Stabilitätsanalyse Vorlesung vom 27.11.15

Stabilität:

Motivation des Stabilitäts- und Algorithmusbegriffs. Abgrenzung zur Kondition.

Relative Stabilität von Algorithmen zur Funktionsauswertung.

Definition und Beispiele.

Gesamtfehlerabschätzungen:

Satz 7.5: Der Gesamtfehler lässt sich abschätzen durch die Summe von

Eingabefehler, verstärkt durch die Kondition, und

Auswertungsfehler, verstärkt durch die Stabilität.

Stabilitätsabschätzungen:

Kondition der Elementarfunktionen und Stabilität:

Grundrechenarten (Satz 7.9) und Elementarfunktionen (Satz 7.8). Beispiele.

Schlecht konditionierte Elementarfunktionen vermeiden!

Unvermeidbare, schlecht konditionierte Elementarfunktionen an den Anfang!

Das Polynom-Desaster in MATLAB: Grobe Stabilitätsanalyse.

Beispiel: Auswertung eines Polynoms mit Matlab

```
Berechne das Polynom f(x) = x^3 + 12a^2x - 6ax^2 - 8a^3 mit a = 4 999 999 an der Stelle x_0 = 10 000 000 . 
 >> a = 4999999; 
 >> x = 10000000; 
 >> f = x^3 + 12*a^2*x - 6*a*x^2 - 8*a^3  
 f = 393216
```

Beispiel: Auswertung eines Polynoms mit Matlab

```
Berechne das Polynom f(x) = x^3 + 12a^2x - 6ax^2 - 8a^3
mit a = 4 999 999 an der Stelle x_0 = 10 000 000 .
>> a = 4999999;
>> x = 10000000;
\Rightarrow f = x^3 + 12*a^2*x - 6*a*x^2 - 8*a^3
f =
    393216
>> f = (x-2*a)^3
f =
    8
```

Beispiel: Auswertung eines Polynoms mit Matlab

```
Berechne das Polynom f(x) = x^3 + 12a^2x - 6ax^2 - 8a^3
mit a = 4 999 999 an der Stelle x_0 = 10 000 000 .
>> a = 49999999;
>> x = 10000000;
\Rightarrow f = x^3 + 12*a^2*x - 6*a*x^2 - 8*a^3
f =
    393216
>> f = (x-2*a)^3
f =
    8
```

Was ist hier schiefgelaufen?

Algorithmus 1:

$$f(x_0) = x_0^3 + 12a^2x_0 - 6ax_0^2 - 8a^3$$

$$= (x_0^3 + 12a^2x_0) - (6ax_0^2 + 8a^3) = g_1(x_0) - g_2(x_0)$$

$$g_1(x) = x^3 + 12a^2x, \qquad g_2(x_0) = 6ax^2 + 8a^3$$

Algorithmus 1:

$$f(x_0) = x_0^3 + 12a^2x_0 - 6ax_0^2 - 8a^3$$

$$= (x_0^3 + 12a^2x_0) - (6ax_0^2 + 8a^3) = g_1(x_0) - g_2(x_0)$$

$$g_1(x) = x^3 + 12a^2x, \qquad g_2(x_0) = 6ax^2 + 8a^3$$

Stabilitätsschranke: $\sigma_g \leq \frac{|g_1(x_0)| + |g_2(x_0)|}{|g_1(x_0) - g_2(x_0)|} \approx 10^{21}$

Algorithmus 1:

$$f(x_0) = x_0^3 + 12a^2x_0 - 6ax_0^2 - 8a^3$$

$$= (x_0^3 + 12a^2x_0) - (6ax_0^2 + 8a^3) = g_1(x_0) - g_2(x_0)$$

$$g_1(x) = x^3 + 12a^2x \;, \qquad g_2(x_0) = 6ax^2 + 8a^3$$
Stabilitätsschranke: $\sigma_g \leq \frac{|g_1(x_0)| + |g_2(x_0)|}{|g_1(x_0) - g_2(x_0)|} \approx 10^{21}$

Algorithmus 2:

$$f(x_0) = (x_0 - 2a)^3 = h_2 \circ h_1(x_0)$$
, $h_1(x_0) = x_0 - 2a$, $h_2(y_1) = y_1^3$

Algorithmus 1:

$$f(x_0) = x_0^3 + 12a^2x_0 - 6ax_0^2 - 8a^3$$

$$= (x_0^3 + 12a^2x_0) - (6ax_0^2 + 8a^3) = g_1(x_0) - g_2(x_0)$$

$$g_1(x) = x^3 + 12a^2x, \qquad g_2(x_0) = 6ax^2 + 8a^3$$

Stabilitätsschranke: $\sigma_g \leq \frac{|g_1(x_0)| + |g_2(x_0)|}{|g_1(x_0) - g_2(x_0)|} \approx 10^{21}$

Algorithmus 2:

$$f(x_0) = (x_0 - 2a)^3 = h_2 \circ h_1(x_0)$$
, $h_1(x_0) = x_0 - 2a$, $h_2(y_1) = y_1^3$

Stabilitätsschranke: $\sigma_h \leq 1 + \kappa_{h_2} = 1 + 3 = 4$

Algorithmus 1:

$$f(x_0) = x_0^3 + 12a^2x_0 - 6ax_0^2 - 8a^3$$

$$= (x_0^3 + 12a^2x_0) - (6ax_0^2 + 8a^3) = g_1(x_0) - g_2(x_0)$$

$$g_1(x) = x^3 + 12a^2x, \qquad g_2(x_0) = 6ax^2 + 8a^3$$

Stabilitätsschranke: $\sigma_g \leq \frac{|g_1(x_0)| + |g_2(x_0)|}{|g_1(x_0) - g_2(x_0)|} \approx 10^{21}$

Algorithmus 2:

$$f(x_0) = (x_0 - 2a)^3 = h_2 \circ h_1(x_0)$$
, $h_1(x_0) = x_0 - 2a$, $h_2(y_1) = y_1^3$

Stabilitätsschranke: $\sigma_h \leq 1 + \kappa_{h_2} = 1 + 3 = 4$

tatsächliche Fehlerverstärkung: $|8-393216|/(|8|eps) \approx 2.2 \cdot 10^{20}$

Kompliziertere Algorithmen

Kompliziertere Algorithmen

Systematische Analyse des Gesamtfehlers

Beispiel

Algorithmus 1: $F_1(x_1, x_2) = (x_1 - x_2)^2$

$$F_1(x_1, x_2) = f_2(f_1(x_1, x_2))$$

Algorithmus 2: $F_1(x_1, x_2) = (x_1^2 - 2(x_1x_2)) + x_2^2$

$$F_2(x_1, x_2) = f_5(f_1(f_2(x_1), f_4(f_3(x_1, x_2))), f_2(x_2))$$

$$f_1(x,y) = x-y$$
, $f_2(x) = x^2$, $f_3(x,y) = xy$, $f_4(x) = 2x$, $f_5(x,y) = x+y$

Auswertungsbäume

$$F_1(x_1, x_2) = f_2(f_1(x_1, x_2)), \quad f_1(x, y) = x - y, \quad f_2(x) = x^2$$

$$F_2(x_1, x_2) = f_5\Big(f_1\Big(f_2(x_1), f_4(f_3(x_1, x_2))\Big), f_2(x_2)\Big),$$

$$f_3(x, y) = xy, \quad f_4(x) = 2x, \quad f_5(x, y) = x + y$$

Teilbäume

Auswertungsbaum: gerichteter Graph β (Knoten, gerichtete Kanten)

Anzahl der Knoten: $\#\beta$

Wurzel: nur eingehende Kanten, Blätter nur ausgehende Kante

Auswertungsbaum: gerichteter Graph β (Knoten, gerichtete Kanten)

Anzahl der Knoten: $\#\beta$

Wurzel: nur eingehende Kanten, Blätter nur ausgehende Kante

Teilbäume β_i entstehen Wegnahme der zur Wurzel führenden Kanten

Auswertungsbaum: gerichteter Graph β (Knoten, gerichtete Kanten)

Anzahl der Knoten: $\#\beta$

Wurzel: nur eingehende Kanten, Blätter nur ausgehende Kante

Teilbäume β_i entstehen Wegnahme der zur Wurzel führenden Kanten

Zerlegung in Teilbäume: $\beta = [\beta_1, \dots, \beta_m],$

Gesamtzahl von Knoten: $\#\beta = 1 + \#\beta_1 + \ldots + \#\beta_m$

Auswertungsbaum: gerichteter Graph β (Knoten, gerichtete Kanten)

Anzahl der Knoten: $\#\beta$

Wurzel: nur eingehende Kanten, Blätter nur ausgehende Kante

Teilbäume β_i entstehen Wegnahme der zur Wurzel führenden Kanten

Zerlegung in Teilbäume: $\beta = [\beta_1, \dots, \beta_m],$

Gesamtzahl von Knoten: $\#\beta = 1 + \#\beta_1 + \ldots + \#\beta_m$

trivialer Baum: nur einen Knoten (seine Wurzel):

$$\beta = [], \text{ mit } \#\beta = 1.$$

$$\beta_{F_1} = [\beta_1], \quad \beta_1 = [\beta_{0,1}, \beta_{0,2}]$$

Die Blätter $\beta_{0,1}=\beta_{0,2}=[]$ stehen für Eingabewerten x_k in $\beta_{0,k}$, k=1,2.

$$\beta_{F_2} = [\beta_e, \beta_f]$$

$$\beta_e = [\beta_a, \beta_b], \quad \beta_f = [\beta_{0,i}]$$

$$\beta_a = [\beta_{0,ii}], \quad \beta_b = [\beta_c], \quad \beta_c = [\beta_{0,iii}, \beta_{0,iv}]$$

Blätter $\beta_{0,ii}=[]$, $\beta_{0,iii}=[]$ und $\beta_{0,i}=[]$, $\beta_{0,iv}=[]$ stehen für Eingaben x_1 und x_2 .

Zwischenergebnisse mittels Auswertungsbäumen

Zuordnung von Elementarfunktionen und Eingabedaten:

 ${\sf Eingabewert} \leftrightarrow {\sf Blatt} \qquad {\sf Elementarfunktion} \leftrightarrow {\sf Knoten}$

Zwischenergebnisse für jeden Teilbaum β :

Wurzel: Zwischenfunktion f^{β} Zwischenergebnis: z^{β}

$$z^{\beta} = \begin{cases} \text{ Eingabewert } & \text{falls } \#\beta = 1 \\ f^{\beta}(z^{\beta_1}, \dots, z^{\beta_m}) & \text{falls } \#\beta = m+1 > 1, \ \beta = [\beta_1, \dots, \beta_m] \end{cases}$$

$$\beta_{F_1} = [\beta_1], \quad \beta_1 = [\beta_{0,1}, \beta_{0,2}]$$

Die Blätter $\beta_{0,1}=\beta_{0,2}=[]$ stehen für Eingabewerten x_k in $\beta_{0,k}$, k=1,2.

$$eta_1 = [eta_{0,1}, eta_{0,2}]: \qquad z^{eta_{0,1}} = x_1, \ z^{eta_{0,2}} = x_2, \quad f^{eta_1} = f_1, \ z^{eta_1} = f_1(z^{eta_{0,1}}, z^{eta_{0,2}})$$
 $eta_{F_1} = [eta_1]: \qquad \qquad f^{eta_{F_1}} = f_2, \quad z^{eta_{F_1}} = f_2(z^{eta_1})$

$$\beta_a = [\beta_{0,ii}], \quad \beta_b = [\beta_c], \quad \beta_c = [\beta_{0,iii}, \beta_{0,iv}]:$$

$$z^{eta_a} = f_2(x_1), \;\; z^{eta_b} = f_4(z^{eta_c}), \;\; z^{eta_c} = f_3(x_1, x_2)$$

$$eta_e = [eta_a, eta_b], \quad eta_f = [eta_d]: \quad z^{eta_e} = f_1(z^{eta_a}, z^{eta_b}), \quad z^{eta_f} = f_2(x_2)$$

$$eta_{F_2} = [eta_e,eta_f]: \qquad \qquad z^{eta_{F_2}} = f_5(z^{eta_e},z^{eta_f})$$

Rekursive Stabilitätsabschätzung

Auswirkung von Störungen der Elementarfunktionen auf das Ergebnis:

Rekursive Stabilitätsabschätzung

Satz 7.6: $h: I \mapsto I_g \subset \mathbb{R}, g: I_g \mapsto \mathbb{R}, \quad f = g \circ h: I \mapsto \mathbb{R}, \quad x_0 \in I$

Algorithmus zur Auswertung von $h(x_0)$ mit Stabilität σ_h

$$h(x_0) = h_n \circ \cdots \circ h_1(x_0)$$

Algorithmus zur Auswertung von $f(x_0) = g(h(x_0))$

$$f(x_0) = g \circ h_n \circ \cdots \circ h_1(x_0)$$

Die Kondition von $g(y_0)$, $y_0 = h(x_0)$, ist κ_g .

Stabilitätsschranke:

$$\sigma_f \le 1 + \kappa_g \sigma_h$$

Rekursive Abschätzung der Fehlerverstärkung

Zwischenergebnisse:

$$z^{\beta} = \begin{cases} \text{ Eingabewert} & \text{falls} & \#\beta = 1\\ f^{\beta}(z^{\beta_1}, \dots, z^{\beta_m}) & \text{falls} & \#\beta = m + 1 > 1, \ \beta = [\beta_1, \dots, \beta_m] \end{cases}$$

Fehlerverstärkung für Teilbaum:

$$\sigma^{\beta} \leq \begin{cases} 1 & \text{falls } \#\beta = 1 \\ 1 + \kappa(f^{\beta}) \max(\sigma^{\beta_1}, \dots, \sigma^{\beta_m}) & \text{falls } \#\beta = m + 1 > 1, \\ & \text{und } \beta = [\beta_1, \dots, \beta_m] \end{cases}$$

 $\kappa(f^{\beta})$: relative Kondition der Auswertung von f^{β} in $z^{\beta_1},\ldots,z^{\beta_m}$

$$eta_1 = [eta_{0,1}, eta_{0,2}]: \qquad z^{eta_{0,1}} = x_1, \ z^{eta_{0,2}} = x_2, \quad f^{eta_1} = f_1, \ z^{eta_1} = f_1(z^{eta_{0,1}}, z^{eta_{0,2}})$$
 $eta_{F_1} = [eta_1]: \qquad \qquad f^{eta_{F_1}} = f_2, \quad z^{eta_{F_1}} = f_2(z^{eta_1})$

Eingabewerte: $x_1 = 10^{11}$, $x_2 = 10^{11} - 1$.

Eingabewerte: $x_1 = 10^{11}$, $x_2 = 10^{11} - 1$.

Zwischenergebnis: $z^{\beta_1} = f_1(z^{\beta_{0,1}}, z^{\beta_{0,2}}) = x_1 - x_2 = 1$

Eingabewerte: $x_1 = 10^{11}$, $x_2 = 10^{11} - 1$.

Zwischenergebnis: $z^{\beta_1} = f_1(z^{\beta_{0,1}}, z^{\beta_{0,2}}) = x_1 - x_2 = 1$

Zwischenfehlerverstärkung:

$$\sigma^{\beta_1} = 1 + \kappa(f^{\beta_1}) = \kappa(f_1) = 1 + \frac{|x_1| + |x_2|}{|x_1 - x_2|} = 2 \cdot 10^{11}$$

Eingabewerte: $x_1 = 10^{11}$, $x_2 = 10^{11} - 1$.

Zwischenergebnis: $z^{\beta_1} = f_1(z^{\beta_{0,1}}, z^{\beta_{0,2}}) = x_1 - x_2 = 1$

Zwischenfehlerverstärkung:

$$\sigma^{\beta_1} = 1 + \kappa(f^{\beta_1}) = \kappa(f_1) = 1 + \frac{|x_1| + |x_2|}{|x_1 - x_2|} = 2 \cdot 10^{11}$$

Endergebnis: $z^{\beta_{F_1}} = f_2(z^{\beta_1}) = 1^2 = 1$

Eingabewerte: $x_1 = 10^{11}$, $x_2 = 10^{11} - 1$.

Zwischenergebnis: $z^{\beta_1} = f_1(z^{\beta_{0,1}}, z^{\beta_{0,2}}) = x_1 - x_2 = 1$

Zwischenfehlerverstärkung:

$$\sigma^{\beta_1} = 1 + \kappa(f^{\beta_1}) = \kappa(f_1) = 1 + \frac{|x_1| + |x_2|}{|x_1 - x_2|} = 2 \cdot 10^{11}$$

Endergebnis: $z^{\beta_{F_1}} = f_2(z^{\beta_1}) = 1^2 = 1$

Gesamtfehlerverstärkung: $\sigma^{F_1}=1+\kappa(f_2)\sigma^{\beta_1}=1+2\sigma^{\beta_1}=1+4\cdot 10^{11}$

$$\frac{|F(x_1, x_2) - F_1(x_1, x_2)|}{|F(x_1, x_2)|} \le \sigma^{F_1} eps \le (1 + 4 \cdot 10^{11}) \cdot eps \approx 4 \cdot 10^{-5}$$

Kompliziertere Algorithmen

Systematische Analyse des Gesamtfehlers

Kompliziertere Algorithmen

Systematische Analyse des Gesamtfehlers kann der Computer übernehmen!

Automatische Fehleranalyse

Eingabedaten x_1, \ldots, x_n , Elementarfunktionen g_i , Ableitungen g_i'

Vergleich von Algorithmus 1 und 2

Algorithmus 1: $F_1(x_1, x_2) = (x_1 - x_2)^2$

$$F_1(x_1, x_2) = f_2(f_1(x_1, x_2))$$

Algorithmus 2: $F_1(x_1, x_2) = (x_1^2 - 2(x_1x_2)) + x_2^2$

$$F_2(x_1, x_2) = f_5(f_1(f_2(x_1), f_4(f_3(x_1, x_2))), f_2(x_2))$$

$$f_1(x,y) = x-y$$
, $f_2(x) = x^2$ $f_3(x,y) = xy$, $f_4(x) = 2x$, $f_5(x,y) = x+y$

Vergleich von Algorithmus 1 und 2

Algorithmus 1: $F_1(x_1, x_2) = (x_1 - x_2)^2$

$$F_1(x_1, x_2) = f_2(f_1(x_1, x_2))$$

Algorithmus 2: $F_1(x_1, x_2) = (x_1^2 - 2(x_1x_2)) + x_2^2$

$$F_2(x_1, x_2) = f_5(f_1(f_2(x_1), f_4(f_3(x_1, x_2))), f_2(x_2))$$

$$f_1(x,y) = x - y$$
, $f_2(x) = x^2$ $f_3(x,y) = xy$, $f_4(x) = 2x$, $f_5(x,y) = x + y$

Fehlerverstärkung:

$$\sigma^{F_1} \le 1 + 4 \cdot 10^{11} \qquad \sigma^{F_2} \le 44 \cdot 10^{22}$$

Auswertung der Summe positiver Zahlen

$$S = a_1 + a_2 + \dots + a_n, \quad a_k > 0$$

Rekursive Summation: S = a[1]; for i=2:1:m S = S + a[i]; end

Auswertung der Summe positiver Zahlen

$$S = a_1 + a_2 + \dots + a_n, \quad a_k > 0$$

Rekursive Summation: S = a[1]; for i=2:1:m S = S + a[i]; end

Rekursive Stabilitätsanalyse

$$\sigma^{\beta_{i+1}} \le 1 + \max\{\sigma^{\beta_i}, 1\} = 1 + \sigma^{\beta_i}, \quad i = 1, \dots, n-1, \qquad \sigma^{\beta_1} = 1$$

Auswertung der Summe positiver Zahlen

$$S = a_1 + a_2 + \dots + a_n, \quad a_k > 0$$

Rekursive Summation: S = a[1]; for i=2:1:m S = S + a[i]; end

Rekursive Stabilitätsanalyse

$$\sigma^{\beta_{i+1}} \le 1 + \max\{\sigma^{\beta_i}, 1\} = 1 + \sigma^{\beta_i}, \quad i = 1, \dots, n-1, \qquad \sigma^{\beta_1} = 1$$

Fehlerverstärkung bei rekursiver Summation: $\sigma_{Rek} \leq n$

Rekursive Stabilitätsanalyse

$$\sigma^{\beta_i^{(k+1)}} \le 1 + \max\{\sigma^{\beta_i^{(k)}}, \sigma^{\beta_{i+1}^{(k)}}\},$$

$$\sigma^{\beta_i^{(0)}} = 1$$

Rekursive Stabilitätsanalyse

$$\sigma^{\beta_i^{(k+1)}} \le 1 + \max\{\sigma^{\beta_i^{(k)}}, \sigma^{\beta_{i+1}^{(k)}}\}, \quad k = 1, \dots, \log_2(n), \qquad \sigma^{\beta_i^{(0)}} = 1$$

Rekursive Stabilitätsanalyse

$$\sigma^{\beta_i^{(k+1)}} \le 1 + \max\{\sigma^{\beta_i^{(k)}}, \sigma^{\beta_{i+1}^{(k)}}\}, \quad k = 1, \dots, \log_2(n), \qquad \sigma^{\beta_i^{(0)}} = 1$$

Fehlerverstärkung bei hierarchischer Summation: $\sigma_{Rek} \leq \log_2(n)$

Numerisches Beispiel

Genauigkeit: $\ell=7$ Dezimalstellen

Problem: Summation von $n_j=2^J$ Zufallszahlen $a_k\in(0,1)$, $J=1,\ldots,15$

