibnitzregel* (2.2) erfüllen soll.

Definition 2.3. Seien $(\mathcal{M}_K, \partial_{\mathcal{M}})$ und $(\mathcal{N}_K, \partial_{\mathcal{N}})$ zwei Meromorphe Zusammenhänge. Eine Klineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ heißt Morphismus von Meromorphen Zusammenhängen, falls
sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}_K, \partial_{\mathcal{M}}) \to (\mathcal{N}_K, \partial_{\mathcal{N}})$.

Bemerkung 2.4. 1. Später wird man auf die Angabe von ∂ verzichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K verzichtet.

2. [HTT07, Rem 5.1.2.] Die Bedingung (2.2) ist zur schwächeren Bedingung

$$\partial(fu) = f'u + f\partial u.$$

welche für alle $f \in \tilde{\mathcal{O}}$ und für alle $u \in \mathcal{M}_K$ erfüllt sein muss, äquivalent.

Definition 2.5 (Zusammenhangsmatrix). [HTT07, Seite 129] Sei $(\mathcal{M}_K, \partial)$ ein Meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ von \mathcal{M} . Dann ist die Zusammenhangsmatrix bzgl. der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ die Matrix $A(x) = (a_{ij}(x)) \in M(n \times n, K)$ definiert durch

$$a_{ij}(x) = -^t e_i \partial e_j$$
.

Also ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$, die Wirkung von ∂ auf $u=:{}^t(u_1,\dots,u_n)$ beschrieben durch

$$\partial(u) = \partial\left(\sum_{i=1}^{n} u_i(x)e_i\right) \stackrel{??}{=} \sum_{i=1}^{n} \left(u_i'(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\right)e_i.$$

Einfache Umformungen zeigen, dass die Bedingung $\partial u(x) = 0$, für $u(x) \in \sum_{i=1}^{n} u_i e_i \in \tilde{\mathcal{O}} \otimes_K \mathcal{M}$, äquivalent zu der Gleichung

$$u'(x) = A(x)u(x)$$

für $u(x) = {}^t(u_1(x), \ldots, u_n(x)) \in \tilde{\mathcal{O}}^n$. Damit haben wir gesehen, dass jeder Meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem ODE zugeordnet werden kann.

Umgekehrt können wir für jede Matrix $A(x) = (a_{ij}(x))$ den assoziierten Meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ angeben, durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i,$$
 $\partial_A e_i := -\sum_{i=1}^n a_{ij}(x)e_i.$

2.2 Eigenschaften / Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln

[Sab90, 4.2] Let \mathcal{M} be a left \mathcal{D} -module. First we consider it only as a $\mathbb{C}\{x\}$ -module and let $\mathcal{M}[x^{-1}]$ be the localized module.

Lemma 2.6 (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei \mathcal{M}_K ein Meromorpher Zusammenhang. Es Existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_x m, \ldots, \partial_x^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. [AV09, Satz 4.8]
$$\Box$$

Satz 2.7. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein holonomes lokalisiertes \mathcal{D}_K -Modul und andersherum.

Beweis. [Sab90, Thm 4.3.2]

Lemma 2.8. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Beweis. [AV09, Satz 4.12] \Box

Bemerkung 2.9. [Sab90, Proof of Theorem 5.4.7]

$$\dim_{\widehat{K}}\mathcal{M}_{\widehat{K}}=\deg P \text{ wenn } \mathcal{M}_{\widehat{K}}=\mathcal{D}/\mathcal{D}\cdot P$$

Satz 2.10. [AV09, Seite 64] Ist $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot P \cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$$
.

Beweis. [AV09, Seite 57-64]

Korollar 2.11. Sei $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ wie in Satz 2.10 so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot (P_1 \cdot P_2) \cong \mathcal{D}_K/\mathcal{D}_K \cdot (P_2 \cdot P_1)$$

Beweis.

$$\mathcal{D}_{K}/\mathcal{D}_{K} \cdot P = \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{1} \cdot P_{2})$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2}$$

$$= \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1}$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{2} \cdot P_{1})$$

Lemma 2.12. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\begin{array}{ccc}
\mathcal{M}_K & \xrightarrow{\partial} & \mathcal{M}_K \\
\uparrow & & \uparrow \\
\cong \varphi & & \varphi \cong \\
\mid & & \downarrow \\
K^r & \xrightarrow{\varphi^{-1} \circ \partial \circ \varphi} & K^r
\end{array}$$

-15-

gilt: $(K^r, \varphi^{-1} \circ \partial \circ \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)

Lemma 2.13. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und $\varphi : \mathcal{M} \to \mathcal{N}$ ein Isomorphismus so ist $(\mathcal{N}, \varphi^{-1} \circ \partial \circ \varphi)$ ein zu $(\mathcal{M}_K, \partial)$ isomorpher Zusammenhang.

$$\begin{array}{ccc} \mathcal{M}_K & \stackrel{\partial}{\longrightarrow} \mathcal{M}_K \\ \uparrow & \uparrow \\ \cong \varphi & \varphi \cong \\ \mid & \varphi^{-1} \circ \partial \circ \varphi & \mid \\ \mathcal{N} & \stackrel{\varphi^{-1}}{\longrightarrow} \mathcal{N} \end{array}$$

Beweis. TODO, (3. Treffen)

Lemma 2.14. Sei \mathcal{M}_K ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Korollar 2.15. Für (K^r, ∂) ein Meromorpher Zusammenhang existiert ein $A \in M(r \times r, K)$, so dass $\partial = \frac{d}{dx} - A$.

Beweis. Es sei (K^r, ∂) ein Meromorpher Zusammenhang. So ist $\frac{d}{dx} - \partial : K^r \to K^r$ K-linear, also lässt sich durch eine Matrix $A \in M(r \times r, K)$ darstellen , also ist, wie behauptet, $\partial = \frac{d}{dx} - A$.

Proposition 2.16 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

 $mit\ arphi, \psi\ und\ T\ K$ -Linear und $\partial, (\frac{d}{dx}+A)\ und\ (\frac{d}{dx}+B)\ \mathbb{C}$ -Linear, gilt: $Der\ Meromorphe\ Zusammenhang.\ \frac{d}{dx}+A\ auf\ K^r\ wird\ durch\ Basiswechsel\ T\in GL(r,K)\ zu$

$$\frac{d}{dx} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dx} + B$$

Definition 2.17 (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent ($A \sim B$) genau dann, wenn es ein $T \in GL(r, K)$ gibt, mit $B = T^{-1} \cdot T' + T^{-1}AT$.

$$1 = TT^{-1} \rightsquigarrow T'T^{-1} + T(T^{-1})' = 0$$

$$1 = T^{-1}T \rightsquigarrow (T^{-1})'T + T^{-1}T' = 0$$

Proposition 2.18. [Sch, Prop 4.1.1] Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ Meromorphe Zusammenhänge. Durch setzten von

$$\partial(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes\partial_{\mathcal{N}}(n)$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem Meromorphen Zusammenhang.

Lemma 2.19. [Sab90, Ex 5.3.7] Falls \mathcal{N} regulär und nicht Null, dann ist die Menge der Slopes von $\mathcal{M} \otimes \mathcal{N}$ genau die Menge der Slopes von \mathcal{M} .

Beweis. TODO
$$\Box$$

2.3 Newton Polygon

Quelle: sabba?

sabbah mach alles formal, barbara mach alles konvergent

Jedes $P \in \mathcal{D}_{\widehat{K}}$, also insbesondere auch jedes $P \in \mathcal{D}_K$, lässt sich eindeutig als

$$P = \sum_{k=0}^{n} a_k \partial_x^k = \sum_{k=0}^{n} \left(\sum_{l=-N}^{\infty} \alpha_{kl} x^l \right) \partial_x^k$$

mit $\alpha_{ml} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$H(P) := \bigcup_{m,l \text{ mit } \alpha_{ml} \neq 0} ((m,l-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) \subset \mathbb{R}^2.$$

Definition 2.20. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

Definition 2.21. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- Schreibe $\mathcal{P}(\mathcal{M})$ für die Menge der zu \mathcal{M} gehörigen slopes.
- P heißt regulär oder regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$ oder deg P = 0, sonst irregulär singulär.
- Ein meromorpher Zusammenhang $\mathcal{M}_{\widehat{K}}$ (bzw. \mathcal{M}_K) heißt regulär singulär, falls es ein regulär singuläres $P \in \mathcal{D}_{\widehat{K}}$ (bzw. $P \in \mathcal{D}_K$) gibt, mit $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ (bzw. $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$).

Definition 2.22 (Alternative Definition). [HTT07, Def 5.1.6] We say a meromorphic connection (\mathcal{M}, ∇) at x = 0 is regular if there exists a finitely generated \mathcal{O} -submodule $\mathcal{L} \subset \mathcal{M}$ which is stable by the action of $\theta = x\nabla$ (i.e., $\theta\mathcal{L} \subset \mathcal{L}$) and generates \mathcal{M} over K. We call such an \mathcal{O} -submodule \mathcal{L} an \mathcal{O} -lattice of (\mathcal{M}, ∇) .

Beispiel 2.23. 1. Ein besonders einfaches Beispiel ist $P_1 = x^1 \partial_x^2$. Es ist leicht abzulesen, dass

$$m=2$$
 $l=1$

so dass

$$H(P_1) = ((2, 1-2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) = \{(u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1\}.$$

In Abbildung 2.2b ist $H(P_1)$ (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei $P_2 = x^4(x+1)\partial_x^4 + x\partial_x^2 + \frac{1}{x}\partial_x + 1$ so kann man das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung ?? visualisiert. Man erkennt, dass $\mathcal{P}(P_2) = \{0, \frac{2}{3}\}$ ist.

Abbildung 2.1: Zu Beispiel 2.23

Bemerkung 2.24. [AV09, Bem 5.4] Für alle $f \in \mathbb{C}(\{x\}) \setminus \{0\}$ gilt allgemein, dass das zu $P \in \mathcal{D}_{\widehat{K}}$ gehörige Newton Polygon, bis auf vertikale Verschiebung mit dem von $f \cdot P$ übereinstimmt.

Beweis.
$$TODO$$

Damit Lässt sich das Newton Polygon, durch ein f, immer so verschieben, dass $(0,0) \in N(f \cdot P)$, und es gilt, dass

$$\mathcal{D}_K \cdot P = \mathcal{D}_K \cdot (f \cdot P) \lhd \mathcal{D}_K$$

ist. Dies stellt eine Normierung des Newton Polygons dar.

Lemma 2.25. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

Siehe auch [Sab90, Thm 5.3.4]

Dort Steht:

Wir erhalten die Exacte Sequenz

$$0 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_1 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_2 \to 0$$

Korollar 2.26. [Sab90, Thm 5.3.4] $\mathcal{P}(P) = \mathcal{P}(P_1) \cup \mathcal{P}(P_2)$ und $\mathcal{P}(P_1) \cap \mathcal{P}(P_2) = \emptyset$

Satz 2.27. [Sab90, Thm 5.3.1] [AV09, 5.15] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \ldots, \Lambda_r\}$ die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindeutige Zerlegung

$$\mathcal{M}_{\widehat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\widehat{K}}^{(i)}$$

in formale Meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\widehat{K}}^{(i)}) = \{\Lambda_i\}.$

Beweis. [Sab90, Thm 5.3.1] oder [AV09, 5.15]

Beispiel 2.28. [Sab90, Ex 5.3.6] Sei $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$. So sieht das Newton-Polygon wie folgt aus

Abbildung 2.2: Newton Polygon zu P

mit den Slopes $\mathcal{P}(P) = \{0,1\} =: \{\Lambda_1, \Lambda_2\}$. Nach dem Satz 2.27 existiert eine Zerlegung $P = P_1 \cdot P_2$ mit $\mathcal{P}(P_1) = \{\Lambda_1\}$ und $\mathcal{P}(P_2) = \{\Lambda_2\}$. Durch scharfes hinsehen erkennt man, dass

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$
...
$$= (x(x\partial_x) + \dots) \cdot (x\partial_x + \dots)$$

. . .

$$= P_1 \cdot P_2$$

anders geschrieben

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$

$$= xx\partial_x x\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^2(x\partial_x + 1)\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + x^2\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + (x^2 + x)\partial_x + \frac{1}{2}$$

So sieht das Newton-Polygon wie folgt aus

Abbildung 2.3: Newton Polygon zu P

2.3.1 Die Filtrierung ${}^LV\mathcal{D}_{\widehat{K}}$ und das L-Symbol

Sei $\Lambda = \frac{\lambda_0}{\lambda_1} \in \mathbb{Q}_{\geq 0}$ vollständig gekürtzt, also mit λ_0 und λ_1 in \mathbb{N} relativ prim Definiere die Linearform $L(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ in zwei Variablen, Sei $P \in \mathcal{D}_{\widehat{K}}$. Falls $P = x^a \partial_x^b$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{N}$ setzen wir

$$\operatorname{ord}_L(P) = L(b, b - a)$$

und falls $P = \sum_{i=0}^{d} b_i(x) \partial_x^i$ mit $b_i \in \widehat{K}$ setzen wir

$$\operatorname{ord}_{L}(P) = \max_{\{i \mid a_{i} \neq 0\}} L(i, i - v(b_{i})).$$

Definition 2.29 (Die Filtrierung ${}^LV\mathcal{D}_{\widehat{K}}$). [Sab90, Seite 25] Nun können wir die aufsteigende Filtration ${}^LV\mathcal{D}_{\widehat{K}}$, welche mit $\mathbb Z$ indiziert ist, durch

$${}^{L}V_{\lambda}\mathcal{D}_{\widehat{K}} := \{ P \in \mathcal{D}_{\widehat{K}} \mid \operatorname{ord}_{L}(P) \leq \lambda \}$$

definieren.

Bemerkung 2.30. Man hat $\operatorname{ord}_L(PQ) = \operatorname{ord}_L(P) + \operatorname{ord}_L(Q)$ und falls $\lambda_0 \neq 0$ hat man auch, dass $\operatorname{ord}_L([P,Q]) \leq \operatorname{ord}_L(P) + \operatorname{ord}_L(Q) - 1$.

Definition 2.31 (*L*-Symbol). [Sab90, Seite 25] Falls $\lambda_0 \neq 0$ ist der graduierte Ring $gr^{LV}\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \mathbb{Z}} gr_{\lambda}^{LV}\mathcal{D}_{\widehat{K}}$ ein kommutativer Ring. Bezeichne die Klasse von ∂_x in dem Ring durch ξ , dann ist der Ring isomorph zu $\widehat{K}[\xi]$. Sei $P \in \mathcal{D}_{\widehat{K}}$, so ist $\sigma_L(P)$ definiert als die Klasse von P in $gr_{\operatorname{ord}_L(P)}^{LV}\mathcal{D}_{\widehat{K}}$. σ_L wir hierbei als das L-Symbol Bezeichnet.

Zum Beispiel ist $\sigma_L(x^a \partial_x^b) = x^a \xi^b$.

Bemerkung 2.32. Ist $P \in \mathcal{D}_{\widehat{K}}$ geschrieben als $P = \sum_{i} \sum_{j} \alpha_{ij} x^{j} \partial_{x}^{i}$. So erhält man $\sigma_{L}(P)$ durch die Setzung

$$\sigma_L(P) = \sum_{\{(i,j)|L(i,i-j) = \operatorname{ord}_L(P)\}} \alpha_{ij} x^j \xi^i.$$

Beweis. \Box

Ich will die Linearform vermeiden und direkt die skalare Steigung verwenden

Definition 2.33 (Stützfunktion). Die Funktion

$$\omega_P : [0, \infty) \to \mathbb{R}, \omega_P(t) := \inf\{v - tu \mid (u.v) \in N(P)\}$$

heißt Stützfunktion und wird in [AV09] als alternative zu dieser Ordnung verwendet.

Bemerkung 2.34. Wenn $L(x_0, s_1)$ wie oben aus Λ entstanden ist, so gilt

$$\omega_P(\Lambda) = ord_L(P)$$
.

TODO: ist L Slope (gehört zu Slope) dann hat $\sigma_L(P)$ zumindest 2 Monome

2.4 Formale Struktur regulärer Zusammenhänge

[Sab90, Chap 5.2] Sei $\mathcal{M}_{\widehat{K}}$ ein regulärer formaler Meromorpher Zusammenhang.

Lemma 2.35. [Sab90, Lem 5.2.1.] Es existiert eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} mit der Eigenschaften, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Beweis. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\widehat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.6). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ in Basisdarstellung mit Koeffizienten $b_i \in \widehat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$.

bis hier schon klar

Tatsächlich werden wir $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[x]$ schreiben (wegen Regularität).

Dies impliziert, dass $m, x\partial_x m, \ldots, (x\partial_x)^{d-1}m$ ebenfalls eine Basis von $\mathcal{M}_{\widehat{K}}$ ist.

Die Matrix von $x\partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[x]$.

Lemma 2.36. [Sab90, Lem 5.2.2.] Es existiert sogar eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} so dass die Matrix zu $x\partial_x$ konstant ist.

Beweis. TODO

2.5 pull-back und push-forward

TODO: Variable zu x machen

Nach [Sab07, 1.a] und [HTT07, 1.3]. Sei

$$\rho: \mathbb{C} \to \mathbb{C}, t \mapsto x := \rho(t) \qquad \in t\mathbb{C}[\![t]\!]$$

mit Bewertung $p \ge 1$.

TODO: muss das ein Homomorphismus sein? [Cou95, Seite 130]

Hier werden wir immer $\rho(t)=t^p$ für ein $p\in\mathbb{N}$ betrachten. Diese Funktion induziert eine Abbildung

$$\rho^*: \mathbb{C}\{x\} \hookrightarrow \mathbb{C}\{t\}, f \mapsto f \circ \rho \qquad \qquad \text{bzw.} \qquad \qquad \rho^*: \mathbb{C}[\![x]\!] \hookrightarrow \mathbb{C}[\![t]\!], f \mapsto f \circ \rho$$

analog erhalten wir

$$\rho^*: K \hookrightarrow L := \mathbb{C}(\{t\}), f \mapsto f \circ \rho$$
 bzw. $\rho^*: \widehat{K} \hookrightarrow \widehat{L} := \mathbb{C}((t)), f \mapsto f \circ \rho$

wobei L (bzw. \widehat{L}) eine enldiche Körpererweiterung von K (bzw \widehat{K}) ist.

TODO: damit wird \widehat{L} zu einem \widehat{K} Vektorraum.

Sei $\mathcal{M}_{\widehat{K}}$ ein endlich dimensionaler $\mathbb{C}(\!(t)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 2.37 (pull-back). [Sab07, 1.a] und [Sab90, Page 34] Der *pull-back* oder das *Inverses Bild* $\rho^+\mathcal{M}_{\widehat{K}}$ von $(\mathcal{M}_{\widehat{K}}, \nabla)$ ist der Vektorraum $\rho^*\mathcal{M}_{\widehat{K}} = \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} = \mathbb{C}((t)) \otimes_{\mathbb{C}((x))} \mathcal{M}_{\mathbb{C}((x))}$ mit dem *pull-back Zusammenhang* $\rho^*\nabla$ definiert durch

$$\partial_t(1\otimes m) := \rho'(t)\otimes \partial_x m. \tag{2.3}$$

[Cou95, Seite 130] Holonomic modules are preserved under this construction.

[Sab90, Page 34] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang. Man definiert $\pi^*\mathcal{M}_{\widehat{K}}$ als den Vektor Raum über $\widehat{L}: \pi^*\mathcal{M}_{\widehat{K}} = \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}$. Dann definiert man die Wirkung von ∂_t durch: $t\partial_t \cdot (1 \otimes m) = q(1 \otimes (x\partial_x \otimes m))$ und damit

$$t\partial_t \cdot (\varphi \otimes m) = q(\varphi \otimes (x\partial_x \cdot m)) + ((t\frac{\partial \varphi}{\partial t}) \otimes m).$$

Man erhält damit die Wirkung von $\partial_t = t^{-1}(t\partial_t)$.

Lemma 2.38. Es gilt $\rho^*\mathcal{D}_{\widehat{K}} = \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ mittels

$$\Phi: \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\cong} \mathcal{D}_{\widehat{L}}$$

$$f(t) \otimes m(x, \partial_x) \longmapsto f(t) m(\rho(t), \rho'(t)^{-1} \partial_t)$$

Beweis. \Box

Bemerkung 2.39. BENÜTZT BEREITS DAS NÄCHSTE LEMMA...

Das soeben, in Lemma 2.38, definierte Φ erfüllt für Elementartensoren $1 \otimes m \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$

$$\partial_u(1 \otimes m) \stackrel{\text{def}}{=} \rho'(t) \otimes \partial_x m$$

$$\stackrel{\Phi}{\mapsto} \underbrace{\rho'(t)\rho'(t)^{-1}}_{=1} \partial_t m(\rho(t), \rho'(t)^{-1} \partial_t)$$

$$= \partial_t m(\rho(t), \rho'(t)^{-1} \partial_t)$$

und somit (2.3) wie gewollt.

Lemma 2.40. Sei $P(x, \partial_x) \in \mathcal{D}_K$. In der Situation

$$\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P(t, \partial_t)} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

mit Φ wie in Lemma 2.38 macht $\alpha := \underline{} \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$ das Diagram kommutativ.

Beweis. \Box

Lemma 2.41. In der Situation von Lemma 2.37, mit $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ für ein $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$, gilt

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t).$$

also wird der Übergang beschrieben durch

$$x \to \rho(t)$$

$$\partial_x \to \rho'(t)^{-1} \partial_t$$

Beweis. Sei $P \in \mathcal{D}_{\widehat{K}}$ und $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M}_{\widehat{K}} \stackrel{!}{\cong} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q$$

für $Q=P(\rho(t),\rho'(t)^{-1}\partial_t)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \longrightarrow \mathcal{D}_{\widehat{K}} \xrightarrow{-\cdot P} \mathcal{D}_{\widehat{K}} \xrightarrow{\pi} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$u \longmapsto u \cdot P$$

$$u \longmapsto u \mod \mathcal{D}_{\widehat{K}} \cdot P$$

ist **exact**, weil $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P = \operatorname{coker}(_ \cdot P)$. Weil \widehat{K} flach ist, da Körper, ist auch, nach anwenden des Funktors $\widehat{L} \otimes_{\widehat{K}}$ _, die Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{\underline{-}} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\rho^* \mathcal{M}_{\widehat{K}}$$

exact. Deshalb ist

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \operatorname{coker}(\operatorname{id} \otimes \underline{\hspace{0.5cm}} \cdot P) \tag{weil exact}$$

$$\cong \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} / \left((\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}) \cdot (\operatorname{id} \otimes \underline{\hspace{0.5cm}} \cdot P) \right) \tag{nach def. von coker}$$

Also mit Φ wie in Lemma 2.38 und $Q(t,\partial_t):=P(\rho(t),\rho'(t)^{-1}\partial_t)$ nach Lemma 2.40 ergibt sich

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \\ \cong \Phi \\ \downarrow \\ \mathcal{D}_{\widehat{L}} \xrightarrow{\underline{\cdot} \cdot Q} \mathcal{D}_{\widehat{L}}$$

als kommutatives Diagram. Nun, weil $_\cdot Q$ injektiv ist, lässt sich die untere Zeile zu einer exacten Sequenz fortsetzen

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad$$

Nun konstruieren wir den Isomorphismus, den wir suchen mittels Diagrammjagd.

Nun wollen wir einen Isomorphismus

$$\varphi: \rho^* \mathcal{M} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} (\mathcal{D}_{\mathbb{C}((t))} / \mathcal{D}_{\mathbb{C}((t))} \cdot P) \to \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot Q$$

finden, so dass $\varphi \circ (id \otimes \pi) = \Pi \circ \Phi$.

Ingo sagt:

Nun zu deiner Situation: Da geht es jeweils um die rechten Endstücke. Anders als die Mittelstücke sind diese bis auf Isomorphie eindeutig bestimmt; C ist der Kokern von (A -> B) und c der Kokern von (a -> b). Aufgrund der Kommutativität des Quadrats links müssen daher diese Kokerne zueinander isomorph sein.

Konkret kannst du einen Isomorphismus über eine Diagrammjagd konstruieren: Sei $x \in C$ beliebig. Wir wollen ein zugehöriges Element in c angeben. Da $(B \rightarrow C)$ surjektiv ist, gibt es ein $y \in B$, das unter $(B \rightarrow C)$ auf x geschickt wird. Unser gesuchtes Element in c ist dann das Bild von y unter $(B \rightarrow b)$ und $(b \rightarrow c)$. Dann ist noch Wohldefiniertheit nachzuweisen. Die Umkehrfunktion konstruiert man auf analoge Weise. Dann muss man natürlich noch nachrechnen, dass die beiden Morphismen zueinander invers sind.

(Geheimtipp: Linearität muss man, obwohl es eigentlich so scheint, tatsächlich nicht nachweisen – wenn man weiß, wie man intern in Topoi Mathematik betreiben kann. :-))

• warum sind die schon zusammenhänge isomorph? eventuell noch ein Lemma bei kurzen exacten Sequenzen hinzufügen

Bemerkung 2.42 (Nach Robert). Wieso sieht die Wirkung auf dem pull-back Zusammenhang so aus?

Betrachte ein Element der Form $f(t)m = f(\rho(u))m$.

$$\partial_t(f(t)m) = \partial_{\rho(u)}(f(\rho(u))m)$$

$$= f'(\rho(u)) \cdot \underbrace{\frac{\partial(f(u))}{\partial(f(u))}}_{=1} m + f(\rho(u)) \underbrace{\partial_{\rho(u)} m}_{=\partial_t} = (\star)$$

$$\rho'(u)^{-1}\partial_u(f(t)m) = \frac{1}{pu^{p-1}}\partial_u(f(u^p)m)$$
$$= f'(u^p)m + f(u^p)\frac{1}{pu^{p-1}}\partial_u m = (\star)$$

Also gilt $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$ und somit ist die Wirkung von ∂_t gleich der Wirkung von $\rho'(u)^{-1}\partial_u$.

Lemma 2.43. [Sab90, 5.4.3] Sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge der Slopes von $\mathcal{M}_{\widehat{K}}$ und $\rho: t \mapsto x := t^p$, dann gilt für $\mathcal{P}(\rho^* \mathcal{M}_{\widehat{K}}) = \{\Lambda'_1, \dots, \Lambda'_r\}$, dass $\Lambda'_n = p \cdot \Lambda_n$.

Beweis. Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ mit $P = \sum a_i(x)\partial_x^i$, dann ist $\rho^*\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$ mit

$$P'(t, \partial_t) = P(\rho(t), \rho'(t)^{-1} \partial_t)$$

$$= \sum_i a_i(\rho(t)) (\rho'(t)^{-1} \partial_t)^i$$

$$= \sum_i a_i(t^p) ((p \cdot t^{p-1})^{-1} \partial_t)^i$$

TODO: Hier weiter...

Beispiel 2.44 (pull-back). Hier nun ein explizit berechneter pull-back.

Beginne mit

$$\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$$

und gehe von τ über zu t via $\tau \to \frac{1}{t}$:

• was passiert mit der Ableitung ∂_{τ} ? Es gilt:

$$\partial_{\tau}(f(\frac{1}{\tau})) = \partial_{t}(f) \cdot (-\frac{1}{\tau^{2}}) = -\partial_{t}(f) \cdot t^{2} = -t^{2} \cdot \partial_{t}(f)$$

also:

$$\partial_{\tau} = -t^2 \partial_t$$

• was ist $\partial_t(t^2\partial_t)$?

$$\partial_t t^2 \partial_t = (\partial_t t) t \partial_t$$

$$= (t \partial_t - 1) t \partial_t$$

$$= t (\partial_t t) \partial_t - t \partial_t$$

$$= t (t \partial_t - 1) \partial_t - t \partial_t$$

$$= t^2 \partial_t^2 - 2t \partial_t$$

• was passiert mit $\tilde{P} = \tau \partial_{\tau}^2 + 2\partial_{\tau} - 1$?

$$\tilde{P} = \tau \partial_{\tau}^{2} + 2\partial_{\tau} - 1$$

$$\stackrel{\tau \to \frac{1}{t}}{\longrightarrow} \frac{1}{t} (-t^{2}\partial_{t})^{2} + 2(-t^{2}\partial_{t}) - 1$$

$$= \frac{1}{t} t^{2} (\partial_{t}(t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(\partial_{t}(t^{2}\partial_{t})) - 2t^{2}\partial_{t} - 1$$

$$= t(t^{2}\partial_{t}^{2} - 2t\partial_{t}) - 2t^{2}\partial_{t} - 1$$

$$= t^{3}\partial_{t}^{2} - 4t^{2}\partial_{t} - 1 =: P$$

Wir wollen $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ bzgl. $P := x^3 \partial_x^2 - 4x^2 \partial_x - 1$ betrachten. Unser Ziel ist es hier ganzzahlige slopes zu erhalten. Es gilt slopes $(P) = \{\frac{1}{2}\}$ (siehe Abbildung 2.5a) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back mit $\rho : t \to x := t^2$ an. Zunächst ein paar Nebenrechnungen, damit wir Lemma 2.41 einfacher anwenden können.

$$\begin{split} \partial_x &\to \frac{1}{\rho'(t)} \partial_t = \frac{1}{2t} \partial_t \\ \partial_x^2 &\to (\frac{1}{2t} \partial_t)^2 \\ &= \frac{1}{2t} \partial_t (\frac{1}{2t} \partial_t) \\ &= \frac{1}{2t} (-\frac{1}{2t^2} \partial_t + \frac{1}{2t} \partial_t^2) \\ &= \frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t \end{split}$$

also ergibt einsetzen

$$\rho^{+}P = t^{6} \left(\frac{1}{4t^{2}}\partial_{t}^{2} - \frac{1}{4t^{3}}\partial_{t}\right) - 4t^{4}\frac{1}{2t}\partial_{t} - 1$$

$$= \frac{1}{4}t^{4}\partial_{t}^{2} - t^{3}\frac{1}{4u^{3}}\partial_{t} - 4t^{3}\frac{1}{2}\partial_{t} - 1$$

$$= \frac{1}{4}t^{4}\partial_{t}^{2} - 2\frac{1}{4}t^{3}\partial_{t} - 1$$

Also ist $\rho^+P=\frac{1}{4}t^4\partial_t^2-\frac{1}{2}t^3\partial_t-1$ mit $\operatorname{slopes}(\rho^+P)=\{1\}$ (siehe Abbildung 2.5b) und somit $\rho^*\mathcal{M}_{\widehat{K}}=\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}}\cdot(\frac{1}{4}t^4\partial_t^2-\frac{1}{2}t^3\partial_t-1).$

Abbildung 2.4: Zu Beispiel 2.44

Sei $\mathcal{N}_{\widehat{L}}$ ein endlich dimensionaler \widehat{L} -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 2.45 (push-forward). [Sab07, 1.a] Der push-forward oder das Direktes Bild $\rho_+ \mathcal{N}_{\widehat{L}}$ von $\mathcal{N}_{\widehat{L}}$ ist

- der \widehat{K} -VR $\rho_*\mathcal{N}$ ist definiert als der \mathbb{C} -Vektor Raum $\mathcal{N}_{\widehat{L}}$ mit der \widehat{K} -Vektor Raum Struktur durch die skalare Multiplikation $\cdot: \widehat{K} \times \mathcal{N}_{\widehat{L}} \to \mathcal{N}_{\widehat{L}}$ und $(f(x), m) \mapsto f(x) \cdot m := f(\rho(t))m$
- mit der Wirkung ∂_x beschrieben durch $\rho'(t)^{-1}\partial_t$.

v u v N(P) u $N(\rho_*P)$

(b) Newton Polygon zu ρ_+P

Abbildung 2.5: Zu Beispiel 2.46

Beispiel 2.46 (push-forward). Für $\rho:t\to u^2,\, \varphi=\frac{1}{u^2}$ betrachte

(a) Newton Polygon zu P

$$\mathcal{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_u + \partial_u \frac{1}{u^2})$$
$$= \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\underbrace{\partial_u + \frac{2}{u^3}}_{=:P})$$

mit slopes(P) = {2} (siehe Abbildung 2.6a). Bilde nun das Direkte Bild über ρ , betrachte dazu

$$\partial_u + \frac{2}{u^3} = 2u(\frac{1}{2u}\partial_u + \frac{1}{u^4})$$
$$= 2u(\rho'(u)^{-1}\partial_u + \frac{1}{u^4})$$
$$= 2u(\partial_t + \frac{1}{t^2})$$

Also ist $\rho_+ \mathscr{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_t + \frac{1}{t^2})$ mit $\rho_+ P = \partial_t + \frac{1}{t^2}$ und slopes $(\rho_+ P) = \{1\}$ (siehe Abbildung 2.6b)

Satz 2.47. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \cong \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}. \tag{2.4}$$

Beweis.

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) = \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} (\widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{L}})) \qquad (\text{def von } \rho^{+} \mathcal{M}_{\widehat{K}}) \\
\cong \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \widehat{L}) \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt}) \\
\cong \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt}) \\
= \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \qquad (?)$$

Sei $\rho(u) = u^p = t$ und $\varphi(t)$ gegeben.

$$\rho^{+} \mathscr{E}^{\varphi(t)} = \mathscr{E}^{\varphi(\rho(u))} = \mathscr{E}^{\varphi(u^{p})}$$
$$\rho^{+} \rho_{+} \mathscr{E}^{\varphi(u)} = \bigoplus_{\zeta \in \mu_{p}} \mathscr{E}^{\varphi(\zeta \cdot u)}$$

2.6 Fouriertransformation

Definition 2.48 (Fouriertransformation). [AV09, Def 6.1] Sei $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$. Dann ist die Fouriertransformierte von P gegeben durch

$$\mathcal{F}_P := \mathcal{F}_P(z, \partial_z) = \sum_{i=0}^d a_i(\partial_z)(-z)^i$$

TODO: beispiel aus [AV09]

Definition 2.49 (Fouriertransformation von Meromorphen Zusammenhang). Ist $\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot P$ so ist die Fouriertransformierte davon $\mathcal{F}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot \mathcal{F}_{P}(x, \partial_{x})$.

3 Elementare Meromorphe Zusammenhänge

einführen als Bausteine oder kleinste Meromorphe Zusammenhänge

Definition 3.1. [Sab07, 1.a] Sei $\varphi \in \widehat{K}$. Wir schreiben \mathscr{E}^{φ} für den (formalen) Rang 1 Vektorraum $\mathbb{C}(\!(x)\!) \stackrel{\text{def}}{=} \widehat{K}$ ausgestattet mit dem Zusammenhang $\nabla = \partial_x + \partial_x \varphi$, im speziellen also $\nabla_{\partial_x} 1 = \partial_x 1 = \varphi'$.

Also

$$\mathscr{E}^{\varphi} = \mathbb{C}((x)) \xrightarrow{\partial_{x}} \mathbb{C}((x))$$
$$1 \mapsto \varphi'(x)$$
$$f(x) \mapsto f'(x) + f(x)\varphi'(x)$$

Bemerkung 3.2. [Sab07, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[x]$.

sabbah_Fourier-local.pdf lemma 2.4

Sei $\rho: t \mapsto x := t^p \text{ und } \mu_{\xi}: t \mapsto \xi t.$

Lemma 3.3. [Sab07, Lem 2.4] Für alle $\varphi \in \hat{L}$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}.$$

Beweis. Wir wollen zeigen, dass das folgende Diagram, für einen passenden Isomorphismus, kommutiert:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

$$\downarrow \partial_{t} \qquad \qquad \downarrow \partial_{t}$$

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Es sei oBdA $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, dies ist nach Bemerkung 3.2 berechtigt. Wir wählen eine \widehat{L} Basis e des Rang 1 \widehat{L} -Vektorraum \mathscr{E}^{φ} und damit erhält man die Familie $e, te, ..., t^{p-1}e$ als \widehat{K} -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Durch die Setzung $e_k := t^{-k} \otimes_{\widehat{K}} t^k e$ wird die Familie $\mathbf{e} := (e_0, ..., e_{p-1})$ eine \widehat{L} -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$.

Zerlege nun $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p) \in t^{-2}\mathbb{C}[t^{-1}]$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$ (siehe: Anhang A). Es gilt:

$$t\partial_t e_k = \sum_{i=0}^{p-1-k} t^i \psi_i(t^p) e_{k+1} + \sum_{i=p-k}^{p-1} t^i \psi_i(t^p) e_{k+i-p}$$

denn:

$$t\partial_{t}e_{k} = t\partial_{t}(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$= t(-kt^{-k-1} \otimes_{\widehat{K}} t^{k}e + pt^{p-1} \cdot t^{-k} \otimes_{\widehat{K}} \partial_{x}(\underbrace{t^{k}e}_{)})$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + pt^{p-1}t^{-k+1} \otimes_{\widehat{K}} (pt^{p-1})^{-1}(kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} (kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= \underbrace{-kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}e + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)e}$$

$$= \underbrace{-kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}e + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)e}$$

$$= t^{-k} \otimes_{\widehat{K}} t^{k+1}\varphi'(t)e$$

$$= \sum_{i=0}^{p-1} t^{-k} \otimes_{\widehat{K}} t^{k}t^{i}\underbrace{\psi_{i}(t^{p})e}_{\in \widehat{K}}$$

$$= \sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p})(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$= \sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})e_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})e_{k+i-p}$$

Sei

$$V := \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

so dass $\mathbf{e} \cdot V = (e_1, ..., e_{p-1}, e_0)$ gilt, so dass gilt:

$$t\partial_t \mathbf{e} = \mathbf{e} [\sum_{j=0}^{p-1} t^j \psi_j V^j]$$

denn:

$$t\partial_{t}\mathbf{e} = (t\partial_{t}e_{0}, \dots, t\partial_{t}e_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})e_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})e_{k+i-p}\right)_{k\in\{0,\dots,p-1\}}$$

$$= \mathbf{e} \begin{bmatrix} u^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) \\ t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) & & \ddots & t^{2}\psi_{2}(t^{p}) \\ t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & \ddots & & \ddots & \ddots \\ t^{3}\psi_{3}(t^{p}) & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ t^{p-2}\psi_{p-2}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \end{bmatrix}$$

$$= \mathbf{e} \left[\sum_{j=0}^{p-1} t^{j}\psi_{j}(t^{p})V^{j}\right]$$

Die Wirkung von ∂_t auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(t)}$ ist also Beschrieben durch

$$\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j V^j \right].$$

Da V das Minimalpolynom $\chi_V(x) = X^p - 1$ hat, können wir diese Matrix durch Passendes T auf die Form

$$D := TVT^{-1} = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix},$$

mit $\xi^p = 1$, bringen. So dass gilt:

$$T[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) V^j] T^{-1} = [\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) (TVT^{-1})^j]$$

$$= [\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j]$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} t^{j-1} \psi_j \\ & \sum_{j=0}^{p-1} t^{j-1} \psi_j \left(\xi^1\right)^j \\ & \ddots \\ & \sum_{j=0}^{p-1} t^{j-1} \psi_j \left(\xi^{p-1}\right)^j \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} t^{j-1} \psi_{j} & & & & \\ & & \sum_{j=0}^{p-1} (t\xi^{1})^{j-1} \psi_{j} \xi^{1} & & & & \\ & & & \ddots & & & \\ & & & & \sum_{j=0}^{p-1} (t\xi^{p-1})^{j-1} \psi_{j} \xi^{p-1} \end{pmatrix}$$

$$= \begin{pmatrix} \varphi'(t) & & & & & \\ & & \varphi'(\xi t) \xi^{1} & & & & \\ & & & \ddots & & & \\ & & & & \varphi'(\xi^{p-1} t) \xi^{p-1} \end{pmatrix}$$

Damit wissen wir bereits, das im Diagram

der mit (\star) bezeichnete Teil kommutiert. Um zu zeigen, dass alles kommutiert, zeigen wir noch, dass

$$\partial_t(\Phi(x)) = \Phi\left(\sum_{j=0}^{p-1} t^{j-1} \psi_j(x) D^j\right) \qquad \forall x \in \widehat{L}^p$$

gilt.

TODO: zeige das noch

Sei
$$x = {}^t(x_1, \ldots, x_p) \in \widehat{L}^p$$
. So ist

$$\partial_t(\Phi(x)) = \partial_t({}^t(\dots))$$

und

$$\Phi\left({}^{t}x\left(\sum_{j=0}^{p-1}t^{j-1}\psi_{j}(t^{p})D^{j}\right)\right) = \Phi\left((x_{1},\dots,x_{p})\begin{pmatrix} \varphi'(t) & & & \\ & \varphi'(\xi t)\xi^{1} & & \\ & & \ddots & \\ & & & \varphi'(\xi^{p-1}t)\xi^{p-1} \end{pmatrix}\right)$$

$$= \Phi\left((x_1\varphi'(t), x_2\varphi'(\xi t)\xi, \dots, x_p\varphi'(\xi^{p-1}t)\xi^{p-1})\right)$$

3.1 Definition von Notizen

Definition 3.4. Ein *Elementarer Meromorpher Zusammenhang* ist ein Zusammenhang \mathcal{M} , für den es

- $\psi \in \mathbb{C}[x]$,
- $\alpha \in \mathbb{C}$ und
- $p \in \mathbb{N}$

gibt, so dass

$$\mathcal{M} \cong \mathscr{E}^{\psi} \otimes R_{\alpha,p}$$
,

mit $R_{\alpha,p} := \mathcal{D}/\mathcal{D}(x\partial_x - \alpha)^p$, ist.

3.2 Definition in [Sab90]

in [Sab90] Teil 5.4.4 Seite 34

Definition 3.5. Sei $R(z) = \sum_{i=0}^k \alpha_i z^i \in z\mathbb{C}[z]$. So ist der Meromorphe Zusammenhang $\mathcal{F}_{\widehat{K}}^R$ als Vektorraum isomorph zu \widehat{K} und hat der Basis e(R). Die Wirkung von $x\partial_x$ ist definiert durch

$$x\partial_x(\varphi\cdot e(R)) = \left[(x\frac{\partial\varphi}{\partial x}) + \varphi x \frac{\partial R(x^{-1})}{\partial x} \right] \cdot e(R)$$

This means that e(R) plays the role of $\exp R(x^{-1})$.

Definition 3.6. Ein Elementarer Meromorpher Zusammenhang (über \widehat{K}) ist ein Zusammenhang welcher zu $\mathcal{F}_{\widehat{K}}^R \otimes_{\widehat{K}} \mathcal{G}_{\widehat{K}}$ isomorph ist. Wobei hier $\mathcal{G}_{\widehat{K}}$ ein Elementarer regulärer Meromorpher Zusammenhang.

3.3 Definition in [Sab07]

Definition 3.7 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1]

Alternative. ausfürlichere / komplexe definition [Sab90, Def 5.4.5.]

Zu einem gegebenen $\rho \in t\mathbb{C}[\![t]\!], \varphi \in \widehat{L} \stackrel{\text{def}}{=} \mathbb{C}(\!(t)\!)$ und einem endlich dimensionalen \widehat{L} -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen \widehat{K} -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf Isomorphismus hängt $El(\rho, \varphi, R)$ nur von $\varphi \mod \mathbb{C}[\![t]\!]$ ab.

Lemma 3.8. [Sab07, Lem 2.2]

Lemma 3.9. [Sab07, Lem 2.6.] Es gilt $El([t \mapsto t^p], \varphi, R) \cong El([t \mapsto t^p], \psi, S)$ genau dann, wenn

- es ein ζ gibt, mit $\zeta^p = 1$ und $\psi \circ \mu_{\zeta} \equiv \varphi \mod \mathbb{C}[\![t]\!]$
- und $S \cong R$ als \widehat{L} -Vektorräume mit Zusammenhang.

Beweis. [Sab07, Lem 2.6.]

Proposition 3.10. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale \widehat{K} -Vektorraum \mathcal{M} mit Zusammenhang ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes L)$, wobei $\varphi\in t^{-1}\mathbb{C}[t^{-1}]$, $\rho:t\to t^p$ vom grad $p\geq 1$ und ist minimal unter φ . (siehe [Sab07, Rem 2.8]) und L ist ein Rang 1 \widehat{L} -Vektrorraum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1] \square

4 Levelt-Turrittin-Theorem

Das Levelt-Turrittin-Theorem ist ein Satz, der hilft, Meromorphe Zusammenhänge in ihre irreduziblen Komponenten zu zerlegen.

4.1 Klassische Version

Satz 4.1. [Sab90, Thm 5.4.7] Sie $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl p so dass der Zusammenhang $\mathcal{M}_{\widehat{L}} := \rho^+ \mathcal{M}_{\widehat{K}}$, mit $\rho : t \mapsto x := t^p$, isomorph zu einer direkten Summe von elementaren Meromorphen Zusammenhänge ist.

Der folgende Beweis stammt aus [Sab90, Seite 35].

Beweis. Der Beweis geht, mittels induktion auf den Lexicographisch geordnetem Paar $(\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}}, \kappa)$ wobei $\kappa \in \mathbb{N} \cup \{\infty\}$ dem größtem Slope von $\mathcal{M}_{\widehat{K}}$. Es wird $\kappa = \infty$ gesetzt, falls der größte Slope nicht Ganzzahlig ist.

Wir nehmen oBdA an, dass $\mathcal{M}_{\widehat{K}}$ genau einen Slope Λ hat, sonst Teile $\mathcal{M}_{\widehat{K}}$ mittels Satz 2.27 in Meromorphe Zusammenhänge mit je einem Slope und wende jeweils die Induktion an. Mit $\Lambda =: \frac{\lambda_0}{\lambda_1}$ (vollständig gekürtzt) Definieren wir die dem Slope entsprechende Linearform $L(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Wir nennen $\sigma_L(P) \in \widehat{K}[\xi]$ die Determinanten Gleichung von P. Da L zu einem Slope von P gehört, besteht $\sigma_L(P)$ aus zumindest zwei Monomen.

and is homogeneous of degree $\operatorname{ord}_L(P) = 0$ because P is chosen with coefficients in $\mathbb{C}[\![x]\!]$, one of them, being a unit.

Schreibe

$$\sigma_L(P) = \sum_{L(i,i-j) = \text{ord}_L(P)} \alpha_{ij} x^j \xi^i$$
$$= \sum_{L(i,i-j) = 0} \alpha_{ij} x^j \xi^i.$$

Sei $\theta := x^{\lambda_0 + \lambda_1} x i^{\lambda_1}$ so können wir

$$\sigma_L(P) = \sum_{k \ge 0} \alpha_k \theta^k$$

schreiben, wobei $\alpha_0 \neq 0$ ist.

Erster Fall: $\lambda_1 = 1$. Das bedeutet, dass der Slope ganzzahlig ist. Betrachte die Faktorisierung

$$\sigma_L(P) = \varepsilon \prod_{\beta} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}$ eine Konstante ist. Sei β_0 eine der Nullstellen. So setze $R(z) := (\beta_0/(\lambda_0 + 1)z^{\lambda_0 + 1})$ und betrachte $\mathcal{M}_{\widehat{K}} \otimes \mathcal{F}_{\widehat{K}}^R$.

Lemma 4.2. Falls e ein zyklischer Vektor für $\mathcal{M}_{\widehat{K}}$ ist, so ist $e \otimes e(R)$ ein zyklischer Vektor für $\mathcal{M}_{\widehat{K}} \otimes \mathcal{F}_{\widehat{K}}^R$.

TODO: hier weiter

Zweiter Fall:
$$\lambda_1 \neq 1$$
.

4.2 Sabbah's Refined version

Proposition 4.3. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale Meromorphe Zusammenhang $\mathcal{M}_{\widehat{L}}$ ist isomorph zu $\rho_+(\mathscr{E}^{\varphi} \otimes_{\widehat{K}} S)$, wobei $\varphi \in x^{-1}\mathbb{C}[x^-1]$, $\rho: x \mapsto t = x^p$ mit grad $p \geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und S ist ein Rang 1 \widehat{K} -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop
$$3.1$$
]

Satz 4.4 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale Meromorphe Zusammenhang $\mathcal{M}_{\widehat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) \stackrel{\text{def}}{=} \bigoplus \rho_{+}(\mathscr{E}^{\varphi}) \otimes R$, so dass jedes $\rho_{+}\mathscr{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_{+}\mathscr{E}^{\varphi}$ isomorph sind.

In welchem Raum ist \mathcal{M} ?? in L oder in K

Beweis. [Sab07, Cor 3.3]

5 DIE Klasse der Fourier-Transformationen

In diesem Kapittel werden Beispiele einer speziellen Klasse von \mathcal{D} -Moduln diskutiert. Dazu wird im folgendem zu 2 Beispielen explizit der Beweis aus [Sab90] zur Levelt-Turrittin-Zerlegung nachvollzogen.

5.1 Rezept für allgemeine φ

Hier wollen wir nun eine Spezielle Klasse von Meromorphen Zusammenhängen, die die durch das folgende Rezept entstehen.

- 1. Wähle zunächst ein $\varphi \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C}\}$ aus
- 2. und beginne mit $\mathscr{E}^{\varphi} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \widetilde{Q}$ mit $\widetilde{Q}(t,\partial_t) := \partial_t \frac{d}{dt}\varphi(t) \in \mathbb{C}[t,t^{-1}] < \partial_t >$.
- 3. Wir wollen aber ein Element in $\mathbb{C}[t] < \partial_t >$, deshalb multipliziere mit Hauptnenner und erhalte

$$\mathcal{D}_{\widehat{L}} \cdot \widetilde{Q}(t, \partial_t) = \mathcal{D}_{\widehat{L}} \cdot \underbrace{\left(\underbrace{\text{Hauptnenner}}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^*} \cdot (\partial_t - \frac{d}{dt} \varphi(t))\right)}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^*}$$

$$= \mathcal{D}_{\widehat{L}} \cdot \underbrace{\left(t^{\max(I)+1} \cdot (\partial_t - \frac{d}{dt} \varphi(t))\right)}_{=:Q(t, \partial_t)}$$

mit $Q \in \mathbb{C}[t] < \partial_t >$. Dies ändert den Assozierten Meromorphen Zusammenhang nicht, weil $t^{\max(I)+1}$ eine Einheit in $\mathcal{D}_{\widehat{L}}$ ist.

- 4. Fouriertransformiere Q und erhalte $\mathcal{F}_Q(z,\partial_z)=Q(\partial_z,-z)$ in $\mathbb{C}[z]<\partial_z>$
- 5. Wende den Übergang $x \rightsquigarrow z^{-1}$ an.

Was passiert mit der Ableitung ∂_x ? Es gilt

$$\partial_x(f(\frac{1}{x})) = \partial_z(f) \cdot (-\frac{1}{x^2}) = -\partial_z(f) \cdot z^2 = -z^2 \cdot \partial_z(f)$$

also $\partial_x \leadsto -z^2 \partial_z$.

$$P_{\varphi}(x, \partial_x) := \mathcal{F}_Q(x^{-1}, -x^2 \partial_x) \in \mathbb{C}[t] < \partial_t > 0$$

6. Erhalte den zu P_{φ} assoziierten Meromorphen Zusammenhang $\mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}$.

warum sind diese wichtig??

Wende das Rezept allgemein für $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$ an. So ist

$$\begin{split} \tilde{Q}(t,\partial_t) &= \partial_t - \frac{d}{dt} \varphi(t) \\ &= \partial_t + \sum_{k \in I} k \frac{a_k}{t^{k+1}} \\ Q(t,\partial_t) &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k \frac{a_k}{t^{k-\max(I)}} \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ \mathcal{F}_Q(z,\partial_z) &= Q(\partial_z,-z) \\ &= -\partial_z^{\max(I)+1} z + \sum_{k \in I} k a_k \partial_z^{\max(I)-k} \\ P_{\varphi}(x,\partial_x) &= \mathcal{F}_Q(x^{-1},-x^2\partial_x) \\ &= -(-x^2\partial_x)^{\max(I)+1} x^{-1} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{x^2\partial_x x^{-1}}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)} \underbrace{(x\partial_x - 1)}_{k \in I} + \sum_{k \in I} k a_k (-x^2\partial_x)^{\max($$

Im Anhang B wird das $(x^2\partial_x)^k$ genauer diskutiert. Dies führt aber hier an dieser Stelle nicht mehr weiter in die richtige Richtung.

Ab jetzt nur noch für den Spezialfall $\varphi=rac{a}{t^q}$. Also sei $\mathcal{M}_{\varphi}=\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}}\cdot P_{\varphi}$ mit

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^q(x\partial_x - 1) + qa,$$

so dass

Lemma 5.1. $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{q}{q+1}\}\ gilt.$

Beweis. [Sab07, 5.b.] TODO: über L-Symbol? Stützfunktion?

Also ist ein pull-back mit Grad q+1 nötig, um einen ganzzahligen Slope zu bekommen. Sei $\rho:t\mapsto x:=t^{q+1}$ so ist

$$\rho^+ \mathcal{M}_{\varphi} = \rho^+ (\mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(x, \partial_x))$$

$$\begin{split} &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\rho^* P_{\varphi}(x, \partial_x)) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(\rho(t), \rho'(t)^{-1}\partial_t)) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(t^{q+1}, \frac{1}{(q+1)t^q}\partial_t)) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-(t^{q+1})^2 \frac{1}{(q+1)t^q}\partial_t)^q (t^{q+1} \frac{1}{(q+1)t^q}\partial_t - 1) + qa) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-\frac{1}{q+1}t^{2(q+1)-q}\partial_t)^q (\frac{1}{q+1}t\partial_t - 1) + qa) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-\frac{1}{q+1}t^{q+2}\partial_t)^q (\frac{1}{q+1}t\partial_t - 1) + qa) \end{split}$$

Sei
$$\rho: t \mapsto x := -(q+1)t^{q+1}$$
 so ist
$$\rho^{+}\mathcal{M}_{\varphi} = \rho^{+}(\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(x, \partial_{x}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\rho^{*}P_{\varphi}(x, \partial_{x}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(\rho(t), \rho'(t)^{-1}\partial_{t}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(-(q+1)t^{q+1}, -(q+1)^{-1}\frac{1}{(q+1)t^{q}}\partial_{t}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-(-(q+1)t^{q+1})^{2}\frac{-(q+1)^{-1}}{(q+1)t^{q}}\partial_{t})^{q}(-(q+1)t^{q+1}\frac{-(q+1)^{-1}}{(q+1)t^{q}}\partial_{t} - 1) + qa)$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-\frac{-(q+1)}{q+1}t^{2(q+1)-q}\partial_{t})^{q}(\frac{1}{q+1}t\partial_{t} - 1) + qa)$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(\frac{1}{q+1}t\partial_{t} - 1) + qa)$$

mit $\mathcal{P}(\rho^+\mathcal{M}_{\varphi})=\{q\}\subset\mathbb{N}$. Definiere mittels $q=\frac{q}{1}=:\frac{\lambda_0}{\lambda_1}$ die Linearform

$$L(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1 = q s_0 + s_1$$
.

Schreibe $\rho^* P_{\varphi} = \sum_i \sum_j \alpha_{ij} t^j \partial_t^i$ und berechne die *Determinanten Gleichung* $\sigma_L(\rho^* P_{\varphi}) \in \widehat{K}[\xi]$.

$$\sigma_L(\rho^* P_{\varphi}) = \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | L(i,i-j) = 0\}} \alpha_{ij} x^j \xi^i$$
$$= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | (q+1)i - j = 0\}} \alpha_{ij} x^j \xi^i$$

Da $\widehat{K}[\xi]$ kommutativ ist gilt hier, dass $(x^j\xi^i)^k=x^{jk}\xi^{ik}$ ist. Setze $\theta=x^{\lambda_0+\lambda_1}\xi^{\lambda_1}=x^{q+1}\xi$ so können wir

$$\sigma_L(\rho^* P_{\varphi}) = \sum_{k \ge 0} \alpha_k \theta^k$$

schreiben, welches wir als nächsten Schritt faktorisieren

$$\sigma_L(\rho^* P_{\varphi}) = \varepsilon \prod_{\beta} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}$ eine Konstante ist. Sei β_0 eine der Nullstellen. Es ist 0 keine Nullstelle von $\sigma_L(\rho^*P_{\varphi})$ da $\alpha_0 \neq 0$. Setze $R(z) := (\beta_0/(\lambda_0 + 1))z^{\lambda_0 + 1} = (\beta_0/(q + 1)z^{q+1})$ und betrachte

$$\rho^{+}\mathcal{M}_{\varphi}\otimes\mathcal{F}_{\widehat{K}}^{R}=\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}}\cdot(\rho^{*}P_{\varphi})\otimes\mathcal{F}_{\widehat{K}}^{R}.$$

Lemma 5.2. Sei e ein zyklischer Vektor zu $\rho^+\mathcal{M}_{\varphi}$, so ist $e\otimes e(R)$ ein zyklischer Vektor für $\rho^+\mathcal{M}_{\varphi}\otimes\mathcal{F}^R_{\widehat{K}}$.

5.2 Spezialfall $\varphi_1 := \frac{a}{r}$

Das wohl einfachste Beispiel ist \mathcal{M}_{φ_1} bezüglich $\varphi_1 := \frac{a}{x}$.

$$P_{\varphi_1}(x,\partial_x) = -x^2 \partial_x (x\partial_x - 1) + a$$

$$= -x^2 \partial_x x \partial_x + x^2 \partial_x + a$$

$$= -x^2 (x\partial_x + 1) \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 - x^2 \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 + a$$

Erhalte nun das Newton-Polygon mit den Slopes $\mathcal{P}(\mathcal{M}_{\varphi_1}) = \{\frac{1}{2}\}.$

Abbildung 5.1: Newton Polygon zu P_{φ_1}

Berechne nun den pull-back mit $\rho:t\mapsto x:=t^2$

$$\rho^* P_{\varphi_1}(x, \partial_x) = -\frac{1}{2} t^3 \partial_t (\frac{1}{2} t \partial_t - 1) + a$$

$$= -\frac{1}{4}t^3 \partial_t t \partial_t + \frac{1}{2}t^3 \partial_t + a$$

$$= -\frac{1}{4}t^3 (t\partial_t + 1) \partial_t + \frac{1}{2}t^3 \partial_t + a$$

$$= -\frac{1}{4}t^4 \partial_t^2 - \frac{1}{4}t^3 \partial_t + \frac{1}{2}t^3 \partial_t + a$$

$$= -\frac{1}{4}t^4 \partial_t^2 + \frac{1}{4}t^3 \partial_t + a$$

und erhalte einen Meromorphen Zusammenhang $\rho^+ \mathcal{M}_{\varphi_1} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot \rho^* P_{\varphi_1}$ mit genau dem Slope $1 = \frac{1}{1} =: \frac{\lambda_0}{\lambda_1}$.

Abbildung 5.2: Newton Polygon zu $\rho^*P_{\varphi_1}$

Definiere die Linearform $L(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1 = s_0 + s_1$. Berechne nun die *Determinanten Gleichung* $\sigma_L(\rho^* P_{\varphi_1}) \in \widehat{K}[\xi]$ von $\rho^* P_{\varphi_1}$.

$$\sigma_L(\rho^* P_{\varphi_1}) = \sum_{\{(i,j)|2i-j=0\}} \alpha_{ij} x^j \xi^i$$
$$= -\frac{1}{4} x^4 \xi^2 + a$$

Setze $\theta := x^{\lambda_0 + \lambda_1} \xi^{\lambda_1} = x^2 \xi$ so erhalten wir

$$\sigma_L(\rho^* P_{\varphi_1}) = -\frac{1}{4}\theta^2 + a$$

schreiben, welches wir als nächstes faktorisieren

$$\sigma_L(\rho^* P_{\varphi_1}) = -\frac{1}{4}\theta^2 + a$$
$$= -\frac{1}{4}(\theta^2 - 4a)$$

$$= -(\theta - \underbrace{2\sqrt{a}}_{=:\beta_0})(\theta + 2\sqrt{a})$$

Dies geht, weil $\widehat{K}[\xi]$ kommutativ ist. Setze $R(z) := (\beta_0/(\lambda_0 + 1))z^{\lambda_0 + 1} = \sqrt{a}z^2$ und betrachte $\rho^+ \mathcal{M}_{\varphi_1} \otimes \mathcal{F}^R_{\widehat{K}}$.

BIS HIER HIN KORREGIERT: P_φ ist im folgendem FALSCH

5.2.1 Sabah's refined Levelt-Turrittin-Zerlegung für φ_1

5.3 Angewendet für $\varphi_2 := \frac{a}{r^2}$

$$\begin{aligned}
&\text{für } q = 2 \\
&P_{\varphi}(x, \partial_x) = (-x^2 \partial_x)^2 (x \partial_x - 1) + 2a \\
&= x^2 \partial_x x^2 \partial_x (x \partial_x - 1) + 2a \\
&= x^2 (x^2 \partial_x + 2x) \partial_x (x \partial_x - 1) + 2a \\
&= (x^4 \partial_x^2 + 2x^3 \partial_x) (x \partial_x - 1) + 2a \\
&= (x^4 \partial_x^2 + 2x^3 \partial_x x \partial_x - x^4 \partial_x^2 - 2x^3 \partial_x + 2a \\
&= x^4 \partial_x^2 x \partial_x + 2x^3 \partial_x x \partial_x - x^4 \partial_x^2 - 2x^3 \partial_x + 2a \\
&= x^4 (x \partial_x^2 + 2x) \partial_x + 2x^3 (x \partial_x + 1) \partial_x - x^4 \partial_x^2 - 2x^3 \partial_x + 2a \\
&= x^5 \partial_x^3 + 2x^5 \partial_x + 2x^4 \partial_x^2 + 2x^3 \partial_x - x^4 \partial_x^2 - 2x^3 \partial_x + 2a \\
&= 3x^5 \partial_x^3 + x^4 \partial_x^2 + 2a
\end{aligned}$$

also für $\varphi_2 := \frac{a}{x^2}$ ist

$$\begin{aligned} !P_{\varphi_2} &= 2a + x\partial_x \left(-x^2 \partial_x \right)^2 \\ &= 2a + x\partial_x \left(2x^3 \partial_x + x^4 \partial_x^2 \right) \\ &= 2a + 2x \partial_x x^3 \partial_x + x \partial_x x^4 \partial_x^2 \\ &= 2a + 2x \left(3x^2 + x^3 \partial_x \right) \partial_x + x \left(4x^3 + x^4 \partial_x \right) \partial_x^2 \\ &= 2a + 5x^3 \partial_x + 4x^4 \partial_x^2 + x^5 \partial_x^3 \end{aligned}$$

Abbildung 5.3: Newton Polygon zu P_{φ_2}

5.3.1 Levelt-Turrittin-Zerlegung für φ_2

 \mathcal{M}_{φ_2} hat genau den Slope $\frac{2}{3}$ mit Nenner 3.

Sei $\rho: t \mapsto x := t^3$ und betrachte

$$\begin{split} \rho^{+}\mathcal{M}_{\varphi_{1}} &= \rho^{+} \Big(\mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot (2a + 5x^{3}\partial_{x} + 4x^{4}\partial_{x}^{2} + x^{5}\partial_{x}^{3}) \Big) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + 5\rho(t)^{3}(\rho'(t)^{-1}\partial_{t}) + 4\rho(t)^{4}(\rho'(t)^{-1}\partial_{t})^{2} + \rho(t)^{5}(\rho'(t)^{-1}\partial_{t})^{3}) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + 5t^{9}(\frac{1}{3}t^{-2}\partial_{t}) + 4t^{12}(\frac{1}{3}t^{-2}\partial_{t})^{2} + t^{15}(\frac{1}{3}t^{-2}\partial_{t})^{3}) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + \frac{5}{3}t^{7}\partial_{t} + \frac{4}{9}t^{12}(t^{-2}\partial_{t}t^{-2}\partial_{t}) + \frac{1}{27}t^{15}(t^{-2}\partial_{t}t^{-2}\partial_{t}t^{-2}\partial_{t})) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + \frac{5}{3}t^{7}\partial_{t} + \frac{4}{9}t^{10}(t^{-2}\partial_{t} - 2t^{-3})\partial_{t} \\ &+ \frac{1}{27}t^{13}(t^{-2}\partial_{t} - 2t^{-3})(t^{-2}\partial_{t} - 2t^{-3})\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + \frac{5}{3}t^{7}\partial_{t} + \frac{4}{9}t^{8}\partial_{t}^{2} - \frac{8}{9}t^{7}\partial_{t} \\ &+ \frac{1}{27}t^{13}(t^{-2}\partial_{t}t^{-2}\partial_{t} - 2t^{-2}\partial_{t}t^{-3} - 2t^{-5}\partial_{t} + 4t^{-6})\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + (\frac{5}{3} - \frac{7}{9} + \frac{4}{27})t^{7}\partial_{t} + (\frac{4}{9} - \frac{2}{27})t^{8}\partial_{t}^{2} + \frac{1}{27}t^{11}(t^{-2}\partial_{t} - 2t^{-3})\partial_{t}^{2} \\ &- \frac{2}{27}t^{11}(t^{-3}\partial_{t} - 3t^{-4})\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + \frac{28}{27}t^{7}\partial_{t} + \frac{10}{27}t^{8}\partial_{t}^{2} + \frac{1}{27}t^{9}\partial_{t}^{3} - \frac{2}{27}t^{8}\partial_{t}^{2} - \frac{2}{27}t^{8}\partial_{t}^{2} + \frac{6}{27}t^{7}\partial_{t}) \\ &= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (2a + \frac{34}{27}t^{7}\partial_{t} + \frac{6}{27}t^{8}\partial_{t}^{2} + \frac{1}{27}t^{9}\partial_{t}^{3}) \end{split}$$

Abbildung 5.4: Newton Polygon zu $\rho^*P_{\varphi_2}$

Nun hat $\rho^* \mathcal{M}_{\varphi_2}$ nur noch den Slope $2 = \frac{2}{1} =: \frac{\lambda_0}{\lambda_1}$ und definiere damit die Linearform $L(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$. Berechne nun die $Determinanten \ Gleichung \ \sigma_L(\rho^* P_{\varphi_2}) \in \widehat{K}[\xi] \ \text{von} \ \rho^* P_{\varphi_2}$.

$$\sigma_L(\rho^* P_{\varphi_2}) = \sum_{\{(i,j)|L(i,i-j) = \text{ord}_L(\rho^* P_{\varphi_2})\}} \alpha_{ij} x^j \xi^i$$

$$= \sum_{\{(i,j)|2i+i-j=0\}} \alpha_{ij} x^j \xi^i$$

$$= 2a + \frac{1}{27} x^9 \xi^3$$

Setze $\theta = x^{\lambda_0 + \lambda_1} \xi^{\lambda_1} = x^3 \xi$ so können wir

$$\sigma_L(\rho^* P_{\varphi_2}) = \sum_{k \ge 0} \alpha_k \theta^k$$
$$= 2a + \frac{1}{27} \theta^3$$

schreiben, welches wir als nächstes faktorisieren

$$\sigma_L(\rho^* P_{\varphi_2}) = 2a + \frac{1}{27}\theta^3$$

$$= \frac{1}{27}(\theta^3 - 54a)$$
$$= \frac{1}{27}(\theta - ?)(\theta - ?)(\theta - ?)$$

Setze $R(z) := (\beta_0/(\lambda_0+1))z^{\lambda_0+1} = \sqrt{??}z^3$ und betrachte $\rho^+ \mathcal{M}_{\varphi_2} \otimes \mathcal{F}_{\widehat{K}}^R$.

5.4 Angewendet für $\varphi_3 := \frac{1}{x} + \frac{1}{x^2}$

Abbildung 5.5: Newton Polygon zu P_{φ_3}

5.5 Angewendet für $\varphi_4 := \frac{1}{x^2} + \frac{1}{x^3}$

Abbildung 5.6: Newton Polygon zu P_{φ_4}

A Aufteilung von ...

Sei $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, so ist $\varphi' =: \sum_{i=2}^N a_{-i}t^{-i} \in t^{-2}\mathbb{C}[t^{-1}]$ also $u\varphi'(t) = \sum_{i=1}^N a_{-i-1}t^{-i} \in t^{-1}\mathbb{C}[t^{-1}]$, welches wir zerlegen wollen. Zerlege also $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p)$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$:

also:

$$\psi_0(t^p) = a_{-(p+1)}t^{-p} + a_{-(2p+1)}t^{-2p} + \dots$$

$$\psi_1(t^p) = a_{-p}t^{-p} + a_{-2p}t^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(t^p) = a_{-2}t^p + a_{-(p+2)}t^{2p} + \dots$$

B Genaueres zu $(x^2\partial_x)^k$

Nun wollen wir noch $(x^2\partial_x)^{k+1}$ besser verstehen.

$$(x^{2}\partial_{x})^{k+1} = x^{2} \underbrace{\partial_{x}x^{2}}_{} \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= x^{2} \underbrace{(2x + x^{2}\partial_{x})}_{} \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}\underbrace{\partial_{x}x^{2}}_{} \partial_{x} + x^{4}\underbrace{\partial_{x}^{2}x^{2}}_{} \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}\underbrace{(2x + x^{2}\partial_{x})}_{} \partial_{x} + x^{4}\underbrace{(2x\partial_{x} + 1 + x^{2}\partial_{x}^{2})}_{} \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (4x^{4}\partial_{x} + 2x^{5}\partial_{x}^{2} + 2x^{5}\partial_{x}^{2} + x^{4}\partial_{x} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= (5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= \sum_{n=1}^{k+1} \binom{k}{n-1} \underbrace{\frac{(k+1)!}{n!}x^{n+k}\partial_{x}^{n}}_{}$$

Stirlingzahlen

also gilt für spezielle k

$$(x^{2}\partial_{x})^{k+1} = \begin{cases} 2x^{3}\partial_{x} + x^{4}\partial_{x}^{2} & \text{falls } k = 1\\ 5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3} & \text{falls } k = 2\\ \sum_{n=1}^{k+1} \binom{k}{n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n} \end{cases}$$
 (B.1)

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, Chiral algebras, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Kas03] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, American Mathematical Society, 2003.
- [MR89] H. Matsumura and M. Reid, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] _____, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
 - [Sch] J.P. Schneiders, An introduction to d-modules.

[Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.

TODO: Erklärung das das wirklich selbstgemacht ist