	Multip	le Regression -	Extra Suma o	f Somes
	- Bis Pic	: Model Ekction	Fitest for i-clusion	- " epinio" - tors
	Basia	: Idea! Z views		/
		I dea! 2 views	of squores ~	- حد ج د بعد ح
		the warsinal red	-ctio- i- the	error su-
		of squees who	var's are ad	ded to the
		-ode\		
		2) Equivaletly	1- extra su of	حج سـ د سـ ع
		z) Equisalety, of veasures the -org	in-al increase i	- the regression
		su- of rqueres		
	Example	terale body fet X, thigh circum forence	- o- + vs. s	evenl pedictor varis
	,	X, thigh circu forence	Xz widor cire.	Xz thigh circ.
	(0-5,'de	- 34 different re	gression models e	-odel selection
		Yregregged	o- X, alone	vote inferce pt does this make sense?
,		Ŷ= -1,4	96 + 8572 X,	ws 30:
	55 R	352.27	96 + 8572 X	352.27
	SSE	143.12	18 (3 M=50)	7.95
	55 TO	495, 39	19 (≥ N=20 /	
	Vor	Est res. coeff	Ed. 540.	-€ *
	Ϋ́	by = .8572	5{b,}=.128	6.66
		·	•	
2)		to regressed	- X = P=	-23.634 + .8565 XZ
	55R	381.97		381.97
	55E	113,42	18	6, 70
	55 TO	455.39	اح	
	Uor			
	Χz	bz= .8565	5 {b2 } = . 1100	7,79
0				

_	3)	Regress. of	Y X, & XZ	
			174+.2224 ×, +.65	i4 Xz
			2f	MS
	55R	385.44	٦	197.72
	SSE	109.95	17	6.47
	SSTO	495.39	19	
_	Vor		Est stu. deu	L ∗
	У,	5, = . 2224	5 { 6, } = . 3034	.73
	x -z	b. = .6594	5 { b2 } = .29 12	7.26
	41)	Regress of	4 X, X & X3	
	,		+ 4,334 x, - 2.857 x,	- 2.186 ×3
	55R	396.98	3	
	55 E	97.41	14	
	55 TO	५९५, ७९	19	
	- Var			₹ *
	×	b, = 4.334	5 []= 3.016	1,44
	×z	bz = -2,857	5{62} = 2.582	-1.11
	× 3	b3 = -2.186	5{b3}= 1.596	-1.37
		h · ,		
	Re-alo	t* = b:/5{b;]	
			ore i ode 1, 550	
			55E(x,) = 143.12	
	55E(x.	2)=113.42.	This difference is	<i>د ح</i>
	ex tr	a 5u - of 5	qu 5	
			\ - ()	·/ - /
	dievense i-	>>15/5(X2 X1) = 55E(x ₁) - 5 = 143.12 - 109.95	JE(X, KZ)
	error	-	= 143.12-109.95	= (37.17
	Equ	icolenty		
		352 (×2 (×,) = SSR(X,, Xz) - = 385.44 - 352	- >> K (X)
		7	= 385,44 - 352	.27 = 33.17
٥	in	evease in regression	sur f square	

55R) = 55R(X1, X2, X3)

55E(x,)

55TU = SSR(X, X2, X3) * SSE(X, X2, X3) = -SSR(X,) + SSR(X2 | X,) + SSR(X3 | X,, X2)

5500 = 4'(H, -1) Y + 4'(H₂₁₁) Y + 4'(H_{311,2}) Y Y'(H) | (H) + Y'(H-2J) Y

A Second

if X, Il X2 +hen H= H, + Hz/1

```
SSTO= ISSR + SSE --- be
   acco-parled by animorese in SSR, (SSTO is fixed)
         It can also be secrethet
             SSR(X3 | X,, X2) = SSE(X, X2) - SSE(X, X2, X3)
             عا وين = ١٥٩ ٢٥ - ٩٦ ٤١ = ١١ . ٢٢
               SSR(X3 | X1, X2) = SSR(X1, X21 X3) - SSR(X, X2)
                              = 396, 88- 385, 44 = 11.54
   We can also consider adding -- Itipke variables at once
        55R(X2, X3 | X1) = 55E(X1) - 55E(X1, X7) X3)
                       = 143, 12 - 98.41 = 44.71
          SSR(X, X3 X,) = SSR(X, X2, X3) - SSR(X,)
                         = 391. 98-352.27 = 44,71
           SSR(X_1|X_2) = SSE(X_2) - SSE(X_1, X_2) when
Defis
           552(x, 1x2)= 552(x, 1x2)- 552(x2)
    Conversely
              55R(X21x1)= 55E(X1)- 55E(X1, x2)
        ~ 55R (x2 | x1) = 55R(x, x2) - 55R(x1)
   3-vor 4 -ore extensions straightforward
           SSR(X3 (X, X2)= SSE(X, X2) - SSE(X, X2, X3)
       -) 55R(X3 | X1, X2) = 55R(X1, X2, X3) - 55R(X1, X2)
```

Ro secomposition, obvio-sy

	Decomposition of	SSR i-h Ext	m / s .	f Squares
	Thisk- exe	t error with a	ll vars	i-chord but
	anald (ike to	Luow i-pact of	م کمارے د	2-5 to
	regressio- Lodel			
	To stort,	٥- ١٥ - ١		
	55	co-552(X,) + 55	E(x,)	
	reme ber	$s(x) = SSE(x_1, x_2)$,	
	5 <i>5E</i> (x	$(x_1) = 55 \overline{t}(x_1, x_2)$	+ 55R()	(z X,)
	salstituting			,
	557	TO = SSR(x,) + SSR	(x , x ,)	+55E(x, yz)
	حدث 50 هـ	-0 = SSR(X,) + SSR -0 = So forth,	٥¢.	
	55R (X,	X2 X) = SSR(x,)+5512(x	(2/K1) +
	, , , , , , , , , , , , , , , , , , ,	Xz Xy)= SSR(;	(X X X	(2X1)
		Lote- He	orier of	this deaposition
		is	arbitrary	(Luw-0-7? J!)
	ANOVA			
		,		•
	Aroua tables	ca se co-st-	· < += d (*C
	Acoua tables Hese deso-position	s. i.c.	-cted f	~~~
	Hese deco-position	s, <u>;</u> C	· (+ d) (
	Hese desoposition	s, ;c \$\$	J (-	M5
	Hese desoposition	55 55 R(x, x, x,)	J (-	MSR(x,,X _{2,} X3)
	Hese des-position Source of Vor. Reg. X	55 55 R(x, x, x, y) 55 R(x,)	J¢	MSE(x,,Xz,X3) MSE(x,)
	Hese deso-position Source of Vor. Res. X, X2 X,	55 R(x, x, x,) 55 R(x,) 55 R(x,)	J(- 3 1	MSR(x,,X _{2,} X3)
	Hese des-position Source of Vor. Res. X, X2 X, X3 X, X2	55	3 1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
	Hese den-position Source of Vor. Res. X1 X2 X1 X3 X1, X2 Error	55 55 R(x, x, x,) 55 R(x,) 55 R(x,) 55 R(x, x, x,) 55 R(x, x, x	3 1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
	Hese des-position Source of Vor. Res. X, X2 X, X3 X, X2	55	3 1	MSR(x,, X ₂ , X ₃) MSR(x,) MSR(x ₂)x,, MSR(X ₃ x,, X ₂)
	Hese den-position Source of Vor. Res. X1 X2 X1 X3 X1, X2 Error	55 55 R(x, x, x,) 55 R(x,) 55 R(x,) 55 R(x, x, x,) 55 R(x, x, x	J(3 1 1 1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
	Hese des-position Source of Vor. Res. X, X2 X, X3 X, X2 Error Total	55 55 R(x, x, x, x,) 55 R(x,) 55 R(x,) 55 R(x, x, x	J(3 1 1 1 4-4 n-1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
	Hese des-position Source of Vor. Res. X, X2 X, X3 X, X2 Error Total	55 55 R(x, x, x,) 55 R(x,) 55 R(x,) 55 R(x, x, x,) 55 R(x, x, x	J(3 1 1 1 4-4 n-1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
	Hese dew-position Source of Vor. Reg. X1 X2 X1 X3 X1, X2 Error Total	\$\$ \$\$ \(\x, \x_2 \x_3 \) \$\$ \(\x_1 \x_1 \x_1 \) \$\$ \(\x_2 \x_1 \x_1 \x_2 \) \$\$ \(\x_3 \x_1, \x_2 \) \$\$ \(\x_1, \x_2 \x_3 \x_3 \x_1, \x_2 \x_2 \x_3 \x_3 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5	J(3 1 1 1 4-4 n-1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
	Hese dew-position Source of Vor. Reg. X1 X2 X1 X3 X1, X2 Error Total	55 55 R(x, x, x, x,) 55 R(x,) 55 R(x,) 55 R(x, x, x	J(3 1 1 1 4-4 n-1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
	Hese dew-position Source of Vor. Reg. X1 X2 X1 X3 X1, X2 Error Total	\$\$ \$\$ \(\x, \x_2 \x_3 \) \$\$ \(\x_1 \x_1 \x_1 \) \$\$ \(\x_2 \x_1 \x_1 \x_2 \) \$\$ \(\x_3 \x_1, \x_2 \) \$\$ \(\x_1, \x_2 \x_3 \x_3 \x_1, \x_2 \x_2 \x_3 \x_3 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5	J(3 1 1 1 4-4 n-1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)
0	Hese dew-position Source of Vor. Reg. X1 X2 X1 X3 X1, X2 Error Total	\$\$ \$\$ \(\x, \x_2 \x_3 \) \$\$ \(\x_1 \x_1 \x_1 \) \$\$ \(\x_2 \x_1 \x_1 \x_2 \) \$\$ \(\x_3 \x_1, \x_2 \) \$\$ \(\x_1, \x_2 \x_3 \x_3 \x_1, \x_2 \x_2 \x_3 \x_3 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5 \x_5	J(3 1 1 1 4-4 n-1	MSR(x,, Xz, X;) MSR(x,) MSR(x,) MSR(x, x,) MSR(X; x, Xz)

```
Test whether a Single BE =0

To test whether Bie Xk am be dropped from a unltiple regression mount we are interested
          Ho: BE =0
  Ha: Bk = 0
The test stat for this is
    t* = bk { bk}
- F-tect war
          V;= B, + B, Xi, +B, Xiz+ B, Xiz+ E:
   and festions the alternations
           Ho: 133=0
                H, : B, +0
     Reduced Lodel -he Ho holds is
             Y; = Bo + B, X; 1 - Bz X; 2 + E; (reduced ~odel)
            55E(R) = 55E(x, xz)

of i- reduced -odel is w-3
     The general test stat is
                 FX= SSE(R)-SSE(F) SSE(F)
      here is
                 SSE(x, Xz) - SSE(x, Xz, Xz) / SSE(x, Xz, Xs)
```

 $F^* = \frac{55E(x_3|x_1,x_2)}{\sqrt{55E(x_1,x_2,x_3)}}$

= MSP(X3 | X, X2) MSE(X, X2 /X3)

So ANOX table with extra-sus of squares can be used to do model selection efficiently.

Sinilar technique(1) can be used to kest whather several 3k = 0

Ravica tests in 7.3

Multi-collinearity coments

1) Correlated predictor variables do not inhibit getting a good model fit now prediction.

2) Correlated predictor varis head to lange sampling intervals for the estructed regress coefficient functional predictors wisht be deened statistically insignificant even though there is a relativistically insignificant even though there is a relativistic of Interpretation of the united interpretation of linear rate of change of output given fixed other covariates we longer valid.