

LOONGSON

龙芯 1C102 处理器数据手册

2023年9月

龙芯中科技术股份有限公司

自主决定命运,创新成就未来

版权声明

本文档版权归龙芯中科技术股份有限公司所有,并保留一切权利。未经书面许可, 任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究其法律责任。

免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

龙芯中科技术股份有限公司

Loongson Technology Corporation Limited

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No.2, Loongson Industrial Park, Zhongguancun Environmental Protection Park

电话 (Tel): 010-62546668 传真 (Fax): 010-62600826

阅读指南

《龙芯 1C102 处理器数据手册》主要介绍龙芯 1C102 的接口结构、特性、电气规范及硬件设计指导。

修订历史

序号	版本号	更新内容
1	V1.0	发布版

目 录

目录 …		i	
第一章	概述	1	
1.1	特性	1	
1.2	结构框图	2	
1.3	文档约定 · · · · · · · · · · · · · · · · · · ·	3	
	1.3.1 信号命名 · · · · · · · · · · · · · · · · · · ·	3	
	1.3.2 信号类型 · · · · · · · · · · · · · · · · · · ·	3	
	1.3.3 数值表示	3	
	1.3.4 寄存器域	3	
第二章	引脚定义 · · · · · · · · · · · · · · · · · · ·	5	
2.1	QFN68 封装引脚 · · · · · · · · · · · · · · · · · · ·	5	
2.2	上电配置 · · · · · · · · · · · · · · · · · · ·	8	
第三章	功能描述 · · · · · · · · · · · · · · · · · · ·	9	
3.1	时钟结构	9	
3.2	上电复位 · · · · · · · · · · · · · · · · · · ·	9	
3.3	看门狗	10	
3.4	输入保持功能	10	
3.5	安全特性	11	
3.6	安装模式 · · · · · · · · · · · · · · · · · · ·	11	
第四章	电气特性 · · · · · · · · · · · · · · · · · · ·	13	
4.1	电源	13	
	4.1.1 推荐工作条件	13	
	4.1.2 绝对最大额定值	13	
4.2	SPI Flash 接口特性·····	13	
4.3	I2C 接口时序 · · · · · · · 1		
4.4	ADC 特性 · · · · · · · · · · · · · · · · · ·		

第五章	热特性	15
5.1	热参数	15
5.2	焊接说明 · · · · · · · · · · · · · · · · · · ·	15
第六章	封装引脚排列 · · · · · · · · · · · · · · · · · · ·	17
6.1	QFN68 封装·····	17
第七章	封装机械尺寸 · · · · · · · · · · · · · · · · · · ·	19
7.1	QFN68 封装·····	19

表 目 录

1.1	信号类型约定	3
2.1	QFN68 引脚定义 · · · · · · · · · · · · · · · · · · ·	5
2.2	引脚复用关系 · · · · · · · · · · · · · · · · · · ·	6
2.3	上电配置引脚 · · · · · · · · · · · · · · · · · · ·	8
3.1	时钟定义	9
4.1	推荐工作条件	13
4.2	绝对最大额定值	13
4.3	SPI Flash 特性 ·····	13
4.4	I2C 特性 · · · · · · · · · · · · · · · · · ·	13
4.5	ADC 特性 · · · · · · · · · · · · · · · · · ·	14
5.1	龙芯 1C102 热特性参数和极限值 · · · · · · · · · · · · · · · · · · ·	15
5.2	回流焊接参数	16

图目录

1.1	龙芯 1C102 结构图	2
3.1	时钟结构图	10
4.1	I2C 接口时序 · · · · · · · · · · · · · · · · · · ·	14
6.1	QFN68 封装顶视图 · · · · · · · · · · · · · · · · · · ·	17
7.1	OFN68 封装机械尺寸图	19

第一章 概述

龙芯 1C102 是在龙芯 LS1C101 基础上针对门锁应用而优化设计的单片机芯片。该芯片集成 CPU、FLASH、SPI、UART、I2C、RTC、TSENSOR、VPWM、ADC 等功能模块,在满足低功耗要求的同时,可以大幅减少板级成本。

1.1 特性

龙芯 1C102 具有以下关键特性:

- LA132 处理器核
 - 32 位单发射
 - 顺序执行、四级流水
 - 无 cache、无 TLB
 - JTAG 调试接口支持断点、单步
 - 4KB SRAM (指令)、4KB SRAM (数据)
 - 主频 8MHz、10.6MHz, RAM 取指执行可达 32MHz
- 片上 Flash
 - 128KB 容量
 - 每页 128 字节
- SPI 控制器
 - 3 个片选
 - 独立的 Flash 接口,支持启动
- UART 控制器
 - 3 路两线串口
 - 1 路支持唤醒
- I2C 控制器
 - 1路
 - 支持主从模式
 - 速率 100/400Kbps
- VPWM 控制器
 - 1路
 - 支持 6K 采样率
 - 支持 ADPCM 压缩
- 触摸按键控制器

- 支持 12 个按键通道
- 独立按键检测阈值
- 支持触摸唤醒
- ADC
 - 6 路输入
 - 12 位分辨率
- 看门狗
 - 上电默认开启
 - 调试模式下暂停
- 定时器
 - 1路
 - 支持单次、循环模式
 - 调试模式下暂停
- GPIO
 - 54 路复用 GPIO
 - 上电默认为 GPIO 功能, 高阻态

1.2 结构框图

芯片以龙芯 LA132 处理器为计算核心,采用 32 位 AXI+APB 两级总线连接片上资源和外围接口。芯片的结构如图1.1所示。

图 1.1: 龙芯 1C102 结构图

1.3 文档约定

1.3.1 信号命名

信号名的选取以方便记忆和明确标识功能为原则。低有效信号以 n 结尾,高有效信号则不带 n。

1.3.2 信号类型

 代码
 描述

 A
 模拟

 I
 输入

 O
 输出

 I/O
 双向

 P
 电源

地

表 1.1: 信号类型约定

1.3.3 数值表示

G

16 进制数表示为 'hxxx, 2 进制数表示为 'bxx, 其他数字为 10 进制数。

功能相同但标号有别的引脚(如 TS00,TS01,...)使用方括号加数字范围的形式简写(如 TS[11:0])。类似地,寄存器域也采用这种表示方式。

1.3.4 寄存器域

寄存器域以 [寄存器名].[域名] 的形式加以引用。如 CHIPCTRL.dram_pd 指芯片配置寄存器(CHIPCTRL)的 dram_pd 域。

第二章 引脚定义

龙芯 1C102 有多种封装形式,本章介绍 QFN68 封装的引脚定义。

2.1 QFN68 **封装引脚**

表 2.1: QFN68 引脚定义

序号	名称	类型	描述
1	JTAG_TCK/GPIO49	I/O	JTAG 时钟
2	JTAG_TRST	I	JTAG 复位
3	JTAG_TDI/GPI050	I/O	JTAG 数据输入
4	JTAG_TDO/GPI051	I/O	JTAG 数据输出
5	JTAG_TMS/GPI052	I/O	JTAG 模式选择
6	SPI_CLK/GPI053	I/O	SPI 时钟
7	SPI_MISO/GPI054	I/O	SPI 数据输入
8	SPI_MOSI/GPI055	I/O	SPI 数据输出
9	SPI_CSN1/GPI056	I/O	SPI 片选 1
10	SPI_CSN2/GPI057	I/O	SPI 片选 2
11	GND	G	地
12	VPWM_DP/GPI061	I/O	语音输出数据正端
13	VPWM_DN/GPI062	I/O	语音输出数据负端
14	GPI063	I/O	通用输入输出 63
15	VIO	P	3.3V IO 电源
16	DOTESTn	I	测试模式
17	RSTn	I	系统复位
18	CLK32IN	I	32.768KHz 晶体振荡器输入
19	CLK320UT	O/A	32.768KHz 晶体振荡器输出,可接晶振
20	GPI001	I/O	通用输入输出 1
21	PULSEO/GPI002	I/O	脉冲输出 0
22	PULSE1/GPI003	I/O	脉冲输出 1
23	IIC_SCL/GPI004	I/O	I2C 时钟
24	IIC_SDA/GPI005	I/O	I2C 数据
25	ADC_IO	A	ADC 通道 0/断电检测输入
26	ADC_I1	A	ADC 通道 1
27	UARTO_RX/GPIO06	I/O	串口 0 数据输入
28	UARTO_TX/GPIO07	I/O	串口 0 数据输出
29	UART1_RX/GPI008	I/O	串口 1 数据输入
30	UART1_TX/GPI009	I/O	串口 1 数据输出
31	BSO/GPI012	I/O	启动配置 0
32	XIN	I/A	8MHz 晶体振荡器输入,可接晶振
33	XOUT	О	8MHz 晶体振荡器输出

序号	名称	类型	描述
34	GPI013	I/O	通用输入输出 13
35	ADC_I4/GPI014	A/I/O	ADC 通道 4
36	ADC_I5/GPI015	A/I/O	ADC 通道 5
37	ADC_I6/GPI016	A/I/O	ADC 通道 6
38	VROUT	A	1.8V VR 电源输出,接 10nF 电容到地
39	ADC_I7/GPI017	A/I/O	ADC 通道 7
40	GND	G	地
41	GPI018/SPI_CSN[2]	I/O	通用输入输出 18
42	GPIO19/SPI_CSN[3]	I/O	通用输入输出 19
43	GPI020	I/O	通用输入输出 20
44	VIO	P	3.3V IO 电源
45	TS00/GPI022	A/I/O	触摸按键通道 0
46	TS01/GPI023	A/I/O	触摸按键通道 1
47	TS02/GPI024	A/I/O	触摸按键通道 2
48	TS03/GPI025	A/I/O	触摸按键通道 3
49	TS04/GPI026	A/I/O	触摸按键通道 4
50	TS05/GPI027	A/I/O	触摸按键通道 5
51	TS06/GPI028	A/I/O	触摸按键通道 6
52	TS07/GPI029	A/I/O	触摸按键通道 7
53	TS08/GPI030	A/I/O	触摸按键通道 8
54	TS09/GPI031	A/I/O	触摸按键通道 9
55	TS10/GPI032	A/I/O	触摸按键通道 10
56	TS11/GPI033	A/I/O	触摸按键通道 11
57	GPI034	I/O	通用输入输出 34
58	GPI035	I/O	通用输入输出 35
59	GPI036	I/O	通用输入输出 36
60	GPI037	I/O	通用输入输出 37
61	GPI038	I/O	通用输入输出 38
62	GPI039	I/O	通用输入输出 39
63	GPI040	I/O	通用输入输出 40
64	FLASH_CLK/GPIO44	I/O	SPI Flash 时钟
65	FLASH_MOSI/GPI045	I/O	SPI Flash 数据输出
66	FLASH_MISO/GPI046	I/O	SPI Flash 数据输入
67	FLASH_CSN/GPIO47	I/O	SPI Flash 片选
68	FLASH_CSB/GPI048	I/O	SPI Flash 第二片选

引脚的复用关系定义如下:

表 2.2: 引脚复用关系

GPIO	引脚	主功能	第一复用	第二复用
1	GPIO01	gpio[1]	$i2c_sda$	gpio[1]
2	PULSE0	pulse0	-	gpio[2]
3	PULSE1	pulse1	-	gpio[3]
4	IIC_SCL	$i2c_scl$	=	$i2c_scl$

GPIO	引脚	主功能	第一复用	第二复用
5	IIC_SDA	i2c_sda	-	i2c_sda
6	UART0_RX	uart0_rx	-	uart0_rx
7	UART0_TX	uart0_tx	-	uart0_tx
8	UART1_RX	uart1_rx	-	uart1_rx
9	UART1_TX	uart1_tx	-	uart1_tx
12	*BS0	gpio[12]	-	gpio[12]
13	GPIO13	gpio[13]	-	-
14	ADC_I4	gpio[14]	-	-
15	ADC_I5	gpio[15]	-	-
16	ADC_I6	gpio[16]	-	-
17	ADC_I7	gpio[17]	-	-
18	GPIO18	gpio[18]	spi_csn[2]	-
19	GPIO19	gpio[19]	spi_csn[3]	-
20	GPIO20	gpio[20]	-	-
22	TS00	gpio[22]	i2c_scl	-
23	TS01	gpio[23]	i2c_sda	-
24	TS02	gpio[24]	spi_clk	flash_clk
25	TS03	gpio[25]	spi_miso	flash_miso
26	TS04	gpio[26]	spi_mosi	flash_mosi
27	TS05	gpio[27]	spi_csn	flash_csn[0]
28	TS06	gpio[28]	-	spi_csn[1]
29	TS07	gpio[29]	-	gpio[18]
30	TS08	gpio[30]	-	gpio[19]
31	TS09	gpio[31]	-	-
32	TS10	gpio[32]	-	-
33	TS11	gpio[33]	-	-
34	GPIO34	gpio[34]	uart0_rx	-
35	GPIO35	gpio[35]	uart0_tx	-
36	GPIO36	gpio[36]	uart1_rx	-
37	GPIO37	gpio[37]	uart1_tx	-
38	GPIO38	gpio[38]	uart2_rx	-
39	GPIO39	gpio[39]	uart2_tx	-
40	GPIO40	gpio[40]	-	-
44	FLASH_CLK	flash_clk	pulse0	-
45	FLASH_MOSI	flash_mosi	pulse1	-
46	FLASH_MISO	flash_miso	-	-
47	FLASH_CSN	flash_csn	-	-
48	*FLASH_CSB	flash_sfccsn	-	-
49	JTAG_TCK	jtag_tck	-	-
50	JTAG_TDI	jtag_tdi	uart0_rx	-
51	*JTAG_TDO	jtag_tdo	uart0_tx	-
52	JTAG_TMS	jtag_tms	-	-
53	SPI_CLK	spi_clk	-	gpio[22]
54	SPI_MISO	spi_miso	-	gpio[23]

GPIO	引脚	主功能	第一复用	第二复用
55	SPI_MOSI	spi_mosi	-	gpio[24]
56	SPI_CSN1	spi_csn[1]	-	gpio[25]
57	SPI_CSN2	$\mathrm{spi} \mathrm{csn}[2]$	-	-
61	VPWM_DP	vpwm_dp	uart2_rx	-
62	VPWM_DN	vpwm_dn	uart2_tx	-
63	GPIO63	gpio[63]	-	-

其中带*号的表示上电配置引脚。

2.2 上电配置

芯片启动时会读取引脚上的配置电平,从而决定启动模式。相关配置说明见表2.3。 这些配置引脚应根据需要进行上下拉。

表 2.3: 上电配置引脚

引脚	说明
BS0 启动模式,上拉为 SPI Flash 启动,下拉为内部 Flash 启动	
FLASH_CSB 安装模式,上拉为 Flash_CSB 启动	
JTAG_TDO JTAG 引脚复用,上拉可复用为 GPIO,下拉仅作为 JTAG	

注: 若 JTAG 被锁定,则 SPI 启动选项自动失效,只能从片内 Flash 启动。

第三章 功能描述

3.1 时钟结构

龙芯 1C102 包含以下时钟

表 3.1: 时钟定义

时钟名	频率	说明
clk_int32k	$12.8 \sim 58 \text{KHz}$	片内振荡器,是外部时钟的备份
clk_ext32k	32.768KHz	石英振荡器
clk_32k		片内 32K 工作时钟
clk_int32m	$25.6 \sim 33.6 \text{MHz}$	片内振荡器,CPU 子系统时钟,可用于语音输出
clk_ext8m	8MHz	石英振荡器,可选为 CPU 子系统时钟
clk_bus	$8\mathrm{MHz}/11\mathrm{MHz}$	片内 8M 工作时钟
clk_cpu	$32 \mathrm{MHz} / 11 \mathrm{MHz}$	CPU/RAM 时钟
clk_hs	$32 \mathrm{KHz} / 11 \mathrm{MHz}$	电源管理时钟
jtag_tck	8MHz	JTAG 时钟

启动和复位时默认使用片内时钟。时钟选择模块持续检测片外时钟,并向软件反馈状态。当片外时钟正常时软件可以发起切换操作。切换到外部时钟后,如果片外时钟停止,将自动切回内部时钟并产生中断。时钟结构如图3.1所示。

CPU 使用内部时钟工作时,可以选择为 8MHz(4 分频) 或 11MHz(3 分频) 工作 (见用户手册 CHIPCTRL.FastEn)。当 CPU 执行 RAM 中的指令时,甚至可以提升到 32MHz(1 分频) 执行,见 CHIPCTRL.TurboEn。

片内时钟的频率精度不高,对于精度要求高的应用建议连接片外时钟晶体。芯片中有逻辑可测试 32K 时钟与 8M 时钟的关系,在只用一个晶体时提供校准能力,参见TSCTRL.Test En。

3.2 上电复位

芯片内部集成上电复位功能,上电期间复位引脚 RSTN 将驱动为低。外部下拉 RSTN 引脚也可以将芯片复位。RSTN 引脚内置约 $400K\Omega$ 上拉电阻,建议外部增加 1nF 对地电容。

芯片内置复位来源寄存器 (CMDSTS.RstSrc), 软件可以根据其值判定是一次上电复位或外部复位 (2'b00), 还是一次看门狗复位 (2'b01 / 2'b10), 或是休眠唤醒 (2'b11)。

图 3.1: 时钟结构图

3.3 看门狗

片内集成不可关闭的看门狗,初始化为 4 秒复位。引导代码可以将其设置其它值。 看门狗配置带校验,如果配置出错将立即复位。

在调试模式下(JTAG_TRST 为高,且 CPU 被 JTAG 中断),看门狗计数器将暂停计数。JTAG_TRST 引脚内置约 $50K\Omega$ 弱下拉,可以悬空。

3.4 输入保持功能

低功耗应用场合要求所有数字引脚的电平处于确定状态。为简化软硬件实现,龙芯 1C102 支持输入保持功能。该功能打开后会在引脚处引入正反馈,如果采样到的电平为高,则开启上拉;反之,如果采样到的电平为低,则开启下拉。上下拉电阻约为 $50K\Omega$ 。

输入保持功能有一个全局使能位 (CHIPCTRL.Input_hold),和每个 IO 的独立控制位 (!GPIO_EN[i] & GPIO_O[i])。需注意的是,如果一个输入引脚未处于 GPIO 状态时,同样可以打开输入保持功能。打开输入保持功能的输入引脚,外部驱动应当小于 $5K\Omega$,以便正确改变状态。

3.5 安全特性

龙芯 1C102 的安全包括两个层次:

- 1. 运行安全: CPU 只能执行内部代码, 外界无法控制其运行
- 2. 代码安全: 关键代码无法读出, 存储时随机加密

前者基于 Flash 的 OTP 功能实现。Flash 初始化完成后读出配置字,生成 JTAG 锁定和 OTP 锁定两个信号。JTAG 锁定有效时,外部调试主机将无法使芯片进入调试模式,并且 SPI 启动也将被禁用。后者在 Flash 内部实现,保护区域的代码只允许指令读,存取时自动加解密。

3.6 安装模式

安装模式用于简化出厂时的固件烧写。在该模式下,芯片会从安装卡上的 SPI Flash 启动,运行其中的安装程序。安装程序可以烧写片内 Flash 以及主板上的 SPI Flash。应注意的是在烧写 SPI Flash 时,软件应当在片内 RAM 中运行。

电路设计方面,主板上 FLASH_CSB 应当加以弱下拉(比如 $50K\Omega$),并与时钟、数据以及电源地拉出到专用的引出点,以便与安装卡对接。安装卡上将 FLASH_CSB 上拉(比如 $5K\Omega$),使得插卡后芯片自动切换成安装模式。如果主板上不用 SPI Flash,而是希望将 FLASH* 接口复用为 GPIO,建议只复用为 GPIO 输出。

第四章 电气特性

4.1 电源

4.1.1 推荐工作条件

表 4.1: 推荐工作条件

电源	描述	Min	Тур	Max
VIO	IO 电源	2.97	3.3	3.63

4.1.2 绝对最大额定值

表 4.2: 绝对最大额定值

电源	描述	Min	Max	单位
VIO	IO 电源	-0.3	4.5	V

4.2 SPI Flash 接口特性

T为 SCK 时钟周期。

表 4.3: SPI Flash 特性

参数	描述	最小	典型	最大	单位
Tckh	SCK 时钟高电平时间	0.5T-1	-	-	ns
Tckl	SCK 时钟低电平时间	0.5T-1	-	-	ns
Tval	SCK 下降沿到数据输出的延迟	6	-	90	ns
Tsu	数据输入建立时间	83	-	-	ns
Th	数据输入保持时间	1	-	-	ns

4.3 I2C 接口时序

波形如图4.1所示。

表 4.4: I2C 特性

参数	描述	最小	典型	最大	单位
Tckh	SCL 时钟高电平时间	4	-	-	us
Tckl	SCL 时钟低电平时间	5	-	-	us
Tval	SCL 下降沿到数据输出的延迟	5	-	-	us
Tsu	数据建立时间(SDA 变化到 SCL 上	0	-	-	us
	升)				
Th	数据保持时间(SCL 下降到 SDA 变	0	-	-	us
	化)				

图 4.1: I2C 接口时序

4.4 ADC 特性

表 4.5: ADC 特性

参数	描述	最小	典型	最大	单位
INL	Integral Non-Linearity		±3	±6	LSB
DNL	Differential Non-Linearity		±2	±4	LSB
SNR	Signal-To-Noise Rate		56		dB
SNDR	Signal-To-Noise and Distortion Rate		54		dB
Resolution	分辨率		12		bit
ENOB	有效精度		9.5		bit

第五章 热特性

5.1 热参数

表 5.1: 龙芯 1C102 热特性参数和极限值

参数	值
最大电流	5mA
最高环境温度	85°C
最低环境温度	-25°C
最高存储温度	150°C
最低存储温度	-65°C

5.2 焊接说明

龙芯 1C102 采用无铅封装,建议回流焊接参数如表5.2所示

表 5.2: 回流焊接参数

Profil	Pb-Free Assembly		
Average ramp-up	3°C/second max.		
	Temperature Min (Tsmin)	150°C	
Preheat	Temperature Max (Tsmax)	200°C	
	Time (Tsmin to Tsmax)(ts)	60-180 seconds	
Time maintained above	Temperature (TL)	217°C	
	Time (tL)	60-150 seconds	
Peak Tem	$245^{\circ}\mathrm{C}$		
Time within 5°Cof act	20-40 seconds		
Rampe	6°C/second max.		
Time 25°Cto l	8 minutes max.		

第六章 封装引脚排列

6.1 QFN68 **封装**

引脚排列如图6.1所示。

图 6.1: QFN68 封装顶视图

第七章 封装机械尺寸

7.1 QFN68 **封装**

封装机械尺寸如图7.1所示。

Item		Symbol	Minimum	Normal	Maximum	
n i c: X		D	7.0 BSC			
Body Size	Y	Е	7.0 BSC			
Exposed Pad Size	X	D2	5. 39	5. 49	5. 59	
Exposed Fad 51Ze	Y	E2	5. 39	5. 49	5. 59	
Total Thickness	A	0.70	0.75	0.80		
Stand Off	A1	0	0.02	0.05		
Molding Thickness	A2		0.55			
LF Thickness		A3	0. 203 REF			
Lead Width		b	0. 12	0. 17	0.22	
Lead Length	L	0.30	0.40	0.50		
Lead Pitch		е	0. 35 BSC			
Lead tip to Expose	d Pad	K	0. 355 REF			
Package Edge Tolerance		aaa	0. 10			
Lead Offset		bbb	0. 10			
Molding Flatness	ccc	0.10				
Coplanarity	eee	0. 08				
Exposed Pad Offset	fff	0.10				

图 7.1: QFN68 封装机械尺寸图