Avaliação: 27 de março

$$F(x) = \operatorname{sen}(x^2) + 1.02 - e^{-x}$$

- (a) Escrevam um programa que, usando aquele método, calcule um valor aproximado da raiz de F(x)=0 que pertence a um intervalo I=[a,b], com erro absoluto estimado inferior a ϵ dado e o número de iterações que foi necessário efetuar.
- (b) Separem as raízes reais de F(x)=0 e determinem um intervalo I de amplitude 10^{-1} que contenha uma delas.
- (c) Mostrem que as condições de aplicabilidade do método são satisfeitas naquele intervalo.
- (d) Usem o vosso programa para calcular um valor aproximado daquela raiz com erro absoluto inferior a 5×10^{-12} .
- (e) Quantas iterações deste método teriam de efetuar para calcular aquela raiz com erro absoluto majorado inferior a 5×10^{-14} , partindo do intervalo inicial?
- 2. Escrevam agora a equação F(x)=0 numa forma equivalente x=g(x).
 - (a) Escrevam um programa que, usando o método iterativo simples com a função g(x) e dados x_0 e ϵ , calcule um valor aproximado da raiz de F(x)=0 com erro absoluto estimado inferior a ϵ e o número de iterações que foi necessário efetuar.
 - (b) **Sem verificar** se as condições de aplicabilidade do método iterativo simples são satisfeitas, apliquem este método para tentar resolver a questão 1.(c) a partir do valor de x_0 usado para arranque do método de Newton e:
 - i. no caso de obterem uma sucessão convergente para a raiz, comparem e justifiquem os resultados obtidos usando os dois métodos.
 - ii. no caso de não encontrarem aquela raiz expliquem o que aconteceu.

Avaliação: 27 de março

$$F(x) = x^3 - 3x^2 2^{-x} + 3x4^{-x} - 8^{-x}$$

- (a) Escrevam um programa que, usando aquele método, calcule um valor aproximado da raiz de F(x)=0 que pertence a um intervalo I=[a,b], com erro absoluto estimado inferior a ϵ dado e o número de iterações que foi necessário efetuar.
- (b) Separem as raízes reais de F(x)=0 e determinem um intervalo I de amplitude 10^{-1} que contenha uma delas.
- (c) Mostrem que as condições de aplicabilidade do método são satisfeitas naquele intervalo.
- (d) Usem o vosso programa para calcular um valor aproximado daquela raiz com erro absoluto inferior a 5×10^{-12} .
- (e) Quantas iterações deste método teriam de efetuar para calcular aquela raiz com erro absoluto majorado inferior a 5×10^{-14} , partindo do intervalo inicial?
- 2. Escrevam agora a equação F(x)=0 numa forma equivalente x=g(x).
 - (a) Escrevam um programa que, usando o método iterativo simples com a função g(x) e dados x_0 e ϵ , calcule um valor aproximado da raiz de F(x)=0 com erro absoluto estimado inferior a ϵ e o número de iterações que foi necessário efetuar.
 - (b) **Sem verificar** se as condições de aplicabilidade do método iterativo simples são satisfeitas, apliquem este método para tentar resolver a questão 1.(c) a partir do valor de x_0 usado para arranque do método de Newton e:
 - i. no caso de obterem uma sucessão convergente para a raiz, comparem e justifiquem os resultados obtidos usando os dois métodos.
 - ii. no caso de não encontrarem aquela raiz expliquem o que aconteceu.

Avaliação: 27 de março

$$F(x) = 4x + x(\cos(x/2) + \sin(x))^{2} - 4$$

- (a) Escrevam um programa que, usando aquele método, calcule um valor aproximado da raiz de F(x)=0 que pertence a um intervalo I=[a,b], com erro absoluto estimado inferior a ϵ dado e o número de iterações que foi necessário efetuar.
- (b) Separem as raízes reais de F(x)=0 e determinem um intervalo I de amplitude 10^{-1} que contenha uma delas.
- (c) Mostrem que as condições de aplicabilidade do método são satisfeitas naquele intervalo.
- (d) Usem o vosso programa para calcular um valor aproximado daquela raiz com erro absoluto inferior a 5×10^{-12} .
- (e) Quantas iterações deste método teriam de efetuar para calcular aquela raiz com erro absoluto majorado inferior a 5×10^{-14} , partindo do intervalo inicial?
- 2. Escrevam agora a equação F(x)=0 numa forma equivalente x=g(x).
 - (a) Escrevam um programa que, usando o método iterativo simples com a função g(x) e dados x_0 e ϵ , calcule um valor aproximado da raiz de F(x)=0 com erro absoluto estimado inferior a ϵ e o número de iterações que foi necessário efetuar.
 - (b) **Sem verificar** se as condições de aplicabilidade do método iterativo simples são satisfeitas, apliquem este método para tentar resolver a questão 1.(c) a partir do valor de x_0 usado para arranque do método de Newton e:
 - i. no caso de obterem uma sucessão convergente para a raiz, comparem e justifiquem os resultados obtidos usando os dois métodos.
 - ii. no caso de não encontrarem aquela raiz expliquem o que aconteceu.

Avaliação: 27 de março

$$F(x) = \frac{1}{x} - \operatorname{sen}(x) + 1$$

- (a) Escrevam um programa que, usando aquele método, calcule um valor aproximado da raiz de F(x)=0 que pertence a um intervalo I=[a,b], com erro absoluto estimado inferior a ϵ dado e o número de iterações que foi necessário efetuar.
- (b) Separem as raízes reais de F(x)=0 e determinem um intervalo I de amplitude 10^{-1} que contenha uma delas.
- (c) Mostrem que as condições de aplicabilidade do método são satisfeitas naquele intervalo.
- (d) Usem o vosso programa para calcular um valor aproximado daquela raiz com erro absoluto inferior a 5×10^{-12} .
- (e) Quantas iterações deste método teriam de efetuar para calcular aquela raiz com erro absoluto majorado inferior a 5×10^{-14} , partindo do intervalo inicial?
- 2. Escrevam agora a equação F(x)=0 numa forma equivalente x=g(x).
 - (a) Escrevam um programa que, usando o método iterativo simples com a função g(x) e dados x_0 e ϵ , calcule um valor aproximado da raiz de F(x)=0 com erro absoluto estimado inferior a ϵ e o número de iterações que foi necessário efetuar.
 - (b) **Sem verificar** se as condições de aplicabilidade do método iterativo simples são satisfeitas, apliquem este método para tentar resolver a questão 1.(c) a partir do valor de x_0 usado para arranque do método de Newton e:
 - i. no caso de obterem uma sucessão convergente para a raiz, comparem e justifiquem os resultados obtidos usando os dois métodos.
 - ii. no caso de não encontrarem aquela raiz expliquem o que aconteceu.

Avaliação: 27 de março

$$F(x) = \sin(10x) - x - 0.1$$

- (a) Escrevam um programa que, usando aquele método, calcule um valor aproximado da raiz de F(x)=0 que pertence a um intervalo I=[a,b], com erro absoluto estimado inferior a ϵ dado e o número de iterações que foi necessário efetuar.
- (b) Separem as raízes reais de F(x)=0 e determinem um intervalo I de amplitude 10^{-1} que contenha uma delas.
- (c) Mostrem que as condições de aplicabilidade do método são satisfeitas naquele intervalo.
- (d) Usem o vosso programa para calcular um valor aproximado daquela raiz com erro absoluto inferior a 5×10^{-12} .
- (e) Quantas iterações deste método teriam de efetuar para calcular aquela raiz com erro absoluto majorado inferior a 5×10^{-14} , partindo do intervalo inicial?
- 2. Escrevam agora a equação F(x)=0 numa forma equivalente x=g(x).
 - (a) Escrevam um programa que, usando o método iterativo simples com a função g(x) e dados x_0 e ϵ , calcule um valor aproximado da raiz de F(x)=0 com erro absoluto estimado inferior a ϵ e o número de iterações que foi necessário efetuar.
 - (b) **Sem verificar** se as condições de aplicabilidade do método iterativo simples são satisfeitas, apliquem este método para tentar resolver a questão 1.(c) a partir do valor de x_0 usado para arranque do método de Newton e:
 - i. no caso de obterem uma sucessão convergente para a raiz, comparem e justifiquem os resultados obtidos usando os dois métodos.
 - ii. no caso de não encontrarem aquela raiz expliquem o que aconteceu.