Concours Communs Marocain - Session 2005

Corrigé de l'épreuve d'algèbre

Étude d'équations du type $X^2 = A$ dans $\mathcal{M}_n(\mathbb{R})$

Corrigé par Mohamed TARQI

I. Préliminaires

- 1. 1-1 Il est clair que la fonction f_{α} est dérivable sur $]-1,+\infty[$ et pour tout x de $]-1,+\infty[$, $(1+x)f'_{\alpha}(x)-\alpha f_{\alpha}(x)=0$
 - 1-2 (a) S_{α} vérifié (1) si et seulement si $(1+x)S'_{\alpha}(x)-\alpha S_{\alpha}(x)=0$ égalité qui s'écrit encore $(a_1-\alpha a_0)+\sum_{k=1}^{\infty}[(k+1)a_{k+1}-(\alpha-k)a_k]x^k=0$, donc

$$\begin{cases} a_1 - \alpha a_0 = 0 \\ \forall k \ge 1, \ (k+1)a_{k+1} - (\alpha - k)a_k = 0 \end{cases}$$

(b) Les dernières relations permettent d'écrire : $a_1 = \alpha a_0$ et $\forall k \in \mathbb{N}^*, \ a_k = \frac{\alpha - k + 1}{k} a_{k-1}$ ou encore

$$a_k = \frac{\alpha(\alpha - 1)...(\alpha - k + 1)}{k!}a_0.$$

(c) D'après le règle de d'Alembert, la série $\sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n$ admet un rayon de convergence non nul, vaut R=1.

Sur l'intervalle de convergence, la somme de cette série est solution de l'équation différentielle (1) et prend, pour x=0, la valeur 1, cette somme, par le théorème de Cauchy-Lipchitz, est $f_{\alpha}(x)=(1+x)^{\alpha}$.

On peut donc écrire :

$$\forall x \in]-1,1[, (1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n.$$

1-3 Posons
$$\sqrt{1+x} = \sum_{n=0}^{\infty} b_n x^n$$
. Alors l'égalité

$$\sqrt{1+x}\sqrt{1+x} = 1+x,$$

entraîne, en effectuant le produit de Cauchy des deux séries :

$$\sum_{q=0}^{\infty} \left(\sum_{k=0}^{q} b_k b_{q-k} \right) x^q = 1 + x,$$

puis par identification, on obtient :

$$b_0 = 1$$
, $2b_0b_1 = 1$ et $\forall q \ge 2$, $\sum_{k=0}^{q} b_k b_{q-k} = 0$

2. 2-1 Si $\forall x \in E, u^{p-1}(x) = 0$, alors dans ce cas u^{p-1} serait nul, ce qui contredit la définition de p, ainsi il existe $x_0 \in E$ tel que $u^{p-1}(x_0) \neq 0$.

- 2-2 Soient $\lambda_0, \lambda_1, ..., \lambda_{p-1}$ des réels tels que $\sum_{i=0}^{p-1} \lambda_i u^i(x_0) = 0$. En appliquant u^{p-1} , on obtient $\lambda_0 u^{p-1}(x_0) = 0$, donc $\lambda_0 = 0$, puis par application de u^{p-2} , on obtient $\lambda_1 u^{p-1}(x_0) = 0$, donc $\lambda_1 = 0$, puis de proche en proche, on peut montrer que tous les λ_i sont nuls, donc la famille $\{x_0, u(x_0), ..., u^{p-1}(x_0)\}$ est libre.
- 2-3 On a $p=\dim \operatorname{Vect}(x_0,u(x_0),...,u^{p-1}(x_0))\leq \dim E=n.$ Donc il est nécessaire que $u^n=u^{n-p}u^p=0.$
- 2-4 Supposons le polynôme minimal est de degré inférieure ou égal à p-1, donc il existe des réels λ_i non tous nuls tels que $\sum_{i=0}^n \lambda_i u^i = 0$, en particulier $\sum_{i=0}^n \lambda_i u^i(x_0) = 0$, donc la famille $\{x_0, u(x_0), ..., u^{p-1}(x_0)\}$ sera liée, ce qui est impossible. Donc le polynôme minimal est degré supérieure ou égal à p, et comme $u^p = 0$, alors c'est X^p .

II. ÉTUDE D'ÉQUATIONS DU TYPE $X^2 = A$ dans $\mathcal{M}_n(\mathbb{R})$

A- Un exemple

- 1. Le polynôme caractéristique de A est $\chi_A(X) = (1-X)(2-X)(3-X)$, admet trois racines distinctes, donc A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 2. On trouve facilement $e_1 = (-1, 1, 0)$, $e_2 = (1, 1, -1)$ et $e_3 = (1, 1, 0)$.
- 3. D'après le cours et puisque A est digonalisable, $\mathcal{B}=(e_1,e_2,e_3)$ forment une base de \mathbb{R}^3 et dans cette base la matrice de u s'écrit :

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right)$$

de plus on a : $D = P^{-1}AP$ avec $P = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$.

- 4. 4-1 La relation matricielle $B^2=A$ s'écrit vectoriellement sous la forme $v^2=u$ et comme u est un polynôme en v, alors uv=vu.
 - 4-2 On trouve, pour chaque i, $uv(e_i) = vu(e_i) = \lambda_i v(e_i)$ et puisque les sous-espaces propres de u sont des droites, alors $v(e_i)$ et e_i sont colinéaires, soit le réel α_i tel que $v(e_i) = \alpha_i e_i$ pour i = 1, 2, 3.
 - 4-3 D'après ce qui précède la matrice V de v s'écrit dans la base $\mathcal B$ sous la forme $V=\operatorname{diag}(\alpha_1,\alpha_2,\alpha_3)$ et on a évidement la relation $V=P^{-1}BP$ et $V^2=D$, donc $\forall i=1,2,3$ $\alpha_i=\varepsilon_i\sqrt{\lambda_i}$, avec $\varepsilon_i^2=1$.
- 5. Soit X une solution, alors d'après la question précédente, la matrice de X dans la base \mathcal{B} s'écrit $Y=\operatorname{diag}(\alpha_1,\alpha_2,\alpha_3)$, donc la relation $X^2=A$ entraı̂ne nécessairement $Y^2=D$, d'où les relations $\forall i=1,2,3,$ $\alpha_i=\pm\sqrt{\lambda_i}$. Ainsi

$$Y = \begin{pmatrix} \varepsilon_1 \sqrt{\lambda_1} & 0 & 0\\ 0 & \varepsilon_2 \sqrt{\lambda_2} & 0\\ 0 & 0 & \varepsilon_3 \sqrt{\lambda_3} \end{pmatrix}$$

avec $\varepsilon_i^2=1$ pour i=1,2,3. Finalement l'ensemble des solutions de l'équation $X^2=A$ est

$$\{PYP^{-1}/\varepsilon_1^2 = \varepsilon_2^2 = \varepsilon_3^2 = 1\},$$

elle est de cardinal 8.

B- Quelques résultats généraux

- 1. 1-1 On a $v^{2p}=u^p=0$ et $v^{2(p-1)}=u^{p-1}\neq 0$, donc v est un endomorphisme nilpotent d'indice soit 2p-1 ou 2p et d'après la question 2. [2-3] de la partie preliminaries, on obtient soit $p\leq \frac{n}{2}$ ou $p\leq \frac{n+1}{2}$ et dans les deux cas $p\leq \frac{n+1}{2}$.
 - 1-2 Soit $M=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. On a $M^2=0$, donc M d'indice p=2, donc l'équation $X^2=M$ n'a pas de solutions, sinon on aura $2\leq \frac{3}{2}$, ce qui est impossible.
- 2. On a, en tenant compte des relations qui définissent les b_i :

$$w^{2} = \left(\sum_{k=0}^{n-1} b_{k} u^{k}\right) \left(\sum_{k=0}^{n-1} b_{k} u^{k}\right)$$

$$= \sum_{0 \leq i, j \leq n-1} b_{i} b_{j} u^{i+j}$$

$$= b_{0}^{2} I_{E} + 2b_{0} b_{1} u + (b_{0} b_{2} + b_{1} b_{1} + b_{2} b_{0}) u^{2} + \dots + (b_{0} b_{k} + b_{1} b_{k-1} + \dots + b_{k} b_{0}) u^{k} + \dots$$

$$= I_{E} + u.$$

- 3. 3-1 On a déjà montrer que la famille $\{x_1,u(x_1),...,u^{n-1}(x_1)\}$ est libre et puisque elle est de cardinal n, la famille est une base de E. $\alpha_0,\alpha_1,...,\alpha_{n-1}$ sont les coordonnées de $g(x_1)$ dans cette base.
 - 3-2 Comme u est un polynôme en g, alors gu=ug. Pour montrer que $g=\alpha_0I_E+\alpha_1u+...+\alpha_{n-1}u^{n-1}$, il suffit que les deux endomorphismes g et $\alpha_0I_E+\alpha_1u+...+\alpha_{n-1}u^{n-1}$ coincident dans la base $\{x_1,u(x_1),...,u^{n-1}(x_1)\}$. On a déjà $g(x_1)=\alpha_0x_1+\alpha_1u(x_1)+...+\alpha_{n-1}u^{n-1}(x_1)$ et puisque ug=gu, alors

$$g(u(x_1)) = \alpha_0 u(x_1) + \alpha_1 u(u(x_1)) + \dots + \alpha_{n-1} u^{n-1} (u(x_1))$$

puis de proche en proche on peut montrer que $\forall i \in \{0,1,...,n-1\}$, on a :

$$g(u^{i}(x_{1})) = \alpha_{0}u^{i}(x_{1}) + \alpha_{1}u(u^{i}(x_{1})) + \dots + \alpha_{n-1}u^{n-1}(u^{i}(x_{1})),$$

d'où le résultat.

3-3 Le polynôme minimal étant X^n , donc toute relation de liaison entre les vecteurs $I_E, u, u^2, ..., u^{n-1}$ entraîne l'existence d'un polynôme annulateur de u de degré inférieure strictement à n, ce qui est faux. Ainsi la famille $\{I_E, u, u^2, ..., u^{n-1}\}$ est libre. En tenant compte de la question 2. de cette partie, on trouve facilement les relations :

$$\alpha_0^2 = 1, \ 2\alpha_0\alpha_1 = 1$$
 et pour $2 \le q \le n - 1, \ \sum_{k=0}^q \alpha_k\alpha_{q-k} = 0$

- 3-4 Si $\alpha_0=1$, alors on vérifie sans difficulté que $\forall k\in 0,1,...,n-1$, $\alpha_k=b_k$, et dans ce cas g=w. Si $\alpha_0=-1$, alors $\forall k\in\{0,1,...,n-1\}$, $\alpha_k=-b_k$, et donc g=-w.
- 4. **Application :** L'équation matricielle s'écrit sous la forme $X^2 = I_3 + U$ avec $U = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

On a $U^3=0$ et $U^2\neq 0$. Donc la solution générale de l'équation est de la forme $X=\pm W$

avec
$$W = I + b_1 U + b_2 U^2$$
, et comme $\sqrt{1+x} = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + o(x^2)$, alors $W = I + \frac{1}{2}U + \frac{3}{8}U^2$.

Finalement
$$X=\pm\left(egin{array}{cccc} 1 & \frac{1}{2} & \frac{3}{8} & 0 \\ 0 & 1 & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{array} \right)$$

5. 5-1 Soit $x \in E_{\lambda}$, alors $(d - \lambda I_E)(\nu(x)) = d\nu(x) - \lambda \nu(x) = \nu(d - \lambda I_E)(x) = 0$, donc $\nu(E_{\lambda}) \subset E_{\lambda}$.

Soit p l'indice de nilpotence de ν , alors $\forall x \in E_{\lambda}$, $\nu_{\mu}^{p}(x) = \nu^{p}(x) = 0$, donc ν est nilpotent.

- 5-2 Soit $\lambda \in \operatorname{Sp}(d)$, ν_{λ} étant nilpotent, donc il existe un vecteur $x \in E_{\lambda}$ non nul tel que $\nu_{\lambda}^{q-1}(x) = \nu^{q-1}(x) \neq 0$ avec q l'indice de nilpotence de ν_{λ} . Donc $u(\nu^{q-1}(x)) = d\nu^{q-1}(x) + \nu^q(x) = d\nu^{q-1}(x) = \lambda \nu^{q-1}(x)$. Donc $\lambda \in \operatorname{Sp}(u)$.
- 5-3 Puisque d est diagonalisable, alors d'après le théorème de cours :

$$E = E_{\lambda_1} \oplus E_{\lambda_2} \oplus \dots \oplus E_{\lambda_r}$$

et si $x=x_1+x_2+\ldots+x_r\in E$, alors $d(x)=\lambda_1x_2+\lambda_2x_2+\ldots+\lambda_rx_r$.

- 5-4 Posons $\delta(x) = \sqrt{\lambda_1}x_2 + \sqrt{\lambda_2}x_2 + ... + \sqrt{\lambda_r}x_r$ si $x = x_1 + x_2 + ... + x_r \in E$, alors on vérifie facilement que $\delta^2 = d$. De plus pour tout x_i $(1 \le i \le r)$, $\nu\delta(x_i) = \sqrt{\lambda_i}\nu(x_i)$ et puisque $\forall i, \nu(x_i) \in E_{\lambda}$, alors $\delta\nu(x_i) = \sqrt{\lambda_i}\nu(x_i)$. Donc $\nu\delta = \delta\nu$.
- 5-5 On a $\det \delta^2 = \det d \neq 0$, donc δ est inversible. De plus $(\nu \delta^{-2})^p = \nu^p \delta^{-2p} = 0$, donc $\nu \delta^{-2}$ est nilpotent.
- 5-6 Considérons l'endomorphisme $w=\sum\limits_{k=0}^{n-1}b_k(\nu\delta^{-2})^k$ (les b_k sont définis dans la partie préliminaires), on a $w^2=I_E+\nu\delta^{-2}$ toujours d'après la partie préliminaires. De plus $w^2=I_E+(u-d)\delta^{-2}=I_E+u\delta^{-2}-I_E=u\delta^{-2}$, donc $w^2\delta^2=u$, soit $v=w\delta$.

III. RACINE CARRÉE D'UNE MATRICE SYMÉTRIQUE POSITIVE

- 1. Il est clair que ${}^t({}^tMM) = {}^tMM$ et $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tX^tMMX = {}^t(MX)MX \geq 0$. Si M est symétrique, alors ${}^tMM = M^2$ serait symétrique et positive.
- 2. 2-1 Soit u l'endomorphisme canoniquement associé à A et (.|.) le produit scalaire canonique. Soit $\lambda \in \operatorname{Sp}(A)$ et x un vecteur propre associé à λ , puisque $x \neq 0$, (x|x) > 0 d'où :

$$(x|u(x)) = \lambda(x|x)$$

ou encore

$$\lambda = \frac{(x|u(x))}{(x|x)} \ge 0.$$

Inversement si les valeurs propres de u sont positives, alors, dans une base de diagonalisation de u:

$$(x|u(x)) = \sum_{i=1}^{n} \lambda_i x_i^2 \ge 0.$$

- 2-2 On a un résultat analogue pour les endomorphismes symétriques définies positives : Un endomorphisme symétrique u est défini positif si et seulement si ses valeurs propres sont strictement positives.
- 3. 3-1 On sait que la matrice *A* est diagonalisable, soit *P* une matrice orthogonale telle que :

$$A = P \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)^t P$$

avec les λ_i sont les valeurs propres positives de A.

La matrice $B = P \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, ..., \sqrt{\lambda_n})^t P$ est symétrique, il est positive puisque ses valeurs propres $\sqrt{\lambda_i}$ sont positives et vérifie $B^2 = A$. Si $A \in S_n^{++}$, alors $B \in S_n^{++}$.

- 3-2 (a) Puisque f est un polynôme en g, alors tout sous-espace propre $E_{\lambda}(f)$ de f est stable par g.
 - (b) Si μ est une valeur propre de g_{λ} elle est positive et vérifie $\mu^2=\lambda$ donc $\mu=\sqrt{\lambda}$. g_{λ} est diagonalisable puisqu'il est auto-adjoint et ne possède que la valeur propre $\sqrt{\lambda}$, c'est donc $\sqrt{\lambda}Id_{E_{\lambda}(f)}$.
 - (c) Puisque f est diagonalisable dans une base orthonormale , alors $E=\oplus_{\lambda\in Sp(f)}E_{\lambda}(f)$.

Ainsi
$$g = \sum_{i=1}^r \sqrt{\lambda_i} E_{\lambda_i}(f)$$
 où $\{\lambda_1, \lambda_2, ..., \lambda_r\} = \operatorname{Sp}(f)$.

Soit h un endomorphisme symétrique positive tel que $h^2=f$. Soit λ une valeur propre de f. Comme h commute avec $f=h^2$ le sous-espace propre $E_\lambda(f)$ est stable par h. L'endomorphisme h_λ induit par h sur $E_\lambda(f)$ est symétrique, positif et vérifie

$$h_{\lambda}^2 = \lambda Id_{E_{\lambda}(f)}$$

donc

$$h_{\lambda} = \sqrt{\lambda} Id_{E_{\lambda}(f)}$$

Les restrictions de h et de g aux sous-espaces propres de f coïncident donc h = g.

3-3 On sait que pour tous réels différents $x_1 < x_2 < ... < x_r$ et pour tous réels $y_0, y_1, ..., y_r$, il existe un unique polynôme (polynôme d'interpolation de Lagrange) L tel que $L(x_i) = y_i$, un tel polynôme est donné par :

$$L = \sum_{i=0}^{r} \left(y_i \prod_{j \neq i} \frac{X - x_j}{x_i - x_j} \right)$$

Soit maintenant $D = \operatorname{diag}(\lambda_1,...,\lambda_r,0,...,0)$ et $V = \operatorname{diag}(\sqrt{\lambda_1},...,\sqrt{\lambda_r},0,...,0)$ où les λ_i sont les différentes valeurs propres strictement positifs de A. On sait qu'il existe un polynôme L tel que pour (i=1,2,...,r) on $L(\lambda_i) = \sqrt{\lambda_i}$. Alors

$$L(D) = \begin{pmatrix} L(\lambda_1) & & & \\ & \ddots & & \\ & & L(\lambda_r) & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{\lambda_1} & & & \\ & \ddots & & \\ & & \sqrt{\lambda_r} & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix} = V$$

Soit P une matrice orthogonale tel que $A = PD^tP$. Nous avons donc

$$L(A) = L(PD^{t}P) = PL(D)^{t}P = PV^{t}P = B,$$

le polynôme L convient.

- 4. **Applications** : *A* et *C* deux matrices symétriques éléments de $\mathcal{M}_n(\mathbb{R})$.
 - 4-1 On a ${}^t(\sqrt{A}C\sqrt{A})={}^t\sqrt{A}{}^tC^t\sqrt{A}=\sqrt{A}C\sqrt{A}$, donc $\sqrt{A}C\sqrt{A}$ est symétrique. D'autre part $\forall X\in\mathcal{M}_{n,1}(\mathbb{R}),\ {}^tX\sqrt{A}C\sqrt{A}X={}^t(\sqrt{A}X)C(\sqrt{A}X)\geq 0$, donc ${}^t\sqrt{A}C\sqrt{A}$ est positive.

On a aussi $\operatorname{tr}(AC) = \operatorname{tr}(\sqrt{A}\sqrt{A}C) = \operatorname{tr}(\sqrt{A}C\sqrt{A}) = \sum_{i=1}^{n} \mu_i \geq 0$ où les μ_i sont les valeurs propres positives de $\sqrt{A}C\sqrt{A}$.

4-2 AC est semblable à une matrice symétrique, donc diagonalisable, en effet on a :

$$\left(\sqrt{A}\right)^{-1} AC\left(\sqrt{A}\right) = \sqrt{A}C\sqrt{A}.$$

Prenons
$$A=\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$
 et $C=\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)$. On a $AC=\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$ non diagonalisable.

- 5. 5-1 On a bien ${}^t(AB) = {}^tB^tA = BA = AB$, donc AB est symétrique. D'après la question [3-3] de cette partie \sqrt{A} (resp. \sqrt{B}) s'exprime comme polynôme en A (resp. B) et comme A et B commutent, il est de même de \sqrt{A} et \sqrt{B} .
 - 5-2 Il est immédiat que $(\sqrt{A}\sqrt{B})^2 = AB$. D'autre part pour tout élément $X \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^tXABX = {}^tX(\sqrt{A}\sqrt{B})^2X = {}^t(\sqrt{A}\sqrt{B}X)(\sqrt{A}\sqrt{B}X) \geq 0$, donc $AB \in S_n^+$.
 - 5-3 Il suffit de remplacer le couple (A,B) par le couple (\sqrt{A},\sqrt{B}) pour conclure. D'autre part, on sait que $(\sqrt{A}\sqrt{B})^2=AB$, donc par unicité de la racine carrée d'une matrice, $\sqrt{AB}=\sqrt{A}\sqrt{B}$.
- 6. 6-1 On sait que S_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, donc est un fermé de $\mathcal{M}_n(\mathbb{R})$, de plus $S_n^+ = S_n \cap \det^{-1}([0, +\infty[)$ avec

$$\det: \ \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$M \longmapsto \det M$$

donc S_n^+ est un fermé de $\mathcal{M}_n(\mathbb{R})$, puisque det est continue.

- 6-2 On sait que toute matrice symétrique positive admet une seule racine, autrement dit l'application Φ est une bijection. Φ^{-1} n'est autre que l'application $X \longmapsto X^2$ définie de S_n^+ dans lui même , donc elle est continue puisque elle est polynomiale.
- 6-3 L'application tr étant linéaire, donc continue; et comme $(A_k)_{k\in\mathbb{N}}$ converge vers A, alors la suite $(\operatorname{tr}(A_k))_{k\in\mathbb{N}}$ converge vers $\operatorname{tr}(A)$, en particulier elle est bornée. Puisque $(M,N)\longmapsto\operatorname{tr}({}^tMN)$ est un produit scalaire, alors l'application

$$\rho: M \longmapsto \sqrt{\operatorname{tr}({}^t M M)}$$

est une norme. Ainsi

$$\forall k \in \mathbb{N}, \quad \rho\left(\sqrt{A_k}\right)^2 = \operatorname{tr}\left({}^t\sqrt{A_k}\sqrt{Ak}\right) = \operatorname{tr}(A_k),$$

donc la suite $(\sqrt{A_k})_{k\in\mathbb{N}}$ est bornée.

- 6-4 Soit B une valeur d'adhérence de $(\sqrt{A_k})_{k\in\mathbb{N}}$, alors il existe une sous-suite $\left(\sqrt{A_{\varphi(k)}}\right)_{k\in\mathbb{N}}$ qui converge vers B, alors $(A_{\varphi(k)})_{k\in\mathbb{N}}$ converge vers B^2 , mais la suite $(A_k)_{k\in\mathbb{N}}$ étant convergente de limite A, donc $B=A^2$, d'où $B=\sqrt{A}$ et par conséquent la suite $\left(\sqrt{A_k}\right)_{k\in\mathbb{N}}$ admet une seule valeur d'adhérence \sqrt{A} , donc convergente de limite \sqrt{A} . Conclusion : d'après la caractérisation séquentielle de la continuité l'application Φ est continue de S_n^+ dans lui même .
- 7. 7-1 Il est clair que cette application est linéaire. Soit maintenant $H \in \mathcal{M}_n(\mathbb{R})$, alors

$$AH + HA = 0 \iff {}^{t}HAH = -{}^{t}HHA$$
$$\iff {}^{t}HAH = -(\sqrt{A})^{-1}\sqrt{A}({}^{t}HH)\sqrt{A}\sqrt{A}$$

Donc les matrices tHAH et $-\sqrt{A}({}^tHH)\sqrt{A}$ sont semblables, et comme ${}^tHAH \in S_n^+$ et $\sqrt{A}({}^tHH)\sqrt{A} \in S_n^+$, alors ${}^tHAH = \sqrt{A}({}^tHH)\sqrt{A}\sqrt{A} = 0$ ou encore ${}^tHH = 0$, soit H = 0, donc l'application est bijective.

- 7-2 Soit $H \in \mathcal{M}_n(\mathbb{R})$, alors $(X+H)^2-X^2-(XH+HX)=H^2=o(\|H\|)$, où $\|.\|$ une norme quelconque de $\mathcal{M}_n(\mathbb{R})$, cette égalité montre que Ψ est différentiable et $d\Psi_X(H)=XH+HX$.
- 7-3 L'application Ψ est une bijection de classe \mathcal{C}^1 de S_n^{++} dans lui même , puisque elle est polynomiale, et $\forall A \in S_n^{++}$, $d\Psi_A$ est inversible, d'après la question [7-1], donc d'après le théorème de cours, Ψ est un \mathcal{C}^1 -difféomorphisme de S_n^{++} dans lui même .

•••••

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr