Greedy Algorithms

The Knapsack Problem

The classic Knapsack problem is:

A thief breaks into a store and wants to fill his knapsack of capacity K with goods of as much value as possible.

Decision version: Does there exist a collection of items that fits into his knapsack and whose total value is >= W?

Knapsack problem

There are two versions of the problem:

- 1. "0-1 knapsack problem"
 - Items are indivisible; you either take an item or not. Some special instances can be solved with dynamic programming
- 2. "Fractional knapsack problem"
 - Items are divisible: you can take any fraction of an item

0-1 Knapsack problem

1. 0-1 Knapsack Problem:

A thief robbing a store finds n items.

ith item: worth vi dollars

w_i pounds

W, w_i, v_i are integers.

He can carry at most W pounds.

0-1 Knapsack problem

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value b_i (all w_i and W are integer values)
- Problem: How to pack the knapsack to achieve maximum total value of packed items?

0-1 Knapsack problem: bruteforce approach

A straightforward algorithm:

- Since there are n items, there are 2ⁿ possible combinations of items.
- We go through all combinations and find the one with maximum value and with total weight less or equal to W
- Running time will be O(2ⁿ)

0-1 Knapsack problem

- Problem, in other words, is to find $\max \sum_{i \in T} b_i \text{ subject to } \sum_{i \in T} w_i \leq W$
- ◆ The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.

Knapsack Problems

2. Fractional Knapsack Problem:

A thief robbing a store finds n items.

ith item: worth v_i dollars w_i pounds

W, w_i, v_i are integers.

He can carry at most W pounds.

He can take fractions of items.

Knapsack Problems

Both problems exhibit the optimal-substructure property:

Consider the most valuable load that weighs at most W pounds.

If ith item is removed from his load,

the remaining load must be the most valuable load weighting at most W-w, that he can take from the n-1 original items excluding i.

(most expensive)

=> Can be solved by dynamic programming

Knapsack Problems

Dynamic Programming Solution

Example: Fractional Knapsack Problem

Suppose there are totally n = 100 pounds of metal dust:

30 pounds Gold dust: each pound \$10000

20 pounds Silver dust; each pound \$2000

50 pounds Copper dust; each pound \$500

Then, the most valuable way to fill a capacity of W pounds

- = The most valuable way among the followings:
 - (1) take 1 pound of gold + the most valuable way to fill W-1 pounds from 29 pounds of gold. 20 pounds of silver, 50 pounds of copper
 - (2) take 1 pound of silver + the most valuable way to fill W-1 pounds from 30 pounds of gold, 19 pounds of silver, 50 pounds of copper
 - (3) take 1 pound copper + the most valuable way to fill pounds from pounds of gold, pounds of silver, pounds of copper

Knapsack Problems

Example: 0-1 Knapsack Problem

Suppose there are n=100 ingots:

30 Gold bars: each \$10000. 8 pounds (most expensive)

20 Silver bars: each \$2000, 3 pound per piece 50 Copper bars : each \$500, 5 pound per piece

Then, the most valuable load for to fill W pounds

= The most valuable way among the followings:

- (1) take 1 gold bar + the most valuable way to fill W-8 pounds from 29 gold bars, 20 silver bars and 50 copper bars
- (2) take 1 silver bar + the most valuable way to fill W-3 pounds from 30 gold bars, 19 silver bars and 50 copper bars
- (3) take 1 copper ingot + the most valuable way to fill W-5 pounds from 30 gold bars, 20 silver bars and 49 copper bars

Knapsack Problems

By Greedy Strategy

Both problems are similar. But Fractional Knapsack Problem can be solved in a greedy strategy.

- Step 1. Compute the value per pound for each item
 - Eg. gold dust: \$10000 per pound (most expensive) Silver dust: \$2000 per pound Copper dust: \$500 per pound
- Step 2. Take as much as possible of the most expensive (ie. Gold dust)
- Step 3. If the supply of that item is exhausted (ie. no more gold) and he can still carry more, he takes as much as possible of the item that is next most expensive and so forth until he can't carry any

Greedy Algorithm for Fractional Knapsack problem

- Fractional knapsack can be solvable by the greedy strategy
 - Compute the value per pound v_i/w_i for each item
 - Obeying a greedy strategy, take as much as possible of the item with the greatest value per pound.
 - If the supply of that item is exhausted and there is still more room, take as much as possible of the item with the next value per pound, and so forth until there is no more room
 - $O(n \lg n)$ (we need to sort the items by value per pound)

item 1 2 30 50 100 \$120 knapsack

O-1 knapsack is harder

- 0-1 knapsack cannot be solved by the greedy strategy
 - Unable to fill the knapsack to capacity, and the empty space lowers the effective value per pound of the packing
 - Dynamic Programming

- At each step, we quickly make a choice that currently looks best.
 - -- A local optimal (greedy) choice.
- Greedy choice can be made first before solving further sub-problems.
- Top-down approach
- Usually faster, simpler

Greedy Algorithms

Techniques for solving optimization problems:

- 1. Dynamic Programming
- 2. Greedy Algorithms ("Greedy Strategy")

For some optimization problems

- Greedy Strategy is simpler and more efficient.
- Dynamic Programming is "overkill"

Activity-Selection Problem

For a set of proposed activities that wish to use a lecture hall, select a maximum-size subset of "compatible activities".

- Set of activities: S={a₁,a₂,...a_n}
- Duration of activity a: [start_time, finish_time,]
- Activities sorted in increasing order of finish time:

<u>i</u>	1	2	3	4	5	6	7	8	9	10	11
start_time _i	1	3	0	5	3	5	6	8	8	2	12
finish_time _i	4	5	6	7	8	9	10	11	12	13	14

Activity-Selection Problem

Dynamic Programming Solution (Step 1)

Step 1. Characterize the structure of an optimal solution.

S:i	1	2	3	4	5	6	7	8	9	10	11(=r	1)
start_time _i	1	3	0	5	3	5	6	8	8	2	12	Ī
finish time	4	5	6	7	8	9	10	11	12	13	14	

Let S_{ii} be the set of activities that

start after a_i finishes and

finish before a_j starts.

eg. $S_{2,11}$ =

Definition:

 $S_{ij} = \{a_k \in S: finish_time_i \le start_time_k < finish_time_k \le start_time_j\}$

Activity-Selection Problem

i 1 2 3 4 5 6 7 8 9 10 11 start_time, 1 3 0 5 3 5 6 8 8 2 12 finish_time, 4 5 6 7 8 9 10 11 12 13 14

Compatible activities:

 $\{a_3, a_9, a_{11}\},\$ $\{a_1, a_4, a_8, a_{11}\},\$ $\{a_2, a_4, a_9, a_{11}\}$

Dynamic Programming Solution (Step 1)

Add fictitious activities: a_0 and a_{n+1} :

S: i 0 1 2 3 4 5 6 7 8 9 10 11(=n) 12 start_time, 1 3 0 5 3 5 6 8 8 2 12 ∞ finish_time, 0 4 5 6 7 8 9 10 11 12 13 14

ie. $S_{0,n+1}$ = $\{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}\}$ - $S_{0,n+1}$

Note: If $i \ge j$ then $S_{i,j} = \emptyset$

Activity-Selection Problem Greedy Strategy Solution eg. $S_{2,11} = \{a_4, a_6, a_7, a_8, a_9\}$ $c(i,j) = \begin{cases} \text{Max}_{i < k < j} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{i,j} \neq \emptyset \end{cases}$ Consider any nonempty sub-problem S_{ii}, and let a_m be the activity in S_{ii} with the earliest finish time. Then. 1. a_m is used in some maximum-Among $\{a_4, a_6, a_7, a_8, a_9\}$, a_4 will finish earliest size subset of compatible activities of Sii. 1. A₄ is used in the solution 2. The sub-problem S_{i,m} is empty, 2. After choosing A_4 , there are 2 so that choosing a_m leaves the subproblems: $S_{2,4}$ and $S_{4,11}$. sub-problem $S_{m,i}$ as the only But S_{24} is empty. Only $S_{4,11}$ one that may be non-empty. remains as a subproblem.

Activity-Selection Problem

Dynamic Programming Solution (Step 2)

Step 2. Recursively define an optimal solution

Let c[i,j] = number of activities in a maximum-size subset of compatible activities in S_{i,i}.

If i >= j, then $S_{i,j} = \emptyset$, ie. c[i,j] = 0.

$$c(i,j) = \begin{cases} 0 & \text{if } S_{i,j} = \emptyset \\ \max_{i < k < i} \left\{ c[i,k] + c[k,j] + 1 \right\} & \text{if } S_{i,j} \neq \emptyset \end{cases}$$

- Step 3. Compute the value of an optimal solution in a bottom-up fashion
- Step 4. Construct an optimal solution from computed information.

- s→ start time
- f→finish time
- k→ subproblem to solve
- n→ size of the original problem

	S (Set of activities)												
i	1	2	3	4	5	6	7	8	9	10	11		
$\frac{\overline{S_i}}{f_i}$	1	3	0	5	3	5	6 10	8	8	2	12		
f_i	4	5	6	7	9	9	10	11	12	14	16		

	R	ec	ur	si	ve	-Ac	cti	vit	y-S	ele	cto	r(s	,f,0,	11)	
			_	i S_i	1	2	3	<u>4</u> 5	5	6 5	7	8	9	10	1:
k	s_k	f_k		f_i	4	5	6	7	9	9	10	11	12	14	10
0	-	0		<i>a</i> ₀						1					
)	-	0		<i>a</i> ₀	1							1			-

	F	Re	cu	rsi	ve	-Ac	ctiv	/ity	/-S	ele	cto	r(s	,f,0,	11)	
k	s_k	f_k		$\frac{i}{s_i}$ f_i	1 1 4	3 5	3 0 6	5 7	5 3 9	6 5 9	7 6 10	8 8 11	9 8 12	10 2 14	11 12 16
0	-	0		<u>a</u> ₀											
1	1	4		<u>a</u> ₀	1	m	· i	<u> </u>		Recu	RSIVE-A	CTIVITY-S	SELECTOR	(s, f, 0, 1	1)

			i	1	2	3	4	5	6	7	8	9	10	11
			f_i	$\begin{bmatrix} 1 \\ A \end{bmatrix}$	3 5	0 6	5 7	3	5 9	6 10	8 11	8 12	2 14	12 16
5	3	9	<i>71</i>		$\frac{1}{a_1}$	<u></u>		a_5	minim			ELECTOR(,,,,,,,,,,
6	5	9			a_1	 		a_4	<i>a</i> ₆					
7	6	10			a_1			a_4		<i>a</i> ₇				1 1 1 1 1 1 1 1 1
8	8	11			a_1	1		a_4	-	7	a_8			

• The resulting set of selected activities is={a₁, a₄, a₈,a₁₁}

- Recursive-Activity-Selector=O(n)
- · Since each activity is examined exactly once

Activity-Selection Problem Greedy Strategy Solution

For both Recursive-Activity-Selector and Iterative-Activity-Selector,

Running times are $\Theta(n)$

Reason: each a_m are examined once.

