Metody probabilistyczne algorytmiki Laboratorium

Zadanie 1. Problem:

Input: Zbiór punktów z \mathbf{R}^2 , $P = \{p_1 = (x_1, y_1), \dots, p_n = (x_n, y_n)\}.$

Output: Para najbliższych sobie punktów $p_i \neq p_j$, zakładając euklidesową miarę odległości między punktami.

Zaimplementuj następujący algorytm typu 'dziel i zwyciężaj' dla zadanego problemu:

- 1. Znajdź wartość y dla której połowa punktów ma $y_i < y$, a druga połowa $y_i > y$. Na tej podstawie podziel punkty na dwa zbiory T i B.
- 2. Rekurencyjnie znajdź najbliższą parę punktów w zbiorach T i B (nazwijmy je $p_T, q_T \in T$ i $p_B, q_B \in B$) o odległościach $|p_T, q_T| = d_T$ oraz $|p_B, q_B| = d_B$ (niech $d = \min\{d_T, d_B\}$).
- 3. Zbadaj czy nie istnieją punkty $t \in T$ i $b \in B$, których odległość jest mniejsze od d (|t,b| < d).

Zbadaj zmienną losową liczby par punktów, których odległości należy policzyć scalając rozwiązania pod-problemów (załóż różne rozkłady punktów na \mathbf{R}^2). Na tej podstawie zoptymalizują złożoność obliczeniową algorytmu. Wypełniając wszystkie luki w tym szczątkowym opisie algorytmu Twoje rozwiązanie powinno mieć on złożoność pesymistyczną $O(n\log n)$. Jaka jest jego złożoność typu 'average case analysis'?