NSR Search Results Page 1 of 10

Visit the <u>Isotope Explorer</u> home page!

65 reference(s) found:

Keynumber: 2001SU02

Reference: Nucl.Instrum.Methods Phys.Res. A457, 180 (2001)

Authors: K.Sudarshan, A.G.C.Nair, R.N.Acharya, Y.M.Scindia, A.V.R.Reddy, S.B.Manohar,

A.Goswami

Title: Capture γ-Rays from 60 Co as Multi γ-Ray Efficiency Standard for Prompt γ-Ray Neutron

Activation Analysis

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ),E=thermal; measured prompt E γ ,I γ ; deduced

absolute γ-ray emission probabilities. Proposed efficiency standard.

Keynumber: 2001DE25

Reference: J.Radioanal.Nucl.Chem. 248, 103 (2001)

Authors: F.De Corte, S.Van Lierde

Title: Evaluation of (n,γ) Cross Sections from k_0 -Factors for Radionuclides with a Short Half-Life

and/or a Complex Activation-Decay Scheme

Keyword abstract: NUCLEAR REACTIONS 19 F, 40 Ar, 59 Co, 70 Zn, 76 Se, 79 Br, 103 Rh, 108 Pd, 109 Ag,

¹²¹, ¹²³Sb, ¹³³Cs, ¹⁷⁸Hf, ¹⁹⁸Pt, ²⁰⁴Hg(n,γ),E=thermal; measured activation σ . Comparisons with

previous results.

Keynumber: 1998GR02

Reference: Yad.Fiz. 61, No 1, 29 (1998); Phys.Atomic Nuclei 61, 24 (1998)

Authors: O.T.Grudzevich

Title: Isomeric Ratios for Radiative Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co, ⁸⁰Se, ⁸⁹Y, ⁷⁹Br, ⁸⁵Rb, ¹⁰³Rh, ¹⁵¹Eu, ¹¹⁵In, ¹⁸⁷Re

 (n,γ) , E=0-14 MeV; analyzed isomer production ratios. Cascade-evaporation model analysis.

Kevnumber: 1997ROZZ

Reference: INDC(CPR)-042/L, p.93 (1997)

Authors: J.Rong, G.Lui

Title: The Integral Test of the Reactor Dosimetry Data

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁴⁶, ⁴⁷, ⁴⁸Ti, ⁵⁴, ⁵⁶Fe, ⁵⁸, ⁶⁰Ni, ³²S(n,p), ²⁷Al, ⁵⁹Co, ⁶³Cu(n, α), ⁵⁵Mn, ⁵⁹Co, ⁵⁸Ni, ⁶⁵Cu(n,2n), ²³Na, ⁴⁵Sc, ⁵⁹Co, ⁵⁸Fe, ⁶³Cu, ¹¹⁵In, ¹⁹⁷Au, ²³²Th,

 $^{238}U(n,\gamma),\,^{235},\,^{238}U,\,^{232}Th,\,^{237}Np,\,^{239}Pu(n,F),\,^{47},\,^{48}Ti(n,np),\,^{6}Li,\,^{10}B,\,^{115}In(n,X),\\E=reactor;\,calculated$

spectrum averaged σ . Several data libraries compared.

Kevnumber: 1997KA47

Reference: J.Radioanal.Nucl.Chem. 215, 193 (1997) **Authors:** S.I.Kafala, T.D.MacMahon, S.B.Borzakov **Title:** Neutron Activation for Precise Nuclear Data

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁰Cr, ⁵⁹Co, ⁶⁴Zn, ⁷⁵As, ⁸⁵Rb, ¹¹³In, ¹²¹, ¹²³Sb, ¹³⁰Ba, ¹³³Cs, ¹³⁹La, ¹⁴⁰, ¹⁴²Ce, ¹⁴⁶Nd, ¹⁵¹, ¹⁵³Eu, ¹⁵²Gd, ¹⁵²Sm, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁷⁴Yb, ¹⁸⁰Hf, ¹⁸¹Ta,

 186 W, 232 Pa, 238 Np(n, γ),E=reactor; measured E γ ,I γ ; deduced capture σ ,resonance integral,least-squares fit parameters. Multi-element standard.

1

Keynumber: 1994YA25

NSR Search Results Page 2 of 10

Reference: Nucl.Sci.Eng. 118, 249 (1994)

Authors: N. Yamamuro

Title: Activation Cross-Section Calculations on the Production of Long-Lived Radionuclides **Keyword abstract:** NUCLEAR REACTIONS ⁵⁹Co, ⁵⁸, ⁶²Ni, ⁹³Nb, ⁹², ⁹⁸Mo, ¹⁰⁷Ag, ¹⁵¹Eu, ¹⁸⁵Re (n,γ), ⁶⁰Ni, ⁶³Cu, ⁹⁴Mo, ¹⁵⁸Dy(n,p), ⁶¹Ni, ⁹²Mo(n,np), ⁶³Cu, ⁶⁶Zn(n,α), ⁶⁰, ⁶⁴Ni, ⁹⁵, ⁹³Nb, ⁹⁴, ¹⁰⁰Mo, ¹⁵⁰Ni, ¹⁵¹Ni, ¹⁵²Ni, ¹⁵³Ni, ⁹⁵Ni, ⁹⁵N

 109 Ag, 151 , 153 Eu, 159 Tb, 187 Re(n,2n), 95 Mo(n,3n), $E \le 20$ MeV; calculated activation $\sigma(E)$.

Keynumber: 1993HA40

Reference: Nucl.Instrum.Methods Phys.Res. B83, 557 (1993) **Authors:** O.K.Harling, J.-M.Chabeuf, F.Lambert, G.Yasuda

Title: A Prompt Gamma Neutron Activation Analysis Facility using a Diffracted Beam

Keyword abstract: NUCLEAR REACTIONS 1 H,B,Gd,Cd, 59 Co,Sm,Cl,In(n, γ),E=0.0143 eV; measured Ε γ ; deduced diffracted beam facility detection sensitivities. Multi-layered graphite monochromator beam diffractor,prompt γ neutron activation analysis facility.

Keynumber: 1992HE19

Reference: Phys.Rev. C46, 2493 (1992) **Authors:** M.Herman, A.Horing, G.Reffo

Title: Gamma Emission in Precompound Reactions. II. Numerical Application

Keyword abstract: NUCLEAR REACTIONS 93 Nb, 59 Co, 181 Ta(n,γ),E=14.1 MeV; analyzed total γ-

spectra. Precompound reactions, parameter free interpretation.

Keynumber: <u>1990OB01</u>

Reference: Phys.Rev. C42, 1652 (1990) **Authors:** P.Oblozinsky, M.B.Chadwick

Title: Gamma-Ray Emission from Multistep Compound Reactions

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co, ⁹³Nb, ¹⁸¹Ta(n,γ),E=14 MeV; calculated γ-

production σ vs Ey; deduced reaction mechanism. Multi-step compound theory.

Keyword abstract: NUCLEAR STRUCTURE ⁹⁴Nb, ⁶⁰Co, ¹⁸²Ta; calculated r-stage,γ-escape widths.

Multi-step compound theory.

Keynumber: 1989PE04

Reference: Nucl.Instrum.Methods Phys.Res. B40/41, 1205 (1989)

Authors: R.Pepelnik

Title: Sensitivities of High-Flux 14 MeV Neutron Activation Analysis

Keyword abstract: NUCLEAR REACTIONS ¹¹B, ¹⁶O, ¹⁹F, ²⁰Ne, ²³Na, ²⁴Mg, ²⁷Al, ²⁸Si, ³⁴S, ⁴⁴Ca, ⁵¹V, ⁶⁰Ni, ⁷⁵As, ¹⁰⁹Ag(n,p), ³¹P, ⁴⁰Ar, ⁵⁵Mn, ⁶⁵Cu, ⁹³Nb(n,α), ³⁵Cl, ⁴⁵Sc, ⁶⁴Zn, ⁷¹Ga, ⁷⁶Ge, ⁸⁰Se, ⁷⁹Br, ⁸⁶Kr, ⁸⁵Rb, ⁹⁰Zr, ¹⁰⁰Mo, ⁹⁶Ru, ¹¹⁰Pd, ¹²⁴Sn, ¹²³Sb, ¹³⁰Te, ¹³⁶Xe, ¹³³Cs, ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴²Nd, ¹⁴⁴Sm, ¹⁶⁰Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁴Er, ¹⁶⁹Tm, ¹⁶⁸Yb, ¹⁸¹Ta, ¹⁸⁶W, ¹⁹⁸Pt, ¹⁹¹Ir, ¹⁹⁷Au, ²⁰³Tl, ²⁰⁸Pb(n,2n),Ti,Cr,Fe,Sr,Cd,Eu,Hf, ²⁰⁰Hg(n,X), ⁵⁹Co, ¹⁰³Rh, ¹¹⁵In, ¹²⁷I, ¹⁶⁴Dy, ¹⁷⁵Lu, ¹⁸⁷Re, ²²⁶Ra (n,γ), ²³²Th, ²³⁸U(n,F),E=14 MeV; calculated analytical sensitivities. Activation analysis.

Keynumber: 1987AI03

Reference: J.Phys.(London) G13, 945 (1987)

Authors: S.Ait-Tahar, P.E.Hodgson

Title: Weisskopf-Ewing Calculations: Neutron-induced reactions

Keyword abstract: NUCLEAR REACTIONS ⁵⁵Mn(n,n), ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu(n,p), (n,np), (n,2n),

NSR Search Results Page 3 of 10

 $(n,\gamma), (n,\alpha), (n,n\alpha), (n,t), (n,nd), (n,2p), (n,p\alpha), ^{59}Co, ^{63}, ^{65}Cu(n,n'),E=1-20$ MeV; calculated $\sigma(E)$. Weisskopf-Ewing model.

Keynumber: 1986TA19

Reference: Nucl.Instrum.Methods Phys.Res. A251, 574 (1986)

Authors: M.Takiue, H.Fujii, H.Ishikawa

Title: Liquid Scintillation Technique for the Determination of the Thermal Neutron Flux Density Due to

⁵⁹Co and ¹⁹⁷Au Monitors

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co, ¹⁹⁷Au(n,γ),E=thermal; measured E γ ,I γ ; deduced neutron flux densities. Liquid scintillation counter,activation technique.

Keynumber: 1986KR16

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n,γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Keynumber: 1986HI05

Reference: J.Radioanal.Nucl.Chem. 105, 351 (1986) **Authors:** P.Z.Hien, T.K.Mai, T.X.Quang, T.N.Thuy

Title: Determination of k₀-Factors by Thermal Neutron Activation Technique

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁶Mg, ⁵¹V, ⁵⁵Mn, ⁵⁶Fe, ⁶⁴Ni, ⁵⁹Co, ⁶³Cu, ¹⁰⁹Ag, ¹⁹⁶, ²⁰²Hg(n,γ),E=thermal; measured composite nuclear constant. Activation technique.

Keynumber: 1984KO29

Reference: Nucl.Phys. A427, 413 (1984) **Authors:** J.Kopecky, M.G.Delfini, R.E.Chrien

Title: Investigation of the 59 Co(n, γ) 60 Co Reaction with Unpolarized and Polarized Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n,γ), (polarized n,γ),E=thermal,24 keV; measured

Eγ, Ιγ, γ CP; deduced Q-value. 60 Co deduced levels J, π, γ-branching. Natural unoriented targets.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983AH01

NSR Search Results Page 4 of 10

Reference: Ann. Nucl. Energy 10, 41 (1983)

Authors: A.Ahmad

Title: Analysis and Evaluation of Thermal and Resonance Neutron Activation Data

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁰Ti, ⁵⁰Cr, ⁵¹V, ⁵⁵Mn, ⁵⁸Fe, ⁵⁹Co, ⁷⁴Se, ⁸⁵Rb, ⁹⁴, ⁹⁶Zr, ¹²³Sb, ¹³⁰Ba, ¹³³Cs, ¹³⁹La, ¹⁴⁰Ce, ¹⁵⁹Tb, ¹⁸⁰Hf, ¹⁸¹Ta, ¹⁹⁷Au(n,γ),E=thermal,epithermal;

analyzed data. Generalized least-squares fit.

Keynumber: 1981AR22

Reference: Yad.Fiz. 34, 1028 (1981)

Authors: L.Ya.Arifov, B.S.Mazitov, V.G.Ulanov

Title: Relative Probability of Isomer Population in Radiative Capture

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁹Co, ⁶⁸, ⁷⁰Zn, ⁷⁴, ⁷⁶Ge, ⁸⁰, ⁸²Se, ⁸⁴Kr, ⁸⁵Rb, ⁸⁴Sr, ⁸⁹Y, ¹⁰³Rh, ¹⁰⁸, ¹¹⁰Pd, ¹⁰⁹Ag, ¹¹⁴Cd, ¹¹³, ¹¹⁵In, ¹¹², ¹²⁰, ¹²², ¹²⁴Sn, ¹²¹Sb, ¹²⁰, ¹²⁶, ¹²⁸, ¹³⁰Te, ¹³³Cs, ¹³²Ba, ¹³⁶, ¹³⁸Ce, ¹⁵¹Eu, ¹⁶⁴Dy, ¹⁸¹Ta, ¹⁸⁴W, ¹⁸⁷Re, ¹⁹⁰Os, ¹⁹¹Ir, ¹⁹⁶Pt, ¹⁹⁶Hg

 (n,γ) ,E=thermal,0.2-2.8 MeV; 92 Mo (p,γ) ,E=1.8-7.4 MeV; analyzed σ (capture) isomer ratio vs E. Statistical theory.

Statistical theory.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part 3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Kevnumber: 1980GA14

Reference: Rev.Roum.Phys. 25, 107 (1980)

Authors: I.Garlea, C.Miron, E.Popa

Title: Integral Cross Sections Measured in Σ the Σ Spectrum

Keyword abstract: NUCLEAR REACTIONS 59 Co, 58 Fe, 55 Mn, 109 Ag(n, γ), 54 , 56 Fe, 59 Co, 46 , 48 Ti

(n,p), 59 Co(n,2n), 58 , 59 Co(n, α),E=thermal; measured integral σ .

Keynumber: 1979HOZY

Reference: NEANDC(OR)152L, p.31 (1979)

Authors: B.Holmqvist, V.Corcalciuc, A.Marcinkowski, G.A.Prokopets

Title: A Study of the Neutron Induced Reactions for ¹⁹F, ⁵⁶Fe and ⁵⁹Co in the Energy Interval 16 to 22

MeV

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ⁵⁶Fe, ⁵⁹Co(n, γ),E=16.2-21.8 MeV; measurd production σ for prompt γ ; deduced possible (n,2n), (n,np), (n,d) reactions; discussed reaction mechanism.

Keynumber: 1979GAZS

Reference: INDC(RUM)-11/LN, p.28 (1979) **Authors:** I.Garlea, C.Miron, E.Popa, M.Lupu

Title: Integral Cross Sections in the $\Sigma\Sigma$ Spectrum for Some Reactions used in Reactor Dosimetry

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁶Fe, ⁶⁵Cu, ⁵⁹Co, ⁴⁶, ⁴⁷, ⁴⁸Ti, ⁴⁶Sc(n,p), ⁵⁵Mn, ⁶³Cu,

 59 Co, 109 Ag(n,γ), 59 Co(n,2n),E=thermal,fast; measured σ.

NSR Search Results Page 5 of 10

Keynumber: 1979BUZS

Reference: INDC(YUG)-6/L (1979)

Authors: M.Budnar, F.Cvelbar, E.Hodgson, A.Hudoklin, V.Ivkovic, A.Likar, M.V.Mihailovic,

R.Martincic, M.Najzer, A.Perdan, M.Potokar, V.Ramsak

Title: Prompt γ-Ray Spectra and Integrated Cross Sections for the Radiative Capture of 14 MeV

Neutrons for 28 Natural Targets in the Mass Region from 12 to 208

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Si, ³¹P,S,Ca, ⁴⁵Sc, ⁵¹V,Cr, ⁵⁵Mn,Fe,

 59 Co,Cu,Se,Br,Sr, 89 Y,In,Sb, 127 I,Ba, 141 Pr, 165 Ho, 181 Ta,W,Tl,Pb, 209 Bi(n,γ),E=14.6 MeV; measured σ(Εγ).

Keynumber: 1978BO08

Reference: Nucl.Instrum.Methods 148, 331 (1978)

Authors: J.J.Bosman, H.Postma

Title: Spin Assignments in Low-Energy Neutron-Capture Reactions Using Polarized Neutrons and

Oriented Target Nuclei

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(polarized n, γ),E=0.065 eV; measured γ -spectra

from polarized target. 60 Co levels deduced J.

Keynumber: 1978AR22

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 42, 831 (1978); Bull.Acad.Sci.USSR, Phys.Ser. 42, No.4,

120 (1978)

Authors: L.Y.Arifov, B.S.Mazitov, V.G.Ulanov, S.A.Yusupbekova

Title: Measurement of the Relative Probabilities of Excitation of Isomer States during Radiative

Capture of Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS 59 Co, 89 Y, 164 Dy, 181 Ta, 187 Re, 191 Ir(n, γ),E=thermal;

measured nothing; analyzed data; deduced relative probabilities of excitation of isomeric states.

Keynumber: 1976SP14

Reference: Nucl.Sci.Eng. 60, 390 (1976)

Authors: R.R.Spencer, H.Beer

Title: Measurement of Neutron Radiative Capture in Cobalt-59

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n, γ),E=6-200 keV; measured σ (E,E γ). ⁶⁰Co

deduced resonances, Γn , $\Gamma \gamma$.

Kevnumber: 1976SP13

Reference: Nucl.Sci.Eng. 61, 346 (1976) **Authors:** R.R.Spencer, R.L.Macklin

Title: Neutron Capture Cross Section of Cobalt-59 in the Energy Range 2.5 to 1000 keV

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ),E < 1 MeV; measured σ (E). 60 Co deduced

resonances, $\Gamma \gamma$.

Kevnumber: 1975LOZX

Coden: THESIS DABBB 35B 4103

Keyword abstract: NUCLEAR REACTIONS ⁵⁵Mn, ⁵⁹Co(n,γ); measured σ(Eγ). ⁵⁶Mn, ⁶⁰Co

resonances deduced level-width.

Keynumber: 1974SPZV

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P59

NSR Search Results Page 6 of 10

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ),E=6-200 keV; measured σ(E,E γ). 60 Co resonances deduced γ -width.

Keynumber: 1974SPZR **Coden:** REPT KFK-1951,CRL

Keyword abstract: NUCLEAR REACTIONS 59 Co(n,γ),E=6-200 keV; measured total σ,Εγ,Ιγ. 60 Co

deduced resonances, J, γ-width, n-width.

Keynumber: 1974CO23

Reference: Nucl.Instrum.Methods 116, 251 (1974)

Authors: A.H.Colenbrander, T.J.Kennett

Title: The Application of a Statistical Description for Complex Spectra to the (n,γ) Reaction **Keyword abstract:** NUCLEAR REACTIONS ²⁷Al, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³Cu, ⁷⁵As, ¹⁰³Rh, ¹⁰⁹Ag, ¹¹⁵In, ¹³³Cs, ¹⁸⁵Re, ¹⁹⁷Au, ²⁰³Tl(n,γ); measured Εγ,Ιγ. ²⁸Al, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴Cu, ⁷⁶As, ¹⁰⁴Rh,

¹¹⁰Ag, ¹¹⁶In, ¹³⁴Cs, ¹⁸⁶Re, ¹⁹⁸Au, ²⁰⁴Tl deduced nuclear temperature, level densities.

Keynumber: 1973RIYT

Coden: REPT EANDC(US)-186'U' P52

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co, ²³⁸U, ¹³⁵Ba(n,γ),E=24 keV; measured Eγ. ⁶⁰Co, ²³⁹U. ¹³⁶Ba deduced transitions.

Keynumber: 1973RE06

Reference: Nucl. Phys. A206, 145 (1973)

Authors: E.R.Reddingius, J.J.Bosman, H.Postma

Title: A Study of the 59 Co(n, γ) Reaction with Polarized Neutrons and Polarized Nuclei

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ),En=0.065 eV,polarized nuclei; measured I γ

 (θ) ; 60 Co levels deduced J,Ge(Li) detector.

Keynumber: 1973RAZL

Coden: REPT EANDC(E)157-U,P44

Keyword abstract: NUCLEAR REACTIONS 59 Co, 63 , 65 Cu(n, γ); measured E γ . 60 Co, 64 , 65 Cu

deduced levels.

Keynumber: 1973MU09

Reference: J.Phys.Soc.Jap. 35, 8 (1973)

Authors: M.S.Murty, K.Siddappa, J.Rama Rao

Title: Capture Cross Sections of Intermediate Neutrons

 $\textbf{Keyword abstract:} \ \ \text{NUCLEAR REACTIONS} \ \ ^{59}\text{Co,} \ \ ^{68}\text{Zn,} \ \ ^{86}\text{Sr,} \ \ ^{87}\text{Rb,} \ \ ^{96}, \ ^{102}, \ ^{104}\text{Ru,} \ \ ^{98}, \ ^{100}\text{Mo,} \ \ ^{113}, \ \ ^{100}\text{Mo,} \ \ ^{100}\text{Mo,} \ \ ^{113}, \ \ ^{100}\text{Mo,}$

¹¹⁵In, ¹²²Sn, ¹³³Cs(n, γ),E=24 keV; measured capture σ .

Keynumber: 1973LOZV

Coden: JOUR PHCAA 29 No4,46 FB4

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n,γ); measured Eγ,Ιγ. ⁶⁰Co deduced transitions.

Keynumber: 1973HOYA **Coden:** REPT UJF-2922-F

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(polarized n,γ),E=thermal; measured Eγ,Ιγ. ⁶⁰Co

NSR Search Results Page 7 of 10

deduced levels,J,γ-mixing.

Keynumber: 1973HO24

Reference: Nucl.Phys. A209, 245 (1973)

Authors: J.Honzatko, J.Sebek, J.Kajfosz, J.Stehno, Z.Kosina, K.Konecny

Title: A Study of the 59 Co(n, γ) Reaction with a Polarized Target and Polarized Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS 59 Co(polarized n, γ),E=thermal,polarized nuclei;

measured Iy(θ). ⁶⁰Co levels deduced J. Single crystal Co- Fe target.

Keynumber: 1973HE15

Reference: Z.Phys. 258, 315 (1973)

Authors: R.Henkelmann

Title: Low Energy Gamma Rays from Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁹Co,Cu,Se,In,La, ¹⁴¹Pr,Nd,Sm,Eu,Gd, ¹⁵⁹Tb,Dy,

 165 Ho,Er, 169 Tm,Lu,Hg(n, γ); measured E γ ,I γ .

Keynumber: 1973GUZA **Coden:** REPT ANL/NDM-1

Keyword abstract: NUCLEAR REACTIONS 59 Co(n,n), (n,n' γ), (n, γ), (n,2n), (n,3n), (n,p), 59 Co(n,n'p),

 (n,α) , $(n,n'\alpha)$, (n,d), (n,t), $(n,\frac{3}{10})$; measured $\sigma(E;E(X-ray),\theta)$. ⁵⁹Co deduced levels, J,π .

Keynumber: 1973BOWN

Coden: REPT INDC(SEC)-36/L P37

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n,γ); measured Eγ.

Keynumber: 1972ST05

Reference: Nucl. Phys. A181, 241 (1972)

Authors: F.Stecher-Rasmussen, K.Abrahams, J.Kopecky

Title: A Study of the 59 Co(n, γ) 60 Co Reaction with Polarized Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(polarized n,γ);E=thermal; measured γ-CP. ⁶⁰Co

levels deduced J. π . Natural target.

Kevnumber: 1972REZZ

Coden: JOUR BAPSA 17 556,E R Reddingius,4/24/72

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n, γ),E=thermal; measured I γ (θ). ⁶⁰Co levels

deduced J.

Keynumber: 1972REZT

Coden: CONF Budapest, Contributions, P24, 10/11/72

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ), measured I γ (θ), γ -CP. 60 Co levels deduced J.

Keynumber: 1972RE11

Reference: Phys.Lett. 41B, 301 (1972)

Authors: E.R.Reddingius, J.J.Bosman, H.Postma

Title: Interference Effects in the Emission of Gamma Rays after Capture of Polarized Neutrons by

Polarized ⁵⁹Co Nuclei

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ),E=thermal; measured I γ (θ). 60 Co levels

deduced J. Polarized beam, target.

NSR Search Results Page 8 of 10

Keynumber: 1972HOYZ

Coden: CONF Budapest, Contributions, P22, 10/11/72

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ),E=thermal; measured I γ (θ).

Keynumber: 1972BOZH

Coden: CONF Budapest, Contributions, P26, 10/11/72

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n, γ), measured I γ (θ). ⁶⁰Co levels deduced J.

Keynumber: 1971RI10

Reference: Nucl. Phys. A173, 551 (1971)

Authors: F.Rigaud, J.L.Irigaray, G.Y.Petit, G.Longo, F.Saporetti

Title: Gamma-Ray Spectra Following the Capture of 14 MeV Neutrons by 59 Co, 93 Nb and 103 Rh **Keyword abstract:** NUCLEAR REACTIONS 59 Co, 93 Nb, 103 Rh(n, γ),En=14.06 MeV; measured σ

(E γ); deduced integrated σ . Natural targets.

Kevnumber: 1971ARZJ

Coden: CONF Legnaro(1f₇/₂ Nuclei),P251

Keyword abstract: NUCLEAR REACTIONS 36 Ar, 40 Ar, 40 K, 40 , 42 , 44 , 46 , 48 Ca, 47 Ti, 55 Mn, 57 Fe, 59 Co(n,γ),E=thermal; surveyed Εγ,Ιγ,γγ-coin,γγ(θ),γ-polarization data. 37 Ar, 41 Ar, 41 K, 41 , 43 , 45 , 47 , 49 Ca, 48 Ti, 56 Mn, 58 Fe, 60 Co deduced levels,J, π ,γ-mixing.

Keynumber: 1970STZZ

Reference: Thesis, Virginia Poly. (1970); Diss. Abst. Int. 31B, 3638 (1970)

Authors: E.P.Stergakos

Title: Studies of Resonances in ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn and ⁵⁹Co

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn, ⁵⁹Co(n,γ),E=thermal;measured

Eγ,Iγ. ²⁴Na, ²⁷Mg, ⁴²K, ⁵⁶Mn, ⁶⁰Co deduced resonances, level-width.

Kevnumber: 1970KAZP

Coden: REPT KFKI-71-14,10/14/71

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n, γ),E=thermal; measured $\gamma \gamma(\theta)$. ⁶⁰Co levels

deduced J,π,γ -mixing.

Keynumber: 1970AB09

Reference: Phys.Lett. 32B, 605 (1970)

Authors: K.Abrahams, J.Kopecky, F.Stecher-Rasmussen

Title: Negative Energy Resonances and Potential Capture in the 59 Co(n, γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(polarized n,γ), E=thermal; measured γ-circular

polarization. ⁶⁰Co deduced negative energy resonance, level-width.

Keynumber: 1969SM05

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 33, 1270 (1969); Bull.Acad.Sci.USSR, Phys.Ser. 33, 1175

(1970)

Authors: A.I.Smirnov, V.A.Shaburov, V.L.Alekseev, D.M.Kaminker, A.S.Rylnikov

Title: Crystal Diffraction Spectrometer Study of the γ Radiation from the 59 Co(n, γ) 60 Co Reaction **Keyword abstract:** NUCLEAR REACTIONS 59 Co(n, γ), E=thermal; measured E γ , I γ . 60 Co deduced

NSR Search Results Page 9 of 10

levels. Crystal-diffraction spectrometer.

Keynumber: 1969SA10

Reference: Nucl. Phys. A130, 353 (1969)

Authors: C.Samour, R.N.Alves, J.Julien, J.Morgenstern

Title: Capture Radiative Partielle des Neutrons de Resonance dans l'Or et le Cobalt

Keyword abstract: NUCLEAR REACTIONS 197 Au(n,γ), 59 Co(n,γ), E=3-300 eV, thermal; measured σ (E;Eγ), gamma(γi), direct capture cross section. 198 Au, 60 Co deduced level, J. Ge(Li) detector; natural

target.

.....

Keynumber: 1969ME05

Reference: Nucl. Phys. A130, 161 (1969)

Authors: J.Mellema, H.Postma

Title: Spin Investigation of Excited States of ⁶⁰Co by Means of Nuclear Orientation

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ), E = thermal; measured I γ . 60 Co levels

deduced J. Ge(Li) detector, aligned nuclei.

Keynumber: 1969KO05

Reference: Nucl.Phys. A127, 385 (1969)

Authors: J.Kopecky, E.Warming

Title: Circular Polarization Measurements with a Ge(Li) Detector

Keyword abstract: NUCLEAR REACTIONS 32 S, 35 Cl, 48 Ti, 55 Mn, 56 Fe, 59 Co, 63 Cu(polarized n,γ), E = thermal; measured γ circular polarization. 33 S, 36 Cl, 49 Ti, 56 Mn, 57 Fe, 60 Co, 64 Cu levels deduced J, γ-

mixing. Natural targets.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n,γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average y multiplicity.

Keynumber: 1969EI01

Reference: Z.Physik 219, 114 (1969)

Authors: J.Eichler

Title: Messung der Zirkularen Polarisation von γ-Strahlung nach Einfang Polarisierter Thermischer

Neutronen in Kernen

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁹Co,Mo,Sm(n,γ), E=thermal; measured circular

polarization; ²⁸Al levels deduced γ -mixing. ⁶⁰Co, ⁹⁶Mo, ¹⁵⁰Sm levels, deduced J, π .

Keynumber: 1969AB03

Reference: Nucl.Phys. A124, 34 (1969) **Authors:** K.Abrahams, W.Ratynski

Title: Circular Polarization of γ-Radiation After Capture of Polarized Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS 39 K, 40 Ca, 48 Ti, 59 Co, 113 Cd, 207 Pb(n,γ), E=thermal; measured Pγ, Eγ. 40 K, 41 Ca, 49 Ti, 60 Co, 114 Cd, 208 Pb, deduced levels, J, delta. Natural targets, Ge(Li)

detector.

NSR Search Results Page 10 of 10

Keynumber: 1968WA20

Reference: Phys.Rev. 176, 1314 (1968)

Authors: O.A. Wasson, R.E. Chrien, M.R. Bhat, M.A. Lone, M. Beer

Title: Direct Neutron Capture in $Co^{59}(n,\gamma)Co^{60}$

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n, γ),E <1.5 keV; measured σ (E;E γ). ⁶⁰Co deduced

resonances, levels.

Keynumber: 1968ME20

Reference: Can.J.Phys. 46, 2325 (1968)

Authors: J.S.Merritt, R.E.Green

Title: The Thermal Neutron Activation Cross Section of ⁵⁹Co

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ), E=thermal; measured σ .

Keynumber: 1968BRZZ

Reference: Program and Theses, Proc.18th Ann.Conf.Nucl.Spectroscopy and Struct.Of At.Nuclei, Riga,

p.37 (1968)

Authors: D.L.Broder, B.V.Nesterov, M.V.Panarin, L.P.Khamyanov

Title: Investigation of Capture γ-Rays in ⁵⁹Co, ⁴⁸Ti, ⁸⁹Y and ¹⁴⁹Sm with a Ge-Li Spectrometer

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵⁹Co, ⁸⁹Y, ¹⁴⁹Sm(n, γ), E=thermal; measured E γ ,

Iγ. ⁴⁹Ti, ⁶⁰Co, ⁹⁰Y, ¹⁵⁰Sm deduced transitions. Ge(Li) detectors.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal;

measured Ey; deduced O. Natural targets.

Keynumber: 1966PR07

Reference: Nucl.Phys. 88, 548(1966)

Authors: W.V.Prestwich, T.J.Kennett, L.B.Hughes

Title: A Study of the 59 Co(n, γ) 60 Co Reaction

Keyword abstract: NUCLEAR REACTIONS 59 Co(n, γ), E = thermal; measured E γ , I γ ; deduced Q.

⁶⁰Co deduced levels.

Kevnumber: 1964GE03

Reference: Nucl. Phys. 54, 405(1964)

Authors: H.U.Gersch, W.Rudolph, K.F.Alexander

Title: Vergleich der (n,γ) - und (d,p)-Reaktionen am Kobalt

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co(n,γ), En=pile; measured γ-spectrum. ⁶⁰Co deduced

levels.
