B1B02FY2 a B3B02FY2, varianta 290

Otázka 1 (2 body)

Napište vztah pro řešení vlnové rovnice pro tlumené rovinné vlny šířící se ve směru osy x v homogenním izotropním prostředí. Vysvětlete všechny použité symboly.

Otázka 2 (2 body)

Slovně definujte podélné vlny. Uveď te alespoň jeden příklad těchto vln.

Otázka 3 (2 body)

Napište vztah pro polohu uzlů ve stojaté vlně. Vysvětlete všechny použité symboly.

Otázka 4 (2 body)

Sinusová vlna je dána vztahem $y = 6\sin(\pi x - 2\pi t)$. Určete její fázovou rychlost.

Otázka 5 (2 body)

Stojatá vlna je popsána rovnicí $y = 6\sin(\pi x)\cos(2\pi t)$. Určete vzdálenost uzlů.

Otázka 6 (2 body)

Disperzní vztah je $\omega = c\sqrt{k^2 + \beta^2}$. Určete fázovou rychlost v_f a grupovou rychlost v_q .

Otázka 7 (2 body)

Napište obě dvě tvrzení Huygensova principu.

Otázka 8 (2 body)

Průměr apertury je a=0,25 mm, vzdálenost stínítka a apertury je L=1 m, vlnová délka je $\lambda=600$ nm. Vypočítejte Fresnelovo číslo.

Příklad 1 (4 body)

Ze stropu visí lano o délce $\ell=10$ m. Jak dlouho bude postupovat vlna od konce lana až ke stropu? tíhové zrychlení je rovno q=9,81 m · s⁻²

celkem bodů: 20