2. Gruppteori 2. Isomorfier

21 juli

Definition. En *isomorfi* φ mellan grupperna G_1 och G_2 är en kartläggning (funktion) så att:

- 1. **Bijektiv**: Varje element i G_2 antas som värde av φ för exakt ett element i G_1 .
- 2. **Bevarar operatorn**: För alla a,b i G_1 gäller $\varphi(a) \star \varphi(b) = \varphi(a \star b)$.
- 3. **Bevarar identitet**: För identitetselementen e_1, e_2 i G_1 respektive G_2 gäller att $\varphi(e_1) = e_2$.
- 1. Låt $\varphi(n) = 2n$.
 - a) Är φ en isomorfi från heltalen under addition till de jämna heltalen under addition?
 - **b)** Finns det andra isomorfier som uppfyller (a)?
 - c) Är φ en isomorfi från heltalen under multiplikation till de jämna heltalen under multiplikation?
- **2.** Finns det en isomorfi mellan D_n och heltalen modulo 2n under addition om (a) n = 3 (b) n > 3?
- 3. Två grupper G_1 , G_2 kallas isomorfa, $G_1 \sim G_2$, om det finns en isomorfi mellan dem. Visa att om G_1 är isomorf med G_2 och G_2 är isomorf med G_3 så är G_1 isomorf med G_3 .
- 4. Är D_3 isomorf med S_3 , mängden av alla permutationer (omordningar) av 3 element? Vad gäller för D_4 och S_4 ?
- 5. En grupp G kallas cyklisk om det finns ett element a så att G är exakt potenserna till a.
 - a) Visa att heltalen under addition är cykliska.
 - **b)** Visa att alla cykliska grupper av storlek *n* är isomorfa.
- 6. För två grupper G_1 , G_2 definieras den direkta produkten $G_1 \times G_2$ som gruppen där:
 - 1. Elementen är mängden av alla par (a_1,a_2) där a_1,a_2 är element i G_1 respektive G_2 .
 - 2. Operatorn appliceras elementvist enligt $(a_1, a_2) \star (b_1, b_2) = (a_1 \star b_1, a_2 \star b_2)$.

$$\operatorname{Ar}$$
 (a) $\mathbb{Z}_2 \times \mathbb{Z}_2 \sim \mathbb{Z}_4$ (b) $\mathbb{Z}_2 \times \mathbb{Z}_3 \sim \mathbb{Z}_6$?

- 7. Är de rationella talen under addition ismorfa med de nollskilda rationella talen under multiplikation?
- 8. Är heltalen under addition isomorfa med de rationella talen under addition?
- 9. Är de rationella talen under addition isomorfa med de reella talen under addition?
- 10. Är de komplexa talen under addition isomorfa med \mathbb{R}^2 (punkter i reella talplanet) under addition?
- 11. Hur kan man definiera produkten på \mathbb{R}^2 för att de ska vara ismorfa med de komplexa talen under multiplikation?