Arquitetura e Organização de Sistemas Computadorizados

Osmar de Oliveira Braz Junior

Objetivos

- compreender a organização lógica de um computador e as funções de cada componente lógico;
- conhecer os níveis de abstração de um sistema computacional;
- identificar os tipos de dispositivo de armazenamento e suas funções;

Computador

Qualquer tipo de dispositivo capaz de receber uma entrada e que retorna uma saída após realizar uma série de operações com base nos valores recebidos e armazenados.

Seis Camadas de Abstração

1- Transistores, Tensão e Corrente Elétrica

Estuda o funcionamento de transistores e circuitos levando em conta propriedades físicas da corrente elétrica.

2- Portas Lógicas

Compostas por transistores, estuda como criar estruturas mais complexas combinando-se as diversas portas como AND, OR e NOT para <u>criar</u> estruturas como multiplexadores, flip-flops e somadores.

3 - Registradores e Unidades Lógicas Aritméticas

Composta por muitos flip-flops, somadores e multiplexadores. É neste nível que costuma trabalhar um Arquiteto.

4 - Instruções

Como combinar as instruções da camada anterior para realizar comandos mais sofisticados como as operações da linguagem C e como coordenar o funcionamento de um sistema operacional por meio de interrupções e outros recursos.

5 - Programação

Estudo do funcionamento de funções de bibliotecas, APIs e a programação de aplicativos e programas de computador simples.

```
private final CountDownLatch mConnected = new CountDownLatch(1);
private static Object sThreadRefLock = new Object();
private static int sThreadRefCount;
private static HandlerThread sHandlerThread;
 * Create a new WifiManager instance.
 * Applications will almost always want to use
 * {@link android.content.Context#qetSystemService Context.qetSystemService()} to retrieve
 * the standard {@link android.content.Context#WIFI SERVICE Context.WIFI SERVICE}.
 * @param context the application context
 * @param service the Binder interface
 * is a system private class.
public WifiManager(Context context, IWifiManager service) {
   mContext = context;
   mService = service;
   Log.i(TAG,
   init();
 * Return a list of all the networks configured in the supplicant.
 * fields are filled in:
 * networkId
 * BSSID
* priority
 * allowedProtocols
 * allowedAuthAlgorithms
 * allowedPairwiseCiphers
 * allowedGroupCiphers
```


6 - Aplicativo/Usuário

Estuda o funcionamento de um programa de computador do ponto de vista do usuário. Como utilizar um aplicativo já criado.

Organização de Computadores

Estuda como os recursos de hardware são implementados:

- sinais de controle
- interfaces com periféricos
- tecnologia de memória

Estudo dos requisitos necessários para que o computador funcione e de como organizar os diversos componentes para obter melhor desempenho:

- conjunto de instruções
- número de bits usados para representar dados
- mecanismos de E/S
- técnicas de endereçamento de memória

Estrutura é o modo como os componentes são inter-relacionados

 Função é a operação individual de cada componente como parte da estrutura

Todas funções do computador são:

- □ Processamento de dados
- Armazenamento de dados
- Movimentação de dados
- Controle

Estrutura de Alto Nível

Estrutura da CPU

Estrutura da Unidade de Controle

Estrutura da Máquina de Von Neumman

Modelo de Von Neumann

Modelo de arquitetura de computador digital está baseado em três premissas:

- a) os dados e as instruções ficam armazenadas no mesmo **espaço de memória**;
- b) cada espaço de memória possui um **endereço**, que identifica a posição de um conteúdo;
- c) as instruções são executadas de forma sequencial.

Histórico dos computadores

Podemos dividir em gerações:

- ■1a. Geração: eletro-mecânicos (válvulas)
- ■2a. Geração: eletrônicos (silício)
- ■3a. Geração: transistorizados (transistores)
- 4a. Geração: microeletrônica (circuito integrado)
- ■5a. Geração: múltiplos núcleos

Hardware

CPU - Central Processing
Unit - Unidade Central de
Processamento

Gabinete / Torre

Mother board Placa-mãe

Software

Software

- Um caminho de conexão conectando dois ou mais dispositivos
- Normalmente em 'broadcast', mas pode ser dedicado
- Frequentemente agrupados, pode haver uma série de canais no mesmo barramento
- Linhas de alimentação (potência) geralmente não são mostradas

Exemplificação Física

Barramento PROBLEMAS DE UM ÚNICO BARRAMENTO

- •Muitos dispositivos em um único barramento levam a atrasos de propagação:
 - pela distância a ser percorrida pelos dados
 - pela demanda alta de transferência de dados, que exige um controle maior do barramento
- A maioria dos sistemas atuais utiliza múltiplos barramentos para contornar o problema

Estrutura de alto desempenho

Ponte = buffer ou dispositivo de armazenamento temporário. Faz conexão entre dois tipos de barramentos

TIPOS DE BARRAMENTOS

- local
- de sistema
- de expansão
- alta velocidade
- ■interno do processador
- processador e demais módulos a memória principal
- dispositivos de e/s com altas taxas de transferência
- demais dispositivos de e/s

3 FUNÇÕES DISTINTAS

- Conectam processador, a memória e outros dispositivos: barramento de entrada e saída
 - Comunicação de dados: transporte dos dados. bidirecional
 - Comunicação de endereços: indica de memória dos dados, unidirecional
 - □ Comunicação de controle: controla as ações dos barramentos anteriores. bidirecional

O Barramento de endereços é UNIDIRECIONAL

CONTROLE DO BARRAMENTO

Dedicado

- Linhas separadas para dados e endereço
- Vantagem: controle simplificado, velocidade maior
- Desvantagem: ocupa maior espaço

Multiplexado

- Linhas compartilhadas
- Linha de controle de endereço e dados
- Vantagem: menos linhas
- Desvantagem: controle mais complexo

PRINCIPAIS ASPECTOS - BARRAMENTO

- **Arbitração:** permissão para envio de sinais, pode ser centralizado, ou distribuído.
- ■Temporização: é o envio de sinais, pode ser sincronizado por um relógio (clock) central (síncrona), ou pode ser feita de maneira assíncrona.
- Largura do barramento: Número de linhas de endereços e linha de dados

Arbitração

- mecanismo que controla que módulo assumirá o controle do barramento;
- um dispositivo de E/S pode querer gravar dados na memória, sem passar pelo processador
- Centralizada: um único dispositivo (módulo separado, ou processador) é responsável por alocar o tempo de utilização do barramento
- Distribuída: Os dispositivos agem de forma conjunta para compartilhar o barramento

Temporização Síncrona

transmissão é determinada por um clock

Temporização Assíncrona

 transmissão é determinada por um evento anterior

Largura

- É a capacidade de transmissão de sinais em paralelo
- **BARRAMENTO DE DADOS:** quanto maior a largura, maior a capacidade de bits (dados) transmitidos por vez.
- **BARRAMENTO DE ENDEREÇOS:** quanto mais largo, maior o número de posições na memória a serem acessadas.

Velocidade

- é medida pela frequência de operação do Barramento
- mede o tempo que o barramento leva para transmitir uma quantidade N de bits (largura do barramento)
- **Exemplo:** Um barramento de largura de 16 bits, com uma velocidade de 8 MHz, transmite 16 bits a cada 125 ps, ou 128 Mbps.

Taxa de transferência

é a capacidade de transferência de dados (bytes) do barramento em um segundo.

Tx = (Nbits x Velocidade_barramento)/8

■Ex.: Barramento PCI de 64 bits, com 133 MHz de velocidade, tem uma taxa de transferência real aproximadamente 1 GB/s.

Pesquisa e Responda:

- Qual função de um barramento? Quais os tipos de barramento?
- Explique sobre os barramentos de entrada e saída. Cite exemplos deste tipo de barramento (que existiram e, atualmente, estão ativos).

Conclusão

- Conhecemos um pouco da arquitetura de computadores.
- A tecnologia continua a evoluir, portanto o estudo n\u00e3o para aqui.

Referências

- WEBER, Raul Fernando. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012. E-book. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788540701434
- STALLINGS, William. Arquitetura e organização de computadores. 8.ed. São Paulo: Pearson, 2010. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/459/epub/0
- HOGLUND, Greg. Como quebrar códigos: a arte de explorar (e proteger) software. São Paulo: Pearson, 2006. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/179934/epub/0

