Rovinné grafy

Zdeněk Dvořák

5. prosince 2018

Bude se nám hodit pracovat s <u>multigrafy</u>, tj. grafy, kde mezi dvěma vrcholy může vést i více hran. Povolujeme také <u>smyčky</u>, hrany spojující vrchol sám se sebou. Formálně multigraf je trojice (V, E, k), kde V a E jsou konečné disjunktní množiny a $r: E \to 2^V$ přiřazuje každé hraně množinu jejích konců velikosti 1 nebo 2.

Rovinné nakreslení multigrafu (neformálně): vrcholy \mapsto navzájem různé body v rovině, hrany \mapsto spojité křivky, které je propojují bez křížení.

Nechť $\theta: \langle 0, 1 \rangle \to \mathbb{R}^2$ je prostá spojitá funkce. Pak $\theta(\langle 0, 1 \rangle)$ je jednoduchá křivka (v rovině) a $\theta(0)$ a $\theta(1)$ jsou její konce. Obdobně, je-li θ spojitá, prostá na intervalu $\langle 0, 1 \rangle$ a $\theta(0) = \theta(1)$, pak $\theta(\langle 0, 1 \rangle)$ je jednoduchá uzavřená křivka.

Nechť S je podmnožina roviny. Pro body $x,y \in S$ nadefinujme $x \sim y$, jestliže x = y nebo existuje jednoduchá křivka s konci x a y obsažená v S. Pak \sim je ekvivalence, a její bloky jsou komponenty obloukové souvislosti.

Věta 1 (Jordan). Je-li c jednoduchá uzavřená křivka v rovině, pak $\mathbb{R}^2 \setminus c$ má právě dvě komponenty obloukové souvislosti, omezenou a neomezenou, a c tvoří jejich (společnou) hranici.

Věta 2. Nechť Z je konečné sjednocení jednoduchých křivek protínajících se jen v koncových bodech a K je komponenta obloukové souvislosti $\mathbb{R}^2 \setminus Z$. Je-li K omezená, pak Z obsahuje jednoduchou uzavřenou křivku c tž. K je podmnožinou omezené komponenty obloukové souvislosti $\mathbb{R}^2 \setminus c$.

Definice 1. Rovinné nakreslení multigrafu G = (V, E, k) je prosté zobrazení $\nu: V \to \mathbb{R}^2$ a systém $\{c_e: e \in E\}$ tž.

- pro hranu $e \in E$ s $k(e) = \{u, v\}$ je c_e jednoduchá křivka s konci $\nu(u)$ a $\nu(v)$,
- pro smyčku $e \in E$ s $k(e) = \{v\}$ je c_e jednoduchá uzavřená křivka obsahující $\nu(v)$,

- $\nu(V(G)) \cap c_e = \nu(k(e))$ pro každou hranu $e \in E$ a
- pro různé hrany $e, e' \in E$ platí $c_e \cap c_{e'} = \nu(k(e) \cap k(e'))$.

Stěny nakreslení jsou komponenty obloukové souvislosti

$$\mathbb{R}^2 \setminus \left(\nu(V(G)) \cup \bigcup_{e \in E(G)} c_e \right).$$

Právě jedna ze stěn je neomezená, říkáme jí vnější stěna.

Multigraf je <u>rovinný</u>, jestliže má rovinné nakreslení. Pozor: rovinný multigraf může mít více různých nakreslení (i když považujeme za stejná nakreslení, která se liší pouze "deformací"). Stěny jsou vlastností nakreslení, ne multigrafu!

Příklad 1. Kružnice a stromy jsou rovinné.

Lemma 3. Nechť G je souvislý multigraf nakreslený do roviny a nechť c je jednoduchá křivka reprezentující hranu $e \in E(G)$. Jestliže G - e je souvislý, pak c leží v hranicích dvou různých stěn. Odpovídající nakreslení G - e má tedy právě o jednu stěnu méně, než nakreslení G.

 $D\mathring{u}kaz$. Jelikož G-e je souvislý, e leží na kružnici $K\subseteq G$. Nakreslení K v G odpovídá jednoduché uzavřené křivce c_K , dle Jordanovy věty má $\mathbb{R}^2\setminus c_K$ dvě komponenty obloukové souvislosti a c_K tvoří jejich společnou hranici. Křivka $c\subset c_K$ je tedy obsažena v hranicích obou komponent. Jelikož stěny nakreslení G jsou podmnožiny těchto komponent, dostáváme, že c je obsažena v hranicích dvou různých stěn. Sjednocení těchto stěn a vnitřku c tvoří stěnu multigrafu G-e, ostatní stěny G odpovídají právě ostatním stěnám G. \square

Lemma 4. Nechť G je multigraf nakreslený do roviny a f je jeho stěna. Jestliže G má více než jednu stěnu, pak hranice f obsahuje nakreslení kružnice z G.

 $D\mathring{u}kaz$. Nechť W je podgraf G nakreslený v hranici f. Pak f je i stěnou W, a jelikož G má více než jednu stěnu, i W má nějakou jinou stěnu f'. Alespoň jedna ze stěn f a f' je omezená, dle Věty 2 tedy nakreslení W obsahuje jednoduchou uzavřenou křivku, a W tedy obsahuje kružnici.

Důsledek 5. Libovolné rovinné nakreslení stromu má právě jednu stěnu.

Důsledek 6 (Eulerova formule). *Každé rovinné nakreslení souvislého multigrafu G má právě*

$$|E(G)| - |V(G)| + 2$$

 $st\check{e}n.$

 $D\mathring{u}kaz$. Indukcí dle počtu hran G. Uvažme libovolné nakreslení G. Je-li G minimálně souvislý (strom), pak má |V(G)|-1 hran a 1 stěnu, tedy tvrzení platí. Jinak existuje hrana $e \in E(G)$ tž. G-e je souvislý. Z indukčního předpokladu má odpovídající nakreslení G-e právě |E(G-e)|-|V(G-e)|+2=|E(G)|-|V(G)|+1 stěn, a dle Lemma 3 má G o jednu stěnu víc.

Obecněji, má-li multigraf G c komponent, pak jeho nakreslení má |E(G)| - |V(G)| + c + 1 stěn.

Hranice každé stěny nakreslení multigrafu G odpovídá sjednocení uzavřených tahů v G (právě jednoho tahu, je-li G souvislý). Občas se takovému tahu ohraničujícímu stěnu také říká stěna. Součet délek těchto tahů je délka stěny.

Multigrafy také můžeme kreslit na sféru (povrch koule). To je ekvivalentní: položme si kouli na rovinu a na severní pól (který BÚNO neleží v nakreslení) dejme žárovku. "Stín" multigrafu nakresleného na sféře dává rovinné nakreslení, a naopak.

Důsledek 7. Nechť f je stěna nakreslení multigrafu G ohraničená tahem W. Pak existuje nakreslení G' multigrafu G ve kterém jsou stěny ohraničené stejnými tahy jako v nakreslení G a vnější stěna nakreslení G' je ohraničená tahem W.

 $D\mathring{u}kaz$. Promítneme nakreslení G na sféru, tu pootočíme tak, aby severní pól ležel uvnitř stěny odpovídající f, a promítneme zpět do roviny.

Příklad 2 (Platónská tělesa). Platónské těleso je pravidelný konvexní mnohostěn v \mathbb{R}^3 , tj. takový, že každá jeho stěna, hrana či vrchol se dají převést na libovolnou jinou nějakou symetrií tělesa. Uvažujme libovolné platónské těleso P, opišme si kolem něj sféru, a promítněme jeho síť (sjednocení úseček tvořících jeho hrany) na tuto sféru. Tím dostáváme nakreslení souvislého rovinného grafu G_P na sféru, kde každý vrchol má stejný stupeň $d \geq 3$ a každá stěna má stejnou délku $\ell \geq 3$. Nechť n, m, a s je počet vrcholů, hran a stěn G_P . Víme, že součet stupňů vrcholů je dvojnásobek počtu hran, tj. dn = 2m. Stejný argument provedený pro stěny dává $\ell s = 2m$. Z Eulerovy formule máme m + 2 = n + s. Dosazením n = 2m/d a $s = 2m/\ell$ dostáváme

$$\frac{2m}{d} + \frac{2m}{\ell} = m+2$$
$$\frac{2}{d} + \frac{2}{\ell} = 1 + \frac{2}{m} > 1$$

To je možné pouze $když\ d=3\ a\ \ell \leq 5$, nebo $d\in\{4,5\}\ a\ \ell=3$. Máme tedy následující možnosti $(m,\ n\ a\ s\ je\ dopočítáno\ dle\ výše\ uvedených\ vzorců)$:

d	ℓ	s	n	\overline{m}	$t\check{e}leso$
3	3	4	4	4	$\check{c}ty\check{r}st\check{e}n$
3	4	6	8	12	krychle
3	5	12	20	<i>30</i>	$dvan cute{a}ctist en n$
4	3	8	6	12	$osmist \v{e}n$
5	3	20	12	30	$dvacetist \v{e}n$

Žádná jiná platónská tělesa neexistují.

Uvažme nakreslení multigrafu G do roviny. Nakresleme do každé stěny vrchol a pro každou hranu $e \in E(G)$ spojme vrcholy v incidentních stěnách hranou protínající e. Tím dostáváme <u>duální</u> nakreslení multigrafu G^* . Poznámka: I když je G jednoduchý graf, G^* může mít smyčky či násobné hrany (např. duál ke stromu T je multigraf s |E(T)| smyčkami).

Pozorování 8. Nechť nakreslení G má s stěn. Pak nakreslení G^* má s vrcholů a |E(G)| hran, a jestliže G je souvislý, pak G^* má |V(G)| stěn. Multigraf G^* je vždy souvislý. Jestliže G je souvislý, pak $(G^*)^* = G$.

Příklad 3. Osmistěn je duál krychle. Dvacetistěn je duál dvanáctistěnu. Čtyřstěn je svůj vlastní duál.

Lemma 9. Nechť G je jednoduchý souvislý graf a G není strom. Je-li G rovinný, pak

$$|E(G)| < 3|V(G)| - 6.$$

Jestliže G navíc neobsahuje trojúhelník (cyklus délky 3), pak

$$|E(G)| \le 2|V(G)| - 4.$$

 $D\mathring{u}kaz$. Nechť s je počet stěn libovolného nakreslení G a nechť ℓ je délka nejkratší stěny v tomto nakreslení; součet délek stěn je 2|E(G)|, a proto $\ell s \leq 2|E(G)|$. Z Eulerovy formule

$$|E(G)| + 2 = |V(G)| + s \le |V(G)| + \frac{2|E(G)|}{\ell},$$

a tedy

$$|E(G)| \le \frac{|V(G)| - 2}{1 - 2/\ell}.$$

Jelikož G není strom, dle Lemma 3 má alespoň dvě stěny, a dle Lemma 4 hranice každé z jeho stěn obsahuje kružnici. Proto $\ell \geq 3$, a když G neobsahuje trojúhelník, tak $\ell \geq 4$; to nám dává požadované nerovnosti.

Důsledek 10. Jednoduchý rovinný graf má průměrný stupeň menší než 6. Jednoduchý rovinný graf bez trojúhelníků má průměrný stupeň menší než 4.

Příklad 4. Grafy K_5 a $K_{3,3}$ nejsou rovinné.

<u>Podrozdělení grafu</u> vznikne nahrazením některých jeho hran cestami se stejnými konci. Zjevně graf je rovinný, právě když libovolné jeho podrozdělení je rovinné. Říkáme, že G <u>obsahuje</u> podrozdělení H, jestliže nějaký podgraf G je roven podrozdělení H.

Pozorování 11. Jestliže G obsahuje podrozdělení nerovinného grafu, pak G není rovinný.

Věta 12 (Kuratovský). *Graf G je rovinný, právě když neobsahuje podrozdělení* K_5 ani $K_{3,3}$.