NOMBRE: Matías Duhalde

SECCIÓN: 1

Nº LISTA: 34

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 5 – Respuesta Pregunta 1

Parte 1

Para una relación $R \subseteq A \times A$ con A cualquier conjunto no vacío, se define la anti-clausura transitiva de R como una relación $R^{\downarrow t}$ tal que:

- 1. $R^{\downarrow t} \subseteq R$
- 2. $R^{\downarrow t}$ es transitiva
- 3. $\forall R' \subseteq R$. R' es transitiva $\implies R' \subseteq R^{\downarrow t}$

Dada esta definición, se tiene que NO es verdad que $R^{\downarrow t}$ siempre existe. Esto se puede demostrar con un contraejemplo.

Sea $A = \{1, 2, 3\}$, entonces $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

Sea $R = \{(1,2), (2,3)\}$. Podemos notar que se cumple que $R \subseteq A \times A$.

Dado que se tiene que cumplir que $R^{\downarrow t} \subseteq R$ (la condición 1), tenemos que existen 4 candidatos posibles para $R^{\downarrow t}$:

- $R'^1 = R$
- $R'^2 = \{(1,2)\}$
- $R'^3 = \{(2,3)\}$
- $R'^4 = \emptyset$

Tenemos que $R'^1 = R$ no puede ser $R^{\downarrow t} \subseteq R$, dado que no se cumpliría la condición **2**, es decir, que tiene que ser transitiva. Esto porque en R'^1 se cumple que $(1,2) \in R'^1$ y $(2,3) \in R'^1$, pero $(1,3) \notin R'^1$.

Para R'^2 , R'^3 , y R'^4 , se tiene que sí se cumple condición **2**, sin embargo, no se cumple la condición **3** para ninguna de estas. Para R'^2 , tenemos que R'^3 es transitiva, pero $R'^3 \nsubseteq R'^2$. Análogamente, para R'^3 , tenemos que R'^2 es transitiva, pero $R'^2 \nsubseteq R'^3$. Finalmente, para R'^4 tenemos que $R'^3 \nsubseteq R'^4$ y $R'^2 \nsubseteq R'^4$.

Por lo tanto, no existe una anti-clausura transitiva $R^{\downarrow t}$ para la relación $R=\{(1,2),(2,3)\}$, y **NO** es verdad que $R^{\downarrow t}$ siempre existe.

Parte 2

Para una relación $R \subseteq A \times A$ con A cualquier conjunto no vacío, se define la anti-clausura simética de R como una relación $R^{\downarrow s}$ tal que:

- 1. $R^{\downarrow s} \subseteq R$
- 2. $R^{\downarrow s}$ es simétrica
- 3. $\forall R' \subseteq R$. R' es simétrica $\implies R' \subseteq R^{\downarrow s}$

Sea R una relación cualquiera tal que $R \subseteq A \times A$, con A un conjunto no vacío, se tiene que se pueden dar dos casos:

- 1. R es simétrica
- 2. R no es simétrica

Para el primer caso, se tiene que su anti-clausura simétrica será $R^{\downarrow s}=R$, dado que esta relación $R^{\downarrow s}$ cumpliría las 3 condiciones listadas anteriormente.

Para el segundo, supongamos que existe un R_s tal que $R_s \subseteq R$ y R_s es simétrica. Para que R_s sea también anti-clausura simétrica de R, se tiene que cumplir que $\forall R' \subseteq R$. R' es simétrica $\implies R' \subseteq R_s$. Analizando esta última condición, tenemos que se pueden dar 2 casos:

- 1. Que esta condición se cumpla en todo caso, y por lo tanto, R_s sea anti-clausura simétrica.
- 2. Que esta condición no se cumpla, es decir, que existan relaciones $R' \subseteq R$ tal que R' sea simétrica, pero $R' \not\subseteq R_s$.

Para el primer punto, se cumple que R_s es anti-clausura simétrica.

Para el segundo, se pueden dar las siguientes posibilidades:

- 1. Que existan R' tal que $R' \not\subseteq R_s$, y al mismo tiempo $R_s \subseteq R'$
- 2. Que existan R' tal que $R' \not\subseteq R_s$, y al mismo tiempo $R_s \not\subseteq R'$

En el primer caso, se tiene que R' es una nueva candidata para ser anti-clausura simétrica.

En el segundo caso, se tiene que ninguna de las dos relaciones puede ser anti-clausura simétrica. Puesto que R' y R_s son simétricas, y se cumple que $R' \subseteq R$ y $R_s \subseteq R$, entonces $R' \cup R_s$ es simétrica y $R' \cup R_s \subseteq R$. Por lo tanto, esta nueva relación $R' \cup R_s$ cumple las primeras dos condiciones, y es candidata para ser anti-clausura simétrica de R.

Se puede repetir el análisis con los nuevos posibles candidatos encontrados, y se volverá a obtener uno de los casos listados (nunca se descarta la posibilidad de existencia de una anti-clausura simétrica).

Por lo tanto, siempre existe una anti-clausura simétrica $R^{\downarrow s}$, para toda relación $R \subseteq A \times A$.