Segundo ciclo 2020 Compiladores

02 - Análisis sintáctico

Mgtr. Diana Alejandra Gutiérrez

Análisis LR(0) - Tarea

Dada la siguiente gramática:

$$S \rightarrow id \mid V := E$$

 $V \rightarrow id$
 $E \rightarrow V \mid num$

- 1. Defina la colección de conjuntos de estados
- 2. Construya la tabla de análisis SLR.
 - ¿Qué hay de particular con esta tabla de análisis?

Análisis LR(0) - Tarea

$$S \rightarrow id \mid V:=E$$

 $V \rightarrow id$
 $E \rightarrow V \mid num$

Existe un conflicto de reducción/reducció n, por lo tanto un análisis SLR no es lo más eficiente.

	ACCIÓN				IR_A		
Estado	id	:=	num	\$	S	V	E
0	d2				1	3	
1				Aceptar			
		.5		r1/r3			
3		d4					
4	d8		d7			6	5
5				r2			A PARTIE OF THE
6				r4			
7				r5			
8		r3		r3			

Construcción de tablas de análisis sintáctico

Se pueden producir dos tipos de conflictos:

- desplazamiento-reducción: en una casilla en la que hay un desplazamiento también corresponde poner una reducción
- reducción-reducción: en una casilla hay que poner dos reducciones (porque en ese estado hay que reducir por dos reglas diferentes y hay símbolos comunes en el FOLLOW de las partes izquierdas)

Estos conflictos indican que la gramática no es SLR, por lo que se puede optar por:

- Utilizar otro método para la construcción de las tablas: LR(1),
 LALR(1), . . .
- Definir precedencia en las acciones.

Parser ascendente LR(1)

Sigue el concepto del SLR con la diferencia que se lleva un token de anticipación o lookahead; lo cual permite tomar mejores decisiones a la hora de resolver conflictos shift/reduce.

Parser ascendente LR(1)

- La construcción de los conjuntos IR_A es igual a lal parser LR(0).
- El lookahead del elemento para la producción inicial es \$, es decir, el elemento inicial será [S' → •S, \$].
- El lookahead para los elementos [A → α Bβ, a] será cada uno de los terminales del conjunto FIRST(βa) para todas las producciones de B.

Tabla de análisis sintáctico LR(1)

- Construir la colección de conjuntos de elementos LR(1) para G'.
- El estado / del analizador sintáctico se construye a partir de /_i. La acción de análisis sintáctico para el estado i se determina de la siguiente manera:
 - Si $[A \rightarrow \alpha \bullet B\beta, b]$ está en I_i , e ir_A(I_i , a) = $I_j \Rightarrow$ ACCION[i, a] = "desplazar j"; a debe ser un terminal.
 - Si $[A \rightarrow \alpha \bullet, a]$ está en $I_i \Rightarrow ACCION[i, a] = "reducir <math>A \rightarrow \alpha$ ".
 - □ Si [S' \rightarrow S•,\$] está en $I_i \Rightarrow$ ACCION[I_i ,\$] a "aceptar".

Parser ascendente LR(1) - Ejemplo_{S → id | V:=E}

```
I_0: S' \rightarrow \bullet S
                             , $
                                       IrA(I_0, S) = I_1
                             , $
       S \rightarrow \bullet id
                                      IrA(I_0, id) = I_2
                             , $
       S \rightarrow V:=E
                                     IrA(I_0, V) = I_3
       V \rightarrow \bullet id
                                       IrA(I_0, id) = I_2
                            , :=
I_1: S' \rightarrow S \bullet
                             , $
                                       Aceptar
                             ,$
I_2: S \rightarrow id \bullet
       V \rightarrow id \bullet
                           , $
I_3: S \rightarrow V \bullet := E
                                      IrA(I_3, :=) I_4
```

```
S \rightarrow Id \mid V := E
V \rightarrow id
E \rightarrow V \mid num
```

```
I<sub>4</sub>: S \rightarrow V := \bullet E , $ IrA(I<sub>4</sub>, E) = I<sub>5</sub>

E \rightarrow \bullet V , $ IrA(I<sub>4</sub>, V) = I<sub>6</sub>

E \rightarrow \bullet \text{num} , $ IrA(I<sub>4</sub>, num) = I<sub>7</sub>

E \rightarrow \bullet \text{num} , $ IrA(I<sub>4</sub>, id) = I<sub>8</sub>

V \rightarrow \bullet \text{id}

I<sub>5</sub>: S \rightarrow V := E \bullet , $

I<sub>6</sub>: E \rightarrow V \bullet , $
```

 I_7 : $E \rightarrow num \bullet$

 $I_8: V \rightarrow id \bullet$

$$S \rightarrow id \mid V:=E$$
 $V \rightarrow id$
 $E \rightarrow V \mid num$

Se resolvió el conflicto de reducción/reducción.

Parsear la cadena:

	ACCIÓN			IR_A			
Estado	id	:=	num	\$	S	V	Е
0	d2				1	3	
1				Aceptar			
2		r3		r1			
3		d4					
4	d8		d7			6	5
5			F-9	r2			
6				r4		100 100 100 100 100 100 100 100 100 100	S. S. S. S.
7				r5			
8			• •	r3			

 $S \rightarrow id \mid V := E$ $V \rightarrow id$ $E \rightarrow V \mid num$

no	Pila	Símbolo	Entrada	Acción
1	0		Id := id \$	Desplazar 2
2	02	id	:= id \$	Reducir 3
3	0	V	:= id \$	IR_A3
4	03	V	:= id \$	Desplazar 4
5	034	V :=	id\$	Desplazar 8
6	0348	V := id	\$	Reducir 3
7	034	V := V	\$	IR_A6
8	0346	V := V	\$	Reducir 4
9	034	V := E	\$	IR_A5
10	0345	V := E	\$	Reducir 2
11	0	S	\$	IR_A 1
12	0 1	S	\$	Aceptar

Análisis LR(1) - Ejemplo 2

Dada la siguiente gramática:

$$S \rightarrow CC$$

 $C \rightarrow xC$
 $C \rightarrow d$

- 1. Defina la colección de conjuntos de estados
- 2. Construya la tabla de análisis LR(1).
- Analice con la tabla construida la siguiente entrada: ccdcd.

$$S \rightarrow CC$$

 $C \rightarrow xC$
 $C \rightarrow d$

```
, $
S' \rightarrow \bullet S
                                  IrA(I_0, S) = I_1
                    , $
                                  IrA(I_0, C) = I_2
S \rightarrow \bullet CC
                                                                    I_{a}: C \rightarrow d \bullet , c/d
C \rightarrow \bullet xC
                      , c/d
                                   IrA(I_0, x) = I_3
                                   IrA(I_0, d) = I_4
C \rightarrow \bullet d
                      , c/d
                                                                   I_5: S \rightarrow CC \bullet
                      , $
S' \rightarrow S \bullet
                                  Aceptar
                                                                                              , $
                                                                    I_6: C \rightarrow X \bullet C
                                                                                                            IrA(I_6, C) = I_9
                                                                                                            IrA(I_6, x) = I_6
                                                                                               , $
                                                                           C \rightarrow \bullet xC
                      ,$.
                                   IrA(I_2, C) = I_5
S \rightarrow C \cdot C
                                                                                                            IrA(I_6, d) = I_7
                                                                                               , $
                                                                           C \rightarrow \bullet d
                      ,$
                                  IrA(I_2, x) = I_6
V \rightarrow \bullet xC
                      , $
                                   IrA(I_2, d) = I_7
C \rightarrow \bullet d
                                                                   I_7: C \rightarrow d \bullet
                                                                                               , $
C \rightarrow x \cdot C
                      , c/d
                                   IrA(I_3, C) = I_8
                                                                    I_8: C \rightarrow xC \bullet
                                                                                               , c/d
                                   IrA(I_3, x) = I_3
C \rightarrow \bullet xC
                      , c/d
                                                                    I_9: C \rightarrow xC \bullet , \$
\mathbb{C} \to \bullet d
                      , c/d
                                   IrA(I_3, d) = I_4
```

1)
$$S \rightarrow CC$$

2)
$$C \rightarrow xC$$

3)
$$C \rightarrow d$$

Parsear la cadena: ccdcd

		IR_A			
	х	d	\$	S	С
0	d3	d4		1	2
1			Aceptar		
2	d6	d7			5
3	d3	d4			8
4	r3	r3			
5			r1		
6	d6	d7			9
7			r3		
8	r2	r2			
9			r2		

- 1) $S \rightarrow CC$
- 2) $C \rightarrow xC$
- 3) $C \rightarrow d$

no	Pila	Símbolo	Entrada	Acción
1	0		xxdxd\$	Desplazar 3
2	03	×	xxdxd\$	Desplazar 3
3	033	xx	dxd\$	Desplazar 4
4	0334	xxd	xd\$	Reducir 3
5	033	xxC	xd\$	IR_A8
6	0338	xxC	xd\$	Reducir 2
7	03	xC	xd\$	IR_A8
8	038	xC	xd\$	Reducir 2
9	0	С	xd\$	IR_A 2
10	02	С	xd\$	Desplazar 6
11	026	Cx	d\$	Desplazar 7
12	0267	Cxd	\$	Reducir 3
13	026	CxC	\$	IR_A9
14	0269	CxC	\$	Reducir 2
15	02	СС	\$	IR_A5
16	025	СС	\$	Reducir 1
17	0	S	\$	IR_A 1
18	0 1	S	\$	Aceptar

Análisis LR(1) - Ejercicio

Dada la siguiente gramática:

$$E' \rightarrow E$$

$$E \rightarrow T + E$$

$$E \rightarrow T$$

$$T \rightarrow id$$

- 1. Defina la colección de conjuntos de estados
- Construya la tabla de análisis LR(1).
- 3. Analice con la tabla construida la siguiente entrada: id + id.