姓名:胡劭 系級:資工碩一 學號:M11215075

- 1. Answer each the following questions:
 - (a) Prove that if a > b > 0 and c = a + b, then $c \mod a = b$.
 - (b) Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

Sol:

a. $c \mod a = a + b \mod a$

$$=$$
 (a mod a) + (b mod a)

$$= 0 + b = b$$

可以用除法定理來看

c = 1 x a + b 所以當 c 除以 a 時候 餘數為 b #QED

b.

令 a,b,c 為整數,其中 $a \neq 0$,根據定義 a|b 意思是 b 是 a 的倍數。

$$∴$$
 b = a × x $且$ c = b × y

$$\therefore$$
 b = a × x \therefore c = a(xy)

故 c 是 a 的倍數-> a | c #QED

2. Compute the values (d, x, y) that the call EXTENDED-EUCLID(899, 493) returns.

$$\begin{pmatrix} 999 & 493 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 406 & 493 \\ 1 & 0 \\ -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 406 & 87 \\ 1 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 58 & 89 \\ 5 & -1 \\ -9 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 58 & 29 \\ 5 & -6 \\ -9 & 11 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 29 \\ |9 & -6 \\ |-3| & 11 \end{pmatrix}$$

$$|7x899 + 443x - 3| = 0$$

-6x899 + 11x493 = 29

$$(29, -6, 11) #$$

3. Prove that if a and b are any positive integers such that $a \mid b$, then

$$(x \mod b) \mod a = x \mod a$$

for any x. Prove, under the same assumptions, that

$$x = y \pmod{b}$$
 implies $x = y \pmod{a}$

for any integers x and y.

3.1 if a & b ∈ Et, s.t alb → (x mob b) mod a = x mod a for any x

3.2 3.1 已証出是對的,則

if
$$\chi \equiv y \pmod{b} \rightarrow \chi \equiv y \pmod{a}$$
 for all $x, y \in \mathbb{R}$
 $\chi \equiv y \pmod{b} \Rightarrow b \mid \chi - y \Rightarrow \chi - y = gb$

4. Prove that if p is prime and 0 < k < p, then $p \mid \binom{p}{k}$. Calculate that for all integers a, b and primes p,

$$(a+b)^p = a^p + b^p \pmod{p}$$

`: (P)是P的整數倍

by 2項式定理
$$(a+b)^{P} = \sum_{k=0}^{P} \binom{P}{k} a^{k}b^{P-k}$$
 $\Rightarrow \binom{P}{0} a^{0}b^{0} + \binom{P}{1} a^{1}b^{P-1} + \dots + \binom{P}{P} a^{0}b^{0}$ (mod P)
 $= b^{P} + \binom{P}{1} a^{1}b^{P-1} + \dots + a^{P}$ (mod P)
 $= b^{P} + 0 + \dots + 0 + a^{P}$ (mod P)
 $= a^{P} + b^{P}$ (mod P) *

5. Answer the following questions:

- (a) Find all solutions to the equation $35x = 10 \pmod{50}$.
- (b) Find all solutions to the equations $x = 4 \pmod{5}$ and $x = 5 \pmod{11}$.

Sol:

(a)
$$50 \mid 35x - 10 = 50k = 35x - 10 = 35x - 50k = 10$$

$$50 = 35*1 + 15$$

$$35 = 15*2 + 5$$

$$15 = 5*3 + 0$$

$$\Rightarrow$$
 5 = 35 - 15*2 = 35 - (50 - 35*1)*2 = 35 - 2*50 + 2*35 = -2*50 + 3*35

同乘 2

$$\Rightarrow$$
 10 = -4*50 + 6*35

$$\Rightarrow 6*35 \equiv 10 \pmod{50}$$

$$\therefore x \equiv 6 \pmod{50}$$

i.e.
$$x = 6 + 50k$$
, $\forall k \in Z$

$$n1 = 5, n2 = 11$$

N1 =
$$\frac{n}{n1}$$
 = $\frac{55}{5}$ = 11 N2 = $\frac{n}{n2}$ = $\frac{55}{11}$ = 5

$$M1 \equiv N1^{-1} \, (mod \, n1) \equiv 1$$

$$M2 \equiv N2^{-1} \, (mod \, n2) \equiv 9$$

$$x \equiv r1M1N1 + r2M2N2 \pmod{55}$$

$$\equiv$$
 44 + 225 (mod 55)

$$\equiv$$
 269 (mod 55)

$$\equiv$$
 49 (mod 55)

$$\therefore$$
 x = 49 + 55k, \forall k \in Z