MATH425 Assignment 5

Elliott Hughes

May 19, 2022

W8Q4

Consider the sequence of functions f_n given by $f_1(x) = x$ and $f_{n+1}(x) = 1 + \frac{1}{f_n(x)}$. Then if $|f_n(x) - f_n(y)| < \delta$ for some $n \in \mathbb{N}$ and $\delta > 0$ it follows that

$$|f_{n+1}(x) - f_{n+1}(y)| = \left| 1 + \frac{1}{f_n(x)} - 1 - \frac{1}{f^n(x)} \right|$$

$$= \left| \frac{1}{f_n(x)} - \frac{1}{f_n(y)} \right|$$

$$= \frac{|f_n(x) - f_n(y)|}{|f_n(x)f_n(y)|}$$

$$< \frac{\delta}{|f_n(x)f_n(y)|}$$

Consequently if $|x - y| < \delta$ and $x, y \ge 1$ we have $|f_1(x) - f_1(y)| < \delta$, $|f_2(x) - f_2(y)| < \delta/xy$ and for f_i , $i \ge 2$ we have

$$|f_n(x) - f_n(y)| < \frac{\delta}{\prod_{i=1}^{n-1} |f_i(x)f_i(y)|}$$

Then since $x, y \ge 1$ it follows trivially that $f_n(x), f_n(y) > 1$ for all n > 1 and so $|f_n(x) - f_n(y)| < \delta$. Therefore, for all $\epsilon > 0$ and for all $n \in \mathbb{N}$ one can choose $\delta = \epsilon$ such that, if x, y > 1 and $|x - y| < \delta$ then $|f_n(x) - f_n(y)| < \epsilon$. Thus this family is equicontinuous.

W9Q3

Consider $f \in \mathcal{F}$ and $z_0 \in B(0,1)$ and choose $D = \overline{B(0,r)}$, r > 0 such that $z_0 \in D^o$ (where D^o denotes the interior of D). Let $a = \min\{z - z_0\}$ for $z \in \partial D$. It follows from the Cauchy integral formula that

$$|f(z_0)| = \left| \int_{\partial D} \frac{f(z)}{z - z_0} dz \right|$$

$$\leq \int_0^{2\pi} \left| \frac{f(re^{i\theta})}{re^{i\theta} - z_0} \right| d\theta$$

$$\leq \int_0^{2\pi} \frac{|f(re^{i\theta})|}{a} d\theta$$

$$\leq \frac{1}{a} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \leq \frac{C}{a}$$

Thus for every $f \in \mathcal{F}$ and $z_0 \in B(0,1)$, $|f(z_0)| \leq C/a$ and thus this family is uniformly bounded on B(0,1). Since uniform boundedness on B(0,1) implies uniform boundedness on every compact subset of B(0,1) it follows that every sequence $\{f_i\}_{j=1}^{\infty} \subseteq \mathcal{F}$ is bounded on compact sets on B(0,1). Therefore the family $\mathcal{F}' = \{f_j\}_{j=1}^{\infty}$ contains a convergent sequence $\{f_k\}_{k=1}^{\infty}$ by Montel's theorem. Since each $j \in \mathbb{N}$ there are only a finite number of numbers in \mathbb{N} less than j, one can define a new sequence $\{f_{k'}\}_{k'=1}^{\infty}$ by letting $f_1 \in \{f_{k'}\}_{k'=1}^{\infty}$ equal $f_1 \in \{f_k\}_{k=1}^{\infty}$ and for $f_i \in \{f'_k\}_{k'=1}^{\infty}$ let f_{i+1} be first term in $\{f_k\}_{k=1}^{\infty}$ with a higher index in $\{f_k\}_{k=1}^{\infty}$ and such that the matching term in $\{f_j\}_{j=1}^{\infty}$ has a higher index than the term matching f_i . To phrase this more informally, we are requiring that the the next term in $\{f_{k'}\}_{k'=1}^{\infty}$ is further along in both sequences. Then $\{f_{k'}\}_{k=1}^{\infty}$ is a subsequence of both $\{f_k\}_{k=1}^{\infty}$ and $\{f_j\}_{j=1}^{\infty}$ and since $\{f_k\}_{k=1}^{\infty}$ is convergent it must also converge on compact sets, so the desired result is obtained.