Machine Learning

Linear Models

Fabio Vandin

October 25th, 2022

Perceptron: A Modern View

The previous presentation of the Perceptron is the standard one.

However, we can derive the Perceptron in a different way...

Assume you want to solve a:

- binary classification problem: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$
- with linear models
- with loss $\ell(\mathbf{w}, (\mathbf{x}, y)) = \max\{0, -y\langle \mathbf{w}, \mathbf{x}\rangle\}$.

Approach: ERM \Rightarrow need to find the model/hypothesis with smallest training error

How?

Note: this is a common framework in all of machine learning!

Gradient Descent (GD)

General approach for minimizing a differentiable convex function $f(\mathbf{w})$

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function

Definition

The gradient $\nabla f(\mathbf{w})$ of f at $\mathbf{w} = (w_1, \dots, w_d)$ is

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$

Intuition: the gradient points in the direction of the greatest rate of increase of f around w

weR2

GD algorithm:

GD algorithm:

Notes:

- output vector could also be $\mathbf{w}^{(T)}$ or $\arg\min_{\mathbf{w}^{(t)} \in \{1,...,T\}} f(\mathbf{w}^{(t)})$
- returning w
 is useful for nondifferentiable functions (using subgradients instead of gradients...) and for stochastic gradient descent...
- η : learning rate; sometimes a time dependent $\eta^{(t)}$ is used (e.g., "move" more at the beginning than at the end)

GD algorithm:

Notes:

- output vector could also be $\mathbf{w}^{(T)}$ or $\arg\min_{\mathbf{w}^{(t)} \in \{1,...,T\}} f(\mathbf{w}^{(t)})$
- returning w is useful for nondifferentiable functions (using subgradients instead of gradients...) and for stochastic gradient descent...
- η : learning rate; sometimes a time dependent $\eta^{(t)}$ is used (e.g., "move" more at the beginning than at the end)

Note: there are guarantees on the number of iterations required by GD to return a *good* value of $\vec{\mathbf{w}}$ under some assumptions on $\vec{\mathbf{f}}$ (see the book for details)

Stochastic Gradient Descent (SGD)

Idea: instead of using exactly the gradient, we take a (random) vector with *expected value* equal to the gradient direction.

```
SGD algorithm: \mathbf{w}^{(0)} \leftarrow \mathbf{0}; \text{ for } \mathbf{w} \text{ if } \mathbf{w}^{(0)} \leftarrow \mathbf{w} \text{ if } \mathbf{w}^{(0)} \leftarrow \mathbf{v} \text{ if } \mathbf{w}^{(0)}  for t \leftarrow 0 to T - 1 do  \text{ choose } \mathbf{v}_t \text{ at random from distribution such that } \mathbf{E}[\mathbf{v}_t|\mathbf{w}^{(t)}] \in \nabla f(\mathbf{w}^{(t)});   \text{ /* } \mathbf{v}_t \text{ has } \textit{expected value } \text{ equal to the gradient of } f(\mathbf{w}^{(t)}) \text{ */ } \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \mathbf{v}_t;   \mathbf{return } \mathbf{\bar{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)};
```

Stochastic Gradient Descent (SGD)

Idea: instead of using exactly the gradient, we take a (random) vector with *expected value* equal to the gradient direction.

SGD algorithm:

```
\mathbf{w}^{(0)} \leftarrow \mathbf{0}:
for t \leftarrow 0 to T-1 do
        choose \mathbf{v}_t at random from distribution such that \mathbf{E}[\mathbf{v}_t|\mathbf{w}^{(t)}] \in \nabla f(\mathbf{w}^{(t)});
       /* \mathbf{v}_t has expected value equal to the gradient of f(\mathbf{w}^{(t)}) */
       \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \mathbf{v}_t
return \bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)};
                                                                                                               SGD iterations
                                                                                                               average of w(t)
```

Note: there are guarantees on the number of iterations required by GD to return a good, in expectation, value of $\overline{\mathbf{w}}$ under some assumptions on f (see the book for details)

Why should we use SGD instead of GD?

$$S = \begin{cases} (x_1, y_3), \dots \\ (x_m, y_m) \end{cases}$$

Question: when do we use GD in the first place?

Answer: for example to find \mathbf{w} that minimizes $L_S(\mathbf{w})$

That is: we use GD for
$$f(\mathbf{w}) = L_S(\mathbf{w}) = \frac{A}{m} \sum_{i=1}^{m} l(h_{\mathbf{w}}, \mathbf{w})$$

Why should we use SGD instead of GD?

Question: when do we use GD in the first place?

Answer: for example to find **w** that minimizes $L_S(\mathbf{w})$

```
That is: we use GD for f(\mathbf{w}) = L_S(\mathbf{w})

\Rightarrow \nabla f(\mathbf{w}) depends on all pairs (\mathbf{x}_i, y_i) \in S, i = 1, ..., m: may require long time to compute it!
```

What about SGD?

```
We need to pick \mathbf{v}_t such that \mathbf{E}[\mathbf{v}_t|\mathbf{w}^{(t)}] \in \nabla f(\mathbf{w}^{(t)}): how?
Pick a random (\mathbf{x}_i, y_i) \in S \Rightarrow \text{pick } \mathbf{v}_t \in \nabla \ell(\mathbf{w}^{(t)}, (\mathbf{x}_i, y_i)):
```

- satisfies the requirement!
- requires much less computation than GD

Analogously we can use SGD for regularized losses, etc.

Back to Our Linear Classification Problem

- binary classification problem: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$
- with linear models
- with loss $\ell(\mathbf{w}, (\mathbf{x}, y)) = \max\{0, -y\langle \mathbf{w}, \mathbf{x}\rangle\}$.

How to find the ERM solution? SGD!

SGD for Linear Classification

SGD: take i unitarouly at wardon from {s,..., m}.

Let (x', y') be the corresponding point in the twining set, and consider the vector $\nabla l(\vec{w}, (x', y'))$

Note that GD considers (as gradient of the function to minimize): $\nabla L_{S}(\vec{w}) = \frac{1}{m} \sum_{i=1}^{m} \nabla \ell(\vec{w}, (\vec{x}_{i}, y_{i}))$

and for SGD we have: In the (uniform distribution) $\mathbb{E}\left[\nabla l(\vec{w}, (\vec{x}', y_i))\right] = \sum_{i=1}^{n} \Pr\left[(\vec{x}', y_i) = (\vec{x}_i, y_i)\right] \cdot \nabla l(\vec{w}, (\vec{x}_i, y_i))$ $=\frac{1}{m}\sum_{i=1}^{m} \nabla l(\vec{w}_{i}(\vec{x}_{i}, y_{i}))$ $= \nabla L_S(\vec{w})$

SGD algorithm,
$$\vec{w}^{(0)} = 0$$
; for $t = 0$ to $T-1$ do f pick i uniformly of various from $f_1,...,m$; $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta Pl(\vec{w}^{(t)},(\vec{x}_i,y_i))$ (x)

Figure $\vec{v} = (\vec{x}_i,\vec{y}_i)$ $\vec{v}^{(t)} = (\vec{x}_i,\vec{y}_i)$ $\vec{v}^{(t)} = (\vec{x}_i,\vec{y}_i)$ $\vec{v}^{(t)} = (\vec{x}_i,\vec{y}_i)$ $\vec{v}^{(t)} = (\vec{x}_i,\vec{x}_i,\vec{y}_i)$ $\vec{v}^{(t)} = (\vec{x}_i,\vec{x}_i,\vec{y}_i)$ otherwise $\vec{v}^{(t)} = (\vec{x}_i,\vec{x}_i,\vec{y}_i)$ otherwise $\vec{v}^{(t)} = (\vec{x}_i,\vec{y}_i,\vec{y}_i)$ otherwise $\vec{v}^{(t)} = (\vec{x}_i,\vec{y}_i,\vec{y}_i)$ otherwise $\vec{v}^{(t)} = (\vec{x}_i,\vec{y}_i,\vec{y}_i)$

Assube
$$y_{i} < \vec{w}, \vec{x}_{i} > 0$$
:

$$\nabla (-y_{i} < \vec{w}, \vec{x}_{i} >) = \begin{bmatrix}
\frac{\partial (-y_{i} < \vec{w}, \vec{x}_{i} >)}{\partial w_{i}} & \frac{\partial (-y_{i} < \vec{w}, \vec{x}_{i} >)}{\partial w_{i}}
\end{bmatrix}$$
Let $\vec{x}_{i} = \begin{bmatrix} \vec{x}_{i1} \\ \vdots \\ \vec{x}_{id} \end{bmatrix}$. Since $-y_{i} < \vec{w}, \vec{x}_{i} > = -y_{i} \cdot \underbrace{\sum_{j=1}^{d} (w_{j} \times_{ij})}_{\partial w_{j}}$

$$\Rightarrow \frac{\partial (-y_{i} < \vec{w}, \vec{x}_{i} >)}{\partial w_{j}} = -y_{i} \times_{ij}$$

$$\Rightarrow \nabla l(\vec{w}, (\vec{x}_{i}, y_{i})) = \begin{bmatrix} -y_{i} \times_{i1}, & -y_{i} \times_{i2}, & \dots, & -y_{i} \times_{id} \end{bmatrix}$$

$$= -y_{i} \times_{i}$$
Therefore, in the pseudocode, (*) is replaced by:

if $y_{i} < \vec{w}(t)$, $\vec{x}_{i} > 0$ then?

$$\vec{y}(t+1) = \vec{w}(t) + \eta y_{i} \times_{i}$$

Comparison: "perception" "SGD peræptron" vs SGD perceptron perceptron choose a point at various (not only a missclassified) 1) choose a missclossified point $\gamma = 1$ 3) return "best" note) return w Main difference: 1), but you can "speed up" the
"SGD perception" by, at each iteration, pick a missolar
sified point at random > "SGD perception" is the "perceptron"

