Limites de fonctions

Exercice 1 (Factorisation)

(a) • On a
$$\frac{3x^2 - x + 1}{5x^3 + x^2 - 7} = \frac{x^2(3 - \frac{1}{x} + \frac{1}{x^2})}{x^3(5 + \frac{1}{x} - \frac{7}{x^3})} = \frac{1}{x} \times \frac{3 - \frac{1}{x} + \frac{1}{x^2}}{5 + \frac{1}{x} - \frac{7}{x^2}}$$
 donc $\lim_{x \to -\infty} \frac{3x^2 - x + 1}{5x^3 + x^2 - 7} = 0$.

• On a directement
$$\lim_{x\to 0} \frac{3x^2 - x + 1}{5x^3 + x^2 - 7} = -\frac{1}{7}$$
.

(b) • On a
$$\frac{e^x + 3x - 1}{x^2 + 1} = \frac{e^x}{x^2} \times \frac{1 + \frac{3x}{e^x} - \frac{1}{e^x}}{1 + \frac{1}{2}}$$
 donc $\lim_{x \to +\infty} \frac{e^x + 3x - 1}{x^2 + 1} = +\infty$.

• On a
$$\frac{e^x + 3x - 1}{x^2 + 1} = \frac{x}{x^2} \times \frac{\frac{e^x}{x} + 3 - \frac{1}{x}}{1 + \frac{1}{x^2}} = \frac{1}{x} \times \frac{\frac{e^x}{x} + 3 - \frac{1}{x}}{1 + \frac{1}{x^2}}$$
 donc $\lim_{x \to -\infty} \frac{e^x + 3x - 1}{x^2 + 1} = 0$.

(c) On a
$$\frac{\sqrt{x^2+1}}{x} = \frac{\sqrt{x^2(1+\frac{1}{x^2})}}{x} = \frac{x\sqrt{1+\frac{1}{x^2}}}{x} = \sqrt{1+\frac{1}{x^2}} \operatorname{donc} \lim_{x \to -\infty} \frac{\sqrt{x^2+1}}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2+1}}{x} = 1$$
.

Exercice 2 ("Changement de variable")

(a)
$$\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x} = \lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{(\sqrt{x})^2} = \lim_{y \to +\infty} \frac{e^y}{y^2} = +\infty$$
 par croissance comparée.

(b) En posant
$$x = 1 + y$$
, c'est à dire $y = x - 1$: $\lim_{x \to 1} \frac{\ln(x)}{x - 1} = \lim_{y \to 0} \frac{\ln(1 + y)}{y} = 1$ (limite usuelle en 0).

(c)
$$x^2 \tan\left(\frac{1}{x}\right) = x \times \frac{\tan\left(\frac{1}{x}\right)}{\frac{1}{x}}$$
.

On a
$$\lim_{x \to +\infty} x = +\infty$$
 et $\lim_{x \to +\infty} \frac{\tan\left(\frac{1}{x}\right)}{\frac{1}{x}} = \lim_{y \to 0} \frac{\tan(y)}{y} = 1$. Ainsi : $\lim_{x \to +\infty} x^2 \tan\left(\frac{1}{x}\right) = +\infty$.

(d) En posant
$$x = 1 + y$$
, c'est à dire $y = x - 1$: $\lim_{x \to 1} \frac{x^{1/3} - 1}{x - 1} = \lim_{y \to 0} \frac{(1 + y)^{1/3} - 1}{y} = \frac{1}{3}$ (limite usuelle en 0).

(e)
$$x\left(e^{\frac{1}{x^2}}-1\right) = \frac{1}{x} \times x^2\left(e^{\frac{1}{x^2}}-1\right) = \frac{1}{x} \times \frac{e^{\frac{1}{x^2}}-1}{\frac{1}{x^2}}.$$

On a
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
 et $\lim_{x \to -\infty} \frac{e^{\frac{1}{x^2}} - 1}{\frac{1}{x^2}} = \lim_{y \to 0} \frac{e^y - 1}{y} = 1$. Ainsi : $\lim_{x \to -\infty} x \left(e^{\frac{1}{x^2}} - 1 \right) = 0$.

(f)
$$\frac{\sqrt{1+2x}-1}{x} = 2 \times \frac{\sqrt{1+2x}-1}{2x}$$
.

Ainsi (en posant
$$y = 2x$$
): $\lim_{x \to 0} \frac{\sqrt{1+2x}-1}{x} = 2 \times \lim_{y \to 0} \frac{\sqrt{1+y}-1}{y} = 2 \times \frac{1}{2} = 1$.

(g)
$$x(\ln(1+x) - \ln(x)) = x \ln\left(\frac{1+x}{x}\right) = x \ln\left(1 + \frac{1}{x}\right) = \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$$
.

Ainsi
$$\lim_{x \to +\infty} x \left(\ln(1+x) - \ln(x) \right) = \lim_{x \to +\infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = \lim_{y \to 0} \frac{\ln(1+y)}{y} = 1.$$

Exercice 3 (Un peu de tout)

(a) On a directement
$$\lim_{x\to 0} x \ln\left(1+\frac{x}{2}\right) = 0$$
 (ce n'est pas une forme indéterminée!)

(b)
$$\frac{\ln(1+x)}{\tan(x)} = \frac{\ln(1+x)}{x} \times \frac{x}{\tan(x)} = \frac{\ln(1+x)}{x} \times \left(\frac{\tan(x)}{x}\right)^{-1} \xrightarrow[x \to 0]{} 1 \times 1^{-1} = 1.$$

(c)
$$\sqrt{x^2 + 1} - x = \sqrt{x^2(1 + \frac{1}{x^2})} - x = x\sqrt{1 + \frac{1}{x^2}} - x = x\left(\sqrt{1 + \frac{1}{x^2}} - 1\right) = \frac{1}{x} \times \frac{\sqrt{1 + \frac{1}{x^2}} - 1}{\frac{1}{x^2}}.$$

On a
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 et $\lim_{x \to +\infty} \frac{\sqrt{1 + \frac{1}{x^2}} - 1}{\frac{1}{x^2}} = \lim_{y \to 0} \frac{\sqrt{1 + y} - 1}{y} = \frac{1}{2}$. Ainsi $\lim_{x \to +\infty} \sqrt{x^2 + 1} - x = 0$.

(d) $x^x = e^{x \ln(x)}$. Or on sait que $\lim_{x \to 0^+} x \ln(x) = 0$ (croissances comparées "en 0" pour ln).

Rappel rapide de la preuve : $\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{-\ln(\frac{1}{x})}{\frac{1}{x}} = \lim_{y \to +\infty} -\frac{\ln(y)}{y} = 0.$

Ainsi $\lim_{x \to 0} x^x = \lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln(x)} = e^0 = 1.$

(f)
$$\left(\frac{\ln(x)}{x}\right)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\frac{\ln(x)}{x}\right)\right)$$
. Cherchons donc $\lim_{x \to +\infty} \frac{1}{x}\ln\left(\frac{\ln(x)}{x}\right)$.

On a
$$\frac{1}{x}\ln\left(\frac{\ln(x)}{x}\right) = \frac{1}{x}\left(\ln(\ln(x)) - \ln(x)\right) = \frac{\ln(\ln(x))}{x} - \frac{\ln(x)}{x}$$
.

Par croissances comparées, on a : $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$. A plus forte raison, : $\lim_{x \to +\infty} \frac{\ln(\ln(x))}{x} = 0$.

$$\text{En effet, par exemple}: \lim_{x \to +\infty} \frac{\ln(\ln(x))}{x} = \lim_{x \to +\infty} \frac{\ln(\ln(x))}{\ln(x)} \times \frac{\ln(x)}{x} = \left(\lim_{y \to +\infty} \frac{\ln(y)}{y}\right) \times \left(\lim_{x \to +\infty} \frac{\ln(x)}{x}\right) = 0.$$

Pour conclure,
$$\lim_{x \to +\infty} \frac{1}{x} \ln \left(\frac{\ln(x)}{x} \right) = 0$$
 et donc $\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} \right)^{\frac{1}{x}} = \exp(0) = 1$.

Exercice 4 (Encadrements et limite)

1. • Pour tout
$$x > 0$$
, $\left| \frac{1 - \cos(x)}{x} \right| = \frac{|1 - \cos(x)|}{x} \leqslant \frac{1 + |\cos(x)|}{x} \leqslant \frac{2}{x}$.

D'après le théorème des gendarmes (version valeur absolue), on en déduit $\lim_{x\to+\infty}\frac{1-\cos(x)}{x}=0$.

• Pour tout x > 0, on a $x - 1 \le \lfloor x \rfloor \le x$ donc $\frac{x - 1}{x^2} \le \frac{\lfloor x \rfloor}{x^2} \le \frac{x}{x^2}$ i.e $\frac{1}{x} - \frac{1}{x^2} \le \frac{\lfloor x \rfloor}{x^2} \le \frac{1}{x}$. D'après le théorème des gendarmes, on en déduit $\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{x^2}$.

2. Posons, pour tout
$$x \ge 1$$
, $f(x) = \frac{2}{\alpha}x^{\alpha/2} - \ln(x)$.

f est dérivable sur $[1, +\infty[$ et : $\forall x \ge 1, \ f'(x) = x^{\alpha/2-1} - \frac{1}{x} = \frac{x^{\alpha/2} - 1}{x} \ge 0 \ (\text{car } x \ge 1)$ Ainsi f est croissante sur $[1, +\infty[$, on a donc le tableau de variations suivant :

x	1	$+\infty$
f(x)	$\frac{2}{\alpha}$	+∞

Ainsi, en particulier, pour tout $x \ge 1$, $f(x) \ge 0$ i.e. $\frac{2}{\alpha} x^{\alpha/2} - \ln(x) \ge 0$ i.e. $\ln(x) \le \frac{2}{\alpha} x^{\alpha/2}$. Pour tout $x \ge 1$, on en déduit l'encadrement :

$$0 \leqslant \ln(x) \leqslant \frac{2}{\alpha} x^{\alpha/2} \Longleftrightarrow 0 \leqslant \frac{\ln(x)}{x^{\alpha}} \leqslant \frac{2}{\alpha} \frac{1}{x^{\alpha/2}}$$

Puisque $\alpha > 0$, on a $\lim_{x \to +\infty} \frac{1}{x^{\alpha/2}} = 0$. D'après le théorème des gendarmes, on en déduit $\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0$.

3. Posons, pour tout $x \in \mathbb{R}$, $f(x) = e^x - (1+x)$ et $g(x) = 1 + xe^x - e^x$.

Ces fonctions sont dérivables sur \mathbb{R} et : $\forall x \in \mathbb{R}$, $f'(x) = e^x - 1$, $g'(x) = xe^x$.

On a donc $f'(x) \ge 0 \iff x \ge 0$ et $g'(x) \ge 0 \iff x \ge 0$. On en déduit les tableaux de variations suivants :

x	$-\infty$	0	$+\infty$
f(x)	$+\infty$		+∞

x	$-\infty$	0	$+\infty$
g(x)	1		+∞

En particulier, pour tout $x \in \mathbb{R}$, $f(x) \ge 0$ et $g(x) \ge 0$ ce qui donne $e^x \ge 1 + x$ et $1 + xe^x \ge e^x$.

On a ainsi l'encadrement : $\forall x \in \mathbb{R}, 1 + x \leq e^x \leq 1 + xe^x$.

On en déduit, pour tout $x \in \mathbb{R}$,

$$1 + x \leqslant e^x \leqslant 1 + xe^x \iff x \leqslant e^x - 1 \leqslant xe^x \iff 1 \leqslant \frac{e^x - 1}{x} \leqslant e^x.$$

Puisque $\lim_{x\to 0} e^x = 1$, d'après le théorème des gendarmes, on obtient $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$.

Exercice 5 (Une autre définition de exp...)

Soit
$$x \in \mathbb{R}$$
 fixé. Pour tout $n \in \mathbb{N}^*$, $\left(1 + \frac{x}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{x}{n}\right)\right)$.

On peut ré-écrire :
$$n \ln \left(1 + \frac{x}{n}\right) = x \times \frac{n}{x} \ln \left(1 + \frac{x}{n}\right) = x \times \frac{\ln \left(1 + \frac{x}{n}\right)}{\frac{x}{n}}$$
.

Puisque
$$\lim_{y\to 0} \frac{\ln(1+y)}{y} = 1$$
 on a $\lim_{n\to +\infty} \frac{\ln(1+\frac{x}{n})}{\frac{x}{n}} = 1$.

Ainsi
$$\lim_{n \to +\infty} n \ln \left(1 + \frac{x}{n} \right) = x$$
. On en déduit $\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n = e^x$.

Exercice 6 (Limite à gauche/droite)

(a) On a
$$\forall x > 0$$
, $f(x) = 1$ et $\forall x < 0$, $f(x) = -1$.

Il est donc clair que
$$\lim_{x\to 0^-} f(x) = -1 \neq 1 = \lim_{x\to 0^+} f(x)$$
.

On en déduit que f n'admet pas de limite en 0.

(b) On a
$$\lim_{x\to 0^-} x \lfloor x \rfloor = \lim_{x\to 0^-} x \times (-1) = 0$$
 et $\lim_{x\to 0^+} x \lfloor x \rfloor = \lim_{x\to 0^+} x \times 0 = 0$

(b) On a
$$\lim_{x\to 0^-}x\lfloor x\rfloor=\lim_{x\to 0^-}x\times (-1)=0$$
 et $\lim_{x\to 0^+}x\lfloor x\rfloor=\lim_{x\to 0^+}x\times 0=0.$ De plus $g(0)=0.$ On a donc $\lim_{x\to 0^-}g(x)=\lim_{x\to 0^+}g(x)=g(0)=0,$ donc $\lim_{x\to 0}g(x)=0.$

(c) On a
$$\lim_{x \to 0^-} h(x) = \lim_{x \to 0^-} 0 = 0$$
. On a aussi $\lim_{x \to 0^+} h(x) = \lim_{x \to 0^+} x^2 \ln(x) = 0$

(c) On a
$$\lim_{x\to 0^-} h(x) = \lim_{x\to 0^-} 0 = 0$$
. On a aussi $\lim_{x\to 0^+} h(x) = \lim_{x\to 0^+} x^2 \ln(x) = 0$.
 (En effet, en posant $y = \frac{1}{x}$, on se ramène à $\lim_{y\to +\infty} -\frac{\ln(y)}{y^2} = 0$ par croissances comparées)

De plus
$$h(0) = 0$$
. Ainsi $\lim_{x \to 0^{-}} h(x) = \lim_{x \to 0^{+}} h(x) = h(0) = 0$, donc $\lim_{x \to 0} h(x) = 0$

(d) On a
$$\lim_{x \to (-1)^-} \varphi(x) = \lim_{x \to (-1)^-} e^{-1} = e^{-1}$$
. On a aussi $\varphi(-1) = e^{-1}$.

D'autre part,
$$\lim_{x\to(-1)^+} \varphi(x) = \lim_{x\to(-1)^+} (x+1)^x = \lim_{x\to(-1)^+} e^{x\ln(x+1)} = \lim_{y\to+\infty} e^y = +\infty$$
. On en déduit que φ n'admet pas de limite en -1 .

(e) On a
$$\lim_{x \to 2^-} \psi(x) = \lim_{x \to 2^-} \exp(-\frac{1}{|x - 2|}) = \lim_{y \to +\infty} \exp(-y) = 0$$
. (car $\frac{1}{|x - 2|} \to +\infty$ quand $x \to 2$)

De même,
$$\lim_{x \to 2^+} \psi(x) = \lim_{x \to 2^+} \exp(-\frac{1}{|x-2|}) = \lim_{y \to +\infty} \exp(-y) = 0$$
. (car $\frac{1}{|x-2|} \to +\infty$ quand $x \to 2$)

Ainsi
$$\lim_{x\to 2^-} \psi(x) = \lim_{x\to 2^+} \psi(x) = 0$$
, mais $\psi(2) = 1$. On en déduit que ψ n'admet pas de limite en 2.

Exercice 7 (Sortez les ε !)

L'intervalle I est ouvert, notons-le I =]a, b[(avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$).

(a) D'après la définition de la limite : $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in]a, b[\cap]x_0 - \delta, x_0 + \delta[, |f(x) - \ell| < \varepsilon.$ Prenons $\varepsilon = 1$. Il existe donc un $\delta > 0$ tel que, pour tout $x \in]a, b[\cap]x_0 - \delta, x_0 + \delta[$,

$$|f(x) - \ell| < 1$$
 c'est à dire $\ell - 1 < f(x) < \ell + 1$.

Posons $J = [a, b] \cap [x_0 - \delta, x_0 + \delta]$: il est clair que c'est un intervalle ouvert contenant x_0 (faite un dessin : on a $J = |x_0 - \delta, x_0 + \delta|$ ou $|a, x_0 + \delta|$ ou $|x_0 - \delta, b|$ ou |a, b|), c'est donc un voisinage de x_0 .

Pour tout $x \in J$, $\ell - 1 < f(x) < \ell + 1$: f est bien bornée sur l'intervalle J.

(b) Dans la définition de la limite, choisissons cette fois $\varepsilon = \frac{\ell}{2} > 0$ (car $\ell > 0$).

Il existe donc un $\delta > 0$ tel que, pour tout $x \in]a, b[\cap]x_0 - \delta, x_0 + \delta[$,

$$|f(x)-\ell|<\frac{\ell}{2} \ \text{c'est à dire} \ \ell-\frac{\ell}{2}< f(x)<\ell+\frac{\ell}{2} \ \text{c'est à dire} \ \frac{\ell}{2}< f(x)<\frac{3\ell}{2}.$$

En posant à nouveau $J=]a,b[\cap]x_0-\delta,x_0+\delta[$ (c'est un intervalle ouvert contenant x_0), on a pour tout $x\in J$, $f(x)>\frac{\ell}{2}$ donc en particulier f(x)>0:f est bien strictement positive sur l'intervalle J.