Лекция: операции над событиями, совместимые/несовместные события.

Зависимые/ независимые события. Геометрическая вероятность.

Операции над событиями.

Операции над событиями — это операции над подмножествами пространства исходов Ω .

Рассмотрим основные примеры:

Дополнение (противоположное событие)

Обозначение: $\overline{A} = \Omega \setminus A$.

Смысл: «не А» — происходит всё, что не ведёт к А.

Объединение (сумма событий)

Обозначение: $A \cup B = \{ \omega : \omega \in A \text{ или } \omega \in B \}$

Смысл: «хотя бы одно из А или В произошло».

Пересечение (произведение событий)

Обозначение: $A \cap B = \{ \omega : \omega \in A \text{ и } \omega \in B \}$

Смысл: «произошли и A, и B одновременно».

Разность событий

Обозначение: $A \setminus B = \{ \omega : \omega \in A, \omega \notin B \} = A \cap \overline{B}$

Смысл: «А произошло, а В — нет».

Симметрическая разность

Обозначение: $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

Смысл: «ровно одно из А, В произошло».

Счётные объединение и пересечение

Обозначения: $\bigcup_{i=1}^{\infty} A_i$ — «хотя бы одно из A_i »;

 $\bigcap_{i=1}^{3} A_i$ — «все A_i одновременно».

Несовместимые (взаимоисключающие) события

Определение: $A \cap B = \emptyset$.

Смысл: «вместе произойти не могут».

Вложение событий

Определение: $A \subseteq B \iff A \cap B = \emptyset$.

Смысл: «А влечёт В».

Полезные тождества (алгебра множеств)

- Де Моргана: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \ \overline{A \cap B} = \overline{A} \cup \overline{B}$
- Дистрибутивность: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ и симметрично для \cup .
- Идемпотентность: $A \cup A = A$, $A \cap A$
- Коммутативность/ассоциативность для U, \(\Omega\).

Базовые формулы вероятностей для этих операций

- $P(\overline{A}) = 1 P(A)$.
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ для совместных для несовместных: $P(A \cup B) = P(A) + P(B)$.
- $P(A \cap B) = P(A)P(B \mid A)$.
- Если A, B **независимы**, то $P(A \cap B) = P(A) \cdot P(B)$.

Совместные и несовместные события.

Совместные события А и В — это события, которые **могут произойти одновременно** в одном и том же опыте.

Формально: $A \cap B \neq \emptyset$ (а в вероятностных задачах обычно ещё и $P(A \cap B) > 0$).

Несовместные (взаимоисключающие) события — это события, которые **не могут произойти вместе**.

Формально: $A \cap B = \emptyset$ (и, конечно, $P(A \cap B) = 0$).

Примеры

Совместные события

- **Кубик:** А=«выпало чётное», В=«выпало больше 3». Пересечение: $\{4,6\}$ \Rightarrow совместные.
- **Карты:** А=«карта туз», В=«карта красная». Пересечение: {туз черви, туз бубны} ⇒ совместные.

• **Два подбрасывания монеты:** А=«на 1-м броске орёл», В=«на 2-м броске орёл». Исход «ОО» лежит в пересечении ⇒ совместные (и даже независимые).

Несовместные события

- Монета: А=«орёл», В=«решка» (за один бросок). Пересечение пусто ⇒ несовместные.
- **Кубик:** А=«выпало чётное», В=«выпало нечётное». Одновременно невозможно ⇒ несовместные
- **Карты:** А=«карта пики», В=«карта красная». Пики не бывают красными ⇒ несовместные.

Важное различие (частая путаница)

Несовместимость ≠ независимость.

- Hесовместимость: $A \cap B = \emptyset \Rightarrow P(A \cap B) = 0$.
- Независимость: $P(A \cap B) = P(A) \cdot P(B)$.

Пример: на кубике A=«чётное», B=«нечётное». Они **несовместимы**, но **не независимы**, потому что $P(A \cap B) = 0 \neq P(A) \cdot P(B) = 1/2 \cdot 1/2 = 1/4$.

Геометрическая вероятность

Геометрическая вероятность — это модель вероятности для непрерывных случайных экспериментов, где все точки некоторой области считаются равновероятными. Формально:

Пусть $\Omega \subset R^n$ — измеримая область с $0 < \mu(\Omega) < \infty$ (здесь μ — длина/площадь/объём, т.е. мера Лебега). Для измеримого события $A \subset \Omega$

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}.$$

Проще: вероятность = «доля» благоприятной области в общей области:

- на отрезке: $P = \frac{\text{длина}(A)}{\text{длина}(\Omega)}$;
- в плоскости: $P = \frac{\text{площадь}(A)}{\text{площадь}(\Omega)}$;
- в пространстве: $P = \frac{\text{объём}(A)}{\text{объём}(\Omega)}$.

Важно: модель корректна, только если явно оговорено «равномерное» выборочное правило. Без этого возникают парадоксы (напр., парадокс Бертрана для «случайной хорды»).