tacts

2)
$$f: [0, i] \rightarrow [0, i]$$
 smooth $f(0) = f(0) = f(0)$

Theory building

P(M) path groupoid

ob; pts of M

mor: smooth paths in M wsilting instants

· : concatenate + rescale

~: thin homotopy

(0,1)×[0,1) >M of thin

factors through a tree

Curvature

Distributions VE, HE
int. ~ local? "foliation"
E is locally R2×1R1
foliation
X,Y:PHE
[X,Y] ? PHE
$[x'\lambda]t = x(\lambda t) - \lambda(xt) \neq 0$
[XM: ME = 3 foliation of HI
Froming Mrn.
19th c.
W([X,Y]) curature F(X,Y)
W([X,Y]) curvature X,Y:PHE W([X,Y]): VE
F=0 (=) foliation
Flatnosc

trival Sardle MXF w flat nears w is locally the obvious standard flat connection

Principal bunkle

First burdle where F is a Lie group G and PB1) ExG-E free action of G on E on the right PB2) M = E/G

Facts 1) Gacts on horizontal curves in E 2) $\overline{\phi}(u) = |waye(+r(w, {|vzps_m})(u))$ $\frac{1}{2} \left(u \right) = \left(\frac{\text{contractible}}{\text{loops}} \right)$ \$(u) < & holonomy subgroup at u Kobayashiu me Nomizu I of (a) c (5 reduced hol. subgrap. 2.5) To is connected 3) Ambrosse-Singer chereur Lie (To(us) = span of all of of the form F(X,Y) (X,Y horizontal) VE = Mxg curature is infinitesimal holonomy w: Q'(Fjoz) X(u), Y(u), extend locally Q(E; VE) Freed-Hapkin, M-> (