1. Perform histogram equalization of the following 3-bit grayscale image whose gray level distribution is given as follows

~			_	_		_	-	_
Gray	0	1	2	3	4	5	6	7
Level								
No. of	8	4	12	3	5	10	2	2
Pixels								
2.1010								

2. Perform histogram matching for above histogram using histogram of the following image

$$\begin{bmatrix} 4 & 4 & 4 & 4 & 4 \\ 3 & 4 & 5 & 4 & 3 \\ 3 & 5 & 5 & 5 & 3 \\ 3 & 4 & 5 & 4 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{bmatrix}$$

3. Apply various filters such as mean, median, Sobel, Prewitt and LoG on the following image. Write the masks of all these filters.

4. Translate following object by [-2, 3] and rotate it by 45° with respect to point (1,1). Compute the joint transformation matrix.

1	0	0	3	0	1	1	1
0	3	3	0	4	4	2	3
1	0	0	0	3	4	1	0
0	1	0	0	0	0	2	3
3	2	3	0	0	0	1	2
3	0	3	0	2	4	0	1
3	0	3	3	3	0	0	0
0	2	3	0	2	3	1	0

- 5. Apply i) region growing and ii) region splitting and merging algorithms on the given image (above matrix) for segmentation.
- 6. Given a 3x3 image matrix with pixel intensity values ranging from 0 to 255, apply the Sobel operator for edge detection in the horizontal direction and in the vertical direction. Provide the resulting gradient values at the location of [1,0].

12	2	0					
30	100	40					
2	2	111					
(Input Image)							

- (b) Determine the direction of the gradient at [1,0] using the horizontal and vertical gradient values obtained.
- (c) Given the gradient magnitude image and gradient directions obtained from the Sobel edge detection algorithm, apply non-maximum suppression at a specific location (1,0) in the image. Provide the resulting value after NMS at that location, considering the local neighborhood for suppression.
- 7. Explain all the steps in canny edge detection with suitable examples for all stage.
- 8. Derive the coefficients of various mask of 3x3 and 5x5 used in computer vision. Comment whether they are separable or not.
- 9. The following matrix represents binary image where 1s represent foreground (objects) and 0s represent background. You can apply a component labelling algorithm to this matrix to assign unique labels to connected components.

1	0	0	0	0	0	0	0	1	1	1	0
1	1	0	0	0	0	0	0	1	1	1	0
1	1	1	0	0	0	0	0	1	1	1	0
0	1	1	0	0	0	0	0	1	1	1	0
0	0	1	0	0	0	0	0	1	1	0	0
0	0	1	1	1	1	0	0	0	1	1	1
0	0	0	1	1	1	0	0	0	1	1	1
0	0	0	1	1	0	0	0	0	1	1	1

10. For the following image

0	3	2	0
3	2	3	3
0	1	0	3
3	0	3	1
3	2	0	3

- i) Write the GCLM at 45°
- ii) Find the Homogeneity from GLCM
- iii) Find Correlation from GLCM