Julius-Maximilians-Universität Würzburg Fakultät für Mathematik und Informatik

${\bf Differential geometrie}$

Prof. Pabel

Andreas Rosenberger, Nils Wisiol andreas@rosenberger-home.de, info@nils-wisiol.de

2. Mai 2012

Inhaltsverzeichnis

U	Grundbegriffe und Bezeichnungen aus der linearen Algebra und analytischen Geometrie				
	0.1	Strukt	zuren	3	
1	ventheorie im euklidischen Raum	6			
	1.1	Grund	lbegriffe der Kurventheorie	6	
	1.2 Kurven in der euklidischen Ebene \mathbb{R}^2			14	
1.3 Kurven im euklidischen Raum \mathbb{R}^3				14	
		1.3.1	FRENET-Begleitbasis, Krümmung und Torsion	14	
		1.3.2	Approximierter Kurvenverlauf	20	
		1.3.3	Krümmungskreis und Schmiegkugel (oskulierende Kugel)	21	
2	Lite	raturhii	nweise	24	

O Grundbegriffe und Bezeichnungen aus der linearen Algebra und analytischen Geometrie

Die klassische Differentialgeometrie der Kurven und Flächen benutzt als umgebenden Raum einen n-dimensionalen, orientierten, euklidischen Raum E^n mit zugehörigem euklischem Richtungsvektorraum V^n .

0.1 Strukturen

 V^n ist mit einem Skalarprodukt $(X,Y)\mapsto \langle X,Y\rangle\in\mathbb{R}$ ausgestattet. Damit lassen sich messen:

- \bullet die Länge von Vektoren $X\colon |X| = \sqrt{\langle X, X \rangle}$
- \bullet die Orthogonalität von Vektoren $X,Y\colon X\perp Y\Leftrightarrow \langle X,Y\rangle=0$
- \bullet der Winkel zwischen zwei Vektoren $X,Y\colon\cos\angle(X,Y)=\left\langle\frac{X}{|X|},\frac{Y}{|Y|}\right\rangle$
- der Abstand von Punkten p, q: $d(p,q) = |\overrightarrow{pq}|$
- Flächeninhalte, Volumina, usw.

Ist zusätzlich eine feste Orthonormalbasis $(\mathring{e_1},...\mathring{e_n})$ (definiert durch $\langle \mathring{e_i},\mathring{e_k}\rangle = \delta_{ik}$) ausgezeichnet als positiv orientiert, erhält man eine Orientierung des Raumes und kann alle Basen in positiv und negativ orientierte einteilen.

Standard-Modell: $E^n = V^n = \mathbb{R}^n$, ausgestattet mit dem Standard-Skalarprodukt $\langle X, Y \rangle = \sum_{i=1}^n X^i Y^i$ und der (positiv orientierten) Standardbasis $\mathring{e}_1, ... \mathring{e}_n$) mit $\mathring{e}_i = (0, ..., 1, ..., 0)^T$. Dieses Standardmodell reicht bei uns meist aus: Bezüglich eines kartesischen Koordinatensystems $(0; e_1, ... e_n)$ in einem abstrakten, orientierten euklidschen Raum E^n , bestehend aus

• einem "Ursprung" ("Nullpunkt") $0 \in E^n$

• einer positiv orientierten Orthonormalbasis $(e_1, ... e_n)$ im V^n

kann man jedem Punkt und jedem Vektor eindeutig reelle Koordinaten zuordnen:

- Vektor: $X = \sum_{i=1}^{n} X^{i} e_{i} \in V^{n} \mapsto (X^{1}, ... X^{n}) \in \mathbb{R}^{n}$
- Punkt: $p = 0 + \sum_{i=1}^{n} p^{i} e_{i} \mapsto (p^{1}, ...p^{n}) \in \mathbb{R}^{n}$

Aus einem Skalarprodukt in V^n wird in Koordinaten

$$\langle X, Y \rangle = \left\langle \sum X^i e_i, \sum Y^k e_k \right\rangle = \sum_i \sum_k X^i Y^k \langle e_i, e_k \rangle = \sum_{i=1}^n X^i Y^i$$

das Standard-Skalarprodukt im \mathbb{R}^n . Man ist im Stanard-Modell angelangt. Ein Wechsel des kartesischen Koordinatensystems im E^n induziert im Koordinatenraum \mathbb{R}^n eine Bewegung

$$p \mapsto p' = Dp + t$$

bestehend aus einer eigentlichen orthogonalen Drehmatrix $D \in SO(u, \mathbb{R})$ mit det D = +1 und einem Translationsvektor $t \in \mathbb{R}^n$. In der euklidschen Differentialgeometrie werden Eigenschaften von Objekten (Kurven, Flächen, ...) untersucht, die invariant gegenüber solchen Transformationen sind, also nicht vom gewählten kartesischen Koordinatensystem abhängig sind.

Bemerkung:

In der sogenannten affinen Differentialgeometrie untersucht man Eigenschaften von Objekten, die (in Koordinaten) invariant sind gegenüber beliebigen affinen Transformationen $p \mapsto p' = Ap + t$, A regulär. Man ignoriert dort vollständig die metrische Struktur des \mathbb{R}^n . Der umgebende Raum ist dann ein affiner Punktraum (bei uns nur am Rande betrachtet).

Zum Vektorprodukt (Kreuzprodukt) im orientierten euklidischen \mathbb{R}^n : Zu je n-1 Vektoren $X_1, \ldots, X_{n-1} \in \mathbb{R}^n (n \geq 2)$ gibt es genau einen Vektor $Y \in \mathbb{R}^n$ mit den Eigenschaften

- 1. $Y \perp X_k, (k = 1, ..., n 1)$
- 2. $|Y| = a_{n-1}(X_1, \dots, X_{n-1}) = \sqrt{\det(\langle X_i, X_k \rangle)_{i=k=1,\dots,n-1}}$ = (n-1)-dimensionaler Flächeninhalt des von X_1, \dots, X_{n-1} aufgespannten n-1-dimensionalen Parallelogramms
 - = Wurzel aus der <u>Gramschen</u> Determinanten $G(X_1, \ldots, X_{n-1})$
- 3. $\det(X_1,\ldots,X_{n-1},Y) \geq 0$ (d.h. (X_1,\ldots,X_{n-1},Y) ist positive orientiert)

Bezeichnung: $Y = X_1 \times \cdots \times X_{n-1}$

Eine explizite Formel ist (mit der Standardbasis (e_1, \ldots, e_n) des \mathbb{R}^n):

$$X_{1} \times \dots \times X_{n-1} = \sum_{i=1}^{n} \det(X_{1}, \dots, X_{n-1}, e_{i}) e_{i}$$

$$= \sum_{i=1}^{n} \begin{vmatrix} X_{1}^{1} & \cdots & X_{n-1}^{1} & 0 \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & \vdots \\ X_{1}^{n} & \cdots & X_{n-1}^{n} & 0 \end{vmatrix} e_{i} = \begin{vmatrix} X_{1}^{1} & \cdots & X_{n-1}^{1} & e_{1} \\ \vdots & & \vdots & \vdots \\ X_{1}^{n} & \cdots & X_{n-1}^{n} & 0 \end{vmatrix}$$

Beispiel:

 $\underline{n=2}$

$$X = \begin{pmatrix} X^1 \\ X^2 \end{pmatrix} \Rightarrow X^x = \begin{vmatrix} X^1 & e_1 \\ X^2 & e_2 \end{vmatrix} = -X^2 e_1 + X^1 e_2 = \begin{pmatrix} -X^2 \\ X^1 \end{pmatrix}$$
$$|X^x| = a_1(X) = |X|$$

Beispiel:

 $\underline{n=3}$:

$$X \times Y = \begin{vmatrix} X^1 & Y^1 & e_1 \\ X^2 & Y^2 & e_2 \\ X^3 & Y^3 & e_3 \end{vmatrix} = (X^2Y^3 - X^3Y^2)e_1 + \dots$$

$$|X \times Y| = a_2(X, Y) = \sqrt{\det \begin{pmatrix} \langle X, X \rangle & \langle X, Y \rangle \\ \langle Y, X \rangle & \langle Y, Y \rangle \end{pmatrix}}$$

Anwendung:

Jedes Orthonormalsystem (e_1, \ldots, e_{n-1}) im \mathbb{R}^n lässt sich durch $e_n := e_1 \times \cdots \times e_{n-1}$ eindeutig zu einer positiv orientierten Orthonormalbasis (e_1, \ldots, e_n) ergänzen.

1 Lokale Kurventheorie im euklidischen Raum

1.1 Grundbegriffe der Kurventheorie

Wir betrachten zunächst (kurzzeitig) rein affingeometrische Begriffe/Invarianten.

Definition:

Ein C^r -Weg oder eine parametrisierte C^r -Kurve $(r \geq 0)$ $[C^r = r$ -mal stetig differenzierbar] im (affinen) \mathbb{R}^n ist eine C^r -Abbildung

$$c: t \in I \subset \mathbb{R} \mapsto c(t) \in \mathbb{R}^n$$

eines offenen Intervalls I in den \mathbb{R}^n .

t heißt Parameter, die Bildmenge $c[I] \subset \mathbb{R}^n$ die Spur des Weges.

Ein C^r -Weg $(r \ge 1)$ heißt <u>regulär</u>, wenn überall der <u>Tangentenvektor</u> $\dot{c}(t) = \frac{\mathrm{d}\,c}{\mathrm{d}\,t}(t) \ne 0$ ist. Nichtreguläre Punkte $c(t_0)$ mit $\dot{c}(t_0) = 0$ heißen Singularitäten.

Kinematische Interpretation:

 $t \mapsto c(t)$ beschreibt die <u>zeit</u>abhängige Bewegung eines Punktes im \mathbb{R}^n . \dot{c} ist die vektorielle Geschwindigkeit (und im euklidischen \mathbb{R}^n $w := |\dot{c}|$ die skalare Geschwindigkeit).

Beispiel:

- 1. <u>Peano-Kurve</u>: Stetiger (\mathcal{C}^0 -)Weg im \mathbb{R}^2 , dessen Spur jeden Punkt eines Gebietes $G \subseteq \mathbb{R}^2$ ausfüllt (nirgends differenzierbar, "unbrauchbar")
- 2. Konstanter Weg: $t \in I \mapsto c(t) = x_0 \in \mathbb{R}^n$ (nirgends regulär, "unbrauchbar")
- 3. Neil'sche Parabel: $c: t \in \mathbb{R} \mapsto c(t) = \begin{pmatrix} t^2 \\ t^3 \end{pmatrix} \in \mathbb{R}^2 \quad (\mathcal{C}^{\infty}\text{-Weg}), \text{ in } c(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ nicht regulär } (\text{"Spitze"}) \ (w(0) = |\dot{c}(0)| = 0, \text{"man hat Zeit, sich umzudrehen"})$

4. Kreislinie: $c: t \in \mathbb{R} \mapsto c(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \in \mathbb{R}^2$ (∞ -oft durchlaufbar) [Affin gesehen ist das eine Ellipse!]

Aber auch $t \mapsto \tilde{c}(t) = \begin{pmatrix} t \\ \pm \sqrt{1-t^2} \end{pmatrix}$ und $t \mapsto \tilde{\tilde{c}}(t) = \begin{pmatrix} \frac{1}{\cosh t} \\ \tanh t \end{pmatrix}$ sind Parametrisierungen von Kreisstücken.

Wege, die nur mit veränderlicher "Zeitskala" durchlaufen werden, sollen nicht als verschieden angesehen werden.

Definition:

 $I, \tilde{I} \subset \mathbb{R}$ seien offene Intervalle.

Zwei Wege $c: I \to \mathbb{R}^n, \tilde{c}: \tilde{I} \to \mathbb{R}^n$ heißen $\underline{C^r}$ -äquivalent $(r \ge 0)$, wenn ein orientierungstreuer (d.h. monoton wachsender) C^r -Diffeomorphismus $\Phi: I \to \tilde{I}$ existiert, mit

$$\underline{c} = \tilde{c} \circ \underline{\Phi}, \text{ d.h. } \forall_t c(t) = \tilde{c}(\underline{\Phi}(t))$$

Bemerkung:

- 0. ΦC^r -Diffeomorphismus $\Leftrightarrow \Phi$ bijektiv und Φ und Φ^{-1} C^r -differenzierbar. [Bsp.: $\Phi: t \in \mathbb{R} \to t^3 \in \mathbb{R}$ ist kein C^1 -Diffeomorphismus] Bei C^r -Diffeomorphismus ist stets $\dot{\Phi}(t) \neq 0$ (falls $r \geq 1$)
- 1. Φ ist (für $r \geq 1$) genau dann orientierungstreu, wenn überall $\dot{\Phi}(t) > 0$ ist.
- 2. Äquivalente Wege besitzen (für $r \ge 1$) das gleiche Regularitätsverhalten.

$$\dot{c}(t) = \dot{\tilde{c}}(\Phi(t)) \cdot \underbrace{\dot{\Phi}(t)}_{>0}$$

3. Die Äquivalenz von Wegen ist wirklich eine Äquivalenzrelation (reflexiv, symmetrisch, transitiv)

Definition:

Eine (orientierte, reguläre) $\underline{C^r}$ -Kurve $(r \ge 1)$ im (affinen) \mathbb{R}^n ist eine Äquivalenz-klasse [c] von regulären C^r -Wegen $c: I \subset \mathbb{R} \to \mathbb{R}^n$. Ein Repräsentant heißt eine (zulässige) <u>Parametrisierungen</u> der C^r -Kurve, eine die Äquivalenz vermittelnde Abbildung Φ eine (zulässige) Parametertransformation.

Beispiel:

 Die "Kreis"-Darstellungen

$$t \mapsto c(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \in \mathbb{R}^2, \left(|t| < \frac{\pi}{2} \right)$$

und

$$\tilde{t} \mapsto \tilde{c}(\tilde{t}) = \begin{pmatrix} \frac{1}{\cosh \tilde{t}} \\ \tanh \tilde{t} \end{pmatrix} \in \mathbb{R}^2 (\tilde{t} \in \mathbb{R})$$

sind \mathcal{C}^{∞} -äquivalente Parametertransformationen:

$$\Phi(t) = \operatorname{Artanh} \sin t = \tilde{t}$$

mit

$$\dot{\Phi}(t) = \frac{\cos t}{1 - \sin^2 t} = \frac{1}{\cos t} > 0$$

Bemerkung:

Nicht jedes 1-dimensionale "Gebilde" im \mathbb{R}^n (z.B. eine vollständige Kreislinie) lässt sich global und injektiv als Bild eines offenen Intervalls darstellen.

Objekte, die sich nur lokal so parametrisieren lassen, heißen (1-dimensionale) differenzierbare Mannigfaltigkeiten. Für lokale Untersuchungen ist eine solche Erweiterung der Kurvenbegriffs nicht nötig.

Die bisher eingeführten Begriffe sind offensichtlich affin-invariant. Aber im Folgenden sind auch nur Eigenschaften von <u>Kurven</u> von Interesse, also Eigenschaften, die nicht von der Parametrisierung abhängen.

Hier ein Beispiel aus der rein affinen Differentialgeometrie.

Beispiel:

Satz 1.1.1:

 $t\mapsto c(t)$ sei Parameterdarstellung einer \mathcal{C}^r -Kurve im (affinen) \mathbb{R}^n mit $r\geq n$. Dann sind die Ableitungsvektoren

$$c_p := \frac{\mathrm{d}^p c}{\mathrm{d} t^p} (p = 1, \dots, n)$$

nicht invariant gegenüber Parametertransformationen, jedoch die (punktualen, orientierten) Schmieg-

räume (oskulierende Räume, "osculating spaces")

$$S_n(t) := c(t) + \langle \langle c_1(t), \dots, c_n(t) \rangle \rangle$$

Spezialfälle:

Tangente $S_1(t) = c(t) + \langle \langle \dot{c}(t) \rangle \rangle$

Schmiegebene $S_2(t)c(t) + \langle \langle \dot{c}(t), \ddot{c}(t) \rangle \rangle$

Beweis (von Satz 1.1.1):

Aus $c = \tilde{c} \circ \Phi$ folgt nach der Kettenregel

$$\begin{split} \dot{c} &= \dot{\Phi} \left(\dot{\tilde{c}} \circ \Phi \right) \\ \ddot{c} &= \dot{\Phi}^2 \left(\ddot{\tilde{c}} \circ \Phi \right) + Q_2^1 \left(\dot{\Phi}, \ddot{\Phi} \right) \cdot \dot{\tilde{c}}(t) \end{split}$$

allgemein

$$c_p = \dot{\Phi}^p(\tilde{c}_p \circ \Phi) + \sum_{k=1}^{p-1} \underbrace{Q_p^k \left(\dot{\Phi}, \ddot{\Phi}\right)}_{\text{,Kettenregelpolynome"}} (\tilde{c}_k \circ \Phi)$$

Also hat man die Transformationsformel

$$\begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix} = \begin{pmatrix} \dot{\Phi} & 0 & \cdots & 0 \\ Q_2^1 & \dot{\Phi}^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ Q_p^1 & \cdots & Q_p^k & \dot{\Phi}^p \end{pmatrix} \begin{pmatrix} \tilde{c}_1 \circ \Phi \\ \vdots \\ \vdots \\ \tilde{c}_p \circ \Phi \end{pmatrix}$$

mit einer regulären Transformationsmatrix positiver Determinante.

Das zeigt

$$\langle \langle c_1, \dots, c_p \rangle \rangle = \langle \langle \tilde{c}_1 \circ \Phi, \dots, \tilde{c}_p \circ \Phi \rangle \rangle$$

und die weiteren Behauptungen.

Bemerkung:

Die Regularitätsforderung $\dot{c}(t) \neq 0$ bedeutet, dass in jedem Punkt die Tangenten als 1-dimensionale Unterräume existieren.

Die Schmiegräume kann man dazu benutzen, um festzustellen, ob eine Kurve in einem echten affinen Teilraum $U_p \subset \mathbb{R}^n$ liegt, in einer Geraden, einer Ebene usw. (affin-invariant!) Zunächst gilt offensichtlich

$$S_1(t) \subseteq S_2(t) \subseteq \cdots \subseteq S_n(t) \le p$$

Satz 1.1.2:

a) Liegt eine C^{p+1} -Kurve in einem p-dimensionalen affinen Unterraum des \mathbb{R}^n $(1 \le p \le n-1)$, so ist

$$\forall_t \dim S_{p+1}(t) < p+1$$

d.h. der (p+1)-te Schmiegraum degeneriert.

b) Gilt umgekehrt

$$\forall_t \dim S_{p+1}(t) = \dim S_p(t) \stackrel{!}{=} p$$

so liegt die Kurve in einem p-dimensionalen, aber keinem niedriger dimensionalen affinen Unterraum.

Anwendung:

1. Eine C^2 -Kurve [c] im \mathbb{R}^n verläuft genau dann geradlinig, wenn $\forall_t (\dot{c}(t), \ddot{c}(t))$ linear abhängig ist.

$$[, \Rightarrow$$
" nach a), $, \Leftarrow$ " nach b), da $[c]$ regulär

Definition:

Ein (regulärer) Kurvenpunkt c(t) heißt Wendepunkt (WP, inflection point), falls $(\dot{c}(t), \ddot{c}(t))$ linear abhängig ist.

2. Eine wendepunktfreie \mathcal{C}^3 -Kurve [c] im \mathbb{R}^n verläuft genau dann <u>in einer Ebene</u>, wenn $\forall_t (\dot{c}(t), \ddot{c}(t), \ddot{c}(t))$ linear abhängig ist.

Definition:

Ein Nicht-Wendepunkt c(t) heißt "Henkelpunkt" (handle point), wenn $(\dot{c}(t), \ddot{c}(t), \ddot{c}(t))$ linear abhängig ist.

Beweis (von Satz 1.1.2):

a)

$$\forall_{t} \quad c(t) = p_{0} + \sum_{k=1}^{p} \lambda_{k}(t) \cdot a_{k} \in U_{p} = p_{0} + \langle \langle a_{1}, \dots, a_{p} \rangle \rangle \Rightarrow$$

$$\forall_{t} \quad \forall_{t} \quad c_{l}(t) = c^{(l)}(t) = \sum_{k=1}^{p} \lambda_{k}^{(l)}(t) \cdot a_{k} \in \langle \langle a_{1}, \dots, a_{p} \rangle \rangle \Rightarrow$$

$$\forall_{t} \quad \dim S_{p+1}(t) \leq p < p$$

b) Nach Voraussetzung ist $(c_1, \ldots, c_p)(t)$ linear unabhängig, aber $(c_1, \ldots, c_{p+1})(t)$ linear abhängig.

Es existieren also Funktionen $t \mapsto \lambda_0(t), \dots, \lambda_{p-1}(t)$ mit

$$c_{p+1} = \sum_{k=1}^{p} \lambda_{k-1} c_k \text{ bzw. } (\dot{c})^{(p)} = \sum_{k=0}^{p-1} \lambda_k (\dot{c})^k$$
 (*)

Die Funktionen sind stetig auf I, denn (*) kann nach $\lambda_0, \ldots, \lambda_{p-1}$ aufgelöst werden (Inhomogenes lineares Gleichungssystem mit vollrangiger Koeffizientenmatrix, da c_1, \ldots, c_p linear unabhängig; Einträge und "rechte Seite" stetig).

Die Koeffizientenfunktionen $t\mapsto \dot{c}^i(t)\,(i=1,\ldots,n)$ genügen also der linearen Differentialgleichung p-ter Ordnung

$$y^{(p)} = \sum_{k=0}^{p-1} \lambda_k y^{(k)}$$

mit stetigen Koeffizienten. für sie existiert ein Fundamentalsystem $y_1, \dots y_p : I \to \mathbb{R}$, so dass für jede Lösung gilt

$$y(t) = \sum_{k=1}^{p} a_k y_k(t)$$

also auch

$$\dot{c}^i(t) = \sum_{k=1}^p a_k^i y_k(t)$$

und damit

$$\dot{c}(t) = \sum_{k=1}^{p} y_k(t) a_k$$

mit konstanten Vektoren $a_1, \ldots, a_p \in \mathbb{R}^n$.

Integration liefert $\forall_{t \in I}$

$$c(t) = c(t_0) + \sum_{k=1}^{p} \left(\int_{t_0}^{t} y_k(\tau) d\tau \right) a_k \in c(t_0) + \langle \langle a_1, \dots, a_p \rangle \rangle =: U_p$$

Es ist schließlich

$$\dim U_p = p$$

denn aus dim $U_p = k < p$ folgt nach a), dass dim $S_{k+1} < k+1$, also auch dim $S_p < p$ im Widerspruch zur Voraussetzung.

Ab jetzt arbeiten wir im orientierten, <u>euklidischen</u> Raum. Hier gibt es zum Glück in jeder Äquivalenzklasse von Wegen einen ausgezeichneten Repräsentanten, die Bogenlängenparametrisierung

Satz 1.1.3:

(kurz: BLP).

Sei $t \mapsto c(t)$ Parameterdarstellung einer \mathcal{C}^1 -Kurve im euklidischen \mathbb{R}^n . Dann gibt es (bis auf eine

additive Konstante) genau eine zulässige Parametertransformation

$$t \mapsto s(t) = \int |\dot{c}(t)| \,\mathrm{d}\,t \,[+s_0]$$

(genannt Bogenlängenfunktion), so dass in der neuen Bogenlängenparametrisierung $\bar{c} = c \circ s^{-1}$ gilt

$$|\overline{c}'| = 1$$

Die Konstruktion ist unabhängig von der Ausgangsparametrisierung.

Kinematische Interpretation:

In Bogenlängenparametrisierung wird die Kurve mit konstanter Geschwindigkeit $w=|\vec{c}'|\equiv 1$ durchlaufen ("Zeit = Weg"). Solche Wege heißen auch normal.

Beweis (von Satz 1.1.3):

Für die gesuchte Transformation s muss wegen

$$c = \overline{c} \circ s \Rightarrow |\dot{c}| = \underbrace{|\overline{c}' \circ s|}_{=1} \underbrace{\dot{s}}_{>0}$$

gelten:

$$\dot{s} = |\dot{c}|$$

Eine Stammfunktion

$$s = \int |\dot{c}|$$

leistet das Gewünschte, da sie \mathcal{C}^1 -differenzierbar ist, mit $\dot{s} = |\dot{c}| > 0$ (wegen der Regularität von c). Für eine äquivalente Parametrisierung \tilde{c} mit $c = \tilde{c} \circ \Phi$ der Kurve erhält man

$$\dot{s} = |\dot{c}| = |\dot{\tilde{c}} \circ \Phi| \underbrace{\dot{\Phi}}_{>0} = (\tilde{s} \circ \Phi) \cdot \dot{\Phi}$$

also gilt

$$s = \tilde{s} \circ \Phi \left(+ s_0 \right)$$

und damit

$$\overline{c} = c \circ s^{-1} = (\tilde{c} \circ \Phi) \circ (\tilde{s} \circ \Phi)^{-1} = \tilde{c} \circ \Phi \circ \Phi^{-1} \circ \tilde{s}^{-1} = \tilde{c} \circ \tilde{s}^{-1} = \bar{\tilde{c}}$$

Bemerkung:

Mit der Bogenlängenfunktion $t \mapsto s(t)$ kann man die <u>Länge</u> eines \mathcal{C}^1 -Wegstücks $t \in [a,b] \subset I \mapsto c(t) \in \mathbb{R}^n$ messen.

$$L_a^b(c) = s(b) - s(a) = \int_a^b |\dot{c}(t)| \,\mathrm{d}\,t$$

Diese erhält man aus den Längen einbeschriebener Polygonzüge durch Verfeinern und Grenzüber-

gänge. C^1 -Wege sind rektifizierbar.

Praktische Berechnung der Bogenlängenparametrisierung (Schreibweise schlampig):

- 1. Man berechne $s = s(t) = \int |\dot{c}(t)| dt$
- 2. bilde die Umkehrfunktkion t = t(s)
- 3. und bilde c(s) = c(t(s))

Beispiel:

Ellipse $t \mapsto c(t) = \begin{pmatrix} a \cos t \\ b \sin t \end{pmatrix}$ im \mathbb{R}^2 mit Halbachsen 0 < a < b

$$\begin{split} \frac{\mathrm{d}\,s}{\mathrm{d}\,t}(t) &= |\dot{c}(t)| = \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \\ &= b \cdot \sqrt{1 - \left[1 - \left(\frac{a}{b}\right)^2\right] \sin^2 t} = b \cdot \sqrt{1 - k^2 \sin^2 t} \end{split}$$

 $\Rightarrow s(t) = b \cdot E(k,t) \, [+s_0] \quad \text{(Elliptisches Integral 2. Gattung, nicht elementar integrierbar)}$

Für einen Kreis (a = b = r) gilt k = 0 also

$$(1.) s = s(t) = r \cdot t$$

$$(2.) t = t(s) = \frac{s}{r} also$$

(3.)
$$c(s) = \begin{pmatrix} r \cos \frac{s}{r} \\ r \sin \frac{s}{r} \end{pmatrix}$$

Ergebnis:

Bei Verwendung der Bogenlängenparametrisierung erhält man zwar immer sofort Größen, die invariant gegenüber Parametertransformationen sind.

<u>Aber</u> meist lässt sie sich nicht explizit bestimmen und ist nur für theoretische Zwecke brauchbar. Ausweg: siehe später

Allgemein zu Bezeichnungen (schlampig, aber praktisch)

	bei bel. ParDarst.	in BLP
Parameter	t [Zeit]	s [Weg]
Parameterdarstellung	$t \mapsto c(t)$	$s \mapsto c(s)$
Ableitungen	$\dot{c}, \ddot{c}, \ddot{c}, \dots$ [Zeitabl.]	c', c'', c''', \dots [Abl. nach BL]

Es gilt

$$\dot{c} = c' \circ \dot{s}, \ddot{c} = c'' \cdot \dot{s}^2 + c' \ddot{s}, \dots$$

1.2 Kurven in der euklidischen Ebene \mathbb{R}^2

siehe Übungen

1.3 Kurven im euklidischen Raum \mathbb{R}^3

Vorgehensweise (in jeder Kurven- und Flächentheorie):

Konstruktion einer (möglichst invarianten) <u>Begleitbasis</u> der Kurve ("moving frame"). Ihre <u>Ableitungs</u>-gleichungen liefern Invarianten für die Kurve, u.a. ihre Krümmungen.

1.3.1 FRENET-Begleitbasis, Krümmung und Torsion

Die Krümmung einer Raumkurve in Bogenlängenparametrisierung $s\mapsto c(s)$ soll deren Abweichung vom geradlinigen Verlauf messen. Diese wird bestimmt durch die Änderung des (invarianten) Tangenteneinheitsvektors

 $T := c' = \frac{\mathrm{d}\,c}{\mathrm{d}\,s}$

Satz 1.3.1:

Für die Krümmung

$$s \mapsto \kappa(s) := |T'(s)| = |c''(s)| \ge 0$$

einer C^2 -Kurve in Bogenlängenparametrisierung $s \mapsto c(s)$ gilt

- a) $\kappa(s_0) = 0 \Leftrightarrow c(s_0)$ Wendepunkt
- b) $\kappa \equiv 0 \Leftrightarrow \text{die Kurve verläuft geradlinig}$

Beweis (von Satz 1.3.1):

a) $\kappa(s_0)=0 \Leftrightarrow T'(s_0)=0 \stackrel{\Leftarrow}{\Rightarrow} (c',c'')(s_0)=(T,T')(s_0)$ linear abhängig $\Leftrightarrow c(s_0)$ ist Wendepunkt

Für die Rückrichtung wird benötigt:

$$|T|^2 = \langle T, T \rangle = 1 \Rightarrow 2\langle T', T \rangle = 0 \Rightarrow T' \perp T$$

also $(T, T')(s_0)$ linear abhängig $\Rightarrow T'(s_0) = 0$

b) nach Satz 1.1.2, Anwendung 1 oder direkt

$$\kappa \equiv 0 \Leftrightarrow T' = c'' = 0 \Leftrightarrow c(s) = x_0 + s \cdot X$$

Noch ein Test, ob der Name "Krümmung" gerechtfertigt ist:

Für einen Kreis in Bogenlängenparametrisierung $s\mapsto c(s)=r\begin{pmatrix}\cos\frac{s}{r}\\\sin\frac{s}{r}\\0\end{pmatrix}$ im \mathbb{R}^3 gilt

$$T(s) = \begin{pmatrix} -\sin\frac{s}{r} \\ \cos\frac{s}{r} \\ 0 \end{pmatrix}$$
$$T'(s) = \frac{1}{r} \begin{pmatrix} -\cos\frac{s}{r} \\ -\sin\frac{s}{r} \\ 0 \end{pmatrix}$$
$$\kappa(s) = \frac{1}{r}$$

Satz 1.3.2:

Sei $s \mapsto c(s)$ Bogenlängenparametrisierung einer wendepunktfreien \mathbb{C}^2 -Kurve im orientierten, euklidischen \mathbb{R}^3 . Dann bilden die Vektorfelder

$$s\mapsto T(s):=c'(s)$$
 [Tangentenvektor]
$$s\mapsto H(s):=\frac{T'(s)}{|T'(s)|}$$
 [Hauptnormalenvektor]
$$s\mapsto B(s):=(T\times H)(s)$$
 [Binormalenvektor]

eine orthonormierte, positiv orientierte \mathcal{C}^0 -Begleitbasis der Kurve, genannt Frenet-Begleitbasis.

Beweis (von Satz 1.3.2):

$$T'\perp T, T'\neq 0 \Rightarrow H$$
definiert; Rest klar

Folgerung:

In jedem Kurvenpunkt c(s) hat man die paarweise orthogonalen Begleitebenen

$$c(s) + \langle \langle T, H \rangle \rangle (s)$$
 [Schmiegebene]
 $c(s) + \langle \langle H, B \rangle \rangle (s)$ ($\perp T(s)$) [Normalebene]
 $c(s) + \langle \langle B, T \rangle \rangle (s)$ ($\perp H(s)$) [rektifizierende Ebene]

Die <u>Torsion</u> (Windung, <u>2. Krümmung</u>) einer wendepunktfreien \mathcal{C}^3 -Kurve (\Rightarrow (T, H, B) \mathcal{C}^1 -differenzierbar) soll deren Abweichung vom ebenen Verlauf messen. Diese wird bestimmt durch die Änderung des Binormalenvektors B (= Normalenvektor der Schmiegebene).

Wegen
$$\begin{cases} B^2 = 1 & \Rightarrow \langle B, B' \rangle = 0 \\ B = T \times H & \Rightarrow B' = \underbrace{T' \times H}_{=0} + T \times H' & \Rightarrow B' \perp T \end{cases} \text{ gilt }$$

$$B' = -\tau H \text{ mit einer } \mathcal{C}^0\text{-Funktion}$$

$$\tau = -\langle B', H \rangle$$

Satz 1.3.3:

Für die durch $B' = -\tau H$ definierte Torsion

$$s \mapsto \tau(s) = -\langle B', H \rangle(s) \stackrel{H \perp B}{=} + \langle H', B \rangle(s) \stackrel{B = T \times H}{=} \det(T, H, H')(s)$$

einer wendepunktfreien \mathcal{C}^3 -Kurve in Bogenlängenparametrisierung $s \mapsto c(s)$ gilt

a)
$$\tau(s_0) = 0 \Leftrightarrow c(s)$$
 Henkelpunkt $\Leftrightarrow \begin{cases} (c', c'', c''')(s_0) & \text{linear abhängig} \\ (c', c'')(s_0) & \text{linear unabhängig} \end{cases}$

b) $\tau \equiv 0 \Leftrightarrow$ die Kurve verläuft eben.

Beweis (von Satz 1.1.3):

a) Allgemein gilt

$$\langle X \times Y, Z \rangle = \sum_{i} (X \times Y)^{i} Z^{i} = \sum_{i=1}^{3} \det(X, Y, e_{i}) Z^{i}$$
$$= \det(X, Y, Z)$$

Darau folgt

$$\tau(s_0) = \det(T, H, H')(s_0) = \det\left(c', \frac{c''}{\kappa}, \left(\frac{c''}{\kappa}\right)'\right)(s_0)$$
$$= \det\left(c', \frac{c''}{\kappa}, \left(\frac{1}{\kappa}\right)'c'' + \frac{1}{\kappa}c'''\right)(s_0) = \frac{1}{\kappa^2(s_0)}\det\left(c', c'', c'''\right)(s_0) = 0$$

 $\Rightarrow (c', c'', c''')(s_0)$ linear abhängig

b) Nach Satz 1.1.2, Anwendung 2

Satz 1.3.4:

Für die Frenet-Begleitbasis $s \mapsto (T, H, B)(s)$ einer wendepunktfreien \mathcal{C}^3 -Kurve gelten die Frenetschen Ableitungsgleichungen

$$\begin{cases} T' &= \kappa \cdot H \\ H' &= -\kappa T \\ B' &= \kappa \cdot H \end{cases} + \tau B$$
 bzw.
$$\begin{pmatrix} T \\ H \\ B \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ H \\ B \end{pmatrix}$$

mit der \mathcal{C}^1 -Krümmung $s \mapsto \kappa(s) > 0$ und der \mathcal{C}^0 -Torsion $s \mapsto \tau(s)$.

Beweis (von Satz 1.3.4):

Da $(T_1, T_2, T_3) := (T, H, B)$ ein Orthonormalbasisfeld ist, gilt $\langle T_i, T_k \rangle = \delta_{ik}$ $\Rightarrow \langle T_i', T_k \rangle = -\langle T_k', T_i \rangle$, d.h. die Ableitungsmatrix $(\langle T_i', T_k \rangle)_{i,k=1,2,3}$ ist schiefsymmetrisch. Damit kann die nach Definition bekannte 1. und 3. Zeile ergänzt werden.

<u>Problem</u>: Wie berechnet man Begleitbasis, Krümmung und Torsion, wenn man die Bogenlängenparametrisierung nicht explizit kennt?

Lösung: "Rücktransformation"

Folgerung:

Bezüglich einer beliebigen Parametrisierung $t \mapsto c(t)$ einer wendepunktfreien \mathcal{C}^3 -Kurve gilt

$$\begin{split} T &= \frac{\dot{c}}{|\dot{c}|} \\ B &= \frac{\dot{c} \times \ddot{c}}{|\dot{c} \times \ddot{c}|} \\ H &= B \times T = \frac{\ddot{c} - \langle \ddot{c}, T \rangle T}{|\ddot{c} - \langle \ddot{c}, T \rangle T|} \\ \kappa &= \frac{|\dot{c} \times \ddot{c}|}{|\dot{c}|^3} \\ \tau &= \frac{\det(\dot{c}, \ddot{c}, \dddot{c})}{|\dot{c} \times \ddot{c}|^2} \end{split}$$

Beweis (der Folgerung):

$$\begin{split} &\dot{c} = c' \cdot \dot{s} = c' \cdot |\dot{c}| \Rightarrow T = c' = \frac{\dot{c}}{|\dot{c}|} = \frac{1}{w} \dot{c} \\ &B = T \times H = \frac{1}{\kappa} T \times T' = \frac{1}{w\kappa} T \times \dot{T} = \frac{1}{w\kappa} \left(\frac{1}{w} \dot{c} \times \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{1}{w} \dot{c} \right) \right) = \frac{1}{w^3 \kappa} \dot{c} \times \ddot{c} = \frac{\dot{c} \times \ddot{c}}{|\dot{c} \times \ddot{c}|} \\ &\Rightarrow w^3 \kappa = |\dot{c} \times \ddot{c}| \Rightarrow \kappa = \frac{|\dot{c} \times \ddot{c}|}{w^3} = \frac{\dot{c} \times \ddot{c}}{|\dot{c}|^3} \end{split}$$

usw. (siehe auch Übungen)

Bemerkung:

Als <u>Funktionen</u> sind z.B. $s \mapsto \kappa(s)$ und $t \mapsto \kappa(t)$ im Allgemeinen völlig verschieden, obwohl gleich bezeichnet.

Zusammenhang: $\kappa(s(t)) = \kappa(t)$

Analog für τ, T, H, B .

Zusatz: (später wichtig)

Die Basis (T, H, B) erhält man durch Anwendung des Schmidtschen Orthonormalisierungsverfahrens auf die Basis (\dot{c}, \ddot{c}) der Schmiegebene $(\to (T, H))$ und Ergänzung durch $B = T \times H$.

Satz 1.3.5:

Äquivalent zu den Frenetschen Formeln ist

$$\begin{pmatrix} T \\ H \\ B \end{pmatrix}' = \omega \cdot D \times \begin{pmatrix} T \\ H \\ B \end{pmatrix}$$

mit der Gesamtkrümmung

$$\omega = \sqrt{\kappa^2 + \tau^2}$$

und dem (normierten) Darboux-Vektor

$$D = \frac{1}{\omega}(\tau \cdot T + \kappa \cdot B)$$

Beweis (von Satz 1.3.5):

Nachrechnen unter Verwendung von

$$B = T \times H$$
, $H = B \times T$, $T = H \times B$

Kinematische Interpretation:

 $s\mapsto c(s)$ beschreibt die Bewegung aus Punkten mit konstanter Geschwindigkeit w=|c'|=1. Die Bewegung aus starr mit der Begleitbasis $(T_1,T_2,T_3)=(T,H,B)$ verbundenen Punktes

$$P(s) = c(s) + \sum_{i=1}^{3} \lambda_i T_i(s) = c(s) + X(s)$$

setzt sich zusammen aus einer Translation (mit der Kurve) und einer Drehung um eine momentane Drehachse. Für seine Geschwindigkeit gilt

$$P'(s) = c'(s) \sum_{i=1}^{3} \lambda_i T'_i(s) = c'(s) + \sum_{i=1}^{3} \lambda_i w(s) D(s) \times T_i(s)$$

= $c'(s) + w(s) D(s) \times X(s)$

mit der

- \bullet (vektoriellen) Bahngeschwindigkeit c'(s) der Kurve und der
- (vektoriellen) Winkelgeschwindigkeit $w \cdot D$)(s) des Vektors X(s) = P(s) c(s) wobei D(s) der Einheitsvektor der momentanen Drehachse ist und w(s) die skalare Winkelgeschwindigkeit beschreibt

1.3.2 Approximierter Kurvenverlauf

 $s \mapsto c(s)$ sei Bogenlängenparametrisierung einer \mathcal{C}^3 -Kurve mit $\kappa > 0$. Um einen Parameterwert s_0 (ohne Einschränkung sei $s_0 = 0$) besitzt sie die Taylorentwicklung

$$c(s) = c(0) + c'(0)s + \frac{1}{2}c''(0)s^2 + \frac{1}{6}c'''(0)s^3 + \mathcal{O}(s^3)$$

Mit $x_0 := c(0), T_0 := T(0), \ldots, \kappa_0 := \kappa(0), \ldots$ folgt wegen $c' = T, c'' = T' = \kappa H, c''' = \kappa' H + \kappa(-\kappa T + \tau B)$

Satz 1.3.6:

Eine wendepunktfreie \mathcal{C}^3 -Kurve in Bogenlängenparametrisierung $s\mapsto c(s)$ im \mathbb{R}^3 besitzt um s=0 die Taylorentwicklung

$$c(s) = x_0 + \left(s - \frac{1}{6}\kappa_0^2 s^3\right) T_0$$
$$+ \left(\frac{1}{2}\kappa_0 s^2 + \frac{1}{6}\kappa_0' s^3\right) H_0$$
$$+ \left(\frac{1}{6}\kappa_0 \tau_0 s^3\right) B_0$$
$$+ \mathcal{O}(s^3)$$

genannt <u>lokale kanonische Form</u> der Kurve bzgl. des kartesischen Koordinatensystems $(x_0; T_0, H_0, B_0)$ in der Umgebung von s=0. Berücksichtigt man nur Terme niedriger Ordnung, so verhält sie sich in Koordinaten wie

 $s \mapsto \left(s, \frac{1}{2}\kappa_0 s^2, \frac{1}{6}\kappa_0 \tau_0 s^3\right)$

Folgerung (aus Satz 1.3.6):

- a) Eine Kurve im \mathbb{R}^3 verläuft in 1. Näherung in ihrer Tangente, in 2. Näherung in ihrer Schmiegebene. Abweichungen davon sind durch Krümmung und Torsion bestimmt.
- b) Ihre Orthogonalprojektion
 - in die Schmiegebene verhält sich wie eine (quadratische) Parabel
 - in die Normalebene verhält sich wie eine Neil'sche Parabel
 - in die rektifizierende Ebene verhält sich wie eine kubusche Parabel

20

Skizze für $\tau > 0$

Normalebene

c) Sie durchdringt ihre Normalebene $x_0 + \langle \langle H_0, B_0 \rangle \rangle$ in Richtung von T_0 und ihre Schmiegebene $x_0 + \langle \langle T_0, H_0 \rangle \rangle$ für $\underline{\tau_0 > 0}$ in Richtung von B_0 . (Geometrische Bedeutung des <u>Vorzeichens der Torsion</u>)

Sie durchdringt die rektifizierende Ebene $x_0 + \langle \langle B_0, T_0 \rangle \rangle$ niemals, sondern bleibt auf der Seite, in die H_0 zeigt.

1.3.3 Krümmungskreis und Schmiegkugel (oskulierende Kugel)

Wir bestimmen alle Kugeln $K_r(m) = \{y \in \mathbb{R}^3 \mid |y - m| = r\}$, die eine vorgegebene Kurve in Bogenlängenparametrisierung $s \mapsto c(s)$ in einem Punkt $c(s_0)$ von 2. und 3. Ordnung berühren.

<u>Berührbedingungen</u> an die Abstandsfunktion $s \mapsto F(s) := d^2(s) = |c(s) - m|^2$

$$F(s_0)=r^2 \qquad \qquad \text{(Berührung 0. Ordnung: } c(s_0)\in K_r(m)\text{)}$$
 zusätzlich $F'(s_0)=0 \qquad \qquad \text{(Berührung 1. Ordnung)}$ zusätzlich $F''(s_0)=0 \qquad \qquad \text{(Berührung 2. Ordnung)}$ zusätzlich $F'''(s_0)=0 \qquad \qquad \text{(Berührung 3. Ordnung)}$

Begründung:

- Berührung 1. Ordnung = "2-punktige Berührung" $F(s_0) = F(s_1) = r^2 \overset{\text{MWS}}{\Rightarrow} \exists_{\overline{s_0} \in \overline{s_0 s_1}} F'(\overline{s_0}) = 0$ Grenzübergang $s_1 \to s_0 (\Rightarrow \overline{s_0} \to s_0)$ liefert $F'(s_0) = 0$
- Berührung 2. Ordnung =,,3-punktige Berührung" $F(s_0) = F(s_1) = F(s_2) = r^2 \overset{\text{MWS}}{\Rightarrow} \exists_{\overline{s_0},\overline{s_1}} F'(\overline{s_0}) = F'(\overline{s_1}) = 0 \overset{\text{MWS}}{\Rightarrow} \exists_{\overline{\overline{s_0}}} F''(\overline{\overline{s_0}}) = 0.$ Grenzübergang $s_1, s_2 \to s_0 (\Rightarrow \overline{s_1}, \overline{\overline{s_0}} \to s_0)$ liefert $F'(s_0) = F''(s_0) = 0$

Auswertung der Bedingungen:

(0)
$$F(s_0) = |c(s) - m|^2 = r^2$$

(1)
$$F'(s_0) = 2\langle c - m, T \rangle(s_0) = 0$$

(2)
$$F''(s_0) = 2[1 + \kappa \langle c - m, H \rangle](s_0) = 0$$

(3)
$$F'''(s_0) = 2[\kappa'\langle c - m, H \rangle + \kappa\langle c - m, -\kappa T + \tau B \rangle](s_0) = 0$$

Der Ansatz $m = c(s_0) + \alpha T(s_0) + \beta H(s_0) + \gamma B(s_0)$ liefert

$$\alpha = -\langle c - m, T \rangle(s_0)$$

$$\beta = -\langle c - m, H \rangle(s_0)$$

$$\gamma = -\langle c - m, B \rangle(s_0)$$

(0)
$$\alpha^2 + \beta^2 + \gamma^2 = r^2$$

$$(1) \Rightarrow \alpha = 0$$

(2)
$$\Rightarrow \beta = \frac{1}{\kappa(s_0)} = \rho(s_0) > 0 \text{ (falls } \kappa(s_0) > 0)$$

(3)
$$(\kappa'\rho + \kappa\tau\gamma)(s_0) = 0 \Rightarrow \gamma = -\frac{\kappa'}{\kappa^2\tau}(s_0) = \frac{\rho'}{\tau}(s_0)$$
 [falls $\tau(s_0) \neq 0$]

Satz 1.3.7:

1. Bei einer C^2 -Kurve in Bogenlängenparametrisierung $s \mapsto c(s)$ existiert in einem Nicht-Wendepunkt $c(s_0)$ (mit $\kappa(s_0) > 0$) genau eine 1-parametrige Kugelschar, die dort von 2.

22

Ordnung berührt. Die Mittelpunkte dieser Kugel liegen auf einer Geraden

$$c(s_0) + \rho(s_0)H(s_0) + \langle\langle B(s_0)\rangle\rangle \quad \left(\text{mit } \rho := \frac{1}{\kappa}\right)$$

genannt Krümmungsachse der Kurve in $c(s_0)$.

Alle diese Kugeln schneiden die Schmiegebene in einem Kreis mit Mittelpunkt

$$\overline{m} = c(s_0) + \rho(s_0)H(s_0)$$

und Radius

$$\overline{r} = \rho(s_0)$$
 [Krümmungsradius]

genannt Krümmungskreis der Kurve in s_0 .

2. Bei einer C^3 -Kurve in Bogenlängenparametrisierung $s \mapsto c(s)$ existiert in einem Nicht-Henkelpunkt $c(s_0)$ (mit $\kappa(s_0) > 0, \tau(s_0) \neq 0$) genau eine Kugel, die dort von 3. Ordnung berührt. Sie besitzt den Mittelpunkt

$$m = c(s_0) + \rho(s_0)H(s_0) + \frac{\rho'}{\tau}(s_0)B(s_0)$$

und den Radius

$$r = \sqrt{\rho^2 + \left(\frac{\rho'}{\tau}\right)^2}(s_0)$$

und heißt Schmiegkugel der Korve in $c(s_0)$.

2 Literaturhinweise

Kühnel: Differentialgeometrie: Kurven, Flächen, Mannigfaltigkeiten

Anhang

- Klausurtermin: Donnerstag, 26.07.2012, 14 Uhr – 16 Uhr

Index

Äquivalenz, 7	Krümmungsachse, 23	
	Krümmungskreis, 21, 23	
Ableitungsmatrix, 17	Krümmungsradius, 23	
Ableitungsvektor, 8	Kreis, 7	
affin, 4	Kreuzprodukt, 4	
Begleitbasis	Kurve, 6	
Berechnung (unbekannte BLP), 18		
Begleitebene, 16	lokale kanonische Form, 20	
Berührbedingung, 21	Manniefaltieleit 9	
Binormalenvektor, 15	Mannigfaltigkeit, 8	
	Nicht-Wendepunkt, 10	
Bogenlängenfunktion, 12	normal, 12	
Bogenlängenparametrisierung, 12	Normalebene, 16	
Berechnung, 13	,	
Darboux-Vektor, 19	orientierungstreu, 7	
Diffeomorphismus, 7	Orthogonalprojektion, 20	
Drehung, 19	Orthonormalbasis, 3	
Drehachse, 19	-feld, 17	
Einheitsvektor, 19	D	
,	Parameter, 6	
Ellipse, 13	Parametertransformation, 7	
euklidisch, 11	Parametrisierung, 7	
Frenet-Begleitbasis, 15	regulär, 6	
Ableitungsgleichungen, 17	rektifizierende Ebene, 16	
	Schmidtsches Orthonormalisierungsverfahren,	
Geschwindigkeit, 6	18	
Bahn-, 19	Schmiegebene, 16	
Winkel-, 19		
Hauptnormalenvektor, 15	Schmiegkugel, 21, 23	
Henkelpunkt, 10	Schmiegraum, 9	
пенкегринкт, то	degeneriert, 10	
kartesisches Koordinatensystem, 3	Singularität, 6	
Krümmung, 14	Skalarprodukt, 3	
2. Krümmung, 16	Spur, 6	
Berechnung (unbekannte BLP), 18	Standard-Skalarprodukt, 3	
Gesamtkrümmung, 18	Standardbasis, 3	

```
Tangenteneinheits vektor, \, 14
Tangentenvektor, 6, 15
Taylorentwicklung, 20
Torsion, 16
    Berechnung (unbekannte BLP), 18
Translation, 19
Vektor, 3
    -länge, 3
    Abstand, 3
    orthogonal, 3
    Winkel, 3
Vektorprodukt,\,4
Weg, 6
    -länge, 12
Wendepunkt, 10
    -frei, 10
```

Windung, 16