PREDICTING ACCIDENT SEVERITY

AUTO FACTS

- approximately 17 thousand traffic crashes each day nationwide
- around 36,560 motor vehicle deaths in 2018
- •Incurred losses for auto insurer has been climbing steadily

Incurred Losses For Auto Insurance, 2015-2019 (1) (\$000)

1	2015	2016	2017	2018	2019
Private passenger auto)				
Liability	\$79,098,617	\$88,249,238	\$90,495,835	\$91,736,331	\$96,189,924
Physical damage	48,564,511	55,738,221	57,052,411	58,766,743	62,637,686
Commercial auto					
Liability	13,587,152	14,987,073	15,528,570	17,810,709	20,434,568
Physical damage	3,902,124	4,279,414	4,874,748	4,999,100	5,407,130
Total	\$145,152,404	\$163,253,946	\$167,951,564	\$173,312,883	\$184,669,308

PROJECT: PREDICTING ACCIDENT SEVERITY

- there are a lot of attributes that could cause a server car crush
- •accurately predicting the possibility of getting into a car accident and how severe it would be
- potentially change people's driving attitude and behaviors
- •Goal:

Reduce cost for auto insurers + Reduce fatalities rate

DATA SOURCE

- Seattle traffic collisions data
- provided by SPD and recorded by Traffic Records
- **2004** present
- <u>https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv</u>

DATA WRANGLING

- This project aims to predict accident severity base on objective features: collision address, weather conditions, road conditions, and light conditions.
- Cleaned data contains features: inattention, drugs or alcohol influence, speeding
- Dropped missing values
- Use under-sampling method to balance data
- In total, 39,899 rows and 5 columns in modified dataset.

BUILD MODELS

- Classification algorithms
- 4 various models
- •KNN, Decision Tree, SVM, Logistic Regression
- •Find the one with the highest accuracies
- Apply the same split set of training and testing data

MODEL 1: K-NEAREST NEIGHBORS

- Find the correct K value
- Set the range of K from 1 to 10. Repeated the process by increasing K to find the highest accuracy

MODEL 2: DECISION TREE

set the depth value as 8 to build the model.

MODEL 3: SUPPORT VECTOR MACHINE

- Four types of kernelling in SVM model: linear, polynomial, rbf, Sigmoid
- Ran each model to find which kernel would build the model with highest accuracies
- polynomial kernel!

```
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
kernel='poly', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
```

MODEL 4: LOGISTIC REGRESSION

- ■12 different tests with different c value and solver
- accuracy graph

LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

F1-SCORE & JACCARD INDEX

Log loss - logistic regression = 0.669.

	F1	Jaccard
KNN	0.5040	0.52350
Decision Tree	0.6028	0.60457
SVM	0.6035	0.60526
Logistic regression	0.6030	0.60470

RESULT

- Pick logistic regression to build the model
- Predict the probability of an unknown collision belonging to severity 1 or 2

```
LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
```

TOP 5 WEIGHTED FEATURES

- "Intersection" and "Block" are the most important features of predicting a car accident, far ahead from the rest
- Drivers should pay extra attention when they are driving close to intersection or block. Speed detectors or warning signs could be placed to reduce cars' speed.

IMPROVEMENT OF THE MODEL

- •logistic regression model has accuracy of 0.669
- •For more accurate prediction, the dataset can be added more detailed features like gender, age, visibility, etc.

REFERENCE DATA

- •fact+statistics: auto insurance
- <u>Https://www.iii.org/fact-statistic/facts-statistics-auto-insurance</u>
- Wiki
- <u>https://en.wikipedia.org/wiki/Motor vehicle fatality rate in U.S. by year</u>