Computer Networks

Lab 11

Hamza Shahid 20P-0117 BSSE-5A

Task 01:

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	G0/0	192.168.100.1	255.255.255.224	N/A
	G0/1	192.168.100.33	255.255.255.224	N/A
	S0/0/0	192.168.100.129	255.255.255.224	N/A
R2	G0/0	192.168.100.65	255.255.255.224	N/A
	G0/1	192.168.100.97	255.255.255.224	N/A
	S0/0/0	192.168.100.158	255.255.255.224	N/A
S1	VLAN 1	192.168.100.2	255.255.255.224	192.168.100.1
S2	VLAN 1	192.168.100.34	255.255.255.224	192.168.100.33
S3	VLAN 1	192.168.100.66	255.255.255.224	192.168.100.65
S4	VLAN 1	192.168.100.98	255.255.255.224	192.168.100.97
PC1	NIC	192.168.100.30	255.255.255.224	192.168.100.1
PC2	NIC	192.168.100.62	255.255.255.224	192.168.100.33
PC3	NIC	192.168.100.94	255.255.255.224	192.168.100.65
PC4	NIC	192.168.100.126	255.255.255.224	192.168.100.97

Connectivity verification:

It become very easy when you made table and then all you have to do is just to demonstrate topology.

Steps:

 Assign IPs, subnet mask and default gateway to all the PCs as we have done before (by followinng the table).

Then assign IP and default gateway to the switches.

Then configure the routers.

1. Based on the topology, how many subnets are needed?

Ans: 5

2. How many bits must be borrowed to support the number of subnets in the topology?

Ans: 2^3 must be borrowed which is: 8 (cz 5 subnets are needed)

First and last will not be used.

By going through table, we need 3 bits.

3. How many subnets does this create?

Ans: $2^3 = 8$

4. How many usable hosts does this create per subnet?

Ans: $2^5 - 2 = 30$

5. Calculate the binary value for the first five subnets. The first two subnets have been done for you.

Ans:

Subnet	Network Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	192.168.100.	0	0	0	0	0	0	0	0
1	192.168.100.	0	0	1	0	0	0	0	0
2	192.168.100.	0	1	0	0	0	0	0	0
3	192.168.100.	0	1	1	0	0	0	0	0
4	192.168.100.	1	0	0	0	0	0	0	0

6. Calculate the binary and decimal value of the new subnet mask.

We borrowed 3 bits, so we have to put 1 at 1st 3 places of last binary octet of subnnet mask

First	Second	Third	Mask	Mask	Mask	Mask	Mask	Mask	Mask	Mask
Octet	Octet	Octet	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
11111111	11111111	11111111	1	1	1	0	0	0	0	0

Decimal Value: 255.255.255.224

Subnet Table:

Subnet Numbe r	Subnet Address	First Usable Host Address	Last Usable Host Address	Broadcast Address
0	192.168.100.0	192.168.100.1	192.168.100.30	192.168.100.31
1	192.168.100.32	192.168.100.33	192.168.100.62	192.168.100.63
2	192.168.100.64	192.168.100.65	192.168.100.94	192.168.100.95
3	192.168.100.96	192.168.100.97	192.168.100.126	192.168.100.127
4	192.168.100.128	192.168.100.129	192.168.100.158	192.168.100.159
5	192.168.100.160	192.168.100.161	192.168.100.190	192.168.100.191
6	192.168.100.192	192.168.100.193	192.168.100.222	192.168.100.223
7	192.168.100.224	192.168.100.225	192.168.100.254	192.168.100.255

Step 2: Assign the subnets to the network shown in the topology.

a) Assign Subnet 0 to the LAN connected to the GigabitEthernet 0/0 interface of R1: 192.168.100.0 /27

b) Assign Subnet 1 to the LAN connected to the GigabitEthernet 0/1 interface of R1: 192.168.100.32 /27

c) Assign Subnet 2 to the LAN connected to the GigabitEthernet 0/0 interface of R2: 192.168.100.64 /27

d) Assign Subnet 3 to the LAN connected to the GigabitEthernet 0/1 interface of R2: 192.168.100.96 /27

e) Assign Subnet 4 to the WAN link between R1 to R2: 192.168.100.128 /27