Predicting California Housing Prices Using Regression Models

1. Project Overview (Executive Summary)

Background

Prediksi harga rumah yang akurat memiliki peran penting dalam pasar properti, baik bagi pembeli maupun penjual.

Di California — salah satu pasar perumahan paling dinamis di Amerika Serikat — fluktuasi harga sangat dipengaruhi oleh faktor demografis, geografis, dan ekonomi seperti lokasi, tingkat pendapatan, serta usia bangunan.

Model prediktif yang dibangun berdasarkan data historis perumahan memungkinkan agen properti, lembaga keuangan, dan pembuat kebijakan untuk memperkirakan nilai pasar secara lebih efisien.

Objective

Proyek ini bertujuan untuk **membangun model regresi terawasi (supervised regression model)** yang mampu memprediksi *nilai median rumah* di berbagai distrik di California menggunakan variabel sosial-ekonomi dan geografis dari data sensus.

Model ini diharapkan dapat berfungsi sebagai alat rekomendasi awal untuk:

- Perusahaan properti, dalam menentukan harga jual yang kompetitif
- Bank, untuk memperkirakan nilai agunan properti
- Pembuat kebijakan, dalam menganalisis distribusi keterjangkauan perumahan

Type of Machine Learning Problem

Proyek ini termasuk dalam kategori **Supervised Machine Learning Regression Problem**, di mana variabel target (median_house_value) bersifat kontinu dan merepresentasikan nilai median rumah (dalam USD) pada setiap wilayah atau blok sensus.

Business Motivation

Dengan pendekatan berbasis data, model prediksi ini dapat:

- Memberikan estimasi harga properti yang konsisten dan bebas bias
- Mendukung proses penilaian agunan atau risiko kredit dengan lebih cepat

28/10/2025, 11:31 CP3.ipynb - Colab

 Memungkinkan penerapan sistem harga dinamis berdasarkan lokasi dan tingkat pendapatan

2. Business Understanding

Problem Statement

Harga rumah di California bervariasi secara signifikan karena perbedaan tingkat pendapatan, lokasi geografis, usia bangunan, dan kepadatan penduduk.

Agen properti, lembaga keuangan, serta pembuat kebijakan sering kali mengalami kesulitan dalam memperkirakan harga pasar yang wajar secara cepat dan objektif.

Tanpa sistem prediktif berbasis data, estimasi harga masih sangat bergantung pada penilaian manual — yang cenderung lambat, mahal, dan rentan terhadap bias subjektif.

Business Question

Bagaimana cara kita **memprediksi nilai median rumah** di suatu distrik di California dengan menggunakan data demografis dan geografis yang tersedia secara publik? Faktor-faktor apa saja (seperti pendapatan, jarak ke laut, dan populasi) yang paling berkontribusi terhadap variasi harga rumah?

Business Objectives

- Membangun **model regresi berbasis data** yang mampu memprediksi harga rumah secara akurat.
- Mengidentifikasi **faktor utama (key drivers)** yang menyebabkan perbedaan harga antar wilayah.
- Menyediakan **referensi harga yang andal** untuk mendukung keputusan finansial maupun kebijakan publik.

Stakeholders

Stakeholder	Kebutuhan / Peran
Perusahaan properti	Menentukan harga jual yang kompetitif untuk properti baru
Bank / Lembaga keuangan	Menilai nilai agunan properti untuk pinjaman dan penilaian risiko
Pemerintah dan perencana kota	Memahami keterjangkauan perumahan dan ketimpangan harga antar wilayah

Goals and Success Metrics

Aspek	Definisi
Goal	Memprediksi median_house_value (USD) menggunakan variabel sosial-ekonomi dan spasial
Type of ML Task	Supervised → Regression

28/10/2025, 11:31 CP3.ipynb - Colab

 Evaluation Metrics
 RMSE (utama), MAE, dan R²

 Target Kinerja
 RMSE ≤ 50.000 USD dan R² ≥ 0.80

 Keberhasilan Bisnis
 Model mampu memberikan estimasi harga yang lebih cepat dan objektif dibanding metode manual

Definisi

3. Data Understanding

Dataset Overview

Aspek

Dataset yang digunakan dalam proyek ini adalah **California Housing Dataset**, yang berasal dari sensus Amerika Serikat tahun 1990.

Setiap baris mewakili informasi agregat dari satu distrik perumahan (disebut juga *block group*), yaitu unit geografis terkecil tempat data sensus dikumpulkan.

Kolom	Deskripsi	Tipe Data
longitude	Koordinat geografis (posisi barat-timur)	Numerik
latitude	Koordinat geografis (posisi utara-selatan)	Numerik
housing_median_age	Usia median rumah di distrik tersebut	Numerik
total_rooms	Jumlah total ruangan dalam distrik	Numerik
total_bedrooms	Jumlah total kamar tidur dalam distrik	Numerik
population	Jumlah total penduduk di distrik	Numerik
households	Jumlah rumah tangga dalam distrik	Numerik
median_income	Pendapatan median rumah tangga (dalam puluhan ribu USD)	Numerik
ocean_proximity	Variabel kategorikal yang menunjukkan jarak distrik terhadap laut	Kategorikal
<pre>median_house_value</pre>	Variabel target — nilai median rumah dalam USD	Numerik

Data Characteristics

- Dataset terdiri dari 14.448 baris dan 10 kolom, mencakup kombinasi fitur numerik dan kategorikal.
- Variabel (median_house_value) memiliki nilai maksimum 500.001 USD, yang menandakan adanya top-coding pada data sensus (harga rumah di atas batas tersebut tidak ditampilkan secara pasti).
- Fitur median_income dan ocean_proximity diperkirakan menjadi kontributor terbesar terhadap variasi harga rumah.
- Nilai hilang hanya ditemukan pada kolom (total_bedrooms) (~0,95% dari total data) dan akan ditangani dengan metode imputasi median pada tahap *data preparation*.

Analytical Purpose

Tahap pemahaman data (data understanding) bertujuan untuk:

- Mengevaluasi struktur dan kualitas dataset (missing values, tipe data, anomali).
- Mengidentifikasi variabel yang relevan untuk model prediksi harga.
- Memahami hubungan awal antar variabel numerik dan kategorikal melalui analisis korelasi serta visualisasi distribusi.

```
import sys, os, math, textwrap
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
csv_path = "/content/data_california_house.csv"
```

```
# Load
df = pd.read_csv(csv_path)
# Simpan salinan
df_raw_preview = df.head(10).copy()
# Standarisasi nama kolom
def std_cols(cols):
    return [c.strip().lower().replace(" ", "_") for c in cols]
df.columns = std_cols(df.columns)
# Pemetaan nama
rename map = {
    "medhouseval": "median_house_value",
    "medianhousevalue": "median house value",
    "medinc": "median_income",
    "houseage": "housing_median_age",
    "averooms": "avg_rooms",
    "avebedrms": "avg_bedrooms",
    "aveoccup": "avg_occup",
    "lat": "latitude",
    "lon": "longitude",
df = df.rename(columns=rename_map)
# Deteksi target
possible_targets = [c for c in df.columns if c in ("median_house_value", "medhousev
if not possible targets:
    raise ValueError("Target tidak ditemukan. Harap pastikan kolom 'median_house_va
target = possible_targets[0]
print("Target:", target)
df raw preview
```

ar	get: mediar	n_house_val	lue			
	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-119.79	36.73	52.0	112.0	28.0	193.0
1	-122.21	37.77	43.0	1017.0	328.0	836.0
2	-118.04	33.87	17.0	2358.0	396.0	1387.0
3	-118.28	34.06	17.0	2518.0	1196.0	3051.0
4	-119.81	36.73	50.0	772.0	194.0	606.0
5	-117.79	33.80	11.0	10535.0	1620.0	4409.0
6	-117.80	33.81	14.0	1206.0	142.0	572.0
7	-121.26	38.69	17.0	3917.0	638.0	1809.0
8	-117.65	33.48	6.0	1638.0	188.0	572.0
9	-122.27	37.97	10.0	15259.0	2275.0	7266.0

Next steps: (Generate code with df_raw_preview

New interactive sheet

```
# Ukuran dan tipe data
n_rows, n_cols = df.shape
dtypes = df.dtypes.astype(str).to_frame("dtype")
# Missing value
missing = df.isna().sum().to_frame("n_missing")
missing["missing_pct"] = (missing["n_missing"] / n_rows * 100).round(2)
missing = missing.sort_values("missing_pct", ascending=False)
# Ringkasan target
summary = pd.DataFrame({
    "n_rows": [n_rows],
    "n_cols": [n_cols],
    "target": [target],
    "target_min": [df[target].min()],
    "target_max": [df[target].max()],
    "target_mean": [df[target].mean()],
    "target_std": [df[target].std()],
})
display(dtypes.T)
display(missing.head(20))
display(summary)
```

	longitude	latitude h	ousing_m	edian_age	total_rooms	total_bedrooms	populat:
dtype	float64	float64		float64	float64	float64	floa
		n_missin	g missi	ng_pct			
tota	l_bedrooms	13	7	0.95			
le	ongitude	()	0.00			
	latitude	()	0.00			
housin	g_median_a	ge)	0.00			
to	tal_rooms	()	0.00			
p	opulation	()	0.00			
ho	ouseholds	()	0.00			
med	lian_income	()	0.00			
ocea	n_proximity	()	0.00			
mediar	n_house_valı	ue)	0.00			
n_r	ows n_cols		target	target_mi	n target_max	target_mean	targe
0 14	448 10	median_hou	se_value	14999.	0 500001.0	206824.624516	115365.4

```
TOPCODE = 500001.0 # nilai yang sering muncul sebagai batas atas di dataset ini
topcode_count = int((df[target] >= TOPCODE).sum())
topcode_pct = 100 * topcode_count / len(df)

print(f"Nilai target > {TOPCODE}: {topcode_count} baris ({topcode_pct:.2f}%)")

Nilai target > 500001.0: 678 baris (4.69%)
```

```
num_cols = [c for c in df.columns if c != target and df[c].dtype != "object"]
cat_cols = [c for c in df.columns if df[c].dtype == "object"]

print("Numerik:", num_cols)
print("Kategori:", cat_cols)

display(df[num_cols + [target]].describe().T)

for c in cat_cols:
    print(f"\nValue counts - {c}")
    display(df[c].value_counts(dropna=False).to_frame("count"))
```

Numerik: ['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedro
Kategori: ['ocean_proximity']

	count	mean	std	min	25%	
longitude	14448.0	-119.566647	2.006587	-124.3500	-121.8000	
latitude	14448.0	35.630093	2.140121	32.5400	33.9300	
housing_median_age	14448.0	28.618702	12.596694	1.0000	18.0000	
total_rooms	14448.0	2640.132683	2191.612441	2.0000	1451.0000	
total_bedrooms	14311.0	538.260709	423.577544	1.0000	295.0000	
population	14448.0	1425.157323	1149.580157	3.0000	784.0000	
households	14448.0	499.508929	383.098390	1.0000	279.0000	
median_income	14448.0	3.866667	1.891158	0.4999	2.5706	
median_house_value	14448.0	206824.624516	115365.476182	14999.0000	119600.0000	18

Value counts — ocean_proximity

count

2

ocean_proximity

ISLAND

 <1H OCEAN</td>
 6369

 INLAND
 4576

 NEAR OCEAN
 1879

 NEAR BAY
 1622

```
plt.figure()
df[target].plot(kind="hist", bins=50, edgecolor="black")
plt.title(f"Histogram: {target}")
plt.xlabel(target)
plt.ylabel("Count")
plt.tight_layout()
plt.show()
```



```
if "median_income" in df.columns:
    # Sampling agar plot ringan bila data besar
    sample = df.sample(min(20000, len(df)), random_state=42)
    plt.figure()
    plt.scatter(sample["median_income"], sample[target], s=6, alpha=0.4)
    plt.title("Median Income vs Median House Value")
    plt.xlabel("median_income")
    plt.ylabel(target)
    plt.tight_layout()
    plt.show()
else:
    print("Kolom 'median_income' tidak ditemukan.")
```



```
if "ocean_proximity" in df.columns:
    plt.figure()
    df["ocean_proximity"].value_counts().plot(kind="bar")
    plt.title("Distribution: ocean_proximity")
    plt.xlabel("ocean_proximity")
    plt.ylabel("Count")
    plt.tight_layout()
    plt.show()
else:
    print("Kolom 'ocean_proximity' tidak ditemukan.")
```



```
# Korelasi numerik
corr = df[num_cols + [target]].corr(numeric_only=True)

plt.figure(figsize=(8,6))
plt.imshow(corr, interpolation="nearest")
plt.xticks(range(len(corr.columns)), corr.columns, rotation=90)
plt.yticks(range(len(corr.columns)), corr.columns)
plt.colorbar()
plt.title("Correlation Heatmap (numeric features)")
plt.tight_layout()
plt.show()

# Top 10 korelasi absolut dengan target (selain target itu sendiri)
corr_target = corr[target].drop(target).abs().sort_values(ascending=False).head(10)
corr_target.to_frame("abs_corr_with_target")
```


EDA Insights

- Target (median_house_value) cenderung miring kanan; terdapat indikasi top-coding di sekitar 500001.
- (median_income) memperlihatkan korelasi positif terkuat dengan harga rumah.
- Kategori ocean_proximity menunjukkan perbedaan distribusi harga antar kelas (proximity berperan).
- Beberapa fitur *count* (total_rooms), population) bersifat skewed; transformasi (misalnya log1p) mungkin membantu stabilkan varian pada tahap pemodelan.

4. Data Preparation (Cleaning and Feature Engineering)

Tujuan:

- Menangani nilai hilang ((total_bedrooms)) dengan imputasi median.
- Membuat fitur baru berbasis rasio agar lebih representatif terhadap kondisi rumah.
- Mengubah fitur kategorikal menjadi numerik (encoding).
- Melakukan *scaling* pada fitur numerik.
- Menyimpan hasil akhir yang siap digunakan untuk modeling.

```
# Cek missing value
df.isna().sum()
# Imputasi median untuk kolom total_bedrooms
median bedroom = df["total bedrooms"].median()
df["total_bedrooms"] = df["total_bedrooms"].fillna(median_bedroom)
print(f"Nilai NaN pada total_bedrooms telah diganti dengan median: {median_bedroom}
print("\nCek kembali missing values:")
print(df.isna().sum())
Nilai NaN pada total_bedrooms telah diganti dengan median: 435.0
Cek kembali missing values:
longitude
latitude
housing_median_age
total rooms
total bedrooms
population
                      0
households
                      0
median income
ocean_proximity
median_house_value
dtype: int64
```

```
# Buat rasio baru
df["rooms_per_household"] = df["total_rooms"] / df["households"]
```

```
df["bedrooms_per_room"] = df["total_bedrooms"] / df["total_rooms"]
df["population_per_household"] = df["population"] / df["households"]

# Cek ringkasan
df[["rooms_per_household", "bedrooms_per_room", "population_per_household"]].descri
```

	rooms_per_household	bedrooms_per_room	<pre>population_per_household</pre>	
count	14448.000000	14448.000000	14448.000000	ıl.
mean	5.423404	0.213237	3.040518	
std	2.287619	0.060405	6.868167	
min	0.846154	0.054994	0.750000	
25%	4.452249	0.175358	2.427269	
50%	5.229318	0.202855	2.816355	
75%	6.047619	0.239421	3.280445	
max	132.533333	1.000000	599.714286	

```
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
# Pisahkan kolom numerik dan kategorikal
cat_cols = ["ocean_proximity"] if "ocean_proximity" in df.columns else []
num_cols = [c for c in df.columns if c not in cat_cols + ["median_house_value"]]
# Preprocessing pipeline
numeric_transformer = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="median")),
    ("scaler", StandardScaler())
])
categorical_transformer = Pipeline(steps=[
    ("encoder", OneHotEncoder(handle_unknown="ignore"))
])
preprocessor = ColumnTransformer(transformers=[
    ("num", numeric_transformer, num_cols),
    ("cat", categorical_transformer, cat_cols)
])
print("Jumlah fitur numerik:", len(num_cols))
print("Jumlah fitur kategorikal:", len(cat_cols))
Jumlah fitur numerik: 11
Jumlah fitur kategorikal: 1
```

```
from sklearn.model_selection import train_test_split

# Pisahkan X dan y
X = df.drop("median_house_value", axis=1)
y = df["median_house_value"]

# Split data 80% train, 20% test
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42)

print("Train size:", X_train.shape)
print("Test size:", X_test.shape)

Train size: (11558, 12)
Test size: (2890, 12)
```

```
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline

# Pipeline gabungan preprocessing + model baseline
pipe_baseline = make_pipeline(preprocessor, LinearRegression())

# Fit ke data train
pipe_baseline.fit(X_train, y_train)

# Evaluasi sederhana
train_score = pipe_baseline.score(X_train, y_train)
test_score = pipe_baseline.score(X_test, y_test)
print(f"R2 Train: {train_score:.3f}")
print(f"R2 Test: {test_score:.3f}")

R2 Train: 0.655
R2 Test: 0.636
```

Data Preparation Summary

- Missing value (total_bedrooms) berhasil diimputasi dengan median.
- Fitur baru berhasil ditambahkan:

```
rooms_per_householdbedrooms_per_roompopulation_per_household
```

- Encoding dan scaling sudah siap untuk pipeline modeling.
- Data dibagi menjadi 80% train dan 20% test, dengan distribusi target seimbang.

 Baseline pipeline (Linear Regression) berhasil dijalankan tanpa error — siap lanjut ke tahap modeling.

5. Modeling and Evaluation

Tujuan:

- Melatih beberapa model regresi untuk memprediksi (median_house_value).
- Membandingkan performa model menggunakan metrik RMSE, MAE, dan R².
- Menentukan model terbaik berdasarkan trade-off akurasi dan kompleksitas.
- Menyimpan model terbaik untuk tahap berikutnya (interpretasi and deployment).

```
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Fungsi evaluasi
def evaluate_model(name, y_true, y_pred):
    rmse = np.sqrt(mean_squared_error(y_true, y_pred))
    mae = mean_absolute_error(y_true, y_pred)
    r2 = r2_score(y_true, y_pred)
    return {"Model": name, "RMSE": rmse, "MAE": mae, "R2": r2}
```

```
# Daftar model yang akan diuji
models = {
    "Linear Regression": LinearRegression(),
    "Ridge Regression": Ridge(alpha=1.0, random_state=42),
    "Lasso Regression": Lasso(alpha=0.001, random_state=42, max_iter=10000),
    "Random Forest": RandomForestRegressor(
        n_estimators=150, max_depth=None, random_state=42, n_jobs=-1),
    "XGBoost": XGBRegressor(
        n_estimators=250, learning_rate=0.1, max_depth=6, subsample=0.8,
        colsample_bytree=0.8, random_state=42, n_jobs=-1)
}
results = []
for name, model in models.items():
    pipe = Pipeline(steps=[("preprocessor", preprocessor),
                           ("model", model)])
    pipe.fit(X_train, y_train)
    y_pred = pipe.predict(X_test)
    metrics = evaluate_model(name, y_test, y_pred)
    results.append(metrics)
```

```
results_df = pd.DataFrame(results).sort_values("RMSE")
    results df
   /usr/local/lib/python3.12/dist-packages/sklearn/linear_model/_coordinate_descent.py:
     model = cd_fast.enet_coordinate_descent(
                                                               翢
                                                         R²
                 Model
                                RMSE
                                               MAE
    4
               XGBoost 45933.170938 30135.305831 0.841971
    3
         Random Forest 50603.049211 32696.723405 0.808204
       Ridge Regression 69672.339799 49298.536788 0.636415
    0 Linear Regression 69680.849130 49302.194063 0.636326
    2 Lasso Regression 69687.944259 49305.798084 0.636252
Next steps: (
            Generate code with results df
                                            New interactive sheet
```

```
# Prediksi ulang pakai model terbaik
y_pred_best = best_model.predict(X_test)

plt.figure(figsize=(5,5))
plt.scatter(y_test, y_pred_best, alpha=0.4, edgecolor='k')
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title(f"Actual vs Predicted - {best_model_name}")
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
plt.tight_layout()
plt.show()

# Residual plot
residuals = y_test - y_pred_best
plt.figure()
```

```
plt.hist(residuals, bins=50, color="orange", edgecolor="black")
plt.title("Distribution of Residuals")
plt.xlabel("Prediction Error (Residual)")
plt.ylabel("Count")
plt.tight_layout()
plt.show()
```


Modeling Insights

- Dari hasil evaluasi, XGBoost Regressor memberikan performa terbaik dibanding model lainnya (Linear, Ridge, Lasso, Random Forest).
 Model ini mampu menangkap hubungan non-linear antar fitur seperti median_income, latitude, dan ocean_proximity.
- Plot Actual vs Predicted menunjukkan sebaran titik yang mendekati garis diagonal merah — artinya prediksi sangat dekat dengan nilai aktual. Hanya sebagian kecil data di rentang harga tinggi (sekitar 500.000 USD) yang tampak "menumpuk" akibat batas maksimum data (top-coding), bukan kesalahan model.
- **Distribusi residual** berbentuk lonceng simetris di sekitar nol, menunjukkan model tidak bias secara

6. Feature Importance and Interpretation

Tujuan:

- Mengidentifikasi fitur paling berpengaruh terhadap prediksi harga rumah.
- Memberi interpretasi bisnis dari hasil model (kenapa harga naik/turun).
- Menilai apakah model masuk akal secara ekonomi dan geografis.

```
# Pastikan best model yang disimpan berasal dari XGBoost
from joblib import load
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
best_model = load("best_model.pkl")
model_xgb = best_model.named_steps["model"] # ambil model di dalam pipeline
# Ambil nama kolom hasil one-hot encoding
cat cols = ["ocean proximity"] if "ocean proximity" in df.columns else []
num_cols = [c for c in df.columns if c not in cat_cols + ["median_house_value"]]
encoder = best_model.named_steps["preprocessor"].named_transformers_["cat"]["encode
# Dapatkan semua nama fitur setelah preprocessing
encoded cat names = list(encoder.get feature names out(cat cols)) if len(cat cols)
all_feature_names = num_cols + encoded_cat_names
# Buat dataframe feature importance
importances = model_xgb.feature_importances_
fi df = pd.DataFrame({
```

```
"Feature": all_feature_names,
    "Importance": importances
}).sort_values("Importance", ascending=False)

# Plot 15 fitur teratas
plt.figure(figsize=(8,6))
plt.barh(fi_df.head(15)["Feature"], fi_df.head(15)["Importance"], color="teal")
plt.gca().invert_yaxis()
plt.title("Top 15 Feature Importance (XGBoost)")
plt.xlabel("Relative Importance")
plt.ylabel("Feature")
plt.tight_layout()
plt.show()
```

28/10/2025,	11:31	CP3.ipynb - Colab

Next steps: Generate code with fi_df New Media Exature Importance (XGBoost)

Feature Importance and Interpretation (Updated)

ocean_proximity_INLAND

Berdasarkan hasil featura importance dari model XGBoost, diperoleh bahwa variabel paling

berpengaruhoterhandap predikasil median_house_value adalah:

Rank ocean_proximity_NEAR_CCEAN

1 ocean_proximity_INLAND

Lokasi merupakan faktor dominan. Wilayah berlabel INL/

2 median_incomsing_median_age

Pendapatan rata-rata penduduk memiliki hubungan positi

3 population_per_household

Mencerminkan kepadatan hunian. Semakin besar populas